QUESTION 15/11 SOLUTION (Cantele Alberto/Cancelliere Biagio)

Given the availability, product 1 and product 2 of each resource (A, B, C) and the revenue per item, we can plan the production to maximize the revenue formulating the primal and the dual in the following way:

DIRECT:

$$X_{\mu 1} = Quantity of product 1$$

 $X_{\mu 2} = Quantity of product 2$

$$MAX$$
 $3X_{\mu 1} + 5X_{\mu 2}$ π : $2X_{\mu 1} + 2X_{\mu 2} \le 11$ δ $4X_{\mu 1} + 2X_{\mu 2} \le 5$ ε $X_{\mu 1} + 3X_{\mu 2} \le 5$ τ $X_{\mu 1}, X_{\mu 2} \ge 0$

DUAL:

$$Y_1 = Availability of resource A$$

 $Y_2 = Availability of resource B$
 $Y_3 = Availability of resource C$
 MIN $11Y_1 + 5Y_2 + 5Y_3$
 α : $2Y_1 + 4Y_2 + Y_3 \ge 3$
 β : $2Y_1 + 2Y_2 + 3Y_3 \ge 5$
 ϑ : $Y_{1,2,3} \ge 0$

We can provide the following interpretation to the dual:

Having two variables greater or equal to 0 in the **Direct** implies that the first two constraint of the **Dual** are greater or equal to 0.

Having 3 constraints smaller or equal to 0 in the **Direct** implies that the 3 variables of the **Dual** are greater or equal to 0.