# MATH7501 Practical 9 (Week 10), Semester 1-2021

Topic: Sequences & Series, Limits and Derivatives

Author: Aminath Shausan

Date: 7-05-2021

# **Pre-Tutorial Activity**

■ Students must have familiarised themselves with units 5 to 8 contents of the reading materials for MATH7501

#### Resources

■ Chapters 5 to 8 of course reader

# Q1 Limit

Calculate  $limit_{x \to Infinity} sin(e^{-x})$  and explain why this is true

ln[33]:= Plot[Sin[Exp[-x]], {x, -5, 10}]



limit  $e^{-x}$  is 0 as x approaches Infinity.  $\sin(0)$  is continuous. Then  $\sin(e^{-x}) = 0$  as x approaches Infinity.

# **Q2** Limit

Calculate 
$$limit_{x \to Infinity} \frac{1}{cos(x) + x}$$

$$-1 + x \le \cos(x) + x \le 1 + x$$
  
For x > 1,  $\frac{1}{1 + x} \le \frac{1}{\cos(x) + x} \le \frac{1}{x - 1}$ 

As limit<sub>x \infinity</sub> 
$$\frac{1}{-1 + x} = 0$$
 and limit<sub>x \infinity</sub>  $\frac{1}{1 + x} = 0$ ,

then by the sqeez theorem  $\lim_{x \to \text{Infinity}} \frac{1}{\cos(x) + x} = 0$ 

In[35]:= Plot[
$$\left\{\frac{1}{x-1}, \frac{1}{\cos[x]+x}, \frac{1}{x+1}\right\}$$
, {x, -1, 20}, PlotLegends  $\rightarrow$  "Expressions"]



### **Q3** Continuous function

Consider the function

$$f(x) = \begin{cases} \frac{\sin(x)}{x}, & x > 0 \\ 1, & x \le 0 \end{cases} \times$$

Show that this function is continuous for all x.

Hint: Continuous at a point (see Section 6.4, Definition 12) Continuous on interval (see pg 104)

f(x) is continuous everywhere except possibly x = 0. So check continuity at x = 0.

Check: (1) Is f(0) defined? yes f(0) = 1

(2) Does limit<sub> $x\to 0$ </sub> f (0) exist?

(3) Is  $\lim_{x\to 0} f(x) = f(0)$ 

 $limit_{x\to 0^-} f(x) = f(0) = 1$ 

 $\lim_{x\to 0^+} f(x) = \sin(x)/x = 1$ 

Thus condition (3) is satisfied .Thus f(x) is continuous for all x.





# **Q4 IVT and MVT**

a) Consider the function  $f(x) = x^4 + x + 1$ . Show that this function does not cross the x - axis.

```
let y = f(x)
Find x value at f'(x) = 0 (this gives any critical points)
Substitute the value of x in f(x) to get the value of y
step1: solve for x in f'(x) = 0 (you should get just one critical point)
step 2: find f''(x) and show that the critical point is global minimum (f''(x) > 0)
b) Consider the new function f(x) =
```

 $x^4 + x - 1$ . Show that there are exactly two solutions to f(x) = 0, using Intermediate Value Theorem (IVT) and Mean Value Theorem (MVT).

IVT (look at pg 105) MVT (look at pg 115)

### **Q5** Series

Determine if the following sums converge or not. If they do, work out their limit

a) 
$$\sum_{n=1}^{\infty} n^{2/e}$$

$$(b)\sum_{n=0}^{\infty}(\pi-e)^n$$