PREDICTION RETARD AVION

RYAD ET MATHIEU

2024

Prédire si un vol d'avion sera en retard ou non

COMPRENDRE NOS DONNÉES

Jeu de donnée

	YEAR	QUARTER	MONTH	DAY_OF_MONTH	DAY_OF_WEEK	FL_DATE	UNIQUE_CARRIER	AIRLINE_ID	CARRIER	TAIL_NUM	DISTANCE_GROUP
0	2016	1	1	6	3	2016-01- 06	AA	19805	AA	N4YBAA	4.0
1	2016	1	1	7	4	2016-01- 07	AA	19805	AA	N434AA	4.0
2	2016	1	1	8	5	2016-01- 08	AA	19805	AA	N541AA	4.0
3	2016	1	1	9	6	2016-01- 09	AA	19805	AA	N489AA	4.0
4	2016	1	1	10	7	2016-01- 10	AA	19805	AA	N439AA	4.0

+ 5 millions de lignes 65 colonnes

float64(33) int64(3) object(29)

IDENTIFICATION TARGET

ARR_DELAY_NEW

ARR_DELAY_NEW

0.0

0.0

7.0

0.0

113.0

Indique si un avion est en retard

> 0 = retard

< 0 = en avance

NETTOYAGE

- Sélection de colonnes
 - Suppression des colonnes après atterrissage
 - Suppression des colonnes dont l'utilisateur n'a pas la connaissance
- Check de toutes les colonnes pour voir les valeurs unique
- Suppression des valeur NAN

DATA SET NETTOYER

	ARR_DELAY_NEW	YEAR	QUARTER	MONTH	DAY_OF_MONTH	DAY_OF_WEEK	UNIQUE_CARRIER	ORIGIN_AIRPORT_ID	ORIGIN_CITY_NAME	ORIGIN_STA1
0	0.0	2016	1	1	6	3	AA	11298.0	Dallas/Fort Worth, TX	
1	0.0	2016	1	1	7	4	AA	11298.0	Dallas/Fort Worth, TX	
2	7.0	2016	1	1	8	5	AA	11298.0	Dallas/Fort Worth, TX	
3	0.0	2016	1	1	9	6	AA	11298.0	Dallas/Fort Worth, TX	
4	113.0	2016	1	1	10	7	AA	11298.0	Dallas/Fort Worth, TX	

16 colonnes

Proportion de vols en retard par mois en 2016

FEATURE SELECTION

IMPORTANCE

indique le poids des features dans le modèle.

Plus le score est haut plus la feature est importante.

DAY OF MONTH	0.309206
DAY_OF_WEEK	0.137379
CRS_ARR_TIME	0.111819
CRS_DEP_TIME	0.101597
MONTH	0.068845
DISTANCE	0.050818
DEST_AIRPORT_ID	0.032541
DEST_CITY_NAME	0.031718
ORIGIN_AIRPORT_ID	0.031120
ORIGIN_CITY_NAME	0.030432
UNIQUE_CARRIER	0.026085
DEST_STATE_ABR	0.025639
ORIGIN_STATE_ABR	0.024864
QUARTER	0.017936
YEAR	0.000000
dtype: float64	

COLINÉARITÉ

Un Vif Index supérieur à 10 est statistiquement significative.

Nous ne choisirons pas les features QUARTER et MONTH.

```
Variance Inflation Factor (VIF):
              Feature
                             VIF
                 YEAR
                             NaN
              QUARTER
                      17.531539
                MONTH 17.525829
2
         DAY OF MONTH
3
                        1.000063
          DAY_OF_WEEK
4
                        1.001269
       UNIQUE_CARRIER
5
                        1.034189
    ORIGIN_AIRPORT_ID
                        2.527879
     ORIGIN_CITY_NAME
                        2.582830
     ORIGIN_STATE_ABR
                        1.088012
                                      YEAR apparait en NaN car
      DEST_AIRPORT_ID
                        2.527203
                                      c'est une constante
       DEST_CITY_NAME
10
                        2.586319
       DEST_STATE_ABR
11
                        1.087470
         CRS_DEP_TIME
12
                        1.842900
         CRS ARR TIME
13
                        1.836114
                        1.043277
14
             DISTANCE
```

LISTE FINAL

DAY_OF_MONTH / jour du mois

DAY_OF_WEEK / 1 = Lundi

CRS_DEP_TIME / heure de départ

ORIGIN_AIRPORT_ID / Aéroport de départ

CRS_ARR_TIME / Heure d'arrivée

DEST_AIRPORT_ID / Aéroport d'arrivée

MODÈLES

PREPROCESS

Encodage de la Target - permet la classification.

Normalisation des données.

Encodage des colonnes catégorielles.

CHOIX DU METRIQUES

- Le recall en classe 1 est supérieur. Cette métrique permet de minimiser le risque de rater un vrai retards.
- Le taux de Faux Positif est inférieur. Cela est important pour le confort des passagers et leurs confiance dans le système.

BASELINE

Utilisation d'un Dummy model : Modèle simple Sans equilibrage.

- Recall de 0.
- 377 688 FP

	precision	recall	f1-score	support
0	0.66	1.00	0.80	733551
1	0.00	0.00	0.00	377688
1	0.00	0.00	0.00	3//000
accuracy			0.66	1111239
macro avg	0.33	0.50	0.40	1111239
weighted avg	0.44	0.66	0.52	1111239
-	ix: 0] 0]] 0]] 011992019718	54		

LOGISTIC REGRESSION

Modèle relativement simple mais adapté à ce genre de problématique :

Sous estimation réalisé de la classe principale

- Recall de 0,57.
- 160 978 FP

L'amélioration du score, incitation à l'essai d'un nouveau modèle

RANDOM FOREST

Modèle plus complexe : Sous estimation réalisé de la classe principale

- Recall Target de 0.62.
- 143 275 FP

Il nous offre les meilleurs resultats sur les métriques choisit.

CHOIX MODELES

Nous avons décidé de privilégier Random Forest.

Il est possible d'adapter le choix du modèle à une autre utilisation.

Ex: Gestion de l'espace aérien, et adapter nos observations

DEMO

MERCI POUR VOTRE ATTENTION