UNCLASSIFIED

AD NUMBER AD840091 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; AUG 1966. Other requests shall be referred to Air Force Avionics Lab., Wright-Patterson AFB, OH 45433. **AUTHORITY** AFWAL ltr, 4 Dec 1980

AD

TARGET SIGNATURE ANALYSIS CENTER: DATA COMPILATION Fifth Supplement

Dianne Earing

Infrared and Optical Sensor Laboratory
Willow Run Laboratories
Institute of Science and Technology
The University of Michigan
Ann Arbor, Michigan

August 1968

SEP 30 1968

Best Available Copy

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFAL (AVPT), WPAFB, Ohio.

Air Force Avionics Laboratory Research and Technology Division Air Force Systems Command Wright-Patterson Air Force Base, Ohio

191

NOTICES

Sponsorship. The work reported herein was conducted by the Willow Run Laboratories of the Institute of Science and Technology for the Air Force Avionics Laboratory, Wright-Patterson Air Force Base, under contract F33615-67-C-1293. Contracts and grants to The University of Michigan for the support of sponsored research are administered through the Office of the Vice-President for Research.

Legal Notices. When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility for any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Reproduction Notices. This report may be reproduced to satisfy needs of U.S. Government agencies. No other reproduction is authorized except with permission of AFAL (AVPT), WPAFB, Ohio.

Final Disposition. After this document has served its purpose, it may be destroyed. Please do not return it to the Willow Run Laboratories.

NOTE 10 USERS

Target Signature Analysis Center: Data Compilation is a periodically updated publication of the optical and microwave target and background data stored on magnetic tape at the Target Signature Analysis Center established at The University of Michigan and sponsored by the Air Force Avionics Laboratory. Separate volumes are maintained for classified and unclassified data. The compilation is distributed in loose-leaf form so that supplemental publications can be readily integrated in accordance with the established indexing system. The complete publication history of the Target Signature Analysis Center: Data Compilation is summarized in the foreword to the enclosed document.

This present document is the second supplement of unclassified data and the fifth supplement to the overall compilation. It is meant to be integrated with the previous unclassified supplements. It consists of optical data, revised explanatory text, and composite cross-indexes for the integrated volume. The following are suggestions for combining this supplement with the unclassified data already published:

- (i) Remove and destroy the previously published cover page, title page and abstract for the unclassified volume and replace them with the corresponding pages provided in this supplement.
- (2) Remove and destroy the previously published table of contents for the unclassified volume and replace it with that provided in this supplement.
- (3) Remove and destroy all text and indexes on the pages numbered 1 through 118 in the original volume and replace them with the appropriate revised pages of text and indexes (numbered 1 through 72) in the order indicated by the new table of contents. Note that pages containing data are to be interspersed among text material.
- (4) Remove and destroy DD Form 1473, and replace it with the corresponding form provided in this supplement.

TARGET SIGNATURE ANALYSIS CENTER: DATA COMPILATION Fifth Supplement

Dianne Earing

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFAL (AVPT), WPAFB, Ohio.

FOREWORD

This is the fifth supplement and the second unclassified supplement to <u>Target Signature</u> Analysis Center: Data Compilation (July 1966). It was prepared at the Willow Run Laboratories, a unit of The University of Michigan's Institute of Science and Technology. The preparation was begun under Air Force Contract AF 33(657)-10974 and continued under Contracts AF 33(615)-3654 and F33615-76-C-1293. The originator's report number is 8492-15-B. The work was administered under the direction of the Air Force Avionics Laboratory, Research and Technology Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, with Mr. Bruno K. Wernicke as the project engineer.

PUBLICATION HISTORY OF THE TARGET SIGNATURE ANALYSIS CENTER: DATA COMPILATION

Report	Date	WRL Report Number	AD Number (DDC)
Unclassified Publications			
Original Unclassified Compilation	July 1966	7850-2-B	AD 489 968
Second Supplement	July 1967	8492-5-B	AD 819 712
Fifth Supplement	August 1968	8492-15-B	(unassigned)
Classified Publications			
First Supplement	December 1966	7850-9-B	AD 379 650
(original classified compilation)			
Third Supplement	October 1967	8492-12-B	AD 384 874
Fourth Supplement	December 1967	8492-14-B	AD 391 239

The author gratefully acknowledges the invaluable assistance of Spencer T. Rogers, who was directly responsible for processing the data appearing in the Fifth Supplement to the Data Compilation. Contributers to previous supplements include I. W. Ginsberg (sec. 2), E. J. Haag (sec. 5), and J. L. Beard (sec. 6).

ABSTRACT

This second unclassified supplement to <u>The Target Signature Analysis Center:</u> Data Compilation augments an ordered, indexed compilation of reflectances, radar cross sections, and apparent temperatures of target and background materials. The data include spectral reflectances and transmittances in the optical region from 0.3 to 15 μ and normalized radar cross sections (active) and apparent temperatures (passive), plotted as a function of aspect or depression angle, at millimeter wavelengths. When available, the experimental parameters associated with each curve are listed to provide the user with a description of the important experimental conditions.

This supplement contains approximately 400 data curves from experimental studies which include the current Target Signature Mea. rements Program conducted at The University of Michigan and sponsored by the Air Force Avionics Laboratory. The unclassified compilation, including these data, consists of about 4300 curves.

CONTENTS

Foreword	i
Abstract	ii
List of Figures	v
List of Tables	v
1. Introduction	1
2. Discussion of Reflectance Measurements	
3. Cumulative Subject Cross-Index	30
4. Optical Data	34 34 37 AAA-1
5. Radar (Active Microwave) Data	53 53 3122-1
6. Passive Microwave Data 6.1. Introduction 6.2. Data	58 58 (P)BAB-1
7. List of Data Documents Used	62
References	66

FIGURES

1.	Local Coordinate System for Determining Bidirectional Reflectance 15
2.	Schematic Diagram of the General Electric Spectrophotometer16
3.	Schematic Diagram of the Beckman Spectrophotometer with Reflectance Attachment
4.	Schematic Diagram of the Coblentz Hemispherical Reflectance Attachment Used by New York University
5.	Schematic Diagram of the USAERDL Portable Spectrophotometer 2
6.	Schematic Diagram of Measurement Configurations Used by Krinov 2
7.	Schematic Diagram of the Hohlraum Reflectance Attachment
8.	Absolute Reflectance of Smoked MgO
9.	Absolute Reflectance of Pressed BaSO ₄
	Absolute Reflectance of Pressed MgCO328
	Geometry for Some Specified Optical Data Parameters
	TABLES
I	Target Signature Subject-Code List
	Optical Data Parameters
ш	Radar Data Numerical Code
IV	Scales of Additional Descriptors for Radar Data
V	Radar Data Parameters
VI	Generalized (Passive Microwave) Data Parameters

TARGET SIGNATURE ANALYSIS CENTER: DATA COMPILATION Fifth Supplement

1 INTRODUCTION

The Target Signature Analysis Center established at the Willow Run Laboratories of The University of Michigan's Institute of Science and Technology and sponsored by the Air Force Avionics Laboratory comprises a document collection, a data library, and a staff of analysts. It provides a centralized source of data and analysis techniques useful for improving remote sensors. The routine functions of the Center include collecting, evaluating, and categorizing data on the properties of various target and background objects. In the optical portion of the electromagnetic spectrum from 0.3 to 15 μ , the data are primarily on reflectance and transmittance; at microwave frequencies, they consist of normalized radar cross sections (active) and apparent temperatures (passive). The primary source of data is reports published by laboratories making such measurements. In some instances, unpublished data have also been acquired directly from an experimenter.

Each document received by the Analysis Center is examined for data to be added to the library. Selected data are then manually digitized using an established format. Coded descriptors are assigned to each curve for retrieval purposes, and the conditions of each experiment are recorded. Data points and the descriptive and parametric information are also stored on magnetic tape. Since the parameters required to define radar measurements differ in many respects from those required for optical measurements, separate formats were designed to handle the different types of information. However, a general format has recently been devised and will eventually be used for all data. This new format is discussed in section 6 and has been used for processing the passive microwave data.

Optical (0.3 < λ < 1000 μ) and microwave (λ > 1000 μ) instruments were used to obtain the data reported here; the experiments were conducted during the last three decades. Three types of measurements are represented:

- (1) Laboratory measurements of materials such as leaves, soil, and paints
- (2) Ground-based field measurements of objects such as plants, soil plots, and vehicles
- (3) Airborne measurements of scenes

In the optical portion of the spectrum, laboratory measurement programs are far more abundant than either ground-based field measurements or airborne programs. Over the last

several years, the U.S. National Bureau of Standards has conducted extensive laboratory measurements of vegetation and some other materials in the visible, near-infrared, and, more recently, longer wavelength regions. Past ground-based field measurements in the optical region include the extensive basic studies by Krinov in the 1930's [1] and those conducted by the U.S. Army Engineer Research and Development Laboratory (USAERDL) in the 1960's [2]. Krinov, using a field spectrograph and under conditions of natural illumination, obtained spectrograms of several natural formations found in Russia. His investigations included an examination of the dependence of spectral reflectance on season and angles of incidence and viewing. The USAERDL experiments were conducted using a portable field spectrophotometer with an artificial source of illumination. The spectral directional reflectance of several crops (e.g., corn, soybeans, wheat) was studied as a function of several parameters such as the moisture content and fertilizer content of the soil, crop maturity, and the amount of soil background. Very few airborne measurements have been made in the optical portion of the spectrum. Krinov obtained only a few airborne spectrograms during his extensive field studies. In 1945, Duntly used an Eastman Kodak airborne spectrograph to obtain terrain measurements in the visible region [3]. Other airborne programs have been concerned mainly with collecting optical imagery rather than measuring spectral reflectance. The available optical data cover primarily the visible and near-infrared regions. Only a relatively few experiments have yielded data for wavelengths longer than 2.5 μ , chiefly because of the lack of instrumentation for such measurements.

There is a much larger amount of data on background materials (e.g., leaves, crops, and soils) than on man-made materials. This is because most of the past measurements were performed by scientists in the fields of botany, agronomy, and natural science, and, therefore, the primary motivation for these measurements was an interest in the way natural objects react to incident solar radiation.

This data compilation is the product of a survey of existing data on target and background materials and is intended to present the results of such a survey in a single source. The picture it presents of natural and man-made objects in the real world and their interaction with electromagnetic radiation is in no way complete. Although many data have been gathered on some materials and at a few wavelengths, data are completely lacking for other materials and other wavelengths. Moreover, even the existing data are not accompanied with all the parametic and support information required for their adequate interpretation. The extensive Target Signature Measurements Program currently sponsored by the Air Force Avionics Laboratory is planned to fill existing data gaps. This program provides for laboratory and field measurements of target and background materials and objects at both optical and microwave frequencies. In the optical region, bidirectional and directional reflectances are under investigation. In the microwave region, optical simulation studies are being conducted, and existing radiometric (passive) data are being collected. Some of the data from this program, specifically directional

reflectance data in the 0.3- to 2.5- μ spectral interval and the passive microwave data, are included in this report. Other data from the program, including the bidirectional reflectance data, will be published in future supplements to this compilation.

Section 2 of this report treats the concept of reflectance theoretically. This includes definition of the basic optical properties, bidirectional, directional, and total reflectance, and derivation of their mathemetical relationships. In addition, the instruments used to obtain the optical data are described and equations derived for the optical properties measured by these instruments. Section 4 contains the optical data. Each curve has been assigned several alphabetic descriptor codes to describe the object measured, the instrumentation used, the optical property measured, and the spectral interval (cf. table I). The curves have been grouped according to the coded descriptor that best describes the object measured. Section 5 contains active microwave data, i.e., averaged, normalized radar cross sections as a function of aspect angle, with frequency as a parameter. Each curve has been assigned a numeric descriptor code to describe the type of terrain measured and pertinent conditions of the measurement. The curves are grouped according to the type of object measured. Section 6 has the passive microwave data in the form of apparent temperatures as a function of either depression or aspect angle. Each curve has been assigned alphabetic descriptors, as have the optical data curves, and the curves are arranged by the object measured. Only unclassified data from the Target Signature Analysis Center's collection are included in this supplement. The classified data have been published separately and are referenced in the foreword to this report. A subject cross index to the data (sec. 3) and a bibliographical listing of the documents from which the data in sections 4, 5, and 6 were extracted (sec. 7) have also been provided.

TABLE I. TARGET SIGNATURE SUBJECT-CODE LIST

A	TARGETS	AE	Materials
AA	Ground	AEA*	Aluminum
AAA	Buildings	AEB	Asphalt
AAAA	Steel	AEC	Brick
AAAB	Brick, Stone, Concrete	AED	Burlap
AAAC	Wood Frame	AEE	Canvas
AAAD	Stick Huts	AEF	Cinder
AAAE	Mud Huts	AEG	Concrete
		AEH	Dirt
AABA	Guns	AEI*	Galvanized Steel
AABA	Artillery	AEJ	Glass
AABB	Rifles	AEK	Gravel
AAC	Industrial Facilities	AEL	Metal
AACA	Power Stations	AELA	Aluminum
AACB	Shipyards	AELB	Brass
AAD	Military Facilities	AELC	Bronze
AADA	Communication Centers		—
AADB	Fortifications	AELD	Copper
AADC	Launching Sites	AELE	Steel
AADCA	Antiaircraft	AELEA	Galvanized
AADD	Marshalling Yards	AELEB	Stainless
AADE	Supply Depots	AEM	Paint
AAE	Airfields	AEMA	White Pigments
AAF	Railroad	AEMAA	Zinc Oxide (Zinc White)
AAFA	Tracks	AEMAB	Lead Basic Carbonate
AAFB	Yards		(White Lead)
AAG	Roads	AEMAC	Titanium Dioxide
AAH	Bridges	AEMB	Green Pigments
AAI	Dams	AEMBA	Chromic Oxide (Chrome
AAJ	Docks		Green)
AAK	Personnel	AEMC	Red Pigments
AAKA	Clothing	AEMCA	Ferric Oxide (Hematite)
AAKAA	Cotton Fibers (Cellulose)	AEMCB	Trilead Tetroxide (Red
AAKAB	Synthetic Fibers		Lead)
AAKAC	Wool Fibers	AEMD	Metallic Pigments
AAKAD	Noncloth Items	AEMDA	Aluminum Powder
AAKB	Troop Concentrations	AEME	Other Pigments (Color
AAKC	Skin		Unknown)
AAKCA	Asiatic	AEMEA	Mica
	Caucasian	AEMEB	Aluminum Silicate
AAKCB AAKCC		AEMF	Mediums, Thinners, Driers
AAL	Negro Vehicles	AEMFA	Resin
AALA	Aircraft	AEMFAA	Oleo
AALB	Armored	AEMFAB	Alkyd
	Convoys	AEMFB	Ester
AALC	Earth-Moving	AEMFC	Xylene
AALD	Tanks	AEMG	Primer
AALE	Trucks	AEN	Paper/Cardboard
AALF		AEO	Plastic
AB	Marine	AEP	Rubber
ABA	Submarine		
ABB	Surface Vessels	AEQ	Tar Tile
ABBA	Farges	AER	
ABBB	Landing Craft	AES	Varnish Wood
AC	Camouflage	AET	Wood
AD	Decoys	AF	Radiation Control
*Not being	used in the present system.	AFA	Antireflection Coating
1.00 501118	Angust	1968	

TABLE I. TARGET SIGNATURE SUBJECT-CODE LIST (Continued)

			•
AFB	Shielding	BCF	Overcast
AFC	Temperature Control	BD	Season
AG	Signatures	BDA	Summer
AH	Geometric Shapes	BDB	Fall
AHA	Flat Plates	BDC	Winter
AHB	Dihedrals (Concave,	BDD	Spring
AHC	Trihedrals (Concave)	BE	Terrain Uniformity
AHD	Spheres and Spheroids	BEA	Flat
AHE	Cylindrical Shapes	BEB	Rolling
AHF	Conical Shapes	BEC	Hilly
AHG	Wedges	BED	Mountainous
АНН	Dipoles	BEE*	Rural
AHI	Rayleigh Scatters	BEF*	Urban
AHJ	Other	BF	Soil
AI	Contaminants	BFA*	Cultivated
AIA	Corrosion	BFB*	Uncultivated
AIB	Dew	BFC	Coarse Textured
AIC	Dirt	BFCA	Sand
AID	Dust	BFCB	Loamy Sand
AIE	Oxide	BFD	Moderately Coarse Textured
AIF	Rust	BFDA	Sandy Loam
AIG	None Visible	BFDB	Fine Sandy Loam
		BFE	Medium Textured
_		BFEA	Loam
В	BACKGROUNDS	BFEB	Silt Loam
BA	Atmosphere	BFEC	Silt
BAA	Constituents	BFF	Moderately Fine Textured
BAAA	Aerosols	BFFA	•
BAAB	Dust		Clay Loam
BAAC	Fog	b:FB	Sandy Clay Loam
BAAD	Gases	BFFC	Silty Clay Loam Fine Textured
BAAE	Haze	BFG	
BAAF	Rain	BFGA	Sandy Clay
BAAG	Smog	BFGB	Silty Clay Clay
BAAH	Smoke	BFGC BFH	Other Constituents
BAAI	Snow		
BAAJ	Spray	BFHA BFHB	Organic Material Gravel (Less Than 3-in.
BAAK	Water Vapor	Drnb	•
BAB	Sky	BFHC	Diameter) Cobbles (3- to 10-in.
BB	Clouds	Brite	· ·
BBA	Cumulorimbus	BFHD	Diameter)
BBB	Cirrus	Briid	Stones (Greater Than
BBC	Cirrocumulus	DEUD	10-in. Diameter)
BBD	Cirrostratus	BFHE	Bedrock
BBE	Altocumulus	BFHF	Salt
BBF	Altostratus	BFI	Series
BBG	Cumulus	BFIA	Aguan
BBH	Nimbostratus	BFIB	Aiken
BBI	Stratocumulus	BFIC	Akron
BC	Light Conditions	BFID	Alamance
BCA	Day	BFIE	Albion
BCB	Sunrise or Sunset	BFIF	Alonso
BCC	Twilight	BFIG	Barnes
BCD	Night	BFIH	Blakely
BCE	Clear	BFII	Clareville

^{*}Not being used in the present system.

TABLE I. TARGET SIGNATURE SUBJECT-CODE LIST (Cont. nued)

THE PROPERTY OF THE PROPERTY O

BFIJ	Olo mi am	DODA	
BFIK	Clarion	BGBAA	Sphagnum Moss
	Collington	BGC	Vascular
BFIL	Colts Neck	BGCA	Banana Family
BFIM	Decatur	BGCAA	Banana
BFIN	Dublin	BGCB	Bromeliaceae Family
BFIO	Gooch	BGCBA	Bunch Grass
BFIP	Grady	BGCC	Buckwheat Family
BFIQ	Greenville	BGCCA	Buckwheat
BFIR	Guthrie	BGCD	Composite Family
BFIS	Hainamanu		(cf. Ligneous)
BFIT	Hall	BGCDA	Daisy
BFIU	Hamakua	BGCDB	Goldenrod
BFIV	Herradura	BGCDC	Ragweed
BFIW	Joplin	BGCDD	Sunflower
BFIX	Marias	BGCE	Convolvulus Family
BFIY	Marshall	BGCEA	Sweet Potato
BFIZ	Matanzas	BGCF	Crowfoot Family
BFJ	Series (Continued)	BGCFA	Crowfoot
BFJA	Maury	BGCG	Duckweed Family
BFJB	Moaula	BGCGA	Duckweed
BFJC	Naa lehu	BGCH	Evening-Primrose Family
BFJD	Onomea	BGCHA	Willow Herb
BFJE	Ookala	2001	(cf. Willow Family)
BFJF	Orangeburg	BGCI	Fein Family
BFJG	Oriente	BGCIA	Bracken Fern
BFJH	Orman	BGCJ	Flax Family
BFJI	Pallman	BGCJA	Flax
BFJJ	Penn	BGCK	Goosefoot Family
BFJK	Pierre	BGCKA	Pigweed
BFJL	Putnam	BGCKB	Sugar Beet
BFJM	Quibdo	BGCL	Gourd Family
BFJN	Rubicon	BGCLA	Squash
BFJO	Ruston	BGCLA	Grass Family
BFJP	Santa Barbara	BGCMA	Barley
BFJQ	Texas Dune	BGCMB	Bermuda Grass
BFJR	Tifton	BGCMC	Corn
BFJS	Tillman	BGCMD	Creeping Grass
BFJT	Tilsit	BGCME	Fescue
BFJU	Vernon	BGCMF	Foxtail
BFJV	Weld	BGCMG	Ilyas
BFJW	Windthorst	BGCMH	Millet
	Yolo	BGCMI	Oats
BFJX	Zanesville	BGCMJ	Reeds
BFJY BFK	Minerals	BGCMK	Rice
BFL	Chemicals	BGCML	
BFM	Moisture Content	BGCMM	Rye Selin
		BGCMN	
BFMA	Dry		Timothy Voteb
BFMB	Damp	BGCMO	Vetch Wheat
BFMC	Saturated	BGCMP	
BG BCA	Vegetation	BGCN	Heath Family (see also
BGA BCAA	Herbaceous, Algae Fungi	PCCN14	Ligneous)
BGAA	Cladoniaceae Family	BGCNA	European Blueberry
BGAAA	Reindeer Moss	BGCNB	Heather
BGB	Moss-Liverwort	BGCO	Mallow Family
BGBA	Sphagnum Family	BGCOA	Cotton

TABLE I. TARGET SIGNATURE SUBJECT-CODE LIST (Continued)

DOOD	M. shoul Pourle	DCDI C	Hazelnut
BGCP	Mustard Family	BGDLC	Hornbeam
BGCPA	Cabbage	BGDLD	Ironwood (cf. Ebony
BGCPB	Mustard	BGDLE	Family)
BGCQ	Nightshade Family	2011	Heath Family (cf. Herba-
BGCQA	Potatoes	BGDM	ceous)
BGCQB	Tomatoes		Mountain Laurel
BGCR	Pea (or Pulse) Family	BGDMA	
	(see also Ligneous)	BGDN	Holly Family
BGCRA	Alfalfa	BG DNA	Holly
BGCRB	Clover	BGDO	Honeysuckle Family
BGCRC	Coffee Plant	BDGOA	Viburnum
BGCRD	Lentil	BGDP	Laurel Family
BGCRE	Lima Bean	BGDPA	Laurel
BGCRF	Pea	BGDPB	Sassafrass
BGCRG	Peanut	BGDQ	Lily Family
BGCRH	Soybean	BGDQA	Yucca
BGCRI	String Bean	BGDR	Linden Family
BGCS	Plantain Family	BGDRA	Basswood
BGCSA	Plantain	BGDRB	Linden
BGCT	Sedge Family	BGDS	Logania Family
BGCTA	Cotton Grass	BGDSA	Privet (Ligustrum)
BGCTB	Sedge	BGDT	Magnolia Family
BGD	Ligneous	BGDTA	Magnolia
BGDA	Arecaceae Family	BGDTB	Tulip
BGDAA	Areca Palm	BGDTC	Tulip Poplar
BGDB	Beech Family	BGDU	Maple Family
BGDBA	Beech	BGDUA	Maple
BGDBB	Chestnut	BGDV	Mulberry Family
BGDBC	Oak	BGDVA	Rubber
BGDC	Bignonia Family	BGDW	Olive Family
BGDCA	Catalpa	BGDWA	Ash
BGDD	Calycanthaceae Family	BGDX	Pine Family
BGDDA	Meratia Praecox	BGDXA	Cedar
BGDE	Carduacea Family	BGDXB	Fir
	Rabbit Brush	BGDXC	Juniper
BGDEA	Cashew Family	BGDXD	Larch
BGDF	Chinese Pistachio	BGDXE	Pine
BGDFA	Sumach	BGDXF	Spruce
BGDFB	Composite Family	BGDY	Plane-Tree Family
BGDG	(cf. Herbaceous)	BGDYA	Sycamore
22221		BGDZ	Pea Family (cf. Herbaceous)
BGDGA	Sagebrush Wormwood	BGDZA	Locust
BGDGB		EGE	Ligneous (Continued)
BGDH	Dogwood Family	BGEA	Rose Family
BGDHA	Dogwood	BGEAA	Blackberry
BGDI	Ebony Family		Cherry
BGDIA	Ironwood (cf. Hazel	BGEAB	Hawthorn
	Family)	BGEAC	Juneberry
BGDIB	Persimmon	BGEAD	Peach
BGDJ	Elm Family	BGEAE	
BGDJA	Elm	BGEAF	Pin Cherry
BGDK	Figwort Family	BGEAG	Plum
BGDKA	Paulowina	BGEB	Sour Gum Family
BGDL	Hazel Family	BGEBA	Gum
BGDLA	Alder	BGEC	Trumpet-Creeper Family
BGDLB	Birch	BGECA	Calabash
	Á	4.4000	

in the second of the second of

TABLE I. TARGET SIGNATURE SUBJECT-CODE LIST (Continued)

BGED	Vine Family	BJCD	Pasture or Grain	6
BGEDA	Virginia Creeper	BJCE	Rice Paddy	•
BGEE	Walnut Family	200_	24200 - 4444	
BGEEA	Hickory	C	EQUIPMENT	
BGEF	Willow Family	CA	Radar	
BGEFA	Aspen	CAA	Coherent	
BGEFB	Poplar	CAB	Noncoherent	
BGEFC	Willow (cf. Evening	CAC	Pulse	
	Primrose Family)	CAD	CW	
BGEFCA	Dwarf	CAE	MTI	
BGEFCB	Ground	CAF	Resolution Limited by Antenna	
BGEG	Witch Hazel Family	CAG	Synthetic Aperture	
BGEGA	Sweet Gum	CB	Radiometer	
BGF	Leaf	CBA	Optical (Wavelength Less	
BGFA	Narrow	ODII	Than 1000 μ)	
BGFB	Broad	CBB	Microwave (Wavelength	
BGFBA	Coriaceous (Leathery)	CDD	Greater Than or Equal	
BGFBB	Membranous		to 1000 μ)	
BGFBC	Lower Leaf Surface	CBBA	Unmodulated	
BGFBD	Upper Leaf Surface	CBBB	Post-Detection Modulated	
BGFC	Young (Spring)	CBBC	Signal Modulated	
BGFD	Mature (Summer)	CBBD	Cross Correlated	
BGFE	Old (Fall)	CBBE	Two-Channel Subtraction	
BGFF	Dry	CC	Spectrograph	
BGG	Bark	CCA	Eastman Kodak	
BGH	Twig	CD	Spectrometer	
ВН	Water	CDA	Beckman	á
ВНА	Formations	CDAA	Model DU	1
ВНАА	Lake	CDAB	Model DK-1	
BHAB	Puddle	CDAC	Model DK-2	
BHAC	River	CDAD	Microspec	
BHAD	Sea	CDB	General Electric	
BHB	State	CDC	Perkin-Elmer	
BHBA	Ice	CDCA	Model 12	
BHBB	Ice and Liquid	CDCB	Model 21	
BHBC	Liquid	CDD	Interference	
BHBD	Snow	CDE	Cary	
BI	Climate	CDEA	Model 14	
BJ	Composite Backgrounds	CDEB	Model 90	
BJA BJAA	Urban	CE	Platform	
BJAA BJAB	Villages	CEA	Aircraft	
	Towns	CEB	Balloon	
BJAC	Cities	CEC	Ground	
BJB	Rural - Uncultivated	CED	Laboratory	
BJBA BJBB	Jungle Forest	CEE	Shipborne	
BJBC	Grassplains	CF	Optical	
BJBD	Marsh	CFA	Ultraviolet	
BJBE	Marsh Tundra	CFB	Visible	
BJBF	Desert	CFC	Infrared	
BJC	Rural-Cultivated	CFD	Active	
BJCA	Orchard	CFE	Passive	
	Bushes and Shrubs	CG	Detectors	
BJCB		СН	Filters	á
BJCC	Plowed Fields	CI	Image Tubes	
		CJ	Materials	
	Augus	st 1968		

TABLE I. TARGET SIGNATURE SUBJECT-CODE LIST (Continued)

