RPS Analiza podatkov

A. Blejec

21. november 2013

Kazalo

1	Visina in spol	4
2	Testiranje višin	8
3	Teža	9
4	Galton in višina otrok in staršev	10

Povzetek

Primer analize podatkov

O rasti in velikosti ljudi imamo nekaj mnenj, ki jih lahko izrazimo v obliki raziskovalnih vprašanj. Najprej si zastavimo vprašanja.

Vprašanja

Nekaj vprašanj, na katere bi radi odgovorili je:

- Ali so fantje večji od deklet?
- Ali so fantje težji od deklet?
- Ali sta razpon rok in višina približno enaka?
- Ali drži Galtonovo opažanje glede višine otrok in staršev?
- ...

Zbrali smo nekaj podatkov o študentih, s katerimi si bomo lahko poskusili odgovoriti. Nato zberemo podatke, s katerimi bomo poskusili odgovoriti na vprašanja. Ker predvidevamo, da nas bo zanimalo še kaj, zberemo podatke o še nekaj spremenljivkah.

lfn <- "Podatki2012.txt"</pre>

Podatki

Podaki so o študentih 3. letnika biologije v letu 2012/13 so v datoteki lfn in na http://bit.ly/16oBVpR

```
fpath <- "http://bit.ly/16oBVpR"
  data <- read.table(fpath, header = TRUE, sep = "\t")
  names(data)
[1] "starost" "mesec" "spol" "masa" "visina"
[6] "roke" "cevelj" "lasje" "oci" "mati"
[11] "oce" "majica"</pre>
```

Opisna statistika

summary(data[, 1:6])

starost		mesec		spol	masa		
Min.	:20.00	Min.	:	0.000	F:33	Min.	:50.00
1st Qu	.:21.00	1st Qu.	:	5.000	M:10	1st Qu	.:55.50
Median	:21.00	Median	:	7.000		Median	:61.00
Mean	:22.07	Mean	:	6.814		Mean	:63.42
3rd Qu	.:22.00	3rd Qu.	:	9.500		3rd Qu	.:70.00
Max.	:59.00	Max.	:	11.000		Max.	:91.00

vis	sina	roke			
Min.	:156.0	Min.	:154.0		
1st Qu.	:164.0	1st Qu	.:163.2		
Median	:170.0	Median	:167.8		
Mean	:169.9	Mean	:169.3		
3rd Qu.	:173.5	3rd Qu	.:172.5		
Max.	:189.0	Max.	:193.0		
		NA's	. 5		

Ali pri podatkih kaj opazite?

Nenavadni podatki

Kaj storiti s tistim, ki je napisal, da je rojen v mesecu 0? Eden pa je star 59 let??

Popravljanje podatkov

Odstranimo *ta star'ga*

```
data <- data[data$starost < 30, ]</pre>
```

Podatke o mesecu 0 spremenimo v NA

```
data[data$mesec == 0, "mesec"] <- NA
table(data$mesec)

1  2  3  4  5  6  7  8  9 10 11
1  3  2  3  4  3  7  5  2  5  6</pre>
```

Nadaljevanje opisa

summary(data[, 7:dim(data)[2]])

cevelj		lasje oci		mati		
Min.	:36.00	S:19	S:23	Min.	:157.0	
1st Qu.	:38.00	T:23	T:19	1st Qu.	:160.0	
Median	:39.00			Median	:165.0	
Mean	:39.93			Mean	:165.6	
3rd Qu.	:41.00			3rd Qu.	:168.0	
Max.	:48.00			Max.	:180.0	
				NA's	: 5	

oce majica
Min. :170.0 L : 4
1st Qu.:174.0 M :19
Median :179.0 S :16
Mean :179.1 XL: 1
3rd Qu.:182.0 XS: 2
Max. :190.0

:5

NA's

1 Višina in spol

Primerjajte razpone vrednosti višin študentov in staršev.

Višina po spolu

Povzetek višin glede na spol

```
summary(data$mati)
   Min. 1st Qu.
                 Median
                            Mean 3rd Qu.
                                             Max.
                                                      NA's
  157.0
          160.0
                  165.0
                           165.6
                                    168.0
                                            180.0
                                                         5
 by(data$visina, data$spol, summary)
data$spol: F
   Min. 1st Qu.
                 Median
                            Mean 3rd Qu.
                                             Max.
  156.0
          163.0
                  168.0
                           166.8
                                    170.0
                                            178.0
data$spol: M
  Min. 1st Qu.
                 Median
                            Mean 3rd Qu.
                                             Max.
  171.0
          180.0
                   180.0
                           180.2
                                    183.0
                                            189.0
  summary(data$oce)
  Min. 1st Qu.
                 Median
                            Mean 3rd Qu.
                                                      NA's
                                             Max.
  170.0
          174.0
                   179.0
                           179.1
                                    182.0
                                            190.0
                                                         5
```

