

AMENDMENTS TO THE CLAIMS

1. (Cancelled)
2. (Currently amended) The method of claim [15] 21, wherein the target protein is a protein that is expressed in malignant cells in an animal.
3. (Previously amended) The method of claim 2, whercin the target protein is Her-2/neu, Her-3, Her-4, estrogen receptor, prostate-specific antigen, Epidermal Growth Factor Receptor ("EGFR"), AKT, p13 kinase or Mitogen-Activated Protein Kinase ("MAP kinase").
4. (Currently amended) The method of claim [15] 21, wherein the plurality of control cell pellets are prepared from cultured cell lines.
5. (Previously amended) The method of claim 4, wherein the cultured cell lines express a reproducible amount of the target protein.
b1
6. (Currently amended) The method of claim [15] 21, wherein the quantity of said target protein from each of the control cell pellets is known by determining the quantity of said target protein [determined] using an immunological reagent, whrcin said immunological reagent is the same or different than the detectably labeled antibody of step (a).
7. (Currently amended) The method of claim 6, wherein the quantity of said target protein from each of the control cell pellets is known by determining the quantity of said target protein [determined] by Enzyme Linked Immunosorbent Assay ("ELISA").
8. (Currently amended) The method of claim [15] 21, wherein the quantity of said target protein from each of the control cell pellets is normalized to the total amount of protein in the cell pellet.

9. (Previously amended) The method of claim 8, wherein the quantity of said target protein from each of the control cell pellets is normalized to the total amount of protein per cell.

10. (Previously amended) The method of claim 8, wherein the quantity of said target protein in the calibration curve is expressed as number of target protein molecules per cell.

11. (Currently amended) The method of claim [15] 21, wherein the average optical density of stained target protein per pixel of cellular area [the target protein-specific staining] is determined using image analysis.

12. (Previously amended) The method of claim 11, wherein said biological sample is stained with a multiplicity of stains, and wherein the image analysis is performed by splitting a signal comprising an optical density of the stained target protein in said biological sample into a multiplicity of signals that are processed using optical filters having different absorption and transmittance properties, so that each signal is specific for one of said multiplicity of stains used to stain the cells in the biological sample.

