STUDENTSFOCUS.COM

Reg. No.		П	II	

Question Paper Code: 57263

B.E. J B. Tech. DEGREE EXAMINATION, MA 735 NZ 2016

Sixth Semester

Computer Science and Engineering

CS 6660- COMPILER DI SIG

(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

PART A (10 x 20 Marks)

- 1. What are the two parts of a compile ion? Explain briefly.
- 2. Illustrate diagrammatically how a language is processed.
- 3. Write a grammar for branching statements.
- 4. List the operations on languages.
- 5. Write the algorithm for FIRST and FOLLOW in parser.
- 6. Define ambiguous gamarar.
- 7. What is DAG?
- 8. When does Dangling references occur?
- What are the properties of optimizing compiler?
- Write three address code sequence for the assignment statement
 d:= (a-b) + (a-c) + (a-c).

STUDENTSFOCUS.COM

11.	(a)	Describe the various phases of compiler and trace it with the program segment (position:= initial + rate * 60).					
		OR	2.4				
	(p)	(i) Explain language processing system with neat diagram.	(8)				
		(ii) Explain the need for grouping of phases.	(4)				
		(iii) Explain various Error encountered in different phases of compiler.	(4)				
			(.,				
12.	(a)	(i) Differentiate between lexeme, token and pattern.	(6)				
		(ii) What are the issues in lexical analysis ?	(4)				
		(iii) Write notes on regular expressions.	(6)				
	- 44	OR					
	(p)	(i) Write notes on regular expression to NFA. Contract Regular expression					
		to NFA for the sentence (alb)* a.	(10)				
		(ii) Construct DFA to recognize the language (a/b) ab.	(6)				
70	200						
13.	(a)	(i) Construct Sack implementation of shift reduce parsing for the grammar	(8)				
		E > E+E					
		E > E*E					
		E > (E)					
		E > id and the input string id1 + id2 id3					
		(ii) Explain LL(1) grammar for the entence S->iEts iEtSeS a E->b.	(8)				
	(b)	(i) Write an algorithm for Non recursive predictive parsing.	(6)				
		(ii) Explain Contact from a 20 to 1	(10)				
			(10)				
14.	(a)	(i) Construct a syntax directed definition for constructing a syntax tree for					
		assignment statements.	(8)				
		$S \rightarrow id := E$	(-)				
		E → E1 + E2					
		E →E1 * E2					
		E →-EI					
		E →(E1)					
		E →id					
		ii) Di uss specification of a simple type checker.	(8)				
	-	OR	1-7				
	(b)	Discuss different storage allocation strategies.	(16)				
	414						
15.	(a)	Explain Principal sources of optimization with examples.	(16)				
	70.50	OR	- 172				
	(p)	i) Explain various issues in the design of code generator.	(8)				
		ii) Write note on simple code generator.	(8)				