#### Sekwencjonowanie łańcuchów DNA z błędami negatywnymi i pozytywnymi

Maurycy Oprus, 145207 Mikołaj Mrożewski, 145331

Politechnika Poznańska, bioinformatyka

#### 1. Wstęp.

Problemem rozwiązywanym przez nas było jak najdokładniejsze odtworzenie sekwencji nukleotydów, łącząc oligonukletydy dane na wejściu. Podane zbiory danych wejściowych - spektra - zawierały błędy negatywne - brak danego oligonukleotydu w spektrum, mimo że występowało ono w oryginalnej sekwencji, oraz błędy pozytywne - dodanie oligonukleotydu oryginalnie nie występującego w sekwencji. Do sekwencjonowania użyliśmy algorytmu genetycznego. Czasy oraz jakość mierzone dla każdej instancji były średnią z dziesięciu pomiarów.

#### 2. Opis metody.

- **a.** Łączenie oligonukleotydów w łańcuchy z maksymalnym dopasowaniem (w przypadku, gdy istnieje tylko jedno takie dopasowanie).
- **b.** Stworzenie ustalonej ilości osobników za pomocą permutacji wszystkich łańcuchów otrzymanych w pierwszym punkcie (rozmiar populacji = 200 osobników).
- **c.** Ocena osobników i wybranie najlepszych do dalszego krzyżowania populacja początkowa. Kryterium oceny to najlepsze dopasowanie.
- d. Krzyżowanie początkowej populacji wybór dwóch rodziców z populacji, losowanie czy dodać kolejny ciąg z pierwszego czy z drugiego rodzica. Dodanie wygenerowanego potomka do nowej populacji.
- e. Najgorsze osobniki z populacji zastąpione zostają najlepszymi potomkami (68% wymiany populacji w jednej iteracji)
- f. Mutacja (zamiana niektórych łańcuchów w 5% populacji) w celu znajdowania potencjalnie lepszych rozwiązań.
- **g.** Krzyżowanie nowo powstałej populacji 300 iteracji, przerywanych w przypadkach opisanych w pkt. h.
- **h.** Zakończenie algorytmu w momencie, gdy znaleziono najlepsze rozwiązanie/rozwiązanie nie polepsza się znacząco przez kilka iteracji.

## 3. Wyniki

## a. Instancje z błędami negatywnymi losowymi



Średnia skuteczność: 79,33%

Średni czas: 20,40 s Najlepszy wynik: 88,13% Najgorszy wynik: 70,8%

# b. Instancje z błędami negatywnymi wynikającymi z powtórzeń



Średnia skuteczność: 99,31%

Średni czas: 4,62 s Najlepszy wynik: 100% Najgorszy wynik: 97,63%

## c. Instancje z błędami pozytywnymi losowymi



Średnia skuteczność: 98,35%

Średni czas: 3,87 s Najlepszy wynik: 100% Najgorszy wynik: 93,52%

# d. Instancje z błędami pozytywnymi, przekłamania na końcach oligonukleotydów



Średnia skuteczność: 87,41%

Średni czas: 10,56 s Najlepszy wynik: 92,3% Najgorszy wynik: 83,32%

#### 4. Wnioski

#### a. Wady

- Może się zdarzyć, że na wczesnym etapie algorytm pójdzie ścieżką prowadzącą do rozwiązania kiepskiej jakości, i ciężko będzie mu wrócić do etapu, z którego może dojść do rozwiązania wysokiej jakości.
- Długi czas przeszukiwania dla instancji zawierających wiele łańcuchów wejściowych.

## b. Zalety

- W stosunkowo dobrym czasie algorytm przeszukuje dużą ilość możliwych rozwiązań, i selekcjonuje najlepsze z nich na danym etapie.
- Łatwo można zmieniać ustawienia algorytmu, dostosowując jego działanie do swoich potrzeb - balans między oczekiwanym czasem działania a jakością rozwiązania.

# c. Porównanie działania na różnych instancjach

- Na trudność instancji wpływają m. in. błędy. Jeśli oligonukleotyd wynikający z błędu pozytywnego jest dobrze dopasowany do jednego z nukleotydów, to algorytm może klasyfikować ten błędny oligonukleotyd jako pożądany w rozwiązaniu, co będzie wpływało na jego ostateczną jakość. Jeśli jednak błędny oligonukleotyd znacznie różni się od prawidłowych oligonukleotydów, to połączą się one w dłuższe łańcuchy, a błędne oligonukleotydy zostaną szybko oddzielone od tych prawidłowych. W ogólności im więcej błędów, tym trudniejsza jest instancja.
- Algorytm najgorzej radzi sobie z instancją zawierającą losowe błędy negatywne. Wynika to z tego, że każdy błąd negatywny powoduje, że nie jest możliwe utworzenie dłuższego łańcucha poprzez maksymalne dopasowanie, co wpływa na większą ilość możliwych permutacji wszystkich utworzonych łańcuchów, czyli możliwych rozwiązań.