# Using Collective Matrix Factorization and Tags to improve a Recommender System

Cristopher Arenas

PUC, Campus San Joaquín

November 25, 2015

- Recommender Systems are used to provide recommendation to users about items
- The problem consist in predict for an user u the preference about an item i, tipically with a range of values r.

- There are methods based in Collaborative Filter to resolve the problem.
- This approach find similarities
  - Users
  - Items
  - Ratings

- One of the major problems with CF is the **sparsity problem**.
- The most of users rating a few items.

- One of the major problems with CF is the **sparsity problem**.
- The most of users rating a few items.
- Some Matrix Factorization methods are used to solve the sparsity problem using filling techniques.

A method called Collective Matrix Factorization will be proposed.

- A method called Collective Matrix Factorization will be proposed.
- The use of tag information will be considered.

#### Related Work

Matrix Factorization Techniques consider the factorization of a matrix that relates users and items.

#### Related Work

- Matrix Factorization Techniques consider the factorization of a matrix that relates users and items.
- Traditional approaches try to minimize the error function:

$$E = \sum_{(u,i)\in\mathcal{K}} (r_{ui} - q_i^T p_u)^2 + \lambda(||q_i||^2 + ||p_u||^2)$$
 (1)

There are three matrices that relates m users, n items and p tags:

There are three matrices that relates m users, n items and p tags:

• U(u, i): user-item matrix. Shows the *rating* of user u for an item i.

There are three matrices that relates m users, n items and p tags:

- U(u, i): user-item matrix. Shows the *rating* of user u for an item i.
- T(u,t): user-tag matrix. Shows the *preference* of an user u for the tag t.

There are three matrices that relates m users, n items and p tags:

- U(u,i): user-item matrix. Shows the *rating* of user u for an item i.
- T(u,t): user-tag matrix. Shows the *preference* of an user u for the tag t.
- G(i, t): tag-item matrix. Shows *relevance* between item i and tag t.

• U(u,i) and G(i,t) are constructed directly with information.

- U(u,i) and G(i,t) are constructed directly with information.
- $\blacksquare$  T is constructed using U and G.

$$T(u,t) = \frac{1}{N} \sum_{k=1}^{n} U(u,k) \times G(k,t)$$
 (2)

Later, submatrices X, Y and Z are used to construct two matrices U' and T'.

$$U' = XY^T \tag{3}$$

$$T' = XZ^T \tag{4}$$

Gradient Descent Method (GDM) is performed to minimize the error between real values and approximated values:

$$ER(X, Y, Z) = \frac{1}{2} ||J \circ (U - XY^{T})||_{F}^{2} + \frac{\alpha}{2} ||T - XZ^{T}||_{F}^{2} + \frac{\beta}{2} (||X||_{F}^{2} + ||Y||_{F}^{2} + ||Z||_{F}^{2})$$
(5)

Gradient Descent Method (GDM) is performed to minimize the error between real values and approximated values:

$$ER(X, Y, Z) = \frac{1}{2} ||J \circ (U - XY^{T})||_{F}^{2} + \frac{\alpha}{2} ||T - XZ^{T}||_{F}^{2} + \frac{\beta}{2} (||X||_{F}^{2} + ||Y||_{F}^{2} + ||Z||_{F}^{2})$$
(5)

Gradients are calculated:

$$\nabla_X ER = \left[ J \circ (XY^T - U) \right] Y + \alpha (XZ^T - T)Z + \beta X \tag{6}$$

$$\nabla_X ER = \left[ J \circ (XY^T - U) \right] X + \beta Y \tag{7}$$

$$\nabla_X ER = \alpha (XZ^T - T)X + \beta Z \tag{8}$$



13. end while

#### Algorithm 1 Gradient Descent Method

```
1: Initialize X, Y, Z with random number in range (0,1)
 2: t = 0
 3: while t < max iteration do
        Get gradients \nabla_{x} ER, \nabla_{y} ER and \nabla_{z} ER.
 5:
       \gamma = 1
      while (ER(X_t - \gamma \nabla_{X_t}, Y_t - \gamma \nabla_{Y_t}, Z_t - \gamma \nabla_{Z_t}) > ER(X_t, Y_t, Z_t)) do
 6:
     \gamma = \gamma/2
     end while
 8:
     X_{t+1} = X_t - \gamma \nabla_{X_t}
 9:
    Y_{t+1} = Y_t - \gamma \nabla_{Y_t}
10:
11: Z_{t+1} = Z_t - \gamma \nabla_{Z_t}
12: t = t + 1
```

- Dataset: MovieLens
  - 1.000.209 ratings
  - 3.682 movies
  - 6.040 users

- Dataset: MovieLens
  - 1.000.209 ratings
  - 3.682 movies
  - 6.040 users
- Tag-Genome
  - 9.734 movies
  - 1.128 tags

- Dataset: MovieLens
  - 1.000.209 ratings
  - 3.682 movies
  - 6.040 users
- Tag-Genome
  - 9.734 movies
  - 1.128 tags
- 3.642 movies in MovieLens and Tag-Genome

**3** experiments:

- **3** experiments:
  - Latent factors
  - Prediction: MAE, RMSE
  - 3 Top-N: nDCG

#### Results



Figure 1: Error function using three different latent factors.

## Results

Table 1: MAE and RMSE considering two scenarios.

| Metric | With tags | Without tags |  |
|--------|-----------|--------------|--|
| MAE    | 0.7236    | 0.6961       |  |
| RMSE   | 0.9264    | 0.8945       |  |

## Results

Table 2: nDCG@p metric for two scenarios and differents values of p

| р  | Best user |              | Worst user |              | Average   |              |
|----|-----------|--------------|------------|--------------|-----------|--------------|
|    | With tags | Without tags | With tags  | Without tags | With tags | Without tags |
| 1  | 0.7869    | 0.8354       | 0.7869     | 0.8354       | 0.7869    | 0.8354       |
| 3  | 0.7855    | 0.8323       | 0.6431     | 0.6581       | 0.7169    | 0.7337       |
| 5  | 0.7811    | 0.8256       | 0.4256     | 0.5164       | 0.6353    | 0.6740       |
| 10 | 0.9966    | 0.8666       | 0.4147     | 0.5002       | 0.6888    | 0.7157       |
| 20 | 0.9676    | 0.9658       | 0.3974     | 0.4682       | 0.6798    | 0.7066       |

■ Different ways to do matrix factorizations.

- Different ways to do matrix factorizations.
- Purpouse of this work:

- Different ways to do matrix factorizations.
- Purpouse of this work: using tags in a collective matrix factorization.

- Different ways to do matrix factorizations.
- Purpouse of this work: using tags in a collective matrix factorization.
- Latent factors

- Different ways to do matrix factorizations.
- Purpouse of this work: using tags in a collective matrix factorization.
- Latent factors
- About results.

- Different ways to do matrix factorizations.
- Purpouse of this work: using tags in a collective matrix factorization.
- Latent factors
- About results.
- Future work: exaustive revision.