Singularity Workshop 2019

A field guide to contained academic computing

Mario Belledonne November 13, 2019

Yale Psychology

This is a work in progress!

This presentation and examples can be found here:

 $\verb|https://github.com/CNCLgithub/singularity_workshop_2019|$

Table of contents

1. Containers

2. Singularity: Getting Started

 ${\it 3. \ Singularity: \ Using \ HPCs}$

Lecture Goals

- What are containers?
- How can they help?
- How can we use them?

Containers

Computer

What is a computer (abstract)

- File System (FS)
- Operating System (OS)
- Kernel

Extensions

There are several ways to augment a computer

(a) Virtual Machine

(b) Container

Virtual Machines

Pros:

- Relatively universal (assuming OS and hardware support)
- Extensive configuration

Cons:

- Resource intensive
- Security concerns

Containers

Pros:

- Low overhead
- Flexible deployment

Cons:

• Kernel limitations

Container interactions with host

Container interactions with host

Singularity: Getting Started

Examples to follow along

This presentation can be found here:

https://github.com/CNCLgithub/singularity_workshop_2019

Pulling containers

Containers can be pulled from container repos

```
# pulls from sylabs repos
$ singularity pull alpine.sif library://alpine:latest
# pulls from docker repos
$ singularity pull tensorflow.sif \
docker://tensorflow/tensorflow:latest
```

These are immutable!

Building containers: Definition File

https://github.com/belledon/docker-singularity/blob/master/Singularity

```
bootstrap: docker
from: python:3.7.4-alpine3.10
%post
  apk add --update \
      build-base \
      git
 cd /
  git clone https://github.com/facebookresearch/fastText.git
 cd fastText
 pip install .
 cd / && rm -r fastText
%runscript
 python $@
```

Whats going on?

Definition File components

- %post Run installation commands after setting up the parent
- %run Define the default executable behavior
- %environment Any env variables you would like defined

Definition File components - extra

- %setup Any steps to run before running anything else
- %files Any files to copy to the host
- %help Describe the purpose of the container

For more details please see the docs: https: //sylabs.io/guides/3.4/user-guide/definition_files.html

Don't reinvent the wheel!

You can often start from somewhere close! examples/Singularity.julia

```
bootstrap:docker
from:julia:1.3.0-stretch

%environment
   export JULIA_DEPOT_PATH="${PWD}/.julia"
   export JULIA_PROJECT="$PWD"
```

But don't be afraid

There will be times where you need to "take a step back" examples/Singularity.pytorch-docker

```
bootstrap: docker
from: pytorch/pytorch:1.3-cuda10.1-cudnn7-devel
```

%post

. /opt/conda/etc/profile.d/conda.sh conda activate base pip install pandas

Leaving the nest

For development, immutable containers aren't ideal examples/Singularity.conda

```
bootstrap: docker
from: nvidia/cuda:10.1-cudnn7-devel-ubuntu16.04
%environment
  # export path to conda executable
  export PATH=$PATH:/miniconda/bin
%post
   apt-get update
   apt-get install -y build-essential \
           wget
   # download conda installer
   wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -0 conda.sh
   # run conda installer
   bash conda.sh -b -p /miniconda
   # cleanup installer script
  rm conda.sh
```

Leaving the nest: Package managers within containers

Singularity: Using HPCs

One module to rule them all

- A built container does not require sudo
- The container is one image file
- Ensures reproducibility

[3]

Getting your container on the HPC

The simplest way to get started is to build a container on your local machine.

```
$ scp $CONT \
> $USERNAME@<cluster>.hpc.yale.edu:/some/path
```

Alternatively, you could host your container online.

```
$ wget "http://www.my_cool_container/..."
```

Building on HPC

Not entirely reliable due to privileges.

