* Name Origin:

Greek: thallos (young shoot) from a bright-green line in its spectrum.

* Sources:

Found in iron pyrites. Also in crookesite, hutchinsonite and lorandite.

* Uses:

Its compounds are used in rat and ant poisons. Also for detecting infrared radiation and heart muscle research.

* Additional Notes:

Thallium was discovered spectroscopically in 1861 by Crookes. The element was named after the beautiful green spectral line, which identified the element. The metal was isolated both by Crookes and Lamy in 1862 about the same time. Thallium occurs in crooksite, lorandite, and hutchinsonite. It is also present in pyrites and is recovered from the roasting of this ore in connection with the production of sulfuric acid. It is also obtained from the smelting of lead and zinc ores. Extraction is somewhat complex and depends on the source of the thallium. Manganese nodules, found on the ocean floor, contain thallium. When freshly exposed to air, thallium exhibits a metallic luster, but soon develops a bluish-gray tinge, resembling lead in appearance. A heavy oxide builds up on thallium if left in air, and in the presence of water the hydroxide is formed. The metal is very soft and malleable. It can be cut with a knife. forty seven isotopic forms of thallium, with atomic masses ranging from 179 to 210 are recognized. Natural thallium is a mixture of two isotopes. The element and its compounds are toxic and should be handled carefully. Contact of the metal with skin is dangerous, and when melting the metal adequate ventilation should be provided. Thallium is suspected of carcinogenic potential for man. Thallium sulfate has been widely employed as a rodenticide and ant killer. It is odorless and tasteless, giving no warning of its presence. Its use, however, has been prohibited in the U.S. since 1975 as a household insecticide and rodenticide. The electrical conductivity of thallium sulfide changes with exposure to infrared light, and this compound is used in photocells. Thallium bromide-iodide crystals have been used as infrared optical materials. Thallium has been used, with sulfur or selenium and arsenic, to produce low melting glasses which become fluid between 125 and 150°C. These glasses have properties at room temperatures similar to ordinary glasses and are said to be durable and insoluble in water. Thallium oxide has been used to produce glasses with a high index of refraction. Thallium has been used in treating ringworm and other skin infections; however, its use has been limited because of the narrow margin between toxicity and therapeutic benefits. A mercury-thallium alloy, which forms a eutectic at 8.5% thallium, is reported to freeze at -60°C, some 20° below the freezing point of mercury.