Infinite-dimensional α -divergence minimisation for Variational Inference

Kamélia Daudel

University of Oxford kamelia.daudel@stats.ox.ac.uk

OxCSML seminar 19/11/2021

Joint work with Randal Douc and François Portier

Outline

- 1 Introduction
- 2 Infinite-dimensional α -divergence minimisation
- 3 Numerical experiments
- **4** Conclusion

Outline

- 1 Introduction
- **2** Infinite-dimensional α -divergence minimisation
- 3 Numerical experiments
- 4 Conclusion

Bayesian statistics

 \bullet Compute / sample from the posterior density of the latent variables y given the data ${\mathscr D}$

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

• Problem : for many important models, we can only evaluate $p(y|\mathcal{D})$ up to the constant $p(\mathcal{D})$.

Bayesian statistics

• Compute / sample from the posterior density of the latent variables y given the data ${\mathscr D}$

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

• Problem : for many important models, we can only evaluate $p(y|\mathscr{D})$ up to the constant $p(\mathscr{D})$.

- → Variational Inference : inference is seen as an optimisation problem.
 - **1** Posit a *simpler* variational family Q, where $q \in Q$.
 - **2** Fit q to obtain the best approximation to the posterior density

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})\;,$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

- → Variational Inference : inference is seen as an optimisation problem.
 - **1** Posit a *simpler* variational family \mathcal{Q} , where $q \in \mathcal{Q}$.
 - $\mathbf{2}$ Fit q to obtain the best approximation to the posterior density

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})\;,$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

- → Variational Inference : inference is seen as an optimisation problem.
 - **1** Posit a *simpler* variational family \mathcal{Q} , where $q \in \mathcal{Q}$.
 - **2** Fit q to obtain the best approximation to the posterior density

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})\;,$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

- → Variational Inference : inference is seen as an optimisation problem.
 - **1** Posit a *simpler* variational family Q, where $q \in Q$.
 - $\mathbf{2}$ Fit q to obtain the best approximation to the posterior density

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})\;,$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$$

Question: How to choose D and Q?

$$\begin{cases}
D_{KL}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbb{Y}} \log \left(\frac{q(y)}{p(y)} \right) q(y) \nu(\mathrm{d}y) \\
\mathcal{Q} = \{q : y \mapsto k_1(\theta_1, y_1) k_2(\theta_2, y_2) : (\theta_1, \theta_2) \in \mathbb{T} \}
\end{cases}$$

- Can we select alternative/more general *D*?
- Can we design more expressive variational families Q beyond traditional parametric families?

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$$

Question: How to choose D and Q?

$$\begin{cases}
D_{KL}(\mathbb{Q}||\mathbb{P}) = \int_{\mathsf{Y}} \log \left(\frac{q(y)}{p(y)}\right) q(y) \nu(\mathrm{d}y) \\
\mathcal{Q} = \{q : y \mapsto k_1(\theta_1, y_1) k_2(\theta_2, y_2) : (\theta_1, \theta_2) \in \mathsf{T}\}
\end{cases}$$

- Can we select alternative/more general D?
- Can we design more expressive variational families Q beyond traditional parametric families?

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$$

Question: How to choose D and Q?

$$\begin{cases} D_{KL}(\mathbb{Q}||\mathbb{P}) = \int_{\mathsf{Y}} \log \left(\frac{q(y)}{p(y)}\right) q(y) \nu(\mathrm{d}y) \\ \mathcal{Q} = \{q : y \mapsto k_1(\theta_1, y_1) k_2(\theta_2, y_2) : (\theta_1, \theta_2) \in \mathsf{T} \} \end{cases}$$

- Can we select alternative/more general D?
- Can we design more expressive variational families Q beyond traditional parametric families?

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$$

Question: How to choose D and Q?

$$\begin{cases} D_{KL}(\mathbb{Q}||\mathbb{P}) = \int_{\mathsf{Y}} \log \left(\frac{q(y)}{p(y)}\right) q(y) \nu(\mathrm{d}y) \\ \mathcal{Q} = \{q : y \mapsto k_1(\theta_1, y_1) k_2(\theta_2, y_2) : (\theta_1, \theta_2) \in \mathsf{T} \} \end{cases}$$

- Can we select alternative/more general *D*?
- Can we design more expressive variational families Q beyond traditional parametric families?

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$$

Question: How to choose D and Q?

$$\begin{cases} &D_{KL}(\mathbb{Q}||\mathbb{P}) = \int_{\mathsf{Y}} \log \left(\frac{q(y)}{p(y)}\right) q(y) \nu(\mathrm{d}y) \\ &\mathcal{Q} = \{q: y \mapsto k_1(\theta_1, y_1) k_2(\theta_2, y_2) \ : \ (\theta_1, \theta_2) \in \mathsf{T} \} \end{cases}$$

- Can we select alternative/more general *D*?
- Can we design more expressive variational families Q beyond traditional parametric families?

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$$

Question: How to choose D and Q?

$$\begin{cases} D_{KL}(\mathbb{Q}||\mathbb{P}) = \int_{\mathsf{Y}} \log \left(\frac{q(y)}{p(y)}\right) q(y) \nu(\mathrm{d}y) \\ \mathcal{Q} = \{q : y \mapsto k_1(\theta_1, y_1) k_2(\theta_2, y_2) : (\theta_1, \theta_2) \in \mathsf{T} \} \end{cases}$$

- Can we select alternative/more general D?
 → D is the α-divergence
- Can we design more expressive variational families Q beyond traditional parametric families?

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$$

Question: How to choose D and Q?

$$\begin{cases} &D_{KL}(\mathbb{Q}||\mathbb{P}) = \int_{\mathsf{Y}} \log \left(\frac{q(y)}{p(y)}\right) q(y) \nu(\mathrm{d}y) \\ &\mathcal{Q} = \{q: y \mapsto k_1(\theta_1, y_1) k_2(\theta_2, y_2) \ : \ (\theta_1, \theta_2) \in \mathsf{T} \} \end{cases}$$

- Can we select alternative/more general D?
 - $\rightarrow D$ is the α -divergence
- Can we design more expressive variational families Q beyond traditional parametric families?
 - \rightarrow Put a prior on the variational parameter θ

 $\begin{array}{l} (\mathsf{Y},\mathcal{Y},\nu): \text{ measured space, } \nu \text{ is a } \sigma\text{-finite measure on } (\mathsf{Y},\mathcal{Y}). \\ \mathbb{Q} \text{ and } \mathbb{P}: \mathbb{Q} \preceq \nu \text{, } \mathbb{P} \preceq \nu \text{ with } \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q \text{, } \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\nu} = p. \end{array}$

lpha-divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL).} \end{cases}$$

 $(\mathsf{Y},\mathcal{Y},\nu)$: measured space, ν is a σ -finite measure on (Y,\mathcal{Y}) . \mathbb{Q} and $\mathbb{P}:\mathbb{Q}\preceq\nu$, $\mathbb{P}\preceq\nu$ with $\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu}=q$, $\frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\nu}=p$.

α -divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL).} \end{cases}$$

A flexible family of divergences...

Figure: In red, the Gaussian which minimises $D_{\alpha}(\mathbb{Q}||\mathbb{P})$ for a varying α

Adapted from V. Cevher's lecture notes (2008) https://www.ece.rice.edu/~vc3/elec633/AlphaDivergence.pdf

lpha-divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_\alpha = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^\alpha - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\} \,, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL).} \end{cases}$$

- A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...

$$\inf_{q\in\mathcal{Q}}D_{\alpha}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) = \inf_{q\in\mathcal{Q}}\Psi_{\alpha}(q;p)$$
 with $\Psi_{\alpha}(q;p) = \int_{\mathsf{Y}}f_{\alpha}\left(\frac{q(y)}{p(y)}\right)p(y)\nu(\mathrm{d}y)$ and $p=p(\cdot,\mathscr{D})$

Black-box alpha divergence minimization. J. Hernandez-Lobato et al. (2016). ICML Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS Variational inference via χ -upper bound minimization A. Dieng et al. (2017). NeurIP

lpha-divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_\alpha = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^\alpha - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\} \,, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL).} \end{cases}$$

- A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...

$$\inf_{q\in\mathcal{Q}}D_{\alpha}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) = \inf_{q\in\mathcal{Q}}\Psi_{\alpha}(q;p)$$
 with $\Psi_{\alpha}(q;p) = \int_{\mathsf{Y}}f_{\alpha}\left(\frac{q(y)}{p(y)}\right)p(y)\nu(\mathrm{d}y)$ and $p=p(\cdot,\mathscr{D})$

Black-box alpha divergence minimization. J. Hernandez-Lobato et al. (2016). ICML Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS Variational inference via χ-upper bound minimization A. Dieng et al. (2017). NeurIPS

α -divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbb{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\} \,, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL).} \end{cases}$$

- A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...

$$\inf_{q \in \mathcal{Q}} D_{\alpha}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) = \inf_{q \in \mathcal{Q}} \Psi_{\alpha}(q;p)$$
 with $\Psi_{\alpha}(q;p) = \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$ and $p = p(\cdot,\mathscr{D})$

3 ...with good convexity properties : f_{α} is convex!

α -divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbb{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_\alpha = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^\alpha - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}\,, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL).} \end{cases}$$

- A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...

$$\inf_{q\in\mathcal{Q}}D_{\alpha}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})=\inf_{q\in\mathcal{Q}}\Psi_{\alpha}(q;p)$$
 with $\Psi_{\alpha}(q;p)=\int_{\mathbb{Y}}f_{\alpha}\left(\frac{q(y)}{p(y)}\right)p(y)\nu(\mathrm{d}y)$ and $p=p(\cdot,\mathscr{D})$

3 ...with good convexity properties : f_{α} is convex!

Outline

- 1 Introduction
- 2 Infinite-dimensional α -divergence minimisation
- 3 Numerical experiments
- 4 Conclusion

Infinite-dimensional α -divergence minimisation

Infinite-dimensional gradient-based descent for alpha-divergence minimisation. K. Daudel, R. Douc and F. Portier. Ann. Statist. 49 (4) 2250 - 2270, August 2021. https://doi.org/10.1214/20-AOS2035.

Idea: Extend the traditional variational parametric family

$$Q = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

by putting a prior on the variational parameter θ

$$\mathcal{Q} = \left\{ q : y \mapsto \mu k(y) := \int_{\mathbb{T}} \mu(\mathrm{d}\theta) k(\theta, y) \; : \; \mu \in \mathsf{M} \right\}$$

and propose an update formula for μ that ensures a systematic decrease in the $\alpha\text{-divergence}$ at each step

$$ightarrow$$
 Finite Mixture Models : $\mu = \sum_{j=1}^J \lambda_j \delta_{ heta_j}$

NB: The mapping $\mu \mapsto \Psi_{\alpha}(\mu k; p)$ is convex

Infinite-dimensional α -divergence minimisation

Infinite-dimensional gradient-based descent for alpha-divergence minimisation. K. Daudel, R. Douc and F. Portier. Ann. Statist. 49 (4) 2250 - 2270, August 2021. https://doi.org/10.1214/20-AOS2035.

Idea: Extend the traditional variational parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

by putting a prior on the variational parameter θ

$$\mathcal{Q} = \left\{ q : y \mapsto \mu k(y) := \int_{\mathbb{T}} \mu(\mathrm{d}\theta) k(\theta, y) \; : \; \mu \in \mathsf{M} \right\}$$

and propose an update formula for μ that ensures a systematic decrease in the $\alpha\text{-divergence}$ at each step

$$ightarrow$$
 Finite Mixture Models : $\mu = \sum_{j=1}^J \lambda_j \delta_{\theta_j}$

NB: The mapping $\mu \mapsto \Psi_{\alpha}(\mu k; p)$ is convex

Infinite-dimensional α -divergence minimisation

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier. Ann. Statist. 49 (4) 2250 - 2270, August 2021. https://doi.org/10.1214/20-AOS2035.

Idea: Extend the traditional variational parametric family

$$Q = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

by putting a prior on the variational parameter θ

$$\mathcal{Q} = \left\{ q : y \mapsto \mu k(y) := \int_{\mathbb{T}} \mu(\mathrm{d}\theta) k(\theta, y) \; : \; \mu \in \mathsf{M} \right\}$$

and propose an update formula for μ that ensures a systematic decrease in the $\alpha\text{-divergence}$ at each step

$$ightarrow$$
 Finite Mixture Models : $\mu = \sum_{j=1}^J \lambda_j \delta_{\theta_j}$

NB: The mapping $\mu \mapsto \Psi_{\alpha}(\mu k; p)$ is convex!

Optimisation problem

$$\inf_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu k; p) \quad \text{with} \quad \Psi_{\alpha}(\mu k; p) := \int_{\mathsf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

- p is a nonnegative measurable function defined on (Y,\mathcal{Y})
- M is a subset of $M_1(T)$, the space of probability measures on T
- $K:(\theta,A)\mapsto \int_A k(\theta,y)\nu(\mathrm{d}y)$ is a Markov transition kernel defined on $\mathsf{T}\times\mathcal{Y}$ with density k

Algorithm

Let $\mu_1 \in M_1(T)$ be such that $\Psi_{\alpha}(\mu_1 k) < \infty$. The sequence of probability measures $(\mu_n)_{n\geqslant 1}$ is defined iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \geqslant 1$$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \text{ with } b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta, y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y)$$

Optimisation problem

$$\inf_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu k; p) \quad \text{with} \quad \Psi_{\alpha}(\mu k; p) := \int_{\mathsf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

- p is a nonnegative measurable function defined on (Y, \mathcal{Y})
- M is a subset of $M_1(T)$, the space of probability measures on T
- $K:(\theta,A)\mapsto \int_A k(\theta,y)\nu(\mathrm{d}y)$ is a Markov transition kernel defined on T \times $\mathcal Y$ with density k

Algorithm

Let $\mu_1 \in M_1(T)$ be such that $\Psi_{\alpha}(\mu_1 k) < \infty$. The sequence of probability measures $(\mu_n)_{n\geqslant 1}$ is defined iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \geqslant 1$$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \text{ with } b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta,y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y) dy$$

Optimisation problem

$$\inf_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu k; p) \quad \text{with} \quad \Psi_{\alpha}(\mu k; p) := \int_{\mathsf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

- p is a nonnegative measurable function defined on (Y, \mathcal{Y})
- M is a subset of $\mathrm{M}_1(\mathsf{T})$, the space of probability measures on T

- $K:(\theta,A)\mapsto \int_A k(\theta,y)\nu(\mathrm{d}y)$ is a Markov transition kernel defined on T \times $\mathcal Y$ with density k

Algorithm

Let $\mu_1 \in M_1(T)$ be such that $\Psi_{\alpha}(\mu_1 k) < \infty$. The sequence of probability measures $(\mu_n)_{n\geqslant 1}$ is defined iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \geqslant 1$$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \text{ with } b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta,y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y) dy$$

Optimisation problem

$$\inf_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu k; p) \quad \text{with} \quad \Psi_{\alpha}(\mu k; p) := \int_{\mathsf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

- p is a nonnegative measurable function defined on (Y, \mathcal{Y})
- M is a subset of $M_1(T)$, the space of probability measures on T
- $K:(\theta,A)\mapsto \int_A k(\theta,y)\nu(\mathrm{d}y)$ is a Markov transition kernel defined on $\mathsf{T}\times\mathcal{Y}$ with density k

Algorithm

Let $\mu_1 \in M_1(T)$ be such that $\Psi_{\alpha}(\mu_1 k) < \infty$. The sequence of probability measures $(\mu_n)_{n \geq 1}$ is defined iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \geqslant 1$$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \text{ with } b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta,y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y) dy$$

Optimisation problem

- p is a nonnegative measurable function defined on (Y, \mathcal{Y})
- M is a subset of $\mathrm{M}_1(\mathsf{T})$, the space of probability measures on T
- $K:(\theta,A)\mapsto \int_A k(\theta,y)\nu(\mathrm{d}y)$ is a Markov transition kernel defined on $\mathsf{T}\times\mathcal{Y}$ with density k

Algorithm

Let $\mu_1 \in M_1(T)$ be such that $\Psi_{\alpha}(\mu_1 k) < \infty$. The sequence of probability measures $(\mu_n)_{n\geqslant 1}$ is defined iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \geqslant 1$$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \text{ with } b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta,y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y) dy$$

Optimisation problem

$$\inf_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu k; \mathbf{p}) \quad \text{with} \quad \Psi_{\alpha}(\mu k; \mathbf{p}) := \int_{\mathsf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

- p is a nonnegative measurable function defined on (Y, \mathcal{Y})
- M is a subset of $\mathrm{M}_1(\mathsf{T})$, the space of probability measures on T
- $K:(\theta,A)\mapsto \int_A k(\theta,y)\nu(\mathrm{d}y)$ is a Markov transition kernel defined on $\mathsf{T}\times\mathcal{Y}$ with density k

Algorithm

Let $\mu_1 \in \mathrm{M}_1(\mathsf{T})$ be such that $\Psi_\alpha(\mu_1 k) < \infty$. The sequence of probability measures $(\mu_n)_{n\geqslant 1}$ is defined iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \geqslant 1$$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \quad \text{with} \quad b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta,y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y)$$

Conditions for a monotonic decrease

(A1) For all $(\theta, y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta, y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \ge 0.$$

