Week 1: Functions

October 11, 2021

- Introduction
 - Sets
 - Inequalities

- 2 Functions
 - Representation of functions
 - A catalogue of functions

Administration

Name Chaklam Silpasuwanchai

Email chaklam@ait.asia

Website http://chaklam.com

Textbook Thomas Calculus 13 ed., Stewart Calculus 8 ed.

GClassroom ahh7xn4

Grade Midterm 35 Final 35 Quizzes 30

- Introduction
 - Sets
 - Inequalities

- 2 Functions
 - Representation of functions
 - A catalogue of functions

Sets

A set is a collection of well defined and distinct objects.

Sets of Numbers.

- $\mathbb{N} = \{0, 1, 2, 3, \dots, 100, \dots\}$
- $\mathbb{Z} = \{\ldots, -100, \ldots, -12, \ldots, 0, 1, 2, 3, \ldots, 100, \ldots\}$
- $\mathbb{Q} = \{1/3, -4/1, \dots, 1/12345, \dots\}$ (rational numbers represented by a fraction a/b with a belonging to \mathbb{Z} and b belonging to $\mathbb{Z}*$ (except zero))
- $\mathbb{R} = \{\pi, \sqrt{2}, \sqrt{3}, \dots\}$ (rational + irrational numbers; irrational numbers have infinite, non-periodic decimal part)

Sets

A set is a collection of well defined and distinct objects.

Sets of Numbers.

- $\mathbb{N} = \{0, 1, 2, 3, \dots, 100, \dots\}$
- $\mathbb{Z} = \{\ldots, -100, \ldots, -12, \ldots, 0, 1, 2, 3, \ldots, 100, \ldots\}$
- $\mathbb{Q} = \{1/3, -4/1, \dots, 1/12345, \dots\}$ (rational numbers represented by a fraction a/b with a belonging to \mathbb{Z} and b belonging to $\mathbb{Z}*$ (except zero))
- $\mathbb{R} = \{\pi, \sqrt{2}, \sqrt{3}, \dots\}$ (rational + irrational numbers; irrational numbers have infinite, non-periodic decimal part)

Set notation. If A is a set of numbers and the number x is a member of the set A, then we write $x \in A$. If x is not a member of A then we write $x \notin A$

Example.

$$\frac{1}{2} \notin \mathbb{Z}; \qquad \sqrt{2} \in \mathbb{R}; \qquad 3 \in \mathbb{N}; \qquad \pi \notin \mathbb{Q}.$$

Intervals. Suppose that $a, b \in \mathbb{R}$ and a < b.

•
$$(a, b] = \{x \in \mathbb{R} : a < x \le b\}$$

(The colon ':' is read as *such that*.)

a and b are called *endpoints* of the interval.

b is included in the interval; a is not.

•
$$[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$$

•
$$(a, b) = \{x \in \mathbb{R} : a < x < b\}$$

Definition

Suppose that A and B are two sets. We say that A is a *subset* of B if $x \in A$ implies that $x \in B$, and we will denote this by $A \subseteq B$. If A is a subset of B then we also say that B *contains* the set A.

Definition

Suppose that A and B are two sets. We say that A is a *subset* of B if $x \in A$ implies that $x \in B$, and we will denote this by $A \subseteq B$. If A is a subset of B then we also say that B *contains* the set A.

Example. True or false?

- $\{3,4,5,6\}$ is a subset of $\{2,3,4,5,6\}$ (T)
- \mathbb{Z} is a subset of \mathbb{N} (F)
- \mathbb{N} is a subset of \mathbb{Z} (T)
- (2,8] is a subset of [2,8] (T)
- [2,8) is a subset of (2,8] (F)
- [3,4] is a subset of \mathbb{Q} (T)
- \mathbb{Q} is a subset of \mathbb{R} (T)

Inequalities

Solving Inequalities.

- If a < b and c < 0, then ac > bc: Multiply or divide by a negative quantity reverse the inequality sign.
- If 0 < a < b, then 1/a > 1/b: Taking reciprocals reverse the inequality sign.

Inequalities

Example. Solve 1 + x < 7x + 5

$$x < 7x + 4$$

$$-6x < 4$$

$$x > -\frac{4}{6} = -\frac{2}{3}$$

Minus 1 from both sides

Reverse the sign

Inequalities

Example. Solve $x^2 - 5x + 6 \le 0$

$$(x-2)(x-3) \le 0$$

 $(x-2)(x-3) = 0$ Set the equation to zero to find the interval $x=2,3$ This gives us three intervals

Trying some values under the three intervals $(-\infty, 2), (2, 3), (3, \infty)$ We will get that the solution is $\{x | 2 \le x \le 3\} = [2, 3]$

Self-Exercise

- **1** Solve $x^2 < 2x + 8$
 - Ans: (-2,4)
- 2 Solve $x^3 + 3x^2 > 4x$
 - Ans: $(-4,0) \cup (1,\infty)$
- - Ans: $(-\infty,0) \cup (\frac{1}{4},\infty)$
- Solve $-3 < \frac{1}{x} \le 1$ (Hint: solve separately)
 - Ans: $(-\infty, -\frac{1}{3}) \cup [1, \infty)$

Absolute values.

1 Definition. If $x \in \mathbb{R}$ then |x| is defined by

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

- Properties.
 - | -x| = |x|

 - 2 |xy| = |x||y|3 $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$ if y is nonzero
 - 1 The triangle inequality: |x + y| < |x| + |y|
 - **3** $|x| = \sqrt{x^2}$ and $|x|^n = x^n$
- Inequalities.

 - $\begin{array}{ll} \textbf{0} & |y| = a & \text{iff} & y = \pm a \\ \textbf{2} & |y| < a & \text{iff} & -a < y < a \end{array}$

Example.

Solve
$$|2x - 5| = 3$$

$$2x - 5 = 3 \text{ or } 2x - 5 = -3$$
 Using property 3.1 $x = 4 \text{ or } x = 1$

Example.

Solve
$$|3x + 2| \ge 4$$

$$3x + 2 \ge 4$$
 or $3x + 2 \le -4$ Using property 3.1 and 3.3

In the first case $3x \ge 2$, which gives $x > \frac{2}{3}$. In the second case $3x \le -6$, which gives $x \le -2$. So the solution set is $(-\infty, -2] \cup [\frac{2}{3}, \infty)$

Example.

If |x-4|<0.1 and |y-7|<0.2, use the triangle inequality (property 2.4) to estimate |(x+y)-11|

$$|(x + y) - 11| = |(x - 4) + (y - 7)|$$

 $\leq |x - 4| + |y - 7|$
 $< 0.1 + 0.2 = 0.3$

Thus
$$|(x + y) - 11| < 0.3$$

Self-Exercise

- **1** Solve |x 5| < 2
 - Ans: (3,7)
- **2** Solve |x| < 3
 - Ans: (-3,3)
- **3** Solve $1 \le |x| \le 4$
 - Ans: $[-4, -1] \cup [1, 4]$
- **3** Solve $0 < |x 5| < \frac{1}{2}$
 - Ans: $(4.5,5) \cup (5,5.5)$

- Introduction
 - Sets
 - Inequalities

- 2 Functions
 - Representation of functions
 - A catalogue of functions

Functions

Many naturally occurring quantities that vary with time can be modelled using *functions*.

Example

The volume of water stored in Lake Burley-Griffin is a variable that depends on time. For any particular time t, we could denote the corresponding volume by f(t). In this situation

- f is called a function,
- if t is an input for the function f, then f(t) is the corresponding output.

Specifying a function.

A function *f* has *two* parts to its definition:

- 1 the rule which explains how to get outputs from inputs,
- ② the specification of the function's *domain* (i.e. set of inputs).

A key point is that any input must give exactly one output.

Example and terminology. A function f with domain $[0, \infty)$ is given by the rule

$$f(x) = x^2 \quad \forall x \in [0, \infty).$$

The maximal domain. If the domain of a function is not specified, but the function rule is, then the default domain, known as the *maximal* or *natural domain*, is the largest possible domain for which the rule makes sense.

Example. Find the domain of $f(x) = \sqrt{x+2}$

• Because the square root of a negative number is not defined (as a real number), the domain of f consists of all values of x such that $x+2\geq 0$. This is equivalent to $x\geq -2$, so the domain is the interval $[-2,\infty)$

The maximal domain. If the domain of a function is not specified, but the function rule is, then the default domain, known as the *maximal* or *natural domain*, is the largest possible domain for which the rule makes sense.

Example. Find the domain of $g(x) = \frac{1}{x^2 - x}$

Since

$$g(x) = \frac{1}{x^2 - x} = \frac{1}{x(x - 1)}$$

and division by 0 is not allowed, we see that g(x) is not defined when x=0 or x=1. Thus the domain is $(-\infty,0)\cup(0,1)\cup(1,\infty)$

Self-Exercise

Find the domain of these functions:

• Ans:
$$(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$$

$$(x) = \frac{2x^3 - 5}{x^2 + x - 6}$$

• Ans:
$$(-\infty, -3) \cup (-3, 2) \cup (2, \infty)$$

3
$$f(t) = \sqrt[3]{2t-1}$$

$$\bullet \ \, \mathsf{Ans:} \ \, \mathbb{R}$$

$$g(t) = \sqrt{3-t} - \sqrt{2+t}$$

• Ans:
$$[-2, 3]$$

The range of a function. Suppose that f is a function. The range of f, denoted by Ran(f), is defined by

$$\operatorname{Ran}(f) = \{ f(x) \in B : x \in \operatorname{Dom}(f) \}.$$

Note that Ran(f) is the set of all output values for f. Note also that the range of f depends on the domain of f. If you are asked to give the range of a function f where the domain is not specified, you may assume that the domain is maximal.

Example. Suppose $f(x) = x^2$.

- If the domain of f is \mathbb{R} , the range of f is $[0, \infty)$.
- If the domain of f is $[0, \infty)$, the range of f is still $[0, \infty)$.
- If the domain of f is [2,4], the range of f is [4,16].

Special classes of functions

In this section we list some familar classes of functions.

Polynomials. A function $f : \mathbb{R} \to \mathbb{R}$ is called a *polynomial* if

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

where $a_0, a_1, a_2, \ldots, a_n \in \mathbb{R}$ and $n \in \mathbb{N}$. The a_j are called the *coefficients* of the polynomial and n is the *degree* of the polynomial (as long as a_n is nonzero). If n = 1 the polynomial is called linear, n = 2 quadratic, n = 3 cubic, etc.

Rational functions. Suppose that p and q are polynomials. A function f is called a *rational function* if

$$Dom(f) = \{x \in \mathbb{R} : q(x) \neq 0\}$$

and

$$f(x) = \frac{p(x)}{q(x)}$$
 $\forall x \in \text{Dom}(f)$

A piecewise defined function. is given by different formulas on different pieces of its domain.

Example.

$$f(x) = \begin{cases} 1 - x & \text{if } x \le 1\\ x^2 & \text{if } x > 1. \end{cases}$$

Trigonometric functions. You should be familiar with the functions sin, cos, tan, sec, cosec and cot.

Important note: In calculus, it is essential that angles are given in radian measure. Recall that 360 degrees is equal to 2π radians.

In particular, you should know (this list is not exhaustive!)

- That sine and cosine are periodic with a period of 2π .
- That the range of sine and cosine is [-1, 1].
- That sin(x) = 0 if $x \in \{0, \pm \pi, \pm 2\pi, \pm 3\pi, ...\}$ and cos(x) = 0 if $x \in \{\pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, ...\}$.
- The values of x for which sin(x) equals 1 or -1 and the values of x for which cos(x) equals 1 or -1.
- How to draw the graphs of sin, cos, tan (and to a lesser extent how to draw the graphs of sec, cosec, and cot).
- How to compute sin, cos, tan, sec, cosec, and cot of the values $\frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}$, etc.

Important – make sure you know the standard trig formulae:

complementary identities

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

Pythagorean identities

$$\cos^2 x + \sin^2 x = 1$$
$$1 + \tan^2 x = \sec^2 x$$
$$\cot^2 x + 1 = \csc^2 x$$

the sum and difference formulae

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

Important – make sure you know the standard trig formulae:

double-angle formulae

$$\sin(2x) = 2\sin x \cos x$$

$$\cos(2x) = \cos^2 x - \sin^2 x$$

$$\tan(2x) = \frac{2\tan x}{1 - \tan^2 x}.$$

The exponential and logarithm functions.

Definition

Functions given as $f(x) = a^x$, a > 0, $a \in \mathbb{R}$ are called exponential functions. $Dom(f) = \mathbb{R}$, $Ran(f) = (0, \infty)$.

Definition

Logarithmic functions, denoted \log_a , is the inverse of a^x for a > 0, $a \in \mathbb{R}$:

- $\operatorname{Dom}(\log_a) = (0, \infty)$ and $\operatorname{Ran}(\log_a) = \mathbb{R}$.

Roots.

Functions of the form $x^{\frac{1}{n}}$. e.g. $x^{\frac{1}{3}} = \sqrt[3]{x}$.

Constructing new functions from known ones

Combining functions.If two functions f and g have the same domain A, we can construct new functions f+g, f-g and $f\cdot g$ each with domain A. These are defined *pointwise* by the following formulae:

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(f \cdot g)(x) = f(x)g(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
 provided that $g(x) \neq 0$.

Combining functions.If two functions f and g have the **different** domain A and B, we can construct new functions f+g, f-g and $f\cdot g$ each with domain $A\cap B$. For f/g, the domain will be $A\cap B$ and $g(x)\neq 0$.

Constructing new functions from known ones

Example. The domain of $f(x) = \sqrt{x}$ is $A = [0, \infty)$ and the domain of $g(x) = \sqrt{2-x}$ is $B = (-\infty, 2]$. What is the domain of (f+g)(x)?

• $A \cap B = [0, 2]$

Example. $f(x) = x^2$ is $A = [0, \infty)$ and g(x) = x - 1. What is the domain of (f/g)(x)?

• $A \cap B$ and $g(x) \neq 0 \rightarrow x \neq 1$ or $(-\infty, 1) \cup (1, \infty)$

Constructing new functions from known ones

Example. If $f(x) = x^2$ and g(x) = x - 3, find the composite functions $f \circ g$ and $g \circ f$.

•
$$(f \circ g)(x) = f(g(x)) = f(x-3) = (x-3)^2$$

•
$$(g \circ f)(x) = g(f(x)) = g(x^2) = (x^2 - 3)$$

Self-Exercise

$$f(x) = \sqrt{x}$$
; $g(x) = \sqrt{2-x}$. Find $f \circ g$, $g \circ f$ and their domains:

- **1** $f \circ g$: $f(\sqrt{2-x}) = \sqrt[4]{2-x}$
 - Domain: $2-x \ge 0$ or $(-\infty, 2]$
- - Domain: For \sqrt{x} to be defined we must have $x \ge 0$. For $\sqrt{2-\sqrt{x}}$ to be defined we must have $2-\sqrt{x} \ge 0$, that is, $\sqrt{x} \le 2$, or $x \le 4$. Thus we have $0 \le x \le 4$, so the domain of $g \circ f$ is the closed interval [0,4].

Function transformations. Once the shapes of the graphs of basic functions are known, we can alter the shape of the graph by altering the function in simple ways. Suppose that a>0 and c>1.

New graph	Obtained from $y = f(x)$ by
y = f(x) + a	translating the graph upwards by a units
y = f(x) - a	translating the graph downwards by a units
y = f(x + a)	translating the graph to the left by a units
y = f(x - a)	translating the graph to the right by a units
y = cf(x)	stretching the graph vertically by factor c
y=(1/c)f(x)	compressing the graph vertically by factor c
y = f(cx)	compressing the graph horizontally by factor <i>c</i>
y = f(x/c)	stretching the graph horizontally by factor c
y = -f(x)	reflecting the graph about the x-axis
y = f(-x)	reflecting the graph about the y-axis

FIGURE 1 Translating the graph of f

FIGURE 2 Stretching and reflecting the graph of f