2024.07.04 数学分析开局测试

约定 N 表示所有非负整数的集合,N₊ 表示所有正整数的集合。设 $n, m \in \mathbb{N}_+$, 对于可微映射 $f: \mathbb{R}^n \to \mathbb{R}^m$, f' 表示 f 的 Jacobi 矩阵。实值函数 f 在区间 I 上是凸函数,意思是对于任何 $x, y \in I, \lambda + \mu = 1, \lambda, \mu \geq 0$, 都有 $f(\lambda x + \mu y) \leq \lambda f(x) + \mu f(y)$.

- 1. 叙述实数系基本定理。
- 2. 证明 Toeplitz 定理: 设有一族非负实数 $\{\{t_{n,k}\}_{k=1}^n\}_{n=1}^{\infty}$ 满足 $\sum_{k=1}^n t_{n,k} = 1$, $\lim_{n \to \infty} t_{n,k} = 0$, 另有实数列 $\{a_n\}_{n=1}^{\infty}$ 收敛到 $a \in \mathbb{R}$, 那么就有

$$\lim_{n \to \infty} \sum_{k=1}^{n} t_{n,k} a_k = a.$$

3. 设实数列 $\{a_n\}_{n=1}^{\infty}$ 的每一项都大于 0, 试比较

$$\liminf_{n \to \infty} \sqrt[n]{a_n}, \qquad \limsup_{n \to \infty} \sqrt[n]{a_n}, \qquad \liminf_{n \to \infty} \frac{a_{n+1}}{a_n}, \qquad \limsup_{n \to \infty} \frac{a_{n+1}}{a_n}$$

的大小关系。

- 4. 有限区间上的一致连续函数是否一定有界?
- 5. 设 $-\infty < a < b < \infty$, $f: [a, b] \to \mathbb{R}$ 为凸函数。试证明,如果存在 $c \in (a, b)$ 使得 f(a) = f(c) = f(b), 那么 f 恒取常值。
- 6. Dirichlet 函数和 Riemann 函数在 [0,1] 上的 Riemann 可积性如何,Lebesgue 可积性又如何?可积的情况中,积分值分别是多少?
- 7. 导出带积分余项的 Taylor 公式: 设 $n \in \mathbb{N}$, $f \in C^{n+1}(a,b)$, $x_0 \in (a,b)$, 则有

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt.$$

8. 对于 $n \in \mathbb{N}$ 计算积分

$$\int_0^{\pi/2} (\sin x)^n \, \mathrm{d}x.$$

9. 计算极限

$$\lim_{n \to \infty} \frac{(n!)^2 2^{2n}}{(2n)! \sqrt{n}}.$$

10. 写出 Young 不等式、Hölder 不等式和 Minkowski 不等式。

- 11. 设 $n \in \mathbb{N}_+$. 给出 \mathbb{R}^n 中开集、闭集、导集、闭包、完全集、紧集、列紧集、连通集、道路 连通集、凸集、区域的定义。
- 12. 设 $n \in \mathbb{N}_+$. 在 \mathbb{R}^n 的所有子集中,是否存在既不是开集又不是闭集的集合?是否存在既 开又闭的集合?有哪些既开又闭的集合?这体现了 \mathbb{R}^n 的什么性质?
- 13. 设 $n \in \mathbb{N}_+$. ℝⁿ 中的区域是否一定是道路连通的?
- 14. 设 $n, m \in \mathbb{N}_+$. 问: $\mathbb{R}^n \to \mathbb{R}^m$ 的连续映射
 - (a) 是否一定把开集映成开集?
- (b) 是否一定把闭集映成闭集?
- (c) 是否一定把紧集映成紧集?
- (d) 是否一定把连通集映成连通集?
- 15. 设 $n, m \in \mathbb{N}_+$. 试用开集来刻画 $\mathbb{R}^n \to \mathbb{R}^m$ 的连续映射。又问: $\mathbb{R}^n \to \mathbb{R}$ 的 Lebesgue 可测映射有没有类似的刻画?
- 16. 设

$$\begin{cases} u^2 - v \cos xy + w^2 = 0, \\ u^2 + v^2 - \sin xy + 2w^2 = 2, \\ uv - (\sin x)(\cos y) + w = 0. \end{cases}$$

