Bitácora

Fecha: 23-08-24

Descripción de actividades: Se realizaron las tablas de verdad tanto de las entradas (1 a 4) y la tabla de verdad de la suma del acumulado con la salida de la primera tabla de verdad.

Investigué acerca de la algebra booleana y la simplificación de las salidas para obtener un circuito combinatorio más sencillo.

Se adjunta la tabla de verdad de las entradas del switch (1 a 4) a dos salidas.

Figura 1: Tabla de verdad switch 1

Α	В	С	D	Y1	Y0
1	0	0	0	0	0
1	1	0	0	0	1
1	1	1	0	1	0
1	1	1	1	1	1

Utilizando el producto de sumas las salidas tanto de Y0 como de Y1 son las siguientes:

$$Y_1 = ABC\overline{D} + ABCD$$

$$Y_0 = AB\bar{C}\bar{D} + ABCD$$

Luego con la ayuda de la página www.32x8.com la cual hace la simplificación con álgebra booleana se obtienen las salidas simplificadas:

$$Y_1 = C$$

$$Y_0 = D + B\bar{C}$$

Utilizando el simulador Proteus el circuito quedaría de la siguiente manera.

Fecha: 26-08-24

Descripción de actividades: Se realizó la tabla de verdad de la suma de las salidas de la primera tabla con el switch que modela el acumulado, el cual modela 2 bits y los valores que puede tomar son de 0 a 3, la figura 2 muestra los valores en binario que puede modelar el switch 2.

Figura 2: Valores que guarda el acumulado

Α	В	#	
0	0	0	
0	1	1	
1	0	2	
1	1	3	

La tabla de verdad de la suma sería la siguiente:

Figura 3: Tabla de verdad suma acumulado

А	В	С	D	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	0	0	0
0	1	0	0	0	0	1	0
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	0
0	1	1	1	0	0	0	1
1	0	0	0	0	0	1	1
1	0	0	1	0	0	0	0
1	0	1	0	0	0	0	1
1	0	1	1	0	0	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	0	1
1	1	1	0	0	0	1	0
1	1	1	1	0	0	1	1

Luego con la ayuda de la página www.32x8.com la cual hace la simplificación con álgebra booleana se obtienen las salidas simplificadas:

$$Y_0 = \overline{(B \oplus D)}$$

$$Y_1 = \overline{AB}(C \oplus D) + B\overline{(A \oplus C)} + A\overline{B}\overline{(C \oplus D)}$$

$$Y_2 = 0$$

$$Y_3 = 0$$

El circuito para las salidas Y0 y Y1 es el siguiente:

Fecha: 02-09-2024

Descripción de actividades: Se simula la conexión del BCD al display de 7 segmentos, el cual será de ánodo común, en la patilla de LT se conecta una resistencia de pull down para que se realice la suma a la hora de presionar un botón.

El circuito de la conexión del BCD al display es el siguiente.

Todas las compuertas utilizadas y el integrado BCD utiliza la tecnología TTL, de la familia 74LS.

Link GitHub: Gambo2907/Proyecto-Fundamentos (github.com)