

I320D - Topics in Human Centered Data Science Text Mining and NLP Essentials

Week 11: Deep Learning for NLP II, Back Propagation, RNNs and Transformers, Language Models and Word Wmbeddings

Dr. Abhijit Mishra

Now: In class quiz (participation)

- https://utexas.instructure.com/courses/1382133/quizzes/1893
 214
- 10 MCQs: 10 mins
- Full points for in-class participation
- Time limit: 10 mins

Week 10-11 Activities

- Project Proposals Due Today (03/26/2023):
 - Maximum 2 pages
 – one submission per group
 - https://utexas.instructure.com/courses/1382133/assignments/661955
 4?module item id=13585860
 - Sample project reports: Canvas->Files->Sample_project_reports
- Assignment 5: (last take home assignment)
 - Will be based on fine-tuning of a pre-trained language model (Lab on Thursday)

Last Week

- Introduction to Deep Learning for NLP
- Perceptrons and Feed Forward Networks
- Gradient Descent Algorithm

Recap: Perceptrons

 Simple parameterized decision functions that can act as building blocks for complex decision functions

$$\Theta = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_N]$$

Recap: Training a perceptron

Training with linear parametric decision functions

minimize
$$\int_{i=1}^{M} (y_{\text{actual}}^{i} - f(x_1^i, x_2^i, \dots, x_N^i))^2$$

In this case

$$\underset{w_1, w_2, \beta}{\operatorname{argmin}} \sum_{i=1}^{M} (y_{\text{actual}}^{i} - (w_1 x_1 + w_2 x_2 + \beta))^2$$

Recap: Gradient Descent Algorithm

- 1. Initialize Ws with random values
- 2. Predict $y_{pred} = w_1 \cdot x_1 + w_2 \cdot x_2 + \dots + w_N \cdot x_N + \beta$ for each example in training data
- 3. Compute Mean Squared Error (Err) on all training examples
- 4. Compute the gradient of Error, say $\nabla(Err)$ with respect to all Ws
- 5. Update the weights

$$W^{new} = W^{old} - \eta \nabla (Err)$$

 $\eta \rightarrow A$ user defined paramter (a.k. a Hyperparameter) also called as "learning rate"

6. Repeat steps 2-5 with W_{new} until convergence (i.e., $W^{new} \sim W^{old}$)

Recap: Gradient Descent: Intuition (...)

Consider simple Err function with two parameters w1, w2

Recap: Can we make the perceptrons non-linear? – Activation Functions

 Simple decision functions that can act as building blocks for complex decision functions

Which model is this? (Recall from Machine Learning lectures) – classification or regression?

Activation: TanH

 Simple decision functions that can act as building blocks for complex decision functions

Which model is this? classification or regression?

Activation: ReLU

Simple decision functions that can act as building blocks for

complex decision functions

Which model is this? classification or regression?

ReLU

R(z) = max(0, z)

Recap: Neural Networks

Form a artificial neural network by stacking many perceptron elements with / without activation functions

The mathematical function representing the network will be complex enough:

- To tackle any form of non-linearity
- Can yield multiple outputs
- Can learn to automatically extract meaningful features from raw inputs (say pixels or words)

Something like this

4-class classification

4-logistic regression units

Text Classification example

love -> [0, 0, 1, 0, ...]

this -> [0, 0, 0, 1, ...]

product [0, 0, 0, 0, ...]

