The evolution of genetic evaluation: Fisher to Visscher

Rohan Fernando

September, 2018

Iowa State University

R.A. Fisher, 1918

The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edin (1918) 53:399-433.

Two-way Factor Experiment

Data:

 $A_1 \ B_1 \ A_1 \ B_2 \ A_2 \ B_1 \ A_2 \ B_2 \ \vdots$

Two-way Factor Experiment

Data:

$$A_1$$
 B_1 A_1 B_2 A_2 B_1 A_2 B_2 \vdots

Model:

$$y_{ijk} = \mu + A_i + B_j + e_{ijk}$$

Two-way Factor Experiment

In Matrix notation:

$$y = X\beta + e$$

where

$$\mathbf{X} = egin{bmatrix} 1 & 1 & 0 & 1 & 0 \ 1 & 1 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 0 & 1 \ dots & dots & dots & dots & dots \end{matrix}$$

Least Squares:

$$(\mathbf{X}'\mathbf{X})\hat{oldsymbol{eta}}=\mathbf{X}'\mathbf{y}$$

Model for multifactorial inheritance:

$$\mathbf{y} = \mathbf{X}\boldsymbol{eta} + \mathbf{Q}\boldsymbol{lpha} + \mathbf{e}$$

Model for multifactorial inheritance:

$$\mathbf{y} = \mathbf{X}\boldsymbol{eta} + \mathbf{Q}\boldsymbol{lpha} + \mathbf{e}$$

But, Q (matrix of genotype covariates) is not observed!

Model for multifactorial inheritance:

$$y = X\beta + Q\alpha + e$$

But, **Q** (matrix of genotype covariates) is not observed!

Relatives are expected to have similar genotypes:

Model for multifactorial inheritance:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Q}\boldsymbol{\alpha} + \mathbf{e}$$

But, **Q** (matrix of genotype covariates) is not observed!

Relatives are expected to have similar genotypes:

So, covariances of genotypic values, $\mathbf{a} = \mathbf{Q} \boldsymbol{\alpha}$, can be expressed as

$$Var(\mathbf{a}) = \mathbf{A}\sigma_a^2$$

4

Model for multifactorial inheritance:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Q}\boldsymbol{\alpha} + \mathbf{e}$$

But, **Q** (matrix of genotype covariates) is not observed!

Relatives are expected to have similar genotypes:

So, covariances of genotypic values, $\mathbf{a} = \mathbf{Q} \boldsymbol{\alpha}$, can be expressed as

$$Var(\mathbf{a}) = \mathbf{A}\sigma_a^2$$

Fisher also considered non-additive inheritance and assortative mating.

Genetic Evaluation: Pedigree

Model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{a} + \mathbf{e}$$

Genetic Evaluation: Pedigree

Model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{a} + \mathbf{e}$$

BLUP: Henderson's MME

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z} \\ \mathbf{Z}'\mathbf{X} & \mathbf{Z}'\mathbf{Z} + \mathbf{A}^{-1}\frac{\sigma_e^2}{\sigma_e^2} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\mathbf{a}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{Z}'\mathbf{y} \end{bmatrix}$$

5

Paradigm Shift

Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:181929.

Genetic Evaluation: Genomic

Model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{eta} + \mathbf{M}\boldsymbol{lpha} + \mathbf{e}$$

Genetic Evaluation: Genomic

Model:

$$y = X\beta + M\alpha + e$$

Often, p > n

Genetic Evaluation: Genomic

Model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{M}\boldsymbol{\alpha} + \mathbf{e}$$

Often, p > n

Prior information (Meuwissen et al. 2001): $\alpha \sim N(\mathbf{0}, \mathbf{I}\sigma_{\alpha}^2)$

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{M} \\ \mathbf{M}'\mathbf{X} & \mathbf{M}'\mathbf{M} + \mathbf{I}\frac{\sigma_e^2}{\sigma_\alpha^2} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\alpha}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{M}'\mathbf{y} \end{bmatrix}$$

7

Model:

$$egin{bmatrix} \mathbf{y} \ \mathbf{y}_{
ho} \end{bmatrix} = egin{bmatrix} \mathbf{X} \ \mathbf{X}_{
ho} \end{bmatrix} eta + egin{bmatrix} \mathbf{M} \ \mathbf{M}_{
ho} \end{bmatrix} lpha + egin{bmatrix} \mathbf{e} \ \mathbf{e}_{
ho} \end{bmatrix}$$

Model:

$$egin{bmatrix} \mathbf{y} \ \mathbf{y}_{
ho} \end{bmatrix} = egin{bmatrix} \mathbf{X} \ \mathbf{X}_{
ho} \end{bmatrix} oldsymbol{eta} + egin{bmatrix} \mathbf{M} \ \mathbf{M}_{
ho} \end{bmatrix} oldsymbol{lpha} + egin{bmatrix} \mathbf{e} \ \mathbf{e}_{
ho} \end{bmatrix}$$

