SEQUENCE STING

<110> Vogeli, Gabriel Lind, Peter Wood, Linda S. Parodi, Luis A.

- <120> Novel G Protein Coupled Receptor
- <130> 411USPHRM311
- <140> 09/782,974
- <141> 2001-03-27
- <150> 60/165,838
- <151> 1999-11-16
- <150> 09/714,449
- <151> 2000-11-16
- 60/198,568 <150>
- <151> 2000-04-20
- <150> 60/166,071
- <151> 1999-11-17
- <150> 60/166,678 <151> 1999-11-19
- <150> 60/173,396
- <151> 1999-12-28
- <150> 60/184,129 2000-02-22 <151>
- 60/185,421 <150> <151> 2000-02-28
- <150> 60/185,554
- <151> 2000-02-28
- <150> 60/186,530
- 2000-03-02 <151>
- <150> 60/186,811
- <151> 2000-03-03
- <150> 60/188,114
- 2000-03-09 <151>
- <150> 60/190,310
- <151> 2000-03-17
- <150> 60/190,800
- <151> 2000-03-21
- <150> 60/201,190
- <151> 2000-05-02
- <150> 60/203,111
- <151> 2000-05-08
- 60/207,094
- <151> 2000-05-25

411USPHRM311.ST25.txt <160> 192
<170> PatentIn version 3.1
<210> 1 <211> 1182 <212> DNA <213> Homo sapiens
<400> 1 gtctgggggt gggggatgct gggacagggg tcaattgcct gaagcaagtg ctctcatccc 60
cctagctcct gctgatctag ttggggctcc agagtgggga ggagaaaggc actttgaaac 120
ttctctgccc ttaccgtctt agccatcaaa ctctgagctg gagatagtga cgatgtgaca 180
ggaactttcc ctgggcctct ctgggccaca attcctggcc gagagaaaga ggaggaatga 240
ggtgagcacc ttcttcactc ctagggccat gtggtagagc tgcagtcgca cctccttctg 300
ccaataggca tagatgagtg ggttgagcag ggagttgccc acgccgagca gccacaggta 360
ccgttccagc actaggtaga ggtgacactc ctggcaggcc acctgcacaa tgccagtgat 420
aaggaagggg gtccaggata gagcaaagct cccaatgaga acagacacag tacggagagc 480
tttgaagtcg ctgggagtcc gtggggatcg ataacctcca gccatggctc ctgcatgttc 540
catctttcga atctgctggc tgtgcatgga ggcaatcttg agcatgtcgc agtagaagaa 600
gacaaagagg agcatggctg ggaagaagcc aacgcaggag agggtcagca cgaagtgagg 660
gtgaaataca gcaaagaagc tgcactgccc tttgtaggca gtctgctgga acatggggat 720
tccgagtggg aggaagccaa tgaggtaaga cactaaccac agcccggcaa tgcaggcccc 780
ggccacgaac ccactcatga tcttcaagta gcggaagggc tgcttgatgg caaggtacct 840
gtcaaaggtg atcagcatga ccgtgaggac agaggcagct gcggaggaag tgacaaatgc 900
catccgcagg ctgcacaggg tcttctgtgt gggccgagaa gggctggaga gctggtctgt 960
gagtaggcca gagatggcca caccaatcaa ggtgtcagcc acagccagat tcaaggtgaa 1020
gcagagactg acaccatcat tcttgtggat caacagcagc acagccacag ccactagtgt 1080
gttagtagca atgatgaggg aggccaggac agcaaggatc actccaaatg agaaagatga 1140
ttccatgtct cgaagtggca ggacttcact taccagggca tg 1182
<210> 2 <211> 335 <212> PRT <213> Homo sapiens <400> 2
Met Glu Ser Ser Phe Ser Phe Gly Val Ile Leu Ala Val Leu Ala Ser 1 10 15

Leu Ile Ile Ala Thr Asn Thr Leu Val Ala Val Ala Val Leu Leu 20 25 30

Ile His Lys Asn Asp Gly Val Ser Leu Cys Phe Thr Leu Asn Leu Ala 35 40 45

Val Ala Asp Thr Leu Ile Gly Val Ala Ile Ser Gly Leu Leu Thr Asp 50 55 60

Gln Leu Ser Ser Pro Ser Arg Pro Thr Gln Lys Thr Leu Cys Ser Leu 65 70 75 80

Arg Met Ala Phe Val Thr Ser Ser Ala Ala Ala Ser Val Leu Thr Val 85 90 95

Met Leu Ile Thr Phe Asp Arg Tyr Leu Ala Ile Lys Gln Pro Phe Arg 100 105 110

Tyr Leu Lys Ile Met Ser Gly Phe Val Ala Gly Ala Cys Ile Ala Gly
115 120 125

Leu Trp Leu Val Ser Tyr Leu Ile Gly Phe Leu Pro Leu Gly Ile Pro 130 135 140

Met Phe Gln Gln Thr Ala Tyr Lys Gly Gln Cys Ser Phe Phe Ala Val 145 150 155 160

Phe His Pro His Phe Val Leu Thr Leu Ser Cys Val Gly Phe Phe Pro $165 \\ 170 \\ 175$

Ala Met Leu Leu Phe Val Phe Phe Tyr Cys Asp Met Leu Lys Ile Ala 180 185 190

Ser Met His Ser Gln Gln Ile Arg Lys Met Glu His Ala Gly Ala Met 195 200 205

Ala Gly Gly Tyr Arg Ser Pro Arg Thr Pro Ser Asp Phe Lys Ala Leu 210 215 220

Arg Thr Val Ser Val Leu Ile Gly Ser Phe Ala Leu Ser Trp Thr Pro 225 230 235 240

Phe Leu Ile Thr Gly Ile Val Gln Val Ala Cys Gln Glu Cys His Leu 245 250 255

Tyr Leu Val Leu Glu Arg Tyr Leu Trp Leu Leu Gly Val Gly Asn Ser 260 265 270

Leu Leu Asn Pro Leu Ile Tyr Ala Tyr Trp Gln Lys Glu Val Arg Leu 275 280 285

Gln Leu Tyr His Met Ala Leu Gly Val Lys Lys Val Leu Thr Ser Phe 290 295 300

Leu Leu Phe Leu Ser Ala Arg Asn Cys Gly Pro Glu Arg Pro Arg Glu 305 310 315 320

Ser Ser Cys His Ile Val Thr Ile Ser Ser Ser Glu Phe Asp Gly 325 330 335

<210> 3 <211> 657 <212> DNA

<213> Homo sapiens

<400> 3

cagcgcgagc	gccttcatgg	tgacggtgtc	catgcgctgg	cagtgtctgc	gtgccacccg	60
gtgcacctgg	agcgaggtga	ggcagagcac	cgccagcggc	agcacgaagc	ccacggcatg	120
gagcgtggcg	gtgaaggctg	cgaagcgcgg	acgctcaggc	tcgggcggca	ggcgcagcga	180
acaggacgcg	aaggcgctgc	tgtagccaag	ccacgagcag	ccaagtgcag	cgcctgagaa	240
ggccagcgac	tgtccccagg	cacagcccag	cagcaggccg	gcatagcgcg	gtcgcaggcg	300
tccggcgtag	cgcagtggga	agcccactgc	cagccactgg	tctgcgctca	gcgccgccac	360
gctcagcgcc	gcgttggacg	ccaggaaggt	gtccaggaag	ccaatgactt	ggcatgcgcc	420
gggcgccgac	ggtgtccgcc	cgcgcatcac	accgagcagc	gtgaagggca	tgtccagcgc	480
cgccagcagc	aggtggccca	gagacagatt	caccaggagg	acgcctgagg	ctcgagtgcg	540
gagctcagcg	ctgtaggcgc	aacaaagcag	caccagtgcg	ttggatagca	gcgccacggc	600
cagtaccatc	accaggagac	ccgccagcag	cgcctcgccg	gggcccatgg	cgctagc	657

<210> 4

<211> 217

<212> PRT

<213> Homo sapiens

<400> 4

Ser Ala Met Gly Pro Gly Glu Ala Leu Leu Ala Gly Leu Leu Val Met 1 5 10 15

Val Leu Ala Val Ala Leu Leu Ser Asn Ala Leu Val Leu Cys Cys 20 25 30

Ala Tyr Ser Ala Glu Leu Arg Thr Arg Ala Ser Gly Val Leu Leu Val 35 40 45

Asn Leu Ser Leu Gly His Leu Leu Leu Ala Ala Leu Asp Met Pro Phe 50 60

Thr Leu Leu Gly Val Met Arg Gly Arg Thr Pro Ser Ala Pro Gly Ala Page 4

411USPHRM311.ST25.txt
65 70 75 8

65 70 75	80
Cys Gln Val Ile Gly Phe Leu Asp Thr Phe Leu Ala Ser Asn 85 90	Ala Ala 95
Leu Ser Val Ala Ala Leu Ser Ala Asp Gln Trp Leu Ala Val	Gly Phe
Pro Leu Arg Tyr Ala Gly Arg Leu Arg Pro Arg Tyr Ala Gly	Leu Leu
Leu Gly Cys Ala Trp Gly Gln Ser Leu Ala Phe Ser Gly Ala 130 135 140	Ala Leu
Gly Cys Ser Trp Leu Gly Tyr Ser Ser Ala Phe Ala Ser Cys 145 150 155	Ser Leu 160
Arg Leu Pro Pro Glu Pro Glu Arg Pro Arg Phe Ala Ala Phe 165 170	Thr Ala 175
Thr Leu His Ala Val Gly Phe Val Leu Pro Leu Ala Val Leu 180 185 190	Cys Leu
Thr Ser Leu Gln Val His Arg Val Ala Arg Arg His Cys Gln . 195 200 205	Arg Met
Asp Thr Val Thr Met Lys Ala Leu Ala 210 215	
<210> 5 <211> 222 <212> DNA <213> Homo sapiens	
<400> 5 - tgtgcaggtg tgatctccat tcctttgtac atccctcaca cgctgttcga a	tgggatttt 60
ggaaaggaaa totgtgtatt ttggotcact actgactato tgttatgtac a	
tataacattg tcctcatcag ctatgatcga tacctgtcag tctcaaatgc t	
acacattaat ttatcccct tagaagatta tgtaaatgta ta	222
<210> 6 <211> 73 <212> PRT <213> Homo sapiens <400> 6	
Cys Ala Gly Val Ile Ser Ile Pro Leu Tyr Ile Pro His Thr	Leu Phe
1. 5 10	15

A CONTRACTOR OF THE PARTY OF TH

Glu Trp Asp Phe Gly Lys Glu Ile Cys Val Phe Trp Leu Thr Thr Asp 20 25 30

Tyr Leu Leu Cys Thr Ala Ser Val Tyr Asn Ile Val Leu Ile Ser Tyr 35 40 45

Asp Arg Tyr Leu Ser Val Ser Asn Ala Val Ser Arg Thr His Phe Ile 50 60

Pro Leu Arg Arg Leu Cys Lys Cys Ile 65 70

<210>	7	
<211>	507	
<212>	DNA	
<213>	Homo	saniens

<400> 7 gacgtcgaag caggtgatga tgcccagggc gtgcaccggg taggtgagat cggtgcqcqc 60 cagcggggac agggcggtca ggagcagcag ccaggtccct gcacacgcgg ccaccgcgta 120 acgacggcgg cgccagcgct tggagctgag cgggtacagg atccccagga agcgctccac 180 gctgatacag gtcatggtga ggatgctgga atacatgttt gcgtaaaagg ccacggtcac 240 cacgttgcaa agcagcaccc cgaataccca gtggtggcgg ttgcaatggt agtagatttg 300 gaaaggcaac acgctggcca gcatcaggtc cgtgacgctc aggttgatca tgaagatgac 360 cgacggggat ctgggccca tgcgccggca cagcacccac agagagaaga ggttgcccgg 420 gatgctgacc gccgccacca gcgagtacac cacgggcagg gccaccgcga tcgccgggtt 480

507

<210> 8 <211> 169 <212> PRT <213> Homo sapiens <400> 8

ccgcagcatc tgcagcgtcg cgttgtc

Asp Asn Ala Thr Leu Gln Met Leu Arg Asn Pro Ala Ile Ala Val Ala

Leu Pro Val Val Tyr Ser Leu Val Ala Ala Val Ser Ile Pro Gly Asn $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Leu Phe Ser Leu Trp Val Leu Cys Arg Arg Met Gly Pro Arg Ser Pro 35 40 45

Ser Val Ile Phe Met Ile Asn Leu Ser Val Thr Asp Leu Met Leu Ala 50 60

Ser Val Leu Pro Phe Gln Ile Tyr Tyr His Cys Asn Arg His His Trp Page 6

80

65	70 75	80
Val Phe Gly Val Leu 85	Cys Asn Leu Val Val Thr 90	Val Ala Phe Tyr Ala 95
Asn Met Tyr Ser Ser 100	Ile Leu Thr Met Thr Cys 105	Ile Ser Val Glu Arg 110
Phe Leu Gly Ile Leu 115	Tyr Pro Leu Ser Ser Lys 120	Arg Trp Arg Arg Arg 125
Arg Tyr Ala Val Ala 130	Ala Cys Ala Gly Thr Trp 135	Leu Leu Leu Thr 140
Ala Leu Ser Pro Leu 145	Ala Arg Thr Asp Leu Thr 150 155	Tyr Pro Val His Ala 160
Leu Gly Ile Ile Thr 165	Cys Phe Asp Val	
<210> 9 <211> 270 <212> DNA <213> Homo sapiens		
<400> 9	gg cagceteacg ttgteggate	tgctggcagg cgccgcctac 60
	to ggggccgctc acgctgaaac	
	tt cgtggcactc actgcgtccg	
	ac catggegege agggggeeeg	
cgcacgctgg cgatggcag	ge egeggeetgg	270
<210> 10 <211> 90 <212> PRT <213> Homo sapiens		
<400> 10		
Pro Met Phe Leu Leu 1 5	Leu Gly Ser Leu Thr Leu 10	Ser Asp Leu Leu Ala 15
Gly Ala Ala Tyr Ala 20	Ala Asn Ile Leu Leu Ser 25	Gly Pro Leu Thr Leu 30
Lys Leu Ser Pro Ala 35	Leu Trp Phe Ala Arg Glu	Gly Gly Val Phe Val 45

Ala Leu Thr Ala Ser Val Leu Ser Leu Leu Gly Ile Ala Leu Glu Arg 50 60

Page 7

Ser Leu Thr Met Ala Arg Arg Gly Pro Ala Pro Val Ser Ser Arg Gly 75 70 65

Arg Thr Leu Ala Met Ala Ala Ala Trp

<210>	11
-------	----

<211> 888 <212> DNA <213> Homo sapiens

<400> 11

ctgctcattg	tggcctttgt	gctgggcgca	ctaggcaatg	gggtcgccct	gtgtggtttc	60
tgcttccaca	tgaagacctg	gaagcccagc	actgtttacc	ttttcaattt	ggccgtggct	120
gatttcctcc	ttatgatctg	cctgcctttt	cggacagact	attacctcag	acgtagacac	180
tgggcttttg	gggacattcc	ctgccgagtg	gggctcttca	cgttggccat	gaacagggcc	240
gggagcatcg	tgttccttac	ggtggtggct	gcggacaggt	atttcaaagt	ggtccacccc	300
caccacgcgg	tgaacactat	ctccacccgg	gtggcggctg	gcatcgtctg	caccctgtgg	360
gccctggtca	tcctgggaac	agtgtatctt	ttgctggaga	accatctctg	cgtgcaagag	420
acggccgtct	cctgtgagag	cttcatcatg	gagtcggcca	atggctggca	tgacatcatg	480
ttccagctgg	agttctttat	gcccctcggc	atcatcttat	tttgctcctt	caagattgtt	540
tggagcctga	ggcggaggca	gcagctggcc	agacaggctc	ggatgaagaa	ggcgacccgg	600
ttcatcatgg	tggtggcaat	tgtgttcatc	acatgctacc	tgcccagcgt	gtctgctaga	660
ctctatttcc	tctggacggt	gccctcgagt	gcctgcgatc	cctctgtcca	tggggccctg	720
cacataaccc	tcagcttcac	ctacatgaac	agcatgctgg	atcccctggt	gtattatttt	780
tcaagcccct	cctttcccaa	attctacaac	aagctcaaaa	tctgcagtct	gaaacccaag	840
cagccaggac	actcaaaaac	acaaaggccg	gaagagatgc	caatttcg		888

<210> 12 <211> 296 <212> PRT <213> Homo sapiens

<400> 12

Leu Leu Ile Val Ala Phe Val Leu Gly Ala Leu Gly Asn Gly Val Ala 10

Leu Cys Gly Phe Cys Phe His Met Lys Thr Trp Lys Pro Ser Thr Val

Tyr Leu Phe Asn Leu Ala Val Ala Asp Phe Leu Leu Met Ile Cys Leu 40

Pro	Phe	Arg	Thr	Asp	Tyr	Tyr	Leu	Arg	Arg	Arg	His	Trp	Ala	Phe	Gly
	50					55					60				

- Asp Ile Pro Cys Arg Val Gly Leu Phe Thr Leu Ala Met Asn Arg Ala 65 70 75 80
- Gly Ser Ile Val Phe Leu Thr Val Val Ala Ala Asp Arg Tyr Phe Lys 85 90 95
- Val Val His Pro His His Ala Val Asn Thr Ile Ser Thr Arg Val Ala 100 105 110
- Ala Gly Ile Val Cys Thr Leu Trp Ala Leu Val Ile Leu Gly Thr Val 115 120 125
- Tyr Leu Leu Glu Asn His Leu Cys Val Gln Glu Thr Ala Val Ser 130 135 140
- Cys Glu Ser Phe Ile Met Glu Ser Ala As
n Gly Trp His Asp Ile Met 145 $$ 150 $$ 155 $$ 160
- Phe Gln Leu Glu Phe Phe Met Pro Leu Gly Ile Ile Leu Phe Cys Ser 165 170 175
- Phe Lys Ile Val Trp Ser Leu Arg Arg Gln Gln Leu Ala Arg Gln 180 \$185
- Ala Arg Met Lys Lys Ala Thr Arg Phe Ile Met Val Val Ala Ile Val 195 200 205
- Phe Ile Thr Cys Tyr Leu Pro Ser Val Ser Ala Arg Leu Tyr Phe Leu 210 215 220
- Trp Thr Val Pro Ser Ser Ala Cys Asp Pro Ser Val His Gly Ala Leu 225 230 235 240
- His Ile Thr Leu Ser Phe Thr Tyr Met Asn Ser Met Leu Asp Pro Leu $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$
- Val Tyr Tyr Phe Ser Ser Pro Ser Phe Pro Lys Phe Tyr Asn Lys Leu 260 265 270
- Lys Ile Cys Ser Leu Lys Pro Lys Gln Pro Gly His Ser Lys Thr Gln 275 280 285
- Arg Pro Glu Glu Met Pro Ile Ser 290 295

411USPHRM311.ST25.txt <210> 13 <211> 510 <212> DNA <213> Homo sapiens	
<400> 13 tggagctgtg ccaccaccta tctggtgaac ctgatggtgg ccgacctgct ttatgtgcta	a
ttgcccttcc tcatcatcac ctactcacta gatgacaggt ggcccttcgg ggagctgct	С
tgcaagctgg tgcacttcct gttctatatc aacctttacg gcagcatcct gctgctgac	С
tgcatctctg tgcaccagtt cctaggtgtg tgccacccac tgtgttcgct gccctaccg	g
accegcagge atgectgget gggcaccage accacctggg ccctggtggt cctccaget	g
ctgcccacac tggccttctc ccacacggac tacatcaatg gccagatgat ctggtatga	С
atgaccagcc aagagaattt tgatcggctt tttgcctacg gcatagttct gacattgtc	t
ggctttcttt ccctccttgg tcattttggt gtgctattca ctgatggtca ggagcctga	
caaqccaqaq qaqaacctca tqaqqacagg	
<210> 14 <211> 170 <212> PRT <213> Homo sapiens	
<400> 14	
Trp Ser Cys Ala Thr Thr Tyr Leu Val Asn Leu Met Val Ala Asp Leu 1 5 10 15	
Leu Tyr Val Leu Leu Pro Phe Leu Ile Ile Thr Tyr Ser Leu Asp Asp 25 30	
Arg Trp Pro Phe Gly Glu Leu Leu Cys Lys Leu Val His Phe Leu Phe 35 40	
Tyr Ile Asn Leu Tyr Gly Ser Ile Leu Leu Leu Thr Cys Ile Ser Val 50 60	
His Gln Phe Leu Gly Val Cys His Pro Leu Cys Ser Leu Pro Tyr Arg 65 70 75 80	
Thr Arg Arg His Ala Trp Leu Gly Thr Ser Thr Thr Trp Ala Leu Val	
Val Leu Gln Leu Leu Pro Thr Leu Ala Phe Ser His Thr Asp Tyr Ile 100 105 110	
Asn Gly Gln Met Ile Trp Tyr Asp Met Thr Ser Gln Glu Asn Phe Asp 115 120 125	
Arg Leu Phe Ala Tyr Gly Ile Val Leu Thr Leu Ser Gly Phe Leu Ser Page 10	

135 140

Leu Leu Gly His Phe Gly Val Leu Phe Thr Asp Gly Gln Glu Pro Asp 145 150 155 160

Gln Ala Arg Gly Glu Pro His Glu Asp Arg 165 170

<210> 15

130

<211> 894

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> (431)..(461)

<223> n is any nucleotide

<220>

<221> misc_feature

<222> (790)..(818)

<223> n is any nucleotide

<400> 15

ccaccacqcq caqcacqccq acaqqqcctc tccctccat tctcccgcag gcccggacga 60 ccacqctqcc tccaqccggt cggcaaacta gggcagctcg cagccacga acagcagccc 120 180 cagcagetgg ctcatcttca ggctctgcac cttggcgcgg ggcatcgcgc tgggcgcacg qqctccacct gggctcgccg accaggccgc tgcacccgct ggggccttca gccggtgccg 240 ccaccaqacq qaqaqtaqqt qqccacaaqc gacacccatg atcttaacag gcgcgacgaa 300 360 qcccqcqacq gcctcataga acgcgtacac ctgcacgtgc cagcgctgca ggagcgcgaa 420 qatccaqtqq caqcqacqca tccccqgcca ggctcgggcg gagagtggcg cgcctggctg 480 cagagacgtt nnnnnnnnn nnnnnnnnn nnnnnnnnn nagtactagc gcaccacaaa ccccqaccc cqcqccagca gcagtqccag cagccagccc agggcggcga gggcacgcgc 540 gggcagcggc cggccgtgcg gaagacgcac cgcgcgccgg cgctcgaggg cgatgagcac 600 cacgaggtgg gccgaggcgc cccgcccgga tgcctgcagc agctgcagga agcggcacgc 660 caggtccccc gtggccgcgc ggggctcgcc cagcagttcc caggccagct gtgacagcgc 720 780 cqtqccccq cacqcqtaca ggtccqccaq ggccaqctqc accaqcagga agtccatctt qcqacqcttn nnnnnnnnn nnnnnnnnn nnnnnnnac aggcggcaca gcactgtggt 840 gttgcctgcc accgccacca ccaggatgac ccccaggaac accaggcgga cgcg 894

<210> 16

<211> 296

<212> PRT

<213> Homo sapiens

<220> <221> MISC FEATURE <222> (26)...(35) <223> Xaa is any amino acid <220> <221> MISC_FEATURE $\langle 222 \rangle$ (144)...(154) $\langle 223 \rangle$ Xaa is any amino acid <400> 16 Arg Val Arg Leu Val Phe Leu Gly Val Ile Leu Val Val Ala Val Ala Gly Asn Thr Thr Val Leu Cys Arg Leu Xaa Xaa Xaa Xaa Xaa Xaa 25 Xaa Xaa Xaa Lys Arg Arg Lys Met Asp Phe Leu Leu Val Gln Leu Ala Leu Ala Asp Leu Tyr Ala Cys Gly Gly Thr Ala Leu Ser Gln Leu Ala

Trp Glu Leu Leu Gly Glu Pro Arg Ala Ala Thr Gly Asp Leu Ala Cys

Arg Phe Leu Gln Leu Gln Ala Ser Gly Arg Gly Ala Ser Ala His

Leu Val Val Leu Ile Ala Leu Glu Arg Arg Arg Ala Val Arg Leu Pro

His Gly Arg Pro Leu Pro Ala Arg Ala Leu Ala Ala Leu Gly Trp Leu

Leu Ala Leu Leu Leu Ala Arg Gly Ser Gly Phe Val Val Arg Tyr Xaa

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Thr Ser Leu Gln Pro Gly 145 150 155

