

*Application Serial No.: 10/076,071
Amendment dated December 20, 2004
Reply to Office Action of September 24, 2004*

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

Claims 1-530 (Cancelled).

531. (Currently amended) A method of treating an angiogenic disease or condition in an animal comprising administering to the animal an effective amount of a metal-binding peptide which does not have a metal ion bound to it, having the formula; the sequence of the peptide being:

$P_1 - P_2,$

wherein:

P_1 is:

Xaa₁ Xaa₂ His[:]; or

Xaa₁ Xaa₂ His Xaa₃[;],

the P_1 portion of the peptide being linear;

P_2 is (Xaa₄)_n;

Xaa₁ is the N-terminal amino acid of the peptide, Xaa₁ has an unsubstituted α -amino group, and Xaa₁ is glycine, alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, asparagine, glutamic acid, glutamine, lysine, hydroxylysine, histidine, arginine, ornithine, phenylalanine, tyrosine, tryptophan, cysteine, methionine, or α -hydroxymethylserine;

Xaa₂ is glycine, alanine, β -alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, asparagine, glutamic acid, glutamine, lysine, hydroxylysine, histidine, arginine, ornithine, phenylalanine, tyrosine, tryptophan, cysteine, methionine, or α -hydroxymethylserine;

Xaa₃ is glycine, alanine, valine, lysine, arginine, ornithine, aspartic acid, glutamic acid, asparagine, glutamine or tryptophan;

Xaa₄ is any amino acid; and

n is 0-100;

Application Serial No.: 10/076,071
Amendment dated December 20, 2004
Reply to Office Action of September 24, 2004

or a physiologically-acceptable salt thereof.

532. (New) The method of Claim 531 wherein:

Xaa₁ is glycine, alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, glutamic acid, lysine, hydroxylysine, histidine, arginine, or α -hydroxymethylserine, and

Xaa₂ is glycine, aianine, vaiine, ieucine, isoleucine, threonine, serine, asparagine, glutamine, cysteine, methionine, lysine, hydroxylysine, histidine, arginine, or α -hydroxymethylserine.

533. (Previously presented) The method of Claim 531 wherein Xaa₁ is aspartic acid, glutamic acid, arginine, threonine or α -hydroxymethylserine.

534. (Previously presented) The method of Claim 531 wherein Xaa₂ is glycine, alanine, valine, leucine, isoleucine, threonine, serine, asparagine, methionine, histidine or α -hydroxymethylserine.

535. (Previously presented) The method of Claim 531 wherein Xaa₃ is lysine.

536. (Previously presented) The method of Claim 531 wherein:

Xaa₁ is aspartic acid, glutamic acid, arginine, lysine, threonine, serine or α -hydroxymethylserine,

Xaa₂ is glycine, alanine, valine, leucine, isoleucine, threonine, serine, asparagine, methionine, histidine or α -hydroxymethylserine, and

Xaa₃, when present, is lysine.

537. (Previously presented) The method of Claim 536 wherein Xaa₁ is aspartic acid or glutamic acid and Xaa₂ is glycine, alanine, valine, leucine, isoleucine, threonine, serine or α -hydroxymethylserine.

538. (Previously presented) The method of Claim 537 wherein Xaa₂ is glycine, alanine, valine, leucine or isoleucine.

539. (Previously presented) The method of Claim 538 wherein P₁ is Asp Ala His or Asp Ala His Lys.

540. (Previously presented) The method of Claim 539 wherein P₁ is Asp Ala His Lys.

Application Serial No.: 10/076,071
Amendment dated December 20, 2004
Reply to Office Action of September 24, 2004

541. (Previously presented) The method of Claim 536 wherein Xaa₁ is arginine, lysine, threonine, serine or α-hydroxymethylserine, and Xaa₂ is glycine, alanine, valine, leucine, isoleucine, threonine, serine or α-hydroxymethylserine.

542. (Previously presented) The method of Claim 541 wherein P₁ is Thr Leu His, HMS HMS His or Arg Thr His.

543. (Previously presented) The method of Claim 531 wherein n is 0-10.

544. (Previously presented) The method of Claim 543 wherein n is 0-5.

545. (Previously presented) The method of Claim 544 wherein n is 0.

546. (Previously presented) The method of Claim 531 wherein P₂ comprises a metal-binding sequence.

547. (Previously presented) The method of Claim 546 wherein P₂ comprises one of the following sequences:

(Xaa₄)_m Xaa₃ His Xaa₂ Xaa₅,

(Xaa₄)_m His Xaa₂ Xaa₅,

(Xaa₄)_m Xaa₅ Xaa₂ His Xaa₃, or

(Xaa₄)_m Xaa₅ Xaa₂ His,

wherein Xaa₅ is an amino acid having a free side-chain -NH₂ and m is 0-5.

548. (Previously presented) The method of Claim 547 wherein Xaa₅ is Orn or Lys.

549. (Previously presented) The method of Claim 546 wherein P₂ comprises one of the following sequences:

[(Xaa₄)_mXaa₅Xaa₂HisXaa₃]_r,

[(Xaa₄)_mXaa₅Xaa₂His]_r,

[(Xaa₄)_mXaa₅Xaa₂HisXaa₃(Xaa₄)_mXaa₅Xaa₂His]_r, or

[(Xaa₄)_mXaa₅Xaa₂His(Xaa₄)_mXaa₅Xaa₂HisXaa₃]_r,

wherein Xaa₅ is an amino acid having a free side-chain -NH₂, m is 0-5 and r is 2-100.

*Application Serial No.: 10/076,071
Amendment dated December 20, 2004
Reply to Office Action of September 24, 2004*

550. (Previously presented) The method of Claim 546 wherein P₂ comprises a sequence which binds Cu(I).

