UNCLASSIFIED

AD 274 289

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

274289

COMPILATION OF UNPUBLISHED MATERIALS INFORMATION

CATAINCED BY ASTIA

REPUBLIC AVIATION CORPORATION

Farmingdale, L.I., N.Y.

COMPILATION OF UNPUBLISHED MATERIALS INFORMATION

FOURTH QUARTERLY REPORT

Contract AF33(616)-8084

January 1962 to March 1962

REPUBLIC AVIATION CORPORATION Farmingdale, L.I., N.Y.

NOTICE

This document may not be reproduced or published in any form, in whole or in part, without prior approval of the Government. Since this is a progress report, the information herein is tentative and subject to changes, corrections and modifications.

FOREWORD

This progress report was prepared by the Republic Aviation Corporation,
Farmingdale, New York, under USAF Contract AF33(616)-8084. The contract was
initiated under Project No. 1 (8-7381), Task No. 73812, "Compilation of Unpublished Materials Information on Company Sponsored Programs." This work was
administered under the direction of the Applications Laboratory, Materials Central,
Directorate of Advanced Systems Technology, Aeronautical Systems Division, with
Mr. F. Giese acting as project engineer.

This quarterly progress report (final report of the contract) describes unpublished Republic materials data compiled during the period 16 January 1962 through 31 March 1962.

The test results reported in this compilation were due to the efforts of many Republic Aviation personnel. Since a list of contributing personnel would be too cumbersome, only the departments responsible for the compilation and editing of the data presented herein are noted. These were as follows: Manufacturing Research and Processes Department (Metallic, Nonmetallic, and Welding), Production Engineering Structures and Materials Test, Quality Control Test Laboratory, Applied Research and Development Materials Laboratory (Applications Group), and Technical Publications.

This program was coordinated at Republic Aviation by Ronald W. McCaffrey of the Applied Research and Development Materials Laboratory (Applications Group).

ABSTRACT

Property data, not heretofore published, are presented for twenty-one materials. These data have been obtained from materials programs conducted by the Republic Aviation Corporation during the past five years. The following materials are contained in the data compilation:

Aluminum Base Alloys:

X2020, 5456

Magnesium Base Alloys:

HK-31, AZ63, FS-1

Titanium Base Alloys:

Ti-4Al-4Mn, Ti-5Al-2.5Sn,

Ti-6Al-4V

Low Alloy Steels: (90% Fe or greater)

5Cr-Mo-V

High Alloy Steels: (less than 90% Fe)

17-7PH, INVAR,

AISI 302

Nickel Base Alloys:

René 41, K-Monel,

U-700, Electroformed

Nickel

Plastics:

Epoxy Foams, Epoxy

Tooling Resins,

Conductive and Reflec-

tive Resins

Transparent Materials:

Stretched Plexiglas 55

Plexiglas II

TABLE OF CONTENTS

																			Pag
FOREWO	RD.	•	•	•	•	•	١.	•	•	•	•	•	•	•	•	•	•	•	iii
ABSTRAC	CT .	•	•	•	•	•	•	•	•	•	•	•	. •	•	•	•	•	•	iv
INTRODU	CTIC	N.	•	•	•	•	•			•	•	•	•	•	•	•	•	•	1
DATA PR	ESE	ATA	TIO	N	•	•	•	•	•			•	•	•	•	•	•	•	2
A.	. г	ATA	A CI	AS	SSIF	'ICA	TI	NC	•	•	•	•	•	•	•	•	•	•	2
B.	. N	IAT	ERL	AL	STA	ATU	JS -	DE	FI	NIT:	ION	•	•	•	•	•	. •	•	5
c.	. s	PEC	IME	EN	TYI	PES	A	ID T	res	TN	ÆT	тон	DS	•	•	•	•	•	5
REFERE	NCES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
MASTER	DATA	A IN	DEX		•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
APPENDI	x •	•	•	•	•	•	•	•	•	•	•	•	•	, •	•	•	•	•	20
APPENDI	X INI	DEX	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	21

INTRODUCTION

The environmental and design requirements necessitated by current and advanced aerospace vehicles have created a myriad of divergent material requirements. In order to cope with the critical dependence of new vehicles on materials and to form a foundation for future materials programs, Materials Central has initiated a program to assemble and collate previously unpublished materials data generated within the aerospace industry.

The materials data included in this report have been selected from Republic's materials research and development programs. These programs have been conducted within the past five years under company sponsorship or in support of contractual commitments.

DATA PRESENTATION

The materials information being reported under this contract has been evaluated and selected on the basis of a), its usefulness to designers within the aerospace industry and b), its statistical value to Materials Central (by inclusion of individual test points in lieu of just average test results).

The applicable data are presented in the Appendix on standard data sheets adopted for this contract. These data sheets have been classified and documented with the following pertinent details; general class of data (i.e., mechanical properties, electrical properties, thermo-physical properties, etc.), commercial material identification, material status, heat or batch number, form, processing condition, object of test, Republic Aviation data reference, specimen type, and test method.

A. DATA CLASSIFICATION

To assist the user of this report in locating reported data on any particular material, a five point decimal system has been adopted to identify the type of data presented. This system basically denotes the type of data, major material classification, secondary material classification, specific material, and sequence of data transmitted. Subsequent data to be reported under this contract will be similarly annotated. Such a system will enable the user to readily collate the reported data. A detailed description of the data classification system is given below.

The first characteristic (N₁.) is a number utilized to segregate the basic type of materials data into one of the following categories:

- 1. Mechanical Properties
- 2. Thermo-Physical Properties
- 3. Electrical Properties
- 4. Chemical Properties
- 5. Miscellaneous Properties

The second characteristic (.N₂.) is a letter denoting the two major material classifications, namely, "Metallic Materials" and "Special Purpose Materials." For joint design data, the major material classifications have been further annotated as shown below:

- 1. Metallic Materials
 - AF. Metallic Materials Mechanical Joints
 - AG. Metallic Materials Welded or Brazed Joints
 - AH. Metallic Materials Adhesive Bonded Joints
- 2. Special Purpose Materials
 - BF. Special Purpose Materials Mechanical Joints
 - BG. Special Purpose Materials Welded or Brazed Joints
 - BH. Special Purpose Materials Adhesive Bonded Joints

The third characteristic (.N₃.) is a number designating the secondary material classification within each of the major material classifications. The major material classifications have thus been sub-divided as follows:

For Metallic Materials (Code A, AF, AG, or AH)

- 1. Aluminum Base Alloys
- 2. Magnesium Base Alloys
- 3. Titanium Base Alloys
- 4. Beryllium Base Alloys
- 5. Low Alloy Steels (90% Fe, or greater)
- 6. High Alloy Steels (less than 90% Fe)
- 7. Nickel Base Alloys
- 8. Cobalt Base Alloys
- 9. Molybdenum Base Alloys
- 10. Columbium Base Alloys
- 11. Tantalum Base Alloys
- 12. Tungsten Base Alloys
- 13. Miscellaneous Metallics

For Special Purpose Materials (Code B, BF, BG, or BH)

- 1. Elastomers
- 2. Fluids (Functional-energy transmitting)
- 3. Lubricants
- 4. Adhesives
- 5. Fuels and Propellants
- 6. Insulation (acoustic, electric, thermal)
- 7. Plastics, laminated.

- 8. Plastics, miscellaneous
- 9. Sandwich construction
- 10. Seals and Sealants
- 11. **Textiles**
- Transparent Materials 12.
- 13. Ceramics
- Coatings 14.
- 15. Composites
- 16. Bearings
- 17. Miscellaneous Special Purpose Materials

The fourth characteristic $(.N_4.)$ is a number describing the specific material (e.g., M-252, 2024, etc.) being reported. This number, when combined with the applicable subdivisions of the major material classification ($.N_2$.) and secondary material classification (.N3.), will identify data on the same material throughout the contract. The numerical identification of each material is based on the sequence of materials information being reported within each of the secondary material classifications (i.e., if 2014 is the first aluminum alloy reported, X2020 the second and 7075 the third, they would be numbered .1, .2, and .3, respectively).

The fifth and last characteristic (. N5) is a number employed to denote the sequence of data collated for each of the specific materials.

The use of the code is typified by the following examples.

Example 1: The code 1.A.3.2.3 would indicate:

- Mechanical Property Data
 - Metallic Material A.
 - Titanium Base Alloy
 - Ti-5Al-2, 5Sn (2 nd Titanium Base Alloy Reported)

Metallic Materials - Welded or Brazed Joint

3 rd Data Collation for Ti-5Al-2, 5Sn

Example 2: The code 1.AG. 6.3.1 would indicate:

- 1. AG. Mechanical Property Data
 - High Alloy Steel (less than 90% Fe)
 - AM-350 (3 rd High Alloy Steel reported)
 - 1 st Data Collation for AM-350

B. MATERIALS STATUS - DEFINITION

In order to permit Republic's materials data to be placed in the proper perspective when compared with similar data from other industry sources, each set of data has been annotated with the commercial status of the material tested, i.e., either production, semi-production, or experimental. These terms are defined as follows:

Production:

Material which is readily available in commercial sizes and

is usually covered by an approved AMS, MIL, or Federal

material specification.

Semi-production:

Material which is commercially available in limited sizes and quantities and may not be covered by an AMS, MIL, or

Federal material specification.

Experimental:

Material which is still undergoing laboratory development, is available in only small lots and sizes, and is usually not

covered by any material specification.

C. SPECIMEN TYPES AND TEST METHODS

Generally, the specimen types and test methods employed at Republic Aviation for material evaluation are in conformance with an applicable Federal, military, or industry recognized testing specification. Whenever possible, and for the sake of brevity, an applicable testing specification has been noted on the standard data sheets. For those tests which are not covered by an applicable specification, the pertinent test details are recorded. In some cases, the reported data were generated prior to the formalization of an approved testing standard. In those cases where Republic's testing procedure was identical to a procedure subsequently adopted as a standard, the details of test are noted as "the same as Specification. . . . "

The pertinent details of testing, peculiar to the testing specifications noted on the standard data sheets, have been described in the First Quarterly Report issued under this contract as Report No. RAC 767-251(357) dated 14 July, 1961.

REFERENCES

- 1. First Quarterly Report RAC 767-251(357), dated 14 July 1961.
- 2. Second Quarterly Report RAC 357-1(ARD 767-252), dated 12 October 1961.
- 3. Third Quarterly Report RAC 357-2(ARD 767-254), dated 12 January 1962.

MASTER DATA INDEX

To assist the user of this report in ascertaining as to what data is presented under each data classification, a Master Data Index section is included in the following section. Data presented in previous quarterly reports are included in the index.

	1.	тяочия хінатилор	-	
	-	كالمستجاب المرسيات والمراجع والمستجاب المراجع	 	
	9	iltscellaneous	 	
	Variable	Surface Finish		*
	ari	Cleaning Method		
		Bonding	·	
	sin	Brissing		
	Processing	Melding	<u> </u>	*
	18	Nech. Norking	<u> </u>	* * * * *
		Heat Treat		* *
		None	*	** *
	int	Miscellancous		15 *
	ga	Stressed Heating		
İ	Savironment	Unstressed Heating	*	* * *
	N.	9uo!(*** * *****
. .		Wiscellaneous		
LASTER DATA TRUEK		qəəao		
Ä	90,	eunttasī		* * *
ATA	Ţ	Bearing		
بن ن ت	Data Type	г рө чг		
STE		Compression		*
M		Tension	*	*****
		Miscellancous		·
ĺ		Composite		· · · · · · · · · · · · · · · · · · ·
	Ę	tatol		
	Form	Honeycomb		
	ᇢ	Sattaso		
	er l	Forzang	*	· · · · · · · · · · · · · · · · · · ·
	Katerial	gxtrnston		
	``	Acf		
		Sheet and Plate		****
			7	TOWN 1 9 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Code		1.4.1.1.1	A 1 2 2 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	ပိ		A.	A A A A A A A A A A A A A A A A A A A
	 -	•		1. A. 1. 1.
	ial		5	
	haterial		Aluminum 2014	x2020
	7.7		11u 20	7075

HETALLIC MATERIALS

		THOSELY REPORT	н	ผผพพพ	8	٣	, y r
	\Box	Miscellaneous	·				
Variable		Surface Finish			·		
1 2		Cleaning Method		•	•		
		Bonding					
1 2		gutzera	1	·	· · · · · · · · · · · · · · · · · · ·		
Proceeding		Melding		• *			*
١		Mech. Morking		*		*	
Δ.	٠ <u> </u>	Heat Treat		* *	 		***************************************
1	ŀ	ouon	*	* *	*		
+	3	Miscellancous					
1 6		Stressed Heating		. ,			
1	3	Unstressed Heating	*	* * * *	*		
tannan tuni	<u> </u>	enov		* * *	*	*	*
		Miscellaneous		*	<u> </u>	* ~	} > * <> >
	T	Greep	. ,	HÞ			
Data Tyme	g,	Patifue		*	*		
,	? [Bartng					
Data Tune	3	Shear		*	*		
ے ا	` -	Compression			*		
	ľ	Tension	*	* * * *	*		*
		Wiscellancous:				*7	A
		etisoqmo)	<u> </u>	- 77.1	`		
۱۶		taiol		. *			
Form		Noveycomb			····	··	
		Casting					
eri		Forging	*				
Eaterial	֓֟֝֟֝֓֓֟֝֟֝֟֝֟֝֟	noteurtxi					
		TeA			*		
	Γ	Sheet and Plate		****	•		*
			4.3	7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	1.9	.1	8.1
Code			1,A,1,h	4444	1.4.1.6.1	1.4.1.7.1	1, AG, 1, 8, 1
၂ပိ	١.		1.A	1.4.1 1.4.1 1.4.1	▼	₹	¥.
-	+	•					
Material			Aluminum 7079	•	o;		}
1 3			1um 079	2024	X2219	5052	5456
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			7 ×	50	<u> </u>	ν.	5,

9

13 Bend Data V

NETALLIC MATERIALS

,	·					
		тяочия хляатилор	H H 4	~	4 4	4 ,
1		Wiscellaneous				
	lb1(Surface Finish				
	Variable	Cleaning Method				
		Bonding				
	in	gnisora				_
1	Processing	Welding	*	*	•	
	roc	Mech. Norking			· · · · · · · · · · · · · · · · · · ·	
	ď,	Heat Treat	*		*	
j		youg	*		*	
	nt	Mrzceffsuconz				
	nrae	Stressed Heating				
	Environment	Unstressed Heating	**		. *	
	Suv.	ənoli	* *	*	*	
		Miscellaneous	* -	1 ⊳*		
THOEX		. dəəxə	Ή Α ,			
Ä	ρ .	eugitei				
ATA		Bearing				
HASTER DATA	Data Type	Shear	*	*		
1 E	^ .	noissargmod				
IIA		eusjou	**		* *	
		Miscellancous			-	
		etizogmol				
	Ę	tatol	*	*	٠.	
	Form	Honeycomb				
	립	gatteso			*	
	"ateria]	Forging				
	%at	intrusion in a				
		Tea				·
		Sheet and Plate	* * *	*	. *	•
			1.3	2	3. 1 4. 1	
	Code		G 2,	1.AG.2.2	A. 2. 3. 1 A. 2. 4. 1	
	ŭ		1 AG 2 1 A 2 1 A 2	. AG		
	_}	<u> </u>	E .		<u> </u>	
	rta]		esit.	×		
	Material		Magnesium HK31	HM21XA	AZ63 FS-1	
	岩		Ψ H H		₹	

ଏ
H
5
\sim
Ö
H
5
≥.
63
ဌ
H
Ħ
⋖,
H
回

		THOSHE XTHELERO		ri rių	러 더 더 너	0 0 mar.
		Miscellaneous				
•	Variable	Surface Finish		:		*
	ria	Cleaning Mothod				•
		Baibaod	`			
	ing	gnizere				
	Processing	Melding		•	. *	*
	roc	Mech. Norking				•
	Ь	Heat Treat		•	*	
		none	<u> </u>	* **	* * *	* *
	nt	Mitscellancous				
	חדום	Stressed Heating				.*
	Snvironment	Unstressed Heating		* **	* * * *	*
	Snv.	enoN		* * *	* * * *	* *
		Niscellaneou s			~> * ~>*	∾ > *
X		Creep		•		
Ħ	Type	Fatigue		*	**	* *
ATA	T.	Boaring			*	'
HASTER DATA BIDEX	Data	2рея т			* *	
STE		Compression		*	*	
=======================================		roisno.		* * *	* * * *	* * * *
		Wiscellancous		16 V *		
		etizogmol				
	를	tatol				
	Fora	loneуcomb				
	[13]	Suited		·····		
	Material	Forging	<u> </u>	 		
	Ma	noteurtxसं		*	·	*
		प्रदर्श		*	*	*
		Sheet and Plate		*	* * * * *	* *
	Code			1.4,3,1,1 1.4,3,1,2 1, A.3, 1,3	1.4.3.2.1 1.4.3.2.2 1.4.3.2.3 1.4.3.2.4 1.46.3.2.6	1.4.3.3.1 1.4.3.3.2 1.4.3.3.3
	isterial		Titanium	T1-lA1- lM	T1-5A1- 2.5Sn	T1-6A1- llV

2 Bend Tes

METALLIC MATERIALS

		тяосия хиялтиар	aammm	~	, m	m	
		Miscellaneous	*		•	<u></u>	
	Variable	Surface Finish	*	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·		
	ria	Cleaning Method		· · · · · · · · · · · · · · · · · · ·			
		Bonding		· · · · · · · · · · · · · · · · · · ·			
	Processing	e gutzera					
	ess	Melding.	·				
	roc	Nech. Norking					
	G.	Heat Treat	*	*	· · · · · · ·		
		guoy	* *		*	*	
.	nt	Nisce ll ancous		· · · · · · · · · · · · · · · · · · ·			
	ncie	Stressed Heating				4'	
	Snvironment	Unstressed Meating	* *	*.	*	*	
	3nv	euoN	* ***	*	*	*	
	Data Type	Miscellaneous	∾⊳ *				
X		Creep					
LASTER DATA DIDEX		Patigue	* *		*	*	
X		Baires					
<u>a</u>		Shear					
(E)	<u> </u>	Compression		*			
	ſ	noizneT	***	*	*	*	
ſ		::tecellancous					
		etteogmo0					
- [E	tatol	·				
	Form	Попеусоть					
	E [Gasting					
	Lateria	, Anthrof					
	ie:	noteurtxű					
		Tea					
L		Sheet and Plate	****	*	*	*	
	Code		1.4.3.4.2 1.4.3.4.2 1.4.3.4.3 1.4.3.4.4	1,4,3,5,1	1.4.3.6.1	1.4.3.7.1*	
	Material		Ti-8½n	T1-13V- 11Cr-3A1 (B120 VCA)	T1-16V- 2.5 Al	T1-4A1- 3M0-1V	

METALLIC MATERIALS

İ		QUARTERLY REPORT	H 0101 00 04 4 10 10
		Wiscellaneous	₩ >+
	ple	Surface Finish	io >
	ria	Cleaning Method	
	Processing Variable	Bonding	
	ing	Brazing	
	ess	Melding	* * * *
	roc	Mech. Norking	
		Heat Treat	
		None	* * * *
	ut	Niscellaneous	4. >*
	nze	Stressed Heating	
	Environment	Unstressed Heating	* **
	ig.	guon	* * * * *
		Wiscellaneous	
XX		Greep	
Ä	Type	Fatigue	* * * *
ATA		Bearing	
HASTER DATA INDEX	Data	Shear	
STE		Compression	
EAS .		Tension	* * * * * * * * * * * * * * * * * * * *
		Kiscellancous	
		etizogmoj	· ·
	E	tatol	
	Form	lloneycomb	
	[편	Casting	
	<u>F</u> [Forging .	
	Material	Extruston	•
		Bar	• •
		Sheet and Plate	
			.5.1 4.1 5.1 5.1
	Code		1.AG.5.1.1 1.A.5.2.1 1.A.5.2.2 1.A.5.3.1 1.A.5.3.3 1.A.5.3.4 1.AG.5.4.1
		·	<u> </u>
	rg Tg		# > ~
	Material		Low Alloy Steels SAE4340 A1S1 4330 Mod. 5CR-Mo-V SAE4130
İ	in t		Low Alloy Steels SAE43 A1S1 A330 M 5CR-M SAE41;

6 V Electrolytic immersion in H_2SO_4

Cd Plating

NETALLIC MATERIALS

		THOSHE THETHAUP	1			Н	446	α .
		Miscellaneous					· · · · · · · · · · · · · · · · · · ·	
	ble	Surface Finish	 				,	
	Variable	Cleaning Method						
		Bonding	1.					
	Processing	Brazing						
	ess	Melding				*	* *	· · · · · ·
	roc	Nech. Working				****		
	C	Heat Treat					* * *	*
		None		*	*			
	nt	Wiscellaneous						
	nrae	Stressed Heating		*				
	iro	Unstressed Heating		*	*		····	*
	Anvironment	enoli		*	*		* * *	*
		Miscollaneous			·		*	
HASTER DATA ENDEX		ರೂಲಸ್ವ			 			
Ä	Туре	Patites			· · · · · · · · · · · · · · · · · · ·			
ATA	Ţ	Boaring						
น ภ	Data	Shear			*	*	* *	
SIE	a l	Compression			····		•	
IIA		roisnoT		*	*		*	*
				•				
		60 troops of the						
	ä	taiol	•		•	*	* *	
- 1	Form	Noneycomb						
	[a]	gatteed						*
ĺ	Lateria	Forging						
	113	noieurtxi					····	
		Tea		*	*			,
		Sheet and Plate		<u> </u>		*	* * *	
	Code			1.A.6.1.1	1.4.6.2.1	1.AG.6.31	1.4.6.4.1 1.46.4.2 1.46.6.4.3	1.8.6.5.1
	Material	·	High Alloy Steels	145/15	151 131	AM 350	РН15-7мо	AM355

METALLIC MATERIALS

	,			
		THOSHE YLHETANUD		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		Miscellaneous		
	Tq.	Surface Finish		* *
	Variable	Cleaning Method		*
		Bonding		
'	i.	gnisera		
	Processing	Melding		* * * *
	8	Mech. Norking	1	* *
	٦.	Heat Treat		* * * *
		None		* *
İ	nt	Miscellancous		
	na Pra	Stressed Heating		
	iro	Unstressed Heating		* .
	Snvironment	ouon		******
		Niscellaneous		HD*
MA		Greep		•
A	Data Type	Patigue		4
Y.		Boaring		
HASTER DATA INDEX		Shear		* *
E	Δ	Compression		
15.45		L eus ion		****
		Miscellaneous		
		St. zodn:00		
	g	tariof		* **
	Form	Honeycomb		
	먑	gatteso		
	!ateria]	Forging .		
	!!at	Extrusion		
		Teff		*
		Sheet and Plate		****
				1. A.6.6.1 1. A.6.6.3 1. A.6.6.3 1. A.6.6.5 1. A.6.6.5 1. A.6.6.8 1. A.6.6.8 1. A.6.8.1 1. A.6.9.1 1. A.6.9.1
	Code	,		1.4.6.6.1 1.4.6.6.3 1.4.6.6.3 1.4.6.6.5 1.4.6.6.8 1.4.6.6.8 1.4.6.6.8 1.4.6.8.1 1.4.6.8.1
'	ပ			1. A. 6. 1.
		· .		· • ~
	ia		18	PH 7 7 7 8 903 300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	W terial		High Alloy Steels	17-7 PH 1.4.6.6.1 1.4.6.6.3 1.4.6.6.4 1.4.6.6.6.5 1.4.6.6.8 1.4.6.6.8 1.4.6.6.8 1.2. Mod. 1.4.6.8.1 INVAR 1.4.6.10.1 AISI 302 1.4.6.10.1
	玄		H A S	H A A A A A A A A A A A A A A A A A A A

METALLIC MATERIALS

٦	į

		TROSMR XIRETRAUQ		ਜੇਜਜ	-H	ณ ณ ณ m mm m
	6	Miscellaneous		•	o	~>* ~>*
	वि	Surface Finish		,		*
	Variable	Cleaning Method				
		Euthnod				
	Processing	gaissia				
	ess	%elding		. *		
	roc	Mech. Working				
i	٦	lleat Treat		*		* *
		None		*	*	* * *
	돧	Miscellancous				∞⊳*∞⊳*
	1336	Stressed Heating				
	[IS	Unstressed Neating		* .	*	* *
	invironaent	lione		* * *	*	* * * * * *
		Wiscellaneous			7	->* ~*
THOEX]	creep	. ,		,	
H	9.	Patigue		*	···················	* * *
\TA	Туре	gearing				. *
HASTER DATA	Data	Shear				
TE	a	Compression		 		
1.45	i i	no ienaT		* * *	*	** **
		litacellaneous				
		etteogmod				
	Ę	tatol		*		* *
	Form	Honeycomb				
	ਫ਼	gaitead			,	
i	eri	Forging				·
	Kateria	ixtrusion				
		Rar		*		
	ſ	Sheet and Plate		* * *	*	* * * * *
	Code	,		1.A.7.1.1 1.AG.7.1.2 1.A.7.1.3	1.A.7.2.1	1.AF.73.1 1.A.7.3.2 1.AF.73.3 1.AF.73.4 1.A.7.3.5 1.A.7.3.5
	Material		Nickel Base Alloys	M-252	n-500	Inconel-X

7 Jasteners

Prestrain

œ

V coef, of expansion

		TROSHR YHETRAUD		8	20000444	60	4	4	
		Miscellaneous		•	m> *				-
	ā	Surface Finish							***************************************
	Variable	Cleaning Mothod			*				
1	1 1	Conding							
İ	ing	Surreac	†						
j	988	//olding			* *				
	Processing	gecp* norking	 		•		*		
	ا ۾	icat Treat	 		* *		<u> </u>		
		puo'il		*		*			
	고	Miscellancous	 						
	Eile	Stressed Heating	1			<u></u>			
	ğ	Unstressed Meating	 		* * *			<u> </u>	
	Invironment	onoii	+	`		 _			
		Hiscellencous	 		ი> +			>*	
X	lt	Croop	1.		*	**		<u> </u>	
THUEX	g	Patitag	1	·	*				
TA	Type	Buirsca					-		
MASTER DATA	Data	Shear			* *				
15	i i i	compression	1						
S.4.5		noisne?			***	•			
		ilscellaneous :	Í						
		Composite			····				
		quior	 		. *				
	:or:	!'oneycomb							
	· }-	gniteno							
	12	Sorging	1						
	Laterial	not surtific			······································				
		प्रथम		*					
		Speet and Plate			* * * * * * *	•	• •	•	•
ľ				1.	1.A.7.5.1 1.A.7.5.2 1.A.7.5.3 1.AF.7.5.4 1.AG.7.5.6 1.AG.7.5.6	7:	1.	7.	
	Code			1. A. 7. 4.1	A 7.5.1 A 7.5.3 A 7.5.3 A 7.5.4 A G 7.5.6	1. A. 7. 6.1	1.A.7.7.1	2. A. 7. 8.1	Electroformed
	ပ်			· <	A A B A B A B B A B B B B B B B B B B B	A.	Ą	Y	ଅ ବ
-			}	, , ,	<u> निन्नेनेने</u>		<u>~~i</u>	<u>~i</u>	<u>Ē.</u>
	ial			7	14	Vaspalloy	ie!		oto
	Haterial		Nickel Base Alloys	Inconel 700	René 41	spa!	K Monel	U-700	etr
	ž:		Nicke Base Alloy	70 E	Re	Vat	K	_	E

SPECIAL PURPOSE MATERIALS

	aterial		Adhesives	Narmeo 103	Narmco 10 FM-47 Shell 422 AF-31	Epon VI	Plastics Conductive Reflective	Epoxy Foams	Tooling Resins	Sandwich Honeycom! Paper
	Code		60	1.BH 4.2.1	·	1.BH.4.3.1	Plastics Conductive & Reflective 3. B. 8. 1.1	2. B. 8. 2.1	5. B. 8. 3.1	1. B.9.1.1
		Sheet and Plate								
		Bar								
	Lat	gxtruston								
	Katerial	Lorging .								_
		Sasting						. *	. *	
	Form	Noneycomb	T							*
		4niot	T	•#		*	•		-	_
		etisogmo0	1				*	· · · · · · · · · · · · · · · · · · · 		
~		Niscellancous	+							-
HISTER DATA		roisnor	╁						-	*
l'ER	L _C	Compression	╁╌			-				
1.5	Data	Зреат	†		<u> </u>		·			
1	Type	Boaring	╁		. · 		_			
THUEX	9	Fatigue	+-		<u>-</u>				 	
X		Creep Miscellaneous	+				>#	<u> </u>	*	
}		None	╁		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		~ <u>*</u>	<u> </u>	<u> </u>	
	Gnvironment		+			_		*	*	
	űe	Unstressed lieating	╁							-
	lor.	Stressed Heating Miscellaneous	╁	,,, ,,,,,						
	1	None	+				. +	*	*	* .
		deat Treat	+	•						
	Pro	Nech. Norking	4						•	
	Ses	Welding	4		· · · · · · · · · · · · · · · · · · ·					
	Processing	Anizera	_							•
		Bonding	<u> </u>	*						
	J.	Cleaning Mothod							···	=
	Variable	Surface Finish	1		<u> </u>					
	0	Miscellaneous						· · · · · · · · · · · · · · · · · · ·		
1		TROSM YLMETHAUD	_	. 6) 		3 4	4		*

Reflectivity & conductivity measurements

Ţ

SPECIAL PURPOSE MATERIALS

_	_		-	1
	-	_		_

		тяочия хлянтило		₩.	*	н		89		
		Hiscellaneous				11>+		12]
	Variable	Surface Finish								
	ria	Cleaning Method								
		Bording								
	ing	gnisara								1
	Processing	Welding				•				1
	roc	Nech. Norking	·							1
	Ь	Heat Treat	1	•						1
		None		*	*		* -			1
	nt	Miscellancous								
	าะขดา	Stressed Heating							•	1
	im	Unstressed Neating		*	.					1
	Snvironsent	None				*		*	····	1
		Miscellancous		,		20 20 44				1
XFG:II		goord		,		•				7
ä	ခင	Fatigue		*]
Y.J.	Data Type	gestruk		*	*]
À	ata	Shear								1
	ä	Compression								1
l'Gerr data		Tension						*		1
Ì		Miscellancous		-	************	*				1
		əjisoqmol								1
į	Ę	tariot								1
- 1	Form	Noneycomb				· · · · · · · · · · · ·				
		Sattassu								1
į	ari	Porging								
	"aterial	ixtruston					•			
]}#L								
		Sheet and Plate		#	*			•		
	Code		, t	1.BF.12.1.	1.BF.12.2.	1. B.16.1.1	N.S	1.B.17.1.1		
	Material		Transparent Materials	Stretched Plex 55	Plexiglas II	Bearings Staking	Miscellane	Plaster Parting Agents		10

Bearings

11 V Parting Agent

APPENDIX

Mechanical Property Data Sheets

Thermophysical Properties Data Sheets

Electrical Property Data Sheets

Miscellaneous Property Data Sheets

APPENDIX INDEX

MECHANICAL PROPERTY DATA SHEETS

1	METALLIC MATERIALS	CODE
	Aluminum Base Alloys	
	X2 020	1. A. 1. 2. 4
		1.AG.1.2.5
[1.A.1.2.6
	5456	1.AG.1.8.1
•	Magnesium Base Alloys	
1.	HK-31	1.A.2.1.3
	AZ-63	1,A.2.3.1
T-	FS-1	1.A.2.4.1
1_	Titanium Base Alloys	
T	Ti-4Al-4Mn	1.A.3.1.3
1	Ti-5A1-2.58n	1,AG:3.2.5
	T1-6A1-4V	1,AG.3.3.4
	Low Alloy Steels (90% Fe or greater)	•
1_	5Cr-Mo-V	1.A.5.3.3
1-		1.A.5.3.4
1_	High Alloy Steels (less than 90% Fe)	
T	17-7PH	1.A.6.6.9
	INVAR	1.A.6.10.1
l.	AISI 302	1.AG.6.11.1

MECHANICAL PROPERTY DATA SHEETS

MECHANICAL PROPERTI DATA SHEETS	
METALLIC MATERIALS (cont'd)	CODE
Nickel Base Alloys	
René 41	1.AG.7.5.5
	1, AG.7.5.6
	1. A. 7. 5. 7
K-Monel	1.A.7.7.1
Electroformed Nickel	1.A.7.9.1
SPECIAL PURPOSE MATERIALS	
Transparent Materials	
Stretched Plexiglas 55	1.BF.12.1.1
Plexiglas II	1.BF.12.2.1
THERMO-PHYSICAL PROPERTY DATA SHEETS METALLIC MATERIALS Nickel Base Alloys	
U-7 00	2.A.7.8.1
SPECIAL PURPOSE MATERIALS	
Plastics	
Epoxy Foams	2.B.8.2.1
ELECTRICAL PROPERTY DATA SHEETS	
SPECIAL PURPOSE MATERIALS	
Plastics	
Conductive & Reflective Resins	3.B.8.1.1

REPUBLIC AVIATION CORPORATION

MISCELLANEOUS PROPERTY DATA SHEETS

SPECIAL PURPOSE MATERIAL	CODE
Plastics	
Epoxy Tooling Resins	5. B. 8. 3.

