Amyotrophic Lateral Sclerosis (ALS)

Nathaniel Yomogida, SPT Chloë Kerstein, SPT

Table of contents

1	How to study ALS	1
2	introduction	2
3	1 03	2
	3.1 Age	
	3.2 Gender	2
	3.3 Family History	3
	3.3.1 FALS Categorization	
	3.4 Onset	
4	Etiology	4
	4.1 Disease-Causing mutations	4
	4.1.1 SOD1 Mutation	
	4.2 Glutamate	
	4.3 Neurofilament clumping	
	4.4 Autoimmune reaction	
R	eferences	5

1 How to study ALS

To study ALS, I would begin with a 5 minute video to get a quick overview and lay the mental foundation for the future topics such as: Khan academy ALS video.

The textbooks I recommend for further research or reference is:

- (PT Specific) Physical rehabilitation O'Sullivan¹
- Neuromuscular disorders by Amato²

- Umphred's neurological rehabilitation³
- Continuum by AAN⁴

Lastly, I would then recommend going into true evidence based practice by using scientific articles to find up to date information on the topic.

2 introduction

What does "Amyotrophic Lateral Sclerosis" even mean?

- a -> no
- myo -> muscle
- Trophic -> Nourishment Thus Amyotrophic means "no muscle nourishment"

Amyotrophic lateral sclerosis (ALS), AKA Lou Gehrig's disease, is the most common and devastatingly fatal motor neuron disease (MND) among adults¹. ALS is characterized by the degeneration and loss of motor neurons in the spinal cord, brainstem, and brain, resulting in UMN and LMN clinical signs and symptoms¹. Recently, ALS is being recategorized as a multisystem disorder/syndrome with variable pathological involvement of extra-motor networks and connections, in addition to the LMNs and UMNs¹

3 Epidemiology

i Note

see Wolfson et al. $(2023)^5$ for updated 2023 global metrics

3.1 Age

ALS can occur at any age but onset generally occurs in the mid-to-late 50s¹.

3.2 Gender

Most studies have found that the disease affects men slightly more than women, with an approximate ratio of 1.7:1. After age 65, the gender difference decreases¹.

3.3 Family History

About 5% to 10% of individuals have a family history of ALS (familial ALS, [FALS])¹. Familial ALS is phenotypically and genetically heterogeneous¹.

Most cases of FALS are autosomal dominant¹. Regardless, recessive and X-linked forms have been described¹. For example, the rare juvenileonset ALS is reported to be inherited in an autosomal recessive pattern¹.

3.3.1 FALS Categorization

FALS is categorized by mode of inheritance and further subcategorized by specific gene or chromosomal locus@osullivanPhysicalRehabilitation2019.

The very large majority of adult individuals with ALS have no family history of the disease (sporadic ALS)¹.

Note

A very small percentage of individuals with sporadic ALS do have a mutation in SOD1

Over 20 chromosomal regions and a number of identified genes have been linked to ALS. 20% of hereditary ALS cases are attributed to one of 100+ mutations in superoxide dismutase 1 (SOD1)¹. ~50% of individuals with an SOD1 ALS variant are symptomatic by 46yrs, and 90% are symptomatic by 70 years of age¹.

3.4 Onset

- ~70% to 80% of individuals develop limb-onset ALS, with initial involvement in the extremities¹.
- 20% to 30% develop bulbar-onset ALS, with initial involvement in the bulbar muscles¹.
- Bulbar-onset ALS is more common in middle-aged women, and initial symptoms may include difficulty speaking, chewing, or swallowing¹

Table 1: Motor Neuron Diseases (MNDs)¹

Subtype	Nervous system pathology
ALS	Degeneration of the corticospinal tracts,
	neurons in the motor cortex and brainstem,
	and anterior horn cells in the spinal cord
Primary lateral sclerosis	Degeneration of upper motor neurons

Subtype	Nervous system pathology
Progressive bulbar palsy	Degeneration of motor neurons of cranial nerves IX to XII
Progressive muscular atrophy	Loss or chromatolysis of motor neurons of the spinal cord and brainstem

4 Etiology

Etiology for ALS is unknown, apart from the few hereditary cases¹. Current theories attribute ALS to be the summation of multiple mechanisms including: oxidative stress, aberrant RNA processing, exogenous neurotoxicity, excitotoxicity, impaired axonal transportation, axonal dysfunction, mitochondrial disruption, protein misfolding, protein aggregation, apoptosis, and lifestyle factors that contribute to neuronal degeneration¹.

4.1 Disease-Causing mutations

4.1.1 SOD1 Mutation

Mutations in SOD1 gene impact Superoxide dismutases (SOD) function, resulting in a *hypothesized* accumulation of free radicals that can lead to neurodegeneration¹.

Most mutations in FALS have shown only modest reductions in enzyme activity¹. Leading researchers to believe that a mutant SOD1 protein may have actively toxic properties¹.

4.2 Glutamate

A deficiency in EAAT2 results in excess glutamate in the motor cortex and spinal cord¹. Excess glutamate has been theorized to result in neurodegeneration via excitotoxicity¹

4.3 Neurofilament clumping

A histopathologic characteristic of ALS is neurofilament proteins clumping into spheroids¹.

4.4 Autoimmune reaction

Several studies have demonstrated an autoimmune reaction contributing to the etiology of ALS^1 . - Wolfgang et al., (1973) found serum factors that were toxic to anterior horn motor neurons in patients with ALS^1 - Smith et al., (1992) identified antibodies to calcium channels in ALS patients¹

References

- 1. O'Sullivan SB, Schmitz TJ, Fulk GD, eds. *Physical Rehabilitation*. 7th ed. F.A. Davis Company; 2019.
- 2. Amato AA, Russell JA. Neuromuscular Disorders. 2nd ed. McGraw-Hill Education; 2016.
- 3. Lazaro RT. Umphred's Neurological Rehabilitation. 7th ed. Elsevier, Inc; 2019.
- 4. Goutman SA. Diagnosis and Clinical Management of Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders. *CONTINUUM: Lifelong Learning in Neurology*. 2017;23(5):1332-1359. doi:10.1212/CON.0000000000000535
- 5. Wolfson C, Gauvin DE, Ishola F, Oskoui M. Global Prevalence and Incidence of Amyotrophic Lateral Sclerosis: A Systematic Review. *Neurology*. 2023;101(6):e613-e623. doi:10.1212/WNL.0000000000207474