Deep Learning in Finance

week 5: autoencoders

Damien Challet damien.challet@centralesupelec.fr

3rd December 2024

So far

 $DL \equiv$ (input nature, architecture, learning, output, loss)

 $\mathsf{input} \Longrightarrow \mathsf{architecture}$

 $architecture \equiv structure + weights + activation functions$

weights and structure ⇒ representation

input → representation → output

Model fitting

- Input data X
- Minimize cost function \rightarrow parameters θ
 - MaxLik
 - (nonlinear) Least squares
 - . . .
- Compressed information about system:

(model, parameters)

 \equiv representation of the system

Model fitting: least squares

- Fit data $X \in \mathbb{R}^{N \times T}$
- Model M

$$\hat{X} = \mathcal{M}(\theta, \xi_{external}),$$

where $\xi_{external}$ includes noise

Find

$$\hat{ heta} = rg \min_{ extit{a}} E_{\xi} ||X - \mathcal{M}(heta, \xi)||_2$$

- $\hat{\theta}$ is such that the model reproduces the best X
- Hard part: model choice, number of parameters

Model fitting, least squares and NNs

Least squares + model

$$X, \mathcal{M}(heta)
ightarrow \mathsf{loss} \; ||\mathsf{X} ext{-}\mathcal{M}(heta)||_2$$

$$|
abla | |X - \mathcal{M}(heta)||_2
ightarrow \hat{ heta}$$
 at fixed \mathcal{M}

NNs

$$X$$
, $NN(X) \rightarrow loss ||X - NN(X)||_2$

$$\nabla ||X - NN(X)||_2 \rightarrow NN$$

NN: model + parameters

 \rightarrow how to fit model and parameters?

GAN: from parameters/representation to object

- draw z from P(z)
- NN: x = G(z): realistic object
- From object to features
 - in principle

$$G^{-1}(x)=z$$

in reality

$$z = \arg\min_{\zeta} ||x - G(\zeta)||$$

• \rightarrow ¢/p/n/p/u/t/ \notin learn G^{-1}

How to learn good representations?

• Learn G^{-1} and G at the same time

$$x \to z = G^{-1}(x) \to G(G^{-1}(x)) = x$$

• In practice, \hat{G} , \hat{G}^{-1}

$$x \to \hat{z} = \hat{G^{-1}}(x) \to \widehat{NN}(x) = \hat{G}(\hat{G^{-1}}(x)) = \hat{\hat{x}}$$

• Learning the identity ≡ minimizing loss

$$\mathcal{L} = \sum_{i} ||\hat{\hat{x}}_i - x_i||$$

Autoencoder

ullet AE \equiv Deep network with bottleneck

encoder
$$E \rightarrow$$
 features \rightarrow decoder D

• Aim: learn the identity

$$D(E(x)) = x$$

Encoder-feature-decoder

[source]

Stacked auto-encoders

rule of thumb: learn layer by layer

Restricted auto-encoders

Partial reconstruction

N.B.: NNs must be non-linear

AE+MSE+Iinear activations \equiv PCA

• bottleneck dimension B= projection dimension

Role of bottleneck size

B: number of neurons in the bottleneck

- *B* < *N*: undercomplete AO
 - *B* = 1:
 - encoder fits 1-dimensional distribution \rightarrow z-score / p-value
 - decoder generalise z to input dimension
 - B = 2
 - able to fit 2 parameters, or joint distributions
 - B = 3
 - e.g. 2-dimensional averages + standard deviation
- *B* ≥ *N*: complete/overcomplete
 - seems stupid
 - corresponds to kernel trick

Role of network complexity

• Too powerful AE, B = 1

Perfect learning

Not good at generalizing

• Input too sharp: add noise (denoising autoencoder)

Denoising auto-encoders

- Train an AE with sharp objects
- Create noisy samples/Dropout and continue training
- Output: filtered object

Example [link]

Additional reading

Goodfellow, Bengio, Courville (2016) [link] Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow [link]

- Tricks of the trade
- Constraints on AE:
 - symmetric weights
 - sparsity of activation in the bottleneck (L1)
 - bound gradients

Autoencoder architecture

- Images: CNN and Inverse CNN
- Timeseries
 - Dense
 - CNN
 - recurrent LSTM, GRU
 - attention

