GEOMETRIA 1

Alessandro Piazza *

20 aprile 2018

Sommario

Raccolta di definizioni, proposizioni e teoremi per il corso di Geometra 1 tenuto dal professor Giovanni Gaiffi e da Davide Lombardo nell'anno accademico 2017/2018. Sono stati inoltre aggiunti altri risultati utili non fatti a lezione che sono segnalati da un obelisco \dagger .

Attenzione: questa è una bozza, ci sono molti errori

Indice

1	Strutture algebriche †	2
2	Spazi Vettoriali	3
3	Matrici	6
4	Applicazioni lineari	7
5	Applicazioni lineari e matrici	9
6	Formula di Grassmann e somma diretta	11
7	Sistemi lineari	12
8	Determinante	13
9	Diagonalizzazione di endomorfismi	17
10	Prodotti scalari	20
11	Teorema spettrale, aggiunzione, operatori ortogonali e unitari	25
12	Miscellanea	28

^{*}alessandro.piazza@sns.it

1 Strutture algebriche †

Definizione 1.1 (operazione) Dato un insieme X, si definisce operazione su X un'applicazione

$$*: A \times A \rightarrow A.$$

Definizione 1.2 (gruppo) Un gruppo è una coppia $(\mathbb{G}, *)$ dove \mathbb{G} è un insieme non vuoto e * e un'operazione su \mathbb{G} che soddisfa le seguenti proprietà:

- (i) associativa: $\forall a, b, c \in \mathbb{G}, \ a * (b * c) = (a * b) * c;$
- (ii) esistenza dell'elemento neutro: $\forall a \in \mathbb{G}, \exists 1_{(\mathbb{G},*)} : a * 1_{(\mathbb{G},*)} = 1_{(\mathbb{G},*)} * a = a;$
- (iii) esistenza dell'inverso: $\forall a \in \mathbb{G}, \exists \bar{a} \in \mathbb{G} : a * \bar{a} = \bar{a} * a = 1_{(\mathbb{G}_{*}*)}$.

Definizione 1.3 (gruppo abeliano) Un gruppo abeliano (o gruppo commutativo) è un gruppo $(\mathbb{G},*)$ che soddisfa anche la seguente proprietà:

(iv) commutativa: $\forall a, b \in \mathbb{G}, \ a * b = b * a.$

Teorema 1.1 Dato un gruppo $(\mathbb{G}, *)$:

- 1. l'elemento neutro è unico;
- 2. l'inverso di un elemento è unico;
- 3. legge di cancellazione: se $a, b, c \in \mathbb{G}$ e a * b = a * c allora b = c.

Definizione 1.4 (anello) Un anello è una terna $(\mathbb{A}, +, \cdot)$ dove \mathbb{A} è un insieme, + e \cdot sono operazioni dette *somma* e *prodotto* su \mathbb{A} tali che:

- (i) $(\mathbb{A}, +)$ è un gruppo abeliano (nota: l'elemento neutro della somma viene indicato con $0_{\mathbb{A}}$ mentre l'inverso di $a \in \mathbb{A}$ viene detto opposto e denotato con -a);
- (ii) associativa del prodotto: $\forall a, b, c \in \mathbb{A}, \ a \cdot (b \cdot c) = (a \cdot b) \cdot c;$
- (iii) elemento neutro del prodotto: $\exists 1_{\mathbb{A}} : \forall a \in \mathbb{A}, \ a \cdot 1_{\mathbb{A}} = 1_{\mathbb{A}} \cdot a = a;$
- (iv) distributiva del prodotto rispetto alla somma: $\forall a, b, c \in \mathbb{A}, (a+b) \cdot c = a \cdot b + b \cdot c$.

Teorema 1.2 Sia $(\mathbb{A}, +, \cdot)$ un anello. Allora:

- 1. $\forall a \in A, \ a \cdot 0_{\mathbb{A}} = 0_{\mathbb{A}} \cdot = 0_{\mathbb{A}};$
- 2. $\forall a \in A, (-1_{\mathbb{A}}) \cdot a = -a$ (dove $-1_{\mathbb{A}}$ rappresenta l'inverso rispetto alla somma dell'elemento neutro del prodotto e -a l'opposto di a, i.e. inverso di a rispetto alla somma).

Definizione 1.5 (anello commutativo) Un anello commutativo è un anello $(\mathbb{A}, +, \cdot)$ che soddisfa anche la seguente proprietà:

(v) commutativa: $\forall a, b \in \mathbb{A}, \ a \cdot b = b \cdot a$.

Definizione 1.6 (corpo) Un corpo è un anello $(\mathbb{A}, +, \cdot)$ che soddisfa anche la seguente proprietà:

(v) inverso rispetto al prodotto: $\forall a \in \mathbb{A} : a \neq 0_{\mathbb{A}}, \exists \bar{a} \in A : a \cdot \bar{a} = \bar{a} \cdot a = 1_{\mathbb{A}}$ che viene indicato con $\bar{a} = a^{-1}$.

Definizione 1.7 (campo) Un campo è una terna $(\mathbb{F}, +, \cdot)$ tale che:

- 1. $(\mathbb{F}, +, \cdot)$ è un anello commutativo;
- 2. inverso rispetto al prodotto: $\forall a \in \mathbb{A} : a \neq 0_{\mathbb{A}}, \exists \bar{a} \in A : a \cdot \bar{a} = \bar{a} \cdot a = 1_{\mathbb{A}}$ che viene indicato con $\bar{a} = a^{-1}$.

In modo del tutto equivalente, un campo è $(\mathbb{F}, +, \cdot)$ tale che:

- 1. $(\mathbb{F}, +, \cdot)$ è un corpo;
- 2. commutativa: $\forall a, b \in \mathbb{A}, \ a \cdot b = b \cdot a$.

Proposizione 1.3 Sia $(\mathbb{F}, +, \cdot)$ un campo. Allora $(a \cdot b = 0_{\mathbb{F}} \land a \neq 0_{\mathbb{F}}) \Rightarrow b = 0_{\mathbb{F}}$.

2 Spazi Vettoriali

Definizione 2.1 (campo) ¹ Un campo è una terna $(\mathbb{K}, +, \cdot)$ dove \mathbb{K} è un insieme su cui sono definite due operazioni di $somma +: \mathbb{K} \times \mathbb{K} \to \mathbb{K}$ e $prodotto :: \mathbb{K} \times \mathbb{K} \to \mathbb{K}$ che associano a due elementi dell'insieme un altro elemento dell'insieme, ovvero tali che

- 1. $\forall x, y \in \mathbb{K} \Rightarrow x + y \in \mathbb{K}$
- 2. $\forall x, y \in \mathbb{K} \Rightarrow x \cdot y \in \mathbb{K}$

e che rispettano le seguenti proprietà

- (i) associativa: $\forall x, y, z \in \mathbb{K}$, x + (y + z) = (x + y) + z e $x \cdot (y \cdot z) = (x \cdot y) \cdot z$;
- (ii) commutativa: $\forall x, y \in \mathbb{K}, x + y = y + x \in x \cdot y = y \cdot x$;
- (iii) esistenza degli elementi neutri: $\exists 0_{\mathbb{K}}, 1_{\mathbb{K}} \in \mathbb{K} : 0_{\mathbb{K}} \neq 1_{\mathbb{K}}$ tali che $\forall x \in \mathbb{K}, x + 0_{\mathbb{K}} = 0_{\mathbb{K}} + x = x$ e $\forall x \in \mathbb{K}, x \cdot 1_{\mathbb{K}} = 1_{\mathbb{K}} \cdot x = x$ (tali elementi sono unici e per semplicità vengono indicati con 0 e 1):
- (iv) opposto: $\forall x \in \mathbb{K}, \exists y \in \mathbb{K} : x + y = 0_{\mathbb{K}}$ che viene indicato con -x;
- (v) inverso: $\forall x \in \mathbb{K} : x \neq 0_{\mathbb{K}}, \exists y \in \mathbb{K} : x \cdot y = 1_{\mathbb{K}}$ che viene indicato con $\frac{1}{x}$ o x^{-1} ;
- (vi) distributiva del prodotto rispetto alla somma: $\forall x, y, z \in \mathbb{K}, \ x \cdot (y+z) = x \cdot y + x \cdot z$.

Definizione 2.2 (spazio vettoriale) Uno spazio vettoriale V su un campo \mathbb{K} o \mathbb{K} -spazio vettoriale è una quaterna $(V, \mathbb{K}, +, \cdot)$ dove \mathbb{K} è un campo e V è un insieme non vuoto su cui sono definite due operazioni di

- 1. $somma +: V \times V \to V$ tra elementi di V tale che $\forall v, w \in V \Rightarrow +(v, w) = v + w \in V$
- 2. prodotto per scalare $\cdot: \mathbb{K} \times V \to V$ tale che $\forall v \in V, \forall \lambda \in \mathbb{K} \Rightarrow \cdot (\lambda, v) = \lambda \cdot v = \lambda v \in V$

che devono rispettare le seguenti proprietà:

- (i) associativa della somma: $\forall v, w, u \in V, \ v + (w + u) = (v + w) + u;$
- (ii) commutativa della somma: $\forall v, w \in V, v + w = w + v;$
- (iii) esistenza dell'elemento neutro della somma: $\exists O_V \in V : \forall v \in V, \ v + O_V = O_V + v = v;$
- (iv) opposto della somma: $\forall v \in V, \exists w \in W : v + w = O_V$ che viene indicato con w = -v;
- (v) distributiva del prodotto rispetto alla somma: $\forall \lambda \in \mathbb{K}, \forall v, w \in V, \ \lambda(v+w) = \lambda v + \lambda w;$
- (vi) distributiva del somma sul campo rispetto al prodotto: $\forall \lambda, \mu \in \mathbb{K}, \forall v \in V, (\lambda + \mu)v = \lambda v + \mu v;$
- (vii) associativa del prodotto: $\forall \lambda, \mu \in \mathbb{K}, \forall v \in V, (\lambda \mu)v = \lambda(\mu v);$
- (viii) elemento neutro del prodotto: $\exists 1_{\mathbb{K}} \in \mathbb{K} : \forall v \in V, \ 1_{\mathbb{K}} \cdot v = v;$

Chiameremo vettori gli elementi di V.

Nota: dove non specificato intenderemo sempre che V è uno spazio vettoriale su un campo \mathbb{K} .

Proprietà 2.1 Uno spazio vettoriale gode delle seguenti proprietà:

- 1. Unicità dell'elemento neutro
- 2. Unicità dell'opposto
- 3. $0_{\mathbb{K}} \cdot v = O_V$
- $4. \ (-1_{\mathbb{K}}) \cdot v = -v$

¹Riassunto della sezione 1

Definizione 2.3 (sottospazio vettoriale) Sia V un \mathbb{K} -spazio vettoriale. Diciamo che $W \subseteq V$ è un sottospazio vettoriale di V se valgono le seguenti proprietà

- (i) $\forall v, w \in W \Rightarrow v + w \in W$
- (ii) $\forall v \in W, \forall \lambda \in \mathbb{K} \Rightarrow \lambda v \in W$
- (iii) $O_V \in W$

Teorema 2.1 (intersezione di sottospazi) Sia V un \mathbb{K} -spazio vettoriale e $W, U \subseteq V$ sottospazi di V. Allora $W \cap U$ è sottospazio di V.

Teorema 2.2 (somma di sottospazi) Sia V un \mathbb{K} -spazio vettoriale e $W,U\subseteq V$ sottospazi di V. Allora

$$W + U = \{v \in V : \exists w \in W, u \in U : v = w + u\}$$

è un sottospazio vettoriale di V.

