

Lecture 1: Introduction to numerical optimization

Optimization for data sciences

Rémy Sun remy.sun@inria.fr

What is optimization?

What can we optimize?

- Reduce the complexity/overhead of a problem
 - E.g. Network quantization
 - E.g. Computational optimization
- Find the best solution to a problem
 - Numerical optimization
 - Evaluate solutions according to a criterion
 - Look at solutions from some given space of possible solutions to consider

What can we optimize?

- Reduce the complexity/overhead of a problem
 - E.g. Network quantization
 - E.g. Computational optimization
- Find the best solution to a problem
 - Numerical optimization
 - Evaluate solutions according to a criterion
 - Look at solutions from some given space of possible solutions to consider

- You have a balance
 - With 5 weights (1kg, 5kg, 10kg, 50kg, 100kg)
- Object X with unknown mass
- Goal: Find the closest weight

- You have a balance
 - With 5 weights (1kg, 5kg, 10kg, 50kg, 100kg)
- Object X with unknown mass
- Goal: Find the closest weight
 - Criterion: balance reaction

- You have a balance
 - With infinite set of 1kg weight
- Object X with unknown mass
- Goal: Find the closest weight
 - Criterion: balance reaction

- You have the graph of balance responses
 - "Response for every possible weight values"
- Goal: Find the closest weight
 - Look at the minimum on the graph

- You have the graph of balance responses
 - "Response for every possible weight values"
- Goal: Find the closest weight
 - Look at the minimum on the graph

- You have the graph of balance responses
 - "Response for every possible weight values"
- Goal: Find the closest weight
 - Look at the minimum on the graph

Defining an optimization problem

- Minimize a quantity $f_0(x)$
 - Under inequality and equality constraints
 - Constraints define a domain D
 - Could have no constraint except x in D

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $g_i(x) = 0$, $i = 1, ..., p$

Can you formalize these problems?

Why does this matter?

- Invisible engine powering every ML application
 - What actually gives you your good model
 - Better algorithms are constantly found
 - Significant impact on results
- People like to ignore it
 - But it explains a lot about how networks are trained
 - Some problem can be solved easily

Course organization

- Introduction to optimization
 - A few problems of interest
 - Quick mathematical refresher
- Easy problems
- Duality (for easy problems)
- Descent methods for the general case
- Backpropagation
- Some more properties on stochastic gradient descent

Course organization

- Introduction to optimization
 - A few problems of interest
 - Quick mathematical refresher
- Convex problems (following Boyd and Vandenberghe)
- Duality (for convex problems)
- Solutions for the convex case
- Descent methods in the general case
- Backpropagation
- Some more properties on stochastic gradient descent

Evaluation

- Reports on lab sessions
 - Labs on jupyter notebooks
 - Not every session
 - Explain the code done in the session
 - Summarize what is done in the practical
- Written Exam
 - Theoretical questions
 - We will do exercises in class

0. Some classical optimization

problems

Optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $g_i(x) = 0$, $i = 1, ..., p$

- $\mathbf{r} \in \mathbf{R}^n$ is (vector) variable to be chosen (n scalar variables x_1, \ldots, x_n)
- $ightharpoonup f_0$ is the **objective function**, to be minimized
- $ightharpoonup f_1, \ldots, f_m$ are the inequality constraint functions
- $ightharpoonup g_1, \ldots, g_p$ are the equality constraint functions

variations: maximize objective, multiple objectives, ...

