Решение кинетического уравнения в замагниченной холодной плазме

А.А. ЯРКОВ

Научный руководитель – д. ф.-м. н. Д.А.Румянцев. Ярославский государственный университет им. П.Г. Демидова, Ярославль, Россия a121@mail.ru

Аннотация. В работе получено решение кинетического уравнения для функции распределения фотонов в замагниченной холодной плазме с учетом резонансного Комптоновского процесса.

Ключевые слова: комптоновское рассеяние, замагниченная плазма, резонанс, уровни Ландау, кинетическое уравнение.

В настоящее время является установленным фактом, что наличие магнитного поля в широком классе астрофизических объектов представляет типичную ситуацию для наблюдаемой Вселенной. Различные исследования указывают на то, что электромагнитные процессы, такие как комптоновское рассеяние $\gamma e \rightarrow \gamma e$, играют важную роль при формировании формы спектра сильно замагниченных нейтронных звезд [1-3].

В работе рассмотрен процесс распространения фотонов в равновесной замагниченной плазме, состоящей из электронов при низких температурах $T \ll m$ и напряженностью магнитного поля $B \sim 10^{12}$ Гс, направленного по оси z. Будем считать, что такой процесс будет описываться стационарной функцией распределения фотонов.

Анализ показывает, что в таких условиях основной вклад в концентрацию электронов будет давать нулевой уровень Ландау, fкак виртуальный электрон может занимает первый уровень Ландау, что позволяет исследовать функцию распределения фотонов в окрестности резонанса.

Система уравнений Больцмана для нахождения функции распределения фотонов двух возможных поляризаций λ =1,2 можно представить в виде

$$(\vec{n}, \overrightarrow{\nabla}_r f_{\omega}^{(\lambda)}) = \sum_{\lambda'=1}^2 \int dW_{\lambda \to \lambda'} \times \left\{ f_{E'} (1 - f_E) f_{\omega'}^{(\lambda')} (1 + f_{\omega}^{(\lambda)}) - f_E (1 - f_{E'}) f_{\omega}^{(\lambda)} (1 + f_{\omega'}^{\lambda'}) \right\}$$

где $dW_{\lambda \to \lambda'}$ - дифференциальная вероятность поглощения фотона [4].

Исходное уравнение сведено к уравнению Вольтерра по z и уравнению Фредгольма по θ – угол между направлением магнитного поля и импульсом

фотона. Таким образом., решение исходной системы можно представить следующим образом:

$$f_{\omega}^{(\lambda)}(z,x) = \frac{1}{2\pi i} \sum_{\ell=0}^{\infty} P_{\ell}(x) \int_{\sigma-i\infty}^{\sigma+i\infty} ds \cdot e^{sz} \bar{A}_{\ell}^{(\lambda)}(s,x).$$

$$\begin{split} \bar{A}_{\ell'}^{(\lambda)}(z,\omega) &= f_0 \cdot \int_{-1}^1 d\, x \frac{P_{\ell'}(x)}{\chi_\omega^{(\lambda)}(x) + s} + \sum_{\ell=0}^\infty \int_{-1}^1 d\, x \int_{-1}^1 d\, x' \frac{P_{\ell'}(x) P_\ell(x')}{\chi \chi_\omega^{(\lambda)}(x) + s x} \times \\ &\quad \times \Big\{ \bar{A}_{\ell}^{(1)}(s,\omega) \varphi_\omega^{\lambda 1}(x,x') + \bar{A}_{\ell}^{(2)}(s,\omega) \varphi_\omega^{\lambda 2}(x,x') \Big\}, \end{split}$$

где $\varphi_{\omega}^{\lambda\lambda'}(x,x')$ и $\chi_{\omega}^{(\lambda)}(x)$ - некоторые конечные функции, в которые входят квадраты модулей парциальных амплитуд процесса комптоновского рассеяния, f_0 — равновесная функция фотона, $x=\cos(\theta)$, $P_{\ell}(x)$ - полином Лежандра.

В заключение, в работе получено решение в квадратурах системы уравнений Больцмана для функции распределения двух возможных поляризаций фотонов.

итепатупа

Литература

- 1. Д. А. Румянцев, Д. М. Шленев, А. А. Ярков резонансы в комптоноподобных процессах рассеяния во внешней замагниченной среде // ЖЭТФ, 2017, том 152, вып. 2 (8), стр. 1–12.
- 2. Chistyakov M. V., Rumuyantsev D. A., Yarkov A. A. Effect of a strongly magnetized plasma on the resonant photon scattering process // Journal of J. Phys.: Conf. 2020 Vol. 1690 012015.
- 3. Mushtukov A. A., Nagirner D. I., Poutanen J. Compton scattering S-matrix and cross section in strong magnetic field // Phys. Rev. D. 2016. Vol. 93.
- 4. Mushtukov A.A., Markozov I. D., Suleimanov V. F., Nagirner D. I., Kaminker A. D., Potekhin A. Y., Portegies Zwart S. Statistical features of multiple Compton scattering in a strong magnetic field [Электронный ресурс] // arXiv.org. 2022. Дата обновления: 26.04.22. URL: https://arxiv.org/abs/2204.12271v1 (дата обращения: 29.05.2022).

Solution of the kinetic equation in magnetized cold plasma.

A. A. YARKOV

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia

Abstract. In the paper, the solution of the kinetic equation for the distribution function of photons in a magnetized cold plasma, taking into account the resonant Compton process.

Keywords: Compton scattering, magnetized plasma, resonance, Landau levels, kinetic equation.

 ∞