CS 171 - Cryptography

Sanjam Garg

Lecture 23

(t,n)-Threshold Secret Sharing

- ightharpoonup A (t,n) threshold secret sharing scheme allows one to split a secret s into n pieces so that one will need at least t shares to reconstruct s.
- ▶ A dealer takes s as input and uses a sharing algorithm to split the secret s into parts $s_1 ldots s_n$ to be given parties $P_1, ldots P_n$.

- ightharpoonup Correctness: Any t parties can reconstruct s.
- $lackbox{Security:}$ No collusion of < t parties can reconstruct s.

(t, n)-Threshold Secret Sharing

A (t,n)-secret sharing scheme (Share, Reconstruct) is defined as follows.

- ▶ Share(s): On input a secret s it outputs shares $s_1, \ldots s_n$.
- ▶ Reconstruct($\{s_i\}_{i \in T}$): Outputs s or \bot .
- ▶ Correctness: For any T such that $|T| \ge t$ and secret s we have that Reconstruct($\{s_i\}_{i \in T}$) = s.
- ▶ Security: For any T such that |T| < t, secrets s, s' and adversary \mathcal{A} we have that p = p' where

$$p = Pr[\mathcal{A}(\{s_i\}_{i \in T}) \mid (s_1, \dots s_n) \leftarrow \mathsf{Share}(s)],$$
$$p' = Pr[\mathcal{A}(\{s_i'\}_{i \in T}) \mid (s_1', \dots s_n') \leftarrow \mathsf{Share}(s')].$$

(2,2)— Threshold Secret Sharing

- Let $s \in \{0,1\}^m$. How do we (2,2)-secret share s?
- ▶ Share(s) : Sample $r \leftarrow \{0,1\}^m$ and output $s_1 = r$ and $s_2 = s \oplus r$.
- ▶ Reconstruct(s_1, s_2): Outputs $s_1 \oplus s_2$.
- ▶ Correctness: By constrcution, $s = s_1 \oplus s_2$.
- Security: For any s, each individual s_1 or s_2 is uniformaly random. Thus, p = p' = q where:

$$q = Pr[\mathcal{A}(r) \mid r \leftarrow \{0, 1\}^m].$$

(n,n)— Threshold Secret Sharing

- Let $s \in \{0,1\}^m$. How do we (2,2)-secret share s?
- ▶ Share(s): Sample $r_1 ... r_{n-1} \leftarrow \{0,1\}^m$ and output $s_1 = r_1$, $s_2 = r_2 ... s_{n-1} = r_{n-1}$ and $s_n = s \oplus_{i=1}^{n-1} r_i$.
- ▶ Reconstruct $(s_1, s_2 \dots s_n)$: Outputs $\bigoplus_{i=1}^m s_i$.
- ▶ Correctness: By constrcution, $s = \bigoplus_{i=1}^{m} s_i$.
- ▶ Security: For any s,T such that |T| < n, $\{s_i\}_{i \in T}$ is uniformaly random. Thus, p = p' = q where:

$$q = Pr[\mathcal{A}(\{r_i\}) \mid r_1 \dots r_{|T|} \leftarrow \{0, 1\}^m].$$

(3,3)—Threshold Secret Sharing

- Let $s \in \{0,1\}^m$. How do we (3,3)-secret share s?
- ▶ Share(s): Sample $r_1, r_2 \leftarrow \{0, 1\}^m$ and output $s_1 = r_1, s_2 = r_2$ and $s_3 = s \oplus r_1 \oplus r_2$.
- ▶ Reconstruct(s_1, s_2, s_3): Outputs $s_1 \oplus s_2 \oplus s_3$.
- ▶ Correctness: By construction, $s = s_1 \oplus s_2 \oplus s_3$.
- Security: For any s, s_i, s_j for any $i, j \in \{1, 2, 3\}$ are uniformaly random. Thus, p = p' = q where:

$$q = Pr[A(r_1, r_2) \mid r_1, r_2 \leftarrow \{0, 1\}^m].$$

(2,3)-Threshold Secret Sharing

- Let $s \in \{0,1\}^m$. How do we (2,3)-secret share s?
- ▶ Share(s): Sample $r_1, r_2 \leftarrow \{0, 1\}^m$. Set $r_3 = s \oplus r_1 \oplus r_2$ and output $s_1 = (r_1, r_2), s_2 = (r_2, r_3)$ and $s_3 = (r_3, r_1)$.
- ▶ Reconstruct (s_i, s_j) : Outputs $r_1 \oplus r_2 \oplus r_3$ where r_1, r_2, r_3 can be recovered from s_i, s_j .
- ▶ Correctness: By construction, $s = r_1 \oplus r_2 \oplus r_3$.
- ▶ Security: For any s, s_i for any $i \in \{1, 2, 3\}$ is uniformaly random. Thus, p = p' = q where:

$$q = Pr[A(r_1, r_2) \mid r_1, r_2 \leftarrow \{0, 1\}^m].$$

(2,n)-Threshold Secret Sharing

- Let $s \in \{0,1\}^m$. How do we (2,n)-secret share s (assume $n=2^k$)?
- ▶ Share(s) : Sample $r_1, \ldots r_k \leftarrow \{0,1\}^m$. For each $i=i_1\ldots i_k$ and $j=1\ldots k$ generate

$$s_{i,j} = r_j$$

if $i_j = 0$ and as

$$s_{i,j} = r_j \oplus s$$

if $i_j = 1$. Output $s_i = (s_{i,1} \dots s_{i,k})$

- ▶ Reconstruct $(s_i = (s_{i,1} \dots s_{i,k}), s_{i'} = (s_{i',1} \dots s_{i',k}))$: Outputs $s_{i,j} \oplus s_{i',j}$ for a j such that $i_j \neq i'_j$.
- ► Correctness: This can be checked by construction.
- ▶ Security: For any s, s_i is uniformaly random vector of k strings. Thus, p = p' = q where:

$$q = Pr[\mathcal{A}(r_1, \dots r_k) \mid r_1, \dots r_k \leftarrow \{0, 1\}^m].$$

Can we build (t,n)-secret sharing for any t,n such that t < n?

