Amplificateur opérationnel en régime linéaire

Table des matières

1	AO réel - AO idéal			
	1.1			
	1.2	1.2 Fonctionnement linéaire d'un AO		
		1.2.1	Système linéaire du premier ordre	
		1.2.2	Cas du régime continu	
	1.3	Comp	ortements non linéaires d'un AO : phénomènes de saturations	
		1.3.1	Saturation en tension	
		1.3.2	Limitation en courant de sortie	
		1.3.3	Vitesse de balayage : limitation en fréquence (slew-rate)	
	1.4	AO id	éal en régime linéaire	
		1.4.1	AO idéal	
		1.4.2	Propriété fondamentale	
2	Am	Amplificateur non inverseur		
	2.1		lisation d'un amplificateur linéaire	
		2.1.1	Amplificateur idéal en régime continu	
		2.1.2	Amplificateur réel-Résistance d'entrée et de sortie	
		2.1.3	Cas d'un régime sinusoidal	
	2.2			
	2.3		isation du montage	
		2.3.1	Amplificateur idéal de tension	
		2.3.2	Amplificateur à AO réel en régime sinusoidal	
3	Montages usuels à AO ideal			
	3.1	Suive	ır de tension	
	3.2	Amplificateur inverseur		
	3.3	Sommateur de tension		
	3.4		racteur de tension	
	3.5		ateur simple	
	3.6		teur simple	

L'amplificateur opérationnel, désigné par AO dans la suite du cours, est un système électronique complexe, du type **circuit intégré** composé de résistance , condensateur diodes , transistors .

1 AO réel - AO idéal

1.1 Description de l'AO

1 : réglage de l'offset

2 : Entrée inverseuse (-)

3 : Entrée non inverseuse (+)

4 : Polarisation négative ($-V_{cc} = -15V$)

5 : Réglage de la tension de décalage (offset)

6 : Sortie

7 : Polarisation positive $(+V_{cc} = 15V)$

8 : Borne non connectée

Exemples : TL081 , CA741 , μ A741 Shématiquement on représente AO par

 E^+ : Entrée non inverseuse E^- : Entrée inverseuse

1.2 Fonctionnement linéaire d'un AO

1.2.1 Système linéaire du premier ordre

La tension de sortie u_s est reliée à ε par l'équation suivante :

$$\tau \frac{du_s}{dt} + u_s = \mu \varepsilon$$

 τ : temps de relaxation du système $\tau \approx 10^{-2} s$

 μ : Coefficient d'amplification : gain en régime continue $\mu=10^5$ l'équation précédente s'écrit sous la forme suivante

$$\boxed{\frac{\underline{u}_s}{\underline{\varepsilon}} = \frac{\mu}{1 + j\frac{\omega}{\omega_0}}} \text{ avec } \omega_0 = \frac{1}{\tau}$$

1.2.2 Cas du régime continu

En régime continu l'équation précédente devient

$$U_s = \mu \varepsilon$$

1.3 Comportements non linéaires d'un AO : phénomènes de saturations

1.3.1 Saturation en tension

En régime continue faisons varier ε entre $-\varepsilon_0$ et $+\varepsilon_0$ la réponse est comme suit :

En pratique $U_{sat} = V_{sat} = 15V$

- Pour $\varepsilon > \varepsilon_M$: saturation haute (phénomène non linéaire)
- Pour $\varepsilon < -\varepsilon_M$: saturation basse
- Dans le cas d'un signal sinusoidal $u_s(t)$ d'amplitude U_{sm} superieur à U_{sat}

Ordre de grandeur :
$$U_{sat}=13V$$
 , $V_{cc}=15V$, $\mu=10^5$ \Rightarrow $\varepsilon_M=\frac{U_{sat}}{\mu}$ \approx $10^{-4}V$

Conclusion : En regime linéaire d'un AO réel, la tension ε est trés faible $\varepsilon<\varepsilon_M$.

1.3.2 Limitation en courant de sortie

Le courant de sortie i_s produit un échauffement des composantes internes en circulant dans l'AO . Pour éviter la détérioration de leurs composants,les AO sont en général munis de limiteurs de courant de sortie $i_s < I_{max} \approx 20mA$.

