

Università degli studi di Roma Tor Vergata

Valutazione e confronto della Carbon Footprint per sistemi di riscaldamento condominiali nel ciclo di vita

Corso di Impatto Ambientale delle Emissioni in Atmosfera Prof. Ing. Baciocchi Ing. Iason Verginelli

Federico Donato Davide Solvani

Esercitazione

Approved Life

ISO 14040

Gruppo 5 (carbon footprint di diversi sistemi di riscaldamento domestico)

Si valuti l'impronta di carbonio del riscaldamento di un condominio con diversi sistemi:

- Caldaia a gasolio
- Caldaia a metano tradizionale
- Caldaia a metano a condensazione
- Caldaia alimentata a pellet

Discutere i risultati e proporre eventuali soluzioni migliorative.

Definizione dei confini del sistema

Considerazioni generali sulla filiera del combustibile

A. Sgarbossa, M. Boschiero et al., Comparative Life Cycle Assessment of Bioenergy Production from Different Wood Pellet Supply Chains, ottobre 2020

- Carbon dioxide
- Methane
- Nitrous oxide
- Substances controlled by the Montreal Protocol
- HFC, PFC, HFE, PFPMIE
- Hydrocarbons and other compounds direct effects

Database europeo per la valutazione degli impatti tramite software opensource openLCA

European Commission

PEF

L'unità funzionale adottata è stata considerata in riferimento a quelle definite per ogni singolo processo

Filiera del combustibile: Gasolio

Estrazione petrolio + Raffinazione gasolio

Gasoline mix (regular) at refinery, production mix, at refinery, from crude oil, 150 ppm sulphur, 0.43 wt.% bio components

UNITA' FUNZIONALE = 1 kg di gasolio prodotto

 $0.8 \, \mathrm{kg_{CO_{2,eq}}/kg_{gasolio}}$

Trasporto al sito di utilizzo

Articulated lorry transport, Total weight >32 t, mix Euro 0-5, consumption mix, to consumer, diesel driven, Euro 0 - 5 mix, cargo, more than 32t gross weight / 24,7t payload capacity

EU: Share of motorway, rural and urban drive

UNITA' FUNZIONALE = 1 tkm

 $\begin{array}{c} \text{0.055} \\ \text{kg}_{\text{CO}_{2,\text{eq}}}/\text{tkm} \end{array}$

Prodotto delle tonnellate utili (dipendono dal rendimento della caldaia) trasportate per i km percorsi, è una misura del volume di attività prodotto da un'azienda di trasporto oppure del traffico merci che interessa una certa regione geografica

Filiera del combustibile: Metano

PRODUZIONE + DISTRIBUZIONE METANO

Natural gas mix, consumption mix, to consumer, technology mix, medium pressure level (< 1 bar)

UNITA' FUNZIONALE = 1 kg di gas naturale al consumatore finale

 $0.55 \text{ kg}_{\text{CO}_{2,\text{eq}}}/\text{kg}_{\text{NG}}$

Per calcolare le emissioni complessive di CO2 equivalente, nella fase di valutazione degli impatti è stato calcolato il consumo di combustibile richiesto dalla caldaia a metano tradizionale e dalla caldaia a condensazione

Methane Supply Chain GWP Emissions

Filiera del combustibile: Pellet

A. Sgarbossa, M. Boschiero et al., Comparative Life Cycle Assessment of Bioenergy Production from Different Wood Pellet Supply Chains, ottobre 2020

Figure 1. Process flow diagram of the investigated wood pellet supply chains. The dotted line shows the system boundary. Macro-phases are listed on the right of the figure.

The functional unit was 1 MJ of thermal energy produced by burning wood pellets delivered to the final user

	S1	S2	S3	S4							
Emissions	Sawdust	Roundwood	Whole Trees	Logging Residues							
GWP	g CO _{2eq}										
Emissions to air (total)	187.97	185.70	159.84	195.79							
Carbon dioxide (biotic)	160.36	160.25	144.94	177.89							
Carbon dioxide	20.97	18.92	12.97	15.58							
Nitrous oxide	1.33	1.31	1.18	1.42							
Methane (biotic)	4.24	4.24	0.04	0.05							
Methane	1.03	0.95	0.68	0.80							
Group NMVOC to air a	0.03	0.03	0.03	0.05							

Considerazioni generali sulla fase di esercizio della caldaia

Caldaia pressurizzata alimentata a gasolio, modello Caldaie Melgari MAC 150

- POTERE CALORIFICO H_i , [kJ/kg]
- DENSITA' ρ , [kg/ m^3]

