TA Review

Autumn 2024

Tentative Schedule

- 1. Review of MV Optimization
- 2. Introduction to RF and new MV Optimization
- 3. Homework Review
 - Negative Sharpe in the Tangency Portfolio?
 - 2. Result instability and extreme allocation
- 4. Pandas
- 5. Virtual Environment Set Up

Lecture 1: Diversification and Mean-Variance

Mark Hendricks

Autumn 2024

FINM 36700: Portfolio Management

Return notation: one-period

notation	description	formula	example
r^i	return rate of asset i		
r^{f}	risk-free return rate		
$oldsymbol{ ilde{r}}^i$	excess return rate of asset i	$r^i - r^f$	

Hendricks, Autumn 2024 FINM 36700: Lecture 1 8/69

Two investments: bonds and stocks

Consider the following portfolio example

Table: Portfolio example

	return	allocation weight
bonds	r^b	W
stocks	rs	1 - w

Table: Return statistics notation

mean	variance	correlation
μ	σ^2	ho

Hendricks, Autumn 2024 FINM 36700: Lecture 1 9/69

Portfolio return stats

Investment portfolio return r^p has mean and variance of

$$\mu^p = w\mu^b + (1-w)\mu^s$$

$$\sigma_p^2 = w^2 \sigma_b^2 + (1 - w)^2 \sigma_s^2 + 2w(1 - w)\rho \sigma_s \sigma_b$$

Hendricks, Autumn 2024 FINM 36700: Lecture 1 10/69

Matrix Notation

$$\mu^p = \mathbf{w}' \,\mathbf{\mu}$$
$$\sigma_p^2 = \mathbf{w}' \Sigma \mathbf{w}$$

When do we have diversification?

Perfect correlation

Suppose that ho=1 .

► Then the volatility (standard deviation) of the portfolio is proportional to the asset allocation weights:

$$\sigma_p = w\sigma_b + (1 - w)\sigma_s$$

► Thus, both mean and volatility are linear in the allocations.

Hendricks, Autumn 2024 FINM 36700: Lecture 1 11/69

Imperfect correlation

Suppose that ho < 1 .

► The volatility function is convex,

$$\sigma_p < w\sigma_b + (1-w)\sigma_s$$

► Yet the mean return is still linear in the portfolio allocation:

$$\mu^p = w\mu^b + (1-w)\mu^s$$

Hendricks, Autumn 2024 FINM 36700: Lecture 1 12/69

When do we have a riskless portfolio?

Diversification Mean-Variance Excess Returns Appendix

A perfect hedge

The Big Picture

For
$$ho=-1$$
 ,

- ► The portfolio variance can be as small as desired, by choosing the appropriate allocation, w.
- ▶ In fact, $\sigma_p = 0$ if

$$w = \frac{\sigma_s}{\sigma_b + \sigma_s}$$

► Thus, a riskless portfolio can be formed from the two risky assets.

Hendricks, Autumn 2024 FINM 36700: Lecture 1 14/69

Riskless portfolios

- Above, we found that a riskless portfolio could be created if $\rho = -1$.
- ▶ Here, we found that a riskless portfolio can be created if $\rho = 0$.

Question:

How did the assumptions behind these conclusions differ?

Hendricks, Autumn 2024 FINM 36700: Lecture 1 26/69

Figure: Mean-variance frontier formed by 25 U.S. equity portfolios, sorted by size and and book/market.

Hendricks, Autumn 2024 FINM 36700: Lecture 1 32/69

MV solution

Thus, a portfolio ω^* is MV iff exists $\delta \in (-\infty, \infty)$ such that

$$oldsymbol{\omega}^* = \delta oldsymbol{\omega}^{ t t} + (1 - \delta) oldsymbol{\omega}^{ t v}$$

$$m{\omega}^{ ext{t}} \equiv \underbrace{\left(rac{1}{\mathbf{1}' \mathbf{\Sigma}^{-1} m{\mu}}
ight)}_{ ext{scaling}} \mathbf{\Sigma}^{-1} m{\mu}, \qquad m{\omega}^{ ext{v}} \equiv \underbrace{\left(rac{1}{\mathbf{1}' \mathbf{\Sigma}^{-1} \mathbf{1}}
ight)}_{ ext{scaling}} \mathbf{\Sigma}^{-1} \mathbf{1}$$

 $oldsymbol{\omega}^{ t t}$ and $oldsymbol{\omega}^{ t v}$ are themselves MV portfolios $(\delta=0,1)$

Hendricks, Autumn 2024 FINM 36700: Lecture 1 40/69

Figure: Illustration of two useful MV portfolios. The Global-Minimum-Variance portfolio as well as the zero-tangency portfolio.

Hendricks, Autumn 2024 FINM 36700: Lecture 1 42/69

MV investors

Consider MV investors, the investors for whom mean and variance of returns are sufficient statistics of the investment.

ightharpoonup Such investors will hold an MV portfolio, ω^* .

- ▶ Thus, these investors are holding linear combination of just two risky portfolios, ω^t and ω^v .
- So if in real markets all investors were MV investors, everyone would simply invest in two funds.
- ► Those wanting higher mean returns would hold more in the high-return MV, ω^{t} , while those wanting safer returns would hold more in the low-return MV, ω^{v} .

Hendricks, Autumn 2024 FINM 36700: Lecture 1 43/69

Pywidget

With a riskless asset

Now consider the existence a risk-free asset with return, r^f .

- ightharpoonup Suppose there are still n risky assets available, still notating the risky returns as r
- Let w denote a $n \times 1$ vector of portfolio allocations to the n risky assets.
- Since the total portfolio allocations must add to one, we have

allocation to the risk-free rate = $1 - \mathbf{w}'\mathbf{1}$

Hendricks, Autumn 2024 FINM 36700: Lecture 1 45/69

Mean excess returns

 μ denotes the vector of mean returns of risky assets, $\mathbb{E}\left[\boldsymbol{r} \right]$.

Let μ^p denote the mean return on a portfolio.

$$\mu^{p}=\left(1-oldsymbol{w}^{\prime}oldsymbol{1}
ight)r^{\scriptscriptstyle f}+oldsymbol{w}^{\prime}oldsymbol{\mu}$$

Use the following notation for excess returns:

$$ilde{\mu} = \mu - \mathbf{1}r^{f}$$

Thus the mean return and mean excess return of the portfolio are

$$\mu^{m{p}}=m{r}^{\scriptscriptstyle f}+m{w}'m{ ilde{\mu}} \ ilde{\mu}^{m{p}}=m{w}'m{ ilde{\mu}}$$

Hendricks, Autumn 2024 FINM 36700: Lecture 1 46/69

The MV problem with a riskless asst

A Mean-Variance portfolio with risk-free asset (\tilde{MV}) is a vector, \boldsymbol{w}^* , which solves the following optimization for some mean excess return number $\tilde{\mu}^p$:

$$\min_{oldsymbol{w}} oldsymbol{w}' oldsymbol{\Sigma} oldsymbol{w}$$
 s.t. $oldsymbol{w}' oldsymbol{ ilde{\mu}} = ilde{\mu}^{oldsymbol{p}}$

- ▶ In contrast to the MV problem, there is only one constraint.
- ► The allocation weight vector, **w** need not sum to one, as the remainder is invested in the risk-free rate.

Hendricks, Autumn 2024 FINM 36700: Lecture 1 48/69

Tangency portfolio and the Sharpe ratio

For an arbitrary portfolio, \mathbf{w}^p ,

$$\mathsf{SR}\left(\mathbf{w}^p\right) = \frac{\mu^p - r^t}{\sigma^p} = \frac{\tilde{\mu}^p}{\sigma^p}$$

The tangency portfolio, w^t , is the portfolio on the risky MV frontier with maximum Sharpe ratio.

$$\mathsf{SR}\left(oldsymbol{w}^*
ight) = \pm \sqrt{\left(oldsymbol{ ilde{\mu}}
ight)'oldsymbol{\Sigma}^{-1}oldsymbol{ ilde{\mu}}}$$

The SR magnitude is constant across all MV portfolios. (Sign depends on whether part of the efficient or inefficient frontier.)

Hendricks, Autumn 2024 FINM 36700: Lecture 1 54/69

Figure: Illustration of the MV frontier when a riskless asset is available. In this case, the MV portfolio frontier consists of two straight lines. The curved frontier is the MV frontier when a riskless asset is unavailable.

Hendricks, Autumn 2024 FINM 36700: Lecture 1 56/69

Capital Market Line

The Capital Market Line (CML) is the efficient portion of the MV frontier.

- ► The CML shows the risk-return tradeoff available to MV investors.
- ► The slope of the CML is the maximum Sharpe ratio which can be achieved by any portfolio.
- ► The inefficient portion of the MV frontier acheives the minimum (negative) Sharpe ratio by shorting the tangency portfolio.

Hendricks, Autumn 2024 FINM 36700: Lecture 1 55/69

In which assets/portfolios should the MV investor allocate?

Two-fund separation

Two-fund separation. Every MV portfolio is the combination of the risky portfolio with maximal Sharpe Ratio and the risk-free rate.

Thus, for an \widetilde{MV} investor the asset allocation decision can be broken into two parts:

- 1. Find the tangency portfolio of risky assets, \mathbf{w}^{t} .
- 2. Choose an allocation between the risk-free rate and the tangency portfolio.

Hendricks, Autumn 2024 FINM 36700: Lecture 1 57/69

The investor should choose a combination of the tangency portfolio and the risk-free rate and get the "X" expected return for a lower risk when compared to a portfolio with of risky assets that give the same "X" expected return.

Figure: Illustration of the MV frontier when a riskless asset is available. In this case, the MV portfolio frontier consists of two straight lines. The curved frontier is the MV frontier when a riskless asset is unavailable.

Hendricks, Autumn 2024 FINM 36700: Lecture 1 56/69

Homework

Tangency Allocation

• 1. Have higher mean returns.

• 2. Have lower volatility (variance).

• 3. Have lower covariance with other assets.