

4

Ch01- HỆ THỐNG SỐ ĐỂM

- Biểu diễn số:
 - Hệ thống số đếm là tập hợp những ký tự và quan hệ giữa chúng để biểu diễn số.
 - 2 loại hệ thống số đếm:
 - Loại không có vị trí.
 - Loại có vị trí (có trọng số):
 - Cơ số (radix): r
 - Các chữ số (digits): 0,1,2,...,r-1.
 - Trọng số (weight) ở vị trí i: $w_i = r^i$

- Biểu diễn số trong hệ cơ số r.
 - Cơ số r được ghi dạng chỉ số bên dưới phải.
 - Phần nguyên:

$$\overline{d_n d_{n-1} \dots d_1 d_0}_r = \sum_{i=0}^n d_i r^i = d_n r^n + \dots + d_1 r^1 + d_0 r^0$$

Phần phân:

$$\overline{0.d_1d_2...d_{m-1}d_m}_r = \sum_{1}^{m} d_i r^{-i} = d_1 r^{-1} + d_2 r^{-2} + ... + d_m r^{-m}$$

1

Ch01- HỆ THỐNG SỐ ĐẾM

A. Các hệ thống số đếm:

- Hệ nhị phân (binary):
 - $Co s\hat{o} r = 2.$
 - Các chữ số: 0, 1.
 - Mỗi chữ số: 1 bit.
 - Nếu có k bit thì sẽ có 2^k giá trị.
 - Số nguyên k bit (không dấu) có tầm trị là : $0 \dots 2^k$ 1
 - Số bit cần biểu diễn số nguyên n: $k = \lceil \log_2 n \rceil$
 - Có thể thêm ký tự B (hoặc b) ở cuối để phân biệt.

- Hệ nhị phân (binary):
 - Bit có trọng số nhỏ nhất LSB (Least Significant Bit).
 - Bit có trọng số lớn nhất là MSB (Most Significant Bit).
 - Số nhị phân lẻ có LSB = 1
 - Số nhị phân chẵn LSB = 0

■ Ví dụ:

$$11011_2 = 1x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = 27$$

$$0.1011_2 = 1x2^{-1} + 0x2^{-2} + 1x2^{-3} + 1x2^{-4} = 0.6875$$

$$11011.1011_2 = 27.6875.$$

Number
Weights

Dinory

1	1	0	1	1	1	0	1	1
2 ⁴	2 ³	2 ²	2 ¹	2 0	2-1	2 -2	2 -3	2 -4
1×2 ⁴	1×2³	0×2 ²	1×21	1×2º	1×2 ⁻¹	0×2-2	1×2-3	1×2-4
16	8	0	2	1	0.5	0	0.125	0.0625

Result

$$16 + 8 + 0 + 2 + 1 + 0.5 + 0 + 0.125 + 0.0625 = 27.6875$$

- Hệ thập phân (decimal)
 - $\mathbf{Co} \circ \mathbf{\hat{o}} \mathbf{r} = \mathbf{10}.$
 - Các chữ số: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
 - Most Significant Digit(MSD)
 - Least Significant Digit(LSD)
 - Có thể thêm ký tự D (hoặc d) ở cuối.

- Hệ bát phân (octal).
 - $\mathbf{Corsonormal}$ $\mathbf{Corsonormal}$
 - Các chữ số: 0, 1, 2, 3, 4, 5, 6, 7.
 - Có thể thêm ký tự O (hoặc o) ở cuối.

- Thập lục phân (hexadecimal).
 - $Co s \hat{o} r = 16$.
 - Các chữ số: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
 - Có thể thêm ký tự H (hoặc h) ở cuối.

Hexadecimal Number
Weights

3	С	7	Α	6	E	0	5
16 ³	16 ²	16¹	16 ⁰	16-1	16-2	16-3	16-4
3×16³	12×16²	7×16¹	10×16º	6×16-1	14×16-2	0×16-3	5×16-4
12288	3072	112	10	0.375	0.0546875	0	0.000076293

Result

12288 + 3072 + 112 + 10 + 0.375 + 0.0546875 + 0 + 0.000076293 = 15482.42976

l

Decimal	Binary	Hexadecimal	Octal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	10
9	1001	9	11
10	1010	Α	12
11	1011	В	13
12	1100	C	14
13	1101	D	15
14	1110	E	16
15	1111	F	17

- Chuyển đối cơ số:
 - Binary, Octal, Hexadecimal \rightarrow Decimal.
 - Decimal \rightarrow Binary.
 - Binary \rightarrow Octal.
 - Binary \rightarrow Hexadecimal.

- Binary, Octal, Hexadecimal → Decimal.
 - Lược đồ Horner cho phần nguyên:
 - Ghi số cần đổi ở hàng trên.
 - Ghi cơ số ở hàng dưới bên trái.
 - Ghi tiếp theo chữ số đầu tiên ở hàng dưới.
 - Nhân chữ số này với cơ số và cộng với chữ số kế tiếp ở hàng trên và ghi kết quả ở hàng dưới.
 - Lặp lại cho đến chữ số cuối cùng.
 - Kết quả là số cuối cùng ở hàng dưới.


```
• Ví dụ: 1110101_2 = ?_{10}
           3 7 14 29 58 117
     V_{ay} 1110101<sub>2</sub> = 117<sub>10</sub>
          AFC_{16} = ?_{10}
     A F C
16 10 175 2812
     V_{16} = 2812<sub>10</sub>
```

4

Ch01- HỆ THỐNG SỐ ĐỂM

Chuyển đổi cho phần phân:

$$\overline{0.d_1d_2...d_{m-1}d_m}_r = \sum_{1}^{m} d_i r^{-i} = d_1 r^{-1} + d_2 r^{-2} + ... + d_m r^{-m}$$

$$= r^{-m} (d_1 r^{m-1} + d_2 r^{m-2} + ... + d_m) = \overline{d_1 d_2...d_{m-1} d_m}_r / r^m$$

 Hoặc áp dụng Horner ngược dùng phép chia và cộng.

$$0.1101_2 = ?_{10}$$

$$1101_2 = 13_{10} \implies 0.1101_2 = 13/2^4 = 0.8125_{10}$$

Hoặc:

chia

$$V_{4}$$
 $1101_{2} = 0.8125_{10}$

$$0.AF_{16} = ?_{10}$$

$$AF_{16} = 175_{10}$$

$$\Rightarrow 0.AF_{16} = 175/16^2 = 0.68359375_{10}$$

$$3C7A.6E05_{16} = ?_{10}$$

$$11011.1011_2 = ?_{10}$$

- Decimal \rightarrow Binary.
 - Áp dụng lược đồ Horner cho phần nguyên
 - Ghi số cần chuyển bên phải dòng trên.
 - Nếu là số lẻ ghi 1, ngược lại ghi 0 ở dòng dưới.
 - Chia số cần chuyển cho 2 ghi kết quả ở dòng trên bên trái.

Ví dụ:

$$53_{10} = ?_{2}$$

$$1 \quad 3 \quad 6 \quad 13 \quad 26 \quad 53$$

$$1 \quad 1 \quad 0 \quad 1$$

$$V$$
ây $53_{10} = 110101_2$

- Áp dụng lược đồ Horner cho phần phân:
 - Ghi số cần chuyển bên trái dòng trên.
 - Nhân số cần chuyển với 2 ghi kết quả kế bên.
 - Nếu kết quả \geq 1 thì ghi 1 ở dưới, ngược lại ghi 0.
 - Tiếp tục nhân 2 cho phần phân và ghi kế bên.

6/2/2020 20

Ví dụ:

$$0.8125_{10} = ?_2$$

0.8125 1.625

1.25

0.5 1.0

0.

Vây $0.8125_{10} = 0.1101_2$

- Binary \rightarrow Octal.
 - Ghi thêm các số 0 vào bên trái phần nguyên và bên phải của phần phân sao cho đủ bộ 3 bit kể từ dấu chấm thập phân.
 - Tiến hàng chuyển sang hệ bát phân cho mỗi bộ
 3 bit.

4

Ch01- HỆ THỐNG SỐ ĐẾM

Ví dụ:

 $11011.1011_2 = ?_8$ $11011.1011_2 = 011011.101100_2 = 33.54_8$

- Binary \rightarrow Hexadecimal.
 - Ghi thêm các số 0 vào bên trái phần nguyên và bên phải của phần phân sao cho đủ bộ 4 bit kể từ dấu chấm thập phân.
 - Tiến hàng chuyển sang hệ bát phân cho mỗi bộ
 4 bit.

Ví dụ:

```
11011.101_2 = ?_{16}

11011.101_2 = 00011011.1010_2 = 1B.A_8
```

6/2/2020 25

■ Decimal → Octal hoặc Hexadecimal:

Nên chuyển qua trung gian Hệ nhị phân rồi chuyển sang Octal hoặc Hexadecimal.

Ví dụ:

$$117_{10} = ?_{16}$$
 $117_{10} = 1110101_2 = 75_{16} = 165_8$

B. Các loại mã thông dụng:

- Mã nhị phân.
- Mã Gray.
- Mã BCD (Binary Coded Decimal).
- Mã quá 3 (Excess 3 XS3).
- Mã 1 trong n.
- Mã ký tự ASCII (American Standard Code for Information Interchange).
- Mã LED 7 đoạn.
- Mã kiểm tra lẻ (chẵn).

Số thập phân	BCD (8421)	BCD (2421)	Mã quá 3	Mã 1 trong 10
	, ,	,		
0	0 0 0 0	0 0 0 0	$0\ 0\ 1\ 1$	$0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1$
1	0001	0001	$0\ 1\ 0\ 0$	0000000010
2	0010	0010	0101	0000000100
3	0011	0011	0110	0000001000
4	0100	0100	0111	$0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0$
5	0101	1011	$1\ 0\ 0\ 0$	000010000
6	0110	1100	$1\ 0\ 0\ 1$	$0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0$
7	0111	1101	1010	0010000000
8	1000	1110	1011	0100000000
9	1001	1111	1100	1000000000

	Số thập phân	Binary	Gray
	0	0000	0000
_	1	$0\ 0\ 0\ 1$	0001
•	2	0010	0011
	3	0011	0010
	4	$0\ 1\ 0\ 0$	0110
	5	0101	0111
	6	0110	0101
	7	0111	0100
	8	$1\ 0\ 0\ 0$	1100
	9	$1\ 0\ 0\ 1$	1101
	10	1010	1111
	11	1011	1110
	12	$1\ 1\ 0\ 0$	1010
	13	1101	1011
	14	1110	1001
	15	1111	1000

Đổi Binary sang mã Gray:

Đổi mã Gray sang Binary:

Mã led 7 đoạn.

	a	b	c	d	e	f	g
0	1	1		1		1	0
1	0	1	1	0		0	0
2	1	1	0	1	1	0	1
3	1	1	1	1	0	0	1
4	0	1	1	0	0	1	1
5	1	0	1	1	0	1	1
6	1	0	1	1	1	1	1
7	1	1	1	0	0		0
8	1	1	1	1	1	1	1
9	1	1	1	1	0	1	1

■ Mã ASCII:

6/2/2020 33

			$b_6b_5b_4$ (Cột)								
(Hàng)		000	001	010	011	100	101	110	111		
b ₃ b ₂ b ₁ b ₀	Hex	0	1	2	3	4	5	6	7		
0000	0	NUL	DLE	SP	0	@	P	`	p		
0001	1	SOH	DC1	!	1	A	Q	a	q		
0010	2	STX	DC2	"	2	В	R	b	r		
0011	3	ETX	DC3	#	3	C	S	c	S		
0100	4	EOT	DC4	\$	4	D	T	d	t		
0101	5	ENQ	NAK	%	5	Е	U	e	u		
0110	6	ACK	SYN	&	6	F	V	f	v		
0111	7	BEL	ETB	,	7	G	W	g	w		
1000	8	BS	CAN	(8	H	X	h	X		
1001	9	HT	EM)	9	I	Y	i	y		
1010	A	LF	SUB	*	:	J	Z	j	Z		
1011	В	VT	ESC	+	;	K]	k	{		
1100	C	FF	FS	,	<	L	\	1			
1101	D	CR	GS	_	=	M]	m	}		
1110	Е	SO	RS	•	>	N	۸	n	~		
1111	F	SI	US	/	?	О	_	0	DEL		

6/2/2020 34

- Mã kiểm tra lẻ:
 - Thêm vào một bit 0 hoặc 1 sao cho tổng số bit 1 là một số lẻ.
- Mã kiểm tra chẵn:
 - Thêm vào một bit 0 hoặc 1 sao cho tổng số bit 1 là một số chẵn.

