Basic Discrete Structure: Function

Lecture 7-8

Function

Definition: Let A and B be two sets. A function from A to B, denoted $f: A \rightarrow B$, is an assignment of exactly one element of B to each element of A. We write f(a) = b to denote the assignment of b to an element a of A by the function f.

Function

Definition: Let A and B be two sets. A function from A to B, denoted $f: A \rightarrow B$, is an assignment of exactly one element of B to each element of A. We write f(a) = b to denote the assignment of b to an element a of A by the function f.

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example1:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
- Assume f is defined as:
- 1 → c
- 2 → a
- $3 \rightarrow c$
- Is f a function?
- Yes. since f(1)=c, f(2)=a, f(3)=c. each element of A is assigned an element from B

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example 2:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
- Assume g is defined as:
- 1 → c
- 1 → b
 - $2 \rightarrow a$
 - $3 \rightarrow c$
 - Is g a function?

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example 2:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
- Assume g is defined as:
- 1 → c
- 1 → b
 - 2 → a
 - $3 \rightarrow c$
 - Is g a function?
 - No. since g(1) is assigned both c and b.

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example 3:

- A = $\{0,1,2,3,4,5,6,7,8,9\}$, B = $\{0,1,2\}$
- Define h: A → B as:

$$h(x) = x \mod 3$$
.

- (the result is the remainder after the division by 3)
- Assignments:
- $0 \rightarrow 0$ $3 \rightarrow 0$
- $1 \rightarrow 1$ $4 \rightarrow 1$
- 2 → 2 ...

Notation of Set

Definitions: Let f be a function from A to B.

- We say that A is the domain of f and B is the codomain of f.
- If f(a) = b, b is the image of a and a is a pre-image of b.
- The range of f is the set of all images of elements of A. Also, if f is a function from A to B, we say f maps A to B.

Example: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Assume f is defined as: $1 \rightarrow c$, $2 \rightarrow a$, $3 \rightarrow c$
- What is the image of 1?
- 1 → c c is the image of 1
- What is the pre-image of a?
- 2 \rightarrow a 2 is a pre-image of a.
- Domain of f ? {1,2,3}
- Codomain of f? {a,b,c}
- Range of f? {a,c}

Image of subset

Definition: Let f be a function from set A to set B and let S be a subset of A. The image of S is a subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so that $f(S) = \{ f(s) \mid s \in S \}$.

Example:

- Let A = $\{1,2,3\}$ and B = $\{a,b,c\}$ and f: $1 \to c$, $2 \to a$, $3 \to c$
- Let $S = \{1,3\}$ then image f(S) = ?

Image of subset

Definition: Let f be a function from set A to set B and let S be a subset of A. The image of S is a subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so that $f(S) = \{ f(s) \mid s \in S \}$.

Example:

- Let A = $\{1,2,3\}$ and B = $\{a,b,c\}$ and f: $1 \rightarrow c$, $2 \rightarrow a$, $3 \rightarrow c$
- Let $S = \{1,3\}$ then image $f(S) = \{c\}$

Definition: A function f is said to be one-to-one, or injective, if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. A function is said to be an injection if it is one-to-one.

A **function** for which every element of the range of the **function** corresponds to exactly **one** element of the domain.

Example 1: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Define f as
- $-1 \rightarrow c$
- $-2 \rightarrow a$
- $-3 \rightarrow c$
- Is f one to one?

Example 1: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Define f as
- $-1 \rightarrow c$
- $-2 \rightarrow a$
- $-3 \rightarrow c$
- Is f one to one?
- No, it is not one-to-one
- since f(1) = f(3) = c, and $1 \ne 3$.

Example 2: Let g : $Z \rightarrow Z$, where g(x) = 2x - 1.

Is g one-to-one?

Example 1: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Define f as
- $-1 \rightarrow c$
- $-2 \rightarrow a$
- $-3 \rightarrow c$
- Is f one to one?
- No, it is not one-to-one
- since f(1) = f(3) = c, and $1 \ne 3$.

Example 2: Let g : $Z \rightarrow Z$, where g(x) = 2x - 1.

- Is g is one-to-one?
- · Yes.
- Why? g(a) = g(b), i.e., 2a 1 = 2b 1 => 2a = 2b => a = b.

