සියලු ම හිමිකම් ඇව්රිණි / மුழுப் பதிப்புரிமையுடையது /All Rights Reserved]

ලි ලංකා විතාහ දෙපාර්තමේන්තුව ලි ලංකා විතාහ දෙපාර්ත**ින්තුවන් ලැපාරිත් ලෙපාර්තමේන්තුව**තාහ දෙපාර්තමේන්තුව ලි ලංකා විතාහ දෙපාර්තමේන්තුව මුහෝනයේ ප්රියාතය නිතාහන්සනගේ මුහෝනයේ ප්රියාත් නිතාහන්සනගේ මුහෝනයේ ප්රියාත් නිතාහන්සනගේ මුහෝනයේ ප්රියාත් නිතාහන්ස Department of Examinations. Sri Lanka Department of Solving State (State of State of Examinations, Sri Lanka Department of Exam

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2015 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2015 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2015

සංයුක්ත ගණිතය இணைந்த கணிதம் Combined Mathematics 10(S)(I)

පැය තුනයි மூன்று மணித்தியாலம் Three hours

			19.Vo. 12			
විභාග	අංකය					
			- 2	- 53	1 3	

උපදෙස් :

* මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සීයමු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය, B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- 🗱 පුශ්න පතුයෙහි **B කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

කොටස	පුශ්න අංකය	ලකුණු
	1	
	2	
	3	
	4	
A	5	
	6	0.4
	7.	7.7
	8	AMULTINA - STATE
	9	
	10	
	11	
1	12	
/	13	
В	14	
	15	
	16	
	17	
i	ිකතුව	
Ĭ	පුතිශත ය	

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරින්	

යාංකේත අංක

උත්තර පතු පරීක්		
පරීක්ෂා කළේ:	1 2	
අධීක්ෂණය කළේ:		

	A	0 2	හටස							
n	∈	\mathbb{Z}^+	සඳහා	8 ⁿ	- 3 ⁿ	යන්න	5 හි	පූර්ණ	සංඛාහමය	ගුළ

1.	ගණිත අගනුගන මූලධර්මය භාවිතයෙන්, සියලු n \in \mathbb{Z}^+ සඳහා 8^n $ 3^n$ යන්න 5 හි පූර්ණ සංඛාහමය ගුණාකාරයක්
	බව සාධනය කරන්න.
	· · · · · · · · · · · · · · · · · · ·
2.	$\left x ight <2-x^2$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.

3.	අාගන්ඩ් සටහනක් මත $ z-3+4i =2$ සමීකරණය සපුරාලන z සංකීර්ණ සංඛාාව මගින් නිරූපණය කරපු	9
	ලබන ලක්ෂායේ පථය වන C හි දළ සටහනක් අඳින්න. ඒනයින්, C මත පිහිටි z සඳහා $\left z+4i\right $ හි වැඩිත 6	9
	හා අඩුතම අගයන් සොයන්න.	
	411314111111111111111111111111111111111	
_		
	······································	
4.	$n\in \mathbb{Z}^+$ හා $n\geq 5$ යැයි ගනිමු. $\left(3x+rac{2}{3} ight)^n$ හි ද්වීපද පුසාරණයේ x^{n-10} හි සංගුණකය 100 ට වඩා අඩු වේ. n හි	3
	$n\in \mathbb{Z}^+$ හා $n\geq 5$ යැයි ගනිමු. $\left(3x+rac{2}{x} ight)^n$ හි ද්වීපද පුසාරණයේ x^{n-10} හි සංගුණකය 100 ට වඩා අඩු වේ. n හි අගය සොයන්න.	
	·	
	More Past Papers at	
	More Past Papers at	
	tamilguru.lk	
		_

5.	$y \rightarrow a y - a$
	$\lim_{x \to 0} \frac{\left(x + \sqrt{2}\right)^4 - 4}{\sin 4x} = 2\sqrt{2} \text{බව ලෙන්වන්න.}$
	,
6	
б.	එක ම රූප සටහනක $y=e^x$ හා $y=e^{-x}$ වකු දෙකෙහි දළ සටහන් අඳින්න. x -අක්ෂයෙන් ද $-1 \le x \le 0$ පරාසය
б.	
6.	එක ම රූප සටහනක $y=e^x$ හා $y=e^{-x}$ වකු දෙකෙහි දළ සටහන් අඳින්න. x -අක්ෂයෙන් ද $-1 \le x \le 0$ පරාසය තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	එක ම රූප සටහනක $y=e^x$ හා $y=e^{-x}$ වකු දෙකෙහි දළ සටහන් අඳින්න. x -අක්ෂයෙන් ද $-1 \le x \le 0$ පරාසය තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
б.	එක ම රූප සටහනක $y=e^x$ හා $y=e^{-x}$ වකු දෙකෙහි දළ සටහන් අඳින්න. x -අක්ෂයෙන් ද $-1 \le x \le 0$ පරාසය තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	එක ම රූප සටහනක $y=e^x$ හා $y=e^{-x}$ වකු දෙකෙහි දළ සටහන් අඳින්න. x -අක්ෂයෙන් ද $-1 \le x \le 0$ පරාසය තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	එක ම රූප සටහනක $y=e^x$ හා $y=e^{-x}$ වකු දෙකෙහි දළ සටහන් අඳින්න. x -අක්ෂයෙන් ද $-1 \le x \le 0$ පරාසය තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	එක ම රූප සටහනක $y=e^x$ හා $y=e^{-x}$ වකු දෙකෙහි දළ සටහන් අඳින්න. x -අක්ෂයෙන් ද $-1 \le x \le 0$ පරාසය තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	එක ම රූප සටහනක $y=e^x$ හා $y=e^{-x}$ වකු දෙකෙහි දළ සටහන් අඳින්න. x -අක්ෂයෙන් ද $-1 \le x \le 0$ පරාසය තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	එක ම රූප සටහනක $y=e^x$ හා $y=e^{-x}$ වකු දෙකෙහි දළ සටහන් අඳින්න. x -අක්ෂයෙන් ද $-1 \le x \le 0$ පරාසය තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	එක ම රූප සටහනක $y=e^x$ හා $y=e^{-x}$ වකු දෙකෙහි දළ සටහන් අඳින්න. x -අක්ෂයෙන් ද $-1 \le x \le 0$ පරාසය තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	එක ම රූප සටහනක $y=e^x$ හා $y=e^{-x}$ වකු දෙකෙහි දළ සටහන් අඳින්න. x -අක්ෂයෙන් ද $-1 \le x \le 0$ පරාසය තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	එක ම රූප සටහනක $y=e^x$ හා $y=e^{-x}$ වකු දෙකෙහි දළ සටහන් අඳින්න. x -අක්ෂයෙන් ද $-1 \le x \le 0$ පරාසය තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	එක ම රූප සටහනක $y=e^x$ හා $y=e^{-x}$ වකු දෙකෙහි දළ සටහන් අඳින්න. x -අක්ෂයෙන් ද $-1 \le x \le 0$ පරාසය තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	එක ම රූප සටහනක $y=e^x$ හා $y=e^{-x}$ වකු දෙකෙහි දළ සටහන් අඳින්න. x -අක්ෂයෙන් ද $-1 \le x \le 0$ පරාසය තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	එක ම රූප සටහනක $y=e^x$ හා $y=e^{-x}$ වකු දෙකෙහි දළ සටහන් අඳින්න. x -අක්ෂයෙන් ද $-1 \le x \le 0$ පරාසය තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	එක ම රූප සටහනක $y=e^x$ හා $y=e^{-x}$ වකු දෙකෙහි දළ සටහන් අඳින්න. x -අක්ෂයෙන් ද $-1 \le x \le 0$ පරාසය තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය

7.	
	මගින් දෙනු ලැබේ. $rac{\mathrm{d}y}{\mathrm{d}x}$ වනුත්පන්නය $ heta$ ඇසුරෙන් සොයා, $ heta=rac{\pi}{4}$ වන ලක්ෂායෙහි දී C වකුයට ඇ δ
	අභිලම්බයේ සමීකරණය $x-\sqrt{2}y+2=0$ බව පෙන්වන්න.
_	
8.	$A\left(10,0 ight)$ හා $B\left(0,5 ight)$ ලක්ෂා යා කරන සරල රේඛාව $C\left(1,2 ight)$ හා $D\left(3,6 ight)$ ලක්ෂා යා කරන CD රේඛා
8.	$A\left(10,0\right)$ හා $B\left(0,5\right)$ ලක්ෂා යා කරන සරල රේඛාව $C\left(1,2\right)$ හා $D\left(3,6\right)$ ලක්ෂා යා කරන CD රේඛා ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න.
8.	
8.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න.
8.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න. $ACBD$ චතුරසුයේ වර්ගඵලය වර්ග ඒකක 25 ක් බව තවදුරටත් පෙන්වන්න.
8.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න. $ACBD$ චතුරසුයේ වර්ගඵලය වර්ග ඒකක 25 ක් බව තවදුරටත් පෙන්වන්න.
8.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න. $ACBD$ චතුරසුයේ වර්ගඵලය වර්ග ඒකක 25 ක් බව තවදුරටත් පෙන්වන්න.
8.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න. $ACBD$ චතුරසුයේ වර්ගඵලය වර්ග ඒකක 25 ක් බව තවදුරටත් පෙන්වන්න.
8.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න. $ACBD$ චතුරසුයේ වර්ගඵලය වර්ග ඒකක 25 ක් බව තවදුරටත් පෙන්වන්න.
8.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න. $ACBD$ චතුරසුයේ වර්ගඵලය වර්ග ඒකක 25 ක් බව තවදුරටත් පෙන්වන්න.
8.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න. $ACBD$ චතුරසුයේ වර්ගඵලය වර්ග ඒකක 25 ක් බව තවදුරටත් පෙන්වන්න.
8.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න. $ACBD$ චතුරසුයේ වර්ගඵලය වර්ග ඒකක 25 ක් බව තවදුරටත් පෙන්වන්න.
8.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න. $ACBD$ චතුරසුයේ වර්ගඵලය වර්ග ඒකක 25 ක් බව තවදුරටත් පෙන්වන්න.
8.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න. $ACBD$ චතුරසුයේ වර්ගඵලය වර්ග ඒකක 25 ක් බව තවදුරටත් පෙන්වන්න.
8.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න. $ACBD$ චතුරසුයේ වර්ගඵලය වර්ග ඒකක 25 ක් බව තවදුරටත් පෙන්වන්න.
8.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න. $ACBD$ චතුරසුයේ වර්ගඵලය වර්ග ඒකක 25 ක් බව තවදුරටත් පෙන්වන්න.
8.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න. $ACBD$ චතුරසුයේ වර්ගඵලය වර්ග ඒකක 25 ක් බව තවදුරටත් පෙන්වන්න.

9.	O . O මූල ලක්ෂාය ඔස්සේ ද $y=1$ රේබාවේත් $x^2+y^2-2x-2y+1=0$ වෘත්තයේත් ඡේදන ලක්ෂා ඉ				
	ඔස්සේ ද යන වෘත්තයේ කේන්දුය හා අරය සොයන්න.				
	·				
10.	$\sin \alpha + \sin \beta = 1$ හා $\cos \alpha + \cos \beta = \sqrt{3}$ යැයි ගනිමු; මෙහි α හා β සුළු කෝණ වේ. $\alpha + \beta$ හි අගය සොයන්න.				
	······································				

രാള 0 രാത്രാ സൗറ്റ് (ഗ്രവ്രാ വളിവ്വ്യിയെലുടെ Lugy/All Rights Reserved)

இ ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව இவங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் புடிவந்த திணைக்கமும் இங்கினர் பரீடனித் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of இவங்கினர் 15 ரப்பூர்களைத் பரீடனின் இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீடவசத் திணைக்களம் இலங்கைப் பரீடனசத் திணைக்களம்

අධානයන පොදු සහනිසා පතු (උසස් පෙළ) විභාගය, 2015 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2015 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2015

සංයුක්ත ගණිතය

இணைந்த கணிதம்

Combined Mathematics

B කොටස

* පුශ්ත **පහකට** පමණක් පිළිතුරු සපයන්න.

11.(a) x හි මානුය 4 වූ F(x), G(x) හා H(x) යන බහුපද පහත දැක්වෙන පරිදි දෙනු ලැබේ.

$$F(x) \equiv (x^2 - \alpha x + 1)(x^2 - \beta x + 1)$$
, මෙහි α හා β තාත්ත්වික නියන වේ;

$$G(x) = 6x^4 - 35x^3 + 62x^2 - 35x + 6$$

$$H(x) = x^4 + x^2 + 1.$$

(i) F(x)=0 හා G(x)=0 යන දෙකට ම එක ම මූල තිබේ නම්, α හා β මූල වශයෙන් ඇති වර්ගජ සමීකරණය $6x^2-35x+50=0$ බව පෙන්වන්න.

ඒනයින්, G(x)=0 සමීකරණයෙහි සියලු ම මූල සොයන්න.

- (ii) F(x) = H(x) වෙයි නම්, α හා β ට තිබිය හැකි අගයන් සොයා, H(x) = 0 සමීකරණයේ මූල තාත්ත්වික **නො වන** බව පෙන්වන්න.
- (b) (i) $f(x) \equiv 2x^4 + \gamma x^3 + \delta x + 1$ යැයි ගනිමු; මෙහි γ හා δ තාත්ත්වික නියත වේ. $f\left(-\frac{1}{2}\right) = 0$ හා f(-2) = 21 බව දී ඇති විට, f(x) හි තාත්ත්වික ඒකජ සාධක දෙක සොයන්න.
 - (ii) සියලු ම තාත්ත්වික x සඳහා $(x^2 + x + 1) P(x) + (x^2 1) Q(x) = 3x$ සමීකරණය සපුරාලන P(x) හා Q(x) ඒකජ පුකාශන දෙක සොයන්න.
- 12.(a) නිපුණතා සංදර්ශන තරගයක විනිසුරුවන් ලෙස කටයුතු කිරීම සඳහා සාමාජික සාමාජිකාවන් හතර දෙනකුගෙන් සමන්විත විනිසුරු මඩුල්ලක් පිහිටුවා ගත යුතුව ඇත. මෙම විනිසුරු මඩුල්ල තෝරා ගත යුතුව ඇත්තේ කීඩිකාවන් තුන් දෙනකු, කීඩකයින් දෙදෙනකු, ගායිකාවන් හය දෙනකු, ගායකයින් පස් දෙනකු, නිළියන් දෙදෙනකු හා නළුවන් හතර දෙනකුගෙන් සමන්විත කණ්ඩායමකිනි. පුධාන විනිසුරු, කීඩකයකු හෝ කීඩිකාවක හෝ විය යුතු ය. විනිසුරු මඩුල්ලේ අනෙක් තිදෙනා තෝරා ගත යුතු වන්නේ කීඩක කීඩිකාවන් හැර කණ්ඩායමේ ඉතිරි අයගෙන් ය. පහත දැක්වෙන එක් එක් අවස්ථාවේ දී විනිසුරු මඩුල්ල පිහිටුවා ගත හැකි වෙනස් ආකාර ගණන සොයන්න.
 - (i) අඩු තරමින් එක් ගායිකාවක හා එක් ගායකයකු මඩුල්ලට ඇතුළත් විය යුතු ම නම්,
 - (ii) පුධාන විනිසුරු ඇතුළුව පිරිමි දෙදෙනකු හා ගැහැනු දෙදෙනකු මඩුල්ලේ සිටිය යුතු ම නම්,
 - (iii) පුධාන විනිසුරු කීඩිකාවක විය යුතු ම නම්.
 - (b) $r\in \mathbb{Z}^+$ සඳහා $A(r+5)^2-B(r+1)^2=r+C$ වන පරිදි A,B හා C නියතවල අගයන් සොයන්න.

ජනයින්, අපරිමිත ලේණියක r වන පදය $U_r = \frac{8}{\left(r+1\right)^2(r+3)\left(r+5\right)^2}$ යන්න f(r) - f(r+2) ලෙස

පුකාශ කළ හැකි බව පෙන්වන්න; මෙහිf(r) යනු නිර්ණය කළ යුතු ශිුතයක් වේ.

