MATEMATIKA

KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Fontos tudnivalók

Formai előírások:

- 1. A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, és a tanári gyakorlatnak megfelelően jelölni a hibákat, hiányokat stb.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerül.
- 3. **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy az egyes **részpontszámokat** is írja rá a dolgozatra.
- 5. Az ábrán kívül ceruzával írt részeket a javító tanár nem értékelheti.

Tartalmi kérések:

- 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **eltérő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Nyilvánvalóan helyes gondolatmenet és végeredmény esetén maximális pontszám adható akkor is, ha a leírás az útmutatóban szereplőnél **kevésbé részletezett**.
- 4. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 5. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 6. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.
- 7. Egy feladatra adott többféle helyes megoldási próbálkozás közül **a vizsgázó által megjelölt változat értékelhető**. (Ha a vizsgázó nem jelölte ki az értékelendő változatot, a javító tanár a legutolsó megoldási próbálkozást értékelje!)
- 8. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A vizsgafeladatsor II./B részében kitűzött 3 feladat közül csak 2 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

I.

a-2	2 pont	Ha csak az egyik tényezővel egyszerűsít, 1 pontot kaphat.
Összesen:	2 pont	
2.		
2. A feltételből $32q^4 = 2$, ahonnan	1 pont	

3.		
1. állítás: Igaz.	1 pont	
2. állítás: Hamis.	1 pont	
Összesen	2 nont	

Összesen:

1 pont

3 pont

4.		
Ha Bea most x éves, akkor $2.5x = 45$,	2 pont	
ahonnan $x = 18$.	1 pont	Hibásan felírt egyenlet megoldása nem ér pontot.
Összesen:	3 pont	

5.		
Maximuma van,	1 pont	
szélsőérték helye: 1;	1 pont	Ha hibás vagy pontatlan
szélsőérték értéke: 4.	1 pont	válaszokban (pl. P(1;4)) jó gondolatok megje- lennek, 1 pont adható.
Összesen:	3 pont	

6.			
Bármelyik jól megadott intervallum. Pl.: $a \le x \le b$ vagy $[a; b]$ alakban.		2 pont	Ha helyes végpontú, de nem zárt intervallumot ad meg a vizsgázó, akkor I pontot kap.
	Összesen:	2 pont	

7.		
Minden valós szám, kivéve 2 és –2.	2 pont	$x \neq \pm 2$ válasz is elfogadható.
Összesen:	2 pont	
Hibás jelölésű, de mindkét helyes választ tükröző megoldásra 1 pont adható.		

8.		
$\frac{x}{4,8} = \frac{\sin 56^\circ}{\sin 41^\circ}.$	1 pont	
$x \approx 6.1$ cm.	2 pont	Hibás kerekítés esetén 1 pont adható.
Összesen:	3 pont	

9.		
x = -16.	2 pont	A pontszám nem bontható.
Összesen:	2 pont	

10.		
Módusz: 4.	1 pont	
Medián: 3.	1 pont	
Összesen:	2 pont	

11.		
$x = \frac{1}{4} (= 0.25)$.	2 pont	
Számegyenesen ábrázolás.	1 pont	
Összesen:	3 pont	

12.		
Összesen 16 db hattal osztható szám van a megadott tartományban, közülük 4 db osztható 8-cal.	2 pont	
A valószínűség: $\frac{4}{16}$ (= 25 %).	1 pont	
Összesen:	3 pont	

II/A

13. a)		
$7 + x < -2 \cdot (x - 2) \Leftrightarrow 3x < -3,$	1 pont	
ahonnan $x < -1$. $(A =]-\infty;-1[)$.	1 pont	
Összesen:	2 pont	

13. b)		
Az $x^2 + x - 6 = 0$ egyenlet gyökei: -3; 2.	2 pont	
Mivel a főegyüttható pozitív,	1 pont	A grafikon vázlata is jó
ezért $-3 \le x \le 2$. $(B = [-3, 2])$.		indoklás.
Összesen:	4 pont	

13. c)		
$A \cup B =]-\infty; 2].$	2 pont	Ha csak az intervallumok
$A \cap B = [-3; -1[.$	2 pont	nyíltságát vagy zártságát egy halmaz esetén
$B \setminus A = [-1;2].$	2 pont	egy naimaz eseten hibázza el, akkor 1 pontot, ha több halmaznál, akkor 2 pontot veszítsen.
Összesen:	6 pont	
A kérdezett halmazok bármilyen követhető fe (számegyenesen, szöveggel stb.) esetén járnak a megfe		,

András Béla Ede Csaba

A gráf helyes felrajzolása.

A gráf helyes felrajzolása.

A gráf helyes felrajzolása.

Osszesen: 4 pont kap, több hiba esetén nem jár pont.

Összesen: 4 pont

14. b)		
Ha mindenki mindenkivel egyszer játszik, akkor a		
mérkőzések száma $\binom{6}{2} = \frac{6 \cdot 5}{2} = 15$.	2 pont	
6 mérkőzést már lejátszottak, ezért 9 mérkőzés van	1 .	Ez a pont akkor is jár, ha
még hátra.	1 pont	hibás adatokkal, de elvileg helyesen számol.
Összesen:	3 pont	Rajzról leolvasott helyes
Osszesen:		értékekért is jár a 3 pont.

