Linear Algebra

Dr. Bui Xuan Dieu

School of Applied Mathematics and Informatics, Hanoi University of Science and Technology

Some Information

About this course

- 1) 4 Credit points, 3 hours of lecture and 2 hours of exercises and discussion per week.
- 2) Grade:

Progress Grades 30% and Final Exam Grade 70%, where Progress Grades = Midterm Exam Grades+ Attendance Grades

Chapter 1: Sets, mapping and complex numbers

- 1 Logic
- 2 Sets
- Maps
- 4 Algebraic Structures and Complex Numbers
 - Groups
 - Rings
 - Fields

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 3 / 67

Propositions

Definition

Propositions, in logic, are statements that can be labeled as either true or false, although we may not know which. It is often denoted by A, B, C, \ldots or p, q.

Propositions

Definition

Propositions, in logic, are statements that can be labeled as either true or false, although we may not know which. It is often denoted by A, B, C, \ldots or p, q.

- i) Any proposition has two possible truth values: 1 = true or 0 = false.
- ii) For notational simplicity, the symbol A may stand for the proposition A or its truth-value, depending on the situation.

Example

- i) A = 2017 is an odd number, V(A) = 1.
- ii) B = There exists life outside the earth, V(B) = ?

1) Negation $\overline{A} = 1 - A$

- 1) Negation $\overline{A} = 1 A$
- 2) Conjunction

	Α	В	$A \wedge B$		
	1	1	1		
	1	0	0		
	0	1	0		
	0	0	0		
$A \wedge B$) = min $\{A, B\}$					

- 1) Negation $\overline{A} = 1 A$
- 2) Conjunction

ſ	Α	В	$A \wedge B$
Ī	1	1	1
ĺ	1	0	0
ĺ	0	1	0
ĺ	0	0	0
Ā	4 D)		: (A I

 $(\overline{A \wedge B}) = \min\{A, B\}$

3) Disjunction

Α	B	$A \lor B$
1	1	1
1	0	1
0	1	1
0	0	0

 $(A \lor B) = \max\{A, B\}$

- 1) Negation $\overline{A} = 1 A$
- 2) Conjunction

Α	В	$A \wedge B$
1	1	1
1	0	0
0	1	0
0	0	0
1 ^	D) —	min [A E

 $(A \wedge B) = \min\{A, B\}$

3) Disjunction

	Α	В	$A \vee B$	
	1	1	1	
	1	0	1	
	0	1	1	
	0	0	0	
(A	\vee B	$\overline{B}) =$	$\max\{A, A\}$	B}

4) Implication

Α	В	$A \rightarrow B$		
1	1	1		
1	0	0		
0	1	1		
0	0	1		
· D)	(1 /			

$$(A \rightarrow B) = \max\{1 - A, B\}$$

- 1) Negation $\overline{A} = 1 A$
- 2) Conjunction

ſ	Α	В	$A \wedge B$		
Ī	1	1	1		
ĺ	1	0	0		
ſ	0	1	0		
Ĭ	0	0	0		
$(A \land B) = \min \{A \mid B\}$					

 $(A \wedge B) = \min\{\overline{A, B}\}$

3) Disjunction

	Α	В	$A \vee B$	
	1	1	1	
	1	0	1	
	0	1	1	
	0	0	0	
(A	\vee B	$\overline{B}) =$	$\max\{A, A\}$	B}

4) Implication

Α	В	$A \rightarrow B$
1	1	1
1	0	0
0	1	1
0	0	1
' D)		nav (1 /

$$(A \to B) = \max\{1 - A, B\}$$

5) Equivalence

Α	В	$A \leftrightarrow B$
1	1	1
1	0	0
0	1	0
0	0	1

$$A \wedge B \Leftrightarrow B \wedge A$$
, $A \vee B \Leftrightarrow B \vee A$

1) Commutative Laws

$$A \wedge B \Leftrightarrow B \wedge A$$
, $A \vee B \Leftrightarrow B \vee A$

2) Associative Laws $\begin{cases} (A \land B) \land C \Leftrightarrow A \land (B \land C), \\ (A \lor B) \lor C \Leftrightarrow A \lor (B \lor C) \end{cases}$

$$A \wedge B \Leftrightarrow B \wedge A$$
, $A \vee B \Leftrightarrow B \vee A$

- 2) Associative Laws $\begin{cases} (A \land B) \land C \Leftrightarrow A \land (B \land C), \\ (A \lor B) \lor C \Leftrightarrow A \lor (B \lor C) \end{cases}$
- 3) Distributive Laws $\begin{cases} A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C), \\ A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C) \end{cases}$

$$A \wedge B \Leftrightarrow B \wedge A$$
, $A \vee B \Leftrightarrow B \vee A$

- 2) Associative Laws $\begin{cases} (A \land B) \land C \Leftrightarrow A \land (B \land C), \\ (A \lor B) \lor C \Leftrightarrow A \lor (B \lor C) \end{cases}$
- 3) Distributive Laws $\begin{cases} A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C), \\ A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C) \end{cases}$
- 4) De Morgan's Law $\begin{cases} \overline{A \vee B} = \overline{A} \wedge \overline{B}, \\ \overline{A \wedge B} = \overline{A} \vee \overline{B} \end{cases}$

$$A \wedge B \Leftrightarrow B \wedge A$$
, $A \vee B \Leftrightarrow B \vee A$

- 2) Associative Laws $\begin{cases} (A \land B) \land C \Leftrightarrow A \land (B \land C), \\ (A \lor B) \lor C \Leftrightarrow A \lor (B \lor C) \end{cases}$
- 3) Distributive Laws $\begin{cases} A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C), \\ A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C) \end{cases}$
- 4) De Morgan's Law $\begin{cases} \overline{A \vee B} = \overline{A} \wedge \overline{B}, \\ \overline{A \wedge B} = \overline{A} \vee \overline{B} \end{cases}$
- 5) Property of the implication operator $A \to B \Leftrightarrow \overline{A} \lor B$

$$A \wedge B \Leftrightarrow B \wedge A$$
, $A \vee B \Leftrightarrow B \vee A$

- 2) Associative Laws $\begin{cases} (A \land B) \land C \Leftrightarrow A \land (B \land C), \\ (A \lor B) \lor C \Leftrightarrow A \lor (B \lor C) \end{cases}$
- 3) Distributive Laws $\begin{cases} A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C), \\ A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C) \end{cases}$
- 4) De Morgan's Law $\begin{cases} \overline{A \vee B} = \overline{A} \wedge \overline{B}, \\ \overline{A \wedge B} = \overline{A} \vee \overline{B} \end{cases}$
- 5) Property of the implication operator $A \to B \Leftrightarrow \overline{A} \lor B$
- 6) Property of the equivalence operator

$$A \leftrightarrow B \Leftrightarrow (A \rightarrow B) \land (B \rightarrow A)$$

Prove that the following proposition is tautology $\left[\overline{A} \wedge (A \vee C)\right] \rightarrow C$.

1) Truth Table

Prove that the following proposition is tautology $\left[\overline{A} \land (A \lor C)\right] \rightarrow C$.

1) Truth Table

Α	С	Ā	$A \lor C$	$\overline{A} \wedge (A \vee C)$	$[\overline{A} \land (A \lor C)] \to C$
1	1	0	1	0	1
1	0	0	1	0	1
0	1	1	1	1	1
0	0	1	0	0	1

2) Logical Equivalence

Prove that the following proposition is tautology $\left[\overline{A} \wedge (A \vee C)\right] \rightarrow C$.

1) Truth Table

Α	С	Ā	$A \lor C$	$\overline{A} \wedge (A \vee C)$	$[\overline{A} \land (A \lor C)] \to C$
1	1	0	1	0	1
1	0	0	1	0	1
0	1	1	1	1	1
0	0	1	0	0	1

2) Logical Equivalence

3) by contradiction.

$$[\overline{A} \wedge (A \vee C)] \to C$$

$$\Leftrightarrow [(\overline{A} \wedge A) \vee (\overline{A} \wedge C)] \to C$$

$$\Leftrightarrow [0 \vee (\overline{A} \wedge C)] \to C$$

$$\Leftrightarrow [(\overline{A} \wedge C)] \to C \Leftrightarrow \overline{\overline{A} \wedge C} \vee C$$

$$\Leftrightarrow A \vee \overline{C} \vee C \Leftrightarrow 1.$$

Prove that the following proposition is tautology $\left[\overline{A} \wedge (A \vee C)\right] \rightarrow C$.

1) Truth Table

Α	С	Ā	$A \lor C$	$\overline{A} \wedge (A \vee C)$	$[\overline{A} \land (A \lor C)] \to C$
1	1	0	1	0	1
1	0	0	1	0	1
0	1	1	1	1	1
0	0	1	0	0	1

2) Logical Equivalence

$$[\overline{A} \wedge (A \vee C)] \to C$$

$$\Leftrightarrow [(\overline{A} \wedge A) \vee (\overline{A} \wedge C)] \to C$$

$$\Leftrightarrow [0 \vee (\overline{A} \wedge C)] \to C$$

$$\Leftrightarrow [(\overline{A} \wedge C)] \to C \Leftrightarrow \overline{\overline{A} \wedge C} \vee C$$

$$\Leftrightarrow A \vee \overline{C} \vee C \Leftrightarrow 1.$$

 by contradiction. Suppose that the propostion is false. Then,

i)
$$\overline{A} \wedge (A \vee C) = 1$$
 and $C = 0$.

ii)
$$\overline{A} \wedge (A \vee C) = \overline{A} \wedge (A \vee 0) = \overline{A} \wedge A = 0.$$

Exercises

Exercise

Show that the following propositions are tautology

a)
$$[(A \rightarrow B) \land (B \rightarrow C)] \rightarrow (A \rightarrow C)$$
.

Exercise

Which of the following propositions are tautology, contradiction

a)
$$(p \lor q) \to (p \land q)$$
,

$$d) (q \rightarrow (q \rightarrow p)),$$

b)
$$(p \wedge q) \vee (p \rightarrow q)$$
,

e)
$$(p \rightarrow q) \rightarrow q$$
,

c)
$$p \rightarrow (q \rightarrow p)$$
,

$$f) (p \wedge q) \leftrightarrow (q \updownarrow p).$$

Exercise

Prove that

- a) $A \leftrightarrow B$ and $(A \land B) \lor (\overline{A} \land \overline{B})$ are logically equivalent.
- b) $(A \rightarrow B) \rightarrow C$ and $A \rightarrow (B \rightarrow C)$ are not logically equivalent.

