Registered Functional Encryption for Attribute-Weighted Sums with Access Control

Tapas Pal¹

Robert Schädlich²

December 5, 2024

² DIENS, École normale supérieure, PSL University, CNRS, Inria

¹ Karlsruhe Institute of Technology, KASTEL Security Research Labs

$$\mathsf{Setup}(1^\lambda) o (\mathsf{mpk}, \mathsf{msk})$$

 $\mathsf{Dec}(\mathsf{sk}_i,\mathsf{hsk}_i,\mathsf{ct}) \to f_i(x)$

$$\mathsf{Setup}(1^\lambda) o \mathsf{crs}$$
 $lacksquare$

 $\mathsf{pk}_2, \mathsf{sk}_2 \qquad \qquad \mathsf{pk}_3, \mathsf{sk}_3$

 $\mathsf{KeyGen}(\mathsf{crs},i) o (\mathsf{pk}_i,\mathsf{sk}_i)$

$$\mathsf{KeyGen}(\mathsf{crs},i) o (\mathsf{pk}_i,\mathsf{sk}_i)$$

 $\mathsf{KeyGen}(\mathsf{crs},i) \to (\mathsf{pk}_i,\mathsf{sk}_i)$

 $\mathsf{KeyGen}(\mathsf{crs},i) o (\mathsf{pk}_i,\mathsf{sk}_i)$

key curator is deterministic & holds no secret => key-escrow problem resolved!

$$\mathsf{KeyGen}(\mathsf{crs},i) o (\mathsf{pk}_i,\mathsf{sk}_i)$$

key curator is deterministic & holds no secret => key-escrow problem resolved!

$$\mathsf{KeyGen}(\mathsf{crs},i) o (\mathsf{pk}_i,\mathsf{sk}_i)$$

compactness: /mpk/, /ct/ = poly(log L) where L=#users

key curator is deterministic & holds no secret => key-escrow problem resolved!

$$\mathsf{KeyGen}(\mathsf{crs},i) o (\mathsf{pk}_i,\mathsf{sk}_i)$$

compactness: /mpk/, /ct/, /hsk/ = poly(log L) where L=#users

key curator is deterministic & holds no secret => key-escrow problem resolved!

$$\mathsf{KeyGen}(\mathsf{crs},i) o (\mathsf{pk}_i,\mathsf{sk}_i)$$

compactness: /mpk/, /ct/, /hsk/ = poly(log L) where L=#users

key curator is deterministic & holds no secret => key-escrow problem resolved!

$$\mathsf{KeyGen}(\mathsf{crs},i) o (\mathsf{pk}_i,\mathsf{sk}_i)$$

compactness: |mpk|, |ct|, |hsk|, #updates = poly(log L) where L=#users

 $\mathsf{KeyGen}(\mathsf{crs},i) o (\mathsf{pk}_i,\mathsf{sk}_i)$

compactness: /mpk/, /ct/, /hsk/ = poly(log L) where L=#users

 $\mathsf{KeyGen}(\mathsf{crs},i) \to (\mathsf{pk}_i,\mathsf{sk}_i)$

compactness: |mpk|, |ct|, |hsk| = poly(log L) where L=#users

 $\mathsf{KeyGen}(\mathsf{crs},i) o (\mathsf{pk}_i,\mathsf{sk}_i)$

compactness: |mpk|, |ct|, |hsk| = poly(log L) where L=#users

[HLWW23]: sRFE => RFE ("powers-of-two compiler")

$$\mathsf{KeyGen}(\mathsf{crs},i) o (\mathsf{pk}_i,\mathsf{sk}_i)$$

compactness: |mpk|, |ct|, |hsk| = poly(log L) where L=#users

 $\mathsf{KeyGen}(\mathsf{crs},i) o (\mathsf{pk}_i,\mathsf{sk}_i)$

 $\mathsf{KeyGen}(\mathsf{crs},i) o (\mathsf{pk}_i,\mathsf{sk}_i)$

Security?

Existing RFE beyond Predicates

Work	Function Class	Assumption	Remarks
[AC:FFM ⁺ 23, AC:DPY24]	general	iO, SSB	
[AC:DPY24]	AB-IP	GGM	LSSS access policies
[AC:BLM ⁺ 24]	IP, weak QF	<i>q</i> -type	

Existing RFE beyond Predicates

Work	Function Class	Assumption	Remarks
[AC:FFM ⁺ 23, AC:DPY24]	general	iO, SSB	
[AC:DPY24]	AB-IP	GGM	LSSS access policies
[AC:BLM ⁺ 24]	IP, weak QF	<i>q</i> -type	
[EC:ZLZ ⁺ 24]	IP, QF	bilateral MDDH	

Existing RFE beyond Predicates

Work	Function Class	Assumption	Remarks
[AC:FFM ⁺ 23, AC:DPY24]	general	iO, SSB	
[AC:DPY24]	AB-IP	GGM	LSSS access policies
[AC:BLM ⁺ 24]	IP, weak QF	<i>q</i> -type	
[EC:ZLZ ⁺ 24]	IP, QF	bilateral MDDH	
[this work]	AB-AWS	bilateral MDDH	APD access policies
[tills work]	AD-AWS	Dilateral MDDH	ABP access policies

attribute-based attribute-weighted sums (see next slide)

Attribute-Weighted Sums [c:AGW20]

• inner product (IP) [EC:ZLZ+24]

$$f(\mathbf{z}) = \mathbf{z} \cdot \mathbf{c}^{ op}$$

Attribute-Weighted Sums [c:AGW20]

