Министерство образования и науки Российской Федерации Волгоградский государственный технический университет Кафедра физики

Семестровая работа	Выполнил студент группы Ф-369 Чечеткин И. А.	
по дисциплине: Биофизика	дата сдачи семестровой на проверку	
тема:	проверила доц. Грецова Н. В.	
Мультистационарные системы. Отбор одного из равноправных.	дата отчёта семестровой	
Биологическая дифференциация.	оценка (баллы)	
	отчёт принял преподаватель	

Содержание

Введение		3
1	Отбор одного из равноправных в отсутствии ограничений роста 1.1 Отбор одного из двух равноправных	_
2	Отбор одного из равноправных при ограниченном субстрате	5
Cı	писок литературы	8

Введение

Многие биологические системы имеют не одно, а несколько устойчивых стационарных состояний, между которыми возможны переключения. Примером является существование нескольких конформаций у биомакромолекул, состояние сна и бодрствования у животных, переключение фаз роста растений.

Модель, описывающая подобное явление, называется триггерной. В такой системе в зависимости от параметров и начальных условий "выбирается" один из стационарных режимов функционирования. Триггерные модели могут быть использованы при описании процесса отбора, и потому применимы к процессам эволюции.

Можно выделить два класса процессов эволюции:

- 1. системы, где новые элементы не появляются, а старые не исчезают происходит их перераспределение в пространстве и во времени. К ним относятся процессы эволюции галактик, автоколебаний, диссипативных структур и др.
- 2. Возможен самопроизвольный отбор немногих элементов из очень большого числа различных уже существующих или тех, которые могут возникнуть. Сюда относится образование изотопов химических элементов, макромолекул в химической эволюции и видов в биологической эволюции и др. Все эти процессы идут в результате размножения и конкурентного отбора.

Отбор может быть осуществлен по-разному:

- случайным образом возникает один объект, но при этом происходит настолько быстрое его развитие, что другие не успевают за это время возникнуть;
- в результате конкуренции между объектами с различными свойствами выжили и отобрались наилучшие;
- в результате взаимодействия между равноправными объектами выживает только один сорт. Возникает совокупность полностью одинаковых объектов.

Рассмотрим подробнее последний вариант отбора.

1 Отбор одного из равноправных в отсутствии ограничений роста

При конкуренции равноправных объектов главную роль играет антагонистическое взаимодействие. Если пренебречь конкуренцией за субстрат, то

модель отбора одного из равноправных можно записать в виде:

$$\frac{dX_i}{dt} = bX_i - \gamma \sum_{\substack{j=1\\j \neq i}}^{N} X_i X_j \quad (i = 1, 2, \dots, N),$$
 (1)

где b – эффективный коэффициент репродукции – разность между коэффициентами репродукции a и смертности β , γ – фактор взаимоподавления, сумма описывает гибель объектов в результате встречи. Так как объекты считаются равноправными, то величины b и γ считаются одинаковыми у всех объектов.

1.1 Отбор одного из двух равноправных

Рассмотрим простейший вариант модели (1) – отбор одного из двух равноправных, то есть при N=2. Обозначая $X_1=X,\ X_2=Y$, запишем систему (1) в виде:

$$\frac{dX}{dt} = bX - \gamma XY, \quad \frac{dY}{dt} = bY - \gamma XY. \tag{2}$$

Переходя к безразмерным величинам

$$t' = bt;$$
 $x = \gamma X/b;$ $y = \gamma Y/b,$

перепишем (2):

$$\frac{dx}{dt'} = x - xy; \quad \frac{dy}{dt'} = y - xy. \tag{3}$$

Найдем стационарные решения:

$$x - xy = 0, \quad y - xy = 0;$$

откуда имеем два стационарных решения: $\bar{x}_1 = \bar{y}_1 = 0$ и $\bar{x}_2 = \bar{y}_2 = 1$. Возвращаясь к размерным переменным, получим:

$$\bar{X}_1 = \bar{Y}_1 = 0, \quad \bar{X}_2 = \bar{Y}_2 = \frac{b}{\gamma}.$$

Обе эти точки неустойчивы: первая представляет собой неустойчивый узел, вторая – седло. В зависимости от начальных условий траектории устремляются либо к одной, либо к другой стационарной точке, однако эти устойчивые стационарные точки удалены на бесконечность, поскольку в этой модели развитие популяций не лимитируется:

$$\bar{X}_3 \to \infty, \ \bar{Y}_3 \to 0; \quad \bar{X}_4 \to 0, \ \bar{Y}_4 \to \infty.$$

Фазовый портрет такой системы приведен на рисунке 1.

