Search-based Transformation Synthesis for 3-valued Reversible Circuits

D. Michael Miller* and Gerhard W. Dueck**

*University of Victoria Victoria, BC Canada

**University of New Brunswick Fredericton, NB, Canada

Reversible Computation 2020

Introduction

- The synthesis of r-valued reversible circuits is considered primarily for r = 3.
- The approach is based on transformation-based synthesis introduced for 2-valued reversible functions in 2003 and extended to the MVL case in 2004.
- Here we employ a bounded recursive search to explore possible circuits for a given reversible MVL function.
- Logical optimizations during synthesis and physical optimizations during mapping to quantum circuits are considered.

Background

- An n-input, n-output totally-specified r-valued function is reversible if it maps each input assignment to a unique output assignment.
- A 3-valued p × p controlled unary reversible gate passes p 1 control lines through unchanged, and applies a specified unary operator to the pth line, the target line, if the control lines assume particular specified values. Otherwise the target line is passed through unaltered.
- A gate must have a single target and a gate may have no controls in which case it is uncontrolled.
- A *reversible circuit* realizing an $n \times n$ reversible function is a cascade of reversible gates with no fanout or feedback. The circuit has n inputs and n outputs.

3-valued Unary Operators

Х	$C_1[x]$	$C_2[x]$	N[x]	D[x]	E[x]
0	1	2	2	0	1
1	2	0	1	2	0
2	0	1	0	1	2

- C₁ and C₂ are inverses of each other. D, E and N are each self-inverse.
- The following identities are used in circuit simplification.

$$C_{2}[C_{2}[x]] = C_{1}[x]$$

$$C_{1}[C_{1}[x]] = C_{2}[x]$$

$$D[x] = E[C_{1}[x]] = N[C_{2}[x]]$$

$$E[x] = D[C_{2}[x]] = N[C_{1}[x]]$$

$$N[x] = D[C_{1}[x]] = E[C_{2}[x]]$$

Quantum Gates and Circuits

- A Muthukrishnan and Stroud (MS) gate is a reversible gate as defined earlier with at most one control.
- It is clear from equations (1) to (5) that a single cycle gate, C_1 or C_2 , and at least one of D, E or N, is sufficient as the other gates can be implemented by suitable gate pairings.
- In this work, we distinguish between the gates that are logically available during circuit synthesis and the gates that are physically available for the quantum circuit with the assumption that all physically available gates are available for use during the synthesis process.
- We also assume that both C_1 and C_2 are physically, and therefore logically, available as a cycle gate is implemented as a rotation the difference between C_1 and C_2 being the direction of rotation.

Implementation for $\alpha[x_2, x_1=2, x_0=2]$ with helper line h $\alpha = C_1, C_2, D, E, N$

Implementation for $\alpha[x_3, x_2=2, x_1=2, x_0=2]$ with helper lines h_1 and h_2 $\alpha=C_1, C_2, D, E, N$

Quantum Cost Model

- A gate which applies $\alpha \in \{C_1, C_2, D, E, N\}$ with 0, 1, 2, 3 controls has a base cost of 1, 1, 5, 15, respectively.
- In general, the base cost for a k-control gate, k > 2, is $5 + 2 \times$ the cost of a gate with k 1 controls.
- If a particular gate type is not physically available as a single MS gate a pair of gates is required and the cost increases by 1.
- The cost increases by 2, for each control that does not have the global control value.

Transformation-based Synthesis

- Procedure transform determines a set of gates to map a → b where a > b without affecting any c < b.
- The procedure is to choose a gate to map each $a_i \rightarrow b_i$ for $a_i \neq b_i$ starting from the least significant bit.
- For each gate, steps are taken to minimize the number of controls but making sure the gate does not apply for any c < b.
- For certain transitions a choice of gate type may be possible.

transition	options	transition	options
0 → 1	C ₁ E	0 o 2	C ₂ N
$1 \rightarrow 0$	C ₂ E	1 → 2	D
$2 \rightarrow 0$	C ₁ N	2 ightarrow 1	D

Method3: Bounded Search

- The search starts with f, an empty circuit and a infinite best circuit cost.
- Each node of the search tree is associated with a row of the specification and from that node there is a branch for each possible transition and choice of gates to make that row match.
- A path records a partial circuit until we reach a leaf.
- When a leaf is reached, the circuit on the path is compared to the best circuit to date.
- The search is pruned by aborting a path if the partial circuit is more expensive than the best circuit found so far.

