

Olive-SmartScan_AI: An Object Detection-Based Counting System for both On-Tree and Off-Tree Olives

Authors: Francesco Bruno, Gaetano Sferrazza

OUTLINE

- INTRODUCTION
- APPLICATION CONTEXT
- STATE OF THE ART
- SYSTEM ARCHITECTURE
- EXPERIMENTAL SETUP & RESULTS
- CONCLUSION

INTRODUCTION

Olive-SmartScan_AI:

- What is: It's deep learning-based System that provides a solution to measure the yield of olive groves.
- Objective: Automate the olive count to help a farmer to improve its agricultural productivity and to reduce manual labor in general.
- How it works: It takes an olive tree picture and thanks to the trained deep learning model and to the counting algorithm, gives you the number of olive for these two Scenarios:
 - Olives On-Tree: Represents the case where olives present on a tree and its crown are counted in the image.
 - Olives Off-Tree: Represents the case where olives are counted in the image in contexts other than those strictly related to a possible tree's crown.

APPLICATION CONTEXT

Object Counting in Agriculture

- Crucial Role: Object counting is essential for tasks like plant monitoring, yield estimation, and disease detection in agriculture.
- Challenges of Manual Counting: Historically, manual counting has been labor-intensive, time-consuming, and prone to errors.
- Advances in Technology: The development of automatic counting algorithms, leveraging computer vision and machine learning, has significantly improved the efficiency and accuracy of these tasks.

Challenges in Agricultural Object Detection

- Complexity: Agricultural environments pose unique challenges, such as scale variations and occlusions in field images.
- Object Characteristics: Target objects like fruits often have simple shapes and blend into the environment, making detection more difficult.

<u>Deep Learning Impact</u>: Deep learning has revolutionized object detection and counting, offering better generalization and performance.

Object Counting Methods:

- Direct Regression: Predicts object count directly from images.
- Detection-Based Counting: Locates and counts objects using detection models.
- Density Estimation: Counts objects by predicting and summing density maps.

Object Detection (CNN-based detectors):

- Single-Stage: Faster and suited for real-time applications (e.g., YOLO, EfficientDet).
- Two-Stage: More accurate, better for detailed tasks but slower (e.g., Faster R-CNN, Mask R-CNN)

UNDERLYING THE SYSTEM

Detection-Based Counting:

- Methodology: Involves detecting objects within images using bounding boxes, then tallying detected instances.
- Effectiveness: CNN-based detectors (e.g., YOLO, RetinaNet) have proven highly effective for this approach, especially in complex agricultural environments.

Detection Component:

• YOLO: It was chosen for the object detection component because of its high accuracy and efficiency in identifying olives within the images.

Counting Component:

- Custom Algorithm: We designed a custom algorithm specifically to count the predictions made by the detection model in with the goal of being able to discriminate between two distinct scenarios:
 - 1. Olive On-Tree
 - 2. Olive Off-Tree.

YOLOv8 – ARCHITECTURE OVERVIEW

Table: YOLOv8 Model Base Architecture.

<u>Architectural Improvements</u>: Optimized network architecture that increases learning capacity and reduces inference time.

<u>Increased Precision</u>: Higher precision in detecting small objects like olives.

<u>Flexibility and Adaptability</u>: Easily adapted to specific scenarios through a fine-tuning process.

SYSTEM ARCHITECTURE

1. Input Of The System:

1. Images of olive trees.

2. Data Management Phase:

- 1. Loads, adjusts and organizes the images.
- 2. Creates a prepared dataset for the next phase.

3. Olives Detection Phase:

- 1. Detects olives, crown and the tree in the provided image.
- 2. Bounding box-based location.

4. Olives Counting Phase:

- 1. Two different counting scenarios.
- 2. The count is based on *isContained* property.

5. Output Of The System:

1. Calculation of the total number of olives in On-Tree and Off-Tree scenarios.

EXPERIMENTAL SETUP – DATASETS CONSTRUCTION

Dataset Selection:

- **Source**: Suitable datasets from the Roboflow platform with over 14,000 images (640x640 resolution) containing individual olives, olive in crown, and general tree images.
- Compatibility: Each image was accompanied by a .txt file containing labels, essential for training the YOLOv8 model.