Definition: A function f from A to B is called onto, or surjective, if and only if for every b ϵ B there is an element a ϵ A such that f(a) = b.

Alternative: all co-domain elements are covered

Example 1: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Define f as
- 1 → c
- $2 \rightarrow a$
- $3 \rightarrow c$
- Is f an onto?

```
Example 1: Let A = \{1,2,3\} and B = \{a,b,c\}
```

- Define f as
- 1 → c
- 2 → a
- $3 \rightarrow c$
- Is f an onto?
- No. f is not onto, since b ∈ B has no pre-image.

Example 2: $A = \{0,1,2,3,4,5,6,7,8,9\}, B = \{0,1,2\}$

- Define h: A \rightarrow B as h(x) = x mod 3.
- Is h an onto function?

```
Example 1: Let A = \{1,2,3\} and B = \{a,b,c\}
```

- Define f as
- 1 → c
- 2 → a
- $3 \rightarrow c$
- Is f an onto?
- No. f is not onto, since b ∈ B has no pre-image.

Example 2: $A = \{0,1,2,3,4,5,6,7,8,9\}, B = \{0,1,2\}$

- Define h: A \rightarrow B as h(x) = x mod 3.
- Is h an onto function?
- Yes. h is onto since a pre-image of 0 is 6, a pre-image of 1 is 4, a pre-image of 2 is 8.

Definition: A function f is called a bijection if it is both one-to one and onto.

Example 1:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
- Define f as
- 1 → c
- $2 \rightarrow a$
- $3 \rightarrow b$
- Is f a bijection?

Example 1:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
- Define f as
- 1 → c
- $2 \rightarrow a$
- $3 \rightarrow b$
- Is f is a bijection? Yes. It is both one-to-one and onto.
- Note: Let f be a function from a set A to itself, where A is finite. f is one-to-one if and only if f is onto.
- This is not true if A an infinite set. Define f : Z → Z, where
 f(z) = 2 * z. f is one-to-one but not onto (3 has no pre-image).

Example 2:

- Define g: W \rightarrow W (whole numbers), where g(n) = [n/2] (floor function).
- $0 \rightarrow [0/2] = [0] = 0$
- $1 \rightarrow [1/2] = [1/2] = 0$
- $2 \rightarrow [2/2] = [1] = 1$
- $3 \rightarrow [3/2] = [3/2] = 1$
- •
- Is g a bijection?
- No. g is onto but not 1-1 (g(0) = g(1) = 0 however 0 ≠ 1.

Theorem: Let f be a function $f: A \rightarrow A$ from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.

Assume

- A is finite and f is one-to-one (injective)
 - Is f an onto function (surjection)?.

Theorem: Let f be a function $f: A \rightarrow A$ from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.

Proof:

- → A is finite and f is one-to-one (injective)
- Is f an onto function (surjection)?
- Yes. Every element points to exactly one element. Injection assures they are different. So we have |A| different elements A points to. Since f: A → A the co-domain is covered thus the function is also a surjection (and a bijection)
- ← A is finite and f is an onto function
- Is the function one-to-one?

Theorem: Let f be a function f: $A \rightarrow A$ from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.

- ← A is finite and f is an onto function
- Is the function one-to-one?

Yes. Every element maps to exactly one element and all elements in A are covered. Thus the mapping must be one-to one

Theorem. Let f be a function from a set A to itself, where A is finite. Then f is one-to-one if and only if f is onto.

Please note the above is not true when A is an infinite set.

- Example:
- $-f: Z \rightarrow Z$, where f(z) = 2 * z.
- f is one-to-one but not onto.
- 1 → 2
- $2 \rightarrow 4$
- $3 \rightarrow 6$
- 3 has no pre-image.

Suppose f: $\mathbb{R}^+ \to \mathbb{R}^+$, $f(x) = x^2$.

Is f one-to-one?

Is f onto?

Is f bijective?

yes

Is $g(x) = x^2 - 2$ onto where $R \rightarrow R$?

Is $g(x) = x^2 - 2$ onto where $R \rightarrow R$?

No, Values less than -2 on the *y*-axis are never used. Is it one to one?

