Ejercicios de Ampliación de Probabilidad

Paco Mora Caselles

14 de febrero de 2022

CAPÍTULO 1

Relación 1

Ejercicio 1.

$$C = \{(x, y) \in \mathbb{R}^2 : 0 < x < 1, 0 < y < 1, y < (1 - x)^2\}$$

Dejamos por ahora f en función de k, más tarde calculamos su valor:

$$f(x,y) = \left\{ \begin{array}{ll} k & (x,y) \in C \\ 0 & (x,y) \not\in C \end{array} \right.$$

Para $x \in (0,1)$:

$$f_1(x) = \int f(x,y)dy = \int_0^{(1-x)^2} kdy = k(1-x)^2$$

 $Entonces\ tenemos:$

$$f_1(x) = \begin{cases} k(1-x)^2 & x \in (0,1) \\ 0 & x \notin (0,1) \end{cases}$$

Pasamos ahora a $f_2(y)$, cuando $y \in (0,1)$:

$$f_2(y) = \int f(x,y)dx = \int_0^{1-y^{1/2}} = k(1-y)^{1/2}$$

$$f_2(y) = \begin{cases} k(1 - \sqrt{y}) & y \in (0, 1) \\ 0 & y \notin (0, 1) \end{cases}$$

Calculamos ahora $E(X^n(1-X)^m)$ usamos $f_1(x)$:

$$E(X^{n}(1-X)^{m}) = \int x^{n}(1-x)^{m}f_{1}(x)dx = \int_{0}^{1} x^{n}(1-x)^{m}k(1-x)^{2}dx = k \int_{0}^{1} x^{n}(1-x)^{m+2} =$$

$$= kB(n+1, m+3) = k \frac{\Gamma(n+1)\Gamma(m+3)}{\Gamma(n+m+4)} = k \frac{n!(m+2)!}{(n+m+3)!}$$

Los momentos de orden n respecto del origen, la esperanza y la varianza de X las podemos calcular con esta expresión. Para los primeros casos tomamos m=0 y para la varianza podemos usar que $Var(X)=E(X^2)-E(X)^2$

$$k = 3$$
 $E(X) = \frac{1}{4}$ $E(X^2) = \frac{1}{10}$ $Var(X) = \frac{3}{80}$

Calculamos $f_{2|1}(y|x)$, si $x \in (0,1)$:

$$f_{2|1}(y|x) = \frac{f(x,y)}{f_1(x)} = \begin{cases} \frac{3}{3(1-x)^2} = \frac{1}{(1-x)^2} & y \in (0, (1-x)^2) \\ 0 & y \notin (0, (1-x)^2) \end{cases}$$

Podemos calcular ahora $f_{2|1}(y|x=1/2)$:

$$f_{2|1}(y|1/2) = \begin{cases} 4 & y \in (0, \frac{1}{4}) \\ 0 & y \notin (0, \frac{1}{4}) \end{cases}$$

Para calcular $F\left(\frac{1}{4}, \frac{9}{16}\right)$ nos apoyamos en la figura para saber que basta con calcular el área del rectángulo y multiplicar por k:

$$F\left(\frac{1}{4}, \frac{9}{16}\right) = 3\frac{1}{4} \cdot \frac{9}{16} = \frac{3^3}{2^6}$$

Para $F\left(\frac{1}{2}, \frac{9}{16}\right) = F\left(\frac{1}{4}, \frac{9}{16}\right) + 3 \cdot Area\ T$, siendo T la intersección con C. Sabemos entonces que:

$$\int_{1/4}^{1/2} (1-x)^2 dx = \int_{1/4}^{1/2} (x^2 - 2x + 1) dx = \frac{x^3}{3} - x^2 + x \Big|_{1/4}^{1/2} = \frac{19}{2^6 3}$$
$$F\left(\frac{1}{2}, \frac{9}{16}\right) = \frac{3^3}{2^6} + 3\frac{19}{2^6 3} = \frac{23}{32}$$

