WHAT IS CLAIMED:

- A method of reducing intraocular pressure comprising administering to a subject a pharmaceutical composition comprising an effective amount of a compound of Formula I, its diasteromers, enantiomers, tautomers, or pharmaceutically acceptable salts thereof:
 - G_5 G_4 G_3 G_2 G_4 G_3 G_4 G_5 G_4 G_5 G_4 G_5 G_4 G_5 G_4 G_5 G_4 G_5 G_6 G_7 G_7 G_8 G_8 G_8 G_8 G_8 G_9 G_9

wherein:

- 10 X_1 = O, NR, S, CF₂, CF₃ or CN with the proviso that when X_1 = CF₃ or CN, then R_4 is absent; or
 - X1 represents a bond from the pyrimidine ring to R4;
 - $X_2 = H, F, Cl, Br, I, CN, OR_8, SR_8, NR_9R_{13}, CF_3, alkyl, cycloalkyl, arylalkyl, aryl, arylalkenyl, arylalkynyl, C(O)R₁₆, C(O)OR₁₇, C(O)NR₁₆R₁₈ or heterocycle of 5 to 7 members;$
- 15 X₃ = H, CN, OR₁₉, SR₁₉, NR₂₃R₂₈, CF₃, alkyl, cycloalkyl, C(O)R₃₂, C(O)OR₃₃, C(O)NR₃₄R₃₅, arylalkyl, aryl, arylalkenyl, arylalkynyl, or a heterocycle of 5 to 7 members;
 - R = H, OR₁, alkyl, cycloalkyl, arylalkyl, aryl, C(O)R₂, C(O)OR₃ or C(O)NR₁R₂;
 - R₁, R₇, R₁₀, R₂₂, R₂₄, R₂₇, R₃₁, R₃₃ and R₃₅ are each independently H, alkyl, cycloalkyl, arylalkyl or aryl;
- 20 R₂ = H, alkyl, cycloalkyl, arylalkyl, aryl or heterocyclic ring of 5 to 7 members; or R₁ and R₂ taken together can form a heterocyclic ring of 5 to 7 members;

 R_3 , R_6 , R_8 , R_{12} , R_{15} , R_{17} , R_{21} , R_{26} and R_{30} are independently alkyl, cycloalkyl, arylalkyl or aryl;

 R_4 = H, alkyl, cycloalkyl, arylalkyl, aryl, heterocyclic ring of 5 to 7 members, $C(O)R_5$, $C(O)OR_6$ or $C(O)NR_5R_7$;

5 R₅, R₁₁, R₁₄, R₁₆, R₁₈, R₂₀, R₂₅, R₂₉, R₃₂ and R₃₄ are independently H, alkyl, cycloalkyl, arylalkyl, aryl or heterocyclic ring of 5 to 7 members;

 R_9 = H, OR_{10} , alkyl, cycloalkyl, arylalkyl, aryl, $C(O)R_{11}$, $C(O)OR_{12}$ or $C(O)NR_{10}R_{11}$;

 R_{13} = H, alkyl, cycloalkyl, arylalkyl, aryl, $C(O)R_{14}$ or $C(O)OR_{15}$;

R₁₉ = alkyl, cycloalkyl, arylalkyl, or aryl, C(O)R₂₀, C(O)OR₂₁ or C(O)NR₂₀R₂₂;

 $R_{23} = H, OR_{24}, alkyl, cycloalkyl, arylalkyl, aryl, C(O)R_{25}, C(O)OR_{26} \text{ or } C(O)NR_{25}R_{27}; \\$ where R_{26} and R_{29} taken together can form a heterocyclic ring of 6 or 7 members; or R_2 and R_4 , R_2 and R_5 , R_{10} and R_{11} , R_9 and R_{13} , R_{10} and R_{13} , R_9 and R_{14} , R_{11} and R_{14} , R_9 and R_{15} , R_{11} and R_{15} , R_{16} and R_{18} , R_{20} and R_{22} , R_{25} and R_{27} , R_{23} and R_{28} , R_{24} and R_{28} , R_{25} and R_{29} , R_{29} and R_{31} or R_{34} and R_{35} are optionally taken together to form a

