Effects of Aging and Domain Knowledge on Usability in a Diabetes Small Screen Device

André Calero Valdez Martina Ziefle Andreas Horstmann Daniel Herding Ulrik Schroeder

Agenda

Diabetes mellitus

disease, treatment, social impact

Usability of Diabetes Small Screen Devices

- design of an emprical experiment
- participants
- small screen device simulation
- measured performance criteria

Results

- Effects of Aging on Performance
- Effects of Domain Knowledge on Performance

Slide 2

Agenda

Diabetes mellitus

disease, treatment, social impact

Usability of Diabetes Small Screen Devices

- design of an emprical experiment
- participants
- small screen device simulation
- measured performance criteria

Results

- Effects of Aging on Performance
- Effects of Domain Knowledge on Performance

Slide 3

Diabetes mellius

Diabetes is a glucose metabolism dysfunction

- Main symptom: Insulin deficiency
 - Insulin: Glucose from blood -> cells
- High glucose levels cause vascular and neural damge
 - Secondary disorders: Blindness, Renal failure, Amputations, etc.

Type 1 Diabetes

Autoimmune mediated disease => absolute insulin deficiency

Type 2 Diabetes

 Obesity & Lack of physical exercise => continouus increasing cell insulin resistency => Collapse of insulin metabolism

Diabetes Treatment

Main Task - Controlling:

stable low blood glucose level

Means:

 low caloric diet, physical exercise, anti-diabetic drugs, subcutaneous insulin injections

Requirements:

Accurate measurment and tracking of patients health parameters

Usage of mobile electronic living assistants

customized therapy for highly individual disease patterns

Diabetes is expensive

Forecast for 2010 in Germany (German Diabetes Union 2007)

- 10 Million people affected
 - (1/8th of population)
- 20% of Germanys total health care expenditure
- 40 Billion Euros for secondary disorder treatment

Demographic changes will increase Diabetes incidence

- sedentary lifestyle and high caloric diet increases likelihood
- Diabetes occurance increases with age

Technical solutions become unevitable + Usability

- Diabetes patients rarely use digital diary functions (<10%)
- Effects of diahetes on usability is highly important!

Diabetes Conclusion

Demographic changes concur with higher Diabetes incidence

Secondary disorders

- caused by unsuccessul treatment
- are expensive

Highly individual disease patterns require individual therapy

Patients keep track of their health status -> paperbased

Bad usability of digital diaries

Better technical solutions are required

Focus on usability!

Agenda

Diabetes mellitus

disease, treatment, social impact

Usability of Diabetes Small Screen Devices

- design of an emprical experiment
- participants
- small screen device simulation
- measured performance criteria

Results

- Effects of Aging on Performance
- Effects of Domain Knowledge on Performance

Slide 8

Design of the experiment

Target of the experiment

- measure effects of aging and diabetes on usability
- user centered design approach of a small screen device

Important factors:

- learnability of the device
- one device for all diabetes types
- unbiased participants (no branded device)

Experimental Study (Overview)

Independent Variables

- 1. Participants were surveyed about (paper-based)
 - demographic facts
 - expertise with technology
 - domain knowledge of diabetes

Dependent Variables

- 2. Participants took part in a user test of a simulated device
 - five tasks (available as hardcopy throughout the experiment)
 - Performance was measured along the way
- 3. Participants ranked the Percieved Ease of Use and Percieved Usefulness of the device.

User Diversity and Participants

Diabetes patients range from young kids to the elderly Participants for user study selecteded prototypically

Best case patients - "healthy diabetics"

Group of 23 participants (16 female, 7 male)

Age group

Dependent Variables

Assessment of Domain Knowledge

- survey knowledge of four key health factors
 - blood sugar
 - HbA1c
 - blood pressure
 - body fat percentage

Assessment of Technical Experience

- Survey of Percieved Ease of Use (PEU) and Usage Frequency (UF)
 - for everyday technology, mobile phone, medical technology

Ranking on a Six-Point-Likert-Scale

Relationship of expertise and age

Highly significant correlation between technical expertise and age

everyday technology and mobile phones

No significant correlation

- ago and appartice in modical tachnology/domain knowledge

Diabetes Living Assistant

Self-developed user-centered Prototype

- JavaME based
 - PC/MAC/Mobile Phones, PDAs
 - logging function via Jacareto/CleverPHL
- Screen design similar to paper based solutions
- five core functions
 - Diabetes diary, BE-Calculator, Health-Pass, Medicine, Value-Plotter

Rating user performance

Five performance criterias were measured

- total amount of time
- total success rate (in percent)
- total steps
- detour steps
- time per step (navigational pace)

Performance measures are corrected against success rate

prevents overrating participants that give up early, taking less time.

Agenda

Diabetes mellitus

disease, treatment, social impact

Usability of Diabetes Small Screen Devices

- design of an emprical experiment
- participants
- small screen device simulation
- measured performance criteria

Results

- Effects of Aging on Performance
- Effects of Domain Knowledge on Performance

Slide 16

Hypotheses

Older users are outperformed by younger users

- higher technical expertise
- effects of aging on perfomance
 - (mental processing speed, psychomotor-skills)

Diabetes patients outperform non-diabetics

Domain Knowledge could help in construction of mental models

Diabetes Type 1 patients outperform Diabetes Type 2 patients

- higher domain knowledge
 - comprehension of the disease is critical for success of long term treatment

Performance Results

Bivariate Correlations

		Success Rate	Total steps	Detour Steps	Total Time	Time per step
Age		-0.664**	0.616**	0.472*	0.231	0.693**
Expertise technology	with	-0.449*	0.330	0.244	0.476*	0,320
Expertise medical technol	with logy	0.251	-0.266	-0.146	0.101	-0.342
Mobile Expertise	Phone	-0.339	0.295	-0.006	0.393	0.301
Health Status		-0.179	0.342	0.181	-0.102	0.421
Domain knowledge		-0.53	-0.167	0.097	0.314	-0.244

Effects of Aging

Effects of Aging

Effects of Health and Domain Knowledge

Analysis of Covariance

- Domain Knowledge median split groups
- Different health status types
- ► fails to reach significance

Device Acceptance

Correlations between Acceptance, Expertise, Age and Success

	Age	DK	HS	TE	MTE	MBE	Success
Acceptance	-0.460*	0.200	0.027	0.276	0.409	0.287	-0.507*
*p < 0.05		3. 2 3 3	0.027	0.2.	0.107	0.20.	0.207

- Low Value for Acceptance = Good acceptance rating
 - DK = Domain Knowledge, HS = Health Status, TE = Technical Expertise, MTE =
 Medical Technical Expertise, MBE = Mobile Phone Expertise

Linear Regression

- ▶ 65% of variance are explained by age and success rate
 - success rate stronger predictor than age (2x)

Conclusion

Our studies confirmed earlier research

- older users make more navigational errors
- older users have a slower navigation pace

Domain knowledge and diabetes type might have an impact on usability

- elderly users might use DK to make up for effects of aging
- further research is required

Successful initial usage of the device => better acceptance

Thank you for your attention!

Example Tasks

Digital-Diary Task:

 After finishing configuration of your device, daily blood glucose measurements can be stored in the devices digital diary. Please enter the following measurement into the digital diary: This morning 9:20 am: Blood Glucose level 123, consumed 3 bread units, no correction of insulin dosage, no basal-insulin dosage, no hypo- or

ketoacidosis measured

BE-Calculator Task:

 You are hungry and want to eat some fish sticks (200grams) and have a glass of apple juice (200ml). Please calculate the bread units for this meal using the BE-Calculator of the device

Example Screens

Example Screen: Learnability

