18.01, September 19, 2003 Trig. Fnorns

- 1. Quick review of trig: deferencial of sin, cos, tan in terms of sides of n right Δ , angle addition, angle doubling, $\sin^2 + \cos^2 = 1$, $\sec(\theta)$, $\csc(\theta)$, $\cot(\theta)$, and graphs.
- 2. $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ graphically (b, comparing arc length of a small arc to chord length)
- 3. Derived from 2 that $\lim_{\theta \to 0} \frac{1 \cos \theta}{\theta} = 0$, $\lim_{\theta \to 0} \frac{1 \cos \theta}{\theta^2} = \frac{1}{2}$
- 4. Derivative of $\sin(x)$, $\cos(x)$ by deferential derivative of $\tan(x)$ by qtt rule (did some of $\frac{d}{dx}\sec(x)$, $\frac{d}{dx}\csc(x)$, $\frac{d}{dx}\cot(x)$).
- 5. Compute max's and min's of sin(x) and cos(x) and pointed this out on the graph.
- 6. Pointed out that for $v = \tan(x)$, $\frac{dv}{dx} = 1 + v^2$ (will be useful later)
- 7. Computed derivatives of $x \sin(\frac{1}{x})$ and $x^2 \sin(\frac{1}{x})$.

Reason: $x^2 \sin(\frac{1}{x})$ has derivative at every pt., but <u>not</u> cts. Diff.