551. (Previously presented) The method of Claim 550 wherein P₂ comprises one of the following sequences:

Met Xaa₄ Met,

Met Xaa₄ Xaa₄ Met,

Cys Cys,

Cys Xaa₄ Cys,

Cys Xaa₄ Xaa₄ Cys,

Met Xaa₄ Cys Xaa₄ Xaa₄ Cys,

Gly Met Xaa₄ Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:7],

Gly Met Thr Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:8],

Gly Met Thr Cys Ala Asn Cys [SEQ ID NO:9], or

γ-Glu Cys Gly.

552. (Previously presented) The method of Claim 551 wherein P₂ is Gly Met Thr Cys Ala Asn Cys [SEQ ID NO:9].

553. (Previously presented) The method of Claim 531 wherein P₂ comprises a sequence which enhances the ability of the peptide to penetrate cell membranes, reach target tissues, or both.

554. (Previously presented) The method of Claim 553 wherein P₂ is hydrophobic or an arginine oligomer.

555. (Previously presented) The method of Claim 531 wherein at least one of the amino acids of P₁ other than β-alanine, when present, is a D-amino acid.

556. (Currently amended) The method of Claim 556 555 wherein Xaa₁ is a D-amino acid[,] or His is a D-amino acid, or both Xaa₁ and His are D-amino acids.

557. (Currently amended) The method of Claim 557 555 wherein all of the amino acids of P₁ other than β-alanine, when present, are D-amino acids.

Application Serial No.: 10/076,071
Amendment dated December 20, 2004
Reply to Office Action of September 24, 2004

558. (Previously presented) The method of Claim 555 wherein at least 50% of the amino acids of P₂ are D-amino acids.

559. (Currently amended) The method of Claim 531 wherein at least one amino acid of P₁[,] or at least one amino acid of P₂, or at least one amino acid of P₁ and at least one amino acid of P₂ is substituted with (a) a substituent that increases the lipophilicity of the peptide without altering the ability of P₁ to bind metal ions, (b) a substituent that protects the peptide from proteolytic enzymes without altering the ability of P₁ to bind metal ions, or (c) a substituent which is a non-peptide, metal-binding functional group that improves the ability of the peptide to bind metal ions.

560. (Previously presented) The method of Claim 559 wherein the terminal -COOH of P₁-P₂ is substituted to produce -COR₂, wherein R₂ is -NH₂, -NHR₁, -N(R₁)₂, -OR₁, or -R₁, wherein R₁ is an alkyl, aryl or heteroaryl.

561. (Previously presented) The method of Claim 559 wherein n is 0 and P₁ has one of the following formulas:

Application Serial No.: 10/076,071
Amendment dated December 20, 2004
Reply to Office Action of September 24, 2004

Application Serial No.: 10/076,071
Amendment dated December 20, 2004
Reply to Office Action of September 24, 2004

wherein:

R_1 is an alkyl, aryl, or heteroaryl;

R_2 is $-NH_2$, $-NHR_1$, $-N(R_1)_2$, $-OR_1$, or $-R_1$; and

R_3 is H, a non-peptide, metal-binding functional group or the two R_3 groups together form a non-peptide, metal-binding functional group.

562. (Previously presented) The method of Claim 561 wherein R_2 is $-NH_2$.

563. (Previously presented) The method of Claim 531 wherein the method further comprises administering an effective amount of another metal-binding compound in combination with the peptide.

564. (Previously presented) The method of Claim 563 wherein the metal-binding compound binds iron.

565. (Previously presented) The method of Claim 564 wherein the iron-binding compound is deferoxamine mesylate.

*Application Serial No.: 10/076,071
Amendment dated December 20, 2004
Reply to Office Action of September 24, 2004*

566. (Previously presented) The method of Claim 563 wherein the metal-binding compound binds Cu(I).

567. (Previously presented) The method of Claim 566 wherein the Cu(I)-binding compound is a peptide.

568. (Previously presented) The method of Claim 567 wherein the Cu(I)-binding peptide comprises one of the following sequences:

Met Xaa₄ Met,

Met Xaa₄ Xaa₄ Met,

Cys Cys

Cys Xaa₄ Cys,

Cys Xaa₄ Xaa₄ Cys,

Met Xaa₄ Cys Xaa₄ Xaa₄ Cys,

Gly Met Xaa₄ Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:7],

Gly Met Thr Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:8],

Gly Met Thr Cys Ala Asn Cys [SEQ ID NO:9], or

γ-Glu Cys Gly,

wherein Xaa₄ is any amino acid.

569. (Previously presented) The method of any one of Claims 531-568 wherein the angiogenic disease or condition is a neoplastic disease, a connective tissue disorder, psoriasis, an ocular angiogenic disease, a cardiovascular disease, a cerebral vascular disease, hemophiliac joints, an immune disorder, a benign tumor, hypertrophy, endometriosis, polyposis, or obesity.

570. (Previously presented) The method of Claim 569 wherein the angiogenic disease or condition is a neoplastic disease.

571. (Previously presented) The method of Claim 570 wherein the neoplastic disease is a tumor.

Application Serial No.: 10/076,071
Amendment dated December 20, 2004
Reply to Office Action of September 24, 2004

572. (Previously presented) The method of Claim 571 wherein the tumor is located in the bladder, brain, breast, kidney, liver, pancreas, lung, cervix, ovary, prostate, stomach, intestines, colon, rectum, or uterus.

573. (Previously presented) The method of Claim 570 wherein the neoplastic disease is tumor metastasis.

574. (New) The method of Claim 569 wherein the angiogenic disease or condition is psoriasis.

575. (New) The method of Claim 569 wherein the angiogenic disease or condition is an ocular angiogenic disease.

576. (New) The method of Claim 575 wherein the ocular angiogenic disease is macular degeneration.