Projekt VVP

Irena Smolíková

Markowitzova teorie portfolia

Investor - uživatel poskytne textové soubory s údaji o jednotlivých akciích, z kterých bude chtít poskládat portfolio. Soubor bude obsahovat datum a údaje o ceně ve tvaru(akcie budou mít záznamy za stejné sledované období):

$$11/19/2020 - 425$$

Předpokládáme, že je na burze v měsíci 20 obchodních dní. Sledované období bude v délce dvou let.

V první části budeme řešit jednotlivé akcie, kdy dojde ke zpracování dat, výpočtu výnosu a rizik akcií, viz niže a podtřebné informace o akciích, potřebné pro druhou část projektu budou vpisovány do volného souboru. Pro přehlednost budou vytvořeny grafy jednotlivých akcií zobrazující jejich výnosy.

V druhé části si uživatel zadá očekávaný zisk, snesitelné riziko a jakou investiční strategií si přeje investovat (tzn. dlouhodébě/krátkodobě, zadá počet měsíců, po které chce nechat své peníze investovány.). Výstupem bude výpočet optimalizavaného portfolia s minimálním rizikem a k němu příslušným výnosem, výpočet rizika při očekávaném výnosu zadého uživatelem a výpočet výnosu při snesitelném riziku zadaného uživatelem. Výsledky budou zakresleny do grafů, které tyto tři vývoje porovnají. Uživatel, tak může zjistit zda je výhodné investovat dlouhodobě nebo krátkodobě.

První část

Na základě těchto dat vypočítáme výnos akcie (aktiva) pomocí vztahu:

$$r_{\tau} = \frac{(P_{\tau} - P_{\tau-1} + D_{\tau})}{P_{\tau-1}}, \tau = 1, \dots, N,$$

kde $P_{\tau-1}$ je původní cena akcie, P_{τ} je konečná cena akcie, D_{τ} je hodnota vyplacené dividendy (v našem případě je hodnota nulová) a N je délka sledovaného období.

A budeme potřebovat ještě odhad střední hodnoty výnosu:

$$\bar{r} = \frac{1}{N} \sum_{\tau=1}^{N} r_{\tau}$$

A zároveň musíme také kromě výnosů vypočítat odhad rizika akcií:

$$\hat{\sigma} = \sqrt{\frac{1}{N-1} \sum_{\tau=1}^{N} (r_{\tau} - \hat{r})^2} = \sqrt{\frac{1}{N-1} \sum_{\tau=1}^{N} r_{\tau}^2 - \frac{1}{N(N-1)} \left(\sum_{\tau=1}^{N} r_{\tau}\right)^2}$$

Výnosy akcií vykreslíme jako grafy.

Druhá část

Nyní přejdeme k optimalizaci portfolia. Uživatel zadá, jaká je pro něj únosná míra rizika a předpokládaný zisk a jakou investiční strategii chce využít(zda bude investovat po dobu jednoho měsíce, dvou, tří,)

Pro další zobrazení budeme potřebovat střední výnos portfolia, k jehož výpočtu potřebujeme znát i váhy portfolia, které nám určují rozložení akcií v portofoliu:

$$\bar{r} = \sum_{i=1}^{K} w_i \bar{r}_i = \mathbf{w}' \mathbf{\bar{r}},$$

kde K je počet akcií v portfoliu.

K výpočtu rizika σ potřebujeme rizika aktiv r_i a navíc ještě kovariance $cov(r_i; r_j) = \sigma_{ij}$. Kovariance σ_{ij} lze vypočítat z historických dat pomocí tohoto vzorce:

$$\sigma_{ij} = \frac{1}{N-1} \sum_{\tau=1}^{N} r_{i,\tau} r_{j,\tau} - \frac{1}{N(N-1)} \sum_{\tau=1}^{N} r_{i,\tau} \sum_{\tau=1}^{N} r_{j,\tau}$$

Pokud budeme potřebovat kovarianci stejných aktiv, použijeme vzorec:

$$\sigma_{ii} = \sigma_i^2$$
,

poté můžeme riziko portfolia σ vypočítat:

$$\sigma = \sum_{i=1}^{K} w_i^2 \sigma_i^2 - 2 \sum_{i=1}^{K-1} \sum_{j=i+1}^{K} w_i w_j \sigma_{ij} = \mathbf{w}' \mathbf{\Sigma} \mathbf{w}.$$

Dále je si potřeba zmínit tzv. korelační koeficient ρ_{ij} mezi výnosy prvního a druhého aktiva. Lze jej vypočítat jako

$$\rho(r_i, r_j) = \frac{\sigma_{ij}}{\sigma_i \sigma_j} = \rho_{ij}.$$

Vlastností korelačního koeficientu je, že se pohybuje v intervalu:

$$-1 \le \rho_{ij} \le 1.$$

Maticově si poté můžeme pomoci takto:

$$w = \begin{pmatrix} w_1 \\ \vdots \\ w_2 \\ \lambda \end{pmatrix}, \bar{r} = \begin{pmatrix} \bar{r}_1 \\ \vdots \\ \bar{r}_K \end{pmatrix}, \Sigma = \begin{pmatrix} \sigma_{11} & \dots & \sigma_{1K} \\ \vdots & & \vdots \\ \sigma_{K1} & \dots & \sigma_{KK} \end{pmatrix}$$

Z matice \sum nám navíc může vzniknout matice C, která nabývá hodnot $2\sigma_{ij}$.

$$C = \begin{pmatrix} 2\sigma_{11} & \dots & 2\sigma_{1K} & 1 \\ \vdots & & \vdots & \vdots \\ 2\sigma_{K1} & \dots & 2\sigma_{KK} & 1 \\ 1 & \dots & 1 & 0 \end{pmatrix}$$

A k ní inverzní matice.

$$C^{-1} = \begin{pmatrix} a_{11} & \dots & a_{1K} & c_1 \\ \vdots & & \vdots & \vdots \\ a_{K1} & \dots & a_{KK} & c_K \\ c_1 & \dots & c_K & c_{K+1} \end{pmatrix}$$

Pak platí

$$d_i = \sum_{j=1}^K a_{ij} \bar{r}_j.$$

Optimalizace úlohy vede k zjištění minimalního rizika portfolia a k němu příslušnému výnosu. V tomto případě bude platit, že $w_i = c_i$. K tomu poté přísluší vztah pro výpočet d^* .

$$\bar{r}^* = \sum_{i=1}^{K} c_i \bar{r}_i, \ \sigma^{*2} = \sum_{i=1}^{K} \sum_{j=1}^{K} c_i c_j \sigma_{ij}$$

$$d^* = \sum_{i=1}^{K} \sum_{j=1}^{K} a_{ij} \bar{r}_i \bar{r}_j$$

Daný střední výnos

Prvním případem je portfolio s daným výnosem který je na začátku zadán uživatelem. Pro preferenční parametr θ platí vztah:

$$\theta = \frac{\bar{r} - \bar{r}^*}{d^*},$$

kde \bar{r} je předem stanoveno. Pro výpočet vah využijeme vztah, který platí jak pro portfolio s daným výnosem, tak s daným rizikem.

$$w_i = c_i + \theta \cdot d_i$$

Riziko portfolia spočítáme pomocí vztahu uvedeneho výše.

Dané riziko

Nyní máme portfolio s daným rizikem, pro preferenční parametr θ platí:

$$\theta = (\frac{2(\sigma^2 - \sigma^{*2})}{d^*}),$$

 σ máme zadáno uživatelem. Pro výpočet výnosu použijeme vzorec uvedený výše.