Definizione 2.4 (combinazione lineare) Sia V un \mathbb{K} -spazio vettoriale, siano $v_1, \ldots, v_n \in V$ e $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$. Si dice combinazione lineare dei v_i un vettore $v \in V$ tale che

$$v = \sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \ldots + \lambda_k v_n.$$

Definizione 2.5 (Span) Sia V un \mathbb{K} -spazio vettoriale e siano $v_1, \ldots, v_k \in V$. Si dice $Span\{v_1, \ldots, v_n\}$ l'insieme di tutte le possibili combinazioni lineari dei v_i . Formalmente

$$Span\{v_1,\ldots,v_n\} = \left\{v \in V : \exists \lambda_1,\ldots,\lambda_n \in \mathbb{K} : v = \sum_{i=1}^n \lambda_i v_i\right\}.$$

Teorema 2.3 (proprietà dello span) Sia V un \mathbb{K} -spazio vettoriale e siano $v_1, \ldots, v_n \in V$. Allora $Span\{v_1, \ldots, v_n\}$ è il più piccolo sottospazio vettoriale di V che contiene tutti i v_i .

Definizione 2.6 (dipendenza e indipendenza lineare) Sia V un \mathbb{K} -spazio vettoriale e siano $v_1, \ldots, v_n \in V$. Si dice che v_1, \ldots, v_n sono linearmente dipendenti se $\exists \lambda_1, \ldots, \lambda_n \in \mathbb{K}$ non tutti nulli tali che

$$\lambda_1 v_1 + \ldots + \lambda_n v_n = O_V.$$

Analogamente si dice che v_1, \ldots, v_n sono linearmente indipendenti se

$$\lambda_1 v_1 + \ldots + \lambda_n v_n = O_V \Rightarrow \lambda_1 = \ldots = \lambda_n = 0.$$

Definizione 2.7 (base) Sia V un \mathbb{K} -spazio vettoriale. Un insieme $\{v_1,\ldots,v_n\}$ si dice base di V

- (i) v_1, \ldots, v_n sono linearmente indipendenti;
- (ii) $Span\{v_1, \ldots, v_n\} = V$ (generano).

Teorema 2.4 (unicità della combinazione lineare) Sia V un \mathbb{K} -spazio vettoriale e siano $v_1, \ldots, v_n \in V$ linearmente indipendenti. Se $\exists \lambda_1, \ldots, \lambda_n \in \mathbb{K}$ e $\exists \mu_1, \ldots, \mu_n \in \mathbb{K}$ tali che $\sum_{i=1}^n \lambda_i v_i = \sum_{i=1}^n \mu_i v_i$, allora $\lambda_i = \mu_i$ per ogni $i = 1, \ldots, n$. Dunque la scrittura di un vettore come comb9inazione lineare di vettori linearmente indipendenti è unica.

Definizione 2.8 (sottoinsieme massimale) Sia V un \mathbb{K} -spazio vettoriale e siano $v_1, \ldots, v_n \in V$. Diciamo che l'insieme $\{v_1, \ldots, v_r\}$ con $r \in \mathbb{N}$ e $r \leq n$ è un sottoinsieme massimale di vettori linearmente indipendenti se v_1, \ldots, v_r sono linearmente indipendenti e se $\forall i \in \mathbb{N} : r < i \leq n$, v_1, \ldots, v_r, v_i sono linearmente dipendenti.

Teorema 2.5 Sia V un \mathbb{K} -spazio vettoriale e siano $v_1, \ldots, v_m \in V$: $Span\{v_1, \ldots, v_m\} = V$ (generano). Sia $\{v_1, \ldots, v_n\}$ un sottoinsieme di $\{v_1, \ldots, v_m\}$ linearmente indipendente e massimale. Allora $\{v_1, \ldots, v_n\}$ è una base di V.

Teorema 2.6 Sia V un \mathbb{K} -spazio vettoriale e sia $\{v_1, \ldots, v_n\}$ una base di V. Se w_1, \ldots, w_m , con m > n, sono vettori di V, allora w_1, \ldots, w_m sono linearmente dipendenti.

Dimostrazione. Se $\exists j \in \{1, \ldots, m\}$ tale che $w_j = 0$ allora $\forall \lambda \in \mathbb{K}$ si ha $0w_1 + \ldots + \lambda w_j + \ldots + 0w_m = O_V$ e quindi l'enunciato risulta verificato. Supponiamo quindi che w_1, \ldots, w_m siano tutti non nulli. Per assurdo w_1, \ldots, w_m sono linearmente indipendenti. Poiché $\{v_1, \ldots, v_n\}$ è una base di V allora $w_1 = a_1v_1 + \ldots a_nv_n$ con $a_1, \ldots, a_n \in \mathbb{K}$ non tutti nulli. Supponiamo quindi $w \log a_1 \neq 0$, allora

$$v_1 = \frac{1}{a_1}w_1 - \frac{a_2}{a_1}v_2 - \dots \frac{a_n}{a_1}v_n.$$

Allora $v_1 \in Span\{w_1, v_2, \dots, v_n\}$ così $V = Span\{v_1, \dots, v_n\} \subseteq Span\{w_1, v_2, \dots, v_n\}$ e quindi $Span\{w_1, v_2, \dots, v_n\} = V$.

L'idea è di rimpiazzare tutti i v_1, \ldots, v_n con i w_1, \ldots, w_n così che w_1, \ldots, w_n generino V. Procediamo in per induzione: supponiamo esista $r \in \mathbb{N} : r \leq n$ tale che $w_1, \ldots, w_r, v_{r+1}, \ldots, v_n$ generino V. Allora esistono $b_1, \ldots, b_n \in \mathbb{K}$ tali che $w_{r+1} = b_1 w_1 + \ldots b_r w_r + b_{r+1} v_{r+1} + \ldots b_n v_n$. Osserviamo che almeno uno tra b_{r+1}, \ldots, b_n è non nullo (se fossero tutti nulli otterremmo una relazione di lineare dipendenza tra w_1, \ldots, w_m). Così

$$v_{r+1} = -\frac{b_1}{b_{r+1}}w_1 - \dots - \frac{b_r}{b_r + 1} + \frac{1}{b_{r+1}}w_{r+1} - \frac{b_{r+2}}{b_{r+1}}v_{r+2} - \dots \frac{b_n}{b_{r+1}}v_n.$$

Dunque $v_{r+1} \in Span\{w_1, \ldots, w_{r+1}, v_{r+2}, \ldots, v_n\}$ così $V = Span\{w_1, \ldots, w_r, v_{r+1}, \ldots, v_n\} \subseteq Span\{w_1, \ldots, w_{r+1}, v_{r+2}, \ldots, v_n\}$ quindi $w_1, \ldots, w_{r+1}, v_{r+2}, \ldots, v_n$ generano V. Per induzione su r allora $Span\{w_1, \ldots, w_n\} = V$. Ma allora per m > n esistono $d_1, \ldots, d_n \in \mathbb{K}$ non tutti nulli tali che $w_m = d_1w_1 + \ldots + d_nw_n$. Così w_1, \ldots, w_m, w_n non sono linearmente indipendenti da cui l'assurdo.

Corollario 2.7 Sia V un \mathbb{K} -spazio vettoriale. Supponiamo di avere due basi di V, una con n elementi e una con m elementi. Allora n=m.

Definizione 2.9 (dimensione) Sia V un \mathbb{K} -spazio vettoriale avente una base costituita da n vettori. Allora diremo che V ha dimensione n e scriveremo dimV=n.

Nota: dove non specificato lo spazio considerato ha dimensione finita n.

Teorema 2.8 Sia V un \mathbb{K} -spazio vettoriale di dimV=n. Se v_1,\ldots,v_n generano V allora $\{v_1,\ldots,v_n\}$ è una base di V.

Teorema 2.9 Sia V un \mathbb{K} -spazio vettoriale. Se $\{v_1, \ldots, v_n\}$ sono un insieme massimale di vettori di V linearmente indipendenti allora $\{v_1, \ldots, v_n\}$ è una base di V.

Teorema 2.10 Sia V un \mathbb{K} -spazio vettoriale di dim V = n. Se v_1, \ldots, v_n un insieme di vettori di V linearmente indipendenti allora $\{v_1, \ldots, v_n\}$ è una base di V.

Teorema 2.11 (completamento ad una base) Sia V un \mathbb{K} -spazio vettoriale di dim V=n. Sia r un intero positivo con 0 < r < n. Dati r vettori $v_1, \ldots, v_r \in V$ linearmente indipendenti è possibile completarli ad una base di V, ossia trovare vettori v_{r+1}, \ldots, v_n tali che $\{v_1, \ldots, v_r, v_{r+1}, \ldots, v_n\}$ è base di V.

3 Matrici

Definizione 3.1 (matrice) Una matrice $m \times n$ a coefficienti in \mathbb{K} è un tabella ordinata di m righe e n colonne i cui elementi appartengono ad un campo \mathbb{K} . L'insieme delle matrici $m \times n$ a coefficienti nel campo \mathbb{K} viene indicato con $\mathrm{Mat}_{m \times n}(K)$ ed è uno spazio vettoriale.

Dati $a_{ij} \in \mathbb{K}$ con i = 1, ..., m e j = 1, ..., n diremo che $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$ e scriveremo

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

Definizione 3.2 (matrice diagonale e identità) contenuto...

Definizione 3.3 (prodotto tra matrici) contenuto...

Proprietà 3.1 proprietà del prodotto ($n \times n$ stabile rispetto al prodotto)

Definizione 3.4 (matrice trasposta) contenuto...

Proprietà 3.2 (della trasposta) contenuto...

Definizione 3.5 (matrici coniugate) Due matrici A e B si dicono coinugate se esiste una matrice P invertibile tale che

$$B = P^{-1}AP.$$

Matrici coniugate rappresentano la stessa applicazioni lineari viste in due basi diverse.

Definizione 3.6 (traccia) Sia M una matrice quadrata $n \times n$. La traccia di M è la somma degli elementi sulla diagonale

$$\operatorname{tr}(M) = \operatorname{tr}\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} = a_{11} + \dots + a_{nn}$$

Proprietà 3.3 (della traccia) La traccia gode delle seguenti proprietà

- (i) $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B) \operatorname{e} \operatorname{tr}(\lambda A) = \lambda \operatorname{tr}(A)$
- (ii) $\operatorname{tr}(^{t}A) = \operatorname{tr}(A)$
- (iii) tr(AB) = tr(BA)

Teorema 3.1 (invarianza della traccia per coniugio) Se A e B sono matrici coniugate, allora tr(A) = tr(B)

Roba su riduzione a scalini...

Teorema 3.2 * Tutte e sole le matrici $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ che commutano con ogni matrice $B \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ sono multipli dell'identità.

$$AB = BA, \ \forall B \in \operatorname{Mat}_{n \times n}(\mathbb{K}) \quad \Leftrightarrow \quad \exists \lambda \in \mathbb{K} : A = \lambda \operatorname{Id}$$

4 Applicazioni lineari

Definizione 4.1 (spazio delle funzioni) Sia A e V un \mathbb{K} -spazio vettoriale. L'insieme $V^A = \mathscr{F}(A,V) = \{f \colon A \to V\}$ con le operazioni di

- $somma \ \forall f, g \in \mathscr{F}(A, V): \ \forall x \in A, (f+g)(x) = f(x) + g(x);$
- prodotto per scalare $\forall f \in \mathscr{F}(A, V), \forall \alpha \in \mathbb{K}: \forall x \in A, (\alpha \cdot f)(x) = \alpha \cdot f(x)$

è lo spazio vettoriale delle funzioni da A in V.

Definizione 4.2 (applicazione lineare) Siano V e W due \mathbb{K} -spazi vettoriali. Diremo che una funzione $L\colon V\to W$ è un'applicazione lineare (o mappa lineare o omomorfismo) se L soddisfa le seguenti proprietà

- (i) $\forall v_1, v_2 \in V \text{ vale } L(v_1 + v_2) = L(v_1) + L(v_2)$
- (ii) $\forall v \in V, \forall \lambda \in \mathbb{K} \text{ vale } L(\lambda v) = \lambda L(v)$

Diretta conseguenza è la seguente proprietà chiave delle applicazioni lineari

(iii) $L(O_V) = O_W$.

