Math 440 – Real Analysis II Exam 1

Amandeep Gill

February 27, 2015

Problem 1 Given the series $\sum_{k=1}^{\infty} p^{-k} k^p$, for what values of p does it:

- (a) diverges when -1
- **Proof:** If p=0 then $p^{-k}k^p=\frac{1}{0}$, which is unbounded and therefore divergent. If p=1 then $p^{-k}k^p=k$, which is unbounded and therefore divergent. If 0< p<1 then p=1/r for some r>1 and $p^{-k}k^p=r^k\sqrt[r]{k}$, which is unbounded and therefore divergent. If -1< p<0 then p=-1/r for some r>1 and $p^{-k}k^p=(-1)^k\frac{r^k}{\sqrt[r]{k}}$. Since r^k grows without bounds, and for all r, there exists some $k_0\in\mathbb{N}$ such that $r^{k_0}>\sqrt[r]{k_0}$, $(-1)^k\frac{r^k}{k^p}$ is unbounded and therefore divergent.

(b) converge conditionally when p = -1

Proof: If p = -1 then $p^{-k}k^p = \frac{(-1)^k}{k}$, which is the oscillating harmonic series, and is conditionally convergent.

(c) converge absolutely when |p| > 1

Proof: If p < -1 then $p^{-k}k^p = \frac{(-1)^k}{p^kk^p}$. Since $\left|\frac{(-1)^k}{p^kk^p}\right| = \frac{1}{p^kk^p} \leqslant \frac{1}{k^p}$, the series $\sum_{k=1}^{\infty} \frac{(-1)^k}{p^kk^p}$ converges absolutely by the Comparison Test against a P-series where P > 1.

If p>1 then using the Ratio Test leads to $\lim_{k\to\infty}\frac{p^{-k-1}(k+1)^p}{p^kk^p}=\frac{1}{p}<1$, meaning the series converges. Because $|p^kk^p|=p^kk^p$, the series is absolutely convergent.

1

Problem 2 If $\{a_n\}$ is a sequence with $a_n > 0$ for all n then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converges.

Proof: Let $\{a_n\}$ be a sequence with $a_n > 0$ for all n

- (\Longrightarrow) Assume $\sum_{n=1}^{\infty} a_n$ converges. Since $a_n > 0$, $a_n + 1 > 1$ which means that $\frac{a_n}{1+a_n} < a_n$ for all n. Therefore, by the Comparison Test, $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ is a convergent series.
- (\iff) Assume $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converges. This implies that $\lim_{n\to\infty} \frac{a_n}{1+a_n} = 0$, so $\lim_{n\to\infty} 1 \frac{1}{1+a_n} = 0$, which means $\lim_{n\to\infty} a_n = 0$. $\{a_n\}$ is therefore a bounded sequence so there exists $m \in \mathbb{R}^+$ such that $m = \max\{a_n\}$. Then for all n, $\frac{a_n}{1+m} \leqslant \frac{a_n}{1+a_n}$ and by the Comparison Test $\sum_{n=1}^{\infty} \frac{a_n}{1+m}$ converges, and therefore so does $\sum_{n=1}^{\infty} a_n$.

Problem 3 Let $\{a_n\}$ be a sequence $a_n \neq 0$ for all n.

(a) Disprove: if $\left|\frac{a_{n+1}}{a_n}\right| < 1$ for all n then $\sum_{n=1}^{\infty} a_n$ converges.

Proof: Let $a_n = \frac{1}{n}$. For all n, $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{n}{n+1} \right| < 1$, however $\sum_{n=1}^{\infty} a_n$ is the harmonic series and therefore does not converge.

(b) If there exists a convergent subsequence of $\{b_n\} = \left\{\sqrt[n]{|a_n|}\right\}_{n=1}^{\infty}$ whose limit is strictly greater than 1 then the series $\sum_{n=1}^{\infty} a_n$ diverges

Proof: Let $\{b_n\}$ have a subsequence that converges to some b > 1. Then $\limsup_{n \to \infty} \{b_n\} \geqslant b$ since for all $n_o \in \mathbb{N}$ and $\epsilon > 0$ there is an $n > n_o$ such that $|b_n - b| < \epsilon$. Thus $\{b_n\}$ either diverges or converges to a number greater than 1, and the series diverges by the Root Test.

Problem 4 For each $n \in \mathbb{N}$ let $f_n : [0,1] \to \mathbb{R}$ be defined as

$$f_n(x) = \begin{cases} nx & \text{if } 0 \leqslant x \leqslant \frac{1}{n} \\ 2 - nx & \text{if } \frac{1}{n} < x \leqslant \frac{2}{n} \\ 0 & \text{if } \frac{2}{n} < x \leqslant 1 \end{cases}$$

(a) Plot of f_n for n = 2, 3, 4 – green, blue, and orange respectively:

(b) $\{f_n\}$ converges pointwise but not uniformly to some function f.

Proof: Let $x \in [0,1]$ be given. If x=0 then $\lim_{n \to \infty} f_n = \lim_{n \to \infty} nx = 0$. Otherwise, if $0 < x \leqslant 1$ then there exists some $n_o \in \mathbb{N}$ such that $\frac{2}{n_o} < x$ and so for all $n > n_o$, $f_n(x) = 0$. Therefore $\{f_n\}$ converges pointwise to f(x) = 0. However letting $\epsilon = \frac{1}{2}, \ n > N$, and $x = \frac{1}{2n}$ for some $N \in \mathbb{N}$ gives $|f_n(x) - f(x)| = |nx - 0| = \left|\frac{n}{2n}\right| = \frac{1}{2} = \epsilon$, showing that $\{f_n\}$ is not uniformly convergent.

(c) f_n is continuous for all n on [0,1], and the same holds for f.

(d) Parts (b) and (c) do not violate Corollary 8.3.2 because it does not address functions that do not converge uniformly.

Problem 5

(a)
$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$$
 when $x \in (-1,1)$

Proof: Let $s_n = \sum_{k=0}^n x^k$, then $s_n = 1 + x + x^2 + \dots + x^n = \frac{1}{1-x} - \frac{x^n}{1-x}$. Since |x| < 1, $\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1}{1-x} - \frac{x^n}{1-x} = \frac{1}{1-x}$.

(b) Evaluate $f(x) = \int_0^{1/2} \frac{1}{1+x^6} dx$ as a power series.

Proof: By part (a), $\frac{1}{1+x^6} = \sum_{k=0}^{\infty} (x^6)^k$ since $x^6 \in (-1,1)$ for all $x \in \left[0,\frac{1}{2}\right]$. Substituting the series in the integral gives $\int_0^{1/2} \sum_{k=0}^{\infty} (x^6)^k dx = \sum_{k=0}^{\infty} \int_0^{1/2} (x^6)^k dx$ because the Power Series is uniformly convergent on its domain. This gives $f(x) = \sum_{k=0}^{\infty} \frac{(x^6)^{k+1}}{k+1}$.

Problem 6 Using $f(x) = \sum_{k=1}^{\infty} f_k(x) = \sum_{k=1}^{\infty} \frac{1}{1+k^2x}$ prove:

(a) That f(x) converges uniformly on $x \in [a, \infty)$ for all a > 0

Proof: Since $a \leqslant x$ for all $x \in [a, \infty)$, $\frac{1}{1+k^2x} \leqslant \frac{1}{1+k^2a}$ for all $k \in \mathbb{N}$. Thus, given any $\epsilon > 0$ let k_o be given such that $\frac{1}{1+k_o^2a} < \frac{\epsilon}{2}$