Ala Pro Leu Ser Ala Arg Ala Trp Pro Gly Met Arg Arg Cys His Trp 165 170

Ile Phe Ala Leu Leu Gln Arg Trp His Val Gln Val Tyr Ala Phe Tyr

Glu Ala Val Ala Gly Phe Val Ala Pro Val Lys Ile Met Gly Val Ala 200

Cys Gly His Leu Leu Ser Val Trp Trp Arg His Arg Leu Lys Ala Pro 210 215 220

Ala Gly Ala Ala Ala Trp Ser Ala Ser Pro Gly Gly Ala Arg Ala Pro 225 230 235 240

Ser Ala Met Pro Arg Ala Lys Val Gln Ser Leu Lys Met Ser Gln Leu $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$

Leu Gly Leu Leu Phe Val Gly Cys Glu Leu Pro Phe Ala Asp Arg Leu 260 265 270

Glu Ala Ala Trp Ser Ser Gly Pro Ala Gly Glu Trp Glu Gly Glu Ala 275 280 285

Leu Ser Ala Cys Cys Ala Trp Trp 290 295

<210> 17

<211> 801

<212> DNA

<213> Homo sapiens

<400> 17

tctaagtttt tctctgaact ttgagcctgt gaaaaaaagaa gggatgctgc ctcaggccac 60 120 cccagcctag atactcactc tgagtgccat gaggtagtag aggacactga tgacagtcat qqqqaqqaqg taqaatagga aggaggtgac ctggatgatg aaattgtaga tccacatggg 180 240 cttgatgacc gtacaggtgg ccgaacctgg gaccagggac ccattgggga agtagtggaa cttgatqcca tqqatqctqq tqttqqqcaq qqaqaaqaqc acqqaqaaqc cccaqacqat 300 360 gccgaggatc ctgagggccc ggcgccgggt gctctgcagt ttggcgcgga acgggtgtag 420 gatggccacg tagcgctcca cgctgacggt ggtgatgctg aggatggagg cgaagcacac 480 ggtctcaaag agggccgtct tgaagtagca gcccacgggc ccgaacaaga aagggtagtt qcqccacatc tcatagacct ccaggggcat tccaaggagc aggaccagga ggtcagagac 540 cgccaggctg aagaggtagt agttggtggg cgtcttcata gcctggtgct gcagaatcac 600 caqqcacacc aqqacattqc caatqacccc caccacaaaa attggcacat acaccacaga 660 cacggggagg aagaagtggc tgcgccgagg tccgcagagg aaggccagat actcctcggt 720 780 qctqttcaqq tqtttctgga atggatcttc tagtttctgc tggtagatcc aggaagcatt 801 ctgaagtttt tccatccctg a

<210> 18

<211> 249

<212> PRT

<213> Homo sapiens

<400> 18

Ser Gly Met Glu Lys Leu Gln Asn Ala Ser Trp Ile Tyr Gln Gln Lys 1 5 10 15

Leu Glu Asp Pro Phe Gln Lys His Leu Asn Ser Thr Glu Glu Tyr Leu 20 25 30

Ala Phe Leu Cys Gly Pro Arg Arg Ser His Phe Phe Leu Pro Val Ser 35 40 45

Val Val Tyr Val Pro Ile Phe Val Val Gly Val Ile Gly Asn Val Leu 50 60

Val Cys Leu Val Ile Leu Gln His Gln Ala Met Lys Thr Pro Asn Thr 65 70 75 80

Tyr Tyr Leu Phe Ser Leu Ala Val Ser Asp Leu Leu Val Leu Leu Leu 85 90 95

Gly Met Pro Leu Glu Val Tyr Glu Met Trp Arg Asn Tyr Pro Phe Leu 100 105 110

Phe Gly Pro Val Gly Cys Tyr Phe Lys Thr Ala Leu Phe Glu Thr Val 115 120 125

Cys Phe Ala Ser Ile Leu Ser Ile Thr Thr Val Ser Val Glu Arg Tyr 130 135 140

Val Ala Ile Leu His Pro Phe Arg Ala Lys Leu Gln Ser Thr Arg Arg 145 150 155 160

Arg Ala Leu Arg Ile Leu Gly Ile Val Trp Gly Phe Ser Val Leu Phe $165 \hspace{1.5cm} 170 \hspace{1.5cm} 175$

Ser Leu Pro Asn Thr Ser Ile His Gly Ile Lys Phe His Tyr Phe Pro 180 185 190

Asn Gly Ser Leu Val Pro Gly Ser Ala Thr Cys Thr Val Ile Lys Pro 195 200 205

Met Trp Ile Tyr Asn Phe Ile Ile Gln Val Thr Ser Phe Leu Phe Tyr 210 215 220

Leu Leu Pro Met Thr Val Ile Ser Val Leu Tyr Tyr Leu Met Ala Leu 225 230 235 240

Arg Val Ser Ile Ala Gly Val Ala Gly

<210> 19 <211> 222 <212> DNA <213> Homo sapiens	
<400> 19 atcaagatga tttttgctat cgtgcaaatt attggatttt ccaactccat ctgtaatccc	60
attgtctatg catttatgaa tgaaaacttc aaaaaaaatg ttttgtctgc agtttgttat	120
tgcatagtaa ataaaacctt ctctccagca caaaggcatg gaaattcagg aattacaatg	180
atgcggaaga aagcaaagtt ttccctcaga gagaatccag tg	222
<210> 20 <211> 73 <212> PRT <213> Homo sapiens	
<400> 20	
Ile Lys Met Ile Phe Ala Ile Val Gln Ile Ile Gly Phe Ser Asn Ser 1 5 10 15	
Ile Cys Asn Pro Ile Val Tyr Ala Phe Met Asn Glu Asn Phe Lys Lys 20 25 30	
Asn Val Leu Ser Ala Val Cys Tyr Cys Ile Val Asn Lys Thr Phe Ser 35 40 45	
Pro Ala Gln Arg His Gly Asn Ser Gly Ile Thr Met Met Arg Lys Lys 50 60	
Ala Lys Phe Ser Leu Arg Glu Asn Pro 65 70	
<210> 21 <211> 447 <212> DNA <213> Homo sapiens	
<400> 21 gccacagcat gcagttttct gtagaattcc actttgtctt tgcacttgaa gaagatgagg	60
tatctggtga ccaggatcac cacatagaat aggaaccgtg aggtacatgt ggatgtgcag	120
catggcactc acaaatttgc agaagggcag cccaaacatc caagtcttct tgatgaggta	180
ggtcaagcga aatggcactg tcagcagaaa aacgctgtgg accaccacca agttaatgac	240
cgccatggtg gtcactgacc gggtgttcat tttcaccagg aggaaaagaa tggaaatgac	300
acccaccage cegecaataa geactatgaa gtagaggetg attaagtggg gtgteactat	360
aggategeaa gaggaattee tggaggtatt gtggeeagge ataettggga agteacetgg	420
aggagaaaaa gcaccagagt aactgac	447

<210> 22 <211> 149 <212> PRT <213> Homo sapiens

<400> 22

Val 1	Ser	Tyr	Ser	Gly 5	Ala	Phe	Ser	Pro	Pro 10	Gly	Asp	Phe	Pro	Ser 15	Met	
Pro	Gly	His	Asn 20	Thr	Ser	Arg	Asn	Ser 25	Ser	Cys	Asp	Pro	Ile 30	Val	Thr	
Pro	His	Leu 35	Ile	Ser	Leu	Tyr	Phe 40	Ile	Val	Leu	Ile	Gly 45	Gly	Leu	Val	
Gly	Val 50	Ile	Ser	Ile	Leu	Phe 55	Leu	Leu	Val	Lys	Met 60	Asn	Thr	Arg	Ser	
Val 65	Thr	Thr	Met	Ala	Val 70	Ile	Asn	Leu	Val	Val 75	Val	His	Ser	Val	Phe 80	
Leu	Leu	Thr	Val	Pro 85	Phe	Arg	Leu	Thr	Tyr 90	Leu	Ile	Lys	Lys	Thr 95	Trp	
Met	Phe	Gly	Leu 100	Pro	Phe	Cys	Lys	Phe 105	Val	Ser	Ala	Met	Leu 110	His	Ile	
His	Met	Tyr 115	Leu	Thr	Val	Pro	Ile 120	Leu	Cys	Gly	Asp	Pro 125	Gly	His	Gln	
Ile	Pro 130	His	Leu	Leu	Gln	Val 135	Gln	Arg	Gln	Ser	Gly 140	Ile	Leu	Gln	Lys	
Thr 145	Ala	Cys	Cys	Gly												
<210 <211 <212 <213	L> 2 2> 1	23 222 DNA Homo	sap	iens												
<400 acto		23 aag q	gtcaç	gggca	at co	gacto	gaggo	c tag	gaag	gcca	cag	gaaat	tgc (cagto	caaggt	60
gtt	ggcg	cct o	gcaat	tcgca	ac ci	tacca	acaa	a cti	gac	eggg	ggca	aggg	ggg (caggo	cccgcc	120
agc	gaaca	acg (gtca	gcago	ca co	cagto	ccati	t gca	agago	cacg	gaga	agca	aca (cgat	ggccca	180
cac	ggcca	agg (cggat	tgcc	cc a	gctt	tcaaa	a gaq	ggtad	ctca	ca					222
<210 <211		24 74									Page	16				

<212> PRT <213> Homo sapiens
<400> 24
Cys Glu Tyr Leu Phe Glu Ser Trp Gly Ile Arg Leu Ala Val Trp Ala 1 5 10 15
Ile Val Leu Leu Ser Val Leu Cys Asn Gly Leu Val Leu Leu Thr Val 20 25 30
Phe Ala Gly Gly Pro Ala Pro Leu Pro Pro Val Lys Phe Val Val Gly 35 40 45
Ala Ile Ala Gly Ala Asn Thr Leu Thr Gly Ile Ser Cys Gly Leu Leu 50 60
Ala Ser Val Asp Ala Leu Thr Leu Val Ser 65 70
<210> 25 <211> 246 <212> DNA <213> Homo sapiens
<400> 25 aaccccatca tctacacgct caccaaccgc gacctgcgcc acgcgctcct gcgcctggtc 6
tgctgcggac gccactcctg cggcagagac ccgagtggct cccagcagtc ggcgagcgcg 12
getgaggett eegggggeet gegeegetge etgeeceegg geettgatgg gagetteage 18
ggctcggagc gctcatcgcc ccagcgcgac gggctggaca ccagcggctc cacaggcagc 24
cccggt 24
<210> 26 <211> 82 <212> PRT <213> Homo sapiens
<400> 26
Asn Pro Ile Ile Tyr Thr Leu Thr Asn Arg Asp Leu Arg His Ala Leu 1 5 10 15
Leu Arg Leu Val Cys Cys Gly Arg His Ser Cys Gly Arg Asp Pro Ser
Gly Ser Gln Gln Ser Ala Ser Ala Ala Glu Ala Ser Gly Gly Leu Arg 35 40 45

Ser Ser Pro Gln Arg Asp Gly Leu Asp Thr Ser Gly Ser Thr Gly Ser 65 70 75 80

Pro Gly

<210><211><211><212><213>	27 420 DNA Homo sapiens
<220> <221>	misc feature
<222> <223>	(81)(106) n is any nucleic acid

<400> 27
cgtgaagaac agcgccacca tgaccagcat gtgcaccacg cgcgctctgc gccgcgatgc 60
tcgcgggtcc gcagcctcct nnnnnnnnn nnnnnnnnn nnnnnnntgc agagcttgcg 120
cgcgatgcgg gcgtacatga ccacgatgag cgccagcggc gccaggtaga tgtgcgagaa 180
gagcacagtg gtgtagaccc tgcgcatgcc cttctcgggc caggcctccc agcaggagta 240
gagagggtag gagcggttgc gggcgtccac catgaagtgg tgctcctcac gggtgacggt 300
cagcgtgacg gccgagggac acatgatgag cagcgccagg gcccagatga cggcgatggt 360
gacgagcgcc ttccgcaggg tcagcttctc gcggaaaggg tgcacgatgc agcggaacct 420

```
<211> 139
<212> PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
<222> (104)..(113)
```

<223> Xaa is any amino acid

<400> 28

<210> 28

Ala Leu Val Thr Ile Ala Val Ile Trp Ala Leu Ala Leu Leu Ile Met 20 25 30

Cys Pro Ser Ala Val Thr Leu Thr Val Thr Arg Glu Glu His His Phe $35 \hspace{1cm} 40 \hspace{1cm} 45$

Met Val Asp Ala Arg Asn Arg Ser Tyr Pro Leu Tyr Ser Cys Trp Glu 50 60

Ala Trp Pro Glu Lys Gly Met Arg Arg Val Tyr Thr Thr Val Leu Phe Page 18

Ser His Ile Tyr Leu Ala Pro Leu Ala Leu Ile Val Val Met Tyr Ala 85 90 95

Xaa Glu Ala Ala Asp Pro Arg Ala Ser Arg Arg Arg Ala Arg Val Val 115 120 125

His Met Leu Val Met Val Ala Leu Phe Phe Thr 130 135

<210> 29

<211> 318

<212> DNA

<213> Homo sapiens

<400> 29

gcagggggg tgagtcctca ggcacttctt gaggtccttg ttgagcagga agcagacaat 60
tgggttgacg gcagcctggg cgaagctcat ccaaacagca gtggccaggt agcggtgggg 120
cacagcacag gctttcacaa acactcgcca gtagcaggcc acgatgtagg gtgaccagag 180
gagcagaaag agcagtgtga tcgcgtagaa catgcggccc agctgctttt cacccttgac 240
ctcgtccatg cccagtagcc gccggctggc tgcatgccca ttctgccgga tacccagcag 300
ggttggtggc atgggccc 318

<210> 30

<211> 106

<212> PRT

<213> Homo sapiens

<400> 30

Gly Pro Met Pro Pro Thr Leu Leu Gly Ile Arg Gln Asn Gly His Ala 1 5 10 15

Ala Ser Arg Arg Leu Leu Gly Met Asp Glu Val Lys Gly Glu Lys Gln 20 25 30

Leu Gly Arg Met Phe Tyr Ala Ile Thr Leu Leu Phe Leu Leu Trp 35 40 45

Ser Pro Tyr Ile Val Ala Cys Tyr Trp Arg Val Phe Val Lys Ala Cys 50 55 60

Ala Val Pro His Arg Tyr Leu Ala Thr Ala Val Trp Met Ser Phe Ala 65 70 75 80

411USPHRM311.ST25.txt Gln Ala Ala Val Asn Pro Ile Val Cys Phe Leu Leu Asn Lys Asp Leu 85 90 95

Lys Lys Cys Leu Arg Thr His Ala Pro Cys 100 105

<210> 31

<211> 354

<212> DNA

<213> Homo sapiens

<400> 31

tattctgtaa tgaagaatgt cattcacact gccattggca catccagtgg cctcacctag 60 cattgtgaaa gcccttcggt tggtgtattg ccacttcatt ttaaaaggat gcacaagtcc 120 ctggtgcctt tccacagcaa tgcaggtcat agtgaggatt tctgtcacaa cagcggtaga 180 ctggacaaat ggcaccatct tgcaaatgaa agcacctgca gtaaggaaat aggataaatc 240 atacatcaaa acaaaaagaa taaaggtttc atctgtgtct ttgtaattat cactatcagt 300 ccattctgag cctctgccaa aaagtttgat aattgtaatt actctgtaga caca 354

<210> 32

<211> 117

<212> PRT

<213> Homo sapiens

<400> 32

Val Tyr Arg Val Ile Thr Ile Ile Lys Leu Phe Gly Arg Gly Ser Glu $1 \hspace{1cm} 5 \hspace{1cm} 15$

Trp Thr Asp Ser Asp Asn Tyr Lys Asp Thr Asp Glu Thr Phe Ile Leu 20 25 30

Phe Val Leu Met Tyr Asp Leu Ser Tyr Phe Leu Thr Ala Gly Ala Phe 35 40 45

Ile Cys Lys Met Val Pro Phe Val Gln Ser Thr Ala Val Val Thr Glu 50° 60

Ile Leu Thr Met Thr Cys Ile Ala Val Glu Arg His Gln Gly Leu Val 65 70 75 80

His Pro Phe Lys Met Lys Trp Gln Tyr Thr Asn Arg Arg Ala Phe Thr 85 90 95

Met Leu Gly Glu Ala Thr Gly Cys Ala Asn Gly Ser Val Asn Asp Ile 100 105 110

Leu His Tyr Arg Ile 115

<210 <211 <212 <213	l> 2>	33 621 DNA Homo	sap	iens						•						
<400 gage	-	33 atg a	atcti	tttt	ga aq	gtac	ttgad	c gg	tgtc	gttc	ttga	acgg	tca	cgaa	gcacag	
agto	gttg	atc a	atgc	tgtt	gc to	catg	gcgat	gc:	actc	gacg	atg	taga	agg	cagt	gaggta	
gtgo	cttc	tcc t	ttca	caaa	ca co	ggtg	gggaa	a gaa	agtc	gcgc	acga	atgg	tga .	agcc	gtagaa	
gggd	cgcc	cag (cata	gcac	gt aç	ggcg	gtgag	g ga	tgcad	catg	agca	acca	gga	ccgt	cttcct	
gcg	gcag	cgc a	agcci	tctt	gc g	gatc	tgcto	tg:	tctg	gaat	cca	ggga	ccg	cctt	gaacca	
gago	ctcc	cgg (gaga	tcct	gg ca	atago	cacaç	g ggt	tcat	ggtg	acca	acgg	ggc	ccac	gaattc	
tato	gcca	aag a	ataa	agago	ga aq	gtag	gactt	gta	agta	gagc	tgc	ggt	cca	caggo	ccagat	
ctg	gccg	cag a	aagat	tctt	tt co	ctgg	ctctt	gad	caat	gacg	agga	accgi	tct	cggt	ggtgaa	
gtag	ggcg	gaa (gggai	tggc	ga to	cagga	atgga	a cad	ccgt	ccac	acca	aaggo	caa	tcago	gccagt	
ggct	gtt	tgg (cact	tcati	tc gt	ggt	ctcag	g cg	gatg	gaca	ata	gcca	gat	accta	agggca	
agaa	acac	aag 1	tgga	ggca	gc c											
<210 <211 <212 <213	L> : 2> :	34 207 PRT Homo	sap:	iens		-										
< 400)> :	34														
Gly 1	Cys	Leu	His	Leu 5	Cys	Ser	Cys	Pro	Arg 10	Tyr	Leu	Ala	Ile	Val 15	His	
Pro	Leu	Arg	Pro 20	Arg	Met	Lys	Cys	Gln 25	Thr	Ala	Thr	Gly	Leu 30	Ile	Ala	
Leu	Val	Trp 35	Thr	Val	Ser	Ile	Leu 40	Ile	Ala	Ile	Pro	Ser 45	Ala	Tyr	Phe	
Thr	Thr 50	Glu	Thr	Val	Leu	Val 55	Ile	Val	Lys	Ser	Gln 60	Glu	Lys	Ile	Phe	
Cys 65	Gly	Gln	Ile	Trp	Pro 70	Val	Asp	Gln	Gln	Leu 75	Tyr	Tyr	Lys	Ser	Tyr 80	
Phe	Leu	Phe	Ile	Phe 85	Gly	Ile	Glu	Phe	Val 90	Gly	Pro	Val	Val	Thr 95	Met	
Thr	Leu	Cys	Tyr 100	Ala	Arg	Ile	Ser	Arg 105	Glu	Leu	Trp	Phe	Lys 110	Ala	Val	

Pro	Gly	Phe	Gln	Thr	Glu	Gln	Ile	Arg	Lys	Arg	Leu	Arg	Cys	Arg	Arg
		115					120					125			

Lys	Thr	Val	Leu	Val	Leu	Met	Cys	Ile	Leu	Thr	Ala	Tyr	Val	Leu	Cys
_	130					135					140				

Trp Ala Pro Phe Tyr Gly Phe Thr Ile Val Arg Asp Phe Phe Pro Thr 145 150 155 160

Val Phe Val Lys Glu Lys His Tyr Leu Thr Ala Phe Tyr Ile Val Glu 165 170 175

Cys Ile Ala Met Ser Asn Ser Met Ile Asn Thr Leu Cys Phe Val Thr 180 185 190

Val Lys Asn Asp Thr Val Lys Tyr Phe Lys Lys Ile Met Leu Leu 195 200 205

<210> 35

<211> 483

<212> DNA

<213> Homo sapiens

<400> 35

cagccacact gcagtgatga aatcaaatgt ccaacaccaa ccatagtcac cattactaac 60 taaqaaqcca caaaacttcc cttccagggt gttcagcagc agggacaggg cccagggcag 120 ggcacacatg acagttgaca ggtttcttgg gcagcagcag cagtaccaga taggccgcag 180 qacaqacaqq caqcactcag tactgatggc actcagcatg ctcaggccta caaggtaggc 240 300 aaaggtcatc acgctggtga agaagctagg gaaattgatg gagatggaac agaagaagtt actgaggtac accaggcaat ttataatctg gaagcagagg aagaggaagt cggccccggc 360 caggctgagg acgtagacag agaaggcgtt cctgcgcatg cggaagccca ggagccagag 420 cacaaacccg tttcctacca gcccgaccag ggcaatgaaa aggatcagga agaccgggat 480 483 cag

<210> 36

<211> 161

<212> PRT

<213> Homo sapiens

<400> 36

Leu Ile Pro Val Phe Leu Ile Leu Phe Ile Ala Leu Val Gly Leu Val 1 $$ 5 $$ 10 $$ 15

Gly Asn Gly Phe Val Leu Trp Leu Leu Gly Phe Arg Met Arg Asn 20 25 30

Ala Phe Ser Val Tyr Val Leu Ser Leu Ala Gly Ala Asp Phe Leu Phe Page 22

40

35

Leu	Cys 50	Phe	Gln	Ile	Ile	Asn 55	Cys	Leu	Val	Tyr	Leu 60	Ser	Asn	Phe	Phe		
Cys 65	Ser	Ile	Ser	Ile	Asn 70	Phe	Pro	Ser	Phe	Phe 75	Thr	Ser	Val	Met	Thr 80		
Phe	Ala	Tyr	Leu	Val 85	Gly	Leu	Ser	Met	Leu 90	Ser	Ala	Ile	Ser	Thr 95	Glu		
Cys	Cys	Leu	Ser 100	Val	Leu	Arg	Pro	Ile 105	Trp	Tyr	Cys	Cys	Cys 110	Cys	Pro		
Arg	Asn	Leu 115	Ser	Thr	Val	Met	Cys 120	Ala	Leu	Pro	Trp	Ala 125	Leu	Ser	Leu		
Leu	Leu 130	Asn	Thr	Leu	Glu	Gly 135	Lys	Phe	Cys	Gly	Phe 140	Leu	Val	Ser	Asn		
Gly 145	Asp	Tyr	Gly	Trp	Cys 150	Trp	Thr	Phe	Asp	Phe 155	Ile	Thr	Ala	Val	Trp 160		
Leu																	
<21 <21 <21 <21	1> : 2>	37 330 DNA Homo	sapi	iens													
<40 gag		37 tga 1	ttct	gacti	ta ca	atcad	catat	t gta	aggco	ctgg	gcat	ttc	tat 1	ttgca	agcctg		60
atc	cttt	gct 1	tgtc	cgtt	ga go	gtcct	agto	c tgg	gagco	caag	tgad	caaa	gac a	agaga	atcacc	1	20
tat	ttac	gcc a	atgt	gtgca	at to	gttaa	acatt	c gca	agcca	actt	tgct	gat	ggc a	agato	gtgtgg	1	80
ttc	attg	tgg (cttco	cttt	ct ta	agtg	gccca	a ata	aacao	cacc	acaa	aggga	atg 1	tgtg	gcagcc	2	40
aca	tttt	ttg (gtcat	tttc	tt ti	tacct	ttct	t gta	atttt	tct	ggat	gcti	tgc (caag	gcactc	3	00
ctt	atcc	tct a	atgga	aatca	at ga	attgt	tttc	3								3	30
<21	0> :	38															