Caldaia pressurizzata alimentata a metano, modello Fondital Rori Dual 150 HR

Caldaia a condensazione alimentata a metano, modello Immergas Ares PRO 150

Caldaia alimentata a biomassa (pellet), modello Heiz Technik Frolling TX 150

FASE DI ESERCIZIO DELLA CALDAIA

- **ASSUNZIONI SUL FUNZIONAMENTO E VITA UTILE**

Fase di trattamento dei rifiuti

Considerazioni generali sulla fase di trattamento dei rifiuti

A. Falbo, L. Biganzoli et al., Il sistema di gestione dei RAEE in Lombardia – Valutazione ciclo di vita, marzo 2015

Sommario - Il presente studio analizza il sistema di gestione dei Rifiuti da Apparecchiature Elettriche ed Elettroniche (RAEE) in Regione Lombardia applicando la metodologia del ciclo di vita (LCA) per la quantificazione degli impatti ambientali ad esso associati. Sono incluse nella valutazione la raccolta di ciascuna categoria di RAEE, il trasporto alla piattaforma di stoccaggio, il primo trattamento in impianti specifici e il successivo trattamento delle componenti separate in impianti finali di riciclo e/o smaltimento.

I risultati dimostrano come il recupero dei RAEE in Regione Lombardia comporti dei benefici consistenti per l'ambiente e per la salute umana grazie, principalmente, al recupero delle frazioni metalliche, delle plastiche e del vetro.

D.Lgs. 49/2014

Smaltimento dei Rifiuti da Apparecchiature Elettriche ed Elettroniche

Fine vita, smaltimento e riciclo

Categoria di UM impatto		R1			R2			R3				R4			R5		
		trasporto	impianto	totale	t r a s - porto	impianto	totale	tras- porto	impianto FDP	impianto CRT	totale	trasporto	impianto	totale	trasporto	impianto	totale
C a m b i a - mento cli- matico	kg CO ₂ eq	58,96	-1.022	-963	50,36	-836	-785	38	-75	-2149	-2187	50	-788	-737	36,95	-863	-826
Riduzione dello strato d'ozono		8,83E- 06	8,12E-05	9,00E- 05	7.53E- 06	3,52E-05	4,27E- 05	5,62E- 06	-2,76E-06	-1,36E-04	-1,33E- 04	7,53E-06	-5,39E-05	-4,64E-05	5,53E-06	-9,40E-05	-8,85E-05
l'ossicità per l'uomo (effetti can- cerogeni)	CTUh	3,63E-	1,68E-05	1,69E- 03	3,09E-	2,72E-03	2.72E- 03	2.31E- 06	1,51E-05	-1,074E-04	-8,70E- 05	3,09E-06	1,70E-03	1,71E-03	2,27E-06	4,64E-05	4,86E-05

Caratterizzazione del condominio

DIMENSI	ONI	
numero		
appartamenti	12	
numero piani abitati	3	
numero piani tot	4	
appartamenti/piano	4	
d1	19	m
d2	18	m
altezza piano	3.1	m
altezza locale caldaia	2.7	m
altezza tot	12	m
Superficie		
appartamento	80	m^2
Superficie piano	342	m^2
Superficie scala	22	m^2
Superficie		
abitata/piano	320	m^2
Superficie totale	1368	m^2
Volume tot	4104	m^3
Volume scala	204.6	m^3
Volume locale caldaia	923.4	m^3
Volume piani abitati	3180.6	m^3
Volume da riscaldare	2976	m^3

Zona climatica	Periodo di accensione	Orario consentito
А	1° dicembre - 15 marzo	6 ore giornaliere
В	1° dicembre - 31 marzo	8 ore giornaliere
С	15 novembre - 31 marzo	10 ore giornaliere
D	1° novembre - 15 aprile	12 ore giornaliere
Е	15 ottobre - 15 aprile	14 ore giornaliere
F	nessuna limitazione	nessuna limitazione

Data accensione termosifoni e caldaie Roma 2020

Roma è inserita nella fascia climatica D. La durata di accensione degli impianti termici non deve superare a Roma, le 12 ore giornaliere nell'arco di tempo che va dalle ore 5.00 alle ore 23.00, nel

periodo dal 1 novembre al 15 aprile.

