

1.
$$\oint_{|z-1|=2} \frac{z^2+1}{(z-2i)(z+2i)\sin\frac{z}{3}} dz$$

$$z=\pm 2i, \quad \sin\frac{z}{3}=0, \quad z=3\pi n, \quad m_1=0, \quad m_2=1, \quad z=0$$
 - полюс I порядку.

$$2. \oint_{|z|=1} \frac{z^2 e^{\frac{1}{z^2}} - 1}{z} \, \mathrm{d}z \quad \bigcirc$$

$$z=0$$
 (знам.), $f(z)=rac{z^2e^{rac{1}{z^2}}-1}{z}=rac{1}{z}\left(z^2\left(1+rac{1}{z^2}+rac{1}{2z^4}+\dots
ight)-1
ight)=rac{1}{z}\left(z^2+rac{1}{2z^2}+\dots
ight)=z+rac{1}{2z^3}+\dots,$ $z=0$ - істотно особлива точка.

3.
$$\oint_{|z|=4} \frac{\sinh iz - \sin iz}{z^3 \sinh \frac{z}{3}} dz \quad (=)$$

$$z = 0$$
, $\sinh \frac{z}{3} = 0$, $z = 3\pi i n$, $\sinh iz - \sin iz = iz - \frac{iz^3}{3!} + \frac{iz^5}{5!} + \dots - iz - \frac{iz^3}{3!} - \frac{iz^5}{5!} = 0$

$$-\frac{2iz^3}{3!}=z^3\left(-\frac{2i}{3!}+\dots\right), \quad z^3 \sinh\frac{z}{3}=z^3\left(\frac{z}{3}+\frac{z^3}{3^3\cdot 3!}\dots\right)=\frac{z^4}{3}\left(\frac{1}{3}+\frac{z^2}{3^3\cdot 3!}\dots\right),$$
 $f(z)=\frac{z^3g_1(z)}{\frac{z^4}{3}g_2(z)}, \quad m_1=3, \quad m_2=4, \quad z=0$ - полюс I порядку.

4.
$$\oint_{|z+2i|=3} \left(\frac{\frac{\pi}{z}}{\underbrace{\frac{\pi z}{2} + 1}} + \underbrace{\frac{6 \operatorname{ch} \frac{\pi i z}{2 - 2i}}{\underbrace{(z - 2 + 2i)^{2} (z - 4 + 2i))}}_{\mathfrak{I}_{2}} \right) dz = \mathfrak{I}_{1} + 6\mathfrak{I}_{2}$$

$$(\mathfrak{I}_1) \begin{array}{c} \frac{\pi z}{2} + 1 = 0, \quad e^{\frac{\pi z}{2}} = -1, \quad \frac{\pi z}{2} = \ln(-1), \quad z_n = 2i(2n+1), \\ z = -2i(n=-1), \quad m_1 = 0, \quad m_2 = 1, \quad z = -2i \text{ - полюс I порядку.} \\ f(z) = \frac{\pi}{\frac{\pi z}{2}}, \quad \left(e^{\frac{\pi z}{2}} + 1\right)' = \frac{\pi}{2}e^{\frac{\pi z}{2}} \neq 0 \\ \operatorname{Res} f(z) = \frac{\pi}{\frac{\pi z}{2}} \bigg|_{z=-2i} = \frac{2}{e^{-\pi i}} = -2, \quad \mathfrak{I}_1 = -4\pi i \end{array}$$

$$(\mathfrak{I}_{2}) \quad (z-2+2i)^{2}(z-4+2i) = 0$$

$$\begin{bmatrix} z-2+2i = 0 & z=2-2i \text{ (нуль знам., не нуль чис.)} \\ z-4+2i = 0 & z=4-2i \end{bmatrix}$$

$$f(z) = \frac{\cosh \frac{\pi i z}{2-2i}}{(z-2+2i)^{2}(z-4+2i)}, \quad z=2-2i, \quad m_{1}=0, \quad m_{2}=2,$$

$$z=2-2i \text{ -- полюс II порядку. Res } f(z) = \lim_{z\to 2-2i} \frac{\partial}{\partial z} \left(f(z)(z-2+2i)^{2}\right) =$$

$$= \lim_{z\to 2-2i} \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{\mathrm{ch} \frac{\pi i z}{2-2i}}{(z-4+2i)}\right) = \lim_{z\to 2-2i} \frac{\mathrm{sh} \frac{\pi i z}{2-2i} \cdot \frac{\pi i}{2-2i}(z-4+2i) - \mathrm{ch} \frac{\pi i z}{2-2i}}{(z-4+2i)^{2}} =$$

$$= \langle z=2-2i \rangle = \lim_{z\to 2-2i} \frac{\mathrm{sh} \pi i \cdot \frac{\pi i}{2-2i} - \mathrm{ch} \pi i}{4-2i} = \frac{1}{4}$$

 $\Im=\Im_1+6\Im_2=-4\pi i+3\pi i=-\pi i$

