Ciência da Computação

Prof. Tiago J. Arruda

Exercícios Propostos¹

Lista 5

∧ Segmentos orientados e vetores

1. Sendo ABCDEFGH o paralelogramo abaixo, expresse os seguintes vetores em função de $\overrightarrow{AB} = \overrightarrow{b}$, $\overrightarrow{AC} = \overrightarrow{c}$ e $\overrightarrow{AF} = \overrightarrow{f}$.

(a) \overrightarrow{BF}

(d) \overrightarrow{BG}

(g) $\overrightarrow{AD} + \overrightarrow{HG}$

(b) \overrightarrow{AG}

(e) \overrightarrow{HB}

(h) $\overrightarrow{HF} + \overrightarrow{AG} - \overrightarrow{EF}$

(c) \overrightarrow{AE}

- (f) $\overrightarrow{AB} + \overrightarrow{FG}$
- (i) $2\overrightarrow{AD} \overrightarrow{FG} \overrightarrow{BH} + \overrightarrow{GH}$
- 2. Seja ABCDEF um hexágono regular, como na figura abaixo. Expresse os seguintes vetores em função de \overrightarrow{DC} e \overrightarrow{DE} .

- (a) \overrightarrow{DF}
- (c) \overrightarrow{DB}
- (e) \overrightarrow{EC}
- (g) \overrightarrow{OB}

- (b) \overrightarrow{DA}
- (d) \overrightarrow{DO}
- (f) \overrightarrow{EB}
- 3. Seja ABCDEF um hexágono regular, como no exercício anterior. Expresse os seguintes vetores em função dos vetores $\overrightarrow{OD} = \overrightarrow{d} \ e \ \overrightarrow{OE} = \overrightarrow{e}$.
- $\begin{array}{ll} \text{(a)} & \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} + \overrightarrow{OE} + \overrightarrow{OF} & \text{(d)} & \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OD} + \overrightarrow{OE} \\ \text{(b)} & \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EF} + \overrightarrow{FA} & \text{(e)} & \overrightarrow{OC} + \overrightarrow{AF} + \overrightarrow{EF} \\ \end{array}$
- (c) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EF}$
- (f) $\overrightarrow{AF} + \overrightarrow{DE}$
- 4. Dado um triângulo $\triangle ABC$, sejam M, N e P os pontos médios dos segmentos AB, BCe CA, respectivamente. Exprima os vetores \overrightarrow{BP} , \overrightarrow{AN} e \overrightarrow{CM} em função dos vetores \overrightarrow{AB} $e \overrightarrow{AC}$.

¹Resolva os exercícios sem omitir nenhuma passagem em seus cálculos. Respostas sem resolução e/ou justificativa não serão consideradas. Data máxima de entrega: 28/05/2025 até 14:00 horas

Ciência da Computação

Prof. Tiago J. Arruda

- 5. Considere um quadrilátero ABCD, tal que $\overrightarrow{AD} = 5\vec{u}$, $\overrightarrow{BC} = 3\vec{u}$ e tal que $\overrightarrow{AB} = 2\vec{v}$.
 - (a) Determine o lado \overrightarrow{CD} e as diagonais \overrightarrow{BD} e \overrightarrow{CA} em função de \vec{u} e \vec{v} .
 - (b) Prove que ABCD é um trapézio usando vetores.

