Matrix Vector Mulitplication

Professor Seokkoo Kang

Department of Civil & Environmental Engineering

kangsk78@hanyang.ac.kr

Block-row distribution

Process	Elements of A			
0	a_{00}	a_{01}	a_{02}	a_{03}
	a_{10}	a_{11}	a_{12}	a_{13}
1	a ₂₀	a_{21}	a_{22}	a ₂₃
	a_{30}	a_{31}	a_{32}	a_{33}
2	a ₄₀	a_{41}	a_{42}	a ₄₃
	a_{50}	a_{51}	a_{52}	a_{53}
3	a ₆₀	a_{61}	a_{62}	a_{63}
	a ₇₀	a_{71}	a_{72}	a_{73}

	A
Process 0	
Process 1	
Process 2	
Process 3	

Methods for calculating y=Ax

- Method 1
 - Gather all of x onto each process
- Method 2
 - Scatter each row of A across the process

Method 1

Using MPI_Gather(), gather the entire vector onto my rank. Calculate the local dot products and store the result in y.

Method 2

Using MPI_Scatter(), scatter the rows across the processors. Calculate the local dot products and store the result in y.

Assignment

- Write a parallel that calculates a matrix vector product for an arbitrary matrix size of N*N and vector size N.
- Fill the matrix and vector with random numbers.
- You may use either the method 1 or 2.
- Verify the result for small N and test the result for different np and check the result is consistent.
- Measure and report the execution time for N=10,000 matrix for np=1,2,3,4,..,8
- Use MPI_Scatterv and MPI_Gatherv