

Bussysteme und Sensorik

Entwicklung eines Hubs zur Erfassung und graphischen Darstellung von Sensordaten

Wintersemester 2023/2024

Ausarbeitung von:

Lasse Kelling 123456 Fabian Schmalenbach 2514071

Abgabedatum: 24.06.2023

Prüfer: Prof. Dr. R. Fitz

Inhaltsverzeichnis

1		ektbeschreibung	1
	1.1	Anforderungen	1
2	\mathbf{Sys}_{1}	embeschreibung	1
	2.1	Systemaufbau	1
	2.2		2
		2.2.1 BME280	2
		2.2.2 MHZ19C	2
		2.2.3 DCF77	2
		2.2.3.1 MeteoTime	2
	2.3	Kommunikation	2
		2.3.1 Funkstrecke	2
			2
3	Mo	ulbeschreibung	2
	3.1	Sensormodul extern	2
	3.2	Sensormodul intern	2
	3.3	Grafikmodul	2

1 Projektbeschreibung

Ziel des Projekts ist die Entwicklung eines Sensorhubs, der Sensordaten erfasst und auf einem Display darstellt. Bei den Sensoren handelt es sich in erster Linie um Umweltdaten, die aktuelle Parameter der Umgebung erfassen. Das Projekt kann daher grob mit einer Wetterstation verglichen werden.

1.1 Anforderungen

Es wurden keine verpflichtenden Anforderungen gestellt, das Projekt soll thematisch aber zum Modul "Bussysteme und Sensorik" passen. Daraus lassen sich für das spezifische Projekt Anforderungen stellen bzw. ableiten:

- Verwendung eines oder mehrerer Bussysteme zur Kommunikation zwischen Mikrocontrollern
- Nutzung diverser Sensoren mit unterschiedlichen Anbindungen für Vielfältigkeit
- Analog zu herkömmlichen Wetterstationen, soll diese ebenfalls über einen Außensensor verfügen
- Die Wetterstation soll über eine Wettervorhersage verfügen
- Der Sensorhub soll skalier- und erweiterbar sein

Aus diesen Anforderungen lassen sich direkt Vorgaben für das Projekt ableiten:

- Nutzung mehrerer Mikrocontroller, die miteinander über ein Bussystem kommunizieren
- Verwendung digitaler Sensoren, die Standardprotokolle wie I2C, SPI oder UART unterstützen
- Entwicklung eines Außensensors, der drahtlos mit dem Sensorhub kommunizieren kann
- Anbindung des Sensorhubs ans Internet oder Empfang von Wettervorhersagen via Funk (DCF77)
- Nutzung ausreichend leistungsstarker Mikrocontroller, die genügend Leistungs- und Peripheriereserven haben, um weitere Geräte anzubinden

2 Systembeschreibung

2.1 Systemaufbau

Abbildung 1: Übersicht der Systemkomponenten

Die obige Abbildung 1 zeigt abstrakt alle Komponenten des Systems. Die jeweiligen Komponenten über dem Mikrocontroller Symbol zeigen jeweils die angeschlossenen Sensoren bzw. Bildschirme. Ebenfalls ist grob die Kommunikation zwischen den Mikrocontrollern erkennbar.

Ganz links ist der Außensensor dargestellt, an den ein Sensor zur Messung von Temperatur, Luftfeuchtigkeit und Luftdruck angeschlossen ist. Außerdem verfügt dieser über eine Antenne, um das DCF77-Signal zu empfangen, welches die aktuelle Zeit und eine Wettervorhersage beinhaltet (siehe Abschnitt 2.2.3). Der Sensor sendet die empfangenen Daten zyklisch per 433 MHz Sender an den Sensorhub.

Der Sensorhub besteht aus zwei Mikrocontrollern, die über eine serielle Schnittstelle (UART) miteinander kommunizieren. Der in Abbildung 1 mittlere Mikrocontroller empfängt die Daten des Außensensors und leitet diese weiter an den verbundenen Mikrocontroller. Da die Daten zur Wettervorhersage verschlüsselt sind und der Außensensor möglichst wenig Energie verbrauchen soll, müssen die Daten vom Mikrocontroller entschlüsselt werden. Dazu werden die entsprechenden Datenpakete abgefangen, entschlüsselt und anschließend weitergesendet. Der Mikrocontroller verfügt außerdem wie der Außensensor über einen Sensor zur Messung von Temperatur, Luftfeuchtigkeit und Luftdruck (wobei der Luftdruck im Innenraum nicht gemessen wird). Zusätzlich ist ein CO2 Sensor verbaut, der die Konzentration im Raum misst.

In der Übersicht ganz rechts ist der Mikrocontroller, der alle Daten empfängt und auf einem Touchdisplay darstellt. Da der Sensor über ein WLAN-Modul verfügt, wäre theoretisch zusätzlich die Übertragung der Daten per WLAN an einen Server o.ä. möglich, der alle Daten speichert und diese anderen Geräten zur Verfügung stellt.

- 2.2 Sensorik
- 2.2.1 BME280
- 2.2.2 MHZ19C
- 2.2.3 DCF77
- 2.2.3.1 MeteoTime
- 2.3 Kommunikation
- 2.3.1 Funkstrecke
- 2.3.2 Datenpakete
- 3 Modulbeschreibung
- 3.1 Sensormodul extern
- 3.2 Sensormodul intern
- 3.3 Grafikmodul