15 heterocyclic ring of 5 to 7 members;

 $E = O \text{ or } CH_2$;

E₁ and E₂ independently are H or F; or

E1 and E2, when taken together, form a carbon-carbon bond;

 $Y_1 = O$ or F, with the proviso that when $Y_1 = F$, then M_1 is absent; or

20 Y₁ represents a bond from the point of ring attachment to M₁;

 $Y_2 = O$ or F, with the proviso that when $Y_2 = F$, then M_2 is absent; or

Y2 represents a bond from the point of ring attachment to M2;

M₁ and M₂ are independently H, alkyl, cycloalkyl, arylalkyl, aryl, C(O)M₃, C(O)OM₄, or C(O)NM₃M₅;

25 M₃ = H, alkyl, cycloalkyl, arylalkyl, aryl or heterocyclic ring of 5 to 7 members;

M₄ = alkyl, cycloalkyl, arylalkyl or aryl;

M₅ = H, alkyl, cycloalkyl, arylalkyl, or aryl; or

M₃ and M₅ taken together form a heterocyclic ring of 5 to 7 members:

when $Y_1 = Y_2 = 0$, M_1 and M_2 optionally are bonds from the oxygen atoms of Y_1 and Y_2 .

30 respectively, to a carbon atom of an acetal-, ketal- or orthoester group E₃;

wherein E₃ is Q(A₁)(A₂);

wherein O is a carbon atom:

A1 = H, CF3, alkyl, cycloalkyl, arylalkyl or arvl;

A₂ = H, OA₃, CF₃, alkyl, cycloalkyl, arylalkyl, aryl or heterocycle of 5 to 7 members;

A3 = alkyl, cycloalkyl, arylalkyl or aryl; or

where A₁ and A₂, when taken together, form a carbocyclic ring of 5 or 6 members, with or without unsaturation, and with or without substitution; or

5 M₁Q(A₁)(A₂)M₂ is taken together to form a carbonyl bonded to Y₁ and Y₂, such that a cyclic carbonate is formed:

Z = O, NZ_3 , CH_2 , CHF, CF_2 , CCl_2 , or $CHCl_3$

 Z_1 and Z_2 are independently O or S;

 $Z_3 = H$, alkyl, cycloalkyl, arylalkyl, aryl or a heterocyclic ring of 5 to 7 members;

10 G₁ = O, S, CH₂ or CH(OJ₁);

 $G_2 = CH$, $C(CH_2OJ_3)$, CCH_3 , CCF_3 , or $C(CO_2J_4)$;

 $G_3 = CH_2$, CHF, CF₂, CH(OJ₅) or CH(NJ₆J₇);

 $G_4 = CH_2$, CHF, CF₂, CH(OJ₉), or CH(NJ₁₁J₁₃);

 $G_5 = CH_2$, CHF, CF₂, CH(OJ₁₅), or CH(NJ₁₆J₁₇);

 G_6 = CH₂, CH(CH₃), CH(CHF₂), CH(CF₂), CH(OJ₁₉), CH(CH₂OJ₁₉), CH(CH₂(NJ₂J₂₃)), or CH(CO₂J₂₂), with the provision that when G_1 = O or S, then G_6 does not equal CH(OH); and the number of hydrogen atoms bonded to the G_1 - G_6 ring atoms is limited to a maximum of 8; also with the provision that the number of nitrogen atoms bonded to the G_1 - G_6 ring atoms in Formula I is limited to a maximum of 2;

20 J₁ = H, alkyl, cycloalkyl, arylalkyl, aryl, or C(O)J₂;

 J_2 , J_6 , J_8 , J_{10} , J_{11} , J_{14} , J_{16} , J_{18} , J_{20} , J_{22} , and J_{24} are independently H, alkyl, cycloalkyl, arylalkyl, aryl or heterocyclic ring of 5 to 7 members;

J₃ = alkyl, cycloalkyl, arylalkyl, aryl or C(O)J₂:

 $J_4 = alkyl$, cycloalkyl, arylalkyl, arvl or heterocyclic ring of 5 to 7 members:

25 J₅ = H, alkyl, cycloalkyl, arylalkyl, aryl, or C(O)J₆;

J₇ = H, alkyl, cycloalkyl, arylalkyl, aryl or C(O)J₈;

