Université de Montpellier - Faculté des Sciences

Année Universitaire 2024-2025

HAX506X - Probabilités

Examen terminal - 14/01/2025

- Durée : 2h (+40 min si tiers-temps)
- Les documents et appareils électroniques ne sont pas autorisés.

Rappels. Les résultats suivants peuvent être utilisés sans preuve.

1. Critère de Bertrand. La série à termes positifs

$$\sum_{n>2} \frac{1}{n^{\alpha} (\ln n)^{\beta}}$$

converge si et seulement si $\alpha > 1$ ou $(\alpha = 1 \text{ et } \beta > 1)$.

2. La fonction de répartition Φ d'une loi normale $N \sim \mathcal{N}(0,1)$ vérifie

$$1 - \Phi(x) = \mathbb{P}(N \ge x) = \int_{x}^{\infty} \frac{e^{-\frac{t^{2}}{2}}}{\sqrt{2\pi}} dt \underset{x \to \infty}{\sim} \frac{e^{-\frac{x^{2}}{2}}}{x\sqrt{2\pi}}.$$

Quelques valeurs: $\Phi(-1.96) = 0.025$, $\Phi(-1.64) = 0.05$, $\Phi(1.64) = 0.95$, $\Phi(1.96) = 0.975$.

Exercice 1 - Minimum de lois uniformes

Soit U_1, \ldots, U_n une suite de variables aléatoires indépendantes de loi uniforme sur [0,1]. On pose $Y_n = \min(U_1, \ldots, U_n)$.

- 1. Donner (sans détailler les calculs) la fonction de répartition de U_1 .
- 2. Montrer que pour $t \in [0,1]$,

$$\mathbb{P}(Y_n > t) = (1-t)^n.$$

- 3. Montrer que $Y_n \xrightarrow[n \to \infty]{\mathbb{P}} 0$.
- 4. (a) Montrer que si X est une variable aléatoire positive, alors

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X > t) \, \mathrm{d}t.$$

- (b) En déduire la valeur de $\mathbb{E}[Y_n]$.
- (c) En déduire que $Y_n \xrightarrow[n \to \infty]{L^1} 0$, puis que pour tout $p \ge 1$, $Y_n \xrightarrow[n \to \infty]{L^p} 0$.
- 5. (a) Déterminer la fonction de répartition de nY_n .
 - (b) Montrer que $(nY_n)_{n\geq 1}$ converge en loi vers une loi exponentielle de paramètre à déterminer.

1

Exercice 2 - Lois normales

Soit X_1, \ldots, X_n une suite de variables aléatoires indépendantes de loi normale.

- 1. On suppose dans cette question que pour tout $n \geq 1$, $X_n \sim \mathcal{N}(\mu, \sigma^2)$ avec $\sigma > 0$.
 - (a) Déterminer la limite presque sûre de

$$\frac{X_1^2+\cdots+X_n^2}{n}.$$

(b) En déduire la limite presque sûre de

$$\frac{X_1 + \dots + X_n}{X_1^2 + \dots + X_n^2}.$$

- 2. On suppose maintenant que pour tout $n \geq 2$, $X_n \sim \mathcal{N}(0, 1/\ln(n))$.
 - (a) Montrer, en utilisant la définition de la convergence en loi, que $X_n \xrightarrow[n \to \infty]{\mathcal{L}} \delta_0$. En déduire, sans calcul, que $X_n \xrightarrow[n \to \infty]{\mathbb{P}} 0$.
 - (b) À partir des résultats donnés en rappel dans l'en-tête du sujet, montrer que

$$\mathbb{P}(X_n \ge 1) \underset{n \to \infty}{\sim} \frac{1}{\sqrt{2\pi n \ln(n)}}.$$

- (c) En déduire que $\mathbb{P}(\limsup_{n\to\infty} \{X_n \ge 1\}) = 1$.
- (d) En déduire que la suite $(X_n)_{n\geq 1}$ ne converge pas vers 0 presque sûrement.

Exercice 3 - Pharmacovigilance

Une entreprise pharmaceutique souhaite contrôler ses médicaments. Chaque médicament a une probabilité $p \in]0,1[$ d'être mal dosé. Un agent de contrôle teste n médicaments qui sortent de la chaîne de production. On note X_k la variable aléatoire valant 1 si le k-ème médicament testé est mal dosé, et 0 sinon. Enfin, on pose $S_n = X_1 + \cdots + X_n$.

- 1. Donner la loi de S_n , puis son espérance et sa variance.
- 2. Montrer que $(S_n np)/\sqrt{n}$ converge en loi vers une loi normale de paramètres à préciser.
- 3. En déduire, en justifiant, la valeur de q telle que

$$\mathbb{P}\left(\frac{S_n}{n} - q \frac{\sqrt{p(1-p)}}{\sqrt{n}} \le p \le \frac{S_n}{n} + q \frac{\sqrt{p(1-p)}}{\sqrt{n}}\right) \xrightarrow[n \to \infty]{} 0.95.$$

- 4. Donner un intervalle I_C ne dépendant que de n et de S_n , tel qu'asymptotiquement le paramètre inconnu p appartienne à l'intervalle I_C avec une probabilité d'au moins 95%. On précisera le centre de l'intervalle et sa longueur.
- 5. Comment évolue la longueur de intervalle I_C quand n augmente? Interpréter le résultat.
- 6. On souhaite maintenant proposer un intervalle I'_C qui contienne asymptotiquement p avec un probabilité d'au moins 90%. Sans refaire tous les calculs, dire si l'intervalle I'_C sera plus grand ou plus petit que l'intervalle I_C . On justifiera la réponse.