แบบฝึกปฏิบัติการครั้งที่ 6

- 1. การคำนวณหาระยะทางของลุกกระสุนปืนใหญ่ที่ถูกยิงขึ้นฟ้าในแนวดิ่ง สามารถทำได้สองวิธี
- 1.1 ใช้สูตรคำนวณ $s(t) = -0.5*g*t^2 + v_0*t$ โดย $g = 9.81 \text{ m/sec}^2$, v_0 คือความเร็วตั้งต้น, t คือระยะเวลา
- 1.2 simulation โดย ในแต่ละรอบเริ่มด้วย
- 1.2.1 คำนวณการเคลื่อนที่ของลูกบอลในระยะเวลาอันสั้น ๆ (Δ t) จากสมการ Δ s = $\vee^*\Delta$ t ซึ่งเราจะกำหนด Δ t ให้มีค่าเป็น 0.01 แล้วอัพเดตค่าของระยะทางโดย s = s + Δ s
- 1.2.2 อัพเดตความเร็วโดย $\vee = \vee g^* \Delta t$ เนื่องจากความเร็วจะค่อย ๆ ลดลง $g^* \Delta t$ ในช่วงเวลาสั้น ๆ ในรอบถัดไปใช้ความเร็วที่เพิ่งอัพเดตใหม่นี้ในการคำนวณระยะทาง

จงเขียนคลาส CannonBall ซึ่งมีตัวแปรดังนี้

private double initV; //ความเร็วตั้งต้น

private double simS; //ระยะทางที่คำนวณได้จากวิธี simulation

private double simT; //เวลาที่ใช้ในวิธี simulation

public static final double g = 9.81;

และเขียนเมธอด

public void simulatedFlight() //คำนวณหาระยะทางที่ลูกกระสุนปืนใหญ่เคลื่อนที่จนกระทั่งความเร็วเป็น 0 และตกกลับลงบนพื้นโลก โดยอัพเดตระยะทางและความเร็ว 100 ครั้งต่อวินาที และพิมพ์ระยะทางที่ลูกบอล เคลื่อนไปได้ทุก ๆ 1 วินาที และระยะทางสุดท้ายก่อนตกกลับลงมา

public double calculusFlight(double t) //คำนวณระยะทางที่ลูกกระสุนปืนใหญ่เคลื่อนที่ไปได้ หากใช้ ระยะเวลา t

public double getSimulatedTime() //คืนระยะเวลาทั้งหมดที่ใช้จนลูกกระสุนปืนตกกลับลงพื้นในวิธี simulation

public double getSimulatedDistance() //คืนระยะทางที่ลูกกระสุนปืนใหญ่เคลื่อนที่ไปก่อนตกกลับลงพื้น กำหนด main ดังนี้

public class CannnonBallTester {
 public static void main(String[] args) {

```
CannonBall ball = new CannonBall(100); //กำหนดความเร็วตั้งต้นให้ลูกกระสุนปืนใหญ่มีค่าเป็น

100 m/sec

ball.simulatedFlight();

System.out.println(ball.calculusFlight(ball.getSimulatedTime()));

}
```

ตัวอย่างผลลัพธ์การรัน

Distance on 1 sec: 95.144

Distance on 2 sec: 180.478

Distance on 3 sec: 256.002

Distance on 4 sec: 321.716

Distance on 5 sec: 377.620

Distance on 6 sec: 423.714

Distance on 7 sec: 459.998

Distance on 8 sec: 486.472

Distance on 9 sec: 503.136

Distance on 10 sec: 509.990

Final distance: 510.184 Total time: 10.20

Distance from calculus equation: 509.684

หมายเหตุ ผลลัพธ์จากสองวิธีจะไม่เท่ากันเป็ะเนื่องจากสมการแคลคูลัสจะคำนวณได้ค่าประมาณ

2. จงเขียนคลาส Game สำหรับเล่นเกมเป่ายิ้งฉุบ ให้ได้ผลลัพธ์ดังตัวอย่างผลลัพธ์การรัน โดยให้ผู้เล่นใส่ตัวเลข 0 หากต้องการออกค้อน 1 หากต้องการออกกระดาษ 2 หากต้องการออกกรรไกร (หากผู้เล่นใส่ข้อมูลที่ไม่ใช่สามเลข นี้ให้วนรับไปเรื่อย ๆ) และแข่งกับคอมพิวเตอร์ โดยคอมพิวเตอร์จะสุ่มค่าจากสามเลขนี้ กติกาคือหากฝ่ายใดมี คะแนนมากกว่าอีกฝ่ายหนึ่ง 2 คะแนนจะเป็นผู้ชนะ กำหนด main ดังนี้

```
public class RockPaperScissorTester {
   public static void main(String[] args) {
     Game game = new Game();
     game.play();
   }
}
```

ตัวอย่างผลลัพธ์การรัน

```
Enter 0 for ROCK, 1 for PAPER, 2 for SCISSORS: 0

You enter: ROCK

Computer: SCISSORS

You win!

Enter 0 for ROCK, 1 for PAPER, 2 for SCISSORS: 3

Enter 0 for ROCK, 1 for PAPER, 2 for SCISSORS: WILLIAM

Enter 0 for ROCK, 1 for PAPER, 2 for SCISSORS: 1

You enter: PAPER

Computer: SCISSORS

You lose!

Enter 0 for ROCK, 1 for PAPER, 2 for SCISSORS: 0

You enter: ROCK
```

Computer: SCISSORS
You win!
Enter 0 for ROCK, 1 for PAPER, 2 for SCISSORS: 1
You enter: PAPER
Computer: PAPER
It's a tie.
Enter 0 for ROCK, 1 for PAPER, 2 for SCISSORS: 0
You enter: ROCK
Computer: PAPER
You lose!
Enter 0 for ROCK, 1 for PAPER, 2 for SCISSORS: 0
You enter: ROCK
Computer: PAPER
You lose!
Enter 0 for ROCK, 1 for PAPER, 2 for SCISSORS: 2
You enter: SCISSORS
Computer: ROCK
You lose!
Too bad! You lose.
User Score: 2
Computer score: 4

2301260 Programming Techniques ภาคปลาย ปีการศึกษา 2562

ตัวอย่างผลลัพธ์การรัน

Enter 0 for ROCK, 1 for PAPER, 2 for SCISSORS: 0

You enter: ROCK

Computer: PAPER

You lose!

