通信电子线路实验报告(一)——小信号调谐放大器

姓名:	杨承翰	_学号:	210210226	班级:	通信2班
实验台号:	K403-21	实验日期:	3. 31	原始数据审核:	

一、实验目的

- 1. 熟悉电子元器件和高频电子线路实验系统
- 2. 掌握小信号谐振放大器的基本工作原理
- 3. 掌握谐振放大器的幅频特性分析——通频带选择性与增益的测量方法
- 4. 熟悉信号源内阻及负载对谐振回路的影响
- 5. 了解谐振放大器动态范围的概念和测量方法

二、实验预习

1. 阐述小信号调谐放大器的工作原理

(一) 小信号调谐放大器基本工作原理

高频小信号放大器是构成无线电通信设备的主要电路,其作用是放大信道中的高频小信号。 所谓小信号,通常指输入信号电压一般在微伏至毫伏数量级,放大这种信号的放大器工作在线 性范围内;所谓调谐,主要是指放大器的负载为调谐回路(如LC谐振回路)。这种放大器对谐 振频率 fo 的信号具有最强的放大作用,而对其他远离 fo 的频率信号,放大作用很差,通频带较 窄。调谐放大器的频率特性如图 1-1 所示。

图 1-1 调谐放大器的频率特性

例如无线电接收机中的高放电路,就是典型的高频窄带小信号放大电路。窄带放大电路中,被放大信号的频带宽度小于或远小于其中心频率。如在调幅接收机的中放电路中,带宽为9KHz,中心频率为465kHz,相对带宽Δff6约为百分之几。因此,高频小信号放大电路的基本类型是选频放大电路,以选频器作为线性放大器的负载,或作为放大器与负载之间的匹配器。它主要由放大器与选频回路两部分构成。用于放大的有源器件可以是半导体三极管,也可以是场效应管,电子管或者是集成运算放大器。用于调谐的选频器件可以是 LC 谐振回路,也可以是晶体滤波器,陶瓷滤波器,LC 集中滤波器等。本实验用三极管作为放大器件,LC 谐振回路作为选

频器。在分析时,主要用如下参数衡量电路的技术指标:中心频率、增益、噪声系数、灵敏度、通频带与选择性。

(二) 单调谐回路放大器

小信号调谐放大器的种类很多,按调谐回路区分,有单调谐放大器、双调谐放大器和参差 调谐放大器。按晶体管连接方法区分,有共基极、共发射极和共集电极调谐放大器等等。下面 我们讨论共发射极单调谐放大器。

共发射极单调谐放大器原理电路如图 1-2 所示。

图 1-2 单调谐放大电路

图中晶体管 T 起放大信号的作用, R_{b1} 、 R_{b2} 、 R_e 为直流偏置电阻,用以保证晶体管工作于放大区域,从而放大器工作于甲类。 C_e 是 R_e 的旁路电容, C_b 、 C_e 是输入、输出耦合电容,L、C 是谐振回路,作为放大器的集电极负载起选频作用,它采用抽头接入法,以减轻晶体管输出电阻对谐振回路 Q 值的影响, R_e 是集电极(交流)电阻,它决定了回路 Q 值、带宽。

(三) 双调谐回路放大器

双调谐回路放大器具有频带宽,选择性好的优点。因此,为了改善调谐电路的频率特性,通常采用双调谐放大电路。顾名思义,双调谐回路是指有两个彼此耦合的调谐回路:一个靠近晶体管输出端,称为初级;另一个靠近下级输入端,称为次级,它们的谐振频率应调在同一个中心频率上。两者之间,可采用互感耦合或电容耦合,其电路如图 1-3 所示。

