Boston University ENG EC 414 Introduction to Machine Learning

Exam 1 Solution

Released on Monday, 5 October, 2020 (120 minutes, 42 points + 2 bonus points), submit to Gradescope

- There are 6 problems plus 1 bonus one.
- For each part, you must clearly outline the key steps and provide proper justification for your calculations in order to receive full credit.
- You can use any material from the class (slides, discussions, homework solutions, etc.), but you cannot look for solutions on the internet. Also, be aware of the limited time.

Problem 1.1 [5pts] Let $f(z) := z^2$ and $\mathcal{A} := [-1, 1]$. Compute: $\underset{z \in \mathcal{A}}{\operatorname{argmin}} \frac{1}{13 + \sqrt{1 + 2 \cdot f(z)}}$.

Solution:

5pts $argmin \frac{1}{13+\sqrt{1+2\cdot z^2}} = \{-1,+1\}$ First of all, the minimum of the function is equivalent to the maximum of $13+\sqrt{1+2\cdot f(z)}$, because 1/x is decreasing on the positive values of x. In turn, the function $g(t)=13+\sqrt{(1+2t)}$ is strictly increasing for all t>0 since its derivative $1/\sqrt{1+2t}$ is strictly positive $\Rightarrow argmax \left[13+\sqrt{1+2\cdot f(z)}\right] = argmax g(f(z)) = argmax f(z)$. The quadratic z^2 decreases from 1 at z=-1 to 0 at z=0 and then increases to 1 at z=1.

Problem 1.2 [6pts] Let $\mathcal{Y} := \{1.5, 2.0, 3.5, 6.0\}$ and $y_1 = y_2 = 1.5, y_3 = 2.0, y_4 = y_5 = 3.5, y_6 = 6.0.$

- (a) [2pts] Compute $\underset{y \in \mathcal{Y}}{\operatorname{argmin}} \frac{1}{6} \sum_{j=1}^{6} \mathbf{1}[y \neq y_j].$
- (b) [2pts] Compute $\underset{y \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{6} \sum_{j=1}^{6} (y y_j)^2$.
- (c) [2pts] Compute $\operatorname*{argmin}_{y \in \mathbb{R}} \frac{1}{6} \sum_{j=1}^{6} |y y_j|$.

Solution: Note that the values 1.5 and 3.5 occur twice and the values 2 and 6 each occur once in the dataset.

- (a) [2pts] $[\{1.5, 3.5\}]$. The average 0-1 loss is minimized by the most frequent values. These are 1.5 and 3.5.
- (b) [2pts] [3.0]. The mean square error is minimized by the empirical mean which is $\frac{2\times1.5+1\times2+2\times3.5+1\times6}{6}=3.0$.

(c) [2pts] [2, 3.5]. The mean absolute error is minimized by the empirical median which is any point in the closed (continuous) interval [2, 3.5].

Problem 1.3 [10pts]

- (a) [2pts] Consider the hyperplane parametrized by \mathbf{w} and b with b=3 and $\mathbf{w}=(1, -4, 8)^{\mathsf{T}}$. Determine which of the following points lie on the hyperplane: (i) $\mathbf{x}_1=(-2, 2, 1)^{\mathsf{T}}$, (ii) $\mathbf{x}_2=(0, 1, 0)^{\mathsf{T}}$, (iii) $\mathbf{x}_3=(1, 3, 1)^{\mathsf{T}}$.
- (b) [2pts] Compute the distance of $\mathbf{x}_4 = (-1, -1, -1)^T$ from the hyperplane in part (a).
- (c) [3pts] Compute the orthogonal projection of the point \mathbf{x}_4 from part (b) onto the hyperplane in part (a).
- (d) [3pts] Determine parameters **w** and *b* of the hyperplane passing through the following 3 points: $\mathbf{x}_5 = (1/2, 0, 0)^{\mathsf{T}}, \mathbf{x}_6 = (1, 1, 0)^{\mathsf{T}}, \mathbf{x}_7 = (-1, 1, -1)^{\mathsf{T}}.$

Solution:

- (a) [2pts] \mathbf{x}_3 A point \mathbf{x} lies on $hp(\mathbf{w}, b) \Leftrightarrow \mathbf{w}^{\top} \mathbf{x} + b = 0$. We have $\mathbf{w}^{\top} \mathbf{x}_1 + b = +1$, $\mathbf{w}^{\top} \mathbf{x}_2 + b = -1$, $\mathbf{w}^{\top} \mathbf{x}_3 + b = 0$.
- (b) [2pts] 2/9 Distance of point \mathbf{x}_4 from $hp(\mathbf{w}, b) = \frac{|\mathbf{w}^{\mathsf{T}}\mathbf{x}_4 + b|}{\|\mathbf{w}\|} = \frac{|-1 + 4 8 + 3|}{\sqrt{1^2 + (-4)^2 + (8)^2}} = \frac{2}{9}$.
- (c) $[3pts] \overline{\left[-(79/81, 18/81, 65/81)^{\top} \right] \text{Proj}_{hp(\mathbf{w},b)}(\mathbf{x}_4)} = \mathbf{x}_4 \frac{(\mathbf{w}^{\top}\mathbf{x}_4 + b)}{\|\mathbf{w}\|} \cdot \frac{\mathbf{w}}{\|\mathbf{w}\|} = \mathbf{x}_4 \frac{(-2)}{9} \frac{\mathbf{w}}{9} = -(79/81, 89/81, 65/81)^{\top}.$
- (d) [3pts] $\mathbf{w} = b \cdot (-2, 1, 4)^{\mathsf{T}}$, any $b \neq 0$ Points $\mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7$ lie on $hp(\mathbf{w}, b) \Rightarrow \mathbf{w}^{\mathsf{T}} \mathbf{x}_j + b = 0, j = 5, 6, 7$. This gives 3 linear equations in 4 unknowns:

$$\begin{bmatrix} 1/2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ -1 & 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} \frac{1}{2}w_1 + b = 0 \\ w_1 + w_2 + b = 0 \\ -w_1 + w_2 - w_3 + b = 0 \\ \vdots & w_3 = -w_1 - b = b, \\ -w_1 + w_2 - w_3 + b = 0 \\ \vdots & w_3 = -w_1 + w_2 + b = 4b. \end{bmatrix}$$

Choose any $b \neq 0$.

Problem 1.4 [6pts] Consider the following set of feature vectors and corresponding real-valued labels

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \mathbf{x}_3 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}, \mathbf{x}_4 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}, \quad y_1 = 4, y_2 = 2, y_3 = -8, y_4 = 2.$$

- (a) [4pts] Fix b = 0 and compute by hand the ordinary least squares (OLS) solution \mathbf{w}^* .
- (b) [2pts] Compute the OLS prediction of \mathbf{w}^* and b = 0 for the vector \mathbf{x}_1 .

Solution:

(b) [3pts]

$$\mathbf{w}_{OLS}^{\star} = (X^{\top}X)^{-1}X\mathbf{y} = 2 \times \frac{1}{13 \times 4 - 3 \times 3} \begin{bmatrix} 4 & -3 \\ -3 & 13 \end{bmatrix} \begin{bmatrix} 10 \\ -1 \end{bmatrix} = \frac{2}{43} \begin{bmatrix} 43 \\ -43 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

(c) [2pts]

$$h_{OLS}(\mathbf{x}_1) = (\mathbf{w}_{OLS}^{\star})^{\top} \mathbf{x}_1 = \begin{bmatrix} 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 4$$

Problem 1.5 [7pts] Let $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ be a training set with feature vectors $\mathbf{x}_j \in \mathbb{R}^d$ and labels $y_j \in \mathbb{R}$. Consider the following cost function for Regularized Least Square without bias, that is, there is no b:

$$g(\mathbf{w}) = \|\mathbf{w}\|^2 + \frac{1}{2m} \sum_{i=1}^{m} (y_j - \mathbf{x}_j^{\mathsf{T}} \mathbf{w})^2.$$

Note that this formulation is slightly different from the one seen in class, don't just copy from the slides!

- (a) [2pts] Compute the gradient $\nabla g(\mathbf{w})$.
- (b) [2pt] Provide pseudocode for an algorithm to minimize $g(\mathbf{w})$ based on gradient descent with zero initialization, a fixed positive step size $\eta > 0$, and the maximum number of iterations T.
- (c) [3pt] After a certain number of iterations less than the maximum number of iterations, \mathbf{w}_t in gradient descent stops changing, that is $\mathbf{w}_{t+1} = \mathbf{w}_t$. Can it happen? If yes, in which situations? If no, why?

