

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет» РТУ МИРЭА

Институт кибернетики Кафедра высшей математики

ОТЧЁТ ПО Научно-Исследовательской Работе (указать вид практики)

Тема практики: Классификация мошеннических операций с банковскими картами на основе набора данных «Credit Card Fraud Detection» (kaggle.com) приказ университета о направлении на практику 490 – С от 09.02.2021 г.

Отчет представлен к рассмотрению:

Студент группы КМБО-01-20

Mux

Малов И.М. (расшифровка подписи) «♥» шска 2021 г.

Отчет утвержден. Допущен к защите:

Руководитель практики от кафедры - OT

Петрусевич Д.А. (расшифровка подписи) « 3» июме 2021 г.

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет» РТУ МИРЭА

ЗАДАНИЕ НА Научно-Исследовательскую Работу

Студенту 1 курса учебной группы КМБО-01-20 института кибернетики Малову Илье Максимовичу

(фамилия, имя и отчество)

Место и время практики: Институт кибернетики, кафедра высшей математики

Время практики: с «<u>09</u>» февраля <u>2021</u> по «<u>31</u>» мая <u>2021</u>

Должность на практике: практикант

1. ЦЕЛЕВАЯ УСТАНОВКА: изучение основ анализа данных и машинного обучения

2. СОДЕРЖАНИЕ ПРАКТИКИ:

- 2.1 Изучить: литературу и практические примеры по темам: 1) построение линейной регрессии, 2) использование метода главных компонент, 3) поиск и устранение линейной зависимости в данных, 4) основы нормализации данных, 5) методы классификации и кластеризации («решающее дерево», «случайный лес», «к ближайших соседей»).
- 2.2 Практически выполнить: 1) снижение размерности исходных задач при помощи метода главных компонент при возможности; построение линейной регрессии для некоторого параметра, исключение регрессоров, не коррелирующих с объясняемой переменной; решение задачи классификации или кластеризации на основе открытого набора данных с ресурса kaggle.com
- 2.3 Ознакомиться: с применением метода главных компонент; методов классификации («решающего дерева», «случайного леса»); методов кластеризации («k ближайших соседей»); построением модели линейной регрессии.
- **3.ДОПОЛНИТЕЛЬНОЕ ЗАДАНИЕ:** классификация мошеннических операций с банковскими картами на основе набора данных «Credit Card Fraud Detection» (kaggle.com).
- **4. ОГРАНИЗАЦИОННО-МЕТОДИЧЕСКИЕ УКАЗАНИЯ:** Построить несколько бинарных классификаторов. Какие параметры вносят наибольший вклад при определении мошеннических операций? Являются ли мошеннические операции выбросами?

Заведующий кафедрой высшей математики		Ю.И.Худак
«09» февраля 2021 г.	1	

СОГЛАСОВАНО

Руководитель практики от кафедры:

«09» февраля 2021 г.

Задание получил: «09» февраля 2021 г.

(подпись)

(Петрусевич Д.А.) (фамилия и инициалы)

My

(Малов И.М.) (фамилия и инициалы)

инструктаж проведен:

Вид мероприятия	ФИО ответственного, подпись, дата	ФИО студента, подпись, дата	
Охрана труда	Петрусевич Д.А.	Малов И.М.	
	«09» февраля 2021 г.	Мир «09» февраля 2021 г.	
Техника безопасности	Петрусевич Д.А.	Малов И.М.	
	«09» февраля 2021 г.	«09» февраля 2021 г.	
Пожарная безопасность	Петрусевич Д.А.	Малов И.М.	
	«09» февраля 2021 г.	«09» февраля 2021 г.	
Правила внутреннего	Петрусевич Д.А.	Малов И.М.	
распорядка	«09» февраля 2021 г.	«09» февраля 2021 г.	

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет» РТУ МИРЭА

РАБОЧИЙ ГРАФИК ПРОВЕДЕНИЯ Научно-Исследовательской Работы

студента Малова И.М. 1 курса группы КМБО-01-20 очной формы обучения, обучающегося по направлению подготовки 01.03.02 «Прикладная математика и информатика»,

профиль «Математическое моделирование и вычислительная математика»

Неделя	Сроки выполнения	Этап	Отметка о выполнении	
1	09.02.2021	Выбор темы НИР. Пройти инструктаж по технике безопасности	V	
1	09.02.2021	Вводная установочная лекция	V	
1	13.02.2021	Построение и оценка парной регрессии с помощью языка R	V	
2	20.02.2021	Построение и оценка множественной регрессии с помощью языка R	V	
3 27.02.2021		Построение доверительных интервалов. Обработка факторных переменных. Мультиколлинеарность		
4	06.03.2021	Гетероскедастичность	V	
5	13.03.2021	Классификация	V	
7 27.03.2021		Кластеризация. Предобработка данных	V	
9	10.04.2021	Метод главных компонент	V	
17	05.06.2021	Представление отчётных материалов по НИР и их защита. Передача обобщённых	V	

материалов на кафедру для архивного хранения	
Зачётная аттестация	

Содержание практики и планируемые результаты согласованы с руководителем практики от профильной организации.

Согласова	но:
-----------	-----

Заведующий кафедрой

/ ФИО /

Худак Ю.И.

Руководитель практики

от кафедры

/ ФИО /

Петрусевич Д.А.

Обучающийся

lle

/ ФИО /

Малов И.М.

Оглавление

ЗАДАЧА 1	
ЗАДАЧА 2.1	
ЗАДАЧА 2.2	
ЗАДАЧА 3	8
ЗАДАЧА 4	
ЗАДАЧА 5	
ЗАКЛЮЧЕНИЕ	
СПИСОК ЛИТЕРАТУРЫ	20
ПРИЛОЖЕНИЯ	21

Задача 1

Условие

Набор данных: swiss.

Объясняемая переменная: *Education*. Регрессоры: *Fertility*, *Examination*.

- 1. Оцените среднее значение, дисперсию и СКО переменных, указанных во втором и третьем столбце.
- 2. Постройте зависимости вида y = a + bx, где y объясняемая переменная, x pегрессор (для каждого варианта по две зависимости).
- 3. Оцените, насколько «хороша» модель по коэффициенту детерминации R²?
- 4. Оцените, есть ли взаимосвязь между объясняемой переменной и объясняющей переменной (по значению р-статистики, «количеству звездочек» у регрессора в модели).

Решение

- 1. Для оценок среднего значения ,дисперсии и СКО будем использовать команды mean, var и sd соответственно .В результате выполнения команд имеем:
 - Среднее значение Education = 10.98
 - Среднее значение *Fertility* = 70.14
 - Среднее значение Examination = 16.49
 - Дисперсия *Education* = 92.46
 - Дисперсия *Fertility* = 156.04
 - Дисперсия Examination = 63.65
 - CKO *Education* = 9.62
 - CKO *Fertility* = 12.49
 - CKO Examination = 7.98
- 2. Для построения линейной зависимости используем команду lm. В результате выполнения команды для первой и второй модели имеем:
 - 1. y = 46.8179 0.5109x для *Education* ~ *Fertility*
 - 2. y = -2.9015 + 0.8418x для *Education* ~ *Examination*
- 3. Чтобы посмотреть R^2 воспользуемся командой summary. В результате её выполнения видим, что R^2 у первой модели = 0.44 это значит, что модель 1 объясняет 44% колебаний переменной *Education* меньше половины, но довольно неплохо для одного регрессора. Для второй модели R^2 = 0.49 –аналогично в сравнении с первой моделью.
- 4. Р-статистика также показывается при выполнении команды summary. Для первой модели имеем очень низкие показатели р-статистики (3 звёздочки у каждого из параметров), что означает наличие сильной взаимосвязи между параметрами и объясняемой переменной. У второй модели регрессор *Examination* не имеет звезд у первого параметра, то есть Р-статистика показывает относительно большие значения, и имеет 3 звезды у второго параметра- Р-статистика имеет относительно малые значения

Код решения задачи и сведения о проверенных моделях приведены в Приложении к задаче 1.