Theorem

Assume (A1) and (A2). Let $\mu \in M_1(T)$ be such that $\Psi_{\alpha}(\mu k) < \infty$ and $\mu(\Gamma(b_{\mu,\alpha} + \kappa)) < \infty$. Then,

- $\bullet \ \Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k) \leqslant \Psi_{\alpha}(\mu k)$
- ② $\Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k) = \Psi_{\alpha}(\mu k)$ if and only if $\mu = \mathcal{I}_{\alpha}(\mu)$

Conditions for a monotonic decrease

- (A1) For all $(\theta, y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta, y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.
- (A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Theorem

Assume (A1) and (A2). Let $\mu \in M_1(T)$ be such that $\Psi_{\alpha}(\mu k) < \infty$ and $\mu(\Gamma(b_{\mu,\alpha} + \kappa)) < \infty$. Then,

- $\bullet \ \Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k) \leqslant \Psi_{\alpha}(\mu k)$

Conditions for a monotonic decrease

- (A1) For all $(\theta,y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta,y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.
- (A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Theorem

Assume (A1) and (A2). Let $\mu\in M_1(T)$ be such that $\Psi_{\alpha}(\mu k)<\infty$ and $\mu(\Gamma(b_{\mu,\alpha}+\kappa))<\infty$. Then,

- $\bullet \ \Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k) \leqslant \Psi_{\alpha}(\mu k)$
- **②** $\Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k) = \Psi_{\alpha}(\mu k)$ if and only if $\mu = \mathcal{I}_{\alpha}(\mu)$

Examples satisfying (A2)

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

• Entropic Mirror Descent : $\eta \in (0,1], \kappa \in \mathbb{R}$ and $\alpha = 1$

$$\Gamma(v) = e^{-\eta v}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\eta \int_{\mathsf{Y}} k(\theta,y) \log\left(\frac{\mu_n k(y)}{p(y)}\right) \nu(\mathrm{d}y)\right]$$

- \rightarrow NB : η corresponds to the learning rate
- Power descent : $\eta \in (0,1]$, $(\alpha-1)\kappa \geqslant 0$ and $\alpha \neq 1$

$$\Gamma(v) = [(\alpha - 1)v + 1]^{\frac{\eta}{1 - \alpha}}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \left[\int_{\mathsf{Y}} k(\theta, y) \left(\frac{\mu_n k(y)}{p(y)} \right)^{\alpha - 1} \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\frac{\eta}{1 - \alpha}}$$

Examples satisfying (A2)

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

• Entropic Mirror Descent : $\eta \in (0,1]$, $\kappa \in \mathbb{R}$ and $\alpha = 1$

$$\Gamma(v) = e^{-\eta v}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\eta \int_{\mathsf{Y}} k(\theta,y) \log\left(\frac{\mu_n k(y)}{p(y)}\right) \nu(\mathrm{d}y)\right]$$

 \rightarrow NB : n corresponds to the learning rate

• Power descent : $\eta \in (0,1]$, $(\alpha - 1)\kappa \geqslant 0$ and $\alpha \neq 1$

$$\Gamma(v) = [(\alpha - 1)v + 1]^{\frac{\eta}{1 - \alpha}}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \left[\int_{\mathsf{Y}} k(\theta, y) \left(\frac{\mu_n k(y)}{p(y)} \right)^{\alpha - 1} \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\frac{\eta}{1 - \alpha}}$$

Examples satisfying (A2)

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

• Entropic Mirror Descent : $\eta \in (0,1]$, $\kappa \in \mathbb{R}$ and $\alpha = 1$

$$\Gamma(v) = e^{-\eta v}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\eta \int_{\mathsf{Y}} k(\theta,y) \log\left(\frac{\mu_n k(y)}{p(y)}\right) \nu(\mathrm{d}y)\right]$$

- \rightarrow NB : η corresponds to the learning rate
- Power descent : $\eta \in (0,1]$, $(\alpha-1)\kappa \geqslant 0$ and $\alpha \neq 1$

$$\Gamma(v) = [(\alpha - 1)v + 1]^{\frac{\eta}{1 - \alpha}}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \left[\int_{\mathsf{Y}} k(\theta, y) \left(\frac{\mu_n k(y)}{p(y)} \right)^{\alpha - 1} \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\frac{n}{1 - \alpha}}$$

Examples satisfying (A2)

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

• Entropic Mirror Descent : $\eta \in (0,1]$, $\kappa \in \mathbb{R}$ and $\alpha = 1$

$$\Gamma(v) = e^{-\eta v}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\eta \int_{\mathsf{Y}} k(\theta,y) \log\left(\frac{\mu_n k(y)}{p(y)}\right) \nu(\mathrm{d}y)\right]$$

- \rightarrow NB : η corresponds to the learning rate
- Power descent : $\eta \in (0,1]$, $(\alpha 1)\kappa \geqslant 0$ and $\alpha \neq 1$

$$\Gamma(v) = [(\alpha - 1)v + 1]^{\frac{\eta}{1 - \alpha}}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \left[\int_{\mathbf{Y}} k(\theta, y) \left(\frac{\mu_n k(y)}{p(y)} \right)^{\alpha - 1} \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\frac{\eta}{1 - \alpha}}$$

Λ.		٠.		
Α	gor	ıt	h	m

Convergence results

Entropic Mirror Descent

$$\eta \in (0, \frac{1}{|\alpha - 1||b|_{\infty,\alpha} + 1}), \ \kappa \in \mathbb{R}$$

Power Descent

$$\eta \in (0,1]$$
 , $(\alpha-1)\kappa \geqslant 0$

Algorithm	Convergence results
Entropic Mirror Descent $\eta \in (0, \frac{1}{ \alpha-1 b _{\infty,\alpha}+1}), \ \kappa \in \mathbb{R}$	O(1/N) convergence rates
Power Descent $\eta \in (0,1], \ (\alpha-1)\kappa \geqslant 0$	

