LINEAR INDEPENDENCE

Note Title 6/3

 $V_1, ..., V_k$ n-vectors. A linear combination is a vector $V = q_1 V_1 + q_2 V_2 + ... + q_k V_k, \quad \text{where } \quad c_1 \text{ are scalars.}$ $Example: (a) \quad v = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \text{a linear combination in } \quad V_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{and } \quad v_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \stackrel{?}{?}$ $(b) \quad \text{what about } \quad u = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \stackrel{?}{?}$ $Sol^{\infty}(a)? \quad Find \quad c_1, c_2 \quad \text{st.} \quad v = q_1 V_1 + q_2 V_2 \implies \begin{bmatrix} 1 \\ 2 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} c_1 \\ 2 \end{bmatrix} \stackrel{?}{?}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} c_1 \\ 1 \end{bmatrix} \stackrel{?}{?} \begin{bmatrix} c_1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} c_1 \\ 1 \end{bmatrix} \stackrel{?}{?} \begin{bmatrix} c$

(b) Answer is no.

Practice Problem: 15 $\begin{bmatrix} 0 \\ -16 \end{bmatrix}$ a Lin. com. in $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 4 \\ -5 \end{bmatrix}$?
(Ans. Yes. In this case q=-1, c2=2, c3=3)
The Span
The Span {v,,, v_k} is the set of all linear combinations in v,, v_k.
- Spansy = {cv, cany} Geometrically.
- Span [v, vz] plane span [v] is the line
(0,1) V1+V2
- Spansvi is the line (0,1) (0,1) entire plane P
V ₁ (1,0)

Linear Dependence / Independence VI,..., Vx n-vectors is linearly dependent (L.D.) if there are scalars Ci, ..., Ck not all zero s.t. GV, + CzVz +...+CkVk = 0 (= Linear dependence relation) Special cases 1. {v} is L.D. > v=0 (cv=0 = v=0) 2. {v,, vz} is L.D. as one vector is a scalar multiple of $\begin{pmatrix} c_1 V_1 + c_2 V_2 = 0 \Rightarrow V_1 = \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} V_2 \end{pmatrix}$ 3. {v, , ... ve} is L.D. (at least one is a lin. comb. in the others.

Example: Is $S = \left\{ \begin{bmatrix} -2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 14 \end{bmatrix} \right\}$ L.D.?

Sol ? Find $C_1, C_{21}C_{3}$ S.t. $C_1 \begin{bmatrix} -2 \\ 3 \end{bmatrix} + C_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + C_3 \begin{bmatrix} 3 \\ 14 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 3 \\ -2 & 2 & 14 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ (hom. (in. sys.)}$ Solve it to get C_{22-31} range $C_{3} = C_{3}$ If $C_{3} = C_{3}$ its L.D.

If $C_{4} = C_{4}$, $C_{4} = C_{4}$, $C_{4} = C_{4}$, $C_{4} = C_{4}$ its its L.D. $V_{11} = V_{12}, V_{13} = V_{14}$ Under the pendent is it not L.D. (L.I.)

1, e. if c, v, + ... + c, v, = 0 -> G=C2=...= Ck=0

Special Cases 1. {v} L.I. > v +0 2. {v, v2} L.I. = if none is a multiple of the other. Example: 1s $S = \left\{ \begin{bmatrix} -1 \\ -2 \end{bmatrix}, \begin{bmatrix} 5 \\ 3 \end{bmatrix} \right\}$ L. I. in \mathbb{R}^2 ?

Solf $C_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 \begin{bmatrix} 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \lim_{n \to \infty} \sup_{n \to \infty} \left[\frac{1}{2} \frac{5}{3} \frac{1}{9} \frac{1}{9} \right] \sim \left[\frac{1}{9} \frac{1}{9$

Geometry of L.D. / L.I.

L.I.

1^{V1},

not coplanar

LD.

W₁ V₂

Coplanar