PEAT MARWICK MITCHELL AND CO SAN FRANCISCO CALIF F/G 1/2
NEW YORK AIRPORTS DATA PACKAGE NUMBER 6, JOHN F. KENNEDY INTERN--ETC(U) AD-A099 869 DOT-FA77WA-3961 JUN 79 NL. UNCLASSIFIED J 0₹2 2039889

NEW YORK AIRPORTS

DATA PACKAGE NO. 6

JOHN F. KENNEDY INTERNATIONAL AIRPORT, LA GUARDIA AIRPORT.

AIRPORT IMPROVEMENT TASK FORCE DELAY STUDIES -

prepared for

DISTRIBUTION STATEMENT A

Approved for public releases
Distribution Unlimited

DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
under contract

/ DOT-FA77WA -3961

Peat, Marwick, Mitchell & Co.

6 08 121 JUNE 1579

ONE FILE CO

PEAT. MARWICK. MITCHELL & Co.

P. O. BOX 8007

SAN FRANCISCO INTERNATIONAL AIRPORT SAN FRANCISCO, CALIFORNIA 94128

Telephone: (415) 347-9521

June 15, 1979

Mr. Michael M. Scott, ATF-4 Federal Aviation Administration 800 Independence Avenue, S.W. Washington, D.C. 20591

Re: New York Data Package No. 6, June 1979

Dear Mike:

Attached is New York Data Package No. 6. The material in this Data Package is organized to correspond with the agenda for the June 22, 1979, meeting of the New York Task Force:

- Attachment A contains the LGA simulation results and graphics, minus the west-taxiway experiments
- Attachment B has the LGA demand inputs and the short-form networks
- Attachment C presents the JFK simulation results and graphics
- Attachment D contains the JFK demand inputs and short-form networks
- Attachments E and F present the aircraft separations used in the simulations for LGA and JFK, respectively

A brief summary of the highlights and conclusions of the LGA and JFK simulations is presented at the beginning of the Data Package.

A supplement to this Data Package, which contains the results of the LGA west-taxiway experiments and annual delay results, will be presented at the June 22 meeting.

Mr. Michael M. Scott, ATF-4 June 15, 1979 2

This information should be reviewed by members of the New York Task Force at their June 22, 1979, meeting.

Sincerely

Stephen L. M. Hockaday

Manager

SLMH/sh Enclosure

cc: Mr. J. R. Dupree (ALG-312)

Mr. C. Caiafa (AEA-4)

CONTENTS :

Attachment	Description	Page
	HIGHLIGHTS AND CONCLUSIONS	iv
A	LGA STAGE-2 SIMULATION EXPERIMENTS RESULTS AND GRAPHICS	1
В	LGA STAGE-2 SIMULATION EXPERIMENTS INPUT SCHEDULES AND SHORT-FORM AIRFIELD NETWORKS	45
С	JFK STAGE-2 SIMULATION EXPERIMENTS RESULTS AND GRAPHICS	57
D	JFK STAGE-2 SIMULATION EXPERIMENTS INPUT SCHEDULES AND SHORT-FORM AIRFIELD NETWORKS	93
E	LGA STANDARD SEPARATION INPUTS	101
F	JFK STANDARD SEPARATION INPUTS	105

TABLES

Number		Page
A-1	New York Task Force Delay Studies, LaGuardia Airport, Summary Results of Stage-2 Experiments, Airfield Simulation Model Runs	2
B-1(a)	Hourly Demand in 1977 by Class of Operation, LaGuardia Airport	46
B-1(b)	Actual PMS Counts of Operations, Average Weekday, LaGuardia Airport	46
B-2	Hourly Demand in 1982 by Class of Operation, LaGuardia Airport	47
B-3	Hourly Demand in 1987 by Class of Operation, LaGuardia Airport	48
B-4	Hourly Demand in 1982-PNYNJ (Heavy Sensitivity) by Class of Operation, LaGuardia Airport	49
B-5	Hourly Demand in 1987-PNYNJ (Heavy Sensitivity) by Class of Operation, LaGuardia Airport	50
B-6	Hourly Demand in 1982 (GA Sensitivity) by Class of Operation, LaGuardia Airport	51
B-7	Hourly demand in 1987 (GA Sensitivity) by Class of Operation, LaGuardia Airport	52
C-1	New York Task Force Delay Studies, John F. Kennedy International Airport, Summary Results of Stage-2 Experiments, Airfield Simulation Model Runs	58
D-1	Hourly Demand in 1977 by Class of Operation, John F. Kennedy International Airport	94
D-2	Hourly Demand in 1982 by Class of Operation, John F. Kennedy International Airport	95
D-3	Hourly Demand in 1987 by Class of Operation, John F. Kennedy International Airport	96
E-1	LaGuardia Airport, Separation Inputs	102
F-1	John F. Kennedy International Airport, Separation Inputs	106

New York Task Force Delay Studies Data Package No. 6

HIGHLIGHTS AND CONCLUSIONS

Purpose

This brief overview of the highlights and conclusions of the airfield simulation results is intended to guide the reader through the major findings of this report.

Scope

This data package contains the results of the simulation experiments except for the four west-taxiway experiments at LaGuardia Airport. Those west-taxiway results, along with the results of the annual delay model experiments, will be reported in a supplement to this data package at the next Task Force meeting.

Organization

A summary table of results is presented for each Airport (Table A-1, page 2, for LGA, and Table C-1, page 58, for JFK), along with summary sheets and graphics of individual experiment results. Also included are the following items:

- Tables of demand for each year and demandsensitivity experiment (Attachments B and D)
- Short-form network diagrams for each experiment (Attachments B and D)
- Tables of the standard VFR and IFR separations used in the simulations (Attachments E and F)

Results for LaGuardia Airport

LaGuardia results are summarized in Table A-1. The experiments in Table A-1 are grouped by runway-use configuration and weather condition to facilitate comparisons of results over different years and sensitivity conditions.

The sensitivity runs tested the effects of: (1) the PNYNJ forecast, which contains a higher percentage of heavy aircraft and fewer total operations than the schedules used in the

other experiments; (2) levels of general aviation operations observed in August 1978 instead of the PNYNJ general aviation forecasts used in the other experiments; and (3) using today's ATC separations instead of the 1982 and 1987 ATC separations used in the other experiments. All of the sensitivity tests were done using the same runway-use configuration and weather condition, namely arrivals on 22 and departures on 13 in IFRL.

The following are the major conclusions of the LGA results:

- 1. The ATA forecast used in the standard experiments contained fewer OAG scheduled operations than in 1977 (see Tables B-1 through B-3); this, coupled with the relatively low PNYNJ general aviation forecasts, contributed to lower delays in both 1982 and 1987 than estimated for today for all runway uses.
- 2. Another factor in the foregoing delay reductions is the reduced aircraft separations assumed for 1982 and 1987 (see Tables E-1 and F-1).
- 3. The sensitivity tests indicated that the delays appear very sensitive to the general aviation forecasts (especially in 1982) and the assumed separations (especially in 1987), as shown below (see Figures 50b, 52b, 51b, and 53b):

			Dela	ys with	Delay	s with
	Baseli	ne Delays	Toda	y's GA	Today	's ATC
Year	Arrivals	Departures	Arrivals	Departures	Arrivals	Departures
1982	19.3	1.0	29.5	1.0	22.0	0.9
1987	3.0	1.5	4.4	1.6	24.3	1.0

4. Delays were not very sensitive to the 1982 PNYNJ forecast but were very sensitive to the 1987 PNYNJ forecast (see Figures 48b and 49b):

	Baselir	ne Delays	Delays with	PNYNJ Forecast
Year	Arrivals	Departures	Arrivals	Departures
1982	19.3	1.0	18.8	0.9
1987	3.0	1.5	1.1	1.1

This is probably due to the large percentage of heavy aircraft in the 1987 PNYNJ forecast and the associated drop in total operations, coupled with the fact that the 1987 ATC Scenario of Report No. FAA-EM-78-8A has greatly reduced wake-turbulence effects.

Results for John F. Kennedy International Airport

The JFK results are summarized in Table C-1 and are organized the same way as the LaGuardia results. In this case, sensitivity runs were done only to test the effects of today's ATC separations in 1982 and 1987 (Experiments 44 and 45); there were no demand-sensitivity experiments for JFK. The forecasts for JFK provided by PNYNJ showed increases in both air carrier and general aviation traffic over today's traffic levels (see Tables D-1, D-2, and D-3).

The following are the major conclusions of the JFK results:

- 1. Delays are estimated to increase between today and 1982 and then they fall below today's levels by 1987 in all cases except the 2 n.m. stagger experiments (Experiments 18, 27, and 36).
- 2. The major factor contributing to the reduction in delays by 1987 is probably the assumed 1987 ATC Scenario, based on Report No. FAA-EM-78-8A, and its reduced separations and wake-turbulence effects.
- 3. Future delays are very sensitive to the assumed 1982 and 1987 ATC separations (especially in 1987), as shown below:

			_	ith Today's
	Baseli:	ne Delays	ATC Se	parations
Year	Arrivals	Departures	Arrivals	Departures
1982	95.1	5.9	122.0	4.2
1987	32.5	4.4	131.9	5.2

The high separation sensitivity in 1987 is due to the very high percentage of heavy aircraft (71.6%) in the 1987 PNYNJ forecast and the fact that the 1987 separations have greatly reduced wake-turbulence effects compared to today's separations.

