CIR₂ TD de Maths - Groupe des permutations

Exercices

en produit de cycles de supports disjoints puis en produit de transpositions. Quelle est sa signature ?

- > Quelle est la composée de 2 cycles dont les supports ont un et un seul élément commun ?
- ➤ Décomposer en produit de cycles disjoints la composée de 2 cycles dont les supports ont exactement deux éléments communs.
- Quelle est la signature de la permutation de l'alphabet représentée par le mot

pvlwihcbfazoteqkdxnsuymgjr ?

Problème

Dans tout le problème, n est un entier supérieur ou égal à 3 et S_n est le groupe des permutations de $\{1..n\}$. Une transposition est notée (i,j), un p-cycle est noté $(x_1,x_2,...,x_p)$

pour deux permutations σ_1 et σ_2 , on notera $\sigma_1.\sigma_2$ au lieu de $\sigma_1 \circ \sigma_2$ leur composée.

- 1) Soient i et j deux entiers tels que $1 \le i < j \le n$. Calculer les composées suivantes :
 - a) (1,2).(1,3)..(1,i)
 - b) (1,i).(1,i-1)..(1,3).(1,2)
 - c) (1,i).(1,j).(1,i)
 - d) (j+1, j, j-1,..., 2, 1).(1, 2,..., j-1, j)
 - e) (i, i+1).(i+1, i+2)..(j-2, j-1).(j-1, j)
 - f) (j, j-1).(j-1, j-2)...(3, 2).(2,1)
 - g) (i, i+1, ..., j-2, j-1).(j, j-1, ..., i+1, i)
- 2) Soient:

 $A = \{(1,2),(1,3),...,(1,n)\}$ l'ensemble des transpositions de 1 avec les autres entiers

 $B = \{(1,2),(2,3),...,(n-2,n-1),(n-1,n)\}$ l'ensemble des transpositions de 2 entiers consécutifs

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 1 & 2 & 6 & 4 & 3 \end{pmatrix}$$

- a) Montrer que toute permutation peut s'écrire comme composée d'éléments de A Ecrire σ comme composée d'éléments de A
- b) Montrer que toute permutation peut s'écrire comme composée d'éléments de B Ecrire σ comme composée d'éléments de B
- 3) Soient τ et τ' deux transpositions.

Montrer que $\tau.\tau' = id$ **ou** $(\tau.\tau').(\tau.\tau') = id$ **ou** $(\tau.\tau').(\tau.\tau').(\tau.\tau') = id$

- 4) Soit σ une permutation telle que pour toute transposition τ , $\sigma . \tau = \tau . \sigma$
 - a) En considérant la transposition $\tau = (1,2)$, utiliser l'égalité $(\sigma.\tau)(n) = (\tau.\sigma)(n)$ pour démontrer que $\sigma(n) \neq 1$ et $\sigma(n) \neq 2$
 - b) En poursuivant, montrer que $\sigma(n) = n$.
 - c) Poursuivre. Conclure.

