Individual Events

I1	P	4	I2	а	8	I3	а	6	I4	a	23	I5	a	2	IS	a	2
	Q	8		b	10		b	7		b	2		b	1	spare	b	770
	R	11		c	1		c	2		c	2		c	0		c	57
	S	10		d	2000		d	9902		d	8		d	6		d	58

Group Events

G1	а	1	G2	a	-1	G3	a	2	G4	a	4	G5	P	35	GS	P	4
	b	15		b	0		b	7		b	0		Q	6	spare	Q	6
	c	80		c	13		c	0		c	3		R	11		R	35
	d	1		d	5		d	*6 see the remark		d	3		S	150		S	8

Individual Event 1

 $\Rightarrow P = 4$

I1.1 If the interior angles of a *P*-sided polygon form an Arithmetic Progression and the smallest and the largest angles are 20° and 160° respectively. Find the value of P.

Sum of all interior angles =
$$\frac{P}{2}$$
 (20° + 160°) = 180°(P – 2)
90 P = 180 P – 360

I1.2 In
$$\triangle ABC$$
, $AB = 5$, $AC = 6$ and $BC = P$. If $\frac{1}{O} = \cos 2A$, find the value of Q .

(Hint:
$$\cos 2A = 2 \cos^2 A - 1$$
)
 $\cos A = \frac{6^2 + 5^2 - 4^2}{2 \times 6 \times 5} = \frac{3}{4}$
 $\cos 2A = 2 \cos^2 A - 1$

$$=2\times\left(\frac{3}{4}\right)^2-1=\frac{1}{8}$$

$$Q = 8$$

II.3 If
$$\log_2 Q + \log_4 Q + \log_8 Q = \frac{R}{2}$$
, find the value of R.

$$\frac{R}{2} = \log_2 8 + \log_4 8 + \log_8 8$$
$$= 3 + \frac{3}{2} + 1 = \frac{11}{2}$$

I1.4 If the product of the numbers R and
$$\frac{11}{S}$$
 is the same as their sum, find the value of S.

$$11 \times \frac{11}{S} = 11 + \frac{11}{S}$$

$$\Rightarrow \frac{110}{S} = 11$$

$$S = 10$$

Individual Event 2

I2.1 If x, y and z are positive real numbers such that $\frac{x+y-z}{z} = \frac{x-y+z}{y} = \frac{-x+y+z}{x}$ and $a = \frac{x+y-z}{z} = \frac{x-y+z}{y} = \frac{-x+y+z}{x}$ $\frac{(x+y)\cdot(y+z)\cdot(z+x)}{xyz}$, find the value of a.

Reference: 1992 HG2

Let
$$\frac{x+y-z}{z} = k$$
, $\frac{x-y+z}{y} = k$, $\frac{-x+y+z}{x} = k$.

$$\begin{cases} x+y-z = kz \cdots (1) \\ x-y+z = ky \cdots (2) \\ -x+y+z = kx \cdots (3) \end{cases}$$

$$(1) + (2) + (3): x+y+z = k(x+y+z)$$

$$\Rightarrow k = 1$$
From $(1), x+y = 2z, (2): x+z = 2y, (3): y+z = 2x$

$$\therefore a = \frac{(x+y) \cdot (y+z) \cdot (z+x)}{xyz} = \frac{8xyz}{xyz} = 8$$

- **I2.2** Let u and t be positive integers such that u + t + ut = 4a + 2. If b = u + t, find the value of b. $u + t + ut = 34 \Rightarrow 1 + u + t + ut = 35$ \Rightarrow (1 + *u*)(1 + *t*) = 35 \Rightarrow 1 + *u* = 5, 1 + *t* = 7 u = 4, t = 6 $\Rightarrow b = 4 + 6 = 10$
- **12.3** In Figure 1, *OAB* is a quadrant of a circle and semi-circles are drawn on *OA* A and \overrightarrow{OB} . If p, q denotes the areas of the shaded regions, where p = (b - 9) cm² and q = c cm², find the value of c. p = 1, let the area of each of two unshaded regions be $x \text{ cm}^2$

