Bestimmen Sie die Lösungen der ganzrationalen Gleichung.

a)
$$x \cdot (3x^2 + 4x + 10) = 3 \cdot (x^3 + 2)$$

b)
$$2x^3 - 2x^2 - 4x = 0$$

a) Bestimmen Sie die Lösungen der biquadratischen Gleichung $2x^4 - 20x^2 + 18 = 0$.

b) Die Gleichung $2x^3 + 3x^2 - 3x - 2 = 0$ hat die Lösung 1. Bestimmen Sie die weiteren Lösungen.

a) Bestimmen Sie die Lösungen der Bruchgleichung

$$\frac{4}{x+1} + 1 = \frac{6}{x}$$
.

b) Bestimmen Sie die Nullstellen der gebrochenrationalen Funktion f mit

$$f(x) = -1 + \frac{1}{x} - \frac{6}{x-2}.$$

Bestimmen Sie die Lösungen der Gleichung.

a)
$$3^{2x-3} = 27$$

b)
$$4 \cdot 2^x - 36 = 0$$

c)
$$4 \cdot 2^{2x} = 9 \cdot 2^{x+1} - 18$$

a) Bestimmen Sie die Lösungen der Exponentialgleichung $2 \cdot e^{3x-5} = 8$.

b) Bestimmen Sie die Schnittpunkte der Graphen der Funktionen f und g mit $f(x) = 5 - 4e^{-0.5x} \text{ und } g(x) = e^{0.5x}.$

Bestimmen Sie im Intervall $[0; 2\pi]$ die Lösungen der trigonometrischen Gleichung.

a)
$$3 \cdot \cos(x) - 6 \cdot \cos^2(x) = 0$$

b)
$$2 \cdot \sin^2(x) + \sin(x) - 1 = 0$$

Lösen Sie das lineare Gleichungssystem.

a)
$$x_1 + 2x_2 - 3x_3 = 5$$

 $2x_1 + 6x_2 - 7x_3 = 12$
 $x_1 + 4x_2 - 4x_3 = 3$

b)
$$2x_1 + 3x_2 - x_3 = 27$$

 $-x_2 + 2x_3 = -7$
 $2x_1 + 2x_2 + 3x_3 = 16$

Lösen Sie das lineare Gleichungssystem.

a)
$$x_1 + 3x_2 + 2x_3 = 2$$

 $2x_1 + x_2 + 3x_3 = 7$
 $x_1 - 2x_2 + x_3 = 5$

b)
$$x_1 + x_2 - 2x_3 = 1$$

 $2x_1 + x_2 - 3x_3 = 2$

Die Gerade g geht durch die Punkte P(-1|-1) und Q(2|1).

- a) Zeichnen Sie g; berechnen Sie die Steigung und ermitteln Sie eine Gleichung für g.
- b) Untersuchen Sie, ob der Punkt R(40 | 26) auf g liegt.
- c) Berechnen Sie den Steigungswinkel der Geraden g.
- d) Ermitteln Sie den Schnittpunkt von g mit der x-Achse.

Gegeben sind die Punkte P(-4,5|9) und Q(-0,5|-13,5).

- a) Ermitteln Sie eine Gleichung der Geraden durch P, die orthogonal zur Geraden durch P und Q ist.
- b) Bestimmen Sie die Länge der Strecke PQ.
- c) Bestimmen Sie die Koordinaten des Mittelpunktes M der Strecke PQ.

- a) Skizzieren Sie für n = 2 und n = 3 die Graphen der Potenzfunktion $f(x) = x^n \ (x \in \mathbb{R})$.
- b) Skizzieren Sie für n=-2 und n=-3 die Graphen der Potenzfunktion $f(x)=x^n$ ($x\in\mathbb{R}$).

Nennen Sie gemeinsame und unterschiedliche Eigenschaften der Graphen.

Gegeben ist die Funktion f.

Berechnen Sie die Nullstellen und beschreiben Sie den Verlauf des Graphen.

a)
$$f(x) = \frac{1}{2}x^3 - 3x^2 + \frac{9}{2}x$$

b)
$$f(x) = x^3 + 2x^2 - x - 2$$

a) Gegeben ist die Funktion f mit $f(x) = \frac{1}{x+2}$.

Geben Sie die Definitionsmenge von f an. Untersuchen Sie das Verhalten von f bei Annäherung an die Definitionslücke. Geben Sie die Gleichung der senkrechten Asymptote an. Zeichnen Sie den Graphen von f.

b) Gegeben ist die Funktion g mit g(x) = $\frac{x^2 - 4}{x + 2}$.

An welcher Stelle x_0 ist g nicht definiert? Geben Sie die Definitionsmenge an. Ermitteln Sie $\lim_{x\to x_0} g(x)$.

Zeichnen Sie den Graphen von g.

