

Probability theory and Statistics 2018-09-18 $\,$

Личные данные			Идентификационный номер		
Фамилия:					
Имя:		0			
		1			
Подпись:		2			
	Проверено	3			
		4 5			
В этом блоке не нужно ничег	Перемешивание о менять.	6			
Тип Код экзам	0,0	7			
Тип Код экзам 040 18091800		8			
		9			
Отмечайте ответы аккуратно кр		или			
Этот лист будет сканироваться. Засчитываются только корректн		Испо	ользуйте синюю или чёрную ручк		
Ответы 1 - 15	Ответы 16 - 30		Ответы 31 - 40		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	17 🔲 🔲 🔲 🔲		32 🔲 🔲 🔲 🔲		
3 🔲 🗎 🗎 🗎	18 🔲 🔲 🔲 🔲		33 🔲 🗎 🔲		
4 🔲 🗎 🗎 🗎	19		34 🔲 🔲 🔲 🔲		
5	20		35		
6	21		36		
7 🔲 🗎 🗎 🗎	22		37 🔲 🔲 🔲 🔲		
	23		38		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24		39		
			40 L L L L L a b c d e		
	26				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	$30 \square \square \square \square$				

- 1. Математическое ожидание величины X равно 2, а дисперсия равна 6. Вероятность $\mathbb{P}(X^2 \geq 100)$ лежит в диапазоне
 - (a) [0; 0.1]
 - (b) [0.1; 0.2]
 - (c) [0.9; 1]
 - (d) [0.99;1]
 - (e) [0;0.01]
- 2. Случайная величина ξ имеет распределение Пуассона с параметром λ . Математическое ожидание $\mathbb{E}[\xi^2]$ равно
 - (a) λ
 - (b) $e^{-\lambda}$
 - (c) $\lambda(1-\lambda)$
 - (d) λ^2
 - (e) $\lambda(\lambda + 1)$
- 3. Известно, что $\mathbb{E}(X) = -1$, $\mathbb{E}(Y) = 2$, Var(X) = 4, Var(Y) = 9, Cov(X, Y) = -3. Корреляция Corr(X + Y, Y) равна
 - (a) $1/\sqrt{6}$
 - (b) $-1/\sqrt{7}$
 - (c) $2/\sqrt{7}$
 - (d) $-2/\sqrt{6}$
 - (e) $-3/\sqrt{6}$
- 4. Совместное распределение дискретных случайных величин X и Y задано таблицей:

	<i>Y</i> = −2	Y = 0	<i>Y</i> = 1
<i>X</i> = 3	0.3	0.1	0.2
<i>X</i> = 6	0.1	0.2	0.1

Условное ожидание $\mathbb{E}(X|Y=-2)$ равно

- (a) 3.75
- (b) 3.(3)
- (c) 3.25
- (d) 4.2
- (e) 3.5
- 5. Случайная величина ξ имеет стандартное нормальное распределение. Вероятность $\mathbb{P}(\{\xi\in[-1;2]\})$ равна
 - (a) $\int_{-1}^{2} \frac{1}{\sqrt{2\pi}} e^{x^2/2} dx$
 - (b) $\int_{-1}^{2} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$
 - (c) $\int_{-1}^{2} \frac{1}{\sqrt{2\pi}} e^{-x^2} dx$
 - (d) $\int_{-1}^{2} \frac{1}{2\pi} e^{-x^2/2} dx$
 - (e) $\int_{-1}^{2} \frac{1}{\sqrt{2\pi}} e^{x^2} dx$

- 6. Для случайной величины $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ вероятность $\mathbb{P}(X \mu_X > 5\sigma_X)$ примерно равна
 - (a) 0
 - (b) **0.5**
 - (c) 0.95
 - (d) 1/5
 - (e) 0.05
- 7. Двумерная случайная величина (X, Y) равномерно распределена в треугольнике ограниченном линиями x = 0, y = 0 и y + 2x = 4. Значение функции плотности $f_{X,Y}(1,1)$ равно
 - (a) 0.25
 - (b) 0.5
 - (c) 1
 - (d) $\frac{1}{\sqrt{2\pi}} \exp(-0.5)$
- 8. У Васи есть пять кнопок, генерирующих целые числа от 1 до 6. Три работают как честные кубики, одна — с увеличенной вероятностью выпадения 6 (она выпадает с веростностью 0.5, остальные — равновероятно), одна — с увеличенной вероятностью выпадения 1 (она выпадает с вероятностью 0.5, остальные — равновероятно). Вася нажимает на случайную кнопку. Число 6 выпадет с вероятностью
 - (a) 0.11
 - (b) 0.12
 - (c) 1/4
 - (d) 1/6
 - (e) 0.22
- 9. Величины $X_1, X_2, \ldots,$ независимы и одинаково распределены с $\mathbb{E}(X_i) = 4$ и $\mathsf{Var}(X_i) =$ 100, а $S_n = X_1 + X_2 + ... + X_n$. К нормальному стандартному распределению сходится последовательность
 - (a) $\sqrt{n} \frac{S_n 4n}{10/\sqrt{n}}$
 - (b) $\sqrt{n} \frac{S_n-4}{10} \sqrt{n}$
 - (c) $\sqrt{n} \frac{S_n 4}{10}$ (d) $\frac{S_n 4n}{10\sqrt{n}}$

