Practice Exercise 01

27 สิงหาคม 2567

บวกเลขง่าย ๆ

การบวกเลขคือการนำจำนวนใดๆมารวมกัน ตัวอย่างเช่น 1 + 1 จะมีค่าเท่ากับ 2 หากจำนวนของตัวเลขที่ นำมาบวกมีจำนวนเยอะ เราสามารถเขียนรูปของสัญลักษณ์ทางคณิตศาสตร์ได้ว่า

$$y = \sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$$

โดยที่ x_i คือจำนวนใด ๆ n คือจำนวนตัวเลขที่จะนำมาบวก u คือผลรวม

หรือจะเรียกอีกอย่างว่า summation ซึ่งเขียนแทนด้วยสัญลักษณ์ Σ

ลำดับเลขคณิต หรือ Arithmetic progression เป็นลำดับของเลขที่เรียงกันโดยที่มีผลต่างของแต่ละลำดับ เท่ากัน สามารถเขียนได้จาก

$$a_n = a_1 + (n-1)d$$

โดยที่ a_n คือเลขลำดับที่ n a_1 คือเลขลำดับที่ 1 d คือผลต่างร่วมของลำดับ

หากเราต้องการที่จะสร้าง list ของ Positive Number จาก 1 ถึง x ใดๆ เราสามารถเขียนได้จากสมการ Arithmetic Progression โดยที่ a_1 และ d มีค่าเท่ากับ 1

จากคำนิยามที่กำหนดให้ด้านบน หากต้องการหาว่าจะต้องบวก Positive Number ตัวไหนบ้าง โดยที่ $a_1=1$ และ $a_x=x$ เพื่อให้ได้ผลลัพธ์เท่ากับ y โดยที่เลขที่จะนำมาบวกกันนั้นไม่ซ้ำกัน เช่น x=5 โดยที่ ต้องการจะบวกเลขให้ได้ 12 จะได้

1	2	3	4	5	1+2+4+5
1	2	3	4	5	3+4+5

จากตัวอย่างนี้จะได้วิธีการเลือกตัวเลขทั้งหมด 2 แบบ อยากทราบว่าในวิธีการทั้งหมดนั้น ใช้จำนวนคู่หรือ จำนวนคี่เท่าไร จาดตัวอย่าง จำนวนคู่ 3 จำนวน และ 4 จำนวนคี่

งานของนักศึกษา

จงคำนวนหาจำนวนเลขคู่และเลขคี่ทั้งหมด จากวิธีการบวกเลข ตั้งแต่ 1 ถึง x ใดๆ เพื่อให้ได้คำตอบ y

ข้อมูลนำเข้า (Input)

บรรทัด 1	เลขสุดท้ายของลำดับ (x) โดยที่ $1 < x < 5000$
บรรทัด 2	ผลรวมที่ต้องการคำนวณ (y) โดยที่ $1 \leq y \leq 10000$

ข้อมูลส่งออก (Output)

บรรทัด 1	จำนวนคี่ ทั้งหมดที่เป็นไปได้ในการหาผลรวม
บรรทัด 2	จำนวนคู่ ทั้งหมดที่เป็นไปได้ในการหาผลรวม

ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

Input	Output
5	5
9	3
10	76
22	72
17	4414
52	3931

Land Fill

ภาควิชาวิศวกรรมคอมพิวเตอร์ ภายใต้การนำของอาจารย์กิจกรรม ดร.ทวีชัย ได้มีวิสัยทัศน์ในการขยาย ภาควิชา ให้สามารถรองรับการเปิดหลักสูตรใหม่ โดยจะทำการรับนักศึกษาเพิ่มเป็น 985 คนต่อปี แต่เนื่องจาก สถานที่ไม่เพียงพอต่อจำนวนคน จึงได้มีมติให้ย้ายภาควิชาไปตั้งอยู่ที่ วิทยาเขตบางขุนธูป ซึ่งมีลักษณะเป็นเขา ทำให้ต้องมีการจัดสรรค์งบประมาณสำหรับการถมที่ ซึ่งได้ส่ง คุณวงศธร สังศิลปเวช หัวหน้าชำนาญการสำรวจ ไปสำรวจและวัดความสุงของพื้นที่ (เมตร) เทียบกับระดับน้ำทะเล ต่อความยาว 1 เมตรใด ๆ