图 1-3 双调谐放大电路

若改变互感系数 M 或耦合电容 C,就可以改变两个单调谐回路之间的耦合程度,通常用耦合系数 k 来表征其耦合程度。

互感耦合双调谐回路的耦合系数为: $k = \frac{M}{\sqrt{L_1 L_2}}$

电容耦合双调谐回路的耦合系数为: $k = \frac{C}{\sqrt{(C_1' + C)(C_2' + C)}}$

式中, C1'和 C2'是等效到初、次级回路的全部电容之和。

图 1-4 双调谐电路的幅频特性曲线

2. 分析实验电路图 1-5,说明以下各点代表的含义

1TP2: 输入信号测试点。

1TP7: 输出信号测试点。

1C19: 两个回路通过其耦合,可以调整 1C19 以调整其耦合度。

1K1: 控制 1R25 是否接入集电极回路,接通时负载电阻变小,Q值降低,增益减小。

1K2: 单调谐与双调谐回路的开关,断开时为双调谐回路,接通时为单调谐回路。

三、实验记录

表 1-1

输入信号频率 f(MHz)	5.5	5.6	5.7	5.8	5.9	6.0	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9	7.0
1K1 断开时输出	1.40	1.50	1.60	1.80	2.00	2.20	2.55	2.60	2.60	2.40	2.25	1.90	1.80	1.60	1.45	1.40
电压 (V _{p-p})																
1K1 接通时输	1.35	1.40	1.46	1.60	1.73	1.80	1.86	1.93	1.98	1.90	1.85	1.78	1.60	1.45	1.40	1.33
出电压 (V _{p-p})																

点测法测出的单调谐放大器幅频特性曲线:

表 1-2

放大器输入 (mV)	200	250	300	350	400	450	500	550	600	650	700	750	800
放大器输出	2.70	4.03	5.14	5.99	6.81	7.70	8.47	9.12	9.45	9.75	9.83	9.90	9.98
(V_{p-p})													
放大器电压	13.50	16.12	17.13	17.11	17.03	17.11	16.94	16.58	15.75	15.00	14.04	13.20	12.47
放大倍数													

单调谐放大器动态范围曲线:

大致手绘出根据扫频法测量的双调谐放大器幅频特性曲线 (包括弱耦合、全耦合、过耦合)

表 1-3

输入信号频 率f(MHz)	5.1	5.3	5.5	5.7	5.9	6.1	6.3	6.5	6.7
输出电压 (V _{p-p})	1.00	1.02	1.32	2.25	3.07	3.00	2.87	2.18	1.50

点测法测出的临界耦合状态下双调谐放大器幅频特性曲线:

四、实验思考题

高频小信号放大器的主要技术指标是什么?它们是怎样定义的?

- 1. 增益 A 电压增益 A_u=u_o/u_i 功率增益 A_p=P_o/P_i
- 2. 通频带 B(2 △ $f_{0.7}$) 电压增益下降到最大值的 $1/\sqrt{2}$ 时所对应的频带宽度
- 3. 选择性(矩形系数) K_{r0.1}=2 △ f_{0.7}/2 △ f_{0.1}
- 4. 噪声系数 N_{f=}(p_{si}/p_{ni})/(p_{so}/p_{no})
- 5. 稳定性 内部反馈可能导致工作不稳

五、实验过程与数据分析

(叙述具体实验过程,记录实验数据在原始数据表格,如需要引用原始数据表格,请标注出表头,如"实验记录见表 1—*")

1. 根据绘制的单调谐放大电路在接通和断开 1R25 时的幅频特性曲线,计算出相应的通频带和增益。

接通: B=1.4MHz

 $A_u = 9.9$

接通: B=0.9MHz

 $A_u=13$

- 2.根据幅频特性曲线和实验电路,分析集电极负载对单调谐放大器幅频特性的影响。 集电极加入负载电阻,可以增大单调谐放大器的增益,缩小通频带,使 Q 值增大
- 3.根据绘制的单调谐放大器动态范围曲线(即放大器电压放大倍数与输入电压幅度之间的关系曲线)分析当放大器输入幅度增大到一定程度时,输出波形会发生什么变化?为什么?输出波形的输出幅值达到一定程度时,增大输入,输出幅值不会继续增长,放大倍数降低,但是通频带增加,输出波形峰值不加高但是变得更加扁平。

4. 根据绘制的双调谐放大电路幅频特性曲线,计算出相应的通频带和增益,总结其与单调谐放大电路相比有何优缺点?并说明双调谐放大电路在三种状态下的幅频特性曲线有何特点。

B=0.9MHz

$A_u = 15.35$

增益更高, 放大倍数更大, 减小了不稳定因数, 频带较宽, 选择性好, 矩形系数较小

弱耦合:峰值低,曲线扁平

全耦合:顶端扁平

过耦合:有两个峰,中间向下凹陷

六、实验体会与建议

本实验让我收获很大,动手能力增强的同时理论基础更加扎实。