Algorithm	Convergence results
Entropic Mirror Descent $\eta \in (0, \frac{1}{ \alpha-1 b _{\infty,\alpha}+1}), \ \kappa \in \mathbb{R}$	O(1/N) convergence rates
Power Descent $\eta \in (0,1], \ (\alpha-1)\kappa \geqslant 0$	$\alpha > 1$: ${\cal O}(1/N)$ convergence rates

Algorithm	Convergence results
Entropic Mirror Descent $\eta \in (0, \frac{1}{ \alpha-1 b _{\infty,\alpha}+1}), \ \kappa \in \mathbb{R}$	O(1/N) convergence rates
Power Descent $\eta \in (0,1], \ (\alpha-1)\kappa \geqslant 0$	$\alpha>1$: $O(1/N)$ convergence rates $\alpha<1$: convergence toward the optimum

$$S_J = \left\{ \pmb{\lambda} = (\lambda_1,...,\lambda_J) \in \mathbb{R}^J \ : \ \forall j \in \{1,...,J\} \,, \ \lambda_j \geqslant 0 \ \text{and} \ \sum_{j=1}^J \lambda_j = 1 \right\}$$
 Let $\theta_1,...,\theta_J \in \mathsf{T}$ be fixed and denote

$$\mu_{\lambda} = \sum_{j=1}^{J} \lambda_j \delta_{\theta_j}$$
 where $\lambda \in \mathcal{S}_J$.

Then, $\mu_n = \underbrace{\mathcal{I}_{\alpha} \circ \cdots \circ \mathcal{I}_{\alpha}(\mu_{\lambda})}_{n \text{ times}}$ is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$ with

$$\begin{cases} \lambda_1 = \lambda \\ \lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{j=1}^J \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)} \end{cases}.$$

o In practice, we use Monte Carlo approximations to estimate $b_{\mu_n,lpha}(heta_j)$, e.g.

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^{M} \frac{k(\theta_j, Y_{m,n})}{\mu_n k(Y_{m,n})} f'_{\alpha} \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})} \right),$$

with $Y_{1,n},...,Y_{M,n} \overset{\text{i.i.d}}{\sim} \mu_n k$

 \rightarrow NB : Exploitation step that does not require any information on the distribution of $\{\theta_1,...,\theta_J\}$

$$S_J = \left\{ \boldsymbol{\lambda} = (\lambda_1,...,\lambda_J) \in \mathbb{R}^J \ : \ \forall j \in \{1,...,J\} \,, \ \lambda_j \geqslant 0 \text{ and } \sum_{j=1}^J \lambda_j = 1 \right\}$$
 Let $\theta_1,...,\theta_J \in \mathsf{T}$ be fixed and denote

$$\mu_{oldsymbol{\lambda}} = \sum_{j=1}^J \lambda_j \delta_{ heta_j} \quad ext{where} \quad oldsymbol{\lambda} \in \mathcal{S}_J \;.$$

Then, $\mu_n = \underbrace{\mathcal{I}_{\alpha} \circ \cdots \circ \mathcal{I}_{\alpha}}_{n \text{ times}}(\mu_{\lambda})$ is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$ with

$$\begin{cases} \boldsymbol{\lambda}_1 = \boldsymbol{\lambda} \\ \lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{j=1}^J \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)} \end{cases}.$$

 \rightarrow In practice, we use Monte Carlo approximations to estimate $b_{\mu_n,\alpha}(\theta_j)$, e.g.

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^{M} \frac{k(\theta_j, Y_{m,n})}{\mu_n k(Y_{m,n})} f'_{\alpha} \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})} \right),$$

with $Y_{1,n},...,Y_{M,n} \overset{\text{i.i.d}}{\sim} \mu_n k$

 \rightarrow NB : Exploitation step that does not require any information on the distribution of $\{\theta_1, ..., \theta_J\}$

$$S_J = \left\{ \boldsymbol{\lambda} = (\lambda_1,...,\lambda_J) \in \mathbb{R}^J \ : \ \forall j \in \{1,...,J\} \,, \ \lambda_j \geqslant 0 \text{ and } \sum_{j=1}^J \lambda_j = 1 \right\}$$
 Let $\theta_1,...,\theta_J \in \mathsf{T}$ be fixed and denote

$$\mu_{oldsymbol{\lambda}} = \sum_{j=1}^J \lambda_j \delta_{ heta_j} \quad ext{where} \quad oldsymbol{\lambda} \in \mathcal{S}_J \;.$$

Then, $\mu_n = \underbrace{\mathcal{I}_{\alpha} \circ \cdots \circ \mathcal{I}_{\alpha}}_{n \text{ times}}(\mu_{\lambda})$ is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$ with

$$\begin{cases} \boldsymbol{\lambda}_1 = \boldsymbol{\lambda} \\ \lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{j=1}^J \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)} \end{cases}.$$

 \rightarrow In practice, we use Monte Carlo approximations to estimate $b_{\mu_n,\alpha}(\theta_j)$, e.g.

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^M \frac{k(\theta_j, Y_{m,n})}{\mu_n k(Y_{m,n})} f_\alpha' \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})} \right),$$

with $Y_{1,n},...,Y_{M,n} \overset{\text{i.i.d}}{\sim} \mu_n k$.

 \rightarrow NB : Exploitation step that does not require any information on the distribution of $\{\theta_1,...,\theta_J\}$

$$S_J = \left\{ \boldsymbol{\lambda} = (\lambda_1,...,\lambda_J) \in \mathbb{R}^J \ : \ \forall j \in \{1,...,J\} \,, \ \lambda_j \geqslant 0 \text{ and } \sum_{j=1}^J \lambda_j = 1 \right\}$$
 Let $\theta_1,...,\theta_J \in \mathsf{T}$ be fixed and denote

$$\mu_{oldsymbol{\lambda}} = \sum_{j=1}^J \lambda_j \delta_{ heta_j} \quad ext{where} \quad oldsymbol{\lambda} \in \mathcal{S}_J \;.$$

Then, $\mu_n = \underbrace{\mathcal{I}_{\alpha} \circ \cdots \circ \mathcal{I}_{\alpha}}_{n \text{ times}}(\mu_{\lambda})$ is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$ with

$$\begin{cases} \boldsymbol{\lambda}_1 = \boldsymbol{\lambda} \\ \lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{j=1}^J \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)} \end{cases}.$$

 \rightarrow In practice, we use Monte Carlo approximations to estimate $b_{\mu_n,\alpha}(\theta_j)$, e.g.

