

Projektaufbau

Einführung ins Thema

Automatische Kartierung unbekannter Gebiete – eine Herausforderung für die Robotik

- Relevante Anwendungsgebiete:
 - Weltraumerkundung: Kartierung fremder Planeten
 - Katastrophenhilfe: Erkundung von Katastrophengebieten zur Lageerfassung
 - Dynamische Umgebungen: Navigation in sich ständig verändernden Szenarien

Multiagentensysteme (MAS) bieten vielversprechende Lösungen

Autonome Agenten arbeiten:

- Selbstständig
- Kommunizieren ohne zentrale Steuerung
- Verbessern Effizienz
- Robustheit
- Zeitersparnis

Schlüsselparameter sind:

- Wegfindungs-Algorithmen
- Anzahl der Agenten
- Sensortechnik

Erste Laborergebnisse zeigen signifikante Fortschritte und einen Ausblick auf zukünftige Entwicklungen

Einführung ins Thema

Was ist ein MAS? – Definition

• Ein Multiagentensystem ist ein System aus mehreren selbstständig handelnden Einheiten (Agenten) welche mittels Kommunikation ein gegebenes individual- oder kollektiv Problem in einer geteilten Umgebung lösen.

Vorteile

- Gesteigerte Robustheit bei Ausfall einzelner Agenten
- Einfache Skalierbarkeit durch flexibles Hinzufügen von Agenten

Ziel der Projektarbeit: Entwicklung eines Multiagentensystems zur kooperativen Erkundung einer 2D-Simulationsumgebung

Explorations-Algorithmen im Überblick •

- Effizienz der Kartierung abhängig vom Explorations-Algorithmus
- Zwei grundlegend verschiedene Implementierungen:

Einfacher nicht-informierter Ansatz

Informierter, zielgerichteter Ansatz

Explorations-Algorithmen im Überblick

Vorgehen

Agent bewegt sich zufällig bis:

- Hindernis
- Zeitlimit

Ändert dann zufällig seine Richtung

Intelligenz

Agent berücksichtigt nicht, ob:

- Bereich bereits bekannt
- schon befahren wurde

Auswahl-Kriterium

• Basis-Referenz zum Messen von Effizienzgewinn

Vorgehen

Umgebung in drei Bereiche unterteilt:

- Bekanntes Gebiet
- Unbekanntes Gebiet
- Frontiers

Gezielte Bewegung zu Frontiers zur effizienten Erkundung

Intelligenz

- Strategische Zielauswahl
- Kommunikation
- Routenfindung

Auswahl-Kriterium

- Etablierter und fundamentaler Ansatz
- Weniger komplex als neuere Verfahren

FBE – Der Erkundungszyklus

Karten-Update: Agent nimmt Umgebung wahr und aktualisiert lokale Karte

Grenzen-Update: Neue Frontiers werden identifiziert

Grenzen-Auswahl: Frontiers werden bewertet, "bestes" Ziel wird ausgewählt

Pfadfindung: Agent plant Route zum Ziel (A*-Algorithmus)

Bewegung: Agent bewegt sich in Richtung des Ziels

Lokales Gedächtnis

Geteiltes Gedächtnis

FBE – Die Grenzauswahl

Grenzauswahl entsprechend Kostenfunktion:

$$C(f_i) = \lambda_{Distanz} * m_{Distanz}(f_i) - \lambda_{Gr\"{o}Se} * m_{Gr\"{o}Se}(f_i) + \lambda_{Orientierung} * m_{Orientierung}(f_i)$$

Bewertungskriterien:

- **Distanz:** Abstand Agent zu Frontier
- Größe (Länge): Anzahl zusammenhängender Frontier-Zellen
- Orientierung: Ausrichtung des Agenten zum Frontier

Umgebungswahrnehmung: Raycasting, Bresenham

Raycasting / LiDAR:

Simuliert Aussenden von "Strahlen", um Distanz zu Hindernissen zu messen

Bresenham-Algorithmus:

Approximierte Darstellung der "Strahlen" des Raycastings auf einem 2D-Grid

Pfadfindung: A* •

Finden des optimalen Wegs zur ausgewählten Frontier

Informierte Suche:

- Erweiterung des Dijkstra-Algorithmus
- Nutzt zusätzlich eine Heuristik (Schätzfunktion)

Kostenfunktion

$$f(x) = g(x) + h(x)$$

g(x): tatsächliche Kosten vom Start zum x

h(x): geschätzten Kosten von x zum Ziel (Heuristik), hier Euklidische Distanz

Kommunikation: Publish-Subscribe

Architektur & Tech-Stack

- Factories: einfache Erweiterung neuer Algorithmen
- Lose Kopplung: Publish/Subscribe Kommunikation
- Trennung von Logik & Simulation
- Lokales & geteiltes Gedächtnis für Effizienz

