

CMP6230 - Assignment 2

Data Management and MLOps Activities Log Report

Lewis Higgins - Student ID 22133848

 ${\rm CMP6230}$ - Data Management and Machine Learning Operations

Module Coordinator: Sima Iranmanesh

Contents

In	trod	uction	1
1		adidate Data Sources	2
	1.1	Candidate 1 - Indian Liver Patient Dataset	2
	1.2	Candidate 2 - Spotify Likes Dataset	8
	1.3	Candidate 3 - Loan Approval Classification Dataset	14
	1.4	Chosen dataset	18
2	Pla	nning the MLOps Pipeline	20
	2.1	Software to be used in the pipeline	21
	2.2	Data Ingestion	24
		2.2.1 Description	24
		2.2.2 In this project	25
	2.3	Data Preprocessing	27
		2.3.1 Description	27
		2.3.2 In this project	27
		2.3.3 Data analysis	29
	2.4	Model Development	33
		2.4.1 Description	33
		2.4.2 In this project	34
	2.5	Model Deployment	34
		2.5.1 Description	34
		2.5.2 In this project	34
	2.6	Model Monitoring	35
		2.6.1 Description	35
		2.6.2 In this project	36
	2.7	Data terminology	37
3	Imp	plementation of the MLOps Pipeline	38
	3.1	Ethical and Legal Considerations	38
		3.1.1 Synthetic data	38
	3.2	Initial Software Setup	38
		3.2.1 VirtualBox & Ubuntu	38
		3.2.2 Conda environment and packages	40
	3.3	Data Ingestion	40
	3.4	Data Preprocessing	40
	3.5	Model Development	40
	3.6	Model Deployment	40
	3.7	Model Evaluation	40
Co	onclu	ısion	41

Introduction

This report aims to design and document a five-stage Machine Learning Operations pipeline, from the initial data ingestion to the monitoring of the produced model, beginning with the identification of three candidate datasets for the pipeline to be conducted with, and continuing into descriptions of what each stage of the pipeline consists of, and how it will be implemented with the one chosen dataset using a wide variety of software that is also used within industry. When this plan is implemented at a later stage, it will provide a clear framework to create an automated MLOps pipeline with continuous integration and deployment.

Candidate Data Sources

For the first stage of the pipeline, data ingestion, three data sources will be identified in order to find the one that would be most optimal for the production and deployment of a machine learning model to complete a supervised learning task.

1.1 Candidate 1 - Indian Liver Patient Dataset

This dataset (Bendi Ramana and N. Venkateswarlu, 2022) consists of real data sourced from hospitals northeast of Andhra Pradesh in India. It was obtained from the UCI Machine Learning Repository, and has been previously used by Straw and Wu (2022) in their analysis of sex-related bias in supervised learning models. The UCI ML Repository is a popular host of datasets used by students, educators and researchers worldwide for machine learning (UCI Machine Learning Repository, 2024), and hosts these datasets on the cloud for public download and usage, as long as credit is given.

Figure 1.1: A snapshot of the dataset's UCI repository page.

This dataset in particular aims to assist in the diagnosis of liver disease due to increasing mortality rates from conditions like liver cirrhosis, and contains 584 records with 10 features as well as the "Selector" classification column, where those without liver disease are classed as 1, and those with liver disease are classed as 2. For the purposes of the ML model, these can be changed to 0 and 1 respectively. The dataset is a single flat-file Comma-Separated

Values (CSV) file, which stores data by separating each column with commas and each row with line breaks. This CSV file uses a One Big Table (OBT) schema, as seen in the entity relationship diagram in Figure 1.2, wherein all of the data within this dataset is stored in a single table. The OBT schema is a denormalised schema that is useful for simple querying due to there being no need for table joins. However, it is prone to data duplication and redundancy, which can increase necessary storage requirements.

Descriptions of the columns in the dataset, as well as the associated data types, can be found in Table 1.1.

Indian Liver Patient Dataset			
Age	integer		
Gender	varchar		
ТВ	numeric		
DB	numeric		
Alkphos	integer		
Sgpt	integer		
Sgot	integer		
TP	numeric		
ALB	numeric		
A/G Ratio	numeric		
Selector	integer		

Figure 1.2: An entity relationship diagram of the Indian Liver Patient Dataset.

A minor issue with this file is that it has no headers in its CSV file, meaning that when imported, Pandas will interpret the first row of data as the names of the columns, though this can be combated by adding the "names" argument when calling Pandas' "read_csv" function, seen below in Figure 1.3a.


```
df = pd.read_csv("Data/ilpd.csv")
  0.0s
  df.head(10)
   0.0s
        Female
                   0.7
                        0.1
                              187
                                    16
                                          18
                                               6.8
                                                    3.3
                                                           0.9
   65
                                                                1
0
   62
           Male
                  10.9
                         5.5
                              699
                                    64
                                         100
                                               7.5
                                                     3.2
                                                          0.74
                                                                1
   62
           Male
                   7.3
                        4.1
                              490
                                    60
                                          68
                                               7.0
                                                     3.3
                                                          0.89
2
   58
           Male
                   1.0
                        0.4
                              182
                                    14
                                          20
                                               6.8
                                                     3.4
                                                          1.00
                                                                1
   72
           Male
                   3.9
                         2.0
                              195
                                    27
                                               7.3
                                                     2.4
                                                          0.40
3
                                          59
           Male
                   1.8
                        0.7
                              208
                                                          1.30
                                                                1
4
   46
                                    19
                                          14
                                               7.6
                                                     4.4
   26
        Female
                   0.9
                        0.2
                              154
                                    16
                                          12
                                               7.0
                                                     3.5
                                                          1.00
   29
        Female
                   0.9
                        0.3
                              202
                                                     3.6
                                    14
                                               6.7
                                                          1.10
                                          11
   17
           Male
                   0.9
                        0.3
                              202
                                    22
                                          19
                                               7.4
                                                    4.1
                                                          1.20
   55
                   0.7
                        0.2
                              290
                                    53
                                                                1
8
           Male
                                          58
                                               6.8
                                                     3.4
                                                          1.00
9
   57
           Male
                   0.6
                        0.1
                              210
                                    51
                                          59
                                               5.9
                                                     2.7
                                                          0.80
         (a) Importing without supplying column names.
```

/	0.0s										
	Age	Gender	ТВ	DB	Alkphos	Sgpt	Sgot	TP	ALB	AGRatio	Selector
0	65	Female	0.7	0.1	187	16	18	6.8	3.3	0.90	1
1	62	Male	10.9	5.5	699	64	100	7.5	3.2	0.74	1
2	62	Male	7.3	4.1	490	60	68	7.0	3.3	0.89	1
3	58	Male	1.0	0.4	182	14	20	6.8	3.4	1.00	1
4	72	Male	3.9	2.0	195	27	59	7.3	2.4	0.40	1
5	46	Male	1.8	0.7	208	19	14	7.6	4.4	1.30	1
6	26	Female	0.9	0.2	154	16	12	7.0	3.5	1.00	1
7	29	Female	0.9	0.3	202	14	11	6.7	3.6	1.10	1
8	17	Male	0.9	0.3	202	22	19	7.4	4.1	1.20	2
9	55	Male	0.7	0.2	290	53	58	6.8	3.4	1.00	1

df.head(10)

(b) Importing with the column names.

Figure 1.3: Importing and viewing the head of the erroneous CSV using Pandas. The column headers are highlighted in a red box.

A preliminary analysis of the file to ascertain the data types of each column, seen in Figure 1.4, also revealed that there were 4 missing values in the A/G ratio column. It is possible that these missing values could be imputed rather than deleted, as it may be possible to calculate what the A/G ratio of these rows would have been in the Data Preprocessing stage of a pipeline.

df.dtypes				
Age	int64			
Gender	object			
TB	float64			
DB	float64			
Alkphos	int64			
Sgpt	int64			
Sgot	int64			
TP	float64			
ALB	float64			
AGRatio	float64			
Selector	int64			

Figure 1.4: The data types of the Indian Liver Patient Dataset.

df.isna().sum()			
Age	0		
Gender	Θ		
TB	0		
DB	0		
Alkphos	Θ		
Sgpt	0		
Sgot	0		
TP	0		
ALB	0		
AGRatio	4		
Selector	0		

(a) Four missing values are identified.

