Review_whitebox_results_v1.0

August 16, 2020

1 ExAD: An Ensemble Approach for Explanation-basedAdversarial Detection

- 1.0.1 In this Jupyter notebook, we provide reference code for our whitebox evaluation.
- 1.0.2 For more details, please refer to Section 5.6 of the paper as well as Appendix E.

```
[]: import os
     # os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
     # os.environ["CUDA_VISIBLE_DEVICES"] = "1"
     import tensorflow as tf
     import keras
     from keras import backend as K
     from keras.models import Model
     from keras.utils import to_categorical
     from keras.layers import Input, Dense, Lambda, merge, Dropout, Flatten, Conv2D,
      →MaxPooling2D
     from keras.models import Sequential, model_from_json, load_model
     from keras.layers.core import Activation
     from keras import datasets
     import matplotlib.image as mpimg
     import matplotlib.pyplot as plt
     %matplotlib inline
     import numpy as np
     from numpy import clip
     import pickle
     import pandas as pd
     from IPython.display import display
```

2 Utility Methods

```
[]: # Utility Methods
def Union(lst1, lst2):
    final_list = list(set(lst1) | set(lst2))
    return final_list
```

3 Configuration

```
[]: # Datasets on which we conduct our evaluation
     datasets = ['mnist', 'fmnist', 'cifar10']
     # The explanation methods that will be used in the ensemble
     exp_methods = ['lrp', 'guided_backprop', |
     →'integrated_grad', 'pattern_attribution', 'grad_times_input']
     # The directory of the detector models
     # Format: 'data/defender/<dataset>/orig/train/<explation_method>/
      → <target_class_index>/model/'
     model_dir_structure = 'data/defender/{}/orig/train/{}/{}/model/'
     model_name = 'exp_model.h5'
     # The directory where we store the adversarial examples created using whitebox
     \rightarrowattack
     # Format 'data/adv2/adversary/<dataset>/<target_exp_method>/
     → <attack_method_to_test>/target_next/target_<class_idx>'
     adv2_dir_structure = 'data/adversary/{}/adv2/{}/{}/target_next/target_{}/'
     succ_examples_filename = 'succ_on_f.npy'
     # The directory where we store the abnormal explanations created from
     →adversarial examples which were inturn created using whitebox attack
     adv2_exp_dir_structure = 'data/adversary/{}/adv2/{}/{}/from_{{}/'
     explanations_filename = 'expls.npy'
     src_exp_methods = exp_methods[:]
     src_exp_methods.append('overall')
     enable_detailed_logs = False
```

4 Load the ExAD-CNN detector models

As discussed in Section 4.3.1 of our paper, for every class in a dataset, we train 5 detector modelsone corresponding to every explanation technique.

```
[]: import collections

# Dictionary of models.

# This avoids having to reload models multiple times, and therefore speeds up

the analysis.

print('\nLoading detector models')

if not enable_detailed_logs:
    print('Note: You have turned off option to view detailed logs. Loading

models may take a while.')
```

```
model_d = \{\}
      for dataset in datasets:
          for class_idx in range(10):
              for exp_method in exp_methods:
                  if enable_detailed_logs: print('\tLoading detector model for dataset:
       →{} target class:{} explanation technique:{}'.
       →format(dataset,class_idx,exp_method))
                  model_dir = model_dir_structure.format(dataset, exp_method,__
       →str(class_idx))
                  model = load_model(model_dir + model_name)
                  model_d[(dataset, class_idx, exp_method)] = model
[19]: | df_list = list()
      for dataset in datasets:
          print('Running whitebox attack evaluation on {} dataset'.format(dataset))
          \# set the image dimension (side=\#=\mbox{W}) based on the dataset
          if dataset in ['mnist', 'fmnist']:
              side = 28
          elif dataset in ['cifar10']:
              side = 32
          d = collections.defaultdict(list)
          total_adv_per_class_per_attack = 10
          table = []
          for target_exp_method in exp_methods:
              print('\n\tTargeting {} explanation technique'.format(target_exp_method))
              row = []
              for class_idx in range(10):
                  if class_idx == 0:
                      src_class_index = 9
                  else:
                      src_class_index = class_idx-1
                  if target_exp_method == 'integrated_grad':
                      attack_methods_to_test = ['cwl2/conf_0']
                  else:
                      attack_methods_to_test = ['cwl2/conf_0', 'cwlinf/conf_0', 'cwl0/
       for attack_method_to_test in attack_methods_to_test:
                      # The directory of adv2 examples which fool both f(.) and the
```

