

WYPEŁNIA ZDAJĄCY KOD PESEL miejsce na naklejkę

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Poziom rozszerzony

DATA: **kwiecień 2020 r.** CZAS PRACY: **180 minut**

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 20 stron (zadania 1–15). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zapisz w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. W rozwiązaniach zadań rachunkowych przedstaw tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z *Wybranych wzorów matematycznych*, linijki oraz kalkulatora prostego.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-R1_**1**P

W zadaniach od 1. do 4. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0–1)

Niech $L = \log_{\sqrt{2}} 2 \cdot \log_2 \sqrt{3} \cdot \log_{\sqrt{3}} 4$. Wtedy

- **A.** L = 1
- **B.** L=2 **C.** L=3 **D.** L=4

Zadanie 2. (0-1)

Okrąg o równaniu $(x-3)^2 + (y+7)^2 = 625$ jest styczny do okręgu o środku S = (12,5)i promieniu r. Wynika stąd, że

- A. r=5

- **B.** r = 15 **C.** r = 10 **D.** r = 20

Zadanie 3. (0-1)

Liczba $\sqrt{(1-\sqrt{2})^2} + \sqrt{(2-\sqrt{2})^2}$ jest równa

- **A.** 1
- **B.** -1 **C.** $3-2\sqrt{2}$ **D.** $2\sqrt{2}+1$

Zadanie 4. (0-1)

Spośród poniższych nierówności wskaż tę, którą spełniają dokładnie trzy liczby całkowite.

- **A.** $\left| \frac{3}{4}x + 5 \right| < 2$ **B.** $\left| \frac{4}{3}x + 5 \right| < 2$ **C.** $\left| \frac{3}{5}x + 4 \right| < 2$ **D.** $\left| \frac{4}{5}x + 3 \right| < 2$

Zadanie 5. (0-2)

Oblicz współczynnik kierunkowy stycznej do wykresu funkcji $f(x) = \frac{x^2}{x-1}$, określonej dla każdej liczby rzeczywistej $x \ne 1$, poprowadzonej w punkcie $A = \left(6, \frac{36}{5}\right)$ tego wykresu. W poniższe kratki wpisz kolejno cyfrę jedności, pierwszą i drugą cyfrę po przecinku skończonego rozwinięcia dziesiętnego otrzymanego wyniku.

Zadanie 6. (0–3)W trójkącie *ABC* kąt *BAC* jest dwa razy większy od kąta *ABC*. Wykaż, że prawdziwa jest równość $|BC|^2 - |AC|^2 = |AB| \cdot |AC|$.

Zadanie 7. (0-3)

Udowodnij, że dla dowolnego kąta $\alpha \in (0, \frac{\pi}{2})$ prawdziwa jest nierówność

$$\sin\left(\frac{\pi}{12} - \alpha\right) \cdot \cos\left(\frac{\pi}{12} + \alpha\right) < \frac{1}{4}$$
.

	Nr zadania	5.	6.	7.
Wypełnia	Maks. liczba pkt	2	3	3
egzaminator	Uzyskana liczba pkt			

Zadanie 8. (0–3)

Wykaż, że równanie $x^8 + x^2 = 2(x^4 + x - 1)$ ma tylko jedno rozwiązanie rzeczywiste x = 1.

Zadanie 9. (0-4)

Ze zbioru wszystkich liczb naturalnych ośmiocyfrowych, w których zapisie dziesiętnym występują tylko cyfry ze zbioru $\{0, 1, 3, 5, 7, 9\}$, losujemy jedną. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma cyfr wylosowanej liczby jest równa 3.

	Nr zadania	8.	9.
Wypełnia	Maks. liczba pkt	3	4
egzaminator	Uzyskana liczba pkt		

Zadanie 10. (0–4)

Dany jest rosnący ciąg geometryczny (a, aq, aq^2) , którego wszystkie wyrazy i iloraz są liczbami całkowitymi nieparzystymi. Jeśli największy wyraz ciągu zmniejszymy o 4, to otrzymamy ciąg arytmetyczny. Oblicz wyraz aq tego ciągu.

Zadanie 11. (0–4)

Dany jest nieskończony ciąg okręgów (o_n) o równaniach $x^2 + y^2 = 2^{11-n}$, $n \ge 1$. Niech P_k będzie pierścieniem ograniczonym zewnętrznym okręgiem o_{2k-1} i wewnętrznym okręgiem o_{2k} . Oblicz sumę pól wszystkich pierścieni P_k , gdzie $k \ge 1$.

	Nr zadania	10.	11.
Wypełnia	Maks. liczba pkt	4	4
egzaminator	Uzyskana liczba pkt		

Zadanie 12. (0–5)

Trapez prostokątny ABCD o podstawach AB i CD jest opisany na okręgu. Ramię BC ma długość 10, a ramię AD jest wysokością trapezu. Podstawa AB jest 2 razy dłuższa od podstawy CD. Oblicz pole tego trapezu.

	Nr zadania	12.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 13. (0-5)

Wierzchołki A i B trójkąta prostokątnego ABC leżą na osi Oy układu współrzędnych. Okrąg wpisany w ten trójkąt jest styczny do boków AB, BC i CA w punktach – odpowiednio – P = (0,10), Q = (8,6) i R = (9,13). Oblicz współrzędne wierzchołków A, B i C tego trójkąta.

	Nr zadania	13.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 14. (0-6)

Wyznacz wszystkie wartości parametru *m*, dla których równanie

$$x^2-3mx+(m+1)(2m-1)=0$$

ma dwa różne rozwiązania x_1 , x_2 spełniające warunki: $x_1 \cdot x_2 \neq 0$ oraz $0 < \frac{1}{x_1} + \frac{1}{x_2} \le \frac{2}{3}$.

	Nr zadania	14.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 15. (0-7)

Rozpatrujemy wszystkie możliwe drewniane szkielety o kształcie przedstawionym na rysunku, wykonane z listewek. Każda z tych listewek ma kształt prostopadłościanu o podstawie kwadratu o boku długości x. Wymiary szkieletu zaznaczono na rysunku.

- a) Wyznacz objętość V drewna potrzebnego do budowy szkieletu jako funkcję zmiennej x.
- b) Wyznacz dziedzinę funkcji V.
- c) Oblicz tę wartość *x*, dla której zbudowany szkielet jest możliwie najcięższy, czyli kiedy funkcja *V* osiąga wartość największą. Oblicz tę największą objętość.

	Nr zadania	15.
Wypełnia	Maks. liczba pkt	7
egzaminator	Uzyskana liczba pkt	