L'insieme delle applicazioni lineari $\mathcal{L}(V,W)=\{L\colon V\to W\colon L\ \text{è lineare}\}\ \text{è un sottospazio vettoriale di }\mathcal{F}(V,W)$

Definizione 4.3 (nucleo) Siano V e W due spazi vettoriali su un campo \mathbb{K} e sia $L \colon V \to W$ un'applicazione lineare. Definiamo nucleo o kernel di L, e scriveremo Ker L, l'insieme degli elementi di V la cui immagine attraverso L è lo zero di W. Formalmente

$$\operatorname{Ker} L = \{ v \in V : L(v) = O_W \}$$

Teorema 4.1 Sia $L \in \mathcal{L}(V, W)$. Allora Ker L è un sottospazio vettoriale di V.

Teorema 4.2 Sia $L \in \mathcal{L}(V, W)$. Allora Im L è un sottospazio vettoriale di W.

Teorema 4.3 $L \in \mathcal{L}(V, W)$ è iniettiva se e solo se Ker $L = \{O_V\}$.

Teorema 4.4 (composizione di applicazioni lineari) la composizione di due applicazioni lineari è ancora un'applicazione lineare

Teorema 4.5 (inversa di un'applicazione lineare) l'inversa di una applicazioni lineare (se esiste) è ancora un'applicazione lineare

Teorema 4.6 Sia $L: \mathbb{K}^n \to \mathbb{K}^n$ un'applicazione lineare tale che Ker $L = \{O_V\}$. Se $v_1, \ldots, v_n \in V$ sono vettori linearmente indipendenti, anche $L(v_1), \ldots, L(v_n)$ sono vettori linearmente indipendenti di W.

Teorema 4.7 (delle dimensioni) Siano V e W spazi vettoriali su un campo \mathbb{K} e sia $L\colon V\to W$ un'applicazione lineare. Allora vale

$$\dim V = \dim \operatorname{Im} L + \dim \operatorname{Ker} L$$

Teorema 4.8 Sia $L \colon \mathbb{K}^n \to \mathbb{K}^n$ un'applicazione lineare. Se $\operatorname{Ker} L = \{O_V\}$ e $\operatorname{Im} L = W$, allora L è biettiva e dunque invertibile

Definizione 4.4 (isomorfismo) $L \in \mathcal{L}(V, W)$ biettiva si dice isomorfismo. Se tale applicazioni esiste si dice che V e W sono isomorfi.

Definizione 4.5 (endomorfismo) $L \in \mathcal{L}(V, V)$ dallo spazio in sé si dice endomorfismo. L'insieme degli endomorfismi viene indicato con $\operatorname{End}(V)$ ed è un sottospazio vettoriale di $\mathcal{F}(V, V)$

Teorema 4.9 (decomposizione di Fitting) * Sia V un \mathbb{K} -spazio vettoriale di dimV=n e $f\in \operatorname{End}(V)$. Allora esiste un intero $k\leq n$ tale che

```
(i) \operatorname{Ker} f^k = \operatorname{Ker} f^{k+1};
```

(ii)
$$\operatorname{Im} f^k = \operatorname{Im} f^{k+1};$$

(iii)
$$f|_{\operatorname{Im} f^k} \colon \operatorname{Im} f^k \to \operatorname{Im} f^k$$
 è un isomorfismo;

(iv)
$$f(\operatorname{Ker} f^k) \subseteq \operatorname{Ker} f^k$$
;

(v)
$$f|_{\operatorname{Ker} f^k} \colon \operatorname{Ker} f^k \to \operatorname{Ker} f^k$$
 è nilpotente;

(vi)
$$V = \operatorname{Ker} f^k \oplus \operatorname{Im} f^k$$
.

Proposizione 4.10 ² Sia V un \mathbb{K} -spazio vettoriale di dim V=n e $f\in \mathrm{End}\,(V)$. Allora:

1.
$$\forall j \in \mathbb{N}, \text{ Ker } f^j \subseteq \text{Ker } f^{j+1};$$

2. se esiste
$$j \in \mathbb{N} : \operatorname{Ker} f^j = \operatorname{Ker} f^{j+1}$$
 allora $\forall m \geq j, \ \operatorname{Ker} f^m = \operatorname{Ker} f^{m+1};$

^{3.} se esiste $j \in \mathbb{N} : f^j = 0$ (endomorfismo nullo), allora $f^n = 0$.

 $^{^2}$ Primo compitino 2017/2018

5 Applicazioni lineari e matrici

Teorema 5.1 Sia $L: \mathbb{K}^n \to \mathbb{K}$ un'applicazione lineare. Allora esiste un unico vettore $A \in \mathbb{K}^n$ tale che $\forall X \in \mathbb{K}^n$

$$L(X) = A \cdot X$$

Teorema 5.2 Esiste una corrispondenza biunivoca tra

$$\{L \colon \mathbb{K}^n \to \mathbb{K}^m \mid \text{lineare}\} \leftrightarrow \text{Mat}_{m \times n}(\mathbb{K})$$

1. Data una matrice $M \in \operatorname{Mat}_{m \times n}(\mathbb{K})$ è possibile associare ad essa un'applicazione lineare

$$L \colon \mathbb{K}^n \to \mathbb{K}^m$$
$$X \mapsto MX$$

2. Sia $L: \mathbb{K}^n \to \mathbb{K}^m$ un'applicazione lineare. Allora esiste una matrice $M \in \operatorname{Mat}_{m \times n}(\mathbb{K})$ tale che $\forall X \in \mathbb{K}^n$, L(X) = MX. Se $\mathscr{C} = \{e_1, \dots, e_n\}$ la è base canonica di \mathbb{K}^n , le colonne di M sono $L(e_1), \dots, L(e_n)$.

Teorema 5.3 Siano V e W spazi vettoriali su un campo \mathbb{K} e sia $L \colon \mathbb{K}^n \to \mathbb{K}^m$ un'applicazione lineare. Siano inoltre $\mathscr{B} = \{v_1, \dots, v_n\}$ e $\mathscr{B}' = \{w_1, \dots, w_m\}$ basi rispettivamente di V e di W. Preso $v \in V$ esiste una matrice $M \in \operatorname{Mat}_{m \times n}(\mathbb{K})$ tale che

$$X_{\mathscr{B}'}(L(v)) = MX_{\mathscr{B}}(v)$$

dove X(w) è il vettore colonna di w scritto nella rispettiva base.

Teorema 5.4 Siano V e W due spazi vettoriali su \mathbb{K} di dimensione n e m. Siano $\mathscr{B} = \{v_1, \dots, v_n\}$ e $\mathscr{B}' = \{w_1, \dots, w_m\}$ basi rispettivamente di V e di W.

Indicando con $\mathcal{L}(V, W) = \{L : \mathbb{K}^n \to \mathbb{K}^m \mid \text{lineare}\}\ e \ \text{con}\ [L]_{\mathscr{B}'}^{\mathscr{B}}$ la matrice associata a L rispetto alle basi $\mathscr{B} \in \mathscr{B}'$, si ha che

$$M \colon \mathscr{L}(V, W) \to \mathrm{Mat}_{m \times n}(\mathbb{K})$$

$$L \mapsto [L]_{\mathscr{B}'}^{\mathscr{B}}$$

è un'applicazione lineare ed è un isomorfismo tra lo spazio delle applicazioni lineari e lo spazio delle matrici.

Teorema 5.5 (matrice di funizione composta) Siano V, W e U spazi vettoriali e siano $\mathscr{B} = \{v_1, \ldots, v_n\}$, $\mathscr{B}' = \{w_1, \ldots, w_m\}$ e $\mathscr{B}'' = \{u_1, \ldots, u_s\}$ basi di V, W e U rispettivamente. Siano inoltre $F: V \to W$ e $G: W \to U$ lineari. Allora

$$[G \circ F]_{\mathscr{B}''}^{\mathscr{B}} = [G]_{\mathscr{B}''}^{\mathscr{B}'} [F]_{\mathscr{B}'}^{\mathscr{B}}$$

Teorema 5.6 Sia $L\colon V\to W$ un'applicazione lineare e $B\colon V\to V$ lineare e invertibile. Allora vale che

$$\operatorname{Im} L \circ B = \operatorname{Im} L \quad \text{e} \quad \dim \operatorname{Ker} L \circ B = \dim \operatorname{Ker} L$$

In altre parole se [L] è la matrice associata a L e [B] è la matrice invertibile delle mosse di colonna associata a B, la matrice [L] [B] è una matrice ridotta a scalini per colonna in cui lo Span delle colonne è lo stesso dello span delle colonne di [L]. Più brevemente la riduzione di Gauss per colonne lascia invariato lo Span delle colonne.

Teorema 5.7 Sia $L\colon V\to W$ un'applicazione lineare e $U\colon W\to W$ lineare e invertibile. Allora vale che

$$\operatorname{Ker} U \circ L = \operatorname{Ker} L \quad \text{e} \quad \dim \operatorname{Im} U \circ L = \dim \operatorname{Im} L$$

In altre parole se [L] è la matrice associata a L e [U] è la matrice invertibile delle mosse di riga associata a U, la matrice [U] [L] è una matrice ridotta a scalini per riga che ha lo stesso Ker di [L]. Più brevemente la riduzione di Gauss per righe lascia invariato lo spazio delle soluzioni di un sistema lineare omogeneo.

Definizione 5.1 (rango) Sia $A \in \operatorname{Mat}_{m \times n}(\mathbb{K})$ definiamo rango di A, rg A, in modo equivalente come

- 1. il numero massimo di colonne linearmente indipendenti (numero di pivot colonna di A ridotta a scalini per colonna)
- 2. il numero massimo di righe linearmente indipendenti (numero di pivot riga di A ridotta a scalini per righe)
- 3. la dim Im L, dove $L\colon \mathbb{K}^n \to \mathbb{K}^m$ è l'applicazione lineare associata $[L]_{\mathscr{B}'}^{\mathscr{B}} = A$

6 Formula di Grassmann e somma diretta

Teorema 6.1 (formula di Grassmann) Siano A e B sottospazi vettoriali di V su un campo \mathbb{K} . Vale

$$\dim A + \dim B = \dim (A + B) + \dim (A \cap B)$$

Definizione 6.1 (somma diretta) Dati A e B sottospazi di V su un campo \mathbb{K} , si dice che A e B sono in somma diretta se $A \cap B = \{O_V\}$.

In modo del tutto equivalente A e B sono in somma diretta se e solo se $\dim A + \dim B = \dim (A + B)$.

Definizione 6.2 (somma diretta di k sottospazi) U_1, \ldots, U_k sottospazi di V su un campo \mathbb{K} si dicono essere insomma diretta se $\forall i \in \{1, \ldots, k\}$ vale

$$U_i \cap (U_1 + \ldots + \hat{U}_i + \ldots + U_k) = \{O_V\}$$

In modo equivalente U_1, \ldots, U_k sono insomma diretta se e solo se

$$\dim U_1 + \ldots + \dim U_k = \dim (U_1 + \ldots + U_k)$$

Definizione 6.3 (complementare di un sottospazio) Sia A un sottospazio di V su un campo \mathbb{K} . Un complementare di A è un sottospazio B di V tale che

- (i) $A \cap B = \{O_V\}$ (A e B sono in somma diretta)
- (ii) A + B = V

In tal caso scriveremo che $A \oplus B = V$.

7 Sistemi lineari

Definizione 7.1 (sistema lineare omogeneo) contenuto...

Definizione 7.2 (matrice associata al sistema lineare omogeneo) contenuto...

