Подготовка: Дифференциальные уравнения

Полная версия с разборами тем и ссылками

11 сентября 2025 г.

Содержание

1	M1. ЛОС-разностные: характеристический многочлен, частное решение, резонанс	2
2	М2. Синтез ЛОС по заданным частным решениям (минимальный порядок)	4
3	М3. Нелинейные 2D-ОДУ: равновесия, линеаризация, типы, локальный фазовый портрет (гиперболика)	5
4	М4. Линейные ОДУ 2-го порядка: снятие y' , вронскиан, нормальная форма $z''+Qz=0$, выводы про нули	7
5	М5. ПЧП первого порядка (общее решение): характеристики, инварианты, $u=F(I_1,I_2)$	9
6	М6. ПЧП 1-го порядка (задача Коши): нехарактеристичность, построение F по данным	10
7	М7. Системы разностных $x_{t+1} = Ax_t(+b)$: фундаментальная матрица $\Phi_t = A^t,$ спектр, неоднородные случаи	11
8	М8. Вращающиеся/полярные системы: переход $(x,y) \rightarrow (r,\theta)$, интегрируемые случаи	13
9	M9. Первые интегралы в 3D-системах ОДУ: поиск двух независимых и проверка	15
10	М10. Периодические коэффициенты (Флоке): монодромия, множители, утверждения вида $y(x+T) = Cy(x)$	16
11	Негиперболические равновесия: полярные координаты и инвариантные лучи	18
12	М11. Доказательные мини-кейсы: осцилляция и нули решений (пример: Бессель)	20
13	M12. Механические системы и устойчивость Ляпунова: $\ddot{x} = -\nabla V,$ энергия	21
14	М13. Системы разностных уравнений: вариация постоянных, задача Коши	2 3

1 M1. ЛОС-разностные: характеристический многочлен, частное решение, резонанс

1. Тип экзаменационной задачи (полное условие)

Найдите общее решение:

$$y_{t+3} - y_{t+2} + 4y_{t+1} - 4y_t = 26 \cdot 3^t + 10t + 9,$$

где $t \in \mathbb{Z}$, $(y_t)_{t \in \mathbb{Z}} \subset \mathbb{R}$ (или \mathbb{C}).

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дано ЛОС порядка $n \in \mathbb{N}$:

$$a_n y_{t+n} + a_{n-1} y_{t+n-1} + \dots + a_1 y_{t+1} + a_0 y_t = f(t),$$

где $a_n \neq 0$, $a_k \in \mathbb{R}$ (или \mathbb{C}), $t \in \mathbb{Z}$. Вводим: $\chi(r) := r^n + b_{n-1}r^{n-1} + \dots + b_1r + b_0$ — характеристический многочлен (после нормировки $a_n = 1$); $k_{\chi}(\lambda) \in \mathbb{N}$ — кратность корня λ в χ ; $P_d(t) \in \mathbb{R}[t]$ — произвольный полином степени $\leq d$; $Q_{\lambda,\theta}(r) := r^2 - 2\lambda \cos \theta \, r + \lambda^2$.

Шаг 0. Привести уравнение к канонической форме.

Разделить на a_n (если $a_n \neq 1$) и написать

$$y_{t+n} + b_{n-1}y_{t+n-1} + \dots + b_1y_{t+1} + b_0y_t = f(t).$$

Шаг 1. Построить $\chi(r)$ и зафиксировать кратности корней.

Выписать $\chi(r) = r^n + b_{n-1}r^{n-1} + \dots + b_1r + b_0$, найти все λ_j и $k_{\chi}(\lambda_j)$.

Шаг 2. Записать общее решение однородной части $y_t^{(h)}$.

Для каждого корня λ кратности $s=k_{\chi}(\lambda)$ включить базис

$$t^0\lambda^t$$
, $t^1\lambda^t$, ..., $t^{s-1}\lambda^t$;

для пары $\lambda = \rho e^{i\theta}$, $\bar{\lambda} = \rho e^{-i\theta}$ — реальный базис $\rho^t \cos(\theta t)$, $\rho^t \sin(\theta t)$.

Таблица соответствий (множитель \Rightarrow вклад в $y^{(h)}$):

Множитель	Вклад в y(h)
$(r-\lambda)^s$	$P_{s-1}(t)\lambda^t$
$(r^2 - 2\rho\cos\thetar + \rho^2)^s$	$P_{s-1}(t)\rho^t\cos(\theta t), P_{s-1}(t)\rho^t\sin(\theta t)$

Шаг 3. Выбрать пробную форму $y_t^{(p)}$ по атомам f(t) и признакам резонанса через χ . Разложить f(t) на атомы и применить правила из таблицы:

Атом	Резонанс?	Вклад в у(р)
λ^t	$k_{\chi}(\lambda) = 0$?	$A \lambda^t$
$P_d(t)$	$k_{\chi}(1) = 0?$	$c_0 + c_1 t + \dots + c_d t^d$
$\lambda^t P_d(t)$	$k_{\chi}(\lambda) = 0?$	$\lambda^t(c_0+c_1t+\cdots+c_dt^d)$
$\lambda^t \cos(\theta t)$	$Q_{\lambda,\theta} \mid \chi$?	$\lambda^t (A\cos(\theta t) + B\sin(\theta t))$
$\lambda^t \sin(\theta t)$		
При резонансе:	любая форма	умножить на t^s

Шаг 4. Определить коэффициенты пробной формы.

Подставить $y^{(p)}$ в уравнение, сгруппировать по независимым типам (λ^t , t^k , $\lambda^t \cos / \sin$) и решить линейную систему на коэффициенты.

Шаг 5. Собрать общий ответ и учесть начальные условия (при наличии).

Записать $y_t = y_t^{(h)} + y_t^{(p)}$. При наличии y_0, \dots, y_{n-1} подставить соответствующие t и решить систему для констант при $y^{(h)}$.

3. Сопроводительные материалы (таблицы и обозначения)

Атом \rightarrow пробная форма (до резонанса):

$$\lambda^t \mapsto A \lambda^t, \qquad P_d(t) \mapsto c_0 + c_1 t + \dots + c_d t^d, \qquad \lambda^t P_d(t) \mapsto \lambda^t (c_0 + c_1 t + \dots + c_d t^d),$$

$$\lambda^t \cos(\theta t), \ \lambda^t \sin(\theta t) \mapsto \lambda^t (A \cos(\theta t) + B \sin(\theta t)).$$

Правило резонанса (через χ): $s = k_{\chi}(1)$ для $P_d(t)$; $s = k_{\chi}(\lambda)$ для $\lambda^t P_d(t)$; если $Q_{\lambda,\theta} \mid \chi$, умножить триг-форму на t^s .

4. Применение алгоритма к объявленной задаче

$$y_{t+3} - y_{t+2} + 4y_{t+1} - 4y_t = 26 \cdot 3^t + 10t + 9.$$

Шаг 0. Канонический вид зафиксирован.

Уравнение уже записано как $y_{t+3} + (-1)y_{t+2} + 4y_{t+1} + (-4)y_t = f(t)$, нормировка не требуется.

Шаг 1. Построить $\chi(r)$ и кратности корней.

$$\chi(r) = r^3 - r^2 + 4r - 4 = (r-1)(r^2+4)$$
; корни 1, $\pm 2i$, все кратности равны 1: $k_{\chi}(1) = 1$, $k_{\chi}(\pm 2i) = 1$.

Шаг 2. Записать $y_t^{(h)}$ по найденному спектру.

$$y_t^{(h)} = C_1 \cdot 1^t + 2^t \left(C_2 \cos \frac{\pi t}{2} + C_3 \sin \frac{\pi t}{2} \right).$$

Шаг 3. Выбрать $y_t^{(p)}$ по атомам RHS и признакам резонанса на χ . $f(t) = 26 \cdot 3^t + P_1(t)$, где $P_1(t) = 10t + 9$.

- Для 3^t : $k_{\gamma}(3) = 0$ (3 не корень) $\Rightarrow A \cdot 3^t$
- Для $P_1(t)$: $k_\chi(1)=1$ (1- корень кратности $1)\Rightarrow t(\tilde{a}t+\tilde{b})=\tilde{a}t^2+\tilde{b}t$

Итого

$$y_t^{(p)} = A \cdot 3^t + a t^2 + b t.$$

Шаг 4. Найти коэффициенты пробной формы, учитывая разложение по типам. Подстановка даёт

$$L[y^{(p)}] = 26A \cdot 3^t + 10at + (9a + 5b) \stackrel{!}{=} 26 \cdot 3^t + 10t + 9 \Rightarrow A = 1, \ a = 1, \ b = 0.$$

Следовательно, $y_t^{(p)} = 3^t + t^2$.

