DM 1: Correction

Exercice 1

1. Posons A = $\begin{pmatrix} 3 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$. Pour tout entier naturel n, on a alors:

$$AX_n = \begin{pmatrix} 3a_n + b_n \\ 3b_n + c_n \\ 3c_n \end{pmatrix} = X_{n+1}.$$

Pour tout entier naturel n, soit \mathcal{P}_n la proposition « $X_n = A^n X_0$ ». Montrons par récurrence que : $\forall n \in \mathbb{N}$, \mathcal{P}_n est vraie.

• **Initialisation** : $A^0X_0 = X_0$ donc \mathcal{P}_0 est vraie.

• **Hérédité** : supposons \mathscr{P}_n vraie pour un certain rang $n \in \mathbb{N}$ et montrons que \mathscr{P}_{n+1} est vraie. Par hypothèse de récurrence, on sait que :

$$X_n = A^n X_0$$
.

Donc, d'après ce qui précède on a :

$$X_{n+1} = AX_n = AA^nX_0 = A^{n+1}X_0$$

Ainsi \mathcal{P}_{n+1} est vraie.

• Conclusion : d'après le principe de récurrence on a montré :

$$\forall n \in \mathbb{N}, \quad X_n = A^n X_0.$$

2. Un calcul montre que:

$$N^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{et} \quad N^3 = 0_{\mathcal{M}_3(\mathbb{R})}.$$

Par suite, pour tout $p \ge 3$ on a:

$$N^p = N^3 N^{p-3} = 0_{\mathcal{M}_3(\mathbb{R})} N^{p-3} = 0_{\mathcal{M}_3(\mathbb{R})}.$$

3. Pour tout entier naturel n, soit \mathcal{P}_n la proposition « $A^n = 3^n I_3 + 3^{n-1} n N + 3^{n-2} \frac{n(n-1)}{2} N^2$ ». Montrons par récurrence que : $\forall n \in \mathbb{N}, \mathcal{P}_n$ est vraie.

• **Initialisation** : $A^0 = I_3$ donc \mathcal{P}_0 est vraie.

• **Hérédité** : supposons \mathcal{P}_n vraie pour un certain rang $n \in \mathbb{N}$ et montrons que \mathcal{P}_{n+1} est vraie. Par hypothèse de récurrence, on sait que :

$$A^{n} = 3^{n}I_{3} + 3^{n-1}nN + 3^{n-2}\frac{n(n-1)}{2}N^{2}.$$

Donc on a:

$$\begin{split} \mathbf{A}^{n+1} &= \mathbf{A}\mathbf{A}^n = \mathbf{A}(3^n\mathbf{I}_3 + 3^{n-1}n\mathbf{N} + 3^{n-2}\frac{n(n-1)}{2}\mathbf{N}^2) \\ &= 3^n\mathbf{A} + 3^{n-1}n\mathbf{A}\mathbf{N} + 3^{n-2}\frac{n(n-1)}{2}\mathbf{A}\mathbf{N}^2. \end{split}$$

Or, $A = 3I_3 + N$ et $N^3 = 0_{\mathcal{M}_3(\mathbb{R})}$ donc :

$$\begin{split} \mathbf{A}^{n+1} &= 3^n \mathbf{A} + 3^{n-1} n \mathbf{A} \mathbf{N} + 3^{n-2} \frac{n(n-1)}{2} \mathbf{A} \mathbf{N}^2 \\ &= 3^n (3\mathbf{I}_3 + \mathbf{N}) + 3^{n-1} n (3\mathbf{I}_3 + \mathbf{N}) \mathbf{N} + 3^{n-2} \frac{n(n-1)}{2} (3\mathbf{I}_3 + \mathbf{N}) \mathbf{N}^2 \\ &= 3^{n+1} \mathbf{I}_3 + 3^n \mathbf{N} + 3^n n \mathbf{N} + 3^{n-1} n \mathbf{N}^2 + 3^{n-1} \frac{n(n-1)}{2} \mathbf{N}^2 + 3^{n-2} \frac{n(n-1)}{2} \mathbf{N}^3 \\ &= 3^{n+1} \mathbf{I}_3 + 3^n (n+1) \mathbf{N} + 3^{n-1} \frac{n(n+1)}{2} \mathbf{N}^2. \end{split}$$

Ainsi \mathcal{P}_{n+1} est vraie.

