

College Student Stress

Group 25: Gayatri Dutt, Veda Gadhiya, Jared Gutierrez, Mark Hashimoto, Nafisa Nikhath, Swetha Prabakaran

The Problem

tl;dr - students are stressed. Very stressed.

61% of students

Feel overwhelming anxiety

40% of students

Too depressed to function

32% of students

say stress is biggest factor affecting performance

Students are more stressed than ever

Increasing Demands:

- Academic stress
- Social pressures
- Family demands
- Financial demands
- Adolescent Psychological Development
- Future Planning
 - Ex. Internship and job search

Negative Impacts:

- Decreased **Academic**Performance
- Burnout
- Increased anxiety
- Higher susceptibility to mental illnesses
- Increased rates of physical illnesses
 - Ex: autoimmune conditions
 triggered by cortisol-triggered
 inflammation

2.

The Approach

"Internet-based clinical tools may be helpful in providing treatment to students who are less inclined to pursue services on campus"

"It's **essential** that students know when it's **time to reach out** for help"

Primary Goal

Help students manage stress by identifying potentially dangerous stress levels and provide recommendations on how to balance/optimize stress and performance.

Priorities

- Predict stress levels based on current habits
- Advise students on when to seek professional help
 - Encourage timid students to access services
 - Prevent crisis episodes by proactively seeking help
- Educate students on lifestyle changes
- Prevent mental or physical health deterioration

Stretch Goals

- Predict academic performance based on stress
 - Help answer the question of if the stress is "worth it"
- Predict expected stress during 'optimal' performance

Desired End Product

Web application where students enter current habits and mental state, and receive recommendations (and eventually, predictions).

Data Set

- Dartmouth College StudentLife dataset
- Chosen because:
 - Publicly available
 - Reliable source
 - Good starting point (high caliber university, high stress major)
 - 12 GB data
 - Information on different aspects of student life including:
 - Activities/Lifestyle (ex. physical activity, conversations, sleep)
 - Academics (ex. grades, deadlines, piazza)
 - Personality (ex. personal outlook, loneliness)
 - Large variety of responses
- Observations = Students
- Features = Student life aspects

Data Collection Methodology

- Researchers:
 - From Dartmouth College
 - Contributions from researchers at University of Texas - Austin and Northeastern University
- Computer science students
- Spring semester at Dartmouth College
- Collected via:
 - App/sensors on android phones
 - Surveys administered before and after the semester
- Student identities removed and replaced by user id numbers (UID)

Data Cleaning

Problems:

- File/Data Structure
 - Decentralized, data distributed in many directories
 - Data stored in various **types** (csv, json)
 - Temporal differences hourly vs daily vs semester
 - Inconsistencies in row sizes for different users, responses for EMA are up to

Techniques:

- Merge
 - Create functions to merge by UID
 - Convert to uniform time
 - Creation of aggregator functions

Data Cleaning

Problems:

- Mixed Data Types
 - Strings in survey responses
 - Ex. Pre/Post,Agree/Disagree
 - App/Sensor data
 - Ex. Yes/No, # of people, hrs sleep, mins activity
 - Positive vs negative aspects of stress
 - Text response values, non categorical

Techniques:

- Translate Data → Numeric Scale
 - Survey Data
 - 1-5 scale
 - App/Sensor data
 - Create keys/bins
 - Categorize each
 question on if it
 suggests a + or outlook
 - Inverted the numeric values if negative

Data Cleaning

Problems:

- Missing data
 - Missing different **UIDs**
 (observations) in various
 files
 - Trade-off between more features and more observations
 - Missing certain feature values in files
 - Missing values of different types
 - Drop or figure out appropriate way to replace

Techniques:

- Drop
 - UIDs missing from multiple files
 - Columns with too many NaNs (threshold)
- Fill remaining NaNs with various methods
 - Ex. Agree/Disagree 1-5 scale (Big 5)
 - Fill NaN with 3 (neutral)
 - Ex. Sleep (PSQI)
 - Fill NaN with median