Шаг 5. Собрать общий ответ и отметить, как добавляются начальные условия.

$$y_t = C_1 + 2^t \left(C_2 \cos \frac{\pi t}{2} + C_3 \sin \frac{\pi t}{2} \right) + 3^t + t^2$$

При наличии y_0, y_1, y_2 — подставить t = 0, 1, 2 и решить систему для C_1, C_2, C_3 .

2 M2. Синтез ЛОС по заданным частным решениям (минимальный порядок)

1. Тип экзаменационной задачи (полное условие)

Задача. Построить линейное однородное разностное уравнение с постоянными коэффициентами минимально возможного порядка, частными решениями которого являются

$$y_t^{(1)} = 3^t, y_t^{(2)} = 2^t \sin \frac{\pi t}{3}.$$

(Решение здесь не приводится; это контекст для главы.)

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дано множество частных решений $\{y_t^{(k)}\}_{k=1}^K$ ЛОС. Требуется построить характеристический полином $p(\lambda)$ минимального порядка N такой, что все $y_t^{(k)}$ являются решениями уравнения $p(L)[y_t] = 0$, где L — оператор сдвига $Ly_t = y_{t+1}$.

Вводим: $\alpha \in \mathbb{R}$ — основание экспоненты; $\omega \in \mathbb{R}$ — частота тригонометрических функций; $s \in \mathbb{N}_0$ — степень полинома t^s ; $p(\lambda) \in \mathbb{R}[\lambda]$ — характеристический полином.

Шаг 0. Распознать «атом» каждого данного решения.

Для каждого $y_t^{(k)}$ определить одну из форм: α^t ; $t^s \alpha^t$; $\alpha^t \cos(\omega t)$ или $\alpha^t \sin(\omega t)$; $t^s \alpha^t \cos(\omega t)$ или $t^s \alpha^t \sin(\omega t)$.

Шаг 1. Получить характеристический множитель(и) для каждого атома.

По таблице соответствий заменить атом на множитель $p(\lambda)$ с учётом кратности (s+1).

Шаг 2. Собрать общий характеристический полином минимального порядка.

Перемножить paзныe множители (комплексные корни берутся парой \Rightarrow реальный квадратичный множитель). Повторы дают максимальную кратность.

Шаг 3. Записать разностное уравнение.

Привести $p(\lambda)$ к виду $\lambda^N + a_{N-1}\lambda^{N-1} + \cdots + a_1\lambda + a_0$ и выписать

$$y_{t+N} + a_{N-1}y_{t+N-1} + \dots + a_1y_{t+1} + a_0y_t = 0.$$

Шаг 4. Проверить минимальность и корректность.

Убедиться, что N равен сумме степеней множителей; проверить зануление $p(\lambda)$ на атомах (для тригонометрических — на $\lambda = \alpha e^{\pm i\omega}$).

3. Сопроводительные материалы (таблицы и обозначения)

Таблица соответствий (атом \Rightarrow множитель \Rightarrow кратность):

Атом	Множитель	Кратность
α^t	$(\lambda - \alpha)$	1
$t^s \alpha^t$	$(\lambda - \alpha)^{s+1}$	s+1
$\alpha^t \cos(\omega t), \ \alpha^t \sin(\omega t)$	$\lambda^2 - 2\alpha\cos\omega\lambda + \alpha^2$	1
$t^s \alpha^t \cos(\omega t), \ t^s \alpha^t \sin(\omega t)$	$(\lambda^2 - 2\alpha\cos\omega\lambda + \alpha^2)^{s+1}$	s+1

Быстрые значения $\cos \omega$:

$$\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}, \quad \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}, \quad \cos \frac{\pi}{3} = \frac{1}{2}, \quad \cos \frac{\pi}{2} = 0.$$

Правила сборки: (i) Пара $\{\cos, \sin\}$ с одинаковыми α, ω даёт один и тот же квадратичный множитель (не удваивать). (ii) При нескольких степенях t^s берётся максимальная кратность.

4. Применение алгоритма к объявленной задаче

Дано: $y_t^{(1)} = 3^t$, $y_t^{(2)} = 2^t \sin \frac{\pi t}{3}$.

Шаг 0. Распознать «атом» каждого данного решения.

Атомы: $3^t \ (\alpha = 3)$; $2^t \sin(\pi t/3) \ (\alpha = 2, \ \omega = \pi/3)$.

Шаг 1. Получить характеристический множитель(и) для каждого атома.

Множители: $(\lambda - 3)$ и $\lambda^2 - 2 \cdot 2\cos(\pi/3)\lambda + 2^2 = \lambda^2 - 2\lambda + 4$.

Шаг 2. Собрать общий характеристический полином минимального порядка.

Сборка: $p(\lambda) = (\lambda - 3)(\lambda^2 - 2\lambda + 4)$.

Шаг 3. Записать разностное уравнение.

Развёртка: $p(\lambda) = \lambda^3 - 5\lambda^2 + 10\lambda - 12$. Соответствующее ЛОС:

$$y_{t+3} - 5y_{t+2} + 10y_{t+1} - 12y_t = 0$$

Шаг 4. Проверить минимальность и корректность.

Минимальность: порядок N=3; проверка p(3)=0 и $\lambda=2e^{\pm i\pi/3}$ зануляют квадратичный множитель.

3 М3. Нелинейные 2D-ОДУ: равновесия, линеаризация, типы, локальный фазовый портрет (гиперболика)

1. Тип экзаменационной задачи (полное условие)

Условие. Найдите положения равновесия автономной системы уравнений, определите их характер, и нарисуйте фазовые портреты в окрестности положений равновесия

$$\begin{cases} \dot{x} = 2 - 2\sqrt{1 + x + y}, \\ \dot{y} = \exp\left(\frac{5}{4}x + 2y + y^2\right) - 1. \end{cases}$$

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дана автономная система $\dot{x} = f(x,y), \, \dot{y} = g(x,y), \, \text{где}$ $f,g \in C^1(\mathbb{R}^2)$. Требуется найти положения равновесия (x_0,y_0) такие, что $f(x_0,y_0)=0,\, g(x_0,y_0)=0,\,$ и классифицировать их характер.

Вводим: J(x,y) — матрица Якоби; ${\rm tr}\,J=f_x+g_y$ — след; $\det J=f_xg_y-f_yg_x$ — определитель; $D={\rm tr}^2-4\det$ — дискриминант; $\lambda_{1,2}$ — собственные значения J.

Шаг 0. Найти положения равновесия.

Решить систему f(x,y) = 0, g(x,y) = 0 и найти все точки (x_0,y_0) такие, что $f(x_0,y_0) = 0$, $g(x_0,y_0) = 0$.

Шаг 1. Составить матрицу Якоби.

Вычислить частные производные и составить

$$J(x,y) = \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix}.$$

Шаг 2. Вычислить инварианты в каждой точке равновесия.

Для каждой точки (x_0, y_0) вычислить:

$$\operatorname{tr} J(x_0, y_0), \quad \det J(x_0, y_0), \quad D = \operatorname{tr}^2 - 4 \det.$$

Шаг 3. Классифицировать тип точки по детектору.

Применить правила из таблицы классификации по знакам \det , D, tr .

Шаг 4. Определить устойчивость и направления.

По знаку ${
m tr}$ и типу точки зафиксировать вход/выход; для седла отметить две сепаратрисы вдоль собственных направлений J.

Шаг 5. Нарисовать фазовый портрет.

Нанести типы точек и стрелки; при необходимости использовать изоклины $f=0,\,g=0$ для знаков $\dot{x},\,\dot{y}.$

3. Сопроводительные материалы (таблицы и обозначения)

Таблица классификации равновесий:

Условие	Тип точки	Устойчивость
$\det < 0$	седло	неустойчивая
$\det > 0, \ D > 0, \ \text{tr} < 0$	узел	устойчивый
$\det > 0, \ D > 0, \ \text{tr} > 0$	узел	неустойчивый
$\det > 0, \ D < 0, \ \text{tr} < 0$	фокус	устойчивый
$\det > 0, \ D < 0, \ \text{tr} > 0$	фокус	неустойчивый
$\det > 0, \ D = 0$ или $\det = 0$	негиперболика	см. главу М10

Быстрые производные (частые атомы):

$$f(x,y) = A - B\sqrt{\Phi(x,y)}:$$
 $f_x = -\frac{B}{2}\Phi^{-1/2}\Phi_x,$ $f_y = -\frac{B}{2}\Phi^{-1/2}\Phi_y;$ $g(x,y) = e^{\Psi(x,y)} - 1:$ $g_x = e^{\Psi}\Psi_x,$ $g_y = e^{\Psi}\Psi_y.$

Правила упрощения: Если в равновесии g=0, то $e^{\Psi}=1$ и $g_x=\Psi_x,$ $g_y=\Psi_y;$ если 1+x+y=1, то $\sqrt{1+x+y}=1$ и $f_x=f_y=-1.$

4. Применение алгоритма к объявленной задаче

Дано:
$$\dot{x} = 2 - 2\sqrt{1 + x + y}$$
, $\dot{y} = \exp\left(\frac{5}{4}x + 2y + y^2\right) - 1$.

