

Special class

Introduction to Game Theory

-Surya Kiran Adury

Jan. Noterpring genus)

ACM ICPC World Finalist (2014, 2015)

Work Experience

- o @Google London (2015-2017)
- o @Google MTV (2017-2020)
- Self Employed (2020-?)

Work Experience

- @Google London (2015-2017)
- o @Google MTV (2017-2020)
- Self Employed (2020-?)

Education

B.Tech in ECE from IIT Roorkee

Work Experience

- @Google London (2015-2017)
- @Google MTV (2017-2020)
- Self Employed (2020-?)

Education

- B.Tech in ECE from IIT Roorkee
- Teaching Experience
 - Weekly lectures to my juniors
 - Programming camps

Objective

- Basics of game theory, simple games
- Nim game
- 3. Composite games Grundy numbers (Nimbers)
- Sprague grundy theorem

• Two Person

- Two Person
- Perfect information

- Two Person
- Perfect information
- No chance moves

- Two Person
- Perfect information
- No chance moves
- Win or lose outcome

- Two Person
- Perfect information
- No chance moves
- Win or lose outcome

Question:

Does Poker fall under the above criteria? (Yes/No)

- Two Person
- Perfect information
- No chance moves
- Win or lose outcome

Question:

Does Chess fall under the above criteria? (Yes/No)

- Two Person
- Perfect information
- No chance moves
- Win or lose outcome

Question:

Does Monopoly fall under the above criteria? (Yes/No)

Problem, Simple Game

- At the beginning there are n coins.
- When it is a player's turn they can take away 1, 3 or 4 coins.
- The player who takes the last one away is declared the winner

5 6/3/8 2 2 2 .

```
boolean isWinning(position pos) {
  moves[] = possible positions to which I can move from the
  position pos;
  for (all x in moves)
    if (!isWinning(x)) return true;
  return false;
  }
}
```

Question

- At the beginning there are 15 coins.
- When it is a player's turn they can take away 2^k coins (k can be any whole number).
- The player who takes the last one away is declared the winner.
- Does the First player win? (Yes/No)

Question

- At the beginning there are 10⁷ coins.
- When it is a player's turn they can take away 2^k coins (k can be any whole number).
- The player who takes the last one away is declared the winner.
- Does the First player win? (Yes/No)

Questions?

The Game of Nim

- Very famous.
- Lots of problems based on this game.
- Requires clever ideas and less code.

The Game of Nim - Statement

- There are n piles of coins.
- When it is a player's turn he chooses one pile and takes at least one coin from it.
- The one who removes the last coin is the winner

The Game of Nim - Solution

Say c1, c2, c3, ...cn be the number of coins in each pile.

The Game of Nim - Solution

Say c1, c2, c3, ...cn be the number of coins in each pile.

It is a losing position for the player whose turn it is if and only if

The Game of Nim

0°1=1 0°0=0 1°1=0

Why does it work?

From the losing positions we can move only to the winning ones.

From the winning positions it is possible to move to at least one losing.

The Game of Nim

Why does it work?

From the losing positions we can move only to the winning ones.

From the winning positions it is possible to move to at least one losing.

Questions?

Composite Games

Composite games are combination of multiple simple games.

Example:

- Say there are n piles of coins.
- When it is a player's turn they choose one pile and can take away 1, 3 or 4 coins.
- The one who removes the last coin is the winner.

Grundy numbers

Each position of a simple game can be identified by a unique integer.

Grundy numbers

Each position of a simple game can be identified by a unique integer.

"MEX" of all reachable integer set of all reachable positions.

Sprague Grundy Theorem

Sprague-Grundy Theorem says that if both A and B play optimally (i.e., they don't make any mistakes), then the player starting first is guaranteed to win if the XOR of the grundy numbers of position in each sub-games at the beginning of the game is non-zero.

Why does this work?

Questions?

Problem: RRTREGAM

Statement:

Ross and Rachel are playing a game. They have a tree rooted at 1. Each vertex is having some number of stones in it. In one move a player can choose 2 stones from some same node and move it to any of the ancestors of that node in the tree. The player not able to make a move loses. Help them find the winner of the game if they play optimally. Rachel starts first.

Constraints

- 1 ≤ n ≤ 10⁵
- 1 ≤ stones[i] ≤ 10⁹
- 1 ≤ x,y ≤ n

Problem: CHGM

- The game is simple, there is a stack contains N numbers of disks initially.
- In each move, a player can remove X (>0) numbers of disks such that X divides K where K in the number of disks present at that time.
- The player who removes the last disk loses the game.

Resources

- http://en.wikipedia.org/wiki/Sprague%E2%80%93Grundy_theorem
- http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=algorith
 mGames
- http://www.ams.org/samplings/feature-column/fcarc-games1
- http://www.codechef.com/wiki/tutorial-game-theory

Questions?

Summary

- 1. Basics of game theory, simple games
- Nim game
- 3. Composite games Grundy numbers (Nimbers)
- Sprague grundy theorem

One more thing

Hackenbush

Hackenbush - Resources

- Suggested readings
 - a. http://en.wikipedia.org/wiki/Hackenbush
 - b. http://www.ams.org/samplings/feature-column/fcarc-partizan1
- Suggested problems
 - a. https://www.codechef.com/problems/GERALD08
 - b. http://www.spoj.com/problems/PT07A/

