МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4 по дисциплине «Алгоритмы и структуры данных»

Тема: Методы сортировки

Студент гр. 9382	 Герасев Г.А.
Преподаватель	 Фирсов М.А

Санкт-Петербург

2020

Цель работы.

Изучить алгоритмы сортировок.

Задание.

5. Гибрид сортировки пузырьком и сортировки выбором; Шейкерная сортировка.

Основные теоретические положения.

Шейкерная сортировка.

Сортировка проходит по массиву и область сортировки уменьшается с каждой итерацией. Появляется из наблюдения, что при сортировки пузырьком один из элементов «всплывает» к верхней границе и больше не перемещается.

Сортировка проходит сначала слева направо, после чего справа налево. Оба прохода являются сортировкой пузырьком. После каждого прохода уменьшается и увеличивается одна из границ, по которой проходит сортировка.

Если интервал между границами стал <=0 или ни за один из проходов ни один из элементов не был перемещен, то сортировка прекращается.

Функции и структуры данных.

Создан класс бинарного дерева, при инициализации которого создается пустое дерево заданной глубины. Для добавления значений в узлах создаются 2 метода, для добавления значения по адресу в дереве и по адресу в массиве.

Создается метод, считающий количество переданного элемента в дереве рекурсивным методом. (очевидно проще и быстрее было бы просто пройти по массиву, хранящему значения в дереве, воспользовавшись преимуществом такой структуры дерева, но условие лабораторной запрещает не использование рекурсии). Чтобы реализовать рекурсию отслеживается номер узла в массиве, и при рекурсивном переходе этот номер меняется на номер левого и правого поддерева.

Позже из этого метода очевидно выводится метод проверки существования 2x элементов в дереве.

Описание алгоритма.

Алгоритм был описан в теоретических положениях. В коде данный алгоритм реализуется идентично, за исключением выводов промежуточных результатов.

Достоинства и недостатки алгоритма:

Алгоритм работает от O(n) в лучшем до $O(n^2)$ в худшем и среднем случае. Алгоритм несет исключительно обучающую функцию и в реальных задачах практически не применяется.

Тестирование.

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

№ п/п	ца 1 — Результать Входные данные	Выходные данные	Комментарии
1.	5	Input mas 5 4 3 2 1	
	5 4 3 2 1	Expected output is 1 2 3 4 5	
		Go on new cycle	
		Go right	
		Swapping 4 and 5	
		Now mass is 4 5 3 2 1	
		Swapping 3 and 5	
		Now mass is 4 3 5 2 1	
		Swapping 2 and 5	
		Now mass is 4 3 2 5 1	
		Swapping 1 and 5	
		Now mass is 4 3 2 1 5	
		Go left	
		Swapping 1 and 2	
		Now mass is 4 3 1 2 5	

		Swapping 1 and 3
		Now mass is 4 1 3 2 5
		Swapping 1 and 4
		Now mass is 1 4 3 2 5
		Go on new cycle
		Go right
		Swapping 3 and 4
		Now mass is 1 3 4 2 5
		Swapping 2 and 4
		Now mass is 1 3 2 4 5
		Go left
		Swapping 2 and 3
		Now mass is 1 2 3 4 5
		Actual output 1 2 3 4 5
		Expected and actual results are the same
2.	6	Input mas 1 1 3 2 5 8
	1 1 3 2 5 8	Expected output is 1 1 2 3 5 8
		Go on new cycle
		Go right
		Swapping 2 and 3
		Now mass is 1 1 2 3 5 8
		Go left
		Go on new cycle
		Go right
		Go left
		Actual output 1 1 2 3 5 8
		Expected and actual results are the same
3.	1	Input mas 100
	100	Expected output is 100
		Actual output 100
		Expexted and actual results are the same

