

Procesamiento de señales

Guía de asignatura

Última actualización: febrero de 2022

1. Información general

Nombre de la asignatura	Procesamiento de señales y extracción de características
Código	11310051
Tipo de asignatura	Electiva
Número de créditos	3
Tipo de crédito	2A+1B
Horas de trabajo semanal con	64
acompañamiento directo del	
profesor	
Horas de trabajo independiente	64
del estudiante	
Prerrequisitos	Variable Compleja y Análisis estadístico de datos
Correquisitos	Ninguno
Horario	Miércoles y viernes 11:00 – 13:00
Líder de área	Edgar Andrade Lotero
	edgar.andrade@urosario.edu.co

2. Información del profesor

Nombre del profesor	Claudia Caro Ruiz
Perfil profesional	Ingeniera eléctrica y electrónica, Magister en ingeniería electrónica y de computadores, PhD en ingeniería eléctrica.
Correo electrónico institucional	claudiac.caro@urosario.edu.co
Lugar y horario de atención	Jueves 4-6 pm, Of. 403 Ed. Cabal
Página web u otros medios (opcional)	https://www.researchgate.net/profile/Claudia-Caro-Ruiz https://scholar.google.com/citations?user=5mACrtYAAAAJ

3. Resumen y propósitos del curso

Este curso sirve como una introducción al procesamiento de señales. Cubre todas las bases para el análisis de señales utilizando representaciones de Fourier, así como otras transformaciones. El curso comienza con la introducción de la serie de Fourier y sus aplicaciones, pasando por el análisis de señales usando la transformada de Fourier, hasta el análisis de señales no estacionarias usando la transformada rápida de Fourier y la transformada wavelet. Adicionalmente se discutirá una introducción a diferentes temas utilizados en el procesamiento de señales será discutido. Al final del curso, se mostrará a los estudiantes una seria de aplicaciones y ejemplos de casos de estudio.

4. Conceptos fundamentales

- 1. Introducción al procesamiento de señales, señales en tiempo continuo y discreto.
- 2. Transformada y serie de Fourier, definiciones y propiedades.
- 3. Transformada discreta de Fourier, definición y propiedades, la FFT.
- 4. Diseño de filtros, filtros IIR y FIR, filtrado adaptativo.
- 5. Análisis en tiempo-frecuencia: transformada rápida de Fourier y transformada Wavelet
- 6. Aplicaciones: habla, señales biomédicas e imágenes.
- Otros algoritmos para el análisis de señales: Análisis de componentes independientes (ICA), análisis de correlación canónica (CCA), descomposición de modo empírico (EMD)

8.

5. Resultados de aprendizaje esperados (RAE)

Al final del curso se espera que los estudiantes sean capaces de:

- 1. El estudiante conoce la diferencia entre las diferentes representaciones de Fourier de una señal.
- El estudiante conoce la diferencia entre una señal en tiempo continuo y en tiempo discreto, así como las consecuencias de la discretización y la cuantificación.
- 3. El estudiante puede diseñar un filtro digital de modo a reducir el ruido en señales digitales.
- 4. El estudiante puede usar diferentes técnicas de modo a desarrollar algoritmos para el

procesamiento de señales.

5. El estudiante es capaz de decidir qué algoritmo puede ser utilizado, basado en la naturaleza del problema en cuestión.

6. Modalidad del curso

Presencial: Los estudiantes asistirán presencialmente al aula de clase.

7. Estrategias de aprendizaje

Trabajo en Clase: Ejercicios

Clases Magistrales

Proyecto

8. Actividades de evaluación

Tema	Actividad de evaluación	Porcentaje
Parte I: Procesamiento de Señales	Proyecto 1	40%
Parte II: Filtros	Proyecto 2	10%
Señales y sistemas, FFT, Wavelet, Filtros	Talleres	40%
Convolución, Transformada de Laplace, Transformada Z, teorema del muestreo	Quizes	10%

9. Programación de actividades

Fecha	Tema	Descripción de la actividad	Trabajo independiente del estudiante	Recursos que apoyan la actividad
Sesión 1 01/02/23	Introducción al procesamiento de señales, señales en tiempo continuo y discreto	Introducción al procesamiento de señales. Propiedades de los sistemas LIT. Transformación de señales. La función delta Dirac. Propiedades de la función Delta Dirac. Aplicaciones de la función delta Dirac		[1] 1.1-1.4
Sesión 2 03/02/23	Introducción al procesamiento de señales, señales en tiempo continuo y discreto	Respuesta en el dominio del tiempo de sistemas LIT continuos. Convolución	Taller 1 Señales (10%)	[1] 1.5, 2.2, 2.3
Sesión 3 08/02/23	Transformada y serie de Fourier, definición y propiedades.	Respuesta sinusoidal de los sistemas continuos LIT		[1] 3.2-3.5
Sesión 4 10/02/23	Transformada y serie de Fourier, definición y propiedades.	Funciones de entrada periódicas - serie de Fourier.	Quiz 1 Convolución (2.5%)	[1] 3.2-3.5
Sesión 5 15/02/23	Transformada y serie de Fourier, definición y propiedades.	Funciones de entrada aperiódicas - la transformada de Fourier		[1] 4.1-4.6
Sesión 6 17/02/23	Transformada y serie de Fourier, definición y propiedades.	Respuesta en frecuencia de sistemas LIT partiendo de la transformada de Fourier. Relación entre la respuesta en frecuencia y la respuesta en el tiempo del sistema. La propiedad de convolución		[1] 6.1-6.3, 6.5

Sesión 7 22/02/23	Transformada y serie de Fourier, definición y propiedades.	La transformada de Laplace de un lado La función de transferencia Ceros y polos de la función de transferencia		[1] 9.1-9.9
Sesión 8 24/02/23	Transformada y serie de Fourier, definición y propiedades.	Respuesta en frecuencia y gráfica de polos y ceros	Quiz 2 Transformada de Laplace (2.5%)	[1] 6.3-6.5
Sesión 9 01/03/23	Proyecto I – Entrega parcial			
Sesión 10 03/03/23	Transformada y serie de Fourier, definición y propiedades.	Polos y ceros de las diferentes clases de filtros. El decibel. Diseño de filtros pasa bajas		[1] 6.3-6.5
Sesión 11 08/03/23	Transformada y serie de Fourier, definición y propiedades.	Diseño de filtro de Butterworth. Filtro de Chebyshev		[1] 6.3-6.5
Sesión 12 10/03/23	Transformada discreta de Fourier, definición y propiedades, la FFT	El teorema de muestreo, la transformada discreta de Fourier		[1] 7.1-7-3 [2] 4.1-4.5, 8,9
Sesión 13 15/03/23	Transformada discreta de Fourier, definición y propiedades, la FFT.	Transformada rápida de Fourier	Quiz 3 Teorema del muestreo (2.5%)	[2] 8, 9
Sesión 14 17/03/23	Transformada discreta de Fourier, definición y propiedades, la FFT.	Introducción al procesamiento de señales en tiempo discreto. Sistemas en tiempo discreto	Taller 2 FFT (10%)	[2] 2.1-2.5
Sesión 15 22/03/23	Transformada discreta de Fourier, definición y propiedades, la FFT.	La suma de convolución en tiempo discreto. La transformada z		[2] 3.1 – 3.6
Sesión 16 24/03/23	Transformada discreta de Fourier, definición y propiedades, la FFT.	La función de transferencia en tiempo discreto. La función de transferencia y la ecuación de diferencia. La respuesta en frecuencia de sistemas en tiempo discreto		[2] 3.1 – 3.2

Sesión 17 29/03/23	Transformada discreta de Fourier, definición y propiedades, la FFT.	Introducción a los criterios de estabilidad en el plano Z. La transformada inversa z Respuesta en frecuencia y polos y ceros.	Quiz 4 transformada Z (2.5%)	[2] 3.3-3.4
Sesión 18 31/03/23	Otros algoritmos para el análisis de señales: Análisis de componentes independientes (ICA), análisis de correlación canónica (CCA), descomposición de modo empírico (EMD)	Funciones de fuga (manchado) espectral. Ventaneo. Estimación de la densidad espectral de potencia no paramétrica Estimación paramétrica de PSD (algoritmo Levinson-Durbin) Función de transferencia usando las PSD		[5], [6]
Sesión 19 12/04/23	Diseño de filtros, filtros IIR y FIR, filtrado adaptativo.	Filtros digitales (I): Tipos de filtros (representación en frecuencia), Filtros LTI, Retraso, Filtros FIR Filtros IIR		[2] 7.1-7.3
Sesión 20 14/04/23	Diseño de filtros, filtros IIR y FIR, filtrado adaptativo.	Filtros digitales (II) Diseño de filtros IIR Buttherworth, Chebyshev, Elliptico Filtro Wiener (óptimo)		[2] 7.3-7.6
Sesión 21 19/04/23	Diseño de filtros, filtros IIR y FIR, filtrado adaptativo.	La función de correlación. Relación entrada/salida de sistemas lineales con entradas aleatorias	Taller 3 Filtros (10%)	[3] 1
Sesión 22 21/04/23	Señales no- estacionarias	Señales no-estacionarias Segmentación automática de señales		[3] 1
Sesión 23 26/04/23	Diseño de filtros, filtros IIR y FIR, filtrado adaptativo.	Filtros en cuadratura Reconstrucción perfecta		[3] 1
Sesión 24 28/04/23	Proyecto I – Entrega final			
Sesión 25 03/05/23	Introducción, sistema de visión humano y	Interpolación y decimación Señales aleatorias		[2] 2.1-2.5

	formación de la imagen.			
Sesión 26 05/05/23	Filtrado de la imagen, convolución y detección de bordes.	Transformada continua wavelet Transformada discreta wavelet	Taller 4 Transformada Wavelet (10%)	[3], [4]
Sesión 27 10/05/23	Aplicaciones: habla, señales biomédicas e imágenes	Aplicaciones (I) Sistema auditivo, condensación, Habla, Cesptrum, PCA, LPC coef. auto regresión		
Sesión 28 12/05/23	Aplicaciones: habla, señales biomédicas e imágenes	Aplicaciones (II): Señales biomédicas, análisis de patrones climáticos, sismología, oceanografía		Otras fuentes de internet
Sesión 29 17/05/23	Aplicaciones: habla, señales biomédicas e imágenes	Aplicaciones (III) Procesamiento de imágenes, sistema visual, generación de imágenes		
Sesión 30 19/05/23	Aplicaciones: habla, señales biomédicas e imágenes	Procesamiento de señales en 2 dimensiones		
Sesión 31 24/05/23	Proyecto 2 – Entrega parcial			
Sesión 32 26/05/23	Aplicaciones: habla, señales biomédicas e imágenes	Filtrado Detección de bordes Textura Formatos – compresión		Otras fuentes de internet
07/06/23	Proyecto 2 – Entrega final			

1. Factores de éxito para este curso

A continuación, se sugieren una serie de acciones que pueden contribuir, de manera significativa, con el logro de metas y consecuentemente propiciar una experiencia exitosa en este curso:

- 1. Planificar y organizar el tiempo de trabajo individual que le dedicará al curso
- 2. Organizar el sitio y los materiales de estudios

- 3. Tener un grupo de estudio, procurar el apoyo de compañeros
- 4. Cultivar la disciplina y la constancia, trabajar semanalmente, no permitir que se acumulen temas ni trabajos
- 5. Realizar constantemente una autoevaluación, determinar si las acciones realizadas son productivas o si por el contrario se debe cambiar de estrategias
- 6. Asistir a las horas de consulta del profesor, participar en clase, no quedarse nunca con la duda
- 7. Utilizar los espacios destinados para consultas y resolución de dudas, tales como Sala Gauss y Sala Knuth
- 8. Propiciar espacios para el descanso y la higiene mental, procurar tener buenos hábitos de sueño
- 9. Tener presente en todo momento valores como la honestidad y la sinceridad, al final no se trata solo de aprobar un examen, se trata de aprender y adquirir conocimientos. El fraude es un autoengaño.

