Podstawy Fizyki

dla Informatyki

Stanisław Drożdż Katedra Informatyki PK

Grawitacja we Wszechświecie

Saturn z księżycami Tetys i Dione (Voyager-1, NASA)

Grawitacja we Wszechświecie

Galaktyka spiralna NGC 4414 (HSTI, NASA)

Grawitacja we Wszechświecie

Grupa galaktyk (HSTI, NASA)

Prawo powszechnego ciążenia (grawitacji)

 W 1665 r. I. Newton odkrył, że siły, które działają między obiektami w Kosmosie mają taką samą naturę jak siła powodująca spadanie ciał na ziemię.

Grawitacyjne przyciąganie się dwóch cząstek.

Wartość siły przyciągania grawitacyjnego między dwoma punktami:

$$F = G \frac{Mm}{r^2}$$
, $G = 6.67 \cdot 10^{-11} \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$.

Zasada superpozycji

Zasada superpozycji dla grawitacji:

W przypadku ciał złożonych wypadkowa siła grawitacji jest sumą wektorową sił grawitacji działających między poszczególnymi punktami rozpatrywanych ciał.

Przyciąganie grawitacyjne jednorodnej sfery:

Ciało o kształcie jednorodnej powłoki przyciąga cząstkę znajdującą się na zewnątrz powłoki tak, jak gdyby jego masa była skupiona jego środku.

Przyciąganie jabłka i Ziemi (HRW).

Zasada superpozycji

Przyciąganie grawitacyjne jednorodnej sfery:

Wypadkowa siła grawitacji, z jaką obiekt o kształcie jednorodnej powłoki kulistej działa na cząstkę, która znajduje się wewnątrz powłoki, jest równa zeru.

- Ciało m w tunelu jest efektywnie przyciągane tylko przez wewnętrzną część Ziemi o masie M_{wewn}(HRW).
- Cząstka jest przyciągana wewnątrz jednorodnej kuli z siłą proporcjonalną do jej odległości r od środka: F = -Kr

Grawitacja przy powierzchni Ziemi

 Siła z jaką Ziemia o masie M_Z przyciąga cząstkę o masie m, znajdującą się w odległości r od środka Ziemi (nad powierzchnią):

$$F = GM_Z m/r^2$$

 Spadająca swobodnie cząstka ma w tym punkcie następujące przyspieszenie grawitacyjne:

$$a_g = F/m = GM_Z/r^2$$

• Na powierzchni Ziemi $r = R_Z$:

$$g = GM_Z/R_Z^2 \approx 9.8 \text{ m/s}^2$$

- Przyczyny wahań wartości g:
 - Ziemia nie jest dokładnie kulista różnice promienia.
 - Ziemia nie jest jednorodna różnice gęstości.
 - Ziemia obraca się $\Rightarrow g = a_g \omega^2 R$, R odległość od osi obrotu.

Grawitacyjna energia potencjalna

Przy powierzchni Ziemi:

 $E_p = mgh$, $E_p = 0$ na wybranej wysokości.

Duże odległości:

Przyjmuje się, że $E_p = 0$ w nieskończoności $(r = \infty)$,

Grawitacyjna energia potencjalna:

$$E_p = -G \frac{Mm}{r}$$

Prędkość ucieczki

- Prędkość ucieczki minimalna prędkość, którą należy nadać obiektowi, aby oddalił się z powierzchni danego ciała niebieskiego do nieskończoności.
- Z prawa zachowania energii mechanicznej wynika, że:

$$E_{\text{mech}} = E_k + E_p = \frac{1}{2}mv_u^2 - GMm/R = 0$$

Zatem prędkość ucieczki wynosi:

$$v_u = \sqrt{2GM/R}$$

Ciało	M [kg]	R [m]	v_u [km/s]
Księżyc	$7.36 \cdot 10^{22}$	$1.74 \cdot 10^{6}$	2.4
Ziemia	$5.98 \cdot 10^{24}$	$6.37 \cdot 10^{6}$	11.2
Jowisz	$1.90 \cdot 10^{27}$	$7.15 \cdot 10^{7}$	59.5
Słońce	$1.99 \cdot 10^{30}$	$6.96 \cdot 10^{8}$	618.0

Ruchy ciał niebieskich

- Prawo powszechnego ciążenia razem z prawami dynamiki Newtona opisują bardzo dobrze ruch obiektów w Kosmosie.
- W szczególności wyjaśnione są prawa Keplera.
- Tory obiektów w przypadku dwóch ciał są krzywymi stożkowymi (okrąg, elipsa, parabola, hiperbola)

Parametry orbity eliptycznej (HRW).

Zasada równoważności

Postulat Einsteina:

Skutki grawitacji i ruchu przyspieszonego są sobie równoważne.

 Postulat potwierdzony doświadczalnie jest podstawą ogólnej teorii względności.

Spadanie na Ziemi oraz w układzie przyspieszonym z a = g w Kosmosie (HRW).