Introduction to many-body perturbation theory, GW band gap calculations and RPA energy calculations

Lucia Reining

Palaiseau Theoretical Spectroscopy Group & Friends

Linear response

- → Linear response Dyson-like equation: TDDFT
- → From TDDFT to the BSE
- → RPA: why and what

Linear response

- → Linear response Dyson-like equation: TDDFT
- → From TDDFT to the BSE
- → RPA: why and what

Linear Response......

$$\delta n = \int \chi \delta v_{\mathrm{ext}} \qquad \epsilon^{-1} = 1 + v_c \chi$$

$${
m Im}\,\epsilon^{-1}(\omega)$$
 Energy Loss, Dynamic Structure Factor (IXS)

$$v_{\mathrm{tot}} = \epsilon^{-1} v_{\mathrm{ext}}$$
 $W = \epsilon^{-1} v_c$ e.g., for MBPT

$${
m Im}\,\epsilon(\omega)$$
 Absorption

$$n(\mathbf{r},t) = \int d\mathbf{r}' dt' \, \chi(\mathbf{r},\mathbf{r}',t-t') v_{\rm ext}(\mathbf{r}',t')$$
density density density response function perturbation

The time-dependent density gives us (directly or formally) access to response functions

$$\left(-\frac{\nabla^2}{2} + v_{\text{aux}}(\mathbf{r})\right)\varphi_{\ell}^{\text{aux}}(\mathbf{r}) = \varepsilon_{\ell}^{\text{aux}}\varphi_{\ell}^{\text{aux}}(\mathbf{r})$$

$$\left(-\frac{\nabla^2}{2} + v_{\text{aux}}(\mathbf{r})\right)\varphi_{\ell}^{\text{aux}}(\mathbf{r}) = \varepsilon_{\ell}^{\text{aux}}\varphi_{\ell}^{\text{aux}}(\mathbf{r})$$

$$\left(-\frac{\nabla^2}{2} + v_{\text{aux}}(\mathbf{r}, t)\right) \varphi_{\ell}^{\text{aux}}(\mathbf{r}, t) = i \frac{\partial}{\partial t} \varphi_{\ell}^{\text{aux}}(\mathbf{r}, t)$$

$$\left(-\frac{\nabla^2}{2} + v_{\text{aux}}(\mathbf{r})\right)\varphi_{\ell}^{\text{aux}}(\mathbf{r}) = \varepsilon_{\ell}^{\text{aux}}\varphi_{\ell}^{\text{aux}}(\mathbf{r})$$

$$\left(-\frac{\nabla^2}{2} + v_{\text{aux}}(\mathbf{r}(t))\right)\varphi_{\ell}^{\text{aux}}(\mathbf{r}(t)) = i\frac{\partial}{\partial t}\varphi_{\ell}^{\text{aux}}(\mathbf{r}(t))$$

Ando, Z. Phys. B 26, 263 and Solid State Commun. 21, 133(1977). Peuckert, J. Phys. C 11, 4945 (1978) Zangwill and Soven, Phys. Rev. A 21, 1561 (1980)

$$\left(-\frac{\nabla^2}{2} + v_{\text{aux}}(\mathbf{r})\right)\varphi_{\ell}^{\text{aux}}(\mathbf{r}) = \varepsilon_{\ell}^{\text{aux}}\varphi_{\ell}^{\text{aux}}(\mathbf{r})$$

$$\left(-\frac{\nabla^2}{2} + v_{\text{aux}}(\mathbf{r}(t))\right)\varphi_{\ell}^{\text{aux}}(\mathbf{r}(t)) = i\frac{\partial}{\partial t}\varphi_{\ell}^{\text{aux}}(\mathbf{r}(t))$$

$$v_{\text{aux}}(\mathbf{r}, t) = v_{\text{aux}}([n], \mathbf{r}, t)$$

TDDFT in linear response

Excitation?

→ Induced potentials

Change of potentials

Excitation?

