कुछ अभ्यासार्थ प्रश्नों के उत्तर

एकक 1 16.23 M 0.617 m, 0.01 तथा 0.99, 0.67 1.4 1.5 1.6 157.8 mL 1.7 33.5% $\sim 1.5 \times 10^{-3} \%$, 1.25×10^{-4} m 1.8 17.95 m तथा 9.10 M 1.9 **1.15** 40.907 g mol⁻¹ 1.16 73.58 k Pa 1.17 12.08 k Pa 1.18 10 g 23 g mol⁻¹, 3.53 kPa 1.20 269.07 K 1.19 1.21 A = 25.58 u तथा B = 42.64 u 1.22 0.061 M टॉलूईन, क्लोफॉर्म, फ़ीनॉल, पेन्टेनॉल 1.24 KCl, CH₃OH, CH₃CN, साइक्लोहेक्सेन 1.25 फार्मिक अम्ल. एथिलीन ग्लाइकॉल $2.45 \times 10^{-8} \text{ M}$ 1.26 5 m 1.27 1.28 1.424% 1.29 जल का 3.2 g 0.65° 1.30 4.575 g 1.32 $i = 1.0753, K_a = 3.07 \times 10^{-3}$ 17.44 mm Hg 1.33 1.34 178×10^{-5} 1.35 1.36 280.7 torr, 32 torr $x_{0_0} 4.6 \times 10^{-5}, x_{N_0} 9.22 \times 10^{-5}$ 1.38 0.6 तथा 0.4 1.39 5.27×10^{-3} atm. 0.03 mol CaCl₂ 1.41 1.40 एकक 2 (i) $E^{\odot} = 0.34V$, $\Delta_r G^{\odot} = -196.86 \text{ kJ mol}^{-1}$, $K = 3.124 \times 10^{34}$ (ii) $E^{\odot} = 0.03V$, $\Delta_r G^{\odot} = -2.895 \text{ kJ mol}^{-1}$, K = 3.2(i) 2.68~V, (ii) 0.53~V, (iii) 0.08~V, (iv) -1.289~V2.5 1.56 V 124.0 S cm² mol⁻¹ 2.6 2.8 1.85×10^{-5} $0.219~{\rm cm}^{-1}$ 2.9 2.11 2.12 3F. 2F. 5F 1F, 4.44F 2.13 2.14 2F. 1F 2.15 1.8258 g 14.40 min, कॉपर 0.427 g, जिंक 0.437 g 2.16 (i) $8.0 \times 10^{-9} \text{ mol } L^{-1} \text{ s}^{-1}$; $3.89 \times 10^{-9} \text{ mol } L^{-1} \text{ s}^{-1}$ 3.2 $bar^{-1/2}s^{-1}$ 3.4 (i) 4 गुना 3.6 (ii) 1/4 गुना (i) $4.67 \times 10^{-3} \text{ mol } L^{-1} \text{s}^{-1}$ (ii) $1.98 \times 10^{-2} \text{ s}^{-1}$ 3.8 (i) वेग = $k[A][B]^2$ 3.9 (ii) 9 गुना A के लिए अभिक्रिया की कोटि 1.5 है तथा B के लिए शून्य है। 3.10

- वेग नियम = $k[A][B]^2$; वेग स्थिरांक = 6.0 $M^{-2}min^{-1}$ 3.11
- (i) 3.47 × 10⁻³ सेकंड 3.13

- (ii) 0.35 मिनट (iii) 0.173 वर्ष

1845 वर्ष 3.14

- $3.1646 \times 10^{-2} \text{ s}$
- 3.17 0.7814 µg तथा 0.227 µg.
- 3.19 77.7 मिनट

