Week 5 Assignment: Prompt-Assisted Feature Engineering for Portfolio Optimization

MSc Banking and Finance – FinTech Course

Due Date: Tuesday, October 23, 2025

Abstract

This assignment tests your ability to use AI prompts to discover meaningful features, implement Ridge & Lasso regularization, evaluate feature importance, and apply findings to real portfolio optimization. Total Points: 100. Submission: Jupyter Notebook + PDF Report + GitHub Repository.

Assignment Overview

This assignment evaluates your ability to:

- 1. Use AI prompts to discover meaningful features
- 2. Implement Ridge & Lasso regularization
- 3. Evaluate feature importance and model performance
- 4. Apply findings to real portfolio optimization

Core Task: Create 3 new features using prompt engineering, implement them in Python, and prove they improve model performance.

Contents

1	Assignment Tasks	2
	1.1 Task 1: Prompt Engineering for Feature Discovery (25 points)	2
	1.2 Task 2: Implementation & Testing (35 points)	3
	1.3 Task 3: Feature Importance Analysis (20 points)	5
	1.4 Task 4: Portfolio Optimization & Business Insights (20 points)	6
2	Evaluation Criteria 2.1 Grading Rubric	
3	Submission Requirements 3.1 Deliverables:	8
4	Recommended AI Prompts for Inspiration:	8

1 Assignment Tasks

1.1 Task 1: Prompt Engineering for Feature Discovery (25 points)

Task 1.1: Generate Features Using AI Prompts (10 points)

Create **3 novel features** using AI assistance (ChatGPT, Claude, or Gemini). Your prompts should explore:

- Market microstructure (e.g., bid-ask patterns, volume dynamics)
- Behavioral finance signals (e.g., sentiment, herding indicators)
- Cross-asset relationships (e.g., correlations, spreads, ratios)
- Regime detection (e.g., bull/bear, high/low volatility)

Example Prompt Template:

Given cryptocurrency data with the following available features:

- Return forecasts (ARIMA)
- Volatility forecasts (GARCH)
- Historical prices
- Trading volumes

Suggest 3 features that capture [SPECIFIC PATTERN] and explain:

- 1. The financial intuition behind each feature
- 2. The mathematical formula to calculate it
- 3. Why it might predict portfolio returns

Deliverable 1.1:

- Document your **3 prompts** (exact text sent to AI)
- Show **AI responses** for each prompt

Task 1.2: Feature Justification (15 points)

For each of your 3 features, provide:

- 1. Financial Intuition (5 points per feature)
 - What market behavior does this feature capture?
 - Why should it predict portfolio returns?
 - What's the economic theory behind it?
- 2. Mathematical Specification (5 points per feature)
 - Write the formula clearly
 - Define all variables
 - Explain any transformations (logs, differences, ratios)
- 3. Expected Impact (5 points per feature)
 - Will it improve Lasso or Ridge more? Why?
 - What's your hypothesis about its importance?

Example Format:

Feature 1: Bitcoin-Ethereum Volatility Ratio

Financial Intuition: During market stress, BTC and ETH volatilities diverge. BTC (digital gold) becomes less volatile, while ETH (DeFi platform) experiences higher volatility. This ratio signals flight-to-quality dynamics.

Formula:

$$vol_{ratio} = \frac{\sigma_{BTC,t}}{\sigma_{ETH,t}}$$
 (1)

Where:

- $\sigma_{\text{BTC},t} = \text{GARCH}$ volatility forecast for BTC at time t
- $\sigma_{\text{ETH},t} = \text{GARCH}$ volatility forecast for ETH at time t

Expected Impact: Should improve Lasso performance by capturing regime changes. Hypothesis: Non-zero coefficient when vol_ratio < 0.8 (stress periods) or > 1.2 (calm periods).

