SERIES NUMÉRICAS

Repase los conceptos teóricos que utilizará para fundamentar las respuestas de los ejercicios.

- ¿Qué es una serie de números reales? ¿A qué se llaman sumas parciales de la serie? ¿Cuándo se dice que una serie es convergente y en caso de serlo a qué se llama suma de la serie?
- ¿Cuándo se dice que una serie es geométrica? ¿Cómo se determina si converge o diverge? ¿Cuándo se dice que una serie es telescópica? ¿Cómo se determina si converge o diverge?
- ¿Qué es una p-serie? ¿Para qué valores de p converge?
- ¿Qué significa que una serie sea absolutamente convergente? ¿Y condicionalmente convergente?
- ¿Cuándo una serie es alternada?

Analice la convergencia de las series:

a)
$$\sum_{n=2}^{\infty} \frac{n^2-1}{n^2+1}$$

b)
$$\sum_{n=1}^{\infty} \frac{n^3}{n^5 + 25}$$

c)
$$\sum_{n=1}^{\infty} n^2 e^{-n}$$

c)
$$\sum_{n=1}^{\infty} n^2 e^{-n}$$
 d) $\sum_{n=0}^{\infty} \frac{3(-2)^{n-1}}{5^{n+1}}$

e)
$$\sum_{n=2}^{\infty} \frac{\sqrt{n}}{2n-2}$$

f)
$$\sum_{n=1}^{\infty} n \operatorname{sen}\left(\frac{1}{n}\right)$$

e)
$$\sum_{n=2}^{\infty} \frac{\sqrt{n}}{2n-2}$$
 f) $\sum_{n=1}^{\infty} n \operatorname{sen}\left(\frac{1}{n}\right)$ g) $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right)$ h) $\sum_{n=2}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{n}\right)$

h)
$$\sum_{n=2}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{n} \right)$$

i)
$$\sum_{n=1}^{\infty} \frac{(-5)^n}{\sqrt{n!}}$$

i)
$$\sum_{n=1}^{\infty} \frac{(-5)^n}{\sqrt{n!}}$$
 j) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n + \ln(n)}$ k) $\sum_{n=1}^{\infty} \frac{\sin n}{\sqrt{n^3 + 1}}$ l) $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 4}$

k)
$$\sum_{n=1}^{\infty} \frac{\operatorname{sen} n}{\sqrt{n^3+1}}$$

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^n}{n^2 + 4}$$

m)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cos n}{n+2^n}$$
 n) $\sum_{n=20}^{\infty} \frac{1}{n-\sqrt{n}}$

n)
$$\sum_{n=20}^{\infty} \frac{1}{n-\sqrt{n}}$$

o)
$$\sum_{n=20}^{\infty} \frac{1}{n+\sqrt{n}}$$

o)
$$\sum_{n=20}^{\infty} \frac{1}{n+\sqrt{n}}$$
 p) $\sum_{n=1}^{\infty} \frac{2^n}{\sqrt{4^n+9^n}}$

Rta

a)
$$\sum_{n=2}^{\infty} \frac{n^2-1}{n^2+1}$$

Aplicando la condición suficiente de divergencia:

$$\lim_{n\to\infty} a_n \neq 0 \implies \sum_{n=1}^{\infty} a_n \text{ es divergente}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2 - 1}{n^2 + 1} = \lim_{n \to \infty} \frac{n^2 \left(1 - \frac{1}{n^2}\right)}{n^2 \left(1 + \frac{1}{n^2}\right)} = \lim_{n \to \infty} \frac{1 - \frac{1}{n^2}}{1 + \frac{1}{n^2}} = 1 \neq 0$$

La serie $\sum_{n=2}^{\infty} \frac{n^2-1}{n^2+1}$ es divergente.

b)
$$\sum_{n=1}^{\infty} \frac{n^3}{n^5 + 25}$$

Por comparación directa:

$$a_n = \frac{n^3}{n^5 + 25} \le \frac{n^3}{n^5} = \frac{1}{n^2} = b_n$$
 para todo $n \ge 1$ pues $n^5 + 25 \ge n^5$

La serie $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$ es convergente por ser p-serie con p=2>1.

