Inhomogeneity Correction

John Muschelli

Inhomogeneity correction

- Scans can have nonuniform intensities throughout the brain
- Usually low frequency smooth over the brain (assumed)
- ▶ Referred to as bias, bias field, or inhomogeneity

MS Lesion

Let's read in the T1 image from a MS lesion data set:

```
library(ms.lesion)
library(neurobase)
files = get_image_filenames_list_by_subject()$training01
t1_fname = files["MPRAGE"]
t1 = readnii(t1_fname)
```

Bright Data

We see areas of brightness, but we also see that an artifact

ortho2(t1)

Image Data

Let's dampen this artifact and replot the data:

ortho2(robust_window(t1))

N4 Inhomogeneity Correction

We will use N4: Improved N3 Bias Correction (Tustison et al. 2010).

The model assumed in the N4 is:

$$v(x) = u(x)f(x) + n(x)$$

where v is the given image, u is the uncorrupted image, f is the bias field, and n is the noise (assumed to be independent and Gaussian) and x is a location in the image.

N4 Inhomogeneity Correction

The data is log-transformed and assuming a noise-free scenario, we have:

$$log(v(x)) = log(u(x)) + log(f(x))$$

- N4 uses a B-spline approximation of the bias field
- It iterates until a convergence criteria is met
 - when the updated bias field is the same as the last iteration
- It outputs the data back in the original units (not log-transformed)

Bias Field Correction

Here we will use the bias_correct function in extrantsr, which calls n4BiasFieldCorrection from ANTsR.

You can pass in the image:

```
library(extrantsr)
bc_t1 = bias_correct(file = t1, correction = "N4")
```

or the filename:

```
bc_t1 = bias_correct(file = t1_fname, correction = "N4")
```

Here we take the ratio of the images and overlay it on the original image:

ratio = t1 / bc_t1; ortho2(t1, ratio)

library(scales)

Here we would like to change the colors to something more descriptive. Here we will use a diverging palette and map colors to the quantiles of the ratio image:

```
q = quantile(ratio[ ratio != 0], probs = seq(0, 1, by = 0.)
q = unique(q)
# get a diverging gradient palette
fcol = scales::div_gradient_pal(low = "blue", mid = "orange")
colors = scales::alpha(fcol(seq(0,1, length = length(q) - length))
```

Now we put those breaks into ortho2 to plot it:

```
ortho2(t1, ratio, col.y = colors, ybreaks = q, ycolorbar =
```


Histogram of Ratio Values

The majority of voxels have a ratio of 1 because n4BiasFieldCorrection does some implicit masking using ANTsR::getMask, and those values are unchanged (backround excluded).

Removing these, we can see what the distribution of ratios look like (most are below 1):

```
hist(ratio[ratio < 0.999 | ratio > 1.0001], breaks = 200)
```

Histogram of ratio[ratio < 0.999 | ratio > 1.0001]

##

We would like to see how the ratio changes in different areas of the brain. Here we make a data.frame of voxel location and intensity. We cut the location into the bottom, middle, and top of the brain:

```
df = which(ratio < 0.999 | ratio > 1.0001, arr.ind = TRUE)
df = cbind(df, value = ratio[df])
df = data.frame(df, stringsAsFactors = FALSE)
df$location = cut(df$dim3, breaks = c(0, 38, 76, 115),
                  labels = c("bottom", "middle", "top"))
```

```
dim1 dim2 dim3
                   value location
## 1
     131
           97
                1 0.8248509
                             bottom
## 2 132
         97
             1 0.8217719
                             bot.t.om
## 3
    133
         97
              1 0.8195554
                             bottom
## 4
    134
         97
              1 0.8176278
                             bot.t.om
## 5
    135
         97
              1 0.8159310
                             bottom
##
     136
           97
                1 0.8149298
                             bot.t.om
  6
```

Let's plot these with a density plot for each different location:

ggplot(df, aes(x = value, colour = location)) + geom_line(s)

Conclusions

- Inhomogeneity correction is one of the first steps of most structural MRI pipelines
- Inhomogeneity can cause problems for other methods/segmentation
- Corrections try to make tissues of the same class to have similar intensities
- You may also want to run corrections after skull stripping on the brain only
 - we will do this in the brain extraction lecture
 - correction before skull-stripping may be necessary and can improve after correction

References

Tustison, Nicholas J., Brian B. Avants, Philip A. Cook, Yuanjie Zheng, Alexander Egan, Paul A. Yushkevich, and James C. Gee. 2010. "N4ITK: Improved N3 Bias Correction." *IEEE Transactions on Medical Imaging* 29 (6): 1310–20. doi:10.1109/TMI.2010.2046908.