1 Motivation for Pseudodifferential operators

• Solving PDEs via Fourier transform. For example, in Euclidean space, \mathbb{R}^n , constant coefficient linear PDE

$$P(D)u = \sum_{|\alpha| \leq n} c_{\alpha} D^{\alpha} u = f, \quad c_{\alpha} \in \mathbb{R}$$

where $P \in \mathbb{R}[x]$, can solved by applying Fourier transform which gives a solution of the form

$$u(x) = \frac{1}{(2\pi)^n} \int e^{i(x-y)\cdot\xi} f(y) \frac{1}{P(\xi)} dy d\xi$$

due to the observation that

$$\mathcal{F}P(D)u = P(\xi)\mathcal{F}u.$$

Moreover, for linear differential operators with smooth coefficients

$$P(x,D): u \mapsto \sum_{|\alpha| \leq n} a_{\alpha} D^{\alpha} u, \quad a_{\alpha} \in C^{\infty}(\mathbb{R}^n)$$

we have

$$P(x,D)u = \frac{1}{(2\pi)^n} \int P(x,\xi)e^{i(x-y)\xi}u(y)dy d\xi.$$

We would like to generalise the above so that $P(x,\xi)$ are smooth functions satisfying certain uniform bounds, called *symbols*, instead of just polynomials in ξ . This gives us a class of operators, called pseudodifferential operators, that acts as

$$A_a u(x) = \frac{1}{(2\pi)^n} \int a(x,\xi) e^{i(x-y)\xi} u(y) dy d\xi$$

for each symbol a.

• There isn't enough differential operators with smooth coefficient in the sense that elliptic differential operators are not, in general, invertible in this class. For example, the operator

$$u \mapsto (\Delta + 1)u$$

has inverse that acts as (using construction via Fourier transform shown above)

$$(\Delta + 1)^{-1} f = \frac{1}{(2\pi)^n} \int \frac{1}{1 + |\xi|^2} e^{i(x-y)\xi} f(y) dy d\xi$$

which is a pseudodifferential operator with symbol $a(x,\xi) = (1 + |\xi|^2)^{-1}$.

• Motivation from quantum mechanics. The notion of "quantisation" in quantum mechanics can be formalised as the map that sends a symbol a (a smooth function that represent determistic observable in classical mechanics) to its corresponding pseudodifferential operator (i.e. the corresponding quantum observable)

$$A_a: \psi \mapsto \frac{1}{(2\pi)^n} \int \frac{1}{1+|\xi|^2} e^{i(x-y)\xi} \psi(y) dy d\xi$$

that acts on the wavefunction ψ .

• Used in the formulation and proof of Atiyah-Singer Index theorem.

We shall define, on Euclidean space, the space of symbols, $S^m(\mathbb{R}^{2n}_{x,y};\mathbb{R}^n_{\xi})$ and the corresponding space of pseudodifferential operators, $\Psi^m(\mathbb{R}^n)$ which acts on distributions via the Schwartz kernel given by the oscilliatory integral

$$I(a) = \frac{1}{(2\pi)^n} \int e^{i(x-y)\xi} a(x,y,\xi) d\xi.$$

We note that we have introduced an extra variable y which will help in explicating the properties of pseudodifferential operators. However, the extra variable does not change the essence of the theory.

2 Symbols

We shall here list the definition of the space of symbols of order $m \in \mathbb{N}$ in Euclidean space \mathbb{R}^n that one encounter in the literature. The main motivation is again based on the property of linear differential operators of order $m \in \mathbb{N}$ with smooth coefficient that, after Fourier transform gives the polynomial of ξ with smooth coefficient

$$P(x,\xi) = \sum |\alpha| \leqslant ma_{\alpha}(x)\xi^{\alpha}.$$

It has the property that

$$\left| D_x^{\alpha} D_{\xi}^{\beta} P(x,\xi) \right| \leqslant C_{\alpha,\beta} \left\langle \xi \right\rangle^{m-|\beta|}$$

i.e. $P(x,\xi)$ is smooth and decreases in order as $\xi \to \infty$ with successive ξ -derivative.