 $J_9 = H$, alkyl, cycloalkyl, arylalkyl, aryl, $C(O)J_{10}$, $CH(CH_3)(CO_2J_{11})$, or

CH(CH3)(C(O)NJ11J12);

 J_{12} = H, alkyl, cycloalkyl, arylalkyl, aryl, heterocyclic ring of 5 to 7 members, an amino acid radical of 2 to 12 carbon atoms with or without hetero atoms, or a peptide radical comprising 2 to 10 amino acid units:

J₁₃ = H, alkyl, cycloalkyl, arylalkyl, aryl or C(O)J₁₄;

J₁₅ = H, alkyl, cycloalkyl, arylalkyl, aryl or C(O)J₁₆;

```
J<sub>17</sub> = H, alkyl, cycloalkyl, arylalkyl, aryl or C(O)J<sub>18</sub>;
```

J₁₉ = H, alkyl, cycloalkyl, arylalkyl, aryl or C(O)J₂₀;

 $J_{21} = H$, alkyl, cycloalkyl, arylalkyl, aryl, $C(O)J_{22}$ or heterocyclic ring of 5 to 7 members; $J_{23} = H$, alkyl, cycloalkyl, arylalkyl, aryl or $C(O)J_{24}$; or

- 5 J₆ and J₇, J₁₁ and J₁₂, J₁₁ and J₁₃, J₁₆ and J₁₇ or J₂₁ and J₂₃ are optionally taken together to form a heterocyclic ring of 5 to 7 members; or where J₂₂ and J₂₄, when taken together, form a heterocyclic ring of 5 to 7 members or a bicyclic imide comprising 4 to 12 carbons, with or without unsaturation and/or with or without substitution: or
- 10 when G₁ = CH(OJ₁) and G₂ = C(CH₂OJ₃), J₁ and J₃ optionally are bonds from the oxygen atoms of G₁ and G₂, respectively, to a carbon atom of an acetal-, ketal- or orthoester group G₇; wherein

 $G_7 = O_1(T_1)(T_2)$; or

when $G_2 = C(CH_2OJ_3)$ and $G_3 = CH(OJ_5)$, J_3 and J_5 optionally are bonds from the oxygen atoms of G_2 and G_3 , respectively, to a carbon atom of an acetal-, ketal- or orthoester group G_8 ; wherein

$$G_8 = Q_1(T_1)(T_2)$$
; or

when G_3 = CH(OJ₅) and G_4 = C(CHOJ₉), J_5 and J_9 optionally are bonds from the oxygen atoms of G_3 and G_4 , respectively, to a carbon atom of an acetal-, ketal- or orthoester group

 $G_9 = O_1(T_1)(T_2)$; or

Go: wherein

when $G_4 = C(CHOJ_9)$ and $G_5 = CH(OJ_{15})$, J_9 and J_{15} optionally are bonds from the oxygen atoms of G_4 and G_5 , respectively, to a carbon atom of an acetal-, ketal- or orthoester group G_{10} ; wherein

- 25 $G_{10} = Q_1(T_1)(T_2)$; or
 - when $G_5 = C(CHOJ_{15})$ and $G_6 = CHCH_2(OJ_{19})$, J_{15} and J_{19} optionally are bonds from the oxygen atoms of G_5 and G_6 , respectively, to a carbon atom of an acetal-, ketal- or orthoester group G_{11} ;

wherein $G_{11} = O_1(T_1)(T_2)$; or

30 when G₁ = CH(OJ₁) and G₆ = CH(CH₂OJ₁₉) or CH(OJ₁₉), J₁ and J₁₉ are optionally bonds from the oxygen atoms of G₁ and G₆, respectively, to a carbon atom of an acetal-, ketal- or orthoester group G₁₂;

wherein $G_{12} = Q_1(T_1)(T_2)$;

wherein O1 is a carbon atom; and

T1 = H, CF3, alkyl, cycloalkyl, arylalkyl or aryl;

 $T_2 = H$, OT_3 , CF_3 , alkyl, cycloalkyl, arylalkyl, aryl or heterocycle of 5 to 7 members;