• Conclusion : d'après le principe de récurrence on a montré :

$$\forall n \in \mathbb{N}, \quad A^n = 3^n I_3 + 3^{n-1} n N + 3^{n-2} \frac{n(n-1)}{2} N^2...$$

4. D'après les questions précédentes, pour tout entier naturel n, on a :

$$\begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} = \mathbf{A}^n \mathbf{X}_0 = \begin{pmatrix} 3^n & 3^{n-1}n & 3^{n-2}\frac{n(n-1)}{2} \\ 0 & 3^n & 3^{n-1}n \\ 0 & 0 & 3^n \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix} = \begin{pmatrix} 3^n + 2n3^{n-1} + 7\frac{n(n-1)}{2}3^{n-2} \\ 2 \times 3^n + 7n3^{n-1} \\ 7 \times 3^n \end{pmatrix}.$$

1

Exercice 2

1. La variable Z_1 est égale au nombre de numéros distincts obtenus en un tirage. Ainsi Z_1 suit la loi certaine égale à 1. En particulier Z_1 possède une espérance et $E(Z_1) = 1$.

La variable Z₂ est égale au nombre de numéros distincts obtenus en deux tirages, donc

$$Z_2(\Omega) = \{1, 2\}.$$

L'événement [$Z_2 = 1$] est réalisé si et seulement si on tire deux fois de suite la même boule, d'où :

$$[\mathbf{Z}_2 = 1] = \bigcup_{i=1}^n \mathbf{U}_i^1 \cap \mathbf{U}_i^2$$

où U_i^j est l'événement « obtenir la boule i au j-ième tirage ».

Comme les événements $(U_i^1 \cap U_i^2)_{1 \le i \le n}$ sont disjoints et que les tirages sont indépendants, on obtient :

$$P(Z_2 = 1) = P\left(\bigcup_{i=1}^n U_i^1 \cap U_i^2\right) = \sum_{i=1}^n P\left(U_i^1 \cap U_i^2\right) = \sum_{i=1}^n P\left(U_i^1\right) P\left(U_i^2\right) = \sum_{i=1}^n \frac{1}{n} \times \frac{1}{n} = \frac{1}{n}.$$

On en déduit

$$P(Z_2 = 2) = 1 - P(Z_2 = 1) = 1 - \frac{1}{n}$$
.

Enfin, Z_2 étant à support fini, elle possède une espérance et :

$$E(Z_2) = 1 \times P(Z_2 = 1) + 2 \times P(Z_2 = 2) = 2 - \frac{1}{n}.$$

- 2. Soit $k \ge 1$.
 - (a) La variable Z_k est égale au nombre de numéros distincts obtenus en k tirages, donc l'événement $[Z_k = 1]$ est réalisé si et seulement si on tire k fois de suite la même boule, d'où :

$$[\mathbf{Z}_k = 1] = \bigcup_{i=1}^n \mathbf{U}_i^1 \cap \cdots \cap \mathbf{U}_i^k$$

où U_i^j est l'événement « obtenir la boule i au j-ième tirage ».

Comme les événements $(\mathbf{U}_i^1 \cap \cdots \cap \mathbf{U}_i^k)_{1 \leq i \leq n}$ sont disjoints et que les tirages sont indépendants, on obtient :

$$P(Z_k = 1) = P\left(\bigcup_{i=1}^n U_i^1 \cap \dots \cap U_i^k\right) = \sum_{i=1}^n P\left(U_i^1 \cap \dots \cap U_i^k\right) = \sum_{i=1}^n P\left(U_i^1\right) \times \dots \times P\left(U_i^k\right) = \sum_{i=1}^n \frac{1}{n^k} = \frac{1}{n^{k-1}}.$$

Comme l'urne ne contient que n boules, si k > n alors $P(Z_k = k) = 0$.

