Indépendance.

- 1. a. Déterminer à quelle condition un événement est indépendant de lui-même.
- b. Déterminer à quelle condition une variable aléatoire réelle est indépendante d'ellemême. On pourra étudier sa fonction de répartition.
- **2.** a) Donner un exemple d'un espace de probabilités et de trois événements A, B, C sur cet espace de probabilités tels que $\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$ mais tels que A, B, C ne soient pas indépendants.
- b) Donner un exemple d'un espace de probabilités et de trois événements A, B, C sur cet espace de probabilités tels que $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$, $\mathbb{P}(A \cap C) = \mathbb{P}(A)\mathbb{P}(C)$ et $\mathbb{P}(B \cap C) = \mathbb{P}(B)\mathbb{P}(C)$ mais tels que A, B, C ne soient pas indépendants.
- 3. Soit $n \geq 1$ un entier. Soit Ω l'ensemble $\{0,1\}^n$ muni de la tribu $\mathscr{P}(\Omega)$ et de l'équiprobabilité \mathbb{P} . Pour tout $\omega = (\omega_1, \ldots, \omega_n) \in \Omega$ et tout $k \in \{1, \ldots, n\}$, on pose $X_k(\omega) = \omega_k$.
 - a) Déterminer la loi des variables aléatoires X_1, \ldots, X_n et montrer qu'elles sont indépendantes.
 - b) Soit $p \in [0, 1]$. Montrer qu'il existe une unique mesure de probabilités \mathbb{Q} sur $(\Omega, \mathscr{P}(\Omega))$ telle que, vues sur l'espace $(\Omega, \mathscr{P}(\Omega), \mathbb{Q})$, les variables aléatoires X_1, \ldots, X_n soient indépendantes et de loi de Bernoulli de paramètre p.
- **4.** Soient $E = \{x_1, x_2, x_3\}$ et $F = \{y_1, y_2, y_3\}$ deux parties finies de \mathbb{R} . Pour chacune des matrices $P = (P_{ij})_{i,j=1,2,3}$ ci-dessous, on considère un couple (X,Y) de variables aléatoires à valeurs dans $E \times F$ tel que pour tous $i, j \in \{1, 2, 3\}$, on ait $\mathbb{P}(X = x_i, Y = y_j) = P_{ij}$. Déterminer si les variables aléatoires X et Y sont indépendantes.

$$P = \begin{pmatrix} \frac{1}{4} & 0 & \frac{1}{12} \\ 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{6} \end{pmatrix}, \ P = \begin{pmatrix} 0 & 0 & 0 \\ \frac{3}{17} & \frac{12}{17} & \frac{2}{17} \\ 0 & 0 & 0 \end{pmatrix}, \ P = \begin{pmatrix} \frac{1}{4} & \frac{3}{32} & \frac{3}{96} \\ \frac{2}{15} & \frac{1}{20} & \frac{1}{60} \\ \frac{17}{60} & \frac{17}{160} & \frac{17}{480} \end{pmatrix} \ P = \begin{pmatrix} \frac{1}{4} & \frac{3}{32} & \frac{3}{96} \\ \frac{2}{15} & \frac{1}{20} & \frac{1}{20} \\ \frac{1}{4} & \frac{1}{10} & \frac{3}{80} \end{pmatrix}.$$

5. Calculer la loi de la somme de deux variables aléatoires indépendantes, l'une de loi de binomiale de parmètres n et p, l'autre de paramètres m et p, où $p \in [0,1]$ et m,n sont deux entiers.

- **6.** Soient N_1, \ldots, N_p des variables aléatoires indépendantes qui suivent des lois de Poisson de paramètres respectifs $\lambda_1, \ldots, \lambda_p$. Déterminer la loi de $N_1 + \ldots + N_p$.
- 7. Montrer que si la somme de deux variables aléatoires discrètes indépendantes a la loi de Bernoulli de paramètre $p \in [0, 1]$, alors l'une des deux variables aléatoires est constante.
- 8. Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace de probabilités. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes défnies sur $(\Omega, \mathscr{F}, \mathbb{P})$, toutes de loi de Bernoulli de paramètre $p \in]0,1[$.
 - a) On définit, pour tout $n \ge 1$ et tout $\omega \in \Omega$,

$$S_n(\omega) = \text{le nombre d'entiers } k \in \{1, \dots, n\} \text{ tels que } X_k(\omega) = 1.$$

Déteminer la loi de S_n . Les variables $(S_n)_{n\geq 1}$ sont-elles indépendantes?

b) On définit, pour tout $\omega \in \Omega$,

$$T_1(\omega) = \min\{n \ge 1 : X_n(\omega) = 1\},\$$

avec la convention min $\emptyset = +\infty$. Calculer $\mathbb{P}(T_1 = +\infty)$ puis déterminer la loi de T_1 .

c) On définit maintenant, pour tout $\omega \in \Omega$,

$$T_2(\omega) = \min\{n > T_1(\omega) : X_n(\omega) = 1\}.$$

Déterminer les lois de T_2 et de $T_2 - T_1$. Les variables T_1 et T_2 sont-elles indépendantes? Qu'en est-il des variables T_1 et $T_2 - T_1$?

- 9. Soient X et Y des variables aléatoires indépendantes de lois respectives $\mathcal{N}(\mu_1, \sigma_1^2)$ et $\mathcal{N}(\mu_2, \sigma_2^2)$. Soient a, b et c des réels. Déterminer la loi de aX + bY + c.
- 10. Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace de probabilités. Soient $N, X_1, X_2, \ldots : (\Omega, \mathscr{F}, \mathbb{P}) \to \mathbb{N}$ des variables aléatoires indépendantes. On suppose que N suit la loi de Poisson de paramètre $\lambda > 0$ et que X_1, X_2, \ldots suivent la loi de Bernoulli de paramètre $p \in [0, 1]$. On pose $R = X_1 + \ldots + X_N$, c'est-à-dire, pour tout $\omega \in \Omega$,

$$R(\omega) = \sum_{k=1}^{N(\omega)} X_k(\omega).$$

Déterminer la loi de R.