

CI Compass Student Fellowship Program: Comparative Analysis of High-Performance Computing Facilities (TACC & NCAR)

RAJA ALLMDAR TARIQ ALI, Indiana University - Purdue University Indianapolis, Purdue School of Science, USA ANGELA P. MURILLO, Indiana University – Indianapolis, School of Informatics and Computing, USA

Introduction

TACC and NCAR are leading high-performance computing facilities serving various research domains

- TACC, at the University of Texas at Austin, supports areas like life sciences, earth sciences, engineering, and physics with supercomputers like Frontera, Stampede2, and Lonestar5.
- NCAR, in Boulder, Colorado, focuses on atmospheric and earth system sciences, offering resources like the Cheyenne supercomputer for climate, weather, and geoscience research. Both centers provide cutting-edge computational resources, expertise, and support services to advance scientific discovery.

Cheyenne Supercomputer

Locations

High-Performance Computing Systems

Feature	Frontera(TACC)	Cheyenne(NCAR)		
Peak Performance	23.5 petaflops	13.2 petaflops		
System Architecture	Intel Xeon Processors	Intel Xeon Processors		
Nodes/Cores	8,008 nodes/16,016 cores	4,032 nodes/145,152 cores		
Memory	2.1 TB of Optane Memory	315 TB		
Interconnect	InfiniBand	InfiniBand		
Storage	50+ Petabytes	38 Petabytes		
Unique Features	Broad range of research domains and top supercomputer	Focus on atmospheric research and extensive data archive		
Comparison of LINPACK Performance and Power Usage for Frontera (TACC) and Cheyenne (NCAR)				
20 15 10 5 Frontera (TACC)	Cheyenn	Metrics LINPACK Performance (petaflops) Power Usage (megawatts)) e (NCAR)		
Data Visualization using <i>Plotly (Python visualization tool)</i>				

Data Storage and Management

Both TACC and NCAR offer advanced data storage and management solutions to support their research communities

Storage Systems	Security	Accessibility
Ranch, Corral, Stockyard(TACC)	Encryption & Redundancy	Globus & Web Access
Globus (NCAR)	Encryption & Data Integrity	Web Access

Scan for accessing source code and

website link providing latest visual comparisons

Research Domains and Projects

Funding and Support

TACC and NCAR receive funding and support from various sources, including government agencies, private foundations, and industry partnerships.

- TACC collaborates with a range of industry partners, such as IBM, NVIDIA, Intel, and Dell, which provide access to cutting-edge technologies and expertise.
- NCAR also receives funding from other federal agencies, such as the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA).

Conclusion

- TACC and NCAR are both vital players in advancing scientific research through high-performance computing and data storage solutions. TACC has a diverse research domain focus, encompassing molecular dynamics, fluid dynamics, and astrophysics simulations, while NCAR specializes in atmospheric, climate, and Earth system science research.
- Both institutions provide cutting-edge computing resources, such as Frontera (TACC) and Cheyenne (NCAR), and offer comprehensive data storage and management systems. They receive funding and support from a mix of government agencies, private foundations, and industry partnerships, and actively promote collaboration and data sharing through platforms like DesignSafe (TACC) and the Earth System Grid Federation (ESGF) at NCAR.
- In conclusion, TACC and NCAR significantly impact their respective fields and the broader scientific community. Their ongoing commitment to advancing high-performance computing and data storage solutions will continue to foster innovation and collaboration in the future.

ilil plotly

