TESIS: Teoria dos Sistemas

- Representação dos sistemas sob a forma de diagrama de blocos
- Obtenção da função de transferência dos sistemas a partir do seu diagrama de blocos
- Modelação de sistemas dinâmicos
 - Sistemas eléctricos
 - Sistemas electrónicos
 - 3. Sistemas mecânicos de translação
 - 4. Sistemas mecânicos de rotação
 - Sistemas térmicos
 - Sistemas de fluídos

- Representação dos sistemas sob a forma de diagrama de blocos
- Obtenção da função de transferência dos sistemas a partir do seu diagrama de blocos
- 3. Modelação de sistemas dinâmicos
 - Sistemas eléctricos
 - Sistemas electrónicos
 - 3. Sistemas mecânicos de translação
 - 4. Sistemas mecânicos de rotação
 - Sistemas térmicos
 - Sistemas de fluídos

- Procedimentos para construir os diagramas de blocos e obter a função de transferência de um sistema
 - escrever as equações que descrevem o comportamento dinâmico de cada componente
 - determinar as transformadas de Laplace de cada uma das equações encontradas no ponto anterior, supondo nulas as condições iniciais
 - representar cada equação no domínio de Laplace individualmente na forma de blocos
 - 4. montar os elementos individuais do diagrama de blocos, determinados no ponto anterior, num diagrama de blocos completo
 - simplificar o diagrama de blocos, determinado no ponto anterior, e obter a função de transferência do sistema em consideração

- Representação dos sistemas sob a forma de diagrama de blocos
- Obtenção da função de transferência dos sistemas a partir do seu diagrama de blocos
- 3. Modelação de sistemas dinâmicos
 - Sistemas eléctricos
 - Sistemas electrónicos
 - 3. Sistemas mecânicos de translação
 - 4. Sistemas mecânicos de rotação
 - 5. Sistemas térmicos
 - Sistemas de fluídos

- Redução de diagramas de blocos
 - os blocos podem ser conectados em série unicamente se a saída de um bloco não é afectada pelo bloco seguinte
 - qualquer número de blocos em cascata, representando componentes sem efeito de carga, podem ser substituídos por um único bloco cuja função de transferência é o produto das funções de transferência individuais
 - à medida que o diagrama de blocos é simplificado, os novos blocos tornam-se mais complexos devido à geração de novos pólos e zeros

- Representação dos sistemas sob a forma de diagrama de blocos
- Obtenção da função de transferência dos sistemas a partir do seu diagrama de blocos
- 3. Modelação de sistemas dinâmicos
 - Sistemas eléctricos
 - Sistemas electrónicos
 - 3. Sistemas mecânicos de translação
 - 4. Sistemas mecânicos de rotação
 - 5. Sistemas térmicos
 - Sistemas de fluídos

- Modelos de sistemas físicos
 - neste capítulo estuda-se a modelação de sistemas contínuos (no tempo) através de equações diferenciais lineares ordinárias da forma

$$\frac{d^{n}y}{dt^{n}} + a_{1}\frac{d^{n-1}y}{dt^{n-1}} + \dots + a_{n}y = b_{0}\frac{d^{n}u}{dt^{n}} + b_{1}\frac{d^{n-1}u}{dt^{n-1}} + \dots + b_{n}u$$

onde y(t) é a saída e u(t) a entrada do sistema

- Representação dos sistemas sob a forma de diagrama de blocos
- Obtenção da função de transferência dos sistemas a partir do seu diagrama de blocos
- 3. Modelação de sistemas dinâmicos
 - Sistemas eléctricos
 - 2. Sistemas electrónicos
 - 3. Sistemas mecânicos de translação
 - 4. Sistemas mecânicos de rotação
 - 5. Sistemas térmicos
 - Sistemas de fluídos

Sistemas eléctricos

- O circuito RC (I)
 - circuito RC é um dos exemplos mais simples de sistemas dinâmicos e muito útil para estabelecer comparações com outros sistemas

- O circuito RC (II)
 - tensão no condensador vem

$$v_{C}(t) = \frac{1}{C} \int_{0}^{t} i(t') dt' + V_{C}(0)$$

onde $V_c(0)$ é a tensão do condensador no início da contagem dos tempos

pela Lei de Kirchoff das tensões

$$v_i(t) = Ri(t) + \frac{1}{C} \int_0^t i(t') dt'$$
 (supondo $V_c(0)=0$)

- O circuito RC (III)
 - usualmente prefere-se trabalhar com equações diferenciais
 - aplicando a Lei de Kirchoff das correntes, vem

$$\frac{v_i(t) - v_C(t)}{R} = C \frac{dv_C}{dt} \Leftrightarrow RC \frac{dv_C}{dt} + v_C(t) = v_i(t)$$

 verifica-se que o circuito é modelado por uma equação diferencial ordinária de primeira ordem

- O circuito RC (IV)
 - para uma variação de v_i em degrau, no instante t=0, de amplitude V, resulta

- O circuito RC (V)
 - RC toma o nome de constante de tempo do circuito
 - quanto maior for o valor de R ou de C tanto mais lenta é a resposta $v_c(t)$
 - a resposta imediatamente a seguir à aplicação do degrau é aproximadamente linear com declive V/RC

- Representação dos sistemas sob a forma de diagrama de blocos
- Obtenção da função de transferência dos sistemas a partir do seu diagrama de blocos
- 3. Modelação de sistemas dinâmicos
 - Sistemas eléctricos
 - 2. Sistemas electrónicos
 - 3. Sistemas mecânicos de translação
 - 4. Sistemas mecânicos de rotação
 - 5. Sistemas térmicos
 - 6. Sistemas de fluídos

Sistemas electrónicos

$$v_o(t) = A(v_1 - v_2)$$

$$\frac{\text{declive}}{\text{declive}} = \begin{cases} i\text{deal} = \infty \\ \text{real} \ge 10^5 \end{cases}$$

- O amplificador operacional
 - um amplificador operacional ideal tem
 - ganho infinito
 - corrente nula nos terminais de entrada, isto é, impedância de entrada infinita
 - impedância de saída nula
 - estas características implicam que $v_1 = v_2$ e que o amplificador operacional tem a capacidade de fornecer / absorver qualquer corrente na saída sem variar a tensão v_a

Amplificador inversor

$$v_A = v_B = 0$$
 (pois o ganho é infinito)

$$i = \frac{v_i - v_A}{R_1} = \frac{v_A - v_o}{R_2} \iff v_o = -\frac{R_2}{R_1} v_i$$

neste circuito a impedância de entrada é R_1

Amplificador diferencial

Integrador

$$\frac{v_i - 0}{R} = C \frac{d}{dt} (0 - v_o)$$

$$v_o(t) = -\frac{1}{RC} \int_0^t v_i(t') dt' + V_o(0)$$

Seguidor de tensão

Nota

- nos circuitos anteriores a malha de realimentação está ligada ao terminal –
- uma realimentação através do terminal + poderia conduzir à instabilidade

- Representação dos sistemas sob a forma de diagrama de blocos
- Obtenção da função de transferência dos sistemas a partir do seu diagrama de blocos
- 3. Modelação de sistemas dinâmicos
 - Sistemas eléctricos
 - 2. Sistemas electrónicos
 - 3. Sistemas mecânicos de translação
 - 4. Sistemas mecânicos de rotação
 - Sistemas térmicos
 - Sistemas de fluídos

- Sistemas mecânicos de translação (I)
 - 2ª Lei de Newton

$$\sum F(t) = Ma(t)$$

 a massa produz uma força de reacção inercial proporcional à aceleração

$$F(t) = M \frac{d^2x(t)}{dt^2}$$

- Sistemas mecânicos de translação (II)
 - a mola produz uma força de reacção proporcional à diferença de deslocamentos nos seus extremos

$$K \qquad K \qquad F(t) = -K[x_1(t) - x_2(t)]$$

 o amortecedor produz uma força de reacção proporcional à diferença de velocidades nos seus extremos

- Sistema Mola-Massa-Atrito (I)
 - considere-se uma massa M interligada a uma mola (linear), com coeficiente de elasticidade K, e a um atrito (linear), com coeficiente de atrito viscoso B
 - seja f uma força aplicada externamente

- Sistema Mola-Massa-Atrito (II)
 - considere-se uma massa M interligada a uma mola (linear), com coeficiente de elasticidade K, e a um atrito (linear), com coeficiente de atrito viscoso B
 - seja f uma força aplicada externamente

- Acelerómetro mecânico (I)
 - considere o sistema seguinte

 seja x o deslocamento da caixa relativamente ao referencial inercial e seja y o deslocamento da massa M relativamente à caixa do acelerómetro

- Acelerómetro mecânico (II)
 - considere-se que para y = 0 o sistema está em descanso
 - equacionando as forças, vem

$$M\frac{d^2}{dt^2}(y-x) = -Ky - B\frac{dy}{dt} \Leftrightarrow$$

$$\Leftrightarrow \frac{d^2y}{dt^2} + \left(\frac{B}{M}\right)\frac{dy}{dt} + \left(\frac{K}{M}\right)y = \frac{d^2x}{dt^2}$$

- Acelerómetro mecânico (III)
 - no caso da caixa ser submetida a uma aceleração constante, e após terem desaparecido os transitórios, vem

$$\frac{d^2x}{dt^2} = \text{const} \implies y = \left(\frac{M}{K}\right) \frac{d^2x}{dt^2}$$

 assim, o deslocamento y é proporcional à aceleração sentida pela caixa (pelo acelerómetro)

- Representação dos sistemas sob a forma de diagrama de blocos
- Obtenção da função de transferência dos sistemas a partir do seu diagrama de blocos
- 3. Modelação de sistemas dinâmicos
 - Sistemas eléctricos
 - 2. Sistemas electrónicos
 - 3. Sistemas mecânicos de translação
 - 4. Sistemas mecânicos de rotação
 - 5. Sistemas térmicos
 - Sistemas de fluídos

- Sistemas mecânicos de rotação (I)
 - 2^a Lei de Newton

$$\sum T(t) = J\alpha(t)$$

$$T(t) = J \frac{d^2 \theta(t)}{dt^2}$$

Sistemas mecânicos de rotação (II)

$$T(t) = -K \left[\theta_1(t) - \theta_2(t) \right]$$

$$T(t) = -B \left[\frac{d\theta_1(t)}{dt} - \frac{d\theta_2(t)}{dt} \right]$$

Exemplo de sistema mecânico de rotação (I)

- equações dinâmicas que descrevem o comportamento do sistema
- Função de Transferência $G(s) = \Theta_2(s)/T(s)$

isep

Modelação de Sistemas

- Exemplo de sistema mecânico de rotação (II)
 - equações dinâmicas que descrevem o comportamento do sistema
 - aplicando a segunda lei de Newton ao sistema

$$\begin{cases} \sum T = J_1 \alpha_1 & \text{(Inercia } J_1\text{)} \\ \sum T = J_2 \alpha_2 & \text{(Inercia } J_2\text{)} \end{cases}$$

logo

$$\begin{cases} T - k_1 \theta_1 - B_1 \dot{\theta}_1 - k_2 (\theta_1 - \theta_2) = J_1 \ddot{\theta}_1 \\ -k_2 (\theta_2 - \theta_1) - B_2 \dot{\theta}_2 - k_3 \theta_2 = J_2 \ddot{\theta}_2 \end{cases}$$

isep

Modelação de Sistemas

- Exemplo de sistema mecânico de rotação (III)
 - Função de Transferência $G(s) = \Theta_2(s)/T(s)$
 - aplicando a transformada de Laplace ao sistema de equações obtido (condições iniciais nulas)

$$\begin{cases} \left(k_{1} + k_{2} + B_{1}s + J_{1}s^{2}\right)\Theta_{1}(s) - k_{2}\Theta_{2}(s) = T(s) \\ -k_{2}\Theta_{1}(s) + \left(k_{2} + k_{3} + B_{2}s + J_{2}s^{2}\right)\Theta_{2}(s) = 0 \end{cases}$$

• e simplificando

$$\frac{\Theta_{2}(s)}{T(s)} = \frac{k_{2}}{\left(k_{1} + k_{2} + B_{1}s + J_{1}s^{2}\right)\left(k_{2} + k_{3} + B_{2}s + J_{2}s^{2}\right) - k_{2}^{2}}$$

- O motor DC de íman permanente (I)
 - vocacionado para aplicações em controlo devido às suas características
 - alto binário de aceleração
 - baixa inércia
 - característica linear de binário velocidade
 - considere-se a ligação do motor a uma carga

O motor DC de íman permanente (II)

 R_a , L_a – resistência e inductância do enrolamento da armadura

i_a - corrente no enrolamento da armadura

 e_b – força contra-electromotriz gerada pelo motor

 T_m , ω_m – binário gerado pelo motor e velocidade de rotação do motor

 J_m – inércia do motor

 T_F – binário de refrigeração

 J_L , B_L – inércia e atrito viscoso da carga

 T_{I} – binário de carga

O motor DC de iman permanente (III)

$$v = R_a i_a + L_a \frac{di_a}{dt} + e_b$$

$$e_b = k_b \omega_m$$

$$\Leftrightarrow v = R_a i_a + L_a \frac{di_a}{dt} + k_b \omega_m$$

$$T_m = k_T i_a$$

$$T_m - T_F - B_L \omega_m - T_L = (J_m + J_L) \frac{d \omega_m}{dt}$$

- O motor DC de íman permanente (IV)
 - a partir destas equações pode estabelecer-se o diagrama de blocos seguinte

O motor DC de íman permanente (V)

- note-se que E_b diminui a sensibilidade da velocidade ω_m relativamente a variações da carga T_L
- quando T_L aumenta, ω_m diminui, E_b diminui, pelo que I_a aumenta e T_m aumenta compensando, assim, o efeito da carga

- Motores e cargas (I)
 - frequentemente a carga n\u00e3o est\u00e1 acoplada directamente ao veio do motor
 - conveniente calcular o sistema equivalente com a carga a ter o mesmo movimento angular que o motor

- ϕ_m , ω_m deslocamento / velocidade angular do motor
- ϕ_L , ω_L deslocamento / velocidade angular da carga

- Motores e cargas (II)
 - $\omega_m = \frac{d\phi_m}{dt}$, $\omega_L = \frac{d\phi_L}{dt}$ velocidades angulares
 - $N = \frac{\phi_m}{\phi_L} = \frac{\omega_m}{\omega_L}$ razão da engrenagem
 - inércia J_{LS} do sistema equivalente (sem engrenagem) deve ser tal que a energia cinética é a mesma nos dois sistemas

$$\frac{1}{2}J_{LS}\omega_m^2 = \frac{1}{2}J_L\omega_L^2 \Rightarrow J_{LS} = \frac{1}{N^2}J_L$$

- Motores e cargas (III)
 - de um modo semelhante conclui-se que

•
$$B_{LS} = \frac{1}{N^2} B_L$$
 (atrito na carga)

•
$$k_{LS} = \frac{1}{N^2} k_L$$
 (mola na carga)

•
$$T_{LS} = \frac{1}{N} T_L$$
 (binário na carga)

- Motores e cargas (IV)
 - considere-se agora o caso de uma massa deslocada linearmente $x = \phi_m r$

- Motores e cargas (V)
 - igualando as energias cinéticas

$$\frac{1}{2}J_{LS}\omega_m^2 = \frac{1}{2}M\left(\frac{dx}{dt}\right)^2$$

resulta

$$J_{LS} = r^2 M$$

• de um modo semelhante conclui-se que para uma força F_L na carga vem

$$T_{LS} = rF_L$$

- Motores e cargas (VI)
 - durante os períodos transitórios muita da potência consumida deve-se ao momento de inércia
 - se o motor for sujeito a acelerações / desacelerações frequentes os enrolamentos da armadura podem aquecer significativamente
 - a energia dissipada pode ser minimizada através da escolha apropriada da razão da engrenagem, de tal forma que a inércia do motor seja aproximadamente igual à inércia da carga vista pelo motor ("inertia match")

- Motores e cargas (VII)
 - existem casos onde a dinâmica do motor pode ser desprezada (por exemplo, motores DC com realimentação de corrente)
 - nesse caso, pode considerar-se que o binário T é proporcional à tensão U, como, por exemplo, no "drive" de motores de robôs com elevado desempenho
 - todavia nas transmissões dos robôs podem existir modos torcionais pouco amortecidos que levantam graves problemas de controlo

Motores e cargas (VIII)

Motores e cargas (IX)

- Motores e cargas (X)
 - para o caso de uma transmissão ideal (isto é, sem atrito e sem flexibilidade) vem

$$\begin{cases} B = 0 \\ k \to \infty \end{cases} \Rightarrow \theta_m = \theta_L$$

$$T = (J_m + J_L) \frac{d^2 \theta_m}{dt^2} + (B_m + B_L) \frac{d \theta_m}{dt}$$

Sistemas análogos

Mecânico		Eléctrico	
Símbolo	Variável	Símbolo	Variável
f, T	Força / Binário	i	Corrente
ν, ω	Velocidade	e, v	Tensão
M, J	Massa / Inércia	C	Capacidade
k	Coeficiente de elasticidade	1/ <i>L</i>	Inverso da inductância
В	Coeficiente de atrito viscoso	G = 1/R	Condutância

- Exemplo de sistemas análogos (I)
 - sistema mecânico rotacional

- Exemplo de sistemas análogos (II)
 - sistema mecânico rotacional

circuito eléctrico correspondente

Exemplo de sistemas análogos (III)

$$\begin{cases} T - k_1 (\theta_1 - \theta_2) = 0 \\ \vdots \\ -k_1 (\theta_2 - \theta_1) - B_1 \theta_2 - B_3 \left(\theta_2 - \theta_3\right) = J_1 \theta_2 \end{cases}$$

$$\vdots \\ -B_3 \left(\theta_3 - \theta_2\right) - B_2 \theta_3 - k_2 \theta_3 = J_2 \theta_3$$

- Exemplo (I)
 - sistema de controlo de binário
 - nos motores DC de íman permanente, o binário do motor é proporcional à corrente do motor i_m
 - para manter o binário do motor constante, deve-se fornecer ao motor uma corrente constante
 - uma forma possível de assegurar isto é com o circuito seguinte, se
 - $v_i = -Ri_d$ $(i_d \text{corrente desejada})$
 - $R_1 \square R$

- Exemplo (II)
 - sistema de controlo de binário

- Exemplo (III)
 - sistema de controlo de binário

$$\begin{cases} \frac{v_i}{R_1} = -\frac{v}{R_1} \iff v = -v_i \\ i_m - \frac{v}{R_1} = \frac{v}{R} \end{cases} \iff \Leftrightarrow i_m = -v_i \left(\frac{1}{R} + \frac{1}{R_1} \right)$$

- Exemplo (IV)
 - sistema de controlo de binário

$$\begin{cases} \frac{v_i}{R_1} = -\frac{v}{R_1} \iff v = -v_i \\ i_m - \frac{v}{R_1} = \frac{v}{R} \end{cases} i_m = -v_i \left(\frac{1}{R} + \frac{1}{R_1} \right)$$

• se $v_i = -Ri_d$ $(i_d - \text{corrente desejada})$ $R_1 \square R$

• vem
$$i_m = \left(1 + \frac{R}{R_1}\right)i_d \approx i_d$$

- Representação dos sistemas sob a forma de diagrama de blocos
- Obtenção da função de transferência dos sistemas a partir do seu diagrama de blocos
- 3. Modelação de sistemas dinâmicos
 - Sistemas eléctricos
 - Sistemas electrónicos
 - 3. Sistemas mecânicos de translação
 - 4. Sistemas mecânicos de rotação
 - Sistemas térmicos
 - Sistemas de fluídos

- Sistemas térmicos
 - fluxo de calor, q, é a quantidade de calor por unidade de tempo que passa de um material para outro

$$q = \frac{\theta_1(t) - \theta_2(t)}{R}$$

 θ_1 , θ_2 são as temperaturas a que se encontram os materiais 1 e 2 R é a resistência calorífica à passagem do calor

 a variação de temperatura dos materiais leva ao aumento da quantidade de calor armazenada

•
$$q = C \frac{d}{dt} \left[\theta_1(t) - \theta_2(t) \right]$$
 nota: teta2(t) devia ser teta(0)

C é a capacidade térmica do material para onde se dirige o calor

- Termómetro de mercúrio (I)
 - comportamento dinâmico de um termómetro também pode ser descrito por uma equação diferencial de primeira ordem
 - despreza-se a capacidade calorífica das paredes de vidro e considera-se que o mercúrio está a uma temperatura uniforme θ_m

- Termómetro de mercúrio (II)
 - em t=0 o termómetro é imerso no fluído à temperatura θ_0
 - fluxo de calor q (quantidade de calor por unidade de tempo que passa do fluído para o termómetro), vem

$$q = \frac{\theta_0 - \theta_m(t)}{R}$$

R é a resistência calorífica à passagem do calor

• supõe-se que a quantidade de fluído é muito superior à quantidade de mercúrio e que, assim, θ_0 se mantém constante

- Termómetro de mercúrio (III)
 - por outro lado, a variação da temperatura do mercúrio de $\theta_m(0)$ para $\theta_m(t)$ levou ao aumento da quantidade de calor armazenada

$$C\left[\theta_{m}(t)-\theta_{m}(0)\right]$$

C é a capacidade térmica do mercúrio

pelo princípio da conservação da quantidade de energia

$$\frac{\theta_{0} - \theta_{m}(t)}{R} = C \frac{d}{dt} \left[\theta_{m}(t) - \theta_{m}(0) \right] \Leftrightarrow$$

$$\Leftrightarrow RC\frac{d\theta_m}{dt} + \theta_m = \theta_0$$

- Termómetro de mercúrio (IV)
 - comparando esta equação com a do circuito RC verifica-se que RC é a constante de tempo do termómetro
 - analogia eléctrica deste sistema

- Termómetro de mercúrio (V)
 - descrição mais detalhada incluirá os efeitos da capacidade térmica das paredes de vidro

- Representação dos sistemas sob a forma de diagrama de blocos
- Obtenção da função de transferência dos sistemas a partir do seu diagrama de blocos
- 3. Modelação de sistemas dinâmicos
 - Sistemas eléctricos
 - 2. Sistemas electrónicos
 - 3. Sistemas mecânicos de translação
 - 4. Sistemas mecânicos de rotação
 - 5. Sistemas térmicos
 - Sistemas de fluídos

Sistemas de fluídos

$$\begin{cases} q_i = q_o + A \frac{dr}{dt} \\ q_o = \frac{h}{R} \end{cases}$$

Sistema de tanques independentes (I)

Sistema de tanques independentes (II)

Sistema de tanques independentes (III)

Sistema de tanques independentes (IV)

$$\begin{cases} q_i = q_1 + A_1 \frac{dh_1}{dt} \\ q_1 = \frac{h_1}{R_1} \end{cases}$$

$$\begin{cases} q_1 = q_o + A_2 \frac{dh_2}{dt} \\ q_o = \frac{h_2}{R_2} \end{cases}$$

Sistema de tanques independentes (V)

$$\begin{cases} q_i = q_1 + A_1 \frac{dh_1}{dt} \\ q_1 = \frac{h_1}{R_1} \end{cases}$$

$$\begin{cases} q_{i} = q_{1} + A_{1} \frac{dh_{1}}{dt} \\ q_{1} = \frac{h_{1}}{R_{1}} \end{cases} \qquad \begin{cases} Q_{i}(s) = Q_{1}(s) + sA_{1}H_{1}(s) \\ Q_{1}(s) = \frac{H_{1}(s)}{R_{1}} \end{cases}$$

$$\begin{cases} q_1 = q_o + A_2 \frac{dh_2}{dt} \\ q_o = \frac{h_2}{R_2} \end{cases}$$

$$\begin{cases} q_{1} = q_{o} + A_{2} \frac{dh_{2}}{dt} \\ q_{o} = \frac{h_{2}}{R_{2}} \end{cases} \qquad \begin{cases} Q_{1}(s) = Q_{o}(s) + sA_{2}H_{2}(s) \\ Q_{o}(s) = \frac{H_{2}(s)}{R_{2}} \end{cases}$$

Sistema de tanques independentes (VI)

$$\begin{cases} Q_i(s) = Q_1(s) + sA_1H_1(s) \\ Q_1(s) = \frac{H_1(s)}{R_1} \end{cases}$$

$$\begin{cases} Q_{i}(s) = Q_{1}(s) + sA_{1}H_{1}(s) \\ Q_{1}(s) = \frac{H_{1}(s)}{R_{1}} \end{cases} \qquad \begin{cases} Q_{1}(s) = Q_{o}(s) + sA_{2}H_{2}(s) \\ Q_{o}(s) = \frac{H_{2}(s)}{R_{2}} \end{cases}$$

Sistema de tanques independentes (VII)

$$G(s) = \frac{Q_o(s)}{Q_i(s)} = \frac{1}{s^2 A_1 A_2 R_1 R_2 + s(A_1 R_1 + A_2 R_2) + 1}$$