

ESZI017 - Fundamentos de Processamento Gráfico

Laboratório 02: Introdução à Estrutura de OpenGL

1. Introdução

Esta aula prática tem como objetivo apresentar um ambiente para programação em linguagem C++ e a biblioteca **OpenGL**, devido à praticidade proporcionada e à grande difusão desta ferramenta no meio acadêmico.

Este roteiro deverá ser executado no sistema **Ubuntu-linux** instalado no laboratório didático. Instruções são apresentadas e exemplos que o aluno deve executar no laboratório, e verificar os resultados obtidos. Ao final do roteiro são propostos alguns exercicios para entregar que o aluno deverá realizar individualmente.

2. Instalação da biblioteca FreeGLUT no Ubuntu-linux

- (a) A instalação da biblioteca FreeGLUT no Ubuntu-linux deverá ser realizado conforme o roteiro da aula anterior.
- (b) A Compilação e execução dos programas OpenGL, deverão ser realizados conforme o roteiro da aula anterior. Não será utilizado IDE.

Exemplo de compilação:

```
gcc -o test lesson5.cpp -lglut -lGL -lGLU
```

Exemplo de execução:

./test

3. Escrevendo um programa OpenGL

i) Abrir um novo programa

Para cada novo programa, crie uma nova sub-pasta na sua pasta principal. O nome da sub-pasta deverá ser "lab02-NN", onde NN é o número sequencial dos programas do roteiro. Portanto, neste primeiro programa NN=01.

- -Para escrever o código, poderá ser utilizado o editor de programa "Geany".
- -Num terminal linux, vá ao diretório criado e digite o nome do editor ">geany".
- -Neste editor, crie um novo arquivo, e salve no diretório usando o nome "lab02-*NN*", com a extensão "cpp". Exemplo: "lab02-01.cpp".

ii) Adicionar código fonte e salvar o programa:

```
Meu Primeiro Programa: xxx.cpp
   <NomeCompleto>, RA <RA>, data DD/MM/AAAA
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
// Função callback chamada para fazer o desenho
void Desenha(void)
    //Limpa a janela de visualização com a cor de fundo especificada
    glClear(GL COLOR BUFFER BIT);
    //Executa os comandos OpenGL
    glFlush();
// Inicializa parâmetros de rendering
void Inicializa (void)
    // Define a cor de fundo da janela de visualização como preta
    glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
}
// Programa Principal
int main(int argc, char *argv[])
    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT SINGLE | GLUT RGB);
    glutCreateWindow("Meu Primeiro Programa");
    glutDisplayFunc(Desenha);
    Inicializa();
    glutMainLoop();
    return 0;
```

iii) Compilar e Executar o projeto no terminal linux, conforme o exemplo inicial.

4. Atividades: Desenhando Polígonos com OpenGL

Na atividade desta parte desenharemos polígonos num plano, conforme já explanado nas aulas teóricas. O objetivo é realizar o traçado das primitivas de desenho do OpenGL, permitindo ao aluno elaborar posteriormente modelos de objetos com este recurso.

Para tanto iremos usar o programa "hello" dos exemplos do RedBook como base, e modifica-lo para compor os desenhos.

- a) Abra no editor Geany, o programa **hello**, que está no arquivo hello.c. Salve-o como "hello.cpp". Estude passo a passo cada comando de código.
- b) Pelo terminal, compile e execute o programa, verificando seu funcionamento.

Dentro deste programa, observe que o trecho de código responsável pelo desenho do polígono é o seguinte:

```
gl.glBegin(GL.GL_POLYGON);
    gl.glVertex3f(0.25f, 0.25f, 0.0f);
    gl.glVertex3f(0.75f, 0.25f, 0.0f);
    gl.glVertex3f(0.75f, 0.75f, 0.0f);
    gl.glVertex3f(0.25f, 0.75f, 0.0f);
    gl.glVertex3f(0.25f, 0.75f, 0.0f);
```

c) Altere este trecho de código para que seja apresentado na janela gráfica, um primitiva de cada vez, conforme os tipos de primitivas apresentadas na Figura 1. Para cada caso, salve o programa e a imagem resultante.

Figura 1: Ilustração das primitivas de desenho gráfico do OpenGL.

d) Em seguida, avalie o comando de cores, como o mostrado no trecho de código abaixo. Execute-o e apresente os resultados.

```
glBegin( GL.GL_TRIANGLES );
   glColor3f( 1.f, 0.f, 0.f );
   glVertex3f( 0.2f, 0.2f, 0.f );
   glColor3f( 0.f, 1.f, 0.f );
   glVertex3f( 0.8f, 0.2f, 0.f );
   glColor3f( 0.f, 0.f, 1.f );
   glVertex3f( 0.2f, 0.8f, 0.f );
   glVertex3f( 0.2f, 0.8f, 0.f );
```

OBS.: veja a definição de algumas cores em OpenGL:

glColor3f(0.0, 0.0, 0.0)	black
glColor3f(1.0, 0.0, 0.0)	red
glColor3f(0.0, 1.0, 0.0)	green
glColor3f(1.0, 1.0, 0.0)	yellow
glColor3f(0.0, 0.0, 1.0)	blue
glColor3f(1.0, 0.0, 1.0)	magenta
glColor3f(0.0, 1.0, 1.0)	cyan
glColor3f(1.0, 1.0, 1.0)	white

e) Para se traçar um círculo, pode-se fazer uma aproximação, pois não há uma primitiva em OpenGL para isso. O trecho de código abaixo calcula alguns pontos do círculo para serem ligados com uma linha. Execute-o e apresente os resultados.

```
GLdouble PI = 3.1415926535897;
GLint circle_points = 100;

glBegin(GL.GL_LINE_LOOP);
for (i = 0; i < circle_points; i++) {
   angle = 2*PI*i/circle_points;
   glVertex2f(cos(angle), sin(angle));
}
glEnd();</pre>
```

5. Exercícios para Entregar

A resolução deverá ser em programa C++, e a entrega através do TIDIA.

Importante: em todos os arquivos de código faça um cabeçalho (com comentários) incluindo seu nome completo, RA, data do programa, nome do programa, e exemplo de chamada do programa no prompt do linux.

1) Baseado nos programas desenvolvidos nesta aula prática, elabore um programa que apresente uma figura geométrica que se aproxime à da figura abaixo.

Figura 2: Figura do exercício 1 para entregar.

2) Baseado nos programas desenvolvidos nesta aula prática, elabore um programa que apresente uma figura geométrica que se aproxime à da figura abaixo.

Figura 3: Figura do exercício 2 para entregar.

6. Referências

[1] Dave Shreiner; the Khronos OpenGL ARB Working Group. **OpenGL programming** guide: the official guide to learning **OpenGL**, versions 3.0 and 3.1. 7th ed. Addison-Wesley, 2009.

7. Relatório

Envie o relatório na forma de arquivo eletrônico **HTML**, e os **programas C++**, com cabeçalho (comentário) incluindo seu nome completo, RA, data do programa, nome do programa, e exemplo de chamada do programa no prompt do linux. Elaborar um relatório contendo:

- Os procedimentos detalhados executados no laboratório.
- Imagens obtidas. Tabelas de análises comparativas de resultados.
- Análise e conclusões.
- Exercícios para entregar