

Algoritmos genéticos: Estrategias de selección

Dr. Asdrúbal López Chau Febrero 2017

Introducción

- Dada una población con N individuos, donde cada uno representa una posible solución al problema que se está resolviendo, se debe de determinar la aptitud de cada uno de los individuos.
- La aptitud representa una *probabilidad* de selección de cada individuo con respecto a los demás individuos de la población.

Introducción

- Las estrategias de selección de individuos son generalmente estocásticas.
- Los individuos más aptos, tienen más probabilidad de ser elegidos.
- Los individuos con menos aptitud (los peores), podrían ser elegidos también, debido a la naturaleza de las estrategias de selección.

Estrategias de selección

 Existe una gran cantidad de estrategias de selección para AG

Algoritmos genéticos

3

Estrategias de selección revisadas

- Aunque existen varias estrategias, en este curso veremos las siguientes:
- 1. Selección por ruleta
- 2. Sobrante estocástico
- 3. Selección por torneo

Algoritmo de la Ruleta

- Es el más utilizado en la mayoría de las implementaciones.
- El algoritmo es como sigue:
- 1. Calcular las aptitudes de todos los N individuos
- 2. Calcular la suma de valores esperados (T)
- 3. Repetir N veces
 - 1. Generar número aleatorio r entre 0 y T
 - 2. Recorrer los individuos sumando las aptitudes, detenerse hasta que la suma de las aptitudes sea mayor o igual a r (elegir a ese individuo)

Ejemplo ruleta

Individuo	Aptitud
1	1
2	5
3	6
4	4
5	2
6	1

N=6

La suma de las aptitudes es: 19

$$ar{f} = rac{1}{N} \sum a_i$$
 Frecuencia esperada total

Los valores esperados se calculan así:

$$V_{ei} = a_i \bar{f} = a_i \frac{1}{N} \sum a_i$$

Ejemplo ruleta

Individuo	Aptitud	Ve
1	1	3.17
2	5	15.83
3	6	19
4	4	12.67
5	2	6.33
6	1	3.17

$$V_{e1} = 1 \times \frac{19}{6} = 3.17$$

$$V_{ei} = a_i \bar{f} = a_i \frac{1}{N} \sum a_i$$

N=6

T=60.17

El número pseudo aleatorio r que se generará será entre 0 y 60.17

Este procedimiento se realiza N veces:

Generar pseudo aleatoriamente T, tal que 0=< r<=T. Para este ejemplo, supongamos que r=32.28

T=60.17

	Individuo	Aptitud	Ve
	1	1	3.17
	2	5	15.83
<	3	6	19
	4	4	12.67
	5	2	6.33
	6	1	3.17
	N=6		T_CO 17

$$3.17 + 15.83 (=19) < 32.28$$

Elegir al individuo sumando las Ve hasta cumplir la condición

Ejercicio

• Use el algoritmo de la **ruleta** para seleccionar a los individuos siguientes:

Individuo	Aptitud
1	0.5
2	0.9
3	0.6
4	0.3

• Use un generador de números pseudo aleatorios para generar r.

Selección: Sobrante estocástico

El algoritmo es el siguiente:

- 1. Asignar de manera determinística el conteo de valores esperados a cada individuo (valores enteros).
- 2. Los valores restantes (sobrantes del redondeo) se usan probabilísticamente para rellenar la población

Hay dos versiones:

- Sin reemplazo
- Con reemplazo

• Usando los mismos individuos que en el ejemplo de la ruleta

Individuo	Aptitud
1	1
2	5
3	6
4	4
5	2
6	1

Calcular los valores esperados, y separar en parte entera y parte fraccionaria

$$\bar{e}_i = \frac{a_i}{\bar{f}}$$

$$\bar{f} = \frac{\sum a_i}{N} = \frac{19}{6} = 3.17$$

• Usando los mismos individuos que en el ejemplo de la ruleta

Individuo	Aptitud	Ve	Parte Entera	Parte Fraccionaria
1	1	0.32	0	0.32
2	5	1.58	1	0.58
3	6	1.89	1	0.89
4	4	1.26	1	0.26
5	2	0.63	0	0.63
6	1	0.32	0	0.32

$$\bar{e_1} = \frac{a_1}{\bar{f}} = \frac{1}{3.17} = 0.32$$

Los demás se calculan de forma similar

• Selección de individuos

2) Si no se completa
la población, entonces
elegimos de estos.

Individuo	Aptitud	Ve	Parte Entera	Parte Fraccionaria
1	1	0.32	0	0.32
2	5	1.58	1	0.58
3	6	1.89	1	0.89
4	4	1.26	1	0.26
5	2	0.63	0	0.63
6	1	0.32	0	0.32

Algoritmos genéticos 13

• Selección de individuos

Individuo	Aptitud	Ve	Parte Entera	Parte Fraccionaria
1	1	0.32	0	0.32
5	2	0.63	0	0.63
6	1	0.32	0	0.32

• Usando los mismos individuos que en el ejemplo de la ruleta

Individuo	Aptitud
1	1
2	5
3	6
4	4
5	2
6	1

Calcular los valores esperados, y separar en parte entera y parte fraccionaria

$$\bar{e}_i = \frac{a_i}{\bar{f}}$$

$$\bar{f} = \frac{\sum a_i}{N} = \frac{19}{6} = 3.17$$

• Se usa sólo la parte fraccionaria

Individuo	Aptitud	e _i	Parte Fraccionaria
1	1	0.32	0.32
2	5	1.58	0.58
3	6	1.89	0.89
4	4	1.26	0.26
5	2	0.63	0.63
6	1	0.32	0.32

Se crea una ruleta. Cada individuo tiene una probabilidad de ser elegido de

$$\frac{e_i}{\sum \text{parte fraccionaria de } e_i}$$

Algoritmos genéticos 16

• Se usa sólo la parte fraccionaria

Individuo	Aptitud	e _i	Parte Fraccionaria	Prob
1	1	0.32	0.32	0.11
2	5	1.58	0.58	0.19
3	6	1.89	0.89	0.30
4	4	1.26	0.26	0.09
5	2	0.63	0.63	0.21
6	1	0.32	0.32	0.11

$$\sum$$
 parte fraccionaria de $e_i = 3$

$$\frac{e_1}{\sum e_i} = \frac{0.32}{3} = 0.11$$

Los otros valores se calculan de forma similar

Ejercicio

• Del ejemplo anterior, escriba un programa para elegir individuos de acuerdo a su probabilidad. Por ejemplo, el individuo 1 debe de tener probabilidad de ser elegido de un 11%, el individuo 2 de 19%, etc.

Ejercicio

- Implemente los algoritmos de ruleta y sobrante estocástico.
- Use un enfoque orientado a objetos.