

Algorithmique de base et python

Cours 03

Master G2M 2024-2025

celine.jost@univ-paris8.fr

Comprendre le fonctionnement de la machine

Reformuler, interpréter, vérifier, écrire

Opérateur
Variable
Constante
Déclaration
Affectation
Initialisation

Les savoir-faire

Ce n'est pas une définition officielle. Cela constitue mes choix pédagogiques.

Les concepts

- Constante
- Variable
- Opérateur
- Tableau (liste, pile)
- Arbre
- Séquence
- Condition
- Itération
- Fonction
- Procédure
- Permutation
- Concaténation
- Tri

- Déclaration
- Affectation
- Initialisation
- Incrémentation
- Expression
- Instruction
- Bloc d'instructions
- Lecture
- Ecriture
- Imbrication
- Récursivité
- Complexité

Nos outils

Nouvel outil hautement important!

LA MÉMOIRE

- L'ordinateur utilise une mémoire
- Pour faire une opération, il faut lui donner toutes les informations.

Ca, c'est l'allégorie de l'ordinateur.

Combien ai-je de gâteaux ?

Combien ai-je de gâteaux ?

Principe de base

Exemple: la factorielle

Prenons l'exemple de la factorielle.

Rappel:

Soit n un entier naturel. La factorielle de n est définie par n! = 1 x 2 x 3 x ... x (n-1) x n

Calcul à effectuer

1 x 2 x 3 x ... x (n-1) x n

COMMENT ÇA SE PASSE EN VRAI?

Deux choses à comprendre :

- L'ordinateur effectue un calcul à la fois
- L'ordinateur doit utiliser sa mémoire pour retrouver les valeurs à calculer