Definition 2.1. The space $S^m_{\infty}(\mathbb{R}^p; \mathbb{R}^n)$ of order m is the space of smooth functions $a \in C^{\infty}(\mathbb{R}^p \times \mathbb{R}^n)$ such that for all multi-index $\alpha \in \mathbb{N}^p$, $\beta \in \mathbb{N}^n$

$$\left| D_x^{\alpha} D_{\xi}^{\beta} a(x,\xi) \right| \leqslant C_{\alpha,\beta} \left\langle \xi \right\rangle^{m-|\beta|}$$

uniformly on $\mathbb{R}^p \times \mathbb{R}^n$. We can also defined the space of symbol, $S^m_\infty(\Omega; \mathbb{R}^n)$ on a set with non-empty interior $\Omega \subset \mathbb{R}^p$, $\Omega \subset \overline{\mathrm{Int}(\Omega)}$ such that the bound above is satisfied uniformly in $(x,\xi) \in \mathrm{Int}(\Omega) \times \mathbb{R}^n$. The subscript ∞ refers the uniform boundedness condition. Together with the family of seminorm (indexed by $N \in \mathbb{N}$)

$$\|a\|_{N,m} = \sup_{(x,\xi)\in \operatorname{Int}(\Omega)\times\mathbb{R}^n \mid \alpha\mid +\mid \beta\mid \leqslant N} \frac{D_x^{\alpha}D_{\xi}^{\beta}a(x,\xi)}{\left\langle \xi\right\rangle^{m-\mid \beta\mid}}$$

gives a Frechet topology to $S^m_{\infty}(\Omega; \mathbb{R}^n)$.

Note: In defining pseudodifferential operators, we shall focus on the case where p = 2n.

Definition 2.2. A symbol of type $S^{m,l_1,l_2}_{\delta,\delta'}$ where $m,l_1,l_2 \in \mathbb{R}$ and $\delta,\delta' \in [0,1/2)$ is an element of $C^{\infty}(\mathbb{R}^n_x;\mathbb{R}^n_y;\mathbb{R}^n_y)$ satisfying

$$\frac{\left| D_{x}^{\alpha} D_{y}^{\beta} D_{\xi}^{\gamma} a(x, y, \xi) \right|}{\left\langle \xi \right\rangle^{m - |\gamma|} \left\langle x \right\rangle^{l_{1} - |\alpha|} \left\langle y \right\rangle^{l_{2} - |\beta|} \left\langle \xi \right\rangle^{\delta |(\alpha, \beta, \gamma)|} \left\langle x, y \right\rangle^{\delta' |(\alpha, \beta, \gamma)|}} \leqslant C_{\alpha, \beta, \gamma}$$

uniformly in \mathbb{R}^{3n} . Taking the supremum over \mathbb{R}^{3n} , we get a family of seminorms, indexed by $N \in \mathbb{N}$ defined by

$$||a||_{S^{m,l_1,l_2}_{\delta,\delta'},N} := \sum_{|(\alpha,\beta,\gamma)| \leqslant N} \inf C_{\alpha,\beta,\gamma}$$

which gives $S_{\delta,\delta'}^{m,l_1,l_2}$ a Frechet topology.

