Информационные технологии и безопасность Защита информации

КРИПТОГРАФИЧЕСКИЕ АЛГОРИТМЫ ШИФРОВАНИЯ И КОНТРОЛЯ ЦЕЛОСТНОСТИ

Інфармацыйныя тэхналогіі і бяспека Ахова інфармацыі

КРЫПТАГРАФІЧНЫЯ АЛГАРЫТМЫ ШЫФРАВАННЯ І КАНТРОЛЮ ЦЭЛАСНАСЦІ

УДК 004.056.55(083.74)(476)

MKC 35.240.40

 $K\Pi 05$

Ключевые слова: информационные технологии, защита информации, криптографический алгоритм, шифрование, контроль целостности, имитозащита, хэширование, управление ключами

Предисловие

Цели, основные принципы, положения по государственному регулированию и управлению в области технического нормирования и стандартизации установлены Законом Республики Беларусь «О техническом нормировании и стандартизации».

1 РАЗРАБОТАН учреждением Белорусского государственного университета «Научно-исследовательский институт прикладных проблем математики и информатики»

ВНЕСЕН Оперативно-аналитическим центром при Президенте Республики Беларусь 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Госстандарта Республики Беларусь от 31 января 2011 г. № 5

3 B3AMEH CT5 Π 34.101.31-2007

Содержание

1	Обл	асть применения	1
2	Нор	мативные ссылки	1
3	Тери	мины и определения	1
4	Обо	значения	2
	4.1	Список обозначений	2
	4.2	Пояснения к обозначениям	3
	4.3	Запись перечислений	5
5	Общ	цие положения	6
	5.1	Назначение	6
	5.2	Ключ	7
	5.3	Синхропосылка	8
	5.4	Имитовставка	8
	5.5	Хэш-значение	8
6	Алго	оритмы шифрования и контроля целостности	9
	6.1	Шифрование блока	9
	6.2	Шифрование в режиме простой замены	11
	6.3	Шифрование в режиме сцепления блоков	12
	6.4	Шифрование в режиме гаммирования с обратной связью	13
	6.5	Шифрование в режиме счетчика	14
	6.6	Выработка имитовставки	14
	6.7	Шифрование и имитозащита данных	15
	6.8	Шифрование и имитозащита ключа	17
	6.9	Хэширование	18
7	Вспо	омогательные алгоритмы	19
	7.1	Расширение ключа	19
	7.2	Преобразование ключа	19
Πŗ	коли	кение А (справочное) Тестовые примеры	21
Пр	коли	кение Б (рекомендуемое) Модуль АСН.1	29
Би	блио	графия	31

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РЕСПУБЛИКИ БЕЛАРУСЬ

Информационные технологии. Защита информации КРИПТОГРАФИЧЕСКИЕ АЛГОРИТМЫ ШИФРОВАНИЯ И КОНТРОЛЯ ЦЕЛОСТНОСТИ

Інфармацыйныя тэхналогіі. Ахова інфармацыі КРЫПТАГРАФІЧНЫЯ АЛГАРЫТМЫ ШЫФРАВАННЯ І КАНТРОЛЮ ЦЭЛАСНАСЦІ

Information technology and security
Data encryption and integrity algorithms

Дата введения 2011-07-01

1 Область применения

Настоящий стандарт определяет семейство криптографических алгоритмов шифрования и контроля целостности, которые используются для защиты информации при ее хранении, передаче и обработке.

Настоящий стандарт применяется при разработке средств криптографической защиты информации.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующий стандарт:

ГОСТ 34.973-91 (ИСО 8824-87) Информационная технология. Взаимосвязь открытых систем. Спецификация абстрактно-синтаксической нотации версии 1 (АСН.1).

Примечание — При пользовании настоящим стандартом целесообразно проверить действие технических нормативных правовых актов в области технического нормирования и стандартизации (далее — ТНПА) по каталогу, составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочные ТНПА заменены (изменены), то при пользовании настоящим стандартом следует руководствоваться замененными (измененными) ТНПА. Если ссылочные ТНПА отменены без замены, то положение, в котором дана ссылка на них, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применяются следующие термины с соответствующими определениями:

- 3.1 блок: Двоичное слово длины 128.
- 3.2 заголовок ключа: Блок, содержащий открытые атрибуты ключа.
- **3.3 зашифрование**: Преобразование сообщения, направленное на обеспечение его конфиденциальности, которое определяется с использованием ключа.
- **3.4 имитовставка**: Двоичное слово, которое определяется по сообщению с использованием ключа и служит для контроля целостности и подлинности сообщения.

- **3.5 имитозащита**: Контроль целостности сообщений, который реализуется путем выработки и проверки имитовставок.
- **3.6 ключ (секретный)**: Параметр, который управляет операциями шифрования и имитозащиты и который известен только определенным сторонам.
 - 3.7 октет: Двоичное слово длины 8.
- **3.8 расширение ключа**: Дополнение ключа новыми символами до получения ключа определенной длины.
 - 3.9 расшифрование: Преобразование, обратное зашифрованию.
- **3.10 синхропосылка**: Открытые входные данные криптографического алгоритма, которые обеспечивают уникальность результатов криптографического преобразования на фиксированном ключе.
 - 3.11 снятие защиты: Проверка имитовставок и расшифрование.
 - 3.12 сообщение: Двоичное слово конечной длины.
- **3.13 преобразование ключа**: Построение по исходному ключу набора новых ключей с различными заголовками.
 - 3.14 установка защиты: Зашифрование и вычисление имитовставок.
 - 3.15 шифрование: Зашифрование или расшифрование.
- **3.16 хэш-значение**: Двоичное слово фиксированной длины, которое определяется по сообщению без использования ключа и служит для контроля целостности сообщения и для представления сообщения в сжатой форме.
 - 3.17 хэширование: Выработка хэш-значений.

4 Обозначения

4.1 Список обозначений

```
\{0,1\}^n
                 множество всех слов длины n в алфавите \{0,1\};
                 множество всех слов конечной длины в алфавите \{0,1\} (включая пустое
\{0,1\}^*
                 слово длины 0);
                 длина слова u \in \{0, 1\}^*;
|u|
\{0,1\}^{n*}
                 множество всех слов из \{0,1\}^*, длина которых кратна n;
\alpha^n
                 слово длины n из одинаковых символов \alpha \in \{0, 1\};
L_m(u)
                 слово из первых m символов слова u, m \leq |u|;
u \parallel v
                 конкатенация u_1u_2...u_nv_1v_2...v_m слов u = u_1u_2...u_n и v = v_1v_2...v_m;
                 представление u \in \{0,1\}^{4*} шестнадцатеричным словом, при котором
01234..._{16}
                 последовательным четырем символам u соответствует один шестнадца-
                 теричный символ (например, 10100010 = A2_{16});
U \mod m
                 для целого U и натурального m остаток от деления U на m;
                 для u = u_1 u_2 \dots u_n \in \{0,1\}^n и v = v_1 v_2 \dots v_n \in \{0,1\}^n слово w =
u \oplus v
                 w_1w_2...w_n \in \{0,1\}^n из символов w_i = (u_i + v_i) \bmod 2;
                 а) для u = u_1 u_2 \dots u_8 \in \{0, 1\}^8 число 2^7 u_1 + 2^6 u_2 + \dots + u_8 и
\bar{u}
                 б) для u = u_1 \parallel u_2 \parallel \ldots \parallel u_n, u_i \in \{0,1\}^8, число \bar{u}_1 + 2^8 \bar{u}_2 + \ldots + 2^{8(n-1)} \bar{u}_n;
```

```
для целого U слово u \in \{0,1\}^{8n} такое, что \bar{u} = U \mod 2^{8n};
\langle U \rangle_{8n}
                                          для u, v \in \{0, 1\}^{8n} слово \langle \bar{u} + \bar{v} \rangle_{8n};
u \boxplus v
                                          для u, v \in \{0, 1\}^{8n} слово w \in \{0, 1\}^{8n} такое, что u = v \boxplus w;
u \boxminus v
|z|
                                          для вещественного z максимальное целое, не превосходящее z;
\lceil z \rceil
                                          для вещественного z минимальное целое, не меньшее z;
                                          для u \in \{0,1\}^{8n} слово \langle |\bar{u}/2| \rangle_{8n};
ShLo(u)
                                          для u \in \{0,1\}^{8n} слово \langle 2\bar{u} \rangle_{8n};
ShHi(u)
\varphi^r(u)
                                           для слова u и преобразования \varphi результат r-кратного действия \varphi на u
                                           (например, ShLo^r(u) — результат r-кратного действия ShLo);
                                          для u \in \{0,1\}^{8n} слово ShHi(u) \oplus ShLo^{8n-1}(u);
RotHi(u)
                                          поле из двух элементов 0 и 1;
\mathbb{F}_2
\mathbb{F}_2[x]
                                          кольцо многочленов над полем \mathbb{F}_2;
                                          а) для u=u_1u_2\dots u_8\in\{0,1\}^8 многочлен u_1x^7+u_2x^6+\dots+u_8 и
u(x)
                                          б) для u = u_1 \parallel u_2 \parallel \ldots \parallel u_n, u_i \in \{0,1\}^8, многочлен u_1(x) + x^8 u_2(x) +
                                          \ldots + x^{8(n-1)}u_n(x);
u(x) \bmod f(x) для u(x) \in \mathbb{F}_2[x] и ненулевого f(x) \in \mathbb{F}_2[x] остаток от деления u(x) на
                                          f(x);
                                          для u,v \in \{0,1\}^{128} слово w \in \{0,1\}^{128} такое, что w(x)=u(x)v(x) mod
u * v
                                          x^{128} + x^7 + x^2 + x + 1;
a \leftarrow u
                                          присвоение переменной a значения u;
a \leftrightarrow b
                                          перестановка значений переменных a и b;
                                          результат зашифрования блока X \in \{0,1\}^{128} на ключе \theta \in \{0,1\}^{256} по
F_{\theta}(X)
                                           алгоритму из 6.1.3;
F_{\theta}^{-1}(X)
                                          результат расшифрования блока X \in \{0,1\}^{128} на ключе \theta \in \{0,1\}^{256} по
                                          алгоритму из 6.1.4.
```

4.2 Пояснения к обозначениям

4.2.1 Слова

Входными и выходными данными алгоритмов настоящего стандарта являются двоичные слова. Двоичные слова представляют собой последовательности символов из алфавита $\{0,1\}$. Символы нумеруются слева направо от единицы. В настоящем подразделе в качестве примера рассматривается слово

w = 10110001100101010111101011001000.

В этом слове первый символ — 1, второй — 0, ..., последний — 0.