Calcul à effectuer : 1 x 2 x 3 x 4 x 5

1 2 3 4 5

Calcul à effectuer : 1 x 2 x 3 x 4 x 5

1 2 3 4 5

$$1 \times 2 = 2$$

Calcul à effectuer: 1 x 2 x 3 x 4 x 5

1 2 3 4 5

1 2 3 4 5 2

Calcul à effectuer: 1 x 2 x 3 x 4 x 5

1 2 3 4 5

$$1 \times 2 = 2$$

1 2 3 4 5 2

$$2 \times 3 = 6$$

Calcul à effectuer: 1 x 2 x 3 x 4 x 5

1 2 3 4 5

$$1 \times 2 = 2$$

1 2 3 4 5 2

1 2 3 4 5 2 6

Calcul à effectuer : 1 x 2 x 3 x 4 x 5

1 2 3 4 5

$$1 \times 2 = 2$$

1 2 3 4 5 2

$$2 \times 3 = 6$$

1 2 3 4 5 2 6

$$6 \times 4 = 24$$

Calcul à effectuer : 1 x 2 x 3 x 4 x 5

1 2 3 4 5

$$1 \times 2 = 2$$

1 2 3 4 5 2

1 2 3 4 5 2 6

1 2 3 4 5 2 6 24

Calcul à effectuer : 1 x 2 x 3 x 4 x 5

1 2 3 4 5

1 2 3 4 5 2

1 2 3 4 5 2 6

1 2 3 4 5 2 6 24

Calcul à effectuer : 1 x 2 x 3 x 4 x 5

1 2 3 4 5

$$1 \times 2 = 2$$

1 2 3 4 5 2

$$2 \times 3 = 6$$

1 2 3 4 5 2 6

$$6 \times 4 = 24$$

1 2 3 4 5 2 6 24

1 2 3 4 5 2 6 24 120

Algorithme: 5 x 4 x 3 x 2 x 1

Valeur de départ : 5

Algorithme: 5 x 4 x 3 x 2 x 1

Valeur de départ : 5

$$5 - 1 = 4$$

Algorithme: 5 x 4 x 3 x 2 x 1

Valeur de départ : 5

$$5 - 1 = 4$$

-

Algorithme: 5 x 4 x 3 x 2 x 1

Valeur de départ : 5

$$5 - 1 = 4$$

5 4

$$5 \times 4 = 20$$

Algorithme: 5 x 4 x 3 x 2 x 1

Valeur de départ : 5

$$5 - 1 = 4$$

5 4

$$5 \times 4 = 20$$

20 4

Algorithme: 5 x 4 x 3 x 2 x 1

Valeur de départ : 5

$$5 - 1 = 4$$

5 4

$$5 \times 4 = 20$$

$$4 - 1 = 3$$

Algorithme: 5 x 4 x 3 x 2 x 1

Valeur de départ : 5

$$5 - 1 = 4$$

5 4

$$5 \times 4 = 20$$

20 4

$$4 - 1 = 3$$

Algorithme: 5 x 4 x 3 x 2 x 1

Valeur de départ : 5

$$5 - 1 = 4$$

5

$$5 \times 4 = 20$$

20 4

$$4 - 1 = 3$$

$$20 \times 3 = 60$$

Algorithme: 5 x 4 x 3 x 2 x 1

Valeur de départ : 5

$$5 - 1 = 4$$

5 4

$$5 \times 4 = 20$$

20 4

$$4 - 1 = 3$$

20 3

$$20 \times 3 = 60$$

Algorithme: 5 x 4 x 3 x 2 x 1

Valeur de départ : 5

$$5 - 1 = 4$$

5

$$3 - 1 = 2$$

$$5 \times 4 = 20$$

20 4

$$4 - 1 = 3$$

20 3

$$20 \times 3 = 60$$

Algorithme: 5 x 4 x 3 x 2 x 1

Valeur de départ : 5

$$5 - 1 = 4$$

5

$$3 - 1 = 2$$

60 2

$$5 \times 4 = 20$$

20 4

$$4 - 1 = 3$$

20 3

$$20 \times 3 = 60$$

Algorithme: 5 x 4 x 3 x 2 x 1

Valeur de départ : 5

$$5 - 1 = 4$$

5

$$3 - 1 = 2$$

60 2

$$5 \times 4 = 20$$

20 4

$$60 \times 2 = 120$$

$$4 - 1 = 3$$

20 3

$$20 \times 3 = 60$$

Algorithme: 5 x 4 x 3 x 2 x 1

Valeur de départ : 5

$$5 - 1 = 4$$

5 4

$$3 - 1 = 2$$

60 2

$$5 \times 4 = 20$$

20 4

$$60 \times 2 = 120$$

120 2

$$4 - 1 = 3$$

20 3

$$20 \times 3 = 60$$

Algorithme : 5 x 4 x 3 x 2 x 1

Valeur de départ : 5

$$5 - 1 = 4$$

5

$$3 - 1 = 2$$

60

$$5 \times 4 = 20$$

20 4

$$60 \times 2 = 120$$

120 2

$$4 - 1 = 3$$

20 3

$$20 \times 3 = 60$$

$$2 - 1 = 1$$

Algorithme: 5 x 4 x 3 x 2 x 1

Valeur de départ : 5

$$5 - 1 = 4$$

5

3 - 1 = 2

60 2

$$5 \times 4 = 20$$

20 4

$$60 \times 2 = 120$$

120 2

$$4 - 1 = 3$$

20 3

$$2 - 1 = 1$$

120 1

$$20 \times 3 = 60$$

Algorithme: 5 x 4 x 3 x 2 x 1

Valeur de départ : 5

$$5 - 1 = 4$$

5

$$3 - 1 = 2$$

 $60 \times 2 = 120$

60 2

$$5 \times 4 = 20$$

20 4

120 2

$$4 - 1 = 3$$

 $20 \times 3 = 60$

20 3

$$2 - 1 = 1$$

Algorithme: 5 x 4 x 3 x 2 x 1

Valeur de départ : 5

$$5 - 1 = 4$$

5

3 - 1 = 2

60 2

$$5 \times 4 = 20$$

20 4

$$60 \times 2 = 120$$

120 2

$$4 - 1 = 3$$

20 3

$$20 \times 3 = 60$$

60 3

$$2 - 1 = 1$$

120 1

Opération à effectuer : 3 + 4

Opération à effectuer : 3 + 4

Stocke 3 en mémoire

3

Opération à effectuer : 3 + 4

Stocke 3 en mémoire

3

Stocke 4 en mémoire

3 4

Opération à effectuer : 3 + 4

Stocke 3 en mémoire

3

Stocke 4 en mémoire

3 4

$$3 + 4 = 7$$

3 4 7

Opération à effectuer : 3 + 4

Stocke 3 en mémoire

3

Annonce du résultat

3 4 7

Stocke 4 en mémoire

3 4

$$3 + 4 = 7$$

3 4 7

Opération à effectuer : 3 + 4

Stocke 3 en mémoire

3

Annonce du résultat

3 4 7

Stocke 4 en mémoire

3 4

On vide la mémoire

3 + 4 = 7

3 4 7

Synthèse

En algorithmique, on manipule des valeurs qui sont stockées dans la mémoire.