Шаг 0. Найти положения равновесия.

$$f=0 \Rightarrow \sqrt{1+x+y}=1 \Rightarrow x+y=0.$$
 $g=0 \Rightarrow \frac{5}{4}x+2y+y^2=0.$ Подставляя $y=-x$:

$$x^2 - \frac{3}{4}x = 0 \implies x \in \{0, \frac{3}{4}\}.$$

Точки равновесия: (0,0) и $(\frac{3}{4},-\frac{3}{4})$.

Шаг 1. Составить матрицу Якоби.

При x+y=0 и $\Psi=0$ имеем

$$J(x,y) = \begin{pmatrix} -1 & -1\\ \frac{5}{4} & 2+2y \end{pmatrix}.$$

Значит
$$J(0,0) = \begin{pmatrix} -1 & -1 \\ \frac{5}{4} & 2 \end{pmatrix}$$
, $J(\frac{3}{4}, -\frac{3}{4}) = \begin{pmatrix} -1 & -1 \\ \frac{5}{4} & \frac{1}{2} \end{pmatrix}$.

Шаг 2. Вычислить инварианты в каждой точке равновесия.

$$(0,0)$$
: tr = 1, det = $-\frac{3}{4} < 0$;
 $(\frac{3}{4}, -\frac{3}{4})$: tr = $-\frac{1}{2}$, det = $\frac{3}{4} > 0$, $D = \frac{1}{4} - 3 = -\frac{11}{4} < 0$.

Шаг 3. Классифицировать тип точки по детектору.

$$(0,0): \det < 0 \Rightarrow$$
 седло (неустойчивая); $(\frac{3}{4},-\frac{3}{4}): \det > 0,\ D < 0,\ \mathrm{tr} < 0 \Rightarrow$ фокус устойчивый.

Шаг 4. Определить устойчивость и направления.

В (0,0) — две сепаратрисы по собственным направлениям J; в $(\frac{3}{4},-\frac{3}{4})$ — спиральное вхождение.

Шаг 5. Нарисовать фазовый портрет.

Эскиз: седло в (0,0) с «крестом» сепаратрис; устойчивый фокус в $(\frac{3}{4},-\frac{3}{4})$ со стрелками внутрь. Изоклина x+y=0 помогает ориентировать знаки \dot{x} .

Две точки равновесия: седло
$$(0,0)$$
 и устойчивый фокус $(\frac{3}{4},-\frac{3}{4})$

4 М4. Линейные ОДУ 2-го порядка: снятие y', вронскиан, нормальная форма z'' + Qz = 0, выводы про нули

1. Тип экзаменационной задачи (полное условие)

Пусть функции $p(x), q(x) \in C(\mathbb{R})$ и q(x) < 0 для всех $x \in \mathbb{R}$. Пусть $y(x) \not\equiv 0$ — решение

$$y''(x) + p(x)y'(x) + q(x)y(x) = 0.$$

Докажите: если y имеет локальный максимум в точке x_0 , то $y(x_0) \leq 0$.

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Рассматривается линейное ОДУ второго порядка

$$y'' + p(x)y'(x) + q(x)y(x) = 0, \quad x \in I \subset \mathbb{R},$$

где $y:I\to\mathbb{R}$ (или \mathbb{C}), $p,q\in C(I)$. Вводим обозначения: $\phi(x)\in C^1(I)$ — интегрирующий множитель для снятия $y';z=\phi^{-1}y;Q(x)$ — эффективный потенциал в нормальной форме; $W[y_1,y_2]=y_1y_2'-y_2y_1'$ — вронскиан пары решений.

Шаг 0. Диагноз линейности и фиксация коэффициентов.

Привести уравнение к виду y'' + p(x)y'(x) + q(x)y(x) = 0; зафиксировать p, q. Если коэффициент при y'' зависит от y или y' (не только от x) — это не M4.

Шаг 1. Нормальная форма (снять y').

Взять

$$\phi(x) = \exp\left(-\frac{1}{2}\int p(x) dx\right), \qquad y = \phi z,$$

тогда

$$z'' + Q(x)z = 0,$$
 $Q(x) = q(x) - \frac{p'(x)}{2} - \frac{p(x)^2}{4}.$

Шаг 2. Вронскиан и независимость (Абель).

Для двух решений y_1, y_2 :

$$W' = -p W,$$
 $W(x) = W(x_0) \exp(-\int_{x_0}^x p(t) dt).$

Критерий: $W(x_0) \neq 0 \Rightarrow y_1, y_2$ линейно независимы на интервале.

Шаг 3. Качественные выводы по триггерам.

- Триггер «экстремум»: в x_0 максимума $y'(x_0) = 0, \ y''(x_0) \le 0;$ подставить в ОДУ.
- Триггер « ≤ 1 нуля»: перейти к z'' + Qz = 0; при $Q \leq 0$ интегральный приём

$$\int_{a}^{b} zz'' \, dx + \int_{a}^{b} Qz^{2} \, dx = 0 \Rightarrow -\int_{a}^{b} (z')^{2} \, dx + \int_{a}^{b} Qz^{2} \, dx = 0,$$

что исключает два нуля у нетривиального решения.

Шаг 4. Итог (коробочная формулировка).

Записать использованные ϕ, Q или W и сформулировать вывод в $\boxed{\cdots}$.

3. Сопроводительные материалы (таблицы и обозначения)

Детектор линейности (сторожок).

Признак	Вывод
$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0 \ c \ a_i = a_i(x)$	линейное (наш класс М4)
Коэффициент при y'' зависит от y или y'	не ${ m M4}$ (нельзя ${ m Абеля}/{ m \Phi C})$

Памятка формул М4.

$$\phi(x) = \exp\left(-\frac{1}{2}\int p\right), \qquad Q = q - \frac{1}{2}p' - \frac{1}{4}p^2, \qquad W(x) = W(x_0)\exp\left(-\int_{x_0}^x p\right).$$

Детектор ветки шага 3 (какой приём включать).

Признак в условии	Действие
есть максимум/минимум и знак q	экстремум-тест: $y'=0$, подстановка в ОДУ
нужно « ≤ 1 нуля»	$z'' + Qz = 0, \ Q \le 0 \ \Rightarrow$ интегральный приём
независимость пары	формула Абеля для W

4. Применение алгоритма к объявленной задаче

$$y'' + p(x)y' + q(x)y = 0, q(x) < 0 \ \forall x \in \mathbb{R}, y \not\equiv 0.$$

Шаг 0. Диагноз линейности и фиксация коэффициентов.

Уравнение уже в виде y'' + py' + qy = 0; задан знак q < 0.

Шаг 1. Нормальная форма (снять y').

Для экстремума переход не обязателен; оставляем исходную форму.

Шаг 2. Вронскиан и независимость (Абель).

Не используется в данном выводе.

Шаг 3. Качественные выводы по триггерам.

Триггер «экстремум»: в точке локального максимума x_0 имеем $y'(x_0) = 0$, $y''(x_0) \le 0$. Подстановка даёт

$$y''(x_0) = -p(x_0)y'(x_0) - q(x_0)y(x_0) = -q(x_0)y(x_0).$$

При $q(x_0) < 0$ из $y(x_0) > 0$ следовало бы $y''(x_0) > 0$ — противоречие. Значит $y(x_0) \le 0$.

Шаг 4. Итог (коробочная формулировка).

Положительный локальный максимум невозможен при q(x) < 0

5 М5. ПЧП первого порядка (общее решение): характеристики, инварианты, $u = F(I_1, I_2)$

1. Тип экзаменационной задачи (полное условие)

Найдите общее решение уравнения

$$x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}+(x+y)z\frac{\partial u}{\partial z}=0,\quad (x,y,z)\in\mathbb{R}^3,\ u:\mathbb{R}^3\to\mathbb{R}$$
 (или \mathbb{C}).

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Рассматривается однородное ПЧП первого порядка

$$a(x, y, z) u_x + b(x, y, z) u_y + c(x, y, z) u_z = 0,$$

где $a, b, c \in C^1$. Вектор характеристик V = (a, b, c).

Шаг 1. Записать систему характеристик.

$$\frac{dx}{ds} = a,$$
 $\frac{dy}{ds} = b,$ $\frac{dz}{ds} = c,$ или $\frac{dx}{a} = \frac{dy}{b} = \frac{dz}{c}.$

Шаг 2. Найти первый инвариант I_1 по $\frac{dx}{a} = \frac{dy}{b}$.

Решить $\frac{dy}{dx} = \frac{b}{a}$ (см. детектор D1–D5) и получить $I_1 = \text{const.}$

Шаг 3. Найти второй инвариант I_2 .

Использовать связь с z: если $c \equiv 0 \Rightarrow I_2 = z$; если $c = \mu(x,y) z \Rightarrow I_2 = z \exp(-\int \mu \, ds)$; если $c = \mu(x,y) \Rightarrow I_2 = z - \int \mu \, ds$.

Шаг 4. Записать общее решение.

$$u(x, y, z) = F(I_1(x, y, z), I_2(x, y, z)).$$

Шаг 5. Проверить независимость I_1, I_2 и область корректности.

Требуется $dI_1 \wedge dI_2 \neq 0$ на рассматриваемой области.

3. Сопроводительные материалы (таблицы и обозначения)

Π аттерн (a,b)	Признак	I_1
Радиальный масштаб	a:b=x:y	y/x
Вращение	a:b=y:-x	$x^2 + y^2$
Диагональный линейный	$a = \alpha x, \ b = \beta y$	$y/x^{\beta/\alpha}$
Общий линейный	$a = \alpha x + \beta y, \ b = \gamma x + \delta y$	$\eta/\xi^{\lambda_2/\lambda_1}$ через СВ $M^{ op}$
Однородность порядка d	a,b однородны степени d	x G(y/x)

$egin{array}{ c c c c c c c c c c c c c c c c c c c$	Действие	$\mathbf{I_2}$
$c \equiv 0$	dz/ds = 0	z
$c = \mu(x, y) z$	$d\ln z/ds = \mu(x,y)$	$z e^{-\int \mu ds}$
$c = \mu(x, y)$	$dz/ds = \mu(x,y)$	$z - \int \mu ds$

4. Применение алгоритма к объявленной задаче

$$x u_x + y u_y + (x + y) z u_z = 0.$$

Шаг 1. Характеристики.

 $\dot{x} = x, \ \dot{y} = y, \ \dot{z} = (x+y)z.$

Шаг 2. I_1 из $\frac{dy}{dx}=\frac{y}{x}$ (детектор: радиальный). $\ln y - \ln x = C \Rightarrow I_1=\frac{y}{x}$.

Шаг 3. I_2 для c = (x + y)z.

$$\frac{d \ln z}{ds} = x + y, \ \frac{d(x + y)}{ds} = x + y \Rightarrow \frac{d}{ds} (\ln z - (x + y)) = 0.$$
 Значит $I_2 = z e^{-(x + y)}$.

Шаг 4. Общее решение.

$$u(x, y, z) = F\left(\frac{y}{x}, z e^{-(x+y)}\right).$$

Шаг 5. Независимость/область.

 $d(y/x) \wedge d(ze^{-(x+y)}) \neq 0$ при $x \neq 0$. Итог корректен на $\{x \neq 0\}$.

М6. ПЧП 1-го порядка (задача Коши): нехарактеристичность, построение F по данным

1. Тип экзаменационной задачи (полное условие)

Даны две задачи Коши для уравнения

$$y z_x - x z_y = 0:$$

а) z = 2y при x = 1; б) z = 2y при x = 1 + y. Искать решение в окрестности (1,0). Проверить условия теоремы существования-единственности.

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дано квазилинейное ПЧП 1-го порядка $a(x,y)z_x +$ $b(x,y)z_y=0$, где $a,b\in C^1(\Omega\subset\mathbb{R}^2)$, и начальные данные на кривой $\gamma:s\mapsto (x(s),y(s)):z(\gamma(s))=$ $\varphi(s)$.

Вводим: $I_1(x,y)$ — первый интеграл (инвариант); $\Delta(s)$ — определитель нехарактеристичности; $\gamma'(s)$ — касательный вектор к кривой; F — произвольная функция.

Шаг 0. Найти характеристики.

Решить систему $\frac{dy}{dx} = \frac{b}{a}$ и найти первый интеграл $I_1(x,y) = C_1$.

Шаг 1. Записать общее решение.

Общее решение имеет вид $z(x,y) = F(I_1(x,y))$, где F — произвольная функция.

Шаг 2. Сшить с начальными данными.

Подставить кривую γ в общее решение: $F(I_1(\gamma(s))) = \varphi(s)$. Если $\Delta \neq 0$, то $s = \sigma(I)$ локально и

$$z(x,y) = \varphi(\sigma(I_1(x,y))).$$

Шаг 3. Проверить нехарактеристичность.

Вычислить $\Delta(s) = a(\gamma)y'(s) - b(\gamma)x'(s)$. Проверить условие $(a,b) \not | \gamma'(s) \Leftrightarrow \Delta \neq 0$.

Шаг 4. Сформулировать итог.

 $\Delta \neq 0 \Rightarrow$ единственность; $\Delta = 0 \Rightarrow$ ветвление или неединственность.

3. Сопроводительные материалы (таблицы и обозначения)

Быстрые инварианты:

Коэффициенты (a,b)	Уравнение $\frac{dy}{dx} = \frac{b}{a}$	Инвариант $I_1(x,y)$
(y, -x)	$-\frac{x}{y}$	$x^2 + y^2$
(x, y)	$\frac{y}{x}$	$\frac{y}{x}$
$(\alpha x, \ \beta y)$	$\frac{\beta y}{\alpha x}$	$\frac{y}{x^{eta/lpha}}$
$(\alpha x + \beta y, \ \gamma x + \delta y)$	$\frac{\gamma x + \delta y}{\alpha x + \beta y}$	линейная замена $\Rightarrow rac{\eta}{\xi^{\lambda_2/\lambda_1}}$

Условие нехарактеристичности: $\Delta(s) = a(\gamma)y'(s) - b(\gamma)x'(s) \neq 0$.

Правила диагностики: В виде g(x,y) = 0: $ag_x + bg_y \neq 0$ на γ .

4. Применение алгоритма к объявленной задаче

Дано: $y z_x - x z_y = 0$ с двумя задачами Коши в окрестности (1,0).

Шаг 0. Найти характеристики.

$$a = y, b = -x \Rightarrow dy/dx = -x/y \Rightarrow I_1 = x^2 + y^2.$$

Шаг 1. Записать общее решение.

Общее решение: $z = F(x^2 + y^2)$.

Шаг 2. Сшить с начальными данными.

(a)
$$x = 1, z = 2y$$
:

$$I_1|_{x=1} = 1 + y^2$$
, $\Delta = y \cdot 1 - (-1) \cdot 0 = y$.

В (1,0): $\Delta = 0$ (характеристическая).

Инверсия многозначна: $y = \pm \sqrt{I-1} \Rightarrow$

$$z = 2 \operatorname{sgn}(y) \sqrt{x^2 + y^2 - 1}$$

(неединственность у y = 0).

(6)
$$x = 1 + y$$
, $z = 2y$:

$$I_1|_{x=1+y} = 1 + 2y + 2y^2, \quad \Delta = 2y + 1.$$

В (1,0): $\Delta = 1 \neq 0$ (нехарактеристическая).

 $I = 1 + 2s + 2s^2 \Rightarrow s = \frac{-1 + \sqrt{2I - 1}}{2}$ (ветвь у $s \approx 0$).

$$z(x,y) = -1 + \sqrt{2(x^2 + y^2) - 1}$$

(единственно в окрестности (1,0)).

7 М7. Системы разностных $x_{t+1} = Ax_t(+b)$: фундаментальная матрица $\Phi_t = A^t$, спектр, неоднородные случаи

1. Тип экзаменационной задачи (полное условие)

Решите систему разностных уравнений

$$\begin{cases} x_{t+1} = 2x_t + y_t + 1, \\ y_{t+1} = -y_t - 1, \end{cases} \quad t \in \mathbb{Z}_{\geq 0}, \quad \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in \mathbb{R}^2.$$

В матричном виде: $X_{t+1} = AX_t + b$, $A = \begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дана система $X_{t+1} = AX_t + b_t$, $A \in \mathbb{R}^{n \times n}$, $b_t \in \mathbb{R}^n$. Обозначим $\Phi_t := A^t \ (\Phi_0 = I)$. Спектр $A: \{\lambda_j\}$, жордановы блоки J_j .

Шаг 0. Стандартный вид и отделение однородной части.

Записать $X_{t+1} - AX_t = b_t$. Для $b_t \equiv 0$: $X_t = \Phi_t C$.

Шаг 1. Спектр A и выбор ветки для Φ_t .

Найти собственные значения/кратности и выбрать: диагонализация, жордановы блоки или реальный блок для комплексной пары.

Шаг 2. Построение $\Phi_t = A^t$.

Использовать:

$$\Phi_t = \begin{cases} S\Lambda^t S^{-1}, & A = S\Lambda S^{-1}, \\ \lambda^t \sum_{k=0}^{m-1} {t \choose k} N^k, & A \sim J = \lambda(I+N), \ N^m = 0, \\ \rho^t SR(\theta t) S^{-1}, & \lambda = \rho e^{\pm i\theta}, \\ {a \choose 0}^t = {a^t \choose 0}^t \sum_{k=0}^{t-1} a^{t-1-k} d^k \choose 0 d^t}, & \text{(верхнетреугольная } 2 \times 2). \end{cases}$$

Шаг 3. Неоднородная часть (вариация постоянных).

$$X_t = \Phi_t X_0 + \sum_{k=0}^{t-1} \Phi_{t-1-k} b_k.$$

Для $b_t \equiv b$:

$$X_t = \Phi_t(X_0 - X_*) + X_*, \qquad (I - A)X_* = b.$$

Если $1 \in \sigma(A)$, то (I - A) вырождена: использовать сумму $\sum \Phi_{t-1-k}b$.

Шаг 4. Сборка с начальным условием.

Подставить Φ_t , X_0 , при b константном — найденный X_* .

Шаг 5. Контроль по спектру.

 $|\lambda| < 1$ даёт затухание по соответствующему направлению, $|\lambda| > 1$ — рост; $\lambda = 1$ требует резонансной проверки.

3. Сопроводительные материалы (таблицы и правила)

Ситуация	Признак	Φ_t
Диагонализуемая	$A = S\Lambda S^{-1}$	$S\Lambda^t S^{-1}$
Жорданов блок λ	$A = SJS^{-1}$	$\lambda^t \sum_{k=0}^{m-1} {t \choose k} N^k$
Комплексная пара	$Q_{\rho,\theta}(A) = 0$	$\rho^t SR(\theta t) S^{-1}$
Верхнетреугольная 2 × 2	$A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$	$\left(egin{array}{cc} a^t & b \sum a^{t-1-k} d^k \ 0 & d^t \end{array} ight)$

$$\mathbf{1} \notin \sigma(\mathbf{A}) \quad \det(I - A) \neq 0 \quad X_* = (I - A)^{-1}b, \ X_t = \Phi_t(X_0 - X_*) + X_*$$
 $\mathbf{1} \in \sigma(\mathbf{A}) \quad \det(I - A) = 0 \quad \text{нет единств. } X_*; \ X_t = \Phi_t X_0 + \sum_{k=0}^{t-1} \Phi_{t-1-k}b$

4. Применение алгоритма к объявленной задаче

Шаг 0. Стандартный вид.

$$X_{t+1} = AX_t + b, A = \begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Шаг 1. Спектр и ветка.

 $\lambda_1 = 2, \ \lambda_2 = -1 \ (\text{простые}).$

Шаг 2. Фундаментальная матрица.

$$A^{t} = \begin{pmatrix} 2^{t} & \sum_{k=0}^{t-1} 2^{t-1-k} (-1)^{k} \\ 0 & (-1)^{t} \end{pmatrix} = \begin{pmatrix} 2^{t} & \frac{2^{t} - (-1)^{t}}{3} \\ 0 & (-1)^{t} \end{pmatrix}.$$

Шаг 3. Неоднородность (константная).

 $1 \notin \sigma(A) \Rightarrow X_* = (I - A)^{-1}b$, где

$$(I-A)^{-1} = \begin{pmatrix} -1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}, \quad X_* = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}.$$

Шаг 4. Сборка.

$$X_t = A^t (X_0 - X_*) + X_*$$

Шаг 5. Контроль.

Компонента по $\lambda=2$ растёт как 2^t ; по $\lambda=-1$ — ограниченная знакопеременная.

8 М8. Вращающиеся/полярные системы: переход $(x,y) \rightarrow (r,\theta)$, интегрируемые случаи

1. Тип экзаменационной задачи (полное условие)

Исследовать фазовый портрет

$$\begin{cases} \dot{x} = a y + x(x^2 + y^2), \\ \dot{y} = -a x + y(x^2 + y^2), \end{cases}$$

в окрестности (0,0) для всех $a \in \mathbb{R}$. Указание: перейти в полярные координаты. Определить тип начала координат для линеаризованной системы.

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дана система $\dot{x}=f(x,y),\ \dot{y}=g(x,y)$ в декартовых координатах. Вводим полярные координаты: $x=r\cos\theta,\ y=r\sin\theta,$ где r>0. Вводим функции: $H(x,y):=\frac{xf+yg}{x^2+y^2}$ — радиальная компонента; $A(x,y):=-\frac{xg-yf}{x^2+y^2}$ — угловая компонента. Тогда $\dot{r}=rH,\ \dot{\theta}=A.$

Шаг 0. Перейти к полярным координатам.

Использовать формулы преобразования:

$$\dot{r} = \frac{xf + yg}{r}, \qquad \dot{\theta} = \frac{xg - yf}{r^2}$$

или через введённые функции:

$$\dot{r} = r H, \quad \dot{\theta} = A$$

Шаг 1. Вычислить функции H и A.

Найти
$$H(x,y) = \frac{xf+yg}{x^2+y^2}$$
 и $A(x,y) = -\frac{xg-yf}{x^2+y^2}$.

Шаг 2. Определить порядки малости у r = 0.

Разложить $H(r,\theta) = h_k(\theta) r^k + o(r^k)$ и $A(r,\theta) = a_0 + a_1(\theta) r + \dots$ при $r \to 0$.

Шаг 3. Классифицировать тип равновесия по знаку h_k .

Анализировать $\dot{r} = r H$:

- Если k = 0 и $h_0 \neq 0$: $\dot{r} \sim h_0 r$
 - $-h_0 < 0$: устойчивый фокус
 - $-h_0 > 0$: неустойчивый фокус
- Если $k \geq 1$: $\dot{r} \sim h_k(\theta) \, r^{k+1}$ негиперболическое равновесие
 - $-\ h_k(heta)>0$: радиальный разлёт
 - $-h_k(\theta) < 0$: радиальное притяжение

Анализировать $\dot{\theta} \sim a_0$: при $a_0 \neq 0$ — равномерное вращение (знак a_0 задаёт направление).

Шаг 4. Проверить линеаризацию.

Вычислить якобиан $J(0,0) = \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix}$. Если $\sigma(J) = \{\pm ia_0\}$ — центр для линейной части, устойчивость определяет H.

Шаг 5. Построить эскиз фазового портрета.

Нарисовать стрелки по знакам $\operatorname{sgn}(\dot{r})$ и $\operatorname{sgn}(\dot{\theta})$. Кривая $\dot{r}=0 \Leftrightarrow H=0$ — радиальные барьеры.

3. Сопроводительные материалы (таблицы и обозначения)

Основные формулы преобразования:

$$xf + yg = r^2H$$
, $xg - yf = -r^2A$

Классификация по порядку малости Н:

$$H(r,\theta) \sim egin{dcases} h_0 \ (
eq 0) & \Rightarrow \ \dot{r} \sim h_0 r \ \Rightarrow \ \begin{cases} h_0 < 0 \ : \$$
устойчивый фокус, $h_0 > 0 \ : \$ неустойчивый фокус, $h_0 > 0 \ : \$ неустойчивый фокус, $h_0 > 0 \ : \$ негиперболика)

Специальный случай: Если $f = ay + x \Phi$, $g = -ax + y \Phi$, то

$$\dot{r} = r \Phi, \quad \dot{\theta} = -a$$

4. Применение алгоритма к объявленной задаче

$$\begin{cases} \dot{x} = a y + x(x^2 + y^2), \\ \dot{y} = -a x + y(x^2 + y^2), \end{cases}$$

Шаг 0. Перейти к полярным координатам.

Используем формулы: $f(x,y) = ay + x(x^2 + y^2)$, $g(x,y) = -ax + y(x^2 + y^2)$.