TEST METHOD:

1.4.1.2.4

		_		_
		7		5
•	26	_	•	,

	PAGE	07 _5
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS	
X2020 - T6 Bare	Experimental	
HEAT OR BATCH NUMBER	FORM	
Unavailable	Sheet	
PROCESSING CONDITION		
See Below		,
various surface treatments on the mechanical properties of bare X2020 sheet	RAC DATA REF. ESRMR 121, dated March 22, 1960	
SPECIMEN TYPE	· · · · · · · · · · · · · · · · · · ·	

As per Federal Test Method Standard No. 151a, 211.1 dated May 6, 1959.

As per Federal Test Method Standard No. 151a, Method 211.1, dated May 6, 1959

As-received material contains a heat treat scale composed of aluminum oxide with inclusions of cupric oxide and the products of a lithium-water vapor reaction. Removal of this scale will be required to satisfy fabrication processing requirements and to apply a controlled corrosion protective coating. Fabrication processing such as spot welding and adhesive bonding demands a material surface free of scale. The heat treat scale on X2020, although capable of providing corrosion protection, is not controlled at the mill as to composition and thickness.

The test program was conducted along the lines of first removing the as-received scale and then the application of a corrosion protection surface treatment which is, also, capable of acting as a base for paint.

The three phases of the program were as follows:

- a. Investigation of a suitable stripper to remove the "as-received" heat treat scale.
- b. Investigation of the suitability of anodizing by the chromic acid process per MIL-A-8625A, Type I and the use of chemical film treatment per MIL-C-5541 as corrosion preventive treatments.
- c. Investigation of conformance of the protective coating to the corrosion resistance test procedures outlined in the above-mentioned military specifications.

All panels, each 3 inches wide by 8 inches long by .063 inches thick with the length transverse to the rolling direction, were cut from one sheet of bare X2020-T6 aluminum alloy as supplied by the Aluminum Company of America. The composition of the alloy was:

Lithium	Copper	Manganese	Cadmium	Aluminum
1.1\$	և.5%	0.5%	0.2%	Balance

PAGE 2 OF 5

1.4.1.2.4

The following stripping solutions were used.

- a. Turco #2897 at concentration of 10 oz/gal. of water at room temperature. Panels were immersed for 5-10 minutes followed by rinsing in cold overflowing water.
- b. Alcoa Research Laboratory's solution made up of 100 cc of sulphuric acid and 35 grams of chromic acid added to water to make 1 liter of solution and maintained at 180°F. Panels were immersed for 5 minutes followed in order by a cold water rinse, a 1 minute dip in 20 percent nitric acid solution at room temperature and a cold water rinse.

Surface treatments used were:

- a. Anodic coating per specification MIL-A-8625A, Type I panels were anodized in a 5-10 percent chromic acid solution, pH of 0.7 maintained at 90°F-95°F for 30 minutes at 40 volts.
- b. Chemical film coating per specification MIL-C-5541 panels were treated with Alodine 1000 in accordance with standard RAC shop procedure.

Post surface treatments were:

- a. Post anodic "sealed" panels were rinsed in water at 150°F minimum. "Not sealed" panels were rinsed in water at room temperature.
- b. Post chemical film panels were rinsed in hot (160°F-180°F) water for 15-60 seconds.

The following tests were performed:

1. Corrosion Resistance Tests

Salt spray exposure - panels were subjected to salt spray test conducted in accordance with specification QQ-M-151. The significant surfaces of the panels were inclined approximately 60 from the vertical and the salt fog was approximately 20 percent (by weight) of sodium chloride.

2. Mechanical Property Tests

Tensile, elongation, and yield values were obtained from flat specimens at room temperature.

3. Coating Weight and Thickness

Two (2) anodized panels were submitted to Alcoa Research Laboratories to determine coating thickness and weight.

PAGE 3 OF 5

1.A.1.2.4

The results obtained are as follows:

- l. Visual examination of panels subjected to salt spray exposure for 240 hours showed that the anodized sealed panels had few or no pits, the anodized unsealed panels had few pits, the stripped, bare panels all were badly pitted.
 - 2. The mechanical property values are listed in accompanying tables.
 - 3. The anodic coating weights and thicknesses obtained by Alcoa are as follows:

Stripper	Surface Treatment	Coating Thickness	Coating Weight
None	Anodized-Not Sealed	.00011"	462 mg/ft ²
Alcoa	Anodized-Not Sealed	.00011"	428 mg/ft ²

Results of panels chemical film treated are not reported because preliminary tests showed that Alodine treatment was not satisfactory for bare X2020.

Conclusion:

X2020 bare aluminum alloys can and should be processed as per specification MIL-A-8625A, Type I. Although the results indicate that the Alcoa stripping solution is less detrimental than the Turco stripping solution (elongation results on stripped, no surface treatment specimens subjected to 240 hours salt spray), either stripping solution will be satisfactory inasmuch as the results obtained on anodized specimens are comparable plus the fact that current policy at RAC calls for primer to be applied to anodized surfaces.

PANELS WITH HEAT TREAT SCALE

Surface Treatment	Salt Spray Exposure - Hrs.	Elongation in 2" - %	Tensile KSI	Yield KSI
None	240	6.5	80.0	75.2
Λ	٦,	5 . 5	80.1	74.3
j'	Ϋ́	4.5	78.6	74.3
1		6.0	79.0	74.1
Į.		6.5	80.4	73.7
V		4.8	78.5	72.9
None		6.0	78.8	73.4
Anodized-Sealed				
Q = Q		7.5	78.9	73.6
	· ·	6.0	78.4	72.7
	į	6.0	79.1	74.0
() ()		6.0	79.5	73.5
Anodized-Sealed		6.0	78 .6	72.3
Anodized-Not Sealed		5.0	78.7	72.6
		6.8	81.8	73.4
YYY		6.7	80.8	70.4
\mathbf{L}	አ አ		79.4	73.6
V V V	av a	7.5		
Anodized-Not Sealed	240	5 . 5	78.6	73.4

MECHANICAL PROPERTIES OF X2020 ALUMINUM

1.4.1.2.4

PAGE 4 OF 5

PANELS WITH HEAT-TREAT SCALE REMOVED WITH ALCOA STRIPPER

	Salt Spray	Elongation	•	
Surface Treatment	Exposure - Hrs.	in 2" - %	Tensile KSI	Yield KSI
None	None	5.5	79.6	74.0
Φ	Q	5.8	78.2	73.2
		5.7	78.0	69.7
. 1	į.	6.0	79.7	73.0
	V	6.0	80.2	73.0
	None	5.0	79.6	73.5
	5/10	3. 5	79.4	72.9
	٥	4.0	79.4	72.1
1	1	5.0	79.7	70.1
	1	5.0	79.6	73.2
		4.5	79.9	72.5
· , (ŧ	5.5	80.2	73.6
V	į.	4.5	80.0	73.0
None	İ	5. 0	80.8	75.4
Anodized-Sealed		7.5	84.5	73.1
· 🗘 🛕		7.0	80.4	73.9
	i	6.5	79.8	74.5
		5.0	78.5	73.4
[[- f	6.5	79.6	73.8
1 1	į.	7.0	79.7	73.8
, ,	i	6.5	78.5	73.2
V V	i i	6.0	80.1	73.6
Anodized-Sealed		5.3	80.1	73.0
Anodized-Not Sealed	1	5.0	81.0	75.0
·		5.0	80.6	74.9
1 1 1		6.5	79.2	73.0
1 1		ñ•ō	78.0	72.9
		5.5	79.3	73.5
1 1 1	į	5.5	78.8	74.0
	\Diamond	6.0	80.4	74.5 ,
V V V	01.0	5.5	79.1	73.1
Anodized-Not Sealed	240	4.5	79.1	72.6
Anodized-Sealed	None	(•)	81.0	.77.1
Anodized-Sealed	None	6.5	81.5	76.6
Anodized-Sealed	None	6.0	81.1	76.4

1.4.1.2.4

MECHANICAL PROPERTIES OF X2020 ALUMINUM

PAGE 5 OF 5

PANELS WITH HEAT-TREAT SCALE REMOVED WITH TURCO STRIPPER

Surface Treatment	Salt Spray Exposure - Hrs.	Elongation in 2" - %	Tensile KSI	Yield KSI
None	None	6.0	79.4	73.9
٨	Δ	7.5	79.9	73.1
Y	J	7.5	79.7	73.2
	1	5.0	79.1	76.5′
	V	4.0	78.8	74.3
(None	6.0	78.2	73.0
į	240	3.0	79.1	73.0
[Λ	2.5	78.2	72 . 5 .
1	Ĭ	2.0	78.5	72.7
	Į,	4.0	78.2	72.1
į	Į.	5.5	78.0	72.6
Ţ		1.0	76.2	72.4
V	•	1.0	76.9	73.6
None	1	2.0	77•7	73.0
Anodized-Sealed		. 4.5	79.3	73.0
φ δ	1	6.0	78.9	72.9
1 1	İ	5 . 5	79.1	73.7
,		5.8	79.2	73.0
Į į	:	6.0	79.2	72.6
ł l	<u> </u>	6.5	79.5	73.1
1 1		7.0	79•7	74.2
γ γ	į	· 7.5	79•9	73.9
Anodized-Sealed		8.0	79.3	73.5
Anodized-Not Sealed		6 . 5	78 <u>.</u> 5	74.4
δ δ δ		6.0	79.6	73.5
	j	7.0	80.7	75.1
	Ì	7.5	78.9	73.0
		5 . 5	79.8	73.4
1 1 1		7.5	78.8	73.6
1 1 1	Į.	6.0	79.1	73.5
V V ?	V	6. 5	80.2	74.6
Anodised-Not Sealed	240	6.0	78. 8	74.5
Anodized-Sealed	None	7.0	81.2	76. 8
Anodized-Sealed	None	6.0	81.1	76.1

MECHANICAL PROPERTIES OF X-2020

MATERIAL IDENTIFICATION (COML.)

MATERIAL STATUS

Semi-Production

HEAT OR BATCH NUMBER

Unavailable

O64 Sheet

PROCESSING CONDITION

T6 - Solution Treated and Artificially Aged

OBJECT OF TEST
To Evaluate Resistance Spot Welds in
X2020-T6 Aluminum Alloy

M.R. Report 57-100-1

SPECIMEN TYPE

Single Spot Shear Specimens Per MIL-W-6858A, 9 July 1957, Tension Pullout Specimens Per MIL-W-4994, 28 October 1955, or Equivalent.

TEST METHOD: Single Spot Shear and Tension Pullout Specimens Tested in Accordance With MII-W-6858A, 9 July 1957, and MII-W-4994, 28 October 1955, Respectively.

Str	ear ength bs.)	Tension Pullout Strength (lbs.)
1622	1595	620
1560	1554	ම
1598	1591	ഖം .
1520	1584	ଷ୍ଟ
1586	1606	620
1595	1553	515 Average
1582	1620	
1534	1589	
1606	1584	
1652	1595 1586 Average	

MECHANICAL PROPERTIES OF X2020 ALUMINUM

CODE				
1.4.1	.2	•6		
	1		10	

<u> </u>	PAGE OF
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS
X2020 (Bare)	Experimental
HEAT OR BATCH NUMBER	FORM
Unavailable	.063 Sheet
PROCESSING CONDITION	
-T6 Heat Treated and Aged	
OBJECT OF TEST To evaluate the mechanical proper-	RAC DATA REF.
ties of X2020 at Room Temperature	ESRMR 157 Dated June 2, 1960
Tension-Std. 0.5" wide sheet specim Compression-Std. 1 x 3 sheet specim	men as per ARTC-13-T-1 June 1959 men as per ARTC-13-C-1 July 1957
Flexure Fatigue and axial fatigue s	pecimens - see below.
TEST METHOD:	

Tensile Tests - as per Fed. Test Std. 1519 Method 211.1 (May 1959)

Compression Tests - as per ARTC-13-C-1. Sheet specimens were laterally supported during tests. Strains were measured with an extensometer having a 2" gage length.

Flexure fatigue specimens, illustrated on page 2, were tested in a Krouse Testing Machine at 1000 cpm. Both notched and unnotched specimens were evaluated.

Axial fatigue specimens, illustrated on page 3, were tested in a Sonntag SF-1U Testing Machine at 1800 cpm. Both notched and unnotched specimens were evaluated at a stress ratio of R=0.10.

Specimen blanks were sheared to approximate sizes, and the static tension, tension fatigue and flexural fatigue specimens were stamped out to final size and edges polished to RMShO surface finish. The notched specimens were placed on the bed of a vertical miller, clamped to the bed, and the notch produced by milling with a Brown and Sharpe double angle miller, ground to a 0.001 inch radius. The radius of the miller was checked before and after milling of the notches, as were the depths and radii of notches milled in specimens selected at random. This was accomplished by examination of the quantities in question on an optical comparator at a magnification of 100%. The reduced sections were hand polished to RMShO parallel to the long axis of the specimen to eliminate the role of random defects. Compression test specimens were sheared to approximate dimensions, milled to finished size and hand polished as above.

1.A.1.2.6

PAGE 2 OF 10

NOTE: Delete notch for unnotched specimen

Flexural Fatigue Specimen (Notched)

1.A.1.2.6

PAGE 3 OF 10

1.A.1.2.6

PAGE 4 OF 10

ROOM TEMPFRATURE TENSILE TESTS

Naterial Orientation		Ultimate ksi	.2% Yield ksi	% Elong in 2"	Modulus ksi
Longitudinal	Avg	79.6 80.14 80.0 80.0	75•2 75•6 <u>71•9</u> 75•2	7•5 8•0 <u>7•5</u> 7•7	10420. 11400. 11860. 11230.
Transverse	Avg	77.6 77.8 <u>77.7</u> 77.7	71.0 70.5 <u>71.2</u> 70.9	6.5 4.5 7.5 6.2	11610. 11220. 10470. 11100.

ROOM TEMPERATURE COMPRESSION TESTS

Naterial Orientation	•2% Yield ksi	Modulus ksi
Longitudinal	87.1 84.2 83.3 Avg 81.9	11050. 1111/0. 1191/0. 11380.
Transverse	85.4 90.2 <u>87.3</u> Avg 87.6	12400. 10620. 11730. 11580.

1.A.1.2.6

PAGE 5 of 10

ROOM TEMPERATURE FLEXURE FATIGUE TESTS

UNCOTCHED SPECIMENS

	Material Orientation	Maxirum Stress (ksi)	Cycles to Failure
	Longitud ral	40 40 A v g	34300 <u>13600</u> 23950
		30 30 Avg	123000 <u>82600</u> 102500
		20 20 Avg	74600 94900 84750
<u></u>		15 15 Avg	1318100 1259300 1288700
Ţ	♦	10 Avg	<u>3857800</u> * 3857800
I	Transverse	40 40 А v g	10900 13500 12200
I		30 30 Avg	60700 62500 61600
I	. •	20 20 A v g	219700 263900 244300
1		15 Avg	<u>5846700</u> 5846 700

*Specimen did not fail

1.A.1.2.6

PAGE 6 OF 10

MOCR	TEMPERATURE	PLEXURE	FATIGUE	(NOTCHED)	TEST
	11.0	TCHED SE	LC1.ENS		

Material Orientation	Spe c imen Numbe r	Maximum Stress (ksi)	Cycles to Failure	Comments
Longitudinal	Avg.	l10 l10	2700 1500 2100	K _t -3.83
	\mathbf{Avg}_ullet	30 30	10200 5900 6050	
↓	Avg.	20 20	19700 30800 25250	
Transverse	Avg.	110 110	8400 1700 5050	K _t =3.83
	Avg.	30 30	1100 11500 14300	
	Avg.	20 20	10300 43600 26950	V
Longitudinal	Avg.	1:0 1:0	2800 3000 2900	K _t =5.00
	A v g∙	30 30	1,500 11300 7900	
↓	Avg.	2 0 20	29300 29600 291;50	↓
Transverse	Avg.	710 710	2200 11400 1800	Kt =5.00
	Avg.	30 30	8300 6200 7250	
↓	Avg•	20 20	22500 21200 21850	

1.A.1.2.6

PAGE 7 OF 10

ROOM TEMPFRATURE AXIAL FATIGUE TESTS UNNOTCHED SPECIMENS

Material Orientation	Specimen Number	Maximum Stress (ksi)	Minimum Stress (ksi)	Cycles to Failure	
Longitudinal	Avg•	70 70 70 70 70	14 14 14 14	156000 279000 207000 99000 1866000 (1))
Transverse	Λ v g•	70 70 70 70 70	լ լ լ լ	913000 (2) 877000 565000 282000 762000 679800)

- (1) Failed through upper loading hole.
- (2) Failed simultaneously through lower loading hole and reduced section.

PAGE 8

ROOM TEMPERATURE AXIAL FATIGUE TESTS NOTCHED SPECIMENS

Material Orientation	Spe cimen Number	Maximum Stress (ksi)	Minimum Stress (ksi)	Cycles to Failure	Comments
Longitudinal	Avg.	710 710 710	ր দ দ	4000 2000 <u>2000</u> 2667	K _t =3.83
Transyerse	Avg•	70 70 70	7 7 7	3000 3000 1500 2500	K _t =3.83
Longitudinal	Avg.	7:0 7:0 7:0	14 14	1000 1000 1000 1000	Kt =5.00
Transverse	Avg.	40 40 40	7 7	1000 2000 3500 2167	K _t =5.00

1.A.1.2.6

PAGE 9 of 10

REPUBLIC AVIATION CORPORATION

1.A.1.2.6

. Comparison of Axial Fatigue Data

1.AG.1.8.1

MECHANICAL PROPERTIES OF 5156 ALUMINU	M	PAGE 1 07 6
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS	: .
5456-H321 Aluminum Alley	Product1on	
HEAT OR BATCH NUMBER	FORM	
117-615	•250 Inch Sheet	·

PROCESSING CONDITION

H-321 (Strain Hardened and Stabilized)

OBJECT OF TEST	RAC DATA REF.	•
To Evaluate Fusion Welds in 5156-H321		,
Aluminum Alloy	M.R. Report 60-91-1	

SPECIMEN TYPE

Standard Sheet Metal Tensile And Bend Test Specimens Per Federal Test Method Standard No. 151a dated May 6, 1959.

TEST METHOD:

Standard Sheet Metal Tensile and Bend Test Specimens Tested in Accordance With Federal Test Method Standard No. 151a dated May 6, 1959.

BASE METAL TENSILE TESTS

	Ultimate Tensile Strength ksi	0.2% Offset Yield Strength ksi	Percent Elongation in 2"	Location of Failure	Notes
	53.4 53.7 53.6	33.8 33.8 33.3	13.5 13.5 13.5	-	(<u>1</u>)
	53.6 53.8 53.6	33.2 33.9 34.0	13.0 11.5 13.0	-	(1) (1) (1)
Average	53•7	33•7	13.0		

SINGLE PASS WELD TENSILE TESTS

1. Welds Transverse to Strain Axis, Weld Reinforcement Ground Flush

45.8 23.7 9.5 W (2), (46.1 23.7 9.5 W (2), (43.8 26.5 9.0 W (2), (43.4 24.6 9.0 W (2), (45.6 23.4 10.0 W (2), (43.1 25.8 9.5 W (2), (43.4 24.4 9.5 W (2), (4)
46-1 23-7 9-5 W (2), (43-8 26-5 9-0 W (2), (43-4 24-6 9-0 W (2), (45-6 23-4 10-0 W (2), (43-1 25-8 9-5 W (2), (43-4 24-4 9-5 W (2),	
43.8 26.5 9.0 W (2), (43.4 24.6 9.0 W (2), (45.6 23.4 10.0 W (2), (43.1 25.8 9.5 W (2), (43.4 24.4 9.5 W (2), (
43.8 26.5 9.0 W (2); (43.4 24.6 9.0 W (2); (45.6 23.4 10.0 W (2); (43.1 25.8 9.5 W (2); (43.4 24.4 9.5 W (2); (4)
43-4 24-6 9.0 W (2), (45-6 23-4 10.0 W (2), (43-1 25.8 9.5 W (2), (43-4 24-4 9.5 W (2), (4)
45.6 23.4 10.0 W (2), (43.1 25.8 9.5 W (2), (43.4 24.4 9.5 W (2), (43.4 24.4 25.8 W (2), (43.4 24.4 25.8 W (2), (43.4 24.4 25.8 W (2), (43.4 25.8 W (2), (43.4 25.8 W))	4)
43.1 25.8 9.5 W (2), (4)
43.4 24.4 9.5 W (2), (1)
	1)
	; }
	; }
	;)
	;;
	3
	†) †)
prage 43.8 23.6 9.5	

2. Welds Transverse to Strain Axis, Weld Reinforcement Intact (See Note 5 for all specimens)

merne /					
•	种•3	-	7.0	WT	(2), (4)
	47.0	21.0	9.0	WT	(2). (4)
	46.8	22.1	9.0	WT	$\{\overline{2}\},\{\overline{1}\}$
	48-4	21.0 22.1 24.3 22.3	8.5	WI	(25. (1)
•	47.5	22.3	9.0	WT	$\{\overline{2}\},\{\overline{4}\}$
	48.2	21.8	10.0	WT	(2). (L)
	47•7	21.3	9.0	WT	(2). (4)
	49.2	-	10.0	WT	(2). (4)
	49•7	25.6	9•5	WT	(2). (4)
	47-4	21.1	8.0	WT	(2), (4)
Average	47.7	22.4	8.9		
wieleke	4/0/	CE 94	0.07		

SINGLE PASS WELD TENSILE TESTS - CONT'D

3. Weld Parallel to Strain Axis, Weld Reinforcement Ground Flush

•	Ultimate Tensile Strength ksi	0.2% Offset Yield Strength ksi	Percent Elongation in 2"	Location of Failure	Notes
	रिगेर और	194	22.5	-	(2), (4)
	ήή • <u>ͻ</u>	18.8	26.5	-	(2), (4)
	44.3	19.3	25.0	. 🖚	(2). (4)
	43.6	18.9	26.5	•	(2). (4)
	मिंग • 5	19.0	24.0	•	(2), (4)
Average	种。工	19.1	24.9	•	

4. Weld Parallel to Strain Axis, Weld Reinforcement Intact

	55.6 54.3	23.5 23.4	17.0 14.0	nmt · nmt	(6) (6)
	50.8 57.1 57.3	24.3 23.7	9.0 20.0 21.5	nmt nmt nmt	(6) (6)
Average	55 • 0	23•7	16.9		

- Notes: (1) Specimens showed little or no visible reduction in area, but failed on a plane making a 45° angle with the specimen face.
 - (2) Specimen showed visible reduction in area, not measured, and failed along a plane making a 45° angle with the specimen face.
 - (3) Specimen showed visible reduction in area, with cup-cone type failure.
 - (4) Specimen showed mottled surface at strained weld deposit.
 - (5) Strength based on measured area adjacent to weld.
 - (6) Strengths listed based on nominal thickness of base material, although actual cross-section was increased by presence of weld reinforcement.

W = Weld WT = Weld toe, fusion line NMT = Failure outside middle third of gage length

PAGE 4 OF 6

DOUBLE PASS WELD TENSILE TESTS

1. Welds Transverse to Strain Axis, Weld Reinforcements Ground Flush

7	Ultimate Tensile Strength ksi	0.2% Offset Yield Strength ksi	Percent Elongation in 2"	Location of Failure	Notes
	77. 97 77. 95 77. 93 77. 92 77. 92 77. 98	25.1 25.3 24.6 23.5 25.7 22.3 24.7 24.7 23.9 23.0	10.0 10.5 10.5 10.0 9.5 8.0 9.5 10.0 9.5	W W W W W W W	(1), (2) (1), (2) (1), (2) (1), (2) (1), (2) (1), (2) (1), (2) (1), (2) (1), (2)
Average	गिर्ग भि	24.3	9.8		

2. Welds Transverse to Strain Axis, Weld Reinforcements Intact

	47.9	24.2	10.5	WI	(2), (3)
	47.4	27.0	10.5	WT	(2), (3)
	48.1	26.1	12.0	wt	(2), (3)
	48•5	27.1	12.0	WT	(2), (3)
	49.8	27.9	12.0	WT	(2), (3)
	46.3	26.6	10.0	WT	(2), (3)
	मेंग • ७	27.1	8•5	HAZ	(2), (4)
	48•3	26•3	10.0	WT	(2), (3)
	46.2	264	10.0	H AZ	(2), (4)
	46.9	25.6	10.0	WT	(2) , (3)
Average	47.4	264	10.5		

Notes: (1) Specimen showed visible reduction in area, not measured, with fracture occurring along a plane making a 45° angle with the specimen face.

- (2) Specimen showed a mottled surface at the weld deposit.
- (3) Specimen failed along fusion line with visible reduction in area.
- (4) Specimen failure initiated at fusion line and propagated into heataffected zone at 45° angle with specimen face, with visible reduction
 in area not measured.

W = Weld HAZ = Heat affected zone WT = Weld toe - fusion line

MAR 5 05 6

GUIDED FACE BEND TEST RESULTS

All specimens ground flush prior to testing. All specimens $1.0 \pm .1$ inches wide.

Parent Metal - No Weld

Thickness	Mandrel Diameter (inches)	Bend Radius "T"	Bend Angle	Remarks
.2 59	•985	1.9	180°	satisfactory
•259	•985	1.9	180	satisfactory, specimen edges sharp
-2 59	∙ 875	1.7	180°	satisfactory
-259	. 875	1.7	180	edges sharp, crack initiated at edge
•259	- 875	1.7	· 76°	edges sharp, failed
2 59	•755	1.45	76 ° 84 °	edges sharp, failed
-259	•755	1.45	180°	satisfactory
•259	•705	1.35	55°	failed

Minimum Bend Radius = 1.7 T

Longitudinal Bends - (Bending Transverse to Welding Direction)

A. C Single	Pass Welds			
•246 •248 •247 •250 •246 •246	•985 •875 •755 •705 •705	2 1.75 1.53 1.41 1.44 1.44	180° 180° 180° 180° 180°	satisfactory satisfactory satisfactory failed, defect in weld crack in base metal crack in base metal

Minimum Bend Radius - 1.5 T

D. C Double	Pass Welds		•	
•236	•985	2.09	180°	satisfactory
•238	•875	1.83	180°	satisfactory
. 234	•755	1.61	180°	satisfactory
•228	•705	1.54	180°	satisfactory
-241	•705	1.46	180°	satisfactory

Minimum Bend Radius - less than 1.5 T

PAGE 6 OF 6

GUIDED FACE BEND TEST RESULTS - CONT'D

Transverse Bends - (Bending Parallel to Welding Direction)

. A. C. - Single Pass Welds

Thickness	Mandrel Diameter (inches)	Bend Radius "T"	Bend Angle	Remarks
•239	•985	2.06	180°	satisfactory
-2 40	•985	2.05	180°	small cracks, edge of weld
- 239	•985	2.06	1 80°	small cracks, edge of weld
•239	•875	1.83	180°	small cracks in weld
-235	. 875	1.86	180°	satisfactory
•229	• 875	1.91	80°	defect in weld
•232	. 875	1.88	180°	small cracks in weld
-235	•875	1.86	·180°	small cracks in weld
241	•875	1.82	180°	satisfactory .
-240	•875	1.82	180°	cracked full length of weld

Minimum Bend Radius - Greater than 2.0 T

D. C. - Double Pass Welds

			_	
•239	•985	2.06	180°	2 small cracks in weld
-2 40	•875	1.82	180°	satisfactory
. 233	•875	1.87	180°	satisfactory
-237	•875	1.85	180°	small cracks in weld
•233	-875	1.87	.180°	satisfactory
. 243	•875	1.80	180°	satisfactory
•233 •243 •234	•875	1.87	180°	satisfactory
-2 1414	• 875	1.79	180°	satisfactory
-242	. 875	1.80	120°	failed at edge of weld
-245	●875	1.78	68°	failed at edge of weld

Minimum Bend Radius - Greater than 2.0 T

MECHANICAL PROPERTIES OF HK31 MACHESIUM	,	1.A.2.1.3	
		PAGE 1 OF 7	
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS	:	
нк31-24	Production		
HEAT OR BATCH NUMBER	FORM		
See Data Below	Sheet	•	
PROCESSING CONDITION			
Strain hardened and partially annealed a	as per MIL-M-26075	•	
OBJECT OF TEST To certify vendor material	RAC DATA REF.		
for RAC proprietary material specification	n. Quality Control Materials Acceptance Files	Laboratory	
SPECIMEN TYPE Flat tensile specimens conforming to Fede	ral Test Method 151 Method 2	il Tyme F2	

I CODE:

The elevated temperature tension tests were conducted in accordance with Federal Test Method 151, Method 211. Two test specimens were prepared from each sheet of material. Each specimen was subjected to short time heating (30 minutes) and tested at elevated temperature. One specimen was tested at 500°F + 5° and the other at 600°F + 5°. The tests were conducted at a strain rate of 0.005 + 0.002 inch per inch per minute to the yield strength. Beyond the yield strength the rate of strain was increased to 0.11 to 0.11 inch per inch per minute of cross head travel.

NOTE: Tensile yield strenth was not recorded as it is not required by RAC specification.

cut parallel to the rolling direction.