Teorema 7.1 (dimensione delle soluzioni) Sia M la matrice associata ad un sistema lineare omogeneo con n incognite. Indicando con S lo spazio delle soluzioni del sistema lineare vale

$$\dim S = n - \operatorname{rg} M$$

 $\textbf{Definizione 7.3} \ (sottospazio \ ortogonale) \ contenuto... \ + \ il \ sottospazio \ ortogonale \ è \ l'inieme \ delle \ soluzioni \ del \ sistema \ omogeneo$

Definizione 7.4 (sistema lineare non omogeneo) contenuto...

Definizione 7.5 (matrice completa e incompleta associata) contenuto...

Teorema 7.2 (insieme soluzioni del sistema non omogeneo) Sia S l'insieme delle soluzioni del sistema non omogeneo e S_0 l'insieme delle soluzioni del sistema omogeneo associato. Supposto $S \neq \emptyset$, preso un qualunque $v \in S$ vale

$$S = v + S_0$$

Definizione 7.6 (sottospazio affine) Sia V un \mathbb{K} -spazio vettoriale, U un suo sottospazio e $v \in V - U$ ($v \neq 0$) si dice che l'insieme v + U è un sottospazio affine di V. Per convenzione si pone dim $(v + U) = \dim U$.

8 Determinante

Definizione 8.1 (gruppo simmetrico) Il gruppo simmetrico di un insieme è il gruppo formato dall'insieme delle permutazioni dei suoi elementi, cioè dall'insieme delle funzioni biiettive di tale insieme in se stesso, munito dell'operazione binaria di composizione di funzioni.

In particolare detto $S_n = \{1, \dots, n\}$ l'insieme delle permutazioni

$$\Sigma_n = \Sigma(S_n) = \{\sigma \colon S_n \to S_n \colon \sigma \text{ è biettiva}\}$$

è un gruppo simmetrico. Ricordiamo che una permutazione $\sigma \in \Sigma_n$ viene spesso indicata con la seguente notazione

$$\begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

dove si intende che l'elemento i viene mandato in $\sigma(i)$ dalla permutazione.

Definizione 8.2 (trasposizione) Una trasposizione è una permutazione $\tau \in \Sigma_n$ tale che scambia due soli elementi di S_n mentre lascia invariati i restaniti n-2. Se τ scambia $i, j \in S_n$ scriveremo $\begin{pmatrix} i & j \end{pmatrix}$.

Proposizione 8.1 (i) Ogni permutazione $\sigma \in \Sigma_n$ è esprimile, non in modo unico, come prodotto (composizione) di trasposizioni.

(ii) Se $\sigma = \tau_1 \circ \cdots \circ \tau_h = \lambda_1 \circ \cdots \circ \lambda_h$ con τ_i e λ_j trasposizioni allora h e k hanno la stessa parità. Se σ è prodotto di un numero pari (dispari) di trasposizioni diremo che σ è pari (dispari).

Definizione 8.3 Data $\sigma \in \Sigma_n$ definiamo la funzione segno sgn: $\Sigma_n \to \{-1, 1\}$ come

$$\operatorname{sgn}(\sigma) = \begin{cases} 1 & \text{se } \sigma \text{ è pari} \\ -1 & \text{se } \sigma \text{ è dispari} \end{cases}$$

Vale in particolare che $\operatorname{sgn}(\sigma_1 \circ \sigma_2) = \operatorname{sgn}(\sigma_1) \cdot \operatorname{sgn}(\sigma_2)$

Proposizione 8.2 Sia $\sigma \in \Sigma_n$ una permutazione e sia σ^{-1} la permutazione inversa. Allora $\operatorname{sgn}(\sigma) = \operatorname{sgn}(\sigma^{-1})$.

Teorema 8.3 (Unicità del determinante) Sia $\operatorname{Mat}_{n\times n}(\mathbb{K})$ lo spazio vettoriale delle matrici quadrate a valori nel campo \mathbb{K} . Esiste una ed una sola funzione da $\operatorname{Mat}_{n\times n}(\mathbb{K})$ in \mathbb{K} funzione delle righe (o delle colonne) di una matrice A che rispetta i seguenti tre assiomi:

- (i) multilineare (lineare in ogni riga o colonna);
- (ii) alternante (cambia di segno se si scambiano due righe o due colonne);
- (iii) normalizzata (l'immagine dell'identità è 1);

Tale funzione viene detta determinante ed indicata con det: $\operatorname{Mat}_{n\times n}(\mathbb{K}) \to \mathbb{K}$.

Proprietà 8.1 (del determinante) Le seguenti proprietà sono conseguenza degli assiomi (i), (ii) e (iii). Sia $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ allora

- (1) Se A ha due righe uguali allora $\det A = 0$.
- (2) Se A ha una riga nulla allora $\det A = 0$.
- (3) Se alla riga A_i di A si somma un multiplo della riga A_j ($i \neq j$) si ottiene una matrice B tale che det $A = \det B$.
- (4) Il determinante è invariante sotto l'algoritmo di Gauss (escludendo le mosse di normalizzazione delle righe o delle colonne) a meno di un segno che dipende dal numero di scambi di righe o di colonne fatto. In altre parole se S è una forma a scalini di A allora det $A = \pm \det S$.
- (5) Se A è una matrice diagonale allora il suo determinante è il prodotto degli elementi sulla diagonale: det $A = a_{11} \cdots a_{nn}$.

Teorema 8.4 (esistenza del determinante) Sia $A = (a_{ij})_{\substack{i=1,\ldots,n\\j=1,\ldots,n}} \in \operatorname{Mat}_{n\times n}(\mathbb{K})$. La funzione

$$\det(A) = \sum_{\sigma \in \Sigma_n} \operatorname{sgn}(\sigma) \cdot a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma n}$$

è il determinante (in quanto è una funzione multilineare, alternante e normalizzata dallo spazio delle matrici nel campo).

Corollario 8.5 Il determinante di A è uguale al determinante della sua trasposta: det $A = \det A^t$.

Definizione 8.4 (complemento algebrico) Il complemento algebrico o cofattore dell'elemento a_{ij} di una matrice $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ è il determinante della matrice $(n-1) \times (n-1)$ ottenuta cancellando da A la i-esima riga e la j-esima colonna moltiplicato per $(-1)^{i+j}$: in formule

$$cof_{ij}(A) = (-1)^{i+j} \cdot \det \begin{pmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{11} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{pmatrix}.$$

Con cof (A) indichiamo la matrice dei cofattori ovvero la matrice che ha nella posizione i, j il complemento algebrico di a_{ij} , cof $(A) = (cof_{ij}(A))$

Teorema 8.6 (sviluppo di Laplace) Data $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ la seguente funzione

- fissata una riga i di A: $\det A = \sum_{j=1}^n a_{ij} \cdot \operatorname{cof}_{ij}(A)$
- fissata una colonna j di A: $\det A = \sum_{i=1}^{n} a_{ij} \cdot \operatorname{cof}_{ij}(A)$

verifica gli assiomi (i), (ii) e (iii) e quindi è il determinante.

Dallo sviluppo di Laplace si deduce che la proprietà (5) di Proprietà 8.1 vale anche per le matrici triangolari (superiori o inferiori)

Teorema 8.7 (invertibilità) A è invertibile $\Leftrightarrow \det A \neq 0 \ (\Leftrightarrow \operatorname{rg} A = n)$.

Proposizione 8.8 (formula per l'inversa) Sia $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ invertibile, i.e. $\det A \neq 0$. Allora il coefficiente ij della matrice inversa è

$$\left(A^{-1}\right)_{ij} = \frac{1}{\det A} \cdot \operatorname{cof}_{ji}\left(A\right)$$

dove $\operatorname{cof}_{ii}(A)$ è il complemento algebrico dell'elemento a_{ii} di A (sì, gli indici sono scambiati).

Teorema 8.9 (regola di Cramer) Sia $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ invertibile, i.e det $A \neq 0$ (e rg A = n), e siano A^1, \ldots, A^n le sue colonne. Siano inoltre $b = (b_j)$ un vettori colonna. Allora se $x = (x_j)$ è l'unico vettore colonna che soddisfa il sistema lineare

$$Ax = b \Leftrightarrow A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \Leftrightarrow x_1 A^1 + \dots x_n A^n = b$$

ha componenti date da

$$x_j = \frac{\det \left(A^1 \cdots A^{j-1} \ b \ A^{j+1} \dots A^n \right)}{\det A}$$

dove per $A^1 \cdots A^{j-1}$ b $A^{j+1} \ldots A^n$ si intende la matrice A alla cui j-esima colonna è stato sostituito il vettore colonna b dei termini noti.

Corollario 8.10 Sia $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ e cof A la matrice dei cofattori. Allora vale la seguente identità

$$A (\operatorname{cof} A)^t = \det (A) \cdot \operatorname{Id}$$

Teorema 8.11 (di Binet) Date $A, B \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ vale $\det(AB) = \det(A) \cdot \det(B)$.

Corollario 8.12 (determinante dell'inversa) Se $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ è invertivile, i.e. $\det A \neq 0$, allora $\det A^{-1} = \frac{1}{\det A}$.

Corollario 8.13 Per ogni $A, B \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ vale $\det AB = \det BA$.

Corollario 8.14 (invarianza del determinatane per coniugio) Siano $A, B \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ con B matrice invertibile. Allora det $(B^{-1}AB) = \det(A)$.

In altri termini se [A] e [A'] sono matrici che descrivono lo stesso endomorfismo $A\colon V\to V$ ma scritte in basi (in partenza ed in arrivo) diverse allora det $[A]=\det [A']$. Dunque è il determinante è ben definito come funzione dagli endomorfismi $\mathscr{L}(V)$ nel campo \mathbb{K} .

Definizione 8.5 (sottomatrice) Sia $M \in \operatorname{Mat}_{n \times m}(\mathbb{K})$ una matrice qualsiasi. Per sottomatrice di M si intende una ottenuta da M cancellando alcune righe e/o alcune colonne di M. In modo equivalente si intende una $M' \in \operatorname{Mat}_{r \times s}(\mathbb{K})$ ottenuta da M selezionando i coefficienti posti nell'intersezione tra $1 \leq r \leq n$ righe ed $1 \leq s \leq m$ colonne scelte nella matrice M. Nel caso di sottomatrice quadrate si ha r = s = k e si dice che l'ordine di M' è k.

Proposizione 8.15 Se $v_1 = \begin{pmatrix} v_{11} \\ v_{n1} \end{pmatrix}, \dots, v_k = \begin{pmatrix} v_{1k} \\ v_{nk} \end{pmatrix}$ con $k \leq n$ sono vettori linearmente dipendenti allora ogni sottomatrice quadrata di ordine k estratta dalla matrice $M \in \operatorname{Mat}_{n \times k}(\mathbb{K})$ che ha per colonne v_1, \dots, v_k non invertibile e quindi con determinante nullo.

$$M = \begin{pmatrix} v_{11} \\ \vdots \\ v_{n1} \end{pmatrix} \dots \begin{pmatrix} v_{1k} \\ \vdots \\ v_{nk} \end{pmatrix}$$

Proposizione 8.16 Se $v_1 = \begin{pmatrix} v_{11} \\ v_{1n} \end{pmatrix}, \dots, v_k = \begin{pmatrix} v_{k1} \\ v_{kn} \end{pmatrix}$ con $k \leq n$ sono vettori linearmente *indipendenti* allora esiste una sottomatrice quadrata di ordine k estratta dalla matrice $M \in \operatorname{Mat}_{n \times k}(\mathbb{K})$ che ha per colonne v_1, \dots, v_k invertibile e quindi con determinante non nullo.

$$M = \begin{pmatrix} v_{11} & & & v_{1k} \\ \vdots & \dots & \vdots \\ v_{n1} & & v_{nk} \end{pmatrix}$$

Teorema 8.17 (caratterizzazione del rango con il determinante) Sia $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$. Allora il rango di A è il massimo ordine di una sottomatrice quadrata invertibile, i.e con determinante non nullo

In altri termini rg $A=k\Leftrightarrow$ tra tutte le sottomatrici di A esiste una sottomatrice $k\times k$ con determinante $\neq 0$ tale che tutte le sottomatrici quadrate di ordine maggiore hanno determinante nullo. Per lo sviluppo di Laplace è sufficiente verificare che tutte le sottomatrici $(k+1)\times (k+1)$ hanno determinante nullo.