Yes! Shamir's Secret Sharing Scheme.

Shamir's Secret Sharing: Background

- ▶ We consider a polynomials $p(x) \in \mathbb{Z}_q[x]$ where q is a prime.
- ▶ p(x) is denoted as $a_0 + a_1 x \dots a_t x^t \mod q$. If $a_t \neq 0$ then p(x) has degree t.
- ightharpoonup p(x) = p'(x) if they have the same degree and agree on all coefficients.

Theorem: Any two distinct degree-t polynomials agree on at most t points.

- ▶ Proof: Suppose $p(z_i) = p'(z_i)$ for $i \in \{1 ... t + 1\}$.
- Let q(x) = p(x) p'(x). Then we have that q(x) = 0 for all $x \in \{z_1 \dots z_{t+1}\}$.
- ▶ However, q(x) is of degree $\leq t$ and has t+1 root. Contradiction!

Shamir's Secret Sharing

Key idea:

If we have t points of a polynomial of degree t-1, we can reconstruct the polynomial. Moreover, the polynomial is unique.

```
Theorem: Given t distinct input/output points (x_1,y_1)\dots(x_t,y_t), we can find in poly time the unique degree-(t-1) polynomial p(x), where p(x_i)=y_i for i\in\{1\dots t\}.
```

(t,n)—Shamir's Secret Sharing

Main Idea: To share $s \in \mathbb{Z}_q$: choose a random degree t-1 polynomial p(x) such that p(0) = s. Give out the shares $(p(1), \ldots, p(n))$.

▶ Given t shares, we can reconstruct p(x), and can then recover p(0).

Sharing:

▶ Given a secret $s \in \mathbb{Z}_q$, choose $p(x) = s + a_1x + \dots a_{t-1}x^{t-1}$, where a_i 's are chosen randomly in \mathbb{Z}_q . Give out the shares $(p(1), \dots, p(n))$.

Reconstruct:

Figure Given t values $(i_1, p(i_1), \ldots, (t, p(i_t)),$ reconstruct p and output p(0).

Practice Problem

▶ Given encryption schemes $\Pi_1 \dots \Pi_n$ (where $\Pi_i = (Gen_i, Enc_i, Dec_i)$) such that at least t of them are CPA-secure. Construct an encryption scheme that is CPA-secure.

(t,n)-Threshold Signature [Desmedt'87, Desmedt-Frankel'89]

- ► A succinct (constant-size) public/verification key vk.
- ightharpoonup Aggregated signatures σ are succinct (constant-size).
- ▶ Widely used in blockchain applications.

BLS Signature [Boneh-Lynn-Shacham'01]

ightharpoonup s $\leftarrow \mathbb{Z}_q$, vk $= g^s$.

▶ Signature is $\sigma = H(msg)^s$.

▶ Verify signature: $e(H(msg), vk) \stackrel{?}{=} e(\sigma, g)$

BLS Multisignature: *n*-out-of-*n* threshold signature

ightharpoonup Each party picks $\mathbf{s}_i \leftarrow \mathbb{Z}_q$, $\mathsf{vk}_i = g^{\mathbf{s}_i}$

▶ Partial signature $\sigma_i = \mathsf{H}(\mathsf{msg})^{\mathsf{s}_i}$

$$\begin{cases} e(\mathsf{H}(\mathsf{msg}),\mathsf{vk}_1) \stackrel{?}{=} e(\sigma_1,g) \\ & \vdots \\ e(\mathsf{H}(\mathsf{msg}),\mathsf{vk}_n) \stackrel{?}{=} e(\sigma_n,g) \end{cases}$$

▶ Verification key aVK = $\prod_i vk_i$

▶ Aggregated Signature $\sigma = \prod_i \sigma_i$

► Verify signature: $e(H(msg), aVK) \stackrel{?}{=} e(\sigma, g)$

BLS t-out-of-n threshold signature

▶ Generate $s \leftarrow \mathbb{Z}_q$, $vk = g^{s_i}$.

 \triangleright vk is published, i^{th} party receives s_i .

 $ightharpoonup s_1, \ldots, s_n$ forms a t-out-of-n linear secret sharing of s.

Signing and Aggregation

▶ Signing: Partial signature $\sigma_i = (\mathsf{H}(\mathsf{msg}))^{\mathsf{s}_i}$ for message msg.

▶ Linear secret sharing property: For any set $T \subseteq \{1 \dots n\}$ such that $|T| \ge t$ we have constants $\{\alpha_i^T\}_{i \in T}$ such that $\mathbf{s} = \sum_{i \in T} \alpha_i^T \cdot \mathbf{s}_i$.

• Given $\{\sigma_i\}_{i\in T}$ compute $\sigma=\mathsf{H}(\mathsf{msg})^\mathsf{s}$ as

$$\mathsf{H}(\mathsf{msg})^{\mathsf{s}} = \mathsf{H}(\mathsf{msg})^{\sum \alpha_i^T \cdot \mathsf{s}_i} = \prod_{i \in T} \left(\mathsf{H}(\mathsf{msg})^{\mathsf{s}_i}\right)^{\alpha_i^T} \\ = \prod_{i \in T} \sigma_i^{\alpha_i^T}$$