Complete the Square

6. Prove the following for all real numbers x, y such that $x \ge y$,

$$2x^{2}+y^{2} \ge 2xy+x+y-1$$

$$\Leftrightarrow \chi^{2}+\chi^{2}+y^{2} \ge 2xy+x+y-1$$

$$\Leftrightarrow \chi^{2}-2xy+y^{2}+\chi^{2}-x-y+1 \ge 0$$

$$\Leftrightarrow (x-y)^{a}+\chi^{2}-x-y+1 \ge 0$$

$$\Leftrightarrow (x-y)^{2}+\chi^{2}-x-x+x-y+1 \ge 0$$

$$\Leftrightarrow (x-y)^{2}+\chi^{2}-2x+1+x-y \ge 0$$

$$\Leftrightarrow (x-y)^{2}+\chi^{2}-2x+1+x-y \ge 0$$

$$\Leftrightarrow (x-y)^{2}+(x-1)^{2}+(x-y) \ge 0$$
We know $(x-y)^{2} \ge 0$,
 $(x-1)^{2} \ge 0$
and since $(x-y)^{2} \ge 0$
So sum of nonnegatives is nonnegative.

2

Induction

Remember Fibonacci Numbers?

$$F_n = \begin{cases} 0 & \text{if } n = 0; \\ 1 & \text{if } n = 1; \\ F_{n-1} + F_{n-2} & \text{if } n > 1. \end{cases}$$

Now, prove for all natural number n,

$$\sum_{i=0}^{n} iF_{i} = nF_{n+2} - F_{n+3} + 2$$
Let $P(n) = \sum_{i=0}^{n} (F_{i} = nF_{n+2} - F_{n+3} + 2^{n})$
Buse $P(1)$ true b/c $(1)(F_{1}) = 1 = (1)(F_{3}) - F_{4} + 2$

$$= 2 - 3 + 2 = 1 \vee$$
1.H. Assume $P(k)$ true for some $k \in \mathbb{N}$.

1.S. By 1H
$$\sum_{i=0}^{n} (F_{i} = KF_{n+2} - F_{n+3} + 2)$$

$$\Rightarrow \sum_{i=0}^{n} (F_{i} + (K+1)(F_{n+1}) = KF_{n+2} - F_{n+3} + 2 + (K+1)(F_{n+1})$$

$$= k(F_{n+3} - F_{n+4}) - (F_{n+4} - F_{n+2}) + 2 + kF_{n+1} + F_{n+1}$$

$$= kF_{n+3} - F_{n+4} + F_{n+2} + F_{n+4} + 2$$

$$= kF_{n+3} - F_{n+4} + F_{n+4} + 2$$

$$= (k+1)(F_{n+3}) - F_{n+4} + 2$$

Function

1. Prove that the following function $f: \mathbb{R} \to \mathbb{R}$ is bijective.

Claim
$$g: \mathbb{R} \to \mathbb{R}$$
 by $g(x) = X^3$ is bijective.

INT Let $x, y \in \mathbb{R}$. SURT Let $b \in \mathbb{R}$.

Assume $g(x) = g(y)$ Then take $\sqrt[3]{5} = \sqrt[3]{5}$ by $g(\sqrt[3]{5}) = \sqrt[3]{5}$ by $g(\sqrt[3]{5}) = \sqrt[3]{5}$

Claim h:
$$R \rightarrow R$$
 by $h(x) = ax + b$ for real numbers

a, b is bivective.

Where $a \neq 0$

Assume $h(x) = h(y)$

Take $c = b \in R$

$$ax + b = ay + b$$

$$\Rightarrow x = y$$

$$h(c = b) = a(c = b) + b = c$$

Thus
$$h'(x) = X + 1$$
, $h''(x) = 3X + 5$ is bijective,
So $f(x) = g(h''(g(h'(x))))$
Since f is a composition of bijections,
 f is bijective,

Counting 2 Weys

2. Prove the following by counting 2 ways.

$$\sum_{i=0}^{n} \binom{n}{i} \binom{\infty}{99} = 100$$

Let S = the set of ways to assign grudes
(from 0 to 100) to n concepts students.

Clearly, |S| = 101 , so RHS counts S.

Let Si = the set of ways to assign grade (from 0 to 100) to n concept students such that n-i students got perfect.

To form Si, 1) choose n-i students who got perfect $\binom{n}{n-i} = \binom{n}{i}$

2) For remaining i students, assign
grade 0-99

→ 100

Clearly, Sommer Sn partition S.

Thu |S| =
$$\sum_{i=0}^{n} |S_i| = \sum_{i=0}^{n} {n \choose i} (100^i)$$
 So LHS SV

Counting Probability

Has three cards of the same rank.

Includes all four suits.

Includes three different ranks total 4

example ...

STEPS

1) Choose a rank. $\binom{13}{1}$

- 2) Choose 3 suits. (4)
- 3) Choose 2 other ranks. (12)
- 4) Of 42 ways to choose suits for the last two cards, 3° of them do not include unused suit,

So
$$(7)$$
 ways (13) (4) (12) (7)

1 total # poker hand

Expectation

■. There are yquestions on a concepts Suppose that you had no idea how to solve any of them. So your strategy for the exam was as follows:

- 1. Choose a problem at random.
- 2. Stare at it for 1 minute. Then repeat step 1.

What's the expected number of minutes until you will stare at all the questions?

Then
$$X = \sum_{i=1}^{8} X_i$$

5.
$$E[X] = \sum_{i=1}^{8} E[X_i] = \sum_{i=1}^{8} \frac{8}{c}$$

$$= \frac{8}{7} + \frac{8}{2} + \frac{8}{3} + \frac{8}{4} + \frac{8}{5} + \frac{8}{6} + \frac{8}{7} + \frac{8}{8}$$

$$= 8 + 4 + \frac{8}{3} + \frac{2}{17} + \frac{8}{5} + \frac{4}{3} + \frac{8}{7} + 1 = 197 \frac{96}{35}$$