Equivalent Statements

• The statements $\neg(P \land Q)$ and $(\neg P) \lor (\neg Q)$ are logically equivalent, since $\neg(P \land Q) \leftrightarrow (\neg P) \lor (\neg Q)$ is always true.

Р	Q	⊣P	¬Q	¬(P∧Q)	(¬P)∨(¬Q)	¬(P∧Q)↔(¬P)∨(¬Q)
Т	Т	F	F	F	F	Т
Т	F	F	Т	Т	Т	Т
F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т	Т

RYS_DSGT_Lect_3_4_revi...

Tautology by truth table

р	q	$\neg p$	$p \vee q$	$\neg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \rightarrow q$
Т	Т	F	Т		
Т	F	F	Т		
F	Т	Т	Т		
F	F	Т	F		

56

Tautology by truth table

p	q	$\neg p$	$p \vee q$	$\neg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \rightarrow q$
Т	Т	F	Т	F]
т	F	F	Т	F	
F	Т	Т	Т	Т	
F	F	т	F	F	

57

Tautology by truth table

p	q	$\neg p$	$p \vee q$	$\neg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \rightarrow q$
Т	Т	F	Т	F	Т
Т	F	F	Т	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	F	F	Т

58

Tautologies and Contradictions

- a proposition P is called a contradiction if it contains only F in the last column of its truth table or, in other words, if it is false for any truth values of its variables.
- · A contradiction is a statement that is always

Examples: R∧(¬R)

 $\forall \neg (\neg (P \land Q) \leftrightarrow (\neg P) \lor (\neg Q))$

· The negation of any tautology is a contradiction, and the negation of any contradiction is a

59

Tautology by truth table

p	q	$\neg p$	$p \vee q$	$\neg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \rightarrow q$
T	Т	F	Τ	F	T
Т	F	F	Τ	F	Î- T
F	Т	Т	Т	T	T
F	F	T	F	F	T

Monoid

Ex. Show that the set 'N' is a monoid with respect to multiplication.

Solution: Here, N = {1,2,3,4,.....}

- 1. Closure property: We know that product of two natural numbers is again a natural number.

i.e., $a.b \in N$ for all $a,b \in N$

- ... Multiplication is a closed operation.
- 2. Associativity: Multiplication of natural numbers is associative.

i.e., (a.b).c = a.(b.c) for all a,b,c $\in N$

3. <u>Identity</u>: We have, 1 ∈ N such that
 a.1 = 1.a = a for all a ∈ N.
 ∴ Identity element exists, and 1 is the identity element.

Monoid

Ex. Show that the set 'N' is a monoid with respect to multiplication.

- Solution: Here, N = {1,2,3,4,.....}
 - Closure property: We know that product of two natural numbers is again a natural number.
 - i.e., $a.b \in N$ for all $a,b \in N$
 - ... Multiplication is a closed operation.
 - 2. Associativity: Multiplication of natural numbers is associative.

i.e.,
$$(a.b).c = a.(b.c)$$
 for all $a,b,c \in N$

_3. Identity: We have, 1 ∈ N such that

$$a.1 = 1.a = a$$
 for all $a \in N$.

∴ Identity element exists, and 1 is the identity element.

Hence, N is a monoid with respect to multiplication.

Subsemigroup & submonoid Subsemigroup : Let (S, *) be a semigroup and let T be a

Subsemigroup : Let (S, *) be a semigroup and let T be a subset of S. If T is closed under operation * , then (T, *) is called a subsemigroup of (S, *).

Ex: (N, .) is semigroup and T is set of multiples of positive integer m then (T,.) is a sub semigroup.

Submonoid: Let (S, *) be a monoid with identity e, and let T be a non- empty subset of S. If T is closed under the operation * and e ∈ T, then (T, *) is called a submonoid of (S, *).