在 $(x,y) = (\pi/2,0), (u,v,w) = (1,1,0)$ 处计算 Jacobi 矩阵

$$\frac{\partial(u,v,w)}{\partial(x,y)}.$$

17. (多元函数的中值定理)设 $n\in\mathbb{N}_+$, 凸区域 $D\subseteq\mathbb{R}^n$, 函数 $f\colon D\to\mathbb{R}$ 可微,则对任何两点 $a,b\in D$, 在这两点的连线上存在一点 ξ , 使得

$$f(b) - f(a) = f'(\xi)(b - a).$$

18. (拟微分平均值定理)设 $n, m \in \mathbb{N}_+$, 凸区域 $D \subseteq \mathbb{R}^n$, 函数 $f: D \to \mathbb{R}^m$ 可微,则对任何两点 $a, b \in D$, 在这两点的连线上存在一点 ξ , 使得

$$||f(b) - f(a)||_2 \le ||f'(\xi)||_F ||(b-a)||_2$$

其中 $\|\cdot\|_2$ 表示列向量的 2 范数(也即由 Euclid 空间上的标准内积诱导的范数), $\|\cdot\|_F$ 表示矩阵的 Frobenius 范数。

19. 叙述 Newton-Leibniz 公式、Green 公式、Gauss 公式和 Stokes 公式。对于有限区间上的 Lebesgue 积分,Newton-Leibniz 公式何时成立?

- 20. 尽可能多地说出数项级数判敛的方法。
- 21. 尽可能多地说出判断函数项级数是否一致收敛的办法。
- 22. 尽可能多地说出积分与极限换序的条件,产生的结果是等式或者不等式都可以。
- 23. 设有函数列 $\{f_n\}_{n=1}^{\infty} \subset C[a,b], \mathbb{R}$. 试证明,如果 $\{f_n\}_{n=1}^{\infty}$ 在 [a,b) 内逐点收敛,但 $\{f_n(b)\}_{n=1}^{\infty}$ 发散,那么 $\{f_n\}_{n=1}^{\infty}$ 在 [a,b) 上不可能一致收敛。
- 24. 说说 Fourier 系数定义式的思想。
- 25. 证明 Riemann-Lebesgue 引理 (的一部分): 设 f 是有限闭区间 [a,b] 上的 (常义) Riemann 可积实值函数,那么

$$\lim_{\lambda \to +\infty} \int_{a}^{b} f(x) \cos(\lambda x) \, \mathrm{d}x = 0.$$

2024.07.06 数学分析第一章保温

1. 设 $\{a_n\}_n$ 是等差数列, $\{b_n\}_n$ 是等比数列。计算

$$\sum_{k=1}^{n} a_k, \qquad \sum_{k=1}^{n} b_k, \qquad \sum_{k=1}^{n} a_k b_k.$$

- 2. 设 $\{a_n\}_{n=1}^{\infty}$ 是实数列,a 是一个实数。证明下述两条的等价性。
 - (a) $\forall \varepsilon > 0, \exists N \in \mathbb{N}_+, \forall n > N, |a_n a| < \varepsilon.$
 - (b) $\forall \varepsilon > 0, \exists N \in \mathbb{N}_+, \forall n > N, |a_n a| < \varepsilon/2.$
- 3. 说明下述数列的单调性。

$$\left\{ \left(1 + \frac{1}{n}\right)^n \right\}_{n=1}^{\infty}, \qquad \left\{ \left(1 + \frac{1}{n}\right)^{n+1} \right\}_{n=1}^{\infty}, \qquad \left\{ \sum_{k=0}^n \frac{1}{k!} \right\}_{n=0}^{\infty}.$$

当 n 取相同值时,上述三个数列相应项的大小关系如何?

- 4. (a) 给出排列数和组合数的排列组合解释,并分别说明其计算公式。
 - (b) 写出 $(1+x)^n$ 的二项展开式,其中 x 取实值。
 - (c) 计算

$$\sum_{0\leqslant k\leqslant n}\binom{n}{k}, \qquad \qquad \sum_{\substack{0\leqslant k\leqslant n\\2\mid k}}\binom{n}{k}, \qquad \qquad \sum_{\substack{0\leqslant k\leqslant n\\2\nmid k}}\binom{n}{k}.$$

提示:可适当利用上一问的结果。

图 1: 杨辉三角(Pascal 三角)