<210> 38 <211> 110 <212> PRT <213> Homo sapiens

<400> 38

Ile Cys Ser Leu Ile Leu Cys Leu Ser Val Glu Val Leu Val Trp Ser 20 25 30

Gln Val Thr Lys Thr Glu Ile Thr Tyr Leu Arg His Val Cys Ile Val
35 40 45

Asn Ile Ala Ala Thr Leu Leu Met Ala Asp Val Trp Phe Ile Val Ala 50 55 60

Ser Phe Leu Ser Gly Pro Ile Thr His His Lys Gly Cys Val Ala Ala 65 70 75 80

Thr Phe Phe Gly His Phe Phe Tyr Leu Ser Val Phe Phe Trp Met Leu 85 90 95

Ala Lys Ala Leu Leu Ile Leu Tyr Gly Ile Met Ile Val Phe 100 105 110

<210> 39

<211> 628

<212> DNA

<213> Homo sapiens

<400> 39

ttgtgtggca gtagagagat gtcaggcttc agagtcaaca agaactggat ttcaaactgg 60 atttgaggac ccccaccttt ggtaagtgac ttattatctg cgagcctctg tttctctctt 120 ctttaaatga ggacagtaaa tcccatacgg cagggtggtg gggagaatca gagatgatac 180 agctggtgat cacatctggt ttgtgttccc aggggcacca gactagggtt tctgagcatg 240 gatecaaceg teccagtett eggtacaaaa etgacaceaa teaacggaeg tgaggagaet 300 ccttgctaca atcagaccct gagcttcacg gtgctgacgt gcatcatttc ccttgtcgga 360 ctgacaggaa acgcggtagt gctctggctc ctgggctacc gcatgcgcag gaacgctgtc 420 tocatotaca tootcaacot ggoogcagoa gaottootot tootcagott coagattata 480 cqttcqccat tacqcctcat caatatcagc catctcatcc gcaaaatcct cgtttctgtg 540 atgacettte cetaetttac aggeetgagt atgetgageg ceatcageac egagegetge 600 628 ctgtctgttc tgtggcccat ctggtacc

<210> 40

<211> 205

<212> PRT

<213> Homo sapiens

<400> 40

Leu Cys Gly Ser Arg Glu Met Ser Gly Phe Arg Val Asn Lys Asn Trp $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ile Ser Asn Trp Ile Gly Pro Pro Pro Leu Val Ser Asp Leu Leu Ser Page 24

25

20

caataggact ctttctgg

Ala Se	r Leu 35	Cys	Phe	Ser	Leu	Leu 40	Met	Arg	Thr	Val	Asn 45	Pro	Ile	Arg	
Gln Gl 50		Gly	Glu	Asn	Gln 55	Arg	Tyr	Ser	Trp	Ser 60	His	Leu	Val	Cys	
Val Pr 65	o Arg	Gly	Thr	Arg 70	Leu	Gly	Phe	Leu	Ser 75	Met	Asp	Pro	Thr	Val 80	
Pro Va	l Phe	Gly	Thr 85	Lys	Leu	Thr	Pro	Ile 90	Asn	Gly	Arg	Glu	Glu 95	Thr	
Pro Cy	s Tyr	Asn 100	Gln	Thr	Leu	Ser	Phe 105	Thr	Val	Leu	Thr	Cys 110	Ile	Ile	
Ser Le	u Val 115	Gly	Leu	Thr	Gly	Asn 120	Ala	Val	Val	Leu	Trp 125	Leu	Leu	Gly	
Tyr Ar 13	_	Arg	Arg	Asn	Ala 135	Val	Ser	Ile	Tyr	Ile 140	Leu	Asn	Leu	Ala	
Ala Al 145	a Asp	Phe	Leu	Phe 150	Leu	Ser	Phe	Gln	Ile 155	Ile	Arg	Ser	Pro	Leu 160	
Arg Le	u Ile	Asn	Ile 165	Ser	His	Leu	Ile	Arg 170	Lys	Ile	Leu	Val	Ser 175	Val	
Met Th	r Phe	Pro 180	Tyr	Phe	Thr	Gly	Leu 185	Ser	Met	Leu	Ser	Ala 190	Ile	Ser	
Thr Gl	u Arg 195	Cys	Leu	Ser	Val	Leu 200	Trp	Pro	Ile	Trp	Tyr 205				
<210> <211> <212> <213>	41 319 DNA Homo	sapi	iens												
<400> acagaa	41 agca	aggc	cacca	ag ga	accti	caggo	c ata	agtca	atgg	gagt	gttt	gt (gttgl	gctgg	60
ctgccc	ttct	ttgt	cttga	ac ga	atcad	cagat	c cct	ttca	atta	att	taca	aac (cctt	gaagat	120
ctgtac	aatg	tctt	cctc	tg go	ctag	gctai	t tto	caact	ctg	cttt	caat	cc (catti	tatat	180
ggcatg	cttt	atcc	ttgg	tt to	cgcaa	aggca	a tto	gagga	atga	ttgt	caca	agg (catga	atcttc	240
caccct	gact	cttc	cacco	ct aa	agcct	tgtti	t tc1	gcc	catg	ctta	aggct	gt (gttca	atcatt	300

319

<210><211><211><212><213>	42 103 PRT Homo	sapi	iens												
<400>	42														
Thr Gl	u Ser	Lys	Ala 5	Thr	Arg	Thr	Leu	Gly 10	Ile	Val	Met	Gly	Val 15	Phe	
Val Le	u Cys	Trp 20	Leu	Pro	Phe	Phe	Val 25	Leu	Thr	Ile	Thr	Asp 30	Pro	Phe	
Ile As	n Phe 35	Thr	Thr	Leu	Glu	Asp 40	Leu	Tyr	Asn	Val	Phe 45	Leu	Trp	Leu	
Gly Ty 50	r Phe	Asn	Ser	Ala	Phe 55	Asn	Pro	Ile	Leu	Tyr 60	Gly	Met	Leu	Tyr	
Pro Tr	p Phe	Arg	Lys	Ala 70	Leu	Arg	Met	Ile	Val 75	Thr	Gly	Met	Ile	Phe 80	
His Pr	o Asp	Ser	Ser 85	Thr	Leu	Ser	Leu	Phe 90	Ser	Ala	His	Ala	Ala 95	Val	
Phe Il	e Ile	Gln 100	Asp	Ser	Phe										
<210> <211> <212> <213>	43 515 DNA Homo	sapi	iens												
<400> taggaa	43 tctc a	agaga	aagaa	aa gt	aag	gaaco	c aga	aaaa	ccat	aaaa	agaat	tgt a	aaato	ggaaaa	60
gaatca	gcaa a	atctt	catto	ca ct	tato	cacta	a aat	cta	aaat	atgt	caa	aat a	acato	gaagac	120
aacaaa	tgct 1	ttaga	aacaa	ac to	gttga	aatgt	att	gtc	ctac	aact	tgg	cat a	atgat	catgo	180
ttgcct	ctct a	atgto	ccaa	gt gt	ttat	tttt	gca	agtto	gacc	ttaa	attt	caa (gttag	gttttg	240
aggtct	ctac a	agtaa	atgti	t tt	aato	ctgto	c tct	actt	ctt	caga	aaaa	taa a	attag	gttgtt	300
gacgaa	tcag t	tcctt	caaga	ac ct	tgc	cgctt	c aca	aataa	agtt	ttai	ctgc	ctt (cccaa	accat	360
tggtaa	aaga a	aagca	ataa	at ca	aggg	ggtto	c ata	agcto	gaat	tata	aataa	aac a	acaco	caaact	420
aaaatc	tcat a	aaaca	ataaq	gg ag	ggagt	tata	a aaa	attca	atat	aago	catca	aat o	cacto	gcatca	480
acgagg	tatg (gtago	ccaa	ga ga	acaa	gaaat	gct	gc							515
<210><211><211><212><213>	44 148 PRT Homo	sap	iens												

Page 26

<400>	1	4
-------	---	---

Leu His Gln Arg Gly Met Val Ala Lys Arg Gln Glu Met Leu Ala Ala 1 5 10 15

Phe Leu Val Ser Trp Leu Pro Tyr Leu Val Asp Ala Val Ile Asp Ala 20 25 30

Tyr Met Asn Phe Ile Thr Pro Pro Tyr Val Tyr Glu Ile Leu Val Trp 35 40 45

Cys Val Tyr Tyr Asn Ser Ala Met Asn Pro Leu Ile Tyr Ala Phe Phe 50 60

Tyr Gln Trp Phe Gly Lys Ala Ile Lys Leu Ile Val Ser Gly Lys Val 65 70 75 80

Leu Arg Thr Asp Ser Ser Thr Thr Asn Leu Phe Ser Glu Glu Val Glu 85 90 95

Thr Asp Lys His Tyr Cys Arg Asp Leu Lys Thr Asn Leu Lys Leu Arg 100 105 110

Ser Thr Ala Lys Ile Asn Thr Trp Thr Arg Gly Lys His Asp His Met 115 120 125

Pro Ser Cys Arg Thr Ile His Ser Thr Val Val Leu Lys His Leu Leu 130 135 140

Ser Ser Cys Ile 145

<210> 45

<211> 726

<212> DNA

<213> Homo sapiens

<400> 45

ctgqaaagag gtcctcgatc tatcctctac gccgtccttg gttttggggc tgtgctggca 60 gcgtttggaa acttactggt catgattgct atccttcact tctaacaact gcacacact 120 acaaactttc tgattgcgtc gctggcctgt gctgacttct tggtgggagt cactgtgatg 180 cccttcaqca caqtqagqtc tgtggagagc tgttggtact ttggggacag ttactgtaaa 240 ttccatacat gttttgacac atctttctgt tttgcttctt tatttcattt atgctgtatc 300 tctgttgata gatacattgc tgttactgat cctctgacct atccaaccaa gtttactgtg 360 tcagtttcag ggatatgcat tgttctttcc tggttctttt ctgtcacata cagcttttcg 420 480 atcttttaca cgggagccaa cgaagaagga attgaggaat tagtagttgc tctaacctgt

gtaggaggct	gccaggctcc	actgaatcaa	aactgggtcc	tactttgttt	tcttctattc	540
tttataccca	atgtcgccat	ggtgtttata	tacagtaaga	tatttttggt	ggccaagcat	600
caggctagga	agatagaaag	tacagccagc	caagctcagt	ccttctcaga	gagttacaag	660
gaaagagtag	caaaaagaga	gagaaaggct	gccaaaacct	tgggaattgc	tatggcagca	720
tttctt						726

- <210> 46 <211> 241 <212> PRT <213> Homo sapiens

<400> 46

Leu Glu Arg Gly Pro Arg Ser Ile Leu Tyr Ala Val Leu Gly Phe Gly

Ala Val Leu Ala Ala Phe Gly Asn Leu Leu Val Met Ile Ala Ile Leu

His Phe Gln Leu His Thr Pro Thr Asn Phe Leu Ile Ala Ser Leu Ala

Cys Ala Asp Phe Leu Val Gly Val Thr Val Met Pro Phe Ser Thr Val

Arg Ser Val Glu Ser Cys Trp Tyr Phe Gly Asp Ser Tyr Cys Lys Phe

His Thr Cys Phe Asp Thr Ser Phe Cys Phe Ala Ser Leu Phe His Leu

Cys Cys Ile Ser Val Asp Arg Tyr Ile Ala Val Thr Asp Pro Leu Thr 105

Tyr Pro Thr Lys Phe Thr Val Ser Val Ser Gly Ile Cys Ile Val Leu 115

Ser Trp Phe Phe Ser Val Thr Tyr Ser Phe Ser Ile Phe Tyr Thr Gly 135 130

Ala Asn Glu Glu Gly Ile Glu Glu Leu Val Val Ala Leu Thr Cys Val 150 145

Gly Gly Cys Gln Ala Pro Leu Asn Gln Asn Trp Val Leu Leu Cys Phe

Leu Leu Phe Phe Ile Pro Asn Val Ala Met Val Phe Ile Tyr Ser Lys 185

Ile Phe Leu Val Ala Lys His Gln Ala Arg Lys Ile Glu Ser Thr Ala 195 200 205

Ser Gln Ala Gln Ser Phe Ser Glu Ser Tyr Lys Glu Arg Val Ala Lys 210 215 220

Arg Glu Arg Lys Ala Ala Lys Thr Leu Gly Ile Ala Met Ala Ala Phe 225 230 235 240

Leu

<210>	47	
<211>	660	
<212>	DNA	

<213> Homo sapiens

<400> 47 aaccaggtgg ccttactcct aagacccctg gccttgtcta tggcctttat caacagctgt 60 ctcaatccag ttctctatgt cttcattggg catgacttct gggagcactt gctccactcc 120 ctgctagctg ccttagaacg ggcacttagc gaggagccag atagtgcctg aatcccagct 180 cccaqqcaqa tqaqtccttt ataacatgac ccaatttcct actccatttt cccaccactc 240 aatcctcttc ccaaacagct ctaccataat ccaacatcca acagaattta agagaataaa 300 360 ccacaacttt taagtgagct ctatgtgcta ggtcatgttt tagaatacaa ccttaagtgc ctggaagatg gaggcaagaa acaaacaagg tctcattctt tagaggaaga cagttcacca 420 agactcaaac agaaaaaaag atagttatct tgtgacaaaa caagtcataa aattgggtca 480 qqacctqcaq caatqacttt atqctaqaat ccaqaqcact aqcaqqaaac tqcttaaatt 540 ttacttaatc aaagtcaagt ttggacatac atgtcaggta aaacctagca gagatgagct 600 accttgattt taaaacttca agggatagct caatgtcatc aagatccttt tgatgacttg 660

<210> 48 <211> 211 <212> PRT <213> Homo sapiens

<400> 48

As Gln Val Ala Leu Leu Leu Arg Pro Leu Ala Leu Ser Met Ala Phe 1 5 10 15

Ile Asn Ser Cys Leu Asn Pro Val Leu Tyr Val Phe Ile Gly His Asp 20 25 30

Phe Trp Glu His Leu Leu His Ser Leu Leu Ala Ala Leu Glu Arg Ala 35 40 45

Ţ	a	61	G1	5	7	0	77.	7 1-			RM31				C = 10	
Leu	Ser 50	Glu	Glu	Pro	Asp	Ser 55	Ala	IIe	Pro	Ala	60	Arg	GIn	Met	ser	
_	.	***	7	D	T1 -	G	m	Q	T1.	Dha	Desa	D	T	7	D	
65	Leu	HIS	Asp	Pro	70	ser	Tyr	ser	тте	75	PIO	PIO	Leu	Asn	80	
Tan	Dwa	T	C1-2	Ton	m	uio	7 an	Dxo	Πρ∼	Sar	7 an	7 ~~	Tlo	Clu	7 cn	
ьeu	PIO	гуѕ	GIII	85	тĀт	пто	ASII	PIO	90	261	ASII	Arg	116	Glu 95	ASII	
Tue	Pro	Gln	Len	I.A.I	Ser	Glu	Ι.Α.1	ጥ _ህ ዮ	Val	T. 211	Glv	Hie	l eV	Leu	Glu	
пуз	FIO	GIII	100	neu	Ser	Giu	Бей	105	vai	Deu	Gry		110	neu	Giu	
Tur	Asn	I.e.ii	Lvs	Cvs	T.e.u	Glu	Asn	Glv	Glv	Lvs	Lvs	Gln	Thr	Arg	Ser	
+ y -	71011	115	цуо	Cyc	Dea	014	120	OI I	O-1	270	270	125		9	001	
His	Ser	Leu	Glu	Glu	Asp	Ser	Ser	Pro	Ara	Leu	Lvs	Gln	Lvs	Lys	Ara	
	130					135			5		140			-,, -	y	
Leu	Ser	Cys	Asp	Lys	Thr	Ser	His	Lys	Ile	Gly	Ser	Gly	Pro	Ala	Ala	
145		-	•	•	150			-		155		_			160	
Met	Thr	Leu	Cys	Asn	Pro	Glu	His	Gln	Glu	Thr	Ala	Ile	Leu	Leu	Asn	
				165					170					175		
Gln	Ser	Gln	Val	Trp	Thr	Tyr	Met	Ser	Gly	Lys	Thr	Gln	Arg	Ala	Thr	
			180					185					190			
Leu	Ile	Leu	Lys	Leu	Gln	Gly		Ala	Gln	Cys	His	Gln	Asp	Pro	Phe	
		195					200					205				
Asp	Asp	Leu														
	210															
<210		19														
<211 <212	2> 1	165 DNA														
<213			sapi	iens												
<400 gct		19 cac q	ggcca	accat	cc ct	caaç	gctgt	tgo	cgcad	gga	gga	ggcg	cac (ggcc	gggagc	60
agc	ggag	gcg (cgcg	gtgg	gc ct	rggco	cgcg	g tg	gtctt	gct	ggc	cttt	gtc	acct	gcttcg	120
ccc	ccaa	caa d	cttc	gtgct	tc ct	rggc	gcaca	a tc	gtgag	gccg	cct	gttc	tac (ggcaa	agagct	180
acta	acca	cgt (gtaca	aagci	cc a	cgct	gtgto	e tea	agcto	gcct	caa	caac	tgt	ctgga	acccgt	240
ttg	ttta	tta d	ctttç	gcgt	cc c	gggaa	attco	c ago	ctgc	gcct	gcg	ggaat	tat	ttgg	gctgcc	300
gcc	gggt	gcc (cagaç	gaca	cc ct	tggad	cacgo	c gc	cgcga	agag	cct	cttc	tcc ·	gcca	ggacca	360

cgtccgtgcg ctccgaggcc ggtgcgcacc ctgaagggat ggagggagcc accaggcccg

gcctccagag gcaggagagt gtgttctgag tcccgggggc gcagc

Page 30

420

465

<400)> 5	50														
Leu 1	Phe	Thr	Ala	Thr 5	Ile	Leu	Lys	Leu	Leu 10	Arg	Thr	Glu	Glu	Ala 15	His	
Gly	Arg	Glu	Gln 20	Arg	Arg	Arg	Ala	Val 25	Gly	Leu	Ala	Ala	Val 30	Val	Leu	
Leu	Ala	Phe 35	Val	Thr	Суѕ	Phe	Ala 40	Pro	Asn	Asn	Phe	Val 45	Leu	Leu	Ala	
His	Ile 50	Val	Ser	Arg	Leu	Phe 55	Tyr	Gly	Lys	Ser	Tyr 60	Tyr	His	Val	Tyr	
Lys 65	Leu	Thr	Leu	Cys	Leu 70	Ser	Суѕ	Leu	Asn	Asn 75	Суѕ	Leu	Asp	Pro	Phe 80	
Val	Tyr	Tyr	Phe	Ala 85	Ser	Arg	Glu	Phe	Gln 90	Leu	Arg	Leu	Arg	Glu 95	Tyr	
Leu	Gly	Суѕ	Arg 100	Arg	Val	Pro	Arg	Asp 105	Thr	Leu	Asp	Thr	Arg 110	Arg	Glu	
Ser	Leu	Phe 115	Ser	Ala	Arg	Thr	Thr 120	Ser	Val	Arg	Ser	Glu 125	Ala	Gly	Ala	
His	Pro 130	Glu	Gly	Met	Glu	Gly 135	Ala	Thr	Arg	Pro	Gly 140	Leu	Gln	Arg	Gln	
Glu 145	Ser	Val	Phe	Val	Pro 150	Gly	Ala	Gln	Ala	Ala 155	Pro	Pro	Gly	Leu	Arg 160	
<210 <211 <212 <213	L> (2> [51 503 DNA Homo	sapi	iens												
<400 ttac		51 Etc t	gcco	cttta	at co	aact	ttta	a att	ccct	ttg	ctat	tctc	cct o	gccto	catttt	60
															caggat	120
ccg	gaaco	cca d	caggo	gccc	eg to	ggco	catga	a gag	ggcto	cctg	gact	tgaa	acc 1	cago	gacact	180
ccca	actct	egg d	ctgc	cggca	ag go	gatgo	gaago	t tg	gatga	agca	ggca	aggaç	gct (ggcac	gtgggg	240
gtg	gagaç	gcc a	atago	gctat	it go	ggt	ggaca	a ggo	cttg	ggtg	cct	catg	gga (gctco	ccatg	300
	Page 31															

<210> 50 <211> 160 <212> PRT <213> Homo sapiens

gg	gagctgtgg	ccccttgggg	cctcttattt	ctcaccccag	gctttcccgg	gagaggttca	360
aç	gtcagaaga	tgccccaaag	atccacgtgg	ccctgggtgg	cagcctgttc	ctcctgaatc	420
tç	gccttctt	ggtcaatgtg	gggagtggct	caaaggggtc	tgatgctgcc	tgctgggccc	480
gg	ggggctgt	cttccactac	ttcctgctct	gtgccttcac	ctggatgggc	cttgaagcct	540
to	cacctcta	cctgctcgct	gtcagggtct	tcaacaccta	cttcgggcac	tacttcctga	600
aç	jc						603

<210> 52 <211> 198 <212> PRT <213> Homo sapiens

<400> 52

Glu Thr Tyr Ser Ala Leu Tyr Pro Thr Phe Asn Ser Leu Cys Tyr Ser

Pro Ala Ser Phe Ser Gly Leu Ile Phe Pro Ile Ile Leu Pro His Ile

Asp Gln Gly Met Arg Leu Ala Gly Ser Gly Thr His Arg Ala Pro Trp

Ala Met Arg Gly Ser Trp Thr Thr Ser Gly His Ser His Ser Gly Cys 55

Arg Gln Gly Trp Lys Leu Asp Glu Gln Ala Gly Ala Gly Ser Gly Gly

Gly Glu Pro Ala Ile Gly Val Asp Arg Leu Gly Cys Leu Met Gly Ala

Pro His Gly Ser Cys Gly Pro Leu Gly Pro Leu Ile Ser His Pro Arg 100

Leu Ser Arg Glu Arg Phe Lys Ser Glu Asp Ala Pro Lys Ile His Val 115 120

Ala Leu Gly Gly Ser Leu Phe Leu Leu Asn Leu Ala Phe Leu Val Asn

Val Gly Ser Gly Ser Lys Gly Ser Asp Ala Ala Cys Trp Ala Arg Gly

Ala Val Phe His Tyr Phe Leu Leu Cys Ala Phe Thr Trp Met Gly Leu 170

Glu Ala Phe His Leu Tyr Leu Leu Ala Val Arg Val Phe Asn Thr Tyr Page 32

180 185

Phe	Gly	His	Tyr	Phe	Leu
		195			

<210> 53

<211> 335

<212> DNA

<213> Homo sapiens

<400> 53

aattggtcgg agagtgcagc tgcttgaaat ggaggattga aatcatcacc aggaggtttc 60 caaacacage cagcacagee ccaaageeaa acactatgta cagaateace egggateeeg 120 gcgagaaggg gattttcaca caggacccat tcacgttcgc gtagcacagc tgcacagcca 180 ccaqcaqqqa tqaattqctq ctcataacqc tggtatttac atatggagaa attttgtcct 240 tgttgattat cacaaaaaat acaggattgt tcctgatttt cattgctcct gcggaaaaaa 300 335 acacatattc accaggatgc cagaggaaat gatca

<210> 54

<211> 111

<212> PRT

<213> Homo sapiens

<400> 54

Asp His Phe Leu Trp His Pro Gly Glu Tyr Val Phe Phe Ser Ala Gly 10

Ala Met Lys Ile Arg Asn Asn Pro Val Phe Phe Val Ile Ile Asn Lys

Asp Lys Ile Ser Pro Tyr Val Asn Thr Ser Val Met Ser Ser Asn Ser

Ser Leu Leu Val Ala Val Gln Leu Cys Tyr Ala Asn Val Asn Gly Ser

Cys Val Lys Ile Pro Phe Ser Pro Gly Ser Arg Val Ile Leu Tyr Ile

Val Phe Gly Phe Gly Ala Val Leu Ala Val Phe Gly Asn Leu Leu Val 85 90

Met Ile Ser Ile Leu His Phe Lys Gln Leu His Ser Pro Thr Asn 100

<210> 55

<211> 586

<212> DNA <213> Homo sapiens

Page 33

<400> cacatct		caagactgaa	aaacattgat	ttgtttttaa	tttgaagagc	aatttatttg	60
ctattca	ttc	atagtcttac	ttgattttta	aaaactcatt	tcgcttggta	attttaaagg	120
tatcctg	aac	ttcgtctatc	caactgctta	tatatgttca	gaaaacaaat	tcatggttgc	180
tgaactg	rttc	tttaaaacct	gaccagttac	aataactttt	attgctttcc	taaaccatgg	240
gtaaaat	aaa	gcataaatca	aaggattcat	ggctgagtta	taataagcac	accaacagca	300
tcataaa	tac	aggcaggggt	tataaagccc	ataaaggcat	caattaatga	atcaatgcta	360
tatggta	acc	atgaaatcat	aaatgctacc	actgtgaccc	ccagggtttt	agctgctttt	420
ctctctc	tcc	tggccactct	ggctttgtaa	ctctctgagg	atgattctgt	cttgctacca	480
gtatttt	cta	tctttttcgc	ctgtcgtcta	gccacaagaa	atatgttacc	atacagaatt	540
atcataa	taa	aggtaggtat	aaagaaggat	agaaaatctg	tcaaca		586
	56 190 PRT						