Выводы

В первой модели (*Education* ~ *Fertility*) есть причинно-следственная связь между поведением объясняемой переменной *Education* и регрессором *Fertility*(связь отрицательная), но она нелинейная и/или требует дополнительных регрессоров. Во второй модели (*Education* ~ *Examination*) причинно-следственная связь между объясняемой переменной *Education* и регрессором *Examination* прослеживается лучше, но она также не линейна и требует дополнительных регрессоров(связь положительная).

Задача 2.1

Условие

Набор данных: swiss.

Объясняемая переменная: Examination. Регрессоры: Fertility, Catholic, Agriculture.

- 1. Проверьте, что в наборе данных нет линейной зависимости (построить зависимости между переменными, указанными в варианте, и проверить, что R^2 в каждой из них невысокий). В случае, если R^2 большой, один из таких столбцов можно исключить из рассмотрения.
- 2. Постройте линейную модель зависимой переменной от указанных в варианте регрессоров по методу наименьших квадратов (команда lm пакета lmtest в языке R). Оценить, насколько хороша модель, согласно: 1) R², 2) р-значениям каждого коэффициента.
- 3. Введите в модель логарифмы регрессоров (если возможно). Сравнить модели и выбрать наилучшую.
- 4. Введите в модель всевозможные произведения пар регрессоров, в том числе квадраты регрессоров. Найдите одну или несколько наилучших моделей по доле объяснённого разброса в данных R2.

Решение

- 1. Проверим отсутствие зависимости между регрессорами с помощью команды lm,и рассмотрим значения R^2
 - $Fertility \sim Catholic R^2 < 0.22 =>$ зависимости нет
 - $Fertility \sim Agriculture R^2 < 0.13 =>$ зависимости нет
 - $Catholic \sim Agriculture R^2 < 0.17 =>$ зависимости нет

Во всех случаях видно, что $R^2 < 0.25 = >$ регрессоры можно использовать вместе.

- 2. Построим модель, используя команду lm и воспользуемся командой summary. В результате её выполнения видим:
 - 1. $R^2 = 0.69$
 - 2. У *Catholic* ненадёжное значение р-статистики (1 звезда)

Уберём из модели регрессор *Catholic*, как наименее значимый, и проверим, как изменится R²:

- $R^2 = 0.66$ изменился на 0.03
- $R^2 = 0.42$ изменение на 0.24 = > регрессор *Agriculture* лучше не исключать
- $R^2 = 0.47$ изменение на 0.19 = регрессор *Fertility* лучше не исключать

Остановимся на $model = lm(Examination \sim Fertility + Agriculture + Catholic, data)$. Она имеет достаточно высокий \mathbb{R}^2 , и почти отличные показатели по p-статистике.

3. Введем в модель логарифмы для поиска наиболее хорошей комбинации регрессоров, не забывая проверять отсутствие линейной зависимости командой vif.Подробный код поиска наилучшей модели приведён в Приложении 1.

Лучшая модель, даже по сравнению с исходной $model = lm(Examination \sim Fertility + I(log(Agriculture)) + Catholic, data)$

4. Попробуем тогда ввести в модель всевозможные произведения пар регрессоров, не забывая проверять отсутствие линейной зависимости. Подробный код поиска наилучшей модели приведён в Приложении 2.1.

Наилучшей среди моделей оказалась $model = lm(Examination \sim Fertility + I(Agriculture^2) + Catholic + I(log(Agriculture)), data), у которой <math>R\sim0.71$, но которая имеет посредственную рстатистику.

Задача 2.2

Условие

Набор данных: swiss.

Объясняемая переменная: *Examination*. Регрессоры: *Fertility*, *Catholic*, *Agriculture*.

Для зависимости, построенной при решении практического задания №2, оцените:

- 1. Доверительные интервалы для всех коэффициентов в модели, р = 95%.
- 2. Сделайте вывод о отвержении или невозможности отвергнуть статистическую гипотезу о том, что коэффициент равен 0.
- 3. Доверительный интервал для одного прогноза (р = 95%, набор значений регрессоров выбираете сами).

Решение

Имеем следующую модель: model = lm (Examination ~ Fertility + Catholic + Agriculture, data)

Таблица 1. Характеристики модели зависимости параметра: *Examination* от параметров *Fertility*, *Catholic*, *Agriculture* в наборе данных Swiss.

Coefficients:

5. Оценим доверительные интервалы для всех коэффициентов в модели (для p=95%):

Число степеней свободы в модели df = 43 - 4 = 39, и t-критерий Стьюдента тогда равен 2.022691. Так как нам известны стандартные ошибки мы можем найти доверительные интервалы по формуле [x-at;x+at],где x-значения Estimate, a-значения Std.Error, и t=2.022691.

- Доверительный интервал свободного коэффициента: [35.3774, 51.9872]
- Доверительный интервал *Fertility*: [-0.3727, -0.1189]
- Доверительный интервал *Catholic*: [-0.0783, -0.0007]
- Доверительный интервал *Agriculture*: [-0.2318, -0.0968]
- 6. По доверительным интервалам сделаем вывод об отвержении или невозможности отвергнуть статистическую гипотезу о том, что коэффициент равен 0:

Так как у всех коэффициентов доверительный интервал не включает в себя 0, можно относительно них же отвергать статистическую гипотезу о том , что коэффициенты могут быть =0.

7. Оценим доверительный интервал для одного прогноза (p = 95%, Fertility = 20, Catholic = 10, Agriculture = 10), используя команду predict:

```
fit lwr upr
1 36.72747 30.70748 42.74746
```

Рисунок 1. Оценка доверительного интервала с помощью команды predict Имеем доверительный интервал [30.70748 42.74746]

Полный код решения задачи приведён в Приложении 2.2.

Выводы

Интервалы всех регрессоров не включают в себя 0,это значит то,что взаимосвязь с объясняющей переменной-есть.

Интервалы небольшие, из этого следует взаимосвязь между регрессорами и объясняемой переменной *Examination*-небольшая .

Доверительный интервал со значениями Fertility = 20, Catholic = 10, Agriculture = 10 получился достаточно большой, модель — не хорошая.

Задача 3

Условие

Набор данных: r12i_os26b.sav – данные исследования RLMS-HSE Объясняемая переменная: заработная плата за 30 дней - salary

Регрессоры: пол, возраст, семейное положение (состоит ли в зарегистрированном браке / разведён или вдовец / никогда не состоял в браке), наличие высшего образования, место проживания, среднее число рабочих часов в неделю — sex, age, wed1, wed2, wed3, higher_educ, city_status, working hours.

- 1. Постройте линейную регрессию зарплаты на все параметры, которые Вы выделили из данных мониторинга. Не забудьте оценить коэффициент вздутия дисперсии VIF.
- 2. Поэкспериментируйте с функциями вещественных параметров: используйте логарифм и степени (хотя бы от 0.1 до 2 с шагом 0.1).
- 3. Выделите наилучшие модели ИЗ построенных: ПО значимости параметров, объяснённому включённых зависимости, ПО c построенных И помощью зависимостей разбросу adjusted $R^2 - R^2_{adj}$.
- 4. Сделайте вывод о том, какие индивиды получают наибольшую зарплату.
- 5. Оцените регрессии для подмножества индивидов: а) городские жители, не состоявшие в браке; б) разведенные женщины, без высшего образования

Решение

Представим NA в удобном виде, после того как считали данные:

- Переменная sex:1-мужчина, 0 женщина
- *age* переменная с нормализованным возрастом (формула для нормализации значения: (age mean(age)) / sqrt(var(age))),где команда mean-среднее арифмитическое,а команда var-дисперсия.
- Семейное положение:
 - o wed l = 1, если человек состоит в зарегистрированном браке, иначе 0
 - o wed2 = 1, если человек разведён или вдовец, иначе 0
 - \circ *wed3* = 1, если человек никогда не был в браке, иначе 0
 - о Проверим, что между wed1, wed2, wed3 нет линейной зависимости
- $higher_educ = 1$, если у человека есть высшее образование, иначе 0(остальные 5 значений)
- $city_status = 1$, если человек живёт в городе, иначе 0
- working_hours переменная с нормализованным числом рабочих часов в неделю (формула для нормализации значения: (working_hours mean(working_hours)) / sqrt(var(working_hours)))
- *salary* переменная с нормализованной зарплатой (формула для нормализации значения: ((salary mean(salary)) / sqrt(var(salary)))

