Selezione da Analisi Matematica B

Davide Borra, Silvano Delladio, Filippo Sarzi Puttini, Filippo Troncana ${\rm A.A.~2023/2024}$

Indice

1	Teo	ria della Misura	5
	1.1	Misure esterne, definizione e prime proprietà	5
	1.2	Misure esterne metriche, Boreliane, Borel-regolari, di Radòn	8

4 INDICE

Capitolo 1

Teoria della Misura

1.1 Misure esterne, definizione e prime proprietà

Definizione 1.1: Misura esterna

Sia X un insieme e 2^X il suo insieme delle parti.

Una *misura esterna* sull'insieme X è una mappa $\varphi: 2^X \to [0, +\infty]$ tale che

- 1. $\varphi(\varnothing) = 0$;
- 2. $\varphi(E) \leq \varphi(F)$, se $E \subset F \subset X$;
- 3. $\varphi(\cup_j E_j) \leq \sum_j \varphi(E_j)$, se $\{E_j\}$ è una famiglia numerabile di sottoinsiemi di X.

Esempio 1.1: Misura esterna banale

Sia $X \neq \emptyset$ e sia

$$\varphi(E) := \begin{cases} 0 & \text{se } E = \emptyset \\ 1 & \text{altrimenti} \end{cases}$$

 φ è una misura esterna su X.

Esempio 1.2: Misura esterna di Dirac

Sia $X \neq \emptyset$, $x_0 \in X$ e sia

$$\varphi_{x_0}(E) := \begin{cases} 1 & \text{se } x_0 \in E \\ 0 & \text{altrimenti} \end{cases}$$

 φ_{x_0} è una misura esterna su X.

Esempio 1.3: Misura del conteggio

Sia X un insieme. La mappa $\varphi(E) := \#E$ è una misura esterna su X.

Osservazione 1.1: Misure di Peano-Jordan

La misura (inferiore/superiore) di Peano-Jordan (come definita sotto) non è una misura.

Notazione

Un intervallo in \mathbb{R}^n è qualsiasi insieme che sia prodotto di intervalli di \mathbb{R} .

Notazione

La misura elementare di un intervallo aperto (ma pure del chiuso) $(a,b) \subset \mathbb{R}$ è b-a e la misura elementare di un intervallo prodotto è il prodotto delle misure elementari delle sue componenti. Se \mathcal{F} è una famiglia di intervalli, denotiamo con $S(\mathcal{F})$ la somma delle misure elementari di ciascun intervallo.

Dimostrazione

Sia $A \subseteq \mathbb{R}^2$ e siano:

• Misura inferiore di Peano-Jordan: definiamo l'insieme di famiglie di intervalli

$$\mathcal{I}_{-}(A) := \left\{ \{I_i\}_1^n : I_i \text{ intervalli, } \bigcup_{i=1}^n I_i \subseteq A, \quad I_i \cap I_j = \emptyset \quad \text{se } i \neq j \right\}$$

Allora la misura inferiore di Peano-Jordan è data da

$$J_{-}(A) := \begin{cases} 0 & \text{se } \mathcal{I}_{-}(A) = \emptyset \\ \sup_{\mathcal{I}_{-}(A)} S & \text{altrimenti} \end{cases}$$

Osserviamo che se non richiedessimo gli intervalli disgiunti, questa esploderebbe sempre all'infinito. Verifichiamo gli assiomi di misura:

- 1. $J_{-}(\varnothing) = 0$ banalmente.
- 2. Osserviamo che \mathcal{I}_{-} è monotono per inclusione, come lo è sup, dunque lo è anche J_{-} .
- 3. Consideriamo $E_1:=\mathbb{Q}^2\cap(0,1)^2$ e $E_2:=(0,1)^2\setminus E_1$. Per densità di \mathbb{Q}^2 abbiamo che $J_-(E_1)=J_-(E_2)=0$ ma $J_-(E_1\cup E_2)>0$, dunque cade la disuguaglianza richiesta.
- Misura superiore di Peano-Jordan: definiamo l'insieme di famiglie di intervalli

$$\mathcal{I}_{+}(A) := \left\{ \{I_{i}\}_{1}^{n} : I_{i} \text{ intervalli, } \bigcup_{i=1}^{n} I_{i} \supseteq A, \quad I_{i} \cap I_{j} = \emptyset \text{ se } i \neq j \right\}$$

