

<u>KIIT Deemed to be University</u> Online Mid Semester Examination(Spring Semester-2021)

Subject Name & Code: Natural Language Processing (NLP)-IT-3035

Applicable to Courses: B.Tech

Full Marks=20 Time:1 Hour

SECTION-A(Answer All Questions. All questions carry 2 Marks)

Time:20 Minutes

(5×2=10 Marks)

Question	Question	Question	Answer	CO
<u>No</u>	Type(MCQ/SA T)		Key(if MCQ)	<u>Mapping</u>
Q.No:1(a)	MCQ	Which of the following is(are) application(s) of NLP? a. Email Filter b. Alexa	d	CO1
	MCQ	c. Google Translate d. All of the Above Which of the following is an application of NLP?	a	CO1
		a. Text analytics b. Google Assistant c. Cortana d. Speech Recognition		
	MCQ	Which of the following is not an application of NLP? a. Alexa b. Chatbots c. Sentiment Analysis d. Cortana	d	CO1
	MCQ	is not an example of Applications of Natural Language Processing. a) Google Assistant b) Automatic Summarization c) Sentiment Analysis d) Siri	a	CO1
Q.No:1(b)	MCQ	To keep a language model from assigning zero probability to the unseen events is a concept known as	c	CO2

				T
		a. Stemming b. Normalizing c. Smoothing d. Perplexity		
	MCQ	The assumption that the probability of a tag is dependent only on the previous 2 tags, rather than the entire tag sequence is known as a. Unigram assumption	c	CO2
		b. Bigram assumption c. Trigram assumption d. N-gram assumption		
	MCQ	The assumption that the probability of a tag is dependent only on the previous tag, rather than the entire tag sequence is known as	b	CO2
		a. Unigram assumption b. Bigram assumption c. Trigram assumption d. N-gram assumption		
	MCQ	In linguistic morphology is the process for reducing inflected words to their root form. a) Rooting b) Stemming c) Text-Proofing d) Both Rooting & Stemming	b	CO2
Q.No:1(c)	MCQ	the percentage of items that the system detected positive that are in fact positive.	a	CO2
		a) Precision b) Accuracy c) F1-score d) Recall		
	MCQ	measu res the percentage of items actually present in the input that were correctly identified by the system. a) Precision	d	CO2

		b) Accuracy c) F1-score		
		d) Recall		
	MCQ	False negatives are-	A	CO ₂
		A. Predicted negatives that are actually positives		
		B. Predicted positives that		
		are actually negatives		
		C. Predicted negatives that		
		are actually negatives		
		D. Predicted positives that		
		are actually positives		
	MCQ	The true positive value is	В	CO ₂
		10 and the false positive		
		value is 15. Calculate the		
		value of precision- A. 0.6		
		B. 0.4		
		C. 0.5		
		D. None		
Q.No:1(d)	MCQ	The sentence "I saw bats"	C	CO ₃
		contains which type of ambiguity?		
		ambiguity :		
		A. Syntactic		
		B. Semantic		
		C. Lexical		
		D. Pragmatic		
	MCQ	The sentence "The car hit	c	CO ₃
		the pole while it was		
		moving" is an example of		
		which ambiguity?		
		a) Lexical		
		b) Syntactic		
		c) Semantic		
	MCQ	d) Anaphoric The sentence "The man	d	CO ₃
	MCQ	saw the girl with the	u	03
		telescope." is an example		
		of which ambiguity?		
		a) Lexical		
		b) Scope		
		c) Semantic d) Structural		
	MCQ	The sentence "Old men	b	CO ₃
	11100	and women were taken to		
		safe locations." is an		
		example of which		
		ambiguity?		
		a) Lexical		
		b) Syntactic		
		c) Semantic		

		d) Anaphoric		
Q.No:1(e)	MCQ	In	c	CO3
		each probability expresses likelihood of an		
		observation being generated		
		from a state.		
		a. Transition probability		
		b. Forward probability c. Emission probability		
		d. Backward probability		
	MCQ	Naive Bayes classifier is an example of	a	CO ₃
		·		
		a. Generative classifier		
		b. Discriminative classifier c. Multinomial classifier		
		d. None of these		
	MCQ	Group of words behaving	b	CO ₃
		as a single unit is known as		
		a) Phrase		
		b) Constituent c) Lexicon		
		d) Rule		
	MCQ	Examples of sentiment analysis are :	d	CO ₃
		a. Review of a movie		
		b. Extracting consumer		
		preference		
		c. Editorial Text toward a political candidate d. All of these		

SECTION-B(Answer Any One Question. Each Question carries 10 Marks)

<u>Time: 30 Minutes</u> (1×10=10 Marks)

Questio n No	<u>Question</u>	CO Mappin
Q.No:2	A) Following is the sentiment analysis domain with the two classes positive (+) and negative (-).	CO2
	Training - just plain boring - entirely predictable and lacks energy - no surprises and very few laughs + very powerful + the most fun film of the summer Test ? predictable with no fun Predict the class for the test sentence. [8] B) Write a note on Named Entity Recognition. [2]	

Q.No:3	A) Given the following short movie reviews, each labeled with a genre, either comedy or action:	CO2
	compute the most likely class for D. Assume a naive Bayes classifier. [8]. B. Write a note on Word Sense Disambiguation. [2]	
Q.No:4	From the above chart find the fruit type if it's features are	CO2
	yellow, sweet and long? [8] B) Write a short note on N-gram language model. [2]	
Q.No:5	A) Describe Expectation Maximization (EM) algorithm with proper flow-chart. [8] B) Write a short note on Smoothing. [2]	CO ₃
Q.No:6	A) Describe Viterbi Algorithm with a suitable example. [8] B) Write a short note on POS tagging. [2]	CO ₃
Q. No:7	A) Describe Hidden Markov Model (HMM) with a suitable example. [8] B) Write a short note on Sentiment Analysis. [2]	CO3

Controller of Examinations