Evolving Levels and Game Agents Using Grammatical Evolution

Evolutionary Computing 2014

Bert Massop, Simon Prins, Tom Tervoort

January 23, 2014

Grammatical Evolution

Introduction
Encoding and Evolution

=xample

Ms. Pac-Man

controller

Goal

Grammar and fitness function

esults

Super Mario Bros. Ievels

Goal

Experiment set Results

Discussi

Grammatical Evolution

Grammatical Evolution

- Explained in paper Grammatical Evolution by Michael O'Neill et al., 2001 [2]
- ▶ Seeks to evolve sentences in a given context-free grammar.
- Heavily inspired by biology.
- Implemented in the GEVA framework.

Evolution

Introduction

Encoding and Evolution

Alternative appro

Ms. Pac-Man

ontroller

Goal

Grammar and fitness

xperiment setu

Results

Super Mario Bros. Ievels

ioal

xperiment si Results

Discussi

Grammatical Evolution

Encoding and Evolution

Solutions, or "chromosomes", encoded as a finite sequence of (32-bit) natural numbers called "codons".

Mehcanism:

- Move to the next codon for each encountered nonterminal.
- Pick a rule to expand it to based on the codon value.
- ruleindex = (codonvalue) mod (rulecount).
- Wrap when reaching the end of the sequence.
- Stop when there are no more nonterminals, or a certain depth is reached.
- Different genetic operators can be used.
- Here: one-point crossover and mutation by randomizing one codon.

Grammatical Evolution

Introduction

Encoding and Evolution

ternative approach

Ms. Pac-Man

Ms. Pac-Man

Goal
Grammar and fitness
function

periment setup

Super Mario Bros. levels

Experiment setu

Discussion

Grammatical Evolution

$$\langle exp \rangle$$
 ::= $\langle exp \rangle$ $\langle operator \rangle$ $\langle exp \rangle$
 $\begin{vmatrix} 1.0 \\ & X \end{vmatrix}$

- Chromosome: 12 7 33 51 2 44 22 19
- ► Start with nonterminal <exp>.
- ▶ 12 mod 3 = 0, so pick first rule.

(0)

(1) (2)

(3)

Encoding and E

Example

(0) Ms. Pac

Ms.

Goal Grammar a

oculto

esults

Bros. levels

Goal Experimer

Results

Grammatical Evoluti

$$\langle exp \rangle \qquad ::= \langle exp \rangle \langle operator \rangle \langle exp \rangle \qquad \qquad (0)$$

$$| 1.0 \qquad \qquad (1)$$

$$| X \qquad \qquad (2)$$

- Chromosome: 12 7 33 51 2 44 22 19
- ► Sentence: ⟨*exp*⟩ ⟨*operator*⟩ ⟨*exp*⟩
- First expand leftmost subexpression: 7 mod 3 = 1.

Grammatical

Introduction

Encoding and Evol

Example

Ms. Pac-Man

controller

Goal

Grammar and fitness function

esults

Bros. levels

Goal Experiment se

Results

Discussio

Grammatical Evolution
Paper trouble

$$\begin{array}{ccc} \langle exp \rangle & & ::= & \langle exp \rangle & \langle operator \rangle & \langle exp \rangle \\ & & | & \text{1.0} \\ & & | & \text{X} \end{array}$$

- Chromosome: 12 7 33 51 2 44 22 19
- ► Sentence: 1.0 ⟨operator⟩ ⟨exp⟩
- ▶ Operator is next: 33 mod 4 = 1.

(0)

(1)

(0)

(3)

(2) Encoding and Evo

Example

Ma Dan Man

controller

Goal

Grammar and fitness function

Results

Super Mario Bros. Ievels

Goal Experiment

Results

Discussion

Paper trouble

$$\begin{array}{ccc} \langle \exp \rangle & & ::= \; \langle \exp \rangle \; \langle operator \rangle \; \langle \exp \rangle \\ & | & \text{1.0} \\ & | & \text{X} \end{array}$$

- Chromosome: 12 7 33 51 2 44 22 19
- ▶ Sentence: 1.0 $\langle exp \rangle$
- Remaining subexpression: $51 \mod 3 = 0$.