				•
•	CJA	Reflectance Standards (Optica	1) DDBB	Elliptic
4	CJAA	Magnesium Oxide	DDBBA	Right
	CJAAA	Smoked	DDBBB	Left
	CJAAB	Pressed	DDBC	Linear
	CJAB	Magnesium Carbonate	DDBCA	Perpendicular
	CJAC	Suphur	DDBCB	Parallel
	CJAD	Aluminum	DDBD	Random
	CJADA	Mirror	DE	Refraction
	CJADB	Sandblasted	DF	Reflectance
	CJAE	Sapphire Felt	DFA	Directional
	CJAF	Other Specular Standards	DFAA	Specular Included
•	CJAG	Other Diffuse Standards	DFAB	Specular Not Included
	CJB	Reflectance Standards (35)	DFB	Specular
	CJBA	Reflectance Standards (Microw Metallic Sphere	aveDFC	Standard
1	CJBB	Lunchova Besterd	DFCA	Baryte
	CJBC	Luneberg Reflector Corner Reflector	DFCB	Flowers of Sulfur
	CK	Evaluation Evaluation	DFCC	Gypsum
	CKA	Noise	DFCD	Magnesium Carbonate
	CL		DFCE	Magnesium Oxide
	CLA	Reflectometer (Bidirectional)	DFCF	Paper
	CLB	EGR PGR	DFCG	Rhodium Mirror
	CM		DFCH	Aluminum Mirror
		Polarinieter	DFD	Bidirectional
			DFE	Total (Albedo)
	D	RADIATION	DFF	Absolute
	DA	Pattern	DG	Scintillation
- Park	DAA		DH	Solar Influence
3	DAB	Aspect Dependence	DI	Transmittance
A42	DAC	Optical Cross Section	DIA	Directional
	DACA	Radar Cross Section (o)	DIB	Bidirectional
	DB	Normalized (σ_0)	DJ	Emission Emission
	DBA	Attenuation	DJA	
	DBB	Absorption	DJB	Atmosphere
	DBBA	Scatter	DJC	Emissivity Emittance
	DC	Backscatter Coefficient (p)	DJD	
	DD	Modulation	DJE	Blackbody
	DDA	Polarization	DJF	Greybody
	DDAA	Radar	DJG	Fluorescence Thermal
	DDAAA	Circular	DK	
*	DDAAB	Right	DKA	Artificial Sources Arc
	DDARB	Left	DKB	
	DDABA	Elliptic	DKC	Beacon Flame
_	DDABA	Right	DKD	Flame Flare
•	DDAG	Left	DKE	Gas
	DDACA	Linear	DKF	
	DDACA	Horizontal or Perpen-	DKG	Gas Discharge
	DDAGE	dicular	DKH	Globar
	DDACB	Vertical or Parallel	DKI	Incandescent Lamp
	DDACC	Oblique	DKJ	Maser, Laser, Iraser, Uvaser
	DDACCA	Cross-Polarized	DKK	Mantle
	DDACCB	Parallel-Polarized	DKL	Nernst Glower
	DDAD	Random	DKM	Nuclear Explosion
	DDB	Optical	DKN	Oscillator
	DDBA	Circular	DKO	Shock Tube
	DDBAA	Tht	DKP	Spark
	DDBAB	7 -61	DKP DKQ	Vapor Lamp
			_	Monochromator
		August 1	968	

TABLE I. TARGET SIGNATURE SUBJECT-CODE LIST (Continued)

DI	National Common			
DL DLA	Natural Sources	ECCJ	1.9- μ band	
	Aurora	ECCK	$2.2-\mu$ band	
DLB	Airglow	ECCL	$2.7-\mu$ band	
DLC	Lightning	ECCM	$4.3-\mu$ band	
DLD	Lunar	ECCN	$6.3-\mu$ band	
DLE	Planetary	ECCO	$9.6 - \mu$ band	
DLF	Solar	ECCP	Other	
DLG	Stellar	ECD	Line	
DLH	Zodiacal Light	ED	Radio Frequency	
DLI	Sky	EDA		
DM	Flux	EDAN	EHF (30 to 300 GHz)	
DN	Radiance	EDAN	V Band (46 to 56 GHz)	
DO	Coherence		Q Band (36 to 46 GHz)	
DP	Diffraction	EDAT	Upper Ka Band (30 to	
DQ	Apparent Temperature	77.5	36 GHz)	
DQA	Antenna	EDB	SHF (3 to 30 GHz)	
DQB	Target	EDBF	Lower Ka Band (20.9 to	
DQC	Contrast		30 GHz)	
-40	O O I I I I I I I I I I I I I I I I I I	EDBJ	K _u Band (10.9 to 20.9 GHz)	
E	SPECTRA	EDBM	X Band (5.2 to 10.9 GHz)	
EA	Gamma Rays	EDBP	Upper S Band (3.0 to	
EB	• • • • • • • • • • • • • • • • • • •		5.2 GHz)	
EC	X-Rays	EDC	UHF (0.3 to 3 GHz)	
ECA	Optical	EDCE	Lower S Band (1.55 to	
	Ultraviolet		3.0 GHz)	
ECAA	Less than 0.1 μ	EDCH	L Band (0.39 to 1.55 GHz)	
ECAB	0.1 to 0.2 μ	EDCK	P Band (2.25 to 3.90 GHz)	
ECAC	0.2 to 0.3 μ	EDD	VHF (30 to 300 MHz)	
ECAD	0.3 to 0.4 μ	EDE	HF (3 to 30 MHz)	
ECB	Visible (0.4 to 0.7 μ)	EDF	MF (0.3 to 3 MHz)	
ECBA	Chromaticity	EDG	LF (30 to 300 kHz)	
ECBB	Color	EDH	VLF (3 to 30 kHz)	
ECBBA	Blue		VEI (0 to 00 MIZ)	
ECBBB	Green	F	ODE DA TIONE	
ECBBC	Yellow	FA	OPERATIONS Detection	
ECBBD	Orange		Detection	
ECBBE	Red	FB	Discrimination	
ECBBF	Brown	FC	Reconnaissance	
ECBBG	Field Drab	FD	Surveillance	
ECBBH	Khaki	FE	Imaging	
ECBBI	Olive Drab	FEA	Photography	
ECBBJ	White	FEB	Scanning	
ECBBK	Grey	FEC	Contrast	
ECBBL	Black	FED	Resolution	
ECC	Infrared	FEE	Display	
ECCA	0.7 to 1.5 μ	FF	Filtering	
ECCB	1.5 to 3.0 μ	FFA	Spatial	
ECCC	3 to 5 μ	FFB	Spectral	
ECCD	5 to 8 μ	FG	Measurement	
ECCE		FGA	Temperature	
ECCF	8 to 15 μ	FGB	Time	
	15 to 50 μ	FGC	Position	
ECCH	50 to 100 μ	FGD	Range	
ECCH	100 to 1000 μ	FGE	Angle	•
ECCI	1.4- μ band	FGF	Velocity	,
		August 1968	· oxoury	
		rauguat 1000		

TABLE I. TARGET SIGNATURE SUBJECT-CODE LIST (Concluded)

FGG	Acceleration	GE	One-Dimensional
FH	Calibration	GF	Two-Dimensional
FI	Homing	GG	Linear
FJ	Pattern Recognition		
		H	ACOUSTICS
G	ANALYSIS	HA	Attenuation
GA	Mathematical	HAA	Absorption
GAA	Model	HAB	Scatter
GB	Statistical	HABA	Backscatter Coefficient
GBA	Distribution	HB	Modulation
GBAA	Gaussian	HC	Refraction
GBB	Process	HD	Reflectance
GBBA	Ergodic	HE	Transmission
GBBB	Stationary	HF	Emission
GBBC	Nonstationary	HG	Artificial Sources
GC	Information Processing	нн	Natural Sources
GCA	Digital	HI	Flux
GD	Correlation	HJ	Diffraction
GDA	Auto-	HK	Frequency Spectrum
GDB	Cross-	HL	Correlation

2 DISCUSSION OF REFLECTANCE MEASUREMENTS

2.1. THEORY

The purpose of this section is to enable the user of this data compilation to consider the data in a proper perspective. The "reflectance" alone, for example, does not sufficiently describe the results of an experiment, as will become obvious in this section. One must have knowledge of the measuring instrument's characteristics, since they have measurable effect on interpretation of the output. Some important instrument parameters include spectral resolution, the solid angle of effective viewing, and characteristics of the radiation source.

Our present understanding of radiation theory does not permit an analytical description, in closed form, of the exact relationship between the radiation emitted by a source (whether natural or artificial) and the radiation received by a remote sensor after this radiation has been reflected by an object under surveillance. There are well known laws to describe the simple case of an electromagnetic wave incident upon a perfectly planar interface between two media. In this case, the reflected wave depends upon the radiation wavelength, the angle of incidence, and the physical properties (permittivity, permeability, and conductivity) of the two adjoining media. The laws governing such a case are sufficiently understood so that the refractive index and extinction coefficient of materials involved may be found by determining the reflection coefficients of the materials. For the more complicated case involving a surface with periodic or random surface irregularities, and analytic determination of the properties of the reflected electromagnetic field may only be approximated.

In the past ten years many papers have been published on scattering, or reflection from rough surfaces. Many theories have been developed, but none is both general and rigorous at the same time. To perform reasonably simple numerical calculations on the basis of these theories, certain simplifying assumptions are introduced, usually including one or more of the following:

- (1) The dimensions of scattering elements of the rough surface are either much smaller or much greater than the wavelength of the incident radiation.
- (2) The radii of curvature of the scattering elements are much greater than the wavelength of the incident radiation.
- (3) Shadowing or obscuration effects occurring at the surface may be neglected.
- (4) Only the far field is to be considered.
- (5) Multiple reflections may be neglected.
- (6) Consideration is restricted to a particular model of surface roughness (e.g., sawtooth, sinusoidal protrusions of definite shape and in random position, with random variations in height given by their statistical distribution and correlation function).

Electromagnetic scattering theory has been used in the past to compute radiation backscatter from targets in the microwave region of the spectrum, where the radiation wavelength is much greater than the minute irregularities of the target surface and where the conductivity of the target material is infinite. In the optical region, where materials have finite conductivity and the surface irregularities have a wide range in size relative to the radiation wavelength, present electromagnetic scattering theory is applicable to only a few special cases, so the only way to determine reflectance in this region for target and background objects is by experimentation.

One can arrive at the most general definition of reflectance ρ' (called bidirectional reflectance [4]* by considering an infinitesimal element of surface, dA, upon which radiation of infinitesimal solid angle $d\omega_i$ and radiance L_i is incident. Taking a coordinate system fixed with respect to dA, with polar angle θ' measured from the normal and azimuth angle ϕ' measured from a fixed line (see fig. 1), the contribution to the reflected radiance, $dL_r(\theta_r, \phi_r')$, in the reflected pencil for the direction (θ_r', ϕ_r') is

$$dL_{\mathbf{r}}(\theta_{\mathbf{r}}^{\prime}, \phi_{\mathbf{r}}^{\prime}) = \rho^{\prime}L_{\mathbf{i}}(\theta_{\mathbf{i}}^{\prime}, \phi_{\mathbf{i}}^{\prime}) \cos \theta_{\mathbf{i}}^{\prime} d\omega_{\mathbf{i}}^{\prime}$$
(1)

FIGURE 1. LOCAL COORDINATE SYSTEM FOR DETERMINING BIDIRECTIONAL REFLECTANCE

[&]quot;The definitions presented in this report conform to those proposed in reference 4.

August 1968

Generally, ρ' is a function of the incident and reflected directions (θ'_i , ϕ'_i and θ'_r , ϕ'_r respectively), the polarization (P), the wavelength (λ), and the optical parameters of the material on either side of the surface. Total radiance in a given reflected direction is obtained by integrating equation 1 over all incident directions, which yields

$$\mathbf{L}_{\mathbf{r}}(\theta_{\mathbf{r}}', \phi_{\mathbf{r}}') = \int \rho' \mathbf{L}_{\mathbf{i}}(\theta_{\mathbf{i}}', \phi_{\mathbf{i}}') \cos \theta_{\mathbf{i}}' d\omega_{\mathbf{i}}'$$
 (2)

Also, by Helmholtz's reciprocity theorem, if the directions of the incident and reflected pencils are interchanged, the bidirectional reflectance is unchanged, i.e.,

$$\rho'(\theta_1', \phi_1'; \theta_2', \phi_2'; P; \lambda) = \rho'(\theta_2', \phi_2'; \theta_1', \phi_1'; P; \lambda)$$
(3)

Since the optical constants of materials may change from point to point, bidirectional reflectance becomes a function of the location of dA. If it is then assumed that the surface can be described by z' = f(x', y'), the correct functional dependence for reflectance is

$$\rho'(\theta_i', \phi_i'; \theta_r', \phi_r'; P; \lambda; x', y', z')_{z'=f(x',y')}$$

Generally, the direction of the normal to dA is also a function of the location of dA on the surface of the object. Hence, even if the incident and reflected radiation have a constant direction with respect to the (x', y', z') coordinates, the angles (θ'_i, ϕ'_i) and (θ'_r, ϕ'_r) (taken with respect to the local normal) would be a function of location of the surface element dA. For convenience, a second, absolute coordinate system is usually introduced, viz., (x, y, z). The x-y plane of this system is coincident with the average value of z' = f(x', y') along the surface A, and is, therefore, the "average" plane of the reflector. The normal to this average plane is parallel to the z axis. Instead of referring the incident and reflected radiation to the local coordinates, they are then referred to the absolute system, with θ as the polar angle and ϕ as the azimuthal angle. The bidirectional reflectance with respect to this system is

$$\rho'(\theta_i, \phi_i; \theta_r, \phi_r; P; \lambda; x, y)$$

Another type of reflectance commonly considered is the directional reflectance $\rho_{\rm d}$ which is a function of only one direction, either the incident or reflected direction. In the case where reflected power is integrated over a hemisphere and incident power is from a specific direction, directional reflectance is denoted by $\rho_{\rm di}$. The incident power ${\rm d}\Phi_{\rm i}$ is

$$d\Phi_{i} = dL_{i}(\theta_{i}, \phi_{i}; P_{i}) \cos \theta_{i} d\omega_{i} dA$$
 (4)

and, using equation 2,

$$dL_{\mathbf{r}} = \rho' \frac{d\Phi_{\mathbf{i}}}{dA} \tag{5}$$

Since the reflected power $\mathrm{d}\Phi_{\mathbf{r}}$ is given by

$$d\Phi_{\mathbf{r}} = dA \int_{2\pi} dL_{\mathbf{r}} \cos \theta_{\mathbf{r}} d\omega_{\mathbf{r}} = d\Phi_{\mathbf{i}} \int_{2\pi} \rho' \cos \theta_{\mathbf{r}} d\omega_{\mathbf{r}}$$
 (6)

therefore,

$$\rho_{di}(\theta_i, \phi_i; P; \lambda; x, y) = \int_{2\pi} \rho' \cos \theta_r d\omega_r$$
 (7)

When dA is uniformly illuminated from all directions (L_i = constant), the corresponding directional reflectance, ρ_{dr} , is defined as the ratio of the radiance reflected in a given direction to the incident radiance. To proceed as previously,

$$\mathbf{L_r} = \int_{2\pi} \rho' \mathbf{L_i} \cos \theta_i d\omega_i = \mathbf{L_i} \int_{2\pi} \rho' \cos \theta_i d\omega_i$$

and, thus,

$$\rho_{\mathbf{dr}}(\theta_{\mathbf{r}}, \phi_{\mathbf{r}}; \mathbf{P}; \lambda; \mathbf{x}, \mathbf{y}) = \int_{2\pi} \rho' \cos \theta_{\mathbf{i}} d\omega_{\mathbf{i}}$$
 (8)

From comparison of equations 6 and 7,

$$\rho_{di}(\theta, \phi; P; \lambda; x, y) = \rho_{dr}(\theta, \phi; P; \lambda; x, y) = \rho_{d}$$
(9)

 ho_{d} is called directional reflectance.

2.2. INSTRUMENTATION

This section describes several types of instruments used to generate the optical data included in this compilation. An expression is derived for the "reflected quantity" measured by each type.

2.2.1. GENERAL ELECTRIC SPECTROPHOTOMETER. A schematic diagram of this measurement apparatus [5] is presented in figure 2. Monochromatic radiation from the source passes through a Nicol prism (N_1) and then through a Wollaston prism (W_1) oriented ω N_1 at an azimuth angle α . The prism W_1 converts the radiation into two linearly polarized beams, the polarization of one of which is perpendicular to that of the other. The beams then pass through a rapidly rotating Nicol prism (N_2) and into the integrating sphere where, with the same angle of incidence, one impinges on a reference and the other on the sample materials. A detector looks into the sphere in a direction perpendicular to the plane of the two incident beams. The integrating sphere is coated with a diffuse reflector (MgO), the reflectance of which is assumed independent of polarization.

If f is used to denote the frequency of rotation of N_2 and t the time, the subscripts 1 and 2 to distinguish the beams incident on reference and sample respectively, the symbols \perp and \parallel

FIGURE 2. SCHEMATIC DIAGRAM OF THE GENERAL ELECTRIC SPECTROPHOTOMETER

to represent the polarizations perpendicular to each other, and the superscripts i and r to represent incident and reflected radiation respectively, then the power at the detector (except for a factor dependent on the reflectance of the sphere) is

$$\Phi = \Phi_1^{\mathbf{r}} + \Phi_2^{\mathbf{r}} \tag{10}$$

The beams emerging from \boldsymbol{W}_1 are linearly polarized and their powers given by

$$\Phi_1' = \Phi_0 \sin^2 \alpha$$

$$\Phi_2' = \Phi_0 \cos^2 \alpha$$
(11)

where Φ_0 is the power from N₁. The prism N₂ passes that portion of the power polarized in a fixed direction, so that

$$\Phi_{1}^{i} = \Phi_{1}^{i} \sin^{2} (2\pi f t) = \Phi_{0} \sin^{2} \alpha \sin^{2} (2\pi f t)$$

$$\Phi_{2}^{i} = \Phi_{2}^{i} \cos^{2} (2\pi f t) = \Phi_{0} \cos^{2} \alpha \cos^{2} (2\pi f t)$$
(12)

If it is assumed that the directional reflectance of the reference, $\rho_{d,1}(\lambda)$, is independent of polarization,

$$\Phi_1^{\mathbf{r}} = \rho_{\mathbf{d},1}(\lambda)\Phi_1^{\mathbf{i}} = \rho_{\mathbf{d},1}(\lambda)\Phi_0 \sin^2 \alpha \sin^2 (2\pi f t)$$
 (13)

If the polarization symbols || and $\underline{|}$ are taken to refer to the polarization parallel to the directions in which beam 2 emerging from N_2 is maximum and minimum, respectively, then the power reflected from the sample is

$$\Phi_2^{\mathbf{r}} = \Phi_0 \cos^2 \alpha \cos^2 (2\pi f t) \left[\rho_{\mathbf{d},2}(||,\lambda) \cos^2 (2\pi f t) + \rho_{\mathbf{d},2}(||,\lambda) \sin^2 (2\pi f t) \right]$$
(14)

The power at the detector is then*

$$\Phi = \Phi_0 \Big\{ \rho_1 \sin^2 \alpha \sin^2 (2\pi f t) + \cos^2 \alpha \cos^2 (2\pi f t) \Big[\rho_2(||, \lambda) \cos^2 (2\pi f t) + \rho_2(||, \lambda) \sin^2 (2\pi f t) \Big] \Big\}$$
 (15)

Rearranging terms gives

$$\Phi = 1/2 \left\{ \rho_{1}(\lambda) \sin^{2} \alpha + \cos^{2} \alpha \left[\frac{3}{2} \rho^{2} (||, \lambda) + \frac{1}{2} \rho_{2}(\underline{|}, \lambda) \right] \right\}$$

$$- 1/2 \left[\rho_{1}(\lambda) \sin^{2} \alpha - \rho_{2}(||, \lambda) \cos^{2} \alpha \right] \cos (4\pi ft)$$

$$+ 1/8 \left[\rho_{2}(||, \lambda) - \rho_{2}(\underline{|}, \lambda) \right] \cos (8\pi ft) \cos^{2} \alpha$$
(16)

The a-c portion of the output from the detector, having a frequency of 2f, is fed to a motor which rotates N_1 so that it takes that position for which

$$\rho_1(\lambda) \sin^2 \alpha = \rho_2(||, \lambda) \cos^2 \alpha \tag{17}$$

A simple measurement of α allows $\rho_2(||, \lambda)$ to be computed from

$$\rho_2(||, \lambda) = \rho_1 \tan^2 \alpha \tag{18}$$

when the reflectance of the reference, $\rho_1(\lambda)$, is known. The directional reflectance ρ_2 is, of course, a function of the direction of incidence, and, therefore, the calculated value is correct only for that particular direction.

Since the incident beam is not infinitesimally narrow, it illuminates a finite, albeit small, area of the sample. Therefore, the computed directional reflectance of the sample is really the true reflectance averaged over the illuminated area,

$$\bar{\rho}_{2}(||, \lambda) = \frac{1}{A} \int_{A} \rho_{2}(||; \lambda; x, y) dx dy$$
 (19)

where A is the illuminated area of the sample, and sin illarly for ρ_1 . Hence, in terms of the reference $\overline{\rho}_1$, the reflectance of the sample is

$$\frac{\overline{\rho}_2(||,\lambda)}{\overline{\rho}_1(\lambda)} = \tan^2 \alpha$$

2.2.2. BECKMAN DK-2 SPECTROPHOTOMETER WITH REFLECTANCE ATTACHMENT. Figure 3 is an illustration of this measuring device. Monochromatic light is reflected from an oscillating plane mirror (M_1) alternately to one of two spherical mirrors $(M_2$ and $M_3)$. M_1 is

^{*}The subscript d has been dropped.

FIGURE 3. SCHEMATIC DIAGRAM OF THE BECKMAN SPECTROPHOTOMETER WITH REFLECTANCE ATTACHMENT

positioned in the focal planes of M_2 and M_3 . Thus, the radiation is reflected alternately, with little divergence, onto the reference and the sample at normal incidence. The detector compares the reflected power from the reference and sample and gives the ratio of the two.

Because the monochromator is a prism instrument, the radiation incident on M_1 is slightly polarized. More polarization results from reflection from the plane and spherical mirrors. Radiation entering the integrating sphere is probably elliptically polarized. If the subscripts 1 and 2 are used for quantities referring to the reference and sample respectively, and $\rho_{\bf d}({\bf P},\lambda,n)$ is taken to represent the directional reflectance at normal incidence, wavelength λ , and polarization ${\bf P}$, the reflected powers are

$$\Phi_{1}^{\mathbf{r}} = \rho_{\mathbf{d},1}(\lambda, \mathbf{n})\Phi_{0}$$

$$\Phi_{2}^{\mathbf{r}} = \rho_{\mathbf{d},2}(\mathbf{P}, \lambda, \mathbf{n})\Phi_{0}$$
(20)

where Φ_0 is the incident power of wavelength λ and polarization P. It is assumed that the reflectance of the reference is not polarization dependent.

Because the radiation is incident normal to the reflectors, that portion of the power which is specularly reflected will exit through the entrance ports undetected. If $\rho_{\rm S}({\rm P},\,\lambda,\,{\rm n})$ is taken as the specular reflectance for normal incidence, wavelength λ , and polarization P, then the specularly reflected powers are $\rho_{\rm S,1}(\lambda,\,{\rm n})\Phi_0$ and $\rho_{\rm S,2}({\rm P},\,\lambda,\,{\rm n})\Phi_0$ for the reference and sample respectively. If the incident radiation had no divergence and filled the whole entrance port,

none of the specularly reflected radiation would be detected. However, because of the divergence of the incident beam and the configuration of the equipment, only a fraction k of this radiation would be undetected. Therefore, the detected powers are

$$\begin{split} & \Phi_{1}^{\mathbf{r}} = [\rho_{d,1}(\lambda, n) - k\rho_{s,1}(\lambda, n)] \Phi_{0} \\ & \Phi_{2}^{\mathbf{r}} = [\rho_{d,2}(P, \lambda, n) - k\rho_{s,2}(P, \lambda, n)] \Phi_{0} \end{split} \tag{21}$$

The same value of k is used for both reference and sample because of symmetry. The value reported by the detector represents the ratio

$$\frac{\rho_{d,2}(P, \lambda, n) - k\rho_{s,2}(P, \lambda, n)}{\rho_{d,1}(\lambda, n) - k\rho_{s,1}(\lambda, n)} = \frac{\Phi_1^r}{\Phi_2^r}$$

Again, the indicated reflectances are averages over the illuminated areas.

2.2.3. COBLENTZ HEMISPHERE USED BY NEW YORK UNIVERSITY. This measurement apparatus uses a hemispherical specular reflector (see fig. 4) with the sample and detector located a small distance from and diametrically opposite to the center of the sphere. Through an entrance port, well collimated, monochromatic radiation becomes incident on the sample at a fixed angle. Because of imaging problems associated with the off-center location of the sample, the aperture of the detector should be larger than the sample to guarantee that most of the radiation reflected from the hemisphere is detected. With $L_i(\lambda; P_i; \theta_i, \phi_i)$ representing the radiance with wavelength λ and polarization P_i incident on the sample in the direction (θ_i, ϕ_i) , the radiance reflected by the sample, L_r , is

$$L_{\mathbf{r}}(\lambda; P_{\mathbf{r}}; \theta_{\mathbf{r}}, \phi_{\mathbf{r}}) = \rho'(\lambda; P_{\mathbf{i}}; \theta_{\mathbf{r}}, \phi_{\mathbf{r}}; \theta_{\mathbf{i}}, \phi_{\mathbf{i}}) L_{\mathbf{i}} \cos \theta_{\mathbf{i}} d\omega_{\mathbf{r}}$$
(22)

FIGURE 4. SCHEMATIC DIAGRAM OF THE COBLENTZ HEMISPHERICAL REFLECTANCE ATTACHMENT USED BY NEW YORK UNIVERSITY

where the subscript r designates reflected radiation and ρ' is the bidirectional reflectance for incident polarization P_i . Given the directions of incidence and reflection, P_i , and λ , P_r may be determined.

If it can be assumed that the distance from the sample to the center of the sphere is very small compared to the radius of the sphere and that the area being illuminated is small, then the reflected radiance is approximately normally incident on the sphere. For normal incidence, the reflectance of the sphere, $\rho_{\rm S}$, is independent of polarization of the incident radiation and depends only on its wavelength. The power Φ at the detector is, thus,

$$\Phi = \rho_{s}(\lambda) L_{i} \cos \theta_{i} d\omega_{i} A \int_{\omega_{r} = 2\pi} \rho'(\lambda; P_{i}; \theta_{r}, \phi_{r}; \theta_{i}, \phi_{i}) \cos \theta_{r} d\omega_{r}$$
(23)

where N_i is taken as uniform across the illuminated area A, ω_r as the solid angle for reflection from the sample, and ρ' as the bidirectional reflectance averaged over A. From the definition for ρ_d ,

$$\Phi = \mathbf{L}_{i} \cos \theta_{i} d\omega_{i} A \rho_{s}(\lambda) \rho_{d}(\lambda; \mathbf{P}_{i}; \theta_{i}, \phi_{i})$$
 (24)

By making two measurements, one with the sample and one with a reference having a directional reflectance $\rho_{\rm d,1}$ which is known,

$$\frac{\rho_{\mathbf{d}}(\lambda; \mathbf{P}_{\mathbf{i}}; \boldsymbol{\theta}_{\mathbf{i}}, \boldsymbol{\phi}_{\mathbf{i}})}{\rho_{\mathbf{d},\mathbf{1}}(\lambda; \mathbf{P}_{\mathbf{i}}; \boldsymbol{\theta}_{\mathbf{i}}, \boldsymbol{\phi}_{\mathbf{i}})} = \frac{\Phi}{\Phi_{\mathbf{1}}}$$
(25)

is obtained, where the power reflected from the reference and the reflectances are averaged over the illuminated areas.

Equation 24 represents the power incident in the plane of the detector. In reality, however, the acceptance angle of the detector, ω_d , is less than 2π , so the power received by the detector, Φ_{rec} , is given by

$$\Phi_{\rm rec} = (\omega_{\rm d}/2\pi)\Phi$$

At angles of grazing incidence in the plane of the detector, radiation is reflected by the detector and is strongly polarized. This radiation is reflected off the hemisphere and onto the sample. Therefore, there will be some error caused by multiple reflections, and these reflections will be more strongly polarized than the initial radiation from the monochromator.

2.2.4. PORTABLE SPECTROPHOTOMETER USED BY USAERDL. This instrument is shown in figure 5. White, unpolarized radiation from the source is reflected from a plane mirror (M₁) onto the sample. Radiation reflected from the sample is focused onto the detector aperture by a spherical mirror (M₂). The detector is located in the focal plane of M₂ and thus August 1968

FIGURE 5. SCHEMATIC DIAGRAM OF THE USAERDL PORTABLE SPECTROPHOTOMETER

receives only the radiation reflected normally from the sample. In practice, the detector is a monochromator, so only radiation at a particular wavelength λ is sensed. The source and M_1 can be moved about to give different angles of incidence on the sample. As a result of reflection from M_1 the radiance incident on the sample is probably partially polarized.

The spectral radiance incident on an area dA of the sample located at (x, y) is $L_i(\lambda; P; \theta_i, \phi_i; x, y)$, where P is the polarization for the incident direction (θ_i, ϕ_i) . For this particular configuration, (θ_i, ϕ_i) is determined by (x, y). The spectral power reflected normally $(\theta_r = 0^\circ)$ by each dA is $d\Phi$:

$$d\Phi = dAL_{i}(\lambda, P) \left[\int_{\Delta\omega_{i}} \rho'(\lambda; P; \theta_{i}, \phi_{i}; n; x, y) \cos \theta_{i} d\omega_{i} \right] d\omega_{r}$$
 (26)

where ρ' is the spectral bidirectional reflectance for radiation of polarization P which is incident from (θ_i, ϕ_i) on the area at (x, y) and reflected normally (indicated by the symbol n); $\Delta\omega_i$ is the solid angle of the source as seen from the sample, and it is assumed that L_i is constant* in each $\Delta\omega_i$. The total power Φ reflected normally by the sample (of area A) is

$$\Phi = \mathbf{L}_{\mathbf{i}}(\lambda, \mathbf{P}) \left[\int_{\mathbf{A}} \int_{\Delta \omega_{\mathbf{i}}} \rho^{\dagger}(\lambda; \mathbf{P}; \theta_{\mathbf{i}}, \phi_{\mathbf{i}}; \mathbf{n}; \mathbf{x}, \mathbf{y}) \cos \theta_{\mathbf{i}} d\omega_{\mathbf{i}} d\mathbf{A} \right] d\omega_{\mathbf{r}}$$
(27)

^{*}It has been assumed that $\Delta\omega_i$ is small enough so that a constant, meaningful polarization can be associated with the pencil of radiation.

