Problem Set - 19 Jan 2024

PROBLEM 1 (2017 AMC 8 #5)

What is the value of the expression $\frac{1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8}{1+2+3+4+5+6+7+8}?$

(A) 1020

(B) 1120

(C) 1220

(D) 2240

(E) 3360

PROBLEM 2 (2013 AMC 8 #11)

Ted's grandfather used his treadmill on 3 days this week. He went 2 miles each day. On Monday he jogged at a speed of 5 miles per hour. He walked at the rate of 3 miles per hour on Wednesday and at 4 miles per hour on Friday. If Grandfather had always walked at 4 miles per hour, he would have spent less time on the treadmill. How many minutes less?

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

PROBLEM 3 (2010 AMC 12A #8)

Triangle ABC has $AB=2\cdot AC$. Let D and E be on \overline{AB} and \overline{BC} , respectively, such that $\angle BAE=\angle ACD$. Let F be the intersection of segments AE and CD, and suppose that $\triangle CFE$ is equilateral. What is $\angle ACB$?

(A) 60°

(B) 75°

(C) 90°

(D) 105°

(E) 120°

PROBLEM 4 (2021 AMC 10A #20)

In how many ways can the sequence 1, 2, 3, 4, 5 be rearranged so that no three consecutive terms are increasing and no three consecutive terms are decreasing?

(A) 10

(B) 18

(C) 24

(D) 32

(E) 44

PROBLEM 5 (2019 IMO #1)

Let \mathbb{Z} be the set of integers. Determine all functions $f:\mathbb{Z} \to \mathbb{Z}$ such that, for all integers a and b,

$$f(2a)+2f(b)=f(f(a+b)).$$