Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2017 EN2BS01 Mathematics-I

Programme: Diploma Branch/Specialisation: All

Duration: 3 Hrs.

Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1 (N	ICQs)	should be writt	en in full inste	ad of only a, b,	c or d.	
Q.1	i.	If $A = \{1, 2, 3\}$ respectively	and $B = \{3,$	$\{4,5\}$, then the	he value of $A \cap B$ is	1
		(a) {3}, {1,2}		(b) {1,2}, {3	}	
		(c) {3}, {4,5}		(d) {4,5}, {1		
	ii.	If $f(x) = x^2$	-3x+5, then the	e value of $f(-4)$	is is	1
		(a) 9	(b) 1	(c) 33	(d) 23	
	iii.	The value of	5P_0 is			1
		(a) 5	(b) 0	(c) 6	(d) 1	
	iv.	The coefficien	nt of xy in the	expansion of ($(x+y)^2$ is	1
		(a) 1	(b) 2	(c) -2	(d) None of these	
	v.	What is the co	onjugate of $z =$	= 2 + 3i		1
		(a) $\bar{z} = 2 + 3i$	(b) $\bar{z} = \sqrt{13}$	(c) $\overline{z} = -2 - 3$	$3i \text{ (d) } \bar{z} = 2 - 3i$	
	vi.	The series 2,	$4,6,\cdots$ is in			1
		(a) H.P.	(b) G.P.	(c) A.P.	(d) None of these	
	vii.	Transpose of	a column matr	ix is		1
		(a) Column m	natrix	(b) Zero mat	rix	
		(c) Diagonal 1	matrix	(d) Row mat	rix	
	viii.	If $ A = 0$, then	1A is			1
		(a) 0		(b) Singular		
		(c) Non-singu	ılar matrix	(d) Null matı	rix	

P.T.O.

	ix.	Equation of straight line wit written as	h slope -8 and y intercept (0,16) is	1
		(a) $-8x = 16y$	(b) $y = 16x + (-8)$	
		(c) $y = -8x + 16$	(d) None of these	
	х.	If two straight lines have sa classified as	ame slope then these two lines are	1
		(a) Parallel lines	(b) Perpendicular lines	
		(c) Horizontal lines	(d) Vertical lines	
Q.2	i.	How many degrees are conta	ined in the arc of $35\pi/12$ radians?	2
	ii.	Find the domain and range or	f the $f(x) = 1/x - 2$.	3
	iii.	In a recent survey of 400 stusmokers and 150 as chewers smokers and gum chewers?	adents in a school, 100 were listed as ers of gum; 75 were listed as both s. How many students are neither How many students are smokers but lents are chewers but not smokers?.	5
OR	iv.	Evaluate $\tan \left(\sin^{-1} \frac{3}{5} + \cos^{-1} \frac{3}{5} \right)$		5
Q.3	i.	Write down formulas for combinations.	the number of permutations and	2
	ii.	<u>*</u>	ays can the letters of the word such a way that the vowels always	3
	iii.	• • •	irls, four children are to be selected. s can they be selected such that at?	5
OR	iv.		and $(r-2)^{th}$ terms in the expansion	5
Q.4		Attempt any two		
	i.	Express $z = 1 + i\sqrt{3}$ in polar:	form	5
	ii.	If 10^{th} term of an A. P. is -1 . 15^{th} term.	5 and 31^{st} term is –57, then find the	5

	111.	Insert three geometric means between 1 and 256.	5
Q. 5	i.	Attempt any two. Find the value of B , if it is given that $A + B = A^2$ where $\begin{bmatrix} 1 & 4 \end{bmatrix}$	5
	ii.	$A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$ Find the inverse of the matrix $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \end{bmatrix}$	5
	iii.	$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ Solve the following system of equations by using Cramer's rule: $x + y + z = 16$ $x - y + z = 2$ $2x + y - z = 1$	5
Q 6	i. ii.	Find the distance between two points (5, 3) and (7, 4) Find the distance from the point (-3,7) to the line $y = \frac{6}{5}x + 2$.	3 7
OR	iii.	Find the acute angle between the lines $7x-4y=0$ and $3x-11y+5=0$.	7

