DATA MINING

REGRESI LINIER SEDERHANA

Pendahuluan

- Regresi merupakan alat ukur yang digunakan untuk mengetahui ada tidaknya korelasi antar variabel.
- Analisis regresi lebih akurat dalam analisis korelasi karena tingkat perubahan suatu variabel terhadap variabel lainnya dapat ditentukan.
- Jadi pada regresi, peramalan atau perkiraan nilai variabel terikat pada nilai variabel bebas akan lebih akurat.

Pendahuluan

- Regresi linier adalah metode statistika yang digunakan untuk membentuk model hubungan antara variabel terikat (dependen; Y) dengan satu atau lebih variabel bebas (independent; X).
- Apabila banyaknya variabel bebas hanya ada satu, disebut sebagai regresi linier sederhana, sedangkan apabila terdapat lebih dari I variabel bebas, disebut sebagai regresi linier berganda.

Fungsi Regresi Linier

- Menghitung nilai estimasi rata-rata dan nilai variabel terikat berdasarkan pada nilai variabel bebas.
- Menguji hipotesis karakteristik dependensi.
- Meramalkan nilai rata-rata variabel bebas dengan didasarkan pada nilai variabel bebas diluar jangkauan sampel.

Analisis Data

- I. Persamaan regresi (model)
- 2. Nilai Prediksi
- 3. Koefisien determinasi
- 4. Kesalahan baku estimasi
- 5. Kesalahan baku koefisien regresinya
- 6. Nilai F hitung
- 7. Nilai T hitung
- 8. Kesimpulan

Kriteria Penerimaan Hipotesis

Hipotesis Satu Arah (One Tailed)

- H_o: Tidak terdapat pengaruh positif / negatif variabel X terhadap variabel Y.
- H_a: Terdapat pengaruh positif / negatif variabel X terhadap variabel Y.

Hipotesis Dua Arah (Two Tailed)

- H_o: Tidak terdapat pengaruh variabel X terhadap variabel Y.
- H_a: Terdapat pengaruh variabel X terhadap variabel Y.
- H_0 diterima jika $b \le 0$, t hitung $\le t$ tabel
- H_a diterima jika b > 0, t hitung > t tabel

Model Regresi Linier Sederhana

Persamaan Regresi Linier dari Y terhadap X

$$Y = a + bX$$

Keterangan:

Y = variabel terikat

X = variabel bebas

a = intercept / konstanta

b = koefisien regresi / slope

Perhitungan Nilai Koefisien a dan b

Pendekatan Matriks:

$$\begin{pmatrix} n & \Sigma X \\ \Sigma X & \Sigma X^2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \Sigma Y \\ \Sigma XY \end{pmatrix} & \det A = (n)(\Sigma X^2) - (\Sigma X)(\Sigma X) \\ \det A_1 = (\Sigma Y)(\Sigma X^2) - (\Sigma X)(\Sigma XY) \end{pmatrix}$$

$$a = \frac{\det A_1}{\det A} \quad b = \frac{\det A_2}{\det A} \qquad \det A_2 = (n)(\Sigma XY) - (\Sigma Y)(\Sigma X)$$

$$A = \begin{pmatrix} n & \Sigma X \\ \Sigma X & \Sigma X^2 \end{pmatrix} A_1 = \begin{pmatrix} \Sigma Y & \Sigma X \\ \Sigma XY & \Sigma X^2 \end{pmatrix} A_2 = \begin{pmatrix} \Sigma n & \Sigma Y \\ \Sigma X & \Sigma XY \end{pmatrix}$$

Sehingga diperoleh persamaan:

$$a = \frac{(\Sigma Y)(\Sigma X^{2}) - (\Sigma X)(\Sigma XY)}{(n)(\Sigma X^{2}) - (\Sigma X)^{2}} \qquad \text{at au} \\ a = \overline{Y} - b\overline{X}, \quad a = \frac{\sum Y - b(\sum X)}{n}$$

$$b = \frac{(n)(\Sigma XY) - (\Sigma X)(\Sigma Y)}{(n)(\Sigma X^{2}) - (\Sigma X)^{2}}$$

Koefisien Determinasi

- Koefisien determinasi adalah besarnya nilai pengaruh suatu variabel bebas terhadap variabel terikat. Sisanya disebabkan oleh faktor lain yang tidak dimasukkan dalam model.
- Nilai koefisien determinasi (R²) dapat dihitung dengan:

$$R^{2} = 1 - \frac{\sum (Y - Y_{pred})^{2}}{\sum (Y - Y_{rerata})^{2}}$$

Kesalahan Baku Estimasi

- Kesalahan Baku Estimasi (Standard Error)
 Digunakan untuk mengukur tingkat kesalahan dari model regresi yang dibentuk.
- Persamaan kesalahan baku estimasi (Se):

$$Se = \sqrt{\frac{\sum (Y - Y_{pred})^2}{n - k}}$$

- Dimana:
 - n = jumlah sampel
 - k = jumlah variabel bebas dan variabel terikat

Standard Error Koefisien Regresi

- Standard Error Koefisien Regresi (Sb)

 Digunakan untuk mengukur besarnya tingkat kesalahan dari koefisien regresi.
- Nilai Sb dapat dihitung menggunakan persamaan:

$$Sb = \frac{Se}{\sqrt{\sum X^2 - \frac{(\sum X)^2}{n}}}$$

Uji F (Fisher Distribution)

- Uji F digunakan untuk uji ketepatan model, apakah nilai prediksi mampu menggambarkan kondisi sesungguhnya:
 - Ho: Diterima jika $F_{hitung} \leq F_{\underline{tabel}}$
 - Ha: Diterima jika $F_{hitung} > F_{\underline{tabel}}$
- Nilai F_{hitung} dapat dicari dengan persamaan:

$$F = \frac{R^2 / (k-1)}{(1-R^2)/(n-k)}$$

Uji T (T Distribution)

- Uji t digunakan untuk mengatahui pengaruh variabel bebas terhadap variabel terikat.
 - H_o : Diterima jika $t_{hitung} \le \underline{t_{tabel}}$
 - H_a : Diterima jika $t_{hitung} > \underline{t_{tabel}}$
- Nilai t hitung bisa dicari dengan persamaan:

$$T_{hitung} = \frac{bj}{Sbj}$$

• Dimana bj = koefisien regresi j, dan Sbj = standard error koefisien regresi j

Contoh Studi Kasus

• Seorang manajer pemasaran akan meneliti apakah terdapat pengaruh biaya promosi terhadap penjualan pada perusahaan-perusahaan di wilayah WaterGold, untuk kepentingan penelitian tersebut diambil data sampel dari 8 perusahaan sejenis yang telah melakukan promosi. Tingkat/taraf signifikansi pengujian ditentukan sebesar $\alpha = 5\%$.

Pemecahan Masalah

I. Judul Penelitian

 Pengaruh biaya promosi terhadap penjualan perusahaan.

2. Pertanyaan Penelitian

 Apakah terdapat pengaruh positif biaya promosi terhadap penjualan di perusahaan?

3. Hipotesis

 Terdapat pengaruh positif biaya promosi terhadap penjualan perusahaan.

Kriteria Penerimaan Hipotesis

- H_o: Tidak terdapat pengaruh positif biaya promosi terhadap penjualan di perusahaan.
- H_a: Terdapat pengaruh positif biaya promosi terhadap penjualan di perusahaan.

Data Sampel (Data Pelatihan)

Data sampel perusahaan

Nilai Promosi (X)	Nilai Penjualan (Y)
20	64
16	61
34	84
23	70
27	88
32	92
18	72
22	77

Perhitungan

No	Υ	X	XY	X^2	Y^2
I	64	20	1280	400	4096
2	61	16	976	256	3721
3	84	34	2856	1156	7056
4	70	23	1610	529	4900
5	88	27	2376	729	7744
6	92	32	2944	1024	8464
7	72	18	1296	324	5184
8	77	22	1694	484	5929
Jumlah	608	192	15032	4902	47094
Rerata	76	24			

Persamaan / Model Regresi

Nilai koefisien regresi (b)

$$b = \frac{\left[n\sum XY\right] - \left[\left(\sum X\right)\left(\sum Y\right)\right]}{\left[n\sum X^2 - \left(\sum X\right)^2\right]}$$

$$b = 1,497$$

Nilai konstanta (a)

$$a = \overline{Y} - b\overline{X}$$

 $a = 76 - (1,497 \times 24) = 40,1$

Model / Persamaan Regresi:

$$Y = 40, I + I,497 X$$

Perhitungan Lanjutan

No	Y	X	XY	X^2	Y^2	Y_{pred}	(Y-Ypred) ²	(Y-Yrerata) ²
I	64	20	1280	400	4096	70.014	36.163	144
2	61	16	976	256	3721	64.027	9.164	225
3	84	34	2856	1156	7056	90.966	48.525	64
4	70	23	1610	529	4900	74.503	20.281	36
5	88	27	2376	729	7744	80.490	56.403	144
6	92	32	2944	1024	8464	87.973	16.218	256
7	72	18	1296	324	5184	67.020	24.796	16
8	77	22	1694	484	5929	73.007	15.946	1
Jumlah	608	192	15032	4902	47094	608	227.497	886
Rerata	76	24						

Koefisien Determinasi

• Nilai koefisien determinasi (R²):

$$R^{2} = 1 - \frac{\sum (Y - Y_{pred})^{2}}{\sum (Y - Y_{rerata})^{2}}$$

Diperoleh nilai:

$$R^2 = 1 - \frac{(227,497)}{(886)} = 0,743$$

 Nilai determinasi (R²) sebesar 0,743, artinya pengaruh biaya promosi terhadap penjualan adalah sebesar 74,3%. Sisanya 25,7% disebabkan oleh faktor lain yang tidak dimasukkan dalam model.

Kesalahan Baku Estimasi

Persamaan kesalahan baku estimasi (Se):

$$Se = \sqrt{\frac{\sum (Y - Y_{pred})^2}{n - k}}$$

• Diperoleh nilai Se:

$$Se = \sqrt{\frac{(227,467)}{8-2}} = 6,1576$$

 Se = 6,1576 berarti bahwa batasan seberapa jauh melesetnya perkiraan dalam meramal data memiliki selisih taksir standar sebesar 6,1576

Standard Error Koefisien Regresi

• Nilai Sb dihitung dengan persamaan:

$$Sb = \frac{Se}{\sqrt{\sum X^2 - \frac{(\sum X)^2}{n}}}$$

Diperoleh nilai Sb:

$$Sb_1 = \frac{6,1576}{\sqrt{(4902) - \frac{(192)^2}{8}}} = 0,359$$

Uji F (Fisher Distribution)

• Nilai F_{hitung} dicari dengan persamaan:

$$F_{hitung} = \frac{R^2/(k-1)}{(1-R^2)/(n-k)}$$

Diperoleh nilai F hitung:

$$F = \frac{0,743/(2-1)}{1-0,743/(8-2)} = 17,367$$

Karena F hitung (17,367) > dari F tabel
 (5,99) maka persamaan regresi dinyatakan
 Baik (good of fit)

Uji T (T Distribution)

• Nilai t hitung dicari dengan persamaan:

$$T_{hitung} = \frac{bj}{Sbj}$$

Diperoleh nilai t hitung:

$$t_{hitung} = \frac{1,497}{0,359} = 4,167$$

• Karena t $_{\text{hitung}}$ (4,167) > dari t tabel (1,943) maka H_{a} diterima ada pengaruh positif biaya promosi terhadap penjualan.

Kesimpulan dan Implikasi

KESIMPULAN

Terdapat pengaruh positif biaya promosi terhadap nilai penjualan.

IMPLIKASI

Sebaiknya perusahaan terus meningkatkan promosi agar penjualan meningkat.

Cukup mudahkan?

Latihan

 Carilah model / persamaan regresi linier sederhana dari data berikut. Tentukan apakah diameter pohon berpengaruh positif terhadap tinggi pohon?

No	Diameter (X)	Tinggi Pohon (Y)
I	8	35
2	9	49
3	7	27
4	6	33
5	13	60
6	7	21
7	11	45
8	12	51