T₃ = alkyl, cycloalkyl, arylalkyl or aryl; or

- 5 T₁ and T₂, when taken together, form a carbocyclic ring of 5 or 6 members, with or without unsaturation and with or without substitution; or
 - Q₁(T₁)(T₂) is taken together to form a carbonyl, such that a cyclic carbonate is formed.
 - The method according to Claim 1, wherein:
- 10 $X_1 = O, NR, S; or$

X₁ represents a bond from the pyrimidine ring to R₄;

X₂ = H, F, Cl, Br, I, CF₃, alkyl, cycloalkyl, arylalkyl, aryl, arylalkenyl, arylalkynyl,

C(O)OR₁₇, C(O)NR₁₆R₁₈ or heterocycle of 5 to 7 members;

 $X_3 = H, CN, C(O)OR_{33}$;

15 R = H, alkyl, cycloalkyl, arylalkyl, aryl;

 $Y_1 = O; c$

Y₁ represents a bond from the point of ring attachment to M₁:

 $Y_2 = 0$; or

Y2 represents a bond from the point of ring attachment to M2;

20 M₃ = alkyl, cycloalkyl, arylalkyl, or aryl;

M₄ = alkyl, cycloalkyl, arylalkyl or aryl;

A₁ = H, alkyl, cycloalkyl, arylalkyl or aryl;

 $A_2 = H$, alkyl, cycloalkyl, arylalkyl, aryl or heterocycle of 5 to 7 members; or where A_1 and A_2 , when taken together, form a carbocyclic ring of 5 or 6 members, with or

25 without unsaturation, and with or without substitution; or

 $M_1Q(A_1)(A_2)M_2$ is taken together to form a carbonyl bonded to Y_1 and Y_2 , such that a cyclic carbonate is formed;

Z = O, CH_2 , CF_2 , or CCl_2 ;

 $G_2 = CH$, $C(CH_2OJ_3)$, or $C(CO_2J_4)$;

30 $J_3 = alkyl \text{ or } C(O)J_2$;

 $J_4 = alkyl;$

 $J_5 = H$, alkyl or $C(O)J_6$;

 $J_7 = H$, or alkyl;

 $J_9 = H$, alkyl or $C(O)J_{10}$;

 $J_{13} = H$, alkyl, or $C(O)J_{14}$;

 $J_{15} = H$, alkyl, or $C(O)J_{16}$;

 $J_{17} = H$, alkyl, or $C(O)J_{18}$;

5 J₂₁ = H, alkyl, C(O)J₂₂ or heterocyclic ring of 5 to 7 members;

 $T_1 = H$, alkyl, or arylalkyl;

T₂ = H, alkyl, arylalkyl, or heterocycle of 5 to 7 members; or

T₁ and T₂, when taken together, form a carbocyclic ring of 5 or 6 members, with or without unsaturation and with or without substitution: or

10 Q₁(T₁)(T₂) is taken together to form a carbonyl, such that a cyclic carbonate is formed.

3. The method according to Claim 2, wherein:

 $X_1 = O, NR, S;$

15 X₂ = H, F, Cl, Br, I, CF₃, alkyl, arylalkyl, aryl, arylalkenyl, arylalkynyl, or heterocycle of 5 to 7 members;

 $X_3 = H$:

R = H, alkyl, cycloalkyl, arylalkyl, aryl;

R₄ = H, alkyl, cycloalkyl, arylalkyl, aryl, or C(O)R₅;

20 R₅ is H, alkyl, cycloalkyl, arylalkyl, aryl or heterocyclic ring of 5 to 7 members;

E1 and E2 are H;

 $Y_1 = O;$

 $Y_2 = 0$:

M1 and M2 are independently H, alkyl, cycloalkyl, arylalkyl, aryl, C(O)M3;

25 M₃ = alkyl, cycloalkyl, arylalkyl, or aryl;

A₁ = H, alkyl, cycloalkyl, arylalkyl or aryl:

A2 = H, alkyl, cycloalkyl, arylalkyl, or aryl;

Z = O, CH_2 , CF_2 , or CCl_2 ;

 $G_1 = O$ or S;

30 $G_2 = CH$;

