

Test Report

Report No.: MTi160711E006

Date of issue: Jul. 27, 2016

Sample Description: Etekcity Voltson Smart Wifi Outlet

Model(s): ESWO1-USA

Applicant: Etekcity Corporation

Address: 1202 N Miller St Suite A, Anaheim, CA 92806

Date of Test: Jul. 11, 2016 to Jul. 26, 2016

This test report is valid for the tested samples only. It cannot be reproduced except in full without prior written consent of Shenzhen Microtest Co., Ltd.

- Page 2 of 29 -

Report No.: MTi160711E006

Table of Contents

1 6	General description	5
1.1	-	
1.2		
1.3		
1.4	·	
1.5	Test conditions	<u> </u>
1.6	Testing site	6
1.7	Ancillary equipment list	6
1.8	Measurement uncertainty	6
2 L	List of test equipment	7
3 T	Test Result	8
3.1	Conducted emission	8
3.2	Antenna requirement	11
3.3	Maximum output power	12
3.4	6dB emission bandwidth	13
3.5	Power spectral density	17
3.6	Band edge	21
3.7	Radiated emission	25

- Page 3 of 29 - Report No.: MTi160711E006

Test Result Certification				
Applicant's name:	Etekcity Corporation			
Address:	1202 N Miller St Suite A, Anaheim, CA 92806			
Manufacture's Name:	SHENZHEN DEDO TECH CO., LTD			
Address:	The 3rd floor, building 3, zhongyu technology garden, heshuikou, gongming, guangming district, Shenzhen city			
Product description				
Product name:	Etekcity Voltson Smart Wifi Outlet			
Trademark:	I			
Model name:	ESWO1-USA			
Standards:	FCC Part 15.247			
Test Procedure:	ANSI C63.10-2013 558074 D01 DTS Meas Guidance v03r05			

This device described above has been tested by Shenzhen Toby Technology Co., Ltd. and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Tested by:	David Chen		
	David Chen	Jul. 27, 2016	
Reviewed by:	(en cho	~	
	Leon Chen	Jul. 27, 2016	
Approved by:	Jun (iu.	
	Ares Liu	Jul. 27, 2016	

- Page 4 of 29 - Report No.: MTi160711E006

Summary of Test Result

Item	FCC Part No.	Description of Test	Result
1	15.203	Antenna requirement	Pass
2	15.207	AC power line conducted emission	Pass
3	15.247(b)(3)	Maximum output power	Pass
4	15.247(a)(2)	6dB emission bandwidth	Pass
5	15.247(e)	Power spectral density (PSD)	Pass
8	15.247(d)	Band edge & conducted spurious emission	Pass
9	15.247(d), 15.205, 15.209	Radiated emission	Pass

- Page 5 of 29 - Report No.: MTi160711E006

1 General description

1.1 Feature of equipment under test (EUT)

Product name:	Etekcity Voltson Smart Wifi Outlet			
Model name:	ESWO1-USA			
Operating frequency range:	2412MHz~2462MHz for 802.11b/g/n20			
WIFI feature:	⊠802.11b ⊠802.11g ⊠802.11n20 □802.11n40			
Modulation type:	DSSS, OFDM			
Antenna specification:	pecification: PCBA antenna, the peak antenna gain is 1dBi.			

1.2 Operation channel list

Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	6	2437MHz	11	2462MHz
2	2417MHz	7	2442MHz		
3	2422MHz	8	2447MHz		
4	2427MHz	9	2452MHz		
5	2432MHz	10	2457MHz		

1.3 Test frequency channel

Channel	802.11b/g/n20	802.11n40
Low	2412MHz	1
Middle	2437MHz	1
High	2462MHz	1

1.4 EUT operation mode

During testing, RF test program provided by the manufacture to control the Tx operation followed the test requirement. The EUT is configured to transmit continuously (duty cycle > 98 %) at the maximum power control level.

