ACH2012 - Cálculo II

Lista 3: Derivadas Parciais (Parte 3)

- 1. Utilize derivação implícita para determinar dy/dx.
 - (a) $\sqrt{xy} = 1 + x^2y$
 - (b) $\cos(x-y) = xe^y$
- 2. Utilize derivação implícita para determinar $\partial z/\partial x$ e $\partial z/\partial y$.
 - (a) $x^2 + y^2 + z^2 = 3xyz$
 - (b) $xyz = \cos(x + y + z)$
- 3. Determine a derivada direcional de f no ponto dado e na direção indicada pelo ângulo θ .
 - (a) $f(x,y) = x^2y^3 y^4$, (2,1), $\theta = \pi/4$,
 - (b) $f(x,y) = x \operatorname{sen}(xy), (2,0), \theta = \pi/3.$
- 4. (a) Determine o gradiente de f.
 - (b) Calcule o gradiente no ponto P.
 - (c) Determine a taxa de variação de f em P na direção do vetor \mathbf{u} .
 - i. $f(x,y) = 5xy^2 4x^3y$, P(1,2), $\mathbf{u} = \langle \frac{5}{13}, \frac{12}{13} \rangle$,
 - ii. $f(x,y) = y \ln x$, P(1,-3), $\mathbf{u} = \langle -\frac{4}{5}, \frac{3}{5} \rangle$,
 - iii. $f(x, y, z) = \sqrt{x + yz}$, P(1, 3, 1), $\mathbf{u} = \langle \frac{2}{7}, \frac{3}{7}, \frac{6}{7} \rangle$.
- 5. Determine a derivada direcional da função f no ponto dado na direção e sentido do vetor \mathbf{v} .
 - (a) $f(x,y) = 1 + 2x\sqrt{y}$, (3,4), $\mathbf{v} = \langle 4, -3 \rangle$,
 - (b) $f(x,y) = \ln(x^2 + y^2)$, (2,1), $\mathbf{v} = \langle -1, 2 \rangle$,
 - (c) $f(x, y, z) = xe^y + ye^z + ze^x$, (0, 0, 0), $\mathbf{v} = \langle 5, 1, -2 \rangle$.
- 6. Determine a taxa de variação máxima de f no ponto dado e na direção e sentido em que isso ocorre.
 - (a) $f(x,y) = y^2/x$, (2,4),
 - (b) f(x,y) = sen(xy), (1,0),
 - (c) $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$, (3, 6, -2)
 - (d) f(x, y, z) = (x + y)/z, (1, 1, -1).
- 7. (a) Mostre que uma função diferenciável f decresce mais rapidamente em \mathbf{x} na direção oposta do vetor gradiente, ou seja, na direção de $-\nabla f(\mathbf{x})$.

1

(b) Utilize a parte (a) para determinar a direção onde $f(x,y) = x^4y - x^2y^3$ decresce mais rapido no ponto (2,-3).

- 8. Determine os valores máximos e mínimos locais e pontos de sela da função.
 - (a) $f(x,y) = 9 2x + 4y x^2 4y^2$,
 - (b) $f(x,y) = x^3y + 12x^2 8y$,
 - (c) $f(x,y) = e^{4y-x^2-y^2}$,
 - (d) $f(x,y) = xy + \frac{1}{x} + \frac{1}{y}$,
 - (e) $f(x, y) = e^x \cos(y)$.
- 9. Mostre que $f(x,y) = x^2 + y^2 4xy + 2$ tem um número finito de pontos críticos e que D = 0 em cada um. A seguir, mostre que f tem um mínimo local (e absoluto) em cada ponto crítico.
- 10. Determine os valores máximos e mínimos absolutos de f no conjunto D.
 - (a) f(x,y) = 1 + 4x 5y, D é a região fechada com vértices (0,0), (2,0) e (0,3).
 - (b) $f(x,y) = x^2 + y^2 + x^2y + 4$, $D = \{(x,y)||x| \le 1, |y| \le 1\}$.
 - (c) $f(x,y) = xy^2$, $D = \{(x,y)|x \ge 0, y \ge 0, x^2 + y^2 \le 3\}$.
- 11. Determine a menor distância entre o ponto (2, 1, -1) e o plano x + y z = 1.
- 12. Determine três números positivos cuja soma é 100 e cujo produto é máximo.
- 13. Encontre três números positivos cuja soma é 12 e cuja soma dos quadrados é a menor possível.
- 14. A base de um aquário com volume V é feita de ardósia e os lados são de vidro. Se o preço da ardósia (por unidade de área) equivale a cinco vezes o preço do vidro, determine as dimensões do aquário para minimizar o custo do material.
- 15. Uma caixa de papelão sem tampa deve ter um volume de $32000 cm^3$. Determine as dimensões que minimizem a quantidade de papelão utilizado.
- 16. Utilize os multiplicadores de Lagrange para determinar os valores máximos e mínimos de funções sujeitas às restrições dadas
 - (a) $f(x,y) = x^2 y^2$, $x^2 + y^2 = 1$;
 - (b) f(x,y) = 4x + 6y, $x^2 + y^2 = 13$;
 - (c) $f(x, y, z) = x^2 + y^2 + z^2$, $x^4 + y^4 + z^4 = 1$;
 - (d) f(x,y,z) = x + 2y, x + y + z = 1, $x^2 + y^2 = 4$;
 - (e) f(x, y, z) = yz + xy, xy = 1, $y^2 + z^2 = 1$.
- 17. Determine os valores extremos de $f(x,y)=2x^2+3y^2-4x-5$ na região descrita pela desigualdade $x^2+y^2\leq 16$.
- 18. Utilize multiplicadores de Lagrange para provar que o retângulo com área máxima, e que tem perímetro constante p, é um quadrado.
- 19. Determine os volumes máximo e mínimo da caixa retangular cuja superfície tem 1500 cm^2 e cuja soma dos comprimentos das arestas é 200 cm.