1. ДОСЛІДЖЕННЯ ЯВИЩА САМОІНДУКЦІЇ

Варіант №***

1.1. Мета роботи: дослідити явище самоїндукції, яке виникає при змінах сили струму в котушці, вивчити закон Фарадея для самоїндукції.

1.2. Експериментальні дослідження

1.2.1 Прилади та приладдя: схема електричного кола, за допомогою якого досліджується явище самоіндукції; імітаційна комп'ютерна програма «Лабораторна. Явище самоіндукції».

Рисунок 1.1 – Схема електричного кола для дослідження явища самоїндукції

1.2.2 Результати вимірювань

1.2.2.1 За допомогою комп'ютерної програми з метою визначення параметрів соленоїда від яких залежить сила струму в електричному колі встановлюємо довільні параметри соленоїда(площу поперечного перерізу $S=1m^2$; кількість витків соленоїду N=100; довжину соленоїда l=1m, електричний опір R=40~Om, та напругу 220 В, та робимо вимір сили струму I=5,5A.

Рис.1 Результати вимірювання сили струму *I* при довільно встановлених параметрах.

Після цього, послідовно змінюючи параметри соленоїда (S, N, 1 та R) та вимірюючи силу струму за допомогою кнопки «Измерить» встановлюємо від якого параметру залежить початкова сила струму I_0 (див. рис. 2 – 5)

Рис.2 Величина сили струму при зміненні величини S

Рис.3 Величина сили струму при зміненні величини N

Рис.4 Величина сили струму при зміненні величини l

Рис. 5 Величина сили струму при зміненні величини R

Висновок: дивлячись на рисунки 2-5 бачимо, що в даному випадку сила струму \mathbf{l}_0 змінюється з 5,5 до 4 А при зміненні величини опору (в даному випадку з 40 до 55). Тобто можна зробити висновок, що сила струму \mathbf{l}_0 в електричному колі залежить тільки від(вказати фізичну величину від якої залежить сила струму).

1.2.2.2. Згідно свого варіанту (№1) вимірюємо початкову силу струму (час дорівнює нулю). Натискаючи кнопку «Старт/Стоп», робимо декілька вимірів сили струму та слідкуємо, як швидко вона зменшується. Визначаємо час вимірювання таким, чином, щоб сила струму за цей час зменшилась щонайменш, ніж у 15...20 разів від початкового значення. (для нашого випадку менш ніж 0,25-0,18 А)

Лабораторная. Явление самоиндукции. О программе	0 0 %
Параметры соленоида	Управление
0	Измерить Старт
0 - N	3,666666666667
0 -1, M	Время, с Сила тока, А 0 3,666666666667
60 - В, Ом	
Подаваемое напряжение	
220 - U. B	
Выбор варианта	
1	Очистить

Рис. 6. Визначення величини початкової силу струму

Рис. 7. Визначення часу за який сила струму зменьшується у 15...20 разів

Висновок: Встановлено, що час падіння до зазначеного мінімуму складає 7,5 - 8 сек.

1.2.2.3. Вимірюємо початкову силу струму, після чого натискаючи кнопку «Старт/Стоп», робимо щонайменше 10 вимірів сили струму за вибраний проміжок часу (7,5 - 8 сек), та заносимо отриманні данні до таблиці 1.1.

Рис. 8. Результати вимірювання початкової силу струму, та 10 вимірів сили струму за 7,5 - 8 сек.

Таблиця 1.1—Результати експериментальних досліджень (R=60 Ом)

t , c	0	0,7	1,7	2,9	4,0	5,0	6,0	7,0	8,0	9,2	10,2
<i>I</i> , A	3,66	2,77	1,85	1,15	0,74	0,5	0,33	0,22	0,15	0,09	0,06
L , Гн		150,75	149,5	150,3	150,1	150,7	149,6	149,4	150, 25	148,9 7	148, 87
ln I	1,3	1	0.6	0.14	-0.3	-0.7	-1.1	-1.5	-1.9	-2.4	-2.8
ε, B		166,2	111,0	69,0	44,4	30,0	19,8	13,2	9,0	5,4	3,6

Будуємо графіки залежностей I = f(t), ln I = f(t)

Рис 9- Графік залежності сили струму i від часу згасання струму t (I = f(t)),

Рис. 10- Графік залежності $ln\ I$ від часу згасання струму t

1.2.2.4. За формулою 12.9, обчислюємо значення індуктивності L, та заносимо ці значення до таблиці і переконуємося в сталому значенні індуктивності.

Для того щоб скористатися формулою 12.9 та обчислити значення індуктивності \boldsymbol{L} необхідно провести перетворення формули 12.9 :

$$i = i_0 e^{-\frac{Rt}{L}}$$

Перетворення наступні:

$$\frac{\mathbf{i}}{\mathbf{i}^{0}} = e^{-\frac{Rt}{L}} \quad \Rightarrow \quad \ln\left(\frac{i}{i_{0}}\right) = \ln\left(e^{-\left(\frac{Rt}{L}\right)}\right) \quad \Rightarrow \quad \ln\left(\frac{i_{0}}{i}\right) = \frac{Rt}{L} \quad \Rightarrow$$

$$\Rightarrow \qquad \qquad L = \frac{Rt}{\ln\left(\frac{i_{0}}{i}\right)}$$

За формулою, що обведеною червоною рамкою розраховується величина індуктивності соленоїда L для усіх i:

Проведемо розрахунок L(t)

$$L_1 = \frac{Rt_1}{ln\binom{i_0}{i_1}} = \frac{60*0.7}{ln\binom{3.66}{2.77}} = \frac{42}{ln(1.321)} \approx 150,75\,\, \mathrm{FH} \qquad \qquad L_2 = \frac{Rt_2}{ln\binom{i_0}{i_2}} = \frac{60*1.7}{ln\binom{3.66}{1.85}} = \frac{102}{ln(1.978)} \approx 149,5\,\, \mathrm{FH}$$

$$L_3 = \frac{Rt_3}{ln\binom{i_0}{i_3}} = \frac{60*2.9}{ln\binom{3.66}{1.15}} = \frac{174}{ln(3.182)} \approx 150,3\,\, \mathrm{FH} \qquad \qquad L_4 = \frac{Rt_4}{ln\binom{i_0}{i_4}} = \frac{60*4}{ln\binom{3.66}{0.74}} = \frac{240}{ln(4.946)} \approx 150,1\,\, \mathrm{FH}$$

$$L_5 = \frac{Rt_5}{ln\binom{i_0}{i_5}} = \frac{60*5}{ln\binom{3.66}{0.5}} = \frac{300}{ln(7.32)} \approx 150,7\,\, \mathrm{FH} \qquad \qquad L_6 = \frac{Rt_6}{ln\binom{i_0}{i_6}} = \frac{60*6}{ln\binom{3.66}{0.33}} = \frac{360}{ln(11.09)} \approx 149,6\,\, \mathrm{FH}$$

$$L_7 = \frac{Rt_7}{ln\binom{i_0}{i_7}} = \frac{60*7}{ln\binom{3.66}{0.22}} = \frac{420}{ln(16.63)} \approx 149,4\,\, \mathrm{FH} \qquad \qquad L_8 = \frac{Rt_8}{ln\binom{i_0}{i_8}} = \frac{60*8}{ln\binom{3.66}{0.15}} = \frac{480}{ln(24.4)} \approx 150,25\,\, \mathrm{FH}$$

$$L_9 = \frac{Rt_9}{ln\binom{i_0}{i_9}} = \frac{60*9.2}{ln\binom{3.66}{0.09}} = \frac{552}{ln(40.66)} \approx 148,97\,\, \mathrm{FH} \qquad \qquad L_{10} = \frac{Rt_{10}}{ln\binom{i_0}{i_{10}}} = \frac{60*10.2}{ln\binom{3.66}{0.06}} = \frac{612}{ln(61)} \approx 148,87\,\, \mathrm{FH}$$

Аналізуючи отримані значення величин L_i бачимо , що кожне з розрахованих значень не перевищує 2-5% от середнього значення L_i тому можна вважати розрахунок L_i правильним, а значення індуктивності сталим. Отримані значення заносимо у відповідний рядок таблиці 12.1

1.2.2.5. За формулою 12.10 визначаємо ЕРС самоїндукції в кожний вимірянний момент часу.

Формула 12.10 має вигляд:

$$\varepsilon_{c} = -L \frac{di}{dt} = Ri_{0}e^{-\frac{Rt}{L}}$$

$$\varepsilon_{c1} = Ri_{0}e^{-\frac{Rt_{1}}{L_{1}}} = 60 * 3,66 * e^{-\frac{60*0.7}{150.75}} \approx 166,2 \text{ (B)}$$

$$\varepsilon_{c2} = Ri_{0}e^{-\frac{Rt_{2}}{L_{2}}} = 60 * 3,66 * e^{-\frac{60*1.7}{149.5}} \approx 111,0 \text{ (B)}$$

$$\varepsilon_{c3} = Ri_{0}e^{-\frac{Rt_{3}}{L_{3}}} = 60 * 3,66 * e^{-\frac{60*2.9}{150.3}} \approx 69,0 \text{ (B)}$$

$$\varepsilon_{c4} = Ri_{0}e^{-\frac{Rt_{4}}{L_{4}}} = 60 * 3,66 * e^{-\frac{60*4}{150.1}} \approx 44,4 \text{ (B)}$$

$$\varepsilon_{c5} = Ri_{0}e^{-\frac{Rt_{5}}{L_{5}}} = 60 * 3,66 * e^{-\frac{60*5}{150.7}} \approx 30,0 \text{ (B)}$$

$$\varepsilon_{c6} = Ri_{0}e^{-\frac{Rt_{6}}{L_{6}}} = 60 * 3,66 * e^{-\frac{60*6}{149.6}} \approx 19,8 \text{ (B)}$$

$$\varepsilon_{c7} = Ri_{0}e^{-\frac{Rt_{7}}{L_{7}}} = 60 * 3,66 * e^{-\frac{60*7}{149.4}} \approx 13,2 \text{ (B)}$$

$$\varepsilon_{c8} = Ri_{0}e^{-\frac{Rt_{8}}{L_{8}}} = 60 * 3,66 * e^{-\frac{60*8}{150.25}} \approx 9,0 \text{ (B)}$$

$$\varepsilon_{c9} = Ri_{0}e^{-\frac{Rt_{9}}{L_{9}}} = 60 * 3,66 * e^{-\frac{60*9.2}{148.97}} \approx 5,4 \text{ (B)}$$

$$\varepsilon_{c10} = Ri_{0}e^{-\frac{Rt_{10}}{L_{10}}} = 60 * 3,66 * e^{-\frac{60*10.2}{148.87}} \approx 3,6 \text{ (B)}$$

Після розрахунків всі отримані результати заносимо таблиці, та будуємо графік $\varepsilon = f(t)$:

Рис.11 Графік залежності ЕРС самоїндукції від часу згасання струму t електричному колі.

ВИСНОВОК:.....