• inner product (IP) [EC:2LZ+24]

$$f(\mathbf{z}) = \mathbf{z} \cdot \mathbf{c}^{ op}$$

1-input attribute-weighted sum (1AWS)

variable coefficient vectors
$$f(\mathbf{x}, \mathbf{z}) = \mathbf{z} \cdot h(\mathbf{x})^ op$$

Attribute-Weighted Sums [c:AGW20]

inner product (IP) [EC:ZLZ+24]

 $f(\mathbf{z}) = \mathbf{z} \cdot \mathbf{c}^{ op}$

• 1-input attribute-weighted sum (1AWS)

variable coefficient vectors (computable by ABP)

unbounded-size data sets

 $f(\mathbf{x}, \mathbf{z}) = \mathbf{z} \cdot h(\mathbf{x})^{\top}$

(unbounded-input) attribute-weighted sum (AWS)

 $fig(\{(\mathbf{x}_j,\mathbf{z}_j)\}_{j\in[N]}ig) = \sum_{j\in[N]} \mathbf{z}_j \cdot h(\mathbf{x}_j)^ op$

Attribute-Weighted Sums [C:AGW20]

inner product (IP) [EC:ZLZ+24]

$$f(\mathbf{z}) = \mathbf{z} \cdot \mathbf{c}^{ op}$$

1-input attribute-weighted sum (1AWS)

variable coefficient vectors $f(\mathbf{x},\mathbf{z}) = \mathbf{z} \cdot h(\mathbf{x})^ op$ (computable by ABP)

$$f(\mathbf{x}, \mathbf{z}) = \mathbf{z} \cdot h(\mathbf{x})^{ op}$$

(unbounded-input) attribute-weighted sum (AWS)

unbounded-size data sets
$$f(\{(\mathbf{x}_j,\mathbf{z}_j)\}_{j\in[N]}) = \sum_{j\in[N]} \mathbf{z}_j \cdot h(\mathbf{x}_j)^ op$$

attribute-based attribute-weighted sum (AB-AWS)

$$fig(\mathbf{y},\{(\mathbf{x}_j,\mathbf{z}_j)\}_{j\in[N]}ig) = egin{cases} \sum_{j\in[N]}\mathbf{z}_j\cdot h(\mathbf{x}_j)^ op & ext{if } g(\mathbf{y}) = 0 \ ot & ext{ine-grained access control} \end{cases}$$

• setup: sample random matrices A, W and define mpk = ([A], [AW]), msk = W

- setup: sample random matrices A, W and define mpk = ([A], [AW]), msk = W
- encryption: to encrypt \mathbf{z} , sample random vector \mathbf{s} and output $\mathbf{ct} = ([\mathbf{sA}], [\mathbf{z} \mathbf{sAW}])$ $(c_{\mathbf{z}}) := \int_{\mathbf{z}} \mathbf{z} \cdot \mathbf{sAW} \cdot \mathbf{sAW}$

- **setup:** sample random matrices A, W and define mpk = ([A], [AW]), msk = W
- encryption: to encrypt \mathbf{z} , sample random vector \mathbf{s} and output $\mathbf{ct} = ([\mathbf{sA}], [\mathbf{z} \mathbf{sAW}])$ $(c_{\mathbf{z}}) := \int_{\mathbf{z}} \mathbf{c} \cdot \mathbf$
- key generation: to generate a key for \mathbf{y} , output $\mathbf{sk_v} = \mathbf{d}^{\top} := \mathbf{W}\mathbf{y}^{\top}$
- decryption: output $[\mathbf{c}_1]\mathbf{d}^{\top} + [\mathbf{c}_2]\mathbf{y}^{\top} = [\mathbf{z}\mathbf{y}^{\top}]$

- setup: sample random matrices A, W and define mpk = ([A], [AW]), msk = W
- encryption: to encrypt \mathbf{z} , sample random vector \mathbf{s} and output $\mathbf{ct} = ([\mathbf{sA}], [\mathbf{z} \mathbf{sAW}])$ $(c_{\mathbf{z}}) := (\mathbf{sA})$
- ullet key generation: to generate a key for $oldsymbol{y}$, output $oldsymbol{\mathsf{sk}}_{oldsymbol{y}} = oldsymbol{\mathbf{d}}^ op := oldsymbol{\mathbf{W}} oldsymbol{\mathbf{y}}^ op$

or a matrix
$$Y$$
 (in which case the secret key is $\mathsf{sk}_{\mathbf{Y}} = \mathbf{D} := \mathbf{W}\mathbf{Y}$)

• decryption: output $[\mathbf{c}_1]\mathbf{d}^\top + [\mathbf{c}_2]\mathbf{y}^\top = [\mathbf{z}\mathbf{y}^\top]$ for $[\mathbf{c}_1]\mathbf{D} + [\mathbf{c}_2]\mathbf{Y} = [\mathbf{z}\mathbf{Y}]$

ullet garbling: given an ABP h and public input ${f x}$, compute matrix ${f L}_{f x}$, sample randomness ${f w}$, and output

$$\mathsf{pgb}(h,\mathbf{x},\mathbf{z};\mathbf{w}) = (\mathbf{p}_1,\mathbf{p}_2) := (\mathbf{z} - \underline{\mathbf{w}},\mathbf{w}\mathbf{L}_\mathbf{x})$$