	Age	Gender	ТВ	DB	Alkphos	Sgpt	Sgot	TP	ALB	AGRatio	Selector
209	45	Female	0.9	0.3	189	23	33	6.6	3.9	NaN	1
241	51	Male	0.8	0.2	230	24	46	6.5	3.1	NaN	1
253	35	Female	0.6	0.2	180	12	15	5.2	2.7	NaN	2
312	27	Male	1.3	0.6	106	25	54	8.5	4.8	NaN	2

(b) The four rows in question.

Figure 1.5: The identification of four missing values in the ${\rm A/G}$ ratio column.

Column	Description	Measurement
		level
Age	The patient's age. Ages of 90	Ratio
	or over were listed as 90 be-	
	fore this dataset was published,	
	which could introduce a bias in	
	the machine learning model.	
Gender	The patient's gender, either "Male"	Nominal
	or "Female".	
TB	Total bilirubin. Bilirubin is a sub-	Ratio
	stance produced by the liver, and a	
	high presence of it may be indica-	
	tive of liver problems (Mayo Clinic,	
	2024).	
DB	Direct bilirubin. This is a slightly dif-	Ratio
	ferent form of bilirubin that is formed	
	after the liver has processed it.	
Alkphos	Levels of alkaline phosphate - an en-	Ratio
	zyme in the body produced by the	
	liver. Too much may indicate liver	
	disease. (Cleveland Clinic, 2024)	
Sgpt	Another enzyme found in the liver,	Ratio
	where too much can indicate liver	
	problems.	
Sgot	Levels of AST in the blood, where	Ratio
	too much indicates liver problems.	
TP	Total proteins.	Ratio
ALB	Albumin - a protein in blood plasma.	Ratio
	Too little of this may indicate liver	
	problems.	
A/G Ratio	The ratio of albumin to globulin,	Ratio
	which is another blood protein.	
Selector	The classifier, indicating if the person	Nominal
	has liver disease. The target column	
	for the ML model.	

Table 1.1: The descriptions of each column in the Indian Liver Patient Dataset.

This dataset could be used to solve a binary classification problem using the ten predictor variables and the ground truth Selector column, which will be used in measuring the accuracy of the model. There is a clear positive purpose for developing such a model; as previously mentioned, mortality rates from liver disease are high, and an early diagnosis that could leverage the power of machine learning can greatly enhance the odds of successful treatment.

1.2 Candidate 2 - Spotify Likes Dataset

This dataset (Vergnou, 2024) was sourced from Kaggle, a platform similar to the UCI ML repository in its purpose for students and researchers that acts as a search engine for datasets, but also allows its users to host competitions, upload their machine learning models, and also upload their own Python notebooks (Kaggle, 2024). This dataset is stored on their servers on the cloud, and is free to download and use under a Creative Commons Public Domain license (Creative Commons, 2024).

Figure 1.6: A snapshot of the Spotify dataset's Kaggle page.

The data itself is split over two JavaScript Object Notation (JSON) files, but also fully present in an included CSV file, with all three utilising a One Big Table schema. The download also includes two Python files, which have the JSON data stored in Python dictionaries for ease of access, though these will not be used in this brief analysis. JSON files store data in **key-value pairs**, such as in the example snippet of this dataset depicted in Figure 1.7.

Figure 1.7: A snippet of the JSON data, viewed in Visual Studio Code.

Every row in the JSON files is part of the single "audio_features" key, and each new row is separated by curly braces {}. Each column is then given as a key-value pair, such as the first row in Figure 1.7, where "danceability" is the key, and 0.352 is the associated value. This dataset does consist of real data, sourced from the author's personal liked songs directly via the Spotify API. There are 195 rows of data, with 100 liked songs, and 95 disliked songs. Liked and disliked songs are separated into two JSON files, named "dislike" and "good". The two JSON files have 18 features, as depicted in Figure 1.8.

dislike.json				
danceability	numeric			
energy	varchar			
key	integer			
loudness	numeric			
mode	integer			
speechiness	numeric			
acousticness	numeric			
instrumentalness	numeric			
liveness	numeric			
valence	numeric			
tempo	numeric			
type	varchar			
id	varchar			
uri	varchar			
track_href	varchar			
analysis_url	varchar			
duration_ms	integer			
time_signature	integer			

good.json			
danceability	numeric		
energy	varchar		
key	integer		
loudness	numeric		
mode	integer		
speechiness	numeric		
acousticness	numeric		
instrumentalness	numeric		
liveness	numeric		
valence	numeric		
tempo	numeric		
type	varchar		
id	varchar		
uri	varchar		
track_href	varchar		
analysis_url	varchar		
duration_ms	integer		
time_signature	integer		

Figure 1.8: An entity relationship diagram of the two JSON files.

This dataset has been used to create machine learning models before, most notably by its own author, who has a public GitHub repository showcasing their work (Vergnou, 2021). Before publicising this data, however, the author had done some preprocessing of their own, having included the additional CSV file, produced as a result of merging the two JSON files into one CSV and removing unnecessary columns, as depicted in Figure 1.9. Therefore, my preliminary Pandas analysis of the data types and missing values will only be performed on this CSV, seen in Figures 1.10 and 1.12.

data.csv		
danceability	numeric	
energy	varchar	
key	integer	
loudness	numeric	
mode	integer	
speechiness	numeric	
acousticness	numeric	
instrumentalness	numeric	
liveness	numeric	
valence	numeric	
tempo	numeric	
duration_ms	integer	
time_signature	integer	
liked	integer	

Figure 1.9: An entity relationship diagram of the author's preprocessed CSV file.

df_spotifyCSV.dtypes				
danceability	float64			
energy	float64			
key	int64			
loudness	float64			
mode	int64			
speechiness	float64			
acousticness	float64			
instrumentalness	float64			
liveness	float64			
valence	float64			
tempo	float64			
duration_ms	int64			
time_signature	int64			
liked	int64			

Figure 1.10: The data types of the Spotify Likes Dataset.

<pre>df_spotifyCSV.head()</pre>														
	danceability	energy	key	loudness	mode	speechiness	acousticness	instrumentalness	liveness	valence	tempo	duration_ms	time_signature	liked
0	0.803	0.6240	7	-6.764	0	0.0477	0.451	0.000734	0.1000	0.6280	95.968	304524	4	0
1	0.762	0.7030	10	-7.951	0	0.3060	0.206	0.000000	0.0912	0.5190	151.329	247178	4	1
2	0.261	0.0149	1	-27.528	1	0.0419	0.992	0.897000	0.1020	0.0382	75.296	286987	4	0
3	0.722	0.7360	3	-6.994	0	0.0585	0.431	0.000001	0.1230	0.5820	89.860	208920	4	1
4	0.787	0.5720	1	-7.516	1	0.2220	0.145	0.000000	0.0753	0.6470	155.117	179413	4	1

Figure 1.11: The head of the dataset.

<pre>df_spotifyCSV.isna().sum()</pre>		
danceability	0	
energy	0	
key	0	
loudness	0	
mode	0	
speechiness	0	
acousticness	0	
instrumentalness	0	
liveness	0	
valence	0	
tempo	0	
duration_ms	0	
time_signature	0	
liked	0	

Figure 1.12: No missing values in the dataset.

While a machine learning model to solve a binary classification problem could be trained on this dataset to identify if the author would like a song, it has significantly less of a positive impact than Candidates 1 and 3, as this dataset is the author's subjective belief rather than objective fact that can be applied to other people. Nevertheless, the descriptions of each column can be found in Table 1.2.

