Tarjeta 3.3: Calcular de forma iterativa las pérdidas del obstáculo dominante, del subvano derecho y el izquierdo y las totales para las frecuencias propuestas en el ejercicio 3 y k=4/3.

Representad en un a gráfica las pérdidas totales en función de la frecuencia para k=4/3.

Como hemos cambiado la cora del obstáculo más relevante, al ir aumentando la frecuencia vamos a ir teniendo un aumento de las pérdidas de difracción totales. Esto se debe a que al aumentar nuestra frecuencia, el primer radio de fresnell va a ir reduciéndose, por lo que el obstáculo va a ir taponando más nuestro rayo.

Esto se puede ver en la figura inferior, que presenta una evolución logarítmica creciente.

Esta gráfica comprende los resultados obtenidos con el método 3 a partir del siguiente vector, donde la primera y tercera columna son las pérdidas de difracción correspondientes a los subvanos izquierdo y derecho, y la segunda la correspondiente al obstáculo dominante.

Peridas = (Los valores con un cero representan que el obstáculo no afecta)

0.6971		19.2221	2.0170
0	20	0.8687	0
0	22	2.8205	0
0	24	1.1800	0
0	25	5.2273	0
0	27	7.5202	0
0	29	9.7891	0
0	31	1.2939	0
0	32	2.4195	0