Binary operators

1) Binary operator XOR

Α	В	$A \updownarrow B$
1	1	0
1	0	1
0	1	1
0	0	0
/ A A	D)	

$$\overline{(A \updownarrow B)} = \overline{A \leftrightarrow B}$$

2) Binary operator NOR

Α	В	$A \uparrow B$
1	1	0
1	0	0
0	1	0
0	0	1
<u>/</u> Λ Λ	. D)	1 \ / D

 $(A \uparrow B) = A \lor B$

3) Binary Operator NAND

Α	В	$A \downarrow B$
1	1	0
1	0	1
0	1	1
0	0	1
/ A I		4 + 5

$$\overline{(A \downarrow B)} = \overline{A \wedge B}$$

1) "Every element x of the set X satisfies property $\mathcal{P}(x)$ "

$$\forall x \in X, \mathcal{P}(x).$$

2) "There exists at least one element x of the set X that satisfies properties $\mathcal{P}(x)$ "

$$\exists x \in X, \mathcal{P}(x).$$

Relations

$$\overline{\forall x \in X, \mathcal{P}(x)} = \exists x \in X, \overline{\mathcal{P}(x)}$$

$$\overline{\exists x \in X, \mathcal{P}(x)} = \forall x \in X, \overline{\mathcal{P}(x)}$$

Remark

To receive the negation of a proposition containing qualifiers \forall , \exists and statement $P(x_1, \dots, x_n)$, we

- 1) change \forall by \exists ,
- 2) change \exists by \forall ,
- 3) change $P(x_1,...,x_n)$ by $\bar{P}(x_1,...,x_n)$.

Remark

To receive the negation of a proposition containing qualifiers \forall , \exists and statement $P(x_1, ..., x_n)$, we

- 1) change \forall by \exists ,
- 2) change \exists by \forall ,
- 3) change $P(x_1, \ldots, x_n)$ by $\bar{P}(x_1, \ldots, x_n)$.

Exercise

Find the negation p if

a)
$$p = \forall \epsilon > 0, \exists \delta > 0 : \forall x, |x - x_0| < \delta, |f(x) - f(x_0)| < \epsilon.$$

Remark

To receive the negation of a proposition containing qualifiers \forall , \exists and statement $P(x_1, ..., x_n)$, we

- 1) change \forall by \exists ,
- 2) change \exists by \forall ,
- 3) change $P(x_1,\ldots,x_n)$ by $\bar{P}(x_1,\ldots,x_n)$.

Exercise

Find the negation p if

a)
$$p = \forall \epsilon > 0, \exists \delta > 0 : \forall x, |x - x_0| < \delta, |f(x) - f(x_0)| < \epsilon.$$

b)
$$p = \lim_{n \to +\infty} x_n = \infty \Leftrightarrow \forall M > 0, \exists N \in \mathbb{N} : \forall n \geq N, |x_n| > M.$$

c)
$$p = \lim_{n \to +\infty} x_n = L \Leftrightarrow \forall \epsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N, |x_n - L| < \epsilon.$$

Chapter 1: Sets, mapping and complex numbers

- Logic
- 2 Sets
- Maps
- 4 Algebraic Structures and Complex Numbers
 - Groups
 - Rings
 - Fields

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 12 / 67

1) A set is a collection of objects or things.

- 1) A set is a collection of objects or things.
- 2) Let A be a set. If a is an element of A, then we denote by $a \in A$. Otherwise, $a \notin A$.

Linear Algebra I ♥ HUST 13 / 67

- 1) A set is a collection of objects or things.
- 2) Let A be a set. If a is an element of A, then we denote by $a \in A$. Otherwise, $a \notin A$.
- 3) The set containing no any element is called the empty set and denoted by \emptyset .

- 1) A set is a collection of objects or things.
- 2) Let A be a set. If a is an element of A, then we denote by $a \in A$. Otherwise, $a \notin A$.
- 3) The set containing no any element is called the empty set and denoted by \emptyset .
- 4) Description of a set:
 - i) Roster notation (or listing notation).
 - ii) Set-builder notation.
 - iii) Venn diagram.

1) Inclusion $A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$

- 1) Inclusion $A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$
- 2) Set equality $A = B \Leftrightarrow A \subset B$ and $B \subset A$

- 1) Inclusion $A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$
- 2) Set equality $A = B \Leftrightarrow A \subset B$ and $B \subset A$
- 3) Union

- 1) Inclusion $A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$
- 2) Set equality $A = B \Leftrightarrow A \subset B$ and $B \subset A$
- 3) Union

$$\begin{cases} x \in A \cup B \Leftrightarrow x \in A \text{ or } x \in B \end{cases}$$

- 1) Inclusion $A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$
- 2) Set equality $A = B \Leftrightarrow A \subset B$ and $B \subset A$
- 3) Union

$$\begin{cases} x \in A \cup B \Leftrightarrow x \in A \text{ or } x \in B \\ x \notin A \cup B \Leftrightarrow x \notin A \text{ and } x \notin B \end{cases}$$

- 1) Inclusion $A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$
- 2) Set equality $A = B \Leftrightarrow A \subset B$ and $B \subset A$
- 3) Union

$$\begin{cases} x \in A \cup B \Leftrightarrow x \in A \text{ or } x \in B \\ x \notin A \cup B \Leftrightarrow x \notin A \text{ and } x \notin B \end{cases}$$

4) Intersection

- 1) Inclusion $A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$
- 2) Set equality $A = B \Leftrightarrow A \subset B$ and $B \subset A$
- 3) Union

$$\begin{cases} x \in A \cup B \Leftrightarrow x \in A \text{ or } x \in B \\ x \notin A \cup B \Leftrightarrow x \notin A \text{ and } x \notin B \end{cases}$$

4) Intersection

$$\begin{cases} x \in A \cap B \Leftrightarrow x \in A \text{ and } x \in B \end{cases}$$

- 1) Inclusion $A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$
- 2) Set equality $A = B \Leftrightarrow A \subset B$ and $B \subset A$
- 3) Union

$$\begin{cases} x \in A \cup B \Leftrightarrow x \in A \text{ or } x \in B \\ x \notin A \cup B \Leftrightarrow x \notin A \text{ and } x \notin B \end{cases}$$

4) Intersection

$$\begin{cases} x \in A \cap B \Leftrightarrow x \in A \text{ and } x \in B \\ x \notin A \cap B \Leftrightarrow x \notin A \text{ or } x \notin B \end{cases}$$

- 1) Inclusion $A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$
- 2) Set equality $A = B \Leftrightarrow A \subset B$ and $B \subset A$
- 3) Union

$$\begin{cases} x \in A \cup B \Leftrightarrow x \in A \text{ or } x \in B \\ x \notin A \cup B \Leftrightarrow x \notin A \text{ and } x \notin B \end{cases}$$

4) Intersection

$$\begin{cases} x \in A \cap B \Leftrightarrow x \in A \text{ and } x \in B \\ x \notin A \cap B \Leftrightarrow x \notin A \text{ or } x \notin B \end{cases}$$

5) Subtraction

- 1) Inclusion $A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$
- 2) Set equality $A = B \Leftrightarrow A \subset B$ and $B \subset A$
- 3) Union

$$\begin{cases} x \in A \cup B \Leftrightarrow x \in A \text{ or } x \in B \\ x \notin A \cup B \Leftrightarrow x \notin A \text{ and } x \notin B \end{cases}$$

4) Intersection

$$\begin{cases} x \in A \cap B \Leftrightarrow x \in A \text{ and } x \in B \\ x \notin A \cap B \Leftrightarrow x \notin A \text{ or } x \notin B \end{cases}$$

5) Subtraction

$$\begin{cases} x \in A \setminus B \Leftrightarrow x \in A \text{ and } x \notin B \end{cases}$$

- 1) Inclusion $A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$
- 2) Set equality $A = B \Leftrightarrow A \subset B$ and $B \subset A$
- 3) Union

$$\begin{cases} x \in A \cup B \Leftrightarrow x \in A \text{ or } x \in B \\ x \notin A \cup B \Leftrightarrow x \notin A \text{ and } x \notin B \end{cases}$$

4) Intersection

$$\begin{cases} x \in A \cap B \Leftrightarrow x \in A \text{ and } x \in B \\ x \notin A \cap B \Leftrightarrow x \notin A \text{ or } x \notin B \end{cases}$$

5) Subtraction

$$\begin{cases} x \in A \setminus B \Leftrightarrow x \in A \text{ and } x \notin B \\ x \notin A \setminus B \Leftrightarrow x \notin A \text{ or } x \in B \end{cases}$$

- 1) Inclusion $A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$
- 2) Set equality $A = B \Leftrightarrow A \subset B$ and $B \subset A$
- 3) Union

$$\begin{cases} x \in A \cup B \Leftrightarrow x \in A \text{ or } x \in B \\ x \notin A \cup B \Leftrightarrow x \notin A \text{ and } x \notin B \end{cases}$$

4) Intersection

$$\begin{cases} x \in A \cap B \Leftrightarrow x \in A \text{ and } x \in B \\ x \notin A \cap B \Leftrightarrow x \notin A \text{ or } x \notin B \end{cases}$$

5) Subtraction

$$\begin{cases} x \in A \setminus B \Leftrightarrow x \in A \text{ and } x \notin B \\ x \notin A \setminus B \Leftrightarrow x \notin A \text{ or } x \in B \end{cases}$$

6) Complement If $A \subset X$, then $\overline{A} = X \setminus A$ is called the complement of A in X.

14 / 67

Algebra Sets

Example

Let

$$A = \{x \in \mathbb{R} | x^2 - 4x + 3 \le 0\}, \quad B = \{x \in \mathbb{R} | |x - 1| \le 1\},$$

and

$$C = \{x \in \mathbb{R} | x^2 - 5x + 6 \le 0\}.$$

Find $(A \cup B) \cap C$ and $(A \cap B) \cup C$.

1) Commutative laws:

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$

1) Commutative laws:

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$

2) Associative laws:

$$(A \cup B) \cup C = A \cup (B \cup C), \quad (A \cap B) \cap C = A \cap (B \cap C)$$

1) Commutative laws:

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$

2) Associative laws:

$$(A \cup B) \cup C = A \cup (B \cup C), \quad (A \cap B) \cap C = A \cap (B \cap C)$$

3) Distributive laws:

$$\begin{cases} A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \\ A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \end{cases}$$

1) Commutative laws:

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$

2) Associative laws:

$$(A \cup B) \cup C = A \cup (B \cup C), \quad (A \cap B) \cap C = A \cap (B \cap C)$$

3) Distributive laws:

$$\begin{cases} A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \\ A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \end{cases}$$

4) Property of the complement If $A, B \subset X$, then $A \setminus B = A \cap \overline{B}$

1) Commutative laws:

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$

2) Associative laws:

$$(A \cup B) \cup C = A \cup (B \cup C), \quad (A \cap B) \cap C = A \cap (B \cap C)$$

3) Distributive laws:

$$\begin{cases} A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \\ A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \end{cases}$$

- 4) Property of the complement If $A, B \subset X$, then $A \setminus B = A \cap \overline{B}$
- 5) De Moorgan's Law

$$\overline{A \cap B} = \overline{A} \cup \overline{B}, \quad \overline{\cap A_i} = \cup \overline{A_i}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}, \quad \overline{\cup A_i} = \overline{\cap A_i}$$

Mathematical Logic and Sets

- 1) Negation \overline{A}
- 2) Conjunction $A \wedge B$
- 3) Disjunction $A \vee B$
- 4) Implication $A \Rightarrow B$
- 5) Equivalence $A \Leftrightarrow B$

- 1) Complement $\overline{A} = X \setminus A$
- 2) Intersection $A \cap B$
- 3) Union $A \cup B$
- 4) Inclusion $A \subset B$
- 5) Set equality A = B

Three possible methods to prove set equality

- 1) Double inclusion
- 2) Set identities
- 3) Membership tables.

