Probabilités Discrètes

- Table des matières:
 - I. Vocabulaire probabiliste Univers
 - Evènement
 - Evènement élémentaire
 - Evènement certain
 - Evènement impossible
 - Intersection d'évènements Union d'évènements

 - Evènement contraire
 - II.1. Loi de probabilités

• II. Probabilités

- II.2. Propriétés
 - II.3. Equiprobabilité II.4 Répétition d'expériences identiques et indépendantes
- I. Vocabulaire probabiliste

nombre fini. (« discret » s'oppose à « continu »)

Expérience aléatoire :

• On nomme cette section « probabilités discrètes » car les issues possibles des expériences aléatoires traitées sont en

Les résultats possibles sont appelées issues ou éventualités.

Exemple:

• Une expérience aléatoire est une expérience dont on ne peut connaître le résultat a priori.

• Un lancer de dé est une expérience aléatoire. Il y a 6 issues possibles.

Exemple:

Univers: • L'univers d'une expérience aléatoire est l'ensemble de ses issues possibles. On le note Ω

• Pour un lancer de dé, les issues sont : {1; 2; 3; 4; 5; 6}

• Dans le cas du lancer de dé, l'univers est donc : $\Omega = \{1, 2, 3, 4, 5, 6\}$

• Un **événement** est un sous-ensemble de l'univers (c'est à dire seulement une partie de Ω) **Exemple:**

Evénement:

• Pour le lancer de dé, l'évènement "obtenir un nombre inférieur ou égal à 3" est égal à l'ensemble {1, 2, 3}

Pour le lancer de dé, l'évènement "obtenir un nombre pair" est égal à l'ensemble {2, 4, 6}

Evénement élémentaire :

Cardinal:

Un événement élémentaire est un sous-ensemble de l'univers composé d'une seule issue.

Exemple:

• C'est donc le nombre d'évènements élémentaires d'un évènement

• Le cardinal d'un ensemble est le nombre d'éléments dans cet ensemble.

Exemple: "Obtenir un 1" est un événement élémentaire (il vaut {1}).

Exemple:

Evénement certain:

• Il est certain en lançant un dé de faire soit 1, soit 2, soit 3, soit 4, soit 5, soit 6. • Donc l'évènement $\{1; 2; 3; 4; 5; 6\}$ est certain (c'est bien Ω , l'univers tout entier)

• Si on note A = "obtenir un nombre pair" et B = "obtenir un nombre inférieur ou égal à 3 "

L'événement certains est l'événement constitué de toutes les issues possibles. C'est l'univers tout entier.

• L'intersection de deux événements A et B (notée $A \cap B$) est l'ensemble des issues qui sont à la fois dans A et à la fois dans B.

• L'événement impossible est l'ensemble vide, on le note : Ø

• Donc $A \cap B = \{2\}$

Exemple:

• Si on note A = "obtenir un nombre pair" et B = "obtenir un nombre inférieur ou égal à 3 "

• L'événement contraire d'un événement A (noté \bar{A}) est l'ensemble des issues de l'univers qui n'appartiennent pas à A.

• Deux événements A et B sont incompatibles s'ils ne peuvent se réaliser simultanément (s'ils n'ont aucune issue en commun).

• L'union de deux événements A et B (notée $A \cup B$) est l'ensemble des issues qui sont soit dans A soit dans B.

Evénement contraire:

• On appelle aussi le **complémentaire** de l'événement A.

• Si on note A = "obtenir un nombre pair" et B = "obtenir un nombre inférieur ou égal à 3 " • Alors $A = \{2, 4, 6\}$

Exemple:

Exemple:

• Si on note A = "obtenir un nombre pair" et B = "obtenir un nombre impair" • Alors $A = \{2, 4, 6\}$

Exemple 1:

• Si on note A_1 = "obtenir un nombre pair" et A_2 = "obtenir un nombre impair"

 $\bullet \;\;$ Donc A_1 et A_2 sont incompatibles (ou disjoints) car ils n'ont pas d'issue en commun

Donc A et B n'ont aucune issue en commun et sont donc incompatibles

Exemple 2: • Si on note $A_1 = \{1\}$, $A_2 = \{2\}$ et $A_3 = \{3, 4, 5, 6\}$ ullet A_1 et A_2 sont incompatibles (ou disjoints) car ils n'ont pas d'issue en commun

• Alors $A_1 = \{2; 4; 6\}$ • Et $A_2 = \{1; 3; 5\}$

II.1. Loi de probabilité : • Soit une expérience aléatoire avec un univers Ω .