Proprietà 8.2 (del determinante) Valgono le seguenti identità aggiuntive.

- 1. Se $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ è una matrice a blocchi con A matrice invertibile allora $\det M = \det (A) \cdot \det (D CA^{-1}B)$. Inoltre che AC = CA allora $\det M = \det AD CB$.
- 2. Se M è una matrice diagonale a blocchi allora il determinante è il prodotto dei determinanti dei blocchi diagonali $A_1, \ldots A_k$.

$$\det M = \det \begin{pmatrix} \boxed{A_1} \\ A_2 \\ & \ddots \\ & \boxed{A_{k-1}} \\ & \boxed{A_k} \end{pmatrix} = \det (A_1) \cdots \det (A_k)$$

3. Se M è una $matrice\ di\ Vandermonde\ allora\ vale\ che$

$$\det(M) = \det\begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & \vdots & & \vdots \\ a_1^n & a_2^n & \cdots & a_n^n \end{pmatrix} = \prod_{\substack{i=1 \ j < i}}^n (a_i - a_j)$$

9 Diagonalizzazione di endomorfismi

Definizione 9.1 (autovettore, autovalore) Sia V un \mathbb{K} -spazio vettoriale. Sia $T: V \to V$ un endomorfismo su V. Un vettore $v \in V \setminus \{O_V\}$ si dice autovettore di T se esiste $\lambda \in \mathbb{K}$ tale che

$$T(v) = \lambda v.$$

Si dice in questo caso che λ è autovalore per T (relativo a v). Notiamo che tutti i $v \in \operatorname{Ker} V \setminus \{O_V\}$ sono autovettori per v con autovalore 0.

Definizione 9.2 (autospazio) Dato $\lambda \in \mathbb{K}$ chiamiamo $V_{\lambda} = \{v \in V : T(v) = \lambda v\}$ l'autospazio relativo a λ . Segue dalla definizione che $V_{\lambda} = \operatorname{Ker}(T - \lambda \cdot \operatorname{Id})$

Proposizione 9.1 Se $v_1, \ldots, v_n \in V$ sono autovettori per T con relativi autovalori $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ e $\mathscr{B} = \{v_1, \ldots, v_n\}$ è una base di V allora la matrice di $T \in \operatorname{End}(V)$ rispetto a \mathscr{B} (sia in partenza che in arrivo) è diagonale.

$$[T]_{\mathscr{B}}^{\mathscr{B}} = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$$

Definizione 9.3 (polinomio caratteristico) Sia $T \in \text{End}(V)$. Fissata una base $\mathscr{B} = \{v_1, \dots, v_n\}$ di V chiamiamo

$$p_T(t) = \det\left(t \cdot \mathrm{Id} - [T]_{\mathscr{B}}^{\mathscr{B}}\right)$$

il polinomio caratteristico di ${\cal T}.$

Proposizione 9.2 Il polinomio caratteristico non dipende dalla base scelta. In altri termini se $\mathscr{B} = \{v_1, \ldots, v_n\}$ e $\mathscr{B}' = \{v'_1, \ldots, v'_n\}$ sono basi di V allora

$$p_T(t) = \det\left(t \cdot \operatorname{Id} - [T]_{\mathscr{B}}^{\mathscr{B}}\right) = \det\left(t \cdot \operatorname{Id} - [T]_{\mathscr{B}'}^{\mathscr{B}'}\right) = \det\left(t \cdot \operatorname{Id} - T\right)$$

Teorema 9.3 Sia $T \in \text{End}(V)$. Allora $\lambda \in \mathbb{K}$ è un autovalore di T se e solo se λ è radice di $p_T(t)$, ossia $p_T(\lambda) = 0$.

Teorema 9.4 Dati $\lambda_1, \ldots, \lambda_k$ autovalori di $T \in \operatorname{End}(V)$ a due a due distinti, siano v_1, \ldots, v_k gli autovettori corrispondenti: $T(v_1) = \lambda_1 v_1, \ldots, T(v_k) = \lambda_k v_k$. Allora v_1, \ldots, v_k sono linearmente indipendenti.

Teorema 9.5 (somma diretta degli autospazi) Sia $T \in \text{End}(V)$ e $\lambda_1, \ldots, \lambda_k$ autovalori di T a due a due distinti. Allora gli autospazi $V_{\lambda_1}, \ldots, V_{\lambda_k}$ sono in somma diretta.

Più in generale se A_1, \ldots, A_k sottospazi di V sono tali che per ogni insieme $\{v_1, \ldots, v_k\}$ di vettori non nulli linearmente indipendenti tali che $v_i \in A_i$, allora A_1, \ldots, A_k sono in somma diretta.

Definizione 9.4 (molteplicità algebrica e geometrica) Sia $T \in \text{End}(V)$ e

$$p_T(t) = (t - \lambda_1)^{a_1} \cdots (t - \lambda_k)^{a_k} \cdot f(t)$$

il polinomio caratteristico dove $\lambda_1, \ldots, \lambda_k$ sono le radici del polinomio, i.e autovalori di T, e f(t) un polinomio irriducibile in $\mathbb{K}[t]$. Diremo che a_i è la molteplicità algebrica dell'autovalore λ_i . Diremo inoltre che $m_i = \dim V_{\lambda_i}$ è la molteplicità geometrica di λ_i . Notiamo che se T è diagonalizzabile allora f(t) = 1.

Teorema 9.6 Sia $T \in \text{End}(V)$ e $\lambda_1, \ldots, \lambda_k$ con $k \leq n$ autovalori. Allora $\forall i = 1, \ldots, k$ vale $1 \leq m_i \leq a_i$ (molteplicità geometrica \leq molteplicità algebrica).

Corollario 9.7 (criterio sufficiente per la diagonalizzazione) Sia $T: V \to V$ un endomorfismo e $p_T(t)$ il suo polinomio caratteristico. Se $p_T(t)$ ha tutte le radici in \mathbb{K} a due a due distinte allora T è diagonalizzabile.

Teorema 9.8 Sia $T \in \text{End}(V)$. Allora T è diagonalizzabile se e solo se f(t) = 1 (il polinomio si fattorizza completamente nel campo) e $\forall \lambda_i$ autovalore $m_i = a_i$.

Definizione 9.5 (polinomio minimo) Sia $T \in \text{End}(V)$. Chiamiamo polinomio minimo di T il polinomio di grado più piccolo (wlog monico) $\mu_T(t) \in \mathbb{K}[t]$ tale che

$$\mu_T(T) = T^j + \ldots + b_1 T + b_0 \text{Id} = 0.$$

Teorema 9.9 Sia $T \in \text{End}(V)$. Se $h(t) \in \mathbb{K}[t]$ soddisfa la proprietà h(T) = 0 allora $\mu_T(t)$ divide h(t).

Teorema 9.10 (di Hamilton - Cayley) Dato $T: V \to V$ endomorfismo vale che $p_T(T) = 0$ e quindi che il polinomio minimo divide il polinomio caratteristico.

Proposizione 9.11 Sia $A, B \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ con B invertibile. Allora se $q(t) = c_n t^n + \ldots + c_1 t + c_0$ è un polinomio in $\mathbb{K}[t]$ vale

$$q(B^{-1}AB) = B^{-1}q(A)B.$$

Se $T \in \text{End}(V)$ e $q(t) = p_T(t)$ è il polinomio caratteristico di T (o un qualsiasi polinomio tale che q(T) = 0) si ha che $p_T(T) = 0 \Leftrightarrow p_T(B^{-1}TB) = 0$ e quindi il polinomio minimo non dipende dalla base e l'enunciato del Teorema 9.10 non dipende dalla base scelta per V.

Proposizione 9.12 $T \in \text{End}(V)$ è diagonalizzabile se e solo se le radici del polinomio minimo $\mu_T(t)$ hanno molteplicità algebrica 1, ovvero $\mu_T(t)$ non ha radici doppie.

Proposizione 9.13 Sia $T \in \text{End}(V)$, $p_T(t)$ il polinomio caratteristico e $\mu_T(t)$ il polinomio minimo. Allora $p_T(\lambda) = 0 \Leftrightarrow \mu_T(\lambda) = 0$.

Teorema 9.14 (triangolazione) Data una qualunque matrice $M \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ con \mathbb{K} algebricamente chiuso (i.e. ogni polinomio in $\mathbb{K}[t]$ è irriducibile, per esempio $\mathbb{K} = \mathbb{C}$) esiste una matrice C invertibile (matrice di cambio base) tale che CMC^{-1} è triangolare superiore. Moralmente ogni matrice è triangolabile.

Proposizione 9.15 Siano $T, S \in \text{End}(V)$ diagonalizzabili tali che TS = ST. Allora S preserva gli autospazi di T e viceversa: se V_{λ} è autospazio di T allora $S(V_{\lambda}) \subseteq V_{\lambda}$.

Teorema 9.16 (diagonalizzazione simultanea) Siano $T, S \in \text{End}(V)$ diagonalizzabili. Allora T e S sono simultaneamente diagonalizzabili (i.e. esiste una base che diagonalizza entrambe) se e solo se TS = ST.

Teorema 9.17 Sia V un \mathbb{K} -spazio vettoriale, $f \in \text{End}(V)$ diagonalizzabile e W un sottospazio di V. Allora

$$W = (W \cap V_{\lambda_1}) \oplus \cdots \oplus (W \cap V_{\lambda_k})$$

dove $V_{\lambda_1}, \ldots, V_{\lambda_k}$ sono gli autospazi relativi agli autovalori $\lambda_1, \ldots, \lambda_k$ di f. Dunque la restrizione di f a $W \cap V_{\lambda_i}$ è diagonalizzabile per ogni j e quindi $f|_W$ è diagonalizzabile.

Teorema 9.18 (esistenza del complementare invariante) Sia V un \mathbb{K} -spazio vettoriale, $f \in \text{End}(V)$ diagonalizzabile e W un sottospazio di V f-invariante. Allora esiste U sottospazio vettoriale f-invariante tale che $V = W \oplus U$.

Teorema 9.19 Sia V un \mathbb{K} -spazio vettoriale e $f \in \text{End}(V)$. Se esistono W_1, W_2 un sottospazi di V f-invarianti tali che $V = W_1 + W_2$ e tali che le restrizioni di f a W_1 e W_2 sono diagonalizzabili, allora f è diagonalizzabile.

Teorema 9.20 * Sia V un \mathbb{K} -spazio vettoriale e W, U due sottospazi di V tali che $V = W \oplus U$. Se $f \colon W \to W$ e $g \colon U \to U$ sono due applicazioni lineari si consideri $L \colon V \to V$ data da L(v) = f(w) + g(u), dove v = w + u, $w \in W$, $u \in U$. Allora L è diagonalizzabile se e solo se f e g sono diagonalizzabili.

Diagonalizzazione - una strategia in 4 passi

1. Dato $T\colon V\to V$ endomorfismo, calcolo il polinomio caratteristico e ne trovo le radici ottenendo un polinomio della forma

$$p_T(t) = \det(t\operatorname{Id} - T) = (t - \lambda_1)^{a_1} \cdots (t - \lambda_k)^{a_k} \cdot f(t)$$

con f(t) irriducibile in $\mathbb{K}[t]$. Se il polinomio caratteristico si fattorizza completamente nel campo, i.e. f(t) = 1 allora posso procedere, altrimenti T non è diagonalizzabile.

