

Faculté des sciences et de la Technologie Département des Sciences et de la Technologie

EXAMEN EN "Electronique de puissance"

Chargé du module : **HABEL Elhadj** Domaine / Filière / Spécialité: **ST / ELN / ELN**

Année universitaire : 2022/2023 Semestre / Session: S6 / Normale Date: 21/05/2023 Durée d'examen : 01 h 30 min

Exercice N°1 (08 points):

Soit le montage de la figure suivante. La tension U est sinusoïdale alternative. La charge est une résistance R.

I- D est une diode parfaite.

- 1. Quel est l'état de la diode quand U > 0 et U < 0?
- 2. Tracer *U* et *V* en concordance de temps.
- 3. Calculer < V > et < i >. A .N. La valeur efficace de la tension U est de 10V et $R = 220 \Omega$.
- 4. Calculer la valeur efficace de la tension V.

II- D est une diode réelle (Vs=0.7V).

- 1. Analyser le fonctionnement de ce circuit dans ce cas.
- 2. Tracer les courbe V, I et V_D .
- 3. Calculer la valeur moyenne de la tension *V*.

Exercice N°2 (06 points):

Un redressement monophasé double alternance non commandé avec un pont de Greatz est alimenté par une tension sinusoïdale V de valeur efficace *20V*. La charge est purement résistive. On suppose que les diodes sont parfaites.

- 1. Tracer le circuit.
- 2. Quel est l'état des diodes quand *V>0 et V<0*.
- 3. Tracer les chronogrammes de V_c , V_{D1} , V_{D2} .

Exercice N°3 (06 points):

Soit le montage d'un redresseur monophasé commandé suivant : Ce montage est alimenté par une tension sinusoïdale sous la forme $V(t) = 220\sqrt{2}\cos(\omega t)$.

- 1- Analyser le fonctionnement de ce montage
- 2- Tracer les courbes de $V_c(t)$ et $V_{Th}(t)$
- 3- Déterminer l'expressions de la valeur moyenne de la tension de charge V_c .
- 4- Calculer V_{cmov} pour les angles d'amorçages suivants 30° et 60° .

Faculté des sciences et de la Technologie

Faculté des sciences et de la Technologie Département des Sciences et de la Technologie

CORRIGE TYPE EN "Electronique de puissance"

Chargé du module : **HABEL Elhadj**Domaine / Filière / Spécialité: **ST / ELN / ELN**

Année universitaire : 2022/2023 Semestre / Session: S6 / Normale

Exercice N°1 (08 points):

I- D est une diode parfaite.

1. quand U > 0, D conduit, V=U (0.5point) quand U < 0, D bloqué, V=0 (0.5point)

2. <u>Les courbes *U* et *V* en concordance de temps</u>. (02 point)

3. < V > et < i >.

$$< v > = \frac{1}{T} \int_{0}^{T} v(t) dt$$

$$< v > = \frac{1}{T} \int_{0}^{T/2} \hat{V} \sin(\omega t) dt + \frac{1}{T} \int_{T/2}^{T} 0 \cdot dt$$

$$=\frac{\hat{V}}{T}\left[\frac{-\cos(\omega t)}{\omega}\right]_{0}^{T/2}=\frac{\hat{V}}{T}\left(\frac{-\cos(\omega T/2)}{\omega}-\frac{-\cos(0)}{\omega}\right)=\frac{\hat{V}}{T}\left(\frac{-\cos(\pi)}{\omega}-\frac{-\cos(0)}{\omega}\right)=\frac{2\hat{V}}{\omega T}$$

$$= \frac{\hat{V}}{\pi} \qquad (0.5\text{point}) \qquad = \frac{}{R} \quad (0.5\text{point})$$

$$< v > = \frac{\hat{V}}{\pi} = \frac{\hat{U}}{\pi} = \frac{U_{\text{eff}}\sqrt{2}}{\pi} = \frac{10 \times \sqrt{2}}{\pi} = 4,5 \text{ V (0.25point)}$$

$$\langle i \rangle = \frac{\langle v \rangle}{R} = \frac{4.5}{220} = 20.5 \text{ mA}$$
 (0.25point)