14. c)		
Ha Dani az első helyen végez, akkor a többiek 5!= 120 -féleképpen "követhetik".	2 pont	
Ugyanennyi lehetőség van akkor is, ha Dani második.	2 pont	
Így a kérdéses lehetőségek száma: 240.	1 pont	
Összesen:	5 pont	

írásbeli vizsga 0711 6/12 2007. május 8.

15. a)		
$A = \frac{E}{M}$	C	1 pont
A test magassága m . A négyzet átlójának fele: $\frac{5\sqrt{2}}{2}$ (cm).	1 pont	
$m = \sqrt{64 - 12.5} (\approx 7.2 \mathrm{cm}).$	1 pont	
A gúla alakú gyertya térfogata: $V = \frac{T_a \cdot m}{3} \approx \frac{5^2 \cdot 7,2}{3} \approx 60 \text{ cm}^3.$	1 pont	
Összesen:	4 pont	
Követhető jó megoldás ábra nélkül is teljes értékű.		

15. b)		
Az x térfogatú viasznak a 94%-a adja a 130 db gyertya térfogatát: $0.94 \cdot x = 130 \cdot V$.	2 pont	1,06·130V elvi hibás, nem adható meg a 2 pont.
$x = \frac{130}{0.94} \cdot 60 \approx 8298 (\text{cm}^3).$	1 pont	
8,3 liter viaszra van szükség.	1 pont	
Összesen:	4 pont	

15. c)		
Az oldallap magassága (Pitagorasz tételéből):	1 pont	
$m_o = \sqrt{8^2 - 2.5^2} \ (\approx 7.60 \text{ cm}).$	Γ -	
A palást területe: $P = 4 \cdot \frac{5 \cdot m_o}{2} = 10 m_o \ (\approx 76 \text{ cm}^2).$	1 pont	
A gúla felszíne: $A = 5^2 + P \approx 101 \text{ (cm}^2\text{)}.$	1 pont	
A teljes felhasznált papírmennyiség: $1,36.40.A =$	1 pont	
$1,36.40.101 \approx 5494 \text{ (cm}^2\text{)}.$	1 pont	
Összesen:	4 pont	

II/B

Mivel $4 \cdot 100 + 3 \cdot (-136) \neq -11$, ezért a <i>P</i> pont nincs az egyenesen.	1 pont	
Az e egyenes ábrázolása.	1 pont	
A <i>Q</i> pontra: $4x + 3.107 = -11$,	1 pont	
ahonnan a Q pont abszcisszája: $x = -83$.	1 pont	
Összesen:	4 pont	

16. b)		
Az AB szakasz felezőpontja F . $F(-2; -1)$.	2 pont	
A kör sugara: $r = \overrightarrow{AF} = \sqrt{(-2+5)^2 + (-1-3)^2} = 5$.	2 pont	
A kör egyenlete: $(x+2)^2 + (y+1)^2 = 25$.	2 pont	
Mivel $(1+2)^2 + (3+1)^2 = 25$, ezért az S pont rajta van a körön.	1 pont	
Összesen:	7 pont	

16. c) első megoldás		
A <i>C</i> pont koordinátái: $(x_c; y_c)$. <i>S</i> koordinátáira felírható: $1 = \frac{-5 + 1 + x_c}{3};$ $3 = \frac{3 + (-5) + y_c}{3}.$	3 pont	A képlet használatának felismerése l pont, egyik és másik koordinátára való alkalmazás 1-1 pont.
Ahonnan $x_c = 7$,	1 pont	
$y_c = 11$,	1 pont	
tehát C (7; 11).	1 pont	
Összesen:	6 pont	

16. c) második megoldás		
A háromszög súlypontja a súlyvonalon az oldalhoz közelebbi harmadolópont.	1 pont	
$\overrightarrow{FS} = \underline{\mathbf{s}} - \underline{\mathbf{f}} = (1; 3) - (-2; -1) = (3; 4).$	1 pont	
$\overrightarrow{SC} = 2\overrightarrow{FS} = 2 \cdot (3; 4) = (6; 8),$	1 pont	
amelyet s vektorhoz hozzáadva megkapjuk a <i>C</i> pont koordinátáit:	1 pont	
$\underline{\mathbf{c}} = \underline{\mathbf{s}} + \overrightarrow{SC} = (1; 3) + (6; 8) = (7; 11),$ tehát $C(7; 11)$.	2 pont	
Összesen:	6 pont	

írásbeli vizsga 0711 9 / 12 2007. május 8.

