Definition. Eine Theorie $T = (\mathcal{L}, \Sigma)$ besteht

- aus einer Sprache $\mathcal{L} = ((R_i | i \in I); (f_i | j \in J); (c_k | k \in K))$ und
- einer Menge Σ von \mathcal{L} -Sätzen.

Definition. Eine \mathcal{L} -Struktur $\mathcal{A} = (A; (R_i^{\mathcal{A}}|i \in I); (f_i^{\mathcal{A}}|j \in J); (c_k^{\mathcal{A}}|k \in K))$ besteht aus

- einer Menge $A \neq \emptyset$, dem Individuenbereich und
- der Interpretation der Relations-, Funktions- und Konstantensymbole. Dabei gilt:

$$R_i^{\mathcal{A}} \subseteq A^{n_i}$$

 $f_j^{\mathcal{A}} : A^{m_j} \to A$
 $c_k^{\mathcal{A}} \in A$

Definition. Eine Struktur \mathcal{A} ist Modell der Theorie $T = (\mathcal{L}, \Sigma)$, falls sie eine \mathcal{L} -Struktur ist und $\mathcal{A} \models \sigma$ für alle $\sigma \in \Sigma$ gilt. Das heißt, dass jeder Satz aus Σ in dieser Struktur wahr ist $(\mathcal{A} \models \Sigma)$.

$$Mod(T) := \{ A : A \text{ ist Modell von } T \}$$

Eine Theorie heißt erfüllbar, falls sie ein Modell besitzt $(\text{Mod}(T) \neq \emptyset)$.

Beispiel. Die Theorie $T = (\mathcal{L}(\sim), \{\sigma_1 \dots, \sigma_4\})$ der Äquivalenzrelationen mit genau zwei Äquivalenzklassen, die durch die Axiome

$$\sigma_{1} \equiv \forall x(x \sim x)$$

$$\sigma_{2} \equiv \forall x \forall y(x \sim y \rightarrow y \sim x)$$

$$\sigma_{3} \equiv \forall x \forall y \forall z(x \sim y \land y \sim z \rightarrow x \sim z)$$

$$\sigma_{4} \equiv \exists x \exists y \forall z (\neg(x \sim y) \land (z \sim x \lor z \sim y))$$

definiert wird, ist erfüllbar, denn $\mathcal{Z} = (\mathbb{Z}; \{(m, n) \in \mathbb{Z}^2 : m - n \text{ ist gerade}\})$ ist ein Modell von T.

Definition (Folgerung). $T \models \varphi : \Leftrightarrow \mathcal{A} \models \varphi$ für alle $\mathcal{A} \in \text{Mod}(T)$.

Definition (Beweis). Eine \mathcal{L} -Formel φ ist aus $T = (\mathcal{L}, \Sigma)$ beweisbar, falls es eine endliche Folge ψ_1, \ldots, ψ_n von \mathcal{L} -Formeln (genannt "Beweis") mit $\psi_n \equiv \varphi$ gibt, sodass für jedes $k \in \{1, \ldots, n\}$ gilt:

- ψ_k ist ein Axiom oder
- $\psi_k \in \Sigma$ oder

• ψ_k ist die Konklusion einer Regel

$$\frac{\chi_1,\dots,\chi_m}{\psi_k},$$

wobei die Prämissen $\chi_1, \ldots, \chi_m \in \{\psi_1, \ldots, \psi_{k-1}\}$ schon vorher im Beweis auftauchen.

Definition. content...

Definition.

$$T = (\mathcal{L}, \Sigma)$$
 ist konsistent : \Leftrightarrow Es ex. ein \mathcal{L} -Satz σ mit $T \not\vdash \sigma$
 \Leftrightarrow Es ex. kein \mathcal{L} -Satz σ mit $T \vdash \sigma$ & $T \vdash \neg \sigma$.

Satz (Korrektheitssatz). $T \vdash \varphi \Rightarrow T \models \varphi$.

Daraus folgt sofort das Konsistenzlemma: Jede erfüllbare Theorie ist konsistent.