Definition 2.3. A (Kohn-Nirenberg) symbol of order $m \in \mathbb{R}$ on $T^*\mathbb{R}^n \cong \mathbb{R}^{2n}_{x,\xi}$ is a smooth function $a = a(x,\xi)$ satisfying

$$\forall \alpha, \beta \in \mathbb{N}^n, \exists C \in \mathbb{R}_{\geqslant 0} : \left| D_x^{\alpha} D_{\xi}^{\beta} a(x, \xi) \right| \leqslant C \left\langle \xi \right\rangle^{m - |\beta|}$$

uniformly in x. The space of symbol of order m on $T^*\mathbb{R}^n$

Definition 2.4. Let $n \in \mathbb{N}$ be given. An order function $g \in C^{\infty}(\mathbb{R}^n; \mathbb{R}_{\geq 0})$ is a non-negative function satisfying

$$\forall \alpha \in N^n \exists C \in \mathbb{R}_{\geq 0} : \partial^{\alpha} g \leqslant Cg$$

uniformly on \mathbb{R}^n , i.e. $\partial^{\alpha} g = O(g)$ uniformly on \mathbb{R}^n .

Given an order function g, a **symbol** of order g is a smooth function $a = a(x, \xi) \in C^{\infty}(T^*\mathbb{R}^n)$ satisfying

$$\forall \alpha, \beta \in \mathbb{N}^n : \left| D_x^{\alpha} D_{\xi}^{\beta} a(x, \xi) \right| \leqslant Cg(\xi)$$

uniformly in x.

2.1 Properties of Symbols

Proposition 2.5. Let $p, n \in \mathbb{N}$ be given and $\Omega \subset \mathbb{R}^p$ such that $\Omega \subset \overline{\operatorname{Int}(\Omega)}$. If $m, m' \in \mathbb{R}$ such that $m \leq m'$, then $S_{\infty}^m(\Omega; \mathbb{R}^n) \subset S_{\infty}^{m'}(\mathbb{R})$. Furthermore, the inclusion map

$$\iota: S^m_{\infty}(\Omega; \mathbb{R}^n) \to S^{m'}_{\infty}(\Omega; \mathbb{R}^n)$$

is continuous.

Proof. Let the real numbers $m \leq m'$ be given. We note that for any $\xi \in \mathbb{R}^n$

$$\langle \xi \rangle^m \leqslant 1 \cdot \langle \xi \rangle^{m'}$$

and thus if $a \in S_{\infty}^m(\Omega; \mathbb{R}^n)$, we have that $\forall \alpha \in \mathbb{N}^p, \forall \beta \in \mathbb{N}^n$

$$\left| D_x^{\alpha} D_{\xi}^{\beta} a(x,\xi) \right| \leqslant C \left\langle \xi \right\rangle^{m-|\beta|} \leqslant C \left\langle \xi \right\rangle^{m'-|\beta|}$$

which show that $a \in S_{\infty}^{m'}(\Omega; \mathbb{R}^n)$ as well.

To show that ι is a continuous inclusion, it suffices to show that

$$\|\iota(a)\|_{N,m'} \leqslant C \|a\|_{N,m}$$

for any $a \in S^m_{\infty}(\Omega; \mathbb{R}^n)$ and $N \in \mathbb{N}$. Indeed, his bound holds since

$$\frac{D_x^{\alpha} D_{\xi}^{\beta} a(x,\xi)}{\langle \xi \rangle^{m'-|\beta|}} \leqslant \frac{D_x^{\alpha} D_{\xi}^{\beta} a(x,\xi)}{\langle \xi \rangle^{m-|\beta|}}.$$

This inclusion property allow us to consider $S^m_\infty(\Omega;\mathbb{R}^n)$ as the filtration of the space

$$S_{\infty}^{\infty}(\Omega;\mathbb{R}^n) = \bigcup_{m \in \mathbb{R}} S_{\infty}^m(\Omega;\mathbb{R}^n)$$

and we shall denote the residual space of the filtration as

$$S_{\infty}^{-\infty}(\Omega;\mathbb{R}^n) = \bigcap_{m \in \mathbb{R}} S_{\infty}^m(\Omega;\mathbb{R}^n).$$

We have a rather technical result of the density of the residual space in $S^m_{\infty}(\Omega; \mathbb{R}^n)$.

