O Princípio da Indução e suas Aplicações

Felipe Luís Pinheiro*

18 de novembro de 2018

Resumo

Neste trabalho mostraremos diversas utilizações do princípio de indução em Ciência da Computação.

Começamos discutindo o principio da indução e suas implicações, posteriormente definimos os problemas a serem discutidos e por fim discutimos os problemas propostos até a sua completa solução.

1 Introdução

Principio da Indução finita é formalmente definido como:

Definição 1. Seja P(n) uma quantidade associada aos números naturais. P é um predicado unário cujo argumento é um número natura, e suponhamos que:

Base de Indução (BI) : p(1) é verdadeiro;

Passo Indutivo (PI): para todo número natura n, se P(n) é verdadeiro então P(n+1) é verdadeiro

Nesta condição, a propriedade p(n) é verdadeira para todo número natural n.

Para se realizar uma prova mediante processo indutivo devemos provar que **BI** é verdadeiro, o que pode ser provado mediante aplicação direta da propriedade em estudo, e após devemos realizar o **PI** e provar que a propriedade continua válida para n+1 qualquer, considerando que ela é válida pra n.

também pode ocorrer de existir uma propriedade que só comece a ser válida depois de algum valor específico, sendo assim definimos o principio da indução finita generalizada como:

Definição 2: Seja p(n) uma propriedade sbre os números naturais que satisfaz as seguintes condições:

(BI) : O número natural m_0 satisfaz a propriedade p;

(PI) : Se um número natural *n* satisfaz a propriedade *P* então seu sucessor também satisfaz a propriedade *P*.

Então todos os números naturais maiores ou iguais a m_0 satisfazem a propriedade P. Para finalizar precisamos definir o principio da indução forte, como:

Teorema 1: Seja P uma propriedade referente aos números naturais. Dado $n \in \mathbb{N}$, se a validade de P para todo número natural menor do que n implicar que P é verdadeio para n, então P é verdadeira para todos os números naturais. Ou ainda, se $\forall_n (\forall_m, m < n \rightarrow P(m)) \rightarrow p(n)$ então $\forall_n, P(n)$.

^{*}matricula:18/0052667

2 Indução Estrutural

3 Correção

4 Problemas

Nesta seção mostramos os dois problemas a serem discutidos e também mostramos as suas respectivas soluções.

4.1 Problema 1

Problema 1: Prove a equivalência entre os princípios da indução forte (PIF) e da indução matemática (PIM)[1].

Precisamos provar que $PIF \Leftrightarrow PIM$, ou seja, $PIF \to PIM$ e $PIM \to PIF$.

 $PIF \rightarrow PIM$

 $PIM \rightarrow PIF$

4.2 Problema 2

Problema 2: Agora utilizaremos o conhecimento adquirido sobre indução para provar a correção de um algoritmo de ordenação de listas conhecido como "insertion sort", ou ordenação por inserção. O pseudocódigo deste algoritmo é dado a seguir:

$$\mathsf{insertionSort}(l) = \left\{ \begin{array}{ll} l, & \mathsf{se}\ l = []\\ \mathsf{insert}(h, \mathsf{insertSort}(l')), & \mathsf{se}\ l = h :: l' \end{array} \right.$$

onde

$$\operatorname{insert}(x,l) = \left\{ \begin{array}{l} x :: [], & \operatorname{se} \ l = [] \\ x :: l, & \operatorname{se} \ l = h :: l' \ \operatorname{e} \ x \leq h \\ , & \operatorname{e} \ x > h \end{array} \right.$$

Nosso objetivo é provar que o algoritmo acima é correto, mas o que isto significa? Como expressar este fato por meio de um teorema? Quais passos intermediários você julga que serão necessários para provar este teorema? Explique e justifique sua solução, e os passos que utilizou para obtê-la, de forma clara e completa por meio de um relatório detalhado[1].

5 Conclusão

Referências

[1] Flávio L. C. de Moura (Prof.). Indução Matemática.

0

Índice Remissivo

Base de Indução (BI), 1

Indução finita, 1 Indução finita generalizada, 1

Passo Indutivo (PI), 1