

COMBINATORICS & OPTIMIZATION

Introduction to Combinatorics

Lecture 2

http://info.iqc.ca/mmosca/2014math239

Michele Mosca

Last class we noticed the following correspondences

Subsets of {1,2,3}	Terms in $f(y_1, y_2, y_3)$	Terms in f(x,x,x)
	$=(1+y_1)(1+y_2)(1+y_3)$	=(1+x)(1+x)(1+x)
{ }	=1	=1
{1}	$+y_1$	+x
{2}	$+y_2$	+x
{3}	$+y_3$	+x
{1,2}	$+y_1y_2$	$+x^2$
{2,3}	$+y_2y_3$	$+x^2$
{1,3}	$+y_1y_3$	$+x^2$
{1,2,3}	$+ y_1 y_2 y_3$	$+x^3$

More basic counting examples

How many subsets does the set {1,2,...,n} have?

We can apply the idea from last class to see that the total number of subsets is $2 \times 2 \times \cdots \times 2 = 2^n$ "include 1 or not"

"include 2 or not" "include n or not"

Notice the natural 1-1 correspondence with the subset problem

How many terms does the expansion of

$$f(y_1,y_2,\cdots,y_n)=(1+y_1)(1+y_2)\cdots(1+y_n) \text{ have?}$$

$$don't \ include \ y_1 \ include \ y_2 \ don't \ include \ y_2$$

$$= 1 + y_1 + y_2 + y_3 + y_1y_2 + y_2y_3 + \dots + y_1y_2y_3 \dots y_n$$

$$\{ \} \qquad \{ 1 \} \qquad \{ 2 \} \qquad \{ 3 \} \qquad \{ 1,2 \} \qquad \{ 2,3 \} \qquad \{ 1,2,3,\dots,n \}$$

Exploiting this correspondence

If we "plug in"
$$y_1=y_2=\cdots=y_n=1$$
 into
$$f(y_1,y_2,\cdots,y_n)$$

then we are counting the subsets.

$$f(1,1,\dots,1) = 1+1+1+1+1+1+1+1+1+\dots+1+1\dots=2^n$$

(this computation corresponds to counting the subsets one by one)

$$f(1,1,\dots,1) = (1+1)\cdot(1+1)\cdots(1+1) = 2^n$$

(this computation corresponds to the recursive counting method we used earlier)

More basic counting examples

How many subsets of size k does the set {1,2,...,n} have?

Easier question: How many ordered lists of k distinct numbers from {1,2,3,...,n} are there?

(NB: the elements of a set are not ordered; but order matters for an ordered list)

Even easier question

Even easier question: Let $n_1, n_2, ..., n_k$ be distinct objects. How many ways can we order the elements $\{n_1, n_2, ..., n_k\}$?

Answer: k! = k(k-1)(k-2)...(2)(1). " k—factorial"

Proof (sketch): (by induction) True for k=1.

Suppose it's true for k=j-1. Consider the case of ordering j distinct objects.

There are j choices for the first element. We now need to order the remaining j-1 distinct elements, which can be done in (j-1)! ways (by induction hypothesis). Thus the total number of ways of order j distinct objects is j-(j-1)! = j!. Induction follows.

Back to the easier question

How many ordered lists of k distinct numbers from {1,2,...,n} are there?

Answer: n(n-1)(n-2)...(n-k+1)

Proof (sketch): (almost the same as previous proof)

Back to the original question

How many subsets of size k does the set {1,2,...,n} have?

Let $S_{n,k}$ equal the set of all such subsets.

Let $L_{n,k}$ equal the set of ordered lists of k elements from $\{1,2,...,n\}$. We know $|L_{n,k}|=n(n-1)(n-2)...(n-k+1)$.

Note that for each element in $S_{n,k}$ there are k! elements in $L_{n,k}$. This means $|L_{n,k}| = |S_{n,k}| k!$.

This means
$$|L_{n,k}| = |S_{n,k}| |k!|$$
. This means $|S_{n,k}| = |L_{n,k}| / k! = n(n-1)(n-2)...(n-k+1)/k! = \binom{n}{k}$

See Theorem 1.3.1.

Exploiting this correspondence

If we "plug in"
$$y_1=y_2=y_3=\cdots=y_n=x$$
 into
$$f(y_1,y_2,\cdots,y_n)$$

$$=1+y_1+y_2+y_3+y_1y_2+y_2y_3+\cdots+y_1y_2y_3\cdots y_n$$

then we get

$$f(x, x, ..., x) = 1 + \binom{n}{1} x^1 + \binom{n}{2} x^2 + \dots + \binom{n}{k} x^k + \dots + x^n = (1+x)^n$$

number of subsets of size k

See THM 1.3.2.

 $A[\]B$ means the union of the sets A and B.

The union is the result of combining all the elements of A and B into a new set.

Only keep one copy of every element.

The resulting set is the union of A and B.

Notice that
$$A \bigcup B = |A| + |B| - |A \cap B|$$
 where

 $|A \cap B|$ is the "intersection" of A and B; that is, the elements that they have in common.

 $A\bigcup B$ means the disjoint union of the sets A and B i.e. you can use the dot to denote that $A\bigcap B=\{\}$

 $A\bigcup_{i=0}^{\infty}B_{i}$ means the union of A and B is disjoint i.e. you can use the dot to denote that $A\bigcap_{i=0}^{\infty}B_{i}=\{i\}$

Disjointness implies that

$$\left| A \bigcup B \right| = \left| A \right| + \left| B \right|$$

A combinatorial equality

THM1.3.3: For non-negative integers n and k

$$\binom{n+k}{n} = \sum_{i=0}^{k} \binom{n+i-1}{n-1}$$

Proof:

Note that LHS corresponds to the number of subsets of $\{1,2,...,n+k\}$ of size n.

Let's reorganize those subsets according to their largest element; since every subset has a largest element we will count every subset exactly once.

Counting to prove equalities

THM1.1.3: For non-negative integers n and k

$$\binom{n+k}{n} = \sum_{i=0}^{k} \binom{n+i-1}{n-1}$$

Proof (continued):

Each subset of size n has a biggest element, equal to n, n+1, n+2,..., or n+k.

So let S_{n+i} be the set of subsets with largest element equal to n+i.

So
$$S_{n+k,n} = S_n \bigcup S_{n+1} \bigcup S_{n+2} \bigcup \cdots \bigcup S_{n+k}$$

So $|S_{n+k,n}| = |S_n| + |S_{n+1}| + \cdots + |S_{n+k}|$

Counting to prove equalities

What is $|S_{n+i}|$, the size of S_{n+i} ?

In other words, how many subsets of n number from {1,2,3,...,n+k} have n+i as the largest element?

Equivalently, how many subsets of n-1 numbers from {1,2,3,...,n+i-1} are there?

Answer:
$$\binom{n+i-1}{n-1}$$

The result now follows.