Column	Description	Measurement level
Danceability	How suitable a song is for dancing mea-	Ratio
	sured from 0.0 to 1.0.	160010
Energy	The intensity and activity of a song.	Ratio
3,	For example, death metal is high energy,	
	whereas classical music is low intensity.	
	1.0 is the most energetic.	
Key	The musical key the song is in, converted	Ratio
	to an integer using standard pitch class	
	notation.(Butterfield, 2024)	
Loudness	The averaged decibel volume of a song,	Interval
	typically between -60 and 0 dB.	
Mode	Whether a song is in major or minor scale.	Nominal
	1 is major and 0 is minor.	
Speechiness	The calculated presence of spoken words	Ratio
	in a song.	
Acousticness	A confidence measure from 0.0 to 1.0 of	Ratio
	whether the track is acoustic. 1.0 repre-	
	sents high confidence the track is acoustic.	
Instrumentalness	A confidence measure from 0.0 to 1.0 of	Ratio
	whether a song has no vocals.	
Liveness	A confidence measure from 0.0 to 1.0 of	Ratio
	whether a live audience can be heard as	
	part of a song.	
Valence	A confidence measure from 0.0 to 1.0 of	Ratio
	the musical positiveness of a song.	
Tempo	The beats per minute of a song.	Ratio
Duration_MS	The duration of a song in milliseconds.	Ratio
Time signature	The estimated time signature of the song.	Ratio
Liked	The target variable, indicative of whether	Ratio
	the author liked the song or not.	77
Type	Always "audio_features". Not a relevant	Nominal
TD.	predictor.	77
ID	Spotify's own unique ID for a song. Not	Nominal
IIDI	a relevant predictor.	NT 1
URI	Spotify's URI for the song. Not a relevant	Nominal
m 1 HDDD	predictor.	N.T • 1
Track HREF	A link to the song on Spotify's API. Not	Nominal
A 1 ' TIDI	a relevant predictor.	NT 1
Analysis URL	A link to the song's audio analysis data.	Nominal
	Not a relevant predictor.	

Table 1.2: The descriptions of each column in the Spotify songs dataset (Spotify, 2024). Red columns are only present in the CSV, whereas green columns are only present in the JSONs.

These measurements and their descriptions are sourced from Spotify's API, and are automatically calculated when songs are uploaded to the service. The ground truth of the dataset is present in the CSV file as the "liked" classifier column, and a train/test split can be implemented for predictions, which is aided by the fact that this dataset is well balanced (100 liked to 95 disliked). However, its small size and the fact that the model would only be able to predict one person's specific music taste make this dataset a poor candidate.

1.3 Candidate 3 - Loan Approval Classification Dataset

This dataset (Lo, 2024), similarly to Candidate 2, was sourced from Kaggle's cloud servers under an Apache 2.0 license, which states that the dataset can be used as long as credit is given to the original author. The dataset the physical form of a flat-file CSV, with the logical structure being the One Big Table data schema.

Figure 1.13: A snapshot of the Loan dataset's Kaggle page.

Unlike Candidates 1 and 2, this dataset does not consist of real data, and instead consists of synthetic data. This is likely due to the fact that this dataset, if it used real data, would contain extremely personal information that could not be shared online due to legislation such as GDPR, which is further discussed in Section 2.7. This particular dataset is an enhanced version of a different credit risk dataset, which also did not provide an original source and is also presumably synthetic data. The enhancements added were three additional columns, for the hypothetical person's gender, education level and credit score. Additionally, the author balanced the dataset using Synthetic Minority Oversampling Technique (SMOTE), an oversampling algorithm designed to balance datasets to produce higher quality machine learning models (Microsoft, 2024). It can therefore be established that this dataset was created solely for research and analysis purposes, including for the creation of supervised learning models. The dataset consists of 45,000 records and 14 features, with one of these being the ground truth target variable "loan status", which is whether the person should be given a loan or not. 31 notebooks on Kaggle created by the site's users utilise this dataset, with many of these choosing to solve the binary classification problem that it presents, including works published by authors such as (Gupta et al., 2021). The dataset is physically

stored as a flat-file CSV, under a One Big Table (OBT) logical data schema. The data types for each column can be seen in the entity relationship diagram and Pandas code in Figures 1.14 and 1.4, and descriptions of each column can be seen in Table 1.3.

Loan Approval Class	ification Dataset
person_age	numeric
person_gender	varchar
person_education	varchar
person_income	numeric
person_emp_exp	integer
person_home_ownership	varchar
loan_amnt	numeric
loan_intent	varchar
loan_int_rate	numeric
loan_percent_income	numeric
cb_person_cred_hist_length	numeric
credit_score	integer
previous_loan_defaults_on_file	varchar
loan_status	integer

Figure 1.14: An entity relationship diagram of the Loan Approval Classification Dataset.

df_loan.dtypes	
person_age person_gender	float64 object
person_education person income	object float64
person_emp_exp	int64
person_home_ownership loan_amnt	object float64
loan_intent loan int rate	object float64
loan_percent_income	float64
<pre>cb_person_cred_hist_length credit_score</pre>	float64 int64
<pre>previous_loan_defaults_on_file loan_status</pre>	object int64

Figure 1.15: The data types of the Loan Approval Classification Dataset.

Figure 1.16: The head of the dataset.


```
df loan.isna().sum()
person age
                                    Θ
person gender
                                    Θ
person_education
                                    Θ
person income
                                    Θ
person emp exp
                                    Θ
person home ownership
                                    Θ
loan amnt
                                    Θ
loan_intent
                                    Θ
loan int rate
                                    Θ
loan percent income
                                    Θ
cb person cred hist length
                                    Θ
credit score
                                    Θ
previous_loan_defaults_on_file
                                    Θ
loan status
                                    Θ
```

Figure 1.17: No missing values in the dataset.

Column	Description	Measurement
		level
person_age	The age of the person.	Ratio
person_gender	The person's gender.	Nominal
person_education	The person's highest level of educa-	Ordinal
	tion.	
person_emp_exp	The person's years of employment	Ratio
	experience.	
person_home_ownership	Home ownership status (for example	Nominal
	rent, own, mortgage)	
loan_amnt	The amount of money requested.	Ratio
loan_intent	The purpose of the loan.	Nominal
loan_int_rate	The interest rate of the loan.	Ratio
loan_percent_income	Loan amount as a percentage of the	Ratio
	person's yearly income.	
cb_person_cred_hist_length	Length of credit history in years.	Ratio
credit_score	Credit score of the person.	Ratio
previous_loan_defaults_on_file	If the person has defaulted on a loan	Nominal
	before.	
loan_status	Whether the loan should be ap-	Nominal
	proved. 1 if yes, 0 if no.	

Table 1.3: The descriptions of each column in the dataset.

This dataset is also frequently updated, with its most recent update occurring on the 29th of October. This would mean it may be more suited to an OLTP database system, which will be further discussed in Section 2.2.

1.4 Chosen dataset

Of the three candidates presented, the most suitable for a machine learning operations pipeline would be Candidate 3, the loan approval dataset. As mentioned in Section 1.3, this dataset possesses many predictor variables and an adequate amount of data to train a supervised learning classification model to classify whether an individual should be allowed a loan or not. While the data in this dataset is synthetic due to its real equivalent being highly protected under data protection legislation, the model trained from said synthetic data could be applied to real data using what it has learned, and could greatly expedite the process of loan approvals.