 $\sum_{r=1}^n U_r$ ශ්‍රේණියේ ඓකාය සොයා, $\sum_{r=1}^\infty U_r$ ශ්‍රේණිය, $\frac{1}{8^2} + \frac{1}{15^2}$ ඓකායට අභිසාරී වන බව **අපෝහනය** කරන්න.

13.(a) A, B හා C නාහස තුනක්

$$\mathbf{A} = \begin{pmatrix} 0 & 2 & -3 \\ 0 & -1 & 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} a & b & 0 \\ c & d & 0 \end{pmatrix}$$
 හා $\mathbf{C} = \begin{pmatrix} 3 & 4 \\ 2 & 3 \\ 1 & 2 \end{pmatrix}$ මහින් දෙනු ලැබේ.

- (i) $\mathbf{AC} = \mathbf{I_2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ බව පෙන්වන්න. \mathbf{CA} ගුණිතයන් සොයන්න.
- (ii) $\mathbf{BC} = \mathbf{I}_2$ වන පරිදි $a,\ b,\ c$ හා d හි අගයන් සොයන්න.
- (iii) ($\lambda A + \mu B$) $C = I_2$ වෙයි නම්, λ හා μ සම්බන්ධ කෙරෙන සමීකරණයක් ලබා ගන්න.

$$\mathbf{D} = \begin{pmatrix} -3 & 8 & -6 \\ 2 & -5 & 4 \end{pmatrix}$$
 නාහසය, \mathbf{A} හා \mathbf{B} ඇසුරෙන් පුකාශ කර, **ඒනයින්**, \mathbf{DC} ගුණිතය සොයන්න.

(b) z සංකීර්ණ සංඛ්‍යාවක් $z = \cos \theta + i \sin \theta$ ලෙස දෙනු ලැබේ; මෙහි $\theta(-\pi < \theta \le \pi)$ තාත්ත්වික පරාමිතියකි. ආගන්ඩ් සටහනක් මත z නිරූපණය කරන ලක්ෂායේ C පථය සොයන්න.

 $\cos \theta$ හා $\sin \theta$ සඳහා පුකාශන z හා $\frac{1}{z}$ ඇසුරෙන් ලබා ගන්න.

$$w=rac{2z}{z^2+1}$$
 හා $t=rac{z^2-1}{z^2+1}$ යැයි ගනිමු; මෙහි z යන්න $z
eq \pm i$ වන පරිදි C මන පිහිටයි.

- (i) ${\rm Im}\,(w)=0$ හා ${\rm Re}\,(t)=0$ බව පෙන්වන්න. **ජ්නයින්**, හෝ අන් කුමයකින් හෝ, $w^2+t^2=1$ බව තවදුරටත් පෙන්වන්න.
- (ii) w = 2 සමීකරණය සපුරාලන z සංකීර්ණ සංඛාා සොයන්න.
- (iii) t=i සමීකරණය සපුරාලන z සංකීර්ණ සංඛාන සොයන්න.
- **14.** (a) $x \neq 0$ සඳහා $y = x \sin \frac{1}{x}$ යැයි ගතිමු.

(i)
$$x \frac{\mathrm{d}y}{\mathrm{d}x} = y - \cos\frac{1}{x}$$
 80

More Past Papers at

(ii)
$$x^4 \frac{d^2 y}{dx^2} + y = 0$$

 $t_{\frac{A^2y}{2x^2}+y=0}$ tamilguru.lk

බව පෙන්වන්න.

(b)
$$x \neq 1$$
 සඳහා $f(x) = \frac{2x^2 + 1}{(x - 1)^2}$ යැයි ගනිමු.

f(x) හි පළමු වනුත්පත්නය හා හැරුම් ලක්ෂාය සොයන්න. හැරුම් ලක්ෂාය හා ස්පර්ශෝත්මුඛ දක්වමින්, y=f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න.

(c) දී ඇති රූපයෙහි, ABCD යනු, BC හා AD සමාන්තර පාද සහිත තුපීසියමකි. සෙන්ට්මීටරවලින් මනිනු ලබන එහි පාදවල දිග AB=CD=a, BC=b හා AD=b+2x මගින් දෙනු ලැබේ; මෙහි 0< x< a වේ. BE හා CF යනු පිළිවෙළින් B හා C ශීර්ෂවල සිට AD පාදය මතට ඇඳි ලම්බ වේ.

ABCD තුපීසියමේ වර්ගඵලය S(x), වර්ග සෙන්ටීමීටරවලින් $S(x)=(b+x)\sqrt{a^2-x^2}$ මගින් දෙනු ලබන බව පෙන්වන්න.

 $a=\sqrt{6}$ හා b=4 නම්, x හි එක්තරා අගයකට S(x) උපරිම වන බව තවදුරටත් පෙන්වා, x හි මෙම අගය හා තුපීසියමේ උපරිම වර්ගඵලය සොයන්න.

15.(a)
$$\int_0^\pi f(x) \, \mathrm{d}x = \int_0^\pi f(\pi - x) \, \mathrm{d}x$$
 බව පෙන්වන්න.
$$\int_0^{\frac{\pi}{2}} \sin^2 x \, \mathrm{d}x = \frac{\pi}{4} \ \text{බවත් පෙන්වන්න}.$$
 ජනයින්.
$$\int_0^\pi x \sin^2 x \, \mathrm{d}x = \frac{\pi^2}{4} \ \text{බව පෙන්වන්න}.$$

- (b) සුදුසු ආදේශයක් හා **කොටස් වශයෙන් අනුකලන** කුමය භාවිතයෙන්, $\int x^3 e^{x^2} \,\mathrm{d}x$ සොයන්න.
- (c) $\frac{1}{x^3-1} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$ වන පරිදි A,B හා C නියතවල අගයන් සොයන්න.

ජනයින්, $\frac{1}{x^3-1}$ යන්න x විෂයයෙන් අනුකලනය කරන්න.

- (d) $t = anrac{x}{2}$ ආදේශය භාවිතයෙන්, $\int\limits_0^{rac{\pi}{2}} rac{\mathrm{d}x}{5 + 4\cos x + 3\sin x} = rac{1}{6}$ බව පෙන්වන්න.
- 16. වෘත්ත දෙකක සමීකරණ $x^2+y^2+2gx+2fy+c=0$ හා $x^2+y^2+2g'x+2f'y+c'=0$ යැයි ගනිමු. මෙම වෘත්ත පුලම්බ ලෙස ඡේදනය වේ නම්, 2gg'+2ff'=c+c' බව පෙන්වන්න.

 $x^2+y^2-8x-6y+16=0$ සමීකරණය සහිත C වෘත්තය x-අක්ෂය ස්පර්ශ කරන බව පෙන්වන්න.

O මූලයෙහි පොදු කේන්දය පිහිටන, අරය r වූ C_1 වෘත්තයක් හා අරය R (> r) වූ C_2 වෘත්තයක් පිළිවෙළින් A හා B ලක්ෂාවල දී C වෘත්තය ස්පර්ශ කරයි. r හා R හි අගයන් ද A හා B හි ඛණ්ඩාංක ද සොයන්න.

S යනු, C හා C_1 යන වෘත්ත දෙක ම පුලම්බ ලෙස ඡේදනය කරන හා y-අක්ෂය ස්පර්ශ කරන වෘත්තයක් යැයි ගනිමු. S සඳහා තිබිය හැකි සමීකරණ දෙක සොයන්න.

C හා C_2 යන වෘත්ත දෙකට ම B ලක්ෂායෙහි දී අඳින ලද පොදු ස්පර්ශකයට x-අක්ෂය P හි දී ද y-අක්ෂය Q හි දී ද හමු වේ. පොදු ස්පර්ශකයේ සමීකරණය 4x+3y=40 බවත්, PQ රේබා බණ්ඩය විෂ්කම්භයක් ලෙස ඇති වෘත්තයේ සමීකරණය $3(x^2+y^2)-30x-40y=0$ බවත් පෙන්වන්න.