3

Lemma 2.6. Given any $m \in \mathbb{R}$ and $a \in S^m_{\infty}(\Omega; \mathbb{R}^n)$, there exist a sequence in $S^{-\infty}_{\infty}(\Omega; \mathbb{R}^n)$ such that bounded in $S^m_{\infty}(\Omega; \mathbb{R}^n)$ and converges to a in the topology of $S^{m+\epsilon}_{\infty}(\Omega; \mathbb{R}^n)$ for any $\epsilon \in \mathbb{R}_{>0}$. In other words, for any $m \in \mathbb{R}$ and $\epsilon > 0$, $S^{-\infty}_{\infty}(\Omega; \mathbb{R}^n)$ is dense in $S^m_{\infty}(\Omega; \mathbb{R}^n)$ with the topology of $S^{m+\epsilon}_{\infty}(\Omega; \mathbb{R}^n)$.

Proposition 2.7. Let $p, n \in \mathbb{N}$ be given. Let $\Omega \subset \mathbb{R}^p$ be such that $\Omega \subset \overline{\operatorname{Int}(\Omega)}$. Then, for any $m, m' \in \mathbb{R}$, we have

$$S^m_{\infty}(\Omega;\mathbb{R}^n)\cdot S^{m'}_{\infty}(\Omega;\mathbb{R}^n) = S^{m+m'}_{\infty}(\Omega;\mathbb{R}^n)$$

Proof. Let $a \in S^m_{\infty}(\Omega; \mathbb{R}^n)$ and $b \in S^{m'}_{\infty}(\Omega; \mathbb{R}^n)$ be given. By (general) Leibinz formula, we have that for all multi-index α, β ,

$$\sup_{\xi \in \mathbb{R}^{n}} \frac{\left| D_{x}^{\alpha} D_{\xi}^{\beta} a(x,\xi) b(x,\xi) \right|}{\left\langle \xi \right\rangle^{(m+m')-|\beta|}} \leqslant \sum_{\mu \leqslant \alpha, \gamma \leqslant \beta} \binom{\alpha}{\mu} \binom{\beta}{\gamma} \sup_{\xi \in \mathbb{R}^{n}} \frac{\left| D_{x}^{\mu} D_{\xi}^{\gamma} a(x,\xi) \right| \left| D_{x}^{\alpha-\mu} D_{\xi}^{\beta-\gamma} b(x,\xi) \right|}{\left\langle \xi \right\rangle^{(m+m')-|\beta|}}$$

$$\leqslant \sum_{\mu \leqslant \alpha, \gamma \leqslant \beta} \binom{\alpha}{\mu} \binom{\beta}{\gamma} C \sup_{\xi \in \mathbb{R}^{n}} \frac{\left\langle \xi \right\rangle^{m-|\gamma|} \left\langle \xi \right\rangle^{m'-|\beta-\gamma|}}{\left\langle \xi \right\rangle^{(m+m')-|\beta|}}$$

$$= \sum_{\mu \leqslant \alpha, \gamma \leqslant \beta} \binom{\alpha}{\mu} \binom{\beta}{\gamma} C \sup_{\xi \in \mathbb{R}^{n}} \left\langle \xi \right\rangle^{|\beta|-(|\beta-\gamma|+|\gamma|)}$$

$$\leqslant \sum_{\mu \leqslant \alpha, \gamma \leqslant \beta} \binom{\alpha}{\mu} \binom{\beta}{\gamma} C$$

$$< \infty$$

where we have use the property of multi-index that $|\beta| = |\beta - \mu| + |\mu|$. We have thus shown that $S^m_{\infty}(\Omega; \mathbb{R}^n) \cdot S^{m'}_{\infty}(\Omega; \mathbb{R}^n) \subset S^{m+m'}_{\infty}(\Omega; \mathbb{R}^n)$

