# Pacemaker

Team 7

#### **Table of Contents**

- Main Problem
- Overview: Pacemaker
- Key Solution
- Existing Solutions
- Usage Scenario
- System Overview
- Specifications
- Challenges
- Planning
- Evaluation Strategy & Success Criteria
- Task Designation

#### **Main Problem**

#### **Problem**

"Running is difficult"

- → Hard to maintain a consistent, "healthy" pace throughout a run
- → Easy to lose motivation

#### **Target Users**

- People who want to lose weight by running
- Professional runners who want to beat their record times



#### **Overview: Pacemaker**

1. Pace Detection and Adjustment Service

1. Feedback System for Real-Time Personalized Pace

1. Gamification Features for Increased Motivation

### **Key Solution**



### **Existing Solutions**

#### Pros:

- Keeps track of running pace
- Provides voice-assisted coaching
- GPS-based tracking
- Provides running statistics

#### Cons:

- Feedback is given after the exercise
  - No real-time feedback
- Pace is not personalized during the run



















### **Usage Scenario**

#### Assumption

- Outdoor running scenario
- A user (runner) w/ mobile & wearable devices (smartphone, smart watch, ear buds, etc.)
- There exists pre-defined objective about pace
  - ex. 30 min. for 5 km
  - ex. 120~150 bps

#### Pacemaker operation

- Provide instantaneous information about running condition
- Give feedback to the user so that it could help maintaining desired pace
- Increase motivation by gamification







### **Specifications**

- We have to use sensors to accurately measure the user's speed
- Ideally, we want instantaneous speeds, not average speeds
- Three possible ways
  - Step counter
    - Assume person's stride and calculate the speed
    - Speed = Step counts \* stride / elapsed time
    - Not an instantaneous speed, highly dependent on strides
  - Accelerometer
    - Use acceleration to compute the speed

$$\vec{v}(t) = \vec{v}(t = t_i) + \sum_{t_i \le t_j \le t} \vec{a}(t_j)(t_{j+1} - t_j)$$

- lacksquare Need to check the accuracy  $t_i \leq t_j < t$
- o GPS
  - Included in Android GPS functionality
  - Speed = Distance / elapsed time, based on the coordinates from GPS
  - Not an instantaneous speed

### **System Overview**

#### **Smartwatch Application** (Samsung Galaxy S20)

- → Records geological and physical information
  - ◆ Sends information to smartphone
- → Provides real-time feedback

#### **Smartphone Application** (*Galaxy Watch 4*)

- → Calculates optimal pace based on information
- → Uses ML/DL for good running posture detection



### Challenges

- Lack of knowledge in fitness
  - Hard to determine "optimal" pace for individual
  - Lack of data to train deep neural network model
  - https://www.healthline.com/health/running-heart-rate#ideal-rate

| Age in years | Target heart rate (bpm) | Maximum heart rate (bpm) |
|--------------|-------------------------|--------------------------|
| 20           | 100–170                 | 200                      |
| 30           | 95–162                  | 190                      |
| 35           | 93–157                  | 185                      |
| 40           | 90–153                  | 180                      |
| 45           | 88–149                  | 175                      |
| 50           | 85–145                  | 170                      |
| 60           | 80–136                  | 160                      |

#### Technical difficulties

- Real-time measurement of the user's speed using GPS is not so accurate
- Jogging causes a lot of movements to the phone, so if we use IMU sensors, filtering such vibrations can be difficult
  - We will first implement the application with step counter, so we can come back to this problem later if step counter method fails

### **Planning**



### **Evaluation Strategy & Success Criteria**

#### Success criteria

- Can the mobile application provide reasonable guides quickly?
  - Notify user when the pace changes
  - Provide "reasonable" guides
- Requirements
  - It should not interfere with other applications (e.g. messenger, music player)
  - It should provide feedback promptly
  - It should consume small amount of battery (comparable to music player application..?)









### **Task Designation**

| Task Designation               |              |  |  |
|--------------------------------|--------------|--|--|
| Mobile App (watch & phone)     | ₫₩₩ 길광연, 송재헌 |  |  |
| UI/UX                          | ♠ 이상민        |  |  |
| TO Model Training & Algorithms | ᆒᆒ 김영석, 손성욱  |  |  |

### Thank You

송재헌 | steve2972@snu.ac.kr 손성욱 | sungwookson@snu.ac.kr 김영석 | kyssnu@snu.ac.kr 길광연 | gil9103@snu.ac.kr 이상민 | snuvistasy@snu.ac.kr

## Q & A