



TR-0503(EMG-1168)













TR-0503(EME-1168)



TR-0503-1 /EMG-1169-4/ Miantenna alkatrészjegyzéke

| Szám | Megnevezés         | Értékek | Toler. | Uzemi<br>fesz.<br>V | Terhel-<br>hetőség<br>W |
|------|--------------------|---------|--------|---------------------|-------------------------|
|      | 111/-              | 45 ohm  | 0,5    |                     | 0,25                    |
|      | Rétegellenállás    | 5 "     | 0,5    |                     | 0,25                    |
| R 2. | п                  | 320 "   | 0,5    |                     | 0,25                    |
| R 3. |                    | 75 "    | 0,5    |                     | 0,25                    |
|      | Csillámkondenzátor | 120 pF  | 5      | 250                 |                         |
|      | H CSIIIdanonaan    | 390 "   | 5      | 250                 |                         |
| 0 3. |                    | 200 "   | 5      | 250                 |                         |

L 1. Tekeros

1167. aprints Pk.Kiskapusi László

|              |       |        | L 1.  | L     | 100000  |
|--------------|-------|--------|-------|-------|---------|
| 12.          | RY    |        | L 2.  |       | -       |
| 3 3.         | SW WS |        | L 3.  |       | -       |
| 3 4a         |       |        | L 4.  |       |         |
| 3.45         |       |        | Liel. |       |         |
| 3 5a         |       |        | Ile2. |       | 0010    |
| 3 55         |       |        | 1105. |       | 100000  |
| 3 50         |       |        | 12el. |       |         |
| 3 6.         | Sm .  |        | 1202. |       |         |
| 3 7.         |       |        | 1203. |       |         |
| 8.           | PoS   |        | 1204. |       |         |
| Slol.        | Sm    |        | 1205. |       | 7       |
| 31.02.       |       |        | L206. |       |         |
| 3103.        |       |        | 1207. |       |         |
| 3104.        |       |        | 1208. |       |         |
| 3105.        |       |        | L209. |       |         |
| 31.06.       |       |        | 1210. |       |         |
| 3107.        |       |        | 1211. |       |         |
| 3108.        |       |        | L212. |       |         |
| X 1.<br>X 2. | IL    |        |       |       | 1       |
| 1.           | 2     |        | 1.    | CoSo  | BNC     |
| 2.           | Tx    |        | 2.    |       |         |
|              |       |        | 3.    |       | -       |
| 11.          | M     |        | 4.    | So    |         |
| 12.          | м     |        | 5.    |       |         |
|              |       |        | 6.    | CoSo  | BNC     |
| 9 1.         | 7     | 160 ml | 9.    | PoSel |         |
| 8 2.         | 7     | 1 A    | 10.   | PoSo  | 3 75 50 |
| B 3.         | y     | 1.4    | 11.   | SoE   |         |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 7                                                                                            | 75                                                                                                                                                                                           | ٧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                       |        | 7      | %                                                                  | A                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 039.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00-at  | 2 n                                                                                          | 2                                                                                                                                                                                            | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C111.                                                                                                                                 | CE-fa  | 500/4  |                                                                    | 70/80                                                                                                        |
| C40.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 2 *                                                                                          | 2                                                                                                                                                                                            | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0112.                                                                                                                                 | CMP-ch | 100 n  | 10                                                                 | 400                                                                                                          |
| 041.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OK-le  | 10 "                                                                                         | +50-20                                                                                                                                                                                       | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0113.                                                                                                                                 |        | 100 "  | 10                                                                 | 400                                                                                                          |
| 542.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CMP-FA | 1,4                                                                                          | 10                                                                                                                                                                                           | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0114.                                                                                                                                 | CK-lac | 2 *    | +50-20                                                             | 500                                                                                                          |
| 043.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 100 B                                                                                        | 10                                                                                                                                                                                           | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C115.                                                                                                                                 | CE-fb  | 100/1  | -                                                                  | 6                                                                                                            |
| C44.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CK-lao | 2 "                                                                                          | +50-20                                                                                                                                                                                       | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0116.                                                                                                                                 |        | 100 "  |                                                                    | 6                                                                                                            |
| C45.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CE-fh  | 20,11                                                                                        |                                                                                                                                                                                              | 25/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0117.                                                                                                                                 | CK-lo  | lo n   | +50-20                                                             | 500                                                                                                          |
| C46.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OFFICE | loo n                                                                                        | 10                                                                                                                                                                                           | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C118.                                                                                                                                 | CK-le  | 10 "   | +50-20                                                             | 500                                                                                                          |
| 047.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CPK    | 100 "                                                                                        | 10                                                                                                                                                                                           | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C201.                                                                                                                                 | OTL-1  | 2-11 p | 100                                                                | 500                                                                                                          |
| C48.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CK-lac | 2 "                                                                                          | +50-20                                                                                                                                                                                       | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0202.                                                                                                                                 |        | 2-11 " |                                                                    | 500                                                                                                          |
| 049.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CC-at  | 220 p                                                                                        | 5                                                                                                                                                                                            | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0203.                                                                                                                                 | -      | 2-11 " |                                                                    | 500                                                                                                          |
| Clol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CMP-fb | 4.7 n                                                                                        | 20                                                                                                                                                                                           | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C204.                                                                                                                                 |        | 2-11 " |                                                                    | 500                                                                                                          |
| Clo2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 4,7 "                                                                                        | 20                                                                                                                                                                                           | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C205.                                                                                                                                 |        | 2-11 " |                                                                    | 500                                                                                                          |
| Clo3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CK-lac | 510 p                                                                                        | 10                                                                                                                                                                                           | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2o6.                                                                                                                                 | - 1    | 2-11 " |                                                                    | 500                                                                                                          |
| 0104.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 510 "                                                                                        | 10                                                                                                                                                                                           | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0207.                                                                                                                                 | OTK-t  | 4 "    | 30 p                                                               | 500                                                                                                          |
| Clo5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CE-fb  | 100,4                                                                                        | -                                                                                                                                                                                            | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C208.                                                                                                                                 |        | 4 "    | 30 "                                                               | 500                                                                                                          |
| Clo6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 100 "                                                                                        |                                                                                                                                                                                              | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C209.                                                                                                                                 |        | 4 "    | 30 "                                                               | 500                                                                                                          |
| 0107.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | op-th  | 47 n                                                                                         | 20                                                                                                                                                                                           | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C210.                                                                                                                                 |        | 4 "    | 30 "                                                               | 500                                                                                                          |
| Clo8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CE-fh  | 50,4                                                                                         |                                                                                                                                                                                              | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0211.                                                                                                                                 | - 1    | 4 *    | 30 "                                                               | 500                                                                                                          |
| 0109.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP-fb  | 47 B                                                                                         | 20                                                                                                                                                                                           | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C212.                                                                                                                                 |        | 4 "    | 30 "                                                               | 500                                                                                                          |
| Cllo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 47 "                                                                                         | 20                                                                                                                                                                                           | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C213.                                                                                                                                 | CE-1f  | 27 "   | 5 .                                                                | 500                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -      |                                                                                              | V -@                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                       | ) +    | 7      | -                                                                  |                                                                                                              |
| V 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | V-tp                                                                                         |                                                                                                                                                                                              | 11.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GeD1.                                                                                                                                 |        | GeD    | CAI                                                                |                                                                                                              |
| A 5"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | VS                                                                                           |                                                                                                                                                                                              | 542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GeD2.                                                                                                                                 |        |        | OAL                                                                |                                                                                                              |
| ¥ 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | V-tt                                                                                         | Tec.                                                                                                                                                                                         | C88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                       |        |        |                                                                    |                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GeD3.                                                                                                                                 |        |        |                                                                    | 160                                                                                                          |
| ¥ 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | Y-p                                                                                          | 60                                                                                                                                                                                           | IL6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GeD4.                                                                                                                                 |        |        | OAL                                                                | 161                                                                                                          |
| ¥ 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                                                              | 60                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                       |        | :      |                                                                    | 161                                                                                                          |
| ¥ 4.<br>¥ 5.<br>¥ 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | V-p<br>V-p<br>V-p                                                                            | 60<br>60<br>FI                                                                                                                                                                               | 11.6<br>11.6<br>181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GeD4.                                                                                                                                 |        |        | OAL                                                                | 161<br>161                                                                                                   |
| 7 4.<br>7 5.<br>7 6.<br>7 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | Y-p<br>Y-p<br>Y-p<br>Y-tt                                                                    | 60<br>60<br>FI                                                                                                                                                                               | 71.6<br>71.6<br>781<br>7088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GeD4.<br>GeD5.<br>GeD6.                                                                                                               |        | :      | OA1<br>OA1                                                         | 161<br>161<br>161                                                                                            |
| ¥ 4.<br>¥ 5.<br>¥ 6.<br>¥ 7.<br>¥ 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | Y-p<br>Y-p<br>Y-tt<br>Y-tp                                                                   | 60<br>60<br>E1<br>P0                                                                                                                                                                         | 71.6<br>71.6<br>7.81<br>7.088<br>71.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GeD4.<br>GeD5.<br>GeD6.<br>SiDlol                                                                                                     |        | SiReo  | OAL<br>OAL<br>OAL                                                  | 161<br>161<br>161                                                                                            |
| ¥ 4.<br>¥ 5.<br>¥ 6.<br>¥ 7.<br>¥ 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | Y-p<br>Y-p<br>Y-p<br>Y-tt<br>Y-tp<br>Y-tp                                                    | 60<br>60<br>E1<br>P0                                                                                                                                                                         | 71.6<br>71.6<br>781<br>7088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GeD4.<br>GeD5.<br>GeD6.                                                                                                               |        | SiReo  | OA1<br>OA1                                                         | 161<br>161<br>161                                                                                            |
| ¥ 4.<br>¥ 5.<br>¥ 6.<br>¥ 7.<br>¥ 8.<br>¥ 9.<br>¥10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | Y-p<br>Y-p<br>Y-tt<br>Y-tp<br>Y-tp<br>Y-pp                                                   | EC E                                                                                                                                                     | 71.6<br>71.6<br>72.8<br>72.88<br>71.84<br>71.84<br>70.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GeD4.<br>GeD5.<br>GeD6.<br>SiDlo1<br>SiDlo2<br>SiDlo3                                                                                 |        | SiReo  | OAL<br>OAL<br>OAL<br>SIE<br>SIE<br>SIE                             | 161<br>161<br>161<br>161<br>24<br>K4                                                                         |
| V 4.<br>V 5.<br>V 6.<br>V 7.<br>V 8.<br>V 9.<br>V10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | Y-p<br>Y-p<br>Y-tt<br>Y-tp<br>Y-tp<br>Y-pp<br>Y-pp                                           | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                           | 71.6<br>71.6<br>71.6<br>70.88<br>71.84<br>71.84<br>71.85<br>70.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GeDA.<br>GeD5.<br>GeD6.<br>SiDlo1<br>SiDlo2<br>SiDlo3<br>SiDlo4                                                                       |        | SiReo  | CA1<br>CA1<br>CA1<br>SIE<br>SIE<br>SIE<br>SIE                      | 161<br>161<br>161<br>161<br>£4<br>K4<br>K4                                                                   |
| V 4.<br>V 5.<br>V 6.<br>V 7.<br>V 8.<br>V 9.<br>V10.<br>V11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | Y-p<br>Y-p<br>Y-tt<br>Y-tp<br>Y-tp<br>Y-pp<br>Y-pp<br>Y-p                                    | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                           | 71.6<br>71.6<br>72.8<br>72.88<br>71.84<br>71.84<br>70.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GeD4.<br>GeD5.<br>GeD6.<br>SiDlo1<br>SiDlo2<br>SiDlo3                                                                                 |        | S1Rec  | OAL<br>OAL<br>OAL<br>SIE<br>SIE<br>SIE                             | 161<br>161<br>161<br>161<br>£4<br>K4<br>K4                                                                   |
| 7 4.<br>7 5.<br>7 6.<br>7 7.<br>7 8.<br>7 9.<br>V10.<br>V11.<br>V12.<br>V13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | Y-p<br>Y-p<br>Y-tt<br>Y-tp<br>Y-tp<br>Y-pp<br>Y-pp<br>Y-p                                    | 51<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                             | 01.6<br>01.6<br>00.88<br>01.84<br>01.84<br>00.85<br>00.85<br>00.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GeD4.<br>GeD5.<br>GeD6.<br>SiDicl<br>SiDics<br>SiDics<br>SiDics<br>SiDics<br>SiDics<br>SiDics                                         |        | S1Rec  | OA1 OA1 OA1 SIE SIE SIE SIE SIE SIE SIE                            | 161<br>161<br>161<br>161<br>161<br>164<br>164<br>164<br>165<br>186                                           |
| 7 4.<br>7 5.<br>7 6.<br>7 7.<br>7 8.<br>7 9.<br>710.<br>711.<br>712.<br>713.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | V-p<br>V-p<br>V-tt<br>V-tp<br>V-tp<br>V-pp<br>V-pp<br>V-p<br>V-p                             | 66<br>67<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78                                                                                                       | 71.6<br>71.6<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GeDA.<br>GeD5.<br>GeD6.<br>SiDio2<br>SiDio3<br>SiDio4<br>SiDio5<br>SiDio6<br>SiDio7                                                   |        | S1Rec  | OA1 OA1 OA1 SIE SIE SIE SIE SIE SIE SIE SIE SIE                    | 161<br>161<br>161<br>161<br>161<br>164<br>84<br>84<br>86<br>86                                               |
| V 4.<br>V 5.<br>V 6.<br>V 7.<br>V 8.<br>V 9.<br>V10.<br>V11.<br>V12.<br>V13.<br>V14.<br>V15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | V-p<br>V-p<br>V-tt<br>V-tp<br>V-tp<br>V-pp<br>V-pp<br>V-p<br>V-p<br>V-p<br>V-p<br>V-p        | 100 EX                                                                                                                                                                                       | 71.6<br>71.6<br>71.6<br>70.88<br>70.88<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89<br>70.89                                                                                               | GeD4.<br>GeD5.<br>GeD6.<br>SiDic2<br>SiDic3<br>SiDic4<br>SiDic5<br>SiDic6<br>SiDic7<br>SiDic8                                         |        | Sizeo  | OAL<br>OAL<br>OAL<br>SIE<br>SIE<br>SIE<br>SIE<br>SIE<br>SIE<br>SIE | 161<br>161<br>161<br>161<br>161<br>164<br>84<br>84<br>86<br>86<br>86                                         |
| V 4.<br>V 5.<br>V 6.<br>V 7.<br>V 8.<br>V 9.<br>V10.<br>V12.<br>V13.<br>V14.<br>V15.<br>V16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | Y-p<br>Y-p<br>Y-tt<br>Y-tp<br>Y-tp<br>Y-pp<br>Y-pp<br>Y-p<br>Y-p<br>Y-p                      | 21<br>22<br>23<br>24<br>24<br>25<br>26<br>26<br>26<br>26<br>27<br>26<br>26<br>27<br>26<br>27<br>26<br>27<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27 | 71.6<br>71.6<br>71.6<br>71.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8<br>70.8 | GeDA.<br>GeD5.<br>GeD6.<br>SiDlo2<br>SiDlo3<br>SiDlo5<br>SiDlo5<br>SiDlo6<br>SiDlo7<br>SiDlo8<br>SiDlo8<br>SiDlo8                     |        | Sizeo  | OAL OAL OAL OAL SIE            | 161<br>161<br>161<br>161<br>161<br>164<br>84<br>84<br>85<br>86<br>86<br>86<br>83                             |
| V 4.<br>V 5.<br>V 6.<br>V 7.<br>V 8.<br>V 9.<br>V10.<br>V12.<br>V13.<br>V14.<br>V15.<br>V16.<br>V17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | Y-p<br>Y-p<br>Y-tt<br>Y-tp<br>Y-tp<br>Y-pp<br>Y-p<br>Y-p<br>Y-p<br>Y-p<br>Y-p<br>Y-tp<br>Y-t | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                                              | 71.6 71.6 71.6 71.6 71.6 71.6 71.6 71.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GeD4.<br>GeD5.<br>GeD6.<br>SiDle1<br>SiDle2<br>SiDle3<br>SiDle4<br>SiDle5<br>SiDle6<br>SiDle6<br>SiDle8<br>SiDle9<br>SiDle8<br>SiDle9 |        | Sileo  | OAL OAL OAL SIE                | 161<br>161<br>161<br>24<br>84<br>84<br>86<br>86<br>86<br>86<br>88                                            |
| 7 4.<br>7 5.<br>7 6.<br>7 7.<br>7 8.<br>7 9.<br>7 9.<br>7 10.<br>7 12.<br>7 13.<br>7 14.<br>7 15.<br>7 16.<br>7 17.<br>7 18.<br>7 |        | Y-p<br>Y-p<br>Y-tt<br>Y-tt<br>Y-tp<br>Y-pp<br>Y-p<br>Y-p<br>Y-p<br>Y-p<br>Y-p<br>Y-tp<br>Y-t | 66 66 66 66 66 66 66 66 66 66 66 66 66                                                                                                                                                       | 016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   1016   101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GeD4. GeD5. GeD6. SiDle1 SiDle2 SiDle3 SiDle4 SiDle5 SiDle6 SiDle7 SiDle8 SiDle9 SiDle9 SiDle8 SiDle8 SiDle8 SiDle8                   |        | Sizeo  | OAL OAL OAL SIE                | 161<br>161<br>161<br>161<br>162<br>164<br>164<br>164<br>165<br>166<br>166<br>163<br>163<br>163<br>163<br>163 |
| V 4.<br>V 5.<br>V 6.<br>V 7.<br>V 8.<br>V 9.<br>V10.<br>V12.<br>V13.<br>V14.<br>V15.<br>V16.<br>V17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | Y-p<br>Y-p<br>Y-tt<br>Y-tp<br>Y-tp<br>Y-pp<br>Y-p<br>Y-p<br>Y-p<br>Y-p<br>Y-p<br>Y-tp<br>Y-t | 66 66 66 66 66 66 66 66 66 66 66 66 66                                                                                                                                                       | 71.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17.6   17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GeD4.<br>GeD5.<br>GeD6.<br>SiDle1<br>SiDle2<br>SiDle3<br>SiDle4<br>SiDle5<br>SiDle6<br>SiDle6<br>SiDle8<br>SiDle9<br>SiDle8<br>SiDle9 |        | Sileo  | OAL OAL OAL SIE                | 161<br>161<br>161<br>161<br>162<br>164<br>164<br>164<br>165<br>166<br>166<br>163<br>163<br>163<br>163<br>163 |