Attachment A

LGA STAGE-2 SIMULATION EXPERIMENTS RESULTS AND GRAPHICS

LaGuardia Airport

New York

Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

June 1979

NEW YORK TASK FORCE DELAY STUDIES
LaGUARDIA AIRPORT
Summary Results of Stage-2 Experiments
Airfield Simulation Model Runs

•							Highest H	Highest Hourly Flow Rates	Rates		Average Ru	Average Rumay Delays
Experiment		Runway	Runways Used	Time	Weather			Com	Combined Total			(minutes)
S	Descriptiona	Arrivals	Departures	Frame	Conditions	Arrivalsb	Departures	Arrivals	Departures	Total	Arrivals	Departures
-	1977 baseline	22	13	1978	VFR1	39	42	38	42	90	12.8	
ני	1982 baseline	22	13	1982	VFR1	4	34	7	33	7.	2.2	4.
37	1987 baseline	22	13	1987	VFR1	43	35	43	34	11	2.4	1.4
7	1978 baseline	22	13	1978	IFRI	30	×	30	33	63	42.6	0.7
32	1982 baseline	22	13	1982	IFRI	31	33	11	33	64	19.3	1.0
48°	1982 Heavy Sensitivity	22	12	1982	IFRI	32	33	30	30	9	18.8	6.0
509	1982 GA Sensitivity	22	, 61	1982	IFRI	31	35	33	34	65	29.5	1.0
52 ⁶	1982 (today's ATC) Sensitivity	22	13	1982	IFRI	10	33	30	33	63	22.0	6.0
36	1987 baseline	22	13	1961	IFR]	4	36	41	34	75	3.0	1.5
491	1987 Heasy Sensitivity	22	13	1987	IFRI	37	31	37	29	99	1.1	1:1
519	1907 GA Sensitivity	22	13	1987	IFRI	42	39	42	39	н	4.4	1.6
5.3 ⁿ	1987 (today's ATC) Sensitivity	22	13	1987	IFRI	30	33	29	33	62	24.3	1.0
33	1978 baseline	Ξ	4	1978	VFR1	37	35	37	33	70	9 6 6	1,91
14	1982 baseline	13	4	1982	VFRJ	4	37	41	33	74	2.4	6.7
33	1987 baseline	13	4	1987	VFH1	43	34	43	34	u	2.3	D. 0
6	1978 baseline	13	7	1978	IFH	27	29	23	29	56	33.8	5
35	1982 baseline	13	4	1982	IFRI	31	36	30	36	99	20.1	4.9
40	1967 baseline	::	•	1987	IFRI	42	34	42	34	76	2.9	4.5
e	1978 baseline	22	13	1978	1FR2	28	30	19	30	44	805	7 P.C
36	1982 haseline	22	13	1982	JFR2	31	53	11	28	59	4.6	8.0
41	1987 baseline	22	13	1987	IFR2	34	30	30	30	9	6.6	16.7
42	1978 baselino	31	4	1978	VFR1	37	31	37	29	99	28.3	23.6
4	1987 Laseline	Ħ	•	1987	VFRI	43	34	43	32	75	2.3	7.1
45	1970 buseline	31	31	1978	VFR1	13	13	33	32	65	2	7.4.7
47	1967 baselino	11	11	1987	VFR1	30	35	38	33	.	5.7	6.4

For the entire 6-hour simulation period, lighest arrival flow rate is usually not in same hour as highest departure flow rate. Sensitivity run with a higher percentage of heavy aircraft and fewer total operations in 1982 demand. Sensitivity run with more general aviation operations in 1982 demand. Sensitivity run with 1978 separations and 1982 demand. Sensitivity run with a higher percentage of heavy aircraft and fewer total operations in 1987 demand. Sensitivity run with more general aviation operations in 1987 demand. Sensitivity run with more general aviation operations in 1987 demand.

Experiment No. 31

Objective:

To provide baseline delay estimates with 1982 demand, in VFR1 conditions, for the following runway-use configuration:

13

Arrival Runway Departure Runways

Length and Level of Detail of Simulation Run:

22

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation	Performance		This Experiment	
Type	Measure	Units	<u>Average</u> a	Peak
Arrival	Flow Rate	a/c per hr.	30.8	41
Arrival	Air Delay	min.	2.2	5.3
Arrival	Taxi-In Delay	min.		0.0
Departure	Flow Rate	a/c per hr.	28.3	33
Departure	Runway Delay	min.	1.4	1.1
Departure	Taxi-Out Delay	min.		0.5

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment No. 32

Objective:

To provide baseline delay estimates with 1982 demand, in IFRL conditions, for the following runway-use configuration:

Arrival Runway	Departure Runways
22	13

Length and Level of Detail of Simulation Run:

From 1500 to 2100 with 1-hour summaries and a short-form stwork.

Results:

Operation	Performance		This Expe	riment
Type	Measure	Units	Averagea	Peakb
Arrival	Flow Rate	a/c per hr.	29.0	31
Arrival	Air Delay	min.	19.3	16.4
Arrival	Taxi-In Delay	min.		0.0
Departure	Flow Rate	a/c per hr.	27.7	32
Departure	Runway Delay	min.	1.0	1.1
Departure	Taxi-Out Delay	min.		0.3

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment No. 33

Objective:

To provide baseline delay estimates with 1978 demand, in VFRI conditions, for the following runway-use configuration:

Arrival Runway Departure Runways 13 4

Length and Level of Detail of Simulation Run:

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation	Performance		This Expe	
Type	Measure	Units	Averagea	Peak
Arrival	Flow Rate	a/c per hr.	32.0	37
Arrival	Air Delay	min.	23.9	16.1
Arrival	Taxi-In Delay	min.		0.1
Departure	Flow Rate	a/c per hr.	30.5	25
Departure	Runway Delay	min.	16.1	7.7
Departure	Taxi-Out Delay	min.		0.2

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment No. 34

Objective:

To provide baseline delay estimates with 1982 demand, in VFR1 conditions, for the following runway-use configuration:

Arrival Runway Departure Runways

4

Length and Level of Detail of Simulation Run:

13

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation	Performance		This Experiment	
Type	Measure	Units	<u>Average^a</u>	Peak
Arrival	Flow Rate	a/c per hr.	30.8	41
Arrival	Air Delay	min.	2.4	5.3
Arrival	Taxi-In Delay	min.		0.1
Departure	Flow Rate	a/c per hr.	27.5	33
Departure	Runway Delay	min.	9.7	3.1
Departure	Taxi-Out Delay	min.		0.2

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment No. 35

Objective:

To provide baseline delay estimates with 1982 demand, in IFRI conditions, for the following runway-use configuration:

4

Arrival Runway Departure Runways

Length and Level of Detail of Simulation Run:

13

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation	Performance		This Experiment	
Type	Measure	Units	<u>Average</u> a	Peak
Arrival	Flow Rate	a/c per hr.	28.8	31
Arrival	Air Delay	min.	20.1	16.1
Arrival	Taxi-In Delay	min.		0.1
Departure	Flow Rate	a/c per hr.	26.5	32
Departure	Runway Delay	min.	8.4	3.0
Departure	Taxi-Out Delay	min.		0.1

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment No. 36

Objective:

To provide baseline delay estimates with 1982 demand, in IFR2 conditions, for the following runway-use configuration:

Arrival Runway	Departure Runways
22	13

Length and Level of Detail of Simulation Run:

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation	Performance		This Experiment	
Type	Measure	<u>Units</u>	<u>Average</u> a	Peak
Arrival	Flow Rate	a/c per hr.	27.8	31
Arrival	Air Delay	min.	9.4	12.4
Arrival	Taxi-In Delay	min.		0.0
Departure	Flow Rate	a/c per hr.	25.3	28
Departure	Runway Delay	min.	8.0	5.2
Departure	Taxi-Out Delay	min.		0.3

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment No. 37

Objective:

To provide baseline delay estimates with 1987 demand, in VFRI conditions, for the following runway-use configuration:

Arrival Runway Departure Runways

22

13

Length and Level of Detail of Simulation Run:

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation Performance			This Experiment	
Type	Measure	Units	Averagea	Peak
Arrival	Flow Rate	a/c per hr.	31.5	43
Arrival	Air Delay	min.	2.4	4.1
Arrival	Taxi-In Delay	min.		0.0
Departure	Flow Rate	a/c per hr.	29.2	34
Departure	Runway Delay	min.	1.4	1.2
Departure	Taxi-Out Delay	min.		0.4

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment No. 38

Objective:

To provide baseline delay estimates with 1987 demand, in IFRI conditions, for the following runway-use configuration:

Arrival Runwa	y Departure Runways
22	13

Length and Level of Detail of Simulation Run:

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation Performance			This Experime	
Type	Measure	Units	Averagea	Peakb
Arrival	Flow Rate	a/c per hr.	31.5	41
Arrival	Air Delay	min.	3.0	5.2
Arrival	Taxi-In Delay	min.		0.0
Departure	Flow Rate	a/c per hr.	29.3	34
Departure	Runway Delay	min.	1.5	1.2
Departure	Taxi-Out Delay	min.		0.4

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment No. 39

Objective:

To provide baseline delay estimates with 1987 demand, in VFRI conditions, for the following runway-use configuration:

Arrival Runway Departure Runways

4

Length and Level of Detail of Simulation Run:

13

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation	Performance		This Experiment	
Type	Measure	Units	Averagea	Peak
Arrival	Flow Rate	a/c per hr.	31.5	43
Arrival	Air Delay	min.	2.3	3.8
Arrival	Taxi-In Delay	min.		0.1
Departure	Flow Rate	a/c per hr.	29.5	34
Departure	Runway Delay	min.	6.0	3.6
Departure	Taxi-Out Delay	min.		0.2

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment No. 40

Objective:

To provide baseline delay estimates with 1987 demand, in IFR1 conditions, for the following runway-use configuration:

Arrival Runway	Departure Runways
13	4

Length and Level of Detail of Simulation Run:

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation	Performance		This Experiment	
Type	Measure	Units	<u>Average</u> a	Peak
Arrival	Flow Rate	a/c per hr.	31.5	42
Arrival	Air Delay	min.	2.9	4.9
Arrival	Taxi-In Delay	min.		0.0
Departure	Flow Rate	a/c per hr.	29.2	34
Departure	Runway Delay	min.	4.5	2.9
Departure	Taxi-Out Delay	min.		0.2

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment No. 41

Objective:

To provide baseline delay estimates with 1987 demand, in IFR2 conditions, for the following runway-use configuration:

Arrival Runway Departure Runways

22

13

Length and Level of Detail of Simulation Run:

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation	Performance		This Experiment	
Type	Measure	Units	<u>Average</u> a	Peak
Arrival	Flow Rate	a/c per hr.	28.7	34
Arrival	Air Delay	min.	9.9	11.2
Arrival	Taxi-In Delay	min.		0.0
Departure	Flow Rate	a/c per hr.	25.7	25
Departure	Runway Delay	min.	16.7	16.6
Departure	Taxi-Out Delay	min.		0.2

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment No. 42

Objective:

To provide baseline delay estimates with 1978 demand, in VFRI conditions, for the following runway-use configuration:

Arrival	Runway	Departure	Runways
31		4	

Length and Level of Detail of Simulation Run:

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation	Performance		This Experiment	
Type	Measure	Units	Averagea	Peakb
Arrival	Flow Rate	a/c per hr.	29.5	37
Arrival	Air Delay	min.	28.3	16.7
Arrival	Taxi-In Delay	min.		0.1
Departure	Flow Rate	a/c per hr.	28.2	29
Departure	Runway Ly	min.	23.6	13.0
Departure	Taxi-Out Delay	min.		0.2

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment No. 44

Objective:

To provide baseline delay estimates with 1987 demand, in VFR1 conditions, for the following runway-use configuration:

Arrival Runway	Departure	Runways
31	4	

Length and Level of Detail of Simulation Run:

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation	Performance Measure		This Experiment	
Type		Units	<u>Average</u> a	Peak
Arrival	Flow Rate	a/c per hr.	31.5	43
Arrival	Air Delay	min.	2.3	3.6
Arrival	Taxi-In Delay	min.		0.1
Departure	Flow Rate	a/c per hr.	29.0	32
Departure	Runway Delay	min.	7.1	5.4
Departure	Taxi-Out Delay	min.		0.1

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment No. 45

Objective:

To provide baseline delay estimates with 1978 demand, in VFRI conditions, for the following runway-use configuration:

Arrival Runway	Departure Runways	
31	31	

Length and Level of Detail of Simulation Run:

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation	Performance		This Experiment		
Type	Measure	Units	Averagea	Peak ^b	
Arrival	Flow Rate	a/c per hr.	30.7	33	
Arrival	Air Delay	min.	31.8	22.7	
Arrival	Taxi-In Delay	min.		0.0	
Departure	Flow Rate	a/c per hr.	30.3	32	
Departure	Runway Delay	min.	14.7	9.2	
Departure	Taxi-Out Delay	min.		0.1	

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment No. 47

Objective:

To provide baseline delay estimates with 1987 demand, in VFR1 conditions, for the following runway-use configuration:

Arrival Runway	Departure Runways
31	31

Length and Level of Detail of Simulation Run:

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation	Performance		This Experiment		
Type	Measure	Units	Averagea	Peakb	
Arrival	Flow Rate	a/c per hr.	31.5	38	
Arrival	Air Delay	min.	5.7	8.8	
Arrival	Taxi-In Delay	min.		0.0	
Departure	Flow Rate	a/c per hr.	29.3	33	
Departure	Runway Delay	min.	6.4	5.3	
Departure	Taxi-Out Delay	min.		0.1	

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment No. 48

Objective:

To provide a sensitivity test on 1982-PNYNJ demand in IFR1 conditions, for the following runway-use configuration:

Arrival Runway Departure Runways
22 13

Length and Level of Detail of Simulation Run:

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation Performance		1982-PNYNJ		Experiment 32		
Туре	Measure	Units	Average ^a	Peakb	Averagea	Peakb
Arrival	Flow Rate	a/c per hr.	28.3	30	29.0	31
Arrival	Air Delay	min.	18.8	19.0	19.3	16.4
Arrival	Taxi-In Delay	min.		0.0		0.0
Departure	Flow Rate	a/c per hr.	26.3	30 ·	26.3	3.2
Departure	Runway Delay	min.	0.9	0.8	1.0	1.1
Departure	Taxi-Out Delay	min.	•	0.3		0.3

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment No. 49

Objective:

To provide a sensitivity test on 1987-PNYNJ demand in IFRI conditions, for the following runway-use configuration:

Arrival Runway Departure Runways
22 13

Length and Level of Detail of Simulation Run:

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation Performance		This Experiment		Experiment 38		
Type	Measure	<u>Units</u>	<u>Average^a</u>	Peak	Average ^a	Peakb
Arrival	Flow Rate	a/c per hr.	26.8	37	31.5	41
Arrival	Air Delay	min.	1.1	1.6	3.0	5.2
Arrival	Taxi-In Delay	min.		0.0		0.0
Departure	Flow Rate	a/c per hr.	25.2	29	29.3	34
Departure	Runway Delay	min.	1.1	0.6	1.5	1.2
Departure	Taxi-Out Delay	min.		0.4		0.4

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment No. 50

Objective:

To provide a sensitivity test on 1982 demand with the August 1978 level of general aviation operations in IFR1 conditions, for the following runway-use configuration:

Arrival Runway	Departure Runways
22	13

Length and Level of Detail of Simulation Run:

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation Performance			This Experiment		Experiment 32	
Type	Measure	Units	Averagea	Peakb	Averagea	Peak
Arrival	Flow Rate	a/c per hr.	29.8	31	29.0	31
Arrival	Air Delay	min.	29.5	20.8	19.3	16.4
Arrival	Taxi-In Delay	min.		0.0		0.0
Departure	Flow Rate	a/c per hr.	31.3	34	27.7	32
Departure	Runway Delay	min.	1.0	1.1	1.0	1.1
Departure	Taxi-Out Delay	min.		0.3		0.3

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment 32b Arrivals
Departures

Experiment No. 51

Objective:

To provide a sensitivity test on 1987 demand with the August 1978 level of general aviation operations in IFRI conditions, for the following runway-use configuration:

Arrival Runway Departure Runways

22 13

Length and Level of Detail of Simulation Run:

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation Performance			This Experiment		Experiment 38	
Type	Measure	Units	Averagea	Peak	Averagea	Peakb
Arrival	Flow Rate	a/c per hr.	36.3	41	31.5	41
Arrival	Air Delay	min.	4.4	7.7	3.0	5.2
Arrival	Taxi-In Delay	min.		0.0		0.0
Departure	Flow Rate	a/c per hr.	32.8	37	29.3	34
Departure	Runway Delay	min.	1.6	1.2	1.5	1.2
Departure	Taxi-Out Delay	min.		0.5		0.4

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Experiment 38b Arrivals Departures

Experiment No. 52

Objective:

To provide a sensitivity test on 1982 demand with the 1978 ATC Scenario (separations) in IFR1 conditions, for the following runway-use configuration:

Arrival Runway Departure Runways
22 13

Length and Level of Detail of Simulation Run:

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation Type	Performance Measure	Units	This Expen	riment Peak	Experiment Average ^a	t 32 Peak
Arrival	Flow Rate	a/c per hr.	28.5	30	29.0	31
Arrival	Air Delay	min.	22.0	17.6	19.3	16.4
Arrival	Taxi-In Delay	min.		0.0		0.0
Departure	Flow Rate	a/c per hr.	27.5	33	27.7	32
Departure	Runway Delay	min.	0.9	1.0	1.0	1.1
Departure	Taxi-Out Delay	min.		0.4		0.3

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Departures

Experiment No. 53

Objective:

To provide a sensitivity test on 1987 demand with the 1978 ATC Scenario (separations) in IFRI conditions, for the following runway-use configuration:

13

Arrival Runway Departure Runways

Length and Level of Detail of Simulation Run:

22

From 1500 to 2100 with 1-hour summaries and a short-form network.

