計算機構成論 第14回 一パイプライン処理―

大連理工大学・立命館大学 国際情報ソフトウェア学部 大森 隆行

講義内容

- ■パイプライン処理
- ➡■概説
 - ■データパスの構築
 - ■パイプライン処理の実行
 - ■パイプライン処理の問題点

さらなる性能の向上

- ■計算機の性能の決定要因
 - ■1. 単位時間あたりの実行命令数
 - ■2. クロック・サイクル時間
 - ■3. CPI (命令あたりのクロック・サイクル数)
- ■単位時間あたりの実行命令数を 増やせないか?

■パイプライン処理

合令A	命令 読込	レジ スタ	計算 実行		
命令B		命令 読込	レジ スタ	計算 実行	
命令C			命令 読込	レジ スタ	計算 実行

命令の実行

- ■命令の実行段階
 - ■メモリから命令を取り出す
 - =フェッチする (fetch)
 - ■命令の内容をレジスタに転送
 - ■PC(プログラムカウンタ)をその命令に設定
 - ■オペランドのレジスタの値を読み出す

- ■その後、命令ごとに異なる処理へ
 - 処理内容は結構似ている
 - ··· 算術論理演算の実行=ALU使用

MIPS命令実装方式の概念図

MIPS命令実装方式の概念図

論理設計とクロック方式

- ■計算機設計の際は、 クロックの刻み方を決めないといけない
 - ■組み合わせ論理要素
 - ■内部状態を持たない (ALUなど)
 - ■状態論理要素
 - ■内部状態を持つ (レジスタやメモリなど)
 - ■クロック・パルスごとに状態が進む
- ■エッジ・トリガ・クロック方式
 - クロック・パルスの 高低切り替わりの際に 状態を進める

MIPS命令実装方式の概念図

確認問題

- ■次の説明に該当する用語を答えよ。
 - ■複数の命令を時間的にずらして、 並行的に実行する処理方式
 - ■メモリから命令を取り出すこと
 - ■クロック・パルスの高低切り替わりの際に 状態論理要素の状態を進める方式
 - ■制御信号により、複数の入力の中から 1つを選んで出力する機構

講義内容

- ■パイプライン処理
 - ■概説

- ➡データパスの構築
 - ■パイプライン処理の実行
 - ■パイプライン処理の問題点

データパスの構築 命令のフェッチ

- ■データパス(datapath)
 - ■データの経路

命令をフェッチして PCを進める部分の データパス

データパスの構築 R形式の命令実行

データパスの構築 Iw/sw命令の実行

データパスの構築 分岐命令の実行

データパスの構築 各部の統合

データパスの構築 さらに詳細化

講義内容

- ■パイプライン処理
 - ■概説
 - ■データパスの構築
- ▶■パイプライン処理の実行
 - ■パイプライン処理の問題点

さらなる性能の向上 再掲

- ■計算機の性能の決定要因
 - ■1. 単位時間あたりの実行命令数
 - ■2. クロック・サイクル時間
 - ■3. CPI (命令あたりのクロック・サイクル数)
- ■単位時間あたりの実行命令数を 増やせないか?

■パイプライン処理

命令A	命令 読込	レジ スタ	計算 実行		
命令B		命令 読込	レジ スタ	計算 実行	
命令C			命令 読込	レジ スタ	計算 実行

パイプライン処理の実行イメージ

講義内容

- ■パイプライン処理
 - ■概説
 - ■データパスの構築
 - ■パイプライン処理の実行
- → パイプライン処理の問題点

パイプライン処理の問題点

- ■データ・ハザード
 - ■命令の実行に必要なデータが まだ利用可能でないため、予定している命令を実行できないこと

add \$s0, \$t0, \$t1 sub \$t2, \$s0, \$t3

フォワーディング (バイパシング) : 計算結果をすぐに使えるようにする

コードの並べ替え:

コードの実行順を変えることでストールを回避

パイプライン・ストール:

stall[V/N]行き詰まること

実行を待機して、計算結果が来るのを待つ (実行が遅くなる)

パイプライン処理の問題点

- ■構造ハザード
 - パイプライン処理において、 命令の実行に必要なハードウェアが 競合するため、予定された命令を 実行できないこと

e.g., 複数の命令で同時にメモリの読み書き

競合する命令を遅らせるなどして対処

パイプライン処理の問題点

- ■制御ハザード
 - 条件分岐が存在するため、命令を 実行するべきかどうか判断できず、 所定のクロック・サイクル内で命令を 実行できないこと
 - ▶分岐ハザードともいう

予測:

分岐の結果を予測(例えば、常に条件不成立) して命令の実行を進めておく

確認問題

- ■以下の各文は正しいか。○か×で答えよ。
 - ■パイプライン処理では、命令を1つずつ、 直列的に実行する。
 - パイプライン処理によって、 各命令の実行に必要な時間を 減らすことができる。
 - パイプライン処理は、スループットの向上を目標としている。
 - ■パイプライン処理において、必要なデータがまだ利用可能でないため、命令を実行できないことを分岐ハザードという。

24

参考文献

■コンピュータの構成と設計 上 第5版 David A.Patterson, John L. Hennessy 著、 成田光彰 訳、日経BP社

■ 画像は教科書からのスキャンです。 転載・頒布を禁止します。