Profesor: Sebastián Flores Ayudante: Alberto Rubio Segundo Semestre 2015

Ayudantía #5 Aplicaciones de la Matemática en Ingeniería

En los siguientes problemas trabajaremos con la ecuación adimensional del calor. Esta viene dada por:

$$\rho \hat{C}_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\kappa \frac{\partial T}{\partial x} \right)$$

donde las constantes anteriores tienen unidades de:

Parámetros	Unidades
T_0, T_1	K
b	1
κ	energia/(tK)
ρ	m/l^3
\hat{C}_p	energia/mK

1. Considere una barra sólida de largo **2b** que se encuentra a temperatura inicial T_0 . En $t=t_0$, la temperatura en las caras $x=\pm b$ incrementa sorpresivamente hasta alcanzar temperatura $T_1>T_0$ y se mantiene en dicho punto constante.

Adimensionalize la ecuación anterior.

2. Ahora considere una barra sólida semi infinita a temperatura a T_0 . En $t_0=0$ se incrementa la temperatura de las superficies $x=\pm b$ a T_1 constante. Encuentre la forma adimensional.