- **Study Guide: K-Means Clustering**
- **Definition and Characteristics**
- * K-means clustering is an unsupervised learning algorithm that partitions the data into K clusters based on their similarities.
- * It represents each cluster by its cluster center (mean).
- * The algorithm assigns each data point to its nearest cluster center.
- **How it Works**
- 1. Initialize cluster centers randomly.
- 2. Assign each data point to the closest cluster center.
- 3. Recompute the cluster centers as the mean of all data points assigned to the same cluster.
- 5. Repeat steps 2-3 until the clusters converge (i.e., the cluster assignments no longer change).
- **Mathematical Representation**
- * The objective function to optimize is the sum of squared distances from each data point to its assigned center.
- * The K-means algorithm converges in a finite number of iterations, where convergence is measured by the objective function ceasing to change.
- **Theorem 16 (K-Means Convergence Theorem)**

Proof: The proof works by showing that the algorithm changes the values of μ or z only in two points, and both changes lead to convergence.

Applications and Variations
* K-means clustering can be used for data points in Rd (high-dimensional space) or for nodes in a graph with distances on edges.
* There are two variations of the clustering problem for each of the criteria:
☐+ Require each cluster center to be a data point.
☐+ Allow a cluster center to be any point in space.
* High-density clusters: An alternative assumption often made is that clusters consist of high-density regions surrounded by low-density "moats" between them.
Examples and Diagrams
* Figure 3.14: First few iterations of K-means running on a previous data set. * Figure 7.1: Clustering of high-density regions surrounded by low-density "moats" between them.
Summary of Key Points
* K-means clustering is an unsupervised learning algorithm that partitions the data into K clusters based on their similarities. * The algorithm represents each cluster by its cluster center (mean) and assigns each data point to the nearest cluster center. * The algorithm converges in a finite number of iterations.

1. What is K-means clustering?

Flashcards

Answer: An unsupervised learning algorithm that partitions the data into K clusters based on their similarities.

2. How does K-means clustering?

Answer: By representing each cluster by its cluster center (mean) and assigning each data point to the nearest cluster center.

3. What is the objective function optimized in K-means clustering?

Answer: The sum of squared distances from each data point to its assigned center.