1.5 Test conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 20°C~30°CHumidity: 30%~70%

- Atmospheric pressure: 98kPa~101kPa

- Page 6 of 29 - Report No.: MTi160711E006

1.6 Testing site

Test Site Shenzhen Toby Technology Co., Ltd.			
Test Site Location	1 A/F., Bldg.6, Yusheng Industrial Zone The National Road No.107 Xixiang Section 467, Shenzhen, Guangdong, China		
FCC Registration No.:	811562		
CNAS Registration No.:	CNAS L5813		

1.7 Ancillary equipment list

Equipment	Model	S/N	Manufacturer	Certificate type
/	/	/	1	1

1.8 Measurement uncertainty

Measurement Uncertainty for a Level of Confidence of 95 %, U=2xUc(y)

RF frequency	1 x 10-7
RF power, conducted	± 1 dB
Conducted emission(150kHz~30MHz)	± 2.5 dB
Radiated emission(30MHz~1GHz)	± 4.2 dB
Radiated emission (above 1GHz)	± 4.3 dB
Temperature	±1 degree
Humidity	± 5 %

- Page 7 of 29 - Report No.: MTi160711E006

2 List of test equipment

For AC power line conducted emission:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
LISN	R&S	ENV216	101313	2016.12.06
LISN	SCHWARZBECK	NNLK 8129	8129245	2016.12.25
Pulse Limiter	SCHWARZBECK	VTSD 9561F	9716	2016.12.25
Test Cable	N/A	N/A	C01	2016.12.06
EMI Test Receiver	R&S	ESCI	101160	2016.12.06

For Radiated emission:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
Log-Bicon Antenna	MESS-ELEKTRO NIK	VULB 9160	3058	2016.12.11
Horn Antenna	Schwarzbeck	BBHA 9120D	631	2016.12.05
Horn Antenna	Schwarzbeck	BBHA 9170	373	2016.12.05
Test Cable	United Microwave	57793	1m	2016.12.05
Test Cable	United Microwave	A30A30-5006	10m	2016.12.05
Microwave Pre_amplifier	Agilent	8449B	3008A01714	2016.12.05
Pre-Amplifier	Anritsu	MH648A	M09961	2016.12.05
EMI Test Receiver	R&S	ESPI-7	101318	2016.12.05
Spctrum analyzer	Agient	E4470B	MY41441082	2017.06.01

For RF conducted emission:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
Spctrum analyzer	Agient	E4470B	MY41441082	2017.06.01
Power meter	Anritsu	ML2495A	1005002	2016.09.11
Power Senor	Anritsu	MA2411B	0917070	2016.09.11

Note: the calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

- Page 8 of 29 - Report No.: MTi160711E006

3 Test Result

3.1 Conducted emission

3.1.1 Limit

Frequency	Lii	mit	
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	

Note: Decreases with the logarithm of the frequency from 0.15MHz to 0.5MHz.

3.1.2 Test method

- 1. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- 2. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 3. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 4. LISN is at least 80 cm from nearest part of EUT chassis.
- 5. The resolution bandwidth of EMI test receiver is set at 9 kHz.