(0)

(1) (2)

(0)

(3)

Encoding and Eve

Example

Ms. Pac-Man controller

Goal

Grammar and fitness function

esults

Super Mario Bros. levels

Experiment se

Discussi

Grammatical Evolution

Conclusions
Universiteit Utrecht

4

$$\langle exp \rangle$$
 ::= $\langle exp \rangle$ $\langle operator \rangle$ $\langle exp \rangle$
 $\begin{vmatrix} 1.0 \\ & X \end{vmatrix}$

- Chromosome: 12 7 33 51 2 44 22 19
- Sentence: 1.0 (⟨exp⟩ ⟨operator⟩ ⟨exp⟩)
- Continue...

(0)	

(0)

(3)

(1)

Example

$$\langle exp \rangle & ::= \langle exp \rangle \langle operator \rangle \langle exp \rangle & (0) \\ | 1.0 & (1) \\ | X & (2)$$

- ► Chromosome: 12 7 33 51 2 44 22 19
- ► Sentence: 1.0 (X + 1.0)
- ▶ No more nonterminals in sentence, so we are done.

Grammatical Evolution

Introduction

Encoding and E

Example

Alternative approach

Ms. Pac-Man

controller

Goal

Grammar and fitness function

esults

Bros. levels

Goal Experiment s

Results

Discussi

Grammatical Evolution
Paper trouble

Alternative approach

- Grammars are trees.
- ► Genetic Programming
 - Method for evolving tree structures.
 - Solutions represented as trees in memory.
 - Crossover: swap branches.
 - Mutation: change node's contents, while ensuring the tree remains valid.

Grammatical Evolution

Introduction Encoding and

Example

Alternative approach

Ms. Pac-Man

Ms Pac-Man

Goal

Grammar and fitness function

Results

uper Mario

ros. levels

xperiment

Results

Discussion

Grammatical Evolution
Paper trouble

Evolving a Ms. Pac-Man Controller Using Grammatical Evolution

E. Galván, J. Swafford, M. O'Neill, and A. Brabazon

Grammatical Evolution

Introduction

Encoding and Evolution

Altornativo anno

Ms. Pac-Man

Ms. Pac-Man

Goal

Grammar and fitness function

Experiment setup

Results

Bros. levels

Goal Evporiment co

Results

Discuss

Grammatical Evolution

Ms. Pac-Man

- Popular arcade game from 1982.
- Sequel to Pac-Man.
 - Generally considered superior due to more varied levels and smarter ghosts.
- Paper considers a Java-based derivate, not the original game.
- Premise: eat pills, avoid ghosts.
 - Eating the big power pills will temporarily enable you to eat the ghosts.

Grammatical Evolution

Introduction

Encoding and Evolution

Alternative appro

Ms. Pac-Man

Ms. Pac-Man

Goal

Grammar and fitness function

sults

Super Mario Bros. levels

Experiment sets

Results

Grammatical Evolution

Paper trouble

Goal

- ▶ Use GE to evolve rules for an agent playing Ms. Pac-Man.
- Try to maximize the score.
 - Stay alive while eating as many pills (and ghosts) as possible.
 - · Here: one life, one level.

Grammatical Evolution

Introduction Encoding and Evol

Example

Alternative approa

Ms. Pac-Man controller

Ms. Pac-1

Goal

Grammar and fitness function

xperiment setup

Super Mario

Bros. levels

xperimer

Results

Discussi

Grammatical Evolution

Grammar and fitness function

$$\langle prog \rangle & ::= \langle ifs \rangle \ (0) \ | \ \langle ifs \rangle \ \langle elses \rangle \ (1)$$

$$\langle ifs \rangle & ::= \inf (\ \langle vars \rangle \ \langle equals \rangle \ \langle vars \rangle \) \{ \ \langle prog \rangle \ \} \ (0) \ | \ \inf (\ \langle vars \rangle \ \langle equals \rangle \ \langle vars \rangle \) \{ \ \langle action \rangle \ \} \ (1)$$

$$\langle elses \rangle & ::= \operatorname{else} \{ \langle prog \rangle \ \} \ (0) \ | \ \operatorname{else} \{ \ \langle action \rangle \ \} \ (1)$$

$$\langle action \rangle & ::= \operatorname{goto} (\operatorname{nearestPill}) \ | \ (0) \ | \ | \ \operatorname{goto} (\operatorname{nearestPowerPill}) \ | \ (1) \ | \ | \ \operatorname{goto} (\operatorname{nearestEdibleGhost}) \ (2)$$

$$\langle equals \rangle & ::= \langle (0) \ | \ \langle = (1) \ | \ \rangle \ (2) \ | \ \rangle = (4)$$

$$\langle vars \rangle & ::= \operatorname{thresholdDistanceGhost} \ | \ (0) \ | \ \operatorname{inedibleGhostDistance} \ (1)$$

