Recitation #6

Irina Espejo (iem244@nyu.edu)

Center for Data Science

DS-GA 1014: Optimization and Computational Linear Algebra for Data Science

recall: Markov chain

Markov chain

A sequence of random variables $(X_0, X_1, ...)$ is a Markov chain with state space E and transition matrix P if for all $t \ge 0$,

$$\mathbb{P}(X_{t+1} = y | X = x_0, ..., X_t = x_t) = P(x_t, y)$$

for all $x_0,...,x_t$ such that $\mathbb{P}(X_0=x_0,..,X_t=x_t)>0$ Intuitively, "if the future only depends on the present and not the past"

recall: Markov chain

Stochastic matrix

Let $P \in \mathbb{R}^{n \times n}$ be a matrix, we say P is stochastic if:

•
$$P_{i,j} \ge 0$$
 for all $1 \le i,j \le n$

$$\sum_{i=1}^{n} P_{0j} = 1 \text{ for all } 1 \leq j \leq n$$

practice: stochastic matrix

Exercise 1

Let $A, B \in \mathbb{R}^{n \times n}$ be stochastic matrices then

- 2 The eigenvector corresponding to the largest eigenvalue of A is unique ✓True ✓False

A does not have
$$\lambda = 0$$
 as eigenvalue True XFalse

1) Countercomple

(auntercomple

(aunterexample

(aunterex

- Counter example
- $\begin{pmatrix} 11 \\ 00 \end{pmatrix}$ has $\lambda = 0$ $\begin{pmatrix} 11 \\ 00 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

practice: stochastic matrix

Exercise 2

Let $A, B \in \mathbb{R}^{n \times n}$ then be stochastic matrices then AB is also a stochastic matrix.

Hint: express the condition "sum of each column = 1" as a matrix multiplication.

5 / 15

recall: Markov chain

Proposition

For a Markov chain with the notation above, for all $t \geq 0$

$$x^{(t+1)} = P(t) \quad \text{and consequently,} \quad x^{(t)} = P^t x^{(0)}$$
 and recall that the limit $t \to \infty$ is $x^{(t)} \to \mu$ for some $\mu \in \Delta_n$

(probability vector).

Perron-Frobenius Theorem

Let P be a stochastic matrix such that exists $k \ge 1$ such that all the entries of P^k are strictly positive. Then,

- $\lambda = 1$ is an eigenvalues of P with μ its an eigenvector.
- The eigenvalue $\lambda = 1$ has multiplicity equal to $\ker(P Id) = Span(\mu)$ $P_{\mu} = \mu \cdot 1$ $P_{\mu} = \mu \cdot 1$
- For all probability vectors $x \in \Delta_n$ we have $P^t x \to \mu$ in the limit $t \to \infty$

Exercise 3

Let $A \in \mathbb{R}^{n \times n}$ be a matrix with eigenvectors $v_1, ..., v_n$ and associated eigenvalues $\lambda_1, ..., \lambda_n$. Let $\underline{x = \alpha_1 v_1 + ... + \alpha_n v_n}$ be a vector in $\in \mathbb{R}^n$. Show

- Let P be a linear transformation that maps the canonical basis $e_1, ..., e_n$ of \mathbb{R}^n to the eigenvector basis of A: $v_1, ..., v_n$. Write P explicitly.
- ② What is PDP^{-1} ? $(D = diag(\lambda_1, ..., \lambda_n))$
- **3** Simplify $(PDP^{-1})^k$ for $k \in \mathbb{N}$
- 4 If $A = PDP^{-1}$, give an interpretation of the action of A

Exercise 3

Let P be a linear transformation that maps the canonical basis $e_1,..,e_n$ of \mathbb{R}^n to the eigenvector basis of A: $v_1,..,v_n$. Write P explicitly.

$$P : e_{\ell} \rightarrow V_{\ell}$$

$$P = \begin{pmatrix} 1 & 1 \\ 1 & \sqrt{n} \\ 1 & 1 \end{pmatrix}$$

$$e_{1} \rightarrow P(e_{1})$$

Exercise 3

What is PDP^{-1} ? $(D = diag(\lambda_1, ..., \lambda_n))$ $\times = \underbrace{\mathcal{E}}_{i} \lambda_{i} V_{i}$ Simplify $(PDP^{-1})^{k}$ for $k \in \mathbb{N}$

Exercise 3

If $A = PDP^{-1}$, give an interpretation of the action of A

P: takes eigenvectors to canonical basis

D: expands the coordinate i by li for allied, ..., n
or shrinks P: takes the cononical basis to eigenvector bosis A=PDP': does all the above in order

recall: Spectral theorem

Spectral theorem !!

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then, there exists an orthonormal basis of \mathbb{R}^n composed of eigenvectors of A

practice: Symmetric matrices

Exercise 4

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Give a vector $v \in \mathbb{R}^n$ with ||v|| = 1 such that ||Av|| is maximized.

$$V=(...)$$
? $A=P$ DP P is orthogonal $V=(V_1,...,V_n)$ eigenbasis $H_1...H_n$ $P'=P^T$

$$||AV||=||P||P||=||E||||A||V|| \leq ||A_{max}||V||$$

$$V=E|V_1||V_1||=||A_{max}||V_2||$$

$$V=(.0.1...)$$
 $A_j=A_{max}$

practice: Spectral theorem

Exercise 5

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_1, ..., \lambda_n$ and orthonormal eigenvectors $v_1, ..., v_n$.

Give an orthonormal basis of Ker(A) and Im(A) in terms of $v_1,...,v_n$ only.

Ker(A) =
$$\{v \in \mathbb{R}^n \mid Av = 0\}$$
 = $\{v \in \mathbb{R}^n \mid Av = 1v \text{ with } 1 = 0\}$
therefore, $\{v \in \mathbb{R}^n \mid Av = 0\}$ eigenvalue

 $Im(A) = \left\{ w \in \mathbb{R}^{n} \mid \text{ exists } v \in \mathbb{R}^{n} \mid Av = w \right\}$ $Apply \quad \text{rank-mull-ty theorem: } \sqrt{Im(A)} + \dim(\underbrace{\ker(A)}) = n$ $dim(Im(A)) = n - \dim(\ker(A)) + V_{A,m,v} \vee_{A} \text{ is } \sqrt{\lim(A)} = \operatorname{Span}(\left\{ V_{K} \right\})$ = 0 = 0 = 0 = 0 = 0 = 0 = 0

practice: Spectral theorem

Exercise 6(*)

Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric matrices. Show that AB = BA if and only if A and B diagonalize in the same basis. (Does the same hold if we just assume that A, B are diagonalizable?)

$$AB=BA$$
 show A,B have same eigenvectors
Let $v \in \mathbb{R}^n$ be an eigenvector of $A: Av=\lambda v$

$$A(Bv) = B(Av) = BAv = A(Bv) \rightarrow Bv$$
 is also on eigenvector of

 $A(Bv) = B(Av) = BAv = A(Bv) \rightarrow Bv$ is also on eigenvector of A But $A_1 \neq ... \neq A_n$ so the multiplicity is 1 therefore $M = \alpha Bu$ over So M is also on eigenvalue of B and viceversa.

Let $A = PD_A P^T$ and $B = PD_B P^T$ show AB = BA

Let
$$A=PD_AP^T$$
 and $B=PD_BP^T$ show $AB=BA$

$$AB=(PD_AP^T)(PD_BP^T)=PD_BD_BP^T=PD_BD_BP^T=PD_BP_B^T=PD_B^$$