REINFORCEMENT LEARNING BASED ADAPTIVE TRAFFIC SIGNAL CONTROL USING SUMO

- AMIEUR ZINEB ICHRAKE
- HAMDI AYA
- MEFLAH YOUSRA

SUPERVISOR:

MR. MALKI ABED EL HAMID

1. INTRODUCTION

- Urban traffic congestion is a persistent challenge in modern cities,
- Traditional fixed-time signal control systems lack adaptability to real-time traffic dynamics and often result in inefficient flow.
- Our goal is to build an intelligent, adaptive traffic signal control system using Deep Reinforcement Learning (DRL), capable of making real-time decisions based on traffic state

2. PROBLEM STATEMENT

Modern cities struggle with traffic congestion due to static, predefined traffic signal schedules that cannot respond to real-time changes in traffic demand. This rigidity leads to:

- Long queues at intersections
- Increased waiting times for drivers
- Higher fuel consumption and emissions
- Poor traffic distribution across
 lanes

The core challenge lies in developing a control system capable of adapting dynamically to varying traffic patterns while ensuring safety and fairness across all directions.

We frame this problem as a Markov Decision

Process, where an RL agent interacts with a simulated intersection and learns to make intelligent, phase-based decisions. The goal is to maximize vehicle throughput, minimize queue lengths, and improve intersection efficiency through data-driven learning — without relying on hard-coded traffic rules.

3. MODELING TRAFFIC CONTROL AS A MARKOV DECISION PROCESS (MDP)

To effectively train a reinforcement learning agent for traffic light control, we model the intersection as a Markov Decision Process (MDP), where the agent learns optimal decisions through interaction with a simulated environment.

State (S):

The agent observes the current traffic conditions, represented by a state vector.

Action (A):

The action space includes selecting the current active green phase.
In advanced versions, the agent also controls phase duration or throughput, enabling more adaptive strategies.

Reward (R):

The reward function balances traffic efficiency and safety. It penalizes queue length and waiting time while rewarding higher throughput, encouraging the agent to minimize congestion.

Transition Dynamics (T):

State transitions are governed by the SUMO traffic simulator, which provides realistic feedback based on the current signal phase and vehicle behavior.

4.1. THE INTERSECTION SETUP

Our simulation environment models a realistic four-way urban intersection, with two main roads crossing in the north-south and east-west directions. Each road includes four lanes per approach, resulting in a total of 16 incoming lanes and a rich variety of maneuvers.

Each approach (North, South, East, West) has lanes labeled from 0 to 3, each dedicated to specific movement types:

4.1.THE INTERSECTION SETUP

4.2.TRAFFIC LIGHT LOGIC DESCRIPTION

The traffic light system at the simulated intersection follows a well-defined eight-phase control logic, alternating between green and yellow phases. This setup ensures both traffic safety and efficient vehicle movement, especially addressing the complex dynamics of left-turn maneuvers.

GREEN PHASES — DETAILED OVERVIEW

North-South straight+right

East-West straight+right

East-West left only

North-South left only

4.2.TRAFFIC LIGHT LOGIC DESCRIPTION

YELLOW PHASES — TRANSITION SAFETY

Each green phase is followed by a yellow phase of fixed duration (5 seconds), corresponding to the previous movement phase. For example:

Phase 1 follows Phase 0 (North–South Straight/Right),
Phase 3 follows Phase 2 (North–South Left Turns),and so on

Yellow phases are crucial for:

- Giving vehicles time to exit the intersection safely.
- Preventing sudden stops that could lead to rear-end collisions.
- Maintaining a smooth flow between signal changes.

WHY USE SEPARATE LEFT-TURN PHASES?

Left turns are inherently complex due to their cross-path movement with oncoming vehicles. Allowing them during general green phases introduces multiple conflict points. To mitigate this:

- Dedicated green phases are assigned for left-turns (Phases 2 and 6).
- During these phases, straight and right-turn traffic from the same direction is held.
- This eliminates cross-traffic conflicts, improving both safety and predictability.

4.3.TRAFFIC GENERATION MECHANISM

To emulate real-world traffic flow and progressively challenge the RL agent, the environment employs a dynamic, curriculum-based traffic generation system. This mechanism ensures gradual complexity during training, supporting robust and adaptable learning.

Traffic Profiles: Base vs. Target

Traffic generation is governed by three traffic profiles:

Low, Medium, and High, each defined by the following parameters:

- Probability (prob): Likelihood that a specific traffic profile is selected.
- Spawn Rate (spawn): Probability of a vehicle being spawned when the profile is active.
- Maximum Lanes (max_lanes): Number of lanes used for spawning vehicles on each edge.