Tenemos que calcular ahora la recta de regresión de Y respecto de X:

$$y - \mu_y = \frac{\sigma_{xy}}{\sigma_x^2} (x - \mu_x)$$

$$\mu_y = E(Y) = \int_0^1 y 3(1 - y^{1/2}) dy = 3 \int_0^1 (y - y^{3/2}) = \frac{3}{10}$$

$$E(XY) = \int_0^1 \int_0^{(1-x)^2} 3xy dy dx = 3 \int_0^1 x \left[\frac{y^2}{2} \right]_0^{(1-x)^2} d = \frac{3}{2} \int_0^1 x (1 - x)^4 dx =$$

$$= B(2, 5) = \frac{3}{2} \frac{\Gamma(2)\Gamma(5)}{\Gamma(7)} = \frac{3}{2} \frac{1!4!}{6!} = \frac{1}{20}$$

Recordemos que $\mu_X = E(X) = \frac{1}{4}$, entonces:

$$\sigma_{XY}Cov(X,Y) = \frac{1}{2^2 \cdot 5} - \frac{1}{2^2} \cdot \frac{3}{2 \cdot 5} = \frac{2-3}{2^3 \cdot 5} = -\frac{1}{2^3 \cdot 5}$$

Podemos expresar ya la recta de regresión (recordando que $\sigma_X = \frac{3}{80}$):

$$y - \frac{3}{10} = \frac{-1/(5 \cdot 2^3)}{3/(2^4 \cdot 5)} (x - \frac{1}{4})$$
$$y = -\frac{2}{3}x + \frac{7}{15}$$

Calculamos ahora $E(Y|X=x)=m_{2|1}(x)$:

$$E(Y|X=x) = \int y f_{2|1}(y|x) dy = \int_{0}^{(1-x)^{2}} y \frac{1}{(1-x)^{2}} dy =$$

$$= \frac{1}{(1-x)^{2}} \frac{y^{2}}{2} \Big|_{0}^{(1-x)^{2}} = \frac{1}{(1-x)^{2}} \frac{(1-x)^{4}}{2} = \frac{(1-x)^{2}}{2}$$

Ejercicio 2.

$$E(X) = 2$$
, $Var(X) = 3$ X $sim\'etrica$

$$\alpha_3 = E(X^3) = E((X - 2 + 2)^3) = E((X - 2)^3 + 3(X - 2)^2 + 3(X - 2)^2 + 2^3) =$$

$$= E((X - 2)^3) + 6E((X - 2)^2) + 12E(X - 2) + E(2^3) = 0 + 6Var(X) + 0 + 2^3 = 6 \cdot 3 + 8 = 26$$

Ejercicio 3. El número de de posibilidades totales es claramente $\binom{N}{n}$, la distribución de probabilidad es entonces:

$$P(X_1 = r_1, X_2 = r_2, X_3 = r_3) = \frac{\binom{n_1}{r_1} \binom{n_2}{r_2} \binom{n_3}{r_3}}{\binom{N}{n}}$$

Claramente necesitamos $n \le N$, $r_1 + r_2 + r_3 = n$

Calculamos ahora $\alpha_{(3)}$:

$$E(X_1^{(3)}) = E(X_1(X_1 - 1)(X_1 - 2)) = \sum_{r_1 + r_2 + r_3 = n} r_1(r_1 - 1)(r_1 - 2) \frac{\binom{n_1}{r_1}\binom{n_2}{r_2}\binom{n_3}{r_3}}{\binom{N}{n}}$$

Nos fijamos que:

$$r_1(r_1 - 1)(r_1 - 2) \binom{N_1}{r_1} = r_1(r_1 - 1)(r_1 - 2) \frac{N_1^{(r_1)}}{r_1(r_1 - 1)(r_1 - 2) \cdots 2 \cdot 1} = \frac{N_1^{(r_1)}}{(r_1 - 3)!} = N_1(N_1 - 1)(N_1 - 2) \frac{(N_1 - 3)^{(r_1 - 3)}}{(r_1 - 3)!} = N_1(N_1 - 1)(N_1 - 2) \binom{N_1 - 3}{r_1 - 3}$$