ullet garbling: given an ABP h and public input ${f x}$, compute matrix ${f L}_{f x}$, sample randomness ${f w}$, and output

$$\mathsf{pgb}(h,\mathbf{x},\mathbf{z};\mathbf{w}) = (\mathbf{p}_1,\mathbf{p}_2) := (\mathbf{z} - \underline{\mathbf{w}},\mathbf{w}\mathbf{L}_\mathbf{x})$$

ullet garbling: given an ABP h and public input ${f x}$, compute matrix ${f L}_{f x}$, sample randomness ${f w}$, and output

$$oxed{\mathsf{pgb}(h,\mathbf{x},\mathbf{z};\mathbf{w}) = (\mathbf{p}_1,\mathbf{p}_2) := (\mathbf{z} - \underline{\mathbf{w}},\mathbf{w}\mathbf{L}_\mathbf{x})}$$

• reconstruction: given (h, \mathbf{x}) , find vector $\mathbf{d}_{h, \mathbf{x}}$ such that

$$(\mathbf{p}_1,\mathbf{p}_2)\cdot\mathbf{d}_{h,\mathbf{x}}^{ op}=\mathbf{z}\cdot h(\mathbf{x})^{ op}$$

ullet garbling: given an ABP h and public input ${f x}$, compute matrix ${f L}_{f x}$, sample randomness ${f w}$, and output

$$oxed{\mathsf{pgb}(h,\mathbf{x},\mathbf{z};\mathbf{w}) = (\mathbf{p}_1,\mathbf{p}_2) := (\mathbf{z} - \underline{\mathbf{w}},\mathbf{w}\mathbf{L}_\mathbf{x})}$$

• reconstruction: given (h, \mathbf{x}) , find vector $\mathbf{d}_{h, \mathbf{x}}$ such that

$$(\mathbf{p}_1,\mathbf{p}_2)\cdot\mathbf{d}_{h,\mathbf{x}}^{ op}=\mathbf{z}\cdot h(\mathbf{x})^{ op}$$

• privacy: for random w, the following distributions are indistinguishable

$$\{(\mathbf{z} - \mathbf{w}, \mathbf{w} \mathbf{L}_{\mathbf{x}})\} pprox_s \{(-\mathbf{w}, \mathbf{w} \mathbf{L}_{\mathbf{x}} + \mathbf{z} h(\mathbf{x})^{ op} \cdot \mathbf{e}_1)\}$$

Combining the Two — Classical FE for 1AWS

FE. ct
$$([\mathbf{s}\mathbf{A}], [\mathbf{z} - \mathbf{s}\mathbf{A}\mathbf{\underline{W}}])$$

$$\mathsf{FE}.\,\mathsf{sk}_{h,\mathbf{x}} \quad \mathbf{WL}_{\mathbf{x}}$$

Reminder.

• ALS IFPE:

$$\mathsf{ct} = ig([\mathbf{s}\mathbf{A}], [\mathbf{z} - \mathbf{s}\mathbf{A}\mathbf{W}]ig)$$
 , $\mathsf{sk}_\mathbf{Y} = \mathbf{D} := \mathbf{W}\mathbf{Y}$

• partial garbling for 1AWS:

$$\mathsf{pgb}(h,\mathbf{x},\mathbf{z};\mathbf{w}) = (\mathbf{p}_1,\mathbf{p}_2) := (\mathbf{z} - \underline{\mathbf{w}},\mathbf{w}\mathbf{L}_\mathbf{x})$$

Combining the Two — Classical FE for 1AWS

FE. ct
$$([\mathbf{s}\mathbf{A}], [\mathbf{z} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}])$$
FE. $\mathsf{sk}_{h,\mathbf{x}}$ $\mathbf{WL}_{\mathbf{x}}$

$$\begin{pmatrix} [\mathbf{z} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}], [\mathbf{s}\mathbf{A}\mathbf{W}\mathbf{L}_{\mathbf{x}}] \end{pmatrix}$$

Reminder.

• ALS IFPE:

$$\mathsf{ct} = ig([\mathbf{s}\mathbf{A}], [\mathbf{z} - \mathbf{s}\mathbf{A}\mathbf{W}]ig)$$
 , $\mathsf{sk}_\mathbf{Y} = \mathbf{D} := \mathbf{W}\mathbf{Y}$

partial garbling for 1AWS:

$$\mathsf{pgb}(h,\mathbf{x},\mathbf{z};\mathbf{w}) = (\mathbf{p}_1,\mathbf{p}_2) := (\mathbf{z} - \underline{\mathbf{w}},\mathbf{w}\mathbf{L}_\mathbf{x})$$

Combining the Two — Classical FE for 1AWS

note: this is not the actual 1AWS functionality

FE. ct
$$([\mathbf{s}\mathbf{A}], [\mathbf{z} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}])$$

$$([\mathbf{z} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}], [\mathbf{s}\mathbf{A}\mathbf{W}\mathbf{L}_{\mathbf{x}}])$$
FE. $\mathbf{s}\mathbf{k}_{h,\mathbf{x}}$

$$\mathbf{W}\mathbf{L}_{\mathbf{x}}$$

Reminder.

