Exercise 6.6. Assume Charlie has prepared the two spins in the singlet state. This time, Bob measures τ_y and Alice measures σ_x . What is the expectation value of $\sigma_x \tau_y$?

What does this say about the correlation between the two measurements?

Recall that

$$|sing\rangle = \frac{|ud\rangle - |du\rangle}{\sqrt{2}}$$

The expectation value of $\sigma_x \tau_y$ is

$$\langle \sigma_x \tau_y \rangle = \langle sing | \sigma_x \tau_y | sing \rangle$$

Applying the τ_y operator first we have from Table 1 the following result.

$$\langle \sigma_x \tau_y \rangle = \langle sing | \sigma_x \left(\frac{-i|uu\rangle - i|dd\rangle}{\sqrt{2}} \right)$$

Then applying the σ_x operator we have

$$\langle \sigma_x \tau_y \rangle = \langle sing | \left(\frac{-i|du\rangle - i|ud\rangle}{\sqrt{2}} \right)$$

Hence

$$\langle \sigma_x \tau_y \rangle = \frac{1}{2} \left(\langle ud| - \langle du| \right) \left(-i|du \rangle - i|ud \rangle \right)$$

$$= \frac{1}{2} \left(-i \langle ud|ud \rangle + i \langle du|du \rangle \right)$$

$$= 0 \tag{1}$$

From (1) and the result $\langle \sigma_x \rangle = \langle \tau_y \rangle = 0$ given on page 174 we have

$$\langle \sigma_x \tau_y \rangle - \langle \sigma_x \rangle \langle \tau_y \rangle = 0$$

Hence the measurements σ_x and τ_y are uncorrelated.