

### **Description**

### **Image**



### Caption

Zips.

### The material

POM was first marketed by DuPont in 1959 as Delrin. It is similar to nylon but is stiffer, and has better fatigue and water resistance - nylons, however, have better impact and abrasion resistance. It is rarely used without modifications: most often filled with glass fiber, flame retardant additives or blended with PTFE or PU. The last, POM/PU blend, has good toughness. POM is used where requirements for good moldability, fatigue resistance and stiffness justify its high price relative to mass polymers, like polyethylene, which are polymerized from cheaper raw materials using lower energy input.

#### Compositional summary

(CH2-O)n

## **General properties**

| Density         | 1.39e3 | - | 1.43e3 | kg/m^3 |
|-----------------|--------|---|--------|--------|
| Price           | * 3.38 | - | 3.66   | USD/kg |
| Date first used | 1956   |   |        |        |

## **Mechanical properties**

| Young's modulus                 | 2.5    | - | 5     | GPa      |
|---------------------------------|--------|---|-------|----------|
| Shear modulus                   | 0.84   | - | 2.27  | GPa      |
| Bulk modulus                    | 4.4    | - | 4.6   | GPa      |
| Poisson's ratio                 | 0.33   | - | 0.407 |          |
| Yield strength (elastic limit)  | 48.6   | - | 72.4  | MPa      |
| Tensile strength                | 60     | - | 89.6  | MPa      |
| Compressive strength            | 74.9   | - | 124   | MPa      |
| Elongation                      | 10     | - | 75    | % strain |
| Hardness - Vickers              | 14.6   | - | 24.8  | HV       |
| Fatigue strength at 10^7 cycles | * 21.9 | - | 34.2  | MPa      |
|                                 |        |   |       |          |



## Polyoxymethylene (Acetal, POM)

| nermal properties  Island point  ass temperature  Eximum service temperature  Inimum service temperature  Inimum service temperature  Inimum conductor or insulator?  Inimum conductivity  Inimum conductivity  Inimum conductivity  Inimum conductivity  Inimum service temperature  Inim | 0.00638<br>160<br>-18.2<br>76.9<br>-123<br>Good insu<br>0.221<br>1.36e3<br>75.7 | -<br>-<br>-<br>-<br>lato | 0.017<br>184<br>-8.15<br>96.9<br>-73.2 | °C °C °C    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------|----------------------------------------|-------------|
| elting point ass temperature assimum service temperature nimum service temperature ermal conductor or insulator? ermal conductivity ecific heat capacity ermal expansion coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -18.2<br>76.9<br>-123<br>Good insu<br>0.221<br>1.36e3                           | -<br>-<br>-<br>lato      | -8.15<br>96.9<br>-73.2                 | °C          |
| elting point ass temperature assimum service temperature nimum service temperature ermal conductor or insulator? ermal conductivity ecific heat capacity ermal expansion coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -18.2<br>76.9<br>-123<br>Good insu<br>0.221<br>1.36e3                           | -<br>-<br>-<br>lato      | -8.15<br>96.9<br>-73.2                 | °C          |
| eximum service temperature  nimum service temperature  ermal conductor or insulator?  ermal conductivity  ecific heat capacity  ermal expansion coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76.9<br>-123<br>Good insu<br>0.221<br>1.36e3                                    | -<br>lato                | 96.9<br>-73.2                          | °C          |
| nimum service temperature ermal conductor or insulator? ermal conductivity ecific heat capacity ermal expansion coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -123<br>Good insu<br>0.221<br>1.36e3                                            | -<br>lato                | -73.2                                  |             |
| ermal conductor or insulator?  ermal conductivity  ecific heat capacity  ermal expansion coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Good insu<br>0.221<br>1.36e3                                                    | lato                     |                                        | °C          |
| ermal conductivity  ecific heat capacity  ermal expansion coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.221<br>1.36e3                                                                 |                          | r                                      |             |
| ecific heat capacity ermal expansion coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.36e3                                                                          | -                        |                                        |             |
| ermal expansion coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                          | 0.35                                   | W/m.°C      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75.7                                                                            | -                        | 1.43e3                                 | J/kg.°C     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | -                        | 202                                    | µstrain/°C  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                          |                                        |             |
| ectrical properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 1:                                                                            |                          |                                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Good insu                                                                       | lato                     |                                        |             |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.3e20                                                                          | -                        | 3e21                                   | µohm.cm     |
| , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.6                                                                             | -                        | 4                                      |             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.5e-4                                                                          | -                        | 0.005                                  |             |
| electric strength (dielectric breakdown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.1                                                                            | -                        | 20.5                                   | 1000000 V/m |
| otical properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                          |                                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Opaque                                                                          |                          |                                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                          |                                        |             |
| ocessability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 |                          |                                        |             |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                               | -                        | 2                                      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                               | -                        | 5                                      |             |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                               | -                        | 4                                      |             |
| eldability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                               | -                        | 5                                      |             |
| urability: water and aqueous solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                          |                                        |             |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Excellent                                                                       |                          |                                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Excellent                                                                       |                          |                                        |             |
| · '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Excellent                                                                       |                          |                                        |             |

