CS 105: Department Introductory Course on Discrete Structures

Instructor: S. Akshay

Aug 01, 2025

Lecture 02 – Propositions, Predicates, Boolean Algebra

L

Recap: Logistics

Course hours: Slot 10; Tue 14:00-15:25, Thu 14:00-15:25

Office hours: To be announced.

Problem Solving/Help Session (Optional): One hour per week, run by teaching assistants. (Time and Venue to be decided)

Course material, references will be posted at

- ▶ http://www.cse.iitb.ac.in/~akshayss/teaching.html
- ▶ Announcements, Problem sheets and Online Discussion: Piazza
 - https://piazza.com/iit_bombay/fall2025/cs105
- ▶ One problem sheet will be posted (almost) every week!

Attendance

As per Institute rules: SAFE

Recap: More Logistics

Evaluation

- ▶ Quizzes: 30%
- ▶ Midsem: 25%
- ► Endsem: 40%
- ▶ Other {participation, pop quizzes, assignments}: 5%

Minimum requirements (Tentative)

10/40 in endsem + 15/60 in remaining.

How to reach me after class?

- ► Send a message on piazza
- ▶ Drop by my office...
 - ► CS 507 (5th floor of New CSE/CC building)
 - ► Temporarily CC 313 (3rd floor!)

Course Outline

What we will cover in this course

- 1. Mathematical reasoning: proofs and structures
- 2. Counting and combinatorics
- 3. Elements of graph theory

Textbooks

- ▶ Discrete Mathematics and its Applications with Combinatorics and Graph Theory, by Kenneth H Rosen.
- ▶ Introduction to Graph theory by Douglas B West.
- ▶ Discrete Mathematics by Norman Biggs.
- ▶ More will be listed on webpage as we go along.

Chapter 1: Proofs and Logical reasoning

Outline of next few classes

- ▶ Propositions, statements
- ▶ What/why of proofs and some generic proof strategies
- ► Mathematical induction

Propositional calculus and Boolean algebra

A proposition is a statement that is either true or false (but not both).

► It is raining

Combining propositions

- ightharpoonup: It is not raining
- \triangleright $p \lor q$: It is raining or there is a sprinkler overhead.
- $\triangleright p \land q$: It is raining and I don't have an umbrella
- $\triangleright p \rightarrow q$: If it is raining then it will be wet.
- $p \leftrightarrow q$: p if and only if q (also written p iff q)
- ▶ p, q are called atomic propositions (basic propositions that can't be further divided) and $\lor, \neg, \land, \rightarrow, \leftrightarrow$ are Boolean connectives.
- Ex: You can go for excursion only if you are in CSE and if you aren't a freshie. $e \to (c \land \neg f)$.

Truth Tables

p	$\neg p$
Т	F
F	Т

p	q	$p \lor q$	$p \wedge q$	$p \rightarrow q$	$p \leftrightarrow q$
F	F	F	F	T	T
F	Т	Т	F	Т	F
Т	F	Т	F	F	F
Τ	Т	Т	Т	Т	Т

- ightharpoonup: It is not raining
- \triangleright $p \lor q$: It is raining or there is a sprinkler overhead.
- $\triangleright p \land q$: It is raining and I don't have an umbrella
- $\triangleright p \rightarrow q$: If I am elected then I will lower taxes.

Logical Equivalence: Truth tables are identical!

- ▶ $p \rightarrow q$ is "same as" or logically equivalent to $\neg p \lor q$
- ▶ $p \leftrightarrow q$ is equivalent to $(p \to q) \land (q \to p)$
- ▶ You will pass this course iff you score $\geq 10/40$ in endsem and $\geq 15/60$ in rest.

Some more exercises

Precedence of Operators

 \neg then \wedge then \vee then \rightarrow then \leftrightarrow

Exercise: Construct the truth table of the compound proposition $(p \lor \neg q) \to (p \land q)$

Exercise: Show that the following are equivalent

- 1. De-Morgan's Laws
 - 1.1 $\neg (p \land q) \equiv \neg p \lor \neg q$
 - 1.2 $\neg (p \lor q) \equiv \neg p \land \neg q$
 - 2. $\neg \neg p \equiv p$ (Double negation)
 - 3. $\neg(p \to q) \equiv p \land \neg q$

So idea: just use previous proved equivalences! When in doubt, fall back to truth tables.

8

Recap: Negation, Converse and Contrapositive

Consider the proposition: If it rains today, the match is cancelled. $(p \to q)$

- 1. What is its converse? $(q \rightarrow p)$
- 2. What is its contra-positive? $(\neg q \rightarrow \neg p)$
- 3. What is its negation? $\neg(p \rightarrow q)$

Which of these are equivalent to the original proposition? Why?

Exercise

Consider the proposition: If I will eat samosa or bhel puri, then I will not eat rice.

- 1. Write it as a Boolean combination of atomic propositions.
- 2. Write its converse, negation and contra-positive, both in plain english and formally.

Predicates and quantifiers

Can all mathematical statements be written as above?

Consider again...

- $\forall n \in \mathbb{N} \ (n+1)(n-1) = (n^2 1)$
- $\forall x, \exists y, x, y \in \mathbb{Z} \ x = y + 8$
- \triangleright $\forall n$ stands for all values of n in a given domain
- ightharpoonup $\exists n$ stands for exists n
- \triangleright \in is the element of symbol
- ▶ N stands for all natural numbers
- \triangleright Z stands for all integers
- **▶** ℝ, ℚ, ...

Some propositions are not so easy to "determine" \dots

 $- e.g., 2^{67} - 1 is not a prime.$

A bit more about quantifiers

Negating Quantifiers

▶ What is the negation of "All students have MA105"?

There exists a student who does not have MA105.

- $ightharpoonup \neg \forall x P(x) \equiv \exists x \neg P(x)^{-1}$
 - $ightharpoonup \neg \forall x P(x)$ is true iff $\forall x P(x)$ is false
 - \blacktriangleright $\forall x P(x)$ is false iff there is some x s.t. $\neg P(x)$ is true.
 - \blacktriangleright i.e., $\exists x \neg P(x)$.
- $ightharpoonup \neg \exists x P(x) \equiv \forall x \neg P(x)$

Exercises

- 1. What is the negation of $\forall x(x^2 > x)$? $\exists x(x^2 \le x)$
- 2. Show that $\neg \forall x (P(x) \to Q(x)) \equiv \exists x (P(x) \land \neg Q(x)).$
- 3. Use predicates and quantifiers to say "Every email larger than 10MB will be compressed." $\forall M(S(M, 10) \rightarrow C(M))$

¹≡ stands for "is logically equivalent to".