<212> PRT <213> Homo sapiens

<400> 56

Leu Thr Asp Phe Leu Ser Phe Phe Ile Pro Thr Phe Ile Met Ile Ile

Leu Tyr Gly Asn Ile Phe Leu Val Ala Arg Arg Gln Ala Lys Lys Ile

Glu Asn Thr Gly Ser Lys Thr Glu Ser Ser Ser Glu Ser Tyr Lys Ala

Arg Val Ala Arg Arg Glu Arg Lys Ala Ala Lys Thr Leu Gly Val Thr

Val Val Ala Phe Met Ile Ser Trp Leu Pro Tyr Ser Ile Asp Ser Leu 65 70 75 80

Ile Asp Ala Phe Met Gly Phe Ile Thr Pro Ala Cys Ile Tyr Glu Ile

Cys Cys Trp Cys Ala Tyr Tyr Asn Ser Ala Met Asn Pro Leu Ile Tyr 100 105

Ala Leu Phe Tyr Pro Trp Phe Arg Lys Ala Ile Lys Val Ile Val Thr

Gly Gln Val Leu Lys Asn Ser Ser Ala Thr Met Asn Leu Phe Ser Glu 135

His Ile Ala Val Gly Thr Lys Phe Arg Ile Pro Leu Lys Leu Pro Ser 145 150 155 160

Glu Met Ser Phe Lys Ser Ser Lys Thr Met Asn Glu Gln Ile Asn Cys 165 170 175

Ser Ser Asn Lys Gln Ile Asn Val Phe Gln Ser Cys Asp Val 180 185 190

<210> 57

<211> 976

<212> DNA <213> Homo sapiens

<400> 57

60 tttgtggcaa ggagacctg atcccggtct tcctgatcct tttcattgcc ctggtcgggc tggtaggaaa cgggtttgtg ctctggctcc tgggcttccg catgcgcagg aacgccttct 120 ctgtctacgt cctcagcctg gccggggccg acttcctctt cctctgcttc cagattataa 180 attgcctggt gtacctcagt aacttcttct gttccatctc catcaatttc cctagcttct 240 tcaccactgt gatgacctgt gcctaccttg caggcctgag catgctgagc accgtcagca 300 360 ccgagcgctg cctgtccgtc ctgtggccca tctggtatcg ctgccgccgc cccagacacc tgtcagcggt cgtgtgtgtc ctgctctggg ccctgtccct actgctgagc atcttggaag 420 480 ggaagttctg tggcttctta tttagtgatg gtgactctgg ttggtgtcag acatttgatt tcatcactgc agcgtggctg atttttttat tcatggttct ctgtgggtcc agtctggccc 540 tgctggtcag gatcctctgt ggctccaggg gtctgccact gaccaggctg tacctgacca 600 tectqctcac agtqctqqtq tecetectet geggeetgee etttggeatt cagtggttee 660 taatattatq gatctggaag gattctgatg tcttattttg tcatattcat ccagtttcag 720 ttqtcctqtc atctcttaac agcagtgcca accccatcat ttacttcttc gtgggctctt 780 ttaggaagca gtggcggstg cagcacccga tcctcaagct ggctctccag agggctctgc 840 aggacattgc tgaggtggat cacagtgaag gatgcttccg tcagggcacc cggagattca 900 aagaagcatt ctggtgtagg gatggacccc tctacttcca tcatatatat gtggctttga 960 976 gaggcaactt tgcccc

<210> 58

<211> 324

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<222> (266)..(266)

<223> Xaa is any amino acid

Cys Gly Lys Glu Thr Leu Ile Pro Val Phe Leu Ile Leu Phe Ile Ala 1 5 10 15

Leu Val Gly Leu Val Gly Asn Gly Phe Val Leu Trp Leu Leu Gly Phe 20 25 30

Arg Met Arg Arg Asn Ala Phe Ser Val Tyr Val Leu Ser Leu Ala Gly 35 40 45

Ala Asp Phe Leu Phe Leu Cys Phe Gln Ile Ile Asn Cys Leu Val Tyr 50 55 60

Leu Ser Asn Phe Phe Cys Ser Ile Ser Ile Asn Phe Pro Ser Phe Phe 65 70 75 80

Thr Thr Val Met Thr Cys Ala Tyr Leu Ala Gly Leu Ser Met Leu Ser 85 90 95

Thr Val Ser Thr Glu Arg Cys Leu Ser Val Leu Trp Pro Ile Trp Tyr 100 105 110

Arg Cys Arg Arg Pro Arg His Leu Ser Ala Val Val Cys Val Leu Leu 115 120 125

Trp Ala Leu Ser Leu Leu Leu Ser Ile Leu Glu Gly Lys Phe Cys Gly 130 140

Phe Leu Phe Ser Asp Gly Asp Ser Gly Trp Cys Gln Thr Phe Asp Phe 145 150 155 160

Ile Thr Ala Ala Trp Leu Ile Phe Leu Phe Met Val Leu Cys Gly Ser $165 \hspace{1.5cm} 170 \hspace{1.5cm} 175$

Ser Leu Ala Leu Leu Val Arg Ile Leu Cys Gly Ser Arg Gly Leu Pro $180 \hspace{1.5cm} 185 \hspace{1.5cm} 190 \hspace{1.5cm}$

Leu Thr Arg Leu Tyr Leu Thr Ile Leu Leu Thr Val Leu Val Ser Leu 195 200 205

Leu Cys Gly Leu Pro Phe Gly Ile Gln Trp Phe Leu Ile Leu Trp Ile 210 215 220

Trp Lys Asp Ser Asp Val Leu Phe Cys His Ile His Pro Val Ser Val 225 230 235 240

Val Leu Ser Ser Leu Asn Ser Ser Ala Asn Pro Ile Ile Tyr Phe Phe $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$

Val Gly Ser Phe Arg Lys Gln Trp Arg Xaa Gln His Pro Ile Leu Lys 260 265 270	
Leu Ala Leu Gln Arg Ala Leu Gln Asp Ile Ala Glu Val Asp His Ser 275 280 285	
Glu Gly Cys Phe Arg Gln Gly Thr Arg Arg Phe Lys Glu Ala Phe Trp 290 295 300	
Cys Arg Asp Gly Pro Leu Tyr Phe His His Ile Tyr Val Ala Leu Arg 305 310 315 320	
Gly Asn Phe Ala	
<210> 59 <211> 578 <212> DNA <213> Homo sapiens	
<400> 59 ctttgcatct cactgttgag cagacagcct gctgaaagtt gtcgctgacc accacatata	60
gtaacaggtt accaaaggtg ttcagagcag cataatggtc tagaaacgat gtaagcttca	120
tggatctgat tctcaatgga acaactgatt gaaagcaggc tgagattcga tcctgaatga	180
ccctcaagat atggaagggt aaaaaacata cgtaaaatgc aaggagtagc agaatggtta	240
gccttcgtgc tttctgctta aggcagctgt cagtttgcag tccatgggtc aaagtgtgga	300
taatcgtggt atagcaaagt gtcactatca ccaaggggag gcagaaagta cttgcagtca	360
aaatcaggtt gtaccactta atagtattga gttcatccga actggtgagg tcgagacagg	420
ctgatctgtt ggtcctgttg gttgatgtga tcaagaaggt catcggaatg acagctacca	480
gtgaaatgat ccacaccaca gcacaggcta caactgcaca tcgagttttg tgaatggaaa	540
agcagctcat tgggtgaatg atcacacagt agcggaag	578
<210> 60 <211> 192 <212> PRT <213> Homo sapiens <400> 60	
Phe Arg Tyr Cys Val Ile Ile His Pro Met Ser Cys Phe Ser Ile His 1 5 10 15	
Lys Thr Arg Cys Ala Val Val Ala Cys Ala Val Val Trp Ile Ile Ser 20 25 30	
Leu Val Ala Val Ile Pro Met Thr Phe Leu Ile Thr Ser Thr Asn Arg 35 40 45	

Page 37

Thr Asn Arg Ser Ala Cys Leu Asp Leu Thr Ser Ser Asp Glu Leu Asn 50 60
Thr Ile Lys Trp Tyr Asn Leu Ile Leu Thr Ala Ser Thr Phe Cys Leu 75 80
Pro Leu Val Ile Val Thr Leu Cys Tyr Thr Thr Ile Ile His Thr Leu 85 90 95
Thr His Gly Leu Gln Thr Asp Ser Cys Leu Lys Gln Lys Ala Arg Arg 100 105 110
Leu Thr Ile Leu Leu Leu Leu Ala Phe Tyr Val Cys Phe Leu Pro Phe 115 120 125
His Ile Leu Arg Val Ile Gln Asp Arg Ile Ser Ala Cys Phe Gln Ser 130 135 140
Val Val Pro Leu Arg Ile Arg Ser Met Lys Leu Thr Ser Phe Leu Asp 145 150 155 160
His Tyr Ala Ala Leu Asn Thr Phe Gly Asn Leu Leu Leu Tyr Val Val 165 170 175
Val Ser Asp Asn Phe Gln Gln Ala Val Cys Ser Thr Val Arg Cys Lys 180 185 190
<210> 61 <211> 872 <212> DNA <213> Homo sapiens
<pre><400> 61 gggagggctc gtagacacac taaccctacc ctttctgttt cttcctcatc tttcctttcc</pre>
atctgtttct catggtctcc tgtctgtctc tctctctctc ccctctttct ctctcctcgc 120
totttotoat occotocatt totgtgtoaa totoaatooa tttatatogg tggccacttt 180
totatotott tgttctatot ototototot ototttocca otttgtctct gcacgcctgt 240
tgtgtttttc tgcctgtctc tctcttgccc tcatctctct gtctctctct tgccctcatc 300
tetetgtete tetgtgtetg tgteteece geteatteee atttgeaggt geaatgtage 360
aggacaactc atggagcccc cccgggccca tcgagtaccg gactggctga ccccctaggg 420
ttggcagtag cccctgaccc tcagtatggc caacactacc ggagagcctg aggaggtgag 480
cggcgctctg tccccaccgt ccgcatcagc ttatgtgaag ctggtactgc tgggactgat 540
tatgtgcgtg agcctggcgg gtaacgccat cttgtccctg ctggtgctca aggagcgggc 600
cctgcacaag gctccttact acttcctgct ggacctgtgc ctggccgatg gcatacgctc 660

Page 38

tgc	gtc	tgc 1	ttcc	cctt	tg to	gctg	gctto	tgt	gcg	ccac	ggct	cctto	cat	ggaco	cttcag	7	720
tgca	actca	agc 1	tgcaa	agati	tg to	ggcct	ttat	ggo	ccgt	gctc	tttt	gctt	cc	atgc	ggcctt	7	780
cato	gctgt	ttc 1	tgcat	cago	cg to	cacco	cgcta	a cat	ggc	catc	gcco	cacca	acc	gctto	ctacgc	8	340
caag	gegea	atg a	acact	ctg	ga ca	atgco	gegge	tg:								8	372
<210 <211 <212 <213	L> : 2> 1	62 143 PRT Homo	sapi	iens													
<400)> (62															
Met 1	Ala	Asn	Thr	Thr 5	Gly	Glu	Pro	Glu	Glu 10	Val	Ser	Gly	Ala	Leu 15	Ser		
Pro	Pro	Ser	Ala 20	Ser	Ala	Tyr	Val	Lys 25	Leu	Val	Leu	Leu	Gly 30	Leu	Ile		
Met	Cys	Val 35	Ser	Leu	Ala	Gly	Asn 40	Ala	Ile	Leu	Ser	Leu 45	Leu	Val	Leu		
Lys	Glu 50	Arg	Ala	Leu	His	Lys 55	Ala	Pro	Tyr	Tyr	Phe 60	Leu	Leu	Asp	Leu		
Cys 65	Leu	Ala	Asp	Gly	Ile 70	Arg	Ser	Ala	Val	Cys 75	Phe	Pro	Phe	Val	Leu 80		
Ala	Ser	Val	Arg	His 85	Gly	Ser	Ser	Trp	Thr 90	Phe	Ser	Ala	Leu	Ser 95	Cys		
Lys	Ile	Val	Ala 100	Phe	Met	Ala	Val	Leu 105	Phe	Cys	Phe	His	Ala 110	Ala	Phe		
Met	Leu	Phe 115	Суѕ	Ile	Ser	Val	Thr 120	Arg	Tyr	Met	Ala	Ile 125	Ala	His	His		
Arg	Phe 130	Tyr	Ala	Lys	Arg	Met 135	Thr	Leu	Trp	Thr	Cys 140	Ala	Ala	Glu			
<210 <211 <212 <213	L> 9 2> I	63 962 DNA Homo	sapi	iens													
<400 aaaa		63 get d	gtact	gaad	ct at	tgaa	atqqa	a act	taga	aaat	aaao	gtcco	ctt	ccaaa	ataac		60
															gccaa	1	L20
tgat	tta	ctc t	ttta	attt	ct co	ctcct	aggt	tto	ctggg	gata	agta	atgto	gca	aataa	aaaat	1	180

aaacatgaga	aggaactgta	acctgattat	ggatttggga	aaaagataaa	tcaacacaca	240
aagggaaaag	taaactgatt	gacagccctc	aggaatgatg	cccttttgcc	acaatataat	300
taatatttcc	tgtgtgaaaa	acaactggtc	aaatgatgtc	cgtgcttccc	tgtacagttt	360
aatggtgctc	ataattctga	ccacactcgt	tggcaatctg	atagttattg	tttctatatc	420
acacttcaaa	caacttcata	ccccaacaaa	ttggctcatt	cattccatgg	ccactgtgga	480
ctttcttctg	gggtgtctgg	tcatgcctta	cagtatggtg	agatctgctg	agcactgttg	540
gtattttgga	gaagtcttct	gtaaaattca	cacaagcacc	gacattatgc	tgagctcagc	600
ctccattttc	catttgtctt	tcatctccat	tgaccgctac	tatgctgtgt	gtgatccact	660
gagatataaa	gccaagatga	atatcttggt	tatttgtgtg	atgatcttca	ttagttggag	720
tgtccctgct	gtttttgcat	ttggaatgat	ctttctggag	ctaaacttca	aaggcgctga	780
agagatatat	tacaaacatg	ttcactgcag	aggaggttgc	tctgtcttct	ttagcaaaat	840
atctggggta	ctgaccttta	tgacttcttt	ttatatacct	ggatctatta	tgttatgtgt	900
ctattacaga	atatatctta	tcgctaaaga	acaggcaaga	ttaattagtg	atgccaatca	960
ga						962

<210> 64 <211> 238 <212> PRT

<213> Homo sapiens

<400> 64

Ile Ile Asn Ile Ser Cys Val Lys Asn Asn Trp Ser Asn Asp Val Arg 20 25 30

Ala Ser Leu Tyr Ser Leu Met Val Leu Ile Ile Leu Thr Thr Leu Val 35 40 45

Gly Asn Leu Ile Val Ile Val Ser Ile Ser His Phe Lys Gln Leu His 50 60

Thr Pro Thr Asn Trp Leu Ile His Ser Met Ala Thr Val Asp Phe Leu 65 70 75 80

Leu Gly Cys Leu Val Met Pro Tyr Ser Met Val Arg Ser Ala Glu His $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Cys Trp Tyr Phe Gly Glu Val Phe Cys Lys Ile His Thr Ser Thr Asp 100 105 110

Ile Met Leu Ser Ser Ala Ser Ile Phe His Leu Ser Phe Ile Ser Ile Page 40

115

12!

Asp Arg Tyr Tyr Ala Val Cys Asp Pro Leu Arg Tyr Lys Ala Lys Met 130 135 140

120

Asn Ile Leu Val Ile Cys Val Met Ile Phe Ile Ser Trp Ser Val Pro 145 150 155 160

Ala Val Phe Ala Phe Gly Met Ile Phe Leu Glu Leu Asn Phe Lys Gly
165 170 175

Ala Glu Glu Ile Tyr Tyr Lys His Val His Cys Arg Gly Gly Cys Ser 180 185 190

Val Phe Phe Ser Lys Ile Ser Gly Val Leu Thr Phe Met Thr Ser Phe 195 200 205

Tyr Ile Pro Gly Ser Ile Met Leu Cys Val Tyr Tyr Arg Ile Tyr Leu 210 215 220

Ile Ala Lys Glu Gln Ala Arg Leu Ile Ser Asp Ala Asn Gln 225 230 235

<210> 65

<211> 1018

<212> DNA

<213> Homo sapiens

<400> 65

aacagtcccg ggtggaacct gggcatgtat attttgattg ttttatgcat actcctagtg 60 aaqaaccaat qtcttgctca gatagaagca agatactcag acttagtttc tctgtagctc 120 ctgcttttta ttattcctgg ttggattgca ccactactca gtttctattt tataatactg 180 attataaaac atgggaggga aataactttg tattggtttt tatggataat ttattatgtg 240 tcctagactc tggccttgtc aaaagaagga cgtaagaagg cacgatgtat tatacttggg 300 aatgatagaa gagactgacc tggtatttcc acccggaaga gggaaaggat tttaactaca 360 aatacaqqaa tccaqcaqat ggcatcaqaq aacactataa aaaaqaaacq atttgcaaca 420 qccacctctc ttccaaaaca attccttact tctgtggtct gcaaggcggt tttttgaatg 480 gaacagaaca tagtaatata ggaaaacaca atgatgagaa aagccagcaa gttcacacct 540 600 gttggggaaa agcacacttt taacatctca ggcgtaaaaag tcaacagtaa aattactgtg gtacaggttg agtatccctt acccaaaatg tttgaaacca gaaatgtttt ggatttcgga 660 tttcggaata tttacacatt cataatgata tatcttggaa atggttccca agtctaaaca 720 caaaatttat ttatgtttca tatacacctt atacacatag tctgaaagta attttgtaca 780 atattttaaa taattttggg catgaaacaa agtttgcata cattgaacca tcagacagca 840

aaagcttcag	gtgtggaatt	ttccacttgt	ggcatcatgt	tgatgctcaa	aaagttccat	900
attttagagc	atttcaaatt	ttggattttc	aaattacaaa	tgcttaacct	gtacttagat	960
gttaaataca	gtgcctcttc	cacgggcact	ttcaggaagc	attcttttat	ataagccc	1018

<210> 66 <211> 327 <212> PRT <213> Homo sapiens

<400> 66

Tyr Ile Lys Glu Cys Phe Leu Lys Val Pro Val Glu Glu Ala Leu Tyr 1 5 10 15

Leu Thr Ser Lys Tyr Arg Leu Ser Ile Cys Asn Leu Lys Ile Gln Asn 20 25 30

Leu Lys Cys Ser Lys Ile Trp Asn Phe Leu Ser Ile Asn Met Met Pro 35 40 45

Gln Val Glu Asn Ser Thr Pro Glu Ala Phe Ala Val Trp Phe Asn Val 50 60

Cys Lys Leu Cys Phe Met Pro Lys Ile Ile Asn Ile Val Gln Asn Tyr 65 70 75 80

Phe Gln Thr Met Cys Ile Arg Cys Ile Asn Ile Asn Lys Phe Cys Val $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Thr Trp Glu Pro Phe Pro Arg Tyr Ile Ile Met Asn Val Ile Phe Arg 100 105 110

Asn Pro Lys Ser Lys Thr Phe Leu Val Ser Asn Ile Leu Gly Lys Gly 115 120 125

Tyr Ser Thr Cys Thr Thr Val Ile Leu Leu Leu Thr Phe Thr Pro Glu 130 135 140

Met Leu Lys Val Cys Phe Ser Pro Thr Gly Val Asn Leu Leu Ala Phe 145 150 155 160

Leu Ile Ile Val Phe Ser Tyr Ile Thr Met Phe Cys Ser Ile Gln Lys 165 170 175

Thr Ala Leu Gln Thr Thr Glu Val Arg Asn Cys Phe Gly Arg Glu Val 180 185 190

Ala Val Ala Asn Arg Phe Phe Phe Ile Val Phe Ser Asp Ala Ile Cys 195 200 205

Trp Ile Pro Val Phe Val Val Lys Ile Leu Ser Leu Phe Arg Val Glu 210 215 220	
Ile Pro Gly Gln Ser Leu Leu Ser Phe Pro Ser Ile Ile His Arg Ala 225 230 235 240	
Phe Leu Arg Pro Ser Phe Asp Lys Ala Arg Val Asp Thr Ile Ile His 245 250 255	
Lys Asn Gln Tyr Lys Val Ile Ser Leu Pro Cys Phe Ile Ile Ser Ile 260 265 270	
Ile Lys Lys Leu Ser Ser Gly Ala Ile Gln Pro Gly Ile Ile Lys Ser 275 280 285	
Arg Ser Tyr Arg Glu Thr Lys Ser Glu Tyr Leu Ala Ser Ile Ala Arg 290 295 300	
His Trp Phe Phe Thr Arg Ser Met His Lys Thr Ile Lys Ile Tyr Met 305 310 315 320	
Pro Arg Phe His Pro Gly Leu 325	
<210> 67 <211> 1251 <212> DNA <213> Homo sapiens	
<400> 67 actaccatgg aagctgacct gggtgccact ggccacaggc cccgcacaga gcttgatgat	60
gaggactect acceccaagg tggctgggac acggtettee tggtggccet getgeteett	120
gggctgccag ccaatgggtt gatggcgtgg ctggccggct cccaggcccg gcatggagct	180
ggcacgcgtc tggcgctgct cctgctcagc ctggccctct ctgacttctt gttcctggca	240
gcageggeet tecagateet agagateegg catgggggae aetggeeget ggggaeaget	300

gcctgccgct tctactactt cctatggggc gtgtcctact cctccggcct cttcctgctg

geogeoctea geotegaceg etgeetgetg gegetgtgee cacactggta ecetgggeae

cgcccagtcc gcctgcccct ctgggtctgc gccggtgtct gggtgctggc cacactcttc

agcgtgccct ggctggtctt ccccgaggct gccgtctggt ggtacgacct ggtcatctgc

ctggacttct gggacagcga ggagctgtcg ctgaggatgc tggaggtcct ggggggcttc

ctgcctttcc tcctgctgct cgtctgccac gtgctcaccc aggccacagc ctgtcgcacc

tgccaccgcc aacagcagcc cgcagcctgc cggggcttcg cccgtgtggc caggaccatt ctgtcagcct atgtggtcct gaggctgccc taccagctgg cccagctgct ctacctggcc

360 420

480

540

600

660

720

780

			411USPH	RM311.ST25.	EXT	
ttcctgtggg	acgtctactc	tggctacctg	ctctgggagg	ccctggtcta	ctccgactac	840
ctgatcctac	tcaacagctg	cctcagcccc	ttcctctgcc	tcatggccag	tgccgacctc	900
cggaccctgc	tgcgctccgt	gctctcgtcc	ttcgcggcag	ctctctgcga	ggagcggccg	960
ggcagcttca	cgcccactga	gccacagacc	cagctagatt	ctgagggtcc	aactctgcca	1020
gagccgatgg	cagaggccca	gtcacagatg	gatcctgtgg	cccagcctca	ggtgaacccc	1080
acactccagc	cacgatcgga	tcccacagct	cagccacagc	tgaaccctac	ggcccagcca	1140
cagtcggatc	ccacagccca	gccacagctg	aacctcatgg	cccagccaca	gtcagattct	1200
gtggcccagc	cacaggcaga	cactaacgtc	cagacccctg	cacctgctgc	С	1251

<210> 68

<211> 417 <212> PRT

<213> Homo sapiens

<400> 68

Thr Thr Met Glu Ala Asp Leu Gly Ala Thr Gly His Arg Pro Arg Thr 5

Glu Leu Asp Asp Glu Asp Ser Tyr Pro Gln Gly Gly Trp Asp Thr Val

Phe Leu Val Ala Leu Leu Leu Gly Leu Pro Ala Asn Gly Leu Met

Ala Trp Leu Ala Gly Ser Gln Ala Arg His Gly Ala Gly Thr Arg Leu

Ala Leu Leu Leu Ser Leu Ala Leu Ser Asp Phe Leu Phe Leu Ala

Ala Ala Ala Phe Gln Ile Leu Glu Ile Arg His Gly Gly His Trp Pro

Leu Gly Thr Ala Ala Cys Arg Phe Tyr Tyr Phe Leu Trp Gly Val Ser

Tyr Ser Ser Gly Leu Phe Leu Leu Ala Ala Leu Ser Leu Asp Arg Cys

Leu Leu Ala Leu Cys Pro His Trp Tyr Pro Gly His Arg Pro Val Arg 135

Leu Pro Leu Trp Val Cys Ala Gly Val Trp Val Leu Ala Thr Leu Phe

Ser Val Pro Trp Leu Val Phe Pro Glu Ala Ala Val Trp Trp Tyr Asp Page 44

165 170 Leu Val Ile Cys Leu Asp Phe Trp Asp Ser Glu Glu Leu Ser Leu Arg 185 Met Leu Glu Val Leu Gly Gly Phe Leu Pro Phe Leu Leu Leu Val Cys His Val Leu Thr Gln Ala Thr Ala Cys Arg Thr Cys His Arg Gln 210 215 Gln Gln Pro Ala Ala Cys Arg Gly Phe Ala Arg Val Ala Arg Thr Ile Leu Ser Ala Tyr Val Val Leu Arg Leu Pro Tyr Gln Leu Ala Gln Leu Leu Tyr Leu Ala Phe Leu Trp Asp Val Tyr Ser Gly Tyr Leu Leu Trp Glu Ala Leu Val Tyr Ser Asp Tyr Leu Ile Leu Leu Asn Ser Cys Leu 280 Ser Pro Phe Leu Cys Leu Met Ala Ser Ala Asp Leu Arg Thr Leu Leu 295 Arg Ser Val Leu Ser Ser Phe Ala Ala Ala Leu Cys Glu Glu Arg Pro