<PAD>[1, 0, 0, 0]

<PAD>[1, 0, 0, 0]

•••

Size =
$$10*48 = 480$$

Recap: Feed forward neural network

- Layers of perceptrons / artificial neurons
- Output of every perceptron is fed to the next layer

Recap: Feed Forward Network: Text Classification Example

M-class classification

In Python - Binary Classification Example

- model = Sequential()
- model.add(Dense(16, input_shape=(vocab_size,),
 activation='relu')) # 16 units in the hidden
 layer
- model.add(Dense(8))
- model.add(Dense(1, activation='sigmoid')) #
 Output layer with sigmoid activation for binary classification

Week 11: Roadmap

- Training a neural network
 - Back propagation basics
- Advanced neural networks for text modeling
 - Recurrent Neural Networks
 - Transformers
- Language Models
 - Achieving Different Language Modeling objectives with Deep Neural Architectures

Training a Neural Network

Training Neural Networks: The Back Propagation Algorithm

Training one Perceptron – Gradient Descent

- 1. Initialize Ws = $[w_1^{old}, w_2^{old}, ..., w_N^{old}]$ with random values
- 2. Predict $y_{predicted} = f(X)$ for each example using the perceptron
- 3. Compute Mean Squared Error (Err) on all training examples
- 4. Compute the gradient of Error, say $\nabla(Err)$ with respect to all Ws
- 5. Update the weights

$$w_1^{new}=w_1^{old}-\eta\frac{\partial (Err)}{\partial w_1}$$
, $\eta>0$, a. k. a learning rate $w_2^{new}=w_2^{old}-\eta\frac{\partial (Err)}{\partial w_2}$,

. . .

$$w_N^{new} = w_N^{old} - \eta \frac{\partial (Err)}{\partial w_N}$$

5. Repeat steps 2-5 with W_{new} until convergence (i.e., $W^{new} \sim W^{old}$)

Gradient Descent in Feed Forward Nets

Let's consider this example network

Forward Pass (Compute y_{predicted})

First, compute first layer output from x1, x2

Forward Pass (Compute y_{predicted})

Second, compute second layer output from o11, o12

Forward Pass (Compute y_{predicted})

Third, compute y predicted layer output from o21, o22

$$y_{predicted} = w_{31}o_{21} + w_{32}o_{22} + \beta_{31}$$

Forward Pass

Overall

 $y_{predicted}$

$$= w_{31}(w_{21}(w_{11}x_1 + w_{12}x_2 + \beta_{11}) + w_{22}(w_{13}x_1 + w_{14}x_2 + \beta_{12}) + \beta_{21}) + w_{32}(w_{23}(w_{11}x_1 + w_{12}x_2 + \beta_{11})) + w_{24}(w_{13}x_1 + w_{14}x_2 + \beta_{12}) + \beta_{22}) + \beta_{31}$$

Gradient Descent with Feed Forward Nets

- We need to compute gradient of error
- Considering Error on M training data (take MSE for example)

$$Err = \frac{1}{M} \sum_{i=1}^{M} (y_{actual}^{i} - y_{predicted}^{i})2$$

$$= \frac{1}{M} \sum_{i=1}^{M} (y_{actual}^{i} - w_{31}(w_{21}(w_{11}x_{1} + w_{12}x_{2} + \beta_{11}) + w_{22}(w_{13}x_{1} + w_{14}x_{2} + \beta_{12}) + \beta_{21}) + w_{32}(w_{23}(w_{11}x_{1} + w_{12}x_{2} + \beta_{11})) + w_{24}(w_{13}x_{1} + w_{14}x_{2} + \beta_{12}) + \beta_{22}) + \beta_{31})2$$

And:

Each step in grad descent, we need $\nabla W = \left[\frac{\partial Err}{\partial w_{11}}, \frac{\partial Err}{\partial w_{12}}, ..., \frac{\partial Err}{\partial w_{21}}, \frac{\partial Err}{\partial w_{22}}, \frac{\partial Err}{\partial w_{23}}, \frac{\partial Err}{\partial w_{24}}, \frac{\partial Err}{\partial w_{31}}, \frac{\partial Err}{\partial w_{32}}, \frac{\partial Err}{\partial \beta_{11}}, \frac{\partial Err}{\partial \beta_{12}}, ...\right]$

Solution ? Back Propagation of Gradients

- We can compute gradient of error with respect to input in each layer and "reuse" it for the computing gradients for the previous layer
- Error back propagates across layers

How?

