以 I_0 , I_1 代 I, F_2^0 , F_2^1 代 F_1 , 又可得到 a_2 , b_2 , 以及

 $I_{00}=(a,a_2), \quad I_{01}=(a_2,a_1), \quad I_{10}=(b_1,b_2), \quad I_{11}=(b_2,b),$ 且对 F_3 ,有 F_3^{00} , F_3^{01} , F_3^{10} , F_3^{11} 等非空闭集.继续这样做下去,可得闭区间列{ $[a_n,b_n]$ } 以及开区间组列 $I_{\epsilon_1\epsilon_2\cdots\epsilon_n}$ (其中 $\epsilon_i=0$ 或 1),且有 $I_{\epsilon_1\epsilon_2\cdots\epsilon_n}$ \bigcap $\bigcup_{i=0}^\infty F_i=\emptyset$. 作点集

$$E_{\scriptscriptstyle n} = \bigcup_{\scriptscriptstyle \varepsilon_1 \varepsilon_2 \cdots \varepsilon_n \in \{0,1\}} I_{\scriptscriptstyle \varepsilon_1 \varepsilon_2 \cdots \varepsilon_n},$$

不难证明 $\bigcap E_n$ 的基数为 c.

(5) 反证法. 若结论成立,则可在 R² 上取一条直线,它不通过所有闭圆盘之间的切点. 这样,R 就表成了一列互不相交闭集之并,而与(4)矛盾. 证毕.

例 6 解答下列问题:

- (1) 试在坐标平面 \mathbb{R}^2 中作稠密点集 E,使得平行于两轴的直线至 多交 E 中一个点.
- (2) 设 $F \subset \mathbb{R}^2$ 是闭集. 若 D 是包含 F 的闭圆盘,且是任一包含 F 的闭圆盘的子集,试证明 D 中的点均为 F 中两个点连线的中点.

证明 (1) $Q = \{r_n\} \to (-\infty, \infty)$ 中的有理数列,且当 q 是有理数时,定义 $\pi(q)$ 为 q 的十进位小数表达式中出现 1 的个数(非负正整数值),并作点集 $E = \{(q, \sqrt{2}q + r_{\pi(q)}): q \in Q\}$.

(i) 对 $(x,y) \in \mathbf{R}^2$ 以及 $\varepsilon > 0$,则在区间 $I_{\varepsilon} = [x-\varepsilon,x+\varepsilon] \times [y-\varepsilon,y+\varepsilon]$ 中必有属于 E 的点. 这是因为取 $(x-\varepsilon,x+\varepsilon)$ 中有理数 q',设其小数位为:

$$q' = a_1 a_2 \cdots a_n \quad (a_n \neq 0),$$

则当m充分大时,存在点q'':

$$q'' = a_1 a_2 \cdots a_n \overbrace{0 \cdots 0}^{\underline{m} \uparrow} 2 < x + \varepsilon, \quad q' < q''.$$

假定在 a_1, a_2, \dots, a_n 中有 k 个 1,则当 y 取遍 [q', q''] 中的有理数时, $r_{\pi(y)}$ 取遍 r_k, r_{k+1}, \dots . 根据稠密性可知,[q', q''] 中存在 $r_0 \in Q$,使得

$$|\sqrt{2}r_0+r_{\pi(r_0)}-y|<\varepsilon.$$