- ALS IFPE:
- partial garbling for 1AWS:

$$\mathsf{ct} = ig([\mathbf{s}\mathbf{A}], [\mathbf{z} - \mathbf{s}\mathbf{A}\mathbf{W}]ig)$$
 , $\mathsf{sk}_\mathbf{Y} = \mathbf{D} := \mathbf{W}\mathbf{Y}$

$$\mathsf{pgb}(h,\mathbf{x},\mathbf{z};\mathbf{w}) = (\mathbf{p}_1,\mathbf{p}_2) := (\mathbf{z} - \underline{\mathbf{w}},\mathbf{w}\mathbf{L}_\mathbf{x})$$

crs
$$([\mathbf{A}], [\mathbf{A}\mathbf{W}])$$

crs
$$([\mathbf{A}], [\mathbf{AW}])$$
 $FE.mpk$
 (pk, sk) $([\mathbf{AU}], \mathbf{U})$ (for a random matrix \mathbf{U})

$$\begin{array}{c} \text{crs} & \left(\left[\mathbf{A} \right], \left[\mathbf{A} \mathbf{W} \right] \right) \\ \hline \textit{FE.mpk} \\ \\ (\text{pk, sk}) & \left(\left[\mathbf{A} \mathbf{U} \right], \mathbf{U} \right) \quad \textit{(for a random matrix U)} \\ \\ \text{mpk} & \left(\left[\mathbf{A} \right], \left[\mathbf{A} \underline{\mathbf{W}} \right], \left[\mathbf{A} \mathbf{U} + \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}} \right] \right) \\ \\ \text{ct} & \left(\left[\mathbf{s} \mathbf{A} \right], \left[\mathbf{z} - \mathbf{s} \mathbf{A} \underline{\mathbf{W}} \right], \left[\mathbf{s} \mathbf{A} \mathbf{U} + \mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}} \right] \right) \\ \hline \textit{FE.et} & \textit{Enc(pk, FE.sk}_{hx}) \\ \end{array}$$

FE. ct
$$([\mathbf{s}\mathbf{A}], [\mathbf{z} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}])$$
FE. $\mathsf{sk}_{h,\mathbf{x}}$ $\mathbf{WL}_{\mathbf{x}}$

$$\left([\mathbf{z} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}], [\mathbf{s}\mathbf{A}\mathbf{W}\mathbf{L}_{\mathbf{x}}] \right)$$

$$\left([\mathbf{z} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}], [\mathbf{s}\mathbf{A}\mathbf{W}\mathbf{L}_{\mathbf{x}}] \right)$$

$$\left([\mathbf{z} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}], [\mathbf{s}\mathbf{A}\mathbf{W}\mathbf{L}_{\mathbf{x}}] \right)$$

$$(\mathbf{A}, \mathbf{A}\mathbf{W})$$

$$FE.mpk$$

$$(\mathbf{A}, \mathbf{A}\mathbf{W})$$

$$(\mathbf{A}\mathbf{U}, \mathbf{U})$$

$$(\mathbf{A}\mathbf{U}, \mathbf{A}\mathbf{W}, \mathbf{A}\mathbf{U} + \mathbf{A}\mathbf{W}\mathbf{L}_{\mathbf{x}})$$

$$(\mathbf{A}, \mathbf{A}\mathbf{W}, \mathbf{A}\mathbf{U} + \mathbf{A}\mathbf{W}\mathbf{L}_{\mathbf{x}})$$

$$(\mathbf{A}, \mathbf{A}\mathbf{W}, \mathbf{A}\mathbf{U} + \mathbf{A}\mathbf{W}\mathbf{L}_{\mathbf{x}})$$

$$(\mathbf{A}, \mathbf{A}\mathbf{W}, \mathbf{A}\mathbf{W}, \mathbf{A}\mathbf{U} + \mathbf{A}\mathbf{W}\mathbf{L}_{\mathbf{x}})$$

$$(\mathbf{A}, \mathbf{A}\mathbf{W}, \mathbf{A$$

Security.

1) sk=U is secret (i.e. user honest):
-> nothing revealed under MDDH_k

FE. ct
$$([\mathbf{s}\mathbf{A}], [\mathbf{z} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}])$$
FE. $\mathsf{sk}_{h,\mathbf{x}}$
 $\mathbf{WL}_{\mathbf{x}}$

$$([\mathbf{z} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}], [\mathbf{s}\mathbf{A}\mathbf{W}\mathbf{L}_{\mathbf{x}}])$$

$$([\mathbf{z} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}], [\mathbf{s}\mathbf{A}\mathbf{W}\mathbf{L}_{\mathbf{x}}])$$

$$\begin{array}{c} \text{crs} & \left(\left[\mathbf{A} \right], \left[\mathbf{A} \mathbf{W} \right] \right) \\ \hline \textit{FE.mpk} \\ \\ \left(\left[\mathbf{A} \mathbf{U} \right], \mathbf{U} \right) & \textit{(for a random matrix U)} \\ \\ \text{mpk} & \left(\left[\mathbf{A} \right], \left[\mathbf{A} \underline{\mathbf{W}} \right], \left[\mathbf{A} \mathbf{U} + \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}} \right] \right) \\ \\ \text{ct} & \left(\left[\mathbf{s} \mathbf{A} \right], \left[\mathbf{z} - \mathbf{s} \mathbf{A} \underline{\mathbf{W}} \right], \left[\mathbf{s} \mathbf{A} \mathbf{U} + \mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}} \right] \right) \\ \hline \\ \textit{FE.et} & \textit{Enc(pk, FE.sk}_{hx}) \\ \end{array}$$