→ Induced potentials

Change of potentials

$$\chi = \chi^{0} + \chi^{0} \frac{\delta v_{\text{Hxc}}}{\delta n} \chi^{0} + \chi^{0} \frac{\delta v_{\text{Hxc}}}{\delta n} \chi^{0} \frac{\delta v_{\text{Hxc}}}{\delta n} \chi^{0} + \dots$$

$$\chi = \frac{\delta n}{\delta v_{\rm ext}} = \frac{\delta n}{\delta v_{\rm tot}} \frac{(\delta v_{\rm ext} + \delta v_{\rm H} + \delta v_{\rm xc})}{\delta v_{\rm ext}}$$

$$\chi = \frac{\delta n}{\delta v_{\rm ext}} = \frac{\delta n}{\delta v_{\rm tot}} \frac{(\delta v_{\rm ext} + \delta v_{\rm H} + \delta v_{\rm xc})}{\delta v_{\rm ext}}$$

$$\chi^{0}$$
unoccupied states

$$\chi_0(\mathbf{r}, \mathbf{r}', \omega) = \sum_{ij} (f_i - f_j) \frac{\varphi_i^*(\mathbf{r}) \varphi_j(\mathbf{r}) \varphi_i(\mathbf{r}') \varphi_j^*(\mathbf{r}')}{\omega - (\varepsilon_i - \varepsilon_j)}$$

$$\chi = \frac{\delta n}{\delta v_{\text{ext}}} = \frac{\delta n}{\delta v_{\text{tot}}} \frac{(\delta v_{\text{ext}} + \delta v_{\text{H}} + \delta v_{\text{xc}})}{\delta v_{\text{ext}}}$$

$$\chi_0(\mathbf{r}, \mathbf{r}', \omega) = \sum_{ij} (f_i - f_j) \frac{\varphi_i^*(\mathbf{r}) \varphi_j(\mathbf{r}) \varphi_i(\mathbf{r}') \varphi_j^*(\mathbf{r}')}{\omega - (\varepsilon_i - \varepsilon_j)}$$

$$\chi_0 = -iG_{\rm KS}G_{\rm KS}$$

$$\chi = \frac{\delta n}{\delta v_{\rm ext}} = \frac{\delta n}{\delta v_{\rm tot}} \frac{(\delta v_{\rm ext} + \delta v_{\rm H} + \delta v_{\rm xc})}{\delta v_{\rm ext}}$$

$$\chi = \frac{\delta n}{\delta v_{\rm ext}} = \frac{\delta n}{\delta v_{\rm tot}} \frac{(\delta v_{\rm ext} + \delta v_{\rm H} + \delta v_{\rm xc})}{\delta v_{\rm ext}}$$

$$\chi^{0}$$

$$\chi = \chi^0 + \left(\frac{\delta v_{\rm H} + \delta v_{\rm xc}}{\delta n}\right) \frac{\delta n}{\delta v_{\rm ext}} = \chi^0 + \chi^0 (v_c + f_{\rm xc}) \chi$$

$$\chi = \frac{\delta n}{\delta v_{\text{ext}}} = \frac{\delta n}{\delta v_{\text{tot}}} \frac{(\delta v_{\text{ext}} + \delta v_{\text{H}} + \delta v_{\text{xc}})}{\delta v_{\text{ext}}}$$

$$\chi^{0}$$

$$\chi = \chi^0 + \left(\frac{\delta v_{\rm H} + \delta v_{\rm xc}}{\delta n}\right) \frac{\delta n}{\delta v_{\rm ext}} = \chi^0 + \chi^0 (v_c + f_{\rm xc}) \chi$$

$$\chi = \frac{\delta n}{\delta v_{\text{ext}}} = \frac{\delta n}{\delta v_{\text{tot}}} \frac{(\delta v_{\text{ext}} + \delta v_{\text{H}} + \delta v_{\text{xc}})}{\delta v_{\text{ext}}}$$

$$\chi^{0}$$

$$\chi = \chi^0 + \left(\frac{\delta v_{\rm H} + \delta v_{\rm xc}}{\delta n}\right) \frac{\delta n}{\delta v_{\rm ext}} = \chi^0 + \chi^0 (v_c + f_{\rm xc}) \chi$$

RPA: $f_{\rm XC} \rightarrow 0$

In the framework of Green's functions:

Dressed hole

Optical absorption in the aux. system of electrons and holes (indep.)