TEST METHOD:

PAGE 2 _ of <u>_7</u>

DATA:

Gage .025	- Vendor: I	OW					
	Vendor Tes	st Report (Room Terro.)		ublic Test	Reports	•
				<u>50</u>	0°F		o _F
T-+ //	T.S.	T.Y.S.	77 on a	T.S.		T.S.	27 on a
Lot #	KSI	KSI	Elong.	KSI	Elong.	KSI	Elong.
319001	40.0/	33.1/	6.5/	23.8	16.5	15.3	20.0
	40.2	33.1	8.5	22.7	17.0	15.6	20.0
				24.4	17.5	16.5	20.0
				22.5	14.5	16.7	18.0
				23.5	27.5	17.5	21.5
				21.3	17.5	16.8	21.5
				24.6	13.0	18.3	19.0
			•	24.6	22.5	19.0	20.0
				24.2	15.5	19.2	22.0
				25.0	15.0	17.5	25.0
				22.5	20.0	19.6	27.5
				22.1	20.0	18.8	21.0
				22.1	19.0	20.0	18.0
				21.7	16.5	17.9	20.5
				22.5	21.5	18.3	17.5
				20.8	18.5	19.2	21.0
				22.9	14.5	19.4	23,0
				20.4	21.5	20.0	25.0
				21.7	17.5	17.4	20.5
				22.5	17.5	17.5	17.5
				17.6	17.5	17.9	19.5
				19.2	20.5	16.6	16.5
				22.3	13.5	17.7	16.5
				19.3	14.5	15.7	19.5
				20.0	13.5	16.5	22.5
				19.8	13.5	17.1	22.0
				19.6	16.0		
				20.1		14.2	21.5
					14.0	15.9	18.5
				20.2	12.5	17.1	10.0
				20.4	14.5	15.0	15.0
•				21.0	19.0	15.4	24.0
				21.8	20.0	17.9	11.5
				21.3	21.0	17.2	15.5
				20.2	16.0	14.8	19.0
				20.7	17.5	15.9	20.5
				19.3	19.0	19.5	17.0
				19.9	15.0	15.9	16.0
			•	21.6	11.5	16.9	15.5
				20.8	12.5	17.5	14.5
				21.3	13.0	18.3	14.0
				20.8	11.5	19.2	13.0
				20.4	12.0	18.3	14.5
				19.8	12.5	25.8	16.0

1.4.2.1.3

MECHANICAL PROPERTIES OF HK31 MAGNESIUM

PAGE 3 OF 7

Gage 025 (Contid)

•	Vendor Test Report (Room Temp.)		(Room Temp.)	Republic Test Reports			
Tat #	T.S.	T.Y.S.	W	T.S.	хо ^о г	T.S.	0°F
Lot #	<u>KSI</u>	<u>KSI</u>	Flong.	KSI	Flong.	KSI	Elong.
319001	•			21.5	13.0	21.7	14.0
				22.1	13.5	20.8	17.0
				20.0	12.5	22.0	15.0
				21.0	12.0	20.6	14.0
				22.5	14.0	20.2	17.5
				21.6	16.0	17.7	13.5
				20.6	13.0	16.8	11.5
				21.4	11.0	16.7	9•5
				21.3	12.5	17.5	11.0
319004	38.8/	31.1/	6.0/	22.8	18.5	17.5	21.5
	38.9	31.9	6.5	20.8	16.5	17.7	14.5
				23.8	15.0	15.9	22.5
				23.8	15.0	17.7	15.0
				24.2	17.0	17.6	14.5
				24.8	12.0	22.4	15.0
				22.5	18.5	20.5	14.0
				23.1	15.5	21.1	15.5
				23.1	12.0	20.1	19.0
				23.6	11.5	20.2	19.0
				23.6 22.6	13.5	20.8	16.0
				22.8	14.0	19.7	14.0
				22.6	16.5	20.8 21.3	18.0
				23.4	14.0 12.0	20.8	15.0
				21.8	12.5	20.3	16.0
				21.7	9.0	19.4	15.5
				23.6	13.0	17.5	15.0 20.0
				24.2	10.5	16.0	17.0
				24.2	9.0	17.6	16.0
				22.1	8.0	18.9	16.0
				24.6	11.0	17.9	15.0
				24.2	9.5	17.6	15.0
				23.8	10.0	18.0	15.5
				24.6	10.0	18.5	17.0
				25.2	9.0	19.9	17.5
				25.6	10.5	19.8	19.0
				24.6	9.5	18.7	19.5
				23.3	10.0	20.2	16.5
				21.4	16.5	19.8	13.0
				21.1	17.0	21.3	15.0
				21.0	15.0	19.2	14.5
				21.5	15.0	20.4	15.0
				23.3	16.0	19.7	15.5
				21.0	15.0	20.0	15.5

1.1.2.1.3

ł.

PAGE 4 OF 7

Gage 025 (Cont'd)

MECHANICAL PROPERTIES OF HK31 MAGNESIUM

	Vendor Test Report (Room Temp.)			Republic Test Reports				
	T.S.	T.Y.S.		<u>500</u> T.S.	or	<u>60</u> T.S.	0 ° F	
Lot #	KSI	KSI	Flong.	KSI	Elong.	KSI	Flong.	
319004				22.7	12.5	18.7	16.5	
				24.0	14.5	19.3	15.5	
				26.0	8.5	19.8	13.0	
				27.1	7.5	18.5	15.5	
				24.6	10.0	18.0	15.0	
				24.0	13.0	18.3	14.0	
				22.6	14.0	20.5	17.5	
				22.5	10.0	19.0	13.5	
				24.0	9.0	18.0	17.0	
				25.2	9.2	21.3	15.5	
				21.7	14.5	16.7	20.0	
				23.3	15.5	17.9	19.0	
				21.5	14.0	18.3	10.5	
				21.4	16.5	17.9	19.5	
				23.8	18.0	18.3	18.0	
				22.0	21.0	18.1	17.5	
			•	23.0	21.0	16.8	26.5	
				23.2	12.0	18.6	16.5	
				22.0	19.5	18.4	17.0	
•				22.6	16.0	18.0	16.0	
				23.8	17.0	17.6	17.0	
				20.8	2.0	18.3	17.0	
CO9020	37.8/	29.3/	17.5/	19.7	26.5	16.5	25.5	
	37.8	29.4	18.5	18.8	23.5	14.8	31.0	
				17.4	26.5	16.2	28.0	
•				18.5	27.5	14.0	30.0	
				18.7	29.0	16.5	38.0	
				19.7	29.0	16.3	32.0	
				17.9	28.5	16.9	33.0	
				18.0	38.5	15.8	37.0	
				17.5	30.0	17.5	34.0	
				16.8	32.5	16.2	30.0	

1.A.2.1.3

PAGE _5 OF _7

MECHANICAL PROPERTIES OF HK31 MAGNESIUM

Gage .040

	Vendor Test Report (Room Temp.)				Republic Test Reports			
- . "	T.S.	T.Y.S.		T.S.	00°F	<u>600</u> T.S.	<u>°</u>	
Lot #	KSI	KSI	Elong.	<u>ksi</u>	Flong.	KSI	Flong.	
co9009	37.9/	30.5/	14.5/					
	38.1	30.8	15.0	21.2	22.5	17.8	21.5	
•				21.4	21.5	17.2	24.5	
				21.1	16.5	17.1	21.0	
				20.7	16.0	18.5	21.0	
		•		19.7	18.5	18.5	21.0	
				17.5	22.0	19.0	27.0	
				23.2	20.0	20.1	19.0	
				15.3	18.5	18.4	23.5	
				18.1	32.0	18.5	24 .2	
619008	38.1/	31.3/	14.0/	20. 4	04 =		22 =	
01/000	38.1	31.6	14.07	20.8	28.5	17.7	29.5	
	70.1	21.0	44.7	20.6	28.5	17.1	25.0	
				19.9	29.5	16.8	33.0	
				21.1 20.2	21.5	16.1	23.5	
					28.0	17.0	33.0	
				20.8	25.0	17.5	29.0	
				22.9	29.5	16.9	29.5	
				18.9 16.2	29.5	16.2	33.5	
				22.3	23.0	17.7	24.5	
				22.)	24.5	17.0	24.5	
797005	41.1/	33.7/	6.0/	70 m	_	19.6	21.5	
	41.3	35.8	6.5	•	-	22.0	20.0	
A99006	38.4/	31.9/	7.5/	22.1	20.5	20.8	21.5	
	38.5	32.3	10.0	- -	,		~~*/	
A99021	38.8/	31.9/	7.5/	25.0		18.2	*****	
	39.2	32.3	10.0	-		= ▼ -		

1.A.2.1.3

MECHANICAL PROPERTIES OF HK31 MAGNESIUM

PAGE _6 OF _7

Gage .050

Vendor Test Report (Room Temp.)			Republic Test Reports				
Lot#	T.S. KSI	T.Y.S. KSI	Elong.	7.s. KSI	Elong.	600 T.S. KSI	Flong.
799002	38.3/ 38.4	29.5/ 30.6	9.5/ 10.1	22.0 21.1	 22.0	17.7 19.0 17.1	20.0 — 16.0
A99005	38.4/ 38.8	29.8/ 30.9	9.0/ 11.5	23.6 14.3 15.3	18.0 17.0 15.5	16.5 19.5 18.5	23.0 17.0 15.5

PAGE 7 OF 7

Ga	Ze.	٥	6

Vendor Test Report (Room Temp.)			(Room Temp.)	Republic Test Reports			
	T.S.	T.Y.S.		<u>500</u> T.S.	o <u>k</u>	<u>600</u> ℃	<u>'F</u>
Lot #	KSI	KSI	Elong.	KSI	Flong.	KSI	Elong.
599013	38.5/ 38.8	26.6/ 28.8	7.5/ 8.5	23.7	70	18.0	
A09006	33.2/ 33.4	30.9/ 31.3	22.4/ 23.6	20.4 20.9 22.2 22.9 20.6 21.7 20.7 21.6 22.7 20.3 23.1 22.8	21.5 17.5 25.5 22.5 23.0 22.5 23.5 22.0 22.0 32.0 22.5	17.0 16.5 19.0 18.5 19.2 19.3 17.5 17.8 19.4 18.6 19.6	23.5 26.0 23.0 22.5 20.0 21.5 23.5 23.0 21.0 22.5 21.0
609046	39•3/ 39•5	26.4/ 26.9	5.5/ 8.0	21.6 21.9 21.0 27.9	18.0 15.5 17.5 14.0	19.2 17.5 17.3 18.7	21.5 22.0 23.0 21.0

MECHANICAL PROPERTIES OF AZ63 CAST MAGNI	FSTIM	1.A.2.3.1		
PROTANICAL PROPERTIES OF AZOS CASI "NO	.S1011	PAGE 1 OF 111		
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS			
AZ63	Production			
HEAT OR BATCH NUMBER	FORM			
Not available	Cast Plate			
PROCESSING CONDITION	<u> </u>			
See below				
object of test Evaluate mechanical properties of different tempers	ERM 14, dated July 30	, 1956		
SPECIMEN TYPE As per Federal Test Method Standard No.	151a. Method 211.1. dated May	v 6. 1956		

TEST METHOD:

Tests were conducted on cast AZ63 plate obtained from the Osbrink Manufacturing Company. Four different tempers and four different thicknesses were checked. The four tempers were:

AC As-cast

T2 As-cast and stabilized

The Heat treated

T6 Heat treated and aged

In each temper, plates were made in nominal thicknesses of 3/32", 3/16" and 3/4".

X-rays were made of each plate and specimen locations were noted. Strips were cut from each plate and identified as to location and x-ray number.

Tensile coupons were machined, leaving the surface of each specimen in the ascast condition. All specimens were then measured for area determination at five separate points within the 2" gage length: at the center, 1/2" and 1" on either side of the center.

Testing was done at room temperature on the Baldwin-Lima-Hamilton Universal Testing Machine of 50,000 pounds capacity for the nominal 3/32", 3/1(", and 3/8" thick specimens. The 3/4" thick specimens would not fit the grips on this machine and were tested in the Baldwin-Lima-Hamilton Universal testing machine of 60,000 pounds capacity. On all specimens, a recording extensometer was attached across the gage length to obtain load-strain curves for determination of the tensile yield point (:2% offset). All samples did not fail within the 2" gage marks. However, a load-strain record was still obtained on all samples, and yield points determined where an accurate area could be measured. Where this was not possible, no values are given and a retest was not made.

X-rays were made on each of the plates for the purpose of specimen orientation and determination of soundness. The following comments were reported:

1.A.2.3.1

PAGE 2 of 11

X-RAY IDENTIFICATION CHART

Thick- ness	Temper	X-Ray Serial #	Comments
3/32	ТĻ	169495	Medium micro shrinkage throughout.
3/32	т6	169496	Heavy sponge micro in 2 areas approximately 1" square each. Segregation, higher density inclusions, small concentration of blow holes and one area miss run.
3/32	'T2	169497	Medium micro shrinkage. One area of sponge micro approximately 2" square. Segregation and one cold shut.
3/32	AC	169498	Medium micro shrinkage throughout.
3/16	TL	169499	Medium to heavy micro shrinkage throughout. High density inclusions.
3/16	т6	169500	Medium to heavy micro shrinkage throughout. High density inclusions.
3/16	T 2	169501	Medium to heavy micro shrinkage throughout.
3/16	AC	169502	Medium to heavy micro shrinkage throughout.
3/8	T4	169503	Two areas on either side of plate approximately $l^{\frac{1}{2}}$ square each. Concentration of sponge micro shrinkage. Remainder clean.
3/8	Т6	169504	Two areas on either side of plate approximately $l_2^{\frac{1}{2}}$ square each had concentration of sponge micro shrinkage. Remainder clean.
3/8	Т2	169505	One area on side of plate approximately 2" square had concentration of sponge micro shrinkage. Scattered micro shrinkage in remainder.
3/8	AC	169506	One area on side of plate approximately 2" square had concentration of sponge micro shrinkage. Scattered micro shrinkage in remainder.
3/4	TL	169507	Light micro shrinkage in very small area. Remainder clean.
3/4	т6	169508	Micro shrinkage in approximately 1" square area. Remainder clean.
3/4	T2	169509	Sponge micro shrinkage in 3 areas ranging from 1" to 2" square. Remainder very clean.
3/4	AC	169510	Sponge micro shrinkage on side of plate 2" square. Micro shrinkage in another area approximately 1" square. Remainder very clean.

1.A.2.3.1

SUMMARY TABLE OF AVERAGE VALUES *

Temper	Nominal Thickness	Ultimate Tensile Strength (psi)	Yield Strength .2% Offset (psi)	<pre>% Elongation in 2"</pre>
AC	3/32	24480	16720	2.3
	3/16	237110	15270	2 .25
	3/8	23100	13050	2.7
·	3/4	24890	13660	4.5
- T2	3/32	22730	19080	1.8
	3/16	28940	18710	2.1
	3/8	23200	14430	3.1
	3/4	24780	13840	3.8
- T4	3/32	26340	17950	3.3
	3/16	25390	15610	2.6
	3/8	30000	13790	4.5
	3/4	29880	15150	5.0
-T6	3/32	28660	20660	1.8
	3/16	31490	20560	1.75
	3/8	32440	16030	3.25
	3/4	32030	17590	3.9

^{*} Values are average of 2 or more specimens.

1.A.2.3.1

PAGE 4 OF 41

SUPPARY OF TEST RESULTS, ALL PLATE THICKNESS, IN "AS CAST" CONDITION

· · · · · · · · · · · · · · · · · · ·	Specimen Code (1)	Failure Zone(2)	Ult. Ten. Strength(PSI)	Yield Strength .2% Offset(PSI)	% Elongation in 2"
t = 3/32	169498-1 -2 -3 -4 -5 -6	5 2 5 4 1 4 3-14	26,180 21,300 22,450 25,600 24,750 26,900	16,620 15,500 14,300 16,900	1.5 2.5 3.0
t = 3/16	169502-1 -2 -3 -4 -5	55525	18,700 21,900 24,400 25,200 25,500	14,750 16,100 15,600 14,200 15,700	- - 2.5 2.0
t = 3/8	169506-1 -2 -3 -4	5 1 1 1-2	22,750 22,350 23,600 23,700	13,250 13,050 12,050 13,850	- (1.5) - (3.0) - (2.5)
t = 3/4	169510-1 -2 -3 -4	3-4 1 1-2 5	25,600 25,550 26,200 22,200	12,800 14,500 13,500 13,850	5.0 3.5 5.0

(1) Initial series of numbers correspond to x-ray number assigned by the Quality Control Laboratory. The dash number indicates position of specimen in the sheet.

(2) QQ-M-56 requirements

Cast Bar	Ftu	F _{ty}	5 El. (in 2")
	24000 psi	10000 psi	4.0%
Specimen from Casting	18000	-	1.0%

1.4.2.3.1

SUMMARY OF TEST RESULTS, ALL PLATE

THICKNESS, IN -T2 CONDITION (1)

	Specimen Code	Failure Zone(2)	Ult. Ten. Strength(psi)	Yield Strength .2% Offset(psi)	¿ Elongation in 2"
t = 3/32	169497-1 -2 -3 -4 -5 -6	1 · 3-4 Impro 1 1 No sp	20,400 22,800 per Test 20,700 27,000 ecimen	17,750 22,000 17,500	1.0 2.5
t = 3/16	169501-1 -2 -3 -4 -5	2 2-3 1-2 4 4-5	30,400 28,100 28,350 27,550 30,300	18,300 19,250 18,780 18,600 18,600	3.0 2.0 2.0 1.5 2.0
t = 3/8	169505-1 -2 -3 -4	2-3 5 5 3-4	19,400 23,000 25,200 25,200	14,200 14,700 14,550 14,250	1.2 - (1.2) - (2.0) 4.0
t = 3/4	169509-1 -2 -3 -4	5 2 -3 1-5	24,000 26,000 25,800 23,300	12,700 16,150 13,100 13,400	4.0 - 3.5

(1) -T2 is also noted "ACS" - As cast and stabilized.

(2) QQ-M-56 requirements

Cast Bar (separately)	F _{tu} F _{ty} 24000 psi 11000 psi	½ El. (in 2")
	18000 -	0.5

MECHANICAL PROPERTIES OF AZ63 CAST MAGNESIUM

1.A.2.3.1

PAGE 6 0 41

SIMMARY OF TEST RESULTS, ALL PLATE

THICKNESSES, IN -T4 CONDITION

	Specimen Code	Failure Zone	Ult. Ten. Strength(psi)	Yield Strength _2% Offset(psi)	% Elongation in 2"
t = 3/32	169495-1 -2 -3 -4 -5 -6	5 4 > 5 No Sp	i in Grip 26,450 25,760 26,800 ecimen	17.500 18,100 19,100	3.0 3.5 -
t = 3/16	169499-1 -2 -3 -4 -5	> 5 3 1	25,000 26,400 24,350 27,250 23,950	15,000 14,600 17,050 15,150 16,250	3.0 2.5 3.0 2.0
t = 3/8	169503-1 -2 -3 -4	2 > 5 > 5 > 5	28,200 30,800 32,000 29,000	14,000 13,500 14,200 13,450	4.5 - (4.5) - (4.5) - (4.5)
t = 3/4	169507-1 -2 -3 -4	l Faile Faile 2	27,900 d in Grip d in Grip 31,850	14,900 15,400	4.0 6.0

QQ-M-56 requirements

 Separately Cast Bar
 Ftu
 Fty
 1 El. (in 2")

 34,000psi
 10,000psi
 7.0%

 Specimen from Casting
 25,500
 1.75

1.A.2.3.1

SUMMARY OF TEST RESULTS, ALL PLATE

THICKNESSES, IN -T6 CONDITION

	Specimen Code	Failure Zone	Ult. Ten. Strength(psi)	Yield Strength .2% Offset(psi)	% Elongation in 2"
t = 3/32	169496-1 -2 -3 -4 -5 -6	1 3 >1 >1 5 No Test	33,200 28,200 25,800 26,240 29,850	21,900 24,700 19,450 17,160 20,100	2.0 2.0 - 1.5
t = 3/16	169500-1 -2 -3 -4 -5	1 > 5 > 5 > 5 2-3	27,300 32,650 30,900 33,150 33,450	21,000 20,550 19,900 21,000 20,350	1.5
t = 3/8	169504-1 -2 -3 -4	2 4 - 5 5 1	29,050 33,450 33,400 33,850	17,500 16,550 18,100 17,950	2.5 4.5 -(3.0) 3.0
t = 3/4	169508-1 -2 -3 -4	3-4 1-2 2 3-4	29,100 31,900 33,000 32,100	18,900 14,850 18,600 17,800	2.5 5.0 4.5 3.5

QQ-M-56 requirements

 Separately Cast Bar
 Itu 34000 psi 16000 psi 25500
 Itu 16000 psi 3.0%

 Specimen from Casting
 25500
 0.75

1.A.2.3.1

PAGE 8 OF 11

Typical Stress-Strain Curve for Nominal 3/32 Inch "AC" Plate 169498-4

CODE:

1.4.2.3.1

PAGE 9 OF 41

Typical Stress-Strain Curve for Nominal 3/16 Inch "AC" Plate 169502-4

1.A.2.3.1 10 or 41

Typical Stress - Strain Curve For Nominal 3/8 Inch "AC" Plate 169506-4

1.A.2.3.1

PAGE 11 OF 11

Typical Stress-Strain Curve for Nominal 3/4 Inch "AC" Plate 169510-3

CODE:

Typical Stress-Strain Curve for Nominal 3/32 Inch -T2 Plate 169497-2

1.A.2.3.1

PAGE 13 of 41

Typical Stress - Strain Curve for Nominal 3/16" - T2 Plate 169501-4

PAGE 14 0F 41

CODE:

Typical Stress - Strain Curve for Nominal 3/8" - T2 Plate 169505-4

1.A.2.3.1

PAGE 15 OF 11

Strain - inches/inch

Typical Stress-Strain Curve for Nominal 3/4 Inch -T2 Plate 169509-3

PAGE 16 OF 11

Strain-Inches/Inch

Typical Stress - Strain Curve for Nominal 3/32 Inch T4 Plate 169495-4

PAGE 17 OF 41

Typical Stress-Strain Curve for Nominal 3/16 Inch T4 Plate 169499-3

PAGE 18 OF 41

Typical Stress-Strain Curve for Nominal 3/8 Inch T4 Plate 169503-2

CODE: 1.4.2.3.1 of 41 19

PAGE -

Typical Stress-Strain Curve for Nominal 3/4 Inch T4 Plate 169507-1

PAGE 20 OF 41

Typical Stress - Strain Curve for Nominal 3/32 Inch T6 Plate 169496-5

PAGE 21 0F 41

Typical Stress - Strain Curve for Nominal 3/16 Inch T6 Plate 169500-5

PAGE 22 OF 41

Typical Stress - Strain Curve for Nominal 3/8 Inch T6 Plate 169504-4

1.A.2.3.1

PAGE 23 OF 41

Typical Stress - Strain Curve for Nominal 3/4 Inch T6 Plate 169508-4

1.4.2.3.1

PAGE 25 OF 41

Ultimate Tensile Strength vs
Thickness of Plate for
Various Tempers

1.A.2.3.1

PAGE 26 OF 41

1.4.2.3.1

PAGE 27 OF 111

1.A.2.3.1

PAGE 28 OF 41

MECHANICAL PROPERTIES OF AZ63 CAST MAGNESIUM

1.A.2.3.1

PAGE 29 OF 11

MECHANICAL PROPERTIES OF AZ63 CAST MAGNESIUM

CODE:

1.4.2.3.1

PAGE 30 OF 11

1.A.2.3.1

PAGE 31 OF 11

MECHANICAL PROPERTIES OF AZ63 CAST MAGNESIUM

CODE:

1.4.2.3.1

PAGE 32 of 41

1.A.2.3.1

PAGE 33 OF 11

1.4.2.3.1

PAGE 34 07 11

1.4.2.3.1

PAGE 35 or 41

1.A.2.3.1

PAGE 36 OF 11

MECHANICAL PROPERTIES OF AZ63 CAST MAGNESIUM

| CODE:

1.4.2.3.1

PAGE 37 OF 41

1.A.2.3.1

PAGE 38 OF 111

MECHANICAL PROPERTIES OF AZ63 CAST MAGNESIUM

1.A.2.3.1

PAGE 39 OF 11

MECHANICAL PROPERTIES OF AZ63 CAST MAGNESIUM

1.A.2.3.1

PAGE 40 OF 41

1.A.2.3.1

PAGE 41 OF 41

CODE				
1.4	.2.4	.1		
PAGE	1	OF	13	

	PAGE OF
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS
FS-1 Magnesium	Production
HEAT OR BATCH NUMBER	FORM
Unavailable	Sheet
PROCESSING CONDITION H24 - Strain hardened and partially and	nealed
osject of Test: Determine effect of unstressed heating in room temperature strength.	RAC DATA REF. ERMR 4080 dated July 9, 1957
SPECIMEN TYPE Standard 0.5" wide sheet specimens-The sam	ne as Fed. Test Std 151 a Method 211.1 (May 1959)

TEST METHOD:

Tensile tests were conducted on a Baldwin-Emery SR-4 testing machine at a strain rate of .005 inches/inches/minute. Each specimen was subjected to unstressed heating and then tested at room temperature. The specimens were exposed to various temperatures ranging from 275° ± 5°F to 425° ± 5°F. The time of exposure varied between 5 minutes and 60 minutes.

Three different sheet thicknesses were selected for evaluation. These sheets were chosen so that each thickness represented a different as-received tensile strength. The variation in as-received tensile strength is denoted in the succeeding tables by H, M & L (high, medium and low, respectively).

1.A.2.4.1

PAGE 2 OF 13

Spec.	Thick- ness	U.T.S. K.S.I.	Y.T.S. K.S.I.	% Elong.	
L-1	•0875	†15• 0	36.6	17.0	
L-2	•0870	43.6	34.2	15.0	
L-3	.0880	42.2	32.1	16.0	
Avg.	•	42.6	34.3	16.0	
M-1	.050	45.0	35•4	16.0	
M-2	.050	44.8	35•9	18.5	
M-3	.049	45.9	37.0	23.5	
_		11 6	•/ •	10.0	

ROOM TEMPERATURE TENSILE TEST DATA - AS RECEIVED CONDITION

Avg.	-	मिंग-9	36.1	19.3
H-1	•026	47.0	42.3	*3.5
H-2	•030	47.5	37•3	18.5
H-3	.026	51.7	42.3	12.5
Avg.	-	48.7	40.6	15.5
				•

39.0 (min.) 29.0(min.) 4.0 (min.)

QQ-M-44 (a)

^{*} Broke in gage mark - not averaged.

1.4.2.4.1

ROOM TEMPERATURE TENSILE TEST DATA AFTER UNSTRESSED HEATING

Spec.	Thick- ness	Exposure Condition	U.T.S. K.S.I.	Y.T.S. K.S.I.	& Elong.	% Decrease from U.T.S.	As-Received Y.T.S.
IL	.0887	275°F-5 min.	41.7	32.2	18.0		
2L	.0 886		41.3	32.2	22.0		
3 <u>L</u>	.0 337		41.3	32.5	20.0		
Avg.	-		41.4	32.3	20.0	2.82	5.83
ĻМ	.0496	275°F-5 min.	39.7	29.6	23.0		
5M	. 0496		39. 8	30.4	24.0		
6M	•049 8		39•7	30•7	24.0		<u>.</u> .
Avg.			39•7	30.2	23.7	11.58	16.35
7H	•0263	275°F-5 min.	41.1	35.1	18.0	·	
8н	•026 <u>l</u> 4		41.6	34.1	18.0		•
9H	.0262		42.0	34.3	18.0		•
Avg.	-		41.6	34.5	18.0	14.58	15.00
lol	.0885	275°F-10 min.	41.8	33•3	16.0		
11L	.0 336		41.8	33•5	18.0		
12L	• 0 385		41.8	33.1	19.0		
Avg.	-		41.8	33•3	18.3	1.88	2.91
13H	.0260	275°F-10 min.	42.6	34.7	16.0		·
JがH	.0257		43.5	35.2	18.0		
15H	.0261		42.6	35.9	15.0		
Avg.			42.9	35•3	16.3	11.90	15.45
16M	.0495	275°F-10 min.	40.6	31.5	19.0	•	
17M	.0496		40.5	31.3	21.0		
18M	.0495		40.7	31.4	21.0		
Avg.	-		40.6	31.4	20.3	9.59	8.03
19M	.0497	275°F-15 min.	40.3	31.5	19.0		
20M	. 0498		40.3	31.1	20.0		•
21M	.0497		40.5	31.3	19.0		
Avg.	-		70°7	31.3	19.3	10.00	13.26
22H	.0259	275°F-15 min.	42.9	35.7	17.0		•
23H	•0260		42.6	35.0	16.0		
21н	•0259		42.7	36.4	15.0		
Avg.	-		42.7	35.8	16.0	12.3	11.80
25L	.0386	275°F-15 min.	42.1	32.9	17.0		
26L	.0 384		42.3	33.1	17.5		
27L	•0886		41.9	33.1	18.0		
Avg.	-		42.1	33.0	17.5	1.17	3•79

1.A.2.4.1

PAGE _4 of _13

Spec.	Thick-	Exposure	U.T.S.	Y.T.S.	· %	% Decrease from	As-Received
No.	ness	Condition	K.S.I.	K.S.I.	Elong.	U.T.S.	Y.T.S.
28M	•0500	275°F-30 min.	40.4	30.4	20.0		
29M	·0495		40.8	30.8	18.5		
30M ·	•0500		40.6	31.1	19.0		•
Avg.	-		40.6	30.8	19.2	9.56	14.68
31H	.0263	275°F-30 min.	41.1	34.1	15.0		
32H	.0263		42.6	35.1	14.0		
3 3 H	.0262		42.9	35.1	15.5		
Avg.	-		42.2	34.8	14.8	13.33	14.30
341	•0888	275°F-30 min.	42.6	32.6	17.5		
35L	.0883	-17 1-30 11111	42.7	31.3	16.5	•	
36L	.0890		41.6	31.9	16.0		•
Avg.	-		42.0	31.9	16.7	1.41	7.00
2004	0) 05						,,,,,
37M	.0497	275°F-60 min.	40.7	31.4	19.0		
38M	.0495		40.4	31.4	17.0		
39M	.0498		40.6	31.1	20.0		
Avg.	-		40.8	31.3	18.7	9.13	14.00
40н	.0260	275°F-60 min.	42.6	34.5	17.5	•	
41H	•0260		42.9	34.3	17.0		
42H	.0259		42.9	34.8	11.0		
Avg.	-		42.8	34.5	16.2	12.10	15.00
43L	- 0886	275°F-60 min.	12.7	03. 0	30.0		-
	•0386	213 F-00 min.	41.7	31.3	18.0		
HHL			41.6	32.4	17.0	•	
45L	•0886		41.7	32.7	17.5		
Avg.	-		41.7	32.1	17.5	2.11	6.42
46L	.0885	300°F-5 min.	42.1	32.4	20.0		
47L	. 088 5	-	42.5	33.7	17.0	•	•
48L	.0887		42.1	32.7	20.0		
Avg.	-		42.2	32.9	19.0	•94	4.08
49 Н	•0260	300°F-5 min.	43.0	34.9	14.0	·	•
50H	.0260	Jee 1-5 mills	43.4	34.9	16.0	•	
5 1 H	.0259		43.1	33.9	15.0		
Avg.	-		43.2	34.6	15.0	11.29	14.80
-	01.04	2000m C				•	
52M	.0496	300°F-5 min.	40.9	31.3	20.0		
53M	.0496		41.1	31.7	19.0		
54M	•0498		40.3	31.1	18.0	0 44	
Avg.	-		40.9	31.4	19.0	8.90	13.00