Example

Prove that $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$.

Example

Prove that $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$.

Double inclusion

 \implies Suppose that $x \in A \cap (B \setminus C)$

Need to prove $x \in (A \cap B) \setminus (A \cap C)$.

Example

Prove that $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$.

Double inclusion

- \Rightarrow Suppose that $x \in A \cap (B \setminus C)$
 - **Need to prove** $x \in (A \cap B) \setminus (A \cap C)$.
- \subseteq Suppose $x \in (A \cap B) \setminus (A \cap C)$
 - Need to prove $x \in A \cap (B \setminus C)$.

Example

Prove that $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$.

Example

Prove that $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$.

Set identities

$$(A \cap B) \setminus (A \cap C)$$

$$= (A \cap B) \cap (\overline{A} \cup \overline{C})$$

$$= [(A \cap B) \cap \overline{A}] \cup [A \cap B \cap \overline{C}]$$

$$= A \cap (B \setminus C).$$
(1)

Example

Prove that $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$.

Example

Prove that $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$.

Membership tables

Α	В	С	$B \setminus C$	$A\cap (B\setminus C)$	$A \cap B$	$A \cap C$	$(A \cap B) \setminus (A \cap C)$
1	1	1	0	0	1	1	0
1	1	0	1	1	1	0	1
1	0	1	0	0	0	1	0
1	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0

- 1) "1" =membership, "0" =non-membership.
- 2) Two sets are equal, iff they have identical columns.

Example

Let A, B, C be arbitrary sets. Prove that

- a) $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$.
- b) $A \cup (B \setminus A) = A \cup B$.
- c) If $(A \cap C) \subset (A \cap B)$ and $(A \cup C) \subset (A \cup B)$, then $C \subset B$.
- d) $A \setminus (A \setminus B) = A \cap B$.
- e) $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$.
- f) $(A \cup B) \times C = (A \times C) \cup (B \times C)$.
- g) $(A \cap B) \times C = (A \times C) \cap (B \times C)$.
- h) Is it true that $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$. If not, give a counterexample.

The cartesian product: Let A, B be sets.

$$A \times B = \{(a, b) | a \in A \text{ and } b \in B\}, \quad (a, b) = (c, d) \Leftrightarrow a = c, b = d.$$

Chapter 1: Sets, mapping and complex numbers

- Logic
- 2 Sets
- Maps
- Algebraic Structures and Complex Numbers
 - Groups
 - Rings
 - Fields

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 22 / 67

Definition

$$f: X \to Y,$$

 $x \mapsto y \in Y(unique)$

Definition

$$f: X \to Y,$$

 $x \mapsto y \in Y(unique)$

Image, Preimage

Let $f: X \to Y$ and $A \subset X, C \subset Y$.

i) The Image

$$f(A) = \{ y \in Y | \exists x \in A, f(x) = y \}.$$

Definition

$$f: X \to Y,$$

 $x \mapsto y \in Y(unique)$

Image, Preimage

Let $f: X \to Y$ and $A \subset X, C \subset Y$.

i) The Image

$$f(A) = \{ y \in Y | \exists x \in A, f(x) = y \}.$$

ii) The preimage

$$f^{-1}(C) = \{x \in X | f(x) \in C\}.$$

Definition

$$f: X \to Y,$$

 $x \mapsto y \in Y(unique)$

Image, Preimage

Let $f: X \to Y$ and $A \subset X, C \subset Y$.

i) The Image

$$f(A) = \{ y \in Y | \exists x \in A, f(x) = y \}.$$

ii) The preimage

$$f^{-1}(C) = \{x \in X | f(x) \in C\}.$$

$$y \in f(A) \Leftrightarrow \exists x \in A : y = f(x)$$
 $x \in f^{-1}(C) \Leftrightarrow f(x) \in C$

Image, preimage

Properties

Let $f: X \to Y$ and $A, B \subset X$, $C, D \subset Y$.

- a) $f(A \cup B) = f(A) \cup f(B)$,
- b) $f(A \cap B) \subset f(A) \cap f(B)$,
- c) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$,
- d) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
 - i) $y \in f(A) \Leftrightarrow \exists x \in A : y = f(x)$,
- ii) $x \in f^{-1}(C) \Leftrightarrow f(x) \in C$

Image, preimage

Example

Let $f: X \to Y$ and $A, B \subset X$, $C, D \subset Y$. Prove that

- e) $f^{-1}(C \setminus D) = f^{-1}(C) \setminus f^{-1}(D)$,
- f) $A \subset f^{-1}(f(A))$,
- g) $C \supset f(f^{-1}(C))$.

Image, preimage

Example

Let $f: X \to Y$ and $A, B \subset X$, $C, D \subset Y$. Prove that

- e) $f^{-1}(C \setminus D) = f^{-1}(C) \setminus f^{-1}(D)$,
- f) $A \subset f^{-1}(f(A))$,
- g) $C \supset f(f^{-1}(C))$.

Example

Let $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x,y) = (2x,2y)$ and

$$A = \{(x, y) \in \mathbb{R}^2 | (x - 4)^2 + y^2 = 4\}.$$

Find $f(A), f^{-1}(A)$.

Injective, surjective, bijective mappings

Let $f: X \to Y$ be a map.

a) Injective

i)
$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$
, or

Injective, surjective, bijective mappings

- a) Injective
 - i) $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$, or
 - ii) $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$, or

Injective, surjective, bijective mappings

- a) Injective
 - i) $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$, or
 - ii) $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$, or
 - iii) $\forall y \in Y$, the eq. f(x) = y has at most one solution.

Injective, surjective, bijective mappings

- a) Injective
 - i) $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$, or
 - ii) $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$, or
 - iii) $\forall y \in Y$, the eq. f(x) = y has at most one solution.
- b) Surjective
 - i) $\forall y \in Y$, $\exists x \in X$ such that f(x) = y, or

Injective, surjective, bijective mappings

- a) Injective
 - i) $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$, or
 - ii) $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$, or
 - iii) $\forall y \in Y$, the eq. f(x) = y has at most one solution.
- b) Surjective
 - i) $\forall y \in Y$, $\exists x \in X$ such that f(x) = y, or
 - ii) $\forall y \in Y$, the eq. f(x) = y has at least one solution.
- c) **Bijective** = injective + surjective. $\forall y \in Y$, the eq. f(x) = y has a unique solution.

Injective, surjective, bijective mappings

Example

Which of the following maps are injective, surjective, bijective?

- a) $f: \mathbb{R} \to \mathbb{R}, f(x) = 3 2x$,
- b) $f: (-\infty, 0] \to [4, +\infty), f(x) = x^2 + 4$
- c) $f:(1,+\infty)\to(-1,+\infty), f(x)=x^2-2x$,
- d) $f: \mathbb{R} \setminus \{1\} \rightarrow \mathbb{R} \setminus \{3\}, f(x) = \frac{3x+1}{x-1}$,
- e) $f: [4,9] \rightarrow [21,96], f(x) = x^2 + 2x 3$,
- f) $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x 2|x|$,
- g) $f:(-1,1)\to\mathbb{R}, f(x)=\ln\frac{1+x}{1-x}$,
- h) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) = \frac{1}{x}$
- i) $f: \mathbb{R} \to \mathbb{R}, g(x) = \frac{2x}{1+x^2}$.

Composition of maps, inverse maps

Let $f: X \to Y$, $g: Y \to Z$.

i) Composition $(g \circ f)(x) = g(f(x))$.

Composition of maps, inverse maps

Let $f: X \to Y$, $g: Y \to Z$.

- i) Composition $(g \circ f)(x) = g(f(x))$.
- ii) If f is bijective, then $f^{-1}: Y \to X$ is called the inverse map of f.

Dr. Bui Xuan Dieu Linear Algebra I ♡ HUST 28 / 67

Composition of maps, inverse maps

Let $f: X \to Y$, $g: Y \to Z$.

- i) Composition $(g \circ f)(x) = g(f(x))$.
- ii) If f is bijective, then $f^{-1}: Y \to X$ is called the inverse map of f.

i)
$$h \circ (g \circ f) = (h \circ g) \circ f$$
,

Composition of maps, inverse maps

Let $f: X \to Y$, $g: Y \to Z$.

- i) Composition $(g \circ f)(x) = g(f(x))$.
- ii) If f is bijective, then $f^{-1}: Y \to X$ is called the inverse map of f.

- i) $h \circ (g \circ f) = (h \circ g) \circ f$,
- ii) $f \circ Id = Id \circ f =$

Composition of maps, inverse maps

Let $f: X \to Y$, $g: Y \to Z$.

- i) Composition $(g \circ f)(x) = g(f(x))$.
- ii) If f is bijective, then $f^{-1}: Y \to X$ is called the inverse map of f.

- i) $h \circ (g \circ f) = (h \circ g) \circ f$,
- ii) $f \circ Id = Id \circ f = f$,
- iii) $(f^{-1})^{-1} =$

Composition of maps, inverse maps

Let $f: X \to Y$, $g: Y \to Z$.

- i) Composition $(g \circ f)(x) = g(f(x))$.
- ii) If f is bijective, then $f^{-1}: Y \to X$ is called the inverse map of f.

i)
$$h \circ (g \circ f) = (h \circ g) \circ f$$
,
ii) $f \circ Id = Id \circ f = f$.

iv)
$$f \circ f^{-1} = f^{-1} \circ f =$$

iii)
$$(f^{-1})^{-1} = f$$
,

Composition of maps, inverse maps

Let $f: X \to Y$, $g: Y \to Z$.

- i) Composition $(g \circ f)(x) = g(f(x))$.
- ii) If f is bijective, then $f^{-1}: Y \to X$ is called the inverse map of f.

i)
$$h \circ (g \circ f) = (h \circ g) \circ f$$
,

iv)
$$f \circ f^{-1} = f^{-1} \circ f = \text{Id},$$

ii)
$$f \circ Id = Id \circ f = f$$
,

iii)
$$(f^{-1})^{-1} = f$$
,

v)
$$(g \circ f)^{-1} =$$

Composition of maps, inverse maps

Let $f: X \to Y$, $g: Y \to Z$.

- i) Composition $(g \circ f)(x) = g(f(x))$.
- ii) If f is bijective, then $f^{-1}: Y \to X$ is called the inverse map of f.

i)
$$h \circ (g \circ f) = (h \circ g) \circ f$$
,

iv)
$$f \circ f^{-1} = f^{-1} \circ f = \text{Id},$$

ii)
$$f \circ Id = Id \circ f = f$$
,

$$(f^{-1})^{-1} = f$$

v)
$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$
,

Composition of maps, inverse maps

Let $f: X \to Y$, $g: Y \to Z$.

