## 1 Topics

- (a). Basic homotopy theory
- (b). Obstruction theory
- (c). Characteristic Classes
- (d). The Serre spectral sequence
- (e). The Steenrod operations
- (f). K-theory

References: Fuchs - Fomenko: homotopical topology, Hatcher's books Six homeworks (one per topic)

## 2 Homotopy Theory

Basic Questions:

- (a). given maps  $f, g: X \to Y$  are they homotopy equivalent?
- (b). given spaces X and Y are they homotopy equivalent?

Remark. All spaces will be connected and locally connected.

**Definition** The set  $[X,Y] = \text{Hom}(\mathbf{hTop},X)Y$ . Given based spaces X,Y we define  $\langle X,Y \rangle = \text{Hom}(\mathbf{hTop}_{\bullet},X)Y$  where morphisms in  $\mathbf{hTop}_{\bullet}$  are continuous maps preserving the basepoint up to homotopy. Note that homotopies in  $\mathbf{Top}_{\bullet}$  are basepoint preserving.

**Example 2.1.** Consider  $S^n$ . Given  $f: S^n \to X$  we can construct,  $X \sqcup_f D^{n+1}$  by gluing along f. This is the coproduct,

$$D^{n+1} \longrightarrow X \sqcup_f D^{n+1}$$

$$\uparrow \qquad \qquad \uparrow$$

$$S^n \longrightarrow X$$

Now if  $f \sim f'$  then  $X \sqcup_f D^{n+1} \sim X \sqcup_f D^{n+1}$ .

**Definition** Given a based space  $(X, x_0)$  we define the  $n^{\text{th}}$  homotopy group,

$$\pi_n(X, x_0) = \langle (S^n, p_0), (X, x_0) \rangle$$

The group structure is given by the equator squeezing map  $s: S^n \to S^n \vee S^n$ . Then we define  $f * g = (f \vee g) \circ s$ .

**Proposition 2.2.**  $\pi_n(X, x_0)$  is abelian for  $n \geq 2$ .

**Theorem 2.3.**  $\pi_n(S^m) = 0$  if n < m.

Theorem 2.4.  $\pi_n(S^n) = \mathbb{Z}$ 

**Theorem 2.5.**  $\pi_3(S^2) = \mathbb{Z}$  generated by the Hopf fibration  $\eta: S^3 \to S^2$ .

**Theorem 2.6.** For sufficiently large n,

$$\pi_{n+1}(S^n) = \mathbb{Z}/2\mathbb{Z}$$
  $\pi_{n+2}(S^n) = \mathbb{Z}/2\mathbb{Z}$   $\pi_{n+3}(S^3) = \mathbb{Z}/24\mathbb{Z}$ 

Remark. Given  $f: X \to Y$  we get  $f_*: \pi_n(X) \to \pi_n(Y)$ .

**Theorem 2.7.** Given a path  $\gamma: x_1 \to x_2$  in X we get a map,

$$\gamma_{\#}: \pi_n(X, x_1) \to \pi_n(X, x_2)$$

depending only on the homotopy class of  $\gamma$ . In particular we have a  $\pi_1(X, x_0)$ -action on  $\pi_n(X, x_0)$ .

Remark. In the case n=1 this is the conjugation action of  $\pi_1(X,x_0)$  on itself.

**Proposition 2.8.** Given the previous proposition, we have,

$$[S^n, X] = \pi_n(X, x_0) / \pi_1(X, x_0)$$

**Proposition 2.9.** If  $p: \tilde{X} \to X$  is a covering map then for  $n \geq 2$  the induced map,

$$p_*: \pi_n(\tilde{X}) \to \pi_1(X)$$

is an isomorphism.

*Proof.* Injectivity is the homotopy lifting property. Furthermore given  $f: S^n \to X$  we can lift it to  $\tilde{f}: S^n \to \tilde{X}$  provided that  $f_*(\pi_1(S^n)) \subset p_*(\pi_1(\tilde{X}))$ . In the case  $n \geq 2$ , we have  $\pi_1(S^n)$  thus such a lift always exists proving surjectivity.

**Example 2.10.** Let  $\Sigma_g$  be a genus g surface. For  $g \geq 1$  then  $\Sigma_g$  has universal cover  $\mathbb{R}^2$  which is contractible and thus  $\pi_n(\Sigma_g) = \pi_n(\mathbb{R}^2) = 0$  for  $n \geq 2$ .