 $G_3 = CH_2$, $CH(OJ_5)$ or $CH(NJ_6J_7)$;

 $G_4 = CH_2$, $CH(OJ_9)$, or $CH(NJ_{11}J_{13})$;

 $G_5 = CH_2$, $CH(OJ_{15})$, or $CH(NJ_{16}J_{17})$;

20

25

 $G_6 = CH_2$, $CH(CH_3)$, $CH(OJ_{19})$, $CH(CH_2OJ_{19})$, $CH(CH_2(NJ_{21}J_{23}))$, or

CH(CO₂J₂₁), with the provision that when $G_1 = O$ or S, then G_6 does not equal CH(OH); and the number of hydrogen atoms bonded to the G_1 - G_6 ring atoms is limited to a maximum of 8; also with the provision that the number of nitrogen atoms bonded to the G_1 - G_6 ring atoms in Formula I is limited to a maximum of 2:

 $J_{6},\,J_{11},\,and\,\,J_{16}$ are independently H, alkyl, arylalkyl, or aryl;

 $J_5 = H$, alkyl or $C(O)J_6$;

 $J_7 = H$, or alkyl;

 $J_9 = H$, alkyl or $C(O)J_{10}$;

10 J₁₃ = H, alkyl, or C(O)J₁₄;

 $J_{15} = H$, alkyl, or $C(O)J_{16}$;

 $J_{17} = H$, alkyl, or $C(O)J_{18}$;

 $J_{19} = H$, alkyl, or C(O) J_{20} ;

 $J_{21} = H$, alkyl, or C(O) J_{22} ; and

 $J_{23} = H$, alkyl, or $C(O)J_{24}$.

- The method according to Claim 1, wherein said method further comprises the step of measuring the intraocular pressure of said subject before administering the composition.
- The method according to Claim 1, further comprising the step of measuring the intraocular pressure of said subject after administering the composition.
 - The method according to Claim 1, wherein administering said pharmaceutical composition to said subject is to treat ocular hypertension.
 - The method according to Claim 6, wherein administering said pharmaceutical composition to said subject is to treat glaucoma.
- The method according Claim 1, wherein said pharmaceutical composition is coadministered to said subject with other therapeutic agent or adjuvant therapy commonly used to reduce intraocular pressure.

- The method according to Claim 1, wherein said pharmaceutical composition is administered topically to said subject.
- The method according to Claim 1, wherein said pharmaceutical composition is administered via subconjunctival, subscleral, or intravitreal injection to said subject.
- 11. A compound according to Formula IA:

Formula IA

$$G_{3}$$
 G_{4}
 G_{3}
 G_{2}
 G_{4}
 G_{3}
 G_{2}
 G_{4}
 G_{5}
 G_{4}
 G_{5}
 G_{4}
 G_{5}
 G_{5}
 G_{6}
 G_{7}
 G_{7}
 G_{8}
 G_{7}
 G_{8}
 G_{8}
 G_{9}
 G_{1}
 G_{1}
 G_{2}
 G_{1}
 G_{2}
 G_{3}
 G_{2}
 G_{3}
 G_{4}
 G_{3}
 G_{5}
 G_{7}
 G_{8}
 G_{8

wherein:

 R_4 = alkyl, cycloalkyl, arylalkyl, aryl, heterocyclic ring of 5 to 7 members, $C(O)R_5$, $C(O)OR_4$ or $C(O)NR_5R_7$;

12. A compound of Formula IB:

Formula IB

$$G_5$$
 G_6
 G_7
 G_8
 G_8
 G_9
 G_9

5 wherein:

$$\begin{split} &X_2,\,X_3,\,R,\,R_1-\!R_3,\,R_5-\!R_{35},\,E,\,E_1,\,E_2,\,Y_1,\,Y_2,\,M_1-\!M_5,\,A_1-\!A_3,\,Z,\,Z_1-\!Z_3,\,G_1-\!G_6,\,J_1-\!J_{24},\,G_1-\!G_{12},\,X_1-\!T_3 \text{ are the same as those described in Formula I in Claim 1;}\\ &\text{provided that when }E=Y_1=Y_2=Z=Z_1=Z_2=G_1=O,\,E_1=E_2=H,\\ &G_2=CH,\,G_3=CH(OJ_5),\,G_4=CH(OJ_9),\,G_5=CH(OJ_15)\text{ and }G_6=CH(CH_2OJ_{19}),\text{ then at least one of }X_2\,,\,X_3\,,\,M_1,\,M_2,\,J_5,\,J_9,\,J_{15},\text{ or }J_{19}\text{ is not equal to }H. \end{split}$$