4.	10	Input mas 0 1 10 100 1000 10000 123	
	0 1 10 100 1000	321 543 32	
	10000 123 321	Expected output is 0 1 10 32 100 123	
	543 32	321 543 1000 10000	
		Go on new cycle	
		Go right	
		Swapping 123 and 10000	
		Now mass is 0 1 10 100 1000 123	
		10000 321 543 32	
		Swapping 321 and 10000	
		Now mass is 0 1 10 100 1000 123 321	
		10000 543 32	
		Swapping 543 and 10000	
		Now mass is 0 1 10 100 1000 123 321	
		543 10000 32	
		Swapping 32 and 10000	
		Now mass is 0 1 10 100 1000 123 321	
		543 32 10000	
		Go left	
		Swapping 32 and 543	
		Now mass is 0 1 10 100 1000 123 321	
		32 543 10000	
		Swapping 32 and 321	
		Now mass is 0 1 10 100 1000 123 32	
		321 543 10000	
		Swapping 32 and 123	
		Now mass is 0 1 10 100 1000 32 123	
		321 543 10000	
		Swapping 32 and 1000	
		Now mass is 0 1 10 100 32 1000 123	
		321 543 10000	

		Swapping 32 and 100	
		Now mass is 0 1 10 32 100 1000 123	
		321 543 10000	
		Go on new cycle	
		Go right	
		Swapping 123 and 1000	
		Now mass is 0 1 10 32 100 123 1000	
		321 543 10000	
		Swapping 321 and 1000	
		Now mass is 0 1 10 32 100 123 321	
		1000 543 10000	
		Swapping 543 and 1000	
		Now mass is 0 1 10 32 100 123 321	
		543 1000 10000	
		Go left	
		Go on new cycle	
		Go right	
		Go left	
		Actual output 0 1 10 32 100 123 321	
		543 1000 10000	
		Expected and actual results are the same	
5.	20	Input mas 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4	
	0 1 2 3 4 5 6 7 8	5 6 7 8 9	
	901234567	Expected output is 0 0 1 1 2 2 3 3 4 4	
	8 9	5 5 6 6 7 7 8 8 9 9	
		Go on new cycle	
		Go right	
		Swapping 0 and 9	
		Now mass is 0 1 2 3 4 5 6 7 8 0 9 1 2 3	
		4 5 6 7 8 9	
		Swapping 1 and 9	

		778899
		Swapping 4 and 6
		Now mass is 0 0 1 1 2 2 3 4 5 3 4 6 5 6
		778899
		Swapping 5 and 6
		Now mass is 0 0 1 1 2 2 3 4 5 3 4 5 6 6
		778899
		Go left
		Swapping 3 and 5
		Now mass is 0 0 1 1 2 2 3 4 3 5 4 5 6 6
		778899
		Swapping 3 and 4
		Now mass is 0 0 1 1 2 2 3 3 4 5 4 5 6 6
		778899
		Go on new cycle
		Go right
		Swapping 4 and 5
		Now mass is 0 0 1 1 2 2 3 3 4 4 5 5 6 6
		778899
		Go left
		Go on new cycle
		Go right
		Go left
		Actual output 0 0 1 1 2 2 3 3 4 4 5 5 6
		6778899
		Expected and actual results are the same
6.	10	Input mas 0 -1 -2 -3 -4 0 1 2 3 4
		Expected output is4 -3 -2 -1 0 0 1 2 3
	2 3 4	4
		Go on new cycle
		Go right

Swapping -1 and 0	
Now mass is -1 0 -2 -3 -4 0 1 2 3 4	
Swapping -2 and 0	
Now mass is -1 -2 0 -3 -4 0 1 2 3 4	
Swapping -3 and 0	
Now mass is -1 -2 -3 0 -4 0 1 2 3 4	
Swapping -4 and 0	
Now mass is -1 -2 -3 -4 0 0 1 2 3 4	
Go left	
Swapping -4 and -3	
Now mass is -1 -2 -4 -3 0 0 1 2 3 4	
Swapping -4 and -2	
Now mass is -1 -4 -2 -3 0 0 1 2 3 4	
Swapping -4 and -1	
Now mass is -4 -1 -2 -3 0 0 1 2 3 4	
Go on new cycle	
Go right	
Swapping -2 and -1	
Now mass is -4 -2 -1 -3 0 0 1 2 3 4	
Swapping -3 and -1	
Now mass is -4 -2 -3 -1 0 0 1 2 3 4	
Go left	
Swapping -3 and -2	
Now mass is -4 -3 -2 -1 0 0 1 2 3 4	
Go on new cycle	
Go right	
Go left	
Actual output4 -3 -2 -1 0 0 1 2 3 4	
Expected and actual results are the same	

Выводы.

