Notes on Conformal Risk Control

Catherine Chen cyc2152

November 2023

1 Distribution-free, Risk-controlling Prediction Sets

1.1 Setting and Notation

 $(X_i, Y_i)_{i=1,\ldots,m} \sim \text{ i.i.d. s.t. features vectors } X_i \in \mathcal{X} \text{ and response } Y_i \in \mathcal{Y}.$

Split data: training and calibration set: $\{\mathcal{I}_{\text{train}}, \mathcal{I}_{\text{cal}}\}$ form a partition of $\{1, \ldots, m\}$, with $n = |\mathcal{I}_{\text{cal}}|$. w.l.o.g., $\mathcal{I}_{\text{cal}} = \{1, \ldots, n\}$.

Fit predictive model on $\mathcal{I}_{\text{train}}$ denote $\hat{f}:\mathcal{X}\to\mathcal{Z}$.

Let $\mathcal{T}: \mathcal{X} \to \mathcal{Y}'$ be a set-valued function (a tolerance region) that maps a feature vector to a set-valued prediction typically constructed from the predictive model, \hat{f} . Suppose there exists a collection of such set-valued predictors indexed by a one-dimensional parameter λ taking values in a closed set $\Lambda \subset \mathbb{R} \cup \{\pm \infty\}$ that are nested, i.e. larger values of λ lead to larger sets:

$$\lambda_1 < \lambda_2 \Longrightarrow \mathcal{T}_{\lambda_1}(x) \subset \mathcal{T}_{\lambda_2}(x).$$

Note: $\lambda \to \infty \Rightarrow$ more conservative, i.e. larger set

Notion of error: $L(y, \mathcal{S}): y \times y' \to \mathbb{R}_{\geq 0}$, loss function on prediction sets. i.e. $L(y, \mathcal{S}) = \mathbb{1}_{\{y \in \mathcal{S}\}}$. The loss function must satisfy the following nesting property:

$$S \subset S' \Longrightarrow L(y, S) > L(y, S')$$
.

That is, larger sets lead to smaller loss.

Note: $\lambda \to \infty \Rightarrow$ more conservative, i.e. larger set \Rightarrow smaller loss

Define the risk of a set-valued predictor \mathcal{T} to be

$$R(\mathcal{T}) = \mathbb{E}[L(Y, \mathcal{T}(X))]$$

Consider the risk of the tolerance functions from the family $\{\mathcal{T}_{\lambda}\}_{{\lambda}\in\Lambda}$.

 $R(\lambda)$ is shorthand for $R(\mathcal{T}_{\lambda})$.

Assume that there exists an element $\lambda_{\max} \in \Lambda$ such that $R(\lambda_{\max}) = 0$.

1.2 Procedure

Goal: find a set function whose risk is less than some user-specified threshold α . Analyze collection of functions $\{\mathcal{T}_{\lambda}\}_{{\lambda}\in\mathcal{T}}$ and estimate their risk on data not used for model training, $\mathcal{I}_{\operatorname{cal}}$. Then show that by choosing the value of λ in a certain way, we can guarantee that the procedure has risk less than α with high probability.

Pointwise upper confidence bound (UCB) for the risk function for each λ :

$$P(R(\lambda) \le \widehat{R}^+(\lambda)) \ge 1 - \delta$$

where $\widehat{R}^+(\lambda)$ may depend on $(X_1, Y_1), \ldots, (X_n, Y_n)$. Choose $\widehat{\lambda}$ as the smallest value of λ s.t. the entire confidence region to the right of λ falls below the target risk level α :

$$\hat{\lambda} \triangleq \inf \left\{ \lambda \in \Lambda : \hat{R}^{+} \left(\lambda' \right) < \alpha, \forall \lambda' \geq \lambda \right\}$$

1.3 Simplified Hoeffding Bound

1.3.1 Theorem 1: Validity of UCB Calibration

Let $(X_i, Y_i)_{i=1,...,n}$ be an i.i.d. sample, let $L(\cdot, \cdot)$ be a loss satisfying the monotonicity condition:

$$S \subset S' \Longrightarrow L(y, S) \ge L(y, S')$$
,

and let $\{\mathcal{T}_{\lambda}\}_{\lambda\in\Lambda}$ be a collection of set predictors satisfying the nesting property in

$$\lambda_1 < \lambda_2 \Longrightarrow \mathcal{T}_{\lambda_1}(x) \subset \mathcal{T}_{\lambda_2}(x).$$

