# **Trees**

Dr. Anirban Ghosh

School of Computing University of North Florida



#### Introduction



#### **Informal definition**

A **tree** is an abstract data type that stores elements hierarchially. With the exception of the top element, each element in a tree has a parent element and zero or more children elements.

# Your first non-linear ADT!

#### **Formal definition**



#### **Definition**

A tree T is a set of **nodes** storing elements such that the nodes have a **parent-child** relationship that satisfies the following properties:

- $\bullet$  If T is nonempty, it has a special node, called the **root** of T, that has no parent.
- **2** Each node v of T different from the root has a unique **parent** node w; every node with parent w is a **child** of w

#### **Recursive definition**



#### **Recursive definition**

A tree T is either empty or consists of a node r, called the root of T, and a (possibly empty) set of subtrees  $T_1, T_2, \ldots, T_k$ , whose roots are the children of r.

#### **Applications**

- Easy real-world uses: family tree, organizational charts, etc.
- Are widely used in computing to represent various kinds of hierarchical structures: directory structure, topologies in computer networks, etc.
- Game programming
- Machine learning
- Compiler design
- Operating systems
- Computer graphics
- Database management systems
- Searching algorithms
- Used as an auxiliary data structure for many algorithms
- ...

#### **Directory structures in file systems**

```
n01388139@UNF-C02DREMKMD6M Code % tree -L 3
-- COP3530
     - COP3530.iml
      - out
        __ production
      - oz.txt
        — analysis
         — arraysandLLs
         — ехаm1
          hashing
          – hw1
         — ood
          primer
         — quiz
         — recursion

    stacksandqueues

        L- tester
19 directories, 2 files
```

# Game trees in Al



#### **Binary trees**



#### **Binary trees**



#### **Definition**

A binary tree is a tree in which every node has  $\leq 2$  children

# **Expression trees**



$$31 + 1 \times 55/79 - 81 + 2 - 38 \times 7 - 4 + 6$$

#### **Terminologies**



- **Root.** The node that has no parent
- **Leaf node.** A node that has no children
- Internal node. A node is internal if it has at least one child
- Ancestors of node. The nodes that are on the path from the root to the node
- **Depth of a node.** The number of ancestors it has; the root has depth zero
- Height of a tree. Maximum possible depth of a node in the tree

#### **Fun results**



Let h denote the height and n the number of nodes. Also, let  $n_2$  denote the number of nodes having two children and  $n_\ell$  denote the number of leaves.

- $h+1 \le n \le 2^{h+1}-1$
- $\log_2(n+1) 1 \le h \le n-1$
- $n_{\ell} = n_2 + 1$

#### How to represent binary trees?

**Approach 1: using a linked structure.** Every node has left and right fields that points to the left and right child, respectively; node structure looks quite similar to that of a doubly linked-list node class



Space efficient; uses O(n) space

#### How to represent binary trees?

**Approach 2: using an array.** The root is at index 0. If a node has index i, then its left child (if any) is at index 2i+1 and its right child (if any) is at 2i+2. Parent of the node at index i can be found at  $\lfloor (i-1)/2 \rfloor$ . Never reserve array cells for the non-existent children of leaf nodes.



Space inefficient; uses  $O(2^n)$  space

#### How to traverse a tree?

#### inorder(node)

- 1 if node has a left child, then recursively call inorder(node.left);
- visit(node.element);
- 3 if node has a right child, then recursively call inorder(node.right);

#### preorder(node)

- 1 visit(node.element);
- if node has a left child, then recursively call preorder(node.left);
- if node has a right child, then recursively call preorder (node.right);

#### postorder(node)

- 1 if node has a left child, then recursively call postorder(node.left);
- if node has a right child, then recursively call postorder(node.right);
- node.element):

# **Inorder traversal demo**























$$31 + 1 \times$$



$$31 + 1 \times$$



$$31 + 1 \times 55$$



$$31 + 1 \times 55/$$



$$31+1\times55/79$$



$$31 + 1 \times 55/79 -$$



$$31 + 1 \times 55/79 -$$



$$31 + 1 \times 55/79 - 81$$



$$31 + 1 \times 55/79 - 81 +$$



$$31 + 1 \times 55/79 - 81 +$$



$$31 + 1 \times 55/79 - 81 + 2$$



$$31 + 1 \times 55/79 - 81 + 2 -$$



$$31 + 1 \times 55/79 - 81 + 2 -$$



$$31 + 1 \times 55/79 - 81 + 2 -$$



$$31 + 1 \times 55/79 - 81 + 2 -$$



$$31 + 1 \times 55/79 - 81 + 2 - 38$$



$$31 + 1 \times 55/79 - 81 + 2 - 38 \times$$



$$31 + 1 \times 55/79 - 81 + 2 - 38 \times$$



$$31 + 1 \times 55/79 - 81 + 2 - 38 \times$$



$$31 + 1 \times 55/79 - 81 + 2 - 38 \times 7$$



$$31 + 1 \times 55/79 - 81 + 2 - 38 \times 7 -$$



$$31 + 1 \times 55/79 - 81 + 2 - 38 \times 7 -$$



$$31 + 1 \times 55/79 - 81 + 2 - 38 \times 7 - 4$$



$$31 + 1 \times 55/79 - 81 + 2 - 38 \times 7 - 4 +$$



$$31 + 1 \times 55/79 - 81 + 2 - 38 \times 7 - 4 +$$



$$31 + 1 \times 55/79 - 81 + 2 - 38 \times 7 - 4 + 6$$

## Preorder traversal: node, left subtree, right subtree



$$-/\times +31155 + -79812 + \times 38 - 746$$

## Postorder traversal: left subtree, right subtree, node



$$31\ 1\ +\ 55\ imes\ 79\ 81\ -\ 2\ +\ /\ 38\ 7\ 4\ -\ imes\ 6\ +\ -$$

#### The three traversals



Inorder. 
$$31 + 1 \times 55 / 79 - 81 + 2 - 38 \times 7 - 4 + 6$$
  
Preorder.  $- / \times + 31155 + -79812 + \times 38 - 746$   
Postorder.  $311 + 55 \times 7981 - 2 + /3874 - \times 6 + -$ 

## **Another example**



#### **PREORDER TRAVERSAL**

Jacksonville, Atlanta, Orlando, Tampa, Charleston, Miami, NYC, Sarasota, Destin, New Jersey

#### **INORDER TRAVERSAL**

Orlando, Atlanta, Charleston, Tampa, Jacksonville, Sarasota, NYC, Destin, Miami, New Jersey

#### POSTORDER TRAVERSAL

Orlando, Charleston, Tampa, Atlanta, Sarasota, Destin, NYC, New Jersey, Miami, Jacksonville

## From traversal sequences to trees

- It is natural to ask the following question: can we construct back the tree **uniquely** when we are given one or more its traversals?
- If exactly one traversal is given, the answer is NO
- If both the preorder and postorder traversals are given, the answer is NO
- If the inorder + postorder/preorder traversals are given, the answer is **YES**

#### **Recommended excercise**

Given an inorder + postorder/preorder traversals, recursively construct the corresponding binary tree

## **Implementation**

See the class BinaryTree<E>

#### Code

```
public class TestBinaryTree {
  public static void main(String[] args) {
     BinaryTree<String> cityTree = new BinaryTree<>();
     cityTree.insert("Jacksonville"."root"):
     cityTree.insert("Atlanta", "0");
                                                                    IACKSONVILLE
     cityTree.insert("Miami", "1");
     cityTree.insert("Orlando", "00");
     cityTree.insert("Tampa", "01"):
                                                                                              MIAMI
                                                  ATLANTA
     cityTree.insert("Charleston", "010");
     cityTree.insert("NYC", "10");
     cityTree.insert("New Jersey", "11"):
     cityTree.insert("Sarasota", "100"); ORLANDO
                                                                                                    NEW JERSEY
                                                                                     NYC
                                                              TAMPA
     citvTree.insert("Destin", "101");
     System.out.print("PreOrder: "):
                                                   CHARLESTON
                                                                          SARASOTA DESTIN
     cityTree.printPreOrder():
     System.out.print("\nInOrder: "):
     cityTree.printInOrder():
     System.out.print("\nPostOrder: "):
     cityTree.printPostOrder();
     System.out.print("\nNumber of nodes in the tree: " + cityTree.countNodes( cityTree.getRoot() ) ):
```

