

Space Station Environmental Control & Life Support System Purge Control Pump Assembly Modeling and Analysis

September 10, 2001

R. Gregory Schunk NASA Marshall Space Flight Center Thermal and Fluid Systems Group/ED26

Overview

DA/PCPA/Manifold Integrated Analyses

Chiller Block Performance Analysis

PCPA Motor Heat Leak Study

Conclusions

Simplified DA/PCPA Block Diagram

Distillation Assembly Cut-away View

Purge Control Pump Assembly

PCPA Chiller Block and Attachment

Chiller Block Attachment to the Pump

Bottom View

Inside the PCPA

Individual Tube

Fluid Volume per tube=1.167in3

Volumetric displacement per tube (@24 rpm)=0.466in³/sec

Total displacement (4 tubes)= $\frac{1.87 \text{in}^3/\text{sec}}{1.87 \text{in}^3/\text{sec}}$

PCPA Pump Cycle

Assume P,T inside the piston remain at P_{sat} , T_{sat} . The mass drawn into the volume over a timestep, $\Delta \tau$, is equal to:

$$\Delta M = \int \frac{\dot{V}}{v_f + x_2 v_{fg}} d\tau + \int \frac{2\pi k x \Delta T}{ln(\frac{\Gamma_0}{s})h_{fg}} d\tau = \frac{\dot{V}}{v_f + x_2 v_{fg}} \int d\tau + \frac{2\pi k \Delta T}{ln(\frac{\Gamma_0}{s})h_{fg}} u \int \tau d\tau \dots (x = u\tau, \dot{V} = const)$$

$$\Delta M = \frac{\dot{V}}{v_f + x_2 v_{fg}} \Delta \tau + \frac{2\pi k \Delta T}{ln(\frac{\Gamma_0}{s})h_{fg}} u \frac{(\tau_f^2 - \tau_i^2)}{2} = \frac{\dot{V}}{v_f + x_2 v_{fg}} \Delta \tau + \frac{2\pi k \Delta T}{ln(\frac{\Gamma_0}{s})h_{fg}} u \frac{(\tau_f + \tau_i)}{2} \Delta \tau$$

$$\Delta M = \frac{\dot{V}}{v_f + x_2 v_{fg}} \Delta \tau + \frac{2\pi k \Delta T}{ln(\frac{\Gamma_0}{s})h_{fg}} u \frac{(\tau_f^2 - \tau_i^2)}{2} = \frac{\dot{V}}{v_f + x_2 v_{fg}} \Delta \tau + \frac{2\pi k \Delta T}{lin(\frac{\Gamma_0}{s})h_{fg}} u \frac{(\tau_f + \tau_i)}{2} \Delta \tau$$

$$\Delta M = \frac{\dot{V}}{v_f + x_2 v_{fg}} \Delta \tau + \frac{2\pi k \Delta T}{ln(\frac{\Gamma_0}{s})h_{fg}} u \frac{(\tau_f + \tau_i)}{2} = \frac{\dot{V}}{v_f + x_2 v_{fg}} \Delta \tau + \frac{2\pi k \Delta T}{lin(\frac{\Gamma_0}{s})h_{fg}} u \frac{(\tau_f + \tau_i)}{2} \Delta \tau$$

Derivation of Manifold (Chiller Block) Performance Equation

Heat transfer between the coolant and purge gas passages in the manifold:

Mass flow in the purge gas passage is inversely proportional to the condensation rate:

between 0.02 and 0.1 for the chiller block per hand calculation; larger value Let \xi=heat transfer rate/heat of condensation; expected values range indicates higher heat transfer rate. $\zeta = \overline{G\Delta T}$

$$\dot{\mathbf{M}} = \frac{\zeta}{(\mathbf{x}_1 - \mathbf{x}_2)}$$

Pump versus Manifold Parametric X₁=100%, T₁=100°F

$$\xi = \frac{\overline{G}\Delta T}{h_{fe}}$$

ξ is a dimensional parameter (units of mass flow rate) that describes the thermal performance of the manifold.

A larger value of ξ indicates a higher heat transfer rate between the coolant and purge lines.

Per hand calculations, ξ is expected to range between 0.02 and 0.1 for the manifold.

Steady State Results

PCPA Capacity with Chiller Block

PCPA Inlet Vapor Quality

Steady State Results (Cont'd)

PCPA Inlet Temperature

PCPA Chiller Block Thermal Model

- Imported chiller block model directly from CAD file (stereo-lithography translation).
 - Meshed as a solid with 10970 nodes and 43619 tetrahedrals.

PCPA Chiller Block Thermal Model Development

Boundary Conditions for PCPA Motor Heat Leak Study

Cold Case (Motor Dissipation=18 watts)

	Motor	Fluid	Motor	Outer
	Dissipation	Dissipation	Cooling Jacket Cooling Jacket	Cooling Jacket
			Temp	Temp
	(watts)	(watts)	(F)	(F)
Nominal Operational	4.5	0.85	29	99
Worst Case Operational	18.0	3.38	72	71
Loss of Cooling	18.0	3.38	92	95

Hot Case (Motor Dissipation=55 watts)

	Motor	Fluid	Motor	Outer
	Dissipation	Dissipation	Cooling Jacket Cooling Jacket	Cooling Jacket
			Temp	Temp
	(watts)	(watts)	(F)	(F)
Nominal Operational	13.8	0.85	65+ 6=71	62+ 4=69
Worst Case Operational	55.0	0	65+22=87	65+18=83
Loss of Cooling	Ϋ́	NA	NA.	N

Nodes: 14612 Elements: 45508

PCPA Temperature Distribution for the Worst Case Operational Scenario

Steady State PCPA Motor Heat Leak Study Results

THE PARTY OF THE P

Cold Case (Motor Dissipation=18 watts)

	Harmonic	Minimum	Maximum	Motor
	Drive	Peristaltic	Peristaltic	Temp
	Outer Temp	Tubing Temp	Tubing Temp	
	(F)	(F)	(F)	(F)
Nominal Operational	70.2	9.79	6.69	71.2
(25% Duty Cycle)				
Worst Case Operational	86.2	76.4	85.5	91.6
(100% Duty Cycle)				
Loss of Cooling	109.8	100.3	109.3	113.8

Hot Case (Motor Dissipation=55 watts)

	Harmonic	Minimum	Maximum	Motor
	Drive	Peristaltic	Peristaltic	Temp
	Outer Temp	Tubing Temp	Tubing Temp	
	(F)	(F)	(F)	(F)
Nominal Operational	78.5	72.3	77.8	80.4
(25% Duty Cycle)				
Worst Case Operational	126.8	92.3	110.3	137.5
(100% Duty Cycle)				
Loss of Cooling	NA	NA	ΥZ	N

Conclusions

- performance (mass flow rate) is enhanced via cooling of the housing and lowering of the Preliminary results from a thermal/flow analysis of the PCPA indicate that pump inlet vapor quality.
- dissipation, it appears that the peristaltic tubing temperature will still remain significantly Under a nominal operational profile (25% duty cycle or less), at the maximum motor below the expected UPA condenser temperature (78°F max versus ~105°F in the condenser) permitting condensation in the pump head.