1.A.2.4.1

PAGE	_5_	OF	_13	
				_

Spec. No.	Thick- ness	Exposure Condition	U.T.S. K.S.I.	Y.T.S. K.S.I.	% Elong.	% Decrease fro U.T.S.	m As-Received Y.T.S.
55H	•0260	300°F-10 min.	42.9	35•5	17.0		
56H	.0259	,	43.1	35.6	15.0		
57H	.0259		43.4	35.5	14.0		
Avg.	-		43.1	35.5	15.3	11.50	12.55
58M	•0500	300°F-10 min.	40.6	31.1	17.5		
59M	.0500	,	40.6	31.4	18.5		
60M	.0500		40.8	31.7	19.0		
Avg.	-	•	40.7	31.4	18.3	9.36	13.00
SIL	-0384	300°F-10 min.	42.5	3կ.0	18.0	•	
52L	•0887	> L-TO WITH	42.5	34.0	19.0		
	.0884		42.1	32.7	19.0	•	
63L Avg.	•0004		42.4	33.6	18.7	0.47	2.04
-	- 4-	0 4					
бцн	.0261	300°F-15 min.	42.8	34.9	15.0		
55H	. 0258		42.7	35.5	16.0		
66H	.0262		42.7	35.1	17.0		
Avg.			42.7	35.2	16.0	12.31	13.31
57M	•0500	300°F-15 min.	40.6	31.4	17.5		•
58m	.0500	,,	40.6	30.9	19.0		
5 9 M	.0500		40.6	31.1	19.0		
Avg.	-		40.6	31.1	18.5	9.57	13.83
70L	.0888	300°F-15 min.	42.2	33.2	16.0		
71L	.0890)00 I-T) HELL	41.9	33.9	19.0		
	.0890		42.2	34.3	18.0		
72L			42.1	33 . 8	17.7	1.17	1.38
Avg.	-		45.	0∙رر		⇔ ₹ ∸ 1	,,
73L	.0883	300°F-30 min.	41.9	31.9	16.5		
74L	.0886	-	41.9	33.2	14.5	•	
75L	.0885		42.6	34.2	15.0		•
Avg.			42.1	33.1	15.3	1.17	2.96
76M	.0495	3000F-30 min.	41.1	31.9	17.5		·
7 7 M	.0497	, , ,	40.9	32.4	18.5		
78M	.0496		40.9	31.4	17.5		
Avg.	= OH/ O		41.0	31.9	17.8	. 1.17	296
79 H	.0261	300°F-30 min.	43.1	34.1	15.0		
	.0256	July 1 July 11446	43.1	36.2	12.5		
80H			43.0	34.1	15.0		
81H Avg.	•0257		43.1	34.8	14.2	8.68	11.62
			41364	3/L & U		~ ~ ~ ~ ~	

1.A.2.4.1

PAGE 6 OF 13

	ROOM	TEMPERATURE TEN	SILE TEST	DATA AFTER	UNSTRESSED	HEATING	•	-
Spec.	Thick- ness	Exposure Condition	U.T.S. K.S.I.	Y.T.S. K.S.I.	% Elong.	% Decrease from		ι_
	11000	Contraction	V.D.T.	W.O.T.	Frong.	U.Ţ.S.	Y.T.S.	
82H	.0264	300°F-60 min.	42.4	33.9	15.0			•
83н	•0260		43.4	35.6	15.5			-
84н .	.0261		43.5	34.6	15.5		•	
Avg.			43.1	34.7	15.3	11.50	14.50	- 1
•			-	• • • • • • • • • • • • • • • • • • • •				-,
85L	.0883	300°F-60 min.	42.0	32.8	19.0			
86L	•0884		42.2	31.4	16.5			- I
87L	•0885		42.4	31.9	17.5			
Avg_{ullet}			42.2	32.2	17.7	0.94	6.12	
0.00	-1 - 4						•	_1
88M	•0496	300°F-60 min.	40.9	30.9	16.5	·		
89M	•0496		41.9	31.1	18.0			I
90M	•0493		40.7	31.5	18.0			1
Avg.			41.2	31.2	17.5	8.24	13.55	
	-00-							T
91L	.0883	325°F-5 min.	42.4	31.7	17.0			1
92L	.0883		42.4	32.7	16.0			
93L	. 0885		42.4	32.6	19.0			-
Avg.			42.4	32.3	17.3	•47	4.92	1
							7.,2	-
94M	.0496	325°F-5 min.	41.2	30.6	20.0		•	_
95M	•0496		41.3	31.5	20.0			1
96M	•0494		41.4	31.5	20.0			Ţ
Avg.			41.3	31.2	20.0	8.01	8.59	
								Ţ
97H	•0260	325°F-5 min.	42.8	34.2	16.0		•	_1
98H	•0260		42.8	33.1	17.0			
99H	.0260		43.0	33.9	15.5			- 1
Avg.			42.9	33•7	16.2	11.95	17.00	
2000	-004	0		_				
100L	.0885	325°F-10 min.	41.9	32.6	20.0			- 7
101L	•0884		42.0	30.5	17.0			
102L	.0884		41.8	30.5	20.0			- 1
Avg.			41.9	31.2	19.0	1.64	9.04	- +
70211	0055	2050		-1 1	- 4 -			1
103H	.0255	325°F-10 min.	42.8	34.4	16.0		•	. !
10hH	•0256		42.9	34.4	16.0			
105H	.0261		43.4	33.2	13.0			
Avg.			43.0	34.0	15.0	11.70	16.25	. !
106M	.0495	325°F-10 min.	41.7	20.0	18 ^			
107M	•0499	ンケン L━T○ WTび ●		30 . 9	18.0			1
108M	•0490 •0497		41.1 40.9	31.5	19.0			. !
Avg.	• 047 (40.9	31.2 31.2	18.0	ם מר	10 00	
A¥5.			4206	24.6	18.3	8.25	13.55	Ī
								- 1

1.A.2.4.1

PAGE 7 OF 13

	ROOM	TEMPERATURE TEN	SILE TEST	DATA AFTE	R UNSTRESS	ED HEATING	
Spec. No.	Thick- ness	Exposure Condition	U.T.S. K.S.I.	Y.T.S. K.S.I.	% Elong.	% Decrease from U.T.S.	As-Received Y.T.S.
109L	•0884	325°F-15 min.	42.0	30.5	17.0		
llor	.0883		42.1	31.0	17.0		
111T	.0884		4: •4	32.7	18.0		
Avg.	0000.		42.2	31.7		• • •	
_			46.6	2401	17.3	0•94	7.50
112M	•0496	325°F-15 min.	41.3	31.1	19.0		
113M	.0495		40.9	30•5	19.0		
117W	.0 496		41.3	30.9	19.0		
Avg.			41.2	30.8	19.0	8.24	15.45
115H	•0260	325°F-15 min.	1.5.3	•••	a.1		
116H	•0260	ord term with.	43.1	33•9 35•4	14.5		
117H	•0260 •0260		43.1	35.4	17.0		•
Avg.	•0200		42.6	34.2	18.0		•
vAR.			42.9	34.5	16.5	11.60	15.00
118M	-0497	325°F-30 min.	40.9	31.3	20.0		
119M	-0495		40.7	30.4	21.0		
120M	.0497		40.5	30.7	21.0		
Avg.			40.7	30.8	20.7	9•35	14.70
121 H	.0257	22502 20 .	100			, .,,	
		325°F-30 min.	42.8	33.8	17.0		
122H	.0256		42.9	35.0	18.0		
123H	•0262		42.6	34.9	13.0		
Avg.			42.8	34.6	16.0	12.10	14.75
124L	.0885	325°F-30 min.	42.0	23.0	20 -		
125L	•0888	> 1-)U MILLS	41.8	31.0	20.5		
126L	.0888			32.1	20.5		
Avg.	•0000		41.5	32.4	20.5	_	
MAR.			41.8	32.1	20,5	1.87	6.42
127H	.0260	325°F-60 min.	42.3	33.5	19.0		
12 8H	•0257		42.6	34.7	19.0		
1 29H	•0262		42.5	33.2	16.5		•
Avg.			42.5	33.8	18.2	12.75	16.70
130M	. 0498	325°F-60 min.	10.3	20 (•	•
131M	.0500	Jey reou min.	40.1	30.6	22.5		
132M			39.5	29.5	22.5		
-	.0497		39.8	29.8	23.0		
Avg.			39.8	30.0	22.7	11.36	16.90
133L	•0886	325°F-60 min.	40.9	31.8	24.5		
134L	•0886	,	41.1	31.9	21.0		
135L	•0886		40.6	30.9	22.0		
Avg.			40.9	31.5	22.3	4.00	Q 14
J.			~~~/	J-47	224)	4.00	8.16

CODE:

MECHANICAL PROPERTIES OF FS-1 MAGNESIUM

1.A.2.4.1

PAGE 8 OF 13

	ROOM T	EMPERATURE TENS	ILE TEST	DATA AFTER	UNSTRESSED	HEATING	•
Spec. No.	Thick- ness	Exposure Condition	U.T.S. K.S.I.	Y.T.S. K.S.I.	% Elong.	% Decrease from U.T.S.	As_Received Y.T.S.
136H 137H 138H Avg•	.0262 .0261 .0257	350°F-5 min.	42.7 42.8 43.5 43.0	32.4 33.5 35.1 33.7	17.0 16.0 14.0 15.7	11.70	17.00
139M 140M 141M Avg.	.0497 .0496 .0495	350°F-5 min.	40.9 41.0 41.2 41.0	31.3 31.2 31.5 31.3	19.0 17.0 18.0 18.0	8.69	13.30
142L 143L 144L Avg.	.0887 .0890 .0883	350°F-5 min.	42.3 42.7 42.2 42.4	32.2 32.0 32.2 32.1	19.5 19.5 18.0 19.0	0.47	6 . 40
145H 146H 147H Avg•	.0259 .0254 .0255	350°F-10 min.	43.3 44.1 43.6 43.7	31.8 33.0 34.2 33.0	15.5 13.0 15.5 14.7	10.25	18.70
148M 149M 150M Avg.	•0493 •0498	350°F-10 min.	41.3 41.3 41.1 41.2	30.3 30.6 29.7 30.2	18.0 18.0 18.0	8•69	17.20
151L 152L 153L Avg•	.0884 .0883	350°F-10 min.	42.5 42.1 42.5 42.4	30.3 32.3 31.4 31.3	19.5 22.0 18.5 20.0	10.25	18.70
154H 155H 156H Avg•	.0249 .0248 .0262	350°F-15 min.	րր.2 141.5 143.0	33•7 34•8 33•1 33•9	15.5 16.0 15.0 15.5	9.87	1 6 . 50
157M 158M 159M Avg•	.0497 .0497 .0494	350°F-15 min.	40.9 40.9 41.0 40.9	29.1 29.1 29.2 29.1	19.5 19.5 18.0 19.0	8.91	1 9.40
160L 161L 162L Avg.	.0884 .0386 .0889	350°F-15 min.	41.9 41.4 42.0 41.8	30.2 28.6 30.5 29.8	20.0 20.0 19.5 19.8	7.88	13.10

1.A.2.4.1

PAGE 9 OF 13

·	ROOM	TEMPERATURE TEN	SILE TEST	DATA AFTER	UNSTRESSED	HEATING	
Spec. No.	Thick- ness	Exposure Condition	U.T.S. K.S.I.	Y.T.S. K.S.I.	% Elong.	% Decrease from U.T.S.	As-Received Y.T.S.
1 63H	•0258	350°F-30 min.	42.2	33•3	18.0		
1 64H	•0260		42.2	32.7	21.0		
1 65H	•0262		41.4	31.5	18.5		
Avg.			41.9	32.5	19.2	13.95	12.00
166M	•0499	350°F-30 min.	39.1	28.7	23.0		
167M	.0493	-	39.5	29.4	24.5		
168M	.0497		38.9	28.8	24.5		
Avg.			39.2	29.0	24.0	12.70	19.65
169L	.0888	350°F-30 min.	40.3	30.5	23.5		
170L	.0888		40.4	30.1	23.0		
171L	.0882		40.7	30.5	24.0		
Avg.	••••		40.5	30.4	23.5	4.92	11.34
172H	.0263	350°F-60 min.	40.3	30.7	21.0		
17 3H	.0260	Do Leon little	40.9	31.7	21.0		
174H	.0261		40.7	30.9	21.5		
Avg.	.0201		40.6	31.2	21.5	16.65	02.70
_		_	40.0	2106	21.07	10.05	23.10
175M	•0498	350°F-60 min.	39•3	28.7	25.0		
176M	. 0496		38.3	28.9	24.0		
17 7 M	. 0498		37.5	28.0	25.5		
Avg.			38.4	28.5	24.8	14.45	21.10
178L	.0886	350°F-60 min.	40.0	29.5	25.0		
179L	. 0887 .		40.2	29.6	25.0		
180L	.0887		39.9	29.0	25.0		
Avg.			40.0	29.4	25.0	6.10	14.30
181H	.0258	375°F≒5 min.	40.9	31.3	21.5		
1 82H	•0256	,	40.9	31.2	21.0		
183н	.0257		40.8	31.2	20.5		
Avg.	00491		40.9	31.2	21.0	16.00	23.20
184м	. •0496	375°F-5 min.	38.6	27.3	25.0		
185M	.0497		38.2	27.4	25.0		
186M	.0498		38.5	28.0	25.0		
Avg.	• • • • •		38.4	27.6	25.0	14.45	23.50
187L	•0385	375°F-5 min.	39.9	28.5	25.0		
188L	.0885	212 1-2 HTTI	39.5	27.1	26.0		
189L	•0886		39.0	27.0	26.0 26.0	•	
	•0000		39.5			7 00	70.90
Avg.			J7 • J	27.5	25.7	7.29	19.82

1.A.2.4.1

PAGE 10 OF 13

	ROOM	TEMPERATURE TEN	SILE TEST	DATA AFTER	UNSTRESSED	HEATING	
Spec.	Thick- mess	Exposure Condition	U.T.S. K.S.I.	Y.T.S. K.S.I.	% Elong.	% Decrease from U.T.S.	As-Received Y.T.S.
190H 191H 192H	.0262 .0262 .0261	375°F-10 min.	42.4 43.4 42.4	32.7 31.9 32.3	17.0 18.0 15.5	·	
Avg.			42.7	32.3	16.8	12.31	20.40
193M	.0496	375°F-10 min.	39.5	29.6	21.0		
19hW	•01198		39.5	29.2	20.0		
195M	.0498		39•5	29.4	21.0		
Avg.			39.5	29.4	20.7	12.01	18.55
196L	•0385	375°F-10 min.	41.0	32.0	21.0		
197L	.0885		40.8	30.9	22.5		
198L	.0887		山.0	30.8	22.0		•
Avg.	00001		40.9	31.2	21.8	4.00	8.77
199н	.0263	375°F-15 min.	42.3	20.0	77.0		
		3/5 r-15 min.		32.2	17.0		
200H	•0256		42.0	32.0	19.0		
201H	•0260		41.5	34.2	18.0		4
Avg.			41.9	32.0	18.0	13.95	19.20
202M	·0497	375°F-15 min.	39.4	28.4	22.0		
203M	•0504		38.5	28.4	22.0		
20ЦМ	. 050 3		3 8.8	2 8.6	23.0		
Avg.			38.9	28.5	22.3	13.35	21.00
205L	.0384 .	375°F-15 min.	40.5	31.0	23.0		
205L	•0838		41.5	30.3	22.5	•	
207L	.0892		39.0	30.5	22.0		
Avg.	•••,-		40.3	30.6	.22.5	5.4	10.8
00011	0077	2770	100	07. 0			
208H	.0257	375°F-30 min.	43.8	31.8	21.5	•	
209H	.0260		70.0	30.4	20.5		
210H	.0261		40.5	31.0	20.0		_
Avg.			41.4	31.1	20.7	15.0	23.40
211M	.0496	375°F-30 min.	38.4	27.8	23.5		
212M	.0499	_	38.5	27.8	24.5		•
213 M	.0497		38.3	27.3	21.5		
Avg.	· ··		38.4	27.6	23.2	14.45	23.50
214L	.0888	375°F-30 min.	39.0	28.9	22.5		
215L	.0885	J. J. J. J. Market	37.4	27.0	21,.5		
215L 216L	.0387		39.2	28.9	24.0		
	.0007		38.5	28.3	23.7	9.63	19.80
Avg.			J∪•J	20.5	۱ • ز ع	7.07	1 7 • 00

1.A.2.4.1

PAGE 11 OF 13

	ROOM	TEMPERATURE TEN	SILE TEST	DATA AFTER	UNSTRESSED	HEATING	
Spec.	Thick-	Exposure	U.T.S.	Y.T.S.	%	# Danie 0	
No.	ness	Conditon	K.S.I.	K.S.I.	Elong.	% Decrease from U.T.S.	
	_				Diong.	0.1.5.	Y.T.S.
217H	•026	375°F-60 min.	40.4	29.2	20.5		
218H	•026		39•3	27.0	21.0		
2 19 H	.02 6		40.0	30.1	22.0		
Avg.			39•9	29.4	21.2	18.05	27.60
220M	• •050	2250- 42 .			·		21.00
221M		375°F-60 min.		27•7	23.5		
222M	•050		38.2	27.4	21.5		
. Avg.	•050		37.9	27.5	23.0		•
. Avg.			38.0	27.6	22.7	15.21	23.50
223L	-0885	375°F-60 min.	20.0	-0.1	- 4		
224L	.0885	JIJ r-ou min.	39.0	28.4	24.0		
225L	•089		39. 5	28.1	24.5	•	
Avg.	•009		39.9	27.5	24.5		
8•			39•5	28.0	24.3	7.27	18.35
226M	•050	400°F-5 min.	39•7	٥٥ ٢	00.0		
227M	•0505		39.1	28.5	22.0		
228M	•0505		39.4	29.0	22.0		
Avg.			39.4	29.9 29.1	20.5	5.0. a.d.	_ •
_			J7 •4	27.1	21.5	12.25	19.40
229H	.02 6	400°F-5 min.	42.4	30.2	170		
230H	.0 26		42.8	31.8	17.5		
231H	.02 6		42.0	30.8	19.5		
Avg.			42.4	30.9	17.7	12.95	23.90
2227	000	1 000			, - ,	2007)	23.90
232L	.089	400°F-5 min.	40.9	33. 3	20.5		
233L	.089		40.9	28.7	21.0		
234L	•089		40.8	30.0	20.5		
Avg.			40.9	30.7	20.7	3.99	10.50
235L	•089	1.000			•		20070
236L		400°F-10 min.	39.0	27.0	22.5		
237L	•039		39.2	28.0	24.5		
	•038		39.5	27.9	23.5		
Avg.			39.2	27.6	23.5	7 . 98	19.50
238H	•026	400°F-10 min.	40.1	29.1	07.0		
239Н	.026	des Late Wille	39.1		21.0		•
240H	.026		39.7	28•5 29•6	21.5		
Avg.	•••		40.0		21.0	5 to 0.0	
<u> </u>			40.0	29.1	21.2	17.85	20.30
271W	•050	400°F-10 min.	37.2	30.0	25.0		
242M	.050		37.5	26.8	25.9		
243M	•050		37.9	26.6	25.9		
Avg.			37.5	27.8	25.6	16.45	00.00
_			- , - ,	- (- -	-7-0	TO-42	23.00

1.A.2.4.1

PAGE 12 OF 13

	ROOM T	EMPERATURE TENS	ILE TEST	DATA AFTER	UNSTRESSED	HEATING	
Spec.	Thick- ness	Exposure Condition	U.T.S. K.S.I.	Y.T.S. K.S.I.	% Elong.	% Decrease from U.T.S.	As-Received Y.T.S.
244M 245M 246M Avg•	•050 •0505 •050	400°F-15 min.	37.6 37.7 37.9 37.7	26.2 26.4 27.1 26.6	26.5 28.3 26.0 26.9	16.00	26•30
247M 248M 249M Avg•	.0252 .0251 .0252	400 ⁰ F-15 min.		32.5 29.9 30.0 30.8	12.0 13.0 12.0 12.3	15 . 40	24.10
250L 251L 252L Avg•	.084 .0835 .084	400°F-15 min.	41.7 41.7 41.1 41.5	29 • 7 30 • 5 29 • 9 30 • 0	24.3 23.5 24.3 24.0	16.91	12.52
253M 254M 255M Avg•	.5005 .500 .5005	400°F-30 min.	37.6 37.4 37.8 37.6	28.0 28.0 25.8 27.3	24.0 24.0 24.0 24.0	16.27	2h•h0
256H 257H 258H Avg•	.0251 .02515 .0251	400° _{F-30 min.}	42.0 42.0 41.5 41.8	31.0 31.2 31.5 31.2	23.0 21.0 22.0 22.0	12.10	23.10
259L 260L 261L Avg.	.0890 .0890 .0890	400°F-30 min.	38.8 38.7 38.6 38.7	28.0 26.9 27.8 27.6	24.0 23.0 24.0 23.3	9 . 15	19 .50
262L 263L 264L Avg.	•0839 •0836 •0889	. 425°F-5 min.	40.9 40.3 41.0 40.7	31.8 31.2 31.7 31.6	16.0 18.0 14.0 16.0	4.46	7 . 87
265H 266H 267H Avg•	.0255 .0261 .0253	425°F-5 min.	43.3 41.0 42.4 42.2	35.5 32.1 34.7 34.1	16.0 15.0 18.0 16.3	13.35	'. ∕. ∙ 00
268M 269M 270M Avg.	.0496 .0498 .0497	425°F-5 min.	34.6 39.4 39.7 37.9	29.7 30.0 30.6 30.1	21.0 21.0 21.0 21.0	15.60	16.61

CODE:

1.A. 2.4.1

PAGE 13 OF 13

ROOM TEMPERATURE TENSILE TEST DATA AFTER UNSTRESSED HEATING

Spec. No.	Thick- ness	Exposure Condition	U.T.S. K.S.I.	Y.T.S. K.S.I.	% Elong.	% Decrease from U.T.S.	n As-Received Y.T.S.
271L	.0887	425°F-10 min.	38.5	~~ ~			
272L	•0381	> L-TO INTII!		33.5	26.0		
273L	.0887		39.3	.28.7	27.0		
Avg.	,•0001		39.7	28.8	24.0		
N.R.			39•2	. 30.3	2 5•7	7.98	11.65
274н	•0258	425°F-10 min.	40.0	28.7	22.0		
275H	.0256	4-y	39.8	28.1			
276н	.0256		39.5	28.1	22.0		
Avg.		•	39 . 8		22.0		
_			J7•0	28.3	22.0	18.42	30.3
277M	•0493	425°F-10 min.	37.8	26.4	24.0	•	
278M	. 01,96		37.3	27.1			
279M	.0497		37.3	27.6	24.0		•
Avg.			37.5		23.0	- 4 .	
			J1 • J	27.0	23.7	16.49	25.2
280H	•0256	425°F-15 min.	40-4	30.7	01. 0		
28 1 H	.0261		40.1		. 24.0		
282н	.0261		39.7	30.0	21.0		
Avg.	• • • • • • • • • • • • • • • • • • • •		40.1	29.7	20.0		
_			#O.T	30.1	21.7	17.65	25.81
283M	·049 7	425°F-15 min.	38,2	27.5	24.0		
28L1M	.0498		38.7	27.0			
285M	.0496		38.5		23.0		
Avg.			38.5	28.7	25.0		
			20.0	27.7	24.0	14.25	23.30
286L	-0884	425°F-15 min.	39.0	29.5	23.0		
287L	. 08 8 4	,	39.2	28.6	22.0		
238 L	.0884		39.5	28 .8			
Avg.	•	•	39.2		22.0		
•			J/ 02	29.0	22.3	7.98	13.08

CODE:	
1.A.3.1.	3
•	^3

MECHANICAL PROPERTIES OF 4 A1-4 Mn TITANIUM

	PAGE OF
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS
AMS - 4925	Experimental
HEAT OR BATCH NUMBER	FORM
See data below	Bar and Billets
PROCESSING CONDITION	the same of the sa
Annealed	
OBJECT OF TEST Determine mechanical proper-	RAC DATA REF.
ties of bar and billets material at room temperature and .600°F	ERMR 3324 dated April 18, 1956
SPECIMEN TYPE	

Tension .505 Dia. and .252 Dia. specimens - same as ARTC-13-T, June 1959 Fatigue - See data below

TEST METHOD:

Tensile properties at room temperature and 600°F (½ hour soak) and axial fatigue at room temperature were determined in the longitudinal, long transverse, and short transverse directions for three 5" x 8" x 72" billets. Long transverse tensile properties for three bars and two other billets drawn from RAC stock are also included.

Direction of test and billet orientation are illustrated on Page 2 for the $5" \times 8"$ billet.

Tensile tests were conducted in the same manner as those specified in ARTC-13-T-1 (June 1959) and Fed. Test Method Std. No. 151a Method 211.1, dated 6 May 1959. Load deformation data were obtained, with a 2" extensometer, for all standard .505 Dia. Spec. The divider yield technique was used for .252 Dia. room temperature test specimens.

Fatigue testing was conducted on the type of specimens illustrated on Page 3. Since fatigue specimens had not been standardized, specimen "A" was initially selected for use. When number of these specimens broke outside the reduced section, in the threads or near the shoulder, specimen "B" was substituted to overcome this difficulty. Specimen "C" was utilized where sample size limitations dictated the use of a smaller type specimen. All specimens were designed to produce a minimum of stress concentration in the reduced sections. The fatigue testing was conducted at room temperature at a cycling rate of 1800 cpm and a stress ratio of R = 0.1.

CODE: 1.A.3.1.3 PAGE 2 OF 21

Testing Direction for extracted slabs:

AA and GG - Longitudinal
BB and FF - Short Transverse
DD and EE - Long Transverse

Billet Orientation

Specimen - "C"

Fatigue Specimens

REPUBLIC AVIATION CORPORATION

REPUBLIC AVIATION CORPORATION

REPUBLIC AVIATION CORPORATION

MECHANICAL PROPERTIES OF 4 Al-4 Mn TITANIUM

	TENSILE	PROPERTIES	OF 5"x8"x72" -	BILLET #51025	<u> </u>
Test .	Direction of Test	ULT. K.S.I.	Yield K.S.I	Elongation % in 4D	Modulus x10
Rm. Temp	Long	147.0	142.8**	17.0	-
$\langle \rangle$		148.2	143.8**	17.0	-
	<u> </u>	147.0	143.8	17.5	17.4
600°F	!	108.0	87.8	ı₁•0	14.9
Ì	\$	112.0	99.0	17.0	16.7
Rm. Temp	I ng Transverse	150.0	146.0*	13.0	-
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	149.0	146.0*	10.0	-
\downarrow		150.2	148.0*	10.0	
600°F		107.0	-	14.0	-
),	; Short	106.5		16.0	-
Rm. ↑Temp	Transverse	146.0	1帅.0	8.0	17.7
J	Y	154.0	148.5	8.5	17.9
600 ⁰ F	ţ.	107.0	-	14.0	-

- * Yield determined by divider method (Specimens too short for extensometer).
- ** Yield determined by divider method (Extensometer did not function properly).

TENSILE PROPERTIES OF 5"x8"x72" - BILLET #51077

Test Cond.	Direction of Test	ULT. K.S.I.	Yield K.S.I.	Elongation % in 4D	Modulus x10 ⁶
Rm. Temp	Long	147.0	140.0	14.0	17.6
	Ŷ	146.1	143.6	16.0	17.0
1.		142.0	139.0	15.0	18.5
600°F		108.0	102.0	12.0	14.4
		104.0	86.0	11.0	17.6
	. •	106.0	97•7	11.0	14.9
Rm. Temp	Long Transverse	142.0	138.0	10.0	18.2
Ţ		154.0	138.0	9.0	17.2
600°F		104.0	91.0	BOGL	16.8
Ţ	ý Stromt	97.3	88.7	10.0	16.0
Rm. Temp	Short Transvers e	154.0	151.0*	7.0	_

^{*} Yield determined by divider method (Specimens too short for extensometer).

BOGL . - Broke outside of gage length.

CODE:	
1.4.3.1.3	
PAGE 6 0F21	

TENSILE PROPERTIES OF 5"x8"x72" - BILLET #51009

Test Cond.	Direction of Test	ULT K.S.I.	Yield K.S.I.	Mongation % in 4D	Modulus x10 ⁶
Rm. Temp	Long	152	144.5	17.0	16.5
Ţ	1	149.5	144.2	15.0	17.4
600°∓		108.0	88.2	17.0	14.4
Y A	, V	104.0	87.8	18.0	14.4
γ Temp	Long Transverse	148.7	144.9*	11.0	17.4
¥	Δ\ 	154.0	149.0*	5.0	-
	·	152.0	148.0*	10.0	-
600°F	v v	112.0	-	11.0	-
Rm, Temp	Short Transverse	153.0	151.1	5.0	18.2
	Q :	151.0	148.0	4.0	18.0
600°F	; ;	106.0	102.0	10.0	14.3
š	V	107.0	92.0	11.5	16.6

^{*} Yield determined by divider method (Specimens too short for extensometer).

1.4.3.1.3

PAGE 17 OF 21

Long Transverse Mechanical Properties of Three Bars and Two Billets
Drawn From R.A.C. Stock

Classification	Nominal Size	Test Cond.	ULT. K.S.I.	Yield K.S.I.	Flong % in UD	Mod.
B ar	2½"x7"	RT	154	152	12	16.6
Ý	Q		153	148	13	18.2
		600°F	109	95.6	13	15.4
:	!		98	77.5	12	14.0
			109	104.5	15	16.3
÷ ♦	↓		94	78.5	12	16.8
Bar	4.0" x 5.6"	RT	148	140	10	16.9
A			142	137	14	17.7
}	į	600°F	96.5	84	13	16.6
•	÷		97•7	77•5	12	12.7
Bar	4.9"x9.5"	RT	iµ	136	13	17.3
Ŷ	¢.		139	133.5	13.5	16.5
	İ	600°F	99.2	84	15	13.7
	\$		97•3	92.5	13	15.4
Billet	3.5"x6"	RT	151	147	10.5	17.2
\$:	Ì		147	146	15	16.1
: r		600°F	99•7	85	זוי	16.8
\Diamond	Ÿ		102	88	16	16.6

MECHANICAL PROPERTIES OF L Al - L Mn TITANIUM

1.A.3.1.3

PAGE 8 OF 21

Long Transverse Mechanical Properties of Three Bars and Two Billets
Drawn From R.A.C. Stock

Classification	Nominal Size	Test Cond.	ULT K.S.I.	Yield K.S.I.	Elong. % in 4D	Mod. ×10 ⁶
Billet	5•5"x6"	R T	149	145	10	17.6
Ì	Ĭ	Ì	153	152	10	18.8
		j	140	138	7.5	16.8
		6 00° F	96	86	13	15.6
1	Ŷ	Ý	102	88	12	14.8

1.A.3.1.3
PAGE 9 OF 21

Legend - Shaded Area Indicates Range
Arrow indicates average value

Summary of Room Temperature Tensile Values
Billet #51025

1.A.3.1.3 PAGE 10 OF 21

Legend - Shaded Area Indicates Range.
Arrow Indicates Average Values.

Summary of 600°F Tensile Values - Billet #51025

Legend - Shaded Area Indicates Range.
Arrow Indicates Average Values.

Summary of Room Temperature Tensile Values - Billet # 50077

Legend - Shaded Area Indicates Range.
Arrow Indicates Average Values.

PAGE 13 OF 21

Legend - Shaded Area Indicates Range.
Arrow Indicates Average Values.

Summary of Room Temperature Tensile Values - Billet #51009

PAGE 14 OF 21

Legend - Shaded Area Indicates Range.
Arrow Indicates Average Values.

Summary of 600°F Tensile Values - Billet #51009

- -

PAGE 15 OF 21

1.4.3.1.3

Strain - in/in

Typical Stress-Strain Curves for Longitudinal Specimens at Room Temperature and 600°F - Billet # 51009

1.A.3.1.3

MECHANICAL PROPERTIES OF 4 Al - 4 Mn TITANIUM

Nominal Strain - in. /in.