1.3.3 Vitesse de balayage : limitation en fréquence (slew-rate)

Dans la structure des AO,il existe une vitesse limite de variation de tension u_s dite vitesse de balayage notée σ avec

$$\left| \frac{du_s}{dt} \right| \leqslant \sigma \approx 0,5 V. \mu s^{-1}$$

 \bullet La vitesse de balayage caractérise le temps de réponse Δt d'un AO .

$$\sigma = \frac{\Delta u_s}{\Delta t}$$

 σ augmente $\Rightarrow \Delta t$ diminue

• La vitesse de balayage est responsable sur la triangularisation de u_s .

$$u_s(t) = U_{sm} \cos(\omega t + \varphi)$$
 telque $U_{sm}.\omega > \sigma$.

Il existe un intervalle de temps pour laquelle $\left|\frac{du_s}{dt}\right| = \omega U_{sm} \left|\sin(\omega t + \varphi)\right| > \sigma$

on doit poser $\left|\frac{du_s}{dt}\right| = \sigma \Rightarrow u_s(t) = \sigma \cdot t + cte \Rightarrow \text{ variation affine de } u_s(t) \text{ dans } \Delta t$.

AO idéal en régime linéaire 1.4

1.4.1 AO idéal

Un AO idéal est un amplificateur différentiel de tension :

- \blacktriangleright de gain infini : $\mu \to \infty$
- \blacktriangleright de courants nuls en entrée : $i^+ = i^- = 0$

1.4.2 Propriété fondamentale

Pour éviter le phénomène de saturation en tension il faut que $u_s < U_{sat}$

En régime linéaire $u_s = \varepsilon \mu$ on déduit que $\varepsilon = \frac{u_s}{\mu} \leqslant \frac{U_{sat}}{\mu}$ avec $\mu \to \infty$ donc $\varepsilon \to 0$

En régime linéaire de l'AO idéal $\varepsilon = 0$

• Remarque

▶ La puissance fournie en entrée est nulle :

$$i^{+} = i^{-} = 0 \Rightarrow P^{+} = U^{+}.i^{+} = 0, P^{-} = U^{-}.i^{-} = 0$$

▶ L'énergie consommée par la charge et par les composantes internes de l'AO est prélevé des sources d'alimentation $(+V_{cc} \text{ et } -V_{cc})$

Amplificateur non inverseur 2

2.1Modélisation d'un amplificateur linéaire

Amplificateur idéal en régime continu 2.1.1

Un opérateur qui amplifie la tension d'entrée $(u_s > u_e)$ sans prélever d'énergie en entrée est appelé amplificateur idéal de tension .

• Gain de l'amplificateur
$$G_0 = \frac{u_s}{u_e} > 1$$

2.1.2 Amplificateur réel-Résistance d'entrée et de sortie

2.1.3 Cas d'un régime sinusoidal

 \bullet L'amplificateur est considèré comme idéal si : $\underline{z}_e = \infty, \underline{z}_s = 0$

2.2 Amplificateur non inverseur à AO en régime linéaire

Considèrons le montage suivant

2.3 Stabilisation du montage

$$\varepsilon=v_e-v_e'$$
est lié à v_s par : $\tau\frac{dv_s}{dt}+v_s=\mu\varepsilon$
$$i_e=i^+=i^-=0\ ,\ v_e=v_e'+\varepsilon=e-ri_e=e\ ,v_e'=R'i=\frac{R'}{R+R'}v_s\ \text{on pose}\ \beta=\frac{R'}{R+R'}$$
 l'équation devient

$$\frac{dv_s}{dt} + \frac{v_s}{\tau}(1 + \mu\beta) = \frac{\mu e}{\tau}$$

la solution de l'équation homogène (régime transitoire) $v_s = K \exp[-(1 + \mu \beta) \frac{t}{\tau}] \to 0, t \to \infty$ donc l'opérateur à AO est stable