Let $R: \Lambda \to \mathbb{R}$ be a continuous monotone nonincreasing function such that $R(\lambda) \leq \alpha$ for some $\lambda \in \Lambda$. Suppose $\widehat{R}^+(\lambda)$ is a random variable for each $\lambda \in \Lambda$ such that

$$P(R(\lambda) \le \widehat{R}^+(\lambda)) \ge 1 - \delta$$

 $holds \ pointwise \ for \ each \ \lambda. \ \ Then, \ for \ \hat{\lambda} \triangleq \inf \Big\{ \lambda \in \Lambda : \widehat{R}^+(\lambda') < \alpha, \forall \lambda' \geq \lambda \Big\},$

$$P\left(R\left(\mathcal{T}_{\hat{\lambda}}\right) \le \alpha\right) \ge 1 - \delta$$

That is, $\mathcal{T}_{\hat{\lambda}}$ is a $(\alpha, \delta) - RCPS$.

Proof. Consider the smallest λ that controls the risk:

$$\lambda^* \triangleq \inf\{\lambda \in \Lambda : R(\lambda) \le \alpha\}$$

Suppose $R(\hat{\lambda}) > \alpha \implies \hat{\lambda} < \lambda^*$ by the definition of λ^* and the monotonicity and continuity of $R(\cdot)$.

Then $R(\hat{\lambda}) > \alpha \implies \hat{\lambda} < \lambda^* \implies \hat{R}^+(\lambda^*) < \alpha$ by the definition of $\hat{\lambda}$.

But, since $R(\lambda^*) = \alpha$ (by continuity) and by the coverage property

$$P(R(\lambda) \le \widehat{R}^+(\lambda)) \ge 1 - \delta,$$

this happens with probability at most δ since the coverage property implies

$$P(R(\hat{\lambda}) > \widehat{R}^+(\lambda)) < \delta \implies P(R(\hat{\lambda}) > \alpha > \widehat{R}^+(\lambda^*)) < \delta \implies P(R(\hat{\lambda}) > \alpha) < \delta \implies P(R(\hat{\lambda}) \le \alpha) \ge 1 - \delta = 0$$

1.3.2 Hoeffding's Inequality

Suppose the loss is bounded above by one. Then,

$$P(\widehat{R}(\lambda) - R(\lambda) \le -x) \le \exp\{-2nx^2\}.$$

This implies an upper confidence bound

$$\widehat{R}_{sHoef}^{+}(\lambda) = \widehat{R}(\lambda) + \sqrt{\frac{1}{2n}\log\left(\frac{1}{\delta}\right)}.$$

Applying **Theorem 1** with

$$\begin{split} \hat{\lambda} &= \hat{\lambda}^{sHoef} \; \triangleq \inf \left\{ \lambda \in \Lambda : \widehat{R}^+_{\mathrm{sHoef}} \left(\lambda' \right) < \alpha, \forall \lambda' \geq \lambda \right\} \\ &= \inf \left\{ \lambda \in \Lambda : \widehat{R}(\lambda) < \alpha - \sqrt{\frac{1}{2n} \log \left(\frac{1}{\delta} \right)} \right\}, \end{split}$$

we can generate an RCPS.

1.3.3 Theorem 2: RCPS from Hoeffding's Inequality

In the setting of Theorem 1, assume also that the loss is bounded by one. Then, $\mathcal{T}_{\hat{\lambda} \text{ sHoef}}$ is a (α, δ) -RCPS.

1.4 Hoeffding-Bentkus Bound

In general, a UCB can be obtained if the lower tail probability of $\widehat{R}(\lambda)$ can be controlled, which is nearly tight for binary loss function.

1.4.1 Proposition 2:

Suppose g(t;R) is a nondecreasing function in $t \in \mathbb{R}$ for every R:

$$P(\widehat{R}(\lambda) < t) < q(t; R(\lambda))$$

Then, $\widehat{R}^+(\lambda) = \sup\{R : g(\widehat{R}(\lambda); R) \ge \delta\}$ satisfies

$$P(R(\lambda) \le \hat{R}^+(\lambda)) \ge 1 - \delta.$$

This result shows how a tail probability bound can be inverted to yield a UCB. Thus $g(\widehat{R}(\lambda); R)$ is a conservative p-value for testing the one-sided null hypothesis $H_0: R(\lambda) \geq R$.

Proof. Let G denote the CDF of $R(\lambda)$.

If $R(\lambda) > R^+(\lambda)$, then by definition, $g(\widehat{R}(\lambda); R(\lambda)) < \delta$, since $\widehat{R}^+(\lambda) = \sup\{R : g(\widehat{R}(\lambda); R) \ge \delta\}$.