- $17.(a) \cos^2(\alpha+\beta)+\cos^2\alpha+\cos^2\beta-2\cos(\alpha+\beta)\cos\alpha\cos\beta=1$ බව පෙන්වන්න.
 - (b) $f(x)=\cos 2x+\sin 2x+2(\cos x+\sin x)+1$ යැයි ගනිමු. f(x) යන්න $k(1+\cos x)\sin(x+\alpha)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි k හා α යනු නිර්ණය කළ යුතු නියත වේ.

$$g(x)$$
 යන්න $\frac{f(x)}{1+\cos x}=\sqrt{2}\left\{g(x)-1\right\}$ වන ලෙස ගනිමු; මෙහි $-\frac{\pi}{2}\leq x\leq \frac{\pi}{2}$ වේ.

y=g(x) හි පුස්තාරයේ දළ සටහනක් ඇඳ **ඒනයින්**, ඉහත දී ඇති පරාසය තුළ f(x)=0 සමීකරණයට එක විසඳුමක් පමණක් ඇති බව පෙන්වන්න.

(c) සුපුරුදු අංකනයෙන්, ABC තිුකෝණයක් සඳහා සයින් නීතිය භාවිතයෙන්,

$$a(b-c) \csc \frac{A}{2} \cot \frac{A}{2} = (b+c)^2 \, \tan \left(\frac{B-C}{2}\right) \sec \left(\frac{B-C}{2}\right)$$
 බව පෙන්වන්න.

		பதிப்புரிமையுடை		

இ ලංකා වනග දෙපාර්තමේත්තුව ලී ලංකා වනග දෙපාර්ත**ී අඩුයි. මේ පිරාහා දෙපාර්තමේ**න්තුව ලී ලංකා වනග දෙපාර්තමේත්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் ப**டனாத் திணைக்களும் இருக்கில**் பரீடனுத்த திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும் Department of Examinations, Sri Lanka Department of **இலங்கைப் Sri Linka Operatory** Sri Lanka Department of Examinations, Sri Lanka Department

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2015 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2015 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2015

குංයුක්ත ගණිතය II இணைந்த கணிதம் II Combined Mathematics II

பகே **තුනයි** மூன்று மணித்தியாலம் Three hours

විභාග අංකය

උපදෙස් :

💥 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ **B කොටස** (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමින කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය. B කොටසේහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්ත පතුයෙහි B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.
- st මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.

පරික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) සංයුක්ත ගණිතය II කොටස පුශ්න අංකය ලකුණු			
	1	-	
1.	2		
	3		
ľ	4		
A	5		
1.	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
В	14		
	15		
	16		
	17		
ryk Copy, gygy y a namen a damin'i da Cok ari y ko rde y y	එකතුව		
	පුතිශ තය		

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරින්	

සංකේත අංක

උත්තර පතු පරීක්ෂඃ	න	
පරීක්ෂා කළේ:	1 2	
අධීක්ෂණය කළේ:		

<u>නෙහැටඇ</u>

1.	සකින්ධ පිළිවෙළින් m හා $2m$ වූ A හා B අංශු දෙකක්, අවල කුඩා සැහැල්ලු සුමට C කජ්පියක් උඩින් යන $2l$ දිගකින් යුතු සැහැල්ලු අවිතනා තන්තුවක දෙකෙළවරට සම්බන්ධ කර ඇත. එක් එක් අංශුව C ට l ගැඹුරකින් අල්ලා තබා පද්ධතිය මෙම පිහිටීමෙන් නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ. ශක්ති සංශ්ථිති මුලධර්මග යෙදීමෙන්, එක් එක් අංශුව $x(< l)$ දුරක් චලනය වී ඇති විට එක් එක් අංශුවෙහි
	v වේගය, $v^2=rac{2gx}{3}$ මගින් දෙනු ලබන බව පෙන්වන්න. ඒනයින් , හෝ අන් කුමයකින් හෝ, පද්ධතියේ
	ත්වරණය සොයන්න.
	······································
	······································
	· · · · · · · · · · · · · · · · · · ·
	•
	······································
2.	දෙකෙළවර ම විවෘත, දිග l වූ ඍජු සිහින් සුමට OA නලයක්, O ඉහළ කෙළවර තිරස් පොළොවට
	$h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවි කර ඇත. නලය ඇතුළත,
	O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන්
	\mathcal{J}
	O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
	O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
	O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
	O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
	O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
	O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
	O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
	O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
	O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
	O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
	O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
	O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
	O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ

3.	සුමට ති්රස් මේසයක් මත u පුවේගයෙන් චලනය වෙමින් පවතින ස්කන්ධය m වූ P අංශුවක්, P හි පෙතෙහි නිසලව
	තිබෙන m ස්කන්ධය සහිත වෙනත් $oldsymbol{Q}$ අංශුවක් සමග සරල ලෙස ගැටෙයි. අංශු දෙක අතර පුතාහාගති සංගුණකය
	$e\left(0\!<\!e\!<\!1 ight)$ නම්, ගැටුමෙන් පසු P හා Q හි පුවේගවල ඓකාසය හා අන්තරය සඳහා පුකාශන, u හා e ඇසුරෙන්
	ලබා ගන්න. ඒනශීන්, හෝ අන් කුමයකින් හෝ, ගැටුමට පසු පද්ධතියේ ඉතිරි වන චාලක ශක්තිය, මුල් චාලක
	ශක්තියට දරන අනුපාතය, $\left(1+e^2\right)$: 2 බව පෙන්වන්න.
	