Слова разбиваются на тетрады из четверок последовательных двоичных символов. Тетрады кодируются шестнадцатеричными символами по следующим правилам (см. таблицу 1):

Таблица 1

тетрада	символ	тетрада	символ	тетрада	символ	тетрада	символ
0000	0 ₁₆	0001	1 ₁₆	0010	2 ₁₆	0011	3 ₁₆
0100	4 ₁₆	0101	5 ₁₆	0110	6 ₁₆	0111	7 ₁₆
1000	8 ₁₆	1001	9 ₁₆	1010	\mathtt{A}_{16}	1011	B ₁₆
1100	C ₁₆	1101	D_{16}	1110	E ₁₆	1111	F_{16}

Например, слово w кодируется следующим образом:

Пары последовательных тетрад образуют октеты. Последовательные октеты слова w имеют вид:

$$10110001 = B1_{16}, 10010100 = 94_{16}, 101111010 = BA_{16}, 11001000 = C8_{16}.$$

4.2.2 Слова как числа

Октету $u=u_1u_2\dots u_8$ ставится в соответствие байт — число $\bar u=2^7u_1+2^6u_2+\dots+u_8$. Например, октетам w соответствуют байты

$$177 = 2^7 + 2^5 + 2^4 + 1$$
, $148 = 2^7 + 2^4 + 2^2$, $186 = 2^7 + 2^5 + 2^4 + 2^3 + 2^1$, $200 = 2^7 + 2^6 + 2^3$.

Число ставится в соответствие не только октетам, но и любому другому двоичному слову, длина которого кратна 8. При этом используется распространенное для многих современных процессоров соглашение «от младших к старшим» (little-endian): считается, что первый байт является младшим, последний — старшим. Например, слову w соответствует число

$$\bar{w} = 177 + 2^8 \cdot 148 + 2^{16} \cdot 186 + 2^{24} \cdot 200 = 3367670961.$$

При отождествлении слов с числами удобно представить себе гипотетический регистр, разрядность которого совпадает с длиной слова. В самый правый октет регистра загружается первый октет слова, во второй справа октет регистра — второй октет слова и так далее, пока, наконец, в самый левый октет регистра не загружается последний октет слова. Например, для w содержимое регистра имеет вид:

$$\mathtt{C8BA94B1}_{16} = 11001000101110101001010010110001.$$

При таком представлении операции ShLo, ShHi, RotHi состоят в сдвигах содержимого регистра: ShLo — вправо (в сторону младших разрядов), ShHi — влево (в сторону старших разрядов) и RotHi — циклически влево, причем при сдвигах ShLo и ShHi в освободившиеся разряды регистров записываются нули. Например, предыдущий регистр изменяется при сдвигах следующим образом:

$$\begin{split} \text{ShLo}: & \ \, 645\text{D}4\text{A}58_{16} = 011001000101110100101001011000, \\ \text{ShHi}: & \ \, 91752962_{16} = 100100010111010010100101100010, \\ \text{RotHi}: & \ \, 91752963_{16} = 100100010111010101010101011100011. \end{split}$$

Выгружая из регистра октеты слева направо, получаем следующие результаты:

$${
m ShLo}(w) = 584{
m A5D64}_{16}, \ {
m ShHi}(w) = 62297591_{16}, \ {
m RotHi}(w) = 63297591_{16}.$$

Перестановки октетов при загрузке слова в регистр и при выгрузке из регистра в современных процессорах выполняются неявно.

При сдвигах на число позиций, кратное 8, операции ShLo, ShHi, RotHi интерпретируются намного проще и состоят в сдвиге октетов исходного слова: при ShLo — в сторону первых октетов, при ShHi — в сторону последних октетов, при RotHi — циклически в сторону последних октетов. Например,

$${
m ShLo}^8(w) = 94 {
m BAC800}_{16}, \ {
m ShHi}^8(w) = {
m O0B194BA}_{16}, \ {
m RotHi}^8(w) = {
m C8B194BA}_{16}.$$

4.2.3 Слова как многочлены

Октету $u = u_1 u_2 \dots u_8$ ставится в соответствие многочлен $u(x) = u_1 x^7 + u_2 x^6 + \dots + u_8$. Многочлен ставится в соответствие также любому непустому двоичному слову из целого числа октетов. Как и при представлении слов числами используется соглашение «от младших к старшим»: первому октету соответствует многочлен $u_1(x)$, второму — $x^8 u_2(x)$, третьему — $x^{16} u_3(x)$ и так далее.

Многочлены u(x) считаются многочленами над полем \mathbb{F}_2 . Это значит, что при сложении и умножении многочленов операции над их коэффициентами выполняются по модулю 2. Деление u(x) на ненулевой f(x) состоит в определении многочленов q(x), r(x) таких, что u(x) = q(x)f(x) + r(x) и степень r(x) меньше степени f(x). Многочлен r(x) является остатком от деления.

Операция * состоит в умножении слов как многочленов с заменой результата умножения на его остаток от деления на $f(x) = x^{128} + x^7 + x^2 + x + 1$. Выбранный многочлен f(x) является неприводимым (его нельзя представить в виде произведения многочленов меньших степеней). Поэтому операция * задает умножение слов как элементов поля из 2^{128} элементов (подробнее см. [1]).

4.3 Запись перечислений

При записи последовательности X_1, X_2, \ldots, X_n допускается, если не оговорено противное, выполнение неравенства n < 2. При n = 0 определена пустая последовательность, а при n = 1 — одноэлементная последовательность X_1 .

Аналогичные соглашения распространяются на запись разбиений слов, запись циклов и другие перечисления. Например, слово $X_1 \parallel X_2 \parallel \ldots \parallel X_n$ является пустым при n=0, тело цикла «для $i=1,2,\ldots,n$ выполнить ...» не выполняется ни разу, если n=0, и выполняется один раз, если n=1.

Для
$$X \in \{0,1\}^*$$
 запись

$$X = X_1 \parallel X_2 \parallel \ldots \parallel X_n$$
, $|X_1| = |X_2| = \ldots = |X_{n-1}| = 128$, $|X_n| \le 128$,

означает разбиение X слева направо на последовательные блоки до тех пор, пока они не будут исчерпаны и не будет определен последний, возможно неполный, блок X_n . Например, при |X|=128 получаем разбиение с n=1 и $|X_1|=128$, при |X|=129 — разбиение с n=2 и $|X_2|=1$. Если X — пустое слово, то n=0 и блоки разбиения не определены.

5 Общие положения

5.1 Назначение

Настоящий стандарт определяет семейство криптографических алгоритмов, предназначенных для обеспечения конфиденциальности и контроля целостности данных. Обрабатываемыми данными являются двоичные слова (сообщения).

Криптографические алгоритмы стандарта построены на основе базовых алгоритмов шифрования блока данных. Базовые алгоритмы описываются в 6.1.

Криптографические алгоритмы шифрования и контроля целостности делятся на восемь групп:

- 1) алгоритмы шифрования в режиме простой замены (6.2);
- 2) алгоритмы шифрования в режиме сцепления блоков (6.3);
- 3) алгоритмы шифрования в режиме гаммирования с обратной связью (6.4);
- 4) алгоритмы шифрования в режиме счетчика (6.5);
- 5) алгоритм выработки имитовставки (6.6);
- (6.7); алгоритмы одновременного шифрования и имитозащиты данных (6.7);
- 7) алгоритмы одновременного шифрования и имитозащиты ключа (6.8);
- 8) алгоритм хэширования (6.9).

Первые четыре группы предназначены для обеспечения конфиденциальности сообщений. Каждая группа включает алгоритм зашифрования и алгоритм расшифрования. Стороны, располагающие общим ключом, могут организовать конфиденциальный обмен сообщениями путем их зашифрования перед отправкой и расшифрования после получения. В режимах простой замены и сцепления блоков шифруются сообщения, которые содержат хотя бы один блок, а в режимах гаммирования с обратной связью и счетчика — сообщения произвольной длины.

Пятый алгоритм предназначен для контроля целостности сообщений с помощью имитовставок — контрольных слов, которые определяются с использованием ключа. Стороны, располагающие общим ключом, могут организовать контроль целостности при обмене сообщениями путем добавления к ним имитовставок при отправке и проверки имитовставок при получении. Проверка имитовставок дополнительно позволяет стороне-получателю убедиться в том, что сторона-отправитель знает ключ, т. е. позволяет проверить подлинность сообщений.

Шестая и седьмая группы предназначены для обеспечения конфиденциальности и контроля целостности сообщений. Каждая группа включает алгоритмы установки и снятия защиты.

В шестой группе исходное сообщение задается двумя частями: открытой и критической. Алгоритмы защиты предназначены для контроля целостности обеих частей и обеспечения конфиденциальности критической части. При установке защиты вычисляет-

ся имитовставка всего сообщения и зашифровывается его критическая часть. При снятии защиты имитовставка проверяется и, если проверка прошла успешно, критическая часть расшифровывается.

В алгоритмах седьмой группы длина защищаемого сообщения должна быть сразу известна, эти алгоритмы рекомендуется применять для защиты ключей. Защищаемый ключ сопровождается открытым заголовком, который содержит открытые атрибуты ключа и одновременно является контрольным значением при проверке целостности. Могут использоваться фиксированные постоянные заголовки, которые служат только для контроля целостности. При установке защиты ключ зашифровывается вместе со своим заголовком и формируется слово, которое является одновременно защищенным ключом и имитовставкой ключа. При снятии защиты выполняется обратное преобразование и расшифрованный заголовок сравнивается с контрольным.

Восьмой алгоритм предназначен для вычисления хэш-значений — контрольных слов, которые определяются без использования ключа. Стороны могут организовать контроль целостности сообщений путем сравнения их хэш-значений с достоверными контрольными хэш-значениями. Изменение сообщения с высокой вероятностью приводит к изменению соответствующего хэш-значения и поэтому хэш-значения могут использоваться вместо самих сообщений, например в системах электронной цифровой подписи.

Дополнительно в разделе 7 определяются вспомогательные алгоритмы расширения и преобразования ключа, предназначенные для создания и модификации ключей шифрования и имитозащиты.

В приложении А приводятся примеры выполнения алгоритмов стандарта. Примеры можно использовать для проверки корректности реализаций алгоритмов.

В приложении Б приводится модуль абстрактно-синтаксической нотации версии 1 (ACH.1), определенной в ГОСТ 34.973. Модуль задает идентификаторы алгоритмов стандарта и описывает форматы параметров алгоритмов. Рекомендуется использовать модуль при встраивании алгоритмов в информационные системы, в которых также используется ACH.1.

5.2 Ключ

В алгоритмах шифрования и имитозащиты используется ключ $\theta \in \{0,1\}^{256}$. Ключ должен вырабатываться без возможности предсказания, распространяться с соблюдением мер конфиденциальности и храниться в секрете.