Si $k \le n$, l'événement $[Z_k = k]$ est réalisé si et seulement si on tire k boules différentes : cela fait n possibilités pour la première boule, n-1 possibilités pour la deuxième . . . D'où

$$P(Z_k = k) = \frac{n-1}{n} \times \dots \times \frac{n-k+1}{n} = \frac{n!}{n^{k-1}(n-k)!} \quad \text{si } k \le n.$$

(b) Soit $\ell \in [1, n]$. Comme $Z_k(\Omega) \subset [1, n]$, la famille $([Z_k = i])_{1 \le i \le n}$ forme un système complet d'évènements. D'après la formule des probabilités totales, on a donc :

$$P(Z_{k+1} = \ell) = \sum_{i=1}^{n} P(Z_k = i) P_{[Z_k = i]}(Z_{k+1} = \ell).$$

Or, pour tout $i \in [1, n]$, si $i \notin \{\ell, \ell - 1\}$ alors $P_{[Z_k = i]}(Z_{k+1} = \ell) = 0$ donc

$$\mathrm{P}(\mathrm{Z}_{k+1} = \ell) = \mathrm{P}(\mathrm{Z}_k = \ell - 1) \mathrm{P}_{[\mathrm{Z}_k = \ell - 1]}(\mathrm{Z}_{k+1} = \ell) + \mathrm{P}(\mathrm{Z}_k = \ell) \mathrm{P}_{[\mathrm{Z}_k = \ell]}(\mathrm{Z}_{k+1} = \ell).$$

Enfin:

— sachant que $[Z_k = \ell - 1]$ est réalisé pour que $[Z_{k+1} = \ell]$ se réalise il faut tirer, au (k+1)-ième tirage, l'une des $n - (\ell - 1)$ boules n'ayant pas été tirées au cours des k premiers tirages donc

$$P_{[Z_k=\ell-1]}(Z_{k+1}=\ell)=\frac{n-\ell+1}{n};$$

— sachant que $[Z_k = \ell]$ est réalisé pour que $[Z_{k+1} = \ell]$ se réalise il faut tirer, au (k+1)-ième tirage, l'une des ℓ boules ayant déjà été tirées au cours des k premiers tirages donc

$$P_{[Z_k=\ell]}(Z_{k+1}=\ell) = \frac{\ell}{n}$$

Ainsi:

$$P(Z_{k+1} = \ell) = \frac{n-\ell+1}{n} P(Z_k = \ell-1) + \frac{\ell}{n} P(Z_k = \ell).$$

(c) La variable aléatoire \mathbb{Z}_{k+1} est à support fini donc possède une espérance donnée par

$$E(Z_{k+1}) = \sum_{i=1}^{n} iP(Z_{k+1} = i).$$

Avec la question précédente, on en déduit :

$$\begin{split} \mathbf{E}(\mathbf{Z}_{k+1}) &= \sum_{i=1}^{n} i \mathbf{P}(\mathbf{Z}_{k+1} = i) = \sum_{i=1}^{n} i \left(\frac{n-i+1}{n} \mathbf{P}(\mathbf{Z}_{k} = i-1) + \frac{i}{n} \mathbf{P}(\mathbf{Z}_{k} = i) \right) \\ &= \frac{1}{n} \left(\sum_{i=1}^{n} i(n-i+1) \mathbf{P}(\mathbf{Z}_{k} = i-1) + \sum_{i=1}^{n} i^{2} \mathbf{P}(\mathbf{Z}_{k} = i) \right) \\ &= \frac{1}{n} \left(\sum_{j=0}^{n-1} (j+1)(n-j) \mathbf{P}(\mathbf{Z}_{k} = j) + \sum_{i=1}^{n} i^{2} \mathbf{P}(\mathbf{Z}_{k} = i) \right) \\ &= \frac{1}{n} \left(\underbrace{n \mathbf{P}(\mathbf{Z}_{k} = 0)}_{=0} + \sum_{j=1}^{n-1} \left((j+1)(n-j) + j^{2} \right) \mathbf{P}(\mathbf{Z}_{k} = j) + n^{2} \mathbf{P}(\mathbf{Z}_{k} = n) \right) \\ &= \frac{1}{n} \left(\sum_{j=1}^{n-1} (nj+n-j) \mathbf{P}(\mathbf{Z}_{k} = j) + n^{2} \mathbf{P}(\mathbf{Z}_{k} = n) \right) \\ &= \frac{1}{n} \left(\sum_{j=1}^{n-1} nj \mathbf{P}(\mathbf{Z}_{k} = j) + \sum_{j=1}^{n-1} n\mathbf{P}(\mathbf{Z}_{k} = j) - \sum_{j=1}^{n-1} j\mathbf{P}(\mathbf{Z}_{k} = j) \right) \\ &= \frac{1}{n} \left(n\mathbf{E}(\mathbf{Z}_{k}) + n(1-\mathbf{P}(\mathbf{Z}_{k} = n)) - \sum_{j=1}^{n-1} j\mathbf{P}(\mathbf{Z}_{k} = j) \right) \\ &= \frac{1}{n} \left(n\mathbf{E}(\mathbf{Z}_{k}) + n - \sum_{j=1}^{n} j\mathbf{P}(\mathbf{Z}_{k} = j) \right) \\ &= \frac{1}{n} (n\mathbf{E}(\mathbf{Z}_{k}) + n - \mathbf{E}(\mathbf{Z}_{k})) \\ &= \frac{n-1}{n} \mathbf{E}(\mathbf{Z}_{k}) + 1. \end{split}$$