10

A compound of Formula IC:

Formula IC:

$$G_{3}$$
 G_{4}
 G_{3}
 G_{2}
 G_{4}
 G_{5}
 G_{5}
 G_{4}
 G_{5}
 G_{5}
 G_{7}
 G_{7

of X2, X3, M1, M2, J5, J9, J15, or J19 is not equal to H;

wherein

$$\begin{split} &X_2,X_3,R,R_1-R_3,R_5-R_{35},E,E_1,E_2,Y_1,Y_2,M_1-M_5,A_1-A_3,Z,Z_1-Z_3,G_1-G_6,J_1-J_{24},G_1-G_{12},T_1-T_3 \text{ are the same as those described in Formula I in Claim 1;}\\ &\text{provided that when }E=Y_1=Y_2=Z=Z_1=Z_2=O,G_1=O\text{ or CH(OH)},E_1=E_2=H,G_2=CH,G_3=CH(OJ_5),G_4=CH(OJ_5),G_5=CH(OJ_5)\text{ and }G_6=CH(CH_2OJ_9)\text{, then at least one} \end{split}$$

- further provided that when $X_2 = H$ or CH_2OH , $E = Y_1 = Z = Z_1 = Z_2 = G_1 = O$, $Y_2 = b$ ond to M_2 from ring, $E_1 = E_2 = M_2 = H$, $G_2 = CH$, $G_3 = CH(OJ_5)$ and $G_4 = CH(OJ_9)$, $G_5 = CH(OJ_{15})$, $G_6 = CH(CH_2OJ_{19})$, then at least one of X_3 , M_{15} , J_5 , J_9 , J_{15} , or J_{19} is not equal to H;
- 15 further provided that when $E = Y_1 = Y_2 = Z = Z_1 = Z_2 = G_1 = O$, $E_1 = E_2 = H$, $G_2 = CH$, $G_3 = CH(OJ_5)$, $G_4 = CH_2$, $G_5 = CH(OJ_{15})$, $G_6 = CH(CH_3)$, then at least one of X_2 , X_3 , M_1 , M_2 , J_5 , or J_{15} is not equal to H; further provided that when $E = Y_1 = Y_2 = Z = Z_1 = Z_2 = G_1 = O$, $E_1 = E_2 = H$, $G_2 = CH$, $G_3 = CH_2$ or $CH(NH_2)$, $G_4 = CH(OJ_9)$, $G_5 = CH(OJ_{15})$, $G_6 = CH(CH_3)$, then at least one of X_2 , X_3 ,
- 20 M₁, M₂, J₉, or J₁₅ is not equal to H;

further provided that when $E=Y_1=Y_2=Z=Z_1=Z_2=G_1=O$, $E_1=E_2=H$, $G_2=CH$, $G_3=CH(NH_2)$, $G_4=CH(OJ_9)$, $G_5=CH(OJ_{15})$, $G_6=CH(CH_2(NH_2))$, then at least one of X_2 , X_3 , M_1 , M_2 , J_9 , or J_{15} is not equal to H:

further provided that when $E=Y_1=Y_2=Z=Z_1=Z_2=G_1=O$, $E_1=E_2=H$, $G_2=CH$, $G_3=CH$

- $$\begin{split} &CH(OH),\,G_4=CH_2,\,G_6=CH(CH_3),\,\text{then}\,\,G_5\text{ is not equal to CHF};\\ &\text{further provided that when}\,\,E=Y_1=Y_2=Z=Z_1=Z_2=G_1=O,\,E_1=E_2=X_2=X_3=M_1=M_2\\ &=H,\,G_2=CH,\,G_3=CH(OH),\,G_4=CH(OH),\,G_5=CH(OH),\,\text{then}\,\,G_6\text{ is not}\,\,CH(CH_3)\text{ or}\\ &CH(CHF_2); \end{split}$$
- further provided that when $E = Y_1 = Y_2 = Z = Z_1 = Z_2 = G_1 = O$, $E_1 = E_2 = H$, $G_2 = CH$, $G_3 = CH(OH)$, $G_5 = CH(OH)$, $G_6 = CH(OH)$ then G_4 is not CHF.