โดยตัวอย่างข้อมูลของดินคือความสูงในแต่ละช่วง 1 เมตร เช่น หากมีการสำรวจที่ความยาว 10 เมตร ได้ ข้อมูลว่า 1,1,3,4,6,3,2,2,3,4 จะได้ตัวอย่างความสูงดังรูป

จากนั้นจะมีการนำดินมาถม ซึ่งดินที่จะมาถมแต่ละครั้งมีรูปแบบเหมือนกัน โดยมีตัวแปรดังนี้ l,m,r

โดยที่ l แทนความสูงของดินด้านซ้าย m แทนความสูงของดินในตำแหน่งที่สูงที่สุด r แทนความสูงของดินด้านขวาสุด (r < m)

โดยการไล่ระดับความสูงของดิน จาก l ไป m นั้น จะเพิ่มขึ้นทีละ 1 เมตร และระดับความสูง m ไป r นั้น จะลดทีละ 1 เมตร เช่น 3, 6, 4 หมายความว่าดินนั้นมีความสูงฝั่งซ้าย 3 เพิ่มไปที่ละ 1 จนถึง 6 และจากนั้นลด ความสูงที่ละ 1 จนถึง 4 ทำให้เมื่อวัดความยาวของดินจะได้ทั้งหมด 6 เมตร ดังรูป

			6		
		5		5	
	4				4
3					

เมื่อทราบความสูงของที่ดิน และรูปแบบของดินแล้ว สิ่งที่ต้องทำคือการนำดินที่ได้นั้นมาถมที่ดินที่มีอยู่เดิม เพื่อให้ได้ความขรุขระ (rough) น้อยที่สุด ซึ่งคำนวนได้จาก

$$rough = \sum_{i=1}^{n-1} |h_i - h_{i+1}|$$

โดย h_i คือความสูงของที่ดินที่อาจจะผ่านการถมแล้ว หรือไม่มีการถมเกิดขึ้นก็ได้ ต่อความยาว 1 เมตรใด ๆ

โดยการถมนั้นไม่สามารถที่จะถมตำแหน่งเดิมได้ คือ หากตำแหน่งของดินทั้ง ทั้งกองที่ถูกถมไปแล้ว ไม่ สามารถที่จะถมดินทับที่ตำแหน่งเดิมทั้งหมดได้ ดังตัวอย่างด้านล่าง

ข้อกำหนดคือห้ามถมที่เกิดตำแหน่งของความสูงของภูเขาที่สำรวจ

ตัวอย่างการถมดินเปื้องต้น

จากในตัวอย่างข้อมูลความยาวของที่ดินที่ทราบความสูงคือ 10 เมตร และแต่ละเมตรสูง 1, 1, 3, 2, 2, 3, 1, 2, 3, 4

ดินที่นำมาถมคือ $l=1,\,m=3,\,r=2$ ซึ่งทำให้ดินที่มาถมนั้นครอบคลุมความยาว 4 เมตร โดยที่ความ ยาวแต่ละ 1 เมตร สูง 1, 2, 3, 2 ตามลำดับ ซึ่งจากในตัวอย่างจะเป็นการถมดิน 2 ครั้งจากนั้นทำการคำนวณ หาความขรุขระ และลองถมวิธีอื่นไปเรื่อย ๆ จนกว่าจะได้ความขรุขระน้อยที่สุด