Interpréter un algorithme signifie que l'on est capable de déterminer à chaque étape les valeurs stockées en mémoire.

Il faut toujours avoir en tête une représentation de son algorithme!

Exécution pas à pas?

debut

$$a < -5$$

$$b < - 3$$

$$a < - a + b$$

Nos outils

MÉMOIRE ET CONCEPTS

Mémoire : représentation

En vrai, la mémoire se représente sous la forme d'un tableau.

C'est une version simplifiée de la réalité.

Mémoire : représentation

En vrai, la mémoire se représente sous la forme d'un tableau.

C'est une version simplifiée de la réalité.

Variables

Et voilà, ça c'est le rôle des variables.

Stocker des informations dans la mémoire de l'ordinateur pour pouvoir utiliser ces informations dans l'algorithme.

Adresse mémoire

Une variable est une sorte d'adresse qui permet de retrouver une valeur en mémoire.

Pas besoin de savoir où la donnée est stockée dans la mémoire.

Prenons l'exemple d'une division euclidienne

Mémoire

Liste des variables

Prenons l'exemple d'une division euclidienne

Mé	émoire

Liste des variables

J'ai besoin de deux nombres **a** et **b** afin de diviser a par b.

Prenons l'exemple d'une division euclidienne

	Mémoire
2	
a	
b	

Liste des variables

J'ai besoin de deux nombres **a** et **b** afin de diviser a par b.

Prenons l'exemple d'une division euclidienne

Mémoire a b

Liste des variables

J'ai besoin de deux nombres **a** et **b** afin de diviser a par b.

J'ai besoin de stocker le reste **r** de la division euclidienne.

Prenons l'exemple d'une division euclidienne

Mémoire a b

Liste des variables

J'ai besoin de deux nombres **a** et **b** afin de diviser a par b.

J'ai besoin de stocker le reste **r** de la division euclidienne.

Prenons l'exemple d'une division euclidienne

Mémoire

a b r

Liste des variables

J'ai besoin de deux nombres **a** et **b** afin de diviser a par b.

J'ai besoin de stocker le reste **r** de la division euclidienne.

J'ai besoin de stocker le quotient **q** de la division euclidienne.

Prenons l'exemple d'une division euclidienne

Mémoire

a
b
r
q

Liste des variables

J'ai besoin de deux nombres **a** et **b** afin de diviser a par b.

J'ai besoin de stocker le reste **r** de la division euclidienne.

J'ai besoin de stocker le quotient **q** de la division euclidienne.

Prenons l'exemple d'une division euclidienne

	Mémoire
a	
b	
r	
q	

Opérations

Prenons l'exemple d'une division euclidienne

Mémoire

a b r q

Opérations

a <- 16

Prenons l'exemple d'une division euclidienne

Mémoire

a 16
b
r
q

Opérations

a < -16

Prenons l'exemple d'une division euclidienne

Mémoire

a 16
b
r

Prenons l'exemple d'une division euclidienne

Mémoire

a 16
b 5
r

Prenons l'exemple d'une division euclidienne

Mémoire

a 16
b 5
r

Prenons l'exemple d'une division euclidienne

Mémoire

a 16
b 5
r 1
q

Prenons l'exemple d'une division euclidienne

Mémoire

a 16
b 5
r 1
q

Prenons l'exemple d'une division euclidienne

Mémoire

a 16
b 5
r 1
q 3

Prenons l'exemple d'une division euclidienne

Mémoire

a 16
b 5
r 1
q 3

Opérations

$$a < -16$$

$$q < -a/b$$

Vérification?