1.2 Task 2: Implementation & Testing (35 points)

Task 2.1: Feature Implementation (10 points)

Implement your 3 features in Python. Code must:

- \checkmark Be well-commented
- ✓ Handle edge cases (NaN, inf, division by zero)
- ✓ Use vectorized operations (no slow loops)
- ✓ Include unit tests (assert statements)

```
def calculate_feature_1(btc_vol, eth_vol):
2
       Calculate BTC-ETH volatility ratio.
3
       Parameters:
       _____
6
       btc_vol : array-like
           BTC GARCH volatility forecasts
       eth_vol : array-like
9
           ETH GARCH volatility forecasts
11
       Returns:
12
       _____
13
       vol_ratio : array-like
14
           Ratio of BTC to ETH volatility
15
16
17
       # Handle division by zero
       eth_vol_safe = np.where(eth_vol == 0, 1e-10, eth_vol)
18
       vol_ratio = btc_vol / eth_vol_safe
19
20
       # Sanity check
21
       assert np.all(np.isfinite(vol_ratio)), "Non-finite values detected"
22
       assert np.all(vol_ratio > 0), "Negative ratios detected"
23
       return vol_ratio
25
26
   # Test your function
27
   btc_test = np.array([0.04, 0.05, 0.03])
   eth_test = np.array([0.05, 0.04, 0.05])
29
  result = calculate_feature_1(btc_test, eth_test)
30
  print(f"Test passed: {result}") # [0.8, 1.25, 0.6]
```

Task 2.2: Baseline Performance (10 points)

First, establish baseline performance without your new features:

- 1. Train Ridge and Lasso on **original features only** (from Week 5 code)
- 2. Use 5-fold cross-validation
- 3. Record: R^2 , MSE, number of features selected (Lasso)

```
# Baseline evaluation
baseline_ridge_r2 = ...
baseline_lasso_r2 = ...
baseline_lasso_n_features = ...
```

Task 2.3: Enhanced Model Performance (15 points)

Now add your 3 features and re-evaluate:

- 1. Combine original + your 3 new features
- 2. Re-train Ridge and Lasso with same CV setup
- 3. Record same metrics
- 4. Prove improvement using statistical tests

Deliverable 2.3: Comparison Table:

Metric	Baseline Ridge	Enhanced Ridge	Baseline Lasso	Enhanced Lasso
$\overline{\text{CV } R^2}$	0.72	0.78	0.70	0.81
CV MSE	0.00045	0.00038	0.00048	0.00035
Features	20	23	8	11
Improvement	_	+8.3%	_	+15.7%

Table 1: Model Performance Comparison

Statistical Significance Test:

```
from scipy import stats

# Paired t-test on CV fold scores
baseline_scores = [0.70, 0.68, 0.72, 0.71, 0.69]
enhanced_scores = [0.79, 0.81, 0.82, 0.78, 0.85]

t_stat, p_value = stats.ttest_rel(enhanced_scores, baseline_scores)
print(f"t-statistic: {t_stat:.3f}, p-value: {p_value:.4f}")

if p_value < 0.05:
    print("Success: Improvement is statistically significant!")</pre>
```

1.3 Task 3: Feature Importance Analysis (20 points)

Task 3.1: Lasso Coefficient Analysis (10 points)

- 1. Rank features by absolute Lasso coefficients
- 2. **Identify** which of your 3 features were selected (non-zero)
- 3. Compare to original features

Deliverable 3.1:

Visualization Required:

```
# Bar plot of top 10 features
plt.figure(figsize=(10, 6))
top10 = feature_importance.head(10)
colors = ['green' if x == 'Yes' else 'blue' for x in top10['is_new']]
plt.barh(top10['feature'], top10['lasso_coef'], color=colors)
plt.xlabel('Absolute Lasso Coefficient')
plt.title('Top 10 Important Features (Green = New Features)')
plt.tight_layout()
```

Task 3.2: Ablation Study (10 points)

Test each new feature individually:

```
# Test Feature 1 alone
  X_with_f1 = np.column_stack([X_baseline, feature_1])
  score_f1 = cross_val_score(Lasso(), X_with_f1, y, cv=5).mean()
  # Test Feature 2 alone
5
  X_with_f2 = np.column_stack([X_baseline, feature_2])
6
  score_f2 = cross_val_score(Lasso(), X_with_f2, y, cv=5).mean()
7
  # Test Feature 3 alone
9
  X_with_f3 = np.column_stack([X_baseline, feature_3])
10
  score_f3 = cross_val_score(Lasso(), X_with_f3, y, cv=5).mean()
11
12
  # Rank by individual contribution
13
```

