

In the Claims

- 1 1. (original) An identification tag in a form of a single microcircuit,
2 comprising:
 - 3 an optical transceiver;
 - 4 a radio transceiver;
 - 5 a memory storing an identification code connected to the optical
6 transceiver and the radio transceiver;
 - 7 means for operating at least one of the transceivers in receive mode
8 while operating at least one of the transceivers in transmit mode; and
9 means for transmitting the identification code by the transceiver
10 operating in the transmit mode in response to receiving a predetermined
11 signal by the transceiver operating in the receive mode.
- 1 2. (original) The identification tag of claim 1, in which the optical
2 transceiver includes a single photodiode configured to transmit and receive
3 light signals.
- 1 3. (original) The identification tag of claim 1, in which the radio transceiver
2 includes an antenna formed as an induction coil.
- 1 4. (original) The identification tag of claim 3, in which the induction coil
2 acquires power for the optical transceiver.
- 1 5. (original) The identification tag of claim 4, further comprising:
 - 2 means for storing the power.

- 1 6. (original) The identification tag of claim 1, in which the identification
- 2 code includes one or more dates.

- 1 7. (original) The identification tag of claim 1, in which the received signal is
- 2 a light signal, and the transmitted signal is a radio signal.

- 1 8. (original) The identification tag of claim 1, in which the received signal is
- 2 a radio signal.

- 1 9. (original) The identification tag of claim 1, further comprising:
 - 2 means for operating at least one of the transceivers in receive mode
 - 3 and transmit mode while operating the other transceivers in transmit mode.

- 1 10. (original) The identification tag of claim 1, further comprising:
 - 2 means for operating at least one of the transceivers in receive mode
 - 3 and transmit mode while operating the other transceivers in receive mode.

- 1 11. (original) The identification tag of claim 1, further comprising:
 - 2 means for operating at least one of the transceivers in receive mode
 - 3 and transmit mode while operating the other transceivers in receive mode
 - 4 and transmit mode.

- 1 12. (original) The identification tag of claim 1, further comprising:
 - 2 means for synchronizing the transmitting and receiving according to
 - 3 receiving light.

- 1 13. (previously presented) The identification tag of claim 1, in which the
- 2 optical transceiver is omni-directional.

- 1 14. (previously presented) The identification tag of claim 1, in which the
- 2 optical transceiver is narrow beam.

- 1 15. (previously presented) An identification method, comprising:
 - 2 storing an identification code in a memory connected to an optical transceiver and an radio transceiver;
 - 4 operating at least one of the transceivers in receive mode while
 - 5 operating at least one of the transceivers in transmit mode; and
 - 6 transmitting the identification code by the transceiver operating in the
 - 7 transmit mode in response to receiving a predetermined signal by the
 - 8 transceiver operating in the receive mode.

- 1 16. (currently amended) An identification tag comprising:
 - 2 a memory storing an identification code;
 - 3 an ~~optical-communication part~~ transceiver for receiving a
 - 4 predetermined optical signal; and
 - 5 a ~~radio-communication part~~ transceiver for transmitting the
 - 6 identification code stored in the memory when receiving the predetermined
 - 7 optical signal by the ~~optical-communication part~~ transceiver.

- 1 17. (currently amended) An identification tag of claim 16, wherein the
- 2 ~~optical-communication part~~ transceiver transmits an optical signal, the radio
- 3 ~~communication part~~ transceiver receives a radio signal, further comprising:

4 means for operating at least one of the ~~communication part~~
5 transceivers in receive mode while operating at least one of the
6 ~~communication part~~ transceivers in transmit mode; and
7 means for transmitting the identification code by the ~~communication~~
8 ~~part~~ transceivers operating in the transmit mode in response to receiving a
9 predetermined signal by the ~~communication part~~ transceivers operating in
10 the receive mode.

1 18. (currently amended) An identification method, comprising:
2 receiving a predetermined optical signal at an optical communication
3 transceiver in an identification tag; and
4 transmitting an identification code stored in memory by a radio
5 communication transceiver when receiving the predetermined optical signal
6 by the optical communication ~~part~~ transceiver.

1 19. (previously presented) An identification method of claim 18, further
2 comprising:
3 operating at least one of the communication transceivers in receive
4 mode while operating at least one of the communication transceivers in
5 transmit mode; and
6 transmitting the identification code by the communication transceiver
7 operating in the transmit mode in response to receiving a predetermined
8 signal by the communication transceiver operating in the receive mode.

- 1 20. (previously presented) An identification reader, comprising:
 - 2 an ~~optical-communication part~~ transceiver transmitting a
 - 3 predetermined optical signal; and
 - 4 a ~~radio-communication part~~ transceiver receiving an identification
 - 5 code transmitted when receiving the predetermined optical signal by an
 - 6 identification tag.