Nome:		n°		
	DEPARTAMENTO DE EN	NGENHARIA INFO	ORMÁTICA	
2017-2018	TEORIA DA COMP	PUTAÇÃO	25/out./2017 14.00h	
Duração: 120m	1ª Frequência			
branco têm pontu 4°- Para responder só Quando a respost 5°- Coloque o nome	a do enunciado. orte: respostas (de escolha) erra	nunciado. Seja conc X a que julgar certa s folhas da prova.	eiso e diga só o essencial	
, ,	gramáticas regulares do que l	Γ	V X F	
Todas as regulares são ou lineares à esquerda ou lineares à direita. Mas uma linguagem linear pode ter produções lineares à esquerda, ao centro, ou à direita, e por isso há muitas gramáticas lineares que são não-regulares. Portanto as regulares são um subconjunto das lineares, logo são em menor número.				
(ii) Para uma linguagen	gramática regular existe uma e n regular.	e uma só	V x F	
	ómato finito determinístico cor pressão regular	responde uma e	V F F	
Justifique. Qualquer expressão regular tem expressões regulares equivalentes. Por isso a um DFA podem corresponder muitas expressões regulares.				
2. Sendo L, M, N exp falsas:	pressões regulares, diga se as s	eguintes igualdades	s são verdadeiras ou	
a) (L + M) M*= LM	* + M*	Verdadeira: 🗖 / F	alsa: x□	
Justifique a). Aplicando a propriedade distributiva à direita da concatenação em relação à união, obtém-se (L+M)M*=LM*+MM*=LM*+M* e não LM*+M*.				
b) $(MNL + NML) =$	` ·		: x□ / Falsa: □	
c) $(M + L)^* = (L^*M^*)^* + L^*$ Verdadeira: $x \square / Falsa$: \square Justifique c). L^* já está contida em $(L^*M^*)^*$ e por isso unir novamente não altera o				

DEI/FCTUC

resultado(a união de um conjunto X com um seu subconjunto dá o mesmo conjunto X).

TeoC – Frequência 25/outubro/2017

Nom	ie:	n°
	endo A, B	C linguagens regulares, e \underline{L} complemento de L, as linguagens seguintes são
(i)	A <u>B</u> *	Verdadeiro: x□ / Falso: □
A f		linguagens regulares é fechada em relação à complementação e por isso \underline{B} é no estrela (e por isso \underline{B}^* é regular) e em relação à concatenação (por isso AB^*
(ii) (C∩(B <u>C</u>)∪	Verdadeiro: x□ / Falso: □
(po	or isso <u>C</u> é	A família das linguagens regulares é fechada em relação à complementação regular), em relação à concatenação, e por isso B <u>C</u> é regular, à interseção e à B <u>C</u>)∪A é regular.
4	. Prove po	lo lema da bombagem que a linguagem $L = \{b^p abc^p, p>0\}$ não é regular.

Para qualquer m que me apresentes considere-se a cadeia

 a^mbac^m

Ela é de comprimento 2m+2 e portanto maior do que m e pertence à linguagem. Nela poderemos contradizer o lema e assim provamos que a linguagem é não-regular, dado existir uma cadeia maior do que m (qualquer que ele seja) em que o Lema não se verifica. A identificação da cadeia na qual vamos trabalhar é importante na demonstração; note-se que ao escolhermos esta cadeia assegurase que os primeiros m caracteres serão necessáriamente apenas a's o que facilita a contra-prova (note-se também que esta frase não faz parte da demonstração, mas visa apenas esclarecer a razão da escolha desta cadeia). Como xy <= m, xy tem apenas a's e portanto y será sempre composta apenas por a's (pode ser um número qualquer deles,menor ou igual a m). A bombagem só produz a's. Seja |xy|=m-s, s>=0; se $y=a^r$, r>=1, virá $x=a^{m-s-r}$, e a cadeia $w_2=xy^iz$ será a^{m-s-r} (a^r) a^r $bac^m=a^{m-s-r+ir}a^s$ bac^m , quebrando a regra das cadeias . De facto m-s-r+ir+s=m+(i-1)r; ora para i=0 resultam m-r a's no princípio da cadeia, e sendo r>=1, ficam menos a's no início do que c's no fim. Bombeou-se assim para fora da linguagem. Qualquer bombagem de y, excepto y^1 , resulta numa cadeia que não pertence a L (mas bastava até que só acontecesse para um caso).

5. Dadas uma linguagem regulares L num certo alfabeto, existe algum algoritmo para decidir se ela é finita ou infinita? Se sim, qual?

Existe: constrói-se um autómato finito aceitador de *L*. Se contiver um ciclo num <u>caminho aceitador</u>, a linguagem é infinita. Se não contiver um ciclo num caminho aceitador, então é finita. Pode conter ciclos em caminhos não-aceitadores e ser finita.

Nome:	r	nº

6. Escreva uma gramática para a linguagem $L = \{a^ibabaa^j : i, j \ge 0 \}$ no alfabeto $\sum = \{a,b\}$, utilizando o menor número de variáveis possível.

$$S \to bB \mid aS$$

$$B \to abC$$

$$C \to aC \mid \lambda$$

7. Desenhe um autómato finito determinístico, com o menor número de estados que conseguir, que aceite a linguagem no alfabeto $\Sigma = \{a,b\}$ composta por todas as cadeias com um **número par de** a's, e cada a tem de ser seguido de pelo menos um b.

Nome:	1	n°	

8. Seja o seguinte autómato finito não determinístico no alfabeto $\Sigma = \{0, 1\}$.

a) Calcule a respetiva tabela de transições, e a partir dela desenhe o autómato finito determinístico equivalente.

b) Descreva a linguagem por ele aceite usando a notação de conjuntos

Cadeias que que têm um 1 na terceira posição a contar do fim. L={w1v, w \in {0,1}*, v \in {00,01,10,11}}

9. Construa a expressão regular para a linguagem do seguinte autómato, no alfabeto $\Sigma = \{0,1\}$, apresentando todos os passos do algoritmo de eliminação de estados.

Eliminando q1:

 $\mathbf{q0q2}: \mathbf{a} + \mathbf{b}. \ \lambda . \lambda$

 $q0q3 : \lambda + b. \lambda .a$

Eliminado q2:

$$\mathbf{q0q3}$$
- $\lambda + b.a + (a+b) .\lambda. b$

q0q4- \emptyset + (a+b). λ . λ

Eliminando q3:

$$\mathbf{q0q4}$$
- (a+b) + (((λ +b.a) + (a+b) b).b)

ER final: $(a+b) + ((\lambda+ba) + (a+b) b)b$

Nome:	n^{c}	

- 10. Considere o alfabeto $\Sigma = \{0, 1\}$.
- a) Obtenha uma expressão regular para a linguagem das cadeias pertencentes a esse alfabeto que começam por um 0 e que tenham comprimento impar ou comecem por um 1 e que tenham comprimento par. Deve utilizar para a solução no máximo 40 carateres.

```
ER: (0+(10+11)) ((0+1) (0+1))*
```

b) Escreva uma gramática regular equivalente à expressão regular anterior, utilizando o menor número de produções que conseguir. Caso não tenha chegado a uma solução, converta o autómato inicial da pergunta 9 numa sua gramática regular. Deverá indicar na sua resposta qual das hipóteses escolheu.

```
S->0A | 10A | 11A

A->00A | 01A| 10A| 11A|λ

Ou
S->aA | bB | b
A->bC | λ
B->aC| λ
C->b
```