Introdução

NodeMCU

Fabiano Sardenberi Kuss

Introdução

Usando o Arduino IDE Baixando e Instalando o Arduino IDE Configurando

Programando com a IDE Arduino

Estrutura da linguagem Monitor Serial Utilizando exemplos Incluindo bibliotecas

Funcionalidade WI-FI A plataforma NodeMCU é uma placa open source baseada nas funcionalidade providas pelo chip de baixo custo com suporte a redes sem fio 802.11 ESP8266 que utiliza o microprocessador Xtensa

Esta plataforma oferece um ambiente adequado para o desenvolvimento de dispositivos que implementam funcionalidades para atuarem em um conceito de loT de forma simples. Pode ser visto como uma evolução da estratégia de desenvolvimento utilizando Arduino

Introdução

NodeMCU

Introdução

A plataforma NodeMCU é um kit de desenvolvimento open source baseada nas funcionalidade providas pelo chip de baixo custo com suporte a redes sem fio 802.11 ESP8266 que utiliza o microprocessador Xtensa.

Esta plataforma oferece um ambiente adequado para o desenvolvimento de dispositivos que implementam funcionalidades para atuarem em um conceito de loT de forma simples. Pode ser visto como uma evolução da estratégia de desenvolvimento utilizando Arduino

Apresentando a Placa

NodeMCU

Introdução

ESP8266

NodeMCU

Fabiano Sardenberg Kuss

Introdução

Usando o Arduino ID

Baixando e Instalando o Arduino IDE Configurando Arduino IDE

Programando com a IDE

Estrutura da linguagem Monitor Serial Utilizando exemplos Incluindo

Funcionalidad WI-FI

/lotores

):--I----

Microcontrolador: Xtensa L106 (32-bit) 80Mhz

Memória Interna: 128K para instruções; 128K para dados

Memória Flash: 4Mb.

■ I/O: 16 Pinos GPIO

■ Tensão: 3.3 VDC

■ WI-FI: 802.11 b/g/n

Instalando o Arduino IDE

NodeMCU

Fabiano Sardenberg Kuss

Introduçã

Usando o Arduino IDI

Baixando e Instalando o Arduino IDE Configurando

Programando com a IDE Arduino Estrutura da

Utilizando exemplos Incluindo bibliotecas Funcionalidade

Funcionalidades WI-FI Download da IDE em https://www.arduino.cc/en/Main/Software Extrair o arguivo com

tar xvf arduino -1.8.X—linux64.tar.xz

Ir para a pasta e iniciar a IDE

cd arduino -1.8.X./arduino

Para adicionar suporte a placa ESP12 e NodeMCU é necessário carregar o compilador e configurações para compilação, geração da flash e copiar o arquivo gerado para o processador.

Instalando o Arduino IDE

NodeMCU

Fabiano Sardenberg Kuss

Introdução

Usando o Arduino ID

Baixando e Instalando o Arduino IDE Configurando

Programando com a IDE Arduino

Estrutura da linguagem Monitor Serial Utilizando exemplos Incluindo bibliotecas

Funcionalidade WI-FI

Dienlave

And Control of the Co

No campo URLs Adicionais para Gerenciador de Placas deve ser inserido o seguinte valor Selecionar o submenu Preferências pelo menu Arquivo, será aberta uma janela com várias opções de configuração

 $http://arduino.esp8266.com/stable/package_esp8266com_index.json$

Configurando suporte para ESP12 e NodeMCU

NodeMCU

Fabiano Sardenberg Kuss

Introduçã

Usando o Arduino ID

Baixando e Instalando o Arduino IDE Configurando o Arduino IDE

com a IDE Arduino

Estrutura da linguagem Monitor Seria Utilizando exemplos Incluindo bibliotecas

Funcionalidad WI-FI

Dicalaye

Para facilitar a busca é possível aplicar filtros no capo Refine sua busca. O valor Esp é suficiente para retornar poucos resultados. Basta selecionar ESP8266 by ESP8266 Communit e instalar.

Selecionar o submenu Gerenciador de Placas a partir pelo menu Ferramentas, submenu Placa

Configurações Finais

NodeMCII

Configurando o Arduino IDE

sketch sep14a Monitor serial // put your setup cod Adafruit Circuit Playground WiFi101 Firmware Updater) ()quof bic // put your main co Arduino Uno WiFi Programador: "AVRISP mkif" Adafruit HUZZAH ESP8266 Olimex MOD-WIFI-ESP8266(-DEV WeMos D1 (Retired) 45 ./ardutno W/BnFn Core Development Module

Após a seleção da placa NoceMCU 0.9 retorne ao menu ferramentas e selecione a porta USB correta No Linux as portas de comunicação serial com o Módulo é mapeada como /dev/ttyUSBX, onde X é um número inteiro com valor inicial 0.

