JEE EXPERT

ANSWER KEY

REGULAR TEST SERIES - (RTS-03)

Batch: 11TH (Zenith - B01)

Date 25.08.2019

PHYSICS										
1	(C)	2	(A)	3	(C)	4	(B)	5	(B)	
6	(A)	7	(A)	8	(C)	9	(B)	10	(A)	
11	(C)	12	(C)	13	(B)	14	(B)	15	(D)	
16	(C)	17	(A)	18	(C)	19	(A)	20	(A)	
21	(D)	22	(B)	23	(C)	24	(A)	25	(C)	
26	(D)	27	(A)	28	(A)	29	(C)	30	(B)	
CHEMISTRY										
					9/					
31	(C)	32	(A)	33	(B)	34	(A)	35	(C)	
36	(A)	37	(B)	38	(B)	39	(B)	40	(D)	
41	(D)	42	(A)	43	(C)	44	(C)	45	(C)	
46	(A)	47	(A)	48	(A)	49	(A)	50	(B)	
51	(A)	52	(D)	53	(C)	54	(D)	55	(D)	
56	(D)	57	(B)	58	(B)	59	(D)	60	(A)	
				MAT	HEMATIC	CS				
61	(B)	62	(A)	63	(C)	64	(C)	65	(C)	
66	(D)	67	(B)	68	(D)	69	(B)	70	(D)	
71	(A)	72	(C)	73	(C)	74	(B)	75	(C)	
76	(C)	77	(D)	78	(A)	79	(C)	80	(C)	
81	(C)	82	(B)	83	(B)	84	(B)	85	(B)	
86	(B)	87	(B)	88	(C)	89	(D)	90	(C)	

JEE EXPERT

SOLUTIONS

REGULAR TEST SERIES - (RTS-03)
Batch: 11TH (Zenith - B01)
Date 25.08.2019

$$Mg = N + Ma$$
 $Mg = Mg$

$$Mg = \frac{Mg}{4} + Ma$$

$$a = \frac{3g}{4}$$

$$Ma$$
 N $\downarrow a$

3. Sol.:
$$a = \frac{Mg \sin \theta}{2M}$$
 and $T = Ma$

4. Sol.:
$$a = \frac{mg - \mu mg}{2m} = 0.4 \text{ g m/s}^2$$

5. Sol.:
$$19.6 = \mu \times 10 \times 9.8$$

$$\mu = 0.2$$

6. Sol.:
$$F - 7g = 7a$$
, $T - 2g = 2a$

On solving
$$F = 140 \text{ N}$$

7. Sol.: The inclined plane exerts a force of mg
$$\cos \theta$$
 perpendicular to inclination and mg $\sin \theta$ along inclination.

8. Sol.: For equilibrium of
$$\sqrt{2}$$
 M block

$$2T\cos\theta = \sqrt{2}Mg$$
, $T = Mg$, $\cos\theta = \frac{1}{\sqrt{2}}$,

$$\theta=45^{\circ}$$

9. Sol.: Thrust on the block $F = v \frac{dm}{dt} = 5 \text{ N}$ Acceleration of the block $= \frac{F}{t} = \frac{5}{2} \text{ ms}^{-2}$

Acceleration of the block = $\frac{F}{M} = \frac{5}{2} ms^{-2}$

m (**B**)

- **10. Sol.:** $a = \left(\frac{M-m}{M+m}\right)g$, $s = \frac{1}{2}at^2 \implies 1.4 = \frac{1}{2}\left(\frac{M-m}{M+m}\right)g(2)^2 \implies \frac{m}{M} = \frac{13}{15}$
- 11. Sol.: $\Sigma F_y = 0$, R = ma $Mg = \mu R = \mu ma$ $\mu = \frac{g}{a} = 0.5$ m (C)

12. Sol.: $\vec{a} = \frac{\vec{F}}{m} = \frac{3\hat{i} + \hat{j}}{0.1} = 30\hat{i} + 10\hat{j}$ $\vec{r}(t) = \vec{r}(0) + \vec{u}t + \frac{1}{2}\vec{a}t^{2}$ $\vec{r}(t) = \hat{i}(5t + 15t^{2}) + \hat{j}(-2 - 2t + 5t^{2})$ $x = 10 \implies 5t + 15t^{2} = 10 \implies t = \frac{2}{3}s$ $y = -2 - 2t + 5t^{2} = -\frac{10}{9}m$

(C)

- 13. Sol.: $mg \sin \theta = 5N$, $f_l = \mu mg \cos \theta = 3.4 N$, $a = \frac{mg \sin \theta - f}{m} = 1.6 \text{ ms}^{-2}$ \therefore (B)
- 14. Sol.: (B)

