

Winning Space Race with Data Science

Ross 17 September 2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Data Collection using the SpaceX API and cleaning the data
- Data Wrangling using Pandas to conduct Exploratory Data Analysis and determine the training/success variables.
- Explore the data further using Panadas and Matplolib to visualize multiple variable relationships and conduct some feature engineering
- Explore the data through SQL queries to gather a range of statistics regarding different variables
- Use Folium to gain geographic insight into the data and investigate the relationships between the launch sites to successes/failures.
- Build a Dash Application to visualize and compare data interactively to show insights and patterns.
- Build several Machine Learning Models and then test and compare the models to find the best one.

Summary of Results

- The more launches that have occurred, the greater the chance of success
- The Booster Version FT is likely to produce the greatest chance of success
- Launch Sites are near the coast, close to the Equator, infrastructure but away from cities
- Launch Site CCAFS SLC-40 has the highest chance of success
- Various classification models return similar results and have a problem returning False Positives.
- Orbits ES-L1, GEO, HEO, SSO have the best success rate.

Introduction

Project background:

SpaceX has managed to make Space Travel cheaper by selling it's Falcon 9 rocket launches for \$62M, undercutting other providers that cost \$165M. This is because the Falcon 9 rocket is reusable, provided the Falcon 9 can land safely.

We are a rival company that would like to bid against SpaceX for a rocket launch.

The Problem:

We need to be able to determine the cost of a launch for our rocket over the cost of the launch for a Falcon 9 rocket. To do this we need to determine how likely the Falcon 9 rocket is to succeed in landing.

Methodology

Executive Summary

- Data collection methodology:
 - Data collecting through SpaceX API and Webscraping
- Perform data wrangling
 - Data loaded into Pandas Dataframe and convert data into Training Labels
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Build several models to predict successful landings, find the best parameters for each and compare their performance scores to determine the best model.

Data Collection – SpaceX API

Steps for SpaceX API Data Collection

- 1. Retrieve the data from the API using: response =
 requests.get("https://api.spacexdata.com/v4/launches/past")
- 2. Decode the content using .json() and turn into a DataFrame: df =
 pd.json_normalize(json_raw)
- 3. Filter out the unwanted columns from the DataFrame
- 4. Extract/Clean the data from the intial DataFrame into first a Dictionary and then into a new DataFrame.
- 5. Filter only for Falcon 9 Booster Versions
- 6. Replace missing values with the .mean() function over the rest of the column.
- 7. Export to .to csv to keep a safe backup of the data.

URL: https://github.com/rsx8/IBM DS SpaceX Capstone

Data Collection - Scraping

Steps for SpaceX Web Scapring

- 1. Retrieve the data from the API using: response = requests.get("https://en.wikipedia.org/w/index.php?title=List_of_Falcon_9_a nd Falcon Heavy launches&oldid=1027686922")
- 3. Extract the tables: html_tables = soup.find_all('table')
- 4. Extract the column/variable names from the desired table
- 5. Using the column names, create an empty dictionary and extract the values for the columns into it.
- 6. Convert the Dictionary into a Dataframe and proceed to Data Wrangling

URL: https://github.com/rsx8/IBM DS SpaceX Capstone

Data Wrangling

Steps for Data Wrangling

- 1. Understand the data you have but looking for null values (df.isnull().sum()) and looking at which columns are numerical or categorical (df.dtypes)
- 2. Determine what are the Training Labels and transform/create them as needed. In the SpaceX case, we took 8 unique Categorical Landing Outcomes and transformed them into a Binary column.

