Instituto Tecnológico de Aeronáutica - ITA Inteligência Artificial para Robótica Móvel - CT213

Aluno: Matheus Felipe Ramos Borges

Relatório do Laboratório 8 - Redes Neurais Convolucionais

1 Breve Explicação em Alto Nível da Implementação

Este experimento utiliza Redes Neurais Convolucionais (CNNs) para classificar dígitos manuscritos da base MNIST. A arquitetura adotada é a LeNet-5, proposta por Yann LeCun, composta por camadas convolucionais e de pooling que extraem e reduzem características da imagem, seguidas por camadas totalmente conectadas que realizam a classificação. A função de ativação utilizada é a tangente hiperbólica (tanh), exceto na saída, que utiliza softmax. A Tabela 1 apresenta os detalhes da arquitetura implementada.

Tabela 1: arquitetura da LeNet-5.

Camada	Tipo	Filtros	Saída	Kernel	Stride	Activation Function
Entrada	Imagem	1	32x32	-	-	-
1	Conv2D	6	28x28	5x5	1	tanh
2	AveragePooling2D	6	14x14	2x2	2	-
3	Conv2D	16	10x10	5x5	1	tanh
4	AveragePooling2D	16	5x5	2x2	2	-
5	Conv2D	120	1x1	5x5	1	tanh
6	Dense (FC)	-	84	-	-	tanh
7	Dense (FC)	-	10	-	-	softmax

2 Figuras Comprovando Funcionamento do Código

2.1 Evolução do Treinamento no TensorBoard

Figura 1: Evolução da Acurácia por Época nos Conjuntos de Treinamento e Validação.

Figura 2: Taxa de Aprendizado por Época.

2.2 Avaliação da LeNet-5

Figura 3: Exemplo de sucesso da LeNet-5.

Figura 4: Exemplo de falha da LeNet-5.

3 Discussão dos Resultados

Durante o treinamento da rede LeNet-5, foi observada uma evolução consistente da acurácia tanto nos dados de treino quanto nos dados de validação. Ao final das épocas, a acurácia de treinamento atingiu 98,76%, enquanto a de validação ficou em 98,56%. Esses valores elevados e próximos indicam que o modelo foi capaz de aprender efetivamente os padrões presentes nos dados de entrada, sem apresentar sinais significativos de overfitting. A proximidade entre as curvas de treino e validação sugere uma boa capacidade de generalização do modelo, ou seja, ele consegue manter um desempenho satisfatório mesmo em dados não vistos durante o treinamento. Além disso, a taxa de aprendizado permaneceu constante em 0.001 ao longo de todas as épocas, conforme ilustrado no gráfico, o que contribuiu para a estabilidade do processo de otimização. Esses resultados demonstram que a arquitetura da LeNet-5, mesmo sendo clássica, ainda se mostra eficaz para tarefas de classificação de imagens simples como os dígitos manuscritos da base MNIST.