Coq: qu'est-ce?	CCI	Coq, l'outil	Prochainement	Références
0	000000000	000	0	0
0	00	0		

M2 PLS. Introduction à Coq

Micaela Mayero

http://www-lipn.univ-paris13.fr/~mayero/ Université Paris 13 LIPN-LCR

28 novembre 2014

1/24

Introduction à Coq

Coq: qu'est-ce?	CCI	Coq, l'outil	Prochainement	Références
• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000	000	0	0

Assistant d'aide à la preuve

- ► Autres prouveurs : HOL, PVS, Mizar, Isabelle, B, ACL2, ...[Freek]
- ▶ Pourquoi faire?:
 - preuves de correction de "propriétés" / spécification :
 - → propriétés mathématiques (théorèmes)
 - \hookrightarrow preuves de programmes
 - \hookrightarrow spécifications
 - exemples significatifs :
 - $\hookrightarrow \mathsf{Javacard},\,\mathsf{compilateur}\,\,\mathsf{C}\,\,\mathsf{certifi\acute{e}}$
 - $\hookrightarrow \mathsf{Meteor},\,\mathsf{NASA}$
 - $\hookrightarrow {\sf Biblioth\`eque}\ {\sf math\'ematique}$
- ▶ preuve formelle ≠ vérification

Coq : qu'est-ce ? 0 0	CCI 000000000 00	Coq, l'outil 000 0	Prochainement O	Références ○
Plan				

Coq: qu'est-ce?

Assistant d'aide à la preuve Logiques sous-jacentes CCI

CCI

Notions Les termes du CCI

Coq, l'outil Init

La bibliothèque standard

Prochainement

Prochainement

Références

Références

Introduction à Coq

Coq: qu'est-ce?	CCI	Coq, l'outil	Prochainement	Références
○○○	000000000	000	0	0

La logique

- théorie des ensembles (B)
- calcul des constuctions inductives (Coq)
- ▶ logique d'ordre supérieur (HOL,PVS)
- ▶ logique du premier ordre (Zenon)
- \rightarrow théorie des types / théorie des ensembles
- \rightarrow logique classique / logique intuitionniste
- ightarrow isomorphisme de Curry-de Bruijn-Howard

Coq: qu'est-ce?	CCI	Coq, l'outil	Prochainement	Références
	000000000	000	0	0
0	00	0		
•0				

Le Calcul des Constructions Inductives

CoC (Calculus of Constructions) (Coquand-Huet, 85) + types inductifs (Paulin, 88)

- λ-calcul simplement typé
- d'ordre supérieur
- déduction naturelle
- intuitionniste
- types inductifs
- types dépendants
- ► Curry-de Bruijn-Howard

(voir λ -cube de Barendregt)

5/24

Introduction à Coq

Coq: qu'est-ce? o o	CCI ●000000000 ○0	Coq, l'outil	Prochainement 0	Références ○
Notions				

Le λ -calcul (généralités)

Church, 1936

- ► concepte de fonction et d'application
- définition :
 - ▶ les variables sont des λ -termes
 - (u v) est un λ -terme si u et v sont des λ -termes
 - λ x.v est un λ -terme si x est une variable et v un λ -terme
- exemple : λ x.x+2, (λ x.x+2)3, λ xy.x+y, λ x.(x x) (= Δ), ...
- \triangleright conversions et réductions : α , β , ...
- ▶ normalisation, church-rosser, diamant (ou losange), ...
- ▶ λ -calcul simplement typé : rajout d'informations de typage ; λ x :nat.x+2 \rightarrow terme bien typé \rightarrow normalisation forte
- \hookrightarrow langages fonctionnels

7/24

Le λ -cube de Barendregt

Introduction à Coq

Coq: qu'est-ce?	CCI ○●○○○○○○○	Coq, l'outil	Prochainement ○	Références ○
-----------------	------------------	--------------	--------------------	-----------------

Le λ -calcul (substitution, conversion et réduction)

ightharpoonup substitution : notée E[V := E'], définie inductivement :

$$\begin{aligned} x[x := N] &\equiv N \\ y[x := N] &\equiv y, \text{ si } x \neq y \\ (M1 \ M2)[x := N] &\equiv (M1[x := N]) \ (M2[x := N]) \\ (\lambda y.M)[x := N] &\equiv \lambda y.(M[x := N]), \text{ si } x \neq y \text{ et } y \notin FV(N) \end{aligned}$$

- α -conversion : $\lambda y.v =_{\alpha} \lambda z.v[y := z]$ (! substitution)
- ▶ β -réduction : $(\lambda x.xy)a =_{\beta} (xy)[x := a] = ay$ Rq : on note \rightarrow * la fermeture réflexive transitive de la relation de réduction \rightarrow .
- ▶ ... (delta, iota, ...)