งานของนักศึกษา

รับค่าระยะของที่ดินที่ทราบความสูง จากนั้นใส่ข้อมูลความสูงของดินที่ความยาว 1 เมตรใด ๆ ผู้ใช้ใส่ข้อมูล ของดิน (l,m,r) จากนั้นนำดินที่ได้มาถมในที่ดินที่เราทราบความสูง และหาความขรุขระที่น้อยที่สุดจากรูป แบบการถมดินที่เป็นไปได้ทั้งหมด

ข้อมูลนำเข้า (Input)

บรรทัด 1	ความยาวของที่ดิน (n)
บรรทัด 2	ความสูงของที่ดินใน 1 เมตรใดๆ n ตัว
บรรทัด 3	l,m,r ซึ่งเป็น parameter ของดินที่จะถม

ข้อมูลส่งออก (Output)

บรรทัด 1	ความขรุขระที่น้อยที่สุด	
	9 9	

ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

Input	Output
10	20
1 2 3 3 6 2 2 1 1 1	
1 2 1	
15	12
4 4 4 4 4 4 5 1 2 3 4 5 6 3 2	
3 5 4	

ลูกปัดจีนแดง (Fake Beads)

หลังจากที่หลวงปู่ทวีไชย ได้ปลุกเสกลูกปัดออกมา มีนักศึกษานำไปบูชาเป็นจำนวนมาก ซึ่งได้รับความ นิยมเป็นจำนวนมาก เพราะทำข้อสอบได้คะแนนเยอะมากๆ นอกจากนั้นยังมีบุคคลที่มีชื่อเสียงเช่าไปบูชา เช่น นักการเมืองคนดังนามแฝง อิ๊งอุ๊ง ที่ใช้ลูกปัดของหลวงปู่ ในขณะที่กำลังโหวตเลือกนายกรัฐมนตรี ทำให้ตนได้ รับเลือก เมื่อข่าวกระจายออกไปทำให้ลูกปัดนั้นขาดตลาดอย่างมาก รัฐบาลกิ่งปัก จึงใช้โอกาสนี้ในการผลิตของ เลียนแบบเพื่อตีตลาดและขายส่งมายังไทย แต่เครื่องจักรในการเรียงลูกปัดนั้นมีปัญหาในการเรียงโดยที่ลูกปัด นั้นต้องเรียงด้วยระยะห่างเท่าๆกัน แต่เครื่องจักรได้เรียงผิดโดยลูกปัดแต่ละลูกเรียงห่างไม่เท่ากัน โดยที่ในสาย ลูกปัดที่ผลิตออกมามีระยะที่ถูกต้องคือระยะที่น้อยที่สุด เมื่อรัฐบาลกิ่งปักทราบเรื่อง จึงได้ให้คนงานจำนวน มากจัดเรียงลูกปัดใหม่

โดยการจัดเรียงระยะลูกปัดนั้นลูกปัดลูกแรกจะไม่ถูกขยับ และลูกปัดลูกถัดไปจะมีระยะ min เรียงไป เรื่อยๆ จนครบทุกลูก

จากตัวอย่าง มีลูกปัดทั้งหมด 5 ลูก อยู่ที่ตำแหน่ง 12, 17, 18, 21, 23 ตามลำดับ แล้วทำการหาระยะห่าง ที่สั้นที่สุด ซึ่งคือ 1 จากนั้นทำการเลื่อนลูกปัดแต่ละลูกโดยที่ให้ลูกแรกอยู่ตำแหน่งเดิม ดังนั้นลูกปัดแต่ละลูกถูก เลื่อน 0, 4, 4, 6, 7 หน่วย ตามลำดับ

งานของนักศึกษา

สิ่งที่ต้องทำคือการรับจำนวนลูกปัดทั้งหมดจากผู้ใช้ และรับตำแหน่งของลูกปัดแต่ละลูก แล้วคำนวณหาว่า ลูกปัดแต่ละลูกต้องทำการขยับเท่าไร เพื่อให้ได้ระยะห่างที่ถูกต้อง(min)

ข้อมูลนำเข้า (Input)