EDA - Locations Stress Reported

EDA - Stress Levels

EDA - Stress Levels

EDA - Activity Levels

EDA - Some Academics

EDA - Some Pre/Post Survey Results

EDA - Takeaways

- Students have a similar outlook when comparing their pre and post self-perceived success.
 - Sensor and App data can help make up for this
- Recorded levels of stress are highly concentrated in the middle
- Best type of questions that can identify mood are those that are extreme and more factual
- Interquartile range of deadlines is 5-30
 - upper end of deadlines shows a stronger correlation to stress levels

Models

- Experimented with different models
 - Linear Regression
 - Logistic Regression
- Feature Reduction
 - First built models that used all features
 - Progressively experimented by removing a feature or condensing a feature and seeing how it affected accuracy
 - Lasso Regression
 - Feature Reduction
 - K-Cross Validation
- Built models to predict stress levels and classify students into different stress buckets

Feature Correlation

- By Analyzing student's responses we were able to develop a correlation chart highlighting how responses to a particular question affected another mood.
- This allowed us to see what the most influential moods are and which questions best reflect student's outlook

Feature Correlation

			flour		lonely		Interested	Di	stressed		Upset		Strong		Guilty
	type	post	pre	post	pre	post	pre	post	pre	post	pre	post	pre	post	pr€
p.	type														
flour	post	1	0.549	-0.467	-0.423	0.124	0.365	-0.347	-0.0189	-0.31	0.0645	0.165	0.00643	0.128	-0.0512
noui	pre	0.549	1	-0.527	-0.424	0.4	0.269	-0.282	-0.0697	-0.369	0.109	0.248	0.0998	-0.133	0.153
lonely	post	-0.467	-0.527	1	0.802	-0.298	-0.298	0.501	0.0667	0.132	-0.088	-0.274	-0.147	0.0213	-0.0867
ionery	pre	-0.423	-0.424	0.802	1	-0.273	-0.0694	0.469	0.163	0.157	0.00804	-0.231	-0.124	-0.0109	-0.105
Interested	post	0.124	0.4	-0.298	-0.273	1	0.239	-0.377	-0.031	-0.403	0.058	0.42	-0.152	-0.00408	0.336
interested	pre	0.365	0.269	-0.298	-0.0694	0.239	1	-0.193	0.0803	-0.104	-0.000731	0.0217	0.432	0.0466	-0.0342
Distressed	post	-0.347	-0.282	0.501	0.469	-0.377	-0.193	1	0.287	0.68	0.0894	-0.276	-0.0433	0.0908	-0.326
Distressed	pre	-0.0189	-0.0697	0.0667	0.163	-0.031	0.0803	0.287	1	0.27	0.741	-0.061	-0.0326	0.132	0.194
	post	-0.31	-0.369	0.132	0.157	-0.403	-0.104	0.68	0.27	1	-2.54e-17	-0.283	0.0645	0.0663	-0.177
Upset	pre	0.0645	0.109	-0.088	0.00804	0.058	-0.000731	0.0894	0.741	-2.54e- 17	1	0.0694	-0.103	0.102	0.169
Strong	post	0.165	0.248	-0.274	-0.231	0.42	0.0217	-0.276	-0.061	-0.283	0.0694	-1	0.133	0.00826	0.15
Strong	pre	0.00643	0.0998	-0.147	-0.124	-0.152	0.432	-0.0433	-0.0326	0.0645	-0.103	0.133	1	0.24	-0.0891
Guilty	post	0.128	-0.133	0.0213	-0.0109	-0.00408	0.0466	0.0908	0.132	0.0663	0.102	0.00826	0.24	4	0.195
Gunty	pre	-0.0512	0.153	-0.0867	-0.105	0.336	-0.0342	-0.326	0.194	-0.177	0.169	0.15	-0.0891	0.195	·*
Scared	post	-0.067	-0.417	0.0975	0.176	-0.305	-0.0224	0.198	0.294	0.357	0.143	-0.101	0.0973	0.388	0.0544
Scared	pre	-0.129	-0.0111	-0.156	-0.0867	0.252	0.168	-0.103	0.356	0.0377	0.463	0.112	0.0888	0.0163	0.405
	post	-0.311	-0.554	0.422	0.361	-0.239	-0.222	0.393	0.323	0.442	0.19	0.0708	0.258	0.0526	-0.251
Hostile	pre	0.118	0.134	-0.00203	-0.0695	0.186	0.256	-0.0156	0.435	3.11e- 17	0.47	0.141	0.362	0.231	0.453
Enthusiastic	post	0.0445	0.0266	-0.146	0.0663	0.459	0.305	-0.166	0.0379	0.0154	-0.0312	0.251	0.216	-0.151	0.0668
Enthusiastic	pre	0.229	0.229	-0.366	-0.178	-0.0016	0.469	-0.136	-0.098	0.106	-0.0954	0.277	0.523	-0.138	-0.068
	nnet	N 244	0 206	-0 173	በ በጸ71	0 533	N 25	-0.256	N 141	-N 199	0.0417	0 448	N 118	-0.0963	N 195

