Computer Graphics (3-1-2)

Evaluation:

	Theory	Practical	Total
Sessional	30	20	50
Final	50	-	50
Total	80	20	100

Course Objectives:

- 1. To provide the knowledge of basic techniques used in Computer Graphics Systems.
- 2. To provide the knowledge of 2D and 3D algorithms used in Computer Graphics Systems.

Course Contents:

1. Introduction 2 hrs

- 1.1 Introduction
- 1.2 History of Computer Graphics
- 1.3 Application of Computer Graphics

2. Graphics Hardware

6 hrs

- 2.1 Interactive Input Devices
- 2.2 Display Devices and Hard Copy Devices
- 2.3 Raster and Random Systems and Architectures
- 2.4 Video Controller
- 2.5 Use of Digital to Analog Converter and Frame Buffer Organization
- 2.6 Color Monitors

3. Two Dimensional Algorithms

7 hrs

- 3.1 Line Drawing Algorithms
 - 3.1.1 DDA
 - 3.1.2 Bresenham's Algorithm
- 3.2 Circle Generation Algorithm
- 3.3 Ellipse Generation Algorithms
- 3.4 Area Filling-Scan Line Algorithm
- 3.5 Boundary Fill Techniques
- 3.6 Flood Fill Techniques

4. Two Dimensional Geometric Transformations and Viewing

8 hrs

- 4.1 Basic Transformations
- 4.2 Other Transformations
- 4.3 Homogeneous Co-ordinate systems
- 4.4 Composite Transformations
- 4.5 Windowing Concepts
- 4.6 Viewing Pipeline
- 4.7 Window to View port Transformation

4.9	Polygon Clipping: Sutherland-Hodgeman		
5. Three Din	nensional Graphics Systems	7 hrs	
5.1	3D Co-ordinate System and 3D Transformations	7 1115	
5.2	3D Representations		
5.3	Polygon Surfaces		
5.4	Cubic Spline and Beizer Curve		
5.5	Non-Planer Surface: Bezier Surface		
5.6	Fractal Geometry Method		
5.7	•		
5.8	<u>e</u>		
5.9	Clipping in 3D		
6. Visible Su	rface Detection	5 hrs	
6.1			
6.2	Back-Face Detection		
6.3			
6.4	A- buffer method		
6.5	Scan Line Method		
6.6	Area Subdivision Method		
6.7	Depth Sorting Method		
7 Illuminati	on and Shading	6 hrs	
7.1	Illumination Theory	Ums	
7.2			
7.3			
7.4	Surface Shading methods		
	7.4.1 Constant Shading		
	7.4.2 Gouraud Shading		
	7.4.3 Phong Shading		
	7.4.4 Fast Phong Shading		
7.5	Color Models: RGB, CMYK		
8. Graphical	Languages	4 hrs	
8.1 Need for Machine Independent Graphical Languages		9	
8.2	Graphical Languages: PHIGS, GKS		
8.3	Graphics Software Standard		
8.4	Overview of Graphics File Formats		
8.5	Data Structure in Computer Graphics		
8.6	Introduction to OpenGL		
	•		

Line Clipping Algorithm: Cohen-Sutherland

Laboratory:

4.8

Implementation of various 2D and 3D graphics algorithms covered in the course using C / C++ and OpenGL.

Text Book:

Donald Hearn and M. Pauline Baker: Computer Graphics, Prentice-Hall.

References:

- 1. James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, *Computer Graphics: Principles and Practice in C*, Addison-Wesley.
- 2. Mason Woo, Jackie Neider, Tom Davis, Dave Shreiner, *Open GL Programming Guide* Third Edition, The Official Guide to Learning OpenGL, Version 1.2, OpenGL Architecture Review Board, LPE Pearson Edition Asia.