ЛАБОРАТОРНА РОБОТА № 5 ДОСЛІДЖЕННЯ МЕТОДІВ АНСАМБЛЕВОГО НАВЧАННЯ

Мета роботи: використовуючи спеціалізовані бібліотеки та мову програмування Руthon дослідити методи ансамблів у машинному навчанні.

Хід роботи

Завдання 2.1. Створення класифікаторів на основі випадкових та гранично випадкових лісів

```
import argparse
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import classification report
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn.metrics import classification report
from utilities import visualize_classifier
def build_arg_parser():
    parser = argparse.ArgumentParser(description='Classify data using Ensemble
Learning techniques')
    parser.add_argument('--classifier-type', dest='classifier_type',
required=True, choices=['rf', 'erf'], help="Type of classifier to use; can be
either 'rf' or 'erf'")
    return parser
if __name__ == '__main__ ':
    args=build_arg_parser().parse_args()
    classifier_type = args.classifier_type
    input_file = 'data_random_forests.txt'
    data = np.loadtxt(input_file, delimiter=',')
   X, y = data[:, :-1], data[:, -1]
    class_0 = np.array(X[y==0])
    class 1 = np.array(X[y==1])
    class 2 = np.array(X[y==2])
    plt.figure()
    plt.scatter(class_0[:, 0], class_0[:, 1], s=75, facecolors='white',
edgecolors='black', linewidth=1, marker='s')
    plt.scatter(class_1[:, 0], class_1[:, 1], s=75, facecolors='white',
edgecolors='black', linewidth=1, marker='o')
```

```
plt.scatter(class_2[:, 0], class_2[:, 1], s=75, facecolors='white',
edgecolors='black', linewidth=1, marker='^')
    plt.title('Input data')
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
random state=5)
    params = {'n_estimators': 100, 'max_depth': 4, 'random_state': 0}
    if classifier_type == 'rf':
        classifier = RandomForestClassifier(**params)
    else:
        classifier = ExtraTreesClassifier(**params)
    classifier.fit(X train, y train)
    visualize_classifier(classifier, X_train, y_train, 'Training dataset')
   y test pred = classifier.predict(X test)
    visualize_classifier(classifier, X_test, y_test, 'Test dataset')
    class_names = ['Class-0', 'Class-1', 'Class-2']
    print("\n" + "#"*40)
    print("\nClassifier performance on training dataset\n")
    print(classification_report(y_train, classifier.predict(X_train),
target_names=class_names))
    print("#"*40 + "\n")
    print("#"*40)
    print("\nClassifier performance on test dataset\n")
    print(classification_report(y_test, y_test_pred,
target_names=class_names))
    print("#"*40 + "\n")
    test_datapoints = np.array([[5, 5], [3, 6], [6, 4], [7, 2], [4, 4], [5,
2]])
    print("\nConfidence measure:")
    for datapoint in test datapoints:
        probabilities = classifier.predict_proba([datapoint])[0]
        predicted_class = 'Class-' + str(np.argmax(probabilities))
        print('\nDatapoint:', datapoint)
        print('Predicted class:', predicted_class)
    visualize_classifier(classifier, test_datapoints,
[0]*len(test_datapoints), 'Test datapoints')
    plt.show()
```

- Запуск для rf

#######################################										
Classifier pe	rformance on	training	dataset							
	precision	recall	f1-score	support						
Class-0	0.91	0.86	0.88	221						
Class-1	0.84	0.87	0.86	230						
Class-2	0.86	0.87	0.86	224						
accuracy			0.87	675						
macro avg	0.87	0.87	0.87	675						
weighted avg	0.87	0.87	0.87	675						
#############										
###############	###########	#########	######							
Classifier pe	rformance on	test data	aset							
	precision	recall	f1-score	support						
Class-0	0.92	0.85	0.88	79						
Class-1	0.86	0.84	0.85	70						
Class-2	0.84	0.92	0.88	76						
accuracy			0.87	225						
macro avg	0.87	0.87	0.87	225						
weighted avg	0.87	0.87	0.87	225						
#######################################										

⁻ Запуск для ERF

Оцінка мір достовірності прогнозу

- для rf

Confidence measure:

Datapoint: [5 5]

Predicted class: Class-0

Datapoint: [3 6]

Predicted class: Class-0

Datapoint: [6 4]

Predicted class: Class-1

Datapoint: [7 2]

Predicted class: Class-1

Datapoint: [4 4]

