(3)

Max - Weight (T):

if n=1:

teturn w

else:

sub = Ln/21

w, = Max-Weight (T[1....sub])

wz = Max_Weight (T [sub... n])

return max (w, w+w, w+w2)

procedure Max-weight runs in time $(\mathfrak{g}(n))$ -because uorse case run time satisfy $T(n) = 2T(n/2) + (\mathfrak{g}(1))$ so. algorithm runs in $(\mathfrak{g}(n))$ time.

et $G = (i_1, i_2, i_3, i_n)$ G* = (i,*, i,*, i,*, i,*, 2n*) where we assume G* is the optimum solution. since G* is optimal, it must contain at least many guards as G. Lets assume the first j-1 elements are the same. which means, i,=i,*, i2=i2*... ij=ij*. but ij + ij*, ij+1 + ij+1* (g (... - ij, ij+1 ... in) G* (--- ij*, ij+1-..in+) since at moment of ij-1, t=fij-1, so according to algorithm, is the guard with the greatest ending point so we can replace. ij * with ij without messing around Gi*. since ij+1 - ij > ij+i* - ij Gi (.... ij , zi+i* ... in+) Inductive Step: Let mEIN and assume. P(m) holds. P(m): we can replace in leftmost guardians in G and get G' and G' is still the optimal solution. WTP: P(mt1) holds-By. IH. we suppose. @ G' replaced in guardians. thus there's no solution to find less replaced gardian less than mit. Hence mtl guardians has been matched. P(m) => P(m+1). Therefore. We will eventually convert G into G* without increasing humber of quardians.

b). Sort the guards in ascending order of fi. and then Loop through each graguardian to find which one Should be added into G. The sorting algorithm take anlogn.	
Q.3:	
(a). Let array A^{2} be an array such that $x \in A$ where $B[i] = [AGI]$, $A[i+1]$ Let array A be an array such that $a \in A$ where $A[i] = A[i] = A[i]$. [A[i+1] - A[i]] $\leq A[i]$, [A[i-1] - A[i] $\leq A[i]$.	J. Ali-J