	······
4.	 එන්ජිම H kW ජවයකින් කිුිිිියා කරමින් ස්කන්ධය මෙටුික් ටොත් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ
4.	
4.	එන්ජීම H kW ජවයකින් කිුයා කරමින් ස්කන්ධය මෙටුක් ටොන් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ u m s $^{-1}$ නියත පුචේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජීම $2H$ kW ජවයකින් කිුයා කරමින්, තිරසට α කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පතිරෝධය තිරස් චලිතයට ඇති
4.	එන්ජීම H kW ජවයකින් කිුයා කරමින් ස්කන්ධය මෙටුක් ටොන් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ u m s $^{-1}$ නියත පුචේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජීම $2H$ kW ජවයකින් කිුයා කරමින්, තිරසට α කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පතිරෝධය තිරස් චලිතයට ඇති
4.	එන්ජීම H kW ජවයකින් කිුයා කරමින් ස්කන්ධය මෙටුක් ටොන් M වූ ලොරියක්, ඍජු සමතලා පාරක් දිගේ u m s $^{-1}$ නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජීම $2H$ kW ජවයකින් කිුයා කරමින්, තිරසට $lpha$ කෝණයක්
4.	එන්ජිම H kW ජවයකින් කිුිිිිිිිිිිිිිිි ස්කන්ධය මෙටුික් ටොන් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ u m s^{-1} නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H$ kW ජවයකින් කිුිිිිිිිිිිිිිිිිි තිරසට α කෝණයක් අානත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පුතිරෝධය ම වේ. මෙම අවස්ථාවේ දී ලොරියේ උපරිම වේගය $\frac{2Hu}{H+Mgu\sin\alpha}$ m s^{-1} බව පෙන්වන්න.
4.	එන්ජිම H kW ජවයකින් කිුිිිිිිිිිිිිිිි ස්කන්ධය මෙටුික් ටොන් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ u m s^{-1} නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H$ kW ජවයකින් කිුිිිිිිිිිිිිිිිිි තිරසට α කෝණයක් අානත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පුතිරෝධය ම වේ. මෙම අවස්ථාවේ දී ලොරියේ උපරිම වේගය $\frac{2Hu}{H+Mgu\sin\alpha}$ m s^{-1} බව පෙන්වන්න.
4.	එන්ජිම H kW ජවයකින් කිුිිිිිිිිිිිිිිි ස්කන්ධය මෙටුික් ටොන් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ u m s^{-1} නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H$ kW ජවයකින් කිුිිිිිිිිිිිිිිිිි තිරසට α කෝණයක් අානත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පුතිරෝධය ම වේ. මෙම අවස්ථාවේ දී ලොරියේ උපරිම වේගය $\frac{2Hu}{H+Mgu\sin\alpha}$ m s^{-1} බව පෙන්වන්න.
4.	එන්ජිම H kW ජවයකින් කිුිිිිිිිිිිිිිිි ස්කන්ධය මෙටුික් ටොන් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ u m s^{-1} නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H$ kW ජවයකින් කිුිිිිිිිිිිිිිිිිි තිරසට α කෝණයක් අානත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පුතිරෝධය ම වේ. මෙම අවස්ථාවේ දී ලොරියේ උපරිම වේගය $\frac{2Hu}{H+Mgu\sin\alpha}$ m s^{-1} බව පෙන්වන්න.
4.	එන්ජිම H kW ජවයකින් කිුිිිිිිිිිිිිිිි ස්කන්ධය මෙටුික් ටොන් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ u m s^{-1} නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H$ kW ජවයකින් කිුිිිිිිිිිිිිිිිිි තිරසට α කෝණයක් අානත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පුතිරෝධය ම වේ. මෙම අවස්ථාවේ දී ලොරියේ උපරිම වේගය $\frac{2Hu}{H+Mgu\sin\alpha}$ m s^{-1} බව පෙන්වන්න.
4.	එන්ජීම H kW ජවයකින් කිුිිිිිිිිිිිිිිිි ස්කන්ධය මෙවුික් ටොන් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ u m s^{-1} නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජීම $2H$ kW ජවයකින් කිුිිිිිිිිිිිිිිිිිිි තිරසට α කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පුතිරෝධය ම වේ. මෙම අවස්ථාවේ දී ලොරියේ උපරිම වේගය $\frac{2Hu}{H+Mgu\sin\alpha}$ m s^{-1} බව පෙන්වන්න.
4.	එන්ජීම H kW ජවයකින් කිුිිිිිිිිිිිිිිිි ස්කන්ධය මෙවුික් ටොන් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ u m s^{-1} නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජීම $2H$ kW ජවයකින් කිුිිිිිිිිිිිිිිිිිිි තිරසට α කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පුතිරෝධය ම වේ. මෙම අවස්ථාවේ දී ලොරියේ උපරිම වේගය $\frac{2Hu}{H+Mgu\sin\alpha}$ m s^{-1} බව පෙන්වන්න.
4.	එන්ජීම H kW ජවයකින් කිුිිිිිිිිිිිිිිිි ස්කන්ධය මෙවුික් ටොන් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ u m s^{-1} නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජීම $2H$ kW ජවයකින් කිුිිිිිිිිිිිිිිිිිිි තිරසට α කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පුතිරෝධය ම වේ. මෙම අවස්ථාවේ දී ලොරියේ උපරිම වේගය $\frac{2Hu}{H+Mgu\sin\alpha}$ m s^{-1} බව පෙන්වන්න.
4.	එන්ජීම H kW ජවයකින් කිුිිිිිිිිිිිිිිිි ස්කන්ධය මෙවුික් ටොන් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ u m s^{-1} නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජීම $2H$ kW ජවයකින් කිුිිිිිිිිිිිිිිිිිිි තිරසට α කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පුතිරෝධය ම වේ. මෙම අවස්ථාවේ දී ලොරියේ උපරිම වේගය $\frac{2Hu}{H+Mgu\sin\alpha}$ m s^{-1} බව පෙන්වන්න.
4.	එන්ජීම H kW ජවයකින් කිුිිිිිිිිිිිිිිිි ස්කන්ධය මෙවුික් ටොන් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ u m s^{-1} නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජීම $2H$ kW ජවයකින් කිුිිිිිිිිිිිිිිිිිිි තිරසට α කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පුතිරෝධය ම වේ. මෙම අවස්ථාවේ දී ලොරියේ උපරිම වේගය $\frac{2Hu}{H+Mgu\sin\alpha}$ m s^{-1} බව පෙන්වන්න.
4.	එන්ජීම H kW ජවයකින් කිුිිිිිිිිිිිිිිිි ස්කන්ධය මෙවුික් ටොන් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ u m s^{-1} නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජීම $2H$ kW ජවයකින් කිුිිිිිිිිිිිිිිිිිිි තිරසට α කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පුතිරෝධය ම වේ. මෙම අවස්ථාවේ දී ලොරියේ උපරිම වේගය $\frac{2Hu}{H+Mgu\sin\alpha}$ m s^{-1} බව පෙන්වන්න.
4.	එන්ජීම H kW ජවයකින් කිුිිිිිිිිිිිිිිිි ස්කන්ධය මෙවුික් ටොන් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ u m s^{-1} නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජීම $2H$ kW ජවයකින් කිුිිිිිිිිිිිිිිිිිිි තිරසට α කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පුතිරෝධය ම වේ. මෙම අවස්ථාවේ දී ලොරියේ උපරිම වේගය $\frac{2Hu}{H+Mgu\sin\alpha}$ m s^{-1} බව පෙන්වන්න.
4.	එන්ජීම H kW ජවයකින් කිුිිිිිිිිිිිිිිිි ස්කන්ධය මෙවුික් ටොන් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ u m s^{-1} නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජීම $2H$ kW ජවයකින් කිුිිිිිිිිිිිිිිිිිිි තිරසට α කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පුතිරෝධය ම වේ. මෙම අවස්ථාවේ දී ලොරියේ උපරිම වේගය $\frac{2Hu}{H+Mgu\sin\alpha}$ m s^{-1} බව පෙන්වන්න.
4.	එන්ජීම H kW ජවයකින් කිුිිිිිිිිිිිිිිිි ස්කන්ධය මෙවුික් ටොන් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ u m s^{-1} නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජීම $2H$ kW ජවයකින් කිුිිිිිිිිිිිිිිිිිිි තිරසට α කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පුතිරෝධය ම වේ. මෙම අවස්ථාවේ දී ලොරියේ උපරිම වේගය $\frac{2Hu}{H+Mgu\sin\alpha}$ m s^{-1} බව පෙන්වන්න.

5.	සුපුරුදු අංකනයෙන්, O මූලයක් අනුබද්ධයෙන් A හා B ලක්ෂ x දෙකක පිහිටුම් දෛශික පිළිවෙළින්
	$\lambda {f i} + \mu {f j}$ හා $\mu {f i} - \lambda {f j}$ වේ; මෙහි λ හා μ යනු $0 < \lambda < \mu$ වන පරිදි වූ තාත්ත්වීක සංඛන වේ. $A\ddot{O}B$ සෘජු
	කෝණයක් බව පෙන්වන්න. AB රේඛා ඛණ්ඩයෙහි මධා ලක්ෂාය C යැයි ගනිමු. \overrightarrow{OC} දෛශිකයේ විශාලන්වය
	2 නම් හා එය ${f i}$ ඒකක ලෛදශිකය සමග $rac{\pi}{6}$ ක කෝණයක් සාදයි නම්, λ හා μ හි අගයන් සොයන්න.
٠	
	······································
6.	ඒකාකාර සිහින් බර දණ්ඩක්, එහි එක කෙළවරක් රඑ තිරස් ගෙබිමක් මත හා අනෙක් කෙළවර සුමට සිරස්
6.	ඒකාකාර සිහින් බර දණ්ඩක්, එහි එක කෙළවරක් රඑ තිරස් ගෙබිමක් මත හා අනෙක් කෙළවර සුමට සිරස් බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස්
6.	
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස්
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ සර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ සර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ සර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ සර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ සර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ සර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ සර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ සර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ සර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ සර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ සර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ සර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ සර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ සර්ෂණ සංගුණකය