Notiamo che questo è definito per gli insiemi limitati, dunque per questi definiamo la misura superiore di Peano-Jordan

$$J_{+}(A) := \begin{cases} 0 & \text{se } \mathcal{I}_{+}(A) = \varnothing \\ \inf_{\mathcal{I}_{+}(A)} S & \text{se } A \text{ limitato} \\ \lim_{\rho \to +\infty} J_{+}(A \cap B_{\rho}(\mathbf{0})) & \text{altrimenti} \end{cases}$$

L'esistenza del limite segue dalla monotonia inversa di \mathcal{I}_+ e inf. Verifichiamo gli assiomi di misura esterna

- 1. $J_{+}\varnothing = 0$ banalmente.
- 2. Abbiamo già dimostrato la monotonia.
- 3. Osserviamo che $J_{+}(\mathbb{Q}\cap]0,1[)>0$, mentre (indicizzando $\mathbb{Q})\sum_{i}J_{+}(\{q_{i}\})=0$.
- Misura di Peano-Jordan sia $D \subset 2^{\mathbb{R}^2}$ la famiglia di sottoinsiemi tali che la misura inferiore e la misura superiore coincidono. Il dominio della mappa $J(A) := J_-(A) = J_+(A)$ non corrisponde a tutte le parti di \mathbb{R} come visto sopra, dunque non è una misura esterna.

Definizione 1.2: Insiemi misurabili

Siano X un insieme e φ una misura esterna su X.

Un sottoinsieme $E \subset X$ si dice *misurabile* per φ se per ogni $A \subset X$ vale: $\varphi(A) = \varphi(A \cap E) + \varphi(A \cap E^c)$. Denotiamo la famiglia dei misurabili per φ con \mathcal{M}_{φ} .

Osservazione 1.2

Per il terzo punto della definizione 1.1 potremmo "rilassare" questa definizione con $\varphi(A) \geq \varphi(A \cap E) + \varphi(A \cap E^c)$

Esempio 1.4: Insiemi misurabili per gli esempi precedenti

Negli esempi 1.1, 1.2 e 1.3 abbiamo rispettivamente:

$$\mathcal{M}_{\varphi} = \{\varnothing, X\}, \qquad \mathcal{M}_{\varphi} = 2^X, \qquad \mathcal{M}_{\varphi} = 2^X$$

.

Teorema 1.1: *** | Fondamentale sui misurabili

Sia X un insieme e φ una misura esterna su X. Valgono i seguenti:

- 1. \mathcal{M}_{φ} è chiusa per complemento.
- 2. Gli insiemi di misura nulla sono misurabili.
- 3. \mathcal{M}_{φ} è chiusa per intersezione (unione) finita.
- 4. \mathcal{M}_{φ} è chiusa per unione numerabile di insiemi disgiunti.
- 5. φ è addittiva per unione numerabile di insiemi disgiunti.

Dimostrazione

- 1. Banale per definizione di misurabile.
- 2. Sia E tale che $\varphi(E)=0$. Abbiamo che $0 \le \varphi(A \cap E) \le \varphi(E)=0$ e quindi $\varphi(A) \le \varphi(E)+\varphi(A \cap E^c) \le \varphi(A)$.
- 3. Dimostriamo il caso con due insiemi, dato che l'intersezione finita è semplicemente un'intersezione binaria ripetuta. Siano $E, F \in \mathcal{M}_{\varphi}$ e sia $A \in 2^X$. Vale

$$\varphi(A) \ge \varphi(A \cap E) + \varphi(A \cap E^c)$$

$$\varphi(A\cap E) \geq (A\cap E\cap F) + (A\cap E\cap F^c)$$

$$\varphi(A \cap E^c) \ge (A \cap E^c \cap F) + (A \cap E^c \cap F^c)$$

Quindi combinando il tutto otteniamo

$$\varphi(A) \ge \varphi(A \cap (E \cap F)) + \varphi(A \cap (E \cap F)^c)$$

- 4. TODO
- 5. TODO

Osservazione 1.3

Posta una famiglia $\{E_i\}_{I\subset\mathbb{N}}$ di insiemi misurabili, possiamo ottenere una famiglia $\{E_i^*\}_{I\subset\mathbb{N}}$ di insiemi misurabili disgiunti ma con la stessa unione ponendo

$$E_1^* := E_1, \qquad E_i^* := E_i \setminus \bigcup_{j=1}^{i-1} E_j$$

Un po' à la ortonormalizzazione di Gram-Schmidt.

Così possiamo potenziare il punto 4 del teorema 1.1 permettendo famiglie numerabili arbitrarie.

Definizione 1.3: σ -algebra

Sia X un insieme e sia Σ una famiglia non vuota di suoi sottoinsiemi tale che:

- Σ è chiusa rispetto al complementare
- $\bullet~\Sigma$ è chiusa rispetto all'unione numerabile

Allora Σ si dice σ -algebra su X.