บรรทัด 1	จำนวนลูกปัด (n) , $1 \leq n \leq 5,000$
บรรทัด 2	ตำแหน่งของลูกปัดลูกนั้นๆเป็นจำนวนเต็มบวก (p_i) n จำนวน โดยที่ p_i $<$
	$\mid p_{i+1}$

ข้อมูลส่งออก (Output)

e ,	વંબા થવાં જ
∣	โระยะทลกปัดแตละลกตองเลอน n ตว
0 0 0 0 1 1 1	40 00 MINI O MISSINI MINI O MISSINI MINI MISSINI MINI MISSINI MINI M

ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

Input	Output
10	0 2 2 6 8 9 11 14 16 20
1 4 5 10 13 15 18 22 25 30	
5	0 13 21 21 27
45 60 70 72 80	

KM COG

Antenna

False เป็นบริษัทโทรคมนาคมขนาดใหญ่ ที่กำลังจะทดสอบการติดตั้งเสาสัญญาณ โดยที่ False จะติดตั้ง เสาสัญญาณแบบสุ่มในแต่ละพื้นที่ ซึ่งบริษัทต้องการให้ได้ประสิทธิภาพการส่งสัญญาณร่วมกันของเสาใด ๆ ดี ที่สุด ซึ่งในการหาประสิทธิภาพการส่งสัญญาณระหว่างแต่ละเสา (p) คำนวณได้จาก

$$p = \frac{|a_1 - a_2|}{|a_1| + |a_2|} + \frac{|b_1 - b_2|}{|b_1| + |b_2|}$$

โดยที่ a แทนความสูงของเสาสัญญาณ และ b แทนความสูงของพื้นที่ติดตั้งเสา วัดจากระดับน้ำทะเลของ เสานั้นๆ

บริษัทพบว่าประสิทธิภาพการส่งสัญญาณของแต่ละเสานั้นหาได้จากการค่าเฉลี่ยประสิทธิภาพของการส่ง สัญญาณของเสานั้นๆ หากเสาไหนมีค่าเฉลี่ยน้อยที่สุดแสดงว่ามีประสิทธิภาพดีที่สุด

งานของนักศึกษา

อยากทราบว่าหากต้องการรับค่าความสูงของเสาสัญญาณและความสูงของพื้นที่ติดตั้งเสาของแต่ละเสา จากนั้นทำการคำนวณหาว่าเสาไหนมีประสิทธิภาพการส่งสัญญาณดีที่สุด (mean น้อยที่สุด) โดยแสดงเป็นค่า a,b ของเสานั้นๆ

ข้อมูลนำเข้า (Input)

บรรทัด 1	จำนวนเสา (n) โดยที่ $1 < n < 500$
บรรทัด 2	(a,b) แทนความสูงของเสาและความสูงของที่ตั้ง n จำนวน

ข้อมูลส่งออก (Output)

0.00000 1	1 00 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
บรริทิต I	ab ของเสานั้นที่ทำใหโดประสัทธิภาพการสื่อสารมากที่สุด

ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

Input	Output
3	3 4
1 2	
5 6	
3 4	
5	20 8
1 1	
6 12	
16 7	
9 10	
20 8	

นายกเซลส์แมน (The Salesman)

นายเสดถิน ทวีสา นายกรัฐมนตรีของประเทศทาลาลาลา (Thalalala) ได้ก้าวขึ้นสู่ตำแหน่งหลังจากได้รับ ชัยชนะการเลือกตั้งแบบแลนด์สไลด์ ทีนี้นายเสดถินต้องการที่จะแก้ไขปัญหาวิกฤติเศรษฐกิจที่เป็นผลพวงมา จากอดีต จึงต้องการเดินทางไปซักชวนต่างประเทศมาลงทุน