b1
b2
b3
b4
b5
b6
b7
b8
b9
b10
b11
b12
b13
b14
b15
b16
b17
b18
b19
b20
b21
b22
b23
b24
b25
b26
b27
b28
b29
b30
b31
b32
b33
b34
b35
b36
b37
b38
b39
b40
b41
b42
b43
b44
b45
b46
b47
b48
b49
b50
b51
b52
b53
b54
b55
b56
b57
b58
b59
b60
b61
b62
b63
b64
b65
b66
b67
b68
b69
b70
b71
b72
b73
b74
b75
b76
b77
b78
b79
b80
b81
b82
b83
b84
b85
b86
b87
b88
b89
b90
b91
b92
b93
b94
b95
b96
b97
b98
b99
b100
b101
b102
b103
b104
b105
b106
b107
b108
b109
b110
b111
b112
b113
b114
b115
b116
b117
b118
b119
b120
b121
b122
b123
b124
b125
b126
b127
b128
b129
b130
b131
b132
b133
b134
b135
b136
b137
b138
b139
b140
b141
b142
b143
b144
b145
b146
b147
b148
b149
b150
b151
b152
b153
b154
b155
b156
b157
b158
b159
b160
b161
b162
b163
b164
b165
b166
b167
b168
b169
b170
b171
b172
b173
b174
b175
b176
b177
b178
b179
b180
b181
b182
b183
b184
b185
b186
b187
b188
b189
b190
b191
b192
b193
b194
b195
b196
b197
b198
b199
b200
b201
b202
b203
b204
b205
b206
b207
b208
b209
b210
b211
b212
b213
b214
b215
b216
b217
b218
b219
b220
b221
b222
b223
b224
b225
b226
b227
b228
b229
b220
b221
b222
b223
b224
b225
b226
b227
b228
b229
b230
b231
b232
b233
b234
b235
b236
b237
b238
b239
b230
b231
b232
b233
b234
b235
b236
b237
b238
b239
b240
b241
b242
b243
b244
b245
b246
b247
b248
b249
b240
b241
b242
b243
b244
b245
b246
b247
b248
b249
b250
b251
b252
b253
b254
b255
b256
b257
b258
b259
b250
b251
b252
b253
b254
b255
b256
b257
b258
b259
b260
b261
b262
b263
b264
b265
b266
b267
b268
b269
b260
b261
b262
b263
b264
b265
b266
b267
b268
b269
b270
b271
b272
b273
b274
b275
b276
b277
b278
b279
b270
b271
b272
b273
b274
b275
b276
b277
b278
b279
b280
b281
b282
b283
b284
b285
b286
b287
b288
b289
b280
b281
b282
b283
b284
b285
b286
b287
b288
b289
b290
b291
b292
b293
b294
b295
b296
b297
b298
b299
b290
b291
b292
b293
b294
b295
b296
b297
b298
b299
b300
b301
b302
b303
b304
b305
b306
b307
b308
b309
b300
b301
b302
b303
b304
b305
b306
b307
b308
b309
b310
b311
b312
b313
b314
b315
b316
b317
b318
b319
b310
b311
b312
b313
b314
b315
b316
b317
b318
b319
b320
b321
b322
b323
b324
b325
b326
b327
b328
b329
b320
b321
b322
b323
b324
b325
b326
b327
b328
b329
b330
b331
b332
b333
b334
b335
b336
b337
b338
b339
b330
b331
b332
b333
b334
b335
b336
b337
b338
b339
b340
b341
b342
b343
b344
b345
b346
b347
b348
b349
b340
b341
b342
b343
b344
b345
b346
b347
b348
b349
b350
b351
b352
b353
b354
b355
b356
b357
b358
b359
b350
b351
b352
b353
b354
b355
b356
b357
b358
b359
b360
b361
b362
b363
b364
b365
b366
b367
b368
b369
b360
b361
b362
b363
b364
b365
b366
b367
b368
b369
b370
b371
b372
b373
b374
b375
b376
b377
b378
b379
b370
b371
b372
b373
b374
b375
b376
b377
b378
b379
b380
b381
b382
b383
b384
b385
b386
b387
b388
b389
b380
b381
b382
b383
b384
b385
b386
b387
b388
b389
b390
b391
b392
b393
b394
b395
b396
b397
b398
b399
b390
b391
b392
b393
b394
b395
b396
b397
b398
b399
b400
b401
b402
b403
b404
b405
b406
b407
b408
b409
b400
b401
b402
b403
b404
b405
b406
b407
b408
b409
b410
b411
b412
b413
b414
b415
b416
b417
b418
b419
b410
b411
b412
b413
b414
b415
b416
b417
b418
b419
b420
b421
b422
b423
b424
b425
b426
b427
b428
b429
b420
b421
b422
b423
b424
b425
b426
b427
b428
b429
b430
b431
b432
b433
b434
b435
b436
b437
b438
b439
b430
b431
b432
b433
b434
b435
b436
b437
b438
b439
b440
b441
b442
b443
b444
b445
b446
b447
b448
b449
b440
b441
b442
b443
b444
b445
b446
b447
b448
b449
b450
b451
b452
b453
b454
b455
b456
b457
b458
b459
b450
b451
b452
b453
b454
b455
b456
b457
b458
b459
b460
b461
b462
b463
b464
b465
b466
b467
b468
b469
b460
b461
b462
b463
b464
b465
b466
b467
b468
b469
b470
b471
b472
b473
b474
b475
b476
b477
b478
b479
b470
b471
b472
b473
b474
b475
b476
b477
b478
b479
b480
b481
b482
b483
b484
b485
b486
b487
b488
b489
b480
b481
b482
b483
b484
b485
b486
b487
b488
b489
b490
b491
b492
b493
b494
b495
b496
b497
b498
b499
b490
b491
b492
b493
b494
b495
b496
b497
b498
b499
b500
b501
b502
b503
b504
b505
b506
b507
b508
b509
b500
b501
b502
b503
b504
b505
b506
b507
b508
b509
b510
b511
b512
b513
b514
b515
b516
b517
b518
b519
b510
b511
b512
b513
b514
b515
b516
b517
b518
b519
b520
b521
b522
b523
b524
b525
b526
b527
b528
b529
b520
b521
b522
b523
b524
b525
b526
b527
b528
b529
b530
b531
b532
b533
b534
b535
b536
b537
b538
b539
b530
b531
b532
b533
b534
b535
b536
b537
b538
b539
b540
b541
b542
b543
b544
b545
b546
b547
b548
b549
b540
b541
b542
b543
b544
b545
b546
b547
b548
b549
b550
b551
b552
b553
b554
b555
b556
b557
b558
b559
b550
b551
b552
b553
b554
b555
b556
b557
b558
b559
b560
b561
b562
b563
b564
b565
b566
b567
b568
b569
b560
b561
b562
b563
b564
b565
b566
b567
b568
b569
b570
b571
b572
b573
b574
b575
b576
b577
b578
b579
