TEA-010 Matemática Aplicada I

Prof. Nelson Luís Dias (Lemma, Centro Politécnico, 3320-2025) nldias@ufpr.br

Ensalamento e Horário 2as 4as 6as sala ??? 07:30--09:10

Objetivos Didáticos

A Disciplina TEA010 tem por objetivo aprofundar o domínio pelo aluno de modelos matemáticos analíticos e numéricos aplicáveis à Engenharia Ambiental. A disciplina incluirá aplicações de: álgebra linear, equações diferenciais ordinárias, técnicas de transformadas, campos escalares e vetoriais, teoremas vetoriais, a problemas de Mecânica dos Fluidos, Hidrologia, Meteorologia, Química Ambiental e Ecologia, devendo enfatizar a capacidade de formular e de resolver alguns problemas típicos (dispersão,reações químicas, dinâmica de populações, etc.) de importância em Engenharia Ambiental.

Unidades Didáticas

1	Análise Dimensional e Ferramentas Computacionais
2	Solução numérica de Polinômios, Integrais, Séries e EDO's
3	Geometria & Álgebra
4	Solução de Sistemas de Equações Lineares
5	Funções no R ⁿ
6	Equações Diferenciais Ordinárias
7	Variáveis Complexas
8	Soluções de EDO's em Séries de Potências
9	Transformada de Laplace e Teoria de Distribuições

Programa

Aula	Data	Conteúdo Previsto	Conteúdo Realizado
1	26/02/18	Apresentação do Curso. Análise dimensional.	
2	28/02/18	Análise dimensional.	
3	02/03/18	Ferramentas computacionais.	
4	05/03/18	Vetores e Álgebra Linear.	
5	07/03/18	Vetores e Álg Lin (cont.)	
6	09/03/18	Ferramentas computacionais.	
7	12/03/18	Aplicações Geométricas.	
8	14/03/18	Determinantes e hipervolumes. O Teorema da Representação.	
9	16/03/18	Polinômios e integrais.	
10	19/03/18	Rotações	
11	21/03/18	Sistemas de Equações Lineares	
12	23/03/18	P1	
13	26/03/18	Teorema dos Pi's.	
14	28/03/18	Autovalores e autovetores. Transformações simétricas.	
	30/03/18	6ª Feira Santa	
15	02/04/18	Integrais. Séries. Solução numérica de eq dif – Euler.	
16	04/04/18	Transformações simétricas.	
17	06/04/18	Funções no \mathbb{R}^n . Teorema da função implícita.	
18	09/04/18	Solução numérica de eq dif Euler. Solução numérica de eq dif Runge-Kutta.	
19	11/04/18	Teorema da função implícita.	
20	13/04/18	Integrais de linha e de superfície.	
21	16/04/18	Solução numérica de eq dif Aplicações.	
22	18/04/18	Integral de Volume. Operadores diferenciais: divergente, gradiente, rotacional.	
23	20/04/18	Operadores diferenciais: divergente, gradiente, rotacional.	
24	23/04/18	Teoremas integrais e aplicações.	
25	25/04/18	Teoremas integrais e aplicações.	
26	27/04/18	P2	
	30/04/18	Livre	
27	02/05/18	Solução numérica de eq dif Aplicações.	
28	04/05/18	EDO's: classificação, ordem 1.	
29	07/05/18	EDO's de ordem 1.	
30	09/05/18	Mais computação.	
31	11/05/18	EDO's ordem 2. Equação de Euler.	
32	14/05/18	Números complexos, raízes da equação $z=a^{1/n}$, fórmula de Euler.	
33	16/05/18	Mais computação	
34	18/05/18	Funções plurívocas.	
35	21/05/18	Sequências e séries: teoremas de convergência. Funções analíticas e condições de Cauchy-Riemman.	
36	23/05/18	Deformação de caminho. Fórmula Integral de Cauchy.	
37	25/05/18	Р3	
38	28/05/18	Fórmula Integral de Cauchy. Séries de Taylor e de Laurent.	
39	30/05/18	Séries de Taylor e de Laurent. Solução de EDOs em séries de potências. Método de Frobenius: Introdução.	