Feature Importance Chart

LASSO

	feature	weight
0	vr_12_ment	-0.817026
1	flour	-0.073805
2	vr_12_phys	0.039093
3	Conscientiousness	-0.735498
4	Active	-0.275755
5	Alert	-0.956694
6	Neuroticism	0.413749
7	Upset	-0.000000
8	Nervous	0.000000
9	phq_total	0.144005
10	Hostile	0.798189

Correlation Matrix

type	level_0	type	post	type	level_0	type	po
0	vr_12_ment	post	-0.765781	0	Hostile	post	0.4316
1	Interested	post	-0.520546	1	Neuroticism	pre	0.4615
2	Active	post	-0.507939	2	Distressed	post	0.4762
3	Alert	post	-0.434042	3	Nervous	post	0.4789
4	flour	pre	-0.411800	4	Upset	post	0.5411
5	Conscientiousness	post	-0.387363	5	Neuroticism	post	0.5811
6	Attentive	post	-0.386443	6	phq_total	post	0.6325
7	vr_12_ment	pre	-0.380732	_		3) 0.000 0.000	0.0040
8	vr_12_phys	post	-0.351661	7	stress	pre	0.6348
9	flour	post	-0.349798	8	phq_total	pre	0.6993

Model Performance

Regression	Туре	Hyperparameter	MSE	MAE
	All Survey		19.035	3.602
Linear	All Survey	Lasso Alpha = 0.004	15.792	3.713
Regression	Feature		15.877	2.985
	Reduction	Lasso Alpha = 0.17	14.420	2.779

Model	Туре	Hyperparameter	Accuracy	Notes	
Logistic	All Survey	C = 1	72%	No predictions were over 1 off of the true value Test: 0.2 Train: 0.8	
Regression	Feature Reduction	C = 10	73%	Predictions were skewed toward the middle of Test: 0.2 Train: 0.8	

3.

Architecture

System Overview

4.

User Interface

User Interface

Try it out live!

https://dataxfinalproject.bubbleapps.io/version-test?debug_mode=true

5.

Learning Path and Future

Learning Path

Finding Data

- Gaining access
 - American College Health Association National College Health Assessment (ACHA-NCHA)
- Reliable source, relevance, feature/response rich
 - Kaggle Ideal Student Life Survey (Singapore students, more observations but less features/no performance data and only binary responses)
- Trade-offs: Features/ Observations/Response types

Cleaning Data

- Tried both Kaggle and Dartmouth sets
- Scope
 - Initially limited scope to Dartmouth survey data only due to difficulties in cleaning but added sensor and app data back in
- Merging, translating, dealing with NaNs, how to process
- Trade-offs: Features vs Observations vs Quality

Learning Path

EDA

- Understanding the data and useable features
- Plotting

Building Models

- Stress is abstract/subjective, difficult assign numeric/categorize
- No clear cut path

Model Improvement

- Metrics and tuning parameters trial and error
- Creating a UX Interface prototype
 - Figuring out platform
 - What to include

Future Exploration

- UX Interface
 - Create and Link Interface to Model
- Add Feedback from Students
- Try Other Models
- Attempt Reach Goals
- Add more data
 - Continuing study at University of Texas Austin and Northeastern University

Thank You

Questions?

6.
Appendix

Links

- GitHub
 - https://github.com/mkhash/Modelling-Student-Stress
- Dataset
 - https://studentlife.cs.dartmouth.edu/dataset.html?f
 bclid=IwAR3EvHteBs3EaG4XjXqtPA6j6T5Z2saA4MI0
 DLZScpQB90Wm_fhUmQznJ0Y#sec:data_dir:survey_dir