GPA325-A08-Devoir 1

Exercice #1 (7 points)

Les diodes du redresseur en pont monophasé (voir ci-dessous) sont au silicium (V_{seuil} = 0,7 V). La source v_1 est sinusoïdale, de fréquence 60 Hz et avec une valeur efficace égale à 120 V. Le transformateur a un rapport de transformation α = 5. La charge R_L = 2 k Ω . L'ondulation de la tension aux bornes de la charge est de 1 V.

- a) Calculer la valeur moyenne de la tension de la charge et celle du courant qui la traverse.
- b) Trouver la capacité du filtre.
- c) Déterminer la valeur minimale de la tension redressée.
- d) Trouver la tension inverse maximale appliquée à chaque diode.

Exercice #2 (5 points)

Quelle est la valeur de la résistance R_i à installer pour maintenir la tension aux bornes de la charge à 6 V quand la résistance de la charge varie de 12 à 60 Ω et quand la tension à l'entrée varie de 10 à 15 V? Déterminer les puissances de la résistance R_i et de la diode zener.

Exercice #3 (4 points)

Trouver les valeurs de V et de I dans le circuit suivant. Utiliser la méthode hypothèse-vérification et supposer que les diodes sont idéales.

Données:

 R_1 = 1 k Ω , R_2 = 2,5 k Ω et R_3 = 2 k Ω .

Exercice #4 (4 points)

Soit le circuit suivant dans lequel les diodes sont idéales, V_{in} = 10sin ω t, quelle la forme d'onde de v_o ?