■ Les p_i sont entre 0 et 1 ie $0 \le p_i \le 1$

- A chaque événement $A = \{x_1, x_2, \dots, x_k\}$ on peut associer le nombre $P(A) = \sum_{i=1}^k p_i = p_1 + p_2 + \dots + p_k$
- Si A et B sont incompatibles : $P(A \cap B) = P(\emptyset) = 0$

• La probabilité de l'évènement certain est 1 : $P(\Omega) = 1$ • La probabilité de l'évènement impossible est $0 : P(\emptyset) = 0$

Exemple: • Dans un lancer de dé, toutes les faces ont une probabilité de $\frac{1}{6}$

Exemple:

Exemple 1:

• Donc Card(A) = 1• On a $Card(\Omega) = 6$

- La probabilité de l'événement $A = \infty$ faire un nombre strictement inférieur à 3 » est : $P(A) = \frac{Card(A)}{Card(\Omega)} = \frac{Card(\{1;2;3\})}{Card(\Omega)} = \frac{3}{6} = \frac{1}{2}$
- Quand on lance un dé 2 fois successivement, il s'agit d'une répétition de 2 expériences identiques et indépendantes : L'expérience est évidemment identique

des possibilités) de cette série d'expériences est : $Card(\Omega)^n$

II.4 Répétition d'expériences identiques et indépendantes :

- $Card(\Omega)^n = 2^3 = 8$ II y a bien 8 issues dans cette nouvelle expérience : PPF

Si on lance une pièce 3 fois successivement, il s'agit d'une répétition de 2 expériences identiques et indépendantes

• On rappelle que le cardinal d' Ω est le nombre d'issues (dans le cas du dé, il y en a 6, chacune des faces)

Exemple:

• Alors $A = \{2, 4, 6\}$

• $P(A) = p_2 + p_4 + p_6 = 3 \times \frac{1}{6} = \frac{1}{2}$ II.2. Propriétés :

• Donc pour tout $1 \le i \le 6$, on a $p_i = \frac{1}{6}$

• Si on note A = "obtenir un nombre pair"

- Pour tous les évènements A et B: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Dans le cas d'une équiprobabilité, on a : $P(A) = \frac{Card(A)}{Card(A)}$

• Et finalement $P(A) = \frac{Card(A)}{Card(\Omega)} = \frac{1}{6}$

- FFP

- Le cardinal de le l'évènement obtenir un nombre pair est 3 (il y a 3 éléments dans {2; 4; 6}
 - **Exemple:** Il est impossible de ne faire aucun chiffre

Evénement impossible :

Intersection d'événements :

• Alors $A = \{2, 4, 6\}$ • Et $B = \{1; 2; 3\}$

Exemple:

• Alors $A = \{2, 4, 6\}$ • Et $B = \{1; 2; 3\}$

Union d'événements :

• Donc $A \bigcup B = \{1, 2, 3, 4, 6\}$

Evénement incompatibles:

• Et $B = \{1; 3; 5\}$

• Et $B = \{1, 2, 3\}$ • Donc $\bar{A} = \{1; 3; 5\}$ • Donc $\bar{B} = \{4; 5; 6\}$

• Une famille d'évènements (A_i) forme une partition de l'ensemble Ω s'ils sont tous deux à deux incompatibles et si leur réunion est égale à Ω

Partition d'évènements :

• De plus $A_1 \bigcup A_2 = \{1; 2; 3; 4; 5; 6\} = \Omega$ • Donc (A_1, A_2) forme une partition

· Ainsi, deux événements contraires sont incompatibles

- A_2 et A_3 sont incompatibles (ou disjoints) car ils n'ont pas d'issue en commun • A_1 et A_3 sont incompatibles (ou disjoints) car ils n'ont pas d'issue en commun • De plus $A_1 \bigcup A_2 \bigcup A_3 = \{1, 2, 3, 4, 5, 6\} = \Omega$
- II. Probabilités

• Donc (A_1, A_2, A_3) forme une partition

• Le nombre p_i est la probabilité de l'éventualité x_i • Le nombre P(A) est la probabilité de l'évènement A

 \blacksquare la somme des \boldsymbol{p}_i est égale à 1 ie : $\sum_{i=1}^{Card(\Omega)} \boldsymbol{p}_i$ = 1

• Pour tout évènement $A: 0 \le P(A) \le 1$

• La probabilitié d'un évènement est égal à 1 moins la probabilité de son contraire : $P(A) = 1 - P(\bar{A})$

• En effet, si A est un évènement élémentaire il peut s'agir d'un des évènements : {1}; {2}; {3}; {4}; {5}; {6}

• Des expériences identiques sont des expériences qui ont les mêmes issues et probabilités associées. Des expériences indépendantes sont des expériences dont les résultats ne s'influent pas mutuellement.

Soit Ω l'univers d'une expérience. Si on répète n fois cette expérience de manière indépendante alors le cardinal (l'ensemble

• Pour un dé non truqué, les probabilités de chaque face sont les mêmes, elles sont toutes égales à 1/6

• On dit qu'elle suit une loi de probabilité P si à chaque issue x_i on peut associer une probabilité p_i telle que :

- II.3 Equiprobabilité : • On dit qu'il y a équiprobabilité quand toutes les éventualités (ou les événements élémentaires) ont la même probabilité.
- La probabilité de l'événement $B = \infty$ faire un nombre pair » est : $P(B) = \frac{Card(\{2;4;6\})}{Card(\Omega)} = \frac{3}{6} = \frac{1}{2}$
- Si on a fait un 6 au premier lancer, puis encore un 6 au deuxième lancer, la probabilité de faire un 6 au troisième lancer sera toujours de $\frac{1}{6}$. Donc les répétitions sont indépendantes. • $Card(\Omega)^n = 6^2 = 36$ II y a bien 36 issues dans cette nouvelle expérience
- FFF

- PFP
- Exemple 2: • Pour un lancer de pièce, on a $\Omega = \{P, F\}$