Looking for a problem

- x represents some action, e.g.,
 - trades in a portfolio
 - airplane control surface deflections
 - schedule or assignment
 - resource allocation
- constraints limit actions or impose conditions on outcome
- the smaller the objective $f_0(x)$, the better
 - total cost (or negative profit)
 - deviation from desired or target outcome
 - risk
 - fuel use

Defining a good model

- x represents the parameters in a model
- constraints impose requirements on model parameters (e.g., nonnegativity)
- objective $f_0(x)$ is sum of two terms:
 - a prediction error (or loss) on some observed data
 - a (regularization) term that penalizes model complexity

Examples of possible use cases

- model an entity as taking actions that solve an optimization problem
 - an individual makes choices that maximize expected utility
 - an organism acts to maximize its reproductive success
 - reaction rates in a cell maximize growth
 - currents in a circuit minimize total power
- (except the last) these are very crude models
- and yet, they often work very well

Just tell the computer what you want

- instead of saying how to choose (action, model) x
- you articulate what you want (by stating the problem)
- then let an algorithm decide on (action, model) x

Just tell the computer what you want

- instead of saying how to choose (action, model) x
- you articulate what you want (by stating the problem)
- then let an algorithm decide on (action, model) x

What do we do in Deep Learning?

1. The statistical learning problem: Empirical Risk Minimization

Problem statement: Ideal case

- Find (robot) f that classifies images well
 - Often based on neural networks

$$\forall (x,y) \in \mathcal{D}, f(x) = y$$

More formally

- Definitions
 - X set of inputs
 - Y set of labels
 - \circ $\Omega = X \times Y$
 - \circ $\mathcal D$ Distribution over Ω with probability measure p
- Find function f: X -> Y such that

$$\forall (x,y) \in \mathcal{D}, f(x) = y$$

Assessing f with a criterion

- Finding exact correspondence functions is not always the thing to do
 - No exact matching
 - Other definitions of good solutions
 - Need to use restricted function space
 - Parametric function space

$$\mathcal{F} = \{ f_{\theta} | \theta \in \mathbb{R}^d \}$$

• Introduce an assessment of how "good" f is with a loss I so that we try to have the lowest quantity l(f(x), y)

Minimizing Risk

- Definitions
 - X set of inputs
 - Y set of labels
 - \circ $\Omega = X \times Y$
 - \circ $\mathcal D$ Distribution over Ω with probability measure p
 - loss function assessing fit of f(x) to y
 - \circ Find f in function space $\mathcal{F} = \{f_{\theta} | \theta \in \mathbb{R}^d\}$
- Minimize the <u>Risk</u> over the distribution

$$min_{\theta}\mathbb{E}_{x,y\sim\mathcal{D}}[l(f_{\theta}(x),y)]$$

Minimizing Risk

- ullet Problem: we do not know $\mathcal D$!
 - Solved problem otherwise...
 - Evaluating the risk requires this distribution
- Solution: Use a dataset D of (x,y) sampled from \mathcal{D}
 - Empirical Risk Minimization
 - o If the (x,y) are i.i.d drawn from \mathcal{D} can be expressed as a mean over the dataset

$$min_{\theta}\hat{\mathcal{R}}_{\theta} = \frac{1}{N} \sum_{i=0,\dots,N-1} l(f_{\theta}(x_i), y_i)$$

Takeaway

 Core problem: Find function matching inputs to outputs for any (x,y) of the target distribution

- Optimize over family of parametric functions
 - Assess functions with loss criterion

- Minimize the Risk function
 - Empirical Risk Minimization in practice

2. Example: linear regression

Linear problem

- Linearly correlated data
 - Input x (e.g. Voltage)
 - Output y (e.g. Intensity)
- Simple family of linear functions
 - Find linear coefficient

$$f_{\theta}(x) = \theta x$$

$$f_{\theta}(x) = \theta x$$

Minimize the risk

$$f_{\theta}(x) = \theta x$$

Minimize the risk

$$min_{\theta} \hat{\mathcal{R}}_{\theta} = \frac{1}{N} \sum_{i=0,\dots,N-1} (y_i - \theta x_i)^2$$

$$f_{\theta}(x) = \theta x$$

Minimize the risk

$$min_{\theta}\hat{\mathcal{R}}_{\theta} = \frac{1}{N} \sum_{i=0,\dots,N-1} (y_i - \theta x_i)^2$$

How?

$$f_{\theta}(x) = \theta x$$

Minimize the risk

$$min_{\theta}\hat{\mathcal{R}}_{\theta} = \frac{1}{N} \sum_{i=0,\dots,N-1} (y_i - \theta x_i)^2$$

- How?
 - Convex function!