Is $g(x) = x^2 - 2$ onto where $R \rightarrow R$?

No, Values less than -2 on the *y*-axis are never used. Is it one to one?

No, pair value of x for each y value

Definition: Let f1 and f2 be functions from A to R (reals). Then f1 + f2 and f1 * f2 are also functions from A to R defined by

- (f1 + f2)(x) = f1(x) + f2(x)
- (f1 * f2)(x) = f1(x) * f2(x).

Examples:

- Assume
- f1(x) = x 1
- $f2(x) = x^3 + 1$

then

- $(f1 + f2)(x) = x^3 + x$
- $(f1 * f2)(x) = x^4 x^3 + x 1$

Increasing and Decreasing Function

Definition: A function f whose domain and codomain are subsets of real numbers is strictly increasing if f(x) > f(y) whenever x > y and x and y are in the domain of f.

Similarly, f is called strictly decreasing if f(x) < f(y) whenever x > y and x and y are in the domain of f.

Example:

• Let g: R \rightarrow R, where g(x) = 2x - 1. Is it increasing?

Increasing and Decreasing Function

Definition: A function f whose domain and codomain are subsets of real numbers is strictly increasing if f(x) > f(y) whenever x > y and x and y are in the domain of f.

Similarly, f is called strictly decreasing if f(x) < f(y) whenever x > y and x and y are in the domain of f.

Example:

• Let g : R \rightarrow R, where g(x) = 2x - 1. Is it increasing?

Proof.

For x>y holds 2x > 2y and subsequently 2x-1 > 2y-1Thus g is strictly increasing.

Increasing and Decreasing Function

Definition: A function f whose domain and codomain are subsets of real numbers is strictly increasing if f(x) > f(y) whenever x > y and x and y are in the domain of f.

Similarly, f is called strictly decreasing if f(x) < f(y) whenever x > y and x and y are in the domain of f.

Note: Strictly increasing and strictly decreasing functions are one-to-one.

Why?

Increasing and Decreasing Function

Definition: A function f whose domain and codomain are subsets of real numbers is strictly increasing if f(x) > f(y) whenever x > y and x and y are in the domain of f.

Similarly, f is called strictly decreasing if f(x) < f(y) whenever x > y and x and y are in the domain of f.

Note: Strictly increasing and strictly decreasing functions are one-to-one.

Why?

One-to-one function: A function is one-to-one if and only if $f(x) \neq f(y)$, whenever $x \neq y$.

Identity function

Definition: Let A be a set. The identity function on A is the function $i_A: A \rightarrow A$ where $i_A(x) = x$.

Example:

• Let $A = \{1,2,3\}$

Then:

• $i_A(1) = ?$

Identity function

Definition: Let A be a set. The identity function on A is the function i_{Δ} : A \rightarrow A where i_{Δ} (x) = x.

Example:

• Let $A = \{1,2,3\}$

Then:

- $i_A(1) = 1$
- $i_A^{(2)} = 2$ $i_A^{(3)} = 3$.

Bijective Function

Definition: A function f is called a bijection if it is both one-to one and onto.

Definition: Let f be a bijection from set A to set B. The inverse function of f is the function that assigns to an element b from B the unique element a in A such that f(a) = b.

The inverse function of f is denoted by f^{-1} . Hence, f^{-1} (b) = a, when f(a) = b. If the inverse function of f exists, f is called invertible.

Note: if f is not a bijection then it is not possible to define the inverse function of f. Why?

Assume f is not one-to-one: ?

Note: if f is not a bijection then it is not possible to define the inverse function of f. Why?

Assume f is not one-to-one:

Inverse is not a function. One element of B is mapped to two different elements.

Note: if f is not a bijection then it is not possible to define the inverse function of f. Why?

Assume f is not onto: ?

Note: if f is not a bijection then it is not possible to define the inverse function of f. Why?

Assume f is not onto:

Inverse is not a function. One element of B is not assigned any value in A.

Example 1:

• Let $A = \{1,2,3\}$ and i_A be the identity function

•
$$i_A(1) = 1$$
 $i_A^{-1}(1) = 1$
• $i_A(2) = 2$ $i_A^{-1}(2) = 2$
• $i_A(3) = 3$ $i_A^{-1}(3) = 3$

Therefore, the inverse function of i_A is i_A.