As previously mentioned, the dataset is hosted on Kaggle's cloud database, in the physical structure of a CSV file, using a One Big Table (OBT) data schema for its logical structure. Libraries such as Pandas natively work with these types of files which will allow for quick ingestion. When the dataset is ingested, it will be stored in a MariaDB Columnstore instance, which is further described in Section 2. For this pipeline, the data will be kept in the OBT schema due to the simplicity and efficiency of queries performed on it, and also to ensure maximum data integrity that could be lost if the logical structure were modified. There were

other options that could have been used instead of OBT, represented in Table 1.4

Schema	Description	Positives	Negatives
Star (Kamin-	Stores data across a	Simple to under-	Data updates would re-
sky, 2024)	main fact table for	stand, few joins	quire updates of mul-
	measured or trans-	needed, very scal-	tiple rows in multi-
	actional data, and	able.	ple tables. Adding
	dimension tables for		new columns (dimen-
	data related to the		sions) after initial cre-
	fact data, which can		ation can be difficult
	be visualised like a		because the schema is
	star.		denormalised.
Snowflake	An extended	Unlike a star	More complex to query
(Geeks-	form of the Star	schema, data is	due to the increased
ForGeeks,	schema that fur-	normalised, al-	amount of tables,
2023)	ther branches its	lowing data to be	therefore requir-
	dimension tables	added easier than	ing more processing
	into a hierarchy,	a star schema.	power.
	appearing more like		
	a snowflake than		
	a star due to the		
	multiple branches		
	formed.		
Normalised	Heavily organ-	Keeps minimal	As with other schemas
Relational	ises data, and	or no redundant	that use many tables,
Model (MI-	emphasises the re-	data whatsoever,	queries can be slowed
crosoft, 2024)	lationships between	reducing storage	by the need for multi-
	tables.	requirements. In	ple joins.
		doing so, this also	
		heightens data	
		integrity.	

Table 1.4: An analysis of alternative data schemas.

Planning the MLOps Pipeline

All machine learning operations (MLOps) follow a five-step repeatable pipeline, outlined in Figure 2.1, where the output of one stage becomes the input of the next.

Figure 2.1: The five key steps in an MLOps pipeline (InCycle Software, 2024).

The pipeline begins with raw data and finishes with a trained machine learning model, and is often repeated at certain intervals, which could be as simple as once a day, or it could be repeated as new data becomes available. This repetition is performed automatically, so that the final model can become progressively more accurate. Because the process must be repeatable and automated, it is essential that data is validated to ensure that one run of the pipeline where the data may have been corrupted somehow would not cause issues, which would quickly spiral out of control as the pipeline is repeated again and again. Overall, MLOps pipelines standardise the development and deployment process of machine learning models, ensuring continuous integration (CI) and continuous delivery (CD) and enhancing collaboration between data scientists and development teams.

2.1 Software to be used in the pipeline

A wide variety of software will be used across the MLOps pipeline, with an overall glossary of them documented in Table 2.1. Descriptions on how they will specifically be used in each stage of the pipeline can be found in each stage's respective section.

Software/Library	Overview
Conda	A package and environment management system which allows for soft-
	ware developers and data scientists to easily control the libraries used in
	their code (Anaconda, 2024). Allows for the creation of virtual environ -
	ments, which are contained structures where packages can be installed.
	The use of virtual environments allows for specific versions of packages to be kept, for instance with one environment storing an older version of a
	library for compatibility purposes, with another storing a newer version to
	be used in a different project. Were it not for these virtual environments,
	developers would constantly have to uninstall and reinstall specific pack-
	age versions, wasting considerable amounts of time. Conda also hosts its
	own repositories to obtain packages from, and a major benefit of Conda
	occurs during the package installation process, which is that it will iden-
	tify dependencies and version clashes between packages and solve them
	automatically, once again saving considerable amounts of time.
	In this project, Conda will be used as the environment and package man-
	ager to install and contain the libraries used in the development process.
	To do so, the Miniconda distribution will be installed, as this is a smaller
	distribution to save hard disk space and download time, but still contains
A 1 A: 0	the key Conda backend, as seen in Figure 2.2.
Apache Airflow	A platform used to orchestrate workflows and pipelines entirely in Python
	code (Apache, 2024c). Airflow creates Directed Acyclic Graphs (DAGs), which map out the order and dependencies of each task in a pipeline, and
	runs tasks in the order specified within the DAG, while also accounting for
	dependencies. Also provides many useful features such as task scheduling,
	which is especially useful for the automation of an MLOps pipeline, as
	well as automatic failure handling, where actions can automatically be
	performed on a task's failure, such as stopping the pipeline to prevent
	wasting computational resources. Airflow also provides a convenient UI,
	accessible by using the command "airflow webserver", which will host a
	web UI where tasks can be run, paused or stopped, as well as viewed in
	a tree view that maps the sequence and dependencies of tasks. Airflow
	also provides "Operators", which handle running code such as Python and
	Bash scripts.
	Airflow will be used within this project at all stages of the pipeline in order
	to manage the overall execution and structure of tasks. Operators will be
	used for the execution of all Python or Bash commands throughout the
	pipeline. By using Airflow in this way, the pipeline can become completely
	automated with continuous integration and continuous deployment.

Docker	An open-source containerisation system used to enhance the portability of applications by distributing them as self-contained, lightweight instances that come with everything they need to run immediately without needing to worry about system incompatibility (AWS (2024c), Docker (2022)) and minimise issues where software can run on one computer but not another. Docker could be described as working similarly to a virtual machine, though it is considerably more lightweight as it is not virtualising hardware.
MariaDB	A columnar storage engine designed for the processing of petabytes of data
Columnstore	with high performance and real-time response regardless of dataset size (MariaDB, 2024). While primarily intended for OLAP databases, it also facilitates OLTP databases. A Docker container for this software will be used in this pipeline.
Redis	An in-memory data store used to cache data in a machine's RAM rather than its persistent storage. The benefits of this are that said data can be loaded many times faster than if it were loaded from a hard drive. This does therefore mean that Redis will not be used to store persistent data, and it will instead be used to transfer data between different tasks in an Airflow DAG, as Airflow tasks are independent from each other. Redis will solve this by having relevant data loaded into memory before the task ends, at which point it will be read by the following task. A Docker container for this software will be used in this pipeline. Also includes a Python library of the same name that allows for access to the Redis store from Python scripts.
Pandas	A library used widely in industry for data analytics. It is capable of importing data of various types and storing them in a "DataFrame" object, which preprocessing operations can be performed on. It also allows the exporting of data in multiple formats (pandas, 2024).
SQLAlchemy	A library that allows SQL engine connections to be made from within a Python file. In doing so, data can be read from and stored into SQL databases (SQLAlchemy, 2024).
Scikit-learn	A large open-source Python library containing many different functionalities for machine learning (scikit-learn, 2024), such as encoders to convert strings to numerical equivalents, scalers to normalise and standardise the data to reduce variance (described further in Section 2.3), as well as containing methods to split data into training and testing sets, and fit, train and predict with various different machine learning algorithms (described further in Section 2.4).
FastAPI	A high-performance framework for developing APIs in Python, proclaimed as "One of the fastest Python frameworks available" (FastAPI, 2024). Facilitates an API for clients to access the backend ML model later in the pipeline.

Uvicorn	A low-level webserver implementation in Python with high performance		
	(Uvicorn, 2024).		
MLFlow	An open-source platform for the tracking and monitoring of machine learn-		
	ing models, storing each iteration of the model so that they may be re-		
	produced at a later point (MLFlow, 2024), which is especially useful while		
	performing hyperparameter tuning on the model, which is where small		
	details of the model are changed such as the number of decision trees in a		
	Random Forest. Also facilitates REST APIs, discussed in Section 2.5.		
Apache Arrow	Software with a Python library interface that allows for the serialization		
PyArrow	of objects (Apache, 2024b). This is important in synergy with Redis and		
	Pandas, as Redis is unable to directly store Pandas dataframes, so they		
	must first be serialized, converting them to a bytes format that Redis can		
	store in memory.		
Pickle	A base package in Python that functions similarly to Arrow in the serial-		
	ization of data (Python, 2024). Pickle specifically will be used to serialize		
	machine learning models.		
Great Expecta-	A Python library used for data validation, where "expectations" can be		
tions	set for a dataset, such as all data of a column being numeric, and they		
	will be assessed (GX, 2024).		

Table 2.1: Descriptions of software and libraries across the pipeline.

Figure 2.2: A comparison of the primary Conda distributions (TowardsDataScience, 2021)

2.2 Data Ingestion

2.2.1 Description

The first step of any machine learning pipeline is data ingestion. This refers to the process of obtaining the input data from its original source and transferring it to a relevant storage medium, such as a database or data warehouse, to be used in later stages. This stage is undertaken by data scientists. It is of vital importance that data is not lost or corrupted during ingestion, as this stage is the baseline for all future stages in the pipeline, and any issues here will directly impact all future stages, as previously discussed. Furthermore, when ingesting data, it is important to understand what type of system this data will be used in, of which there are two options: Online Analytics Processing Systems (OLAP), and Online Transactional Processing Systems (OLTP), as well as how it will be loaded into the chosen system, either using an ELT (Extract, Load, Transform) or ETL (Extract, Transform, Load) methodology.