Entonces volviendo a la igualdad anterior:

$$P(X_1 = r_1) = \sum_{r_1 + r_2 + r_3 = n} N_1(N_1 - 1)(N_1 - 2) \frac{\binom{N_1 - 3}{r_1 - 3} \binom{N_2}{r_2} \binom{N_3}{r_3}}{\binom{N}{n}} = N_1(N_1 - 1)(N_1 - 2) \sum_{r_1 + r_2 + r_3 = n} \frac{\binom{N_1 - 3}{r_1 - 3} \binom{N_2}{r_2} \binom{N_3}{r_3}}{\binom{N}{n}} = N_1(N_1 - 1)(N_1 - 2) \frac{\binom{N_1 - 3}{n - 3}}{\binom{N}{n}} = N_1(N_1 - 1)(N_1 - 2) \frac{\binom{N_1 - 3}{n - 3}}{\binom{N}{n}} = N_1(N_1 - 1)(N_1 - 2) \frac{\binom{N_1 - 3}{n - 3}}{\binom{N_1}{n}} = N_1(N_1 - 1)(N_1 - 2) \frac{\binom{N_1 - 3}{n - 3}}{\binom{N_1 - 3}{n - 3}} = \frac{N_1(3)}{N(3)} n^{(3)}$$

Ejercicio 4.

Aparado b)

Para calcular las vvaa marginales solo tenemos que sumar los elementos de la misma fila o columna. Por ejemplo:

$$P(X = 0) = \frac{1}{3} + \frac{1}{6} + \frac{1}{9} = \frac{11}{18}$$

Obtenemos así:

$$P(X = 0) = \frac{11}{18}$$
 $P(X = 1) = \frac{5}{18}$ $P(X = 2) = \frac{2}{18}$
 $P(Y = 0) = \frac{11}{18}$ $P(Y = 1) = \frac{5}{18}$ $P(Y = 2) = \frac{2}{18}$

 $Tambi\'en\ podemos\ obtener\ E(X)=E(Y)=\frac{1}{2},\ Var(X), Var(Y)=\frac{17}{36}\ y\ Cov(X,Y)=-\frac{5}{36}.$

Entonces la recta de regresión de X sobre Y es:

$$Y - \mu_Y = \frac{\sigma_{XY}}{\sigma_X^2} (x - \mu_X)$$
$$y - \frac{1}{2} = \frac{-\frac{5}{36}}{\frac{17}{36}} \left(x - \frac{1}{2} \right)$$
$$y = -\frac{5}{17} x + \frac{11}{17}$$

Como las esperanzas y las varianzas son iguales, obtenemos que el cálculo de la recta de regresión de Y sobre X es igual:

$$x = -\frac{5}{17}y + \frac{11}{17}$$

Calcularemos ahora $Var(Y - X^*)$:

$$Var(Y-X^*) = \sigma_Y^2(1-\rho^2) = \frac{17}{36}\left(1 - \frac{25/36^2}{17^2/36}\right) = \frac{17}{36}\left(\frac{17^2 - 25}{17^2} = \frac{11}{3 \cdot 17}\right)$$

 $Para\ la\ varianza\ residual\ de\ X\ sobre\ Y,\ vemos\ que\ es\ igual\ porque\ coinciden\ sus\ esperanzas\ y\ sus\ varianzas.$

Relación 2

Ejercicio 1. Vemos en primer lugar cómo es el recinto del ejercicio:

$$\alpha_{n,m} = E(X^n Y^m) = \int x^n y^m \cdot \frac{1}{y} = \int_0^1 \int_0^y = x^n x^{m-1} dx dy =$$

$$= \int_0^1 y^{m-1} \left(\frac{x^{n+1}}{n+1} \right) \Big|_0^y dy = \frac{1}{n+1} \int_0^1 y^{m-1} y^{n+1} dy = \frac{1}{n+1} \frac{1}{m+n+1}$$

 $Con\ este\ resultado\ podemos\ obtener\ los\ valores:$

$$E(Y) = \frac{1}{2}$$
 $E(Y^3) = \frac{1}{3}$ $E(XY) = \frac{1}{6}$ $E(X) = \frac{1}{4}$

Entonces tenemos que $Var(Y) = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \ y \ Cov(X,Y) = \frac{1}{6} - \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{24}$

