Remark. A scheme will be a "space modelled on M with an open cover by affine schemes". This section defines the notion of "open subfunctors" of a Z-functor and an "open cover". Since Z-functors are meant to be modelled on M, we first define everything for affine schemes.

Somehow, no one could eradicate the special role of fields as "points".

Definition – Points and Covers

^a Define the *category of test points*, Pts, to be the full subcategory of $\mathbb M$ consisting of K^{op} where Kis a field. For $X \in MSet$, a point of X is defined to be a morphism $x \in MSet(Sp K, X)$ where $K^{op} \in \text{Pts. For } \varphi \in \mathbb{M}\mathbf{Set}(X,Y)$, we will use $\varphi(x)$ to denote $\varphi \circ x$. For $f \in \mathcal{O}(X)$, we will use ev_x to denote the pullback $x^{\flat}: \mathcal{O}(X) \to \mathcal{O}(K)$.

For $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$, we will use $Y^{\mathrm{Pts}}, X^{\mathrm{Pts}}$ to denote the restriction of Y, X to Pts^{op} and φ^{Pts} : $Y^{\mathrm{Pts}} \to X^{\mathrm{Pts}}$ the restricted morphism. Then we say φ is surjective on points when φ^{Pts} is an epimorphism (equivalently, component-wise surjective).

For a subset $\mathcal{U} \subseteq \mathbb{M}\mathbf{Set} \downarrow X$ for any $X \in \mathbb{M}\mathbf{Set}$, we say \mathcal{U} covers X when $\bigcup \mathcal{U} \to X$ is surjective on points. Equivalently, for all points $x:\operatorname{Sp} K\to X$ of X, there exists $U\in\mathcal{U}$ with a factoring

^aPts and "surjective on points" is non-standard definition.

Counter Example (Surjective on Points implies Surjective). Consider $\operatorname{Sp}\mathbb{F}_2 \to \operatorname{Sp}\mathbb{F}_2[dT]$ where $dT^2 := 0$. $(\operatorname{Sp}\mathbb{F}_2)^{\operatorname{Pts}} \cong (\operatorname{Sp}\mathbb{F}_2[dT])^{\operatorname{Pts}}$ but $(\operatorname{Sp}\mathbb{F}_2[dT])(\mathbb{F}_2[dT])$ *bijects with* \mathbb{F}_2 *whilst* $(\operatorname{Sp} \mathbb{F}_2)(\mathbb{F}_2[dT])$ *is singleton.*

Proposition - Base Change of Cover

Let \mathcal{U} be a cover of $X \in \mathbb{M}\mathbf{Set}$. Then for all $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$, the set $\varphi^{-1}\mathcal{U}$ of pullbacks of morphisms in \mathcal{U} forms a cover of Y.

Proof. Follows from fiber product in MSet being computed component-wise.

Proposition – Multiplicative Group Scheme

- Consider the functor $\mathbb{G}^{\times} \in \mathbb{M}$ Set defined by $A \in \mathbb{M}^{op} \mapsto A^{\times}$. Then $\mathbb{G}^{\times} \text{ is representable by the ring } \mathbb{Z}[T, T^{-1}] \text{ and hence affine.}$ $\mathbb{G}^{\times} \text{ is a group object in } \mathbb{M}$ Set. In fact, for any $X \in \mathbb{M}$ Set, \mathbb{M} Set $(X, \mathbb{G}^{\times}) = \mathcal{O}(X)^{\times}$.

Proof. UP of $\mathbb{Z}[T,T^{-1}]$ implies it represents \mathbb{G}^{\times} . The second property can be straightforwardly deduced either from the Spec-global functions adjunction or elementarily.

Proposition – Basic Opens of a ℤ-Functor

Let $X \in \mathbb{M}$ Set and $f \in \mathcal{O}(X)$. The *support of* f, X_f , is defined as the subfunctor of X sending $A \in \mathbb{M}^{op}$ to the set of $\alpha \in \mathbb{M}$ Set $(\operatorname{Sp} A, X)$ such that $\varphi^{\flat}(f) \in A^{\times}$.