305 310

Gly Ser Phe Thr Pro Thr Glu Pro Gln Thr Gln Leu Asp Ser Glu Gly

Pro Thr Leu Pro Glu Pro Met Ala Glu Ala Gln Ser Gln Met Asp Pro 340 345

Val Ala Gln Pro Gln Val Asn Pro Thr Leu Gln Pro Arg Ser Asp Pro 360

Thr Ala Gln Pro Gln Leu Asn Pro Thr Ala Gln Pro Gln Ser Asp Pro 375

Thr Ala Gln Pro Gln Leu Asn Leu Met Ala Gln Pro Gln Ser Asp Ser 390 395

Val Ala Gln Pro Gln Ala Asp Thr Asn Val Gln Thr Pro Ala Pro Ala 405 410

Ala

<210 <211 <212 <213	> (> i	69 659 DNA Homo	sap:	iens											
<400 taca		59 Stg a	agcat	tacto	aa a	ctcca	atcad	g cad	ccaa	gcac	tgc	ctate	cca	tcct	ataacc
catc	tagt	cac o	cgcto	gcca	cc a	ccca	acaca	a cci	tgtca	agca	gtc	gtgt	gtc	ctgct	tctggg
ccct	gtc	cct (gctgo	cagaç	gc at	tcct	ggaat	t gga	atgti	tctg	tgg	cttc	ctg	tctag	gtggtg
ctga	ttct	gt t	ttgg	tgtga	aa a	catca	agatt	t tca	atca	cagt	caca	atgg	ctg	attti	tttat
gtgt	ggtt	ct (ctgc	gggt	cc a	gccc	ggtto	c tgo	ctgg	tcag	gate	cctt	tgt	ggato	cccgga
agat	gcc	ett (gacca	aggct	tg ta	acat	gacca	a tc	ctgc	tcaġ	agt	gctg	gtc	ttcci	tcctct
gtga	cct	gcc (cttt	ggcat	it ca	agtga	attco	c tai	tttt	tctg	gate	ccac	gtg	gatti	tgtcac
gttc	gtct	ag 1	tttc	catti	t c	ctgt	ccact	t cti	taaca	agca	gtg	ccaa	ccc	catta	atttac
ttct	tcat	gg (gctc	cttta	ag go	cagc	ttcaa	a aad	cagga	aaga	ctc	tcta	gct	ggtt	ctccag
aggg	ctct	igc a	agga	cacgo	cc to	gaggt	tggaa	a gaa	aggca	agat	ggc	ggcti	ttc	tgag	gaaacc
ctgg	agct	.gt (catga	aagca	ag at	ttgg	ggcca	a tga	aggaa	agag	cct	ctgc	cct	gtca	gtcag
<210 <211 <212 <213	> 2 > I	70 213 PRT Homo	sapi	iens											
<400	> 7	70													
Tyr 1	Arg	Pro	Glu	His 5	Ala	Gly	Leu	His	Gln 10	His	Gln	Ala	Leu	Pro 15	Val
His	Pro	Val	Ala 20	His	Leu	Val	Pro	Leu 25	Pro	Pro	Pro	His	Thr 30	Pro	Val
Ser	Ser	Arg 35	Val	Ser	Cys	Ser	Gly 40	Pro	Cys	Pro	Cys	Cys 45	Arg	Ala	Ser
_	Asn 50	Gly	Cys	Ser	Val	Ala 55	Ser	Cys	Leu	Val	Val 60	Leu	Ile	Leu	Phe
Gly '65	Val	Lys	His	Gln	Ile 70	Ser	Ser	Gln	Ser	His 75	Gly	Phe	Phe	Tyr	Val 80
Trp	Phe	Ser	Ala	Gly 85	Pro	Ala	Arg	Phe	Cys 90	Trp	Ser	Gly	Ser	Phe 95	Val
Asp	Pro	Gly	Arg 100	Cys	Pro	Pro	Gly	Cys 105	Thr	Pro	Ser	Cys	Ser 110	Glu	Cys

Trp Ser Ser Ser Ser Val Thr Cys Pro Leu Ala Phe Ser Asp Ser Tyr 115 120 125	
Phe Ser Gly Ser Thr Trp Ile Cys His Val Arg Leu Val Ser Ile Phe 130 135 140	
Leu Ser Thr Leu Asn Ser Ser Ala Asn Pro Ile Ile Tyr Phe Phe Met 145 150 155 160	
Gly Ser Phe Arg Gln Leu Gln Asn Arg Lys Thr Leu Leu Val Leu Gln 165 170 175	
Arg Ala Leu Gln Asp Thr Pro Glu Val Glu Glu Gly Arg Trp Arg Leu 180 185 190	
Ser Glu Glu Thr Leu Glu Leu Ser Ser Arg Leu Gly Pro Gly Arg Ala 195 200 205	
Ser Ala Leu Ser Val 210	
<210> 71 <211> 559 <212> DNA <213> Homo sapiens	
<400> 71 atqccqaaqq caqqccqcaq aagagaagag gaggacggtg aggaggatga gcccagggaa	60
	120
cccacacatg gtgcaacaca gcagagccag cagcaccgct gccaccagcc acagcgtccg	180
gcacaagtgg cggctgggct ccccgaagaa ctgggtgcag gcgccgctga gcagcaggtg :	240
cagcagcagg cagagggccc aggtgagggc gcacacacag gtggtcaggt ggcgtgggcg	300
geggeaegag taccaggetg ggaagaggge ggeeaggeac tgeteeaege tgaeggeege	360
caggagacte aggeecaega tgtageagaa gaagegeage gttgeeagge tggtetgeae	420
-	480
gccaaggaag atgagatccg cgcaggccac gtccaggagg tagatggcga aagggtttct	540
·	559
<210> 72 <211> 211 <212> PRT <213> Homo sapiens <400> 72	
Leu Ser Ser Asn Val Tyr Arg Asn Pro Phe Ala Ile Tyr Leu Leu Asp 1 5 10 15	

Val	Ala	Cys	Ala 20	Asp	Leu	Ile	Phe	Leu 25	Gly	Cys	His	Met	Val 30	Ala	Ile	
Val	Pro	Asp 35	Leu	Leu	Gln	Gly	Arg 40	Leu	Asp	Phe	Pro	Gly 45	Phe	Val	Gln	
Thr	Ser 50	Leu	Ala	Thr	Leu	Arg 55	Phe	Phe	Cys	Tyr	Ile 60	Val	Gly	Leu	Ser	
Leu 65	Leu	Ala	Ala	Val	Ser 70	Val	Glu	Gln	Cys	Leu 75	Ala	Ala	Leu	Phe	Pro 80	
Ala	Trp	Tyr	Ser	Cys 85	Arg	Arg	Pro	Arg	His 90	Leu	Thr	Thr	Cys	Val 95	Cys	
Ala	Leu	Thr	Trp 100	Ala	Leu	Cys	Leu	Leu 105	Leu	His	Leu	Thr	Thr 110	Cys	Val	
Cys	Ala	Leu 115	Thr	Trp	Ala	Leu	Cys 120	Leu	Leu	Leu	His	Leu 125	Leu	Leu	Ser	
Gly	Ala 130	Cys	Thr	Leu	Leu	Leu 135	Ser	Gly	Ala	Cys	Thr 140	Gln	Phe	Phe	Gly	
Glu 145	Pro	Ser	Arg	His	Leu 150	Cys	Arg	Thr	Leu	Trp 155	Leu	Val	Ala	Ala	Val 160	
Leu	Leu	Ala	Leu	Leu 165	Cys	Cys	Thr	Met	Cys 170	Gly	Ala	Ser	Leu	Met 175	Leu	
Leu	Leu	Arg	Val 180	Glu	Arg	Gly	Pro	Gln 185	Arg	Pro	Pro	Pro	Arg 190	Gly	Phe	
Pro	Gly	Leu 195	Ile	Leu	Leu	Thr	Val 200	Leu	Leu	Phe	Ser	Ser 205	Ala	Ala	Cys	
Leu	Arg 210	His														
<210 <211 <212 <213	L> 1 2> [73 1008 DNA Homo	sapi	iens												
<400 atg		73 cat o	ctttc	ctcat	tt tọ	ggagt	gato	c cti	tgcto	gtcc	tggd	cctc	cct (catca	attgct	60
acta	acac	cac t	tagto	ggct	gt go	gctgi	tgct	g cto	gttga	atcc	acaa	agaat	iga t	tggt	gtcagt	120
ctct	gctt	ca d	cctt	gaato	ct g	gctgt	-ggc1	c gad	cacct		ttgo Page		ggc (catc	ctggc	180

20/	Λ
cggatggcat ttgtcacttc ctccgcagct gcctctgtcc tcacggtcat gctgatcacc 300	•
tttgacaggt accttgccat caagcagccc ttccgctact tgaagatcat gagtgggttc 360	0
gtggccgggg cctgcattgc cgggctgtgg ttagtgtctt acctcattgg cttcctccca 420	0
ctcggaatcc ccatgttcca gcagactgcc tacaaagggc agtgcagctt ctttgctgta 480	0
tttcaccete acttegtget gaccetetee tgegttgget tetteceage catgeteete 540	0
tttgtcttct tctactgcga catgctcaag attgcctcca tgcacagcca gcagattcga 600	0
aagatggaac atgcaggagc catggctgga ggttatcgat ccccacggac tcccagcgac 660	0
ttcaaagctc tccgtactgt gtctgttctc attgggagct ttgctctatc ctggaccccc 720	0
ttccttatca ctggcattgt gcaggtggcc tgccaggagt gtcacctcta cctagtgctg 780	0
gaacggtacc tgtggctgct cggcgtgggc aactccctgc tcaacccact catctatgcc 840	0
tattggcaga aggaggtgcg actgcagctc taccacatgg ccctaggagt gaagaaggtg 900	0
ctcacctcat tcctcctctt tctctcggcc aggaattgtg gcccagagag gcccagggaa 960	0
agttcctgtc acatcgtcac tatctccagc tcagagtttg atggctaa 1008	8

<210> 74

<211> 335 <212> PRT <213> Homo sapiens

<400> 74

Met Glu Ser Ser Phe Ser Phe Gly Val Ile Leu Ala Val Leu Ala Ser 5 10

Leu Ile Ile Ala Thr Asn Thr Leu Val Ala Val Ala Val Leu Leu Leu

Ile His Lys Asn Asp Gly Val Ser Leu Cys Phe Thr Leu Asn Leu Ala

Val Ala Asp Thr Leu Ile Gly Val Ala Ile Ser Gly Leu Leu Thr Asp

Gln Leu Ser Ser Pro Ser Arg Pro Thr Gln Lys Thr Leu Cys Ser Leu 70 75

Arg Met Ala Phe Val Thr Ser Ser Ala Ala Ala Ser Val Leu Thr Val

Met Leu Ile Thr Phe Asp Arg Tyr Leu Ala Ile Lys Gln Pro Phe Arg 105

Tyr	Leu	Lys 115	Ile	Met	Ser	Gly	Phe 120	Val		USPHI Gly					Gly
Leu	Trp 130	Leu	Val	Ser	Tyr	Leu 135	Ile	Gly	Phe	Leu	Pro 140	Leu	Gly	Ile	Pro
Met 145	Phe	Gln	Gln	Thr	Ala 150	Tyr	Lys	Gly	Gln	Cys 155	Ser	Phe	Phe	Ala	Val 160
Phe	His	Pro	His	Phe 165	Val	Leu	Thr	Leu	Ser 170	Cys	Val	Gly	Phe	Phe 175	Pro
Ala	Met	Leu	Leu 180	Phe	Val	Phe	Phe	Tyr 185	Cys	Asp	Met	Leu	Lys 190	Ile	Ala
Ser	Met	His 195	Ser	Gln	Gln	Ile	Arg 200	Lys	Met	Glu	His	Ala 205	Gly	Ala	Met
Ala	Gly 210	Gly	Tyr	Arg	Ser	Pro 215	Arg	Thr	Pro	Ser	Asp 220	Phe	Lys	Ala	Leu
Arg 225	Thr	Val	Ser	Val	Leu 230	Ile	Gly	Ser	Phe	Ala 235	Leu	Ser	Trp	Thr	Pro 240
Phe	Leu	Ile	Thr	Gly 245	Ile	Val	Gln	Val	Ala 250	Cys	Gln	Glu	Cys	His 255	Leu
Tyr	Leu	Val	Leu 260	Glu	Arg	Tyr	Leu	Trp 265	Leu	Leu	Gly	Val	Gly 270	Asn	Ser
Leu	Leu	Asn 275	Pro	Leu	Ile	Tyr	Ala 280	Tyr	Trp	Gln	Lys	Glu 285	Val	Arg	Leu
Gln	Leu 290	Tyr	His	Met	Ala	Leu 295	Gly	Val	Lys	Lys	Val 300	Leu	Thr	Ser	Phe
Leu 305	Leu	Phe	Leu	Ser	Ala 310	Arg	Asn	Cys	Gly	Pro 315	Glu	Arg	Pro	Arg	Glu 320
Ser	Ser	Cys	His	Ile 325	Val	Thr	Ile	Ser	Ser 330	Ser	Glu	Phe	Asp	Gly 335	
Z210)\	75													

<210> 75 <211> 2137 <212> DNA <213> Homo sapiens

<400> 75

aactggaagg gcagccgtct gccgcccacg aacaccttct caagcacttt gagtgaccac ggcttgcaag ctggtggctg gccccccgag tcccgggctc tgaggcacgg ccgtcgactt 60

120

aagcgttgca	tcctgttacc	tggagaccct	ctgagctctc	acctgctact	tctgccgctg	180
cttctgcaca	gagcccgggc	gaggacccct	ccaggatgca	ggtcccgaac	agcaccggcc	240
cggacaacgc	gacgctgcag	atgctgcgga	acccggcgat	cgcggtggcc	ctgcccgtgg	300
tgtactcgct	ggtggcggcg	gtcagcatcc	cgggcaacct	cttctctctg	tgggtgctgt	360
gccggcgcat	ggggcccaga	tccccgtcgg	tcatcttcat	gatcaacctg	agcgtcacgg	420
acctgatgct	ggccagcgtg	ttgcctttcc	aaatctacta	ccattgcaac	cgccaccact	480
gggtattcgg	ggtgctgctt	tgcaacgtgg	tgaccgtggc	cttttacgca	aacatgtatt	540
ccagcatcct	caccatgacc	tgtatcagcg	tggagcgctt	cctgggggtc	ctgtacccgc	600
tcagctccaa	gcgctggcgc	cgccgtcgtt	acgcggtggc	cgcgtgtgca	gggacctggc	660
tgctgctcct	gaccgccctg	tccccgctgg	cgcgcaccga	tctcacctac	ccggtgcacg	720
ccctgggcat	catcacctgc	ttcgacgtcc	tcaagtggac	gatgctcccc	agcgtggcca	780
tgtgggccgt	gttcctcttc	accatcttca	tcctgctgtt	cctcatcccg	ttcgtgatca	840
ccgtggcttg	ttacacggcc	accatcctca	agctgttgcg	cacggaggag	gcgcacggcc	900
gggagcagcg	gaggcgcgcg	gtgggcctgg	ccgcggtggt	cttgctggcc	tttgtcacct	960
gcttcgcccc	caacaacttc	gtgctcctgg	cgcacatcgt	gagccgcctg	ttctacggca	1020
agagctacta	ccacgtgtac	aagctcacgc	tgtgtctcag	ctgcctcaac	aactgtctgg	1080
acccgtttgt	ttattacttt	gcgtcccggg	aattccagct	gcgcctgcgg	gaatatttgg	1140
gctgccgccg	ggtgcccaga	gacaccctgg	acacgcgccg	cgagagcctc	ttctccgcca	1200
ggaccacgtc	cgtgcgctcc	gaggccggtg	cgcaccctga	agggatggag	ggagccacca	1260
ggcccggcct	ccagaggcag	gagagtgtgt	tctgagtccc	gggggcgcag	cttggagagc	1320
cgggggcgca	gcttggagga	tccaggggcg	catggagagg	ccacggtgcc	agaggttcag	1380
ggagaacagc	tgcgttgctc	ccaggcactg	cagaggcccg	gtggggaagg	gtctccaggc	1440
tttattcctc	ccaggcactg	cagaggcacc	ggtgaggaag	ggtctccagg	cttcactcag	1500
ggtagagaaa	caagcaaagc	ccagcagcgc	acagggtgct	tgttatcctg	cagagggtgc	1560
ctctgcctct	ctgtgtcagg	ggacagcttg	tgtcaccacg	cccggctaat	ttttgtattt	1620
tttttagtag	agctgggctg	tcacccccga	gctccttaga	cactcctcac	acctgtccat	1680
acccgaggat	ggatattcaa	ccagccccac	cgcctacccg	actcggtttc	tggatatcct	1740
ctgtgggcga	actgcgagcc	ccattcccag	ctcttctccc	tgctgacatc	gtcccttagc	1800
acacctgtcc	atacccgagg	atggatattc	aaccagcccc	accgcctacc	cgactcggtt	1860
tctggatatc	ctctgtgggc	gaactgcgag	ccccattccc	agctcttctc	cctgctgaca	1920
tcgtccctta	gttgtggttc	tggccttctc	cattctcctc	caggggttct	ggtctccgta	1980
gcccggtgca	cgccgaaatt	tctgtttatt	tcactcaggg	gcactgtggt	tgctgtggtt	2040

ggaattette tttcagagga gegeetgggg etectgeaag teagetaete teegtgeeca 2100

2137

cttcccctca cacacaccc cccctcgtgc cgaattc

<210> 76

<211> 359

<212> PRT <213> Homo sapiens

<400> 76

Met Gln Val Pro Asn Ser Thr Gly Pro Asp Asn Ala Thr Leu Gln Met

Leu Arg Asn Pro Ala Ile Ala Val Ala Leu Pro Val Val Tyr Ser Leu

Val Ala Ala Val Ser Ile Pro Gly Asn Leu Phe Ser Leu Trp Val Leu

Cys Arg Arg Met Gly Pro Arg Ser Pro Ser Val Ile Phe Met Ile Asn 55

Leu Ser Val Thr Asp Leu Met Leu Ala Ser Val Leu Pro Phe Gln Ile 70 75

Tyr Tyr His Cys Asn Arg His His Trp Val Phe Gly Val Leu Leu Cys

Asn Val Val Thr Val Ala Phe Tyr Ala Asn Met Tyr Ser Ser Ile Leu 105

Thr Met Thr Cys Ile Ser Val Glu Arg Phe Leu Gly Val Leu Tyr Pro 120

Leu Ser Ser Lys Arg Trp Arg Arg Arg Tyr Ala Val Ala Ala Cys 130 135 140

Ala Gly Thr Trp Leu Leu Leu Thr Ala Leu Ser Pro Leu Ala Arg 145

Thr Asp Leu Thr Tyr Pro Val His Ala Leu Gly Ile Ile Thr Cys Phe

Asp Val Leu Lys Trp Thr Met Leu Pro Ser Val Ala Met Trp Ala Val

Phe Leu Phe Thr Ile Phe Ile Leu Leu Phe Leu Ile Pro Phe Val Ile

Thr Val Ala Cys Tyr Thr Ala Thr Ile Leu Lys Leu Leu Arg Thr Glu Page 52

210 215

Glu Ala His Gly Arg Glu Gln Arg Arg Ala Val Gly Leu Ala Ala 230 Val Val Leu Leu Ala Phe Val Thr Cys Phe Ala Pro Asn Asn Phe Val 245 250 Leu Leu Ala His Ile Val Ser Arg Leu Phe Tyr Gly Lys Ser Tyr Tyr 260 265 270 His Val Tyr Lys Leu Thr Leu Cys Leu Ser Cys Leu Asn Asn Cys Leu Asp Pro Phe Val Tyr Tyr Phe Ala Ser Arg Glu Phe Gln Leu Arg Leu Arg Glu Tyr Leu Gly Cys Arg Arg Val Pro Arg Asp Thr Leu Asp Thr 305 310 315 Arg Arg Glu Ser Leu Phe Ser Ala Arg Thr Thr Ser Val Arg Ser Glu 325 330 Ala Gly Ala His Pro Glu Gly Met Glu Gly Ala Thr Arg Pro Gly Leu 345 Gln Arg Gln Glu Ser Val Phe 355 <210> 77 <211> 1197 <212> DNA <213> Homo sapiens <400> 77 atggagtcgg ggctgctgcg gccggcgccg gtgagcgagg tcatcgtcct gcattacaac tacaccggca ageteegegg tgegegetae eageegggtg eeggeetgeg egeegaegee 120 qtqqtqtqcc tqqcqqtqtq cqccttcatc qtqctagaga atctagccqt gttqttqgtq 180 ctcqqacqcc acccqcqctt ccacqctccc atqttcctqc tcctqqqcaq cctcacqttq 240 teggatetge tggeaggege egectaegee gecaacatee tactgteggg geegeteaeg 300 ctgaaactgt cccccgcgct ctggttcgca cgggagggag gcgtcttcgt ggcactcact 360

qcqtccqtqc tqaqcctcct gqccatcgcg ctggagcgca gcctcaccat ggcgcgcagg

gggcccgcgc ccgtctccag tcgggggcgc acgctggcga tggcagccgc ggcctggggc

gtgtcgctgc tcctcgggct cctgccagcg ctgggctgga attgcctggg tcgcctggac

gettgeteca etgtettgee getetaegee aaggeetaeg tgetettetg egtgetegee

Page 53

60

420

480

540 600

ttcgtgggca	tcctggccgc	tatctgtgca	ctctacgcgc	gcatctactg	ccaggtacgc	660
gccaacgcgc	ggcgcctgcc	ggcacggccc	gggactgcgg	ggaccacctc	gacccgggcg	720
cgtcgcaagc	cgcgctcgct	ggccttgctg	cgcacgctca	gcgtggtgct	cctggccttt	780
gtggcatgtt	ggggccccct	cttcctgctg	ctgttgctcg	acgtggcgtg	cccggcgcgc	840
acctgtcctg	tactcctgca	ggccgatccc	ttcctgggac	tggccatggc	caactcactt	900
ctgaacccca	tcatctacac	gctcaccaac	cgcgacctgc	gccacgcgct	cctgcgcctg	960
gtctgctgcg	gacgccactc	ctgcggcaga	gacccgagtg	gctcccagca	gtcggcgagc	1020
gcggctgagg	cttccggggg	cctgcgccgc	tgcctgcccc	cgggccttga	tgggagcttc	1080
agcggctcgg	agcgctcatc	gccccagcgc	gacgggctgg	acaccagcgg	ctccacaggc	1140
agccccggtg	cacccacagc	cgcccggact	ctggtatcag	aaccggctgc	agactga	1197

<210> 78

<211> 398 <212> PRT <213> Homo sapiens

<400> 78

Met Glu Ser Gly Leu Leu Arg Pro Ala Pro Val Ser Glu Val Ile Val 10

Leu His Tyr Asn Tyr Thr Gly Lys Leu Arg Gly Ala Arg Tyr Gln Pro

Gly Ala Gly Leu Arg Ala Asp Ala Val Val Cys Leu Ala Val Cys Ala

Phe Ile Val Leu Glu Asn Leu Ala Val Leu Leu Val Leu Gly Arg His

Pro Arg Phe His Ala Pro Met Phe Leu Leu Leu Gly Ser Leu Thr Leu 75 65 70

Ser Asp Leu Leu Ala Gly Ala Ala Tyr Ala Ala Asn Ile Leu Leu Ser . 90

Gly Pro Leu Thr Leu Lys Leu Ser Pro Ala Leu Trp Phe Ala Arg Glu

Gly Gly Val Phe Val Ala Leu Thr Ala Ser Val Leu Ser Leu Leu Ala 120

Ile Ala Leu Glu Arg Ser Leu Thr Met Ala Arg Arg Gly Pro Ala Pro 135

Val Ser Ser Arg Gly Arg Thr Leu Ala Met Ala Ala Ala Trp Gly Page 54

160

Val	Ser	Leu	Leu	Leu	Gly	Leu	Leu	Pro	Ala	Leu	Gly	Trp	Asn	Cys	Leu
				165					170					175	

