Matematik A E2020 Uge 48, Forelæsning 1

Afsnit 13.5-6

Funktioner af flere variable:

Ekstremværdisætningen, topologiske begreber, generalisering til n variable, strengt voksende transformationer

Lidt overblik

- Ekstremumsbestemmelse for fkt af 2 variable på "kompakte" mængder (13.5)
 - Ekstremværdisætningen: Eksistens af max- og min-pkt
 - Metode til at finde dem (vigtig metode!)
 - Kort intro af nogle topologiske begreber i planen (\mathbb{R}^2)
- Lidt om generalisering til n variable og et resultat om "strengt voksende transformationer" (13.6)

- Næste gang: Evt hængepartier og eksempler på optimeringsproblemer (i en økonomisk model)
 - NB: For en gangs skyld er der ikke nyt læsestof

Ekstremværdisætn., 2 var (13.5)

For funktioner af én variabel (uge 40, forelæsning 1):

Ekstremværdisætningen, 1 var (Thm 8.4.1, s. 294):

En kontinuert funktion f på et afsluttet og begrænset interval [a,b] har et maksimumspunkt og et minimumspunkt.

Der findes altså $c, d \in [a, b]$ så:

$$f(d) \le f(x) \le f(c)$$
 for alle $x \in [a, b]$.

For en differentiabel fkt $f:[a,b] \to \mathbb{R}$ kan vi finde

alle ekstremumspunkter ved at "lede" blandt:

- 1) alle kritiske punkter for f i (a, b)
- 2) endepunkterne a og b

Nu: 2 variable!

Men det kræver nogle nye begreber...

Nogle topologiske begreber i \mathbb{R}^2

S er åben, hvis alle punkter i S er indre punkter

S er lukket/afsluttet, hvis den indeholder alle sine randpunkter

Bemærk:

En mængde er ikke nødvendigvis enten åben eller afsluttet

 $S = \mathbb{R}^2$ er både åben og afsluttet

S er begrænset (bounded), hvis den er indeholdt i tilstr. stor cirkel:

S er kompakt, hvis den er både afsluttet og begrænset

Eksempler på kompakte mængder:

$$S = \{(x,y) \mid x^2 + y^2 \le 1\}$$

Budgetmængde (lad p, q, m > 0)

$$\beta = \{(x,y) \mid x \ge 0, \ y \ge 0, \ px + qy \le m\}$$

Ekstremværdisætningen, 2 var (Thm 13.5.1, s. 518):

Lad f(x,y) være en kontinuert funktion defineret på en (ikke-tom) kompakt mængde S.

Da har f både et (globalt) maksimumspunkt og et (globalt) minimumspunkt i S.

Dvs. at der findes punkter (a, b) og (c, d) i S så:

$$f(a,b) \le f(x,y) \le f(c,d)$$
 for alle $(x,y) \in S$.

Metode: Find max- og min-pkt for f(x,y) på kompakt S

Overordnet:

- 1) Find mulige ekstremumspunkter i det indre af S
- 2) Find mulige ekstremumspunkter på randen af S
- 3) Sammenlign funktionsværdierne i alle de mulige ekstremumspunkter

Mere detaljeret:

- 1) Find kritiske punkter i det indre af S (nødv. FOC!)
- 2) Find max-pkt og min-pkt for f på randen af S ved (løst sagt) at udtrykke f på randen som en funktion af én variabel.

NB: Ofte må man opdele randen i flere "stykker" og finde max-/min-pkt for f på hvert enkelt stykke

3) Sammenlign funktionsværdierne i de mulige max-/min-pkt

Example 13.5.1 (behandles kun overordnet, læs selv detaljer!)
$$f(x,y) = x^2 + y^2 + y - 1 \qquad S = \{(x,y) \mid x^2 + y^2 \le 1\}$$

 $f(x,y) = x^2 + y^2 + y - 1$ $S = \{(x, y) \mid x^2 + y^2 \le 1\}$ Find (globale) maks- og min-punkter for f på S

og de tilhørende max- og min-værdier y Find krit. pht i det indre et S

$$f_1(x,y)=0$$
 og $f_2(x,y)=0$
Et kritisk pht: $(0,-\frac{1}{2})$, $f(0,-\frac{1}{2})=0+\frac{1}{4}-\frac{5}{2}-1=-\frac{5}{4}$
2) Undersøg randen: $(x^2+y^2=1)$

f på randen: g(y)=1 + y-1 = y, -1 ≤ y ≤ 1 nin-pht på randen: y=-1, dus: (0,-1), f(0,-1)=-1 nex-pht på randen: y=1, dvs: (0,1), f(0,1)=1

3) Sannenligh. mulige elistr. pht.

Min-pht på S:
$$(0,-\frac{1}{2})$$
, min-værdi: $f(0,-\frac{1}{2})=-\frac{5}{4}$

Max-pht på S: $(0,1)$, max-værdi: $f(0,1)=18$

Eksempel/opgave (en del af opg 2 fra eksamen august 2017)

$$f(x,y) = x^3 + x^2 - y + y^2 + xy$$
 $S = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le 1\}$

Find (globale) maks- og min-punkter for f på S og de tilhørende max- og min-værdier

- X=1
- 1) Find eventuelle kritiske punkter i det indre af S (pingo.coactum.de, 185415)
- 2) Undersøg randen af S for mulige max-/min-pkt
- 3) Sammenlign funktionsværdier i alle de mulige max-/min-pkt

Konklusion (se de næste slides for udregninger):
Max-pkt:
$$(1,1)$$
 ned max-værdi $f(1,1)=3$

Min-pkt:
$$(0,\frac{1}{2})$$
 ned nin-værdi $f(0,\frac{1}{2}) = -\frac{1}{4}$

J Kritishe pht:

$$3x^2 + 2x + y = 0$$
 og $-1 + 2y + x = 0$
 $y = \frac{1}{2}(1-x)$
 $3x^2 + 2x + \frac{1}{2} - \frac{1}{2}x = 3x^2 + \frac{3}{2}x + \frac{1}{2} = 0$

Tugen kritishe pht!

2) Undersøg rande!

T: $o(x \le 1, y = 0)$
 $(o,0), f(o,0) = 0$

 $S = \{(x, y) \mid 0 \le x \le 1, \ 0 \le y \le 1\}$

(0,0), f(0,0) = 0

(1,0), f(1,0) = 2

 $f(x,y) = x^3 + x^2 - y + y^2 + xy$

T: x=1, 05451 (1,0), f(1,0)=Z f(1,y)=2-y+y2+y=2+y2 vols. forosys1 (1,1), #(1,1) = 3TT: 05 x 51, 5=1 (0,1), f(0,1)=0 f(x,1)=x3+x2+x voles. for 05x51 $(1,1), f(1,1) = {}^{10}3$

 $f(x,o) = x^3 + x^2$ volsende for o(x)

$$f(x,y) = x^{3} + x^{2} - y + y^{2} + xy \qquad S = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$$

$$TV : x = 0, 0 \le y \le 1$$

$$f(o,y) = -y + y^{2} \qquad (o_{1}o), f(o_{1}o) = 0$$

$$d_{y}(-y + y^{2}) = -1 + 2y = 0 \qquad (=) \qquad y = \frac{1}{2} \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i) = 0$$

$$(o_{1}i), f(o_{1}i) = 0 \qquad (o_{1}i), f(o_{1}i)$$

Nyttemaksimeringsproblem, 2 varer:

 $\max_{x,y\geq 0} u(x,y)$ under bibetingelsen $px+qy\leq m$

Vi skal altså finde max-pkt for u(x,y) på budgetmængden $S=\{(x,y)\,|\,x\geq 0,\ y\geq 0,\ px+qy\leq m\}$

Lidt om udvidelse til n var (13.6)

De topologiske begreber fra tidligere kan alle generaliseres til \mathbb{R}^n "Åben cirkelskive" i def. af indre pkt skal erstattes af "åben kugle":

[Åben kugle:
$$B_r(a_1, \dots, a_n) = \{(x_1, \dots, x_n) \mid \sqrt{(x_1 - a_1)^2 + \dots + (x_n - a_n)^2} < r\}$$
]

Indre pkt i mgd $S \subseteq \mathbb{R}^n$: Der findes åben kugle omkr. punktet, som er indeholdt i S.

Åben mgd $S \subseteq \mathbb{R}^n$: Alle pkt i S er indre punkter (som i \mathbb{R}^2 !)

Etc...

"Nødv. FOCS" og ekstremværdisætningen gælder også for n var.!

Theorem 13.6.1 (s. 522): Nødvendige førsteordensbetingelser

Lad $f(x_1, \ldots, x_n)$ være en funktion defineret på $S \subseteq \mathbb{R}^n$ Hvis (c_1, \ldots, c_n) er et indre lokalt ekstremumspunkt (max- eller min-punkt), så er (c_1, \ldots, c_n) et kritisk punkt, dvs.

$$f'_{i}(c_{1},...,c_{n})=0$$
 for alle $i=1,...,n$

Ekstremværdisætningen, n var (Thm 13.6.2, s. 523):

Lad $f(x_1, ..., x_n)$ være en kontinuert funktion defineret på en (ikke-tom) kompakt mængde $S \subseteq \mathbb{R}^n$.

Da har f både et (globalt) maksimumspunkt og et (globalt) minimumspunkt i S.

"Strengt voksende transformationer"

Følgende problemer har samme løsning(er):

$$\max e^{x^2 + 2xy^2 - y^3} \text{ for } (x, y) \in S$$

$$\max x^2 + 2xy^2 - y^3 \text{ for } (x, y) \in S$$

Generelt (Thm 13.6.3, s. 523):

Lad $f(x_1, \ldots, x_n)$ være funktion på $S \subseteq \mathbb{R}^n$

Lad F(x) være en strengt voksende funktion af én variabel

Betragt den sammensatte fkt $g(x_1, \ldots, x_n) = F(f(x_1, \ldots, x_n))$ på S og lad $\mathbf{c} = (c_1, \ldots, c_n) \in S$

Da gælder:

 \mathbf{c} er max-pkt for f på S \Leftrightarrow \mathbf{c} er max-pkt for g på S

og

 \mathbf{c} er min-pkt for f på S \Leftrightarrow \mathbf{c} er min-pkt for g på S

Eksempel fra økonomi: Transformation af nyttefunktion

Følgende problemer (hvor $a \in (0,1)$) har samme løsning:

$$\max_{x,y\geq 0} x^a y^{1-a} \quad \text{under bibetingelsen} \quad px + qy \leq m$$

$$\max_{x,y>0} a \ln(x) + (1-a) \ln(y) \quad \text{under bibet.} \quad px + qy \le m$$