Suites numériques : activité d'approche

Première 6

1 Introduction

Une suite est une liste potentiellement infinie de nombres, que l'on peut énumérer. Par exemple 1; 2; 3; 4; 5; 6; . . . est la liste des nombres entiers.

Compléter 5 termes des suites suivantes, vous indiquerez comment vous passez d'un terme à l'autre :

- 1;3;5;7;9;11;	• • •
- 0;4;8;12;16	
– 2;4;8;16;32	
- 1; -2; 4; -8; 16	
- 1;1;2;3;5;8;13;21	

2 Notation indicielle

Soit u une suite, on note u_n le n-ème terme.

On considère la suite des entiers impairs (premier exemple de la partie 1. On la notera u.

- 1. Que vaut u_1 ? u_2 ? u_{10} ?
- 2. Comment peut on obtenir un terme à partir du précédent?

On considère la suite v dont le n-ème terme est donné par $v_n = v(n) = 3n - 4$.

- 1. Que vaut v_1 ? v_{3652} ?
- 2. Si *n* vaut 3. Que vaut v_n ? v_{n+1} ? v_{n-1} ?

3 Suite générée par un algorithme

3.1 Etude d'une suite particulière

Un algorithme de calcul est un calcul ou une suite de calculs que l'on va effectuer de manière répétitive.

On s'intéresse à l'algorithme suivant : "ajouter 5 au nombre initial puis multiplier le résultat par 4"

On considère la suite u dont le n-ème terme u_n est obtenu en ajoutant 5 au précédent terme puis en multipliant le résultat par 4. On se donne un terme initial $u_0 = 1$.

- 1. Appliquer l'algorithme au nombre 2.
- 2. Que vaut u_1 ? u_2 ? u_3 ? u_4 ?
- 3. Exprimer le terme u_{n+1} en fonction du terme précédent u_n .

3.2 Algorithme pour produire une suite

On considère la suite suivante :

$$u_0 = 3$$
 et $u_{n+1} = (u_n)^2 + 2$.

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Décrire par une phrase l'algorithme permettant de passer de u_n à u_{n+1} .