Consideriamo l'immersione standard $\mathbb{C} \subseteq \mathbb{H}$; spezziamo \mathbb{H} come somma diretta $\mathbb{C} \oplus \mathbb{C}j$. Notiamo che, siccome ji = -ij, abbiamo $aj = j\overline{a}$ per ogni $a \in \mathbb{C}$.

Sia V uno spazio vettoriale sinistro su \mathbb{H} ; consideriamo V come spazio vettoriale complesso tramite la restrizione di scalari a $\mathbb{C} \subseteq \mathbb{H}$. Una forma hermitiana quaternionica su V è una funzione \mathbb{R} -bilineare $h \colon V \times V \to \mathbb{H}$ tale che per ogni $x, y \in X$ abbiamo

- (a) h(ax, y) = ah(x, y) per ogni $a \in \mathbb{H}$, e
- (b) $h(y,x) = \overline{h(x,y)}$.

Se $a \in \mathbb{H}$, allora $h(x, ay) = h(x, y)\overline{a}$: infatti

$$h(x,ay) = \overline{h(ay,x)} = \overline{ah(y,x)} = \overline{h(y,x)}\overline{a} = h(x,y)\overline{a} \,.$$

Scomponiamo h come $h(x,y)=h_1(x,y)+h_2(x,y)j$, dove h_1 e h_2 sono forme \mathbb{R} -bilinieari $V\times V\to \mathbb{C}$. Allora h_1 è una forma \mathbb{C} -hermitiana, mentre h_2 è \mathbb{C} -bilineare e alternante. Infatti dall'uguaglianza h(ax,y)=ah(x,y) ricaviamo subito che h_1 e h_2 sono \mathbb{C} -lineari nella prima variabile; mentre, se $a\in \mathbb{C}$ abbiamo

$$h_1(x, ay) + h_2(x, ay)j = h(x, ay)$$

$$= h(x, y)\overline{a}$$

$$= (h_1(x, y) + h_2(x, y)j)\overline{a}$$

$$= h_1(x, y)\overline{a} + h_2(x, y)j\overline{a}$$

$$= \overline{a}h(x, y) + ah_2(x, y)j.$$

Inoltre $h(x,x) = \overline{h(x,x)}$ è sempre reale, da cui si ricava subito che $h_2(x,x) = 0$ per ogni $x \in V$, il che dimostra che h_2 è alternante.