Doseg spremenljivk v objektu data.frame

Poglejte kakšne so vrednosti spremenljivke **visina!** Ali je v delovnem prostoru (workspace)? Do spremenljivk lahko pridem posredno na več načinov

- data\$visina
- data[, 'visina']
- data[,5]

Neposreden dostop

Neposreden dostop do spremenljivk omogoči

```
attach(data)
length(visina)

[1] 42
visina[1:5]

[1] 173 178 167 171 171
```

Grafični prikazi

Grafični prikaz podatkov

plot (visina)

Grafični prikaz podatkov

plot(visina, pch = 16, col = spol)

Kumulativa

```
x <- visina
plot(x, rank(x), pch = 16, col = spol)</pre>
```


Kumulativa in normalna aproksimacija

```
x <- visina
plot(x, rank(x), pch = 16, col = spol)
q <- qnorm((rank(x) - 0.5)/length(x), mean(x),
+ sd(x))
points(q, rank(x), col = 4)
segments(x, rank(x), q, rank(x))</pre>
```


Slika kvantilov

Boxplot

```
boxplot(visina ~ spol, col = c("pink", "lightblue"))
rug(jitter(visina[spol == "F"]), side = 2)
rug(jitter(visina[spol == "M"]), side = 4)
```


Dorišite točke za mediane. Pomagajte si s str(), locator().

2 Testiranje višin

```
Student t-test
```

Oglejte si, kaj vrne funkcija t.test(). Dorišite točki povprečij.

3 Teža

Teža in spol

Izberite si nekaj prejšnjih prikazov in

- Raziščite kako je s težo pri dekletih in fantih.
- Izračunajte novo spremenljivko $BMI = masa/visina^2$
- Kaj pa velja za BMI?

4 Galton in višina otrok in staršev

Velikost staršev in potomcev

Galton je ugotavljal korelacijo med velikostjo staršev in potomcev.

Uvedel je pojem regresija, ki izvira iz ugotovitve, da so velikost staršev in potomcev v posebnem razmerju, ki zagotavlja 'regesijo' k povprečju.

Fantje

Fantje

Dekleta

```
with(data, plot(mati, visina, col = spol, pch = 16,
+     xlim = range(visina)))
abline(c(0, 1), col = "blue")
abline(lm(visina ~ mati, data = data), col = 3,
+     lwd = 3)
abline(lm(visina ~ mati, data = data[data$spol ==
+     "M", ]), col = "red", lwd = 3)
abline(lm(visina ~ mati, data = data[data$spol ==
+     "F", ]), lwd = 3)
```

Dekleta

Fantje in dekleta

Koeficienti

```
fit <- lm(visina ~ oce, data = data)
summary(fit)</pre>
```

Call:

lm(formula = visina ~ oce, data = data)

Residuals:

Min 1Q Median 3Q Max -14.298 -4.298 -1.343 3.998 16.315

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 83.4128 39.1670 2.130 0.0403 *
oce 0.4774 0.2186 2.183 0.0358 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```
Residual standard error: 7.231 on 35 degrees of freedom
```

(5 observations deleted due to missingness)

Multiple R-squared: 0.1199, Adjusted R-squared: 0.09474

F-statistic: 4.767 on 1 and 35 DF, p-value: 0.0358

Grafična analiza

```
par(mfrow = c(2, 2))

plot(fit, col = spol)
```


fit <- lm(visina ~ spol * oce, data = data)
summary(fit)</pre>

Call:

lm(formula = visina ~ spol * oce, data = data)

Residuals:

Min 1Q Median 3Q Max -11.3717 -2.6359 -0.2208 3.7604 11.1943

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 115.8618 34.2922 3.379 0.00188 **
spolM -10.4524 72.3167 -0.145 0.88596

```
0.2830
                                 0.1920
oce
                                             1.474
                                                      0.14986
                  0.1264
                                 0.4003
                                             0.316
                                                      0.75420
spolM:oce
                     0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 5.475 on 33 degrees of freedom
   (5 observations deleted due to missingness)
Multiple R-squared: 0.5244,
                                              Adjusted R-squared: 0.4812
F-statistic: 12.13 on 3 and 33 DF, p-value: 1.645e-05
  par(mfrow = c(2, 2))
  plot(fit, col = spol)
          Residuals vs Fitted
                                             Normal Q-Q
                                Standardized residuals
    9
Residuals
                     Ø
                                    0
                                            0
                                    7
   -10
                        0
        165
             170
                  175
                       180
                                        -2
                                           Theoretical Quantiles
             Fitted values
           Scale-Location
                                         Residuals vs Leverage
(Standardized residuals)
                                Standardized residuals
        ० ८
    0.1
        80000
                                                       380
                                    7
                                      0.00
                                                       0.30
        165
             170
                  175
                       180
                                            0.10
                                                 0.20
```

Regresija

plot(visina, masa)
abline(lm(masa ~ visina))

Fitted values

Leverage

Regresija