Faculty of Engineering End Sem (Odd) Examination Dec-2017 EN2BS01 Mathematics-I

SOLUTION

Programme: Diploma

Branch/Specialisation: All

Q.1	i.	A {3}	1
	ii.	C 33	1
	iii.	D 1	1
	iv.	B 2	1
	v.	A 2+3i	1
	vi.	C A.P.	1
	vii.	D Row matrix	1
	viii.	B Singular matrix	1
	ix.	C y = -8x + 16	1
	x.	A Parallel lines	1
Q.2	i.	π Radians = 180° $35\pi/12$ radians = $\frac{35}{12} \times 180^\circ = 525^\circ$	+(1)
	ii.	f(x) = 1/x-2 Domain D = the set of all real numbers other than 2 Range = The set of all real numbers	+(1.5)
	iii.	The number of students are neither smokers nor gum chewers = 325	+(3)
		The number of students are smokers but not chewers = 25. The number of students are chewers but not smokers = 75.	+(1)

	•		+(1)
OR	iv.	To find	7 7 7
		$\tan\left(\arcsin\frac{3}{5} + \arccos\frac{5}{13}\right)$	
		Let	
		$x = \arcsin\frac{3}{5}, y = \arccos\frac{5}{13}$	+(1)
		$\sin x = \frac{3}{5}, \cos y = \frac{5}{13}$	+(1)
		3 13	.(1)
		$\cos x = \sqrt{1 - \sin^2 x} = \frac{4}{5}, \sin y = \frac{12}{13}$	+(1)
		$\tan x = \frac{3}{4}, \tan y = \frac{12}{5}$	101)
		$\frac{\tan x - \frac{1}{4}, \tan y = \frac{1}{5}}{5}$	+(1)
		so, $\tan\left(\arcsin\frac{3}{5} + \arccos\frac{5}{13}\right) = \tan(x+y)$	
			1.
		$=\frac{\tan x + \tan y}{1 + \tan x \tan y} = \frac{63}{56}$	+(1)
			1 (1)
Q.3	i.	The number of Permutation = np	+(1)
		= 21/6-41	
		The num of combination = nor	+(1)
		= 0(1, /1 (n-r)1	
	ii.	The word 'LEADING' has 7 different letters.	
			-
		When the vowels EAI are always together, they can be supposed to form one letter.	
		When the vowels EAI are always together, they can be supposed to form one letter. Then, we have to arrange the letters LNDG (EAI).	+(1)
		supposed to form one letter.	+(1)
		supposed to form one letter. Then, we have to arrange the letters LNDG (EAI).	+(1)

	iii.	In a group of 6 boys and 4 girls, four children are to be selected such that at least one boy should be there. Hence we have 4 options as given below	
		We can select 4 boys(option 1) Number of ways to this = ${}^{6}C_{4}$	+(1)
		We can select 3 boys and 1 girl(option 2) Number of ways to this = ${}^{6}C_{3} \times {}^{4}C_{1}$	+(1)
		We can select 2 boys and 2 girls(option 3) Number of ways to this = ${}^{6}C_{2} \times {}^{4}C_{2}$	+(1)
		We can select 1 boy and 3 girls(option 4) Number of ways to this = ${}^{6}C_{1} \times {}^{4}C_{3}$	+(1)
		Total number of ways $= {}^{6}C_{4} + {}^{6}C_{3} \times {}^{4}C_{1} + {}^{6}C_{2} \times {}^{4}C_{2} + {}^{6}C_{1} \times {}^{4}C_{3}$ $= {}^{6}C_{2} + {}^{6}C_{3} \times {}^{4}C_{1} + {}^{6}C_{2} \times {}^{4}C_{2} + {}^{6}C_{1} \times {}^{4}C_{1}[\because {}^{n}C_{r} = {}^{n}C_{(n-r)}]$	
		=6×52×1+6×5×43×2×1×4	
		+6×52×1×4×32×1+6×4 =15+80+90+24=209	+(1)
OR	iv.	The general term of $(1 + x)^n$ is $T_{r+1} = C_r x^r$	
		Hence coefficient of (2r + 4) th term will be	
		$T_{2r+4} = T_{2r+3+1} = {}^{18}C_{2r+3}$	
		and coefficient or (r - 2)th term will be	+(1)
		$T_{r-2} = T_{r-3+1} = {}^{18}C_{r-3}$	+(1)
		\Rightarrow ¹⁸ C _{2r+3} = ¹⁸ C _{r-3} .	+(1)
		\Rightarrow $(2r+3)+(r-3)=18 (: r_r = r_k =$	
		∴ r=6	+(2)