Разрешается использовать ключ θ , полученный в результате расширения короткого ключа длины 128 или 192. При этом должен использоваться алгоритм расширения, заданный в 7.1.

Один и тот же ключ не должен использоваться в алгоритмах различных групп.

В 7.2 определяется алгоритм преобразования ключа, с помощью которого по исходному ключу можно строить наборы новых ключей, которые, в свою очередь, также можно преобразовывать. Алгоритм преобразования может применяться для создания семейств ключей различного назначения, в том числе для использования в алгоритмах шифрования и имитозащиты различных групп. Кроме этого, алгоритм преобразования позволяет

организовать обновление ключей при исчерпании лимитов времени их использования или объема обработанных на ключах данных.

Ключам, которые требуется получить в результате преобразования, ставятся в соответствие заголовки $I \in \{0,1\}^{128}$, содержащие открытые атрибуты ключей, например, тип или назначение. Кроме этого, ключам назначаются уровни $D \in \{0,1\}^{96}$. Исходному ключу назначается уровень $\langle 0 \rangle_{96}$. Алгоритм преобразования по ключу уровня D и заголовку I строит новый ключ уровня $D \boxplus \langle 1 \rangle_{96}$ с заголовком I. Многократное применение алгоритма к одному ключу с различными заголовками I соответствует генерации семейства ключей различного назначения. Последовательное применение алгоритма к одному ключу с сохранением заголовка I соответствует обновлению ключа.

5.3 Синхропосылка

При шифровании в режимах сцепления блоков, гаммирования с обратной связью и счетчика, а также при одновременном шифровании и имитозащите данных используется синхропосылка $S \in \{0,1\}^{128}$.

Синхропосылка не является секретным параметром, может добавляться к зашифрованному сообщению и передаваться вместе с ним.

При шифровании в режимах гаммирования с обратной связью и счетчика, а также при одновременном шифровании и имитозащите данных должны использоваться уникальные синхропосылки. Уникальность означает, что при зашифровании или установке защиты на одном и том же ключе используются либо заведомо различные синхропосылки, либо вероятность совпадения синхропосылок пренебрежимо мала.

В режиме сцепления блоков синхропосылка должна быть не только уникальной, но и непредсказуемой. Непредсказуемость означает, что синхропосылки формируются случайно или по секретным правилам и вероятность угадать, какая синхропосылка будет использоваться, пренебрежимо мала.

Синхропосылки можно вырабатывать случайным или псевдослучайным методом, строить по меткам времени, значениям монотонного счетчика, неповторяющимся номерам сообщений и др. В режиме сцепления блоков предсказуемые значения не должны использоваться напрямую для построения синхропосылок, а должны предварительно зашифроваться на том же ключе, который используется для шифрования сообщений.

5.4 Имитовставка

В алгоритме выработки имитовставки и в алгоритмах одновременного шифрования и имитозащиты данных вычисляется либо проверяется имитовставка $T \in \{0,1\}^{64}$.

Если требуются не все, а l < 64 символов имитовставки, то должны использоваться первые l символов. При выборе l следует учитывать, что при навязывании ложного сообщения вероятность угадать с одной попытки его имитовставку, не зная ключ, равняется 2^{-l} .

5.5 Хэш-значение

В алгоритме хэширования вычисляется хэш-значение $Y \in \{0,1\}^{256}$.

Если требуются не все, а l < 256 символов хэш-значения, то должны использоваться первые l символов. При выборе l следует учитывать, что для определения сообщения с заданным хэш-значением требуется выполнить порядка 2^l операций, а для определения двух различных сообщений с одинаковыми хэш-значениями требуется выполнить порядка $2^{l/2}$ операций.

6 Алгоритмы шифрования и контроля целостности

6.1 Шифрование блока

6.1.1 Входные и выходные данные

Входными данными алгоритмов зашифрования и расшифрования являются блок $X \in \{0,1\}^{128}$ и ключ $\theta \in \{0,1\}^{256}$.

Выходными данными является блок $Y \in \{0,1\}^{128}$ — результат зашифрования либо расшифрования слова X на ключе θ : $Y = F_{\theta}(X)$ либо $Y = F_{\theta}^{-1}(X)$.

Входные данные подготавливаются следующим образом:

- 1 Слово X записывается в виде $X = X_1 \parallel X_2 \parallel X_3 \parallel X_4$, где $X_i \in \{0,1\}^{32}$.
- 2 Ключ θ записывается в виде $\theta = \theta_1 \parallel \theta_2 \parallel \ldots \parallel \theta_8, \ \theta_i \in \{0,1\}^{32}$, и определяются тактовые ключи $K_1 = \theta_1, K_2 = \theta_2, \ldots, K_8 = \theta_8, K_9 = \theta_1, K_{10} = \theta_2, \ldots, K_{56} = \theta_8$.

6.1.2 Вспомогательные преобразования и переменные

Подстановка H. Подстановка $H: \{0,1\}^8 \to \{0,1\}^8$ задается таблицей 2. В таблице 2 используется шестнадцатеричное представление слов $u \in \{0,1\}^8$. Если $u = \mathrm{IJ}_{16}$, то значение H(u) находится на пересечении строки I и столбца J. Например, $H(\mathrm{A2}_{16}) = 9\mathrm{B}_{16}$.

Таблица	$^2-$	Подстановка Л	H
---------	-------	---------------	---

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	B1	94	BA	C8	OA	08	F5	3B	36	6D	00	8E	58	4A	5D	E4
1	85	04	FA	9D	1B	В6	C7	AC	25	2E	72	C2	02	FD	CE	OD
2	5B	E3	D6	12	17	В9	61	81	FE	67	86	AD	71	6B	89	ОВ
3	5C	BO	CO	FF	33	C3	56	В8	35	C4	05	ΑE	D8	EO	7 F	99
4	E1	2B	DC	1 A	E2	82	57	EC	70	3F	CC	FO	95	EE	8D	F1
5	C1	AB	76	38	9F	E6	78	CA	F7	C6	F8	60	D5	BB	9C	4F
6	F3	3C	65	7B	63	7C	30	6 A	DD	4E	A7	79	9E	B2	3D	31
7	3E	98	В5	6E	27	D3	BC	CF	59	1E	18	1F	4C	5A	В7	93
8	E9	DE	E7	2C	8F	OC	OF	A 6	2D	DB	49	F4	6F	73	96	47
9	06	07	53	16	ED	24	7A	37	39	CB	AЗ	83	03	A 9	8B	F6
A	92	BD	9B	1C	E5	D1	41	01	54	45	FB	C9	5E	4D	ΟE	F2
В	68	20	80	AA	22	7D	64	2F	26	87	F9	34	90	40	55	11
C	BE	32	97	13	43	FC	9 A	48	AO	2A	88	5F	19	4B	09	A1
D	7E	CD	A4	DO	15	44	AF	8C	A 5	84	50	BF	66	D2	E8	88
E	A2	D7	46	52	42	A8	DF	В3	69	74	C5	51	EB	23	29	21
F	D4	EF	D9	B4	ЗА	62	28	75	91	14	10	EA	77	6C	DA	1D

Преобразования G_r (r = 5, 13, 21). Преобразование $G_r \colon \{0, 1\}^{32} \to \{0, 1\}^{32}$ ставит в соответствие слову $u = u_1 \parallel u_2 \parallel u_3 \parallel u_4, u_i \in \{0, 1\}^8$, слово

$$G_r(u) = \mathtt{RotHi}^r \left(H(u_1) \parallel H(u_2) \parallel H(u_3) \parallel H(u_4) \right).$$

Переменные. Используются переменные a, b, c, d, e со значениями из $\{0, 1\}^{32}$.

6.1.3 Алгоритм зашифрования

Для зашифрования блока X на ключе θ выполняются следующие шаги:

- 1 Установить $a \leftarrow X_1, b \leftarrow X_2, c \leftarrow X_3, d \leftarrow X_4.$
- 2 Для i = 1, 2, ..., 8 выполнить (см. рисунок 1):
 - 1) $b \leftarrow b \oplus G_5(a \boxplus K_{7i-6});$
 - 2) $c \leftarrow c \oplus G_{21}(d \boxplus K_{7i-5});$
 - 3) $a \leftarrow a \boxminus G_{13}(b \boxplus K_{7i-4});$
 - 4) $e \leftarrow G_{21}(b \boxplus c \boxplus K_{7i-3}) \oplus \langle i \rangle_{32};$
 - 5) $b \leftarrow b \boxplus e$;
 - 6) $c \leftarrow c \boxminus e$;
 - 7) $d \leftarrow d \boxplus G_{13}(c \boxplus K_{7i-2});$
 - 8) $b \leftarrow b \oplus G_{21}(a \boxplus K_{7i-1});$
 - 9) $c \leftarrow c \oplus G_5(d \boxplus K_{7i});$
 - 10) $a \leftrightarrow b$;
 - 11) $c \leftrightarrow d$;
 - 12) $b \leftrightarrow c$.
- 3 Установить $Y \leftarrow b \parallel d \parallel a \parallel c$.
- 4 Возвратить Y.

6.1.4 Алгоритм расшифрования

Для расшифрования блока X на ключе θ выполняются следующие шаги:

- 1 Установить $a \leftarrow X_1, b \leftarrow X_2, c \leftarrow X_3, d \leftarrow X_4.$
- 2 Для i = 8, 7, ..., 1 выполнить:
 - 1) $b \leftarrow b \oplus G_5(a \boxplus K_{7i});$
 - 2) $c \leftarrow c \oplus G_{21}(d \boxplus K_{7i-1});$
 - 3) $a \leftarrow a \boxminus G_{13}(b \boxplus K_{7i-2});$
 - 4) $e \leftarrow G_{21}(b \boxplus c \boxplus K_{7i-3}) \oplus \langle i \rangle_{32};$
 - 5) $b \leftarrow b \boxplus e$;
 - 6) $c \leftarrow c \boxminus e$;
 - 7) $d \leftarrow d \boxplus G_{13}(c \boxplus K_{7i-4});$
 - 8) $b \leftarrow b \oplus G_{21}(a \boxplus K_{7i-5});$
 - 9) $c \leftarrow c \oplus G_5(d \boxplus K_{7i-6});$
 - 10) $a \leftrightarrow b$;
 - 11) $c \leftrightarrow d$;
 - 12) $a \leftrightarrow d$.
- 3 Установить $Y \leftarrow c \parallel a \parallel d \parallel b$.
- 4 Возвратить Y.

Рисунок 1 — Вычисления на і-м такте зашифрования

6.2 Шифрование в режиме простой замены

6.2.1 Входные и выходные данные

Входными данными алгоритмов зашифрования и расшифрования являются сообщение $X \in \{0,1\}^*$ и ключ $\theta \in \{0,1\}^{256}$. Длина X должна быть не меньше 128.

