Exemples de tableaux de variations avec tabvar

Un exemple simple :
$$f(x) = \frac{x^3 + 2}{2x}$$
 $f'(x) = \frac{x^3 - 1}{x^2}$.

x	$-\infty$	$-\sqrt[3]{2}$	0	1	$+\infty$
f'(x)	_	_		- 0 -	+
f(x)	$+\infty$	0	$+\infty$ \sim \sim	$\frac{3}{2}$	>> +∞

Le codage du tableau est le suivant :

```
\[\begin{tabvar}{|C|CCCCCCCC|} \hline
      &-\infty & &-\sqrt[3]{2} & &0
                                            & & 1 & &+\infty
\\ \hline
f'(x) &
               &- &
                                &- &\dbarre &- & 0 &+ &
\\ \hline
\text{niveau}{3}{3}f(x)
      &+\infty
                                     &\decroit
      &0
                                     &\decroit
      &\discont{-\infty}{<\tinfty} &\decroit
      &\frac{3}{2}
                                     &\croit
      &+\infty
\\ \hline
\end{tabvar}\]
```

L'argument optionnel de \discont n'a pas été utilisé, on obtiendrait une meilleure présentation en lui donnant la valeur 1, ce qui écarterait d'un interligne les valeurs $+\infty$ et $-\infty$, mettant ainsi les trois valeurs $+\infty$ sur la même ligne.

D'autre part, f(x) est placé au niveau 3 par la commande \niveau. Si on souhaitait que f(x) soit placé plus bas, au niveau 2 par exemple, il faudrait coder : \niveau{2}{3}f(x)} &\niveau{3}{3}+\infty}

Voici le résultat obtenu avec ces deux modifications :

x	$-\infty$	$-\sqrt[3]{2}$	0	1	$+\infty$
f'(x)	_	_		- 0 -	+
f(x)	$+\infty$	0	$+\infty$ \sim \sim	$\frac{3}{2}$	$\rightarrow +\infty$

Une présentation plus traditionnelle du tableau de variations serait la suivante (on renonce à l'utilisation de \discont et on remplace la colonne C par trois colonnes LCR, la colonnne centrale contenant une double barre). On ajoute également des filets verticaux pour les valeurs remarquables de la fonction ou de sa dérivée grâce à la commande \barre{} (argument obligatoire, éventuellement vide).

x	$-\infty$ -1	$\sqrt[3]{2}$ ()	$1 + \infty$
f'(x)	_	_	_ (0 +
f(x)	$+\infty$ () $\sim -\infty$	$+\infty$	$\frac{3}{2}$ $+\infty$

Le codage est le suivant :

```
\[\begin{tabvar}{|C|CCCCCCCCC|} \hline
      &-\infty & &-\sqrt[3]{2} & & &0
                                                                 & &+\infty
                                                & & & 1
\\ \hline
f'(x) &
                                 &- & &\dbarre & &- & \barre{0} &+ &
               &- & \barre{}
\\ \hline
\text{niveau}\{2\}\{3\}f(x)
      {\min\{3}{3}+\infty
                                                 &\decroit
      &\barre{0}
                                                 &\decroit
      &-\infty &\dbarre &\niveau\{3\}\{3\}+\infty &\decroit
      &\barre{\frac{3}{2}}
                                                 &\croit
      &+\infty
\\ \hline
\end{tabvar}\]
```

Noter la présence de la seconde commande \niveau pour positionner le terme +\infty au niveau 3 après la discontinuité.

^{1.} Cette commande n'est disponible que depuis la version 1.1 (mai 2007) de tabvar.