## **Durability: acids**

Soils, alkaline (clay)

Wine

| Acetic acid (10%)       | Excellent    |
|-------------------------|--------------|
| Acetic acid (glacial)   | Unacceptable |
| Citric acid (10%)       | Excellent    |
| Hydrochloric acid (10%) | Limited use  |
| Hydrochloric acid (36%) |              |

Excellent

Excellent



|                         | Unacceptable |
|-------------------------|--------------|
| Hydrofluoric acid (40%) | Unacceptable |
| Nitric acid (10%)       | Limited use  |
| Nitric acid (70%)       | Unacceptable |
| Phosphoric acid (10%)   | Limited use  |
| Phosphoric acid (85%)   | Unacceptable |
| Sulfuric acid (10%)     | Unacceptable |
| Sulfuric acid (70%)     | Unacceptable |

# **Durability: alkalis**

| Sodium hydroxide (10%) | Excellent |
|------------------------|-----------|
| Sodium hydroxide (60%) | Excellent |

# **Durability: fuels, oils and solvents**

| Amyl acetate             | Excellent   |
|--------------------------|-------------|
| Benzene                  | Excellent   |
| Carbon tetrachloride     | Excellent   |
| Chloroform               | Limited use |
| Crude oil                | Acceptable  |
| Diesel oil               | Excellent   |
| Lubricating oil          | Excellent   |
| Paraffin oil (kerosene)  | Excellent   |
| Petrol (gasoline)        | Excellent   |
| Silicone fluids          | Limited use |
| Toluene                  | Excellent   |
| Turpentine               | Excellent   |
| Vegetable oils (general) | Excellent   |
| White spirit             | Excellent   |

# Durability: alcohols, aldehydes, ketones

| Acetaldehyde              | Excellent   |
|---------------------------|-------------|
| Acetone                   | Limited use |
| Ethyl alcohol (ethanol)   | Excellent   |
| Ethylene glycol           | Excellent   |
| Formaldehyde (40%)        | Excellent   |
| Glycerol                  | Excellent   |
| Methyl alcohol (methanol) | Excellent   |

# **Durability: halogens and gases**

| Chlorine gas (dry) | Unacceptable |
|--------------------|--------------|
| Fluorine (gas)     | Unacceptable |



Embodied energy, recycling

| BEDUFICK                                      |                        |
|-----------------------------------------------|------------------------|
| O2 (oxygen gas)                               | Unacceptable           |
| Sulfur dioxide (gas)                          | Unacceptable           |
| Describilities besitt anning property         |                        |
| Durability: built environments                | Acceptable             |
| Industrial atmosphere                         | Acceptable             |
| Rural atmosphere                              | Excellent              |
| Marine atmosphere                             | Excellent              |
| UV radiation (sunlight)                       | Poor                   |
| Durability: flammability                      |                        |
| Flammability                                  | Highly flammable       |
|                                               |                        |
| Durability: thermal environments              |                        |
| Tolerance to cryogenic temperatures           | Unacceptable           |
| Tolerance up to 150 C (302 F)                 | Acceptable             |
| Tolerance up to 250 C (482 F)                 | Unacceptable           |
| Tolerance up to 450 C (842 F)                 | Unacceptable           |
| Tolerance up to 850 C (1562 F)                | Unacceptable           |
| Tolerance above 850 C (1562 F)                | Unacceptable           |
| Primary material production: energy, CO2 a    | and water              |
| Embodied energy, primary production           | * 85.4 - 94.4 MJ/kg    |
| CO2 footprint, primary production             | * 3.85 - 4.26 kg/kg    |
| Water usage                                   | * 138 - 413 l/kg       |
|                                               | •                      |
| Material processing: energy                   |                        |
| Polymer extrusion energy                      | * 5.76 - 6.36 MJ/kg    |
| Polymer molding energy                        | * 16.9 - 18.7 MJ/kg    |
| Coarse machining energy (per unit wt removed) | * 1.25 - 1.38 MJ/kg    |
| Fine machining energy (per unit wt removed)   | * 8.22 - 9.08 MJ/kg    |
| Grinding energy (per unit wt removed)         | * 16 - 17.6 MJ/kg      |
| Matarial responsible to 000 for a tradit      |                        |
| Material processing: CO2 footprint            | * 0.432 - 0.477 kg/kg  |
| Polymer molding CO2                           | <u> </u>               |
| Polymer molding CO2                           | * 1.27 - 1.4 kg/kg     |
| Coarse machining CO2 (per unit wt removed)    | * 0.0937 - 0.104 kg/kg |
| Fine machining CO2 (per unit wt removed)      | * 0.616 - 0.681 kg/kg  |
| Grinding CO2 (per unit wt removed)            | * 1.2 - 1.32 kg/kg     |
| Material recycling: energy, CO2 and recycle   | fraction               |
| Recycle                                       | ▼                      |
| · <b>/</b>                                    | •                      |

