International DFG Workshop 2007

Quantum Information Processing

Cochem/Ediger-Eller, 28.-30. März 2007

Quantum Convolutional Codes

Markus Grassl

joint work with

Martin Rötteler, NEC Laboratories America, Inc. David Forney, Saikat Guha, MIT

Salah A. Aly, Andreas Klappenecker, Pradeep Kiran Sarvepalli, Texas A&M

Institut für Algorithmen und Kognitive Systeme Fakultät für Informatik, Universität Karlsruhe (TH) Germany

http://iaks-www.ira.uka.de/home/grassl

Motivation

Problem: Send a stream of qubits along a channel

- Solution 1: Use the code [5, 1, 3] for every qubit \implies rate 1/5, correcting one error in every block of five qubits
- Solution 2: Use a long code to encode larger blocks/all qubits
 - ⇒ better rate & more errors can be corrected, but
 - more complicated operations
 - large delay
- Solution 3: Quantum Convolutional Codes
 - "online" encoding/decoding
 - local encoding/inverse encoding operations
 - good classical convolutional codes are used in practice

Classical Convolutional Codes

Based on linear shift registers

Example: Code of rate 1/2, min. distance 5:

in general:

- outputs are linear functions of the input and the memory
- the new memory state is a linear function of the input and the old memory

The Basic Idea of QECC

Classical codes

Partition of the set of all words of length n over an alphabet of size 2.

- codewords
- errors of bounded weight
- other errors

Quantum codes

Orthogonal decomposition of the vector space $\mathcal{H}^{\otimes n}$, where $\mathcal{H}\cong\mathbb{C}^2$.

$$\mathcal{H}^{\otimes n} = \mathcal{C} \oplus \mathcal{E}_1 \oplus \ldots \oplus \mathcal{E}_{2^{n-k}-1}$$

Encoding: $|\boldsymbol{x}\rangle\mapsto U_{\mathsf{enc}}(|\boldsymbol{x}\rangle\,|0\rangle)$

Discretization of Quantum Errors

Consider errors $E = E_1 \otimes ... \otimes E_n$, $E_i \in \{I, X, Y, Z\}$.

"Pauli" matrices (real version):

$$I, \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad Y = XZ = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

The weight of E is the number of $E_i \neq \mathbf{1}$. E.g., the weight of $I \otimes X \otimes Z \otimes Z \otimes I \otimes Y \otimes Z$ is 5.

Theorem: If a code C corrects all errors E of weight t or less, then C can correct arbitrary errors affecting $\leq t$ qubits.

Simple Quantum Error-Correcting Code

Repetition code: $|0\rangle \mapsto |000\rangle$, $|1\rangle \mapsto |111\rangle$

Encoding of one qubit:

$$\alpha |0\rangle + \beta |1\rangle \mapsto \alpha |000\rangle + \beta |111\rangle$$
.

This defines a two-dimensional subspace $\mathcal{H}_{\mathcal{C}} \leq \mathcal{H}_2 \otimes \mathcal{H}_2 \otimes \mathcal{H}_2$

bit-flip	quantum state	subspace	
no error	$\alpha 000\rangle + \beta 111\rangle$	$(\mathbb{1}\otimes\mathbb{1}\otimes\mathbb{1})\mathcal{H}_{\mathcal{C}}$	
1^{st} position	$\alpha \left 100 \right\rangle + \beta \left 011 \right\rangle$	$(X\otimes \mathbb{1}\otimes \mathbb{1})\mathcal{H}_{\mathcal{C}}$	
$2^{\rm nd}$ position	$\alpha \left 010 \right\rangle + \beta \left 101 \right\rangle$	$(\mathbb{1} \otimes X \otimes \mathbb{1})\mathcal{H}_{\mathcal{C}}$	
3^{rd} position	$\alpha 001\rangle + \beta 110\rangle$	$(\mathbb{1}\otimes\mathbb{1}\otimes X)\mathcal{H}_{\mathcal{C}}$	

Hence we have an orthogonal decomposition of $\mathcal{H}_2\otimes\mathcal{H}_2\otimes\mathcal{H}_2$

Stabilizer Codes

Observables

 ${\mathcal C}$ is a common eigenspace of the stabilizer group ${\mathcal S}$

decomposition into common eigenspaces

the orthogonal spaces are labeled by the eigenvalues

⇒ operations that change the eigenvalues can be detected

The Stabilizer of a Quantum Code

Pauli group:

$$\mathcal{G}_n = \left\{ \pm E_1 \otimes \ldots \otimes E_n : E_i \in \{I, X, Y, Z\} \right\}$$

Let $\mathcal{C} \leq \mathbb{C}^{2^n}$ be a quantum code.