Predicted class: Class-2

Datapoint: [5 2]

Predicted class: Class-2

- Для ERF

Confidence measure:

Datapoint: [5 5]

Predicted class: Class-0

Datapoint: [3 6]

Predicted class: Class-0

Datapoint: [6 4]

Predicted class: Class-1

Datapoint: [7 2]

Predicted class: Class-1

Datapoint: [4 4]

Predicted class: Class-2

Datapoint: [5 2]

Predicted class: Class-2

Висновок: У цьому коді розглядається класифікація даних за допомогою двох різних моделей ансамблевого навчання: Random Forest (RF) та Extra Trees Classifier (ERF). Використано набір даних з трьома класами, які представлені двома вимірюваннями для кожного з об'єктів. Моделі тренуються на навчальних даних і перевіряються на тестових даних. Для кожної моделі також виводиться класифікаційний звіт (classification report), який включає точність, відчутливість і специфічність для кожного класу.

Додатково, перевіряється здатність класифікаторів до прогнозування класу для кількох нових тестових точок і демонструється візуалізація результатів. Це дає змогу оцінити, як кожен з класифікаторів працює не лише на тренувальних і тестових даних, але й на нових, раніше не бачених даних.

Завдання 2.2. Обробка дисбалансу класів

```
import sys
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.model selection import train test split, cross val score
from sklearn.metrics import classification_report
from utilities import visualize_classifier
input_file = 'data_imbalance.txt'
data = np.loadtxt(input_file, delimiter=',')
X, y = data[:, :-1], data[:, -1]
class_0 = np.array(X[y==0])
class_1 = np.array(X[y==1])
plt.figure()
plt.scatter(class_0[:, 0], class_0[:, 1], s=75, facecolors='black',
edgecolors='black', linewidth=1, marker='x')
plt.scatter(class_1[:, 0], class_1[:, 1], s=75, facecolors='white',
edgecolors='black', linewidth=1, marker='o')
plt.title('Input data')
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
random_state=5)
params = {'n_estimators': 100, 'max_depth': 4, 'random_state': 0}
if len(sys.argv) > 1:
```

```
if sys.argv[1] == 'balance':
        params = {'n estimators': 100, 'max depth': 4, 'random state': 0,
'class_weight': 'balanced'}
    else:
        raise TypeError("Invalid input argument; should be 'balance'")
classifier = ExtraTreesClassifier(**params)
classifier.fit(X_train, y_train)
visualize_classifier(classifier, X_train, y_train, 'Training dataset')
y_test_pred = classifier.predict(X_test)
visualize_classifier(classifier, X_test, y_test, 'Test dataset')
class_names = ['Class-0', 'Class-1']
print("\n" + "#"*40)
print("\nClassifier performance on training dataset\n")
print(classification_report(y_train, classifier.predict(X_train),
target_names=class_names))
print("#"*40 + "\n")
print("#"*40)
print("\nClassifier performance on test dataset\n")
print(classification_report(y_test, y_test_pred, target_names=class_names))
print("#"*40 + "\n")
plt.show()
```


~/Desktop/zp/ai/laba5 \$ python3 -W ignore main.py

Classifier performance on training dataset

	precision	recall	f1-score	support
Class-0 Class-1	1.00 0.84	0.01 1.00	0.01 0.91	181 944
accuracy macro avg weighted avg	0.92 0.87	0.50 0.84	0.84 0.46 0.77	1125 1125 1125

Classifier performance on test dataset

	precision	recall	f1-score	support
Class-0	0.00	0.00	0.00	69
Class-1	0.82	1.00	0.90	306
accuracy			0.82	375
macro avg	0.41	0.50	0.45	375
weighted avg	0.67	0.82	0.73	375
##############	###########			

3 balance

	•~/Desktop/zp/	/ai/laba5 \$ p	ython3 -W	ignore <u>ma</u>	<u>in.py</u> balan	ce	ĺ			
	#############		#########	#####						
,	Classifier pe	erformance on	training	dataset						
		precision	recall	f1-score	support					
١	Class-0	0.44	0.93	0.60	181					
	Class-1	0.98	0.77	0.86	944					
	accuracy			0.80	1125					
	macro avg	0.71	0.85	0.73	1125					
	weighted avg	0.89	0.80	0.82	1125					
	############		########	#####						
	#############	"#############	#########	#####						
	Classifier pe	erformance on	test dat	aset						
		precision	recall	f1-score	support					
	Class-0	0.45	0.94	0.61	69					
	Class-1	0.98	0.74	0.84	306					
	266117261			0.78	275					
	accuracy macro avq	0.72	0.84	0.78 0.73	375 375					
	weighted avg	0.72	0.84	0.73	375 375					
	weighted dvg	0.00	0.70	0.00	3,3					
	############	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	##########	#####						