15. Sol.:
$$2T \sin \theta = mg$$

$$\Rightarrow T = \frac{mg}{2 \sin \theta}$$
But $\theta = 0$

$$\Rightarrow T = \infty$$

$$\therefore (D)$$

16. Sol.:
$$F - T = \frac{M}{L}xa$$

$$T = \frac{M}{L}(L - x)a$$

$$\Rightarrow T = \frac{F}{L}(L - x)$$

$$\therefore (C)$$

17. Sol.:
$$f^s = \mu \, mg \cos \theta = 0.7 \times 2 \times 9.8 \times \frac{\sqrt{3}}{2} > 9.8$$

$$\therefore \qquad f = mg \sin \theta = 9.8$$

$$\therefore \qquad (\mathbf{A})$$

18. Sol.:
$$\mu mg = m \left(\frac{mg}{4m} \right) \Rightarrow \mu = \frac{1}{4}$$
m (C)

19. **Sol.:**
$$a_{\text{max}} = \mu g$$
 m (A)

20. Sol.:
$$F > mg$$
 $\varnothing \qquad \mu(R) > mg$
 $\varnothing \qquad \mu(ma) > mg$
 $\varnothing \qquad \mu > \frac{g}{a}$
 $m \qquad (A)$

- 21. Sol.: For constant velocity F = mg, so acceleration of man $a = \frac{F}{2m} = \frac{g}{2}$ m (D)
- **22. Sol.:** $N = m_A(g a) = 0.5(10 2) = 4 \text{ N}$ m **(B)**

- **23. Sol.:** Friction is static so $a = 0 \text{ m/s}^2$, $f = T \cos 60 = 40 \cos 60 = 20 \text{ N}$ m **(C)**
- **24. Sol.:** Maximum friction force is 50 N which is greater than 40 N. Block does not move. m **(A)**
- **25. Sol.:** From constraint relation, $a_B = 8a_A$ m (C)
- **26.** Sol.: Coefficient of friction $\mu_s = \frac{F_1}{R} = \frac{75}{mg} = \frac{75}{20 \times 9.8} = 0.38$ m (**D**)
- 27. Sol.: $mv \frac{dv}{dx} = -Ax \implies \int_{v}^{0} mv \, dv = -\int_{0}^{x} Ax \, dx \implies m \frac{v^{2}}{2} = A \frac{x^{2}}{2} \implies x = v \sqrt{\frac{m}{A}}$ m (A)
- 28. Sol.: 4T = mg $T = \frac{60 \times 10}{4} = 150 \text{ N}$ m (A)

- 29. Sol.: (C) mg B = mf B (m m')g = (m m')f $\Rightarrow m'g = (2m m')f \Rightarrow m' = \frac{2mf}{g + f}$ $\Rightarrow w' = \frac{2wf}{g + f}$
- **30. Sol.:** $\mu ma = mg$ or $a = \frac{g}{\mu}$ m **(B)**

Here
$$a = 1$$
, $b = 1$, $h = 2$

$$\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| = \frac{2\sqrt{4 - 1}}{2} = \sqrt{3}$$

$$\theta = 60^{\circ}$$

$$(x+y-1)(x-y-4)=0$$

Sol. (D)
$$\tan (180^{\circ} - \theta) = \text{slope of AB} = -3$$

$$\therefore$$
 $\tan\theta = 3$

$$\therefore \frac{OC}{AC} = \tan \theta, \frac{OC}{BC} = \cot \theta$$

$$\Rightarrow \frac{BC}{AC} = \frac{\tan \theta}{\cot \theta} = \tan^2 \theta = 9.$$

67. Sol. (B)

> The sides are x + y - 4 = 0, x - 1 = 0, y - 2 = 0. So, the triangle is right angled at (1, 2).

The hypotenuse is x + y - 4 = 0 whose ends are (1, 3) and (2, 2).

The circumcentre = $\left(\frac{1+2}{2}, \frac{3+2}{2}\right)$ and circumradius $=\frac{1}{2}\sqrt{(1-2)^2+(3-2)^2}=\frac{1}{\sqrt{2}}$.

68. Sol. (D)

Clearly joint equation of lines is (y + 1)(x + 1) = 0

$$\Rightarrow$$
 $x + y + xy + 1 = 0$

69. Sol. (B) The pair of straight lines 6xy - 2x - 3y + 1 = 0 are perpendicular to each other i.e., (2x - 1)(3y - 1) = 0. So orthocentre is the point of intersection of these lines.