b570
b571
b572
b573
b574
b575
b576
b577
b578
b579
b580
b581
b582
b583
b584
b585
b586
b587
b588
b589
b580
b581
b582
b583
b584
b585
b586
b587
b588
b589
b590
b591
b592
b593
b594
b595
b596
b597
b598
b599
b590
b591
b592
b593
b594
b595
b596
b597
b598
b599
b600
b601
b602
b603
b604
b605
b606
b607
b608
b609
b600
b601
b602
b603
b604
b605
b606
b607
b608
b609
b610
b611
b612
b613
b614
b615
b616
b617
b618
b619
b610
b611
b612
b613
b614
b615
b616
b617
b618
b619
b620
b621
b622
b623
b624
b625
b626
b627
b628
b629
b620
b621
b622
b623
b624
b625
b626
b627
b628
b629
b630
b631
b632
b633
b634
b635
b636
b637
b638
b639
b630
b631
b632
b633
b634
b635
b636
b637
b638
b639
b640
b641
b642
b643
b644
b645
b646
b647
b648
b649
b640
b641
b642
b643
b644
b645
b646
b647
b648
b649
b650
b651
b652
b653
b654
b655
b656
b657
b658
b659
b650
b651
b652
b653
b654
b655
b656
b657
b658
b659
b660
b661
b662
b663
b664
b665
b666
b667
b668
b669
b660
b661
b662
b663
b664
b665
b666
b667
b668
b669
b670
b671
b672
b673
b674
b675
b676
b677
b678
b679
b670
b671
b672
b673
b674
b675
b676
b677
b678
b679
b680
b681
b682
b683
b684
b685
b686
b687
b688
b689
b680
b681
b682
b683
b684
b685
b686
b687
b688
b689
b690
b691
b692
b693
b694
b695
b696
b697
b698
b699
b690
b691
b692
b693
b694
b695
b696
b697
b698
b699
b700
b701
b702
b703
b704
b705
b706
b707
b708
b709
b700
b701
b702
b703
b704
b705
b706
b707
b708
b709
b710
b711
b712
b713
b714
b715
b716
b717
b718
b719
b710
b711
b712
b713
b714
b715
b716
b717
b718
b719
b720
b721
b722
b723
b724
b725
b726
b727
b728
b729
b720
b721
b722
b723
b724
b725
b726
b727
b728
b729
b730
b731
b732
b733
b734
b735
b736
b737
b738
b739
b730
b731
b732
b733
b734
b735
b736
b737
b738
b739
b740
b741
b742
b743
b744
b745
b746
b747
b748
b749
b740
b741
b742
b743
b744
b745
b746
b747
b748
b749
b750
b751
b752
b753
b754
b755
b756
b757
b758
b759
b750
b751
b752
b753
b754
b755
b756
b757
b758
b759
b760
b761
b762
b763
b764
b765
b766
b767
b768
b769
b760
b761
b762
b763
b764
b765
b766
b767
b768
b769
b770
b771
b772
b773
b774
b775
b776
b777
b778
b779
b770
b771
b772
b773
b774
b775
b776
b777
b778
b779
b780
b781
b782
b783
b784
b785
b786
b787
b788
b789
b780
b781
b782
b783
b784
b785
b786
b787
b788
b789
b790
b791
b792
b793
b794
b795
b796
b797
b798
b799
b790
b791
b792
b793
b794
b795
b796
b797
b798
b799
b800
b801
b802
b803
b804
b805
b806
b807
b808
b809
b800
b801
b802
b803
b804
b805
b806
b807
b808
b809
b810
b811
b812
b813
b814
b815
b816
b817
b818
b819
b810
b811
b812
b813
b814
b815
b816
b817
b818
b819
b820
b821
b822
b823
b824
b825
b826
b827
b828
b829
b820
b821
b822
b823
b824
b825
b826
b827
b828
b829
b830
b831
b832
b833
b834
b835
b836
b837
b838
b839
b830
b831
b832
b833
b834
b835
b836
b837
b838
b839
b840
b841
b842
b843
b844
b845
b846
b847
b848
b849
b840
b841
b842
b843
b844
b845
b846
b847
b848
b849
b850
b851
b852
b853
b854
b855
b856
b857
b858
b859
b850
b851
b852
b853
b854
b855
b856
b857
b858
b859
b860
b861
b862
b863
b864
b865
b866
b867
b868
b869
b860
b861
b862
b863
b864
b865
b866
b867
b868
b869
b870
b871
b872
b873
b874
b875
b876
b877
b878
b879
b870
b871
b872
b873
b874
b875
b876
b877
b878
b879
b880
b881
b882
b883
b884
b885
b886
b887
b888
b889
b880
b881
b882
b883
b884
b885
b886
b887
b888
b889
b890
b891
b892
b893
b894
b895
b896
b897
b898
b899
b890
b891
b892
b893
b894
b895
b896
b897
b898
b899
b900
b901
b902
b903
b904
b905
b906
b907
b908
b909
b900
b901
b902
b903
b904
b905
b906
b907
b908
b909
b910
b911
b912
b913
b914
b915
b916
b917
b918
b919
b910
b911
b912
b913
b914
b915
b916
b917
b918
b919
b920
b921
b922
b923
b924
b925
b926
b927
b928
b929
b920
b921
b922
b923
b924
b925
b926
b927
b928
b929
b930
b931
b932
b933
b934
b935
b936
b937
b938
b939
b930
b931
b932
b933
b934
b935
b936
b937
b938
b939
b940
b941
b942
b943
b944
b945
b946
b947
b948
b949
b940
b941
b942
b943
b944
b945
b946
b947
b948
b949
b950
b951
b952
b953
b954
b955
b956
b957
b958
b959
b950
b951
b952
b953
b954
b955
b956
b957
b958
b959
b960
b961
b962
b963
b964
b965
b966
b967
b968
b969
b960
b961
b962
b963
b964
b965
b966
b967
b968
b969
b970
b971
b972
b973
b974
b975
b976
b977
b978
b979
b970
b971
b972
b973
b974
b975
b976
b977
b978
b979
b980
b981
b982
b983
b984
b985
b986
b987
b988
b989
b980
b981
b982
b983
b984
b985
b986
b987
b988
b989
b990
b991
b992
b993
b994
b995
b996
b997
b998
b999
b990
b991
b992
b993
b994
b995
b996
b997
b998
b999
b1000
b1001
b1002
b1003
b1004
b1005
b1006
b1007
b1008
b1009
b1000
b1001
b1002
b1003
b1004
b1005
b1006
b1007
b1008
b1009
b1010
b1011
b1012
b1013
b1014
b1015
b1016
b1017
b1018
b1019
b1010
b1011
b1012
b1013
b1014
b1015
b1016
b1017
b1018
b1019
b1020
b1021
b1022
b1023
b1024
b1025
b1026