Знаходження оптимальних навчальних параметрів за допомогою сіткового пошуку

Завдання 2.3. Знаходження оптимальних навчальних параметрів за допомогою сіткового пошуку

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.model_selection import train_test_split, cross_val_score,
GridSearchCV
from sklearn.metrics import classification_report
from utilities import visualize_classifier
input file = 'data random forests.txt'
data = np.loadtxt(input_file, delimiter=',')
X, y = data[:, :-1], data[:, -1]
class_0 = np.array(X[y==0])
class_1 = np.array(X[y==1])
class_2 = np.array(X[y==2])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
random state=5)
parameter_grid = [{'n_estimators': [100], 'max_depth': [2, 4, 7, 12, 16]},
{'max_depth': [4], 'n_estimators': [25, 50, 100, 250]}]
metrics = ['precision_weighted', 'recall weighted']
for metric in metrics:
    print("\n#### Searching optimal parameters for", metric)
    classifier = GridSearchCV(ExtraTreesClassifier(random_state=0),
parameter grid, cv=5, scoring=metric)
    classifier.fit(X_train, y_train)
    print("\nGrid scores for the parameter grid:")
    results = classifier.cv results
    for mean_score, params in zip(results['mean_test_score'],
results['params']):
        print(params, '-->', round(mean_score, 3))
   print("\nBest parameters:", classifier.best_params_)
    y_pred = classifier.predict(X_test)
    print("\nPerformance report:\n")
   print(classification report(y test, y pred))
```

```
~/Desktop/zp/ai/laba5 $ python3 <u>main.py</u>
#### Searching optimal parameters for precision weighted
#### Searching optimal parameters for precision_weighted
Params: {'max_depth': 2, 'n_estimators': 100} --> Mean score: 0.85
Params: {'max_depth': 4, 'n_estimators': 100} --> Mean score: 0.841
Params: {'max_depth': 7, 'n_estimators': 100} --> Mean score: 0.844
Params: {'max_depth': 12, 'n_estimators': 100} --> Mean score: 0.832
Params: {'max_depth': 16, 'n_estimators': 100} --> Mean score: 0.816
Params: {'max_depth': 4, 'n_estimators': 25} --> Mean score: 0.846
Params: {'max_depth': 4, 'n_estimators': 50} --> Mean score: 0.841
Params: {'max_depth': 4, 'n_estimators': 250} --> Mean score: 0.845
Best parameters: {'max depth': 2, 'n estimators': 100}
Performance report:
                                precision recall f1-score support
                                                                  0.81
                                                                                          0.87
                                                                   0.86
                     2.0
                                            0.83
                                                                 0.91
                                                                                          0.87
                                                                                                                     76
                                                                                          0.86
                                                                   0.86
weighted avg
                                            0.86
                                                                   0.86
                                                                                          0.86
                                                                                                                    225
#### Searching optimal parameters for recall weighted
Params: ('max depth': 2, 'n_estimators': 100} --> Mean score: 0.843
Params: ('max_depth': 4, 'n_estimators': 100} --> Mean score: 0.837
Params: ('max_depth': 7, 'n_estimators': 100} --> Mean score: 0.841
Params: {'max_depth': 12, 'n_estimators': 100} --> Mean score: 0.83
                                           0.83
                                                                  0.91
                                            0.86
                                                                   0.86
                                                                                          0.86
weighted avg
                                            0.86
                                                                  0.86
                                                                                          0.86
#### Searching optimal parameters for recall_weighted
#### Searching optimal parameters for recall_weighted
Params: {'max_depth': 2, 'n_estimators': 100} --> Mean score: 0.843
Params: {'max_depth': 4, 'n_estimators': 100} --> Mean score: 0.837
Params: {'max_depth': 7, 'n_estimators': 100} --> Mean score: 0.841
Params: {'max_depth': 12, 'n_estimators': 100} --> Mean score: 0.83
Params: {'max_depth': 16, 'n_estimators': 100} --> Mean score: 0.815
Params: {'max_depth': 4, 'n_estimators': 25} --> Mean score: 0.843
Params: {'max_depth': 4, 'n_estimators': 50} --> Mean score: 0.836
Params: {'max_depth': 4, 'n_estimators': 100} --> Mean score: 0.837
Params: {'max_depth': 4, 'n_estimators': 250} --> Mean score: 0.841
Best parameters: {'max_depth': 2, 'n_estimators': 100}
Performance report:
                                                          recall f1-score support
                    0.0
                                           0.94
                                                                 0.81
                                                                                         0.87
                                                                                                                      79
                     1.0
                                            0.81
                                                                 0.86
                                                                                         0.83
                                                                                                                      70
                                                                                          0.86
       macro avg
                                            0.86
                                                                   0.86
                                                                                          0.86
weighted avg
                                                                   0.86
                                                                                          0.86
                                                                                                                    225
~/Desktop/zp/ai/laba5 $
```

Завдання 2.4. Обчислення відносної важливості ознак

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.ensemble import AdaBoostRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, explained_variance_score
from sklearn.utils import shuffle
```

```
# Load dataset
data url = "http://lib.stat.cmu.edu/datasets/boston"
raw df = pd.read csv(data url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw df.values[1::2, 2]
# Shuffle and split dataset
X, y = shuffle(data, target, random_state=7)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=7)
# Create and fit AdaBoost regressor
regressor = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4),
n_estimators=400, random_state=7)
regressor.fit(X train, y train)
# Predictions and evaluation
y_pred = regressor.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
evs = explained_variance_score(y_test, y_pred)
print("\nADABOOST REGRESSOR")
print("Mean squared error =", round(mse, 2))
print("Explained variance score =", round(evs, 2))
# Feature importance visualization
feature_importances = regressor.feature_importances_
feature_names = [
    "CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM",
    "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "LSTAT"
feature_importances = 100.0 * (feature_importances / max(feature_importances))
index_sorted = np.flipud(np.argsort(feature_importances))
pos = np.arange(index_sorted.shape[0]) + 0.5
plt.figure()
plt.bar(pos, feature_importances[index_sorted], align='center')
plt.xticks(pos, np.array(feature_names)[index_sorted], rotation=90)
plt.ylabel('Relative Importance')
plt.title('Feature Importance using AdaBoost Regressor')
plt.show()
```



```
ADABOOST REGRESSOR

Mean squared error = 22.7

Explained variance score = 0.79
```

