11 if <i>K</i> 12 <i>X</i> 13 tl 14 <i>n</i> ← 15 <i>A</i> ← 16 for 17 (18	orithm FFX.Encrypt (K, T, X) $C \notin \text{Keys or } T \notin \text{Tweaks or}$ $C \notin \text{Chars* or } X \notin \text{Lengths}$ then return \bot $- X ; \ell \leftarrow \text{split}(n); r \leftarrow \text{rnds}(n)$ $-X[1 \ell]; B \leftarrow X[\ell+1 n]$ $i \leftarrow 0 \text{ to } r-1 \text{ do}$ $C \leftarrow A \boxplus F_K(n, T, i, B)$ $A \leftarrow B; B \leftarrow C$ urn $A \parallel B$	1 if 2 3 4 n 5 A 6 fo 7 8	gorithm FFX.Decrypt (K,T,Y) $K \notin \text{Keys or } T \notin \text{Tweaks or } Y \notin \text{Chars* or } Y \notin \text{Lengths}$ then return \bot $\leftarrow Y ; \ell \leftarrow \text{split}(n); r \leftarrow \text{rnds}(n)$ $\leftarrow Y[1 \ell]; B \leftarrow Y[\ell+1 n]$ or $i \leftarrow r-1$ downto 0 do $C \leftarrow B; B \leftarrow A$ $A \leftarrow C \boxminus F_K(n,T,i,B)$ eturn $A \parallel B$
radix	a number radix $\in [2 2^{16}]$		$alphabet is Chars = \{0, 1, \dots, radix - 1\}$
Lengths	[minlen maxlen] where minlen = 2 if radix ≥ 10 and minlen = 8 otherwise; and maxlen = 2 ³² - 1.		permitted message lengths
Keys	Keys {0,1} ¹²⁸		128-bit AES keys
Tweaks			tweaks are arbitrary byte strings
addition 1		blockwise addition	
method	method 2		alternating Feistel
split (n)	$split(n)$ $\lfloor n/2 \rfloor$		maximally balanced Feistel
rnds(n)	rnds (n) 10		number of rounds
F	given below		AES-based round function
30 algorithm $F_K(n, T, i, B)$ 31 vers $\leftarrow 1$; $t \leftarrow T _8$; $\beta \leftarrow \lceil n/2 \rceil$; $b \leftarrow \lceil \lceil \beta \log_2(\operatorname{radix}) \rceil / 8 \rceil$; $d \leftarrow 4 \lceil b/4 \rceil$ 32 if $\operatorname{EVEN}(i)$ then $m \leftarrow \lfloor n/2 \rfloor$ else $m \leftarrow \lceil n/2 \rceil$ 33 $P \leftarrow [\operatorname{vers}]^1 \parallel [\operatorname{method}]^1 \parallel [\operatorname{addition}]^1 \parallel [\operatorname{radix}]^3 \parallel [\operatorname{rnds}(n)]^1 \parallel [\operatorname{split}(n)]^1 \parallel [n]^4 \parallel [t]^4$ 34 $Q \leftarrow T \parallel [0]^{(-t-b-1) \bmod{16}} \parallel [i]^1 \parallel [\operatorname{NUM_{radix}}(B)]^b$ 35 $Y \leftarrow \operatorname{CBC-MAC}_K(P \parallel Q)$ 36 $Y \leftarrow \operatorname{first} d + 4$ bytes of $(Y \parallel \operatorname{AES}_K(Y \oplus [1]^{16}) \parallel \operatorname{AES}_K(Y \oplus [2]^{16}) \parallel \operatorname{AES}_K(Y \oplus [3]^{16}) \cdots)$ 37 $y \leftarrow \operatorname{NUM}_2(Y)$ 38 $z \leftarrow y \bmod{radix}^m$ 39 $\operatorname{return} \operatorname{STR}_{\operatorname{radix}}^m(z)$			