4.3.TRAFFIC GENERATION MECHANISM

Each profile is defined in two versions:

- Base Traffic: Simulates light, easy traffic scenarios (used at the start of training).
- Target Traffic: Represents complex, high-density conditions (used toward the end).

Profile	Base Prob.	Target Prob.	Base Spawn	Target Spawn	Base Max Lanes	Target Max Lar
Low	0.8	0.1	0.1	0.3	1	1
Medium	0.2	0.3	0.3	0.6	2	3
High	0.0	0.6	0.5	0.9	3	4

4.3.TRAFFIC GENERATION MECHANISM

Curriculum Learning: Dynamic Adjustment

To ensure a smooth and progressive increase in difficulty, the environment uses linear interpolation between the base and target traffic settings:

$$current_value = base_value + (target_value - base_value) \times difficulty$$

- The difficulty parameter gradually increases during training.
- This allows traffic conditions to evolve from easy to challenging in a controlled and learnable manner.

METHODOLOGY

1. VALUE BASED ALGORITHMS

DEEP Q-LEARNING

FIXED PHASE DURATIONS + 16-DIMENSIONAL STATE

DYNAMIC PHASE DURATIONS + CONTROLLED LANES AS STATE

THROUGHPUT-BASED CONTROL+ CONTROLLED LANES AS STATE

State Representation (16 Dimensions)

- -The state is a vector capturing traffic + signal info from incoming edges (E2TL, N2TL, S2TL, W2TL).
- -Components:
 - Traffic Light Phase (4 dims): One-hot encoded (e.g., [1, 0, 0, 0] = NS green).
 - Vehicle Count (4 dims): Normalized by 200. Shows congestion.
 - Waiting Time (4 dims): Normalized by 3600s. Reflects delays.
 - Halting Vehicle Count (4 dims): Normalized by 200. Represents immediate queue size.
- -Normalization improves learning stability and consistency across episodes.

Action Space

- 4 discrete actions → 4 traffic signal phases (e.g., NS-straight, EW-left, etc.).
- Yellow Phase (5s) is inserted when switching between green phases to simulate safety.
- After yellow, the selected green phase becomes active.

Reward Function Design

The reward is calculated using changes (deltas) in traffic metrics:

- ☑ Δ Waiting Time (Weight: 1.5): Reducing wait time improves user experience.
- ☑ △ Queue Length (Weight: 1.0): Helps manage congestion.
- ☑ Throughput (Weight: 0.8): Encourages smooth vehicle flow.

Why use deltas?

- Promotes improvement: Rewards the agent only when it reduces delay or congestion, not for maintaining the status.
- Normalizes feedback across traffic conditions.
- Encourages action: Forces the agent to do better than before, not just survive.

VERSION 1: DQN

Q-Network Architecture:

Input: 16 units (state: phase + traffic metrics).

Hidden: 2 layers (64 neurons each, ReLU activation).

Output: 4 units (Q-values for 4 green phases).

$$y = \begin{cases} r, & \text{if } s' \text{ is terminal} \\ r + \gamma \max_{a'} Q_{\text{target}}(s', a'; \theta^{-}), & \text{otherwise} \end{cases}$$

The loss function is defined as:

$$\mathcal{L}(\theta) = E_{(s,a,r,s')\sim D} \left[(y - Q_{\text{online}}(s,a;\theta))^2 \right]$$

Soft Update:

$$\theta^- \leftarrow \tau\theta + (1-\tau)\theta^-$$

VERSION 1: DQN

RESULTS:

VERSION 2 : DUELING + DOUBLE DQN

Q-Network Architecture:

Q-Network: This version adopts a dueling architecture, consisting of:

- Feature Layer: Maps 16 input features to 64 neurons with ReLU activation.
- Value Stream: A fully connected layer from 64 neurons to 1 value output, estimating the state value.
- Advantage Stream: A fully connected layer from 64 neurons to 4 advantage outputs, one for each possible action.

Double DQN:

$$a^* = \arg \max_{a'} Q_{\text{online}}(s', a'; \theta)$$

$$y = r + \gamma Q_{\text{target}}(s', a^*; \theta^-)$$

Dueling DQN:

$$Q(s, a) = V(s) + A(s, a) - \frac{1}{|A|} \sum_{a'} A(s, a')$$

VERSION 2 : DUELING + DOUBLE DQN

RESULTS:

Episode

VERSION 3 : DOUBLE DON WITH DUELING AND PRIORITIZED ARCHITECTURE

Q-Network Architecture:

Dueling DQN Architecture:

Feature Layer: 16 (input) \rightarrow 128 (ReLU, layer normalization, 20% dropout) \rightarrow 128 (ReLU, layer normalization).

Value Stream: $128 \rightarrow 64$ (ReLU) $\rightarrow 1$.