La zone en mémoire est réservée tant qu'on l'utilise

B 4	-			,
1\ /1	Δ	m	\sim	ire
1 V I	C		U	

a 16
b 5
r 3
q 1

La zone en mémoire est réservée tant qu'on l'utilise

Mémoire

a 16
b 5
r 3
q 1

Opérations

a < -25

La zone en mémoire est réservée tant qu'on l'utilise

Mémoire

a 25
b 5
r 3
q 1

Opérations

a <- 25

La zone en mémoire est réservée tant qu'on l'utilise

Mémoire

a 25
b 5
r 3
q 1

La zone en mémoire est réservée tant qu'on l'utilise

Mémoire

a 25
b 10
r 3
q 1

La zone en mémoire est réservée tant qu'on l'utilise

Mémoire

a	25
b	10
r	3
q	1

$$r < -2*a + b$$

La zone en mémoire est réservée tant qu'on l'utilise

Mémoire

a	25
b	10
r	60
q	1

$$r < -2*a + b$$

La zone en mémoire est réservée tant qu'on l'utilise

Mémoire

a	25
b	10
r	60
q	1

$$r < -2*a + b$$

La zone en mémoire est réservée tant qu'on l'utilise

Mémoire

a 25
b 10
r 0
q 1

$$r < -2*a + b$$

Question

Comprendre le fonctionnement de la machine Reformuler, interpréter, vérifier, écrire

Opérateur Variable Constante Déclaration Affectation

Initialisation

Et, c'est quoi une constante?

VOCABULAIRE CLEF POUR LA REFORMULATION

Comprendre le fonctionnement de la machine Reformuler, interpréter, vérifier, écrire

Opérateur
Variable
Constante
Déclaration
Affectation
Initialisation

Déclaration

Hey, tu me réserves un espace en mémoire s'il te plaît ? Je vais l'appeler somme.

La vérité sur la déclaration

La **déclaration** permet de réserver une zone en mémoire. Mais attention, la mémoire n'est pas vide. La zone mémoire est toujours remplie de ce qu'elle contenait avant.

Affectation

Hey, tu peux stocker une valeur dans la zone mémoire que j'ai réservé s'il te plaît ?
Pour l'instant ma somme vaut 0.

Exemple d'affectation:

somme <- 0

Initialisation

L'initialisation, c'est le fait d'affecter une valeur à une variable la première fois. C'est la toute première affectation.

Et : il est obligatoire d'initialiser une variable !

Expression

Hey, tu peux calculer **2+5** et mettre le résultat de l'opération dans la zone mémoire réservée à la **somme** s'il te plaît ?

$$3*(7+9)$$

Précision sur l'expression

On peut dire qu'une expression c'est un ensemble d'opérations amenant à un résultat, c'est-àdire un calcul effectué avec un ou plusieurs opérateurs.

Ordre de calcul

Dans « somme <- a + b », l'expression est « a + b ».

L'ordinateur calcule d'abord l'expression a+b et ensuite affecte le résultat dans somme.

C'est toujours cet ordre là!

Algorithme: déclarations + initialisations + instructions

Algorithme : **déclarations + initialisations + instructions**Appliquer des **données** à un algorithme fournit un **résultat**

Algorithme : **déclarations + initialisations + instructions**Appliquer des **données** à un algorithme fournit un **résultat**Instructions effectuées selon **ordre séquentiel** (les unes après les autres)

Algorithme: déclarations + initialisations + instructions
Appliquer des données à un algorithme fournit un résultat
Instructions effectuées selon ordre séquentiel (les unes après les autres)

Reformuler : **expliquer** ce que l'on voit, **comprendre** l'algorithme

Algorithme : **déclarations + initialisations + instructions**Appliquer des **données** à un algorithme fournit un **résultat**Instructions effectuées selon **ordre séquentiel** (les unes après les autres)

Reformuler : **expliquer** ce que l'on voit, **comprendre** l'algorithme

Interpréter : appliquer, calculer, **exécuter** (avec la tête), dérouler, chercher le résultat...

Algorithme: déclarations + initialisations + instructions
Appliquer des données à un algorithme fournit un résultat
Instructions effectuées selon ordre séquentiel (les unes après les autres)

Reformuler : **expliquer** ce que l'on voit, **comprendre** l'algorithme

Interpréter : appliquer, calculer, **exécuter** (avec la tête), dérouler, chercher le résultat...

Permutation

Opérateurs: 6 opérateurs arithmétiques: +, -, *, /, ^, %

Modulo % : un opérateur qui nous retourne le reste de la division euclidienne de deux nombres

a = bq + r	a/b = q	a%b = r
13 = 5*2 + 3	13/5 = 2	13%5 = 3

Mémoire: tableau, jamais vide, stocke le résultat des opérations, une valeur par case, accès par variable, pas d'historique. On ne sait pas ce qu'il y a dans une zone qu'on réserve.

Variable: adresse qui pointe vers une case de la mémoire qui contient une valeur

Constante : variable accessible en lecture seule

Vocabulaire: déclaration, initialisation, affectation (attention à l'ordre), expression, instruction, variable, constante.