Uses of AE

1. Encoder

- simplified information
- (soft) clustering of z
- compression

2. Decoder

• generation: sample $z \to \text{synthetic } x$

3. Full AE:

- Denoising
- Anomaly detection outlier o outlier reconstruction loss $||\hat{\hat{x_i}} x_i||$

AE: encoder

- Train a (V)AE
- Compute features $z_i = \text{encoder}(x_i)$
- In feature space
 - clustering (K-means, DBscan)
 - sample similarity
- See also
 - UMAP [paper][package]
 - SNEkhorn [paper][package]

AE: decoder

- Sample z
- Decode *x*

Generate
$$x = G(z)$$

 $\bullet \equiv \mathsf{GAN}$

Anomaly detection

Large reconstruction error \longleftrightarrow anomaly

- example : Gorduza et al (2022) [preprint]: correlation matrix reconstruction
- 3.1 Correlation between AUROC t+1 and volatility

Figure 4: Time series of volatility vs \mathbf{AUROC}_{t+1}

Note: may be due to correlation matrix estimation problems.

Variational Auto Encoders:

- Samples $x \in \mathbb{R}^N$ from unknown distribution P(x)
- How to generate new samples that look like x?
 - sample features $z \sim P(z) \rightarrow P(x, z)$
- Aim: find P(x, z) that maximises

$$P(x) = \int P(x, z) dz$$

N.B.: P(x) is unknown

• Equivalent problem: fix P(z), find P(x|z)

$$P(x) = \int P(x|z)P(z)dz$$

Encoder, decoder

Equivalent problems: find either

1. decoder

2. encoder

via Bayes theorem

$$P(x|z) = \frac{P(z|x)P(x)}{P(z)}$$

DL: variational autoencoders (VAE)

Kingma and Welling (2014) [link]: learn simultaneously

1. Decoder

$$p_{\theta}(x|z) \simeq P(x|z)$$

2. Encoder

$$q_{\phi}(z|x) \simeq P(z|x) \ \sim \mathcal{N}(\mu, \sigma I)$$
 (hypothesis)

Prior

$$p(z) \sim \mathcal{N}(\mu, \sigma I)$$

- Aims:
 - 1. $q_{\phi}(z|x) \simeq p_{\theta}(z|x)$
 - 2. encoding $\rightarrow P(z) \rightarrow \text{decoding}$

VAE: loss function

1. Ensure that $q_{\phi}(z|x) \simeq p_{\theta}(z|x)$

Kullback-Leibler discrepancy: loss of information of approximating f(y) with g(y)

$$D_{KL}(f(y)||g(y)) = E_{f(x)}\left[\log\frac{g(y)}{f(y)}\right] = \int f(y)\log\frac{g(y)}{f(y)}dy$$

2. maximum likelihood

$$\max \log P(x)$$

Playing with discrepancy D_{KL} and Bayes rule [detailled computations]

$$\mathcal{L}(\theta, \phi) = E_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - D_{KL} \left(q_{\phi}(z|x) || p(z) \right)$$

Loss function

1. Jordan (2018) [link]: latent space

KL divergence forces q(z|x) to be Gaussian with no cross-correlation

• β -VAE, $\beta > 1$, sometimes improvement

$$\mathcal{L}(\theta, \phi) = \mathcal{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - \beta D_{\mathcal{KL}} \left(q_{\phi}(z|x) || p(z) \right)$$

VAE: latent states

Decoder

$$q_{\phi}(z|x) \simeq P(z|x) \ \sim \mathcal{N}(\mu, \sigma I) ext{ (hypothesis)}$$

outputs μ and σ : multidimensional

Jordan (2018) [link]

VAE: use cases

- 1. Clustering \rightarrow prediction
- 2. Scenario generators
- 3. Anomaly detection
- 4. Conditional VAEs

VAE as scenario generators

Jordan (2018) [link]

• Sampling latent space according to $\mathcal{N}(\mu, \sigma I)
ightarrow \mathsf{scenarios}$

Useful references

- Goodfellow, Bengio, Courville (2016) [link]
- Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow [link]
- VAE: detailed loss function computation: [link]