Conformal Field Theory

Lecture notes

Marc Gillioz

Spring semester 2022

[Lectures] are fantastically good for learning physics. The lecturer learns a lot of physics. After my first few studies, just about everything I learned about physics came from teaching it. I don't know if the students learned a lot, but I certainly did. So I consider teaching physics very important. — Leonard Susskind

Contents

1	Intr	roduction	3	
	1.1	What is conformal field theory?	3	
	1.2	Examples of conformal field theories	3	
	1.3	Outline	3	
2	Classical conformal symmetry 3			
	2.1	The conformal algebra	4	
	2.2	Examples	5	
3	Non-perturbative quantum field theory			
	3.1	Spectral representation	5	
	3.2	Scale symmetry	5	
	3.3	Special conformal symmetry	6	
	3.4	Exercises	6	
	3.5	Bibliography	6	
4	Conformal correlation functions			
	4.1	Spectral representation for spinning operators	6	
	4.2	From momentum to position	7	
	4.3	From Minkowski to Eulidean space	7	
	4.4	Embedding-space formalism	7	
	4.5	3-point functions	7	
	4.6	4-point functions	7	
5	Sta	te-operator correspondence and OPE	8	
6	The	e conformal bootstrap	8	
	6.1	Conformal blocks	8	
	6.2	The numerical boostrap	8	
	6.3	Results	8	
7	Selected advanced topics			
		How to continue from here	8	

1 Introduction

1.1 What is conformal field theory?

Introduction: What is CFT? Why is it useful. Examples of CFT. Where does it fit into modern theoretical physics.

in the last few years, CFT has been dominated by

string theory: 2d CFT

holography: geometric approach condensed matter physics: Euclidean

here focus on the "old" quantum field theory approach

links with: lattice, perturbation theory, etc.

fun fact: the conformal bootstrap was invented by particle physicists

strongly-coupled QFT no need for action principle

1.2 Examples of conformal field theories

perturbative examples: ϕ^n theory in non-integer d

Caswell-Banks-Zaks superconformal: $\mathcal{N} = 4$

any IR fixed point (maybe trivial)

use beyond CFT: correlators that have the isometries of the conformal

group gravity in AdS but also late-time correlators in de Sitter

1.3 Outline

originally covered in 14 periods of 45 minutes each split into 7 chapters?

2 Classical conformal symmetry

Poincaré symmetry: physics is the same in every coordinate frame linear transformation of the coordinates

$$x'^{\mu} = x^{\mu} + \omega^{[\mu\nu]} x_{\nu} + a^{\mu} \tag{2.1}$$

infinitesimal line element $dx^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$ is invariant:

$$dx'^2 = dx^2 (2.2)$$

scale symmetry:

$$x'^{\mu} = \lambda x^{\mu} \tag{2.3}$$

note that this can be seen as a rescaling of the metric, of the form $\eta'^{\mu\nu}=\#\eta^{\mu\nu}$

can we generalize this? general transformations of the metric $\eta'^{\mu\nu} = \Omega(x)\eta^{\mu\nu}$ called a Weyl transformation

in general changes geometry of space-time; unless this transformation is equivalent to a coordinate transformation (diffeomorphism)

in infinitesimal form

$$x'^{\mu} = x^{\mu} + v^{\mu}(x) \tag{2.4}$$

requiring that this is equal to the Weyl transformation gives the conformal Killing equation:

$$\partial^{\mu}v^{\nu}(x) + \partial^{\nu}v^{\mu}(x) = 2\sigma(x)\eta^{\mu\nu} \tag{2.5}$$

work out solution in d = 1, d = 2 and d > 2;

conformal Killing vectors (see Osborn's notes): translation Lorentz transformations dilatation special conformal symmetry

in d=2, use z, \bar{z} notation and Laurent series

finite transformations

use inversions: discrete transformations not connected to identity

but inversion followed by translation followed by inversion gives special conformal transformations

group of conformal transformation is a subgroup of diffeomorphisms; in fact the largest *finite-dimensional* subgroup

defining property

$$g'_{\mu\nu}(x') = \Omega(x)^2 \eta_{\mu\nu}$$
 (2.6)

gives Jacobian of conformal transformation

$$\frac{\partial x^{\mu}}{\partial x^{\nu}} = \Omega(x) M^{\mu}_{\ \nu}(x) \tag{2.7}$$

M: SO(d-1,1) matrix

conformal transformations look locally like Lorentz and scale transformations $% \left(1\right) =\left(1\right) +\left(1$

2.1 The conformal algebra

generators corresponding to Killing vectors

compute commutators, find Lorentz and Poincaré subalgebras, and new commutations involving D and K

isomorphic to SO(d, 2)

```
(exercise) note: everything we said is also valid in Euclidean space: replace \eta^{\mu\nu} \to \delta^{\mu\nu} get the Euclidean conformal group
```

2.2 Examples

conformal transformations map circles to circles (including circles with infinite radius, aka straight lines): explanation

picture

think of it as renormalization group transformation that depends on space-time

Escher?