**Example 2.11.** For  $n \geq 2$  we have  $\pi_n(\mathbb{RP}^k) = \pi_n(S^k)$ .

## 2.1 Basic Operations on Spaces

**Definition** The suspension of X is  $\Sigma X = X \vee S^1$ .

**Definition** The loops space of X is  $\Omega X = \operatorname{Hom}(\operatorname{Top}_{\bullet}, S^1) X$  with the compact-open topology.

Theorem 2.12 (Adjunction).

$$\langle \Sigma X, Y \rangle = \langle X, \Omega Y \rangle$$

Example 2.13.  $\Sigma S^n = S^{n+1}$ 

**Proposition 2.14.**  $\pi_{n+1}(Y) = \langle S^{n+1}, Y \rangle = \langle \Sigma S^n, Y \rangle = \langle S^n, \Omega Y \rangle = \pi_n(\Omega Y)$ 

**Proposition 2.15.** The space  $\Omega X$  is a group object in the category  $hTop_{\bullet}$ .

*Remark.* The following definition is due to Hatcher.

**Definition** A pointed space  $(X, e, \mu)$  is an H-space is there is a map  $\mu : X \times X \to X$  such that  $\mu(-, e) \sim \text{id}$  and  $\mu(e, -) \sim \text{id}$  as pointed maps (relative to the basepoint).

*Remark.* Any topological group (group object in **Top**) is an H-space (pointed at the identity element).

Remark. Loop spaces are H-spaces since they are group objects in **hTop**.

**Theorem 2.16** (Adams). The spheres  $S^n$  admitting an H-space structure are exactly  $S^0, S^1, S^3, S^7$ .

Corollary 2.17.  $\mathbb{R}^n$  has a unital division  $\mathbb{R}$ -algebra structure iff n=1,2,4,8.

*Proof.* Consider the unit length elements  $U = S^{n-1}$ . Then a division algebra on  $\mathbb{R}^n$  gives a multiplication  $U \times U \to U$  (well defined since  $xy = 0 \implies x = 0$  or y = 0 and thus the result can be scalled to lie in U).

#### 3 Relative Groups

**Definition** Given a space X a subspace  $A \subset X$  and a point  $x_0 \in A$  we denote the pointed pair as  $(X, A, x_0)$ .

**Definition** For a pointed pair  $(X, A, x_0)$  we define  $\pi_n(X, A, x_0)$  as maps,

$$f:(D^n,S^{n-1},p_0)\to (X,A,x_0)$$

modulo homotopy through maps of this form.

Remark. Suppose  $[f] \in \pi_n(X, A, x_0)$  is zero if it is homotopic to a map with image inside A. In fact if this is the case then f may be homotoped relative to the boundary. Compression Lemma.

**Theorem 3.1.** There is a long exact sequence for the pointed pair  $(X, A, x_0)$ ,

$$\cdots \longrightarrow \pi_n(A, x_0) \longrightarrow \pi_n(X, x_0) \longrightarrow \pi_n(X, A, x_0) \longrightarrow \pi_n(X, A, x_0) \longrightarrow \pi_{n-1}(A, x_0) \longrightarrow \pi_{n-1}(X, A, x_0) \longrightarrow \cdots$$

## 4 Results on CW Complexes

**Definition** A CW pair is a CW complex X with a subcomplex  $A \subset X$  (a closed subset which is a cunion of cells e.g.  $X^k$  the k-skelleton).

**Theorem 4.1** (homotopy extension). Let (X, A) be a CW pair. Then (X, A) has the homotopy extension property i.e.  $\iota: A \to X$  is a cofibration.

*Proof.* Working cell-by-cell we can reduce to the case  $(X,A)=(D^n,S^{n-1})$ . In this case we are given a map on  $D^n \times \{0\} \cup S^{n-1} \times I$  which is a deformation retract of  $D^n \times I$  so any map can be extended.

**Definition** A map  $f: X \to Y$  between CW complexes is *cellular* if  $f(X^k) \subset Y^k$ .

**Theorem 4.2** (cellular approximation). Any map  $f: X \to Y$  of CW complexes is homotopic to a cellular map.

Corollary 4.3. If n < m then  $\pi_n(S^m) = 0$ .

**Theorem 4.4.** If  $\pi_i(X, x_0) = 0$  for  $i \leq n$  (i.e. X is n-connected) then X is homotopic to a CW complex with a single zero 0-cell and no i-cells for  $1 \leq i \leq n$ .

