長庚大學108學年度第二學期 作業系統實務 第一次小考

系級: 姓名: 學號:

1. For two periodic tasks P₁ and P₂, P₁ has its period 30 and execution time 15, and P₂ has its period 50 and execution time 20. Assume P₁ and P₂ are ready at time 0. Please draw the scheduling results from time 0 to 150 for (a) the RM scheduling and (b) the EDF scheduling.

Answer:

- 2. (40%) Consider 4 tasks, t_1 , t_2 , t_3 , and t_4 which have priorities x_1 , x_2 , x_3 , and x_4 , respectively, and assume $x_1 > x_2 > x_3 > x_4$ (x_1 is the highest priority). After we profile the programs of the 4 tasks, we have the following information:
 - Task t_1 will lock semaphore S_1 for 3 ms.
 - Task t_2 will lock semaphore S_2 for 18 ms and lock semaphore S_3 for 16ms.
 - Task t₃ will lock semaphore S₁ for 4 ms and lock semaphore S₃ for 14 ms.
 - Task t₄ will lock semaphore S₂ for 12 ms and lock semaphore S₃ for 10 ms.
 - (a) Please derive the priority ceiling of each semaphore.
 - (b) Let the priority ceiling protocol be used to manage the semaphore locking, please derive the worst-case blocking time of each task.

Answer:

Priority ceilings: S₁: x₁, S₂: x₂, S₃: x₂

Worst-case blocking times: t₁: 4 ms, t₂: 14 ms, t₃: 12 ms, t₄: 0 ms.

- 3. (40%)
 - ▶ A sporadic server has a replenishment period 5 and an execution budget 2
 - ▶ Each event consumes the execution 1
 - Events arrive at 1, 4, 7, 9, 10
 - Please draw the diagram of the execution budget management

Answer:

