VARIABLE POWER PTICAL SYSTEM HAVING RATIONPROOF

Patent number:

JP7128619

Publication date:

1995-05-19

Inventor:

KIMURA KENICHI; others: 02

Applicant:

CANON INC

Classification:

- international:

G02B27/64; G02B7/02; G02B13/18;

G02B15/00; G02B15/16; G03B5/00

- european:

Application number: JP19930298955 19931104

Priority number(s):

Abstract of JP7128619

PURPOSE:To provide the variable power optical system which is constituted to form a static image by optically correcting the blur of the photographic image in the event of vibration of the variable power optical system and has a vibrationproof function.

CONSTITUTION: This variable power optical system has, successively from an object side, four lens groups; a first group L1 which is stationary at the time of varying power and focusing and has a positive refracting power, a second group L2 which has a variable power function and has a negative refracting power, a third group L3 which has a aperture diaphragm and a positive refracting power and a fourth group L4 which has both of a correction function to correct the image plane fluctuated by the variable power and a focusing function and has a positive refracting power. The third group L3 consists of two lens groups; a 31st group L31 having a negative refracting power and a 32nd group L32 having a positive refracting power and corrects the blur of the photographic image when the variable power optical system vibrates by moving the 32nd group L32 in a direction perpendicular to the optical axis.

Data supplied from the **esp@cenet** database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-128619

(43)公開日 平成7年(1995)5月19日

	15/16		9120-2K 審查請求	Ι				(全 16 頁)	最終頁に続く
(21)出願番号(22)出願日	}	特顧平5-298955 平成5年(1993)11	3 4 0	(71)	出願人	000001 キヤノ	ン株式	会社 下丸子3丁目:	·

ノン株式会社内 (72)発明者 秋山 健志

(72)発明者 浜野 博之

(72)発明者 木村 研一

東京都大田区下丸子3丁目30番2号 キヤ

東京都大田区下丸子3丁目30番2号 キヤ

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

ノン株式会社内

(74)代理人 弁理士 髙梨 幸雄

(54) 【発明の名称】 防振機能を有した変倍光学系

(57)【要約】

【目的】 変倍光学系が振動したときの撮影画像のプレを光学的に補正して静止画像を得るようにした防振機能を有した変倍光学系を得ること。

【構成】 物体側より順に変倍及び合焦の際に固定の正の屈折力の第1群、変倍機能を有する負の屈折力の第2群、開口絞り、正の屈折力の第3群、そして変倍により変動する像面を補正する補正機能と合焦機能の双方の機能を有する正の屈折力の第4群の4つのレンズ群を有した変倍光学系であって、該第3群は負の屈折力の第31群と正の屈折力の第32群の2つのレンズ群より成り、該第32群を光軸と垂直方向に移動させて該変倍光学系が振動したときの撮影画像のブレを補正していること。

【特許請求の範囲】

【請求項1】 物体側より順に変倍及び合焦の際に固定の正の屈折力の第1群、変倍機能を有する負の屈折力の第2群、開口絞り、正の屈折力の第3群、そして変倍により変動する像面を補正する補正機能と合焦機能の双方の機能を有する正の屈折力の第4群の4つのレンズ群を有した変倍光学系であって、該第3群は負の屈折力の第31群と正の屈折力の第32群の2つのレンズ群より成り、該第32群を光軸と垂直方向に移動させて該変倍光学系が振動したときの撮影画像のブレを補正していることを特徴とする防振機能を有した変倍光学系。

【請求項2】 前記第31群と第32群の焦点距離を各々 f 31, f 32としたとき

1. 5 < | f 31/f 32 | < 2.5

なる条件を満足することを特徴とする請求項1の防振機 能を有した変倍光学系。

【請求項3】 物体側より順に変倍及び合焦の際に固定の正の屈折力の第1群、変倍機能を有する負の屈折力の第2群、正の屈折力の第3群、そして変倍により変動する像面を補正する補正機能と合焦機能の双方の機能を有 20 する正の屈折力の第4群の4つのレンズ群を有した変倍光学系であって、該第3群は複数のレンズ群を有し、該第3群中の少なくとも一部のレンズ群を光軸と垂直方向に移動させて該変倍光学系が振動したときの撮影画像のブレを補正していることを特徴とする防振機能を有した変倍光学系。

【請求項4】 前記第3群は正の屈折力の第31群と負の屈折力の第32群の2つのレンズ群を有し、該第32 群を光軸と垂直方向に移動させていることを特徴とする 請求項3の防振機能を有した変倍光学系。

【請求項5】 前記第31群と第32群の焦点距離を各々 f 31, f 32としたとき

0. 8 < | f 3 1 / f 3 2 | < 1. 0

なる条件を満足することを特徴とする請求項3の防振機 能を有した変倍光学系。

【請求項6】 前記第3群の近傍に開口絞りを設けたことを特徴とする請求項3,4又は5の防振機能を有した変倍光学系。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は防振機能を有した変倍光学系に関し、特に変倍光学系の一部のレンズ群を光軸と垂直方向に移動させることにより、該変倍光学系が振動(傾動)したときの撮影画像のブレを光学的に補正して静止画像を得るようにし撮影画像の安定化を図った写真用カメラやビデオカメラ等に好適な防振機能を有した変倍光学系に関するものである。

[0002]

【従来の技術】進行中の車や航空機等移動物体上から撮 影をしようとすると撮影系に振動が伝わり手振れとなり

【0003】従来よりこのときの撮影画像のブレを防止する機能を有した防振光学系が種々と提案されている。

【0004】例えば特公昭56-21133号公報では 光学装置に振動状態を検知する検知手段からの出力信号 に応じて、一部の光学部材を振動による画像の振動的変 位を相殺する方向に移動させることにより画像の安定化 を図っている。

【0005】特開昭61-223819号公報では最も被写体側に屈折型可変頂角プリズムを配置した撮影系において、撮影系の振動に対応させて該屈折型可変頂角プリズムの頂角を変化させて画像を偏向させて画像の安定化を図っている。

【0006】特公昭56-34847号公報、特公昭57-7414号公報等では撮影系の一部に振動に対して空間的に固定の光学部材を配置し、この光学部材の振動に対して生ずるプリズム作用を利用することにより撮影画像を偏向させ結像面上で静止画像を得ている。

【0007】特開平1-116619号公報や特開平2-124521号公報では加速度センサー等を利用して撮影系の振動を検出し、このとき得られる信号に応じ、撮影系の一部のレンズ群を光軸と直交する方向に振動させることにより静止画像を得る方法も行なわれている。

【0008】この他、特開平2-238429号公報や 米国特許第2959088号では負と正の屈折力の第1 群と第2群の2つのレンズ群より成るレンズ系を撮影系 の前方に配置し、撮影系が振動したとき、該第2群を防 振用の稼動レンズ群とし、その焦点位置でジンバル支持 した慣性振り子方式を利用した防振光学系を提案してい る。

[0009]

30

【発明が解決しようとする課題】一般に防振光学系を撮影系の前方に配置し、該防振光学系の一部の可動レンズ群を振動させて撮影画像のブレを無くし、静止画像を得る方法は装置全体が大型化し、且つ該可動レンズ群を移動させる為の移動機構が複雑化してくるという問題点があった。

【0010】又、可動レンズ群を振動させたときの偏心 収差の発生量が多くなり光学性能が大きく低下してくる という問題点もあった。

【0011】可変頂角プリズムを利用して防振を行なう 光学系では特に長焦点距離側(望遠側)において防振時 に偏心倍率色収差の発生量が多くなるという問題点があ った。

【0012】一方、撮影系の一部のレンズを光軸に対して垂直方向に平行偏心させて防振を行なう光学系においては、防振の為に特別な光学系は要しないという利点はあるが、移動させるレンズの為の空間を必要とし、又防振時における偏心収差の発生量が多くなってくるという50 問題点があった。

【0013】又、防振時において必要な光量を撮像面上 で確保する為に可動レンズ群より物体側のレンズ群のレ ンズ径を大きくしなければならず、この為装置全体が大 型化しくるという問題点があった。

【0014】本発明は、変倍光学系の一部を構成する比 較的小型軽量のレンズ群を光軸と垂直方向に移動させ て、該変倍光学系が振動(傾動)したときの画像のプレ を補正するように構成することにより、装置全体の小型 化、機構上の簡素化及び駆動手段の負荷の軽減化を図り つつ該レンズ群を偏心させたときの偏心発生量を少なく 抑え、偏心収差を良好に補正した防振機能を有した変倍 光学系の提供を目的とする。

[0015]

【課題を解決するための手段】本発明の防振機能を有し た変倍光学系は、

(1-1)物体側より順に変倍及び合焦の際に固定の正 の屈折力の第1群、変倍機能を有する負の屈折力の第2 群、開口絞り、正の屈折力の第3群、そして変倍により 変動する像面を補正する補正機能と合焦機能の双方の機 能を有する正の屈折力の第4群の4つのレンズ群を有し 20 た変倍光学系であって、該第3群は負の屈折力の第31 群と正の屈折力の第32群の2つのレンズ群より成り、 該第32群を光軸と垂直方向に移動させて該変倍光学系 が振動したときの撮影画像のブレを補正していることを 特徴としている。

【0016】(1-2)物体側より順に変倍及び合焦の 際に固定の正の屈折力の第1群、変倍機能を有する負の 屈折力の第2群、正の屈折力の第3群、そして変倍によ り変動する像面を補正する補正機能と合焦機能の双方の 機能を有する正の屈折力の第4群の4つのレンズ群を有 30 した変倍光学系であって、該第3群は複数のレンズ群を 有し、該第3群中の少なくとも一部のレンズ群を光軸と 垂直方向に移動させて該変倍光学系が振動したときの撮 影画像のブレを補正していることを特徴としている。

[0017]

【実施例】図1は本発明の後述する数値実施例1~4の 近軸屈折力配置を示す概略図、図18, 図19は本発明 の後述する数値実施例5,6の近軸屈折力配置を示す概 略図である。

【0018】図2~図5は本発明の数値実施例1~4の 広角端のレンズ断面図、図20は本発明の数値実施例5 の広角端のレンズ断面図である。

【0019】図1においてL1は正の屈折力の第1群、 L2は負の屈折力の第2群、L3は正の屈折力の第3群 であり、負の屈折力の第31群L31と正の屈折力の第 32群L32とを有している。

【0020】数値実施例1~4では第32群L32を光 軸と垂直方向に移動させて変倍光学系が振動(傾動)し たときの撮影画像のブレを補正している。

開口絞りであり、第3群L3の前方に配置している。G はフェースプレート等のガラスブロックである。 IPは 像面である。

【0.022】本実施例では広角端から望遠端への変倍に 際して矢印のように第2群を像面側へ移動させると共 に、変倍に伴う像面変動を第4群を移動させて補正して いる。

【0023】又、第4群を光軸上移動させてフォーカス を行うリヤーフォーカス式を採用している。同図に示す 第4群の実線の曲線4aと点線の曲線4bは各々無限遠 物体と近距離物体にフォーカスしているときの広角端か ら望遠端への変倍に伴う際の像面変動を補正する為の移 動軌跡を示している。尚、第1群と第3群は変倍及びフ ォーカスの際固定である。

【0024】本実施例においては第4群を移動させて変 倍に伴う像面変動の補正を行うと共に第4群を移動させ てフォーカスを行うようにしている。特に同図の曲線4 a. 4 bに示すように広角端から望遠端への変倍に際し て物体側へ凸状の軌跡を有するように移動させている。 これにより第3群と第4群との空間の有効利用を図りレ ンズ全長の短縮化を効果的に達成している。

【0025】本実施例において、例えば望遠端において 無限遠物体から近距離物体へフォーカスを行う場合は同 図の直線4 cに示すように第4群を前方へ繰り出すこと により行っている。

【0026】本実施例におけるズームレンズは第1群と 第2群の合成系で形成した虚像を第3群と第4群で感光 面上に結像するズーム方式をとっている。

【0027】本実施例では従来の所謂4群ズームレンズ において第1群を繰り出してフォーカスを行う場合に比 べて前述のようなリヤーフォーカス方式を採ることによ り第1群の偏心誤差による性能劣化を防止しつつ第1群 のレンズ有効径の増大化を効果的に防止している。

【0028】そして開口絞りを第3群の直前に配置する ことにより可動レンズ群による収差変動を少なくし、開 口絞りより前方のレンズ群の間隔を短くすることにより 前玉レンズ径の縮少化を容易に達成している。

【0029】本発明の数値実施例1~4においては第3 群し3を2つのレンズ群し3-1, L3-2より構成 し、このうち第32群L32を防振用として光軸と垂直 方向に移動させて変倍光学系が振動したときの像ブレを 補正している。これにより従来の防振光学系に比べて防 振の為のレンズ群や可変頂角プリズム等の光学部材を新 たに付加することなく防振を行なっている。

【0030】次に本発明に係る変倍光学系においてレン ズ群を光軸と垂直方向に移動させて撮影画像のブレを補 正する防振系の光学的原理を図27を用いて説明する。

【0031】図27 (A) に示すように光学系が固定群 Y1・偏心群Y2そして固定群Y3の3つの部分から成 【0021】L4は正の屈折力の第4群である。SPは 50 り立っており、レンズから充分に離れた光軸上の物点P

40

が撮像面IPの中心に像点pとして結像しているものと する。

【0032】今、撮像面 I Pを含めた光学系全体が図2 7 (B) のように手振れにより瞬間的に傾いたとする と、物点Pは像点p'にやはり瞬間的に移動し、プレた 画像となる。

【0033】一方、偏心群Y2を光軸と垂直方向に移動 させると図27 (C) のように、像点pはp"に移動 し、その移動量・方向はパワー配置に依存し、そのレン ズ群の偏心敏感度として表される。

【0034】そこで図27(B)で手振れによってズレ た像点 p' を偏心群 Y 2 を適切な量だけ光軸と垂直方向 に移動させることによってもとの結像位置pに戻すこと で図27 (D) に示すとおり、手振れ補正つまり防振を 行っている。

【0035】今、画像をシフトするという意味での防振 能力を防振敏感度ISと呼ぶことにし、〔シフト量mm*

1. 5 < |f 31/f 32| < 2.5

を満足するようにしている。

群の屈折力配置に関するものである。条件式(1-1) の上限値を越えて第31群の負の屈折力が弱くなると、 第3群を分割した効果が小さく、偏心敏感度が大きくと れないと共に、第32群と第4群との間に第32群を駆 動手段を入れるスペースを確保するのが困難となり、好 ましくない。

【0040】逆に条件式(1-1)の下限値を越えて第 31群の負の屈折力が強くなり過ぎると、第3群を全体 として正の屈折力に保つ為に第32群の屈折力もそれに 応じて強くなり過ぎ、防振時の光学性能劣化につながる 30 と共に第32群の偏心敏感度が高くなり過ぎて防振制御 の上からも各速度センサーからのブレ補正量を用いて閉 ループ制御を行う場合に制御系の発振や補正残り等が出 てきて好ましくない。

【0041】次に本発明の数値実施例5,6について図 18, 図19を用いて説明する。

【0042】数値実施例5、6は数値実施例1~4に比 べて図18に示すように正の屈折力の第3群を複数のレ ンズ群より構成し、このうち少なくとも1つのレンズ群 L3aを光軸と垂直方向に移動させて変倍光学系が振動 40 (傾動) したときの撮影画像のブレを補正している点が 異なっており、その他の構成は同じである。

0. $8 < | f 31/f 32 | < 1. 0 \cdots (1-2)$

を満足するようにしている。

【0049】条件式(1-2)は第3群を構成するレン ズ群の屈折力配分に関するものであり、条件式(1 -2) の下限値を越えて第32群の負の屈折力が弱くなる と第3群を分割した効果が小さく、偏心敏感度を大きく 取れない。

【0050】逆に条件式 (1-2) の上限値を越えて第 50 たり、ブレの補正残り等が生じて好ましくない。

*/補正角 deg〕という単位で表す。マスターレンズ の焦点距離をf、シフト群Y2の偏心敏感度をTSとす ると防振敏感度ISは

 $IS = f \cdot t \cdot a \cdot n \cdot 1^{\circ} / TS \quad \cdots \quad (a)$ で表され、そのシフト群のもつ偏心敏感度が重要なfa

【0036】本発明に係る変倍光学系では、通常第3群 L3を出射した光は略平行光になっている。この為偏心 敏感度TSは非常に小さな値となっている。

【0037】そこで本発明の数値実施例1~4において 10 は第3群を負の屈折力の第31群L31と正の屈折力の 第32群L32の2つのレンズ群で構成し、偏心敏感度 TSを大きくし、効果的に防振が行えるようにしてい る。

【0038】特に数値実施例1~4においては第31群 と第32群の焦点距離を夫々f31,f32としたとき

 $\cdots (1-1)$

ctorとなってくる。

※【0043】具体的には図19に示すように第3群を物 【0039】条件式(1-1)は第3群の2つのレンズ 20 体側より順に正の屈折力の第31群L31と負の屈折力 の第32群L32より構成し、該第31群を光軸と垂直 方向に移動させている点、第31群と第32群の焦点距 離の比を制限する後述する条件式(1-2)が異なって おり、その他の構成は同じである。

> 【0044】図18、図19において図1と同じ要素に は同符番を付している。

> 【0045】図19に示す近軸屈折力を有する数値実施 例5、6の変倍光学系において撮影画像のブレを補正す る防振系の光学的原理は基本的に前述した図27と同じ である。

> 【0046】数値実施例5,6においては前述した数値 実施例1~4と同様に第3群L3を出射した光束が略平 行光になるように設定されている。この為第3群L3の 偏心敏感度は非常に小さな値となっている。

【0047】そこで数値実施例5,6においては図19 に示すように第3群L3を正の屈折力の第31群と負の 屈折力の第32群とに分割し、これにより第31群の偏 心敏感度を高め、効果的に防振が行えるようにしてい る。

【0048】又数値実施例5、6においては第31群と 第32群の焦点距離を夫々f31,f32としたとき

32群の負の屈折力が強くなりすぎると第3群を全体と して正の屈折力に保つ為に第31群の正の屈折力もそれ に応じて強くなりすぎ、防振時の性能劣化につながると 共に第31群の偏心敏感度が高くなり過ぎて防振制御の 点からも、例えば手振れ量検出手段から得られる信号を 用いて閉ループ制御を行った場合に制御系の発振を招い

【0051】尚、数値実施例1~4では第31群を両レ ンズ面が凹面の負の単一レンズ又は物体側に凸面を向け たメニスカス上の正レンズと負レンズの2つのレンズよ り構成し、第32群を正レンズ、正レンズと負レンズを 接合した貼り合わせレンズより構成している。

【0052】又数値実施例5,6では第31群を正レン ズと負レンズを接合した貼合わせレンズ、正レンズより、 構成し、第32群を2つの負レンズより構成している。

【0053】これにより防振用のレンズ群を光軸と垂直 方向に移動させたときの偏心収差の発生を少なくし、画 10 面全体の光学性能を良好に維持している。

【0054】次に本発明の数値実施例を示す。数値実施*

*例においてRiは物体側より順に第i番目のレンズ面の 曲率半径、Diは物体側より第i番目のレンズ厚及び空 気間隔、Niとviは各々物体側より順に第i番目のレ ンズのガラスの屈折率とアッベ数である。又前述の各条 件式と数値実施例における諸数値との関係を表-1に示

【0055】非球面形状は光軸方向にX軸、光軸と垂直 方向にH軸、光の進行方向を正としRを近軸曲率半径、 A, B, C, D, Eを各々非球面係数としたとき [0056]

$$X = \frac{(1/R) H^2}{1 + \sqrt{1 - (H/R)^2}} + AH^2 + BH^4 + CH^6 + DH^8 + EH^{10}$$

【数1】

なる式で表している。

【0057】〈数值実施例1〉

$F= 1.0 \sim 10.0$) f	no=1:1.85	~2. 28 2 ω=	46. 81° ∼6. 08°
R 1= 17.935	D 1=	0. 304	N 1=1.80518	ν 1= 25.4
R 2= 4.321	D 2=	1. 673	N 2=1.62299	ν 2= 58.2
R 3= -16.760	D 3=	0. 043		
R 4= 3.684	D 4=	0. 956	N 3=1.72000	ν 3= 50.3
R 5= 9.957	D 5=	可変		
R 6= -62.802	D 6=	0. 108	N 4=1. 77250	ν 4= 49.6
R 7= 0.975	D 7=	0. 541		
R 8= -3.053	D 8=	0. 108	N 5=1.69680	ν 5= 55.5
R 9= 1.075	D 9=	0. 608	N 6=1.84666	ν 6= 23.8
R10=-682. 845	D10=	可変		
R11=(絞り)	D11=	0. 434		
R12= -6. 171	D12=	0. 130	N 7=1.60311	v 7 = 60.7
R13= 5. 553	D13=	0. 434		
R14= 4. 532	D14=	0717	N 8=1.60311	ν 8= 60.7
R15= -2.632	D15=	0. 032		
R16= 3.554	D16=	0. 978	N 9=1.60311	ν 9= 60.7
R17= −1.752	D17=	0. 152	N10=1. 83481	ν 10= 42.7
R18=-308. 466	D18=	可変		
R19= 56.092	D19=	0. 108	N11=1. 80518	ν 11= 25.4
R20= 2.492	D20=	0. 760	N12=1. 48749	ν 12= 70.2
R21= -2. 787	D21=	0. 032		
R22= 2.430	D22=	0. 391	N13=1. 48749	ν 13= 70.2
R23= 7.801	D23=	0. 500		
R24= ∞	D24=	0. 869	N14=1. 51633	ν 14= 64.2
R25= ∞				

[0058]

【表1】

焦点距離	1	
可変間隔	1.00	10.00
中交间隔		
D 5	0.40	3, 49
	,	
D10	3. 25	0. 15
D18	1.07	1.07
		2.01

〈数値実施例2〉

9					10
F= 1.0 ~10.0	f	no=1:1.85	~2. 23	2ω=46.81	° ∼6. 08°
R 1= 21.740	D 1=	0. 304	N 1=1.761	182 ν	1= 26.5
R 2= 4.446	D 2=	1. 673	N 2=1.622	299 ν	2= 58.2
R 3= -14.968	D 3=	0.043			
R 4= 3.948	D 4=	0. 956	N 3=1.720	000 ν	3= 50.3
R 5= 11.376	D 5=	可変			
R 6= -11.640	D 6=	0. 108	N 4=1.772	250 ν	4= 49.6
R 7= 1.111	D 7=	0. 541			
R 8= -2.765	D 8=	0. 108	N 5=1.696	680 ν	5= 55.5
R 9= 1.058	D 9=	0. 608	N 6=1.80	518 v	6= 25.4
R10= -29. 905	D10=	可変			
R11=(絞り)	D11=	0. 434			
R12= -5. 327	D12=	0. 130	N 7=1.638	854 ν	7= 55.4
R13= 7. 093	D13=	0. 434			
R14= 5. 505	D14=	0. 717	N 8=1.603	311 ν	8= 60.7
R15= -2. 490	D15=	0. 032			
R16= 3.611 .	D16=	0. 978	N 9=1.603	311 ν	9=. 60. 7
R17= -1.840	D17=	0. 152	N10=1. 834	481 ν	10= 42.7
R18= -85. 956	D18=	可変			
R19= 11.631	D19=	0. 108	N11=1.80	518 ν	11= 25.4
R20= 2.097	D20=	0. 760	N12=1. 48	749 ν	12= 70.2
R21= -4, 162	D21=	0. 032			

[0059]

【表2】

焦点距離 可変間隔	1. 00	10. 00
D 5	0.42	3. 51
D10	3. 24	0. 15
D18	2. 23	2. 23

R22= 2. 593

R23= -9.836

R24= ∞

R25= ∞

30

N13=1. 48749

N14=1. 51633

〈数値実施例3〉

ν 13= 70.2

ν 14= 64.2

D22= 0.391

D23= 0. 500 D24= 0. 869

	40 040 0 000
F= 1.0 \sim 10.0 fno=1:1.85 \sim 2.21 2 ω =	•46. 81° ∼6. 08°
R 1= 15.031 D 1= 0.304 N 1=1.76182	v = 26.5
R 2= 4.611 D 2= 1.673 N 2=1,62299	ν 2= 58.2
R 3= -18.629 D 3= 0.043	
R 4= 4.007 D 4= 0.956 N 3=1.72000	ν 3= 50.3
R 5= 10.750 D 5= 可変	
R 6= 6.050 D 6= 0.108 N 4=1.77250	ν 4= 49.6
R 7= 1.276 D 7= 0.541	
R 8= -1.788 D 8= 0.108 N 5=1.72000	ν 5= 50.3
R 9= 1.718 D 9= 0.608 N 6=1.80518	ν 6= 25.4
R10= 133. 160 D10= 可変	
R11=(絞り) D11= 0.434	
R12= 3. 170 D12= 0. 326 N 7=1. 60311	ν 7= 60.7
R13= 7. 281 D13= 0. 434	
R14= -2.365 D14= 0.217 N 8=1.67003	v 8= 47.3
R15= 29. 731 D15= 0. 434	

				(7)			特開平7-128619
11						12	
R16=	16. 013	D16=	0.717	N 9=1.	60311	ν 9= 60.7	
R17=	-2. 343	D17=	0.032				
R18=	2. 923	D18=	0. 978	N10=1.	60311	ν 10= 60. 7	•
R19=	-3. 358	D19=	0. 152	N11=1.	83481	ν 11= 42.7	
R20=	12. 068	D20=	可変			-	
R21=	2. 456	D21=	0. 108	N12=1.	80518	v 12= 25.4	
R22=	1. 441	D22=	0.760	N13=1.	51823	ν 13= 59.0	
R23=	-9. 081	D23=	0. 532				
R24=	∞	D24=	0.869	N14=1.	51633	v 14= 64.2	

【0060】 【表3】

焦点距離 可変間隔	1. 00	10. 00
D 5	0. 12	3. 21
D10	3. 48	0.38
D20	1. 99	1. 93

R25= ∞

16面非球面

R=16.0134 B=-1.117 $\times 10^{-2}$ C=2.083 $\times 10^{-3}$ D=-3.291 $\times 10^{-4}$

〈数值実施例4〉

F= 1.0 ~16	0. 43 f	no=1 : 1. 85	5 ~2. 40	2ω=46. 50°	° ~5. 77°
R 1= 12.084	D 1=	0. 301	N 1=1.7618	32 ν	1= 26.5
R 2= 4.096	D 2=	1. 505	N 2=1.622	99 ν	2= 58.2
R 3= -26.777	D 3=	0. 043			
R 4= 3.67.1	D 4=	0. 881	N 3=1.720	00 ν	3= 50.3
R 5= 10.066	D 5=	可変			
R 6= 5.701	D 6=	0. 107	N 4=1.772	50 ν	4= 49.6
R 7= 1.251	D 7=	0. 531			
R 8= -2.085	D 8=	0. 107	N 5=1.696	ΒΟ ν	5= 55.5
R 9= 1.831	D 9=	0. 172			
R10= 2. 270	D10=	0. 344	N 6=1.846	66 ν	6= 23.8
R11= 10.584	D11=	可変			
R12=(絞り)	D12=	0. 236			
R13= 2. 920	D13=	0. 322	N 7=1.603	11 ν	7= 60.7
R14= 5. 774	D14=	0. 430			
R15= -2. 972	D15=	0. 215	N 8=1.670	03 ν	8= 47.3
R16= 6. 906	D16=	0. 430			
R17= 16. 531	D17=	0. 709	N 9=1.603	11 ν	9= 60.7
R18= -2. 237	D18=	0. 032			
R19= 2.479	D19=	0. 967	N10=1. 603	11 ν	10= 60.7
R20= -3. 320	D20=	0. 150	N11=1.834	81 ν	11= 42.7
R21= 9. 208	D21=	可変			
R22= 2. 544	D22=	0. 107	N12=1. 805	18 ν	12= 25.4
R23= 1. 367	D23=	0. 752	N13=1.518	23 ν	13= 59.0
R24= -5. 274	D24=	0. 526			
R25= ∞	D25=	0.860	N14=1.516	33 ν	14= 64.2
R26= ∞					

【0061】 【表4】

焦点距離 可変間隔	1. 00	10. 43	
D 5 D11	0. 19 3. 19	3. 06 0. 32	
D21	1. 79	2. 10	

17面非球面

R=16.5318 B=-1.128 $\times 10^{-2}$ C=2.125 $\times 10^{-3}$ D=-3.738 $\times 10^{-4}$

〈数值実施例5〉

F=	1.0 ~1	0. 18 f	no=1:1.	8∼2. 25	2ω=55	5.6° ∼5.92°
R 1=	8. 932	D 1=	0. 236	N 1=1.	84666	ν 1= 23.8
R 2=	4. 170	D 2=	1. 204	N 2=1.	60311	ν 2= 60.7
R 3=	-49. 973	D 3=	0. 032			•
R 4=	3. 835	D 4=	0. 795	N 3=1.	77250	ν 3= 49.6
R 5=	12.046	D 5=	可変			
R 6=	7. 960	D 6=	0. 107	N 4=1.	77250	ν 4= 49.6
R 7=	1. 103	D 7=	0. 442			
R 8=	-1. 982	D 8=	0. 107	N 5=1.	69680	ν 5= 55.5
R 9=	2. 079	D 9=	0. 172			
R10=	2. 454	D10=	0. 258	N 6=1.	84666	ν 6= 23.8
R11=	160. 589	D11=	可変			
R12=	(絞り)	D12=	0. 236			
R13=	1. 757	D13=	0.602	N 7=1.	58313	ν 7= 59.4
R14=	-2. 854	D14=	0. 129	N 8=1.	84666	ν 8= 23.8
R15=	-4. 161	D15=	0. 032			
R16=	2. 815	D16=	0. 258	N 9=1.	60311	ν 9= 60.7
R17=	18. 352	D17=	0. 172			
R18=	5. 662	D18=	0. 129	N10=1.	60342	ν 10= 38.0
R19=	1. 169	D19=	0. 236			
R20=	-5. 533	D20=	0. 129	N11=1.	51633	ν 11= 64.2
R21=	12. 496	D21=	可変			
R22=	3. 322	D22=	0. 107	N12=1.	84666	ν 12= 23.8
R23=	1. 783	D23=	0.000			
R24=	1. 779	D24=	0. 322	N13=1.	48749	ν 13= 70.2
R25=	-8. 758	D25=	0.018			
R26=	2. 175	D26=	0. 301	N14=1.	60311	ν 14= 60.7
R27=	-10. 557	D27=	0. 645			
R28=	∞	D28=	0.860	N15=1.	51633	ν 15= 64.2
R29=	∞					

[0062]

【表5】

焦点距離 可変間隔	1.00	10. 18
D 5	0. 19	3. 07
D11	3. 16	0. 28
D21	0. 82	1.07

13面非球面

R= 1.7576 B=-4.007 $\times 10^{-2}$ C=1.864 $\times 10^{-3}$ D=-4.671 $\times 10^{-3}$

〈数値実施例6〉

50

40

23 E= 1.0	10.42	fno-1	1 2~2 3	2 co =5	55. 6 ° ~5. 79°
R 1= 9.					ν 1= 23.8
		2= 1.20		•	v = 23.8 $v = 60.7$
R 2= 4.				2-1.00311	ν 2= 00.7
	473 D 3			0 1 77050	2- 40 6
R 4= 3.		!= 0.79!		3=1.77250	v = 3 = 49.6
		5= 可変	•	4 4 77050	
R 6= 8.				4=1.77250	ν 4= 49.6
R 7= 1.					
R 8= −2.		3= 0.10		5=1.69680	ν 5= 55.5
R 9= 2.					
R10= 2.		0. 25		6=1.84666	ν 6= 23.8
R11= 52.	455 D11	= 可変	Ē.		•
R12=(絞り	り) D1 2	2= 0.23			
R13= 2.	321 D13	3= 0.60	2 N	7=1. 58313	v = 7 = 59.4
R14= −2.	491 D14	4= 0.12	9 N	8=1.84666	ν 8= 23.8
R15= −3.	290 D1!	5= 0.03	2		
R16= 3.	422 D10	6= 0. 25	8 N	9=1.60311	v = 9 = 60.7
R17= −11.	800 D1	7= 0.17	2		
R18= 5.	676 D18	B= 0.12	9 N	10=1. 60342	ν 10= 38.0
R19= 1.	430 D19	9= 0.23	6		
R20= -3.	884 D20	0= 0.12	9 N	11=1. 51633	v 11 = 64.2
R21= 6.	793 D2	1= 可多	Ę		
R22= 3.	792 D2	2= 0. 10	7 N	12=1. 84666	ν 12= 23.8
R23= 1.	789 D23	3= 0.00	0	•	
R24= 1.	769 D24	4= 0.43	0 N	13=1. 48749	ν 13= 70. 2
R25= −6.	116 D2	5= 0.03	2		
R26= 2.	504 D26	6= 0.36	5 N	14=1. 60311	ν 14= 60.7
R27= −6.	668 D2	7= 0.64	5		
R28= 0	∞ D2	8= 0.86	0 N	15=1. 51633	ν 15= 64.2
R29=	∞				

[0063]

【表6】

焦点距離 可変間隔	1. 00	10. 42
D 5	0. 18	3.06
D11	3. 16	0. 28
D21	1. 21	1.47

13面非球面

B=-3. 742 $\times 10^{-2}$ C=3. 089 $\times 10^{-3}$ D=-2. 166 $\times 10^{-3}$ R= 2.321

【表7】

[0064]

表 - 1

条件式	数值実施例					
	1	2	3	4	5	6
(1-1) f31/f32	2.06	2.00	2. 37	2. 32		
(1-2) f31/f32					0. 95	0. 92

[0065]

系の一部を構成する比較的小型軽量のレンズ群を光軸と

【発明の効果】本発明によれば以上のように、変倍光学 50 垂直方向に移動させて、該変倍光学系が振動(傾動)し

18

たときの画像のブレを補正するように構成することにより、装置全体の小型化、機構上の簡素化及び駆動手段の 負荷の軽減化を図りつつ該レンズ群を偏心させたときの 偏心発生量を少なく抑え、偏心収差を良好に補正した防 振機能を有した変倍光学系を達成することができる。

【図面の簡単な説明】

【図1】	本発明に係る変倍光学系の近軸屈折力配置
の概略図	

【図2】	本発明の数値実施例1の広角端のレンズ断
而図	

【図3】 本発明の数値実施例2の広角端のレンズ断

面図

【図4】 本発明の数値実施例3の広角端のレンズ断面図

【図5】 本発明の数値実施例4の広角端のレンズ断面図

【図6】 本発明の数値実施例1の広角端の諸収差図

【図7】 本発明の数値実施例1の望遠端の諸収差図

【図8】 本発明の数値実施例1の望遠端の諸収差図

【図9】 本発明の数値実施例2の広角端の諸収差図

【図10】 本発明の数値実施例2の望遠端の諸収差図

【図11】 本発明の数値実施例2の望遠端の諸収差図

【図12】 本発明の数値実施例3の広角端の諸収差図

【図13】 本発明の数値実施例3の望遠端の諸収差図

【図14】 本発明の数値実施例3の望遠端の諸収差図

【図15】 本発明の数値実施例4の広角端の諸収差図

【図16】 本発明の数値実施例4の望遠端の諸収差図

【図17】 本発明の数値実施例4の望遠端の諸収差図 【図18】 本発明に係る変倍光学系の近軸屈折力配置 の概略図

【図19】 本発明に係る変倍光学系の近軸屈折力配置 の概略図

【図20】 本発明の数値実施例5の広角端のレンズ断

面図

【図21】 本発明の数値実施例5の広角端の諸収差図 【図22】 本発明の数値実施例5の望遠端の諸収差図

10 【図23】 本発明の数値実施例5の望遠端の諸収差図

【図24】 本発明の数値実施例6の広角端の諸収差図

【図25】 本発明の数値実施例6の望遠端の諸収差図

【図26】 本発明の数値実施例6の望遠端の諸収差図

【図27】 本発明に係る防振系の光学的原理の説明図

【符号の説明】

L1 第1群

L2 第2群

L3 第3群

L4 第4群

20 L31 第31群

L32 第32群

SP 絞り

IP 像面

d d線

g g線

ΔΜ メリディオナル像面

ΔS サジタル像面

【図1】

[図2]

【図5】

【図8】

【図9】

【図10】

【図12】

【図11】

【図13】

【図14】

【図17】

【図23】

【図25】

【図26】

【図27】

フロントページの続き

(51) Int. CI. 6 G O 3 B 5/00 識別記号

庁内整理番号 J 7513-2K FΙ

技術表示箇所