- i) Composition $(g \circ f)(x) = g(f(x))$.
- ii) If f is bijective, then $f^{-1}: Y \to X$ is called the inverse map of f.

Properties

i)
$$h \circ (g \circ f) = (h \circ g) \circ f$$
,

iv)
$$f \circ f^{-1} = f^{-1} \circ f = \text{Id}$$
,

ii)
$$f \circ Id = Id \circ f = f$$
,

iii)
$$(f^{-1})^{-1} = f$$
,

v)
$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$
,

Injectivity, Surjectivity, Bijectivity of the composition

i) f and g injective $\Rightarrow g \circ f$ injective.

Composition of maps, inverse maps

Let $f: X \to Y$, $g: Y \to Z$.

- i) Composition $(g \circ f)(x) = g(f(x))$.
- ii) If f is bijective, then $f^{-1}: Y \to X$ is called the inverse map of f.

Properties

i)
$$h \circ (g \circ f) = (h \circ g) \circ f$$
,

iv)
$$f \circ f^{-1} = f^{-1} \circ f = \text{Id}$$
,

ii)
$$f \circ Id = Id \circ f = f$$
,

iii)
$$(f^{-1})^{-1} = f$$
,

v)
$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$
,

Injectivity, Surjectivity, Bijectivity of the composition

- i) f and g injective $\Rightarrow g \circ f$ injective.
- ii) f and g surjective $\Rightarrow g \circ f$ surjective,

Composition of maps, inverse maps

Let $f: X \to Y$, $g: Y \to Z$.

- i) Composition $(g \circ f)(x) = g(f(x))$.
- ii) If f is bijective, then $f^{-1}: Y \to X$ is called the inverse map of f.

Properties

i)
$$h \circ (g \circ f) = (h \circ g) \circ f$$
,

iv)
$$f \circ f^{-1} = f^{-1} \circ f = Id$$
,

ii)
$$f \circ Id = Id \circ f = f$$
,

iii)
$$(f^{-1})^{-1} = f$$
,

v)
$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$
,

Injectivity, Surjectivity, Bijectivity of the composition

- i) f and g injective $\Rightarrow g \circ f$ injective.
- ii) f and g surjective $\Rightarrow g \circ f$ surjective,
- iii) f and g bijective $\Rightarrow g \circ f$ bijective.

Example

Let $f: X \to Y$, $g: Y \to Z$. Prove that

- a) f surjective and $g \circ f$ injective $\Rightarrow g$ injective,
- b) give an example to show that $g \circ f$ is injective, but g is not,
- c) g injective and $g \circ f$ surjective $\Rightarrow f$ surjective,
- d) give an example to show that $g \circ f$ is surjective but f is not.

Linear Algebra I ♥ HUST 29 / 67

Restriction, characteristic functions

Restriction

- i) Let $f: X \to Y$ and $A \subset X$. The restriction $f_A: A \to Y$ given by $f_A(x) = f(x) \ \forall x \in A$.
- ii) g is the restriction of $f \Rightarrow f$ is an extension of g.

Dr. Bui Xuan Dieu Linear Algebra I ♡ HUST 30 / 67

Restriction, characteristic functions

Restriction

- i) Let $f: X \to Y$ and $A \subset X$. The restriction $f_A: A \to Y$ given by $f_A(x) = f(x) \ \forall x \in A.$
- ii) g is the restriction of $f \Rightarrow f$ is an extension of g.

Characteristic functions

Let $A \subset X$, the map $f: A \to \{0,1\}$ given by $f(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \not\in A \end{cases}$ is called the characteristic function.

Linear Algebra I ♥ HUST 30 / 67

Restriction, characteristic functions

Restriction

- i) Let $f: X \to Y$ and $A \subset X$. The restriction $f_A: A \to Y$ given by $f_A(x) = f(x) \ \forall x \in A$.
- ii) g is the restriction of $f \Rightarrow f$ is an extension of g.

Characteristic functions

Let $A \subset X$, the map $f : A \to \{0,1\}$ given by $f(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A \end{cases}$ is called the characteristic function.

The canonical projection

Let $X = X_1 \times X_2$. The map $p_1 : X \to X_1$ given by $p(x_1, x_2) = x_1$ is called the canonical projection on X_1 .

Substitutions

A bijection
$$f = \begin{pmatrix} 1 & 2 & \cdots & n \\ f(1) & f(2) & \cdots & f(n) \end{pmatrix}$$
 is called a substitution (or permutation).

Linear Algebra I ♥ HUST 31 / 67

Substitutions

A bijection
$$f = \begin{pmatrix} 1 & 2 & \cdots & n \\ f(1) & f(2) & \cdots & f(n) \end{pmatrix}$$
 is called a substitution (or permutation).

Properties

i) Composition of substitutions is a substitution.

Dr. Bui Xuan Dieu Linear Algebra I ♡ HUST 31 / 67

Substitutions

A bijection $f = \begin{pmatrix} 1 & 2 & \cdots & n \\ f(1) & f(2) & \cdots & f(n) \end{pmatrix}$ is called a substitution (or permutation).

Properties

- i) Composition of substitutions is a substitution.
- ii) The inverse map of a substitution is a substitution.

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 31 / 67

Substitutions

A bijection $f = \begin{pmatrix} 1 & 2 & \cdots & n \\ f(1) & f(2) & \cdots & f(n) \end{pmatrix}$ is called a substitution (or permutation).

- i) Composition of substitutions is a substitution.
- ii) The inverse map of a substitution is a substitution.
- iii) There are n! substitutions.

Substitutions

A bijection $f = \begin{pmatrix} 1 & 2 & \cdots & n \\ f(1) & f(2) & \cdots & f(n) \end{pmatrix}$ is called a substitution (or permutation).

Properties

- i) Composition of substitutions is a substitution.
- ii) The inverse map of a substitution is a substitution.
- iii) There are n! substitutions.

Example

- a) Let |X| = m, |Y| = n. Find the number of maps from X to Y.
- b) Let |X| = m, |Y| = n, where m < n. Find the number of injection from X to Y.

Cycle

i) cycle of length k

$$(i_1, i_2, \dots, i_k) \Leftrightarrow egin{cases} f(i_1) &= i_2, \ f(i_2) &= i_3, \ &dots \ f(i_k) &= i_1 \end{cases}$$
 and $f(j) = j$ otherwise.

ii) A cycle of length 2 is called a transposition.

Cycle

i) cycle of length k

$$(i_1,i_2,\ldots,i_k)\Leftrightarrow egin{cases} f(i_1)&=i_2,\ f(i_2)&=i_3,\ dots&\ dots\ f(i_k)&=i_1 \end{cases}$$
 and $f(j)=j$ otherwise.

ii) A cycle of length 2 is called a transposition.

Theorem

- i) Any substitution is a product of cycles.
- ii) Any substitution is a product of transpositons.

Example

Let

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 2 & 1 & 5 & 7 & 6 & 9 & 10 & 8 \end{pmatrix},$$

and

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 1 & 2 & 5 & 7 & 6 & 9 & 8 & 10 \end{pmatrix}$$

- i) Compute σ^{-1} and $\tau \circ \sigma$.
- ii) Write σ , τ as a product of disjoint cycles.

Example

Let

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 2 & 1 & 5 & 7 & 6 & 9 & 10 & 8 \end{pmatrix},$$

and

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 1 & 2 & 5 & 7 & 6 & 9 & 8 & 10 \end{pmatrix}$$

- i) Compute σ^{-1} and $\tau \circ \sigma$.
- ii) Write σ , τ as a product of disjoint cycles.

Example

Let |X| = n and f be a bijection from X to X. Prove that there exists $k \in \mathbb{N}$ such that $f^k = \operatorname{Id}_X$, where $f^k = f \circ f \cdots \circ f$ (k-times).

Parity of a permutation

Let
$$f = \begin{pmatrix} 1 & 2 & \cdots & n \\ f(1) & f(2) & \cdots & f(n) \end{pmatrix}$$
 be a permutation.

i) (i,j) is called an inversion if i < j and f(i) > f(j).

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 34 / 67

Parity of a permutation

Let
$$f = \begin{pmatrix} 1 & 2 & \cdots & n \\ f(1) & f(2) & \cdots & f(n) \end{pmatrix}$$
 be a permutation.

- i) (i, j) is called an inversion if i < j and f(i) > f(j).
- ii) f is called even if the number of inversions is even,
- iii) f is called odd if the number of inversions is odd.

Linear Algebra I ♥ HUST 34 / 67

Parity of a permutation

Let
$$f = \begin{pmatrix} 1 & 2 & \cdots & n \\ f(1) & f(2) & \cdots & f(n) \end{pmatrix}$$
 be a permutation.

- i) (i, j) is called an inversion if i < j and f(i) > f(j).
- ii) f is called even if the number of inversions is even,
- iii) f is called odd if the number of inversions is odd.
- iv) If N(f) is the number of inversions. Then $sign(f) = (-1)^{N(f)}$.

Linear Algebra I ♥ HUST 34 / 67

Parity of a permutation

Let
$$f = \begin{pmatrix} 1 & 2 & \cdots & n \\ f(1) & f(2) & \cdots & f(n) \end{pmatrix}$$
 be a permutation.

- i) (i, j) is called an inversion if i < j and f(i) > f(j).
- ii) f is called even if the number of inversions is even,
- iii) f is called odd if the number of inversions is odd.
- iv) If N(f) is the number of inversions. Then $sign(f) = (-1)^{N(f)}$.

$\mathsf{Theorem}$

Let $f, g \in S_n$. Then,

i)
$$sign(f \circ g) = sign(f) \cdot sign(g)$$
,

Linear Algebra I ♥ HUST 34 / 67

Parity of a permutation

Let
$$f = \begin{pmatrix} 1 & 2 & \cdots & n \\ f(1) & f(2) & \cdots & f(n) \end{pmatrix}$$
 be a permutation.

- i) (i,j) is called an inversion if i < j and f(i) > f(j).
- ii) f is called even if the number of inversions is even,
- iii) f is called odd if the number of inversions is odd.
- iv) If N(f) is the number of inversions. Then $sign(f) = (-1)^{N(f)}$.

Theorem

Let $f, g \in S_n$. Then,

i)
$$sign(f \circ g) = sign(f) \cdot sign(g)$$
,

$$ii$$
) $sign(f) = sign(f^{-1}),$

Parity of a permutation

Let
$$f = \begin{pmatrix} 1 & 2 & \cdots & n \\ f(1) & f(2) & \cdots & f(n) \end{pmatrix}$$
 be a permutation.

- i) (i,j) is called an inversion if i < j and f(i) > f(j).
- ii) f is called even if the number of inversions is even,
- iii) f is called odd if the number of inversions is odd.
- iv) If N(f) is the number of inversions. Then $sign(f) = (-1)^{N(f)}$.

Theorem

Let $f, g \in S_n$. Then,

i)
$$sign(f \circ g) = sign(f) \cdot sign(g)$$
,

$$ii)$$
 sign $(f) = \text{sign}(f^{-1}),$

iii) If f is a cycle of length k, then
$$sign(f) = (-1)^{k-1}$$
.