- (d) 将上述二项展开式按 x 的升幂排列,并将系数排成杨辉三角(Pascal 三角),如图 1 所示。对于 $n \in \mathbb{N}_+$,第 n+1 行为 $(1+x)^{n-1}$ 的系数。杨辉三角是左右对称的,这体现了组合数的什么规律?
- (e) 分别观察杨辉三角中的红色、绿色、蓝色数字,它们体现了组合数的什么性质?
- (f) 对于固定的 $n \in \mathbb{N}_+$, 观察、猜想并证明有限长的组合数序列 $\left\{\binom{k}{n}\right\}_{k=0}^n$ 的增减性规律。
- 5. 写出立方差公式。
- 6. (a) 设 $E \in \mathbb{R}$ 的一个非空子集。证明: 或者 $\inf E \in E$, 或者存在严格减序列 $\{a_n\}_{n=1}^{\infty} \subseteq E$ 满足 $\lim_{n\to\infty} a_n = \inf E$, 这二者总是至少有一个成立。
 - (b) 证明自然数集的任何非空子集都有最小值。
- 7. 设 $a \in \mathbb{R}$. 证明: 数列 $\{a_n\}_{n=1}^{\infty}$ 收敛到 a 当且仅当它的上下极限都是 a.

$$\limsup_{n \to \infty} a_n b_n = a^* b.$$

- 9. 说明 Cauchy 命题的逆命题一般不成立,即对于实数列 $\{a_n\}_{n=1}^{\infty}$, 不能从 $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} a_k = a \in [-\infty, +\infty]$ 推知 $\lim_{n\to\infty} a_n = a$.
- 10. 设有实数列 $\{a_n\}_{n=1}^{\infty}$. 比较下面四式的大小关系并证明。

$$\liminf_{n\to\infty} a_n, \qquad \limsup_{n\to\infty} a_n, \qquad \liminf_{n\to\infty} \frac{1}{n} \sum_{k=1}^n a_k, \qquad \limsup_{n\to\infty} \frac{1}{n} \sum_{k=1}^n a_k.$$

11. 设实数列 $\{a_n\}_{n=1}^{\infty}$ 的每一项都大于 0. 比较下面四式的大小关系并证明。

$$\liminf_{n\to\infty}\sqrt[n]{a_n}, \qquad \limsup_{n\to\infty}\sqrt[n]{a_n}, \qquad \liminf_{n\to\infty}\frac{a_{n+1}}{a_n}, \qquad \limsup_{n\to\infty}\frac{a_{n+1}}{a_n}.$$

2024.08.13 不限时测验

如无特殊说明,设 \mathbb{K} 是数域,m,n 是正整数。

1. (a) 对于正实数 $a_1, ..., a_n$, 证明

$$n/\sum_{k=1}^{n} \frac{1}{a_k} \le \left(\prod_{k=1}^{n} a_k\right)^{1/n} \le \frac{1}{n} \sum_{k=1}^{n} a_k.$$

(b) 设 $0 < a, b, p < \infty$. 证明:存在只依赖于 p 的正常数 c = c(p), C = C(p), 使得

$$c \cdot (a+b)^p \leqslant a^p + b^p \leqslant C \cdot (a+b)^p$$
.

(c) 设 $a,b>0,1< p,q<\infty,\frac{1}{p}+\frac{1}{q}=1.$ 试证明如下形式的 Young 不等式:

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}.$$

提示:可以利用指数或对数函数的凹凸性。

2. 计算

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_0^x \mathrm{e}^t \sin\left((x-t)^2\right) \mathrm{d}t.$$

- 3. 设实数列 $(a_n)_{n=1}^{\infty}$ 满足递推关系 $a_{n+1}=f(a_n), n=1,2,3,....$ 试证明:
 - (a) 如果 f 单调递增,那么 $(a_n)_{n=1}^{\infty}$ 单调。
 - (b) 如果 f 单调递减,那么 $(a_n)_{n=1}^\infty$ 的奇偶子列各自都是单调的,但具有相反的单调性。
- 4. 给定正数 a_0, b_0 ,然后按照递推式

$$a_n = (a_{n-1} + b_{n-1})/2, b_n = (a_{n-1}b_{n-1})^{1/2}, n = 1, 2, 3, \dots$$

定义数列 $(a_n)_{n=0}^{\infty}$, $(b_n)_{n=0}^{\infty}$. 证明 $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$ 收敛到同一个极限值。