Typical Stress Strain Curves for Long Transverse Specimens at Room Temperature and 600°F

1.A.3.1.3

PAGE 17 OF 21

Nominal Strain - In/In.

Typical Stress-Strain Curves for Short Transverse
Specimens at Room Temperature and 600°F
Billet 51009

1.A.3.1.3 PAGE 18 OF 21

Room Temperature Fatigue Tests - Billet # 50077

REPUBLIC AVIATION CORPORATION

Room Temperature Fatigue Tests

B111et #51025

Max. Stress - KSI

PAGE 20 of 21

Max. Stress - KSI

Summary of Room Temperature Fatigue Tests

1.A.3.1.3

PAGE 21 OF 21

Max. Stress - KSI

C00	EI
Ī	1.AG.3.2.5

MECHANICAL PROPERTIES OF 5A1-25Sn TITANIUM

PAGE 1 07 36

	PAGE - OF 30
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS
Alloat	Production
HEAT OR BATCH NUMBER	FORM
See Data	Sheet
PROCESSING CONDITION	
Mill Annealed	
OBJECT OF TEST	RAC DATA REF.
Determine Spotweld Characteristics of Sheet .025"072" Thick	ERM-13 dated July 23, 1956

SPECIMEN TYPE

See Pages 17 and 18

TEST METHOD:

The tables following present the results of an evaluation of spotweld characteristics of AllOAT titanium alloy sheet ranging in thickness from .025" to .078". Shown are data on shear strength at room temperature and elevated temperatures up to 1000°F, tension ("pull-out") strength at room temperature, and fatigue tests in both shear and tension at room temperatures.

TEST PROCEDURE:

In order to insure consistency among the specimens tested, the same preparation procedure was followed for all specimens and was as follows:

- 1. RAC Welder No. 55 Sciaky PMCO-3ST, 3-phase frequency converter spotwelder was utilized throughout for all spotwelding tests.
- 2. Spotwelds were made on material of .025, .031, .040, .050, .062, and .078 inch in thickness.
 - 3. A timing check was made of the welder prior to running any tests.
- 4. Welder was checked for consistency by welding 10 test specimens of half-hard stainless steel.
- 5. Settings used in regard to pressure and heat time were identical to those derived for stainless steel. Current was adjusted to secure the desired shear strength and penetration.
- 6. Tensile pull-out specimens ("U" sections) were welded at the same time as the tensile shear specimen.
- 7. Material was welded in the "as-received" condition (see page 4) with no chemical or mechanical cleaning except for hand wiping the metal surface.

Complete welding data is noted in the following chart.

1.40.3.2.5

PAGE 2 or 36

Settings Utilized in Welding Titanium Alloy AllOAT

Gage	Electrode Contour	PSI	Cycle	Heat Time	Heat Phase	Cool Time	No. of Impulses
.025025	5/16W-3R Flat	17-10 730 Lbs.	Constant	4	58%	1	2
.031031	5/16W-3R Flat	21-10 1720 Lbs.	Constant	4	60%	1	2
.010010	3/8W-3R Flat	28-10 1720 Lbs.	Constant	6	62%	1	. 2
.050050	3/8W-3R Flat	32-10 2080 Lbs.	Constant	6	66%	1	2
.062062	5/8W-3R Flat	37-10 2530 Lbs.	Constant	6	69%	1	2
.078078	5/8W-3R Flat	43-10 3070 Lbs.	Constant	8	63%	1	· 4

All specimens were then deburred.

The shear specimens were tested on a Baldwin-Emery SR-4 testing machine of 50,000 pounds capacity after allowing the specimens to soak at temperature for one-half hour. Ultimate load versus temperature data was recorded and plotted.

The oven used to reach and maintain temperatures was a portable two-piece unit which could be placed around the specimen and removed after testing. A chromel-Alumel thermocouple and potentiometer was used to measure temperature which was accurate to $\pm 10^{\circ}$ F.

Two holes were drilled in the ends of the tensile shear specimens selected for fatigue testing in order to facilitate mounting into a Sontag 10,000 pound SF-10U fatigue testing machine. The "U" section specimens were attached to an adjustable jig and the whole assembly was then mounted on a Sontag 2,000 pound SF-1U fatigue testing machine. The adjustable jig was designed to insure a tight fit-up between the specimen and jig at all times during testing. This tended to prevent scattered results due to excessive vibration during testing. The min/max. ratio used for all fatigue tests was 0.1.

The photograph on page 36 (250X) illustrates the as-cast weld structure of titanium alloy AllOAT. No voids were noted in the structure. However, there was some difference in appearance of the heat-affected zone of the base metal. This may account for the slight scatter found in the test results.

1.40.3.2.5

PAGE 3 OF 36

TITANIUM ALLOY AllOAT

Material		Average Pullout	- Lbs.		Tensile			it to Shear
Thickness	Heat No.	Set 1	Set 2	Set 1	Set 2	Set 3	Set 1	Set 2
.025025	D-41209	270	255	1648	1598	1374	.164	.159
.031031	D-40225	372	350	2028	2037	1940	.183	.172
.040040	D-40330	460	485	2911	2930	3042	.158	.165
.050050	D-40225	560	605	3586	3568	3565	.156	.170
.062 062	D-43157	685	745	4770	5791	4806	.143	.128
.078078	D-40225	968	1135	6354	6123	6200	.152	.186

NOTES:

- Set 1. First series of test results from RAC Shop Processes Section
- Set 2. Second series of test results from RAC Shop Processes Section
- Set 3. Results from RAC Engineering Research Section

١	CO	D	£	1

	1.AG.3.	2.	5	
_		 		7

	Sn	2.3	2,1	2.	2,1	6.3 2.0
	TV	6.3	9.6	7.7	0.9	6.3
N						
mistr	×	8	8	8	ક્	. Xt.
ទី	0	ži.	Ĭ.	ži.	Ħ.	7.
	Less					
	Bend	1,•OT	10.4	4.0T	4.01	14.OF
	Elong. &	13.8	15.5	0-بلا	15.2	14.1
	I.S. ks1	119.0	120.0	122.9	121.3	136.6
	U.T.S. psi	123.9	130.3	136.2	129.7	143.1
	Size	• 025	.032	070	•050	790.
	Grade and Condition	AlloAT Annæled			•	=
	Heat No.	D-41209	D-40225	D-40220	D-40225	D-43157
	Chemistry	Grade and Condition Size U.T.S. psi I.S. ksi Elong. % Bend than	Grade and Condition Size U.T.S. psi I.S. ksi Elong. % Bend than C N AllOAT .025 123.9 119.0 13.8 \underline{\mu}.0T .1\$.02	Grade and Condition Size and Annealed I.S. ksi Elong. % Bend than c less than c less than c less than c less than c less than c less than c less than c less than c less less than c less less than c less less than c less less than c less less less less less less less le	Grade and Annealed Size U.T.S. psi T.S. ksi Elong. % Bend than C N MN Al AllOAT .025 123.9 119.0 13.8 th.OT .1\$.0\$ 5.6 " .040 136.2 122.9 114.0 th.OT .1\$.0\$ 5.6	Grade and AllOAT Size (J.T.S. psi) T.S. ksi) Elong. S Bend than than (Lhan) Less (Lhan) I h.OT II h.OT </td

1.AG.3.2.5

MECHANICAL PROPERTIES OF 5A1-25Sn TITANIUM

PAGE 5 OF 36

ELEVATED TEMPERATURE SHEAR DATA

.025" TITANIUM

Average	Ultimate Load Lbs.	Temperature OF	Average	Ultimate Load Ibs.	emperature OF
	1220	500		1500	Room Temp.
	1200	500	1	1135	Room Temp.
	1100	500	1	1510	Room Temp.
	1140	500		1350	Room Temp.
1187	2240	700	1	1580	Room Temp.
1107	1180	550	1	<u>1</u> 460	Room Temp.
•	1040	· 550	ŀ	1525	Room Temp.
	1170	550		1240	Room Temp.
1130	TIIO	550		1310	Room Temp.
1130	1200	600		1125	
•			1221.	1127	Room Temp.
	1120	600	1374	3060	300
****	1110	6 00		1260	100
1193	221.0	100	i	1580	100
	11110	650		1530	100
	1090	650	1457		
	1090	650	i i	1220	150
1090				ਸਾਂ30	150
	1080	700	1	1510	150
	1090	700	1387		•
	1000	700	i	1170	200
1057				1430	200
	1000	750		1500	200
	1030	750	1367	·	
	1160	750		1200	250
1063		•••	İ	1390	250
	990	800	ł	11,00	250
	1120	800	1330		
	1010	800		1140	300
1040	2020			1300	300
2040	1035	850		1410	300
	940	850	1283	2420	J 00
	1010	850	1200	1200	350
חמב '	1010	0 70	1	1370	350 350
995	1000	000	ł		
	1000	900	300	1200	3 50
	950	900	1257	3300	1.00
	1000	900	i	1180	400
983		.	1	1290	400
•	1000	950	1	1250	400
	960	950	1240		
	950	950	í		
970			1	1260	450
	1000	1000	· 1	1320	450
	940	1000	i	1090	450
940	880	1000	1223	· ·	

MECHANICAL PROPERTIES OF 5A1-25Sn TITANIUM

1.40.3.2.5

PAGE 6 OF 36

ELEVATED TEMPFRATURE SHEAR DATA

.032" TITANIUM

Temperature OF	Ultimate Load	Average	Temperature OF	Ultimate Load Lbs.	Average
Room Temp.	1920		·500	1600	
Room Temp.	1900		500	1620	
Room Temp.	2000		500	1530	
Room Temp.	1940		. 500	1640	
Moon Adap.	1/40	1940	,)00	2040	1598
100	1960	-,40	550	1580	_,,
100	1935		· 550	1610	
100	1870		550	1680	
100	1980),,0	2000	1623
100	1700	1936	600	1620	102)
350	1945	1930			
150			600	1460	
150	2050		600	1400	-1
150	1950			- 4 -	1493
150	1840		650	1620	
		1946	650	1460	
200	1935		650	1600	
200	1860		-		1560
200	1930		700	1570	-
200	1940		700	1430	
200	-/40	1916	700	1470	
250	1830	1/10	100	2410	1490
250	1900		750	1550	24,70
	1920		7 50	1380	•
250					
250	1880	1883	750	1350	31.02
200	י איני	1003	900	3530	1427
300	1775		800	1530	
300	1770		800	1450	
300	1730		800	1350	- *** -
300	1840				وبلتلا
	•	1779	850	1520	
350	1750		850	1380	
350	1765		850	1390	
350	1630				1430
350	1750		900	1500	
<i>,,,</i>	-12-	1716	900	1390	
400	1740	-,	900	11,00	
400	1600		,00	2400	1430
400	1730		950	1460	٥ربيد
	1760		950 950	1440	
400	1100	1200			
1 ~ ~	2(1.0	1708	950	1150	21-0
450	1640			-1	1450
450	1660		1000	1400	
450	1670		1000	1300	
450	1700		1000	1350	
		1668			1350

1.AG.3.2.5

PAGE 7 OF 36

ELEVATED TEMPERATURE SHEAR DATA

.OLO" TITANIUM

Temperature or	Ultimate Load Lbs.	Average
Room Temp.	3040	
Room Temp.	3140	
Room Temp.	3040	
Room Temp.	2950	
Room Temp.	3040	221.2
100	3040	3042
100	3100	
100	3000	
100	2900	
100	3060	
200	<i>3</i> 000	3024
150	3100	7024
150	3200	
150	3200	
150	3140	
150	3200	
		3172
200	2900	
200	3140	
200	3140	
200	3290	
200	3160	_
	•	3126
250	2840	
250	2960	
250	2980	
250	3050	
250	3030	2052
300	2900	297 2
300	2740	
300	2940	
300	2940	
300	2960	
700	2/00	2896
		=

PAGE 8 OF 36

ELEVATED TEMPERATURE SHEAR DATA

.040" TITANIUM

emperature or	Ultimate Load Lbs.	Average	Temperature OF	Ultimate Load Ibs.	Average
350	2745		700	5170	
350	2800		700	2200	
350	2880		700	2200	
350	3000		700	2220	
350	2800		700	2250	
<i>370</i>	2000	2845	700	2340	
400	2700	204)	100	2540	2225
400	2640		7 50	2210	2245
400	2920			2200	
400	2530		750 750		
700			750 750	2100	
4QO	2770	0230	750 750	2180	
450	0600	2712	. 7 50	2140	
	2620		750	57710	
450	2640		000	mal a	2162
450	2940		800	1940	
450	2700		800	2000	
450	2640		800	2130	
		2708	800	2100	
500	2360		800	2180	
500	2320		800	20110	
500	2900				2065
500	5/1/10		850	1900	
500	2590		850	1960	
		2512	850	2100	
550	2300		850	2040	
550	2310		850	1950	
550	2800		850	2120	
550 550	2500		•		2011
550	2520		900	1955	
550	2540		900	1965	
	- ,	2495	900	2000	
600	2300		900	2050	
600	2220		900	1940	
600	2540		900	1910	
600	2620		,,,,	2/20	1970
600	2380		950	1860	1710
600	2 11110		950	1870	
300		2417	950	1920	
650	2260		950	2000	
650	2240		950 950	1900	
650	2300		950 950	2000	
650	2400	•	720	2000	1925
650 650					4767
650 650	2370				
UZU	2210				

1.AG.3.2.5

PAGE 9 of 36

ELEVATED TEMPERATURE SHEAR DATA

.OLO" TITANIUM (cont'd)

Temperature OF	Ultimate Load Lbs.	Average
1000	1820	
1000	1900	
1000	1770	
1000	1800	
1000	1880	
1000	1630	
-		1800

PAGE 10 or 36

ELEVATED TEMPFRATURE SHEAR DATA

.050"TITANIUM

Temperature or	Ultimate Load Lbs.	Average	Temperature F	Ultimate Load Lbs.	Average
Room Temp.	3500		450	3210	
Room Temp.	3680		150	3200	
Room Temp.	3620		450	3360	
Room Temp.	3460		450	3210	
	3400	3565	42,9	7220	3245
100	3315		500	3100	7247
100	3410		500	3110	
100	3600		500	3220	
100	3560		500	3160	
· 100	5500	3474	. 500	3100	221.0
150	3380	<i>3414</i>	550	2255	31148
				3155	
150	3740		550	3185	•
150	3640		550	3110	
150	3390	2720	550	2990	
	-11-	3538	4		3110
200	3440		600	3130	
200	3350		600	3140	
200	3560		600	. 2970	
200	3570		600	3200	
		3480			3135
250	3430		650	3060	
250	3165		650	3095	
250	3480		650	3080	
250	3380		650	2720	
•	-	3336	•	·	2989
300	3420		700	3000	
300	3430		700	3025	
300	3310		700	2800	
300	3380		700	2860	
,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3385	100	2000	2921
350	3400	<i>)</i>	750	2940	2/44
350	3410		750	2960	
350	3400		750	2850	
3 50	3200		750	2860	
220	5200	2252	150	2000	2902
1.00	221.0	3352	900	001.0	2702
400	3340		800	2840	
700	3300		800	2800	
400	3240		800	2880	
400	3200		800	2740	
	3270				2795

ELEVATED TEMPERATURE SHEAR DATA

.050" TITANIUM (cont'd)

Temperature oF	Ultimate Load Lbs.	Average
850	2795	
850	2810	
850	2720	
850	2670	
	·	2749
900	2650	
900	2635	
900	268 0	
900	2785	
		2690
950	27 80	
950	2880	
950	2600	
950	2600	
	- 4	2715
1000	2600	
1000	2615	
1000	2920	
1000	2720	
		2714

MECHANICAL PROPERTIES OF 5A1-25Sn TITANIUM

REPUBLIC AVIATION CORPORATION

PAGE 12 OF 36

ELEVATED TEMPFRATURE SHEAR DATA

.062" TI TANIUM

Temperature o _F	Ultimate Load Lbs.	Average	Temperature or	Ultimate Load Lbs.	Average
Deam Temp	4920		650	2900	
Room Temp.				3800	
Room Temp.	4760		650	3730	25/5
Room Temp.	4700		500	27/2	3765
Room Temp.	4800		700	3560	
Room Temp.	4860		700	3400	-1.0-
Room Temp.	4800				3480
Room Temp.	4800	1004	750	3540	
300	1.400	4806	750	3400	
100	4600		•		3470
100	4480		800	3470	
100	र्गाम्		800	3340	
100	4800				3405
100	4680		850	3400	
100	4680		850	3320	
		4613			3360
150	. 4680		900	329 0	
150	4500		900	3300	
		4590			3295
20 0	4780	-	950	3300	
200	4700		950	3210	
		4740	••	•	3260
250	4580	***	1000	3360	•
250	4570		1000	3100	
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4575		•	3230
300	4380	7212			J-J-
300	4350				
700	4374	4365			
350	4200	4507	•		
350	4120				
))U	4120	4160			
400	4060	4100			
400	4040				
400	4040	4050			
450	4000	4050			
450	3980	2000			
500	2000	3990			
	3900				
500	4000	2005			
770	20/0	3905			
550	3760 2760				
550	3760				
4.5.5		3760			
600	3810				
600	3660				
		3735			

Average

4620

4450

3620 ·

PAGE 13 OF 36

Ultimate Load

Lbs.

4500 4740

4560 . 4340

3840 3400

ELEVATED TEMPERATURE SHEAR DATA

.078" TITANIUM

emperature OF	Ultimate Load Lbs.	Average	Temperature or
150	6200	6200	900
200	6120	0400	
200	6290		900
250	(0) 0	6205	950
250	6340 6300		950
-20	0300	6320	3000
30 0	5940	0,20	1000 1000
300	5825		1000
250	4-	5883	
350 350	6100		
350	6000	4.04.0	
400	5 600	6050	
400	5 740		
•	7140	5 67 0	
450	5620	7010	
450	5660		
۳۵۵		5640	
500 500	5400		
500	5220		
550	21110	5310	
550	5360		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5400	
600	5220	,400	
600	5000		
650	, 1 out -	5110	
650	4850		
0)0	4900	1.000	
700	4730	4875	
700	4700		
		4715	
750	4830		
750	4900		
800	4800	4865	
800	4500 4500		
-	4500	4650	
850	4500	4070	
850	4640		
		4570	

PAGE 14 : 36

PULL-OUT FATIGUE TESTS

.025"	TITANIUM

Pmax = 255 %Pmax	Load	Cycles
5 10 15 30 50 70 90	12.75 25.5 38.25 76.5 127.5 168.5 229.5	8,024,000 (no fracture) 464,000 94,000 43,000 4,000 1,000

.032" TITANIUM

Pmax = 350 %Pmax	Load	Cycles
15 30 50 70 90	52.5 105.0 175.0 245.0 315,0	2,121,000 (no fracture) 82,000 10,000 1,000

.040" TITANIUM

Pmax = 485		
%P _{max}	Load	Cycles
15 30 50 70 90	72.75 145.5 242.5 339.5 436.5	2,000,000 (no fracture) 96,000 4,000 1,000

PAGE 15 of 36

PULL-OUT FATIGUE TFSTS

.050" TITANIUM

P _{max} = 605 %P _{max}	Load	Cycles
15 30 50 70 90	90.75 181.5 302.5 423.5 544.5	2,040,000(no fracture) 215,000 19,000 4,000

.062" TITANIUM

P _{max} = 745		
%Pmax	Load	Cycles
30	223.5	2,098,000 (no fracture)
50	372.5	19,000
70	521.5	5,000
90	670.5	2,000

.078" TITANIUM

Pmax = 1135 %Pmax	Load	Cycles
30 50 70 90	340.5 567.5 794.5 1021.5	1,947,000 38,000 10,000

1.AG.3.2.5

PAGE 16 OF 36

TENSILE SHEAR FATIGUE TESTS

.025" TITANIUM

Pmax = 1598	Load	Cycles		
10	159.8	413,000		
15	239.7	23,000		
30	479.4	4,000		
50	799.0	1,000		
70	1118.6	1,000		
90	1438.2	0		

.032" TITANIUM

Pmax = 2037 \$Pmax	Load	Cycles
10	203.7	412,000
15	305 . 5 5	12,000
30	611.1	4,000
50	1018. 5	2,000
70	1425.9	1,000
90	1833.3	. 0

.OLO" TITANIUM

Pmax = 2930 %Pmax	Load	Cycles	
10	439.5	183,000	
15	293.0	38,000	
30	879.0	7,000	
50	1465.0	2,000	
70	2051.0	2,000	
90	2637.0	0	

CODE:

1.AG.3.2.5

PAGE 17 OF 36

Tensile Shear Specimen

Tensile Shear Fatigue Specimen

U-Type Tensile Pullout and Fatigue Specimen

NOTES:

t = .025"

.031"

.040"

. 050"

. 064"

.078"

36 18 PAGE _

NOTES:

- Four 3/8-16 NC bolts are used to hold assembly together. Bottom of jig opens 1/4" giving over-all length of 4-3/4". 1.
- 2.
- 3. Material = 4340

Alloat Titanium Alloy Spot Welding Tests - Shear Results
REPUBLIC AVIATION CORPORATION

PAGE 20 OF 36

CODE:

A110AT Titanium Alloy Spot Welding Tests Tension Results

PAGE 21 OF 36

Elevated Temperature Shear Properties of Titanium Alloy AlloAT Spot Welds

PAGE 22 OF 36

Load vs Temperature Properties - .025 Inch Spot Welded Sheet

PAGE 23 OF 36

Load vs Temperature Properties - .032 Inch Spot Welded Sheet

Load vs Temperature Properties - .040 Inch Spot Welded Sheet

PAGE 25 OF 36

Load vs Temperature Properties - .050 Inch Spot Welded Sheet

Load vs Temperature Properties - .062 Inch Spot Welded Sheet

Temperature - *F

600

400

800

1000

200

3200

2800L

PAGE 27 OF 36

Load vs Temperature Properties - .078 Inch Spot Welded Sheet

REPUBLIC AVIATION CORPORATION

CODE:

PAGE 29 OF 36

REPUBLIC AVIATION CORPORATION

Pull-Out Fatigue Tests - Al10AT Spot Welded Sheet - Room Temperature

CODE:

PAGE __33 OF __36

Tensile Shear Fatigue Tests - . 025 Inch Spot Welded Sheet - Room Temperature

REPUBLIC AVIATION CORPORATION

CODE:		
	1.AG.	3.2.5
PAGE	34 OF	36

Tensile Shear Fatigue Tests - . 032 Inch Spot Welded Sheet - Room Temperature

1.AG.3.2.5 GE 35 OF 36

Tensile Shear Fatigue Tests - ,040 Inch Spot Welded Sheet - Room Temperature

REPUBLIC AVIATION CORPORATION

CODE:

1.AG.3.2.5

PAGE 36 OF 36

MECHANICAL PROPERTIES OF GAL-LV TITANIUM

PAGE __ OF _3

•	
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS
6Al-4V Titanium	Semi-Production
HEAT OR BATCH NUMBER	FORM
M-8749	-064 Sheet

PROCESSING CONDITION (1) As welded Mill Annealed (2) Welded and Aged At 1000° For 4 Hours (3) Welded and Sol. Treated At 1700° For 30 Minutes - Then Aged at 1000° F For 4 Hours.

Welding of 6Al-4V In The Annealed and Aged Conditions.

RAC DATA REF.

RAC DATA REF.

RAC DATA REF.

Standard Sheet Metal and Bend Test Specimens Per Federal Test Method Standard No. 151a dated May 6, 1959

TEST METHOD: Standard Sheet Metal and Bend Test Specimens Tested in Accordance With Federal Test Method No. 151a dated May 6, 1959

CHEMICAL ANALYSIS AS SUPPLIED BY PRODUCER

<u>C</u>	Fe	N ₂	VI	<u>v</u>	H ₂	<u>Ti</u>
•029	•11	•008	. 6.0	4.1	•00/1	Remainder

BASE METAL AND WELD TENSILE TEST VALUES

Condition	Yield 2% Offset psi	Ultimate psi	Elongation % in 2"	Location of Fracture
(As-welded RW)	## 118,700 125,080	124,600 117,500 134,900 141,630 116,100	1.0 1.0 2.0 2.0 1.5	Edge of weld Edge of weld Edge of weld In weld In weld
(As-welded GW)	143,200 99,800 126,800 ## 109,380	161,100 132,200 134,900 124,710 118,070	2.5 1.5 1.0 2.0 2.0	In weld Edge of weld In weld In weld Edge of weld
Base Metal as-received	132,500 134,500	과4,200 과4,900	14.0	(Vendors test) (RAC-QCL test)
(Welded + Aged RW)	129,700 128,700 *** 137,630	135,400 142,300 107,600 147,210 54,300	1.5 9.0 1.5 6.0 2.0	In weld Base metal In weld Base weld In weld

BASE METAL AND WELD TENSILE TEST VILUES (contid)

Condition	Yield 2% Offset psi	Ultimate psi	Elongation % in 2"	Location of Fracture
(Welded +	130,000	00 او بابارد	7.5	Base metal
Aged	124,300	142,500	5.0	Base metal
GW)	131,120	146,810	6.0	Base metal
•	133,640	137,320	1.0	Base metal
(Base metal	128,000	145,600	12.5	Base metal
Aged)	130,200	500 بليلا	n.o	Base metal
•	129,500	143,600	12.5	Base metal
	130,100	550 ماللا	12.5	
(Welded + ST	155,600	162,600	1.5	Base metal
+ aged	146,600	160,400	1.0	In weld
RW)	200و، 14	152,600	1.0	Edge in weld
·	150,000	152,420	0.5	Heat affect zone
	3636	72,510	1.0	In weld
(Welded + ST	142,700	170,200	2.5	Edge of weld
+ aged)	800 و 641	164,900	1.5	In weld
	155,630	162,830	2.0	Base metal
	147,160	151,320	2.0	In Weld
(Base metal	500و 7بلا	168,100	10.0	Base metal
ST * aged)	00 بأو بأثار ت	161,800	8.5	Base metal
•	154,190	171,150	9.5	Base metal
	153,800	173,800	8.0	Base metal

^{**} Test specimen failed before reaching yield point.

RW Weld reinforcement intact.

GW Weld reinforcement ground off.

ST Solution heat treated.

PAGE 3 OF 3

BEND TEST RESULTS

 	Condition	Results - Controlled Bend Bend Radius
-	Base metal - as received	Satisfactory - 4 x T - 105°
I	As welded	Fractured - 11 x T - 32°
I	Base metal - aged	Satisfactory - 4.5 x T - 105°
	Welded + Aged	Fractured - 12.6 x T - 6°
	Base metal - solution heat treated + aged	Satisfactory - 5.6 x T - 105°
ľ	Welded + solution heat treated + aged	Fractured - 10.4 x T - 21°

1.4.5.3.3

PAGE _1 05 19

MATERIAL IDENTIFICATION (COML.)

HWD #2

Production

HEAT OR BATCH NUMBER

L=314

Bar

PROCESSING CONDITION

See Below

Preliminary evaluation of IND #2 Bar RAC DATA REF.

RAC DATA REF.

ERMR 3512, dated August 24, 1956

SPECIMEN TYPE

.505 dia. tensile specimen - same as ARTC-13T, July 1957

TEST METHOD:

Tensile tests as per ARTC-13T-1 (July 1957).

Two pieces of HwD #2, $3\frac{1}{2}$ " x $3\frac{1}{2}$ " x 6", were shipped to RAC for evaluation by Firth-Sterling. One piece, designated "A", was heat-treated by the supplier. The second piece, designated "B", was heat-treated by Hercules Heat Treat Co., Brooklyn, New York. After heat-treating, samples were cut from each piece and coded as shown on Page 3. Identical numbers were assigned to bars from each piece, with the appropriate "A" or "B" suffix.

The Firth-Sterling heat treat schedule was: .

Charge at 1400°F, equalize; heat to 1850°F, equalize and soak one hour; salt quench at 1000°F, equalize and air cool; temper 4 hours at 1050°F, air cool; temper 4 hours at 1075°F to Rockwell C45-46, air cool.

The heat-treat schedule followed by Hercules Heat Treat Company was:

Charge at 1400°F, equalize; heat to 1850°F, equalize and soak one hour; quench in salt at 1000°F, air cool; temper 4 hours at 1050°F +25°F, air cool; temper 4 hours at 1075°F +25°F, air cool.

CHEMICAL COMPOSITION

 Cr
 Mo
 V
 Si
 Mn
 C
 S
 P
 Ni
 W
 Fe

 HWD #2 (Nominal)
 5.25
 1.35
 .50
 1.0
 .37
 Balance

 HWD #2 (Heat L-314)
 5.20
 1.24
 .47
 1.12
 .39
 .37
 .010
 .025
 .27
 .15
 Balance

1.A.5.3.3

PAGE 2 OF 19

TENSILE PROPERTIES

Test Condition	Specimen Location	Vlt. KSI	.2% Yield KSI	% Elong. in 2"	Vlt. KSI	.2% Yield KSI	% Elong in 2"	
1			Heat Treat		Heat Treat "B"			
Room Temperature	1 7	222 221	202 197	12.5 13.0	216 217	192 190	13.0 13.0	
Room Temperature After 10 hours @ 1000°F	8	215*	194	14.0	216	184	11.5	
Room Temperature After 100 hours & 1000°F	5	180	155	15.5	199	183	10.5	
Room Temperature After 100 hours © 1000°F, plus 10 hours © 1100°F	3	167 **	141	17.0	187	158	14.5	
600° F $(\frac{1}{2}$ hr. soak)	2	192	178	12.0	187	163	15.0	
800°F (½ hr. soak)	4	185	157	14.0	183	153	14.0	
1000°F (½ hr. soak)	6	140	114	-	6بلا	127	16.0	

^{*} Note Failure - Page 3 of 19

^{**} Note Failure - Page 3 of 19

1.A.5.3.3 PAGE 3 OF 19

Conditions

- 1. Room Temp. No Exposure
- 2 At 600°F 1/2 Hr. Soak
- 3 Room Temp. After 100 Hrs. at 1000°F Plus 10 Hrs. at 1100°F
- 4 At 800°F 1/2 Hr. Soak
- 5 Room Temp. After 100 Hrs. at 1000°F
- 6 At 1000°F 1/2 Hr. Soak
- 7 Room T mp. No Exposure
- 8 Room Temp. After 10 Hours at 1000°F
- 9 Not used

SPECIMEN 8A

Noticeable reduction in area - longitudinal crack indicating start of failure as in 3A.

SPECIMEN 3A

Reduction in area at center section. Failure along longitudinal axis.