Solution:

(a) [2pts]

$$\nabla g(\mathbf{w}) = 2\mathbf{w} + \frac{1}{m} \sum_{j=1}^{m} (\mathbf{x}_{j}^{\mathsf{T}} \mathbf{w} - y_{j}) \mathbf{x}_{j}$$

Instead, in matrix form and using the usual notation on X, it would be

$$\nabla g(\mathbf{w}) = 2\mathbf{w} + \frac{1}{m} X^{\mathsf{T}} X \mathbf{w} - \frac{1}{m} X^{\mathsf{T}} y$$

Both are good.

(b) [1pt]

Pseudocode

input:
$$y, X, \eta, T$$

initialize: $\mathbf{w}_1 = \mathbf{0}$
for $t = 1, 2, ..., T$
compute gradient $\nabla g(\mathbf{w}_t)$: $\mathbf{v}_t = 2\mathbf{w}_t + \frac{1}{m} \sum_{j=1}^m (\mathbf{x}_j^\top \mathbf{w}_t - y_j) \mathbf{x}_j$
update w: $\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \mathbf{v}_t$
end for
output: w

(c) [3pts] If gradient descent stops updating, the only possibility is that the gradient is exactly zero. For a convex function, this implies we are exactly in the minimum.

Problem 1.6 [8pts] Consider the following training set of feature vectors and corresponding binary labels

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \mathbf{x}_3 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}, \mathbf{x}_4 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \quad y_1 = -1, y_2 = 1, y_3 = 1, y_4 = -1.$$

- (a) [2pts] Hand-plot the training set. Proper labeling of axes and key points is needed to receive full credit.
- (b) [2pts] Is it possible to find a hyperplane that linearly separates this training set? A motivation for your answer is needed to receive full credit.
- (c) [2pts] Will the Perceptron converge on this dataset? A motivation for your answer is needed to receive full credit.
- (d) [2pts] Using the usual augmentation to include the bias in features and hyperplane, compute by hand the first update $\tilde{\mathbf{w}}_2$ of the Perceptron algorithm starting from $\tilde{\mathbf{w}}_1 = \begin{bmatrix} 0, 0, 0 \end{bmatrix}^{\mathsf{T}}$, after seeing the example $\tilde{\mathbf{x}}_1 = \begin{bmatrix} 1 \\ \mathbf{x}_1 \end{bmatrix}$.

Solution:

- (a) [2pts]
- (b) [2pts] The dataset is linearly separable. For example, the sign of predictions of the hyperplane $\mathbf{w} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, b = 1.5 correctly classify all the samples.
- (c) [2pts] Given that the dataset is linearly separable with a positive margin, the Perceptron will converge. Note that the Perceptron will converge not matter what is the order of the examples.
- (d) [2pts]

$$\tilde{\mathbf{w}}_2 = \tilde{\mathbf{w}}_1 + y_1 \tilde{\mathbf{x}}_1 = \begin{bmatrix} -1 \\ -1 \\ -2 \end{bmatrix}$$

Problem 1.7 [Bonus, 2pts] Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ equal to $f(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{5}x_2^2 + \frac{1}{4}\sin(2x_1)$. Is it convex? Motivate your answer.

Solution: First, don't be fooled by the presence of the sin function. To estabilish convexity, we have to calculate the Hessian. We can calculate the Hessian of this function easily, to get $H(x_1, x_2) = \begin{bmatrix} 1 - \sin(2x_1) & 0 \\ 0 & \frac{2}{5} \end{bmatrix}$. This matrix is PSD: there are at least a couple of ways to see it. First method: for a diagonal matrix, the eigenvalues are equal to the element of the diagonal, that are non-negative for any (x_1, x_2) . Second method: use the definition of PSD, so we have to show that $\mathbf{z}^T H(x_1, x_2)\mathbf{z} \geq 0$ for any \mathbf{z}, x_1, x_2 . This is true because $\mathbf{z}^T H(x_1, x_2)\mathbf{z} = z_1^2(1 - \sin(2x_1)) + \frac{2}{5}z_2^2$. Hence, the function is convex.