The stabilizer of C is defined to be the set

$$\mathcal{S} = \left\{ M \in \mathcal{G}_n : M | v \rangle = | v \rangle \text{ for all } | v \rangle \in \mathcal{C} \right\}.$$

A quantum code C with stabilizer S is called a stabilizer code if and only if

$$M|v\rangle = |v\rangle$$
 for all $M \in \mathcal{S} \Longrightarrow |v\rangle \in \mathcal{C}$.

 \mathcal{S} is an abelian (commutative) group and \mathcal{C} is the joint +1-eigenspace of all $M \in \mathcal{S}$.

Stabilizer Codes and Classical Codes

Notation:

Denote by X_a where $a=(a_1,\ldots,a_n)\in\mathbb{F}_2^n$ and $\mathbb{F}_2=\{0,1\}$ the operator

$$X_{\boldsymbol{a}} = X^{a_1} \otimes X^{a_2} \otimes \ldots \otimes X^{a_n}.$$

Similar

$$Z_{\boldsymbol{b}} = Z^{b_1} \otimes Z^{b_2} \otimes \ldots \otimes X^{b_n}.$$

For instance $X_{110} = X \otimes X \otimes I$ and $Z_{101} = Z \otimes I \otimes Z$.

Hence, any operator in \mathcal{G}_n is of the form $\pm X_a Z_b$ for some $a, b \in \mathbb{F}_2^n$, written as (a|b).

Stabilizer Codes and Classical Codes

Example: The repetition code is a stabilizer code with stabilizer $S = \{III, ZZI, ZIZ, IZZ\} = \langle ZIZ, IZZ \rangle$.

$$\mathcal{S} = \left(\begin{array}{ccc|c} 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{array} \right)$$

in general

$$\mathcal{S} \stackrel{.}{=} (\mathbf{X}|\mathbf{Z}) \in \mathbb{F}_2^{(n-k) imes 2n}$$

The matrix $(\mathbf{X}|\mathbf{Z})$ generates a symplectic self-orthogonal code with

$$\mathbf{X}\mathbf{Z}^t - \mathbf{Z}\mathbf{X}^t = \mathbf{0}.$$

Encoding Stabilizer Codes

Basic idea:

Use operations of the generalized Clifford group (or Jacobi group) to transform the stabilizer \mathcal{S} into a trivial stabilizer $\mathcal{S}_0 := \langle Z^{(1)}, \dots, Z^{(n-k)} \rangle$, corresponding to the code $|0^{n-k}\rangle |\phi\rangle$.

- ullet row/column operations on the binary matrix $(\mathbf{X}|\mathbf{Z})$ to obtain "normal form" $(\mathbf{0}|\mathbf{I0})$
- ullet operations on $(\mathbf{X}|\mathbf{Z})$ correspond to
 - "elementary" single-qubit gates
 - CNOT-gate

$$-\text{ single qubit gate }P:=\begin{pmatrix}1&0\\0&e^{\pi i/2}\end{pmatrix}=\begin{pmatrix}1&0\\0&i\end{pmatrix}\in\mathbb{C}^{2\times 2}$$

Action on Pauli Matrices

Hadamard matrix H	HXH = Z	HYH = -Y	HZH = X
	$(1,0)\mapsto (0,1)$	$(1,1) \mapsto (1,1)$	$(0,1)\mapsto (1,0)$
	exchange X and Z		
$matrix\; P$	$P^{\dagger}XP = -Y$	$P^{\dagger}YP = X$	$P^{\dagger}ZP = Z$
	$(1,0)\mapsto (1,1)$	$(1,1)\mapsto (1,0)$	$(0,1)\mapsto (0,1)$
	multiply X by Z		

in \mathbb{C}

operation on binary row vectors: $(a,b)\overline{M}=(a',b')$ (arithmetic $\mod 2$)

$$\overline{H} \, \hat{=} \, egin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad \overline{P} \, \hat{=} \, egin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

local operation on $(\mathbf{X}|\mathbf{Z})$:

multiplying column i in submatrix ${f X}$ and column i in submatrix ${f Z}$ by \overline{M}

DFG QIP 2007 Quantum Convolutional Codes

Action of CNOT

Modifying stabilizers

$$\hat{X} = \frac{1}{X}$$

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \in \mathbb{C}^{4 \times 4}$$

$$\hat{z} = Z$$

add Z from target to source

$$\text{CNOT} = \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 1 & 0
\end{pmatrix} \in \mathbb{C}^{4 \times 4} \qquad \overline{\text{CNOT}} = \begin{pmatrix}
 1 & 1 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 \hline
 0 & 0 & 1 & 0 \\
 \hline
 0 & 0 & 1 & 1
\end{pmatrix} \in \mathbb{F}_{2}^{4 \times 4}$$