Enter 0 for ROCK, 1 for PAPER, 2 for SCISSORS: 1

You enter: PAPER

Computer: ROCK

You win!

Enter 0 for ROCK, 1 for PAPER, 2 for SCISSORS: 2

You enter: SCISSORS

Computer: ROCK

You lose!

Enter 0 for ROCK, 1 for PAPER, 2 for SCISSORS: 1

You enter: PAPER

Computer: PAPER

It's a tie.

Enter 0 for ROCK, 1 for PAPER, 2 for SCISSORS: 0

You enter: ROCK

Computer: SCISSORS

You win!

Enter 0 for ROCK, 1 for PAPER, 2 for SCISSORS: 1

You enter: PAPER

Computer: ROCK

You win!

2301260 Programming Techniques ภาคปลาย ปีการศึกษา 2562

Enter 0 for ROCK, 1 for PAPER, 2 for SCISSORS: 0							
You enter: ROCK							
Computer: SCISSORS							
You win!							
Congrats! You win.							
User Score: 4							
Computer score: 2							

2301260 Programming Techniques ภาคปลาย ปีการศึกษา 2562

3. จงเขียนคลาส CityGrid แทนเมืองแห่งหนึ่ง

ตัวอย่างเช่นเมืองขนาด 10 x 10

0	1	1 2	2 3	3 4	. 5	6	7	8	3 9) 10	
											0
											1
											•
					\longrightarrow						
											10

และมีตัวแปรดังนี้

private int xCoor; //เก็บพิกัดของชายผู้หนึ่งในแนวแกน x

private int yCoor; //เก็บพิกัดของชายผู้หนึ่งในแนวแกน y

private int gridSize; //เก็บขนาดของเมือง

โดยเริ่มต้นชายผู้หนึ่งจะยืนอยู่ตำแหน่งตรงกลางเมือง เช่นหากเมืองขนาด 10 x 10 ชายผู้หนึ่งจะยืนที่ตำแหน่ง

จากนั้นเขียนเมธอดดังนี้

(5,5)

public void walk() // ชายผู้หนึ่งจะเดินเพียงหนึ่งก้าว โดยสามารถเดินได้ 4 ทิศ คือเดินขึ้น (y--) ลง (y++) ซ้าย (x--) ขวา (x++)

public boolean isInCity() //คืนค่าจริง หากชายผู้หนึ่งยังคงอยู่ในเมือง public void reset() //reset ตำแหน่งของชายผู้หนึ่งให้กลับมาอยู่ที่กลางเมือง จากนั้นใน main ให้เขียนคำสั่งเพื่อสร้างเมืองขนาด 10 x 10 และให้ชายผู้หนึ่งเดิน 1000 ก้าว หากชายผู้หนึ่งเดิน ออกนอกเมืองไปก่อนที่จะครบ 1000 ก้าว ให้หยุดการเดิน แล้วเริ่มใหม่ทำซ้ำเช่นนี้ 10000 ครั้ง และหาค่าเฉลี่ยว่า ชายผู้หนึ่งเดินได้กี่ก้าวก่อนจะออกนอกเมือง และจำนวนก้าวที่เดินได้มากที่สุดก่อนออกนอกเมือง ตัวอย่างผลลัพธ์การรัน

Average number of steps that a person can take and is still in the city: 41.67 Maximum number of steps that a person can take and is still in the city: 301

4. (Android app) จงเขียนแอพสำหรับรันบน Android ซึ่งเป็นแอพที่ให้ผู้ใช้ทายตัวเลขระหว่าง 1-100 โดย แอพจะมีสามหน้า หน้าแรกจะมีปุ่ม start ให้ผู้ใช้กดเริ่มเล่น เมื่อกดปุ่มเริ่มเล่นเกมแล้วโปรแกรมจะสุ่มเลขมา หนึ่งตัวและจะแสดงหน้าที่สองซึ่งมีกล่องให้ผู้ใช้พิมพ์ตัวเลขที่จะทายและปุ่ม submit หากผู้ใช้ทายค่าสูงไปจะ แสดงข้อความบอกว่า Your guess is too high หากผู้ใช้ทายค่าต่ำไปจะแสดงข้อความบอกว่า Your guess is too low หากผู้ใช้ทายถูกต้องจะแสดงหน้าถัดไปที่มีข้อความว่า You won และมีปุ่ม play again ซึ่งหากผู้ใช้กดจะวนกลับไปหน้าแรกที่มีปุ่ม start หมายเหตุ นิสิตสามารถออกแบบรูปแบบการวางปุ่มได้ตามต้องการ ตัวอย่างหน้าจอ

หน้าจอเริ่มต้น

ผู้ใช้ทายเลข 50

โปรแกรมแสดงข้อความคำใบ้

ผู้ใช้ทายเลขใหม่เป็นเลข 11

เลข 11 เป็นคำตอบที่ถูกต้องจึงแสดงหน้าจอ You won! หากกดปุ่ม PLAY AGAIN จะย้อนกลับไปหน้าแรก