 \rightarrow target_exp_method

```
# we do this to ensure we compute the performance on successful_{\sqcup}
\rightarrow adv2 examples only
               adv2_dir = adv2_dir_structure.format(dataset, target_exp_method,__
→attack_method_to_test, str(class_idx))
               succ_on_f = np.load(adv2_dir + succ_examples_filename)
               retained_adv_len = len(np.where(succ_on_f == True)[0])
               # if say 8/10 adversarial examples were successful, then failed
→will have indices from 0 to 7
               failed = np.array([i for i in range(retained_adv_len)])
               for exp_method in exp_methods:
                   # Use the detector model for class_idx (target class)_
→corresponding to exp_method (explanation technique)
                   model = model_d[(dataset, class_idx, exp_method)]
                   adv2_exp_dir = adv2_exp_dir_structure.format(dataset,_
→target_exp_method, attack_method_to_test, exp_method, str(src_class_index) )
                   adv2_exp = np.load(adv2_exp_dir + explanations_filename)
                   # NOTE we retain successful adv2 examples
                   adv2_exp = adv2_exp[succ_on_f]
                   # process images for classification
                   adv2_{exp} = 255.0/np.max(adv2_{exp})
                   adv2_exp = adv2_exp.astype(int)
                   adv2_exp = adv2_exp.reshape(-1, side, side, 1)
                   #evaluate model on adv2_exp samples
                   result_test = model.predict(adv2_exp)
                   result_test_class = np.argmax(result_test, axis=1)
                   true_pos = len(np.where(result_test_class==1)[0])
                   total_pos = len(result_test_class)
                   det_rate = true_pos*100/total_pos
                   failed_cur_method = np.where(result_test_class==0)[0]
                   failed = np.intersect1d(failed, failed_cur_method)
                   d[(target_exp_method, exp_method)].append(det_rate)
                   d[(target_exp_method, attack_method_to_test, exp_method)].
→append(det_rate)
               true_pos_cumulative = total_adv_per_class_per_attack -_
→len(failed)
```

```
det_rate_cumulative = true_pos_cumulative * 100 / __
→total_adv_per_class_per_attack
               d[(target_exp_method, 'overall')].append(det_rate_cumulative)
               d[(target_exp_method, attack_method_to_test, 'overall')].
→append(det_rate_cumulative)
       for src_exp_method in src_exp_methods:
           1 = np.array(d[(target_exp_method, src_exp_method)])
           mean_detection_rate = round(np.mean(1),3)
           row.append(mean_detection_rate)
       table.append(row)
  arr = np.array(table)
  df = pd.DataFrame(arr, index=exp_methods, columns=src_exp_methods)
  df_list.append(df)
  print('\n\bThis is the whitebox results for \{\}. \nThese results should be \sqcup
→nearly consistent with Figure 8 of the paper in Appendix.'.format(dataset))
  print('First column shows the targeted explanaton technique. Columns 1-5⊔
\hookrightarrowshows detection results by detector models corresponding to the explanation\sqcup
→technique. Column 6 (rightmost) shows overall detection results by ExAD.')
  print(df)
```

Running whitebox attack evaluation on mnist dataset

Targeting lrp explanation technique

Targeting guided_backprop explanation technique

Targeting integrated_grad explanation technique

Targeting pattern_attribution explanation technique

Targeting grad_times_input explanation technique

This is the whitebox results for mnist.

These results should be nearly consistent with Figure 8 of the paper in Appendix.