3. Soit $k \ge 1$. Alors on a :

$$u_{k+1} = \mathrm{E}(\mathbf{Z}_{k+1}) - n = \frac{n-1}{n} \mathrm{E}(\mathbf{Z}_k) + 1 - n = \frac{n-1}{n} (\mathrm{E}(\mathbf{Z}_k) - n) = \frac{n-1}{n} u_k.$$

Ainsi: $\forall k \geqslant 1$, $u_{k+1} = \frac{n-1}{n} u_k$.

La suite $(u_k)_{k\geqslant 1}$ est donc une suite géométrique de raison $\frac{n-1}{n}$.

4. D'après la question précédente, on sait que :

$$\forall k \geqslant 1 \quad u_k = \left(\frac{n-1}{n}\right)^{k-1} u_1 = \left(\frac{n-1}{n}\right)^{k-1} (1-n).$$

Donc, on obtient:

$$\forall k \geqslant 1, \quad \mathrm{E}(\mathrm{Z}_k) = n + u_k = n + \left(\frac{n-1}{n}\right)^{k-1} (1-n) = n \left(1 - \left(\frac{n-1}{n}\right)^k\right).$$

Exercice 3

1. (a) La fonction f est de classe \mathscr{C}^2 sur \mathbb{R} en tant que somme et composée de fonctions de classe \mathscr{C}^2 sur \mathbb{R} . De plus, on a :

$$\forall x \in \mathbb{R} \quad f'(x) = 1 - \frac{2x}{1+x^2} = \frac{(1-x)^2}{1+x^2}.$$

- (b) D'après la question précédente, on sait que : $\forall x \in \mathbb{R}$ $f'(x) \ge 0$ avec égalité si et seulement si x = 0. Par conséquent, f est strictement croissante sur \mathbb{R} .
- (c) On a vu que f est de classe \mathscr{C}^2 sur \mathbb{R} . De plus, pour tout $x \in \mathbb{R}$ on a :

$$f''(x) = -\frac{2(1+x^2) - 4x^2}{(1+x^2)^2} = \frac{2(x^2 - 1)}{(1+x^2)^2}.$$

2. On sait que : $\lim_{x \to -\infty} 1 + x^2 = +\infty$ et $\lim_{x \to +\infty} \ln(x) = +\infty$. Ainsi par composition des limites :

$$\lim_{x \to -\infty} \ln(1+x^2) = +\infty.$$

Par différence, on trouve donc : $\lim_{x \to -\infty} f(x) = -\infty$.

Pour tout $x \neq 0$, on a :

$$f(x) = x \left(1 - \frac{\ln\left(1 + x^2\right)}{x}\right) = x \left(1 - \frac{\ln\left(x^2\left(1 + \frac{1}{x}\right)\right)}{x}\right) = x \underbrace{\left(1 - \frac{2\ln\left(x\right) + \ln\left(1 + \frac{1}{x}\right)}{x}\right)}_{x \to +\infty} \cdot 1.$$

Ainsi: $\lim_{x \to +\infty} f(x) = +\infty$.

- 3. La courbe \mathscr{C} possède un point d'inflexion au point d'abscisse x si et seulement si f'' change de signe en x. D'après la question 1.c, la courbe possède donc deux points d'inflexion : en -1 et en 1.
- 4. On obtient:

5. (a) Soit $n \in \mathbb{N}$. On a:

$$u_{n+1} - u_n = f(u_n) - u_n = -\ln(1 + u_n^2) \le 0.$$

Ainsi : $\forall n \in \mathbb{N} \ u_{n+1} \leq u_n$.