Least Squares:

$$\begin{bmatrix} \mathbf{X}'\mathbf{X}\frac{1}{\sigma_e^2} + \mathbf{X}'_{\rho}\mathbf{X}_{\rho}\frac{1}{\sigma_{\alpha}^2} & \mathbf{X}'\mathbf{M}\frac{1}{\sigma_e^2} + \mathbf{X}'_{\rho}\mathbf{M}_{\rho}\frac{1}{\sigma_{\alpha}^2} \\ \mathbf{M}'\mathbf{X}\frac{1}{\sigma_e^2} + \mathbf{M}'_{\rho}\mathbf{X}_{\rho}\frac{1}{\sigma_{\alpha}^2} & \mathbf{M}'\mathbf{M}\frac{1}{\sigma_e^2} + \mathbf{M}'_{\rho}\mathbf{M}_{\rho}\frac{1}{\sigma_{\alpha}^2} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\alpha}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y}\frac{1}{\sigma_e^2} + \mathbf{X}'_{\rho}\mathbf{y}_{\rho}\frac{1}{\sigma_{\alpha}^2} \\ \mathbf{M}'\mathbf{y}\frac{1}{\sigma_e^2} + \mathbf{M}'_{\rho}\mathbf{y}_{\rho}\frac{1}{\sigma_{\alpha}^2} \end{bmatrix}$$

Model:

$$egin{bmatrix} \mathbf{y} \ \mathbf{y}_{
ho} \end{bmatrix} = egin{bmatrix} \mathbf{X} \ \mathbf{X}_{
ho} \end{bmatrix} oldsymbol{eta} + egin{bmatrix} \mathbf{M} \ \mathbf{M}_{
ho} \end{bmatrix} oldsymbol{lpha} + egin{bmatrix} \mathbf{e} \ \mathbf{e}_{
ho} \end{bmatrix}$$

Least Squares:

$$\begin{bmatrix} \mathbf{X}'\mathbf{X}\frac{1}{\sigma_e^2} + \mathbf{X}'_{\rho}\mathbf{X}_{\rho}\frac{1}{\sigma_{\alpha}^2} & \mathbf{X}'\mathbf{M}\frac{1}{\sigma_e^2} + \mathbf{X}'_{\rho}\mathbf{M}_{\rho}\frac{1}{\sigma_{\alpha}^2} \\ \mathbf{M}'\mathbf{X}\frac{1}{\sigma_e^2} + \mathbf{M}'_{\rho}\mathbf{X}_{\rho}\frac{1}{\sigma_{\alpha}^2} & \mathbf{M}'\mathbf{M}\frac{1}{\sigma_e^2} + \mathbf{M}'_{\rho}\mathbf{M}_{\rho}\frac{1}{\sigma_{\alpha}^2} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\alpha}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y}\frac{1}{\sigma_e^2} + \mathbf{X}'_{\rho}\mathbf{y}_{\rho}\frac{1}{\sigma_{\alpha}^2} \\ \mathbf{M}'\mathbf{y}\frac{1}{\sigma_e^2} + \mathbf{M}'_{\rho}\mathbf{y}_{\rho}\frac{1}{\sigma_{\alpha}^2} \end{bmatrix}$$

Assumption of $\alpha \sim N(\mathbf{0}, \mathbf{I}\sigma_{\alpha}^2)$ equivalent to: $\mathbf{X}_p = \mathbf{0}$, $\mathbf{M}_p = \mathbf{I}$, and $\mathbf{y}_p = \mathbf{0}$,

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'M} \\ \mathbf{M'X} & \mathbf{M'M} + \mathbf{I} \frac{\sigma_e^2}{\sigma_\alpha^2} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\alpha}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{M'y} \end{bmatrix}$$

Identical to the MME under the assumption: $lpha \sim N(\mathbf{0}, \mathbf{I}\sigma_{lpha}^2)$

Consider data from halfsib groups

Sire model:

$$\mathbf{y} = \mathbf{X}oldsymbol{eta} + \mathbf{Z}\mathbf{u}_s + oldsymbol{\epsilon}$$

Consider data from halfsib groups

Sire model:

$$\mathbf{y} = \mathbf{X} oldsymbol{eta} + \mathbf{Z} \mathbf{u}_s + oldsymbol{\epsilon}$$

BLUP:

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z} \\ \mathbf{Z}'\mathbf{X} & \mathbf{Z}'\mathbf{Z} + \mathbf{I}\lambda_s \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\mathbf{u}}_s \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{Z}'\mathbf{y} \end{bmatrix}$$

$$\lambda_s = \frac{\sigma_\epsilon^2}{\sigma_s^2}$$
, $\sigma_s^2 = \sigma_a^2/4$, and $\sigma_\epsilon^2 = 3/4\sigma_a^2 + \sigma_e^2$

Breeding value model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{a} + \mathbf{e}$$