For a reference with bidirectional reflectance $\rho_{\mathbf{r}}^*$ that is independent of position and polarization, the detected power Φ is

$$\Phi' = \mathbf{L}_{\mathbf{i}}(\lambda, \mathbf{P}) \mathbf{A} \left[\int_{\Delta \omega_{\mathbf{i}}} \rho_{\mathbf{r}}'(\lambda; \, \theta_{\mathbf{i}}, \, \phi_{\mathbf{i}}; \, \mathbf{n}) \cos \, \theta_{\mathbf{i}} \, d\omega_{\mathbf{i}} \right] d\omega_{\mathbf{r}}$$
 (28)

The ratio of the power detected from the sample to that from the reference is

$$\frac{\Phi}{\Phi'} = \frac{\int_{\Delta\omega_{i}} \overline{\rho'(\lambda; P; \theta_{i}, \phi_{i}; n) \cos \theta_{i} d\omega_{i}}}{\int_{\Delta\omega_{i}} \rho_{r}^{t}(\lambda; \theta_{i}, \phi_{i}; n) \cos \theta_{i} d\omega_{i}}$$
(29)

where $\overline{\rho}$ is the average of ρ' over the area A, i.e.,

$$\overline{\rho}' = \frac{1}{A} \int_{A} \rho' \, dA \tag{30}$$

()

With $\Delta\omega_i$ so small that quantities may be considered constant throughout it, equation 29 becomes

$$\frac{\overline{\rho}'(\lambda; P; \theta_i, \phi_i; n)}{\rho'_r(\lambda; \theta_i, \phi_i; n)} = \frac{\Phi}{\Phi'}$$
(31)

In practice, the beam incident on the sample in this case is divergent. Since reflectance for most objects exhibits angular dependence, and since a divergent beam represents a range of incidence angles, it intuitively appears that the divergence angle will affect the final reflectance value.

2.2.5. KRINOV'S FIELD MEASUREMENTS. The methods described in this section were used for field measurements with the sun and a clear sky as the radiation source. The measurement procedure varied depending upon whether the surface measured was horizontal or vertical. For horizontal surfaces, the detector was oriented in one of two positions: looking directly downward or looking downward at 45° to the vertical. To establish a reference system for further discussion, all azimuth values are relative to the sun which is defined to be at an azimuth of 180° ; angles are considered positive when measured clockwise from the zero-azimuth line. When looking downward, the detector was either moved back and forth along the $90^{\circ}-270^{\circ}$ line over a large area (cf. fig. 6a) or rotated 5° to 10° about a vertical axis coincident with its viewing direction (cf. fig. 6b). In the first case, when the detector was moved back and forth over a large area of the ground being observed, the instrument was always oriented normal to the ground. In effect, the measurement was bidirectional if it can be assumed that all the incident radiation emanates from the sun. Under this assumption, $\rho^{*}(\theta_{i}, \phi_{i}; \theta_{r}, \phi_{r}) = \rho^{*}(\theta_{sun}, 180; 0, 0)$. This measurement is integrated over the area of the ground observed. In the second case, the

(a) Horizontal surfaces: man walks over area A to be measured with the spectrograph; spectrograph is oriented normal to ground and looking downward for as much as 30 min.

(b) Horizontal surfaces: $\theta = 45^{\circ}$: $\phi = 270^{\circ}$: spectrograph rotated 10 to 20° in azimuth.

FIGURE 6. SCHEMATIC DIAGRAM OF MEASUREMENT CONFIGURATION USED BY KRINOV

spectrograph was mounted on a tripod and directed at the sample at an angle of 45° from the normal and an azimuth of 270° . The spectrograph was then rotated on the tripod through an azimuth of 10° to 20° . When measuring vertical surfaces, i.e., trees, cliffs, or walls, the spectrograph was directed horizontally or slightly upward at the surface and at azimuths of 45° or 315° , and the instrument was then also rotated through a small azimuth.

Because the incident radiation comes from the sun and clear sky, the incident spectral radiance is very dependent on angle and not quite unpolarized (particularly in the blue region of the spectrum): $L_i(\lambda; P_i; \theta_i, \phi_i)$, with (θ_i, ϕ_i) the direction of incidence and P_i the polarization. Also, the time of day, season, and atmospheric condition act as variables. $d\Phi_s$ is the spectral power reflected by a surface element dA and into the rather large solid angle ω_D which subtends the detector:

$$d\Phi_{\mathbf{S}}(\lambda) = dA \int_{\omega_{\mathbf{D}}} d\omega_{\mathbf{D}} \int_{\omega_{\mathbf{i}} = 2\pi} \rho'(\lambda; P_{\mathbf{i}}; \theta_{\mathbf{i}}, \phi_{\mathbf{i}}; \theta_{\mathbf{r}}, \phi_{\mathbf{r}}) L_{\mathbf{i}}(\lambda; P_{\mathbf{i}}; \theta_{\mathbf{i}}, \phi_{\mathbf{i}}) \cos \theta_{\mathbf{i}} d\omega_{\mathbf{i}}$$
(32)

where $(\theta_{\mathbf{r}}, \phi_{\mathbf{r}})$ is the direction of reflectance, $\omega_{\mathbf{i}}$ the solid angle of incidence, and ρ' the bidirectional reflectance. The recorder for this system is photographic film, hence the system records energy. Assuming the detector views an area A at any time and scans at a constant rate over a time T, and that $L_{\mathbf{i}}$ is independent of time, then the spectral energy reflected by the sample, $Q_{\mathbf{s}}(\lambda)$, is

$$Q_{s}(\lambda) = TA \int_{\omega_{D}} d\omega_{D} \int_{\omega_{i}=2\pi} \overline{\rho}'(\lambda; P_{i}; \theta_{i}, \phi_{i}; \theta_{r}, \phi_{r}) L_{i}(\lambda; P_{i}; \theta_{i}, \phi_{i}) \cos \theta_{i} d\omega_{i}$$
(33)

where $\overline{\rho}^{i}$ is ρ^{i} averaged over the scanned area A_{s} , i.e.,

$$\overline{\rho}' = \frac{1}{A_S} \int_{A_S} \rho' dA$$

The sample can be replaced by a reference the reflectance of which, $\rho_{\rm T}^*$ does not vary with position, and the film exposed for a time T without scanning. The reflected spectral energy $Q_{\rm R}(\lambda)$ is then

$$Q_{\mathbf{R}}(\lambda) = TA \int_{\omega_{\mathbf{D}}} d\omega_{\mathbf{D}} \int_{\omega_{\mathbf{i}} = 2\pi} \rho_{\mathbf{r}}^{\mathbf{i}}(\lambda; P_{\mathbf{i}}; \theta_{\mathbf{i}}, \phi_{\mathbf{i}}; \theta_{\mathbf{r}}, \phi_{\mathbf{r}}) L_{\mathbf{i}} \cos \theta_{\mathbf{i}} d\omega_{\mathbf{i}}$$
(34)

A comparison of $\boldsymbol{Q}_{_{\mathbf{S}}}(\lambda)$ and $\boldsymbol{Q}_{_{\mathbf{R}}}(\lambda)$ may then be made.

For a second case referred to above, the results are the same if A_s is set equal to A, since it may be assumed that A is imaged onto a small area of the film and the average of $Q_s(\lambda)$ over this small area is taken. With the detector pointed downwards at 45° to the vertical and at an azimuth of 90° or 225° the results are obtained as shown with appropriate changes in θ_r and ϕ_r . Similar equations may be derived for vertical surfaces.

2.2.6. HOHLRAUM REFLECTANCE ATTACHMENT. This interesting apparatus for determining spectral reflectance is shown in figure 7. It consists of a blackbody cavity with a

FIGURE 7. SCHEMATIC DIAGRAM OF THE HOHLRAUM REFLECTANCE ATTACHMENT

viewing port. The viewing port is small enough so that the radiation in the cavity closely approximates the blackbody case, and the portions of the inner wall visible through the port occupy only a small solid angle. The sample is water cooled and is oriented with its normal at an angle of 13° to the viewing direction. If dA is again taken to represent the area of the sample viewed and ρ ' to represent the bidirectional reflectance, the spectral power $\tilde{\Psi}_{r}$ reflected by the sample through the viewing port is

$$\Phi_{\mathbf{r}}(\lambda) = dA L_{\mathbf{r}}(\lambda) \cos (13^{0}) d\omega_{\mathbf{r}} = d \sum d\omega_{\mathbf{s}} L_{\mathbf{r}}(\lambda)$$
(35)

where $L_r(\lambda)$ is the reflected spectral raciance, $d\omega_r$ the solid angle subtended by the viewing port at the sample, $d\Sigma$ the area of the detector (considered small), and $d\omega_s$ the solid angle subtended by the sample at the detector ($d\omega_s$ is considered normal to $d\Sigma$).

$$\mathbf{L}_{\mathbf{r}}(\lambda) = \int_{\omega_{\mathbf{i}}} \rho'(\lambda; \, \mathcal{P}_{\mathbf{i}}; \, \theta_{\mathbf{i}}, \, \phi_{\mathbf{i}}; \, \theta_{\mathbf{r}}, \, \phi_{\mathbf{r}}) \, \mathbf{L}_{\mathbf{i}}(\lambda) \, \cos \, \theta_{\mathbf{i}} \, d\omega_{\mathbf{i}}$$
 (36)

where $L_i(\lambda)$ is the incident spectral radiance, (θ_i, ϕ_i) the incident direction, ω_i the angle subtended at the sample by the entrance to the sample holder, and P_i the polarization of the incident radiation. The incident radiation is blackbody type and hence unpolarized; furthermore, the incident spectral radiance is a constant. Therefore,

$$\Phi_{\mathbf{r}}(\lambda) = d\Sigma d\omega_{\mathbf{S}} \mathbf{L}_{\mathbf{i}}(\lambda) \int_{\omega_{\mathbf{i}}} \rho'(\lambda; \mathbf{P}_{\mathbf{i}}; \theta_{\mathbf{i}}, \phi_{\mathbf{i}}; 13^{\mathbf{0}}, \phi_{\mathbf{r}}) \cos \theta_{\mathbf{i}} d\omega_{\mathbf{i}}$$
(37)

Next, the detector is moved to view a flat area dA of the cavity wall far from the sample holder. The resulting spectral power, Φ_w , there is

$$\Phi_{\mathbf{w}}(\lambda) = dA d\omega_{\mathbf{w}} \mathbf{L}_{\mathbf{i}}(\lambda) \cos \theta_{\mathbf{w}} = d\Sigma d\omega_{\mathbf{s}} \mathbf{L}_{\mathbf{i}}(\lambda)$$
(38)

where $\theta_{\rm W}$ is the angle between the viewing direction and the normal to the wall, and ${\rm d}\omega_{\rm W}$ is the solid angle subtended by the viewing port at the area dA on the wall. The ratio of the spectral powers detected is

$$\frac{\Phi_{\mathbf{w}}(\lambda)}{\Phi_{\mathbf{s}}(\lambda)} = \int_{\omega_{\mathbf{i}}} \rho'(\lambda; \mathbf{P}_{\mathbf{i}}; \theta_{\mathbf{i}}, \phi_{\mathbf{i}}; 13^{0}, \phi_{\mathbf{r}}) \cos \theta_{\mathbf{i}} d\omega_{\mathbf{i}}$$
(39)

Hence, the detector can be interpreted as giving the spectral bidirectional reflectance for unpolarized light, integrated over the projected solid angle of the source (as seen by the sample). Since it was assumed that the detector viewed only a very small area, dA, of the sample, the August 1968

bidirectional reflectance appearing under the integral applies only to that area. In some instances, the sample has been placed at the wall of the Hohlraum cavity instead of further into the sample holder. The ratio of powers detected is then

$$\frac{\Phi_{\mathbf{w}}(\lambda)}{\Phi_{\mathbf{g}}(\lambda)} = \int_{\omega_{\mathbf{i}} = 2\pi} \rho'(\lambda; \ \mathbf{P_i}; \ \theta_{\mathbf{i}}, \ \phi_{\mathbf{i}}; \ 13^{\mathbf{0}}, \ \phi_{\mathbf{r}}) \cos \theta_{\mathbf{i}} d\omega_{\mathbf{i}} = \rho_{\mathbf{d}}(\lambda; \ \mathbf{P_i}; \ 13^{\mathbf{0}}, \ \phi_{\mathbf{r}})$$

Once again, the reflectance measured is an average over the illuminated area.

2.3. (U) APSOLUTE REFLECTANCE

As is apparent from the earlier discussion, the measurement of reflectance is usually made relative to an arbitrary standard, and it is presented in that manner in many cases in this compilation. To convert such data to absolute values requires knowledge of the absolute reflectance of the standard used. An absolute measurement is of the following form:

$$\rho_{\mathbf{d}}\left(\theta_{\mathbf{i}}, \phi_{\mathbf{i}}\right)_{\mathbf{abs}} = \frac{\mathbf{p}_{\mathbf{r}, \mathbf{x}}}{\mathbf{p}_{\mathbf{i}}} \tag{40}$$

where p_i is the power incident on the sample in the direction (θ_i, ϕ_i) , and $p_{r,x}$ is the power reflected into a hemisphere by the sample. On the other hand, a relative measurement has the form

$$\rho_{d}\left(\theta_{i}, \phi_{i}\right)_{rel} = \frac{p_{r,x}}{p_{r,st}}$$
(41)

where, again, $p_{r,x}$ is the power reflected into a hemisphere by the sample, while $p_{r,st}$ is the power reflected into a hemisphere by some reflectance standard.

If the absolute directional reflectance of the standard, $\rho_{d,st}(\theta_i, \phi_i)_{abs}$ is known, the absolute reflectance of the sample can be calculated:

$$\rho_{\mathbf{d}}\left(\theta_{\mathbf{i}}, \phi_{\mathbf{i}}\right)_{\mathbf{abs}} = \frac{\mathbf{p}_{\mathbf{r},\mathbf{st}}}{\mathbf{p}_{\mathbf{i}}}$$

or

$$p_{r,st} = \rho_{d,st} \left(\theta_i, \phi_i \right)_{abc} p_i$$
 (42)

Substituting equation 42 into equation 41 yields

$$\rho_{\mathbf{d}}\left(\theta_{i}, \phi_{i}\right)_{\mathbf{rel}} = \frac{\rho_{\mathbf{r}, \mathbf{x}}}{\rho_{\mathbf{d}, \mathbf{s}} \cdot \left(\theta_{i}, \phi_{i}\right)_{\mathbf{abs}} p_{i}}$$

$$\rho_{\mathbf{d}}\left(\theta_{i}, \phi_{i}\right)_{\mathbf{rel}} = \frac{\rho_{\mathbf{d}}\left(\theta_{i}, \phi_{i}\right)_{\mathbf{abs}}}{\rho_{\mathbf{d}, \mathbf{st}}\left(\theta_{i}, \phi_{i}\right)_{\mathbf{abs}}}$$

and, therefore,

$$\rho_{d}(\theta_{i}, \phi_{i})_{abs} = \rho_{d}(\theta_{i}, \phi_{i})_{rel} \rho_{d,st}(\theta_{i}, \phi_{i})_{abs}$$

Thus, to obtain absolute values of the reflectance of a sample, it is necessary to multiply the relative reflectance of the sample by the absolute reflectance of the standard as measured at the same wavelength, incidence angle, etc.

To facilitate these computations, recommended values for the absolute reflectance of three commonly used reflectance standards, MgO, BaSO₄, and MgCO₃, are presented in figures 8 through 10. The reader is cautioned that although these curves are considered to represent the best data currently available, they are nevertheless subject to the errors inherent in the instrumentation used. If highly accurate results are necessary, the references cited should be consulted for a description of the measurement techniques and error analyses associated with the data. Section 4.2 indicates which of the optical data are reported as absolute and which as relative. For the relative data, the reflectance standard has also been designated.

It should also be noted that even after corrections for the standard are applied to data in this compilation, the curves may or may not more truly represent absolute reflectance. This

FIGURE 8. ABSOLUTE REFLECTANCE OF SMOKED MgO [6, 7, 8]
August 1968

FIGURE 9. ABSOLUTE REFLECTANCE OF PRESSED ${
m Baso}_4$ [7]

FIGURE 10. ABSOLUTE REFLECTANCE OF PRESSED MgCO₃ [6]
August 1968

is because the reflectance of such standards may vary within a few percent on the basis of preparation techniques, thickness and age of the samples, their exposure to ultraviolet radiation, etc. Since very few of the experiments considered have indicated in their reports the absolute reflectance of the standard used or completely described its preparation, it is impossible to say that the absolute reflectance shown in figures 8 through 10 is identical to that of the standard used in a given experiment.

3 CUMULATIVE SUBJECT CROSS INDEX

Alcled	and the second s
Airfielde	Cloth AFD AFD 15
Alder	Burlap. AED, AEM 15 Canvas. AEE, AEM 70 Cotton AARA 1, 6, 14 28, 33, 35 Nylon AARA 6, 28-31, 37-57 Orlon AARA 31
Alfalfa	Cotton AAKA 1 6. 14 28 33 35
3133-45, 3133-52-3133-53	Nylon AAKA 6, 28-31, 37-57
3133-57. 3133-62-3133-65	Orlon AAKA 31
3133-57, 3133-62-3133-65 3133-67, 3133-77 3135-1	Nayon
Alayd	TaneAE 2
	Vinyl AAKA 6
Alumina	AEO 2-5
Aluminum	Wcol
Aluminum (substrate)	Clothing
Alloys	Clover
Aluminum Bronse	BGC 111.: 112
	Cobblestone
Aluminum Oride	Cocklebur
CJ 10	Coccost Palm
Apple	Coffee
BGD 225, 374	Colbalt AEL 23
Ash	Coleus
Aspen	Concrete
376, 382	AEG
Asphalt	3290-29, 3290-39
AAG S	3290-51 AFC 4
AEB .	125 1
AEK 1	Copper
3290-73290-29	Corn
Babalitan 180 2	Corn. 5
Bakelite	3133-62
Balsam Poplar	3133-62 3135-1
Berlus 2011 100 1	Cotton
Bark	CJ 12
	3133-56, 3133-57
Reselve	Cotton (Cloth)
Basalt	Cottomrood
Base 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	Cottomwood
Bounds Crise	Crops
3133-13	BE 14
Birch 3 2	3133
Birdsfoot Trefoil	3135
Blackberry	(see also specific crops, e.g.
Blacktop See Asphalt	corn, wheat, alfalfa, etc.)
Bracken Fern	Crow Foot
Bramble	
Brass c	Daisies
Brick	Desert
Bridges	Dieffenbachis
Browegrame	Diorite
Bronze	Dirt
Buckeye	AZH
3133-13 3133	AEM 54, 67
	3290-52, 3290 53
materials.)	Dogwood
Burdock	Dolerite
Burlap	Dracaena
AEH 15	BGC 2
Cabbage,	BGC 2
Cabbage	P1-
Calcius Carponate	Elm
Calcium Sulfate	Engmel
Camouflage	phaser
AED	Factories
ARE.	Fallow
Canvas	FallowBG 4 Farmland
AEN 70	Rural Terrain)
Carbon Black AEL 20	Felsite
BFL 1	Page 300 161
Lardboard AEN	Pescue
Catalpa	Pescue
Caucasism	Field
Cedar	BE 3, 4, 11-14
405	8G 3, 4
Cement	BGC 13,2, 15-28, 65, 68-70
AEG	113, 143
Ceremic AER 3	3133
Cherry	Fine Sandy Losm BFDB
Chart	Fine Sandy Loam
Chestmut BCD 320	Fir Board AET 3
Chinese Pistachio BGD 33	Fir Board AET 3 Flags (weeds)
Cherry BGD 226, 227, 230 Chert BFD 3, 5, 7, 8 Chastnut BGD 320 Chinese Pistachio BGD 33 Chlorphyll BGD 328, 329, 358 Chroms AEL 6	3133-26, 3133-27
Chrome AEL 6	Flagstone
Chromium AEL 1, 6, 39, 40 Cinder	Flax
Cinder	Pluorite
3290-48 3290-50	Foliage
3290-52 3290-53	FOXTALL
Cinder B.ock AEF 1 C_asy See Soil (Clay)	Cabban amm o
Clay Loca	Gabbro
LLEY LOUR DEFA	Galvanita

```
        Gelvanized Iron
        AEL 19

        Geranium
        BCD 303, 304, 312, 313

        Ginkgo Biloba.
        BCD 303

        Glass.
        CI

        Gold
        AEL 7

        41-44

                                                                                                                                                                                                                                                                                                                                                                                Steel (Hild) . AEL 5, 35, 39

Tantalum . AEL 47, 49

Titanium . AEA 6

AE: 3-5, 16-19, 32-34,
45, 35

Zinc . AEL 19

AEM 49, 50 66
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            AEL 19
AEM 49, 50 66
BFK 3
BGC 144
BCC 61
BFK
BCC 123
AEL 2, 8, 29, 30, 49, 50
BFHD 2
BG 2, 4
BGA 1
BGB 1, 2, 2
BCD 53-55
See Terrain (Mountainous)
AAG 3
BF 13, 14
BCD 353
BCD 364
BCD 104
AED 3
BCD 104
AED 3
BCD 104
AED 3
    filkweed
fillet
Hinerals
Hint
Hockernut
Hockernut
Holybdenum
Hoss
                                                                                                                                                                                                                BFRD 2, 4, 5, 7, 'J
   BFK 2

8G 4

BGC 9, 12-31, 35, 55, 56

54, 53, 143, 146-148

3133-1, 3133-44

AEK

BFHD

3290-1, 3290-6, 3290-26,

3290-29, 3290-40, 3290-43,

3290-48, 3290-51

See Buildings, Airfields,

Rosas, Bridges, Personnel,

Vehicles, Industrial Facilities
                                                                                                                                                                                                                BFK 2
                                                                                                                                                                                                                                                                                                                                                                Mulberry .
Mullein.
                                                                                                                                                                                                            BG 8
AEL 3
31, 32
BGD 227
BG 9 (Also see Straw)
BGD 51, 52
BGC 99
BGC 158, 159
BGD 232, 234
BGD 34
BGD 53
                                                                                                                                                                                                                                                                                                                                                                 Mustard
Mylar. . .
 . AAK 1, 3-7
. AEL 9, 10, 30, 31, 52, 53
. AAKA 6, 28-31, 37-57
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ART 1
BCD 7-29, 320-336
3134-4
384-400, 402
BCC 62-65
3133-56, 3133-71, 3133-75
3133-82
ARX 2, 6, 28-30
AE 2
ARD 3-5
AEE 1
AEM 13, 14, 16, 17, 78-82, 95-100
AEO 4, 5
CJ 13
BFHA
ARKA 3;
AEM ARKA 3;
A
                                                                                                                                                                                                                                                                                                                                                                Oats
                                                                                                                                                                                                                                                                                                                                                               AAK 3
BGD 228
BGD 125, 126, 358, 359
  Lacquer
Lake
Larch
Laurel
Lavel
Lentil
Lichens
Lilac
Lina Beans
Lissestone
                                                                                                                                                                                                              AEM 89
See Water
BGD 126, 127
AEM 15
BFHD 2
EGC 113
                                                                                                                                                                                                                                                                                                                                                                        ECC 113
BG 9
BCD 356, 357
BCC 113, 114
BFHA 1
BFHA 4, 7
BCD 69
AFM 52, 89
BFEA
BFCD BCD 233, 234
3131-53-3131-58
AAA 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             AEM 26-37, 82

ALF 1

AEM 86, 87

AEM 37, 100

AALF 1

AEM 12-25

AEM 2, 4, 63-65, 70

93, 94

AEM 9-12, 19-21

AEM 37-39, 82-86

AEM 49, 50

AEM 49, 50

AEM 13, 14, 16-17, 78-82, 95-100
  Linden.
Linseed 011
Loam .
Lozary Sand.
Locust.
Locust.
Locust.
Log.
Lucite.
                                                                                                                                                                                                                                                                                                                                                                        AAA 2
AEO 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            BGD 342, 343
AEL. 9, 29
CJ 8, 9
CJ 12
CJ 7, 14
BCD 70, 345
BCC 156, 157
BCD 72-106, 345-353
400, 402, 405
3136
3136-2-3136-3
See Field
BCD 233
                                                                                                                                                                                                                                                                                                                                                               Risin.

Silver
Stainless Steel.
Turquoise.
White.
Yellow
Zinc (Galvanite)
Zinc Oxide (Zinc White)
Palledium.
Palledium.
Palledium.
Palmetto
Paper.
Parachutes
Papeanutes
Paeanutes
Paear
Pabbles
BGD 233

APA 7.

AFA 7.

AFA 17.

AEL 21, 22

AEL 6

AEL 50, 52

AEL 6

AEL 1, 6, 39, 40

AEL 23

AEL 6, 20, 24, 46, 47

AEL 19

AEL 1, 25

AEL 2, 36, 45

AEL 1, 25

AEL 1, 15

AEL 11, 12, 46

AEL 12, 13, 37, 40

AEL 1, 13, 15, 20, 25, 28, 44, 45
```

August 1968

```
BE 1-3, 5-6, 9-10, 16

BFCA

ADM 67

3131-13131-30

(Also see Desert)

.AGC 11

BFDA

3133-29-3133-32-3133-39

3133-42-3733-44-3133-46

.BF 17

.BFEC

.BFCB

.BFCC

.BFC 9-12

.BCC 116-14

3133-59-3133-60-3133-77

3133-79

.BCB 1-2
                                                                                                                                                   . BGD 121-122
. AEQ 1
. BGC 142
. AED . AEL 10-11
. BG 7, 230-231
BGD 227, 374
. AAG 2
BFA 1-5
See Varer
Pinyon
Pitch:
Plentain
Plentaic
Platice
Platinum
Plum
BFA 1-5
See Water
BGD 262-288, 382-383
BFWH 9
BFK 1
BGC 104, 179-180
AER 2
AER 26, 37
BFK 3
                                                                                                                                                                                                                                                                                                       Shale.....
Silt .....
Silt Losm....
Silty Clay Losm.
                                                                                                                                                                                                                                                                                                                                                                                                                                         3133-59-3133-60-3133-77
3133-79
. BGB 1- 2
. BCD 95-196, 361, 406, 407
. BCC 8
. AEL 1, 13, 15, 20, 25, 28, 44, 45
. AEL 5
. 35-39
. BFHD
3290-44-3290-47
. AAA 1, 2
. BC 1
. BCC 65, 67, 99, 113
. See Water
. BCC 161, 142
. 3133-8-3133-11
. BCC 66, 7, 8
. CJ 9
. BGL 1
. BCD 33, 34
. BCC 1
. See Marsh
. BCC 2
. See Marsh
. BCC 5
. BCD 291-302, 374
. RCC 1
                                                                                                                                                                                                                                                                                                       . BFK 3 . BFHD 6, 11, 12
BCC 1
3135-7
AAKA D2, 34, 36
BCD 373
BCC 65
BCCA 1
3202
ARL 11-12
ARL 46
   Residential Area .
Rhodium. . . . .
                                                                                                                                                         ARL 11-12
ARL 46
BGC 66
See Water
AAA 1
AAG
(See also Pavement and specific road materials such as: asphalt, cinder, concrete, gravel, dirt, etc.)
ARK 1
BFED 1
AAAA 1, 2
ARR 1
AEF
                                                                                                                                                                                                                                                                                                      BGD 291-302, 374
BGC 1
                                                                                                                                                                                                                                                                                                        BGD 196-223
361-372, 407, 408
                                                                                                                                                         ARR A

AEP

BGD 106, 353-355

AAE 1

AE 2

AEL 5

BGC 66-67
                                                                                                                                                                                                                                                                                                                                                                                                                                                  AEL 47-49

AE 2

AE 2

AE 2

AE 2

AE 2

AE 2

See Ground Targets and specific types of targetn

AE 2

See specific materials such as /sphalt, Brick, Concrete, etc.

AE 1

BE BF 10-13

BE 2-7
                                                                                                                                                       , 3133-24-3133-25
                                                                                                                                                                                                                                                                                                 . BCD 35
. BE 7, 15
. BF 17
. BFK 2
. 3131-58
. See Soil (Sand)
. BFHD 5
. See Soil (Sandy Loem)
. AEM 52
. CJ 10-11
. BCD 55, 344
. AE 3
. AF 2
. BH 6
. 3123
. BH 2, 3
                                                                                                                                                           BGD 35
                                                                                                                                                                                                                                                                                                  Target Materials (Miscellaneous) . . .
                                                                                                                                                                                                                                                                                                  Filly.

Ice, Water, and Land

countains.
                                                                                                                                                                                                                                                                                                                                                                                                                                                       BE 2-7

BE 7-8

3154

BE 9-11

3137-2, 3137-7-313/-11

BE 12-14

3152

3303

BE 1. 8
                                                                                                                                                                                                                                                                                                3132
3303
BZ 1, 8
BH 9
3132-1
3134
3136-3
AFR
BCC 68-69-70
AZA 6
AEL 3-5, 16-19
32-34, 35, 45
CJ 11
BCC 104-105
AZM 67
BE 4
BCD 1, 2, 6, 22, 23, 196, 259
BC 1, 5
BCD 2, 106
AALF 1
AEL 1
BCD 10-71
                                                                                                                                                           3123
bH 2, 3
BGC 143
BGC 68
BF 17
AEM 90
AAA 1
BFEC
BFED 6, 8, 11
   Siltatone.
Silty Clay Loam.
Silty Clay L
                                                                                                                                                             BFEB
                                                                                                                                                                                                                                                                                                . BFFC . AEL 12-13, 37-40
                                                                                                                                                     . AAK 1,2, 4-5, 7

. AAK 3

. AAK 1, 3-7

. (P) BAB

. BH 7-14

3133-28-3133-47

3133-51

3290-37-3290-39

REY 1
                                                                                                                                                                                                                                                                                                BGD 70-71
BGD 71-72
   BGD 46
BGC 106-111, 180
3133-45, 3133-52, 3133-53,
3133-57, 3133-62, 3133-65
3133-67, 3133-77,
3135-1
BG 7 8
BGD 225, 374
BGD 107-121
3134-7
BGD 224, 225, 263
Wm 9, 12, 51, 71, 196
.75, 227, 229, 231, 233
£C 31-35
BGD 56-63, 345
BGD 26-6, 317-320
BGC 35
3133-13
                                                                                                                                                                                                                                                                                                BFGC
3131-31-3131-43
                                                                                                                                                          3131-31-3131-43
, BFFA
. BFA
. BFA 6-8
3131-44-3131-52
. AAG 1-3
AEH
AEM 54
. SFIDB
. SFIDD 2
           BFL
                                                                                                                                                           BFCB
3131-53-3131-53
BF
BFHA
BE 11
BFHD 1
```

The state of the s

"中国的数据的数人的数据中国"

```
Desisies.
Desisi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Willow
Wormwood
Yentak
Yucca
Vehicles
Vetch
Viburnam
Vinyl.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        BCD 232, 375

BGD 232, 375

BGD 232

BF 13

BH 86 2

BC 65

3136-2-3136-3

BE 2, 3

BC 3

BC 1

3133-12-3133-12

3133-26-3133-72

3133-68-3133-70

3133-68-3133-70

3133-68-3133-82

3135-1

BCD 289-290

A*2 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 220-336 | 3134 | 220 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 |
```

ONE STATE OF THE PERSON

4 Optical data

4.1. DATA FORMAT

FIRE SECTION OF THE PARTY OF TH

In order to transfer a data curve from a source document to the Target Signature Library, the curve is first semi-automatically digitized and keypunched on IBM cards. Great care is exercised to preserve all significant details of the original curve except those attributable to instrument noise. Data points are taken in such a way that the new curve formed by connecting the data points with straight lines will duplicate the original curve. In essence, this amounts to taking data points at all significant inflection points on the original curve, so that relatively few data points are required to describe a smooth curve, although many points may be required to describe a highly erratic curve. The keypunched cards are the mechanism for transferring the data to magnetic tape in the Target Signature Library and for printing out data curves in a standard format on a plotting machine. All curves presented in this report have been prepared by this process.