19. (Currently amended) The method of claim [15] 21, wherein the calibration curve is linear.

20. (Currently amended) The method of claim [15] 21, wherein the immunohistochemically staining of [(e)] (d) is performed with the same reagents as is used for the immunohistochemically staining of [(b)] (a).

21. (New) A method for determining the quantity of a target protein in cells of a biological sample, the method comprising the steps of:

(a) immunohistochemically staining said target protein in a plurality of control cell pellets using a detectably labeled antibody directed against said target protein, wherein the quantity of the target protein in the plurality of control cell pellets is independently known, and wherein the expression level of the target protein in each of the plurality of control cell pellets is not the same,

(b) ^{each of} determining an average optical density of stained target protein per pixel of cellular area in the ^{each} stained plurality of control cell pellets in (a); ^{each}

(c) generating a calibration curve relating the known quantity of said target protein with said average optical density of ^{each} stained target protein per pixel of cellular area as determined in (b) for the plurality of control cell pellets;

(d) immunohistochemically staining said target protein from said biological sample using said detectably labeled antibody directed against said target protein;

(e) determining an average optical density of stained target protein per pixel of cellular area in said biological sample;

(f) determining the quantity of said target protein in said biological sample by comparing the average optical density of stained target protein per pixel of cellular area as determined in step (e) in said biological sample to the calibration curve as generated in step (c), wherein the quantity of said target protein is derived from the calibration curve.

22. (New) The method of claim 21, wherein the cellular area is the nucleus.

b1
Conf

23. (New) The method of claim 21, wherein the cellular area is the membrane.