Legendre Decomposition for Tensors

Mahito Sugiyama (National Institute of Informatics, JST PRESTO), Hiroyuki Nakahara (RIKEN CBS), Koji Tsuda (The University of Tokyo, NIMS, RIKEN AIP)

The 32nd Annual Conference on Neural Information Processing Systems (NeurIPS 2018), December 2–8, 2018

Our Approach

Summary

- We present Legendre decomposition for tensors
 - A new nonnegative decomposition method
 - A tensor is factorized into a multiplicative combination of parameters
- Our proposal is theoretically supported by information geometry
 - The reconstructed tensor is unique and always minimizes the KL divergence from an input tensor

Properties of Legendre Decomposition

- Given $\mathcal{P} \in \mathbb{R}^{l_1 \times l_2 \times \cdots \times l_N}_{\geq 0}$, Legendre decomposition finds \mathcal{Q} , where
- (i) Q always exists, (ii) Q is unique, and
- (iii) Q is the best approximation in the sense of the KL divergence:

$$Q = \operatorname{argmin}_{\mathcal{R} \in \mathcal{S}_{\mathcal{B}}} D_{\mathsf{KL}}(\mathcal{P}, \mathcal{R}),$$

$$S_B = \left\{ \mathcal{R} \in \mathbb{R}_{\geq 0}^{l_1 \times l_2 \times \cdots \times l_N} \mid \mathcal{R} \text{ is fully decomposable with } B \right\}$$

Legendre Decomposition

Reconstructed matrix:

Input matrix:

Information Geometry

- Möbius function $\mu: S \times S \to \mathbb{Z}$ $\mu(x,y) = \begin{cases} 1 & \text{if } x = y, \\ -\sum_{x \leq s < y} \mu(x,s) & \text{if } x < y, \\ 0 & \text{otherwise.} \end{cases}$
 - We have $\zeta \mu = I$, that is; $\sum_{s \in S} \zeta(s, y) \mu(x, s) = \sum_{x \le s \le y} \mu(x, s) = \delta_{xy}$

Experiments on MNIST.

