

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS (PUC GOIÁS) X CONGRESSO DE CIÊNCIA, TECNOLOGIA E INOVAÇÃO MESTRADO EM ENGENHARIA DE PRODUÇÃO E SISTEMAS GRUPO DE ESTUDOS EM OTIMIZAÇÃO E PREDIÇÃO

EDITAL DO II DESAFIO EM OTIMIZAÇÃO COM METAHEURÍSTICAS

1. Introdução

Apresentamos à comunidade da PUC Goiás, sociedade de Goiânia e outras Instituições de Ensino Superior, o projeto do "II desafio em Otimização com Metaheurísticas" que será realizado como parte integrante do X Congresso de Ciência, Tecnologia e Inovação da Puc Goiás (X CCTI) com o tema central: Biomas do Brasil: Diversidades, Saberes e Tecnologias Sociais, que ocorrerá no período de 14 a 19 de outubro de 2024. Confira toda a programação em https://congressos.pucgoias.edu.br/eventos/

A otimização combinatória é um campo da ciência da computação e da matemática que tem ganhado destaque nos últimos anos. Grandes empresas como Amazon, Mercado Livre e Google têm se beneficiado aplicando técnicas de otimização para melhorar seus processos, ser mais eficientes e reduzir custos.

O foco principal da otimização combinatória é explorar e resolver problemas onde se deseja encontrar dentro de um universo de soluções, uma solução que maximize ou minimize um objetivo, como, por exemplo, maximizar o lucro de um conjunto de vendas ou minimizar os custos de entrega de produtos.

Este edital propõe um desafio que envolve a resolução do Problema de Empacotamento Unidimensional utilizando técnicas de otimização conhecidas como metaheurísticas. O propósito do desafio é possibilitar ao aluno uma introdução na área de otimização combinatória e na aplicação de metaheurísticas, um requisito que está em crescente demanda no mercado.

A participação neste evento serve como um primeiro passo na jornada científica de um estudante, proporcionando um ambiente para adquirir experiência prática, interagir com colegas mais experientes e especialistas na área, e desenvolver competências valiosas para toda a carreira acadêmica e profissional.

2. Requisitos

- Este desafio está aberto para todos os estudantes de graduação e de pósgraduação;
- As equipes podem ser individuais ou formadas por dois alunos;
- Cada equipe precisa selecionar uma ou mais metaheurísticas e poderá implementar até duas variações de cada metaheurística;
- Ao final do desafio, a equipe deve submeter um relatório e um link com o código no github, conforme detalhado nas próximas seções.

3. Descrição do Problema

O Problema de Empacotamento Unidimensional (ou *bin packing*) é um clássico problema de otimização combinatória que se concentra em organizar um conjunto de itens em caixas de forma eficiente.

Nesse problema são dados um conjunto de n itens. Cada item i possui um peso ou tamanho w_i , indicando que esse item consome w_i unidades da capacidade de uma caixa. Também é dado um valor C, indicando a capacidade máxima de uma caixa.

Partindo do pressuposto que temos um número ilimitado de caixas disponíveis, o objetivo do Problema de Empacotamento Unidimensional é empacotar todos os itens nas caixas de forma que o número total de caixas utilizadas seja o menor possível.

3.1. Exemplo

Imagine que você tem 7 itens com os seguintes tamanhos: 4, 3, 5, 4, 1, 2 e 4; conforme ilustrado pela Figura 1. E você tem caixas com capacidade máxima de 8. A tarefa é distribuir esses itens nas caixas de forma que você use o menor número possível de caixas.

Figura 1 - Conjunto de itens de exemplo (adaptado de [1]).

A Figura 2 exibe uma solução que usa 4 caixas para empacotar os 7 itens.

Caixas com capacidade máxima de 8

Figura 2 - Solução usando 4 caixas (adaptado de Chraibi et al. [1]).

A Figura 3 exibe uma solução que consegue empacotar todos os itens usando apenas 3 caixas. Essa é uma solução ótima, isto é, é impossível obter outra solução usando menos do que três caixas para essa instância de exemplo.

Figura 3 - Solução usando 3 caixas (adaptado de Chraibi et al. [1]).

3.2. Complexidade do Problema

O Problema de Empacotamento Unidimensional tem natureza combinatória e, embora possa ser facilmente formulado e compreendido, esconde atrás de sua aparente simplicidade, a sua real complexidade:

O *bin packing* é um problema NP-difícil, o que significa que não existe um algoritmo conhecido que resolva todas as instâncias do problema de forma eficiente (em tempo polinomial). Para instâncias pequenas, é possível encontrar uma solução ótima com uma busca exaustiva, mas à medida que o número de itens aumenta, a complexidade do problema cresce rapidamente.

3.3. Aplicações Práticas do Problema

O Problema de Empacotamento Unidimensional é aplicável em diversas áreas, como:

- <u>Logística e armazenagem</u>: para otimizar o uso de espaço em contêineres, caixas e armazéns.
- <u>Distribuição de recursos</u>: para alocar recursos limitados em múltiplas tarefas ou processos.
- Programação de tarefas: para organizar tarefas em máquinas ou servidores.