Por lo tanto la serie $\sum_{n=1}^{\infty} \frac{n^3}{n^5+25}$ es convergente.

c)
$$\sum_{n=1}^{\infty} n^2 e^{-n}$$

Aplicamos el criterio del cociente:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^2 e^{-(n+1)}}{n^2 e^{-n}} = \lim_{n \to \infty} \frac{\left[n\left(1 + \frac{1}{n}\right)\right]^2 e^{-(n+1)}}{n^2 e^{-n}} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{1}{n}\right)^2 e^{-(n+1)}}{n^2 e^{-n}}$$

$$= \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)^2}{e} = \frac{1}{e} < 1$$

La serie $\sum_{n=1}^{\infty} n^2 e^{-n}$ es convergente.

d)
$$\sum_{n=0}^{\infty} \frac{3(-2)^{n-1}}{5^{n+1}}$$

La serie es geométrica. En efecto:

$$\frac{a_{n+1}}{a_n} = \frac{\frac{3(-2)^{(n+1)-1}}{5^{(n+1)+1}}}{\frac{3(-2)^{n-1}}{5^{n+1}}} = \frac{\frac{3(-2)^n}{5^{n+2}}}{\frac{3(-2)^{n-1}}{5^{n+1}}} = \frac{3(-2)^n 5^{n+1}}{3(-2)^{n-1} 5^{n+2}} = -\frac{2}{5}$$

no depende de n. La razón de esta serie geométrica es $r=-\frac{2}{5}$

El valor absoluto de la razón es $|r| = \left| -\frac{2}{5} \right| = \frac{2}{5}$

Como |r| = 0.4 < 1 la serie es convergente. Su suma es el primer término de la serie dividido por 1 - r:

$$S = \frac{\frac{3(-2)^{0-1}}{5^{0+1}}}{1 - \left(-\frac{2}{5}\right)} = -\frac{\frac{3}{10}}{\frac{7}{5}} = -\frac{3}{14}$$

Entonces:

$$\sum_{n=0}^{\infty} \frac{3(-2)^{n-1}}{5^{n+1}} = -\frac{3}{14}$$

e)
$$\sum_{n=2}^{\infty} \frac{\sqrt{n}}{2n-2}$$

Aplicaremos comparación en el límite. Para generar un término de comparación examinamos cuidadosamente la magnitud del término general cuando $n \to \infty$:

$$a_n = \frac{\sqrt{n}}{2n-2} = \frac{\sqrt{n}}{2n\left(1-\frac{1}{n}\right)} = \frac{1}{2\sqrt{n}\left(1-\frac{1}{n}\right)} \underset{n \text{ grande}}{\underline{\underline{\underline{z}}}} \frac{1}{2\sqrt{n}} = b_n$$

Se tiene:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{2\sqrt{n}\left(1 - \frac{1}{n}\right)}}{\frac{1}{2\sqrt{n}}} = \lim_{n \to \infty} \frac{1}{1 - \frac{1}{n}} = 1 \in (0, \infty)$$

Por lo tanto:

$$\sum_{n=2}^{\infty} \frac{\sqrt{n}}{2n-2} \text{ diverge } \stackrel{[*]}{\Leftrightarrow} \sum_{n=2}^{\infty} \frac{1}{2\sqrt{n}} \text{ diverge}$$

La serie de comparación $\sum_{n=2}^{\infty} b_n = \sum_{n=2}^{\infty} \frac{1}{2\sqrt{n}}$ es divergente. En efecto, su término general se obtiene a partir del de la serie $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$ multiplicándolo por el factor constante no nulo c=1/2, que no altera el carácter de la serie. Es decir:

$$\sum_{n=2}^{\infty} \frac{1}{2\sqrt{n}} \text{ diverge } \stackrel{[**]}{\Leftrightarrow} \sum_{n=2}^{\infty} \frac{1}{\sqrt{n}} \text{ diverge}$$

A su vez, la serie $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$ diverge pues difiere de la *p*-serie $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ en una cantidad finita de términos (sólo el primero). Es decir:

$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}} \text{ diverge } \stackrel{[***]}{\iff} \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \text{ diverge}$$

