量子群と q 差分量子 Weyl 群双有理作用 Quantum groups and quantized q-difference birational Weyl group actions

黒木 玄 (東北大学)
Gen KUROKI (Tohoku University, Japan)

24 September 2010

日本数学会2010年度秋季総合分科会 名古屋大学大学院多元数理科学研究科 2010年9月22-25日

(24 September 2010, Version 1.7)

Quantum birational Weyl group action

$$\begin{array}{ll} \mathsf{GCM}\ [a_{ij}] & d_i a_{ij} = d_j a_{ji},\ \langle h_i, \alpha_i \rangle = a_{ij},\ \alpha_i^\vee = d_i^{-1} \alpha_i \\ \mathsf{Ore}\ \mathsf{domain} & q\text{-Serre:}\ \sum_k (-1)^k {1-a_{ij}\brack k}_{q_i} e_i^{1-a_{ij}-k} e_j e_i^k = 0\ (i\neq j) \\ \mathcal{A}_q = \langle e_i, a_i \rangle_{i\in I} & \mathsf{Parameters}\ a_i = q^{\alpha_i}\colon\ a_i e_j = e_j a_i \\ \downarrow & \downarrow \\ \mathsf{Field}\ \mathsf{of}\ \mathsf{fractions} & \mathcal{K}_q = Q(\mathcal{A}_q) = \{\ ab^{-1}\ |\ a,b \in \mathcal{A}_q,\ b\neq 0\ \} \\ \downarrow & \downarrow \\ e_i^n e_j e_i^{-n} & \mathsf{is}\ \mathsf{an}\ n\text{-independent rational function of}\ q_i^n \\ \downarrow & \downarrow q_i^n \mapsto a_i = q_i^{\alpha_i^\vee} \quad (q_i = q^{d_i}) \\ \mathsf{Weyl}\ \mathsf{group}\ \mathsf{action} & s_i(e_j) = e_i^{\alpha_i^\vee} e_j e_i^{\alpha_i^\vee} \\ \mathsf{on}\ \mathcal{K}_q & s_i(a_j) = a_i^{-a_{ij}} a_j\ (\Longleftrightarrow \ s_i(\alpha_j) = \alpha_j - a_{ij}\alpha_i) \\ \end{array}$$

Both q-difference analogue and canonical quantization of the birational Weyl group action given by Noumi-Yamada math/0012028.

Explicit formulae for $s_i(e_j) = e_i^{\alpha_i^{\vee}} e_j e_i^{\alpha_i^{\vee}}$

- $[x,y]_q := xy qyx$, $q(k) := q_i^{2k+a_{ij}}$ $(i \neq j)$
- Define $(ad_q e_i)^k(e_j)$ for k = 0, 1, 2, ... by $(ad_q e_i)^k(e_j) = [e_i, [\cdots, [e_i, [e_i, e_j]_{q(0)}]_{q(1)} \cdots]_{q(k-2)}]_{q(k-1)}.$
- Then $(\operatorname{ad}_q e_i)^k(e_j) = \sum_{\nu=0}^k (-1)^{\nu} q_i^{\nu(k-1+a_{ij})} \begin{bmatrix} k \\ \nu \end{bmatrix}_{q_i} e_i^{k-\nu} e_j e_i^{\nu}.$
- q-Serre relations $\iff (\operatorname{ad}_q e_i)^k(e_j) = 0 \text{ if } i \neq j \text{ and } k > -a_{ij}.$

$$s_i(e_j) = \begin{cases} e_i & (i = j), \\ \sum_{k=0}^{-a_{ij}} q_i^{(k+a_{ij})(\boldsymbol{\alpha_i^{\vee}} - k)} \begin{bmatrix} \boldsymbol{\alpha_i^{\vee}} \\ k \end{bmatrix}_{q_i} (\operatorname{ad}_q e_i)^k (e_j) e_i^{-k} & (i \neq j). \end{cases}$$

Quantum geometric crystal structure on \mathcal{K}_q

GCM
$$[a_{ij}]$$
 $d_i a_{ij} = d_j a_{ji}$, $\langle h_i, \alpha_i \rangle = a_{ij}$, $\alpha_i^{\vee} = d_i^{-1} \alpha_i$
Ore domain q -Serre: $\sum_k (-1)^k {1-a_{ij} \brack k}_{q_i} e_i^{1-a_{ij}-k} e_j e_i^k = 0 \ (i \neq j)$
 $\mathcal{A}_q = \langle e_i, a_i \rangle_{i \in I}$ Parameters $a_i = q^{\alpha_i}$: $a_i e_j = e_j a_i$

Field of fractions

$$\begin{array}{c}
\downarrow \\
e_i^n e_j e_i^{-n} \\
\downarrow
\end{array}$$

$$\mathcal{K}_q = Q(\mathcal{A}_q) = \{ ab^{-1} \mid a, b \in \mathcal{A}_q, b \neq 0 \}$$

is an n-independent rational function of q_i^n

$$\downarrow q_i^n \mapsto t$$

Quantum geometric $\mathbf{e}_i^t(e_j) = e_i^n e_j e_i^{-n}|_{q_i^n \mapsto t}$ crystal str. on \mathcal{K}_q $\mathbf{e}_i^t(a_j) = t^{-a_{ij}}a_j$

The Verma relations for $\mathbf{e}_i^t \implies \mathsf{Weyl}\ \mathsf{group}\ \mathsf{action}\ s_i = \mathbf{e}_i^{a_i}$

Generalization

$$\begin{array}{ll} \text{q-Serre relations} & \sum_k (-1)^k {1-a_{ij}\brack k}_{q_i} e_i^{1-a_{ij}-k} e_j e_i^k = 0 \ (i\neq j) \\ \downarrow & \\ \text{Verma relations} & e_i^k e_j^{k+l} e_i^l = e_j^l e_i^{k+l} e_j^k \ \text{if $a_{ij}a_{ji}=1$, etc.} \\ \downarrow & \\ \text{Assumption} & e_i^n x e_i^{-n} \ \text{is a rational fucntion of q_i^n.} \\ \downarrow & \\ \downarrow & \\ \text{Quantum} & e_i^t (x) = e_i^n x e_i^{-n}|_{q_i^n \mapsto t} \\ \text{geomtric crystal} & e_i^t (a_j) = t^{-a_{ij}} a_j \quad \text{(action on parameters)} \\ \downarrow & \\ \text{Weyl group action} & s_i = e_i^{\alpha_i^\vee} \quad (a_i = q_i^{\alpha_i^\vee}) \\ \end{array}$$

Actions of the lattice parts of affine Weyl groups $\rightarrow q$ -difference quantum Painlevé systems

Quantum Schubert cell

Reduced expression of $w \in W$: $w = s_{i_1} \cdots s_{i_N}$, $\mathbf{i} = (i_1, \dots, i_N)$.

$$\mathcal{A}_{\mathbf{i}} = \langle x_{\nu}, a_{i} \rangle$$
, $\mathcal{K}_{\mathbf{i}} = Q(\mathcal{A}_{q}) = \{ ab^{-1} \mid a, b \in \mathcal{A}_{\mathbf{i}}, b \neq 0 \}$

 $\mathcal{A}_{\mathbf{i}} = \langle x_{\nu}, a_{i} \rangle, \ \mathcal{K}_{\mathbf{i}} = Q(\mathcal{A}_{q}) = \{ \ ab^{-1} \ | \ a,b \in \mathcal{A}_{\mathbf{i}}, \ b \neq 0 \}$ Defining relations: $x_{\nu}x_{\mu} = q_{\mu\nu}x_{\mu}x_{\nu} \quad (\mu < \nu), \qquad a_{i} \in \text{center.}$

$$q_{\mu\nu} := q^{b_{i\mu i\nu}}, \ b_{ij} := d_i a_{ij}.$$

$$(x_1, \dots, x_N) \mapsto e_{q_{i_1}}(x_1 F_{i_1}) \cdots e_{q_{i_N}}(x_N F_{i_N})$$

is quantization of a positive structure of a Schubert cell.

$$\downarrow$$

$$e_i := \sum_{i_{\nu}=i} x_{\nu} \qquad \begin{cases} q\text{-Serre relations for } e_i, \\ e_i^n x_{\nu} e_i^{-n} \text{ is a rational function of } q_i^n. \end{cases}$$

Quantum geometric crystal structure on \mathcal{K}_{i} .

