Elliptic curves: homework 13

Mastermath / DIAMANT, Spring 2019 Martin Bright and Marco Streng

- 1. For a group G and $g, h \in G$ as follows, determine $\log_g(h)$. You may use a computer or calculator *only* for $+, -, \times$ and \div . Say something sensible about the running time of your algorithm as the input gets larger.

 - (b) $G = \mathbb{Z}/1018\mathbb{Z}$ (additive!), g = 629, h = 337,
 - (c) $G = (\mathbb{Z}/11\mathbb{Z})^*, g = 7, h = 3,$
 - (d) $G = E(\mathbb{F}_7)$, where $E: y^2 = x^3 + x + 1$, q = (0,1), h = (2,2).
- **2.** What can you say about the discrete logarithm problem on elliptic curves over \mathbb{Q} ? Hint: use the height.
- 3. For G, g, g_a, g_b as below, suppose that Alice and Bob do a Diffie-Hellman key exchange with the group G and parameter $g \in G$, and that they send g_a and g_b to each other as part of the protocol. Break the cryptography by computing the element $g_{ab} \in G$ that determines the shared key. You may use a computer or calculator only for $+, -, \times$ and \div . Say something sensible about the running time of your algorithm, including the algorithm for the relevant parts of Problem 1, as the input gets larger.
 - (a) G, g as in Problem 1(1b), $g_a = 337, g_b = 123$.
 - (b) G, g as in Problem 1(1c), $g_a = 3$ and $g_b = 5$,
- **4.** Use Pollard's p-1 method to find a non-trivial factor of the number N=5802023111. You may use a computer for basic arithmetic in $\mathbb{Z}/N\mathbb{Z}$ and for computing the greatest common divisor.

We recommend using SageMath, Pari/GP or Magma, but we expect this to work also in Python, Maple, Mathematica or Wolfram Alpha:

```
http://www.wolframalpha.com/input/?i=5^3+modulo+123
http://www.wolframalpha.com/input/?i=gcd(10,6)
```

Warning: it is very easy and natural to program this algorithm in a spreadsheet, but a spreadsheet program (and all other programs that use floating point numbers or fixed-precision 'int's) will run into precision loss because of rounding or overflows, so this will not work.

Remark: this works very well with the version of the p-1 method from the lecture or the book of Hoffstein, Pipher and Silverman.

In the following problems, let

$$\mathbb{P}^2(\mathbb{Z}/N\mathbb{Z}) := \{(a, b, c) \in (\mathbb{Z}/N\mathbb{Z})^3 : \gcd(a, b, c, N) = 1\}/\sim,$$

where \sim is given by

$$(a:b:c) \sim (a':b':c') \Leftrightarrow \exists \lambda \in (\mathbb{Z}/N\mathbb{Z})^* : (a,b,c) = \lambda(a',b',c').$$

- **5.** Let $N \in \mathbb{Z}$ be a positive integer and $F \in \mathbb{Z}[X,Y,Z]$ a homogeneous polynomial such that $\overline{F} = (F \mod N)$ is non-zero. Let C be the plane curve over \mathbb{Q} given by the equation F = 0, and let $C(\mathbb{Z}/N\mathbb{Z})$ be the set of points $(X:Y:Z) \in \mathbb{P}^2(\mathbb{Z}/N\mathbb{Z})$ satisfying $\overline{F}(X,Y,Z) = 0$.
 - (a) Give a natural map $f: C(\mathbb{Q}) \to C(\mathbb{Z}/N\mathbb{Z})$.
 - (b) Give an example where f is not surjective.
 - (c) Give an example where f is not injective.
 - (d) Suppose $N = N_1 N_2$ with $gcd(N_1, N_2) = 1$. Give a natural bijection

$$C(\mathbb{Z}/N\mathbb{Z}) \leftrightarrow C(\mathbb{Z}/N_1\mathbb{Z}) \times C(\mathbb{Z}/N_2\mathbb{Z}).$$

(e) Show that the line Y=0 intersects the elliptic curve $F:Y^2=X^3-X$ in nine points of $F(\mathbb{Z}/15\mathbb{Z})$, not counted with multiplicity. Conclude that one cannot straightforwardly use intersection with a line to compute P+Q for P=(1,0) and $Q=(2,0)\in F(\mathbb{Z}/15\mathbb{Z})$.

Let E be an elliptic curve over $\mathbb{Z}/N\mathbb{Z}$, that is, a projective plane Weierstrass equation over $\mathbb{Z}/N\mathbb{Z}$ with discriminant in $(\mathbb{Z}/N\mathbb{Z})^*$. Let r(N) be the radical of N, i.e., the product of the primes dividing N. Let $\phi: E(\mathbb{Z}/N\mathbb{Z}) \to \prod_{p|N} E(\mathbb{Z}/p\mathbb{Z})$ be the natural map, where the product is taken over primes dividing N.

- (a) Show that, given any pair of points $P, Q \in E(\mathbb{Z}/N\mathbb{Z})$, the addition formula (e.g. Problem 12) allows you to compute either
 - (i) $R \in E(\mathbb{Z}/N\mathbb{Z})$ with $\phi(R) = \phi(P) + \phi(Q)$ or
 - (ii) a divisor $d \mid N$ with $d \neq 1, N$.
- (b) Try out the method of (5a) for some choices of points $P, Q \in F(\mathbb{Z}/15\mathbb{Z})$ with Y = 0. What happens? Give a point R with $\phi(R) = \phi(P) + \phi(Q)$.

In fact, one can show that $E(\mathbb{Z}/N\mathbb{Z})$ is in a natural way a group, but we will not do that at this point, and it is not needed for the algorithms of this week.

- **6.** Let E be the elliptic curve over $\mathbb{Z}/9\mathbb{Z}$ given by $E: Y^2Z = X^3 + 7XZ^2$. You may use that $E(\mathbb{Z}/9\mathbb{Z}) \subset \mathbb{P}^2(\mathbb{Z}/9\mathbb{Z})$ is a group and that $\pi: E(\mathbb{Z}/9\mathbb{Z}) \to E(\mathbb{Z}/3\mathbb{Z})$ is a homomorphism.
 - (a) Determine the order of the group $E(\mathbb{Z}/3\mathbb{Z})$, show that it is cyclic, and give a generator.
 - (b) Determine the order of the kernel of π , show that it is cyclic, and give a generator.
 - (c) Is π surjective?
 - (d) Determine the order of the group $E(\mathbb{Z}/9\mathbb{Z})$ and give a generating set. Is the group cyclic?