Location of Specimens - Condition of Test

1.A.5.3.3

CODE:

Stress vs Strain
Specimen 1A
Room Temperature - No Exposure

1.A.5.3.3 5 or 19

Stress vs Strain
Specimen 1B
Room Temperature - No Exposure

1.A.5.3.3
AGE 6 OF 19

Stress vs Strain
Specimen 7A
Room Temperature - No Exposure

PAGE 7 OF 19

Stress vs Strain
Specimen 7B
Room Temperature - No Exposure

1.A.5.3.3

PAGE 8 OF 19

Stress vs Strain
Specimen 8A
Room Temperature - After 10 Hours at 1000°F

PAGE 9 OF 19

Stress vs Strain
Specimen 8B
Room Temperature - After 10 Hours at 1000°F

1.A.5.3.3

PAGE 10 of 19

Stress - vs. Strain
Specimen 5A
Room Temperature - After 100 Hours at 1000 F

1.A.5.3.3

PAGE 11 OF 19

Stress vs Strain
Specimen 5B
Room Temperature - After 100 Hours at 1000°F

PAGE 12 OF 19

Stress vs. Strain
Specimen 8A
Room Temperature - After 100 Hours at 100°F
Plus 10 Hours at 110°F

PAGE 13 OF 19

Stress vs Strain
Specimen 3B
Room Temperature - After 100 Hours at 1000°F
Plus 10 Hours at 1100°F

PAGE 14 OF 19

Stress vs Strain Specimen 2A At 600°F - Half Hour Soak

PAGE 15 OF 19

Stress vs. Strain Specimen 2B At 600°F - Half Hour Soak

PAGE 16 OF 19

Stress vs. Strain
Specimen 4A
At 800°F - Half Hour Soak

1.A.5.3.3

PAGE 17 OF 19

Stress vs Strain Specimen 4B At 800°F - Half Hour Soak

1.A.5.3.3

PAGE 18 OF 19

Stress vs Strain Specimen 6A At 1000°F - Half Hour Soak

1.A.5.3.3

PAGE 19 OF 19

Stress vs Strain Specimen 6B At 1000°F - Half Hour Soak

		CODE:
MECHANICAL PROPERTIES OF 5Cr-Mo-V STEEL		1.4.5.3.4
	•	PAGE 1 0F 10
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS	1
Halcomb 218 and Thermold "A"	Semi-Production	
HEAT OR BATCH NUMBER .	FORM	•
Unavailable	Sheet	
PROCESSING CONDITION		
See below		
OBJECT OF TEST Determine fatigue properties	RAC DATA REF.	
of material and effect of different pre-test conditioning.	ERMR 3929 dated Marc	ch 28, 1957
SPECIMEN TYPE		
See Pages 6 and 7.		•
TEST METHOD:		· · · · · · · · · · · · · · · · · · ·
Halcomb 218 and Thermold "A", b die steels, were tested and compared.	oth representative of the	5 Cr-Mo-V hot work
All specimens, after machining, the 200 ksi level in a salt bath to avoid the duction of an added variable in fatigue testi Axial tension fatigue data are	possibility of decarburiz	
values of 25, 50, 67 and 80 percent of the ro (established by testing of identical prepared	om temperature ultimate te	
Flexure fatigue specimens incor were prepared in accordance with four pre-est		and 3T on a 90° bend
Condition I		
 a) Bend in annealed con b) Heat-treat to 200 ks c) Vapor blast d) Fatigue test 		
Condition II		
a) Bend in annealed con b) Polish with 180# gri c) Heat-treat to 200 ks d) Vapor blast e) Fatigue test	t	
Condition III		
 a) Bend in annealed con b) Heat-treat to 200 ks c) Vapor blast d) Polish with 180# gri e) Fatigue test 	i level	

PAGE _2 OF 10

Condition IV

- a) Polish with 180# grit
- b) Bend in annealed condition
- c) Heat-treat to 200 ksi level
- d) Vapor blast
- e) Fatigue test

A Krause fatigue machine was modified to accept the flexure fatigue specimen design. A photograph illustrating the test set-up is provided on page 10. Specimen loading was accomplished by varying the eccentricity of the crank journal with relation to the main drive shaft. Deflections at the upper end of the connecting rod were transmitted to the specimen gage length by a coupling arm connected to the cam-rod small end. The entire specimen with the exception of the reduced section gage length was adequately supported to eliminate extraneous bending. Maximum outer fibre stresses in the reduced section center which was also the center of the bend arc, were calculated by means of the moment area method for a cantilever beam. All flexure testing was conducted at 67 percent UTS in complete reverse bending.

MECHANICAL PROPERTIES OF 5Cr-Mo-V STEEL

1.4.5.3.4

Halcomb 218-Tension Fatigue Avg. Ultimate Strength

Of 208500 psi Used For Fatigue Stress Calculations

Thickness Inches	Width Inches	ARea Inches ²	Test Stress psi	Preload 3.86 lbs.	Alter- nating Load Lbs.	Cycles	Remarks
•077	•507	.039	166500			27000	Fail
•077	•492	.0379	166500	•179	568	17000	Fail
•077	•521	.0401	Tr0800	.132	621	28000	Fail
•078	. 486	•0379	153000	.152	580	23000	Fail
.078	•515	•0700	104200	•119	376	102000	Fail
•078	•508	.0396	104200	.118	373	. 7	
.0805	.492	•0394	52100	.0585	185.4	107	Run out
.076	-498	•0378	52100	•056	177.2	107	Run out
.076	•498	•0378	140800	.152	478.8	70000	Fail
		<u> </u>	Static Tensi	le Data			
T	W	A	U.L.	U.S.	% Elong 2	1	
.078	.487	•0380	7900	208000	8.0		
.0775	-499	.0389	8120	209000	9.0		
.075	•486	•037	7640	206400	-	Fatigue Configu	Specimen ration

CODE:			
1.	.A.5	-3-4	, ,
PAGE	i		10

Thermold "A" Tension Fatigue Avg. Ultimate Strength Of 216,000 psi Used For For Fatigue Stress Calculations

Thickness Inches	Width Inches	Area Inches	Test Stress (psi)	Preload 3.86 lbs. =.001 in.	Alternate Load lbs.	Cycles	Remarks
.075	•500	•0375	173000	.198	583.2	18000	Fail
.075	.488	•0366	173000	.194	569.7	17000	Fail
.074	.486	.0364	145000	.161	475.2	60000	Fail
•075	.489	.0367	145000	.162	478.8	39000	Grip Fail
•075	.488	•0366	108000	.120	355.4	218000	Fail
.075	.491	•0368	108000	.121	357.8	10.2 x 10 ⁶	Run Out
.075	.489	•0367	108000	.121	356	100000	Fail
.075	.486	.0364	108000	.120	353.8	126000	Grip Fail
.075	.498	•0373	108000	.120	355.5	109000	Grip Fail
.075	-489	•0367	145000	.163	478.7	68000	Fail
				- .			
		St	atic Tensile	Data			

T	W	A	U.L.	U.S.	% Elong. 2
.075	.495	.0371	7960	215000	8.0
.075	-489	.0367	7960	217000	. 9•0

Flexure Fatigue of Bent Sections Halcomb 218 and Thermold A

All Tests Performed At .67 Ultimate Strength

Percent Ultimate	Bend	Material	Cycles To	•
Strength	Radius	Thickness	Failure	Condition
	ŀ	ialcomb 218		
67 67 67 67 67 67 67	2T 2T 2T 3T 2T 3T 2T	Average .076 .076 .076 .076 .076 .076 .076 .076	6000 8000 3900 10800 3350 1100 4200 8200	I II III III IV IV
		Thermold A		
		Average		
67 67 67 67 67 67 67	2T 3T 2T 3T 2T 3T 2T 3T	.075 .075 .075 .075 .075 .075	7100 8700 8000 7150 3300 700 6300	IV IV III III II

CODE:

1.A.5.3.4 GE 6 OF 10

Axial Tension Fatigue Specimen

1.A.5.3.4

PAGE -7 OF 10

MECHANICAL PROPERTIES OF 5Cr-Mo-V STEEL

.070 Material Thickness .625" R 2"

Flexure Fatigue Specimen

CODE: PAGE 8

or 10

1

1.A.5.3.4

PAGE 9 OF 10

Flexture Fatigue (Reverse Bending) - Halcomb 218 & Thermold A

CODE:

1.4.5.3.4

PAGE 10 OF 10

REPUBLIS AVIATION CORPORATION

MECHANICAL PROPERTIES OF 17-7PH

PAGE 1 05 6

	I NOT THE PARTY OF
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS
17-7PH Corrosion Resisting Steel	Production
HEAT OR BATCH NUMBER	FORM
See Data Below	Sheet. See Data Below
PROCESSING CONDITION	
See Data Below	
OBJECT OF TEST	RAC DATA REF.
To determine effect of surface pre- paration on tensile properties.	RAC unpublished test data, Ref. MRP W.O. 58-127.

SPECIMEN TYPE

Tension - Std. Sheet Metal Per ARTC-13-T, Dated July 1957.

TEST METHOD:

Specimen surfaces were prepared by various processes both before and after heat treatment. In all instances, heat treatment consisted of 1400°F for 90 minutes, cool to 60°F within 1 hour, hold for 1/2 hour at 60°F, 1050°F for 90 minutes, air cool to room temperature. Processes used in preparation of various specimens are itemized below:

Item Number	Process
1	Blank specimen with die.
2	Machine specimen.
3	Deburr edges.
	Draw file edges.
4 5 6	Draw file edges, remove .005" per edge.
6	Draw file edges, remove .010" per edge.
7	Polish edges.
8	Clean and coat with Turco #4367 Scale .Inhibitor.
9	Heat Treat, separated.
10	Heat Treat, stacked.
11	Pickle in Nitric-Hydrofluoric acid.
12	Vapor blast.
13	Abrasive finish faces (220A grit paper).
山 15	Abrasive finish, vibratory barrel.
15	Polish faces.

1.4.6.6.9

MECHANICAL PROPERTIES OF 17-7PH

PAGE 2 OF 6

ROOM TEMPERATURE TENSILE PROPERTIES

Specimen Number	Heat Number	Gage (Inches)	Processing	Tensile Yield Strength (PSI)	Ultimate Tensile Strength (PSI)	Elong- ation in 2" (%)
Alot-1	880258	•010	Items 2,3,8,9,12,7	162,000	195,000	6.0
-2 -4	11	11 11		169,000 184,000	196,000 203,000	7•5 5•5
A10T-6	11	11	Items 2,3,7,8,9,12,7	161,000	182,000	6.0
-7	n	n		166,000	194,000	6.5
- 8	Ħ	11		157,000	186,000	7.0
A10T-9	n	11	Items 2,3,4,7,8,9,12,	170,000	192,000	7.5
-10	#	11	7	176,000	198,000	6.0
-11	H	Ħ		163,000	182,000	. 5.5
A107-13	"	11	Items 8,9,1,12	173,000	189,000	4.0
-77		**		178,000	192,000	3. 0
-15 -16	f1 II	18 11		174,000	190,000	4.0
-10	•	"		176,000	191,000	3.0
A10T-17	11	*	Items 8,9,1,11	156,000	166,000	2.0
-18	11	11		161,000	168,000	2.0
-19	11	n.		151,000	162,000	2.0
Alot-21	11	11	Itams 8,9,1,12,7	174,000	193,000	6.0
- 22	11	11		181,000	200,000	6.5
- 23	11	11		177,000	193,000	6.0
A10T-25	Ħ	11	Items 1,4,7,8,9,12	187,000	201,000	5.5
- 26	11	11		171,000	188,000	6.0
- 27	11	11		175,000	194,000	5.5
A10T-29	11	11	Items 1,8,9,12,7	180,000	203,000	6.5
-3 0	n	11		177,000	199,000	8.0
-31	11	10		167,000	192,000	8.0
-32	• • • • • • • • • • • • • • • • • • •	11		182,000	199,000	6.0
A10T-28	W	Ħ	Items 1,4,7,8,9,12,	173,000	192,000	8.0
-33	11	n	7,15	177,000	195,000	6.0
-34	**	n		169,000	192,000	5.0
-35	11	11		180,000	202,000	6.0
-36	99	n		173,000	191,000	6.0
-48	11	" .		186,000	205,000	7.0
A10T-38	#1	n ·	Items 1,4,7,8,9,,	182,000	199,000	5.0
-39	**	n	7,15	169,000	190,000	7.0
- ∱Ō	11	11		183,000	199,000	6.5
-45	99	11		189,000	206,000	5.0
- ∱6	11	11 11		185,000	199,000	5.0
- 58	II H	11 ft		178,000	193,000	5.0
- 60	n	,		172,000	190,000	5.0

1.4.6.6.9

MECHANICAL PROPERTIES OF 17-7PH

PAGE 3 or 6

ROOM TEMPERATURE TENSILE PROPERTIES

Specimen Number	Heat Number	Gage (Inches)	<u>P</u>	rocessing	Tensile Yield Strength (PSI)	Ultimate Tensile Strength (PSI)	Elong- ation in 2" (%)
A10T-41	880258	.010	Items	1,7,8,9,12	183,000	198,000	6.0
-42	11	11		• • • •	172,000	190,000	6.5
-43	11	11			174,000	192,000	7.5
-111	ll .	H			175,000	194,000	7.0
A10T-49	n	11	Items	1,4,7,8,9	168,000	188,000	7.5
- 50	11	11			171,000	188,000	7.5
- 51	**	Ħ			171,000	188,000	7•5
- 52	n	11			141,000	177,000	7.0
Alot-5 3	11	11	Items	1,4,7,8,9,11	148,000	168,000	6.0
-54	10	11			152,000	169,000	7.0
- 55	11	11			156,000	172,000	6.0
A10T-56	11	11	Items	1,4,7,8,9,11	166,000	192,000	6.5
- 57	H	H	7,15		154,000	188,000	5.5
Alot-61	10	11	Items	1,4,7,8,9,13,	177,000	193,000	5.5
- 62	n	ti	7		168,000	190,000	6.0
- 63	*1	Ħ			176,000	192,000	5.5
Alot-64	**	11	Items	1,4,7,8,9,13,	179,000	196,000	6.0
-6 6	tt	11	7,15		185,000	198,000	5.0
- 67	11	11			173,000	191,000	6.5
Alot-81	n	11	Items	8,9,1,12,7,15	176,000	192,000	5.5
- 83	11	H			181,000	198,000	7.5
-84	11	11			187,000	202,000	6.0
A10T-85	11	11	Items	8,9,1,11,7	160,000	170,000	3.0
- 86	II	11			161,000	171,000	3.0
-87	11	11			159,000	172,000	4.5
- 88	11	tt			159,000	171,000	5.5
A10T- 91	11	11	Items	8,9,1	170,000	184,000	3.0
- 92	11	11			171,000	185,000	3.0
A10T-97	11	11	Items	1,8,9,5,12,7	175,000	210,000	5.5
-9 8	11	n		• •	175,000	205,000	6.0
- 99	11	tt			183,000	204,000	6 . 75 .
A10T-101	11	11	Items	1,8,9,6,12,7	185,000	206,000	6.25
-102	n	11		- · · · ·	181,000	200,000	6.75
-103	ni	11			179,000	198,000	6.5

1.4.6.6.9

PAGE 4 OF 6

ROOM TEMPERATURE TENSILE PROPERTIES

Specimen Number	Heat Number	(Inches)	Processing	Tensile Yield Strength (PSI)	Ultimate Tensile Strength (PSI)	Elong- ation in 2" (%)
A10T-105	880258	•010	İtems 1,8,9,7	186,000	199,000	6.0
· -1 06	tti -	II .		190,000	200,000	5.5
-107	. 11	11		182,000	196,000	6.5
-108	*1	11		182,000	196,000	6.5
A10T-109	11	n	Items 1,5,8,9,12,7	181,000	197,000	6.0
-110	11	11		197,000	210,000	6.0
-111	11	11		190,000	207,000	5.0
A10T-113	n	**	Items 1,6,8,9,12,7	191,000	204,000	5.5
-114	#1	11	•	187,000	198,000	6.0
-115	#	11		184,000	198,000	5.0
-116	**	#		177,000	196,000	6.0
A10T-117	11	11	Items 1,8,9,11,7	175,000	194,000	7.0
-118	11	11		174,000	192,000	7.0
-119	11	11		174,000	192,000	7.0
-120	**	11		162,000	191,000	7 • 75
A10T-133	11	11	Items 2,8,9,12,7	177,000	192,000	6.5
-134	11	It		171,000	191,000	6.0
-13 5	н	11		169,000	188,000	6.Q
-136	11	11		177,000	192,000	5.5
A10T-137	. 11	11	Items 2,8,9,5,12,7	176,000	191,000	6.0
-138	11	n		177,000	192,000	6.0
- 139	11	11		169,000	193,000	6.5
-1710	11	Ħ		181,000	193,000	5.0
A10T-141	11	11	Items 2,8,9,6,12,7	175,000	192,000	6.5
-1715	11	11		178,000	194,000	5.25
-143	#1	11		178,000	196,000	7-25
-144	П	11		176,000	191,000	5.5
A10T-145	H	n	Items 2,8,9,7	184,000	194,000	5•5
-146	#	11		185,000	194,000	5•5
-147	11	11		185,000	196,000	5.0·
-148	Ħ	11		187,000	198,000	5.0·
A10T-149	**	11	Items 2,5,8,9,12,7	184,000	198,000	5 .5
-150	11 '	11		184,000	199,000	6.0
-151	11	"		185,000	199,000	5.5
-152	11	11	•	183,000	200,000	5.5
A10T-153	11	II .	Items 2,6,8,9,12,7	187,000	206,000	7.5
-154	11	11		194,000	210,000	6.5
-155	11	11 .		188,000	209,000	5.0
-1 56	11	11	•	197,000	218,000	6.0

REPUBLIC AVIATION CORPORATION

CODE:

MECHANICAL PROPERTIES OF 17-7PH

1.A.6.6.9

PAGE 5 OF 6

ROOM TEMPERATURE TENSILE PROPERTIES

Specimen Number	Heat Number	Gage (Inches)	Processing	Tensile Yield Strength (PSI)	Ultimate Tensile Strength (PSI)	Elong- ation in 2" (%)
A10T-157	880258	•010	Items 2,8,9,11,7	183,000	196,000	5.5
-158	11	11		182,000	195,000	7.0
-159	11	11		188,000	197,000	4.25
-160	11	11		188,000	199,000	5.0
A10T-161	11	11	Items 2,10,12,7	239,000	249,000	5.5
-162	11	n		189,000	206,000	6.0
- 163	11	11		190,000	205,000	4.5
-164	11	11		208,000	227,000	6.0
A10T-165	n	11	Items 2,10,7	185,000	196,000	6.0
-166	10	11	_,,	183,000	196,000	6.0
-167	11	Ħ		185,000	195,000	2.0
-168	11	H		185,000	197,000	5.5
A10T-169	11	11	Items 8,9,1,12,7	197,000	211,000	6.5
-170	11	n		197,000	210,000	8.0
-171	n	11		209,000	220,000	6.0
A10T-173	11	11	Items 8,9,1,5,12,7	197,000	208,000	5.5
-174	11	11		193,000	207,000	6.0
-175) 1	11		191,000	206,000	5.75
-176	· n	'n		187,000	204,000	5.25
A10T-177	11	n	Items 8,9,1,6,12,7	188,000	204,000	5.5
-1 78	11	11		182,000	199,000	7.75
- 179	11	11		180,000	198,000	6.75
-180	11	11		175,000	193,000	6,75
A10T-181	11	n	Items 8,9,7	184,000	196,000	6.0
-1 82	11	11		177,000	193,000	6.0
-183	11	11		179,000	193,000	6.5
-184	11	;1		181,000	193,000	5.5
Alot- 185	n	11	Items 8,9,2,12,7	179,000	194,000	6 .25
-186	n	n		180,000	196,000	6.25
-187	10	11		195,000	209,000	3.0
-188	n	11		184,000	204,000	5.0
A10T- 189	n	" .	Items 8,9,2,5,12,7	189,000	203,000	5.5
-190	11	n		191,000	205,000	7.5
-191	11	11		189,000	202,000	6.0
-192	11	11		185,000	200,000	7.25
A101- 193	11	11	Items 8,9,2,6,12,7	180,000	197,000	6.0
-194	Ħ	11		182,000	198,000	7.0
-195	11			183,000	198,000	6.5
-196	n	11		177,000	195,000	6.5

REPUBLIC AVIATION CORPORATION

MECHANICAL PROPERTIES OF 17-7PH

1.4.6.6.9

PAGE 6 OF 6

ROOM TEMPERATURE TENSILE PROPERTIES

Specimen Number	Heat Number	Gage (Inches)	Processing	Tensile Yield Strength (PSI)	Ultimate Tensile Strength (PSI)	Elong- ation in 2" (%)
A10T-197	880258	•010	Items 8,9,2,7	180,000	193,000	6.5
-198	Ħ	11		172,000	190,000	6.5
- 199	ti	#1		177,000	191,000	6.5
-200	**	11		175,000	189,000	6.25
A10T-201	11	11	Items 10,2,7	183,000	192,000	4.5
-20 2	11	11	• .*	183,000	190,000	4.0
- 203	11	ti	•	180,000	191,000	6.0
-204	11	11		180,000	188,000	5.0
A10T-205	n	n ·	Items 10,2,12,7	189,000	199,000	4.25
- 206	11	11		186,000	198,000	5.0
-207	11	11		188,000	199,000	6.5
-208	81	11		185,000	195,000	6.0
A10T-213	11	II	Items 2,8,9,14,7	196,000	209,000	8.75
-214	11	u		194,000	207,000	6.0
-216	11	11		198,000	211,000	8.0
A10T-217	n	11	Items 8,9,1,14	185,000	198,000	6.25
-218	11	11		175,000	193,000	6.25
- 219	11	11	•	176,000	193,000	6.25
- 220	11	11		181,000	196,000	6.5

MECHANICAL PROPERTIES OF INVAR.

2

1.4.6.10.1

•	[PAGE OF
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS
Invar	Production
HEAT OR BATCH NUMBER	FORM
Unavailable	Sheet, .010" Gage

PROCESSING CONDITION

See Data Below.

To determine the effect of work hard-	RAC DATA REF. RAC MRP Report No. 60-116-1 dated March 16, 1961.
---------------------------------------	---

SPECIMEN TYPE

Tension - Std. Sheet Metal Per ARTC-13-T, dated July 1957.

TEST METHOD:

Specimen Condition:

- A. Specimens Al through A6: As received (annealed by producer).
- B. Specimens Bl through B7: Cold rolled to reduction indicated in data below.
 C. Specimens Cl through C6: Cold rolled, followed by thermal treatment as follows:
 - 1. 1525°F + 25°F for 30 minutes.
 - 2. Water quench.
 - 3. 600°F + 10°F for 1 hour.

 - 4. Air cool. 5. 205°F ± 10°F for 48 hours.
 - Air cool.

Tensile tests were conducted per ARTC-13-T-1 dated July 1957.

ROOM TEMPERATURE TENSILE PROPERTIES

Spec.	Gage (Inches)	Gage Reduction (%)	Grain Direction	Ultimate Tensile Strength (PSI)	Yield Strength (PSI)	Elongation In 2" (%)
Al	.010	0	Longitudinal	82,700	56,300	27.5
A 2	•010	0	Longitudinal	85,800	47,800	28.0
A3	.010	0	Longitudinal	86,000	52,000	24.0
WH	.010	0	Transverse	. 400 و83	49,400	27.5
A5	.010	0	Transverse	81,000	47,600	33.5
A 6	.010	0	Transverse	82,000	48,000	24.5

1.4.6.10.1

MECHANICAL PROPERTIES OF INVAR

PAGE 2 OF 2

ROOM TEMPERATURE TENSILE PROPERTIES - (Continued)

Spec.	Gage (Inches)	Gage Reduction (%)	Grain Direction	Ultimate Tensile Strength (PSI)	Tensile Yield Strength (PSI)	Elongation In 2" (%)
Βļ	•0075	25	Transverse	107,000	93,000	3.5
B 2	. 00 7 5	25	Transverse	108,000	103,100	4.0
В3	•0060	40	Transverse	130,400	126,100	3.0
B4	•0059	41	Transverse	120,800	117,400	2.0
B5	•0056	1414	Transverse	137,100	136,400	2.5
в6	•0045	55	Transverse	105,400	103,100	1.5
B7	•0034	66	Transverse	122,800	107,800	1.0
Cl	•0072	28	Transverse	69,000	41,800	27.5
C2	.006 8	32	Transverse	67,600	40,600	17.0
c3	•0053	47	Transverse	65,000	40,500	24.0
C4	•0052	48	Transverse	65,100	39,900	21,5
C 5	.0042	58	Transverse	59,900	42,500	12.5
с6	•0032	68	Transverse	59,100	43,400	13.0

1.40.6.11.1

27

	PAGE OF
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS
302 Stainless	Production
HEAT OR BATCH NUMBER	FORM
Unavailable	Sheet
PROCESSING CONDITION .	
Half hard	
OBJECT OF TEST	RAC DATA REF.
Determine spotweld properties	ERMR 13 dated July 23, 1956
SPECIMEN TYPE	
See pages 12 and 13.	

TEST METHOD:
A series of tensile pull-out and tensile shear tests were performed on the 302 stainless material. The results obtained are indicated in the accompanying tables.

The shear specimens, as shown on page 12, were tested on a Baldwin-Emery SR-4 testing machine of 50,000 pounds capacity after allowing the specimens to soak at temperature for 1/2 hour. Ultimate load vs. temperature data was recorded and shown on appropriate accompanying curves.

The oven used to reach and maintain temperatures was a portable two-piece unit which could be placed around the specimen and removed after testing. A chromel-alumel thermocouple and potentiometer was used to measure temperature which was accurate up to \$\frac{1}{2}\$ 10°F.

Two holes were drilled in the ends of the tensile shear specimens selected for fatigue testing in order to facilitate mounting into a Sontag 10,000 lb. SF-10U fatigue testing machine. The "U" section specimens were attached to the adjustable jig (page 13) and the whole assembly was then mounted on a Sontag 2000 lb. SF-1U fatigue testing machine. The adjustable jig was designed to insure a tight fit-up between the specimen and jig at all times during testing. This tended to prevent scattered results due to excessive vibration during testing. The minimum/maximum ratio used for all fatigue tests was 0.1.

Page 27 is a photograph (mag. = 250%) of a typical as-cast grain structure of half-hard stainless steel.

CODE:

1.AG.6.11.1

PAGE 2 of 27

TEST RESULT SUMMARY STAINLESS STEEL HALF-HARD

Material Thickness	Average Tensile Pullout - lb.	Average Shear	Tensile	Ratio Tensile Pullout to Tensile Shear
REFERENCE	1	1	2	2 .
.025025	710	1388	1249	.512
.031031	780	1937	2033	.403
ەبە 0بە	1030	. 2477	2598	•H18
.050050	1745	3455	3304	•506
•062-•062	1980	4099	गुगुगु	•485
.078078	4150	5927	5250	•703

REFERENCE CODE:

- 1. Tests by shop process section
- 2. Tests by engineering research section

1.AG.6.11.1

ELEVATED TEMPERATURE SHEAR DATA - STAINLESS STEEL 1/2 HARD .078"

Temperature OF	Ult. Load Lbs	Average
100	5100 5400	5250
200	5300 5200	5250
250	4820	4820
300	4500 5200	4850
35 0	0 المهالم	fififio
400	5000 4740	4870
450	村50	20بليا
500	11180 113110	סבוויו
550	4340	143140
600	4300 4170	4235
650	3840	3840
700	3840 . 4080	3960
750	3800	3800
800	4000 3800	3900
850	4020	4020
900	3780 4280	4030
950	3900	3900
1000	3820 3800	3810

1.40.6.11.1

PAGE 4 OF 27

ELEVATED TEMPERATURE SHEAR DATA - STAINLESS STEEL 1/2 HARD .064"

Temperature F	Ult. Load Lbs.	Average	Temperature op	Ult. Load Lbs.	Average
RT	4600	٠	550	3380	3307
	4330			3340	55
•	4200			3200	
	4600			9 – 4.4	
	4560		600	3460	3283
	4350			3260	
				3130	
100	4300	4233		,,	
	4200		650	3140	3173
	4200		3,0	3180	7417
	•			3200	
150	4540	4260)L00 ,	
	3980		700	2900	2957
	3 , 44		100	3320	-//
200	4260	4120		2650.	
	4000			20,00	
	4100	•	750	3100	3027
	4200		150	3020	2021
250	3600	3700		2960	
-,,	3800	J100		2,000	
	J		800	3260	3027
300	39 2 0	3507	•	2880	5021
700	3200	. 3301		2940 2940	
	3400			2740	
	2400		850	2600	2800
35 0	3300	3450	050	2845	2000
770	3600	3450			
	J 000			2955	
400	3700	3333	900	2500	2660
400	3000))))	900		2000
	3300		•	2960	
	5500			2620	
450	3360	3400	950	2455	2788
4,70	3440	3400	930		2100
	2440		•	2960 2050	
500	3400	3467		2950	
J 00	3540 3540	ابهار	1000	2870	0880
	3460 3340		1000	2870	2880
	<i>74</i> 00			2890 .	

| CODE:

MECHANICAL PROPERTIES OF AISI 302 STAINLESS STEEL

1.40.6.11.1

PAGE 5 OF 27

ELEVATED TEMPERATURE SHEAR DATA - STAINLESS STEEL 1/2 HARD .050"

Temperature op	Ult. Load Lbs.	Average	Temperature OF	Ult. Load Lbs.	Average
RT	3355 3370 3250 3240	3304	550	2380 2370 2460 2350	2390 _,
100	3190 2920 3140 2970	3055	600	2360 2350 2310 2370	2348
150	2900 2880 2880 2920	2895	650	2500 2310 2230 2170	2403
200	2790 2880 2700 2800	2793	700	2295 2390 2310 2380	23144
250	2690 2750 2600 2680	2680	750	2270 2310 2365 2230	22 9 4
300	2510 2450 2590 2400	21,88	800	2210 2140 2290 2250	2223
350	21,60 21,50 2360 21,00	5/178	850 ⁻	2310 2360 2215 2060	2236
1400	2500 2390 2280 2300	2368	900	2220 2200 2150 2250	2205
450	2370 2400 2380 2430	2395	950	2085 2020 2110 21110	2239
500	2410 2300 2400 2340	2363	1000	2060 2090 2300 2300	2188

MECHANICAL PROPERTIES OF AISI 302 STAINLESS STEEL

1.A0.6.11.1 PAGE 6 OF 27

ELEVATED TEMPERATURE SHEAR DATA - STAINLESS STEEL 1/2 HARD .040"

Temperature F	Ult. Load Lbs.	Average	Temperature F	Ult. Load Ibs.	Average
R T	2500 2610 2630 2620	2598	400	1800 1880 1860 1720	1790
	2630			1710	
100	2330 2530 2550 2250 2240	2380	450	1780 1810 1860 1700 1715	1773
150	2200 2160 2200 2000 1980	21.08	500	1710 1800 1800 1750 1750	1762
200	2040 2050 2100 2190 1980	2072	550	1750 1700 1740 1800 1730	1745
250	2050 2000 2040 1900 1850	1968	600	1750 1700 1770 1700 1720 1790	1747
300	1940 2100 2200 1770 1940	1990	650	1820 1840 1740 1740 1690	1752
350	1930 1990 1930 1710 1700	1852		1780 1790	

MECHANICAL PROPERTIES OF AISI 302 STAINLESS STEEL

1.AG.6.11.1

PAGE 7 OF 27

ELEVATED TEMPERATURE SHEAR DATA - STAINLESS STEEL 1/2 HARD .OLO"

Temperature or	Ult. Load Lbs.	Average	Temperature OF	Ult. Load Lbs.	Average
700	1700 1680 1740 1760 1730 1740	1725	900	1790 1780 1650 1630 1280 1000	11,88
750	1620 1640 1600 1720 1560 1200	1560	95 0	1760 1680 1610 1600 1220 1080	1458
800	1760 1750 1740 1710 1210 1360	1622	1000	1660 1610 1620 1590 1020 940	1407
8 50	1880 1900 1800 1680 1320 1400	1563			

1.AG.6.11.1

PAGE 8 OF 27

ELEVATED TEMPERATURE SHEAR DATA - STAINLESS STEEL 1/2 HARD .032"

Temperature Op	Ult. Load Lbs.	Average	Temperature Op	Ult. Load Lbs.	Average
RT	2050 2015	2033	600	1315 945 1420	1248
100	1210 1380	1295		1310	•
150	1185 1240	1213	650	1315 1320 1320 1310	1316
200	1070 1035	1053	700	1370	1345
250	1025 1070	10կ8		1315 1350 1345	
300	990 980 1040 1100	1028	750	1300 1310 1360 1350	1330
350	960 940 1025 1000	981	800	1360 1330 1318 1270	1270
400	960 955 985 950	962	850	1250 1300 1345 1290	1296
450	920 935 915 1415	1046	900	1320 1255 1260 1255	1273
500	1325 915 905 915	1015	950	1200 1230 1270 1260	1240
550	890 1380 880 890	1010	1000	1265 1255 1220 1270	1253

MECHANICAL PROPERTIES OF AISI 302 STAINLESS STEEL

1.AG.6.11.1

PAGE 9 OF 27

ELEVATED TEMPERATURE SHEAR DATA - STAINLESS STEEL 1/2 HARD .025"

Temperature Pr	Ult. Load Lbs.	Average	Temperature o _F	Ult. Load Lbs.	Average
RT'	1050 1180 1360 1370	1249	550	1000 990 940 960	973
	1210		600	965 970	899
100	1100 1320 1130	1183		890 820	
150	1000 1320 1060	1126	650	950 940 920 875	921
200	1040 1200 1050	1097	700	88 <i>5</i> 880 850	864
250	980 960 1 020	987	750	840 830 830	810
300	920 1040 930	963	800	780 800	
350	920 990	936		935 935 825 930	90 L
400	915 920 890		850	890 890	835
400	920 1040 1020	968	900	750 810	
450	870 860 1000	· 895	700	830 820 810 800	815
500	850 860 880	910 ´	950	750 750 760 750	753
PUBLIC AVI	950 950		1000	680 700 790 785	739

MECHANICAL PROPERTIES OF AIST 302 STAINLESS STEEL

1.40.6.11.1

PAGE 10 OF 27

TENSILE SHEAR FATIGUE TEST 1/2 HARD STAINLESS STEEL

Sheet	Max. Lbs.	% Max.	Load Lbs.	Cycles
.032"	1937	90	1743.0	0
		70	1355.9	1000
		50	968.5	2000
		30	581.1	7000
		15	290.6	32,000
		10	193.7	314,000
.040"	2477	90	2229.3	0
		70	1733.9	1000
		50	1238.5	4000
		30	743.1	7000
		15	371.55	89,000
		10	247.7	315,000

1.AG.6.11.1

PAGE 11 OF 27

PULL OUT FATIGUE TESTS 1/2 HARD STAINLESS STEEL

Sheet	Max. Lbs.	% Max.	Load Ibs.	Cycles	
.025"	710	90	639.0	0	
		70	447.0	0	
		50	355.0	0	
		30	213.0	2,000	
		15	100.0	19,000	
		10	71.0	64,000	
		15 10 5	35.5	2,537,000	(No Fracture)
.032"	780	90	702.0	0	
		70	546.0	1000	
		50	390.0	4000	
		30	234.0	20,000	
		15	117.0	164,000	
		10	78.0	2,000,000	(No Fracture)
• Ofto #	1030	70	721.0	0	
		50	515.0	1000	
		30	309.0	27,500	
		15	154.5	65,000	
		10	103.0	363,000	
		15 10 5	51.5	2,000,000	(No Fracture)
.050"	1745	70	1221.5	0	
		50	872.5	1000	
		30	523.5	2000	
		15 10	261.75	45,000	
		10	174.5	88,000	
.062"	1980	70	1386.0	0	
		50	990.0	0	
		30 15	574.0	3000	
		15	287.0	148,000	
		10	198.0	155,000	
		5	99.0	1,076,000	
.078"	4150	50	2075.0	. 0	
		30	1245.0	2000	
		15	622.5	<u> 3</u> 6,000	
		10	415.0	167,000	

1.AG.6.11.1

PAGE 12 OF 27

Tensile Shear Specimen

Tensile Shear Fatigue Specimen

U-Type Tensile Pull-Out and Fatigue Specimen

NOTE:

t =- . 025"

.031"

. 040"

. 050"

.064"

.078"

1.40.6.11.1

PAGE 13 of 27

NOTES:

- 1. Four 3/8-16 NC bolts are used to hold assembly together.
- 2. Bottom of jig opens 1/4", giving over-all length of 4-3/4".
- 3. Material = 4340.