Amplificateur idéal de tension

si on suppose que l'Ao est idéal $\Rightarrow \varepsilon = 0$ $v_e = v_e' = \beta v_s \Rightarrow G = \frac{v_s}{v_s} = \frac{1}{\beta} = \frac{R + R'}{R'}$

Opérateur d'amplification

Amplificateur à AO réel en régime sinusoidal

En régime sinusoidal l'Ao se comporte comme un filtre passe bas de fonction de transfert

$$\boxed{\underline{h} = \frac{\underline{v}_s}{\underline{\varepsilon}} = \frac{\mu}{1 + j\frac{\omega}{\omega_0}}} \text{ avec } \omega_0 = \frac{1}{\tau}$$

$$\omega_0$$
 représente la pulsation de coupure ou la bande passante de l'Ao
$$v_e' = \frac{R'}{R+R'}\underline{v}_s = \frac{\underline{v}_s}{G} \ , \ \underline{v}_e = \varepsilon + \underline{v}_e' = \underline{v}_s(\frac{1}{\underline{h}} + \frac{1}{G}) \underbrace{\mu G}$$

$$\frac{\underline{v}_s}{\underline{v}_e} = \frac{1}{\frac{1}{\underline{h}} + \frac{1}{G}} = \frac{1}{\frac{1}{\mu} + \frac{1}{G} + j\frac{\omega}{\mu\omega_0}} = \frac{\frac{\mu G}{(\mu + G)}}{1 + j\frac{\omega}{\mu\omega_0}\frac{\mu G}{(\mu + G)}}$$

$$\boxed{\frac{\underline{v}_s}{\underline{v}_e} = \frac{\mu'}{1 + j\frac{\omega}{\omega'_0}}}$$

avec
$$\mu' = \frac{\mu G}{\mu + G}$$
 et $\omega'_0 = \frac{\omega_0(\mu + G)}{G}$

$$\mu'.\omega_0' = \mu.\omega_0 = cte$$

Ce facteur est appelé facteur de mérite ou le produit gain x bande passante

 \bullet Résultat : Le produit gain x bande passante est le même pour un AO en boucle fermé ou en boucle ouverte .

3 Montages usuels à AO ideal

3.1 Suiveur de tension

AO ideal :
$$i^- = i^+ = 0$$
, $\varepsilon = 0 \Rightarrow v^+ = v^- = v_e$ or $v^- = v_s \Rightarrow v_e = v_s$
$$\boxed{v_e = v_s}$$

donc on peut modéliser le suiveur par un amplificateur ideal de tension de gain 1, d'impédance d'entrée infini et d'impédance de sortie nulle .

La puissance délivrée à la résistance de charge R_c est

$$P_s = \frac{v_s^2}{R_c} = \frac{e^2}{R_c} = P_{max}$$

Conclusion : En suiveur la puissance maximale disponible de la source de tension a été transmise intégralement à la résistance de charge . Le suiveur est un adaptateur d'impédance .

3.2 Amplificateur inverseur

$$v^{+} = v^{-} = 0 \text{ et } v^{-} = \frac{\frac{u_e}{R} + \frac{u_s}{R'}}{\frac{1}{R} + \frac{1}{R'}} = 0$$

$$G = \frac{u_s}{u_e} = -\frac{R'}{R}$$

supposons que R' > R donc on peut modéliser l'amplificateur inverseur par le montage amplificateur non ideal de tension de gain G et de résistance d'entrée $R = \frac{u_e}{i_c}$

cet opérateur d'amplification consomme de l'énergie en entrée ce qui constitue un défaut par rapport à l'amplificateur non inverseur .

Remarque : si R = R' on obtient $u_s = -u_e$ c'est un changeur de signe .

