CEG3155: DGD 1

Review

Combinational Logic

- Outputs depend only on the present inputs, i.e. no memory elements.
- Examples:
 - Multiplexers, demultiplexers, encoders, and decoders.
 - Adders, subtractors, multipliers, shifters, comparators, and ALUs.

Sequential Logic

- Outputs depend not only on the present inputs but also on past inputs.
- A memory element is used to store the state of the previous inputs.
- Sequential circuits are usually designed using a Finite State Machine (FSM).
- Examples:
 - o Flip-flops, and counters.

IEEE 1164 Standard

- A technical standard published by the IEEE in 1993. (https://perso.telecom-paristech.fr/guilley/ENS/20171205/TP/tp_syn/doc/IEEE_VHDL_1164-1993.pdf)
- It describes the logic values to be used in Electronic Design Automation (EDA) tools.
- Defines the following primary data types:

Character	Value	
'U'	Uninitialized	
'X'	Strong unknown value	
'0'	Strong zero	
'1'	Strong one	
'Z'	High impedance	
'W'	Weak unknown	
L'	Weak zero	
'H'	Weak one	
'_'	Don't care	

• In VHDL, this standard is embodied in the std_logic_1164 package.

Questions

Question 1

Consider the function $f(x_1, x_2, x_3) = m(2, 3, 4, 6, 7)$, use the truth table below to identify the Sum-of-Products (SoP) and Product-of-Sums (PoS).

	<i>x</i> 1 <i>x</i> 2 <i>x</i> 3	Minterms	Maxterms
0	0 0 0	$m0 = \overline{x1} \overline{x2} \overline{x3}$	M0 = x1 + x2 + x3
1	0 0 1	$m1 = \overline{x1} \overline{x2} x3$	$M1 = x1 + x2 + \overline{x3}$
2	0 1 0	$m2 = \overline{x1} \ x2 \ \overline{x3}$	$M2 = x1 + \overline{x2} + x3$
3	0 1 1	$m3 = \overline{x1} \ x2 \ x3$	$M3 = x1 + \overline{x2} + \overline{x3}$
4	1 0 0	$m4 = x1 \overline{x2} \overline{x3}$	$M4 = \overline{x1} + x2 + x3$
5	1 0 1	$m5 = x1 \overline{x2} x3$	$M5 = \overline{x1} + x2 + \overline{x3}$
6	1 1 0	$m6 = x1 \ x2 \ \overline{x3}$	$M6 = \overline{x1} + \overline{x2} + x3$
7	1 1 1	$m7 = x1 \ x2 \ x3$	$M7 = \overline{x1} + \overline{x2} + \overline{x3}$

Identify the SoP, and PoS terms, and prove that f(x1, x2, x3) can be expressed by SoP or PoS.

Question 2

Use algebraic manipulation to show that for three input variables x1, x2, x3:

$$\sum m(1, 2, 3, 4, 5, 6, 7) = x1 + x2 + x3$$

Question 3

Perform the following operations in binary, where numbers are signed and represented in 2's complement form. Then, get the corresponding decimal number.

- a) 00000110 + 00001101
- b) 111111010 11110011
- c) 1100 + 1010

Question 4

For the timing diagram in the Figure, synthesize the function f(x1, x2, x3) in the simplest sum-of-products form.

Question 5

Draw the circuit described by the following VHDL code.

```
architecture SomeCode of SomeEntity is
    signal sig1, sig2, out1: std_logic;
begin

out2 <= not out1;
    sig2 <= (c xor d);
    out1 <= (sig1 and sig2);
    sig1 <= (a and b) or c;

end SomeCode;</pre>
```

Question 6

Write VHDL code to implement the function f(x1, x2, x3) = m(0, 1, 2, 3, 4, 5).

Question 7

Design 1-bit full adder in VHDL:

- a) Show timing diagrams of the sum and carry-out bits for all possible values of inputs.
- b) Show structural implementation of it.