Beweis. Der Korrektheitssatz folgt aus der Allgemeingültigkeit der Axiome und der Korrektheit der Regeln bzgl. Folgerungen.

Sei $T = (\mathcal{L}, \Sigma)$ eine erfüllbare Theorie. Dann besitzt T ein Modell \mathcal{A} . Für jeden \mathcal{L} -Satz σ gilt $\mathcal{A} \models \sigma \Rightarrow \mathcal{A} \not\models \neg \sigma$. Deshalb gibt es ein σ mit $T \not\models \sigma$. Angenommen $T \vdash \sigma$ für jeden \mathcal{L} -Satz σ . Dann folgt mit dem Korrektheitssatz $T \models \sigma$ für jeden \mathcal{L} -Satz σ , was ein zu obiger Feststellung Widerspruch ist.

Satz (Erfüllbarkeitslemma). T ist konsistent $\Rightarrow T$ ist erfüllbar.

Satz (Vollständigkeitssatz). $T \models \sigma \Rightarrow T \vdash \sigma$.

 $\textit{Mit dem Korrektheitssatz folgt der Adäquatheitssatz:} \ T \models \sigma \Leftrightarrow T \vdash \sigma.$

Beweis.

$$T \models \sigma \Rightarrow T \cup \{\neg \sigma\} \text{ nicht erfüllbar} \qquad \text{(Zshg. zw. Folgerung und Erfüllbarkeit)} \\ \Rightarrow T \cup \{\neg \sigma\} \text{ inkonsistent} \qquad \text{(Kontraposition des Erfüllbarkeitslemmas)} \\ \Rightarrow T \vdash \sigma \qquad \text{(Zshg. zw. Beweisbarkeit und Konsistenz)}$$

Satz (Kompaktheitssatz). Eine Theorie T ist genau dann erfüllbar, wenn jede <u>endliche</u> Teiltheorie $T_0 \subseteq T$ erfüllbar ist.

Beweis. Der ist wichtig; ihr müsst ihn euch aber in den Folien anschauen.

Beispiel. Sei $\sigma_n \equiv \underbrace{1 + \ldots + 1}_{n\text{-mal}} \neq 0$. Wir wollen zeigen, dass die Theorie

$$T = (\mathcal{L}(+, \cdot; 0, 1), \Sigma \cup \{\sigma_n : n \ge 1\}),$$

der Körper unendlicher Charakteristik, wobei Σ die üblichen Körperaxiome enthalte, erfüllbar ist.

Sei dazu $T_0 \subseteq T$ eine endliche Teiltheorie, d.h. $T_0 = (\mathcal{L}(+,\cdot;0,1),\Sigma_0)$ mit $\Sigma_0 \subseteq \Sigma \cup \{\sigma_n \colon n \geq 1\}$ endlich. Dann gibt es ein $p \in \mathbb{N}$ mit $\Sigma_0 \subseteq \Sigma \cup \{\sigma_n \colon 1 \leq n < p\}$. Sei ohne Einschränkung p eine Primzahl, ansonsten wählen wir einfach die nächsthöhere. Weil $\mathbb{Z}/p\mathbb{Z}$ ein Körper mit Charakteristik p ist, ist $\mathcal{A} = (\mathbb{Z}/p\mathbb{Z}; +^{\mathcal{A}}, \cdot^{\mathcal{A}}; 0^{\mathcal{A}}, 1^{\mathcal{A}})$ ein Modell von T_0 . Also ist T_0 erfüllbar und somit ist, da T_0 eine beliebige endliche Teiltheorie war, auch T erfüllbar.

Was bislang noch fehlt: Deduktionstheorem (?), vollständige Theorien, Henkin-Theorie, Termstruktur

Was für die Zukunft noch wichtig wäre: elementar, Δ -elementar, elementare Äquivalenz (?), Isomorphie (?)

Außerdem ist es hilfreich, den Beweis des Erfüllbarkeitslemmas (allerdings nicht unbedingt im Detail) zu kennen. Der ist allerdings für dieses Format zu lang.