Results:

Operation	Performance		This Expe	riment	Experimen	t 38
Type	Measure	Units	<u>Average</u> a	Peakb	Averagea	Peak
Arrival	Flow Rate	a/c per hr.	28.7	29	31.5	41
Arrival	Air Delay	min.	24.3	17.9	3.0	5.2
Arrival	Taxi-In Delay	min.		0.0		0.0
Departure	Flow Rate	a/c per hr.	28.3	33	29.3	34
Departure	Runway Delay	min.	1.0	1.2	1.5	1.2
Departure	Taxi-Out Delay	min.		0.4		0.4

a. Average over the entire simulation period.

b. For the peak-demand hour, 1700-1800 hours, 3 hours into the simulation.

Attachment B

LGA STAGE-2 SIMULATION EXPERIMENTS
INPUT SCHEDULES
(Hourly Demand by Class and by Operation)
and
SHORT-FORM AIRFIELD NETWORKS

LaGuardia Airport

New York

Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

June 1979

Table B-1 (a)

HOURLY DEMAND IN 1977 BY CLASS OF OPERATION NEW YORK TASK FORCE DELAY STUDIES LaGuardia Airport

OAG

General

No	o. of 1	Aircra:	ft	
	By Cl	ass_		Total
	B	C	D	Operatio
_				

Hour	A	В	С	D	Operations	Scheduled	Aviation
1500-1600	2	21	39	0	62	44	18
1600-1700	3	23	46	2	74	54	20
1700-1800	2	26	48	3	79	59	20
1800-1900	4	27	41	4	76	59	17
1900-2000	3	21	44	2	70	57	13
2000-2100	_2	_20	36	_2	60	48	12
Totals	16	138	254	13	421	321	100
Percents	3.8	32.8	60.3	3.1	100		

Table B-1 (b)

ACTUAL PMS COUNTS OF OPERATIONS AVERAGE WEEKDAY LaGuardia Airport

	At	ugust 1977		August 1978			
Hour	OAG Scheduled	General Aviation	Total	OAG Scheduled	General Aviation	Total	
1500-1600	44	16	60	47	21	68	
1600-1700	51	16	67	5 5	19	74	
1700-1800	5 5	17	72	59	20	79	
1800-1900	58	15	73	55	17	72	
1900-2000	6 6	12	78	62	12	74	
2000-2100	45	11	56	43	_13	<u>56</u>	
Totals	319	87	406	321	102	423	

Table B-2

HOURLY DEMAND IN 1982 BY CLASS OF OPERATION NEW YORK TASK FORCE DELAY STUDIES
LaGuardia Airport

	No	of A By Cl	ircraf ass	t	Total	OAG	General
Hour	A	В	С	D	Operations	Scheduled	Aviation
1500-1600	2	9	40	4	55	47	8
1600-1700	2	12	48	1	63	52	11
1700-1800	3	15	51	1	70	55	15
1800-1900	2	11	44	1	58	49	9
1900-2000	1	7	47	2	57	51	6
2000-2100	1	8	39	4	_52	46	<u>_6</u>
Totals	11	62	269	13	355	300	5 5
Percents	3.1	17.4	75.8	3.7	100		

Table B-3

HCURLY DEMAND IN 1987 BY CLASS OF OPERATION NEW YORK TASK FORCE DELAY STUDIES
LaGuardia Airport

No. of Aircraft OAG General By Class Total Scheduled D Aviation Hour A B С Operations 1500-1600 1600-1700 1700-1800 1800-1900 1900-2000 2000-2100 _5 _56 _8_ Totals 3.5 16.9 73.6 6.0 Percents

Table B-4

HOURLY DEMAND IN 1982-PNYNJ (HEAVY SENSITIVITY) BY CLASS OF OPERATION NEW YORK TASK FORCE DELAY STUDIES LaGuardia Airport

No. of Aircraft OAG General By Class Total Hour Α В С ם Operations Scheduled Aviation 1500-1600 1600-1700 1700-1800 1800-1900 1900-2000 2000-2100 _8_ _30 Totals Percents 3.3 18.4 68.8 9.5

Table B-5

HOURLY DEMAND IN 1987-PNYNJ (HEAVY SENSITIVITY) BY CLASS OF OPERATION NEW YORK TASK FORCE DELAY STUDIES LaGuardia Airport

No. of Aircraft OAG By Class Total General Hour A В D_ Operations Scheduled Aviation С 1500-1600 1600-1700 1700-1800 1800-1900 1900-2000 2000-2100 _13 _3 _8_ _6 Totals 4.1 19.6 43.4 32.9 Percents

Table B-6

HOURLY DEMAND IN 1982 (GA SENSITIVITY) BY CLASS OF OPERATION NEW YORK TASK FORCE DELAY STUDIES LaGuardia Airport

No. of Aircraft By Class Total OAG General Hour A С D В Operations Scheduled Aviation 1500-1600 1600-1700 1700-1800 1800-1900 1900-2000 2000-2100 <u>13</u> <u>59</u> _3 <u> 39</u> Totals

3.3

Percents

5.7 24.1 66.9

Table B-7

HOURLY DEMAND IN 1987 (GA SENSITIVITY) BY CLASS OF OPERATION NEW YORK TASK FORCE DELAY STUDIES LaGuardia Airport

No. of Aircraft

				•			
		By Cl	ass		Total	OAG	General
Hour	<u>A</u>	_B_	_ <u>C_</u>	_D_	<u>Operations</u>	Scheduled	Aviation
1500-1600	5	19	41	5	70	49	21
1600-1700	4	18	46	3	71	52	19
1700-1800	4	19	52	2	77	57	20
1800-1900	4	17	44	3	68	51	17
1900-2000	3	11	47	4	65	53	12
2000-2100	4	14	40	_5	63	_50	13
Totals	24	98	270	22	414	312	102
Percents	5.8	23.7	65.2	5.3	100		

PEAT, MARWICK, MITCHELL & Co.

P. O. BOX 8007

SAN FRANCISCO INTERNATIONAL AIRPORT SAN FRANCISCO, CALIFORNIA 94128

Telephone: (415) 347-9521

June 15, 1979

Mr. Michael M. Scott, ATF-4 Federal Aviation Administration 800 Independence Avenue, S.W. Washington, D.C. 20591

Re: New York Data Package No. 6, June 1979

Dear Mike:

Attached is New York Data Package No. 6. The material in this Data Package is organized to correspond with the agenda for the June 22, 1979, meeting of the New York Task Force:

- Attachment A contains the LGA simulation results and graphics, minus the west-taxiway experiments
- Attachment B has the LGA demand inputs and the short-form networks
- Attachment C presents the JFK simulation results and graphics
- Attachment D contains the JFK demand inputs and short-form networks
- Attachments E and F present the aircraft separations used in the simulations for LGA and JFK, respectively

A brief summary of the highlights and conclusions of the LGA and JFK simulations is presented at the beginning of the Data Package.

A supplement to this Data Package, which contains the results of the LGA west-taxiway experiments and annual delay results, will be presented at the June 22 meeting.

LA GUARDIA AIRPORT
Stage - 2 Experiments 31, 32, 36, 37, 38, and 41 Arrivals - Runway 22 Departures - Runway 13

LA GUARDIA AIRPORT

Stage - 2 Experiments 42 and 44

Arrivals — Runway 31

Departures — Runway 4

June 1979

LA GUARDIA AIRPORT

Stage - 2Experiments 33, 34, 35, 39, and 40 Arrivals — Runway 13

Departures - Runway 4

LA GUARDIA AIRPORT
Stage - 2 Experiments 45 and 47
Arrivals — Runway 31
Departures — Runway 31

Attachment C

JFK STAGE-2 SIMULATION EXPERIMENTS RESULTS AND GRAPHICS

John F. Kennedy International Airport

New York

Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

June 1979

Table C-1

NEW YORK TASK FORCE DELAY STUDIES JOHN F. KEHNEDY INTERNATIONAL AIRPORT Summary Results of Stage-2 Experiments Airfield Simulation Model Runs

Conditions Con	1878	Time	Westber							
1978 baseline 22L 22R 1978 1FR1 1997 baseline 22L 22R 1992 1FR1 1997 baseline 22L 22R 1992 1FR1 1997 baseline 22L 22R 1997 1FR1 1997 baseline 22L 22R 1997 1FR1 1978 baseline 1978 baseline 1978 baseline 1978 baseline 1978 baseline 1978 baseline 1971 baseline 1971 baseline 1978 baseline 1978 baseline 1978 baseline 1977 baseline 1978 baseline 1977 baseline 1977 baseline 1977 baseline 1978 baseline 1977 baseline 19	1		1017774				Combined Total		(m)	(minutes)
1978 baseline 22L 22R 1978 1982 1982 22L 22R 1987 22R		Frame	Conditions	Arrivalsb	Departures	Arrival	Departures	Total	Arrivals	Departures
1982 baseline		1978	IFRI	23	38	36	38	64	83.0	3.1
Suparation Sensitivity 221. 228 1982 1967 baseline 221. 228 1987 Suparation Sensitivity 221. 228 1987 Suparation Sensitivity 41,48 41. 1987 2 n.m. stagger in 1978 41,48 41. 1978 2 n.m. stagger in 1987 41,48 41. 1967 1978 baseline 138,221,228 228 1967 1962 baseline 138,221,228 228 1967 1978 baseline 138,221,228 228 1967 1978 baseline 131,318 131,318 1978 1978 baseline 131,318 131,318 1982 1978 baseline 131,318 311,318 1978 1978 baseline 131,318 311,318 1982 1978 baseline 48 41. 1978 Independent departures on 311, 318 311,318 311,318 1997 Independent departures on 311, 318 311,318 41. 1978 1967 baseline 48 <td></td> <td>1982</td> <td>IFRI</td> <td>33</td> <td>04</td> <td>33</td> <td>39</td> <td>72</td> <td>95.1</td> <td>5.9</td>		1982	IFRI	33	04	33	39	72	95.1	5.9
1967 baseline		1982	IFRI	2.7	38	36	36	64	122.0	4.2
Separation Sensitivity 22L 22R 1987 2 n.m. stagyer in 1978 41,48 4L 1978 2 n.m. stagyer in 1987 41,48 4L 1902 2 n.m. stagyer in 1987 4L,48 4L 1902 2 n.m. stagyer in 1987 4L,48 4L 1902 1978 baseline 138,22L,22R 22R 1907 1978 baseline 131,134 13R 1978 1997 baseline 131,134 13R 1987 Independent departures on 31L, 31R 31L,31R 31L,31R 1997 Independent departures on 31L, 31R 31L,31R 1947 1967 Independent departures on 31L, 31R 31L,31R 1947 1967 Independent departures on 31L, 31R 31L,31R 31L,31R 1997 Independent departures on 31L, 31R 31L,31R 4L 1967 1997 baseline 4R 4L 1967 1997 baseline 4R 4L 1967 1997 baseline 4R 4L 1967 1997 b		1987	IFR	47	46	47	45	92	32.5	4.4
2 n.m. stagger in 1976 41,4R 41 1978 2 n.m. stagger in 1982 41,4R 41 1962 2 n.m. stagger in 1987 41,4R 41 1962 2 n.m. stagger in 1987 13,4R 41 1967 1978 baseline 138,21,22R 22R 1993 1978 baseline 131,13R 13R 1978 1997 baseline 131,13R 13R 1987 1997 baseline 131,3R 31L,3R 111,3R 1967 Independent departures on 31L, 31R 31L,31R 31L,31R 1967 Independent operations on 31L, 31R 31L,31R 31L,31R 1978 Independent operations on 31L, 31R 31L,31R 31L,31R 31L,31R		1987	IFRI	27	38	27	38	63	9.161	2.2
2 n.m. stagger in 1982 41,48 4L 1962 2 n.m. stagger in 1987 41,48 4L 1967 1978 baseline 138,221,22R 22R 1978 1967 baseline 138,221,22R 22R 1967 1978 baseline 131,13R 13R 1978 1997 baseline 131,13R 13R 1982 1997 baseline 131,13R 31L,33R 1987 Independent departures on 31L, 31R 31L,33R 31L,33R 1987 Independent operations on 31L, 31R 31L,33R 31L,33R 1978 Independent operations on 31L, 31R 31L,31R 31L,33R 1978 Independent operations on 31L, 31R 31L,31R 31L,33R 1978 Independent operations on 31L, 31R 31L,31R 31L,31R 1978	41,4R 41.	1978	IFRI	36	28	36	26	62	32.4	37.8
2 n.m. staggar in 1987 41,4R 41 1978 baseline 13K,22L,22R 22R 1978 1997 baseline 13K,22L,22R 22R 1902 1978 baseline 13K,13R 13R 1978 1997 baseline 13L,13R 13R 1978 1997 baseline 13L,13R 11L,31R 1978 Independent departures on 3L, 31R 31L,31R 31L,31R 1970 Independent departures on 3L, 31R 31L,31R 31L,31R 1970 Independent departures on 3L, 31R 31R 31R 1967 Independent departures on 3L, 31R 31L,31R 31L,31R 1967 Independent departures on 3L, 31R 31R,31R 31L,31R 1967 Independent departures on 3LL, 31R 31L,31R 31L,31R 1967 Independent operations on 3LL, 31R 31L,31R 31L,31R 1978 Independent operations on 3LL, 31R 31L,31R 31L,31R 1978	4k	1982	IFRI	36	38	35	11	62	76.7	44.2
1978 baseline 138,221,22R 22R 1978 1962 baseline 138,221,22R 22R 1992 1997 1978 baseline 131,13R 131,13R 1978 1967 1978 baseline 131,13R 131,13R 1978 1997 1978 baseline 131,13R 311,31R 1978 1978 1978 1978 paseline 19	4 k	1987	IFRI	43	£f	41	7.6	7.8	16.7	39.6
1902 baseline		1978	VFRI	20	43	20	29	79	8.0	5.5
1997 baseline		1982	VFR1	19	39	61	67	05	6.0	45.4
1978 baseline		1987	VFR1	64	48	52	44	36	6.0	9.6
1992 baseline	1.3R	1978	VFR1	37	43	35	43	7.0	38.5	2.9
1907 baseline 131,13R 13R 1987 Independent departures on 31L, 31R 31L,31R 31L,31R 1978 Independent departures on 31L, 31R 31L,31R 31L,31R 1987 Independent departures on 31L, 31R 31L,31R 1987 Independent departures on 31L, 31R 31L,31R 31L,31R	13H	1982	VFR1	39	44	39	42	н	65.3	4.0
Independent departures on 31L, 31R 31L,31R 31L,31R 1976 Independent departures on 31L, 31R 31L,31R 1967 Independent departures on 31L, 31R 31L,31R 1967 Independent departures on 31L, 31R 31L,31R 1967 Independent operations on 31L, 31R 31L,31R 31L,31R 1978 Independent operations on 31L, 31R 31L,31R 31L,31R 1978	138	1987	VFR1	46	52	46	52	98	32.4	1.5
Independent departures on 31L, 31R 31L,31R 116,31R 1962 Independent departures on 31L, 31R 31L,31R 1967 1978 baseline 1962 baseline 1962 baseline 1964 baseline Independent operations on 31L, 31R 31L,31R 31L,31R 1978 Independent operations on 31L, 31R 31L,31R 1978	311,318	1978	VFR1	49	44	2	11	99	1.3	2.0
Independent departures on 31L, 31R 31L, 31R 31L, 31R 1997 1978 baseline 4R 4L 1978 1982 baseline 4R 4L 1987 1987 baseline 4R 4L 1987 Independent operations on 31L, 31R 31L, 31R 31L, 31R 1978 Independent operations on 31L, 31R 31L, 31R 31L, 31R 1978	311.,318	1982	VFR1	09	51	55	44	66	0.1	5.2
1978 baseline 4R 4L 1978 1982 baseline 4R 4L 1982 1987 baseline 4R 4L 1987 Independent operations on 31L, 31R 31L, 31R 31L, 31R 1978 Independent operations on 31L, 31R 31L, 31R 31L, 31R 1992	31L, 31R	1987	VFR1	62	52	54	4	96	9.0	5.6
1962 baseline		1978	IFRI	52	36	24	38	62	91.2	3.5
1987 Laselline 4R 4L 1987 1046 1046		1982	IFRI	32	39	32	39	1,1	101.2	6.2
Independent operations on 31L, 31R 31L, 31R 31L, 31R 1978 Independent operations on 31L, 31R 31L, 31R 31L, 31R 1982		1987	IFRI	43	46	4)	46	18	42.0	4.2
Independent operations on 311, 31R 31L, 31R 1982	311,318	1978	IFRI	20	45	20	35	0.2	2.8	2.8
	31L, 31R	1982	IFRI	59	52	96	34	90	2.8	14.9
4) Independent operations on 31L, 31R 31L, 31R 1987 IFR1	31R 31L, 31R	1987	IFR	63	65	49	44	69	0.8	B.8

For the entire 8 hours of the simulation.

Highest arrival flow rate is usually not in same hour as highest departure flow rate. Sensitivity inn with 1978 ATC Scenario and 1982 demand.
Sensitivity inn with 1978 ATC Scenario and 1987 demand.
Staggerel arrival-arrival separations of 2 n.m. ÷ 2 5 ÷ 3 ±

JFK STAGE - 1 EXPERIMENTS

Experiment No. 7

Objective:

To obtain baseline delay estimates, in VFR1 conditions, for the following runway-use configuration:

Arrival	Runways	Departure	Runways
13L,	13R	13R	

Related Comparison Experiments:

Experiment 8 has the same basic runway-use configuration in IFR1 conditions.

Length and Level of Detail of Simulation Run:

From 1500 to 2300 with 1-hour summaries and short-form network.

Results:

Operation	Performance		This Expe	riment
Type	Measure	Units	Averagea	Peakb
Arrival	Flow Rate	a/c per hr.	32.0	35
Arrival	Air Delay	min.	38.5	56.8
Arrival	Taxi-In Delay	min.		0.0
Departure	Flow Rate	a/c per hr.	30.6	43
Departure	Runway Delay	min.	2.9	7.3
Departure	Taxi-Out Delay	min.		0.3

a. Average over the entire simulation period.

b. For the peak-demand hour, 1900-2000 hours, 5 hours into the simulation.

JFK - STAGE 2

Experiment No. 26

Objective:

To obtain 1982 delay estimates for the following runway-use configuration in IFR1:

Arrival Runways Departure Runways
22L 22R

Related Comparison Experiments:

Experiments 2 (Stage 1) and 35 (1987) are for the same runway-use configuration and weather conditions.

Length and Level of Detail of Simulation Run:

From 1500 to 2300 with 1-hour summaries.

Results:

Operation	Performance		This Expe	riment
Type	Measure	Units	Averagea	Peak
Arrival	Flow Rate	a/c per hr.	31.7	33
Arrival	Air Delay	min.	95.1	114.6
Arrival	Taxi-In Delay	min.		0.1
Departure	Flow Rate	a/c per hr.	31.7	38
Departure	Runway Delay	min.	5.9	9.2
Departure	Taxi-Out Delay	min.		0.4

a. Average over the entire simulation period.

b. For the peak-demand hour, 1900-2000 hours, 5 hours into the simulation.

Experiment No. 27

Objective:

To provide estimates for 1982 of the expected delay reduction associated with using 2-mile staggered separations on Runways 4L and 4R in less than visual conditions.

Related Comparison Experiments:

Experiments 18 (Stage 1) and 36 (1987) have the same runway configuration.

Length and Level of Details of Simulation Run:

From 1500 to 2300 with 1-hour summaries.

Operation	Performance		This Experiment	
Type	Measure	Units	<u>Average^a</u>	Peak
Arrival	Flow Rate	a/c per hr.	34.2	32
Arrival	Air Delay	min.	76.7	95.2
Arrival	Taxi-In Delay	min.		0.2
Departure	Flow Rate	a/c per hr.	23.6	28
Departure	Runway Delay	min.	44.2	52.6
Departure	Taxi-Out Delay	min.		0.7

a. Average over the entire simulation period.

b. For the peak-demand hour, 1900-2000 hours, 5 hours into the simulation.

Experiment No. 30

Objective:

To obtain 1982 delay estimates for the following runway configuration in VFR1:

Arrival Runways	Departure Runways
13R, 22L, 22R	22R

Related Comparison Experiments:

Experiments 1 (Stage 1) and 39 (1987) have the same runway-use configuration and weather conditions.

Length and Level of Detail of Simulation Run:

From 1500 to 2300 with 1-hour summaries.

Results:

Operation	Performance		This Experiment	
Type	Measure	Units	Averagea	Peakb
Arrival	Flow Rate	a/c per hr.	39.2	46
Arrival	Air Delay	min.	0.9	1.0
Arrival	Taxi-In Delay	min.		0.1
Departure	Flow Rate	a/c per hr.	34.6	39
Departure	Runway Delay	min.	25.4	26.8
Departure	Taxi-Out Delay	min.		0.8

a. Average over the entire simulation period.

b. For the peak-demand hour, 1900-2000 hours, 5 hours into the simulation.

Experiment No. 31

Objective:

To obtain 1982 delay estimates, in VFR1 conditions for the following runway-use configuration;

Arrival Runways	Departure Runways
13L, 13R	13R

Related Comparison Experiments:

Experiments 7 (Stage 1) and 40 (1987) have the same runway-use configuration.

Length and Level of Detail of Simulation Run:

From 1500 to 2300 with 1-hour summaries.

Results:

Operation Type	Performance Measure	Units	This Expended Averagea	riment Pezk
Arrival Arrival Arrival Departure Departure Departure	Flow Rate Air Delay Taxi-In Delay Flow Rate Runway Delay Taxi-Out Delay	a/c per hr. min. min. a/c per hr. min. min.	37.1 65.3 33.9 4.0	39 85.8 0.4 42 10.1 0.6

a. Average over the entire simulation period.

b. For the peak-demand hour, 1900-2000 hours, 5 hours into the simulation period.

Experiment No. 32

Objective:

To investigate the potential benefits in 1982 of independent departure tracks on Runways 31L and 31R (31R used for short-range departures) in VFR1 conditions and the following runway-use configurations:

Arrival	Runways	Departure	Runways
31L,	31R	31L,	31R

Related Comparison Experiments

Experiments 16 (Stage 1) and 41 (1987) have the same runway configuration and weather conditions.

Length and Level of Detail of Simulation Run:

From 1500 to 2300 with 1-hour summaries.

Operation	Performance		This Experiment	
Type	Measure	Units	Averagea	Peakb
Arrival	Flow Rate	a/c per hr.	39.2	46
Arrival	Air Delay	min.	1.0	0.7
Arrival	Taxi-In Delay	min.		0.0
Departure	Flow Rate	a/c per hr.	35	46
Departure	Runway Delay	min.	5	9.9
Departure	Taxi-Out Delay	min.		0.5

a. Average over the entire simulation period.

b. For the peak-demand hour, 1900-2000 hours, 5 hours into the simulation.

Experiment No. 33

Objective:

To obtain 1982 delay estimates in IFR1 conditions for the following runway-use configurations:

Arrival Runways	Departure Runways
4R	4L

Related Comparison Experiments:

Experiments 4 (Stage 1) and 42 (1987) have the same runway-use configuration and weather conditions.

Length and Level of Detail of Simulation Run:

From 1500 to 2300 with 1-hour summaries.

Results:

Operation	Performance		This Experiment	
Type	Measure	Units	Averagea	Peakb
Arrival	Flow Rate	a/c per hr.	30.9	31
Arrival	Air Delay	min.	101.2	122.3
Arrival	Taxi-In Delay	min.		0.2
Departure	Flow Rate	a/c per hr.	31.5	38
Departure	Runway Delay	min.	6.2	9.6
Departure	Taxi-Out Delay	min.		0.4

a. Average over the entire simulation period.

b. For the peak-dem..nd hour, 1900-2000 hours, 5 hours into the simulation.

Experiment No. 34

Objective:

To estimate the delays in 1982 associated with having independent arrivals, independent departures, and independent missed approach tracks on Runways 31R and 31L in IFR1 conditions.

Related Comparison Experiments:

Experiments 15 (Stage 1) and 43 (1987) have the same runway-use configuration and weather conditions.

Length and Level of Detail of Simulation Run:

From 1500 to 2300 with 1-hour summaries.

Operation	Performance		This Experiment	
Type	Measure	Units	<u>Average^a</u>	Peakb
Arrival	Flow Rate	a/c per hr.	39.2	45
Arrival	Air Delay	min.	2.8	1.6
Arrival	Taxi-In Delay	min.		0.0
Departure	Flow Rate	a/c per hr.	35.1	43
Departure	Runway Delay	min.	14.9	21.3
Departure	Taxi-Out Delay	min.		0.3

a. Average over the entire simulation period.

b. For the peak-demand hour, 1900-2000 hours, 5 hours into the simulation.

Experiment No. 35

Objective:

To obtain 1987 delay estimates for the following runway-use configuration in IFR1:

Arrival Runways Departure Runways

22L 22R

Related Comparison Experiments:

Experiments 2 (Stage 1) and 26 (1987) are for the same runway-use configuration and weather.

Length and Level of Detail of Simulation Run:

From 1500 to 2300 with 1-hour summaries.

Results:

Operation	Performance		This Experiment	
Type	Measure	Units	Averagea	Peakb
Arrival	Flow Rate	a/c per hr.	39.6	47
Arrival	Air Delay	min.	32.5	41.8
Arrival	Taxi-In Delay	min.		0.2
Departure	Flow Rate	a/c per hr.	35.9	45
Departure	Runway Delay	min.	4.4	8.6
Departure	Taxi-Out Delay	min.		0.3

a. Average over the entire simulation period.

b. For the peak-demand hour, 1900-2000 hours, 5 hours into the simulation.

Hour Beginning

Arrivals

Experiment No. 36

Objective:

To provide estimates of the expected delays in 1987 associated with using 2-mile staggered separations on Runways 4L and 4R in less than visual conditions.

Related Comparison Experiments:

Experiments 18 (Stage 1) and 27 (1982) have the same runway configuration and weather conditions.