Выходными данными является слово $Y \in \{0,1\}^{|X|}$ — результат зашифрования либо расшифрования X на ключе θ .

Входное сообщение X записывается в виде

$$X = X_1 \parallel X_2 \parallel \ldots \parallel X_n, \quad |X_1| = |X_2| = \ldots = |X_{n-1}| = 128, \quad 0 < |X_n| \le 128.$$

При шифровании словам X_i ставятся в соответствие слова $Y_i \in \{0,1\}^{|X_i|}$, из которых затем составляется Y.

6.2.2 Переменные

При $|X_n| < 128$ используется переменная r со значениями из $\{0,1\}^{128-|X_n|}$.

6.2.3 Алгоритм зашифрования

Зашифрование сообщения X на ключе θ состоит в выполнении следующих шагов:

- 1 Если $|X_n| = 128$, то
 - 1) для i = 1, 2, ..., n выполнить: $Y_i \leftarrow F_{\theta}(X_i)$.
- 2 Если $|X_n| < 128$, то

- 1) для i = 1, 2, ..., n 2 выполнить: $Y_i \leftarrow F_{\theta}(X_i)$;
- 2) $Y_n \parallel r \leftarrow F_{\theta}(X_{n-1});$
- 3) $Y_{n-1} \leftarrow F_{\theta}(X_n \parallel r)$.
- 3 Установить $Y \leftarrow Y_1 \parallel Y_2 \parallel \ldots \parallel Y_n$.
- 4 Возвратить Y.

6.2.4 Алгоритм расшифрования

Расшифрование сообщения X на ключе θ состоит в выполнении следующих шагов:

- 1 Если $|X_n| = 128$, то
 - 1) для $i=1,2,\ldots,n$ выполнить: $Y_i \leftarrow F_{\theta}^{-1}(X_i)$.
- 2 Если $|X_n| < 128$, то
 - 1) для $i = 1, 2, \dots, n-2$ выполнить: $Y_i \leftarrow F_{\theta}^{-1}(X_i);$
 - 2) $Y_n \parallel r \leftarrow F_{\theta}^{-1}(X_{n-1});$
 - 3) $Y_{n-1} \leftarrow F_{\theta}^{-1}(X_n \parallel r)$.
- 3 Установить $Y \leftarrow Y_1 \parallel Y_2 \parallel \ldots \parallel Y_n$.
- 4 Возвратить Y.

6.3 Шифрование в режиме сцепления блоков

6.3.1 Входные и выходные данные

Входными данными алгоритмов зашифрования и расшифрования являются сообщение $X \in \{0,1\}^*$, ключ $\theta \in \{0,1\}^{256}$ и синхропосылка $S \in \{0,1\}^{128}$. Длина X должна быть не меньше 128.

Выходными данными является слово $Y \in \{0,1\}^{|X|}$ — результат зашифрования либо расшифрования X на ключе θ при использовании синхропосылки S.

Входное сообщение X записывается в виде

$$X = X_1 \parallel X_2 \parallel \dots \parallel X_n$$
, $|X_1| = |X_2| = \dots = |X_{n-1}| = 128$, $0 < |X_n| \le 128$.

При шифровании словам X_i ставятся в соответствие слова $Y_i \in \{0,1\}^{|X_i|}$, из которых затем составляется Y.

При зашифровании используется вспомогательный блок $Y_0 \in \{0,1\}^{128}$, а при расшифровании — вспомогательный блок $X_0 \in \{0,1\}^{128}$.

6.3.2 Переменные

При $|X_n| < 128$ используется переменная r со значениями из $\{0,1\}^{128-|X_n|}$.

6.3.3 Алгоритм зашифрования

Зашифрование сообщения X на ключе θ при использовании синхропосылки S состоит в выполнении следующих шагов:

- 1 Установить $Y_0 \leftarrow S$.
- 2 Если $|X_n| = 128$, то
 - 1) для i = 1, 2, ..., n выполнить: $Y_i \leftarrow F_{\theta}(X_i \oplus Y_{i-1})$.
- 3 Если $|X_n| < 128$, то
 - 1) для i = 1, 2, ..., n 2 выполнить: $Y_i \leftarrow F_{\theta}(X_i \oplus Y_{i-1});$

- 2) $Y_n \parallel r \leftarrow F_{\theta}(X_{n-1} \oplus Y_{n-2});$
- 3) $Y_{n-1} \leftarrow F_{\theta}((X_n \oplus Y_n) \parallel r)$.
- 4 Установить $Y \leftarrow Y_1 \parallel Y_2 \parallel \ldots \parallel Y_n$.
- 5 Возвратить Y.

6.3.4 Алгоритм расшифрования

Расшифрование сообщения X на ключе θ при использовании синхропосылки S состоит в выполнении следующих шагов:

- 1 Установить $X_0 \leftarrow S$.
- 2 Если $|X_n| = 128$, то
 - 1) для $i=1,2,\ldots,n$ выполнить: $Y_i \leftarrow F_{\theta}^{-1}(X_i) \oplus X_{i-1}.$
- 3 Если $|X_n| < 128$, то
 - 1) для i = 1, 2, ..., n-2 выполнить: $Y_i \leftarrow F_{\theta}^{-1}(X_i) \oplus X_{i-1}$;
 - 2) $Y_n \parallel r \leftarrow F_{\theta}^{-1}(X_{n-1}) \oplus (X_n \parallel 0^{128-|X_n|});$
 - 3) $Y_{n-1} \leftarrow F_{\theta}^{-1}(X_n \parallel r) \oplus X_{n-2}$.
- 4 Установить $Y \leftarrow Y_1 \parallel Y_2 \parallel \ldots \parallel Y_n$.
- 5 Возвратить Y.

6.4 Шифрование в режиме гаммирования с обратной связью

6.4.1 Входные и выходные данные

Входными данными алгоритмов зашифрования и расшифрования являются сообщение $X \in \{0,1\}^*$, ключ $\theta \in \{0,1\}^{256}$ и синхропосылка $S \in \{0,1\}^{128}$.

Выходными данными является слово $Y \in \{0,1\}^{|X|}$ — результат зашифрования либо расшифрования X на ключе θ при использовании синхропосылки S.

Входное сообщение X записывается в виде

$$X = X_1 \parallel X_2 \parallel \ldots \parallel X_n, \quad |X_1| = |X_2| = \ldots = |X_{n-1}| = 128, \quad |X_n| \le 128.$$

При шифровании словам X_i ставятся в соответствие слова $Y_i \in \{0,1\}^{|X_i|}$, из которых затем составляется Y.

При зашифровании используется вспомогательный блок $Y_0 \in \{0,1\}^{128}$, а при расшифровании — вспомогательный блок $X_0 \in \{0,1\}^{128}$.

6.4.2 Алгоритм зашифрования

Зашифрование сообщения X на ключе θ при использовании синхропосылки S состоит в выполнении следующих шагов:

- 1 Установить $Y_0 \leftarrow S$.
- 2 Для $i = 1, 2, \dots, n$ выполнить: $Y_i \leftarrow X_i \oplus L_{|X_i|}(F_{\theta}(Y_{i-1})).$
- 3 Установить $Y \leftarrow Y_1 || Y_2 || \dots || Y_n$.
- 4 Возвратить Y.

6.4.3 Алгоритм расшифрования

Расшифрование сообщения X на ключе θ при использовании синхропосылки S состоит в выполнении следующих шагов:

- 1 Установить $X_0 \leftarrow S$.
- 2 Для i = 1, 2, ..., n выполнить: $Y_i \leftarrow X_i \oplus L_{|X_i|}(F_{\theta}(X_{i-1}))$.
- 3 Установить $Y \leftarrow Y_1 \parallel Y_2 \parallel \ldots \parallel Y_n$.
- 4 Возвратить Y.

6.5 Шифрование в режиме счетчика

6.5.1 Входные и выходные данные

Входными данными алгоритмов зашифрования и расшифрования являются сообщение $X \in \{0,1\}^*$, ключ $\theta \in \{0,1\}^{256}$ и синхропосылка $S \in \{0,1\}^{128}$.

Выходными данными является слово $Y \in \{0,1\}^{|X|}$ — результат зашифрования либо расшифрования X на ключе θ при использовании синхропосылки S.

Входное сообщение X записывается в виде

$$X = X_1 \parallel X_2 \parallel \dots \parallel X_n, \quad |X_1| = |X_2| = \dots = |X_{n-1}| = 128, \quad |X_n| \le 128.$$

При шифровании словам X_i ставятся в соответствие слова $Y_i \in \{0,1\}^{|X_i|}$, из которых затем составляется Y.

6.5.2 Переменные

Используется переменная s со значениями из $\{0,1\}^{128}$.

6.5.3 Алгоритм зашифрования

Зашифрование сообщения X на ключе θ при использовании синхропосылки S состоит в выполнении следующих шагов:

- 1 Установить $s \leftarrow F_{\theta}(S)$.
- 2 Для i = 1, 2, ..., n выполнить:
 - 1) $s \leftarrow s \boxplus \langle 1 \rangle_{128}$,
 - 2) $Y_i \leftarrow X_i \oplus L_{|X_i|}(F_{\theta}(s)).$
- 3 Установить $Y \leftarrow Y_1 || Y_2 || \dots || Y_n$.
- 4 Возвратить Y.

6.5.4 Алгоритм расшифрования

Расшифрование сообщения X на ключе θ при использовании синхропосылки S состоит в выполнении тех же шагов, что и при зашифровании.

6.6 Выработка имитовставки

6.6.1 Входные и выходные данные

Входными данными алгоритма выработки имитовставки являются сообщение $X \in \{0,1\}^*$ и ключ $\theta \in \{0,1\}^{256}$.

Выходными данными является слово $T \in \{0,1\}^{64}$ — имитовставка X на ключе θ .

Входное сообщение X ненулевой длины записывается в виде

$$X = X_1 \parallel X_2 \parallel \dots \parallel X_n$$
, $|X_1| = |X_2| = \dots = |X_{n-1}| = 128$, $0 < |X_n| \le 128$.

Если же X — пустое слово, то n = 1 и $|X_1| = 0$.

6.6.2 Вспомогательные преобразования и переменные

Преобразования φ_1 и φ_2 . Преобразования $\varphi_1, \varphi_2 \colon \{0,1\}^{128} \to \{0,1\}^{128}$ действуют на слово $u = u_1 \parallel u_2 \parallel u_3 \parallel u_4, u_i \in \{0,1\}^{32}$, по правилам:

$$\varphi_1(u) = u_2 \parallel u_3 \parallel u_4 \parallel (u_1 \oplus u_2),$$

 $\varphi_2(u) = (u_1 \oplus u_4) \parallel u_1 \parallel u_2 \parallel u_3.$

Отображение ψ . Отображение ψ ставит в соответствие двоичному слову u, длина которого меньше 128, слово $\psi(u) = u \parallel 1 \parallel 0^{127-|u|}$ длины 128.

