PRIM'S MINIMUM COST SPANNING TREE ALGORITHM

- 1 Uses BFS
- 2 Creates a tree selecting one [most beneficial] edge at a time & minimizes the overall cost of reaching to |V|.

Pre-Conditions:

- 1 Edge cost may be negative.
- 2 Should not contain a negative cost cycle.
- 3 Weighted undirected graph

Required Data Structures:

- 1 A Queue [an array Visited[] to keep track of already visited vertices]. Also a minHeap or Fibonacci Heap may also be used.
- 2 Two 1-D arrays of size = |V|. Array Length[] will store cost of edge.

 Array Parent[] will indicate the parent vertex of the current vertex.

Adjacency Matrix NF := Infinity

Initial State

	A	В	C	D	E	F	G
VISITED[]	F	F	F	F	F	F	F
PARENT[]	1	1	1	1	1	1	1
LENGTH[]	NF						

В						
3	0	NF	3	4	2	NF
A	В	С	D	E	F	G
T	T	F	F	F	F	F
-	A	-	В	В	В	-
	3 A	3 0 A B T T	3 0 NF A B C T T F	3 0 NF 3 A B C D T T F F	3 0 NF 3 4 A B C D E T T F F F	3 0 NF 3 4 2 A B C D E F T T F F F F

LENGTH[]	0	3	NF	3	4	2	NF
minDistV:	F		amon	g non	-visite	d vert	ices
		-					

Iteration-02: Call Prim(G[][|V|], B)

Prim's MST Terminates on adding |V| - 1 most beneficial edges to the Tree. Thus, the Edges (with cost) of the minimum cost spanning tree [MST] are ...

Edge	Cost
A B	3
B F	2
F G	2
C E	3
B D	3
D E	2

Cost of MST := 15

By: **Prof. D. A. Borikar**CSE, RCOEM, NAGPUR
AY - 2019-20