## Statistics for Machine Learning -- Foundational Statistical Concepts

## —Foundational Statistical Concepts



Population includes all of the elements from a set of data. Sample consists of one or more observations from the population.

Parameter Characteristic of a distribution describing a population, such as the mean or standard deviation of a normal distribution. Often notated using Greek letters.

Statistic A numerical value that represents a property of a random sample.

Examples of statistics are

- the mean value of the sample data.
- the range of the sample data.
- deviation of the data from the sample mean.

Covariance Matrix

Statistics for Machine Learning

$$\Sigma = (\mathbf{x}_i - \hat{\mu}_g)(\mathbf{x}_i - \hat{\mu}_g)^T$$

$$\Sigma = (\mathbf{x}_i - \hat{\mu}_g)(\mathbf{x}_i - \hat{\mu}_g)^T$$

$$(\mathbf{x}_1 - \mu_1)^2 \qquad (\mathbf{x}_1 - \mu_1)(\mathbf{x}_2 - \mu_2)$$

$$(\mathbf{x}_1 - \mu_g)$$
  
 $(\mathbf{x}_1 - \mu_1)^2$   $(\mathbf{x}_1 - \mu_1)(\mathbf{x}_1 - \mu_1)$   
 $(\mathbf{x}_2 - \mu_1)$   $(\mathbf{x}_2 - \mu_1)$ 

$$= \begin{pmatrix} (\mathbf{x}_{1} - \mu_{1})^{2} & (\mathbf{x}_{1} - \mu_{1})(\mathbf{x}_{2} - \mu_{2}) & \dots & (\mathbf{x}_{1} - \mu_{1})(\mathbf{x}_{n} - \mu_{n}) \\ (\mathbf{x}_{2} - \mu_{2})(\mathbf{x}_{1} - \mu_{1}) & (\mathbf{x}_{2} - \mu_{2})^{2} & \dots & (\mathbf{x}_{2} - \mu_{2})(\mathbf{x}_{n} - \mu_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ (\mathbf{x}_{n} - \mu_{n})(\mathbf{x}_{1} - \mu_{1}) & (\mathbf{x}_{n} - \mu_{n})^{2} & \dots & (\mathbf{x}_{n} - \mu_{n})(\mathbf{x}_{n} - \mu_{n}) \end{pmatrix}$$

$$=\begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1n} \\ \sigma_{12} & \sigma_2^2 & \dots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_n^2 \end{pmatrix}$$

$$\vdots \\ -\mu_n)(\mathbf{x}_n - \mu_n)$$
(15)

Covariance Matrix

 $\Sigma = \begin{pmatrix} \hat{\sigma}_{xx} & \hat{\sigma}_{xy} \\ \hat{\sigma}_{-} & \hat{\sigma}_{-} \end{pmatrix}$ 

(13)

(14)

(16)



Statistics for Machine Learning

Gaussian mixture models

Gaussian mixture models

Gaussian mixture models

A Gaussian mixture model has the density [McN16]

 $= \sum_{g=1} \rho_g \phi(\mathbf{x}|\mu_g, \Sigma_g). \qquad (20)$ 

With the normal distribution  $\phi$  defined as before.  $\rho_{\mathcal{E}}$  denotes the global probability with which a data value could originate from gaussian g. The gs number the gaussians, and G is the total number of Gaussians in the mix. We will use two.  $\phi$  denotes the parameters  $\mu_{\mathcal{E}}$  and  $\Sigma_{\mathcal{E}}$ .

Typically we want as many g as we have classes in the data. I.e. one for healthy and one for diabetic. The data vectors are p dimensional  $\mathbf{x} \in \mathbb{R}^p$ 

distribution as a function of the parameters. The gaussian case is modelled by  $[MeN1\delta]$   $\mathcal{L}_{c}(\theta) = \prod_{i=1}^{n} \prod_{j=1}^{n} (\nu_{ij} \psi_{ij} (\kappa_{ij} | \nu_{ij}, \Sigma_{ji}))^{\nu_{ij}}. \tag{21}$  We want to maximize the lishiflood. In other words, we want to transfers the lishiflood. In other words, we want to transfers the balls in such a way, that they wealth the roots, we want to transfers the balls in such a way, that

Likelihood models the probability of data originating from a

Likelihood

To maximize phi it needs to sit on top of the points it labels. When a gaussian sits on top of many points it's  $\rho_g$  should be large. Finally, when this works well we want a big weight from  $z_{ig}$ .

-Clustering using a GMM

It creates an association between the data points and the Gaussians. Numerically evaluation results in a matrix  $\mathbf{Z} \in \mathbb{R}^{G \times n}$ . Use it's output to select the points which belong to each class.

Clustering using a GMM

The  $z_{ig}$  are the true labels,  $\hat{z}_{ig}$  is our estimation. The  $\hat{z}_{ig}$  are the expected value of the complete data log-likelihood. Why?  $\phi$  is a pdf. A pdf can be interpreted as providing a relative likelihood that the value of the random variable would be equal to that sample 1. We ask for all gaussians and every point and normalize.