-> only $zh(x)^T$ revealed under security of pgb

crs

$$(\mathsf{pk}_i, \mathsf{sk}_i)$$

mpk

ct

FE. ct
$$([\mathbf{s}\mathbf{A}], [\mathbf{z} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}])$$
FE. $\mathsf{sk}_{h,\mathbf{x}}$
 $\mathbf{WL}_{\mathbf{x}}$

$$([\mathbf{z} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}], [\mathbf{s}\mathbf{A}\mathbf{W}\mathbf{L}_{\mathbf{x}}])$$

$$([\mathbf{z} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}], [\mathbf{s}\mathbf{A}\mathbf{W}\mathbf{L}_{\mathbf{x}}])$$

crs
$$([\mathbf{A}],\{[\mathbf{A}\mathbf{W}_i]\}_{i\in[L]})$$
 $(\mathbf{pk}_i,\mathbf{sk}_i)$ $([\mathbf{A}\mathbf{U}_i],\mathbf{U}_i)$ (for random matrices $oldsymbol{\mathcal{U}}_i$) mpk

$$(\mathbf{pk}_{i}, \mathbf{sk}_{i}) \quad ([\mathbf{A}\mathbf{U}_{i}], \mathbf{U}_{i}) \quad (\text{for random matrices } \mathbf{U}_{i})$$

$$\text{mpk} \quad ([\mathbf{A}], \sum_{i \in [L]} [\mathbf{A}\underline{\mathbf{W}}_{i}], \sum_{i \in [L]} [\mathbf{A}\mathbf{U}_{i} + \mathbf{A}\mathbf{W}_{i}\mathbf{L}_{i,\mathbf{x}}])$$

$$\text{ct} \quad ([\mathbf{s}\mathbf{A}], [\mathbf{z} - \sum_{i \in [L]} \mathbf{s}\mathbf{A}\underline{\mathbf{W}}_{i}], \sum_{i \in [L]} [\mathbf{s}\mathbf{A}\mathbf{U}_{i} + \mathbf{s}\mathbf{A}\mathbf{W}_{i}\mathbf{L}_{i,\mathbf{x}}])$$

$$\text{sum of L independent 1-slot instances}$$

$$\text{FE. ct} \quad ([\mathbf{s}\mathbf{A}], [\mathbf{z} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}])$$

$$\text{FE. sk}_{h,\mathbf{x}} \quad \mathbf{W}\mathbf{L}_{\mathbf{x}}$$

$$\text{FE. sk}_{h,\mathbf{x}} \quad \mathbf{W}\mathbf{L}_{\mathbf{x}}$$

 $\mathsf{FE}.\,\mathsf{sk}_{h,\mathbf{x}}$

$$\begin{array}{ll} \text{crs} & \left([\mathbf{A}], \{ [\mathbf{A}\mathbf{W}_i] \}_{i \in [L]} \right) \\ \\ \left(\mathsf{pk}_i, \mathsf{sk}_i \right) & \left([\mathbf{A}\mathbf{U}_i], \mathbf{U}_i \right) & \textit{(for random matrices U_i)} \\ \\ \mathsf{mpk} & \left([\mathbf{A}], \sum_{i \in [L]} [\mathbf{A}\underline{\mathbf{W}}_i], \sum_{i \in [L]} [\mathbf{A}\mathbf{U}_i + \mathbf{A}\mathbf{W}_i\mathbf{L}_{i,\mathbf{x}}] \right) \\ \\ \mathsf{ct} & \left([\mathbf{s}\mathbf{A}], [\mathbf{z} - \sum_{i \in [L]} \mathbf{s}\mathbf{A}\underline{\mathbf{W}}_i], \sum_{i \in [L]} [\mathbf{s}\mathbf{A}\mathbf{U}_i + \mathbf{s}\mathbf{A}\mathbf{W}_i\mathbf{L}_{i,\mathbf{x}}] \right) \\ \\ \\ \mathsf{sum of (independent 1-slot instances)} \end{array}$$

Intuition.

ullet user i could decrypt given $\mathsf{hsk}_i = \left(\sum_{j \in [L] \setminus i} \mathbf{W}_j, \sum_{j \in [L] \setminus i} \mathbf{U}_j
ight)$

$$\begin{split} & \text{crs} & \left([\mathbf{A}], \{ [\mathbf{A} \mathbf{W}_i] \}_{i \in [L]} \right) \\ & \text{FE.mpk} \\ & \left([\mathbf{A} \mathbf{U}_i], \mathbf{V}_i \right) \quad \textit{(for random matrices \mathbf{U}_i)} \\ & \text{mpk} & \left([\mathbf{A}], \sum_{i \in [L]} [\mathbf{A} \underline{\mathbf{W}}_i], \sum_{i \in [L]} [\mathbf{A} \mathbf{U}_i + \mathbf{A} \mathbf{W}_i \mathbf{L}_{i,\mathbf{x}}] \right) \\ & \text{ct} & \left([\mathbf{s} \mathbf{A}], [\mathbf{z} - \sum_{i \in [L]} \mathbf{s} \mathbf{A} \underline{\mathbf{W}}_i], \sum_{i \in [L]} [\mathbf{s} \mathbf{A} \mathbf{U}_i + \mathbf{s} \mathbf{A} \mathbf{W}_i \mathbf{L}_{i,\mathbf{x}}] \right) \\ & \text{sum of ℓ independent 1-slot instances} & \text{... how to decrypt? -> helper secret keys} \end{split}$$