Minimization

$$f_{\theta}(x) = \theta x$$

Minimize the risk

$$min_{\theta} \hat{\mathcal{R}}_{\theta} = \frac{1}{N} \sum_{i=0,\dots,N-1} (y_i - \theta x_i)^2$$

- How?
 - Convex function!
 - Zero out the gradient!

$$min_{\theta} \mathcal{R}_{\theta} = \frac{1}{N} \sum_{i=0,\dots,N-1} (y_i - \theta x_i)^2$$

Deriving gives condition:

$$min_{\theta} \mathcal{R}_{\theta} = \frac{1}{N} \sum_{i=0,\dots,N-1} (y_i - \theta x_i)^2$$

Deriving gives condition:

$$-\frac{2}{N} \sum_{i=0,...,N-1} (y_i - \theta x_i) x_i = 0$$

$$min_{\theta} \mathcal{R}_{\theta} = \frac{1}{N} \sum_{i=0,\dots,N-1} (y_i - \theta x_i)$$

Deriving gives condition:

$$-\frac{2}{N} \sum_{i=0,...,N-1} (y_i - \theta x_i) x_i = 0$$

• Solve for θ

$$min_{\theta} \mathcal{R}_{\theta} = \frac{1}{N} \sum_{i=0,\dots,N-1} (y_i - \theta x_i)^2$$

Deriving gives condition:

$$-\frac{2}{N} \sum_{i=0,...,N-1} (y_i - \theta x_i) x_i = 0$$

• Solve for θ

$$\theta = \frac{\sum_{i=0,\dots,N-1} y_i x_i}{\sum_{i=0,\dots,N-1} x_i^2}$$

Quickly analyzing the solution

$$f_{\theta}(x) = \theta x$$

$$\theta = \frac{\sum_{i=0,\dots,N-1} y_i x_i}{\sum_{i=0,\dots,N-1} x_i^2}$$

If perfectly linear correlation

$$\theta = a \frac{\sum_{i=0,\dots,N-1} x_i^2}{\sum_{i=0,\dots,N-1} x_i^2} = a$$

Takeaway

- Core problem: Find the right function in a family
 - Boils down to finding the right parameters
 - Depends on the data available

- Minimizing the risk is finding the best fit solution
 - Shown on univariate linear regression
 - Generalizes to multiple dimensions
 - Pointless if the data does not fit!

3. A few classical functions

Linear regression

- Linearly correlated data
 - Input x (e.g. Voltage)
 - Output y (e.g. Intensity)
- Simple family of linear functions
 - Find linear coefficient

$$f_{\theta}(x) = \theta x$$

Separating hyperplane (SVM)

Separating hyperplane (SVM with kernel)

Decision trees

Neural network functions

Neural networks are sequences of simple functions

$$f_{\theta} = h_{\theta}^{0} \circ h_{\theta}^{1} \circ \cdots \circ h_{\theta}^{L-1}$$

Neural network functions

Interlude: Formalization of dense networks 🔅 UNIVERSITÉ

$$d_{\theta}(x) = \sigma(W_{\theta}x^T + b_{\theta})$$

$$\sigma(x) = ReLU(x) = \max(0, x)$$

Interlude: Formalization of dense networks

$$d_{\theta}(x) = \sigma(W_{\theta}x^T + b_{\theta})$$

$$\sigma(x) = ReLU(x) = max(0, x)$$

Piecewise linear!