Dr. Bui Xuan Dieu Linear Algebra I ♡ HUST 34 / 67

The sign of a permutation

Example

Let

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 2 & 1 & 5 & 7 & 6 & 9 & 10 & 8 \end{pmatrix},$$

and

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 1 & 2 & 5 & 7 & 6 & 9 & 8 & 10 \end{pmatrix}$$

- i) Compute σ^{-1} and $\tau \circ \sigma$.
- ii) Write σ , τ as a product of disjoint cycles.
- iii) Compute $sign(\sigma)$, $sign(\tau)$.

Chapter 1: Sets, mapping and complex numbers

- Logic
- 2 Sets
- Maps
- 4 Algebraic Structures and Complex Numbers
 - Groups
 - Rings
 - Fields

Binary operators

Let G be a set. A binary operator on G is a map

$$*: G \times G \to G,$$

 $(x,y) \mapsto x * y.$

Binary operators

Let G be a set. A binary operator on G is a map

$$*: G \times G \to G,$$

 $(x,y) \mapsto x * y.$

Properties of binary operators

We say that

i) * is commutative if $\forall a, b \in X, a * b = b * a$.

Dr. Bui Xuan Dieu Linear Algebra I ♡ HUST 37 / 67

Binary operators

Let G be a set. A binary operator on G is a map

$$*: G \times G \to G,$$

 $(x,y) \mapsto x * y.$

Properties of binary operators

We say that

- i) * is commutative if $\forall a, b \in X, a * b = b * a$.
- ii) * is associative if $\forall a, b, c \in X, (a * b) * c = a * (b * c)$.

Binary operators

Let G be a set. A binary operator on G is a map

$$*: G \times G \to G,$$

 $(x,y) \mapsto x * y.$

Properties of binary operators

We say that

- i) * is commutative if $\forall a, b \in X, a * b = b * a$.
- ii) * is associative if $\forall a, b, c \in X, (a * b) * c = a * (b * c)$.
- iii) e is the identity for * if $\forall a \in X$, a * e = e * a = a.

Dr. Bui Xuan Dieu Linear Algebra I ♡ HUST 37 / 67

Binary operators

Binary operators

Let G be a set. A binary operator on G is a map

$$*: G \times G \to G,$$

 $(x,y) \mapsto x * y.$

Properties of binary operators

We say that

- i) * is commutative if $\forall a, b \in X, a * b = b * a$.
- ii) * is associative if $\forall a, b, c \in X, (a * b) * c = a * (b * c)$.
- iii) e is the identity for * if $\forall a \in X, a * e = e * a = a$.
- iv) $x' \in X$ is called the inverse element of x if x * x' = x' * x = e.

Binary operators

- i) commutative a * b = b * a.
- ii) associative (a*b)*c = a*(b*c).
- iii) identity a * e = e * a = a.
- iv) the inverse x * x' = x' * x = e.

Example

Consider the commutativity, associativity and find the identity element, the inverse element.

- a) x * y := xy + 1,
- b) $x * y := \frac{1}{2}xy$,
- c) $(x_1, x_2) \circ (y_1, y_2) := (\frac{x_1 + y_1}{2}, \frac{x_2 + y_2}{2}).$

Definition

A group is a pair (G, *) satisfies

G1) Associativity:

$$(x * y) * z = x * (y * z), \quad \forall x, y, z \in G,$$

 $G2) \exists the identity element e$

$$x * e = e * x = x$$
, $\forall x \in G$,

G3) \exists the inverse for any $x \in G$

$$x * x' = x' * x = e.$$

Definition

A group is a pair (G, *) satisfies

G1) Associativity:

$$(x*y)*z = x*(y*z), \quad \forall x, y, z \in G,$$

 $G2) \exists the identity element e$

$$x * e = e * x = x, \quad \forall x \in G,$$

G3) \exists the inverse for any $x \in G$

$$x * x' = x' * x = e.$$

G is called *commutative* or abelian if x * y = y * x, $\forall x, y \in G$.

	Logics		Sets		Maps	N		\mathbb{Z}		Q		\mathbb{R}	
	V	\wedge	U	\cap	0	+	×	+	×	+	×	+	×
Asso.	✓	√	√	√	✓	√	√	√	√	√	√	√	√
Identity	F	Т	Ø	X	Id	0	1	0	1	0	1	0	1
Inverse	X	Х	Х	Х	f^{-1}	√	Х	√	Х	√	Х	√	Х
Commu.	√	√	√	√	X	√	√	√	√	√	√	√	√

- i) Logics = the set of propositions,
- ii) Sets = P(X) the collection of subsets of X,
- iii) Maps = B(X) the set of bijection from X to X.

Open your mind

Open your mind

$$1+2=2$$
 $2+1=2$
 $2+1=2$

wtf? No, I'm not kidding!

Open your mind

wtf? No, I'm not kidding!

Prove that $(\{1,2\},+)$ is a group.

Properties

- 1) the identity element e is unique.
- 2) the inverse element x' of x is unique.

Properties

- 1) the identity element *e* is unique.
- 2) the inverse element x' of x is unique.

3) Division
$$\begin{cases} x * y = x * z \Rightarrow y = z, \\ x * z = y * z \Rightarrow x = y. \end{cases}$$

Properties

- 1) the identity element e is unique.
- 2) the inverse element x' of x is unique.
- 3) Division $\begin{cases} x * y = x * z \Rightarrow y = z, \\ x * z = y * z \Rightarrow x = y. \end{cases}$

Notationally,

- i) " + " the identity e := 0 and the inverse element of x is -x.
- ii) " \times " the identity e =: 1 and the inverse element of x is x^{-1} .

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

Example

1) $(\mathbb{N}, +),$

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

1)
$$(\mathbb{N},+),(\mathbb{N},\times),$$

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

Example

1)
$$(\mathbb{N}, +), (\mathbb{N}, \times), (\mathbb{Z}, +),$$

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

1)
$$(\mathbb{N},+),(\mathbb{N},\times),(\mathbb{Z},+),(\mathbb{Z},\times),$$

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

Example

1)
$$(\mathbb{N},+),(\mathbb{N},\times),(\mathbb{Z},+),(\mathbb{Z},\times),(\mathbb{Q},+),$$

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

Example

1)
$$(\mathbb{N}, +), (\mathbb{N}, \times), (\mathbb{Z}, +), (\mathbb{Z}, \times), (\mathbb{Q}, +), (\mathbb{Q}, \times),$$

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

Example

1) $(\mathbb{N},+), (\mathbb{N},\times), (\mathbb{Z},+), (\mathbb{Z},\times), (\mathbb{Q},+), (\mathbb{Q},\times), (\mathbb{R},+),$

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

Example

1)
$$(\mathbb{N},+),(\mathbb{N},\times),(\mathbb{Z},+),(\mathbb{Z},\times),(\mathbb{Q},+),(\mathbb{Q},\times),(\mathbb{R},+),(\mathbb{R},\times),$$

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

Example

- 1) $(\mathbb{N},+), (\mathbb{N},\times), (\mathbb{Z},+), (\mathbb{Z},\times), (\mathbb{Q},+), (\mathbb{Q},\times), (\mathbb{R},+), (\mathbb{R},\times),$
- 2) $(\mathbb{Z}/5,+),$

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

- 1) $(\mathbb{N},+), (\mathbb{N},\times), (\mathbb{Z},+), (\mathbb{Z},\times), (\mathbb{Q},+), (\mathbb{Q},\times), (\mathbb{R},+), (\mathbb{R},\times),$
- 2) $(\mathbb{Z}/5, +), (\mathbb{Z}/5, \times),$

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

- 1) $(\mathbb{N},+),(\mathbb{N},\times),(\mathbb{Z},+),(\mathbb{Z},\times),(\mathbb{Q},+),(\mathbb{Q},\times),(\mathbb{R},+),(\mathbb{R},\times),$
- 2) $(\mathbb{Z}/5, +), (\mathbb{Z}/5, \times),$
- 3) $(2\mathbb{Z}, +),$

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

Example

- 1) $(\mathbb{N},+), (\mathbb{N},\times), (\mathbb{Z},+), (\mathbb{Z},\times), (\mathbb{Q},+), (\mathbb{Q},\times), (\mathbb{R},+), (\mathbb{R},\times),$
- 2) $(\mathbb{Z}/5, +), (\mathbb{Z}/5, \times),$
- 3) $(2\mathbb{Z}, +), (2\mathbb{Z}, \times),$

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

- 1) $(\mathbb{N},+), (\mathbb{N},\times), (\mathbb{Z},+), (\mathbb{Z},\times), (\mathbb{Q},+), (\mathbb{Q},\times), (\mathbb{R},+), (\mathbb{R},\times),$
- 2) $(\mathbb{Z}/5, +), (\mathbb{Z}/5, \times),$
- 3) $(2\mathbb{Z}, +), (2\mathbb{Z}, \times), (2\mathbb{Z} + 1, +),$

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

Example

- 1) $(\mathbb{N},+), (\mathbb{N},\times), (\mathbb{Z},+), (\mathbb{Z},\times), (\mathbb{Q},+), (\mathbb{Q},\times), (\mathbb{R},+), (\mathbb{R},\times),$
- 2) $(\mathbb{Z}/5, +), (\mathbb{Z}/5, \times),$
- 3) $(2\mathbb{Z}, +), (2\mathbb{Z}, \times), (2\mathbb{Z} + 1, +), (2\mathbb{Z} + 1, \times),$

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

- 1) $(\mathbb{N}, +), (\mathbb{N}, \times), (\mathbb{Z}, +), (\mathbb{Z}, \times), (\mathbb{Q}, +), (\mathbb{Q}, \times), (\mathbb{R}, +), (\mathbb{R}, \times),$
- 2) $(\mathbb{Z}/5, +), (\mathbb{Z}/5, \times),$
- 3) $(2\mathbb{Z},+), (2\mathbb{Z},\times), (2\mathbb{Z}+1,+), (2\mathbb{Z}+1,\times),$
- 4) $(X = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\}, +),$

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

- 1) $(\mathbb{N},+), (\mathbb{N},\times), (\mathbb{Z},+), (\mathbb{Z},\times), (\mathbb{Q},+), (\mathbb{Q},\times), (\mathbb{R},+), (\mathbb{R},\times),$
- 2) $(\mathbb{Z}/5, +), (\mathbb{Z}/5, \times),$
- 3) $(2\mathbb{Z},+), (2\mathbb{Z},\times), (2\mathbb{Z}+1,+), (2\mathbb{Z}+1,\times),$
- 4) $(X = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\}, +)$,
- 5) $(X = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\}, \times),$

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

- 1) $(\mathbb{N},+), (\mathbb{N},\times), (\mathbb{Z},+), (\mathbb{Z},\times), (\mathbb{Q},+), (\mathbb{Q},\times), (\mathbb{R},+), (\mathbb{R},\times),$
- 2) $(\mathbb{Z}/5, +), (\mathbb{Z}/5, \times),$
- 3) $(2\mathbb{Z},+), (2\mathbb{Z},\times), (2\mathbb{Z}+1,+), (2\mathbb{Z}+1,\times),$
- 4) $(X = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\}, +)$,
- 5) $(X = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\}, \times),$
- 6) $(X = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}, +),$