First column shows the targeted explanaton technique. Columns 1-5 shows detection results by detector models corresponding to the explanation technique. Column 6 (rightmost) shows overall detection results by ExAD.

	lrp	<pre>guided_backprop</pre>	integrated_grad	\
lrp	0.000	22.667	82.741	
guided_backprop	10.444	0.000	84.245	

${\tt integrated_grad}$	100.000	98.750	18.095
pattern_attribution	1.542	31.476	81.077
<pre>grad_times_input</pre>	98.722	99.458	56.700

	pattern_attribution	<pre>grad_times_input</pre>	overall
lrp	15.833	83.463	90.667
guided_backprop	7.481	85.838	89.000
integrated_grad	90.000	55.837	100.000
pattern_attribution	10.167	85.276	89.667
<pre>grad_times_input</pre>	89.111	14.111	100.000

Running whitebox attack evaluation on fmnist dataset

Targeting lrp explanation technique

Targeting guided_backprop explanation technique

Targeting integrated_grad explanation technique

Targeting pattern_attribution explanation technique

Targeting grad_times_input explanation technique

This is the whitebox results for fmnist.

These results should be nearly consistent with Figure 8 of the paper in Appendix.

First column shows the targeted explanaton technique. Columns 1-5 shows detection results by detector models corresponding to the explanation technique. Column 6 (rightmost) shows overall detection results by ExAD.

	lrp	<pre>guided_backprop</pre>	integrated_grad	\
lrp	0.000	27.111	86.148	
guided_backprop	55.378	6.868	90.060	
integrated_grad	100.000	96.667	41.000	
pattern_attribution	13.720	34.176	84.880	
<pre>grad_times_input</pre>	95.394	95.033	71.955	

	pattern_attribution	<pre>grad_times_input</pre>	overall
lrp	20.000	93.130	95.667
<pre>guided_backprop</pre>	28.648	95.759	96.833
integrated_grad	96.667	89.000	100.000
pattern_attribution	12.870	93.403	95.500
<pre>grad_times_input</pre>	95.871	41.372	99.333

Running whitebox attack evaluation on cifar10 dataset

Targeting lrp explanation technique

Targeting guided_backprop explanation technique

Targeting integrated_grad explanation technique

Targeting pattern_attribution explanation technique

Targeting grad_times_input explanation technique

This is the whitebox results for cifar10.

These results should be nearly consistent with Figure 8 of the paper in Appendix.

First column shows the targeted explanaton technique. Columns 1-5 shows detection results by detector models corresponding to the explanation technique. Column 6 (rightmost) shows overall detection results by ExAD.

lrp	guided_backpro	p integrated_gra	ad \
26.111	3.68	58.89	98
33.106	10.16	7 63.08	88
97.000	71.97	2 12.1	11
25.773	7.94	0 60.39	94
79.398	62.11	50.20	64
	attribution of	rad times innut	overall
pattern	_accribacton g.	rad_cimes_input	Overair
pattern	50.000	57.921	84.000
pattern	•	•	
pattern	50.000	57.921	84.000
pattern	50.000 66.991	57.921 56.787	84.000 88.833
	26.111 33.106 97.000 25.773 79.398	26.111 3.68 33.106 10.16 97.000 71.97 25.773 7.94 79.398 62.11	26.111 3.685 58.8 33.106 10.167 63.0 97.000 71.972 12.1 25.773 7.940 60.3

5 Review the results of whitebox attack

5.1 Review the results of whitebox attack on individual datasets

The results below should be consistent with Figure 8 of the paper in Appendix E.