Adjustable U-Section Fatigue Specimen Jig

1.AG.6.11.1

Elevated Temperature Shear Properties of Stainless Steel Halfhard Spotwelds

1.4G.6.1I.1

PAGE 15 OF 27

Load vs Temperature Properties - . 025 Spot Welded Sheet

PAGE 16 OF 27

CODE:

Load vs Temperature Properties - . 032 Spot Welded Sheet

Load vs Temperature Properties - .040 Spot Welded Sheet

1.AG.6.11.1

PAGE 18 of 27

CODE:

Load vs Temperature Properties - . 050 Spot Welded Sheet

1.40.6.11.1

PAGE 19 OF 27

Load vs Temperature Properties - .062 Spot Welded Sheet

CODE:	
	1.40.6.11.1

PAGE 20 OF 27

Load vs Temperature Properties - . 078 Spot Welded Sheet

1.AG.6.11.1 PAGE 22 OF 27

Pull-Out Fatigue Tests - Halfhard 302 Spot Welded Sheet - Room Temperature

PAGE 23 OF 27

800

400

REPUBLIC AVIATION CORPORATION

1.AG.6.11.1

PAGE 25 OF 27

1.AG.6,11.1

PAGE 26 OF 27

% Ultimate Load

1.AG.6.11.1

PAGE 27 OF 27

1.AG.7.5.5

MECHANICAL PROPERTIES OF RENE! LL

PAGE 1 OF 8

	PAUS	
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS	
Rone: 41	Production	
HEAT OR BATCH NUMBER	FORM	
R-110, R-121	Sheet	

PROCESSING CONDITION

See Data Below

OBJECT OF TEST	RAC DATA REF.
To Evaluate Tungsten Inert Gas	
Fusion Welds in Rene! 41	M.R. Report No. 58-90-1

Method Standard No. 151a, dated May 6, 1959. Elevated Temperature Tensile Tests Per ARTC-13T-1, July, 1957.

TEST METHOD: Standard Sheet Metal Tensile Tests and Bend Test Specimens Tested in Accordance With Federal Test Method Standard No. 151a, dated May 6, 1959. Elevated Temperature Tensile Tests in Accordance With ARTC-13T-1, July, 1957.

CHEMICAL ANALYSIS OF SOLUTION ARREALED BASE METAL AS SUPPLIED BY PRODUCER

	•032 Gage	•032 <u>Gage</u>	•062 Dia• Welding Wire
С	•12	•09	•10
Mn	•07	•07	•07
Si	•06	•07	•05
Cr	19.05	19.00	19.01
Co	11.03	11.00	11.12
Mo	9.79	9.80	9.82
Ti.	3.17	3.23	3.24
Al.	1.52	1.58	1.49
Fe	1 48	•30	•30
В	•0030	•0030	•0037
S	•008	•008	-
Ni	Bal.	Bal.	Bal.
Heat No.	R-110	R-121	R-074

PAGE -

_ OF .

PHYSICAL PROPERTIES OF SOLUTION ANNEALED BASE METAL AS SUPPLIED BY THE PRODUCER

	•032 Gage	•090 Gage
.2% Yield psi	75,700	76,130
Ultimate psi	11:11,300	147,800
.02% Yield psi	69,400	67,700
% Elong. in 2"	30	35
Hardness	RC 27	RC 26
Heat No.	R-110	R-121

PHYSICAL PROPERTIES OF BASE METAL IN THE AGED CONDITION AT ROOM AND EXEVATED TEMPERATURES

		Aged/1400°F/16 Hrs.		Elev. Temp. Tests*		
Gage	YS ksi	UTS ksi	% E. in 2"	YS ksi	ots ksi	;; E. in 2"
•032	161.3	192.3	0.8	129.2	150.0	9•0
•032	159.0	193.2	8.5	127.4	151.6	10.5
•032	163.7	200.0	9.0	135.4	166.5	10.0
•090	142.9	188.0	13.0	123.4	160.8	9.0
•090	145.8	193.4	15.5	131.8	154.2	9.5

^{*} Elevated Temperature Tests Were Conducted At 1400°F + 5°F After Holding Specimens For 20 Minutes At Temperature.

PAGE 3 OF 8

WELD AND STRETCH TENSILE TEST RESULTS .032 GAGE (ROOM TENFERATURE)

Grain Transverse to Length of Specimens

S ₁	pecimen No.	% Stretch	Yield Strength psi	Ultimate Tensile Strength psi	% E. in 2"	Location of Fracture
	A-13 A-5 A-3 A-8 A-15 A-12 A-10	0 0 5 10 10 11 12 20	133,600 142,300 130,100 123,800 141,500 137,800 128,800 141,700	167,900 173,400 165,100 171,400 172,300 169,200 162,500 171,700	3.5 4.0 6.0 5.5 4.5 4.0 34.0	In Weld In Weld In Weld In Weld In Weld In Weld Base Metal In Weld In Weld
		Grai	in Parallel	to Length of	Specimens	<u>. </u>
	A-11 A-16 A-6 A-14 A-9 A-1 A-2 A-7	0 0 4 5 5 10 15	146,500 132,700 129,800 145,600 140,000 139,300 134,900	176,700 157,100 157,400 176,600 173,300 167,900 171,600 169,700	4.5 6.0 6.0 6.0 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	In Weld In Weld In Weld In Weld In Weld In Weld In Weld In Weld In Weld In Weld
	B-1 B-2 B-3 B-4 B-5 B-6 B-7 B-8	-	99,400 105,600 143,800 127,200 132,900 140,000 125,500 140,000	132,900 123,600 163,100 139,900 153,400 161,900 137,300 163,100	1.0 1.0 2.0 2.0 1.0 1.5 1.0	Edge of Wold Edge of Weld Edge of Weld Edge of Weld Edge of Weld Edge of Weld Edge of Weld
	C-1 C-2 C-3 C-5 C-6 C-7 C-8	-	141,500 134,100 139,400 138,200 155,000 161,800 141,200 129,200	171,400 172,600 172,700 173,300 174,400 174,500 158,800 169,600	3.0 3.5 5.0 4.0 4.0 5.5 3.5	Base Mctal Edge of Weld In Weld Edge of Weld In Weld In Weld In Weld In Weld In Weld

(continued on next page)

CODE:	-
1.AG.7.5.5	-
PAGE 4 05 8	-

MECHANICAL PROPERTIES OF RENE: 41

- NOTES: 1. All specimens were welded in the solution annealed condition.
 - 2. Specimens #A-1 through A-16 were stretched prior to welding to simulate a formed part. Weld reinforcement was removed.
 - 3. All specimens were .032 gage Rene! 41 sheet, 1-1/4" wide x 8" long prior to stretching.
 - 4. After stretching in tensile machine, all specimens were sheared at center of 8" length and joined by butt welding.
 - 5. Percent stretch was measured between both 1" and 2" gage marks to establish average.
 - 6. Specimens #B-1 through C-4 did not have the weld reinforcement removed in order to check notch sensitivity.
 - 7. Weld reinforcement was removed from specimens #C-5 through C-8. All specimens were re-solution annealed at 1975 F + 25 F, air quenched and aged at 1400 F for 16 hours before testing.

1.AG.7.5.5

MECHANICAL PROPERTIES OF RENE! 41

PAGE 5 OF 8

WELD TENSILE TEST RESULTS, .090 GAGE (ROOM TEMPERATURE)

Specimen No.	Yield Strength psi	Ultimate Tensile Strength psi	% Elong. in 2"	% Elong. in 1/2"	Location of Fracture
2-1	136,800	158,800	3.5	10.Ö	In Weld
2-2	139,100	149,500	2.0	8.0	In Weld
3	129,900	156,900	3 • 5	8.0	Edge of Weld
4-1	134,800	160,200	3.5	10.0	In Weld
4-2	138,800	164,000	4.5	10.0	In Weld
4-3	138,800	163,500	4.5	10.0	In Weld
20-1	132,200	161,700	5• 5	10.0	Edge of Weld
20-2	138,900	163,500	4.0	12.0	In Weld
21	135,000	161,700	5. 0	10.0	In Weld
22	135,100	164,100	5. 0	10.0	In Weld
2 <u>4-1</u>	137,900	161,300	5. 0	10.0	In Weld
24-2	135,500	154,700	3• 5	10.0	In Weld
2W	139,200	168,700	7. 0	8.0	In Weld
3VIL	139,200	168,100	5•0	10.0	In Weld
3W-2	137,600	164,700	5•0	10.0	In Weld
1W-1	133,400	163,600	6 • 5	10.0	In Weld
4W-2	137,200	163,100	5•0	8.0	In Weld
13W	131,400	153,600	3.0	10.0	In Weld
14W-1	135,500	500و 154	3.0	10.0	In Weld
14W-2	200,200	158,300	4.0	12.0	In Weld
21W	139,800	164,900	5•0	8.0	In Weld
22W	137,500	200,200	6 • 5	14.0	In Wold
2HM	132,800	161,500	5•0	12.0	In Weld
26W	133,300	157,700	4.0	6.0	In Weld

- NOTES: 1. All specimens were welded in the solution annealed condition.
 - 2. Specimens identified by the letter "W" were re-solution annealed at 1975°F + 25° after welding and water quenched.
 - 3. Specimens without the identifying letter "W" were re-solution annealed at 1975°F + 25°F after welding and air quenched.
 - 4. All specimens were aged at 1400°F for 16 hours before testing.
 - 5. Weld bead was removed from all specimens.

PAGE 6 0F 8

WELD TENSILE TEST RESULTS (ROOM TEMPERATURE)

- Condition 1. Material was welded in the 1975°F + 25°F solution annealed condition. Weld bead was removed and specimens were tested with no subsequent heat treatment.
- Condition 2. Material was welded in fully heat treated and aged condition. (Solution annealed at 1975°F + 25°F, water quenched, and aged at 1400°F for 16 hours.) Weld bead was removed and specimens were tested with no subsequent heat treating.
- Condition 3. Material was welded in the 1975°F + 25°F solution annealed condition. Specimens were then aged at 1400°F for 16 hours, weld bead was removed, and specimens were tested.

Condition 1

Specimen	Yield Strength psi*	Ultimate Tensile Strength psi	% Elong. in 2"	% Elong. in 1/2"	Location of Fracture
1 2 3-1 3-2 5-1 5-1 6-2 8 24	85,300 84,800 90,700 87,800 87,000 85,700 77,900 87,800 88,400 86,000	139,100 142,000 110,700 140,800 124,000 141,300 146,000 150,800 151,100 135,900 148,700	16.5 20.5 5.0 17.5 8.5 21.0 32.0 23.5 21.0 14.5 26.0	22.0 22.0 10.0 26.0 8.0 26.0 46.0 24.0 20.0 26.0	In weld Edge of weld Defect in weld In weld In weld In weld Base metal In weld In weld In weld In weld In weld In weld In weld
	•	Cond	lition 2		
12-1 12-2 12-3 12-4 12-5 12-6 12-7 15-1 15-2 15-3 15-4 15-6	See notes See notes 102,500 See notes See notes 108,500 110,400 104,000 105,800 103,800 101,700 102,700	38,300 71,400 118,300 53,300 60,100 62,100 146,600 153,600 140,200 148,400 144,200 130,600 148,800	1.0 1.0 2.5 0.5 0.5 0.5 5.0 6.0 4.5 3.0 6.0	4.0 10.0 2.0 2.0 2.0 2.0 24.0 24.0 24.0 21.0 22.0	See notes See notes See notes See notes See notes See notes In weld In weld In weld In weld In weld In weld In weld In weld In weld In weld

WELD TENSILE TEST RESULTS (ROOM TEMPERATURE) - contid

Condition 3

Specimen No.	Yield Strength psi*	Ultimate Tensile Strength psi	% Elong. in 2"	% Elong. in 1/2"	Location of Fracture
1A-1	131,500	169,900	5.0	14.0	In weld
1A-2	149,800	185,200	7.0	14°0	In weld
2A	146,300	159,500	3.0	8.0	In weld
3A	139,500	160,500	3.5	8.0	In weld
3A 4A	136,400	159,100	3.5	10.0	In weld
6A	140,100	170,800	6.0	12.0	In weld
ПļА	125,700	176,500	8.5	16.0	In weld
20A	137,000	169,800	6.5	14.0	In weld
21A	500 وبليلا	176,600	6.5	10.0	In weld
22A	141,200	170,600	6.0	10.0	In weld
2lıA	132,200	161.500	4.0	8.0	In weld

- * Extensometer yield, 0.2% offset, 2 inch gage.
- NOTES: 1. Specimens No. 12-1, 12-2, 12-4, 12-5 and 12-6 had gross defects in the welds. Specimen No. 12-3 had a slight defect in the weld. Specimen 12-7 had no defect in the weld. All specimens identified with prefix 12 were cut from the same butt welded plate. Because of gross defects in welds, no yield limit could be ascertained.
 - 2. Elongation in 1/2" was measured in area of fracture of test piece.

PAGE 8 OF 8

CUIDED BEND TEST RESULTS

Specimen No.	Type Specimen	Angle of Bend	Remarks
. 1	Welded	30°	Failed in weld - failure started at edge of test piece
2	Welded	50°	Failed in weld
3	Welded	50° 27° 85°	Failed in weld
4	Welded	85°	Failed in weld
5	Welded	60°	Failed in weld
lc	Base metal	135°	No evidence of cracks
2C	Base metal	140°	No evidence of cracks
30 40 50	Base metal	742 °	No evidence of cracks
ЙС	Base metal	145°	No evidence of cracks
5C	Base metal	135°	No evidence of cracks
6C	Base metal	が0。	No evidence of cracks

- NOTES: 1. All specimens were bent over a 5 T radius. Actual ram dimension was .980 and the thickness of the specimens was .100".
 - 2. The control specimens (base metal) were bent beyond the 105° angle to see if cracking could be initiated, but no evidence of cracking was found at angles up to 145°.
 - 3. All specimens were in the 1975°F + 25°F solution annealed condition, re-solution annealed after welding at 1975°F + 25°F, water quenched, and aged at 1400°F for 16 hours.

MECHANICAL PROPERTIES OF RENE! 41

PAGE 1 05 6

	, PAGE OF	
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS	
Rene : 41	Production	
HEAT OR BATCH NUMBER	FORM	
R-110	•032 Sheet	

PROCESSING CONDITION

See Data Below

	·
OBJECT OF TEST	RAC DATA REF.
To Evaluate Resistance Spot Welding	ESR 61-230
of Rene: 41	M.R. Report No. 58-102-1

SPECIMEN TYPE Single Spot Shear Specimens Per MIL-W-6858A, dated 9 July 1957. Tension Pullout Specimens Per MIL -W-4994, dated 28 October 1955 or Equivalent.

TEST METHOD: Single Spot Shear Specimens and Tension Pullout Specimens Were Tested in Accordance With MIL-W-6858A, dated 9 July 1957, and MIL-W-4994, dated 28 October 1955, respectively.

CHEMICAL ANALYSIS AS SUPPLIED BY PRODUCER

C Mn Si Cr Co Mo Ti Al Fe B S Mi 12 .07 .06 19.05 11.05 9.79 3.17 1.52 .48 .005 .008 Bal.

TENSILE SHEAR AND TENSION PULL OUT VALUES (LBS) WELDED IN SOLUTION HEAT TREATED CONDITION*

Ten	sile		Strength D	
Shear S	trength		Tension	
1780 1820 1750 1780 1740 1800 1760	1760 1790 1780 1840 1810 1810		938 880 904 804 1120 822 766	
1810	1810		968	
1750	1790		812	
1760	1810		968	
	1789	Average	898	

(continued on next page)

PAGE _2 or .6

MIL-W-6858A Requirements:

Shear Min. Avg. lb/weld - 1280
Tension Min. Avg. lb/weld - 320 (25% x 1280)

Shear Test Variation - $\frac{\text{Range}}{\text{Average}} = \frac{1840 - 1740}{1789} = .06$ (Required .25 max.)

Actual Ductility - Actual Avg. Tension Strength - 898 x 100 = 50.2%

Specification Ductility - Actual Avg. Tension Strength = 898 x 100 = 70% Min. Spec. Avg. Shear = 1280 x 100 = 70%

* Solution Heat Treated Condition: 1950°F - water quenched.

TENSILE SHEAR AND TENSION PULL OUT VALUES (LBS) WELDED IN THE AGED CONDITION*

	sile trength	Strength In Tension
1868 1838 1837 1838 1958 1938 1940 1940	1942 1934 1942 1940 1938 1942 1938 1922	820 920 864 912 984 750 928 890 724
1946	<u>1936</u> 1921	<u>912</u> 878

MIL-W-6858A Requirements:

Shear Min. Avg. 1b/weld - 1280

Tension Min. Avg. lb/weld = 320 (25% \times 1280)

Shear Test Variation -
$$\frac{\text{Range}}{\text{Average}} = \frac{1958 - 1837}{1921} = .063$$
 (Required .25 max.)

Aged Condition: 1400°F - 16 Hours

TENSILE SHEAR AND TENSION PULL OUT VALUES (LBS) WELDED IN THE SOLUTION HEAT TREATED CONDITION AND AGED* AFTER WELDING

Tensile Shear Strength	Strength In Tension
1530	460
1600	480
1220	490
1420	400
1580	580
1600	460
1680	420
1380	480
1800	420
1400	7710
1521 Average	463

MIL-W-6858A Requirements:

Shear Min. Avg. 1b/weld - 1280

Tension Min. Avg. lb/weld - 320 (25% x 1280)

Shear Test Variation -
$$\frac{\text{Range}}{\text{Average}} = \frac{1800 - 1220}{1521} = .38$$
 (Required .25 max.)

Aged Condition: 1400°F - 16 Hours

TENSILE SHEAR AND TENSION PULLOUT VALUES (LBS) WELDED IN THE SOLUTION HEAT TREATED CONDITION, RESOLUTION HEAT TREATED AND AGED* AFTER WELDING

	nsile Strength		Strength I Tension	
1740 1780 1744 1688 1812 1728 1772	1700 1640 1616 1596 1782 1770 1576		356 394 406 402 390 424	
	1710	Average	395	

MIL-W-6858A Requirements:

Shear Min. lb/weld - 1280

Tension Min. $1b/weld = 320 (25\% \times 1280)$

Shear Test Variation -
$$\frac{\text{Range}}{\text{Average}} = \frac{1812 - 1576}{1710} = .13$$
 (Required .25 Max.)

Resolution Heat Treat (1950°F - Water Quench), Aged (1400°F - 16 Hours)

PAGE 6 OF 6

TENSILE SHEAR STRENGTH (LBS) AT ELEVATED TEMPERATURE*

Tensile Shear Strength	Test Temperature F
1760	1000
1855	1000
2080	1000
1835	1200
1650	1200
1620	1200
11.25	J†00
1335	1/100
1245	1400
725	1600
720	1600
850	1600
570	1800
575	1800
595	1800
265	2000
290	2000
280	2000

^{*} Exposure Time: 30 Minutes

MECHANICAL PROPERTIES OF RENE'41

1.A.7.5.7

Production
M
•
iheet ,
1400°F/16 hours.
DATA REF.
RAC unpublished data
e sheet spec. as per ARTC-13-T

Tension compression & stress rupture tests as per ARTC-13 June 1959.

1. A. 7. 5. 7

PAGE 2 OF 5

RENE'41

TENSILE PROPERTIES VERSUS TEMPERATURE (1/2 HOUR SOAK)

0.050 SHEET - TRANSVERSE SHEET

Test Temp.	Ultimate (ksd)	.2% Yield (ksi)	Elong. (% in 2")	Remarks
75	204	158	15.5	•
75	203	145	23.0	NIMT
75	204	146	25.0	
900	179	138	21.0	
900	180	138	16.5	NIMT
900	180	137 ·	25.0	•
1200	172	131	6. 5	BAGM
1200	168	130	7.0	BAGM
1200	167	134	8.5	BAGM
1400	130	117	2.0	BOGL
1400	140	120	3.5	BOGL
1400	142	118	3.0	
1500	119	109	4.0	
1500	117	113	3.5	BOGL
1500	115	106	3.0	BOGL
1600	90	83	4.0	BOGL
1600	89	83	5.0	BOGL
1600	85	*	4.5	BOGL
1700	47.5	43.0	3, 5	BOGL
1700	50.5	47.5	4.0	BOGL
1700	54. 0	53.0	3, 5	BOGL
1800	28. 2	27, 8	3.0	BOGL
1800	24.8	24.5	3.5	BOGL
1800	25.7	24.4	5.5	BOGL

^{*} Recorder malfunctioned

NIMT Failure not in the middle third of gage length

BAGM Broke at the gage mark (1200°F specimens had gage marks scribed on)

BOGL Broke outside of gage length (on upper side of specimen)

1.A.7.5.7

RENE'41

EFFECTS OF STRAIN ON TENSILE PROPERTIES VERSUS TEMPERATURE (1/2 HR. SOAK)

.050 SHEET - TRANSVERSE TESTS

Test Temp.	Prior Strain (%)	Ultimate (ksi)	.2% Yield (ksi)	Elongation % in 2"	Remarks
75	10	215	185	16, 5	. •
75	. 10	219	191	1.5, 5	
75	20	223	199	12,5	•
75	20	228	200	10.5	
1200	10	194	163	11,5	
1200	10	196	167	-	Grip Failed
1200	20	211	184	4.0	BAGM
1200	20	211	181	6.5	BAGM
1500	10	124	•	•	Grip Failed
1500	10	101	87.0	3.0	BOGL
1500	20	102	90.5	3.0	BOGL
1500	20	101	92.5	3, 5	BOGL
1800	10	24.6	18.6	5,0	BOGL
1800	10	28.8	21. 3	5.5	BOGL
1800	20	22.6	18.9	6.0	BOGL
1800	20	22.4	18.0	-	Grip Failed

* Recorder malfunctioned

NOTE: Grip end of all specimens were inadvertently undercut during manufacture. Three of these failed at grip.

, 200 £

RENE'41

COMPRESSION PROPERTIES AT ROOM TEMPERATURE

STRAINED AND UN-STRAINED SPECIMENS

.050 SHEET

Grain * Direction	Pre-Age ** - Strain (%)	.2% Yield (ksi)	Modulus psi 10 ⁶
Trans.	None	169 163 168	32.6 31.2
Long.		163 159 165	32.6 32.7 30.6
Trans.	10 10	21 4 198	 32. 8
Į.	20 20	232 224	32.6 31.5

^{*} Trans. - Grain transverse to test direction Long. - Grain in same direction of test

^{**} Strained in tension in the same direction as tested..

| CODE:

1.A.7.5.7

PAGE 5 OF 5

RENE'41 SHEET

STRESS - TO - RUPTURE

Nominal Gage (inches)	Test Temp.	Stress (ksi)	Time to Rupture (hours)	Elongation at Failure (% in 2")
.020	1400	60	1.7	Grip Failure
.020	1400	60	5. 2	Grip Failure
. •	1400	50	31.7	2.0
Ì	1400	35	245. 1	4.5
	1500	35	6.2	2.2
	1500	30	39.7	6.0
	1500	25	57.4	8.0
	1500	24	78.7	5.0
	1500	18	383.6	11.5
	1600	25	5.5	5.0
	1600	20	23.0	9.5
	1600	15	66. 1	11.5
	1600	12	204. 2	11.0
♦	1700	10	27.2	22.5
.020	1700	5		
.070	1700	18	12.6	22.0
070	1700	13	54. 3	24. 0 _.
. 070	1700	9	189	26.0

TEST METHOD:

1.A.7.7.1

CODE:

	$ PAGE = \frac{1}{OF} OF = \frac{7}{OF}$		
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS		
"K" Monel	Production		
HEAT OR BATCH NUMBER	FORM		
Unavailable	Sheet		
PROCESSING CONDITION			
See below			
OBJECT OF TEST	RAC DATA REF.		
Determine effects of variations in heat treatment.	ESRMR 185 dated September 15, 1960		
SPECIMEN TYPE			
As per Fed. Test Std. No. 151a Meth	od 211.1; May 1959		

As per Fed. Test Method Std. No. 151a Method 211.1 dated 6 May 1959.

The investigation was accomplished to determine to what extent the properties of "K" Monel sheet would be affected by deviation from 16 hours at 1090°F heat treatment cycle. Specimens tested were aged for 8 and 16 hours at 1040°F, 1090°F, and llh0°F. Cooling rates were also varied, where indicated, as per accompanying tables and figures. The effect of this altered cooling rate was adjusted to make it compatible with an 8 hour day and to require minimum furnace attention.

1.4.7.7.1

PAGE 2 OF 7

Tensile Strength Versus Pre-Aging Strain

Longitudinal Tests - .040 Sheet-1090°F Age

Age Time Hrs.	Prestrain (%)	Ultimate (ksi)	.2% Yield (ksi)	Elong. (% in 2")
16	None	151	106	24.0
16	None	149	104	24,0
16	5	151	108	23.5
16	5	155	111	23.0
16	10	158	116	20.0
16	10	159	117	20.0
16	15	165	127	17.0
16	15	164	126	17.5
8	None	159	105	23.0
8	None	154	104	24.0
8	5	157	112	23.0
8	5 .	155	111	22.5
8	10	159	120	20.0
8	10	160	122	19.5
8 8 8 8 8	15	163	132	17.0
8	15	165	134	18.0

NOTE: Cooling rate from aging temp. as per Page 7 QQ-N-286 requirements are: 130 ksi, tsu and 90 ksi, tys with 15% elongation.

1.A.7.7.1

PAGE 3 OF 7

"K" Monel

Tensile Strength Versus Aging Temperature

Longitudinal Tests - .040 Sheet

Aging Temp.	Aging Time (Hrs.)	Ultimate (ksi)	.2% Yield (ksi)	Elong. (% in 2")
1040	8	138	90.5	32.0
1040	8	136	89.0	332.0
1040	16	143	97.5	30.0
1040	16	145	99.0	28.0
1090	8	151	104	27.0
1090	8	153	108	24.5
1090	16	153	109	25.5
1090	16	155	112	23.5
1140	8	151	106	20.5
1140	8	153	111	22.0
11710	16	151	107	22.0
1140	16	149	104	22.0

NOTE:

Cooling rate from aging temp. as per Page 7 QQ-N-206 requirements are 130 ksi, uts and 90 ksi tys with 15% elongation.

1.A.7.7.1

**Monel (.040 Sheet) Strengths of Formed and Aged Parts

Ultimate (ksi)	.2% Yield (ksi)	Elong. (% in 2")
155	122	18.0
157 155	110	20.5 20.0
157	107 113	18.0
162	112	20.0
156 154 155 154	119	18.5
154	109	20.0
155	112	18.5
154	111	19.0
157	113	19.0

NOTE: These specimens were cut from a canopy part made in the production shop on production tooling and heat treated with production equipment.

The gage section of these specimens was so arranged as wo fall on what appeared to be the more severely worked areas of the part.

1.A.7.7.1 SE 5 OF 7

Room Temperature Strength vs. Strain - Transverse Specimens

1.A.7.7.1

PAGE 6 OF 7

"K" Monel - Mechanical Properties vs. Aging Temperature

1.A.7.7.1

PAGE 7 OF 7

Cooling Rate for Aging "K" Monel

1.4.7.9.1

CODE:

	•	PAGE 07
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS	
Electroformed Nickel	Experimental	
HEAT OR BATCH NUMBER	FORM	TO COMPANY OF THE COM
Unavailable	Sheet	

As Deposited

To determine tensile properties of electroformed nickel.