Length and Level of Detail of Simulation Run:

From 1500 to 2300 with 1-hour summaries.

Operation	Performance		This Experiment	
Туре	Measure	Units	Averagea	Peak
Arrival	Flow Rate	a/c per hr.	39.6	42
Arrival	Air Delay	min.	36.7	41.5
Arrival	Taxi-In Delay	min.		0.2
Departure	Flow Rate	a/c per hr.	30.1	33
Departure	Runway Delay	min.	39.6	48.6
Departure	Taxi-Out Delay	min.		1.0

a. Average over the entire simulation period.

b. For the peak-demand hour, 1900-2000 hours, 5 hours into the simulation.

Experiment No. 39

Objective:

To obtain 1987 delay estimates for the following runway configuration in VFR1:

Arrival Runways	Departure Runways
13R, 22L, 22R	22R

Related Comparison Experiments

Experiments 1 (Stage 1) and 30 (1982) have the same runway-use configurations and weather conditions.

Length and Level of Detail of Simulation Run:

From 1500 to 2300 with 1-hour summaries.

Results:

Operation	Performance		This Expe	riment.
Type Measure		Units	Averagea	Peak
Arrival	Flow Rate	a/c per hr.	39.5	47
Arrival	Air Delay	min.	0.5	0.7
Arrival	Taxi-In Delay	min.		0.1
Departure	Flow Rate	a/c per hr.	35.6	47
Departure	Runway Delay	min.	3.9	7.9
Departure	Taxi-Out Delay	min.		0.7

a. Average over the entire simulation period.

b. For the peak-demand hour, 1900-2000 hours, 5 hours into the simulation.

Experiment No. 40

Objective:

To obtain 1987 delay estimates, in VFRI conditions, for the following runway-use configuration:

Arrival Runways	Departure Runwa s
13L, 13R	13R

Related Comparison Experiments:

Experiments 7 (Stage 1) and 31 (1982) have the same runway-use configuration and weather conditions.

Length and Level of Detail of Simulation Run:

From 1500 to 2300 with 1-hour summaries.

Results:

Operation	Performance		This Experiment		
Type	Type Measure		Averagea	Peakb	
Arrival	Flow Rate	a/c per hr.	39.5	46	
Arrival	Air Delay	min.	32.4	41.7	
Arrival	Taxi-In Delay	min.		0.3	
Departure	Flow Rate	a/c per hr.	36.0	52	
Departure	Runway Delay	min.	1.5	3.6	
Departure	Taxi-Out Delay	min.		0.8	

a. Average over the entire simulation period.

b. For the peak-demand hour, 1900-2000 hours, 5 hours into the simulation.

Experiment No. 41

Objective:

To investigate the potential benefits in 1987 of independent departure tracks on Runways 31L and 31R (31R used for short-range departures) in VFRl conditions and the following runway-use configurations:

Arrival Runways	Departure Runways
31L, 31R	31L, 31R

Related Comparison Experiments

Experiments 16 (Stage 1) and 32 (1987) have the same runway-use configurations and weather conditions.

Length and Level of Detail of Simulation Run:

From 1500 to 2300 with 1-hour summaries.

Operation	Performance		This Experiment		
Type	Measure	Units	Average ^a	Peak	
Arrival	Flow Rate	a/c per hr.	39.6	49	
Arrival	Air Delay	min.	0.8	0.7	
Arrival	Taxi-In Delay	min.		0.4	
Departure	Flow Rate	a/c per hr.	35.8	47	
Departure	Runway Delay	min.	5.6	9.5	
Departure	Taxi-Out Delay	min.		0.3	

a. Average over the entire simulation period.

b. For the peak-demand hour, 1900-2000 hours, 5 hours into the simulation.

Experiment No. 42

Objective:

To obtain 1987 delay estimates in IFR1 conditions for the following runway-use configurations:

Arrival Runways Departure Runways

4R

4L

Related Comparison Experiments:

Experiments 4 (Stage 1) and 33 (1982) have the same runway-use configurations and weather conditions.

Length and Level of Detail of Simulation Run:

From 1500 to 2300 with 1-hour summaries.

Results:

Operation Type	Performance Measure	Units	This Expe	riment Peakb
Arrival Arrival Arrival Departure Departure Departure	Flow Rate Air Delay Taxi-In Delay Flow Rate Runway Delay Taxi-Out Delay	a/c per hr. min. min. a/c per hr. min. min. min.	39.6 42.0 35.2 4.2	43 57.8 0.2 43 8.1 0.4

a. Average over the entire simulation period.

b. For the peak-demand hour, 1900-2000 hours, 5 hours into the simulation.

Experiment No. 43

Objective:

To estimate the delays in 1987 associated with having independent arrivals, independent departures, and independent missed approach tracks on Runways 31R and 31L in IFRI conditions.

Related Comparison Experiments:

Experiments 15 (Stage 1) and 34 (1982) have the same runway-use configuration and weather conditions.

Length and Level of Detail of Simulation Run:

From 1500 to 2300 with 1-hour summaries.

Operation	Performance		This Experiment		
Type	Measure	Units	<u>Average</u> a	Peakb	
Arrival	Flow Rate	a/c per hr.	39.6	49	
Arrival	Air Delay	min.	0.8	0.8	
Arrival	Taxi-In Delay	min.		0.0	
Departure	Flow Rate	a/c per hr.	36.0	44	
Departure	Runway Delay	min.	8.8	10.7	
Departure	Taxi-Out Delay	min.		0.3	

a. Average over the entire simulation period.

b. For the peak-demand hour, 1900-2000 hours, 5 hours into the simulation.

Experiment No. 44

Objective:

To provide a sensitivity test of 1982 demand with the 1978 ATC Scenario (separations) in IFR1 weather.

Related Comparison Experiments:

Experiment 26 provides the comparison case with the 1982 ATC Scenario.

Length and Level of Detail of Simulation Run:

From 1500 to 2300 with 1-hour summaries.

Anticipated Results:

Greater arrival delays than in Experiment 26.

Summary Comparison:

Operation	Performance		This Expe	riment	Experiment No. 26	
Type	Measure	Units	Averagea	Peak	Averagea	Peakb
Arrival	Flow Rate	a/c per hr.	26.4	26	31.7	33
Arrival	Air Delay	min.	122.0	111.9	95.1	114.6
Arrival	Taxi-In Delay	min.		0.1		0.1
Departure	Flow Rate	a/c per hr.	29.6	38	31.7	38
Departure	Runway Delay	min.	4.2	7.9	5.9	9.2
Departure	Taxi-Out Delay	min.		0.4		0.4

a. Average over the entire simulation period.

b. For the peak-demand hour, 1900-2000, 5 hours into the simulation.

Experiment No. 45

Objective:

To provide a sensitivity test of 1987 demand with the 1978 ATC Scenario (separations) in IFR1 weather.

Related Comparison Experiments:

Experiment 35 provides the comparison case with the 1982 ATC Scenario.

Length and Level of Detail of Simulation Run:

From 1500 to 2300 with 1-hour summaries.

Anticipated Results:

Greater arrival delays than in Experiment 35.

Summary Comparison:

Operation	Performance		This Expe	riment	Experiment No. 35	
Type	Measure	<u>Units</u>	<u>Average</u> a	Peak	Aver a ge ^a	Peakb
Arrival	Flow Rate	a/c per hr.	25.8	27	39.6	47
Arrival	Air Delay	min.	131.9	144.0	32.5	41.8
Arrival	Taxi-In Delay	min.		0.2		0.2
Departure	Flow Rate	a/c per hr.	29.5	38	35.9	45
Departure	Runway Delay	min.	5.2	10.3	4.4	8.6
Departure	Taxi-Out Delay	min.		0.3		0.3

a. Average over the entire simulation period.

b. For the peak-demand hour, 1900-2000 hours, 5 hours into the simulation.