นายเสดถินให้คุณ ซึ่งเป็นนักศึกษาฝึกงานที่ทำเนียบรัฐบาลช่วยคำนวณค่าใช้จ่ายในการเดินทางไปต่าง ประเทศ โดยเริ่มออกเดินทางจากประเทศทาลาลาลา ออกเดินทางไปอีก 5 ประเทศ ดังนี้ : สหราชอณาจักร, สหรัฐอาหรับเอมิเรตส์, สหรัฐมเอริกา, สวีเดน. เดนมาร์ก

นายเสดถินได้ให้คุณไปศึกษาเที่ยวบินของแต่ละประเทศเพื่อวางแผนการเดินทาง คุณได้ไปศึกษาเที่ยวบิน ต่าง ๆ ได้ออกมาทั้งหมด 12 เที่ยวบิน โดยสรุปเป็นตารางได้ดังนี้

เที่ยวบิน	ค่าใช้จ่าย (หน่วย: แสนบาท)
ทาลาลาลา - สหราชอาณาจักร	6
ทาลาลาลา - สหรัฐอาหรับเอมิเรตส์	4
ทาลาลาลา - สหรัฐอมริกา	8
สหราชอาณาจักร - สหรัฐอาหรับเอมิเรตส์	2
สหราชอาณาจักร - สหรัฐอมริกา	3
สหราชอาณาจักร - สวีเด็น	7
สหรัฐอาหรับเอมิเรตส์ - สหรัฐอมริกา	3
สหรัฐอาหรับเอมิเรตส์ - สวีเด็น	6
สหรัฐอาหรับเอมิเรตส์ - เดนมาร์ก	10
สหรัฐอมริกา - สวีเดน	9
สหรัฐอมริกา - เดนมาร์ก	5
สวีเดน - เดนมาร์ก	9

ในแต่ละเที่ยวบิน ดังเช่นเที่ยวบินแรก (ทาลาลาลา-สหราชอาณาจักร) มีต่าใช้จ่าย 6 แสนบาท และสามารถ ไป-กลับได้ หมายความว่าก็จะมีเที่ยวบินจาก (สหราชอาณาจักร-ทาลาลาลา) ด้วยค่าใช้จ่าย 6 แสนบาทเท่ากัน

เนื่องจากว่า นายเสดถินต้องการความสะดวกสบายขั้นสูงสุดเพื่อประสิทธิภาพและความผ่อนคลายในการ ทำงานระหว่างบนเครื่องบิน นายเสดถินมีความเชื่อว่ายิ่งใช้ค่าใช้จ่ายกับเที่ยวบินมากแต่ไหนก็ยิ่งสบายมาก ๆ นายเสดถินจึงต้องการให้คุณช่วยจัดลำดับของการบินไปประเทศต่าง ๆ โดยเริ่มจากประเทศทาลาลาลา จาก นั้นก็เดินทางไปประเทศต่าง ๆ และสุดท้ายก็กลับมาที่ประเทศไทย โดยจะเดินทางไปประเทศนั้น ๆ เพียงหนึ่ง ครั้งเท่านั้น โดยให้คุณจัดลำดับอย่างไรก็ได้ ให้ค่าใช้จ่ายในการบินมากที่สุดที่เป็นไปได้ ซึ่งในกรณีนี้คือ ทา ลาลาลา สหราชอาณาจักร \rightarrow สหรัฐอาหรับเอมิเรตส์ \rightarrow สวีเดน \rightarrow สหรัฐอมริกา \rightarrow ทาลาลาลา โดยใช้ งบประมาณทั้งหมด 4.4 ล้านบาท

งานของนักศึกษา

จงหาว่า หากนายเสดถินต้องการเดินทางไปประเทศทั้งหมด n ประเทศ และมีเส้นทางการบินทั้งหมด f เส้นทางการบิน ให้นักศึกษาหาเส้นทางที่ทำให้ค่าใช่จ่ายมากที่สุดที่เป็นไปได้ และคำนวณว่าเส้นทางดังกล่าวมี ค่าใช้จ่ายเท่าใด ให้ตอบเป็นหน่วย**แสนบาท**

