Multiple Linear Regression Multicollinearity Problem

Contents

- 1. Key Assumptions of Multiple Linear Regression
- 2. Understanding the Problem of Multicollinearity
- 3. Detecting Multicollinearity Variance Inflation Factor
- 4. Detecting Multicollinearity in R
- 5. Multicollinearity Remedial Measures

Key Assumptions of Multiple Linear Regression

Multiple Linear Regression makes four key assumptions

Violations of these assumptions may result in biased variable relationships, over or under-estimation of parameters (i.e. biased standard errors), and unreliable confidence intervals and significance tests

Problem of Multicollinearity

Multicollinearity exists if there is strong linear relationship among the independent variables

Multicollinearity has two serious consequences:

1. Highly Unstable Model Parameters

As standard errors of their estimates are inflated

Model Fails to Accurately Predict for Out of Sample Data

Therefore, it is important to check for Multicollinearity in regression analysis

Detecting Multicollinearity Through VIF

VIF (Variance Inflation Factor) Method:

Dependent Variable : Y

Independent variables: X1, X2, X3, X4

Dependent Variable	Independent Variables	R ²	1 – R ² = Tolerance	VIF = 1/(Tolerance)
X1	X2, X3, X4			
X2	X1, X3, X4			
X3	X1, X2, X4			
X4	X1, X2, X3			

Any <u>VIF > 5</u>, indicates presence of Multicollinearity

Detecting Multicollinearity in R

#Importing the Data, Fitting Linear Model perindex<-read.csv("Performance Index.csv", header=TRUE)</pre> jpimodel<-lm(jpi~aptitude+tol+technical+general, data=perindex)</pre> **#Variance Inflation Factor** #Install and load package "car". install.packages("car") car stands for Companion to Applied Regression and consists library(car) of several useful functions for advance regression analysis. vif(jpimodel) vif() in package car calculates VIFs.

Detecting Multicollinearity in R

Output

```
aptitude tol technical general
1.179906 1.328205 2.073907 2.024968
```

Interpretation:

All VIFs are less than 5, Multicollinearity is not present.

Multicollinearity – Remedial Measures

The problem of Multicollinearity can be solved by different approaches:

Drop one of the independent variables, which is explained by others

Use Principal Component Regression in case of severe Multicollinearity

Use Ridge Regression

Case Study - Modelling Resale Price of Cars

Background

• A car garage has old cars for resale. They keep records for different models of cars and their specifications.

Objective

• To predict the resale price based on the information available about the engine size, horse power, weight and years of use of the cars

Available Information

- Records -26
- Independent Variables: ENGINE SIZE, HORSE POWER, WEIGHT AND YEARS
- Dependent Variable: **RESALE PRICE**

Data Snapshot

			Depe	ndent varia		r da	ressio ta Indepei		variables	}	
		MODEL		RESALE PRICE EN		2,000		OWER	WEIGHT	YEARS	
	Daihatsu Suzuki Swi			3870 4163	993		32 39		650 790	2.9	
		Suzuki Swift 1.0 GL Fiat Panda Mambo L		3490	899		29		730	3.1	
itions	C	olumns		escription	4.0	T	ype	Mea	surement	Possib	le values
RESA		10DEL	Мос	del of the car		character		-		-	
		ESALE PRICE	Resale price			numeric		Euro		positive values	
	ENGINE SIZE		Size of the engine		numeric		СС		positive values		
		iorse ower	Power of the eng		gine	numeric		kW		positive values	
	W	'EIGHT	Wei	ght of the ca	ar	numeric		kg		positive values	
	Y	YEARS Number of years in us		n use	numeric		-		positive values		

Correlation Matrix

```
# Importing the Data
ridgedata<-read.csv("ridge regression data.csv", header=TRUE)</pre>
# Graphical representation of data
# Install and load package "GGally"
install.packages("GGally")
library(GGally)
ggpairs(ridgedata[,c("RESALE.PRICE","ENGINE.SIZE","HORSE.POWER","YEARS
")],title="Scatter Plot Matrix", columnLabels = c("RESALE.PRICE",
"ENGINE.SIZE", "HORSE.POWER", "YEARS"))
   ggpairs() in the package GGally is used to plot the scatter plot matrix.
```

Correlation Matrix

Output

Interpretation:

☐ The independent variables have high positive correlation among themselves.

Detecting Multicollinearity in R

#Fitting Linear Model

```
model<-lm(RESALE.PRICE ~ ENGINE.SIZE +HORSE.POWER +WEIGHT+ YEARS,
data=ridgedata)</pre>
```

#Variance Inflation Factor

```
library(car)
vif(model)
```

Output

```
ENGINE.SIZE HORSE.POWER WEIGHT YEARS
15.759113 12.046734 9.113045 13.978640
```

Interpretation:

☐ VIF values for all the variables are greater than 5, hence we can conclude that there exist Multicollinearity between the independent variables.

Quick Recap

This session explained the problem of Multicollinearity, along with its consequences and remedial measures:

Multicollinearity Exists	 When independent variables have strong linear relationship 	
Results in	Unstable model parametersInaccurate predictions for out of sample data	
Indicators	High pairwise correlationSignificant F value but very few significant t values	
Checking in R	Variance Inflation Factor vif() function in package car	
Remedial Measures	Drop variablesUse Principal Component RegressionRidge regression	