Был изучен алгоритм шейк-сортировки, была создана программа, которая создает и проверяет отсортированный массив.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.cpp

```
#include <iostream>
#include <bits/stdc++.h>
#include <string.h>
using namespace std;
// No templatres bc i made them in lab3
void greetingMessage()
  cout << "Please, input size of massive and data\n";</pre>
  cout << "The programm will sort data 2 different ways -- \n";
  cout << "By C++ sort and self-written shaker sort\n";</pre>
}
void copyMas(int* from, int sizeFrom, int* to, int sizeTo)
  // Can lead to unexpected results on different size masses
  for(int i=0; i<sizeFrom && i<sizeFrom; i++)
     to[i] = from[i];
}
void printMas(int* mas, int size)
  for (int i=0; i < size; i++)
     cout << mas[i] << ' ';
  cout << '\n';
}
void compareResults(int* mas1, int size1, int* mas2, int size2)
  // For strange test only, so output is in the function
  bool res = true;
  for(int i=0; i<size1 && i<size2; i++)
     if (mas1[i] != mas2[i])
        res = false;
  }
  if (size1 != size2)
     res = false;
  if (res) {
     cout << "Expected and actual results are the same\n";</pre>
     cout << "Expected and actual results are NOT the same\n";</pre>
}
```

```
void swap(int* a, int* b)
  int temp = *a;
  *a = *b;
  *b = temp;
void shakerSort(int* mas, int size)
  int left = 0;
  int right = size-1;
  bool swappedOnCycle = true;
  while ((left < right) && swappedOnCycle)
     cout << "Go on new cycle\n";</pre>
     swappedOnCycle = false;
     cout << " Go right\n";</pre>
     for (int i=left; i<right; i++)
       if (mas[i] > mas[i+1])
          swap(&mas[i], &mas[i+1]);
          cout << " Swapping " << mas[i] << " and " << mas[i+1] << '\n';
          cout << " Now mass is ";
          printMas(mas, size);
          swappedOnCycle = true;
       }
     }
     right--;
     cout << " Go left\n":</pre>
     for (int i=right; left<i; i--)</pre>
       if (mas[i-1] > mas[i])
          swap(&mas[i-1], &mas[i]);
          cout << " Swapping " << mas[i-1] << " and " << mas[i] << \\n';
          cout << " Now mass is ";
          printMas(mas, size);
          swappedOnCycle = true;
       }
    left++;
void outputResult(int* inputMas, int size)
  // All mass handle here
  cout << "Input mas -- ";
  printMas(inputMas, size);
  int expectedResult[size];
  copyMas(inputMas, size, expectedResult, size);
  sort(expectedResult, expectedResult+size);
  cout << "Expected output is -- ";</pre>
  printMas(expectedResult, size);
```

```
int actualResult[size];
  copyMas(inputMas, size, actualResult, size);
  shakerSort(actualResult, size);
  cout << "Actual output -- ";</pre>
  printMas(actualResult, size);
  compareResults(expectedResult, size, actualResult, size);
}
void stdInputCase()
  // Standart input
  // Will continue untill size of mass <= 0
  cout << "The input will continue untill size of mass <= 0\n";
  int size;
  cin >> size;
  while (size > 0)
     int inputMas[size] = { 0 };
     for (int i=0; i < size; i++)
       cin >> inputMas[i];
     outputResult(inputMas, size);
     cout << "-1 to stop\n";
     cin >> size;
  }
}
void fileInputCase(string path)
  // File input case
  ifstream inFile;
  inFile.open(path);
  int size;
  while (inFile >> size)
     int mas[size];
     for (int i=0; i<size && inFile >> mas[i]; i++);
     cout << "\n\n";
     outputResult(mas, size);
}
int main(int argc, char *argv[])
  if (argc>= 2) // Arguments case
     string flag(argv[1]);
     string path(argv[2]);
     if (flag.compare("-f") == 0)
       fileInputCase(path); // No obvious way to overload the function
     return 0;
  }
  greetingMessage();
  stdInputCase();
```

return 0; }