Graph theory Introduction and basic algorithms

Lorenzo Ferrari

Campus Bornholm

December 15, 2021

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Table of contents

- Introduction
 - Examples
 - Definitions
 - Kinds of graph
 - Graph representation
- Graph traversals
 - BFS
 - DFS
- Problems
 - MST
 - Connected components
 - Single source shortest path
 - Conclusion

Table of contents

- Introduction
 - Examples
 - Definitions
 - Kinds of graph
 - Graph representation
- - BFS
 - DFS
- - MST
 - Connected components
 - Single source shortest path
 - Conclusion

Examples

Examples

Lorenzo Ferrari

Examples

Why graph theory?

- A huge number of problems can be converted in a graph problem
- Graph theory is fun \(^-^)/

We will study problems in abstract form. Their application can be found in the most diverse areas.

Typical graphs problems

- Given the description of a city, find the shortest path between locations A and B or determine that it is impossible to reach B from A.
- On an electronic board, choose a set of connections whose sum in length is minimal and which allows to pass through all points of interest.
- Given dependency relationships, find a suitable order to install some packages (or attend some classes) or determine that it is impossible.

Definition: Graph

Graph G = (V, E)

A graph is defined as a pair of sets:

- *V* is a set of vertexes/nodes
- E is a set of edges

Definition: Vertexes and Edges

Vertex

- Vertexes are also called nodes
- Vertexes are denoted with labels

Edge

- Each edge is defined by a pair of vertexes
- An edge connects the vertexes that define it
- In some cases, the vertexes can be the same

Example

- \bullet G = (V, E)
- $V = \{1, 2, 3, 4\}$
- $E = \{(1,2), (1,3), (1,4), (2,4), (3,4)\}$

Definition: Paths and Cycles

Path

A path of length n in a graph G = (V, E) is a sequence $v_0, \ldots, v_n \in V$ such that $(v_{i-1}, v_i) \in E \ \forall \ 1 \leq i \leq r$. A path is *simple* if all v_i differ.

Cycle

A cycle is a path in which the first and the last node are the same.

Definition: Subgraph

Subgraph

A graph G' = (V', E') is subgraph of G = (V, E) if $V' \subseteq V$ and $E' \subseteq E$.

Graph size

Definitions

- n = |V|: number of nodes
- m = |E|: number of edges

Relationships between n and m

- In an undirected graph, $m \leq \frac{n(n-1)}{2} = O(n^2)$
- In a directed graph, $m \le n^2 n = O(n^2)$

Directed and Undirected graphs

Directed graph G = (V, E)

 E is a set of ordered pairs (u, v) of nodes

Undirected graph G = (V, E)

E is a set of unordered pairs
 [u, v] of nodes

Cyclic and Acyclic graphs

Cyclic graph

Contains cycles

Acyclic graph

Contains no cycles

Cyclic and Acyclic graphs

Cyclic graph

Contains cycles

Acyclic graph

Contains no cycles

Weighted graphs

Weighted graph

- Each edge is assigned a wheight
- Weigth typically shows cost of traversing

Trees

Tree

• Connected graph with m = n - 1

Rooted tree

• Connected graph with m=n-1 in which some special node is designed as root

Introduction

Representations

Two possible "classic" implementations

- Adjacency matrix
- Adjacency list

Introduction

Adjacency matrix

$$m_{uv} = \begin{cases} 1, & \text{if } (u, v) \in E \\ 0, & \text{if } (u, v) \notin E \end{cases}$$

	0	1	2	3	4
0	0	1	0	0	0
1	0	0	1	0	0
2	0	0	0	0	1
3	1	0	1	0	1
4	0	0	1	0	0

Adjacency list

$$G.adj(u) = \{v \mid (u, v) \in E\}$$

$$egin{array}{c|c} 0 &
ightarrow & 1 \ \hline 1 &
ightarrow & 2 \ \hline 2 &
ightarrow & 4 \ \hline \end{array}$$

Table of contents

- Introduction
 - Examples
 - Definitions
 - Kinds of graph
 - Graph representation
- ② Graph traversals
 - BFS
 - DFS
- Problems
 - MST
 - Connected components
 - Single source shortest path
 - Conclusion

Breadth-first search

Problem definition

Given a graph G = (V, E) and a vertex $r \in V$ (root), visit exactly once all the vertexes of the graph that can be reached from r.

