

## Dr. Han Huang

**South China University of Technology** 



**Chapter 3. Relations** 

## Representing Relations

Section 3.3

#### **Contents**

- 1 Representing Relations Using Matrices
- 2 Representing Relations Using Digraphs



## § 7.3: Representing Relations

- Before saying more about the n-th power of a relation, let's talk about representations
- Some ways to represent n-ary relations:
  - With a list of n-tuples.
  - With a function from the (n-ary) domain to {T,F}.
- Special ways to represent binary relations:
  - With a zero-one matrix.
  - With a directed graph.



- One reason: some calculations are easier using one representation, some things are easier using another
- There are even some basic ideas that are suggested by a particular representation

It's often worth playing around with different representations!

## **Using Zero-One Matrices**

- \* To represent a binary relation  $R:A\times B$  by an  $|A|\times |B|$  0-1 matrix  $M_R = [m_{ij}]$ , let  $m_{ij} = 1$  iff  $(a_i,b_i)\in R$ .
- **❖ E.g.**, Suppose 小白 likes 小黄 and 小黑, 小红 likes 小黑, and 小绿 likes 小蓝.
- Then the 0-1 matrix representation of the relation Likes:Boys × Girls relation is:

|    | 小黄 | 小黑 | 小蓝 |
|----|----|----|----|
| 小白 | [1 | 1  | 0] |
| 小红 | 0  | 1  | 0  |
| 小绿 | Lo | 0  | 1  |

- ❖Special case 1-0 matrices for a relation on A (that is, R:A×A)
- Convention: rows and columns list elements in the same order
- This where 1-0 matrices come into their own!

## **Zero-One Reflexive, Symmetric**

- Recall: Reflexive, irreflexive, symmetric, and asymmetric relations.
  - These relation characteristics are very easy to recognize by inspection of the zero-one matrix.



## **Zero-One Reflexive, Symmetric**

- Recall: Reflexive, irreflexive, symmetric, and asymmetric relations.
  - These relation characteristics are very easy to recognize by inspection of the zero-one matrix.





#### **Definition**

❖ A directed graph, or digraph, consist of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial vertex of the edge (a,b), and the vertex b is called the terminal vertex of this edge.





- $R1 = \{ (1,1),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1) \}$
- $R2 = \{ (1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(4,1),(4,3) \}$

## **Using Directed Graphs**

\* A directed graph or digraph  $G=(V_G, E_G)$  is a set  $V_G$  of vertices (nodes) with a set  $E_G \subseteq V_G \times V_G$  of edges (arcs). Visually represented using dots for nodes, and arrows for edges. A relation  $R:A \times B$  can be represented as a graph  $G_R=(V_G=A \cup B, E_G=R)$ .

Matrix representation  $M_R$ :



## Digraph Reflexive, Symmetric

Many properties of a relation are easily determined by inspection of its graph.









## Digraph Reflexive, Symmetric

Many properties of a relation can be determined by inspection of its graph.



Reflexive: Every node has a self-loop



Irreflexive:
No node
links to itself



Symmetric: Every link is bidirectional



Asymmetric: No link is bidirectional

These are not symmetric & not asymmetric

These are non-reflexive & non-irreflexive

## Particularly easy with a graph

- Properties that are somehow 'local' to a given element, e.g.,
  - "does the relation contain any elements that are unconnected to any others?"
- Properties that involve combinations of pairs, e.g.,
  - "does the relation contain any cycles?"
  - things to do with the composition of relations (e.g. the n-th power of R)



#### **Example 4**

$$\mathbf{M}_{R_1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad \mathbf{M}_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{M}_{R_2} = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{vmatrix}$$

$$\mathbf{M}_{R_1 \cup R_2} = \mathbf{M}_{R_1} \vee \mathbf{M}_{R_2} = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix}$$

$$\mathbf{M}_{R_1 \cap R_2} = \mathbf{M}_{R_1} \wedge \mathbf{M}_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

#### **Example 5**

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{M}_{S} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_S = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{S \circ R} = \mathbf{M}_R \odot \mathbf{M}_S = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

#### **Example 6**

$$\mathbf{M}_R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{M}_{R^2} = \mathbf{M}_{R}^{[2]} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$



Figure 1.