Шаг 1. Вычислить функции H и A.

$$H = \frac{x(ay + xr^2) + y(-ax + yr^2)}{r^2} = \frac{ar^2 \sin \theta \cos \theta + ar^2 \sin \theta \cos \theta + r^4}{r^2} = r^2$$
$$A = -\frac{x(-ax + yr^2) - y(ay + xr^2)}{r^2} = -\frac{-ar^2 \cos^2 \theta - ar^2 \sin^2 \theta}{r^2} = a$$

Шаг 2. Определить порядки малости у r = 0.

 $H = r^2 \Rightarrow k = 2, \ h_2 \equiv 1 > 0; \ A \equiv a.$

Шаг 3. Классифицировать тип равновесия.

 $\dot{r} = r^3 > 0$ при $r > 0 \Rightarrow$ радиальный разлёт (негиперболическая неустойчивость). $\dot{\theta} = a \Rightarrow$ равномерное вращение (знак a задаёт направление).

Шаг 4. Проверить линеаризацию.

 $J(0,0) = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$, $\sigma(J) = \{\pm ia\}$ \Rightarrow центр для линейной части $(a \neq 0)$; истинная динамика — разлёт из-за r^3 .

Шаг 5. Построить эскиз фазового портрета.

Эскиз: расходящиеся спирали при $a \neq 0$; при a = 0 — чисто радиальный разлёт $(\dot{r} = r^3, \ \dot{\theta} \equiv 0)$.

При $a \neq 0$: расходящиеся спирали; при a = 0: радиальный разлёт

9 М9. Первые интегралы в 3D-системах ОДУ: поиск двух независимых и проверка

1. Тип экзаменационной задачи (полное условие)

Найдите два независимых первых интеграла и проверьте их независимость для системы

$$\dot{x} = yz, \qquad \dot{y} = z, \qquad \dot{z} = -y,$$

где $(x, y, z) \in \mathbb{R}^3$. Укажите область, где полученная пара интегралов независима.

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Пусть

$$\dot{x} = f_1(x, y, z), \quad \dot{y} = f_2(x, y, z), \quad \dot{z} = f_3(x, y, z),$$

 $f_i \in C^1$. Первый интеграл I удовлетворяет $\dfrac{d}{dt}I = \nabla I \cdot (f_1,f_2,f_3) = 0.$

Шаг 1. Выделить «быструю» 2D-подсистему.

Проверить пары (y,z), (x,y), (x,z) на простой вид (вращение, масштаб, линейная/однородная структура) и выбрать удобную.

Шаг 2. Построить первый интеграл I_1 для выбранной пары.

По детекторам (см. таблицу D): при вращении $(\alpha z, -\alpha y)$ взять $I_1 = y^2 + z^2$; при масштабе $(\alpha y, \beta z)$ взять $I_1 = z/y^{\beta/\alpha}$; в линейном случае перейти к базису собственных векторов. Проверить $I_1 = 0$.

Шаг 3. Построить второй интеграл I_2 через «линейно-квадратичный анзац».

Если $f_1 = f_1(y,z)$, попробовать $I_2 = x - F(y,z)$ с $F = ay^2 + bz^2 + cyz$ и потребовать

$$\dot{I}_2 = \dot{x} - (F_y \dot{y} + F_z \dot{z}) \equiv 0 \quad \Longleftrightarrow \quad (2ay + cz)f_2 + (2bz + cy)f_3 \equiv f_1.$$

Решить линейную систему на a, b, c. При неудаче циклически переставить переменные.

Шаг 4. Проверить независимость пары (I_1, I_2) .

Убедиться, что $\nabla I_1 \times \nabla I_2 \neq 0$ (или $dI_1 \wedge dI_2 \neq 0$) в интересующей области.

Шаг 5. Сформулировать результат.

Записать $I_1 = C_1, I_2 = C_2$ и область валидности (где независимость не нарушается).

3. Сопроводительные материалы (таблицы и обозначения)

Пара	Признак	$oldsymbol{U}$ нвариант I_1
$(\dot{y}, \dot{z}) = (\alpha z, -\alpha y)$	вращение	$y^2 + z^2$
$(\dot{y}, \dot{z}) = (\alpha y, \beta z)$	масштаб	$z/y^{eta/lpha}$
$(\dot{y}, \dot{z}) = (Ay + Bz, Cy + Dz)$	линейная	$\eta/\xi^{\lambda_2/\lambda_1}$ в базисе левых СВ

Q-анзац для I_2 : при $f_1 = f_1(y,z)$ берем $I_2 = x - F(y,z), F = ay^2 + bz^2 + c\,yz$ и решаем

$$(2ay + cz) f_2 + (2bz + cy) f_3 \equiv f_1.$$

Если не решается — переставляем роли переменных и повторяем.

4. Применение алгоритма к объявленной задаче

$$\dot{x} = yz, \qquad \dot{y} = z, \qquad \dot{z} = -y.$$

Шаг 1. Выделяем пару.

 $(\dot{y}, \dot{z}) = (z, -y)$ — вращение.

Шаг 2. Первый интеграл I_1 .

$$I_1 = y^2 + z^2$$
, так как $\dot{I}_1 = 2y\dot{y} + 2z\dot{z} = 2yz + 2z(-y) = 0$.

Шаг 3. Второй интеграл I_2 через анзац.

$$f_1(y,z) = yz$$
. Ищем $I_2 = x - F(y,z), F = ay^2 + bz^2 + cyz$ из

$$(2ay + cz)z + (2bz + cy)(-y) \equiv yz.$$

Получаем $a = \frac{1}{2}, \ b = 0, \ c = 0,$ значит $F = \frac{1}{2}y^2$ и

$$I_2 = x - \frac{1}{2}y^2.$$

Шаг 4. Независимость.

$$\nabla I_1 = (0, 2y, 2z), \ \nabla I_2 = (1, -y, 0),$$

$$\nabla I_1 \times \nabla I_2 = (0, -2z, -2y) \neq 0$$
 при $(y, z) \neq (0, 0)$.

Шаг 5. Результат.

$$I_1 = y^2 + z^2 = C_1, \qquad I_2 = x - \frac{1}{2}y^2 = C_2$$

Независимость выполняется на множестве $\{(y, z) \neq (0, 0)\}$.

10 M10. Периодические коэффициенты (Флоке): монодромия, множители, сдвиг решения

1. Тип экзаменационной задачи (полное условие)

Пусть $q: \mathbb{R} \to \mathbb{R}$ непрерывна и 1-периодична: q(x+1) = q(x). Пусть $y \not\equiv 0$ — решение

$$y'' + q(x) y = 0, \qquad x \in \mathbb{R},$$

с краевыми условиями $y(0)=0,\ y(1)=0.$ Докажите, что существует $C\in\mathbb{R}\setminus\{0\}$ такое, что

$$y(x+1) = C y(x) \quad \forall x \in \mathbb{R},$$

и выразите C через y'(0), y'(1).

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Система Y'(x) = B(x)Y(x), B(x+T) = B(x), либо скалярное y'' + p(x)y' + q(x)y = 0 с периодом T > 0. $\Phi(0) = I$, $M = \Phi(T)$ — монодромия, её собственные числа ρ_j — множители Флоке. Для скаляра: $u(0) = 1, u'(0) = 0; \ v(0) = 0, v'(0) = 1.$

Шаг 1. Нормализация к системной форме.

Для скаляра перейти к Y' = B(x)Y, $Y = (y, y')^{\top}$, $B(x) = \begin{pmatrix} 0 & 1 \\ -q(x) & -p(x) \end{pmatrix}$, период T зафиксирован.

Шаг 2. Фундаментальные решения на [0,T] и монодромия M.

Собрать
$$M$$
 как $M = \begin{pmatrix} u(T) & v(T) \\ v'(T) & v'(T) \end{pmatrix}$ (или $\Phi'(x) = B(x)\Phi(x), \Phi(0) = I$).

Шаг 3. Инварианты: $\det M$. $\det M = \exp \left(\int_0^T \operatorname{tr} B(x) \, dx \right)$. Для $y'' + p \, y' + q \, y = 0$: $\det M = \exp \left(- \int_0^T p(x) \, dx \right)$. Для $y'' + q \, y = 0$:

Шаг 4. Множители Флоке и классификация.

 $\rho_{1,2}$ — корни $\lambda^2 - (\operatorname{tr} M)\lambda + \det M = 0$, далее классифицировать по $|\operatorname{tr} M|$ и $\det M$.

Шаг 5. Утверждение о сдвиге.