ข้อมูลนำเข้า (Input)

บรรทัด 1	$oxedsymbol{\mid}$ จำนวนเต็ม n และ p แสดงจำนวนประเทศ (ไม่รวมทาลาลาลา) และจำนวง	
	เที่ยวบิน โดยที่ $1 \leq n \leq 10$ และ $p \geq n+1$	
ตั้งแต่บรรทัดที่ 2	รหัสประเทศเป็นตัวย่อ 2 ตัว แสดงต้นทาง และปลายทาง ตามด้วยจำนวนเต็ม	
ถึง $f+1$	x แสดงค่าใช้จ่ายในเที่ยวบินนั้น ๆ (ดูตัวอย่างประกอบ)	

ข้อมูลส่งออก (Output)

บรรทัด 1	เส้นทางของเที่ยวบินที่ทำให้ค่าใช้จ่ายมากที่สุด โดยให้เป็นรหัสย่อประเทศ เว้น ประเทศด้วยช่องว่าง 1 ตัว <i>(ดูตัวอย่างประกอบ)</i>
บรรทัด 2 ค่าใช้จ่ายที่มากที่สุดในหน่วยแสนบาท	

ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

Input	Output
5 12	THA UK UAE DEN SWE USA THA
THA UK 6	44
THA UAE 4	
THA USA 8	
UK UAE 2	
UK USA 3	
UK SWE 7	
UAE USA 3	
UAE SWE 6	
UAE DEN 10	
USA SWE 9	
USA DEN 5	
SWE DEN 9	
4 9	THA KOR RUS JAP CHI THA USA THA
THA KOR 12	66
THA CHI 13	
THA JAP 6	
THA RUS 14	
KOR CHI 3	
KOR RUS 12	
CHI JAP 15	
CHI RUS 20	
JAP RUS 14	

ครุภัณฑ์แทงจำหน่าย (Durable Goods)

ภาควิชาวิศวกรรมคอมพิวเตอร์ต้องการที่จะเคลียร์ของต่าง ๆ ที่อยู่ในภาควิชาที่เก็บทิ้งร้างมานานหลายปี (ให้ลองนึกถึงห้อง CPE1118 (Embedded System Lab) ที่เมื่อก่อนรกซะนึกว่าเป็นห้องเก็บของนั่นแหละ) โดยเอาครุภัณฑ์ออกไปแทงจำหน่ายให้กับหน่วยงานอื่น ๆ

เมื่อเอาครุภัณฑ์ต่าง ๆ ออกไปจำหน่ายให้กับหน่วยงานต่าง ๆ ปรากฏว่าหน่วยงานอื่น ๆ ได้ให้ราคาของ ครุภัณฑ์ต่างกัน

สมมติว่า บอร์ด Basys 3 Artix-7 FPGA Trainer Board เป็นบอร์ดที่ใช้ในการเรียนวิชา CPE222 เมื่อปีที่ แล้ว ซึ่งปีนี้ไม่ได้ใช้แล้ว จึงนำมาจำหน่ายออกไป โดยหน่วยงานอื่น ๆ ตั้งราคาซื้อไว้ดังนี้

หน่วยงาน	ราคาซื้อ (พันบาท)
ภาควิชาวิศวกรรมอิเล็กทรอนิกส์ (ENE)	3
ภาควิชาวิทยาการคอมพิวเตอร์ (CSS)	4
สำนักหอสมุด	1.4
หอหญิง	2
รร.ดรุณสิกขาลัย	1.3

Figure 1: บอร์ด Basys 3 Artix-7 FPGA

สังเกตได้ว่าหน่วยงานอื่น ๆ ให้ราคาต่างกัน ในกรณีนี้เราก็ควรที่จะเลือกจำหน่ายให้กับภาควิชาวิทยาการ คอมพิวเตอร์ (CSS) ด้วยราคา 4 พันบาท