| No   |        | 7      | 5      | V   | No   |        |        | *      | V     |
|------|--------|--------|--------|-----|------|--------|--------|--------|-------|
| 15.  | CK-lac | 300 p  | 10     | 500 | C31. | CK-lo  | 5 n    | +50-20 | 500   |
| 16.  | CK-1c  | lo n   | +50-20 | 500 | 032. | 00-et  | 82 p   | 5      | 250   |
| 17.  | **     | 26 p   | 5      | 500 | C33. | CTK-t  | 10-40" |        | 250   |
| 18.  | CK-lac | 2      | +50-20 | 500 | 034. | CK-10  | 5 n    | +50-20 | 500   |
| 19.  | CMP-fh | 100 n  | 10     | 400 | C35. | CMP-fb | 47 "   | 10     | 400   |
| 20.  |        | 100 "  | 10     | 400 | 036. | CK-19  | 10 "   | +50-20 | 500   |
| 21.  | CC-st  | 1 "    | 5      | 500 | 037. | CE OF  | 100 10 | 10     | 400   |
| 22.  | "      | 2,2 *  | 5      | 500 | 038. | CE-lo  | 10.A.  | +50-20 | 500   |
| 23.  |        | 10 =   | 5      | 250 | 039. | 00-st  | 2 "    | 2      | 500   |
| 24.  |        | 300 p  | 2      | 250 | 040. |        | 2 "    | 2      | 500   |
| 25.  |        | 750 "  | 5      | 250 | C41. | CK-10  | 10 "   | +50-20 | 500   |
| t26. |        | 150 "  | 5      | 250 | C42. | CWP-fb | 1,4    | 10     | 160   |
| 127. | CMP-fh | 100 n  | 10.    | 400 | 043. |        | 100 n  | 10     | 400   |
| t28. | CK-lac | 2 *    | +50-20 | 500 | C44. | CK-1sc | 2 "    | +50-20 | 500   |
| 029. | CC-st  | 100 p  | 5      | 250 | C45. | CE-fb  | 20 /11 |        | 25/30 |
| 130. | CTK-t  | 10-40° |        | 250 | C46. | CMP-fb | loo n  | 10     | 400   |
|      |        |        |        |     |      |        |        |        |       |