Notions

Le λ -calcul (propriétés)

- normalisation : t est normalisable s'il existe un terme u tel que $t =_{\beta} u$ (u est appelé la forme normale de t)
- ▶ normalisation forte : t est fortement normalisable si toutes les réductions à partir de t sont finies

Ex : $\Omega = (\lambda x.xx)(\lambda x.xx) = \Delta \Delta$ n'est pas fortement normalisable

- church-rosser : soient t et u deux termes tels que $t =_{\beta} u$. Il existe un terme v tel que $t \to *$ v et $u \to *$ v.
- ▶ diamant (confluence) : soient t, u1 et u2 des termes tels que $t \to *$ u1 et $t \to *$ u2, alors il existe un terme v tel que u1 $\to *$ v et u2 $\to *$ v.
- ▶ ... (lemme de la bande, ...)

9/24

Introduction à Coq

Coq: qu'est-ce? ⊙	CCI 0000●00000	Coq, l'outil	Prochainement	Références 0
00	00			

Notions

L'ordre supérieur

- ▶ logique du premier ordre : variables, fonctions, prédicats, quantificateurs on ne quantifie que sur les variables
- ► logique du second ordre : on peut également quantifier sur les prédicats et les fonctions
- ▶ filtres, ultrafiltres, ... (3ème ordre)

Déduction naturelle

Notions

Définition : système de règles

$$\frac{A \in \Gamma}{\Gamma \vdash A} \text{(Axiome)} \qquad \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \text{(\Rightarrow-intro)} \qquad \frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B} \text{(\wedge-intro)}$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} (\land - \text{elim}) \quad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} (\land - \text{elim}) \quad \frac{\Gamma \vdash A \quad \Gamma \vdash \neg A}{\Gamma \vdash \bot} (\neg - \text{elim})$$

(..., voir [Dowek] par exemple)

10/24

Introduction à Coq

Coq: qu'est-ce?	CCI	Coq, l'outil	Prochainement	Références
o o oo	00000●0000 ○○	000	0	0

Notions

l'intuitionnisme

Brouwer, 1910

a réfuté 2 principes de la logique classique :

- $\blacktriangleright \text{ le tiers exclus}: \varphi \vee \neg \varphi$
- ▶ le *il existe* non constructif : $\exists x, P \ x$

Exemple : montrer de manière classique et de manière intuitionniste qu'il existe deux nombres x et y irrationnels t.q. x^y soit rationnel. (cf TP1)

Notions

Les types inductifs

Récursivité

▶ les entiers :

```
Inductive nat : Set := 0 : nat | S : nat -> nat
nat_rect P: forall P : nat -> Set,
  P 0 ->
  (forall n : nat, P n -> P (S n)) ->
  forall n : nat, P n
```

▶ les listes :

```
Inductive list (A : Type) : Type :=
   nil : list A | cons : A -> list A -> list A
list_rect P : forall (A : Type) (P : list A -> Set),
   P nil ->
   (forall (a : A) (l : list A), P l -> P (a :: l)) ->
   forall l : list A, P l
```

Introduction à Cog

```
    Coq : qu'est-ce ?
    CCI
    Coq, l'outil
    Prochainement
    Références

    ○
    ○
    ○
    ○
    ○

    ○
    ○
    ○
    ○
    ○
```

Notions

l'isomorphisme de Curry-de Bruijn-Howard

Correspondance entre :

type et proposition programme et preuve

Par exemple, nous pouvons faire une correspondance entre :

il existe un programme P de type T \mbox{et} il existe une preuve P' de la proposition T'.

En d'autres termes : les preuves sont des objets, les propositions sont des types, une preuve d'une proposition P est un objet p de type P.

(BHK interpretation)

15/24

13/24

Coq: qu'est-ce? 0 0 0	CCI 0000000●00 00	Coq, l'outil	Prochainement 0	Références O

Les types dépendants

- les tableaux de taille n
- ▶ les listes de taille n

```
notation : \Pi n : nat(tab\ n)
rq : A \rightarrow B est un cas particulier de \Pi n : A\ B
(où n n'intervient pas dans B)
```

14/24

Introduction à Coq

Coq: qu'est-ce?	CCI	Coq, l'outil	Prochainement	Références
0 0 00	00000000 0	000	0	0

Notions

Interprétation de Brouwer-Heyting-Kolmogorov

- une preuve de $P \wedge Q$ est une couple (a,b) où a est une preuve de P et b une preuve de Q;
- ▶ une preuve de $P \lor Q$ est un couple (a,b) où a est 0 et b une preuve de P ou a est 1 et b une preuve de Q;
- \blacktriangleright une preuve de P \rightarrow Q est une fonction f qui convertit une preuve de P en une preuve de Q ;
- ▶ une preuve de \exists x ∈ S : ϕ (x) est un couple (a,b) où a est un élément de S et b est une preuve de ϕ (a);
- ▶ une preuve de \forall x ∈ S : ϕ (x) est une fonction f qui convertit un élément a de S en une preuve de ϕ (a);
- ▶ la formule ¬ P est définie par P $\rightarrow \bot$, une preuve de ¬ P es une fonction f qui convertit une preuve de P en une preuve de \bot ;
- ▶ ⊥ est le faux. Il n'y a pas de preuve du faux.

