Resultater:

	Tilterering 1	Tilterering 2
V (AgNO3)	3 ml	3,2 ml

Efterbehandling

1. Beregn stofmængden af $AgNO_3$ i det tilsatte volumen af 0,100 M $AgNO_3$. Noter i skemaet nedenfor.

$$n = c \cdot V$$

$$0.100[mol] \cdot 0.003[L] = 0.0003[mol]$$

$$0.100[mol] \cdot 0.0032[L] = 0.00032[mol]$$

2. Hvor stor en stofmængde Ag+ er der tilsat?

	AgNO3	Ag+	NO3-
før	0,00032 m	0 m	0 m
efter	0 m	0,00032 m	0,00032 m

Ag + = 0,00032 mol

3. Hvor stor en stofmængde Cl- indeholder 10,0 mL fortyndet havvand? (Se reaktionsskemaet for forholdet mellem Ag+ og Cl-).

a.
$$Ag+(aq) + CI-(aq) = AgCI(s)$$

Forholdet er 1:1 derfor er det 0.00032

4. Beregn den aktuelle stofmængdekoncentration af chlorid, [Cl-] i det fortyndende havvand.

$$c = \frac{0.00032}{0.01l} = 0.032M$$

5. Beregn [Cl-] i det ufortyndede havvand.

Fortynd 10 gange

$$CV_f = C_{efter} \cdot V_{efter}$$

 $C(u^-; havvand) = 10 \cdot 0.032 M = 0.32 M$

Antag, at chlorid udelukkende findes sammen med natriumioner og beregn massen af
 1 liter havvand

$$C_f V_f = C_{efter} \cdot V_{efter}$$

 $C(u^-; havvand) = 10 \cdot 0.032 M = 0.32 M$
 $n(Cl^-) = c \cdot v = 0.32 M \cdot 1L = 0.32 mol$
 $M = \frac{m}{n}$
 $m(NaCl) = 58.44 \frac{g}{mol} \cdot 0.32 mol = 18gNaCl$

- 7. Sammenlign resultaterne fra de to titreringer, og kommentér.
 - a. Der er en forskel på 0,2 ml. Det kan betyde at er er en fejl kilde i vores mål. Siden da at vi skulle gerne havde taget det sammen mængde havvand i.

	n(AgNO ₃)	n(Ag+)	n(Cl ⁻)	[Cl ⁻] i fortyndet havvand	[Cl ⁻] ufortyndet havvand	m (NaCl) i 1 L ufortynd et
						havvand
Titrering 1	0.0003 mol	0,0003 mol	0,30 mol	1000	1666,66	0.3 mol
Titrering 2	0.00032 mol	<u>0,00032</u> <u>mol</u>	0,32 mol	937,5 mol	1562,5	0,32mol