CSCI 2210: Theory of Computation

Problem Set 6 (due 11/08)

Student: Rafael Almeida Collaborators: Cal Thompson

Problem 1. Show that the following languages are decidable.

- (a) $C_{regex} = \{\langle R, S \rangle \mid R \text{ and } S \text{ are regular expressions and } L(R) \subseteq L(S)\}$
- M = "on input R, S:
 - 1. Construct DFA D_R from R
 - 2. Construct DFA D_S from complement of S
 - 3. Intersect D_R and D_S as D_I
 - 4. Transition through the states of D_I
 - 5. If one is accepting, reject
 - 6. Accept"

If L(R) is a subset of L(S), L(R) intersected with the complement of L(S) should be empty. If not, that means there is a string in L(R) not in L(S).

- (b) $\mathsf{EQ}_{\mathsf{DFA}/\mathsf{REX}} = \{ \langle D, R \rangle \mid D \text{ is a DFA}, R \text{ is regular expression, and } L(D) = L(R) \}$
 - M = "on input D, R:
 - 1. Convert R into a DFA D R
 - 2. Minimize D and D R
 - 3. Transition through the states of D and D_R
 - 4. If one is not equivalent, reject
 - 5. Accept"

Because minimal DFAs are unique, if the minimal version of D and D_R are not equivalent all throughout, it means that $L(D) \neq L(R)$

Problem 2. Consider the following facts:

- Regular languages are closed under intersection.
- Regular expression $\Sigma^*w\Sigma^*$ describes all strings over alphabet Σ that have w as a substring.

Show that language L is decidable.

 $L = \{ \langle D, u \rangle \mid D \text{ is a DFA and there exists } w \in L(D) \text{ such that } u \text{ is a substring of } w \}$

M = "on input D, u:

- 1. Create DFA for regular expression $\Sigma^* u \Sigma^*$, D_SUB
- 2. Intersect D with D_SUB, D_INTER
- 3. Transition through the states of D_INTER
 - 4. If an accept state is found, accept
- 5. Reject"

D_INTER recognizes the language of D and of strings that contain u as a substring. Therefore, if D_INTER accepts some string, that string is accepted by D and has u as a substring.

Problem 3. Consider languages $L_1 \subseteq L_2 \subseteq L_3$. Knowing that L_1 and L_3 are decidable, can one conclude that L_2 is also decidable? Justify your answer.

No. Consider L1 being the empty set and L3 being Σ^* which are both decidable. L2 could be A_TM, which is known to be undecidable.

Problem 4. Show that the following languages are undecidable.

(a) $\mathsf{REV}_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = (L(M))^R \}. \text{ Recall that } L^R = \{ w^R \mid w \in L \}.$

 $M_P = \text{"on input x:}$

- 1. If M accepts w, accept palindromes
- 2. Else, reject palindromes"

S = "on input M, w:

- 1. Use the description of M, w to construct M_P
- 2. Run TM_REV on input M_P
 - 3. If accepts, accept.
 - 4. Else, reject"

Above is a decider for A_TM out of a decider for REV_TM, TM_REV. If a language is equal to its reverse, its strings are palindromes. Therefore, M_P can be made to convert instances of A_TM to REV_TM by accepting or rejecting palindromes. If TM_REV exists, it can be used to decide A_TM as seen above. However, this is a contradiction since A_TM is known to be undecidable. Thus, the initial assumption that TM_REV exists is false, so REV_TM is undecidable.

(b) $\mathsf{HALT}_{\mathsf{any}} = \{ \langle M \rangle \mid M \text{ is a TM that halts on at least one string} \}.$

 $M_H = \text{"on input x:}$

- 1. If M accepts w, always halt
- 2. Else, always loop"

S = "on input M, w:

- 1. Use the description of M, w to construct M_H
- 2. Run TM_HALT on M H
 - 3. If accepts, accept. Else, reject"

Above is a decider for A_TM out of a decider for HALT_ANY, TM_HALT. M_H can be made to convert instances of A_TM to HALT_ANY by always halting or looping. If TM_HALT exists, it can be used to decide decide A_TM as seen above. This is a contradiction since A_TM is known to be undecidable. Thus, the initial assumption that TM_HALT exists is false, so HALT_ANY is undecidable.

Problem 5. Show that the semidecidable languages are closed under intersection but NOT closed under complement.

Intersection

$$egin{aligned} M_1 &= (Q_1, \Sigma, \Gamma_1, \delta_1, q_1^0, q_1^a, q_1^r) \ M_2 &= (Q_2, \Sigma, \Gamma_2, \delta_2, q_2^0, q_2^a, q_2^r) \ M_\cap &= (Q_\cap = Q_1 imes Q_2, \ \Sigma, \ \Gamma_\cap &= \Gamma_1 imes \Gamma_2, \ \delta_\cap &= (Q_1 imes Q_2) imes \Gamma^- o (Q_1 imes Q_2) imes \Gamma_\cap imes \{R, L\}, \ where \ \Gamma^- &= \Gamma_\cap - \{q_\cap^a, q_\cap^r\}, \ q_\cap^0 &= (q_1^0, q_2^0) \ q_\cap^a &= (q_1^a, q_2^a) \ q_\cap^r &= (q_1^r, q_2^r)) \end{aligned}$$

Complement

Semidecidable languages are not closed under complement because it would lead to a contradiction. Consider semidecidable language L and its TM, TM_L. If semidecidable languages are closed under complement, then the complement of L, L_C has a TM, TM_L_C. As seen before, TM_L and TM_L_C can be used to create a TM_D that decides L by simulating TM_L and TM_L_C for an increasing number of steps until one of them halts. The existence of TM_D contradicts the fact that L is semidecidable. Therefore TM_D does not exist. Thus, our assumption that semidecidable languages are closed under complement is false.

Problem 6. Show that if L is semidecidable and $L \leq_m \overline{L}$, then L is decidable.

If L is semidecidable, then there is a TM M_1 where $L(M_1)=L$ If $L\leq_m \bar{L}$ then there is a function f where $w\in L\iff f(w)\in \bar{L}$ and \bar{L} is semidecidale If \bar{L} is semidecidable, then there is a TM M_2 where $L(M_2)=\bar{L}$ Therefore, a decider for L, M_D can be defined as

M_D = "on input w:

1. i = 1

2. Run the following machines for i steps
3. M_1 on input w

4. If accepts, accept. If rejects, reject
5. M_2 on input f(w)

6. If accepts, reject. If rejects, accept
7. Increment i

Since M_2 accepts the complement of M_1 , both can be used to create M_D , a halting TM for L. M_D is halting because if w is in L, step 4 makes M_D accept; if w is not in L and M_1 halts, step 4 makes M_D reject; if w is not in L and M_1 loops, we know f(w) M_2 will accept, so step 6 rejects it. Therefore, L is decidable.