R for Psychology Research

Week 4 - Exercises

Marcus Lindskog

1. Importing and preparing data for analyses.

For all these exercises, please use packages and functions from the tidyverse.

- 1. Read the iqitems.csv file.
- 2. Read the first 10 lines from the iqitems.csv file.
- 3. Read the iqitems.csv file, but skip the first 10 lines.
- 4. Read the iqitems_challenge.csv file. This file has couple of challenges in it, so be sure to manage those to get a tibble that is the same as the one from iqitems.csv.
- 5. Assign the tibble from reading iqitems.csv to a variable name, e.g., iqitems_data.
- 6. Select the first three columns of the dataset using their column names.
- 7. Select all the columns of the dataset except "letter.7".
- 8. Select all columns of the dataset that start with the character string "matrix".
- 9. Filter the rows of the dataset for rotate.3 >= 3 and matrix.45 >= 4.
- 10. Pipe the data frame to the function that will select two columns (letter.58 and matrix.55).
- 11. Arrange rows by a particular column, such as the rotate.3.
- 12. Select three columns from the data set, arrange the rows by rotate.4, then arrange the rows by letter.33.
- Create a new column called proportion, which is the ratio of matrix.45 to matrix.55.
- 14. Compute the average of reason.19, apply the mean() function to the column reason.19, and call the summary value avg_reason.19.
- 15. Split the data frame by the values in reason.4, then ask for the same summary statistics as in 14.
- 16. The mtcars data set is available in your R session. Type str(mtcars) to get an overview of the it.
- 17. Use the gather function to gather cyl, and disp columns (from the mtcars data) into key-kalue pairs.
- 18. Use the function to spread a key-value pair across cyl, and disp.
- 19. Use the unite function to converge the cylinder column "cyl" and transmission "am" column in a single column called "cyl" am".
- 20. Use the separate function to turn revert the operation in 19. If you feel like it, pipe the results from 19 to separate.

2. Examination Exercises

The solution to the exercises in this section should be handed in as a part of the examination. Your solution should be contained in a single R-script that is emailed to marcus.lindskog@psyk.uu.se. Your code should be well commented and easy to follow. Answers to any questions below should be written as a comment in the R-script after the code that produces the answer.

Use, as far as possible, a workflow with pipes and use functions from the tidyverse.

- 1. Read the exercise_data.csv file into a tibble. The file contains data from a fictional eye-tracking experiment. The eight variables in the file are ID participant id, Sex participant sex (0- boy, 1-girl), Age age in months,trial trial number, AOI_A looking time to Area of Interest A, AOI_B looking time to Area of Interest B;AOI_C looking time to Area of Interest C, AOI_D looking time to Area of Interest C.
- 2. We require participants to have looked at least .5 seconds in each of the four AOIs. Filter the data set based on this criterion.
- 3. Create two new variables called prop_a_b, which is the proportion of looking time in AOI_A to that of AOI_B, and prop_c_d, which is the proportion of looking time in AOI_C to that of AOI_D.
- 4. Remove the four AOI columns from the data set.
- 5. Create summaries (mean, standard deviation, count, standard error) of prop_a_b and prop_c_d for the boys and girls respectively. Note that you will need to creat a mean for each participant first.
- 6. Read the exercise_data.csv file into a new tibble.
- 7. Gather the four AOI_columns into a key-value pair with column names AOI and looking_time.
- 8. Create a new variable z_looking_time which is z-transformation of looking_time. Hint: the scale function in base R might be useful.
- 9. Filter the data set such that $-2.5 < z_{looking_time} < 2.5$.
- 10. Remove the z_looking_time variable.
- 11. Spread the key-value pair AOI and looking_time into four variables AOI_A, AOI_B, AOI_C, and AOI_D
- 12. Create two new variables called prop_a_b, which is the proportion of looking time in AOI_A to that of AOI_B, and prop_c_d, which is the proportion of looking time in AOI_C to that of AOI_D.
- 13. Create summaries (mean, standard deviation, count, standard error) of prop_a_b and prop_c_d for the three age groups respectively. Note that you will need to creat a mean for each participant first.