 - (e) $\sqrt{n} \frac{S_n 4}{10/\sqrt{n}}$
- 10. События А, В и С независимы в совокупности, если
 - (a) $\mathbb{P}(A|B) = \mathbb{P}(A), \mathbb{P}(A|C) = \mathbb{P}(A)$
 - (b) $\mathbb{P}(ABC) = \mathbb{P}(A) \mathbb{P}(B) \mathbb{P}(C)$
 - (c) $\mathbb{P}(A|B) = \mathbb{P}(A), \mathbb{P}(A|C) = \mathbb{P}(A), \mathbb{P}(B|C) = \mathbb{P}(B)$
 - (d) $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B), \mathbb{P}(A \cap C) = \mathbb{P}(A) \mathbb{P}(C), \mathbb{P}(B \cap C) = \mathbb{P}(B) \mathbb{P}(C)$
 - (e) $\mathbb{P}(A \cap B \cap C) = 0$
- 11. Случайная величина ξ имеет равномерное распределение на отрезке [0; 4]. Вероятность $\mathbb{P}(\{\xi \in [3; 6]\})$ равна
 - (a) $\Phi(4) \Phi(3)$
 - (b) 1/4
 - (c) 3/6
 - (d) 1/2
 - (e) 3/4

- 12. Случайная величина X принимает равновероятно целые значение от -5 до 5 включительно. Случайная величина Y принимает равновероятно целые значение от -1 до 1 включительно. Величины X и Y независимы. Вероятность $\mathbb{P}(X+Y^2=2)$ равна
 - (a) 1/5
 - (b) 1/33
 - (c) 1/11
 - (d) 5/33
 - (e) 2/33
- 13. Известно, что $\mathbb{E}(X) = -1$, $\mathbb{E}(Y) = 2$, Var(X) = 4, Var(Y) = 9, Cov(X, Y) = -3. Ковариация Cov(aX, (1-a)Y) минимальна при a равном
 - (a) 3/12
 - (b) 0
 - (c) 1/2
 - (d) -1/4
 - (e) 2/3
- 14. Круг разделён на секторы с углом $\frac{\pi}{3}$. Один из них закрашен красным, один сектор синим, остальные сектора белым. Вася кидает дротики и всегда попадает в круг, все точки круга равновероятны. Вероятность того, что Вася попадёт в красный сектор, равна
 - (а) не хватает данных
 - (b) 1/4
 - (c) $\pi/3$
 - (d) $\pi/6$
 - (e) 1/6
- 15. Двумерная функция распределения $F_{X,Y}(x,y)$ может НЕ удовлетворять свойству
 - (a) функция $F_{X,Y}(x,y)$ непрерывна
 - (b) $\lim_{y\to+\infty} F_{X,Y}(x,y) = F_X(x)$
 - (c) $F_{X,Y}(x,y)$ не убывает по x
 - (d) $0 \le F_{X,Y}(x,y) \le 1$
 - (e) $\lim_{x,y\to+\infty} F_{X,Y}(x,y) = 1$
- 16. Известно, что $\mathbb{P}(A \cap B) = 0.2$, $\mathbb{P}(A \cup B) = 0.6$, $\mathbb{P}(A) = 0.3$. Вероятность $\mathbb{P}(B)$ равна
 - (a) 0.3
 - (b) 0.5
 - (c) 0.1
 - (d) не хватает данных
 - (e) 0.6
- 17. Известно, что $\mathbb{E}(X) = -1$, $\mathbb{E}(Y) = 2$, Var(X) = 4, Var(Y) = 9, Cov(X, Y) = -3. Дисперсия Var(2X Y + 1) равна
 - (a) 31
 - (b) 37
 - (c) 24
 - (d) -31
 - (e) 34

- 18. Величины X_1, X_2, \ldots , независимы и одинаково распределены $\mathcal{N}(0;1)$. Предел по вероятности $\mathsf{plim}_{n\to\infty} \frac{X_1^2+X_2^2+\ldots+X_n^2}{n}$ равен
 - (a) 3
 - (b) 1
 - (c) 2
 - (d) **0**
 - (e) 1/2
- 19. Совместная функция плотности величин X и Y имеет вид

$$f(x,y) = \begin{cases} 6xy^2, & \text{при } x,y \in [0;1] \\ 0, & \text{иначе} \end{cases}$$