3 Non-perturbative quantum field theory

Wightman axioms

operators are not necessarily invariant under conformal symmetry, but they transform unitarily

```
unitary representations on Hilbert space
(e.g. pair of point-like particle
no action principle (i.e. no need for "quantization")
only deal with local operators
warning about meaning of locality: related to causality?
```

generator of translations plays a special role: energy and momentum vector

positivity of energy

Wigner construction: use reference momentum

generator of Lorentz transformation can be diagonalize at a point: the origin of space-time

get the action of $M^{\mu\nu}$ at arbitrary point

3.1 Spectral representation

operator vs. field

3.2 Scale symmetry

action of generator of translations no mass (often said)

or better said: all masses! reference vector, then construct spectral density

3.3 Special conformal symmetry

special conformal generator implies two things:

primary and descendant operators

special condition on 2-point function of primary operators: that they have identical scaling dimensions

note that scale invariance and unitarity generally imply that the trace of the energy-momentum tensor is zero: then Hamiltonian is invariant under change of the metric $\delta g_{\mu\nu} = \sigma(x)\eta_{\mu\nu}$,

$$\delta H = \int d^d x \, T_{\mu\nu} \delta g^{\mu\nu} = \int d^x \, \sigma(x) T^{\mu}_{\mu} = 0 \tag{3.1}$$

invariance under infinitesimal Weyl transformations

note that $T_{\mu\nu}$ is only defined in flat space, or rather that it acquires a vacuum expectation value in curved space: the Weyl anomaly so let us only consider Weyl transformations that do not change the geometry of space-time: those that are equivalent to a coordinate transformation (a diffeomorphism)

exercise: compute conformal generators in momentum-space representation

Mack's classification in 4d

representation: long and short multiplets!

compare this with Slava's approach:

organize operators into representation of conformal group:

call some operators primary

operators are local, which mean that they do not feel the effect of the transformation of the metric, or only through coordinate dependence: $\phi(x) \to \phi(x') = \Omega(x)^{-\Delta}\phi(x)$

note: if ϕ transforms like this, then $\partial_{\mu}\phi(x)$ does not! call it a descendant comment on scale vs. conformal invariance

correlation functions:

no need for action principle

3.4 Exercises

show that the spectral density in the case $\Delta = \frac{d}{2} - 1$ is that of a free scalar field;

show also that in the case $\Delta = \frac{d}{2}$ it is given by the phase space of two massless particle states (see Rychkov eq. 1.13)

3.5 Bibliography

itzikson zuber

4 Conformal correlation functions

2-pt function: go from Wightman 2-pt function in momentum space to Euclidean 2-pt function in position space in two ways:

- Fourier transform first, then analytic continuation of Wightman function - first construct T product (Källen-Lehmann representation), then Wick rotation to Euclidean momentum space, then Fourier transform

T-products vs. Wightman functions

use retarded products and micro-causality

Ward identities

more identities for conserved currents and the energy-momentum tensor (there cannot be higher-spin conserved currents otherwise the theory must be free; reference?)

4.1 Spectral representation for spinning operators

unitary bounds

4.2 From momentum to position

taking fourier transforms

4.3 From Minkowski to Eulidean space

Osterwalder-Schrader

analytic continuation of Wightman functions vs. Wick rotation of T-products

reflection positivity

note that this is usually done in the other direction!

4.4 Embedding-space formalism

conformal group acts linearly in embedding space with d+2 dimensions, among which two times

$$X'^M = \Lambda^M_{\ N} X^N$$

get rid of two dimensions by restricting to light-cone $X^2=0$, and identifying $X^+\sim \lambda X^+$

can take $X^+ = 1$, so that

$$(X^+, X^-, X^\mu) = (1, x^2, x^\mu) \tag{4.1}$$

fields defined on the cone, depending homogeneously on X rewrite 2-point function see section 2.1 of Rychkov

4.5 3-point functions

scalar 3-point function

remarkable fact! fixed up to a single coefficient

if only scale invariance, this could be arbitrarily complicated

historical note (cite Rychkov, around eq. 2.43): birth of conformal field theory

check: 2-point functions involving conserved currents and energy-momentum tensors are automatically conserved; for 3-point functions this gives additional constraint: scaling dimensions of operators must be equal

4.6 4-point functions

invariant cross-ratios for 4-point functions

5 State-operator correspondence and OPE

important remark on OPE convergence in Euclidean space!

6 The conformal bootstrap

6.1 Conformal blocks

6.2 The numerical boostrap

generalized free fields/Gaussian

6.3 Results

discussion about universality: see Poland, Rychkov, Vichi

7 Selected advanced topics

light-cone limit and?

Virasoro symmetry in 2d:

conformal anomalies: anomalies are contact term in the action for the source

superconformal bootstrap? note classification of all superconformal algebras

7.1 How to continue from here

- holography: see Joao's TASI lectures
- superconformal: Tajikawa pedestrian lectures
- bootstrap: Shai Chester's lectures
- condensed matter: note that unitarity is unnecessary: many non-unitary fixed points, yet they have conformal invariance (why?)