Let the radius of each of the smaller semicircles be r. The radius of the quadrant is 2r. $x + q = \text{area of one semi-circle} = \frac{\pi r^2}{2}$; $2x + p + q = \text{area of the quadrant} = \frac{1}{4}\pi(2r)^2 = \pi r^2$

$$2\times(1) = (2), 2x + 2q = 2x + p + q \Rightarrow q = p; c = 1$$

12.4 Let $f_0(x) = \frac{1}{c - x}$ and $f_n(x) = f_0(f_{n-1}(x)), n = 1, 2, 3,$ If $f_{2000}(2000) = d$, find the value of d.

Reference: 2009 HI6

$$f_0(x) = \frac{1}{1-x}$$
, $f_1(x) = f_0(\frac{1}{1-x}) = \frac{1}{1-\frac{1}{1-x}} = \frac{1-x}{-x} = \frac{x-1}{x} = 1-\frac{1}{x}$

$$f_2(x) = f_0(1 - \frac{1}{x}) = \frac{1}{1 - (1 - \frac{1}{x})} = x$$
, which is an identity function.

So
$$f_5(x) = f_2(x) = x$$
, ..., $f_{2000}(x) = x$;

$$f_{2000}(2000) = 2000 = d$$

Individual Event 3 (2000 Sample Individual Event)

I3.1 For all integers m and n, $m \otimes n$ is defined as: $m \otimes n = m^n + n^m$. If $2 \otimes a = 100$, find the value of a.

Reference: 1990 HI4

$$2^a + a^2 = 100$$

$$64 + 36 = 2^6 + 6^2 = 100$$
$$a = 6$$

13.2 If $\sqrt[3]{13b+6a+1} - \sqrt[3]{13b-6a-1} = \sqrt[3]{2}$, where b > 0, find the value of b.

Reference: 2005 FI2.2, 2016 FG3.3, 2019 HI10

$$\left(\sqrt[3]{13b+37} - \sqrt[3]{13b-37}\right)^3 = 2$$

$$13b + 37 - 3\sqrt[3]{(13b + 37)^2}\sqrt[3]{13b - 37} + 3\sqrt[3]{(13b - 37)^2}\sqrt[3]{13b + 37} - (13b - 37) = 2$$

$$24 = \sqrt[3]{(13b)^2 - 37^2} \sqrt[3]{13b + 37} - \sqrt[3]{(13b)^2 - 37^2} \sqrt[3]{13b - 37}$$

$$24 = \sqrt[3]{(13b)^2 - 37^2} \sqrt[3]{2}; \qquad (\because \sqrt[3]{13b + 37} - \sqrt[3]{13b - 37} = \sqrt[3]{2})$$

$$13824 = [(13b)^2 - 1369] \times 2$$

$$6912 + 1369 = 169 b^2$$

$$b^2 = 49$$

$$\Rightarrow b = 7$$

Method 2
$$\sqrt[3]{13b+37} - \sqrt[3]{13b-37} = \sqrt[3]{2}$$

We look for the difference of multiples of $\sqrt[3]{2}$

$$\sqrt[3]{8 \times 2} - \sqrt[3]{2} = \sqrt[3]{2} \Rightarrow 13b + 37 = 16, 13b - 37 = 2$$
, no solution

$$\sqrt[3]{27 \times 2} - \sqrt[3]{8 \times 2} = \sqrt[3]{2} \Rightarrow 13b + 37 = 54, 13b - 37 = 16$$
, no solution

$$\sqrt[3]{64 \times 2} - \sqrt[3]{27 \times 2} = \sqrt[3]{2} \Rightarrow 13b + 37 = 128, 13b - 37 = 54$$

$$\Rightarrow b = 7$$

I3.3 In figure 2, AB = AC and KL = LM. If LC = b - 6 cm and KB = c cm, find the value of c.