For the reverse inclusion, let $c \in S^{m+m'}_{\infty}(\Omega; \mathbb{R}^n)$ be given. Define

$$a: (x,\xi) \mapsto \langle \xi \rangle^m$$

 $b: (x,\xi) \mapsto \frac{c(x,\xi)}{a(x,\xi)}$

and observe that

• $a \in S^m_{\infty}(\Omega; \mathbb{R}^n)$. It is clear that a is smooth in both x and ξ . It is independent of x and thus any x derivative gives 0. We need only to check that for all $\beta \in \mathbb{N}^n$,

$$\left| D_{\xi}^{\beta} \left\langle \xi \right\rangle^{m} \right| \leqslant C \left\langle \xi \right\rangle^{m - |\beta|}$$

which can be proven by induction on n and β . We shall only prove the base case where n = 1 and $\beta = 1$. We have

$$|D_{\xi}\langle\xi\rangle^{m}| = \left|\partial_{\xi}(1+\xi^{2})^{m/2}\right| = \left|m\xi\langle\xi\rangle^{m-2}\right| = \left|m\frac{\xi}{\langle\xi\rangle}\right|\langle\xi\rangle^{m-1} \leqslant |m|\langle\xi\rangle^{m-1}$$

where we have used the fact that $|\xi| \leq \langle \xi \rangle$ for all ξ .

• $b \in S_{\infty}^{m'}(\Omega; \mathbb{R}^n)$. We note first that $\langle \xi \rangle^m \neq 0$ for all $\xi \in \mathbb{R}^n$ and thus b is well-defined. Since division by $\langle \xi \rangle^m$ does not affect any of the x derivative, we only need to show that for any $\beta \in \mathbb{N}^n$, we have

$$\left| D_{\xi}^{\beta} b(x,\xi) \right| \leqslant C \left\langle \xi \right\rangle^{m+m'-|\beta|}$$

for some constant C > 0 uniformly in ξ . Indeed, observe that by the Leibinz formula

$$\begin{split} \left| \ D_{\xi}^{\beta}b(x,\xi) \ \right| & \leq \sum_{\mu \leqslant \beta} \binom{\beta}{\mu} \ \left| \ D_{\xi}^{\mu}c(x,\xi) \ \right| \ \left| \ D^{\beta-\mu} \left\langle \xi \right\rangle^{-m} \ \right| \\ & \leq C \sum_{\mu \leqslant \beta} \binom{\beta}{\mu} \left\langle \xi \right\rangle^{m+m'-|\mu|} \left\langle \xi \right\rangle^{-m-|\beta-\mu|} \\ & \leq C \sum_{\mu \leqslant \beta} \binom{\beta}{\mu} \left\langle \xi \right\rangle^{m'-(|\mu|+|\beta-\mu|)} \\ & = C \sum_{\mu \leqslant \beta} \binom{\beta}{\mu} \left\langle \xi \right\rangle^{m'-|\beta|} \\ & = C 2^{\beta} \left\langle \xi \right\rangle^{m'-|\beta|} \end{split}$$

where we have use the definition of c and applied the result proven for a with $m \mapsto -m$. Thus, $b \in S_{\infty}^{m'}(\Omega; \mathbb{R}^n)$.

It is clear that $a\cdot b=c$ and we have therefore shown that $S^{m+m'}_\infty(\Omega;\mathbb{R}^n)\subset S^m_\infty(\Omega;\mathbb{R}^n)\cdot S^{m'}_\infty(\Omega;\mathbb{R}^n).$

A sumarising theorem:

Theorem 2.8. Given $p, n \in \mathbb{N}$ and $\Omega \subset \mathbb{R}^p$ such that $\Omega \subset \overline{\operatorname{Int}(\Omega)}$. Let

$$S_{\infty}^{\infty}(\Omega;\mathbb{R}^n) = \bigcup_{m \in \mathbb{R}} S_{\infty}^m(\Omega;\mathbb{R}^n).$$

Then $S^{\infty}_{\infty}(\Omega; \mathbb{R}^n)$ is a graded algebra over \mathbb{R} with continuous inclusion $S^m_{\infty}(\Omega; \mathbb{R}^n) \to S^{m'}_{\infty}(\Omega; \mathbb{R}^n)$ for all $m \leq m'$.

