- (1) Statistical Learning Framework: 依赖传统i.i.d.和固定抽样分布D
- (2) Online Learning Framework:不假设数据的来源是什么固定的分布(相比于传统SL Frame),模型可以视为learner和adversary之间的game博弈。流程是: t=1, 2, 3....回合; adv选择一个实例x发送给 learner, learner预测表现yt, adv揭示正确的标签yt'。

学习者目标: 尽可能减少mistake

- (3) mistake bound model: 如果学习者A在任何H中某个目标函数f*一致的例子序列上,都只犯M次错误,则称A以错误bound M学习了假设类别H
- (4) littlestone dimension, lit(H):可以刻画哪些假设类别H是可以在线学习的。H的littlestone维度lit(H)定义——H村在littlestone tree的最大深度d

f*: 目标函数 y: 正确标签

H: 假设类别, Hypothesis Class。

H realizable:假设正确标签y,由H中的某个目标函数f*决定,即y=f*(H),如果有序列((x,y))满足条件,则

可以称为:可被H实现, H realizable

Statistical Learning Theory

Omar Montasser

Lecture 9

Online Learning

Statistical Learning Framework

- Unknown source distribution *D* over $X \times Y$.
- Goal: find a predictor $h: X \to Y$ achieving small expected error $L_D(h) = \mathbb{P}_{(x,y)\sim D}\{h(x) \neq y\}$.
- Based on i.i.d. training samples $S = ((x_i, y_i))_{i=1}^m$ drawn from D (each (x_i, y_i)) $S \sim D^m$).

We use h on future examples drawn from D.

$$S = ((x_i, y_i))_{i=1}^m \sim D$$

$$A$$
Learner
$$A$$

 $A: (X\times Y)^{\star}\to Y^X$

- Main Assumptions:
 - \bullet We observe i.i.d. training samples from (unknown) distribution D.
 - Future (*unseen*) examples are drawn from the same distribution D.

Online Learning Framework

- We do not assume that data is coming from some (fixed) distribution.
- Can we hope to say anything interesting?
- It can be viewed as a game between a Learner and an Adversary.

For rounds $t = 1, 2, \dots$

- The Adversary chooses an instance $x_t \in X$ and sends it the Learner.
- The Learner predicts a label $\hat{y}_t \in Y$ for x_t .
- The Adversary reveals the correct label $y_t \in Y$ for x_t .

Goal for the Learner is to make as few mistakes as possible.

- The Learner A can be viewed as a map $\bigcup_{t\geq 1} (X\times Y)^{t-1}\times X\to Y$, or $\bigcup_{t\geq 1} (X\times Y)^{t-1}\to Y^X$.
 - $h_t = A((x_1, y_1), ..., (x_{t-1}, y_{t-1})).$

No Free Lunch in Online Learning

- Is online learning possible without further restrictions?
- Let's play a game.
 - $X = \{\text{students in class}\}\ \text{and}\ Y = \{\pm 1\}.$
 - Try to learn my labels ...

Claim. For any finite domain $X = \{x_1, ..., x_N\}$ and any Learner A, there exists a target function $f^* : X \to \{\pm 1\}$ such that A makes N mistakes on the sequence $x_1, x_2, ..., x_N$.

Proof. Present the instances $x_1, x_2, ..., x_N$ to A, and define $f^*(x_i) = -\hat{y}_i$ where \hat{y}_i is the label predicted by A.

Corollary. For any *infinite* domain X and any Learner A, there exists a target function $f^*: X \to \{\pm 1\}$ such that A makes a mistake in each round.

Prior Knowledge

- Assume $y = f^*(x)$ for some $f^* \in H$.
- $H \subseteq Y^X$ is a "hypothesis class" or a "concept class".
 - Learner knows H but not f^* .
- *H* represents our "prior knowledge" or "expert knowledge".
- We say sequence $((x_i, y_i))_{t \ge 1}$ is realizable by H.
- What if assumption is wrong?
 - More on this soon ...

Mistake Bound Model

Definition. Algorithm A learns a hypothesis class H with a mistake bound M if Learner A makes at most M mistakes on any sequence of examples consistent with some $f^* \in H$.

- We make no assumptions on order of examples $(x_t)_{t>1}$.
- We only assume that the target function $f^* \in H$.
- Goal is to bound number of mistakes.

Finite Hypothesis Classes

Are finite hypothesis classes learnable in the Mistake Bound model?

CONSISTENT_H.

Initialize the version space $V_1 = H$.

For rounds $t = 1, 2, \dots$

- Upon receiving $x_t \in X$, choose a predictor $h_t \in V_t$ and predict $\hat{y}_t = h_t(x_t)$.
- Upon receiving true label y_t , update the version space $V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$.

Theorem. On any sequence $((x_t, y_t))_{t \ge 1}$ realizable by H, CONSISTENT_H makes $\le |H| - 1$ mistakes.

