Méthodes numériques pour les EDP Projet 3 : parallélisation de la résolution d'un problème de contrôle.

On souhaite paralléliser le problème de contrôle :

$$\min J(c) = ||y(T) - y_{cible}||^2 + \alpha \int c^2$$

où l'équation qui relie y et c est de type Schrödinger :

$$i\hat{y}(t) = (A + c(t)B)y(t)$$

avec un état initial yo fixé.

1 Étude théorique

On commence par décomposer l'intervalle [0,T] en N sous-intervalles de même taille, les [T_{i-1},T_i], avec T_i=iT/N. On examine alors une nouvelle fonctionnelle :

$$J_{\parallel}(c,\Lambda) = \sum Nx ||y_l(T_{l+1}) - \lambda_{l+1}||^2 + \alpha \int c^2$$

où $\Lambda = (\lambda_I)$ est une suite de N+1 états intermédiaires donnée, avec $\lambda_0 = y_0$ et $\lambda_N = y_{cible}$, et les y_I sont définis sur [T₁,T_{I+1}] par :

yı vérifie la même équation que y sur $[T_1,T_{1+1}]$, et $y_1(T_1)=\lambda_1$. (on les étend à [0,T] naturellement)

1) J(c) minimise $J_{\parallel}(c,\Lambda)$:

Soit Λ une suite d'états intermédiaires. Par l'inégalité de Cauchy-Schwarz,

$$\begin{split} \sum &Nx\|y_{l}(T_{l+1}) - \lambda_{l+1}\|^{2} = \sum &Nx\|y_{l}(T_{l+1}) - \lambda_{l+1}\|^{2} \ x \sum (1/N) \\ &\geq \left(\sum &\|y_{l}(T_{l+1}) - \lambda_{l+1}\|\right)^{2} \end{split}$$

On admet l'existence de $P_{j,k}$ de norme 1 tel que : Pour tout j,k,l dans $\{0,...,N\}$, $P_{j,k}$ yl $(T_j) = yl(T_k)$.

Lorsque l'on travaille avec l'algorithme permettant de calculer des valeurs approchées des yı, l'existence de cette quantité ainsi que la formule permettant de la calculer sont données par la formule :

$$y_1(n+1)=exp(-IxAxdt)xexp(-IxBxc(n)xdt)xy_1(n)$$

 $y_1(0)=\lambda_1$

Ainsi
$$\left(\prod \exp(-IxAxdt)x\exp(-IxBxc(n)xdt) \right) x \lambda_1 = y_1(M)$$

 $y_l(0)$ correspond à $y_l(T_l)$, $y_l(M)$ correspond à $y_l(T_{l+1})$, et le coefficient pour passer de l'un à l'autre est bien de norme 1. On peut itérer cette multiplication pour obtenir n'importe quel $y_l(T_k)$.

On peut maintenant écrire, pour 1 dans {0,...,N-2} :

$$\begin{split} \|y_{l}(T_{l+1}) - \lambda_{l+1}\| &= \|P_{l,l+1} \ y_{l}(T_{l}) - \lambda_{l+1}\| \\ &= \|P_{l+1,N} \left(P_{l,l+1} \ y_{l}(T_{l}) - y_{l+1}(T_{l+1})\right)\| \\ &= \|P_{l,N} \ y_{l}(T_{l}) - P_{l+1,N} \ y_{l+1}(T_{l+1})\| \end{split}$$

Pour 1 = 0, $P_{1,N}$ $y_1(T_1) = y_0(T_N)$

Or $y_0 = y$ puisque ces deux fonctions vérifient la même équation et la même condition de départ. Donc $P_{l,N}$ $y_l(T_l) = y(T)$.

D'autre part, pour l = N-1, $\lambda_{l+1} = y_{cible}$ (c'est une condition nécessaire à la construction des états intermédiaires).

Au final, on obtient:

$$\sum\! Nx\|y_l(T_{l+1}) - \lambda_{l+1}\|^2 \, \geq \bigl(\sum\! \|y_l(T_{l+1}) - \lambda_{l+1}\|\bigr)^2$$

et
$$\sum ||y_l(T_{l+1}) - \lambda_{l+1}|| \ge ||y(T) - y_{cible}||$$

Donc $J(c) \le J_{\parallel}(c,\Lambda)$, et ce pour tout c et pour tout Λ .

2) un Λ bien choisi donne $J(c) = J_{\parallel}(c, \Lambda)$

On pose : pour l dans
$$\{0,...,N-1\}$$
, $\lambda_l = (1-1/N)y(T_l) + 1/N p(T_l)$ où p est l'adjoint de y.

Alors la fonction (1-l/N)y + l/N p vérifie l'équation différentielle, donc les conditions y_l vérifie l'équation différentielle et y_l(T₁)= λ _l donnent que y_l = (1-l/N)y + l/N p sur tout [0,T].

On calcule alors:

$$\begin{aligned} y_{l}(T_{l+1}) - \lambda_{l+1} &= (1 - l/N)y(T_{l+1}) + l/N \ p(T_{l+1}) - \left((1 - (l+1)/N)y(T_{l+1}) + (l+1)/N \ p(T_{l+1}) \right) \\ &= 1/N \ y(T_{l+1}) - 1/N \ p(T_{l+1}) \end{aligned}$$

Donc
$$J_{\parallel}(c,\Lambda) = \sum (1/N)x||y(T_{l+1}) - p(T_{l+1})||^2 + \alpha \int c^2$$

On admet que ||y - p|| est constant sur [0,T].

On obtient alors :
$$J_{\parallel}(c,\Lambda) = \sum (1/N)x||y(T) - p(T)||^2 + \alpha \int c^2$$

Donc
$$J_{\parallel}(c,\Lambda) = J(c)$$

Un algorithme de parallélisation va consister en le choix d'un c, puis le calcul du Λ optimal pour ce c, puis le calcul du c optimal pour ce Λ , et ainsi de suite.

On pourra donc le voir comme un algorithme de « directions alternées ».

2 Étude pratique

Dans l'algorithme proposé en pièce jointe, la méthode avec parallélisation a besoin de commencer par le calcul des états intermédiaires, ce qui ne peut pas être parallélisé et qui empèche l'obtention d'une « full efficiency ».