▶ Fitness function: simulate the game.

windowSize

Game score on death becomes the fitness score.

avgDistanceBetGhosts

Grammatical
Evolution
Introduction
Encoding and Evolution

s. Pac-Man

Ms. Pac-Ma

Goal

Grammar and fitness function

Results

Super Mario Bros. levels

oal .

periment si sults

SUILS

Discussion

(2)

Grammatical E

Conclusions

Experiment setup

- Do 100 runs.
- Afterwards, compare the best evolved agent against:
 - Random agent.
 - Random non-backtracking agent.
 - Simple greedy pill eater.
 - · Hand-coded agent.
- ▶ Play against three different ghost Al's.

Evolution Evolution

Introduction

Example

Alternative appro

Ms. Pac-Man

Ms. Pac-N

Grammar and fitness

Experiment setup

Results

Super Marie

Bros. level

xperimen

Results

Discussi

Grammatical Evolution

Results

Ghost Team	Minimum	Maximum	Standard	$Sum \ of$
	Score	Score	Deviation	$all\ Runs$
	Random Agent			
Random Team	70	810	160.95	24,450
Legacy Team	40	200	31.75	8,670
Pincer Team	40	410	4.33	10,460
	Random Non-Reverse Agent			
Random Team	80	2,800	59.92	89,760
Legacy Team	80	5,310	74.40	69,950
Pincer Team	80	3,810	74.19	73,510
	Simple Pill Eater Agent			
Random Team	240	4,180	108.70	146,010
Legacy Team	250	5,380	107.04	154,720
Pincer Team	240	4,780	96.33	174,370
	Hand-coded Agent			
Random Team	180	11,220	242.68	579,590
Legacy Team	190	11,740	236.58	404,640
Pincer Team	790	12,820	327.10	409,040
	Evolved Agent			
Random Team	480	11,640	274.94	428,860
Legacy Team	470	12,350	311.60	394,560
Pincer Team	470	13,830	405.07	636,180

Evolution

Introduction

Encoding and Evolution

kample

ontroller

IVIS. Pac-I

Goal

function

Results

resuits

Super Mario Bros. levels

Goal

Experime Poculto

Discuss

Discuss

Grammatical Evolution
Paper trouble

Evolving Levels for Super Mario Bros Using Grammatical Evolution

N. Shaker, M. Nicolau, G. Yannakakis, J. Togelius, and M. O'Neill

Grammatical

Lvoidilloii

Introduction

Example

Iternative app

/ls. Pac-Man

controller

Cool

Goal

function

Results

Super Mario Bros. levels

Goal Experiment se

Results

Discuss

Grammatical Evolution
Paper trouble

Goal

- ► Evolve levels for a side-scrolling platform game through Grammatical Evolution.
- Secondary goal: to provide a framework for analyzing and comparing expressivity of different level generators.

Grammatical Evolution

Introduction

Encoding and Evolution

ernative approa

Ms. Pac-Man

Ms. Pac-Ma

Goal Grammar and fitne

function

Experiment setup

Results

Super Mario Bros. levels

Goal Experiment

Experiment setu Results

Results

Discuss

Grammatical Evolution

Grammar and fitness function

- A level is a collection of chunks (functional attributes) at specified positions.
- Simplified grammar:

$$\langle chunks \rangle ::= \langle chunk \rangle \qquad (0)$$

$$| \langle chunk \rangle \langle chunks \rangle \qquad (1)$$

$$\langle chunk \rangle ::= coin(\langle x \rangle, \langle y \rangle, \langle w \rangle) \qquad (0)$$

$$| enemy(\langle x \rangle, \langle y \rangle, \langle w \rangle)$$
(1)
| hill(\langle x \rangle, \langle y \rangle, \langle w \rangle)
| [...]

- ▶ The fitness is a weighted sum of two properties:
 - Difference between the number of chunks and a certain treshold.
 - The number of overlapping chunks.
- ▶ Unfortunately, the weights are not given.