Reference: 1992 HG6

Draw LN // AB on BM.

$$BN = NM$$
 intercept theorem

$$\angle LNC = \angle ABC = \angle LCN \text{ (corr. } \angle s, AB // LN, \text{ base } \angle s, \text{ isos. } \Delta)$$

$$LN = LC = b - 6$$
 cm = 1 cm (sides opp. eq. \angle s)

c cm = KB = 2 LN = 2 cm (mid point theorem)

13.4 The sequence $\{a_n\}$ is defined as $a_1 = c$, $a_{n+1} = a_n + 2n$ $(n \ge 1)$. If $a_{100} = d$, find the value of d. $a_1 = 2$, $a_2 = 2 + 2$, $a_3 = 2 + 2 + 4$, ...

$$a_{100} = 2 + 2 + 4 + \dots + 198$$

$$= 2 + \frac{1}{2}(2 + 198) \cdot 99 = 9902 = d$$

Individual Event 4

I4.1 Mr. Lee is a years old, a < 100.

If the product of a and his month of birth is 253, find the value of a.

$$253 = 11 \times 23$$

- 11 = his month of birth and a = 23
- **I4.2** Mr. Lee has a + b sweets. If he divides them equally among 10 persons, 5 sweets will be remained. If he divides them equally among 7 persons, 3 more sweets are needed. Find the minimum value of b.

$$10m + 5 = 7n - 3 = 23 + b$$

$$7n - 10m = 8$$

By trial and error n = 4, m = 2

$$23 + b = 7 \times 4 - 3 = 25$$

$$b = 2$$

I4.3 Let c be a positive real number. If $x^2 + 2\sqrt{c}x + b = 0$ has one real root only, find the value of c.

$$x^2 + 2\sqrt{c} x + 2 = 0$$

$$\Delta = 4(c-2) = 0$$

$$\Rightarrow c = 2$$

14.4 In figure 3, the area of the square ABCD is equal to d. If E, F, G, H are the midpoints of AB, BC, CD and DA respectively and EF = c, find the value of d.

points of AB, BC, CD and DA respectively and
$$EF = c$$
, find the value of a .
Area of $EFGH = c^2 = 2^2 = 4$

Area of
$$ABCD = 2 \times \text{area of } EFGH = 8$$

$$\Rightarrow d = 8$$

Individual Event 5

I5.1 If $144^p = 10$, $1728^q = 5$ and $a = 12^{2p-3q}$, find the value of a.

$$a = 12^{2p-3q} = 144^p \div 1728^q = 10 \div 5 = 2$$

I5.2 If $1 - \frac{4}{x} + \frac{4}{x^2} = 0$, $b = \frac{a}{x}$, find b.

Reference: 1994 FI5.1

$$\left(1-\frac{2}{x}\right)^2=0$$
; $x=2$, $b=\frac{2}{2}=1$

I5.3 If the number of real roots of the equation $x^2 - bx + 1 = 0$ is c, find the value of c.

$$x^2 - x + 1 = 0$$

$$\Delta = 1^2 - 4 < 0$$

c = number of real roots = 0

15.4 Let f(1) = c + 1 and f(n) = (n - 1) f(n - 1), where n > 1. If d = f(4), find the value of d.

Reference: 2009 FI1.4

$$f(1) = 1$$

$$f(2) = f(1) = 1$$

$$f(3) = 2f(2) = 2$$

$$f(4) = 3f(3) = 3 \times 2 = 6$$

Individual Event (Spare)

IS.1 If a is the smallest prime number which can divide the sum $3^{11} + 5^{13}$, find the value of a.

Reference: 2010 FG3.1

- 3¹¹ is an odd number
- 5¹³ is also an odd number
- So $3^{11} + 5^{13}$ is an even number, which is divisible by 2.
- **IS.2** For all real number x and y, $x \oplus y$ is defined as: $x \oplus y = \frac{1}{r^2}$.

