MATH 520 NON-HOMEWORK 11 MATH 520 SPRING 2017

This problem set is for practice only.

Problem 1

Find an orthogonal basis for the column space of $\begin{bmatrix}
-1 & 6 & 6 \\
3 & -8 & 3 \\
1 & -2 & 6 \\
1 & -4 & -3
\end{bmatrix}$

Problem 2

Find the 5×5 matrix A such that the linear transformation $T(\mathbf{x}) = A\mathbf{x}$ is the orthogonal projection onto the line

spanned by
$$\begin{bmatrix} 4 \\ -1 \\ 2 \\ 3 \\ 1 \end{bmatrix}$$
.

Problem 3

True or false:

- If *W* is a subspace of \mathbb{R}^n and $\mathbf{v} \in W \cap W^{\perp}$, then $\mathbf{v} = 0$.
- If an $n \times p$ matrix U has orthonormal columns, then UU^T is the identity matrix
- If the columns of an $n \times p$ matrix U are orthonormal, then $UU^T\mathbf{y}$ is the orthogonal projection of \mathbf{y} onto the column space of U.
- If $y \in W$, then the orthogonal projection of y onto W is y.

Problem 4

Suppose that W is a subspace of \mathbb{R}^n . Show that dim W + dim $W^{\perp} = n$, as follows: (i) begin with a basis of W and extend it to a basis of \mathbb{R}^n , and (ii) use that basis of \mathbb{R}^n to come up with a orthogonal basis for W and an orthogonal basis for W^{\perp} .

Problem 5

Recall for any $m \times n$ matrix A, the row space of A is the orthogonal complement of the null space of A. Show that the linear transformation T: Row $A \to \operatorname{Col} A$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is bijective (!).