Un exemple de courbe paramétrée : $x(t) = t + \frac{1}{t}$ $y(t) = t + \frac{1}{2t^2}$.

t	$-\infty$		-1		0		1		$+\infty$
x'(t)		+	0	_		_	0	+	
x(t)	$-\infty$		-2		$+\infty$		2		$r + \infty$
y(t)	$-\infty$	<i>/</i>	$-\frac{1}{2}$	<i>\</i>	$+\infty$ \cdot		$\frac{3}{2}$		$+\infty$
y'(t)		+	2	+		_	0	+	

Le codage est le suivant :

```
\[\begin{tabvar}{|C|CCRCCCCCC|} \hline
     &-\infty & &-1 &
                       & 0
                                & & 1 &
                                            &+\infty
\\ \hline
x'(t) &
             &+ & 0 & - & \dbarre & - & 0 & + &
\\ \hline
\niveau{1}{3}
x(t) \&-\infty
                                       &\croit
                                       &\decroit
         &\croit
         &2
         &+\infty
\\ \hline
\niveau{1}{3}
y(t) &-\infty
                     &\croit
         &-\frac{1}{2} &\croit
                     &\decroit
         &+\infty
         &\frac{3}{2} &\croit
         &+\infty
\\ \hline
y'(t) &
             &+ &2 & + & \dbarre & - & 0 &+
\\ \hline
\end{tabvar}\]
```

Le même tableau de variations en présentation « traditionnelle ».

$t - \infty$ -1	$0 1 +\infty$
x'(t) + 0 -	- 0 +
$x(t)$ $-\infty$ -2 -2	∞ $+\infty$ 2 $+\infty$
$y(t)$ $-\infty$ $-\frac{1}{2}$ $+$	∞ $+\infty$ $\frac{3}{2}$ $+\infty$
y'(t) + 2 +	- 0 +

Le codage est le suivant :

```
&-\infty & &-1
                           & & &0
                                        & & & 1
                                                       & &+\infty
\\ \hline
x'(t) &
             &+ &\barre{0}
                           &- & &\dbarre & &- &\barre{0} &+ &
\\ \hline
\niveau{1}{3}
x(t) &-\infty
                                                &\croit
          &\barre{-2}
                                                &\decroit
          &-\infty &\dbarre &\niveau\{3\}\{3\}+\infty &\decroit
          &\barre{2}
                                                &\croit
          &+\infty
\\ \hline
\niveau{1}{3}
y(t) &-\infty
                                   &\croit
          \&-\frac{1}{2}
                                   &\croit
          &+\infty &\dbarre &+\infty &\decroit
          &\barre{\frac{3}{2}}
                                   &\croit
          &+\infty
\\ \hline
y'(t) &
              &+ &2
                          &+ & &\dbarre & &- &\barre{0} &+ &
\\ \hline
\end{tabvar}\]
```

Noter que le type de la colonne t=-1 a dû être changé de R à C pour permettre l'ajout du filet vertical.

Le même tableau encore, mais cette fois on utilise les flèches dessinées en Meta-Post.

t	$-\infty$	-1	()	1	$+\infty$
x'(t)	+	0	_	_	0	+
x(t)	$-\infty$	-2	$-\infty$	$+\infty$	2 -	+∞
y(t)	$-\infty$	$-\frac{1}{2}$	+∞	$+\infty$	$\frac{3}{2}$	+∞
y'(t)	+	2	+	_	0	+

Le choix entre les flèches MetaPost et celles de Michel BOVANI se fait normalement soit à l'aide des options de tabvar (\usepackage[FlechesMP]{tabvar}) soit dans le préambule ou dans le fichier tabvar.cfg, à l'aide du drapeau \FlechesMP: \FlechesMPtrue pour les flèches MetaPost (par défaut les flèches « bovaniennes » sont utilisées).

Un exemple de fonction non définie partout : $f(x) = \sqrt{\frac{x-1}{x+1}}$.

x	$-\infty$ -1	1 -	$+\infty$
f'(x)	+	$+\infty$ +	
f(x)	$1 \rightarrow +\infty$	0	1

Le codage est le suivant :

La largeur de la colonne grisée est fixée à 15mm par le \hspace*{15mm} placé dans une ligne quelconque du tableau. Certains visualiseurs (Xdvi par exemple) n'affichent pas correctement les couleurs; en cas de doute, vérifier sur une sortie PostScript ou PDF.

Noter l'emploi d'une seconde commande $\mathbf{1}_{2}$ pour positionner la valeur de f au point 1 (sans celle-ci, cette valeur serait placée au niveau de la valeur précédente, ici $+\infty$.

Si on prolongeait la définition de f en posant f(x)=0 sur [-1,1] on aurait le tableau suivant :

Le codage est le suivant :