4. la valeur efficace de la tension *V*.

$$V_{\text{eff}} = \sqrt{\frac{1}{T}} \int_{0}^{T} v^{2}(t) = \sqrt{\frac{1}{T}} \int_{0}^{T/2} v^{2}(t) = \sqrt{\frac{1}{T}} \int_{0}^{T/2} u^{2}(t) = \sqrt{\frac{1}{2T}} \int_{0}^{T} u^{2}(t) = \frac{U_{\text{eff}}}{\sqrt{2}} = 7.1 \text{ V}$$
(0.5point)

II- D est une diode réelle (Vs=0.7V).

1. fonctionnement de ce circuit dans ce cas.

Pour 0 < t < T/2

A.N:

 $U > 0 \Rightarrow$ polarisation directe \Rightarrow D conduit si U > 0.7 V, V=U-Vs=U-0.7 et I=V/R (0.5point)

Faculté des sciences et de la Technologie Département des Sciences et de la Technologie

Pour T/2 < t < T

 $U < 0 \Rightarrow$ polarisation inverse \Rightarrow D est bloquée, I=0, V=0, V_D=U (0.5point)

2. <u>les courbe V et V_D </u>: (1.5point)

3. <u>la valeur moyenne de la tension *V* :</u>

$$<\!V> = \frac{1}{T} \int\limits_0^T \! V(t) \, \partial t = \frac{1}{T} \int\limits_0^T \! (U(t) - 0.7) \, \partial t = \frac{1}{T} \int\limits_0^T \! (U_m \sin(wt) - 0.7) \, \partial t$$

$$< V > \simeq \frac{1}{T} \int_{0}^{T} U_{m} \sin(wt) \partial t = \frac{V_{m}}{\pi} = \frac{10\sqrt{2}}{\pi} = 4.5V$$
 (0.5point)

Exercice N°2 (06 points) :

1- le circuit correspondant : (02point)

2- <u>l'état des diodes quand *V>0 et V<0*</u>:

On suppose que $V(t) = V_m \sin wt$

V>0 D1 et D4 conduit, D2 et D3 bloqué, Vc= V (01point)

V<0 D2 et D3 conduit, D1 et D4 bloqué, Vc= -V (01point)

3- les chronogrammes de *V_c*, *V_{D1}*, *V_{D2}*: (02 points)

Faculté des sciences et de la Technologie Département des Sciences et de la Technologie

Exercice N°3 (06 points):

1. le fonctionnement pendant une période T :

On a $V(t) = 220\sqrt{2} \cos wt$, α est l'angle d'amorçage du thyristor

 $0 < \theta < \pi/2$ V(t)>0, TH conduit, TH amorcé, Vc=V, Vth=0. (0.5point)

 $\pi/2 < \theta < 3\pi/2$ V(t)<0, TH bloqué, Vc=0, Vth=V. (0.5point)

 $3\pi/2 < \theta < 3\pi/2 + \alpha$ V(t)>0, TH bloqué, pas d'amorcé, Vc=0, Vth=V. (0.5point)

 $3\pi/2 + \alpha < \theta < 2\pi$ TH conduit, Vc=0, Vth=V. (0.5point)

3. Les courbes de V_c et V_{Th} : (02point)

4. Les expressions de la valeur moyenne de la tension de charge:

$$V_{CMoy} = \frac{1}{T} \int_{0}^{T} V_{C}(t) \partial t, \quad V_{CMoy} = \frac{1}{2\pi} \left[\int_{0}^{\pi/2} V_{M} \cos wt \partial wt + \int_{3\pi/2 + \alpha}^{2\pi} V_{M} \cos wt \partial wt \right], \quad (0.5\text{point}),$$

$$V_{CMoy} = \frac{V_M}{2\pi} (I + \cos \alpha)$$
 (01point)

5. Application numérique : $V_M = 220\sqrt{2} = 311 \text{ V}$

Pour α =30°, Vcmoy=92.4 V (0.25point)

Pour α =60°, Vcmoy=74.25 V (0.25point)