Proof. If $y_t \neq \hat{y}_t$, then h_t will be removed from V_t and thus $|V_{t+1}| \leq |V_t| - 1$. Since true f^* always remains in the version space $(V_1, V_2, ..., V_t, ...)$, it holds that for any round t, $|V_t| \geq 1$. Thus, the total number of mistakes is at most $|V_1| - 1$.

Halving

• Can we do better than the |H| - 1 mistake bound of CONSISTENT?

$HALVING_{H}$.

Initialize the version space $V_1 = H$.

For rounds $t = 1, 2, \dots$

- Upon receiving $x_t \in X$, predict $\hat{y}_t = \text{MAJORITY}(h_t(x_t) : h_t \in V_t)$.
- Upon receiving true label y_t , update the version space $V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$.

Theorem. On any sequence $((x_t, y_t))_{t \ge 1}$ realizable by H, HALVING $_H$ makes $\le \log_2(|H|)$ mistakes.

Proof. If $y_t \neq \hat{y}_t$, then at least half of the predictors $h_t \in V_t$ are wrong and will be removed from V_t , thus $|V_{t+1}| \leq |V_t|/2$. Since true f^* always remains in the version space $(V_1, V_2, ..., V_t, ...)$, it holds that for any round t, $|V_t| \geq 1$. Thus, the total number of mistakes is at most $\log_2(|V_1|)$.

Mistake Bound Model Properties

Definition. An online learning algorithm A is *conservative* if it only changes its state when it makes a mistake.

Claim. If a hypothesis class H is online learnable with a Mistake Bound M, then it is online learnable by a conservative algorithm with a Mistake Bound M.

Proof Sketch. For any generic online learning algorithm A, we construct a new *conservative* algorithm A' by running algorithm A and rewinding its state when no mistake is made. A' still makes at most M mistakes because A still sees a legal sequence of examples, which are filtered to include only the mistakes.

Thresholds

• X = [0,1] and $H = \{x \mapsto \text{sign}(x - \theta) \mid \theta \in [0,1]\}.$

Claim. For any Learner A, there exists a sequence $((x_t, y_t))_{t \ge 1}$ that is realizable by H, on which A makes a mistake on every round.

Proof.

- Start with $l_1 = 0, r_1 = 1$.
- For rounds t = 1, 2, ...
 - Present $x_t = l_t + (r_t l_t)/2$.
 - If A predicts $\hat{y}_t = +1$, set $y_t = -1$ and update $l_{t+1} = x_t$.
 - If A predicts $\hat{y}_t = -1$, set $y_t = +1$ and update $r_{t+1} = x_t$.
- Observe that for all rounds t, any threshold $\theta \in (l_{t+1}, r_{t+1})$ is consistent with $((x_t, y_t))_{t'=1}^t$.

- We can not learn Thresholds in the Mistake Bound model!
- This implies that we *can not* learn halfspaces (linear predictors) in higher dimensions!
 - $H = \{x \mapsto \text{sign}(\langle w, x \rangle + b) : w \in \mathbb{R}^d, b \in \mathbb{R}\}.$
- We can learn *finite* classes H with a Mistake Bound of at most $\log_2(|H|)$.
- Are there examples of *infinite* classes that are online learnable?
- Can we have a characterization of which classes *H* are online learnable?
- How can we learn optimally in the Mistake Bound model?

Littlestone Trees and Dimension

Definition (Littleton trees). A Littlestone tree of depth d is a complete binary tree whose internal nodes are labeled by instances from X, and whose two edges connecting a node to its children are labeled with +1 and -1 such that every finite path emanating from the root is consistent with some concept in H. That is, a Littlestone tree is a collection $\{x_u : 0 \le k < d, u \in \{\pm 1\}\} \subseteq X$ such that for every $y \in \{\pm 1\}^d$, there exists $h \in H$ such that $h(x_{y_1,j}) = y_{k+1}$ for $0 \le k < d$.

Littlestone Trees and Dimension

Definition (Littleton trees). A Littlestone tree for H of depth d is a complete binary tree whose internal nodes are labeled by instances from X, and whose two edges connecting a node to its children are labeled with +1 and -1 such that every finite path emanating from the root is consistent with some concept in H. That is, a Littlestone tree is a collection $\{x_u: 0 \le k < d, u \in \{\pm 1\}\} \subseteq X$ such that for every $y \in \{\pm 1\}^d$, there exists $h \in H$ such that $h(x_{y_{1:k}}) = y_{k+1}$ for $0 \le k < d$.

Definition (Littleton Dimension). The Littlestone dimension of H, denoted lit(H), is defined as the largest integer d such that there exists a Littlestone tree for H of depth d.

