Johannes Talero M.

Nombre:	Código:

Ejercicio I-1	Ejercicio I-2	Ejercicio II	Total	
/3	/3	/4	/10	

1 Ejercicio I

Indique cuáles de las siguientes afirmaciones son verdaderas y cuáles son falsas (no es necesario explicar).

- 1. Dados los vectores \mathbf{u} , \mathbf{v} y \mathbf{w} . El producto punto entre ellos $\mathbf{u} \cdot \mathbf{v} \cdot \mathbf{w}$ no está definido, ya que $\mathbf{u} \cdot \mathbf{v}$ genera un escalar que no se puede multiplicar por \mathbf{w} .
- 2. Si \mathbf{u} , \mathbf{v} y \mathbf{w} son vectores no nulos tales que \mathbf{u} es ortogonal a \mathbf{v} y \mathbf{v} es a su vez ortogonal a \mathbf{w} , entonces se puede concluir que \mathbf{u} y \mathbf{w} son ortogonales.

2 Ejercicio II

Dado los vectores $\mathbf{u} = \left(\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}}\right)$ y $\mathbf{v} = (5,7)$. Encuentre las proyecciones vectoriales de \mathbf{v} sobre \mathbf{u} y sobre el vector ortogonal unitario a \mathbf{u} . Para ello, primero calcule el vector ortogonal unitario a \mathbf{u} , denótelo como \mathbf{u}_{\perp} , y luego calcule las proyecciones $Proy_{\mathbf{u}}(\mathbf{v})$ y $Proy_{\mathbf{u}_{\perp}}(\mathbf{v})$. ¿Qué ocurre con la suma vectorial de estas proyecciones?