	· · · · · · · · · · · · · · · · · · ·	$\frac{1}{2}$, $L(D)$	— — ₩ ₩ 1	$(A \cup R \cup I)$) = ユ シシ	කුවුදුරුවන් දී	₉₇ සි නිව <i>P((</i>	() සම්භාවිතාව	ର ନ ୟ ଏ ମୟ ବଲ୍ଲି
• • •			2	(A O B O C	4 500	200200 ¢ (ş(ω) OO, 1 ((C) සම්භාවිතාව	o wawes.
• • •		*******							• • • • • • • •
		• • • • • • • • • • • • •	.,.,.,.	*******		*********	· · · · · · · · · · · · · · · · · · ·		
						***********		*****	• • • • • • • • •
						> 4 + > + < 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +			•••••••••••••••••••••••••••••••••••••••
	*********		**********	*********	******			*******	• • • • • • • • • • • • • • • • • • • •
								*******	. , , , , , , , ,
	********		*********	************		*********		***************	
	44444444			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		**********		*************	, , , , , , , , , , , , , , , , , , ,
	*********		.,,,,		• • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •
	********			• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •
		********				,			• • • • • • • • • • • • • • • • • • • •
					· · · · · · · · · · · · · · · · · · ·			.,.,	· • • • • • • • • • • • • • • • • • • •
							,	******	

(i)) බල්බ (දෙකක් ප		(ii) 6	_				
පරි	රීක්ෂා කිරී	මෙන් පද	පු ලදා්ෂ සහි	විත බල්බ <u>ගෙ</u>	ැක ම හඳුන	හ ගැනීමට හ	ැකිවීමේ සම්	භාවිතාව සොය	ත්ත.
		*********	*********			• • • • • • • • • • • • • • • • • • • •			
						• • • • • • • • • • • • • • • • • • • •		**************	
٠.			• • • • • • • • • • • • • • • • • • • •			· · · · · · · · · · · · · · · · · · ·			
٠.								.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		*******	• • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •			
		•••••	• • • • • • • • • • • • • • • • • • • •						
٠.		********				• • • • • • • • • • • • • • • • • • • •	*******		• • • • • • • •

٠.							*******		
• •	******								
	***********						****		
•••									

) පෙන්වන්?

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,

ාැටයේ උඩ
ගා මධාාස්ථ
ගා මධාපස්ථ
ගා මධාසස්ථ
න මධාෘස්ථ
ග මධාපස්ථ
තා මධාපස්ථ
නා මධාසස්ථ
නා මධාපස්ථ
නා මධාsස්ර
නා මධාsස්ර
නා මධාපස්ර
නා මධාsස්ර
නා මධාsස්ර
නා මධාපස්ර
නා මධාsස්ර

கீனு ම හිමිකම් ඇව්ටිනි /முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

ල් ලංකා විභාග දෙපාර්තරම්න්තුව ල් ලංකා විභාග දෙපාර්ලේන්තුව දැම්පිරිදුවා පැමැත්තම් ජාත්ය විභාග දෙපාර්තරම්න්තුව ල් ලංකා විභාග දෙපාර්තරම්න්තුව இலங்கைப் பர்ட்சைத் திணைக்களம் இலங்கைப் பகுணித் திணைக்களும் இங்கையு பர்ட்சைத் திணைக்களும் இலங்கைப் பர்ட்சைத் திணைக்களும் Department of Examinations, Sri Lanka Department of இவங்கையில் Sri Linke Office இந்த பர்பில் இரும் இ

අධායන පොදු සහනික පනු (උසස් පෙළ) විභාගය, 2015 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2015 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2015

සංගුක්ත ගණිතය

II

இணைந்த கணிதம் II Combined Mathematics II

B කොටස

* පුශ්ත **පහකට** පමණක් පිළිතුරු සපයන්න.

(මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.)

- 11.(a) P හා Q අංශු දෙකක් අවල තිරස් ගෙබිමක් මත ලක්ෂා දෙකක සිට පිළිවෙළින් u හා $\frac{u}{\sqrt{2}}$ වේගවලින් සිරස් ව ඉහළට, එක විට පුක්ෂේප කරනු ලැබේ. ගෙබිම සිට $\frac{u^2}{4g}$ උසකින් අවල සුමට තිරස් සිවිලිමක් ඇත. සිවිලිමත් එය සමග ගැටෙන P අංශුවත් අතර පුතාහාගති සංගුණකය $\frac{1}{\sqrt{2}}$ වන අතර, අංශු දෙක ගුරුත්වය යටතේ පමණක් ඉහළට හා පහළට චලනය වේ.
 - (i) P අංශුව සිවිලිම සමග ගැටීමට මොහොතකට පෙර එහි වේගයත්, ගැටීම සිදු වන මොහොත දක්වා ගත වූ T_1 කාලයත් සොයන්න.

P අංශුව එහි පුක්ෂේප ලක්ෂාය කරා $\frac{u\sqrt{3}}{2}$ වේගයෙන් ආපසු පැමිණෙන බව පෙන්වන්න.

- (ii) Q අංශුව, සිවිලිමට යන්තමින් ළඟා වන බව පෙන්වා, එම මොහොත දක්වා ගත වූ T_2 කාලය සොයන්න.
- (iii) P හා Q අංශු දෙකෙහි පුක්ෂේප මොහොතේ සිට ආපසු අදාළ පුක්ෂේප ලක්ෂා වෙතට පැමිණීම දක්වා, ඒවායේ චලිත සඳහා පුවේග-කාල පුස්තාරවල දළ සටහන්, එක ම රූපයක අඳින්න.
- (iv) පුවේග-කාල පුස්තාර භාවිතයෙන්, P අංශුව සිවිලිම සමග ගැටෙන මොහොතේ දී Q අංශුව, සිවිලිමට $\frac{u^2}{2g} \left(\sqrt{2}-1\right)^2$ සිරස් දුරක් පහළින් තිබෙන බව පෙන්වන්න.
- (b) S නැවක්, u ඒකාකාර වේගයෙන් උතුරු දිශාවට යාතුා කරයි. එහි සරල රේඛීය පෙත P වරායක සිට නැගෙනහිර පැත්තට p ලම්බ දුරකින් පිහිටා ඇත. එක්තරා මොහොතක දී, \overline{PS} හි දිශාව නැගෙනහිරින් දකුණට 45° කෝණයක් සාදන විට දී ම, S නැව හමු වීම සඳහා B_1 හා B_2 සැපයුම් බෝට්ටු දෙකක් P වරායේ සිට වෙනස් දිශා දෙකකට $v\left(\frac{u}{\sqrt{2}} < v < u\right)$ ඒකාකාර වේගයෙන් එක විට ගමන් අරඹයි. මෙම බෝට්ටු පිළිවෙළින් T_1 හා T_2 (> T_1) කාලවල දී S නැවට ළඟා වේ. $\frac{v}{u} = \sqrt{\frac{2}{3}}$ බව තවදුරටත් දී ඇත්නම්, S නැවට සාපේක්ෂ ව B_1 හා B_2 බෝට්ටුවල චලිත සඳහා සාපේක්ෂ පුවේග නිකෝණ දෙකෙහි දළ සටහන් එක ම රූපයක ඇඳ, P වරායේ සිට S නැව වෙත ගමන් කිරීමේ දී B_1 හා B_2 බෝට්ටුවල නියම චලිත දිශා සොයන්න.

තවදුරටත්, $T_2 - T_1 = \frac{2\sqrt{3} p}{u}$ බව පෙන්වන්න.

More Past Papers at tamilguru.lk

12.(a) දී ඇති රූපයේ, ABC තිුකෝණය, ස්කන්ධය M වූ ජිකාකාර සුමට කුඤ්ඤයක ගුරුත්ව කේන්දුය ඔස්සේ යන සිරස් හරස්කඩක් නිරූපණය කරයි. කුඤ්ඤය තුළ BC ට සමාන්තර වූ DE සිහින් සුමට පීල්ලක් ඇත. AB හා AC රේඛා, අදාළ මුහුණත්වල උපරිම බෑවුම් රේඛා වන අතර $\hat{ABC} = \frac{\pi}{2}$ වේ.

BC අඩංගු මුහුණත අවල සුමට තිරස් මේසයක් මත සිටින පරිදි කුඤ්ඤය තබා ඇත. එක එකක ස්කන්ධය

m වූ P හා Q අංශු දෙකක් පිළිවෙළින් DE හා DB මත තබා ඒවා, D ලක්ෂායෙහි පිහිටි කුඩා සුමට සැහැල්ලු කප්පියක් උඩින් යන සැහැල්ලු අවිතනා තන්තුවකින් ඇදා ඇත. ස්කන්ධය $\frac{m}{2}$ වූ S අංශුවක් AC මත ලක්ෂායක තබා P හා Q සම්බන්ධ කෙරෙන තන්තුව ඇදී තිබිය දී, පද්ධතිය මෙම පිහිටීමෙන් නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ.