Para calcular la recta de regresión obtenemos primero:

$$\beta_{X/Y} = \frac{\sigma_{XY}}{\sigma_Y^2} = \frac{1/24}{1/12} = \frac{1}{2}$$

Y la recta de regresión que nos piden queda:

$$x - \frac{1}{4} = \frac{1}{2} \left(y - \frac{1}{2} \right)$$
$$x = \frac{1}{2} y$$

Calcularemos ahora la curva de regresión de X sobre Y:

$$x = m_{1|2}(y)$$
 $m_{1|2}(y) = E(X|Y = y) = \int x f_{1|2}(x|y) dx$

Entonces, para los valores de y para los que $f_2(y) > 0$ tendremos:

$$f_{1|2}(x|y) = \frac{f(x,y)}{f_2(y)}$$

Calcularemos ahora $f_2(y)$:

Si
$$y \in (0,1)$$
: $f_2(y) = \int f(x,y)dx = \int_0^y \frac{1}{y}dx = \frac{1}{y}x \Big|_0^1 = 1$

$$f_2(y) = I_{(0,1)}(y)$$

Volvemos ahora al cálculo de $f_{1|2}(x|y)$. Dado $y \in (0,1)$:

$$f_{1|2}(x|y) = \frac{1/y}{1} = \frac{1}{y}$$
 $x \in (0, y)$

$$f_{1|2}(x|y) = 0 \qquad x \not\in (0,y)$$

Podemos calcular ahora $m_{1|2}(y)$:

$$E(X|Y=y) = \int_{0}^{y} x \frac{1}{y} dx = \frac{1}{y} \frac{x^{2}}{2} \Big|_{0}^{y} = \frac{y}{2}$$

Entonces la curva de regresión es $x = \frac{y}{2}$. Notemos que es una recta, en este caso **necesariamente** coincidirá con la recta de regresión. Entonces, si hubiéramos calculado primero la curva de regresión, no tendríamos que calcular la recta porque sabemos que coincidiría.

Ejercicio 3. Sabemos que, para X, Y, Z tenemos:

$$f(x) = \begin{cases} 1 & x \in (0,1) \\ 0 & x \notin (0,1) \end{cases}$$

Entonces E(X) = E(Y) = E(Z) es:

$$\int_{0}^{1} x dx = \frac{x^{2}}{2} \bigg|_{0}^{1} = \frac{1}{2}$$

$$E(X^{2}) = E(Y^{2}) = E(Z^{2}) = \int_{0}^{1} x^{2} = \frac{s^{3}}{3} \Big|_{0}^{1} = \frac{1}{3}$$
$$Var(X) = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$

Entonces:

$$E(U) = a\frac{1}{2} + b\frac{1}{2} + c\frac{1}{2} = \frac{a+b+c}{2}$$

Como las variables son independientes:

$$Var(U) = Var(aX) + Var(bY) + Var(cZ) = (a^2 + b^2 + c^2) = \frac{1}{12}$$

Nos piden también los momentos de orden 3 y 4 respecto de la media. Utilizamos el subapartado de **Momentos de sumas**. Siguiendo un procedimiento como el de este subapartado llegamos a que solo necesitamos expresiones como $\mu_3(aX) = E\left(aX - \frac{a}{2}\right) = 0$ ya que estas vvaa son simétricas respecto de su media. En definitiva:

$$E((U - E(U))^3) = \mu_3(aX) + \mu_3(bY) + \mu_3(cZ) = a\mu_3(X) + b\mu_3(Y) + c\mu_3(Z) = 0$$

$$\mu_4(U) = \mu_4(aX) + \mu_4(bY) + \mu_4(cZ) + 6(\mu_2(aX)\mu_2(bY) + \mu_2(aX)\mu_2(cZ) + \mu_2(bY)\mu_2(cZ))$$

