The direction rations of two lines are 3, 2, -6 and 1, 2, 2 respectively. The acute angle 1. Between these lines is

(a) $\cos^{-1} \left(\frac{5}{10} \right)$

(b) $\cos^{-1}\left(\frac{3}{20}\right)$ (c) $\cos^{-1}\left(\frac{5}{21}\right)$ (d) $\cos^{-1}\left(\frac{8}{21}\right)$

The direction rations of two lines are a, b, c and (b - c), (c - a), (a - b) respectively. 2. The angle between these lines is

(b) $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$

(d) $\frac{3\pi}{4}$

The angle between the lines $\frac{x-2}{2} = \frac{y-1}{7} = \frac{z+3}{3}$ and $\frac{x+2}{-1} = \frac{y-4}{2} = \frac{z-5}{4}$ is 3.

(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{2}$

(d) $\cos^{-1} \left(\frac{3}{8} \right)$

If the lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-5}$ are perpendicular to 4.

each other then k = ?

(a) $\frac{-5}{7}$ (b) $\frac{5}{7}$ (c) $\frac{10}{7}$

(d) $\frac{-10}{7}$

A line passes through the points A (2, -1, 4) and B (1, 2, -2). The equations of the 5.

(a) $\frac{x-2}{1} = \frac{y+1}{2} = \frac{z-4}{6}$

(b) $\frac{x+2}{1} = \frac{y+1}{2} = \frac{z-4}{6}$

(c) $\frac{x-2}{1} = \frac{y+1}{2} = \frac{z-4}{6}$

(d) none of these

The angle between the lines $\frac{x}{2} = \frac{y}{2} = \frac{z}{1}$ and $\frac{x-5}{4} = \frac{y-2}{1} = \frac{z-3}{8}$ is 6.

(a) $\cos^{-1}\left(\frac{3}{4}\right)$ (b) $\cos^{-1}\left(\frac{5}{6}\right)$ (c) $\cos^{-1}\left(\frac{2}{3}\right)$

(d) $\frac{\pi}{3}$

- The angle between the lines $\vec{r}=(\overset{\wedge}{3}\hat{i}+\hat{j}-\overset{\wedge}{2}\hat{k})+\lambda(\hat{i}-\hat{j}-\overset{\wedge}{2}\hat{k})$ and 7. $\vec{r} = (2\vec{i} - \vec{j} - 5\vec{k}) + \mu(3\vec{i} - 5\vec{j} - 4\vec{k})$

- (a) $\cos^{-1}\left(\frac{8\sqrt{3}}{15}\right)$ (b) $\cos^{-1}\left(\frac{6\sqrt{2}}{5}\right)$ (c) $\cos^{-1}\left(\frac{5\sqrt{3}}{8}\right)$ (d) $\cos^{-1}\left(\frac{5\sqrt{2}}{6}\right)$
- A line is perpendicular to two lines having direction ratios 1, -2, -2 and 0, 2, 1. 8. The direction cosines of the line are
 - (a) $\frac{-2}{3}, \frac{1}{3}, \frac{2}{3}$ (b) $\frac{2}{3}, \frac{1}{3}, \frac{-1}{3}$ (c) $\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}$
- (d) none of these
- A line passes through the point A (5, -2, 4) and it is parallel to the vector $(2\hat{i}-\hat{j}+3\hat{k})$. 9.

The vector equation of the line is

- (a) $\vec{r} = (2\hat{i} \hat{j} + 3\hat{k}) + \lambda(5\hat{i} 2\hat{j} + 4\hat{k})$ (b) $\vec{r} = (5\hat{i} 2\hat{j} + 4\hat{k}) + \lambda(2\hat{i} \hat{j} + 3\hat{k})$