V₂O₅: a layered bulk material

GW-RPA

• **Exp**

Vitaly Gorelov Reining, Feneberg, Goldhahn, Schleife, Lambrecht, Gatti npj comp mat (2022)

Dressed hole

e-h interaction

$$\chi = \frac{\delta n}{\delta v_{\rm ext}} = \frac{\delta n}{\delta v_{\rm tot}} \frac{(\delta v_{\rm ext} + \delta v_{\rm H} + \delta v_{\rm xc})}{\delta v_{\rm ext}}$$

$$\chi = \chi^0 + \left(\frac{\delta v_{\rm H} + \delta v_{\rm xc}}{\delta n}\right) \frac{\delta n}{\delta v_{\rm ext}} = \chi^0 + \chi^0 (v_c + f_{\rm xc}) \chi$$

$$\chi = \frac{\delta n}{\delta v_{\text{ext}}} = \frac{\delta n}{\delta v_{\text{tot}}} \frac{(\delta v_{\text{ext}} + \delta v_{\text{H}} + \delta v_{\text{xc}})}{\delta v_{\text{ext}}}$$

$$\chi = \chi^{0} + \left(\frac{\delta v_{\text{H}} + \delta v_{\text{xc}}}{\delta n}\right) \frac{\delta n}{\delta v_{\text{ext}}} = \chi^{0} + \chi^{0}(v_{c} + f_{\text{xc}})\chi$$

$$= \frac{\delta n}{\delta v_{\text{ext}}} = \frac{\delta n}{\delta v_{\text{ext}}} \frac{(\delta v_{\text{ext}} + \delta v_{\text{H}} + \delta \Sigma_{\text{xc}})}{\delta v_{\text{ext}}} \frac{\delta n}{\delta v_{\text{ext}}}$$

$$\chi = \chi^{0} + \left(\frac{\delta v_{\rm H} + \delta v_{\rm xc}}{\delta n}\right) \frac{\delta n}{\delta v_{\rm ext}} = \chi^{0} + \chi^{0}(v_{c} + f_{\rm xc})\chi$$

$$\chi = \frac{\delta n}{\delta v_{\rm ext}} = \frac{\delta n}{\delta v_{\rm tot}} \frac{\left(\delta v_{\rm ext} + \delta v_{\rm H} + \delta \Sigma_{\rm xc}\right)}{\delta n} \frac{\delta n}{\delta v_{\rm ext}}$$

$$\chi = \frac{\delta n}{\delta v_{\text{ext}}} = \frac{\delta n}{\delta v_{\text{tot}}} \frac{(\delta v_{\text{ext}} + \delta v_{\text{H}} + \delta v_{\text{xc}})}{\delta v_{\text{ext}}}$$
$$\chi = \chi^{0} + \left(\frac{\delta v_{\text{H}} + \delta v_{\text{xc}}}{\delta n}\right) \frac{\delta n}{\delta v_{\text{ext}}} = \chi^{0} + \chi^{0}(v_{c} + f_{\text{xc}})\chi$$

$$\chi = rac{\delta n}{\delta v_{
m ext}} = rac{\delta n}{\delta v_{
m ext}} rac{(\delta v_{
m ext} + \delta v_{
m H} + \delta \Sigma_{
m xc})}{\delta n} rac{\delta n}{\delta v_{
m ext}}$$

$$L = \frac{\delta G}{\delta v_{\rm ext}} = \frac{\delta G}{\delta v_{\rm tot}} \frac{(\delta v_{\rm ext} + \delta v_{\rm H} + \delta \Sigma_{\rm xc})}{\delta G} \frac{\delta G}{\delta v_{\rm ext}}$$
$$L_0 \equiv GG$$

$$\chi = \frac{\delta n}{\delta v_{\rm ext}} = \frac{\delta n}{\delta v_{\rm tot}} \frac{(\delta v_{\rm ext} + \delta v_{\rm H} + \delta v_{\rm xc})}{\delta v_{\rm ext}}$$

$$\chi = \chi^0 + \left(\frac{\delta v_{\rm H} + \delta v_{\rm xc}}{\delta n}\right) \frac{\delta n}{\delta v_{\rm cut}} = \chi^0 + \chi^0 (v_c + f_{\rm xc}) \chi$$

$$\chi = rac{\delta n}{\delta v_{
m ext}} = rac{\delta n}{\delta v_{
m tot}} rac{(\delta v_{
m ext} + \delta v_{
m H} + \delta \Sigma_{
m xc})}{\delta n} rac{\delta n}{\delta v_{
m ext}}$$

$$L = \frac{\delta G}{\delta v_{\rm ext}} = \frac{\delta G}{\delta v_{\rm tot}} \frac{(\delta v_{\rm ext} + \delta v_{\rm H} + \delta \Sigma_{\rm xc})}{\delta G} \frac{\delta G}{\delta v_{\rm ext}}$$