If $b = 4 \oplus (a \oplus 1540)$, find the value of b.

$$a \oplus 1540 = \frac{1}{2 \times 1540} = \frac{1}{3080}$$

$$b = 4 \oplus (a \oplus 1540) = \frac{3080}{4} = 770$$

IS.3 W and F are two integers which are greater than 20. If the product of W and F is b and the sum of W and F is c, find the value of c.

$$\begin{cases} WF = 770 \cdot \dots \cdot (1) \\ W + F = c \quad \dots \cdot (2) \end{cases}$$

$$770 = 22 \times 35$$

$$W = 22, F = 35$$

$$c = 22 + 35 = 57$$

IS.4 If $\frac{d}{114} = \left(1 - \frac{1}{2^2}\right)\left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{c^2}\right)$, find the value of d.

Reference: 1986 FG10.4, 2014 FG3.1

$$\left(1 - \frac{1}{2^2}\right)\left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{57^2}\right) = \left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right) \cdots \left(1 - \frac{1}{57}\right)\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{3}\right) \cdots \left(1 + \frac{1}{57}\right)$$

$$= \frac{1}{2} \cdot \frac{2}{3} \cdots \frac{56}{57} \times \frac{3}{2} \cdot \frac{4}{3} \cdots \frac{58}{57} = \frac{1}{57} \times \frac{58}{2} = \frac{58}{114}$$

$$d = 58$$

Group Event 1 (2000 Final Sample Group Event)

G1.1 Let x * y = x + y - xy, where x, y are real numbers. If a = 1 * (0 * 1), find the value of a.

$$0 * 1 = 0 + 1 - 0 = 1$$

 $a = 1 * (0 * 1)$
 $= 1 * 1$
 $= 1 + 1 - 1 = 1$

G1.2 In figure 1, AB is parallel to DC, $\angle ACB$ is a right angle,

$$AC = CB$$
 and $AB = BD$. If $\angle CBD = b^{\circ}$, find the value of b.

 $\triangle ABC$ is a right angled isosceles triangle.

$$\angle BAC = 45^{\circ} (\angle s \text{ sum of } \Delta, \text{ base } \angle s \text{ isos. } \Delta)$$

$$\angle ACD = 45^{\circ} \text{ (alt. } \angle \text{s, } AB // DC)$$

$$\angle BCD = 135^{\circ}$$

Apply sine law on $\triangle BCD$,

$$\frac{BD}{\sin 135^{\circ}} = \frac{BC}{\sin D}$$

$$AB\sqrt{2} = \frac{AB\sin 45^{\circ}}{\sin D}, \text{ given that } AB = BD$$

$$\sin D = \frac{1}{2}; D = 30^{\circ}$$

$$\angle CBD = 180^{\circ} - 135^{\circ} - 30^{\circ} = 15^{\circ} (\angle \text{s sum of } \Delta BCD)$$

$$b = 15$$

G1.3 Let x, y be non-zero real numbers. If x is 250% of y and 2y is c% of x, find the value of c.

$$x = 2.5y \qquad \cdots (1)$$

$$2y = \frac{c}{100} \cdot x \cdot \cdots \cdot (2)$$

Sub. (1) into (2):
$$2y = \frac{c}{100} \cdot 2.5y$$

$$c = 80$$

G1.4 If $\log_p x = 2$, $\log_q x = 3$, $\log_r x = 6$ and $\log_{pqr} x = d$, find the value of d.

