

Election (2023) Prediction Using Twitter Data Q

Mentor: Mr. Rajesh Maurya

Presented by:

Shagun Kulshreshtha - 38

Vinayak Mokashi - 40

Triveni Bisen - 43

Mahesh Ahire - 48

Rohit Saigaonkar – 58

International Research Journal of Engineering and Technology (IRJET)

IRJET Volume: 09 Issue: 05 | May 2022

www.irjet.net

e-ISSN: 2395-0056

p-ISSN: 2395-0072

Election Result Prediction using Twitter Analysis

Ajay Rao¹, Varun Kanade², Chinmay Motarwar³, Prof. Shital Girme⁴

^{1, 2, 3}Undergraduate Student, Dept. Computer Engineering, Pune Institute of Computer Technology, Pune, India ⁴Professor, Dept. Computer Engineering, Pune Institute of Computer Technology, Pune, India

Abstract - Elections in India has always been considered as an important event and has been keenly followed by majority of people. The rapid increase of social media in the recent past has provided end users a powerful platform to voice their opinions. Twitter, being one such platform, provides day-to-day updates on political events through different hashtags and trends. People provide their opinion by reacting on such political events. Our approach is to gather a collection of tweets of top political parties contesting within the General State election, 2022, then compute the sentiment score. Dataset contains mixture of both popular as well as recent tweets related to specific political party. Specific keywords are used to extract tweets

Elections play an important role in a democratic country. Indian parliamentary system gives its people the right to decide who will govern them for the next five years. During the tenure of Feb 22 to March 22, five state elections are lined up, with the important one being at Uttar Pradesh, which sends the largest number of MPs to parliament. The major national political parties contesting in the elections are Bhartiya Janata Party(BJP), Indian National Congress (INC), Aam Aadmi Party(AAP), Samajwadi Party(SP), Shiromani Akali Dal(SAD) and Naga People's Front(NPF).

2. LITERATURE SURVEY

RESEARCH PAPER:

Election Result Prediction using Twitter Analysis

Published in May 2022

Motivation

- Social media: Shrinking the world, connecting millions of people across the globe
- Twitter, Facebook, Instagram, Google+, and more
- Sharing of opinions, experiences, reviews, ratings
- A democracy: of the people, by the people and for the people
- Election is the most important aspect of a democracy
- Social media enables the people to voice their strong and various opinions about leaders

To analyze tweets collected from Twitter

To build a robust model to predict future election outcomes

BMC Elections 2023

Approach

Data Collection

Using TweePy and SnsScrape to extract tweets

Data **Preprocessing**

Turning
unstructured
tweets to
structured and
clean data

Sentiment Analysis

Using VADER for sentiment analysis

Model Training

SVM, Naïve Bayes,
Decision Trees,
Multinomial Logistic
Regression, KNN,
Bagging (SVM) was
used

Predictions

Calculation of popularity score and making prediction of winner

Data Collection

DATA EXTRACTION FROM TWITTER

Using TweePy:

A Python library for accessing the Twitter API

Drawback: Only allows 3,200 and 7 days old Tweets to be scraped

Using SnScrape:

A scraper for social networking services (SNS)

Data extracted using Hashtags

Attributes of Tweet could be Extracted

Datasets Collected:

Tweets from Contender A

Tweets from Contender B

Likes_Count
Retweets_Count
UserName
Date

Tweet

Data Preprocessing

- Duplicates removed: 37717 Tweets left
- Language barriers: Only English Tweets kept
 A: 16569 and B: 10878 left
- Text cleaning: Removal of Punctuations
 Special characters, URLs and Hashtags, extra
 white spaces

Data Preprocessing

Stop-word removal:

Removing the words that occur commonly across all the documents in the corpus using NLTK

Stemming:

Process of reducing a word to its word stem that affixes to suffixes and prefixes or to the roots of words known as stem

Lemmetization

Method that switches any kind of a word to its base root mode

Word	Stemming	Lemmetization
celebrating	celebr	celebrate
ideology	ideolog	ideology

Word Clouds

Contender A

Contender B

Concepts Used

Sentiment Analysis

VADER

Machine Learning

- SVM
- Naive Bayes
- Decision Trees
- Multinomial Logistic Regression
- K Nearest Neighbours
- Bagging SVM

Model Training: Labelling dataset A

Sentiment Analysis

- A natural language processing technique used to determine whether data is positive, negative or neutral
- Becoming an essential tool to monitor and understand sentiment in all types of data

VADER:

Valence Aware
Dictionary and
sEntiment Reasoner

A lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media

Compound score	Sentiment
>=0.05	Positive
>=-0.05 and <=0.05	Neutral
<=-0.05	Negative

Examples

Sentence	Compound Score
A good leader	0.4404
A really good leader	0.4927
A great leader	0.6249
A terrible leader	-0.4767
went vote today :)	0.4588
went vote today :(-0.4404
A fine cm	0.2023
A fine cm!	0.2714

Distribution of Sentiments in Dataset A

Train - Test Split

SPLITTING THE DATASETS INTO TRAIN SET AND TEST SET

Train Set Test Set

70% 30%

tf – idf

FEATURE EXTRACTION

Term Frequency-Inverse Document Frequencies

A technique to quantify words in a set of documents

Computes a score for each word to signify its importance in the document and corpus

The rare words have higher tfidf value and considered important to model training

Word2Vec

FEATURE EXTRACTION

Word2Vec

Employs the use of a dense neural network with a single hidden layer that has no activation function, that predicts a one-hot encoded token given another one-hot encoded token

Capable of capturing context of a word in a document, semantic and syntactic similarity, relation with other words, etc.

MODEL TRAINING

Naïve Bayes Classifier

Classification algorithms based on Bayes' Theorem

$$P(A | B) = \frac{P(B|A)P(A)}{P(B)}$$

Predicts on the basis of the probability of an object

Decision Trees

A tree-structured classifier, where internal nodes represent the features of a dataset, branches represent the decision rules and each leaf node represents the outcome

Multinomial Logistic Regression

Models the relationship between a set of predictors and a nominal response variable. A nominal response has at least three groups which do not have a natural order

k Nearest Neighbours

Assumes the similarity
between the new case/data
and available cases and put
the new case into the
category that is most similar
to the available categories

MODEL TRAINING

Bagging

An ensemble metaestimator that fits base
classifiers each on random
subsets of the original
dataset and then aggregate
their individual predictions
(either by voting or by
averaging) to form a final
prediction

Model Training: Support Vector Machine

Goal

To create the best line or decision boundary that can segregate n-dimensional space into classes so that we can easily put the new data point in the correct category in the future

Predictions

Model Performance

tf.	_	Ī	d	f

Algorithm	Accuracy (In %)	
SVM	86.94	
KNN	76.66	
Naïve Bayes	73.22	
Multinomial Logistic Regression	84.14	
Decision Trees	77.65	
Bagging (SVM)	86.86	

Word2Vec:

Algorithm	Accuracy (In %)		
SVM	71.13		
KNN	69.92		
Naïve Bayes	61.65		
Multinomial Logistic Regression	71.25		
Decision Trees	65.49		
Bagging (SVM)	71.07		

Predictions Dataset B using SVM (tf – idf)

Prediction of Winner

Calculating Popularity Scores

Popularity Score:

(Σ Tweets with positive sentiment- Σ Tweets with negative sentiment) × 100 Total Tweets over the time period

Group A – 34.80 (SVM tf-idf)

Group A – 32.46 (Using VADER)

Group B – 19.19 (SVM tf-idf)

Group B – 9.39 (Using VADER)

Conclusion

Best Model:

SVM tf-idf with an accuracy of 86.94

Group A is a clear winner Based on the popularity score

Recommendations

Use case for political parties

The proposed system can be used by political parties to improve their campaigning strategies during the election period

Political analyst and strategist can use this methodology, as application, as a long term plan for a political party to study the sentiments of people over a long time period

Use case for the people

Can be used by users to make informed decisions in voting by seeing the current trends of political parties

Geographic
Locations and
work profiles of
users can be
taken into
consideration

Native languages were not translated

Events taking
place closer to
the Election date
would influence
the results more,
hence doing the
analysis of
tweets closer to
the election date
is required

Other Hashtags can be used to improve analysis

Sarcasm was not detected

Future Scope

