Majeure Machine Learning

Data Preparation

Contenu

- Qu'est-ce que le nettoyage des données
- Pourquoi nettoyer les données
- Pourquoi le feature engineering
- Pourquoi la Cross Validation (CV)
- Pratique de jupyter / Dataiku

Ce que vous devrez savoir faire

- Définir les termes techniques
- Comprendre l'enjeu de la data preparation
- Comprendre l'impact de la connaissance métier
- Expliquer l'intérêt de la CV
- Avoir une bonne connaissance de jupyter / Dataiku

Mise en Pratique

Approche technique

Approche intuitive

Dataiku DSS

Dataiku dss est une plateforme d'analyse de données permettant d'effectuer toutes les étapes d'un projet de Machine Learning sans développement (au clique)

Dataiku dss Studio

Data Preparation

Data Cleaning | Feature engineering

Vocabulaire

Data Cleaning | Data filtering | Data enrichissement | Feature engineering | Data preparation | Data discretization | Data snooping | Data Visualization | Data exploration | Data preprocessing | Data mining | Data scientist | Data analyst | Data engineer | Data transformation

Pourquoi le Data Cleaning?

Apprendre à partir d'une base de données contenant des valeurs fausses ne peut engendrer que des prédictions fausses.

L'objectif du data cleaning est :

De n'avoir que des données exploitables De n'avoir que des données exactes

De n'avoir aucune ligne incomplète

De conserver un maximum de données

Data Cleaning

Ensemble des techniques qui permettent de transformer, enrichir, modifier les données afin d'optimiser les performances du modèle d'apprentissage.

Prénom	Nom	âge	Ville	Profession Profession	 Nationnalité
Yann	Lecun	53	New York	Che cheur	 Français
Hugo	Larochelle	? 39	Canada_	Che cheur	 Canadien
Andrew	Ng	Etats-Unis	42	Chelcheur	 Anglais/Chinois
Data Classica					
			D	ata Cleaning	Da

Pourquoi le feature engineering?

Augmenter la performance de son modèle en bénéficiant du savoir d'un expert métier

Définition du feature engineering

Le feature engineering est le processus consistant à extraire, sélectionner et créer des caractéristiques pertinentes, informatives et distinctives à partir de données, puis de les exploiter au travers d'un algorithme apprenant.

Exemple de feature engineering - Date

date	Date - semaine	Date - vacances	Date - weekend	Date - Jour ferié
01/03/2018	9	oui	non	non
11 / 11 / 2018	45	non	oui	oui

Exemple de feature engineering - Age

profession	âge	Majeur ?
étudiant	17	non
étudiant	19	oui
étudiant	20	oui

Exemple de feature engineering - one hot encoding

profession	Étudiant ?	Chercheur ?
étudiant	1	0
chercheur	0	1
Etudiant / chercheur	1	1

Exemple de feature engineering - normalisation

âge	Âge - normalisation
17	(17-17)/(84-17) = 0
19	(19-17)/(84-17) = 0.029
45	(45-17)/(84-17) = 0.417
84	(84-17)/(84-17) = 1
20	(20-17)/(84-17) = 0.044

$$x_{new} = rac{x - x_{min}}{x_{max} - x_{min}}$$

Exemple de feature engineering - standardisation

âge	Âge - normalisation
17	(17-37)/(84-17) = -0.298
19	(19-37)/(84-17) = - 0.0268
45	(45-37)/(84-17) = 0.119
84	(84-37)/(84-17) = 0.701
20	(20-37)/(84-17) = -0.253

$$x_{new} = rac{x - x_{mean}}{x_{max} - x_{min}}$$

Normalisation

Standardisation

[0,1]

Inconvénients : efface les outliers Efficace pour :

- -Image processing
- -Neural networks

[-1,1]

Efficace pour:

-PCA

- -Classification
- -Algorithmes ensemblistes
- -etc.

Exemple de feature engineering - Golden feature

Une entreprise de sport souhaite prédire le nombre d'articles vendus par catégorie pour la semaine suivante. Un réapprovisionnement de 50 articles par catégorie est effectué chaque semaine. Le data scientist dispose des données de ventes des 2 dernières années par semaine.

Semaine	Catégorie	Nbr d'articles en stock	Articles vendus
42	Vélo	232	S41 - s42 + 50 = 30
43	Vélo	167	232 - 167 + 50 = 115

inventaire	
non	
oui	

Pourquoi la Cross Validation?

La CV permet de valider un modèle basé sur un ensemble de modèles apprenant chacun sur une segmentation de données différentes. Cette approche permet de ne pas être pénalisé lorsque les données sont hétérogènes

Augmenter la perception de la robustesse du modèle

1

Tester sur l'ensemble des données

Identifier plus facilement si le modèle a Overfitté

3

Définition la Cross Validation 1

Définition la Cross Validation 2

Différence entre la performance sur le Train set et le Test set

Mesure de la performance

Indicateurs de Classification

Accuracy

 $\frac{nb_elements_bien_predits}{nb_total_elements}$

F1score

$$\begin{array}{rcl} precision & = & \frac{TP}{TP + FP} \\ recall & = & \frac{TP}{TP + FN} \\ F1 & = & \frac{2 \times precision \times recall}{precision + recall} \end{array}$$

Confusion Matrix

Indicateurs de Classification

\hat{y}	у
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	0
1	0

<u>Accuracy</u>

$$\frac{8}{10} = 0.8 = > 80\%$$

Confusion Matrix

F1score

Précision :
$$\frac{8}{8+2} = 0.8$$

Sensibilité (Recall) :
$$\frac{8}{8+0} = 1$$

F1score :
$$\frac{2*0.8*1}{0.8+1} = \frac{1.6}{1.8} pprox 0.88 => 88\%$$

Calcul de distance des erreurs

Intuition: A quel point la prédiction est loin de la vérité

$$RSS = \sum_{i=1}^n (f(x_i)) - y_i)^2$$

Somme des carrés des

résidus

$$MSE = rac{1}{n} \sum_{i=1}^n (f(x_i)) - y_i)^2$$

Normalisation avec n (moyenne)

$$=\sqrt{rac{1}{n}\sum_{i=1}^n(f(x_i))-y_i)^2}$$

On se ramène à l'unité de y avec l'ajout de la racine

$$RMSE = \sqrt{rac{1}{n}\sum_{i=1}^n (f(x_i)) - y_i)^2}$$

 $RMSLE = \sqrt{rac{1}{n}\sum_{i=1}^{n}(log(f(x_i)+1)-log(y_i+1))^2}$

On rajoute des logs pour ne pas pénaliser les grandes erreurs

$$\mathcal{LSS} = \sum_{i=1} (f(x_i)) - y_i)^{-1}$$

R2 - Mesure de la corrélation

Intuition: indice de confiance

Mesure de la corrélation entre la prédiction et la valeur réelle (doit être au plus proche de 1)

$$\in]-\infty,1]$$

Moyenne des mesures à prédire

Fin du chapitre 2.2