POLS/CS&SS 503: Advanced Quantitative Political Methodology

LINEAR REGRESSION ESTIMATOR

April 14, 2015

Jeffrey B. Arnold

Overview

Regression Coefficient Anatomy

Linear Regression Population Model

Sampling Distribution

Estimators and mean squared error

Gauss-Markov Theorem

Regression Coefficient Anatomy

Coeficients of a simple regression

$$Y_i = A + BX_i + E_i$$

The least squares coefficients are

$$A = \bar{Y} + B\bar{X}$$

$$B = \frac{\sum_{i} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i} (X_i - \bar{X})^2}$$

- State B in terms of covariance of X and Y and variance?
- State B in terms of correlation of X and Y and standard deviations?
- What values can B take if sd(X) = sd(Y) = 1?
- What is \hat{Y} for $X = \bar{X}$?
- What happens to B as $\mathrm{V}(X)$ decreases? $\mathrm{V}(Y)$ decreases? If $\mathrm{V}(X)=0$

Least squares when $\operatorname{V} X = 0$

Least squares coefficients are unidentified if Vx=0

- If $\forall x = 0$ then least squares solution is unidentified
- There is no unique value of A,B that $\arg\min_{A,B}\sum_{i}E_{i}^{2}$

```
y \leftarrow c(1, 2, 3, 4, 5)
x <- 1
vbar <- mean(v)</pre>
vbar
## [1] 3
\# A = 2, B = 1
sum((y - 2 - 1 * x) ^ 2)
## [1] 10
\# A = -7, B = 10
sum((v + 7 - 10 * x) ^ 2)
## [1] 10
```

Coefficients of a multiple regression

$$\vec{Y} = Xb + e$$

- $\boldsymbol{b} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$. Not that intuitive!
- Coefficient $oldsymbol{b}_j$ is

$$oldsymbol{b}_k = rac{\mathsf{C}(oldsymbol{y}, ilde{oldsymbol{x}}_j)}{\mathsf{V}(ilde{oldsymbol{x}}_k)}$$

• Where $\tilde{m{x}}_j$ are the residulals of $m{x}_j$ on all X_h where h
eq j

$$\tilde{X}_{j,i} = X_{j,i} - \tilde{A} - \sum_{h \neq j} \tilde{B}_h X_h$$

Regression example

See multiple_regression_anatomy.R

Least Squares coefficients are unidentified if $\left(X'X\right)^{-1}$ does not exist

- Common cases in which $(X'X)^{-1}$ does not exist:
 - Number of observations less than k+1
 - X_k is constant
 - X_k is a linear function of other variables: $X_k = \sum_{j \neq k} c_j X_j$.
 - · dummy variables for all categories of a categorical variable
 - variable multiplied by the constant of another variable

Which of these would be cases of collinearity and why?

- There is a variable that takes values "white", "black", "hispanic", "asian", "other". You include a dummy variable for each category.
- · GDP, GDP per capita, and population
- Log GDP, log GDP per capita, and log population
- GDP in millions of dollars: GDP in trillions of dollars
- · GDP measured in nominal value; GDP measured in real terms
- · Regression with 3 variables and 4 observations

Linear Regression Population Model

Population model in a simple regression

$$Y_i = \alpha + \beta X_i + \epsilon_i$$

Assumptions for statistical inference

- 1. *X* is not invariant: V(X) > 0
- 2. Linearity. Average value of error given x is 0. $E(\epsilon_i) = E(\epsilon_i|x_i) = 0$

$$\mu_i = E(Y_i) = \mathsf{E}(Y|X_i) = \mathsf{E}(\alpha + \beta X_i + \epsilon_i) = \alpha + \beta x_i$$

3. $\it Constant \, variance \, {\it Variance} \, {\it Vari$

$$V(Y|x_i) = E(\epsilon_i^2) = \sigma_{\epsilon}^2$$

- 4. *Independence*: Observations are sampled independently. $Cor(\epsilon_i, \epsilon_j) = 0$ for all $i \neq j$.
- 5. Fixed X or X measured without error and independent of the error.
- 6. Errors are normally distributed $\epsilon_i \sim N\left(0,\sigma_\epsilon^2\right)$

Population model in a multiple regression

$$Y_i = \alpha + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_k x_{i,k} + \epsilon_i$$