Organized Dataset Structure:

- **Splitting**: Created specific folders for train-set, validation-set, and test-set, useful for the training and validation process.
- Advantages: The well-structured dataset allowed for a good training session, reducing the need for multiple neural networks and shortening training time.

Dataset Enhancement:

- Annotation: Added additional annotations for "Tree" and "Crown" classes alongside existing "Olive" annotations.
- Advantages: This step ensured the model could distinguish between different scenarios, particularly focusing on olives on trees.

Unified and Reorganized Dataset:

- **Reduction**: Reduced the number of images needed by selecting 1,635 images (1,000 trees, 635 olives)
- Cross-Validation Folder: Prepared the dataset for k-fold cross-validation with k=5.
- Evaluation Dataset: Prepared the dataset to conduct the system's final evaluations for both detection and counting.

EXPERIMENTAL SETUP – DATASETS CONSTRUCTION

Round	Test Set	Train Set	Validation Set
ROUND_0	fold_0 (100%)	fold_1, fold_2, fold_3, fold_4 (80%)	fold_1, fold_2, fold_3, fold_4 (20%)
ROUND_1	fold_1 (100%)	fold_0, fold_2, fold_3, fold_4 (80%)	fold_0, fold_2, fold_3, fold_4 (20%)
ROUND_2	fold_2 (100%)	fold_1, fold_0, fold_3, fold_4 (80%)	fold_1, fold_0, fold_3, fold_4 (20%)
ROUND_3	fold_3 (100%)	fold_1, fold_2, fold_0, fold_4 (80%)	fold_1, fold_2, fold_0, fold_4 (20%)
ROUND_4	fold_4 (100%)	fold_1, fold_2, fold_3, fold_0 (80%)	fold_1, fold_2, fold_3, fold_0 (20%)

Table: Folder structuring for cross-validation technique.

Criterion for Cross-Validation Folders Creation:

- **Test Set**: Test Set is the subset used for testing in each round.
- Train Set: consists of 80% of the images from the remaining folds.
- Validation Set: consists of 20% of the images from the remaining folds.

EXPERIMENTAL SETUP - TRAINING & VALIDATION APPROACH

Model Selection and Fine-Tuning:

- Model Type: Used a pre-trained YOLOv8 model, leveraging extensive prior knowledge from millions of images.
- Advantages: Focused training on the last layers for olive recognition, reducing training time and improving generalization.

Training Parameters:

- **Hyperparameters**: Set at 100 **epochs** with a **batch** size of 64, using the "**Adam**" optimizer
- Built-in Mechanism: YOLOv8's automatic best epoch selection saved optimal weights, ensuring the best model performance.

Cross-Validation Approach:

- **Technique**: Employed **5-fold** Cross-Validation, resulting in **25 training sessions** (5 versions x 5 rounds folds).
- Advantages: This method provides a more robust performance estimate and reduces overfitting.

Computational Resources:

- **High-Performance**: Utilized servers with large memory and computing power from the University of Pisa
- Advantages: Enabled dynamic fine-tuning of training parameters, optimizing effectiveness.

EXPERIMENTAL SETUP – TRAINING & VALIDATION APPROACH

<u>Testing Multiple YOLOv8 Versions:</u> Evaluated all versions of YOLOv8 to determine the best-performing model for olive detection and counting

Model	size (pixels)	mAP ^{val} 50-95	Speed CPU ONNX (ms)	Speed A100 TensorRT (ms)	params (M)	FLOPs (B)
YOLOv8n	640	37.3	80.4	0.99	3.2	8.7
YOLOv8s	640	44.9	128.4	1.20	11.2	28.6
YOLOv8m	640	50.2	234.7	1.83	25.9	78.9
YOLOv8I	640	52.9	375.2	2.39	43.7	165.2
YOLOv8x	640	53.9	479.1	3.53	68.2	257.8

Table: Models of Yolov8.

<u>Performance Metrics:</u> Metrics from the training sessions guided the selection of the best YOLOv8 model, to be discussed in the "Results" section

EXPERIMENTAL SETUP – COUNTING METHOD

Main Objective: Accurately distinguish between "olives on trees" and "olives off trees".

Bounding-Box Comparison:

• Detection-Model Output: To compare YOLO model's bounding-boxes for the Olive, Tree, and Crown classes, post-prediction.