Ore a P max	4
Ore a P stazionaria	8
giorni/anno riscaldamento	165
Ore di funzionamento all'anno	1980

Energia a carico max	600	kWh
Energia a carico stazionario	600	kWh
Energia giornaliera	1200	kWh
Energia/anno	198	MWh/anno

PROFILO DELLA RICHIESTA TERMICA: Richiesta termica max (T< $T_{set-point}$) = 150 kW Richiesta termica stazionaria (T= $T_{set-point}$) = 75 kW

Inventario e Raccolta Dati: Scelta Caldaie di Riferimento

Fabbisogno Termico Condominio Massima Potenza Termica Richiesta

Scelta e Dimensionamento Caldaie $(P_{nom}, \eta_{caldaia}, consumo combustibile)$

ARES PRO 150

- o Energia e Massa di combustibile
- Emissioni specifiche di CO2

Caldaia a Metano a Condensazione

Immergas
Ares Pro 150

_		Annual cutain and second
Portata termica nominale massima	kW (kcal/h)	140 (120.400)
Potenza utile nominale massima (80/60 °C)	kW (kcal/h)	136,36 (117.270)
Potenza utile nominale massima (50/30 °C)	kW (kcal/h)	145,88 (125.457)
Portata termica nominale minima	kW (kcal/h)	35 (30.100)
Potenza utile nominale minima (80/60 °C)	kW (kcal/h)	32,52 (27.967)
Potenza utile nominale minima (50/30 °C)	kW (kcal/h)	36,54 (31.424)
Rendimento al 100% Pn (80/60 °C)	%	97,4
Rendimento al 30% del carico (80/60 °C)	%	92,92
Rendimento al 100% Pn (50/30 °C)	%	104,2
Rendimento al 30% del carico (T. r. 30 °C)	%	107,7
		I

Caldaia a Metano Tradizionale

MODELLO	Pot. utile	Portata	51.075C02-002-65	Classe di rend.	PRINCES STATES	Portata gas G30 max	DIVIDADES AND	Portata fumo max	Pot. utile min.	100000000000000000000000000000000000000	Rend. al 30%	Portata gas G20 min	100 to 10	Portata gas G31 min	Portata fumo min	Perdite carico lato fum
	kW	kW	96	%	m²/h	kg/h	kg/h	kg/h	kW	kW	%	m9/h	kg/h	kg/h	kg/h	mbar
HR 150	150	157,8	95,06	#11	16,70	12,39	12,26	248,83	75	78,4	95,70	8,29	6,16	6,09	123,57	1,3

Fondital RoriDual HR 150

Inventario e Raccolta Dati: Scelta Caldaie di Riferimento

Caldaia a Gasolio

MODELLO MAC		150
Potenzialità termica nominale	kCal	130.065
	kW	151
Potenzialità al focolare	kCal	143.652
	kW	167
Efficienza	%	91
Contenuto d'acqua	Litri	157
Pressione camera combustione	mbar	1,20
Caduta di pressione (lato acqua)	mbar	11,80
Pressione	bar	5
Consumo di metano	Nm³/h	17
Portata fumi metano	Nm³/h	253
Consumo di gasolio	kg/h	14
Portata fumi gasolio	kg/h	267

Melgari MAC 150

Caldaia a Pellet

DATI TECNICI - TX		150
potenza calorifica nominale (cippato M30 secondo ÖNORM)	[kW]	150
fabbisogno di combustibile a carico nominale (P45A/M30)	[kg/h]	48
diametro tubo fumi	[mm]	200
peso secco incl. parti annesse	[kg]	2730
peso storta	[kg]	855
peso scambiatore di calore	[kg]	1000
contenuto d'acqua	[1]	440
temperatura di esercizio ammessa	[°C]	90
minima temperatura di ritorno	[°C]	65
pressione di esercizio ammessa	[bar]	3
temperatura fumi a carico nominale	[°C]	150
rendimento	[%]	92,1

percentuale di polveri

contenuto energetico

Froling TX 150

max 2,3%

4,9 kWh/kg

Pellet di Riferimento

Inventario e Raccolta Dati: Scelta Caldaie di Riferimento

Risultati del Calcolo:

UTILIZZO DEL COMBUSTIBILE IN CALDAIA	Metano a Condensazione	Metano Tradizionale	Gasolio	Biomassa (Pellet)
Ore di accensione impianto termico	32671	29700	19669	19800
Energia termica consegnata all'utenza $[\mathit{GWh}_{\mathit{termici}}]$	2.97	2.97	2.97	2.97
Energia termica sprigionata dal combustibile [$GWh_{termici}$]	2.82	3.11	3.26	3.22
kg di Combustibile consumati	203007	224200	275181	658113
kWh di Energia Elettrica consumati	6207	5643	3737	5940
tonnellate di CO2 equivalente emessa (GWP)	560.5	618.5	869.5	1094.6

Vita Utile Caldaie 15 anni

Emissioni Specifiche:

- ✓ Caldaie a Metano → emissioni più basse (η maggiori, combustibile «pulito»)
- ✓ Caldaia a Pellet → basse emissioni a kg, ma scarsa densità energetica
- ✓ Caldaia a Gasolio → η basso e alte emissioni al kg

Inventario e Raccolta Dati: Scenario Trattamento Rifiuti

D.Lgs 49/2014→ Normativa Smaltimento RAEE

Caldaie (>35kW)→Aggiornamento Agosto 2018

Conferimento Centri di Raccolta

Smistamento verso gli Impianti di Trattamento Recupero (75%) Riciclo (55%)

Studio LCA RAEE commissionato da Regione Lombardia

Tabella 4 – Valori degli indicatori di impatto associati al recupero di 1 t di R1, 1 t di R2, 1 t di R3, 1 t di R4 e 1 t di R5

Categoria di impatto	UM	R1			R1 R2			R3				R4		R5			
		trasporto	impianto	totale	tras- porto	impianto	totale	tras- porto	impianto FDP	impianto CRT	totale	trasporto	impianto	totale	trasporto	impianto	totale
C a m b i a - mento cli- matico	kg CO ₂ eq	58,96	-1.022	-963	50,36	-836	-785	38	-75	-2149	-2187	50	-788	-737	36,95	-863	-826

-874	$kgCO_{2\ eq}$
-8/4	ton RAEEsmaltita

FINE VITA: CONFERIMENTO-SMISTAMENTO-TRATTAMENTO-RECUPERO-RICICLO	Metano a Condensazione	Metano Tradizionale	Gasolio	Biomassa (Pellet)
Peso netto caldaia [kg]	347	357	310	2730
tonnellate di CO2 equivalente risparmiata (GWP)	-0.30	-0.31	-0.27	-2.39

Fase 3: Valutazione Impatto Ambientale, GWP

La combustione rappresenta il contributo più impattante (legato alla vita utile del sistema)

La produzione e distribuzione pesano il 20-25% delle emissioni in combustione e, il 15% circa sul totale (risente dei rendimenti a valle)

Mentre è trascurabile l'aliquota di fine vita della caldaia

Caldaia a condensazione a Metano		Caldaia Tradizionale a Metano	
Fase	tonCO2_eq	Fase	tonCO2_eq
1: Produzione+Distribuzione	111.42	1: Produzione+Distribuzione	123.05
2: Utilizzo in Combustione	560.46	2: Utilizzo in Combustione	618.54
3: Fine Vita	-0.30	3: Fine Vita	-0.31
LCA totale	671.57	LCA totale	741.28

Caldaia a Gasolio		Caldaia a Biomassa (Pellet)	
Fase tonCO2_eq		Fase	tonCO2_eq
1:Produzione+Trasporto	266.18	1:Produzione+Trasporto (tabella)	206.57
1A: Estrazione+Raffinazione	220.25	1A: Trattamento+Pellettizzazione	186.43
1B:Trasporto all'utenza	45.93	1B:Trasporto all'utenza	20.14
2: Utilizzo in Combustione	869.51	2: Utilizzo in Combustione	1094.56
3: Fine Vita	-0.27	3: Fine Vita	-2.39
LCA totale	1135.42	LCA totale	1298.74

Tabella materia prima	tonnellate CO2 equivalente			
produzione pellet	S1	S2	S3	S4
1A: Trattamento+Pellettizzazione	229.63	206.64	138.75	170.71
1:Produzione+Trasporto	249.77	226.78	158.88	190.85

Legenda:		
S1: Residui di Segheria S3: Alberi Interi		
S4: Residui di Disboscamento		

Caratterizzazione Carbon Footprint, GWP

Normalizzazione Carbon Footprint, GWP

Normalizzazione

Categoria d'impatto	Fattore moltiplicativo di normalizzazione
consumo di risorse	6,66E-011
cambiamento climatico	2,12E-013
consumo strato d'ozono	1,20E-008
tossicità per l'uomo	1,32E-013
ecotossicità per l'acqua	1,98E-012
ecotossicità per terra	2,12E-011
ossidazione fotochimica	1,21E-010
acidificazione	3,66E-011
eutrofizzazione	8,02E-011