3.1.3 Test Result

- Page 9 of 29 - Report No.: MTi160711E006

Temperati	ure:	26°C			Relati	ve		44%	6				
Pressure:		101k	Pa		Polari	zation	:	L	L				
Test volta	ge:	AC 1	20V/60	Hz	Test m	node:		Transmitting					
100.0 dBuV													_
90													
80													
70 X													
60	×						FCCF	art15 C	lassB	AC C	Conduction(QP)		
50) Ma						FCCPa	rt15 Cla	ssB A	C Co	nduction(AVG)		
	1 111/14	Λι.											
40	yanyan	, humbred	y yw y ywyd burd		hyllmore of the	Land great trust	Likyothan sandf gronds	wheredur	rajikada	deno	Lagradia arranda de de trans	uppenbyr-repub	١.
30	ym www.	Mund		m		· ·	Garan Jangson Marine	W-41-4		******			Jour
20													AVG
10													
0.0													
0.0		0.5			(MHz)		5	i				30.0	00
			Correct	Management			5	i				30.0	00
	Freq.	0.5 Reading Level	Correct	Measure- ment		Over	5	i				30.00	D00
0.150 No. Mk.	MHz	Reading	Factor dB			dB	Detector		mmen	t		30.0	D00
0.150 No. Mk.	MHz 0.1513	Reading Level dBuV 31.61	Factor dB 30.02	ment dBuV 61.63	Limit dBuV 65.92	dB -4.29	Detector QP		mmen	t		30.0	00
0.150 No. Mk.	MHz 0.1513 0.1513	Reading Level dBuV 31.61 4.94	dB 30.02 30.02	ment dBuV 61.63 34.96	Limit dBuV 65.92 55.92	dB -4.29 -20.96	Detector QP AVG		mmen	t		30.0	000
0.150 No. Mk.	MHz 0.1513 0.1513 0.1627	Reading Level dBuV 31.61 4.94 28.93	GB 30.02 30.02 30.02	ment dBuV 61.63 34.96 58.95	Limit dBuV 65.92 55.92 65.32	dB -4.29 -20.96 -6.37	Detector QP AVG QP		mmen	t		30.0	00
0.150 No. Mk.	MHz 0.1513 0.1513 0.1627 0.1627	Reading Level dBuV 31.61 4.94 28.93 3.46	Factor dB 30.02 30.02 30.02 30.02	ment dBuV 61.63 34.96 58.95 33.48	Limit dBuV 65.92 55.92 65.32	dB -4.29 -20.96 -6.37 -21.84	Detector QP AVG QP AVG		mmen	t		30.00	00
0.150 No. Mk. 1 * 2 3 4 5	MHz 0.1513 0.1513 0.1627 0.1627 0.1809	Reading Level dBuV 31.61 4.94 28.93 3.46 26.37	Factor dB 30.02 30.02 30.02 30.02 30.02	ment dBuV 61.63 34.96 58.95 33.48 56.39	Limit dBuV 65.92 55.92 65.32 55.32	dB -4.29 -20.96 -6.37 -21.84 -8.05	Detector QP AVG QP AVG QP		mmen	t		30.00	000
0.150 No. Mk. 1 * 2 3 4 5	MHz 0.1513 0.1513 0.1627 0.1627 0.1627 0.1809	Reading Level dBuV 31.61 4.94 28.93 3.46 26.37 3.78	30.02 30.02 30.02 30.02 30.02 30.02 30.02	ment dBuV 61.63 34.96 58.95 33.48 56.39 33.80	Limit dBuV 65.92 55.92 65.32 55.32 64.44	dB -4.29 -20.96 -6.37 -21.84 -8.05 -20.64	Detector QP AVG QP AVG AVG		mmen	t		30.00	000
0.150 No. Mk. 1 * 2 3 4 5 6 7	MHz 0.1513 0.1513 0.1627 0.1627 0.1809 0.1809 0.2108	Reading Level dBuV 31.61 4.94 28.93 3.46 26.37 3.78 21.24	Factor dB 30.02 30.02 30.02 30.02 30.02 30.02 30.02 30.02	ment dBuV 61.63 34.96 58.95 33.48 56.39 33.80 51.26	Limit dBuV 65.92 55.92 65.32 64.44 54.44 63.17	dB -4.29 -20.96 -6.37 -21.84 -8.05 -20.64 -11.91	Detector QP AVG QP AVG QP AVG QP		mmen	t		30.00	000
0.150 No. Mk. 1 * 2 3 4 5 6 7 8	MHz 0.1513 0.1513 0.1627 0.1627 0.1809 0.1809 0.2108	Reading Level dBuV 31.61 4.94 28.93 3.46 26.37 3.78 21.24 0.87	Factor dB 30.02 30.02 30.02 30.02 30.02 30.02 30.02 30.02 30.02	ment dBuV 61.63 34.96 58.95 33.48 56.39 33.80 51.26 30.89	Limit dBuV 65.92 55.92 65.32 64.44 63.17 53.17	dB -4.29 -20.96 -6.37 -21.84 -8.05 -20.64 -11.91 -22.28	Detector QP AVG QP AVG QP AVG AVG		mmen	t		30.00	000
0.150 No. Mk. 1 * 2 3 4 5 6 7	MHz 0.1513 0.1513 0.1627 0.1627 0.1809 0.1809 0.2108	Reading Level dBuV 31.61 4.94 28.93 3.46 26.37 3.78 21.24	Factor dB 30.02 30.02 30.02 30.02 30.02 30.02 30.02 30.02 30.02 30.02	ment dBuV 61.63 34.96 58.95 33.48 56.39 33.80 51.26 30.89 47.72	Limit dBuV 65.92 55.92 65.32 55.32 64.44 63.17 53.17 62.22	dB -4.29 -20.96 -6.37 -21.84 -8.05 -20.64 -11.91 -22.28 -14.50	Detector QP AVG QP AVG QP AVG AVG		mmen	t		30.00	000
0.150 No. Mk. 1 * 2 3 4 5 6 7 8 9	MHz 0.1513 0.1513 0.1627 0.1627 0.1809 0.1809 0.2108 0.2108 0.2363	Reading Level dBuV 31.61 4.94 28.93 3.46 26.37 3.78 21.24 0.87 17.70	Factor dB 30.02 30.02 30.02 30.02 30.02 30.02 30.02 30.02 30.02	ment dBuV 61.63 34.96 58.95 33.48 56.39 33.80 51.26 30.89	Limit dBuV 65.92 55.92 65.32 64.44 63.17 53.17 62.22 52.22	dB -4.29 -20.96 -6.37 -21.84 -8.05 -20.64 -11.91 -22.28	Detector QP AVG QP AVG QP AVG QP AVG QP AVG		mmen	t		30.00	