Reference: 2001 FG1.4, 2015 HI7

$$\frac{\log x}{\log p} = 2; \quad \frac{\log x}{\log q} = 3; \quad \frac{\log x}{\log r} = 6$$

$$\frac{\log p}{\log x} = \frac{1}{2}; \quad \frac{\log q}{\log x} = \frac{1}{3}; \quad \frac{\log r}{\log x} = \frac{1}{6}$$

$$\frac{\log p}{\log x} + \frac{\log q}{\log x} + \frac{\log r}{\log x} = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1$$

$$\frac{\log pqr}{\log x} = 1$$

$$\Rightarrow \frac{\log x}{\log pqr} = 1$$

$$d = \log_{pqr} x = 1$$

G2.1 If $a = x^4 + x^{-4}$ and $x^2 + x + 1 = 0$, find the value of a.

$$\frac{x^2 + x + 1}{x} = 0$$

$$\Rightarrow x + \frac{1}{x} = -1$$

$$\Rightarrow \left(x + \frac{1}{x}\right)^2 = 1$$

$$\implies x^2 + \frac{1}{x^2} = -1$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2}\right)^2 = 1$$

$$a = x^4 + \frac{1}{x^4} = -1$$

G2.2 If $6^b + 6^{b+1} = 2^b + 2^{b+1} + 2^{b+2}$, find the value of b.

$$6^b \cdot (1+6) = 2^b \cdot (1+2+4)$$

$$\Rightarrow b = 0$$

G2.3 Let c be a prime number. If 11c + 1 is the square of a positive integer, find the value of c.

$$11c + 1 = m^2$$

$$\Rightarrow m^2 - 1 = 11c$$

$$\Rightarrow$$
 $(m+1)(m-1) = 11c$

$$\Rightarrow m-1=11$$
 and $m+1=c$

$$m = 13$$

- **G2.4** Let d be an odd prime number. If $89 (d+3)^2$ is the square of an integer, find the value of d.
 - : d is odd, d + 3 must be even, $89 (d + 3)^2$ must be odd.

$$89 = (d+3)^2 + m^2$$

By trial and error,
$$m = 5$$
, $89 = 8^2 + 5^2$

$$\Rightarrow d + 3 = 8$$

$$\Rightarrow d = 5$$

G3.1 Let a be the number of positive integers less than 100 such that they are both square and cubic numbers, find the value of a.

Reference 1998 HG4, 2021 P2Q4

The positive integers less than 100 such that they are both square and cubic numbers are: 1 and $2^6 = 64$ only, so there are only 2 numbers satisfying the condition.

- **G3.2** The sequence $\{a_k\}$ is defined as: $a_1 = 1$, $a_2 = 1$ and $a_k = a_{k-1} + a_{k-2}$ (k > 2). If $a_1 + a_2 + ... + a_{10} = 11 \ a_b$, find the value of b. $a_1 = 1$, $a_2 = 1$, $a_3 = 2$, $a_4 = 3$, $a_5 = 5$, $a_6 = 8$, $a_7 = 13$, $a_8 = 21$, $a_9 = 34$, $a_{10} = 55$ $a_1 + a_2 + ... + a_{10} = 1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 = 143 = 11 \times 13 = 11a_7$ b = 7
- **G3.3** If c is the maximum value of $\log(\sin x)$, where $0 < x < \pi$, find the value of c. $0 < \sin x \le 1$ $\log(\sin x) \le \log 1 = 0$ $\Rightarrow c = 0$
- **G3.4** Let $x \ge 0$ and $y \ge 0$. Given that x + y = 18. If the maximum value of $\sqrt{x} + \sqrt{y}$ is d,

find the value of *d* . (Reference: 1999 FGS.2, 2019 FG1.1)

$$x + y = (\sqrt{x} + \sqrt{y})^2 - 2\sqrt{xy}$$

$$\Rightarrow (\sqrt{x} + \sqrt{y})^2 = 18 + 2\sqrt{xy} \le 18 + 2\left(\frac{x+y}{2}\right) = 36 \quad (GM \le AM)$$

$$\sqrt{x} + \sqrt{y} \le 6 = d \text{ (It is easy to get the answer by letting } x = y \text{ in } x + y = 18)$$

Remark The original question is Given that x + y = 18. If the maximum value of $\sqrt{x} + \sqrt{y}$... $\sqrt{x} + \sqrt{y}$ is undefined for x < 0 or y < 0.