La suite $(u_n)_{n\in\mathbb{N}}$ est donc décroissante.

(b) La suite étant décroissante, si on montre qu'elle est minorée alors elle convergera d'après le théorème de la limite monotone

Pour tout entier naturel n, soit \mathcal{P}_n la proposition « $u_n \ge 0$ ». Montrons par récurrence que : $\forall n \in \mathbb{N}$, \mathcal{P}_n est vraie.

- **Initialisation** : $u_0 = 1$ donc \mathcal{P}_0 est vraie.
- **Hérédité** : supposons \mathcal{P}_n vraie pour un certain rang $n \in \mathbb{N}$ et montrons que \mathcal{P}_{n+1} est vraie. Par hypothèse de récurrence, on sait que :

$$u_n \ge 0$$
.

Donc, par croissance de f on a:

$$u_{n+1} = f(u_n) \geqslant f(0) = 0.$$

Ainsi \mathcal{P}_{n+1} est vraie.

• Conclusion : d'après le principe de récurrence on a montré :

$$\forall n \in \mathbb{N}, \quad u_n \geqslant 0.$$

La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée par 0 donc, d'après le théorème de la limite monotone, elle converge vers un réel ℓ . De plus, f étant continue sur \mathbb{R} , on sait que ℓ est un point fixe de f.

Déterminons les points fixes de f. Soit $x \in \mathbb{R}$:

$$f(x) = x \Longleftrightarrow \ln(1 + x^2) = 0 \Longleftrightarrow 1 + x^2 = 1 \Longleftrightarrow x = 0.$$

Ainsi 0 est l'unique point fixe de f.

Donc $\ell = 0$ et la suite $(u_n)_{n \in \mathbb{N}}$ converge vers 0.

```
(c)
u = 1
n = 0
while u > 10^(-3)
    u = u - log(1+u^2)
    n = n + 1
end
disp(n)
```

(d) i. Soit g la fonction définie sur [0, 1] par :

$$\forall x \in [0,1], \quad g(x) = f(x) - x + \frac{1}{2}x^2.$$

En tant que somme de fonctions dérivables sur [0,1] la fonction g est dérivable sur [0,1] et pour tout $x \in [0,1]$:

$$g'(x) = f'(x) - 1 + x = -\frac{2x}{1 + x^2} + x = \frac{x(x^2 - 1)}{1 + x^2} \le 0.$$

Ainsi, la fonction g est décroissante sur [0, 1] et donc :

$$\forall x \in [0,1]$$
 $g(x) \leq g(0) = 0$.

Donc

$$\forall x \in [0,1] \quad f(x) \leqslant x - \frac{1}{2}x^2.$$

ii. Soit $n \in \mathbb{N}$. On sait d'après 5.b que : $u_n \ge 0$. De plus, la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante et $u_0 = 1$ donc : $u_n \le 1$. Ainsi, par la question précédente on a :

$$u_{n+1} = f(u_n) \leqslant u_n - \frac{u_n^2}{2}.$$

Donc: $u_n^2 \le 2(u_n - u_{n+1})$. On a ainsi montré:

$$\forall n \in \mathbb{N}, \quad u_n^2 \leq 2(u_n - u_{n+1}).$$

iii. Soit $N \in \mathbb{N}$. En sommant l'inégalité précédente pour n allant de 0 à N on obtient :

$$\sum_{n=0}^{N} u_n^2 \leqslant 2 \sum_{n=0}^{N} (u_n - u_{n+1}) = 2(u_0 - u_N) \leqslant 2u_0.$$

La suite $\left(\sum_{n=1}^{N}u_{n}^{2}\right)_{N\in\mathbb{N}}$ étant croissante (pourquoi?) et majorée elle converge. Ainsi la série $\sum_{n\geqslant 0}u_{n}^{2}$ converge.

5

Problème (Cube)

Partie 1 : étude d'une variable discrète sans mémoire.

1. On a: $(X \ge 1) = \overline{(X = 0)}$, donc:

$$P(X \ge 1) = 1 - P(X = 0) = 1 - p = q.$$

Par hypothèse, on sait que : $q = P(X \ge 1) > 0$. De plus, p > 0 donc q < 1. Ainsi

$$0 < q < 1$$
.

