

Design and Analysis of Algorithms (203105301)

Prof. Jayahree Parmar, Assistant Professor Information Technology

CHAPTER-1

Introduction

Outline

- Characteristics of algorithm.
- Analysis of algorithm: Asymptotic analysis of complexity bounds best, average and worst-case behavior;
- Performance measurements of Algorithm,
- Time and space trade-offs,
- Analysis of recursive algorithms through recurrence relations:
 Substitution method

Computational problems?

- A computational problem specifies an input-output relationship
 - What does the input look like?
 - What should the output be for each input?
- Example:
 - Input: an integer number n
 - Output: Is the number even?
- Example:
 - Input: A list of names of people
 - Output: The same list sorted alphabetically

Problems and Solution as Algorithm

For example, we need to solve a computational problem

"Convert a distance in kilometer to meter"

An algorithm specifies how to solve it,

- Read distance in kilometer
- II. 2. Calculate distance-in-meter = distance-in-kilometer*1000
- III. 3. Print distance-in-meter

What is Algorithm?

- The word algorithm comes from the name of a Persian mathematician Abu

 Ja'far Mohammed ibn-i Musa al Khowarizmi.
- Algorithm is a finite set of instructions used to accomplish particular task.
- An algorithm takes some value, or set of values, as input and produces some value, or set of values, as output.

What is Algorithm?

Characteristics of algorithm

Characteristics of algorithm

Analysis of algorithm

Image source : Google

Why algorithm analysis?

- For one problem one or more solutions are available.
- Which one is better? How can we choose?
- The analysis of an algorithm can help us in understanding of solution in better way.
- Time & Space analysis

Order of Growth

- Any algorithm is expected to work fast for any input size.
- Smaller input size algorithm will work fine but for higher input size execution time is much higher.
- So how the behavior of algorithm changes with the no. of inputs will give the analysis of the algorithm and is called the Order of Growth.

Algorithm falls under three types

Rate of Growth

 Rate at which the running time increases as a function of input is called rate of growth.

Time Complexity	Name	Performance
1	Constant	Best
logn	Logarithmic	Very good
n	Linear	Good
nlogn	Linear	Fair
	Logarithmic	
n ²	Quadratic	Acceptable
n ³	Cubic	Poor
2 ⁿ	Exponential	Bad

Image source: Google

Asymptotic Complexity

- Refers to defining the mathematical bound of its run-time performance.
- Running time of an algorithm as a function of input size n for large n.
- asymptotic means approaching a value or curve arbitrarily.

Asymptotic Notations

O Notation

- express the tight upper bound of an algorithm
- f(n)=O(g(n)) implies: $O(g(n))=\{f(n): \text{there exists positive constants c>0 and n0}$ such that $f(n) \le c.g(n)$ for all n > n0.

Ω Notation

- express the lower bound of an algorithm
- $f(n) = \Omega(g(n))$ implies: $\Omega(g(n)) = \{ f(n) : \text{there exists positive constants c>0 and } n_0 \text{ such that } f(n) \ge g(n) \text{ for all } n > n_0 . \}$

θ Notation

- express both the lower bound and the upper bound (tight bound)"
- $f(n) = \Theta(g(n))$ implies: $\Theta(g(n)) = \{ f(n) : \text{there exists positive } constants \ c_1 > 0, \ c_2 > 0 \ \text{ and } n_0 \text{ such that } c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \text{ for all } n > n_0 \cdot \}$

OR, if & only if f(n)=O(g(n)) and $f(n)=\Omega(g(n))$ for all $n>n_0$

Fig: Asymptotic average bound (a), upper bound (b)and lower bound(c)
Image source:http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap02.htm

Examples on Big-O Notation(Upper bound/Worst case)

1) find upper bound for f(n)=2n+2

solution:2n+2 <= 4n, for all n >= 1 so 2n+2=O(n) with c=4 and n0=1

2) find upper bound for f(n)=2n2+1

solution:2n2+1<=3n2, for all n>=1 so 2n2+1=O(n2) with c=3 and n0 =1

Examples on Big-O Notation(Upper bound/Worst case)

3) Find upper bound for f(n)=5n4+4n+1Solution: 5n4+4n+1 <= 7n4, for all n>=2so 5n4+4n+1 = O(n4) with c=7 and n0=2

Now Try to solve below Questions

- I. Find upper bound for f(n)=200
- II. Find upper bound for f(n)=n3+n2
- III. Show that 20n3=O(n4) for appropriate c and n0.