Deliverable 3.2:

- Table showing each feature's individual contribution
- Identify which feature is **most valuable**
- Discuss **interactions** between features (if any)

1.4 Task 4: Portfolio Optimization & Business Insights (20 points)

Task 4.1: Optimal Portfolio Weights (10 points)

Use your enhanced Lasso model to:

- 1. Predict expected returns for each asset
- 2. Calculate optimal portfolio weights
- 3. Compare to baseline (equal-weighted) portfolio

```
# Your enhanced model predictions
expected_returns = {
    'BTC': lasso_predict_btc,
    'ETH': lasso_predict_eth,
    'DOGE': lasso_predict_doge
}

# Optimal weights (simple softmax approach)
```

```
weights_optimized = calculate_softmax_weights(expected_returns)

# Baseline: equal weighted
weights_baseline = {'BTC': 0.33, 'ETH': 0.33, 'DOGE': 0.34}
```

Task 4.2: Backtest & Performance (10 points)

Simulate portfolio performance over the test period:

- 1. Calculate daily portfolio returns for both strategies
- 2. Compute: Sharpe ratio, max drawdown, cumulative return
- 3. Visualize cumulative returns

Deliverable 4.2:

Metric	Baseline (Equal Weight)	Optimized (ML-Enhanced)
Annual Return	12.3%	18.7%
Annual Volatility	35.2%	31.8%
Sharpe Ratio	0.35	0.59
Max Drawdown	-28.1%	-22.4%

Table 2: Portfolio Performance Comparison

```
# Cumulative return plot
plt.figure(figsize=(12, 6))
plt.plot(dates, cumret_baseline, label='Baseline', alpha=0.7)
plt.plot(dates, cumret_optimized, label='ML-Enhanced', linewidth=2)
plt.xlabel('Date')
plt.ylabel('Cumulative Return')
plt.title('Portfolio Performance Comparison')
plt.legend()
plt.grid(True, alpha=0.3)
```

2 Evaluation Criteria

2.1 Grading Rubric

Component	Points	Criteria
Task 1: Prompt Engineering	25	Quality of prompts (5), Financial intuition (10), Math clarity (10)
Task 2: Implementation	35	Code quality (10), Baseline (10), Improvement proof (15)
Task 3: Analysis	20	Lasso importance (10), Ablation study (10)
Task 4: Portfolio Insights	20	Optimal weights (10), Backtest results (10)
TOTAL	100	

Table 3: Grading Breakdown

2.2 Bonus Points (Optional)

- Implement ElasticNet and compare to Ridge/Lasso
- Hyparameter-tunig visualization

3 Submission Requirements

3.1 Deliverables:

- Jupyter Notebook (.ipynb)
- PDF Report (1-3 pages)
- Code Repository (GitHub)

4 Recommended AI Prompts for Inspiration:

Prompt 1 – Technical Analysis:

I have cryptocurrency data with ARIMA return forecasts and GARCH volatility forecasts. Suggest 3 technical indicators that could predict portfolio returns, focusing on momentum and mean-reversion signals. Provide formulas suitable for Python implementation.

Prompt 2 - Risk Metrics:

Given forecasted volatility for BTC, ETH, and DOGE, what are 3 risk-based features that capture portfolio diversification benefits? Include correlation-based and tail-risk measures.

Prompt 3 – Market Regime:

Design 3 features that identify different market regimes (bull/bear, high/low volatility, trending/ranging) using only return and volatility forecasts. Explain the threshold logic for each.

Remember

"Feature engineering is the art of asking the right questions about your data."

The best features come from:

- 1. **Deep understanding** of the domain (behavioral finance, market microstructure)
- 2. Creative thinking (AI prompts help, but you must curate)
- 3. Rigorous testing (cross-validation never lies)
- 4. **Iteration** (first attempt rarely succeeds)