Grammatical Evolution

Introduction

vamnle

rnative appro

s. Pac-Man

Ms. Pac-M

Goal

Grammar and fitness function

esults

Super Mario Bros. levels

Goal

xperiment set esults

Discussion

Grammatical Evolution

Experiment setup

- ▶ Evolve level for the game *Infinite Mario Bros.* by Markus 'Notch' Persson.
- Compare against Notch's level generator and against an adapted ('parametrized') version of that generator.
- Use the following expressivity measures to compare them:
 - Linearity, the flatness of the level
 - **Density**, the clusteredness of the chunks
 - Leniency, the playability of the level
 - Compression distance, a randomness measure

Experiment setup

Universiteit Utrecht

Results

Measured expressivity for the different generators. [3]

Grammatical Evolution

Introductio

Encoding and Evolution

xampie

/ls. Pac-Man

controller Ms Pac-Man

Goal

Grammar and fitness function

Results

Super Mario Bros. levels

> Goal Experiment setur

Results

rvesuits

Discuss

Grammatical Evolution
Paper trouble

Discussion

- As mentioned, Grammatical Evolution is heavily inspired by biology.
 - · Not necessarily a good thing!
 - In this case, most references to biological terms are confusing at best.
- ▶ Resembling nature is no guarantee for performance.
- ► Effectiveness is claimed based on graphs derived from experimental results.
 - Due to a lack of data, these experiments can neither be verified nor repeated.
- Grammatical Evolution as used here has major flaws.

Grammatical Evolution

Introduction

Evample

Iternative approa

1s. Pac-Man

ontroller

Goal

Grammar and fitness function

Results

Super Mario Bros. levels

xperiment set

lesults

Discussion

Grammatical Evolution

A case against Grammatical Evolution

- ► Simple grammar about kittens¹ and nuclear missiles
- Genetic operators as in papers
- ► Goal: make the kitten happy

Grammatical Evolution

Internal continu

Encoding and Evolution

ternative approa

Ms. Pac-Man

Ms. Pac-M

Goal Grammar and f

function

Evperiment setup

Results

Bros. level:

Goal Experiment se

Discussis

Orangetical Evolution

Paper trouble

¹No kittens were harmed in the production of this presentation.

A simple grammar

```
::= \langle action \rangle \langle object \rangle
                                                                                 (0)
⟨prog⟩
                     if (\langle object \rangle is \langle property \rangle)
                    \{ \langle prog \rangle \}
                                                                                 (1)
⟨object⟩
              ::= nuclear missile
                                                                                 (0)
                                                                                 (1)
                     kitten
                                                                                 (0)
\langle property \rangle ::= dirty
                                                                                 (1)
                     clean
                                                                                 (0)
⟨action⟩
               ::= clean
                     launch
                                                                                 (1)
                     look at
                                                                                 (2)
```

Evolution
Introduction
Encoding and Evolution
Example

Ms. Pac-Man

Goal Grammar and fitness function

esults

Bros. levels

xperiment s

ılts

iscussion

Grammatical Evolution Paper trouble

Some sentences

```
(0)
⟨prog⟩
                    ::= \langle action \rangle \langle object \rangle
                          if (\langle object \rangle is \langle property \rangle)
                         \{\langle prog \rangle\}
                                                                      (1)
⟨object⟩
                                                                      (0)
                    ::= nuclear missile
                                                                      (1)
                          kitten
                                                                      (0)
⟨property⟩
                    ::= dirty
                          clean
                                                                      (1)
                                                                      (0)
⟨action⟩
                    ::= clean
                          launch
                                                                      (1)
                                                                      (2)
                          look at
```

```
174463

if (kitten is dirty)

{
    clean kitten
}

kitten happiness = 9

853
look at kitten

kitten happiness = 7
```

Grammatical Evolution

Introduction

xample

/s. Pac-Man

controller Ms. Pac-Man

Goal

Grammar and fitness function

lesults

Super Mario Bros. levels

Goal

Results

Discussio

Grammatical Evolution

Conclusions

Let's try 1-point crossover and int-flip mutation.

```
174463

if (kitten is dirty)

{
    clean kitten
}

kitten happiness = 9

kitten happiness = 7
```

Grammatical

Introduction

Encoding and Evolution

imple

Ms. Pac-Man

controller Ms Pac-Man

Goal

Grammar and fitness function

sults

Super Mario

Bros. levels

Goal

xperiment lesults

Discussi

Grammatical Evolution

Paper trou

Let's try 1-point crossover and int-flip mutation.