- Page 10 of 29 -

Report No.: MTi160711E006

Temperatu	re:	26°C		F	Relati	ve		449	%				
Pressure:		101k	Pa	ı	Polari:	zation:		N	N				
Test voltag	je:	AC 1	20V/60Hz		Test m	est mode: Transmitting		Transmitting					
100.0 dBuV													
80													
70 ×							FCCP	Part15 C	ClassE	B AC	Conduction(QP)		
	Ďn.						FCCPa	rt15 Cla	assB	AC I	Conduction(AVG)		
50	Mha	-									,		
40	<u> </u>	MANNY A	M. a. aaaa . a.	ا د دران ایک ایک ایک ا						+			
30	July Marine	A ANGE	Myraman	Programme Library	Nothing Allen	hope of the second	Marinalacanna	alistanist styre	مهابرانس	•	raphologican house a pharitain	De	eak
30 #**	MARAN	\sim	Mount	www	homeway was	THE PERSON NAMED IN THE PE	***********	manage	بالريديد		terletinin management and a second	A\	VG
20										+			
10													
0.0													
0.150		0.5			(MHz)		5	5				30.000	
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over							
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Co	mme	nt			
	0.1508	31.42	30.02	61.44	65.95	-4.51	QP						
	0.1508 0.1625	4.36	30.02	34.38		-21.57 -6.01	AVG QP						
	0.1625	3.13	30.02	59.32 33.15		-22.18	AVG						
	0.1025	26.22	30.02	56.24		-8.26	QP						
	0.1795	3.38	30.02	33.40		-21.10	AVG						
	0.1979	22.93	30.02	52.95		-10.74	QP						_
	0.1979	2.42	30.02	32.44		-21.25	AVG						
	0.2186	20.00	30.02	50.02		-12.85	QP						
	0.2186	-0.02	30.02	30.00		-22.87	AVG						_
11	0.2372	17.23	30.02	47.25	62.19	-14.94	QP						

- Page 11 of 29 - Report No.: MTi160711E006

3.2 Antenna requirement

3.2.1 Requirement defined in FCC 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

3.2.2 EUT antenna description

The WIFI antenna of EUT is a PCB antenna, the maximum gain of the antenna is 1dBi. So the antenna meets the requirement of this part.