Example

Let X be arbitrary set and $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

Example

- 1) $(\mathbb{N},+),(\mathbb{N},\times),(\mathbb{Z},+),(\mathbb{Z},\times),(\mathbb{Q},+),(\mathbb{Q},\times),(\mathbb{R},+),(\mathbb{R},\times),$
- 2) $(\mathbb{Z}/5, +), (\mathbb{Z}/5, \times),$
- 3) $(2\mathbb{Z},+), (2\mathbb{Z},\times), (2\mathbb{Z}+1,+), (2\mathbb{Z}+1,\times),$
- 4) $(X = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\}, +),$
- 5) $(X = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\}, \times),$
- 6) $(X = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}, +),$
- 7) $(X = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}, \times).$

Group homomorphism

Group homomorphism

Let G and G' be groups. The map $\varphi:G\to G'$ is called a group homomorphism if

$$\varphi(xy) = \varphi(x)\varphi(y), \ \forall x, y \in G.$$

Remark: $\varphi(e) = e', \quad \varphi(x^{-1}) = [\varphi(x)]^{-1}.$

Group homomorphism

Group homomorphism

Let G and G' be groups. The map $\varphi: G \to G'$ is called a group homomorphism if

$$\varphi(xy) = \varphi(x)\varphi(y), \ \forall x, y \in G.$$

Remark: $\varphi(e) = e', \quad \varphi(x^{-1}) = [\varphi(x)]^{-1}.$

Definition

- 1) Group homomorphism + injective = Monomorphism,
- 2) Group homomorphism + surjective = Epimorphism,
- 3) Group homomorphism + bijective = Isomorphism, write $G \cong G'$.

Linear Algebra I ♥ HUST

Group homomorphism

Definition

- 1) Group homomorphism + injective = Monomorphism,
- 2) Group homomorphism + surjective = Epimorphism,
- 3) Group homomorphism + bijective = Isomorphism, write $G \cong G'$.

Example

- i) $i: \mathbb{Z} \to \mathbb{Q}, n \mapsto n$ is a Monomorphism.
- ii) The projection $p: \mathbb{Z} \to \mathbb{Z}/n$ is an Epimorphism.
- iii) $\exp : \mathbb{R} \to \mathbb{R}^+, x \mapsto e^x$ is an Isomorphism from $(\mathbb{R}, +)$ to (\mathbb{R}^+, \times) .

Linear Algebra I ♥ HUST 45 / 67

Rings

Definition

A ring is a tripple $(R, +, \times)$ satisfies

R1) (R,+) is a commutative group.

 $R2) \times is associative:$

$$(xy)z = x(yz), \quad \forall x, y, z \in R$$

R3) distributive

$$(x + y)z = xz + yz$$

 $z(x + y) = zx + zy, \quad \forall x, y, z \in R$

Rings

Definition

A ring is a tripple $(R, +, \times)$ satisfies

- R1) (R,+) is a commutative group.
- $R2) \times is associative:$

$$(xy)z = x(yz), \quad \forall x, y, z \in R$$

R3) distributive

$$(x + y)z = xz + yz$$

 $z(x + y) = zx + zy, \quad \forall x, y, z \in R$

- i) commutative or abelian xy = yx, $\forall x, y \in R$.
- ii) Ring with identity $\exists e$ such that ex = xe = x, $\forall x \in R$.

Rings

	ľ	1	7	Z	(2	\mathbb{R}	
	+	×	+	×	+	×	+	×
R1	X		√		√		√	
R2	√		√		√		✓	
R3	√		√		✓		✓	
commutative		√		√		√		√
with identity		√		√		√		√

Rings

	N		\mathbb{Z}		Q		\mathbb{R}	
	+	×	+	×	+	×	+	×
R1	X		√		√		√	
R2	√		√		√		√	
R3	✓		✓		√		✓	
commutative		√		√		√		√
with identity		√		√		√		√

Example

Let
$$X = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\}$$
 and $Y = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}.$
$$(a + b\sqrt{2}) + (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2},$$

$$(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2},$$

Definition

F is a field if

- i) F is a commutative ring with identity $1 \neq 0$.
- ii) \exists the inverse element x^{-1} for every $x \neq 0$.

Dr. Bui Xuan Dieu Linear Algebra I ♡ HUST 48 / 67

Definition

F is a field if

- i) F is a commutative ring with identity $1 \neq 0$.
- ii) \exists the inverse element x^{-1} for every $x \neq 0$.

Example

a) $(\mathbb{Z}, +, \times)$ is not a field.

Definition

F is a field if

- i) F is a commutative ring with identity $1 \neq 0$.
- ii) \exists the inverse element x^{-1} for every $x \neq 0$.

Example

- a) $(\mathbb{Z}, +, \times)$ is not a field.
- b) $(\mathbb{Q}, +, \times), (\mathbb{R}, +, \times)$ are fields.

Definition

F is a field if

- i) F is a commutative ring with identity $1 \neq 0$.
- ii) \exists the inverse element x^{-1} for every $x \neq 0$.

Example

- a) $(\mathbb{Z}, +, \times)$ is not a field.
- b) $(\mathbb{Q}, +, \times), (\mathbb{R}, +, \times)$ are fields.

Example

Let
$$X = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\}$$
 and $Y = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}.$

$$(a+b\sqrt{2})+(c+d\sqrt{2})=(a+c)+(b+d)\sqrt{2},$$

$$(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}$$

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 48 / 67

The characteristic of a field

Definition

Let R be a ring with identity 1. The smallest natural number n such that $0 = 1 + 1 + \cdots + 1$ (n terms) is called the characteristic of the ring R and is denoted by $\operatorname{Char}(R)$. If there is no such natural number, then the characteristic is zero.

Example

- a) $\operatorname{Char}(\mathbb{Z}) = \operatorname{Char}(\mathbb{Q}) = 0$,
- b) Char(\mathbb{Z}/n) = n.

The characteristic of a field

Definition

Let R be a ring with identity 1. The smallest natural number n such that $0 = 1 + 1 + \cdots + 1$ (n terms) is called the characteristic of the ring R and is denoted by $\operatorname{Char}(R)$. If there is no such natural number, then the characteristic is zero.

Example

- a) $\mathsf{Char}(\mathbb{Z}) = \mathsf{Char}(\mathbb{Q}) = 0$,
- b) Char(\mathbb{Z}/n) = n.

Proposition

If R is a field, then Char(R) is either 0 or a prime number.

Definition

Let $m, n \in \mathbb{Z}$. We say that m divides n and write $m \mid n$ if

n = km, for some $k \in \mathbb{Z}$.

Dr. Bui Xuan Dieu Linear Algebra I ♡ HUST 50 / 67

Definition

Let $m, n \in \mathbb{Z}$. We say that m divides n and write $m \mid n$ if

n = km, for some $k \in \mathbb{Z}$.

Then m is a divisor of n and n is a multiple of m.

Dr. Bui Xuan Dieu Linear Algebra I ♡ HUST 50 / 67

Definition

Let $m, n \in \mathbb{Z}$. We say that m divides n and write $m \mid n$ if

$$n = km$$
, for some $k \in \mathbb{Z}$.

Then m is a divisor of n and n is a multiple of m.

Definition

If $a,d \in \mathbb{Z}$ and d>0 then there exist unique integers q and r such that

$$a = qd + r, 0 \le r < d.$$

Definition

Let $m, n \in \mathbb{Z}$. We say that m divides n and write $m \mid n$ if

$$n = km$$
, for some $k \in \mathbb{Z}$.

Then m is a divisor of n and n is a multiple of m.

Definition

If $a,d \in \mathbb{Z}$ and d>0 then there exist unique integers q and r such that

$$a = qd + r, 0 \le r < d.$$

The number q is called the quotient and r is called the remainder.

Dr. Bui Xuan Dieu Linear Algebra I ♡ HUST 50 / 67

Definition

Let $m, n \in \mathbb{Z}$. We say that m divides n and write $m \mid n$ if

$$n = km$$
, for some $k \in \mathbb{Z}$.

Then m is a divisor of n and n is a multiple of m.

Definition

If $a,d \in \mathbb{Z}$ and d>0 then there exist unique integers q and r such that

$$a = qd + r, 0 \le r < d.$$

The number q is called the quotient and r is called the remainder.

Dr. Bui Xuan Dieu Linear Algebra I ♡ HUST 50 / 67

Definition

Two integers a, b are said to be congruent modulo n if n|(a-b).

Proposition

The congruence modulo m relation is an equivalence relation.

The set of congruence class modulo m is denoted by

$$\mathbb{Z}_m := \{\overline{0}, \overline{1}, \ldots, \overline{m-1}\}.$$

Definition

Two integers a, b are said to be congruent modulo n if n|(a-b).

Proposition

The congruence modulo m relation is an equivalence relation.

The set of congruence class modulo m is denoted by

$$\mathbb{Z}_m:=\{\overline{0},\overline{1},\ldots,\overline{m-1}\}.$$

Proposition

 \mathbb{Z}_m together with the addition and multiplication defined as follow

$$\bar{a} + \bar{b} = \overline{a+b}, \quad \bar{a}.\bar{b} = \overline{ab}$$

is a ring.

Euclidean Algorithm

Definition

Given two natural integers a, b.

- i) $GCD(a, b) = max\{d \text{ such that } d|a, d|b\}.$
- ii) LCD $(a, b) = \min\{d \text{ such that } a|d, b|d\}.$

If GCD(a, b) = 1 then a, b are said to be coprime.

Euclidean Algorithm

Definition

Given two natural integers a, b.

- i) $GCD(a, b) = max\{d \text{ such that } d|a, d|b\}.$
- ii) LCD $(a, b) = \min\{d \text{ such that } a|d, b|d\}.$

If GCD(a, b) = 1 then a, b are said to be coprime.

Proposition

For natural numbers a, b we have ab = GCD(a, b). LCD(a, b).

Euclidean Algorithm

Definition

Given two natural integers a, b.

- i) $GCD(a, b) = max\{d \text{ such that } d|a, d|b\}.$
- ii) LCD $(a, b) = \min\{d \text{ such that } a|d, b|d\}.$

If GCD(a, b) = 1 then a, b are said to be coprime.

Proposition

For natural numbers a, b we have ab = GCD(a, b). LCD(a, b).

Proposition

Suppose that natural numbers a, b, q, r satisfy

$$a = bq + r$$
,

then GCD(a, b) = GCD(b, r).

The greatest common divisor

Euclidean Algorithm

- 1) Express $a = bq_1 + r_1$,
- 2) $b = r_1q_2 + r_2$,
- 3) $r_1 = r_2q_3 + r_3$,
- 4) · · ·
- 5) $r_{k-2} = r_{k-1}q_k + r_k$,
- 6) The last step $r_{n-1} = r_n q_{n+1}$.

Then $r_n = GCD(a, b)$.

