Homework Assignment 4

Matthew Tiger

September 30, 2016

Problem 2.3.1. For each of the following functions, c = 0 lies on a periodic cycle. Classify this cycle as attracting, repelling, or neutral (non-hyperbolic). State if it is super attracting.

i.
$$f(x) = \frac{\pi}{2}\cos(x)$$
, ii. $g(x) = -\frac{1}{2}x^3 - \frac{3}{2}x^2 + 1$.

Solution. Recall that if c is a point of period r, then c is stable, asymptotically stable, unstable, if $f^{r}(c)$ is stable, asymptotically stable, unstable, respectively. Thus, if c is a point of period r and f'(x) is continuous at x = c, then c is asymptotically stable (attracting) if

$$|f'(f^0(c)) \cdot f'(f^1(c)) \cdot \dots \cdot f'(f^{r-1}(c))| < 1$$

and c is unstable (repelling) if

$$|f'(f^0(c)) \cdot f'(f^1(c)) \cdot \dots \cdot f'(f^{r-1}(c))| > 1.$$

i. Let $f(x) = \frac{\pi}{2}\cos(x)$. It is clear that $f^2(0) = 0$ so that c = 0 is a period 2 point and $\{0, f(0)\}$ forms a 2-cycle. Note that $f'(x) = -\frac{\pi}{2}\sin(x)$, which is continuous, and that

$$|f'(0) \cdot f'(f(0))| = \left| \left(-\frac{\pi}{2} \sin(0) \right) \left(-\frac{\pi}{2} \sin\left(\frac{\pi}{2}\right) \right) \right| = 0 < 1$$

so that the 2-cycle $\{0, f(0)\}$ is asymptotically stable. Since

$$(f^2(0))' = (f(f(0)))' = f'(0) \cdot f'(f(0)) = 0,$$

we have that c=0 is a super-attracting point of f^2 and the 2-cycle $\{0, f(0)\}$ is a super-attracting, asymptotically stable cycle.

ii. Let $g(x) = -\frac{1}{2}x^3 - \frac{3}{2}x^2 + 1$. It is clear that $g^3(0) = 0$ so that c = 0 is a period 3 point and $\{0, g(0), g^2(0)\}$ forms a 3-cycle. Note that $g'(x) = -\frac{3}{2}x^2 - 3x$, which is continuous, and that

$$\left| g'(0) \cdot g'(g(0)) \cdot g'(g^2(0)) \right| = \left| 0 \left(-\frac{9}{2} \right) \left(\frac{3}{2} \right) \right| = 0 < 1$$

so that the 2-cycle $\{0, g(0), g^2(0)\}$ is asymptotically stable. Since

$$(g^3(0))' = (g(g(g(0))))' = g'(0) \cdot g'(g(0)) \cdot g'(g^2(0)) = 0,$$

we have that c=0 is a super-attracting point of g^3 and the 3-cycle $\{0, g(0), g^2(0)\}$ is a super-attracting, asymptotically stable cycle.

Problem 2.3.2. Let $f_c(x) = x^2 + c$. Show that for c < -3/4, f_c has a 2-cycle, and find it explicitly. For what values of c is the 2-cycle attracting?

 \square

Problem 2.3.3. Let $a, b, c \in \mathbb{R}$. Investigate the existence of 2-cycles for the following maps:

i.
$$f(x) = ax + b, a \neq 0.$$

ii.
$$f(x) = ax^2 - x + c$$
, $a, c > 0$.

iii.
$$f(x) = a - \frac{b}{x}, b \neq 0.$$

iv.
$$f(x) = \frac{ax+b}{cx-a}, b \neq 0.$$

Solution.

Problem 2.3.4. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous.

- i. If f has a 2-cycle $\{x_0, x_1\}$, show that f has a fixed point.
- ii. If f has a 3-cycle $\{x_0, x_1, x_2\}$, $x_0 < x_1 < x_2$ with $f(x_0) = x_1$, $f(x_1) = x_2$, and $f(x_2) = x_0$, show that there is a fixed point y_0 with $x_1 < y_0 < x_2$ and a point y_1 with $x_0 < y_1 < x_1$ with $f^2(y_1) = y_1$.

Solution. \Box

Problem 2.3.7. Let $f(x) = ax^3 + bx + 1$, $a \neq 0$. If $\{0,1\}$ is a 2-cycle for f(x), find a and b so that the 2-cycle is non-hyperbolic and determine the stability.

 \square

Problem 2.3.17. Suppose that $f(x) = ax^2 + bx + c$, $a \neq 0$ has a 2-cycle $\{x_0, x_1\}$. Show that the 2-cycle cannot be non-hyperbolic of the type $f'(x_0)f'(x_1) = 1$.

 \square

Problem 2.3.18. Let f(x) be a polynomial for which $g(x) = f^2(x) - x$ has a repeated root at x_0 (where $f(x_0) = x_1 \neq x_0$). Show that $\{x_0, x_1\}$ is a non-hyperbolic 2-cycle for f of the type where $f'(x_0)f'(x_1) = 1$. Does the converse hold?

Solution. \Box

Problem 2.4.1. Let $f_c(x) = x^2 + c$, $c \in \mathbb{R}$.

- i. For what values of c does f_c have a super-attracting fixed point and what is the fixed point?
- ii. For what values of c does f_c have a super-attracting 2-cycle and what is the 2-cycle?
- iii. Show that if f_c has a super-attracting 3-cycle, then c satisfies the equation

$$c^3 + 2c^2 + c + 1 = 0$$

and the 3-cycle is given by $\{0, c, c^2 + c\}$.

 \Box