Attachment D

JFK STAGE-2 SIMULATION EXPERIMENTS
INPUT SCHEDULES
(Hourly Demand by Class of Operation)
and
SHORT-FORM AIRFIELD NETWORKS

John F. Kennedy International Airport

New York

Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

June 1979

Table D-1

HOURLY DEMAND IN 1977 BY CLASS OF OPERATION NEW YORK TASK FORCE DELAY STUDIES
John F. Kennedy International Airport

	No		Aircra	.ft			
		By C	Class		Total	OAG	General
Hour	<u>A</u>	_ <u>B</u> _	<u> </u>	<u>D</u>	Operations	Scheduled	Aviation
1500-1600	1	4	21	31	57	56	1
1600-1700	4	4	36	31	75	71	4
1700-1800	14	5	33	27	79	65	14
1800-1900	6	5	21	29	61	55	6
1900-2000	5	6	30	40	81	76	5
2000-2100	6	2	10	32	50	44	6
2100-2200	3	3	24	34	64	61	3
2200-2300	_2	0	8	24	_34	_32	_2
Totals	41	29	183	248	501	460	41
Percents	8.2	5.8	36.5	49.5	100		

Table D-2

HOURLY DEMAND IN 1982 BY CLASS OF OPERATION NEW YORK TASK FORCE DELAY STUDIES
John F. Kennedy International Airport

No. of Aircraft By Class Total OAG General Hour В C D Operations Scheduled Aviation 1500-1600 1600-1700 1700-1800 1800-1900 1900-2000 2000-2100 2100-2200 2200-2300 _0 _0 Totals Percents 4.7 9.4 40.3 45.6

Table D-3

HOURLY DEMAND IN 1987 BY CLASS OF OPERATION NEW YORK TASK FORCE DELAY STUDIES
John F. Kennedy International Airport

No. of Aircraft							
		By Cl			Total	OAG	General
Hour	<u>A</u>	_ <u>B</u> _	<u> </u>	D	Operations	Scheduled	Aviation
1500-1600	3	13	7	45	68	58	10
1600-1700	3	10	14	66	93	85	8
1700-1800	4	11	14	71	100	89	11
1800-1900	3	9	7	54	73	68	5
1900-2000	4	11	14	74	103	95	8
2000-2100	2	4	15	51	72	69	3
2100-2200	2	4	9	49	64	62	2
2200-2300	_0	1	_7	_22	30	_30	<u> </u>
Totals	21	63	87	432	603	556	47
Percents	3.5	10.5	14.4	71.6	100		

Figure D-1
JFK SHORT FORM
NETWORK NO. 1
PMM&CO.
June 1979

JOHN F. KENNEDY INTERNATIONAL AIRPORT Experiments 27, 33, 36, and 42 Arrivals — 4L, 4R Departures — 4L 201

Figure D-2 JFK SHORT FORM NETWORK NO. 2 PMM&Co. June 1979

Figure D-3
JFK SHORT FORM
NETWORK NO. 3
PMM&CO.
June 1979

Figure D-4
JFK SHORT FORM
NETWORK NO. 4
PMM&CO.
June 1979

Attachment E

LGA STANDARD SEPARATION INPUTS

LaGuardia Airport

New York

Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

June 1979

Table E-1

NEW YORK TASK FORCE DELAY STUDIES LaGUARDIA AIRPORT Separation Inputs

(1) The average arrival-arrival separations used in the Stage-2 simulation experiments are from the Report No. FAA-EM-78-8A as follows (numbers are in nautical miles):

VFR (1978)

		Trail Aircraft Class					
		A	B	C	D		
Lead Aircraft Class	A B C D	2.8 3.6 3.6 5.4	2.9 2.9 2.9 4.6	3.0 3.0 3.0 4.7	3.1 3.1 3.1 3.9		

IFR (1978)

		Trail Aircraft Class					
		A	В	<u>C</u>	D		
Lead Aircraft Class	A B C D	3.8 4.8 4.8 6.8	3.8 3.8 3.8 5.8	3.9 3.9 3.9 5.9	4.0 4.0 4.0 5.0		

VFR (1982)

		Trail Aircraft Class					
		A	В	<u> </u>	<u>D</u>		
Lead Aircraft	A B	2.7	2.8	2.8 2.8	2.9		
Class	CD	3.5 4.8	2.8 3.9	2.8 3.9	2.9		

IFR (1982)

		Trail Aircraft Class					
		A	В	<u>C</u>	D		
Lead Aircraft Class	A B C D	3.9 3.9 3.9 4.9	3.9 3.9 3.9 3.9	3.9 3.9 3.9 3.9	4.0 4.0 4.0		

VFR (1987)

		Trail Aircraft Class				
		A	В	С	D	
Lead	A	2.5	2.5	2.6	2.6	
Aircraft Class	B C	3.1 3.1	2.5 2.5	2.6 2.6	2.6	
	D	3.6	3.1	3.2	2.7	

IFR (1987)

		Trail	raft C	Class_	
		A	В	C	D
Lead	A	2.6	2.6	2.7	2.7
Aircraft	В	3.1	2.6	2.7	2.7
Class	С	3.1	2.6	2.7	2.7
	D	3.6	3.1	3.2	2.7

(2) The average departure-departure separations used in the Stage-2 simulation experiments are the same as those used in the Phase I Capacity Study; or as specified in Report No. FAA-EM-78-8A, whichever gives the larger values, as follows (numbers are in seconds):

VFR (1978 and 1982)

		Trail Aircraft Class					
		A	В	С	D		
Lead	A	40	45	75	86		
Aircraft	В	45	70	70	79		
Class	C	45	70	70	79		
	D	120	120	120	90		

Table E-1 (continued)

IFR (1978 and 1982)

		Trail Aircraft Class				
		A	В	<u>C</u>	D	
Lead	A	60	60	75	86	
Aircraft	В	60	70	70	79	
Class	C	60	70	70	79	
	D	120	120	120	90	

VFR (1987)

		Trail Aircraft Class				
		A	В	С	D	
Lead	A	40	45	75	86	
Aircraft	B	45	70	70	79	
Class	С	45	70	70	79	
	D	60	70	70	79	

IFR (1987)

		Trail Aircraft Clas				
		A	В	<u>C</u>	D	
Lead	A	60	60	75	86	
Aircraft	В	60	70	70	79	
Class	С	60	70	70	79	
	D	60	70	70	79	

(3) The departure-arrival and arrival-departure separations are the same as those used in the Phase I Capacity Study, except as corrected in discussions with LGA Tower personnel.

Attachment F JFK STANDARD SEPARATION INPUTS

John F. Kennedy International Airport

New York

Airport Improvement Task Force Delay Studies

Peat, Marwick, Mitchell & Co. San Francisco, California

June 1979

Table F-1

NEW YORK TASK FORCE DELAY STUDIES JOHN F. KENNEDY INTERNATIONAL AIRPORT Separation Inputs

(1) The average arrival-arrival separations used in the Stage-2 simulation experiments are from the Report No. FAA-EM-78-8A, as follows (numbers are in nautical miles):

VFR (1978)

		Trail Aircraft Class				
		A	В	<u>C</u>	D	
Lead	A	2.9	2.9	3.0	3.1	
Aircraft	B	3.7	2.9	3.0	3.1	
Class	С	3.7	2.9	3.0	3.1	
	D	5.5	4.6	4.7	3.9	

IFR (1978)

		Trail Aircraft Class					
		A	В	С	D		
Lead	A	4.0	4.0	4.1	4.2		
Aircraft	В	5.0	4.0	4.1	4.2		
Class	С	5.0	4.0	4.1	4.2		
	D	7.0	6.0	6.1	5.2		

VFR (1982)

		Trail Aircraft Class				
		A	В	С	D	
Lead	A	2.8	2.8	2.8	2.9	
Aircraft	В	3.6	2.8	2.8	2.9	
Class	С	3.6	2.8	2.8	2.9	
	Ð	4.9	3.9	3.9	3.7	

Table F-1 (continued)

IFR (1982)

		Trail Aircraft Class				
		A	В	С	D	
Lead	Α	3.9	3.9	3.9	4.0	
Aircraft	В	3.9	3.9	3.9	4.0	
Class	С	3.9	3.9	3,9	4.0	
	D	4.9	3.9	3,9	4.0	

VFR (1987)

		Trail Aircraft Class				
		A	В	C	D	
Lead	A	2.5	2.5	2.6	2.6	
Aircraft	В	3.1	2.5	2.6	2.6	
Class	С	3.1	2.5	2.6	2.6	
	D	3.6	3.1	3.2	2.7	

IFR (1987)

		Trail	lass		
		A	В	C	D
Lead	A	2.6	2.6	2.7	2.7
Aircraft	В	3.1	2.6	2.7	2.7
Class	С	3.1	2.6	2.7	2.7
	D	3.6	3.1	3.2	2.7

(2) The average departure-departure separations used in the Stage-2 simulation experiments are the same as those used in the Phase I Capacity Study; or as specified in Report No. FAA-EM-78-8A, whichever gives the larger values, as follows (numbers are in seconds):

VFR (1978 and 1982)

		Trail Aircraft Class				
		A	В	C	D	
Lead	A	·35	45	. 45	50	
Aircraft	В	50	60	60	60	
Class	С	50	60	60	60	
	D	120	120	120	90	

Table F-1 (continued)

IFR (1978 and 1982)

		Trail	raft Cl	lass	
		A	В	<u></u>	Φ
Lead	A	60	60	60	60
Aircraft	В	60	60	60	60
Class	С	60	60	60	60
	D	120	120	120	90

VFR (1987)

		Trail Aircraft Class				
		A	В	<u>C</u>	D	
Lead	A	35	45	45	50	
Aircraft Class	B C	50 50	60 60	60 60	60 60	
Class	D	60	60	60	60	

IFR (1987)

		Trail Aircraft Clas				
		A	B	_ <u>C</u>	D	
Lead	A	60	60	60	60	
Aircraft	B	60	60	60	60	
Class	С	60	60	60	60	
	D	60	60	60	60	

(3) The departure-arrival and arrival-departure separations are the same as those used in the Phase I Capacity Study, except as corrected in discussions with JFK Tower personnel.