URL: https://github.com/rsx8/IBM_DS_SpaceX_Capstone

EDA with Data Visualization

In order to identity patterns the following graphs were created:

- 1. Flight Number vs Launch Site
- 2. Payload Mass vs Launch Site
- 3. Success Rate vs Orbit Type
- 4. Flight Number vs Orbit Type
- 5. Payload Mass vs Orbit Type
- 6. Successes over the years

URL: https://github.com/rsx8/IBM DS SpaceX Capstone

EDA with SQL

SQL Queries performed:

- 1. Unique Launch Sites
- 2. Search records where launch site begins with the string 'CCA'
- 3. Total amount of payload launched by NASA
- 4. The average payload carried by Booster Version F9 V1.1
- 5. The data of the first successful ground landing
- 6. Boosters with success on a Drone Ship with a payload 4k-6K
- 7. The counts of success/failure regarding mission outcome
- 8. All the Booster version name
- 9. Counts of the landing outcomes

Build an Interactive Map with Folium

Folium Site Map Includes:

- 1. Location or all Launch Sites
- 2. Marker clusters of each Launch, colored green/red to easily show success/failure
- 3. Distance to infrastructure and points of interest such as urban centres and open areas (the coast).
- 4. The Equator relative to the Launch Site locations.

URL: https://github.com/rsx8/IBM DS SpaceX Capstone

Build a Dashboard with Plotly Dash

Plotly Dash:

- An interactive pie chart to show the success rate at each Launch Site or which Launch Site had the most successes across all Sites. This was to see if there was a pattern between Launch Site and Success.
- 2. A scatter plot that showed payload against success noting different booster versions. This was to see if there was a relationship between Success, Payload Mass and/or Booster Version:

URL: https://github.com/rsx8/IBM DS SpaceX Capstone

Predictive Analysis (Classification)

Steps for predictive Analysis:

- 1. Transform the data so that it removes any biases from where that data where values are large/small.
- 2. Split the data into Training/Test sets, usually 80%/20% split.
- 3. Select the desired algorithm (Logistic Regression, Support Vector Machine, Decision Tree, K Nearest Neighbour) and create a dictionary of different hyperparameters.
- 4. Use GridSearchCV to find the best hyperparameters and use the best hyperparameters to get an accuracy score.
- 5. Compare across multiple different algorithms (repeating steps 3 and 4) until you've found the model with greatest accuracy.
- Create and view the confusion matrix of the chosen model to quickly see how the model performs against, False Positives and False Negatives.

Flight Number vs. Launch Site

- 1. Success rate (Class = 1/Orange Points) improves as Flight Number increases.
- 2. High Chance of landing failure before Flight Number reaches 20
- 3. CCAFS SLC 40 is the most common Launch Site

Payload vs. Launch Site

- 1. VAFB SLC 4E Launch Site does not launch with a mass higher than 10,000 kg
- 2. Higher payloads greater than 8,000 kg tend to be more successful
- 3. KSC LC 39A has better success with < 5,000 kg and > 9,000 kg Payload Mass
- 4. Most launches occurred from site CCAFS SLC 40

Success Rate vs. Orbit Type

- 1. Success rate 100% for Orbits: ES-L1, GEO, HEO, SSO
- 2. Success rate 50%-85% for Orbits: GTO, ISS, LEO, MEO, PO and VLEO
- 3. Success rate 0% for SO Orbits

Flight Number vs. Orbit Type

- 1. As Flight number increases success rate increases
- 2. GTO and ISS have a mixed success rate.
- 3. ISS Orbit remains a consistent target for a launch
- 4. LEO Launches decline as the flight number increases and VLEO increases when LEO stops
- 5. VLEO has the greatest frequency of recent launches
- 6. Most launches where either targeting GTO, ISS or VLEO orbits

Payload vs. Orbit Type

- 1. VELO has the heaviest payloads at > 13,000 kg
- 2. The ISS Orbits have some outlier payloads but otherwise are consistent at 2,000 4,000 kg
- 3. GTO has a spread from 3,000 8000 kg but with inconsistent success rate.
- 4. SSO, HEO and ES-L1 where all successful with Payloads under or equal to ~4,000 kg
- 5. As Payload increases, generally success rate increases, except for GTO.