Переменные. Используются переменные r и s со значениями из $\{0,1\}^{128}$.

6.6.3 Алгоритм выработки имитовставки

Определение имитовставки сообщения X на ключе θ состоит в выполнении следующих шагов:

- 1 Установить $s \leftarrow 0^{128}$, $r \leftarrow F_{\theta}(s)$.
- 2 Для i = 1, 2, ..., n 1 выполнить: $s \leftarrow F_{\theta}(s \oplus X_i)$.
- 3 Если $|X_n|=128$, то $s\leftarrow s\oplus X_n\oplus \varphi_1(r)$, иначе $s\leftarrow s\oplus \psi(X_n)\oplus \varphi_2(r)$.
- 4 Установить $T \leftarrow L_{64}(F_{\theta}(s))$.
- 5 Возвратить T.

6.7 Шифрование и имитозащита данных

6.7.1 Входные и выходные данные

Входными данными алгоритма установки защиты являются критическое сообщение $X \in \{0,1\}^*$, открытое сообщение $I \in \{0,1\}^*$, ключ $\theta \in \{0,1\}^{256}$ и синхропосылка $S \in \{0,1\}^{128}$. Длины I и X должны быть меньше 2^{64} .

Выходными данными алгоритма установки защиты являются слово $Y \in \{0,1\}^{|X|}$ — результат зашифрования X на ключе θ при использовании синхропосылки S, и слово $T \in \{0,1\}^{64}$ — имитовставка пары (X,I) на ключе θ при использовании синхропосылки S.

Входными данными алгоритма снятия защиты являются зашифрованное сообщение $X \in \{0,1\}^*$, открытое сообщение $I \in \{0,1\}^*$, имитовставка $T \in \{0,1\}^{64}$, ключ $\theta \in \{0,1\}^{256}$ и синхропосылка $S \in \{0,1\}^{128}$. Длины X и I должны быть меньше 2^{64} .

Выходными данными алгоритма снятия защиты является признак ОШИБКА либо слово $Y \in \{0,1\}^{|X|}$ — результат расшифрования X на ключе θ при использовании синхропосылки S. Возврат признака ОШИБКА означает нарушение целостности данных.

Входные сообщения X и I записываются в виде

$$X = X_1 \parallel X_2 \parallel \dots \parallel X_n,$$
 $|X_1| = |X_2| = \dots = |X_{n-1}| = 128,$ $|X_n| \le 128,$ $|I = I_1 \parallel I_2 \parallel \dots \parallel I_m,$ $|I_1| = |I_2| = \dots = |I_{m-1}| = 128,$ $|I_m| \le 128.$

При шифровании словам X_i ставятся в соответствие слова $Y_i \in \{0,1\}^{|X_i|}$, из которых затем составляется Y.

6.7.2 Переменные

Используются переменные r и s со значениями из $\{0,1\}^{128}$.

6.7.3 Алгоритм установки защиты

Защита пары (X,I) на ключе θ при использовании синхропосылки S состоит в выполнении следующих шагов:

- 1 Установить $r \leftarrow F_{\theta}(S), s \leftarrow r$.
- 2 Для i = 1, 2, ..., n выполнить:
 - 1) $s \leftarrow s \boxplus \langle 1 \rangle_{128}$;
 - 2) $Y_i \leftarrow X_i \oplus L_{|X_i|}(F_{\theta}(s)).$
- 3 Установить $r \leftarrow F_{\theta}(r)$, $s \leftarrow$ B194BAC80A08F53B366D008E584A5DE4₁₆, где последнее присваиваемое значение определяется последовательными элементами первой строки таблицы 2.
 - 4 Для i = 1, 2, ..., m выполнить:
 - 1) $s \leftarrow s \oplus (I_i \parallel 0^{128-|I_i|});$
 - 2) $s \leftarrow s * r$.
 - 5 Для i = 1, 2, ..., n выполнить:
 - 1) $s \leftarrow s \oplus (Y_i \parallel 0^{128-|Y_i|});$
 - 2) $s \leftarrow s * r$.
 - 6 Установить $s \leftarrow s \oplus (\langle |I| \rangle_{64} \parallel \langle |X| \rangle_{64});$
 - 7 Установить $s \leftarrow F_{\theta}(s * r)$.
 - 8 Установить $T \leftarrow L_{64}(s)$.
 - 9 Возвратить (Y, T).

6.7.4 Алгоритм снятия защиты

Снятие защиты с тройки (X, I, T) на ключе θ при использовании синхропосылки S состоит в выполнении следующих шагов:

- 1 Установить $r \leftarrow F_{\theta}(F_{\theta}(S))$, $s \leftarrow$ B194BAC80A08F53B366D008E584A5DE4₁₆, где последнее присваиваемое значение определяется последовательными элементами первой строки таблицы 2.
 - 2 Для i = 1, 2, ..., m выполнить:
 - 1) $s \leftarrow s \oplus (I_i \parallel 0^{128-|I_i|});$
 - 2) $s \leftarrow s * r$.
 - 3 Для i = 1, 2, ..., n выполнить:
 - 1) $s \leftarrow s \oplus (X_i \parallel 0^{128-|X_i|});$
 - 2) $s \leftarrow s * r$.
 - 4 Установить $s \leftarrow s \oplus (\langle |I| \rangle_{64} \parallel \langle |X| \rangle_{64});$
 - 5 Установить $s \leftarrow F_{\theta}(s * r)$.
 - 6 Если $T \neq L_{64}(s)$, то возвратить ОШИБКА.
 - 7 Установить $s \leftarrow F_{\theta}(S)$.
 - 8 Для i = 1, 2, ..., n выполнить:
 - 1) $s \leftarrow s \boxplus \langle 1 \rangle_{128}$;
 - 2) $Y_i \leftarrow X_i \oplus L_{|X_i|}(F_{\theta}(s)).$
 - 9 Возвратить Y.

6.8 Шифрование и имитозащита ключа

6.8.1 Входные и выходные данные

Входными данными алгоритма установки защиты являются защищаемый ключ $X \in \{0,1\}^{8*}$, его заголовок $I \in \{0,1\}^{128}$ и ключ защиты $\theta \in \{0,1\}^{256}$. Длина X должна быть не меньше 128.

Выходными данными алгоритма установки защиты является слово $Y \in \{0,1\}^{|X|+128}$ — результат защиты пары (X,I) на ключе θ .

Входными данными алгоритма снятия защиты являются защищенный ключ $X \in \{0,1\}^*$, его заголовок $I \in \{0,1\}^{128}$ и ключ защиты $\theta \in \{0,1\}^{256}$.

Выходными данными алгоритма снятия защиты является признак ОШИБКА либо слово $Y \in \{0,1\}^{|X|-128}$ — результат снятия защиты с пары (X,I) на ключе θ . Возврат признака ОШИБКА означает нарушение целостности входных данных.

По входным данным алгоритмов определяется количество блоков

$$n = \left\{ \begin{array}{cc} \lceil |X|/128 \rceil + 1 & \text{при установке защиты,} \\ \lceil |X|/128 \rceil & \text{при снятии защиты.} \end{array} \right.$$

6.8.2 Переменные

Переменная r. Используется переменная r, которая при установке защиты принимает значения из $\{0,1\}^{|X|+128}$, а при снятии защиты — значения из $\{0,1\}^{|X|}$.

Значение r записывается в виде

$$r = r_1 \parallel r_2 \parallel \ldots \parallel r_{n-1} \parallel r_n, \quad |r_1| = |r_2| = \ldots = |r_{n-1}| = 128, \quad 0 < |r_n| \le 128,$$

либо в виде

$$r = r^{**} \parallel r^*, \quad |r^*| = 128.$$

Переменная s. Используется переменная s со значениями из $\{0,1\}^{128}$.

6.8.3 Алгоритм установки защиты

Защита пары (X, I) на ключе θ состоит в выполнении следующих шагов:

- 1 Установить $r \leftarrow X \parallel I$.
- 2 Для i = 1, 2, ..., 2n выполнить:
 - 1) $s \leftarrow r_1 \oplus r_2 \oplus \ldots \oplus r_{n-1}$;
 - 2) $r^* \leftarrow r^* \oplus F_{\theta}(s) \oplus \langle i \rangle_{128}$;
 - 3) $r \leftarrow \text{ShLo}^{128}(r)$;
 - 4) $r^* \leftarrow s$.
- 3 Установить $Y \leftarrow r$.
- 4 Возвратить Y.

6.8.4 Алгоритм снятия защиты

Снятие защиты с пары (X, I) на ключе θ состоит в выполнении следующих шагов:

- 1 Если длина X не кратна 8 или |X| < 256, то возвратить ОШИБКА.
- 2 Установить $r \leftarrow X$.
- 3 Для i = 2n, ..., 2, 1 выполнить:

- 1) $s \leftarrow r^*$;
- 2) $r \leftarrow \text{ShHi}^{128}(r);$
- 3) $r^* \leftarrow r^* \oplus F_{\theta}(s) \oplus \langle i \rangle_{128}$;
- 4) $r_1 \leftarrow s \oplus r_2 \oplus \ldots \oplus r_{n-1}$.
- 4 Если $r^* \neq I$, то возвратить ОШИБКА.
- 5 Установить $Y \leftarrow r^{**}$.
- 6 Возвратить Y.

6.9 Хэширование

6.9.1 Входные и выходные данные

Входными данными алгоритма хэширования является сообщение $X \in \{0,1\}^*$.

Выходными данными является слово $Y \in \{0,1\}^{256}$ — хэш-значение сообщения X.

К входному сообщению X предварительно добавляется t нулевых символов, где t — минимальное неотрицательное целое число такое, что |X|+t кратно 256. Полученное слово записывается в виде

$$X \parallel 0^t = X_1 \parallel X_2 \parallel \dots \parallel X_n, \quad |X_1| = |X_2| = \dots = |X_n| = 256.$$

6.9.2 Вспомогательные преобразования и переменные

Отображения σ_1 и σ_2 . Отображения $\sigma_1 \colon \{0,1\}^{512} \to \{0,1\}^{128}$ и $\sigma_2 \colon \{0,1\}^{512} \to \{0,1\}^{256}$ действуют на слово $u = u_1 \parallel u_2 \parallel u_3 \parallel u_4, u_i \in \{0,1\}^{128}$, по правилам:

$$\sigma_1(u) = F_{u_1 \parallel u_2}(u_3 \oplus u_4) \oplus u_3 \oplus u_4,$$

$$\sigma_2(u) = (F_{\theta_1}(u_1) \oplus u_1) \parallel (F_{\theta_2}(u_2) \oplus u_2),$$

где
$$\theta_1 = \sigma_1(u) \parallel u_4, \, \theta_2 = (\sigma_1(u) \oplus 1^{128}) \parallel u_3.$$

Переменные. Используется переменная s со значениями из $\{0,1\}^{128}$ и переменная h со значениями из $\{0,1\}^{256}$.

