ECON 340 Economics Research Methods

Div Bhagia

Lecture 21: Regression Analysis in R

Housekeeping

```
rm(list=ls())
library(tidyverse)
library(stargazer)
#setwd("~/Dropbox (CSU Fullerton)/Econ340_R")
data <- read.csv("caschool.csv")</pre>
```

Scatterplot

```
ggplot(data, aes(x=str, y=testscr)) +
  geom_point() +
  theme_classic()
```


Scatterplot

```
ggplot(data, aes(x=str, y=testscr)) +
  geom_point(shape=1) + theme_classic() +
  labs(x="Student-Teacher Ratio", y="Test Score")
```


Linear Regression

- lm() is a function used to fit linear regression models
- Syntax: $lm(y \sim x1 + x2 + ..., data = mydata)$
- Useful to store it as an object

```
model <- lm(testscr ~ str, data)</pre>
```

Apply summary() function to the stored result from output

Regression Output

summary(model)

```
##
## Call:
## lm(formula = testscr ~ str. data = data)
##
## Residuals:
##
      Min
               10 Median
                              30
                                    Max
## -47.727 -14.251 0.483 12.822 48.540
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 698.9330 9.4675 73.825 < 2e-16 ***
## str
            -2.2798 0.4798 -4.751 2.78e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.58 on 418 degrees of freedom
## Multiple R-squared: 0.05124, Adjusted R-squared: 0.04897
```

Regression Output

Fitted model:

$$tes\hat{t}scr = 698.93 - 2.28 \cdot str$$

- $R^2 = 0.05$ implies that 5% of variation in test scores explained by student teacher ratio
- Standard errors (deviations):

$$SE_{\hat{\beta}_0} = 9.47, \quad SE_{\hat{\beta}_1} = 0.48$$

Regression Output

• Often interested in testing the hypothesis: $H_0: \beta_1 = 0$ against $H_1: \beta_1 \neq 0$

• Corresponding t-value:

$$t_0 = \frac{\hat{\beta}_1}{SE_{\hat{\beta}_1}} = \frac{-2.28}{0.48} = -4.75$$

- p-value: $p = 2Pr(Z > t_0)$
- If $p < \alpha$, coefficient significant at α % level of significance

Confidence Intervals

- $(1-\alpha)\%$ confidence interval is given by: $\hat{\beta}_1 \pm z_{\alpha/2} \cdot SE_{\hat{\beta}_1}$
- Note that $z_{0.025} = 1.96$, so the 95% confidence interval:

$$-2.28 \pm 1.96 \cdot 0.48$$

```
confint(model)
## 2.5 % 97.5 %
## (Intercept) 680.32313 717.542779
## str -3.22298 -1.336637
```

Predicted and Residual Values

```
data$yhat <- predict(model)
data$uhat <- residuals(model)</pre>
```

Should the average of testscr and yhat be the same?

```
mean(data$testscr)
mean(data$yhat)
```

What should be the average of uhat?

```
mean(data$uhat)
```

Predicted and Residual Values

What is the predicted value when str=21?

```
data %>% select(testscr, str, yhat, uhat) %>%
  filter(str==21)
```

```
## testscr str yhat uhat
## 1 616.3 21 651.057 -34.75699
```

Remember:

$$testscr = 698.93 - 2.28 \cdot str$$

Note that: $\hat{u}_i = Y_i - \hat{Y}_i$

Plotting the Fitted Line

```
ggplot(data, aes(x=str, y=testscr)) +
  geom_point(shape=1) + theme_classic() +
  geom_line(aes(y=yhat))
```


Output using Stargazer

	Dependent variable:	
	testscr	
str	-2.280***	
	(0.480)	
Constant	698.933***	
	(9.467)	
Observations	420	
Adjusted R ²	0.049	

Output from Multiple Models

Output from Multiple Models

	Dependent variable:		
	math_scr	read_scr	
	(1)	(2)	
str	-1.939***	-2.621***	
	(0.476)	(0.504)	
Constant	691.417***	706.449***	
	(9.382)	(9.941)	
Observations —	420	420	
Adjusted R ²	0.036	0.059	
Note:	*p<0.1; **p<0.05; ***p<0.01		

Multiple Regression Model

• Note: Use the adjusted R^2 to compare two models with different number of variables

Multiple Regression Model

	Dependent variable: testscr		
	(1)	(2)	
str	-2.280***	-1.593***	
	(0.480)	(0.493)	
comp_stu		65.160*** (14.351)	
Observations	420	420	
Adjusted R ²	0.049	0.092	
Note:	*p<0.1; **p<0.05; ***p<0.01		

Omitted Variable Bias

- Negative coefficient on str smaller in magnitude after controlling for comp_stu
- Lower comp_stu → Lower testscr
- Lower comp_stu ↔ Higher str
- So comp_stu explains some of the relationship between str and testscr

Omitted Variable Bias

Next Class

- For the next class download and load acs2019 dataset from the Dropbox folder
- We will continue with linear regression in R
- Come prepared so we can start quickly