1. Построим линейную регрессию зарплаты на все параметры, оценим vif:

Модель строим командой model1 = lm(data = data2, salary ~ sex + age + wed1 + wed2 + wed3 + higher_educ + city_status + working_hours)

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
              -0.59335
                          0.06029
                                  -9.842 < 2e-16 ***
                                   12.848 < 2e-16 ***
               0.44784
                          0.03486
sex
age
              -0.06912
                          0.01837
                                   -3.762 0.000172 ***
              -0.05903
                          0.05590
                                   -1.056 0.291021
wed1
wed2
              -0.04722
                          0.06885
                                   -0.686 0.492874
wed3
              -0.23496
                          0.06990
                                   -3.361 0.000785 ***
higher_educ
               0.47544
                          0.03876
                                   12.268
                                           < 2e-16 ***
                                           < 2e-16 ***
city_status
               0.48293
                          0.03742
                                   12.906
                                    9.117 < 2e-16 ***
working_hours 0.15475
                          0.01697
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Sianif. codes:
Residual standard error: 0.9097 on 3048 degrees of freedom
Multiple R-squared: 0.1747,
                                Adjusted R-squared: 0.1725
F-statistic: 80.65 on 8 and 3048 DF, p-value: < 2.2e-16
```

Pисунок 1. Характеристики model1, где model1 = lm(data = data2, salary ~ sex + age + wed1 + wed2 + wed3 + higher_educ + city_status + working_hours)

Из рисунка 1 видим, что переменные wed1 и wed2 имеют плохую p-статистику. Уберём их и посмотрим, как изменится \mathbb{R}^2 :

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                          0.03642 -17.631
                                           < 2e-16 ***
(Intercept)
              -0.64210
                                           < 2e-16 ***
               0.44678
                          0.03404
                                   13.127
sex
              -0.07107
                          0.01813
                                   -3.921 9.03e-05 ***
age
              -0.18721
                                   -3.555 0.000384 ***
wed3
                          0.05266
higher_educ
               0.47232
                          0.03864
                                   12.225
                                           < 2e-16 ***
                                           < 2e-16 ***
                                   12.928
city_status
               0.48333
                          0.03739
                                    9.175 < 2e-16 ***
working_hours 0.15547
                          0.01695
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 0.9095 on 3050 degrees of freedom
Multiple R-squared: 0.1744,
                                Adjusted R-squared: 0.1728
F-statistic: 107.4 on 6 and 3050 DF, p-value: < 2.2e-16
```

Рисунок 2. Результат работы команды summary(model1), где model1 = lm(data = data2, salary ~ sex + age + wed3 + higher_educ + city_status + working_hours)

Из рисунка 2 видим, что R^2 изменился незначительно, зато р-статистика теперь хорошая для всех регрессоров. В дальнейшем будем работать с этой моделью.

Оценим vif у модели 1:

```
      > Vit(mode II)#зависимость между регрессорами-отсутствует

      sex
      age
      wed3
      higher_educ
      city_status working_hours

      1.054764
      1.214019
      1.202465
      1.031371
      1.015514
      1.060804

      Рисунок 3. Результат работы команды vif(model1)
```

Из рисунка 3 видим, что vif низкий – линейной зависимости между регрессорами нет.

2. Введём в модель логарифмы и степени.

Логарифмы и степени имеет смысл вводить только для параметров age и working_hours, так как

остальные принимают только значения 0 или 1.

Модель с логарифмами: $model1 = lm(data = data2, salary \sim sex + working_hours + age + wed3 + higher_educ + city_status + <math>I(log(working_hours)) + I(log(age))$) —у модели достаточно хороший vif, рассмортим остальные(model2,model3):

Поиск наилучшей модели

 $model1 = lm(data = data2, salary \sim sex + working_hours + age + wed3 + higher_educ + city_status + I(log(working_hours)) + I(log(age)))$

model2 = lm(data = data2, salary ~ sex + working_hours + age + wed3 + higher_educ + city_status + I(log(age)))

model3 = lm(data = data2, salary ~ sex + working_hours + age + wed3 + higher_educ + city_status + I(log(working_hours)))

Из них лучший R^2 имеет первая модель, но у неё плохая p-статистика для обоих логарифмов. У модели 3 R^2 немного ниже чем у первой и второй модели, p-статистика — неплохая, $I(log(working_hours))$ -имеет плохую p-статистику. У модели 2 R^2 -между model1 и model3(достаточно рядом), p-статистика хорошая, кроме wed3 и I(log(age)), у этих переменных нет звёзд.

Наилучшей моделью будем считать: model1 = lm(data = data2, salary ~ sex + working_hours + age + wed3 + higher_educ + city_status + I(log(working_hours)) + I(log(age)))

Построим модели со степенями в которых степень будет задаваться переменной *power*, меняющий значение от 0.1 до 2 с шагом 0.1:

power = 0.1

model1 = lm(data = data2, salary ~ sex + working_hours + age + wed3 + higher_educ + city_status + I(working_hours^power) + I(age^power))

Модель имеет $R^2 \sim 0.2155$ и плохую p-статистику у переменных со словами *age* и *working_hours*.

Сравнивая остальные модели с отличием в степени, можно заметить что R^2 -понижается, не считая power=2.

3. Выделим наилучшие модели из построенных: по значимости параметров, включённых в зависимости, и по объяснённому с помощью построенных зависимостей разбросу adjusted R^2 – R^2 _adj

Наилучшими по значению R^2 из всех моделей без линейной зависимости регрессоров являются модели для степеней 0.1, 0.2, 2,0. Разброс R^2 - R^2 _adj одинаковый у power=0.1 и power=0.2. Разброс у power=2 меньше чем у моделей с меньшей степенью. Лучшей моделью будет считаться модель при power=0.1, так как у неё наибольший R^2 , даже учитывая, что p-статистиканемного хуже чем у модели при power=2. Из этих трёх моделей лучшей является модель $modell = lm(data = data2, salary \sim sex + working_hours + age + wed3 + higher_educ + city_status + I(working_hours^power) + I(age^power))$ для power = 0.1, которая имеет наивысший $R^2 = 0.2155$.

- 4. Согласно наилучшей модели больше всего зарабатывают молодые мужчины с высшим образованием, проживающие в городах, работающие большое число часов в неделю.
- 5. Оценим регрессии для подмножества индивидов: а) Не вступавшие в брак, без высшего образования; б) Городские жители, состоящие в браке

```
a) Не вступавшие в брак, без высшего образования: data3 = subset(data2, higher_educ == 0) data3 = subset(data3, wed3 == 1)
```

Тогда имеем следующую модель:

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                        2.41999
                                   1.37507
                                             1.760 0.079042
                        0.44772
                                   0.09777
                                             4.579 5.91e-06 ***
sex
working_hours
                        0.32291
                                   0.09485
                                             3.404 0.000717 ***
                       -0.16038
                                   0.19618 -0.818 0.414008
age
city_status
                                   0.10257
                                             6.561 1.35e-10 ***
                        0.67296
I(working_hours/power) -1.98224
                                            -1.830 0.067924 .
                                   1.08348
I(age/power)
                                   1.11297
                                            -1.284 0.199574
                       -1.42960
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
Residual standard error: 1.069 on 495 degrees of freedom
  (2555 observations deleted due to missingness)
Multiple R-squared: 0.1688,
                                Adjusted R-squared:
F-statistic: 16.76 on 6 and 495 DF, p-value: < 2.2e-16
```

Рисунок 4. Результат работы команды summary(model1), где model1 = lm(data = data2, salary ~ sex + working_hours + age + city_status + I(working_hours^power) + I(age^power))

 $R^2\sim 0.1688$. Параметры sex, working_hours и city_status имеют достаточно хорошую р-статистику. Согласно модели: больше всего зарабатывают молодые (ненадёжная р-статистика) мужчины, работающие много, проживающие в городе.

б) Городские жители, состоящие в браке:

data3 = subset(data2, city status == 1)

data3 = subset(data3, wed2 == 1)

Тогда имеем следующую модель:

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                                            2.961 0.003211 **
(Intercept)
                        4.01213
                                   1.35489
                        0.38276
                                   0.09828
                                             3.895 0.000112 ***
working_hours
                                            4.124 4.36e-05 ***
                        0.39119
                                  0.09485
                                  0.19648 -0.401 0.688671
age
                       -0.07877
higher_educ
                        0.71901
                                  0.11761 6.113 1.98e-09 ***
I(working_hours^power) -2.85850
                                   1.07902
                                           -2.649 0.008327 **
I(age/power)
                       -2.02103
                                   1.11521 -1.812 0.070556 .
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
Residual standard error: 1.074 on 495 degrees of freedom
```

Residual standard error: 1.0/4 on 495 degrees of freedom (2555 observations deleted due to missingness)

Multiple R-squared: 0.16, Adjusted R-squared: 0.1498

F-statistic: 15.71 on 6 and 495 DF, p-value: < 2.2e-16

Рисунок 5. Результат работы команды summary(model1), где $model1 = lm(data = data2, salary \sim sex + working_hours + age + higher_educ + I(working_hours^power) + I(age^power)$) Все параметры, кроме age, значимые, $R^2 \sim 0.16$

Согласно этой модели наибольшая зарплата у мужчин с высшим образованием молодого(ненадёжная р-статистика) возраста, работающих много. Полный код решения задачи приведён в Приложении 3.

Выводы

Из всей выборки больше всего зарабатывают молодые мужчины с высшим образованием, проживающие в городах, работающие большое число часов в неделю.

Среди людей, которые не вступали в браки; не имеющих высшего образования, больше всего зарабатывают молодые мужчины, работающие много, проживающие в городе.

Среди городских жителей, состоящих в браке наибольшая зарплата у мужчин с высшим образованием молодого возраста, работающих много.

Задача 4

Условие

Набор данных: StudentsPerformance – данные исследований с сайта https://www.kaggle.com/spscientist/students-performance-in-exams

Регрессоры: пол, этническая принадлежность, уровень образования, баллы по математике, баллы по письму, баллы по чтению, обучение, курс подготовки к тестированию — gender, race/ethnicity, $parental\ level\ of\ education$, $math\ score$, $writing\ score$, $reading\ score$, lunch, $test\ preparation\ course$.

- 1 Обработайте набор данных набор данных, указанный во втором столбце таблицы 4.1, подготовив его к решению задачи классификации. Выделите целевой признак, указанный в последнем столбце таблицы, и удалите его из данных, на основе которых будет обучаться классификатор. Разделите набор данных на тестовую и обучающую выборку. Постройте классификатор типа, указанного в третьем столбце, для задачи классификации по параметру, указанному в последнем столбце. Оцените точность построенного классификатора с помощью метрик precision, recall и F1 на тестовой выборке.
- 2 Постройте классификатор типа Случайный Лес (Random Forest) для решения той же задачи классификации. Оцените его качество с помощью метрик precision, recall и F1 на тестовой выборке. Какой из классификаторов оказывается лучше?

Решение

1. Обработаем данные:

- Этническая принадлежность:
 - \circ race/ethnicity = 0, если человек относится к group A.
 - \circ race/ethnicity = 1, если человек относится к group B.
 - \circ race/ethnicity = 2, если человек относится к group C.
 - \circ race/ethnicity = 3, если человек относится к group D.
 - \circ race/ethnicity = 4, если человек относится к group E.
- Уровень образования:
 - o parental level of education= 0, если человек закончил some college.
 - o parental level of education= 1, если человек закончил some high school.
 - o parental level of education= 2, если человек закончил high school.
 - o parental level of education= 3, если человек имеет bachelor's degree.
 - o parental level of education= 4, если человек имеет associate's degree.
 - o parental level of education= 5, если человек имеет master's degree.
- Обучение-0 если обучение бюджетное/сокращённое, 1 если обучение-стандартное.
- Курс подготовки к тестированию-0 если не пройден, 1 если закончен.

Выделим целевой признак, и удалим его из данных:

Рисунок 1. Столбец writing score-отделяется от data_sel ,X-таблица ,в которой отсутствует writing score.

Таблица с данными:

	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score
gender						
female	1	3	1	0	72	72
female	2	0	1	1	69	90
female	1	5	1	0	90	95
male	0	4	0	0	47	57
male	2	0	1	0	76	78
female	4	5	1	1	88	99
male	2	2	0	0	62	55
female	2	2	0	1	59	71
female	3	0	1	1	68	78
female	3	0	0	0	77	86

1000 rows × 6 columns

Рисунок 2. Результат работы кода на рисунке 1.

Построим классификатор типа :метод опорных векторов:

Рисунок 3. Создаётся классификатор опорных векторов с тестовой выборкой.

Оценим точность построенного классификатора с помощью метрик precision, recall и F1:

f1:0.9144850613243941 precision:0.920411613960001 recall:0.9142857142857143 Рисунок 4. Показатели метрик достаточно большие(наибольшая у метрики-precision).

2. Построим классификатор типа Случайный Лес(Random Forest) для решения той же задачи:

Рисунок 5. . Создаётся классификатор Случайного Леса с тестовой выборкой.

. Оценим точность построенного классификатора с помощью метрик precision, recall и F1:

f1:0.9189274665824458 precision:0.9351134277471808 recall:0.9142857142857143

Рисунок 6. Показатели метрик также как и у опорных векторов- достаточно большие(наибольшая у метрики-precision).

Таким образом, сравнивая 3 и 5 рисунки-видно, что в классификаторе Случайный лес показатели метрик чуть больше, чем в классификаторе опорных векторов, из этого следует, что классификатор Случайный Лес -лучше.

Код решения задачи и сведения о проверенных моделях приведены в Приложении к задаче 4.

Выводы

Метрики F1, precision и recall-выдают у обоих классификаторов высокие показатели.

В SVM объекты разделяются на класс с помощью гиперплоскости.

В этой задаче для SVM важны такие параметры как С-доп.ограничения(штрафы),kernel-тип ядра(в данном случае используются линейный и радиальный),decision_function_shape- форма функции принятия решений(в данном случае ovo-"one vs one" и ovr-"one vs rest"),gamma(коэффициент ядра для rbf),shrinking-сжатие.

В RFC объекты разделяются на класс с помощью множества решающих деревьев.

В этой задаче для RFC важны такие параметры как criterion-функция измерения качества раскола(gini-мера,показывающая насколько часто элемент неверно помечается),max_depth-максимальная глубина деревьев,max_features-количество функций,которые следует учитывать при поиске лучшего разделения,n_estimators-кол-во деревьев.

Наибольшие показатели у классификаторов выдаёт precision(точность)

Случайный Лес – лучше делит данные на классы, чем Метод Опорных Векторов.

ЗАДАЧА 5

Предобработка данных и РСА

В данной задаче мне необходимо провести анализ датасета (в моём случае набор данных Credit Card Fraud Detection) с помощью языка Python. Также взадаче требуется ответить на вопросы:

- 1. Сколько в датасете объектов и признаков? Дать описание каждому признаку, если оно есть.
- 2. Сколько категориальных признаков, какие?
- 3. Столбец с максимальным количеством уникальных значений категориальногопризнака?
- 4. Есть ли бинарные признаки?
- 5. Какие числовые признаки?
- 6. Есть ли пропуски?
- 7. Сколько объектов с пропусками?
- 8. Столбец с максимальным количеством пропусков?
- 9. Есть ли на ваш взгляд выбросы, аномальные значения?
- 10. Столбец с максимальным средним значением после нормировки признаковчерез стандартное отклонение?
- 11. Столбец с целевым признаком?
- 12. Сколько объектов попадает в тренировочную выборку при использовании train_test_split с параметрами test_size=0.3, random_state=42?
- 13. Между какими признаками наблюдается линейная зависимость (корреляция)?
- 14. Сколько признаков достаточно для объяснения 90% дисперсии после применения метода РСА?
- 15. Какой признак вносит наибольший вклад в первую компоненту?Решение:

Описание переменных и набора данных.