3.20 $2.20 \times 10^{-3} \text{ s}^{-1}$

3.21 2.23 \times 10⁻³ s⁻¹, 7.8 \times 10⁻⁴ atm s⁻¹

 $3.9 \times 10^{12} \text{ s}^{-1}$ 3.23

3.24 0.135 M

3.25 0.158 M

3.26 232.79 kJ mol⁻¹

3.27 239.339 kJ mol⁻¹

3.28 24°C

- **3.29** E_a = $76.750 \text{ kJ mol}^{-1}$, $k = 0.9965 \times 10^{-2} \text{ s}^{-1}$

3.30 52.8 kJ mol⁻¹

- एकक 4
- **4.2** Mn^{2+} के $3d^{5}$ विन्यास के कारण उच्च स्थायित्व होता है।
- 4.5 स्थायी ऑक्सीकरण अवस्थाएँ
 - 3d³ (वैनेडियम) (+2), +3, +4, +5
 - $3d^5$ (क्रोमियम) +3, +4, +6
 - 3d⁵ (मैंगनीज़) +2, +4, +6, +7
 - 3d⁸ (निकैल) +2, +3, (संकलों में)
 - $3d^4$ मूल अवस्था में कोई d^4 विन्यास नहीं होता।
- **4.6** वैनेडेट VO_3^- , क्रोमेट CrO_4^{2-} , परमैंगनेट MnO_4^-
- 4.10 +3 ऑक्सीकरण अवस्था लैन्थेनॉयडों की सामान्य ऑक्सीकरण अवस्था है। +3 ऑक्सीकरण अवस्था के अतिरिक्त कुछ लैन्थेनॉयड +2 तथा +4 ऑक्सीकरण अवस्थाएँ प्रदर्शित करते हैं।
- 4.13 संक्रमण तत्वों में ऑक्सीकरण अवस्था +1 से उच्चतम ऑक्सीकरण अवस्थाएँ में एक के अंतर से परिवर्तित होते हैं। उदाहरणार्थ, मैंगनीज़ में +2, +3, +4, +5, +6, +7 में परिवर्तन हो सकता है। जबिक असंक्रमण तत्वों में यह परिवर्तन चयनात्मक है। इनमें सदैव दो का अंतर होता है जैसे. +2. +4. या +3. +5. +4. +6 आदि।
- **4.18** Sc^{3+} को छोड़ कर. आभिरत d- कक्षकों की उपस्थिति के कारण अन्य सभी जलीय विलयन में रंगीन होंगें तथा यह d-d संक्रमंण देगा।
- **4.21** (i) Cr^{2+} एक अपचायक है जिसमें d^4 से d^3 परिवर्तन हो जाता है। d^3 का विन्यास $\left(t_{2g}^{\ 3} \right)$ अधिक स्थायी है। $\operatorname{Mn}(\operatorname{III})$ से $\operatorname{Mn}(\operatorname{III})$ में परिवर्तन $3d^4$ से $3d^5$; $3d^5$ एक स्थायी विन्यास है।
 - (ii) CFSE के कारण जो तृतीय आयनीकरण ऊर्जा से अधिक ऊर्जा की पूर्ती करती है।
 - (iii) जलयोजन अथवा जालक ऊर्जा d इलेक्ट्रॉन को निकालने के लिए आवश्यक आयनन एन्थैल्पी की क्षति पूर्ती करती है।
- **4.23** Cu (+1) स्थायी ऑक्सीकरण अवस्था प्रदर्शित करते हैं. जिसके फलस्वरूप $3d^{10}$ विन्यास होता है।
- **4.24** अयुगलित इलेक्ट्रॉन Mn³⁺=4; Cr³⁺=3; V³⁺=2; Ti³=1; सर्वाधिक स्थायी Cr³⁺।
- 4.28 द्वितीय भाग 59, 95, 102।
- **4.30** लारेंशियम 103, +3
- **4.36** Ti²⁺=2, V²⁺=3, Cr³⁺=3, Mn²⁺=5, Fe²⁺=6, Fe³⁺=5, Co²⁺, Ni²⁺=8, Cu²⁺=9
- **4.38** _{M√n(n+2)} = 2.2, n ≈ 1, d²sp³, CN⁻ प्रबल लिगण्ड
 - = 5.3, n ≈ 4, sp³d², H₂O दुर्बल लिगण्ड
 - = 5.9, n ≈ 5, sp³, Cl दुर्बल लिगण