При данных y(0) = 0, y(T) = 0 имеем $y = \alpha v$ и v(T) = 0. По единственности задачи Коши: v(x+T) = 0v'(T)v(x). Следовательно,

$$y(x+T) = C y(x),$$
 $C = \frac{y'(T)}{y'(0)} = v'(T).$

3. Сопроводительные материалы (таблицы и обозначения)

Модель	$\operatorname{tr} B(x)$	$\det M$
Y' = B(x)Y	$\operatorname{tr} B(x)$	$\exp(\int_0^T \operatorname{tr} B)$
y'' + py' + qy = 0	-p(x)	$\exp\left(-\int_0^T p\right)$
y'' + q y = 0	0	1

	$\det M$	$ \operatorname{tr} M $	Поведение
	> 0	$< 2\sqrt{\det M}$	Комплексная пара $ ho$: квазипериодичность
Ī	> 0	$> 2\sqrt{\det M}$	Две вещественные: рост/затухание по направлениям
Ī	> 0	$=2\sqrt{\det M}$	Кратный множитель $(\pm \sqrt{\det M})$

Если
$$y(0)=y(T)=0, \text{ то } y(x+T)=C\,y(x), \ C=\dfrac{y'(T)}{y'(0)}$$

4. Применение алгоритма к объявленной задаче

Шаг 1. Норма: y'' + q(x)y = 0, T = 1.

Шаг 2. Базис u, v, монодромия $M = \begin{pmatrix} u(1) & v(1) \\ u'(1) & v'(1) \end{pmatrix}$.

Шаг 3. $\det M = 1$.

Шаг 4. $\rho_{1,2}$ — корни $\lambda^2 - (u(1) + v'(1))\lambda + 1 = 0$.

Шаг 5. Из $y(0) = y(1) = 0 \Rightarrow y = \alpha v$, v(1) = 0. Тогда y(x+1) = v'(1)y(x), то есть

$$y(x+1) = C y(x), \quad C = \frac{y'(1)}{y'(0)} = v'(1)$$

11 M11. Доказательные мини-кейсы: осцилляция и нули решений (пример: Бессель)

1. Тип экзаменационной задачи (полное условие)

Докажите, что всякое нетривиальное решение уравнения Бесселя

$$x^2y'' + xy' + \left(x^2 - \frac{1}{2}\right)y = 0$$

имеет бесконечно много нулей на промежутке x > 0.

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Рассматривается y'' + p(x)y' + q(x)y = 0, $p,q \in C^1[X_0,\infty)$. Нормальная форма: $y = \phi z$, где

$$\phi(x) = \exp\left(-\frac{1}{2} \int p(x) dx\right), \qquad Q(x) = q(x) - \frac{p'(x)}{2} - \frac{p(x)^2}{4},$$

и z удовлетворяет z'' + Q(x)z = 0.

Шаг 1. Привести к нормальной форме z'' + Q(x)z = 0.

Вычислить p,q; взять $\phi = \exp(-\frac{1}{2}\int p)$, положить $y = \phi z$ и $Q = q - \frac{1}{2}p' - \frac{1}{4}p^2$.

Шаг 2. Зафиксировать численный детектор по Q на хвосте.

Найти $X_1 \geq X_0$ и $\alpha > 0$ такие, что на $[X_1, \infty)$ выполнено, например, $Q(x) \geq \alpha^2$ или $Q(x) \leq 0$.

Шаг 3. Выбрать эталон для сравнения.

При $Q \ge \alpha^2 > 0$ — эталон $v'' + \alpha^2 v = 0$; при $Q \le 0$ — эталон v'' = 0.

Шаг 4. Сравнение на $[X_1, \infty)$ и вывод о нулях.

Если $Q \ge \alpha^2$, то у z бесконечно много нулей; если $Q \le 0$, то у z не более одного нуля.

Шаг 5. Перевести вывод к y и зафиксировать область.

Так как $\phi \neq 0$ на $[X_1, \infty)$, нули y совпадают с нулями z.

3. Сопроводительные материалы (таблицы и обозначения)

Нормализация:
$$\phi = \exp\left(-\frac{1}{2}\int p\right), \ Q = q - \frac{p'}{2} - \frac{p^2}{4}, \ z = \frac{y}{\phi}.$$

У словие на <i>Q</i>	Эталон	Вывод о нулях
$Q(x) \ge \alpha^2 > 0$	$v'' + \alpha^2 v = 0$	беск. много нулей у z
$Q(x) \le 0$	v'' = 0	не более одного нуля у z

4. Применение алгоритма к объявленной задаче

Шаг 1. Нормальная форма.

$$x^{2}y'' + xy' + (x^{2} - \frac{1}{2})y = 0 \Rightarrow y'' + \frac{1}{x}y' + (1 - \frac{1}{2x^{2}})y = 0.$$

$$\phi = x^{-1/2},$$
 $Q(x) = 1 - \frac{1}{4x^2}.$

Для $x \geq 1$: $Q(x) \geq \frac{3}{4}$, берём $\alpha = \sqrt{3}/2$.

18

Шаг 3. Эталон.

$$v'' + \alpha^2 v = 0.$$

Шаг 4. Сравнение и вывод.

На $[1,\infty)$ выполнено $Q \ge \alpha^2 > 0 \Rightarrow$ у любого нетривиального решения z бесконечно много нулей.

Шаг 5. Возврат к y.

 $\phi = x^{-1/2} \neq 0$ при $x > 0 \Rightarrow y$ у бесконечно много нулей на x > 0.

12 М12. Механические системы и устойчивость Ляпунова: $\ddot{x} = -\nabla V$, энергия

1. Тип экзаменационной задачи (полное условие)

Дано: $\ddot{\mathbf{x}} = -\nabla V(\mathbf{x}), V \in C^1(\mathbb{R}^n), V(\mathbf{0}) = \min V, V(\mathbf{x}) > 0$ при $\mathbf{x} \neq \mathbf{0}$. **Требуется:** найти положение равновесия и доказать его устойчивость.

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дана механическая система $\ddot{\mathbf{x}} = -\nabla V(\mathbf{x})$. Вводим переменные: $\mathbf{x} \in \mathbb{R}^n$ — координаты, $\mathbf{v} = \dot{\mathbf{x}}$ — скорости. Вводим энергию: $E(\mathbf{x}, \mathbf{v}) = \frac{1}{2} ||\mathbf{v}||^2 + V(\mathbf{x})$. Вводим гессиан: $H = \nabla^2 V(\mathbf{0})$ — матрица вторых производных потенциала в точке равновесия.

Шаг 0. Проверить потенциальность системы.

Проверить:
$$\mathbf{f}(\mathbf{x}) = -\nabla V(\mathbf{x}) \Leftrightarrow \partial_{x_i} f_i = \partial_{x_i} f_j \ (\forall i, j).$$

Шаг 1. Найти положения равновесия.

 $\dot{\mathbf{x}} = \mathbf{0}, \ \ddot{\mathbf{x}} = \mathbf{0} \iff \mathbf{v} = \mathbf{0}, \ \nabla V(\dot{\mathbf{x}}) = \mathbf{0}.$ При строгом минимуме V в $\mathbf{0}$: $\mathbf{x}_* = \mathbf{0}$.

Шаг 2. Проверить сохранение энергии.

$$\dot{E} = \dot{\mathbf{x}} \cdot \ddot{\mathbf{x}} + \nabla V \cdot \dot{\mathbf{x}} = \mathbf{v} \cdot (-\nabla V) + \nabla V \cdot \mathbf{v} = 0 \implies E(t) \equiv E(0)$$

Шаг 3. Доказать положительную определённость энергии.

$$V(\mathbf{0}) = 0, \ V(\mathbf{x}) > 0 \ (\mathbf{x} \neq 0) \Rightarrow E(\mathbf{x}, \mathbf{v}) \geq 0, \ E = 0 \Leftrightarrow (\mathbf{x}, \mathbf{v}) = (\mathbf{0}, \mathbf{0})$$

Шаг 4. Использовать субуровни энергии для оценки траекторий.

$$m(arepsilon) := \min_{\|\mathbf{x}\| = arepsilon} V(\mathbf{x}) > 0$$
. Если $E(0) < m(arepsilon)$, то $E(t) \equiv E(0) < m(arepsilon)$ и $\|\mathbf{x}(t)\| < arepsilon \ orall t \geq 0$.

Шаг 5. Доказать устойчивость по Ляпунову.