5. 设有正数列 $\{a_n\}_{n=1}^{\infty}$, 试证明

$$\liminf_{n \to \infty} \frac{a_{n+1}}{a_n} \leqslant \liminf_{n \to \infty} \sqrt[n]{a_n}.$$

6. 设非负值函数 $f \in C[a,b]$. 试证明

$$\lim_{n \to \infty} \left(\int_a^b f(x)^n \, \mathrm{d}x \right)^{1/n} = \max_{a \leqslant x \leqslant b} f(x).$$

- 7. 设有映射 $f: \mathbb{R}^n \to \mathbb{R}^m$. 试证明: f 连续当且仅当对于任意 \mathbb{R}^m 中的开集 O, 都有 $f^{-1}(O)$ 是 \mathbb{R}^n 中的开集。
- 8. 设 $A \in M_{m \times n}(\mathbb{K})$. 证明: rank $A \leq r$ 当且仅当存在 $u \in M_{m \times r}(\mathbb{K}), v \in M_{r \times n}(\mathbb{K})$, 使得 A = uv.
- 9. 设 $A \in M_{n \times n}(\mathbb{K})$. 证明: 如果 $\operatorname{rank} A^m = \operatorname{rank} A^{m+1}$, 那么 $\left(\operatorname{rank} A^k\right)_{k=m}^{\infty}$ 为常值序列。
- 10. 设 $A \in M_{4\times 4}(\mathbb{K})$.

 - (b) 试证明: $A^4 = 0$ 等价于 $\operatorname{tr} A^k = 0, k = 1, 2, 3, 4$.
- 11. 设 $A \in M_{n \times n}(\mathbb{K})$, rank A = 1, tr A =: t.
 - (a) 试表达出 A 的特征多项式。
 - (b) 说明 A 在 \mathbb{K} 上一定有 Jordan 标准形 (即一定相似于某个 Jordan 形矩阵),并讨论 A 在 \mathbb{K} 上的 Jordan 标准形。
 - (c) 试给出 A 的最小多项式。
- 12. 设 $A, B \in M_{n \times n}(\mathbb{C})$ 没有公共特征值。试证明:
 - (a) 如果某个 $X \in M_{n \times n}(\mathbb{C})$ 满足 AX = XB, 那么对于任何 $f(x) \in \mathbb{C}[x]$, 都有

$$f(A)X = Xf(B)$$
.

(b) 对于任何 $C \in M_{n \times n}(\mathbb{C})$, 关于 X 的矩阵方程

$$AX - XB = C$$

都在 $M_{n\times n}(\mathbb{C})$ 中存在唯一解。

- 13. 设 $A \in M_{n \times n}(\mathbb{K})$. 记 $C(A) := \{B \in M_{n \times n}(\mathbb{K}) : AB = BA\}, \mathbb{K}[A] := \{f(A) \in M_{n \times n}(\mathbb{K}) : f(x) \in \mathbb{K}[x]\}$. A 的特征多项式设为 $f(\lambda) = \lambda^n + a_{n-1}\lambda_{n-1} + \dots + a_1\lambda + a_0 \in \mathbb{K}[\lambda],$ 最小多项式设为 $m(\lambda) = \lambda^s + b_{s-1}\lambda_{s-1} + \dots + b_1\lambda + b_0 \in \mathbb{K}[\lambda],$ 其中 s 是一个正整数。
 - (a) 验证 C(A) 和 $\mathbb{K}[A]$ 都是 \mathbb{K} 上的线性空间。
 - (b) 求 dim $\mathbb{K}[A]$.
 - (c) 证明: 如果 $m(\lambda)$ 在 $\mathbb{K}[\lambda]$ 上不可约,那么 $\mathbb{K}[A]$ 中的任一非零矩阵都可逆。