\* 33.2

- 36.7

MJ/kg





| * 2.61    | -                               | 2.88    | kg/kg                                               |
|-----------|---------------------------------|---------|-----------------------------------------------------|
| * 0.5     | -                               | 1       | %                                                   |
| ✓         |                                 |         |                                                     |
| ✓         |                                 |         |                                                     |
| * 15.5    | -                               | 16.3    | MJ/kg                                               |
| * 1.43    | -                               | 1.5     | kg/kg                                               |
| ✓         |                                 |         |                                                     |
| ×         |                                 |         |                                                     |
| Non-toxic |                                 |         |                                                     |
| ×         |                                 |         |                                                     |
|           | * 15.5<br>* 1.43<br>* Non-toxic | * 0.5 - | * 0.5 - 1   * 15.5 - 16.3  * 1.43 - 1.5   Non-toxic |

#### **Environmental notes**

Acetal, like most thermoplastics, is an oil derivative, but this poses no immediate threat to its

#### Recycle mark



### **Supporting information**

#### Design guidelines

POM is easy to mold by blow molding, injection molding or sheet molding, but shrinkage on cooling limits the minimum recommended wall thickness for injection molding to 0.1mm. As manufactured, POM is gray but it can be colored. It can be extruded to produce shapes of constant cross section such as fibers and pipes. The high crystallinity leads to increased shrinkage upon cooling. It must be processed in the temperature range 190-230 C and may require drying before forming because it is hygroscopic. Joining can be done using ultrasonic welding, but POM's low coefficient of friction requires welding methods that use high energy and long ultrasonic exposure; adhesive bonding is an alternative. POM is a good electrical insulator. Without coPolymerization or the addition of blocking groups, POM degrades easily.

#### **Technical notes**

The repeating unit of POM is - (CH2O)n and the resulting molecule is linear and highly crystalline. Consequently, POM is easily moldable, has good fatigue resistance and stiffness, and is water resistant. In its pure form, POM degrades easily by dePolymerization from the ends of the polymer chain by a process called 'unzipping'. The addition of 'blocking groups' at the ends of the polymer chains or coPolymerization with cyclic ethers such as ethylene oxide prevents unzipping and hence degradation.

### Typical uses

POM is more expensive than commodity polymers such as PE, so is limited to high performance applications in which its natural lubricity is exploited. It is found in fuel-system; seat-belt components; steering columns; window-support brackets and handles; shower heads, ballcocks, faucet cartridges, and various fittings; quality toys; garden sprayers; stereo cassette parts; butane lighter bodies; zippers; telephone components; couplings; pump impellers; conveyor plates; gears; sprockets; springs; gears; cams; bushings; clips; lugs; door handles; window cranks; housings; seat-belt components; watch gears; conveyor links; aerosols; mechanical pen and pencil parts; milk pumps; coffee spigots; filter housings; food conveyors; cams; gears; TV tuner arms; automotive underhood components.

#### **Tradenames**

# Polyoxymethylene (Acetal, POM)



Acetron, Delrin, Fulton, Latan, Lupital, Plaslube, Tenac, Thermocomp,

| п | n | ı |    | • |
|---|---|---|----|---|
|   |   | ш | Α. |   |
|   |   |   |    |   |

Reference

ProcessUniverse

**Producers**