

STUD	ENT I	D NO	
	!		
Table Number	· · · · · · · · · · · · · · · · · · ·		

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2019/2020

TSN1101 -COMPUTER ARCHITECTURE AND ORGANIZATION

(All sections / Groups)

28 Feb 2020 9.00 am – 11.00 am (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 11 pages including cover page with 4 Questions only.
- 2. Attempt ALL the FOUR questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please print all your answers in this booklet.

QUESTION 1

a)	Coı	ivert the Binary number	er 11100.1011111 ₂ into the following number systems:
	i)	Octal	
	ii)	Hexadecimal	

			$[1.5 \times 2 = 3 \text{ r}]$	narks]
				0.
	e e			
b)				
	1 (411) > 0 1 1	1 1 0 0		

i) What is the Gray code (4 bits) for decimal value 9₁₀? [2 marks] ii) What is the advantage of Gray code over straight binary sequence? [1 mark]

Continued ...

Continued ...

(Show the steps involved).	oducts (SOP) to Product of Sums (POS) form. $BC + A\bar{B}C + \bar{A}\bar{B}C$
r - Abc + Ab	[3 marks]
d) List down 3 advantages of Digital over	Analog. [3 marks]

3/11

NH/TSN/WKC

e) Find out the Boolean expression X from the circuit diagram below.

[3 marks]

QUESTION 2

- a)
 - i) Use Boolean algebra techniques to simplify the expression given below
- ii) Construct the logic circuit diagram from the simplified expression obtained in (i)

$$Z = \overline{A} \, \overline{B} C \overline{D} + A \overline{B} C D + A \overline{B} C \overline{D}$$

[2+1=3 marks]

-	 		
- F	•		
		(1)	

Continued ...

b) In computer science, floating-point numbers are represented by IEEE 754-32 bit single-precision format (as given below).

Sign	Biased exponent	Mantissa / Significand
1 bit	8 bits	23 bits

For the given positive 58₁₀ in decimal number

- i) Convert the decimal code to 8 bits unsigned binary number.
- ii) Identify the normalized form of the 8 bits unsigned binary number.
- iii) Identify the 8-bit biased exponent.
- iv) Provide 5810 in IEEE 754-32 bit single-precision format

[1x 4 = 4 marks]

	(2)
•	
c) i) Design a 3-bit parallel adder by using three frepresented by C ₁ , C ₂ , C ₃ , and sum of each bit ad	full adders, where carry outputs are ider is represented by \sum_1, \sum_2 and \sum_3 . [2 marks]
**	

Continued ...

ii) By referring to the 3-bit parallel adder in 2c (i), what is the result for C ₁ , C ₂ , C ₃
and sum of each bit adder \sum_1 , \sum_2 , \sum_3 when 111_2 and 101_2 are added together.
[2 marks]

d) Design a synchronous counter that has two negative-edged triggered JK flip-flops and three inputs X, Y and Z. The counter based on the two conditions listed below:
 If X is 0, Y and Z will count up based on the present state of Z and Y. If X is 1, Y and Z will count down based on the present state of Z and Y.
Your design should include:
(i) State Transition Diagram showing all possible states [1 mark]
(ii) By referring to Excitation Table for J-K flip flop, construct Circuit Excitation Table [2 marks]
(iii) Perform Karnaugh Map simplification for each of negative-edged triggered JK flip-flops inputs. [1 mark]
Continued

TSN1101	COMPUTER ARCHITECTURE AND ORGANIZATION	N 28 FEB 2020
		•
		•
-	•	
	- 3:	
		•
	•	
		Continued

7/11

NH/TSN/WKC

QUESTION 3

a) Contemporary computer designs are based on concepts developed by John von Neumann at the Institute for Advanced Studies, Princeton. Describe the three key concepts from John von Neumann architecture. [3 marks]
·
b) Within the processor there is a set of registers (user visible registers and control & status registers) that function as a level of memory above main memory and cache in the hierarchy. Describe the roles of
i) user visible registers
ii) control & status registers. [3 marks]
c) Assume that a processor employs a memory address register (MAR), a memory buffer register (MBR), a program counter (PC), and an instruction register (IR), supporting only one-address instructions. List the symbolic sequence of microoperations for a fetch cycle. [3 marks]
Continued

8/11

- d) Assume there is a **five-stages** instruction pipeline Fetch (F), Decode (D), Fetch Operand (FO), Execute (E) and Write (W) running in a microprocessor. Assume that each stage requires one-time unit and no branch instruction is involved.
 - i. By using formula, how many time units are needed to complete these **FOUR** instructions with pipelining?
 - ii. By using formula, calculate the total time required to execute **FOUR** instructions without pipelining.

iii. Calculate the speed	up 1a	ctor for the same number of instruc	ctions.
			[4 marks
Word 40 contains 80. Giv	en th	ns 20, Word 20 contains 40, Word e memory values above and a one-what values do the following instructions.	address machine wit
i) LOAD IMMEDIATE 20		LOAD DIRECT 20	
iii) LOAD INDIRECT 20	iv)	LOAD IMMEDIATE 40	[2 marks]
			1,241
			Continued

QUESTION 4

a) Write a program to evaluate the arithmetic expression A = [(B+C) - D)] / E, using one address instructions, two address instructions and three address instructions. The instructions available for use are as follows:

One address	Two address	Three address
LOAD X	MOVE X,Y	
STORE X	ADD X, Y	ADD X,Y,Z
ADD X	SUB X, Y	SUB X,Y,Z
SUB X	MUL X,Y	MUL X,Y, Z
MUL X	DIV X, Y	DIV X, Y, Z
DIV X		

 $[2 \times 3 = 6 \text{ marks}]$

	•
b) Write ARM instructions to subtract the value in memory address value in memory addresses $0x1000$ and store the result in memory add subtract B from $A = A - B$).	
	•
	Continued

NH/TSN/WKC

	(4 m
 Briefly explain why Direct memory access Output (I/O) operations. 	ss (DMA) is the best technique for Ing [1 ma
Output (20) Operations.	

11/11

	· ·		
			•
			•
			*
	· ·		
	- £		
			•
•			
			141