The greatest common divisor

Euclidean Algorithm

- 1) Express $a = bq_1 + r_1$,
- 2) $b = r_1q_2 + r_2$,
- 3) $r_1 = r_2q_3 + r_3$,
- 4) · · ·
- 5) $r_{k-2} = r_{k-1}q_k + r_k$,
- 6) The last step $r_{n-1} = r_n q_{n+1}$.

Then $r_n = GCD(a, b)$.

Example

Find GCD(3195, 630), GCD(1243, 3124), GCD(123456789, 987654321)

The greatest common divisor

Euclidean Algorithm

- 1) Express $a = bq_1 + r_1$,
- 2) $b = r_1q_2 + r_2$,
- 3) $r_1 = r_2 q_3 + r_3$,
- 4) ...
- 5) $r_{k-2} = r_{k-1}q_k + r_k$,
- 6) The last step $r_{n-1} = r_n q_{n+1}$.

Then $r_n = GCD(a, b)$.

Example

Find GCD(3195, 630), GCD(1243, 3124), GCD(123456789, 987654321)

Example

Find integers a, b such that 1243a + 3124b = 11.

Presentation of integers

Definition

Given a positive integer b. If

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0, \quad 0 \le a_j < b, a_k \ne 0,$$

then the above presentation is said to be the expansion of n by base b and we denote $n = (a_k a_{k-1} \cdots a_1 a_0)_b$.

If b = 2 then we have the binary expansion of n.

Dr. Bui Xuan Dieu Linear Algebra I ♡ HUST 54 / 67

Presentation of integers

Definition

Given a positive integer b. If

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0, \quad 0 \le a_j < b, a_k \ne 0,$$

then the above presentation is said to be the expansion of n by base b and we denote $n = (a_k a_{k-1} \cdots a_1 a_0)_b$.

If b = 2 then we have the binary expansion of n.

Algorithm for expantion of n by base b.

- 1) Write $n = bq_0 + a_0$,
- 2) $q_0 = bq_1 + a_1$,
- 3) ...
- 4) The last step $q_{m-1} = bq_m + a_m$ if $q_m = 0$.

Then $n = (a_m a_{m-1} \dots a_1 a_0)_b$.

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 54 / 67

Presentation ofintegers

Example

Presentation the following numbers by the base 6:

a) 2011,

b) 3125.

Presentation ofintegers

Example

Presentation the following numbers by the base 6:

a) 2011,

b) 3125.

Example

a) $3145_{(7)} + 5436_{(7)}$,

c) $3142_{(7)}:6_{(7)}$,

b) $6145_{(7)} - 5451_{(7)}$,

d) $3142_{(7)} \times 54_{(7)}$.

	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	11	13	15
3	3	6	12	15	21	24
4	4	11	15	22	26	33
5	5	13	21	26	34	42
6	6	15	24	33	42	51

Introduction

i) The eq. $X^2 - 2 = 0$ has no rational solution \Rightarrow construct the field of real numbers,

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 56 / 67

Introduction

- i) The eq. $X^2 2 = 0$ has no rational solution \Rightarrow construct the field of real numbers,
- ii) The eq. $X^2 + 1 = 0$ has no real solution \Rightarrow construct new numbers.

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 56 / 67

Introduction

- i) The eq. $X^2 2 = 0$ has no rational solution \Rightarrow construct the field of real numbers,
- ii) The eq. $X^2 + 1 = 0$ has no real solution \Rightarrow construct new numbers.
- iii) Let i be a "formal notation" that satisfies $i^2=-1$. Then, we have numbers of the form a+bi, $a,b\in\mathbb{R}$.

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 56 / 67

Introduction

- i) The eq. $X^2-2=0$ has no rational solution \Rightarrow construct the field of real numbers,
- ii) The eq. $X^2 + 1 = 0$ has no real solution \Rightarrow construct new numbers.
- iii) Let i be a "formal notation" that satisfies $i^2=-1$. Then, we have numbers of the form a+bi, $a,b\in\mathbb{R}$.

Let $\mathbb{C} = \mathbb{R} \times \mathbb{R}$. No structure is provided.

We define

$$(a,b)+(c,d)=(a+c,b+d), (a,c)(c,d)=(ac-bd,ad+bc).$$

Proposition

 $(\mathbb{C}, +, \times)$ is a field, called the field of complex numbers.

Dr. Bui Xuan Dieu Linear Algebra I ♡ HUST 57 / 67

We define

$$(a,b)+(c,d)=(a+c,b+d), (a,c)(c,d)=(ac-bd,ad+bc).$$

Proposition

 $(\mathbb{C}, +, \times)$ is a field, called the field of complex numbers.

Remark

i) The additive identity is

We define

$$(a,b)+(c,d)=(a+c,b+d), (a,c)(c,d)=(ac-bd,ad+bc).$$

Proposition

 $(\mathbb{C},+,\times)$ is a field, called the field of complex numbers.

Remark

- i) The additive identity is (0,0).
- ii) The multiplicative identity is

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 57 / 67

We define

$$(a,b)+(c,d)=(a+c,b+d), (a,c)(c,d)=(ac-bd,ad+bc).$$

Proposition

 $(\mathbb{C}, +, \times)$ is a field, called the field of complex numbers.

Remark

- i) The additive identity is (0,0).
- ii) The multiplicative identity is (1,0).
- iii) The inverse element of $(a, b) \neq (0, 0)$ is $(a, b)^{-1} =$

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 57 / 67

We define

$$(a,b)+(c,d)=(a+c,b+d), (a,c)(c,d)=(ac-bd,ad+bc).$$

Proposition

 $(\mathbb{C}, +, \times)$ is a field, called the field of complex numbers.

Remark

- i) The additive identity is (0,0).
- ii) The multiplicative identity is (1,0).
- iii) The inverse element of $(a,b) \neq (0,0)$ is $(a,b)^{-1} = \left(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}\right)$.

Dr. Bui Xuan Dieu Linear Algebra I ♡ HUST 57 / 67

We define

$$(a,b)+(c,d)=(a+c,b+d), (a,c)(c,d)=(ac-bd,ad+bc).$$

Proposition

 $(\mathbb{C},+,\times)$ is a field, called the field of complex numbers.

Remark

- i) The additive identity is (0,0).
- ii) The multiplicative identity is (1,0).
- iii) The inverse element of $(a,b) \neq (0,0)$ is $(a,b)^{-1} = \left(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}\right)$.

iv) what is i?

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 57 / 67

Real numbers

$$(a,0)+(b,0)=(a+b,0), (a,0)(b,0)=(ab,0).$$

Each $(a,0) \in \mathbb{C}$ behaves like $a \in \mathbb{R}$.

Real numbers

$$(a,0)+(b,0)=(a+b,0), (a,0)(b,0)=(ab,0).$$

Each $(a,0) \in \mathbb{C}$ behaves like $a \in \mathbb{R}$.

Canonical form

Let
$$i = (0,1)$$
, then $i^2 = (0,1)(0,1) = (-1,0) \equiv -1$.

$$z = (a, b) = a(1, 0) + b(0, 1) = a + bi$$

Dr. Bui Xuan Dieu Linear Algebra I \heartsuit HUST 58 / 67

i is nothing but (0,1)

Dr. Bui Xuan Dieu Linear Algebra I ♡ HUST 59 / 67

Definition

z = a + bi, where $a, b \in \mathbb{R}$ and $i^2 = -1$, is called the canonical form of z.

- i) a = Re(z) the real part,
- ii) b = Im(z) the imaginary part.

Dr. Bui Xuan Dieu Linear Algebra I ♡ HUST 60 / 67

Definition

z=a+bi, where $a,b\in\mathbb{R}$ and $i^2=-1$, is called the canonical form of z.

- i) a = Re(z) the real part,
- ii) b = Im(z) the imaginary part.

Operations in canonical form

i) Addition (a + bi) + (c + di) =

Dr. Bui Xuan Dieu Linear Algebra I \heartsuit HUST 60 / 67

Definition

z=a+bi, where $a,b\in\mathbb{R}$ and $i^2=-1$, is called the canonical form of z.

- i) a = Re(z) the real part,
- ii) b = Im(z) the imaginary part.

Operations in canonical form

i) Addition (a + bi) + (c + di) = (a + c) + (b + d)i,

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 60 / 67

Definition

z=a+bi, where $a,b\in\mathbb{R}$ and $i^2=-1$, is called the canonical form of z.

- i) a = Re(z) the real part,
- ii) b = Im(z) the imaginary part.

Operations in canonical form

- i) Addition (a + bi) + (c + di) = (a + c) + (b + d)i,
- ii) Subtraction (a + bi) (c + di) =

Dr. Bui Xuan Dieu Linear Algebra I \heartsuit HUST 60 / 67

Definition

z=a+bi, where $a,b\in\mathbb{R}$ and $i^2=-1$, is called the canonical form of z.

- i) a = Re(z) the real part,
- ii) b = Im(z) the imaginary part.

Operations in canonical form

- i) Addition (a + bi) + (c + di) = (a + c) + (b + d)i,
- ii) Subtraction (a + bi) (c + di) = (a c) + (b d)i,

Linear Algebra I ♥ HUST 60 / 67

Definition

z=a+bi, where $a,b\in\mathbb{R}$ and $i^2=-1$, is called the canonical form of z.

- i) a = Re(z) the real part,
- ii) b = Im(z) the imaginary part.

Operations in canonical form

- i) Addition (a + bi) + (c + di) = (a + c) + (b + d)i,
- ii) Subtraction (a + bi) (c + di) = (a c) + (b d)i,
- iii) Multiplication (a + bi)(c + di) =

Dr. Bui Xuan Dieu Linear Algebra I \heartsuit HUST 60 / 67

Definition

z=a+bi, where $a,b\in\mathbb{R}$ and $i^2=-1$, is called the canonical form of z.

- i) a = Re(z) the real part,
- ii) b = Im(z) the imaginary part.

Operations in canonical form

- i) Addition (a + bi) + (c + di) = (a + c) + (b + d)i,
- ii) Subtraction (a + bi) (c + di) = (a c) + (b d)i,
- iii) Multiplication (a + bi)(c + di) = (ac bd) + (ad + bc)i,

Linear Algebra I ♥ HUST 60 / 67

Definition

z=a+bi, where $a,b\in\mathbb{R}$ and $i^2=-1$, is called the canonical form of z.

- i) a = Re(z) the real part,
- ii) b = Im(z) the imaginary part.

Operations in canonical form

- i) Addition (a + bi) + (c + di) = (a + c) + (b + d)i,
- ii) Subtraction (a + bi) (c + di) = (a c) + (b d)i,
- iii) Multiplication (a + bi)(c + di) = (ac bd) + (ad + bc)i,
- iv) Division $\frac{a+bi}{c+di} =$

Dr. Bui Xuan Dieu Linear Algebra I \heartsuit HUST 60 / 67

Definition

z=a+bi, where $a,b\in\mathbb{R}$ and $i^2=-1$, is called the canonical form of z.

- i) a = Re(z) the real part,
- ii) b = Im(z) the imaginary part.