Example 2:

- Let g: $R \rightarrow R$, where g(x) = 2x 1.
- What is the inverse function g⁻¹?

Example 2:

- Let g : $R \rightarrow R$, where g(x) = 2x 1.
- What is the inverse function g⁻¹?

Approach to determine the inverse:

$$y = 2x - 1 \Rightarrow y + 1 = 2x$$

=> $(y+1)/2 = x$

• Define $g^{-1}(y) = x = (y+1)/2$

Test the correctness of inverse:

•
$$g(3) = ...$$

Example 2:

- Let g : $R \rightarrow R$, where g(x) = 2x 1.
- What is the inverse function g⁻¹?

Approach to determine the inverse:

$$y = 2x - 1 => y + 1 = 2x$$

=> $(y+1)/2 = x$

• Define $g^{-1}(y) = x = (y+1)/2$

Test the correctness of inverse:

- g(3) = 2*3 1 = 5
- $g^{-1}(5) =$

Example 2:

- Let g : $R \rightarrow R$, where g(x) = 2x 1.
- What is the inverse function g⁻¹?

Approach to determine the inverse:

$$y = 2x - 1 => y + 1 = 2x$$

=> $(y+1)/2 = x$

- Define $g^{-1}(y) = x = (y+1)/2$
- Test the correctness of inverse:
- g(3) = 2*3 1 = 5
- $g^{-1}(5) = (5+1)/2 = 3$

Definition: Let f be a function from set A to set B and let g be a function from set B to set C. The composition of the functions g and f, denoted by g O f is defined by (g O f)(a) = g(f(a)).

Example 1:

• Let $A = \{1,2,3\}$ and $B = \{a,b,c,d\}$

$$g: A \rightarrow A,$$
 $f: A \rightarrow B$
 $1 \rightarrow 3$ $1 \rightarrow b$
 $2 \rightarrow 1$ $2 \rightarrow a$
 $3 \rightarrow 2$ $3 \rightarrow d$

Example 1:

• Let $A = \{1,2,3\}$ and $B = \{a,b,c,d\}$

$$g: A \rightarrow A,$$
 $f: A \rightarrow B$
 $1 \rightarrow 3$ $1 \rightarrow b$
 $2 \rightarrow 1$ $2 \rightarrow a$
 $3 \rightarrow 2$ $3 \rightarrow d$

- g O f : $A \rightarrow B$:
- 1 → d
- $2 \rightarrow b$
- $3 \rightarrow a$

Example 2:

Let f and g be two functions from Z to Z, where

```
• f(x) = 2x and g(x) = x^2.

• f \circ g : Z \to Z

• (f \circ g)(x) = f(g(x))

= f(x^2)

= 2(x^2)
```

• g O f : $Z \rightarrow Z$ • (g O f)(x) = ?

Example 2:

Let f and g be two functions from Z to Z, where

```
• f(x) = 2x and g(x) = x^2.
 • f \circ g : Z \rightarrow Z
 • (f \circ g)(x) = f(g(x))
         = f(x^2)
          = 2(x^2)
 • g \circ f : Z \rightarrow Z
 • (g \circ f)(x) = g(f(x))
         = g(2x)
          = 4x^2
```

Example 3:

- $(f O f^{-1})(x) = x$ and $(f^{-1} O f)(x) = x$, for all x.
- Let f : R \rightarrow R, where f(x) = 2x 1 and f⁻¹ (x) = (x+1)/2.

Example 3:

- (f O f⁻¹)(x) = x and (f⁻¹ O f)(x) = x, for all x.
- Let f : $R \to R$, where f(x) = 2x 1 and $f^{-1}(x) = (x+1)/2$.

Some Function

Definitions:

- The floor function assigns a real number x the largest integer that is less than or equal to x. The floor function is denoted by $\begin{bmatrix} x \end{bmatrix}$
- The ceiling function assigns to the real number x the smallest integer that is greater than or equal to x. The ceiling function is denoted by $\lceil x \rceil$.

Other important functions:

• Factorials: n! = n(n-1) such that 1! = 1

Thank You