$$L_0 \equiv GG$$

$$L = L_0 + L_0 \left(-iv_c + \frac{\delta \Sigma_{xc}}{\delta C} \right) L$$

BSE

Bethe-Salpeter Equation

$$L = L_0 + L_0 \frac{\delta(v_H + \Sigma_{xc})}{\delta G} L$$

$$L_0 = GG$$

Dressed hole

e-h interaction

Bethe-Salpeter Equation

$$L = L_0 + L_0 \frac{\delta(v_H + \Sigma_{xc})}{\delta G} L$$

$$L_0 = GG$$

From GW

Dressed hole

$$L = L_0 + L_0 \frac{\delta(v_H + \Sigma_{xc})}{\delta G} L$$

 $L_0 = GG$

Dressed hole

Dressed electron

Hanke & Sham, Phys. Rev. Lett. 43, 387 (1979)

Strinati, Nuovo Cimento 11, 1 (1988)

Onida, et al., Phys. Rev. Lett. 75, 818 (1995)

Albrecht, Onida, Reining Phys. Rev. B 55, 10278 (1997); Albrecht et al. PRL 80, 4510 (1998)

Benedict, Shirley, Bohn, PRL 80, 4514 (1998)

Rohlfing & Louie, PRL 80, 3320 (1998); PRL 81, 2312 (1998)

Bethe-Salpeter Equation

$$L = L_0 + L_0 \frac{\delta(v_H + \Sigma_{xc})}{\delta G} L$$

$$L_0 = GG$$

Dressed hole

Dressed electron

Neglect of interaction kernel: GW-RPA

State-of-the-art Bethe-Salpeter

Vitaly Gorelov et al., npj comp mat (2022)

Energy (eV)

Dark exciton

State-of-the-art Bethe-Salpeter

 ${f v}_{_2{f O}_5}$: a layered bulk material $H_{
m exc}\Psi_{m \lambda}({f r}_h,{f r}_e)=E_{m \lambda}\Psi_{m \lambda}({f r}_h,{f r}_e)$

Energy (eV)

Dark exciton

Vitaly Gorelov et al., npj comp mat (2022)

Chaire Énergies Durables

École polytechnique - EDF

- → BSE and TDDFT in principle exact
- → Approximations (GW!) for BSE kernel reliable, TDDFT depends

Loss function of vanadium pentoxide (and many other materials):

Cancellations → KS-RPA ok

- → BSE and TDDFT in principle exact
- → Approximations (GW!) for BSE kernel reliable, TDDFT depends

Loss function of vanadium pentoxide (and many other materials):

Cancellations → KS-RPA ok

The one-body Green's function also yields the total energy:

$$E_{\rm gs} = \frac{1}{2} \int dx \lim_{x' \to x} \lim_{t' \to t^+} \left[\frac{\partial}{\partial t} - ih(x) \right] G(x, x', t, t')$$

V.M. Galitskii, A. M. JETP 1950, 7, 96

This contains

- → the external potential energy (only the density needed)
 - → the external potential energy (only the density needed)
 → the kinetic energy calculated with G,
 - \rightarrow and the interaction potential energy (Hartree + xc)

The xc contribution to the interaction potential energy can also be written as

$$E_{\rm xc} = E_{\rm x}^{KS} - \frac{1}{2\pi} \int d\mathbf{r} d\mathbf{r}' v_c(\mathbf{r}, \mathbf{r}') \int_0^\infty d\omega \Big[\chi(\mathbf{r}, \mathbf{r}'; i\omega) - \chi_0(\mathbf{r}, \mathbf{r}'; i\omega) \Big]$$
(Fluctuation-dissipation theorem)

We could calculate the polarizability in TDDFT or BSE.