RAC DATA REF.

ERMR 4745 dated February 3, 1959 plus addendum I, April 2, 1959 and Addendum II April 9, 1959.

SPECIMEN TYPE

See below

TEST METHOD:

Four samples of electroformed nickel sheet were submitted for evaluation. These sheets, which were obtained from Electroforms, Inc. of Connecticut, were of the following dimensions:

Designation	Length Inches	Width Inches	Nominal Thickness Inches
A	14	1-1/2	0.025-0.028
В	13	1-3/4	0.028-0.030
C	9-1/2	8-1/2	0.008-0.010
D	10-1/4	9-1/4	0.010-0.015

Subsize tensile specimens 3 in. long with a gage section 0.250 in. by 1 in. were machined from the material. Specimens from both longitudinal and transverse directions were cut from sheets C and D. Testing was performed at room temperature on the Baldwin 60,000 lb. machine. Ultimate load and elongation to failure data were recorded, and are indicated on an accompanying table.

Three standard flat tensile specimens were machined from sheet D, and tested in the 60,000 lb. Baldwin machine. Modulus determinations were made from the recorded load-strain curves. Data are presented below:

Spec. No.	Thickness - in.	E- 10 ⁶ psi	UTS psi.	1 Klong. in 2"
M1.	0.016	29.9	90,000	7.0
M2	0.013	29.0		7.5
M3	0.012	22.7	99 ,800 87 , 800	7.0

CODE	:
------	---

1.A.7.9.1

PROPERTIES OF ELECTROFORMED NICKEL

PAGE 2 OF 4

Also tested (under Addendum I) were specimens obtained from Allied Research and Engineering Company. The material was supplied as longitudinal strip sections, 0.05 inch thick, cut from a large electroformed cylinder. The effect of the curvature was deemed negligible and standard sheet tensile specimens were prepared.

Because of some difficulty in exactly determining the elastic modulus of the material, two additional specimens were prepared using SR4 paper strain gages to obtain the elastic data.

The results of the series of tests are also presented in an accompanying table, with specimens numbered 1 to 6.

Under addendum II, four additional specimens again from Allied Research Engineering were tested. This material was supplied as flat sheet 0.025" thick. The data obtained therefrom are shown in the accompanying table as specimen numbers 7 to 10.

1.4.7.9.1

OF .

Room Temperature Tensile Data For Electroformed Nickel Sheet

Spec. No.	Thickness Inch	UTS (psi)	<pre>\$ Elong. in 1/2 inch</pre>
Al	0.0252	91,000	20
A2	0.0250	94,600	16
Å3	0.0250	93,200	18
ريم مار	0.0290	84,000	14
AJ. A5	0.0255	91,400	16
N 2	0.0255	71,400	10
	AVERAG	90,800	17
B1	0.0260	90,000	16
B2	0.0285	92,500	22
B3	0.0270	89,700	21
Br	0.0290	89,700 85,700	21
B5	0.0245	91,800	17
-,		72,000	- 1
	AVERAG	E 89,900	19
ClI#	0.0100	104,000	_
C2L	0.0110	105,000	7
C3L	0.0100	97,500	,
Chr	0.0125	87,500	6 8
C5L	0.0100	82,300	_
OJL	0.0100	02,500	•
	AVERAG	E 95,500	7
ClT##	0.0092	107,000	8
C2T	0.0091	106,000	.8
C3T	0.0085	107,000	•
CLT	0.0095	106,000	12
CST	0.0079	106,000	9
	·	-	
	AVERAG	E 106,000	9
DIL	0.0130	98,500	-
D2L	0.0155	90,000	11
D3L	0.0165	97,500	10
	0.0170	91,500	8
DhT D2T	0.0170	102,000	10
	AVERAG	e 95,900	10
DIT	0.0132	98,800	10
D2T	-	-	=,
D3T	0.0200	81,100	<u>-</u> 16
DĻT	-	•	-
D5T	0.0160	112,800	•
	AVERAG	E 97,600	13

Specimens cut in longitudinal direction Specimens cut in transverse direction

CODE:

1.A.7.9.1

PAGE 4 OF 4

Mechanical Property Data for Electrolytic Nickel (Allied Research and Eng'g. Company)

Specimen	Ult. Tens. Str. psi	Yield Stress 0.2% Offset psi	Percent Elongation in 2 Inches
ı	103,000	90,600	13,0
2	110,000	95,000	10.0
3	111,000	100,000	11.0
4	103,000	95,000	14.0
5	E x 10 ⁻⁶ psi 28.3 30.0	stic Modulus Data	

Specimen	0.2% Yield Strength	Ult. Tensile Strength	<pre># Elong. in 2 inches</pre>
7	124,000	131,000 psi	1.5
8	-*	118,000	6.0
9	-*	138,000	1.5
10	133,000	137,000	0

[#] Data not obtained.

PAGE 1 05 17

	PAGE OF	<u> </u>
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS	
Stretched Plexiglas 55 and Composite (see data below)	Production	
HEAT OR BATCH NUMBER	FORM	
Unavailable	Sheet	
PROCESSING CONDITION		
Not Applicable	·	
OBJECT OF TEST Determine bearing strength	RAC DATA REF.	
and fatigue characteristics of several transparent materials	ERMR 4772 dated Feb. 20, 1959	

SPECIMEN TYPE

See data below

TEST METHOD:

Three materials were tested:

1) Stretched Plexiglas 55 - 0.25 sheet

2) SN-10 Nylon-Acrylic Laminate - 0.25 inches thick (11 plies)

3) Composite material - 0.25 Stretched Plexiglas bordered on front and back by 3 ply SN-10 Nylon-Acrylic Laminate (resin content 58.2%) bonded on with Sh7-AX cement.

BEARING TESTS

The test specimens employed for these tests are illustrated on page 2. These specimens were prepared twice scale of Fed. Spec. L-P-406 Method 1051. Method 1051 of Federal Spec. L-P-406 is limited to evaluating .125 stock. The bearing tests were conducted at -65°F, room temperature, and 200°F in accordance with the requirements of Fed. Spec. L-P-406 Method 1051. Bearing deformation was not recorded at -65°F.

FATIGUE TESTS

All fatigue bearing specimens were cut into the configuration illustrated by the composite material specimen on page 3. In addition to the hole edge distance of 1.375" (e/D = 5.5) shown, a number of specimens were fatigued with an edge distance of 5/8" (e/D = 2.5). The fatigue testing was conducted at room temperature with a cycling rate of 1800 cpm and a stress ratio R = .167.

1. BF. 12.1.1

PAGE 2 OF 17

1.BF.12.1.1

PAGE 3 OF 17

Typical Fatigue Bearing Specimen (Composite Configuration Study)

ROOM TEMPERATURE BEARING STRENGTH

Specimen No.	t (in.)	Bearing Area (in. ²)	Stress At 4% E. (PSI)	Ultimate Stress (PSI)
•		Stretched Ple	exiglas 55	
Bl	.248	•062	20,300	32,250
B2	.248	•062	16,200	37,400
В3	-247	•062	20,100	36,000
Bl4	.246	•062	17,700	34,400
B5	.246	.062	15,300	38,000
		Avera	ge 17,920	35,610
		SN-10 Nylon-Acr	ylic Laminate	
1-2	.254	-064	12,600	37,250
1-3	.253	.063	12,700	36,800
23-1	•257	•064	9,380	36,600
1-5	.253	.063	11,500	37,000
22-1	.256	•064	10,700	35,250
		Avera	ge 11,375	36,580
		Plexiglas and Lam	inate Composite	
Al	.402	.10	7,500	27,450
A2	•399	.10	16,000	25,150
Λ3	.400	.10	10,000	24,550
Alı	•400	.10	19,000	24,350
A5	.398	.10	14,750	24,100
		Avera	ge 13,462	25,120

PAGE 5 0F 17

BEARING STRENGTH AT +200°F

Specimen No.	t (in.)	Bearing Area (in. ²)	Stress At 4% E. (PSI)	Ultimate Stress (PSI)			
	Stretched Plexiglas 55						
В6	.245	•061	10,625	25,600			
B7	.245	•061	7,000	25,700			
B8	.245	.061	12,630	25,700			
В9	.245	.061	12,280	27,000			
B10	.245	.061	8,600	27,700			
		Averag	ge 10,227	26,340			
		SN-10 Nylon-Acry	rlic Laminate				
1-4	•253	•063	1,740	17,800			
1-7	. 254	•064	13180	17,800			
1-8	. 254	•064	1,180	18,100			
1-9	•255	•064	1,250	17,650			
1-10	•255 ·	. 064	1,250	17,820			
		Averag	e 1,320	17,834			
		Plexiglas and Lami	nate Composite				
C-1	.409	.102	7,100	21,750			
C-2	.412	.103	7,900	23,200			
C-3	.415	.104	8,450	20,250			
C-7t	.415	.104	5,720	21,500			
C-5	.410	.102	9,560	23,100			
		Averag	e 7,746	21,960			

PAGE 6 OF 17

BEARING STRENGTH AT -65°F

Specimen No.	t (in.)	Bearing Area (in. ²)	Ultimate Stress (PSI)
	Stret	ched Plexiglas 55	
A-l	.238	•06	23,350
A-2	•239	•06	26,600
A-3	.242	.06	23,000
A-4	. 245	.061	23,750
A-5	.245	.061	24,450
		Average	24,230
	SN-10 Ny	lon-Acrylic Laminate	
1-17	•257	.064	56,500
1-18	. 256	.064	55,000`
1-19	•257	•064	58,750
1-20	•257	.064	53,500
1-21	•257	•064	53,550
		Average	55,460
	Plexiglas	and Laminate Composite	
B-1	.403	.10	30,500
B-2	.402	•10	31,530
B -3	.400	.10	31,200
B-4	.401	•10	31,400
B-5	.407	.10	30,700
		Average	31,066

MECHANICAL PROPERTIES OF STRETCHED PLEXICLAS 55

1.BF.12,1.1

PAGE 7 OF 17

ROOM TEMPERATURE ULTIMATE NET TENSILE STRESS AND NOMINAL LOAD CARRIED PER UNIT WIDTH

Specimen	Net Tensile Area (in ²)		imate Net Tensi Stress (PSI)	Nominal T le Load - Ul (#/Linear	Ltimate
•		Stretched Plexigla	<u>s 55</u>		,
B1 B2 B3 Bl4 B5	.434 .434 .433 .431	2,020 2,320 2,245 2,140 2,360	4,650 5,350 5,200 4,970 5,480	1,01 1,16 1,12 1,01	50 22 10
Average		2,217	5,130	1,10	08 ·
	SN	I-10 Nylon-Acrylic L	aminate		
No.	(in ²)	(1bs.)	(PSI)	#/Linear	In.
1-2 1-3 1-23 1-5 1-22	.437 .435 .442 .436 .439	2,370 2,325 2,310 2,335 2,260	5,430 5,350 5,230 5,350 5,150	1,19 1,17 1,16 1,17 1,13	70 60 75
Average		2,320	5,300	1,16	55
Specimen No.	Stretched Plexi Net Tensile Area of Composite (in ²)	glas 55 & SN-10 Nyl. % of Net Tensil. Area Contribute by Plexiglas	e Ultimate	Avg. Ult.Net Tensile Stress of Composite	Nom. Tensile Load for Composite (#/Linear in.)
		·	(100.7	(PSI)	(W/ Dinous 211)
A1 A2 A3 A4 A5	.70 .69 .69 .69	62.2 62.5 62.0 62.0 62.3	2,745 2,515 2,455 2,435 2,410	3,930 3,650 3,560 3,530 3,500	1,380 1,260 1,230 1,220 1,210
Average			2,512	3,635	1,260

PAGE 8 OF 17

+200°F ULTIMATE NET TENSILE STRESS AND NOMINAL LOAD CARRIED PER UNIT WIDTH

Stretched Plexiglas 55

	Dor o do nod 1 20x1 (, 140 //					
Specimen No.	Net Tensile Area (in ²)	Ultimate Load (lbs.)	Ultimate Net Tensile Stress (PSI)	Nominal Tensile Load - Ultimate (#/Linear in.)		
B6 B7 B8 B9 B10	.429 .430 .430 .429	1,560 1,570 1,570 1,650 1,690	3,640 3,660 3,660 3,840 3,940	780 785 785 825 845		
Average		1,608	3 , 750 .	805		
		SN-10 Nylon-Acry	rlic Laminate	•		
1-4 1-7 1-8 1-9 1-10	.435 .437 .437 .438 .438	1,125 1,130 1,150 1,130 1,145	2,560 2,560 2,580 2,550 2,560	565 567 578 568 . 575		
Average '		1,136	2,560	570		

Stretched Plexiglas 55 & SN-10 Nylon-Acrylic Composite

Specimen No.	Net Tensile Area of Composite (in ²)	% of Net Tensile Area Contributed by Plexiglas	Ultimate Load (lbs.)	Average Ult. Net Tensile Stress of Composite (PSI)	Nom. Tensile Load for Composite (#/Linear in.)
Cl	•717	61.2	2,225	3,110	1,110
C2	.718	` 59.9	2,395	3,340	1,200
С3	.720	59.4	2,130	2,960	1,070
CĦ	.722	59.4	2,250	3,120	1,130
C5	.716	60.0	2,360	3,290	1,185
Average			2,272	3,165	1,140

PAGE 9 OF 17

-65°F ULTIMATE NET TENSILE STRESS AND NOMINAL LOAD CARRIED PER UNIT WIDTH

Specimen No.	Net Tensile Area (in ²)	Ultimate Load (lbs.)	Ultimate Net Tensile Stress (PSI)	Nominal Tensile Load - Ultimate (#/Linear in.)
		Stretched Ple	exiglas 55	
A1 A2 A3 A4 A5	.417 .418 .423 .429 .429	1,390 1,600 1,380 1,450 1,490	3,350 3,830 3,260 3,380 3,480	695 800 690 725 745
Average		1,462	3,460	730
		SN-10 Nylon-Acry	rlic Laminate	
1-17 1-18 1-19 1-20 1-21	.440 .440 .441 .440	3,620 3,511 3,775 3,415 3,420	8,230 8,000 8,570 7,770 7,770	1,850 1,760 1,900 1,720 1,720
Average		3,548	8,060	1,790

Stretched Plexiglas 55 & SN-10 Nylon-Acrylic Composite

Specimen	Net Tensile Area of Composite (in ²)	% of Net Tensile Area Contributed by Plexiglas	Ultimate Load (lbs.)	Average Ult. Net Tensile Stress of Composite (PSI)	Nom. Tensile Load for Composite (#/Linear in.)
B1 B2 B3 B4 B5	.693 .690 .688 .690	60 60 62 61.5 61.0	3,050 3,153 3,120 3,140 3,070	4,400 4,570 4,540 4,550 4,390	1,540 1,590 1,570 1,580 1,540
Averag e			3,106	4,490	1,565

PAGE 10 OF 17

REPUBLIC AVIATION CORPORATION

CODE:

PAGE 11 OF 17

Room Temperature Bearing Stress vs Elongation of the Bearing Hole

+200°F Bearing Stress vs Elongation of Hole

Notch Tensile Stress vs Temperature

Tensile Load per Linear Inch vs Temperature

Envelope of Fatigue Results for Stretched Plexiglas 55 with 1-3/8 Inch Hole-edge Distance

PAGE 13 OF 17

Net Tensile Stress - PSI

Envelope of Fatigue Results for Stretched Plexiglas 55 with 5/8 Inch Hole-edge Distance

PAGE 14 OF 17

Net Tensile Stress - PSI

PAGE 15 OF 17

REPUBLIC AVIATION CORPORATION

Envelope of Fatigue Results for SN-10 Nylon-Acrylic Laminate with 5/8 Inch Hole-edge Distance

PAGE 17 OF 17

DEDUBLIC AVIATION CORPORATION

MECHANICAL PROPERTIES OF PLEXIGLAS II

1.BF.12.2.1					
PAGE	<u>.</u>	F3			
	,	•			
 	·				
 			_		

CODE:

PROCESSING CONDITION

HEAT OR BATCH NUMBER

Unavailable

MATERIAL IDENTIFICATION (COML.)

As Cast Plexiglas II

Not Applicable

Determine bearing strength of "as cast" Plexiglas II

ERMR 4615 Dated October 15, 1958

MATERIAL STATUS

FORM

Production

.250 Sheet

RAC DATA REF.

SPECIMEN TYPE

Bearing specimens prepared twice scale of Fed. Spec. L-P-406 Method 1051 (27 September 1951).

TEST METHOD:

Bearing tests were conducted at Room Temperature and 200°F in accordance with Method 1051 of Fed. Spec. L-P-406.

Federal Specification L-P-406 Method 1051 is limited to evaluating .125 stock. Conformance to specification requirements was attained by increasing the dimensions of the test specimen in proportion to the increased thickness of the test material. An edge distance ratio of 5 times the hole diameter was maintained.

1.BF.12.2.1

PAGE 2 OF 3

Bearing Strength at Room Temperature as Cast Plexiglas II

Specimen Number		Bearing Arca	Load at 4% Elong.	Stress at 4% Elong.	Ultimate Load	Ultimate Stress	Type* Failure
	inches	inches ²	lbs.	PSI	lbs.	PSI	
1	.271	•0675			2630	39,000	A
2	.241	•0603	1225	20,250	2110	31,000	A'
3	•265	.0662	815	12,250	1590	24,000	A
4	•254	•05 33	1150	18,150	1495	23,500	A
5	-240	.0600	1175	19,500	1285	20,150	A
6	.245	.0612	1200	19,600	5570	36,500	A
7	.271	•068	1015	14,900	1175	17,250	A
8	.266	.0665	•		1390	20,900	A
9	.272	.068	1150	16,950	1760	25,850	A
10	•239	•0600	1012	16,800	2200	36,600	Ā
Average			1093	16,175	1787	27,475	·····

^{* &}quot;A" Type Failure characterized by tensile break across the bolt hole.

1.BF.12.2.1

PAGE 3 OF 3

Bearing Strength at 200°F As Cast Plexiglas II

pecimen humber		Bearing Area	Load at 4% Elong.	Stress at la Elong.	Ultimate Load	Ultimate Stress	Type * Failure
	inches	inches	lbs.	PSI	lbs.	PSI	
1	•259	.0646	675	10,450	1210	18,700	В
2	•251	.0628	650	10,350	1230	19,600	В
3	•266	.0664		•	1260	19,000	В
4	•255	•0638	875	13,700	1455	22,750	В
5	. 248	•062	775	12,500	1345	21,700	В
6	•270	•0675		•	1475	21,800	A
7	•270	•0675	682	10,100	1390	20,600	A
8	•267	. 0668 ·	682	10,250	1465	22,000	A
9	-273	.0682	650	9,530	1310	19,200	A
10	.261	•0652	662	10,150	1200	18,400	Λ
Average			706	10,879	1334	20,375	

^{* &}quot;A" Type Failure characterized by tensile break across the bolt hole.

[&]quot;B" Type Failure - See Table I

2. A. 7. 8. 1

CODE:

PAGE _1 OF _2

MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS
Udimet 700 (Kelsey Hayes Co.)	Experimental
HEAT OR BATCH NUMBER	FORM
5-2031	.040" Thick Sheet
	·

PROCESSING CONDITION

As rolled

OBJECT OF TEST	RAC DATA REF.
To determine thermal expansion	RAC unpublished test data, dated 14 July
characteristics.	1960, Ref. MRP W.O. 58-128
<u>-</u>	1

SPECIMEN TYPE

U-Channel, .040" Thick x 75" Wide x .50 Flanges x 10" Long

TEST METHOD:

A ten-inch long Udimet 700 sheet metal specimen was heated from room temperature (70 F) to 1500 F. Length of specimen was measured and recorded at intervals of 100°F.

CHEMICAL COMPOSITION (BY WEIGHT)*

	Nominal	Heat 5-2031
Carbon	. 15 Max	0.07
Aluminum	3.75 - 4.75	4.3
Titanium	3.00 - 4.00	3. 39
Molybdenum	4.50 - 5.75	5.20
Chromium	13.00 - 17.00	15.4
Cobalt	17.00 - 20.00	18.6
Iron	1.0 Max	0.3 4
Boron	. 10 Max	.029**
Silicon	••	less than 0.10
Manganese		less than 0.10
Copper	••	less than 0.10
Zirconium	•-	less than 0.05
Nickel	Remainder	Remainder

- * Ladle analyses as reported by vendor.
- ** After rolling . 040 sheet boron content reduced to 0. 17.

2.A.7.8.1

PAGE 2 OF 2

THERMAL EXPANSION OF UDIMET 700

Temperature or	Specimen Length (in)	Coef. of Expansion From 70°F in/in/°F
	(/	
70 .	10.0030	
200	10,0095	4.99×10^{-6}
300	10,0175	6.30
400	10.0250	6.66
500	10.0300	6.28
600	10.0375	6.51
700	10.0445	6.59
800	10.0500	6.44
900	10.0570	6.50
1000	10.0640	6. 56
1100	10.0710	6.60 ·
1200	10.0775	6.59
1300	10.0860	6.75
1400	10.0910	6.61
1500	10.0950	6.43

Thermal shock tests were conducted in conformance with the requirements of MIL-E-5272A. The conditions of test entailed a series of repetitive exposures to -40°F and 190°F. Dimensional measurements were obtained by using feeler gages against a face template, and diametric changes were obtained with a vernier caliper. Station locations were as shown on page 5. The lens was completely unrestrained during test.

Linear coefficient of thermal expansion was conducted on rectangular sections of fully post cured stock. The thermal gradient along the length of the specimen was controlled to be within 1°F. The thermal expansion measurements were obtained with a vernier caliper positioned on parallel blocks.

2.B.8.2.1

PAGE 2 OF 5

Table I - Thermal Shock Test of Trufoam F-100**

Column A was obtained before thermal shock Column B was obtained after a four day post cure at 250°F Column C was obtained after:

4 hours at 190°F)
4 hours at -40)

4 hours at 190) Thermal shock exposure

4 hours at -40

4 hours at 190 4 hours at -40

Column D is the difference between A & B Column E is the difference between B & C

Column F is the sum of D & E

Dimensional Measurements, inches

Sta. No.	<u>A</u>	В	<u>C</u>	<u>D</u>	E	<u>F</u>
1	•0015	•0045	•0195	+.003	+.015	+.018
2 .	•0025	•0035	•0075	+.001	+.004	+.005
3	•0055	•0075	•0095	+.002	+.002	+.004
4	•0025	•0065	•0045	+.004	002	+.002
5	•0025	•0065	•0025	+.004	002	+.002
6	*•002	•0055	*. 002	+.004	-•001	•000
7	•0025	•0105	•0035	800.+	007	+.001
8	•0025	•0015	•0045	+.009	007	+.002
9	•0035	•0135	•0025	+•010	011	001
10	•0035	.0145	₩0025	+.011	012	001
11	*.002	.0105	*•002	+.009	009	•000
12	.0025	•0065	*.002	+•004	005	001
13	•0035	•0055	*. 002	+.002	004	002
14	•0025	*•002	•0025	001	+.001	•000
15	•0035	•00145	•0055	*•001	+.001	+.002

* less than

** RAC formulated epoxy foam (nominal 25 lbs/ft3 density)

| CODE:

Thermo-Physical Properties of Epoxy Foams

2.B.8.2.1

PAGE 3 OF _5

Sta. No.	A	В		D	E	F
16	•0055	•0055	•0095	+.000	+.004	+.004
17	•0035	*.002	•0085	001	+.006	+.005
18	•0055	•0085	.0195	+.003	+.011	+.008
19	•0045	*•0 02	*.002	003	•000	003
20	•000	.007	.0165	+.007	+.0085	+.0150
. 21	•000	•006	•01/15	+.006	+.0085	+•01/15
22	•000	•025	•025	+.025	•000	+.025
23	•003	•022	.0185	+.019	+.0035	+.0225
24	•002	*.002	*.00 2	*. 002	•000	* •002
Diameters						•
2 5	18.000	17.975	17.950	025	025	050
26 ,	18.000	17.988	17.965	012	023	035
27	17.990	18.000	17.970	+.010	030	020 .
28	11.505	11.513	11.520	¥•008	+•007	+.015
Ambient Te	mperatures	3				
	76 ° F	71 ° F	71 ° F			

* less than

** RAC Formulated epoxy foam (nominal 25 lbs/ft³ density)

Thermo-Physical Properties of Epoxy Foams

Table II - Determination of	Linear Coefficient of	Expansion of Trufoam F-100

	Length at 77°F, Inches	Length at 160°F, Inches	Difference 77° - 160°F, Inches	Coefficient of Linear Expansion, in/in/°F
a.	3.152	3.160	•008	30.5 x 10 ⁻⁶
b •	4.140	4.158	•018	52.5 x 10 ⁻⁶
c.	4.107	4.116	•009	26.4 x 10 ⁻⁶
		•	average	36.5 x 10 ⁻⁶

Thermo-Physical Properties of Epoxy Foams

2.B.3.2.1

DEDUBLIC AVIATION CORROBATION

ELECTRICAL PROPERTIES OF CONDUCTIVE AND REFLECTIVE RESINS.

3.B.8.1.1

CODE:

•	PAGE 1 OF 2
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS
See data below	Experimental
HEAT OR BATCH NUMBER	FORM
See data below	Liquids and pastes
PROCESSING CONDITION The coating under test was applied by b allowed to air dry for a minimum of 24	rushing or spraying and hours
To determine the suitability of plastics for electrical applications	MRD Report No. 59-38-1, June 24, 1960
SPECIMEN TYPE	.

Flat panels 11" x 11" x 0.1" thick epoxy fiberglass were coated with 0.005 - 0.010" thick coatings
TEST METHOD:

Electrical conductivity was measured with a vacuum tube volt meter. The volt meter probes were placed 10 inches apart on the surface of the panels.

Radar reflectivity measurements were recorded from positions on the panel. The positions were located at the midpoint of the four 5.5 inch square quadrants of the panel. The output of an X-band generator was positioned at a 20° incident angle and a high gain pick-up horn was adjusted for a 20° reflection angle. A VSW ratio meter was set at 100%, based on a standard polished aluminum sheet.

3.B.8.1.1

PAGE 2 OF 2

TABLE I

Reflectivity and Conductivity of Plastics

		Reflectiv	vity - %		
<u>Material</u>	Position I	Position II	Position III	Position IV	Conductivity DC-OHMS
Trulite S-1000*	97	99	100	96	<pre>< l ohm</pre>
Trulite S-1000-1	91	95	93	96	20 ohms
H ysol 6250∺	100	100	99	99	<pre>< 1 ohm</pre>
Hysol 6250-6	71	62	50	64	infinite
Trulite S-2000	91	67	. 75	70	infinite
Trulite S-2000	90	100	95	100	infinite
Trulite S-1000-2	74	75	78	77	80,000 ohms
Trulite S-1000-3	51	52	55	52	infinite
Trulite S-1000-4	56	54	52	54	infinite
Trulite S-1000-5	57	64	56	60	infinite
Hysol 6251	52	54	48	48	infinite
Trulite S-2000-1	` 43	43	44	43	infinite
Flame Sprayed SF Aluminum	98	99	99	99	<1 ohm

^{*} Trulite - RAC material

^{**} Hysol - Hysol Corporation, Olean, N. Y.

MISCELLANEOUS PROPURTIES OF EPOXY TOOLING RESINS

5.B.8.3.1

	PAGE OF
MATERIAL IDENTIFICATION (COML.)	MATERIAL STATUS
See data below	Production
HEAT OR BATCH NUMBER	FORM
Not applicable	Liquids and gastes
PROCESSING CONDITION	
Epoxy castings were cataly	zed and poured at room temperature and allowed to
cure for a minimum of 21 hours a	t room temperature.

OBJECT OF TEST

To evaluate epoxy resins for use as a MPD GO.

general purpose tooling material

MRD 59-48-1, October 20, 1959

SPECIMEN TYPE

Flexural, compressive, impact, and density specimens were as per Federal Specification L-P-406b, Methods 1031, 1021.1, 1071 and 5012.

TEST METHOD:

The mechanical properties evaluated (Table I) were conducted in accordance with the testing procedures of Federal Specification L-P-406b. The physical properties of gel time and exotherm temperature were evaluated by casting 300 gms of catalyzed resin into a 4 inch diameter x 3 inch high wide mouth paper cup and positioning a thermocouple lead (connected to a breedomax recorder) in the center of mass. The gel time was selected to be coincidental with the time of maximum exotherm as shown on the Speedomax recorder. The heat resistance service test conducted (Table II) was visual observation of the resin under test to act as a fastener for drill bushings. Thermocouples were attached to the bushing and then cast in place with the resin under test. The assembly was heated in increments of 50°F (starting at 100°F to 500°F) held at temperature for a minimum of 15 minutes and visibly examined.

PAGE _

MISCELLANEOUS PROPERTIES OF EPOXY TOOLING RESINS

TABLE I

MECHANICAL AND PHYSICAL PROPERTY'S OF EPOYY TOOLING RESINS

Test	Hachine	Specimen Size	Trulite C-171* Devcon E** Devcon F	Devcon Exx	Devcon F	Devcon FR
Flexural Yield	Dillon Universal	1/2"x1/2"x10"	£600 ps‡	!	. !	E T
Compressive Yield	Dillon Universal	1/2"x1/2"x1	16600 ps1	9500 ps1	9400 psi	1200 ps1
Izod Impact	Nat'l Forge Impact Tester	1/2"x1/2"x2-1/2"	0.5 ft-lb/in	į	•	
Gel Time at $75^{\circ}\mathrm{F}$	Speedomax Recorder	300 grams	42 min.	48 min.	ĺ	***
Max. Exotherm Temp. Speedomax Recorder	Speedomax Recorder	300 grams	250 °F	3,09€	i	1
Approx. Density (cured)	ŀ	1	103 lb/ cu. ft.	158 lb/ .cu.ft.	1	112 lb/ cu. ft.

RAC formulated epoxy tooling resin

** Chemical Development Corporation epoxy tooling resin

Note: Mechanical property data are representative of single specimens for each material

PAGE 3 OF 3

TABLE II

HEAT PESISTANCE OF LPOXY TOOLING IS SINS

Epoxy Tooling	Accosure		COMMERCIAL MUSHINGS	
Material	Temperature	Redskin	Ceran-A-Grip	Plain Press Fit
rulite C-171	100 ⁰ 7 150	No visible effect	No visible effect	No visible effect
	250 250	: =	= E	Sligh tly loose "
	86	2 :	Slightly loose	Quite loose
	7 200 7	: E	Qui te loose	
	1,50	==	!	
	500	"(Max. heat achieved)		
evcon B	1000	No visible effect	No visible effect	No visible effect
	150 200	= =		# C F. + J F
	250	E	Slightly loose	Very loss - Deveon
	300	=	· · · · · · · · · · · · · · · · · · ·	B like putty
	350	=	Slightly looser	
	0 7	=)(Not visibly looser	7 7 2 2 5
	450 500	Redskin begins to melt Bushing loos e in re dskin	When temp. maintained for 10 minutes	
evcon WR	100°F	No visible effect	No visible effect	****
	150	2	=	
	500 500	E	=	. 1
	250	= 1	Slightly loose	*****
	35			-
	5.5	: =	Qui te Loose	
	3 5	: 3	Very Loose	T = C;
	2 5		tt	1 1 1 1
	3,	Redskin begins to melt with very little smoke and no		3 1 1
		great color change		