STAT230 Assignment 1

Rin Meng Student ID: 51940633

January 26, 2024

1. Let S be the sample of the given student, then we have

$$S = \{m, m, m, m, m, w, w, w, w\}$$

where m is men, and w is women.

(a) Let $n = sample \, size$. Then there are a number of

$$n! = 10! = 3628800$$

different ways to rank the students by Theorem 2.4.

(b) Let $n = sample \, size$, $w = women \, in \, n$ and $m = men \, in \, n$. Then there are a number of

$$\frac{n!}{m!w!} = \frac{10!}{6! \times 4!} = 210$$

different ways of ranking them with regards to men and women by Theorem 2.7.

2. Let S be the sample of the given flags, then we have

$$S = \{w, w, w, w, r, r, r, b, b\}$$

where w is white flag, r is red flag, and b is blue flag. Then there are a number of

$$\frac{n!}{w! \times r! \times b!} = \frac{9!}{4! \times 3! \times 2!} = 1260$$

different ways to arrange the flags if all flag in the same color is identical.

- 3. Let S be the set of all possible rolls of a two fair dice, and let n be the number of all possible rolls which is $6 \times 6 = 36$.
 - (a) Let S_6 be set of two fair dice getting a total number of 6, then we have

$$S_6 = \{(1,5), (5,1), (4,2), (2,4), (3,3), \}$$

Let $P(S_6)$ be the probability of getting the number 6 by rolling two fair dice, then we have

$$P(S_6) = \frac{Size \ of \ S_6}{n} = \frac{5}{36}$$

(b) Let $S_{3\vee 10}$ be the set of two fair dice getting a total number of $3\vee 10$, then we have

$$S_{3\vee 10} = \{(1,2), (2,1), (5,5), (4,6), (6,4)\}$$

Let $P(S_{3\vee 10})$ be the probability of getting the number $3\vee 10$ by rolling two fair dice, then we have

$$P(S_{3 \vee 10}) = \frac{Size \ of \ S_{3 \vee 10}}{n} = \frac{5}{36}$$

(c) Let $S_{odd \vee prime}$ be the set of two fair dice getting a total number that is $odd \vee prime$, then we have

$$S_{odd \vee prime} =$$

$$\{(1,1),(1,2),(2,1),(2,3),(3,2),$$

Let $P(S_{odd \vee prime})$ be the probability of getting a number that is $odd \vee prime$ by rolling two fair dice, then we have

$$P(S_{odd \vee prime}) = \frac{Size \ of \ S_{odd \vee prime}}{n} = \frac{15}{36}$$

4. Let us denote the given data by ϕ , the size of ϕ as n which is 20 data points.

(a) Then the mean of ϕ is

$$\overline{\phi} = \frac{\sum \phi}{n} = \frac{74.4}{20} = 3.72$$

(b) Since we know that $\sum \phi^2 = 278.4196$, the standard deviation of ϕ is

$$s_{\phi} = \sqrt{\frac{\sum \phi^2 - \frac{(74.4)^2}{20}}{n - 1}} = \sqrt{\frac{278.4196 - 276.768}{20 - 1}} = 0.295$$

(c) The median value of ϕ is

$$\phi_{sorted} =$$

 $\{3.55, 3.55, 3.56, 3.56, 3.57, 3.57, 3.59, 3.59, 3.59, 3.60, 3.61, 3.63, 3.65, 3.66, 3.71, 3.73, 3.75, 3.99, 4.15, 4.79$

(d) The IQR of ϕ is

$$Q1 = \frac{3.57 + 3.57}{2} = 3.57$$

$$Q3 = \frac{3.71 + 3.73}{2} = 3.72$$

$$IQR = Q3 - Q1 = 3.72 - 3.57 = 0.15$$

5. Since $P(\{1\})=\frac{1}{2}$, we can also rewrite as $P(\{1\})=\frac{3}{6}$ and since $P(\{1,2\})=\frac{2}{3}$, where we can rewrite as $P(\{1,2\})=\frac{4}{6}$

Then we can calculate $P({2})$ as follow:

$$P(\{2\}) = P(\{1,2\}) - P(\{1\}) = \frac{4}{6} - \frac{3}{6}$$

$$P(\{2\}) = \frac{1}{6}$$

Then from this, we can conclude that $P(\{3\})$ must be equal to $\frac{2}{6}$ because $P(\{1,2,3\})$ cannot exceed past $\frac{6}{6}$ namely 1, by $Kolmovgorov\ Axiom\ 2$.

6. Let S be the sample space, where events A, B, C can occur in S, then

(a) This is the Venn Diagram among A, B, and C, only A occurs.

(b) This is the Venn Diagram where at least one of the events $A,\,B,\,$ or C occurs.

(c) This is the Venn Diagram where one of A or C occurs, but not B.

(d) This is the Venn Diagram where at most, two of the events $A,\,B,\,$ or C occurs.

7. Proof. "A and B are independent $\Leftrightarrow A^c$ and B are independent."

" \Rightarrow ": Since A and B are independent, we have:

$$P(A \cap B) = P(A)P(B) \qquad (\triangle)$$

by Definition 2.18 (independence). Now we want to show that:

$$P(A^c \cap B) = P(A^c)P(B)$$

We know that:

$$P(B) = P(A^c \cap B) + P(A \cap B) \qquad (\theta)$$

because the probability of B, is the same as probability of A and B happening added with probability of $\neg A$ and B. We then also learn that:

$$P(A^c \cap B) = P(B) - P(A \cap B) \qquad (\Theta)$$

by rearranging (θ) .

We will now substitute (\triangle) into (Θ) where we will have

$$P(A^c \cap B) = P(B) - P(A)P(B)$$

$$P(A^c \cap B) = P(B)(1 - P(A)) \qquad (|)$$

and by Theorem 2.19 (Complement Rule), we learn that

$$(1 - P(A)) = P(A^c)$$

then this equation,

$$P(A^c \cap B) = P(A^c)P(B)$$

is identical to (|). Hence we have proven that

A and B are independent $\Rightarrow A^c$ and B are independent.

" \Leftarrow ": Now, since A^c and B are independent, we have:

$$P(A^c \cap B) = P(A^c)P(B) \qquad (\phi)$$

by Definition 2.18 (independence). This proof is trivial as it follows the same structure as the last one I did. Now we want to show that:

$$P(A \cap B) = P(A)P(B)$$

We know that:

$$P(B) = P(A^c \cap B) + P(A \cap B) \qquad (\gamma)$$

because the probability of B, is the same as probability of A and B happening added with probability of $\neg A$ and B. We then also learn that:

$$P(A \cap B) = P(B) - P(A^c \cap B) \qquad (\Gamma)$$

by rearranging (γ) .

We will now substitute (ϕ) into (γ) where we will have

$$P(A \cap B) = P(B) - P(A^c)P(B)$$

$$P(A \cap B) = P(B)(1 - P(A^c)) \qquad (\psi)$$

and by Theorem 2.19 (Complement Rule), we learn that

$$(1 - P(A^c)) = P(A)$$

then this equation,

$$P(A \cap B) = P(A)P(B)$$

is identical to (ψ) . Hence we have proven that

 A^c and B are independent $\Rightarrow A$ and B are independent.

Therefore, We have proven that A and B are independent $\Leftrightarrow A^c$ and B are independent. \Box

8. Let S be the event that the silver coin is found and let C be the event that a cabinet was selected.

We know that

$$P(C_A) = P(C_B) = \frac{1}{2}$$

because both drawers in cabinet A (C_A) contains the silver coin, we have

$$P(S|C_A) = \frac{1}{2} + \frac{1}{2} = 1$$

and because only one of the silver coin is in cabinet B (C_B) , we have

$$P(S|C_B) = \frac{1}{2}$$

Using Theorem 2.20 (Rule of Probability), then we learn that

$$P(S) = P(S|C_A)P(C_A) + P(S|C_B)P(C_B)$$
$$= (1 \times \frac{1}{2}) + (\frac{1}{2} \times \frac{1}{2})$$
$$= \frac{3}{4}$$

and using Theorem 2.21 (Bayes' Theorem), we can conclude that

$$P(C|S) = \frac{P(S|C)P(C)}{P(S)} = \frac{1 \times \frac{1}{2}}{\frac{3}{4}} = \frac{2}{3}$$

End of Assignment 1.