Post-synthesis Simplification

- Two gates are inverses of each other if they have the same target, the same control variables and control values and either they are both D, E or N gates, or one is a C₁ gate and the other is a C₂ gate.
- Two C_k gates are **mergeable** if they have the same target, the same control variables and control values. The merge into a single gate has the given target, control variables and control values and is of type C_{3-k} .
- Two gates G_i and G_j are **control reducible** if they are of the same type, have the same target and controls and matching control values except for one control x_k . The gates can be modified by removing x_k from G_i and setting the control value for x_k for G_j to 3-s where s is the sum of the original x_k control values for the two gates. If the gates are C gates, G_i is replaced by its inverse.

Moving Rule, Reduce and Insert_C

- Two adjacent gates G_i and G_{i+1} can be **interchanged** unless:
 - The two gates have the same target but the gates are not both of the same type (C, D, E or N);
 - ② If G_i has type $t \in \{C, D, E, N\}$, the target of G_i is a control for G_{i+1} with control value v and t=C, or t=D, E, N and $v \neq 0, 2, 1$ respectively; or
 - If G_{i+1} has type $t \in \{C, D, E, N\}$, the target of G_{i+1} is a control for G_i with control value v and t=C or t=D, E, N and $v \neq 0, 2, 1$ respectively.
- Procedure reduce simplifies a circuit by looking for inverse, mergeable and control reducible gate pairs using the moving rule to determine when such gates can be made adjacent in the circuit.
- Procedure insert_C scans the circuit from inputs to outputs moving or adding uncontrolled C gates to map all controls to the desired value.

Circuit simplification Strategy

- apply reduce to the circuit produced by the chosen synthesis method;
- if the target is a quantum circuit, apply insert_C to add the required uncontrolled C gates to map all gate control values to the desired value;
- operform any logical gate substitutions for D, E or N gates depending on which types of gate substitution have been specified for the current synthesis.
- if step 2 and/or step3 has changed the circuit, apply reduce a second time to identify any further reductions.

Experimental Results

2-variable 3-valued functions reversible circuit average gate counts: with N and D but no E gates

	No Gate Reduction							
		f			f and f^{-1}			
	Avg.	CPU	Avg. Circ.	Avg.	CPU	Avg. Circ.		
Method	Gates	Sec.	per Func.	Gates	Sec.	per Func.		
1	7.160	2.51		6.957	5.31			
2	7.078	12.67		6.860	25.28			
3	6.125	86.42	21.727	6.083	171.63	43.450		
impr. 3 vs 1	14.46%			12.56%				

	Gate Reduction							
		f			f and f^{-1}			
	Avg.	CPU	Avg. Circ.	Avg.	CPU	Avg. Circ.		
Method	Gates	Sec.	per Func.	Gates	Sec.	per Func.		
1	7.077	2.67		6.855	5.51			
2	6.989	12.73		6.753	25.65			
3	5.983	103.45	30.030	5.919	209.25	60.070		
impr. 3 vs 1	15.46%			13.65%				

2 variable 3-valued functions: average quantum cost

Synth.		Sub.		METH			HOD2	METHOD3	
	D	Е	Ν	CV=2	CV=1	CV=2	CV=1	CV=2	CV=1
DN				9.950	11.667	9.896	11.279	7.837	8.488
DEN				9.701	10.884	9.623	10.553	7.963	8.048
D				10.193	11.995	10.143	11.617	8.057	8.684
DE				10.001	11.301	9.917	10.935	8.163	8.154
DN			1	10.416	12.224	10.355	11.823	8.275	8.934
DEN		1		10.386	11.713	10.307	11.404	8.327	8.730
DEN			1	10.244	11.409	10.157	11.063	8.477	8.345
DN			2	10.614	12.328	10.546	11.923	8.486	9.082
DEN		2		10.543	11.772	10.464	11.459	8.502	8.800
DEN			2	10.338	11.513	10.245	11.164	8.545	8.507
DE		1		10.653	11.988	10.591	11.674	8.566	8.786
DE		2		10.762	12.109	10.697	11.783	8.722	8.978
DEN	1			11.489	12.215	11.345	11.876	8.799	8.670
DEN		1	1	10.898	12.212	10.813	11.892	8.859	9.085
DEN	2			11.627	12.769	11.479	12.346	8.879	8.809
DN	1			12.208	13.355	12.086	12.975	8.887	9.237
DEN		2	1	11.003	12.326	10.916	11.996	8.977	9.251
DEN		1	2	11.075	12.289	10.982	11.968	9.045	9.185
DN	2			12.484	14.180	12.37	13.723	9.130	9.643
DEN		2	2	11.181	12.403	11.086	12.072	9.175	9.357
DE	1			12.077	13.132	11.892	12.701	9.197	8.979
DEN	1	1		12.211	13.072	12.071	12.755	9.285	9.475
DEN	2	1		12.350	13.626	12.204	13.227	9.386	9.640
DE	2			12.316	13.575	12.13	13.083	9.406	9.189
DEN	1		1	12.040	12.992	11.886	12.598	9.443	9.135
DEN	1	2		12.365	13.129	12.225	12.807	9.478	9.548
DEN	1		2	12.133	13.093	11.973	12.697	9.518	9.305
DEN	2		1	12.179	13.304	12.023	12.867	9.519	9.219
DEN	2	2		12.507	13.685	12.362	13.282	9.586	9.718
DEN	2		2	12.274	13.408	12.112	12.968	9.597	9.393