- ullet user i could decrypt given $\mathsf{hsk}_i = \left(\sum_{j \in [L] \setminus i} \mathbf{W}_j, \sum_{j \in [L] \setminus i} \mathbf{U}_j \right)$
- **problem 1:** helper secret key contains scalar values

$$\begin{split} & \text{crs} & \underbrace{\left(\left[\mathbf{A} \right], \left\{ \left[\mathbf{A} \mathbf{W}_i \right] \right\}_{i \in [L]} \right)}_{\textit{FE.mpk}} \\ & \left(\mathsf{pk}_i, \mathsf{sk}_i \right) & \underbrace{\left(\left[\mathbf{A} \mathbf{U}_i \right], \mathbf{U}_i \right)}_{\textit{for random matrices U_i}} \\ & \text{mpk} & \underbrace{\left(\left[\mathbf{A} \right], \sum_{i \in [L]} \left[\mathbf{A} \underline{\mathbf{W}}_i \right], \sum_{i \in [L]} \left[\mathbf{A} \mathbf{U}_i + \mathbf{A} \mathbf{W}_i \mathbf{L}_{i,\mathbf{x}} \right] \right)}_{\textit{ct}} \\ & \text{ct} & \underbrace{\left(\left[\mathbf{s} \mathbf{A} \right], \left[\mathbf{z} - \sum_{i \in [L]} \mathbf{s} \mathbf{A} \underline{\mathbf{W}}_i \right], \sum_{i \in [L]} \left[\mathbf{s} \mathbf{A} \mathbf{U}_i + \mathbf{s} \mathbf{A} \mathbf{W}_i \mathbf{L}_{i,\mathbf{x}} \right] \right)}_{\textit{sum of l independent 1-slot instances}} & \textit{... how to decrypt? -> helper secret keys} \end{split}$$

- ullet user i could decrypt given $\mathsf{hsk}_i = \left(\sum_{j \in [L] \setminus i} \mathbf{W}_j, \sum_{j \in [L] \setminus i} \mathbf{U}_j \right)$
- problem 1: helper secret key contains scalar values
- solution 1: switch to pairing group with ciphertexts in \mathbb{G}_1 and helper secret keys in \mathbb{G}_2

Intuition.

ullet user i could decrypt given $\mathsf{hsk}_i = \left(\sum_{j \in [L] \setminus i} [\mathbf{W}_j]_2, \sum_{j \in [L] \setminus i} [\mathbf{U}_j]_2 \right)$

- ullet user i could decrypt given $\mathsf{hsk}_i = \left(\sum_{j \in [L] \setminus i} [\mathbf{W}_j]_2, \sum_{j \in [L] \setminus i} [\mathbf{U}_j]_2 \right)$
- problem 2: masking terms for different users are correlated

- ullet user i could decrypt given $\mathsf{hsk}_i = \left(\sum_{j \in [L] \setminus i} [\mathbf{W}_j]_2, \sum_{j \in [L] \setminus i} [\mathbf{U}_j]_2 \right)$
- problem 2: masking terms for different users are correlated
- (partial) solution 2: user-specific re-randomization of helper secret keys

$$\begin{split} & \text{crs} & \left([\mathbf{A}], \{ [\mathbf{A} \mathbf{W}_i] \}_{i \in [L]} \right) \\ & \text{FE.mpk} \\ & \left([\mathbf{A} \mathbf{U}_i], \mathbf{V}_i \right) \quad \textit{(for random matrices \mathbf{U}_i)} \\ & \text{mpk} & \left([\mathbf{A}], \sum_{i \in [L]} [\mathbf{A} \underline{\mathbf{W}}_i], \sum_{i \in [L]} [\mathbf{A} \mathbf{U}_i + \mathbf{A} \mathbf{W}_i \mathbf{L}_{i,\mathbf{x}}] \right) \\ & \text{ct} & \left([\mathbf{s} \mathbf{A}], [\mathbf{z} - \sum_{i \in [L]} \mathbf{s} \mathbf{A} \underline{\mathbf{W}}_i], \sum_{i \in [L]} [\mathbf{s} \mathbf{A} \mathbf{U}_i + \mathbf{s} \mathbf{A} \mathbf{W}_i \mathbf{L}_{i,\mathbf{x}}] \right) \\ & \text{sum of ℓ independent 1-slot instances} & \text{... how to decrypt? -> helper secret keys} \end{split}$$

- ullet user i could decrypt given $\mathsf{hsk}_i = \left(\sum_{j \in [L] \setminus i} [\mathbf{W}_j]_2, \sum_{j \in [L] \setminus i} [\mathbf{U}_j]_2 \right)$
- problem 2: masking terms for different users are correlated
- (partial) solution 2: user-specific re-randomization of helper secret keys

$$\mathsf{hsk}_i = \left([\mathbf{B}\mathbf{r}_j^ op]_2, \sum_{j \in [L] \setminus i} [\mathbf{W}_j \mathbf{B}\mathbf{r}_j^ op]_2, \sum_{j \in [L] \setminus i} [\mathbf{U}_j \mathbf{B}\mathbf{r}_j^ op]_2
ight)$$

ciphertext helper secret key
$$[\mathbf{p}_1]_1 \cdot [\mathbf{R}]_2 = [\mathbf{z} - \mathbf{s} \mathbf{A} \underline{\mathbf{W}}]_1 \cdot [\mathbf{R}]_2 = [\mathbf{z} \cdot \underline{\mathbf{R}} - \mathbf{s} \mathbf{A} \underline{\mathbf{W}} \cdot \underline{\mathbf{R}}]_t$$

$$[\mathbf{p}_2]_1 \cdot [\mathbf{R}]_2 = [\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}}]_1 \cdot [\mathbf{R}]_2 = [\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}} \cdot \mathbf{R}]_t$$