2024.11.14

如无特别说明, 所有函数均取实值。

- 1. 设有正数列 $(a_n)_n$, 且存在 $\alpha > 0$ 使得 $\sum_n a_n^{\alpha}$ 收敛, 问: $\sum_n a_n/n$ 是否一定收敛?
- 2. 设 $f \in C^{\infty}(\mathbb{R})$, 存在函数 $\varphi: \mathbb{R} \to \mathbb{R}$ 作为函数列 $\left\{f^{(n)}\right\}_n$ 在任何有限区间上的一致极限,求解 φ .
- 3. 求和 $\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} \frac{1}{k}\right) x^n$.
- 4. Maclaurin 展开 $x \mapsto \ln(x + \sqrt{1 + x^2})$.
- 5. 用幂级数的乘法说明 $\exp(x+y) = (\exp x)(\exp y)$.
- 6. 求 S 在 \mathbb{R}^2 中的导集 S' 与闭包 \overline{S} , 其中 $S := \{(x, \sin(1/x)) \in \mathbb{R}^2 : 0 < x \leq 1\}$. \overline{S} 是赫赫有名的"拓扑学家的正弦曲线",试说明它在 \mathbb{R}^2 中是连通但不道路连通的。
- 7. 设 $f \in C([a,b] \times [c,d])$, 函数列 $(\varphi_n)_n$ 于 [a,b] 上一致收敛, 且在 [a,b] 上逐点成立 $c \leqslant \varphi_n \leqslant d$. 试证明 $\{x \mapsto f(x,\varphi_n(x))\}_n$ 在 [a,b] 上一致收敛。
- 8. 证明: \mathbb{R}^n 中的有界开集 G 上的一致连续函数一定可以延拓成 \overline{G} 上的一致连续函数。
- 9. 证明单位球面 $x^2 + y^2 + z^2 = 1$ 和锥面 $x^2 + y^2 = cz^2$ 正交(在任何交点处的切平面相互垂直),其中 c > 0 是常数。试几何地解释这个现象。
- 10. 用尽可能多的方法解 $\sup_A f$ 和 $\inf_A f$, 其中 $f(x,y) = x^2 + y^2$, A: x + y 1 = 0.
- 11. 用尽可能多的方法解 n 元实二次型在 \mathbb{R}^n 中的单位球面(l_2 范数意义下)上的最值。计算 $x^2 + xy + y^2 \le 1$ 的面积。
- 12. 计算 $\int_L \sqrt{2y^2+z^2} \, \mathrm{d}s$, 其中 L 是 \mathbb{R}^3 中 x=y 和 $x^2+y^2+z^2=a^2(a>0)$ 的交线.
- 13. 在平面直角右手坐标系中,原点处有一质量为 M 的质点 A,并有一个质量为 m 的质点 B 沿 $\{(x,y)\in [0,\infty)^2\colon (x/a)^2+(y/b)^2=1\}$ 从 (a,0) 无折返地运动到 (0,b),问在这一过程中 A 对 B 的万有引力所做的功。A 对 B 的万有引力的方向为平面向量 \overrightarrow{BA} 的方向,大小为 $GMmr^{-2}$,其中 G 是正常量,r 是 A 与 B 之间的距离。
- 14. 计算 $\{(a(\cos t)^3, a(\sin t)^3) \in \mathbb{R}^2\}$ 在 \mathbb{R}^2 上所围图形的面积,其中 a > 0。
- 15. 求边长为 a、密度均匀(设为 ρ)的立方体关于其任意棱边的转动惯量。
- 16. 己知 $a + \sqrt{a^2 y^2} = ye^u$, $au = x + \sqrt{a^2 y^2}$, a > 0, 求 dy/dx 和 d^2y/dx^2 .

- 17. 把偏微分方程 $(x+y)z_x (x-y)z_y = 0$ 换成以 u, v 为自变量的形式,其中 $u = \ln \sqrt{x^2 + y^2}$, $v = \arctan(y/x)$.
- 18. 求曲面 $x^2 + 2y^2 + 3z^2 = 21$ 的切平面, 使它平行于平面 x + 4y + 6z = 0.
- 19. 计算 $\iint_D xy^2 d\sigma$, 其中 D 是由 $y^2 = 4x$, x y = 1, x + y = 1 所围成的 \mathbb{R}^2 中的有界区域。
- 20. 计算 $\iiint_V \frac{\mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z}{(1+x+y+z)^3}$, 其中 V 是由 x+y+z=1 与三个坐标面所围成的体积。

2024.11.18

1. 求和

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+1}{n(n+1)} \qquad \text{fl} \qquad \sum_{n=1}^{\infty} \frac{2n+1}{(n^2+1)((n+1)^2+1)}.$$

2. 设 $0 < x < 2\pi, \alpha > 0$. 问级数

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^{\alpha}} \left(1 + \frac{1}{n}\right)^n$$