|                                                                                                                       |                                                                                                        | Ω                                                                                                                     | 15                                                                                                         | Y                                                                                |                                                                                                              |                                                                                                    | Ω                                                                                                                                                                                                                      | 75                                                                                            |                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| R130.                                                                                                                 | RF                                                                                                     | 790                                                                                                                   | 0.                                                                                                         | 0,25                                                                             | 3202                                                                                                         | RF                                                                                                 | 220                                                                                                                                                                                                                    | 5                                                                                             | 1                                                                                                                               |
| R131.                                                                                                                 | RF                                                                                                     | 53,27                                                                                                                 | 0.                                                                                                         |                                                                                  | 3203                                                                                                         |                                                                                                    | 2,2                                                                                                                                                                                                                    |                                                                                               |                                                                                                                                 |
| R132.                                                                                                                 | RP                                                                                                     | 96,25                                                                                                                 | 0.                                                                                                         |                                                                                  | R204                                                                                                         |                                                                                                    | 39                                                                                                                                                                                                                     | 2                                                                                             | 0,                                                                                                                              |
| R133.                                                                                                                 | 82                                                                                                     | 71,15                                                                                                                 | 0,                                                                                                         |                                                                                  | 3205                                                                                                         |                                                                                                    | 39                                                                                                                                                                                                                     | 2                                                                                             | 0,                                                                                                                              |
| 2134.                                                                                                                 | RF                                                                                                     | 96,25                                                                                                                 | 0,                                                                                                         |                                                                                  | R206                                                                                                         |                                                                                                    | 1.5                                                                                                                                                                                                                    |                                                                                               | 0,                                                                                                                              |
| R135.                                                                                                                 | R7                                                                                                     | 61,11                                                                                                                 | 0,5                                                                                                        |                                                                                  | R207                                                                                                         |                                                                                                    | 15                                                                                                                                                                                                                     | 20                                                                                            |                                                                                                                                 |
| R136.                                                                                                                 | 32                                                                                                     | 247.5                                                                                                                 | 0,5                                                                                                        |                                                                                  | B268                                                                                                         |                                                                                                    | 15                                                                                                                                                                                                                     | 20                                                                                            |                                                                                                                                 |
| R137.                                                                                                                 | 27                                                                                                     | 61,11                                                                                                                 | 0,5                                                                                                        |                                                                                  | R209                                                                                                         |                                                                                                    | 1,8                                                                                                                                                                                                                    |                                                                                               |                                                                                                                                 |
| R138.                                                                                                                 | 27                                                                                                     | 53,27                                                                                                                 | 0,5                                                                                                        |                                                                                  | R210                                                                                                         |                                                                                                    | 56                                                                                                                                                                                                                     | 10                                                                                            |                                                                                                                                 |
| R139.                                                                                                                 | 2.9                                                                                                    | 790                                                                                                                   | 0,5                                                                                                        |                                                                                  | B211                                                                                                         |                                                                                                    | 330                                                                                                                                                                                                                    | 10                                                                                            |                                                                                                                                 |
| R140.                                                                                                                 | 27                                                                                                     | 53,27                                                                                                                 | 0,5                                                                                                        |                                                                                  | R212                                                                                                         |                                                                                                    | 56                                                                                                                                                                                                                     | 10                                                                                            |                                                                                                                                 |
| R201.                                                                                                                 | RF                                                                                                     | 220                                                                                                                   | 5                                                                                                          | 1                                                                                |                                                                                                              |                                                                                                    | 1                                                                                                                                                                                                                      | 100                                                                                           | 0,                                                                                                                              |
|                                                                                                                       |                                                                                                        |                                                                                                                       |                                                                                                            | D -                                                                              | 4                                                                                                            |                                                                                                    |                                                                                                                                                                                                                        |                                                                                               | TANK DE                                                                                                                         |
|                                                                                                                       |                                                                                                        | 1                                                                                                                     | -                                                                                                          | •                                                                                |                                                                                                              | _                                                                                                  |                                                                                                                                                                                                                        |                                                                                               | -                                                                                                                               |
| P 1.                                                                                                                  | PR                                                                                                     | 50                                                                                                                    |                                                                                                            | 0,1                                                                              | P 7.                                                                                                         | PE                                                                                                 | 10                                                                                                                                                                                                                     |                                                                                               | 1                                                                                                                               |
| P 2.                                                                                                                  | PH                                                                                                     | 5                                                                                                                     |                                                                                                            | 1                                                                                | P 8.                                                                                                         | PR                                                                                                 | 50                                                                                                                                                                                                                     |                                                                                               | 0,1                                                                                                                             |
| P 3.                                                                                                                  | PR                                                                                                     | 100                                                                                                                   |                                                                                                            | 0,5                                                                              | P 9.                                                                                                         | Pff                                                                                                | 10                                                                                                                                                                                                                     |                                                                                               | 1                                                                                                                               |
| P 4.                                                                                                                  | PR                                                                                                     | 100                                                                                                                   |                                                                                                            | -0,1                                                                             | Flo.                                                                                                         | PR                                                                                                 | 100                                                                                                                                                                                                                    |                                                                                               | 0,2                                                                                                                             |
| P 5.                                                                                                                  | 7H<br>7R                                                                                               | 1                                                                                                                     |                                                                                                            | 0,7                                                                              | P11.                                                                                                         | PR                                                                                                 | 100                                                                                                                                                                                                                    |                                                                                               | 0,2                                                                                                                             |
| P to                                                                                                                  | 220                                                                                                    | 1                                                                                                                     | 20                                                                                                         | 0,5                                                                              | P12.                                                                                                         | 13                                                                                                 | 33                                                                                                                                                                                                                     | " 20                                                                                          | 2                                                                                                                               |
|                                                                                                                       |                                                                                                        |                                                                                                                       |                                                                                                            | C                                                                                | +                                                                                                            |                                                                                                    |                                                                                                                                                                                                                        |                                                                                               |                                                                                                                                 |
|                                                                                                                       |                                                                                                        | 2                                                                                                                     | %                                                                                                          | V                                                                                |                                                                                                              | -                                                                                                  | 7                                                                                                                                                                                                                      | 15                                                                                            | V                                                                                                                               |
|                                                                                                                       |                                                                                                        |                                                                                                                       | -                                                                                                          |                                                                                  |                                                                                                              |                                                                                                    | 1                                                                                                                                                                                                                      | -                                                                                             |                                                                                                                                 |
| 01.                                                                                                                   | CE-10                                                                                                  | lo n                                                                                                                  | +50-20                                                                                                     | 500                                                                              | C19.                                                                                                         | CMP-ch                                                                                             | loo n                                                                                                                                                                                                                  |                                                                                               |                                                                                                                                 |
| 0 2.                                                                                                                  |                                                                                                        |                                                                                                                       |                                                                                                            | 500<br>500                                                                       | C19.                                                                                                         |                                                                                                    |                                                                                                                                                                                                                        | 10                                                                                            | 400                                                                                                                             |
| 0 2.                                                                                                                  | cur-m                                                                                                  | lo n                                                                                                                  | +50-20                                                                                                     |                                                                                  |                                                                                                              | CMP-ch                                                                                             | loo n                                                                                                                                                                                                                  | 10                                                                                            |                                                                                                                                 |
| 02.                                                                                                                   | CK-10                                                                                                  | 10 n                                                                                                                  | +50=20<br>+50=20                                                                                           | 500                                                                              | 020.                                                                                                         | CMP-ch                                                                                             | loo n<br>loo "                                                                                                                                                                                                         | 10<br>10                                                                                      | 400                                                                                                                             |
| 02.                                                                                                                   | cur-m                                                                                                  | 10 n<br>10 "<br>100 "                                                                                                 | +50-20<br>+50-20<br>10                                                                                     | 500<br>400                                                                       | 020.                                                                                                         | CMP-fh<br>CO-et                                                                                    | loo m                                                                                                                                                                                                                  | 10<br>10<br>5                                                                                 | 400<br>400<br>500                                                                                                               |
| 0 2.                                                                                                                  | CK-10                                                                                                  | lo n<br>lo "<br>lo "<br>lo "                                                                                          | +50=20<br>+50=20<br>10<br>+50=20                                                                           | 500<br>400<br>500                                                                | 020.                                                                                                         | CMP-fh<br>CO-et                                                                                    | loo m<br>loo "<br>1 "<br>2,2 "                                                                                                                                                                                         | 10<br>10<br>5<br>5                                                                            | 400<br>400<br>500<br>500                                                                                                        |
| 0 2.<br>0 3.<br>0 4.<br>0 5.<br>0 68                                                                                  | CMP-fh<br>CM-lo                                                                                        | lo n<br>lo "<br>lo "<br>lo "<br>420 p                                                                                 | +50-20<br>+50-20<br>10<br>+50-20<br>+50-20                                                                 | 500<br>400<br>500<br>500                                                         | 020.<br>021.<br>022.<br>023.                                                                                 | CMP-th<br>CC-et                                                                                    | loo n<br>loo "<br>1 "<br>2,2 "<br>lo "                                                                                                                                                                                 | 10<br>10<br>5<br>5                                                                            | 400<br>400<br>500<br>500<br>250                                                                                                 |
| 0 2.<br>0 3.<br>0 4.<br>0 5.<br>0 68<br>0 69                                                                          | CE-IO CVL CUP-IN                                                                                       | lo n<br>lo "<br>lo "<br>lo "<br>420 p<br>loc n                                                                        | +50=20<br>+50=20<br>10<br>+50=20<br>+50=20                                                                 | 500<br>400<br>500<br>500                                                         | 020.<br>021.<br>022.<br>023.<br>024.                                                                         | CMP-ch<br>CO-et                                                                                    | loo n<br>loo "<br>1 "<br>2,2 "<br>lo "                                                                                                                                                                                 | 10<br>10<br>5<br>5<br>5<br>5                                                                  | 400<br>400<br>500<br>500<br>250<br>250                                                                                          |
| 0 2.<br>0 3.<br>0 4.<br>0 5.<br>0 68<br>0 69                                                                          | CMP-fh<br>CM-lo                                                                                        | lo n<br>lo "<br>lo "<br>lo "<br>420 p                                                                                 | +50-20<br>+50-20<br>10<br>+50-20<br>+50-20                                                                 | 500<br>400<br>500<br>500                                                         | 020.<br>021.<br>022.<br>023.<br>024.<br>025.<br>026.                                                         | CMP-Ch                                                                                             | 100 m<br>100 =<br>1 =<br>2,2 =<br>10 =<br>220 p<br>750 =                                                                                                                                                               | 10<br>10<br>5<br>5<br>5<br>5<br>5                                                             | 400<br>400<br>500<br>500<br>250<br>250<br>250                                                                                   |
| 0 2.<br>0 3.<br>0 4.<br>0 5.<br>0 6s<br>0 60<br>0 7.<br>0 8s                                                          | CMP-fh<br>CE-10<br>CVL<br>CMP-fh                                                                       | 10 n<br>10 "<br>100 "<br>10 "<br>420 P<br>100 n<br>20+20/4                                                            | +50-20<br>+50-20<br>10<br>+50-20<br>+50-20<br>1                                                            | 500<br>400<br>500<br>500                                                         | 020.<br>021.<br>022.<br>023.<br>024.<br>025.<br>026.<br>027.                                                 | CMP-rh<br>CC-at<br>CMP-rh<br>CK-lsc                                                                | 100 m<br>100 m<br>1 m<br>2,2 m<br>10 m<br>220 p<br>750 m<br>150 m                                                                                                                                                      | 10<br>10<br>5<br>5<br>5<br>5<br>5                                                             | 400<br>400<br>500<br>500<br>250<br>250<br>250<br>250                                                                            |
| 0 2.<br>0 3.<br>0 4.<br>0 5.<br>0 60<br>0 7.<br>0 80<br>0 90                                                          | CMP-Ch<br>CMP-Ch<br>CMP-Ch<br>CMP-Ch<br>CMP-Ch                                                         | 10 n<br>10 "<br>10 "<br>10 "<br>10 "<br>420 p<br>100 n<br>20+20/4                                                     | +50-20<br>+50-20<br>10<br>+50-20<br>+50-20<br>1<br>10                                                      | 500<br>400<br>500<br>500<br>500                                                  | 020.<br>021.<br>022.<br>023.<br>024.<br>025.<br>026.<br>027.<br>028.                                         | CMP-ch<br>CCMP-ch<br>CK-lsc<br>CC-at                                                               | 100 m<br>100 m<br>2,2 m<br>200 p<br>750 m<br>150 m<br>2 m<br>100 p                                                                                                                                                     | 10<br>10<br>5<br>5<br>5<br>5<br>5<br>5                                                        | 400<br>400<br>500<br>500<br>250<br>250<br>250<br>250<br>400                                                                     |
| 0 2.<br>0 3.<br>0 4.<br>0 5.<br>0 66<br>0 60<br>0 7.<br>0 86<br>0 96<br>0 96                                          | CMP-fh<br>CE-10<br>CVL<br>CMP-fh                                                                       | 10 n<br>10 "<br>10 "<br>10 "<br>420 p<br>100 n<br>20+20/4<br>420 p<br>100 n                                           | +50-20<br>+50-20<br>10<br>+50-20<br>1<br>10                                                                | 500<br>400<br>500<br>500<br>500<br>250<br>350                                    | 020.<br>021.<br>022.<br>023.<br>024.<br>025.<br>026.<br>027.<br>028.<br>029.                                 | CMP-ch<br>CCMP-ch<br>CK-1sc<br>CC-et                                                               | 100 m<br>100 "<br>2,2 "<br>200 p<br>750 "<br>150 "<br>100 m<br>2 "<br>100 p<br>10-40"                                                                                                                                  | 10<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 400<br>400<br>500<br>500<br>250<br>250<br>250<br>250<br>400<br>500                                                              |
| 0 2.<br>0 3.<br>0 4.<br>0 5.<br>0 60<br>0 7.<br>0 80<br>0 90<br>0 90<br>0 10.                                         | CMP-fh<br>CX-10<br>CVL<br>CMP-fh<br>CWL<br>CMP-fh                                                      | 10 n<br>10 "<br>100 "<br>10 "<br>420 p<br>100 n<br>20+20/4<br>420 p<br>100 n<br>100 "                                 | +50-20<br>+50-20<br>10<br>+50-20<br>+50-20<br>1<br>10                                                      | 500<br>400<br>500<br>500<br>500<br>250<br>350<br>400<br>400                      | 020.<br>021.<br>022.<br>023.<br>024.<br>025.<br>026.<br>027.<br>028.<br>029.<br>030.                         | CMP-ch<br>CC-at<br>CMP-ch<br>CC-st<br>CC-st<br>CX-t<br>CK-le                                       | 100 m<br>100 m<br>1 = 2,2 m<br>10 m<br>220 p<br>750 m<br>150 m<br>100 m<br>2 m<br>100 p<br>10-40 m<br>5 m                                                                                                              | 10<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 400<br>400<br>500<br>500<br>250<br>250<br>250<br>250<br>400<br>500<br>250                                                       |
| 0 2.<br>0 3.<br>0 4.<br>0 5.<br>0 66<br>0 65<br>0 7.<br>0 88<br>0 96<br>0 96<br>0 10.                                 | CMP-fh<br>CE-10<br>CVL<br>CMP-fh<br>CVL<br>CMP-fh                                                      | 10 n<br>10 "<br>10 "<br>10 "<br>10 "<br>420 P<br>100 n<br>20+20/4<br>420 P<br>100 n<br>100 "                          | +50-20<br>+50-20<br>10<br>+50-20<br>+50-20<br>1<br>10                                                      | 500<br>400<br>500<br>500<br>250<br>350<br>400<br>400<br>400                      | 020.<br>021.<br>022.<br>023.<br>024.<br>025.<br>026.<br>027.<br>028.<br>030.<br>031.                         | CMP-ch<br>CC-et<br>CMP-ch<br>CK-lsc<br>CC-et<br>CC-et<br>CK-lc<br>CC-et                            | loo n<br>loo =<br>1 =<br>2,2 =<br>10 =<br>220 p<br>750 =<br>150 =<br>100 n<br>2 =<br>100 p<br>10-40 =<br>5 n<br>82 p                                                                                                   | 10<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 400<br>400<br>500<br>500<br>250<br>250<br>250<br>250<br>400<br>500<br>250<br>250<br>250                                         |
| 0 2.<br>0 3.<br>0 4.<br>0 5.<br>0 66<br>0 60<br>0 7.<br>0 86<br>0 94<br>0 94<br>0 10.<br>0 11.                        | CMP-fh CE-fh CE-fh CVL CMP-fh CVL CMP-fh                                                               | 10 m<br>10 "<br>10 "<br>10 "<br>420 p<br>100 n<br>20+20/u<br>420 p<br>100 m<br>100 "                                  | +50-20<br>+50-20<br>10<br>+50-20<br>+50-20<br>1<br>10<br>10<br>10<br>+50-20                                | 500<br>400<br>500<br>500<br>500<br>250<br>350<br>400<br>400<br>500               | 020.<br>021.<br>022.<br>023.<br>024.<br>025.<br>026.<br>027.<br>028.<br>030.<br>031.<br>032.                 | CMP-ch<br>CC-st<br>CK-lsc<br>CC-st<br>CC-st<br>CC-st<br>CC-st<br>CC-st                             | loo n<br>loo n<br>1 =<br>2,2 =<br>10 =<br>220 p<br>750 =<br>150 n<br>2 =<br>100 p<br>10-40 =<br>5 n<br>82 p<br>10-40 =                                                                                                 | 10<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 400<br>400<br>500<br>500<br>250<br>250<br>250<br>250<br>400<br>500<br>250<br>250<br>500                                         |
| 0 2.<br>0 3.<br>0 5.<br>0 60<br>0 60<br>0 7.<br>0 80<br>0 90<br>0 90<br>0 11.<br>012.                                 | CMP-fh CX-lo CX-fh CMP-fh CMP-fh CMF-fh CMF-fh CMF-lo CMF-lo                                           | 10 n<br>10 "<br>100 "<br>10 "<br>10 "<br>420 p<br>100 n<br>20+20/4<br>420 p<br>100 n<br>100 "<br>100 "                | +50-20<br>+50-20<br>10<br>+50-20<br>+50-20<br>1<br>10<br>10<br>10<br>10<br>+50-20<br>+50-20<br>+50-20      | 500<br>400<br>500<br>500<br>250<br>350<br>400<br>400<br>400<br>500<br>500        | 020.<br>021.<br>022.<br>023.<br>025.<br>026.<br>027.<br>028.<br>029.<br>030.<br>031.<br>032.                 | CMP-Ch<br>CC-et<br>CK-lsc<br>CC-st<br>CK-lc<br>CC-et<br>CK-lc<br>CC-et<br>CK-lc<br>CK-lc           | loo n<br>loo =<br>1 =<br>2,2 =<br>lo =<br>220 p<br>750 =<br>loo n<br>2 =<br>loo p<br>lo-40 =<br>5 n<br>82 p<br>le-io =                                                                                                 | 10<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 400<br>400<br>500<br>500<br>250<br>250<br>250<br>250<br>400<br>500<br>250<br>250<br>250<br>250<br>250                           |
| 0 2.<br>0 3.<br>0 5.<br>0 6a<br>0 6b<br>0 7.<br>0 8a<br>0 9a<br>0 9b<br>0 01.<br>011.                                 | CMP-fh CX-lo CX-fh CMP-fh CMP-fh CMP-fh CMP-fh CM-loc CM-loc CM-loc CM-loc                             | 10 n<br>10 "<br>10 "<br>10 "<br>420 p<br>100 n<br>20+20 u<br>420 p<br>100 n<br>100 "<br>100 "<br>2 "<br>100 "         | +50-20<br>+50-20<br>10<br>+50-20<br>+50-20<br>1<br>10<br>10<br>10<br>10<br>+50-20<br>10                    | 500<br>400<br>500<br>500<br>500<br>350<br>400<br>400<br>400<br>500<br>500<br>500 | 026.<br>021.<br>022.<br>023.<br>024.<br>026.<br>026.<br>027.<br>028.<br>039.<br>031.<br>033.<br>034.<br>035. | CMP-ch<br>CO-et<br>CMP-ch<br>CK-lsc<br>CC-et<br>CK-lc<br>CC-et<br>CK-lc<br>CK-lc<br>CK-lc<br>CK-lc | loo n<br>loo n<br>1 =<br>2,2 =<br>10 =<br>220 p<br>750 =<br>150 n<br>2 =<br>100 p<br>10-40 =<br>5 n<br>82 p<br>10-40 =                                                                                                 | 10<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 400<br>400<br>500<br>500<br>250<br>250<br>250<br>250<br>400<br>500<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>2 |
| 0 2.<br>0 3.<br>0 4.<br>0 5.<br>0 6a<br>0 6b<br>0 7.<br>0 8a<br>0 9b<br>0 10.<br>011.<br>012.<br>013.<br>014.<br>015. | CMP-fh CZ-1c CVL CWF-fh CWL CWF-fh CWL CWC-fh CWC-lac CK-lac CK-lac CK-lac CK-lac CK-lac CK-lac CK-lac | lo n<br>lo "<br>lo "<br>lo "<br>420 p<br>loo n<br>20+20/w<br>420 p<br>loo n<br>loo "<br>2 "<br>loo "<br>300 p<br>lo n | +50-20<br>+50-20<br>10<br>+50-20<br>+50-20<br>1<br>10<br>1<br>10<br>10<br>+50-20<br>+50-20<br>10<br>+50-20 | 500<br>400<br>500<br>500<br>250<br>350<br>400<br>400<br>500<br>500<br>500        | 026.<br>021.<br>022.<br>023.<br>024.<br>026.<br>026.<br>029.<br>030.<br>031.<br>033.<br>034.<br>035.         | CMP-fh CCMP-fh CCMP-fh CCM-fh CCM-fh CCM-fh CCM-t CCM-t CCM-fh CCM-fh CCM-fh CCM-fh CCM-fh         | 100 n<br>100 n<br>1 = 2,2 n<br>100 n<br>220 p<br>750 n<br>150 n<br>2 n<br>100 p<br>100 p | 10<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 400<br>400<br>500<br>500<br>250<br>250<br>250<br>400<br>500<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>2        |
| 0 2.<br>0 3.<br>0 4.<br>0 5.<br>0 6s<br>0 60<br>0 7.<br>0 8s                                                          | CMP-fh CX-lo CX-fh CMP-fh CMP-fh CMP-fh CMP-fh CM-loc CM-loc CM-loc CM-loc                             | 10 n<br>10 "<br>10 "<br>10 "<br>420 p<br>100 n<br>20+20 u<br>420 p<br>100 n<br>100 "<br>100 "<br>2 "<br>100 "         | +50-20<br>+50-20<br>10<br>+50-20<br>+50-20<br>1<br>10<br>10<br>10<br>10<br>+50-20<br>10                    | 500<br>400<br>500<br>500<br>500<br>350<br>400<br>400<br>400<br>500<br>500<br>500 | 026.<br>021.<br>022.<br>023.<br>024.<br>026.<br>026.<br>027.<br>028.<br>039.<br>031.<br>033.<br>034.<br>035. | CMP-ch<br>CO-et<br>CMP-ch<br>CK-lsc<br>CC-et<br>CK-lc<br>CC-et<br>CK-lc<br>CK-lc<br>CK-lc<br>CK-lc | loo n<br>loo =<br>1 =<br>2,2 =<br>lo =<br>220 p<br>750 =<br>150 n<br>2 =<br>100 n<br>2 =<br>100 p<br>5 n<br>82 p<br>lo-40"<br>5 n<br>82 p                                                                              | 10<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 400<br>400<br>500<br>550<br>250<br>250<br>250<br>250<br>400<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>2 |

