Wissenschaftliche Erkenntnis, Reproduzierbarkeit und praktische Lösungen in der Akustik

Hagen Wierstorf ¹ Sascha Spors² Matthias Geier²

¹Filmuniversität Babelsberg KONRAD WOLF

²Institut für Nachrichtentechnik, Universität Rostock

Wissenschaftliche Methode

Deduktion:

Dachs ist ein Säugetier Dieter ist ein Dachs ⇒ Dieter ist ein Säugetier

Induktion:

Medikament hatte keine Nebenwirkung an 100 000 getesteten Menschen.

⇒ Kann sicher verwendet werden.

■ Computer Simulation: ^{1,2}

Numerik und große Datensätze.

Noch keine etablierte Verifizierbarkeit.

¹Donoho, et al. (2009), Computing in Science & Engineering, 10.1109/MCSE.2009.15

²Vandewalle, et al. (2009), IEEE Signal Processing Magazine, 10.1109/MSP.2009.932122

Wann ist etwas Wissenschaft?

Überprüfung einer Aussage durch Falsifizierbarkeit

If it disagrees with experiment, it's wrong. In that simple statement is the key to science.

R. Feynman³

- Nicht automatisch Widerlegung einer Theorie (Gran Sasso, 2011)
- Kann als Abgrenzung von Pseudowissenschaften verwendet werden (z.B. Astrologie)
- Reproduzierbarkeit von Ergebnissen wichtig

³Zitiert nach Lewens (2015), *The Meaning of Science*, Pelican

Reproduzierbarkeitskrise

- Psychologie: 47% reproduzierbare Studien $(N = 100)^4$
- Pharmazie: 21% reproduzierbare Studien (N = 120)^{5,6}
- Genetik: 44% reproduzierbare Datenanalyse $(N = 18)^7$
- Reproducibility Project: Cancer Biology⁸

⁴Open Science Collaboration (2015), Science, 10.1126/science.aac4716

⁵Prinz, et al. (2011), *Nature Reviews Drug Discovery*, 10.1038/nrd3439-c1

⁶Begley & Ellis (2012), *Nature*, 10.1038/483531a

⁷ Ioannidis, et al. (2009), *Nature Genetics*, 10.1038/ng.295

⁸ Errington, et al. (2017), Open Science Framework, osf.io/e81xl/

Gründe für Nicht-Reproduzierbarkeit

DatenmelkenSuchen nach signifikanten Ergebnissen

Positiver Bias Nur positive Ergebnisse werden publiziert

Teilnehmerzahl Zu wenig statistische Power für Effektstärke

FehlerTechnische oder
Programmierfehler

Unklare MethodeMethode ungenügend beschrieben

Schlechtes Design Experiment hat systematische Fehler

Auswege

Open Science

Daten, Software und Methoden

Pre-Registrierung

des Versuches (und Review)

Zusammenarbeit

unterschiedlicher Arbeitsgruppen

Post-publication review

Diskussion und Verbesserungen

Verzicht auf p-Werte

Effektstärke, Konfidenzinterval

Probleme des *p***-Wertes**

- Aussagekraft abhängig von statistischer Power⁹
- Aussagekraft abhängig von Anzahl getesteter Hypothesen⁹
- Wahrscheinlichkeit eines echten Effektes hängt davon ab wie wahrscheinlich die Hypothese war¹⁰
- Schlechte Reproduzierbarkeit auch bei guter statistischer Power¹¹

Lösungsvorschläge

- Effektstärke und Konfidenzinterval als Alternative¹¹
- Kumulativ vorgehen (Meta-Analysen)¹²

⁹ Ioannidis (2005), PLoS Med, 10.1371/journal.pmed.0020124

¹⁰Nuzzo (2014), Nature, 10.1038/506150a

¹¹Halsey, et al. (2015), *Nature Methods*, 10.1038/nmeth.3288

¹²Cumming (2014), Psychological Science, 10.1177/0956797613504966

Basierend auf The Academy of Medical Sciences (2015), CC BY 4.0, apo.org.au/node/58335

Basierend auf The Academy of Medical Sciences (2015), CC BY 4.0, apo.org.au/node/58335

Basierend auf The Academy of Medical Sciences (2015), CC BY 4.0, apo.org.au/node/58335

Beispiel: Open Science in der Akustik

Daten

- Daten-Repository mit doi, z.B. zenodo.org
- Noch nicht perfekt (Versionierung, Datengröße)

Beispiel: Open Science in der Akustik

Software

- Software-Repository, z.B. auf github.com
- Software am besten allgemein und mit Partnern entwickeln

Beispiel: Open Science in der Akustik

Methoden

- Skripte für statistische Auswertung veröffentlichen
- Code für einzelne Abbildung veröffentlichen

Publizieren in der Zukunft

Code und Daten in Publikation verlinkt¹³

Figure 3.2: Amplitudes of a synthesized point/focused source minus the amplitudes of corresponding real point source located at ys for three fixed listening positions. The secondary source distribution is located on the x-axis as indicated by the black dot. For positions of the synthesized source with negative y_s values the corresponding focused source models were applied. The used driving functions are indicated within the graphs. For the 2.5D case, two different driving functions are shown whereby the dark blue one is used as default in this thesis. Parameters: $\mathbf{x}_{ref} = (0, -2, 0) \, \text{m}, f = 1 \, \text{kHz}.$

¹³Wierstorf (2014), Dissertation, 10.14279/depositonce-4310

Publizieren in der Zukunft

Code und Daten in Publikation eingebettet¹⁴

¹⁴Spors (2016), Digital Signal Processing - Lecture notes, github.com

Zusammenfassung

Open Science

Daten, Software und Methoden

Pre-Registrierung

des Versuches (und Review)

Zusammenarbeit

unterschiedlicher Arbeitsgruppen

Post-publication review

Diskussion und Verbesserungen

Verzicht auf p-Werte

Effektstärke, Konfidenzinterval