**Lemma 4.5.** If (X, A) is a CW-pair and A is contractible then  $X \to X/A$  is a homotopy equivalence.

# 5 More Results on CW Complexes (01/29)

**Theorem 5.1** (Whitehead). Let  $f: X \to Y$  be a map of CW complexes such that  $f_*: \pi_n(X, x_0) \to \pi_n(Y, y_0)$  is an isomorphism for each n then f is a homotopy equivalence.

**Example 5.2.** If  $\pi_n(X, x_0) = 0$  for all  $n \ge 0$  and X is a CW complex then X is contractible. To see this consider the constant map  $X \to *$ .

**Example 5.3.** Consider  $S^{\infty} = \varinjlim S^n$  where we consider  $S^n \subset S^{n+1}$  as the equator. Then  $\pi_n(S^{\infty}) = 0$  since any map  $S^n \to S^{\infty}$  can be deformed to a point using the copy of  $S^{n+1}$ . Thus  $S^{\infty}$  is contractible.

Remark. In Whitehead's theorem, simply knowing  $\pi_n(X) \cong \pi_n(Y)$  for each  $n \geq 0$  does not imply  $X \sim Y$  we need these isomorphisms to be induced by a single topological map  $f: X \to Y$ .

**Example 5.4.** Quotienting by the natural involution on  $S^{\infty}$  we get a double cover  $p: S^{\infty} \to \mathbb{RP}^{\infty}$ . Using covering theory we find,

$$\pi_n(\mathbb{RP}^\infty) = \begin{cases} \mathbb{Z}/2\mathbb{Z} & n=1\\ 0 & n>1 \end{cases}$$

Furthermore, consider  $X = S^2 \times \mathbb{RP}^{\infty}$  whose universal cover is  $\tilde{X} = S^2 \times S^{\infty} \sim S^2$  and thus,

$$\pi_n(X) = \begin{cases} \mathbb{Z}/2\mathbb{Z} & n = 1\\ \mathbb{Z} & n = 2\\ 0 & n > 1 \end{cases}$$

This has exactly the same homotopy groups as  $Y = \mathbb{RP}^2$  whose universal vover is also  $\tilde{X} = S^2$  and also has a two-fold cover. However,  $H_*(\mathbb{RP}^2, \mathbb{Z}/2\mathbb{Z})$  is finite dimensional and  $H_*(S^2 \times \mathbb{RP}^\infty, \mathbb{Z}/2\mathbb{Z})$  is infinite dimensional so they cannot be homotopy equivalent.

**Definition** The mapping cylinder of a morphism  $f: X \to Y$  is the pushout,

$$Mf = Y \coprod_{f} (X \times I)$$

There is a natural inclusion  $\iota: X \hookrightarrow Mf$  and a deformation retract  $j: Mf \to Y$ .

Remark. If X and Y are CW complexes then we may homotope  $f: X \to Y$  to a cellular map in which case Mf is a CW complex and  $\iota: X \hookrightarrow M(f)$  makes (Mf, X) a CW pair.

**Definition** If X and Y are any spaces  $f: X \to Y$  is a weak homotopy equivalence if  $f_*: \pi_n(X) \to \pi_n(Y)$  is an isomorphism for all  $n \ge 0$ .

**Theorem 5.5.** Any space is weakly homotopy equivalent to a CW complex.

Remark. Suspension is a functor: given  $f: X \to Y$  we get  $\Sigma f: \Sigma X \to \Sigma Y$  given by  $\Sigma f(t, x) = (t, f(x))$ .

Remark. The unit of the suspension-looping adjunction gives a map  $X \to \Omega \Sigma X$  given by  $x \mapsto (t \mapsto (t, x))$ . Applying the functor  $\pi_n$  gives the Freudenthal map  $\sigma_n : \pi_n(X) \to \pi_{n+1}(\Sigma X)$ .

**Theorem 5.6** (Freudenthal Suspension). Let X be an n-connected pointed space. Then the Freudenthal map  $\Sigma_k : \pi_k(X) \to \pi_{k+1}(\Sigma X)$  is an isomorphism if  $k \leq 2n$  and an epimorphism if k = 2n + 1.

Corollary 5.7.  $\pi_n(S^n) = \mathbb{Z}$ .