Explicit formulae for $\mathbf{e}_i^t(x_{\nu})$

- $X := \sum_{i_{\mu}=i, \; \mu < \nu} x_{\mu}$, $Y := \sum_{i_{\mu}=i, \; \mu > \nu} x_{\mu}$.
- Then $e_i = X + \delta_{i\nu i} x_{\nu} + Y$.
- If $i_{\nu}=i$, then

$$\mathbf{e}_{i}^{t}(x_{\nu}) = t^{-2}x_{\nu} \frac{1 + q_{i}^{2}(x_{\nu} + q_{i}^{2}Y)X^{-1}}{1 + q_{i}^{2}t^{-2}(x_{\nu} + q_{i}^{2}Y)X^{-1}} \frac{1 + q_{i}^{2}Y(X + x_{\nu})^{-1}}{1 + q_{i}^{2}t^{-2}Y(X + x_{\nu})^{-1}},$$

• If $i_{\nu} \neq i$, then $-a_{ii_{\nu}} \geq 0$ and

$$\mathbf{e}_{i}^{t}(x_{\nu}) = t^{-a_{ii\nu}} x_{\nu} \prod_{k=1}^{-a_{ii\nu}} \frac{1 + q_{i}^{-2(k-1)} t^{-2} Y X^{-1}}{1 + q_{i}^{-2(k-1)} Y X^{-1}}.$$

Remarks

- All the expressions for $\mathbf{e}_i^t(x_\nu)$ are subtraction-free.
 - $\mathcal{K}_{\mathbf{i}}$ depends only on $w \in W$ up to canonical **positive** isomorphisms.
 - ↓ generalization

Various quantum positive geometric crystals

- Various positive geometric crystals
 - ↓ ultra-discretization

Various crystals

- φ_i and ε_i .
 - $\mathbf{e}_i^t(e_i) = e_i, \quad \mathbf{e}_i^t(q^{\alpha_i}) = t^{-2}q^{\alpha_i}.$
 - \circ $\varepsilon_i := \operatorname{const.} q^{\alpha_i} e_i, \quad \varphi_i := \operatorname{const.} q^{-\alpha_i} e_i. \quad (\varepsilon_i = q^{2\alpha_i} \varphi_i)$
 - Then $\mathbf{e}_i^t(\varphi_i) = t^2 \varphi_i$, $\mathbf{e}_i^t(\varepsilon_i) = t^{-2} \varepsilon_i$.
 - \circ quantum t^{-2} , $q^{2\alpha_i} \longleftrightarrow$ classical "c", " α_i "

Files

- Old version of this file —>
 http://www.math.tohoku.ac.jp/~kuroki/LaTeX/20100924_Nagoya.pdf
- Quantum M-matrix for A_{∞} case $\longrightarrow \S1.6$ of http://www.math.tohoku.ac.jp/~kuroki/LaTeX/20100630_Osaka.pdf
- Quantization of the birational action of $W(A_{m-1}^{(1)}) \times W(A_{n-1}^{(1)})$ given by Kajiwara-Noumi-Yamada nlin/0106029 for mutually prime m,n \rightarrow http://www.math.tohoku.ac.jp/~kuroki/LaTeX/20100630_WxW.pdf
- ullet Theory of quantum geometric crystals \longrightarrow in preparation

For more details see the following pages.

Symmetrizable GCM and root datum

- Let $A = [a_{ij}]_{i,j \in I}$ be a symmetrizable GCM:
- $a_{ii} = 2$, $a_{ij} \leq 0 \ (i \neq j)$, $a_{ij} = 0 \iff a_{ji} = 0$;
- $o d_i a_{ij} = d_j a_{ji}, d_i \in \mathbb{Z}_{>0}.$
- Let $(\langle , \rangle : Q^{\vee} \times P \to \mathbb{Z}, \{h_i\}_{i \in I} \subset Q^{\vee}, \{\alpha_i\}_{i \in I} \subset P)$ be a root datum:
- finitely generated free \mathbb{Z} -modules Q^{\vee} , P and perfect bilinear pairing $\langle , \rangle : Q^{\vee} \times P \to \mathbb{Z}$.
- $\{h_i\}_{i\in I}\subset Q^{\vee}$ is called a set of simple coroots. Q^{\vee} is called a coroot lattice.
- $\{\alpha_i\}_{i\in I}\subset P$ is called a set of simple roots. P is called a weight lattice.

The group algebra $\mathbb{F}[q^P]$ of the weight lattice P

- Base field $\mathbb{F} := \mathbb{Q}(q)$.
- $\mathbb{F}[q^P] := \bigoplus_{\lambda \in P} \mathbb{F}q^{\lambda}$, $q^{\lambda}q^{\mu} = q^{\lambda + \mu}$ $(\lambda, \mu \in P)$.
- $[x]_q := \frac{q^x q^{-x}}{q q^{-1}}, \quad [k]_q! := [1]_q[2]_q \cdots [k]_q \quad (k \in \mathbb{Z}_{\geq 0}).$
- $\begin{bmatrix} x \\ k \end{bmatrix}_q := \frac{[x]_q[x-1]_q\cdots[x-k+1]_q}{[k]_q!}$ (q-binomial coefficients).
- $q_i := q^{d_i}$, $\alpha_i^{\vee} := d_i^{-1}\alpha_i$ (= a simple coroot).

Remark.
$$q^{\pm d_i \alpha_i^{\vee}} = q^{\pm \alpha_i} \in \mathbb{F}[q^P] \implies \begin{bmatrix} \alpha_i^{\vee} \\ k \end{bmatrix}_{q_i} \in \mathbb{F}[q^P].$$

Quantum algebra $\mathcal{A}_q = \langle q^{\lambda}, e_i \mid \lambda \in P, i \in I \rangle$

Assumptions.

- (1) $\mathcal{A}_{q,0}$ is an associative algebra over \mathbb{F} generated by $e_i \neq 0$ $(i \in I)$.
- (2) *q*-Serre relations: $\sum_{k=0}^{1-a_{ij}} (-1)^k \begin{bmatrix} 1-a_{ij} \\ k \end{bmatrix}_{q_i} e_i^{1-a_{ij}-k} e_j e_i^k = 0 \quad (i \neq j).$
- (3) $\mathcal{A}_q := \mathbb{F}[q^P] \otimes_{\mathbb{F}} \mathcal{A}_{q,0}$ is an Ore domain.

Identification. $q^{\lambda} = q^{\lambda} \otimes 1 \in \mathcal{A}_q$, $e_i = 1 \otimes e_i \in \mathcal{A}_q$.

Remark. $q^{\lambda}e_i = e_i q^{\lambda}$ in \mathcal{A}_q .

• $Q(\mathcal{A}_q) := \{ \text{the quotient skew field of } \mathcal{A}_q \} = \{ as^{-1} \mid a, s \in \mathcal{A}_q, \ s \neq 0 \}.$

Example. The root datum is of finite or affine type $\implies \mathcal{A}_{q,0} = U_q(\mathfrak{n}_+)$ satisfies all the assumptions above.

Iterated adjoint by e_i

- Assume $i \neq j$.
- $[x,y]_q := xy qyx$, $q(k) := q_i^{2k+a_{ij}}$
- Define $(\operatorname{ad}_q e_i)^k(e_j)$ for $k = 0, 1, 2, \ldots$ by

$$(\operatorname{ad}_{q} e_{i})^{0}(e_{j}) = e_{j},$$

$$(\operatorname{ad}_{q} e_{i})^{1}(e_{j}) = [e_{i}, e_{j}]_{q(0)},$$

$$(\operatorname{ad}_{q} e_{i})^{2}(e_{j}) = [e_{i}, [e_{i}, e_{j}]_{q(0)}]_{q(1)}, \dots,$$

$$(\operatorname{ad}_{q} e_{i})^{k}(e_{j}) = [e_{i}, [\cdots, [e_{i}, [e_{i}, e_{j}]_{q(0)}]_{q(1)}, \cdots]_{q(k-2)}]_{q(k-1)}.$$

- Then $(\operatorname{ad}_q e_i)^k(e_j) = \sum_{\nu=0}^k (-1)^{\nu} q_i^{\nu(k-1+a_{ij})} \begin{bmatrix} k \\ \nu \end{bmatrix}_{q_i} e_i^{k-\nu} e_j e_i^{\nu}$.
- q-Serre relations \iff $(\operatorname{ad}_q e_i)^k(e_j) = 0$ if $i \neq j$ and $k > -a_{ij}$.

Conjugation by powers of e_i

• For $n = 0, 1, 2, \ldots$ $e_i^n e_j e_i^{-n} = \begin{cases} e_i \\ \sum_{k=0}^{-a_{ij}} q_i^{(k+a_{ij})(\mathbf{n}-k)} \begin{bmatrix} \mathbf{n} \\ k \end{bmatrix}_{q_i} (\operatorname{ad}_q e_i)^k (e_j) e_i^{-k} & (i \neq j). \end{cases}$

• Define
$$e_i^{\alpha_i^\vee} e_j e_i^{-\alpha_i^\vee} \in Q(\mathcal{A}_q)$$
 by
$$e_i^{\alpha_i^\vee} e_j e_i^{-\alpha_i^\vee} = \begin{cases} e_i & (i=j), \\ \sum_{k=0}^{-a_{ij}} q_i^{(k+a_{ij})(\alpha_i^\vee - k)} \begin{bmatrix} \alpha_i^\vee \\ k \end{bmatrix}_{q_i} (\operatorname{ad}_q e_i)^k (e_j) e_i^{-k} & (i \neq j). \end{cases}$$

• $x\mapsto e_i^nxe_i^{-n}$ is an algebra automorphism of $Q(\mathcal{A}_q)$ $\implies e_i\mapsto e_i^{\alpha_i^\vee}e_ie_i^{-\alpha_i^\vee}$ is uniquely extended to an alg. autom. of $Q(\mathcal{A}_q)$.

Qauntized birational Weyl group action

Theorem 1. The algebra automorphim s_i of $Q(\mathcal{A}_q)$ can be defined by

$$s_i(e_j) = e_i^{\alpha_i^{\vee}} e_j e_i^{-\alpha_i^{\vee}} \quad (i \in I), \qquad s_i(q^{\lambda}) = q^{\lambda - \langle h_i, \lambda \rangle \alpha_i} \quad (\lambda \in P).$$

Then $\{s_i\}_{i\in I}$ satisfies the defining relations of the Weyl group W:

$$s_i s_j = s_j s_i \ (a_{ij} a_{ji} = 0), \quad s_i s_j s_i = s_j s_i s_j \ (a_{ij} a_{ji} = 1),$$

 $s_i s_j s_i s_j = s_j s_i s_j s_i \ (a_{ij} a_{ji} = 2),$
 $s_i s_j s_i s_j s_i s_j s_i s_j s_i s_j s_i \ (a_{ij} a_{ji} = 3), \quad s_i^2 = 1.$

Thus we obtain the action of the Weyl group W on $Q(\mathcal{A}_q)$.

Remark. This is a q-difference version of quantization of the birational Weyl group action given by Noumi-Yamada math/0012028.

The Verma relations of $\{e_i\}_{i\in I}$

- (Lusztig's book (1993)) q-Serre relations of $\{e_i\}_{i\in I}$ implies
 - $(a_{ij}, a_{ji}) = (0, 0) \implies e_i^k e_j^l = e_j^l e_i^k$
- $\circ (a_{ij}, a_{ji}) = (-1, -1) \implies e_i^k e_j^{k+l} e_i^l = e_j^l e_i^{k+l} e_j^k$
- $(a_{ij}, a_{ji}) = (-1, -2) \implies e_i^k e_j^{2k+l} e_i^{k+l} e_j^l = e_j^l e_i^{k+l} e_j^{2k+l} e_i^k,$
- $(a_{ij}, a_{ji}) = (-1, -3)$ $\implies e_i^k e_j^{3k+l} e_i^{2k+l} e_j^{3k+2l} e_i^{k+l} e_j^l = e_j^l e_i^{k+l} e_j^{3k+2l} e_i^{2k+l} e_j^{3k+l} e_i^k.$

These relations are called the Verma relations.

- The Verma relations $\implies \{s_i\}_{i\in I}$ satisfies the defining relation of the Weyl group.
- For details see arXiv:0808.2604.

Quantum geometric crystal structure on \mathcal{A}_q

- The algebra homomorphism $\mathbf{e}_i^t: Q(\mathcal{A}_q) \to Q(\mathcal{A}_q)(t)$ is defined by $\mathbf{e}_i^t(e_j) = e_i^n e_j e_i^{-n} \big|_{q_i^n \mapsto t}$ $(j \in I)$, $\mathbf{e}_i^t(q^{\lambda}) = t^{-\langle h_i, \lambda \rangle} q^{\lambda}$ $(\lambda \in P)$.
- Then $\mathbf{e}_i^1 = \mathrm{id}_{Q(\mathcal{A}_q)}$, $\mathbf{e}_i^{t_1} \mathbf{e}_i^{t_2} = \mathbf{e}_i^{t_1 t_2} : Q(\mathcal{A}_q) \to Q(\mathcal{A}_q)(t_1, t_2)$.
- Furthermore $\{\mathbf{e}_i^t\}_{i\in I}$ satisfies the Verma relations:

Definition of quantum geometric crystal

Definition. $(K, \{e_i^t\}_{i \in I})$ is called a quantum geometric crystal if it satisfies the following conditions:

- \circ \mathcal{K} is a skew field.
- ullet \mathbf{e}_i^t is an algebra homomorphism $\mathcal{K} o \mathcal{K}(t)$.
- \mathbf{e}_i^t is regular at t=1. $\mathbf{e}_i^1=\mathrm{id}_{\mathcal{K}}$, $\mathbf{e}_i^{t_1}\mathbf{e}_i^{t_2}=\mathbf{e}_i^{t_1t_2}$.
- $\circ \{e_i^t\}_{i \in I}$ satisfies the Verma relations.
- \circ $\mathbb{F}[q^P]$ is a subalgebra of the center of \mathcal{K} .
- ullet \mathbf{e}_i^t is regular at $t=q^\lambda$ for any $\lambda\in P$.
- $\mathbf{e}_i^t(q^{\lambda}) = t^{-\langle h_i, \lambda \rangle} q^{\lambda} \text{ for } \lambda \in P.$

Remark. For the classical case, see Berenstein-Kazhdan math/9912105.

Proposition 2. $(Q(\mathcal{A}_q), \{\mathbf{e}_i^t\}_{i \in I})$ is a quantum geometric crystal.

Weyl group action on a quantum geometric crystal

Proposition 3.

Let $(\mathcal{K}, \{\mathbf{e}_i^t\}_{i \in I})$ be a quantum geometric crystal.

Put
$$a_i = q^{\alpha_i} = q_i^{\alpha_i^{\vee}}$$
 and $s_i(x) = \mathbf{e}_i^{a_i}(x)$ for $i \in I$, $x \in \mathcal{K}$.

Then s_i is an algebra automorphism of $\mathcal K$ with

$$s_i(q^{\lambda}) = q^{\lambda - \langle h_i, \lambda \rangle \alpha_i} = q^{s_i(\lambda)} \quad \text{ for } \lambda \in P.$$

Moreover $\{s_i\}_{i\in I}$ satisfies the defining relations of the Weyl group W and hence generates the action of W on \mathcal{K} .

• Propositions 2 and 3 \Longrightarrow Theorem 1.

Quantum Schubert cell

- $b_{ij} := d_i a_{ij}$. Then $b_{ji} = b_{ij}$ and $q^{b_{ij}} = q_i^{a_{ij}}$.
- $\mathbf{i} := (i_1, i_2, \dots, i_N) \in I^N$.
- $\mathcal{A}_{\mathbf{i},0} :=$ the associative algebra over $\mathbb{F} = \mathbb{Q}(q)$ generated by $\{x_{\nu}\}_{\nu=1}^{N}$ with defining relations: $x_{\nu}x_{\mu} = q^{b_{i\mu}i_{\nu}}x_{\mu}x_{\nu} \quad (\mu < \nu).$
- $\mathcal{A}_{\mathbf{i}} := \mathbb{F}[q^P] \otimes_{\mathbb{F}} \mathcal{A}_{\mathbf{i},0} = \langle q^{\lambda}, x_{\nu} \mid \lambda \in P, \ 1 \leq \nu \leq N \rangle.$ (Identification. $q^{\lambda} \otimes 1 = q^{\lambda}, \ 1 \otimes x_{\nu} = x_{\nu}$)
- Then A_i is an Ore domain.
- If $w = s_{i_1} s_{i_2} \cdots s_{i_N}$ is a reduced expression of $w \in W$, then $Q(\mathcal{A}_{0,\mathbf{i}})$ depends only on w (Berenstein q-alg/9605016) and is the rational function field of a quantum Schubert cell.

Quantum geometric crystal structure on \mathcal{A}_i

- $e_i := \sum_{i_{\nu}=i} x_{\nu}$. Then $\{e_i\}_{i\in I}$ satisfies the q-Serre relations.
- Assume $\{i_{\nu} \mid \nu = 1, \dots, N\} = I$. (\longleftarrow inessential assumtion) Then $e_i \neq 0$ for all $i \in I$.

Theorem 4. (quant. geom. crys. str. on A_i)

The algebra hom. $\mathbf{e}_i^t: Q(\mathcal{A}_i) \to Q(\mathcal{A}_i)(t)$ can be defined by

$$\mathbf{e}_i^t(x_\nu) = e_i^n x_\nu e_i^{-n} \big|_{q_i^n \mapsto t}, \quad \mathbf{e}_i(q^\lambda) = t^{-\langle h_i, \lambda \rangle} q^\lambda.$$

Then $(Q(A_i), \{e_i\}_{i \in I})$ is a quantum geometric crystal.

Remark. An induction on n = 0, 1, 2, ... proves that $e_i^n x_\nu e_i^{-n}$ is an n-independent rational function of q_i^n .

Explicit formulae \longrightarrow Next page

Explicit formulae for $\mathbf{e}_i^t(x_{\nu})$ and their positivity

- $X := \sum_{i_{\mu}=i, \; \mu < \nu} x_{\mu}$, $Y := \sum_{i_{\mu}=i, \; \mu > \nu} x_{\mu}$.
- Then $e_i = X + \delta_{i\nu i} x_{\nu} + Y$.
- If $i_{\nu}=i$, then

$$\mathbf{e}_{i}^{t}(x_{\nu}) = t^{-2}x_{\nu} \frac{1 + q_{i}^{2}(x_{\nu} + q_{i}^{2}Y)X^{-1}}{1 + q_{i}^{2}t^{-2}(x_{\nu} + q_{i}^{2}Y)X^{-1}} \frac{1 + q_{i}^{2}Y(X + x_{\nu})^{-1}}{1 + q_{i}^{2}t^{-2}Y(X + x_{\nu})^{-1}},$$

• If $i_{\nu} \neq i$, then $-a_{ii_{\nu}} \geq 0$ and

$$\mathbf{e}_{i}^{t}(x_{\nu}) = t^{-a_{ii\nu}} x_{\nu} \prod_{k=1}^{-a_{ii\nu}} \frac{1 + q_{i}^{-2(k-1)} t^{-2} Y X^{-1}}{1 + q_{i}^{-2(k-1)} Y X^{-1}}.$$

Positivity. All the formulae for $\mathbf{e}_i^t(x_{\nu})$ are subtraction-free.

Commentaries

- φ_i and ε_i for \mathcal{A}_q and \mathcal{A}_i cases.
 - $\mathbf{e}_i^t(e_i) = e_i, \quad \mathbf{e}_i^t(q^{\alpha_i}) = t^{-2}q^{\alpha_i}.$
 - \circ $\varepsilon_i := \operatorname{const.} q^{\alpha_i} e_i, \quad \varphi_i := \operatorname{const.} q^{-\alpha_i} e_i. \quad (\varepsilon_i = q^{2\alpha_i} \varphi_i)$
 - Then $\mathbf{e}_i^t(\varphi_i) = t^2 \varphi_i$, $\mathbf{e}_i^t(\varepsilon_i) = t^{-2} \varepsilon_i$.
 - \circ quantum t^{-2} , $q^{2\alpha_i} \longleftrightarrow$ classical "c", " α_i "
- Classical limit of $\mathcal{A}_{q,0}$:

Poisson subvariety $X \subset U_{-}$.

 $(U_{-} = \exp \mathfrak{n}_{-}, \text{ the lower maximal unipotent subgroup pf } G)$

- Classical limit of $A_{i,0}$:
 - $X_{\mathbf{i}} = \{(x_1, \dots, x_N)\} \rightarrow \{y_{i_1}(x_1) \cdots y_{i_N}(x_N)\} \subset U_-.$ $(y_i(x) = \exp(xF_i), F_i = \text{(the lower Chevalley generator of }\mathfrak{g}))$

Files

- This file →
 http://www.math.tohoku.ac.jp/~kuroki/LaTeX/20100924_Nagoya.pdf
- Quantum M-matrix for A_{∞} case $\longrightarrow \S1.6$ of http://www.math.tohoku.ac.jp/~kuroki/LaTeX/20100630_Osaka.pdf
- Quantization of the birational action of $W(A_{m-1}^{(1)}) \times W(A_{n-1}^{(1)})$ given by Kajiwara-Noumi-Yamada nlin/0106029 for mutually prime m,n \rightarrow http://www.math.tohoku.ac.jp/~kuroki/LaTeX/20100630_WxW.pdf
- ullet Theory of quantum geometric crystals \longrightarrow in preparation