1 **7 4 4 6 3 8** 5 3

Grammatical Evolution

Introduction

Encoding and Evolution

imple

As. Pac-Man

Ms. Pac-Man

Goal Grammar and fitr

unction Experiment setup

sults

Super Mario Bros. levels

Goal

Experiment Results

Discussi

Grammatical Evolution

Let's try 1-point crossover and int-flip mutation.

174463	8 5 3	
if (kitten is dirty)	look at kitten	
{		
clean kitten		
}		
$kitten\ happiness=9$	$kitten\ happiness=7$	

1 **7 4 4 6 3 8** 5 3

174463 0 Grammatical Evolution

Introduction

Encoding and Evolution

rnative annroad

Ms. Pac-Man

Ms. Pac-Man

Goal Grammar and fit

periment setup

sults

Bros. levels

Goal Experim

lesults

Discussion

Grammatical Evolution

Let's try 1-point crossover and int-flip mutation.

174463	8 5 3	
if (kitten is dirty)	look at kitten	
{		
clean kitten		
}		
kitten happiness = 9	kitten happiness = 7	

1 **7 4 4 6 3 8** 5 3
launch nuclear missile kitten happiness = 0

174463 0

launch nuclear missile $kitten\ happiness = 0$

Grammatical Evolution

Introduction Encoding and Evolution

> ample ternative annroa

Ms. Pac-Man controller

Ms. Pac-Man

Grammar and fitness

kperiment setup

uper Mari

Goal Experiment setu

Results

Discussi

Grammatical Evolution
Paper trouble

On the origin of mistakes

- Problems can be traced back to O'Neill et al., explaining Grammatical Evolution in 2001.
- ► They clearly misunderstood genetic algorithms:

 "As the population being evolved comprises simple binary strings, we do not have to employ any special crossover or mutation operators [...]" [2]

Grammatical Evolution

Introduction
Encoding and Evolution

Example

Ms. Pac-Man

controller

Goal

Grammar and fitness function

Experiment setup Results

Super Mario

Bros. level:

xperiment set

Discussion

Grammatical Evolution

Paper trou

Luckily...

- ▶ These problems are operator-dependent.
- Newer GEVA versions offers more structure-sensitive crossover and mutation operators.
 - · Similar to Genetic Programming.
 - Too bad the authors did not use those!

Grammatical Evolution

Introduction

Encouring and Evo

Alternative approac

Ms. Pac-Man

Ms. Pac-Ma

Grammar and fitness

function Experiment setup

Results

Super Mario Bros. levels

Bros. level Goal

xperiment set

Discussion

Grammatical Evolution

Paper tro

Not all papers are created equal...

- Several apparent problems with the papers.
- ▶ Titles are not entirely accurate.
- Experiments cannot be verified
 - Missing parameters
 - Lacking source code
 - Lacking data / results
- Non-justified parameter choices

Evolution

Introduction
Encoding and Evolution

Example

Ms. Pac-Man

Ms. Pac-N

Goal

Grammar and fitness function

esults

Super Mario

Bros. level

xperiment se Results

Discussion

Grammatical Evolution

Paper trouble

Pac-Man trouble

- ▶ Lacking a solid performance reference point
 - Custom Pac-Man implementation
 - · Only one level with one life
 - · Weird ghost behaviour
 - Not even close to Ms. Pac-Man
- Lacking information
 - Unclear what exactly certain variables represent
 - The experiment is non-repeatable
- Evolved strategies seem rather trivial

Evolution

Introduction

Encoding and Evoli

tornativo annes

Ms. Pac-Man

Ms. Pac-N

Goal
Grammar and fitness

Experiment setup

esults

Super Mario Bros. levels

Goal Experiment se

Results

Discussion

Grammatical Evoluti

Paper trouble

Mario trouble

- Pointless fitness function.
 - · Why not use the expressivity measures?
- Lack of justification for used measures.
- There is nothing wrong with referring to your own work, but don't overdo it.
 - 15/30 papers referenced have at least one author in common with this work.

Grammatical Evolution

Evolution

Encoding and Evolution

ternative approach

Ms. Pac-Man

Ms. Pac-Mai

Grammar and fitness

periment setu_l sults

Super Mario Bros. levels

Goal Experiment setu

Results

Discussion

Paper trouble

Mario trouble

- ▶ Pointless fitness function.
 - · Why not use the expressivity measures?
- Lack of justification for used measures.
- There is nothing wrong with referring to your own work, but don't overdo it.
 - 15/30 papers referenced have at least one author in common with this work.
- There is a difference between Super Mario Bros. and Notch's Infinite Mario Bros.