14. A compound of Formula ID:

Formula ID

$$G_5$$
 G_6
 G_7
 G_7
 G_8
 G_8
 G_9
 G_9

wherein:

20

 $X_3 = CN$, OR_{19} , SR_{19} , $NR_{23}R_{28}$, CF_3 , alkyl, cycloalkyl, $C(O)R_{32}$, $C(O)OR_{33}$, $C(O)NR_{34}R_{35}$, arylalkyl, aryl, arylalkenyl, arylalkynyl, or a heterocycle of 5 to 7 members;

5

 X_2 , X_3 , E, E₁, E₂, Y_1 , Y_2 , M_1 , M_2 , Z, Z_1 , Z_2 , and G_1 – G_6 are the same as those described in Formula I in Claim 1.

15. A compound of Formula IE:

Formula IE

$$G_5 \xrightarrow{G_6} CHOJ_1 \qquad Z_2 \qquad Z_1 \qquad Q_1 \qquad Z_2 \qquad Z_1 \qquad Z_2 \qquad Z_3 \qquad Z_4 \qquad Z_4 \qquad Z_5 \qquad Z_5 \qquad Z_6 \qquad Z_6 \qquad Z_7 \qquad Z_8 \qquad Z_$$

wherein:

 X_2 , X_3 , E_1 , E_2 , Y_1 , Y_2 , M_1 , M_2 , Z, Z_1 , Z_2 , G_2 – G_6 and J_1 are the same as those described in Formula I in Claim 1.

16. A compound of Formula IF:

Formula IF

$$G_3$$
 G_4 G_3 G_2 G_4 G_5 G_6 G_7 G_8 G_8

5 wherein:

$$\begin{split} &X_2,\,X_3,\,E_1,\,E_2,\,Y_2,M_2,\,Z,\,Z_1,\,Z_2,\,G_2-G_6 \text{ are the same as those described in Formula I;} \\ &\text{Provided that when } X_2=\text{CH}_3,\,X_3=E_1=E_2=M_2=H,\,E=Y_2=Z=Z_1=Z_2=G_1=O,\,G_2=CH,\,G_3=G_4=G_5=\text{CH(OH)},\,\text{then }G_6\text{ is not CH(CH_3)}\text{ or CH(CH_3)}\text{ or CH(CH_2OH)}. \end{split}$$

Formula IG

$$G_5$$
 G_6
 G_4
 G_3
 G_2
 G_4
 G_3
 G_4
 G_5
 G_4
 G_3
 G_4
 G_5
 G_4
 G_5
 G_4
 G_5
 G_4
 G_5
 G_7
 G_8
 G_8
 G_8
 G_9
 G_9

wherein:

 X_2 is aryl, arylalkyl, arylalkenyl, arylalkynyl, C_2 - C_8 alkyl, C_2 - C_8 alkenyl, alkynyl, cycloalkyl, or C_3 - C_8 branched alkyl, and none of the alkyl groups in X_2 are substituted with an amine or an amide on the chain, or contain a nitrogen hetero atom;

 X_3 , E_1 , E_2 , M_1 , M_2 , Y_1 , Y_2 , Z, Z_1 , Z_2 , G_1 - G_6 are the same as those described in Formula I in Claim I.

