Равномерная непрерывность интегралов

Даниил Спиридонов

Февраль 2024

Содержание

1	Осн	Основные теоремы и определения				
	1.1	Теорема об интегрировании интеграла под знаком интеграла,				
		зависящего от параметра	3			
	1.2	Определение несобственного интеграла 1-ого рода, зависящего				
		от параметра	3			
	1.3	Определение равномерно сходящегося несобственного интеграла				
		1-ого рода, зависящего от параметра	3			
	1.4	Необходимое и достаточное условие равномерной сходимости	4			
	1.5	Достаточный признак Виерштрасса	4			
	1.6	Определение несобственных интегралов 2-ого рода, зависящих				
		от параметра	4			
	1.7	Интегралы особого вида	5			
_	ъ		6			
2	Реп	ешения задач				
	2.1	Решение интегралов второго рода через равномерную непрерыв-				
		ность	6			
	2.2	Решение интегралов второго рода через особые интегралы	8			

1 Основные теоремы и определения

1.1 Теорема об интегрировании интеграла под знаком интеграла, зависящего от параметра

Пусть f(x,y) неперрывна на некотором компакте. Тогда (выполняя интегрирование на этом компакте) будет верным следущее выражение:

$$\int_a^b \int_c^d f(x,y) dx \, dy = \int_c^d \int_a^b f(x,y) dy \, dx$$

1.2 Определение несобственного интеграла 1-ого рода, зависящего от параметра

Рассмотрим множество $D = \{(x, y) \in \mathbb{R}^2 \mid a \leq x \leq b, y \in \mathbb{E} \subset \mathbb{R}\}$. Пусть:

- 1. f(x,y) определена на множестве D
- 2. f(x,y) интегрируема на множестве $[a;A] \forall A > a \forall y \in E$
- 3. $\exists \lim_{A \to +\infty} \int_a^A f(x, y) dx = \int_a^{+\infty} f(x, y) dx$

Тогда на множестве Е определена функция $I(y) = \int_a^{+\infty} f(x,y) dx$. Такую функцию называют несобственным интегралом первого рода, зависящим от параметра.

1.3 Определение равномерно сходящегося несобственного интеграла 1-ого рода, зависящего от параметра

Пусть задан несобственный интеграл 1-ого рода, зависящий от параметра у:

$$I(y) = \int_{a}^{+\infty} f(x, y) \, dx$$

Интеграл I(y) называется равномерно сходящимся на множестве E, если $\forall \epsilon > 0 \, \exists M = M(\epsilon)$ (т.е. M не зависит от параметра y), такое что

$$\forall A > M, |\int_{a}^{A} f(x, y) dx - I(y)| < \epsilon \Leftrightarrow$$

$$\Leftrightarrow |\int_{A}^{+\infty} f(x,y) \, dx| < \epsilon, \, \forall y \in E$$

1.4 Необходимое и достаточное условие равномерной сходимости

Для того, чтобы $I(y) = \int_a^{+\infty} f(x,y) \, dx$ равномерно сходился необходимо и достаточно, чтобы

- 1. $\exists d(A) = \sup(\int_A^{+\infty} f(x,y) \, dx)$, где d(A) некоторое множество, на котором I(y) равномерно сходится.
- $2. \lim_{A\to+\infty} d(A) = 0.$

1.5 Достаточный признак Виерштрасса

Рассмотрим интеграл $I(y) = \int_a^{+\infty} f(x,y) \, dx$. Пусть:

- 1. $f(x,y) \leq g(x) \forall x \geq a_1 \text{ (где } a_1 \geq a), \forall y \in E$
- 2. Интеграл $\int_a^{+\infty} g(x) dx$ сходится.

Тогда I(y) сходиься равнгмерно на множестве E.

1.6 Определение несобственных интегралов 2-ого рода, зависящих от параметра

$$\int_a^b f(x,y) \, dx$$

Будем рассматривать f(x,y) с точкой несобственности a (в точке b аналогично).

Пусть выполнены условия:

- 1. f(x,y) определена в $D=\{(x,y)\in R^2\mid a\leq x\leq b,\,y\in E\subset R\}$
- 2. f(x,y) определена в полуокрестности точки .
- 3. f(x,y) интегрируема по x на $[\alpha;b] \forall \alpha > a$.
- 4. $\lim_{\alpha \to a+0} \int_{\alpha}^{b} f(x,y) dx = \int_{a}^{b} f(x,y) dx$

Тогда на множестве E определена функция $I(y) = \int_a^b f(x,y) \, dx$, называемая несобственным интегралом второго рода, зависящим от параметра

Тір. Если определен несобственный интеграл второго рода (то есть выполнены критерии 1-4), к нему можно применять те же самые теоремы, что и к интегралу 1-ого рода (см. выше)

1.7 Интегралы особого вида

Интеграл Эйлера-Пуассона

$$\int_0^{+\infty} e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}$$

Интеграл Дирихле

$$\int_0^{+\infty} \frac{\sin(ax)}{x} \, dx = \frac{\pi}{2} \cdot sign(a)$$

2 Решения задач

Примечание: У меня не не было времени нормально перебить, поэтому решения задач будут со скриншотов,

2.1 Решение интегралов второго рода через равномерную непрерывность

№1

$$\begin{cases} \begin{array}{c} 1 & \text{or} \\ \text{o} \\ \text{$$

2.2 Решение интегралов второго рода через особые интегралы

№1

№3