Рассмотрим данный датасет. С помощью функции data.shape смотрим размертаблицы. Она состоит из 284807 строк (объектов) и 31 столбцов (признаков).

Описание столбцов:

Time- Количество секунд, прошедших между этой транзакцией и первойтранзакцией в наборе данных

V1-V28- может быть результатом уменьшения размерности PCA для защитыпользовательских идентификаторов и чувствительных функций

Amount-сумма сделки

Class- 1 для мошеннических операций, 0 в противном случае

В данном случае категориальных признаков - нет, поэтому обрабатывать их не нужно.

Однако в наборе данных имеется 1 бинарный признак (Class) и 30 числовых признаков. Также в данном наборе отсутствуют пропуски. В данном примере нет аномальных значений.

После нормировки признаков через стандартное отклонение в столбце 'Class' можно увидеть максимальное среднее значение. Также столбец 'Class' является целевым признаком. После выделения тренировочной и тестовой выборки мы получаем, что в тренировочную выборку попадает 199364 объектов, а в тестовую — 85443.

Посмотрев на рисунок 20, можно увидеть, что линейная зависимость(корреляция) не наблюдается.

Рисунок 20. Результат визуального анализа данных.

Наибольший вклад в первую компоненту вносит признак 'Amount'.

Применив метод РСА для уменьшения количества описывающих компонент (Рисунок 21), я узнал, что для описания 90% дисперсии данных достаточно 3 компонентов.

Рисунок 21. Результат применения метода РСА.

Вывод

Первично обработав данные, я подготовил их к применению алгоритмов классификации и регрессии. После, с помощью метода главных компонент (метод PCA) я узнал, что для описания целевого признака target достаточно всего 3 переменных.

Код решения задачи и сведения о проверенных моделях приведены в Приложении к задаче 5.

ЗАКЛЮЧЕНИЕ

В ходе научно-исследовательской работы были выполнены 5 задач. В результате их выполнения я освоил основные принципы работы с наборами данных на языке R и Python. Также при выполнении заданий я познакомился с методами построения модели РСА.

В задаче 1 было проведено исследование данных по кантонам в Швейцарии в конце 19 века. В результате я выявил зависимость процента образования (объясняемой переменной) от различных факторов (регрессоров).

В задаче 2.1 и задаче 2.2 было проведено исследование данных по кантонам в Швейцарии в конце 19 века. В результате было выявлено, что существует нелинейная зависимость между объясняемой переменной (Examination) и различными регрессорами, а также с помощью доверительных интервалов было доказано что взаимосвязь с объясняемой переменной существует, но при этом, небольшая.

В задаче 3 я описал, как определённые параметры влияют на заработную плату различных слоёв населения, основываясь на данных российского мониторинга экономического положения и здоровья населения НИУ-ВШЭ в 2004 году. Можно судить, что молодые мужчины с высшим образованием, которые проживают и много работают в городах получают больше остальных.

В задаче 4 был проведен анадиз данных с исследований, взятых с сайта https://www.kaggle.com/spscientist/students-performance-in-exams В результате, по предварительно отсортированным данным(значениям-строчкам были выданы числа,а столбец writing score не учитывался,при обучении классификаторов) были обучены два классификатора:SVM(Метод опорных векторов) и RFC(Случайный лес).В ходе аналзиа ыло выявлено,что RFC лучше делит на классы,чем SVM.

В задаче 5 я провел первичный анализ и предобработку данных предложенного датасета "Credit Card Fraud Detection" (Обнаружение мошенничества с кредитными картами) с помощью языка программирования Python. Проведя описание переменных и набора данных в целом, сделав его подготовку, выполнив визуальный анализ, а также применив метод главных компонент (метод PCA), были выявлены необходимые условия для описания целевого признака.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ершов Э.Б. Распространение коэффициента детерминации на общий случай линейной регрессии, оцениваемой с помощью различных версий метода наименьших квадратов (рус., англ.)/ЦЭМИ РАН Экономика и математические методы. Москва: ЦЭМИ РАН, 2002.— Т. 38, вып. 3. С. 107-120.
- 2. Демиденко Е.З. Линейная и нелинейная регрессия/М.: Финансы и статистика, 1981. 302 с.
- 3. Шведов.А.С. Теория вероятностей и математическая статистика: промежуточный уровень [Текст]: учеб.пособие/ А.С.Шведов; Нац. исслед. ун-т «Высшая школа экономики». М.: Изд. Дом Высшей школы экономики, 2016. (Учебник Высшей школы экономики). 280 с. 600 экз. —ISBN 978-5-7598-1301-9(в пер.)
- 4. Николенко С.И., Тулупьев А.Л. Н63 Самообучающиеся системы. –М.: МЦНМО, 2009. 288 с.: 24 илл.
- 5. Магнус Я.Р. Эконометрика. Начальный курс /Катышев П.К., Пересецкий А.А. —М.: Дело, 2004.—6-е изд., перераб. и доп. 576 с.

ПРИЛОЖЕНИЯ

Приложение к задаче 1

```
library("lmtest")
library("GGally")
data = swiss
#выводим данные
data
#Пункт 1. Оцените среднее значение, дисперсию и СКО переменных, указанных во втором и
третьем столбце.
#среднее значение:
print (paste (mean (data$Education)))
print (paste (mean (data$Fertility)))
print (paste (mean (data$Examination)))
#дисперсия
print(paste(var(data$Education)))
print(paste(var(data$Fertility)))
print(paste(var(data$Examination)))
#CKO
print(paste(sd(data$Education)))
print(paste(sd(data$Fertility)))
print(paste(sd(data$Examination)))
\#Пункт 2. Постройте зависимости вида у = a + bx, где у - объясняемая переменная, х -
perpeccop.
model1 = lm(Education~Fertility, data)
model2 = lm(Education~Examination, data)
model1 \# y = 46.8179 - 0.5109x
model2 \# y = -2.9015 + 0.8418x
\# Пункт 3. Оцените, насколько «хороша» модель по коэффициенту детерминации R^2
summary (model1) \#R^2 = 0.4406 - R^2 неплохой, модель относительно хороша.
summary (model2) \#R^2 = 0.4878 - R^2 неплохой, модель относительно хороша.
#Пункт 4. Оцените, есть ли взаимосвязь между объясняемой переменной и объясняющей
переменной
# У model1 параметры имеют по 3 звезды ,из этого следует что взаимосвязь -очень
# В model2 у первого параметра нет звёзд ,у второго-3.Коэфициент зависимости первой
переменной - низкий , второй - высок .
#Вывод"
#B model1 взаимосвязи между переменными -есть, но зависимость -нелинейная ,нужны
дополнительные регрессоры/регрессор.
#B model2 связь со второй переменной -сильная, с первой -слабая ,зависимость -
нелинейная , нужны дополнительные регрессоры/регрессор.
```

