

# **Applications of Electronic Structure Methods**

### **Tips**





#### **How Accurate is the Geometry?**





#### **Cutting Corners**





Potential to speed up calculations (fewer DOFs)

May create artificial minima



## Consistency of Electronic and Geometric Structure





#### **Conclusions**

#### Local geometry optimization: Follow gradient

- Hellman-Feynman from moving potentials
- Pulay from moving basis functions
- + additional terms

#### Quasi-Newton method de-facto standard

- Require approximation and update of Hessian
- Step control by line search or trust radius method
- Works best near minimum

Recommended procedure: Pre-relax with Conjugate Gradient (get close to minimum), finish with Quasi-Newton method



#### **Self-assessment**

## https://fbr.io/join/twbyw