(c) \vec{r} . $(5\hat{i}-2\hat{i}+4\hat{k}) = \sqrt{14}$

- (d) none of these
- The Cartesian equations of a line are $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-5}{-1}$. Its vector equation is 10.
 - (a) $\vec{r} = (-\hat{i} + 2\hat{i} 5\hat{k}) + \lambda(2\hat{i} + 3\hat{i} \hat{k})$ (b) $\vec{r} = (2\hat{i} + 3\hat{i} \hat{k}) + \lambda(\hat{i} 2\hat{i} + 5\hat{k})$
 - (c) $\vec{r} = (\hat{i} 2\hat{j} + 5\hat{k}) + \lambda(2\hat{i} + 3\hat{j} 4\hat{k})$ (d) none of these
- A line passes through the point A (-2, 4, -5) and is parallel to the line 11. $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$. The vector equation of the line is
 - (a) $\vec{r} = (-3\hat{i} + 4\hat{i} 8\hat{k}) + \lambda(-2\hat{i} + 4\hat{j} 5\hat{k})$ (b) $\vec{r} = (-2\hat{i} + 4\hat{j} 5\hat{k}) + \lambda(3\hat{i} + 5\hat{j} + 6\hat{k})$
 - (c) $\vec{r} = (3\hat{i} + 5\hat{j} + 6\hat{k}) + \lambda(-2\hat{i} + 4\hat{j} 5\hat{k})$ (d) none of these
- 12. The coordinates of the point where the line through the points A (5, 1, 6) and

B (3, 4, 1	L) crosses the	yz -plane is
------------	----------------	--------------

(a) (0, 17, -13) (b)
$$\left(0, \frac{-17}{2}, \frac{13}{2}\right)$$
 (c) $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$

(c)
$$\left(0, \frac{17}{2}, \frac{-13}{2}\right)$$

(d) none of these

13. The vector equation of the x-axis is given by

(a)
$$\overrightarrow{r} = \overrightarrow{i}$$

(b)
$$\overrightarrow{r} = \overrightarrow{j} + \overrightarrow{k}$$
 (c) $\overrightarrow{r} = \lambda \overrightarrow{i}$

(c)
$$\overrightarrow{r} = \lambda \hat{i}$$

(d) none of these

The Cartesian equations of a line are $\frac{x-2}{2} = \frac{y+1}{3} = \frac{z-3}{-2}$. What is its vector equation? 14.

(a)
$$\vec{r} = (2\hat{i} + 3\hat{j} - 2\hat{k}) + \lambda(2\hat{i} - \hat{j} + 3\hat{k})$$

(a)
$$\vec{r} = (2\hat{i} + 3\hat{j} - 2\hat{k}) + \lambda(2\hat{i} - \hat{j} + 3\hat{k})$$
 (b) $\vec{r} = (2\hat{i} - \hat{j} + 3\hat{k}) + \lambda(2\hat{i} + 3\hat{j} - 2\hat{k})$

(c)
$$\vec{r} = (2\hat{i} + 3\hat{j} - 2\hat{k})$$

(d) none of these

The angle between two lines having direction ratios 1, 1, 2 and $(\sqrt{3}-1),(-\sqrt{-3}-1),4is$ 15.

(a)
$$\frac{\pi}{6}$$
 (b) $\frac{\pi}{2}$

(b)
$$\frac{\pi}{2}$$

(c)
$$\frac{\pi}{3}$$

(d) $\frac{\pi}{4}$

- The straight line $\frac{x-2}{3} = \frac{y-3}{1} = \frac{z+1}{0}$ is 16.
 - (a) parallel to the x-axis
- (b) parallel to the y-axis
- (c) parallel to the z-axis

- (d) perpendicular to the z-axis
- 17. If a line makes angles α, β and y with the x-axis, y-axis and z-axis Respectively then $(\sin^2 \alpha + \sin^2 + \beta + \sin^2 y) = ?$

(d) $\frac{3}{2}$

If $(a_1b_1c_1)$ and (a_2b_2,c_2) be the direction ratios of two parallel lines then 18.

(a)
$$a_1 = a_2, b_1 = b_2, c_1 = c_2$$

(b)
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

(c)
$$a_1^2 + b_1^2 + c_1^2 = a_2^2 + b_2^2 + c_2^2$$

(d)
$$a_1a_2 + b_1b_2 + c_1c_2 = 0$$

If the points A(-1,3,2), B(-4,2,-2) and $C(5,5,\lambda)$ are collinear then the value of λ is 19.

(a) 5 (b) 7 (c) 8(d) 10

ANSWERS: 3 D-I

1. (c)	2. (b)	3. (c)	4. (d)	5. (a)	6. (c)	7. (a)	8. (c)
9. (b)	10. (c)	11. (b)	12. (c)	13. (c)	14. (b)	15. (c)	16. (d)
17.(c)	18. (b)	19. (d)					

3D-2

- The direction cosines of the perpendicular from the origin to the plane 1. \vec{r} .(6 \vec{i} -3 \vec{j} +2 \vec{k})+1=0are

- (a) $\frac{6}{7}, \frac{3}{7}, \frac{-2}{7}$ (b) $\frac{6}{7}, \frac{-3}{7}, \frac{2}{7}$ (c) $\frac{-6}{7}, \frac{3}{7}, \frac{2}{7}$ (d) none of these
- The direction cosines of the normal to the plane 5y + 4 = 0 are 2.