Untersuchen Sie den Graphen der Funktion auf senkrechte, waagrechte und schiefe Asymptoten.

a)
$$f(x) = \frac{4x-3}{2x+1}$$

b)
$$f(x) = \frac{3x-1}{2x^2-4}$$

c)
$$f(x) = \frac{x^3 - 4x}{x^2 + 2}$$

Ermitteln Sie für die Funktion f mit

$$f(x) = \frac{x^4 + 3x^3 + 2x - 1}{x^2 + 2}$$

die Gleichung der Näherungsfunktion an den Graphen von f für x $\rightarrow \pm \infty$.

- a) Skizzieren Sie die Graphen der Funktionen f_1 und f_2 mit $f_1(x) = e^x$ und $f_2(x) = e^{-x}$.
- b) Welche Eigenschaften hat der Graph von f₁?
- c) Wie entsteht der Graph von f₂ aus dem Graphen von f₁?

Gegeben ist die Funktion f mit $f(x) = e^x$.

Beschreiben Sie, wie der Graph von g aus dem von f gewonnen werden kann. Geben Sie für g einen Term an.

a)
$$g(x) = 5 \cdot f(x) + 4$$

b)
$$g(x) = f(x - 2)$$

c)
$$g(x) = f(3x)$$

d)
$$g(x) = f(\frac{1}{2}x + 2)$$

- a) Gegeben ist die Funktion f mit f(x) = sin(x).
 Skizzieren Sie den Graphen von f für 0 ≤ x ≤ 2π.
 Geben Sie die Hoch- und Tiefpunkte sowie die Schnittpunkte mit der x-Achse an für 0 ≤ x ≤ 2π bzw. für x ∈ ℝ.
- b) Wie erhalten Sie den Graphen von g mit g(x) = cos(x) aus dem Graphen von f?

- a) Skizzieren Sie die Graphen der Funktionen f und g mit f(x) = sin(x) bzw. g(x) = sin(2x).
 Geben Sie die Periode von f und g an.
- b) Gegeben ist die Funktion h mit $h(x) = 2 \cdot \cos(0.25x + 0.5)$. Geben Sie die Amplitude, die Periode und den Wertebereich von h an. Wie entsteht der Graph von h aus dem Graphen der Kosinusfunktion?

Gegeben ist der Graph einer trigonometrischen Funktion f. Ermitteln Sie einen möglichen Term von f.

Untersuchen Sie den Graphen der Funktion auf Achsensymmetrie zur y-Achse.

a)
$$f(x) = 4x^6 + x^4 + 3x^2 - 2$$

b)
$$f(x) = -3x^3 + 2x^4 - x$$

c)
$$f(x) = \frac{1}{x^2 - 1}$$

d)
$$f(x) = cos(x)$$

Untersuchen Sie den Graphen auf Punktsymmetrie zum Ursprung.

a)
$$f(x) = 2x^5 - \frac{1}{2}x^3 + 3x$$

b)
$$f(x) = -x^3 + 2x^2 + 10$$

c)
$$f(x) = x - \frac{1}{x}$$

d)
$$f(x) = \sin(x)$$

- a) Zeigen Sie, dass der Graph der Funktion f mit $f(x) = \frac{3}{x^2 + 3x + 3}$ achsensymmetrisch zur Geraden mit der Gleichung x = -1.5 ist.
- b) Zeigen Sie, dass der Graph der Funktion f mit $f(x) = x^3 3x^2$ punktsymmetrisch zum Punkt Z(1|-2) ist.

Nebenstehend ist das Höhenprofil für eine Skitour auf den Großvenediger zu sehen.

- a) Welche Größen werden im Graphen einander zugeordnet?
- b) Was wird bei diesem Beispiel durch die Änderungsrate beschrieben?
- c) Wie groß ist die Änderungsrate zwischen Beginn des 2. Tages (Abmarsch Hütte) und Gipfel?
- d) Geben Sie einen ungefähren Wert für die momentane Höhenzunahme in der Venedigerscharte nach 7h Gehzeit an.

Höhenprofil Großvenediger 1714 Hm

Für Snowboarder werden besondere Pisten, sogenannte Halfpipes präpariert. Für ihre Sprünge benötigen sie besondere Anlaufkurven. Die Anlaufkurve lässt sich näherungsweise durch die Funktion f mit $f(x) = 0.2x^2$ beschreiben.

- a) Geben Sie geeignete Größen und Einheiten für x und f(x) an. Zeichnen Sie den Graphen der Funktion f.
- b) Berechnen Sie die Änderungsrate im Intervall [0; 3]. Interpretieren Sie den ermittelten Wert in der vorliegenden Situation und am Graphen.
- c) Wie groß ist die momentane Änderungsrate an der Stelle $x_0 = 2$?

Gegeben ist die Funktion f mit $f(x) = \frac{2}{x}$, $x \neq 0$.

- a) Berechnen Sie die Ableitung an der Stelle $x_0 = 1$.
- b) Zeichnen Sie den Graphen von f und die Gerade durch P(1|f(1)) mit der Steigung m = f'(1).

Die Figur zeigt den Graphen einer Funktion f. Skizzieren Sie den Graphen der Ableitungsfunktion f'.

Die Figur zeigt den Graphen der Ableitungsfunktion f' einer Funktion f

Entscheiden Sie, ob die folgenden Aussagen über die Funktion f wahr, falsch oder unentscheidbar sind.

Begründen Sie Ihre Entscheidung.

- (1) An der Stelle x = -0.5 hat der Graph von f einen Tiefpunkt.
- (2) Für x < -1 ist f monoton steigend.
- (3) An der Stelle x = 1 hat der Graph von f eine waagrechte Tangente.
- (4) Für $0 \le x \le 1$ sind die Funktionswerte von f positiv.
- (5) Bei x = 0 hat der Graph von f eine Tangente, die parallel ist zur Geraden mit der Gleichung y = 0.5x 3.

Bestimmen Sie die Ableitung f'(x) der Funktion f mit

a)
$$f(x) = 2x^4 + 3x + 7$$

b)
$$f(x) = -\frac{5}{3}x^3 - x + \sin(x) + e^x$$

c)
$$f(x) = \frac{2}{x} - 3 \cdot \sqrt{x}$$
.

Bestimmen Sie sie Ableitungsfunktion f'(x) der Funktion f mit

a)
$$f(x) = (\frac{4}{3}x^3 - 2) \cdot e^x$$

b)
$$f(x) = (x^2 + x) \cdot \cos(x)$$

c)
$$f(x) = \frac{3x}{x^2 - 8}$$
.

Bestimmen Sie die Ableitung f'(x) der Funktion f mit

a)
$$f(x) = 6 \cdot (3x - 2)^4$$

b)
$$f(x) = -4 \cdot e^{2x^3 + 3}$$

c)
$$f(x) = \sin(4x + 1) + \cos(3x^2 + x)$$
.

Bestimmen Sie die Ableitung f'(x) der Funktion f mit

a)
$$f(x) = x^2 \cdot (6 - x^3)^2$$

b)
$$f(x) = (x - x^2) \cdot e^{2x+1}$$

c)
$$f(x) = \frac{1-2x}{(2-x)^2}$$
.

Gegeben ist die Funktion f durch $f(x) = \frac{1}{2}x^2 - x - \frac{3}{2}$; $x \in \mathbb{R}$.

Bestimmen Sie eine Gleichung der Tangente

- a) im Berührpunkt B(5|f(5))
- b) mit der Steigung 1
- c) die durch den Punkt P(0 | -9,5) geht.

Gegeben ist die Funktion f durch $f(x) = 2\sqrt{x}$.

- a) Bestimmen Sie Gleichungen der Tangente und der Normalen im Punkt P(4 | f(4)).
- b) Zeigen Sie, dass die Gerade mit der Gleichung y = -x + 3 eine Normale an den Graphen von f ist.

Gegeben sind die Funktion f durch $f(x) = 2x^2 - x$ sowie für jedes a eine Funktion g_a durch $g_a(x) = x^3 - ax$ mit $a \in \mathbb{R}$.

Bestimmen Sie die Werte von a, für die der Graph der Funktion g_a den Graphen von f berührt.

Bestimmen Sie auch die Koordinaten der Berührpunkte.

Ermitteln Sie die Intervalle, in denen die Funktion f mit

$$f(x) = \frac{1}{4}x^4 - \frac{1}{3}x^3 - x^2$$

monoton wachsend bzw. monoton fallend ist.

Bestimmen Sie mit Hilfe des NEWTON-Verfahrens

- a) die Nullstelle der Funktion f mit $f(x) = x^3 + 3x 6$ im Intervall [1; 2]
- b) die Schnittpunkte der Graphen von $f_1(x) = e^x$ und $f_2(x) = 3 x^2$.

Untersuchen Sie den Graphen der Funktion f mit

$$f(x) = \frac{1}{8} \cdot (x^4 - 10x^2 + 9)$$

auf Symmetrie, gemeinsame Punkte mit den Achsen, Extrem- und Wendepunkte. Zeichnen Sie damit den Graphen von f. Untersuchen Sie den Graphen der Funktion f mit

$$f(x) = \frac{x^2 + 9}{x^2 - 9}$$

auf Symmetrie, Asymptoten, gemeinsame Punkte mit den Achsen, Extrem- und Wendepunkte.

Zeichnen Sie damit den Graphen von f.

Untersuchen Sie den Graphen der Funktion f mit

$$f(x) = (2x - 3) \cdot e^{x+1}$$

auf Asymptoten, gemeinsame Punkte mit den Achsen, Extrem- und Wendepunkte. Zeichen Sie damit den Graphen von f.

Gegeben ist die Funktion f mit

$$f(x) = \frac{1}{2}x + \pi + \sin(x)$$
 für $-2\pi \le x \le 0$.

Zeigen Sie, dass -2π eine Nullstelle von f ist. Untersuchen Sie den Graphen von f auf Hoch-, Tief- und Wendepunkte. Zeichnen Sie damit den Graphen von f.

Eine Funktion f mit Graph G ist gegeben durch $f(x) = -\frac{1}{4}x^4 + x^2$; $x \in \mathbb{R}$.

- a) Untersuchen Sie G auf Extrempunkte; skizzieren Sie G für -2.5 < x < 2.5.
- b) Die Gerade durch die Hochpunkte von G schneidet die y-Achse in S. Ein gleichschenkliges Dreieck PQS, bei dem die y-Achse Symmetrieachse ist, hat seine Spitze in S und die beiden anderen Ecken P und Q auf G zwischen den Hochpunkten.

Bestimmen Sie die Koordinaten von P(u | f(u)) und Q so, dass der Flächeninhalt A(u) des Dreiecks PQS maximal wird.

Berechnen Sie diesen maximalen Inhalt.

Gegeben ist die Funktion f mit Graph K durch

$$f(x) = (2 - x) \cdot e^x$$
; $x \in \mathbb{R}$.

K' sei der Graph der Ableitungsfunktion f' von f.

Die Gerade mit der Gleichung x = z mit z < 0 schneidet K in P und K' in Q. Wie ist z zu wählen, damit das Dreieck OPQ einen extremalen Inhalt besitzt? Berechnen Sie auch den extremalen Inhalt und beschreiben Sie die Art des Extremums. Eine ganzrationale Funktion dritten Grades geht durch $P(0 \mid -2)$ und hat einen Hochpunkt an der Stelle x = 1.

Die Wendetangente an der Stelle x = 2 besitzt die Steigung -1,5.

Bestimmen Sie die zugehörige Funktionsgleichung.

Für jedes t > 0 ist eine Funktion f_t gegeben durch

$$f_t(x) = \frac{1}{x} - \frac{t}{x^2}$$
; $x \neq 0$.

Der Graph sei K_t.

- a) Für welchen Wert von t geht K_t durch den Punkt A(1|0)?
- b) Untersuchen Sie K_t auf Extrempunkte.
- c) Die Koordinatenachsen und die Parallelen zu diesen durch den Hochpunkt von ${\sf K}_{\sf t}$ bilden ein Rechteck.
 - Für welchen Wert von t ist der Umfang dieses Rechtecks minimal?

Untersuchen Sie den Graphen K_t der Funktion f_t mit

$$f_t(x) = \frac{1}{3}x^3 - \frac{2}{t}x^2 + \frac{3}{t^2}x$$
 für $t > 0$

auf Extrempunkte.

Bestimmen Sie eine Gleichung der Ortslinie der Extrempunkte aller Graphen K_t . Zeichnen Sie $K_{0,5}$ und K_1 sowie die Ortslinie der Extrempunkte.

Nach Entnahme einer Flüssigkeit aus einem Kühlschrank kann die Erwärmung durch die Funktion f mit

$$f(t) = 20 - 17 \cdot e^{-0.1 \cdot t}$$

beschrieben werden (t in Minuten; f(t) in °C).

- a) Welche Temperatur hatte die Flüssigkeit bei Entnahme aus dem Kühlschrank?
- b) Welche Temperatur hat die Flüssigkeit nach der Erwärmung?
- Zu welchem Zeitpunkt ist die Geschwindigkeit, mit der sich die Flüssigkeit erwärmt, am größten?

Die Höhe einer Zimmerpflanze (in m) zur Zeit t (in Monaten seit Beobachtungsbeginn) soll zunächst durch eine Funktion h₁ mit

$$h_1(t) = 0.18 \cdot e^{kt}$$

näherungsweise beschrieben werden.

Bestimmen Sie k, wenn die Pflanze in den ersten 4 Monaten um 62 cm gewachsen ist.

Wie hoch wäre gemäß $h_1(t)$ die Pflanze nach 6 Monaten?

Nach 6 Monaten ist die Pflanze tatsächlich nur 1,38 m hoch. Deshalb wird ihre Höhe für t \ge 4 beschrieben durch die Funktion h_2 mit

$$h_2(t) = a - b \cdot e^{-0.373 \cdot t}$$
.

Ermitteln Sie a und b aus den Höhen der Pflanze nach 4 und nach 6 Monaten. Mit welcher Höhe der Pflanze ist langfristig zu rechnen?

Nach einem Wachstumsmodell kann die Höhe von Kresse durch die Funktion f mit

$$f(t) = \frac{9}{1 + 8 \cdot e^{-t}} (t \text{ in Tagen; } f(t) \text{ in cm})$$

beschrieben werden.

- a) Wie hoch war die Kresse zu Beginn der Beobachtung?
- b) Wann war die Kresse 7,5 cm hoch?
- c) Wann wächst die Kresse nach diesem Modell am schnellsten und wie schnell wächst sie dann?
- d) Wie hoch kann die Kresse nach diesem Modell höchstens werden?

Geben Sie für die folgenden Funktionen jeweils eine Stammfunktion an.

a)
$$f(x) = x^3$$

b)
$$g(x) = \frac{1}{2}x^2 + \frac{5}{x^2} - 2 + \sqrt{x}$$

c)
$$h(x) = \frac{1}{x}$$

Geben Sie für die folgenden Funktionen jeweils eine Stammfunktion an.

a)
$$f(x) = \sin(x)$$

b)
$$g(x) = cos(2x + 1) + 2 \cdot sin(5x)$$

c)
$$h(x) = (4x - 3)^7$$

Geben Sie für die folgenden Funktionen jeweils die gesuchte Stammfunktion F an.

a)
$$f(x) = -5e^x$$
 mit $F(0) = -5$

mit
$$F(0) = -5$$

b)
$$f(x) = 4e^{2x} - 3e^{-x}$$
 mit $F(0) = 2$

c)
$$f(x) = 6e^{3x} + 1$$
 mit $F(\ln(2)) = \ln(2)$

$$nit F(ln(2)) = ln(2)$$

Der Graph K der Funktion f mit

$$f(x) = 4 - e^{2x}$$

schließt mit den Koordinatenachsen eine Fläche ein. Berechnen Sie deren Inhalt. Gegeben sind die Funktionen f und g mit den Graphen $\rm K_{\rm f}$ und $\rm K_{\rm g}$ durch

$$f(x) = -\frac{1}{10}x^3 + \frac{3}{4}x^2$$
 und $g(x) = \frac{1}{4}x^2$.

- a) K_f und K_g umschließen eine Fläche. Berechnen Sie deren Inhalt A_1 .
- b) K_f , K_g und die Gerade mit der Gleichung x=6 umschließen eine Fläche. Berechnen Sie deren Inhalt A_2 .

a) Berechnen Sie das Integral

$$\int_{0}^{8\pi} 3 \cdot \sin\left(\frac{1}{4}x\right) dx.$$

- b) Berechnen Sie den Flächeninhalt, der zwischen der Funktion f mit $f(x) = 3\sin(\frac{1}{4}x)$ und der x-Achse im Intervall $[0; 8\pi]$ eingeschlossen wird.
- c) Deuten Sie die Ergebnisse aus a) und b) anschaulich, wenn die Funktion f den momentanen Wasserzufluss eines Gezeitenkraftwerks (in $1000 \, \text{m}^3$ pro Stunde; x = 0: Normalnull und Flut) beschreibt.

In ein Staubecken, das zu Beginn des Monats Mai $3000\,\mathrm{m}^3$ Wasser enthält, fließt Wasser ein. Die Wasserzuflussrate kann durch die Funktion f mit f(t) = $-t^2 + 20t + 120$ beschrieben werden (t in Tagen seit Beginn des Monats Mai, f(t) in m^3 pro Tag). Ein negativer Funktionswert weist dabei auf einen Abfluss von Wasser hin.

- a) Bestimmen Sie die Wassermenge im Staubecken nach 15 Tagen.
- b) Welche maximale Wassermenge ist in der folgenden Zeit zu erwarten?

Aus einem Tank fließt Wasser mit einer Rate von f(t) Liter pro Stunde. Die Tabelle zeigt Werte dieser Rate.

t (in Stunden)	0	1	2	3	4
f(t) (in Liter pro Stunde)	3,9	3,7	3,1	2,0	0,7

- a) Die Ausflussrate kann näherungsweise durch eine ganzrationale Funktion 2. Grades beschrieben werden.
 - Ermitteln Sie einen möglichen Term für die Ausflussrate.
- b) Berechnen Sie näherungsweise die Gesamtmenge Wasser, die in 4 Stunden aus dem Tank ausgeflossen ist.

Gegeben ist die Funktion f mit $f(x) = 1 - \frac{1}{4}x^2$.

- a) Bestimmen Sie die Integralfunktion von f zur unteren Grenze –2.
- b) Skizzieren Sie die Graphen der Funktion und der Integralfunktion zur unteren Grenze −2.

Die Stärke einer Population wird während 20 Jahren durch die Funktion f mit

$$f(t) = 5000 + 1000 \cdot e^{-0.2t}$$
; $0 \le t \le 20$ (t in Jahren)

beschrieben.

Bestimmen Sie die durchschnittliche Populationsstärke in diesen 20 Jahren.

Der Graph der Funktion f mit

$$f(x) = \frac{1}{2}\sqrt{2(x^2+1)}$$

begrenzt mit den Koordinatenachsen und der Geraden mit der Gleichung x = 6 eine Fläche.

Bestimmen Sie das Volumen V des Rotationskörpers, der entsteht, wenn diese Fläche um die x-Achse rotiert.

Berechnen Sie die ins Unendliche reichende Fläche im 1. Quadranten zwischen dem Graphen von f mit

$$f(x) = e^{-2x+1}$$

und den beiden Koordinatenachsen.

Untersuchen Sie, ob die nach "oben ins Unendliche reichende" Fläche zwischen der y-Achse, der Geraden x=2 und dem Graph K_f der Funktion f mit

$$f(x) = \frac{3}{\sqrt{x}}$$

einen endlichen oder unendlichen Inhalt besitzt.

Ist der Inhalt der Fläche unterhalb des Graphen K_{f^\prime} der von den Koordinatenachsen begrenzt wird, endlich?

Berechnen Sie mit Hilfe der KEPLERschen Fassregel einen Näherungswert für das Integral

$$\int_{0}^{4} \frac{2}{x^2 + 4} dx$$

Gegeben sind die Punkte A $(5 \mid -2 \mid 1)$ und B $(7 \mid -1 \mid 3)$.

- a) Bestimmen Sie den Vektor $\vec{u} = \overrightarrow{AB}$.
- b) Berechnen Sie den Betrag des Vektors \vec{u} .
- c) Bestimmen Sie für den Vektor \vec{u} einen Einheitsvektor $\vec{u_0}$.

Die Punkte A(2|-1|3), B(-3|5|-2) und C(-6|-7|3) sind Eckpunkte eines Dreiecks ABC.

- a) Ergänzen Sie das Dreieck ABC durch einen Punkt D so, dass das Viereck ABCD ein Parallelogramm ist.
- b) Ermitteln Sie die Koordinaten des Mittelpunktes des Parallelogramms ABCD.

- a) Überprüfen Sie die Vektoren $\vec{a} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}$ und $\vec{c} = \begin{pmatrix} -3 \\ -8 \\ 1 \end{pmatrix}$ auf lineare Abhängigkeit bzw. Unabhängigkeit.
- b) Die Vektoren $\vec{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{v} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ und $\vec{w} = \begin{bmatrix} -2 \\ 3 \\ 5 \end{bmatrix}$ sind linear unabhängig.

Stellen Sie den Vektor $\vec{x} = \begin{pmatrix} 6 \\ -7 \\ -14 \end{pmatrix}$ als Linearkombination von \vec{u} , \vec{v} und \vec{w} dar.

a) Berechnen Sie den Winkel zwischen den Vektoren
$$\vec{a} = \begin{bmatrix} 1 \\ 6 \\ 4 \end{bmatrix}$$
 und $\vec{b} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$.

b) Prüfen Sie, ob die Vektoren
$$\vec{a} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$$
 und $\vec{b} = \begin{pmatrix} -4 \\ 5 \\ 3 \end{pmatrix}$ orthogonal sind.

Gegeben sind die Vektoren
$$\vec{a} = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}$$
 und $\vec{b} = \begin{pmatrix} -1 \\ 5 \\ -3 \end{pmatrix}$.

Ermitteln Sie einen Normalenvektor \vec{n} von \vec{a} und \vec{b} .

Gegeben sind die Punkte A(4|3|-2), B(2|2|0) und C(1|10,5|1).

- a) Zeigen Sie, dass das Dreieck ABC gleichschenklig ist.
- b) Berechnen Sie den Flächeninhalt des Dreiecks ABC.

Gegeben sind die Punkte A (5|4|-1), B (1|8|1), C (-1|4|5), D (3|0|3) und S (6|6|6). Die Punkte A, B, C und D sind Eckpunkte der Grundfläche einer Pyramide mit der Spitze S.

Berechnen Sie den Rauminhalt dieser Pyramide.

Gegeben sind der Punkt A(1|1|2) und die Gerade g durch die Punkte P(3|-7|5) und Q(-1|4|2).

- a) Stellen Sie eine Gleichung für g auf.
- b) Prüfen Sie, ob der Punkt A auf g liegt.

Gegeben sind die Punkte A(1|-1|2), B(3|2|-1) und C(4|-2|3).

a) Ermitteln Sie eine Parametergleichung der Ebene E, die durch A, B und C geht.

b) Prüfen Sie, ob der Punkt D(8|-7|8) in E liegt.

