PHYS4300 Numerical Methods and Scientific Computing

Roy Forestano

 $\begin{array}{c} {\rm HW}\ 5 \\ 24\ {\rm April}\ 2021 \end{array}$

Solution. Problem 0. This is a c++ program that uses the 4th order Runge Kutta method that solves the Mackey-Glass ODE usingh the discrete time step $\delta t = 0.1$ for parameters $\beta = 2\gamma = 0.2$, n = 10, $\tau = 17$, discarding the first 2τ points. The plots are of u(t) vs. t and $u(t-\tau)$ vs. t.

Solution. Problem 1. This is the untrained network for for the iterative map $x(t+1) = (1-\alpha)x + \alpha \tanh W x(t)$ using $\alpha = 0.3$. The machine variable dimension is N = 400. We use a square matrix W scaled with a maximum eigenvalue of $s_{\lambda} = 1.3$. Below is a plot of the eigenvalues, the x(t) evolution with the unscaled eigenvalues, and x(t) evolution with scaled eigenvalues.

Solution. Problem 2. This is the driven training network. Here, we now include an additional term in the hyperbolic tangent function $x(t+1) = (1-\alpha)x + \alpha \tanh(Wx(t) + W_{in}u(t))$. We iterate over 600 time steps and discard the first 100. We then proceed to produce the error validation matrix $E = Y - W_{out}X$, which is 1-dimensional. The top right graph plots $W_{out}X$ vs. t and Y vs. t. The lower left plots the validation error at each time step.

Solution. Problem 3. This is the autonomous trained network where $W_A = W + W_{in}W_{out}$ is replaced again in the hyperbolic tangent $x(t+1) = (1-\alpha)x + \alpha \tanh W_A x(t)$ starting from the final time step t_f from the driven training network for another sampleTimes = 400. We can then use this function along with the original W_{out} matrix to predict the next points in the time series, $y_p(T_f+1) = W_{out}x(T_f+1)$. We plot Y vs. t and $W_{out}X_a(t)$ vs. t. I could not get the absolute difference at each time step to print and clearly the graph below is wrong.

