Reti di Calcolatori

Lo Stack ISO-OSI

Modello ISO-OSI

ISO – International Standard Organization OSI – Open System Interconnection

(Day e Zimmermann, 1983)

- Livello: viene introdotto un certo grado di astrazione
- Mivelli devono corrispondere a funzioni definite
- Le funzioni devono considerare l'insieme degli standard
- Confini dei livelli devono minimizzare il flusso informazioni
- Il numero di livelli deve essere ottimale

I LIVELLI OSI

Applicazione Livelli di "Processo" **Presentazione Sessione Trasporto Network Data Link Fisico**

Livelli "Data Flow"

1	121/6121		DATA ELOM
	Applicazione	I LIVELLI DI	DATA FLOW
	Presentazione		
4	Sessione		
	Transport	 Reliable or unreliable delivery Error correction before retransmit 	TCP > UDP SPX
	Network	Provide logical addressing which routers use for path determination	> IP IPX
	Data Link	 Combines bits into bytes and bytes into frames Access to media using MAC address Error detection not correction 	> 802.3 / 802.2 HDLC
	Physical	 Move bits between devices Specifies voltage, wire speed and pin-out cables 	> EIA/TIA-232 V.35

Livello Fisico

Riguarda la trasmissione bit sul canale fisico di trasmissione

Coinvolge aspetti di tipo:

- elettrico (linee comunicazione, propagazione onde, ...)
- comunicazione (simplex, half-, full-duplex, ...)
- meccanico (standards connettori, ...)

Physical

- Move bits between devices
- Specifies voltage, wire speed and pin-out cables

EIA/TIA-232 V.35

Data Link Layer

- Trasforma la linea fisica o "grezza" in una linea in cui gli errori di trasmissione vengano sempre segnalati
- Divide le informazioni in pacchetti e li trasmette attraverso il mezzo fisico, attendendo un segnale di "avvenuta ricezione" detto anche ack
- Gestisce l'eventuale duplicazione dei frame ricevuti, causata dalla perdita dell'ack
- Sincronizza un mittente veloce con un ricevente lento
- Gestisce l'accesso al canale di trasmissione condiviso

147		
Data L	 Combines bits into bytes and bytes into frames Access to media using MAC address Error detection not correction 	2.2
Physic	 Move bits between devices Specifies voltage, wire speed and pin-out cables EIA/TIA-23 V.35	32

Network Layer

- Gestisce l'indirizzamento universale dei nodi in rete
- Gestisce l'instradamento dei pacchetti
- Può gestire congestione e controllo di flusso
- Gestisce l'accounting dei pacchetti sulle reti a pagamento
- Implementa interfacce per la comunicazione tra reti di tipo diverso

, i		
	Network	Provide logical addressing which routers use for path determination IP
えれくさ	Data Link	 Combines bits into bytes and bytes into frames Access to media using MAC address Error detection not correction
が、大	Physical	 Move bits between devices Specifies voltage, wire speed and pin-out cables EIA/TIA-232 V.35

Transport Layer

- Assicura un servizio privo di errori end to end con l'ordine corretto di ricomposizione
- Gestisce l'invio di messaggi a più applicazioni sullo stesso host
 - Fornisce il servizio di recapito dei messaggi senza garanzia di arrivo

	Transport	 Reliable or unreliable delivery Error correction before retransmit 	TCP > UDP SPX	
	Network	Provide logical addressing which routers use for path determination	> IP IPX	
14.47	Data Link	 Combines bits into bytes and bytes into frames Access to media using MAC address Error detection not correction 	> 802.3 / 802.2 HDLC	
	Physical	 Move bits between devices Specifies voltage, wire speed and pin-out cables 	> EIA/TIA-232 V.35	

I LIVELLI DI PROCESSO

Application Layer

Applicazione User Interface Telnet HTTP

Implementa specifici servizi applicativi che interfacciano direttamente l'utente:

- Domain Name System,
- Posta elettronica,
- •Emulazione di terminale
- World Wide Web,
- File Fransfer
- •Multimedialità Streaming,
- •File System distribuiti, ecc.

Presentation Layer

Le funzionalità di questo layer si limitano alla traduzione dei dati che viaggiano sulla rete in formati astratti. Queste informazioni vengono poi riconvertite nel formato proprietario della macchina destinataria

Può gestire operazioni di compressione o cifratura di flusso

Session Layer

4 2 4 4	Applicazione	User Interface	Telnet HTTP
14. W. 4.	Presentazione	How data is presented Special processing such as encryption	ASCII EBCDIC JPEG
X 14, 50, 4, 4	Sessione	Keeping different applications' data separate	Sistema Operatiovo/ Application Access Scheduling

- Controlla il dialogo tra due macchine: la comunicazione non può essere sempre full-duplex, questo layer tiene traccia di chi è il turno attuale
- Gestisce il controllo dei token
- Gestisce la sincronizzazione del trasferimento dei dati
- Gestisce specifiche sessioni end-to-end verso applicazioni

Page113

Incapsulamento

Deincapsulamento

II Modello ARPANET (TCP/IP)

I LIVELLI ARPANET

ARPANET (TCP/IP) e OSI

I vantaggi di TCP/IP su ISO sono fondamentalmente due, ma di importanza colossale:

- 1. Lo stack TCP/IP è enormemente più semplice dello stack OSI
- 2. Quando nacque OSI, TCP/IP era già presente nel mondo accademico