Launch Success Yearly Trend

- 1. As the years increase, generally the success rate has increased.
- 2. This peaked in 2019 at about 90%
- 3. Before 2013 the chance of success was 0%

All Launch Site Names

Key points:

1. There are 4 launch Sites listed in the SPACEXTBALE

Launch Site Names Begin with 'CCA'

* sqlite Done.	e:///my_data	a1.db							
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2010-06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05-22	7:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10-08	0:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

- 1. 5 records where the Launch_Site begins with 'CCA'
- 2. It Shows a range of Booster Versions
- 3. Mission Outcome is not directly related to Landing Outcome they both don't need to be successful.

Total Payload Mass

```
Display the total payload mass carried by boosters launched by NASA (CRS)

**sql SELECT SUM(PAYLOAD_MASS__KG_) FROM SPACEXTABLE WHERE Payload like '%CRS%'

**sqlite:///my_datal.db
Done.

**SUM(PAYLOAD_MASS__KG_)

111268
```

Key points:

1. The total sum of the payloads that have been launched by Space X for NASA (CRS) is **111,269 kg**

Average Payload Mass by F9 v1.1

```
Display average payload mass carried by booster version F9 v1.1

*sql SELECT AVG(PAYLOAD_MASS__KG_) FROM SPACEXTABLE WHERE Booster_Version like 'F9 v1.1%'

* sqlite:///my_data1.db
Done.

AVG(PAYLOAD_MASS__KG_)

2534.6666666666665
```

Key points:

1. The average payload mass carried by booster version F9 v1.1 is: **2,534 kg**

First Successful Ground Landing Date

%sql SELECT * FROM SPACEXTABLE WHERE Landing_Outcome = 'Success (ground pad)' ORDER BY DATE ASC LIMIT 3										
* sqlite Done.	* sqlite:///my_data1.db Done.									
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome	
2015-12-22	1:29:00	F9 FT B1019	CCAFS LC-40	OG2 Mission 2 11 Orbcomm-OG2 satellites	2034	LEO	Orbcomm	Success	Success (ground pad)	
2016-07-18	4:45:00	F9 FT B1025.1	CCAFS LC-40	SpaceX CRS-9	2257	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)	
2017-02-19	14:39:00	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	2490	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)	

- 1. The first successful Ground Landing was on the 22nd of December 2015
- 2. The second successful Ground Landing was in July of 2016.
- 3. The third successful Ground Landing was in February of 2017.

Successful Drone Ship Landing with Payload between 4000 and 6000

Key points:

1. Only 4 launches (with payloads 4000-6000kg) have had a successful landing on a Drone Ship.

Total Number of Successful and Failure Mission Outcomes

- 1. Nearly all Mission Outcomes have been a success.
- 2. This is in contrast the landing outcomes (seen in earlier slides) that have not always been successful.

Boosters Carried Maximum Payload

2015 Launch Records

```
* sqlite://my_datal.db
Done.

* Month Landing_Outcome Booster_Version Date

01 Failure (drone ship) F9 v1.1 B1012 2015-01-10

04 Failure (drone ship) F9 v1.1 B1015 2015-04-14
```

- 1. There have been 2 failed outcomes when landing on Drone Ship in 2015
- 2. They both used the same Booster Version

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.

%sql SELECT Landing_Outcome, COUNT(*) AS CNT FROM SPACEXTABLE WHERE DATE > '2010-06-04' AND DATE < '2017-03-20' GROUP BY Landing_Outcome ORDER BY CNT DESC

* sqlite:///my_data1.db

Done.	
Landing_Outcome	CNT
No attempt	10
Success (drone ship)	5
Failure (drone ship)	5
Success (ground pad)	3
Controlled (ocean)	3
Uncontrolled (ocean)	2
Precluded (drone ship)	1

Failure (parachute)

- 1. In 10 launches, no attempt to land was made (this was the most common option between 2010 and 2017)
- 2. Success and Failure on Drone Ship landings were equal (at 5 counts each)
- 3. Controlled landing on a ground pad or controlled landing into the ocean were the next most common (and equal at 3 counts each).
- 4. Only 8 successful landings recorded against 22 unsuccessful landings.

Location of 4 Launch Sites used by SpaceX

Successes and Failures from each Site (Zoomed out)

Successes and Failures from each Site (Zoomed In)

- 1. More launches on the East Coast
- More successes than failures at KSC LC39A

Distance From Landmarks

- 1. Launch Sites are usually near the coast to within a few kilometres.
- 2. The same is true for Railways, Roads.
- 3. City's (Orlando in the case of the image left) are a long distance away of upwards of 70km.

Launch Site Successes

Key Points:

1. KSC LC-39A had the most successful landings out of the 4 launch sites.

Launch Site with highest success rate

- 1. CCAFS SLC-40 had the highest success rate at 42.9%
- 2. KSC LC-39A (previous slide) may have had the most successes, but it also had the poorest success rate (23.1%) out of all the Launch Sites.

- Across all Payloads,
 Booster Version FT has the most successes
- 2. Booster Version v1.1 has the most failures

Key Points:

1. Only 2 Booster Versions carry over 5K payloads and these usually end unsuccessfully.

- 1. Payloads between 2K and 4K are the only interval where Success is more likely than failure.
- 2. Again, Success is most likely using the FT.

- Payloads between 0 and
 2K had the lowest
 success rate.
- 2. Closely followed by the range 4K 6K.

Classification Accuracy

- Decision Tree has marginally the best accuracy.
- 2. Accuracy obtained from best_score_ from the GridSearchCV object created for Algorithm

Confusion Matrix

The Confusion Matrix shows the following:

- 1. For all that landed, the model predicted correctly that it would land.
- 2. The model found it harder to predict if a Falcon 9 Rocket would not land. It Predicted 3 False Positives and 3 True Negatives.
- 3. All Confusion Matrixes where the same as where the classification reports below:

Classificatio	n report for precision			support
0	1.00	0.50	0.67	6
1	0.80	1.00	0.89	12
accuracy			0.83	18
macro avg	0.90	0.75	0.78	18
weighted avg	0.87	0.83	0.81	18

Conclusions

- The more launches that have occurred, the greater the chance of success
- The Booster Version FT is likely to produce the greatest chance of success
- Launch Sites are near the coast, close to the Equator, infrastructure but away from cities
- Launch Site CCAFS SLC-40 has the highest chance of success
- Various classification models return similar results and have a problem returning False Positives.
- Orbits ES-L1, GEO, HEO, SSO have the best success rate.

Appendix

Model Accuracies

Classification	report for precision	_	_	
	precision	recuir	11 30010	заррог с
0	1.00	0.50	0.67	6
1	0.80	1.00	0.89	12
accuracy			0.83	18
macro avg	0.90	0.75	0.78	18
weighted avg	0.87	0.83	0.81	18
Classification	report for	Support	Vector Mach	ine
	precision			
	precision	recarr	11-30016	support
0	1.00	0.50	0.67	6
1	0.80	1.00	0.89	12
accuracy			0.83	18
macro avg	0.90	0.75	0.78	18
weighted avg	0.87	0.83	0.81	18

Classification	n report for	Decision	Tree			
	precision	recall	f1-score	support		
0	1.00	0.50	0.67	6		
_				_		
1	0.80	1.00	0.89	12		
				4.0		
accuracy			0.83	18		
macro avg	0.90	0.75	0.78	18		
weighted avg	0.87	0.83	0.81	18		
Classification report for K Nearest Neighbour						
	precision	recall	f1-score	support		
0	1.00	0.50	0.67	6		
1	0.80	1.00	0.89	12		
accuracy			0.83	18		
macro avg	0.90	0.75	0.78	18		
weighted avg	0.87	0.83	0.81	18		
merbineed ava	3.07	0.05	0.01	10		