G4.1 If a tiles of L-shape are used to form a larger similar figure (figure 2) without overlapping, find the least possible value of a.

From the figure, a = 4.

G4.2 Let α , β be the roots of $x^2 + bx - 2 = 0$.

If $\alpha > 1$ and $\beta < -1$, and b is an integer, find the value of b.

$$\alpha - 1 > 0$$
 and $\beta + 1 < 0$

$$\Rightarrow$$
 $(\alpha - 1)(\beta + 1) < 0$

$$\Rightarrow \alpha\beta + \alpha - \beta - 1 < 0$$

$$\Rightarrow \alpha - \beta < 3$$

$$\Rightarrow (\alpha - \beta)^2 < 9$$

$$\Rightarrow (\alpha + \beta)^2 - 4\alpha\beta < 9$$

$$\Rightarrow b^2 + 8 < 9$$

$$\Rightarrow -1 < b < 1$$

:: b is an integer

$$\therefore b = 0$$

G4.3 Given that m, c are positive integers less than 10.

If m = 2c and $0.\dot{m}\dot{c} = \frac{c+4}{m+5}$, find the value of c.

$$0.\dot{m}\dot{c} = \frac{10m + c}{99} = \frac{c + 4}{m + 5}$$

$$\Rightarrow \frac{20c+c}{99} = \frac{c+4}{2c+5}$$

$$\Rightarrow \frac{7c}{33} = \frac{c+4}{2c+5}$$

$$\Rightarrow 14c^2 + 35c = 33c + 132$$

$$14c^2 + 2c - 132 = 0$$

$$\Rightarrow 7c^2 + c - 66 = 0$$

$$\Rightarrow (7c + 22)(c - 3) = 0$$

$$\Rightarrow c = 3$$

G4.4 A bag contains d balls of which x are black, x + 1 are red and x + 2 are white. If the probability of drawing a black ball randomly from the bag is less than $\frac{1}{6}$, find the value of d.

$$\frac{x}{3x+3} < \frac{1}{6}$$

$$\Rightarrow \frac{x}{x+1} < \frac{1}{2}$$

$$\Rightarrow 2x < x + 1$$

$$\Rightarrow x < 1$$

$$\Rightarrow x = 0$$

$$\Rightarrow d = 3x + 3 = 3$$

G5.1 If the roots of $x^2 - 2x - P = 0$ differ by 12, find the value of P.

Reference: 1999 FGS.3

$$\alpha + \beta = 2$$
, $\alpha\beta = -P$

$$\alpha - \beta = 12$$

$$\Rightarrow (\alpha - \beta)^2 = 144$$

$$\Rightarrow$$
 $(\alpha + \beta)^2 - 4\alpha \beta = 144$

$$\Rightarrow$$
 4 + 4 P = 144

$$\Rightarrow P = 35$$

G5.2 Given that the roots of $x^2 + ax + 2b = 0$ and $x^2 + 2bx + a = 0$ are both real and a, b > 0.

If the minimum value of a + b is Q, find the value of Q. (Reference: 2013 HG6)

$$a^2 - 8b \ge 0$$
 and $4b^2 - 4a \ge 0$

$$a^2 \ge 8b$$
 and $b^2 \ge a$

$$\Rightarrow a^4 \ge 64b^2 \ge 64a$$

$$\Rightarrow a^4 - 64a \ge 0$$

$$\Rightarrow a(a^3 - 64) \ge 0$$

$$\Rightarrow a^3 \ge 64$$

$$\Rightarrow a \ge 4$$

Minimum
$$a = 4$$
, $b^2 \ge a$

$$\Rightarrow b^2 \ge 4 \Rightarrow \text{minimum } b = 2$$

$$Q = \text{minimum value of } a + b = 4 + 2 = 6$$

G5.3 If $R^{2000} < 5^{3000}$, where R is a positive integer, find the largest value of R.

