Housing Prices

Load required libraries for models that we are testing

Load the data sets

This loads up the data sets dfTraining and dfAnalysis so we can use them to create models

```
rm(list = ls())
df <- read.csv("dfTrain1.csv")</pre>
```

Decision Tree

Create a decision tree model

Decision Tree plot

```
# Visualize the decision tree with rpart.plot
rpart.plot(tree, box.palette="RdBu", shadow.col="gray", nn=TRUE)
```

Warning: labs do not fit even at cex 0.15, there may be some overplotting

Linear Regression

Regression Model

```
# Linear Regression (using variables that are high correlation)
reg <- lm(formula = SalePrice ~ OverallQual + YearBuilt + YearRemodAdd + TotalBsmtSF +
              GrLivArea + GarageCars + BsmtQual_Ex + KitchenQual_Ex, data = df)
# Model Performance
print(reg)
##
## Call:
## lm(formula = SalePrice ~ OverallQual + YearBuilt + YearRemodAdd +
##
       TotalBsmtSF + GrLivArea + GarageCars + BsmtQual_Ex + KitchenQual_Ex,
##
       data = df)
##
## Coefficients:
##
      (Intercept)
                      OverallQual
                                         YearBuilt
                                                      YearRemodAdd
                                                                       TotalBsmtSF
##
       -1.004e+06
                        1.473e+04
                                         2.448e+02
                                                         2.442e+02
                                                                          2.231e+01
##
        {\tt GrLivArea}
                       GarageCars
                                       BsmtQual_Ex KitchenQual_Ex
        4.999e+01
                        1.323e+04
                                         3.708e+04
                                                         3.593e+04
##
```

```
r2(reg)
## # R2 for Linear Regression
                                         R2: 0.802
##
                    adj. R2: 0.801
##
model_performance(reg)
## # Indices of model performance
##
                                                                                                                            R2 | R2 (adj.) |
## AIC
                                                                                       BIC |
                                                                                                                                                                                                                        RMSE |
                                                                                                                                                                                                                                                                      Sigma
## 34742.881 | 34795.743 | 0.802 |
                                                                                                                                                                 0.801 | 35328.983 | 35438.380
#Visualization of model checks
check_model(reg)
                                                                                                                                                                                                    Homogeneity of Variance
        Linearity
                                                                                                                                                                                                     Reference line should be flat and horizontal
        Reference line should be flat and horizontal
                                                                                                                                                                                                      Std. residu
                         250000
                     -250000
                     -500000
                                                                                                                               4e+05
                                                                                                                                                                                                                                    0e+00
                                                     0e+00
                                                                                          2e+05
                                                                                                                                                                    6e+05
                                                                                                                                                                                                                                                                         2e+05
                                                                                                                                                                                                                                                                                                              4e+05
                                                                                                                                                                                                                                                                                                                                                   6e+05
                                                                                                                                                                                                                                                                                Fitted values
                                                                                                 Fitted values
        ©ollinearity
                                                                                                                                                                                                     Influential Observations
        Higher bars (>5) indicate potential collinearity issues \stackrel{\omega}{\text{Points}} should be inside the contour lines
                                    10.0
7.5
5.0
0.0
                                                                                                                                                                                                      Residu
                                                                                                                                                                                                                                                                                                                                    0.9
       ariance Inflation
                                                                                                                                                                                                                          50
                                                                                                                                                                                                                                            692
                                                                                                                                                                                                                                                                                   1183
                                                                                                                                                                                                                      0
-50
                                                                                                                                                                                                                                                                                524
                                                                                                                                                                                                                                                                                                                                    0.9
                                                                                                                                                                                                      Std.
                                         Bsmt Gaza delicia chea a vezza delicia chea a company delicia chea a
                                                                                                                                                                                                                                    0.00
                                                                                                                                                                                                                                                                                0.05
                                                                                                                                                                                                                                                                                                                            0.10
```


Leverage (h_{ii})

Neural Network

Adding a neural network model

```
## # weights: 111
## initial value 56997660208859.257812
## final value 9208920397497.658203
## converged
```