Operations in canonical form

- i) Addition (a + bi) + (c + di) = (a + c) + (b + d)i,
- ii) Subtraction (a + bi) (c + di) = (a c) + (b d)i,
- iii) Multiplication (a + bi)(c + di) = (ac bd) + (ad + bc)i,
- iv) Division $\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{c^2+d^2}$

Dr. Bui Xuan Dieu Linear Algebra I \heartsuit HUST 60 / 67

Let
$$\begin{cases} r = |\overrightarrow{OM}| \\ \varphi = (Ox, \overrightarrow{OM}) \end{cases}$$
 then $z = r(\cos \varphi + i \sin \varphi)$ (the polar form).

- i) Modulus $|z| = \sqrt{a^2 + b^2}$,
- ii) Argument Arg $z = \varphi$.

Dr. Bui Xuan Dieu Linear Algebra I \heartsuit HUST 61 / 67

Let $z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1)$, $z_2 = r_2(\cos \varphi_2 + i \sin \varphi_2)$.

Operations in polar form

1) Multiplication

$$z_1 z_2 =$$

Let $z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1)$, $z_2 = r_2(\cos \varphi_2 + i \sin \varphi_2)$.

Operations in polar form

1) Multiplication

$$z_1z_2 = r_1r_2.[\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)]$$

Hence,
$$|z_1z_2| = |z_1||z_2|$$
, $Arg(z_1z_2) = Arg z_1 + Arg z_2$.

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 62 / 67

Let $z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1)$, $z_2 = r_2(\cos \varphi_2 + i \sin \varphi_2)$.

Operations in polar form

1) Multiplication

$$z_1z_2 = r_1r_2.[\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)]$$

Hence,
$$|z_1z_2| = |z_1||z_2|$$
, $Arg(z_1z_2) = Arg z_1 + Arg z_2$.

2) Division

$$\frac{z_1}{z_2} =$$

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 62 / 67

Let $z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1)$, $z_2 = r_2(\cos \varphi_2 + i \sin \varphi_2)$.

Operations in polar form

1) Multiplication

$$z_1z_2 = r_1r_2.[\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)]$$

Hence,
$$|z_1z_2| = |z_1||z_2|$$
, $Arg(z_1z_2) = Arg z_1 + Arg z_2$.

2) Division

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \cdot \left(\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2) \right)$$

Hence
$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$$
, $\operatorname{Arg}\left(\frac{z_1}{z_2}\right) = \operatorname{Arg}z_1 - \operatorname{Arg}z_2$.

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 62 / 67

Let $z = r(\cos \varphi + i \sin \varphi) \neq 0$.

Operations in polar form

3) Power (Moirve's formula)

$$z^n =$$

Let $z = r(\cos \varphi + i \sin \varphi) \neq 0$.

Operations in polar form

3) Power (Moirve's formula)

$$z^n = r^n(\cos n\varphi + i\sin n\varphi)$$

Hence
$$|z^n| = |z|^n$$

Let $z = r(\cos \varphi + i \sin \varphi) \neq 0$.

Operations in polar form

3) Power (Moirve's formula)

$$z^n = r^n(\cos n\varphi + i\sin n\varphi)$$

Hence
$$|z^n| = |z|^n$$

4) *n*-roots

$$\sqrt[n]{z} =$$

Let $z = r(\cos \varphi + i \sin \varphi) \neq 0$.

Operations in polar form

3) Power (Moirve's formula)

$$z^n = r^n(\cos n\varphi + i\sin n\varphi)$$

Hence
$$|z^n| = |z|^n$$

4) *n*-roots

$$\sqrt[n]{z} = \sqrt[n]{r} \left[\cos \frac{\varphi + 2k\pi}{n} + i \sin \frac{\varphi + 2k\pi}{n} \right], k = \overline{0, n-1}.$$

Each nonzero complex number has exactly n different n-roots.

Example

Find the canonical form of

a)
$$(1 + i\sqrt{3})^9$$
,

c)
$$(2+i\sqrt{12})^5(\sqrt{3}-i)^{11}$$
.

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 64 / 67

Example

Find the canonical form of

a)
$$(1+i\sqrt{3})^9$$
,

b)
$$\frac{(1+i)^{21}}{(1-i)^{13}}$$
,

c)
$$(2+i\sqrt{12})^5(\sqrt{3}-i)^{11}$$
.

Example

Solve the following equations

a)
$$z^2 + z + 1 = 0$$
,

b)
$$z^2 + 2iz - 5 = 0$$
,

c)
$$z^4 - 3iz^2 + 4 = 0$$
,

d)
$$z^6 - 7z^3 - 8 = 0$$
,

e)
$$\frac{(z+i)^4}{(z-i)^4} = 1$$
,

f)
$$z^8(\sqrt{3}+i)=1-i$$
.

Example

Find the canonical form of

a)
$$(1+i\sqrt{3})^9$$
,

c)
$$(2+i\sqrt{12})^5(\sqrt{3}-i)^{11}$$
.

b)
$$\frac{(1+i)^{21}}{(1-i)^{13}}$$
,

Example

Solve the following equations

a)
$$z^2 + z + 1 = 0$$
,

d)
$$z^6 - 7z^3 - 8 = 0$$
,

b)
$$z^2 + 2iz - 5 = 0$$
,

e)
$$\frac{(z+i)^4}{(z-i)^4} = 1$$
,

c)
$$z^4 - 3iz^2 + 4 = 0$$
,

f)
$$z^8(\sqrt{3}+i)=1-i$$
.

Example

Prove that if $z + \frac{1}{z} = 2\cos\varphi$, then $z^n + \frac{1}{z^n} = 2\cos n\varphi, \forall n \in \mathbb{N}$.

Example

- a) Find the sum of *n*-roots of the complex number 1.
- b) Find the sum of *n*-roots of an arbitrary complex number $z \neq 0$.
- c) Let $\epsilon_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, k = 0, 1, \dots, n-1$. Compute $S = \sum_{k=0}^{n-1} \epsilon_k^m, (m \in \mathbb{N}).$

Example

Consider the equation $\frac{(z+1)^9-1}{z}=0$.

- a) Solve the above equation.
- b) Compute the moduli of the solutions.
- c) Compute the product of its solutions and $\prod_{k=1}^{8} \sin \frac{k\pi}{9}$.

Dr. Bui Xuan Dieu Linear Algebra I ♥ HUST 65 / 67

Let z = a + bi.

- i) $\overline{z} = a bi$ is called the conjugate of z.
- ii) In polar form, $z = r(\cos \varphi + i \sin \varphi) \Rightarrow \overline{z} = r(\cos \varphi i \sin \varphi)$.

1)
$$\overline{\overline{z}} = z$$

Let z = a + bi.

- i) $\overline{z} = a bi$ is called the conjugate of z.
- ii) In polar form, $z = r(\cos \varphi + i \sin \varphi) \Rightarrow \overline{z} = r(\cos \varphi i \sin \varphi)$.

- 1) $\overline{\overline{z}} = z$
- 2) $z + \overline{z} = 2a = 2 \operatorname{Re} z$

Let z = a + bi.

- i) $\overline{z} = a bi$ is called the conjugate of z.
- ii) In polar form, $z = r(\cos \varphi + i \sin \varphi) \Rightarrow \overline{z} = r(\cos \varphi i \sin \varphi)$.

- 1) $\overline{\overline{z}} = z$
- 2) $z + \overline{z} = 2a = 2 \operatorname{Re} z$
- 3) $z\overline{z} = a^2 + b^2 = |z|^2$

Let z = a + bi.

- i) $\overline{z} = a bi$ is called the conjugate of z.
- ii) In polar form, $z = r(\cos \varphi + i \sin \varphi) \Rightarrow \overline{z} = r(\cos \varphi i \sin \varphi)$.

- 1) $\overline{\overline{z}} = z$
- 2) $z + \overline{z} = 2a = 2 \operatorname{Re} z$
- 3) $z\overline{z} = a^2 + b^2 = |z|^2$
- 4) $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$

Let z = a + bi.

- i) $\overline{z} = a bi$ is called the conjugate of z.
- ii) In polar form, $z = r(\cos \varphi + i \sin \varphi) \Rightarrow \overline{z} = r(\cos \varphi i \sin \varphi)$.

1)
$$\overline{\overline{z}} = z$$

5)
$$|\overline{z}| = |z|$$

2)
$$z + \overline{z} = 2a = 2 \operatorname{Re} z$$

3)
$$z\overline{z} = a^2 + b^2 = |z|^2$$

4)
$$\frac{1}{z} = \frac{\overline{z}}{|z|^2}$$

Let z = a + bi.

- i) $\overline{z} = a bi$ is called the conjugate of z.
- ii) In polar form, $z = r(\cos \varphi + i \sin \varphi) \Rightarrow \overline{z} = r(\cos \varphi i \sin \varphi)$.

1)
$$\overline{\overline{z}} = z$$

2)
$$z + \overline{z} = 2a = 2 \operatorname{Re} z$$

3)
$$z\overline{z} = a^2 + b^2 = |z|^2$$

4)
$$\frac{1}{z} = \frac{\overline{z}}{|z|^2}$$

5)
$$|\overline{z}| = |z|$$

$$6) \ \overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$$

Let z = a + bi.

- i) $\overline{z} = a bi$ is called the conjugate of z.
- ii) In polar form, $z = r(\cos \varphi + i \sin \varphi) \Rightarrow \overline{z} = r(\cos \varphi i \sin \varphi)$.

1)
$$\overline{\overline{z}} = z$$

2)
$$z + \overline{z} = 2a = 2 \operatorname{Re} z$$

3)
$$z\overline{z} = a^2 + b^2 = |z|^2$$

4)
$$\frac{1}{z} = \frac{\overline{z}}{|z|^2}$$

5)
$$|\overline{z}| = |z|$$

6)
$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$$

$$7) \ \overline{z_1 z_2} = \overline{z_1} \ \overline{z_2}$$

Let z = a + bi.

- i) $\overline{z} = a bi$ is called the conjugate of z.
- ii) In polar form, $z = r(\cos \varphi + i \sin \varphi) \Rightarrow \overline{z} = r(\cos \varphi i \sin \varphi)$.

Properties

1)
$$\overline{\overline{z}} = z$$

2)
$$z + \overline{z} = 2a = 2 \operatorname{Re} z$$

3)
$$z\overline{z} = a^2 + b^2 = |z|^2$$

4)
$$\frac{1}{z} = \frac{\overline{z}}{|z|^2}$$

5)
$$|\overline{z}| = |z|$$

6)
$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$$

7)
$$\overline{z_1z_2} = \overline{z_1} \ \overline{z_2}$$

8)
$$\overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}}$$

Dr. Bui Xuan Dieu

Example

Solve the following equation

a)
$$\overline{z^7} = \frac{1}{z^3}$$
,

b)
$$z^4 = z + \overline{z}$$
.

Example

Let x, y, z be complex numbers that satisfy |x| = |y| = |z| = 1. Compare the modulus of x + y + z and xy + yz + zx.

Dr. Bui Xuan Dieu Linear Algebra I ♡ HUST 67 / 67