Tornado -Random Forests

Arthur Lui Sorah Kang

ntroduction

Date

Model: Randon

Results

Conclusion

Tornado - Random Forests

Arthur Lui Sorah Kang

Department of Statistics Brigham Young University

April 10, 2014

Tornado -Random Forests

Arthur Lui Sorah Kang

Introduction

Date

Model: Randon

_

_

Introduction

Sorah Kang

Introduction

Dat

Model: Randon

Docule

- .

The goal of this analysis is to develop an objective model for classifying tornados

Reculto

Conclusions

E.,+,,,,

Teamwor

Data on tornados in 2012 from the Storm Prediction Center (SPC)

- Fscale Fujita Scale (Response subjective)
- Number SPC Tornado Number
- Month Numeric Month Value
- Day Day of the Month
- Time Time Tornado First Reported
- Loss Rounded Total Dollar Property Loss (in millions)
- CropLoss Rounded Total Dollar Crop Loss (in millions)
- Length Length of impact (in miles)
- Width Width of impact (in yards)

Data

Model: Randon

.

Future

Teamwork

Data

F-Scale	0	1	2	3	4	5
Freq	578	242	100	32	5	0

Model:

Randon

Results

Conclusion

Euturo

Teamwork

Data Cleaning

23 tornados were repeated in the data

Results

Conclusion

Future

Teamwork

Data Cleaning

23 tornados were repeated in the data

	Number	Date	State	F-scale	Injuries	Loss	Length
120	359692	2/29/12	IL	2	0	0.05	8.41
121	359692	2/29/12	IL	2	5	0.30	25.12
122	359692	2/29/12	KY	2	5	0.25	26.71

Model

Random Forest - The idea is to create a multitude of trees (forest)

- 1 Take a bootstrap sample of size n.
- 2 At each split, randomly sample m < P variables
- Build a tree based on each set
 - 1 At each node, identify variable that has most correlation with output
 - 2 Identify a cut point that leads to the greatest reduction in error

Model: Random Forests

Results

Conclusion

Futuro

Teamwor

Random Forests

- + Better predictive power than trees
 - Choosing a subset of variables decorrelates the trees
- + Gives us an objective way of classifying tornados
 - However, random forests are not very interpretable

Tornado -Random Forests

Arthur Lui Sorah Kang

Dutu

Model: Random Forests

Results

Conclusion

_

Teamwork

Model Assumptions

For classification trees, we assume data is non-linear

Results

Most Important Variables

Variable Importance

The most important variables in predicting Fscale are: Loss, Width, and Length.

Introductio

Dat

Random

Results

Conclusion

Toomwork

How would a scientist use this model?

Model: Randon

Results

Conclusion

Teamworl

Confusion Matrix

	0	1	2	3	4	class.error
0	515.00	58.00	3.00	0.00	0.00	0.11
1	88.00	135.00	17.00	1.00	0.00	0.44
2	4.00	43.00	44.00	4.00	0.00	0.54
3	0.00	5.00	15.00	4.00	0.00	0.83
4	0.00	1.00	1.00	2.00	0.00	1.00

Note: Error rate is lower for small Fscales

Model: Randon

TOTESES

Conclusions

Concidence

Futur

Teamwork

Conclusions

- Error Rate $\approx 26\%$
- Objective and takes into account past data
- Predicts low Fscales well (because more data)

Model: Randon

Results

Conclusion

Future

Teamwork

Future

- Need more data for Fscale = 4
- Compare different methods (e.g. trees, bagging, etc.)

Randon

Results

Conclusion

Futur

Teamwork

Teamwork

- Did Analysis together
- Sorah: Introduction, Model, Data
- Arthur: Results, Conclusions, Future