Full Adder

$$x_0^+ = \! \textit{sum}[x_0, x_1, x_2) \ x_1^+ = \! x_1 \oplus x_2 \ x_2^+ = \! x_2 \ x_3^+ = \! \textit{carry}[x_0, x_1, x_2) \oplus x_3$$

METHOD1 / METHOD2 forward synthesis with simplification but no gate substitution; D and E gates allowed: 17 gates

METHOD3 forward synthesis (same conditions): 10 gates

	1	√lo E Gate	S	E Gates			
Method	Gates	Cost	CPU	Gates	Cost	CPU	
Forward Synthesis	•						
1	30	106	0.047	37	157	0.047	
2	30	106	0.062	37	157	0.078	
3	18	26	0.438	18	26	0.703	
impr. 3 vs. 1		75.5%			83.4%		
Reverse Synthesis							
1	44	180	0.063	59	289	0.078	
2	44	180	0.094	59	289	0.125	
3	18	34	379.8	18	34	593.7	
impr. 3 vs. 1		81.1%			88.2%		

METHOD3 forward synthesis with full simplification including INSERT_C: 18 gate full adder quantum circuit, cost 26, cv = 2

Controlled Counter

Miller and Dueck

		No E Gate	es	E Gates			
Method	Gates	Cost	CPU	Gates	Cost	CPU	
Forward Synthesis							
1	15	137	0.03	15	137	0.05	
2	15	137	0.11	15	137	0.13	
3	11	29	182.17	11	29	290.64	
impr. 3 vs. 1		78.8%			78.8%		
Reverse Synthesis	•				•		
1	17	137	0.03	17	137	0.03	
2	17	137	0.11	17	137	0.13	
3	11	29	210.96	11	29	272.52	
impr. 3 vs. 1		78.8%			78.8%		

METHOD3 Forward synthesis: 11 gate quantum counter circuit using full simplification, cost 29, cv = 2

18/23

Controlled Rotation

- A reversible function with four inputs and output
 - x_3, x_2, x_1, x_0 if $x_3 = 0$,
 - $x_3, x_1, x_0, x_2 \text{ if } x_3 = 1$,
 - x_3, x_0, x_2, x_1 if $x_3=2$.
- METHOD1 or METHOD2 using N, D and E gates with D and E gate logical substitution and simplification yields a reversible circuit with 76 gates and a quantum cost of 358 (75 and 358 for inverse function).
- METHOD3:
 - ① A check is inserted to test if $F_k = k$ and if it does to accept that 0 gate case without exploring all other alternatives.
 - The search is aborted if a preset circuit cost is reached.
- METHOD3 with a cost limit of 170 to the inverse of the rotation function a circuit was found with 50 gates and quantum cost 170 – a bit less than half the cost found using METHOD1. The search took 3.8 CPU hours and considered 1,551 circuits.

$$swap[x_0, x_2, x_3=1] swap[x_1, x_2, x_3=1] swap[x_0, x_2, x_3=2] swap[x_0, x_1, x_3=2]$$

$$swap[x_0, x_2] swap[x_0, x_2, x_3=0] swap[x_1, x_2, x_3=1] swap[x_0, x_1, x_3=2]$$

$$x_i$$
 $-C1$ -1 -2 $-C1$ $-C2$ -2 $-D$ $-x_i$ $+x_i$ -2 $-C1$ $-C2$ -2 -1 $-C2$ $-x_i$

METHOD3 no simplification: uncontrolled swap of x_i and x_j

reversible rotation circuit by swap circuit substitution

50 gate quantum rotation circuit found by simplification: quantum cost 122, cv = 2

Conclusion and Future Work

- A new bounded search transformation-based synthesis approach was presented showing its potential and limitations.
- Not yet clear why the search takes so much longer for the rotation circuit compared to arithmetic circuits like to adder and counter.
- Coupling the search method with decomposition techniques should be explored.
- Optimization of the circuits at the final quantum level should be examined.
- It would be interesting to consider how the search method applies in the Boolean case.

Thank you! Questions / Comments?