Matrix Groups: Homework #3

Based on groups

Dr. Sachchidanand Prasad

Problem 1

Let $M_n(\mathbb{R})$ denote the set of all $n \times n$ matrices with entries from \mathbb{R} . Define

$$R_A, L_A: M_n(\mathbb{R}) \to M_n(\mathbb{R}), \quad R_A(X) = X \cdot A, \text{ and } L_A(X) = (A \cdot X^T)^T,$$

where X^T denotes the transpose of X.

- (i) Show that any linear function from $\mathbb{R}^n \to \mathbb{R}^n$ equals R_A for some $A \in M_n(\mathbb{R}).$
- (ii) Show that any linear function from $\mathbb{R}^n \to \mathbb{R}^n$ equals L_A for some $A \in M_n(\mathbb{R})$.
- (iii) We have seen $GL_n(\mathbb{R})$ is the set of all $n \times n$ invertible matrices over $\mathbb{R}.$ Show that

$$GL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) : R_A : \mathbb{R}^n \to \mathbb{R}^n \ \text{ is a linear isomorphism} \}.$$

- (iv) Do you think in the previous part (iii), we can replace $\mathbb R$ with $\mathbb H$? That is, give any $A \in M_n(\mathbb H)$, if $\det A \neq 0$, then $R_A : \mathbb H^n \to \mathbb H^n$ is invertible.
- (v) Find $A\in M_2(\mathbb{R})$ such that $R_B:\mathbb{R}^2\to\mathbb{R}^2$ is a counterclockwise rotation through an angle θ .

Problem 2

- (i) Let $GL_2(\mathbb{Z})$ denote the set of all 2×2 matrices with integer entries and nonzero determinant. Is $GL_2(\mathbb{Z})$ a group with usual matrix multiplication?
- (ii) Let $SL_2(\mathbb{Z})$ denote the set of all 2×2 matrices with integer entries and determinant 1. Prove that $SL_2(\mathbb{Z})$ is a subgroup of $GL_2(\mathbb{R})$. Is it a normal subgroup?
- (iii) Is $SL_n(\mathbb{Z})$ a subgroup of $GL_n(\mathbb{R})$?

Problem 3

Let G, H are groups. Let $\varphi : G \to H$ be a group homomorphism.

- (i) Prove that $\ker \varphi$ is a normal subgroup of G.
- (ii) Show that im φ is a subgroup of H. Is it a normal subgroup?

Problem 4

Describe a subgroup of $GL_{n+1}(\mathbb{R})$ that is isomorphic to the group \mathbb{R}^n under the operation of vector addition.