Rahmenbedingungen

Veränderliche Parameter

- Anzahl Roboter
- Kantenlänge Grid in Feldern
- Roboter Algorithmen
- Sichtweite in Feldern
- Sichtfeld in Grad
- Seed
- Gewichtungsfaktor der Distanz des Roboters zu Grenze
- Gewichtungsfaktor der Länge der Grenze

Randbedingungen

- 2D-Moore-Grid
- Collision Boundary
- Multigrid-Systems
- Euklidische Distanz
- Andere Agenten gelten als Hindernisse

Namenskonvention

Robot Type - Grid Größe - Anzahl der Roboter – Sichtweite des Roboters (Radius) – Sichtfeld in Grad (Angle) – Gewichtungsfaktor Frontiergröße

- Bsp.: FBR 100 9 1 180 0,1
- Gewichtungsfaktor für die Distanz zum Frontier wird nicht gesondert erwähnt

Simulation

- Unterschiedliche Parameter für Frontier-Based
 - Länge Grenze
 - Distanz Grenze

Keinen signifikanten Unterschied

- Wenige zusammenhängende Grenzen
 - Algorithmus Grenzen mit der Länge 1

- Durchschnittliche summierte aufgedeckte Felder in Prozent
- Gesamtheit aller Tests aufgeteilt
- Frontier-Based Roboter vs. Random Walk Roboter

- Verbesserung von 19,1 %
- Streuung -18,2 %

	Min [%]	Durchschnitt [%]	Max [%]
FBR - Ø - Ø - Ø - Ø - Ø	86,5	88,2	89,2
Streuung FBR	- 1,6	2,6	1,0
Rand - Ø - Ø - Ø - Ø	49,2	59,9	67,4
Streuung Random	- 10,7	18,2	7,5

Aufdeckung nach 1.000 Schritten: FBR vs. Random Walk

- Differenz nur 2,66 % nach 1.000 Schritten
 - FBR nach 150 Schritten 1.564 aufgedeckte Felder
 - Random nach 1.000 Schritten 1.555 aufgedeckte Felder
- Verbesserung von 19,1 %
- Zeitersparnis von 567 %

Exploration [%], sortiert nach Gridgröße und Robotertyp

- Durchschnittliche summierte aufgedeckte Felder in Prozent
- Nach 1.000 Schritten
- Frontier-Based Roboter vs. Random Walk Roboter

- Random Walk nahezu Lineare Steigerung
 - 10 % je zusätzlichem Roboter
- FBR mehr als 6 Roboter keine Verbesserung
 - Bei großen Grids 5 % je zusätzlichem Roboter

- Neuaufdeckungen je Schritt
- Verschiedene Sichtwinkel

- Beginn mehr Felder unbekannt als bekannt
 - Dauer der Simulation kehrt sich dieses Prinzip um
- Random Walk: Abfall bei einem 360 ° Sichtfelds
 - Bewegungsraum wird vergrößert
 - Bewegung nur im Sichtfeld

Special

Vergleich der Einflussgrößen Länge und Distanz im Sondergrid

- Manuell erstellte Karte (Special)
- Nachahmung der Vorlage
- "Wohnungs"-Idee

- Im Laufe der Simulation legalisiert
- Widerspricht Literatur
 - Weitere Untersuchungen nötig

Herausforderungen

Viele aktuelle Multiagentensysteme basieren auf dem Ansatz einer Kontrollinstanz Umstellung nur über längeren Zeitraum

Forschungsergebnisse nur schwer auf reale Szenarien übertragbar

Beispiele:

Unterschiedliche Untergründe

Variierende Wetterbedingungen

Kommunikationsqualität

Bewegliche Hindernisse

Aktuelle Forschung

Integration und Entwicklung von MAS

- Erweiterung agentenorientierter Programmiersprachen
- Debugging- und Verifikationstechniken
 - Model Checking

Effizientere Kommunikation und Kooperation

- Kommunikationsstrategien
- Zusammenarbeit von Agenten

Multi-Agent Reinforcement Learning

- Deep Reinforcement Learning
 - Modellierung komplexer Aufgaben
 - Steuerung von Roboterschwärmen
- Reinforcement Learning
 - Verbesserung von Lern- und Entscheidungsfähigkeiten

Projektabschluss

Idee

MAS

Random vs. Frontierbased

1010 1010

TECHNISCHE UMSETZTUNG

Python

Mesa Framework

SIMULATION

Anzahl Roboter
Grid-Größe
Roboter
Algorithmen
Sichtweite
Sichtfeld
Seed
Faktor Distanz
Faktor Länge

ERGEBNISSE

Erhöhte Effizienz

Geringere Streuung

Zeitersparnis

AUSSICHT

Kooperationsstrategien

Realistischere
Sensorik &
Kommunikation

Deep Reinforcement Learning

Vielen Dank für Ihre Aufmerksamkeit

Wir freuen uns auf Ihre Fragen und den gemeinsamen Austausch

