Division: ID#: Name:

いくつかの定義:

- 一般に命題 $P \setminus Q$ に対して、 $P \oplus Q = (P \lor Q) \land (\neg (P \land Q))$ と定義する。
- 一般に集合 X の部分集合全体を P(X) で表す。空集合を \emptyset で表すと、 $\emptyset \in P(X)$ である。 $A,B \in P(X)$ に対して $A \triangle B = (A \cup B) \cap (A \cap B)^c = (A \cup B) \setminus (A \cap B)$ と定義する。
- 自然数 $n \in \mathbb{N}$ の倍数である整数全体を $n\mathbb{Z}$ で表す。すなわち、

$$n\mathbf{Z} = \{m \mid (m \in \mathbf{Z}) \land (n \mid m)\} = \{m \mid (m \in \mathbf{Z}) \land (\exists \ell \in \mathbf{Z})[m = \ell \cdot n]\}$$

復習: 以下は言葉の定義を確認するためのものであり、定義として書いているものでは ありません。

- 集合 *A* の濃度 (基数) を |*A*| で表す。
- 演算。が定義された集合 A は。に関して結合法則が成り立ち、単位元を持ち、A の各元に逆元が存在する時、 (A, \circ) は群をなすという。
- 演算 + と・が定義された集合 R が、+ に関して可換群となり、・に関しては結合 法則を満たし、単位元をもち、左右分配法則を持つとする。さらに、+ に関する単位元と・に関する単位元が相異なる時、 $(R,+,\cdot)$ を単位元を持つ環という。
- 集合 X に関係が定義され $x,y \in X$ がその関係にあるとき $x \sim y$ と書くことにする。この関係が次の三つの条件を満たす時、同値関係という。

(i)
$$x \sim x$$
, (ii) $x \sim y \Rightarrow y \sim x$, (iii) $((x \sim y) \land (y \sim z)) \Rightarrow (x \sim z)$

- 1. (a) P,Q を命題とするとき、 $P \oplus Q$ の真理表を作れ。
 - (b) P, Q, R を命題とするとき、次を証明せよ。

$$(P \oplus Q) \oplus R \equiv P \oplus (Q \oplus R)$$

Final 2003: Page 2 / 6

Division: ID#: Name:

2. X を集合とする。 $(P(X), \triangle)$ は群となることを証明せよ。

3. X を集合とする。 $H=\{\emptyset,X\}$ とする。 \emptyset も X も X の部分集合であるから、 $H\subset P(X)$ である。 $A,B\in P(X)$ に対して、 $A\sim B$ を $A\triangle B\in H$ で定義する。すなわち、

$$A \sim B \Leftrightarrow ((A \triangle B = \emptyset) \lor (A \triangle B = X))$$

このとき、 \sim は P(X) 上の同値関係であることを証明せよ。

4. (a) 集合 X に同値関係 \sim が定義されているとする。 $a \in X$ のとき $C_a = \{x \mid (x \in X) \land (x \sim a)\}$ で定義する。このとき $x,y \in X$ について次が成り立つことを証明せよ。

$$(C_x \neq C_y) \Rightarrow (C_x \cap C_y = \emptyset)$$

(b) X を集合 A, B をその部分集合とするとき、次を証明せよ。

$$(A \subset B) \Leftrightarrow (A \cup B = B)$$

5. f を集合 X から集合 Y への写像。A,B を X の部分集合、A',B' を Y の部分集合とする。このとき次のそれぞれの式が常に成立すれば証明し、常には成り立たない場合は反例(成り立たない例)を書け。その場合は成り立たないことも説明すること。

(a)
$$f(A \cap B) = f(A) \cap f(B)$$

(b) $f^{-1}(A' \cap B') = f^{-1}(A') \cap f^{-1}(B')$

Final 2003: Page 4 / 6

Division: ID#: Name:

6. f を集合 X から集合 Y への写像、g を集合 Y から X への写像とする。さらに、g(f(x)) = x が $x \in X$ すべてについて成立するとする。このとき、以下を証明せよ。

(a) f は単射である。

(b) g は全射である。

7. $[0,1] = \{x \mid (x \in \mathbf{R}) \land (0 \le x \le 1)\}$ とする。このとき [0,1] の濃度 |[0,1]| は実数 \mathbf{R} 全体の濃度と等しいことを証明せよ。定理を用いる場合は定理の内容も記述すること。

Final 2003: Page 5 / 6

Division: ID#: Name:

8. $X = \mathbf{N} \times \mathbf{N} \times \mathbf{N} = \{(a,b,c) \mid (a \in \mathbf{N}) \wedge (b \in \mathbf{N}) \wedge (c \in \mathbf{N})\}$ すなわち自然数が 3 個並んだもの全体を表すものとする。

(a) 一般に集合 A,B において $|A| \leq |B|$ であることの定義をのべ、 $|\mathbf{N}| \leq |X|$ であることを証明せよ。

(b) $|X| \leq |N|$ であることを証明せよ。

9. $(R, +, \cdot)$ を単位元をもつ環とする。また、加法 + に関する単位元を 0 で、乗法 · に関する単位元を 1 で表すとする。

(a) 環によっては、 $a,b \in R$ かつ $a \cdot b = 0$ であっても、a = 0 または b = 0 が得られない。そのような環の例をあげよ。

(b) $a, b \in R$ は $a \neq 0, b \neq 0$ であるが、 $a \cdot b = 0$ を満たすとする。このとき、a も b も 乗法・に関する逆元を持たないことを証明せよ。

Final 2003: Page 6 / 6

Division: ID#: Name:

- 10. $a, b \in \mathbb{N}$ とする。
 - (a) a,b の最小公倍数の定義を書け。

(b) a, b の最小公倍数を c とすると $a \mathbf{Z} \cap b \mathbf{Z} = c \mathbf{Z}$ となることを定理を使わずに証明せよ。

Message 欄: 「ホームページ掲載不可」の場合は明記のこと

- (1) この授業について。特に改善点について。
- (2) ICU の教育一般について。特に改善点について。