绝对收敛、条件收敛还是发散。

- 3. 重排级数 $\sum_{n=1}^{\infty} (-1)^{n+1}/n$, 使它发散。
- 4. 设 $a_n \leq b_n \leq c_n (n = 1, 2, ...)$, $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} c_n$ 同敛散,能否通过其敛散性断言 $\sum_{n=1}^{\infty} b_n$ 的敛散性?
- 5. 证明级数的 Hölder 不等式和 Minkowski 不等式。(原题是指数为 2 的。)
- 6. 把 $\ln x$ 展开成 (x-1)/(x+1) 的幂级数。
- 7. 以周期 2π 对 $sgn \circ cos$ 进行 Fourier 展开。
- 8. 分别在 $[-\pi, \pi]$ 和 $[0, 2\pi)$ 上对 $x \mapsto x^2$ 进行 Fourier 展开,并求和 $\sum_{n=1}^{\infty} n^{-2}$ 和 $\sum_{n=1}^{\infty} n^{-4}$.
- 9. 计算

$$\lim_{x \to 0, y \to 0} (x+y) \sin((x^2+y^2)^{-1}) \qquad \text{fil} \qquad \lim_{x \to 0, y \to 0} (\exp(x) - \exp(y)) \csc(xy).$$

- 10. 求曲面 $z = (x^2 + y^2)/4$ 与平面 y = 4 的交线在 x = 2 处的切线与 Ox 轴的夹角。
- 11. 叙述 \mathbb{R}^n 中区域的定义。设 D 是 \mathbb{R}^2 上的区域。

- (a) 二元函数 f 满足 $f_1' = 0$ 在 D 上恒成立,问 f 的取值是否只由第二变元(自变元的第二个分量)决定。
- (b) 二元函数 f 的 Jacobi 矩阵在 D 上恒取 0,问 f 在 D 上是否恒取常值。
- (c) 对以上两问,如果回答为"不能",试附加一充分条件使之成立。
- 12. 设 b > a > 0, 计算积分

$$\int_0^1 \frac{x^b - x^a}{\ln x} \sin\left(\ln\left(\frac{1}{x}\right)\right) dx \qquad \text{fl} \qquad \int_0^1 \frac{x^b - x^a}{\ln x} \cos\left(\ln\left(\frac{1}{x}\right)\right) dx.$$

13. 设 n 取正整数, a > 0, 计算

$$\int_0^\infty (x^2 + a^2)^{-n} \, \mathrm{d}x.$$

14. 计算

$$\int_{x^2+y^2=1} (x^2 + 2y^2)^{1/2} \, \mathrm{d}s.$$

15. 计算

$$\int_L xyz\,\mathrm{d}z,$$

其中 L 是单位球面与 y=z 相交的园, 其方向按曲线依次经过第 1,2,7,8 卦限。

16. 计算

$$\lim_{r \to +\infty} \int_{x^2 + y^2 = r^2} \frac{y dx - x dy}{(x^2 + xy + y^2)^2}.$$

17. 设二元函数 u,v 在由封闭的光滑曲线 L 所围的区域 D 具有 2 阶连续偏导数,证明

$$\iint_{D} v \Delta u \, d\sigma = -\iint_{D} (\nabla u) \cdot (\nabla v) \, d\sigma + \oint_{L} v \frac{\partial u}{\partial \mathbf{n}} \, ds$$

和

$$\iint_{D} (u\Delta v - v\Delta u) d\sigma = \oint_{L} \left(u \frac{\partial v}{\partial \mathbf{n}} - v \frac{\partial u}{\partial \mathbf{n}} \right) ds,$$

其中 \mathbf{n} 是 L 的单位外法向量。

18. 设 det $\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} \neq 0, h_i > 0 (i = 1, 2, 3), 求由平面 <math>a_i x + b_i y + c_i z = \pm h_i (i = 1, 2, 3)$ 所界平行六面体的体积。

- 19. (不是原题)设平面直角右手坐标系 ${
 m xOy}$ 上有一位于 (0,1) 处的电荷量为 q 的带正电的点电荷 ${
 m A}$,并在 $([1,\infty)\times\{0\})\cup((-\infty,-1]\times\{0\})$ 上带正电,其他地方不带电,(x,0) 处电荷的线密度等于 $1/|x|(|x|\geqslant 1)$,求 ${
 m A}$ 所受的 Coulomb(库仑)力。 两个电荷(带电量分别设为 Q,q)之间的 Coulomb 力总是沿二者的连线方向,遵循"同性相斥、异性相吸"的规律,大小等于 $kQqr^{-2}$,其中 k 是正常量,r 为两电荷的距离。
- 20. 设球体 $x^2 + y^2 + z^2 \le 2x$ 上各点的密度等于该点到坐标原点的距离,求该球体的质量、质心和形心。

