

AGRUPAMIENTO JERÁRQUICO

ALAN REYES-FIGUEROA
ELEMENTS OF MACHINE LEARNING

(AULA 12) 07.MARZO.2023

Clasificación

Consideramos el problema de clasificación en un conjunto $\mathbb{X} \subseteq \mathbb{R}^d$. Si $\mathbb{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$. Este problema consiste en construir una función de asignación

$$h: \mathbb{X} \to C$$
, $(\mathbf{x}_i) = c_i$,

donde $C = \{c_1, c_2, \dots, c_k\}$ es un conjunto finito de categorías o clases. El problema de

clasificación consiste en asignarle a cada \mathbf{x}_i una clase correspondiente c_i utilizando algún criterio específico.

En casos más generales, construimos un mapa

$$h: \mathbb{X} \to \mathbb{R}^k, \quad h(\mathbf{x}_i) = (p_1(\mathbf{x}_i), p_2(\mathbf{x}_i), \dots, p_k(\mathbf{x}_i)),$$

donde cada $p_j(\mathbf{x}_i) = \mathbb{P}(\mathbf{x}_i \in C_j)$, esto es, $p_j(\mathbf{x}_i)$ es la probabilidad de que \mathbf{x}_i pertenezca a la categoría j.

Clasificación supervisada y no supervisada

CLASSICAL MACHINE LEARNING

Clasificación supervisada y no supervisada

- En la clasificación supervisada, además del conjunto de datos $\mathbb{X} = \{\mathbf{x}_i\}_{i=1}^n$, se cuenta adicionalmente con un conjunto de etiquetas ya predefinidas $\mathbf{y} = \{y_i\}_{i=1}^n$. El conjunto C y la cantidad de etiquetas las da el contexto. Tales pares $\{(\mathbf{x}_i, y_i)\}$ se utilizan para construir un modelo de clasificación $h: \widetilde{\mathbb{X}} \to C$, el cual permite clasificar elementos en un superconjunto mayor a \mathbb{X} . (Típicamente \mathbb{X} es el conjunto de entrenamiento).
- En el caso no supervisado (clustering), no se cuenta con el conjunto de etiquetas y.
 En ese caso, se utiliza la misma estructura de los datos para detectar o agrupar los datos en conglomerados.
 El conjunto C y la cantidad de etiquetas k no se conoce.

Clasificación supervisada y no supervisada

Clasificación no supervisada = Agrupamiento (clustering).

Problema:

- Segmentar datos en subgrupos homogéneos.
- Encontrar grupos en base de semejanza.

Situación idonea:

dolor de cabeza:

Agrupamiento jerárquico Definimos distancias entre grupos de observaciones a partir de distancias entre puntos \mathbf{x}_i .

Diferencias entre agrupamiento jerárquico y agrupamiento particional.

- En el particional, los grupos son (o suelen ser) disjuntos.
- En el esquema jerárquico, los grupos están encadenados.

Partitional vs hierarchical clustering

Partitional clustering finds a fixed number of clusters

Hierarchical clustering creates a series of clusterings contained in each other

Hay dos esquemas

- Aglomerativo o *bottom up*: se inicia con cada punto es un clúster, y en cada iteración se van agrupando.
- Divisivo o *top down*: se inicia con único cluster conteniendo todos los puntos, y en cada iteración se van separando.

Idea en el esquema aglomerativo:

- Definir cada dato como un cluster.
- Repetir hasta tener un sólo cluster: Unir los dos clústers más cercanos según $d(\cdot, \cdot)$ en un sólo clúster nuevo.

La salida típica viene en forma de un dendrograma.

En general $d(\cdot, \cdot)$ puede ser una distancia, o una versión más relajada (e.g., discrepancia, disimilitud).

Cuidado! No siempre se obtiene un dendrograma. La función $d: \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ debe cumplir ciertas condiciones:

- 1. (simetría) d(a,b) = d(b,a)
- **2.** (designaldad triangular) $d(a,c) < \max\{d(a,b),d(b,c)\}$
- 3. (no negatividad) $d(a,b) \ge 0$. No es necesario. Pero sí debe cumplir que d está limitada inferiormente.

Métricas comunes:

- distancia euclideana $d(a,b) = ||a-b||_2 = \left(\sum_{i=1}^d (a_i-b_i)^2\right)^{1/2}$.
- distancia euclideana cuadrada $d(a,b) = ||a-b||_2^2 = \sum_{i=1}^d (a_i b_i)^2$.
- distancias de Minkowski $d(a,b) = ||a-b||_p = \left(\sum_{i=1}^d (a_i-b_i)^p\right)^{1/p}$.
- Norma 1 o distancia *Manhattan d*(a,b) = $||a-b||_1 = \sum_{i=1}^d |a_i-b_i|$.
- distancia de Mahalanobis $d(a,b) = ((\mathbf{a} \mathbf{b})^T \Sigma^{-1} (\mathbf{a} \mathbf{b}))^{1/2}$.