एकक 5

5.5 (i) +3 (ii) +3

(iii) +2

(iv) +3

(v) +3

5.6 (i) $[Zn(OH)_4]^{2-}$

 $(v)[Co(NH_2)_{\epsilon}(ONO)]^{2+}$

(ix) $[CuBr_{4}]^{2-}$

(ii) $K_{2}[PdCl_{4}]$

(vi) $[Co(NH_3)_6]_2(SO_4)_3$

(x) $[Co(NH_3)_5(NO_2)]^{2+}$

(iii) [Pt(NH_a)_aCl_a]

(vii) $K_3[Cr(C_2O_4)_3]$

(iv) $K_2[Ni(CN)_4]$

(viii) $[Pt(NH_3)_6]^{4+}$

(i) $[Cr(C_2O_4)_3]^{3-}$; Nil 5.9

(ii) [Co(NH₂)₂Cl₂]; दो (fac- तथा mer-)

5.12 तीन (दो समपक्ष तथा एक विपक्ष)

- **5.13** जलीय विलयन में $CuSO_4$ का अस्तित्व $[Cu(H_2O)_4]SO_4$ है, जिसका नीला रंग $[Cu(H_2O)_4]^{2^+}$ आयनों के कारण
 - (i) KF मिलाने पर, दुर्बल H₂O लिगन्ड F लिगन्डों द्वारा प्रतिस्थापित होते हैं तथा [CuF]²⁺ आयन बनते हैं जो हरा अवक्षेप देते हैं।

 $[Cu(H_{2}O)_{a}]^{2+} + 4F^{-} \rightarrow [CuF_{a}]^{2-} + 4H_{2}O$

(ii) जब KCl मिलाया जाता है, Cl लिगन्ड दुर्बल H₂O लिगन्डों को प्रतिस्थापित कर [CuCl₂)²⁻ आयन बनाते हैं जिनका रंग चमकीला हरा होता है।

 $[Cu(H_2O)_a]^{2^+} + 4Cl^- \rightarrow [CuCl_a]^{2^-} + 4H_2O$

5.14 $[Cu(H_2O)_4]^{2^+} + 4 CN^- \rightarrow [Cu(CN)_4]^{2^-} + 4H_0O$

चूँकि CN^- एक प्रबल लिगन्ड है, यह Cu^{2^+} आयन के साथ बहुत स्थायी संकुल बनाता है। $\mathrm{H}_2\mathrm{S}$ गैस प्रवाहित करने पर, CuS का अवक्षेप बनता है तथा मुक्त Cu^{2^+} आयन उपलब्ध नहीं रहते।

5.23 d-कक्षक का अधिग्रहण

(i) OS = +3, CN = 6, d-कक्षकों का अभिग्रहण $(t_{2g}^{6} e_{g}^{0})$,

(ii) OS = +3, CN = 6, $d^3 (t_{2\sigma}^3)$,

(iii) OS = +2, CN = 4, d^7 ($t_{2g}^{5} e_{g}^{2}$),

(iv) OS = +2, CN = 6, $d^5 (t_{2g}^3 e_g^2)$.

5.28 (iii) 9.29 (ii) 9.30 (iii)

5.32 (i) स्पेक्ट्रमी-रासायनिक श्रेणी में लिगन्डों का क्रम-

 $H_{9}O < NH_{3} < NO_{9}^{-}$

अत: प्रेक्षित प्रकाश की ऊर्जा निम्न क्रम में होगी

 $[Ni(H_2O)_6]^{2+} < [Ni(NH_3)_6]^{2+} < [Ni(NO_2)_6]^{4-}$

इस प्रकार अवशोषित तरंगदैर्घ्य ($E = hc/\lambda$) का क्रम इसके विपरीत होगा।