70. Sol. (D) Given pair of lines is $y^2 - 9xy + 18x^2 = 0$...(i)

or
$$(y-3x)(y-6x)=0$$

Hence given lines are y - 3x = 0 ...(ii)

$$y - 6x = 0$$
 ...(iii)

and
$$y = a$$
 ...(iv)

Vertices of triangle formed are (0, 0), $(\frac{a}{3}, a)$, $(\frac{a}{6}, a)$

Area of the triangle = $\frac{1}{2} \left| \left(\frac{a}{3} \cdot a - a \cdot \frac{a}{6} \right) \right| = \frac{a^2}{12}$

71. Sol. (A) (x+y-1)p + (2x-3y+1)q = 0

Hence,
$$x + y - 1 = 0$$
 ...(i)

$$2x - 3y + 1 = 0$$
 ...(ii

 $\therefore \qquad \text{(i) and (ii), passes through } \left(\frac{2}{5}, \frac{3}{5}\right)$

72. Sol. (C) Any line through (1, 2) can be written as $\frac{x-1}{\cos \theta} = \frac{y-2}{\sin \theta} = r$

where θ is the angle which this line makes with positive direction of x-axis. Any point on this line is $(r\cos\theta + 1, r\cos\theta + 2)$ when $|r| = \frac{1}{3}\sqrt{6}$, this point lies on the line x + y = 4.

i.e.
$$r \cos\theta + 1 + r \sin\theta + 2 = 4$$
.

$$|r| = \frac{1}{3}\sqrt{6}$$
 \Rightarrow $r(\cos\theta + \sin\theta) = 1, |r| = \frac{1}{3}\sqrt{6}$

$$\Rightarrow r^2 (1 + 2\sin\theta\cos\theta) = 1, r^2 = \frac{6}{9} \Rightarrow 1 + \sin 2\theta = \frac{1}{r^2} = \frac{9}{6} \Rightarrow \sin 2\theta = \frac{1}{2}$$

$$\Rightarrow$$
 $2\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6}$ \Rightarrow $\theta = \frac{\pi}{12} \text{ or } \frac{5\pi}{12}$

73. Sol. (C) If the image of a point P in a line 1 is P', then mid point of [PP'] lies on the line 1 and the line PP' is perpendicular to the line 1.

74. Sol. (B) $\sqrt{3}x + y = 0$ makes an angle of 120° with OX and $\sqrt{3}x - y = 0$ makes an angle 60° with OX. So, the required line is y - 2 = 0.

75. Sol. (C) Let $\alpha = t^2$, $\beta = t + 1 \implies t = \beta - 1$

$$\therefore \qquad \alpha = (\beta - 1)^2 \implies x = (y - 1)^2$$

76. Sol. (C) A(0, 0), B(2, 0) and C(0, 2) form a right angled triangle, right angle at A (0, 0) and BC hypotenuse.

So A(0, 0) is orthocentre and mid-point D of BC i.e. (1, 1) is circumcentre.

- distance between circumcentre and orthocentre = AD = $\sqrt{2}$. *:*.
- **Sol.** (D) Let (h, k) be the centroid of the given triangle ABC with coordinates of C as (α, β) then 77.

$$h = \frac{\alpha + 2 + 4}{3}$$
, $k = \frac{\beta + 5 - 11}{3}$

$$\Rightarrow$$
 $\alpha = 3h - 6, \beta = 3k + 6$

Since $C(\alpha, \beta)$ lies on $L_1: 9x + 7y + 4 = 0$

$$9(3h-6)+7(3k+6)+4=0$$

$$\Rightarrow 3(9h + 7k) - 8 = 0$$

so that locus of (h, k) is 9x + 7y - 8/3 = 0, which is parallel to L₁.

- **Sol.** (A) $\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2} \implies 2 \begin{vmatrix} x & 3x & 1 \\ -3 & 5 & 1 \\ 4 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 6 & 3 & 1 \\ -3 & 5 & 1 \\ 4 & -2 & 1 \end{vmatrix} \Rightarrow x = \frac{11}{8}$ **78.**
- **79. Sol.** (C) Middle point M of diagonal AC is

$$M\left(\frac{3+1}{2}, \frac{4-1}{2}\right) = M\left(2, \frac{3}{2}\right)$$

If D is D(h, k)

and
$$B(x_1, y_1)$$
, then $2 = \frac{x_1 + h}{2}, \frac{3}{2} = \frac{y_1 + k}{2}$

$$\Rightarrow x_1 = 4 - h, \ y_1 = 3 - k$$

$$\Rightarrow x_1 = 4 - h, y_1 = 3 - k$$
Now, $B(x_1, y_1)$ is $B(4 - h, 3 - k)$...