Assumptions for statistical inference

- 1. $\it X$ is not invariant and no $\it X$ is a perfect linear function of the others.
- 2. Linearity. $E(\epsilon_i) = 0$
- 3. Constant variance $V(\epsilon_i) = \sigma_\epsilon^2$
- 4. Independence Observations are sampled independently. ${\sf Cor}(\epsilon_i,\epsilon_j)=0$ for all $i\neq j$.
- 5. Fixed X or X measured without error and independent of the error
- 6. Normality Errors are normally distributed $\epsilon_{i} \sim N\left(0,\sigma_{\epsilon}^{2}\right)$

Sampling Distribution

Definitions

population The observations of interest. May be theoretical sample The data you have.

parameter A function of the population distribution statistic A function of the sample sampling distribution The distribution of a statistic calculated from the distribution of samples of a given size drawn from a population.

See Sampling_Distributions.Rmd

Sampling Distribution of Simple Regression Coefficients

The sampling distributions of A, B given $Y_i = \alpha + \beta X_i + \epsilon_i$

expected values (linearity)

$$E(A) = \alpha$$
$$E(B) = \beta$$

variances (linearity, constant variance, independence)

$$\begin{aligned} \mathsf{V}(A) &= \frac{\sigma_{\epsilon}^2}{n} \cdot \frac{\sum x_i^2}{\sum (x_i - \bar{x})^2} \\ \mathsf{V}(B) &= \frac{\sigma_{\epsilon}^2}{\sum (x_i - \bar{x})^2} = \frac{\sigma_{\epsilon}^2}{n \, \mathsf{V}(x)} \end{aligned}$$

normal distribution (normal errors)

$$A \sim N(\mathsf{E}(A), \mathsf{V}(A))$$

$$B \sim N(\mathsf{E}(B), \mathsf{V}(B))$$

Coefficient sampling distributions in multiple regression

The sampling distributions of B_k given $Y_i = \alpha + \sum \beta_i X_{i,i} + \epsilon_i$

- Expected value: $\mathsf{E}(B_K) = \beta_k$
- Variance:

$$V(B_{j}) = \frac{1}{(1 - R_{j}^{2})} \frac{\sigma_{\epsilon}^{2}}{\sum (x_{i,j} - \bar{x}_{j})^{2}}$$
$$= \frac{\sigma_{\epsilon}^{2}}{\sum_{i} (x_{i,j} - \hat{x}_{i,j})^{2}}$$

Where R_j^2 is R^2 from regression of X_j on other X, and \hat{x}_{ij} are fitted values from that regression.

- Normally distributed if errors are normally distributed or as $n \to \infty$.
- **b** is multivariate normally distributed

$$\boldsymbol{b} \sim N\left(\beta, \sigma_{\epsilon}^2(X'X)^{-1}\right)$$

Estimators and mean squared error

Let's define some things

```
statistic Function of a sample, e.g. Sample mean \bar{x}=\frac{1}{n}\sum x_i parameter Function of the population distribution, e.g. Expected value \mu of the normal distribution. estimator Method to use a sample statistic (estimate) to infer a population parameter (estimand)
```

How to determine if an estimator is good?

- Is $\hat{\beta} = (X'X)^{-1}X'y$ a good estimator for β ?
- Would another estimator be better?
- First, need criteria to by which to judge estimators

What makes an estimator good?

- Bias
- Variance
- Efficiency (mean squared error)
- Consistency

Bias and Variance

Bias

On average how far off is the estimator?

$$\mathrm{bias}(\hat{\beta}) = \mathrm{E}(\hat{\beta}) - \beta$$

Variance

Does the estimator give similar results in different samples?

$$V(\hat{\beta}) = E\left(\left(\beta - E(\hat{\beta})\right)^2\right)$$

Bias and Variance Visualized

What makes an estimator good?

