# **Matrizes (Array)**

#### Lógica de Programação

Prof. MSc. Bruno de A. Iizuka Moritani bruno.moritani@anhembi.br



..................



# Agenda

- Matrizes
  - Definição
  - Declaração
    - Sintaxe
    - Exemplos
    - Inicialização de Matrizes
  - Índices

# Matriz - Definição

- É uma variável homogênea multidimensional
  - Um conjunto de variáveis de mesmo tipo,
     que possuem o mesmo identificador (nome)
     e são alocadas sequencialmente na memória
  - Uma matriz precisa de **um índice para cada**

uma de suas dimensões

# Matriz - Definição



Qual é o tamanho dessa matriz???

3 linhas e 5 colunas

Quantos elementos é possível armazenar na matriz?

3 \* 5 = 15 elementos

# Declaração

- Uma matriz é representado por:
  - Tipo
    - tipo de dado armazenado
       int, float, double, String, char
  - Identificador
    - nome do vetor (plural)
  - Tamanho (dimensão)
    - Tamanho da Linha: quantidade de elementos na linha (tamLin)
    - Tamanho da Coluna: quantidade de elementos na coluna (tamCol)

```
tipo identificador [][] = new tipo[tamLin][tamCol];
```

# Declaração - Exemplos

double numeros[][] = new double[2][5];

| numeros         0.0         0.0         0.0         0.0         0.0           0.0         0.0         0.0         0.0         0.0         0.0 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                               |
| 0.0 0.0 0.0 0.0                                                                                                                               |

# Declaração - Exemplos

```
int numeros[][] = new int[3][100];
```

| Memória |   |   |   |   |   |   |   |   |   |   |       |   |
|---------|---|---|---|---|---|---|---|---|---|---|-------|---|
| numeros | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | <br>0 | 0 |
|         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | <br>0 | 0 |
|         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | <br>0 | 0 |

# Declaração e Inicialização de Matrizes

 Pode ser criado a partir de uma lista de valores entre { e } e separados por virgula

```
int [][] numeros = { \{4, 5, 1, 10\} , \{16, 11, 76, 8\} , \{9, 54, 32, 89\} } ; int [][] n2 = \{ \{2,2\} , \{3,4\}\}; int n3 [][] = \{ \{1,0,0\} , \{0,1,0\} , \{0,0,1\}\};
```

## Índice

- O índice indica a posição do dado no vetor
  - Usaremos a linha e a coluna para identificar cada posição.

double numeros[][] = new double[2][5];



# Como percorrer na Matriz?



Fixa a 1a linha e percorre todas as colunas Fixa a 2a linha e percorre todas as colunas

## Como percorrer na Matriz?

- São necessários 2 laços:
  - 1) percorrer as linhas
  - 2) percorrer as colunas

```
for(i = 0; i < 3; i++){ //percorre linhas
  for( j = 0; j < 4; j++){ //percorre colunas
     System.out.println("Digite um número:");
     numeros[i][j] = entrada.nextInt();
```

# Como percorrer na Matriz?

O i inicia em 0, o j inicia em 0 e vai até 4 O i incr. para 1, o j inicia em 0 e vai até 4 O i incr. para 2, o j inicia em 0 e vai até 4 O i incr. para 3 e encerra o laço

#### Entrada de Dados

```
nomeDaMatriz[i][j] = <dado qualquer>;
```

```
for( i = 0; i < 3; i++){ //percorre linhas
    for( j = 0; j < 4; j++){ //percorre colunas
        numeros[i][j] = entrada.nextInt();
    }
}</pre>
```

#### Saída de Dados

```
for( i = 0; i < 3; i++){
  for( j = 0; j < 4; j++){
    System.out.print( numeros[i][j] + "\t");
  }
  System.out.println(" ");
}</pre>
```

```
run:
4 5 1 10
16 11 76 8
9 54 32 89
```

# Propriedade length

```
int numeros[][] = {{4,5,1,10},{16,11,76,8},{9,54, 32, 89}};
int i, j;
for(i=0; i < numeros.length; i++){
    for(j=0; j < numeros[i].length; j++){
        System.out.print(numeros[i][j]+ "\t");
    }
    System.out.println("");
}</pre>
```

- numeros.length
  - quantidade de linhas
- numeros[i].length
  - para a linha i quantidade de colunas

# Exemplo

- 1)Criar uma matriz 2x2 de inteiros.
  - Armazenar os dados na matriz
  - Calcular e imprimir o somatório dos elementos de cada linha
  - Calcular e imprimir o somatório de todos os elementos da matriz
  - Imprimir os elementos da matriz

# Exemplo

```
16 □
          public static void main(String[] args) {
17
              Scanner teclado = new Scanner(System.in);
18
19
              //Declaracao da matriz
20
              int numeros[][] = new int[2][2]:
21
              int somaLinhas = 0, total = 0;
23
              //Armazenar os dados
              for (int i = 0; i < numeros.length; <math>i++){
24
                  for (int j = 0; j < numeros[i].length; <math>j++){
25
                      System.out.println("Digite um numero para a posicao ["+ i+"]["+j+"]: ");
26
                      numeros[i][j] = teclado.nextInt();
27
28
29
30
              //Percorrer os dados
              for (int i = 0; i < numeros.length; <math>i++){
31
                  somaLinhas = 0; // zera o acumulador de linhas
32
                  for (int j = 0; j < numeros[i].length; <math>j++){
33
                      somaLinhas += numeros[i][j];
34
35
                  System.out.println("A soma da linha ["+i+"] eh..." + somaLinhas);
36
37
                  total += somaLinhas; //acumula o total de cada linha
38
              System.out.println("O somatorio da matriz ehhhhh...."+ total);
39
40
              //Imprimir os dados
              System. out. println("======"");
41
42
              System. out. println("
                                              Elementos da Matriz
              System. out. println("======"");
43
              for (int i = 0; i < numeros.length; <math>i++){
                  for (int j = 0; j < numeros[i].length; <math>j++){
45
                      System.out.print(numeros[i][j]+"\t");
46
47
                  System.out.println("");
48
49
50
```

Prof. MSc. Bruno de A. lizuka Moritani



When you write alot of code without testing, and once you do it works flawlessly



@geekboy

1) Criar e ler uma matriz 4 x 4, contar e imprimir quantos valores maiores que 10 ela possui. Imprimir os elementos da matriz no final.

2) Declare uma matriz 5 x 5. Gere uma matriz identidade, ou seja, preencha com 1 a diagonal principal e com 0 os demais elementos. Imprimir a matriz identidade no final.

3) Para cada conjunto de valores abaixo, escreva o programa, usando laço(s), que preencha um array com os valores:

a) 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 b) 0 1 4 9 16 25 36 49 64 81 0 1 4 9 16 25 36 49 64 81 0 1 4 9 16 25 36 49 64 81 0 1 4 9 16 25 36 49 64 81 0 1 4 9 16 25 36 49 64 81

d) -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

- 4) Gere uma matriz de 100x100 elementos inteiros positivos menores ou iguais a 100.
  - Imprimir a matriz gerada.
  - Percorrer e matriz e substituir os elementos ímpares por -1 e os pares por 1.
  - Imprimir a matriz após a substituição.

#### Desafios

1) A distância entre várias cidades é dada pela tabela abaixo (em km):

|   | 1  | 2  | 3  | 4  | 5  |
|---|----|----|----|----|----|
| 1 | 00 | 15 | 30 | 05 | 12 |
| 2 | 15 | 00 | 10 | 17 | 28 |
| 3 | 30 | 10 | 00 | 03 | 11 |
| 4 | 05 | 17 | 03 | 00 | 80 |
| 5 | 12 | 28 | 11 | 80 | 00 |

- Implemente um programa que:
  - Armazene a tabela acima em uma matriz.
  - O programa não deve perguntar distâncias já informadas (por exemplo, se o usuário já forneceu a distância entre 1 e 3 não é necessário informar a distância entre 3 e 1, que é a mesma) e também não deve perguntar a distância de uma cidade para ela mesma, que é 0.
  - leia um percurso fornecido pelo usuário em um array unidimensional.
  - Calcule e mostre a distância percorrida.
- Por exemplo:
  - dado o percurso 1, 2, 3, 2, 5, 1, 4 para a tabela mostrada como exemplo teremos: 15 + 10 + 10 + 28 + 12 + 5 = 80 km.

# Desafios – Jogo da Velha

- 2) Implementar o famoso jogo da velha usando uma matriz 3 x 3.
  - As jogadas devem ser alternados entre o usuário e o computador.
  - O jogo deve solicitar um valor entre 1 e 9 para determinar a casa do tabuleiro que acontecerá a jogada.
  - O programa deve informar se aquela casa já está ocupada, se estiver, deve solicitar novamente a casa. O jogo deve solicitar também o valor 'X' ou 'O' para a jogada.
  - As jogadas devem ser alternadas e sempre iniciar pelo usuário seguido da jogada do computador.
  - O jogo deve indicar quem é o vencedor da jogada ou se deu velha (empate)
  - As jogadas do computador devem ser geradas de forma aleatória.
  - O programa deve permitir várias jogadas.

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

# Obrigado! Bom Dia! Boa Noite!

bruno.moritani@anhembi.br