สมมติว่าเรามีครุภัณฑ์รอแทงจำหน่ายทั้งหมด 5 ชิ้น และมีหน่วยงานตั้งรับซื้อ 5 หน่วยงาน ราคารับซื้อ ของแต่ละครุภัณฑ์และแต่ละหน่วยงานสรุปออกมาเป็นตารางดังนี้ (หน่วย: พันบาท)

	ENE	CSS	หอสมุด	หอหญิง	ดรุณสิกขาลัย
บอร์ด Basys 3 Artix-7 FPGA	3	4	1.4	2	1.3
ตู้เก็บของเหล็กสนิมเขรอะ	1	0.7	2	3	0.2
จ [ื] อแก้ว CRT ยี่ห้อ Acer	2	2.4	1	0.4	1
Digital Oscilloscope	9.5	2	1	0.6	3
โต๊ะไม้	1	0.4	2	7	4

มีข้อกำหนดว่า ภาควิชาสามารถจำหน่ายครุภัณฑ์ให้กับหน่วยงานอื่นได้เพียงหน่วยงานละ**หนึ่ง**ชิ้น (ไม่ สามารถขายจำหน่ายครุภัณฑ์ให้หน่วยงานอื่นตั้งแต่ 2 ชิ้นขึ้นไป) หากภาควิชาต้องการที่จะจำหน่ายครุภัณฑ์ให้ ได้เงินมากที่สุด ภาควิชาควรที่จะเลือกจำหน่ายครุภัณฑ์ให้กับหน่วยงานต่าง ๆ ต่อไปนี้

- ครุภัณฑ์	หน่วยงานที่รับซื้อ	ราคาขาย (พันบาท)
บอร์ด Basys 3 Artix-7 FPGA	CSS	4
ตู้เก็บของเหล็กสนิมเขรอะ	หอสมุด	2
จอแก้ว CRT ยี่ห้อ Acer	ดรุณสิกขาลัย	1
Digital Oscilloscope	ENE	9.5
โต๊ะไม้	หอหญิง	7

เมื่อเราขายให้หน่วยงานตามตาราง เงินที่เราจะได้ทั้งหมดคือ 23500 บาท ซึ่งมากที่สุดที่เป็นไปได้ในกรณี นี้แล้ว

งานของนักศึกษา

จงหาว่า หากภาควิชาต้องการแทงจำหน่ายครุภัณฑ์จำนวน n และมีหน่วยงานรับซื้อจำนวน n หน่วยงาน เท่ากัน จงหาว่านักศึกษาสามารถเลือกครุภัณฑ์ไปจำหน่ายหน่วยงานอื่น ๆ ให้ได้เงินมากที่สุดกี่บาท (ตอบเป็น หน่วยพันบาท)

ข้อมูลนำเข้า (Input)

บรรทัด 1	จำนวนเต็ม n แทนจำนวนครุภัณฑ์และจำนวนหน่วยงาน โดยที่ $1 \leq n \leq 10$ จำนวนจริงบรรทัดละ n ตัว แทนราคาขายในหน่วยพันบาทของครุภัณฑ์ที่		
ตั้งแต่บรรทัดที่ 2			
ถึง $n+1$	หน่วยงานต่าง ๆ รับซื้อ <i>(ดูตัวอย่างประกอบ)</i>		

ข้อมูลส่งออก (Output)

บรรทัด 1	เงินที่ได้มากที่สุดที่เป็นไปได้

ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

Input	Output
5	23.5
3 4 1.4 2 1.3	
1 0.7 2 3 0.2	
2 2.4 1 0.4 1	
9.5 2 1 0.6 3	
1 0.4 2 7 4	
6	192
7 5 1 4 2 3	
4 7 5 8 10 54	
51 21 4 2 3 8	
15 48 5 2 4 1	
1 8 9 21 17 3	
8 59 2 4 12 5	
_	121
5	131
10 10 10 10 10	
7 5 2 1 3	
8 7 8 9 1	
100 51 5 21 0.1	
21 1 7 8 6	