- (a) $0, \frac{-4}{5}, 0$ (b) 0, 1, 0 (c) 0, -1, 0 (d) none of these
- The length of perpendicular from the origin to the plane $\vec{r} \cdot (3\hat{i} 4\hat{j} 12\hat{k}) + 39 = 0$ is 3.
 - (a) 3units

- (b) $\frac{13}{5}$ units (c) $\frac{5}{3}$ units (d) none of these
- The equation of a plane passing through the point A(2, -3, 7) and making equal 4. Intercepts on the axes, is
 - (a) x + y + z = 3
- (b) x + y + z = 6 (c) x + y + z = 9
- (d) x + y + z = 4
- A plane cuts off intercepts 3, -4, 6 on the coordinate axes. The length of 5. Perpendicular from the origin to this plane is

- (a) $\frac{5}{\sqrt{29}}$ units (b) $\frac{8}{\sqrt{29}}$ units (c) $\frac{6}{\sqrt{29}}$ units (d) $\frac{12}{\sqrt{29}}$ units

	of k is	, ,		
	(a) $\frac{5}{6}$	(b) $\frac{6}{5}$	(c) $\frac{3}{4}$	(d) $\frac{4}{5}$
7.	If O is the origin arthrough P and perp			he equation of the plane
	(a) $x + 2y - 3z = 14$	(b) $x - 2y$	+3z = 12 (c) $x-2y-3$	z = 14 (d) none of these
8.	If the line $\frac{x-4}{1} = \frac{3}{2}$	$\frac{y-2}{1} = \frac{z-k}{2} \text{lie}$	s in the plane $2x-4y$	z+z=7, then the value of k is
	(a) -7 (b) 7		(c) 4	(d) -4
9.	The plane $2x + 3y - \Delta ABC$ is	+4c=12 meets t	the coordinate axes in	A, B and C. The centroid of
	(a) (2, 3, 4)	(b) (6, 4, 3)	(c) $\left(2, \frac{4}{3}, 1\right)$	(d) none of these
10.	If a plane meets t (1, 2, 4), Then the		-	that the centroid of Δ ABC is
	(a) $x+2y+4z=6$	(b) $4x + 2y$	z + z = 12 (c) $x + z = 12$	2y + 4z = 7
	(d) $4x + 2y + z = 7$			
11.	The equation of a	plane through th	e point $A(1,0,-1)$ and	perpendicular to the
	line $\frac{x+1}{2} = \frac{y+3}{4} =$	$\frac{z+7}{-3}$ is		
	(a) $2x + 4y - 3z = 3$	(b) $2x - 4y$	+3z = 5 (c) $2x + 4$	4y - 3z = 5
	(d) $x+3y+7z=-6$	i		
12.	The line $\frac{x-1}{2} = \frac{y-1}{4}$	$\frac{-2}{3} = \frac{z-3}{4}$ meets	the plane $2x+3y-z$	=14 in the point
	(a) (2, 5, 7)	(b) (3, 5, 7)	(c) (5, 7, 3)	(d) (6, 5, 3)
13.	The equation of the	e plane passing	through the points A(2, 2, 1) and B(9, 3, 6) and
	Perpendicular to th	ne plane $2x + 6y$	+6z=1, is	

If the line $\frac{x+1}{3} = \frac{y-2}{4} = \frac{z+6}{5}$ is parallel to the plane 2x -3y + kz = 0, then the value