Reference: 1996 HI4, 2008 FI4.3, 2018 FG2.4

$$(R^2)^{1000} < (5^3)^{1000}$$

$$\Rightarrow R^2 < 5^3 = 125$$

$$\Rightarrow R < \sqrt{125} < 12$$

The largest integral value of R = 11

G5.4 In figure 3, $\triangle ABC$ is a right-angled triangle and $BH \perp AC$. If AB = 15, HC = 16 and the area of $\triangle ABC$ is S find the

If AB = 15, HC = 16 and the area of $\triangle ABC$ is S, find the value of S.

Reference: 1998 FG1.3, 2022 P1Q3

It is easy to show that $\triangle ABH \sim \triangle BCH \sim \triangle ACB$.

Let
$$\angle ABH = \theta = \angle BCH$$

In
$$\triangle ABH$$
, $BH = 15 \cos \theta$

In
$$\triangle BCH$$
, $CH = BH \div \tan \theta \Rightarrow 16 \tan \theta = 15 \cos \theta$

$$16 \sin \theta = 15 \cos^2 \theta \Rightarrow 16 \sin \theta = 15 - 15 \sin^2 \theta$$

$$15 \sin^2 \theta + 16 \sin \theta - 15 = 0$$

$$(3 \sin \theta + 5)(5 \sin \theta - 3) = 0$$

$$\sin \theta = \frac{3}{5}$$
; $\tan \theta = \frac{3}{4}$

$$BC = AB \div \tan \theta = 15 \times \frac{4}{3} = 20$$

Area of
$$\triangle ABC = \frac{1}{2} \cdot 15 \times 20 = 150 = S$$

Group Event (Spare)

GS.1 If a number N is chosen randomly from the set of positive integers, the probability of the unit digit of N^4 being unity is $\frac{P}{10}$, find the value of P.

If the unit digit of N^4 is 1, then the unit digit of N may be 1, 3, 7, 9. So the probability = $\frac{4}{10}$

$$P = 4$$

GS.2 Let $x \ge 0$ and $y \ge 0$. Given that x + y = 18.

If the maximum value of $\sqrt{x} + \sqrt{y}$ is d, find the value of d.

Reference: 1999 FG3.4

$$x + y = \left(\sqrt{x} + \sqrt{y}\right)^2 - 2\sqrt{xy}$$

$$\Rightarrow \left(\sqrt{x} + \sqrt{y}\right)^2 = 18 + 2\sqrt{xy} \le 18 + 2\left(\frac{x+y}{2}\right) = 36 \quad (G.M. \le A.M.)$$

GS.3 If the roots of $x^2 - 2x - R = 0$ differs by 12, find the value of R.

Reference: 1999 FG5.1

 $\sqrt{x} + \sqrt{y} \le 6 = d$

$$\alpha + \beta = 2, \ \alpha \ \beta = -R$$

$$\alpha - \beta = 12$$

$$\Rightarrow (\alpha - \beta)^2 = 144$$

$$\Rightarrow (\alpha + \beta)^2 - 4\alpha \ \beta = 144$$

$$\Rightarrow 4 + 4R = 144$$

$$\Rightarrow R = 35$$

GS.4 If the product of a 4-digit number abSd and 9 is equal to another 4-digit number dSba, find the value of S.

Reference: 1987 FG9, 1994HI6

$$a = 1, d = 9$$
, Let the carry digit in the hundred digit be x . Then $9S + 8 = 10x + b$ (1) $9b + x = S$ (2); $x = S - 9b$ (3) Sub. (3) into (1): $9s + 8 = 10(S - 9b) + b \Rightarrow 8 = S - 89b$ $\Rightarrow S = 8, b = 0$