La p-serie $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ es divergente porque $p = \frac{1}{2} < 1$. Luego, por [***] resulta $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$ divergente. Entonces por [**] es $\sum_{n=2}^{\infty} \frac{1}{2\sqrt{n}}$ divergente. Por lo tanto, en base a [*] la serie $\sum_{n=2}^{\infty} \frac{\sqrt{n}}{2n-2}$ es divergente.

f)
$$\sum_{n=1}^{\infty} n \operatorname{sen}\left(\frac{1}{n}\right)$$

Esta serie diverge. Se justifica aplicando la condición suficiente de divergencia:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} n \operatorname{sen}\left(\frac{1}{n}\right) = \lim_{n \to \infty} \frac{\operatorname{sen}\left(\frac{1}{n}\right)}{\frac{1}{n}} = \lim_{t \to 0} \frac{\operatorname{sen}t}{t} = 1 \neq 0$$

g)
$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$$

Se trata de una serie telescópica. En efecto:

$$a_n = \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} = b_n - b_{n+1}$$
 donde $b_n = \frac{1}{\sqrt{n}}$

El término general de la sucesión de sumas parciales es la suma parcial n-ésima:

$$S_n = a_1 + a_2 + a_3 + \dots + a_n = \left(\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}\right) + \left(\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}}\right) + \dots + \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right)$$

El segundo término de cada paréntesis se cancela con el primer término del paréntesis siguiente. Resulta:

$$S_n = 1 - \frac{1}{\sqrt{n+1}}$$

Entonces:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{\sqrt{n+1}} \right) = 1$$

La serie es pues convergente y su suma es S = 1. Es decir:

$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) = 1$$

h)
$$\sum_{n=2}^{\infty} \left(\frac{1}{\sqrt[3]{n}} - \frac{1}{n} \right)$$

Analicemos el término general:

$$a_n = \frac{1}{\sqrt[3]{n}} - \frac{1}{n} = \frac{n^{\frac{2}{3}} - 1}{n} = \frac{n^{\frac{2}{3}} \left(1 - \frac{1}{n^{\frac{2}{3}}}\right)}{n} = \frac{1 - \frac{1}{n^{\frac{2}{3}}}}{\sqrt[3]{n}} \underbrace{\cong}_{n \text{ grande}} \frac{1}{\sqrt[3]{n}} = b_n$$

Aplicamos el criterio de comparación en el límite:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1 - \frac{1}{2}}{\sqrt[3]{n}}}{\frac{1}{\sqrt[3]{n}}} = \lim_{n \to \infty} \left(1 - \frac{1}{n^{\frac{2}{3}}}\right) = 1 \in (0, \infty)$$

Por lo tanto:

$$\sum_{n=2}^{\infty} \left(\frac{1}{\sqrt[3]{n}} - \frac{1}{n} \right) \text{ diverge } \stackrel{[*]}{\iff} \sum_{n=2}^{\infty} \frac{1}{\sqrt[3]{n}} \text{ diverge}$$

La serie $\sum_{n=2}^{\infty} \frac{1}{\sqrt[3]{n}}$ difiere de $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$ en un solo término. Por lo tanto:

$$\sum_{n=2}^{\infty} \frac{1}{\sqrt[3]{n}} \text{ diverge } \stackrel{[**]}{\iff} \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} \text{ diverge}$$

La serie $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$ es divergente por ser una p-serie con $p = \frac{1}{3} < 1$. Luego, $\sum_{n=2}^{\infty} \frac{1}{\sqrt[3]{n}}$ diverge. Por lo tanto $\sum_{n=2}^{\infty} \left(\frac{1}{\sqrt[3]{n}} - \frac{1}{n}\right)$ es divergente.

i)
$$\sum_{n=1}^{\infty} \frac{(-5)^n}{\sqrt{n!}}$$

Analizamos la serie de los valores absolutos:

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \frac{5^n}{\sqrt{n!}}$$

Aplicamos el criterio del cociente:

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{\frac{5^{n+1}}{\sqrt{(n+1)!}}}{\frac{5^n}{\sqrt{n!}}} = \lim_{n \to \infty} \frac{5^{n+1}\sqrt{n!}}{5^n\sqrt{(n+1)!}} = \lim_{n \to \infty} \frac{5\sqrt{n!}}{\sqrt{(n+1)!}} = \lim_{n \to \infty} 5\sqrt{\frac{n!}{(n+1)!}}$$

$$= \lim_{n \to \infty} 5\sqrt{\frac{n!}{(n+1) n!}} = \lim_{n \to \infty} \frac{5}{\sqrt{n+1}} = 0 < 1$$

Por lo tanto la serie $\sum_{n=1}^{\infty} |a_n|$ es convergente. Entonces por el criterio de la convergencia absoluta, la serie $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{(-5)^n}{\sqrt{n!}}$ converge (absolutamente).

$$j) \sum_{n=1}^{\infty} \frac{(-1)^n}{n + \ln(n)}$$

El término general tiende a cero cuando $n \rightarrow \infty$ pues:

ende a cero cuando
$$n \to \infty$$
 pues:
$$\lim_{n \to \infty} |a_n| = \lim_{n \to \infty} \frac{1}{n + \ln(n)} = \lim_{n \to \infty} \frac{1}{n \left(1 + \underbrace{\frac{\ln(n)}{n}}_{\substack{n \to 0 \text{ pues} \\ \ln n \to \infty}}\right)} = 0$$

Analicemos la serie de los módulos:

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \frac{1}{n + \ln(n)}$$

Por comparación en el límite:

$$|a_n| = b_n = \frac{1}{n + ln(n)} = \frac{1}{n\left(1 + \frac{ln(n)}{n}\right)n \text{ grande}} \frac{1}{n} = c_n$$

Entonces:

$$\sum_{n=1}^{\infty} |a_n| \text{ diverge } \Leftrightarrow \sum_{n=1}^{\infty} \frac{1}{n} \text{ diverge}$$

La serie $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge porque es la serie armónica (p-serie con p=1). Luego, la serie $\sum_{n=1}^{\infty} |a_n|$ es divergente. Por lo tanto la serie $\sum_{n=1}^{\infty} a_n$ no es absolutamente convergente. Resta por determinar si es divergente o si converge de manera condicional.

Se trata de una serie alternada:

$$a_n = \frac{(-1)^n}{n + ln(n)} = (-1)^n b_n$$
 donde $b_n = |a_n| = \frac{1}{n + ln(n)}$

Veamos que el criterio de Leibniz es aplicable:

$$\lim_{n\to\infty} |a_n| = 0 \text{ (ya se probó)}$$

La sucesión de valores absolutos $\{|a_n|\}_{n\geq 1}$ es decreciente:

$$|a_n| = b_n = \frac{1}{n + \ln(n)}$$

Si bien esto es evidente en este caso (dado que el denominador en este cociente claramente aumenta con nmientras que el numerador permanece fijo), podemos justificarlo introduciendo la función auxiliar:

$$f(x) = \frac{1}{x + ln(x)}$$
 para $x \ge 1$

Bastará probar que esta función decrece para $x \ge 1$. Como es derivable, examinamos el signo de su derivada:

$$f'(x) = -\frac{1 + \frac{1}{x}}{[x + \ln(x)]^2} < 0 \text{ si } x > 1$$

Luego f decrece para $x \ge 1$. Por lo tanto $\{b_n\}_{n\ge 1}$ decrece. Entonces en virtud del criterio de Leibniz la serie $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+ln(n)}$ es convergente.

Luego, dado que $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+ln(n)}$ converge pero la serie de los módulos $\sum_{n=1}^{\infty} \frac{1}{n+ln(n)}$ diverge, podemos afirmar que la serie $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+ln(n)}$ es condicionalmente convergente.

$$k) \sum_{n=1}^{\infty} \frac{\operatorname{sen} n}{\sqrt{n^3 + 1}}$$

Analicemos la serie de valores absolutos:

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \frac{|\sin n|}{\sqrt{n^3 + 1}}$$

Aplicando comparación directa:

$$|a_n| = \frac{|\sin n|}{\sqrt{n^3 + 1}} \le \frac{1}{\sqrt{n^3 + 1}} \le \frac{1}{\sqrt{n^3}} = b_n$$