The header information above each curve in section 4.3 includes the curve's identification number, the curve's title, subject codes, and parameter information. The identification number consists of the internal control letter B and eight digits. The first five digits identify the document from which the data were taken. (Sections 4.2 and 7 list the documents by control letter and these five digits.) The last three digits of the identification number have been arbitrarily assigned by the Target Signature Analysis Center for retrieval and to identify a particular curve within a given source document. The subject code is a group of letters assigned to each curve to permit retrieval by subject. Each letter represents a specific descriptor, and each curve is assigned as many letters and as many codes as are required to describe it adequately. The Target Signature Subject-Code List (table I) explains these codes. As an example, a curve may be described as follows:

Object measured: loam (BFEA)

Instrumentation: General Electric spectrophotometer (CDB)

Experimental platform: Laboratory (CED)

Quantity measured: Directional reflectance with the specular component included in the

measurement (DFAA)

Reflectance standard: MgO (DFCE)

Spectral interval: 0.4 to 0.7 μ (ECB) and 0.7 to 1.5 (ECCA)

The conditions of the experiment, called parameter information, are also listed on the printed header in abbreviated form. This information is derived from the original source when possible. For many of the data, very few parameter entries appear because the source did not document all of the experimental parameters or because the same parameters are not applicable to all measurements, e.g., altitude and range are not parameters for laboratory measurements. Table II is the key for interpreting this parameter information.

The optical data in section 4.3 are arranged according to the subject code most descriptive of the object or sample measured. Since the Target Signature Subject-Code List contains a large number of specific types of target and background categories, it was necessary in some cases to group the data into somewhat broader categories. These are cross-indexed by subject in section 3.

TABLE II. OPTICAL DATA PARAMETERS Unclassified

DATE	Date of measurement (day month and year)		
TIME	Date of measurement (day, month, and year)		
	Time of measurement (24-hour clock)		
LAT	Latitude of measurement (field measurement) or of location at which specimen was collected (laboratory measurement)		
LONG	Longitude of measurement or of location at which specimen was collected, as with LAT		
ALT	Altitude of experimental platform (thousands of feet)		
RANGE	Slant range (thousands of feet)		
DAYS RE	Number of days sample had been removed from its natural environment		
IN*	Incidence angle (degrees from normal)		
IAZ*	Azimuth of incident radiation (degrees)		
CN**	Collection angle (degrees from normal)		
CAZ**	Azimuth of collection angle (degrees)		
IRR	Type of target irradiation coded as follows:		
	A Sun B Moon C Skylight (extended source) D Laser E Other artificial point sources		
OBST	Obstructions in the air that prevent a clear view of the target, coded as follows:		
Oper			
OBSI			
ТТЕМР	the target, coded as follows: A Smoke B Haze C Dust D Sand E Fog F Drizzle G Rain H Snow		
	the target, coded as follows: A Smoke B Haze C Dust D Sand E Fog F Drizzle G Rain H Snow I Hail		
TTEMP	the target, coded as follows: A Smoke B Haze C Dust D Sand E Fog F Drizzle G Rain H Snow I Hail Temperature of target or measured object (OK)		
TTEMP WIND SP	the target, coded as follows: A Smoke B Haze C Dust D Sand E Fog F Drizzle G Rain H Snow I Hail Temperature of target or measured object (OK) Average wind speed (mph)		
TTEMP WIND SP WIND DI	the target, coded as follows: A Smoke B Haze C Dust D Sand E Fog F Drizzle G Rain H Snow I Hail Temperature of target or measured object (OK) Average wind speed (mph) Wind direction		
TTEMP WIND SP WIND DI	the target, coded as follows: A Smoke B Haze C Dust D Sand E Fog F Drizzle G Rain H Snow I Hail Temperature of target or measured object (OK) Average wind speed (mph) Wind direction Total cloud cover coded as follows: A 0 to 0.1 B 0.2 to 0.5 C 0.6 to 0.8		
TTEMP WIND SP WIND DI CLD	the target, coded as follows: A Smoke B Haze C Dust D Sand E Fog F Drizzle G Rain H Snow I Hail Temperature of target or measured object (OK) Average wind speed (mph) Wind direction Total cloud cover coded as follows: A 0 to 0.1 B 0.2 to 0.5 C 0.6 to 0.8 D 0.9 to 1.0		

^{*}These angles are defined only if the major portion of radiation incident on the target comes from a point source, e.g., the sun (see fig. 11).

make up this curve

Number of curves or measurements averaged to

DEW PT N AVE

^{**}These angles are defined when the target is observed from one direction (see fig. 11).

FIGURE 11. GEOMETRY FOR SOME SPECIFIED OPTICAL DATA PARAMETERS

4.2. SUMMARY OF EXPERIMENTS YIELDING OPTICAL DATA

The documents from which the optical data have been extracted are briefly summarized below. These summaries are included to facilitate use of the data presented in section 4.3. Information on the experimental platform, instrumentation, reflectance standards (for relative data) and other related matters has been included, and additional references describing some of the instrumentation in greater detail are cited. As already indicated, the code consisting of the letter B and five digits at the beginning of each entry is the accessions number assigned to the document by the Target Signature Analysis Center. All curves extracted from the document carry this accessions number plus a number from 001 to 999, which is an arbitrary designation assigned to specific curves. The two numbers together constitute a curve's identification number. Bibliographical information on each of the documents summarized here is included in order of accessions numbers in section 7, and the user is referred to the original source if more detailed information is required.

B-00829

Platform: laboratory

Instrument: USAERDL spectrophotometer (original design)

Quantity measured: $\rho_{
m d}$

Wavelength range: 0.9 to 2.7 μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO

Comments: This instrument is no longer in operation. Basically, it consisted of a

Gaertner monochromator coupled with an integrating sphere.

B-00836

Platform: laboratory

Instrument 1: Beckman DU spectrophotometer

Quantity measured: ρ_{d}

Wavelength range: 0.4 to 1.2μ

Reflectance attachment: ellipsoidal mirror that collects radiation diffusely re-

flected from the sample

Reflectance standard: MgO Additional reference: 9

Instrument 2: USAERDL spectrophotometer (original design)

Quantity measured: ρ_d

Wavelength range: 0.9 to 2.7 μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO

Comments: This instrument is no longer in operation. Basically, it consisted of a

Gaertner monochromator coupled with an integrating sphere.

B-01035

Platform: airborne

Instrument: Perkin-Elmer 108 rapid-scan spectrometer

Quantity measured: α (albedo) Wavelength range: 0.4 to 3.0 μ

Reflectance standard: Data are absolute

Comments: These data were obtained by rotating a periscope (installed through a hole in the side of the aircraft) 1800 to alternately view the sky radiation and that

reflected by the earth.

B-01049

Plaiform: laboratory

Instrument: Beckman DU spectrophotometer

Quantity measured: ρ_d

Wavelength range: 0.4 to 1.1μ

Reflectance attachment; ellipsoidal mirror that collects radiation diffusely re-

flected from the sample

Reflectance standard: MgCO₃

Additional reference: 9

B-01175

Platform: laboratory

Instrument 1: General Electric spectrophotometer

Quantity measured: ρ_{d} Wavelength range: 0.4 to 1.0 μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO Additional references: 5, 10, 11 Comments: see section 2.2.1

Instrument 2: Perkin-Elmer 12-B spectrometer

Quantity measured: $\rho_{\rm d}$ Wavelength range 1.0 to 2.7 μ

Reflectance attachment: Coblentz hemisphere

Reflectance standard: MgO Additional references: 12.13 Comments: see section 2.2.3

B-01176

Platform: laboratory

Instrument: General Electric spectrophotometer

Quantity measured: $ho_{
m d}$ Wavelength range: 0.4 to 1.08 μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO Additional references: 5, 10, 11 Comments: see section 2.2.1

B-01337

Platform: ground-based field

Instrument: USAERDL portable spectrophotometer

Quantity measured: ρ'

Wavelength range: 0.25 to 2.5 μ

Reflectance attachment: collecting mirror

Reflectance standard: measured relative to thermoglass and values converted to MgO

Additional reference: 14 Comments: see section 2.2.4

B-01339

Platform: laboratory

Instrument: General Electric spectrophotometer

Quantity measured: $ho_{
m d}$ Wavelength range: 0.4 to 1.08 μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO Additional references: 5, 10, 11 Comments: see section 2.2.1

B-01332

Platform: laboratory

Instrument: General Electric spectrophotometer

Quantity measured: ρ_d

Wavelength range: 0.4 to 1.08μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO Additional references: 5, 10, 11 Comments: see section 2.2.1

B-01353

Platform: laboratory

Instrument: General Electric spectrophotometer

Quantity measured: $ho_{
m d}$ Wavelength range: 0.4 to 1.08 μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO Additional references: 5, 10, 11 Comments: see section 2.2.1

B-01367

Platform: laboratory

Instrument: General Electric spectrophotometer

Quantity measured: $\rho_{\rm d}$ Wavelength range: 0.4 to 1.08 μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO Additional references: 5, 10, 11 Comments: see section 2.2.1

B-01368

Platform: laboratory

Instrument: General Electric spectrophotometer

Quantity measured: $\rho_{\rm d}$ Wavelength range: 0.4 to 1.68 μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO Additional references: 5, 10, 11 Comments: see section 2.2.1

B-01370

Platform: airborne

Instrument: Eastman Kodak spectrogeograph

Quantity measured: α (albedo) Wavelength range: 0.43 to 0.73 μ

Reflectance standard: Data are absolute.

Comments: The data were obtained by rotating a periscope (installed through a hole in the side of the aircraft) 180° to alternately view the sky radiation and that reflected by the earth. The spectrophotometric curves obtained were derived from densitometer readings of spectrograms.

B-01643

Platform: ground-based field

Instrument: USAERDL portable spectrophotometer

Quantity measured: ρ'

Wavelength range: 0.25 to 2.5 μ

Reflectance attachment: collecting mirror

Reflectance standard: measured relative to thermoglass and values converted to MgO

Additional reference: 14 Comments: see section 2.2.4

B-01761

Platform: laboratory

Instrument: spectrophotometer (original design)

Quantity measured: $ho_{
m d}$

Wavelength range: 0.43 to 0.70μ

Reflectance attachment: integrating sphere

Reflectance standard: MgCO2

B-01818

Platform: laboratory

Instrument 1: Beckman DK-2 spectrophotometer

Quantity measured: $\rho_{\rm d}$ Wavelength range: 0.4 to 2.5 μ

Reflectance attachment: integrating sphere

Reflectance standard: data obtained relative to MgCO3, but values converted to absolute

Comments: see section 2.2.2

Instrument 2: Perkin-Elmer Model 12 and Model 112 spectrophotometers

Quantity measured: ρ_{d}

Wavelength range: 2.5 to 15μ

Reflectance attachment: Coblentz hemisphere

Reflectance standard: Specular samples were measured relative to a rhodium mirror and diffuse samples relative to flowers of sulphur. Data have been converted to ab-

solute values.

Comments: see section 2.2.3

B-01948

Platform: laboratory

Instrument: photometric goniometer (original design)

Quantity measured: ρ' , τ' (bidirectional transmittance)

Wavelength range: 0.35 to 0.75 μ

Reflectance standard: bond paper

Comments: Reflectance data were obtained by focusing monochromatic light on the sample at normal incidence, then examining the reflected component at 100 off normal. Bond paper, believed by the experimenter to have scattering properties similar to those of foliage, was measured in the same way, and the ratio of the two quantities is the reported reflectance. Transmittance measurements relative to bond paper were also made.

B-02250

Platform: laboratory

Instrument: General Electric spectrophotometer

Quantity measured: $\rho_{\rm d}$, $\tau_{\rm d}$ Wavelength range: 0.4 to 1.08 μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO Additional references: 5, 10, 11

Comments: For transmittance measurements, the sample was placed at one of the entrance ports of the sphere, and MgO covered both the sample and reference ports. (See section 2.2.1.)

B-02418

Platform: laboratory

Instrument: Beckman DK-2 spectrophotometer

Quantity measured: ρ_d

Wavelength range: 0.28 to 2.6μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO Comments: see section 2.2.2

B-03070

Platform: laboratory

Instrument I: General Electric spectrophotometer

Quantity measured: $\rho_{\rm d},~\tau_{\rm d}$ Wavelength range: 0.4 to 1.08 μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO Additional references: 5, 10, 11

Comments: See section 2.2.1. For transmittance measurements, the sare the was placed at one of the entrance ports of the sphere, and MgO covered both a sample and reference ports.

Instrument 2: Cary 14 spectrophotometer

Quantity measured: ρ_{d}

Wavelength range: 0.385 to 2.2μ

Reflectance attachment: integrating sphere (Cary 1411)

Reflectance standard: MgO Additional reference: 15

Comments: Operation is similar to that of the integrating sphere discussed in section 2.2.2. However, in this experiment the sample was illuminated with white light, and the radiation was spectrally dispersed <u>after</u> reflection. Also, the sample was viewed at 60° off normal.

1

P-03117

No such descriptive information on these data was available.

B-03231

Platform: laboratory

Instrument: Perkin-Elmer spectrophotometer

Quantity measured: ρ_d

Wavelength range: 1.0 to 15.0μ Reflectance attachment: Hohlraum

Reflectance standard: Data are absolute.

Comments: see section 2.2.6

B-03256

Platform: laboratory

Instrument: goniometer coupled with a Wadsworth-Littrow spectrometer

Quantity measured: $\rho_{\rm d}$ Wavelength range: 0.55 to 2.5 μ

Reflectance attachment: see comments below

Reflectance standavd: Data are absolute.

Comments: Measurement of diffuse reflectance was obtained by illuminating the sample with monochromatic light and automatically scanning the detector about the sample. The detector thus recorded the reflectance integrated over 180°. This process was repeated at several discrete wavelengths.

B-03258

Platform: ground-based field and airborne Instrument: albedometer (original design)

> Quantity measured: α (albedo) Wavelength range: 0.4 to 0.65 μ

Reflectance attachment: integrating sphere

Reflectance standard: unspecified, if any

Additional reference: 16

Comments: No information on whether the data are absolute or relative was available.

B-03303

Platform: laboratory

Instrument 1: Beckman DU spectrophotometer

Quantity measured: ρ_d

Wavelength range: 0.235 to 0.70μ

Reflectance attachment: ellipsoidal mirror that collects radiation diffusely re-

flected from the sample

Reflectance standard: MgO Additional reference: 9

Instrument 2: General Electric spectrophotometer

Quantity measured: $\rho_{\rm d}$ Wavelength range: 0.4 to 1.0 μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO Additional references: 5, 10, 11 Comments: see section 2,21

B-03304

Platform: laboratory

Instrument 1: General Electric spectrophotometer

Quantity measured: ρ_d

できなななない おおからんごかっか

Wavelength range: 0.4 to 0.7μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO Additional references: 5, 10, 11 Comments: see section 2.2.1

Instrument 2: Perkin-Elmer infrared spectrometer

Quantity measured: $\rho_{\rm d}$ Wavelength range: 0.7 to 2.6 μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO Additional references: 12, 17

Comments: This instrument is similar in operation to the Beckman DK-2 spectropho-

tometer discussed in section 2.2.2.

B-03305

Platform: laboratory

Instrument: General Electric spectrophotometer

Quantity measured: $ho_{
m d}$

Wavelength range: 0.431 to 1.0μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO Additional references: 5, 10, 11 Comments: see section 2.2.1

B-03333

Platform: laboratory

Instrument 1: General Electric spectrophotometer

Quantity measured: $ho_{
m d}$ Wavelength range: 0.4 to 1.08 μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO Additional references: 5, 10, 11 Comments: see section 2.2.1

Instrument 2: Cary 14 spectrophotometer

Quantity measured: $ho_{
m d}$ Wavelength range: 0.26 to 2.2 μ

Reflectance attachment: integrating sphere (Cary 1411)

Reflectance standard: MgO Additional reference: 15

Comments: Operation is similar to that of the integrating sphere discussed in section 2.2.2. However, in this experiment the sample was illuminated with white light, and the radiation was spectrally dispersed after reflection. Also, the sample was viewed at 60° off normal.

Instrument 3: Cary 90 spectrophotometer

Quantity measured: Pd

Wavelength range: 2.5 to 15μ

Reflectance attachment: White hemisphere

Reflectance standard: Data are absolute

Additional reference: 18

Comments: The White attachment is basically a Coblentz-type hemisphere (see sec. 2.2.3). The sample was hemispherically illuminated with white light, and the reflected radiation was viewed slightly off normal.

B-03355

Platform: laboratory

Instrument: see comments below

Quantity measured: ρ_d , τ

Wavelength range: $0.\overline{4}$ to 15.0μ

Reflectance attachment: see comments below

Reflectance standard: see comments below

Comments: Several unpublished, miscellaneous curves from various sources are collected here. Curves B-03355-001 through B-03355-006 are transmission data on optical materials, and no descriptive information on the instrumentation for them was available. Curves B-03355-007 through B-03355-009 are the reflectance of water from 1 to 15 μ , for angles of incidence of 0°, 60°, and 80°. Again, no descriptive information on this experiment was available. Curves B-03355-010 through B-03355-037 are reflectance data on foliage species for the visible and near-infrared regions and appear to be standard spectrophotometric curves ($\rho_{\rm d}$). Curves B-03355-039 through B-03355-048 are the reflectance ($\rho_{\rm d}$) of paints in the 0.4 to 2.6- μ interval and are believed to have been obtained, relative to MgO, on the Beckman DK-2 spectrophotometer (see sec. 2.2.2). Curves B-03355-047 through B-03355-053 were obtained on the Bausch and Lomb spectrophotometer (see discussion under B-04642). Every effort is being made to obtain more information on these data.

B-03374

Platform: laboratory

Instrument: General Electric spectrophotometer

Quantity measured: $\rho_{\rm d}$ Wavelength range: 0.4 to 0.7 μ

Reflectance attachment; integrating sphere

Reflectance standard: MgO Additional references: 5, 10, 11 Comments: see section 2.2.1

B-03463

Platform: laboratory

Instrument 1: Cary 14 spectrophotometer

Quantity measured: ρ'

Wavelength range: 0.4 to 2.5 μ

Reflectance attachment: Cary Model 1413 specular-reflectance attachment

Reflectance standard: aluminum mirror

Comments: Angle of incidence was 80 off normal.

Instrument 2: Beckman IR-7 spectrophotometer

Quantity measured: p'

Wavelength range: 2.5 to 15 μ

Reflectance attachment: Cary Model 24425 specular-reflectance attachment

August 1968

Reflectance standard: aluminum mirror

Comments: Angle of incidence was 300 off normal.

B-03559

Platform: laboratory

Instrument 1: General Electric spectrophotometer

Quantity measured: ρ_d

Wavelength range: 0.4 to 1.08μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO Additional references: 5, 10, 11 Comments: see section 2.2.1

Instrument 2: Cary 14 spectrophotometer

Quantity measured: ρ_d

Wavelength range: 0.26 to 2.2 μ

Reflectance attachment: integrating sphere (Cary 1411)

Reflectance standard: MgO Additional reference: 15

Comments: Operation is similar to that of the integrating sphere discussed in section 2.2.2. However, in this experiment, the sample was illuminated with white light, and the radiation was spectrally dispersed after reflection. Also, the sample was viewed at 600 off normal.

Instrument 3: Cary 90 spectrophotometer

Quantity measured: $\rho_{
m d}$

Wavelength range: 2.5 to 15 μ

Reflectance attachment: White hemisphere

Reflectance standard: Data are absolute

Additional referencé: 18

Comments: The White attachment is basically a Coblentz-type hemisphere (see sec. 2.2.3). The sample was hemispherically illuminated with white light, and the reflected radiation was viewed slightly off normal.

B-03804

Platform: laboratory

Instrument 1: original design using a Perkin-Elmer monochromator

Quantity measured: ρ_d

Wavelength range: 0.3 to 0.4 μ and 0.7 to 2.7 μ Reflectance attachment: integrating sphere

Reflectance standard: data obtained relative to MgCO3, but values converted to ab-

solute

Comments: The instrument is similar in operation to the Beckman DK-2 spectrophotometer discussed in section 2.2.2, except that it is operated in the single-beam mode. Ratio recording is achieved by the substitution method.

Instrument 2: General Electric spectrophotometer

Quantity measured: $\rho_{\rm d}$ Wavelength range: 0.4 to 0.7 μ

Reflectance attachment: integrating sphere

Reflectance standard: data obtained relative to MgCO3, but values converted to absolute

Additional references: 5, 10, 11 Comments: see section 2.2.1

B-03856

Platform: laboratory

Instrument 1: General Electric spectrophotometer

Quantity measured: $\rho_{\rm d}$ Wavelength range: 0.4 to 0.7 μ

Reflectance attachment: integrating sphere

Reflectance standard: data obtained relative to MgCO3, but values converted

to absolute

Additional references: 5, 10, 11 Comments: see section 2.2.1

Instrument 2: Original design using a Perkin Elmer monochromator

Quantity measured: $ho_{
m d}$

Wavelength range: 0.3 to 0.4 μ and 0.7 to 2.7 μ Reflectance attachment: Integrating sphere

Reflectance standard: data obtained relative to MgCO3, but values converted

to absolute

Comments: This instrument is similar to the integrating sphere device described in section 2.2.2. The sample and reference are alternately illuminated with monochromatic energy at 90 off normal.

B-03959

Platform: laboratory

Instrument 1: Perkin-Elmer 98 monochromator coupled with an integrating sphere

(original design)

Quantity measured: ρ_d

Wavelength range: 0.33 to 2.5μ

Reflectance attachment: integrating sphere

Reflectance standard: Data are absolute

Additional reference: 19

Comments: This instrument operates in the single-beam mode.

Instrument 2: Perkin-Elmer 98 monochromator with Hohlraum attachment

Quantity measured: $\rho_{
m d}$ Wavelength range: 1.5 to 15 μ Reflectance attachment: Hohlraum

Reflectance standard: Data are absolute Additional references: 20 through 24

Comments: sec section 2.2.6

B-03960

Platform; laboratory

Instrument: Perkin-Elmer Model 13 and Model 20 spectrophotometers

Quantity measured: ρ ' Wavelength range: 5 to 15 μ

Reflectance attachment: specular-reflectance attachment

Reflectance standard: not specified

B-03995

Hill Wall Schlieberger

Platform: Ground-based field and airborne

Instrument: several spectrographs

Quantity measured: ρ'

Wavelength range: 0.4 to 0.9 μ Reflectance attachment: none

Reflectance standard: barite paper, gypsum

Comments: see section 2.2.5

B-04424

Platform: laboratory

Instrument: interferometric device

Quantity measured: ρ'

Wavelength range: 0.95 to 2.7 μ

Reflectance standard: flowers of sulphur

B-04616

Platform: laboratory

Instrument: Beckman DK-2 spectrophotometer

Quantity measured: $\rho_{\rm d}$, $\tau_{\rm d}$ Wavelength range: 0.5 to 2.5 μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO for $ho_{
m d}$, but values of $au_{
m d}$ are absolute

Comments: For transmittance measurements, the sample was positioned at one of the entrance ports of the integrating sphere, and MgO was placed at both the sample and reference ports (cf. fig. 3). Thus, energy transmitted into a hemisphere was seen by the detector. (See section 2.2.2.)

B-04642

Platform: laboratory

Instrument: Bausch and Lomb 808 spectrophotometer

Quantity measured: ρ_d

Wavelength range: 0.4 to 0.7μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO

B-04802

Platform: laboratory

Instrument: General Electric spectrophotometer

Quantity measured: ρ_d

Wavelength range: 0.4 to 1.08μ

Reflectance attachment: Integrating sphere

Reflectance standard: MgO Additional references: 5, 10, 11 Comments: see section 2.2.1

B-04803

Platform: laboratory

Instrument 1: General Electric spectrophotometer

Quantity measured: $ho_{
m d}$, $au_{
m d}$ Wavelength range: 0.4 to 1.0 μ

Reflectance attachment: integrating sphere

Reflectance standard: $\rho_{\rm d}$ data obtained relative to MgO, but values converted to ab-

solute; values of $\tau_{\rm d}$ are absolute Additional references: 5, 10, 11

Comments: For transmittance measurements, the sample was placed at one of the entrance ports of the integrating sphere, and MgO covered both the sample and reference ports. (See section 2.2.1.)

Instrument 2: Perkin-Elmer infrared spectrometer

Quantity measured: $\rho_{\rm d},\,\tau_{\rm d}$ Wavelength range: 1.0 to 2.7 μ

Reflectance attachment: Coblentz hemisphere

Reflectance standard: ρ_d data obtained relative to MgO, but converted to absolute;

values of $\tau_{\rm d}$ are absolute Additional references: 12, 13 Comments: see section 2.2.3

B-04804

Platform: laboratory

Instrument 1: Beckman DK-2 spectrophotometer

Quantity measured: $\rho_{\rm d}$ Wavelength range: 0.5 to 2.5 μ

Reflectance attachment: integrating sphere

Reflectance standard: unspecified Comments: see section 2.2.2

Instrument 2: Cary 90 spectrophotometer

Quantity measured: $\rho_{
m d}$

Wavelength range: 2.5 to 6.0μ

Reflectance attachment: White hemisphere

Reflectance standard: Data are absolute

Additional reference: 18

Comments: The White attachment is basically a Coblentz type hemisphere (see sec. 2.2.3). The sample was hemispherically illuminated with white light, and the reflected radiation was viewed slightly off normal.

B-04805

Platform: laboratory

Instrument 1: Beckman DU spectrophotometer

Quantity measured: $ho_{
m d}$, $au_{
m d}$ Wavelength range: 0.22 to 0.4 μ

Reflectance attachment: ellipsoidal mirror that collects radiation diffusely re-

flected from the sample

Reflectance standard: ρ_{d} data obtained relative to MgO, but values converted to ab-

solute; values of $\tau_{\rm d}$ are absolute

Additional reference: 9

Instrument 2: General Electric spectrophotometer

Quantity measured: $\rho_{\rm d}$, $\tau_{\rm d}$ Wavelength range: 0.4 to 1.0 μ

Reflectance attachment: integrating sphere

Reflectance standard: od data obtained relative to MgO, but values converted to ab-

solute; values of $\tau_{\rm d}$ are absolute Additional references: 5, 10, 11

Comments: For transmittance measurements, the sample was placed at one of the entrance ports of the integrating sphere, and MgO covered both the sample and reference ports. (See section 2.2.1.)