Individual layers are piecewise linear, composition preserves piecewise linearity

Interlude: Formalization of dense networks 🔅 🗓

- Highly expressive
 - Can fit many types of distributions

Some more properties

- Upper bound on number of linear pieces wrt number of layers and units per layer
 - Exercise: Proof by recurrence
- Similar properties with other deep networks
 - \circ Piecewise polynomial with other σ
 - Similar reasoning on convolutional layers
- Universal approximation theorem [Cybenko '89]
 - Proof by contradiction

Takeaway

- Neural networks composed of simple functions
 - Typical linear layer operations
 - Non-linear activation functions

- High expressive power
 - Universal approximation with enough neurons
 - ReLU Feedforward networks are piecewise linear

Mathematical foundations

Real vector space

- Set of vectors V
 - Preserved by addition and scalar product
 - We work in finite dimensions

- Addition operation between vectors
- Scalar product between real numbers and vectors

1. Inner product, norms and basic topology

Standard inner product

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i,$$

Traditional product between vectors

Elementwise product into sum

Euclidean Norm

$$||x||_2 = (x^T x)^{1/2} = (x_1^2 + \dots + x_n^2)^{1/2}.$$

- Inner product of x with itself
- Classical euclidean norm from traditional geometry

Matrix inner product

$$\langle X, Y \rangle = \mathbf{tr}(X^T Y) = \sum_{i=1}^m \sum_{j=1}^n X_{ij} Y_{ij},$$

Let X and Y be matrices m x n

- Sum of elementwise products
 - Matricial inner product

Frobenius Norm

$$||X||_F = (\mathbf{tr}(X^T X))^{1/2} = \left(\sum_{i=1}^m \sum_{j=1}^n X_{ij}^2\right)^{1/2}.$$

Let X be a matrix m x n

- Product of X to itself again
 - Euclidean norm on matrix space

Definition of a norm

A function $f: \mathbb{R}^n \to \mathbb{R}$ with $\operatorname{dom} f = \mathbb{R}^n$ is called a *norm* if

- f is nonnegative: $f(x) \ge 0$ for all $x \in \mathbf{R}^n$
- f is definite: f(x) = 0 only if x = 0
- f is homogeneous: f(tx) = |t| f(x), for all $x \in \mathbf{R}^n$ and $t \in \mathbf{R}$
- f satisfies the triangle inequality: $f(x+y) \leq f(x) + f(y)$, for all $x, y \in \mathbf{R}^n$

$$\mathbf{dist}(x,y) = \|x - y\|.$$

Norm of the difference vector

 Easily shown to be equivalent to standard distance definition for euclidean norm

$$\mathcal{B} = \{ x \in \mathbf{R}^n \mid ||x|| \le 1 \},$$

All elements with norm less or equal to 1

Often used for a number of things

Immediately defined by simple constraint

Equivalence of norms

Suppose that $\|\cdot\|_a$ and $\|\cdot\|_b$ are norms on \mathbf{R}^n . A basic result of analysis is that there exist positive constants α and β such that, for all $x \in \mathbf{R}^n$,

$$\alpha ||x||_{\mathbf{a}} \le ||x||_{\mathbf{b}} \le \beta ||x||_{\mathbf{a}}.$$

- Norm on real vector space tend to have similar properties (convergence, ...)
 - Given by the inequalities

Interior

An element $x \in C \subseteq \mathbf{R}^n$ is called an *interior* point of C if there exists an $\epsilon > 0$ for which

$$\{y \mid ||y - x||_2 \le \epsilon\} \subseteq C,$$

- Interior are points x such that there is a ball/neighborhood centered on x is entirely in C
 - Not all sets have an non-empy interior!

Open set

Int(C) = C

- All the points of C are in its interior
- You can find a neighborhood of any point x in C that remains in C

$$\operatorname{cl} C = \mathbf{R}^n \setminus \operatorname{int}(\mathbf{R}^n \setminus C),$$

 Closure is the complement of the interior of the complement

 Any sequence of the cl C that converges converges in the closure

Closed set

- Complement is an open set
 - Similar to the closure definition

- C| C = C
 - Same thing as interior and open sets

Boundary

$$\mathbf{bd}\,C=\mathbf{cl}\,C\setminus\mathbf{int}\,C.$$

- Points "on the edge" of the set
 - Outer envelope

A boundary point x (i.e., a point $x \in \mathbf{bd} C$) satisfies the following property: For all $\epsilon > 0$, there exists $y \in C$ and $z \notin C$ with

$$||y - x||_2 \le \epsilon, \qquad ||z - x||_2 \le \epsilon,$$

Compactness

- Closed and bounded set for our purposes
 - Heine Borel

- Every sequence has a convergent subsequence
 - Useful property!

