Computer vision

laboratories

Krzysztof Martyn

krzysztof.martyn@cs.put.poznan.pl

Computer vision - tasks

Image segmentation

Object detection

Agenda

- 1. Main parts:
 - a. Image representation and processing,
 - b. Object detection and semantic description,
 - c. Neural network in computer vision
- 2. Environment and libraries
- Cellular automaton

Image representation

Image = result of the projection of a 3D scene onto a 2D plane (image acquisition)

- How to represent a 2D plane?
- How to represent color?
 - Spatial domain: RGB, CMYK, Grayscale,
 - Frequency domain (image = 2D signal)
- How to transform between different image representations and what are the benefits?

Scheme of projection of a scene into a 2D image

Image representation - spatial domain

The picture shows the same scene, the way it is presented is different

Image representation - frequency domain

Also the same scene, but in different domains

Image representation

Other representations can help with object detection / scene segmentation

- Each pixel is a description of a piece of the scene,
- Can we tell what element of a scene is a pixel based only on itself and its neighborhood?
- How to describe each pixel?

Image transformations

F:
$$I_1 \rightarrow I_2$$

F - Transform function,
 I_n - Image domain

F: RGB to Grayscale, Inverse, Clear, ...

Image transformations

Input image

Interest points detection

feet

Detection of individual features, e.g. ears, tail, etc.

Due to the semantics, the features can be combined to form a higher-order descriptor

If the detected features exist in a certain configuration, they together form a new feature

Neural networks

- Why are neural networks so good for computer vision?
- What are the characteristics of neural networks used in computer vision??
- What do we need to train neural networks?

Neural networks

Environment and libraries

- Runtime environment:
 - Ubuntu 18.04 (Windows),
 - Google Colab,
- Programming environment:
 - Python 3,
 - Conda / Anaconda,
 - Jupyter Notebook,
- Libraries:
 - NumPy,
 - OpenCV,
 - Matplotlib,
 - TensorFlow 2.x

Installation

```
wget https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-x86 64.sh
bash ./Anaconda3-2020.11-Linux-x86 64.sh
conda create --name wk lab python=3.8 # create environment
conda activate cv lab
                                     # activate environment
pip install pillow numpy matplotlib # possible classic installation
CPU:
pip install tensorflow
GPU:
conda install -c anaconda cudatoolkit=10.1 # conda installation
conda install -c anaconda cudnn=7.6.5=cuda10.1 0 # conda installation
                                                # classic installation
pip install tensorflow-qpu
conda install -c conda-forge opency
                                                # conda installation
conda install -c conda-forge jupyterlab
                                                # conda installation
```

Cellular automaton

Cellular automaton - a system consisting of single cells adjacent to each other according to a predefined pattern.

Each cell is in one of a finite number of states.

The state of a cell changes synchronously according to the rules that tell how the new state of a cell depends on its current state and the state of its

neighbors.

Moore neighborhood

von Neumann neighborhood

Cellular automaton - Conway's Game of Life

Rules for live cells:

- Any live cell with fewer than two live neighbours dies, as if by underpopulation.
- Any live cell with two or three live neighbours lives on to the next generation.
- Any live cell with more than three live neighbours dies, as if by overpopulation.

Rules for dead cells:

Any dead cell with exactly three live neighbours becomes a live cell, as if by

reproduction.

All other dead cells stay dead.

https://playgameoflife.com/

Sources

- https://commons.wikimedia.org/wiki/File:Trefoil knot conways game of life.gif
- https://experiments.withgoogle.com/conway-game-of-life
- https://www.researchgate.net/figure/Rules-of-Conways-Game-of-Life_fig5_339605473
- https://forums.tigsource.com/index.php?topic=63846.0
- https://codegolf.stackexchange.com/questions/88783/build-a-digital-clock-in-conways-game-of-life/111932
- https://giphy.com/explore/conways-game-of-life
- https://en.wikipedia.org/wiki/Cellular_automaton
- https://www.xojo3d.com/tut002.php
- Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network" -Seung Seog Han et al.
- https://github.com/magicleap/Atlas
- https://viso.ai/deep-learning/pattern-recognition/
- https://medium.com/@abhishekmalhan007/enhancement-of-images-using-super-resolution-fc36bfd58d9a
- http://www.deepdata.pl/deep-learning/kolejna-odslona-style-transfer/
- https://en.wikipedia.org/wiki/Lenna