## Representations of Regular Languages

COMPSCI 3331

### **Outline**

- ▶ Equivalence of Regular Expressions, NFAs, DFAs and  $\varepsilon$ -NFAs.
- ▶ Regular Expressions to  $\varepsilon$ -NFAs.
- DFAs to Regular Expressions.

## What do we already know?

- Every DFA is an NFA.
- How to convert an NFA to a DFA
  - subset construction
  - $\triangleright$  can go from *n* to  $2^n$  states.
- ▶ How to remove  $\varepsilon$ -transitions,
  - $\triangleright$  convert an  $\varepsilon$ -NFA to an NFA
  - number of states stays the same.

What about regular expressions?

### Representations of Regular Languages



#### From RE to $\varepsilon$ -NFA

- ▶ **GOAL**: For every regular expression r define an  $\varepsilon$ -NFA  $M_r$ .
- Since regular expressions are defined recursively, the translation will be recursive.

Remember: Regular expressions are defined as:

- $\triangleright$  ε, Ø, a for all  $a \in \Sigma$ .
- $ightharpoonup r_1 + r_2$ ,  $r_1 r_2$  and  $r_1^*$  for any regular expressions  $r_1, r_2$ .

### Intuitive conversion: RE to $\varepsilon$ -NFA

Convert  $a^*(cb)^*$  to an  $\varepsilon$ -NFA.



#### From RE to $\varepsilon$ -NFA

We translate r to a  $\varepsilon$ -NFA  $M_r$  with:

- only one final state.
- start state different from the final state.
- no transitions leaving the only final state.
- no transitions entering the initial state.

### From RE to $\varepsilon$ -NFA: Base Cases

Base cases:  $\emptyset$ ,  $\varepsilon$  and a for all  $a \in \Sigma$ .



### From RE to $\varepsilon$ -NFA: Union



### From RE to $\varepsilon$ -NFA: Concatenation



### From RE to $\varepsilon$ -NFA: Kleene Star



#### From RE to $\varepsilon$ -NFA

**Theorem.** Let r be a regular expression and let  $M_r$  be the  $\varepsilon$ -NFA we get from applying the previous rules. Then  $L(r) = L(M_r)$ .

**Proof.** By structural induction.

### Conversion



# From DFA to RE (1 of 7)

- MAIN IDEA: Paths through a DFA correspond to parts of a regular expression for that DFA.
- State Elimination method: eliminate states one-by-one until we get a regular expression for the entire machine.

# From DFA to RE (2 of 7)

Consider an arbitrary state q of a DFA. What's going on at q?



What words take us from  $r_i$  to  $s_j$  (for arbitrary  $1 \le i \le n$  and  $1 \le j \le m$ )?

# From DFA to RE (3 of 7)

Focus on one of the  $r_i$  and one of the  $s_i$ :



### From DFA to RE (4 of 7)

**MAIN IDEA**: we can replace the transitions with one transition labelled  $a_i(c_1 + \cdots + c_t)^*b_i$ .



# From DFA to RE (5 of 7)

- Everything in the previous argument applies to regular expressions on transitions and not just letters.
- Apply the replacement to each (incoming, outgoing) transition pair before removing a state.
- Repeatedly apply removal process to states until we get a regular expression for the DFA.

# From DFA to RE (6 of 7)

Replace multiple transitions from state  $q_1$  to  $q_2$  with one regular expression.



# From DFA to RE (7 of 7)

- Some pre-processing before beginning:
  - ightharpoonup add a new start state and connect it to the old start state by an  $\varepsilon$ -transition
  - ightharpoonup add a new final state and make all old final states point to it with an  $\varepsilon$ -transition
- Gives us states that won't be eliminated during the process.
- Eliminate any state which is not initial or final. At the end, read the regular expression for the DFA.

# Representations Summary



- (1) recursive translation of regular expressions to  $\varepsilon$ -NFAs.
- (2) state elimination method.

### Representations of Regular Languages: Summary

**Theorem.** For every regular expression r there exists a DFA M such that L(r) = L(M). For every DFA M, there exists a regular expression r such that L(M) = L(r).