```
cor(masa, visina)
[1] 0.7049331
  fit <- lm(masa ~ visina)</pre>
  summary(fit)
Call:
lm(formula = masa ~ visina)
Residuals:
    Min
                Median
             1Q
                              3Q
                                     Max
-15.354
        -4.140
                 -1.786
                           3.579
                                  24.042
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -92.2700
                                  -3.737 0.000581 ***
                         24.6887
                                   6.286 1.87e-07 ***
visina
              0.9136
                          0.1453
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.202 on 40 degrees of freedom
Multiple R-squared: 0.4969,
                                    Adjusted R-squared: 0.4844
```

F-statistic: 39.51 on 1 and 40 DF, p-value: 1.874e-07

```
Regresija
```

```
fit <- lm(masa ~ visina * spol)</pre>
  summary(fit)
lm(formula = masa ~ visina * spol)
Residuals:
  Min 1Q Median
                      3Q
                             Max
-8.381 -4.148 -1.588 3.022 11.878
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -13.1070 31.2526 -0.419 0.6773
visina
              0.4297
                       0.1872 2.295 0.0274 *
         100.1884 73.0398 1.372 0.1782
spolM
visina:spolM -0.4795
                       0.4113 -1.166 0.2509
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.738 on 38 degrees of freedom
Multiple R-squared: 0.6966, Adjusted R-squared: 0.6727
F-statistic: 29.09 on 3 and 38 DF, p-value: 6.079e-10
 plot(visina, masa, col = spol)
  abline(lm(masa ~ visina))
 points(visina, predict(fit), pch = 16, col = spol)
```


Analiza variance

AOV - ukazi za sliko

```
par(mfrow = c(1, 2))
plot(fvis, masa)
points(1:3, m, pch = 16, cex = 2)
plot(as.numeric(fvis), jitter(masa))
points(1:3, m, pch = 16, cex = 2, type = "b")
abline(h = mean(masa))
```

Linearni model

fvisM

56.167

```
fit <- lm(masa ~ 0 + fvis)</pre>
  summary(fit)
Call:
lm(formula = masa ~ 0 + fvis)
Residuals:
    Min
              1Q
                  Median
                               3Q
                                      Max
-19.625
         -4.510
                  -1.167
                            2.924
                                   25.954
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
```

2.295

<2e-16 ***

24.48

```
fvisS 62.045 1.695 36.61 <2e-16 ***
fvisV 74.625
                 2.811 26.55 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.949 on 39 degrees of freedom
Multiple R-squared: 0.9855, Adjusted R-squared: 0.9843
F-statistic: 881.4 on 3 and 39 DF, p-value: < 2.2e-16
Linearni model - odkloni od povprečja
  fit \leftarrow lm(I(masa - mean(masa)) \sim 0 + fvis)
 summary(fit)
Call:
lm(formula = I(masa - mean(masa)) \sim 0 + fvis)
Residuals:
         1Q Median
   Min
                          3Q
                                  Max
-19.625 -4.510 -1.167 2.924 25.954
Coefficients:
     Estimate Std. Error t value Pr(>|t|)
fvisM -6.5952 2.2948 -2.874 0.006529 **
fvisS -0.7165
                 1.6948 -0.423 0.674812
                2.8105 4.221 0.000141 ***
fvisV 11.8631
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.949 on 39 degrees of freedom
Multiple R-squared: 0.4023, Adjusted R-squared: 0.3564
F-statistic: 8.752 on 3 and 39 DF, p-value: 0.0001458
```

SessionInfo

Windows 7 x64 (build 7601) Service Pack 1

- R version 2.15.1 (2012-06-22), x86_64-pc-mingw32
- Locale: LC_COLLATE=Slovenian_Slovenia.1250, LC_CTYPE=Slovenian_Slovenia.1250, LC_MONETARY=Slovenian_Slovenia.1250, LC_NUMERIC=C, LC_TIME=Slovenian_Slovenia.1250
- Base packages: base, datasets, graphics, grDevices, stats, utils
- Other packages: patchDVI 1.9
- Loaded via a namespace (and not attached): tools 2.15.1

Project path: D:/_Y/R/rps Main file: ../doc/Opisna.Rnw

View as vignette

Project files can be viewed by pasting this code to R console: