Optimized Newspaper Delivery Using Mixed Memory Markov Models

Çağatay Yıldız

Boğaziçi University, Computer Engineering Department

Objective

To reduce the number of newspapers returned from sale points to distributors and no decrease in sale. This is equivalent of predicting demand.

Data Set

- 2840 outlets
- 261 week of sale and return information starting from 2009, July
- Assumption: Demand is equal to the sale and forms a time series for each outlet and day of week. It is not observed in case of sold-out.

Figure 1: (i)Net sale, (ii)Return status (sold out (red), just one return (green), more returns (blue)), (iii)Return count

Method-1: Higher Order Markov Model

Parametrization of a higher order Markov model, say K, by convex combinations as such:

$$P(i_t|i_{t-1:t-K}) = \sum_{k=1}^{K} \alpha(k)a^k(i_t|i_{t-k})$$

Figure 2: DAG for the mixture where K=2

EM Updates

$$\alpha(k) \propto \sum_{t} p^{old}(x_t = k|I)$$

$$a^{k}(i_{t} = j', i_{t-k} = j) \propto \sum_{t} p^{old}(i_{t} = j', i_{t-k} = j, x_{t} = k|I)$$

Method-2: Factorial Markov Model

Here, each time series is first order and the correlation between time series is reflected as

$$P(I_t|I_{t-1}) = \prod_{v=1}^{K} P(i_t^v|I_{t-1})$$

$$P(i_t^v|I_{t-1}) = \sum_{k=1}^{K} \alpha(v,k) a^{vk} (i_t^v|i_{t-1}^k)$$

Figure 3: DAG for the factorial model

EM Updates

$$\alpha(v,k) \propto \sum_{t} p^{old}(x_{t}^{v} = k|I)$$

$$a^{vk}(i_{t}^{v} = j', i_{t-1}^{k} = j) \propto \sum_{t} p^{old}(i_{t}^{v} = j', i_{t-1}^{k} = j, x_{t}^{v} = k|I)$$

Results

As the table below illustrates, it is possible to reduce return count. However, this causes a decrease in sale, which is certainly not desired.

Method	# of Sale	# of Return
Current Delivery	88270	14977
Higher Order MM	83093	9015
Factorial MM	82645	10213

References

[1] Lawrence K. Saul and Michael I. Jordan.

Mixed memory markov models: decomposing complex stochastic processes as mixtures of simpler ones, 1998.