2. Soit $(m, n) \in \mathbb{N} \times \mathbb{N}$. Comme $(X \ge m) \cap (X \ge m + n) = (X \ge m + n)$ alors

$$P(X \geqslant m+n) = P\left((X \geqslant m) \cap (X \geqslant m+n)\right) = P_{(X=m)}(X \geqslant m+n)P(X \geqslant m) = P(X \geqslant n)P(X \geqslant m)$$

car $P_{(X=m)}(X \ge m+n) = P(X \ge n)$ par hypothèse. Ainsi :

$$\forall (m, n) \in \mathbb{N} \times \mathbb{N}, \quad P(X \ge m + n) = P(X \ge n)P(X \ge m).$$

3. (a) Soit $n \in \mathbb{N}$. On a d'après la question précédente :

$$u_{n+1}=\mathrm{P}(\mathrm{X}\geqslant n+1)=\mathrm{P}(\mathrm{X}\geqslant 1)\mathrm{P}(\mathrm{X}\geqslant n)=\mathrm{P}(\mathrm{X}\geqslant 1)u_n=qu_n.$$

Ainsi : $\forall n \in \mathbb{N} \ u_{n+1} = q u_n$.

La suite $(u_n)_{n\in\mathbb{N}}$ est donc géométrique de raison q.

(b) D'après la question précédente :

$$\forall n \in \mathbb{N}, \quad u_n = q^n u_0 = q^n.$$

(c) Soit $n \in \mathbb{N}$. On a

$$(X \geqslant n) = (X = n) \Big[\int (X \geqslant n + 1)$$

avec $(X = n) \cap (X \ge n + 1) = \emptyset$. Par conséquent :

$$P(X \ge n) = P\left((X = n) \bigcup (X \ge n + 1)\right) = P(X = n) + P(X \ge n + 1).$$

D'où:

$$P(X = n) = P(X \ge n) - P(X \ge n + 1).$$

Ainsi: $\forall n \in \mathbb{N}, P(X = n) = P(X \ge n) - P(X \ge n + 1).$

(d) Soit $n \in \mathbb{N}$. D'après les questions 3.a et 3.b on a :

$$P(X = n) = P(X \ge n) - P(X \ge n + 1) = q^n - q^{n+1} = q^n (1 - q) = q^n p.$$

Ainsi : $\forall n \in \mathbb{N} P(X = n) = q^n p$.

4. (a) Le support de X + 1 est \mathbb{N}^* . De plus, pour tout $k \in \mathbb{N}^*$ on a :

$$P(X + 1 = k) = P(X = k - 1) = a^{k-1}p$$
.

Ainsi, X + 1 suit la loi géométrique de paramètre p.

(b) Cours.

Partie 2 : taux de panne d'une variable discrète.

1. (a) Soit $n \in \mathbb{N}$. Comme $P(Y \ge n) > 0$ et que $P(Y \ge n, Y = n) = P(Y = n)$ on a :

$$\lambda_n = \mathrm{P}_{(Y \geqslant n)}(Y = n) = \frac{\mathrm{P}(Y \geqslant n, Y = n)}{\mathrm{P}(Y \geqslant n)} = \frac{\mathrm{P}(Y = n)}{\mathrm{P}(Y \geqslant n)}.$$

Ainsi:
$$\forall n \in \mathbb{N}, \lambda_n = \frac{P(Y = n)}{P(Y \ge n)}.$$

(b) Soit $n \in \mathbb{N}$. Alors on a :

$$1 - \lambda_n = 1 - \frac{P(Y = n)}{P(Y \ge n)} = \frac{P(Y \ge n) - P(Y = n)}{P(Y \ge n)} = \frac{P(Y \ge n + 1)}{P(Y \ge n)}$$
 d'après 3.c.

Ainsi:
$$\forall n \in \mathbb{N}, 1 - \lambda_n = \frac{P(Y \ge n + 1)}{P(Y \ge n)}$$

(c) Soit $n \in \mathbb{N}$. Par définition, on sait que $\lambda_n \ge 0$. On sait aussi que $P(Y \ge n) > 0$ et $P(Y \ge n+1) > 0$ donc d'après la question précédente : $1 - \lambda_n > 0$. Ainsi :

$$0 \le \lambda_n < 1$$
.

On a montré : $\forall n \in \mathbb{N}, 0 \leq \lambda_n < 1$.