Grammatica Evolution

Introduction
Encoding and Evolution

ernative approach

Ms. Pac-Man controller

ivis. Pac-ivian Goal

Grammar and fitness function

Results

Super Mari Bros. Ievels

Experiment se

Results

Grammatical Evoluti

Paper trouble

Two optimal levels

"[...] the main objective of the fitness function is to create levels with an acceptable number of chunks." [1]

Grammatical

Introduction

Encoding and Evolution

. ...

ls. Pac-Man

controller

Goal

Grammar an

function

esults

Super Mario Bros Jevels

Goal

xperiment set

Results

Discussion

Paper trouble

'Wij van WC-eend...'

"Procedural Content Generation (PCG) is a field that has recently emerged and **proven its potential** for automatically generating different aspects of game content such as game rulesets [4], [5], maps [6], [7], levels [8], [9], [10], racing tracks [11], [12] or even whole games [13], [14]. PCG can be used both offline, in order to make the game development process more efficient, and online, to allow the generation of endless variations of a game, make it infinitely replayable and adapting its content to the player [15], [16]. An overview of the **state of the art** can be found in [17], [18]." [3]

Grammatical
Evolution
Introduction

Encoding and Evolution
Example

Alternative approa

Ms. Pac-Man

controller

Goal

Grammar and fitness function

Experiment setup Results

Super Mario Bros. levels

ioal

Experiment setu Results

Discussion

Grammatical Evolution

Conclusions

'Wij van WC-eend...'

"Procedural Content Generation (PCG) is a field that has recently emerged and **proven its potential** for automatically generating different aspects of game content such as game rulesets [4], [5], maps [6], [7], levels [8], [9], [10], racing tracks [11], [12] or even whole games [13], [14]. PCG can be used both offline, in order to make the game development process more efficient, and online, to allow the generation of endless variations of a game, make it infinitely replayable and adapting its content to the player [15], [16]. An overview of the **state of the art** can be found in [17], [18]." [3]

Grammatical
Evolution
Introduction

Encoding and Evolution

Alternative approa

Ms. Pac-Man

Controller
Ms Pac-Man

Goal Grammar and fitnes

function

Experiment setup

Results

Bros. levels

Goal

Results

Discussion
Grammatical Evolut

Paper trouble

Conclusions

- Effectiveness of Grammatical Evolution is questionable.
- Discussed papers fail to provide convincing evidence.
- Genetic Programming appears to be more promising.

Grammatical Evolution

Introduction

Encoding and Evolution

Iternative appro

1s. Pac-Man

controller

Goal

Grammar and fitness

kperiment setu

Results

Super Mario Bros. levels

> oal speriment se

Results

Discussion

Grammatical Evolution
Paper trouble

Conclusions

- Effectiveness of Grammatical Evolution is questionable.
- Discussed papers fail to provide convincing evidence.
- Genetic Programming appears to be more promising.
- Don't use Grammatical Evolution.
 - Or at least not as described in the O'Neill papers.

Grammatical Evolution

Introduction
Encoding and Evolution

Example Mtornativo appro

As. Pac-Man

ontroller

Goal

Grammar and fitness

Experiment setup

Super Mar

Bros. levels

xperiment set

Results

Oranmatical Evo

Grammatical Evolution
Paper trouble

References

Edgar Galván-López, John Mark Swafford, Michael O'Neill, and Anthony Brabazon.

Evolving a Ms. PacMan controller using Grammatical Evolution. In <u>Applications of Evolutionary Computation</u>, pages 161–170. Springer, 2010.

Michael O'Neill and Conor Ryan.

Grammatical Evolution.

<u>IEEE Transactions on Evolutionary Computation</u>, 5(4):349–358, 2001.

Noor Shaker, Miguel Nicolau, Georgios N Yannakakis, Julian Togelius, and Michael O'Neill.

Evolving levels for Super Mario Bros using Grammatical Evolution.

In IEEE Conference on Computational Intelligence and Games pages 304–311. IEEE, 2012.

Grammatical Evolution

Introduction Encoding and Evo

ncoding and Evolu xample

rnative approach

As. Pac-Man ontroller

Ms. Pac-Mar

Goal Grammar

Grammar and fitness function

sults

Bros. levels

Experiment se

Results

Oranmatical Evolution