OLAP and **OLTP**

OLAP	OLTP
Designed for complex queries and	Designed for lots of short, fast queries
data analysis, primarily data read-	("transactions") for both reading and
ing.	writing.
Typically store massive amounts of	Usually store less data for speed pur-
data, sometimes petabytes. for ex-	poses.
tremely detailed analysis.	
Usually historical data, infrequently	Typically real-time data that is up-
updated.	dated often.
Uses database schemas such as star	Uses normalised or denormalised mod-
or snowflake schema to allow for	els, such as One Big Table, minimising
queries using many joins.	joins and maximising speed.
Slow response times, measured in	Fast response times, measured in mil-
minutes.	liseconds.

Table 2.2: A comparison of OLAP and OLTP systems (AWS, 2024b).

As mentioned in Table 2.2, OLAP systems are designed for complex and deep data analytics, which helps companies perform tasks such as analysing customer trends, while OLTP systems aim for maximum speed to complete quick transactions, which is necessary in situations like processing payments and orders.

ELT and ETL

ELT and ETL are both acronyms for the order of processes taken when ingesting data, with "Transform" either happening before or after the data is loaded into a storage medium like a data warehouse or data lake. The extract phase refers to the initial gathering of the data from its original source, such as Kaggle for the selected dataset in this report. The transform phase refers to early modifications made to the data, such as formatting or cleaning, and the

load phase refers to the transportation of the data from its original storage medium (a CSV on Kaggle's cloud servers in this case) to a more optimised and efficient data warehouse to be used in the execution of the pipeline.

Regardless of whether ETL or ELT is used, the data is still extracted, loaded and transformed. However, the decision of which order to use can be determined from the data itself, with smaller datasets that may need complex transformation from their raw form being more suited to ETL, whereas large datasets with less transformation needed can be better with ELT (Smallcombe, 2024).

ELT	ETL	
Data is transformed after being	Data is transformed before being	
loaded into another storage medium.	loaded into another storage medium.	
Useful if the data warehouse is a	Useful if the data warehouse has limited	
more modern system with good pro-	processing abilities of its own, typically	
cessing power.	seen in older or otherwise less powerful	
	systems such as those on virtual ma-	
	chines.	
Lower latency in the ingestion phase	Higher latency in the ingestion phase,	
because data is immediately loaded.	because the data is being processed	
	first, adding an extra time overhead	
	where the pipeline could be held up.	
Simpler to set up due to the immedi-	Can be complex to set up and maintain,	
ate loading of the data.	as the transformation would occur out-	
	side the warehouse.	

Table 2.3: A comparison of ETL and ELT methodologies (Bartley (2024), AWS (2024a)).

It can be surmised from the analysis of each method in Table 2.3 that ETL is best applied to older systems with limited processing power, whereas ELT is better in more modern systems. It can additionally be argued that performing the ETL order of operations blurs the line between the ingestion and preprocessing stages, as the data is transformed before it is actually loaded into the system and fully ingested, whereas ELT has a clear split between the ingestion and preprocessing of the data.

2.2.2 In this project

The candidate dataset's raw CSV file, downloaded directly from Kaggle, will act as the input for this stage. It utilises the One Big Table schema, and it was previously established in Section 1.3 that it contains no missing values. The size of the dataset is the largest of the three candidates but is still small in comparison to those used in industry, being only 3.5MB in comparison to gigabytes and petabytes as previously mentioned in Table 2.2. Because of this small size, processing operations performed on the dataset will be very fast, even with limited processing power, so the ETL methodology will be used to ingest the data into a MariaDB Columnstore OLTP database for quick and efficient loading and querying, where the end user will be able to quickly supply predictor variables and receive a fast response.

To do so, some of the software originally mentioned in Table 2.1 will be used, seen in Table 2.4.

Software/Library	Usage for ingestion	
Docker	In this stage, Docker will be used to host a	
	container of MariaDB Columnstore.	
MariaDB	In this stage, the Columnstore will be hosted	
Columnstore	on a Docker container at port 3306 (Docker	
	Hub, 2024), and will be used as the OLTP	
	storage medium of the ingested data.	
Pandas	In the ingestion phase, it will be used to im-	
	port the dataset's CSV file, and export it as	
	SQL to the MariaDB Columnstore through	
	the use of SQLAlchemy.	
SQLAlchemy	Alongside Pandas, SQLAlchemy will export	
	the DataFrame to the MariaDB Columnstore	
	instance.	

Table 2.4: Software to be used in ingestion.

Figure 2.3: A diagram of the planned ingestion process.

2.3 Data Preprocessing

2.3.1 Description

After the data has been ingested, the preprocessing stage begins, and is often also conducted by Data Scientists. This stage encompasses the cleaning, integration and transformation of the data in order to optimise the dataset for model development.

Cleaning refers to the identification of missing, inaccurate or malformed data within the dataset, as well as its removal or imputation where possible.

Integration is often seen in datasets with multiple tables or that have been retrieved from multiple sources, and refers to the combination of the retrieved data into a single flat file.

Transformation, also known as feature engineering, is a considerable aspect of data preprocessing which refers to the manipulation and formatting of the data, such as changing the formats of columns from numeric dates to proper date data types, as well as the handling of categorical data, such as genders, which may originally be strings. Strings cannot be interpreted by machine learning models, and therefore they are encoded into numbers using techniques such as label encoding, which converts the unique values in a column to a numerical representation, such as male being 0 and female being 1. Data is also normalised and standardised in this stage, meaning that numerical data is reduced to being between 0 and 1 to adjust the overall scale of the data. This is especially useful with algorithms such as K-Nearest Neighbours, where large differences in distance between data can mislead the classification algorithm (IBM, 2021b).

Once these tasks have all been completed, the dataset will be ready to be used for model development.

2.3.2 In this project

The preprocessing in this project will take the ingested data as input, from which point it will be transformed, with columns such as "person_gender" encoded to categorically labelled numerical equivalents. To do so, some of the software and libraries originally mentioned in Table 2.1 will be used, shown below in Table 2.5. After this, the processed dataset will be output to Redis, to be used as the input for the model development stage.

Software/Library	Usage for preprocessing	
Pandas	Will be used alongside SQLAlchemy to load	
	the dataset from the MariaDB Columnstore	
	instance hosted on Docker, as well as for the	
	actual transformation of the data using the	
	methods provided by Pandas dataframes.	
SQLAlchemy	Will be used alongside Pandas to query and	
	receive data from the MariaDB Columnstore	
	instance.	
Scikit-learn	Will be used to normalise and standardise the	
	data, as well as encode any string data into	
	numerical equivalents.	

Docker	Will host the MariaDB Columnstore con-
	tainer. Additionally for this section, it will
	also host a container for Redis to store the
	processed dataset.
Redis	Will store the processed dataframe in memory.
	Cannot directly store the dataframe as men-
	tioned in Table 2.1, so it must be serialised
	first using Arrow.
Arrow	Will serialise the processed dataframe so that
	it can then be stored by Redis.

Table 2.5: Descriptions of software to be used for preprocessing.

Figure 2.4: A diagram of the planned preprocessing stage.

2.3.3 Data analysis

To build a machine learning model for a dataset, it greatly helps to understand the data itself.

Distributions and outliers

Understanding the data means to know how the data is typically distributed, and what constitutes an outlier. This can be done through visualisations such as box plots for numerical data and bar charts for categorical data.

Figure 2.5: Bar charts of the six categorical rows.

A notable observation is that the dataset is imbalanced, containing fewer records of granted loans than denied loans.

Figure 2.6: Box plots of all numerical columns.