- Page 12 of 29 - Report No.: MTi160711E006

3.3 Maximum output power

3.3.1 **Limits**

Conducted output power limit is 1W (30dBm).

3.3.2 Test Method

The maximum conducted output power may be measured using a broadband RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

3.3.3 Test Result

Frequency (MHz)	Maximum peak output power (dBm)	Limit (dBm)	
	802.11b		
2412	17.69	30	
2437	17.65	30	
2462	17.65	30	
	802.11g		
2412	17.49	30	
2437	17.32	30	
2462	16.95	30	
	802.11n20		
2412	17.09	30	
2437	17.17	30	
2462	17.22	30	

- Page 13 of 29 - Report No.: MTi160711E006

3.4 6dB emission bandwidth

3.4.1 **Limits**

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.4.2 Test method

Use the following spectrum analyzer settings:

RBW = 100kHz VBW ≥ 3RBW Detector = peak

Trace mode = max hold

Sweep time = auto couple

Allow the trace to stabilize, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.4.3 Test result

Frequency (MHz)	6dB emission bandwidth (MHz)	Limit				
	802.11b					
2412	8.326					
2437	8.33	500kHz				
2462	8.267					
	802.11g					
2412	16.584					
2437	16.571	500kHz				
2462	16.543					
	802.11n20					
2412	17.711					
2437	17.734	500kHz				
2462	17.751					

Test plots as below:

- Page 14 of 29 - Report No.: MTi160711E006

802.11b mode

- Page 15 of 29 -Report No.: MTi160711E006

802.11g mode

Tel:(86-755)88850135 Fax: (86-755) 88850136 http://www.mtitest.com E-mail: mti@51mti.com Address: No.102A & 302A, East Block, Hengfang Industrial Park, Xingye Road, Xixiang, Bao'an District, Shenzhen, Guangdong, China

- Page 16 of 29 - Report No.: MTi160711E006

802.11n20 mode

- Page 17 of 29 - Report No.: MTi160711E006

3.5 Power spectral density

3.5.1 **Limits**

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

3.5.2 Test method

Span = 1.5 times DTS bandwidth (6dB emission bandwidth, see section 4.4)

RBW = 3kHz to 100kHz

VBW ≥ 3RBW

Detector = Peak

Sweep time = auto

Trace mode = max hold

Allow the trace to stabilize. Use the peak marker function to determine the maximum amplitude level within the RBW.

3.5.3 Test result

Frequency (MHz)	PSD (dBm/100kHz)	Limit (dBm/3kHz)
2412	6.381	
2437	6.066	8
2462	6.18	
	802.11g	
2412	3.111	
2437	3.038	8
2462	2.948	
	802.11n20	
2412	2.881	
2437	2.838	8
2462	2.932	

Test plots as below:

- Page 18 of 29 - Report No.: MTi160711E006

802.11b mode

- Page 19 of 29 -Report No.: MTi160711E006

802.11g mode

Tel:(86-755)88850135 Fax: (86-755) 88850136 http://www.mtitest.com E-mail: mti@51mti.com Address: No.102A & 302A, East Block, Hengfang Industrial Park, Xingye Road, Xixiang, Bao'an District, Shenzhen, Guangdong, China

- Page 20 of 29 - Report No.: MTi160711E006

802.11n20 mode

- Page 21 of 29 - Report No.: MTi160711E006

3.6 Band edge

3.6.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30dB instead of 20dB.