Instrument 3: Perkin-Elmer infrared spectrometer

Quantity measured: $\rho_{\rm d}$, $\tau_{\rm d}$ Wavelength range: 1.0 to 2.7 μ

Reflectance attachment: Coblentz hemisphere

Reflectance standard: ρ_d data obtained relative to MgO, but converted to absolute;

values of $\tau_{\rm d}$ are absolute Additional references: 12, 13 Comments: see section 2.2.3

B-04806

Platform: laboratory

Instrument 1: Beckman DU spectrophotometer

Quantity measured: $\rho_{\rm d}$, $\tau_{\rm d}$ Wavelength range: 0.22 to 0.4 μ

Reflectance attachment. ellipsoidal mirror that collects radiation diffusely re-

flected from the sample

Reflectance standard: $ho_{
m d}$ data obtained relative to MgO, but values converted to ab-

solute; values of τ_d are absolute

Additional reference: 9

Instrument 2: General Electric spectrophotometer

Quantity measured: $\rho_{\rm d}$, $\tau_{\rm d}$ Wavelength range: 0.4 to 1.0 μ

Reflectance attachment: integrating sphere

Reflectance standard: ρ_{d} data obtained relative to MgO, but values converted to ab-

solute; values of τ_d are absolute Additional references: 5, 10, 11

Comments: For transmittance measurements, the sample was placed at one of the entrance ports of the integrating sphere, and MgO covered both the sample and reference ports. (See section 2.2.1.)

Instrument 3: Perkin-Elmer infrared spectrometer

Quantity measured: $\rho_{\rm d}$, $\tau_{\rm d}$ Wavelength range: 1.0 to 2.7 μ

Reflectance attachment: Coblentz hemisphere

Reflectance standard: ρ_d data obtained relative to MgO, but converted to absolute;

values of $\tau_{\rm d}$ are absolute Additional references: 12, 13 Comments: see section 2.2.3

B-04979

Platform: laboratory

Instrument 1: Beckman DK-2 spectrophotometer

Quantity measured: $ho_{
m d}$ Wavelength range: 0.25 to 2.5 μ

Reflectance attachment: integrating sphere

Reflectance standard: data obtained relative to MgO, but values converted to absolute

Comments: see section 2.2.2

Instrument 2: General Electric spectrophotometer

Quantity measured: ho_{d} Wavelength range: 0.4 to 1.0 μ

Reflectance attachment: integrating sphere

Reflectance standard: data obtained relative to MgCO3, but values converted to ab-

solute

Additional references: 5, 10, 11 Comments: see section 2.2.1

Instrument 3: Perkin-Elmer spectrophotometer

Quantity measured: $ho_{
m d}$ Wavelength range: 1.25 to 15 μ Reflectance attachment: Hohlraum

Reflectance standard: Data are absolute

Comments: see section 2.2.6

B-05289

Platform: laboratory

Instrument 1: General Electric spectrophotometer

Quantity measured: ho_{d} Wavelength range: 0.4 to 1.0 μ

Reflectance attachment: integrating sphere

Reflectance standard: data obtained relative to MgCO3, but values converted to ab-

Comments: see section 2.2.1

Instrument 2: Original design using a Perkin-Elmer 83 monochromator

Quantity measured: ρ_d Wavelength range: 1 to 25 μ Reflectance attachment: Hohlraum

Reflectance standard: Data are absolute

Additional reference: 25

Comments: A Hohlraum device is discussed in section 2.2.6.

B-05370

Platform: laboratory

Instrument: General Electric spectrophotometer

Quantity measured: ρ_d

Wavelength range: 0.38 to 0.7 μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO Additional references: 5, 10, 11 Comments: see section 2.2.1

B-13522

Platform: laboratory

Instrument: Beckman IR-3 spectrophotometer

Quantity measured: $\rho_{\rm d}$ Wavelength range: 1.8 to 13 μ Reflectance attachment: Hohlraum

Reflectance standard: Data are absolute Comments: see section 2.2.6

B-19999, B-20000 B-20001, B-20002

Platform: laboratory

Instrument: Beckman DK-2 spectrophotometer

Quantity measured: $\rho_{\rm d},~\tau_{\rm d}$ Wavelength range: 0.28 to 2.6 μ

Reflectance attachment: integrating sphere

Reflectance standard: MgO for p_d , but values of τ_d are absolute

Comments: For transmittance measurements, the sample was positioned at one of the entrance ports of the integrating sphere, and MgO was placed at both the sample and reference ports (cf. fig. 3). Thus, energy transmitted into a hemisphere was seen by the detector. (See section 2.2.2.)

.

B20001-247 NYLOM CLOTH USED FOR PERSONEL PARACHUTES, SLAIM WEAVE RIB STOP PATTERN, DRAVGE (FED 12197), 1 LAYER. Sample HD. 1059.

HAVEL ENGTH (MICRONS)

<u>.</u>

S. MAYELENGTH(MICRONS)

'n

ଷ

RANGE. IRE: VIS:

÷ 5 5 5

SUBJECT CODES

ANA ECRBJ CDA CED DFAA DFCE ECCA
PARAMERE INFORMATICH
DATE: 10 08 07 TIME 1.AT* 1.0HC*
CATS RE 08 03 TIME 03.0 IAZ* CH*
CESS* TTEPP* LIBO SP* WIND 91*
TEPP* DEW PT N AVE* 001

8

8

30MPT 36FLECTRNCE \$ \$

ଷ

HYLON CLOTH USED FOR PERSONEL PARACHUTES, PLAIN WENYE RID STOP PATTERN, 3-1 GC. RAZ. MT. 3 SG. TO., SANUME, MIL-C-7020 (ASS) TYPE I. UNDVED. I LAYER, WET. SANDLE NO. 1057.

820001-276

020		RANG IRR.
WYLON CLOTE USED FOR PERSONEL PARACHUIES, PLAIM MEAVE RIB STOP PAYTERM, 1.1 02. MAX. M'. 1 80, YO., SHRUMM, MIL-C-7020 (ASC) TYPE 1, SAMD (45 1005), 1 LAYER. SAMPLE NG. 1040.	Er.A	CA2. CLD.
MUTES,	60	CONG. CN: KIND DI:
1. 1 Sq. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	FFAA DFCE ECB	CAL CAL MIND
2 PERSONE 22 MAX. W (4F 1005)	7 4 4	PARAVETER INFORMATION CATEGOR OF TIME 03.0 LAT- CATE TIME 03.0 LAT- CATEGORY TEPP NAME 001 TZEP NAME 001
81.18 1.18	CED	03.0
LOTA US	¥03	MATICH TIME- IN- TTEPP- DEE PT
MYLON STOP P/ (ASC) 1	COLES	A 14 FOR
920001-279	SUBJECT CODES AAKA ECEBF COA	PARAMETE CATE C CAYS RE CBS1* TZP7*

entropies de la company de

HRYEL ENGTH (MICRONS)

WYON CLOTH USED FOR PESSONEL PRACTUTES. PLAIN WEAVE RIB \$100 PATTERN, 1.1 02. MAX. WI. 1 SG. VO. SHOUM, RIL--7020 6450 TYPE is SIND (RF 1809). 2 LATERS. SAFFLE NO. 1000. B2001-204

RANGE-IRR: VIS-SUBJECT CODES
AAKA ECOBF COA CED DFAA DFCE ECO PARAMETER INFORMATICE CATE - 00 00 04 7 1185 - 150 CATE - 00 00 07 1185 - 150 CATE - 1165 - 150 01 1699 - 168 7 N.ME- 001

RANGE-IRR: VIS: DFAA DFCE ECS PARAMETER INFORMATION LAIS LONG CATE OB OB 04 7 1146 03.0 1A2 CAN 0551 TERPS WING SP MIND DISTRIBUTED OB 8 FT N N. O 001 SUBJECT CUDES AAKA ECBBJ CLA CED

XYLCH CLOTH USED FOR PERSONEL PARACHUTES, PLAIN WEAVE RIB Stop Patters, Olive Green (Army 186) 2 Layers... Sarre No. 1959. 835-100028

RANGE. SAMIECT CODES

AAKA ECIDIS CDA CED OFAA DFCE ECB

PRANTETER INFORMATICN
CATE-00 00 07 THECATE-07 THEPPCATE-07 THEPP-

WYCON CLOTH USED FOR PERSONEL! PARCHUTES, PLAIN MEAVE RIB STOP PATTERN, ORANGE (FED 12197), 2 LAYERS, Sanpla MO. 1059. 820001-287

SLB FET CODES
AAKA ECEBO COA CEO DFAA DFCE ECB PAMARTER INFORMATICH
LATE GG GE A7 JINE 3.0 1.25
LATE A5 GE INLATE A5 GE INLATE A5 GE INLATE A5 GE INTIEPPA INFO DITIEPPA AFF 001

RANGE-IRR-VIS-

AAKA 46

5

RANCE-IRR- E VIS-

5. HRVELENSTH(MTCRONS) 2

ö

RANGE-IRN-VIS-

tës Cer

8007 FCC

SUBJECT CODES
AAKAB ECHBJ CDA CED DFAA DFCE DK

MYLON CLOTH USED FOR PERSONNEL PARACHUTES, PLAIN WEAVE WITH AIB STOP PATTERN, 1-1 OZ. MAN. WT/50. YO., SAMPLE NO. 1057-TO2014SG), TYPE I, UNDYED, Z LAYEAS THICK. SAMPLE NO. 1057-

THE PARTY OF THE P

RANGE-IRR- E VIS-

EST.

PARAMETER INFORMATION
LATE - 00 OF 07 TIME - 03-0 TAZ CH CH CAS CH CON THE PARAMETER - NING SP NING DISTRIBUTION TERPS CON THE PARE - 001

9

8

ECCA ECCB

SUBJECT CODES AAKA ECEBD CDA CED DFAA DFCE DK

MYLON CLOTH USED FOR PERSONNEL PARACHUTES, PLAIN WEAVE WITH RIS STOP PATTERN, CRANGE (FED 12197), Z LAVERS THICK. SAMPLE NO. 1059.

\$20001-30**2**

REFLECTANCE S

7евсеит 5

ö

5. MAYELENGTH(MICRONS)

O

RANGE-IRR- E VIS-PARAMETER INFORMATION

CATE-09 00 67 TIME 147. CMC
CATS RE-0000 IN- C3-0 1A2. CMC
C651- TTEPP- NINO 59- NINO D1TEPP- DEN PT N AVE-001 SLBJECT COCES AAKA ECBBF CDA CED CFAA DFCE DR

NYLON CLOTH USED FOR PERSONNEL PARACHUTES, UNDYED, I LYER THICK. SAMPLE NO. 1057 FOUR FRESH SYCANGRE LEAVES USED FOR BACKGROUND

AAKA 50

ECCA CED DFAA DFCE DK SLOJECT CODES AAKAB ECEBJ COA

RANGE. IRR: VIS: ALT. CA2-LONG. CN. P. WIND DI.

RANCE. 9. ECCA PYLON CLOTH USED FOR CARGO PARACHUTES, DITYE GREEN (ARRY 106), 1 LAYER THICK. SAMPLE NO. 4566. POUR FRESH SYCAMORE LEAVES USED FOR BACKGROUND I. S. HAVELENGTH (MICRONS) ANA CERES CA CED OFAA OFLE DK
ANA CERES CA CED OFAA OFLE DK
DARWETER INCOMATION
CASE CO GO & 7 THE LAT CASE
CASE CASE CO GO & 7 THE CASE
CASE CASE CO GO & 7 THE CASE
CASE CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE
CASE CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE CASE
CASE CASE
CASE CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE CASE
CASE
CAS REFLECTANCE S тизэлэч 5 90 8 8

NYLON CLOTH USED FCH. "FRSOMMEL PARACHUTES» OLIVE GREEN (ARRY 104)» I LAYER THICK. SAMPLE NO. 1059. Four Fresh sycamore leaves used for background

RANGE-IRR-VIS-ECCA ALT. SUBJECT CODES
AAKA ECBBs CDA CED DFAA DFCE DK

RANGE-IRR- F VIS-

MYLOM CLOTM USED FOR PERSONNEL PARACHUTES, SAND (AF 1005), 2 Lavers Thick: Asple Mo. 1000. 2 Lavers tems Steamore Lenyes used for background

820001-315

ALT: CA2: CL0:

RAMGE. IAR: E VIS:

EEF

RANGE= 18R= E VIS=

PARAMETER INFORMATION
LATE -00 ON G \$7 11ME - LATE
CAYS RE -000 1ME -03.0 AZ CWCASS RE -000 1TEPP- NINO SP- NINO 011EPP- DEN FT NARE -001

SEFLECTRNCE

8

õ

РЕЯСЕИТ 5

ECCA

NYLON CLOTH USED FOR CARGO PARACHUTES, OLIVE GREEN (ARRY 104), 4 LAYERS THICK. SAMPLE NO 1041. FOUR PRESH SYCAMORE LEAVES USED FOR BACKGROCHD

620001-328

ë

. MAVELENGTHIMICRONS)

<u>.</u>

RANGE-IRR- E VIS-

ALT: CA2: CL0:

RANGE.

ALT: CA2* CL0*

RANGE-IRR- E VIS-

47. CA2.

SUBJECT CODES
ABAM ECRBF COM CED SFAM OFCE DK

ECCA ECCS

NYTON CLOTH USED FOR PERSONNEL PARACHUTES, PLAIN WEAVE WITH RID STOP PATERNELSAD (AF 1055), 4 SYCHORE LEAVES AS RECEBOUND. SAFLE NO. 1046.

120001-327

AAKA 54

RANGE -NYION CLOTH USED FOR PERSYMMEL PARACHUTES, PLAIM WENYE WITH RIS SIDE PATIEN, ORANIE (FED 12197), SACKGROUMD A LEAF. RATHE NO. 1059. ECCA ECCB 242 C10 PARAPETR INFORMATION LAICATE 09 08 07 71Me.
CAYS RE 0000 1Ne. 03-0 1A2 Chr.
CASS TE 0000 1Ne. 03-0 1A2 Chr.
TEPPP N M AVE: 001 SUBJECT CODES AAKA ECBBC CDA CED CFAA OFCE

50. . MAYELENGTH (MICRONS) ээмегсетамсе В тизоязч ф 8 8 8

MYLOM CLOTM USED FOR PERSONNEL PARACHUTES, PLAIN MEAVE WITH RIS STOP PATHERN, UNOVED, 4 SYCAMORE LEAVES AS BACKGROUND. SARVE MO. 1057. \$20001-329

RANGE-IRR-VIS-ECCB 4.4. C.6.2.4 ECCA PARAMETER INFORMATION

ANTE CO 00 07 TIME 01.0 AZ CNCNS R= 0000 TIEPP- NING SP- KING 01TIEPP- NING KPE- 001 SUBJECT COCES , AMENA CED DFAM CFCE Ch

RANGE-IRR-VIS-

ECCA ECCB CAZ-

MYCH CLOTH USED FOR PERSONNEL PARACHUTES, PLAIN MEAVE MITM-SETOP PATTERN 3 AND AR 1003), 4 SYCANOME LEAVES AS BACKGROUND. SAFFLE NO. 1000-0

RANGE= IRR. E VIS-

CAT:

SUBJECT CODES AAKA EC881 CDA CED D'AA DFCE DK

ECCA ECCB

NYLON CLOTH USED FOR PERSONNEL PARACHUTES, PLAIN WENYE MITH RIS STOP PATTERN. OLIVE GREEN (ARMY 1961), BACFCROUND 4 LEAF. SANTE NO. 1058.

AND SUBJECT CLOTA USED FOR PERSONNEL PARACHUTES, PLAIN MEAVE WITH
RIS STOP PATTERN, DRAWE (FED 12197), BACKGROUND 4 LEAVES.

SUBJECT CLOCS

AAKA ECEBO CDA CED DFAA DFCC DK ECCA ECCB

PRAKHETER INTERMITION
CARLE CO GO A OT TIPE 100 CA CED CARLE CON CON CON THE CARLE CON CON THE CARLE CARLE CON THE CARLE CARLE CARLE CON THE CARLE CARLE

STATE COLOR OF CARGO FARACHUTES, OLIVE CREEN FOLKER THE TOTAL OF THE T

	w				
		RANGE			
E E		•			
¥ 0	ECCB				
PLAIN Y BACKGROU	ECCA ECC8	ALT. CAZ* CLD.			
1063.	¥	. 10			
ANN CANNY	DFCE	LCNG* CN* WIND DI*			
NYLON CIOTH USED FOR PERSONNEL PARACUTES, PLAIN MENVE MITH RIB SITE PATTERN, OLIVE GREEN (ANNY 106), BACKGROUND 4 LEAF, Sample Mo. 1050,	CF.2A DFCE	PARAHETER INFORMATION CASE - 10 CO 87 THE			
er.	033	03.0 1			
10TH US	V 00	HATICH TIME: IN: TTEPP: DEM PT			
NYLCH C	COCES	R INFOR			
620001-340	SLBJECT CODES AAKA ECEBI CDA	PARAMETE CATE 1 CAYS RE CBS1*			
620001-3	vi	a .			

I. S. WRVELENGTH(MICRONS)

s

8

зоинтовитая тизокая В 6

-1980 19 19

100

8

SUBJECT CODES
AAKAB CCBBJ CDA CEO DFAA DFCE DK

AEA 7

ECCB

ECB ECCA

ECAD

883854-003 ALUMINUM ALIGY 24-57 (ALCLAS)---POLISHED.

SUBJECT CODES CED DFA OFF

ALT. CAZ. CLD.

LAT" LFAG. 1AZ" CN" WIND SP. MI'D DI" N AVE" OOM

PARAMETER INFORMATION
CAFFE 50 TIMEDAYS RETHENPE
CUSTS
TEMP

MANAGEMENT ARUNINM ALLOY 24-57 (ALCLAT)--CLEAMED WITH LIQUID DETENCENT ECB ECCA

0

ALT. CA2. CLD. SUBJECT CODES CED DFA DFF PARAMETER IMPORMATION
OLYCE
OLYCE
OLYCE
OLYCE
OLYCE
TEMP
TEMP

LATA LONG*
1A2*
MIND S** WIND DI*
N AVE: 001

15

ECCA ECCB

ECB

š

SUBJECT CODES
AEA CO CEO DFA DFF
ECCO ECCE

ALT.

LAT: CONG: 1AZ: CN: MIND SP: WIND DI: N AVE: COI

PARMETER INFORMATION
DATE: 57 TIME:
DAYS RE: 114"
COST: TEMP: DEW PT

100

80

805289-00'S 1100-0 ALUMINUM (COMMERCIALLY PURE), 305 HOURS AT 305 DEGREES F. IN AIR. 10.

I, S, MAVELENGIH (MICGONS)

10.

1. MAVEL ENGTH (MICRONS)

νį

ଥ

РЕВСЕИТ РЕГІЕСТВИСЕ В 8

a de

5. MAYELENGTH (MICRONS)

B-0000-576 BAICK, MEDIUM BROWN, INSULATING (AZBOO).

RANGE-IRR-VIS-

ECCA ECCB
ALT*
CAZ*
CLD*

820000-575 BPICK, LIGHT YELLOW, INSULATING (A2800).

SUBJECT CODES
AEC ECABC COA CED DFAA DFCE DX

ë

RANGE= IRR= VIS=

SUBJECT CODES

PAGE CUB CEO GFAA OFCE DK ECCA ECCB

PAGE CUB COD CAN OFCE DK ECCA ECCB

PAGE 21 IC OF 7 11 NF - 14 14 2 2 3 M LONG- 83.0 W ALT
DANS RE 171EPP COD CAN OFCE COD CAN

COD CAN OFCE COD CAN

COD CA

RANGE... IAR... E VIS-

PARAMETER INFORMATION
LAI= 31 10 67 TIME
DAYS RE= 100 03.0 14.5 CK= CA2=
CBST= TIME+= 1440 SP= WIND DI= CLD=
TEMP= DEW PT N AVE= COI

DFAA DFCE

SUBJECT CODES AEG CDA CED

RANGE-IRR- E VIS-

**** ECC

ECCA

РЕЯСЕИТ ВЕГLЕСТАНСЕ В 5

õ

8

эристы тегі ғстансе В д

9

ခ္ဓ

RANGE. IRS. E B85854-011 STUFFINE BEDRIE (SPFC, QQ-D-667)--COPPER 88-72-5 PCT. AKA. PARCHESE 1 PCT. HAX. THEN AMERICAL 1 PCT. HAX.--- OKIDIZED 14 ATA AT RED HEAT FOR 20 STRUTES 1 ECCA #**3**3 **E**C ECAD LAT* LONG* 1AZ* CH* MING SP* MING DI* N AVE* OUL SUBJECT CODES AEL CO CEO DFA OFF PARAFTER INFORMATION DAYE 35 THE 1A2DAYS AETHEN HISSPILL TEMP- DEW PT N AFE- OU

ECB ECCA ECAD CEO OFA DFF PARAMETER AMFORMATION DATE: 58 TIME: DAYS RE: 1N= CSST: CEPP: DEW PT SUBJECT CODES AEL CD

44.5 C40-0

LAT* LONG*
IAZ* CN*
MIND SP* WIND DI*
N AVE* GO!

ECCA

ECAD

DFA OFF

SUBJECT CODES

£25.5

LAT= LONG-IAZ= CN= WIND SP= WIND DI= N AVE= GO1

PARAMETER INFORMATION
DAYE SE TIME=
DAYS RE TERP=
TERP=
TERP=

ELECTROLYTIC, TOUGH PITCH CAPPER (SPEC, 50-C-576 OM, 90-C-502)--AS RECEIVED FROM SUPPLIER.

803854-020

RANGE-IRR- E VIS-. 0 ECCB ARMCO INGOT INCOM-FINISH HAVING AN BMS RATING OF ABOUT 2 Microinches as measured mith a supfagage. ECB ECCA 1. 5. WRVELENGTH (MICRONS) ECAD LAT* LONG**
LAZ** CN**
NIND SP** WIND DI**
N AVE** 001 DFA DFF SUBJECT CODES

AEL CD CFO OF

PARKETER INFORMATION

DATE: 56 11ME:

DAYS RE: 17EPP:
1EMP: 0EW PT 803856-031 эхинт вегсетанисе В & 8 100 8

ALT CA2*

LAY. LONG. IAZ. CN. WIND SP. WIND DI. M AVE. OOI

PARAKETER INFORMATION
CATE 50 TIME CAYS RE IN TEXT TEXT TEXT OFW PT

ARPCO INGOT INDM-FEMISH MAVING AN RMS RATING OF ABOUT 19 MICROINCHES AS MEASURED WITH A SURFAGAGE.

ECB ECCA

ECAD

OFA OFF

SUBJECT CODES
AEL CD CCD

LAT- LONG*

IAZ- CNHIND SP- WIND DIN AVE- 001

PARAMETER INFORMATION DATE: 56 TIME: DAYS RE- THERP OSST: DEM PT

n

DODGE-039 STAIMLESS STEEL TYPE ANSO LAIGCAST CRADED, SUBZERG CODEED AND TERRERED-FILLSH HAVING AN RNS RATING OF ABOUT 2 HICAD-INCHES AS MEASURED WITH A SURFACAGE.

FIRST MAKESS STEEL TYPE 446 (86-5-783M), /AMERIED COMOITION--FIRSTS MAYING AM RS RATING OF ABOUT 2 MICROIMCHES AS MEAS-ONED MITH A SUPPLICATE.

003836-042 STAIN ESS STEEL TYPE 444 (00-9-TAJA), ANNEALED CONDITION—FINISH HAYING IN RNS AATING OF ABOUT 15 MICHOLMCHES AS MEAS-CHARGE WITH 4 SURFAGAGE.

A

15.

ţ.

. MAYELENGTH (MICRONS)

ECCB

ECB ECCA

DK ECAD

CE CE

RANGE -IRR - E VIS-

ALT: CAZ: CL0:

LAT= 10NG* !AZ= CN= WIND SP* WIND DI= N AVE= 001

PARAKLICA INFORMATION DATE: 50 TIME: DAYS RE: THENPE OBST: DEM PT

CED

SUBJECT CODES AEL CD

ECCA

STAIMLESS SYEEL TYPE PH 15-7NO, RHYSO COMDITION—FINISH MAN-INC AM RN S RATING OF ABOUT 2 HICAGINCHES AS MEASURED WITH A SURFAME.

803854-045

e e

THE WHITE CANADAGE AND

()

MICKEL, COMMERCIAL GRADE A-AS PECEIVED FROM SUPPLIER.

MBLYMBENAM (CLINAX MOLYBDENAM CO.), ARC MELTER WMALLGYER—AS RECEIVED FROM SUPPLIER. ECCA ALT. **6**0 ECAD LAT= LONG**
JAZ** CK**
WIND SP** WIND DI** DFA OFF SUBJECT CODES

AEL CO CED DF

PARAFIER INFORMATION
DATE: 50 INE:
DAYS RETEMPTEMP-PERCENT REFLECTANCE & 8 100

8

RANGE-IRR-VIS-

CE CAT

LAT. LCMG. IAZ. CM. WING SP. WIWJ DI. N AVE. GOI

PARAMETER 14FORMATION
DATE \$8 TIMEDAYS Re- TICHPTEMPTEMPOBLIPO

SUBJECT CODES AEL CD CED

ECC

ECCA

HICKEL, CSMENCIAL GRADE A-POLISHED.

	w				
		_			ļ_
ECCB	AAhge. Irr. Vis.		_		L
					L
ECCA			L	<u> </u>	1
ä					
	ALT. CAZ. CLD.				
EC.					T
ECAD	•				Τ
2	LONG" CN" KIND OF				T-
	25.2		7		T
ă	9				
CFF	FATE TAZE WINC SPE N AVE 001				
5	1.2 N. A.				1-
CFA	2-32				†-
5	4 1-			_	t
CED		-	\vdash		1
5	# # # # # # # # # # # # # # # # # # #				†
S C	5.			-	†
SUBJECT COCES AEL CO	PARAMETER INFORMATION CATE SE TIME- DAYS RE- TIEPP- TEMP-	-			†
ב ב	Z E C C C			L	ــــــــــــــــــــــــــــــــــــــ
95	4899 489 489 489 489 489 489 489 489 489	100	8		JNC
				_	J/10

TO THE RESIDENCE OF THE PROPERTY OF THE PROPER

ECB ECCA ECCB

B03836-058 MASTELLOV 8 (AIRCRAFT GRADE), AMMERLED-FIRISH HAVING AN RAS RATING OF ABOUT 2 MICHOINCHES AS MEASURED WITH A SURFAGAGL.

SUBJECT CODES
AEL CD CED DFA OFF DK ECAD

LAT# LONG IAZ# CN# WIND SP# WIND DI# N AVE# OGI

PARAKETER INFORMATION
DATE: 58 TIME:
DAYS RE: TIME:
DSST: TERP:
TERP: DEW PT

50

8

15.

DK ECAD ECB ECCA ECCS

ALT. CA2: CLD

PERCENT REFLECTANCE

ୡ

ĕ

5. MAYELENGTH (MICRONS)

智學通過200%

RANGE. IRR. E VIS-

÷ 55

LAI= LONG* 1A2* CN= MIND SP= MIND 01* N AVE* 001

ECC

ECCA

ECAD

DFA

WARRY CARREST

PERCENT REFLECTANCE

8 8

ଛ

. HAYELENGTH (MICRONS)

RANGE ... IRR. E

ALT: CA2: CL0:

LAT= LONG= 1AZ= CK= MIND SP= MIND DI= N AVE= 001

PARAHETER INFORMATION
DATE: 57 FINE:
DATS RE: TINE:
CUST: TEPP:

90

8

2002

ECCB

EC6

SUAJECT CODES
AEL CD CED
ECCD ECCE

TE-75A TITANIUM (COMMERCIALLY PURE). 366 MOURS AT 585 DEGREES F. IN AIR.

5. MAYELENGTH (MICRONS)

RANGE.

ALT-CA2-CL0-

LAT= LONG= 1 = 2 = CN= , WIND SP= WIND DI= N AVE= 001

RANGE-18R* E VIS-

44.7 642 610

ECCA ECCB

60

SUBJECT CODES
AEL CD CED DFA
ECCD ECCE

005209-021 T1-754 TITAMIUM (COMMERCIALLY PURE), 303 HOURS AT 1003 Degrees F. In Air.

ECCA ECCB ECCC

5

1

SUBJECT CODES
AEL CC
ECCD ECCE

LAT- LONG-1A2- CN-BIND SP- WIND DI-N AVE- 001

PARAMETER INFORMATION
DATE: 57 TIME:
DAYS RE: THE:
OMST: TEFP:
TEMP: DEN PT

360

AETLEUTANCE B

8

гизэлэч *6*

8

865289-025 C-110M TITAMIUM ALLOY, 366 MOUNS AT 828 DEGREES F. IM AIR.

RANGE. IRR. E V.J.

