Primitive Unit-cell

A volume of space which when translated through all the vectors in a Bravais lattice just fills all of space without either overlapping itself or leaving voids is called a primitive cell or primitive unit-cell of the lattice.

Choice again is not unique

Several choices of primitive cell for a single 2D Bravais lattice

Primitive cell must precisely contain one lattice point. Thus if "n" is no. density of lattice points and "v" is volume of primitive cell, then nv =1

Volume of primitive cell is fixed between various choices

Primitive Unit-cell

The obvious primitive cell to be associated with a particular choice of primitive vectors ${\bf a}_1$, ${\bf a}_2$, ${\bf a}_3$ is the set of all points ${\bf r}$ of the form -

$$r = x_1 a_1 + x_2 a_2 + x_3 a_3$$

 $(x_i \text{ ranging continuously between 0 and 1})$

Primitive cells often do not represent the full symmetry of the Bravais lattice

Conventional Unit-cell

Space can also be filled up with non-primitive unit cells (also known as unit cells)

A conventional unit cell is usually chosen bigger than the primitive cell to have the symmetry of the Bravais lattice

Six Crystal systems and Fourteen Bravais Lattices

DC - CMP - IIT KGP

Six crystal systems and Fourteen Bravais Lattices

Simple cubic Bravais Lattice

A simple cubic 3D Bravais lattice (Note point no. 1 in definition)

One choice - Take mutually perpendicular primitive vectors of equal length

Body-centered Bravais Lattice

Two ways to visualize

Simple cubic lattice of A with points B at the body-center

OR

Simple cubic lattice of B with points A at the body-center.

(Definition 1 is satisfied)

Body-centered Bravais Lattice

Possible primitive vectors

$$\mathbf{a_1} = \mathbf{a} \xrightarrow{x}$$
, $\mathbf{a_2} = \mathbf{a} \xrightarrow{y}$, $\mathbf{a_3} = \mathbf{a}/2$ ($\xrightarrow{x} + \xrightarrow{y} + \xrightarrow{z}$)

Body-centered Bravais Lattice

More symmetric set of primitive vectors

$$\mathbf{a_1} = a/2 \ (\xrightarrow{y} + \xrightarrow{z} - \xrightarrow{x})$$
, $\mathbf{a_2} = a/2 \ (\xrightarrow{z} + \xrightarrow{x} - \xrightarrow{y})$, $\mathbf{a_3} = a/2 \ (\xrightarrow{x} + \xrightarrow{y} - \xrightarrow{z})$

Hexagonal Bravais lattice

Face-centered Bravais Lattice

Face-centered Bravais Lattice

Possible primitive vectors

$$\mathbf{a_1} = a/2 \left(\frac{1}{y} + \frac{1}{z} \right), \ \mathbf{a_2} = a/2 \left(\frac{1}{z} + \frac{1}{z} \right), \ \mathbf{a_3} = a/2 \left(\frac{1}{z} + \frac{1}{z} \right)$$

Different Unit-cells for FCC Bravais lattice

Is it possible to construct a primitive cell with Bravais lattice symmetry?

Yes! A Wigner-Seitz primitive cell.

A Wigner-Seitz cell about a point is a region of space that is closer to that point than to any other lattice point

Wigner-Seitz cells

BCC Bravais Lattice

FCC Bravais Lattice

Crystal Lattice

Crystal Lattice

Lattice with a basis

Cuprate high-temperature superconductor