P අංශුවට ED දිගේ ද Q අංශුවට DB දිගේ ද S අංශුවට AC දිගේ ද චලිත සමීකරණ ලියා දක්වන්න. තවදුරටත්, මුළු පද්ධතියට ම BC දිගේ චලිත සමීකරණය ලියන්න. **ඒනශින්,** කූඤ්ඤයේ ත්වරණය \overline{BC} හි දිශාවට $\frac{mg\sin\alpha}{2M+3m-2m\cos\alpha}$ බව පෙන්වන්න.

(b) ABCD සිහින් සුමට නලයක් පහත රූපයේ දැක්වෙන ආකාරයට නවා ඇත. නලයේ AB කොටස සෘජු වේ. BCD කොටසට අරය a හා කේන්දය O වූ අර්ධ වෘත්තාකාර හැඩයක් ඇති අතර BD විෂ්කම්භය AB ට ලම්බ වේ. AB තිරස් ව හා ඉහළින් ම ඇතිව නලය සිරස් තලයක සවිකර ඇත. නලය ඇතුළත, ස්කන්ධය m වූ P අංශුවක්

හා ස්කන්ධය 3m වූ Q අංශුවක් $l\left(>\frac{\pi a}{2}\right)$ දිගැනි සැහැල්ලු අවිතනා තන්තුවකින් සම්බන්ධ කර ඇත. ආරම්භයේ දී, තන්තුව ඇදී AB දිගේ තිබෙන අතර Q අංශුව B ලක්ෂායේ තබා ඇත. Q අංශුව මෙම පිහිටීමේ සිට යන්තමින් විස්ථාපනය කරනු ලැබීමෙන් t කාලයක දී OQ අරය θ සුළු කෝණයකින් හැරේ.

ශක්ති සංස්ථිති මූලධර්මය යෙදීමෙන්, $\left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2=\frac{3g}{2a}(1-\cos\theta)$ බව පෙන්වන්න.

ජීනයින්. හෝ අත් කුමයකින් හෝ, P අංශුවේ ත්වරණය $rac{3g}{4}\sin heta$ බව පෙන්වන්න.

t කාලයේ දී Q අංශුව මත නලයෙන් ඇති කරන පුතිකිුයාව හා තන්තුවේ ආතතිය සොයන්න.

13. ස්වාභාවික දිග a හා පුනාහස්ථතා මාපාංකය 2mg වූ සැහැල්ලු පුනාහස්ථ තන්තුවක එක කෙළවරක් අචල A ලක්ෂායකට ගැට ගසා ඇත. A හි මට්ටමට ඉහළින් සවිකරන ලද B කුඩා සුමට නාදැත්තක් උඩින් තන්තුව යන අතර, තන්තුවේ අනෙක් කෙළවරට ස්කන්ධය m වූ P අංශුවක් සම්බන්ධ කර ඇත. AB දුර a වන අතර, BA යට අත් සිරස සමග සාදන කෝණය $\frac{\pi}{3}$ වේ. ආරම්භයේ දී P අංශුව B නාදැත්තට යන්තමින් පහළින් තබා සිරස් ව පහළට $u = \sqrt{\frac{5ga}{8}}$ වේගයෙන් පුක්ෂේප කරනු ලැබේ. කාලය t වන විට තන්තුවේ විතතිය x යැයි ගනිමු. P අංශුවෙහි සරල අනුවර්තී චලිතය සඳහා සමීකරණය $\ddot{X} + \omega^2 X = 0$ ආකාරයෙන් පුකාශ කළ හැකි බව පෙන්වන්න; මෙහි $X = x - \frac{a}{2}$ හා $\omega^2 = \frac{2g}{a}$ වේ. මෙම චලිත සමීකරණය සඳහා, $\dot{X}^2 = \omega^2 \left(A^2 - X^2\right)$ ආකාරයේ විසඳුමක් උපකල්පනය කරමින්, සරල අනුවර්තී චලිතයේ විස්තාරය $A = \frac{3a}{4}$ බව පෙන්වා, අංශුව ළඟා වන පහත් ම පිහිටීම වූ E ලක්ෂාය සොයන්න.

සරල අනුවර්තී චලිතයේ C කේන්දුය පසු කර අංශුව යන විට එහි චේගය $\frac{3u}{\sqrt{5}}$ බව පෙන්වන්න.

අනුරූප වෘත්ත චලිතය සැලකීමෙන්, හෝ අන් කුමයකින් හෝ, P අංශුව පහළට චලනය වීමේ දී C පසු කර යෑමට ගන්නා කාලය $\sqrt{\frac{a}{2g}}\left\{\frac{\pi}{2}-\cos^{-1}\left(\frac{2}{3}\right)\right\}$ බව පෙන්වන්න.

තවදුරටත්, P අංශුව එහි පහත් ම පිහිටීම වූ E වෙත ළඟා වීමට ගන්නා කාලයත්, නාදැත්ත මත තන්තුවෙන් ඇති කරනු ලබන බලයේ උපරිම විශාලත්වයත් සොයන්න. 14. xy-තලයේ O මූලය අනුබද්ධයෙන් A, B හා C ලක්ෂාවල පිහිටුම් දෙශික, සුපුරුදු අංකනයෙන්, පිළිවෙළින් $\mathbf{i} + \mathbf{j}$, $2\mathbf{i} + 3\mathbf{j}$ හා $4\mathbf{i} + 2\mathbf{j}$ වේ. $\overrightarrow{BP} = \frac{1}{3}$ \overrightarrow{BC} වන පරිදි BC මත පිහිටි P ලක්ෂායේ පිහිටුම් දෙශිකය සොයන්න. ABCD තුපීසියමක D ශීර්ෂය ගනු ලබන්නේ BC පාදය AD ට සමාන්තර වන පරිදි ද PD, AC ට ලම්බ වන පරිදි ද වේ. D හි පිහිටුම් දෙශිකය $\frac{11}{3}\mathbf{i} - \frac{1}{3}\mathbf{j}$ බව පෙන්වන්න.

දුර මීටරවලින් ද බලය නිව්ටනවලින් ද මනින ලද, xy-කලයෙහි බල හතරකින් සමන්විත වන පද්ධතියක් පහත දැක්වෙන පරිදි දී ඇත.

කිුියා ලක්ෂායෙහි බණ්ඩාංක	බලයේ Ox , Oy දිශාවලට සංරචක
B (2,3)	$\mathbf{F}_{\mathbf{i}} = (2, 4)$
C (4, 2)	$\mathbf{F}_2 = (3, 1)$
L(0,1)	$\mathbf{F}_3 = (6, 12)$
M(0,6)	$\mathbf{F}_4 = (9, 3)$

- (i) \mathbf{F}_1 හා \mathbf{F}_2 බල දෙකෙහි O මූලය හා A (1,1) ලක්ෂාය වටා සූර්ණ ශූනා වන බව පෙන්වා, **ජනයින්**, \mathbf{F}_1 , \mathbf{F}_2 , \mathbf{F}_3 හා \mathbf{F}_4 බල හතරෙන් සමන්විත පද්ධතියෙහි O මූලය වටා G සූර්ණය දක්ෂිණාවර්ත අතට 60 N m විශාලත්වයෙන් යුතු වන බව පෙන්වන්න.
- (ii) පද්ධතියෙහි ${f R}$ සම්පුයුක්තයේ (X, Y) සංරචක සොයන්න. **ඒනයින්**, ${f R}$ හි කියා රේඛාවට y-අක්ෂය හමු වන ලක්ෂාය සොයන්න.
- (iii) බල පද්ධතිය (0,-4) ලක්ෂායෙහි කිුයා කරන තනි බලයකින් හා සූර්ණය G_1 වූ යුග්මයකින් පුතිස්ථාපනය කරනු ලැබේ. G_1 හි අගය සොයා, තනි බලයේ කිුයා රේඛාව $D\Big(\frac{11}{3},-\frac{1}{3}\Big)$ ලක්ෂාය ඔස්සේ යන බව පෙන්වන්න.
- 15.(a) AB, BC, CD, DE හා EA ඒකාකාර බර දඬු පහක් ඒවායේ කෙළවරවලින් සුමට ලෙස සන්ධි කර රූපයේ දැක්වෙන පරිදි ABCDE පංචාසුයක හැඩයේ රාමු සැකිල්ලක් සාදා ඇත. BC, CD හා DE දඬු එක එකක දිග l හා බර W වේ. AB හා EA දඬු එක එකක දිග 2l හා බර 2W වේ. දිග l වූ සැහැල්ලු PQ දණ්ඩක P හා Q දෙකෙළවර පිළිවෙළින් AE හා AB හි මධා ලක්ෂාවලට සුමට ලෙස අසව් කර ඇත. A සන්ධියෙන් නිදහස් ලෙස එල්ලා ඇති රාමු සැකිල්ල සිරස් තලයක සමතුලිතව පිහිටයි.