6.9.3 Алгоритм хэширования

Хэширование сообщения X состоит в выполнении следующих шагов:

- 1 Установить $s \leftarrow 0^{128}$.
- 2 Установить

 $h \leftarrow \text{B194BAC80A08F53B366D008E584A5DE48504FA9D1BB6C7AC252E72C202FDCEOD}_{16},$

где присваиваемое значение определяется последовательными (слева направо и сверху вниз) элементами первых двух строк таблицы 2.

- 3 Для i = 1, 2, ..., n выполнить:
 - 1) $s \leftarrow s \oplus \sigma_1(X_i \parallel h)$,
 - 2) $h \leftarrow \sigma_2(X_i \parallel h)$.
- 4 Установить $Y \leftarrow \sigma_2(\langle |X| \rangle_{128} \parallel s \parallel h)$.
- 5 Возвратить Y.

7 Вспомогательные алгоритмы

7.1 Расширение ключа

7.1.1 Входные и выходные данные

Входными данными алгоритма расширения является исходный ключ $\theta_1 \parallel \theta_2 \parallel \ldots \parallel \theta_n$, где $\theta_i \in \{0,1\}^{32}$, $n \in \{4,6,8\}$.

Выходными данными алгоритма является ключ $\theta \in \{0,1\}^{256}$.

7.1.2 Алгоритм расширения ключа

Расширение ключа $\theta_1 \parallel \theta_2 \parallel \ldots \parallel \theta_n$ состоит в дополнении его словами $\theta_{n+1}, \ldots, \theta_8 \in \{0,1\}^{32}$ по следующим правилам:

- 1 Если n = 4, то выполнить:
 - 1) $\theta_5 \leftarrow \theta_1$;
 - 2) $\theta_6 \leftarrow \theta_2$;
 - 3) $\theta_7 \leftarrow \theta_3$;
 - 4) $\theta_8 \leftarrow \theta_4$.
- 2 Если n = 6, то выполнить:
 - 1) $\theta_7 \leftarrow \theta_1 \oplus \theta_2 \oplus \theta_3$;
 - 2) $\theta_8 \leftarrow \theta_4 \oplus \theta_5 \oplus \theta_6$.
- 3 Установить $\theta \leftarrow \theta_1 \parallel \theta_2 \parallel \ldots \parallel \theta_8$.
- 4 Возвратить θ .

7.2 Преобразование ключа

7.2.1 Входные и выходные данные

Входными данными алгоритма преобразования являются преобразуемый ключ $X \in \{0,1\}^n$, где $n \in \{128,192,256\}$, его уровень $D \in \{0,1\}^{96}$, заголовок $I \in \{0,1\}^{128}$ нового ключа и его длина $m \in \{128,192,256\}$, $m \leqslant n$.

Выходными данными алгоритма преобразования является слово $Y \in \{0,1\}^m$ — ключ с заголовком I, полученный по ключу X уровня D.

При преобразовании ключа Y его уровень должен полагаться равным $D \boxplus \langle 1 \rangle_{96}$.

7.2.2 Вспомогательные преобразования и переменные

Отображение σ_2 . Используется отображение σ_2 : $\{0,1\}^{512} \to \{0,1\}^{256}$, действие которого определяется в соответствии с 6.9.2.

Алгоритм КеуЕхраnd. Используется алгоритм расширения ключа **KeyExpand**, определенный в 7.1.2.

Переменные. Используется переменная r со значениями из $\{0,1\}^{32}$ и переменная s со значениями из $\{0,1\}^{256}$.

7.2.3 Алгоритм преобразования ключа

Преобразование ключа X уровня D на заголовке I состоит в выполнении следующих шагов:

- 1 Присвоить переменной r значение:
 - 1) В194ВАС8 $_{16}$, если n=m=128;
 - 2) 5ВЕЗD612₁₆, если n=192 и m=128;
 - 3) 5СВОСО FF_{16} , если n=m=192;
 - 4) E12BDC1A₁₆, если n=256 и m=128;
 - 5) С1АВ7638 $_{16}$, если n=256 и m=192;
 - 6) ${\tt F33C657B_{16},\ ecлu\ }n=m=256.$
- 2 Установить $s \leftarrow \texttt{KeyExpand}(X)$.
- 3 Установить $Y \leftarrow L_m(\sigma_2(r \parallel D \parallel I \parallel s)).$
- 4 Возвратить Y.

Приложение А

(справочное)

Тестовые примеры

А.1 Шифрование блока

В таблице А.1 представлен пример зашифрования блока. Значения переменных a, b, c, d после выполнения тактов зашифрования указаны в таблице А.2. Значения переменных a, b, c, d после выполнения шагов первого такта зашифрования представлены в таблице А.3. Дополнительная переменная e после выполнения шага 4) принимает значение 20072EC1₁₆.

Таблица А.1 — Зашифрование блока

X	B194BAC8	0A08F53B	366D008E	584A5DE4 ₁₆						
θ	E9DEE72C	8F0C0FA6	2DDB49F4	6F739647	06075316	ED247A37	39CBA383	03A98BF6 ₁₆		
Y	69CCA1C9	3557C9E3	D66BC3E0	FA88FA6E	16					

Таблица А.2 — Такты зашифрования

Номер такта		Переменные					
i	a	b	c	d			
1	FB56C62C ₁₆	CASEEB7 ₁₆	09BAD702 ₁₆	CC4E441D ₁₆			
2	7280A094 ₁₆	47BB9CD6 ₁₆	5BD130B1 ₁₆	$\mathtt{ADA525A4}_{16}$			
3	00AB0E4D ₁₆	4B4A6113 ₁₆	73D9CD18 ₁₆	57E54345 ₁₆			
4	A50D12EF ₁₆	8CD05085 ₁₆	99A672B7 ₁₆	D9A0C0E4 ₁₆			
5	21C32063 ₁₆	44712C59 ₁₆	EC21160A ₁₆	$\mathtt{DE08AAB9}_{16}$			
6	B5279D32 ₁₆	D4579966 ₁₆	251E3B2D ₁₆	${\tt F8EF6A0F}_{16}$			
7	26349022 ₁₆	08C5172E ₁₆	705A63C6 ₁₆	5CA6AD61 ₁₆			
8	D66BC3E0 ₁₆	69CCA1C9 ₁₆	${\tt FA88FA6E}_{16}$	3557C9E3 ₁₆			

Таблица А.3 — Первый такт зашифрования

Шаг вычислений		Перем	енные	
	a	b	c	d
1) $b \leftarrow b \oplus G_5(a \boxplus K_1)$	B194BAC8 ₁₆	66DC9868 ₁₆	366D008E ₁₆	584A5DE4 ₁₆
$2) c \leftarrow c \oplus G_{21}(d \boxplus K_2)$	B194BAC8 ₁₆	66DC9868 ₁₆	F95E6998 ₁₆	584A5DE4 ₁₆
$3) a \leftarrow a \boxminus G_{13}(b \boxplus K_3)$	09BAD702 ₁₆	66DC9868 ₁₆	F95E6998 ₁₆	584A5DE4 ₁₆
$4) e \leftarrow G_{21}(b \boxplus c \boxplus K_4) \oplus \langle 1 \rangle_{32}$	09BAD702 ₁₆	66DC9868 ₁₆	F95E6998 ₁₆	584A5DE4 ₁₆
$b \leftarrow b \boxplus e$	09BAD702 ₁₆	86E3C629 ₁₆	F95E6998 ₁₆	584A5DE4 ₁₆
$6) c \leftarrow c \boxminus e$	09BAD702 ₁₆	86E3C629 ₁₆	D9573BD7 ₁₆	584A5DE4 ₁₆
7) $d \leftarrow d \boxplus G_{13}(c \boxplus K_5)$	09BAD702 ₁₆	86E3C629 ₁₆	D9573BD7 ₁₆	CASEEEB7 ₁₆
8) $b \leftarrow b \oplus G_{21}(a \boxplus K_6)$	09BAD702 ₁₆	FB56C62C ₁₆	D9573BD7 ₁₆	CASEEEB7 ₁₆
9) $c \leftarrow c \oplus G_5(d \boxplus K_7)$	09BAD702 ₁₆	FB56C62C ₁₆	CC4E441D ₁₆	CASEEEB7 ₁₆
$10)$ $a \leftrightarrow b$	FB56C62C ₁₆	09BAD702 ₁₆	CC4E441D ₁₆	CASEEEB7 ₁₆
$11)$ $c \leftrightarrow d$	FB56C62C ₁₆	09BAD702 ₁₆	CA8EEB7 ₁₆	CC4E441D ₁₆
$12) b \leftrightarrow c$	FB56C62C ₁₆	CASEEEB7 ₁₆	09BAD702 ₁₆	CC4E441D ₁₆

В таблице A.4 представлен пример расшифрования блока. Значения переменных $a,\,b,\,c,\,d$ после выполнения тактов расшифрования указаны в таблице A.5.

Таблица А.4 — Расшифрование блока

	X	E12BDC1A	E28257EC	703FCCF0	95EE8DF1 ₁₆					
	θ	92BD9B1C	E5D14101	5445FBC9	5E4D0EF2	682080AA	227D642F	2687F934	90405511 ₁₆	
Ī	\overline{Y}	0DC53006	00CAB840	B38448E5	E993F421 ₁	.6				

Таблица А.5 — Такты расшифрования

Номер такта		Перем	енные	
i	a	b	c	d
8	A174D6FC ₁₆	377EB086 ₁₆	BA7C2D07 ₁₆	ODAA044B ₁₆
7	B01E75B3 ₁₆	OF53A46F ₁₆	8893A01F ₁₆	$A4E35989_{16}$
6	B5B85383 ₁₆	33D8BC0E ₁₆	9A46CD5F ₁₆	F8D778D4 ₁₆
5	07234634 ₁₆	723B48FC ₁₆	04690666 ₁₆	ADB565F3 ₁₆
4	$3141A829_{16}$	2AD3FB40 ₁₆	D30032B1 ₁₆	4D336185 ₁₆
3	ADA2EC35 ₁₆	DADBC720 ₁₆	3421AC22 ₁₆	22EC7943 ₁₆
2	9DAC9289 ₁₆	89A2E5ED ₁₆	9253A0F0 ₁₆	$\mathtt{3B871FA3}_{16}$
1	00CAB840 ₁₆	E993F421 ₁₆	0DC53006 ₁₆	B38448E5 ₁₆

А.2 Шифрование в режиме простой замены

В таблицах А.6, А.7 представлены примеры зашифрования в режиме простой замены. В таблицах А.8, А.9 представлены примеры расшифрования в этом же режиме.