Question: how to choose **R**?

ciphertext helper secret key problem 1: input vector changes
$$[\mathbf{p}_1]_1 \cdot [\mathbf{R}]_2 = [\mathbf{z} - \mathbf{s} \mathbf{A} \underline{\mathbf{W}}]_1 \cdot [\mathbf{R}]_2 = [\mathbf{z} \cdot \underline{\mathbf{R}} - \mathbf{s} \mathbf{A} \underline{\mathbf{W}} \cdot \underline{\mathbf{R}}]_t$$

$$[\mathbf{p}_2]_1 \cdot [\mathbf{R}]_2 = [\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}}]_1 \cdot [\mathbf{R}]_2 = [\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}} \cdot \mathbf{R}]_t$$

Question: how to choose **R**?

ciphertext helper secret key problem 1: input vector changes
$$[\mathbf{p}_1]_1 \cdot [\mathbf{R}]_2 = [\mathbf{z} - \mathbf{s} \mathbf{A} \underline{\mathbf{W}}]_1 \cdot [\mathbf{R}]_2 = [\mathbf{z} \cdot \underline{\mathbf{R}} - \mathbf{s} \mathbf{A} \underline{\mathbf{W}} \cdot \underline{\mathbf{R}}]_t$$

$$[\mathbf{p}_2]_1 \cdot [\mathbf{R}]_2 = [\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}}]_1 \cdot [\mathbf{R}]_2 = [\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}} \cdot \mathbf{R}]_t$$
 problem 2: correctly randomized encoding should be sAWR · $\mathcal{L}_{\mathbf{x}}$

Question: how to choose R?

ciphertext helper secret key problem 1: input vector changes
$$[\mathbf{p}_1]_1 \cdot [\mathbf{R}]_2 = [\mathbf{z} - \mathbf{s} \mathbf{A} \underline{\mathbf{W}}]_1 \cdot [\mathbf{R}]_2 = [\mathbf{z} \cdot \underline{\mathbf{R}} - \mathbf{s} \mathbf{A} \underline{\mathbf{W}} \cdot \underline{\mathbf{R}}]_t$$

$$[\mathbf{p}_2]_1 \cdot [\mathbf{R}]_2 = [\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}}]_1 \cdot [\mathbf{R}]_2 = [\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}} \cdot \mathbf{R}]_t$$
 problem 3: what is \mathbf{R} ? problem 2: correctly randomized encoding should be $\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{R} \cdot \mathbf{L}_{\mathbf{x}}$

Question: how to choose R?

ciphertext helper secret key problem 1: input vector changes
$$[\mathbf{p}_1]_1 \cdot [\mathbf{R}]_2 = [\mathbf{z} - \mathbf{s} \mathbf{A} \underline{\mathbf{W}}]_1 \cdot [\mathbf{R}]_2 = [\mathbf{z} \cdot \underline{\mathbf{R}} - \mathbf{s} \mathbf{A} \underline{\mathbf{W}} \cdot \underline{\mathbf{R}}]_t$$

$$[\mathbf{p}_2]_1 \cdot [\mathbf{R}]_2 = [\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}}]_1 \cdot [\mathbf{R}]_2 = [\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}} \cdot \mathbf{R}]_t$$
 problem 3: what is \mathbf{R} ? -> $\mathbf{R} = (\mathbf{I} \otimes \mathbf{r}^T)$ problem 2: correctly randomized encoding should be $\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{R} \cdot \mathbf{L}_{\mathbf{x}}$ -> $\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}} \cdot (\mathbf{I} \otimes \mathbf{r}^T) = \mathbf{s} \mathbf{A} \mathbf{W} (\mathbf{I} \otimes \mathbf{r}^T) \cdot \mathbf{L}_{\mathbf{x}}$

Question: how to choose R?

- naive approach: a random (uniform) matrix
- solution 1: $\mathbf{R} = (\mathbf{I} \otimes \mathbf{r}^{\top})$ for $\mathbf{r} \leftarrow_{\$} \mathbf{Z}_p^k$ (tensored ALS encodings)

ciphertext helper secret key problem 1: input vector changes -> encode
$$\mathbf{z} \otimes \mathbf{s} \mathbf{A}$$
 and decode in new basis $\mathbf{s} \mathbf{A} \mathbf{R}$

$$[\mathbf{p}_1]_1 \cdot [\mathbf{R}]_2 = [\mathbf{z} - \mathbf{s} \mathbf{A} \underline{\mathbf{W}}]_1 \cdot [\mathbf{R}]_2 = [\mathbf{z} \cdot \underline{\mathbf{R}} - \mathbf{s} \mathbf{A} \underline{\mathbf{W}} \cdot \underline{\mathbf{R}}]_t$$

$$[\mathbf{p}_2]_1 \cdot [\mathbf{R}]_2 = [\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}}]_1 \cdot [\mathbf{R}]_2 = [\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}} \cdot \mathbf{R}]_t$$
problem 3: what is $\underline{\mathbf{R}}$? -> $\underline{\mathbf{R}} = (\underline{\mathbf{I}} \otimes \mathbf{r}^T)$
problem 2: correctly randomized encoding should be $\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{R} \cdot \mathbf{C}_{\mathbf{x}}$
-> $\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{C}_{\mathbf{x}} \cdot (\underline{\mathbf{I}} \otimes \mathbf{r}^T) = \mathbf{s} \mathbf{A} \mathbf{W} (\underline{\mathbf{I}} \otimes \mathbf{r}^T) \cdot \mathbf{C}_{\mathbf{x}}$

Question: how to choose **R**?