Then X_f is the pullback of \mathbb{G}^{\times} along $f: X \to \mathbb{A}^1$.

$$\begin{array}{ccc} X_f & \longrightarrow & X \\ \downarrow & & \downarrow \\ \mathbb{G}^{\times} & \longrightarrow & \mathbb{A}^1 \end{array}$$

Subfunctors of X of the form X_f are called *basic opens*.

Proof. Easy.

Remark – Intuition of Multiplicative Group Scheme and Basic Opens. For a smooth manifold X,

$$C^{\infty}\mathbf{Mfd}(X,\mathbb{R}^{\times}) \cong C^{\infty}(X)^{\times}$$

" \mathbb{R}^{\times} is classifying space for invertible global functions on X." One can thus think of \mathbb{G}^{\times} as " $\mathbb{A}^1 \setminus \{0\}$ ". A basic open X_f is then just the preimage of " $\mathbb{A}^1 \setminus \{0\}$ " under $f: X \to \mathbb{A}^1$.

Proposition – Opens of Affine Schemes

Let $X \in \mathbf{Aff}$. For $I \in \mathrm{Ideal}\,\mathcal{O}(X)$, define $D(I) \in \mathbf{SubMSet}(X)$ by

$$A\in\mathbb{M}^{op}\mapsto \left\{\varphi\in\mathbf{Aff}(\operatorname{Sp} A,X)\,|\,A\varphi^{\flat}I=A\right\}$$

In particular, for I = (f), we have $D(I) = X_f$. Sometimes, we use D(f) to denote X_f .

Then

- (Basic Opens are Affine) for $f \in \mathcal{O}(X)$, D(f) is representable by $\mathcal{O}(X)[f^{-1}]$.
- (Ideals to Opens) For $I,J\in\operatorname{Ideal}\mathcal{O}(X)$, $I\subseteq J$ implies $D(I)\subseteq D(J)$.

This defines $D : \operatorname{Ideal} \mathcal{O}(X) \to \mathbf{SubMSet}(X)$. The category $\operatorname{Open} X$ of *opens of* X is defined as the essential image of D. We call $U \in \operatorname{Open} X$ an *open of* X.

- (Intuitive Definition of Opens) for I ∈ Ideal $\mathcal{O}(X)$, {D(f)} $_{f \in I}$ covers D(I).
- (Partition of Unity) For $I \in \text{Ideal } \mathcal{O}(X)$, D(I) covers X if and only if there exists finite $I_0 \subseteq I$ such that $AI_0 = A$. Such $I_0 \subseteq A$ are called *partitions of unity*.
- (Base Change / "Preimage of Opens are Open") Let φ ∈ **Aff**(Y, X), I ∈ Ideal $\mathcal{O}(X)$. Let the following be a pullback diagram :

$$Y \xrightarrow{\varphi} X$$

$$\uparrow \qquad \uparrow$$

$$\varphi^{-1}D(I) \longrightarrow D(I)$$

Then $\varphi^{-1}D(I) = D(\varphi^{\flat}I)$.

– (Fiber Product) Let $X, X_1 \in \mathbf{Aff}/Y$ where $Y \in \mathbf{Aff}$. Let I, I_1 be ideals of $\mathcal{O}(X)$, $\mathcal{O}(X_1)$ respectively. Then we have the pullback diagram :

$$D(I) \xrightarrow{\qquad \qquad Y}$$

$$\uparrow \qquad \qquad \uparrow$$

$$D(I \otimes_{\mathcal{O}(Y)} I_1) \longrightarrow D(I_1)$$

In particular, $X = X_1 = Y$ implies the intersection of two opens of X is an open of X. The special case of D(I) = D(f) and $D(I_1) = D(f_1)$ yields $D(f) \cap D(f_1) = D(ff_1)$.

Proof.

