PHAS1245 Mathematical Methods 1 Exam 2018

Answer ALL SIX questions from Section A and ALL THREE questions from Section B

The numbers in square brackets in the right-hand margin indicate a provisional allocation of maximum possible marks for different parts of each question.

Section A

(Answer ALL SIX questions from this section)

- 1. (a) Determine the vector product $\mathbf{a} \times \mathbf{b}$ of the vectors $\mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}$, [2] $\mathbf{b} = b_x \mathbf{i} + b_y \mathbf{j} + b_z \mathbf{k}$, in terms of their components a_x , a_y , a_z and b_x , b_y , b_z .
 - (b) A plane is defined by a point A (position vector \mathbf{a}) on it and a unit vector $\hat{\mathbf{n}}$ perpendicular to it. Write down the equation of the plane, satisfied by any point R (position vector \mathbf{r}) on that plane.
 - (c) Determine x and y such that the vector $\mathbf{a} = x\mathbf{i} + x\mathbf{j} + y\mathbf{k}$ has unit magnitude and is perpendicular to the vector $\mathbf{b} = \frac{1}{\sqrt{3}}(\mathbf{i} + \mathbf{j} \mathbf{k})$.
- 2. (a) Given two complex numbers, $z_1 = 3 + 7i$ and $z_2 = 6e^{-i\pi/2}$, determine [3]
 - i. $z_1 z_2$,
 - ii. $z_1 z_2$,
 - iii. z_1/z_2 .

Express each result in the form x + iy, where x, y are real numbers.

(b) Find all roots of

$$z^3 = -4\sqrt{2}(1+i),$$

and express them in exponential form using the convention that $-\pi < \arg z \le \pi$.

- (c) Evaluate $Re(e^{3iz})$, where z = x + iy (x, y are real numbers). [2]
- 3. (a) State the formal definition of the derivative of a function f(x). [1]
 - (b) Using the formal definition, calculate the derivative of

$$f(x) = \frac{1}{x^2}.$$

(c) Find all stationary points of

$$f(x) = x^4 + 6x^3 - 6,$$

and determine their nature.

[3]

[3]

[3]

- 4. (a) Determine the following indefinite integrals: [4]
 - i. $\int x^{5/2} dx$,
 - ii. $\int x^n \ln x \, dx$, (n > 0 is a positive integer).
 - (b) Determine the definite integral [2]

$$\int_{-1}^{1} \frac{\sin x}{1+x^2} dx,$$

and justify your answer.

5. (a) Determine the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ of the function [3]

$$f(x,y) = \ln\left(1 + xy^2\right),\,$$

and calculate the total derivative $\frac{df}{dt}$ for the parametrized path defined by x(t) = t, $y(t) = \sqrt{t}$.

(b) Show that the above function f(x,y) in (a) satisfies the equation

$$2\frac{\partial^2 f}{\partial x^2} + y^3 \frac{\partial^2 f}{\partial x \partial y} = 0.$$

- 6. (a) Write down the general form of the Maclaurin series of a function f(x). [2]
 - (b) Determine the first three non-zero terms in the Maclaurin series of the following functions: [5]

i.
$$f(x) = \sqrt{1 + 2x}$$
,

ii.
$$f(x) = \sin(2x^2)$$
.

[3]

Section B

(Answer ALL THREE questions from this section)

- 7. (a) Find the minimal distance d between the point P=(1,1,1), and the line passing through the points A=(2,1,5) and B=(3,4,3).
 - (b) Find the equation of the line formed by the intersection of the two planes [5]

$$3x + y - z = 3,$$
$$2y + 4z = -4.$$

Express the equation of the line in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$, where \mathbf{a} is the position vector of a point on the line, \mathbf{b} is a vector in the direction of the line and λ is a real parameter.

(c) Calculate the scalar and vector product between the vectors

$$\mathbf{a} = \cos \theta \, \mathbf{i} + \sin \theta \, \mathbf{j},$$
$$\mathbf{b} = \cos \phi \, \mathbf{i} + \sin \phi \, \mathbf{j},$$

and hence prove that

$$\cos(\theta - \phi) = \cos\theta\cos\phi + \sin\theta\sin\phi,$$

$$\sin(\theta - \phi) = \sin\theta\cos\phi - \cos\theta\sin\phi.$$

(d) Sketch (in separate Argand diagrams) and describe the regions on the complex z plane, defined by the following inequalities: [5]

i.
$$|z+2-3i| \le 2$$
,

ii.
$$Re(z^2) > 0$$
.

[5]

- 8. (a) Calculate the derivative $\frac{df}{dx}$ of the following functions: [6]
 - i. $f(x) = \arctan x$,

 - ii. $f(x) = x^{(x^2)}$, iii. $f(x) = e^{-x^2} + \int_0^x e^{-t^2} dt$.
 - (b) Calculate the volume of revolution formed by rotating the curve

$$f(x) = \frac{1}{\sqrt{1+x^2}},$$

around the x-axis in a full circle. The volume extends over the range $-\infty < x < \infty$.

- i. Given a function f(x,y), state the condition for a point (x_0,y_0) to [3]be stationary, and the criteria to determine its nature.
 - ii. Find all stationary points of the function [4]

$$f(x,y) = x^3 - yx^2 + y^2,$$

and determine their nature.

(d) A tilted ellipse in the x-y plane is described by the implicit relation

$$x^2 + xy + y^2 = 12.$$

Find the location (x, y) of the

- i. top-most (largest y value),
- ii. bottom-most (smallest y value),
- iii. right-most (largest x value), and
- iv. left-most (smallest x value)

point on the ellipse.

[3]

[4]

9. (a) i. Given a general differential of the form

$$A(x,y)dx + B(x,y)dy,$$

state the condition that means that the differential is exact.

ii. Hence determine whether the following differentials are exact or not: [5]

1)
$$\left(2x + y^2 + \frac{1}{x}\right) dx + \left(2xy - \frac{1}{y}\right) dy$$
,

2)
$$\frac{x}{x^2+y^2}dy - \frac{xy}{x^2+y^2}dx$$
.

In case a differential is exact, determine the corresponding function f(x, y) such that df = A(x, y)dx + B(x, y)dy.

(b) A vector field in two-dimensional Cartesian coordinates is given by

$$\mathbf{F} = \frac{-y\mathbf{i} + x\mathbf{j}}{(x^2 + y^2)^{3/2}}.$$

Calculate the line integral $W = \int_C \mathbf{F} \cdot d\mathbf{r}$ for the path defined by a clockwise [3] half-circle around the origin, from $\mathbf{r}_A = -2\mathbf{i}$ to $\mathbf{r}_B = 2\mathbf{i}$.

(c) Show that the sum of squared integers, $\sum_{k=1}^{N} k^2$, is given by [4]

$$\sum_{k=1}^{N} k^2 = \frac{1}{6}N(N+1)(2N+1).$$

Hint: Use the identity $(k+1)^3 - k^3 = 3k^2 + (3k+1)$ to express the given series in terms of two other, explicitly summable, series.

(d) Evaluate the following limits:

i.

$$\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 2}},$$

ii.

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 2x} - x \right)^x.$$

[1]

[7]