- naive approach: a random (uniform) matrix
- solution 1: $\mathbf{R} = (\mathbf{I} \otimes \mathbf{r}^{\top})$ for $\mathbf{r} \leftarrow_{\$} \mathbf{Z}_p^k$ (tensored ALS encodings)

ciphertext helper secret key problem 1: input vector changes -> encode
$$\mathbf{z} \otimes \mathbf{s} \mathbf{A}$$
 and decode in new basis $\mathbf{s} \mathbf{A} \mathbf{R}$
$$[\mathbf{p}_1]_1 \cdot [\mathbf{R}]_2 = [\mathbf{z} - \mathbf{s} \mathbf{A} \underline{\mathbf{W}}]_1 \cdot [\mathbf{R}]_2 = [\mathbf{z} \cdot \underline{\mathbf{R}} - \mathbf{s} \mathbf{A} \underline{\mathbf{W}} \cdot \underline{\mathbf{R}}]_t$$

$$[\mathbf{p}_2]_1 \cdot [\mathbf{R}]_2 = [\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}}]_1 \cdot [\mathbf{R}]_2 = [\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}} \cdot \mathbf{R}]_t$$
 problem 3: what is \mathbf{R} ? -> $\mathbf{R} = (\mathbf{I} \otimes \mathbf{r}^T)$ problem 2: correctly randomized encoding should be $\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{R} \cdot \mathbf{L}_{\mathbf{x}}$ -> $\mathbf{s} \mathbf{A} \mathbf{W} \mathbf{L}_{\mathbf{x}} \cdot (\mathbf{I} \otimes \mathbf{r}^T) = \mathbf{s} \mathbf{A} \mathbf{W} (\mathbf{I} \otimes \mathbf{r}^T) \cdot \mathbf{L}_{\mathbf{x}}$

Question: how to choose **R**?

- naive approach: a random (uniform) matrix
- solution 1: $\mathbf{R} = (\mathbf{I} \otimes \mathbf{r}^{\top})$ for $\mathbf{r} \leftarrow_{\$} \mathbf{Z}_p^k$

• solution 2: use different ALS keys

(tensored ALS encodings)

(nested ALS encodings)

Solution 2: Nested ALS Encodings

$$\begin{array}{l} \textit{ciphertext} & \textit{helper secret key} \\ & & \\ & [\mathbf{p}_{1,\mathsf{in}}]_t = [\mathbf{z} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}_{\mathsf{in}}]_1 \cdot [\mathbf{I}]_2 = [\mathbf{z} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}_{\mathsf{in}}]_t \\ & [\mathbf{p}_{1,\mathsf{out}}]_t = [\mathbf{s}\mathbf{A}]_1 \cdot [\underline{\mathbf{W}}_{\mathsf{in}} - \underline{\mathbf{W}}_{\mathsf{out}}]_2 = [\mathbf{s}\mathbf{A}\underline{\mathbf{W}}_{\mathsf{in}} - \mathbf{s}\mathbf{A}\underline{\mathbf{W}}_{\mathsf{out}}]_t \\ & [\mathbf{p}_2]_t = [\mathbf{s}\mathbf{A}]_1 \cdot [\mathbf{W}_{\mathsf{out}}\mathbf{L}_{\mathbf{x}}]_2 = [\mathbf{s}\mathbf{A}\mathbf{W}_{\mathsf{out}}\mathbf{L}_{\mathbf{x}}]_t \end{array}$$

- **classical FE** provides security against malicious user but needs to trust authority
- registered FE circumvents the need for trusted authority

- classical FE provides security against malicious user but needs to trust authority
- registered FE circumvents the need for trusted authority
- this work:
 - RFE for 1AWS with adaptive security using tensored ALS encodings
 - RFE for AB-AWS with selective security using nested ALS encodings

- classical FE provides security against malicious user but needs to trust authority
- registered FE circumvents the need for trusted authority
- this work:
 - RFE for 1AWS with adaptive security using tensored ALS encodings
 - RFE for AB-AWS with selective security using nested ALS encodings
- follow-up work:
 - modular framework (pre-constrained IP-RFE + garbling scheme)
 - new functionalities (AB-AWS and AB-QF for log-space TMs)

- classical FE provides security against malicious user but needs to trust authority
- registered FE circumvents the need for trusted authority
- this work:
 - RFE for 1AWS with adaptive security using tensored ALS encodings
 - RFE for AB-AWS with selective security using nested ALS encodings
- follow-up work:
 - modular framework (pre-constrained IP-RFE + garbling scheme)
 - o **new functionalities** (AB-AWS and AB-QF for log-space TMs)
- open problems:
 - adaptive security
 - compression of CRS

- classical FE provides security against malicious user but needs to trust authority
- registered FE circumvents the need for trusted authority
- this work:
 - RFE for 1AWS with adaptive security using tensored ALS encodings
 - RFE for AB-AWS with selective security using nested ALS encodings
- follow-up work:
 - modular framework (pre-constrained IP-RFE + garbling scheme)
 - o **new functionalities** (AB-AWS and AB-QF for log-space TMs)
- open problems:
 - adaptive security
 - compression of CRS

Thank you!!! :)