

#### DEEP LEARNING: INTRODUCTION







#### RECAP

**IA** est une technique qui permet à une machine d'imiter le comportement humain.

**ML** est une technique pour atteindre l'IA à travers des algorithmes entraînés avec des données.

**DL** est un type de ML inspiré par la structure du cerveau humain.



#### LIMITES DES ALGORITHMES DE ML

- Ingénierie des caractéristiques : De nombreux algorithmes dépendent de caractéristiques bien conçues.
- Évolutivité : Des algorithmes comme SVM et KNN ont du mal avec de grands ensembles de données.
- Relations complexes : Les relations non linéaires sont difficiles pour des modèles comme la Régression Linéaire/Logistique.
- Haute dimensionnalité : Le surapprentissage devient un problème lorsque la dimensionnalité augmente.
- Sparsité des données : De nombreux algorithmes sous-performent avec des données comme les textes ou les images.

### DL, PK?



#### DL?



#### DL?







#### **Input Layer**







$$F(x) = a.x + b$$



$$F(x) = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + 1 \cdot b$$

$$F(x) = a.x + b$$





$$F(x) = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + 1 \cdot b$$

$$F(x) = a.x + b$$



$$F(x) = a.x + b$$

$$F(x) = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + 1 \cdot b$$
  
 $F(x) = W^{T}.X + b$ 

#### Dot product:

$$\mathbf{a} = egin{bmatrix} 2 \ 3 \ 4 \end{bmatrix}, \quad \mathbf{b} = egin{bmatrix} 1 \ 0 \ -1 \end{bmatrix}$$

$$\mathbf{a}^T\mathbf{b} = egin{bmatrix} 2 & 3 & 4 \end{bmatrix} egin{bmatrix} 1 \ 0 \ -1 \end{bmatrix}$$

$$=a_1\cdot b_1+a_2\cdot b_2+a_3\cdot b_3$$

$$=$$
  $2+0+(-4)=-2$ 



$$F(x) = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + 1 \cdot b$$

$$F(x) = W^{T}.X + b$$

#### Dot product:

$$\mathbf{a} = egin{bmatrix} 2 \ 3 \ 4 \end{bmatrix}, \quad \mathbf{b} = egin{bmatrix} 1 \ 0 \ -1 \end{bmatrix}$$

$$\mathbf{a}^T\mathbf{b} = egin{bmatrix} 2 & 3 & 4 \end{bmatrix} egin{bmatrix} 1 \ 0 \ -1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 3 & 4 \\ 1 & 0 & -1 \\ 0 & 5 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \\ -2 \end{bmatrix}$$



$$F(x) = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + 1 \cdot b$$

$$F(x) = W^{T}.X + b$$



$$F(x) = a.x + b$$



$$F(x) = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + 1 \cdot b$$

$$F(x) = \sigma(W^{T}.X + b)$$





$$F(x) = a.x + b$$

$$F(x) = \sigma(W.X + b)$$



$$F(x) = a.x + b$$

$$\sigma(W.X+b)$$

DL, COMMENT? **x**1 x5 x6 Output Layer Input Layer 6 neurons 50 neurons 100 neurons 200 neurons 500 neurons Hidden Layers 19

#### BIAIS

La modification des poids ne sert qu'à manipuler la forme/courbure/ souplesse de votre fonction.

L'introduction de biais permet de déplacer la courbe de la fonction verticalement tout en laissant la forme/courbure inchangée.

De plus, le biais vous permet d'utiliser un seul réseau neuronal pour représenter des cas similaires.





### DL, OBJECTIF

#### Hypothèse:

$$f(x) = a \cdot x + b$$



#### Paramètres:

a, b

#### **Fonction Coût:**

$$J(a,b) = rac{1}{2m} \sum_{i=1}^m \left( f(x^{(i)}) - y^{(i)} 
ight)^2$$

#### Objectif:

$$\min_{a,b} J(a,b)$$

## PARALLÉLISATION



# ITERATION VS EPOCH



## ITERATION VS EPOCH



# OVERFITTING

Underfitting Overfitting Right Fit Classification Regression

# OVERFITTING, SOLUTIONS

| Solution                                  | Description                                                                                                 |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Régularisation (L1/L2)                    | Ajoute une pénalité au terme de coût pour limiter les valeurs des poids.                                    |
| Dropout                                   | Désactive aléatoirement certaines connexions entre les neurones pendant l'entraînement.                     |
| Augmentation des données                  | Génère des variations des données d'entraînement (rotation, recadrage, etc.) pour augmenter leur diversité. |
| Réduction de la complexité du modèle      | Diminue la taille ou la profondeur du modèle pour réduire sa capacité à mémoriser les données.              |
| Utilisation d'un ensemble de validation   | Surveille les performances sur des données de validation pour détecter le surapprentissage.                 |
| Arrêt anticipé (Early Stopping)           | Arrête l'entraînement dès que les performances sur l'ensemble de validation cessent de s'améliorer.         |
| Collecte de plus de données               | Ajoute davantage de données pour réduire le risque de mémorisation excessive.                               |
| Normalisation/Standardisation des données | Met les données d'entrée sur une échelle uniforme pour stabiliser l'apprentissage.                          |

## OVERFITTING, REGULARISATION



$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} |w_i|$$