tb_cocotb_axi_lite.v

AUTHORS

JAY CONVERTINO

DATES

2025/04/30

INFORMATION

Brief

Test bench wrapper for cocotb

License MIT

Copyright 2025 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.BUS_WIDTH

tb_cocotb

```
module tb_cocotb #(
parameter
ADDRESS_WIDTH
=
32,
parameter
BUS_WIDTH
=
4,
parameter
CLOCK_SPEED
=
100000000,
parameter
```

```
SELECT_WIDTH
16,
parameter
DEFAULT_RATE_DIV
parameter
DEFAULT_CPOL
parameter
DEFAULT_CPHA
) ( input aclk, input arstn, input s_axi_awvalid, input [ADDRESS_WIDTH-1:0]
```

AXI Lite based SPI Master device.

Parameters

ADDRESS_WIDTH Width of the uP address port, max 32 bit.

parameter

BUS_WIDTH Width of the uP bus data port(can not be less than 2 bytes, max tested is 4).

parameter

CLOCK_SPEED This is the aclk frequency in Hz, this is the the frequency used for the bus and

Default divider value of the main clock to use for the spi data output clock rate.

is divided by the rate.

SELECT_WIDTH Bit width of the slave select, defaults to 16 to match altera spi ip.

parameter

parameter

DEFAULT_RATE_DIV

0 is 2 (2^(X+1) X is the DEFAULT_RATE_DIV)

DEFAULT_CPOL Default clock polarity for the core (0 or 1).

Default clock phase for the core (0 or 1). DEFAULT_CPHA

parameter

Ports

Clock for all devices in the core aclk arstn Negative reset

s axi awvalid Axi Lite aw valid s_axi_awaddr Axi Lite aw addr s_axi_awprot Axi Lite aw prot Axi Lite aw ready s_axi_awready s_axi_wvalid Axi Lite w valid s_axi_wdata Axi Lite w data s_axi_wstrb Axi Lite w strb s_axi_wready Axi Lite w ready s_axi_bvalid Axi Lite b valid s_axi_bresp Axi Lite b resp s_axi_bready Axi Lite b ready s_axi_arvalid Axi Lite ar valid s_axi_araddr Axi Lite ar addr s_axi_arprot Axi Lite ar prot s_axi_arready Axi Lite ar ready

```
s_axi_rvalidAxi Lite r valids_axi_rdataAxi Lite r datas_axi_rrespAxi Lite r resps_axi_rreadyAxi Lite r ready
```

irq Interrupt when data is received

sclk spi clock, should only drive output pins to devices.

mositransmit for master outputmisoreceive for master inputss_nslave select output

INSTANTIATED MODULES

dut

```
axi_lite_spi_master #(

ADDRESS_WIDTH(ADDRESS_WIDTH),

BUS_WIDTH(BUS_WIDTH),

CLOCK_SPEED(CLOCK_SPEED),

SELECT_WIDTH(SELECT_WIDTH),

DEFAULT_RATE_DIV(DEFAULT_RATE_DIV),

DEFAULT_CPOL(DEFAULT_CPOL),

DEFAULT_CPHA(DEFAULT_CPHA)

) dut ( .aclk(aclk), .arstn(arstn), .s_axi_awvalid(s_axi_awvalid), .s_axi_av
```

Device under test, axi_lite_spi_master