Можна знехтувати ZN, CHAS, INDUS

Завдання 2.5. Прогнозування інтенсивності дорожнього руху за допомогою класифікатора на основі гранично випадкових лісів

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report, mean_absolute_error
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.metrics import classification_report
from sklearn import preprocessing

input_file='traffic_data.txt'
data = []
with open(input_file, 'r') as f:
    for line in f.readlines():
        items = line[:-1].split(',')
        data.append(items)

data = np.array(data)

label_encoder = []
```

```
X_encoded = np.empty(data.shape)
for i, item in enumerate(data[0]):
    if item.isdigit():
        X_encoded[:, i] = data[:, i]
    else:
        label_encoder.append(preprocessing.LabelEncoder())
        X_encoded[:, i] = label_encoder[-1].fit_transform(data[:, i])
X = X_encoded[:, :-1].astype(int)
y = X_encoded[:, -1].astype(int)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
random_state=5)
params = {'n_estimators': 100, 'max_depth': 4, 'random_state': 0}
regressor = ExtraTreesRegressor(**params)
regressor.fit(X_train, y_train)
y_test_pred = regressor.predict(X_test)
print("Mean absolute error:", round(mean_absolute_error(y_test, y_test_pred),
2))
test_datapoint = ['Saturday', '10:20', 'Atlanta', 'no']
test_datapoint_encoded = [-1] * len(test_datapoint)
count = 0
for i, item in enumerate(test_datapoint):
    if item.isdigit():
        test_datapoint_encoded[i] = int(test_datapoint[i])
    else:
        test_datapoint_encoded[i] =
int(label_encoder[count].transform([test_datapoint[i]]))
        count += 1
test_datapoint_encoded = np.array(test_datapoint_encoded)
print("Predicted traffic:",
int(regressor.predict([test_datapoint_encoded])[0]))
```

```
P ~/Desktop/zp/ai/laba5 $ python3 -W ignore main.py
Mean absolute error: 7.42
Predicted traffic: 26
```

Посилання на GitHub: https://github.com/missShevel/SHI_Shevel_Olha_IPZ-21-1/tree/master/Lab5