Proof. We show this by induction. For n=1 the result  $\pi_1(S^1)=\mathbb{Z}$  is a simple application of covering space theory. Now we assume the result for  $S^n$ . Then since  $S^n$  is (n-1)-connected, by the Fruedenthal suspension theorem we get an isomorphism  $\pi_k(S^n) \xrightarrow{\sim} \pi_{k+1}(S^{n+1})$  for k < 2n-1. Setting k=n we see that  $\pi_{n+1}(S^{n+1}) \cong \pi_n(S^n)$  for n>1. However, for the case n=1 we only get an epimorphism  $\pi_1(S^1) \to \pi_2(S^2)$  since 1=2-1. However, there is a surjective degree map  $\pi_2(S^2) \to \mathbb{Z}$  and thus  $\pi_2(S^2) = \mathbb{Z}$ .

#### 6 Spectra

**Definition** A spectrum is a sequence  $X_n$  of CW complexes along with structure maps  $s_n : \Sigma X_n \to X_{n+1}$ .

**Definition** Let X be a spectrum then we define the homotopy groups of X via,

$$\pi_k(X) = \varinjlim_n \pi_{k+n}(X_n)$$

where the maps  $\Sigma X_n \to X_{n+1}$  induce  $\pi_{k+n}(X_n) \to \pi_{k+n+1}(X_{n+1})$  by adjunction making the groups  $\pi_{k+n}(X_n)$  a directed system.

Remark. Spectra may have homotopy in negative dimension i.e.  $\pi_k(X) \neq 0$  for  $k \leq 0$  in general.

**Definition** We say a spectrum is stable if the structure maps are eventually all weak homotopy equivalences.

**Example 6.1.** Given a CW complex X we can form the suspension specturm  $X_n = \Sigma^n X = S^n \wedge X$  with identity maps  $\Sigma X_n \to X_{n+1}$ . This is clearly a stable spectrum.

**Example 6.2.** The suspension spectrum of  $S^0$  is the sphere spectrum **S** given by  $\mathbf{S}_n = S^n$  with the natural homeomorphisms  $\Sigma S^n \to S^{n+1}$ .

**Definition** An  $\Omega$ -spectrum is a specturm X such that the adjunction of the structue map  $X_n \to \Omega X_{n+1}$  is a weak homotopy equivalence.

#### 7 Feb 12

**Theorem 7.1.** Two CW complexes of type K(G, n) are homotopy equivalent.

*Proof.* Let X, Y be CW complexes. Assume that X has no  $1, \ldots, (n-1)$ -cells (since it is (n-1)-connected) and one 0-cell (since it is connected). Then,

$$X^n = \bigvee_{i \in I} S^n$$

each of these spheres represents an element  $\pi_n(X) = G$ . Construct  $f_n : X^n \to Y$  by sending each  $S^n$  to the corresponding element in  $\pi_n(Y) = G$ . Next construct  $f_{n+1} : X^{n+1} \to Y$  so that each  $\partial D^{n+1} = S^n \xrightarrow{f_n} Y$  represents  $0 \in \pi_n(Y)$  (since the (n+1)-cells give the relations on G) then  $\partial D^{n+2} = S^{n+1} \xrightarrow{f_{n+1}} Y$  is nullhomotopic because  $\pi_{n+1}(Y) = 0$ . Repeating, we can extend to all X.

Remark. Key point:  $\pi_n(X)$  is generated by n-cells and has relations by (n+1)-cells. This is a first glimpse of obstruction theory. We ask the following questions:

Q1 Given a CW pair (X, A) and  $f: A \to Y$  can we extend this to  $\tilde{f}: X \to Y$ ?

Q2 Given a giber bundle  $p: E \to B$  and a map  $f: X \to B$  can we lift it to  $\tilde{f}: X \to E$ ?

For Q1, assume that  $\pi_1(Y) \odot \pi_n(Y)$  trivially (i.e. Y is simple so we need not worry about base-points!). Given  $f: X^n \to Y$  can we extend it to  $X^{n+1}$ ? Gluing a disk  $D^{n+1}$  then f extends to  $D^{n+1}$  iff  $f|_{S^n}: S^n \to Y$  is nullhomotopic i.e. is zero in  $\pi_n(Y)$ . In general, to each (n+1)-cell e,  $[f_e] \in \pi_n(Y)$  then we can construct  $c_f \in C^{n+1}(X, \pi_n(Y))$  a cellular cochain called the obstruction cochain. Then f extends to  $X^{n+1} \iff c_f = 0$ .

