Math 170B Winter 2017

Problem Set 4

Lecturer: Steven Heilman Kyle Barron

Exercise 1

Compute the characteristic function of a uniformly distributed random variable on [-1,1]. (Some of the following formulas might help to simplify your answer: $e^{it} = \cos(t) + i\sin(t)$, $\cos(t) = [e^{it} + e^{-it}]/2$, $\sin(t) = [e^{it} - e^{-it}]/[2i]$, $t \in \mathbb{R}$.) (Here $i := \sqrt{-1}$.)

Solution:

$$\phi_X(t) = \mathbf{E}[e^{itx}]$$

$$= \frac{1}{2} \int_{-1}^1 e^{itx} dx$$

$$= \frac{1}{2it} e^{itx} \Big|_{-1}^1$$

$$= \frac{1}{2it} \left(e^{it} - e^{-it} \right)$$

$$= \frac{\sin(t)}{t}.$$

Exercise 2

Let X be a random variable. Assume we can differentiate under the expected value of Ee^{itX} any number of times. For any positive integer n, show that

$$\left. \frac{d^n}{dt^n} \phi_X(t) \right|_{t=0} = i^n \mathbf{E}(X^n).$$

So, in principle, all moments of X can be computed just by taking derivatives of the characteristic function.

Proof:

$$\frac{d^n}{dt^n}\phi_X(t) = \frac{d^n}{dt^n} \int_{-\infty}^{\infty} e^{itx} f_X(x) dx$$
$$= \int_{-\infty}^{\infty} \frac{d^n}{dt^n} e^{itx} f_X(x) dx$$
$$= \int_{-\infty}^{\infty} (ix)^n e^{itx} f_X(x) dx.$$

Problem Set 4 4-2

Now considering the special case where t = 0, we get that

$$\frac{d^n}{dt^n}\phi_X(t)\bigg|_{t=0} = \int_{-\infty}^{\infty} (ix)^n f_X(x) dx$$
$$= i^n \int_{-\infty}^{\infty} x^n f_X(x) dx$$
$$= i^n \mathbf{E}[X^n]$$

Exercise 3

Let X be a random variable such that $E[|X|^3] < \infty$. Prove that for any $t \in \mathbb{R}$,

$$Ee^{itX} = 1 + itEX - t^2EX^2/2 + o(t^2).$$

That is,

$$\lim_{t \to 0} t^{-2} |\mathbf{E}e^{itX} - [1 + it\mathbf{E}X - t^2\mathbf{E}X^2/2]| = 0.$$

(Hint: it may be helpful to use Jensen's inequality to first justify that $E|X|<\infty$ and $EX^2<\infty$. Then, use the Taylor expansion with error bound: $e^{iy}=1+iy-y^2/2-(i/2)\int_0^y(y-s)^2e^{is}ds$, which is valid for any $y\in\mathbb{R}$.)

Actually, this same bound holds only assuming $EX^2 < \infty$, but the proof of that bound requires things we have not discussed.

Solution: Let X be a random variable with $E[|X|^3] < \infty$. Recall that Jensen's inequality says that for a twice differentiable, convex function f, $E[f(X)] \ge f(E[X])$.

I'll first show that $\mathrm{E}[|X|] < \infty$. Let $f(X) = |X|^3$; note that this is a convex function. Then $\mathrm{E}[f(|X|)] = \mathrm{E}[|X|^3]$ and $f(\mathrm{E}[|X|]) = |\mathrm{E}[|X|]^3 = \mathrm{E}[|X|]^3$. We can now use Jensen's inequality.

$$\infty > \mathrm{E}[|X|^3] \ge |\mathrm{E}[|X|]|^3 = \mathrm{E}[|X|]^3.$$

Therefore, $\mathrm{E}[|X|] < \infty$.

I'll do a similar procedure to show that $E[X^2] < \infty$. Let $g(X) = |X|^{\frac{3}{2}}$. This is also a convex function. Then $E[g(X^2)] = E[|X|^3]$ and $g(E[X^2]) = |E[X^2]|^{\frac{3}{2}} = E[X^2]^{\frac{3}{2}}$. We can now use Jensen's inequality.

$$\infty > \mathrm{E}[|X|^3] \geq |\mathrm{E}[X^2]|^{\frac{3}{2}} = \mathrm{E}[X^2]^{\frac{3}{2}}.$$

Therefore, $E[X^2] < \infty$.

Exercise 4

(Convolution is Associative.) Let $g, h, d : \mathbb{R} \to \mathbb{R}$. Then for any $t \in \mathbb{R}$,

$$((g*h)*d)(t) = (g*(h*d))(t)$$

Problem Set 4 4-3

Proof:

$$((g*h)*d)(t) = \int_{-\infty}^{\infty} (g*h)(x)d(t-x)dx$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (g(s)h(x-s)ds)d(t-x)dx$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(s)h(x-s)d(t-x)dsdx$$

Exercise 5

Let X, Y, Z be independent and uniformly distributed on [0, 1]. Note that f_X is not a continuous function.

Using convolution, compute f_{X+Y} . Draw f_{X+Y} . Note that f_{X+Y} is a continuous function, but it is not differentiable at some points.

Using convolution, compute f_{X+Y+Z} . Draw f_{X+Y+Z} . Note that f_{X+Y+Z} is a differentiable function, but it does not have a second derivative at some points.

Make a conjecture about how many derivatives $f_{X_1+\cdots+X_n}$ has, where X_1,\ldots,X_n are independent and uniformly distributed on [0,1]. You do not have to prove this conjecture. The idea of this exercise is that convolution is a kind of average of functions. And the more averaging you do, the more derivatives $f_{X_1+\cdots+X_n}$ has.

Solution: Let X, Y, Z be independent and uniformly distributed over [0, 1]. First I'll compute f_{X+Y} . Recall that Proposition 2.60 says that $f_{X+Y}(t) = (f_X * f_Y)(t)$, for all $t \in \mathbb{R}$. Recall that by Definition 2.59, $(g * h)(t) := \int_{-\infty}^{\infty} g(x)h(t-x)dx$, for all $t \in \mathbb{R}$. Therefore,

$$f_{X+Y}(t) = (f_X * f_Y)(t)$$

$$= \int_{-\infty}^{\infty} f_X(x) f_Y(t-x) dx$$

$$= \int_0^1 1 \cdot f_Y(t-x) dx$$

$$= \int_{x \in [0,1] \cap [t-1,t]} 1 dx$$

Exercise 6

Construct two random variables X, Y such that X and Y are each uniformly distributed on [0, 1], and such that $\mathbf{P}(X + Y = 1) = 1$.

Then construct two random variables W, Z such that W and Z are each uniformly distributed on [0, 1], and such that W + Z is uniformly distributed on [0, 2].

Problem Set 4 4-4

(Hint: there is a way to do each of the above problems with about one line of work. That is, there is a way to solve each problem without working very hard.)

Solution: For the first part, let X be uniformly distributed on [0,1] with $f_X(x) = 1$ for $x \in [0,1]$. Let Y = 1 - X. Then Y is also distributed uniformly on [0,1] and X + Y = X + 1 - X = 1.

For the second part, let W be distributed as $f_W(x) = 1$ for $x \in [0,1]$. Let Z = W. Then

$$\mathbf{P}(W+Z=t) = \mathbf{P}(2W=t) = \mathbf{P}\left(W = \frac{t}{2}\right).$$

So
$$f_{W+Z}(t) = \frac{1}{2}$$
 for $t \in (0,2)$.