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^M \frac{k(\theta_j, Y_{m,n})}{\mu_n k(Y_{m,n})} f_\alpha' \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})} \right),$$

with $Y_{1,n},...,Y_{M,n} \stackrel{\text{i.i.d}}{\sim} \mu_n k$.

 \to NB : Exploitation step that does not require any information on the distribution of $\{\theta_1,...,\theta_J\}$

Outline

- 1 Introduction
- 2 Infinite-dimensional α -divergence minimisation
- 3 Numerical experiments
- 4 Conclusion

• Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- ① Exploitation step : optimise λ using the (α, Γ) -descent.
- **2** Exploration step : update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h \propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5\mathcal{N}(y; -2u_d, I_d) + 0.5\mathcal{N}(y; 2u_d, I_d)], \ Z = 2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

ullet Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- **1** Exploitation step : optimise λ using the (α, Γ) -descent.
- ② Exploration step : update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h \propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5\mathcal{N}(y; -2u_d, I_d) + 0.5\mathcal{N}(y; 2u_d, I_d)], \ Z = 2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

ullet Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- **1** Exploitation step : optimise λ using the (α, Γ) -descent.
- **2** Exploration step : update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h \propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5\mathcal{N}(y; -2u_d, I_d) + 0.5\mathcal{N}(y; 2u_d, I_d)], \ Z = 2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

ullet Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- **1** Exploitation step : optimise λ using the (α, Γ) -descent.
- **2** Exploration step : update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h \propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5\mathcal{N}(y; -2u_d, I_d) + 0.5\mathcal{N}(y; 2u_d, I_d)], \ Z = 2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

ullet Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- **1** Exploitation step : optimise λ using the (α, Γ) -descent.
- **2** Exploration step : update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h\propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5\mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})], \ Z = 2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

ullet Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- **1** Exploitation step : optimise λ using the (α, Γ) -descent.
- **2** Exploration step : update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h\propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5\mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})], \ Z = 2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

Comparison between

- 0.5-Mirror descent : $\Gamma(v) = e^{-\eta v}$ and $\alpha = 0.5$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ and $\alpha = 0.5$.

J=M=100, initial mixture weights : [1/J,...,1/J], N=10, T=20 $\eta_n=\eta_0/\sqrt{n}$, $\eta_0=0.5$, cv criterion : VR-Bound averaged over 100 trials

Comparison between

- 0.5-Mirror descent : $\Gamma(v) = e^{-\eta v}$ and $\alpha = 0.5$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ and $\alpha = 0.5$.

J=M=100, initial mixture weights : [1/J,...,1/J], N=10, T=20 $\eta_n=\eta_0/\sqrt{n}$, $\eta_0=0.5$, cv criterion : VR-Bound averaged over 100 trials

Comparison between

- 0.5-Mirror descent : $\Gamma(v) = e^{-\eta v}$ and $\alpha = 0.5$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ and $\alpha = 0.5$.

J=M=100, initial mixture weights : [1/J,...,1/J], N=10, T=20 $\eta_n=\eta_0/\sqrt{n},~\eta_0=0.5$, cv criterion : VR-Bound averaged over 100 trials

Comparison between

- 0.5-Mirror descent : $\Gamma(v) = e^{-\eta v}$ and $\alpha = 0.5$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ and $\alpha = 0.5$.

J=M=100, initial mixture weights : [1/J,...,1/J], N=10, T=20 $\eta_n=\eta_0/\sqrt{n},~\eta_0=0.5$, cv criterion : VR-Bound averaged over 100 trials

Comparison between:

- 1-Mirror descent : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 1$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

J=M=100, initial mixture weights : [1/J,...,1/J], N=10, T=20, $\eta_n=\eta_0/\sqrt{n}$, $\eta_0=0.5$, cv criterion : Ilh averaged over 100 trials

Comparison between:

- 1-Mirror descent : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 1$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

J=M=100, initial mixture weights : [1/J,...,1/J],~N=10,~T=20 $\eta_n=\eta_0/\sqrt{n},~\eta_0=0.5,$ cv criterion : Ilh averaged over 100 trials

Comparison between:

- 1-Mirror descent : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 1$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1) v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

J=M=100, initial mixture weights : [1/J,...,1/J], $N=10,\,T=20$ $\eta_n=\eta_0/\sqrt{n},\,\eta_0=0.5$, cv criterion : Ilh averaged over 100 trials

Comparison between:

- 1-Mirror descent : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 1$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

J=M=100 , initial mixture weights : [1/J,...,1/J],~N=10,~T=20 $\eta_n=\eta_0/\sqrt{n},~\eta_0=0.5,$ cv criterion : Ilh averaged over 100 trials

 $o \mathscr{D} = \{c,x\}$: I binary class labels, $c_i \in \{-1,1\}$, L covariates for each datapoint, $x_i \in \mathbb{R}^L$

 \rightarrow Model: L regression coefficients $w_l \in \mathbb{R}$, precision parameter $\beta \in \mathbb{R}^+$

$$\begin{aligned} p_0(\beta) &= \operatorname{Gamma}(\beta; a, b) \;, \\ p_0(w_l | \beta) &= \mathcal{N}(w_l; 0, \beta^{-1}) \;, \quad 1 \leqslant l \leqslant L \\ p(c_i &= 1 | \boldsymbol{x}_i, \boldsymbol{w}) &= \frac{1}{1 + e^{-\boldsymbol{w}^T \boldsymbol{x}_i}} \;, \quad 1 \leqslant i \leqslant I \end{aligned}$$

where a = 1 and b = 0.01

Nonparametric variational inference S. Gershman, M. Hoffman, and D. Blei (2012). ICML

$$ightarrow$$
 Quantity of interest : $p(y|\mathcal{D})$ with $y = [{m w}, \log eta]$