Gly Arg Leu Asp Ala Cys Ser Thr Val Leu Pro Leu Tyr Ala Lys Ala 180 185 190

Tyr Val Leu Phe Cys Val Leu Ala Phe Val Gly Ile Leu Ala Ala Ile 195 200 205

Cys Ala Leu Tyr Ala Arg Ile Tyr Cys Gl
n Val Arg Ala As
n Ala Arg 210 215 220

Arg Leu Pro Ala Arg Pro Gly Thr Ala Gly Thr Thr Ser Thr Arg Ala 225 230 235 240

Arg Arg Lys Pro Arg Ser Leu Ala Leu Leu Arg Thr Leu Ser Val Val 245 250 255

Leu Leu Ala Phe Val Ala Cys Trp Gly Pro Leu Phe Leu Leu Leu 260 265 270

Leu Asp Val Ala Cys Pro Ala Arg Thr Cys Pro Val Leu Leu Gln Ala 275 280 285

Asp Pro Phe Leu Gly Leu Ala Met Ala Asn Ser Leu Leu Asn Pro Ile 290 295 300

Ile Tyr Thr Leu Thr Asn Arg Asp Leu Arg His Ala Leu Leu Arg Leu 305 310 315 320

Val Cys Cys Gly Arg His Ser Cys Gly Arg Asp Pro Ser Gly Ser Gln 325 330 335

Gln Ser Ala Ser Ala Glu Ala Ser Gly Gly Leu Arg Arg Cys Leu 340 345 350

Pro Pro Gly Leu Asp Gly Ser Phe Ser Gly Ser Glu Arg Ser Ser Pro 355 360 365

Gln Arg Asp Gly Leu Asp Thr Ser Gly Ser Thr Gly Ser Pro Gly Ala 370 380

Pro Thr Ala Ala Arg Thr Leu Val Ser Glu Pro Ala Ala Asp 385 390 395

<210> 79 <211> 1041

		411USPH	RM311.ST25.	txt	
<212> DNA <213> Homo sapiens					
<400> 79 atgtacaacg ggtcgtgctg	ccgcatcgag	ggggacacca	tctcccaggt	gatgccgccg	60
ctgctcattg tggcctttgt	gctgggcgca	ctaggcaatg	gggtcgccct	gtgtggtttc	120
tgcttccaca tgaagacctg	gaagcccagc	actgtttacc	ttttcaattt	ggccgtggct	180
gatttcctcc ttatgatctg	cctgcctttt	cggacagact	attacctcag	acgtagacac	240
tgggcttttg gggacattcc	ctgccgagtg	gggctcttca	cgttggccat	gaacagggcc	300
gggagcatcg tgttccttac	ggtggtggct	gcggacaggt	atttcaaagt	ggtccacccc	360
caccacgcgg tgaacactat	ctccacccgg	gtggcggctg	gcatcgtctg	caccctgtgg	420
gccctggtca tcctgggaac	agtgtatctt	ttgctggaga	accatctctg	cgtgcaagag	480
acggccgtct cctgtgagag	cttcatcatg	gagtcggcca	atggctggca	tgacatcatg	540
ttccagctgg agttctttat	gcccctcggc	atcatcttat	tttgctcctt	caagattgtt	600
tggagcctga ggcggaggca	gcagctggcc	agacaggctc	ggatgaagaa	ggcgacccgg	660
ttcatcatgg tggtggcaat	tgtgttcatc	acatgctacc	tgcccagcgt	gtctgctaga	720
ctctatttcc tctggacggt	gccctcgagt	gcctgcgatc	cctctgtcca	tggggccctg	780
cacataaccc tcagcttcac	ctacatgaac	agcatgctgg	atcccctggt	gtattatttt	840
tcaagcccct cctttcccaa	attctacaac	aagctcaaaa	tctgcagtct	gaaacccaag	900
cagccaggac actcaaaaac	acaaaggccg	gaagagatgc	caatttcgaa	cctcggtcgc	960
aggagttgca tcagtgtggc	aaatagtttc	caaagccagt	ctgatgggca	atgggatccc	1020
cacattgttg agtggcactg	a				1041
<210> 80 <211> 346					

<211> 340 <212> PRT

<213> Homo sapiens

<400> 80

Met Tyr Asn Gly Ser Cys Cys Arg Ile Glu Gly Asp Thr Ile Ser Gln 1 $$ 5 $$ 10 $$ 15

Val Met Pro Pro Leu Leu Ile Val Ala Phe Val Leu Gly Ala Leu Gly 20 25 30

Asn Gly Val Ala Leu Cys Gly Phe Cys Phe His Met Lys Thr Trp Lys 35 40 45

Pro Ser Thr Val Tyr Leu Phe Asn Leu Ala Val Ala Asp Phe Leu Leu 50 60

Met Ile Cys Leu Pro Phe Arg Thr Asp Tyr Tyr Leu Arg Arg His $$\operatorname{\textsc{Page}}$$ 56

Page 57

Trp	Ala	Phe	Gly	Asp 85	Ile	Pro	Cys	Arg	Val 90	Gly	Leu	Phe	Thr	Leu 95	Ala
Met	Asn	Arg	Ala 100	Gly	Ser	Ile	Val	Phe 105	Leu	Thr	Val	Val	Ala 110	Ala	Asp
Arg	Tyr	Phe 115	Lys	Val	Val	His	Pro 120	His	His	Ala	Val	Asn 125	Thr	Ile	Ser
Thr	Arg 130	Val	Ala	Ala	Gly	Ile 135	Val	Cys	Thr	Leu	Trp 140	Ala	Leu	Val	Ile
Leu 145	Gly	Thr	Val	Tyr	Leu 150	Leu	Leu	Glu	Asn	His 155	Leu	Cys	Val	Gln	Glu 160
Thr	Ala	Val	Ser	Cys 165	Glu	Ser	Phe	Ile	Met 170	Glu	Ser	Ala	Asn	Gly 175	Trp
His	Asp	Ile	Met 180	Phe	Gln	Leu	Glu	Phe 185	Phe	Met	Pro	Leu	Gly 190	Ile	Ile
Leu	Phe	Cys 195	Ser	Phe	Lys	Ile	Val 200	Trp	Ser	Leu	Arg	Arg 205	Arg	Gln	Gln
Leu	Ala 210	Arg	Gln	Ala	Arg	Met 215	Lys	Lys	Ala	Thr	Arg 220	Phe	Ile	Met	Val
Val 225	Ala	Ile	Val	Phe	Ile 230	Thr	Cys	Tyr	Leu	Pro 235	Ser	Val	Ser	Ala	Arg 240
Leu	Tyr	Phe	Leu	Trp 245	Thr	Val	Pro	Ser	Ser 250	Ala	Cys	Asp	Pro	Ser 255	Val
His	Gly	Ala	Leu 260	His	Ile	Thr	Leu	Ser 265	Phe	Thr	Tyr	Met	Asn 270	Ser	Met
Leu	Asp	Pro 275	Leu	Val	Tyr	Tyr	Phe 280	Ser	Ser	Pro	Ser	Phe 285	Pro	Lys	Phe
Tyr	Asn 290	Lys	Leu	Lys	Ile	Cys 295	Ser	Leu	Lys	Pro	Lys 300	Gln	Pro	Gly	His
Ser 305	Lys	Thr	Gln	Arg	Pro 310	Glu	Glu	Met	Pro	Ile 315	Ser	Asn	Leu	Gly	Arg 320
Arg	Ser	Cys	Ile	Ser 325	Val	Ala	Asn	Ser	Phe 330	Gln	Ser	Gln	Ser	Asp 335	Gŀу

340

<210> 81 <211> 2525 <212> DNA <213> Homo sapiens

<400> 81

<400> 81 caagaatgac	aggtgacttc	ccaagtatgc	ctggccacaa	tacctccagg	aattcctctt	60
gcgatcctat	agtgacaccc	cacttaatca	gcctctactt	catagtgctt	attggcgggc	120
tggtgggtgt	catttccatt	cttttcctcc	tggtgaaaat	gaacacccgg	tcagtgacca	180
ccatggcggt	cattaacttg	gtggtggtcc	acagcgtttt	tctgctgaca	gtgccatttc	240
gcttgaccta	cctcatcaag	aagacttgga	tgtttgggct	gcccttctgc	aaatttgtga	300
gtgccatgct	gcacatccac	atgtacctca	cgttcctatt	ctatgtggtg	atcctggtca	360
ccagatacct	catcttcttc	aagtgcaaag	acaaagtgga	attctacaga	aaactgcatg	420
ctgtggctgc	cagtgctggc	atgtggacgc	tggtgattgt	cattgtggta	cccctggttg	480
tctcccggta	tggaatccat	gaggaataca	atgaggagca	ctgttttaaa	tttcacaaag	540
agcttgctta _.	cacatatgtg	aaaatcatca	actatatgat	agtcatttt	gtcatagccg	600
ttgctgtgat	tctgttggtc	ttccaggtct	tcatcattat	gttgatggtg	cagaagctac	660
gccactcttt	actatcccac	caggagttct	gggctcagct	gaaaaaccta	tttttatag	720
gggtcatcct	tgtttgtttc	cttccctacc	agttctttag	gatctattac	ttgaatgttg	780
tgacgcattc	caatgcctgt	aacagcaagg	ttgcatttta	taacgaaatc	ttcttgagtg	840
taacagcaat	tagctgctat	gatttgcttc	tctttgtctt	tgggggaagc	cattggttta	900
agcaaaagat	aattggctta	tggaattgtg	ttttgtgccg	ttagccacaa	actacagtat	960
tcatatttgc	ttcctttata	ttgggaataa	aaatgggtat	aggggaggta	agaatggtat	1020
ttcattactt	gatcaaaacc	atgccttgat	gtacccaaaa	caaaaggact	ataaaatgca	1080
agagccctca	ttgtagtcct	tatgggatcc	ctcccatctc	tgagtgatgg	ccgtacaaag	1140
accagtgttg	ttgaatccac	ctggagttgc	aatattacat	tattttccag	tacagaatgt	1200
ctgtgtggcc	catgaaagca	acataggttt	taagagtttt	agagtttcat	tagctcattc	1260
taagttcctc	tgtttgaagc	atggtctctt	aggttttgga	ctgaactcag	acctttagtt	1320
cttttcatcc	cacttcacct	taggtaagta	aattctggcc	accacccagc	tccaaagaca	1380
caaactctcc	ttcgctaacc	aggttagatg	tcccattcat	ctcatgccct	gataaaaact	1440
gataagggga	gagaatagtt	aaaaattttt	ctagggtatc	ataactctgg	taggaagtca	1500
tctgtctaga	aatcaagaga	aaaagaacgt	gtggcctcct	gttataacaa	gggtttctag	1560
atttgtcctg	tgaaaggtcg	tttaaggact			tatcaccaat	1620
				Daga 58		

tgcactgttg	ctccaaaaat	catttaaaag	cttactggac	atatctacat	aatggtgaaa	1680
ctgtaattta	gagactatcc	ctgactaatg	tgctggtagg	cattaaaatg	agttcccaag	1740
ggaagtgatt	aaaattttt	tctcttctgt	tttttgagag	aatttctaga	tgtcctgggc	1800
cacagttaat	taagattttt	aggggggaca	gaaagttata	ctgaaatctt	tagagctccc	1860
ttccgccgtt	aaaattatat	atatatatat	ttaaattata	ccttaagttc	tggggtacat	1920
gtgcagaatg	tgcaggtttg	ttacataggt	atacacgtgc	catggtggtt	tgcggcacct	1980
gtcaacccat	ctacattagg	tatttctcct	aatgctctcc	ctcccctagc	ccccacccc	2040
tggacaggcc	ccattgtgtg	atgttcccct	ccctgtgtcc	atgtgttttc	attgttcaac	2100
tcccacttct	aagtgagaac	atgcggtgtt	tggttttctg	ttcctgtgtt	agtttgctga	2160
gaatgatggt	ttccaggtta	aaattatata	tttttaaata	aatgaaaact	gtgtttttaa	2220
aagaggactt	ttgagaagta	tatagaaaaa	ccattaattt	agactctgtg	agattaggtt	2280
gcatgaagaa	ggttttctga	atatttgaag	agtggataaa	taaatgtccc	ccaaagcaat	2340
aaaatcataa	tcctttaaaa	tataggaaaa	ataactaatg	ggaactaggc	ttaatactcg	2400
ggatgaaata	atctgtacaa	caaactccca	tgacacatgt	ttacctatgt	aacaaacctg	2460
cacatgtacc	cctgaactta	aaataaaatt	taaagtataa	taataaaata	atatggattt	2520
tcttt						2525

<210> 82 <211> 312 <212> PRT <213> Homo sapiens

<400> 82

Met Thr Gly Asp Phe Pro Ser Met Pro Gly His Asn Thr Ser Arg Asn

Ser Ser Cys Asp Pro Ile Val Thr Pro His Leu Ile Ser Leu Tyr Phe

Ile Val Leu Ile Gly Gly Leu Val Gly Val Ile Ser Ile Leu Phe Leu

Leu Val Lys Met Asn Thr Arg Ser Val Thr Thr Met Ala Val Ile Asn 55 50

Leu Val Val His Ser Val Phe Leu Leu Thr Val Pro Phe Arg Leu 70

Thr Tyr Leu Ile Lys Lys Thr Trp Met Phe Gly Leu Pro Phe Cys Lys

Phe	Val	Ser	Ala 100	Met	Leu	His	Ile	His 105					25.t: Phe 110		Phe
Tyr	Val	Val 115	Ile	Leu	Val	Thr	Arg 120	Tyr	Leu	Ile	Phe	Phe 125	Lys	Cys	Lys
Asp	Lys 130	Val	Glu	Phe	Tyr	Arg 135	Lys	Leu	His	Ala	Val 140	Ala	Ala	Ser	Ala
Gly 145	Met	Trp	Thr	Leu	Val 150	Ile	Val	Ile	Val	Val 155	Pro	Leu	Val	Val	Ser 160
Arg	Tyr	Gly	Ile	His 165	Glu	Glu	Tyr	Asn	Glu 170	Glu	His	Cys	Phe	Lys 175	Phe
His	Lys	Glu	Leu 180	Ala	Tyr	Thr	Tyr	Val 185	Lys	Ile	Ile	Asn	Tyr 190	Met	Ile
Val	Ile	Phe 195	Val	Ile	Ala	Val	Ala 200	Val	Ile	Leu	Leu	Val 205	Phe	Gln	Val
Phe	Ile 210	Ile	Met	Leu	Met	Val 215	Gln	Lys	Leu	Arg	His 220	Ser	Leu	Leu	Ser
His 225	Gln	Glu	Phe	Trp	Ala 230	Gln	Leu	Lys	Asn	Leu 235	Phe	Phe	Ile	Gly	Val 240
Ile	Leu	Val	Cys	Phe 245	Leu	Pro	Tyr	Gln	Phe 250	Phe	Arg	Ile	Tyr	Туг 255	Leu
Asn	Val	Val	Thr 260	His	Ser	Asn	Ala	Cys 265	Asn	Ser	Lys	Val	Ala 270	Phe	Tyr
Asn	Glu	Ile 275	Phe	Leu	Ser	Val	Thr 280	Ala	Ile	Ser	Cys	Tyr 285	Asp	Leu	Leu
Leu	Phe 290	Val	Phe	Gly	Gly	Ser 295	His	Trp	Phe	Lys	Gln 300	Lys	Ile	Ile	Gly
Leu 305	Trp	Asn	Cys	Val	Leu 310	Cys	Arg								
<210 <211 <212 <213	l> : 2> :	33 1125 DNA Homo	sap:	iens											

<400> 83
gcaggagcac tgaaaatcag gaacaatcct gtatttttg tgataatcaa caaggacaaa 60
acttctccat atgtaaataa cagcgttatg agcagcaatt catccctgct ggtggctgtg 120
Page 60

cagctgtgct	acgcgaacgt	gaatgggtcc	tgtgtgaaaa	tccccttctc	gccgggatcc	180
cgggtgattc	tgtacatagt	gtttggcttt	ggggctgtgc	tggctgtgtt	tggaaacctc	240
ctggtgatga	tttcaatcct	ccatttcaag	cagctgcact	ctccgaccaa	ttttctcgtt	300
gcctctctgg	cctgcgctga	tttcttggtg	ggtgtgactg	tgatgccctt	cagcatggtc	360
aggacggtgg	agagctgctg	gtattttggg	aggagtttt	gtactttcca	cacctgctgt	420
gatgtggcat	tttgttactc	ttctctcttt	cacttgtgct	tcatctccat	cgacaggtac	480
attgcggtta	ctgaccccct	ggtctatcct	accaagttca	ccgtatctgt	gtcaggaatt	540
tgcatcagcg	tgtcctggat	cctgcccctc	atgtacagcg	gtgctgtgtt	ctacacaggt	600
gtctatgacg	atgggctgga	ggaattatct	gatgccctaa	actgtatagg	aggttgtcag	660
accgttgtaa	atcaaaactg	ggtgttgaca	gattttctat	ccttctttat	acctaccttt	720
attatgataa	ttctgtatgg	taacatattt	cttgtggcta	gacgacaggc	gaaaaagata	780
gaaaatactg	gtagcaagac	agaatcatcc	tcagagagtt	acaaagccag	agtggccagg	840
agagagaa	aagcagctaa	aaccctgggg	gtcacagtgg	tagcatttat	gatttcatgg	900
ttaccatata	gcattgattc	attaattgat	gcctttatgg	gctttataac	ccctgcctgt	960
atttatgaga	tttgctgttg	gtgtgcttat	tataactcag	ccatgaatcc	tttgatttat	1020
gctttatttt	acccatggtt	taggaaagca	ataaaagtta	ttgtaactgg	tcaggtttta	1080
aagaacagtt	cagcaaccat	gaatttgttt	tctgaacata	tataa		1125

<210> 84 <211> 345 <212> PRT <213> Homo sapiens

<400> 84

Met Ser Ser Asn Ser Ser Leu Leu Val Ala Val Gln Leu Cys Tyr Ala

Asn Val Asn Gly Ser Cys Val Lys Ile Pro Phe Ser Pro Gly Ser Arg 20 25 30

Val Ile Leu Tyr Ile Val Phe Gly Phe Gly Ala Val Leu Ala Val Phe

Gly Asn Leu Leu Val Met Ile Ser Ile Leu His Phe Lys Gln Leu His 55

Ser Pro Thr Asn Phe Leu Val Ala Ser Leu Ala Cys Ala Asp Phe Leu

Val Gly Val Thr Val Met Pro Phe Ser Met Val Arg Thr Val Glu Ser 85 90

Cys Trp	Tyr Phe 100		Ser	Phe	Cys 105	Thr	Phe	His	Thr	Cys 110	Cys	Asp
Val Ala	Phe Cys 115	Tyr Ser	Ser	Leu 120	Phe	His	Leu	Cys	Phe 125	Ile	Ser	Ile
Asp Arg 130	Tyr Ile	Ala Val	Thr 135	Asp	Pro	Leu	Val	Tyr 140	Pro	Thr	Lys	Phe
Thr Val 145	Ser Val	Ser Gly 150		Cys	Ile	Ser	Val 155	Ser	Trp	Ile	Leu	Pro 160
Leu Met	Tyr Ser	Gly Ala 165	Val	Phe	Tyr	Thr 170	Gly	Val	Tyr	Asp	Asp 175	Gly
Leu Glu	Glu Leu 180	-	Ala	Leu	Asn 185	Cys	Ile	Gly	Gly	Суs 190	Gln	Thr
Val Val	Asn Gln 195	Asn Trp	Val	Leu 200	Thr	Asp	Phe	Leu	Ser 205	Phe	Phe	Ile
Pro Thr 210	Phe Ile	Met Ile	Ile 215	Leu	Tyr	Gly	Asn	Ile 220	Phe	Leu	Val	Ala
Arg Arg 225	Gln Ala	Lys Lys 230		Glu	Asn	Thr	Gly 235	Ser	Lys	Thr	Glu	Ser 240
Ser Ser	Glu Ser	Tyr Lys 245	Ala	Arg	Val	Ala 250	Arg	Arg	Glu	Arg	Lys 255	Ala
Ala Lys	Thr Leu 260		Thr	Val	Val 265	Ala	Phe	Met	Ile	Ser 270	Trp	Leu
Pro Tyr	Ser Ile 275	Asp Ser	Leu	Ile 280	Asp	Ala	Phe	Met	Gly 285	Phe	Ile	Thr
Pro Ala 290	Cys Ile	Tyr Glu	Ile 295	Cys	Cys	Trp	Cys	Ala 300	Tyr	Tyr	Asn	Ser
Ala Met 305	Asn Pro	Leu Ile 310	_	Ala	Leu	Phe	Tyr 315	Pro	Trp	Phe	Arg	Lys 320
Ala Ile	Lys Val	Ile Val 325	Thr	Gly	Gln	Val 330	Leu	Lys	Asn	Ser	Ser 335	Ala
Thr Met	Asn Leu 340	Phe Ser	Glu	His	Ile 345							

<210> 85 <211> 1020 <212> DNA <213> Homo sapiens	
<400> 85 accatgaatg agccactaga ctatttagca aatgcttctg atttccc	cga ttatgcagct 60
gcttttggaa attgcactga tgaaaacatc ccactcaaga tgcacta	cct ccctgttatt 120
tatggcatta tcttcctcgt gggatttcca ggcaatgcag tagtgata	atc cacttacatt 180
ttcaaaatga gaccttggaa gagcagcacc atcattatgc tgaacct	ggc ctgcacagat 240
ctgctgtatc tgaccagcct ccccttcctg attcactact atgccag	tgg cgaaaactgg 300
atctttggag atttcatgtg taagtttatc cgcttcagct tccattt	caa cctgtatagc 360
agcatcetet teeteacetg tttcagcate tteegetact gtgtgate	cat tcacccaatg 420
agctgctttt ccattcacaa aactcgatgt gcagttgtag cctgtgc	tgt ggtgtggatc 480
atttcactgg tagctgtcat tccgatgacc ttcttgatca catcaacc	caa caggaccaac 540
agatcageet gtetegacet caccagtteg gatgaactea atactat	taa gtggtacaac 600
ctgattttga ctgcaagtac tttctgcctc cccttggtga tagtgaca	act ttgctatacc 660
acgattatcc acactttgac ccatggactg caaactgaca gctgcct	taa gcagaaagca 720
cgaaggctaa ccattctgct actccttgca ttttacgtat gttttta	acc cttccatatc 780
ttgagggtca ttcaggatcg aatctcagcc tgctttcaat cagttgt	tcc attgagaatc 840
agatccatga agcttacatc gtttctagac cattatgctg ctctgaac	cac ctttggtaac 900
ctgttactat atgtggtggt cagcgacaac tttcagcagg ctgtctg	ctc aacagtgaga 960
tgcaaagtaa gcgggaacct tgagcaagca aagaaaatta gttactca	aaa caacccttga 1020