There are many outliers in this dataset, most notably in the income column, where very few are earning millions. Also, the age column has some outliers of extremely old people, including one aged 140, who cannot exist as the oldest person known was 112 before they died (Sky News, 2024). This can therefore likely be attributed to erroneous generation due to this dataset being synthetic, and records with considerable outliers like this can be safely removed in the implementation's preprocessing phase.

Encoding

Machine learning models cannot directly interpret string data. Therefore, strings must be encoded to numerical representations through either label encoding or one-hot encoding. Label encoding is best suited to ordinal data as it will maintain the ordering of said data, such as levels of education. One-hot encoding is better suited to nominal data without an inherent order, such as the intent of a loan. Therefore, this dataset requires the use of both types of encoding, shown in Figures 2.7 and 2.8

Figure 2.7: Using label encoding for the person_education column.

```
# of the original values in the column, removing the original column in the process.
   encodedDf = pd.get_dummies(df, columns=df.select_dtypes(include=['object']).columns)
   encodedDf.dtypes
   # It can be seen that there are many more columns now, as one has been created for each categorical
   # value in the object columns.
person_age
                                       float64
person_education
                                         int64
                                       float64
person_income
                                         int64
person_emp_exp
loan amnt
                                       float64
loan_int_rate
                                       float64
loan_percent_income
                                       float64
cb_person_cred_hist_length
                                       float64
credit_score
                                         int64
loan_status
                                         int64
person_gender_female
                                          bool
person_gender_male
                                          bool
person_home_ownership_MORTGAGE
                                          bool
person_home_ownership_OTHER
                                          boo1
person_home_ownership_OWN
                                          bool
person_home_ownership_RENT
                                          bool
loan_intent_DEBTCONSOLIDATION
                                          bool
loan_intent_EDUCATION
                                          bool
loan_intent_HOMEIMPROVEMENT
                                          bool
loan_intent_MEDICAL
                                          bool
loan_intent_PERSONAL
                                          bool
loan_intent_VENTURE
                                          bool
previous_loan_defaults_on_file_No
                                          boo1
previous_loan_defaults_on_file_Yes
                                          bool
```

Figure 2.8: Using one-hot encoding for the person education column.

Correlations

The easiest way to view the correlations between variables is through a correlation matrix, seen below in Figure 2.9, which cannot be created unless data is first encoded. However, an immediate observation is the sheer size of the matrix due to an unfortunate side effect from one-hot encoding creating entirely new columns, increasing the dimensionality of the dataset.

Figure 2.9: The full correlation matrix for the encoded dataset.

Despite this, key insights can still be made about the likelihood of a loan being granted, such as:

- Loans are most likely to be approved if the person has never defaulted on a loan before.
 - They are least likely to be approved if the person has defaulted before.
- The interest rate positively correlates with the loan's approval.
- If the person rents their home, they are more likely to be approved.
 - They are less likely to be approved if they have a mortgage.
- Loans are more likely to be approved if they are a large percentage of the person's yearly income.

2.4 Model Development

2.4.1 Description

The model development stage accepts the processed dataset from the preprocessing stage as input and leverages machine learning algorithms to solve the problem in question, either a classification problem where data will be identified as being of a certain category (class), or a regression problem where unknown data can be predicted. Both of these problems require the model to be "fitted" and "trained". These refer to the utilisation of the processed dataset for the recognition of patterns, associations and correlations within the data. To fit and train the data, it is split into two sets: a training set, consisting of a large majority of the data ($\tilde{8}0\%$), and a testing set which uses the remaining minority. The algorithm will then use what it has learned from the training set to make predictions on the testing set, from which the accuracy of the model can be ascertained. These processes often yield better results with larger datasets, as the algorithm will have more information to learn and make predictions based on, which is why it is preferred to not remove data from the dataset unless strictly necessary.

This stage is conducted by machine learning engineers, and its output is that of the trained machine learning model, which can then be deployed.

2.4.2 In this project

The dataset will first be loaded from Redis and deserialised by Arrow. The dataset poses a classification problem, and as such, the Scikit-Learn Python library will be particularly key in this stage for its implementation of a Random Forest algorithm, which is reputed as one of the most accurate models in many scenarios. However, it can have a steep processing time depending on how many decision trees it is told to create.

Software/Library	Usage for development	
Arrow	Will deserialize the stored dataframe from Re-	
	dis after the preprocessing stage.	
Pandas	Will store the dataframe deserialized by Ar-	
	row.	
Redis	Stores the processed dataset to be retrieved at	
	the beginning of this stage.	
Scikit-learn	Will be used for its implementations of vari-	
	ous algorithms, most notably a Random For-	
	est Classifier. Will also provide useful metrics	
	such as accuracy on the training and test data.	
MLFlow	Will be used to store and track each iteration	
	of the model that is produced as this phase is	
	repeated.	

Table 2.6: Descriptions of software to be used for model development.

2.5 Model Deployment

2.5.1 Description

The developed model from the previous stage of the pipeline can then be integrated into an actual environment, and can be utilised as a tool to make decisions. This stage is where software engineers will make the model available for use, and where the model will therefore begin to be provided with unseen data, which refers to data outside of the original training dataset. Models are typically deployed using Representational State Transfer APIs, better known as REST APIs (RedHat, 2024). REST APIs make use of typical frontend web HTTP requests (GET, POST, PUT, DELETE) from the client to give instructions to the backend machine learning model (RestfulAPI, 2023). A significant benefit of using REST APIs is the massive portability benefits provided; using a REST API means that the model can provide results to a wide variety of devices such as Windows PCs, Macs, and even phones, as anything that can make HTTP requests can interface with one.

2.5.2 In this project

The produced model will be hosted on a webserver via Uvicorn, and the REST API will be implemented via FastAPI. These two Python packages will provide an interface where the user can input the predictor variables of the dataset (age, credit score, etc.) to receive the model's output result.

Software/Library	Usage for deployment	
FastAPI	Will be used to provide the API between the	
	user and the ML model, where the user will	
	give data to API endpoints and the model will	
	supply a prediction.	
Uvicorn	Will be used to host the webserver that the	
	API will run on.	
MLFlow	Will be used as a "bridge" of sorts between the	
	user and the model, and will access and load	
	it as well as retrieving any necessary artifacts	
	to process the data that the user supplies.	

Table 2.7: Descriptions of software to be used for model deployment.

2.6 Model Monitoring

2.6.1 Description

After the model is deployed, its performance is continuously monitored by data scientists. The monitoring process consists of the analysis of the model's results via metrics such as those found in Table 2.8 By monitoring the model, any issues with it can be quickly identified and the pipeline can be restarted to yield a higher accuracy model, which can be monitored again.

Metric	What is it?	Type
Accuracy	The number of correct predictions di-	Classification
	vided by the total amount of predic-	
	tions.	
Precision	The ratio of correctly predicted posi-	Classification
	tives to the total amount of positives	
	in the dataset.	
F1-score	A measurement calculated from	Classification
	a model's accuracy and preci-	
	sion.(Kundu, 2024)	
Mean Absolute	The average of the differences be-	Regression
Error (MAE)	tween predicted and actual values.	
R^2 (R-Squared)	Also known as the coefficient of de-	Regression
	termination, shows how well the pre-	
	dicted data fits the actual data (CFI,	
	2024).	

Table 2.8: Descriptions of various metrics to grade ML models.

2.6.2 In this project

This pipeline aims to produce a binary classification model, so metrics such as F1-score will be useful in the evaluation of each iteration of the model. To do so, MLFlow will be used to store each iteration's parameters and performance metrics.

Figure 2.10: An example of the MLFlow monitoring dashboard (MLFlow, 2024).

2.7 Data terminology

This project must take into account four key elements of data handling these being data privacy, security, ethics and data protection laws.

