VİTMO

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Направление подготовки: 09.03.04 — Системное и прикладное программное обеспечение

Дисциплина «Основы профессиональной деятельности»

Отчёт по лабораторной работе №3 Исследование работы БЭВМ

Вариант №1551

Выполнил

Галак Екатерина Анатольевна

P3115

Проверил

Блохина Елена Николаевна

Оглавление

Задание	3
Назначение программы и реализуемая ею функция	
Описание и назначение исходных данных, область представления и область допустимых	
значений исходных данных и результата	4
Расположение в памяти ЭВМ программы, исходных данных и результатов	5
Адреса первой и последней выполняемой команд программы	5
Трассировка	5
Заключение	7

Задание

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

Введите	1551		
2E7: 2E8: 2E9: 2EA: 2EB: + 2EC: 2ED: 2EE: 2F1: 2F1: 2F2: 2F3: 2F4:	02FB A000 E000 0200 EEFD AF04 EEFA 4EF7 EEF7 ABF6 0480 0380 F403	2F5: 2F6: 2F7: 2F8: 2F9: 2FA: 2FC: 2FD: 2FE: 	0380 0400 4AF2 82E9 CEF7 0100 0900 F200 0741 F700

Текст исходной программы:

Адрес	Код команды	Мнемоника	Комментарии
2EB	0200	CLA	Очистить аккумулятор: $0 \to AC$
2EC	EEFD	ST (IP – 3)	Сохранить значение аккумулятора в ячейку $(2EC) + 1 - 3 = (2EA)$ (Прямое относительное сохранение: $AC \rightarrow (2EA)$)
2ED	AF04	LD #0x04	Загрузить значение 4 в аккумулятор (Прямая загрузка: $0004 \rightarrow AC$)
2EE	EEFA	ST (IP – 6)	Сохранить значение аккумулятора в ячейку (2EE) + $1 - 6 = (2E9)$ (Прямое относительное сохранение: $AC \rightarrow (2E9)$)
2EF	4EF7	ADD (IP – 9)	Прибавить значение ячейки (2EF) + $1-9=(2E7)$ (Прямое относительное сложение значения ячейки памяти (2EF) с AC, результат записываем в AC: $(2EF) + AC \rightarrow AC)$

2F0	EEF7	ST (IP – 9)	Сохранить значение аккумулятора в ячейку $(2F0) + 1 - 9 = (2E8)$
			(Прямое относительное сохранение:
251	A DEC	ID (ID 10)	$AC \rightarrow (2E8))$
2F1	ABF6	LD - (IP - 10)	Получить адрес, являющийся
			значением ячейки 2F1 + 1 – 10 =
			2Е8, декрементировать его и
			записать обратно в 2Е8, загрузить
			значение из ячейки по этому адресу
			в аккумулятор
			(Косвенная автодекрементная
252	0.400	DOD	загрузка)
2F2	0480	ROR	Циклический сдвиг вправо
252	0200	CNAC	аккумулятора
2F3	0380	CMC	Инверсия регистра переноса
2F4	F403	BHIS (IP + 3)	Переход в ячейку $2F4 + 1 + 3 = 2F8$,
			если стоит флаг С, иначе – в
255	0200	CMC	следующую ячейку (2F5)
2F5	0380	CMC	Инверсия регистра переноса
2F6	0400	ROL	Циклический сдвиг влево
257	4.4.50	ADD (ID II)	аккумулятора
2F7	4AF2	ADD (IP – E)+	Прибавить значение ячейки, адрес
			которой находится в ячейке (2F7 +
			1 - E) = 2EA
			Затем инкрементируем значение в
200	9250	LOOD 2E0	ячейке 2ЕА
2F8	82E9	LOOP 2E9	Декрементировать значение в
			ячейке 2Е9, если оно стало равно 0,
			то перенести в ячейку 2F8 + 1 + 1 =
			2FA, иначе в следующую ячейку (2E9)
2F9	CEF7	JUMP (IP – 9)	Установить значение регистра
			адреса равным $2E9 + 1 - 9 = 2F1$
2FA	0100	HLT	Останов

Назначение программы и реализуемая ею функция

Назначение программы:

Программа находит количество нечетных элементов массива, состоящего из 4 элементов.

Описание и назначение исходных данных, область представления и область допустимых значений исходных данных и результата

- I переменная-счетчик, в процессе работы программы указывает на оставшиеся итерации цикла, изначально значение I равно размеру массива (в нашем случае 4);
- S переменная, содержащая адрес текущей рассматриваемой ячейки массива;
- F переменная, указывающая на адрес первой ячейки массива;
- A_1 , A_2 , A_3 , A_4 элементы массива.