2024.11.25

- 0. 遗留问题。
- 1. 设 $E \subseteq \mathbb{R}^n$ 是 Lebesgue 可测集。是否存在 L(E) 的可数子集 A,使得对于任何 $f \in L(E)$,都存在 A 中的函数列 $(f_n)_n$ 满足 $\lim_n \int_E |f_n f| = 0$?
- 2. 设 $f \in L(0,1)$ 使得 $\int_0^1 x^n f(x) dx = 0$ 对任何非负整数 n 都成立, 证明 f = 0 a.e. 于 (0,1).
- 3. 求解所有的实数 a, 使得 $Z[a] := \{ma + n : m, n \in \mathbb{Z}\}$ 稠于 \mathbb{R} .
- 4. 证明

$$\frac{\pi}{2\sqrt{2}} < \int_0^1 \frac{\mathrm{d}x}{\sqrt{1 - x^4}} < \frac{\pi}{2}.$$

5. 求和

$$\sum_{n\geqslant 1} \frac{n^2}{2^n}.$$

- 6. 设 $(a_n)_{n\geqslant 1}\subset (0,\infty),\ \alpha\in (1,\infty),\$ 并记 $S_n:=\sum_{k=1}^n a_k,\$ 证明 $\sum_{n\geqslant 1}a_nS_n^{-\alpha}$ 收敛。
- 7. 设 $(a_n)_n$ 是有界实数列,且 $\lim_n (a_{n+1} a_n) = 0$,证明 $(a_n)_n$ 的极限点构成闭区间。
- 8. 求心形线 $r = a(1 + \cos \theta), a > 0$ 的切线与切点向径的夹角。
- 9. 证明:在 \mathbb{R}^n (标准内积)中存在非零的线性变换 φ , 使得 $\varphi(x) \perp x, \forall x \in \mathbb{R}^n$; 但是在 \mathbb{C}^n (标准内积)中不存在这样的线性变换。
- 10. 设 A, B 是同阶实对称正定矩阵,问 AB 的特征值(在 \mathbb{C} 上考虑)是否一定都是正数。

11. 求如下 n(n > 1) 阶的行列式的值:

$$\begin{vmatrix} a & b & 0 & 0 & \dots & 0 & 0 \\ 0 & a & b & 0 & \dots & 0 & 0 \\ 0 & 0 & a & b & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & a & b \\ b & 0 & 0 & 0 & \dots & 0 & a \end{vmatrix}.$$

- 12. 设 $A, B \in M_n(\mathbb{C}), a, b \in \mathbb{C}, AB BA = aA + bB$, 证明 A, B 可以同时相似上三角化。
- 13. 证明矩阵特征值的 Gerschgorin 圆盘第一定理: $A=(a_{ij})_{i,j=1}^n\in M_n(\mathbb{C})$ 的所有特征值都属于

$$\bigcup_{k=1}^{n} \left\{ z \in \mathbb{C} \colon |z - a_{kk}| \leqslant \sum_{i \neq k} |a_{ik}| \right\}.$$

14. 设 \mathbb{K} 是某一数域,f(x), g(x) 是 $\mathbb{K}[x]$ 中的互素多项式, $A \in M_n(\mathbb{K})$,证明 f(A)g(A) = 0 当且仅当 rank f(A) + rank g(A) = n.

2024.11.28

1. 固定 x > 0, 给出

$$a_n := \prod_{k=1}^n (x+k)$$

在 $n \to \infty$ 时的一个渐进估计,并判敛

$$\sum_{n\geqslant 1} \frac{n!}{a_n}.$$

2. 给出

$$a_n := \frac{(2n-1)!!}{(2n)!!} \cdot \frac{1}{2n+1}$$

在 $n \to \infty$ 时的一个渐进估计,并判敛

$$\sum_{n\geqslant 1}a_n.$$

3. 设连续函数 $f: \mathbb{R} \to \mathbb{R}$ 以 p 为周期,证明

$$\lim_{x \to +\infty} \frac{1}{x} \int_0^x f = \frac{1}{p} \int_0^p f.$$

4. 计算

$$\frac{\mathrm{d}}{\mathrm{d}x} \begin{vmatrix} x - 1 & 1 & 2 \\ -3 & x & 3 \\ -2 & -3 & x + 1 \end{vmatrix}.$$

