Spectral Analysis: Measuring Abundance

Group 4: Brendan Kirsh, Frank Hegedus, Johnny Kushan, and Alyssa Whalen

Introduction - Spectroscopy

- Every element has a unique "fingerprint"
- We can match these fingerprints to the measured spectra of a star to determine its composition
- Exoplanet composition closely relates to stellar composition

 o Measuring the chemical abundances of exoplanet host stars gives researchers an idea of their exoplanets' compositions

Method

- SodiumDoublet
 - Absorption
 lines at 5890
 Å and 5896 Å

Curve of Growth

 Relationship between intensity of absorption line and number of atoms

Method - Calculations

- Boltzmann Equation
 - N_a is the result from the Curve of Growth
 N_b Is the number of excited atoms

$$\frac{N_b}{N_a} = (\frac{g_b}{g_a})(e^{-(E_b - E_a)/kT})$$

Total number of Neutral Atoms

$$- N_1 = N_a + N_b$$

- Saha Equation
 - N_{II} Is the number of ionized atoms

$$\frac{N_{II}}{N_I} = \frac{2Z_{II}}{n_e Z_I} \left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} e^{-\chi/kT}$$

- Total Atoms
 - $N_{Total} = N_1 + N_{11}$

Results

- Total column density of sodium atoms
 - Na = 2.143×10^{18} atoms/cm²
- Chemical Abundances
 - Given number density of hydrogen
 - $H = 6.6 \times 10^{23} \text{ atoms/cm}^2$
 - Solar sodium log abundance: 6.30
 - Solar helium log abundance: 12

Galactic Astronomer	Physicist: Mole Ratio	Stellar Astronomer
$12 + log_{10} \left(\frac{Na}{H}\right)$	$\frac{Na}{H}$	$\left[\frac{Na}{H}\right] = \log\left(\frac{Na/H}{Na_{sun}/H}\right)$
6.51	3.24 x 10 ⁻⁶	0.21

Results

- Total column density of Iron atoms
 - Fe = 9.87×10^{18} atoms/cm²
- Chemical Abundances
 - Given number density of hydrogen
 - $H = 6.6 \times 10^{23} \text{ atoms/cm}^2$
 - Solar Iron log abundance: 7.48
 - Solar helium log abundance: = 12

Galactic Astronomer	Physicist: Mole Ratio	Stellar Astronomer
$12 + log_{10} \left(\frac{Fe}{H}\right)$	$\frac{Fe}{H}$	$\left[\frac{Fe}{H}\right] = \log\left(\frac{Fe/_H}{Fe_{sun}/_{H_{sun}}}\right)$
7.17	1.50 x 10 ⁻⁵	-0.31

Conclusion

Calculated log sodium abundance:

6.51

Solar log sodium abundance

6.30

Calculated log iron abundance:

7.17

Solar log iron abundance

7.48