Приложение к задаче 2.1

```
library("lmtest")
library("GGally")
library ("car") # без этого не работает функция vif()
# При чтении избавляемся от записей с недостающими данными.
data = na.omit(swiss)
# Выводим данные
data
# Examination ~ Fertility, Catholic, Agriculture
# 1. Проверим отсутствие зависимости между регрессорами перед построением модели
linfunc 1 = lm(Fertility~Catholic, data)
summary(linfunc 1) # R^2 < 22% - зависимости нет
linfunc 1 = lm(Fertility~Agriculture, data)
summary(linfunc 1) # R^2 < 13% - зависимости нет
linfunc 1 = lm(Catholic~Agriculture, data)
summary (linfunc 1) # R^2 < 17% - зависимости нет
# Можно использовать регрессоры вместе
# 2. Построим линейную модель и оценим её
model = lm(Examination ~ Fertility + Catholic + Agriculture, data)
summary(model)
# R^2 ~ 0.69, p-значение у Catholic ненадёжно (одна звездочка) - модель достаточно
хороша (остальные р-значения имеют по 3 звезды)
#Уберём из модели регрессор Catholic, как наименее значимый, и проверим, как
изменится R^2
model = lm(Examination ~ Fertility + Agriculture, data)
summary(model)
\# R^2 \sim 0.66 - R^2 практически не изменился(у всех параметров по 3 звезды)
# Попробуем убрать ещё один регрессор
model = lm(Examination ~ Fertility, data)
summary (model) #R^2 ~ 0.42 - изменился сильно, perpeccop Agriculture лучше не убирать
# Попробуем убрать другой регрессор
model = lm(Examination ~ Agriculture, data)
summary (model) #R^2 ~ 0.47 - изменился сильно, регрессор Fertility лучше не убирать
# В дальнейшем будем работать с моделью:
model = lm(Examination \sim Fertility + Agriculture + Catholic , data) #R^2 ~ 0.69
# 3. Попробуем ввести в модель логарифмы регрессоров, предварительно проверяя, что
```