- C. Các phép tính trong hệ nhị phân
- Phép công.

37

Ví dụ:		1	1	1	
	1	0	1	1	1
+			1	0	1
	1	1	1	0	0

- Phép trù:
 - Số bù_1 (1s Complement):
 - Số bù_1 của 1 số nhị phân N có chiều dài n bit là:

$$B\dot{u}_1(N) = 2^n - 1 - N$$
.

 Bù_1 của số nhị phân được tính bằng cách lấy đảo từng bit của nó (0 thành 1 và 1 thành 0)

- Số bù_2 (2s Complement):
 - Số bù_2 của 1 số nhị phân N có chiều dài n bit là:

$$B\dot{u}_2(N) = 2^n - N = B\dot{u}_1(N) + 1$$
.

- Số bù_2 được dùng để biểu diễn số âm.
- Bit MSB là bit dấu: 0 là số dương và 1 là số âm.
- Số nhị phân n bit có thể biểu diễn cho 2ⁿ giá trị trong khoảng:

$$-(2^{n-1}) \div + (2^{n-1}-1)$$

Phép trừ số nguyên là phép cộng với số bù 2.

$$A - B = A + B\dot{u}_2(B)$$

 $6 - 13 = ?$

6 0110

Ví dụ:

- Cộng trừ số BCD:
 - Bù_2 của số BCD: số BCD có trọng số nhỏ nhất lấy bù_2, các số mã BCD còn lại lấy bù_1.
 - Chỉ số n là của số BCD có trọng số lớn nhất, và chỉ số i là của các số BCD còn lại với i từ 0 đến n-1
 - Cộng hoặc trừ số BCD, cần phải hiệu đính lại kết quả như ở bảng:

A + B	S = A + B		Nếu tổng $S_i \ge 10$ hoặc có bit nhớ $C_i = 1$, thì hiệu đính S_i : $\underline{S_i = S_i + 6 \ va \ S_{i+1} = S_{i+1} + C_i}$	
A - B	D = A - B	C _n = 1: kết quả là số dương (A≥B)	Nếu $C_i = 1$ thì không hiệu đính Nếu $C_i = 0$ thì hiệu đính D_i : $\underline{D_i} = \underline{D_i} + \underline{10}$	
	= A + Bù_2(B) (Kết quả bỏ bit C _n)	C _n = 0: kết quả là số âm (A <b). Lấy bù kết quả</b). 	Nếu C_i = 1 thì hiệu đính D_i : $ \underline{D_i} = \underline{D_i} + \underline{6} $ Nếu C_i = 0 thì không hiệu đính	

Ví dụ:


```
\begin{array}{c} 1 \\ 00101001 \ (29) \\ - \ 01010101 \ (55) \\ \hline 1101 \ 0100 \\ + \ 0110 \\ \hline 1101 \ 1010 \ (-26) \\ \hline \text{Lấy bù } \_2: \\ \end{array}
```


D. Bài tập:

- Bài tập chương 1: $1 \rightarrow 20$.
- Viết chương trình chuyển đổi qua lại giữa các hệ số đếm.
- Viết chương trình chuyển đổi số Binary sang số BCD và ngược lại.
- Thực hành chuyển đổi qua lại giữa các hệ số đếm dùng Calculator.

6/2/2020 46

- Kiểu dữ liệu dấu chấm động:
 - float (32 bit):

value = $(-1)^{\text{sign}} \times 2^{(\text{exponent-}127)} \times (1 + \text{fraction})$.

- Kiểu dữ liệu dấu chấm động:
 - **double (64 bit):**

value= $(-1)^{sign} \times 2^{(exponent-1023)} \times (1+fraction)$.

6/2/2020 48