Problem: what about the kinetic energy? It still requires G (tbp, density matrix)

→ Adiabatic connection: scale Coulomb interaction keeping density fix

$$U_{xc} = E_x^{KS} - \frac{1}{2\pi} \int d\mathbf{r} d\mathbf{r}' v_c(\mathbf{r}, \mathbf{r}') \int_0^\infty d\omega \int_0^1 d\lambda \left[\chi_\lambda(\mathbf{r}, \mathbf{r}'; i\omega) - \chi_0(\mathbf{r}, \mathbf{r}'; i\omega) \right]$$

$$E_{\rm xc} = E_{\rm x}^{KS} - \frac{1}{2\pi} \int d\mathbf{r} d\mathbf{r}' v_c(\mathbf{r}, \mathbf{r}') \int_0^\infty d\omega \left[\chi(\mathbf{r}, \mathbf{r}'; i\omega) - \chi_0(\mathbf{r}, \mathbf{r}'; i\omega) \right]$$

 $U_{
m xc}$ also contains the difference between the full and KS kinetic energy

→ We "only" need a good approximation for the polarizability

Simplest : RPA Already has, e.g., van der Waals. Standard scaling O(N⁴)

RPA correlation energy in GW context:

$$E_{\rm c}^{\rm RPA} = \frac{1}{2} \int_{0}^{1} \frac{\mathrm{d}\lambda}{\lambda} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}\omega \mathrm{Tr} \big[G^{0}(i\omega) \Sigma_{\rm c}^{GW}(i\omega, \lambda) \big] \right)$$

Ren, X.; Rinke, P.; Joas, C.; Scheffler, M. Random-phase approximation and its applications in computational chemistry and materials science. Journal of Materials Science 47, 7447 (2012)

HEG correlation energy

Olsen, T.; Patrick, C. E.; Bates, J. E.; Ruzsinszky, A.; Thygesen, K. S. npj Computational Materials 2019, 5, 106.

Table 1. Correlation energies of H, H_2 , and He evaluated with different functionals

	LDA	PBE	RPA	ALDA _x	rALDA	Exact
Н	-14	-4	-13	6	-2	0
H ₂	-59	-27	-51	-16	-28	-26
He	-70	-26	-41	-19	-27	-26

Exact values are taken from ref. 101 All numbers are in kcal/mol

Lee, J. S. & Park, S. Y. J. Chem. Phys. 112, 10746–10753 (2000).

	Atomizatio	n energies			
	ME (eV)	MAE (eV)	MAPE (%)	MaxAPE (%)	10
LDA	-0.74	0.74	18.0	32.7	/)
PBE	0.15	0.17	4.5	15.4	
RPA	0.30	0.30	7.3	13.5	
RPA+	0.35	0.35	8.7	15.0	
	Lattice cor	nstants			
	ME (Å)	MAE (Å)	MAPE (%)	MaxAPE (%)	
LDA	-0.045	0.045	1.0	3.7	M II. I I Calcial a I IZ
PBE	0.070	0.072	1.4	2.7	Harl J, Schimka L, Kresse
RPA	0.016	0.019	0.4	0.9	(2010) Phys Rev B 81:115
RPA+	0.029	0.030	0.6	1.1	y
	Bulk modul	i			
	ME (GPa)	MAE (GPa)	MAPE (%)	MaxAPE (%))
LDA	9	11	9.6	31.0	
PBE	-11	11	10.7	23.7	
RPA	-1	4	3.5	10.0	Y
RPA+	-3	5	3.8	11.4	

Linear response

- → Linear response Dyson-like equation: TDDFT
- → From TDDFT to the BSE
- → RPA: why and what
 - * Linear response is at the basis of much of our work
 - * RPA has its charme
 - * Actions needed to go beyond, and to speed up!

Suggested Reading

Strinati, G., "Application of the Green's function method to the study of the optical-properties of semiconductors," Rivista del Nuovo Cimento 11, 1, 1988. *Pedagogical review of the theoretical framework underlying today's Bethe–Salpeter calculations. Derivation of the main equations and link to spectroscopy.*

Rohlfing & Louie, "Electron-hole excitations and optical spectra from first principles", Phys. Rev. B 62, 4927 (2000). *Good overview of BSE in practice as we still mostly do it today.*

Onida, G., Reining, L., and Rubio, A., "Electronic excitations: density-functional versus many-body Greens-function approaches," Rev. Mod. Phys. 74, 601, 2002. Review of ab initio calculations of electronic excitations with accent on optical properties and a comparison between Bethe—Salpeter and TDDFT

R.M. Martin, L. Reining, D.M. Ceperley, "Interacting Electrons: Theory and Computational Approaches, Cambridge May 2016 *Quite recent book containing many-body perturbation theory, DMFT and QMC*

Ren, X.; Rinke, P.; Joas, C.; Scheffler, M. "Random-phase approximation and its applications in computational chemistry and materials science", Journal of Materials Science 47, 7447 (2012)

Comprehensive review on RPA and beyond total energy calculations