- Unbiased methods may still miss the truth by a large amount, just direction not systematic
- Unbiased estimates can be horrible: random draw from numbers 0-24 for time of day
- Biased estimates are not necessarily terrible: a clock that's 2 minutes fast

You may prefer a biased, low variance estimator to an unbiased, high variance estimator

Mean Squared Error (MSE)

· MSE is

$$MSE(\hat{\beta}) = E\left((\hat{\beta} - \beta)^2\right)$$

MSE trades off bias and variance

$$\begin{split} MSE(\hat{\beta}) &= \mathrm{E}((\hat{\beta} - \mathrm{E}(\hat{\beta}))^2) + \mathrm{E}(\mathrm{E}(\hat{\beta}) - \beta))^2 \\ &= \mathrm{V}(\hat{\beta}) + \left(\mathrm{bias}(\hat{\beta}, \beta)\right)^2 \end{split}$$

- root mean squared error (RMSE) $\sqrt{\text{MSE}}$: on average how far is an estimate from the truth
- An efficient estimator has the smallest MSE
- · What is the MSE of an unbiased estimator?

$$MSE(\hat{\beta}) = \mathsf{V}(\hat{\beta}) + \left(\mathsf{bias}(\hat{\beta},\beta)\right)^2 = \mathsf{V}(\hat{\beta}) + 0 = \mathsf{V}(\hat{\beta})$$

MSE Example

- Suppose population parameter $\beta=1$
- Consider two estimators \hat{eta}_1 and \hat{eta}_2 .
 - $\hat{\beta}_1 \sim N(1, 1^2)$
 - $\hat{\beta}_2 \sim N(0.5, 0.5^2)$
- · What are the bias, variance, and MSE of each estimator?

Consistency

 A consistent estimator converges to the parameter value as the number of observations grows

$$\mathsf{E}(\hat{\beta} - \beta) \to 0$$
 as $n \to \infty$

- A concern of econometricians
- May not be as much a concern in finite, small sample sizes
- We will mainly be concerned with efficiency, secondarily with bias, rarely with consistency

Gauss-Markov Theorem

LS assumptions and consequences of violations

	Assumption		Consequence of violation
1	No perfect collinearity	$\operatorname{rank}({m X}) = k, k < n$	Coefficients unidentified
2	$oldsymbol{X}$ is exogenous	$E(\boldsymbol{X}\epsilon)=0$	Biased, even as $n o \infty$
3	Disturbances have mean 0	$E(\epsilon) = 0$	Biased, even as $n o \infty$
4	No serial correlation	$E(\epsilon_i \epsilon_j) = 0, i \neq j$	Unbiased but ineff. Wrong se.
5	Homoskedastic errors	$E(\epsilon'\epsilon') = \sigma^2 \boldsymbol{I}$	Unbiased but ineff. Wrong se.
_6	Normal errors	$\epsilon \sim N(0, \sigma^2)$	se wrong unless $n \to \infty$

Assumptions stronger from top to bottom, 4 and 5 could be combined

Unbiasedness of LS

- Only need assumptions 1-3 (no collinearity, $oldsymbol{X}$ exogenous, $\mathsf{E}(\epsilon)=0$
- · Start with

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\beta + \epsilon)$$
$$= \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\epsilon$$

· Take the expectation

$$\begin{split} \mathbf{E}(\hat{\boldsymbol{\beta}}) &= \mathbf{E}(\boldsymbol{\beta}) + \mathbf{E}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\epsilon}) \\ &= \mathbf{E}(\boldsymbol{\beta}) + \boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\,\mathbf{E}(\boldsymbol{\epsilon}) \\ &= \mathbf{E}(\boldsymbol{\beta}) \end{split}$$

• Since $E(\hat{\beta}) = E(\beta)$, LS is unbiased.

Gauss-Markov

- If make assumptions 1–5: LS is the best linear unbiased estimator (BLUE)
- $oldsymbol{\cdot}$ LS estimator is **linear** because $\hat{eta} = oldsymbol{M} oldsymbol{y}$, where $oldsymbol{M} = (oldsymbol{X}'oldsymbol{X})^{-1}oldsymbol{X}'$
- best is best mean squared error (MSE).
- If LS is unbiased, then its mean squared error is the same as its ...?
- Could exist other non-linear unbiased estimators with smaller MSE,
 e.g. Robust regression when population has fat tailed errors
- If errors are Gaussian, LS is Minimum Variance Unbiased (MVU).
- MVU = for \emph{all} estimators that are unbiased. $\hat{\beta}$ has smallest variance (and MSE).

References

- Some slides derived from Christopher Adolph Linear Regression in Matrix Form / Propoerties & Assumptions of Linear Regression. Used with permission.
 - http://faculty.washington.edu/cadolph/503/topic3.pw.pdf
- Material included from
 - Fox Ch 6, 9.3
 - Angrist and Pischke, Chapter 3