1. 5. WAYELENGTH (MICRONS)

'n

ECCA ECCB ECCC 605289-027 C-110H TITANTUH ALLOY, 303 HOURS AT 1003 DEGREES F. IN AIR. LAT* LONG**
1AZ** CN**
WIND SP** WIND 01**
N AVE** 001 SUBJECT CODES
AEL CC CED DFA
ECCD ECCE PARAMETER INFORMATION
DATE 57 IIME 57 IIME 100 OAYS RE 11 TEMP 11 EMP 11 REFLECTANCE B TNЭDR39 ਨੇ ଥ 100 8

. . . .

RANGE" 188* E VIS"

1AT= CONG= 1AZ= CN= MIND SP= MF4D DI= N AVE= 001

PARAMETER INFORMATION
OATE 57 TIME=
DAYS RE= TIME=
OBST= DEM PT

ECCA ECCB

ECB

ž

SUBJECT CODES
AEL CD CED DFA DFF
ECCD ECCE

BOS289-026 C-110M TITANIUM ALLOY, NO THERMAL TREATMENT.

4

SERVICE SERVIC

TYPE 321 CORNOSION RESISTANT STEEL, 300 HRURS AT 447 BEGARES F. IN AIR.

LA SERVICE SER

THE THE THE PARTY OF THE PARTY

Marie Company

一个的数据的数据数据数据数据处理

TOTAL SECTION

RANGE-IRR-VIS-

ECCC

РЕРСЕИТ ВЕГLЕСТВИСЕ В 5

8

8

ö

HAN CARRENT MANAGEMENT CONTRACTOR C

š

REFLECTANCE

8

100

76 В

8

ë

1. S. MAVELENGTH(MICRONS)

ŽŽ.

0

1. S. WRVELENGTH (MICRONS)

n

STANGER STANGES

``...)*

O

٠.....

n

RANGE. IRR. VIS. \$\$\$. LAT: LONG: IAZ: CN: WIND SP: WIND DI: N AVE: 001

AL C.

SUBJECT CODES

JEL COD CED DFAA OFCE DK ECAD
PARAMETER INFORMATION
DATE: 54 TIME LATE CNE
DAYS RE TIME LATE CNE
DAYS RE TIME HAVE CNE
EMP AND DE

805370-030 MICKEL.

44. 66.44

ECCA

PALT.

CDA

SVEJECT CODES AEM RCSBF AEL

SAMPSOND GEAN PAINT, MITTIME OF 3M WHITE (346) AND 3M BLACK (505) PELVET ON ALMINIM SUBSTRATE.

	ECCA	RANGE IRR: VIS:
	65	
i.	ECAD	ALT: CA?: CLD:
PAINT, 3M MAITE VELVET ON ALUMINUM SUBSTRATE.	ž	LONG- CN- MIND DI-
THE REAL PROPERTY.	OFCE	CANAL COME
W W	DFAA	NE (AT" L " 03.0 IAZ" C FPP MIND SP MIND (PT N AVE 00)
E VELVE	CED	3.0.E
34 PA	CDA	11 ME- 17 EFF- DEW PT
PAIRT.	CCDES AEA	1 INFOR
B20000-364	SUBJECT CODES AEMA AEA ECAC	PARAMETER INFORMATION DATE: 23 08 66 TINE: CAYS Re: THEP: TEMP: DEM PT

MAITE PAINT (PV-100) ON 17-7 PM STAIRLESS STEEL. NO THERMAL TREATMENT.

€CC.

Œ

SUBJECT CODES
ARA ARI, CO
ECC. ECCO
FORMATION
ANTE:
AN

ALT: CA2: CLD:

LAT... LONG"
1AZ... CN...
WIND SP... WIND DI...
N AVE... 001

RANGE ... IRR. E VIS.

是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们也没有一个时间,我们也会会会会会会会会会会会会会会会会会会会会会会会会会

DX ECCA

A17-CA2-CL0-

PARAMETER INFORMATION

DAYS RE- 13.1 06 FINE- 03.0 IA.*

DAYS RE- 111EPP- NINC SP NINC 01

FEFF- 0EH FT NAVE- 001

DIFFUSE NIGHT VISION DEFENTING PAINT, 3-M 101-64, TYPE 100-SPECIAL FORMULATION, U.S. ARMY G.D.

SUBJECT CODES
AEMB ECOBS AEL CDA CED DFAA DFCE

820000-526 PAINT, 3-M 101-64 SPECIAL FORMULPTION, 9.5. ARMY C.D.

EC.B 44. C42. SUBJECT COTES AEMB ECBBI AEL CDA CEO DF'A DFCE

ECCA

PARAMETER INFORMATION

LATE 19 12 00 TIME 03-0 TATE

DAYS RE 18 00 TIME 03-0 TATE

NAME 04 TIME 05 TIM

RANGE= IRR= E VIS=

S. WRVELENGTH (MICRONS)

RANCE-IRR-VIS-

有更妙的觀而如"。"

RAMGE. SAR. VIS-

E S F

188888-523 MIBMT-VISIBILITY BECARTING EMANEL, CCL-589-681, U.S. AMNY CDATING AND CHENICAL LAB.

HAVELENGTH (MICL.)NS) 8

. MRVELENGTH(MICRONS)

COLCEANTON, VIST, ARMY CIG. AND CHEN, LAL. ON SST ALUMINA.

SUBJECT CODES

AENS ECRES

AEN

820000-571 ARMY RIRERAFT CONLING, D.D., OLO WEATHERED, OM RIRERAFT
SUBJECT CODES
AEMO ECODS AEM COA CEO DFAA DFCE DK ECB

KANGE-IRR. E VIS-

41. 25. 16.

PAR.* EIER INFORMATION

LATE 7 0.2 & 7 TIME 0.3.0 LAZ CN*

DAYS RE* 30.0 IN* 0.3.0 LAZ CN*

DAYS RE* 90.0 IN* N WE* 90.1

82000D-57D ARNY AIRCRAFF COMLING, 0.D., GLD MEATHERED, ON AIRCHAFT ALUMINUM.

SUBJECT CODES

XEND ECONOMISM

AND THE CONTROL AND CODE OF AND OF CODE

AND CODE OF THE CODE

AND CODE

AND CODE OF THE CODE

AND CODE

AND CODE OF THE CODE

AND CODE

820001-382 ANDDIZED ALUHIMUM, 2 CONTS ZIMC CHROMATE, MET DECRED, 1 COAT 5298 0.0.

Staject codes

AEMB ECEBBL AEL CDA CED DFAA OFCE DR ECB ECCA

PARAMETER INFORMATION

CATE 24 11 67 118E A ATT 42-5 M COMG* 83.0 M ALT*

CATE 24 11 67 118E A ATT 50 A

эоингоэтлэн тизонгч В 5

RANGE: IRR: E VIS:

8

8

AMODIZEO ALUKIMUM, 2 CDATS ZIMC CHROMATE, WET DECKED, 1 FDAT 9298 G.D.

SUBJECT COCES AEND ECPBI AEL

EC ECCA

DFF DK

SUBJECT CODES
AEMD AEL CO
ECCC ECCO ECCC

<u>.</u>

. MAVELENGTH (MIC:40NS)

'n

1289-D84 SILVER COLLUID (SCLAR ND. SIL-86U) ON 321 CORROSION RESIST-Ant Steel, no thermal treathent.

	RANGE= IRR= VI\$=
ECCB	->
ECCA	
ECB	ALT. CAZ. CLD.
ă	LONG. CN: KIND DI:
956	
OFA	LAT 1AZ.: Wind SP N AVE 001
CED	
00 ECCE	ST TIME IN THE
CODES AEL ECCD	F 1450
SUB IECT AEND ECCC	PARAMETER I CATE CAYS RE= OBST= 1EMP=

289-087 PLATINU' COATING IN ADDITION TO CERANIC COATING OF 8-05289-085. NO THERNAL TRZATNENT.

		w
	ECCA	RANGE IRR*
	EC.	
	ž	ALT. CAZ. CLD.
	OFF	. :
	DFA	LONG. CN: WIND D
	CED	LAT* 1A2* WIND SP* N AVE: DOI
	92	
INCHES THE PARTY OF THE PARTY O	AEL	MATION TIME- IN- TIEMP- DEW PT
	CODES AEA ECCC	f. IMFOR
	SUBJECT AEND ECCB	PARANETER INFORMATION DAYS RE IN- DAYS RE IN- DOST TEMP-
		-

CALLABUUM COATING IM ADDITIO: TO CERAMIC COATING OF 8-05289-Chinest coas

ECCA	RANGE» IRR« E VIS»
ec.	
ĕ	ALT. CAZ- CLD-
940	
OFA	LONG- CN- KIND
CED	LAT= IAZ* WIND SP* N AVE= 001
CC.	
AEL ECCD	MFORMATION 57 TIME 1Ne TTEMPE OEW PT
F C C C C C C C C C C C C C C C C C C C	Ξ.
AEND	PARAMETER DATE DAYS RE- OBST- TEMP-

08-078 ALUMINUM COATING (SOLAR NO. SIG-33A) ON 321 CORNO: 10M ME-SISTANT STEEL, NO THERBAL TREATMENT.

	ECCB	AANGE: IRR: VIS:
ļ	\$	
	£C8	ALT. CAZ. CLD.
	ă	LONG= CN= WIND DI=
THE THE PARTY OF T	340	
TERRAL	DFA	LAT. IAZ. WINC SP. N AVE. GOI
2	CEO	
	3333 8333	ATICN TIME. IN. TTEPP. DEW PT
	CODES AEL ECCD	R INFORM
	SUBJECT AEMDA ECCC	PARAMETER INFORMATION CATE STIME CATE IN COST TERM IN TERM IN TERM

8	5		ONB LS		19083 2	~ ~		7
			7					5.
				Z			_	
				- '				1.
		-						S. S. SAETHINICHONS
								5.
								Ş
						_		
								10.
		_			 			
	i							15

54-044 PLASTIC LAMINATE EPOXIDE A-12100 (SMELL DEV. CO.).

ECCB	RANGE= IKR* E VIS*
ECCA	
ECB	ALT. CAZ. CLD.
ECAD	1006- 508- 100 01-
¥	
940	LAT- IAZ- MIND SP- N AVE- 001
CFA	
GE	ER INFORMATION SG TIME LAY IN INA TTEMP HIN
8	£ .
AEMFA	PARAMETER DATE: DAYS RE: OBST: TEMP:

\$63856-065 PLASTIC LANINATE EPON 1601/PLYDPHHEN 5023 (SHELL DEV. CO.).

ECC9	RANGE" IRR" E VIS"
ECCA	
80	ALT. CA2.
ECAO	
ă	CNS- CN- WIND
740	LAT* IAZ* WIND SP* N AVE* 001
4	J-22
CEO	S TIME IN TEMP
SUBJECT CODES AEMFA CC	PARAMETER INFORMATION OATE* 50 TIME* L DAYS RE* IN* IN OBST* DEWP* N

SUBJECT CORES
SUBJECT CORES
AERFA CD CEO DFA CFF DX ECAD ECB ECCA ECCA
PARABETER INFORMATION LATE COMCA ALTERNATE TRANSPER
DATE NOW SE SITHE TATE CANCE CANCED CANC

13856-067 PLASTIC LANINATE VIBRIN X 1068 (NAUGATUCK CHENICAL).

ECCB	RANGE. IRR. VIS.
ECCA	
603	ALT= CA2= CLD=
ECAD	ONG-
š	- T
956	LAT* IAZ* WIND SP= N AVE= 0
DFA	
ceo	INFORMATION 58 TIME IN- TTEMP- DEW PT
2006	
SUBJECT CODES AEMFA CD	PARAMETER DATE= CAYS RE= CBST= TEMP=

56-568 PLATIMUM (PUKE METAL)--AS RECEIVED FROM SUPPLIER.

ECCS	RANGE- IRR- VIS-
ECCA	
8 2	ALT. CAZ. CLD.
ECAD	LONG. CN: UND 01.
ă	
940	LAT= 1A2= HIND SP= N AVE= 001
OFA	
CED	INFORMATION 58 TIME= IN= TTEMP= OEW PT
SUBJECT CUDES AEMFA CC	PARAMETER INFO DATE* DAYS RE* OBST* TEMP*

HIS TEND WAS TO DO

PERCENT REFLECTANCE

A4K3E. 1RR. E VIS.

£85.

826000-391 MEALTHY MOSS, MOM-FRUITING.
SUBJECT CODCS
BGB CDA CED DFAA DFCE DK ECG EL
PARAMETER INFORMATICA
DATE 23 09 04 11ME 03.0 11ME 01.0
DAYS RETERP-

SLABICT CODES

SACAT CODES

SAC

ICE.	609	RANGE = CAS = E
CORN LEAF (ZEA MAIZE), WILLED BY FROST, JPPER LEAF SUMFACE.	ECAD	ALY. CAZ. CLD.
PPER	ă	₹00
*ROST. 1	DFCE	LO 46= CN= 1 NO 01=
LED BY	DFAA	
E), KILI	CEO	LAT= 1AZ= WIND SP= N AVE= 001
MAIZ	¥Q0	9.0
14F (2E/	BGFF	ARANETER INFORMATION DATE: 25 :0 60 TIME: DAYS RE: 116MP: 15MP: 15
כסמא רפ	C00ES BC-80	10 10 66 10 66
B20000-459	SUBJECT CODES BGCMC BG-8D ECCA	PARANETI DATE 2 DAYS RE UBST 8

CORN LEAF (ZEA MAIZE), WILLED BY FROST, UPPER LE.F SURFACE. DFCE 9 **8**00 SUBJECT CODES ACCHC BGFBD BGFF ECCA

RANGE» IRR» E VIS»	
ALT. CAZ. CLD.	
LONG* CN* MIND 01*	
LAT- 1AZ- MIND SP- N AVE: 001	
INFORMATION 10 66 TIME 93.0 TTEMPS DEW PT	
PARAMETER INF DATE= 25 10 DAYS RE= 0851* TEMP=	

CORN LEAF 625A MAIZES, WILLED BY FROST, LOWER LEAF SURFACE.

MULECT CODES BECKE GAFF CDA CED DFAA DFCE DK ECAD ECCA HARARETER INFORMATION LAT DATE: 30 04 11ME: 10MC ALT DATE: 11 HE D3.0 1M2 CM DATE: 11 HE MAY SP CAZ: 11 HE MAY SP C	ECB	RANGE - IRR - E VIS-
CED DFAA DFCE DK LAT- LONG- 1A2- CN- 1 NA NE- 001	ECAD	444
CED DFAA LATE LONGE NAME SPE NAME NAME NAME NAME NAME NAME NAME NAM	ă	₹ 35
LAT- 1AZ- WIND SP- M AVE- 001	DFCE	
MANAET CORES ECCA ANAMETER INFORMATION DATE: DA	DFAA	
UNITECT CODES BGGKC BGFF CDA ECCA ECCA MANNETR HOGONATION DAYS R DAYS R TTRPP TTRPP	CED	LAT= 1AZ= HIND SP= N AVE= 0
UBJECT CODES 6CMC 6GF8C 8GFF 6CMC 6GF8C 8GFF ARAHETER INFORMATION DAYS RE ITEMP 1EMP 1EMP	CDA	8
UBJECT CODES BGCHC BGFBC ECCA ARAMETER INFOR DA15- 25 10 66 DA75 RE- TEMP-	3 CF F	MATION TIME- IN- TIEMP- DEF P1
UBJECT C BCCAC ECCA ARAMETER DATE 29 DAYS RE- COSY- TEMP-	CODES	10 66
и .		PARAMETE DATE 21 DAYS RE- TEMP =

RANGE = IRK = E VIS =
CA2- CL0•
LONG. CN. KIND DI.
LAT- 1AZ- WING SP- N AVE- 001
ER INFORMATION 25 10 66 TIME- E= TTEMP- DEW PT
PARANETER DATE 25 DAYS RECGRST

ECAD

COAR LEAF LZEA MAIZES, KILLED BY FROST, UPPER LEAF SURFACE.

CED

8

CORN LEAF (ZEA MAIZE), KILLEB BY FROST, LOWER LEAF SUMFACE.

809	RANGE = IRR = VIS=
ECAD	
ž	ALT. CAZ. CLO.
DFCE	; ;
DFAA	CONG. CN. WIND
CED	LAT= 11AZ= WIND SP= N AVE= 001
V 00	
86FF	MATION TIME- IN: TTEMP
CODES 96FBC	2 10 66 10 66
SUBJECT BGCPC ECCA	PARAMETER IMFORMATION DATE: 25 10 66 TIME: DAYS RE: IN: 0: 0557: TEMP:

RANGE E IRR. E VIS.

OK ECAD ECB

PARAMETS INFORMATION
ANTE 25 10 06 TIME 03.0 IAZ
BAYS RE TITRHE WIND SP NIND DISTRIBE DE REPORT NATE 001

B20000-444 CORN LEAF (ZEA MAIZE), KILLED BY FAGST, LOWER LEAF SUMFACE. SUBJECT CODES BGCA GFBC BGFF CDA CED OFAA OFCE OK ECAD ECA ECCA

BEFLECTANCE S

8

PERCENT 5

2

I. S. MRVELENGTH (MICRONS)

CCA ECAD ECA ALT. CA2-CODES

- BGFBD CDA CED

- CE ST HFORMATION

- ET ST NET WATEN

- ST NET ST NET

RANGE = IRR = E ECCA BLACK CAK, UPPER LEAF SURFACE, GREEN, FRESHLY PICKED. PARAMETER INFORMATION
DATE: 23 09 66 TIME: LAT: 42.3 M LONG: 83.7 M ALT:
DAYS RE: 0000 IN: 0.00 IAZ: CN: CAZ:
CBST- TIEPP- MIND SP- MIND DI- CLDTEPP- DEH PT N AVE: 001 CED DFAA SFCE B28000-404

RANGE... IRR... E VIS...

3LACK GAR, UPPER LEAF SURFACE, GREEN, FRESHLY PICKED.

828600-403

SUBJECT CODES

BEDBC BGFBD CDA CED DFAA DFCE DK ECD (
PARAMETER INFORMATION
DATE: 23 09 06 FINE:
DAYS RE 0000 IN: 03.0 142:
CBSI-R COOL IN: 03.0 142:
TEPP:
DAY DE BE FT NAVE: 001 NNO DICEST

BGD 386

12.

. 0

MAYEL ENGTH (MICRONS)

				. —	,				
	<u> </u>	↓ _	<u> </u>	<u>L</u> _	<u>_</u>		L		
			<u>L</u>	<u></u>					Γ
	Ĺ	<u> </u>	L						
			Γ						
		T-	T	-			Ι		
		_						-	-
	_		1		-	-	 - -		-
		 	 	-					-
	\vdash	-	 						-
			-	-					
		-	├	_	-		-		-
		-	 	-					
1			-			f	_		_
		├				-4	-		_
			-		_	4			
		ļ				}	\geq	=	
		ļ			_				
			<u> </u>						
ļ					i				
l									_
100	3	РЕЯСЕИТ ЯЕРСЕСТАИСЕ В В В В В							

#20000-395 CAK	SUBJECT CODE	PARAMETER IN DATE 22 09 DAYS RE 00 085's RE 00	901	<u> </u>	08	33NRT2	MEFLEC S	ясеит 6	3 d	8		2.
			F						\exists			15.
PICK-	ECSA	RANGE S NRR C Case H										<u>.</u>
DAR (Q. VELEUTIMA), LOWER LEAF SUMFACE, GAFEN, FRESHLY PICK- ED.	ECAD ECS	ALT* CAZ* CLD*							-			S. Icronsi
LEAF SURFACE.	DFCE DK	LONG- CN- CN- CN- CN- CN- CN- CN- CN- CN- CN										1. S. WAYELERGTH(MICRONS)
INA), LONER	CED DFAA	03.0 1A2- WIND SP-										
DAR 40. VELEUT ED.	CODES BGFBC CDA T INFORMATION	0000 11 11 11 11 11 11 11 11 11 11 11 11								4	<u>,</u>	v.
į,	SUBJECT CODES PCDBC BCFBC PARAMETER INFOR	DATE= 22 09 66 DAYS RE= 0000 DBST= TEMP=	90	 8		м123. З	T NEFL	\$ SEUCEN.	<u>_</u>		,	~

BLACK GAK, UPPER LEAF SURFACE, GREEN, FRESHLY PICKED.

RANGE -188 -VIS-PARAMETER IMPORMATION LAT 42.3 M LONG" 83.7 M ALTCATS 20 90 6 1 ME 93.0 1 AZ CAS
CATS RC 9000 1 EEPP W NO 05 9 WIND DIR
TEMP. (EW PT 9 ANCE 901 609 SUBJECT COOCS BODBC BGFBD CDA CED DFAA DFCF DX

BLACK GAK, UPPER LEAF SURFACE, GREEN, FACSALY PICKED.

RANGE. IRR. E VIS. PARAMETER INTORNATION (AT. 42.3 H LONG- 83.7 H ALT. 62.0 DES E = 0000 INNE 03.0 AND 01.0 CAL. 62.7 E = 0000 INNE 03.0 AND 01.0 CLD- 62.8 F H ANT- 001 CEO DFAA DFCE

BLACK CAK, UPPER LEAF SURFACE, GREEN, FRESHLY PICKED.

PARAMETER INFORMATION LAT. 42.3 M LONG. 83.7 M ALT-CATE. 23 03 04 06 11MF 03.0 18.7 SP CM CATE CATE. COOD 11MF 03.0 18.7 SP MIND 01 CLOSE FERP. DEM PT N AVE. 001 CED DFAA DFCE DK SUBJECT CODES SCOSC BGF8D CDA

RANGE-IRR- E VIS-

BLACK DAK, UPPER LEAF SURFACE, GREEN, FRESHLY PICKED.

PARAMETER INFOCMATION (AT 42.3 N (DMC= 83.7 N ALT= 0AYS RE= 000 1N+= 03.0 1A2= 0AYS RE= 000 1N+ 03.0 1A2= 0AYS RE= 00.0 TERP= 0BY PT N AVE= 001 CEO SUBJECT CODES BCDBC BGFBD CDA

PROPERTY PICKED.

SUBJECT CODES

SUBJECT CODES

BOODES

BOODE SEED COA CED DEAA DECE DE ECCA ECCA

PARAMETER IMPORMATION LAI- 42.3 M LONG- 63.7 M ALT- RANGE - 0.118- 25.09 06 THME 03.0 LAZ (N CAZ - 1.88 - 1

8800-415 BLACK GAK, UPPER LEAF SUNFACE, GREEN, PICKED FROM BRANCH THAI MAS REHOVED FROM TREE 4 HOURS PREVIOUSLY.

10000-414 BLACK DAY, UPPER LEAF SURFACE, GREEW, PICKED FROM BRANCH THAT WAS REMOVED FROM TREE 4 HOURS PREVIOUSLY. SUBJECT CODES

SUBJECT CODES

GGDEC GGTBG CDA CED DFAA DFCE OK ECCA ECCB

PARAMETER IMPORMATION

DATE 23 00 60 Time 0.3.0 LATA 42.3 M LOMG= C3.7 M ALT=

DAYS RE= 0000 IN= 0.3.0 LATA CN*

CAS* INP= E

OBY F N AYE* 001

IRP= F

TEMP= OEW PT N AYE* 001

000-414 BLACK DAY, UPPER LEAF SURFACE, CREEN, PICKED FROM BRANCH THAT MAS REROYED FROM TREE 4 WOURS PREVIOUSLY. SUBJECT COJES

SUBJECT COJES

GOBOG GAGEO OF A DE DE DE CCA ECCA ECCA

PARAMETER INFORMATION

DATE 23 09 66 TIME

DATE 23 09 66 TIME

DATE 25 09 66 TIME

THE DATE CATA

TH

RAMGE. IRR. E VIS-ECCA ECCB PARAMETER IMFORMATION
1718 - 23 07 64 FIRE 02.0 147 - 42.3 M LOMG- 83.7 M ALIX0.015 - 20 00 1 148 - 02.0 148 - 02.0
1715 - 1 148 - 02.0 148 01 - 02.0
1715 - 1 148 - 02.0 148 01 - 02.0 SUBJECT CODES BECUC BEFOD CDA CED DFAA DFCE DK

RANGE. IRR. E VIS.

PARAMETER INFORMATION
1015-23 00-06 THE1015-23 00-06 THE1015-25 00-06 THE1015-25 00-06 THE1015-10-06 T

BLACK GAK, UPPER LEAF SURFACE, GREEN, PICKED FROM BRANCH THAT WAS REMOVED FROM TREE 4 MOURS PREVIOUSLY. SUBJECT CODES
SCOBC BGFSD CDA CED DFAB DFCE DK ECCA ECCS

RANGE-IRR-VIS-

ECCA

BLACK DAK, UPPER LEAF SURFACE, SHORTLY AFTER PICKING.

CED OF AA OFCE DX

SUBJECT CODES BGDBC BGFBD CDA

62000000

BGD 390

B20000-421 BLACK DAK, UPPER LEAF SURFACE, SHORTLY AFFER PICKING.
SUBJECT CODES
SUBJECT
SUB

		RANGE.	VIS.
	ECCA		
	£C8	7 W ALT	MIND SP WIND DI* CLD- M AVE 001
DAMED.	š		*10 O
CE, DR	CFCE	Š	100
SURFA	DFAA	IT: 42.	IND SP-
ER LEAF	CED	•	:
BLACK GAK, UPPER LEAF SURFACE, BROWNED.	CDA	MAT FON	1167
BLACK (CODES	3 09 60	8
B20000-422	SUBJECT CODES BGDBC BGFBD	DARAMETE DATE 2	0857= 0000 14= 0.0 0857= 17EF9= 0EW PT

RANGE» I'Re» E VIS»

ECS ECCA

AANGE-IRR- E VIS-

PARAMETER IMFOUNDTION
LATE 23 09 64 TIME - 141- 42.3 N LONG- 83.7 M ALTDAYS RE - 0000 IN- 03.0 142 5 CADASS RE - 0001 TIERP - MIND DI- CLOTERP - DEN PT N ANE- 001

ECCA

BLACK GAK, UPPER LEAF SUMFACE, SHORTLY AFTER PICKING.

CED

SUBJECT CODES BEDBC BGFBD COA

RANGE = IRR = E VIS= ë ë BLACK GAK, UPPER LEAF SURFACE, AFTER 16 MAMS EXPOSURE TO SUMLIGHT AND 24 HOURS GUTDOORS. BLACK DAK, UPPER LEAF SURFACE, AFTER 10 HOURS EXPOSURE TO SUNLIGHT AND 24 HOURS DUTDOORS. €CC. £00 PARAMETER INFORMATION 147-42.3 M LONG- 83.7 M ALTDATE 25 000 6 179: 03.0 142 5 CF- CA- CA2
DATE 25 000 1715P- MIND 01- 7.10TERP- DEM PI N ARE- 001 ECB WAVELENGTH (MICRONS) S. MAYELENGTH (MICRONS) € š DFAA DFCE CED DFAA DFCE SUBJECT CODES
BGDBC BGFBD CDA CED SUBJECT CODES BGDBC BGFBD CDA аеглестансе В РЕЯСЕИТ 5 L20000-432 100 8 ឧ BSFLECTHACE тиээлэч Ә 8 200 8 RANGE. IRR. E VIS. RANGE = IRR = E VIS= ë. BLACK DAK, UPPER LEAF SURFACE, AFTER 10 HOURS EXPOSURE TO SUNLIGHT AND 24 HOURS OUTDOORS. BLACK CAK, UPPER LEAF SURFACE, AFTER 10 HOURS EXPOSURE TO SUNLIGHT AND 24 HOURS OUTDOORS. ECB ECCA PARAMETER INFORMATION LAT-42.3 M LONG- 83.7 M ALT0A.5 RE-000 1M-03.0 1A2- 87.0 CM-05.5 LAZ05.5 RE-000 1TEMP- M HNO SP- B-ND DITEMP- 0EW PT M ARC-0.1 PARAMETER INFORMATION

ATTE 23 0906 INF 03.0 1A2 CR CA2

DAYS RE 0000 INF 03.0 1A2 SP CR CA2

ENST. END TIEFP DEW PT NAME 001 NNO DIA CLO-. MAYELENGTH (MICRONS) S. WAVELENGTH (MICRONS) × DFAA DFCE CED DFAA DFCE CED S'9JECT COES BEOSC BGFBD COA SUBJECT CODES BGDBC BGFBD CDA 95нсеит вегсетансе % & B28600-431 8 PERCENT REFLECTANCE & 8 8

೪

8

8

BGD 393

WASHINGTON TO THE

5.

š

RANGE. IRR. E VIS.

PARAMETER INFORMATION
LATE - 23 09 64 TIME - LATE - 42.3 M LONG - 83.7 M ALTEDAYS RE- 0000 INF - 00.0 DAS - CH - CAZCRST - TEMP - NIND SP - WIND DI - CLOTEMP - DEW PT N AVE- 001

CEO

SLBJECT CORES BCDBC BG*6D COA

ECC.

BLACK GAK, UPPER LEAF SURFACE, AFTER 18 HOURS EXPOSURE TO SURLIGHT AND 24 HOURS DUTPJORS.

KANGE. IRR. VIS.

PARAMETER INFORMATION
DAYS RE- 0000 IN- 00.0 14.2.3 H | DING- 63.7 H ALTDAYS RE- 0000 IN- 03.0 14.2. Ch- CA2CBSITEMP- DEW PI N AVE- 001 MIND DI- CLD-

...