Область представления:

- A_1 , A_2 , A_3 , $A_4 16$ -ти разрядное знаковое число, $[-2^{15}; 2^{15} 1]$
- F, S 11-разрядные беззнаковые числа (адреса БЭВМ)
- R, I 16-ти разрядное беззнаковое число [0: $2^{16} 1$]

Область допустимых значений (ОДЗ):

$$\begin{cases} A[i] \in [-2^{15}; 2^{15} - 1] \\ R \in [0; 4] \\ F \in [0; 2E7] \cup [2EB; 7FF - 4] \\ S \in [F; F + 4 - 1] \end{cases}$$

Расположение в памяти ЭВМ программы, исходных данных и результатов

- Программа расположена в ячейках **2EB 2FA**
- Исходные данные расположены в ячейках 2Е7 2Е9
- Массив расположен в ячейках **2FB 7FF** или **000 2E6**
- Результат в ячейке 2ЕА

Адреса первой и последней выполняемой команд программы

- Первая 2EB
- Последняя **2FA**

Трассировка

Новые исходные данные для таблицы трассировка в десятичном формате:

$$A_1 = -1_{10}$$

$$A_2 = 2_{10}$$

$$A_3 = 1_{10}$$

$$A_4 = -2_{10}$$

Переведём в шестнадцатиричный формат, при этом отрицательные числа будем преобразовывать в дополнительный код:

$$A_1 = -1_{10} \rightarrow (2^{16} - 1)_{10} = (FFFF)_{16}$$

$$A_2 = 2_{10} = (2)_{16}$$

$$A_3 = 1_{10} = (1)_{16}$$

$$A_4 = -2_{10} \rightarrow (2^{16} - 2)_{10} = (FFFE)_{16}$$

Адрес	Значение
2FB	FFFF
2FC	0002
2FD	0001
2FE	FFFE

Таблица трассировки программы:

	ыполняем команда Содержимое регистров процессора после выполнения команды			Ячейка, содержимое							
								которой			
										нилось	
									после		
										выполнения	
А по	Код	IP	CR	AR	DR	SP	BR	AC	NZ	команды Адр Новый	
Адр	Код	IF	CK	AK	DK	SF	DK	AC	VC	Адр	
ec 2EB	0200	2EC	0200	2EB	0200	000	02EB	0000	0100	ec	код
2EC	EEFD	2ED	EEFD	2EA	0000	000	FFFD	0000	0100	2EA	0000
2ED	AF04	2EE	AF04	2ED	0004	000	0004	0004	0000	2L/1	0000
2EE	EEFA	2EF	EEFA	2E9	0004	000	FFFA	0004	0000	2E9	0000
2EF	4EF7	2F0	4EF7	2E7	02FB	000	FFF7	02FF	0000	20)	0000
2F0	EEF7	2F1	EEF7	2E8	02FF	000	FFF7	02FF	0000	2E8	02FF
2F1	ABF6	2F2	ABF6	2FE	FFFE	000	FFF6	FFFE	1000	2E8	02FE
2F2	0480	2F3	0480	2F2	0480	000	02F2	7FFF	0000	220	021 E
2F3	0380	2F4	0380	2F3	0380	000	02F3	7FFF	0001		
2F4	F403	2F8	F403	2F4	F403	000	0003	7FFF	0001		
2F8	82E9	2F9	82E9	2E9	0003	000	0002	7FFF	0001	2E9	0003
2F9	CEF7	2F1	CEF7	2F9	02F1	000	FFF7	7FFF	0001		
2F1	ABF6	2F2	ABF6	2FD	0001	000	FFF6	0001	0001	2E8	02FD
2F2	0480	2F3	0480	2F2	0480	000	02F2	8000	1001		
2F3	0380	2F4	0380	2F3	0380	000	02F3	8000	1000		
2F4	F403	2F5	F403	2F4	F403	000	02F4	8000	1000		
2F5	0380	2F6	0380	2F5	0380	000	02F5	8000	1001		
2F6	0400	2F7	0400	2F6	0400	000	02F6	0001	0011		
2F7	4AF2	2F8	4AF2	000	0000	000	FFF2	0001	0000	2EA	0001
2F8	82E9	2F9	82E9	2E9	0002	000	0001	0001	0000	2E9	0002
2F9	CEF7	2F1	CEF7	2F9	02F1	000	FFF7	0001	0000		
2F1	ABF6	2F2	ABF6	2FC	0002	000	FFF6	0002	0000	2E8	02FC
2F2	0480	2F3	0480	2F2	0480	000	02F2	0001	0000		
2F3	0380	2F4	0380	2F3	0380	000	02F3	0001	0001		
2F4	F403	2F8	F403	2F4	F403	000	0003	0001	0001		
2F8	82E9	2F9	82E9	2E9	0001	000	0000	0001	0001	2E9	0001
2F9	CEF7	2F1	CEF7	2F9	02F1	000	FFF7	0001	0001	•==	0.477
2F1	ABF6	2F2	ABF6	2FB	FFFF	000	FFF6	FFFF	1001	2E8	02FB
2F2	0480	2F3	0480	2F2	0480	000	02F2	FFFF	1001		
2F3	0380	2F4	0380	2F3	0380	000	02F3	FFFF	1000		
2F4	F403	2F5	F403	2F4	F403	000	02F4	FFFF	1000		
2F5	0380	2F6	0380	2F5	0380	000	02F5	FFFF	1001		
2F6	0400	2F7	0400	2F6	0400	000	02F6	FFFF	1001	254	0002
2F7	4AF2	2F8	4AF2	001	0000	000	FFF2	FFFF	1000	2EA	0002
2F8	82E9	2FA	82E9	2E9	0000	000	FFFF	FFFF	1000	2E9	0000
2FA	0100	2FB	0100	2FA	0100	000	02FA	FFFF	1000		

Заключение

Во время выполнения лабораторной работы был изучены режимы адресации (косвенная относительная, косвенная автоинкрементная, косвенная автодекрементная, косвенная относительная, прямая относительная и прямая загрузка), команды ветвления и принцип работы с циклическими программами.