Typically done via vagrant and virtualbox

Running a container in a compute node

```
$ cat my_sbatch.sh
#!/bin/bash
#SBATCH array=0-4
#
# note on Grace/milgram, singularity is available by
# default on compute nodes
singularity exec ./train_nature_paper.sh
```

Running on a compute node

Problem: Modifying a container

Not possible on OM due to privileges.

In most cases this is not necessary (keeping source and data outside of the container).

However, there is an exception during development

Extra slides on HPCs

Summary

Get the source of this theme and the demo presentation from

github.com/matze/mtheme

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Collaborative Documentation

Useful linux commands

- man
- ssh
- scp
- module
- awk

High Performance Clusters

Interacting with an HPC

connecting to the head node

ssh "\${USERNAME}@openmind7.mit.edu"

HelloWorld!

Running our first command on the headnode.

\$ whoami
belledon

What is where?

Now that we know who we are, where are we?

```
$ pwd
/home/$USER
```


Home is where the config is

\$HOME should only be used for private configs, ssh-keys...

```
$ ls -alh ~/
total 216K
drwxr-xr-x 6 belledon tenenbaum 81 Jun 20 11:31 .cache
drwxr-xr-x 20 belledon tenenbaum 4.0K Oct 23 2018 .config
drwx----- 2 belledon tenenbaum 4.0K Oct 12 2018 .ssh
-rw-r--r-- 1 belledon tenenbaum 125 May 25 2017 rsync.sh
```

HPC Storage: Lustre

- Lustre file system supports fast, scalable IO [2]
- Sensitive to large number of files
- Resilient to the size of files
- Accessed via "/om"

HPC Storage: NFS

- Supports basic network drives [1]
- Sensitive to IO
- Resilient to the number of files
- Accessed via "/om2"

Accessing remote disks

Getting in Trouble

Finally... now lets get started

./train_nature_paper.sh

Accessing resources

Requesting an interactive job

Accessing more resources

Requesting a batch job

```
$ cat example.sh
#!/bin/bash
#SBATCH --array=1-5
echo "The array id is: ${SLURM_ARRAY_TASK_ID}"
$ sbatch example.sh
Submitted batch job 13873280
$ find . -name "*.out" | \
  while read src; do echo "${src} -> $(cat ${src})"; done
./slurm-13873280_5.out -> The array id is: 5
./slurm-13873280_2.out -> The array id is: 2
./slurm-13873280_3.out -> The array id is: 3
./slurm-13873280_1.out -> The array id is: 1
./slurm-13873280_4.out \rightarrow The array id is: 4
```

Exploring SBATCH Tasks

SBATCH Example: Hyperparameter search

```
$ cat network_params.txt
--lr 0.0005
--lr 0.005
--lr 0.00005

$ cat my_sbatch.sh
#!/bin/bash
#SBATCH --time=1-0
#SBATCH --array=1-5
#SBATCH --gres=gpu:1
ARGUMENTS=$(sed "${SLURM_ARRAY_TASK_ID}q;d" network_params.txt)
./train_model "$ARGUMENTS"
```

SBATCH Example contd

Adding project dependencies

On many HPCs, managing software dependencies is done via "module".

module avail

Shows modules you can add

module add

Adds a module to your environment

module list

Shows which modules you have

module purge

Removes modules from environment

Adding a package

This snippet adds "singularity" to my env

```
-bash-4.2$ module add openmind/singularity/3.2.0
```

-bash-4.2\$ singularity --version

singularity version 3.2.0-1

Problem: Computing environment

- Required module doesn't exist?
- Can't install dependency?
- Project environment behaves erratically?

HPCs, they're simple as 123

HPCs are to PCs as modern industrial economies are to aggrarian societies.

Division of labour:

- Compute
- IO
- Disk

Regulatory Trade Agencies

- Job Scheduling
- Service Monitoring

Chaos

- You (users)
- The man (admins)
- God (hardware failures)

References i

FreeBSD.

29.3. network file system (nfs).

EOFS OpenSFS.

About the lustre file system, 2019.

SyLabs.

Definition files.