Você pode verificar as portas ativas utilizando o comando Is /dev/tty*

Compilação e cópia

NodeMCU

Fabiano Sardenberg Kuss

ntroduçã

Usando o Arduino ID

Baixando e Instalando o Arduino IDE Configurando Arduino IDE

Programando com a IDE Arduino

Estrutura da linguagem Monitor Seria Utilizando exemplos Incluindo bibliotecas

Funcionalidade WI-FI

Diamlaua

Para a compilação a IDE utiliza uma coleção de programas para execução do GCC, gerando código para o microprocessador Xensa. Quando é feita a instalação de suporte para NodeMCU este conjunto de programas é baixado localmente.

A cópia do código binário gerado para a placa tem que ser feita passando um conjunto de instruções concebidas específicamente para o processador. No caso da ESP12 o programa é na realidade um firmware.

Para apresentar detalhadamente o processo de compilação e cópia do programa é necessário configurar a IDE habilitando os campos compilação e carregar em Mostrar Mensagens de Saída na tela de prferências (Arquivo, Preferências)

イロト 不得 とくき とくき と

NodeMCU

Fabiano Sardenber Kuss

Introduçã

Usando o Arduino ID

Baixando e Instalando o Arduino IDE Configurando o Arduino IDE

Programando com a IDE Arduino

Estrutura da linguagem Monitor Serial Utilizando exemplos Incluindo bibliotecas

Funcionalidade WI-FI A programação é feita utilizando a sintaxe da linguagem C++, podendo ser utilizadas as funções e tipos primitivos da mesma. No entanto muitas das boas práticas utilizadas para programação em computadores tradicionais devem ser revistas para desenvolvimento de sistemas embarcados.

- Duas funções que tem que existir em qualquer programa;
 - setup()
 - loop()
- setup() é executado na inicialização do programa, é equivamente a main()
- loop(), é chamado após a conclusão da função setup() é é um loop infinito

Algumas funções e constantes

NodeMCU

Fabiano Sardenberg Kuss

ntroduçã

Usando o Arduino IDI

Baixando e Instalando o Arduino IDE Configurando o Arduino IDE

Programando com a IDE Arduino

Estrutura da linguagem Monitor Serial Utilizando exemplos

Funcionalidade WI-FI

Motores

Displays

Constantes

- OUTPUT, INPUT
- LOW, HIGHT

Programação para Portas

- pinMode(PIN, [INPUT—OUTPUT])
- digitalWrite(PIN, [LOW—HIGH])
- digitalRead(PIN)
- delay(TIME_Ms)

Comunicação Serial

- Serial.begin(SPEED)
- Serial.println(DATA)
- Serial.print(DATA)
- Serial.available()
- Serial.read()

Blick um Hello Word em IoT

NodeMCU

Estrutura da linguagem

```
ESP8266 Blink by Simon Peter
 Blink the blue IFD on the ESP-01 module
 This example code is in the public domain
*/
void setup() {
  pinMode(LED_BUILTIN, OUTPUT);
void loop() {
  digitalWrite(LED_BUILTIN, LOW);
  delay (1000);
  digitalWrite(LED_BUILTIN, HIGH);
  delay (2000);
```

Blick com 2 Leds

NodeMCU

Estrutura da linguagem

```
int EXTLED = 5; //Aqui devemos usar o GPIO
int count = 0:
void setup() {
  pinMode(LED_BUILTIN, OUTPUT);
  pinMode(EXTLED, OUTPUT);
void loop() {
  if (count \%2 = 0){
    digitalWrite(EXTLED, HIGH);
    digitalWrite(LED_BUILTIN, LOW);
  }else{
    digitalWrite(EXTLED, LOW);
    digitalWrite(LED_BUILTIN, HIGH);
  count++:
  delay (1000);
```

Monitor Serial

NodeMCII

Monitor Serial

A IDE Arduino oferece uma interface que permite ler e enviar dados para a saída serial. Quando está é habilitada passa a comunicar-se com a interface na porta selecionada.