Examples on Big- Ω Notation(Lower bound/ Best case)

```
1)find lower bound for f(n)=2n+2 solution:

2n<=2n+2, for all n>=1

so 2n+2=\Omega(n) with c=2 and n0=1

2)find lower bound for f(n)=2n+1

solution:

n2<=2n+1, for all n>=1

so 2n+1=\Omega(n+2) with c=1 and n0=1
```


Examples on Big- Ω Notation(Lower bound/ Best case)

3) Find lower bound for f(n)=5n4+4n+1

Solution:

4n4 <=5n4+4n+1, for all n>=1

so $5n4+4n+1 = \Omega(n4)$ with c=4 and n0 = 1

Now Try to solve below Questions

- I. For $\sqrt{n+54} = \Omega(\lg n)$. Choose c and n_0
- II. Any linear function an + b is in $\Omega(n)$. How?

Examples on Big- θ Notation(Tight bound/ Average case)

```
1)find tight bound for f(n)=2n+2
solution:
2n<=2n+2<=4n, for all n>=1
so 2n+2=\theta(n) with c1=2, c2=4 and n0=1
2)find lower bound for f(n)=2n2+1
solution:
n2<=2n2+1<=3n2, for all n>=1
so 2n2+1=\theta(n2) with c1=1, c2=3 and n0=1
```


Now Try to solve below Questions

- I. Is $5n^3 \in Q(n^4)$??
- II. How about $3^{2n} \in \mathbb{Q}(3^n)$??

Performance measurements of Algorithm

- Measure of the amount of time and/or space required by an algorithm for an input of a given size (n).
- What effects run time of an algorithm?
 - I. computer used, hardware platform
 - II. representation of abstract data types (ADT's)
 - III. efficiency of compiler
 - IV. competence of implementer (programming skills)
 - V. complexity of underlying algorithm
 - VI. size of the input

Out of these above (V) and (VI) are generally most significant

Time complexity and Space complexity

Analysis of recursive algorithms through recurrence

Recurrence relations:

- Refer as an equation that recursively defines a sequence where the next term is a function of the previous terms
- Can easily describe the runtime of recursive algorithms.

Let's create recurrence relation

Example:

```
f(n)
{
    if (n == 0)
        return 1;
    else
        return f(n - 1);
}
```


Recurrence relation

- The base case(termination condition) is reached when n == 0. The method performs one comparison. Thus, the number of operations when n == 0, T(0), is some constant c.
- When n !=0, the method calls itself,
- using ONE recursive call, with a parameter n − 1.

Recurrence relation

Therefore the recurrence relation is:

Recursive Case: T(n)=T(n-1), for n>0

Base Case: T(n)=c, for n=0 (Here T(n) is running time and n is input size)

Recurrence relation for factorial is T(n)=T(n-1), for n>0T(n)=c, for n=0

Exercise

Find out recurrence relation for following algorithm.

```
I. int fib(int n)
{
   if (n <= 1)
     return n;
   else
     return fib(n-1) + fib(n-2);
}</pre>
```


Exercise

Find out recurrence relation for following algorithm.

```
ii.) int A(int n) {
      if (n == 1)
      return 2;
      else
      return A (n / 2) + A( n / 2) + 5;
    }
```


Solving Recurrence Relation

- I. Substitution Method
- II. Iterative Method
- III. Recurrence Tree Method
- IV. Master's Method


```
continue for k times .now equation look like,  T(n) = T(n-(k+1)) + (n-k) + ......(n-2) + (n-1) + n \\ To reach base case ,n-(k+1) = 1 so k = n-2 \\ Put the value in equation 2) \\ T(n) = T(n-(n-2+1)) + (n-(n-2)) + ......(n-2) + (n-1) + n \\ T(n) = T(1) + 2 + ......(n-2) + (n-1) + n \\ T(n) = (n(n+1))/2 \\ So T(n) = O(n^2)
```


Exercise

Find the complexity of the below recurrence:

$$T(n) = \begin{cases} 3T(n-1), & if \ n > 0, \\ 1, & otherwise \end{cases}$$

DIGITAL LEARNING CONTENT

Parul[®] University

