Validation of Classification Models

Chemometrics for Spectroscopists

Intensive Course Kraków | Claudia Beleites

2021-11-29 - 12-03 Chemometric Consulting Claudia Beleites

Topics

- Introduction
- Figures of Merit
- Excursion: Design of Experiments
- Verification Schemes
- Resampling Techniques
- Model Stability
- Excursion: Model Aggregation
- Sample Size Planning
- Validation
- Data-driven Model Optimization and Hyperparameter Tuning

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design Experiments

Verification Schemes
Resampling

Model Stability

Aggregation
Sample Size

Validation

umzation

Validation and Verification

Verification: Making sure/measuring/showing that the model meets the

specifications.

Validation: Making sure that the model meets the application needs.

- Chemometric model validation → typically verification rather than validation is done.
- · Characterize model by
- measuring its predictive performance

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Model Validation Recipe

Ingredients

- Ready-to-use classifier treated as black box: case → prediction
- Figures of merit (performance measure)
 Overall Accuracy, Sensitivity, Specificity, Predictive Values, MSE, . . .
- Validation scheme: How to get test cases?
 Autoprediction, Resampling, Test Set, Validation study

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Desig Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

validation

Figures of Merit: Proportions

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Proportion Questions

Sensitivity: of all truly class A cases, which fraction is correctly recognized as

class A?

Specificity: of all cases truly not belonging to class A, which fraction is correctly

recognized as not belonging to class A?

Positive Predictive Value: of all cases predicted to belong to class A, which

fraction does truly belong to class A?

Negative Predictive Value: of all cases predicted not to belong to class A, which

fraction does truly not belong to class A?

accuracy: correct proportion among all predicted cases

error rate: misclassified proportion among all predicted cases

K: chance-corrected accuracy, inter-observer agreement

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Evoursion: Design

Experiments
Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Proportions: Characteristics

- ✓ well-known, widely used
- **x** often misunderstood:
- sensitivity & specificity
 - ✓ easy to measure: test n cases of each class, record results
 - low relevance for application
- predictive values (positive/negative)
 - ✓ high relevance for application
 - difficult to measure: need to know relative class fequencies under application conditions weight rows of confusion matrix accordingly
- "single" figures of merit accuracy, error rate, κ
 - useless unless corrected for relative class fequencies under application conditions

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Designments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

'alidation

More figures of merit

- chance-corrected: K
 - ✓ rescaling possible for other figures of merit
 - ✓ alternative: report chance agreement (or naive model performance) together with figure of merit

- Information gain
 - **positive likelihood ratio:** $LR_A^+ = \frac{Sens_A}{1-Spez_A}$ How much do the odds to belong to class A increase when a case is predicted to belong to class A?
 - **negative likelihood ratio:** $LR_A^- = \frac{Spez_A}{1-Sens_A}$ How much do the odds to belong to class A decrease when a case is predicted not to belong to class A?
 - ✓ independent of relative class fequencies under application conditions

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation
Sample Size

. Validation

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size Validation

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation
Sample Size

. Validation

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation
Sample Size

Validation

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation
Sample Size

Validation

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation
Sample Size

Validation

Receiver Operating Charcteristic/Specificity-Sensitivity-Diagram

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Francisco De

Experiments
Verification Schemes

Resampling

Model Stability

Aggregation
Sample Size

Validation

(Strictly) Proper Scoring Rules

Wanted: Figure of merit that ...

- ...continuously penalizes closeness to class boundary
- ...continuously reacts to changes in the model
- ...slight deterioration → slight drop in measured performance
- ...has exactly one optimum
- · at the best classifier.

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Desigr Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Brier's Score: Mean Squared Error for Classification

- Classifier that predicts class membership probability rather than labels
- Idea: of all cases where classifier predicts x % class membership, x % should belong to class in question a.k.a. well calibrated prediction
- Brier's score: $BS = \frac{1}{N} \sum_{i=1}^{N} (\hat{p}_i p_i)^2$ or $BS = \frac{1}{N} \sum_{j=1}^{R} \sum_{i=1}^{N} (\hat{p}_i j p_i j)^2$ (multiclass version) with

N...number of cases

i ... case in question

R...number of classes

j...class in question

 $p \dots$ class membership, usually $\in \{0, 1\}$

 \hat{p} ... predicted class membership $\in [0, 1]$

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Desi

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

/alidation

To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination.

He can perhaps say what the experiment died of.

- R. Fisher, 1938

Example: Tumor Cell Identification

normal red blood cells 5 donors rbc 372 spectra leu normal leukocytes 5 donors 569 spectra oci acute myelotic leukemia cell line OCI-AML 5 batches 518 spectra mcf breast cancer cell line MCF-7 5 batches 558 spectra bt breast cancer cell line BT-20 5 batches 532 spectra total 2549 spectra

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling Model Stability

Aggregation

Sample Size

Validation

Aims

Ensure and/or establish

- validity
- reliability
- repeatability, reproducibility
- statistical power and sensitivity
 - necessary sample size
 - efficiency: get information with lowest possible experimental effort

of the experimental data → derived model → interpretation

"GLP" for experiment set-up

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling Model Stability

Aggregation

Sample Size

Validation

validation

Vocabulary: factors and effects

- A factor influences the system we study (the spectra)
 effect
- A **confounding factor** is a hidden factor that influences/disturbs our experiment
- The same factor may be of interest or disturbing depending on the study!
- Distinguish: fixed vs. random factors
- Relations between factors: crossed vs. nested factors
- Design: orthogonal and balanced designs/data

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Hasse Diagrams

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation
Optimization

Crossed Factors

...occur independent of each other:

Fully Crossed: measurements available for all combinations

```
cell line
medium
           ht
               mcf
                      oci
RPMI
          46
                 51
                       57
DMFM
          49
                 56
                       78
```

• Partially Crossed: measurements only of some combinations

.

```
cell line
medium
          bt
               mcf
                      oci
RPMI
                 51
                       57
DMFM
          49
                 56
```

Classifier **Validation**

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation Sample Size

Validation

Excursion: Interactions

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation
Optimization

Excursion: Interactions

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size Validation

Excursion: Interactions

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Nested Factors

Levels of inner factor occur only within one level of outer factor e.g. **cell within sample**: another sample never contains the same cell

✓ Explicit Coding:

	cell									
sample	1	2	3	4	5	6	7	8	9	10
Α	10	10								10
В					10	10	10	10		
С			10	10					10	

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation
Sample Size

Validation

Nested Factors

Levels of inner factor occur only within one level of outer factor e.g. **cell within sample**: another sample never contains the same cell

Explicit Coding:

	ceii									
sample	1	2	3	4	5	6	7	8	9	10
Α	10	10								10
В					10	10	10	10		
С			10	10					10	

X Implicit Coding:

	ceii			
sample	1	2	3	4
Α	10	10	10	
В	10	10	10	10
С	10	10	10	

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Nested Factors

Levels of inner factor occur only within one level of outer factor e.g. cell within sample: another sample never contains the same cell

Explicit Coding:

	ceii									
sample	1	2	3	4	5	6	7	8	9	10
Α	10	10		•	•		•			10
В					10	10	10	10		
С			10	10			•		10	

X Implicit Coding:

	cell			
sample	1	2	3	4
Α	10	10	10	
В	10	10	10	10
С	10	10	10	

✓ Make sure crossed factors do not appear nested in your DoE! Crossed factor with interaction ≠ nested factor!

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Design: Orthogonality and Balance

• Orthogonality: no correlation between factors

Balance: for each factor, all other factor levels occur with the same frequency

day

	uuy								
cell line	а	b	С	d	е	f	g	h	i
bt	50	50	50	50	50	50	50	50	50
mcf	50	50	50	50	50	50	50	50	50
oci	50	50	50	50	50	50	50	50	50
	bt mcf	cell line a bt 50 mcf 50	cell line a b bt 50 50 mcf 50 50	cell line a b c bt 50 50 50 mcf 50 50 50	cell line a b c d bt 50 50 50 50 mcf 50 50 50 50	cell line a b c d e bt 50 50 50 50 50 50 50 50 50	cell line a b c d e f bt 50 50 50 50 50 50 mcf 50 50 50 50 50 50	cell line a b c d e f g bt 50 50 50 50 50 50 50 mcf 50 50 50 50 50 50 50	cell line a b c d e f g h bt 50 50 50 50 50 50 50 50 mcf 50 50 50 50 50 50 50 50

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Design: Orthogonality and Balance

Orthogonality: no correlation between factors

- ightharpoonup Orthogonal design (data): effects of factors can be completely separated
- Balance: for each factor, all other factor levels occur with the same frequency

	uay								
cell line	а	b	С	d	е	f	g	h	i
bt	50	50	50	50	50	50	50	50	50
mcf	50	50	50	50	50	50	50	50	50
oci	50	50	50	50	50	50	50	50	50

✓ Balanced data easier to analyze

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Your turn! Crossed? Partially crossed? Nested? Orthogonal design? **Balanced?**

Classifier **Validation**

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments **Verification Schemes**

Resampling **Model Stability**

Aggregation

Sample Size

Validation

Your turn! Crossed? Partially crossed? Nested? Orthogonal design? Balanced?

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability
Aggregation

Sample Size

Validation

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Random and Fixed Factors

Fixed Factor

- occurs at levels which
 - ✓ We can either know and reproduce, or even
 - ✓ set (fix).

Random Factor

- occurs at levels which
 - We can know, but
 - ✗ will never meet again (reproduce)

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling Model Stability

Aggregation

Sample Size

Validation

Optimization

⚠The same factor may be fixed in one study/application and random in another!

Random and Fixed Factors

Fixed Factor

- · occurs at levels which
 - ✓ We can either know and reproduce, or even
 - ✓ set (fix).
- ✔ Recognize/predict the level/value for new unknown data

Random Factor

- occurs at levels which
 - We can know, but
 - ✗ will never meet again (reproduce)
- New unknown data always corresponds to new level of a random factor

⚠The same factor may be fixed in one study/application and random in another!

Classifier Validation

C. Beleites

Introduction

Figures o

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation
Sample Size

Validation

validation

Random and Fixed Factors

Fixed Factor

- occurs at levels which
 - ✓ We can either know and reproduce, or even
 - ✓ set (fix).
- ✔ Recognize/predict the level/value for new unknown data
- ✓ Account for known level/value for new unknown data

Random Factor

- occurs at levels which
 - We can know, but
 - ✗ will never meet again (reproduce)
- New unknown data always corresponds to new level of a random factor
- ✗ Account for random factors only by general (population) behaviour.

⚠The same factor may be fixed in one study/application and random in another!

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling Model Stability

Aggregation

Sample Size

Validation

validation

Hasse Diagrams

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation
Optimization

Dealing with Factors Disturbing our Experiment

- Include fixed factors in model
- Reduce variance as much as possible:
 - measure and reduce systematic influence:
 e.g. instrument calibration
 - standard operating procedures
 - automation
 - quality control, e.g. positive and negative controls
- ✓ Representative sampling → train model with reduced influence.
- ✓ Randomization
- ✓ Blocking/Stratification
- Disregard confounders which are known to be unimportant
- Possibly: reproducible (= fixed factor) subgroups
 - use local models

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

- Blocking: Factor causing groups → repeat smaller (sub)experiment for each group
- ✓ Randomize assignment of samples/cases to fixed factors
- ✓ Randomize measurement order for random factors

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

- Blocking: Factor causing groups → repeat smaller (sub)experiment for each group
- Randomize assignment of samples/cases to fixed factors
- ✓ Randomize measurement order for random factors

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

- Blocking: Factor causing groups → repeat smaller (sub)experiment for each group
- Randomize assignment of samples/cases to fixed factors
- ✓ Randomize measurement order for random factors

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation
Sample Size

.

Validation

- Blocking: Factor causing groups → repeat smaller (sub)experiment for each group
- Randomize assignment of samples/cases to fixed factors
- ✓ Randomize measurement order for random factors

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Model Testing: Measure the Model's Performance

Different kinds of test samples → different performance measures

Goodness of fit: training samples

→ residuals

Generalization error: statistically independent samples

resampling.

test set measured at same time as training set

Future performance: samples measured after training samples

dedicated test set for detection of drift

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Resampling for Classifier Validation

- ✗ We don't have enough samples
- Training:
 - Model quality depends on ratio n_{train} : d.f.
 - Linear classifier: 5 samples/(variate · class)
 - ✓ We want to use all samples for training

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Resampling for Classifier Validation

✗ We don't have enough samples

- Training:
 - Model quality depends on ratio n_{train} : d.f.
 - Linear classifier: 5 samples/(variate · class)
 - ✓ We want to use all samples for training.
- Testing:
 - ✓ We want to know whether the model is stable
 - Quality of the performance measure depends on n_{test}
 - − Width of 95% confidence interval \leq 10% for p = 90%: $n_{\text{test}} \geq$ 140
 - ✓ We want to use all samples for testing

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

hold-out independent test set validation study

study Introduction

Figures of Merit

Classifier Validation

Experiments
Verification Schemes

Resampling

Model Stability

Aggregation
Sample Size

Validation

/alidation

validation study

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Desig

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

ptimization

hold-out independent test set Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

ptimization

hold-out independent test set validation study

Validation

C. Beleites

Classifier

Introduction

Figures of Merit

Excursion: Design Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

ptimization

Validation Schemes: Recommendations

noid-out idependent test set validation study

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

ptimization

CHEMO

Kohavi1995

Resampling vs. Validation Study

Resampling Validation Study statistical properties ✓ unbiased bias ✓ pessimistic (low) variance f(n) $f(n_{test})$ efficient use of cases measure model stability ✓ iterated VX measure drift ✓ DoF future case performance ✓ DoF out-of-spec cases ✓ DoE practical properties

♠ splitting error prone

x experimental

computational

Validation

C. Beleites

Classifier

Introduction

Figures of Merit

Excursion: Designments

Verification Schemes

Resampling

Model Stability

Aggregation
Sample Size

Validation

alluation

Optimization

CHEMO METRIX

effort

independence

Resampling vs. Hold Out

statistical properties

bias variance efficient use of cases measure model stability measure drift future case performance

practical properties independence effort

out-of-spec cases

Resampling

✓ pessimistic (low) $\checkmark f(n)$ lower

✓ iterated

A splitting error prone

✓ computational

Hold Out (Set) Validation

✓ unbiased

✗ f(n_{test}) HUGE

X(V)

A same as resampling

✓ low

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling **Model Stability**

Aggregation

Sample Size

Validation

Resampling vs. Hold Out

statistical properties bias variance

efficient use of cases measure model stability measure drift

future case performance

out-of-spec cases

practical properties

independence effort

Resampling

✓ pessimistic (low)

 $\checkmark f(n)$ lower

✓ iterated

•

<u>.</u>

↑ splitting error prone

✓ computational

Hold Out (Set) Validation

✓ unbiased

X f(n_{test}) HUGE

K

X

×

X(**v**)

✓ by organization

✓ organizational

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design Experiments

Verification Schemes
Resampling

Model Stability

Aggregation

Sample Size Validation

Hasse-Diagram revisited

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

- Randomize order of measurements
- Split at highest level in sample hierarchy and independently for known confounders use Hasse diagram to determine
- Split before 1st step that involves multiple cases
- Additional independent validation for data-driven optimization/tuning/model selection

 Test cases: reference labels must be independent of cases (measurements, spectra, chromatograms, ...)

· Ensure correctness of code

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

- Randomize order of measurements
- Split at highest level in sample hierarchy and independently for known confounders use Hasse diagram to determine patients, strains, cell lines,
- Split before 1st step that involves multiple cases
- Additional independent validation for data-driven optimization/tuning/model selection

 Test cases: reference labels must be independent of cases (measurements, spectra, chromatograms, ...)

Ensure correctness of code

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

- Randomize order of measurements
- Split at highest level in sample hierarchy and independently for known confounders use Hasse diagram to determine patients, strains, cell lines, day of measurement, before/after new calibration, . . .
- Split before 1st step that involves multiple cases
- Additional independent validation for data-driven optimization/tuning/model selection

 Test cases: reference labels must be independent of cases (measurements, spectra, chromatograms, ...)

Ensure correctness of code

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

- Randomize order of measurements
- Split at highest level in sample hierarchy and independently for known confounders use Hasse diagram to determine patients, strains, cell lines, day of measurement, before/after new calibration, ...
- Split before 1st step that involves multiple cases centering, PCA preprocessing, ...
- Additional independent validation for data-driven optimization/tuning/model selection

 Test cases: reference labels must be independent of cases (measurements, spectra, chromatograms, ...)

· Ensure correctness of code

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

/alidation

- Randomize order of measurements
- Split at highest level in sample hierarchy and independently for known confounders use Hasse diagram to determine patients, strains, cell lines, day of measurement, before/after new calibration, ...
- Split before 1st step that involves multiple cases centering, PCA preprocessing, . . .
- Additional independent validation for data-driven optimization/tuning/model selection nested/double cross validation or train-validate-test → necessary patient numbers HUGE
- Test cases: reference labels must be independent of cases (measurements, spectra, chromatograms, ...)

Ensure correctness of code

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

- Randomize order of measurements
- Split at highest level in sample hierarchy and independently for known confounders use Hasse diagram to determine patients, strains, cell lines, day of measurement, before/after new calibration, . . .
- Split before 1st step that involves multiple cases centering, PCA preprocessing, ...
- Additional independent validation for data-driven optimization/tuning/model selection nested/double cross validation or train-validate-test → necessary patient numbers HUGE
- Test cases: reference labels must be independent of cases (measurements, spectra, chromatograms, ...)
 cluster analysis to assign labels → OK for training cases
- Ensure correctness of code

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Resampling: Fields of Use L00 permutation Jackknife test cross validation Bootstrap Chemistry **Statistics** Resampling

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

The Concept behind Resampling

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

The Concept behind Resampling

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

The Concept behind Resampling

- Subsamples are approximations of (more) real samples
- Subsample is perturbed version of the real sample

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Cross Validation: Drawing without Replacement

- ✓ Each sample is left out exactly once
- No copies

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Cross Validation: Drawing without Replacement

- ✓ Each sample is left out exactly once per iteration
- No copies
- Iterations possible also with *k*-fold or leave-*n*-out cross validation
- Leave-one-out cannot be iterated

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Resampling for Model Validation: Assumptions

• Surrogate model equals model of real sample

- Surrogate models equal to each other
- All samples are equal (come from the same distribution)

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Ontimizati

Resampling for Model Validation: Assumptions

- Surrogate model equals model of real sample
- ✗ Violation → pessimistic bias
- Surrogate models equal to each other
- All samples are equal (come from the same distribution)

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Resampling for Model Validation: Assumptions

- Surrogate model equals model of real sample
- ✗ Violation → pessimistic bias
- Surrogate models equal to each other
- ✗ Violation (instability) → higher variance
- All samples are equal (come from the same distribution)

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Model Stability

- Subsamples are perturbed versions of real sample
- Measure stability of model
 - Stability of model parameters
 - Stability of predictions
- Iterated cross validation reduces variance due to instability of surrogate models.

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Bias and Variance of Classifier Performance

- PLS-DA with 2 latent variables
- simulated data: 200 variate normal distribution
- overlap of classes ca. 10 %

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Bias and Variance of Classifier Performance

- PLS-DA with 2 latent variables
- simulated data: 200 variate normal distribution
- overlap of classes ca. 10 %

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Designments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Model Stability: 40× 8-fold cross validation

- FTIR images of tumour sections (normal, °II, °III, °IV)
- total: 150 images of 58 patients: 133 000 spectra smallest class: °II, 4 800 spectra (3 patients, 5 images)
- LDA after automatic selection of 8 spectral regions
- reject spectra with posterior probability <0.85

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

valluation

Model Stability: 40× 8-fold cross validation

- ✗ Classification: unstable = bad
- Deviation is always in direction "wrong"

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

/alidation

Model Stability: 40× 8-fold cross validation

- Classification: unstable = bad
- Deviation is always in direction "wrong"
- Stabilization of the model → improved performance

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

. /alidatian

Validation

Model Aggregation

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size Validation

Model Aggregation

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Model Aggregation: Testing

- 3×3 -fold cross validation: $\frac{6}{18} = 33\%$ errors
- aggregated model (majority vote): $\frac{1}{6} = 17 \%$ errors

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Again the Tumour Sample

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

.. to train a good classifier?

- rules of thumb linear classifier: $\frac{n}{p} \ge 3 - 5$ in each class

... to measure the classifier's performance?

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Designments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

.. to train a good classifier?

- rules of thumb linear classifier: $\frac{n}{p} \ge 3 5$ in each class
- ⇒ learning curve

.. to measure the classifier's performance?

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

.. to train a good classifier?

- rules of thumb linear classifier: $\frac{n}{p} \ge 3 5$ in each class
- ⇒ learning curve

.. to measure the classifier's performance?

--- confidence intervals for test results

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Designments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

.. to train a good classifier?

- rules of thumb linear classifier: $\frac{n}{p} \ge 3 5$ in each class
- ⇒ learning curve

.. to measure the classifier's performance?

- --- confidence intervals for test results
- rules of thumb
 100 test cases to estimate a proportion

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Confidence Intervals for Proportions

- Statistical description: Bernoulli trial
- Uncertainty on proportion: $var(\hat{p}) = \frac{p(1-p)}{n_{test}}$
- **x** normal approximation appropriate only with $np \ge 5$ and $n(1-p) \ge 5$
- ✓ w use binomial distribution
- → Estimate necessary n_{test}

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Confidence Intervals for Proportions

- Statistical description: Bernoulli trial
- Uncertainty on proportion: $var(\hat{p}) = \frac{p(1-p)}{n_{test}}$
- **x** normal approximation appropriate only with $np \ge 5$ and $n(1-p) \ge 5$
- ✓ w use binomial distribution
- → Estimate necessary n_{test}

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments
Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Sample size from Confidence Interval

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability
Aggregation

Sample Size

. Validation

Variance Uncertainty: Brier's Score

Classifier Validation

C. Beleites

Introduction

Figures of Merit
Excursion: Design
Experiments

Verification Schemes

Resampling Model Stability

Aggregation

Sample Size

Validation

Reproducibility!?

A DROP IN THE OCEAN

Few of the numerous biomarkers so far discovered have made it to the clinic.

Nature 469, 156-157

Estimated number of biomarkers routinely used in the clinic

100

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation
Sample Size

.

Validation

Validation: Questions

- Did you ask the right question?
- Or did you use a surrogate?
 - Is that surrogate appropriate?
 - What are the limits?
- Is your classifier set up correctly?
 - Is it really a classification problem?
 - one-class vs. discriminative?
 - open-world vs. closed-world?
- Do you use the correct controls/base class?
- What happens with out-of-spec cases (unknown class? bad measurements?)

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Validation: Questions

- Bias introduced by data acquisition procedure?
 - Labeling procedure with self-fulfilling prophecies (e.g. cluster analysis as basis for labeling, semi-supervised label generation)?
- What about borderline cases?
 - Do your labeled cases correctly represent them?
 - No exclusion of "difficult" cases in the reference labeling step?
- What other confounders could exist?
- What are the limits of your method?
- reading:
 - Buchen2011
 - Begley2012
 - Ioannidis2005
 - ..

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Ruggedness: Perturb Data

- How robust are the predictions?
- Which factors (confounders) have most influence?
- Perturb Data
 - Repeated cross validation:
 How do predictions vary if a few training cases are exchanged?
 ** stability of predictions
 - Simulate instrument related distortions:
 Measure respective drop in performance

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Drift

- production use a model is almost always extrapolation in time!
 Training cases were collected before the prediction cases
- X Instrument drift
- Question: low long into the future does the model work well?
 "recalibrate daily"
- dedicated experiments to check long-term stability
- ✗ Influence of drift/aging cannot be estimated by resampling glimpse at drift: look at splits where model is trained on old cases, tested on new cases

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Hyperparameters

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Hyperparameters

• available: PCR (X_{train,preprocessed}, m, center = TRUE)

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Hyperparameters

- available: PCR (X_{train,preprocessed}, m, center = TRUE)
- wanted: tuned.PCR (Xtrain)

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

training data

Idea:

- sensible range of hyperparameters
- build covering this search space
- validate them w figure of merit (performance)
- take the best
- ⇒ Optimize predictive performance

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

training data

validation data

Idea:

- sensible range of hyperparameters
- build covering this search space
- validate them w figure of merit (performance)
- take the best
- ⇒ Optimize predictive performance

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Idea:

- sensible range of hyperparameters
- build covering this search space
- validate them → figure of merit (performance)
- take the best
- ⇒ Optimize predictive performance
- ★ Careful: valdiation data enters model building process ⇒ need another independent set to validate the final model

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

training data

validation data

test data

Idea:

- sensible range of hyperparameters
- build covering this search space
- validate them --- figure of merit (performance)
- take the best
- ⇒ Optimize predictive performance
- ✓ Large variety of numerical optimizers available exhaustive grid search, genetic optimizers, simulated annealing, . . .

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

'alidation

training data

validation data

test data

- fit normal parameters (coefficients) with training set
- fit hyperparameters with validation set
- validate chosen model with test set

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

training data validation data test data

- fit normal parameters (coefficients) with training set
- fit hyperparameters with validation set
- validate chosen model with test set

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

training data optimization data verification data

- fit normal parameters (coefficients) with training set
- fit hyperparameters with validation set optimization set
- validate chosen model with test set final verification set

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

training data optimization data

verification data

- fit normal parameters (coefficients) with training set
- fit hyperparameters with validation set optimization set
- validate chosen model with test set final verification set
- ✓ resampling version: nested/double cross validation

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

training data optimization data

verification data

- fit normal parameters (coefficients) with training set
- fit hyperparameters with validation set optimization set
- validate chosen model with test set final verification set
- ✓ resampling version: nested/double cross validation
- ✓ train (X, hyperparameters) vs. tuned.train (X)
 - tuned training function: additional internal split for tuning

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments
Verification Schemes

verification schemes

Resampling

Model Stability

Aggregation

Sample Size

/alidation

training data

test data

- fit normal parameters (coefficients) with training set
- fit hyperparameters with validation set optimization set
- validate chosen model with test set final verification set
- ✓ resampling version: nested/double cross validation
- ✓ train (X, hyperparameters) vs. tuned.train (X)
 - tuned training function: additional internal split for tuning
 - ✓ treat tuned.train (X) like any other training function

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

alidation

Sample Number Planning: Model Comparison as Statistical Test

Assume: old model $p = \frac{19}{25} \approx 75\%$

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments
Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Autotuning: Preprocessing, method selection

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Internal vs. External Performance Estimate

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size Validation

Internal vs. External Performance Estimate

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Grid Search

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation
Sample Size

Validation

Grid search

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling Model Stability

Aggregation

Sample Size

Validation

Classifier **Validation**

C. Beleites

Introduction

Figures of Merit **Experiments**

Excursion: Design of **Verification Schemes**

Resampling

Model Stability

Aggregation Sample Size

Validation

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling Model Stability

Aggregation

Sample Size

Validation

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability
Aggregation

Sample Size

Validation

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size Validation

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of Experiments

Verification Schemes

Resampling

Model Stability

Aggregation
Sample Size

Validation

Summary: Validation

- ✓ Think hard about your data, model, and application!
- ✓ Randomize (and block) your measurements
- ✓ Sample size planning: calculate from required precision of validation results
 - At some point, validation studies are needed.
 Before that, use repeated cross validation or out-of-bootstrap.
- ✓ Use DoE (Hasse diagram) to determine independent splitting
- ✔ Check stability of predictions and if possible model parameters
- ✓ Aggregation improves unstable models
- Resampling cannot detect drift
- ✗ Hold-out is inefficient and prone to the same errors as resampling!

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Experiments

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

Summary: Data-driven model Optimization

- Needs internal performance estimate plus outer independent validation
- ★ which large sample size required
- wrap optimization in autotuned.model function
- validate output of autotuned.model like any other model training function
- Check stability of optimization
- Use 1-sd-rule to guard against overfitting
- Class membership probability predicted: MSE (Brier's Score) has low variance and is proper scoring rule
 - → suitable for optimization

Classifier Validation

C. Beleites

Introduction

Figures of Merit

Excursion: Design of

Verification Schemes

Resampling

Model Stability

Aggregation

Sample Size

Validation