Coq: qu'est-ce?	CCI	Coq, l'outil	Prochainement	Références
0	000000000	000	0	0
00				

Les termes du CCI

CCI

Rappel : CoC + types inductifs

Un terme du calcul des constructions est ainsi construit :

- ► T est un terme (appelé Type)
- ► *P* est un terme (appelé Prop, le type de toutes les propositions)
- ▶ Si A et B sont des termes, le sont aussi :
 - ► (A B)
 - \triangleright $(\lambda x : A.B)$
 - ▶ (∀x : A.B)
 - + les règles d'inférence...

(voir par exemple [CoqRefMan])

17/24

19/24

Introduction à Coq

Coq : qu'est-ce ? 0 0 0	CCI 0000000000 00	Coq, l'outil ●○○ ○	Prochainement ○	Références ○
Init				

Les sortes

- ▶ *Prop* : la sorte des propositions (imprédicative)
- Set : la sorte des types de données de base (prédicative, depuis la V8)
- ► Type : la hiérarchie cumulative d'univers (prédicative)

$$Set = Type_0$$
, $Set : Type_1$, $Prop : Type_1$, $Type_i : Type_{i+1}$, $Type_i \subseteq Type_{i+1}$, $Prop \subseteq Type_1$

Imprédicativité et prédicativité :

$$\frac{x:A \vdash B:Prop}{\forall x:A,B:Prop} \qquad \frac{\vdash A:s \qquad x:A \vdash B:Type_i}{\forall x:A,B:Type_j (i \leq j)}$$

$$\text{avec } s = Set \text{ ou } s = Type_i$$

Règles d'inférence du CoC

$$\frac{\Gamma \vdash A : K}{\Gamma, x : A \vdash x : A} \text{(Variable)}$$

$$\frac{\Gamma, x : A \vdash t : B : K}{\Gamma \vdash (\lambda x : A.t) : (\forall x : A.B) : K} \text{(Abstraction)}$$

$$\frac{\Gamma \vdash M : (\forall x : A.B) \qquad \Gamma \vdash N : A}{\Gamma \vdash MN : B(x := N)} \text{(Application)}$$

$$\frac{\Gamma \vdash M : A \qquad A =_{\beta} B \qquad \Gamma \vdash B : K}{\Gamma \vdash M : B} \text{(Conversion)}$$

18/24

Introduction à Cog

Les termes du CCI

Coq: qu'est-ce? O O O	CCI 000000000 00	Coq, l'outil ○●○ ○	Prochainement O	Références 0
Init				

Tactiques élémentaires

Tactique : "commande" donnée au prouveur pour l'aider à "faire la preuve".

Exemples de correspondance avec la déduction naturelle :

assumption	Axiome		
intros, intros	\Rightarrow —intro, \forall — intro, \neg — intro		
apply	\Rightarrow —elim, \forall — elim, \neg — elim		
split	∧— intro		
left,right	V— intro		
exists	∃— intro		

Init

Définitions Inductives

Exemple : écrire une fonction qui calcule la somme des éléments d'une liste d'entiers.

En Ocaml:

```
let rec somme l=match l with
    [] -> 0
    |a::tl -> a+(somme tl);;
En Coq (Require Export List):
Fixpoint somme (l: list nat):nat:= match l with
    |nil => 0
    |cons a tl =>a+(somme tl)
end.
```

Contraintes en Coq : les fonctions doivent terminer; conditions de garde pour assurer la terminaison.

21/24

23/24

Introduction à Cog

**	Coq : qu'est-ce ? 0 0 00	CCI 000000000 00	Coq, l'outil 000 0	Prochainement ●	Références 0
----	-----------------------------------	------------------------	--------------------------	--------------------	-----------------

Prochainement

- ► Les nombres
- **Ecrire** des tactiques : le langage \mathcal{L}_{tac}
- Extraction
- ► Preuve de programmes

Coq : qu'est-ce? CCI Coq, l'outil Prochainement Références

Std-lib (17)

- Init (core)
- Logic
- ZArith
- QAtith
- Reals
- ▶ FSets
- List
- Bool
- Setoids
- String
- Wellfounded

22/24

Introduction à Coq

Coq: qu'est-ce?	CCI 000000000 00	Coq, l'outil	Prochainement ○	Références ●
B / 6/				

Références

- ► [Bertot] http://fuscia.inrialpes.fr/cours/coq/
- ► [CoqArt] www.labri.fr/perso/casteran/CoqArt/index.html
- ► [CoqRefMan] http://coq.inria.fr/distrib/current/refman/
- ► [Dowek] https: //who.rocq.inria.fr/Gilles.Dowek/Cours/Pit/pit.pdf
- ► [Freek] www.cs.ru.nl/~freek/comparison/
- ► [Hardin] http://pagesperso-systeme.lip6.fr/Mathieu.
 Jaume/cours_lambda_th.ps
- ► [Miquel] www.pps.jussieu.fr/~miquel/enseignement/mpri/guide.html
- ► [Proofweb] proofweb.cs.ru.nl/