|      | 1   | _                | _   | R    |       | _   |       |       |      |
|------|-----|------------------|-----|------|-------|-----|-------|-------|------|
|      |     | Ω                | *   | W    |       |     | Ω     | %     |      |
| H 1. | RK  | 390 k            | 10  | 1    | R47.  | RK  | Bo k  | 1     | 0,5  |
| R 2. | RK  | 150 "            | 10  | 0,5  | R48.  | RK  | 1 "   | 10    | 0,1  |
| R 3. | RB  | 56 "             | 10  | 0,5  | R49.  | RK  | 68o " | 10    | 0,5  |
| R 4. | RB  | 56 "             | 10  | 0,5  | R50.  | RB  | 82 "  | 10    | 0,5  |
| 25.  | RB  | 56 "             | 10  | 0,5  | R51.  | RB  | 150 " | 10    | 0,5  |
| R 6. | RX  | 100 "            | 10  | 0,1  | R52.  | RB  | 680   | 10    | 0,2  |
| R 7. | RK  | 270              | lo  | 0,1  | R53.  | RB  | 1 k   | 5     | 1    |
| R 8. | RK  | 270              | 10  | 0,1  |       | -   |       | 1 180 |      |
| R 9. | RZ  | 3,3 k            | 10  | 7,5  | R55.  | RB  | 22 "  | 5     | 2    |
| Rio. | RB  | 33 "             | 10  | 2    | R56.  | RB  | 22 "  | 5     | 2    |
| R11. | RK  | 220              | 10  | 0,1  | R57.  | RK  | 680   | 1     | 0,5  |
| R12. | RX  | 220              | 10  | 0,1  | R58.  | RB  | 47 k  | 10    | 2    |
| R13. | RB  | 39               | 5   | 0,25 | R60.  | RB  | 33 "  | 5     | 2    |
|      | RB  | 39               | 5   | 0,25 | R61.  | RK  | 25 "  | 1     | 0,5  |
| B15. | RB  | 100              | 5   | 1    | R62.  | RK  | 1 "   | 10    | 0,1  |
| R16. | RK  | 50               | 1   | 0,25 | R63.  | RK  | 100   | 10    | 0,1  |
| R18. | RE  | 47 k             | 10  | 0,25 | R64.  | RK  | 1 k   | 5     | 0,5  |
| R19. | RB  |                  | 1   | 5    | R65.  | RK  | 150 " | 5     | 0,5  |
| R20. | RB  | 150 "            | 1   | 2    | Rlol. | RZ  | 5     | 10    | 7.5  |
| R21. | RK  |                  | 10  | 1    | Rlo2. | RFo | 820 k | 5     | 0,5  |
| R22. | RK  | 180 "            | lo  | 0,5  | Rlo3. | RK  | 1 "   | 10    | 0,1  |
| 23.  | RE  | 200              | 10  | 0,5  | R104. | RB  | 22    | 20    | 0,5  |
| 124. | RB  | 400              | 10  | 0,5  | R105. | RFo | 620 k | 5     | 0,5  |
| 125. | RB  |                  | 10  | 2    | R106. | RFo | 390 " | 5     | 0,5  |
| 26.  | RB  |                  | 5   | 0,5  | Rlo7. | RK  | 1 "   | 10    | 0,1  |
| 227. | RB  | 33 "             | 1   | 2    | Rlo8. | RB  | 10 "  | 10    | 0,5  |
| 28.  | RK* |                  | 5   | 0,5  | Rlo9. | RB  | 55    | 20    | 0,5  |
| 129. | PK  | 33 "             | 1   | 0,5  | Rllo. | RFo | 68 k  | 5     | 1    |
| 30.  | RK  | 68 "             | 5   | 0,5  | R111. | RK  | 1 "   | 10    | 0,1  |
| 31.  | RB  | 6,46 "           | 1   | 0,5  | R112. | RFo | 1 11  | 5     | 0,5  |
| 32.  | RX  | 1,5 "            | 10  | 1    | R113. | RFo | 150 k | 5     | 0,5  |
| 33.  | RK  | 1 11             | 10  | 0,5  | R114. | RB  | 22    | 50    | 0,5  |
| 34.  | RK  | 33 k             | 10  | 0,5  | R115. | RFo | 390 k | 5     | 0,5  |
| 35.  | RK  | 82 "             | 10  | 0,5  | R116. | RFo | 270 " | 5     | 0,5  |
| 36.  | RK  | 2,2 M            | 10  | 0,5  | 2117. | RFo | 47 "  | 5     | 0,5  |
| 37.  | RE  | 470 k            | 10  | 0,5  | R118. | RFo | 100 " | 5     | 0,5  |
| 39.  | RB  | 33 k             | 10  | 0,5  | R119. | RFo | 820 " | 5     | 0,5  |
| 10.  | RK  | 350 "            | 10  |      | R120. | RFo | 47 "  | 5     | 0,5  |
| 1.   | RK  | 200 "            | 100 | 0,5  | R121. | RFo | 100 " | 5     | 0,5  |
| 2.   | RK  | 80 "             | 1 1 | 0,5  | R122. | RFo | 47 "  | 5     | 0,5  |
| - 1  | 1   | MODEL CONTRACTOR |     | 0,5  | R124. | RB  | 680   | 10    | 2    |
| 3.   | RK  | 1 "              | 10  | 0,1  | R125. | RB  | 18    | 10    | 2    |
| 4.   | RK  | 1,5 "            | 10  | 0,5  | R127. | RF  | 53,27 | 0,5   | 0,25 |
| 5.   | RK  | 56 "             | 10  | 0,5  | R128. | RF  | 790   | 0,5   | 0,25 |
| 6.   | RK  | 200 "            | 1   | 0,5  | R129. | RF  | 26,63 | 0,5   | 0,25 |

# ALKATRESZJEGYZÉK

# Az alkatrészjegyzék betűjeleinek magyarázata

| Jel            | Kivitel                                                                                                 | Jel        | Kivitel                                               |
|----------------|---------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------|
|                | ELLENÁLLÁSOK                                                                                            | R          | -                                                     |
| RX<br>RB<br>RE | Kristályos szénréteg<br>ellenállás<br>Bórkarbon réteg ellenállás<br>Zománc bevonatu huzal<br>ellenállás | RF<br>RFo  | Pénréteg ellenállás<br>Pémoxid réteg ellenállás       |
|                | VÁLTOZTATHATÓ ELLE                                                                                      | NÁLLÁSOK P | <b>₩</b>                                              |
| PE<br>PE       | Humal potencióméter<br>Réteg potencióméter                                                              | PRB        | Beállitható réteg<br>potencióméter                    |
|                | KONDENZÁTOR                                                                                             | ok C       | +                                                     |
| OMP-EN         | Pénezett papirkondenzátor<br>fémházas, hengeralaku                                                      | CC-mt      | Csillám kondenzátor, műanyagba<br>préselt, téglaslaku |
| OK-1c          | Kerámia kondenzátor.                                                                                    | CTL-1      | Lég trimmer kondenzátor<br>lemezes                    |
|                | lakkozott, csőalaku                                                                                     | CTK-t      | Kerámia trimmer kondenzátor<br>tárosa                 |
| OB-EN          | Blektrolit kondenzátor<br>fémházas, hengeralaku                                                         | CLV        | Forgókondenzátor                                      |
|                | V - 🖨                                                                                                   | D          | +                                                     |
| T-tt           | Kettős trióda                                                                                           | I          | Fotoizzó                                              |
| Y-p            | Pentóda                                                                                                 | GeD        | Germánium dióda                                       |
| V-tp           | Trióda-pentóda                                                                                          | SiRec      | Szilioium egyenirányitó                               |
|                | zgrés                                                                                                   | ADATOK     |                                                       |
| IL             | Kvarokristály                                                                                           | T          | Hálózati transzformátor                               |
| HY             | Relé                                                                                                    | Tx         | Kisfrekvenciás transaformátor                         |
| 3              | Jelzőlámpa                                                                                              | L          | Tekeros                                               |
| M              | Mutatos muszer                                                                                          | PoSel      | Hélőzati feszültségválasztó dugó                      |
| SW             | Fekezatkapcsoló                                                                                         | PoSo       | Hélőzati csatlakozó aljzat                            |
| Se y           | Mikrokaposoló<br>Ovegosöves biztositó                                                                   | So SoE     | Egysarku csatlskozó aljzat                            |
|                |                                                                                                         |            | Főldelő csatlakozó                                    |

Minden mérőkészülék - a megbinhatóság és a műsnaki adatokban előirt határértékeken belüli nagyobb pontosság érdekében - gondos egyedi méréssel és beszabályozással készül.

szül. Ennek következtében előfordulhat, hogy a készülékek a mellékelt alkatrészjegyzéktől eltérő értékű alkatelemeket is tartalmannak.

1168.

tenciométerrel /P7 potenciométert követő potenciométer, lásd a 3. ábrát/ állitsunk be 0 V feszültséget az Orivohm II. legérzékenyebb állásánál. A P9 potenciométer kissé elviszi a P7 potenciométer által beállitott szintet, ezért a beállitást a két szabályozószerv változtatott állitásával kell elvégezni. Helyes beállitás esetén a "MODULATION SELECTOR" /S4/ kapcsolót átkapcsolva "EXT.-AC" állásba, a kimenőszint nem változik.

# 6.9 "VOLTS LEVEL" /M1/ müszer beállitása

Ellenőrizzük a "VOLTS LEVEL" /M1/ müszer nullállását, a készülék kikapcsolt állapotában. Csatlakoztassunk RF feszültségmérőt - 1 V kimenőszintnél - az 50 ohm-mal lezárt RF "OUTPUT" /1/ hüvelyre.

Változtatva a frekvenciát 50 kHz és 60 Mhz között tartsuk a külső RF-szintmérőt 0,9 V álláson és olvassuk le a "VOLTS LEVEL" /Ml/ müszer minimális és maximális állását. Határozzuk meg a két állás számtani közepét, majd álljunk egy olyan pontra, ahol a számtani középnek megfelelő értékre tér ki a "VOLTS LEVEL" /Ml/ müszer, majd ennél az állásnál állitsuk a "VOLTS LEVEL" /Ml/ müszert a P4 potenciométer segitségével 0,9 V kitérésre. /P4 potenciométer a modulációs szerelvénylap tetején lévő 5 potenciométer közül az első /lásd a 3.ábrát/.

# 6.10 Csőcsere

A V7, V9, Vlo, VI1, VI2, VI3 és Vl6 csövek cseréje utánállitás nélkül elvégezhető.

A VI, V2 és V3 csövek cseréje esetén a 6.5 pontban leirt utánállitás végzendő el.

A V4, V5, V6 és V8 csövek cseréje esetén a 6.8 pontban leirt beállitás végzendő el.

A VI5, VI7 és VI8 csövek cseréjénél a 6.1 pontban leirt ellenőrző mérés és - szükség esetén - beállitás végzendő el. legárzákenyebb állásba.

A P3 csavarhuzú-úllitásu potencionéterrel álljumk be usy, hogy az oszcilloszkópon a jel éppen eltünjók. Ennek elvégzése után a MANDEY (55) kapcsolót 19-65 MER sávra állitva a kimenőfeszültség nem haladhatja meg a 30 mV órtászt.

6.7 "PERCENT MODULATION" /M2/ muszer beallitasa.

Alljunk I Mnz frekvenciáre. Csatlakozzunk I V kimen5szintnől eszcílloszkópra. Kapesoljuk a "MOUTLATION SZEDTOK 95% kapesoló "INT. "Aoo (2" čliágba. Allitsunk be az oszcílloszkópon 50 % modulációt. /A maximális és minimális jel viszonya 5:1/. Allitsuk a "PENCENT MOUTLATION" 'Mz/ misszer mutatóját "50 %" vonásza. A beállitást a PS potenciométer segitségérel végeszük. /A PS potenciométer a moulációs szerelvémylap tetejón lévő 5 potenciométer bzüll a mánodik az előlap felől számolva, lánd a 3.4brát/.

## 6.8 Maximális vivőhullám beállitás és modulációs null-állitás.

Forgassuk am "ATTENUATOR VERNIER" /FE/ potencionStert teljesen jobbra. Gestlakozunk az R "OUTFUT" /1/ hivelyre magyfrekvenciós zeintefével. Ällitenk am "MITENUATOR" (55/ kapesoldt "l v" állásba. Gestlakozzunk a "MOUDLATION INFUT-OUTFUT" /2/ csatlakozzunk a "MOUDLATION INFUT-OUTFUT" /2/ csatlakozzunk a "HOUTLATION INFUT-OUTFUT" /2/ csatlakozzunk a "HOUTLATION INFUT-OUTFUT" /2/ csatlakozzunk a

Esposofjuk a "MODULATION SEEDCTOR" /S9/ kapcaslót "EXT.DU" állásba. Forgassuk teljesen jobbra a "MODULATION
AMPÉRTUDE" /Fs/ potenciométert. A készülőket véglébangolva 50 kHz - 65 MHz-4g, jegyezülk fel a kinenő E?-ezintet.
Aljunk a minsálís kimenő B?-ezintet potra. Állítauk be
a P? potenciométerrel 1,02 V kimenő E?-ezintet. /A P? potenciométer a modulációs szerel ványlapon lóv5 5 potenciométer közül a megredik, lásd a 3. ábrát./ Majá a P9 po-

A C35 trimmer segitségével állitsunk be looc kHz-t. A frekvenciánsk /digitális frekvenciamérővel mérve/ az slábbi értékek között kell lennie;

looo kHz 99.990 - loo.olo looo kHz 999.900 - l,000.loo

Osócsere esetén ajánlatos ellenőrző mérést végrehajtani.

# 6.4 RF oszcillátor és RF erősitő behangolása

Est a mivoletet cssk akkor végezzük, ha határozott jelét tapsztaljuk annak, hogy az RF oszcillátor frokvenciája türésen kivül esik. Az RF oszcillátor frokvenciájank ballitását l v vagy emmől kinebb kimenőszintmál végezzük. A sáv eleján /alacsonyabb frekvencia/ vasmagal, a sáv végén /magasabb frekvencia/ trimmerrel végezzük a sáv végén /magasabb frekvencia/ trimmerrel végezzük a behangolást. Az RF erősítő utánállitását ugy végezhetjük, hogy bontjuk az RF elősítő afankírát, majd drammóró csatlakoztatásával zárjuk /30 má állásban/. A sív alső végén vasmagal, felső végén pedig kondenzátorral állítsunk be áram minimunt. A kondenzátor állítására használt csavarhuzó végére huzzunk szigetelő mianyagcsövet, hogy a csavarhuzó végáre huzzunk szigetelő mianyagcsövet, hogy a csavarhuzó végáretelő mianyagcsövet, hogy a csavarhuzó végáretelő mianyagcsövet, hogy a csavarhuzó végáretelő mia

# 6.5 Maximális oszcillátor-áram beállitása

Allitauk a RANDE /S5/ kapcaslit a 19-65MHz sávra. Bontauk az Ro ellemáliás árankörét, majd zárjak má mérő-vel /5o má állánban/. Forgassuk a skálatárcsát a legnagyobb áramu helyre, majd a Pl csavarhozó-állitánu potenciométerrel /3.ábre/ állitsunk be 3o má andááramot.

# 6.6 Vivőhullám zérusra állitása

Csatlakozzunk - 1 MHz frekvencia állásnál - oszcilloszkópra, csavarjuk az "ATTENUATOR VERNIER" /P2/ poterciométert teljesen balra. Kapcsoljuk az oszcilloszkópot

## 6. SERVICE UTASITÁS

# 6.1 Stabilizált tápegység

A készülék tápegységei rendkivül stabilak, ezért csak ritkán jádnyelmk beszabályozást. A tápegységek szabályozátókizökben - vagy alső hibakeresési lépésként - mérendők, de a szükségtelen utánállitás kerülendő.
Mérjük meg a tápegység feszültségeit, a két teszültség értéke: -200 V ± 1 % 65 00 V ± 1 % Amennyhen eltérnak a megadott értéktől, ugy a Plo /+300 V/ 111. a Pll /-200V/potensiométerekkel utánállithatjuk. Ezek a potenciométerek a kidobozolt készültéken a T transsformátortől balra eső panel oldalán találhatók /3.ábra/. A zugófeszültség max. értéke egyik feszültségnél sem haladhatja meg a lo mV effektiv értéket.

A fenti müveletet cső és egyéb alkatrészek cseréje esetén feltétlenül el kell vésezni.

#### 6.2 Hangfrekvenciás generátor

A "BANDE" /55/ kapcsoldt allttauk 550-1800 kHz sávra. Ålttauk a "MODULATION SILEGTOR" /54/ kapcsoldt "INT. -400 ofs" állásba. Cestlakozunk hangfrekvenciás cesfolkmérdvel a hangfrekvenciás transaformátor /TZ/ 54 kapcsolóra menő leágazására és álltaunk be ezen a ponton - P5 potenciométer segitsőgővel - 3,2 V fezzültséget. Á P5 potenciométer a modulációs zacrelványlap tetején 1675 5 potenciométer közül a közégső, lámá a 3,4mátf.

#### 6.3 Kristályhitelesitő

állitsuk a "CRYSTAL CALIBRATOR" /S3/ kapcsolót "loo kc/s" állásba. Csatlakoztassunk elektronikus számlálót a V9 cső anódjára /5/.

