Using the Digital I/O interface of STMicroelectronics STM32 Microcontrollers

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

L.A.P. 1 Course

The General Purpose I/O (GPIO) Interface of STM32

- MCUs of the STM32 family have several digital ports, called GPIOA, GPIOB, GPIOC,
- Each port has 16 bits and thus 16 electrical pins
- Pins are referred as Pxy, where x is the port name (A, B, ..., E) and y is the bit (0, 1, ..., 15).
- As an example, the pin PC3 is the bit 3 of the port C.
- Each PIN has also an alternate function, related to a peripheral e.g. Timer, UART, SPI, etc.
- According to the MCU package, not all bits are mapped to electrical pins. This is a choice "by-design".

Digital I/O and SFR

Each port *x* has 11 SFRs:

- MODER: configures each bit as input or output or other
- OSPEEDR: configures the maximum frequency of an output pin
- PUPDR: configures the internal pull-up or pull-down register
- IDR: the input data register
- ODR: the output data register
- BSRR: the bit set/reset register
- BRR: the reset register
- AFRL, AFRH: alternate function configuration registers
- LCKR: the bit lock register
- OTYPER: output type configuration (push-pull or open-drain)

Accessing is made:

- By using the predefined structure pointers:GPIOA, GPIOB, GPIOC
- By accessing the SFR as the structure pointer field: GPIOA->ODR

MODE Register

- MODER allows a programmer to define the functionality of a GPIO pin
- Each pin has 2 bits that permits the following configurations:
 - 00: Input
 - 01: Output
 - 10: Alternate Function
 - 11: Analog

Output Type Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 OT15	14 OT14	13 OT13	12 OT12	11 OT11	10 OT10	9 OT9	8 OT8	7 OT7	6 OT6	5 OT5	4 OT4	3 OT3	2 OT2	1 OT1	0 OT0

- OTYPER allows a programmer to configure the output stage of an output GPIO pin
- Each pin has 1 bits that permits the following configurations:
 - 0: Push-pull
 - 1: Open Drain

Output Speed Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	EDR15 :0]		EDR14 :0]		EDR13 :0]		EDR12 :0]	OSPEI [1:	EDR11 :0]		EDR10 :0]		EDR9 :0]	OSPE [1:	EDR8 :0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EDR7 :0]		EDR6 :0]	OSPE [1:	EDR5 :0]		EDR4 :0]		EDR3 :0]		EDR2 :0]	OSPE [1	EDR1 :0]	OSPE [1:	EDR0 :0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

- OSPEEDR allows a programmer to define the speed of an output GPIO pin
- Each pin has 2 bits that permits the following configurations:
 - x0: Low Speed 01: Medium Speed
 - 11: High Speed

Pull-up/Pull-Down Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PUPDF	PUPDR15[1:0]		PUPDR14[1:0]		PUPDR13[1:0]		PUPDR12[1:0]		PUPDR11[1:0]		PUPDR10[1:0]		PUPDR9[1:0]		R8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PUPDI	R7[1:0]	PUPDI	R6[1:0]	PUPDI	R5[1:0]	PUPDI	R4[1:0]	PUPD	R3[1:0]	PUPDI	R2[1:0]	PUPDI	₹1[1:0]	PUPDI	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

- PUPDR defines the presence of a pull-up or pull-down restistor (or none) at the GPIO pin
- Each pin has 2 bits that permits the following configurations:
 - 00: No pull-up/pull-down
 - 01: Pull-up
 - 10: Pull-down

Data Input/Output Registers

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res	. Res	s. Res	s. Res	. Res	. Res.	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR1	ODR12	2 ODR	11 ODR	10 ODF	R9 ODR	8 ODR	7 ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

- Data Input/Ouput is performed through the IDR and ODR registers
- Each pin is mapped to the specific bit, so only 16 bits are used in the registers
- Bit set/reset and check operations are performed through logical mask operations

Single-bit Data Output Registers

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

- Single-bit data output (set or reset) can be performed through the BSRR register
- The register has two parts: set part and reset part
- To set a pin, a "1" must be written in the correspondent set part
- To **reset a pin**, a "1" must be written in the correspondent reset part

Single-bit Data Reset Registers

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 BR15	14 BR14	13 BR13	12 BR12	11 BR11	10 BR10	9 BR9	8 BR8	7 BR7	6 BR6	5 BR5	4 BR4	3 BR3	2 BR2	1 BR1	0 BR0

- Single-bit data reset can be also performed through the BRR register
- To reset a pin, a "1" must be written in the correspondent bit

Example: Configure PC3 as output and PA5 as input, and use them

```
HAL RCC GPIOC CLK ENABLE(); // enable the clock on GPIOC
HAL RCC GPIOA CLK ENABLE(); // enable the clock on GPIOA
GPIOC->MODER = (GPIOC->MODER & ~(uint32_t)0xc0) | 0x40; // PC3 as output
GPIOC->OTYPER &= ~ (uint32 t) 0x8; // PC3 push-pull
GPIOC->OSPEEDR &= ~(uint32 t)0xc0; // PC3 low-speed
GPIOA->MODER &= ~(uint32 t)0xc00; // PA5 as input
GPIOA->PUPDR &= ~(uint32 t)0xc00; // PA5 no pull-up or pull-down
int pa5_bit = (GPIO->IDR & 0x20) != 0; // reading and checking PA5
// writing ''0'' to PC3
GPIOC->BRR |= 0x8;
// writing ''1'' to PC3
GPIOC->BSRR \mid= 0x8;
```

Using HAL functions for GPIO

```
void HAL_GPIO_Init(GPIO_TypeDef *GPIOx.
                      GPIO_InitTypeDef *GPIO_Init);
  Initializes and configure a GPIO Pin
GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef* GPIOx,
                                   uint16_t GPIO_Pin):
  Reads a GPIO Pin
void HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx,
                          uint16_t GPIO_Pin.
                          GPIO_PinState PinState);
  Toggles a GPIO Pin
void HAL_GPIO_TogglePin(GPIO_TypeDef* GPIOx,
                          uint16_t GPIO_Pin):
  Writes a GPIO Pin
```

Example with HAL: Configure PC3 as output and PA5 as input, and use them

```
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
HAL RCC GPIOC CLK ENABLE():
HAL RCC GPIOA CLK ENABLE():
/*Configure GPIO pin : PA5 */
GPIO InitStruct.Pin = GPIO PIN 5:
GPIO InitStruct.Mode = GPIO MODE EVT RISING;
GPIO InitStruct.Pull = GPIO NOPULL:
HAL GPIO Init (GPIOA, &GPIO InitStruct);
/*Configure GPIO pin : PC3 */
GPIO InitStruct.Pin = GPIO PIN 3:
GPIO InitStruct.Mode = GPIO MODE OUTPUT PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO InitStruct.Speed = GPIO SPEED FREO LOW:
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
// reading and checking PA5
int pa5 bit = HAL GPIO ReadPin(GPIOA, GPIO PIN 5);
// writing ''0'' to PC3
HAL GPIO WritePin(GPIOC, GPIO PIN 3, GPIO PIN RESET);
// writing ''1'' to PC3
HAL GPIO WritePin(GPIOC, GPIO PIN 3, GPIO PIN SET);
```

Using the Digital I/O interface of STMicroelectronics STM32 Microcontrollers

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

L.A.P. 1 Course