Vamos a hacer el cálculo para un n general de:

$$\mu_n(X) = E\left(\left(X - \frac{1}{2}\right)^2\right) = \int_0^1 \left(x - \frac{1}{2}\right)^n dx = \frac{(x - 1/2)^{n+1}}{n+1} \Big|_0^1 = \frac{(1/2)^{n+1}}{n+1} - \frac{(-1/2)^{n+1}}{n+1} = \frac{(-1/2)^{n+1}}{n$$

$$=\frac{1}{(n+1)2^{n+1}}(1+(-1)^n)$$

Luego:

$$\mu_4(X) = \frac{1}{5 \cdot 2^4}$$

$$\mu_2(X) = \frac{1}{12}$$
 (como ya habíamos calculado antes)

Volviendo ahora a $\mu_4(U)$:

$$\mu_4(U) = (a^4 + b^4 + c^4) \frac{1}{5 \cdot 2^4} + 6(a^2b^2 + a^2c^2 + b^2c^2) \frac{1}{3^22^4}$$

Calculamos ahora la función generatriz de momentos (recordemos que la función generatriz no está definida porque X,Y,Z toman valores no enteros). Usaremos la independencia de las vvaa:

$$E(e^{tU}) = E(e^{atX})E(e^{btY})E(e^{ctZ})$$

Tendremos que calcular la función generatriz de momentos de cada vvaa (son todas iguales):

$$E(e^{tX}) = \int_{0}^{1} e^{tx} dx = \frac{e^{tx}}{t} \Big|_{0}^{1} = \frac{e^{t} - 1}{t}$$

En el caso de aX (análogamente para bY, cZ):

$$g_{aX}(t) = E(e^{taX}) = \frac{e^{at} - 1}{at}$$

Entonces volviendo a la vvaa U:

$$g_U(t) = \frac{e^{at} - 1}{at} \cdot \frac{e^{bt} - 1}{bt} \cdot \frac{e^{ct} - 1}{ct}$$

La función característica de U será entonces:

$$\varphi_U(t) = \frac{(e^{iat} - 1)(e^{ibt} - 1)(e^{ict} - 1)}{i \cdot a \cdot b \cdot ct^3} = \frac{-i(e^{iat} - 1)(e^{ibt} - 1)(e^{ict} - 1)}{\cdot a \cdot b \cdot ct^3}$$

Ejercicio 5.

Apartado a)

$$\alpha(t) = \frac{1 + \cos(t) + \cos(2t)}{3}$$

Comprobemos que es función característica. Si conseguimos expresar α de la forma $\sum p_n e^{itx_n}$

 $(\sum p_n = 1)$, tendríamos que α es función característica de una vvaa discreta.

Usaremos que:

$$\cos(t) = \frac{1}{2} \left(e^{it} + e^{-it} \right)$$
$$\cos(2t) = \frac{1}{2} \left(e^{ixt} + e^{-ixt} \right)$$

Entonces nos queda:

$$\alpha(t) = \frac{1}{3}e^{0} + \frac{1}{3}\frac{1}{2}(e^{it} + e^{-it}) + \frac{1}{3}\frac{1}{2}(e^{2it} + e^{-2it}) =$$

$$= \frac{1}{3}e^{0} + \frac{1}{6}e^{it} + \frac{1}{6}e^{-it} + \frac{1}{6}e^{2it} + \frac{1}{6}e^{-2it}$$

Entonces todas las constantes que multiplican a exponenciales son no negativas y suman 1. Entonces α es la función característica de la vvaa que toma valores $\{0,1,-1,2,-2\}$ con probabilidades:

$$P(X = 0) = \frac{1}{3}$$
 $P(X = 1) = P(X = -1) = P(X = 2) = P(X = -2) = \frac{1}{6}$

Apartado b)

$$\alpha(t) = \frac{1}{1 + t^3}$$

Esta función no esta acotada en -1 por lo que no puede ser función característica.

Apartado c)

$$\alpha(t) = \frac{1}{1 + t^4}$$

Recordemos la relación entre la existencia de los momentos de orden n y la existencia de la derivada de orden n en el origen.

$$\alpha'(t) = -(1+t^4)^{-2}4t^3$$
 $\alpha'(0) = 0$
 $\alpha''(t) = \dots$ $\alpha''(0) = 0$

Entonces si existe X, E(X) = 0 $E(X^2) = i^2 \alpha''(0) = 0$, entonces la varianza sería nula y la función sería constante, pero la función característica de una distribución uniforme no es α