A Book of Abstract Algebra (2nd Edition)

Chapter 32	, Problem 4EH
------------	---------------

Bookmark

Show all steps: ON

Problem

Use parts 1 and 3 to prove that the only automorphism of $\mathbb R$ is the identity function.

Step-by-step solution

Step 1 of 2

The objective is to prove that the only automorphism of \mathbb{R} is the identity function.

Comment

Step 2 of 2

Let $f: \mathbb{R} \to \mathbb{R}$ be an automorphism.

Since the only automorphism of \mathbb{Q} is the identity function $f(a) = a \quad \forall \ a \in \mathbb{Q}$.

Let x > 0.

$$f(x) = f(\sqrt{x}\sqrt{x})$$

$$= f(\sqrt{x})f(\sqrt{x})$$
 , since f is a homomorphism

$$=\left[f\left(\sqrt{x}\right)\right]^2>0$$

Let $\alpha > \beta$.

Therefore , $\alpha - \beta > 0$.

$$f(\alpha-\beta)>0$$

$$f(\alpha) - f(\beta) > 0$$

$$f(\alpha) > f(\beta).$$

Let $x \in \mathbb{R}$.

Let $\alpha, \beta \in \mathbb{Q}$ be such that $\alpha < x < \beta$ (*).

Now, $f(\alpha) < f(x) < f(\beta)$ implies $\alpha < f(x) < \beta$, since $f(a) = a \quad \forall \ a \in \mathbb{Q}$.

Thus, comparing with *, $f(x) = x \quad \forall x \in \mathbb{R}$.

This shows that the only automorphism of $\ \mathbb{R}$ is the identity function.

Comment