TEA010 Matemática Aplicada II
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
FB, 8 dez 2023

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Mostre que o esquema de diferenças finitas (para resolver a equação da onda cinemática)

$$u_i^{n+1} = u_i^n - \frac{c\Delta t}{2\Delta x} \left(u_{i+1}^n - u_{i-1}^n \right)$$

é incondicionalmente instável.

Prof. Nelson Luís Dias

SOLUÇÃO DA QUESTÃO:

$$\begin{split} u_i^{n+1} &= u_i^n - \frac{c\Delta t}{2\Delta x} \left(u_{i+1}^n - u_{i-1}^n \right) \\ u_i^{n+1} &= u_i^n - \frac{\text{Co}}{2} \left(u_{i+1}^n - u_{i-1}^n \right). \end{split}$$

$$\begin{split} \epsilon_i^{n+1} &= \epsilon_i^n - \frac{\operatorname{Co}}{2} \left(\epsilon_{i+1}^n - \epsilon_{i-1}^n \right), \\ \epsilon_i^n &= \sum_{l=1}^{N/2} \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i} k_l x_i} \implies \\ \xi_l \mathrm{e}^{a(t_n + \Delta t)} \mathrm{e}^{\mathrm{i} k_l i \Delta x} &= \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i} k_l i \Delta x} - \frac{\operatorname{Co}}{2} \left(\xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i} k_l (i+1) \Delta x} - \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i} k_l (i-1) \Delta x} \right); \end{split}$$

eliminando o fator comum $\xi_l e^{at_n + ik_l i\Delta x}$,

$$e^{a\Delta t} = 1 - \frac{\text{Co}}{2} \left(e^{+ik_l \Delta x} - e^{-ik_l \Delta x} \right)$$

= 1 - iCo sen $k_l \Delta x$.

Mas

$$|e^{a\Delta t}| = \sqrt{1 + \text{Co}^2 \text{sen}^2(k_l \Delta x)} > 1$$
 sempre,

e o esquema é incondicionalmente instável

$$\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} = -kc,$$

$$c(x, 0) = 0,$$

$$c(0, t) = c_0,$$

onde u, k e c_0 são constantes positivas, calcule a sua transformada de Laplace (em t) e obtenha uma equação diferencial ordinária para $\overline{c}(x,s)$.

SOLUÇÃO DA QUESTÃO:

$$\mathcal{L}\left\{\frac{\partial c}{\partial t}\right\} = s\overline{c}(x,s) - c(x,0) = s\overline{c}(x,s);$$

$$\mathcal{L}\left\{u\frac{\partial c}{\partial x}\right\} = u\frac{d\overline{c}}{dx};$$

$$\mathcal{L}\left\{-kc\right\} = -k\overline{c}.$$

Portanto, a EDO é

$$s\overline{c} + u\frac{d\overline{c}}{dx} = -k\overline{c},$$
$$(s+k)\overline{c} + u\frac{d\overline{c}}{dx} = 0.$$

A condição inicial é

$$\overline{c}(0,s) = \int_{t=0}^{\infty} e^{-st} c(0,t) dt$$
$$= \int_{t=0}^{\infty} e^{-st} c_0 dt$$
$$= \frac{c_0}{s} \blacksquare$$

$$\int_0^\infty e^{-x^2} \cos(kx) \, dx = \frac{\sqrt{\pi}}{2} e^{-\frac{k^2}{4}},$$

Calcule a transformada de Fourier de $f(x) = e^{-x^2}$.

SOLUÇÃO DA QUESTÃO:

$$\widehat{f}(k) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x) e^{-ikx} dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-x^2} e^{-ikx} dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \underbrace{e^{-x^2} \left[\cos(kx) - i \sec(kx) \right] dx}_{\text{par}}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-x^2} \cos(kx) dx$$

$$= \frac{1}{\pi} \int_{0}^{+\infty} e^{-x^2} \cos(kx) dx$$

$$= \frac{1}{\pi} \frac{\sqrt{\pi}}{2} e^{-\frac{k^2}{4}}$$

$$= \frac{1}{2\sqrt{\pi}} e^{-\frac{k^2}{4}} \blacksquare$$

4 [25] Considere o problema de Sturm-Liouville

$$\frac{d}{dx} \left[e^{-x} \frac{dy}{dx} \right] + 2\lambda e^{-x} y(x) = 0, \qquad y'(0) = 0, \ y'(1) = 0.$$

Obtenha os autovalores e as autofunções associados.