Рисунок 1 — Фазовый портрет системы

1.2 Отбор одного из нескольких равноправных

Рассмотрим модель (1) в случае $N\gg 1$:

$$\frac{dX_i}{dt} = bX_i - \gamma \sum_{j=1}^{N} X_i X_j + \gamma X_i^2 \quad (i = 1, 2, \dots, N).$$
 (4)

Введем безразмерные переменные t'=bt и $x_i=\gamma X_i/b$. Тогда система (4) перепишется в виде:

$$\frac{dx_i}{dt'} = x_i \left(1 - \sum_{j=1}^{N} x_j \right) + x_i^2 \qquad (i = 1, 2, \dots, N).$$
 (5)

Свойства данной системы аналогичны (3): имеется N+2 стационарных состояний, в двух из которых все x_i принимают одинаковые значения: в первом $\bar{x}_i=0$, во втором $\bar{x}_i=(N-1)^{-1}$. Остальные состояния соответствуют бесконечному значению одной из переменных и нулевым значениям остальных.

2 Отбор одного из равноправных при ограниченном субстрате

Неограниченный рост биомассы является недостатком простейшей модели, поэтому учтем ограниченность питательных ресурсов. Рассмотрим субстрат

S, лимитирующий рост популяции. Коэффициент репродукции a будет зависеть от содержания субстрата S: например, согласно выражению Mоно

$$a = \frac{a_0 S}{K_S + S}. (6)$$

Интенсивность притока субстрата обозначим за v. Расход субстрата пропорционален поглощению его организмами, то есть сумме их концентраций. Уравнение для скорости изменения концентрации субстрата во времени имеет вид:

$$\frac{dS}{dt} = -\alpha a(X+Y) + v = -\alpha a_0 \frac{S}{K_S + S} + v,$$

где экономическим коэффициентом $\alpha>1$ учитывается, что не весь поглощенный субстрат перерабатывается в биомассу, часть его пропадает.

Уравнения для концентраций объектов X и Y перепишем из (2) с учетом ограниченности роста:

$$\begin{cases}
\frac{dX}{dt} = a_0 \frac{S}{K_S + S} X - \beta X - \gamma XY, \\
\frac{dY}{dt} = a_0 \frac{S}{K_S + S} Y - \beta Y - \gamma XY,
\end{cases} \tag{7}$$

где β – коэффициент смертности, K_S – концентрация субстрата, при которой скорость роста равна половине максимальной. Объекты считаются равноправными, следовательно, величины a_0 , β , K_S и γ считаются одинаковыми для всех объектов.

Вводя безразмерные величины $t'=\beta t,\; x=\gamma X/\beta,\; y=\gamma Y/\beta,\; s=\gamma S/\beta,\; v'=v\gamma/\beta^2$ и обозначая $k_s=\gamma K_S/\beta,\; f(s)=a_0s/\beta(k_s+s),\;$ перепишем систему в виде:

$$\begin{cases}
\frac{dx}{dt'} = f(s)x - x - xy, \\
\frac{dy}{dt'} = f(s)y - y - xy, \\
\frac{ds}{dt'} = -\alpha f(s)(x+y) + v'.
\end{cases} \tag{8}$$

Принимая, что процессы поглощения и прибыли субстрата существенно быстрее, чем процессы репродукции, то есть $v'\gg 1$ и $\alpha\gg 1$. Тогда третье уравнение системы (8) преобразуется в алгебраическое с $\frac{ds}{dt'}=0$:

$$-\alpha f(s)(x+y) + v' = 0$$
 или $v' = \alpha f(s)(x+y);$

откуда имеем $f(s) = \frac{v'}{\alpha(x+y)}$. Подставляя найденный вид функции в первые

два уравнения системы (8) и обозначая за $v_0 = v'/\alpha$, получаем систему

$$\begin{cases}
\frac{dx}{dt'} = x \left[\frac{v_0}{x+y} - (1+y) \right], \\
\frac{dy}{dt'} = y \left[\frac{v_0}{x+y} - (1+x) \right].
\end{cases} \tag{9}$$

Фазовый портрет такой системы приведен на рисунке 2.

Рисунок 2 — Фазовый портрет системы

Система (9) имеет четыре стационарные точки:

- 1. точка $\bar{x}_1 = \bar{y}_1 = 0$ неустойчивый узел,
- 2. точка $\bar{x}_2=0$ и $\bar{y}_2=v_0$ устойчивый узел,
- 3. точка $\bar{x}_3 = v_0$ и $\bar{y}_3 = 0$ устойчивый узел,
- 4. точка $\bar{x}_4 = \bar{y}_4 = \frac{\sqrt{1+2v_0}-1}{2}$ седло.

Причиной отбора в этой системе, как и в системе (2), является неустойчивость симметричного стационарного состояния, появляющаяся в результате антагонистического взаимодействия объектов. В такой системе выживет только один из видов: X или Y. Его стационарная концентрация $v_0 = v'/\alpha$ определяется скоростью притока субстрата и экономическим коэффициентом.

При отсутствии взаимоподавления, то есть при $\gamma \to 0$, отбор происходить не будет, обе популяции будут развиваться самостоятельно.

Увеличение же фактора взаимоподавления γ и интенсивности источника v способствует отбору, а увеличение коэффициента смертности β и неэффективности питания α ведет к торможению отбора.

Список литературы

- [1] Ризниченко, Г.Ю. Лекции по математическим моделям в биологии. Ч.1. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2002, 232 с.
- [2] Романовский, Ю.М. Математическое моделирование в биофизике Москва: «Наука», 1975, 335 с.