2.A Appendix: Fundamental Concepts of Linear Algebra

a Matrices. Matrix, more precisely an $n \times m$ matrix:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix}$$

Rows i = 1, ..., n, columns j = 1, ..., m. Elements a_{ij} .

Square Matrix: Equal number of rows and columns, n=m.

Symmetric Matrix: It holds that $a_{ij} = a_{ji}$.

Diagonal of a Square Matrix: The elements $[a_{11}, a_{22}, ..., a_{nn}]$.

Diagonal Matrix: Consists "only of the diagonal", $d_{ij} = 0$ for $i \neq j$.

$$\boldsymbol{D} = \begin{bmatrix} d_{11} & 0 & \dots & 0 \\ 0 & d_{22} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & d_{nn} \end{bmatrix}$$

b **Transposed Matrix**: If we switch the rows and columns of a matrix \boldsymbol{A} , we get the transposed matrix \boldsymbol{A}^T :

$$\mathbf{A}^T = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1m} & a_{2m} & \dots & a_{nm} \end{bmatrix}$$

Notes:

- 1. It is obvious that $(\mathbf{A}^T)^T = \mathbf{A}$ (like a mattress, turned twice).
- 2. For symmetric matrices, $A^T = A$.

c **Vectors.** A vector, more precisely a column vector: n numbers, written on top of one another.

$$\underline{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Elements b_i .

d Transposed Vectors: Column vectors become row vectors if we transpose them:

$$\underline{b}^T = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}^T = [b_1, b_2, ..., b_n] .$$

Row vectors save more printing space than column vectors, and so column vectors are often written as transposed row vectors: $\underline{b} = [b_1, b_2, ..., b_n]^T$.

e **Simple Calculation Operations.** Addition and subtraction: This is possible only if the two matrices (vectors) have equal dimensions. We add or subtract the corresponding elements.

Multiplication by a number (a "scalar"): Each elements is multiplied. Division by a number: analogous.

Quite often in statistics and elsewhere we meet so called **linear combinations** of vectors. This is a name for expressions of the form

$$\lambda_1 b_1 + \lambda_2 b_2$$

plus possibly other such terms – we add multiples of the vectors involved.

f Matrix Multiplication. Matrices can only be multiplied if the dimensions fit: $C = A \cdot B$ is defined if the number of columns of A equals the number of rows of B. Then

$$c_{ik} = \sum_{i=1}^{m} a_{ij} b_{jk}$$

Example:

$$\begin{bmatrix} 2 & 1 \\ -1 & 0 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 1 \\ 4 & -2 \end{bmatrix} = \begin{bmatrix} 2 \cdot 3 + 1 \cdot 4 & 2 \cdot 1 + 1 \cdot (-2) \\ (-1) \cdot 3 + 0 \cdot 4 & (-1) \cdot 1 + 0 \cdot (-2) \\ 3 \cdot 3 + 1 \cdot 4 & 3 \cdot 1 + 1 \cdot (-2) \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ -3 & -1 \\ 13 & 1 \end{bmatrix}$$

Notes:

- 1. In the example $B \cdot A$ is not defined, since B has 2 columns, but A has 3 rows.
- 2. If $A \cdot B$ and $B \cdot A$ are both defined, they are, in general, different; $A \cdot B \neq B \cdot A$! Matrices in a multiplication are **not interchangeable**.
- 3. We can have $A \cdot B = 0$ even if neither A = 0 nor B = 0.
- 4. The associative property holds: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
- 5. The distributive property holds: $A \cdot (B + C) = A \cdot B + A \cdot C$ and similarly $(A + B) \cdot C = A \cdot C + B \cdot C$.
- 6. Transposition of a product:

$$(\boldsymbol{A} \cdot \boldsymbol{B})^T = \boldsymbol{B}^T \cdot \boldsymbol{A}^T$$

We must thus reverse the order when we transpose!

- 7. The product $\mathbf{A} \cdot \mathbf{A}^T$ is always symmetric.
- g All this also holds for vectors: If \underline{a} and \underline{b} are column vectors, then

$$\underline{a} \cdot \underline{b}^{T} = \begin{bmatrix} a_{1}b_{1} & a_{1}b_{2} & \dots & a_{1}b_{m} \\ a_{2}b_{1} & a_{2}b_{2} & \dots & a_{2}b_{m} \\ \vdots & & & \vdots \\ a_{n}b_{1} & a_{n}b_{2} & \dots & a_{n}b_{m} \end{bmatrix}.$$

If they have the same length,

$$\underline{a}^T \cdot \underline{b} = \sum_i a_i \cdot b_i .$$

"A matrix times a column vector" (if defined) gives a column vector: $\mathbf{A} \cdot \underline{b} = \underline{c}$.

h The **length of a vector** is the root of $\sum_i a_i^2$. We often denote this with $\|\underline{a}\|$. We can write

$$\|\underline{a}\|^2 = \underline{a}^T \cdot \underline{a}$$
.

i The **identity matrix** (of dimension m) is defined as a diagonal with only ones:

$$m{I} = \left[egin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ dots & dots & dots \\ 0 & 0 & \dots & 1 \end{array}
ight]$$

It does not change matrices under multiplication: $I \cdot A = A$, $A \cdot I = A$.

j Inverse Matrix. If A is square and $B \cdot A = I$, B is called the inverse matrix of A; we write $B = A^{-1}$.

Notes:

- 1. It then also holds that $A \cdot B = I$. So, if $B = A^{-1}$, then also $A = B^{-1}$.
- 2. There does not exist an inverse for every square matrix A. If it exists, we call A regular, and there exists only one inverse. If there is no inverse, we call A singular.
- 3. $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$.
- 4. Inverse of a matrix product: If A and B are square,

$$(\boldsymbol{A} \cdot \boldsymbol{B})^{-1} = \boldsymbol{B}^{-1} \cdot \boldsymbol{A}^{-1}$$

The order must thus be reversed when inverting a product!

- 5. We have $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$. We often write in short \mathbf{A}^{-T} .
- k Linear Equation System. Summarized in short: The equation system

$$\begin{array}{rcl} a_{11}\beta_{1} + a_{12}\beta_{2} + \ldots + a_{1m}\beta_{m} & = & y_{1} \\ a_{21}\beta_{1} + a_{22}\beta_{2} + \ldots + a_{2m}\beta_{m} & = & y_{2} \\ & & \ddots & & \ddots \\ a_{m1}\beta_{1} + a_{m2}\beta_{2} + \ldots + a_{mm}\beta_{m} & = & y_{m} \end{array}$$

(for the β_j) can be written as

$$\mathbf{A}\beta = y$$

(for $\underline{\beta}$). There is exactly one solution if \boldsymbol{A} is regular, thus if the inverse \boldsymbol{A}^{-1} exists. Then

$$\underline{\beta} = \mathbf{A}^{-1}\underline{y}$$

is this solution.

If the **matrix** A is singular, then there exists a row $[a_{i1}, a_{i2}, ..., a_{im}]$ that can be written as a linear combination of the others. The corresponding equation leads either to an inconsistency (no solution) or is superfluous (infinitely many solutions). We speak of a **linear dependency** of the rows of the matrix or of the equations.

(If the matrix is singular, there also exists a column that can be written as a linear combination of the others. So, the column vectors are also linearly dependent.)