Computação Reconfigurável

Aula prática 3

Problemas para resolver

- **Exercício 3.1.** Descrever um circuito que permite encontrar o número máximo de uns consecutivos num vetor binário sw(15 **downto** 0). Usar máquinas de estados finitos. Mostrar o resultado em displays de segmentos em decimal e hexadecimal. Usar *IP block integrator*.
- **Exercício 3.2.** Mostrar os resultados do divisor máximo comum em displays de segmentos em decimal. Entrar dados (intervalo 0-255) utilizando miniteclado. Usar *IP block integrator*.
- **Exercício 3.3.** Descrever um circuito que permite encontrar o número máximo de uns consecutivos num vetor binário de 1000 bits. Usar máquinas de estados finitos. Gerar vetor binário aleatoriamente. Mostrar o resultado em displays de segmentos em decimal. Usar *IP block integrator*.
- **Exercício 3.4.** Gerar um vetor binário de 1024 bits utilizando JAVA ou C/C++ num ficheiro COE. Contar o número de uns no vetor em programa JAVA ou C/C++. Preencher memória distribuída utilizando este ficheiro. Descrever um circuito que permite encontrar o número de uns no vetor. Usar máquinas de estados finitos. Mostrar o resultado em displays de segmentos em decimal. Comparar os resultados em software e hardware. Usar *IP block integrator*.
- **Exercício 3.5.** Descrever um circuito para uma calculadora que execute operações +, -, *, / sobre operandos sw(15 **downto** 8) e sw(15 **downto** 8). Cada operação deve ser executada utilizando memórias do tipo ROM e cálculos baseados em tabelas. Preencher memórias propriamente utilizando programas em JAVA ou C/C++. Ver aula teórica 5 para detalhes. Usar *IP block integrator*.