- (d) Pour tout entier naturel non nul n, soit \mathscr{P}_n la proposition « $P(Y \ge n) = \prod_{k=0}^{n-1} (1 \lambda_k)$ ». Montrons par récurrence que : $\forall n \in \mathbb{N}^*$, \mathscr{P}_n est vraie.
 - Initialisation : $\prod_{k=0}^{1-1} (1 \lambda_k) = 1 \lambda_0 = \frac{P(Y \geqslant 1)}{P(Y \geqslant 0)} = P(Y \geqslant 1)$. Donc \mathscr{P}_1 est vraie.
 - **Hérédité** : supposons \mathscr{P}_n vraie pour un certain rang $n \in \mathbb{N}^*$ et montrons que \mathscr{P}_{n+1} est vraie. Par hypothèse de récurrence, on sait que :

$$P(Y \geqslant n) = \prod_{k=0}^{n-1} (1 - \lambda_k).$$

Or on a vu en 1.b que

$$P(Y \ge n+1) = (1 - \lambda_n)P(Y \ge n).$$

Ainsi

$$P(Y \ge n+1) = (1-\lambda_n)P(Y \ge n) = (1-\lambda_n)\prod_{k=0}^{n-1} (1-\lambda_k) = \prod_{k=0}^{n} (1-\lambda_k).$$

Donc \mathscr{P}_{n+1} est vraie.

• Conclusion : d'après le principe de récurrence on a montré :

$$\forall n \in \mathbb{N}^*, \quad P(Y \ge n) = \prod_{k=0}^{n-1} (1 - \lambda_k).$$

2. (a) Soit $n \in \mathbb{N}^*$. On a:

$$1 - P(Y \ge n) = P(Y < n) = P\left(\bigcup_{k=0}^{n-1} (Y = k)\right).$$

Or les événements (Y = k), k = 0, ..., n - 1 sont deux à deux disjoints donc :

$$1 - P(Y \ge n) = P\left(\bigcup_{k=0}^{n-1} (Y = k)\right) = \sum_{k=0}^{n-1} P(Y = k).$$

Ainsi: $\forall n \in \mathbb{N}^*$, $\sum_{k=0}^{n-1} P(Y = k) = 1 - P(Y \ge n)$.

(b) Comme le support de Y est inclus dans \mathbb{N} , la série $\sum_{k\in\mathbb{N}} P(Y=k)$ converge et sa somme vaut 1. Ainsi :

$$\lim_{n \to +\infty} 1 - P(Y \ge n) = \lim_{n \to +\infty} \sum_{k=0}^{n-1} P(Y = k) = 1.$$

D'où:

$$\lim_{n\to+\infty} P(Y \geqslant n) = 0.$$

(c) Par hypothèse, on sait que : $\forall n \in \mathbb{N}$, $P(Y \ge n) > 0$. Soit $n \in \mathbb{N}^*$. D'après la question 1.d on a :

$$\ln(P(Y \ge n)) = \ln\left(\prod_{k=0}^{n-1} (1 - \lambda_k)\right) = \sum_{k=0}^{n-1} \ln(1 - \lambda_k).$$

Ainsi:

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=0}^{n-1} -\ln(1-\lambda_k) = -\ln(P(Y \ge n)).$$

Or, d'après la question précédente et par composition des limites, on a :

$$\lim_{n\rightarrow +\infty}-\ln\left(\mathrm{P}(\mathrm{Y}\geq n)\right)=\lim_{x\rightarrow 0^{+}}-\ln\left(x\right)=+\infty.$$

Ainsi:
$$\lim_{n\to\infty} \sum_{k=0}^{n-1} -\ln(1-\lambda_k) = +\infty.$$

- (d) On distingue deux cas.
 - Soit la suite $(\lambda_n)_{n\in\mathbb{N}}$ ne converge pas vers 0; dans ce cas la série $\sum_{n\geq 0} \lambda_n$ diverge grossièrement.
 - Soit la suite $(\lambda_n)_{n\in\mathbb{N}}$ converge vers 0; dans ce cas par équivalent usuel on a :

$$-\ln(1-\lambda_n) \underset{n\to+\infty}{\sim} \lambda_n$$
.

Les séries $\sum_{n\geqslant 0} \lambda_n$ et $\sum_{n\geqslant 0} -\ln(1-\lambda_n)$ étant à termes positifs, d'après le critère de comparaison des séries à

termes positifs, on en déduit que $\sum_{n\geqslant 0}\lambda_n$ et $\sum_{n\geqslant 0}-\ln{(1-\lambda_n)}$ sont de même nature.

Or, d'après la question précédente, $\sum_{n\geqslant 0} -\ln(1-\lambda_n)$ est divergente donc $\sum_{n\geqslant 0} \lambda_n$ est divergente aussi.

Dans tous les cas, la série $\sum_{n>0} \lambda_n$ diverge.

3. (a) Compléter la fonction Scilab suivante pour qu'elle renvoie n!:

```
function z=factorielle(n)
  z = 1
  if n == 0 then
    z = 1
  else
    z = n*factorielle(n-1)
  end
endfunction
```

(b) Le programme retourne la valeur de a^n .

```
n = input('entrer en entier n:')
a = input('entrer un reel a:')
somme = 1
for k = 1:(n-1)
somme = somme + g(k+1)/factorielle(k)
end
disp(exp(-a)*somme)
```

Partie 3 : caractérisation des variables dont la loi est du type de celle de X.

1. D'après les questions 3.b et 3.d de la partie 1 on a, pour tout entier naturel n:

$$P(X \ge n) = q^n$$
 et $P(X = n) = q^n p$.

D'après la question 1.a de la partie 2 on en déduit :

$$\forall n \in \mathbb{N}, \quad \lambda_n = \frac{P(Y = n)}{P(Y \ge n)} = p.$$

- 2. On considère une variable aléatoire Z, à valeurs dans \mathbb{N} , et vérifiant : $\forall n \in \mathbb{N}, P(Z \ge n) > 0$. On suppose que le taux de panne de Z est constant, c'est-à-dire que l'on a : $\forall n \in \mathbb{N}, \lambda_n = \lambda$.
 - (a) D'après la question 1.c de la partie 2, on sait que

$$0 \le \lambda < 1$$
.

De plus, si $\lambda = 0$ alors, pour tout $n \in \mathbb{N}$, P(Z = n) = 0 d'après la question 1.a de la partie 2. Comme Z est à support dans \mathbb{N} cela est impossible. Donc finalement :

$$0 < \lambda < 1$$
.

(b) Soit $n \in \mathbb{N}$. On a

$$P(Z \ge n+1) = P(Z \ge n) - P(Z = n).$$

Or, $P(Z = n) = \lambda P(Z \ge n)$ donc:

$$P(Z \ge n+1) = P(Z \ge n) - P(Z = n) = P(Z \ge n) - \lambda P(Z \ge n) = (1-\lambda)P(Z \ge n).$$

Ceci étant valable pour tout $n \in \mathbb{N}$, on en déduit que la suite $(P(Z \ge n))_{n \in \mathbb{N}}$ est géométrique de raison $1 - \lambda$. Par conséquent :

$$\forall n \in \mathbb{N}, \quad P(Z \ge n) = (1 - \lambda)^n P(Z \ge 0) = (1 - \lambda)^n.$$

(c) Soit Z une variable aléatoire à valeurs dans \mathbb{N} , dont le taux de panne est constant et telle que pour tout n de \mathbb{N} , $P(Z \ge n) > 0$. Il s'agit de montrer que

$$\forall (m, n) \in \mathbb{N} \times \mathbb{N}, P_{(Z \geqslant m)}(Z \geqslant n + m) = P(Z \geqslant n).$$

Soit $(m, n) \in \mathbb{N} \times \mathbb{N}$. Alors

$$P_{(Z\geqslant m)}(Z\geqslant n+m) = \frac{P(Z\geqslant m,Z\geqslant m+n)}{P(Z\geqslant m)}$$

$$= \frac{P(Z\geqslant m+n)}{P(Z\geqslant m)} \quad \text{car } (Z\geqslant m)\cap (Z\geqslant m+n) = (Z\geqslant m+n)$$

$$= \frac{(1-\lambda)^{m+n}}{(1-\lambda)^m} \quad \text{d'après la question précédente}$$

$$= (1-\lambda)^n$$

$$= P(Z\geqslant n) \quad \text{d'après la question précédente}.$$

Ainsi:

$$\forall (m,n) \in \mathbb{N} \times \mathbb{N}, \mathrm{P}_{(Z \geqslant m)}(Z \geqslant n+m) = \mathrm{P}(Z \geqslant n).$$