<210> 86 <211> 336 <212> PRT <213> Homo sapiens

<400> 86

Met Asn Glu Pro Leu Asp Tyr Leu Ala Asn Ala Ser Asp Phe Pro Asp

Tyr Ala Ala Ala Phe Gly Asn Cys Thr Asp Glu Asn Ile Pro Leu Lys 20 25 30

Met His Tyr Leu Pro Val Ile Tyr Gly Ile Ile Phe Leu Val Gly Phe 35 40

Pro Gly Asn Ala Val Val Ile Ser Thr Tyr Ile Phe Lys Met Arg Pro

Trp 65	Lys	Ser	Ser	Thr	Ile 70	Ile	Met	Leu	Asn	Leu 75	Ala	Cys	Thr	Asp	Leu 80

- Leu Tyr Leu Thr Ser Leu Pro Phe Leu Ile His Tyr Tyr Ala Ser Gly 85 90 95
- Glu Asn Trp Ile Phe Gly Asp Phe Met Cys Lys Phe Ile Arg Phe Ser 100 105 110
- Phe His Phe Asn Leu Tyr Ser Ser Ile Leu Phe Leu Thr Cys Phe Ser 115 120 125
- Ile Phe Arg Tyr Cys Val Ile Ile His Pro Met Ser Cys Phe Ser Ile 130 135 140
- His Lys Thr Arg Cys Ala Val Val Ala Cys Ala Val Val Trp Ile Ile 145 150 155 160
- Ser Leu Val Ala Val Ile Pro Met Thr Phe Leu Ile Thr Ser Thr Asn 165 170 175
- Arg Thr Asn Arg Ser Ala Cys Leu Asp Leu Thr Ser Ser Asp Glu Leu 180 185 190
- Asn Thr Ile Lys Trp Tyr Asn Leu Ile Leu Thr Ala Ser Thr Phe Cys 195 200 205
- Leu Pro Leu Val Ile Val Thr Leu Cys Tyr Thr Thr Ile Ile His Thr 210 215 220
- Leu Thr His Gly Leu Gln Thr Asp Ser Cys Leu Lys Gln Lys Ala Arg 225 230 235 240
- Arg Leu Thr Ile Leu Leu Leu Leu Ala Phe Tyr Val Cys Phe Leu Pro 245 250 255
- Phe His Ile Leu Arg Val Ile Gln Asp Arg Ile Ser Ala Cys Phe Gln 260 265 270
- Ser Val Val Pro Leu Arg Ile Arg Ser Met Lys Leu Thr Ser Phe Leu 275 280 285
- Asp His Tyr Ala Ala Leu Asn Thr Phe Gly Asn Leu Leu Leu Tyr Val 290 295 300
- Val Val Ser Asp Asn Phe Gln Gln Ala Val Cys Ser Thr Val Arg Cys 305 310 315 320
- Lys Val Ser Gly Asn Leu Glu Gln Ala Lys Lys Ile Ser Tyr Ser Asn Page 64

60

120

180

240

300

360

420

480

540

600

660

720

780 840

900

960

1020

1080

1138

<210> 87 <211> 113 <212> DNA <213> Home	-				
<400> 87					
aaaaattgct	gtactgaact	attgaatgga	acttggaaat	aaagtccctt	ccaaaataac
tattcttcaa	cagagagtaa	taggtaaatg	ttttagaagt	gagaggactc	aaattgccaa
tgatttactc	ttttattttt	cctcctaggt	ttctgggata	agtatgtgca	aataaaaaat
aaacatgaga	aggaactgta	acctgattat	ggatttggga	aaaagataaa	tcaacacaca
aagggaaaag	taaactgatt	gacagccctc	aggaatgatg	cccttttgcc	acaatataat
taatatttcc	tgtgtgaaaa	acaactggtc	aaatgatgtc	cgtgcttccc	tgtacagttt
aatggtgctc	ataattctga	ccacactcgt	tggcaatctg	atagttattg	tttctatatc
acacttcaaa	caacttcata	ccccaacaaa	ttggctcatt	cattccatgg	ccactgtgga

<210> 88 <211> 296 <212> PRT <213> Homo sapiens

vers nome supreme

<400> 88

Met Met Pro Phe Cys His Asn Ile Ile Asn Ile Ser Cys Val Lys Asn 1 $$ 5 $$ 10 $$ 15

ctttcttctq qqqtqtctqq tcatqcctta caqtatqqtq aqatctqctq aqcactqttq

qtattttgga gaagtcttct gtaaaattca cacaagcacc gacattatgc tgagctcagc

ctccattttc catttgtctt tcatctccat tgaccgctac tatgctgtgt gtgatccact

qaqatataaa gccaagatga atatcttggt tatttgtgtg atgatcttca ttagttggag

tgtccctgct gtttttgcat ttggaatgat ctttctggag ctaaacttca aaggcgctga

agagatatat tacaaacatg ttcactgcag aggaggttgc tctgtcttct ttagcaaaat atctggggta ctgaccttta tgacttcttt ttatatacct ggatctatta tgttatgtgt

ctattacaga atatatctta tcgctaaaga acaggcaaga ttaattagtg atgccaatca

tgtgaagaca ttggggattg tgatgggagt tttcctaata tgctggtgcc ctttctttat

ctgtacagtc atggaccctt ttcttcacta cattattcca cctactttga atgatgta

Asn Trp Ser Asn Asp Val Arg Ala Ser Leu Tyr Ser Leu Met Val Leu 20 25 30

Ile Ile Leu Thr Thr Leu Val Gly Asn Leu Ile Val Ile Val Ser Ile 35 40 45

Page 65

Ser	His 50	Phe	Lys	Gln	Leu	His 55	Thr	Pro	Thr	Asn	Trp 60	Leu	Ile	His	Ser
Met 65	Ala	Thr	Val	Asp	Phe 70	Leu	Leu	Gly	Cys	Leu 75	Val	Met	Pro	Tyr	Ser 80
Met	Val	Arg	Ser	Ala 85	Glu	His	Cys	Trp	Tyr 90	Phe	Gly	Glu	Val	Phe 95	Cys
Lys	Ile	His	Thr 100	Ser	Thr	Asp	Ile	Met 105	Leu	Ser	Ser	Ala	Ser 110	Ile	Phe
His	Leu	Ser 115	Phe	Ile	Ser	Ile	Asp 120	Arg	Tyr	Tyr	Ala	Val 125	Cys	Asp	Pro
Leu	Arg 130	Tyr	Lys	Ala	Lys	Met 135	Asn	Ile	Leu	Val	Ile 140	Cys	Val	Met	Ile
Phe 145	Ile	Ser	Trp	Ser	Val 150	Pro	Ala	Val	Phe	Ala 155	Phe	Gly	Met	Ile	Phe 160
Leu	Glu	Leu	Asn	Phe 165	Lys	Gly	Ala	Glu	Glu 170	Ile	Tyr	Tyr	Lys	His 175	Val
His	Cys	Arg	Gly 180	Gly	Cys	Ser	Val	Phe 185	Phe	Ser	Lys	Ile	Ser 190	Gly	Val
Leu	Thr	Phe 195	Met	Thr	Ser	Phe	Tyr 200	Ile	Pro	Gly	Ser	Ile 205	Met	Leu	Cys
Val	Tyr 210	Tyr	Arg	Ile	Tyr	Leu 215	Ile	Ala	Lys	Glu	Gln 220	Ala	Arg	Leu	Ile
Ser 225	Asp	Ala	Asn	Gln	Lys 230	Leu	Gln	Ile	Gly	Leu 235	Glu	Met	Lys	Asn	Gly 240
Ile	Ser	Gln	Ser	Lys 245	Glu	Arg	Lys	Ala	Val 250	Lys	Thr	Leu	Gly	Ile 255	Val
Met	Gly	Val	Phe 260	Leu	Ile	Cys	Trp	Cys 265	Pro	Phe	Phe	Ile	Cys 270	Thr	Val
Met	Asp	Pro 275	Phe	Leu	His	Tyr	Ile 280	Ile	Pro	Pro	Thr	Leu 285	Asn	Asp	Ala
Arg	Gly 290	Ser	Arg	Ala	Asn	Ser 295	Ala								

<211> 1023	
<212> DNA <213> Homo sapiens	
<400> 89	
ggaatgatgc ccttttgcca caatataatt aatatttcct gtgtgaaaaa caactggtca	60
aatgatgtcc gtgcttccct gtacagttta atggtgctca taattctgac cacactcgtt	120
ggcaatctga tagttattgt ttctatatca cacttcaaac aacttcatac cccaacaaat	180
tggctcattc attccatggc .cactgtggac tttcttctgg ggtgtctggt catgccttac	240
agtatggtga gatctgctga gcactgttgg tattttggag aagtcttctg taaaattcac	300
acaagcaccg acattatgct gagctcagcc tccattttcc atttgtcttt catctccatt	360
gaccgctact atgctgtgtg tgatccactg agatataaag ccaagatgaa tatcttggtt	420
atttgtgtga tgatcttcat tagttggagt gtccctgctg tttttgcatt tggaatgatc	480
tttctggagc taaacttcaa aggcgctgaa gagatatatt acaaacatgt tcactgcaga	540
ggaggttgct ctgtcttctt tagcaaaata tctggggtac tgacctttat gacttctttt	600
tatatacctg gatctattat gttatgtgtc tattacagaa tatatcttat cgctaaagaa	660
caggcaagat taattagtga tgccaatcag aagctccaaa ttggattgga	720
ggaatttcac aaagcaaaga aaggaaagct gtgaagacat tggggattgt gatgggagtt	780
ttcctaatat gctggtgccc tttctttatc tgtacagtca tggacccttt tcttcactac	840
attattccac ctactttgaa tgatgtattg atttggtttg gctacttgaa ctctacattt	900
aatccaatgg tttatgcatt tttctatcct tggtttagaa aagcactgaa gatgatgctg	960
tttggtaaaa ttttccaaaa agattcatcc aggtgtaaat tatttttgga attgagttca	1020
tag	1023
<210> 90 <211> 339 <212> PRT <213> Homo sapiens <400> 90	
Met Met Pro Phe Cys His Asn Ile Ile Asn Ile Ser Cys Val Lys Asn 1 5 10 15	
Asn Trp Ser Asn Asp Val Arg Ala Ser Leu Tyr Ser Leu Met Val Leu 20 25 30	
Ile Ile Leu Thr Thr Leu Val Gly Asn Leu Ile Val Ile Val Ser Ile 35 40 45	

<210> 89

Page 67

Ser His Phe Lys Gln Leu His Thr Pro Thr Asn Trp Leu Ile His Ser 50 60

Met 65	Ala	Thr	Val	Asp	Phe 70	Leu	Leu	GIA	Cys	Leu 75	Val	Met	Pro	Tyr	Ser 80
Met	Val	Arg	Ser	Ala 85	Glu	His	Cys	Trp	Tyr 90	Phe	Gly	Glu	Val	Phe 95	Суѕ
Lys	Ile	His	Thr 100	Ser	Thr	Asp	Ile	Met 105	Leu	Ser	Ser	Ala	Ser 110	Ile	Phe
His	Leu	Ser 115	Phe	Ile	Ser	Ile	Asp 120	Arg	Tyr	Tyr	Ala	Val 125	Cys	Asp	Pro
Leu	Arg 130	Tyr	Lys	Ala	Lys	Met 135	Asn	Ile	Leu	Val	Ile 140	Cys	Val	Met	Ile
Phe 145	Ile	Ser	Trp	Ser	Val 150	Pro	Ala	Val	Phe	Ala 155	Phe	Gly	Met	Ile	Phe 160
Leu	Glu	Leu	Asn	Phe 165	Lys	Gly	Ala	Glu	Glu 170	Ile	Tyr	Tyr	Lys	His 175	Val
	-		Gly 180	-	_			185			_		190	_	
		195	Met				200			_		205			_
	210	-	Arg		-	215			_		220				
225			Asn		230					235					240
			Ser	245					250					255	
			Phe 260					265					270		
	_	275	Phe				280					285			
	290	•	Phe	-	-	295					300				-
Ala 305	rne	ьие	Tyr	Pro	Trp 310	rne	Arg	гуѕ	ΑΙα	15 315	гуѕ	Met	мet	ьeu	320

Gly Lys Ile Phe Gln Lys Asp Ser Ser Arg Cys Lys Leu Phe Leu Glu 325 330 335

Leu Ser Ser

<210> 91 <211> 1696 <212> DNA <213> Homo sapiens

<400> 91

ctgtaaagta gattgtatga ggactccatg aggtcatcca cttcaagtcc ttggcatagg 60 ataattactc aaaaggtgat gacaatggcg cagggaggga tggtgacttg cctggagatg 120 cacagcaccg teteteccat acteggteat teacaccate attgatteae caggeaccae 180 tccgtgtcca gcaggactct ggggacccca aatggacact accatggaag ctgacctggg 240 tgccactggc cacaggcccc gcacagagct tgatgatgag gactcctacc cccaaggtgg 300 ctqqqacacq gtcttcctqq tggccctgct gctccttggg ctgccagcca atgggttgat 360 ggcgtggctg gccggctccc aggcccggca tggagctggc acgcgtctgg cgctgctcct 420 480 gctcagcctg gccctctctg acttcttgtt cctggcagca gcggccttcc agatcctaga gateeggeat gggggaeact ggeegetggg gaeagetgee tgeegettet actaetteet 540 atggggcgtg tcctactcct ccggcctctt cctgctggcc gccctcagcc tcgaccgctg 600 660 cctgctggcg ctgtgcccac actggtaccc tgggcaccgc ccagtccgcc tgcccctctg 720 ggtctgcgcc ggtgtctggg tgctggccac actcttcagc gtgccctggc tggtcttccc cgaggctgcc gtctggtggt acgacctggt catctgcctg gacttctggg acagcgagga 780 gctgtcgctg aggatgctgg aggtcctggg gggcttcctg cctttcctcc tgctgctcgt 840 900 ctgccacgtg ctcacccagg ccacagcctg tcgcacctgc caccgccaac agcagcccgc 960 agcctgccgg ggcttcgccc gtgtggccag gaccattctg tcagcctatg tggtcctgag gctgccctac cagctggccc agctgctcta cctggccttc ctgtgggacg tctactctgg 1020 ctacctqctc tqqqaqqccc tqqtctactc cgactacctg atcctactca acagctqcct 1080 caqccccttc ctctqcctca tqqccaqtqc cqacctccgg accctqctqc gctccgtqct 1140 ctcqtccttc gcggcagctc tctgcgagga gcggccgggc agcttcacgc ccactgagcc 1200 1260 acagacccag ctagattctg agggtccaac tctgccagag ccgatggcag aggcccagtc acagatggat cctgtggccc agcctcaggt gaaccccaca ctccagccac gatcggatcc 1320 1380 acaqctqaac ctcatqqccc agccacaqtc agattctqtq qcccaqccac aggcagacac 1440 taacgtccag acccctgcac ctgctgccag ttctgtgccc agtccctgtg atgaagcttc 1500

	411USPHRM311.ST25.txt											
cccaacccca tcctcgcat	c ctaccccagg ggccct	tgag gacccagcca cac	ctcctgc 1560									
ctctgaagga gaaagcccc	a gcagcacccc gccaga	ggcg gccccgggcg cag	gcccac 1620									
gtgagggtcc aggaacacgc aggcccacca gagcagtgaa agagcccagg gcagacagag 1680												
gaaccagcca gtcaga 1696												
<210> 92 <211> 505 <212> PRT <213> Homo sapiens												
<400> 92												
Leu Ala Trp Arg Cys '	Thr Ala Pro Ser Leu 10	Pro Tyr Ser Val II										
Thr Ile Ile Asp Ser	Pro Gly Thr Thr Pro 25	Cys Pro Ala Gly Le	u Trp									
Gly Pro Gln Met Asp '	Thr Thr Met Glu Ala 40	Asp Leu Gly Ala Th 45	r Gly									
His Arg Pro Arg Thr 6	Glu Leu Asp Asp Glu 55	Asp Ser Tyr Pro Gl 60	n Gly									
Gly Trp Asp Thr Val 65	Phe Leu Val Ala Leu 70	Leu Leu Leu Gly Le 75	u Pro 80									
Ala Asn Gly Leu Met 2 85	Ala Trp Leu Ala Gly 90	Ser Gln Ala Arg Hi 95	_									
Ala Gly Thr Arg Leu 2	Ala Leu Leu Leu 105	Ser Leu Ala Leu Se 110	r Asp									
Phe Leu Phe Leu Ala 2 115	Ala Ala Ala Phe Gln 120	Ile Leu Glu Île Ar 125	g His									
Gly Gly His Trp Pro 1	Leu Gly Thr Ala Ala 135	Cys Arg Phe Tyr Ty 140	r Phe									
Leu Trp Gly Val Ser '	Tyr Ser Ser Gly Leu 150	Phe Leu Leu Ala Al 155	a Leu 160									
Ser Leu Asp Arg Cys 165	Leu Leu Ala Leu Cys 170		_									

Leu Ala Thr Leu Phe Ser Val Pro Trp Leu Val Phe Pro Glu Ala Ala Page 70

Val Trp Trp Tyr Asp Leu Val Ile Cys Leu Asp Phe Trp Asp Ser Glu 210 $\,$ 215 $\,$ 220 $\,$

	210					213					220				
Glu 225	Leu	Ser	Leu	Arg	Met 230	Leu	Glu	Val	Leu	Gly 235	Gly	Phe	Leu	Pro	Phe 240
Leu	Leu	Leu	Leu	Val 245	Cys	His	Val	Leu	Thr 250	Gln	Ala	Thr	Ala	Cys 255	Arg
Thr	Cys	His	Arg 260	Gln	Gln	Gln	Pro	Ala 265	Ala	Cys	Arg	Gly	Phe 270	Ala	Arg
Val	Ala	Arg 275	Thr	Ile	Leu	Ser	Ala 280	Tyr	Val	Val	Leu	Arg 285	Leu	Pro	Tyr
Gln	Leu 290	Ala	Gln	Leu	Leu	Tyr 295	Leu	Ala	Phe	Leu	Trp 300	Asp	Val	Tyr	Ser
Gly 305	Tyr	Leu	Leu	Trp	Glu 310	Ala	Leu	Val	Tyr	Ser 315	Asp	Tyr	Leu	Ile	Leu 320
Leu	Asn	Ser	Cys	Leu 325	Ser	Pro	Phe	Leu	Cys 330	Leu	Met	Ala	Ser	Ala 335	Asp
Leu	Arg	Thr	Leu 340	Leu	Arg	Ser	Val	Leu 345	Ser	Ser	Phe	Ala	Ala 350	Ala	Leu
Cys	Glu	Glu 355	Arg	Pro	Gly	Ser	Phe 360	Thr	Pro	Thr	Glu	Pro 365	Gln	Thr	Gln
Leu	Asp 370	Ser	Glu	Gly	Pro	Thr 375	Leu	Pro	Glu	Pro	Met 380	Ala	Glu	Ala	Gln
Ser 385	Gln	Met	Asp	Pro	Val 390	Ala	Gln	Pro	Gln	Val 395	Asn	Pro	Thr	Leu	Gln 400
Pro	Arg	Ser	Asp	Pro 405	Thr	Ala	Gln	Pro	Gln 410	Leu	Asn	Pro	Thr	Ala 415	Gln
Pro	Gln	Ser	Asp 420	Pro	Thr	Ala	Gln	Pro 425	Gln	Leu	Asn	Leu	Met 430	Ala	Gln
Pro	Gln	Ser 435	Asp	Ser	Val	Ala	Gln 440	Pro	Gln	Ala	Asp	Thr 445	Asn	Val	Gln
Thr	Pro 450	Ala	Pro	Ala	Ala	Ser 455	Ser	Val	Pro		Pro 460 Page		Asp	Glu	Ala

Ser Pro Thr Pro Ser Ser His Pro Thr Pro Gly Ala Leu Glu Asp Pro 465 470 475 480

Ala Thr Pro Pro Ala Ser Glu Gly Glu Ser Pro Ser Ser Thr Pro Pro 485 490 495

Glu Ala Ala Pro Gly Ala Gly Pro Thr 500

<210> 93

<211> 1413

<212> DNA

<213> Homo sapiens

<400> 93

atggacacta ccatggaagc tgacctgggt gccactggcc acaggccccg cacagagctt 60 gatgatgagg actcctaccc ccaaggtggc tgggacacgg tcttcctggt ggccctgctg 120 ctccttgggc tgccagccaa tgggttgatg gcgtggctgg ccggctccca ggcccggcat 180 qqaqctqqca cqcqtctqqc gctgctcctg ctcagcctgg ccctctctga cttcttgttc 240 ctggcagcag cggccttcca gatcctagag atccggcatg ggggacactg gccgctgggg 300 acaqctqcct gccgcttcta ctacttccta tggggcgtgt cctactcctc cggcctcttc 360 420 ctgctggccg ccctcagcct cgaccgctgc ctgctggcgc tgtgcccaca ctggtaccct 480 gggcaccgcc cagtccgcct gcccctctgg gtctgcgccg gtgtctgggt gctggccaca ctcttcaqcq tqccctqqct gqtcttcccc qaggctqccq tctqgtqgta cqacctqgtc 540 atctgcctgg acttctggga cagcgaggag ctgtcgctga ggatgctgga ggtcctgggg 600 qqcttcctqc ctttcctcct gctgctcgtc tgccacgtgc tcacccaggc cacagcctgt 660 cgcacctgcc accgccaaca gcagcccgca gcctgccggg gcttcgcccg tgtggccagg 720 780 accattetgt cageetatgt ggteetgagg etgeectace agetggeeca getgetetae ctggccttcc tgtgggacgt ctactctggc tacctgctct gggaggccct ggtctactcc 840 900 qactacetqa tectacteaa cagetgeete ageeeettee tetgeeteat ggeeagtgee gacctccgga ccctgctgcg ctccgtgctc tcgtccttcg cggcagctct ctgcgaggag 960 cggccgggca gcttcacgcc cactgagcca cagacccagc tagattctga gggtccaact 1020 1080 ctqccaqaqc cgatggcaga ggcccagtca cagatggatc ctgtggccca gcctcaggtg aaccccacac tocagocacg atoggatocc acagotcago cacagotgaa coctaoggoc 1140 cagccacagt cggatcccac agcccagcca cagctgaacc tcatggccca gccacagtca 1200 gactetgtgg cocagecaca ggeagacact aacgtecaga cecetgeace tgetgecagt 1260 tctgtgccca gtccctgtga tgaagcttcc ccaaccccat cctcgcatcc taccccaggg 1320 qcccttqaqq acccaqccac acctcctgcc tctgaaggag aaagccccag cagcaccccg 1380

Page 72

ccaç	yayı	jegg (gggc	yc as	geec	cacç	, cgc	•						
<210 <211 <212 <213	L> 2>	94 419 PRT Homo	sapi	iens											
<400)>	94													
Met 1	Asp	Thr	Thr	Met 5	Glu	Ala	Asp	Leu	Gly 10	Ala	Thr	Gly	His	Arg 15	Pro
Arg	Thr	Glu	Leu 20	Asp	Asp	Glu	Asp	Ser 25	Tyr	Pro	Gln	Gly	Gly 30	Trp	Asp
Thr	Val	Phe	Leu	Val	Ala	Leu	Leu 40	Leu	Leu	Gly	Leu	Pro 45	Ala	Asn	Gly
Leu	Met 50	: Ala	Trp	Leu	Ala	Gly 55	Ser	Gln	Ala	Arg	His 60	Gly	Ala	Gly	Thr
Arg 65	Leu	ı Ala	Leu	Leu	Leu 70	Leu	Ser	Leu	Ala	Leu 75	Ser	Asp	Phe	Leu	Phe 80
Leu	Ala	a Ala	Ala	Ala 85	Phe	Gln	Ile	Leu	Glu 90	Ile	Arg	His	Gly	Gly 95	His
Trp	Pro	Leu	Gly 100	Thr	Ala	Ala	Cys	Arg 105	Phe	Tyr	Tyr	Phe	Leu 110	Trp	Gly
Val	Ser	Tyr 115	Ser	Ser	Gly	Leu	Phe 120	Leu	Leu	Ala	Ala	Leu 125	Ser	Leu	Asp
Arg	Cys	Leu	Leu	Ala	Leu	Cys 135	Pro	His	Trp	Tyr	Pro 140	Gly	His	Arg	Pro
Val 145	-	, Leu		Leu	-		Cys		Gly			Val	Leu		Thr 160
Leu	Phe	e Ser	Val	Pro 165	Trp	Leu	Val	Phe	Pro 170	Glu	Ala	Ala	Val	Trp 175	Trp
Tyr	Asp	Leu	Val 180	Ile	Cys	Leu	Asp	Phe 185	Trp	Asp	Ser	Glu	Glu 190	Leu	Ser
Leu	Arg	9 Met 195	Leu	Glu	Val	Leu	Gly 200	Gly	Phe	Leu	Pro	Phe 205	Leu	Leu	Leu
Leu	Val 210	Cys	His	Val	Leu	Thr 215	Gln	Ala	Thr	Ala	Cys 220	Arg	Thr	Cys	His