As a result,

$$P(R(\lambda) > \widehat{R}^+(\lambda)) \le P(g(\widehat{R}(\lambda); R(\lambda)) < \delta) \le P(G(\widehat{R}(\lambda)) < \delta).$$

Let $G^{-1}(\delta) = \sup\{x : G(x) \le \delta\}$. Then,

$$P(G(\widehat{R}(\lambda)) < \delta) \le P(\widehat{R}(\lambda) < G^{-1}(\delta)) \le \delta.$$

This implies that $P(R(\lambda) > \hat{R}^+(\lambda)) \le \delta$ and completes the proof.

1.4.2 Proposition 3: Hoeffding's Inequality Tighter Version

Suppose the loss is bounded above by one. Then, for any $t < R(\lambda)$,

$$P(\widehat{R}(\lambda) \le t) \le \exp\{-nh_1(t; R(\lambda))\}$$

where
$$h_1(t; R) = t \log(t/R) + (1-t) \log((1-t)/(1-R))$$
.

Note: The weaker Hoeffding inequality is implied by Proposition 3 using the fact that $h_1(t;R) \geq 2(t-R)^2$.

1.4.3 Proposition 4: Bentkus' Inequality

Suppose the loss is bounded above by one. Then,

$$P(\widehat{R}(\lambda) \le t) \le eP(\operatorname{Binom}(n, R(\lambda)) \le \lceil nt \rceil),$$

where Binom(n, p) denotes a binomial random variable with sample size n and success probability p.

Note: Bentkus inequality implies that the Binomial distribution is the worst case up to a small constant. The Bentkus inequality is nearly tight if the loss function is binary, in which case $n\widehat{R}(\lambda)$ is binomial.

Putting **Propositions 3** and **4** together, we obtain a lower tail probability bound for $\widehat{R}(\lambda)$:

$$g^{\mathrm{HB}}(t;R(\lambda)) \triangleq \min\left(\exp\left\{-nh_1(t;R(\lambda))\right\}, eP(\mathrm{Binom}(n,R(\lambda)) \leq \lceil nt \rceil)\right).$$

By **Proposition 2**, we obtain a $(1 - \delta)$ upper confidence bound for $R(\lambda)$ as

$$\widehat{R}_{\mathrm{HB}}^{+}(\lambda) = \sup \left\{ R : g^{\mathrm{HB}}(\widehat{R}(\lambda); R) \ge \delta \right\}.$$

1.4.4 Theorem 3: RCPS from the Hoeffding-Bentkus Bound

In the setting of Theorem 1, assume additionally that the loss is bounded by one. Obtain $\hat{\lambda}^{\mathrm{HB}}$ from $\hat{R}^{+}_{\mathrm{HB}}(\lambda)$ as $\hat{\lambda} \triangleq \inf \left\{ \lambda \in \Lambda : \hat{R}^{+}(\lambda') < \alpha, \forall \lambda' \geq \lambda \right\}$. Then, $\mathcal{T}_{\hat{\lambda} \mathrm{HB}}$ is a (α, δ) -RCPS.

1.5 Waudby-Smith-Ramdas Bound

For non-binary loss functions, and bound that is adaptive to the variance via online inference and martingale analysis.

1.5.1 Proposition 5 (Waudby-Smith-Ramdas Bound)

Let $L_i(\lambda) = L(Y_i, T_{\lambda}(X_i))$ and

$$\hat{\mu}_i(\lambda) = \frac{1/2 + \sum_{j=1}^i L_j(\lambda)}{1+i}, \hat{\sigma}_i^2(\lambda) = \frac{1/4 + \sum_{j=1}^i (L_j(\lambda) - \hat{\mu}_j(\lambda))^2}{1+i}, v_i(\lambda) = \min\left\{1, \sqrt{\frac{2\log(1/\delta)}{n\hat{\sigma}_{i-1}^2(\lambda)}}\right\}.$$

 $Further,\ let$

$$\mathcal{K}_{i}(R;\lambda) = \prod_{j=1}^{i} \left\{ 1 - v_{j}(\lambda) \left(L_{j}(\lambda) - R \right) \right\}, \quad \widehat{R}_{\mathrm{WSR}}^{+}(\lambda) = \inf \left\{ R \geq 0 : \max_{i=1,\dots,n} \mathcal{K}_{i}(R;\lambda) > \frac{1}{\delta} \right\}.$$

Then, $\widehat{R}^+_{WSR}(\lambda)$ is $a(1-\delta)$ upper confidence bound for $R(\lambda)$.