40	01/06/18	Livre
41	04/06/18	Método de Frobenius: casos i e início do caso ii.
42	06/06/18	Método de Frobenius: caso ii; caso iii-a.
43	08/06/18	Método de Frobenius: caso iii-b.
44	11/06/18	Transformada de Laplace: definição, propriedades, inversão.
45	13/06/18	Transformadas de Laplace: convolução, mudança de origem.
46	15/06/18	Transformadas de Laplace: solução de EDO's.
47	18/06/18	Delta de Dirac $\delta(x)$ e distribuições. $H(x)$ e o Cálculo com distribuições.
48	20/06/18	Aplicações da Teoria de distribuições.
49	22/06/18	P4
50	02/07/18	F

Avaliação

A disciplina é semestral. A avaliação da disciplina é contínua: haverá 4 exames parciais (P1, P2, P3, P4) aproximadamente mensais, e 4 trabalhos computacionais (TC), seguidos de um exame final F. O conteúdo de todos os exames é cumulativo. **Os trabalhos computacionais não contarão para nota, mas o seu conteúdo será cobrado nos exames parciais**. Os alunos poderão solicitar revisão de prova durante o período até a promulgação da nota do exame posterior. Após esse prazo, não será concedida nenhuma revisão. Os alunos que fizerem a revisão de prova devem comparecer à sala do professor com uma cópia impressa da solução da prova, devidamente estudada. As soluções são disponibilizadas eletronicamente em https://www.nldias.github.io, juntamente com as notas.

A média parcial, P, será a média ponderada de:

- P4 (obrigatoriamente): peso 1.
- As duas maiores notas entre P1, P2 e P3: peso 1 para cada uma das duas.

A ausência na P4 obriga o aluno a fazer a F, que contará como substituta da P4 e, eventualmente, como a própria F. O resultado parcial é: Alunos com P < 40 estão reprovados. Alunos com P > 70 estão aprovados. Para os alunos aprovados nesta fase, a sua média final é M = P. Alunos com $40 \le P < 70$ farão o exame final F . Calcula-se a média final M = (P + F)/2. Alunos que obtiverem M > 50 estão aprovados. Alunos com M < 50 estão reprovados. Todas as contas são feitas com 2 algarismos significativos com arredondamento para cima. A sistemática dos exames é a seguinte: para cada prova, eu gero um mapa de prova aleatoriamente, com o nome e a posição dos alunos. Ao chegar à porta da sala de aula, verifique no mapa a sua posição durante a prova. O caderno de prova já estará distribuído, com seu número bem visível. Deixe todo o seu material junto ao quadro negro, e sente-se: tenha com você apenas um estojo contendo: caneta azul, lápis ou lapiseira, apontador, e borracha. Neste curso, não será permitido o uso de calculadoras, exceto quando explicitamente indicado antes de alguma prova. O mapa de prova torna o seu início muito rápido e confortável para você.

É proibido usar telefones celulares durante a prova. É proibido usar bonés, turbantes, etc., durante a prova, exceto por motivos religiosos, e nesse caso o aluno/aluna fica proibido de retirar a cobertura durante a prova. É proibido deixar a sala após o início da prova. Portanto, vá ao banheiro antes, desligue o seu celular e deixe-o junto com o resto do material dentro de sua pasta ou mochila, verifique suas lentes de contato, óculos, etc.. Após o início da prova, você só se retirará após entregar a prova.

Textos para estudo

O texto adotado para este curso é a versão mais recente de Dias [2017,2018]: um original será disponibilizado em papel para cópia no início das aulas. Um bom material adicional para a UD 1 é Versteeg e Malalasekera [2007]. O livro de Michael Greenberg [Greenberg, 1998] permanece sendo, provavelmente, um dos melhores textos de matemática aplicada existentes, e é recomendado como material adicional. Além disso, nele você encontrará uma grande quantidade de exercícios adicionais que complementam os exercícios resolvidos e propostos no livro texto.

Estudo individual

Reserve pelo menos 6 horas semanais para o estudo em casa desta disciplina. Leia a teoria no livro, evitando pular direto para exemplos e exercícios. Digite e rode os exemplos computacionais; faça os trabalhos computacionais individualmente, e não deixe para a última hora. Entenda a teoria, principalmente as deduções. Essa é a única maneira de estudar e entender matemática. Evite estudar apenas pelo caderno. Procure depois fazer o maior número possível de problemas, mas cuidado: evite fazer problemas apenas sobre uma parte da matéria. Planeje cuidadosamente seu tempo de estudo para que você consiga fazer exercícios sobre toda a matéria.

Referências

Butkov, E. (1988). Física matemática. Guanabara Koogan, Rio de Janeiro.

Dias, N. L. (2017, 2018). Uma Introdução aos Métodos Matemáticos para Engenharia. Disponível em https://nldias.github.io

Greenberg, M. D. (1998). Advanced engineering mathematics. Prentice Hall, Upper Saddle River, New Jersey 07458, 2a edição.

Versteeg, H. K. e Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics. Pearson Prentice-Hall.