- 2. Dette $\lambda_1, \ldots, \lambda_k$ con $k \leq n$ le radici del polinomio caratteristico, i.e. autovalori di T, studio gli autospazi relativi $V_{\lambda_1} = \operatorname{Ker}(T \lambda_1 \operatorname{Id}), \ldots, V_{\lambda_k} = \operatorname{Ker}(T \lambda_k \operatorname{Id})$
- 3. Osservo che questi sottospazi sono in somma diretta e quindi
 - se $V_{\lambda_1}\oplus\ldots\oplus V_{\lambda_k}=V$ allora T si diagonalizza e una base digonalizzante di V è data dall'unione delle basi dei V_{λ_j} e posso procedere;
 - se $V_{\lambda_1} \oplus \ldots \oplus V_{\lambda_k} \subset V$ allora T non è diagonalizzabile.

Se voglio solo sapere se T è diagonalizzabile è sufficiente confrontare la molteplicità algebrica a_i delle radici λ_i del polinomio caratteristico con la molteplicità geometrica $m_i = \dim V_{\lambda_i} = \dim \operatorname{Ker}(T - \lambda_i \operatorname{Id})$. T è diagonalizzabile \Leftrightarrow per ogni i vale $a_i = m_i$.

4. Usando la base trovata, si scrive la matrice diagonale corrispondente (i coefficienti sono zeri tranne sulla diagonale in cui ci sono tanti λ_i quanti la $m_i = \dim V_{\lambda_i}$).

10 Prodotti scalari

Definizione 10.1 (prodotto scalare) Sia V un \mathbb{K} -spazio vettoriale. Un prodotto scalare su V è una funzione

$$\langle , \rangle \colon V \times V \to \mathbb{K}$$

che soddisfa le seguenti prorpietà

- (i) $\forall v, w \in V \text{ vale } \langle v, w \rangle = \langle w, v \rangle$
- (ii) $\forall v, w, u \in V$ vale $\langle v, w + u \rangle = \langle v, w \rangle + \langle v, u \rangle$
- (iii) $\forall v, w \in V, \forall \lambda \in \mathbb{K} \text{ vale } \langle \lambda v, w \rangle = \langle v, \lambda w \rangle = \lambda \langle v, w \rangle$

Indicheremo con la coppia (V, φ) lo spazio vettoriale V dotato del prodotto scalare $\varphi \colon V \times V \to \mathbb{K}$.

Proprietà 10.1 Alcuni prodotti scalari godono delle segenti proprietà

- 1. Un vettore $v \in V$ tale che $\langle v, v \rangle = 0$ si dice isotropo.
- 2. Un prodotto scalare tale che preso un $v \in V$

$$\forall w \in V \quad \langle v, w \rangle = O_V \Rightarrow v = O_V$$

si dice non degenere.

3. Un prodotto scalare su V spazio vettoriale sul campo $\mathbb R$ tale che

$$\forall v \in V \quad \langle v, v \rangle \ge 0 \quad \text{e} \quad \langle v, v \rangle = 0 \Leftrightarrow v = O_V$$

si dice definito positivo.

Teorema 10.1 Un prodotto scalare è non degenere se e solo se la matrice E che lo rappresenta ha rango massimo. Ovvero, se $\{e_1, \ldots, e_n\}$ è base di V

$$\operatorname{rg} E = \operatorname{rg} \begin{pmatrix} \langle e_1, e_1 \rangle & \cdots & \langle e_1, e_n \rangle \\ \vdots & \ddots & \vdots \\ \langle e_n, e_1 \rangle & \cdots & \langle e_n, e_n \rangle \end{pmatrix} = n$$

Definizione 10.2 (norma, distanza, ortogonalità) Sia $\langle \, , \, \rangle$ un prodotto scalare su V spazio vettoriale su \mathbb{R} . Allora

- 1. la norma di $v \in V$ è $\|v\| = \sqrt{\langle v, v \rangle}$
- 2. la distanza tra $v,w\in V$ è data da $\|v-w\|$
- 3. due vettori $v, w \in V$ si dicono ortogonali se $\langle v, w \rangle = 0$

Teorema 10.2 (di Pitagora) Sia V uno spazio vettoriale sul campo \mathbb{R} con prodotto scalare definito positivo. Dati $v, w \in V : \langle v, w \rangle = 0$ allora

$$||v + w||^2 = ||v||^2 + ||w||^2$$

Teorema 10.3 (del parallelogramma) Sia V uno spazio vettoriale sul campo \mathbb{R} con prodotto scalare definito positivo. Allora $\forall v, w \in V$ vale

$$||v + w||^2 + ||v - w||^2 = 2||v||^2 + 2||w||^2$$

Definizione 10.3 (componente) Dati $v, w \in V$ chiamiamo coefficiente di Fourier o componente di v lungo w lo scalare

$$c = \frac{\langle v, w \rangle}{\langle w, w \rangle}$$

In particolare vale $\langle v - cw, w \rangle = 0$

Teorema 10.4 (disuguaglianza di Schwarz) Sia V uno spazio vettoriale sul campo \mathbb{R} con prodotto scalare definito positivo. Allora $\forall v, w \in V$ vale

$$|\langle v, w \rangle| \le ||v|| \cdot ||w||$$

Teorema 10.5 (disuguaglianza triangolare) Sia V uno spazio vettoriale sul campo \mathbb{R} con prodotto scalare definito positivo. Allora $\forall v, w \in V$ vale

$$||v + w|| \le ||v|| + ||w||$$

Teorema 10.6 Siano $v_1, \ldots, v_n \in V$ a due a due perpendicolari $(\forall i \neq j \ \langle v_i, v_j \rangle = 0)$. Allora $\forall v \in V$ il vettore

$$v - \frac{\langle v, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \dots - \frac{\langle v, v_n \rangle}{\langle v_n, v_n \rangle} v_n$$

è ortogonale a ciascuno dei v_i . Risulta inoltre che il vettore $c_1v_1 + \ldots + c_nv_n$ (dove $c_i = \frac{\langle v, v_i \rangle}{\langle v_i, v_i \rangle}$) è la migliore approssimazione di v come combinazione lineare dei v_i .

Teorema 10.7 (disuguaglianza di Bessel) Siano $e_1, \ldots, e_n \in V$ a due a due perpendicolari e unitari. Dato un $v \in V$, sia $c_i = \frac{\langle v, e_i \rangle}{\langle e_i, e_i \rangle}$. Allora vale

$$\sum_{i=1}^{n} c_i^2 \le ||v||^2$$

Teorema 10.8 (ortogonalizzazione di Gram-Schmidt) Sia V uno spazio vettoriale con prodotto scalare definito positivo. Siano $v_1, \ldots, v_n \in V$ vettori linearmente indipendenti. Possiamo allora trovare dei vettori u_1, \ldots, u_r , con $r \leq n$ ortogonali tra loro e tali che $\forall i \leq r, Span\{v_1, \ldots, v_i\} = Span\{u_1, \ldots, u_i\}$. In particolare basterà procedere in modo induttivo e prendere

$$\begin{cases} u_1 = v_1 \\ u_i = v_i - \frac{\langle v_i, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 - \dots - \frac{\langle v_i, u_{i-1} \rangle}{\langle u_{i-1}, u_{i-1} \rangle} u_{i-1} \end{cases}$$

Corollario 10.9 (esistenza della base ortonormale per prodotto scalare definito positivo) Dato V spazio vettoriale con prodotto scalare definito positivo esiste una base ortonormale di V, ossia una base $\{u_1, \ldots, u_r\}$ tale che $\forall i \neq j \ \langle u_i, u_j \rangle = 0$ e che $\forall i \|u_i\| = 1$.

Definizione 10.4 (ortogonale e radicale) Sia V uno spazio vettoriale dotato di prodotto scalare φ e $W\subseteq V$. Definiamo ortogonale di W l'insieme $W^\perp=\{v\in V: \forall w\in W, \varphi(v,w)=0\}$. Definiamo radicale di V l'insieme Rad $(\varphi)=\{v\in V: \forall w\in V, \langle v,w\rangle=0\}$. Per definizione si ha che Rad $(\varphi)=V^\perp$

Proprietà 10.2 (dell'ortogonale) * Sia V un \mathbb{K} -spazio vettoriale dotato di prodotto scalare φ e siano U,W due sottospazi vettoriali di V. Allora:

- (i) $W \subseteq (W^{\perp})^{\perp}$ e se φ è non degenere $W = (W^{\perp})^{\perp}$;
- (ii) $W^{\perp} \cap U^{\perp} = (W + U)^{\perp}$;
- (iii) $(W \cap U)^{\perp} \supseteq W^{\perp} + U^{\perp}$ e se φ è non degenere $(W \cap U)^{\perp} = W^{\perp} + U^{\perp}$.

Teorema 10.10 Sia V un \mathbb{K} -spazio vettoriale dotato di prodotto scalare φ . Sia W un sottospazio di V tale che la restrizione del prodotto scalare $\varphi|_W$ sia non degenere. Allora

$$V = W \oplus W^{\perp}$$
.

In particolare l'enunciato vale se il prodotto scalare definito positivo.

Definizione 10.5 (prodotto hermitiano) Sia V uno spazio vettoriale sul campo \mathbb{C} . Un prodotto hermitiano su V è una funzione

$$\langle , \rangle \colon V \times V \to \mathbb{C}$$

che soddisfa le seguenti proprietà

- (i) $\forall v, w \in V$ vale $\langle v, w \rangle = \overline{\langle w, v \rangle}$ (coniugato)
- (ii) $\forall v, w, u \in V$ vale $\langle v, w + u \rangle = \langle v, w \rangle + \langle v, u \rangle$ e $\langle v + w, u \rangle = \langle v, u \rangle + \langle w, u \rangle$
- (iii) $\forall v, w \in V, \forall \lambda \in \mathbb{C}$ vale $\langle \lambda v, w \rangle = \lambda \langle v, w \rangle$ e $\langle v, \lambda w \rangle = \overline{\lambda} \langle v, w \rangle$

Definizione 10.6 (prodotto hermitiano standard) Dati due vettori colonna $v, w \in \mathbb{C}^n$ definiamo il prodotto hermitiano standard come

$$v \cdot w = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \cdot \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \alpha_1 \overline{\beta_1} + \ldots + \alpha_n \overline{\beta_n}$$

Teorema 10.11 (esistenza della base ortogonale per prodotto scalare generico) Sia V un \mathbb{K} -spazio vettoriale non banale di dimensione finita dotato di un prodotto scalare. Allora V ha una base ortogonale.

Teorema 10.12 (Algoritmo di Lagrange) * Sia V un \mathbb{K} -spazio vettoriale, \langle , \rangle un prodotto scalare se V e $\mathscr{B} = \{v_1, \ldots, v_n\}$ una base qualunque di V.

1. Se v_1 non è isotropo, cio
è $\langle v_1, v_1 \rangle \neq 0$, poniamo

$$v'_{1} = v_{1}$$

$$v'_{2} = v_{2} - \frac{\langle v_{2}, v'_{1} \rangle}{\langle v_{1}, v_{1} \rangle} v'_{1}$$

$$\vdots \qquad \vdots$$

$$v'_{n} = v_{n} - \frac{\langle v_{n}, v'_{1} \rangle}{\langle v_{n}, v_{1} \rangle} v'_{1}$$

Così $\langle v_i', v_1' \rangle = 0$ per ogni $j \in 2, \ldots, n$ e \mathscr{B}' è una base di V.

- 2. Se v_1 è isotropo, cioè $\langle v_1, v_1 \rangle \neq 0$ allora
 - (a) Se $\exists j \in 2, ..., n$ tale che $\langle v_j, v_j \rangle \neq 0$ permuto la base \mathscr{B} in modo che v_j sia il primo vettore e procedo come in 1.
 - (b) Se $\forall j \in 1, \ldots, n, \langle v_j, v_j \rangle = 0$ allora ci sono due casi
 - (,) è il prodotto scalare nullo e quindi ogni base è ortogonale
 - $\exists i \neq j : \langle v_i, v_j \rangle \neq 0$ in tale caso $\langle v_i + v_j, v_i + v_j \rangle = 2 \langle v_j, v_j \rangle \neq 0$. Scelgo allora una base di V in cui $v_i + v_j$ è il primo vettore e procedo come in 1.