Advantage Stream: $128 \rightarrow 64$ (ReLU) $\rightarrow 4$

Prioritized Experience Replay (PER)

PER improves standard experience replay by sampling transitions based on their TD error.

VERSION 3 : DOUBLE DON WITH DUELING AND PRIORITIZED ARCHITECTURE

RESULTS:

VERSION 4: DYNAMIC DURATION

Overview:

Introduces dynamic action space: selects green phase and duration (20, 30, or 50s).

Replaces fixed 30s durations from Versions 1-3.

Action size increased from 4 to 12 (4 phases \times 3 durations).

VERSION 4: DYNAMIC DURATION

RESULTS:

State Representation: Controlled Lanes

State is now based on lanes affected by the current green phase, not full incoming edges.

Extracted features per controlled lane:

- Average Waiting Time
- Vehicle Count
- queue lenght
- Why this change?
 - Focuses only on relevant lanes → less noise, better learning.
 - Anticipates which phases need activation.
 - Prevents phase starvation and improves fairness.

North-South straight+right

East-West straight+right

East-West left only

North-South left only

Action Space: Phase + Duration:

Agent selects:

- Which phase to activate (e.g., NS straight, EW left, etc.)
- How long to keep it green (e.g., 10–30s)

Why it matters:

- Increases green time when traffic is high.
- Cuts delay when traffic is low.
- Leads to adaptive, traffic-aware control.

Reward Function: Balanced by Lane Activity

$$R = w_a \cdot f(\text{active_lanes}) + w_i \cdot f(\text{inactive_lanes})$$

This new reward function approach:

- Prioritizes current traffic flow.
- Still monitors inactive lanes to prevent future congestion.

CONTROLLED LANES AS STATE WITH DYNAMIC PHASE DURATIONS

Approach 2 builds on Version 4 by retaining the same Dueling DQN architecture and techniques—Double DQN, Dueling DQN, Prioritized Experience Replay, and soft updates—while introducing a new state representation based on controlled lanes affected by the current traffic light phase.

RESULTS:

Key Objective:

- Agent no longer chooses a fixed duration.
- Instead, it:
 - 1. Selects a phase.
 - 2. Keeps it green until enough vehicles pass through or a timeout occurs.

Key Objective:

- Agent no longer chooses a fixed duration.
- Instead, it:
 - 1. Selects a phase.
 - 2. Keeps it green until enough vehicles pass through or a timeout occurs.

Step Function & Phase Control Logic

- At the start of green phase:
 - Reset throughput counter.
- During simulation:
 - Track how many vehicles exit the junction.
- Agent switches phase when:
 - o Throughput threshold is met (e.g., 10 vehicles), OR
 - Timeout is reached (e.g., 50s) to prevent starvation.

THROUGHPUT-BASED PHASE CONTROL

Approach 3 introduces a throughput-based phase control strategy, maintaining the same Dueling DQN architecture and techniques as Approach 2—Double DQN, Dueling DQN, Prioritized Experience Replay , and soft updates , while adopting a new state representation that includes queue length, waiting time, current phase index, and time elapsed in the current green phase per controlled lane. It replaces fixed durations with a percentage-based action space (12 actions: 4 phases × 3 throughput thresholds of 20%, 50%, 80%), allowing the agent to dynamically adjust green phases in the SUMO simulator based on real-time vehicle flow until the target throughput or a 90-second cap is reached, enhancing intersection efficiency and fairness.

RESULTS:

In conclusion, Version 4, with its dynamic duration action space (4 phases × 3 durations: 20, 30, 50s), emerged as the most stable and effective approach, consistently outperforming the default controller in the SUMO simulator by significantly reducing wait times and queue lengths. While the throughput-based approach (Approach 3) demonstrated strong potential with high rewards, its performance was less stable and required more training episodes to achieve optimal results, making Version 4 the preferred choice for reliable and adaptive traffic signal contro

Challenges

- Complexity of the Action Space
- Reward Function Design
- Computational Resource Constraints
- Integration with SUMO Simulator

DEMOSTRATION

THANKYOU

Step Function and Transition Logic

Each reinforcement learning step involves:

- Phase Transition: Yellow phase (5s) applied if switching green phases.
- Green Phase Execution: New green phase is activated.
- Simulation: SUMO runs for 30 steps (5 seconds per step).
- Vehicle Spawning: Based on traffic generator and difficulty.
- Observation + Reward: New state vector is extracted, and reward is computed using deltas.

Reset Function and Episode Control

At the beginning of each episode:

- SUMO simulation is closed and restarted.
- Episode counter is incremented.
- All internal variables (counters, queues, timers) are reset.
- Difficulty is updated using curriculum learning strategy.