赋时Petri网的激发规则

定义1: Petri 网结构是一个四元组, 记为N=(P,T,F,W), 其中

- *P* 是库所集; *T* 是变迁集;
- $F\subseteq (P\times T)\cup (T\times P)$ 是一个变迁和库所或库所和变迁组成的二元组的集合,表示库所与变迁的有向弧;
- $W: F \to \mathbb{Z}^+$ 是一个正整数集, 表示有向弧上与权重的映射关系.

前置关联矩阵 $C^-: P \times T \to \mathbb{Z}$,

后置关联矩阵 $C^+: T \times P \to \mathbb{Z}$,

关联矩阵 $C = C^+ - C^-$.

定义2: 库所赋时 Petri 网是一个三元组 $G=(N,d,m_0)$,其中,

- N 是一个 Petri 网结构,
- 时延 $d:P o \{0\} \cup \mathbb{R}^+$ 是一个库所集到非负实数集的函数,
- 始标识 $m_0:P o\mathbb{N}$, 表示初始状态下各库所拥有的托肯数目.

机械臂示例

机械臂的库所赋时Petri网模型

赋时Petri网的执行过程示意图

库所赋时Petri网建模规则

建模规则: 如果一个库所具有非零时延,那么该库所最多只能获得1个托肯。

定义3:给定一个库所赋时 Petri 网 $G=(N,d,m_0)$, 三元组 $X_k=(m_k,v_k,g_k)$ 表示它从初始标识开始任意激发 $k\in\mathbb{Z}$ 个变迁后到达的状态, 其中:

- m_k 表示 Petri 网经过 $k\in\mathbb{Z}$ 次变迁激发到达的标识,
- $v_k:P \to \{0\} \cup \mathbb{R}^+$ 是一个从库所集到非负实数集的映射,表示托肯在库所中已经等待的时间,
- g_k 表示 Petri 网到达 X_k 时已经消耗时间.

定义4: 给定一个库所赋时 Petri 网 $G=(N,d,m_0)$, e_k 表示它从初识标识开激发的第 $k\in\mathbb{Z}$ 个变迁,而 λ_k 表示它的第k-1和第k变迁激发之间的时间间隔。

定义5: 给定一个库所赋时 Petri 网 $G=(N,d,m_0)$,任意状态 $X_k=(m_k,v_k,g_k)$ 和任意变迁t,如果

- $m_k \geq C^-(\cdot,t)$,
- $\forall p \in {}^ullet t, v_k(p) \geq d(p)$,

那么变迁t在状态 X_k 下是可以激发的。

定理1:给定一个库所赋时 Petri 网 $G=(N,d,m_0)$,如果库所赋时 Petri 网处于第 k 个激发时刻的状态 X_k , λ_{k+1} 表示激发第 k+1 个变迁 还需等待的时间, 那么

$$m_k \ge C^-(\cdot, e_{k+1}) \tag{5}$$

$$\lambda_{k+1} = \max_{p \in {}^{\bullet}e_{k+1}} (d(p) - v_k(p)) \tag{6}$$

$$m_{k+1} = m_k + C(\cdot, e_{k+1}) \tag{7}$$

$$v_{k+1} = v_k - diag(v_k) \cdot C^-(\cdot, e_{k+1}) + \lambda_{k+1} \cdot (m_{k+1} - C^+(\cdot, e_{k+1}))$$

$$orall p \in \mathcal{P}, v_{k+1}(p) = egin{cases} 0, & ext{if} \ d(p) = 0; \ 0, & ext{if} \ d(p)
eq 0 \land p \in ig(^ullet e_{k+1} \cup e_{k+1}^ullet); \ v_k(p) + \lambda_{k+1}(p), & ext{otherwise}. \end{cases}$$

$$g_{k+1} = g_k + \lambda_{k+1} \tag{8}$$

•

算法 1 赋时 Petri 网可达图算法

输入: C^-, C^+, d, m_0, m_g .

输出: 赋时 Petri 网可达图

- 1. 初始化 $X_0=(m_0,v_0,g_0)$, 其中 m_0 为初始标识, $v_0=0$, $\lambda_0=0$, $g_0=0$;
- 2. 将初始状态 $X_0=(m_0,v_0,g_0)$ 作为可达树的根结点, 并标记为 new;
- 3. 如果 $m_0 = m_g$, 将 X_0 标记为 goal, 算法退出, 否则继续执行下一步;
- 4. 从可达树中任意选择一个 new 结点, 表示为 $X_k = (m_k, v_k, g_k)$, 并将该结点标记为 old;
- 5. 计算 X_k 状态下状态使能的变迁集合 $E_{k+1} = \{t \in T | m_k \geq C^-(\cdot,t)\};$
- 6. for all $e_{k+1} \in E_{k+1}$ do
- 7. 激发 e_{k+1} , 产生新状态 X_{k+1} , 根据公式 (2)-(5) 分别计算 λ_{k+1} 、 m_{k+1} 、 v_{k+1} 和 g_{k+1} ;
- 8. 如果 X_{k+1} 是新状态,在可达树中添加一个表示 X_{k+1} 的结点;
- 9. 画一条从结点 X_k 指向结点 X_{k+1} 的有向弧, 弧上标记激发变迁 e_k ;
- 10. 如果 $m_{k+1}=m_q$, 将 X_{k+1} 对应的结点标记为 goal , 否则标记为 new ;
- 11. end for
- 12. 如果可达树中存在 new 结点, 那么返回第 4 步;