EXAMENUL DE BACALAUREAT 2010 Proba scrisă la Fizică

Proba E - d): Filiera teoretică – profilul real, Filiera tehnologică – profilul tehnic şi profilul resurse naturale şi protecția mediului, Filiera vocațională – profilul militar

Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.

• Timpul efectiv de lucru este de 3 ore.

A. MECANICĂ Varianta 10

Se consideră accelerația gravitațională $g = 10 \text{m/s}^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte

1. Simbolurile mărimilor fizice fiind cele folosite în manualele de fizică, relatia corectă este:

a.
$$\overrightarrow{F_f} = \mu \overrightarrow{N}$$

b.
$$N = \mu F_f$$

c.
$$F_f = \mu N^2$$

$$d. F_f = \mu N$$
 (3p)

2. Unitatea de măsură a constantei elastice în S.I. este:

a. J/kg

b. N/m

c. N·m

 $d. N/m^2$

(3p)

3. Coeficientul de frecare la alunecare între un corp şi un plan înclinat cu unghiul α față de orizontală este μ . Expresia matematică a randamentului planului înclinat este:

a.
$$\eta = \frac{\cos \alpha}{\sin \alpha + \mu \sin \alpha}$$

b. $\eta = \frac{\sin \alpha}{\cos \alpha + \mu \sin \alpha}$

c. $\eta = \frac{\sin \alpha}{\sin \alpha + \mu \cos \alpha}$

d. $\eta = \frac{\cos \alpha}{\mu \cos \alpha + \sin \alpha}$

(3p)

4. Un automobil se deplasează rectiliniu cu viteza constantă $v = 108 \,\mathrm{km/h}$. Dacă puterea motorului este $P = 48 \,\mathrm{kW}$, forța de tracțiune dezvoltată de acesta are valoarea:

a. 1600 N

b. 2600N

c. 3000N

d. 3600N

(3p)

5. Un corp este aruncat cu viteza inițială $v_0 = 10 \,\text{m/s}$, vertical în sus. În absența frecării cu aerul, înălțimea maximă la care urcă corpul fată de punctul de lansare este:

a. 5km

b. 50 m

c. 10 m

d. 5m

(3p)

II. Rezolvati următoarea problemă:

(15 puncte)

Una dintre etapele turului ciclist al României s-a desfăşurat între localitățile Piatra Neamț și Miercurea Ciuc, pe distanța totală $D=150~\mathrm{km}$. Startul s-a dat la ora 09:00:00 (ora 9, 0 minute și 0 secunde). La ora 12:20:00, când cel mai rapid ciclist a trecut linia de sosire, distanța dintre primul și ultimul ciclist era $d=6~\mathrm{km}$. Din acest moment ultimul ciclist își menține constantă viteza $v_0=11~\mathrm{m/s}$ pe distanța $d_1=5500~\mathrm{m}$. Pe ultimii $d_2=500~\mathrm{m}$, încurajat de spectatori, acesta se deplasează cu accelerație constantă și trece linia de sosire cu viteza $v=13~\mathrm{m/s}$. Etapa a cuprins la Cheile Bicazului și o "cățărare", în care cicliștii au urcat de la altitudinea $h_1=580~\mathrm{m}$ la altitudinea $h_2=980~\mathrm{m}$. Calculați:

- a. valoarea vitezei medii a celui mai rapid ciclist;
- **b.** variația energiei potențiale gravitaționale a unui ciclist având masa $M = 70 \,\mathrm{kg}$ în timpul "cățărării" de la Cheile Bicazului;
- **c.** valoarea accelerației ultimului ciclist în timpul parcurgerii distanței $d_2 = 500 \,\mathrm{m}$ înaintea liniei de sosire;
- d. ora la care ultimul ciclist a trecut linia de sosire.

III. Rezolvați următoarea problemă:

(15 puncte)

Într-un experiment s-a studiat căderea a două corpuri în câmpul gravitațional terestru. Cele două corpuri au aspect exterior identic (aceeași formă și aceleași dimensiuni), dar au mase diferite. Masa corpului $\bf A$ este $m_A=50~{\rm g}$. Pe baza datelor obținute de la un senzor de mișcare a fost trasat graficul alăturat, în care este redată dependența de timp a vitezei corpului $\bf A$, respectiv $\bf B$. Această dependență a vitezei de timp poate fi explicată dacă admitem că forța de rezistență la înaintare este direct proporțională cu viteza $(|\vec{F}_r|=k\cdot v)$.

Valoarea coeficientului de proporţionalitate k depinde doar de forma şi dimensiunile corpului. Determinaţi:

- **a.** viteza maximă v_{max} atinsă de corpul **A** în timpul căderii;
- **b.** valoarea coeficientului de proporționalitate k;
- c. masa corpului B;
- d. lucrul mecanic efectuat de forța de rezistență la înaintare asupra corpului

A în timpul $\Delta t = 1.4$ s în care corpul a căzut, pornind din repaus, pe distanța d = 4 m.