### Exercises

- 1. Supposed a binary relation R (Figure 1) on the set A = { 1, 2, 3 }, R is ( B )
- A. reflexive, antisymmetric, transitive
- B. irreflexive, symmetric, non-transitive
- C. irreflexive, antisymmetric, transitive
- D. reflexive, antisymmetric, non-transitive

- 2. Supposed a binary relation R (Figure 1) on the set A = { a, b, c }, R is ( **D** )
- A. reflexive, antisymmetric, transitive
- B. reflexive, not antisymmetric, transitive
- C. not reflexive, symmetric, transitive
- D. reflexive, not antisymmetric, non-transitive

There exist (a,b) and (b,c), but there not exists (a,c)



- 3. For the relation {(a, c), (a, d), (b, c), (b, d), (c, a), (c, d)} on the set {a, b, c, d}, which is its property? ( D )
- A. reflexive
- B. transitive
- C. symmetric
- D. none of these properties above

4. Which of the following matrices represents an anti-symmetric relation ( D )?

A) 
$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$C) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$B) \begin{bmatrix}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}$$

$$D) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

- 5. List the ordered pairs in the relations on {1,
- 2, 3) corresponding to the matrix  $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

6. Determine whether the relations represented by the matrix are reflexive, irreflexive, symmetric, antisymmetric, and/or transitive.

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Reflexive, symmetric, transitive

7. Determine whether the relations represented by the matrix are reflexive, irreflexive, symmetric, antisymmetric, and/or transitive.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

**Symmetric** 

8.Set  $S = \{ 1, 2,3 \}$ , Fig. 2-(2) shows that R has a relation on S, R is A?

A. reflexive B. symmetric C. antisymmetric D. transitive



9. Given the following matrix for a relation, draw the directed graph with vertices 1,2,3,4.

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$





**10.** The matrix representing R is  $M_R = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$ 

 $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ . The matrix for  $M_{R^2}$  is \_\_\_\_\_.

 $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ 

11. Let R be the relation represented by the matrix  $M_R = \begin{bmatrix} 010 \\ 001 \\ 110 \end{bmatrix}$ . Please write down the matrix  $M_{R^4}$ .

$$M_{R} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \quad \Rightarrow \quad M_{R^{2}} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \quad \Rightarrow \quad M_{R^{4}} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

R=  $\{(a, b) \mid a \neq b\}$ . How many nonzero entries does the matrix representing the relation R on A =  $\{1, 2, 3, \ldots, 99, 100\}$  have ?.

100\*100-100=9900

13. Suppose that the relation R on a set is

represented by the matrix 
$$M_R = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
,

which of the following properties does R have?

A. reflexive B. symmetric C. transitive

D. none of these properties above

13. Suppose that the relation R on a set is

represented by the matrix 
$$M_R = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
,

which of the following properties does R have? (C)

A. reflexive B. symmetric C. transitive D. none of these properties above



14. If relation R on the set  $S=\{1,2,...,n\}$  is antisymmetric and reflexive, how many nonezero elements in the matrix of  $R \cap R^{-1}$ ?

Because R is antisymmetric,  $a_{ij} \neq a_{ji} (i \neq j)$  and  $a_{ij} = a_{ji} (i = j)$ .  $R^{-1}$  is the transposition of R, so  $b_{ij} = a_{ij}$ .  $b_{ij} = 0$  when  $a_{ji} = 0$  and  $b_{ij} = 1$  when  $a_{ji} = 1 (i \neq j)$ .  $b_{ii} = 0$  when  $a_{ii} = 0$  and  $b_{ii} = 1$  when  $a_{ii} = 0$  (i = j). Sign  $M_{R \cap R^{-1}}$  as the matrix of  $R \cap R^{-1}$ :  $M_{R \cap R^{-1}} = M_R \wedge M_{R^{-1}}$   $a_{ij} \wedge b_{ij} = 0 (i \neq j)$ .

Therefore, none-zero elements in the matrix of  $R \cap R^{-1}$  equals to the number of the none-zero diagonal elements in R. Because R on the set  $S=\{1,2,\cdots,n\}$  is reflexive, the number of the none-zero diagonal elements in R equals to n.

**15**.

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Find  $R^{-1}$  and  $\overline{R}$ 

#### 15. Solution:

$$\mathbf{M}_{R^{-1}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{M}_{\overline{R}} = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$



# End of Section 7.3