Infimum and supremum

- Supremum
 - Smallest upper bound
- Infimum
 - Largest lower bound

2. Function

Function definition

$$f:A\to B$$

- Function maps set A to set B
 - f is the function
 - A is the input set
 - B is the output set

- Dom f is the set of inputs f is defined over
 - Usually A unless specified otherwise

Continuity

A function $f: \mathbf{R}^n \to \mathbf{R}^m$ is *continuous* at $x \in \operatorname{\mathbf{dom}} f$ if for all $\epsilon > 0$ there exists a δ such that

$$y \in \operatorname{dom} f$$
, $||y - x||_2 \le \delta \implies ||f(y) - f(x)||_2 \le \epsilon$.

Can be described in terms of limits

$$\lim_{i \to \infty} f(x_i) = f(\lim_{i \to \infty} x_i).$$

• F is continuous if it is continuous for every x

Minimizers

$$\min_{x \in \Omega} f(x) \tag{1}$$

We say that $x^* \in \Omega$ is -

a local minimizer of (Opt), if there exists a neighborhood O of x* such that

$$\forall x \in \Omega \cap \mathcal{O}, \quad f(x) \ge f(x^*)$$

· a (global) minimizer if

$$\forall x \in \Omega, \quad f(x) \ge f(x^*)$$

The set of global minimizers of f is denoted $\operatorname{argmin} f$

Minimizers

Unbounded from below $\inf f = -\infty$ $\operatorname{argmin} f = \emptyset$

$$f(x) = 1/x (x > 0)$$

Bounded but not achieved

$$\inf f = 0$$

$$\operatorname{argmin} f = \emptyset$$

Bounded and achieved

$$\inf f = 0$$
 argmin $f = \{0\}$

- 1

Lipschitzness

Definition

 $\phi: \Omega \subseteq E \to F$ is L-Lipschitz continuous if

$$\forall x, y \in \Omega, \quad \|\phi(x) - \phi(y)\|_{E} \le L\|x - y\|_{F}.$$

Derivative

Suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ and $x \in \operatorname{int} \operatorname{dom} f$. The function f is differentiable at x if there exists a matrix $Df(x) \in \mathbf{R}^{m \times n}$ that satisfies

$$\lim_{z \in \text{dom } f, \ z \neq x, \ z \to x} \frac{\|f(z) - f(x) - Df(x)(z - x)\|_2}{\|z - x\|_2} = 0,$$

Df (or Jacobian) is the derivative at x

 f is differentiable if dom f open and f has a derivative at every x

Taylor expansion

- F can be approximated locally
 - Start at value at point
 - Move a little along line given by derivatives

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n f(x)}{dx^n} \bigg|_{x=x_0} (x - x_0)^n$$

$$f(x) = f(x_0) + \frac{df(x)}{dx} \bigg|_{x=x_0} (x - x_0) + \frac{d^2 f(x)}{2! dx^2} \bigg|_{x=x_0} (x - x_0)^2 + \dots$$

Classic univariate derivative examples

y = f(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$
k, any constant	0
x	1
x^2	2x
x^3	$3x^2$
x^n , any constant n	nx^{n-1}
e^x	e^x
e^{kx}	ke^{kx}
$\ln x = \log_{\rm e} x$	$\frac{1}{\pi}$
$\sin x$	$\cos x$
$\sin kx$	$k\cos kx$
$\cos x$	$-\sin x$
$\cos kx$	$-k\sin kx$
$\tan x = \frac{\sin x}{\cos x}$	$\sec^2 x$

