Representation Learning

Content

- Representation Learning
- Unsupervised Pretraining
 - Greedy Layer-Wise Unsupervised Pretraining
- Transfer Learning & Domain Adaptation
- Disentangling of Causal Factors
- Distributed Representation
- Clues of Underlying Causes

Before start...

Which representation would be better to use/read?

- 210 * 6 vs CCX * VI
- 210 vs CCX
- 6 vs VI
- former expression (Arabic numeral representation) would be much better than latter expression (Roman numeral representation)

Representation Learning

- Representation
 - how the information/data is expressed

- Good representation
 - Representation which makes learning task easier
 - Depends on the task
 - Classification
 - given data, linearly separable representation would be one of good representation
 - Probabilistic model
 - latent vectors are independent

Representation Learning

- Main Hypothesis
 - Unlabeled data can be used to learn a good representation

Motivation

Given Neural Network, we initialize parameters randomly

• Before training, would it be more efficient if we initialize parameters with given data?

- As representation learning
 - Representation learned for one task can sometimes be useful for another task
 - one task : pretraining weight matrix ← unsupervised learning
 - another task : training neural network ← supervised learning

Greedy Layer-Wise Unsupervised Pretraining

- Algorithm
 - Given network with at least one hidden layer, pre-training each layer using output of previous layer by fixing other parameters

Greedy Layer-Wise Unsupervised Pretraining

Greedy

→ Optimize each piece of the solution independently

Layer-Wise

→ independent pieces are the layer of the network

Unsupervised

→ trained with an unsupervised representation learning algorithm

Pretraining

→ step before a joint training algorithm is applied to fine-tune

Greedy Layer-Wise Unsupervised Pretraining

- Effect
 - Regularizer (In supervised learning context)
 - A form a parameter initialization

- Good or Bad?
 - Substantial improvements in test error for classification tasks
 - On many other tasks, however, unsupervised pretraining either does not confer a benefit or even causes noticeable harm
 - Pretraining was slightly harmful, but for many tasks was significantly helpful
 - → unsupervised pretraining is *sometimes* helpful

- Basic concept
 - Choice of initial parameters can have a significant regularizing effect on the model
 - Initialize model in a location where that would otherwise inaccessible
 - where the cost function varies much
 - areas where the Hessian matrix is so poorly conditioned that gradient descent methods must use very small steps
 - Learning about the input distribution can help with learning about the mapping from input to output
 - If we think input as poor representation, unsupervised pretraining might give better representation

- Advantage
 - (As a regularizer) Target function is extremely complicated
 - Other regularizer (weight decay ...) reinforces to view target function to be simple
 - Improvement of training error and test error
 - Since it could lead model to inaccessible region, it sometimes improve errors
 - Consistently halt in the same region of function space
 - Reduces variance of estimation process
 - · Without pretraining, it consistently halt in different region

- Disadvantage
 - Does not offer clear way to adjust strength of regularization
 - If we use unsupervised and supervised learning simultaneously, we can determine how strongly unsupervised objective will regularize supervised model with one parameter

- Two separate training phases
 - Separate phase → Long delay between updates of second phase

- Conclusion
 - When to use
 - variation of test/train error is large

- Largely Abandoned
 - other techniques outperforms (ex. batch normalization, ...)

Transfer Learning

Concept

- Using learned representation in one setting(task) will improve generalization in another setting
 - Input is same but target may be different
- Factors explaining in one setting are relevant to factors of another setting

Example

- Model trained for classification of cats and dogs
 - → Model for classification of ants and wasps

One-shot Learning

Concept

- During transfer learning stage, only one labeled example is given
- Inferring data that cluster around the same point has same label

Example

- Objective: Face recognition of each member in company
- Datasets : one photo for each member
- Method : Using Transfer Learning → Human face recognition model

Zero-shot Learning

- Concept
 - During transfer learning stage, **no** labeled example is given
 - Inferring data that cluster around the same point has same label
- Example
 - Objective : Finding zebra in given picture
 - Datasets : some pictures with zebra and some are not
 - Method : Using Transfer Learning → Horse recognition model

Domain Adaptation

- Concept
 - Using learned representation in one setting(task) will improve generalization in another setting
 - Input distribution is slightly different
- Example
 - Analyzing customer reviews of books
 - → Analyzing review comments on videos

Concept

- Given Data x with probability p(x), we want to find good representation of x
- We want to distinguish each data by underlying causes
 - Underlying Causal Factors h
 - Among underlying factors, important factor y
 - If y is important factor, computing p(y|x) would be good representation

- Example Situation that fails to learn factors
 - Our objective is to learn salient factor by f(x) = E[y|x]
 - For given data x, p(x) is uniformly distributed
 - Training x gives no information about p(y|x)
- Example Situation that succeed to learn factors
 - x arises from a mixture by value of y

• In practice, dimension of underlying causal factors is large

- Possible solution
 - Brute force solution
 - learn representation that captures all the reasonably salient generative factors
 - disentangles them from each other
 - Using supervised learning simultaneously
 - Use larger representation (larger dimension of latent space)

- Salience (salient factor y)
 - Many possible definition/explanation for salience of a factor
 - Example of Learning to generate human head image
 - View of MSE
 - Salience would be caused by extreme difference in brightness
 - View of GAN
 - Salience would be highly recognizable pattern → Ear, Eye ...

- Distributed representations
 - representations composed of many elements that can be set separately from each other
- Symbolic representation
 - the input is associated with a single symbol or a category
 - also known as one-hot representation
 - Ex. k-means clustering, decision tree, ...
 - Based on smoothness assumption
 - if $u \approx v$ then $f(u) \approx f(v)$
 - $\rightarrow f(x + \epsilon) \approx f(x)$

- Advantage
 - With only O(nd) parameters, we can specify $O(n^d)$ regions(features)
 - n hyperplanes in R^d
 - distinguish up to $\sum_{j=0}^{d} {n \choose j} = O(n^d)$ regions
 - if symbolic representation, $O(n^d)$ parameters are required

- Why distributed representation generalize well?
 - Able to distinctly encode enormous regions with relatively small amount of parameters
 - However, capacity of representation is limited
- It is experimentally validated

- Example: Distributed representation of generative model
 - Each picture is represented by
 - Male / Female

Glasses

Man with glasses – man without glasses
+ women = women with glasses
(vector calcuation)

Clues to Discover Underlying Causes

- Natural clustering
 - Assume that each connected manifold input space may be assigned to a single class
 - disconnected manifolds, but the class remains constant within each one of these
- Simplicity of Factor Dependencies
 - In good high-level representations, the factors are related to each other through simple dependencies
 - linear dependencies or those captured by a shallow autoencoder are also reasonable assumptions