нет линейной зависимости

```
model = lm(Examination \sim I(log(Fertility)) + I(log(Agriculture)) + I(log(Catholic)),
data)
vif(model) # линейной зависимости нет.
summary(model) #R^2 ~0.67
model = lm(I(log(Examination)) ~ I(log(Fertility)) + I(log(Agriculture)) +
I(log(Catholic)) , data)
vif(model) # линейной зависимости нет.
summary (model) # R^2 ~ 0.54, p-статистика неплоха, при I (log (Examination)) - R-заметно
снижается
model = lm(Examination ~ Fertility + Agriculture + I(log(Catholic)) , data)
vif(model) # линейной зависимости нет.
summary(model) #R^2 ~0.68
model = lm(Examination ~ I(log(Fertility)) + I(log(Agriculture)) + Catholic , data)
vif(model) # линейной зависимости нет.
summary (model) \# R^2 ~ 0.69
model = lm(Examination ~ Fertility + I(log(Agriculture)) + Catholic , data)
vif(model) # линейной зависимости нет.
summary (model) \# R<sup>2</sup> ~ 0.70, p-статистика достаточно хороша
model = lm(Examination ~ Fertility + I(log(Agriculture)) + I(log(Catholic)) , data)
vif(model) # линейной зависимости нет.
summary (model) \# R^2 ~ 0.68
model = lm(Examination ~ I(log(Fertility)) + Agriculture + I(log(Catholic)) , data)
vif(model) # линейной зависимости нет.
summary (model) \#R^2 \sim 0.68
model = lm(Examination ~ I(log(Fertility)) + Agriculture + Catholic , data)
vif(model) # линейной зависимости нет.
summary (model) #R^2 ~0.69, p-статистика плоха для Catholic
# Наилучшей из них будет следующая модель:
model = lm(Examination ~ Fertility + I(log(Agriculture)) + Catholic , data) # R^2 ~
0.70
# 4. Попробуем ввести в модель всевозможные произведения пар регрессоров,
предварительно проверяя, что нет линейной зависимости
model = lm(Examination ~ Fertility + I(log(Agriculture)) + Catholic + I(Fertility^2)
+ I(Agriculture^2) + I(Fertility*Agriculture) + I(Fertility*Catholic) +
I(Catholic*Agriculture) + I(Catholic*2), data)
vif(model) # есть линейная зависимость, уберём регрессоры с максимальным VIF
model = lm(Examination ~ Fertility + I(log(Agriculture)) + Catholic +
I(Agriculture^2) + I(Fertility*Agriculture) + I(Fertility*Catholic) +
I(Catholic*Agriculture) + I(Catholic*2), data)
vif(model) # есть линейная зависимость, уберём регрессоры с максимальным VIF
model = lm(Examination ~ Fertility + I(log(Agriculture)) + Catholic +
I(Agriculture^2) + I(Fertility*Agriculture) + I(Catholic*Agriculture) +
I(Catholic^2), data)
vif(model) # есть линейная зависимость, уберём регрессоры с максимальным VIF
model = lm(Examination ~ Fertility + I(log(Agriculture)) + Catholic +
I(Agriculture^2) + I(Fertility*Agriculture) + I(Catholic*Agriculture), data)
vif(model) # есть линейная зависимость, уберём регрессоры с максимальным VIF
```

```
model = lm(Examination ~ Fertility + I(log(Agriculture)) + Catholic +
I(Agriculture^2) + I(Catholic*Agriculture), data)
vif (model) # есть линейная зависимость, уберём регрессоры с максимальным VIF
model = lm(Examination ~ Fertility + I(log(Agriculture)) + Catholic +
I(Agriculture^2), data)
vif(model) #хорошие показатели, имеет смысл посмотреть на R^2
summary (model) #R^2~0.71, p-статистика не плохая
model = lm(Examination ~ Fertility + Catholic + I(Agriculture^2), data)
vif(model)
summary (model) # R^2 ~ 0.65, p-статистика крайне плоха для Catholic
model = lm(Examination ~ Fertility + I(Agriculture^2), data)
vif(model)
summary (model) \# R^2~ 0.63
#Наилучшая модель:
model = lm(Examination \sim Fertility + I(log(Agriculture)) + Catholic , data) # <math>R^2 \sim I(log(Agriculture))
0.70
                                  Приложение к задаче 2.2
library("lmtest")
```

```
print (paste ("Доверительный интервал Catholic: [", Estimate Std. Catholic - t critical
* Std Error Catholic,
            ",", Estimate Std. Catholic + t critical * Std Error Catholic, "]"))
print (paste ("Доверительный интервал Agriculture: [", Estimate Std. Agriculture -
t critical * Std Error Agriculture,
            ",", Estimate Std. Agriculture + t critical * Std Error Agriculture,
"]"))
# 2. Вывод о отвержении или невозможности отвергнуть статистическую гипотезу о том,
что коэффициент равен 0:
# Доверительный интервал свободного коэффициента: [ 35.3774542590579 ,
51.9872257409421 ]
# Доверительный интервал Fertility: [ -0.372723628323106 , -0.118916371676894 ]
# Доверительный интервал Catholic: [ -0.0783454387555054 , -0.000714561244494573 ]
# Доверительный интервал Agriculture: [ -0.231807196001627 , -0.0968128039983733 ]
# все интервалы не соприкасаются с 0->отвергаем статистическую гипотезу о том что
коэффициент может быть = 0
# 3. Доверительный интервал для одного прогноза (р = 95\%, Fertility = 20, Catholic =
10, Agriculture = 10).
new.data = data.frame(Fertility = 20, Catholic = 10, Agriculture = 10)
predict(model, new.data, interval = "confidence")
# Доверительный интервал: [30.70748, 42.74746]
                                 Приложение к задаче 3
# #install.packages("devtools")
#devtools::install github("bdemeshev/rlms")
library("lmtest")
library("rlms")
library("dplyr")
library("GGally")
library("car")
library("sandwich")
hh5 Пол респондента
 1 мужской
 2 ЖЕНСКИЙ
h marst СЕМЕЙНОЕ ПОЛОЖЕНИЕ
 1 Никогда в браке не состояли
 2 Состоите в зарегистрированном браке
 3 Живете вместе, но не зарегистрированы
 4 Разведены и в браке не состоите
 5 Вдовец (вдова)
 6 ОФИЦИАЛЬНО ЗАРЕГИСТРИРОВАНЫ, НО ВМЕСТЕ НЕ ПРОЖИВАЮТ
h diplom ЗАКОНЧЕННОЕ ОБРАЗОВАНИЕ (ГРУППА)
 1 окончил 0 - 6 классов
 2 незаконч среднее образование (7 - 8 кл)
 3 незаконч среднее образование (7 - 8 кл) + что-то еще
4 законч среднее образование
 5 законч среднее специальное образование
```

```
6 законч высшее образование и выше
status ТИП НАСЕЛЕННОГО ПУНКТА
 1 областной центр
 2 город
 3 ПГТ
4 село
data <- rlms read("C:\\Users\\Admin\\Documents\\R\\r12i os26b.sav")
data = select(data, hh5, h age, h marst, h diplom, status, hj13.2, hj6.2)
data = na.omit(data)
glimpse(data)
data2 = select(data,) #Новая база данных для нормализованных значений
#Возраст
age = data$h age
data2["age"] = (age - mean(age)) / sqrt(var(age))
glimpse(data2["age"])
#Пол
data2["sex"] = 0
data2\$sex[which(data\$hh5 == 1)] <- 1
glimpse(data2["sex"])
#Семейное положение:
#Никогда не состоял/ла в браке?
data2\$wed3 = 0
data2$wed3[which(data$h marst==1)] <- 1</pre>
glimpse(data2["wed3"])
#Состоит ли в зарегестрированном браке?
data2\$wed1 = 0
data2$wed1[which(data$h marst==2)] <- 1</pre>
data2$wed1[which(data$h marst==6)] <- 1</pre>
glimpse(data2["wed1"])
#Разведён или вдовец?
data2\$wed2 = 0
data2$wed2[which(data$h marst==4)] <- 1</pre>
data2$wed2[which(data$h marst==5)] <- 1</pre>
glimpse(data2["wed2"])
# Проверка на отсутствие зависимости
vif(lm(data$hj13.2 ~ data2$wed1 + data2$wed2 + data2$wed3))
#Наличие высшего образования
data2$higher educ = 0
data2$higher educ[which(data$h diplom==6)] <- 1</pre>
glimpse(data2["higher educ"])
#Живёт в городе?
data2$city status = 0
data2$city_status[which(data$status==1)] <- 1</pre>
data2$city_status[which(data$status==2)] <- 1</pre>
glimpse(data2["city status"])
#Нормализованное среднее число рабочих часов в неделю
working hours = data$hj6.2
data2$working hours = (working hours - mean(working hours)) /
```

```
sqrt(var(working hours))
glimpse(data2["working hours"])
#Нормализованная средняя зарплата
salary = data$hj13.2
data2$salary = (salary - mean(salary)) / sqrt(var(salary))
glimpse(data2["salary"])
# 1. Постройте линейную регрессию зарплаты на все параметры, которые Вы выделили из
данных мониторинга. Не забудьте оценить коэффициент вздутия дисперсии VIF.
model1 = lm(data = data2, salary ~ sex + age + wed1 + wed2 + wed3 + higher educ +
city status + working hours)
vif (model1) #зависимость между регрессорами-отсутствует
summary (model1) \#R^2\sim 0.1747, wed1 и wed2- не имеют звёзд (плохая р-статистика)
model1 = lm(data = data2, salary ~ sex + age + wed3 + higher educ + city status +
working hours)
vif (model1) #зависимость между регрессорами-отсутствует
summary (model1) #p-статистика--отличная, R^2~0.1744 (зависимость-нелинейная)
# 2. Поэкспериментируйте с функциями вещественных параметров: используйте логарифм и
степени (хотя бы от 0.1 до 2 с шагом 0.1).
#sex,wed3,higher educ,city status-имеют значения только 0 и 1->не имеет смысла
использовать с ними логарифмирования и возведение в степень
# с логарифмами:
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(log(working hours)) + I(log(age)))
vif (model1) #vif<5 у всех регрессоров, age, wed3 и оба логарифма имеют плохую р-
статистику
summary (model1) #R^2~0.2164 (зависимость нелинейная)
model2 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(log(age)))
vif (model2) #зависимость между регрессорами-отсутствует
summary (model2) #R^2~0.1958 p-статистика плохая у wed3 и I(log(age))
model3 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(log(working hours)))
vif (model3) #зависимость между регрессорами-отсутствует
summary (model3) #R^2~0.1916 p-статистика плохая у I(log(working hours))
#со степенями
power = 0.1
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(working hours^power) + I(age^power))
vif(model1)
summary (model1) \#R^2 \sim 0.2155, плохая p-статистика у переменных со словами age и
working hours
power = 0.2
model1 = lm(data = data2, salary ~ sex + working_hours + age + wed3 + higher_educ +
city status + I (working hours^power) + I (age^power))
vif(model1) #есть переменные у которых vif>5
summary (model1) #R^2~0.2146
power = 0.3
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(working hours^power) + I(age^power))
```

```
vif (model1) #есть переменные у которых vif>5
summary (model1) \#R^2\sim 0.2138
power = 0.4
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(working hours^power) + I(age^power))
vif (model1) #есть переменные у которых vif>10
summary (model1) #R^2~0.2129
power = 0.5
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(working hours^power) + I(age^power))
vif (model1) #ecть переменные у которых vif>15
summary (model1) #R^2~0.2122
power = 0.6
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(working hours^power) + I(age^power))
vif (model1) #есть переменные у которых vif>25
summary (model1) #R^2~0.2114
power = 0.7
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(working hours^power) + I(age^power))
vif (model1) #ecть переменные у которых vif>45
summary (model1) #R^2~0.2108
power = 0.8
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(working hours^power) + I(age^power))
vif (model1) #есть переменные у которых vif>100
summary(model1) #R^2~0.2103
power = 0.9
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I (working hours^power) + I (age^power))
vif (model1) #ecть переменные у которых vif>480
summary(model1) #R^2~0.2098
power = 1.1
model1 = lm(data = data2, salary ~ sex + working hours + wed3 + higher educ +
city status + I(age^power))
vif (model1) #ecть переменные у которых vif>520
summary (model1) #R^2~0.209
power = 1.2
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(working hours^power) + I(age^power))
vif (model1) #ecть переменные у которых vif>130
summary (model1) #R^2~0.2088
power = 1.3
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(working hours^power) + I(age^power))
vif(model1) #есть переменные у которых vif>60
summary (model1) #R^2~0.2085
power = 1.4
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(working hours^power) + I(age^power))
vif (model1) #есть переменные у которых vif>35
```

```
summary (model1) #R^2~0.2084
power = 1.5
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(working hours^power) + I(age^power))
vif(model1) #есть переменные у которых vif>20
summary (model1) #R^2~0.2082
#R^2 изменяется очень медленно, перейдём сразу к power=1.9
power = 1.9
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(working hours^power) + I(age^power))
vif (model1) #ecть переменные у которых vif>9
summary (model1) \#R^2\sim0.208
power = 2
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(working hours^power) + I(age^power))
vif(model1) #vif у всех переменных<1,5
summary (model1) \#R^2\sim 0.183
# 3.Выделите наилучшие модели из построенных: по значимости параметров, включённых в
зависимости, и по объяснённому с помощью построенных зависимостей разбросу adjusted
R2 - R2adj.
#сравним лучшие модели из пункта 2
power = 2 #наилучшая p-статистика
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(working hours^power) + I(age^power))
vif(model1)
summary(model1)
#Multiple R-squared: 0.183,
                               Adjusted R-squared: 0.1809
power = 0.1 #наибольший R^2
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I (working hours^power) + I (age^power))
vif(model1)
summary(model1)
#Multiple R-squared: 0.2155,
                              Adjusted R-squared: 0.2028
power = 0.2#p-статистика и R^2 схожая с model1 при power=0.1
model1 = lm(data = data2, salary ~ sex + working hours + age + wed3 + higher educ +
city status + I(working hours^power) + I(age^power))
vif(model1)
summary(model1)
#Multiple R-squared: 0.2146, Adjusted R-squared: 0.2019
# Разброс R2 - R2 adj y model1 при power=2 - наименьший, а R^2 больше для степени 0.1\,
#Итог:среди моделей с наименьшей линейной зависимостью, с наилучшими по сравнению с
остальными показателями р-статистики у регрессоров, лучшей по R^2 оказалась модель для
степени 0.1
```

4. Сделайте вывод о том, какие индивиды получают наибольшую зарплату.