Breadth-first search (BFS)

Traverse the graph by visiting the nodes by levels: first nodes at distance 1 from the source, then distance 2, etc.

Application: shortest distances

Breadth-first search

```
def bfs(G, r):
    Q = deque()
    Q.append(r)
    visited = {r}
    while len(Q) > 0:
        u = Q.popleft()
        for v in G.adj(u):
        if not v in visited:
            visited.add(v)
            Q.append(v)
```

Depth-first search

Problem definition

Given a graph G = (V, E) and a vertex $r \in V$ (root), visit exactly once all the vertexes of the graph that can be reached from r.

Depth-first search (DFS)

Traverse the graph by visiting all the nodes that can be reached by a node, and all the nodes that can be reached by those nodes, etc.

- Application: topological sort
- Application: cycle detection
- Application: connected components
- Application: strongly connected components

DFS

Depth-first search: iterative

```
def dfs(G, r):
    stack = [r]
    visited = {r}
    while len(stack) > 0:
        u = stack.pop()
        for v in G.adj(u):
        if not v in visited:
            visited.add(v)
            stack.append(v)
```

Depth-first search: recursive

```
def dfs(G, u, visited):
  visited.add(u)
  for v in G.adj(u):
    if not v in visited
      dfs(G, v, visited)
```

Table of contents

- Introduction
 - Examples
 - Definitions
 - Kinds of graph
 - Graph representation
- Graph traversals
 - BFS
 - DFS
- Problems
 - MST
 - Connected components
 - Single source shortest path
 - Conclusion

Minimum Spanning Tree (MST)

Problem definition

Given a connected weighted graph G = (V, E), find $S \subseteq E$ such that (V, S) is still connected and S has the minimum total edge weight.

Minimum Spanning Tree (MST)

Problem definition

Given a connected weighted graph G = (V, E), find $S \subseteq E$ such that (V, S) is still connected and S has the minimum total edge weight.

Kruskal algorithm for MST

```
def mst(E):
    E.sort() # sort for increasing weight
    ans = []
    for edge in E:
        if not Cycle(ans, edge):
            ans.append(edge)
    return ans
```

Connected Components

Problem definition

Given an undirected graph G = (V, E), find the number of connected components.

Connected Components

```
def connectedComponents(G):
    visited = {}
    count = 0
    for u in G.V:
        if not u in visited:
            count += 1
            dfs(G, u, visited)
```

Single source shortest path

Problem definition

Given a weighted graph G = (V, E) and a source node s, find the distance of every node from s. If there is not a path from s to a node v, dist[v] should be $+\infty$.

Single source shortest path

```
def shortestPath(G, s):
 Q = deque()
  dist = [math.inf] * G.n
  dist[s] = 0
 Q.append(s)
  while len(Q) > 0:
    u = Q.popleft()
    for (v,w) in G.adj(u):
      if dist[v] > dist[u] + w
        dist[v] = dist[u] + w
        Q.append(v)
```

return dist

More problems

- Given an undirected graph, find the minimum number of edges to add if you want to make it connected.
- Given a weighted graph and three nodes a, b, c, find a minimal length path which goes from a to c passing through b.
- Given a directed graph, find a permutation of V such that $\forall (u, v) \in E$ u comes before v, or tell it is impossible.
- Given a set of words S, find a minimal length string which contains each element of S as a substring.
- Given some dominoes, tell whether you can put them in a line such that the domino condition is satisfied.

Any questions?

- Introduction
 - Examples
 - Definitions
 - Kinds of graph
 - Graph representation
- Graph traversals
 - BFS
 - DFS
- Problems
 - MST
 - Connected components
 - Single source shortest path
 - Conclusion