При Y = 1/2 величина X имеет условное распределение

- (a) с плотностью f(x) = 1.5x при $x \in [0; 1]$
- (b) равномерное, *U*[0;1]
- (c) с плотностью f(x) = 2x при $x \in [0;1]$
- (d) нормальное, $\mathcal{N}(0;1)$
- (e) с плотностью $f(x) = 3x^2$ при $x \in [0;1]$
- 20. Известно, что $\mathbb{E}(X)=-1$, $\mathbb{E}(Y)=2$, Var(X)=4, Var(Y)=9, Cov(X,Y)=-3. Ожидание $\mathbb{E}(X^2-Y^2)$ равно
 - (a) -4
 - (b) 8
 - (c) 4
 - (d) -8
 - (e) 0
- 21. Величины X_1, X_2, \ldots , независимы и одинаково распределены с $\mathbb{E}(X_i)=4$ и $\text{Var}(X_i)=100$. Вероятность $\mathbb{P}(\bar{X}_n\leq 5)$ примерно равна
 - (a) 0.50
 - (b) 0.28
 - (c) 0.84
 - (d) 0.95
 - (e) 0.67
- 22. Известно, что $\mathbb{E}(X) = -1$, $\mathbb{E}(Y) = 2$, Var(X) = 4, Var(Y) = 9, Cov(X, Y) = -3. Ковариация Cov(X + 2Y, 2X + 3) равна
 - (a) -4
 - (b) 1
 - (c) 4
 - (d) 0
 - (e) -1
- 23. Известно, что $\mathbb{E}(X) = -1$, $\mathbb{E}(Y) = 2$, Var(X) = 4, Var(Y) = 9, Cov(X, Y) = -3. Ожидание $\mathbb{E}((X-1)Y)$ равно
 - (a) -6
 - (b) -7
 - (c) -5
 - (d) -8
 - (e) -9

- 24. В каком из этих случаев события А и В будут независимы?
 - (a) $\mathbb{P}(A \cup B) = 0.6$, $\mathbb{P}(A) = 0.5$, $\mathbb{P}(B) = 0.2$
 - (b) $\mathbb{P}(A \cap B) = 0.1$, $\mathbb{P}(A) = 0.5$, $\mathbb{P}(B) = 0.2$
 - (c) $\mathbb{P}(A \cap B) = 0$, $\mathbb{P}(A) = 0.8$, $\mathbb{P}(B) = 0.1$
 - (d) $\mathbb{P}(A \cup B) = 0.2$, $\mathbb{P}(A) = 0.5$, $\mathbb{P}(B) = 0.4$
 - (e) $\mathbb{P}(A \cap B) = 0.1$, $\mathbb{P}(A) = 0.5$, $\mathbb{P}(B) = 0.9$
- 25. Правильный кубик подбрасывается два раза, величина X_i равна 1, если в i-ый раз выпала шестёрка, и нулю иначе. Условный закон распределения X_1 при условии $X_1 + X_2 = 1$ совпадает с распределением
 - (a) Биномиальным Bin(n = 2, p = 1/2)
 - (b) Бернулли с *p* = 1/2
 - (c) Бернулли с p = 1/6
 - (d) Биномиальным Bin(n = 2, p = 1/6)
 - (e) нормальным $\mathcal{N}(0;1)$
- 26. Случайные величины X и Y независимы и нормально распределены с параметрами $\mathbb{E}(X) = 2$, Var(X) = 3, $\mathbb{E}(Y) = 1$, Var(Y) = 4. Вероятность $\mathbb{P}(X + Y < 3)$ равна
 - (a) 3/7
 - (b) 0.05
 - (c) 0.5
 - (d) **0.995**
 - (e) 2/7
- 27. У Васи есть пять кнопок, генерирующих целые числа от 1 до 6. Три работают как честные кубики, одна с увеличенной вероятностью выпадения 6 (она выпадает с веростностью 0.5, остальные равновероятно), одна с увеличенной вероятностью выпадения 1 (она выпадает с вероятностью 0.5, остальные равновероятно). Вася нажимает на случайную кнопку. После нажатия на случайную кнопку выпала 6. Условная вероятность того, что это была кнопка «честный кубик» равна
 - (a) 1/2
 - (b) 4/11
 - (c) 5/11
 - (d) 8/11
 - (e) 6/11
- 28. Ковариационной матрицей может являться матрица
 - (a) $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$
 - (b) $\begin{pmatrix} 1 & 4 \\ 4 & 9 \end{pmatrix}$
 - (c) $\begin{pmatrix} 9 & 7 \\ 7 & 6 \end{pmatrix}$
 - $(d) \begin{pmatrix} -1 & 2 \\ 2 & 10 \end{pmatrix}$
 - (e) $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$