<u>∧</u> Dependência linear

- **6.** Considere os vetores $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OB}$, $\vec{c} = \overrightarrow{OC}$ e sejam $\overrightarrow{AD} = \frac{1}{4}\vec{c}$ e $\overrightarrow{BE} = \frac{5}{6}\vec{a}$. Escreva o vetor \overrightarrow{DE} em termos de \vec{a} , \vec{b} , \vec{c} .
- 7. Dados \vec{a} , \vec{b} vetores LI, sejam $\overrightarrow{OA} = \vec{a} + 2\vec{b}$, $\overrightarrow{OB} = 3\vec{a} + 2\vec{b}$ e $\overrightarrow{OC} = 5\vec{a} + x\vec{b}$. Determine x de modo que os vetores \overrightarrow{AC} e \overrightarrow{BC} sejam linearmente dependentes.
- 8. Sejam B um ponto no lado ON do paralelogramo AMNO e C um ponto na diagonal OM tais que $\overrightarrow{OB} = \frac{1}{n}\overrightarrow{ON}, \ \overrightarrow{OC} = \frac{1}{1+n}\overrightarrow{OM}$. Prove que os pontos A, B e C são colineares.
- 9. Mostre que se o conjunto de vetores $\{\vec{u}, \vec{v}\}$ é uma base para o plano, então o conjunto $\{2\vec{u} + \vec{v}, \vec{u} 2\vec{v}\}$ também é uma base para o plano.
- 10. Suponha que os vetores \vec{u} , \vec{v} , \vec{w} formam um conjunto LI.
 - (a) Mostre que os vetores $\vec{u} + \vec{v}$, $\vec{u} \vec{v} + \vec{w}$ e $\vec{u} + \vec{v} + \vec{w}$ também são LI.
 - (b) Seja $\vec{t} = a\vec{u} + b\vec{v} + c\vec{w}$. Mostre que os vetores $\vec{u} + \vec{t}$, $\vec{v} + \vec{t}$ e $\vec{w} + \vec{t}$ são LI se, e somente se, $a + b + c \neq -1$.

↑ Vetores em coordenadas e bases

- **11.** Dados os pontos A = (1, 3, 2), B = (1, 0, -1) e C = (1, 1, 0), determine as coordenadas:
 - (a) Dos vetores \overrightarrow{AB} , \overrightarrow{BC} e \overrightarrow{CA} .
- (c) Do ponto $C + \frac{1}{2}\overrightarrow{AB}$.

(b) Do vetor $\overrightarrow{AB} + \frac{2}{3}\overrightarrow{BC}$.

- (d) Do ponto $A 2\overrightarrow{BC}$.
- 12. Determine quais dos conjuntos de vetores abaixo são LI.
 - (a) $\{(2,3),(0,2)\}$

(d) $\{(1,-1,2),(1,1,0),(1,-1,1)\}$

(b) $\{(3,0),(-2,0)\}$

(e) $\{(1,-1,1),(-1,2,1),(-1,2,2)\}$

(c) $\{(2,3,4),(0,3,3)\}$

- (f) $\{(1,0,1),(0,0,1),(2,0,5)\}$
- 13. Faça a decomposição do vetor na base indicada.
 - (a) Exprima o vetor $\vec{w}=(1,1)$ como combinação linear de $\vec{u}=(2,-1)$ e $\vec{v}=(1,-1)$.
 - (b) Encontre as componentes do vetor $\vec{z}=(1,2,3)$ na base formada por $\vec{a}=(1,1,1),$ $\vec{b}=(0,1,1)$ e $\vec{c}=(1,1,0).$

Ciência da Computação

Prof. Tiago J. Arruda

- 14. Determine m, n de modo que os vetores \vec{u}, \vec{v} sejam linearmente dependentes.
 - (a) $\vec{u} = (1, m 1, m), \vec{v} = (m, 2n, 4)$
- (b) $\vec{u} = (1, m, n+1), \vec{v} = (m, n+1, 8)$
- **15.** Sejam $\vec{u} = (m, -1, m^2 + 1)$, $\vec{v} = (m^2 + 1, m, 0)$ e $\vec{w} = (m, 1, 1)$. Mostre que os vetores \vec{u} , \vec{v} e \vec{w} formam uma base para o espaço independentemente do valor de m.
- **16.** Considere fixada uma base de vetores $\mathcal{B} = (\vec{e_1}, \vec{e_2}, \vec{e_3})$. Sejam $\vec{f_1} = (1, 1, 0)_{\mathcal{B}}, \vec{f_2} = (1, 0, 1)_{\mathcal{B}}$ e $\vec{f_3} = (1, 1, -1)_{\mathcal{B}}$.
 - (a) Mostre que $C = (\vec{f_1}, \vec{f_2}, \vec{f_3})$ é uma base de \mathbf{V}^3 .
 - (b) Encontre as coordenadas do vetor $\vec{u} = (2, 3, 7)_{\mathcal{C}}$ na base \mathcal{B} .
 - (c) Encontre as coordenadas do vetor $\vec{v} = (2, 3, 7)_{\mathcal{B}}$ na base \mathcal{C} .