- 5. 将正切函数 Maclaurin 展开到 5 次项,带 Peano 余项即可。
- 6. 讨论如下 $\mathbb{R}^2 \to \mathbb{R}^2$ 的函数的连续性:

$$(x,y) \mapsto \begin{cases} y^2 \ln(x^2 + y^2), & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases} \quad \text{fix} \quad (x,y) \mapsto \exp(-\frac{x}{y}).$$

7. 设 $r(x, y, z) = \sqrt{x^2 + y^2 + z^2}$, 求

$$\operatorname{grad} r$$
 $\operatorname{prad} \frac{1}{r}$.

8. 证明

$$\mathbb{R} \to \mathbb{R}, \ y \mapsto \int_0^1 \operatorname{sgn}(x-y) \, \mathrm{d}x$$

在 ℝ 上连续。

9. 计算

$$\int_0^\infty e^{-x} \frac{1 - \cos(xy)}{x^2} \, \mathrm{d}x.$$

10. 求

$$\inf_{a,b\in\mathbb{R}}\int_{1}^{3}(a+bx-x^{2})^{2}\,\mathrm{d}x.$$

11. 求质量分布均匀的摆线

$$x = t - \sin t$$
, $y = 1 - \cos t$ $(0 \leqslant t \leqslant \pi)$

的质心。

12. 设 a > 0, k > 0, 对于 $L: r = ae^{k\theta}, r \leq a$, 计算

$$\int_L x \, \mathrm{d}s.$$

13. 对于 $V: x \ge 0, y \ge 0, 0 \le z \le 1, x^2 + y^2 \le 1$, 计算

$$\iiint_V xy + yz + zx \, dx \, dy \, dz$$

14. 设 $f: \mathbb{R} \to \mathbb{R}$ 是连续函数, $D:=\{(\theta,\varphi)\colon 0\leqslant \theta\leqslant 2\pi, 0\leqslant \varphi\leqslant \pi\},\ m,n,p$ 不同时为 0, 证明

$$\iint_D f(m\sin\varphi\cos\theta + n\sin\varphi\sin\theta + p\cos\varphi)\sin\varphi\,\mathrm{d}\theta\,\mathrm{d}\varphi = 2\pi\int_{-1}^1 f\big(u\sqrt{m^2 + n^2 + p^2}\big)\,\mathrm{d}u.$$

15. 记 $r = (x, y, z), r = \sqrt{x^2 + y^2 + z^2}, V$ 是 \mathbb{R}^3 中的区域, n 是 ∂V 的外法向量, 证明

$$\iiint_V \frac{1}{r} dx dy dz = \frac{1}{2} \oiint_{\partial V} \cos(\widehat{\boldsymbol{r}, \boldsymbol{n}}) dS.$$

- 16. 设 $f, f_n(n \in \mathbb{N})$ 都是可测集 E 上的几乎处处有限的函数,并且 $mE(f_n \neq f) < 2^{-n}$, 试证 明在 $n \to \infty$ 时 f_n 几乎处处收敛到 f.
- 17. 设 $f \in L(\mathbb{R})$ 且 $\int_{\mathbb{R}} f \neq 0$, a 是一个确定的实数,证明

$$x \mapsto \frac{1}{2x} \int_{a-x}^{a+x} f \quad \notin L(\mathbb{R}).$$

18. 设 $f \in L(\mathbb{R})$, a > 0, 证明

$$\lim_{n \to \infty} n^{-a} f(nx) = 0, \quad \text{a.e. } x \in \mathbb{R}.$$

- 19. 已知曲面 $2x^2 + ay^2 + 2z^2 + 2xy + 2xz + 2yz = 3$ 经正交变换可化为椭球面 $u^2 + v^2 + bw^2 = 3$, 求 a, b 的值。
- 20. 证明复矩阵的 Jordan-Chevalley 分解: 任何 $A \in M_n(\mathbb{C})$ 都可以分解为 B+C 的形式, 其中
 - (a) B 可对角化,
 - (b) C 幂零,
 - (c) BC = CB,
 - (d) B, C 都是 A 的多项式,

并且满足 (a)-(c) 的分解是唯一的。