LECTURE ET ÉCRITURE

Lecture et écriture

Entrées

Entrées

reponse <- "?"
est_content <- faux
ecrire "Etes-vous content ?"
lire reponse</pre>

Etes-vous content?

Sorties

oui

Entrées

var reponse : chaine
var est_content : booleen

reponse <- "?"
est_content <- faux

ecrire "Etes-vous content ?"
lire reponse
si reponse="non" alors</pre>

oui

Entrées

Etes-vous content?

Sorties

oui

Entrées

Etes-vous content?

Sorties

Nos outils

VERS LE PROCHAIN COURS

debut

debut

imc < - 27.0

```
debut
  imc <- 27.0
  resultat <- ""</pre>
```

```
debut
```

```
imc <- 27.0
resultat <- ""
si imc < 18.5 alors</pre>
```

debut

```
imc <- 27.0
resultat <- ""
si imc < 18.5 alors
resultat <- "sous-poids"</pre>
```

```
debut
```

```
imc <- 27.0
resultat <- ""
si imc < 18.5 alors
  resultat <- "sous-poids"
sinon si imc < 25.0 alors</pre>
```

```
debut
```

```
imc <- 27.0
resultat <- ""
si imc < 18.5 alors
  resultat <- "sous-poids"
sinon si imc < 25.0 alors
  resultat <- "normal"</pre>
```

```
imc <- 27.0
resultat <- ""
si imc < 18.5 alors
resultat <- "sous-poids"</pre>
```

resultat <- "normal"

sinon si imc < 30.0 alors</pre>

sinon si imc < 25.0 alors</pre>

fin

debut

```
debut
  imc <- 27.0
  resultat <- ""
  si imc < 18.5 alors
    resultat <- "sous-poids"
  sinon si imc < 25.0 alors
    resultat <- "normal"
  sinon si imc < 30.0 alors
    resultat <- "surpoids"</pre>
```

```
debut
  imc <- 27.0
  resultat <- ""
  si imc < 18.5 alors
    resultat <- "sous-poids"
  sinon si imc < 25.0 alors
    resultat <- "normal"
  sinon si imc < 30.0 alors
    resultat <- "surpoids"</pre>
```

sinon si imc < 35.0 alors

```
imc <- 27.0
resultat <- ""
si imc < 18.5 alors
    resultat <- "sous-poids"
sinon si imc < 25.0 alors
    resultat <- "normal"
sinon si imc < 30.0 alors
    resultat <- "surpoids"
sinon si imc < 35.0 alors
    resultat <- "surpoids"
sinon si imc < 35.0 alors
    resultat <- "obésité"</pre>
```

```
debut
  imc < -27.0
  resultat <- ""
  si imc < 18.5 alors
    resultat <- "sous-poids"</pre>
  sinon si imc < 25.0 alors
    resultat <- "normal"
  sinon si imc < 30.0 alors</pre>
    resultat <- "surpoids"</pre>
  sinon si imc < 35.0 alors
    resultat <- "obésité"
  sinon
```

```
debut
  imc < -27.0
  resultat <- ""
  si imc < 18.5 alors
    resultat <- "sous-poids"
  sinon si imc < 25.0 alors
    resultat <- "normal"
  sinon si imc < 30.0 alors</pre>
    resultat <- "surpoids"
  sinon si imc < 35.0 alors
    resultat <- "obésité"
  sinon
    resultat <- "obésité sévère"
```

```
debut
  imc < -27.0
  resultat <- ""
  si imc < 18.5 alors
    resultat <- "sous-poids"
  sinon si imc < 25.0 alors
    resultat <- "normal"
  sinon si imc < 30.0 alors</pre>
    resultat <- "surpoids"</pre>
  sinon si imc < 35.0 alors
    resultat <- "obésité"
  sinon
    resultat <- "obésité sévère"
  finsi
```

```
debut
  imc < -27.0
  resultat <- ""
  si imc < 18.5 alors
    resultat <- "sous-poids"
  sinon si imc < 25.0 alors
    resultat <- "normal"
  sinon si imc < 30.0 alors</pre>
    resultat <- "surpoids"</pre>
  sinon si imc < 35.0 alors
    resultat <- "obésité"
  sinon
    resultat <- "obésité sévère"
  finsi
  ecrire resultat
fin
```