Suppose slope of AB is m and slope of AC is $\frac{4+1}{3-1} = \frac{5}{2}$

Then
$$\tan(45^\circ) = \left| \frac{m - \frac{5}{2}}{1 + \frac{5m}{2}} \right| \implies (2m - 5) = \pm (2 + 5m)$$

$$\Rightarrow$$
 $m = -\frac{7}{3}, \frac{3}{7} \Rightarrow \text{ Equation of AB is } y - 4 = -\frac{7}{3}(x - 3)$

or
$$7x + 3y - 33 = 0$$
 and equation of BC is $y + 1 = \frac{3}{7}(x - 1)$ or $3x - 7y - 10 = 0$

solving these two equations we get B $\left(\frac{9}{2}, \frac{1}{2}\right)$

$$\Rightarrow \frac{9}{2} = 4 - h, \frac{1}{2} = 3 - k \text{ by (ii)}$$

JEE EXPERT Pvt. Ltd. 16/71-C, Near Income Tax Office, Civil Lines Kanpur, Mob.- 9919447742/43, 9369216022. www.jeeexpert.com ${
m P}$ ${
m a}$ ${
m g}$ ${
m e}$ ${
m I}$ ${
m S}$

$$\Rightarrow$$
 $h = -\frac{1}{2}, k = \frac{5}{2} \Rightarrow D(h, k) = \left(-\frac{1}{2}, \frac{5}{2}\right)$

80. Sol. (C)
$$\tan \theta = \left| \frac{2+1}{1-2} \right| = 3$$

$$\Rightarrow \theta = \tan^{-1} 3$$

81. Sol. (C)
$$(3x - y + 1)(x + 2y - 5)|_{(0, 0)} < 0$$

So, $(3x - y + 1)(x + 2y - 5)|_{a^2, a + 1} < 0 \implies (3a^2 - a)(a^2 + 2a + 2 - 5) < 0$
 $\Rightarrow a(3a - 1)(a - 1)(a + 3) < 0 \implies a \in (-3, 0) \cup (\frac{1}{3}, 1)$

- 82. Sol. (B)
- 83. Sol. (B)
- 84. Sol. (B)

85. Sol. (B)
$$(\cos 20^{\circ} + \sin 20^{\circ})^{2} + (\cos 20^{\circ} - \sin 20^{\circ})^{2} = 2$$

 $\therefore \cos 20^{\circ} + \sin 20^{\circ} = \sqrt{2 - p^{2}} > 0$
 $\therefore \cos 40^{\circ} = (\cos 20^{\circ} - \sin 20^{\circ}) (\cos 20^{\circ} + \sin 20^{\circ}) = p\sqrt{2 - p^{2}}$.

86. Sol. (B)
$$\sec \alpha + \csc \alpha = p$$
, $\sec \alpha \cdot \csc \alpha = q$

$$\therefore \sin \alpha + \cos \alpha = p \sin \alpha \cdot \cos \alpha$$
, $\sin \alpha \cdot \cos \alpha = \frac{1}{q}$

$$\therefore \sin \alpha + \cos \alpha = \frac{p}{q}$$

$$\therefore \frac{p^2}{q^2} = 1 + 2 \sin \alpha \cdot \cos \alpha = 1 + \frac{2}{q}$$

87. Sol. (B) Given,
$$1 = \sin x + \sin^2 x + \sin^3 x \implies \cos^2 x = \sin x (1 + \sin^2 x) = \sin x (2 - \cos^2 x)$$

$$\implies \cos^4 x = (1 - \cos^2 x) (4 + \cos^4 x - 4\cos^2 x)$$

$$= 4 - 4\cos^2 x + \cos^4 x - \cos^6 x - 4\cos^2 x + 4\cos^4 x$$

$$\implies \cos^6 x - 4\cos^4 x + 8\cos^2 x = 4$$

- 88. Sol. (C) $\sin \theta + \csc \theta = 2$ This is possible iff $\sin \theta = 1$ and $\csc \theta = 1$ $\therefore \sin^4 \theta + \csc^4 \theta = 1 + 1 = 2$
- 89. Sol. (D) $\tan(A+B) = \frac{\tan A + \tan B}{1 \tan A \tan B} = \frac{\frac{\alpha}{\alpha+1} + \frac{1}{2\alpha+1}}{1 \frac{\alpha}{\alpha+1} \cdot \frac{1}{2\alpha+1}} = \frac{2\alpha^2 + 2\alpha + 1}{2\alpha^2 + 2\alpha + 1} = 1 = \tan \frac{\pi}{4}$ $\therefore A + B = \frac{\pi}{4}$
- 90. Sol. (C)