A eficiência das soluções pode ter um impacto significativo em termos de custo e uso de recursos, tornando a resolução desse problema uma área importante de pesquisa e aplicação prática no mercado. Grandes empresas de entrega como a Amazon e o Mercado Livre trabalham com variantes do problema de empacotamento para reduzir os custos de embalagem.

4. Ambiente de Teste

Os participantes devem ter em mente que os algoritmos serão executados em máquinas com capacidades tão similares quanto possível, para garantir que a comparação das soluções seja justa. Segue as características gerais dos ambientes de teste:

- Sistema operacional Linux.
- Processador I7 3a geração.
- 8gb de memória RAM

Ao escolher uma linguagem para implementação, tenha em mente que o algoritmo será compilado e executado em linux. Algumas linguagens têm comportamento diferente em sistemas operacionais diversos. Falhas de compilação resultarão na rejeição da solução.

5. Entregas

Os participantes devem submeter:

Descrição do Hardware e Software Utilizados: Detalhes sobre o ambiente de desenvolvimento e execução.

Instâncias Utilizadas: Conjunto de instâncias do problema empregadas nos experimentos, fornecidas pela comissão organizadora.

Descrição Detalhada da Metaheurística e Variações: Os participantes devem

fornecer uma descrição detalhada da metaheurística escolhida e das variações

implementadas, com base no artigo fornecido sobre Algoritmos Genéticos,

incluindo:

Fundamentação Teórica

Implementação e Adaptações

Variações Testadas

Justificativa para as Escolhas

Parâmetros: Configurações específicas do algoritmo e detalhes dos

experimentos realizados.

Resultados: Desempenho do algoritmo em diferentes

instâncias.

Discussões: Análise crítica dos resultados obtidos.

5. Submissão

Os participantes devem submeter um link do GitHub do projeto na tarefa

específica criada na sala do Teams do II Desafio, até o prazo final de 15/10/2024

às 23:59h. O repositório do GitHub deve incluir um relatório detalhado e o código-

fonte do projeto, com o código devidamente comentado e organizado.

6. Premiação

Os cinco melhores projetos/relatórios serão avaliados por uma banca, e os

autores serão premiados com certificados de reconhecimento e medalhas.

Todos os participantes que completarem o desafio (relatório e apresentação para

a banca) e não forem classificados receberão um certificado de 20h de

atividades.

7. Cronograma

Lançamento do Edital: 01/10//2024

Formação das equipes: 01/10 - 03/10/2024

Informações para as equipes dia 04/10/2024. 09-11h e 18-20h

Palestra: 14/10/24, 9h

Introdução a Problemas de Otimização Combinatória: Soluções para E-

commerce

Entrega dos relatórios e código-fonte: 15/10/2024

Apresentações: 17/10/2024, 9 às 12h (link da reunião da banca será

disponibilizado na sala do II desafio)

Anúncio dos Resultados da primeira fase e resultado final: Publicação na sala do II Desafio.

Entrega da Premiação: 18/05/2024 19h, auditório a ser definido na área 2

8. Inscrição

A participação neste desafio é uma oportunidade única para os estudantes desenvolverem suas habilidades em algoritmos genéticos e aplicação prática em problemas de otimização. Boa sorte a todos os participantes!

Link de inscrição: https://forms.office.com/r/paXrxMqtgn

Referências

[1] Chraibi, Amine & Ben Alla, Said & Ezzati, Abdellah. (2022). An efficient cloudlet scheduling via bin packing in cloud computing. International Journal of Electrical and Computer Engineering. 12. 3226-3237. 10.11591/ijece.v12i3.pp3226-3237.

Banca de avaliação

Dr. Bruno Quirino de Oliveira (orientador de IC e TCC)

Dr Marcos de Sousa (orientador de IC e TCC)

Dr Wanderlei Malaquias Pereira (Ufcat)

Jorge Menezes dos Santos (Empresa Minerva Foods)

Mentorias em metaheuristicas:

As mentorias ocorrerao no período de 07 a 10/10/2024 e serão comunicadas na sala teams do desafio

Informações complementares serão disponibilizadas na sala teams do desafio: II DESAFIO EM OTIMIZAÇÃO COM METAHEURISTICA - grupo de estudos | Geral | Microsoft Teams

https://teams.microsoft.com/l/team/19%3AJ68wGPL0m1e4eqLfKVcYIVAfer1pZA 37KR9_tNHC6oA1%40thread.tacv2/conversations?groupId=a772127e-a579-459a-8848-08e216113da1&tenantId=73319f42-8908-4b89-9f8d-558cf4d5d776

Comissão organizadora

Me. Alexandre Ribeiro

Valdomiro Roberto Damaceno Neto

Dra. Maria Jose Pereira Dantas

Qualquer alteração no edital será comunicada com postagem na sala teams

Direção da Escola Politécnica

Prof^a Me. Mirian Sandra Rosa Gusmão

Goiânia, 30 de agosto de 2024.