állitauk be C3o trimmerrel a frekvenciát loo Hz-re. Majd kapcsoljuk át sz S3 kapcsolót "looo kc/s"-ra.

| Y            |                                 | 1            | 2             | 3            | 4             | 5              | 6             | 7          | 8            | 9            | 6     |
|--------------|---------------------------------|--------------|---------------|--------------|---------------|----------------|---------------|------------|--------------|--------------|-------|
| V1<br>PCL84  |                                 | +991         | +2951         | +looV        | +5,5V         | +205V          | +110          | 0 7        |              |              | 1     |
| V2<br>85A2   |                                 | +295V        | +2101         |              | +21oV         | +2951          |               | +21oV      | -            | -            |       |
| V3<br>POCSS  |                                 | +28eV        | +100V         | +lleV        | 0 V           | +71            | +28eV         | +looV      | +1107        | -            |       |
| 74<br>6016   | DC<br>AC                        | +112V<br>2V  | +looV         | +2951        | 41,7          | ₹/<br>+48¥     | +295V<br>7,8V | +lloV      | +2951        | +looV        |       |
| V5<br>6015   | DC<br>AC                        | +1127        | +looV         | +295V        | 35,5          | W/,78          | +295V<br>7,8V | +lloV      | +2957        | +looV        |       |
| 76<br>PL81   |                                 |              | -loV-<br>-25V | 0 4          | +14           | 5 V/<br>+35,5V | 0 4           | 100        | +lloV        | 0 4          | +lloV |
| Y7<br>POC88  |                                 | +295V        | +8oV          | +837         | +7N           | *147           | +295V         | +1457      | +15eV        | -            |       |
|              | U <sub>k1</sub> =0 V<br>P2=0°   | 0 4          | +15eV         | +3,97        | +35,5V<br>/15 |                | +loV          | +3,97      | +3,17        | +83V         |       |
| V8<br>PCL84  | Uki=1 V<br>P2=270°              | +3,3V        | +145V         | +4,57        | +35,51        |                | +50V          | +÷,5V      | OV           | +83V         |       |
|              | U <sub>k1</sub> =3 V<br>P2=270° | 0 -<br>+3,5V | +150V         | +4,17        | +35,57        | +20,57         | +86V          | ++,17      | 0 -<br>+3,4V | +837         |       |
| 79           | 33 = DC<br>lookinac             | -46V<br>33V  | +90V<br>0,55V | 0 7          | ~15           | ٧              | +235V<br>33V  | 0 7        | -55V<br>41V  | +115V<br>34V |       |
| V9<br>PCL84  | 83 = DC<br>1 MHs AC             | -62¥<br>37¥  | +185V<br>0,2V | 0 4          | w15           | ٧              | +155V<br>37V  | 0 A<br>0 A | -24V<br>16V  | +13oV<br>1oV |       |
| Vio<br>ECC85 | DC<br>AC                        | +300V        | 0 Y<br>2,8V   | +3,87        | ~ 6,3         | v              | +14oV         |            | 0 V          |              |       |
| V11<br>E0085 | DC<br>AG                        | +16oV<br>4V  | 0 V<br>7,5V   | +2 Y<br>7,27 | ~ 6,3         | ٧              | +295¥<br>87¥  | 0 Y        | +4,37<br>2V  |              |       |
| V12<br>PL82  |                                 |              | +28eV         | +300V        | ~16,5         | 7              |               | +45°V      |              | +45eV        |       |
| V13<br>PL82  |                                 |              | +28eV         | +300V        | ~16,5         | v              |               | +45°V      |              | +45eV        |       |
| V14<br>PL82  |                                 |              | +28oV         | +300¥        | w16,5         | v              |               | +45oV      |              | +45oV        |       |
| 715<br>PCL64 |                                 | 0 7          | +300V         | +3,17        | ~ 15          | v .            | +28oV         | +3,10      | +2,27        | +36V         |       |
| 716<br>PL83  |                                 | +195V        | -87           | 0 4          | ~15           | v              | +1957         | +195V      |              |              |       |
| 717<br>PCL84 |                                 | -1167        | 0 7           | -1127        | ~ 15 T        | ,              | -87           | -112V      | -1127        |              |       |
| 18<br>5A2    |                                 | -lloV        | -200V         | -            | -200V .       | lloV           | -             | -200V      | -            |              |       |

- 30 -

III. Táblázat

# RF OSZCILLÁTOR:

| Frekv | encia | I.oszc. | V3/2,7/<br>Ug | V3 /1,<br>Ua | 6/ | C6al | 6 |
|-------|-------|---------|---------------|--------------|----|------|---|
| 94    | kHz   | 2.0 mA  | 9 ¥           | 76           | v  | 174  | ٧ |
| 310   | kHz   | 4,4 mA  | 8,8 V         | 27           | v  | 60   | V |
| 1     | MHz   | 2,5 mA  | 9,1 7         | 96           | ٧  | 96   | V |
| 3,3   | MHz   | 4,0 mA  | 9,2 ₹         | 70           | v  | 70   | V |
| 11    | MHz   | 6,0 mA  | 8,8 7         | 40           | v  | 40   | V |
| 36,3  | MHz   | 17,0 mA | 9,0 ₹         | 27           | v  | 27   | V |
| _     | -     |         |               | -            | 97 | -    | ÷ |

# RF ERÓSITÓ:

| Frek | rencia | I.e | rősitő | V4, V5 /2,9/ | V4, V5 /6/<br>Ua | U <sub>c</sub> |
|------|--------|-----|--------|--------------|------------------|----------------|
| 94   | kHz    | 6   | πΑ     | 9 V          | 9 ₹              | 56 V           |
| 310  | kHz    | 9   | πA     | 8,8 V        | 7 V              | 25 V           |
| 1    | MHz    | 10  | mA     | 9,1 V        | 8 V              | 18,4 1         |
| 3,3  | MHz    | 9   | mA     | 9,15 ₹       | lo V             | lo V           |
| 11   | MHz    | 5   | mA.    | 8,75 ₹       | 9 V              | 9 V            |
| 36,3 | MHz    | 7   | mA     | 8,1 V        | 9 V              | 9 V            |

- 4./ Állitæik a 2 kohmos potenciométert mindeddig, amig a V8 cső 8. lábán mérhető feszülteső 5,1 V losz. AZ ATTRAKTOS VENILER /PZ/ potenciométert forgassuk balra ütközésig. /PZ = 0°/. Mérjünk feszülteséget a V8 cső elektrodáin a IV. Táblázat adatai alapján.
- 5./ Az ATTENUATOR VERNIER /P2/ potenciométert forgassuk jobbra üt közdésig. /P2 = 270°/. Mérjünk feszültséget a V8 cső elektrodáin a IV.Táblázat edezi alapján.
- 5./ Távolitsuk el a rövidzárt az R22-es ellenállágzől, ezáltal lekapcsolódik a Vő cső 2. lábáról /vezérlőrács/ a -200 V-ne feszültnég. Kapcsoljuk le a Vő cső anódja és a föld közé helyezett osztít (R = 5 kohm.) P = 2 kohm./ 4 készültének helyeren kell műkönie.
- 7./ Hangoljuk ismét össze az RF oszcillátort és az RF erősitőt, ha valamelyik alkatrészt vagy csövet kicseréltűk.
  - Lást a SERVICE UTASITÁS következő fejezeteit:
  - 6.7 "PERCENT MODULATION /M2/ müszer beállítása."
    6.8 "Maximális vivőhullám-beállítás és modulációs null-állítás."
  - 6.9 "VOLTS LEVEL /M1/ miszer beállitása."

#### Mérési eljárás:

- 1./ Helyezzük üzemen kivül a visszacsatolást ugy, hogy az R22 ellenállást rövidrezárjuk. /Ezáltal a V6 cs5
  - 2. lába -200 V-os feszültségértékre kerül./
  - Ez lezárja a V6 csövet és az nem enged át áramot a V4 és V5 csöveken sem. Ezesetben az R15 ellenálláson nem folyhat át áram. Ezt ellenőrizzük le má mérővel.
- 2./ Csatlakoztassunk egy 5 kohm /5 W/ ellenállásból és egy 2 kohm /2 W/ potenciométerből álló osztót a V6 cső anódja és a föld közé.

Zárjuk le az RF OUTPUT /1/ csatlakozót 50 ohmos ellenállással. Állitsuk be a 2 kohmos potenciométert ugy, hogy az RF OUTPUT /1/ csatlskozón - 1 MHz frekvencián - I V feszültséget kapjunk.

Mérjünk feszültséget és áramot az alábbi pontokon:

#### Arammaras.

| V6 cső katódáramkörében /3föld/         | I | = | 19,0 | mA |
|-----------------------------------------|---|---|------|----|
| Rlo ellenállás áramkörében              | I | = | 5,6  | mA |
| R24 ellenállás áramkörében /1-5 sávban/ | I | - | 5,6  | mA |
| R24 ellenállás áramkörében /6. sávban/  | I | = | 0    | mA |

#### Fesziiltségmérés:

VB cső B. lábán

| R13 ellenálláson     | U = +0,15 V          |
|----------------------|----------------------|
| RI4 ellenálláson     | U = +0,15 V          |
| GeD 2 dioda anódján  | U = +5,7 V           |
| GeD 3 díoda katódján | U = -7,1 V           |
| VB cs6 B lábán       | U = +3.1 V /AC = OV/ |

3./ Ismételjük meg a mérést az előző pontban /2./ leirt beállitás mellett - az 1, 2, 4, 5. és 6. sávon is.

A feszültség és áramértékeket a III. Táblázat adatai alapián ellenőrizzük le.

A GeD2, GeD3 diodákra és a V8 csőre vonatkozó feszültségadatok megegyeznek az előző pontban /2/ felsoroltak kal.

## Kristály hitelesitő

Fesziltségmérés az alábbi beállités mellett történik: GRISTAL GALIBRATOR /S3/: "loo Kc/s"

|    | ső | 1 | 2              | 3 |   |     |                | 7   | 8             | 9              |
|----|----|---|----------------|---|---|-----|----------------|-----|---------------|----------------|
| 79 |    |   | 0,55V<br>+90 V |   | 1 | 5 V | 33 ¥<br>+235 ₹ | 0 V | 41 V<br>-55 V | 34 V<br>+115 V |

# CRISTAL CALIBRATOR /S3/: "1 Mc/s"

| C  | 86 | 1 | 2             | 3 | 4 | 5   | 6             | 7   | 8             | 9              |
|----|----|---|---------------|---|---|-----|---------------|-----|---------------|----------------|
| 19 |    |   | 0,2V<br>+185V |   |   | 5 V | 37 V<br>+155V | 0 V | 16 V<br>-24 V | 10 V<br>+130 V |

# II. HIBAKERESÉSI TÁBLÁZAT

## A visszacsatoló hurok hibakeresése

# Hibajelenség: Egyik sávon sincs kimenőszint, vagy az R15 ellenállás minden sávon leég.

Ennél a miweletnél a következő előfeltételeket kell teltesítenie a készüléknek:

- a/ A -200 V-os és a +300 V-os stabilizált tápegységek hibátlanul működnek.
  - b/ Az összes fütőfeszültségek rendben vannak.
- c/ A készülék összes csőve jó.
- d/ Az RF oszcillátor az összes sávon működik és megközelítően a III. Táblázatban feltüntetett feszültség és áramértékek mérhetők.
- e/ A C6ab forgókondenzátor vezetékei nem zárlatosak.

Ha ez a hiba csak egy sávnál fordul elő, ugy ellenőrizzük a foregődb érintkezőit ezen a sávon. Továbbá ellenőrizzük le a "KREEF" (55) kapcsolóz zárlatra. Ha ez a hiba valamennyi sávon fennáll, akkor a II. Táblázat elapján koressük a hihát.

Laszivás a kimenőfeszültség szintjén vagy az RF eszeillátor ill, az RF erősitő áramfelvétele rohamosan megnő és rezonanciaszerűen viselkedik.

Ellenőrizzük le a forgódob érintkezőit és a rövidrezáró rugós érintkezőt. Ez a rugós érintkező akadályozza meg, hogy a momszédos alacsonyabb sáv tekercse leszivást okozzon.

## Hangfrekvenciás oszcillátor

VII /1, 2, 3, 6, 7, 8./ cs6
Feszültségmérés az alábbi beállitás mellett történik:

MODULATION SELECTOR /S4/: "INT.-looo c/s"
MODULATION AMPLITUDE /P6/: jobbra üt közésig.

A 039 kondenzátor és a P5 potenciométer közös pontja. /20 Veff./

A TZ transzformátorról a MODULATION SELECTOR /S4/ kapcsolóra menő vezeték.

# Modulácio-mélységmérő fokozat

V10 /2.3./ cs5

Peszültségmérés az alábbi beállitás mellett történik: MODULATION SELECTOR /S4/: "INT.-looo c/s"

MODULATION AMPLITUDE /P6/: jobbra ütközésig.

#### V6 /2./ 085

Ellenőrizzük le az R22, R23, R25, R26 és R27 ellenállásokat, valamint a C17 kondenzátort és a V7, V8 csöveket.

#### V6 /8./ cső

Ellenőrizzük le az Rlo, R24 ellenállásokat, valamint a V4, V5 és V6 csöveket.

#### V4 /6./, V5 /6./ csövek

Zárlatos a C9a-b forgókondenzátor, vagy a forgódob hibásan érintkezik.

# V4 /3.8./, V5 /3.8./ csövek

Ellenőrizzük le az Rlo, Rl5 ellenállásokat, valamint a C7, C8a, C8b és C9a-b kondenzátorokat.

#### V4 /2.9./, V5 /2.9./ csövek

Ha ez a feszültség nem egyezik a IV. Táblázatban feltüntetett értékkel /+loo V/, akkor az RF oszcillátor nem működik.

#### V4 /1./ és V5 /1./ csövek

Ellenőrizzük le az R13 és R14 ellenállásokat, valamint a V6 cső 8. lábán a feszültséget.

# GeD2 /+/ dióda /1 V kimenőszint esetén: 6 Verr/

Ellenőrizzük le a V4 és V5 cső anód /6./ és kimenőfeszültségét a III. Táblázat alapján.

#### "RF.B+" /Bl/ biztositék kiégett

Ellezőrizzük le a CSa, CSb, Cll, Cl2 és Cl3 kondenzátorokat. Tágyan, zárlatot előidéző anyag van a C6 és C9m-b forgókondenzátork lenszei között. Hibás az S7 mikro-kapcsoló. Hibás a visszacsatoló hurok.

# Az R15 ellenállás leégett /loc Ohm + 5%/

A C9a-b forgókondenzátor zárlatos. A GeD2 és GeD3 diódák szakadtak, vagy zárlatosak. A C24, C25 és C26 kondenzátorok,vagy a RANGE /S5/ kapcsoló zárlatos.

# V4 /4-5/. V5 /4-5/ csövek

Ellenőrizzük le a C111, C112, C113, C114 és C124 kondenzátorokat, valamint a V1, V3, V4, V5, V6 és V8 csöveket.

#### V6 /4-5/ cső

Ellenőrizzük le a Clll, Cll2, Cll3, Cll4 és Cl24 kondenzátorokat, valamint a Vl, V3, V4, V5, V6 és V8 csöveket.

#### V4 /3. 8./, V5 /3. 8./ csövek

Az R15 ellenállás szakadt, a C7, Clo kondenzátorok zárlatosak.

#### V8 /1./ cső

Ellenőrizzük le az R17, R50, R53, R54, R55, R56, R57 és R60 ellenállásokat, valamint a P7, P9 potenciómétereket és a C44 kondenzátort.

### V8 /2./ cső

Ellenőrizzük le az R2o, R21 és R25 ellenállásokat, valamint a P3 potenciómétert és a C28 kondenzátort.

#### V8 /3. 7./ cső

Ellenőrizzük le az R18, R19, R20 és R21 ellenállásokat, a P3 potenciómétert, valamint a C16 kondenzátort és a V7, V8 csőveket.

## V8 /6./ cső

Ellenőrizzük le az R22, R23, R25, R26 és R27 ellenállásokat, valamint a V8 csövet.

## V8 /9./ cső

Ellenőrizzük le az R2o, R21 és R25 ellenállásokat, valamint a P5 potenciómétert és a C28 kondenzátort.

#### V8 /8./ cső

Ellenőrizzük le az R28, R29, R30 és R61 ellenállásokat, a GeD2, GeD3 diódákat, valamint a C24, C25 és C26 kondenzátorokat és a V8 csövet. C8a, C8b, C1o, C11, C12 és C13 kondenzátorokat zárlatra és az L2 tekercset szakadásra.

