7. Trigonometrische Funktionen

Winkelfunktion im Dreieck

Rechtwinklige Dreiecke

Bezeichnungen in rechtwinklingen Dreiecken

Allgemein:

Figure 1: Dreieck

Im Bezug auf die Winkel:

Figure 2: Dreieck

Beobachtung

Figure 3: Dreieck

A_1B_1	B_1C_1	$\frac{B_1C_1}{A_1B_1}$	AB	BC	$\frac{BC}{AB}$
8,1	6,2	0,76	12,6	9,7	0,76

In jedem rechtwinklingen Dreieck mit festem Winkel α ist das Verhältnis von Gegenkathete zu α zur Hypothenuse konstant. Dieses Verhältnis ist der Sinus zu dem Winkel α

Analog In jedem rechtwinklingen Dreieck mit festem Winkel α ist das Verhältnis von Ankathete zu α zur Hypothenuse konstant. Dieses Verhältnis ist der Kosinus zu dem Winkel α

Definition: Sinus

Gegeben: - rechtwinkliges Dreieck ABC - Winkel $\alpha, \beta, \gamma = 90^{\circ}$

Der Sinus eines Winkels ist das Verhältnis der Länge der Gegenkathete zur Länge der Hyopthenuse

$$\sin(\alpha) = \frac{\text{Gegenkathete zu } \alpha}{\text{Hypothenuse}}$$

Definition: Kosinus

Gegeben: - rechtwinkliges Dreieck ABC - Winkel $\alpha, \beta, \gamma = 90^{\circ}$

Der Sinus eines Winkels ist das Verhältnis der Länge der Ankathete zur Länge der Hyopthenuse

$$\cos(\alpha) = \frac{\text{Ankathete zu } \alpha}{\text{Hypothenuse}}$$

Definition: Tanges

Gegeben: - rechtwinkliges Dreieck ABC - Winkel $\alpha,\beta,\gamma=90^\circ$

Der Sinus eines Winkels ist das Verhältnis der Länge der Gegenkathete zur Länge der Ankathete

$$\tan(\alpha) = \frac{\text{Gegenkathete zu } \alpha}{\text{Ankathete zu } \alpha}$$

Sinus, Kosinus und Tangens am Einheitskreis

- Einheitskreis := Kreis um den Ursprung mit Radius 1
- Zu jedem Punkt P auf dem Kreis gibt es ein rechtwinkliges Dreieck
- Länge der Hypothenus ist 1.

Figure 4: Einheitskreis

Sinus, Kosiunsfunktion und Tangensfunktion im Dreieck

Figure 5: Sinusfunktion

Definition: Sinusfunktion im Dreieck

Gegeben:

-rechtwinkliges Dreieck ABC

Die Abbildung, die jeder Winkelgröße den Sinus zum Winkel im zugehörigen rechtwinkligen Dreieck zuordnet, heißt **Sinusfunktion**

Funktionsgraph der Sinus-Funktion:

Definition: Kosinusfunktion im Dreieck

Gegeben:

-rechtwinkliges Dreieck ABC

Die Abbildung, die jeder Winkelgröße den Kosinus zum Winkel im zugehörigen rechtwinkligen Dreieck zuordnet, heißt **Kosinusfunktion**

Funktionsgraph der Kosinus-Funktion:

Definition: Tangensfunktion im Dreieck

Gegeben:

-rechtwinkliges Dreieck ABC

Die Abbildung, die jeder Winkelgröße den Tangens zum Winkel im zugehörigen rechtwinkligen Dreieck zuordnet, heißt **Tangensfunktion**

Funktionsgraph der Tangens-Funktion:

reelewertige Winkelfunktionen

Bogenmaß

Figure 6: Einheitskreis

Beobachtung:

- Jedem Winkel kann eindeutig eine Kreisbogenlänge zugeordnet werden.
- Diese Zuordnung ist bijektiv.
- Die Kreisbogenlänge ist eine reelle Zahl.

Folgerung

Damit lässt sich wie folgt auch zu jeder reelen Zahl x ein Wert $\sin(x), \cos(x)$ bzw. $\tan(x)$ zuordnen:

$$\alpha \rightarrow \sin(\alpha)$$

$$\downarrow$$
 =

$$x \to \sin(x)$$

Winkelfunktionen

Sinus-Funktion

- Defintions menge: $\mathbb R$
- Wertemenge: $W = \{f(x)| -1 \le f(x) \le 1\}$
- periodischPeriode 2π
- punktsymmetrisch zum Ursprung

Kosinus-Funktion

- Defintions menge: $\mathbb R$
- Wertemenge: $\widetilde{W} = \{f(x)| -1 \le f(x) \le 1\}$
- periosisch
- Periode 2π
- achsensymmetrisch zur y-Achse

Verschieben der Sinusfunktion entlang der y-Achse

Funktionsgleichung:

$$f(x) = \sin(x) + d$$

Beipsiel

$$f(x) = \sin(x) - 2$$

Verschieben entlang der x-Achse

Funktionsgleichung:

$$f(x) = \sin(x - c)$$

Man nennt c auch Phase.

Beipsiel

$$f(x) = \sin(x - 1)$$

Beobachtung

$$f(x) = \sin(x - 2 \cdot \pi) = \sin(x + 2 \cdot \pi) = \cos(x)$$

Strecken / Stauchen

Funktionsgleichung:

$$f(x) = a \cdot \sin(x)$$

a nennt man Amplitude (= Ausschlag)

Beipsiel

$$f(x) = 3 \cdot \sin(x)$$

Periode verändern

Funktionsgleichung:

$$f(x) = \sin(b \cdot x)$$

Das Verhältnis

$$p = \frac{2\pi}{b}$$

nennt man Periode.

Beispiel

$$f(x) = \sin(2 \cdot x)$$

Beipsiel

$$f(x) = \sin\left(\frac{1}{3} \cdot x\right)$$

Spiegeln an der x-Achse

Funktionsgleichung:

$$f(x) = -\sin(x) = \sin(-x)$$

Allgemeine Sinus-Funktion

Definition: $a,b,c,d\in\mathbb{R}$ Der Graph der Funktion

$$g(x) = a \cdot \sin(b(x - c)) + d$$

geht aus der Funktion

$$f(x) = \sin(x)$$

hervor, indem - f um |a| in y-Richtung gestreckt wird. Die Amplitude ist: A=|a| - f um Faktor $\frac{1}{b}$ in x-Richtung gestreckt wird. - f um c in x-Richtung und um d in y-Richtung verschoben wird.

Bemerkung

Analoge Aussagen gelten auch für die Kosinus-Funktion.

Der Graph der Kosinus-Funktion geht aus dem Graph der Sinus-Funktion durch Verschiebung in x-Richtung um $-\frac{\pi}{2}$ hervor.