Osservazione 1.4

Il secondo punto è equivalente al richiedere la chiusura per intersezione arbitraria.

Esempio 1.5: Esempi di σ -algebre

Sia X un insieme. Si ha che $\{\varnothing,X\}$ e 2^X sono entrambe σ -algebre, e per ogni σ -algebra Σ si ha $\{\varnothing,X\}\subset\Sigma\subset 2^X$.

Esempio 1.6: σ -algebra dei numerabili/conumerabili

La famiglia $\Sigma := \{ E \in \mathbb{C} \ 2^{\mathbb{R}} : \#E \leq \#\mathbb{N} \lor \#E^c \leq \#\mathbb{N} \}$ è una σ -algebra.

Esempio 1.7: Non σ -algebra dei finiti/cofiniti

La famiglia $\Sigma := \{E \in \subset 2^{\mathbb{N}} : \#E \in \mathbb{N} \lor \#E^c \in \mathbb{N}\}$ è chiusa rispetto al complementare ma non è chiusa rispetto all'unione numerabile, basti pensare a $\{\{2n\}\}_{\mathbb{N}}$.

Proposizione 1.1: ° | σ -algebra dei misurabili

Combinando il teorema 1.1, l'osservazione 1.3 e la definizione 1.3 è automatico osservare che \mathcal{M}_{φ} è una σ -algebra.

Teorema 1.2: ** | Continuità dal basso/alto

Sia X un insieme, φ una misura esterna e siano $\{E_i\}_I$ e $\{F_j\}_J$ due famiglie numerabili di misurabili, rispettivamente crescenti e decrescenti con $\varphi(F_1) \in \mathbb{R}$. Valgono:

$$\varphi\left(\bigcup_{i\in I} E_i\right) = \sup_{i\in I} \varphi(E_i) \qquad \varphi\left(\bigcap_{j\in J} F_j\right) = \inf_{j\in J} \varphi(F_j)$$

Dimostrazione

La dimostrazione non è banale ed è lasciata a chi deciderà di studiarla come esercizio di ricerca in note più complete.

Osservazione 1.5: Sulle ipotesi della continuità dall'alto

Se non assumiamo tra le ipotesi del teorema 1.2 che $\varphi(F_1)$ sia finita, la tesi potrebbe fallire. Poniamo $X=\mathbb{N}$ e $F_j:=\mathbb{N}_{\geq j}$ per ogni j. Abbiamo che per ogni j, $\varphi(F_j)=+\infty$, ma l'intersezione di tutta la famiglia è \varnothing che ha misura nulla.

1.2 Misure esterne metriche, Boreliane, Borel-regolari, di Radòn

Definizione 1.4: Misura di CARATHÉODORY

Sia (X, d) uno spazio metrico e φ una misura esterna. Questa si dice **misura di CARATHÉODORY** se è addittiva sugli insiemi con distanza maggiore di 0, ovvero le coppie di insiemi tali che

$$d(A,B) = \inf_{x \in A, y \in B} d(x,y) > 0$$

Teorema 1.3: *** | CARATHÉODORY

Sia φ una misura esterna di CARATHÉODORY su (X,d). Ogni sottoinsieme chiuso di X è misurabile.

Dimostrazione

Supponiamo che $C \in 2^X$ sia chiuso e $A \in 2^X$ qualsiasi. Vogliamo dimostrare che $\varphi(A) \ge \varphi(A \cap C) + \varphi(A \cap C^c)$ dato che il \le ce l'abbiamo per la subaddittività.

Se $\varphi(A) = +\infty$ la tesi è banale, dunque supponiamo che sia finita e per $h \in \mathbb{N}$ definiamo $C_h := \{x \in X : d(\{x\}, C) \le 2^{-h}\}$: osserviamo che è chiuso, in quanto controimmagine di $[0, 2^{-h}]$ per una funzione continua. Segue dunque che:

$$i) d(A \cap C, A \cap C_h^c) = 2^{-h}, \quad ii) (A \cap C) \cup (A \cap C_h^c) \subset A$$

Dunque per la monotonia di φ abbiamo $\varphi(A) \geq \varphi(A \cap C) + \varphi(A \cap C_h^c)$. Dobbiamo solamente dimostrare che con $h \to +\infty$, il nostro C_h tende a C. innanzitutto osserviamo che il limite esiste per monotonia, e inoltre abbiamo che

$$\forall h \in \mathbb{N}, C \subset C_{h+1} \subset C_h$$

E dunque per de Morgan