Term	Description	
Data privacy	An individual's ability to govern what happens to their personal	
	data (Cloudflare, 2024). Personal data refers to data that could	
	be used to singularly identify someone (Yang, 2021).	
Data security	The protection of personal/sensitive information from unautho-	
	rized access, use or manipulation (IBM, 2021a). This can be the	
	physical protection of material such as hard drives, and software	
	protections like encryption.	
Data ethics	A blanket term encompassing the moral obligations of data col-	
	lection, use and protection (Harvard Business School, 2021).	
	Ethical data storage would mean that the data subjects will-	
	ingly gave their data and can ask for its deletion at any point.	
	Mandated by data protection legislation.	
Big data ethics	The application of data ethics to massive datasets, concerning	
	the implications of their collection and use on society as a whole	
	(Richards and King, 2014).	
General Data	Legislation introduced in the EU in 2016, giving individuals sig-	
Protection	nificantly more rights over their personal data. Data subjects	
Regulations	most notably may request a copy of their data, the removal of	
(GDPR)	their data, and to object to their data's collection (ICO, 2024a).	
	Additionally, data must be kept secure using all available means.	
	Companies who fail to adhere to these policies face significant	
	sanctions of €10,000,000 or 2% of the company's annual turnover	
	for minor violations, or double this (€20,000,000, 4% turnover)	
D / D / /:	for major violations, whichever figure is higher.	
Data Protection	When the UK left the EU, the GDPR no longer applied. There-	
Act 2018	fore, the UK adopted the GDPR as an amendment to its own	
	Data Protection Act. There are minimal differences between	
	the two, only that the UK's fines are in GBP rather than Euros,	
	meaning fines go up to £17,500,000 or 4% turnover (ICO, 2024b).	

Table 2.9: A brief overview of relevant data terminology.

Implementation of the MLOps Pipeline

3.1 Ethical and Legal Considerations

The dataset was shared under an Apache 2.0 open-source licence, permitting access and modification with no restrictions except crediting the original author (Apache, 2024a), meaning that there are not any ethical or legal considerations of note with this dataset's usage. Given that the chosen dataset also consists of synthetic data, there are fewer necessary considerations for its use.

3.1.1 Synthetic data

This term has been frequently used throughout the report to describe the Loan Approval Classification Dataset, and refers to data that has been generated algorithmically rather than collected from a real source. However, the generation of the synthetic data does often depend on real data to identify patterns and trends, meaning that legislation such as GDPR is still relevant in those scenarios because the generated data must be impossible to link back to the original subject (Lopez and Elbi, 2022). An example of synthetic data generation is SMOTE, which was used in the generation of the loan dataset (Zoppelleto, 2024), which creates synthetic data in a dataset based on the other rows as previously mentioned in Section 1.3. SMOTE will also be used in Section 3.4 to balance the dataset.

3.2 Initial Software Setup

3.2.1 VirtualBox & Ubuntu

The majority of data scientists utilise Linux distributions for their projects due to its open-source nature and the availability of many tools and packages. Therefore, VirtualBox, software to create a virtual machine which runs inside the host machine (Oracle, 2024), will be used to virtualise an Ubuntu 22.04 LTS system on the Windows host machine. This particular OS was chosen because of its relative recency and frequent software & security updates. Virtual machines also allow for "snapshots", which store the current state of the machine and its files at that time to be restored at any point in the event of unforeseen errors. Should a catastrophic error that would damage the system occur, the host machine would be unaffected as the virtual machine is isolated.

Figure 3.1: The configuration for the pipeline's VM.

```
(base) lewis@Ubuntu:~$ neofetch
                                                                              lewis@U
                                                                                S: Ubuntu 22.04.5 LTS x86_64
ost: VirtualBox 1.2
ernel: 6.8.0-47-generic
                SSSSS dMMMNy
SSSSS hdmmNNmmyNMMMh
SS hmydMMMMMMNddddyss
hNMMMyhyyyyhmNMM
                                                                                      lt: 0.8.0 ...
1 min
uges: 1750 (dpkg), 9 (snap)
l: bash 5.1.16
Lution: 2560x1374
               dmmmnh
                                             hnmmd
        hhhynmmy
                                              SyNMMMy
     YNMMMNYMMh
                                                hmmh
                                                                                  : GNOME 42.9
     ynmmmnymmh
                                                                                  : Mutter
        hhhynmmny
                                                                                            : Adwaita
                                                                                      : Yaru [GTK2/3]
:: Yaru [GTK2/3]
                                             hnmmd
                dmmmnh
                 shnmmyhhyyyyhdnmmmhs
sssdmydmmmmmmddddyss
                                                                                   rminal: gnome-terminal
J: 12th Gen Intel i5-12600K (10) @ 3.686GHz
J: 00:02.0 VMware SVGA II Adapter
mory: 907MiB / 15991MiB
                          hdmnnnnmynmmmh
                                           dmmmny
                                             ууу
```

Figure 3.2: The VM's Neofetch display.

3.2.2 Conda environment and packages

```
(base) lewis@Ubuntu:~$ conda create --name Pipeline python=3.8
Retrieving notices: ...working... done
Channels:
    defaults
    conda-forge
Platform: linux-64
Collecting package metadata (repodata.json): done
Solving environment: done

## Package Plan ##

environment location: /home/lewis/miniconda3/envs/Pipeline
added / updated specs:
    python=3.8
```

Figure 3.3: Creating the "Pipeline" Conda environment.

```
(Pipeline) lewis@Ubuntu:-$ conda install -c conda-forge pandas numpy redis pymysql sqlalchemy jupyter great-expectations fastapi uvicorn pyarrow scikit-learn apache-airflow millow Channels:
- conda-forge
- defaults
Platform; linux-64
Collecting package metadata (repodata.json): done
Solving environment: done
## Package Plan ##
environment location: /home/lewis/miniconda3/envs/Pipeline
added / updated specs:
- apache-airflow
- fastapi
- great-expectations
- jupyter
- niflow
- numpy
- pandas
- pyarrow
- pymysql
- redis
- scikit-learn
- sqlalchemy
- uvicorn
```

Figure 3.4: Installing packages to the environment via Conda.

- 3.3 Data Ingestion
- 3.4 Data Preprocessing
- 3.5 Model Development
- 3.6 Model Deployment
- 3.7 Model Evaluation

Conclusion

Bibliography

- Anaconda (2024). About Anaconda. Anaconda. URL: https://www.anaconda.com/about-us (visited on 11/22/2024).
- Apache (2024a). Apache License, Version 2.0. URL: https://www.apache.org/licenses/LICENSE-2.0 (visited on 12/05/2024).
- Apache (2024b). Streaming, Serialization, and IPC Apache Arrow v18.0.0. URL: https://arrow.apache.org/docs/python/ipc.html (visited on 11/18/2024).
- Apache (2024c). Use Cases. Apache Airflow. URL: https://airflow.apache.org/use-cases/ (visited on 11/18/2024).
- AWS (2024a). ETL vs ELT Difference Between Data-Processing Approaches AWS. Amazon Web Services, Inc. URL: https://aws.amazon.com/compare/the-difference-between-etl-and-elt/ (visited on 11/17/2024).
- AWS (2024b). OLTP vs OLAP Difference Between Data Processing Systems AWS. Amazon Web Services, Inc. URL: https://aws.amazon.com/compare/the-difference-between-olap-and-oltp/ (visited on 11/16/2024).
- AWS (2024c). What is Docker? / AWS. Amazon Web Services, Inc. URL: https://aws.amazon.com/docker/ (visited on 11/18/2024).
- Bartley, Kevin (Oct. 30, 2024). ETL vs ELT: Key Differences, Comparisons, & Use Cases. Rivery. URL: https://rivery.io/blog/etl-vs-elt/ (visited on 11/17/2024).
- Bendi Ramana and N. Venkateswarlu (2022). *ILPD (Indian Liver Patient Dataset)*. DOI: 10.24432/C5D02C.
- Butterfield, Sean (2024). 22b Lesson Pitch-class integer notation. Inquiry-Based Music Theory. URL: https://smbutterfield.github.io/ibmt17-18/22-intro-to-non-diatonic-materials/b2-tx-pcintnotation.html (visited on 11/12/2024).
- CFI (2024). R-Squared Definition, Interpretation, Formula, How to Calculate. URL: https://corporatefinanceinstitute.com/resources/data-science/r-squared/ (visited on 11/18/2024).
- Cleveland Clinic (2024). Alkaline Phosphatase (ALP): What It Is, Causes & Treatment. Cleveland Clinic. URL: https://my.clevelandclinic.org/health/diagnostics/22029-alkaline-phosphatase-alp (visited on 11/12/2024).
- Cloudflare (2024). What is data privacy? | Privacy definition. URL: https://www.cloudflare.com/learning/privacy/what-is-data-privacy/ (visited on 12/06/2024).
- Creative Commons (2024). Deed CC0 1.0 Universal Creative Commons. URL: https://creativecommons.org/publicdomain/zero/1.0/ (visited on 11/21/2024).
- Docker (May 10, 2022). Docker: Accelerated Container Application Development. URL: https://www.docker.com/ (visited on 11/18/2024).
- Docker Hub (2024). mariadb/columnstore Docker Image | Docker Hub. URL: https://hub.docker.com/r/mariadb/columnstore (visited on 11/18/2024).
- $Fast API\ (2024).\ Fast API.\ \mathtt{URL:\ https://fastapi.tiangolo.com/}\ (visited\ on\ 11/18/2024).$
- GeeksForGeeks (June 10, 2023). Snowflake Schema in Data Warehouse Model. GeeksforGeeks. URL: https://www.geeksforgeeks.org/snowflake-schema-in-data-warehouse-model/ (visited on 11/21/2024).
- Gupta, Kanishk, Binayak Chakrabarti, Aseer Ahmad Ansari, Siddharth Swarup Rautaray, and Manjusha Pandey (Apr. 24, 2021). Loanification Loan Approval Classification using Machine Learning Algorithms. Rochester, NY. DOI: 10.2139/ssrn.3833303.