2.2 Ellipticity of symbols

Definition 2.9. Given $p, n \in \mathbb{N}$, $m \in \mathbb{R}$ and $\Omega \subset \mathbb{R}^p$ such that $\Omega \subset \overline{\operatorname{Int}(\Omega)}$, an order m symbol $a \in S^m_{\infty}(\Omega; \mathbb{R}^n)$ is (globally) **elliptic** if there exist $\epsilon \in \mathbb{R}_{>0}$ such that

$$\inf_{|\xi| \geqslant 1/\epsilon} |a(x,\xi)| \geqslant \epsilon \langle \xi \rangle^m.$$

The importance of elliptic symbol is that they are invertible modulo $S_{\infty}^{-\infty}(\Omega;\mathbb{R}^n)$.

Lemma 2.10. Given $p, n \in \mathbb{N}$, $m \in \mathbb{R}$ and $\Omega \subset \mathbb{R}^p$ such that $\Omega \subset \overline{\operatorname{Int}(\Omega)}$. Let $a \in S^m_{\infty}(\Omega; \mathbb{R}^n)$ be an elliptic symbol of order m. Then there exist a symbol $b \in S^{-m}_{\infty}(\Omega; \mathbb{R}^n)$ such that

$$a \cdot b - 1 \in S_{\infty}^{-\infty}(\Omega; \mathbb{R}^n).$$

3 Pseudodifferential Operators (Ψ DO's)

4 Appendix

4.1 Stationary phase lemma

In the study of pseudodifferential operators, we often encounter integral of highly oscillatory functions of the form

$$I(h) = \int_{\mathbb{D}} a(x)e^{i\varphi(x)/h} dx$$

where $a \in C_c^{\infty}(\mathbb{R})$, $\varphi \in C^{\infty}(\mathbb{R})$ and we are interested in the asymptotic behaviour as $h \to 0$. We note that if φ is linear (or constant), i.e. $\varphi(x) = \alpha x + \beta$, $\alpha, \beta \in \mathbb{R}$, then,

$$|I(h)| = \left| \int_{\mathbb{R}} a(x)e^{i(\alpha x + \beta)/h} dx \right| = \left| e^{i\beta/h} \right| \left| \int_{\mathbb{R}} a(x)e^{i\alpha x/h} dx \right| = \left| \int_{\mathbb{R}} a(x)e^{i\alpha x/h} dx \right| \to 0$$

as $h \to 0$ by Riemann-Lebesgue lemma. That is to say, as the length scale of the oscillation tends to zero, the values of the integrand achieve perfect cancellation. In general, if $\varphi'(x) \neq 0$, we expect $e^{i\varphi(x)/h}$ to oscillate at length scale of order h and thus as $h \to 0$,

5 Miscenllaneous

Theorem 5.1 (Schwartz Kernel Theorem [Taylor, 2011, Chapter 4.6, p. 345]). Let M, N be compact manifold and

$$T: C^{\infty}(M) \to \mathcal{D}'(N)$$

be a continuous linear map $(C^{\infty}(M))$ being given Frechet space topology and D'(N) the weak* topology). Define a bilinear map

$$B: C^{\infty}(M) \times C^{\infty}(N) \to \mathbb{C}$$
$$(u, v) \mapsto B(u, v) = \langle v, Tu \rangle.$$

Then, there exist a distribution $k \in \mathcal{D}'(M \times N)$ such that for all $(u, v) \in C^{\infty}(M) \times C^{\infty}(N)$

$$B(u,v) = \langle u \otimes v, k \rangle.$$

We call such k the kernel of T.

References

[Taylor, 2011] Taylor, M. (2011). Partial Differential Equations I, volume 115 of Applied Mathematical Sciences. Springer-Verlag, New York, 2 edition.