**Lemma 7.2.**  $\delta c_f = 0$  i.e.  $c_f$  is a cocycle. Therefore,  $O_f := [c_f] \in H^{n+1}(X; \pi_n(Y))$  is the obstructuon class.

**Theorem 7.3.**  $f|_{X^{n-1}}$  extends to  $X^{n+1}$  iff  $O_f = 0$ .

*Proof.* First we prove the Lemma. Consider the diagram,



The piece of the LES,

$$\pi_{n+1}(X^{n+1}) \longrightarrow \pi_{n+1}(X^{n+1}, X^n) \longrightarrow \pi_n(X^n)$$

composes to zero so by the commutativity of the above diagram  $c_f \circ \partial = 0$ .

**Definition** Suppose there are two maps  $f, g: X^n \to Y$  that agree on  $X^{n-1}$  then for each n-cell  $D^n$  if we glue two  $D^n$  along the boundary on which f, g agree then we get a map  $(f, g): S^n \to Y$  and thus an element  $\pi_n(Y)$  for each n-cell. This gives a difference cochain  $d_{f,g} \in C^n(X; \pi_n(Y))$  and  $d_{f,g} = 0$  iff  $f, g: X^n \to Y$  are homotopic relative to  $X^{n+1}$ .

Lemma 7.4.  $\delta d_{f,q} = c_q - c_f$ .

**Lemma 7.5.** Given  $f: X^n \to Y$  for any  $d \in C^n(X; \pi_n(Y))$  there is  $g: X^n \to Y$  with  $f|_{X^{n-1}} = g|_{X^{n-1}}$  s.t.  $d_{f,g} = d$ .

*Proof.* For  $d \in C^n(X; \pi_n(Y))$  then for an *n*-cell e we have  $d(e) \in \pi_n(Y)$  then consider the sum of maps f and d(e) using the sum structure on e contracting the equator.

Proof. Now we prove the theorem. Suppose that  $O_f = 0$  then  $c_f = \delta d$  for some  $d \in C^n(X; \pi_n(Y))$ . Now there exists  $g: X^n \to Y$  with  $f|_{X^{n-1}} = f|_{X^{n-1}}$  and  $d_{f,g} = -d$ . Also,  $\delta d_{f,g} = c_g - c_f$  and thus  $c_g = c_f + \delta d_{f,g} = c_f - \delta d = 0$  therefore  $c_g = 0$  so g can extend to  $X^{n+1}$  and  $f|_{X^{n-1}} = g|_{X^{n-1}}$ .  $\square$ 

**Theorem 7.6.** Let  $f, g: X^n \to Y$  be maps with  $f|_{X^{n-2}} = g|_{X^{n-2}}$ . Then  $[d_{f,g}] = 0$  iff they are homotopic relative to  $X^{n-2}$ .

#### 7.1 Cohomology of K(G, n)

Let  $n \geq 2$  and G abelian. Consider a map  $f: X \to K(G, n)$ . By Hurewicz,  $H_n(K(G, n), \mathbb{Z}) = \pi_n(K(G, n)) = G$  and  $H_{n-1}(K(G, n), \mathbb{Z}) = 0$ . Now, by the universal coefficient theorem,

$$H^n(K(G,n),G) = \operatorname{Hom}(H_n(K(G,n),\mathbb{Z})) G = \operatorname{Hom}(G) G$$

Therefore, there is a canonical element  $\mathbb{1} \in H^n(K(G,n),G)$  which is the class of id:  $G \to G$ .

Also, via  $f: X \to K(G, n)$ , we also get  $f^*(1) \in H^n(X; G)$ , which depends only on the homotopy class of f.

**Theorem 7.7.** The map  $[X, K(G, n)] \to H^n(X, G)$  sending  $[f] \mapsto f^{\times}(1)$  is an isomorphism.

Remark. We say that K(G,n) classifies  $H^n(-,G)$  meaning that the functor,

$$H^n(-,G):\{\text{CW-complexes}\}\to \mathbf{Set}$$

is represented by [-, K(G, n)].

**Definition** Given a contravariant functor  $h : \{\text{CW-complexes}\} \to \mathbf{Set}$  we say that C classifies h if there is a natural isomorphism  $h \cong [-, C]$  in this case we say that h is representable and the pair  $(C, \text{id} \in h(C))$  is a representation of h.