#### V1 /1./ csó

Ellenőrizzük le az Rl, R2 ellenállásokat a GeDl diódát és a Ol kondenzátort.

# V1 /3./cső

Ellenőrizzük le az R4 ellenállást a V1 csövet, ill. a V4 és V5 csövek 2. és 9. lábaira menő vezetéket.

### V3 /1. 6./ cső

Bilenőrizzük le az R9 ellenállást és a C6a, C6b kondenzáto -

#### V3 /2. 7/ cs6

Ellenőrizzük le a VI csövet és a hozzákapcsolódó alkatrészeket.

#### V3 /3.8./ cső

Ellenőrizzük le a Vl csövet és a hozzákapcsolódó alkatrészeket.

V3/2.7./ cső/19 Mc/s-on: 6 V<sub>eff</sub>; 65 Mc/s-on: 5,5 V<sub>eff</sub>/ Ellenőrizzük le a V3 csövet a GeDl diódát és a C6a, C6b kondenzátorokat.

### V9 ellenállás /3,3 kOhm + 10%/

Ellenőrizzük le a C6a, C6b kondenzátorokat, ill. a V1, V3

# RF erősitő

E mérésnél feltételezzük, hogy a stabilizált tápegységek és az RF oszcillátor működik. Szüntessük meg az R22 ellenállás rővidzárját és mérjünk feszültséget az alábbi pontokon:

# C111 kondenzátor /+ 48 V +10%/

Ellenőrizzük le a Clli, Cll2, Cll3, Cll4 és Cl24 kondenzá torokat, valamint a Vl, V3, V4, V5, V6 és V8 csöveket.

#### V17 /3.7/ 080

A V17 cső vegy a hozzákapcsolódó alkatrészek hibásak.

A hiba kijavítása után távolitsuk el az ideiglenesen boiktatott 1 MOhm 1 W-os ellenállást.

## +300 V-os tápegység

A -200 V-os tápegységet működésképesnek tekintjűk.

11 /7/ transzformátor /165 V + 10%/ Szakadt, vagy zárlatos menetek.

Clo5 és Clo6 kondenzátor /225 W, egy-egy kondenzátoror/ & Clo5, Clo6 kondenzátorok, vagy a SiDlo1, SiDlo2, BiDlo3 és SiDlo4 diódák zárlatosak, vagy szakadtak.

# V12 /7/, V13 /7/, V14 /7/ csövek

A Clo5, Clo6 kondenzátorok, vagy a SiDlo1, SiDlo2, SiDlo3 és SiDlo4 diódák zárlatosak, vagy szakadtak. Ellenőrizzük le a W12, V13, V14 és V15 csöveket.

#### V15 /6.7. és 9/ cső

A V15 cső vagy az Rlo9, R114 ellenállások hibásak.

# RF oszcillátor

Est a mérést csak akkor végezhetjük el, ha előbb meggyőződtünk a stabilizált tápegységek /-200 V, +300 V/ biztos mű kődéséről.

Zárjuk rövidre az R22 ellenállást és végezzük el a következő máréseket.

# ¥3 /5/ cső

A soros fütésü csövek közül valamelyik fütőszála szakadt.

# V1 /4,4-5/ cső

Ellenőrizzük le a feszültséget a Clll elektrolytkondenzátoron /448 V/.

#### V1 /2./ cső

Ellenőrizzük le az "RF.B+" /Bl/ biztositékot, továbbá a C7,

A hálózati biztosítékok /B2, B3/ mellett ellenőrizzük le az "RF.B+" /B1/ biztosítékot is. Kiolvadása esetén a "YOFE LEYEL" /K1/ műszer mztatója a O-állásbál balra tér ki.

Kidvadást okozhat pl. a forgókondenzátor /06-09/ lemezei közé került zárlatot vagy átvezetést okozó snyag. Ezért ajánlatos az árnyékolóburák eltávolitása esetén a lemozközöket sürített levegővel vagy hajszáritóval kifuvatni.

A következő táblázat alapján vízsgáljuk a hibás készüléket elektromos egységekre bontva.

# I. HIBAKERESÉSI TÁBLÁZAT

Az elektronesövek lábain mért egyen- és váltófeszültségeket a IV. Táblázat tartalmazza.

Mérjik meg a feszültséget a földhöz képest az alábbi pontokon, amennyiben a mért feszültség eltér az olfirt értéktől, ugy a hiba oka a következő;

#### -200 V-os tápegység

Helyezzük üzemen kivül a +300 V-os tápegységet az Rlol ellenníllás egyik végének kiforrasztánával. Ideiglesson kössik össze a Vló elektroncső 2. és 7. láhát egy l Mohm l W-os ellenállással.

V18 /2, 4, 7/ cső. /V18 cső 2.4. és 7. lába/ Szakadt, vagy átütött a CloS kondenzátor.

Clo8 kondenzátor /+195 V + 10 %/

A VI6 cső hibás. Ellenőrizzük le a fütőfeszültséget: 15 V.

# V18 /1,5/ cső.

A V18 cső hibás. Ellenőrizzük a narancsszinű izzást.

### 5.7 Szintingadozás ellenőrzése

- a/ Csatlakozzunk nagyfrekvenciás csővoltmérővel a készülék"RF.OUTPUT" /1/ hüvelyére.
- b/ Allitsuk a frekvenciát 1 MHz-re.
- c/ Alljunk a "VOLTS LEVEL" /Ml/ müszerrel 1 V-ra.
- d/ Hangoljuk a készüléket a teljes frekvenciatartományon keresztül. A kimenőfeszültségnek 1 V ± 11 % /1 dB/ értékek között kell maradnia.

#### 5.8 Hibakeresés

A belső szabályozószervek állithutósága korlátolt mértéki és az egyes áramköri elemek gyártási szórássirak kiavenlitósáre szolsálnak.

Ha a készülék részlegesen vagy egyáltalán nem működik, a belső szabályozószervek utánállitásával a készülék működését helyreálijtani mem lehet.

Mielőtt a belső szabályozószerveket elállitanánk, előbb állapítsuk meg a hiba okát.

A hibakereséshez segitséget nyujt az I. Hibakeresési táblázat. Ha egy rész hibásnak mutatkozik, ugy nézzük meg az I. Hibakeresési táblázat idevomatkozó részét.

Amennyiben a hiba az "ATTENUATOR" /S6/ kapcsolóban van, ugy a készülék csak szervizben javítható.

A hibás készüllék javitásakor ajánlatos a tápfeszültségek ellenőrzésével kezdeni. Ellenőrizzük a hálózati zsinórt,a biztositékokat és a tápegység kimeneti feszültségeit.

Ha a stabil tápegységben hibás csövet találunk, kicsovólóse esetén rendszerint nem kell a belső szabályozószervekhoz nyulni /csőcsere esetén ellenőrizzük a stabil feszültségeket/.

- g/ Állitsuk a "MODULATION AMPLĪTUDE" /P6/ potenciómétert addig, amig az oszcilloszkópon a modulációs ábra 60 mm-ig nó. A "PERCEMT MODULATION" /M2/ műszernek 45 és 55% érték között kell mutetnia.
- h/ Ellenőrizzük a "PERCENT MODULATION" /MZ/ hitelesítést 0 és 9% között. A valós és a müszer által mutstott modulációs mélység közötti eltérésnek <u>t</u> 5%-on belül kell maradni.

# 5.6 Frekvencia ellenőrzés

- Az ellenőrzést legegyszerübb digitális frekvenciamérő segitségé-
- vel végezni.
- a/ A készüléket 15-20 percig előmelegitjük.
- b/ Csatlakozzunk a generátorral az "ATTENUATOR" /S6/ "l V +lo dB" állásban - l V kimenőszint mellett digitális frek -
- vencismérőre. c/ Kapcsoljuk be a "CRISTAL CALIBRATORT" /53/ "1 Mc/s" állásba.
- d/ Hangoljuk a készüléket 1 MHz-re.
- e/ Állitsunk be fejhallgatóval hallgatva füttymélypontot. f/ Olvassuk le a frekvencismérő által mutatott értéket. Ha ez
- f/ Olvassuk le a frekvencismero altai mutatott ertekku. Ha o az érték 999.9000 kHz és 1,000.100 kHz között van, ugy a kristály megfelel a specifikációnek.
- g/ Ugyanezt ismételjük meg a "CRISTAL CALIBRATOR" /S3/
  "loo kc/s" állásnál is.
- h/ Állitsuk a "CAL." /12/ gomb segítségével a skálasblak függőleges vonalát a skálatárcsa l MHz osztásával egy vonalba.
- 1/ Az előző beállítás mellett ellenőrizzük valamennyi "90Hz-es frekvenciát" az összes sávon. A füttymélypozt beállításs mellett a skálatárosa által mutatott frekvenciánsk 1%-on belül kell marednis.
- j/ Negy frekvencisstabilitást megkívánó mérések esetében a bemelegedett készüléknél /2 óra bemelegedési idő/ sávváltás esetén lo perc ujrastabilizálódási idő szükséges.

#### 5.3 CsScsere

A legtübb esetben a készülékben előforduló hiba elháritható a gyonge vagy meghibásodott csövek kicser-flésével. Bármilyen belső szabályozószorv elállitássa előtt ellenórizzük a csöveket /3, 3/a ds 4. ábra/.

Leghelyesebb, ha a hitásnak vált csövet kicsoráljúk, mort ez sokkal kevesebb időt vesz igénybe, mint egy csőmírőben való vinsaglat. Bárnilyen gyártmányu, de azonos típusu cső felhasználható a meghibásodott cső pétlására, ahol azonban a cső-mzőránból adódó karakterieztikaváltozás az áramkörben változást idéshet elő, utánálitást kell elvégeznünk.

#### 5.4 Ellenőrző mérés

- a/ Kapcsoljuk be a készüléket lezárás nélkül és hagyjuk melegedni lo-15 percig.
- b/ Ha a "YOLTS LEYEL" /Ml/ muszer mutatója a 0-állásból belra tér ki, akkor az "RF.B+" /Bl/ biztositék égett ki, azt kell kicserélni /160 mA/.

## 5.5 "PERCENT MODULATION" /M2/ müszer

- a/ Csatlakoztassunk a generátor "RF OUTPUT" /l/ csatlakozójáról oszcilloszkópra, amely legalább lo MHz-es sávszólcssógű.
- b/ Kapcsoljuk a "RANGE" /S5/ kapcsolót 530-1800 kHz sávra.
- c/ Allitsuk be a generatort I MHz-es frekvenciara.
- 8/ Kapesaljuk a "MODULATION SELECTOR" /S4/ kapesol6t "OFF" allasta.
- e/ Allitsunk be as essellloszkópon 40 mn-es ábrát.
- f/ Kapesoljuk a "M.DULATION SELECTOR" /S+/ kapesolot "INT-Loop c/s" allasba.

# 5. KARBANTARTÁS

Ez a rész a készülék beállítására és karbantartására vomatkozó utbaigszitásokat tartalmazza. Ezenfelül tartalmazza a készülék specifikált jellemzőinek ellenőzzését. A specifikált jellemzők ellenőzzéséhez kidobozolás vagy belső állítások nem szükcégesek.

# 5.1 Kidobozolás

- a/ Távolitsuk el a hálózatból kikapcsolt készülék 16 db felerősítő csavarját.
- b/ Huzzuk ki a készüléket a dobozából.

## 5.2 Árnyékolóbura eltávolitása

- a/ Porditsuk a készülékeket az előlapjával lefelé.
- b/ Huzzuk ki az árnyékolódoboz hátulján /2.ábra/ lévő csatlakozóból a dugaszt /7/.
- c/ Táw-litsuk el az árny ékolódobozt leszoritő összes csavart.
- d/ Távolitsuk el az ámyékolóburát felfelé huzással.

## Vizsgálathoz szükséges műszerek

- a/ Cs5voltmérő ± 3 % pontossággal, nagyfrekvenciás mérőfejjel
- b/ Hangfrekvenciás csővoltmérő
- c/ Milliampermers /EAW/ 300 mA
- d/ Elektronikus számláló
- e/ Oszcilloszkóp loo MHz
- f/ Toroid /198-242 V között szabályozható/
- g/ Négyszög generátor

# 4.10 Kuls5 modulácio

- Kapesoljuk a "MODULATION SELECTOR" /S4/ kapesolót "EXT.-AC" vagy "EXT.-DC" állásba.
- Csatlakoztassuk a külső generátort a "MODULATION INPUT-AUTPUT" /2/ csatlakozóra.
- Forgassuk a "MODULATION AMPLITUDE" /P6/ potenciométert jobbra ütközésig.
- Növeljük a külső generátorból jövő jelet addig, amig a "PERCENT MODULATION" /M2/ műszer mutatója loo %-ot nem mutat.
- Csökkentsük a moduláció százalékot a "MODULATION AMPLITUDE" /PS/ poteriométerrel a megfelelő szintre.

A moduláló frekvencim felső határa függ a burkológörbe torzitámától.

| Moduláció:      | 30 % AM | 70 % AM | Négyszöghul lán |
|-----------------|---------|---------|-----------------|
| Viv5hullám:     | 0,05 fc | 0,02 fc | 0,003 fc        |
| Mod .frekv.max. | 20 kHz  | 20 kHz  | 3 kHz           |

A képletek alkalmazásánál a 3 % AM torzitáshoz tartozó sávszélességek a következők:

VivShullam /fc/ Modulalo frekvencia

|                  | 30 % AM |     | 70 % AM |     | Négyszöghullám |     |
|------------------|---------|-----|---------|-----|----------------|-----|
| 50 kHz           | 3       | kHz | 1       | kHz | 150            | Hz  |
| 200 kHz          | 12      | kHz | 4       | kHz | 600            | Hz  |
| 500 kHz          | 20      | kHz | 10      | kHz | 1500           | Hz  |
| 1 MHz és felette | 20      | kHz | 20      | kHz | 3              | kHz |

#### Megjegyzés:

- a/ á külső gemerátor torzitása kisebb kell hogy legyen 1 %-nál.
- b/ A 3 V kimeneti tartományban a 3o %-on tul történő moduláció nem ajánlatos.

#### Kimenet lezárása

- A generátor feszültségosztója csak 50 chm-os terhelés alkalmazása esetén hiteles. A TR-0503-1 /EMG-1189-4/ tipusu mérőfej kimeneté három állással - lezárással - rendelkezik.
- "DUMAT ANTENNA" /müentenna/: A kimenő impedancia változik, a szabváhjos müentenna kapcsolás impedanciájának megfelelőem. A "VOLTS LEYEL" /NO. müszer által mutatott szint 20 dB leosztásbal jut a müentennára.
- 2. "O dB ATTENUATION": 25 ohm kimenő impedancia /1:1 fesziltségosatás/.
- "20 dB ATTENUATION": 20 dB feszültségosztás, 5 chm kimehőimpedancia mellett.

#### Megjegyzés

A megengedhető maximélis bemenőenergia a mérőfejhez 180 mW /3 V, 50 chm/.

#### 4.9 Frekvencia-hitelesités

- 1. Kapcsoljuk a "CRYSTAL CALIBRATOR" /S3/ kapcsolót
  "1 Mo/s"-ra.
- Dugaszojunk egy nagy impedanciáju fejhallgatót /2000 ohm/ a "PHONES" /4-5/ csatlakozókra.
- Állitsunk be füttymélypontot a mérőfrekvenciánoz /"l Mc/s"/ legközelebb eső kerek "Mc/s" frekvencián.
- 4. Állitsuk a skálasblak függőleges jelzését a CAI. /12/ gombbal pontosan a "Mo/s" jelzésze. Ugyánes végezhető el a 100 kHz-es kristály segítségével 7 MHz alatt, 100 kHzenkénti kalibráció esetén.
- 5. Állitsuk a"CRYSTAL CALIBRATOR" /83/ kapcsolót "OFF" állásba. Ha bekapcsolva hagyjuk, ákkór az üttetett jel visszahat a kimenetre és modulálni fogja.