- 29. Известно, что $\mathbb{E}(X) = -1$, $\mathbb{E}(Y) = 2$, Var(X) = 4, Var(Y) = 9, Cov(X, Y) = -3. Из условия $\mathbb{E}(aX + (1-a)Y) = 0$ следует, что a равно
 - (a) 2/3
 - (b) 1/2
 - (c) 1
 - (d) 0
 - (e) 1/3
- 30. Случайная величина ξ имеет биномиальное распределение с параметрами n=2 и p=3/4. Вероятность $\mathbb{P}(\xi=0)$ равна
 - (a) 1/2
 - (b) 1/16
 - (c) 9/16
 - (d) 3/4
 - (e) 3/4
- 31. Количество сбоев системы SkyNet за сутки имеет распределение Пуассона. Среднее количество сбоев за сутки равно 4. Вероятность того, что за сутки произойдет не менее одного сбоя, равна
 - (a) e^{4}
 - (b) $1 e^4$
 - (c) $1 e^{-4}$
 - (d) $\frac{1}{4!}e^{-4}$
 - (e) e^{-4}
- 32. У пары случайных величин X, Y существует совместная функция плотности f(x,y) и условная функция плотности f(x|y). Условную дисперсию Var(X|Y) можно найти по формуле
 - (a) $\int_{-\infty}^{+\infty} (x \mathbb{E}(X|Y))^2 dx$
 - (b) $\int_{-\infty}^{+\infty} (x \mathbb{E}(X))^2 f(x|Y) dx$
 - (c) $\int_{-\infty}^{+\infty} x^2 f(x|Y) dx (\mathbb{E}(X|Y))^2$
 - (d) $\left(\int_{-\infty}^{+\infty} x f(x|Y) dx\right)^2 (\mathbb{E}(X|Y))^2$
 - (e) $\int_{-\infty}^{+\infty} x^2 f(x|Y) dx$
- 33. Случайная величина ξ имеет распределение Бернулли с параметром p. Математическое ожидание $\mathbb{E}[\xi^2]$ равно
 - (a) p(1-p)
 - (b) **p**
 - (c) p^2
 - (d) 0
 - (e) 1 p
- 34. Случайная величина ξ имеет показательное (экспоненциальное) распределение с параметром λ . Математическое ожидание $\mathbb{E}[\xi^2]$ равно
 - (a) $2/\lambda^2$
 - (b) $1/\lambda^2 1/\lambda$
 - (c) λ^2
 - (d) $1/\lambda$
 - (e) $1/\lambda^2$

- 35. Круг разделён на секторы с углом $\frac{\pi}{3}$. Один из них закрашен красным, один синим, остальные белым. Вася кидает дротики и всегда попадает в круг, все точки круга равновероятны. Пусть событие A попадание в красный сектор, B попадание в синий сектор. Эти события
 - (а) образуют полную группу событий
 - (b) случаются с вероятностями 1/4
 - (с) независимы
 - (d) случаются с разными вероятностями
 - (е) несовместны
- 36. Совместная функция плотности величин X и Y имеет вид

$$f(x,y) = \begin{cases} 6xy^2, \text{ при } x,y \in [0;1] \\ 0, \text{ иначе} \end{cases}.$$

Математическое ожидание $\mathbb{E}(XY)$ равно

- (a) 1/2
- (b) 1
- (c) 4/5
- (d) 3/4
- (e) 2/3
- 37. Случайная величина ξ имеет равномерное распределение на отрезке [0; 4]. Математическое ожидание $\mathbb{E}[\xi^2]$ равно
 - (a) 52/12
 - (b) 2
 - (c) 4
 - (d) 16/12
 - (e) 64/12
- 38. Известно, что $\mathbb{E}(X) = -1$, $\mathbb{E}(Y) = 2$, Var(X) = 4, Var(Y) = 9, Cov(X, Y) = -3. Дисперсия Var(aX + (1-a)Y) минимальна при a равном
 - (a) 11/12
 - (b) 7/12
 - (c) 3/12
 - (d) -1/4
 - (e) 3/24
- 39. В самолёте 200 пассажиров. Четверть пассажиров летит без багажа, половина из них— с рюкзаками. Среди пассажиров с багажом 55 человек летит с рюкзаками. Вероятность того, что случайно выбранный человек летит без рюкзака, равна
 - (a) 0.6
 - (b) 0.4
 - (c) 0.65
 - (d) 0.45
 - (e) 0.5

- 40. Математическое ожидание величины X равно 2, а дисперсия равна 6. Вероятность $\mathbb{P}(|2-X|\leq 10)$ принадлежит диапазону
 - (a) [0.2; 0.4]
 - (b) [0;0.06]
 - (c) [0.94;1]
 - (d) [0.6; 0.8]
 - (e) [0.99;1]