Breeding value model:

$$y = X\beta + a + e$$

$$\mathbf{a} = \mathbf{Z}\mathbf{u}_s + \mathbf{u}_r$$

$$Var(\mathbf{a}) = \mathbf{Z}\mathbf{Z}'\frac{1}{4}\sigma_a^2 + \mathbf{I}\frac{3}{4}\sigma_a^2 = \mathbf{A}\sigma_a^2$$

BLUP:

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'} \\ \mathbf{X} & \mathbf{I} + \mathbf{A}^{-1} \frac{\sigma_e^2}{\sigma_a^2} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\mathbf{a}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix}$$

Can show:

$$\hat{\mathbf{a}} = \mathbf{Z}\hat{\mathbf{u}}_s + (\mathbf{y} - \mathbf{X}\hat{eta} - \mathbf{Z}\hat{\mathbf{u}}_s)/(1 + rac{\sigma_e^2}{3/4\sigma_a^2})$$

Relationships Between Individuals: Genomic

Model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{M}\boldsymbol{\alpha} + \mathbf{e}$$

= $\mathbf{X}\boldsymbol{\beta} + \mathbf{a} + \mathbf{e}$

where $\mathbf{a} = \mathbf{M}\boldsymbol{\alpha}$, and $\text{Var}(\mathbf{a}) = \mathbf{M}\mathbf{M}'\sigma_{\alpha}^2 = \mathbf{G}\sigma_{\alpha}^2$ (Habier et al. 2007).

Relationships Between Individuals: Genomic

Model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{M}\boldsymbol{\alpha} + \mathbf{e}$$

= $\mathbf{X}\boldsymbol{\beta} + \mathbf{a} + \mathbf{e}$

where $\mathbf{a} = \mathbf{M}\alpha$, and $Var(\mathbf{a}) = \mathbf{MM}'\sigma_{\alpha}^2 = \mathbf{G}\sigma_{\alpha}^2$ (Habier et al. 2007). BLUP:

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}' \\ \mathbf{X} & \mathbf{I} + \mathbf{G}^{-1}\frac{\sigma_e^2}{\sigma_\alpha^2} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\mathbf{a}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{Z}'\mathbf{y} \end{bmatrix}$$

Relationships Between Loci: Linkage

Linkage Equilibrium: $Pr(Q_1|A_1) = Pr(Q_1|A_2)$: marker information has to be combined with pedigree (Chevalet, 1984)

Relationships Between Loci: Linkage

Linkage Equilibrium: $Pr(Q_1|A_1) = Pr(Q_1|A_2)$: marker information has to be combined with pedigree (Chevalet, 1984)

Linkage Disequilibrium: $\Pr(Q_1|A_1) \neq \Pr(Q_1|A_2)$: marker information can be used without pedigree (Haley and Knott, 1992)

Relationships Between Loci: Linkage

Linkage Equilibrium: $Pr(Q_1|A_1) = Pr(Q_1|A_2)$: marker information has to be combined with pedigree (Chevalet, 1984)

Linkage Disequilibrium: $Pr(Q_1|A_1) \neq Pr(Q_1|A_2)$: marker information can be used without pedigree (Haley and Knott, 1992)

When multiple regression is used, markers provide linkage information (Habier et al. 2013)

Linkage Signal from Multiple Regression

Consider a genomic segment of 1 $\,\mathrm{cM}$

Linkage Signal from Multiple Regression

Consider a genomic segment of 1 cM

Conditional only on pedigree, additive relationship between halfsibs is 0.25.

Linkage Signal from Multiple Regression

Consider a genomic segment of 1 cM

Conditional only on pedigree, additive relationship between halfsibs is 0.25.

The relationship computed from genotypes has a bimodal distribution that is centered at 0.25.

Relationships Within Halfsib Group

Figure 1: Distribution of genomic relationship coefficients within a halfsib group of size 100, computed using 1000 SNP marker genotypes in a 1 cM interval

Relationships Between Halfsib Group

Distribution of aij across halfsib groups

Figure 2: Distribution of genomic relationship coefficients between two halfsib groups of size 100, computed using 1000 SNP marker genotypes in a 1 cM interval.

Explicit Modeling of Linkage: Sun et al. Genet Sel Evol (2016) 48:77

Fig. 2

Mean accuracy with different numbers of half-sib families in training with no historical LD.

LD, the LD model; CS, the CS model; LD-CS, the LD-CS model. Top panel, the Common QTL

scenario, Bottom panel, the Rare QTL scenario. Left panel, BayesA, right panel, BayesB

Summary

• Fisher could not observe **Q**, but took advantage of expected similarity between rows of **Q**.

Summary

- Fisher could not observe **Q**, but took advantage of expected similarity between rows of **Q**.
- In genomic evaluation, can observe M, but p > n
 - treat marker effects as random
 - relationships between and within individuals

Summary

- Fisher could not observe **Q**, but took advantage of expected similarity between rows of **Q**.
- In genomic evaluation, can observe M, but p > n
 - treat marker effects as random
 - relationships between and within individuals
- Explicit modeling of linkage can improve accuracy