"Is Contained" Property:

• Custom Function: To check if Olive's bounding-box is completely within the bounding box of the Tree or Crown class

■ Let $Box1 = (x1_1, y1_1, x2_1y2_1)$ and $Box2 = (x1_2, y1_2, x2_2y2_2)$. The condition for which **Box1** is completely contained within **Box2** can be expressed by the following formula:

isContained(Box1, Box2) = $(x1_1 \ge x1_2) \land (y1_1 \ge y1_2) \land (x2_1 \le x2_2) \land (y2_1 \le y2_2)$

Algorithm Logic (For Each Olive):

- Olive is "on tree" if its bounding box is within the Crown or Tree bounding box.
- If only the Crown is present, the olive is still "on tree".
- If only the Tree is present, the olive is not classified as "on tree".
- Olive is "off tree" if neither Crown nor Tree bounding boxes are present.

Evaluation Metrics:

- Confusion Matrix: Provides insights into errors (false positives/negatives) and overall model performance across classes.
- **Precision**: Measures the accuracy of positive predictions.
- Recall: Assesses the model's ability to identify all positive samples.
- F1-Score: Balances precision and recall.
- mAP@50: Main metric for detecting accuracy in object detection (IoU at 0.5 threshold).

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 - Score = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

$$mAP = \frac{1}{N} \sum_{h=1}^{N} AP^{h}$$

MODEL		CLASSES		
		Tree	Crown	Olive
YOLOv8	Nano	85.86 ± 2.17	99.36 ± 0.23	71.54 ± 4.05
YOLOv8	Small	86.04 ± 2.64	99.4 ± 0.20	71.82 ± 4.54
YOLOv8	Medium	86.26 ± 2.14	98.9 ± 0.67	71.04 ± 4.45
YOLOv8	Large	85.70 ± 2.02	99.3 ± 0.13	71.22 ± 3.88
YOLOv8	XLarge	86.54 ± 2.06	98.82 ± 0.49	71.6 ± 4.61

Summary Table of the results obtained by evaluating the detection performance of the models tested for Olive, Crown, and Tree classes with relative (average) mAP@50 ± standard deviation in Cross-Validation

EXPERIMENT RESULTS – DETECTION-MODEL PERFORMANCE EVALUATION

Table: Confusion Matrix

EXPERIMENT RESULTS – DETECTION-MODEL PERFORMANCE EVALUATION

Table Graph: Precision, Recall and F1-Score Precision-Recall Curve

EXPERIMENT RESULTS - COUNTING PERFORMANCE EVALUATION

Evaluation Metrics:

• Mean Squared Error: To quantify the error by comparing the *predicted* values with the *ground-true*.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - {Y'}_i)^2$$

• Error distribution: To observe the error frequency of the model in the counting phase

MODEL		SCENARIOS		
		Olives On-Tree	Olives Off-Tree	
YOLOv8	Nano	1341,46 ± 36,62	72,76 ± 8,53	
YOLOv8	Small	1060,68 ± 32,56	164,2 ± 12,81	
YOLOv8	Medium	1089,06 ± 33	123,26 ± 11,10	
YOLOv8	Large	961,67 ± 31,01	42,66 ± 6,53	
YOLOv8	XLarge	1092,03 ± 33,04	108,26 ± 10,4	

Table: (average) MSE ± standard deviation (RMSD)

Histogram: YoloV8 Small Counting Error Distribution (On-Tree Scenario)

CONCLUSION

Promising Results:

• The system effectively **detects and counts olives**, closely imitating expert field procedures with good precision.

• Areas for Improvement:

- Dataset Expansion: Increasing the size and diversity of the training data to enhance accuracy and reliability
- Detection Phase: Use a Two-Stage detector model for better precision.
- Counting Phase:
 - Use a **Direct Regression-based** neural network to reduce error impact from the detection phase.
 - Additional metrics like Absolute Error or Mean Absolute Percentage Error (MAPE) to gain deeper insights.

• Future Enhancements:

• Future works could involve training a custom detection model to assess the system's feasibility in mobile application contexts.

REFERENCES

[1]. Olive-SmartScan_AI: An Object Detection-Based Counting System for both On-Tree and Off-Tree Olives; Francesco Bruno, Gaetano Sferrazza; https://github.com/g-sferr/Olive-SmartScan_AI/tree/main/docs