Die Ebene E geht durch die Punkte A(8|6|2), B(1|7|7) und C(6|2|0). Ermitteln Sie eine Koordinatengleichung von E.

Gegeben ist die Ebene

E:
$$\vec{x} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} + r \cdot \begin{pmatrix} -2 \\ 3 \\ 5 \end{pmatrix} + s \cdot \begin{pmatrix} -1 \\ -4 \\ 2 \end{pmatrix}$$
; $r, s \in \mathbb{R}$.

Ermitteln Sie eine Koordinatengleichung von E.

Die Ebene E geht durch die Punkte A (2|3|-1), B (8|4|-9) und C (11|12|-7). Bestimmen Sie eine Koordinatengleichung von E.

Die Ebene E geht durch den Punkt P(1|-4|5) und ist orthogonal zu der Geraden durch A(-3|2|7) und B(10|5|1).

Ermitteln Sie eine Gleichung von E in Normalenform.

Gegeben ist die Gerade

g:
$$\vec{x} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + t \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
; $t \in \mathbb{R}$.

Beschreiben Sie die Lage von g; zeichnen Sie einen Abschnitt von g.

- a) Beschreiben Sie die Lage der Ebene E₁ mit der Gleichung x₂ + 2x₃ = 4;
 zeichnen Sie einen Ausschnitt von E₁.
- b) Die Ebene E_2 (vgl. Fig.) ist parallel zur x_3 -Achse. Ermitteln Sie eine Gleichung von E_2 .

Gegeben sind die Geraden g und h. Untersuchen Sie die gegenseitige Lage von g und h.

a) g:
$$\vec{x} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$$
; $r \in [$

a)
$$g: \vec{x} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}; \quad r \in \mathbb{R}$$
 $h: \vec{x} = \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} -3 \\ 3 \\ -12 \end{pmatrix}; \quad s \in \mathbb{R}$

b)
$$g: \vec{x} = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix} + r \cdot \begin{bmatrix} 4 \\ 2 \\ -6 \end{bmatrix}; r \in \mathbb{R}$$
 $h: \vec{x} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + s \cdot \begin{bmatrix} -2 \\ -1 \\ 3 \end{bmatrix}; s \in \mathbb{R}$

h:
$$\vec{x} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + s \cdot \begin{pmatrix} -2 \\ -1 \\ 3 \end{pmatrix}$$
; $s \in \mathbb{R}$

Gegeben sind die Geraden g und h. Untersuchen Sie die gegenseitige Lage von g und h; berechnen Sie gegebenenfalls die Koordinaten des Schnittpunktes S.

a)
$$g: \vec{x} = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} + r \cdot \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}; r \in \mathbb{R}$$

h:
$$\vec{x} = \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}; s \in \mathbb{R}$$

b)
$$g: \vec{x} = \begin{bmatrix} 2 \\ 2 \\ 5 \end{bmatrix} + r \cdot \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}; r \in \mathbb{R}$$

h:
$$\vec{x} = \begin{pmatrix} -1 \\ 5 \\ -7 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ 7 \\ 3 \end{pmatrix}$$
; $s \in \mathbb{R}$

Untersuchen Sie die gegenseitige Lage der Geraden g und der Ebene E.

a) g:
$$\vec{x} = \begin{pmatrix} -3 \\ -1 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} -8 \\ -6 \\ 1 \end{pmatrix}$$
; $t \in \mathbb{R}$; $E: x_1 + 2x_2 + 2x_3 = 6$

b) g:
$$\vec{x} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$$
; $t \in \mathbb{R}$; E: $x_1 + x_2 - 3x_3 = 4$

Untersuchen Sie die gegenseitige Lage der Geraden

g:
$$\vec{x} = \begin{pmatrix} 6 \\ 3 \\ 12 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}; t \in \mathbb{R}$$

und der Ebene

E:
$$\vec{x} = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}$$
; $r, s \in \mathbb{R}$.

Untersuchen Sie die gegenseitige Lage der Ebenen $\rm E_1$ und $\rm E_2$.

a)
$$E_1$$
: $x_1 + 2x_2 + 2x_3 = 6$;

$$E_2$$
: $x_1 - 8x_2 + 2x_3 = 6$

b)
$$E_1$$
: $3x_1 + x_2 - 4x_3 = -1$;

$$E_2$$
: $\vec{x} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + r \cdot \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix}$; $r, s \in \mathbb{R}$

Bestimmen Sie die gegenseitige Lage der Ebenen

$$E_1$$
: $\vec{x} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$; $r, s \in \mathbb{R}$ und

$$E_2$$
: $\vec{x} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} + u \cdot \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$; $t, u \in \mathbb{R}$.

Gegeben sind der Punkt P(2|1|1) und die Gerade g: $\vec{x} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} + t \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$; $t \in \mathbb{R}$.

Erläutern Sie, wie Sie die Punkte auf der Geraden g bestimmen, die vom Punkt P den Abstand 3 haben.

Berechnen Sie die Koordinaten dieser Punkte.

Erläutern Sie die Methode, eine Hilfsebene einzuführen, an der folgenden Fragestellung:

Gegeben sind der Punkt P(2|4|2) und die Gerade g: $\vec{x} = \begin{bmatrix} 7 \\ 2 \\ -2 \end{bmatrix} + t \cdot \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}$; $t \in \mathbb{R}$.

Gesucht ist der Fußpunkt des Lotes von P auf g.

Gegeben sind der Punkt P(4|6|10) und die Ebene E: $x_1 + 2x_2 + 2x_3 = 18$. Berechnen Sie den Abstand des Punktes P von der Ebene E.

Gegeben sind der Punkt P(3|-3|1) und die Ebene E: $2x_1 - 6x_2 - 3x_3 + 28 = 0$.

Berechnen Sie die Koordinaten des Lotfußpunktes des Lotes durch P auf die Ebene E sowie den Abstand des Punktes P von der Ebene E.

Gegeben sind der Punkt P(1|2|4) und die Gerade g: $\vec{x} = \begin{bmatrix} 6 \\ -1 \\ 3 \end{bmatrix} + t \cdot \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$; $t \in \mathbb{R}$.

Berechnen Sie den Abstand des Punktes P von der Geraden g.

Gegeben sind die Geraden g: $\vec{x} = \begin{bmatrix} -1 \\ 4 \\ 5 \end{bmatrix} + s \cdot \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$; $s \in \mathbb{R}$ und h: $\vec{x} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} + t \cdot \begin{bmatrix} 3 \\ -2 \\ -2 \end{bmatrix}$; $t \in \mathbb{R}$.

Berechnen Sie den Abstand von g und h.

Die Geraden g: $\vec{x} = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} + s \cdot \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}$; $s \in \mathbb{R}$ und h: $\vec{x} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} + t \cdot \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix}$; $t \in \mathbb{R}$

schneiden sich. Berechnen Sie den Schnittwinkel von g und h.

Die Gerade g: $\vec{x} = \begin{pmatrix} -1 \\ 4 \\ 7 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$; $t \in \mathbb{R}$ und die Ebene E: $2x_1 + x_2 + 2x_3 + 8 = 0$ schneiden sich. Berechnen Sie den Schnittwinkel von g und E.

Berechnen Sie den Schnittwinkel zwischen den Ebenen E_1 : $4x_1 - 3x_2 + 7x_3 - 10 = 0$ und E_2 : $x_1 + 2x_2 - 5x_3 - 8 = 0$.

Die Punkte O(0|0|0), A(4|0|0), B(4|4|0), C(0|4|0) und S(2|2|2) bilden eine senkrechte quadratische Pyramide mit der Grundfläche OABC und der Spitze S. Berechnen Sie den Winkel zwischen der Seitenfläche ABS und der Seitenfläche BCS.

Gegeben sind die Gerade g: $\vec{x} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}$; $t \in \mathbb{R}$ und der Punkt A (10 | -1 | 9) auf g.

Gesucht sind Punkte auf g, die von A den Abstand 15 haben.

Gegeben sind die Ebene E: $x_1 + 2x_2 + 2x_3 + 1 = 0$ und der Punkt F(-5|1|1) in E. Gesucht sind Punkte auf dem Lot zu E durch F, die von E den Abstand 12 haben.

Der Punkt P(3|7|-2) wird an der Geraden

g:
$$\vec{x} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}$$
; $t \in \mathbb{R}$

gespiegelt. Berechnen Sie die Koordinaten des Bildpunktes P'.

Der Punkt P(-5|1|-4) wird an der Ebene E: $x_1 - x_2 + 2x_3 - 4 = 0$

gespiegelt. Berechnen Sie die Koordinaten des Bildpunktes P'.

Für jedes $a \in \mathbb{R}$ ist die Gerade g_a gegeben durch

$$g_a$$
: $\vec{x} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + t \cdot \begin{pmatrix} 2 - a \\ a \\ 3 \end{pmatrix}$; $t, a \in \mathbb{R}$.

Zeigen Sie, dass alle Geraden $g_{\rm a}$ in einer Ebene liegen. Ermitteln Sie eine Koordinatengleichung dieser Ebene.

Für jedes $a \in \mathbb{R}$ ist die Ebene E_a gegeben durch $(a-2)x_1+x_2+(2a+1)x_3=5-3a; \ a \in \mathbb{R}$. Zeigen Sie, dass alle Ebenen E_a eine Gerade g gemeinsam haben. Ermitteln Sie eine Gleichung für g.