Page 73

411001
Arg Gln Gln Gln Pro Ala Ala Cys Arg Gly Phe Ala Arg Val Ala Arg 240 225
Thr Ile Leu Ser Ala Tyr Val Val Leu Arg Leu Pro Tyr Gln Leu Ala 250 255
Gln Leu Leu Tyr Leu Ala Phe Leu Trp Asp Val Tyr Ser Gly Tyr Leu 260 265
Leu Trp Glu Ala Leu Val Tyr Ser Asp Tyr Leu Ile Leu Leu Asn Ser 275 280
Cys Leu Ser Pro Phe Leu Cys Leu Met Ala Ser Ala Asp Leu Arg Thr 290 295
Leu Leu Arg Ser Val Leu Ser Ser Phe Ala Ala Ala Leu Cys Glu Glu 315 320
Arg Pro Gly Ser Phe Thr Pro Thr Glu Pro Gln Thr Gln Leu Asp Ser 325
Glu Gly Pro Thr Leu Pro Glu Pro Met Ala Glu Ala Gln Ser Gln Met 345 350
Asp Pro Val Ala Gln Pro Gln Val Asn Pro Thr Leu Gln Pro Arg Ser 365
Asp Pro Thr Ala Gln Pro Gln Leu Asn Pro Thr Ala Gln Pro Gln Ser 370
Asp Pro Thr Ala Gln Pro Gln Leu Asn Leu Met Ala Gln Pro Gln Ser 395 400
Asp Ser Val Ala Gln Pro Gln Ala Asp Thr Asn Val Gln Thr Pro Ala 415
Pro Ala Ala
<210> 95 <211> 49 <212> DNA <213> Artificial Sequence
<220> <223> Novel Sequence
<400> 95 ttcaaagctt atggaatcat ctttctcatt tggagtgatc cttgctgtc

<210> <211> <212> <213>	96 49 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> ttcacte	96 cgag ttagccatca aactctgagc tggagatagt gacgatgtg	49
<210> <211> <212> <213>	97 22 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gctcaa	97 ccca ctcatctatg cc	22
<210> <211> <212> <213>	98 22 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> aaactt	98 ctct gcccttaccg tc	22
<210><211><211><212><213>	99 20 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> aaagca	99 gcac cccgaatacc	20
<210><211><211><212><213>	100 21 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> catgate	100 caac ctgagcgtca c	21
<210><211><211><212><213>	101 28 DNA Artificial Sequence	

<220> <223>	Novel Sequence	
<400> ttcaaag	101 gett atggagtegg ggetgetg	28
<210><211><212><212><213>	102 30 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> ttcacto	102 cgag tcagtctgca gccggttctg	30
<210> <211> <212> <213>	103 30 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gcatcct	103 tggc cgctatctgt gcactctacg	30
<210> <211> <212> <213>	104 30 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> cgtaga	104 gtgc acagatagcg gccaggatgc	30
<210><211><211><212><213>	105 19 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> aacccca	105 atca tctacacgc	19
<210><211><211><212><213>	106 18 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400>	106	

411USPHRM311.ST25.txt 18 tgcctgtgga gccgctgg <210> 107 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 107 33 gcataagctt ccatgtacaa cgggtcgtgc tgc <210> 108 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 108 33 gcattctaga tcagtgccac tcaacaatgt ggg <210> 109 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 109 gaagcccagc actgtttacc 20 <210> 110 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 110 20 tgaaatacct gtccgcagcc <210> 111 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 111 gatcaagctt atgacaggtg acttcccaag tatgc 35 <210> 112 <211> 34

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 112
                                                                            34
gatcctcgag gctaacggca caaaacacaa ttcc
<210> 113
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 113
cagcccaaac atccaagtc
                                                                            19
<210> 114
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 114
                                                                            19
accccactta atcagcctc
<210> 115
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 115
                                                                            34
gatcgaattc gcaggagcaa tgaaaatcag gaac
<210> 116
<210> 110
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 116
                                                                            39
gatcgaattc ttatatatgt tcagaaaaca aattcatgg
<210> 117
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
```

<400> acagcc	117 ccaa agccaaacac	20
<210><211><211><212><213>	118 22 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> ccgcag	118 gagc aatgaaaatc ag	22
<210> <211> <212> <213>	119 19 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> ctgaaa	119 gttg tcgctgacc	19
<210><211><211><212><213>	DNA	
<220> <223>	Novel Sequence	
<400> cgatta	120 tcca cactttgacc c	21
<210><211><211><212><213>	121 25 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gcatac	121 catg aatgagccac tagac	25
<210><211><211><212><213>	122 30 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gcatct	122 cgag tcaagggttg tttgagtaac	30

<210>	123	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
.000		
<220> <223>	Novel Coguence	
(223)	Novel Sequence	
<400>	123	
	ctct gtcctcttcc	20
4010s	104	
<210> <211>	124 22	
<211>		
	Artificial Sequence	
<220>		
<223>	Novel Sequence	
<400>	124	
	atct tcattgaatt tc	22
geaceg	acet coaceguace co	
<210>	125	
<211>		
<212> <213>		
\213/	Altilicial bequence	
<220>		
<223>	Novel Sequence	
<400>	125	22
acttca	aaca acttcatacc cc	22
<210>	126	
	18	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Novel Sequence	
<400>	126	10
acacac	agca tagtagcg	18
<210>	127	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Novel Sequence	
<400>	127	
cagage	ttga tgatgaggac	20
<210>	128	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	

```
<220>
<223> Novel Sequence
<400> 128
                                                                        20
cccataggaa gtagtagaag
<210> 129
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic substrate peptide
<400> 129
Ala Pro Arg Thr Pro Gly Gly Arg Arg
<210> 130
<211> 52
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 130
gcgtaatacg actcactata gggagaccgc gtgtctgcta gactctattt cc
                                                                        52
<210> 131
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 131
                                                                        20
tgccacactg atgcaactcc
<210> 132
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
                                                                        48
gcgtaatacg actcactata gggagacctg ccacactgat gcaactcc
<210> .133
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
```

	41105FRAM511.5125.CXC	
<400> gcgtgt	133 ctgc tagactctat ttcc	24
<210><211><211><212><213>	134 50 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gcgtaat	134 tacg actcactata gggagaccgc acgccactct ttactatccc	50
<210><211><211><212><213>	135 24 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gcacaaa	135 aaca caattccata agcc	24
<210> <211> <212> <213>	136 52 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gcgtaa	136 tacg actcactata gggagaccgc acaaaacaca attccataag cc	52
<210> <211> <212> <213>	137 23 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gctacge	137 ccac tctttactat ccc	23
<210><211><211><212><213>	138 49 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gcgtaa	138 tacg actcactata gggagacctt atgagcagca attcatccc	49
<210>	139	

<211> <212> <213>	20 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> cacacco	139 cacc aagaaatcag	20
<210> <211> <212> <213>	140 48 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gcgtaat	140 tacg actcactata gggagaccca cacccaccaa gaaatcag	48
<210><211><211><212><213>		
<220> <223>	Novel Sequence	
<400> ttatgag	141 gcag caattcatcc c	21
<210><211><212><212><213>		
<220> <223>	Novel Sequence	
<400> gcgtaat	142 tacg actcactata gggagacccg attatccaca ctttgaccc	49
<210> <211> <212> <213>	143 19 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> ctgaaaq	143 gttg tcgctgacc	19
<210><211><211><212><213>	144 50 DNA Artificial Sequence	
<220>		

<223>	Novel Sequence	
<400>	144 tacg actcactata gggagaccct gctgaaagtt gtcgctgacc	50
gogeaa	accountate gygagaroott googaaaget googate	
<210> <211> <212> <213>	145 21 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> cgatta	145 tcca cactttgacc c	21
<210> <211> <212> <213>	146 50 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gcgtaa	146 tacg actcactata gggagaccct gtaaaattca cacaagcacc	50
<210><211><211><212><213>	147 19 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> agaaga	147 caga gcaacctcc	19
<210><211><211><212><213>	148 48 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> dgcgta	148 atac gactcactat agggagacca gaagacagag caacctcc	48
<210><211><211><212><213>	149 22 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> ctgtaa	149 aatt cacacaagca cc	22

<210> <211> <212> <213>	150 31 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gcatgg	150 atcc tctttgctgt atttcaccct c	31
<210><211><211><212><213>	151 31 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gcatga	151 attc acaatgccag tgataaggaa g	31
<210><211><211><212><213>	152 31 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gatcaa	152 gett ggaatgatge eettttgeea e	31
<210><211><211><212><213>	153 29 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gatcct	153 cgag catcattcaa agtaggtgg	29
<210><211><211><212><213>	154 42 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gatcct	154 cgag ctatgaactc aattccaaaa ataatttaca cc	42
<210><211><211><212><213>	155 49 DNA Artificial Sequence	

Page 85

.

```
<220>
<223> Novel Sequence
<400> 155
gctacttgaa ctctacattt aatccaatgg tttatgcatt tttctatcc
                                                                       49
<210> 156
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 156
ggatagaaaa atgcataaac cattggatta aatgtagagt tcaagtagc
                                                                       49
<210> 157
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 157
                                                                       35
gatcgaattc atggacacta ccatggaagc tgacc
<210> 158
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 158
                                                                       31
gatcctcgag tcacgtgggg cctgcgcccg g
<210> 159
<211> 52
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 159
                                                                       52
gcgtaatacg actcactata gggagaccgc gtgtctgcta gactctattt cc
<210> 160
<211> 20
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 160
```

411USPHRM311.ST25.txt 20 tgccacactg atgcaactcc <210> 161 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 161 gcgtaatacg actcactata gggagacctg ccacactgat gcaactcc 48 <210> 162 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 162 24 gcgtgtctgc tagactctat ttcc <210> 163 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 163 50 gcgtaatacg actcactata gggagaccgc acgccactct ttactatccc <210> 164 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 164 24 gcacaaaaca caattccata agcc <210> 165 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 165 52 gcgtaatacg actcactata gggagaccgc acaaaacaca attccataag cc <210> 166 <211> 23

Page 87

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 166
                                                                           23
gctacgccac tctttactat ccc
<210> 167
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 167
                                                                           49
gcgtaatacg actcactata gggagacctt atgagcagca attcatccc
<210> 168
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 168
cacacccacc aagaaatcag
                                                                           20
<210> 169
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 169
                                                                           48
gcgtaatacg actcactata gggagaccca cacccaccaa gaaatcag
<210> 170
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 170
                                                                           21
ttatgagcag caattcatcc c
<210> 171
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
```

Page 88

<400> 171 gcgtaatacg actcactata gggagacccg attatccaca ctttgaccc	49
<210> 172 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 172 ctgaaagttg tcgctgacc	19
<210> 173 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 173 gcgtaatacg actcactata gggagaccct gctgaaagtt gtcgctgacc	50
<210> 174 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 174 cgattatcca cactttgacc c	21
<210> 175 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 175 gcgtaatacg actcactata gggagaccct gtaaaattca cacaagcacc	50
<210> 176 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 176 agaagacaga gcaacctcc	19

411USPHRM311.ST25.txt <210> 177 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 177 gcgtaatacg actcactata gggagaccag aagacagagc aacctcc 47 <210> 178 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 178 22 ctgtaaaatt cacacaagca cc <210> 179 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 179 31 gcatggatcc tctttgctgt atttcaccct c <210> 180 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 180 gcatgaattc acaatgccag tgataaggaa g 31 <210> 181 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 181 20 acagccccaa agccaaacac <210> 182 <211> 22

<212> DNA

<213> Artificial Sequence

411USPHRM311.ST25.txt	
<220> <223> Novel Sequence	
<400> 182 ccgcaggagc aatgaaaatc ag	22
<210> 183 <211> 20	
<212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<220>	
<221> misc_feature <223> Novel Sequence	
<400> 183	
ctgtctctct gtcctcttcc	20
<210> 184	
<211> 22 <212> DNA	
<213> Artificial Sequence	
<pre><220> <223> Novel Sequence</pre>	
<400> 184	
gcaccgatct tcattgaatt tc	22
<210> 185	
<211> 1188	
<212> DNA <213> Homo sapiens	
<400> 185	
aggetegege eegaageaga geeatgagaa eeceagggtg eetggegage egetagegee	60
atgggccccg gcgaggcgct gctggcgggt ctcctggtga tggtactggc cgtggcgctg	120
ctatccaacg cactggtgct gctttgttgc gcctacagcg ctgagctccg cactcgagcc	180
tcaggcgtcc tcctggtgaa tctgtctctg ggccacctgc tgctggcggc gctggacatg	240
cccttcacgc tgctcggtgt gatgcgcggg cggacaccgt cggcgcccgg cgcatgccaa	300
gtcattggct tcctggacac cttcctggcg tccaacgcgg cgctgagcgt ggcggcgctg	360
agegeagace agtggettge agtgggette ceaetgeget aegeeggaeg eetgegaeeg	420
cgctatgccg gcctgctgct gggctgtgcc tggggacagt cgctggcctt ctcaggcgct	480
gcacttggct gctcgtggct tggctacagc agcgccttcg cgtcctgttc gctgcgcctg	540
ccgcccgagc ctgagcgtcc gcgcttcgca gccttcaccg ccacgctcca tgccgtgggc	600
ttegtgetge egetggeggt getetgeete acetegetee aggtgeaceg ggtggeacge	660
agacactgcc agcgcatgga caccgtcacc atgaaggcgc tcgcgctgct cgccgacctg	720
Page 91	

caccccagtg	tgcggcagcg	ctgcctcatc	cagcagaagc	ggcgccgcca	ccgcgccacc	780
aggaagattg	gcattgctat	tgcgaccttc	ctcatctgct	ttgccccgta	tgtcatgacc	840
aggctggcgg	agctcgtgcc	cttcgtcacc	gtgaacgccc	agtggggcat	cctcagcaag	900
tgcctgacct	acagcaaggc	ggtggccgac	ccgttcacgt	actctctgct	ccgccggccg	960
ttccgccaag	tcctggccgg	catggtgcac	cggctgctga	agagaacccc	gcgcccagca	1020
tccacccatg	acagctctct	ggatgtggcc	ggcatggtgc	accagctgct	gaagagaacc	1080
ccgcgcccag	cgtccaccca	caacggctct	gtggacacag	agaatgattc	ctgcctgcag	1140
cagacacact	gagggcctgg	cagggctcat	cgccccacc	ttctaaga		1188

<210> 186

<211> 363

<212> PRT <213> Homo sapiens

<400> 186

Met Gly Pro Gly Glu Ala Leu Leu Ala Gly Leu Leu Val Met Val Leu

Ala Val Ala Leu Leu Ser Asn Ala Leu Val Leu Leu Cys Cys Ala Tyr

Ser Ala Glu Leu Arg Thr Arg Ala Ser Gly Val Leu Leu Val Asn Leu . 35

Ser Leu Gly His Leu Leu Leu Ala Ala Leu Asp Met Pro Phe Thr Leu 55

Leu Gly Val Met Arg Gly Arg Thr Pro Ser Ala Pro Gly Ala Cys Gln

Val Ile Gly Phe Leu Asp Thr Phe Leu Ala Ser Asn Ala Ala Leu Ser 90

Val Ala Ala Leu Ser Ala Asp Gln Trp Leu Ala Val Gly Phe Pro Leu

Arg Tyr Ala Gly Arg Leu Arg Pro Arg Tyr Ala Gly Leu Leu Gly 115 120

Cys Ala Trp Gly Gln Ser Leu Ala Phe Ser Gly Ala Ala Leu Gly Cys 130

Ser Trp Leu Gly Tyr Ser Ser Ala Phe Ala Ser Cys Ser Leu Arg Leu 150

411USPHRM311.ST25.txt Pro Pro Glu Pro Glu Arg Pro Arg Phe Ala Ala Phe Thr Ala Thr Leu 170

His Ala Val Gly Phe Val Leu Pro Leu Ala Val Leu Cys Leu Thr Ser

Leu Gln Val His Arg Val Ala Arg Arg His Cys Gln Arg Met Asp Thr 200 195

Val Thr Met Lys Ala Leu Ala Leu Leu Ala Asp Leu His Pro Ser Val

Arg Gln Arg Cys Leu Ile Gln Gln Lys Arg Arg Arg His Arg Ala Thr

Arg Lys Ile Gly Ile Ala Ile Ala Thr Phe Leu Ile Cys Phe Ala Pro

Tyr Val Met Thr Arg Leu Ala Glu Leu Val Pro Phe Val Thr Val Asn 260 265

Ala Gln Trp Gly Ile Leu Ser Lys Cys Leu Thr Tyr Ser Lys Ala Val 280

Ala Asp Pro Phe Thr Tyr Ser Leu Leu Arg Arg Pro Phe Arg Gln Val

Leu Ala Gly Met Val His Arg Leu Leu Lys Arg Thr Pro Arg Pro Ala

Ser Thr His Asp Ser Ser Leu Asp Val Ala Gly Met Val His Gln Leu

Leu Lys Arg Thr Pro Arg Pro Ala Ser Thr His Asn Gly Ser Val Asp 345 340

Thr Glu Asn Asp Ser Cys Leu Gln Gln Thr His

<210> 187

<211> 29 <212> DNA <213> Artificial Sequence

<220>

<223> Novel Sequence

<400> 187

gcataagctt gccatgggcc ccggcgagg

29

<210> 188

<211> <212> <213>	28 DNA Arti	ficial Sequ	ıence				
<220> <223>	Nove	el Sequence					
<400> gcattct	188 taga	cctcagtgtg	tctgctgc				28
<210> <211> <212> <213>	189 20 DNA Arti	ficial Sequ	ıence				
<220> <223>	Nove	el Sequence					
<400> tgctgct	189 tttg	ttgcgcctac					20
<210> <211> <212> <213>	190 18 DNA Arti	ficial Sequ	lence				
<220> <223>	Nove	el Sequence					
<400> ttggac	190 gcca	ggaaggtg			·		18
<210><211><211><212><213>	191 1644 DNA Homo	sapiens					
<400> actaact	191 tttg	ggaactcgta	tagacccagc	gtcgctcccc	gcgccgcctc	gcctccactt	60
tggttt	cccg	cgtcctgccc	gccctcttcg	gtgcctcctc	ttcctccggg	acaaggatgg	120
aggatc	tctt	tagcccctca	attctgccgc	cggcgcccaa	catttccgtg	cccatcttgc	180
tgggct	gggg	tctcaacctg	accttggggc	aaggagcccc	tgcctctggg	ccgcccagcc	240
cgcgtg	cggg	ggcacggcgc	tgtcacagct	ggcctgggaa	ctgctgggcg	agccccgcgc	300
ggccac	gggg	gacctggcgt	gccgcttcct	gcagctgctg	caggcatccg	ggcggggcgc	360
ctcggc	ccac	ctagtggtgc	tcatcgccct	cgagcgccgg	cgcgcggtgc	gtcttccgca	420
cggccg	gccg	ctgcccgcgc	gtgccctcgc	cgccctgggc	tggctgctgg	cactgctgct	480
ggcgct	gccc	ccggccttcg	tggtgcgcgg	ggactccccc	tcgccgctgc	cgccgccgcc	540
gccgcca	aacg	tccctgcagc	caggcgcgcc	cccggccgcc	cgcgcctggc	cgggggagcg	600
tcgctg	ccac	gggatcttcg	cgcccctgcc	gcgctggcac	ctgcaggtct	acgcgttcta	660
caaaac	catc	gcagacttca	tcacacctat	tacggtcctg	ggcgtcgctt	gcggccacct	720

actctccgtc	tggtggcggc	accggccgca	ggcccccgcg	gctgcagcgc	cctggtcggc	780
gagcccaggt	cgagcccctg	cgcccagcgc	gctgccccgc	gccaaggtgc	agagcctgaa	840
gatgagcctg	ctgctggcgc	tgctgttcgt	gggctgcgag	ctgccctact	ttgccgcccg	900
gctggcggcc	gcgtggtcgt	ccgggcccgc	gggagactgg	gagggagagg	gcctgtcggc	960
ggcgctgcgc	gtggtggcga	tggccaacag	cgctctcaat	cccttcgtct	acctcttctt	1020
ccaggcgggc	gactgctggc	tccggcgaca	gctgcggaag	cggctgggct	ctctgtgctg	1080
cgcgccgcag	ggaggcgcgg	aggacgagga	ggggccccgg	ggccaccagg	cgctctaccg	1140
ccaacgctgg	ccccaccctc	attatcacca	tgctcggcgg	gaacccgctg	gacgagggcg	1200
gcttgcgccc	acccctccg	cgccccagac	ccctgccttg	ctcctgcgaa	agtgccttct	1260
aggtgcttgg	tggtcagaga	cgggtcatct	gtcgctaagg	cgcaacctcc	agggaactcg	1320
aggcctgcca	gggtctgtcc	agatcacaag	gggcaggaga	gtctgtgaga	gagtgacact	1380
gaagttgtcc	ccttcctcca	ctctcctatt	cccttctcat	gtttacattt	ccctatgctc	1440
ttccagtttc	tcttcttccc	tacagttcct	ctcatatctc	cccatttgga	gacagtgagc	1500
cactggaaag	ttgtaaaaac	aaaaacagtt	atttttgcag	ttttctttca	cgcatttata	1560
gtgctctgga	taatgccatt	tatttttgct	gattacccaa	ctttcagtat	ttgctgtgtt	1620
atcatctgta	tttacttatt	ttga				1644

<210> 192 <211> 513 <212> PRT <213> Homo sapiens

<400> 192

Met Glu Asp Leu Phe Ser Pro Ser Ile Leu Pro Pro Ala Pro Asn Ile

Ser Val Pro Ile Leu Leu Gly Trp Gly Leu Asn Leu Thr Leu Gly Gln 20 25

Gly Ala Pro Ala Ser Gly Pro Pro Ser Arg Arg Val Arg Leu Val Phe 35 40

Leu Gly Val Ile Leu Val Val Ala Val Ala Gly Asn Thr Thr Val Leu

Cys Arg Leu Cys Gly Gly Gly Pro Trp Ala Gly Pro Lys Arg Arg

Lys Met Asp Phe Leu Leu Val Gln Leu Ala Leu Ala Asp Leu Tyr Ala 90

Cys Gly Gly Thr Ala Leu Ser Gln Leu Ala Trp Glu Leu Leu Gly Glu Page 95

411USPHRM311.ST25.txt 105 100 Pro Arg Ala Ala Thr Gly Asp Leu Ala Cys Arg Phe Leu Gln Leu Leu Gln Ala Ser Gly Arg Gly Ala Ser Ala His Leu Val Val Leu Ile Ala 135 Leu Glu Arg Arg Arg Ala Val Arg Leu Pro His Gly Arg Pro Leu Pro Ala Arg Ala Leu Ala Ala Leu Gly Trp Leu Leu Ala Leu Leu Ala 165 170 Leu Pro Pro Ala Phe Val Val Arg Gly Asp Ser Pro Ser Pro Leu Pro 185 Pro Pro Pro Pro Thr Ser Leu Gln Pro Gly Ala Pro Pro Ala Ala Arg Ala Trp Pro Gly Glu Arg Arg Cys His Gly Ile Phe Ala Pro Leu

Pro Arg Trp His Leu Gln Val Tyr Ala Phe Tyr Glu Ala Val Ala Gly 235 225 230

Phe Val Ala Pro Val Thr Val Leu Gly Val Ala Cys Gly His Leu Leu

Ser Val Trp Trp Arg His Arg Pro Gln Ala Pro Ala Ala Ala Pro

Trp Ser Ala Ser Pro Gly Arg Ala Pro Ala Pro Ser Ala Leu Pro Arg

Ala Lys Val Gln Ser Leu Lys Met Ser Leu Leu Leu Ala Leu Leu Phe 295

Val Gly Cys Glu Leu Pro Tyr Phe Ala Ala Arg Leu Ala Ala Ara

Ser Ser Gly Pro Ala Gly Asp Trp Glu Gly Glu Gly Leu Ser Ala Ala

Leu Arg Val Val Ala Met Ala Asn Ser Ala Leu Asn Pro Phe Val Tyr

Leu Phe Phe Gln Ala Gly Asp Cys Trp Leu Arg Arg Gln Leu Arg Lys 355 360 365

Page 96

Arg Leu Gly Ser Leu Cys Cys Ala Pro Gln Gly Gly Ala Glu Asp Glu 370 375 380

Glu Gly Pro Arg Gly His Gln Ala Leu Tyr Arg Gln Arg Trp Pro His 385 390 395 400

Pro His Tyr His His Ala Arg Arg Glu Pro Ala Gly Arg Gly Arg Leu $405 \hspace{1.5cm} 410 \hspace{1.5cm} 415$

Ala Pro Thr Pro Ser Ala Pro Gln Thr Pro Ala Leu Leu Leu Arg Lys $420 \hspace{1.5cm} 425 \hspace{1.5cm} 430$

Cys Leu Leu Gly Ala Trp Trp Ser Glu Thr Gly His Leu Ser Leu Arg $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$

Arg Asn Leu Gln Gly Thr Arg Gly Leu Pro Gly Ser Val Gln Ile Thr 450 460

Arg Gly Arg Arg Val Cys Glu Arg Val Thr Leu Lys Leu Ser Pro Ser 475 470 480

Ser Thr Leu Leu Phe Pro Ser His Val Tyr Ile Ser Leu Cys Ser Ser 485 490 495

Ser Phe Ser Ser Leu Gln Phe Leu Ser Tyr Leu Pro Ile Trp Arg 500 505 510

Gln