MACHINE LEARNING TAREA 1

ESTEBAN HERNÁNDEZ CRISTIAN YAÑEZ

Objetivo

Predecir el nivel de antígeno prostático específico (PSA)

Datos

- Icavol: Logaritmo del volumen de cáncer presente
- lweight: Logaritmo del peso de la próstata
- age: Edad
- Ibph: Logaritmo de la cantidad de hiperplasia benigna de próstata.
- svi: Indica si existe invasión de la vesícula seminal o no.
- lcp: Logaritmo de la penetración capsular.
- gleason: Medida del grado de agresividad del cáncer, en base a la escala de Gleason.
- pgg45: Porcentaje que representa la presencia de los patrones de Gleason 4 y 5.
- Ipsa: Logaritmo del nivel de antígeno prostático específico (PSA). (Target)

- Se separan los datos en un conjunto de entrenamiento y un conjunto de pruebas
- Se normalizan los datos
 - Estandariza las unidades y escalas.
 - Permite eliminan los efectos de la media y la varianza de cada variable
 - Esto solo se aplica a los predictores.

Z-Score:

 los predictores con mayor correlación de predicción son lcavol, lweight y svi.

Predictor	Peso	Z-score
lcavol	0.5966	5.5912
lweight	0.2723	3.3793
age	-0.1456	-1.7054
1bph	0.1893	2.1973
svi	0.1794	1.7224
lcp	-0.1591	-1.2219
gleason	0.1008	0.8234
pgg45	0.1149	0.8875
intercept	2.4001	31.7233

 Con una significancia del 5% -> [-2,2]

Cross validation:

```
Sin Cross Validation = 0.5096
Con Cross validation
k = 5 MSE = 0.9565
k = 10 MSE = 0.7572
```

Es posible que el modelo este sobre-ajustado a los datos de entrenamiento.

Q - Q Plot:

Es correcto señalar que los errores siguen una distribución normal.

SELECCIÓN DE ATRIBUTOS

FSS (Forward Step-wise Selection) + MIS (Mutual information score)

SELECCIÓN DE ATRIBUTOS

BSS (Backward Step-wise Selection) + MIS (Mutual information score)

RIDGE Regression

- Para λ muy grandes, es difícil diferenciar los pesos.
- las variables Lcavol, Svi, Lweight y Lbph son las que poseen mayores pesos y de menor varianza

LASSO regresion

- Lasso funciona solo para valores de λ menores a 1
- La tendencia del modelo permite diferenciar que las variables con un mayor peso son Lcavol, Svi y Lweight
- Se puede percibir cierta ventaja al utilizar la regularización Lasso, ya que esta permite la diferenciación de pesos entre las variables de una forma mas clara

Error RIDGE

- el menor Error de test se encuentra aproximadamente en λ=20
 - en donde el MSE es aproximadamente 0.49
- Empieza a ocurrir un fenómeno de Overfitting

Error LASSO

- λ mayores a 1 no se puede obtener una buena conclusión
- Error de entrenamiento permanece mayor al de prueba hasta aproximadamente en λ=0.03
- Aproximadamente en λ=0.2 se encuentra el menor error cuadrático medio de prueba, el cual es aproximadamente de 0.45.

Estimación parámetro de regularización

λ el cual minimiza el MSE:

• λ Ridge : 2.33 MSE Ridge = 0.752

• Λ Lasso: 0.01 MSE Lasso = 0.759

PREDICCIÓN DE UTILIDADES DE PELÍCULAS

Objetivo

 Predecir el volumen de utilidades (en dólares) obtenidas por el estreno (al público, en USA) de una película

Datos

Meta

 Origen de la película, presupuesto, puntos de proyección, genero, calificación MPAA, actores con óscar y variable si se estrenó en vacaciones/feriado

Texto

 A partir de las criticas publicadas para cada película se construyen características que corresponden a la frecuencia de palabras, parejas de palabras y tríos de palabras obtenidas de un vocabulario

PREDICCIÓN DE UTILIDADES DE PELÍCULAS

Modelo:

 ElasticNet ("Movie Reviews and Revenues: An Experiment in Text Regression")

$$\theta = argmin \frac{1}{2n} \sum_{i=1}^{n} (y_i - (\beta_0 + x_i^T \beta))^2 + \lambda P(\beta)$$
$$P(\beta) = \sum_{j=1}^{p} (\frac{1}{2} (1 - \alpha)\beta_j^2 + \alpha |\beta_j|)$$

Los mejores parametros encontrados fueron:

 $\alpha = 0$ y $\lambda = 2.27584592607$

Correlación obtenida: 0.573593