COLLÈGE LIBERMANN B.P. 5351 Douala-Akwa

Année scolaire 2006 / 2007

1ère Séquence / Devoir surveillé Nº 1

Tle C	ÉPREUVE DE PHYSIQUE	Durée : 2 H.
		Coeff.:

Exercice 1 5 points

Trois charges ponctuelles $q_A=1\mu C$, $q_B=1\mu C$, $q_C=-3\mu C$, sont placées respectivement aux sommets A, B et C d'un triangle équilatéral de côté a = 10 cm.

Préciser les caractéristiques du vecteur champ électrostatique crée au centre de gravité G du triangle et aux milieux des côtés du triangle.

Exercice 2 5 points

Partant d'une station A, le conducteur d'un train démarre avec une accélération constante $\overrightarrow{a_1}$. Au bout d'une durée t, quand il juge la vitesse suffisante pour pouvoir atteindre la station B, le conducteur arrête le moteur. A cause des forces de frottement, le mouvement s'effectue alors avec une accélération $\overrightarrow{a_2}$ et le train s'arrête en B. Déterminer :

- 1. Les durées t_1 et t_2 des deux phases du parcours de longueur I = AB; 1,75 pt 2. Les distances I_1 et I_2 parcourues au cours de ces phases; 1,25 pt
- 3. La vitesse maximale du train et sa vitesse moyenne entre les deux stations ; 1 pt
- 4. De quelle longueur d le conducteur aurait manqué l'arrêt, s'il avait arrêté le moteur z secondes trop tard.1 pt
 - A.N.: $\|\overrightarrow{a_1}\| = 0,400 \, m.s^{-2}$; $\|\overrightarrow{a_2}\| = 0,100 \, m.s^{-2}$; $AB = 900 \, m$; $\tau = 1,00 \, s.$

Exercice 3 5 points

Un satellite artificiel de la Terre, supposé ponctuel, décrit dans un repère géocentrique une trajectoire circulaire à l'altitude h = 250 km du sol.

- 1. Qu'est-ce que le référentiel géocentrique ? 0,5 pt
- 2. En prenant pour rayon de la Terre, supposé sphérique, R = 6400 km, pour valeur du champ gravitationnel au sol $G_0 = 9.8$ N.kg⁻¹, exprimer la valeur du champ gravitationnel G(h) à l'altitude h en fonction de G_0 .
- gravitationnel G(h) à l'altitude h en fonction de G_0 . 1 pt 3. Compte tenu de la valeur de h par rapport à R, donner une valeur approchée G_a de G(h). 1 pt
- 4. Exprimer la valeur exacte G_e de G(h) en fonction de G_0 et de $\frac{h}{R}$.
 - Exprimer l'erreur relative (e.r.) commise en fonction de $\frac{h}{R}$;

$$e.r. = \frac{Ga - Ge}{Ge}$$

Montrer que pour h = 250 km, |e.r.| < 1%. 0,5 pt

Exercice 4 5 points

Le plan xOy, rapporté au repère orthonormé (O, \vec{i}, \vec{j}) , est plongé dans un champ électrostatique uniforme \vec{E} , d'intensité $E = 800 \text{ V.m}^{-1}$. La direction et le sens du champ \vec{E} sont ceux du vecteur $(\vec{i} + \vec{j})$. Le potentiel électrostatique est nul au point O.

1. Calculer les potentiels V_A et V_B aux points A(10,0) et B(10,10), l'unité de longueur sur les axes étant le cm.

2 pts

- 2. On place une charge $q=3\mu C$ dans le champ \vec{E} . Calculer le travail effectué par la force électrostatique agissant sur cette charge lorsque celle-ci se déplace en ligne droite :
 - ▶ de O à A;
 - ▶ de A à B;
 - ▶ de O à B.

3 pts