Example: 5 Qubit Code $[\![5,1,3]\!]$

Generators of stabilizer

Step I: X-Only Generator

Local operations $\hat{=}$ operations on corresponding ${f X}$ and ${f Z}$ columns

$$T_1 := I \otimes I \otimes I \otimes I \otimes I$$

Step I: X-Only Generator

Local operations $\hat{=}$ operations on corresponding ${f X}$ and ${f Z}$ columns

$$T_1 := I \otimes I \otimes H \otimes I \otimes I$$

Step I: *X*-**Only Generator**

Local operations $\hat{=}$ operations on corresponding ${f X}$ and ${f Z}$ columns

$$T_1 := I \otimes I \otimes H \otimes I \otimes H$$

Markus Grassl - 17- 30.03.2007

Step II: X-Generator of Weight One

 $\mathrm{CNOT} \; \hat{=} \; \mathsf{operations} \; \mathsf{on} \; \mathsf{pairs} \; \mathsf{of} \; \mathsf{corresponding} \; \mathbf{X} \; \mathsf{and} \; \mathbf{Z} \; \mathsf{columns}$

$$T_1 := I \otimes I \otimes H \otimes I \otimes H$$

$$T_2 := I$$

Step II: X-Generator of Weight One

 $\mathrm{CNOT} \; \hat{=} \; \mathsf{operations} \; \mathsf{on} \; \mathsf{pairs} \; \mathsf{of} \; \mathsf{corresponding} \; \mathbf{X} \; \mathsf{and} \; \mathbf{Z} \; \mathsf{columns}$

$$T_1 := I \otimes I \otimes H \otimes I \otimes H$$

$$T_2 := I$$

Step II: X-Generator of Weight One

 $\mathrm{CNOT} \; \hat{=} \; \mathsf{operations} \; \mathsf{on} \; \mathsf{pairs} \; \mathsf{of} \; \mathsf{corresponding} \; \mathbf{X} \; \mathsf{and} \; \mathbf{Z} \; \mathsf{columns}$

$$T_1 := I \otimes I \otimes H \otimes I \otimes H$$

$$T_2 := \text{CNOT}^{(1,2)}$$

Step II: X-Generator of Weight One

 $\mathrm{CNOT} \; \hat{=} \; \mathsf{operations} \; \mathsf{on} \; \mathsf{pairs} \; \mathsf{of} \; \mathsf{corresponding} \; \mathbf{X} \; \mathsf{and} \; \mathbf{Z} \; \mathsf{columns}$

$$T_1 := I \otimes I \otimes H \otimes I \otimes H$$

$$T_2 := \text{CNOT}^{(1,2)}$$

Markus Grassl - 21- 30.03.2007

Step III: Row Operations

multiplying generators $\hat{=}$ adding/permuting rows

$$T_1 := I \otimes I \otimes H \otimes I \otimes H$$

$$T_2 := \text{CNOT}^{(1,2)} \text{CNOT}^{(1,3)} \text{CNOT}^{(1,5)}$$

Pre-Final Result: Only X-Generators

Markus Grassl – 23– 30.03.2007

Final Result: Only Z-Generators

$$T_{\mathsf{final}} := H \otimes H \otimes H \otimes H \otimes I$$

combining all transformations: quantum circuit that maps the encoded state $|\phi\rangle_{\rm enc}$ to the un-encoded state $|0000\rangle$ $|\phi\rangle$

Markus Grassl – 24– 30.03.2007

Inverse Encoding Circuit

Quantum circuit mapping a state $|\phi\rangle_{\rm enc}$ of the code $[\![5,1,3]\!]$ to an unencoded one-qubit state $|\phi\rangle$.

Markus Grassl - 25- 30.03.2007

Quantum Convolutional Codes

Quantum Block Codes

The code is the common eigenspace of the stabilizers.

Quantum Convolutional Codes

Idea: impose local constraints by stabilizers

Example:

$$s_1 = \dots III XXX XZY III III \dots$$

$$s_2 = \dots III ZZZ ZYX III III \dots$$

shift the stabilizers by three qubits:

$$s_1' = \dots III III XXX XZY III \dots$$

$$s_2' = \dots III III ZZZ ZYX III \dots$$

Semi-infinite Stabilizer

Compact representation of the semi-infinite stabilizer matrix

$$\begin{pmatrix} XXX & XZY \\ ZZZ & ZYX \\ XXX & XZY \\ ZZZ & ZYX \end{pmatrix}$$

$$\hat{=} \begin{pmatrix} 111 & 101 \\ 000 & 011 \\ & 111 & 101 \\ & 000 & 011 \end{pmatrix} \begin{pmatrix} 000 & 011 \\ 111 & 110 \\ & 000 & 011 \\ & & & \ddots \end{pmatrix}$$

$$\hat{=} \begin{pmatrix} 1+D & 1 & 1+D \\ 0 & D & D \end{pmatrix} \begin{pmatrix} 0 & D & D \\ 1+D & 1+D & 1 \end{pmatrix} = \mathbf{S}(D)$$

Quantum Convolutional Codes

Quantum Block Codes

The stabilizer S corresponds to a binary code generated by the stabilizer matrix $(\mathbf{X}|\mathbf{Z})$.