Preliminary maximum likelihood phylopenetic analysis of novel Wahan, China human Col' in net, Genllani kaccession MN000947]
Novel Col's equita durin briting/invitroid person releases of novel consumirus[13]. The Shapania philale Health Cincil center & School of Public Health, in collaboration with the Central Respital of Wahan, Healthough University of Science and Technology, the Wahan Center for Disease Control and Prevention, the National Science of Technology, the Wahan Center for Disease Control and Prevention and Central Respital of Wahan, Healthough Science and Technology, the Wahan Center for Disease Control, and Prevention Center (Central Respital Central Respital Respital Central Respital Respital Respital Central Respital Respit

https://stm.sciencemag.org/content/12/573/eabe2555/tab-figures-data

Una vez elegida la distancia entre puntos, se debe definir una distancia entre grupos. ¿Cómo elegir $d(\cdot, \cdot)$ entre grupos? Existen muchos métodos

• Maximum or complete-linkage

$$d(A,B) = \max\{d(a,b): a \in A, b \in B\}.$$

• Minimum or single-linkage

$$d(A,B) = \min\{d(a,b): a \in A, b \in B\}.$$

Averaged linkage

$$d(A,B) = \frac{1}{|A| \cdot |B|} \sum_{a \in A} \sum_{b \in B} d(a,b).$$

Una vez elegida la distancia entre puntos, se debe definir una distancia entre grupos. ¿Cómo elegir $d(\cdot, \cdot)$ entre grupos? Existen muchos métodos

• Weighted averaged linkage

$$d(\{i\} \cup \{j\}, k) = \frac{d(i, k) + d(j, k)}{2}.$$

• Centroid linkage

$$d(A,B) = ||c_A - c_B||, c_A, c_B \text{ son los centroides de los clúster } A, B, \text{ resp.}$$

Minimum energy clustering

$$d(A,B) = \frac{2}{|A| \cdot |B|} \sum_{i=1}^{|A|} \sum_{i=1}^{|B|} d(a_i,b_j) - \frac{1}{|A|^2} \sum_{i=1}^{|A|} d(a_i,a_j) - \frac{1}{|B|^2} \sum_{i=1}^{|B|} d(b_i,b_j).$$

Otros criterios de linkage incluyen:

- La suma de todas la varianzas intragrupos.
- El aumento de la varianza para el grupo que se fusiona (criterio de Ward).
- La probabilidad de que los grupos candidatos se generen a partir de la misma función de distribución (*V-linkage*).
- El producto de grados de entrada y de salida en un grafo de k-vecinos más cercanos.
- El incremento de algún descriptor de conglomerado (es decir, una cantidad definida para medir la calidad de un conglomerado) después de fusionar dos conglomerados.

El método de Ward:

El criterio de varianza mínima de Ward minimiza la varianza total intragrupos: en cada paso encuentra el par de grupos que conduzca a un aumento mínimo en la varianza total dentro del grupo después de la fusión. Este aumento es una distancia al cuadrado ponderada entre los centros de los conglomerados. AL inicio, se la distancia inicial entre objetos individuales como la norma euclidiana al cuadrado.

En la práctica, se utiliza el algoritmo de Lance-Williams:

- Suponga que los clústers C_i , C_j son los siguientes a fusionarse. La siguiente fórmula produce la actualización de las distancias $d_{ij} = d(C_i, C_j)$.
- $d(C_i \cup C_j, C_k) = \frac{n_i + n_k}{n_i + n_j + n_k} d_{ik} + \frac{n_j + n_k}{n_i + n_j + n_k} d_{jk} \frac{n_i + n_j}{n_i + n_j + n_k} d_{ij}$.

Ejemplo

<u>Ejemplo 1:</u> Realizar un agrupamiento jerárquico usando diferentes métodos: single-linkage, complete-linkage, average linkage. Comparar los resultados.

	a	b	С	d
a	0	5	6.1	7
b	5	0	4	6.2
С	6.1	4.0	0	6
d	7	6.2	6	0

Ejemplo 2: Realizar un agrupamiento jerárquico usando diferentes métodos: single-linkage, complete-linkage, average linkage. Comparar los resultados.

	a	b	С	d
a	0	5.0	5.6	7.2
b	5.0	0	4.6	5.7
С	5.6	4.6	0	4.9
d	7.2	5.6	4.9	0

Ejemplo 3: Realizar un agrupamiento jerárquico usando diferentes métodos.

Resultado:

¿Cómo estimar el mejor valor de k? Buscar la mayor separación d en el dendrograma.

Recursos

- https://jydelort.appspot.com/resources/figue/demo.html
- https://people.revoledu.com/kardi/tutorial/Clustering/ Online-Hierarchical-Clustering.html
- https://cran.r-project.org/web/packages/dendextend/vignettes/ Cluster_Analysis.html