Graph and discrete structure

Myriam Preissman (GSCOP) - 4 lectures. *Lecture 2*

Reminder

- $\chi(G)$.
- $\omega(G)$.
- Lower bound : $\chi(G) \geq \omega(G)$.
- A proper coloring of V(G).
- Decide if $\chi(G)=2$ is easy.
- $\chi(G)=k, k\leq 3$ is hard.

A gready exponential algorithm.

Course

From the greedy algorithm we can deduce an upperbound:

$$\chi(G) \leq \Delta(G) + 1$$

With : d(v)=# edges incident to v.

$$\Delta(G) = \max d(v), \forall v \in V$$

gready alg. \rightarrow k-coloring.

$$\Delta(G) \ge d(G) \ge k - 1$$

 $\Rightarrow k \le \Delta(G) + 1$

Property

Graph $\chi(G)=\omega(G)=\Delta(G)+1$ if G is a complete graph.

Exercice

 G,\exists ordering of V s.t. greedy seq. alg provide a $\chi(G)$ -coloring ?

 \Rightarrow always a good order.

Definition and Theorem

Definition: Simplicial

 $v \in V$ is said simplicial if N(G) is a clique with $N(v) = \{w \in V, vw \in E\}$.

In other words a graph G, a vertex x is simplicial if its neighbourhood N(x) induces a complete $(K_{n,n})$ subgraph of G.

 v_1, v_2, \dots, v_n is a simplicial ordering if v_i is simplicial in G[i], with $v_i = \{v_1, v_2, \dots, v_n\}$.

Definition: Neighborhood

$$N(G) = \Gamma_G\left(v
ight) = \left\{u \in V : uv \in E
ight\}$$

The *neighbourhood* of a vertex v in a graph G is the induced subgraph of G consisting of all vertices adjacent to v.

Definition: Induced subgraph

G=(V,E) and $S\subset V$. Then the induced subgraph G[S] is the graph whose vertex set is S and whose edge set consists of all of the edges in E that have both endpoints in S.

Definition: Subgraph

G'(V',E') is a subgraph of G if $V'\subseteq V$ and $E'\subseteq E.$

G[V] if $E'=\{e\in E,\ both\ extremities\ of\ e\ are\ in\ V'\}.$

 G^{\prime} is an inducted subgraph of G if $G[V^{\prime}].$

Theorem (a)

if v_1, v_2, \cdots, v_n is a simplicial ordering of V then the greedy seq-alg provides a $\chi(G)$ -coloring.

Proof(a)

Assume you get a k-coloring.

Characterization (b)

 $\exists \text{ simplicial ordering} \Leftrightarrow \forall \ V' \subseteq V, \ G[V'] \text{ contains at least one simplicial vertex}.$

Proof (b)

 \Rightarrow

 v_1, v_2, \cdots, v_n simplicial ordering of $V.V' \subseteq V$.

$$V'\subseteq V_j$$
 with $j=\max\{i\ni v_i\in V'\}.$

if v simplicial in $G[V_j], v_j \ simplicial \ G[V'].$

 v_i is simplicial in $G[v_i], v_i = \{v_1, \cdots, v_i\}$.

v_n	G
v_{n-1}	G_{n-1}

Start with V.

- Choose a simplicial vertex v_n in G[V].
- Choose a simplicial vertex v_{n-1} in $G[V-v_{n-1}]$.
- ullet Choose a simplicial vertex v_i in ...
- [...]
- Choose a simplicial vertex v_1 in ...

Characterization (c)

G has a simplicial ordering $\Rightarrow G$ has no chordless cycle.

 $C_k, \ k \geq 4 =$ chordal graphs.

Definition: Chordless Cycle

A chordless cycle of a graph G is a graph cycle of length at least four in G that has no cycle chord (i.e., the graph cycle is an induced subgraph).

Definition: Chordal Graph

A chordal graph is a simple graph possessing no chordless cycles. A chordless cycle is sometimes also called a graph hole (Chvátal).

Definition: Cycle Chord

A chord of a graph cycle C is an edge not in the edge set of C whose endpoints lie in the vertex set C.

Lemma (d)

We may assume that G is connected.

 $G \neq clique \Rightarrow \exists clique \ K \subseteq V \ni G - K$ is not connected. (clique subset).

G
eq clique, $\exists x,y \in V \ni xy \notin E$. $G - (V \setminus \{x,y\})$ is not connected. $G - (V \setminus \{x,y\})$ is a separation of G.

 \exists a minimal separation of G.