Quantum Convolutional Codes

The semi-infinite stabilizer corresponds to a binary convolutional code generated by the matrix $(\mathbf{X}(D) \mid \mathbf{Z}(D))$ with

$$\mathbf{X}(D)\mathbf{Z}(1/D)^t - \mathbf{Z}(D)\mathbf{X}(1/D)^t = \mathbf{0}$$

Example:

$$\mathbf{S}(D) = \begin{pmatrix} 1+D & 1 & 1+D & 0 & D & D \\ 0 & D & D & 1+D & 1+D & 1 \end{pmatrix}$$

Catastrophic (Quantum) Convolutional Codes

Bad example:

Quantum code with basis states $|\underline{0}\rangle = |000...\rangle$ and $|\underline{1}\rangle = |111...\rangle$, contains in particular "infinite cat state"

- ⇒ local errors spread unboundedly
- \Longrightarrow further constraints on $\mathbf{S}(D)$ (must have polynomial inverse)

Quantum Convolutional Codes: Error Correction

Basic Ideas:

- Every stabilizer has bounded support.
- Measure the eigenvalue of the stabilizer when all correspondings qubits have been received.
 - ⇒ syndrome of the corresponding classical convolutional code
- Use your favorite algorithm to decode the classical convolutional code (e.g. Viterbi algorithm).

Operations on
$$S(D) = (X(D)|Z(D))$$

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \in \mathbb{C}^{2 \times 2} \qquad \overline{H} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in \mathbb{F}_2^{2 \times 2}$$

$$P = \begin{pmatrix} 1 & 0 \\ 0 & \exp(i\pi/2) \end{pmatrix} \in \mathbb{C}^{2\times 2} \qquad \overline{P} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \mathbb{F}_2^{2\times 2}$$

$$CNOT^{(i,j+\ell n)}, i \not\equiv j \pmod{n} \qquad \overline{CNOT} = \begin{pmatrix} 1 & D & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ 0 & 0 & D^{-\ell} & 1 \end{pmatrix}$$

$$P_{\ell} := \text{CSIGN}^{(i,i+\ell n)}, \ell \neq 0$$

$$\overline{P_{\ell}} = \begin{pmatrix} 1 & D^{-\ell} + D^{\ell} \\ 0 & 1 \end{pmatrix}$$

Quantum Circuits

Single qubit gates

operation on stabilizer matrix in D-transform notation

- ⇒ expand to semi-infinite matrix
- ⇒ repeat the operations infinitely often

Example:

blocks of three qubits each operation H on first position operation P on second position

Quantum Circuits

Two-qubit gates

• CNOT on qubit j in block ℓ and qubit j in block $\ell+1$:

⇒ infinite depth

• CSIGN on qubit j in block ℓ and qubit j in block: $\ell + 1$:

Example: Rate 1/3 Quantum Convolutional Code

Every gate has to be repeatedly applied shifted by one block.

Summary

- Quantum stabilizer codes are common eigenspaces of the stabilizer
- The stabilizer corresponds to a classical code
- Use both block and convolutional codes to define stabilizer codes
- Encoding circuits from transformations on the binary matrix
- Quantum circuits with finite depth for convolutional quantum codes with non-catastrophic generator matrix
- Two-qubit gates span a bounded number of blocks.
- Generators of stabilizer act non-trivially on a bounded number of qubits.

References

- M. Grassl, M. Rötteler, and Th. Beth, "Efficient Quantum Circuits for Non-Qubit Quantum Error-Correcting Codes", International Journal of Foundations of Computer Science, 14(5):757–775, 2003, quant-ph/0211014.
- H. Ollivier and J.-P. Tillich, "Quantum convolutional codes: fundamentals," 2004, quant-ph/0401134.
- G. D. Forney, Jr., M. Grassl, and S. Guha, "Convolutional and tail-biting quantum error-correcting codes," *IEEE Trans. Inform. Theory*, vol. 53, no. 3, pp. 865–880, 2007, quant-ph/0511016.
- M. Grassl and M. Rötteler, "Non-catastrophic encoders and encoder inverses for quantum convolutional codes," in *Proc. 2006 IEEE Intl. Symp. Inform. Theory*, Seattle, USA, 2006, pp. 1109–1113, quant-ph/0602129.
- S. A. Aly, M. Grassl, A. Klappenecker, M. Rötteler, P. K. Sarvepalli, "Quantum Convolutional BCH Codes," *2007 Canadian Information Theory Workshop*, quant-ph/0703113.