La primera desigualdad se debe a que $|\text{sen } n| \leq 1$ para todo $n \geq 1$. La segunda desigualdad se debe a que

$$n^3 + 1 \ge n^3$$
 (evidente)

$$\sqrt{n^3 + 1} \ge \sqrt{n^3}$$
 porque la raíz cuadrada es creciente

$$\frac{1}{\sqrt{n^3+1}} \le \frac{1}{\sqrt{n^3}}$$
 porque la función $f(x) = \frac{1}{x}$ es decreciente si $x \ge 1$

La serie de comparación $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3}}$ es una p-serie con $p = \frac{3}{2} > 1$ por lo que resulta convergente. Luego, por el criterio de comparación directa la serie $\sum_{n=1}^{\infty} |a_n|$ es convergente. Entonces por el criterio de la convergencia absoluta la serie $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{\sin n}{\sqrt{n^3+1}}$ es absolutamente convergente.

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 4}$$

Analicemos la serie de los módulos:

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \left| \frac{(-1)^n n}{n^2 + 4} \right| = \sum_{n=1}^{\infty} \frac{n}{n^2 + 4}$$

Aplicamos comparación en el límite:

$$|a_n| = \frac{n}{n^2 + 4} = \frac{n}{n^2 \left(1 + \frac{4}{n^2}\right)} = \frac{1}{n \left(1 + \frac{4}{n^2}\right)} \underbrace{\cong}_{n \text{ grande}} \frac{1}{n} = c_n$$

$$\lim_{n \to \infty} \frac{|a_n|}{c_n} = \lim_{n \to \infty} \frac{\frac{1}{n\left(1 + \frac{4}{n^2}\right)}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{1 + \frac{4}{n^2}} = 1 \in (0, \infty)$$

Por lo tanto:

$$\sum_{n=1}^{\infty} |a_n| \text{ diverge } \Leftrightarrow \sum_{n=1}^{\infty} c_n \text{ diverge}$$

La serie de comparación $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}$ es divergente (serie armónica). Luego, la serie de los módulos $\sum_{n=1}^{\infty} |a_n|$ es divergente. Entonces la serie $\sum_{n=1}^{\infty} a_n$ no es absolutamente convergente. Vamos si diverge o si converge de manera condicional.

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 4}$$
 es serie alternada

En efecto:

$$a_n = \frac{(-1)^n n}{n^2 + 4} = (-1)^n \frac{n}{n^2 + 4} = (-1)^n b_n \text{ donde } b_n = \frac{n}{n^2 + 4}$$

Se tiene:

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{n}{n^2 + 4} = \lim_{n \to \infty} \frac{1}{n\left(1 + \frac{4}{n^2}\right)} = 0$$

La sucesión de valores absolutos $\{|a_n|\}_{n\geq 1}$ es decreciente:

$$|a_n| = b_n = \frac{n}{n^2 + 4}$$

Podemos justificarlo introduciendo la función auxiliar:

$$f(x) = \frac{x}{x^2 + 4}$$
 para $x \ge 1$

Bastará probar que esta función decrece para $x \ge 1$. Como es derivable, examinamos el signo de su derivada:

$$f'(x) = \frac{(x^2 + 4) - x \cdot 2x}{(x^2 + 4)^2} = \frac{4 - x^2}{(x^2 + 4)^2} < 0 \text{ si } x > 2$$

Luego f(x) decrece para $x \ge 2$. Por lo tanto $\{b_n\}_{n\ge 2}$ decrece. Entonces en virtud del criterio de Leibniz la serie $\sum_{n=2}^{\infty} \frac{(-1)^n n}{n^2+4}$ es convergente.

Como la serie $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 4}$ difiere de la anterior en un solo término, entonces resulta también convergente.