Characterizing Online Learnability

Theorem. For any class H and any Learner A, the Mistake Bound of A for learning H is \geq lit(H). [The Littlestone dimension of H]

Theorem. For any class H, there exists a Learner A that learns H with a Mistake Bound of \leq lit(H). [The Littlestone dimension of H]

Corollary. A class H is learnable in the Mistake Bound model if and only if the Littlestone dimension of H, lit(H), is finite.

Lower bound proof

Theorem. For any class H and any Learner A, the Mistake Bound of A for learning H is $\geq \text{lit}(H)$. [The Littlestone dimension of H]

Proof.

- Let T = lit(H) and consider a Littlestone tree for H of depth T.
- Start with x_1 being root of the tree.
- For $1 \le t \le T$:
 - Present the root x_t of current subtree to learner A.
- If A predicts \hat{y}_t , recurse to opposite subtree which labels x_t with $-y_t$. Note that by definition of Littlestone tree, each possible path is realizable by H.

Upper bound proof

Theorem. For any class H, there exists a Learner A that learns H with a Mistake Bound of \leq lit(H). [The Littlestone dimension of H]

Standard Optimal Algorithm (SOA).

Initialize the version space $V_1 = H$.

For rounds t = 1,2,...

- Receive $x_t \in X$.
- For $r \in \{\pm 1\}$, let $V_t^{(r)} = \{h \in V_t : h(x_t) = r\}$.
- Predict $\hat{y}_t = \arg\max_{r \in \{\pm 1\}} \operatorname{lit}\left(V_t^{(r)}\right)$. [i.e., predict the label that maximizes the Littlestone dimension.]
- Upon receiving true label y_t , update the version space $V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$.

Proof. If $y_t \neq \hat{y}_t$, then this implies that $lit(V_{t+1}) \leq lit(V_t) - 1$. Because if $lit(V_{t+1}) = lit(V_t)$, then by definition of SOA, $lit(V_t^{(+1)}) = lit(V_t^{(-1)}) = lit(V_t)$. This implies that we can construct a Littletone tree of depth $lit(V_t) + 1$ for the class V_t , which contradicts the definition of Littlestone dimension. Thus, the total number of mistakes is at most $lit(V_t)$.

More on Littlestone classes

- What is the Littlestone dimension of Thresholds?
 - X = [0,1] and $H = \{x \mapsto \text{sign}(x \theta) \mid \theta \in [0,1]\}.$
 - $lit(H) = \infty$, as we can construct Littlestone trees of infinite depth!

Figure from S. Shalev-Shwartz and S. Ben-David, <u>Understanding Machine Learning: From Theory to Algorithms</u>

- Remember, vc(H) = 1.
- Similarly for halfspaces (linear predictors) in higher dimensions.
 - $H = \{x \mapsto \text{sign}(\langle w, x \rangle + b) : w \in \mathbb{R}^d, b \in \mathbb{R}\}.$
 - $lit(H) = \infty$, but vc(H) = d + 1.
- In general, for any class H, it holds that $vc(H) \le lit(H)$.
 - Why? Construct a Littlestone tree using a VC-shattered set.
- Are there examples of *infinite* classes that are online learnable?
 - X = [0,1] and $H = \{x \mapsto \mathbf{1}[x = \theta] \mid \theta \in [0,1]\}.$
 - We claim that lit(H) = 1. Why?
 - Consider an online learner that always predicts the label 0.

Online-to-Batch Conversions

If a hypothesis class H is learnable in Mistake Bound model, does that imply H is PAC-learnable?

Longest Running Survivor Technique.

Input: a (conservative) online learner A with mistake bound M, training samples $S = \{(x_1, y_1), ..., (x_m, y_m)\} \sim D$.

• Run online learner A on sequence $(x_1, y_1), ..., (x_m, y_m)$ until it produces a hypothesis h that survives $\geq (1/\varepsilon)\ln(M/\delta)$ many examples.

Claim. For any class H, let A be an online learning algorithm with a Mistake Bound of M(H). Then, the Longest Running Survivor technique halts after seeing $O\left(\frac{M\log(M/\delta)}{\varepsilon}\right)$ examples, and with probability at least $1-\delta$, produces a hypothesis with error at most ε .

Analysis. $\mathbb{P}(\text{any single survived } h \text{ has error } > \varepsilon) \leq (1 - \varepsilon)^{\ln(\delta/M)/\varepsilon} \leq \delta/M$. Since A is conservative, there are at most M hypotheses. So, we take a union bound.

Summary

- Online Learning: Mistake Bound model.
 - No assumptions on data, except realizability by concept class *H*.
 - We have a complete characterization which classes *H* that are learnable in the Mistake Bound model.
 - Namely, classes *H* with finite Littlestone dimension.
- Next time:
 - Beyond realizability? The notion of minimizing regret.
 - Characterizing what is learnable.
 - Special casses.

Readings

 Chapter 21 of S. Shalev-Shwartz and S. Ben-David, <u>Understanding Machine Learning: From Theory</u> <u>to Algorithms</u>.