Sistemas Operativos

2° año Ing. en Sistemas de Información Universidad Tecnológica Nacional Facultad Regional Villa María

Agenda

- Introducción Interbloqueos
- Recursos
- Algoritmo de avestruz.
- Detección, recuperación
- Evasión
- Prevención

Recursos

- •Recurso: Adquirir, utilizar y liberar a lo largo del tiempo
- Apropiativos: ej. Memoria ram
- •No apropiativos: Grabadora de Cd.
- -Secuecia de eventos
- Solicitud
- Utilización
- Liberación
- Bloqueo vs inactividad

Adquisición de recursos

- Semáros o mutexes asociados al recurso
- Adquisión de manera secuencial
- •Abrazo Mortal: cada uno de los procesos involucrados se bloquea hasta

conseguir el recurso que tiene el otro proceso.

- •Definición:
- •"Un conjunto de procesos está en un abrazo mortal cuando todos los procesos en ese conjunto están esperando un evento que sólo puede ser causado por otro proceso en el conjunto. "
- •Ninguno se puede:

Ejecutar

Liberar recursos

Ser despertado

- Condiciones para los interbloqueos
- 1- Exclusión mutua (Un recurso se asigna a un solo proceso en un Tiempo o está libre)
- 2- Contención y espera. (Si un proceso tiene un recurso puede solicitar otro)
- 3- No apropiativa. (No se puede quitar por la fuerza un recurso, se deben liberar)
- 4- Espera circular. (Debe haber una cadena circular donde cada uno espera por el recurso del otro)

Modelado de Interbloqueos

Algoritmo de la avestruz

•Los interbloqueos ocurren rara vez, hacer de cuenta que no pasa nada

Detección de Interbloqueo

- Detección de interbloqueos con un recurso de cada tipo
- •1 o mas ciclos → interbloqueo por los nodos que pertencen al ciclo
 - •Ejemplo de un sistema deadlocked?
 - •Proceso A tiene R, quiere S
 - Proceso B tiene nada, quiere T
 - Proceso C tiene nada, quiere S
 - Proceso D tiene U, quiere S y T
 - Proceso E tiene T, quiere V
 - Proceso F tiene W, quiere S
 - Proceso G tiene V, quiere U

Detección de Interbloqueo

- •Se utilizan algoritmos conocidos para la detección de ciclos en un grafo
- •Se toma cada nodo como raiz y se baja en profundidad, si vuelvo a pasar por alguno hay ciclo.

Recuperación de Interbloqueo

- Recuperación por medio de la apropiación
- -En algunos casos Manual. Ej. Procesamiento por lotes Impresora
- Casi imposible recuperarse
- Recuperación a través del retroceso
- -Puntos de comprobación periódicas.
- •Recuperación a través de la eliminación de procesos
- -Se puede borrar un proceso que no este en interbloqueo pero que libere un recurso en particular
- -Cuidado con el proceso que se elije para eliminar. Ej. Compilación, registro BD

Cómo evitar Interbloqueos

- •Intentar no asignar todos los recursos a la vez, que se soliciten en orden de acuerdo a la demand
- •Otorgar el recurso cuando sea seguro y no genere interbloqueo

Cómo evitar Interbloqueos

Estados inseguros

	Has	Max
Α	3	9
В	2	4
С	2	7

Free: 3 (a)

406	Has	Max
Α	3	9
В	4	4
С	2	7

Free: 1 (b)

(c)

-		Has	Max
	Α	3	9
	В	0	ı
	С	7	7
	F	ree: ()

Free: 0 (d)

	1 las	IVIAN
Α	3	9
В	0	_
С	0	-

Hac May

Free: 7 (e)

5	Has	Max
Α	3	9
В	2	4
С	2	7

Free: 3 (a)

1	Has	Max
Α	4	9
В	2	4
С	2	7

Free: 2 (b)

Has	Max
4	9
4	4
2	7
	Has 4 4 2

(c)

	Has	Max
Α	4	9
В	-	-
С	2	7
F	ree: 4	1

(d)

Cómo prevenir Interbloqueos

- 4 Condiciones de Coffman
- Atacar la condición de exclusión mutua
- •Ej, Demonio de impresión
- Atacar la condición de contención y espera
- •Reservar los recursos a priori? No es eficeinte y no se conocen de antemano todos los recursos que necesita el proces
- Atacar la condición no apropiativa
- Virtualizar recursos. Ej demonio de impresión
- Atacar la condición de espera circular
- •Utiliza solo uno en un momento o hace la lista de requerimientos