

基于卷积神经网络和迁移学习的面部表情识别研究 项目说明书

经费编码:	CJ20030							
项目名称:	基于	卷积神	经网络	各和迁	<u> 「移学</u>	习的	的面部:	表情识
	别研	究						
项目类型:	\checkmark	创新训	练项目	可项	百等	级:	□国	家级
		创业训	练项	3			☑省组	级
		创业实	践项目	3			□院组	级
负责人姓名	陈青芬							
所在系、专业、班级: 信息工程系 计算 1892								
项目起止时	2020. 6-2021. 6							
指导教师:				武並	<u>t</u>			

一、 小组成员

姓名	职位	院系	学号	E-mail
陈青芬	负责人	信息工程系	201841051044	2571788766@qq.com
杜晓岚	研究成员	中软国际学院	201841054103	1370484311@qq.com

二、实验过程

获取两个面部表情数据库,分为A、B两组,数据库中划分好训练集和测试集,其中面部表情数据库中包含表情图片数据和对应的情感标签:

设计搭建一个适用于迁移学习的卷积神经网络, 所述 网络包括:输入层(Input layer)、卷积层(Convolutional layer)、池化层(Pooling layer)、全连接层(Fullyconnected layer)以及输出层(Output layer);

将 A、B 两个面部表情数据库分别在所选择的卷积神 经网络上进行训练、测试。训练前进行数据预处理, 利用 openCV 或其他方法将人脸图像区域进行剪切。 在训练中对数据进行数据增强,如随机角度旋转、随 机截取大小为 224×224 的图片、水平翻转等。将进行 数据增强后的每个图片作为样本数据传入网络进行 训练。

将训练所得的测试结果取准确率最高的权重参数进 行保存;

将 A 数据库训练中得到的准确率最高的结果的权重 参数迁移至 B 数据库的训练中,并按照步骤 (3)进 行新的一次训练,得到新的训练结果。同理,将 B 数 据库训练中得到的准确率最高的结果的权重参数迁 移至 A 数据库的训练中,并按照步骤 (3)进行新的 一次训练,得到新的训练结果;

三、 项目内容总结

- 1、运用卷积神经网络(Resnet)对表情图片进行学习和训练。
- 2、对表情数据库(CK+、RAF-DB)的图片利用 face++接口进行剪裁,得到人脸图片。
- 3、结合迁移学习改进模型,得到不同的参数,再进行训练。
- 4、创新点:提供了一个提高表情识别准确率的方法,解决了现有模型识别表情准确率低的问题。