Dopo aver ortogonalizzato i vettori rispetto al primo, itero il procedimento su $\{v_2', \ldots, v_n'\}$ e così via. Alla fine ottengo una base ortogonale rispetto a $\langle \ , \ \rangle$. Dunque vale l'enunciato del Teorema 10.11.

Proposizione 10.13 (base ortonormale) Sia $\{w_1, \ldots, w_n\}$ una base ortogonale di V con un prodotto scalare. Posto

$$v_{i} = \begin{cases} \frac{w_{i}}{\sqrt{\langle w_{i}, w_{i} \rangle}} & \text{se } \langle w_{i}, w_{i} \rangle > 0 \\ w_{i} & \text{se } \langle w_{i}, w_{i} \rangle = 0 \\ \frac{w_{i}}{\sqrt{-\langle w_{i}, w_{i} \rangle}} & \text{se } \langle w_{i}, w_{i} \rangle < 0 \end{cases}$$

l'insieme $\{v_1,\ldots,v_n\}$ è una base ortonormale di V

Teorema 10.14 (corrispondenza matrice - prodotto scalare) Sia V un \mathbb{K} -spazio vettoriale e sia $\mathscr{B} = \{v_1, \dots, v_n\}$ base di V. Dato un prodotto scale $\varphi \colon V \times V \to \mathbb{K}$ la matrice del prodotto scalare è

$$M_{\mathscr{B}}(\varphi) = (\varphi(v_i, v_j))_{\substack{i=1,\dots,n\\j=1,\dots,n}}.$$

Viceversa data M matrice simmetrica del prodotto scalare e u, w vettori di vettori colonna $[u]_{\mathscr{B}}$ e $[w]_{\mathscr{B}}$ si ha

$$\varphi(v, w) = [u]_B^t \cdot M \cdot [w]_{\mathscr{B}}.$$

Proposizione 10.15 (radicale) Sia V un \mathbb{K} -spazio vettoriale e φ un prodotto scalare su V. Vale che Rad $(\varphi) = \{v \in V : \forall w \in V, \varphi(v, w) = 0\} = \{v \in V : M_{\mathscr{B}}(\varphi) \cdot [v]_{\mathscr{B}} = 0\}.$ (Moralmente Rad $(\varphi) = \operatorname{Ker} M_{\mathscr{B}}(\varphi)$).

Definizione 10.7 (spazio duale, funzionali) Sia V un \mathbb{K} -spazio vettoriale. Si definisce spazio duale di V l'insieme delle applicazioni lineari da V in \mathbb{K}

$$V^* = \mathcal{L}(V, \mathbb{K}) = \mathcal{L}(V) = \{L \colon V \to \mathbb{K} : L \text{ è lineare}\}.$$

I suoi elementi vengono detti funzionali lineari da V in \mathbb{K} e risulta dim $V = \dim V^*$.

Definizione 10.8 (base duale) Sia V un \mathbb{K} -spazio vettoriale. Fissata una base $\{v_1, \ldots, v_n\}$ di V esiste una base $\{\varphi_1, \ldots, \varphi_n\}$ di V^* ad essa associata detta base duale di v_1, \ldots, v_n definita come

$$\varphi_i(v_j) = \delta_{ij} = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}$$

Teorema 10.16 (di rappresentazione) Sia V un \mathbb{K} -spazio vettoriale di dimensione finita con un prodotto scalare non degenere. Allora l'applicazione

$$\Phi \colon V \to V^*$$

$$v \mapsto \varphi_v = \langle v, \cdot \rangle$$

dove φ_v è la funzionale tale che $\forall w \in V : \varphi_v(w) = \langle v, w \rangle$, è un isomorfismo tra V e il suo duale V^* . In altri termini, dato $\varphi \in V^*$ esiste un unico $v \in V$ tale che $\forall w \in V, \varphi(w) = \langle v, w \rangle$. In tale caso si dice che φ è rappresentabile.

Teorema 10.17 (annullatore) Sia V un \mathbb{K} -spazio vettoriale di dim V=n e sia W sottospazio di V. Sia inoltre Ann $W=\{\varphi\in V^*: \forall w\in W, \varphi(w)=0\}$ l'annullatore di W. Allora Ann W è sottospazio di V^* e vale che dim $(\operatorname{Ann} W)=n-\dim W$.

Corollario 10.18 Sia V un \mathbb{K} -spazio vettoriale di dim V=n con prodotto scalare non degenere, sia W sottospazio di V e W^{\perp} il suo ortogonale. Siano inoltre V^* il duale di V e Ann W l'annullatore di W. Allora $\Phi(W^{\perp}) = \operatorname{Ann} W$ (in altre parole $\Phi|_{W^{\perp}} \colon W^{\perp} \to \operatorname{Ann} W$ è un isomorfismo) e vale quindi

$$\dim W + \dim W^{\perp} = \dim V.$$

Teorema 10.19 * Sia V un \mathbb{K} -spazio vettoriale dotato di un prodotto scalare φ . Sia W sottospazio di V, W^{\perp} il suo ortogonale e Rad (φ) il radicale di φ . Allora vale

$$\dim W + \dim W^{\perp} = \dim V + \dim (W \cap \operatorname{Rad}(\varphi))$$

Teorema 10.20 Sia $\Phi: V \to V^*$ l'isomorfismo del Teorema 10.16. Allora Rad $(\varphi) = \operatorname{Ker} \Phi$ e $M_{\mathscr{R}^*}^{\mathscr{B}}(\Phi) = M_{\mathscr{B}}(\varphi_v)$ dove \mathscr{B}^* è la base del duale associata alla base \mathscr{B} di V.

Corollario 10.21 Un prodotto scalare φ su V è non degenere $\Leftrightarrow \operatorname{Rad}(\varphi) = \{O_V\} \Leftrightarrow \operatorname{Ker} M_{\mathscr{B}}(\varphi) = O_V \Leftrightarrow M_{\mathscr{B}}(\varphi)$ ha rango $n = \dim V$.

Corollario 10.22 Se \mathcal{B} è una base ortonormale allora la matrice del prodotto scalare è diagonale. Detti $\lambda_i = \varphi(v_i, v_i)$ si ha

$$M_{\mathscr{B}}(\varphi) = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$$

Proposizione 10.23 (indice di nullità) Se $\mathcal{B} = \{v_1, \dots, v_n\}$ è una base ortonormale di V rispetto a φ prodotto scalare su V, allora

$$n_0(\varphi) = \operatorname{card}\{i : \lambda_i = \varphi(v_i, v_i) = 0\} = \dim \operatorname{Rad}(\varphi).$$

Tale valore viene detto indice di nullità del prodotto scalare.

Teorema 10.24 (di Sylvester, indice di positività e di negatività) Sia V uno spazio vettoriale su \mathbb{R} , φ un prodotto scalare su V e $\mathscr{B} = \{v_1, \ldots, v_n\}$ una base di V. Esiste un numero intero $r = n_+(\varphi)$ che dipende solo da φ e non dalla base \mathscr{B} , detto indice di positività, tale che ci sono esattamente r indici i tali che $\varphi(v_i, v_i) = 1$. Analogamente esiste un $r' = n_-(\varphi)$ che dipende solo da φ e non dalla base \mathscr{B} , detto indice di negatività, tale che ci sono esattamente r' indici i tali che $\varphi(v_i, v_i) = -1$.

Definizione 10.9 (segnatura e forma canonica dei prodotti scalari) Si definisce segnatura di un prodotto scalare φ su V spazio vettoriale su \mathbb{R} la terna $(n_0(\varphi), n_+(\varphi), n_-(\varphi))$. Detta $n = \dim V$ vale

$$n_0(\varphi) + n_+(\varphi) + n_-(\varphi) = n.$$

Dato inoltre W sottospazio vettoriale di V valgono le seguenti caratterizzazioni

- $n_0(\varphi) = \dim \operatorname{Rad}(\varphi);$
- $n_+(\varphi) = \max \{ \dim W : W \subseteq V \in \varphi|_W > 0 \};$
- $n_{-}(\varphi) = \max \{ \dim W : W \subseteq V \in \varphi|_{W} < 0 \}.$

Per il Teorema 10.24 esiste una base ortonormale ${\mathscr B}$ rispetto a φ in cui la matrice del prodotto scalare è della forma

$$M_{\mathscr{B}}(\varphi) = \begin{pmatrix} \boxed{\mathrm{Id}_{n_{+}}} \\ -\mathrm{Id}_{n_{-}} \\ \boxed{0_{n_{0}}} \end{pmatrix}$$

dove Id_r è la matrice identità di dimensione $r \times r$ e 0_p è la matrice nulla di dimensione $p \times p$. Operativamente: per trovare la segnatura scrivo la matrice del prodotto scalare in una base ortonormale rispetto al prodotto scalare φ ; tale matrice è diagonale e la segnatura si legge sugli elementi della diagonale (ci sono n_+ elementi uguali a 1, n_- elementi uguali a -1 e n_0 elementi nulli). Per il Teorema Spettrale, posso semplicemente trovare gli autovalori della matrice del prodotto scalare (Ci vanno altre ipotesi??)

11 Teorema spettrale, aggiunzione, operatori ortogonali e unitari

Sia V uno spazio vettoriale sul campo $\mathbb{K} = \mathbb{R}$ o \mathbb{C} di dimensione finita dotato di prodotto rispettivamente scalare o hermitiano definito positivo \langle , \rangle .

Teorema 11.1 (endomorfismo aggiunto e matrice aggiunta) Dato $T\colon V\to V$ endomorfismo esiste un unico endomorfismo $T^*\colon V\to V$ tale che

$$\forall u, v \in V, \langle Tu, v \rangle = \langle u, T^*v \rangle.$$

Tale T^* viene detto endomorfismo aggiunto di T.

In termini di matrici, se \mathscr{B} è una base ortonormale di V e $[T]_{\mathscr{B}}^{\mathscr{B}}$ è la matrice di T rispetto a tale base, allora la matrice di T^* rispetto alla stessa base è $[T^*]_{\mathscr{B}}^{\mathscr{B}} = \overline{([T]_{\mathscr{B}}^{\mathscr{B}})^t}$ (trasposta coniugata). Se A è una matrice quadrata a coefficienti in \mathbb{R} o \mathbb{C} , si definisce matrice aggiunta di A la matrice $\overline{A^t}$.

Proposizione 11.2 (matrice dell'aggiunto) Sia $T \in \text{End}(V)$, \mathscr{B} una base di V e M la matrice del prodotto scalare scritta in tale base. Allora

- $\bullet \ \mathbb{K} = \mathbb{R} \colon [T^*]_{\mathscr{B}}^{\mathscr{B}} = M^{-1} \, ([T]_{\mathscr{B}}^{\mathscr{B}})^t \, M.$
- $\mathbb{K} = \mathbb{C}$: $[T^*]_{\mathscr{B}}^{\mathscr{B}} = \overline{M^{-1}} \overline{([T]_{\mathscr{B}}^{\mathscr{B}})^t} \overline{M}$.

Proposizione 11.3 (proprietà dell'aggiunzione) Dati $T, S \in \text{End}(V)$ vale

- (i) $(T+S)^* = T^* + S^*$
- (ii) $(TS)^* = S^*T^*$
- (iii) $\forall \alpha \in \mathbb{K}, \ (\alpha T)^* = \overline{\alpha} T^*$
- (iv) $(T^*)^* = T$
- (v) * Ker $T^* = (\operatorname{Im} T)^{\perp} e \operatorname{Ker} T = (\operatorname{Im} T^*)^{\perp};$
- (vi) * Im $T^* = (\text{Ker } T)^{\perp} \text{ e Im } T = (\text{Ker } T^*)^{\perp}.$

Definizione 11.1 (endomorfismo normale) $T \in \text{End}(V)$ si dice normale se commuta con il suo aggiunto, ovvero se T $T^* = T^*$ T.