(d) $3x+4y-5z-9=0$		
The equation of the plane passi $3x-y+2z-4=0$ and $x+y+z-4$ by		-
(a) $7x + 5y - 4z - 8 = 0$ (b) $7x - 8 = 0$	-5y+4x-8=0 (c) $5x+7y-$	-4z+8=0
(d) $5x+7y-4z+8=0$		
The equation of the plane passi	ing through the points A(0, -1	., 0), B(2, 1, -1) and
C(1, 1, 1) is given by		
(a) $4x+3y-2x-3=0$ (b)	4x - 3y + 2x + 3 = 0 (c) $4x$	x - 3y + 2x - 3 = 0
(d) none of these		
If the plane $2x - y + z = 0$ is para	allel to the line $\frac{2x-1}{2} = \frac{2-y}{2}$	$=\frac{z+1}{a}$, then
The value of a is		
(a) -4 (b) -2	(c) 4	(d) 2
The angle between the $line \frac{x+1}{1}$	$\frac{1}{2} = \frac{y}{2} = \frac{z-1}{1}$ and a normal to t	the plane $x - y + z = 0$ is
(a) 0° (b) 30° (c)	c) 45° (d) 90°	
The point of intersection of the	line $\frac{x-1}{2} = \frac{y+2}{1} = \frac{z-3}{2}$ and t	he plane
2x - y + 3z - 1 = 0, is	3 4 -2	
(a) (-10,10,3) (b) (10,10,	(c) (10,-10,3)	(d) (10,-10,-3)
The equation of a pane passing is given by	through the points A(a, 0, 0)), B(0, b, 0)and C(0, 0, c)
(a) $ax + by + cz = 0$ (b) $ax - cz = 0$	$+by + cz = 1$ (c) $\frac{x}{a} + \frac{y}{b} + \frac{z}{c}$	$\frac{x}{a} = 0$ (d) $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$

(a) x+2y-3z+5=0 (b) 2x-3y+4z-6=0 (c) 4x+5y-6z+3=0

14.

15.

16.

17.

18.

19.

20.

(a) $\frac{11}{20}$ (b) $\frac{12}{23}$ (c) $\frac{17}{25}$ (d) $\frac{20}{21}$

If θ is the angle between the planes 2x - y + 2x = 3 and 6x - 2y + 3z = 5. then $\cos \theta = ?$

21.	The angle between the planes $2x - y + z = 6$ and $x + y + 2z = 7$, is					
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{2}$		

22. The angle between the planes $\vec{r} \cdot (3\hat{i} - 6\hat{j} + 2\hat{k}) = 4$ and $\vec{r} \cdot (2\hat{i} - \hat{j} + 2\hat{k}) = 3$, is

(a)
$$\cos^{-1}\left(\frac{16}{21}\right)$$
 (b) $\cos^{-1}\left(\frac{4}{21}\right)$ (c) $\cos^{-1}\left(\frac{3}{4}\right)$

23. The equation of the plane through the points A(2, 3, 1) and B(4, -5, 3), Parallel to the x-axis, is

(a)
$$x + y - 3x = 2$$
 (b) $y + 4z = 7$ (c) $y + 3z = 6$ (d) $x + 5y - 3z = 4$

24. A variable plane moves so that the sum of the reciprocals of its intercepts on the Coordinate axes is (1/2), Then, the plane passes through the point

(a)
$$(0, 0, 0)$$
 (b) $(1, 1, 1)$ (c) $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ (d) $(2, 2, 2)$

25. The equation of a plane which is perpendicular to $(2\hat{i}-3\hat{j}+\hat{k})$ and at a distance of 5units from the origin is

(a)
$$2x-3y+z=5$$
 (b) $2x-3y+z=5\sqrt{14}$ (c) $\frac{x}{2}-\frac{y}{3}+\frac{z}{1}=5$

(d)
$$\frac{x}{2} - \frac{y}{3} + \frac{z}{1} = \frac{5}{\sqrt{14}}$$

26. The equation of the plane passing through the point A(2, 3, 4) and parallel to the plane 5x-6y+7z=3, is

(a)
$$5x-6y+7z=20$$
 (b) $7x-6y+5z=72$ (c) $20x-18y+14z=11$

(d)
$$10x - 18y + 28z = 13$$

27. The foot of the perpendicular from the point A (7, 14, 5) and parallel to the plane 2x + 4y - z = 2 is

28.	The equation of the p	lane which makes with	the coordinate axes	, a triangle with
	Centroid (α, β, y) is given	ven by		
	(a) $\alpha x + \beta y + \gamma^z = 1$	(b) $\alpha x + \beta y + \gamma^z = 3$	(c) $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 1$	(d) $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma}$
29.	The intercepts made I	by the plane $\vec{r} \cdot (2\vec{i} - 3\vec{j} \cdot \vec{i} - 3\vec{j} - 3\vec{i} - $	$+4\hat{k}) = 12$ are	

=3

(a) $2,-3,4$ (b)	o) 2,-3,-6 (c)	c) -6,-4,3 (c)	d) $-6,4,3$
------------------	----------------	----------------	-------------

30. The angle between the line
$$\frac{x-2}{1} = \frac{y+3}{-2} = \frac{z+4}{-3}$$
 and the plane $2x-3y+z=5$ is

(a)
$$\cos^{-1}\left(\frac{5}{14}\right)$$
 (b) $\sin^{-1}\left(\frac{5}{14}\right)$ (c) $\cos^{-1}\left(\frac{3}{7}\right)$ (d) $\sin^{-1}\left(\frac{3}{7}\right)$

31. The angle between the line
$$\vec{r} \cdot (\hat{i} + \hat{j} - 3\hat{k}) + \lambda(2\hat{i} + 2\hat{j} + \hat{k})$$
 and the plane

$$\vec{r}$$
.(6 \vec{i} -3 \vec{j} +2 \vec{k}) = 5, is

(a)
$$\cos^{-1}\left(\frac{8}{21}\right)$$
 (b) $\cos^{-1}\left(\frac{5}{21}\right)$ (c) $\sin^{-1}\left(\frac{5}{21}\right)$ (d) $\sin^{-1}\left(\frac{8}{21}\right)$

32. The distance of the point
$$(\hat{i}+2\hat{j}+5\hat{k})$$
 from the plane $\vec{r}.(\hat{i}+\hat{j}+\hat{k})+17=0$, is

(a)
$$\frac{25}{\sqrt{2}}$$
 units (b) $\frac{25}{\sqrt{3}}$ units (c) $25\sqrt{2}$ units (d) $25\sqrt{3}$ units

33. The distance between the parallel planes 2x-3y+6z=5 and 6x-9y+18z+20=0, is

(a)
$$\frac{5}{3}$$
 units (b) $5\sqrt{3}$ units (c) $\frac{8}{5}$ units (d) $8\sqrt{5}$ units

34. The distance between the planes x + 2y - 2z + 1 = 0 and 2x + 4y - 4z + 5 = 0 is

(a) 4units (b) 2units (c)
$$\frac{1}{2}$$
 units (d) $\frac{1}{4}$ units

35. The image of the point P(1, 3, 4) in the plane 2x - y + z + 3 = 0, is

(a)
$$(3,-5,2)$$
 (b) $(3,5,-2)$ (c) $(3,5,2)$ (d) $(-3,5,2)$

ANSWERS:3 D -2

1. (c)	2. (c)	3. (a)	4. (b)	5. (d)	6. (b)	7. (a)	8. (b)	9. (c)
10. (b)	11. (c)	12. (b)	13. (d)	14.(b)	15. (c)	16. (a)	17. (d)	18. (b)
19. (d)	20. (d)	21. (c)	22. (a)	23. (b)	24. (d) 2	25. (b)	26.(a)	27. (b)
28. (d)	29.(c)	30. (b)	31. (d)	32. (b) 33. (a) 34. (c) 35. (d	l)

PROBABILITY

- 1. If A and B are mutually exclusive events such that P(A) = 0.4 P(B) = x and P(AUB) 0.5 then x=?
 - (a) 0. 2
- (b) 0. 1
- (c) $\frac{4}{5}$ (d) none of these
- If A and B are independent events such that P(A) = 0.6 P(B) = x and 2. P(AUB) 0.8 then x=?
 - (a) $\frac{4}{5}$

- (b) 0. 5 (c) $\frac{1}{6}$ (d) none of these
- 3. If P(A) = 0.8, P(B) = 0.5 and P(B/A) = 0.4, then P(A/B) = ?
 - (a) 0.32
- (b) 0.64
- (c) 0.16
- (d) 0.25
- If $P(A) = \frac{6}{11}$, $P(B) = \frac{5}{11}$ and $P(A \cup B) = \frac{7}{11}$, then P(A/B) = ?4.
- (a) $\frac{5}{6}$ (b) $\frac{5}{7}$ (c) $\frac{6}{7}$ (d) $\frac{4}{5}$
- If A and B are events such that $p(A) = \frac{1}{2}$, $p(B) = \frac{7}{12}$ and $P(A' \cup B') = \frac{1}{4}$, then A and B 5. are
 - (a) independent
- (b) mutually exclusive (c) both 'a' and 'b'
- It is given that the probability that A can solve a given problem is $\frac{3}{5}$ and the 6. probability that B can solve the same problem is $\frac{2}{3}$. The probability that at least one of A and B can solve a problem is