- GX (2024). GX Core: a powerful, flexible data quality solution. URL: https://www.greatexpectations.io/gx-core (visited on 11/18/2024).
- Harvard Business School (Mar. 16, 2021). 5 Principles of Data Ethics for Business. Business Insights Blog. URL: https://online.hbs.edu/blog/post/data-ethics (visited on 12/07/2024).
- IBM (June 11, 2021a). What Is Data Security? / IBM. URL: https://www.ibm.com/topics/data-security (visited on 12/07/2024).
- IBM (Oct. 4, 2021b). What is the k-nearest neighbors algorithm? | IBM. URL: https://www.ibm.com/topics/knn (visited on 11/17/2024).
- ICO (Nov. 13, 2024a). A guide to individual rights. Publisher: ICO. URL: https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/individual-rights/individual-rights/ (visited on 12/07/2024).
- ICO (Nov. 27, 2024b). Enforcement of this code. Publisher: ICO. URL: https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/data-sharing/data-sharing-a-code-of-practice/enforcement-of-this-code/ (visited on 12/07/2024).
- InCycle Software (2024). MLOps ENTERPRISE ACCELERATOR. URL: https://www.incyclesoftware.com/azure-machine-learning-enterprise-accelerator (visited on 11/13/2024).
- Kaggle (2024). Kaggle: Your Home for Data Science. URL: https://www.kaggle.com/(visited on 11/15/2024).
- Kaminsky, Michael (2024). Star Schema vs. OBT for Data Warehouse Performance | Blog | Fivetran. URL: https://www.fivetran.com/blog/star-schema-vs-obt (visited on 11/21/2024).
- Kundu, Rohit (2024). F1 Score in Machine Learning: Intro & Calculation. URL: https://www.v7labs.com/blog/f1-score-guide (visited on 11/17/2024).
- Lo, Ta-Wei (2024). Loan Approval Classification Dataset. URL: https://www.kaggle.com/datasets/taweilo/loan-approval-classification-data (visited on 11/15/2024).
- Lopez, Cesar and Abdullah Elbi (2022). "On the legal nature of synthetic data". In.
- MariaDB (2024). MariaDB ColumnStore. MariaDB KnowledgeBase. URL: https://mariadb.com/kb/en/mariadb-columnstore/ (visited on 11/18/2024).
- Mayo Clinic (2024). Bilirubin test Mayo Clinic. URL: https://www.mayoclinic.org/tests-procedures/bilirubin/about/pac-20393041 (visited on 11/12/2024).
- MIcrosoft (June 6, 2024). Database normalization description Microsoft 365 Apps. URL: https://learn.microsoft.com/en-us/office/troubleshoot/access/database-normalization-description (visited on 11/21/2024).
- Microsoft (Aug. 28, 2024). SMOTE Azure Machine Learning. URL: https://learn.microsoft.com/en-us/azure/machine-learning/component-reference/smote?view=azureml-api-2 (visited on 11/22/2024).
- MLFlow (2024). MLFlow. URL: mlflow.org (visited on 11/18/2024).
- Oracle (2024). Oracle VirtualBox. URL: https://www.virtualbox.org/ (visited on 12/07/2024). pandas (2024). pandas Python Data Analysis Library. URL: https://pandas.pydata.org/about/ (visited on 11/18/2024).
- Python (2024). pickle Python object serialization. Python documentation. URL: https://docs.python.org/3/library/pickle.html (visited on 11/21/2024).

- RedHat (2024). What is a REST API? URL: https://www.redhat.com/en/topics/api/what-is-a-rest-api (visited on 11/17/2024).
- RestfulAPI (Dec. 12, 2023). What is REST? REST API Tutorial. URL: https://restfulapi.net/ (visited on 11/17/2024).
- Richards, Neil M. and Jonathan King (May 19, 2014). Big Data Ethics. Rochester, NY.
- scikit-learn (2024). scikit-learn: machine learning in Python scikit-learn 1.5.2 documentation. URL: https://scikit-learn.org/stable/ (visited on 11/18/2024).
- Sky News (2024). World's oldest man dies aged 112, Guinness World Records announces. Sky News. URL: https://news.sky.com/video/worlds-oldest-man-dies-aged-112-guinness-world-records-announces-13260926 (visited on 12/08/2024).
- Smallcombe, Mark (2024). ETL vs ELT: 5 Critical Differences. Integrate.io. URL: https://www.integrate.io/blog/etl-vs-elt/ (visited on 11/17/2024).
- Spotify (2024). Web API Reference | Spotify for Developers. URL: https://developer.spotify.com/documentation/web-api/reference/get-audio-features (visited on 11/12/2024).
- SQLAlchemy (2024). SQLAlchemy. URL: https://www.sqlalchemy.org (visited on 11/18/2024).
- Straw, Isabel and Honghan Wu (Apr. 25, 2022). "Investigating for bias in healthcare algorithms: a sex-stratified analysis of supervised machine learning models in liver disease prediction". In: *BMJ Health & Care Informatics* 29 (1). Publisher: BMJ Publishing Group Ltd. ISSN: 2632-1009. DOI: 10.1136/bmjhci-2021-100457.
- TowardsDataScience (May 13, 2021). Getting Started with Conda. Just the basics. What is Conda? Why... | by... archive.ph. URL: https://archive.ph/OTuGh (visited on 11/18/2024).
- UCI Machine Learning Repository (2024). About UCI Machine Learning Repository. URL: https://archive.ics.uci.edu/about (visited on 11/12/2024).
- Uvicorn (2024). Uvicorn. URL: https://www.uvicorn.org/ (visited on 11/18/2024).
- Vergnou, Brice (July 27, 2021). Brice-Vergnou/spotify_recommendation. URL: https://github.com/Brice-Vergnou/spotify_recommendation (visited on 11/16/2024).
- Vergnou, Brice (2024). Spotify Recommendation. URL: https://www.kaggle.com/datasets/bricevergnou/spotify-recommendation (visited on 11/21/2024).
- Yang, Jing (Sept. 2021). "Big Data Privacy Protection Technology". In: Journal of Physics: Conference Series 2037 (1). Publisher: IOP Publishing, p. 012136. ISSN: 1742-6596. DOI: 10.1088/1742-6596/2037/1/012136.
- Zoppelleto, Lorenzo (2024). Financial Risk for Loan Approval. URL: https://www.kaggle.com/datasets/lorenzozoppelletto/financial-risk-for-loan-approval (visited on 12/07/2024).