Definizione 11.2 (endomorfismo autoaggiunto) $T \in \text{End}(V)$ si dice autoaggiunto se $T = T^*$. In termini di matrici se $[T]_{\mathscr{B}}^{\mathscr{B}}$ è la matrice di T rispetto a una base ortonormale \mathscr{B} di V si ha

- $\mathbb{K} = \mathbb{R}$: T è autoaggiunta $\Leftrightarrow [T]_{\mathscr{B}}^{\mathscr{B}}$ è simmetrica (uguale alla trasposta).
- $\mathbb{K} = \mathbb{C}$: T è autoaggiunta $\Leftrightarrow [T]_{\mathscr{B}}^{\mathscr{B}}$ è hermitiana (uguale alla trasposta coniugata).

Teorema 11.4 Sia $T \in \text{End}(V)$ autoaggiunto. Se λ autovalore per T, allora $\lambda \in \mathbb{R}$.

Teorema 11.5 $\mathbb{K} = \mathbb{R} \in T \in \text{End}(V)$ autoaggiunto. Allora

- (i) il polinomio caratteristico $p_T(t)$ si fattorizza completamente e ha tutte le radici reali;
- (ii) T ha almeno un autovalore;
- (iii) se $\{v_1, \ldots, v_r\}$ è un insieme di autovalori a due a due distinti allora v_1, \ldots, v_r sono a due a due ortogonali.

Proposizione 11.6 Sia $T \in \text{End}(V)$ e W sottospazio di V T-invariante, i.e. $T(W) \subseteq W$. Allora l'ortogonale W^{\perp} è T^* -invariante.

Proposizione 11.7 Sia $T \in \text{End}(V)$ autoaggiunto e W sottospazio di V T-invariante, i.e. $T(W) \subseteq W$. Allora $T|_W$ è ancora autoaggiunto.

Teorema 11.8 (Spettrale $\mathbb{K} = \mathbb{R}$) Sia $T: V \to V$ endomorfismo autoaggiunto se e solo se esiste una base ortonormale di V di autovettori per T.

In altri termini, ogni matrice simmetrica reale è simile a una matrice diagonale tramite una matrice ortogonale. In formule se $S \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ è una matrice simmetrica reale esistono una matrice ortogonale O (i.e. $O^tO = \operatorname{Id}$) rispetto al prodotto scalare standard di \mathbb{R}^n e una matrice diagonale D tali che

$$D = O^{-1}SO = O^tSO.$$

Teorema 11.9 (Spettrale $\mathbb{K} = \mathbb{C}$) * Sia $T: V \to V$ endomorfismo normale se e solo se esiste una base ortonormale di V di autovettori per T.

In altri termini, ogni matrice normale è simile a una matrice diagonale tramite una matrice unitaria. In formule se $N \in \operatorname{Mat}_{n \times n}(\mathbb{C})$ è una matrice normale esiste esistono una matrice unitaria U (i.e. $\overline{U}^t U = \operatorname{Id}$) rispetto al prodotto hermitiano standard di \mathbb{C}^n e una matrice diagonale D tali che

$$D = U^{-1}NU = \overline{U^t}NU.$$

Teorema 11.10 (Spettrale $\mathbb{K}=\mathbb{C}$ per endomorfismi autoaggiunti) Sia $T\colon V\to V$ endomorfismo normale allora se esiste una base ortonormale di V di autovettori per T (una sola implicazione). In altri termini, ogni matrice hermitiana è simile a una matrice diagonale tramite una matrice unitaria. In formule se $H\in \mathrm{Mat}_{n\times n}(\mathbb{C})$ è una matrice hermitiana esiste esistono una matrice unitaria U (i.e. $\overline{U^t}U=\mathrm{Id}$) rispetto al prodotto hermitiano standard di \mathbb{C}^n e una matrice diagonale D tali che

$$D = U^{-1}HU = \overline{U^t}HU.$$

Proposizione 11.11 Sia $T \in \text{End}(V)$ (autoaggiunto se $\mathbb{K} = \mathbb{R}$). Allora

$$T = O_{\text{End } V} \Leftrightarrow \forall v \in V, \ \langle Tv, v \rangle = 0$$

Teorema 11.12 Sia V uno spazio vettoriale su \mathbb{R} con prodotto scalare definito positivo. Sia $T \in \operatorname{End}(V)$ tale che $TT^* = T^*T$. Allora $V = \operatorname{Ker} T \oplus \operatorname{Im} T$.

Definizione 11.3 (endomorfismo ortogonale e matrice ortogonale) $\mathbb{K} = \mathbb{R}$. Un endomorfismo $U \colon V \to V$ tale che $U^* = U^{-1}$ si dice endomorfismo ortogonale. In termini di matrici se \mathscr{B} è un base ortonormale, $[U]_{\mathscr{B}}^{\mathscr{B}}$ è ortogonale $\Leftrightarrow [U^{-1}]_{\mathscr{B}}^{\mathscr{B}} = ([U]_{\mathscr{B}}^{\mathscr{B}})^t$. Equivalentemente $M \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ si dice ortogonale se $M^t = M^{-1}$.

Proposizione 11.13 Le seguenti affermazioni sono equivalenti.

- (i) $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ è ortogonale.
- (ii) Le righe di A sono vettori ortonormali rispetto al prodotto scalare standard.
- (iii) Le colonne di A sono vettori ortonormali rispetto al prodotto scalare standard.

Definizione 11.4 (endomorfismo unitario e matrice unitaria) $\mathbb{K}=\mathbb{C}$. Un endomorfismo $U\colon V\to V$ tale che $U^*=U^{-1}$ si dice endomorfismo unitario. In termini di matrici se \mathscr{B} è un base ortonormale, $[U]_{\mathscr{B}}^{\mathscr{B}}$ è unitaria $\Leftrightarrow [U^{-1}]_{\mathscr{B}}^{\mathscr{B}}=\overline{([U]_{\mathscr{B}}^{\mathscr{B}})^t}$ Equivalentemente $M\in \mathrm{Mat}_{n\times n}(\mathbb{C})$ si dice unitaria se $\overline{M^t}=M^{-1}$.

Proposizione 11.14 Le seguenti affermazioni sono equivalenti.

- (i) $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$ è unitaria.
- (ii) Le righe di A sono vettori ortonormali rispetto al prodotto hermitiano standard.
- (iii) Le colonne di A sono vettori ortonormali rispetto al prodotto hermitiano standard.

Teorema 11.15 Sia $U \in \text{End}(V)$ tale che $U^* = U^{-1}$ (i.e. ortogonale o unitario). Se λ è autovalore per U allora

(i) $|\lambda| = 1$ (in particulare se $\lambda \in \mathbb{R}$ allora $\lambda = \pm 1$);

(ii) Se $Uv = \lambda v$ allora $U^*v = \overline{\lambda}v$ (in particolare $\overline{\lambda}$ è autovalore di $U^* = U^{-1}$ rispetto allo stesso autovettore).

Teorema 11.16 Dato $U \in \text{End}(V)$ sono equivalenti

- (i) $U^* = U^{-1}$;
- (ii) $\forall v, w \in V, \langle Uv, Uw \rangle = \langle v, w \rangle$ (U è un'isometria)
- (iii) $\forall v \in V, ||Uv|| = ||v||.$

Proposizione 11.17 Sia $U \in \text{End}(V)$ ortogonale o unitaria e sia W un sottospazio di V U-invariante. Allora W^{\perp} è U-invariante.

Teorema 11.18 (Spettrale per gli endomorfismi unitari) $\mathbb{K} = \mathbb{C}$. Sia $U \in \text{End}(V)$ unitario. Allora esiste una base ortonormale di V di autovettori per U.

Teorema 11.19 (forma canonica degli endomorfismi ortogonali) $\mathbb{K} = \mathbb{R}$. Sia $Q: V \to V$ un endomorfismo ortogonale. Allora esiste una base ortonormale \mathscr{B} di V in cui la matrice di Q ha la forma

$$[Q]_{\mathscr{B}}^{\mathscr{B}} = \begin{pmatrix} \boxed{\mathrm{Id}_p} \\ -\mathrm{Id}_q \\ & & \\ & & \ddots \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$$

dove $p,q,k\in\mathbb{N}$ con $p+q+2k=n=\dim V,$ Id_r è la matrice identità di dimensioni $r\times r$ e R_{θ_i} è una matrice rotazione non banale 2×2

$$R_{\theta_i} = \begin{pmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{pmatrix} \quad \text{con } \theta_i \neq 0, \pi \ (+2k\pi, \ \forall k \in \mathbb{Z})$$

Proposizione 11.20 O matrice ortogonale $\Rightarrow \det O = \pm 1$. U matrice unitaria $\Rightarrow |\det O| = 1$.

Definizione 11.5 O(V) è il gruppo degli endomorfismi ortogonali con l'operazione di composizione. $O(\mathbb{R}^n) = O(n)$.

Il sottogruppo delle di O(V) con det = +1 è il gruppo ortogonale speciale SO(V).

Definizione 11.6 U(V) è il gruppo degli endomorfismi unitari con l'operazione di composizione. $U(\mathbb{C}^n) = O(n)$.

Il sottogruppo delle di U(V) con det = +1 è il gruppo unitario speciale SU(V).

12 Miscellanea

Teorema 12.1 (forma canonica delle involuzioni) * Sia V un \mathbb{K} -spazio vettoriale con dim V = n e sia $f: V \to V$ un'applicazione lineare tale che $f^2 = \mathrm{Id}$. Allora esiste una base \mathscr{B} di V tale che

$$[f]_{\mathscr{B}}^{\mathscr{B}} = \left(\begin{array}{c} \operatorname{Id}_{k} \\ -\operatorname{Id}_{n-k} \end{array} \right)$$

con $k \in \mathbb{N}$ univocamente determinato.

Teorema 12.2 (forma canonica delle proiezioni) Sia V un \mathbb{K} -spazio vettoriale con dim V=n e sia $f\colon V\to V$ un'applicazione lineare tale che $f^2=f$ (proiezione). Allora esiste una base \mathscr{B} di V tale che

$$[f]_{\mathscr{B}}^{\mathscr{B}} = \left(\begin{array}{|c|} \hline \operatorname{Id}_k \\ \hline \hline 0_{n-k} \end{array} \right)$$

con $k \in \mathbb{N}$ univocamente determinato.

Teorema 12.3 * Sia V uno spazio vettoriale su $\mathbb R$ di dimensione ≥ 1 e sia $f\colon V\to V$ un'applicazione lineare tale che $f^2=-\mathrm{Id}$. Allora esiste una base $\mathscr B$ di V tale che

$$[f]_{\mathscr{B}}^{\mathscr{B}} = \begin{pmatrix} -\mathrm{Id}_m \\ \mathrm{Id}_m \end{pmatrix}$$

con $m \in \mathbb{N}$ univocamente determinato. In particolare tale base è $\mathscr{B} = \{v_1, \dots, v_m, f(v_1), \dots, f(v_m)\}.$

Teorema 12.4 (forma canonica delle matrici antisimmetriche reali) * Sia $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ antisimmetrica. Allora esiste una matrice ortogonale $M \in O(n)$ tale che

$$M^{-1}AM = M^t AM = \begin{pmatrix} H_{a_1} \\ & \ddots \\ & & H_{a_k} \end{pmatrix} \qquad \text{con } H_{a_i} = \begin{pmatrix} 0 & a_i \\ -a_i & 0 \end{pmatrix}$$

TEST MERGE