17. A compound of Formula IH:

Formula

Formula IH

$$O \longrightarrow O J_{21}$$

$$G_{3}$$

$$G_{4}$$

$$G_{3}$$

$$G_{2}$$

$$O \longrightarrow V$$

$$G_{4}$$

$$G_{5}$$

$$G_{4}$$

$$G_{5}$$

$$G_{4}$$

$$G_{5}$$

$$G_{7}$$

$$G_{7}$$

$$G_{8}$$

$$G_{8}$$

$$G_{9}$$

$$G_{9}$$

$$G_{1}$$

$$G_{1}$$

$$G_{2}$$

$$G_{3}$$

$$G_{2}$$

$$G_{4}$$

$$G_{3}$$

$$G_{2}$$

$$G_{4}$$

$$G_{5}$$

$$G_{7}$$

$$G_{8}$$

$$G_{8}$$

$$G_{9}$$

$$G_{9}$$

$$G_{1}$$

$$G_{1}$$

$$G_{1}$$

$$G_{2}$$

$$G_{3}$$

$$G_{2}$$

$$G_{4}$$

$$G_{5}$$

$$G_{7}$$

$$G_{8}$$

$$G_{8}$$

$$G_{9}$$

$$G_{1}$$

$$G_{1}$$

$$G_{1}$$

$$G_{2}$$

$$G_{3}$$

$$G_{2}$$

$$G_{1}$$

$$G_{1}$$

$$G_{2}$$

$$G_{3}$$

$$G_{2}$$

$$G_{3}$$

$$G_{4}$$

$$G_{5}$$

$$G_{7}$$

$$G_{8}$$

$$G_{8}$$

$$G_{9}$$

$$G_{1}$$

$$G_{1}$$

$$G_{1}$$

$$G_{1}$$

$$G_{2}$$

$$G_{3}$$

$$G_{1}$$

$$G_{1}$$

$$G_{2}$$

$$G_{3}$$

$$G_{4}$$

$$G_{5}$$

$$G_{7}$$

$$G_{8}$$

$$G_{8}$$

$$G_{9}$$

$$G_{1}$$

$$G_{1}$$

$$G_{1}$$

$$G_{1}$$

$$G_{2}$$

$$G_{3}$$

$$G_{1}$$

$$G_{1}$$

$$G_{1}$$

$$G_{2}$$

$$G_{3}$$

$$G_{4}$$

$$G_{3}$$

$$G_{2}$$

$$G_{3}$$

$$G_{4}$$

$$G_{5}$$

$$G_{7}$$

$$G_{8}$$

$$G_{8}$$

$$G_{8}$$

$$G_{9}$$

$$G_{1}$$

$$G_{1}$$

$$G_{1}$$

$$G_{1}$$

$$G_{2}$$

$$G_{3}$$

$$G_{4}$$

$$G_{5}$$

$$G_{7}$$

$$G_{8}$$

$$G_{8}$$

$$G_{1}$$

$$G_{1}$$

$$G_{1}$$

$$G_{1}$$

$$G_{2}$$

$$G_{3}$$

$$G_{4}$$

$$G_{5}$$

$$G_{7}$$

$$G_{8}$$

$$G_{1}$$

$$G_{1}$$

$$G_{1}$$

$$G_{2}$$

$$G_{3}$$

$$G_{4}$$

$$G_{5}$$

$$G_{7}$$

$$G_{8}$$

wherein:

15 $X_2, X_3, E, E_1, E_2, M_1, M_2, Y_1, Y_2, Z, Z_1, Z_2, G_2-G_5$ and J_{21} are the same as those described in Formula I in Claim 1; provided that when $X_2 = X_3 = E_1 = E_2 = M_1 = M_2 = H$, $E = Y_1 = Y_2 = Z = Z_1 = Z_2 = O$, $G_2 = CH$, $G_3 = G_4 = G_5 = CH(OH)$, then J_{21} is not H or CH₃.

18 A compound of Formula II:

Formula II

$$G_5$$
 G_6
 G_7
 G_7
 G_8
 G_8
 G_9
 G_9

wherein:

 X_2 , X_3 , E, E₁, E₂, A₁, A₂, Z, Z₁, Z₂ and G₂-G₆ are the same as those described in Formula I in Claim 1;

provided that when $X_2 = X_3 = E_1 = E_2 = H$, and $E = Z_1 = Z_2 = G_1 = O$, and $A_1 = A_2 = CH_3$,

10 then Z is not equal to CH₂ or CF₂;

further provided that when $X_2=X_3=E_1=E_2=H$, and $E=Z=Z_1=Z_2=G_1=O$, and A_1 and A_2 are taken together to form an unsaturated 6-membered ring, then G_6 is not CH(CH₂OH).