Comparison between

- 0.5-Power descent
- Typical AIS

$$N = 1$$
, $T = 500$, $J_0 = M_0 = 20$, $J_{t+1} = M_{t+1} = J_t + 1$
initial mixture weights: $[1/J_t, ..., 1/J_t]$, $n_0 = n_0/\sqrt{n}$ with $n_0 = 0.05$

- $o \mathscr{D} = \{c,x\}$: I binary class labels, $c_i \in \{-1,1\}$, L covariates for each datapoint, $x_i \in \mathbb{R}^L$
- \rightarrow Model : L regression coefficients $w_l \in \mathbb{R}$, precision parameter $\beta \in \mathbb{R}^+$

$$\begin{aligned} &p_0(\beta) = \operatorname{Gamma}(\beta; a, b) \;, \\ &p_0(w_l | \beta) = \mathcal{N}(w_l; 0, \beta^{-1}) \;, \quad 1 \leqslant l \leqslant L \\ &p(c_i = 1 | \boldsymbol{x}_i, \boldsymbol{w}) = \frac{1}{1 + e^{-\boldsymbol{w}^T \boldsymbol{x}_i}} \;, \quad 1 \leqslant i \leqslant I \end{aligned}$$

where a=1 and b=0.01

Nonparametric variational inference S. Gershman, M. Hoffman, and D. Blei (2012). ICML

ightarrow Quantity of interest : $p(y|\mathcal{D})$ with $y = [\boldsymbol{w}, \log \beta]$

Comparison between

- 0.5-Power descent
- Typical <u>AIS</u>

N = 1, T = 500, $J_0 = M_0 = 20$, $J_{t+1} = M_{t+1} = J_t + 1$ initial mixture weights: $[1/J_t, ..., 1/J_t]$, $\eta_0 = \eta_0/\sqrt{\eta}$ with $\eta_0 = 0.05$

- $\to \mathscr{D}=\{c,x\}:I$ binary class labels, $c_i\in\{-1,1\}$, L covariates for each datapoint, $x_i\in\mathbb{R}^L$
- \rightarrow Model : L regression coefficients $w_l \in \mathbb{R}$, precision parameter $\beta \in \mathbb{R}^+$

$$\begin{aligned} p_0(\beta) &= \operatorname{Gamma}(\beta; a, b) \ , \\ p_0(w_l | \beta) &= \mathcal{N}(w_l; 0, \beta^{-1}) \ , \quad 1 \leqslant l \leqslant L \\ p(c_i &= 1 | \boldsymbol{x}_i, \boldsymbol{w}) &= \frac{1}{1 + e^{-\boldsymbol{w}^T \boldsymbol{x}_i}} \ , \quad 1 \leqslant i \leqslant I \end{aligned}$$

where a = 1 and b = 0.01

Nonparametric variational inference S. Gershman, M. Hoffman, and D. Blei (2012). ICML

 \rightarrow Quantity of interest : $p(y|\mathscr{D})$ with $y = [\boldsymbol{w}, \log \beta]$

Comparison between

- <u>0.5-Power descent</u>
- Typical AIS

 $N=1, T=500, J_0=M_0=20, J_{t+1}=M_{t+1}=J_t+1$ initial mixture weights : $[1/J_t,...,1/J_t], \eta_n=\eta_0/\sqrt{n}$ with $\eta_0=0.05$

 $o \mathscr{D}=\{c,x\}:I$ binary class labels, $c_i\in\{-1,1\}$, L covariates for each datapoint, $x_i\in\mathbb{R}^L$

 \rightarrow Model : L regression coefficients $w_l \in \mathbb{R}$, precision parameter $\beta \in \mathbb{R}^+$

$$\begin{aligned} &p_0(\beta) = \operatorname{Gamma}(\beta; a, b) \;, \\ &p_0(w_l | \beta) = \mathcal{N}(w_l; 0, \beta^{-1}) \;, \quad 1 \leqslant l \leqslant L \\ &p(c_i = 1 | \boldsymbol{x}_i, \boldsymbol{w}) = \frac{1}{1 + e^{-\boldsymbol{w}^T \boldsymbol{x}_i}} \;, \quad 1 \leqslant i \leqslant I \end{aligned}$$

where a = 1 and b = 0.01

Nonparametric variational inference S. Gershman, M. Hoffman, and D. Blei (2012). ICML

 \rightarrow Quantity of interest : $p(y|\mathcal{D})$ with $y = [\boldsymbol{w}, \log \beta]$

Comparison between

- <u>0.5-Power descent</u>
- Typical AIS

 $N=1, T=500, J_0=M_0=20, J_{t+1}=M_{t+1}=J_t+1$ initial mixture weights : $[1/J_t,...,1/J_t], \eta_n=\eta_0/\sqrt{n}$ with $\eta_0=0.05$

Outline

- 1 Introduction
- 2 Infinite-dimensional α -divergence minimisation
- 3 Numerical experiments
- **4** Conclusion

$$\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$\mathcal{Q} = \left\{q: y \mapsto \sum_{j=1}^{J} \lambda_j k(heta_j, y) \; : \; oldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J
ight\}$$

- → Exploitation Exploration algorithm
 - ① Update for Θ not specified (e.g. your favorite update for Θ)
- 2 Empirical advantages of using the Power Descent algorithm

$$\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$\mathcal{Q} = \left\{q: y \mapsto \sum_{j=1}^{J} \lambda_j k(heta_j, y) \; : \; oldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J
ight\}$$

