VR-Anwendungen in der chirurgischen Ausbildung Einteilung, Vor- und Nachteile

Einleitung

Die Virtuelle Realität (VR) sowie weitere Formen der Mixed Reality (MR) finden immer mehr Einzug in die Medizin [1]. Nebst Anwendungen für Patienten gibt es mittlerweile diverse Systeme für die chirurgische Ausbildung . Die Vielfalt der umgesetzten Lösungen ist dabei enorm. Somit stellt sich die Frage, welche Vor- und Nachteilen die VR-Anwendungen haben.

Methode

Wir haben eine strukturierte Literaturrecherche in drei Datenbanken durchgeführt. Als Suchbegriffe haben wir «virtual reality, education, training, surgery» genutzt.

Ergebnisse

Die analysierten VR-Anwendungen umfassen diverse medizinische Fachbereiche. Die Ein- und Ausgabegeräte sind häufig so aufgebaut, wie die Operationen real durchgeführt werden. Beispielsweise findet man bei minimalinvasiven Eingriffen tendenziell solche Displays, wie man die auch im OP-Saal finden würde. Bei Eingriffen am offenen Körper werden eher Head mounted devices verwendet und ein komplett virtueller OP simuliert [2]. Diese Unterscheidung ist jedoch nicht vorhanden. Für die Eingabegeräte kommen oft standardisierte oder spezielle haptische Geräte zum Einsatz. Die Ein- und Ausgabegeräte können vielfältig kombiniert werden. Der Übergang zur MR ist dabei fliessend.

Die Vor- und Nachteile der jeweiligen Systemgruppen sind in folgender Tabelle zusammengefasst.

Merkmal	Ausprägung	Vorteile	Nachteile
Display (Output)	• Eigenes Display (Bildschirm / Laptop)	GünstigWeltweite NutzungFlexibel Standardhaptik nutzbar (z.B. PHANTOM Omni)	Weniger realistisch
	• 3D Display	Realistische Darstellung von minimalinvasiven Operationen	Teurer als normales Display
	Head mounted device (HMD, z.B. Oculus)	GünstigWeltweite NutzungVielfältige Einsatzmöglichkeiten	 Körperliche (asthenope) Beschwerden und Kopfschmerzen möglich Für minimalinvasive OP eher unrealistisch
Haptik (Input)	Nein (nur Maus/Tastatur)	Keine Extrakosten	• Unrealistisch
	Nein, aber digitales Force Feedback	GünstigRealistischer als rein visuelles Feedback	Feedbacklogik muss programmiert werden
	• Ja, ohne Force Feedback	 Realistisch betreffend der Handbewegungen 	Kein Widerstand des menschlichen Gewebes
	• Ja, mit Force Feedback	Sehr realistisch	Feedbacklogik muss programmiert werden
Kollaboration		 Ermöglicht menschliche Interaktion bei komplexen OP mit vielfältigem OP-Personal 	Mehr Geräte müssen beschafft werden
Komplettsyster (kommerziell)	n	 Sofort einsetzbar kein/kaum Entwicklungsaufwand viele unterschiedliche Simulationen und Level 	• Zum Teil sehr teuer

Diskussion

Es existieren bereits einige Lösungen, welche verschiedene Vor- und Nachteile haben. Je nach Anwendungsbereich können verantwortliche Personen die für sie passendste Lösung zusammenstellen oder entwickeln lassen. In Zukunft wird der Trend zu leistungsstärkerer Technik und höherer Verfügbarkeit von HMD zu besseren VR-Anwendungen beitragen.

Im Rahmen dieser Arbeit konnten zwar die Vor- und Nachteile der VR-Systeme aufgezeigt werden. Welche VR-Typen jedoch in der chirurgischen Ausbildung effektiv am weitesten verbreitet ist, müssten weitere Forschungen untersuchen. Auch eine systematische Verteilung je medizinischem Fachbereich könnte interessant sein. Zudem wurde in dieser Arbeit weder die Softwareentwicklung noch das 3D-Design untersucht.

Literatur

[1] Corato F, Frucci M, Di Baja GS. Virtual training of surgery staff for hand washing procedure. In: Tortora G, Levialdi S, Tucci M, editors. Proceedings of the International Working Conference on Advanced Visual Interfaces – AVI '12. New York, New York, USA: ACM Press; 2012. p. 274.

[2] Izard SG, Juanes JA, García Peñalvo FJ, Estella JMG, Ledesma MJS, Ruisoto P. Virtual Reality as an Educational and Training Tool for Medicine. Journal of medical systems 2018;42:50. DOI: 10.1007/s10916-018-0900-2.

Claudio Comazzi und Christian Franke Seminar 1 / HS 2022, 3.Semester Berner Fachhochschule / Medizininformatik / Höheweg 80, CH-2502 Biel

Kontakt

Berner Fachhochschule Medizininformatik Dr. med. Gert Krummrey, MSc Professor für Medizininformatik Falkenplatz 24, CH-3012 Bern