

Classical Computing

Architecture:

- Binary System
- Von Neumann

Processing:

- Boolean Logic
- Algorithms (e.g., sorting, searching)

Limitations:

Complexity of certain problems (e.g., factorization)

Quantum Computing

Principles of Quantum Mechanics:

- Superposition
- Entanglement

Qubits

Quantum Gates and Operations

Quantum Algorithms (e.g., Deutsch-Jozsa algorithm)

Comparing Classical vs Quantum

Similarities:

- Both involve information processing
- Can perform mathematical operations and computations

Differences:

- Superposition and Entanglement in Quantum Computing
- Exponential parallelism vs sequential processing in Classical Computing
- Complexity of algorithms (e.g., factoring, optimization problems)

Classical Bit vs Quantum Bit

- A bit is the basic unit of information in classical computing
- Classical bits have two possible states: {0, 1}
- Determinant by nature

Classical Bit Vector Representation

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 & $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- A qubit is a basic unit of quantum information used in quantum computing
- Quantum bits utilize the superposition of classical bits.
- Nondeterministic by nature

Quantum Bit Vector Representation

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \alpha\begin{bmatrix}1\\0\end{bmatrix} + \beta\begin{bmatrix}0\\1\end{bmatrix}$$

 $\alpha = e^{i\chi}a, \beta = e^{i\phi}b$

- A qubit is indeterminate having no intrinsic value
- Qubit is determined by the superposition of the two state bits |0 and |1 and |1 and |1 are stated by the superposition of the two states bits |0 and |1 are stated by the superposition of the two states bits |0 and |1 are stated by the superposition of the two states bits |0 and |1 are stated by the superposition of the two states bits |0 and |1 are stated by the superposition of the two states bits |0 and |1 are stated by the superposition of the two states bits |0 and |1 are stated by the superposition of the two states bits |0 and |1 are stated by the superposition of the two states bits |0 and |1 are stated by the superposition of the two states by the superposition of the two states |0 are stated by the superposition of the two states |0 are stated by the superposition of the two states |0 are stated by the superposition of the stated by the superposition of the
- Metaphorically speaking the qubit is simultaneously in both the |0⟩ and |1⟩ state with a
 probability of being in the two distinct states given by terms

Qubit
$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \alpha\begin{bmatrix}1\\0\end{bmatrix} + \beta\begin{bmatrix}0\\1\end{bmatrix}$$

Qubit |**O**⟩ - IBM Quantum Composer

Qubit
$$|\alpha|^2 + |\beta|^2 = 1$$

Qubit |1> - IBM Quantum Composer

Classical Logic Gates

Quantum Gates

Operator	Gate(s)		Matrix
Pauli-X (X)	$-\mathbf{x}$		$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	$- \boxed{\mathbf{Y}} -$		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	$- \boxed{\mathbf{z}} -$		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\mathbf{H}$		$\frac{1}{\sqrt{2}}\begin{bmatrix}1&&1\\1&-1\end{bmatrix}$
Phase (S, P)	$-\mathbf{s}$		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~(\mathrm{T})$	$- \boxed{\mathbf{T}} -$		$\begin{bmatrix} 1 & & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled Not (CNOT, CX)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Controlled Z (CZ)		1	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
SWAP	$\supset \subset$	*	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Toffoli (CCNOT, CCX, TOFF)	<u> </u>		$ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0$

Example of quantum circuit

- Qubits don't represent 0 or 1
- Could be both 0 and 1 simultaneously (superposition)
- Think of quantum gates as changing probabilities through circuits

Example of quantum gates

Bloch Sphere

- Classical Logic Gate: Determines the state of 0 or 1 through the circuit
- Quantum Gate: Adjusts the probability of 0 or 1 coming through the circuit

Bloch Sphere

Conclusion

Classical Computing vs Quantum Computing

Quantum Algorithms - Deutsch-Jozsa

Classical Bits vs Quantum Bits

Qubit – Superposition

Classical Gates vs Quantum Gates

Block Sphere