- Backword Pass (compute gradient of weights at last layer)
- Take only input o21 and o22 and forget about the previous layers

Compute $\left[\frac{\partial Err}{\partial w_{31}}, \frac{\partial Err}{\partial w_{32}}\right]$ in the same way we computed for a single perceptron 03/19/2024 – Deep Learning Abhijit Mishra - I310D-Text Mining and NLP Essentials

 Backword Pass (compute gradient of weights at a previous layer)

 Backword Pass (compute gradient of weights at a previous layer)

- Accumulate gradients of error w.r.t inputs
- Compute gradients of immediate output w.r.t weights

 $\partial Err \partial o_{21}$ ∂Err $\overline{\partial o_{21}} \cdot \overline{\partial w_{22}}$ ∂w_{22}

03/19/2024 - Deep Learning

 Backword Pass (compute gradient of weights at a previous layer)

$$\frac{\partial Err}{\partial w_{23}} = \frac{\partial Err}{\partial o_{22}} \cdot \frac{\partial o_{22}}{\partial w_{23}}$$
Abhijit Mishra - I310D-Text Mining and NLP Essentials

 Backword Pass (compute gradient of weights at a previous layer)

$$\frac{\partial Err}{\partial w_{24}} = \frac{\partial Err}{\partial o_{22}} \cdot \frac{\partial o_{22}}{\partial w_{24}}$$
Abhijit Mishra - I310D-Text Mining and NLP Essentials

• Backword Pass (compute gradient of weights at first layer)

Backword Pass (compute gradient of weights at first layer)

Abhijit Mishra - I310D-Text Mining and NLP Essentials

35

Backword Pass (compute gradient of weights at first layer)

Then

Backword Pass (compute gradient of weights at first layer)

03/19/2024 – Deep Learning

Abhijit Mishra - I310D-Text Mining and NLP Essentials

What about the βs

• In similar ways as computing gradients for the Ws, we can compute gradients for the βs as well.

Training Strategy

- Gradient Descent Requires computing Err on the whole data
- Computing Err on training data can be expensive (imagine 1M training examples)
 - Instead, we provide minibatches (e.g., batch_size = 16 or 16 training examples at a time)
 - Each mini batch comprises a set of randomly selected training examples
 - Gradient computed and back propagated for 1 mini-batch at a time
- We repeat training for all exclusive mini batches. This is called 1epoch
- Typically training goes on for M epochs (say M=20)

In Python

```
model = Sequential()
model.add(Dense(16, input shape=(vocab size,), activation='relu')) # 16 units in the
hidden layer
model.add(Dense(8))
model.add(Dense(1, activation='sigmoid')) # Output layer with sigmoid activation for
binary classification
# Compile the model
model.compile(optimizer='sgd', loss='binary crossentropy', metrics=['accuracy'])
model.summary()
Training:
model.fit(X train.toarray(), train labels, epochs=50, batch size=16, verbose=2)
```

Some Advanced Neural Networks

Recurrent Neural Nets

Some Advanced Neural Networks

Long Short Term Memories (Schmidhuber et al, 1997)

In Python

```
# Define the LSTM model
model = Sequential()
model.add(Embedding(max features, 128, input length=maxlen))
model.add(SpatialDropout1D(0.2))
model.add(LSTM(128, dropout=0.2, recurrent dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
# Compile the model
model.compile(loss='binary crossentropy', optimizer='adam',
metrics=['accuracy'])
# Train the model
model.fit(x_train, y_train, batch size=batch size, epochs=epochs,
validation \overline{d}ata=(x \overline{t}est, y test))
```

Some Advanced Neural Networks

Transformers (Vaswani et al, 2018)

A sneak peek into transformers

Tasks solved using These Architectures

Classification

Training Procedure

- Same as Feed Forward Networks: Gradient Back Propagation
- Every path in the network will have gradients accumulated
 - Typically more paths than Feed Forward Networks
- All weights are updated after computing gradients for one batch of data

Popular Python Libraries

Language Models and Representation Learning

Neural Networks are not "yet another machine learners"

They do remarkably well in analyzing and understanding variable length inputs and extracting meaningful features (a.k.a representations)

How?

How? Representation Learning

- Feature Engineering from input words?
 - What do we intend to do?

- Extract meaningful representations:
 - In computer understandable numerical forms
 - Should capture relationships between words
 - Synonymy (e.g., "specimen", "sample")
 - Antonymy (e.g., "man", "woman")
 - Conceptual similarity (e.g., "Wednesday", "Monday") ("USA","Canada")

Traditional representation of a word's meaning

- Dictionary (or PDB), not too useful in computational linguistic research.
- WordNet
 - It is a graph of words, with relationships like "is-a", synonym sets.
- **Problems:** Depend on human labeling hence missing a lot, hard to automate this process.
- N-hot vectors
 - "Hotel": [0,0,0,0,0,0,0,1,0,0,0,0,0]
 - "Motel": [0,0,0,0,1,0,0,0,0,0,0,0,0,0]
- Problems: Sparse and do not capture deeper relationships
- TF-IDF is slightly better but not good enough.

Issues with One-hot vector

Word	1-hot vector
Queen	[1, 0, 0]
King	[0, 1, 0]
Cat	[0, 0, 1]

$$D_{cosine}("Cat", "King") = D_{cosine}("Cat", "Queen") = D_{cosine}("King", "Queen") = 1$$

$$D_{Euclid}("Cat", "King") = D_{Euclid}("Cat", "Queen") = D_{Euclid}("King", "Queen") = \sqrt{2}$$

Instead, we need

Word	1-hot vector
Queen	[1.5, -1.3, -0.9]
King	[2.1, -0.7, 0.2]
Cat	[0.3, 1.9, -0.4]

$$D_{cosine}("Cat", "King") = 1.17, D_{cosine}("Cat", "Queen") = 1.38, \ D_{cosine}("King", "Queen") = 0.19 \ D_{Euclid}("Cat", "King") = 3.21, D_{Euclid}("Cat", "Queen") = 3.45 \ D_{Euclid}("King", "Queen") = 1.38$$

Language Models for Word Embedding

- Language models are statistical or deep learning models that learn to predict the probability of a sequence of words in a sentence or text
- ullet For a sequence of words $\ W=(w_1,w_2,w_3,...,w_n)$
- A language model can be expressed as

$$f(X,\theta) \implies \frac{P(W|\theta) = P(w_1|\theta) \cdot P(w_2|w_1,\theta) \cdot P(w_3|w_1,w_2,\theta) \cdot \dots \cdot}{P(w_n|w_1,w_2,...,w_{n-1},\theta)}$$

Here theta =>model parameters

Different Language Modeling objectives

- We can tweak the language modeling objective in different ways for modeling languages
- Some language modeling objectives are
 - Skip Gram Objective
 - Continuous Bag of Words Objective
 - Masked Language Model Objective
 - Next Sentence Prediction Objective
 - Sentence reconstruction from noisy inputs Objective

Word2Vec: SkipGram

- Skip Gram Objective: Given a word can we predict the previous and the next words (or predict surrounding context given an input
- A feed forward network can be designed to perform this task

Dataset:

 Examples containing <input word, context> can be automatically created using large amount of corpus (e.g., Wikipedia, News Database etc)

SkipGram **Model using Feed Forward Nets**

Output layer Representations Previous words (word vectors) learned $/\mathbf{W'}_{N\! imes V}$ SoftMax across vocabulary Input layer Hidden layer $\mathbf{W'}_{N \times V}$ $\mathbf{W}_{v\!\times\! N}$ Input word (1-hot vector) of size V **Previous words** SoftMax across vocabulary N-dim V-dim $\mathbf{W}'_{N\times V}$ Next words $y_{C,j}$ SoftMax across vocabulary $C \times V$ -dim

SkipGram Model using Feed Forward Nets

https://towardsdatascience.com/skip-gram-nlp-context-words-prediction-algorithm-5bbf34f84e0c

After Training: During Inference

Another Option: The CBOW Model

- What about we predict center word, given context word, opposite to the skip-gram model?
- Yes, this is called Continuous Bag Of Words model in the original Word2Vec paper.

Word2Vec: Pros and Cons

Pros:

- Respects language and order to some extent
- Efficient Training Process: Simple FFDs
- Semantic Relationships Preservation

Cons:

- Loss of local context
- Does not capture POS variations and word senses
 - Word "bank" will mostly be treated as NOUN
 - Word "bank" will always yield the same vector

GIoVE

GloVe: Global Vectors for Word Representation

Jeffrey Pennington, Richard Socher, Christopher D. Manning Computer Science Department, Stanford University, Stanford, CA 94305 jpennin@stanford.edu, richard@socher.org, manning@stanford.edu

 The GloVe algorithm extracts word vectors by optimizing a defined objective function that captures the statistical cooccurrence information between words

Glove-step-2: Form objective function

 $f(X_{ij})$ is a weighting function that assigns more weight to less frequent co-occurrences to prevent extremely frequent words from dominating the training.

Glove-step-2: Optimize objective

$$minimize_{w_1,w_2 \dots w_{V,b_1,b_2,\dots b_V}} (J)$$

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$

These are the word embeddings and needs to be learned

How?

$$minimize_{w_1,w_2 \dots w_{V,b_1,b_2,\dots b_V}} (J)$$

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$

Initialize randomly and update through gradient descent

How?

$$minimize_{w_1,w_2 \dots w_{V,b_1,b_2,\dots b_V}} (J)$$

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$

We can randomly initialize a d dimensional vector per word (e.g., d = 50, d = 200)

How to evaluate word embeddings?

- Also by word analogy tasks (Mikolov et al, 2013)
- Solving analogies of the form "a is to b as c is to?" or "a:b ::
 c:" where you are given three words and you need to find the
 fourth word that completes the analogy
- Examples:

- 1. "Man is to woman as king is to ____"
- 2. "Spain is to Madrid as France is to ____"
- 3. "Eat is to food as drink is to ____"

Sentence Vectors

Generative Modeling of Text

Tasks where:

- Input is a sequence
- Output is a sequence

$$X = \{x_1, x_2 \dots, x_N\}$$
 or $\mathbf{X} \in \mathbb{R}^N$

$$Y = \{y_1, y_2, ..., y_M\}$$
 or $\mathbf{Y} \in \mathbb{R}^M$

• Example:

- Text summarization
- Machine Translation
- Chat generation

Sequence Generation – Text Summarization Example

SOURCE: Roger Federer wins a record eighth men's singles title at Wimbledon on Sunday.

TARGET:

Roger Federer won the Wimbledon

REPRESENTATION

Encoder-Decoder Approaches

ENCODER

SOURCE: Roger Federer wins a record eighth men's singles title at Wimbledon on Sunday.

DECODER

We have Various choices for the BLUE blocks (RNNs, LSTMs, Transformers)

We can use the same encoder-decoder approach for Language Modeling

Example

Transformer Based LM: BERT Example

- BERT: Bidirectional Encoder Representation Transformers
- Trained with two objectives:
 - Masked token prediction
 - Next sentence prediction

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google AI Language
{jacobdevlin,mingweichang,kentonl,kristout}@google.com

Training Task: Masked Token Prediction

Training Task: Next Sentence Prediction

Transformer Based LM: BERT Example

Sentence Vectors: Pros and Cons

Pros:

- Contextual understanding
- Bi-directional learning

Cons:

- Computational complexity
- Lack of interpretability
- Large memory footprint

Next week

Transfer learning and building NLP applications using transfer learning

Next class

Word and Sentence Embedding explorations

Assignment 5: To be posted today