Таблица A.6 — Зашифрование в режиме простой замены (|X| = 384)

X	B194BAC8	0A08F53B	366D008E	584A5DE4	8504FA9D	1BB6C7AC	252E72C2	02FDCE0D	
	5BE3D612	17B96181	FE6786AD	716B890B ₁	16				
θ	E9DEE72C	8F0C0FA6	2DDB49F4	6F739647	06075316	ED247A37	39CBA383	03A98BF6 ₁₆	
Y	69CCA1C9	3557C9E3	D66BC3E0	FA88FA6E	5F23102E	F1097107	75017F73	806DA9DC	
	46FB2ED2	CE771F26	DCB5E5D1	$569F9ABO_{16}$					

Таблица A.7 — Зашифрование в режиме простой замены (|X| = 376)

X	B194BAC8	0A08F53B	366D008E	584A5DE4	8504FA9D	1BB6C7AC	252E72C2	02FDCE0D
	5BE3D612	17B96181	FE6786AD	$716 B89_{16}$				
θ	E9DEE72C	8F0C0FA6	2DDB49F4	6F739647	06075316	ED247A37	39CBA383	03A98BF6 ₁₆
Y	69CCA1C9	3557C9E3	D66BC3E0	FA88FA6E	36F00CFE	D6D1CA14	98C12798	F4BEB207
	5F23102E	F1097107	75017F73	$\mathtt{806DA9}_{16}$				

Таблица A.8 — Расшифрование в режиме простой замены (|X| = 384)

X	E12BDC1A	E28257EC	703FCCF0	95EE8DF1	C1AB7638	9FE678CA	F7C6F860	D5BB9C4F
	F33C657B	637C306A	DD4EA779	9EB23D31	16			
θ	92BD9B1C	E5D14101	5445FBC9	5E4D0EF2	682080AA	227D642F	2687F934	90405511 ₁₆
Y	0DC53006	00CAB840	B38448E5	E993F421	E55A239F	2AB5C5D5	FDB6E81B	40938E2A
	54120CA3	E6E19C7A	D750FC35	31DAEAB7	16			

Таблица А.9 — Расшифрование в режиме простой замены (|X| = 288)

X	E12BDC1A	E28257EC	703FCCF0	95EE8DF1	C1AB7638	9FE678CA	F7C6F860	D5BB9C4F
	F33C657B ₁	6						
θ	92BD9B1C	E5D14101	5445FBC9	5E4D0EF2	682080AA	227D642F	2687F934	90405511 ₁₆
Y	0DC53006	00CAB840	B38448E5	E993F421	5780A6E2	B69EAFBB	258726D7	B6718523
	E55A239F ₁₆							

А.3 Шифрование в режиме сцепления блоков

В таблицах А.10, А.11 представлены примеры зашифрования в режиме сцепления блоков. В таблицах А.12, А.13 представлены примеры расшифрования в этом же режиме.

Таблица A.10 — Зашифрование в режиме сцепления блоков (|X| = 384)

X	B194BAC8	0A08F53B	366D008E	584A5DE4	8504FA9D	1BB6C7AC	252E72C2	02FDCE0D
	5BE3D612	17B96181	FE6786AD	716B890B ₁₆	6			
θ	E9DEE72C	8F0C0FA6	2DDB49F4	6F739647	06075316	ED247A37	39CBA383	03A98BF6 ₁₆
S	BE329713	43FC9A48	A02A885F	194B09A1 ₁₆	6			
Y	10116EFA	E6AD58EE	14852E11	DA1B8A74	5CF2480E	8D03F1C1	9492E53E	D3A70F60
	657C1EE8	COEOAE5B	58388BF8	A68E3309 ₁₆	6			

Таблица A.11 — Зашифрование в режиме сцепления блоков (|X|=288)

X	B194BAC8	0A08F53B	366D008E	584A5DE4	8504FA9D	1BB6C7AC	252E72C2	02FDCE0D
	5BE3D612 ₁	.6						
θ	E9DEE72C	8F0C0FA6	2DDB49F4	6F739647	06075316	ED247A37	39CBA383	03A98BF6 ₁₆
S	BE329713	43FC9A48	A02A885F	194B09A1	16			
Y	10116EFA	E6AD58EE	14852E11	DA1B8A74	6A9BBADC	AF73F968	F875DEDC	0A44F6B1
	5CF2480E ₁₆							

Таблица A.12 — Расшифрование в режиме сцепления блоков (|X| = 384)

X	E12BDC1A	E28257EC	703FCCF0	95EE8DF1	C1AB7638	9FE678CA	F7C6F860	D5BB9C4F
	F33C657B	637C306A	DD4EA779	9EB23D31 ₁	.6			
θ	92BD9B1C	E5D14101	5445FBC9	5E4D0EF2	682080AA	227D642F	2687F934	90405511 ₁₆
S	7ECDA4D0	1544AF8C	A58450BF	66D2E88A ₁	.6			
Y	730894D6	158E17CC	1600185A	8F411CAB	0471FF85	C8379239	8D8924EB	D57D03DB
	95B97A9B	7907E4B0	20960455	E46176F8 ₁	.6			

Таблица A.13 — Расшифрование в режиме сцепления блоков (|X|=288)

X	E12BDC1A	E28257EC	703FCCF0	95EE8DF1	C1AB7638	9FE678CA	F7C6F860	D5BB9C4F
	F33C657B ₁	.6						
θ	92BD9B1C	E5D14101	5445FBC9	5E4D0EF2	682080AA	227D642F	2687F934	90405511 ₁₆
S	7ECDA4DO	1544AF8C	A58450BF	66D2E88A	16			
Y	730894D6	158E17CC	1600185A	8F411CAB	B6AB7AF8	541CF857	55B8EA27	239F08D2
	166646E4 ₁	.6						

А.4 Шифрование в режиме гаммирования с обратной связью

В таблицах А.14, А.15 представлены примеры зашифрования и расшифрования в режиме гаммирования с обратной связью.

Таблица А.14 — Зашифрование в режиме гаммирования с обратной связью

X	B194BAC8	0A08F53B	366D008E	584A5DE4	8504FA9D	1BB6C7AC	252E72C2	02FDCE0D
	5BE3D612	17B96181	FE6786AD	716B890B ₁	16			
θ	E9DEE72C	8F0C0FA6	2DDB49F4	6F739647	06075316	ED247A37	39CBA383	03A98BF6 ₁₆
S	BE329713	43FC9A48	A02A885F	194B09A1 ₁	16			
Y	C31E490A	90EFA374	626CC99E	4B7B8540	A6E48685	464A5A06	849C9CA7	69A1B0AE
	55C2CC59	39303EC8	32DD2FE1	6C8E5A1B ₁	16			

Таблица А.15 — Расшифрование в режиме гаммирования с обратной связью

X	E12BDC1A	E28257EC	703FCCF0	5EE8DF1 C1AB7638 9FE	678CA F7C6F860	D5BB9C4F
	F33C657B	637C306A	DD4EA779	EB23D31 ₁₆		
θ	92BD9B1C	E5D14101	5445FBC9	E4D0EF2 682080AA 227I	D642F 2687F934	90405511 ₁₆
S	7ECDA4D0	1544AF8C	A58450BF	6D2E88A ₁₆		
Y	FA9D107A	86F375EE	65CD1DB8	1224BD0 16AFF814 938B	ED39B 3361ABB0	BF0851B6
	52244EB0	6842DD4C	94AA4500	74E40BB ₁₆		

А.5 Шифрование в режиме счетчика

В таблице А.16 представлен пример шифрования в режиме счетчика.

Таблица А.16 — Шифрование в режиме счетчика

X	B194BAC8	0A08F53B	366D008E	584A5DE4	8504FA9D	1BB6C7AC	252E72C2	02FDCE0D
	5BE3D612	17B96181	FE6786AD	716B890B ₁	16			
θ	E9DEE72C	8F0C0FA6	2DDB49F4	6F739647	06075316	ED247A37	39CBA383	03A98BF6 ₁₆
S	BE329713	43FC9A48	A02A885F	194B09A1	16			
Y	52C9AF96	FF50F644	35FC43DE	F56BD797	D5B5B1FF	79FB4125	7AB9CDF6	E63E81F8
	F0034147	3EAE4098	33622DE0	5213773A	16			

А.6 Выработка имитовставки

В таблицах А.17, А.18 представлены примеры выработки имитовставки.

Таблица А.17 — Выработка имитовставки (|X| = 104)

λ	$\langle \cdot $	B194BAC8	0A08F53B	366D008E	58 ₁₆				
θ		E9DEE72C	8F0C0FA6	2DDB49F4	6F739647	06075316	ED247A37	39CBA383	03A98BF6 ₁₆
Y	7	7260DA60	138F96C9 ₁	.6					

Таблица A.18 — Выработка имитовставки (|X| = 384)

X	B194BAC8	0A08F53B	366D008E	584A5DE4	8504FA9D	1BB6C7AC	252E72C2	02FDCE0D
	5BE3D612	17B96181	FE6786AD	716B890B ₁	16			
θ	E9DEE72C	8F0C0FA6	2DDB49F4	6F739647	06075316	ED247A37	39CBA383	03A98BF6 ₁₆
V	2DAB5977	1B4B16D0	1.6					

А.7 Шифрование и имитозащита данных

В таблице А.19 представлены примеры применения операции *. В таблицах А.20 и А.21 представлены примеры установки и снятия защиты данных.