B සන්ධියෙහි පුතිකිුයාවේ තිරස් හා සිරස් සංරචක වන (X,Y) ද PQ සැහැල්ලු දණ්ඩේ තෙරපුම වන T ද නිර්ණය කිරීම සඳහා පුමාණවත් සමීකරණ ලියා දක්වන්න. **ඒනයින්**, B සන්ධියේ දී AB දණ්ඩ මත පුතිකිුයාව සොයා, $T = \frac{7W}{\sqrt{3}}$ බව පෙන්වන්න.

(b) දෘඪ සැහැල්ලු දඬු හතක් ඒවාගේ කෙළවරවලින් නිදහස් ලෙස සන්ධි කර සාදා ගත් **සමම්භික** රාමු සැකිල්ලක් රූපයේ දැක්වේ. AB,BC හා DE දඬු තිරස් වේ. $A\hat{D}E=C\hat{E}D=45^\circ$ සහ $B\hat{D}E=B\hat{E}D=30^\circ$ වේ. රාමු සැකිල්ලට A,B හා C සන්ධිවල දී රූපයේ දැක්වෙන භාර යොදා ඇති අතර, D හා E සන්ධිවල දී සමාන P සිරස් බලවලින් ආධාර කර ඇත. P හි අගය සොයන්න.

බෝ අංකනය යෙදීමෙන්, A හා D සන්ධි සඳහා පුනාසාබල සටහන් එක ම රූපයක අඳින්න. **ඒනයින්**, AD, AB, DE හා DB දඬුවල පුනාසාබල සොයා, ඒවා ආකති හෝ තෙරපුම් වශයෙන් පුකාශ කරන්න.

16. ආධාරකයේ අරය a හා උස් h වූ ඒකාකාර ඝන කේතුවක හා අරය a වූ ඒකාකාර ඝන අර්ධගෝලයක ස්කන්ධ කේත්දුවල පිහිටුම්, **අනුකලනය** භාවිතයෙන් සොයන්න.

ස්කන්ධය M, අරය a හා කේන්දුය O වූ ඒකාකාර සන අර්ධගෝලයකින්, ආධාරකයේ අරය a හා උස a වූ C නම් සෘජු වෘත්ත කේතුව ඉවත් කිරීමෙන් ලැබෙන සන වස්තුව R යැයි ගනිමු. M ඇසුරෙන් R සන වස්තුවේ ස්කන්ධය, හා ස්කන්ධ කේන්දුයේ පිහිටීම සොයන්න.

ඊළඟට රූපයේ දැක්වෙන ආකාරයට S සංයුක්ත වස්තුවක් සෑදෙන පරිදි C ඝන කේතුව R ඝන වස්තුවට සම්බන්ධ කරනු ලැබේ. මෙහි දී C හි ආධාරකයේ වෘත්තාකාර දාරය R හි ගැටියට දෘඪ ලෙස සම්බන්ධ කරනු ලබන්නේ ගැටියේ O කේන්දුය C හි ආධාරකයේ කේන්දුය සමග සම්පාත වන පරිදි ය.

S සංයුක්ත වස්තුවේ ගුරුත්ව කේන්දුය G, එහි සමමිනික අක්ෂය මත, ආධාරකවල පොදු කේන්දුය වන O සිට $rac{a}{8}$ දුරකින් පිහිටන බව පෙන්වන්න.

- (a) S සංයුක්ත වස්තුව, දාරයේ P ලක්ෂායකිත් තිදහස් ලෙස එල්ලනු ලැබේ.
 - (i) සමමිතික අක්ෂය වන OV හි තිරසට ආනතිය සොයන්න; මෙහි V යනු C හි ශීර්ෂයයි.
 - (ii) සමමිතික අක්ෂය තිරස් ලෙස තබා ගැනීම සඳහා V ශීර්ෂයට ඇඳිය යුතු අංශුවේ m ස්කත්ධය, M ඇසුරෙන් සොයන්න.
- (b) Vහි දී සම්බන්ධ කරන ලද m ස්කන්ධය ද සහිත S සංයුක්ත වස්තුව, එල්ලන ලද ලක්ෂායෙන් ඉවත් කර, එහි අර්ධගෝලීය පෘෂ්ඨය අචල සුමට ති්රස් නලයක ඇතිව සමතුලිතව තබනු ලැබේ. OV අක්ෂය හා උඩු අත් සිරස අතර කෝණයේ අගය පරාසය සොයන්න.
- 17.(a) මිනිසෙක්, යතුරු පැදිය, පා පැදිය හෝ පයින් යන ගමන් කුම තුනෙන් එකක් පමණක් යොදා ගනිමින්, නිශ්චිත මාර්ගයක් දිගේ අනතුරු සහිත ගමනක් යයි.

මිනිසා මෙම ගමනාගමන කුම යොදා ගැනීමේ සම්භාවිතා පිළිවෙළින් $p,\,2p$ හා 3p වේ නම්, p හි අගය සොයන්න.

ඔහු මෙම ගමනාගමන කුම යොදා ගැනීමේ දී අනතුරක් සිදු වීමේ සම්භාවිතා පිළිවෙළින් $\frac{1}{5}$, $\frac{1}{10}$ සහ $\frac{1}{20}$ වේ නම්, තනි ගමනක දී අනතුරක් සිදු වීමේ සම්භාවිතාව ගණනය කරන්න.

ගමන අතරතුරේ දී මිනිසාට අනතුරක් සිදු වී ඇති බව දන්නේ නම්, මිනිසා ගමන් කරමින් සිටියේ,

(i) යතුරු පැදියෙන්, (ii) පා පැදියෙන්, (iii) පයින්

වීමේ සම්භාවිතාව ගණනය කරන්න.

වඩාත් ආරක්ෂිත වූයේ කුමන ගමනාගමන කුමය ද? ඔබගේ පිළිතුර සනාථ කරන්න.

(b) කාර්මික විදහල සිසුන් 100 ක කණ්ඩායමක් මහා මාර්ගයක එක්තරා කොටසක් මනින ලද අතර, ඔවුන්ගේ මිනුම් පහත සඳහන් සංඛාහත වගුවේ දක්වා ඇත.

දිග (මීටර) <i>x</i>	99.8	99.9	100.0	100.1	100.2	100.3	100.4
සංඛ්ෂාතය f	5	7	12	33	25	15	3

උපකල්පිත මධානය $\overline{x}_a=100.1$ හා d=0.1 සඳහා, $y=\frac{x-\overline{x}_a}{d}$ පරිණාමනය භාවිතයෙන්, අනුරූප y හා y^2 අගයන් ඇතුළත් කෙරෙන පරිදි ඉහත වගුව විස්තීරණය කරන්න. y හි මධානය සොයා, **ජනයින්** x හි මධානය 100.123 බව පෙන්වන්න.

 $\sqrt{1.917} \approx 1.385$ බව ගනිමින්, සංඛාහත වහාප්තියේ සම්මත අපගමනය, ආසන්න වශයෙන් දශමස්ථාන තුනකට නිවැරදි ව, ගණනය කරන්න.