Comunicação serial

NodeMCU

Fabiano Sardenberg Kuss

ntroducã

Usando o

Baixando e Instalando o Arduino IDE

Configurando o Arduino IDE

Arduino

Iinguagem

Monitor Serial

Utilizando
exemplos

Funcionalidades

Mataras

```
int start = 0:
void setup() {
  Serial.begin (9600);
  Serial.println("Iniciando");
  Serial . print ("Connectando _com");
void loop() {
  if(start < 100){
    Serial.print(".");
    start++:
  else\ if(start = 100)
    Serial . println ("\nConnected");
    start++;
  delay (1000);
```

Comunicação serial

NodeMCU

Fabiano Sardenberg Kuss

ntroducã

Usando o

Arduino IDI

Instalando e Instalando o Arduino IDE Configurando o Arduino IDE

Arduino Estrutura da

Monitor Serial
Utilizando
exemplos
Incluindo

Funcionalidades WI-FI

```
String data;
int porta = 0:
void setup() {
  Serial.begin (9600);
  delay (500);
  Serial . write (" Digite_algo:\n");
void loop() {
  if (Serial.available() > 0) {
    data = Serial.readString():
    Serial . print (" Digitado : _ " );
    Serial . println (data);
    Serial . println (" Digite _um_únmero : _" );
    while (Serial . available () <= 0) {}
    porta = Serial.readString().toInt();
    Serial . print (porta . HEX):
    Serial . write ("\nDigite_algo:\n");
  delay (10);
```

${\sf NodeMCU}$

Fabiano Sardenber

Introduç

Usando o Arduino ID

Baixando e Instalando o Arduino IDE Configurando o Arduino IDE

com a IDE Arduino

linguagem Monitor Seria Utilizando exemplos

Funcionalidade

WI-FI

Displays

Quando é baixado o suporte para ESP na IDE Arduino são configurados vários exemplos de programas que ajudam não apenas iniciantes mas podem ser uma boa ferramenta para funcionalidades necessárias durante o desenvolvimento de aplicações.

NodeMCU

Fabiano Sardenber Kuss

Introduç

Usando o

Baixando e Instalando o Arduino IDE Configurando Arduino IDE

Programando com a IDE Arduino Estrutura da linguagem

Estrutura da linguagem Monitor Serial Utilizando exemplos Incluindo bibliotecas

Funcionalidade WI-FI

....

Para facilitar a implementação de alguns módulos é possível utilizar bibliotecas especialmente desenvolvidas para estes produtos. Estes programas podem ser obtidor utilizando o Sketch acessando o menu Sketch, Incluir Biblioteca, Gerenciar Biblioteca.

Alternativamente é possível baixar os arquivos do módulo que deseja instalar e extrair o mesmo na pasta libraries no diretório de instalação da IDE.

WI-FI

NodeMCU

Fabiano Sardenberg Kuss

Introduçã

Usando o

Baixando e Instalando o Arduino IDE Configurando Arduino IDE

com a IDE Arduino

Estrutura da linguagem Monitor Serial Utilizando exemplos Incluindo bibliotecas

Funcionalidades WI-FI

Motores

Classes

- pinMode(PIN, [INPUT—OUTPUT])
- digitalWrite(PIN, [LOW—HIGH])
- digitalRead(PIN)
- delay(TIME_Ms)

WI-FI (definidos em ESP8266WiFi.h)

- WiFi.begin(SSID, SENHA);
- WiFi.status()
- WiFi.localIP()

Conectar ao AP

${\sf NodeMCU}$

Fabiano Sardenberg Kuss

Introduçã

Usando o Arduino IDI

Baixando e Instalando o Arduino IDE Configurando Arduino IDE

com a IDE Arduino

Estrutura da linguagem Monitor Serial Utilizando exemplos Incluindo

Funcionalidades WI-FI

Motores

#include <ESP8266WiFi.h> = "ssid"; const char* ssid const char* password = "senha_do_ssid"; void setup() { Serial.begin (9600); delay (10); Serial . print ("Conectando _com: _"): Serial . println (ssid); WiFi. begin (ssid . password): while (WiFi.status() != WL_CONNECTED) { delay (500): Serial . print (" . "); Serial.println(""); Serial . println ("WiFi_conectado"); Serial . println ("IP address : "): Serial . println (WiFi . localIP ()): void loop() {