## Tries: how do they look like?



$$C=\{a,b,\dots,z\}\text{,}\qquad m=26\text{,}$$
  $S=\{\text{bear, bell, belly, bid, bider, bull, buy, sell, stock, stop}\}$ 

#### **Tries**

#### **Definition**

- Consider a set C of m characters  $c_1, c_2, \ldots, c_m$  and a set S of strings made up of characters taken only from C (characters may repeat in the strings)
- A **trie** T on C is a m-ary tree (every node has at most m children) such that
  - ullet Each node of T, except the root node, is labeled with a character of C.
  - The children of any node have distinct labels, taken from C.
  - The root has an empty label.
  - Each node t in the tree is associated with a string s, obtained by concatenating the labels of the nodes from the root to that node. If  $s \in S$ , then store s with t, else store a null.

 $\blacksquare$  If m=2, the resulting trie is a binary tree

## **Implementation**

#### Node structure for tries when m=26

```
private static class TrieNode {
   String word = null;
   TrieNode parent = null;
   TrieNode[] children = new TrieNode[26]; // every cell contains a null by default
}
```



An array of children references (some possibly empty)

## How to find the child id corresponding to a character in our case?

```
int childID = s.charAt(i) - 'a'; // childID will be an integer between \theta and 25

Note that this simple relation may not work if C contains other types of characters. In that case, some kind of mapping must be used for efficiency (stay tuned for maps!).
```

# **Searching**

## Searching the string 'bid'



Found!

## Searching the string 'sell'



Found!

## Searching the string 'best'



Not found!

## Searching the string 'donkey'



Not found!

## Searching time

- ullet Let n be the length of the string that needs to be searched
- In the worst case, we need to visit n+1 nodes (including the root node); less than n+1 nodes will be visited if the string is not present in the trie
- At every node, we need to spend O(m) time to figure out next child in the search path since a node can have at most m children
- Total time taken.  $(n+1) \cdot O(m) = O(nm+m) = O(nm)$
- In our case (considering lowercase English letters only),  $m=26={\cal O}(1).$  Hence, search time is  ${\cal O}(n)$

Tries can be used where fast lookups are required quite often

## **Insertion**

# Inserting the string 'abide'



# Inserting the string 'abyss'



#### **Insertion time**

Takes O(nm) time, similar to the search operation

In our case,  $m=26={\cal O}(1)$ , so insertion time is  ${\cal O}(n)$ 

# **Deletion**

# Deleting the string 'bid'



Remove the word 'bid' stored at the node d

## Deleting the string 'sell'



After detecting 'sell', delete the three nodes  $\ell$ ,  $\ell$ , e

# Deleting the string 'sell'



The tree after deleting 'sell'

#### **Deletion time**

- Locating the word in the tree takes O(nm) time by climbing down
- ullet Then, we need to climb up for deleting the useless nodes; this takes O(nm) time as well
- Total time taken.  $O(nm) + O(nm) = 2 \cdot O(nm) = O(nm)$

# Report the words with a given prefix

# Find the words with prefix 'be'



Report every word present in the subtree rooted at the last character of the prefix; in this example the subtree of interest is rooted at e (the pentagon)

# **Implementation**

See the class Trie

## Auto-completion: an application of tries



To find the auto-complete choices, one can use a pre-built trie and easily find the entries which start with the string typed so far by running the wordsHavingPrefix(...) method on the trie

# Reading

# **Chaper 12** from

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/index.html