Por lo tanto $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 4}$ converge pero $\sum_{n=1}^{\infty} \left| \frac{(-1)^n n}{n^2 + 4} \right|$ diverge. Esto prueba que la serie $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 4}$ es condicionalmente convergente.

m)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cos n}{n+2^n}$$

Estudiemos la serie de los valores absolutos:

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=0}^{\infty} \frac{|\cos n|}{n + 2^n}$$

Por comparación directa:

$$|a_n| = \frac{|\cos n|}{n+2^n} \le \frac{1}{n+2^n} \le \frac{1}{2^n} = b_n$$

La primera desigualdad se debe a que $|\cos n| \le 1$ para todo $n \ge 1$. La segunda desigualdad se debe a que:

$$n + 2^n \ge 2^n$$
 (evidente)

La serie de comparación $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{2^n}$ converge puesto que es geométrica de razón r=1/2 de modo que $|r|=\frac{1}{2}<1$.

Luego, por comparación directa la serie $\sum_{n=1}^{\infty} |a_n|$ es convergente. Entonces por el criterio de la convergencia absoluta la serie $\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} \frac{(-1)^n \cos n}{n+2^n}$ es absolutamente convergente.

n)
$$\sum_{n=20}^{\infty} \frac{1}{n-\sqrt{n}}$$

Podemos analizarla por comparación directa:

$$a_n = \frac{1}{n - \sqrt{n}} \ge \frac{1}{n} = b_n$$

En efecto:

$$n - \sqrt{n} \le n$$
 (evidente)

La serie de comparación es $\sum_{n=20}^{\infty} b_n = \sum_{n=20}^{\infty} \frac{1}{n}$ la que difiere de la serie armónica $\sum_{n=1}^{\infty} \frac{1}{n}$ en un número finito de términos (los primeros 19). Como la armónica diverge, entonces $\sum_{n=20}^{\infty} b_n$ también diverge. Por lo tanto la serie $\sum_{n=20}^{\infty} \frac{1}{n-\sqrt{n}}$ es divergente. Dejamos como ejercicio mostrar que se llega a la misma conclusión aplicando comparación en el límite.

o)
$$\sum_{n=20}^{\infty} \frac{1}{n+\sqrt{n}}$$

Podemos aplicar comparación en el límite:

$$a_n = \frac{1}{n + \sqrt{n}} = \frac{1}{n\left(1 + \frac{1}{\sqrt{n}}\right)} = \underbrace{\cong}_{n \text{ grande}} \frac{1}{n} = b_n$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{n\left(1 + \frac{1}{\sqrt{n}}\right)}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{\sqrt{n}}} = 1 \in (0, \infty)$$

Luego:

$$\sum_{n=20}^{\infty} a_n \text{ diverge } \Leftrightarrow \sum_{n=20}^{\infty} b_n \text{ diverge}$$

La serie de comparación $\sum_{n=20}^{\infty} b_n$ diverge porque difiere de la armónica en un número finito de términos (los primeros 19). Como la armónica diverge, entonces $\sum_{n=20}^{\infty} b_n$ también diverge. Por ende la serie $\sum_{n=20}^{\infty} a_n = \sum_{n=20}^{\infty} \frac{1}{n+\sqrt{n}}$ diverge.

$$p) \sum_{n=1}^{\infty} \frac{2^n}{\sqrt{4^n + 9^n}}$$

Aplicamos comparación directa:

$$a_n = \frac{2^n}{\sqrt{4^n + 9^n}} \le \frac{2^n}{\sqrt{9^n}} = \frac{2^n}{(\sqrt{9})^n} = \frac{2^n}{3^n} = \left(\frac{2}{3}\right)^n = b_n$$

La desigualdad se justifica mediante:

$$4^{n} + 9^{n} \ge 9^{n}$$

$$\sqrt{4^{n} + 9^{n}} \ge \sqrt{9^{n}} = 3^{n}$$

$$\frac{1}{\sqrt{4^{n} + 9^{n}}} \le \frac{1}{3^{n}}$$

$$\frac{2^{n}}{\sqrt{4^{n} + 9^{n}}} \le \frac{2^{n}}{3^{n}}$$

La serie de comparación $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$ es geométrica de razón $r = \frac{2}{3}$. Como el valor absoluto de la razón es menor que 1 dicha serie es convergente. Entonces la serie $\sum_{n=1}^{\infty} \frac{2^n}{\sqrt{4^n+9^n}}$ es convergente.