Inverse Element

- Let (S, *) be an Algebraic Structure and let e be the identity element of S. An element a is said to be <u>left invertible w.r.t. * if</u> there exists an element b in S such that b * a = e and b is called the <u>left inverse</u> of a
- Similarly an element a is said to be right invertible w.r.t. * if there exists an element c in S such that a * c = e and c is called the right inverse of a
- If a is both left and right invertible then we say that a is invertible. If * is an associative operation, then the inverse of a, if it exists, is unique and is denoted by a^{-1}
- The identity element e is its own inverse e² = e

To show that the inverse of a is unique. Let us assume that x and y are two inverses of a. Then

$$y = y * e$$

= $y * (a * x)$
= $(y * a) * x$
= $e * x$
= x

Thus the two inverses are equal, i.e. inverse of a is unique and we denote it as a-1

Group

A Group < G, * > is an algebraic system in which * on G satisfies four condition

Closure Property

For all
$$x, y \in G$$

 $x * y \in G$

Associative Property

For all
$$x, y, z \in G$$

$$x * (y * z) = (x * y) * z$$

Existence of Identity element

There exists an element $e \in G$ such that for any $a \in G$ x * e = x = e * x

Existence of Inverse Element

For every $x \in G$,there exists an element denoted by $a^{-1} \in G$ such that

$$x^{-1} * x = x * x^{-1} = e$$

Abelian Group

A Group < G, * >in which the operation * is commutative is called abelian Group i.e. $\forall a,b \in G$, a*b=b*a

Example

- Z, + > is Abelian Group
- 2. < Q, + > is abelian Group

Group Properties

Theorem: The identity element in a group is unique.

```
Proof: Suppose e and e' are two identity elements of a group (G,*)

... e and e' are the elements of G

If e is the identity element, then

e * e' = e' .....(1)

If e' is the identity element, then

e * e' = e .....(2)

From eq. (1) and (2),

e = e'
```

Hence the identity element of a group is unique.

Theorem 2 : Inverse of each element of a group < G , * > is unique

b. C EG.

Proof:

⇒ Let a be any element of G and e the identity of G

⇒ Suppose b and c are two different inverse of a in G.

 \Rightarrow a * b = e = b * a (if b is an inverse of a)

 \Rightarrow a * c = e = c * a (if c is an inverse of a)

 \Rightarrow Now, b = b * e

= b * (a * c)

= (b * a) * c

(- -, -

= 6 * c = c

Thus a has unique inverse

Theorem 3: if a-1 is the inverse of an element a of group < G, * >then $(a^{-1})^{-1} = a$

 \Rightarrow $(a^{-1})^{-1} * (a^{-1} * a) = (a^{-1})^{-1} * e$

 \Rightarrow ((a⁻¹)⁻¹ * a⁻¹) * a = (a⁻¹)⁻¹

 \Rightarrow e * a = (a⁻¹)⁻¹

 \Rightarrow (a⁻¹)⁻¹ = a

```
Cancellation Property: if a , b and c be any three elements
  of a group < G, • > then
 ab = ac \Rightarrow b = c left cancellation
```

 $ba = ca \Rightarrow b = c \text{ right cancellation}$ Proof:

$$\Rightarrow$$
 Let $a\in G\,$ and also $a^{\text{-}1}\in G\,$

⇒
$$aa^{-1} = e = a^{-1}a$$

⇒ where e is identity of G

$$\Rightarrow$$
 Now , ab = ac

$$b = ac$$

$$\Rightarrow$$
 $a^{-1}(ab) = a^{-1}(ac)$

$$\Rightarrow (a^{-1} a) b = (a^{-1} a) c$$

$$\Rightarrow$$
 e.b=e.c

⇒ b = c

$$\Rightarrow$$
 similarly, ba = ca
 \Rightarrow b = c

only are idempotent in growthat

Schwent a * a = a. & is e

Ex. If (G, *) is a group and $a \in G$ such that a * a = a, then show that a = e, where e is identity element in G.

Proof: Given that,
$$a * a = a$$

 $\Rightarrow a * a = a * e$ (Since, e is identity in G)
 $\Rightarrow a = e$ (By left cancellation law)

Hence, the result follows.

Note:
$$a^2 = a * a$$

 $a^3 = a * a * a$ etc.

Ex. In a group (G, *), if
$$(a * b)^2 = a^2 * b^2 \quad \forall a,b \in G$$

then show that G is abelian group.

Proof: Given that
$$(a * b)^2 = a^2 * b^2$$

Hence, G is abelian group.

$$\Rightarrow$$
 (a * b) * (a * b) = (a * a)* (b * b)

$$\Rightarrow$$
 a *(b * a)* b = a * (a * b) * b (By associative law)
 \Rightarrow (b * a)* b = (a * b) * b (By left cancellation law)

$$\Rightarrow$$
 (b * a) = (a * b) (By right cancellation law)