Lecture 8: Binary Heaps

Oct. 1, 2019

Lecture 8: Binary Heaps

Priority Queues

- New interface which implements a limited Set (intrinsic keyed order)
- Efficiently remove the most important item (highest key), optimize for **build** and **space**
 - Example: router with limited bandwidth, must prioritize certain kinds of messages; process scheduling in operating system kernels; graph algorithms (later in the course)
- Priority queue operations:

build (A)

insert (x)

delete_max()

build priority queue from iterable A

add item x to priority queue

remove and return the stored item with largest key

- (Usually max, can make a minimum priority queue via negation)
- Delete max only new operation: can be simulated via find_max followed by a delete
- (If know n < m can get worst-case: array of size m, store length n of priority queue prefix)

Priority Queue Sort

- Additional Goal: in-place $O(n \log n)$ sorting algorithm
- Given a priority queue, we can use it to sort
- Build the priority queue on A (or insert items one at a time)
- Repeatedly remove and return the maximum element
- If build, insert, delete_max have running times B, I, D, runs in $\min(B, n \cdot I) + n \cdot D$

Priority Queue	Operations $O(\cdot)$			Priority Queue Sort	
Data Structure	build(A)	insert(x)	delete_max()	Time	In-place?
Dynamic Array	n	$1_{(a)}$	n	n^2	Y
Sorted Dynamic Array	$n \log n$	n	$1_{(a)}$	n^2	Y
Balanced Binary Tree	$n \log n$	$\log n$	$\log n$	$n \log n$	N
Goal	n	$\log n_{(a)}$	$\log n_{(a)}$	$n \log n$	Y

Priority Queue Sort: Array

- Maintain the first k items as a priority queue implemented with an **unsorted array**
- insert take no time, just increase k by 1 to incorporate next item
- To delete_max, find max via linear search, swap to end and decrease k by 1
- insert is quick O(1), but delete_max is slow O(n), runs in $O(n^2)$
- This is exactly selection sort!

Priority Queue: Sorted Array

- Maintain the first k items as a priority queue implemented with a **sorted array**
- ullet insert takes linear time to put next item k+1 in correct place in sorted order
- delete_max takes no time (max is already at end) so just decrease k by 1
- insert is slow O(n), but delete_max is slow $O(\log n)$, runs in $O(n^2)$
- This is exactly insertion sort!

Balance Insert/Delete In-place

- Can we balance the cost of insertions and deletions?
- Yes! Use balanced binary tree: insert/delete in $O(\log n)$ time, sort in $O(n \log n)$ time
- Not in place (build a linked tree)
- Can we get $O(n \log n)$ sorting **in-place**, i.e., using at most O(1) additional space?

Array as a Complete Binary Tree

- Idea: interpret array (or array prefix) as a left-aligned complete binary tree
- A binary tree is **complete** if it is fully balanced: every level except last is full
- A binary tree is **left-aligned** if leaves in last level are packed to the left
- A binary tree is **packed** if it is complete and left-aligned
- There is exactly **one** left-aligned complete binary tree on n nodes for any n

- So there is a **bijection** between arrays and packed binary trees
- Height of packed tree perspective of array of n item is $\Theta(\log n)$
- Implicit tree: compute parent/left/right by index arithmetic (no need to store pointers!)
 - Root is at index 0
 - Parent of index i is at index $\left| \frac{i-1}{2} \right|$
 - Left child of index i is at index 2i + 1
 - Right child of index i is at index 2i + 2

Binary Heaps

- Idea: keep larger elements higher in tree, but only locally
 - Node max-heap property (MHP) at $i: Q[i] \ge Q[left(i)], Q[right(i)]$
 - Tree max-heap property (Tree MHP) at $i: Q[i] \geq Q[j]$ for every index $j \in S(i)$
- A max-heap is an array where every node satisfies the node MHP
- Claim: Every node in max-heap satisfies the tree MHP
- Proof:
 - Claim: If j is in subtree S(i) and $d = \operatorname{depth}(j) \operatorname{depth}(i)$, then $Q[i] \geq Q[j]$
 - Induction on d:
 - Base case: d = 0 implies i = j implies $Q[i] \ge Q[i]$
 - depth(parent(j)) depth(i) < d, so $Q[i] \ge Q[parent(j)]$ by induction
 - $Q[\operatorname{parent}(j)] \ge Q[j]$ by node MHP at $\operatorname{parent}(j)$
- In particular, if MHP everywhere, max item is at root

Binary Heap Insert

- Given array satisfying MHP, how to insert an element?
 - Append to end or expand prefix (next leaf)
 - Swap with parent until MHP satisfied!
- Correctness:
 - MHP assumes all nodes \geq descendants, except Q[c] might be > some ancestors
 - If swap necessary, same assumption is true with $\mathcal{Q}[c]$ swapped with $\mathcal{Q}[p]$
- Running time: height of tree, so $O(\log n)$!

Binary Heap Delete Max

- Given array satisfying MHP, how to delete item with maximum key?
 - Swap root to end and remove it, or reduce prefix
 - Swap new root with its larger child until MHP satisfied!
- Correctness:
 - MHP assumes all nodes \geq descendants, except Q[p] might be < some descendants
 - if swap is necessary, same property holds with ${\cal Q}[p]$ swapped with ${\cal Q}[c]$

Heap Sort

- Running time: height of tree, so $O(\log n)$!
- Can insert and delete max, each in-place and in $O(\log n)$ time
- Yields heap sort, an in-place $O(n \log n)$ comparison sorting algorithm

Linear Build Heap

• To insert n items, each item is heapified down from root, worst-case is $\Omega(n \log n)$ swaps:

worst-case swaps is
$$\approx \sum_{i=0}^{n-1} \lg i = \lg(n!) = \Theta\left(\lg\left(\sqrt{n}(n/e)^n\right)\right) = \Omega(n\log n)$$

• Idea! Treat full array as a packed binary tree from start, then fix MHP from leaves to root

worst-case swaps is
$$\approx \sum_{i=0}^{n-1} (\lg n - \lg i) = \lg \left(\frac{n^n}{n!} \right) = \Theta \left(\log \left(\frac{n^n}{\sqrt{n}(n/e)^n} \right) \right) = O(n)$$

• Uses at most O(n) swaps, so the heap can be built in linear time