Jeonghyeon Woo

Math 301

Assignment 2

- 1. $U = \{1, 2, 3, 4, 5\}, A=\{1, 2, 3\}, B=\{1, 3, 5\}.$
 - a. $A \cup B = \{1, 2, 3, 5\}$
 - b. $A \cap \overline{B} = \{2\}$
 - c. $\overline{A-B} = \{1, 3, 4, 5\}$
 - d. $\bar{A} \times \bar{B} = \{4, 5\} \times \{2, 4\} = \{(4, 2), (4, 4), (5, 2), (5, 4)\}$
- 2. Same sets as above
 - a. $|A \cup B| = 4$
 - b. $|A \times B| = 3*3 = 9$
 - c. $|\overline{B}| = 2$
 - d. $|A^2 \times B \times \emptyset| = 0$
 - e. $|\mathcal{P}(\{1,2,3,5,8\})| = 2^5 = 32$
- 3. a. $\{x \in \mathbb{Z} : x^2 < 10\} = \{-3, -2, -1, 0, 1, 2, 3\}$
 - b. $\{1\} \times \{2,3\} \times \{4,5,6\} = \{(1,2,4),(1,2,5),(1,2,6),(1,3,4),(1,3,5),(1,3,6)\}$
 - $c.\{0,2\}^3 = \{0,2\} \times \{0,2\} \times \{0,2\} = \{(0,0,0),(0,0,2),(0,2,0),(0,2,2),(2,0,0),(2,0,2),(2,2,0),(2,2,2)\}$
 - d. $\mathcal{P}(\mathcal{P}(\emptyset)) = \mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$
- 4. T or F when \mathbb{Z} is a set of all integers
 - a. $1 \in \mathbb{Z}$ T
 - b. $\{1\} \in \mathbb{Z}$ F
 - c. $\{1\} \subseteq \mathbb{Z} \ \mathsf{T}$
 - d. $\emptyset \in \mathbb{Z}$ F
 - e. $\emptyset \subseteq \mathbb{Z}$ T

f.
$$\{\emptyset\} \subseteq \mathbb{Z}$$
 F

g.
$$\{1,2,3\} \in p(z)$$
 T

h.
$$\{1,2,3\}\subseteq p(\mathbb{Z})$$
 F

5.
$$A_1 = \{0,1,2\} A_2 = \{0,2,4\} A_3 = \{0,3,6\} A_4 = \{0,4,8\} A_5 = \{0,5,10\}$$

a.
$$\bigcup_{i=1}^{5} A_i = \{0,1,2,3,4,5,6,8,10\}$$

b.
$$\bigcap_{i=1}^{5} A_i = \{0\}$$

- 6. Statements, then T or F
 - a. Stop, look, and listen

Not a statement

b. Every real number is an even integer.

False statement

c. Every even integer is a real number.

True statement

d. For any real numbers x and y, if 5x = 5y, then x = y.

True statement

e. For any real numbers x and y, if $x^2 > y^2$, then x > y.

False statement

f. There exist sets that are finite.

True statement

g. There exist sets that are infinite.

True statement

h. 42

Not a statement

i. The answer is 42.

Not a statement (but is true according to Deep Thought)

j. For every real number x, $-2 \le \cos x \le 2$.

True statement

7. Expression of P \land Q, P \lor Q, \sim P

a. The integer 8 is both even and a power of 2.

8 is even and power of 2 = 8 is even and 8 is power of 2 , So, $P \wedge Q$

- b. The identity matrix is not invertible. $\sim P$
- c. The first test is either on Wednesday or Friday.

Test is either on Wednesday or Friday = Test is on Wednesday or test is on Friday, so $P \lor Q$

d. $x \neq y$

~P

e. $x \le y$

$$(x \le y) = (x < y \text{ or } x = y), \text{ so } P \lor Q$$

f. $x \in A \cap B$

 $.P \wedge Q$

g. $x \in A \cup B$

.P \vee Q