Таблица А.19 — Операция *

u	34904055	11BE3297	1343724C	$\mathtt{5AB793E9}_{16}$
v	22481783	8761A9D6	E3EC9689	110FB0F3 ₁₆
u * v	0001D107	FC67DE40	04DC2C80	3DFD95C3 ₁₆
u	703FCCF0	95EE8DF1	C1ABF8EE	8DF1C1AB ₁₆
v	2055704E	2EDB48FE	87E74075	A5E77EB1 ₁₆
u * v	4A5C9593	8B3FE8F6	74D59BC1	EB356079 ₁₆

Таблица А.20 — Установка защиты данных

X	B194BAC8	0A08F53B	366D008E	584A5DE4 ₁	16			
I	8504FA9D	1BB6C7AC	252E72C2	02FDCE0D	5BE3D612	17B96181	FE6786AD	716B890B ₁₆
θ	E9DEE72C	8F0C0FA6	2DDB49F4	6F739647	06075316	ED247A37	39CBA383	03A98BF6 ₁₆
S	BE329713	43FC9A48	A02A885F	194B09A1 ₁	16			
Y	52C9AF96	FF50F644	35FC43DE	F56BD797 ₁	16			
T	3B2E0AEB	2B91854B ₁	6					

Таблица А.21 — Снятие защиты данных

X	E12BDC1A	E28257EC	703FCCF0	95EE8DF1	16			
I	C1AB7638	9FE678CA	F7C6F860	D5BB9C4F	F33C657B	637C306A	DD4EA779	9EB23D31 ₁₆
T	6A2C2C94	C4150DC0 ₁	.6					
θ	92BD9B1C	E5D14101	5445FBC9	5E4D0EF2	682080AA	227D642F	2687F934	90405511 ₁₆
S	7ECDA4D0	1544AF8C	A58450BF	66D2E88A ₁	16			
Y	DF181ED0	08A20F43	DCBBB936	50DAD34B ₁	16			

А.8 Шифрование и имитозащита ключа

В таблицах А.22 и А.23 представлены примеры установки и снятия защиты ключа.

Таблица А.22 — Установка защиты ключа

X	B194BAC8	0A08F53B	366D008E	584A5DE4	8504FA9D	1BB6C7AC	252E72C2	O2FDCEOD ₁₆
I	5BE3D612	17B96181	FE6786AD	716B890B ₁	16			
θ	E9DEE72C	8F0C0FA6	2DDB49F4	6F739647	06075316	ED247A37	39CBA383	03A98BF6 ₁₆
Y	49A38EE1	08D6C742	E52B774F	00A6EF98	B106CBD1	3EA4FB06	80323051	BC04DF76
	E487B055	C69BCF54	1176169F	1DC9F6C8 ₁	16			

Таблица А.23 — Снятие защиты ключа

X	E12BDC1A	E28257EC	703FCCF0	95EE8DF1	C1AB7638	9FE678CA	F7C6F860	D5BB9C4F
	F33C657B	637C306A	DD4EA779	9EB23D31	16			
I	B5EF68D8	E4A39E56	7153DE13	D72254EE	16			
θ	92BD9B1C	E5D14101	5445FBC9	5E4D0EF2	682080AA	227D642F	2687F934	90405511 ₁₆
Y	92632EE0	C21AD9E0	9A39343E	5CO7DAA4	889B03F2	E6847EB1	52EC99F7	A4D9F154 ₁₆

А.9 Хэширование

В таблицах А.24, А.25 и А.26 представлены примеры хэширования.

Таблица A.24 — Хэширование (|X| = 104)

X	B194BAC8 0	A08F53B	366D008E	58 ₁₆				
Y	ABEF9725 D	4C5A835	97A367D1	4494CC25	42F20F65	9DDFECC9	61A3EC55	OCBA8C75 ₁₆

Таблица A.25 — Хэширование (|X| = 256)

X	B194BAC8	0A08F53B	366D008E	584A5DE4	8504FA9D	1BB6C7AC	252E72C2	02FDCE0D ₁₆
Y	749E4C36	53AECE5E	48DB4761	227742EB	6DBE13F4	A80F7BEF	F1A9CF8D	10EE7786 ₁₆

Таблица A.26 — Хэширование (|X| = 384)

X	B194BAC8	0A08F53B	366D008E	584A5DE4	8504FA9D	1BB6C7AC	252E72C2	02FDCE0D
	5BE3D612	17B96181	FE6786AD	716B890B ₁	16			
Y	9D02EE44	6FB6A29F	E5C982D4	B13AF9D3	E90861BC	4CEF27CF	306BFB0B	174A154A ₁₆

А.10 Расширение ключа

В таблицах А.27, А.28 представлены примеры расширения ключа.

Таблица A.27 — Расширение ключа (n=4)

θ_1	E9DEE72C ₁₆
θ_2	8F0C0FA6 ₁₆
θ_3	2DDB49F4 ₁₆
θ_4	6F739647 ₁₆
θ	E9DEE72C 8F0C0FA6 2DDB49F4 6F739647 E9DEE72C 8F0C0FA6 2DDB49F4 6F739647 ₁₆

Таблица A.28 — Расширение ключа (n=6)

θ_1	E9DEE72C ₁₆
θ_2	8F0C0FA6 ₁₆
θ_3	2DDB49F4 ₁₆
θ_4	6F739647 ₁₆
θ_5	06075316 ₁₆
θ_6	ED247A37 ₁₆
θ	E9DEE72C 8F0C0FA6 2DDB49F4 6F739647 06075316 ED247A37 4B09A17E 8450BF66 ₁₆

А.11 Преобразование ключа

В таблицах А.29, А.30, А.31 представлены примеры преобразования ключа.

Таблица А.29 — Преобразование ключа (m=128)

X	E9DEE72C	8F0C0FA6	2DDB49F4	6F739647	06075316	ED247A37	39CBA383	03A98BF6 ₁₆
D	01000000	00000000	000000001	6				
I	5BE3D612	17B96181	FE6786AD	716B890B ₁	.6			
m	128							
Y	6BBBC233	6670D31A	B83DAA90	D52C0541 ₁	.6			

Таблица А.30 — Преобразование ключа (m=192)

X	E9DEE72C	8F0C0FA6	2DDB49F4	6F739647	06075316	ED247A37	39CBA383	03A98BF6 ₁₆
D	01000000	00000000	000000001	.6				
I	5BE3D612	17B96181	FE6786AD	716B890B ₁	.6			
m	192							
Y	9A2532A1	8CBAF145	398D5A95	FEEA6C82	5B9C1971	56A00275	16	

Таблица А.31 — Преобразование ключа (m=256)

X	E9DEE72C	8F0C0FA6	2DDB49F4	6F739647	06075316	ED247A37	39CBA383	03A98BF6 ₁₆
D	01000000	00000000	000000001	6				
I	5BE3D612	17B96181	FE6786AD	716B890B ₁	16			
m	256							
Y	76E166E6	AB21256B	6739397B	672B8796	14B81CF0	5955FC3A	B09343A7	45C48F77 ₁₆

Приложение Б

(рекомендуемое)

Модуль АСН.1

В модуле АСН.1 идентификаторы алгоритмов шифрования и имитозащиты снабжаются трехзначным кодом NNN, который обозначает длину используемого ключа: NNN = 128, 192 или 256.

Алгоритмы стандарта обозначаются следующим образом:

```
belt-ecbNNN
                    алгоритмы шифрования в режиме простой замены (6.2);
belt-cbcNNN
                    алгоритмы шифрования в режиме сцепления блоков (6.3);
belt-cfbNNN
                    алгоритмы шифрования в режиме гаммирования с обратной свя-
                   зью (6.4);
belt-ctrNNN
                    алгоритмы шифрования в режиме счетчика (6.5);
                    алгоритм выработки имитовставки (6.6);
belt-macNNN
belt-datawrapNNN
                    алгоритмы одновременного шифрования и имитозащиты данных
                    (6.7);
belt-keywrapNNN
                    алгоритмы одновременного шифрования и имитозащиты ключа
                    (6.8);
belt-hash256
                    алгоритм хэширования (6.9);
                    алгоритм расширения ключа (7.1);
belt-keyexpand
belt-keyrep
                    алгоритм преобразования ключа (7.2).
```

В модуле АСН.1 определяются форматы следующих параметров:

```
IV синхропосылка в алгоритмах belt-cbcNNN, belt-cfbNNN, belt-ctrNNN, belt-datawrapNNN;

КеуНеаder заголовок ключа в алгоритмах belt-keywrapNNN, belt-keyrep;

КеуLevel уровень ключа в алгоритме belt-keyrep.
```

Модуль АСН.1 имеет следующий вид:

belt-cbc256 OBJECT IDENTIFIER ::= {belt 23}

```
Belt-module-v1 {iso(1) member-body(2) by(112) 0 2 0 34 101 31 module(1) ver1(1)}
DEFINITIONS ::=
BEGIN
   belt OBJECT IDENTIFIER ::= {iso(1) member-body(2) by(112) 0 2 0 34 101 31}

belt-ecb128 OBJECT IDENTIFIER ::= {belt 11}
belt-ecb192 OBJECT IDENTIFIER ::= {belt 12}
belt-ecb256 OBJECT IDENTIFIER ::= {belt 13}
belt-cbc128 OBJECT IDENTIFIER ::= {belt 21}
belt-cbc192 OBJECT IDENTIFIER ::= {belt 22}
```

```
belt-cfb128 OBJECT IDENTIFIER ::= {belt 31}
 belt-cfb192 OBJECT IDENTIFIER ::= {belt 32}
 belt-cfb256 OBJECT IDENTIFIER ::= {belt 33}
 belt-ctr128 OBJECT IDENTIFIER ::= {belt 41}
 belt-ctr192 OBJECT IDENTIFIER ::= {belt 42}
 belt-ctr256 OBJECT IDENTIFIER ::= {belt 43}
 belt-mac128 OBJECT IDENTIFIER ::= {belt 51}
 belt-mac192 OBJECT IDENTIFIER ::= {belt 52}
 belt-mac256 OBJECT IDENTIFIER ::= {belt 53}
 belt-datawrap128 OBJECT IDENTIFIER ::= {belt 61}
 belt-datawrap192 OBJECT IDENTIFIER ::= {belt 62}
 belt-datawrap256 OBJECT IDENTIFIER ::= {belt 63}
 belt-keywrap128 OBJECT IDENTIFIER ::= {belt 71}
 belt-keywrap192 OBJECT IDENTIFIER ::= {belt 72}
 belt-keywrap256 OBJECT IDENTIFIER ::= {belt 73}
 belt-hash256 OBJECT IDENTIFIER ::= {belt 81}
 belt-keyexpand OBJECT IDENTIFIER ::= {belt 91}
 belt-keyrep OBJECT IDENTIFIER ::= {belt 101}
 IV ::= OCTET STRING (SIZE(16))
 KeyHeader ::= OCTET STRING (SIZE(16))
 KeyLevel ::= OCTET STRING (SIZE(12))
END
```

Библиография

[1] Лидл Р., Нидеррайтер Г. Конечные поля М.: Мир, 1988

Поправка к официальной редакции

В каком месте	Напечатано	Должно быть
Пункт 6.1.3, шаг 1	$c \leftarrow X_4$	$d \leftarrow X_4$
Пункт 6.8.2	$r_1 = r^{**} \parallel r^*$	$r = r^{**} \parallel r^*$
Приложение Б	В модуль АСН.1 определяются	В модуле АСН.1 определяются
	форматы следующих парамет-	форматы следующих парамет-
	ров:	ров: