№6,7. Уравнения и значения выражений. Теория

Степени

Определение степени

Выражение a^n называется степенью, число a — основанием степени, n показателем степени. На самом деле запись a^n означает, что мы умножаем число a само на себя n раз, то есть

$$a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ pas}}$$

Например,

$$5^2 = 5 \cdot 5 = 25$$
 или $\left(\frac{1}{2}\right)^4 = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{16}.$

Таблица наиболее часто встречающихся степеней

$2^2 = 4$	$3^2 = 9$	$4^2 = 16$	$5^2 = 25$	$6^2 = 36$
$2^3 = 8$	$3^3 = 27$	$4^3 = 64$	$5^3 = 125$	$6^3 = 216$
$2^4 = 16$	$3^4 = 81$	$4^4 = 256$	$5^4 = 625$	
$2^5 = 32$	$3^5 = 243$	1/5		
$2^6 = 64$	$3^6 = 729$	1.1500		
$2^7 = 128$				
$2^8 = 256$				20
$2^9 = 512$				0.01
$2^{10} = 1024$				200
	4 2 11 1			

Свойства степеней

• При перемножении степеней с одинаковым основанием показатели складываются, то есть

$$a^x \cdot a^y = a^{x+y}.$$

Например,

$$2^2 \cdot 2^3 = 2^{2+3} = 2^5 = 32.$$

Так происходит потому, что $2^2 = 2 \cdot 2$, а $2^3 = 2 \cdot 2 \cdot 2$. Таким образом,

$$2^2 \cdot 2^3 = (2 \cdot 2) \cdot (2 \cdot 2 \cdot 2) = 2^5 = 32.$$

• При делении степеней с одинаковым основанием показатели вычитаются, то есть

$$\frac{a^x}{a^y} = a^{x-y}$$

Например,

$$\frac{3^6}{3^4} = 3^{6-4} = 3^2 = 9.$$

Опять же, так происходит потому, что

$$\frac{3^6}{3^4} = \frac{3 \cdot 3 \cdot \cancel{3} \cdot \cancel{3} \cdot \cancel{3} \cdot \cancel{3}}{\cancel{3} \cdot \cancel{3} \cdot \cancel{3} \cdot \cancel{3}} = 3 \cdot 3 = 9.$$

А что будет, если мы будем делить 3^4 на 3^6 ? По свойству мы получим

$$\frac{3^4}{3^6} = 3^{4-6} = 3^{-2}.$$

Но мы пока не знаем что делать, если показатель степени отрицателен. Распишем по определению:

$$\frac{3^4}{3^6} = \frac{\cancel{3} \cdot \cancel{3} \cdot \cancel{3} \cdot \cancel{3} \cdot \cancel{3}}{3 \cdot 3 \cdot \cancel{3} \cdot \cancel{3} \cdot \cancel{3} \cdot \cancel{3} \cdot \cancel{3}} = \frac{1}{3 \cdot 3} = \frac{1}{9}.$$

Таким образом, мы получили следующее свойство.

• $a^{-x} = \frac{1}{a^x}$. Haпример,

$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}.$$

Значит,

$$\frac{3^4}{3^6} = 3^{-2} = \frac{1}{3^2} = \frac{1}{9}.$$

• При возведении степени в степень показатели перемножаются, то есть

$$(a^x)^y = a^{x \cdot y}.$$

Например

$$(2^3)^2 = 2^{3 \cdot 2} = 2^6 = 64;$$

$$(2^3)^5 = 2^{3 \cdot 5} = 2^{15}.$$

ullet $a^1=a,\ a^0=1.$ Об этом свойстве просто договорились, чтобы не было противоречий в предыдущих свойствах. Например,

$$\frac{a^2}{a^2} = \frac{a \cdot a}{a \cdot a} = 1$$
, Ho in $1 = \frac{a^2}{a^2} = a^{2-2} = a^0$.

• Степень произведения равна произведению степеней, то есть

$$(a \cdot b)^x = a^x \cdot b^x$$

Например,

оизведению степеней, то есть
$$(a\cdot b)^x = a^x\cdot b^x.$$

$$6^3 = (2\cdot 3)^3 = 2^3\cdot 3^3 = 8\cdot 27 = 216.$$
 му степеней, то есть
$$\left(\frac{a}{a}\right)^x = \frac{a^x}{a}.$$

• Степень частного равна частному степеней, то есть

$$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}.$$

Например,

$$\left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{8}{27}.$$

Логарифмы

Понятие логарифма тесно связано с понятием степени, поэтому всюду ниже мы будем активно пользоваться следующими базовыми свойствами степеней:

- $\bullet \ a^x \cdot a^y = a^{x+y}$
- $\bullet \ \frac{a^x}{a^y} = a^{x-y};$
- $\bullet \ (a^x)^y = a^{xy}.$

Определение логарифма

Логарифм по основанию a от b — это число t, которое показывает, в какую степень нужно возвести a, чтобы получить b. Таким образом, для $a>0, a\neq 1$ и b>0 выполняется основное логарифмическое тождество:

$$a^t = b \Leftrightarrow \log_a b = t.$$

Здесь a называется основанием логарифма, b — аргументом логарифма.

Таким образом, значение логарифма — это просто соответствующий показатель степени. Рассмотрим уравнение

$$2^x = 8.$$

Очевидно, что его решением является число 3. Но что делать, если мы столкнулись например с уравнением

$$2^x = 5$$
?

Как записать его решение? Мы знаем только то, что x — это некоторое число, большее чем 2, но меньшее чем 3. Именно в таком случае помогает понятие логарифма, ведь x — это такое число, в степень которого нужсно возвести 2, чтобы nonyчить 5, а это и есть определение для логарифма $\log_2 5$.

Свойства логарифмов

$$0. \ a^{\log_a b} = b$$

1.
$$\log_b a + \log_b c = \log_b ac$$

$$2. \log_b a - \log_b c = \log_b \frac{a}{c}$$

3.
$$\log_b a^r = r \cdot \log_b a$$

4.
$$\log_{b^r} a = \frac{1}{r} \cdot \log_b a$$

5.
$$\log_b a \cdot \log_a c = \log_b c$$

6.
$$\log_b a \cdot \log_a b = 1$$

7.
$$\log_b a = \frac{1}{\log_a b}, a \neq 1$$

8.
$$a^{\log_c b} = b^{\log_c a}$$

$$9. \ \frac{\log_b a}{\log_b c} = \log_c a$$

Уравнения с логарифмами

Рассмотрим уравнение вида

$$\log_b a = \log_b c$$

Его ОДЗ

$$\begin{cases} b > 0 \\ b \neq 1 \\ a > 0 \end{cases}$$

На ОДЗ данное уравнение равносильно равенству аргументов логарифмов, то есть a=c. Чисто алгебраически можно записать в следующем виде

$$a>0$$
 $c>0$ 3 данное уравнение равносильно равенству аргументов логарифмов, то есть $a=0$ записать в следующем виде
$$\log_b a = \log_b c \quad \Leftrightarrow \quad \begin{cases} a=c \\ b>0 \\ b\neq 1 \\ a>0 \\ c>0 \end{cases}$$

Базовые тригонометрические факты

Тригонометрия в прямоугольном треугольнике

Пусть есть прямоугольный треугольник с катетами a и b и гипотенузой c. Пусть острый угол между сторонами b и c равен α . Тогда

$$\sin \alpha = \frac{a}{c}, \quad \cos \alpha = \frac{b}{c}, \quad \operatorname{tg} \alpha = \frac{a}{b} = \frac{\sin \alpha}{\cos \alpha}, \quad \operatorname{ctg} \alpha = \frac{b}{a} = \frac{\cos \alpha}{\sin \alpha}.$$

Даже из таких соотношений можно вывести несколько формул:

$$\operatorname{tg} \alpha = \frac{a}{b} = \frac{1}{\frac{b}{a}} = \frac{1}{\operatorname{ctg} \alpha};$$

$$\operatorname{tg} \alpha \cdot \operatorname{ctg} \alpha = \frac{a}{b} \cdot \frac{b}{a} = 1.$$

Наш треугольник — прямоугольный, значит, в нем верна теорема Пифагора:

$$a^2 + b^2 = c^2$$
.

Тогда можем вывести основное тригонометрическое тождество:

$$\sin^2 \alpha + \cos^2 \alpha = \frac{a^2}{c^2} + \frac{b^2}{c^2} = \frac{a^2 + b^2}{c^2} = \frac{c^2}{c^2} = 1.$$

Данное тождество очень полезно, так как фактически это «бесплатное» уравнение. С помощью него мы по синусу можем найти косинус и наоборот.

Табличные значения тригонометрических функций

Таблица синусов, косинусов, тангенсов и котангенсов углов из первой четверти:

ſ		A	\sim			
		0 (0°)	$\frac{\pi}{6}$ (30°)	$\frac{\pi}{4} \ (45^{\circ})$	$\frac{\pi}{3} (60^{\circ})$	$\frac{\pi}{2}$ (90°)
	\sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
	cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	tg	0	$\frac{\sqrt{3}}{3}$		$\sqrt{3}$	∞
	ctg	∞	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0000

Тригонометрическая окружность

Возьмем окружность в центром в точке O(0;0) и радиусом R=1. Тогда длина этой окружности будет равна $L=2\pi R=2\pi$. Таким образом, мы получили связь угла 360° с длиной окружности 2π .

Выберем произвольную точку B на окружности. Пусть угол между OB и положительным направлением оси абсцисс равен α . Тогда точка B имеет координаты ($\cos \alpha$; $\sin \alpha$).

Такое определение тригонометрических функций работает для всех углов. Например, отложим угол $\beta>90^\circ$. Hа окружности получим точку $C(\cos \beta; \sin \beta)$.

Так как синус и косинус — координаты точек на единичной окружности, то получаем ограничения:

$$-1 \leqslant \sin \alpha \leqslant 1, \quad -1 \leqslant \cos \alpha \leqslant 1$$

Знаки тригонометрических функций

Оси делят нашу окружность на четыре четверти:

Таблица знаков тригонометрических функций в соответствующих четвертях:

	I	M	III	IV
\sin	4	+	_	_
cos	+	_	_	+
tg	+	_	+	_
ctg	+	_	+	_

Четность/нечетность тригонометрических функций

Откладывать углы от оси абсцисс мы можем как в положительном направлении (против часовой стрелки), так и в отрицательном (по часовой стрелке). Давайте отложим угол $\frac{\pi}{6}$ в обоих направлениях.

Тогда получим равнобедренный треугольник, в котором биссектриса является медианой, следовательно,

$$\sin\left(-\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right), \quad \cos\left(-\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right)$$

Таким образом, синус — нечетная функция, а косинус — четная, то есть

$$\sin(-\alpha) = -\sin\alpha, \quad \cos(-\alpha) = \cos\alpha$$

Формулы приведения

Пользуясь периодичностью функций sin и cos, мы можем упрощать их аргументы по следующим формулам:

$$\sin(\pi - \alpha) = \sin \alpha \qquad \cos(\pi - \alpha) = -\cos \alpha$$

$$\sin(\pi + \alpha) = -\sin \alpha \qquad \cos(\pi + \alpha) = -\cos \alpha$$

$$\sin(2\pi \pm \alpha) = \pm \sin \alpha \qquad \cos(2\pi \pm \alpha) = \cos \alpha$$

$$\sin\left(\frac{\pi}{2} \pm \alpha\right) = \cos \alpha \qquad \cos\left(\frac{\pi}{2} \pm \alpha\right) = \mp \sin \alpha$$

Наиболее распространенные тригонометрические формулы

sa shkolkovo.on Основные тождества

$\sin^2 \alpha + \cos^2 \alpha = 1$	$tg \alpha \cdot ctg \alpha = 1$ $(\sin \alpha \neq 0, \cos \alpha \neq 0)$	aline			
$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$	$\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}$	<i>300.</i>			
$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$	$1 + \operatorname{ctg}^2 \alpha = \frac{1}{\sin^2 \alpha}$				
$(\cos \alpha \neq 0)$	$(\sin \alpha \neq 0)$				

Формулы сложения углов

		$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$ $(\cos \alpha \neq 0)$	$1 + \operatorname{ctg}^2 \alpha = \frac{1}{\sin^2 \alpha}$		a.C
	1/5	$(\cos \alpha \neq 0)$	$(\sin \alpha \neq 0)$	l_{n_0}	2//0
D 2	жения углов	3	26	1.000.	
	$\sin\left(\alpha\pm\beta\right) =$	$= \sin \alpha \cdot \cos \beta \pm \sin \beta \cdot \cos \alpha$	$\cos(\alpha \pm \beta) = \cos\alpha \cdot \cos\beta =$	$=\sinlpha\cdot\sineta$	
	$tg(\alpha \pm \beta) =$	$\frac{\operatorname{tg}\alpha \pm \operatorname{tg}\beta}{1 \mp \operatorname{tg}\alpha \cdot \operatorname{tg}\beta},$	$\operatorname{ctg}(\alpha \pm \beta) = \frac{\operatorname{ctg}\beta \cdot \operatorname{ctg}\alpha}{\operatorname{ctg}\beta \pm \operatorname{ctg}}$	$\frac{1}{\alpha}$,	outer
	$\cos \alpha \cos \beta \neq$	$0, \cos{(\alpha \pm \beta)} \neq 0$	$\sin \alpha \sin \beta \neq 0, \sin (\alpha \pm \beta)$	$\neq 0$	1.0_{00} .
oi	йного и троі	йного углов	· O.	e place	Mrs
	1700	$\sin 2\alpha = 2\sin \alpha \cos \alpha$	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$	2,	

Jkovo.online Формулы двойного и тройного углов shkolkovo.onlime

online	$\sin 2\alpha = 2\sin \alpha \cos \alpha$	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$	۵,
0.000	$\sin \alpha \cos \alpha = \frac{1}{2} \sin 2\alpha$	$\cos 2\alpha = 2\cos^2 \alpha - 1$	1:00
	ے'	$\cos 2\alpha = 1 - 2\sin^2 \alpha$	
	$tg 2\alpha = \frac{2 tg \alpha}{1 - tg^2 \alpha},$	$\operatorname{ctg} 2\alpha = \frac{\operatorname{ctg}^2 \alpha - 1}{2\operatorname{ctg} \alpha},$	
	$\cos \alpha \neq 0, \cos 2\alpha \neq 0$	$\sin \alpha \neq 0, \ \sin 2\alpha \neq 0$	
	$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$	$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$	online.
1/600			0.00
chho	1inle		110000
	Ologo, E	53	
	000.		
	1/2/0		