. HRVELENGTH(MICRONS)

8

BLACK CAK. UPPER LEAF SUAFACE, AFTER 10 MO'NS EXPOSURE Surlight and 24 Hours dutdoors.

CED DFAA DFCE

MODG-437 BLACK DAK, UPPER LEAF SIRFACE, AFTER 10 MAURS EXPOSURE TO SURLIGHT AND 24 HOURS DUTDODRS.

SUBJECT CODES

9CDGC BCFBD COA CID E) AA DFCE DK ECB ECCA

PARAMETER INFORMATION

DATE 23 09 64 FIRE

DAYS RE 0000 [He 03.0 ML ONG 83.7 M AIT: RANGEDAYS RE 0000 [He 03.0 ML ONG ML ON

828060-439 BLACK DAK, UPPER LEAF SURFACE, AFTER 10 HOURS EXPOSURE TO SUBLIGHT AND 24 HOURS DUTDDORS.

SUBJECT CORES

#GOBC BGFBD CDA CED DFAA DFCE DK ECCA ECCB
PARAMERR IMPORANTION
DATE 24 00 46 TINF. LAT 42.3 M LONG* 83.7 M ALT*
DAYS RE 0001 IN* 03.0 IA? CA* IR*
0055
IEMP* DEW PT N AVE* 001
IND D1* CLO* VIS*
IEMP*

K. . WINDER KENDERSTER STREET WAS A STREET OF THE STREET O

20000-436 84.4CK DAR, UPPER LEAF SARFACE, AFTER 10 -IDURS EXPOSUME TO SUMLIGHT AND 24 HOURS OUTDOORS.

SUBJECT CODES

SCHOL CODES

SCHOL SCHOL CDA CED DFAA DFCE DK ECD LCCA

PARAMETER INFORMATION

DAYS RE OCOO THE CALL AZ.3 N LDMG 83.7 M ALT RANGE CALL

DAYS RE OCOO THE CALL AND SP N WIND SP CALL

TEMP DE N N AVE OLD WIND SP N WIND SP CLD VIS N TO CALL

TEMP DE N N AVE OLD WIND SP N TO CALL TRANGE CALL

TEMP DE N N AVE OLD WIND SP N TO CALL TRANGE CALL TEMP CALL TRANGE CALL TEMP CALL TRANGE CALL TRAN

828000-440 BLACK DAK, UPPER LEAF SURFACE, AFTER 10 MOURS EXPOSURE TO SUMLIGHT AND 24 HOURS OUTDOORS.

O

M.

820000-472 DAK LEAF, BROWN WITH TRACES OF CREEN, LOWER LEAF SURFACE.

ECAD	RANGE" IRR" E VIS"
¥	
9740	ALT. CAZ
DFAA	÷ .
CED	CONG- CN- WIND
BF CDA	LAT* O 1AZ* WIND SP* N AVE* 001
ECBBF	÷
8 GF E	TINE TTENP
CODES BCFBC ECCA	X 0
SUBJECT C BGDBC ECB	PARAKETER INFORMATION DATE= 25 10 66 TIME* DAYS RE= TRMP 03.0 DBST= TEMP*

B2000-474 GAK LEAF, BROWN WITH TRACES OF GREEN, LOWER LEAF SURFACE.

ECAD	RANGE B IRR C VIS B
ş	
DFCE	ALT. CAZ. CLD.
DFAA	
CEO	CN- CN- KIND
COA	LAT* IAZ* WIND SP= N AVE* 001
ECBAF	3
8 GFE	TIME- IN- TIANE-
CODES BGFBC ECCA	20 PI 60 PI
SUBJECT BGDBC ECB	PARAMETER INFORMATION DATE: 25 IG 65 TIME: DAYS RE: TY-MP 0

AND THE STATE OF STATE OF STATE OF STATES.

ECAD	RANSE ** IRR* VIS*
ž	
DFCE	ALT- CAZ- CLD-
DFAA	0 01-
CEO	LONG. Ch.
C0 A	LAT# IAZ# HIND SP# N AVF# 001
ECBBF	
BGFE	HATION TIME- IN- TTEMP- OEW PT
CODES BGFBO ECCA	R 1NFOR
SUBJECT RCDBC ECB	PARAKETER INFORMATION DATE= 25 10 66 TIME= DAYS RE= TIME= OBST* TEMP= TEMP=

820000-543 RED DAK, OLD, UPPER LEAF STAFACE.

BGD 399

ECCS	RANGE IRR VIS
ECCA	
ž	# ALT- CAZ- CLD-
DFCE	83.8
DF A.	N LONG.
C£0	LAT= 42.3 N LONG= 83.8 N ALT= 1AZ= NINO SP= NINO DI= CLD= N AVE= 001
¥00	
8GFE	TIME.
96660	1 INFOR
8C08C 8GF80	PARAMETER INFORMATION DATE 18 01 67 TIME 93.0 DAYS RE 0002 IN 03.0 GBSI 1 FEMP 1
	_

CED DFAA DFCE CDA

RANGE. IRR. E VIS. TIME. LAT. 42.3 N LONG. 63.6 W ALT. 17ME. 18.7 CAZ. TEMP. WIND SP. MIND DI. CLC. DEW PT N AVE. 001

1. S. WPVELENGTH(MICRONS)

RANGE. IRR: VIS-RED DAK LEAF, UPPER LEAF SURFACE. SUBJECT CODES

BODIC BOFOD COA CED
PARAMETER HFORMATION
DATE: 2 01 67 TIME 1A
DAYS RE 0000 116 03.0 IA
ERNP 0551 06 03.0 IA

	w
ECCB	RANGE = URB = VIS =
ECCA	
ECB	ALT- CAZ- CLO-
ă	
DFCE	TONG.
DFAA	LAT= 112= NIND SP= N AVE= 001
CED	1615
C0	TIME IN TIEFF OFW P
CODES	1NFOR 09 66 0000
SUBJECT CI	PARAMETER INFORMATION DATE: 22 09 66 TIME: 1615 DAYS RE: 0C00 1N= 03.0 0851: TEMP: DFW PT

ž.

. 0

S. HAVELENGTH (MICRONS)

'n

ECC	RANGE: 18R: E
ECCA	
£08	ALT. CAZ. CLO:
ĕ	
DFCE	PAIND C
DFAA	1 LAT* 1 1A2* N 1VD SP*
9	24
CDA	TINE IN TERP
BGFBC	1NFOR 09 66 0000
SUBJECT CODES BGDUA BGFBC	PARAMETER INFORMATION DATE= 22 09 66 TIME= 16 DAYS RE= 0000 IN= 03 D&ST= TEMP= TEMP=

MAPLE (A. SACHARUM), UPPER LEAF SURFACE, BRILLIANT RED DUE To seatomal color Chamee, freshly picked. B2000-379

ECCA š SUBJECT CODES
BGOUA BG.NC BGFF FCBBE CDA CED DFAA
ECCB

RANGE" IRR" E VIS" ALT. PARAMETER INFORMATION

DAYS RE- 0000 IN- 03.0 JAZ
DAS TERMS IN OBS
TERMS IN AVE. 001

RANGE= IRR= VIS= ECCA MAPLE IA. SACHARUM), UPPER LEAF SWIFACE, GRILLIAWY RED OUE TJ SEASOWAL COLOR CHANGE, FRESHLY PICKED. ALT-CA2-CL0-CED OFAA DFC= SUD.ECT CODES 8GDUA BGF8D BGFE ECBBE CDA ECCB асе се стансе В тиээлэч Ә 9 8 8

MAPLE (A. SACHARUM), UPPER LEAF SURFACE, BRILLIANY RED DUE To Seasonal Color Chamge, Freshly Picked, 820000-380

ECB	RANGE. IRR: VIS:
CAD	
ă	647= CA2= CLD=
DFCE	
DFAA	LONG. CN.
CED	LAT. 1A7. Wind SP. N Ave 001
CDA	03.0
ECBBE	TIME TIME THE PP
:00ES 8GF 6D	18 FOR 09 6 6 0000
SUBJECT CODES BGDUA BGFBD ECCA	PARAMETER INFORMATION DATE: 22 09 e6 TARE DAYS RE 0000 IN 03.0 DST TEPP: TEPP: DEW PT

RANGE-IRR. MAPLE (A. SACHAMIM), LOUER LEAF SURFACE, NEAR BASE OF LEAF, Brilliant Red due to Seaschal Color Change, Freshly Picked. AL7= CA2= CL0= DFCE OFAA CEO SUBJECT CODES BGDUA BGFBC ECBBE CDA ECCA

OM (G. VELEUTIMA), LOWER LEM SURFICE, GRZEM, PRESHLY PICK-ED. 2 44.7 C42.

	ECAD	RANGE - IRR - VIS -
	ž.	ALT. CAZ- CLD-
	DFAA DFCE	
	_	LONG. CN. WIND DI.
SURFACE	CDA CED	LAT= 1AZ= WIND SP= N AVE= 001
PER LEAF	ECBBE C	1A7= 3.0 1A2= N AV
IPLE, UP	GFE	(ATION TIRE= 1N= 0 TTEMP= DEW PT
SUGAR MAPLE, UPPER LEAF SURFACE.	CODES BGFBO ECCA	ARAHETER INFORMATION OATE 25 10 66 TIME 03.0 OAYS RE TEMP TEMP DEW PT
694-000021	SUBJECT CODES BGDUA BGFBO B ECB ECCA	PARAMETI DATE DAYS RI GBST= TEMP=

RANSE. IRR. E VI.. RANGE= 18R= VIS= ECB ECCA ALT: CAZ: CLO: PARAMETER INFORMATION

ANTE 10 01 07 IME: 03.0 142 42.3 H LONG. 83.0 H ALTDAYS RE- 0002 IME: 03.0 142 50.0 CH.
OSSS.** INTO 01 CL.D.
FIRPA DEF 91 H ANTE 901 #20000-544 RED CECAR FOLIAGE, MATURE, SHORTLY AFTER PICKING. S. HAYELENGTH (MICRONS) . S. MAYELENGTH (MICRONS) SUBJECT CODES BGDXA DGFBC CDA CED DFAA OFCE DK SUBJECT CODES HGD*A BGFA CDA 82000n-539 RED CEDAR. тиээяэч 2 PEFLECTANCE S ээмгээлээ В тиээлэч 5 8 100 80 100 શ RANGE. IRK. E VIS. ELCA <u>:</u> ALT: CA2: CL0: PARAMETER INFORMATION
DISC. 23 01 67 TIME 03.0 1AZ + 42.4 M LONG. 83.9 W ALTDISC. 25 02 05 TIME 03.0 1AZ 50 CM CARDISC. 25 05 TIME 03.0 1AZ 50 TIME 05.0 . HAYELENGTH (MICRONS) I. S. MAYELENGTH (MICRONS) OFAA PARAMETER IMPORMATION LAT. LONG-DATE: \$1 0.6 11HE: 03.0 AZ. 0651- TIERP: CH-TEMP: 0EW PT WING SP- WIND DI-CED 820000-549 RED CEDAR, JUNIPERIS VIRGINIANA. SUBJECT CODES
BCOUA BGFBC BGFE ECBBE CDA
ECB ECCA ECAC REFLECTANCE 8 PERCENT 5 5 8 эрият аегсетаисе В 5 8 R 8

SUGAR MAPLE, LOWER LEAF SURFACE.

					L							
	RANGE- IRE- VIS-			-	1		Ϊ					_
	2=2		├─	_	\vdash	-	 	_				-
_				 	_			_	-	-		Г
ECCS			 		1	-	 					┢
	CA2-				┼──	-	-		_	 	_	
E CC	422		-	┢	├		 					-
_			\vdash	╁	⊢		├	-	├		 	-
ă	LONG. CR. VIND DI.		├-	-	├	├-	-		-			-
	9 9				⊢	├	-			├		-
DFCE	252				⊢	-	-	-	-	_	_	=
	្ទ	•	L_	 	1	<u> </u>	ļ	محا	=			L
DFAA				L_		<u> </u>	<u>L</u>	1		<u> </u>		L
ā	LAT-			l		<u> </u>		<u> </u>			<u></u>	L
	< <				$\overline{}$	T	T		Τ	1-	1	
9			1	1	1	1	1		l	l		Ł
633	9			-	┼-	\vdash	\vdash	-	_		-	
	9		_				-					
	9											
	9											
	9											
	9											
	9		100		28	I NH!	3		\$		8	
SUGJECT CODES HGDXA BGFBC COA CED	PARAMETER INFORMATION DATE: 30 01 6" THE. DAYS RE: 0000 14" 00.0 14 0851: TEMP: H		100		28	TANCE	SS 23743	N 1	S S S S S S S S S S S S S S S S S S S	34	8	
	9		100		28	TANCE	SS 03743	38 1	S S S S S S S S S S S S S S S S S S S	34	8	

		w •
		RANGE
	ECCB	
PICKING.	ECCA	ALT. CAZ- CLD-
AFTER	š	
HOR TL.Y	DFCE	CON- CON- WIND
ARD CEDAR FOLIAGE, MATURE, SHORTLY AFTER PICKING.	DFAA	LAT= 1AZ* WING SP= N AVE= 001
IAGE,	ÇE	8.1
IR FOL	Š	1186- 118- 18- 176- 068-P
EN CEDI	ODES BGF BD	1NF0R1 01 47 0000
•	SUBJECT CODES BGDXA BGFBD LDA CEE	ARAMETER INFORMATION DATE 30 01 47 TINE - DAYS RE 0000 IN 03.0 1 06851

ESCA

DFAA DFCE

SGFC CDA CE7

RED SPRUCE, MEEDLES.

820000-546

RANGE. IOR. & VIS.

ECCA

B20011-331 4 FRESH SYCAMORE IF NAME	HE HIW	PERCENT REFLECTIBNCE
Bedudi-325 Sycanore Leaves, Freshly Picked, 4 Leaves Thick, Upper Leaf Surface,	SUBJECT CODES #GOVA #GGEOD CTA C_D DFAA PFCE DK ECB ECCA #ANDER INCOMATILA DATE 00 08 47 TIME DATE 00 08 TIME DATE 00	PERCENT REFLECTRINCE PERCENT REFLECTRINCE

RANCE... IRR. S

ECCA ECCS

001

PERCENT REFLECTRINCE

8

RANGE. 1RR. E VIS. SUBJECT CODES
SUBJECT CODES
SUBJECT CODES
SUBJECT CODES
SUBJECT SUBJEC HRVELENGTH (MICRONS) 8 РЕВСЕИТ РЕГІЕСТИНСЕ В & 8 8 820000-448

0

A CONTRACTOR OF THE STATE OF TH

RANGE. IRR. E VIS.

ALT. CA2-CLD

CRAY-CREEN LAYA BASALT. SAMPLE NO. 261.

SUBJECT CODES BFHD CDA CED

. .

RANGE = IRR = E VIS =

COURSE GRAINED GRANITE. AN EGNEBUS MUCK CONFOSED OF LAME CRYSTALS OF QUARTZ, FELDSPAR, AND MOKENZENCO. SAMPLE MO. 254.

SUBJECT CODES BFHD ECOBE CDA DFAA DFCE DK ECCA

9ЕЯСЕИТ ЯЕГЬЕСТЯИСЕ В 5

8

001

<u>.</u>

I. S. WAVELENGTH(MICPONS)

MOOD-452 GRAY-PIRK CHERT, A CHENICALY PRECIPITATED SEBINENTARY B. OF SILICON DIDXIDE, SAMPLE NO. 269.

	RANGE E IRR E VIS =
ECCA	
EC	A. 7. CA2. CLD:
ECAD	LONG- CN- HIND OI-
ž	
DFCE	LAT= 0 1AZ= WIND SP= N AVE= 001
OFAA	<i>:</i>
CEO	FM / 1 10 N F 1 1 M E - 1 1 K E M P T 0 E W P T
CODES	12 6 12 6 14 14 14 14 14 14 14 14 14 14 14 14 14
SUBJECT	PARAMETER IAFORMATION CATE 16 12 66 TIME* CATE 16 12 66 TIME* CATE 16 12 66 TIME* CATE 16 16 16 16 16 16 16 16 16 16 16 16 16

DOGG-494 LINESTONE, MEATHERED.

	RANGE. IRR. VIS.
ECCA	
803	A.T. CA?
ECAD	LONG. KIND DI=
ă	
DFCE	LAT* IAZ* WIND SP= N AVE* 001
DFAA	2
CED	A TIME IN TERMS
CODES	2 1 2 6 12 6
SUBJECT CODES BFHD CDA	PARAMETER INFORMATION DATE 16 12 66 TIME* OAYS FE** TTEMP** TEMP** DEW PT

GRAY-PINK CHERT. A CHEMICALLY PRECIPITATED SE OF SILICON DIOXIDE. SAMPLE MG. 248.

	RANGE IRR: VIS:
ECCA	ALT. CA2- CLD:
ECB	LONG. CN- WIND DI-
ž	
JFCE	LAT= 0 IAZ= NIND SP= N AVE= 001
DFAA	03.0
CED	6 TIME- IN- TTEMP
00 P S	17 6
BFRD	PARAMETER INFORMATION DATE: 1' 12 66 TIME: L DAYS RE: 1N: 03.0 I 0857: TEMP: M TEMP: N

100-495 LIMESTONE, PEATHERED.

	RANGER 19R# VIS*
FCCA	247. 0.05.
ECS	LONG- CN- LIND DI-
ă	
DFCE	LAT= IAZ= WIND SP= N AVE= 001
DFAA	3
CED	AMATION 5 TIME= 1N* TTEMP
CODES	6 12 6
SUBJECT CODES BFHD CDA	PARAMETER INFORMATION DATE= 15 12 66 TIME= DAYS RE= 1N= 03 085T= TEMP= DEM PT

ECS ECCA ALT: CA2: CL0: ECAD 820000-497 GABBAG. SUBJECT CODES 6FHD COA CED DFAA DFCE DK

RANSE" IRR* E VIS*

ALT-CA2-CLD-

901

2

STATE STATE STATE STATE STATE STATE SUBJECT CODES SUBJECT CODES SEND COA CED DEAR DECE DX

820000-499 SILTSTONE.

BFHD 9

RANGE-IRR. E VIS-ECB ECCA ALT. CAZ. CLD. SUBJECT CODES

9FHO CDA CED DFAA DF.CE DK ECAD

9AAKETER INFORMATION

DATE 16 12 66 ITHE 14.1 LONG
DATE 16 12 66 ITHE 0.3 LATE CAN

DATE 16 12 66 ITHE 0.3 LATE

TEMP. CEN PT N AVE: 001

828800-498 CHERT.

I. S. MAYELENGTH (MICRONS)

РЕЯСЕИТ ВЕРГЕСТВИСЕ В 5

8

RANGE. IRR. E VIS. SUBJECT CODES
OFFID OF OF STATE OF CODE CODE
OFFID CODE
OFFID OF STATE
OFFID OF STATE
OFFID OF STATE
OFFID OF STATE
OFFID OFFID OFFID OFFID
OFFID OFFID OFFID * 250 C647 PARAMETER INFORKATION LAT. 10NG-0ATE 10 12 60 TIME 03.0 1A2 CH. 0AYS R. TIEMS ATMO 50 MINO 50 MINO 50 TEMP. OSL

. S. WAYELENGTH (MICRONS)

ALT: CA2: CLD:

ECB ECCA

SLBJECT CODES BFHC CDA CEO DFAA DFCE DX ECAD

DIGRITE, WEATHERED.

100

8

828000-506

PERCENT KEFLECTANCE

R

8

80

MENDER CONTROL OF THE PROPERTY OF THE PROPERTY

. 0

. MAYELENGTH (MICRONS)

820000-509 FELSITE, VEINED BY QUARTZ. 100 RANGE. IRR: E VIS: ECB ECCA A. 7. CA2: #30400-508 SILTSTONE, SV#JECT CODES 6FHC CCA C50 CFAA DFCE DK 8

THE CONTRACTOR OF THE PROPERTY OF THE PROPERTY

5 RADAR (ACTIVE MICROWAVE) DATA

5.1. INTRODUCTION

Each radar data curve has been digitized by the same technique as used for the optical data, and the curves are reproduced on uniform grids. Normalized radar cross section σ_0 in decibels is plotted along the ordinate, while the abscissa represents the angle measured from the normal (aspect angle) in degrees. The header information for each curve, which includes the curve's identification number, title, a coded designation for the type of terrain covered, and parameter information, is also supplied by computer.

A numerical code is used to identify the radar curves. The number of digits in the code is variable, depending on the number of descriptors required for a particular target or background. Table III contains the key for interpreting this code. The first digit, always a 3, identifies the curve as being radar data. The second digit, either a 1, 2, or 3, indicates that the curve is for a background, target, or combination of terrain and target, respectively. Third, fourth, and fifth digits, when used, represent successively finer subdivisions of the material class involved. Thus, 31312 represents clay, a subset of soil (3131), which in turn is a subset of terrain (313), which is a background material (31) being measured by radar (3). Table III also indicates which material classes require still additional descriptors. These are designated by the letters A, B, C, C_1 , C_2 , C_3 , etc., as defined in table IV. Table V explains the parameter information appearing in the curve header. In section 5.2 the radar data are grouped according to the first four digits of the curve identification number.

TABLE III. RADAR DATA NUMERICAL CODE

31	BACKGROUND AND TERRAIN
311	Sky
312	H ₂ O States
3122 *C1C2C3C4	Ice-
3123 🗆 AB	Water
313	Terrain
3131	Soil
$31311C_{1}C_{2}C_{3}C_{4}$	Sand
31312C ₁ C ₂ C ₃ C ₄	Clay
31313C ₁ C ₂ C ₃ C ₄	Loam, cultivated
31314C ₁ C ₂ C ₃ C ₄	Loam, uncultivated
31315C ₁ C ₂ C ₃ C ₄	Rock
31316C ₁ C ₂ C ₃ C ₄	Salt
3132	Trees
$^{31321}C_{1}^{}C_{2}^{}C_{3}^{}C_{4}^{}$	Leaves, laboratory sample
$31322C_1C_2C_3C_4$	Bark, laboratory sample
$31323C_1C_2C_3C_4$	Broad-leaf trees
$31324C_1C_2C_3C_4$	Narrow-leaf trees
$31325C_1C_2C_3C_4$	Broad-leaf shrubs
$31326C_1C_2C_3C_4$	Narrow-leaf shrubs
3133	Crops
$31331C_1C_2C_3C_4$	Grain
$31332C_1C_2C_3C_4$	Broad-leaf crops
$31333C_1C_2C_3C_4$	Grass
$31334C_1C_2C_3C_4$	Mosses, ferns, and fungi
3134 XC $_1$ C $_2$ C $_3$ C $_4$	Forest, where X is the percentage of cover
$3135 \square C_1 C_2 C_3 C_4$	Farmland (including farm buildings, etc.)
$3136 \square C_1 C_2 C_3 C_4$	Marsh
$3137 \square C_1 C_2 C_3 C_4$	Desert
314	Space
315	Combinations of Ice, H ₂ O, and Land
$^{3151AC}_{1}^{}_{C_{2}}^{}_{C_{3}}^{}_{C_{4}}^{}_{1}$	Ice and H ₂ O
$3152AC_1C_2C_3C_4$	H ₂ O and land
$3153 \square C_1 C_2 C_5 C_4 C_2$	Ice and land
3154AC ₁ C ₂ C ₃ C ₄ C ₂₁	Ice, H ₂ O, and land

^{*}The symbol [indicates a blank space.

TABLE III. RADAR DATA NUMERICAL CODE (Continued)

32	TARGET
320	Composite areas
$3201 \square C_1 C_2 C_3 C_4$	Industrial area
3202 D C C C C C C C 4	Residential area
3203 D C ₁ C ₂ C ₃ C ₄	Rural town area
321	Buildings and building materials
3211	Materials
$32111C_{1}C_{2}C_{3}C_{4}$	Painted lumber
32112C ₁ C ₂ C ₃ C ₄	Brick and tile
32113C ₁ C ₂ C ₃ C ₄	Asphalt
32114C ₁ C ₂ C ₃ C ₄	Glass
$3212 \square C_1 C_2 C_3 C_4$	Concrete buildings
$3213 \square C_1 C_2 C_3 C_4$	Frame buildings
$3214 \square C_1 C_2 C_3 C_4$	Camouflage, decoys, and temporary structures
$3215 \square C_1 C_2 C_3 C_4$	Steel buildings
$322 \square \square C_1 \square \square C_4$	Personnel
$323 \square \square C_1 \square \square C_4$	Surface vehicles
3231 🗆 C ₁ 🗆 🗆 C ₄	Trucks, armor, and painted vehicles
$324 \square \square C_1 \square \square C_4$	Aircraft
$325 \square \square C_1 \square \square C_4$	Missiles
$328 \square \square C_1 C_2 C_3 C_4$	Airfields
$3290\mathrm{DC_1C_2C_3C_4}$	Pavement, where D is
	(1) Asphalt (4) Concrete (7) Cinder and gravel (2) Brick (5) Gravel (8) Concrete and gravel (3) Cinder (6) Stone (9) Cinder and dirt
33	COMBINATIONS OF TERRAIN AND TARGETS
$3301\square\mathrm{C_1C_2C_3C_4}$	Orchard with paved highway
3302 DC1C2C3C4	Desert, highway, and bridges
$^{3303\mathrm{AC_1}}\mathrm{C_2}_\mathrm{L}^\mathrm{C_3}\mathrm{C_4}^\mathrm{C_2}\mathrm{C_1}$	Water, ice, land, and small buildings

TO THE TOTAL OF THE PROPERTY O

TABLE IV. SCALES OF ADDITIONAL DESCRIPTORS FOR RADAR DATA

Scale A: Douglas Sea Scale

Code No.	Description	Wave Height (ft)	Wind Speed (knots)
0	Calm	0	0
1	Smooth	<1	<6.5
2	Slight	1 to 3	6.5 to 12
3	Moderate	3 to 5	12 to 14.5
4	Rough	5 to 8	14.5 to 18
5	Very rough	8 to 12	18 to 23
6	High	12 to 20	23 to 30
7	Very high	20 to 40	30 to 40
8	Mountainous	>40	>40
9	Confused		

Scale B: Wind-Direction Scale

1 indicates antenna direction.

Scale C_1 : Season When Measurements Taken

- Summer: June, July, August
- Fail: September, October, November
- Winter: December, January, February
- Spring: March, April, May

Scale C2: Small-Scale Roughness

- Roughness = $<0.01\lambda$
- Roughness = 0.01λ to 0.05λ
- Roughness = 0.05λ to 0.10λ 3
- Roughness = 0.10λ to 0.50λ
- Roughness = 0.50λ to 1.00λ
- Roughness = 1.00λ to 5.00λ
- Roughness = 5.00λ to 10.00λ Roughness = 10.00λ to 50.00λ
- Roughness = $> 50.00\lambda$

Scale C3: Large-Scale Roughness

- Flat
- Rolling 2
- Hilly
- Mountainous

Scale C4: Wetness or Snow

- Dry ground
- Wet ground (rain)
- Partially flooded or swampy
- Snow, <3λ deep Snow, 3 to 10λ deep

- Snow, 10 to 20λ deep Snow, 20 to 50λ deep Snow, 50 to 100\(\lambda\) deep
- Snow, >100\(\lambda\) deep

August 1968

Minimum and the same

TABLE V. RADAR DATA PARAMETERS

TABLE V. RADAR DATA PARAMETERS					
BAND	BAND Frequency interval of measurement coded as follows:				
	B Low frequency P 0.225 to 0.390 GHz L 0.390 to 1.55 S 1.55 to 3.90 C 3.90 to 6.20 X 6.20 to 10.9 KU 10.9 to 20.9 KA 20.9 to 36.0 Q 36.0 to 46.0 V 46.0 to 56.0				
FREQ	Exact frequency of measurement (gigahertz)				
POL	Polarization of transmitted signal and polarization of received signal, coded as follows:				
	VV Vertical × vertical HV Horizontal × vertical RL Right circular × left circular RR Right circular × right circular AV Average HH Horizontal × horizontal VH Vertical × horizontal LR Left circular × right circular LL Left circular × left circular				
LAT	Latitude of measurement				
LONG	Longitude of measurement				
DATE	Date of measurement (day, month, and year)				
RADAR TYPE	Coded as follows:				
	ACC Airborne cw, coherent ACN Airborne cw, noncoherent APC Airborne pulse, coherent APN Airborne pulse, noncoherent GCC Ground cw, coherent GCN Ground cw, noncoherent GPC Ground pulse, coherent GPN Ground pulse, noncoherent				
BEAMWIDTH	Beamwidth between half-power points (degrees)				
RANGE	Range in thousands of feet followed by an R for slant range or an H for altitude.				
AREA	Total sampling area per average point (square feet)				
AVERAGING	Degree of averaging, scaled from 1 (instantaneous) to 9 (very heavily averaged)				
VARIANCE	Variance about curves (decibels)				
August 1968					

6 PASSIVE MICROWAVE DATA

6.1. INTRODUCTION

MONTH

DAY

YEAR

The passive microwave data in this compilation are apparent temperatures (antenna or target) as a function of aspect or depression angle. These data are processed in a manner similar to that used for the optical data in section 4, i.e., each curve is digitized and assigned subject codes (table I), and the parameter information describing the experimental conditions (see table VI) is listed. However, the system used to process the microwave data is actually an expanded version of that used with the optical data. It has been designed to handle not only passive microwave . .a, but also, eventually, both directional and bidirectional reflectance data. Thus, many of the parameters defined in table VI do not apply to the data now in this section, but were included for future data accessions.