3.3 Sommateur de tension

$$v^{+} = v^{-} = 0$$
 et $v^{-} = \frac{\frac{v_s}{R} + \frac{v_{e1}}{R} + \frac{v_{e2}}{R}}{\frac{1}{R} + \frac{1}{R} + \frac{1}{R}} = 0$

$$v_s = -(v_{e1} + v_{e2})$$
 sommateur inverseur

3.4 Soustracteur de tension

AO ideal:
$$v^+ = v^-$$
 avec $v^+ = \frac{\frac{v_{e1}}{R}}{\frac{1}{R} + \frac{1}{R}}$ et $v^- = \frac{\frac{v_s}{R} + \frac{v_{e2}}{R}}{\frac{1}{R} + \frac{1}{R}}$

$$v_s = v_{e1} - v_{e2}$$

3.5 Intégrateur simple

à
$$t=0$$
 on ouvre l'interrepteur (k) $u_c(0)=0$
$$u_e=Ri_e, i_e=\frac{dq}{dt}=c\frac{du_c}{dt} \text{ et } v_s=-u_c$$

$$i_e=-c\frac{dv_s}{dt}=\frac{v_e}{R}$$

$$v_s = -\frac{1}{RC} \int v_e dt$$

• En régime sinusoidal $\underline{v_e} = V_m \exp(j\omega t)$

$$\underline{v}^{-} = \underline{v}^{+} = \frac{\frac{\underline{v}_{s}}{\underline{z}_{c}} + \frac{\underline{v}_{e}}{R}}{\frac{1}{\underline{z}_{c}} + \frac{1}{R}} = 0 \Rightarrow \underline{v}_{s} = -\frac{\underline{v}_{e}}{R} \underline{z}_{c} = -\frac{\underline{v}_{e}}{jRc\omega}$$

$$\operatorname{donc} \underline{v}_{s} = -\frac{1}{Rc} \int \underline{v}_{e} dt \Rightarrow v_{s}(t) = -\frac{1}{Rc} \int v_{e}(t) dt$$

• Remarque : En pratique , il se produit le phénomène de dérive en tension du aux courants de polarisation d'un AO réel, donc on réalise le montage pseudo-intégrateur

$$\underline{v}^{-} = \underline{v}^{+} = \frac{\frac{\underline{v}_{s}}{\underline{z}_{c}//R'} + \frac{\underline{v}_{e}}{R}}{\frac{1}{z_{c}//R} + \frac{1}{R}} = 0 \Rightarrow \frac{\underline{v}_{s}}{\underline{v}_{e}} = \frac{-1}{R(z_{c}//R')}$$

$$\underline{z_c}//R' = \frac{\frac{R'}{jc\omega}}{R' + \frac{1}{jc\omega}} = \frac{R'}{1 + jR'c\omega}$$

donc
$$\frac{\underline{v}_s}{\underline{v}_e} = \frac{-\frac{R'}{R}}{1 + jR'c\omega} = \frac{-\frac{R'}{R}}{1 + j\frac{\omega}{R'}}$$

donc
$$\frac{\underline{v}_s}{\underline{v}_e} = \frac{-\frac{R'}{R}}{1 + jR'c\omega} = \frac{-\frac{R'}{R}}{1 + j\frac{\omega}{\omega_0}}$$
• Si $\omega >> \omega_0 = \frac{1}{R'c} \Rightarrow \frac{\underline{v}_s}{\underline{v}_e} \approx \frac{-R'}{R} \frac{1}{j\frac{\omega}{\omega_0}}$

$$v_s = \frac{-1}{Rc} \int \underline{v}_e dt$$

3.6 dérivateur simple

$$i_{e} = c\frac{du_{e}}{dt} = -\frac{u_{e}}{R} \Rightarrow u_{s} = -Rc\frac{du_{e}}{dt}$$

$$\underline{v}^{-} = \underline{v}^{+} = 0 = \frac{\underline{\underline{v}}_{e} + \underline{\underline{v}}_{s}}{\underline{\underline{l}}_{c} + \underline{\underline{l}}_{R}} \Rightarrow \underline{v}_{s} = -\frac{R}{\underline{z}_{c}}\underline{v}_{e} = -jRc\omega\underline{v}_{e}$$

$$v_{s} = -Rc\frac{d\underline{v}_{e}}{\underline{v}_{e}}$$

En pratique on utilise le montage pseudo-dérivateur

$$\underline{\underline{v}_s = -Rc\frac{d\underline{v}_e}{dt}}$$