#Согласно этой модели больше всего зарабатывают молодые(ненадёжная р-статистика)

```
мужчины с высшим образованием, проживающие в городах, работающие много часов в
неделю.
# 5. Оцените регрессии для подмножества индивидов:
#1)Не вступавшие в брак, без высшего образования
power = 0.1
data3 = subset(data2, higher educ == 0)
data3 = subset(data3, wed3 == 1)
model1 = lm(data = data2, salary ~ sex + working_hours + age + city_status +
I(working hours^power) + I(age^power))
summary(model1) #R^2~0.1688
#Больше всего зарабатывают молодые(ненадёжная р-статистика) мужчины,работающие
много, проживающие в городе
# 2) Городские жители, состоящие в браке
power = 0.1
data3 = subset(data2, city status == 1)
data3 = subset(data3, wed2 == 1)
model1 = lm(data = data2, salary ~ sex + working hours + age + higher educ +
I(working hours^power) + I(age^power))
summary (model1) \#R^2 \sim 0.16
\# Наибольшая зарплата у мужчин с высшим образованием молодого(ненадёжная р-
статистика) возраста, работающих много
```

Приложение к задаче 4

```
!pip install pandas
!pip install sklearn
import pandas
import numpy as np
import warnings
warnings.filterwarnings('ignore')
data = pandas.read csv('StudentsPerformance.csv', index col='gender')
data sel = data.loc[:, data.columns.isin(['gender', 'race/ethnicity', 'parental level
of education',
                                           'lunch', 'test preparation course', 'math
score', 'reading score','writing score'])]
data sel['test preparation course'] = np.where(data sel['test preparation course'] ==
'none', 0, 1)
data sel['lunch'] = np.where(data sel['lunch'] == 'free/reduced', 0,1)
data sel['race/ethnicity'] = np.where(data sel['race/ethnicity'] == 'group A',
                                                                                 0,
data sel['race/ethnicity'])
data sel['race/ethnicity'] = np.where(data_sel['race/ethnicity'] == 'group B',
                                                                                 1,
data sel['race/ethnicity'])
data sel['race/ethnicity'] = np.where(data sel['race/ethnicity'] == 'group C',
                                                                                 2,
data sel['race/ethnicity'])
data sel['race/ethnicity'] = np.where(data sel['race/ethnicity'] == 'group D',
data sel['race/ethnicity'])
data sel['race/ethnicity'] = np.where(data sel['race/ethnicity'] == 'group E',
data sel['race/ethnicity'])
data sel['parental level of education'] = np.where(data sel['parental level of educa-
tion'] == 'some college', 0, data_sel['parental level of education'])
data_sel['parental level of education'] = np.where(data sel['parental level of educa-
tion'] == 'some high school', 1, data_sel['parental level of education'])
data_sel['parental level of education'] = np.where(data_sel['parental level of educa-
tion'] == 'high school', 2, data_sel['parental level of education'])
data sel['parental level of education'] = np.where(data sel['parental level of educa-
```

```
tion'] == "bachelor's degree", 3, data_sel['parental level of education'])
data sel['parental level of education'] = np.where(data_sel['parental level of educa-
tion'] == "associate's degree", 4, data sel['parental level of education'])
data sel['parental level of education'] = np.where(data sel['parental level of educa-
tion'] == "master's degree", 5, data sel['parental level of education'])
data sel = data sel.dropna()
data sel['writing score'] = np.where(data sel['writing score'] >
np.average(data sel['writing score']) , 0, 1)
writing score = data sel.loc[:, data sel.columns.isin(['writing score'])]
X = data_sel.loc[:, data_sel.columns.isin(['gender', 'race/ethnicity', 'parental lev-
el of education', 'lunch',
                                           'test preparation course', 'math score',
'reading score'])]
from sklearn.model selection import train test split
x train, x validation, y train, y validation = train test split(X, writing score,
test size=.33, random state=5)
from sklearn.model selection import StratifiedShuffleSplit
from sklearn.model selection import cross val score
from sklearn.model selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
#опорные векторы
svm = SVC()
parameters = {'kernel':('linear', 'rbf'), 'C':(0.25,0.5,0.75,1),'gamma':
(1,2,3,'auto'),'decision function shape':('ovo','ovr'),'shrinking':(True,False)}
clf = GridSearchCV(svm, parameters)
clf.fit(x train,y train)
print("f1:"+str(np.average(cross val score(clf, x validation, y validation, scor-
ing='f1'))))
print("precision:"+str(np.average(cross val score(clf, x validation, y validation,
scoring='precision'))))
print("recall:"+str(np.average(cross val score(clf, x validation, y validation, scor-
ing='recall'))))
#случайный лес
from sklearn.ensemble import RandomForestClassifier
param grid = { 'n estimators': [50,100,150], 'max features': ['auto'], 'max depth' :
list(range(1, 10)), 'criterion' :['gini']}
RFC = GridSearchCV(estimator=RandomForestClassifier(), param grid=param grid, cv= 5,
refit = True)
RFC.fit(x train, y train)
print("f1:"+str(np.average(cross val score(RFC.best estimator, x validation,
y validation, scoring='f1'))))
print("precision:"+str(np.average(cross val score(RFC.best estimator, x validation,
y validation, scoring='precision'))))
print("recall:"+str(np.average(cross val score(RFC.best estimator, x validation,
y validation, scoring='recall'))))
```

Приложение к задаче 5

```
import numpy as np # библиотека для эффективной работы с данными
import pandas as pd # библиотека для работы с наборами данных
import matplotlib.pyplot as plt # библиотека для визуализации
import seaborn as sns # еще одна библиотека для построения графиков
data = pd.read csv('creditcard.csv')
```

```
data.shape
data.info() # выводим информацию о наборе данных
data.describe() # статистический анализ числовых столбцов
data.corr() # корреляция числовых столбцов
plt.figure(figsize=(15,10))
sns.heatmap(data.corr(), xticklabels=data.corr().columns, ytick-
labels=data.corr().columns, cmap='RdYlGn', center=0, annot=True)
# Нормализация факторных переменных
from sklearn.preprocessing import StandardScaler
scale features std = StandardScaler()
features_std = scale_features_std.fit transform(data[['Time', 'V1', 'V2', 'V3', 'V4',
'V5', 'V6', 'V7', 'V8", 'V9', "V10', 'V11', 'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 
'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28', 'Amount']])
features std
data[['Time', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11',
'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 'V21', 'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28',
'Amount']]= features std
data.head()
data.describe() #Целевой признак
target=data.Class
train=data
#Выделяем тренировочную и тестовую выборки
from sklearn.model selection import train_test_split
X train, X test, y train, y test = train test split(train, target, test size = 0.3,
random state = 42)
N train, = X train.shape N test, = X test.shape print (N train, N test)
#Метод главных компонентов
from sklearn.decomposition import PCA
%matplotlib inline
import matplotlib.pyplot as plt
pca = PCA()
pca.fit(X train)
X pca = pca.transform(X train)
for i, component in enumerate(pca.components_):
print("{} component: {}% of initial variance".format(i + 1, round(100 *
pca.explained variance ratio [i], 2)))
print(" + ".join("%.3f x %s" % (value, name)for value, name in
zip(component,train.columns)))
plt.figure(figsize=(10,5))
plt.plot(np.cumsum(pca.explained variance ratio), color='k', lw=2)
plt.axhline(0.9, c='r')
plt.axvline(10, c='b')
less dimensional X = pca.transform(X train)
from sklearn.manifold import TSNE
tsne = TSNE(n components=2, random state=0)
tsne results = tsne.fit transform(less dimensional X)
tsne_df = pd.DataFrame({'X':tsne_results[:,0],
                                               'Y':tsne results[:,1],
                                               'real ans':y train})
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(7, 7))
sns.scatterplot(x="X", y="Y",
                           data=tsne df);
```