Configurar como AP

${\sf NodeMCU}$

Fabiano Sardenberg Kuss

ntroduçã

Usando o Arduino IDE

Baixando e Instalando o Arduino IDE Configurando Arduino IDE

Programando com a IDE Arduino

Estrutura da linguagem Monitor Serial Utilizando exemplos Incluindo bibliotecas

Funcionalidades WI-FI

Motores

Displays

```
#include <ESP8266WiFi.h>
const char* ssid
                     = "MeuAP" :
const char* password = "minhasenha";
IPAddress IP (192,168,200,1);
IPAddress net (255, 255, 255, 0);
void setup() {
  Serial.begin (9600);
  delay (10);
  Serial . print ("Iniciando _cservio : _"):
  WiFi.mode(WIFI_AP);
  WiFi.softAPConfig(IP. IP. net)
  WiFi.softAP(ssid . password):
  while (WiFi.status() != WL_CONNECTED) {
    delay (500):
    Serial . print (".");
  Serial . println ("IP _address : _");
  Serial . println (WiFi . localIP ());
void loop() {
    Serial, println (WiFi, localIP ()):
```

Atendendo requisições (setup)

NodeMCU

Fabiano Sardenberg

ntroducã

Usando o

Baixando e Instalando o Arduino IDE Configurando o Arduino IDE

Programando com a IDE Arduino

Estrutura da linguagem Monitor Serial Utilizando exemplos Incluindo bibliotecas

Funcionalidades WI-FI

Motores

.

#include <ESP8266WiFi.h> const char* ssid = "MeuAP": const char* password = "minhasenha"; IPAddress IP (192.168.200.1): IPAddress net (255.255.255.0): int EXTLED = 5: WiFiServer server (80): void setup() { Serial, begin (9600): delay (10): WiFi.mode(WIFI_AP): WiFi.softAPConfig(IP, IP, net); WiFi.softAP(ssid, password); delav (1000): server.begin(); pinMode(LED_BUILTIN, OUTPUT); pinMode(EXTLED, OUTPUT);

Atendendo requisições (loop)

NodeMCU

Fabiano Sardenberg Kuss

ntroducão

Heando o

Arduino IDI

Baixando e Instalando o Arduino IDE Configurando Arduino IDE

Programando com a IDE Arduino

Estrutura da linguagem Monitor Serial Utilizando exemplos Incluindo bibliotecas

Funcionalidades WI-FI

Motore

Displays

```
void loop() {
    WiFiClient client = server.available():
    if (! client)
        return:
    while (! client . available ()) {
      if (Serial.available() > 0) {
        data = Serial.readString():
        Serial . print (" Digitado : _");
        Serial . println (data);
        continue:
    response = "<html><meta\_charset='utf-8'/><h1>áOl\_cliente\_"+data+"</h1></html
    Serial.println("aConexo_recebida");
    client.println("HTTP/1.1_200_OK");
    client . println ("Content-Type: _text/html"):
    client.println(""); //Fim do cabecalho http \n\r
    client . println (response);
    delay (10);
```

Atendendo requisições (loop)

NodeMCU

Fabiano Sardenberg Kuss

ntroduçã

Usando o

Arduino IDI Baixando e Instalando o

Instalando o Arduino IDE Configurando Arduino IDE

com a IDE Arduino

Estrutura da linguagem Monitor Serial Utilizando exemplos Incluindo

Funcionalidades WI-FI

Motores

)isplavs

```
void loop() {
    WiFiClient client = server.available():
    if (! client)
        return;
    while (! client . available ())
        delay(1);
    Serial . println ("ãConexo_recebida");
    client . println ("HTTP/1.1_200_OK"):
    client . println ("Content-Type: _text/html");
    client.println(""); //Fim do cabecalho http \n\r
    client.println("<html><meta_charset='utf-8'/><h1>\u00e10l_cliente</h1></html>");
    digitalWrite(EXTLED, HIGH);
    digitalWrite(LED_BUILTIN, HIGH):
    delav (1000):
    digitalWrite(EXTLED, LOW);
    digitalWrite(LED_BUILTIN, LOW):
    delay (10);
```

Passando parâmetros (loop)

```
NodeMCU
```

Fabiano Sardenberg Kuss

ntrodução

Usando o

Baixando e Instalando o Arduino IDE Configurando Arduino IDE

Programando com a IDE Arduino

Estrutura da linguagem Monitor Serial Utilizando exemplos Incluindo

Funcionalidades WI-FI

Motore

Displays

```
void loop() {
    WiFiClient client = server.available();
    if (! client)
        return:
    while (! client . available ())
        delav(1):
    String request = client.readStringUntil("\n");
    String response = "<html><meta_charset='utf-8'/><h1>Nada_a_fazer</h1></html>
    client . flush ();
    if(request.indexOf("?l=on") > 0){
        digitalWrite(EXTLED, HIGH);
        response = "<html><meta_charset='utf-8'><h1>Luz_Acesa</h1></html>":
    }else if(request.indexOf("?l=off") > 0)
        response = "<html><meta_charset='utf-8'/><h1>Luz_Acesa</h1></html>";
    Serial . println ("aConexo_recebida");
    client.println("HTTP/1.1_200_OK");
    client . println ("Content-Type: _text/html");
    client.println(""); //Fim do cabecalho http \n\r
    client . println (response);
    delay (10);
```