$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$
$\cos^{-1} x$	$\frac{\sqrt{1-x^2}}{\sqrt{1-x^2}}$
$\tan^{-1} x$	$\frac{\sqrt{1-x^2}}{1+x^2}$
$\cosh x$	$\sinh x$
$\sinh x$	$\cosh x$
$\tanh x$	$\mathrm{sech}^2 x$
$\operatorname{sech} x$	$-\operatorname{sech} x \tanh x$
$\operatorname{cosech} x$	$-\operatorname{cosech} x \operatorname{coth} x$
$\coth x$	$-\mathrm{cosech}^2 x$
$\cosh^{-1} x$	$\frac{1}{\sqrt{x^2-1}}$
$\sinh^{-1} x$	$\frac{\sqrt{x^2-1}}{\sqrt{x^2+1}}$
$\tanh^{-1} x$	$\frac{1}{1-x^2}$

Composition rules

Rules	Function	Derivative
Multiplication by constant	cf	cf'
Power Rule	x ⁿ	nx ⁿ⁻¹
Sum Rule	f+g	f' + g'
Difference Rule	f-g	f' - g'
Product Rule	fg	fg' + f'g
Quotient Rule	f/g	f'g - g'f g'
Reciprocal Rule	1/f	-f'/f ²

Gradients

When f is real-valued (i.e., $f : \mathbf{R}^n \to \mathbf{R}$) the derivative Df(x) is a $1 \times n$ matrix, i.e., it is a row vector. Its transpose is called the gradient of the function:

$$\nabla f(x) = Df(x)^T,$$

which is a (column) vector, *i.e.*, in \mathbb{R}^n . Its components are the partial derivatives of f:

$$\nabla f(x)_i = \frac{\partial f(x)}{\partial x_i}, \quad i = 1, \dots, n.$$

The first-order approximation of f at a point $x \in \operatorname{int} \operatorname{dom} f$ can be expressed as (the affine function of z)

$$f(x) + \nabla f(x)^T (z - x).$$

Chain rule

Suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ is differentiable at $x \in \operatorname{int dom} f$ and $g: \mathbf{R}^m \to \mathbf{R}^p$ is differentiable at $f(x) \in \operatorname{int dom} g$. Define the composition $h: \mathbf{R}^n \to \mathbf{R}^p$ by h(z) = g(f(z)). Then h is differentiable at x, with derivative

$$Dh(x) = Dg(f(x))Df(x).$$

$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx},$$

Second derivative (Hessian)

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \qquad i = 1, \dots, n, \quad j = 1, \dots, n,$$

- Differentiate twice
 - Differentiate the derivate
 - If possible

3. Linear algebra

Range

$$\mathcal{R}(A) = \{ Ax \mid x \in \mathbf{R}^n \}.$$

- Space induced by transforming the input space by the linear function A
 - Subspace
 - Dimension is the rank of A

Nullspace

$$\mathcal{N}(A) = \{x \mid Ax = 0\}.$$

- Space of elements x such that Ax is null
 - Also a subspace

Orthogonal decomposition induced

If \mathcal{V} is a subspace of \mathbf{R}^n , its orthogonal complement, denoted \mathcal{V}^{\perp} , is defined as

$$\mathcal{V}^{\perp} = \{ x \mid z^T x = 0 \text{ for all } z \in \mathcal{V} \}.$$

(As one would expect of a complement, we have $\mathcal{V}^{\perp\perp} = \mathcal{V}$.) A basic result of linear algebra is that, for any $A \in \mathbf{R}^{m \times n}$, we have

$$\mathcal{N}(A) = \mathcal{R}(A^T)^{\perp}.$$

Eigenvalues

$$Ax = \lambda x$$

- \(\lambda\) Is an eigenvalue of the matrix/function A
 - X is an associated eigenvector
 - Multiple eigenvalues that can be ranked

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$$

Eigenvalue decomposition