3.6.2 Test method

Use the following spectrum analyzer settings:

Set RBW = 100 kHz. VBW ≥ 3RBW. Detector = peak, Sweep time = auto couple, Trace mode = max hold.

3.6.3 Test Result

Test plots as below:

- Page 22 of 29 - Report No.: MTi160711E006

802.11b mode, Band edge

- Page 23 of 29 - Report No.: MTi160711E006

802.11g mode, Band edge

- Page 24 of 29 - Report No.: MTi160711E006

802.11n20 mode, Band edge

- Page 25 of 29 - Report No.: MTi160711E006

3.7 Radiated emission

3.7.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20dB. Attenuation below the general limits defined in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits defined in §15.209(a).

Radiated emission limits defined in FCC 15.209:

Frequency (MHz)	Field strength µV/m	Field strength dBµV/m	Detector	Measurement distance
30-88	100	40	QP	
88-216	150	43.5	QP	
216-960	200	46	QP	2
960-1000	500	46	QP	3m
Above 1000	500	54	AV	
Above 1000	5000	74	PK	

Restricted bands defined in FCC 15.205:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

- Page 26 of 29 - Report No.: MTi160711E006

3.7.2 Test method

- 1. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 2. Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured, RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, VBW $\ge R$ BW, Sweep = auto, Detector function = peak, Trace = max hold

- 3. Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the duty cycle per channel of the hopping signal is less than 100ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(duty cycle/100ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

3.7.3 Test Result

Remark:

If the PK measured values lower than average mode limit, the EUT shall be deemed to meet average limits and then no additional average mode measurement performed.

- Page 27 of 29 - Report No.: MTi160711E006

802.11b: 241	2MHz					
Frequency	Ant. Polarization	Emission level	Limits	Detector	Result	Comment
(MHz)	H/V	dBμV/m	dBµV/m			
159.79	V	35.3	43.5	QP		Spurious emission
159.79	Н	39.6	43.5	QP		Spurious emission
2390	V	51.06	74	PK		Restricted bands
2390	Н	50.67	74	PK		Restricted bands
4824	V	52.39	74	PK	Pass	Restricted bands
4824	Н	55.22	74	PK		Restricted bands
4824	Н	52.87	54	AVG		Restricted bands
7236	V	50.49	74	PK		Spurious emission
7236	Н	51.42	74	PK		Spurious emission
802.11b: 243	7MHz					
Frequency	Ant. Polarization	Emission level	Limits	Detector	Result	Comment
(MHz)	H/V	dBμV/m	dBµV/m			
159.79	V	36.2	43.5	QP		Spurious emission
159.79	Н	39	43.5	QP		Spurious emission
4874	V	52.23	74	PK		Restricted bands
4874	Н	54.71	74	PK	Pass	Restricted bands
4874	Н	52.36	54	AVG		Restricted bands
7311	V	51.57	74	PK		Restricted bands
7311	Н	51.84	74	PK		Restricted bands
802.11b: 246	2MHz					
Frequency	Ant. Polarization	Emission level	Limits	Detector		Comment
(MHz)	H/V	dBμV/m	dBµV/m			
159.79	V	35.8	43.5	QP		Spurious emission
159.79	Н	39.5	43.5	QP		Spurious emission
2483.5	V	48.54	74	PK	Pass	Restricted bands
2483.5	Н	47.56	74	PK		Restricted bands
4924	V	51.27	74	PK		Restricted bands
4924	Н	52,65	74	PK		Restricted bands
7386	V	50.33	74	PK		Restricted bands
7386	Н	51.54	74	PK		Restricted bands