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \ \|(\mathbf{x}(0), \mathbf{v}(0))\| < \delta \Rightarrow \|\mathbf{x}(t)\| < \varepsilon \ \forall t \ge 0.$$

$$(0,0)$$
 устойчиво по Ляпунову (не асимптотически)

3. Сопроводительные материалы (таблицы и обозначения)

Детектор потенциальности:

$$\mathbf{f}(\mathbf{x}) = -\nabla V(\mathbf{x}) \Leftrightarrow \partial_{x_i} f_i = \partial_{x_i} f_i \ (\forall i, j)$$

Локальная квадратичная аппроксимация потенциала:

$$abla V(\mathbf{0}) = \mathbf{0}, \ H = \nabla^2 V(\mathbf{0}), \ H \succ 0 \Rightarrow V(\mathbf{x}) = \frac{1}{2} \mathbf{x}^\top H \mathbf{x} + o(\|\mathbf{x}\|^2)$$

$$\Rightarrow \exists m > 0 : V(\mathbf{x}) \ge \frac{m}{2} \|\mathbf{x}\|^2 \ (\text{в малой окрестности})$$

Энергетический кандидат Ляпунова:

$$E(\mathbf{x}, \mathbf{v}) = \frac{1}{2} ||\mathbf{v}||^2 + V(\mathbf{x}), \quad \dot{E} = 0$$

Свойства субуровней энергии: $\mathcal{L}_c := \{(\mathbf{x}, \mathbf{v}) : E(\mathbf{x}, \mathbf{v}) \leq c\}$ — замкнутые множества; при малых c лежат в окрестности $(\mathbf{0}, \mathbf{0})$.

Критерии устойчивости:

Условие	Вывод
$V(0) = 0, V(\mathbf{x}) > 0$ при $\mathbf{x} \neq 0$	устойчивость по Ляпунову
$H = \nabla^2 V(0) \succ 0$	локальная устойчивость
$\dot{E} = 0$	консервативная система

4. Применение алгоритма к объявленной задаче

$$\ddot{\mathbf{x}} = -\nabla V(\mathbf{x}), \quad V(\mathbf{0}) = \min V, \quad V(\mathbf{x}) > 0 \text{ при } \mathbf{x} \neq \mathbf{0}$$

Шаг 0. Проверить потенциальность системы.

Система задана в потенциальной форме: $\mathbf{f}(\mathbf{x}) = -\nabla V(\mathbf{x})$.

Шаг 1. Найти положения равновесия.

 $\nabla V(\mathbf{0}) = \mathbf{0} \Rightarrow \mathbf{x}_* = \mathbf{0}.$

Шаг 2. Проверить сохранение энергии.

 $E = \frac{1}{2} ||\dot{\mathbf{x}}||^2 + V(\mathbf{x}), \, \dot{E} = 0.$

Шаг 3. Доказать положительную определённость энергии.

 $V(\mathbf{x}) > 0, = 0 \Leftrightarrow \mathbf{x} = \mathbf{0} \Rightarrow E > 0$, нуль только в $(\mathbf{0}, \mathbf{0})$.

Шаг 4. Использовать субуровни энергии для оценки траекторий.

 $m(\varepsilon) = \min_{\|\mathbf{x}\|=\varepsilon} V(\mathbf{x}) > 0, E(0) < m(\varepsilon) \Rightarrow \|\mathbf{x}(t)\| < \varepsilon.$

Шаг 5. Доказать устойчивость по Ляпунову.

 $(\mathbf{0},\mathbf{0})$ устойчиво по Ляпунову

13 М13. Системы разностных уравнений: вариация постоянных, задача Коши

1. Тип экзаменационной задачи (полное условие)

Условие.

$$\begin{pmatrix} x_{t+1} \\ y_{t+1} \end{pmatrix} = A \begin{pmatrix} x_t \\ y_t \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \qquad A = \frac{1}{2} \begin{pmatrix} -1 & 3 \\ 3 & -1 \end{pmatrix}.$$

(а) Найти фундаментальную матрицу Φ_t . (б) Полагая $\binom{x_t}{y_t} = \Phi_t\binom{c_1^t}{c_2^t}$, выписать уравнения для c_1^t, c_2^t (не решать).

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). $A \in \mathbb{R}^{n \times n}, x_t \in \mathbb{R}^n, b_t \in \mathbb{R}^n$. Определяем фундаментальную матрицу: $\Phi_t := A^t$. Спектральное разложение: $A = V\Lambda V^{-1}, \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Спектр: $A = V\Lambda V^{-1}, \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.

Шаг 1. Спектр.

Найти λ_j и базис $\{v_j\}$: $(A-\lambda_j I)v_j=0$. Критерий: $\sum_j \dim \ker(A-\lambda_j I)=n \Rightarrow$ диагонализуемо.

\mathbf{H} аг 2. A в степени t.

$$A^t = V\Lambda^t V^{-1}, \quad \Lambda^t = \operatorname{diag}(\lambda_1^t, \dots, \lambda_n^t).$$

Если $\lambda = \rho e^{\pm i\theta}$: на \mathbb{R}^2 блок $S = \frac{a-b}{b-a}$, $a+ib = \lambda$,

$$S^{t} = \rho^{t} \begin{pmatrix} \cos(\theta t) & -\sin(\theta t) \\ \sin(\theta t) & \cos(\theta t) \end{pmatrix}.$$

Шаг 3. Φ_t и однородная система.

$$x_{t+1} = Ax_t \Rightarrow x_t = \Phi_t x_0, \quad \Phi_t = A^t.$$

Шаг 4. Вариация постоянных.

Полагаем $x_t = \Phi_t c^t$. Тогда

$$\Phi_{t+1}c^{t+1} = \Phi_{t+1}c^t + b_t \Rightarrow c^{t+1} - c^t = \Phi_{t+1}^{-1}b_t$$

Эквивалентно: $x_t = A^t x_0 + \sum_{k=0}^{t-1} A^{t-1-k} b_k$

Шаг 5. Частные случаи.

Если $b_t \equiv b$ и I-A обратима: $x_t = A^t(x_0 - (I-A)^{-1}b) + (I-A)^{-1}b$. Если $\lambda < 0$: $\lambda^t = (-1)^t |\lambda|^t$. Пара $\rho e^{\pm i\theta}$: блок $\rho^t R(\theta t)$.

3. Сопроводительные материалы (таблицы и обозначения)

Спектр А	Φ ормула для A^t
$\lambda_j \in \mathbb{R}$ простые	$V \operatorname{diag}(\lambda_1^t, \dots, \lambda_n^t) V^{-1}$
$\rho e^{\pm i\theta}$	$W(\rho^t \frac{\cos \theta t}{\sin \theta t} \frac{-\sin \theta t}{\cos \theta t})W^{-1}$
смешанный	блочно по строкам выше

$$\Phi_t^{-1} = V \operatorname{diag}(\lambda_1^{-t}, \dots, \lambda_n^{-t}) V^{-1}.$$

4. Применение алгоритма к объявленной задаче

Шаг 1. Спектр.
$$\widehat{A}=\frac{-1}{3}\frac{3}{-1}\Rightarrow \sigma(\widehat{A})=\{2,-4\},\ v_1=(1,1),\ v_2=(1,-1).\ \sigma(A)=\{1,-2\}$$
 (диагонализуемо).

\mathbf{H} аг 2. A в степени t.

$$V = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad \Lambda = \operatorname{diag}(1, -2), \quad V^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

$$\Phi_t = A^t = \frac{1}{2} \begin{pmatrix} 1 + (-2)^t & 1 - (-2)^t \\ 1 - (-2)^t & 1 + (-2)^t \end{pmatrix}.$$

Шаг 3. Φ_t и однородная система.

 $x_t = \Phi_t x_0.$

Шаг 4. Вариация постоянных.

$$c^{t+1} - c^t = \Phi_{t+1}^{-1}b, \quad \Phi_{t+1}^{-1} = V \operatorname{diag}(1, (-2)^{-(t+1)})V^{-1}.$$

$$\Phi_{t+1}^{-1}b = \frac{1}{2} \begin{pmatrix} 1 + (-2)^{-(t+1)} & 1 - (-2)^{-(t+1)} \\ 1 - (-2)^{-(t+1)} & 1 + (-2)^{-(t+1)} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} (-\frac{1}{2})^{t+1} \\ -(-\frac{1}{2})^{t+1} \end{pmatrix}.$$

$$c_1^{t+1} - c_1^t = (-\frac{1}{2})^{t+1}, \quad c_2^{t+1} - c_2^t = -(-\frac{1}{2})^{t+1}.$$

Шаг 5. Частные случаи.

(I-A) необратима (есть $\lambda=1)\Rightarrow$ стационарная формула неприменима; используем вариацию постоянных как выше.