Experiment - 8

Drag estimation on symmetrical airfoil NACA0015 from wake profile measurent

Arka Pramanick, AE21B007 Department of Aerospace Engineering IIT Madras

> Instructor: Professor Dr. R. Sriram

> > 10 April, 2023

1. Aim:

- To estimate Drag from wake velocity profile measurement.
- To observe variation of Coefficients of Drag with Angle of Attack on increasing velocity.

2. Apparatus:

Required apparatus for performing this experiment are:

- Manometer
- C15-10 Armfield tunnel
- Pitot-static Probe
- Fan
- Symmetrical Airfoil model

3. Theory:

Drag: Drag is the force which opposes the motion of an object. Drag is calculated by :

$$D = \int_{-\infty}^{\infty} \rho v (V_{\infty} - v) \, dy$$

<u>Coefficients of Drag</u>: Drag coefficients caused due to skin friction and Drag. Drag coefficients is calculated by:

$$C_d = \frac{2D}{(\rho V_{\infty}^2 d)/2}$$

<u>Stagnation and Static Pressure</u>: Stagnation pressure is the pressure at the stagnation points in the fluid flow.Static pressure is the actual thermodynamic pressure of a flow.

$$P_{stag} = P_{\infty} + \frac{\rho v^2}{2}$$

Reynolds Number: The Reynolds number is the ratio of inertial forces to viscous forces within a fluid which is subjected to relative internal moment due to variation of velocities.

$$R_e = \frac{\rho V_{\infty d}}{\mu}$$

Figure 1: Wake and Velocity profile behind a symmetric airfoil

4. Procedure:

- 1. In wind tunnel test section is set.
- 2. Pitot-static probe is connected to manometer.
- 3. Fan speed is fixed.
- 4. Required readings are taken.

5. Observation:

5.1 Wake velocity profile with distance of Pitot probe

Table 1: Wake profile velocity with distance of pitot probe

Port No.	Distance	Stagnation	Velocity(m/s)
	from	Pres-	
	starting	sure(in Pa)	
	point(in		
	mm)		
P_1	0	-3	14.584
P_2	6	-4	14.528
P_3	12	-5	14.472
P_4	18	-5	14.472
P_5	24	-5	14.472
P_6	30	-7	14.359
P_7	36	-110	6.165
P_8	42	-5	14.472
P_9	48	-4	14.528
P_{10}	54	-3	14.584
Between	21	-5	14.472
$P_4 \& P_5$			
Between	27	-5	14.472
$P_5 \& P_6$			
Between	33	-20	13.600
$P_6 \& P_7$			
Between	39	-22	13.479
$P_7 \& P_8$			
Between	45	-3	14.584
$P_8 \& P_9$			

Figure 2: Variation of velocity with distance of pitot tube.

5.2 Coefficient of Drag vs Angle of Attack:

Table 2: Variation of Drag Coefficients with Angle of Attack

Sl. No.	Angle of	Coeff of	Coeff of
	$Attack(\alpha)$	$\operatorname{Drag}(C_d)(\operatorname{For}$	$\operatorname{Drag}(C_d)(\operatorname{For}$
		V=15 m/s	V=20 m/s
1	0	0.113	0.134
2	2	0.0469	0.027
3	4	0.0334	0.0602
4	6	0.0904	0.0652
5	8	0.0922	0.0762
6	10	0.1346	0.0538
7	12	0.28	0.0672

Figure 3: Variation of Coefficients of Drag with Angle of Attack for Two different Velocities

6. Calculations:

Density of air = 1.225 m^3 Static Pressure(P_{∞} =-13.6 mm of Water = -133.28 Pa Density of Water(ρ_w) = 1000 Kg/m^3

6.1 Calculation of wake profile velocity:

For port 1 : Stagnation $Pressure(P_{stag}) = -3 Pa$

$$P_{stag} = P_{\infty} + \frac{\rho v^2}{2}$$

$$\Rightarrow P_{stag} - P_{\infty} = \frac{\rho v^2}{2}$$

$$\Rightarrow (133.28 - 3) = \frac{\rho v^2}{2}$$

$$\Rightarrow v = \sqrt{\frac{130.28 \times 2}{1.225}}$$

$$\Rightarrow v = 14.584 m/s$$

6.2 Calculation of Drag:

Drag(D) is calculated by , For 10 ports,

$$D = \int_{-\infty}^{\infty} \rho v(V_{\infty} - v) \, dy \approx \sum_{i=1}^{9} \rho v_{avg}(V_{\infty} - v_{avg}) \Delta y$$

Where,
$$v_{avg} = \frac{v_i + v_{i+1}}{2}$$

 $\Delta y = 6mm = 0.006m$
 $V_{\infty} = 15 \text{ m/s}$

$$D = \sum_{i=1}^{9} \rho v_{avg} (V_{\infty} - v_{avg}) \Delta y$$

$$\Rightarrow D = 1.225[(14.556) \times (15 - 14.556) + (14.5) \times (15 - 14.5) + (14.472) \times (15 - 14.472) + (14.472) \times (15 - 14.475) + (10.262) \times (15 - 10.262) + (10.3185) \times (15 - 10.3185) \times (15 - 14.5) \times (15 - 14.5) + (14.5) \times (15 - 14.56) \times (15 - 14.556)] \times 0.006$$

$$\therefore D = 0.150N$$

6.3 Calculation of Coefficients of Drag (C_d) and Reynolds number (R_e) :

Chord length(c) = 65 mm For velocity(V_{∞}) = 15 m/s,

$$C_d = \frac{2D}{(\rho V_{\infty}^2 c)/2}$$

$$C_d = 0.0334$$

$$R_e = \frac{\rho V_{\infty} c}{\mu}$$

Where $\mu = 1.81 \times 10^{-5}$

$$\therefore R_e = \frac{1.225 \times 15 \times 0.065}{1.81 \times 10^{-5}} = 65987.57$$

7. Sources of Error:

- Error due to instrumental defect.
- Error may occur in taking readings before flow becomes steady.
- Error due to environmental effect like temperature, pressure change.
- Error in measurement due to presence of zero error in parameters.
- Dimensional error may occurs

8. Conclusion:

- Wake velocity profile is symmetrical. It falls suddenly at centerline then it remains almost constant as earlier.
- Generally Drag increases on increasing Angle of attack.
- Induced Drag increases as Angle of Attack increases and it decreases when airspeed increases. But for Parasite Drag increases as airspeed increases and remains unaffected on changing Angle of Attack.
- Wake calculation system is a very common method for calculating Drag and Coefficient of Drag.