ECS7024 Statistics for Artificial Intelligence and Data Science

Topic 15: Bootstrap

William Marsh

Outline

 Aim: outline the idea of the bootstrap, a direct method of estimate a confidence interval for a statistic

- Principles
- Example
- Discussion

Bootstrap Principles

CI without a Sample Distribution from Theory

Bootstrap

 In a simulation we repeated sample a known population In a bootstrap, we resample the sample

Non-parametric Bootstrap

Bootstrap sample based on sample No distribution assumed

Sampling with Replacement

- Re-sample from the 'observed sample' with replacement
- Bootstrap sample
 - Same size as original
 - Some records omitted
 - Some records repeated

Related Terms

- 'Bootstrap aggregation' or 'bagging'
- Resampling (with or w/o replacement)
- Permutation test

Bootstrap Steps

- 1. Resample from the sample
- 2. Calculate the statistic (e.g. mean) of interest for each new sample
- 3. Consider (i.e. plot) the distribution of the statistic
 - Use the quantiles to create a CI on the statistic

Step 1: Resample with Replacement

Data has 200 values

Step 2: Calculate Means

For each bootstrap sample

 Run 500 bootstraps estimates

	Mean
0	0.719434
1	0.741623
2	0.572063
3	0.753170
4	0.998408
495	0.712862
496	0.824634
497	0.803627
498	0.641065
499	0.727630

500 rows × 1 columns

Step 3: Distribution

Confidence Intervals from the distribution

Step 3: Distribution

Confidence Intervals from the

The CI is given by the quantiles of the result data.

90% range is 0.560 to 0.963 95% range is 0.513 to 0.991

Student's t: 90% confidence interval for mean is 0.556 to 0.963

Parametric Boostrap

Concept and Example Application

- Instead of resample data, sample from distribution
 - Use parameters estimated from the data
- Application
 - Chi-square test alternative
 - Use observed parameters
 - How often is data as extreme generated?
- See notebook (in preparation)

Breakout Discussion

Menti Code 3434 4113

Summary

Advantage

Advantages

- Does not require knowledge of sampling distributions, test statistics
- Can be applied directly to a quantity of interest

Disadvantages

Not as well recognised

Related Techniques

- Permutation tests
 - Are two datasets from the same population?
- Jackknife
 - Sequentially delete one data value
 - Deterministic
 - May work better for small samples

Summary

- Never mind all that statistical theory
- ... just use a bootstrap