- → Exploitation Exploration algorithm
 - **1** Update for Θ not specified (e.g. your favorite update for Θ)
- 2 Empirical advantages of using the Power Descent algorithm

$$\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$\mathcal{Q} = \left\{q: y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) \; : \; oldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J
ight\}$$

- → Exploitation Exploration algorithm
 - **1** Update for Θ not specified (e.g. your favorite update for Θ)
- 2 Empirical advantages of using the Power Descent algorithm

$$\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$\mathcal{Q} = \left\{q: y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) \; : \; oldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J
ight\}$$

- → Exploitation Exploration algorithm
 - ① Update for Θ not specified (e.g. your favorite update for Θ)
- 2 Empirical advantages of using the Power Descent algorithm

$$\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \boldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- → Exploitation Exploration algorithm
 - **1** Update for Θ not specified (e.g. your favorite update for Θ)
- 2 Empirical advantages of using the Power Descent algorithm

$$\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \boldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- → Exploitation Exploration algorithm
 - **1** Update for Θ not specified (e.g. your favorite update for Θ)
 - 2 Empirical advantages of using the Power Descent algorithm

$$\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \boldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- ightarrow Exploitation Exploration algorithm
 - **1** Update for Θ not specified (e.g. your favorite update for Θ)
 - 2 Empirical advantages of using the Power Descent algorithm

$$\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \boldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- → Exploitation Exploration algorithm
 - **1** Update for Θ not specified (e.g. your favorite update for Θ)
 - 2 Empirical advantages of using the Power Descent algorithm

- Mixture weights optimisation for Alpha-Divergence Variational Inference.
 - K. Daudel and R. Douc (2021). To appear in NeurIPS2021
 - \rightarrow Extension of the Power Descent to the case $\alpha = 1$
 - \rightarrow Full proof of convergence for finite mixture models (α < 1)
 - → Closely-related algorithm : Rényi Descent
- 2 Monotonic Alpha-divergence Minimisation.
 - K. Daudel, R. Douc and F. Roueff (2021). https://arxiv.org/abs/2103.05684
 - \rightarrow Conditions for a simultaneous optimisation w.r.t λ and Θ (that preserve the monotonic decrease!)
 - ightarrow Simple updates on Θ for speficic kernels k (e.g Gaussian, Student's)
 - ightarrow Links with Gradient Descent schemes and an Integrated EM algorithm with empirical benefits
- 3 Your next paper?

- Mixture weights optimisation for Alpha-Divergence Variational Inference.
 - K. Daudel and R. Douc (2021). To appear in NeurIPS2021
 - ightarrow Extension of the Power Descent to the case $\alpha=1$
 - \rightarrow Full proof of convergence for finite mixture models (α < 1)
 - → Closely-related algorithm : Rényi Descent
- Monotonic Alpha-divergence Minimisation.
 - K. Daudel, R. Douc and F. Roueff (2021). https://arxiv.org/abs/2103.05684
 - \rightarrow Conditions for a simultaneous optimisation w.r.t λ and Θ (that preserve the monotonic decrease!)
 - ightarrow Simple updates on Θ for speficic kernels k (e.g Gaussian, Student's)
 - ightarrow Links with Gradient Descent schemes and an Integrated EM algorithm with empirical benefits
- Your next paper?

- Mixture weights optimisation for Alpha-Divergence Variational Inference.
 - K. Daudel and R. Douc (2021). To appear in NeurIPS2021
 - \rightarrow Extension of the Power Descent to the case $\alpha=1$
 - \rightarrow Full proof of convergence for finite mixture models (α < 1)
 - → Closely-related algorithm : Rényi Descent
- 2 Monotonic Alpha-divergence Minimisation.
 - K. Daudel, R. Douc and F. Roueff (2021). https://arxiv.org/abs/2103.05684
 - \rightarrow Conditions for a simultaneous optimisation w.r.t λ and Θ (that preserve the monotonic decrease!)
 - ightarrow Simple updates on Θ for speficic kernels k (e.g Gaussian, Student's)
 - ightarrow Links with Gradient Descent schemes and an Integrated EM algorithm with empirical benefits
- 3 Your next paper?

- Mixture weights optimisation for Alpha-Divergence Variational Inference.
 - K. Daudel and R. Douc (2021). To appear in NeurIPS2021
 - \rightarrow Extension of the Power Descent to the case $\alpha=1$
 - \rightarrow Full proof of convergence for finite mixture models (α < 1)
 - → Closely-related algorithm : Rényi Descent
- 2 Monotonic Alpha-divergence Minimisation.
 - K. Daudel, R. Douc and F. Roueff (2021). https://arxiv.org/abs/2103.05684
 - \rightarrow Conditions for a simultaneous optimisation w.r.t λ and Θ (that preserve the monotonic decrease!)
 - ightarrow Simple updates on Θ for speficic kernels k (e.g Gaussian, Student's)
 - \rightarrow Links with Gradient Descent schemes and an Integrated EM algorithm with empirical benefits
- 3 Your next paper?

- Mixture weights optimisation for Alpha-Divergence Variational Inference.
 - K. Daudel and R. Douc (2021). To appear in NeurIPS2021
 - \rightarrow Extension of the Power Descent to the case $\alpha=1$
 - \rightarrow Full proof of convergence for finite mixture models (α < 1)
 - → Closely-related algorithm : Rényi Descent
- 2 Monotonic Alpha-divergence Minimisation.
 - K. Daudel, R. Douc and F. Roueff (2021). https://arxiv.org/abs/2103.05684
 - \rightarrow Conditions for a simultaneous optimisation w.r.t λ and Θ (that preserve the monotonic decrease!)
 - \rightarrow Simple updates on Θ for speficic kernels k (e.g Gaussian, Student's)
 - \rightarrow Links with Gradient Descent schemes and an Integrated EM algorithm with empirical benefits
- Your next paper?

Thank you for your attention!

kamelia.daudel@stats.ox.ac.uk