SOLUÇÃO DA QUESTÃO:

Inicialmente, note que $p(x) = e^{-x}$, q(x) = 0, e $w(x) = 2e^{-x}$. A EDO é

$$e^{-x}\frac{d^2y}{dx^2} - e^{-x}\frac{dy}{dx} + 2\lambda e^{-x}y = 0,$$
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} + 2\lambda y = 0.$$

A equação característica é

$$r^{2} - r + 2\lambda = 0;$$

$$r = \frac{1 \pm \sqrt{1 - 8\lambda}}{2}.$$

Para que as raízes sejam reais, devemos ter

$$1 - 8\lambda \ge 0,$$

$$1 \ge 8\lambda,$$

$$\lambda \le \frac{1}{8}.$$

Se $\lambda = 1/8$, r = 1/2 é uma raiz dupla:

$$y(x) = c_1 e^{x/2} + c_2 x e^{x/2},$$

$$y'(x) = \frac{c_2 x + 2c_2 + c_1}{2} e^{x/2},$$

$$y'(0) = \frac{1}{2}c_1 + c_2 = 0,$$

$$y'(1) = \frac{1}{2}c_1 e^{1/2} + \frac{3}{2}c_2 e^{1/2} = 0,$$

donde $c_1 = c_2 = 0$, e $\lambda = 1/8$ não é autovalor. Se $\lambda < 1/8$, faça

$$\alpha = 1/2 > 0,$$

$$\beta = \frac{\sqrt{1 - 8\lambda}}{2} > 0;$$

$$y(x) = e^{\alpha x} [A \cosh(\beta x) + B \sinh(\beta x)];$$

$$y'(x) = \alpha e^{\alpha x} [A \cosh(\beta x) + B \sinh(\beta x)] + \beta e^{\alpha x} [A \sinh(\beta x) + B \cosh(\beta x)]$$

$$= e^{\alpha x} [(\alpha A + \beta B) \cosh(\beta x) + (\alpha B + \beta A) \sinh(\beta x)];$$

$$y'(0) = \alpha A + \beta B = 0,$$

$$y'(1) = e^{\alpha} \underbrace{\left(\alpha A + \beta B\right) \cosh(\beta) + (\alpha B + \beta A) \sinh(\beta)}_{=0} = 0.$$

mas $e^{\alpha} \neq 0$ e senh $(\beta) \neq 0$, de modo que podemos simplificar para

$$\alpha A + \beta B = 0,$$

$$\beta A + \alpha B = 0;$$

ou

$$\begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Mas esse sistema admite solução não-nula quando o determinante é nulo, ou

$$\alpha^{2} - \beta^{2} = 0,$$

$$\alpha^{2} = \beta^{2},$$

$$\alpha = \pm \beta.$$

Por hipótese, $\alpha = 1/2 > 0$, e $\beta > 0$, donde $\alpha = \beta = 1/2$, e $\lambda = 0$ é autovalor. Neste caso, temos B = -A, e

$$y_0(x) = e^{x/2} [\cosh(x/2) - \sinh(x/2)] \equiv 1$$

é uma autofunção! Note que $\lambda = 0$ é o *único* autovalor para a região $\lambda < 1/8$. Prosseguindo, se $\lambda > 1/8$,

$$\alpha = 1/2 > 0,$$

$$\beta = \frac{\sqrt{8\lambda - 1}}{2},$$

$$y(x) = e^{\alpha x} \left[A\cos(\beta x) + B\sin(\beta x) \right],$$

$$y'(x) = \alpha e^{\alpha x} \left[A\cos(\beta x) + B\sin(\beta x) \right] + \beta e^{\alpha x} \left[-A\sin(\beta x) + B\cos(\beta x) \right]$$

$$= e^{\alpha x} \left[(\alpha A + \beta B)\cos(\beta x) + (\alpha B - \beta A)\sin(\beta x) \right];$$

$$y'(0) = 0 \implies (\alpha A + \beta B) = 0,$$

$$y'(1) = 0 \implies e^{\alpha} \left[(\alpha B - \beta A)\sin(\beta) \right] = 0$$

Mas $e^{\alpha} \neq 0$, donde

$$\begin{bmatrix} \alpha & \beta \\ -\beta \operatorname{sen}(\beta) & \alpha \operatorname{sen}(\beta) \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

e o sistema admitirá soluções não-trivais se o determinante for nulo:

$$(\alpha^2 + \beta^2) \operatorname{sen}(\beta) = 0,$$

$$\operatorname{sen}(\beta) = 0,$$

$$\beta_n = \frac{\sqrt{8\lambda_n - 1}}{2} = n\pi,$$

$$\frac{8\lambda_n - 1}{4} = n^2 \pi^2,$$

$$\lambda_n = \frac{1}{8} + \frac{n^2 \pi^2}{2}, \qquad n \ge 1.$$

B depende de A segundo

$$B = -\frac{\alpha}{\beta}A,$$

de forma que as autofunções são

$$y_n(x) = e^{x/2} \left[\cos(n\pi x) - \frac{1}{2n\pi} \operatorname{sen}(n\pi x) \right], \qquad n \ge 1 \blacksquare$$