红酒质量研究

Wine Quality Research

Content

选题意义

数据表格

方案论证

模型评估

选题意义

确定葡萄酒质量时一般是通过 聘请一批有资质的品酒员对酒进行 品评, 然后打分确定就的质量。而 酒的质量在一定程度上受酒的理化 指标的影响。然而这种传统方式需 要聘请专业的品酒员,需要较高成 本,从而使得酒的质量的划分方式 往往受到大酒庄的控制。而各国规 定的酒的分级制度,也仅仅是根据 葡萄产地,酒的部分理化指标等数 据将酒标上标签,并没有针对其质 量。若能将葡萄酒的理化指标与其 质量相联系起来,则可以实现葡萄 酒质量评级的普及化,促进商家明 码标价,为一般民众在选酒是提供

fixed.acidity: 该变量指的是葡萄酒中的固定或者 非挥发性酸度

volatile.acidity:挥发酸,葡萄酒中的醋酸含量过高,会导红酒味道变差。

citric.acid: 柠檬酸, 柠檬酸含量小, 能给葡萄酒 增添新鲜感和风味。

residual.sugar: 剩余糖分,发酵结束后剩下的糖分,很少发现低于1克/升的葡萄酒,超过45克/升的葡萄酒被认为是甜的。

chlorides: 酒中的盐量。

free.sulfur.dioxide: 酒中带硫元素的离子, 它可以防止微生物的生长和葡萄酒的氧化。

total.sulfur.dioxide:二氧化硫,低浓度时检测不到,当浓度超过50 ppm时用鼻子可以闻到。

density:密度,大致接近于水,具体取决于酒精和糖的含量。

pH:用于描述酒的酸碱度。

sulphates:硫酸盐,葡萄酒的添加剂,用于控制二氧化硫比例。

alcohol: 酒中的酒精浓度。

winequality-red

Accessing Accessing Accessing											
fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
7.4	0.7	0	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5
7.8	0.88	0	2.6	0.098	25	67	0.9968	3.2	0.68	9.8	5
7.8	0.76	0.04	2.3	0.092	15	54	0.997	3.26	0.65	9.8	5
11.2	0.28	0.56	1.9	0.075	17	60	0.998	3.16	0.58	9.8	6
7.4	0.7	0	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5
7.4	0.66	0	1.8	0.075	13	40	0.9978	3.51	0.56	9.4	5
7.9	0.6	0.06	1.6	0.069	15	59	0.9964	3.3	0.46	9.4	5
7.3	0.65	0	1.2	0.065	15	21	0.9946	3.39	0.47	10	7
7.8	0.58	0.02	2	0.073	9	18	0.9968	3.36	0.57	9.5	7
7.5	0.5	0.36	6.1	0.071	17	102	0.9978	3.35	0.8	10.5	5
6.7	0.58	0.08	1.8	0.097	15	65	0.9959	3.28	0.54	9.2	5
7.5	0.5	0.36	6.1	0.071	17	102	0.9978	3.35	0.8	10.5	5
5.6	0.615	0	1.6	0.089	16	59	0.9943	3.58	0.52	9.9	5
7.8	0.61	0.29	1.6	0.114	9	29	0.9974	3.26	1.56	9.1	5
8.9	0.62	0.18	3.8	0.176	52	145	0.9986	3.16	0.88	9.2	5
8.9	0.62	0.19	3.9	0.17	51	148	0.9986	3.17	0.93	9.2	5
8.5	0.28	0.56	1.8	0.092	35	103	0.9969	3.3	0.75	10.5	7
8.1	0.56	0.28	1.7	0.368	16	56	0.9968	3.11	1.28	9.3	5
7.4	0.59	0.08	4.4	0.086	6	29	0.9974	3.38	0.5	9	4
7.9	0.32	0.51	1.8	0.341	17	56	0.9969	3.04	1.08	9.2	6
8.9	0.22	0.48	1.8	0.077	29	60	0.9968	3.39	0.53	9.4	6

数据预处理

```
#数据归一化
minVals = X.min(0)
maxVals = X.max(0)
X = (X-minVals)/(maxVals-minVals)
```

由于数据太过分散,我们将所有数据进行归一化处理,使它们均处在(0,1)内

数据预处理

```
for i in range(len(Y)): #二值化标签
    if 0<Y[i]<6:
        Y[i] = 0
    else:
        Y[i] = 1

#划分训练集和测试集
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.3,random_state=32, stratify=Y)
```

我们将label划分成两个去区间: [6, 10] (0, 6) 分别代表红酒质量的优劣。

1、KNN算法实现

KNN算法实现

```
for i,k in enumerate(neighbors):
    #Setup a knn classifier with k neighbors
    knn = KNeighborsClassifier(n_neighbors=k)

#Fit the model
    knn.fit(X_train, Y_train)

#Compute accuracy on the training set
    train_accuracy[i] = knn.score(X_train, Y_train)

#Compute accuracy on the test set
    test_accuracy[i] = knn.score(X_test, Y_test)
```


决策树算法实现

2. 决策树算法实现

决策树算法实现

```
from sklearn import tree
treeclf = tree.DecisionTreeClassifier(criterion='gini')
treeclf.fit(X_train,Y_train)
test_accuracy = treeclf.score(X_test,Y_test)
print(test_accuracy)
```


小素贝叶斯算法实现

3、朴素贝叶斯算法实现


```
from sklearn.naive_bayes import GaussianNB
bayesclf = GaussianNB().fit(X_train, Y_train)
test_accuracy = bayesclf.score(X_test, Y_test)

test_accuracy
0.7234375
```

模型评估

#混淆函数 from sklearn.metrics import confusion matrix from sklearn.metrics import classification report Y pred = knn.predict(X test) #print(confusion matrix(Y test,Y pred)) print(classification_report(Y_test,Y_pred)) precision recall f1-score support 0.0 0.63 0.62 0.63 298 1.0 0.67 0.68 0.68 342 avg / total 0.65 0.65 0.65 640

模型评估

```
#特征选择 树形选择法
from sklearn.ensemble import ExtraTreesClassifier
clf = ExtraTreesClassifier()
clf = clf.fit(X train, Y train)
clf.feature importances
array([0.06493354, 0.09689237, 0.06938514, 0.07137427, 0.06919244,
      0.06453383, 0.09306585, 0.07423613, 0.07125195, 0.09700279,
      0.22813169])
#方差选择法
from sklearn.feature selection import VarianceThreshold
VarianceThreshold(threshold=3).fit transform(X train)
array([[ 8.8, 19. , 72. ],
      [ 7.6, 10. , 88. ],
      [ 9.9, 6., 33. ],
       . . . ,
      [ 8.3, 6., 12.],
      [ 6.7, 15. , 36. ],
      [ 7.9, 23., 49.]])
#卡方检验
from sklearn.feature selection import SelectKBest
from sklearn.feature selection import chi2
SelectKBest(chi2, k=5).fit transform(X, Y)
array([[0.39726027, 0.
                             , 0.09893993, 0.13772455, 0.15384615],
      [0.52054795, 0.
                             , 0.2155477 , 0.20958084, 0.21538462],
      [0.43835616, 0.04
                             , 0.16961131, 0.19161677, 0.21538462],
       . . . ,
                             , 0.12014134, 0.25149701, 0.4
      [0.26712329, 0.13
                                                                 ],
                             , 0.13427562, 0.22754491, 0.27692308],
      [0.35958904, 0.12
      [0.13013699, 0.47
                             , 0.12720848, 0.19760479, 0.4
                                                                 11)
```

非常感谢