2. Bibliografía y recursos

- [1] Oppenheim, Alan, and Alan Willsky. *Signals and Systems*. 2nd ed. Prentice Hall, 1996. ISBN: 9780138147570.
- [2] Oppenheim, Alan, and Schaffer, Roland W. *Discrete time Signal Processing*. 3rd ed. Prentice Hall, ISBN: 978-0131988422
- [3] Strang, G & Nguyen, T 1997, Wavelets and filter banks, Wellesley-Cambridge Press, viewed 1 February 2023, https://search-ebscohost-com.ez.urosario.edu.co/login.aspx?direct=true&AuthType=ip&db=cat05358a&AN=crai.316958&lang=es&site=eds-live&scope=site>.
- [4] Wickerhauser, Mladen Victor. Adapted Wavelet Analysis: From Theory to Software. First ed. CRC Press, ISBN: 978-1568810416
- [5] Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern Classification. New York, NY: John Wiley & Sons, 2000. ISBN: 9780471056690.
- [6] Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction: with 200 full-color illustrations. New York, NY: Springer, c2001. ISBN: 0387952845

3. Bibliografía y recursos complementarios

Vitor Hugo Carvalho 2012, Image Processing: Methods, Applications and Challenges, Computer Science, Technology and Applications, Nova, New York, viewed 1 February 2023, https://search-ebscohost-

com.ez.urosario.edu.co/login.aspx?direct=true&AuthType=ip&db=e000xww&AN=541398&lang=es&site=eds-live&scope=site>.

4. Acuerdos para el desarrollo del curso

No está permitido comer o usar dispositivos móviles dentro de clase. No se realizará aproximación de notas al final del semestre. Las notas solo serán cambiadas con base en reclamos OPORTUNOS dentro de los límites de tiempo determinados por el Reglamento Académico. Si por motivos de fuerza mayor el estudiante falta a algún parcial, entrega de proyecto o quiz, deberá seguir el procedimiento regular determinado por el Reglamento Académico para presentar supletorios. No habrá acuerdos informales al respecto. No se eximirá a ningún estudiante de ningún examen.

Si el estudiante se presenta 20 minutos luego de iniciar alguna evaluación parcial o final, no podrá presentarla y deberá solicitar supletorio siguiendo la reglamentación institucional.

ASISTENCIA AL CURSO

Con el propósito de afianzar el modelo pedagógico contemplado en el Proyecto Educativo Institucional y promover un rendimiento académico óptimo, es necesario asegurar un espacio de interacción entre estudiantes y profesores que facilite la reflexión y el debate académico en tormo al conocimiento. En este sentido, se valora la participación en las actividades académicas y esta se considera como un deber y un derecho del estudiante. (Artículo 48 Reglamento Académico).

Si el estudiante se presenta 20 minutos luego de iniciar alguna evaluación parcial o final, no podrá presentarla y deberá solicitar supletorio siguiendo la reglamentación institucional. Algunas actividades de evaluación de la clase podrán hacerse, además, en la monitoria.

PROCESOS DISCIPLINARIOS-FRAUDE EN EVALUACIONES

Teniendo en cuenta el reglamento formativo-preventivo y disciplinario de la Universidad del Rosario, y la certeza de que las acciones fraudulentas van en contra de los procesos de enseñanza y aprendizaje, cualquier acto corrupto vinculado a esta asignatura será notificado a la secretaría académica correspondiente de manera que se inicie el debido proceso disciplinario. Se recomienda a los estudiantes leer el reglamento para conocer las razones, procedimientos y consecuencias que este tipo de acciones pueden ocasionar, así como sus derechos y deberes asociados a este tipo de procedimientos.

5. Respeto y no discriminación

A continuación, encontrará unas orientaciones institucionales básicas que sugerimos mantener en su guía de asignatura. Puede ampliar esta información si lo considera pertinente:

Si tiene alguna discapacidad, sea este visible o no, y requiere algún tipo de apoyo para estar en igualdad de condiciones con los(as) demás estudiantes, por favor informar a su profesor(a) para que puedan realizarse ajustes razonables al curso a la mayor brevedad posible. De igual forma, si no cuenta con los recursos tecnológicos requeridos para el desarrollo del curso, por favor informe de manera oportuna a la Secretaría Académica de su programa o a la Dirección de Estudiantes, de manera que se pueda atender a tiempo su requerimiento.

Recuerde que es deber de todas las personas respetar los derechos de quienes hacen parte de la comunidad Rosarista. Cualquier situación de acoso, acoso sexual, discriminación o matoneo, sea presencial o virtual, es inaceptable. Quien se sienta en alguna de estas situaciones puede denunciar su ocurrencia contactando al equipo de la Coordinación de Psicología y Calidad de Vida de la Decanatura del Medio Universitario (Teléfono o WhatsApp 322 2485756).