Proof. Let $K_i = K_i(R(\lambda); \lambda)$, \mathcal{F}_0 be the trivial sigma-field and \mathcal{F}_i be the sigma-field generated by $(L_1(\lambda), \ldots, L_i(\lambda))$. Then, $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_n$ is a filtration. By definition, $v_i(\lambda) \in \mathcal{F}_{i-1}$ is a predictable sequence and $K_i \in \mathcal{F}_i$. Since $\mathbb{E}[L_i(\lambda)] = R(\lambda)$,

$$\mathbb{E}\left[\mathcal{K}_{i} \mid \mathcal{F}_{i-1}\right] = \mathbb{E}\left[\mathcal{K}_{i-1}(1 - v_{i}(\lambda)\left(L_{i}(\lambda) - R(\lambda)\right)\right) \mid \mathcal{F}_{i-1}\right] = \mathcal{K}_{i-1}\mathbb{E}\left[1 - v_{i}(\lambda)\left(L_{i}(\lambda) - R(\lambda)\right) \mid \mathcal{F}_{i-1}\right] = \mathcal{K}_{i-1}$$

In addition, since $v_i \in [0,1]$ and $(L_i(\lambda) - R(\lambda)) \in [-1,1]$, each component $1 - v_i(\lambda) (L_i(\lambda) - R(\lambda)) \ge 0$. Thus, $\{K_i : i = 1, ..., n\}$ is a non-negative martingale with respect to the filtration $\{F_i : i = 1, ..., n\}$.

Ville's Inequality

Let X_0, X_1, X_2, \ldots be a non-negative supermartingale. Then, for any real number a > 0,

$$P\left[\sup_{n\geq 0} X_n \geq a\right] \leq \frac{\mathrm{E}\left[X_0\right]}{a}$$

By Ville's inequality,

$$P\left(\max_{i=1,\dots,n} \mathcal{K}_i \ge \frac{1}{\delta}\right) \le \delta.$$

However, since $v_i \geq 0$, $\mathcal{K}_i(R; \lambda)$ is increasing in R almost surely for every i. By definition of $\widehat{R}^+_{WSR}(\lambda)$, if $\widehat{R}^+_{WSR}(\lambda) < R(\lambda)$, then $P(\max_{i=1,...,n} \mathcal{K}_i \geq 1/\delta)$. Therefore,

$$P\left(\widehat{R}_{\mathrm{WSR}}^{+}(\lambda) < R(\lambda)\right) \le P\left(\max_{i} \mathcal{K}_{i} \ge \frac{1}{\delta}\right) \le \delta.$$

This proves that $\widehat{R}^+_{WSR}(\lambda)$ is a valid upper confidence bound of $R(\lambda)$.

1.5.2 Theorem 4: RCPS From the Waudby-Smith-Ramdas Bound

In the setting of Theorem 1, assume additionally that the loss is bounded by 1. Then, $\mathcal{T}_{\hat{\lambda}WSR}$ is $a(\alpha, \delta) - RCPS$.

1.6 Unbounded Losses

1.6.1 Proposition A.1 (Impossibility of Valid UCB for Unbounded Losses in Finite Samples)

Let \mathcal{F} be the class of all distributions supported on $[0,\infty)$ with finite mean, and $\mu(F)$ be the mean of the distribution F. Let $\hat{\mu}^+$ be any function of $Z_1,\ldots,Z_n \overset{i.i.d.}{\sim} F$ such that $P(\hat{\mu}^+ \geq \mu(F)) \geq 1 - \delta$ for any n and $F \in \mathcal{F}$. Then, $P(\hat{\mu}^+ = \infty) \geq 1 - \delta$.

Proof. It is clear that \mathcal{F} satisfies the conditions

- 1. For every $F \in \mathcal{F}$, $\mu_F = \int_{-\infty}^{\infty} z dF$ exists and is finite.
- 2. For every real m, there is an $F \in \mathcal{F}$ with $\mu_F = m$.
- 3. \mathcal{F} is convex, that is, if F, $G \in \mathcal{F}$, π is a positive fraction, and $H = \pi F(1-\pi)G$ then $H \in \mathcal{F}$.

If $P_F(C[\mu_F]) \ge 1-\delta$ for all $F \in \mathcal{F}$, then $P_F(C[\mu_F]) \ge 1-\delta$ for all m and all $F \in \mathcal{F}$. For any such $\hat{\mu}^+$, $[0, \hat{\mu}^+]$ is a $(1-\delta)$ confidence interval of $\mu(F)$. By their Corollary 2, we know that for any $\mu \in \{\mu(F) : F \in \mathcal{F}\}$ and $F \in \mathcal{F}$

$$P_F(\mu \in [0, \hat{\mu}^+]) \ge 1 - \delta \iff P_F(\mu \le \hat{\mu}^+) \ge 1 - \delta.$$

The proof is complete by letting $\mu \to \infty$.