#### 4.6 Szinkronizáló jel

Ha s generátort bele5 jellel moduláljuk, akkor a "MODULATION IMPUT-OUTPUT" /2/ hüvelyről - szinkronizálás csíjaíra - jel vehető ki. Ez a jel frekvendíában magagyezik a belső moduláló jellel. Amplitudojs kb. 3 V. Ennek a kirometnek, mint generátornak a belső ellenállása kb. 82 kobm.

#### 4.7 "RF.B+" /Bl/ biztositék

Az "RF.B+" /El/ biztositék az előlapon /l.ábrs/ van.
Es esetleg tul nagy moduláló feszültség jut a "MODULATTON
FRUT-OUTPUT" /2/ csatlakozóm, a hampolt áramkörök forgókománzátorai /cő-cő/ átivelhetnek. Es az "RF.B-" /El/ biztositékot kiolvasztja. A készültéknek nem lesz kimenőfeszültsége én a voltz LEYEL /M/ müsser mutatója a "O" állástól balra tór ki. Exesetben a El biztositékot ki kell
csarálni.

### 4.8 Altalános mukodés

Mérésnél a következő beállitások vészendők el:

- a/ állitsuk a "RANGE" /S5/ kapcsolót a kivánt állásba.
- b/ Porgassuk a "PREQUENCY" /C6-C9/ forgókondenzátorokat a kivánt frekvenciára.
- c/ Allitsuk a "MODULATION SELECTOR" /S4/ kapcsolót "INT.-400 c/s" vagy "INT.-1000 c/s" állásba.
- d/ Allitsuk a modulációs szintet a "MODULATION AMPLITUDE" /P6/ potenciométerrel - a "PERCENT MODULATION" /W2/ müszer leolvasása mellett - a megfelelő értékre.
- e/ Állitsuk az "ATTENUATOR" /Ső/ kapcsolót a kivánt állásba.
- f/ Allitsuk az "ATTENUATOR VERNIER" /P2/ potenciométert a megfelelő kimenőszintre.

felirata a teljes frekvenciatartományban, mert ebben a helyzetben Ekrtént a frekvenciaskála felvétele.

### 4.3 Kimeneti feszültségosztó

Az ATTENUATOR /S6/ kapcsoló megrongálódhat, ha a "5 V-os" állásáben a kimenetet /1/ rövidrezárjuk, vegy külső feszültség jut a kimenetre.

## 4.4 A 3 V tartomány használata

An ATTENUATOR /86/ kspcsoló "5 Y"—os álláss RP hid vszy más olyan köszülék tápjálásárs szolgál, ssely hitelesített msgasszintű RP feszültásága igényel. Ext a msgy kimendezintet ugy örjük el, hogy as RP kimenfokozat csövett a disszipáció határán vesszük igénybe. Ezeknek a csöveknek hosszabb élettertezát ugy hitostintsjuk, ha a generátort nem hagyjuk a 3 V tartományban hosszabb ideig, mint smennyi a mérés elvégzéséhez szükséges. Ne hagyjuk a "3 V"—os tartományt békappsoltan a bemelegítés ideje alátt.

### 4.5 Külső moduláció alkalmazása

Cask kellő vigyázattel használjuk a MODULATION SKISOTOR /84/ kapcsoló "EXT.-DO" állását. Å Desenő modulálő jel egyenáremu szintje
befolyásolja sa átlagos RP szintet. Ha a moduláló jelnek csupán
váltóáramu összetevője van, kapcsoljuk a MODULATION SELEOTOR /84/
kapcsoló "EXT.-AC" állásba. Pelhivjuk a figyelset arra, hogy
KEXT-AC" állásban a locó-os modulációhor szükséges moduláló feszültség kb. 50 Hs-mál kisebb frekvenciáju moduláció esetén nagyobb a müzsaki adatokban közölt szx 4,5 Veg feszültségzél, valamint kb. 20c Hs-mál kisebb frekvenciáju mégyszögmoduláció esetén a tetősesés mértéke mán meghaláshátja a lof-ot is. lo V-mál
msyobb egyen- vagy váltófeszültséget ne edjunk a "MODULATION
DHEUT-CUTPUT" /Fó/ petenciómáter élettattmát.

nik. Amint a RANGE /85/ kapcsolót átváltjuk az 87 mikrokapsoló kikapcsolja a +200 V feszültséget, ennek követkentében a VB-cső rácsa főláptotenciálra kerül és V6 csövön keresztül lezárja az RP erősítő V4, V5 csövett. Erre azért van szükség, mert a V4 és V5 csövet segődrácsa Követlenül +200 V feszültségre kapcsolódik és a tekercsek kiváltása esetén a szakadt anódáramkörű cső segédrácsa tuldisszipálna és a cső tönkresenne.

A moduláló jel másrészt a VlCa katódkövető rácsára jut A matódról a jelet egy parallel dioda Gebő egyenírányltja. Est a modulációs szintmek megfelelő egyenfeszültméget vezetjuk a PENCENT MODULATION /MZ/ miszerre. A Gebő dioda a VlCa cső katódjának négativés menset akadályozza meg, a C45-komdensátor védelme cóljábban.

### 4. KEZELÉSI UTASITÁS

### 4.1 Kimenőszint

A készülék VOLAS LEVEL /M/ műszere csak ekkor kiteles, ha az RF OUTPUZ /M/ csatlakosót 50 chm-os terhelőellenállással lesárjuk. Ajánlátos a TR-055-1/EM-1169-M/ tipusu ménőfej masmálata, mert az tartalmazsa áz 50 chm-os lesárást is. A készülékhez hasmálható a tartozékként szereplő konxiális kébel EMC csatlakozókkal a végén. Az "egy réteges" árnyékolással rondolkező kábel a maximális kisenőszinttől -80 dő 30 m/ szintig hassúlhátó. "A két réteges" árnyékolásu kábelt 30 m/ szintig hassúlhátó. "A két réteges" árnyékolásu kábelt

### 4.2 Frekvenciaskála

Allitnuk a CAL. /12/ gomb segítségével a skálasblak függőleges vonásának köt végét a skálasblak keretén - a FREQUENTY feliret alatt - lévő alaó és felső jelzéssel egy vonalba. Csak igy hiteles 1 %-on belül a skálatárcsa

1168.

### 3.2.7 Kristályhitelesítő

Az osztó bemenetéről /6/ egy kis kapacitáson keresztül /kb. o,5 pF/ csatlakoztatjuk az RF jelet a keverősristtó rácsára. Ugyarsak erre a rácsza csatlakoztatjuk a kristályoszcillátor torzitott kimenőjelét. A V9 csőről a kevert jelet a Vlob triodás erősitőbe tápláljuk. A Vlob cső kimenetét az előlapon lévő PHOMES /4-5/ hilvelypárra kapcsoljuk.

A kristályoszcillátor elektromosatolásu oszcillátorkónt működik. A vezérlőrűse pozitiv visszecsstolását a kristályon koresztül a segődrásztő kepük. Az osmeillátor két frekvencián rezes, a CRISTAL CALIERATOR /35/ kapcsoló állásátől függően. Az oszcillátor snódjárál jut a jel a keverőtudes réseára.

### 3.2.8 Hangfrekvenciás oszcillátor

I mzólámpás stabilizálásu Wien-hidas oszciliátor. A viszzesatolt jelet a TZ kimenőtranszformátor szokunder-tekercsáról kapjuk. Két különböző frekrencián működhet: 400 Ez és loon Hz. A frekrenciát ellenállások átkapcsolásával változtathatájuk. A jel szintje a P5 potenciosséter segitoségével állítható be. A MOULATION SELECTOR /59/ kapcsoló "INT-400 c/s" ill. "INT-100 c/s" állásban a modu-láló feszültséget egy 85 köhm-os allenállás szrbsiktatásával a "MOULATION INFUT CUTPUT" /2/ csatlakozó hörelyen vezetjük ki a szinkoználás cóljára.

#### 3.2.9 Modulácio

A moduláló jel egyrészt a differenciál erősitő triodájának /784/ rácsára jut. A jel szintje a MODULATION VERNIER /72/ potenciomóterrel szabályozható. A jel mmplitudójámak változtatása ssatén a modulációs mólyság váltoHasonló módon a modulációt is államdó szinten tartjuk. Kinthogy a demodulátor áramköre elegendő gyors időállandóval rendelkezik, a moduláció burkológönbójánek követősére, a kimenő modulációt a moduláló frekvenciával hasonlitjuk össze és így a torzitás minimáliszu csökken.

A V7a cső mint stabil feszültség-generátor szerepel V8a cső részére.

A V? caś mánik rele a differenciál oršnitš pentoda róznémek /VBb/ szolgáltat segédrács feszültséget. Az ATTENUATOR VERNIER /SZ/ potenciométer bezzabályozott állána mellett /O V kimenánzint/ a P5 potenciométerrel, ugy állátjuk be a differenciálerősítő pentodájának /VBb/ segédrács feszültségét, hogy az RF erősítő V\*, V5 csöveit lezárjuk.

#### 3.2.5 Modulátor

A V6 cső - triodának kapcsolt pentoda - az RF erősitkatódáramkörébe van beiktatva, katodmodulácio létrehozáma csíjából, A cső belső ellenállács a vezéslőrácsára adott modulálo jelnek megfelelően változik. Igy az RF erősítő katódárama is változik, mely amplitudojában modulálja a rádiofrekvenelás szintet.

#### 3.2.6 Feszültségosztő

A rádiofrekvenciás kimenőjelet az RF kimenőtranszformátor leágazásárál vesszült le és vezetjük a kimeneti osztó bemenetére /5/. Ez a feszültségosztó maximálisan 120 dB-t oszt le lo dB-es lépésekben.

A kimenőfeszültség magyságának folyamatos beállítása - a differenciál erősítő referenciajelének változtatásával - az ATTENUATOR VERNIER /PS/ potenciométer állításával történik. mált jelet a VBe differenciál erősítő mánáka vezetjük és Beszelssonlitjuk a differenciál erősítő mánik csövének YBEV fedesíra vezetett demodulált jellel. Mindkét jel váltóáramu összetevőtnek szintje arámyos a modulációral. A modulációs jel képeri a referencinfesszilt teáget és a kimenőjel tómyleges modulációját hamonlitjuk össze eszel a roferenciával. A kimemeten detektált egyenfamum szintet hanontítjuk össze egy egyenfamu referencisszinttel, amely arányos a kivánt rádiofrekvencik mintjável, az ATTEMUATOR. VERNIER FZP, potenciosáter beállitánána mogfelalósn.

Minthogy a V8a és V8b differenciál erősitő-csövek katódjai össze vannak kötve, a trioda részre /VSa/ adott referenciajel ugyancsak meg fog jelenni a pentoda rész /V8b/ katódján. Ezt a jelet összehasonlitjuk a kimenet demodulált jelével, amelyet a pentoda /V8b/ rácsára adunk. E két jel eltórése egy kimeneti jelet ad, amelynek olyan polaritása van, hogy saját magát csökkenteni igyekszik a virszacsatoló hurkon keresztül. Pl. ha a rádiofrekvencia szintje csökken, a differenciál erősitő pentoda részének /V8b/ rácsán a feszültség negativabbá válik, csökken a csövön átfolyó áram és anódja pozitivabb lesz. A V6 modulátor rácsfeszültsége arányos a V8b erősítő anódfeszültségével. Amint ez a rácsfeszültség pozitivabbá válik, a V6 modulátoron áthaladó áram növekedni fog. De ez az áram a rádiofrakvenciás erősit6 /V4, V5/ katódárama is és igy a kimenőjel mindaddig emelkedni fog, amig az eredeti feltételek helyre nem állnak.

Expol a mivolettel a kimenfrozuiltség maintjét stabilisáljuk +1 dB-neil kisebb ingadozás mellett. A rádiofrekvemén mxintjének valtoztatása az ATTENUATOR VERNIER /FZ/ potenctométer segítségével - a referenciaszint változtatása utján - türzénik.

# 3.2.3 Rádiofrekvenciás visszacsatoló és szabályozó áramkör

transformátor szekundertekercsárál a GeUZ-GeD5 diodákra
jut, amelyek azt egyenímányttákk az RC időállandó magyaágát a RANGE /S5/ kapcsoló segítségével váltjuk. Ez az RC
sműrő az RY komponens kiszűrőséve szolgál, de nem jelent
smítti a moduláló de egyenáramu jel számára. A demodulált
rádiofrekvemiás jelet azután a differenciál erősítő vezőrlőrácsára vezetjűk. Ezmek a demodulált jelnek az egyenáramu
szeszetőjés arányos az RF szint csucsértőkével, ezért ezt
az egyenfeszültséget használjuk fel a voltrs lévyű /műszez műköttetősére. Az áram ROI-Ge7, Ce8, Le szürőn keresztil jut el a voltra Leyel /M1/ műszerre.

Kátállásu reszültségosztót iktatunk a demodulátor II. /5/ de a differenciál erősítő /s/ közé, amely a visszacsatolás mértékét szabályozza. As "l " "é az az alecsonyabb kimenőfeszültség állásoknál a visszacsatolást um R28 és RSI osztón korenstil kapjuk. Geupán a "5 ""-os beállításban söntöli RGI ellendílást az R50 ellendílás. Es az RF erősítő kimenőfeszültségét lo dB-el emelí. Est az átkapcsolást uz S2 relé özmikködén végát, valahányasor az ATTENUATOR /56/ kapcsolót "3 v fülámba kapcsoljak.

### 3.2.4 Differencial erosito

A "MODULATION INPUT-OUTPUT" /2/ csatlakozóra táplált külső moduláló jel ugyanolyan módon van ráültetve az egyenáramu referencia szintre, mint a belső modulácio.

Az egyenírmara szuperponált váltófeszültség az ATENUATOR VERNIER /PZ/ potenciométeren jelenik meg. Ez a PZ potenciométer egyenlő mértékben változtatja mind az egyeníramu, mind a váltóáramu összetevőt. Igy a modulációs-mélység állandó mrad, tekintet nélkül a vivábullán szintjére. A muperpoAz RF oszcillátor szintját visszacsatolt áramkör stabilizálja, amely desseköti az RF oszcillátort az őt szabályzó csővel. Hasonlő módon az RF kimenetet és a modulációs szintet egy visszacsatoló hurok tartja államió órtóken, amely az RF kimenettől detektoron és differenciál erősitón korveztül a modulátorhoz veszt.

#### 3.2 A készülék működése

### 3.2.1 Rádiofrekvenciás oszcillátor és szintszabályozó

Az EF cezcillátor V3 hangolt andáközés ellenitemil oszcillátor. A rátiofrekvendis szintzzabúlyozó /Vlb/ a V3 cső atódellenűllárként műtödik az EF szintszabúlyozás csígádi. A V1b pentoda vezfelőzéssa az EF cszcillátor kimenetőzek egyenírányított jelét kapja. Ez a feszüllásóg csökkenti a V1b cső áramát, amikor az EF cszcillátor szintje emelkedik és megfordítva. Kinthogy ez az áran az EF cszcillátor katódármas is, ez EF szint állandó marnd. A V1a tolda katódávestőt kópez, amely előfeszültséget szolgáltat az EF cszcillátor és az EF erősítő cső vezérlőrácsa számára. S va mikrokapenci áz ső red átkapeződárásl a szabúlyzó pentőta /VI/b/ segédrács feszültséget kikapcsolja - kiváltott dobállámál - nehogy a megszaknát anódkör miatt tönkre menjem a cső.

