

LÓGICA MATEMÁTICA

AULA 01 – NOÇÕES DE LÓGICA PROPOSICIONAL: PROPOSIÇÕES E CONECTIVOS.

Objetivos: Nesta aula iremos estudar a lógica matemática a partir de proposições. Definiremos os valores lógicos das proposições e apresentaremos a tabela verdade como meio de expressar estes valores lógicos.

1. Conceitos da lógica proposicional

O conceito mais elementar no estudo da lógica é o de Proposição. Proposição "vem de propor" que significa submeter à apreciação; requerer um juízo. Trata-se de uma sentença declarativa – algo que será declarado por meio de termos, palavras ou símbolos.

Chamamos de *proposição* toda oração declarativa que pode ser classificada em *Verdadeira* ou em *Falsa*. Ou seja, entende-se proposição como *conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo*.

Exemplos de proposições:

- a) O número 7 é maior do que o número 4.
- b) Existem 10 letras no alfabeto latino.
- c) Todos os conjuntos são subconjuntos de si mesmos.
- d) A equação $x^2 + 1 = 0$ possui soluções inteiras.
- e) Carlos é marceneiro.
- f) 0 > 1.
- g) x + 1 > 0 para $x \in \{-2, -1, 0, 1, 2\}$

Observe que as proposições podem ser verdadeiras ou falsas, mas não é preciso saber qual "valor" é atribuído para entendermos a proposição. Na verdade, em muitas situações apenas admitimos a hipótese da proposição ser Verdadeira para que possamos provar os resultados desejados. Por exemplo, nas proposições acima sabemos que

"O número 7 é maior do que o número 4" é uma proposição Verdadeira e que

"Existem 10 letras no alfabeto latino" é uma proposição Falsa, mas não sabemos qual o valor da proposição

"Carlos é marceneiro."

Outro fato a observar é que a proposição g) se enquadra na definição de sentença aberta. Ela é verdadeira ou é falsa de acordo com os valores atribuídos a variável x. Assim, x + 1 > 0 se

torna um a proposição Verdadeira para x = 0, x = 1 e x = 2, mas é uma proposição Falsa para x = -2 e x = -1.

Exemplos de não proposições:

- a) Bom dia!
- b) Onde está o relógio?
- c) Escreva uma poesia.
- d) $x + y \in positivo$.

Neste caso temos frases exclamativas, interrogativas e imperativas. Vejamos que "x + y é positivo" não pode ser uma proposição por não definir o conjunto de valores para as variáveis, isto é, não há como atribuir Verdadeiro e nem Falso para "x + y é positiva".

Notação:

Representamos as proposições pelas letras latinas minúsculas, geralmente a partir de *p*:

$$p, q, r, s, t, \dots$$

A cada uma das proposições simples podemos atribuir um valor:

Valor Verdade se a proposição for verdadeira;

Valor Falsidade se a proposição for falsa.

Este valor é chamado de **valor lógico** da proposição.

Utilizaremos a letra V para verdade e a letra F para falsidade.

Para entendermos a lógica proposicional é preciso entender os três princípios fundamentais:

1. Princípio da identidade

Uma proposição verdadeira tem valor verdade; uma proposição falsa tem valor falsidade.

2. Princípio da não - contradição

Uma proposição não poderá ter valor verdade e falsidade ao mesmo tempo.

3. Princípio do terceiro excluído

Uma proposição ou terá valor verdade ou terá valor falsidade. Não há uma terceira possibilidade.

Exemplos de Valores lógicos:

p: Sete é diferente de zero.

O Valor lógico desta proposição é **verdade**. Escrevemos

$$V(p) = V$$

q: O complemento de um conjunto é formado somente pelos elementos que pertencem a este conjunto.

O Valor lógico desta proposição é **falsidade**. Escrevemos

$$V(p) = F$$

2. Proposições compostas: Conectivos lógicos

A partir de proposições simples podemos construir novas proposições mediante o emprego de símbolos lógicos chamados **conectivos lógicos**.

Símbolo	Leitura
~	não
٨	e
V	ou
\rightarrow	Seentão
\leftrightarrow	Se, e somente se

As proposições simples são aquelas proposições que não contém outra proposição na sua formação, enquanto as proposições compostas são formadas pela combinação de duas ou mais proposições simples, mediante o uso de conectivos lógicos.

Exemplos de proposições compostas:

- a) O número 4 é par **e** o número 3 é ímpar.
- b) O conjunto A está contido em B **ou** o conjunto B está contido em A.
- d) **Se** houver jogo hoje, **então** faltarei ao trabalho.
- d) $A \subset B$ **se, e somente se**, todo elemento de A pertencer a B.

O valor lógico de uma proposição composta depende exclusivamente dos valores lógicos das proposições simples componentes. Assim, conhecendo os valores das proposições simples sempre será possível determinar o valor lógico das proposições compostas.

2.1 Tabela Verdade

Para determinarmos o valor lógico de uma proposição composta precisamos analisar todas as possibilidades de valores das proposições simples. Uma forma de condensar esse processo em um método mecânico e eficiente é através da **tabela verdade**. Vejamos como representar os valores lógicos de uma proposição simples na chamada tabela verdade.

Segundo o *princípio do terceiro excluído*, qualquer proposição simples p é verdadeira ou é falsa. Assim, temos duas opções na tabela.

р	
V	
F	

Para duas proposições simples, p e q, teremos duas opções para cada, V ou F, de modo que as combinações dos valores lógicos irá gerar a seguinte tabela:

p	q
V	V
V	F
F	V
F	F

Observe que o número de linhas da tabela sempre será 2ⁿ, onde n é o número de proposições simples. Além disso, na construção da tabela podemos proceder alternando entre valores V e F para obter todas as combinações possíveis.