How to interpret the results: First (or index) column shows the targeted explanation technique. Columns 1-5 shows detection results by detector models corresponding to different explanation techniques. Column 6 (rightmost) shows overall detection results by ExAD (under CNN detector model setting).

```
[28]: for dataset_idx in range(len(df_list)):
    print('\n\nWhitebox results for {}.'.format(datasets[dataset_idx]))
    display(df_list[dataset_idx])
```

Whitebox results for mnist.

	lrp	<pre>guided_backprop</pre>	integrated_grad	\
lrp	0.000	22.667	82.741	
guided_backprop	10.444	0.000	84.245	
integrated grad	100.000	98.750	18.095	

<pre>pattern_attribution grad_times_input</pre>	1.542 98.722		.476 .458	81. 56.	077 700
<pre>lrp guided_backprop integrated_grad pattern_attribution grad_times_input</pre>	pattern_	15.833 7.481 90.000 10.167 89.111	grad_ti	mes_input 83.463 85.838 55.837 85.276 14.111	overall 90.667 89.000 100.000 89.667 100.000

Whitebox results for fmnist.

	lrp	guided_back	prop	integrated_g	rad \
lrp	0.000	27	.111	86.	148
guided_backprop	55.378	6	.868	90.	060
integrated_grad	100.000	96	. 667	41.	000
pattern_attribution	13.720	34	. 176	84.	880
<pre>grad_times_input</pre>	95.394	95	.033	71.	955
	pattern_	attribution	grad_	_times_input	overall
lrp		20.000		93.130	95.667
guided_backprop		28.648		95.759	96.833
integrated_grad		96.667		89.000	100.000
pattern_attribution		12.870		93.403	95.500
<pre>grad_times_input</pre>		95.871		41.372	99.333

Whitebox results for cifar10.

lrp	guided_backp	rop	integrated_gr	ad \
26.111	3.	685	58.8	98
33.106	10.	167	63.0	88
97.000	71.	972	12.1	11
25.773	7.	940	60.3	94
79.398	62.	116	50.2	64
pattern	_attribution	grad	d_times_input	overall
	50.000		57.921	84.000
	66.991		56.787	88.833
	90.778		49.111	99.000
	24.444		50.023	80.667
	89.370		2.759	97.500
	26.111 33.106 97.000 25.773 79.398	26.111 3. 33.106 10. 97.000 71. 25.773 7. 79.398 62. pattern_attribution	26.111 3.685 33.106 10.167 97.000 71.972 25.773 7.940 79.398 62.116 pattern_attribution grad 50.000 66.991 90.778 24.444	26.111 3.685 58.8 33.106 10.167 63.0 97.000 71.972 12.1 25.773 7.940 60.3 79.398 62.116 50.2 pattern_attribution grad_times_input 50.000 57.921 66.991 56.787 90.778 49.111 24.444 50.023

5.2 Review aggregated results of whitebox attack across datasets

The results below should be consistent with Figure 4 of the paper.

How to interpret the results: First (or index) column shows the targeted explanation technique. Columns 1-5 shows detection results by detector models corresponding to different explanation techniques. Column 6 (rightmost) shows overall detection results by ExAD (under CNN detector model setting). Note that each cell reports a value computed by taking element-wise mean over each dataset. For e.g., in row 1 column 3, we show the mean detection rate (across datasets) corresponding to targeting LRP technique and using the detector model corresponding to GBP technique.

```
[35]: df1 = df_list[0]
    df2 = df_list[1]
    df3 = df_list[2]

from functools import reduce

dfs = [df1, df2, df3]
    df = reduce(lambda x, y: x.add(y), dfs) / len(dfs)
    display(df)

lrp guided_backprop integrated_grad \
```

```
lrp
                      8.703667
                                       17.821000
                                                        75.929000
guided_backprop
                     32.976000
                                        5.678333
                                                        79.131000
integrated_grad
                     99.000000
                                                        23.735333
                                       89.129667
pattern_attribution 13.678333
                                       24.530667
                                                        75.450333
grad_times_input
                                       85.535667
                     91.171333
                                                        59.639667
                     pattern_attribution grad_times_input
                                                               overall
lrp
                                28.611000
                                                  78.171333 90.111333
guided_backprop
                                34.373333
                                                  79.461333 91.555333
integrated_grad
                                92.481667
                                                  64.649333
                                                             99.666667
pattern_attribution
                                15.827000
                                                  76.234000
                                                             88.611333
```

91.450667

grad_times_input

[]:

19.414000

98.944333