Data Science

Compte rendu de TP : Sensitivity analysis

DEGNI Fidèle

RODRIGUES Leticia

1. Analyse de sensibilité sur une fonction symétrique

On considère la fonction suivante : $f(X) = X_1 \times X_2 \times X_3$

On lui applique Morris:

Morris

On remarque que tous les trois points sont très proches les uns des autres : les trois variables ont la même moyenne et la même variance, en gros. Ce résultat est cohérent avec le fait que les variables X_1 , X_2 et X_3 jouent des rôles symétriques dans la fonction f.

De même, on calcule les indices de Sobol :

Les trois variables ont bien les mêmes effets sur la réponse. Les termes d'interactions sont aussi égaux vu que toutes les trois variables ont des rôles symétriques.

Effet des variables :

On a utilisé 100 points pour la représentation. Les effets des trois variables sont les mêmes également. Ce qui s'explique par le fait que f est symétrique.

2. Cas test Volcan

On va construire un modèle de krigeage auquel on va appliquer toutes les étapes de la question 1.

On applique Morris et on obtient le résultat suivant :

On peut déjà observer que la variable X_4 (le rayon) est la plus influente car elle a la plus grande moyenne et la plus grande variance. Tous les σ sont non nuls donc il y a soit des effets d'interaction ou des effets quadratiques apportés par toutes les variables. De plus X_1 et X_2 sont très proches et ont donc quasiment les mêmes effets sur la réponse.

On calcule les indices de Sobol :

Sans surprise, on retrouve que la variable X_4 (le rayon) a le plus grand indice de Sobol, donc est la plus influente. On soupçonne aussi qu'il y a une interaction importante entre X_4 (le rayon) et X_5 (le pression).

Effet des variables :

On a utilisé 10.000 points pour la représentation. On remarque que le rayon a un effet linéaire important sur la réponse et que la pression a un effet quadratique. Les variables X_s et Y_s n'ont quasiment pas d'effet et la variable Z_s influe peu.

Evaluation des effets d'interaction :

Comme on a soupçonné un effet d'interaction important entre le rayon et la pression, on va soustraire tous les effets purs de la réponse et tracer le résultat dans un plan (X_4, X_5) :

Interaction

On remarque les termes d'interaction ne peuvent pas s'explique seulement par une seule variable (heureusement !) car à rayon ou à pression fixé, on ne peut pas dire si le point est rouge ou jaune. La bande rouge sur l'image contient le minimum de la réponse, normalement.