17. b)		
A középértékekkel számított átlag:		
$3 \cdot 1 + 11 \cdot 3 + 17 \cdot 5 + 15 \cdot 7 + 4 \cdot 9 $ 262	2 pont	
50 - 50		
= 5,24 . A tanulók tehát átlagosan 5,24 órát (≈ 5 óra		
14 perc) töltenek a biológia házi feladatok	1 pont	
megoldásával hetente.		
Összesen:	3 pont	

17. c)		
50 tanuló közül $\binom{50}{2} = \frac{50 \cdot 49}{2} = 1225$ -féleképpen	2 pont	
lehet két tanulót kiválasztani.		
A két évfolyamból 30, illetve 20-féleképpen lehet	_	
egy-egy tanulót kiválasztani, így a kedvező esetek	2 pont	
száma: $30 \cdot 20 = 600$.		
A kérdéses valószínűség: $p = \frac{600}{1225} = \frac{24}{49} (\approx 0,49)$.	2 pont	
Összesen:	6 pont	

17. d)		
Hetente legalább 4 órát 36 tanuló tölt a biológia házi	1 pont	
feladatok megoldásával.	1 pont	
Közülük két tanulót $\binom{36}{2} = \frac{36 \cdot 35}{2} = 630$ -féleképpen	2 pont	
lehet kiválasztani.		
Így a keresett valószínűség: $p = \frac{630}{1225} = \frac{18}{35} (\approx 0.51)$.	2 pont	
Összesen:	5 pont	

18. a)	·	
A háromjegyű szám számjegyei: $a - d$; a ; $a + d$,		
ahol a a számtani sorozat középső tagja, d a	1 pont	
differencia.		
Felírható: $100(a-d)+10a+a+d=53,5\cdot 3a$, (1)	2 pont	
és $[100(a-d)+10a+a+d]$	2 pont	
-[100(a+d)+10a+a-d] = 594. (2)		
A (2) egyenletből: $-198d = 594$,	1 pont	
ahonnan $d = -3$.	1 pont	
Az (1) egyenletből: $111a - 99d = 3.53,5a$,	1 pont	
ahonnan $a = -2d$.	1 pont	
$a = -2 \cdot (-3) = 6$ a középső számjegy,	1 pont	
a háromjegyű szám: 963.		
Összesen: 10 pc	10 pont	Az ellenőrzést külön nem
Osszesen.		értékeljük.
18. a) (más jelöléssel)		
A háromiagyű szám számiagyai a falírás		

18. a) (más jelöléssel)		
A háromjegyű szám számjegyei a felírás		
sorrendjében: a ; $a + d$; $a + 2d$, ahol a a számtani	1 pont	
sorozat első tagja, d a differencia.		
$100a + 10(a+d) + a + 2d = 53,5 \cdot 3 \cdot (a+d), \qquad (1)$	2 pont	
[100a+10(a+d)+a+2d]-	2 4	
-[100(a+2d)+10(a+d)+a] = 594 (2)	2 pont	
A (2) egyenletből: $-198d = 594$,	1 pont	
ahonnan $d = -3$.	1 pont	
Az (1) egyenletből: $111a + 12d = 3.53,5(a + d)$,	1 pont	
ahonnan $a = -3d$.	1 pont	
$a = -3 \cdot (-3) = 9$ az első számjegy.	1 mont	
A háromjegyű szám: 963.	1 pont	
Összesen:	10 pont	Az ellenőrzést külön nem
Osszesen:	To pont	értékeljük.

Ha a vizsgázó felsorolja az összes számításba jövő háromjegyű számot (5 pont), kiválasztja a helyes számot (2 pont), megmutatja, hogy más nem lehet (3 pont), teljes pontszám jár.

18 b)			
A megfelelő számok: 234; 345; 456; 567; 678; 789; 246; 357; 468; 579; 258; 369.		4 pont	Minden 3 db helyesen megadott szám 1 pontot ér. Ha a felsorolásban nem megfelelő szám is megjelenik, akkor legfeljebb 3 pontot kaphat.
	Összesen:	4 pont	

Azok a vizsgázók, akik nem csak olyan háromjegyű számokat vettek számba, amelyeknek a számjegyei a feltételeknek megfelelő számtani sorozat szomszédos tagjai, hanem a sorozatokból tetszőleges, nem csak szomszédos tagokat szerepeltettek (pl. 368, 457, 569 stb.), és azokat számolták össze, 56 esetet kellett, hogy felsoroljanak.

Ekkor a pontozás: a gondolat megjelenése 1 pont, ha az esetek legalább fele szerepel, 1 pont, ha az összes esetet felsorolja, 2 pont (összesen 4 pont). Ha a felsorolásban nem megfelelő szám is megjelenik, akkor legfeljebb 3 pont adható.

18. c)		
Közülük 9-cel osztható: 234; 369; 468; 567.	1 pont	
A jó esetek száma 4; az összes eset 12.	1 pont	
A keresett valószínűség: $p = \frac{4}{12} = \frac{1}{3}$.	1 pont	
Összesen:	3 pont	

Az 56 szám közül 7 darab osztható 9-cel (234; 279; 369; 378; 459; 468; 567), 1 pont.

A keresett valószínűség: $\frac{7}{56} = \frac{1}{8}$, 2 pont (összesen 3 pont).