### 3.2.2 Rádiofrekvenciás erősitő

Az EF ozacillátor jelét a V4 és V5 csövekből álló ellenütemű EF erősítő vezérlőrácsára vezetjük. Az árnyákolórácsok közvetlenül -500 V-ra kapcsolódnak. Az EF erősítő kutődármaút a V6 cső szabályozza, amely változtatható katődellenül lánkánt műtköl

#### 3. MÜKÖDÉSI ELV

3.1 A készülék főbb részei

A kószülékek előlapját a kezelőszervekkel és csatlakozókkal az l. ábra, a készülék hátlapját a 2. ábra, a készülék belső szabályozószerveit valamint a diódák és az elektróncsővok elrendezését a 3. 3/a és 4. ábrák szemléltetik.

A készülék kapcsolási rajza as 5. ébrán, a TR-0503-1 / ZMG -1169-4/ tip. miantenna kapcsolási rajza a 6. ábrán látható. A készülék elektromos felépítés szempontjából a következő főbb részekre tegozódiki



- . Rádiófrekvenciás oszcillátor
- 2. Demodulátor I.
- Rádiófrekvenciás szintszabályozó
- 4. Rádiófrekvenciás erősitő
- 5. Demodulátor II.

- 6. Differenciálerősitő
- 7. Modulátor
- 8. Feszültségosztó
- 9. Kristályhitelesitő 10. Hangfrekvenciás oszcillá-
- 11. Katódkövető

### TARTOZÉKOK

| "A." | tarto  | zekok                                                                         |   |    |
|------|--------|-------------------------------------------------------------------------------|---|----|
| 7A1  | teszül | êR-ârában bennfoglalt/                                                        |   |    |
| Typ  | 1004   | Hálózati csatlakozóvezeték, csatlakozó-<br>dugókkal                           | 1 | db |
| Typ  | 1024   | Koex. árnyékolt kábel<br>mindkét végén "BNC" csatlakozó dugó                  | 1 | "  |
| Typ  | 1027   | Koax. árnyékolt kábel<br>kettős árny. /mindkét végén "BNC"<br>csatlakozó dugó | 1 | "  |
|      |        | Használati utasitás                                                           | 1 | n  |
| 0-0- |        | - 1551-t-ofté batétak                                                         |   | -  |

# 220 ¥ - 1000 mA 110 111, 127 V - 2000 mA anodresz, hez - 200 mA

"E" tartozékok /k készülékkel együtt rendelendő, külön ár felszámítása mellett./ TPP SR-0503-1 /EMG-1169-4/ Miantenna

2 db "BNC" csatlakozó dugaszvégződéssel 1 db

2 db

## HÁLÓZATI ADATOK

Feszültség: 110, 127, 220 V

/átkapcsolható/ + 10 %

Periodus:

50/60

Fogyasztás: kb. 170 VA

### EGYÉB ADATOK

Kivitel:

lakkozott fémlemezdoboz 2 db hordfogantyuval

Mérotek kb.

/forgatógomo és egyéb kiálló alkatrészek nélkül/:

: 500 mm széles 300 mm magas

390 mm mély Sulv: kb. 30 kg.

Beépített müszerek szint-

mérő: 1 db 100 nA 1,5 osztályu mod. mérő: 1 db 200 nA 1,5 osztályu

Csatlakozók tipusa:

l db 200 µA 1,5 osztályu BNC ill. a féjhallgató részére banánhűvely

Elektroncsövek:

5xPCL84, 2xPCC88, 2x6CL6, PL81, 2xBCC85, 3xPL82, PL83, 2x85A2

Diódék: 3x0All60, 3x0All61, 4xSieK4, 4xSiEK7, 4xSiEK3

Fotoizzó: 22 V/15 W

Jelzőlámpa: 6,5 V/o,1 A

Biztositék'a készülékben 220 V-ra:

2 db 1 A 1 db 200 mA

Az elektroncsövek és diódák változtatásának jogát fenntartjuk! Modulációmérő műszer máréshatára:

Modulációmérő műszer

0 - 100%

pontossága:

+ 5%

o-90% moduláció között, végkitérésre vonatkoztatva, max. 1 V

kimenőszint esetén

Modulációs szint változása:

4 + 0,5 dB

a kimenőszint és a vivőfrekvencia bármilyen változtatása mellett, saját műszeren leolvasva

Káros frekvencia moduláció:

5.10-5 vagy max. 200 Hz

/amelyik nagyobb/ 1 V vagy ennél kisebb kimenő szintnél és 30% AM esetén

Vivõhullámu zajnivó:

min. 50 dB 30% AM-hez képest

Sugárzás 1 m távolságban:

A térerő kisebb, mint 1,uV/m

A müantenna müszaki adatai TR-0503-1 /EMG-1169-4/ tip.

Osztóállások:

1. 20 dB + 1 dB

0 dB + 1 dB DA müantenna állásában Ube 1 Vesetén,

Up4 50 mV ± 5 dB 600 ohm lezáron

2 - 65 MHz-ig

Kimenőreszültség pontossága:

Szinttartás /lineáris torzitás/:

Kimenő harmonikus:

AMPLITUDO MODULÁCIO
1/ Kilső moduláció:

loo % mod .létesi téséhez szükséges feszültség:

Bemenő impedancia: Egyéb mod .lehetőség:

Max.mod.frekvencia:

A burkológörbe torzitása:

2/ Belso moduláció:

Bels5 mod .frekvencia:

Burkológörbe torzitása:

± 1 dB saját müszeren leolvasva, 50 ohm terheldsen

± 1 dB a teljes frekvenciatartományban a kimen5szint bármely állása mellett 50 ohm terhelőellenálláson

10 %

0-100 % szinuszos moduláló jellel 0-től 20 kHz-ig lehetséges

max. 4,5 V cs-35

500 ohm
mégyszéghullám vagy más
baszetett jel
50 % színussos modulációnál:
0,06 f.vtvő, max. 20 kHz
70 % színussos modulációnál:
0,02 f.vtvő, max. 20 kHz
mégyszéghullámu modulációnál:
0,005 % r.vtvő max. 3 kHz

≤ 5 %
a megadott színuszos moduláción belül
0-loo% szinuszos moduláló
jellel folyamatosan szebályocható
Aco Hz + 5 %

400 Hz ± 5 % 1000 Hz ± 5 %

≦1 %: 33 % modulációnál ≤3 %: 70 % modulációnál 1 V vagy ennél kisebb f.vivő esetén.

#### 2. MÜSZAKI ADATOK Prekvenciatartomány:

Prekvenciasávok:

50 kHz-től 65 MHz-ig 6 sávban 50 kHz - 170 kHz

50 kHz - 170 kHz 165 " - 560 " 530 " - 1,8 MHz

1,76 MHz - 6,0 " 5,80 " -19,2 "

19,00 " -65,0 " ± 1%

Frekvenciapontosság: Frekvencia-beállitás fi-

1 osztás = 0,1%

nomsága: Kristályhitelesités:

7 MHz-ig loo kHz-enként 65 \* 1 MHz-enként

Pejhallgató kimenet: Prekvencia stabilitás: lo pontossággal

lo mV 5 kohm terhelés mellett max. 5.10<sup>-5</sup> vagy 5 Hz /amelyik nagyobb/ 2 órai bemelegedés után lo perc időtartamra, max. 1 V kimenőszinthél

Kimenő impedancia:

Kimenőszint:

50 ohm
0.1/uV-tol3 V-ig
/lo/dB-es fokozatokban/

VSWR <1,1 1,uV-tól o,3 V osztó állásig VSWR <1,1 1 és 3 V osztó állások

és 3 V osztó állásoknál 20 MHz-ig és 3 V osztó állásoknál 20 MHz-ig

VSWR <1,2 l és Feszültségfokozatok:

llo dB 100 \*\* lo 30 = 100 11 300 50 mV 10 30 " 100 " 300 " lo M 20

az egyes sávokon belül folyamatosan szabályozható

#### 1.1 ÜZEMBEHELYEZÉS

### 1.11 Kicsomagolás

A külső ládából történt kiemelés után a ragasztások mentén az ITA pepirhurkolatot fel kell tépni. Igy a hullámpspir dobos hozaférhetővé válik, amelyet szintén a ragasztások mentén lehet felbontani. A gépmek a hullámpspirdobotból történt kiemelése után a légmentesen zárt /melegragasztott, hegesztett/ mlanyag hártya eltávolltántó és a készülék szuperior pepirhoritából kibontható. A krómozott, nikkelezett alkatrészekről a perafinpapirt legőngyőlve és a vékony vazelinréteget ronggyal, vattával letűrőlve, a készülék üsembehelyezhető.

### 1.12 Bekapcsolás

A készüléket 220 V hálózati feszültségre beállátva szállítja a gyár; 110 vagy 127 V feszültségre való átkupcsolás ugy történik, hogy a készülték hátolalala levő feszültségválasztó dugót /9/ a kivánt üzenfenzültségnek megfelelően kell beállítani. A készülék üzenbehelyezése előtt védőföldelést kell sikalmaz – ni. Erre a céire a készülék hálósztí csatlakozójához kivezetett harmadik /földelő/ veszték, velemint az előlapon levő földelő csavar szolsál.

# a készülék védőpöldelés nélküli használata életveszéles 1

Bekapcsolás előtt ellenőrizzük, hogy az előlapon talájható M műszer mutatója nullán áll-o. Az esetleg szükséges korrektó M a műszerházon található csevarral //. ábra/ bírésnik. Esek után a készüléket az 58 hálózsti kapcsolóval "ON" állásba kapcsol juk. A bekapcsolt állapotot a V19 jelzőlámpa /l. ábra/ kigyulladáse jelzí.

### 1. ÁLTALÁNOS LEIRÁS

A TR-0503 /EMG-1168./ tipusu szignálgenezátoz több alkalmazási területen használható, mint pl. HF. hidak táplálása, rádio-verőkészülékék behangolása, erősítök frekvenciamenetének felvétele stb. A laboratóriumi igényeket jobb specifikációval elégíti ki, mint az eddig forgalomba került szignálgenezátorsínk.

A frekvenciatartománya 50 kHz-től 65 MHz-ig terjed. Ezt a frekvenciatartományt a készűlék //1300;1 frekvenciaátfoggás/ 6 sávban fogja át. A közvetlen leclvasásu frekvencia skálása 1 % pontosságu.

A kimenőfeszültség 0,1  $\mu$ V és 3 V között  $\pm$  1 dB-en belül állandó és folyamatosan állitható 50 ohm terhelés mellett.

A beépített kristályhítelesítő segítgégével a készülék frekvenciája 7 MHz-ig 100 kHz-enként, 65 MHz-ig pedig 1 MHz-enként hitelesíthető, 0,01 % pontossággal.

Külön müszerrel olvasható le - a generátor modulációs sávszélességén belüli frekvenciákon - a moduláció mélysége.

A készüléknek nagypontosságu AM rendszere van, mely lehetővé teszi – 90 % mélységig – a modulációt kis torzitással és minimális káros frekvenciamodulációval. A késülék belsőleg modulálható 400 vagy 1000 Hz-en.

Kühső modulációs tartománya DC-20 kHz-ig terjed, a használt hordozó frekvendától függően. Ezenkivül kivülről modulálható, négyszőg vagy egyéb összetett hullámalakkal is.

|    |                                                                  | oldal |
|----|------------------------------------------------------------------|-------|
| -  | KARBANTARTÁS                                                     | 17    |
|    | 5.1 Kidobozolás                                                  | 17    |
|    | 5.2 Árnyékolóbura eltávolitása                                   | 17    |
|    | 5.3 Cafcsere                                                     | 18    |
|    | 5.4 Ellenőrző mérés                                              | 18    |
|    | 5.5 "PERCENT MODULATION" /M2/ muszer                             | 18    |
|    | 5.6 Prekvencia ellenőrzés                                        | 19    |
|    | 5.7 Szintingadozás ellenőrzése                                   | 20    |
|    | 5.8 Hibakeresés                                                  | 20    |
| 6. | SERVICE UTASITÁS                                                 |       |
|    | 6.1 Stabilizált tápegység                                        | 32    |
|    | 6.2 Hangfrekvenciás generátor                                    | 32    |
|    | 6.3 Kristalyhitelesit5                                           | 32    |
|    | 6.4 RF oszcillátor és RF erősitő behan-<br>golása                | 33    |
|    | 6.5 Meximális oszcillátor-áram beállitása                        | 33    |
|    | 6.6 Vivőhullám zérusra állitása                                  | 33    |
|    | 6.7 "PERCENT MODULATION" /M2/ müszer be-<br>állítása             | 34    |
|    | 6.8 Maximális vivőhullám beállitás és<br>modulációs null-állitás | 3/4   |
|    | 6.9 "VOLTS LEVEL" /M1/ müszer beállitása                         | 35    |
|    | 6, lo Cafcsere                                                   | 35    |
| 7. | ALKATRÉSZJEGYZÉK                                                 | 36    |
| 8. | RAJZOK                                                           |       |

# TARTALOMJEGYZÉK

|                                                             |      | OTGST |
|-------------------------------------------------------------|------|-------|
| 1. ÁTTALÁNOS LETRÁS                                         |      | 1     |
| 1.1 Üzembehelyezés                                          |      | 1/a   |
| 1.11 Kicsomagolás                                           |      | 1/a   |
| 1.12 Bekapcsolás                                            |      | 1/8   |
| 2. MÜSZAKI ADATOK                                           |      | 2     |
| 3. MÜKÖDÉSI ELV                                             |      | 6     |
| 3.1 A készülék főbb részei                                  |      | 6     |
| 3.2 A készülék működése                                     |      | 7     |
| 3.2.1 Rádiófrekvenciás oszcillátor és szin<br>szabályozó    | t-   | 7     |
| 3.2.2 Rádiófrekvenciás erősitő                              |      | 7     |
| 3.2.3 Rádiófrekvenciás visszacsatoló és sz<br>lyozó áramkör | abá- | 8     |
| 3.2.4 Differenciál erősitő                                  |      | 8     |
| 3.2.5 Modulátor                                             |      | 10    |
| 3.2.6 Feszültségosztó                                       |      | 10    |
| 3.2.7 Kristályhitelesitő                                    |      | 11    |
| 3.2.8 Hangfrekvenciás oszcillátor                           |      | 11    |
| 3.2.9 Moduláció                                             |      | 11    |
| 4. KEZELÉSI UTASITÁS                                        |      | 12    |
| 4.1 Kimenőszint                                             |      | 12    |
| 4.2 Frekvenciaskála                                         |      | 12    |
| 4.3 Kimeneti feszültségosztó                                |      | 13    |
| 4.4 A 3 V tartomány használata                              |      | 13    |
| 4.5 Külső moduláció                                         |      | 13    |
| 4.6 Szinkronizáló jel                                       |      | 14    |
| 4.7 "RF.B+" /B1/ biztositék                                 |      | - 14  |
| 4.8 Általános működés                                       |      | 14    |
| 4.9 Frekvencia-hitelesités                                  |      | 15    |
|                                                             |      | 16    |

### KRISTÁLYHITELESITÉSŰ LABORATÓRIUMI SZIGNÁLGENERÁTOR

Tip. TR-0503 /EMG-1168/

Gyártja:

EMG RLEKTRONIKUS MÉRŐKÉSZÜLÉKEK GYÁRA Budapest, XVI., Cziráky u. 26-32. Telex: 33-50 Telefon: 837-950

Forgalomba hozza:

MIGÉRT MÜSZER- ÉS IRODAGÉP ÉRTÉKESITŐ VÁLLALAT Villamos- és Elektronikus Mérőműszerek Osztálya Budapest, VI., Bajcsy-Zsilinszky út. 37.

"51-16-80-VFIpr.sz. 1976. április