KM COG

จัดที่นั่ง (Seats)

ภาควิชาได้จัดงานกิจกรรมจับฉลากวันขึ้นปีใหม่ 2568 โดยให้นักศึกษาเข้ามาจับจองที่นั่งเก้าอี้เรียงเป็น เส้นตรงเพื่อเรียงลำดับว่าใครจะได้จับฉลากก่อน โดยนั่งเรียงจากหน้าไปหลังโดยข้างหน้าคือคนที่จะได้จับฉลาก ก่อน แลกข้างหลังคือคนที่จะได้จับฉลากที่หลัง

หลังจากนักศึกษาเข้ามาจับจองที่นั่งของตัวเองเรียบร้อยแล้ว อาจารย์ที่ปรึกษาของกิจกรรมนี้ (ดร.ทวีชัย นันทวิสุทธิวงศ์) เพิ่งนึกได้ว่า เราจะให้นักศึกษาที่ได้รวมรายวิชา CPE231 มากที่สุดให้ได้นั่งด้านหน้าสุดก่อน (หมายความว่าได้จับฉลากก่อน) ส่วนคนที่ได้คะแนนเท่า ๆ กัน ให้ใช้กฏว่ามาก่อนได้ก่อน (First come, first served)

สมมติให้นักศึกษาที่มานั่งที่นั่งเป็นลำดับดังนี้ (บนลงล่างเปรียบเสมือนหน้าไปหลัง) ตัวเลขในวงเล็บคือ คะแนนสอบวิชา CPE231

1040	(70)
3479	(40)
3411	(40)
3441	(70)
3442	(81)
3487	(70)
3478	(70)
5217	(81)
3450	(99)
3400	(1)

เมื่อให้เปลี่ยนไปเรียงลำดับตามที่อ.วีให้เงื่อนไขเอาไว้ จะได้ลำดับแุถวใหม่คือ

3450	(99)
3442	(81)
5217	(81)
1040	(70)
3441	(70)
3487	(70)
3478	(70)
3479	(40)
3411	(40)
3400	(1)

งานของนักศึกษา

จงหาว่า หากมีรายชื่อนักศึกษาที่นั่งเก้าอี้ แล้วเปลี่ยนลำดับตามเงื่อนไขด้านบนต่อไปนี้ จะได้ลำดับใหม่ของ นักศึกษาเป็นอย่างไรบ้าง โดยมีข้อกำหนดว่านักศึกษา**ต้องใช้ Selection Sort เท่านั้น**

ข้อมูลนำเข้า (Input)

บรรทัด 1	จำนวนเต็ม n แทนจำนวนนักศึกษา
ตั้งแต่บรรทัดที่ 2 ถึง $n+1$	จำนวนเต็มบรรทัดละ 2 ตัว แทนด้วย a_i และ b_i แทนรหัสนักศึกษาและคะแนน ของนักศึกษาตามลำดับ โดยที่ a_i เป็นจำนวนเต็ม 4 หลัก และ $0 \leq b_i \leq$
	$100, 1 \le i \le n$

ข้อมูลส่งออก (Output)

.	o de e e e e e e e e e e
\mid บรรทัด 1 ถึง n	จำนวนเต็มแทนรหัสนักศักษาตามลำดับในเงื่อนไข บรรทัดละ 1 ตัว
O 9 9 MINI I PIN 10	1 A TRARENIMENTALINING IN PROTINING REPORTED OF STANDING IN A STANDING IN THE

ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

Input	Output
10	3450
1040 70	3442
3479 40	5217
3411 40	1040
3441 70	3441
3442 81	3487
3487 70	3478
3478 70	3479
5217 81	3411
3450 99	3400
3400 1	
12	2407
12	3497
3427 78	3402
3490 87	3401
3402 90	3475
3401 90	3407
3468 78	3438
3475 90	3490
3410 78	3422
3407 90	3427
3422 83	3468
3438 90	3410
3497 92	3446
3446 70	