Melhorando a interface (loop)

```
{\sf NodeMCU}
```

Fabiano Sardenber Kuss

Introduçã

Usando o

Baixando e Instalando o Arduino IDE Configurando Arduino IDE

Programando com a IDE Arduino

Inguagem
Monitor Serial
Utilizando
exemplos
Incluindo
bibliotecas

Funcionalidades WI-FI

delay (10);

Motores

Displays

```
void loop() {
    WiFiClient client = server.available();
    if (! client )
        return:
    while (! client . available ())
        delav(1):
    String request = client.readStringUntil('\r');
    String response = "<html><style>input{width:500px; height:180px; margin-bottom
    response += "<input_type='button'_value_='On'_onclick='location.href=\"?l=or
    response += "<input_type='button'_value_='Off'_onclick='location.href=\"?l=c
    client . flush ():
    Serial . println (request);
    if(request.indexOf("?l=on") >= 0){
        digitalWrite(EXTLED, HIGH);
    }else if(request.indexOf("?l=off") >= 0){
        digitalWrite(EXTLED, LOW):
    Serial.println("ãConexo_recebida");
    client.println("HTTP/1.1_200_OK");
    client . println ("Content-Type: _text/html");
    client.println(""); //Fim do cabecalho http \n\r
    client . println (response):
```

Sobre Motores

NodeMCU

Fabiano Sardenberg Kuss

ntrodução

Usando o Arduino IDE

Baixando e Instalando o Arduino IDE Configurando Arduino IDE

com a IDE Arduino

Arduino Estrutura da linguagem Monitor Seria

exemplos Incluindo

Funcionalidade

Motores

Display

Ponte H

${\sf NodeMCU}$

Fabiano Sardenberg Kuss

ntrodução

Usando o Arduino IDE

Baixando e Instalando o Arduino IDE Configurando

com a IDE

Arduino Estrutura da linguagem

Utilizando exemplos Incluindo

Funcionalidade

Motores

PWM (Pulse-Width Modulation)

NodeMCU

Fabiano Sardenber_l Kuss

Introduçã

Usando o Arduino ID

Baixando e Instalando o Arduino IDE Configurando Arduino IDE

Programando com a IDE Arduino

Estrutura da linguagem Monitor Serial Utilizando exemplos Incluindo bibliotecas

WI-FI

É uma técnica que permite a simulação de sinais analógicos utilizando sistemas digitais. Consiste no envio de sinais em intervalos de tempos fazendo que o dispositivo receba ou não sinas de forma que seja possível a representação de curvas.

- Intensidade de luminosidade;
- Simular controle de velocidade de motores;
- Amplificação de ondas;

Servo Motores

NodeMCU

Fabiano Sardenberg Kuss

ntroduçã

Usando o

Arduino IDE Baixando e Instalando o Arduino IDE Configurando o Arduino IDE

com a IDE Arduino Estrutura da linguagem Monitor Serial

Estrutura da linguagem Monitor Serial Utilizando exemplos Incluindo bibliotecas

Funcionalidad WI-FI

Motores

Displays

Dispositivo que movimenta a partir de informação do angulo passado como parâmetro. Os servomotores utilizam comprimento de onda de sinais digitais para estabelecer quanto tempo o motor fica energizado. Aliado com uma construção mecânica os ângulos de rotação costumam ser bastante precisos.

Motor de passo

NodeMCU

Fabiano Sardenberg Kuss

ntrodução

Usando o Arduino IDI

Baixando e Instalando o Arduino IDE Configurando

Programan com a IDE

Arduino Estrutura da linguagem Manitar Saria

Utilizando exemplos Incluindo

Funcionalidade

Motores

Display

Escrevendo no display

${\sf NodeMCU}$

Fabiano Sardenberg Kuss

ntrodução

Usando o Arduino IDI

Baixando e Instalando o Arduino IDE Configurando

Programano com a IDE

Arduino

Estrutura da linguagem Monitor Serial Utilizando

exemplos Incluindo bibliotecas

Funcionalidade WI-FI

Motore

Displays