- Page 28 of 29 - Report No.: MTi160711E006

802.11g: 241	2MHz					
Frequency	Ant. Polarization	Emission level	Limits	Detector	Result	Comment
(MHz)	H/V	dBμV/m	dBµV/m			
159.79	V	35.7	43.5	QP		Spurious emission
159.79	Н	40.1	43.5	QP		Spurious emission
2390	V	61.89	74	PK		Restricted bands
2390	V	44.65	54	AVG		Restricted bands
2390	Н	63.42	74	PK	Dana	Restricted bands
2390	Н	47.03	54	AVG	Pass	Restricted bands
4824	V	51.82	74	PK		Restricted bands
4824	Н	50.14	74	PK		Restricted bands
7236	V	49.15	74	PK		Spurious emission
7236	Н	51.99	74	PK		Spurious emission
802.11g: 243	7MHz			•		
Frequency	Ant. Polarization	Emission level	Limits	Detector	Result	Comment
(MHz)	H/V	dBμV/m	dBµV/m			
159.79	V	36.2	43.5	QP		Spurious emission
159.79	Н	39.7	43.5	QP		Spurious emission
4874	V	52.37	74	PK	Daga	Restricted bands
4874	Н	50.45	74	PK	Pass	Restricted bands
7311	V	52.34	74	PK		Restricted bands
7311	Н	50.66	74	PK		Restricted bands
802.11g: 246	2MHz					
Frequency	Ant. Polarization	Emission level	Limits	Detector		Comment
(MHz)	H/V	dBµV/m	dBµV/m			
159.79	V	34.5	43.5	QP		Spurious emission
159.79	Н	39.3	43.5	QP		Spurious emission
2483.5	V	56.13	74	PK		Restricted bands
2483.5	V	39.18	54	AVG	Pass	Restricted bands
2483.5	Н	58.31	74	PK		Restricted bands
2483.5	Н	41.02	54	AVG		Restricted bands
4924	V	52.49	74	PK		Restricted bands
4924	Н	50.52	74	PK		Restricted bands
7386	V	52.64	74	PK		Restricted bands
7386	Н	51.16	74	PK		Restricted bands

- Page 29 of 29 - Report No.: MTi160711E006

802.11n20: 2	412MHz					
Frequency	Ant. Polarization	Emission level	Limits	Detector	Result	Comment
(MHz)	H/V	dBµV/m	dBµV/m	1		
159.79	V	35.7	43.5	QP		Spurious emission
159.79	Н	39.5	43.5	QP		Spurious emission
2390	V	59.56	74	PK		Restricted bands
2390	V	42.78	54	AVG		Restricted bands
2390	Н	60.77	74	PK	Door	Restricted bands
2390	Н	45.14	54	AVG	Pass	Restricted bands
4824	V	51.57	74	PK		Restricted bands
4824	Н	49.83	74	PK		Restricted bands
7236	V	50.66	74	PK		Spurious emission
7236	Н	49.97	74	PK		Spurious emission
802.11n20: 2	437MHz			•		
Frequency	Ant. Polarization	Emission level	Limits	Detector	Result	Comment
(MHz)	H/V	dBµV/m	dBµV/m]		
159.79	V	34.8	43.5	QP		Spurious emission
159.79	Н	38.7	43.5	QP		Spurious emission
4874	V	49.7	74	PK	Pass	Restricted bands
4874	Н	51.47	74	PK	F 455	Restricted bands
7311	V	50.62	74	PK		Restricted bands
7311	Н	51.89	74	PK		Restricted bands
802.11n20: 2	462MHz					
Frequency	Ant. Polarization	Emission level	Limits	Detector		Comment
(MHz)	H/V	dBµV/m	dBµV/m	1		
159.79	V	36.1	43.5	QP		Spurious emission
159.79	Н	40.2	43.5	QP		Spurious emission
2483.5	V	55.88	74	PK		Restricted bands
2483.5	V	40.22	54	AVG	Pass	Restricted bands
2483.5	Н	58.2	74	PK]	Restricted bands
2483.5	Н	42.48	54	AVG		Restricted bands
4924	V	51.98	74	PK		Restricted bands
4924	Н	51.23	74	PK		Restricted bands
7386	V	52.55	74	PK		Restricted bands
7386	Н	51.46	74	PK		Restricted bands

----END OF REPORT----