(Basic Opens are Affine) UP of $\mathcal{O}(X)[f^{-1}]$ as an $\mathcal{O}(X)$ algebra.

(Intuitive Def of Opens) Let $x: \operatorname{Sp} K \to X$ be a point of X. Then $Kx^{\flat}I = K$ if and only if there exists $f \in I$ with $f(x) \in K^{\times}$.

(Partition of Unity) Having finite $I_0 \subseteq I$ with $AI_0 = A$ is equivalent to AI = A. Clearly, AI = A implies D(I) covers $\operatorname{Sp} A$. Conversely, suppose $AI \subsetneq A$. D(I) not covering $\operatorname{Sp} A$ is the same as it "missing a point of $\operatorname{Sp} A$ ", that is to say we are looking for a point $x : \operatorname{Sp} K \to \operatorname{Sp} A$ of $\operatorname{Sp} A$ that doesn't admit a lift across $D(I) \to \operatorname{Sp} A$. This is the same as $I \subseteq \ker \operatorname{ev}_x$. Well, $AI \subsetneq A$ implies by Zorn's lemma the existence of a map $\operatorname{ev}_x : A \to K$ where K is a field with the desired property.

Counter Example $(\bigcup_{f \in I} D(f) = D(I))$.

Consider the ring $\mathbb{F}_2 \times \mathbb{F}_2$ and elements (1,0),(0,1). The ideal I generated by these is the whole ring. But $D((1,0))(\mathbb{F}_2 \times \mathbb{F}_2) \cup D((0,1))(\mathbb{F}_2 \times \mathbb{F}_2) \subsetneq D(I)(\mathbb{F}_2 \times \mathbb{F}_2)$ since the ring endomorphism $(a,b) \mapsto (b,a)$ doesn't map any of (1,0),(0,1) to units. Thus $D((1,0)) \cup D((0,1)) \subsetneq D(I)$.

Definition – Open Subfunctor

Let $X \in \mathbb{M}\mathbf{Set}$. For $U \in \mathbf{SubMSet}(X)$, U is called *open* when for all $\varphi : \operatorname{Sp} A \to X$, the pullback $\varphi^{-1}U$ of U along φ is an open of $\operatorname{Sp} A$.

$$\begin{array}{ccc}
\operatorname{Sp} A & \stackrel{\varphi}{\longrightarrow} X \\
\uparrow & & \uparrow \\
\varphi^{-1} U & \longrightarrow U
\end{array}$$

We will use $\operatorname{Open} X$ to denote the full subcategory of opens of X in $\operatorname{\mathbf{SubMSet}}(X)$. When X is affine, this agrees with our specialized notion for affine schemes.

Proposition - Basic Facts about Open Subfunctors

The following are true:

- ("Extensionality") Let $U, V \in \text{Open } X$. Then U = V if and only if $U^{\text{Pts}} = V^{\text{Pts}}$.
- (Composition) Let $V \in \operatorname{Open} U$, $U \in \operatorname{Open} X$, $X \in \mathbb{M}$ Set. Then $V \in \operatorname{Open} X$.
- (Base Change/"Preimage of Opens are Opens") Let $X \in \mathbb{M}\mathbf{Set}$, $U \in \mathrm{Open}\,X$ and $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$. Then the pullback $\varphi^{-1}U$ of U along φ is an open of Y.

$$\begin{array}{ccc} Y & \stackrel{\varphi}{\longrightarrow} & X \\ \uparrow & & \uparrow \\ \varphi^{-1}U & \longrightarrow & U \end{array}$$

- (Fiber Product) Let U, U_1 be opens of $X, X_1 \in \mathbb{M}$ Set respectively. Then for any $X \to S, X_1 \to S$, the fiber product $U \times_S U_1$ is an open of $X \times_S X_1$. In particular, for $X = X_1 = S$, this proves the intersection of two opens of X is again an open of X.

Proof. (Extensionality) Reduce to affine global case and use partition of unity.