Normalizzazione dell'impatto ambientale (GWP) [%]

Stima per tutti i condomini italiani (935704)					
Tabella Riassuntiva	Metano Condensazione	Metano Tradizionale	Gasolio	Pellet	
1: Produzione+Trasporto	0.0022%	0.0024%	0.0053%	0.0041%	
2: Utilizzo in Combustione	0.0111%	0.0123%	0.0172%	0.0217%	
3: Fine Vita	0.0000%	0.0000%	0.0000%	0.0000%	
Totale	0.0133%	0.0147%	0.0225%	0.0258%	

Impatto Normalizzato:

- 1/10000 caldaie a metano
- 1/5000 caldaie a gasolio
- 1/3000 caldaie a pellet

Considerazioni sull'Assorbimento CO2

STIMA ASSORBIMENTO			
CO2 ALBERI	Caso Minimo Assorbimento	Caso Massimo Assorbimento	kgCO2_ass/(albero*anno)
CO2 ALBERT	Caso Minimo Assorbimento	Caso Massimo Assorbimento	-35.00
Peso medio di un albero [ton]	3	3	
Vita media albero prima di essere tagliato	15	20	
ton di Pellet consumate	658	658	
Resa trasformazione legna-pellet	60%	40%	
Peso alberi equivalente	1097	1645	CO,
Numero di alberi tagliati	366	549	-
tonnellate CO2 assorbite	-192	-384	

- Studi e dati presenti in letteratura in via di sviluppo e di definizione
- Elevata variabilità delle stime
- «Ago della bilancia» nella valutazione LCA biomasse

Conclusioni

Contesto Politico e Tecnico-Economico

- Attualmente le caldaie a condensazione alimentate a metano costituiscono la BAT di riferimento per i sistemi di riscaldamento domestico e residenziale (elevata efficienza, combustibile «pulito» ed altamente energetico).
- ❖ Per il riscaldamento domestico le **normative** prevedono, in caso di sostituzione, l'**installazione di caldaie a condensazione** (dal **2015**) ed il **rimpiazzo** di tutte quelle alimentate **a gasolio** (dal **2017**). Dunque i sistemi a metano tradizionali e a gasolio non sono più percorribili, se non in configurazione poli-combustibile (in accordo con la **SEN** e le **politiche energetiche nazionali**).
- ❖ Il numero di installazioni a biomassa sta crescendo negli ultimi anni, grazie anche alla spinta degli incentivi e al ridotto (o nullo) costo di approvvigionamento del combustibile.

In Conclusione:

- ✓ I sistemi a **biomassa** potrebbero rappresentare una **soluzione futuribile** a livello tecnico-economico e ambientale, se valutato in modo accurato **l'assorbimento della CO2** («game changer»).
- ✓ Nonostante siano **ancora lontani** da un contributo «**Carbon Neutral** o Negative», ad oggi sono **più vantaggiosi** rispetto ai derivati **del petrolio** e potrebbero **concorrere con** i sistemi a **metano**, soprattutto se integrati in un'ottica di **Km 0 ed economia circolare**.
- ✓ Interessante sarebbe anche il **confronto con** sistemi prettamente elettrici (**pompe di calore**) e/o centralizzati (**teleriscaldamento**).

Bibliografia e Riferimenti

- > Slides del corso
- > <u>Isprambiente.gov.it</u>
- > ENEA (www.enea.it)

Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile

- Schede Tecniche e Manuali
- Comparative Life Cycle Assessment of Bioenergy Production from Different Wood Pellet Supply Chains Andrea Sgarbossa, Martina Boschiero, Francesca Pierobon Raffaele Cavalli and Michela Zanetti Department of Land, Environment, Agriculture and Forestry, Università degli Studi di Padova
- > Il sistema di gestione dei RAEE in Lombardia, Parte II- Valutazione del ciclo di vita Alida Falbo, Laura Biganzoli, Federica Forte, Lucia Rigamonti, Mario Grosso Politecnico di Milano, Dipartimento di Ingegneria Civile e Ambientale sezione ambientale
- Carichi Termici Invernali, Dipartimento di Ingegneria Industriale- Sezione ETEC Università degli studi di Napoli Federico II, Prof. Ing. F. Minichiello
- > Database PEF OpenLCA
- > Documentazioni relative a installazioni realizzate (Stato dell'Arte)

Grazie dell'attenzione