Q.4	i.	Given	
		$z=1+i\sqrt{3}$	
		Put	
		$1=r\cos\theta,\sqrt{3}=r\sin\theta$	
		$r=2, \theta=\frac{\pi}{3}$	+(2)
		$z = 1 + i\sqrt{3} = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$	+(3)
	ii.	Let <i>a</i> be the first term and <i>d</i> be the common difference of the A. P. Then from the formula:	
		th = $a + (n-1)d$, we have	
		t10 = a + (10 - 1)d = a + 9d	
		t31 = a + (31 - 1)d	
		= a + 30d We have,	+(1)
		a+9d=-15(1) a+30d=-57(2)	+(1)
		Solve equations (1) and (2) to get the values of a and d . Subtracting (1) from (2), we have $21d = -57 + 15 = -4211$	
		∴ d=-42/21 = -2	1(2)
		Again from (1),	+(2)
		a = -15 - 9d = -15 - 9 (-2) = -15 + 18 = 3 Now	
		t15 = a + (15 - 1)d = 3 + 14 (-2) = -25	+(1)
	iii.	Let G_1, G_2, G_3 , be the three geometric means between 1 and 256.	
		Then I , G_1 , G_2 , G_3 , 256 are in G. P.	+(1)
		If r be the common ratio, then	(-)
		$T_5 = 256$	
		i.e, $ar^4 = 256$	

Q.5	Ĭ.	$\Rightarrow 1.r^{4} = 256$ or, $r^{2} = 16$ or, $r = \pm 4$ When $r = 4$, $G_{1} = 1$. $4 = 4$, $G_{2} = 1$. $(4)^{2} = 16$ and $G_{3} = 1$. $(4)^{3} = 64$ When $r = -4$, $G_{1} = -4$, $G_{2} = (1)(-4)^{2} = 16$ and $G_{3} = (1)(-4)^{3} = -64$ Gomethat $A + B = A^{2} \text{ and } A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$ To find the value of B , $A^{2} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} \times \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$ To where $A = A^{2} = A$	+(2) +(1) +(1) +(3)
	ii.	1A1=1(1-4)-2(2-4)+2(4-2)=5	f (1)
		Now $A_{11} = -3$, $A_{12} = 2$, $A_{13} = 2$. $A_{21} = 2$, $A_{22} = -3$, $A_{23} = 2$	

~

		A31 = 2, $A32 = 2$, $A33 = -3$ $+(2)$
		So Adj' $A = \begin{bmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{bmatrix}$ +(1)
		NOW - AdiA , [-3 2 2]
		Now $A = \frac{AdjA}{1Al} = \frac{1}{5} \begin{bmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{bmatrix} + (1)$
	iii.	8 Here 1111
		$D = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 6$ +(1)
		$\mathcal{P}_{n} = \begin{vmatrix} 6 & 1 & 1 \\ 2 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 6, \mathcal{D}_{y} = \begin{vmatrix} 1 & 16 & 1 \\ 1 & 2 & 1 \\ 2 & 1 & -1 \end{vmatrix} = 42 + (2)$
		$32 = \begin{vmatrix} 1 & 1 & 16 \\ 1 & 1 & 2 \end{vmatrix} = 48$
		Solution 17 given 14x= = = = = = = = = = = = = = = = = = =
Q6	i.	28
		P(x1,41) = (5,3), 9(22,42)=17(4)
		$PQ = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ +(1)
		$=\sqrt{(7-5)^2+(4-3)^2}=\sqrt{4+1}$

	ii.		
	11.	First we write $y = \frac{6}{5}x + 2$	
		6x - 5y + 2 = 0	+(2)
		The distance from (m, n) to the line $Ax+By+C=0$ is given by $\frac{ Am+Bn+C }{\sqrt{A^2+B^2}}$	+(3)
		Thus the distance from the point (-3, 7) to the line	
0.7		= 5.506	+(2)
OR	iii.	First we need to find the slope of both the lines.	
		7x - 4y = 0	
		$\Rightarrow y = 7x/4$	+(1)
		Therefore, the slope of the line $7x - 4y = 0$ is $7/4$	
		Again, $3x - 11y + 5 = 0$	
		$\Rightarrow y = 3x/11 + 5/11$	
		Therefore, the slope of the line $3x - 11y + 5 = 0$ is $= 3/11$	+(1)
		Now, let the angle between the given lines $7x - 4y = 0$ and $3x - 11y + 5 = 0$ is 0	+(1)
		Now,	
		$\tan \theta = (m2-m1)/(1+m1m2) = \pm 1$	+(1)
		Since θ is acute, hence we take, $\tan \theta = 1 = \tan 45^{\circ}$	
		Therefore, $\theta = 45^{\circ}$	+(1)
		Therefore, the required acute angle between the given lines is 45°	