TABLE VI. GENERALIZED (PASSIVE MICROWAVE) DATA PARAMETERS

TIME

Month of measurement

Day of measurement Year of measurement

TIME	Time of measurement (24-hour clock), Greenwich Standard Time (GMT)
	TARGET
LAT	Latitude (degrees) of measurement (field measurement) or of location at which specimen was collected (laboratory measurement)
LATNS	Latitude, North (N) or South (S)
LONG	Longitude (degrees) of measurement or of location at which specimen was collected, as with LAT
LONG EW	Longitude, East (E) or West (W)
TARALT	Altitude of target above ground (kilometers)
TARZEN	Zenith angle (degrees) of target normal with respect to vertical
TARAZ	Azimuth angle (degrees) of target normal with respect to a $\phi = 0$ reference line defined for a given target
TARUNF	Surface uniformity coded as UNIFRM (uniform) or NONUNF (nonuniform); in radar applications, use subject codes from table I or the Douglas Sea Scale codes (table IV).
TAROPQ	Target opaqueness coded as OPAQUE (opaque), TRANSP (transparent), or TRANSL (translucent)
TARTEM	Target temperature (degrees Kelvin)
TH2OES	Qualitative estimate of free water content coded as DRY, DAMP, WET or PTFL (partially 1 coded). Indicate snow under TARCS1 or TARCS2.
TH2OME	Quantitative measure (percent) of free water content; W indicates percentage by weight, V percentage by volume
HRSREM	Number of hours sample has been removed from its natural environment

TABLE VI. GENERALIZED (PASSIVE MICROWAVE) DATA PARAMETERS (Continued)

TARCS1 Target

Target coating or substrate 1 coded using up to a five-letter code from the Target Signature Subject-Code List (table I) preceded by a C (coating) or S (substrate); snow coatings are indicated using the following letter code at the end of subject code BHBD:

A Incomplete cover

B Depth 0 to 5 cm

C Depth 5 to 20 cm

D Depth over 20 cm

TARCS2

Target coating or substrate 2 (see TARSC1)

TARCON

Target contaminant coded using up to a six-letter subject code from

table I

TARSRD TARDCN Availability of data on the target's surface roughness, coded by AVAIL Availability of the target's dielectric constant, coded by DC; its index of

refraction, coded by N; or both, coded by BOTH

TARINF

Availability of other descriptive information about the target, coded by

AVAIL

BACKGROUND

BKGTYP	Predominant background type coded using up to a six-letter subject code from table I
BKGUNF	Background uniformity (see TARUNF)
BKGOPQ	Background opaqueness (see TAROPQ)
BKGTEM	Background temperature (see TARTEM)
BH2OES	Qualitative estimate of free water content (see TH2OES)
BH2OME	Quantitative measure of free water content (see TH2OME)
BKGCS1	Background coating or substrate 1 (see TARCS1)
BKGCS2	Background coating or substrate 2 (see TARCS2)
BKGCON	Background contaminant (see TARCON)
BKGSRD	Availability of data on the background's surface roughness (see TARSRD)
BKGDCN	Availability of the backgrounds dielectric constant, index of refraction, or both (see TARDCN)
BKGINF	Availability of other descriptive information about the background (see TARINF)

METEOROLOGY

Note: These parameters are applicable to field experiments only.

AIRTEM

Ambient or air temperature (OK)

BARPRS

Barometric pressure (millibars)

RELHUM

Relative humidity
Visibility (kilometers)

VISBIL WINDSP

Wind speed (miles per hour)

WINDSP

Wind direction (N, NNE, NE, ENE, etc.); for radar, indicate relative bearing with 00 being from target to receiver and angle measured

counterclockwise

OBST

Obstructions in the air preventing a clear view of the target, coded as NCNE, FOG, DRIZZL, RAIN, SNOW, HAZE, SMOKE, DUST, or OTHER

PRAMT

Ground accumulation of precipitation in the preceding 24-hour period

(centimeters)

CLDCOV

Total cloud cover (percent)

August 1968

TABLE VI. GENERALIZED (PASSIVE MICROWAVE) DATA PARAMETERS (Concluded)

SOURCE

Note: These parameters are not applicable to passive-microwave measurement systems.

SORTYP	Type of source coded using table I
SGAMMA	The real part of the coherence function of the source, i.e., the visibility function or $ \gamma_0 $; for radar, 1.0 = coherent, 0.0 = noncoherent
CORROL	
SORPOL	Type of source polarization coded using table I
SORDP	Degree of polarization at the source (percent)
ZENINC	Zenith angle of incidence (degrees)
AZINC	Azimuth angle of incidence (degrees)
SRANGE	Range (distance) from source to target (kilometers)
SORINF	Availability of other descriptive information about the source, coded by

AVAIL

RECEIVER

MINST	Measuring instrument coded using table I
ROMEGA	Mean reflected solid angle (steradians)
RRANGE	Range from target to receiver (kilometers)
ZENOBS	Zenith angle of observation (degrees)
AZOBS	Azimuth angle of observation (degrees)
RECPOL	Type of receiver polarization coded using table I
LAMDA	Operating center wavelength λ_c (centimeters)
IFBAND	Intermediate frequency bandwidth or spectral resolution expressed as $\Delta \lambda / \lambda_c$
TIMEC	Time constant for integration time of the receiver (seconds)
INSENS	Availability of data on instrument sensitivity, coded by AVAIL
SYSACC	System accuracy expressed in units of the dependent variable
ANT3DB	3-db antenna beamwidth (degrees)
AVESLL	Average side-lobe level of the antenna (decibels)
RECINF	Availability of other descriptive information about the receiver, coded by AVAIL

GENERAL

PLATF	Experimental platform coded using table I
RELABS*	Dependent variable is indicated as relative (REL) or absolute (ABS)
S'TAND	Standard used coded using table I
NAVE	Number of curves or measurements averaged to make up this curve
VARNCE	Variance about curves in units of ordinate dimensions

^{*}If ABS (absolute) appears along with an entry for STAND (standard), the measurement was originally done on a relative basis using the indicated standard and later converted to absolute values.

There is also a major difference in printed-out format between the curve headers for the optical data and those for the microwave data in this section. For the optical data, all the parameter designations are printed as part of each header whether or not there is specific information on the parameter. For the microwave data, only those parameters for which there are specific entries will appear; parameters that are not applicable or not specified are not included.

The data in section 6.2 are arranged by subject codes and alphabetically cross-indexed in section 3.

7 LIST OF DATA DOCUMENTS USED

- B-00829 J. Hopkins, "Reflectance Curves of Various Leaves," unpublished data, USAERDL, Ft. Belvoir, Va., 1955 (estimated).
- B-00830 J. Hopkins, 'Reflectance Curves of Various Soils," unpublished data, USAERDL, Ft. Belvoir, Va., 1955 (estimated).
- B-01035 J. D. Sigler, Airborne Rapid Scan Spectrometer and Earth Reflectance Measurements as a Function of Altitude (Final Report), Instrumentation Division, Radiation, Inc., Orlando, Fla., July 1957.
- B-01049 W. D. Billings, "Reflection of Visible and Infrared Radiation from Leaves of Different Ecological Groups," Am. J. Botany, Vol. 38, 1951.
- B-01175 W. L. Derksen and T. I. Monahan, "A Reflectometer for Measuring Diffuse Reflectance in the Visible and Infrared Regions," J. Opt. Soc. Am., Vol. 42, No. 4, 1952.
- B-01176 G. C. Wright, Spectral Reflectance Characteristics of Camouflage Greens Versus Camouflage Detection, IRMA III Report No. 1281, USAERDL, Ft. Belvoir, Va., March 1953.
- B-01337 S. F. Dwornik, D. G. Orr, and L. M. Young, Reflectance Curves of Soil, Rocks, Vegetation, and Pavement, Report No. 1746R, USAERDL, Ft. Belvoir, Va., April 1963.
- B-01339 G. M. Haas et al., Spectrophotometric and Colorimetric Study of Color Transparencies of Some Natural Objects, Report No. 4794, National Bureau of Standards, Washington, D. C., March 1957.
- B-01352 G. M. Haas et al., Spectrophotometric and Colorimetric Study of Diseased and Rust Resisting Cereal Crops, Report No. 4591, National Bureau of Standards, Washington, D. C., July 1956.
- B-01353 W. A. Hall, Jr., H. J. Keegan, and J. C. Schleter, Spectrophotometric and Colorimetric Change in the Leaf of a White Oak Tree under Conditions of Natural Drying and Excessive Moisture, Report No. 4322, National Bureau of Standards, Washington, D. C., September 1955.
- B-01367 G. M. Haas et al., Spectrophotometric and Colorimetric Study of Foliage Stored in Covered Metal Containers, Report No. 4370, National Bureau of Standards, Washington, D. C., November 1955.
- B-01338 G. M. Haas et al., Spectrophotometric and Colorimetric Record of Some Leaves of Trees, Vegetation, and Soils, Report No. 4528, National Bureau of Standards, Washington, D. C., April 1956.
- B-01370 S. Q. Duntley, Reflectance of Natural Terrains, Report No. OSRD 6554, Louis Comfort Tiffany Foundation, Oyster Bay, Long Island, N. Y., September 1945.
- B-01643 Unpublished reflectance data on crops, Mine Detection Branch, USAERDL, Ft. Belvoir, Va., 1962 (estimated).
- B-01761 C. A. Shull, "A Spectrophotometric Study of Reflection of Light from Leaf Surfaces," Botan. Gaz., Vol. 87, 1929.
- B-01818 M. Kronstein, Research, Studies, and Investigations on Spectral Reflectance and Absorption Characteristics of Camoufiage Paint Materials and Natural Objects, Final Report, Contract DA-44-009 ENG-1447, New York University, New York, N. Y., March 1955.
- B-01948 J. F. Dinger, The Absorption of Radiant Energy in Plants, Ph.D thesis, Iowa State University, Iowa City, 1941.

Constitution of the second of

The second of th

- b-02250 G. M. Haas et al., Spectrophotometric and Colorimetric Study of Color in Assparencies of Some Man-Made Objects, Report No. 4953, National Bureau of Standard., Washington, D. C., November 1957.
- B-02418 "Spectral Reflectance of Several Crops," unpublished data, Purdue University, Lafayette, Ind., 1964.
- B-02602 S. S. Ballard, K. A. McCarthy, and W. L. Wolfe, Optical Materials for Infrared Instrumentation, Report No. 2389-11-S, Willow Run Laboratories, The University of Michigan, Ann Arbor, January 1959, AD 217 367.
- B-03070 D. M. Gates et al., "Spectral Properties of Plants," Appl. Opt., Vol. 4, No. 1, 1965.
- B-03117 A. F. Turner, "Reflectance Properties of Thin Films and Multilayers," presented at the Conference on Radiative Transfer from Solid Materials, Boston, December 1960.
- B-03231 R. V. Dunkle and J. T. Gier, Spectral Reflectivity of Certain Minerals and Similar Inorganic Materials, Institute of Engineering Research, University of California, Berkeley, January 1954, AD 26 394.
- B-03256 C. Clark, J. D. Hardy, and R. Vinegar, "Goniometric Spectrometer for the Measurement of Diffuse Reflectance and Transmittance of Skin in the Infrared Region," J. Opt. Soc. Am., Vol. 43, No. 11, 1953.
- B-03257 G. Benford, G. P. Lloyd, and S. Schwarz, "Coefficients of Reflection of Magnesium Oxide and Magnesium Carbonate," J. Opt. Soc. Am., Vol. 38, No. 5, 1948.
- B-03258 E. V. Ashburn and R. G. Wilson, "Spectral Diffuse Reflectance of Desert Surfaces," J. Opt. Soc. Am., Vol. 46, No. 8, 1956.
- B-03303 J. A. Jacquez and H. F. Kuppenheim, 'Spectral Reflectance of Human Skin in the Region 235-1000 Millimierons,' J. Appl. Physiol., Vol. 7, March 1955.
- B-03304 J. M. Dirnitroff et al., "Spectral Reflectance of Human Skin in the Region 0.7-2.6 Microns," J. Appl. Physiol., Vol. 8, November 1955.
- B-03305 R. R. Heer, Jr., and H. F. Kuppenheim, "Spectral Reflectance of White and Negro Skin between 440 and 1000 Millimicrons," J. Appl. Physiol., Vol. 4, April 1952.
- B-03333 <u>Infrared Optical Measurements</u>, Report No. 8626, National Bureau of Standards, Washington, D. C., December 1964.
- B-03337 J. P. Campbell, <u>Backscattering Characteristics of Land and Sea at X-Band</u>, General Precision Laboratory, Pleasantville, N. Y., May 1958.
- B-03355 Miscellaneous unpublished data from several sources including N. Y. University, Syracuse University, and the Detroit Arsenal, Warren, Michigan, 1950 (estimated).
- B-03374 C. E. Olson, Jr., et al., An Analysis of Measurements of Light Reflectance from Tree Foliage Made during 1960 and 1961, Report on Contract NR-387-025, Agricultural Experiment Station, University of Illinois, Urbana, June 1964, AD 608 114.
- B-03463 Specular Spectral Reflectance of Paints from 0.4 to 40.0 Microns, Report No. 31, U. S. Dept. of Commerce, Washington, D. C., April 1964.
- B-03539 Radar Terrain Return Study, Goodyear Aerospace Corp., Litchfield Park, Ariz., September 1959, AD 229 104.
- B-03553 G. Hagn, An Investigation of the Direct Backscatter of High Frequency Radio Waves from Land, Sea, Water and Ice Surfaces, Final Report No. 2, Stanford Research Institute, Menlo Park, Calif., May 1962.
- B-03559 L. E. Barbrow, "Calibration on the Spectral Directional Reflectance of Six Samples of Red Pine Needles," unpublished data, National Bureau of Standards Test No. G-35201-1, Agricultural Research Service, Beltsville, Md., November 1964.

TO THE PROPERTY OF THE PROPERT

- B-03597 A. R. Edison, R. K. Moore, and B. D. Warner, Radar Return at Near-Vertical Incidence, Technical Report No. EE-24, Engineering Experiment Station, University of New Mexico, Albuquerque, September 1959.
- B-03804 J. C. Morris and O. H. Olson, Determination of Emissivity and Reflectivity Data on Aircraft Structural Materials, Part II, Supplement I, Report No. 56-222, Armour Research Foundation, Chicago, Ill., October 1958, AD 202 494.
- B-03856 H. T. Betz et al., Techniques for Measurements of Total Normal Emissivity, Solar

 Absorbtivity and Presentation of Results, Armour Research Foundation, Chicago,
 Ill., October 1958.
- B-03959 D. K. Edwards and W. M. Hall, "Far Infrared Reflectance of Spacecraft Coatings," presented at the AIAA Thermophysics Specialist Conference, Monterey, Calif., September 1965.
- B-03960 H. T. Albright et al., 'Solar Absorptance and Thermal Emittance of Aluminum Coated with Surface Films of Evaporated Aluminum Oxide,' presented at the AIAA Thermophysics Specialist Conference, Monterey, Calif., September 1965.
- B-03995 E. L. Krinov, Spectra! Reflectance Properties of Natural Formations, trans. by G. Belkov, Technical Translation No. 439, Nat. Res. Council, Canada, Ottawa, Ontario, 1953.
- B-04011 L. E. Ashman, H. H. Blau, and J. L. Miles, <u>The Thermal Radiation Characteristics</u>
 of Solid Materials, A Review, Scientific Report No. 1, Contract AF 19(604)-2639,
 Arthur D. Little, Inc., Cambridge, Mass., March 1958.
- B-04424 E. C. Hall, "Measurement on the Optical Properties of Snow," unpublished memorandum, Wi'low Run Laboratories of the Institute of Science and Technology, The University of Michigan, Ann Arbor, 1965 (estimated).
- B-04333 C. R. Grant and B. S. Yaplee, "Backscattering from Water and Land at Centimeter and Millimeter Wavelengths," Proc. IRE, Vol. 45, July 1957.
- B-04434 W. S. Ament, F. C. MacDonald, and D. L. Ringwalt, <u>Terrain Clutter Measurements</u>, Naval Research Laboratory, Washington, D. C., January 1958, AD 156 184.
- B-04435 W. H. Peake and R. C. Taylor, <u>Radar Back-Scattering Measurements from Moon-Like Surfaces</u>, Report on Grant NsG-213-61, Antenna Laboratory, Ohio State University Research Foundation, Columbus, Ohio, May 1963.
- B-04436 R. L. Cosgriff, W. H. Peake, and R. C. Taylor, Terrain Scattering Properties for Sensor System Design, Terrain Handbook No. II, Engineering Experiment Station Bulletin No. 181, Antenna Laboratory, Ohio State University Research Foundation, Columbus, Ohio, May 1960.
- B-04437 Unpublished data, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., 1963 (estimated).
- B-04579 J. M. Kennedy et al., <u>Passive Microwave Measurements of Snow</u>, Technical Report No. 1, Contract NOnr 4767(00), Space-General Corp., El Monte, Calif., December 1965.
- B-04616 V. I. Myers and J. R. Thomas, 'Reflectance of Cotton Leaves under Various Conditions of Drying," unpublished data, U. S. Department of Agriculture, Agricultural Research Service, Weslaco, Tex., June 1966.
- B-04642 D. K. Wilburn, Spectra Notebook, Volume I: Material, Target and Background Data, Technical Report No. 8863, Components Research and Development Laboratories, U. S. Army Tank Automotive Center, Warren, Mich., May 1965.
- B-04802 H. Korbel, Thermal and Opical Characteristics of Eniwetok Sand (Final Report), Material Laboratory, New York Naval Shipyard, Brooklyn, November 1952.

THE STATE OF THE PARTY OF THE P

いないのかないないないとかい

- B-04803 B. E. Cooper and W. L. Derksen, Spectral Reflectance and Transmittance of Forest Fuel Materials (Final Report), Material Laboratory, New York Naval Shipyard, Brooklyn, March 1952.
- B-04804 W. A. Hovis, Jr., 'Infrared Reflectivity of Some Common Minerals,' NASA—Goddard Space Flight Center, Greenbelt, Md., to be published in Appl. Opt.
- B-04805 R. F. Byrne and L. N. Mancinelli, Optical Transmittance, Reflectance, and Absorptance of Materials (Final Report), Material Laboratory, New York Naval Shipyard, Brooklyn, March 1954.
- B-04806 R. F. Byrne and J. J. Schilling, Spectral Reflectance and Transmittance of Interior Fuel Materials (Final Report), Material Laboratory, New York Naval Shipyard, Brooklyn, November 1953.
- B-04979 D. K. Edwards et al., Basic Studies on the Use and Control of Solar Energy (Annual Report, August 1959 to August 1960), University of California, Los Angeles, October 1960.
- B-05289 P. E. Ohlsen, and G. A. Etemad, Spectral and Total Radiation Data of Various Aircraft Materials, North American Aviation Inc., Los Angeles Division, Engineering Department, Los Angeles, Calif., 23 July 1957.
- B-05370 H. T. Betz et al., Determination of Emissivity and Reflectivity Data on Aircraft
 Structural Materials, Part I: Techniques for Measurements of Total Normal Emissivity and Reflectivity With Some Data on Copper and Nickel, Document Service
 Center, Knott Building, Dayton, Ohio, October 1956.
- B-013522 A. I. Funai, W. L. Starr, and E. R. Streed, Principles of Infrared Camouflage for Low Temperature Targets, Naval Civil Engineering Lab., Port Hueneme, Calif., July 1953, AD 139 720.
- B-1999* W. Flowers, and G. Trytten, "Target Signature Measurements," unpublished data, Willow Run Laboratories, Institute of Science and Technology, The University of Michigan, Ann Arbor, 1966-1968.
- B-20000 W. Flowers and G. Trytten, "Reflectance of Target and Eackground Materials" (Vol. I), unpublished data, Willow Run Laboratories, Institute of Science and Technology, The University of Michigan, Ann Arbor, 1966-1967.
- B-20001 W. Flowers and G. Trytten, 'Reflectance of Target and Background Materials' (Vol. II), unpublished data, Willow Run Laboratories, Institute of Science and Technology, The University of Michigan, Ann Arbor, 1967-1968.
- B-20002 W. Flowers and G. Trytten, "Reflectance of Target and Background Materials" (Vol. III), unpublished data, Willow Run Laboratories, Institute of Science and Technology, The University of Michigan, Ann Aroor, 1967-1968.

THE STATE OF THE PROPERTY OF T

^{*}Data from this report were previously published in <u>Target Signature Analysis Center:</u>
Data Compilation (Supplement), Report No. 7850-9-B, Willow Run Laboratories of the Institute of Science and Technology, The University of Michigan, Ann Arbor, December 1966, AD 379 650. These data have since been approved for unclassified publication.

REFERENCES

- E. L. Krinov, Spectral Reflectance Properties of Natural Formations, trans. by G. Belkov, Natl, Res. Council, Canada, Technical Translation No. 439, Ottawa, Ontario, 1953.
- S. E. Dwornik, D. G. Orr, and L. M. Young, <u>Reflectance Curves of Soil, Rocks</u>, <u>Vegetation</u>, and <u>Pavement</u>, Report No. 1746R, <u>USAERDL</u>, Ft. Belvoir, Va., <u>April 1963</u>.
- 3. S. Q. Duntley, Reflectance of Natural Terrains, Report No. OSRD 6554, Louis Comfort Tiffany Foundation, Oyster Bay, Long Island, N. Y., September 1945.
- 4. F. Nicodemus, "Directional Reflectance and Emissivity of an Opaque Surface," Appl. Opt., Vol. 4, 1965, pp. 767-773.
- 5. A. C. Hardy, "A New Recording Spectrophotometer," J. Opt. Soc. Am., Vol. 25, 1935, pp. 305-311.
- 6. H. T. Betz et al., Determination of Emissivity and Reflectivity Data on Aircraft Structural Materials, Part II: Techniques for Measurement of Total Normal Emissivity, Normal Spectral Emissivity, Solar Absorptivity, and Presentation of Results, Armour Research Foundation, Cricago, October 1958, AD 202 493.
- 7. D. G. Goebel, B. P. Caldwell, and H. K. Hammond, III, "Use of an Auxiliary Sphere with a Spectroreflectometer to Obtain Absolute Reflectance," J. Opt. Soc. Am., Vol. 56, 1966, pp. 783-788.
- 8. W. E. K. Middleton and C. L. Sanders, "The Absolute Spectral Diffuse Reflectance of Mag: esium Oxide," J. Opt. Soc. Am., Vol. 41, 1951, pp. 419-424.
- 9. H. H. Cary and A. O. Beckman, "A Quartz Photoelectric Spectrophotometer," J. Opt. Soc. Am., Vol. 31, 1941, pp. 682-689.
- 10. A. C. Hardy, "History of the Design of the Recording Spectrophotometer," J. Opt. Soc. Am., Vol. 28, 1938, pp. 360-371.
- K. S. Gibson and H. J. Keegan, "Calibration and Operation of the General Electric Recording Spectrophotometer of the National Bureau of Standards," J. Opt. Soc. Am., Vol. 28, 1938, pp. 372-385.
- 12. R. B. Barnes, R. S. McDonald, and V. Z. Williams, "Small Prism Infra-Red Spectrometry," J. Appl. Phys., Vol. 16, 1945, pp. 77-86.
- 13. W. L. Derksen and T. I. Monahan, "A Reflectometer for Measuring Diffuse Reflectance in the Visible and Infrared Regions," J. Opt. Soc. Am., Vol. 42, 1962, pp. 263-265.
- W. D. McClellan, J. P. Meine's, and D. G. Orr, "Spectral Reflectance Studies on Plants," Proc. Second Symposium on Remote Sensing of Environment, 15, 16, 17 October 1962, Report No. 4864-3-X, Institute of Science and Technology, The University of Michigan, Ann Arbor, February 1963, AD 299 841, pp. 403-413.
- H. J. Keegan, J. C. Schieter, and D. B. Judd, "Glass Filters for Checking Performance of Spectrophotometer Integrator Systems of Color Measurement," J. Res. Natl. Bur. Std., A, Vol. 66, 1962, p. 203.
- 16. E. V. Ashburn et al., "Narrow Pass Band Albedometer," Rev. Sci. Instr., Vol. 27, 1956, pp. 90-91.
- 17. J. A. Jacquez et al., "An Integrating Sphere for Measuring Diffuse Reflectance in the Near Infrared," J. Opt. Scc. Am., Vol. 45, 1955, pp. 781-785.
- J. U. White, "New Method for Measuring Diffuse Reflectance in the Infrared,"
 J. Opt. Soc. Am., Vol. 54, 1964, pp. 1332-1337.

August 1968

- 19. D. K. Edwards et al., "Integrating Sphere for Imperfectly Diffuse Samples," Appl. Opt., Vol. 51, 1961, pp. 1279-1288.
- 20. R. V. Dunkle et al., "Heated Cavity Reflectometer for Angular Reflectance Measurements," Progress in International Research on Thermodynamic Properties, Academic Press, 1962, pp. 541-562.
- 21. J. T. Gier, R. V. Dunkle, and J. T. Bevans, "Measurement of Absolute Spectral Reflectivity from 1.0 to 15 Microns," J. Opt. Soc. Am., Vol. 44, 1954, p. 558.
- 22. R. V. Dunkle, F. Ehrenburg, and J. T. Gier, 'Spectral Characteristics of Fabrics from 1 to 23 Microns,' J. Heat Transfer, Vol. 82, 1960, p. 64.
- 23. R. V. Dunkle, "Spectral Reflectance Measurements," Surface Effects on Space-craft Materials, ed. by F. J. Clauss, Wiley, 1960.
- 24. D. K. Edwards, and N. Bayard de Volo, "Useful Approximation for the Spectral and Total Emissivity of Smooth Bare Metals," Advances in Thermophysical Properties at Extreme Temperature and Pressure, American Society of Mechanical Engineers, New York, 1965, pp. 174-188.
- 25. "University of California Progress Peport," Scries No. 62, Issue No. 1, Institute for Engineering Research, Berkeley, June 27, 1953.

Security Classification					
DOCUMENT CONT					
(Security classification of title, body of abstract and indusing	ennotation must be e	ntered when the	overall report is classified)		
GRIGINATING ACTIVITY (Corporate author)		ZM. REPORT SECURITY CI ASSIF CATION			
Willow Run Laboratories, Institute of Science and Technology,		Unclassified			
The University of Michigan, Ann Arbor		26. GROUP			
3. REPORT TITLE		<u> </u>			
TARGET SIGNATURE ANALYSIS CENTER: DATA COM	IPILATION				
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)					
Fifth Supplement					
S. AUTHOR(S) (First name, middle initial, last name)					
Dianne L. Earing					
. REPORT DATE	78. TOTAL NO O	F PAGES	7b. NO. OF REFS		
August 1968	vi + 187		25		
F33615-67-C-1293 (continuation of Contracts	SE. ORIGINATOR	S REPORT NUM	BER(S)		
b. PROJECT NO. AF 33(657)-10974 and AF 33(615)-3654)	8492-15-1	В			
с.	Sh. OTHER REPO	RT NO(5) (Any o	ther numbers that may be assigned		
	this report)				
d.					
10. DISTRIBUTION STATEMENT					
This document is subject to special export controls	, and each trans	mittal to for	eign governments or foreign		
nationals may be made only with prior approval of AFA.					
	· • · · · · · · · · · · · · · · · · · ·	······			
11-SUPPLEMENTAR' NOTES	12. SPONSORING				
			tory, Research and Technol-		
-Ail '	ogy Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio				
13. ABSTRACT	L				
This second unclassified supplement to the Target	Signature Analys	sis Center: 1	Data Compilation augments		
an ordered, indexed compilation of reflectances, radar					
background materials. The data include spectral reflec	tances and trans	smittances in	the optical region from 0.3		
to 15 μ and normalized radar cross sections (active) an					
of aspect or depression angle, at millimeter wavelength					
associated with each curve are listed to provide the use ditions.	r with a descrip	otion of the in	nportant experimental con-		
This supplement contains approximately 400 data or rent Target Signature Measurements Program conducte					
Air Force Avionics Laboratory. The unclassified compilation, including these data, consists of about 4300 curves.					

DD FORM 1473

UNCLASSIFIED

Security Classification

orki i na saistavi savidavanakatu, nimaki i saki i saki i saki i saki i kanakata i sa kanaka ki i sa kanaka sa

UNCLASSIFIED
Security Classification

KEY WORDS	•	LINK 4 LIN'S			FIFK C		
	ROLE	₩Ŧ	ROLE	WT	ROLE	wr	
Reflectances							
Temperatures		1			1	i	
Targets		j			1	l	
Rackgrounde]				
Backgrounds Fransmittance	ĺ						
Transmittance							
					l i		
			İ				
					i i		
			i i				
					İ		
	İ						
					Ì		
	i i						
					i		
	[
	j						
			i				
		İ			I		
			l				
		i					
			ŀ		ĺ		
	1		1				
				}			
		l	ĺ				
		Ì					
					I		
				j			
					1		
]			ļ	1		
		-	i	1	j		
		ļ	ł		1		
		l	1		į		
		1	ĺ		i		

UNCL	ACCIT	רוים די
UNLL	NOO II	יורים וי

Security Classification