Differentiable Logic Network

Differentiable Logic Network 深入研究: hackmd (https://hackmd.io/@gary7102/BJX5ljTzkg).

IDEFO 可微分邏輯網路 系統階層式模組化架構

基本設計:一共包含三大部分,分別是「模型初始化」、「fordward propagation」和「backward propagation」,以圖片分類為例,

輸入:圖片像素;輸出:訓練好的邏輯網路

注意,A2和A3為訓練過程,通常會經過多次的迭代,而非單一過程

模型初始化(A1):

定義網路結構(A11):

- 確定網絡的總層數 L (例如 4 到 8 層)
- 固定每層的神經元數量,通常相等
- 每層的每個神經元與前一層的兩個輸入隨機連接

初始化Logic gate 參數(A12):

- 每個神經元都對應 16 種邏輯操作(如 AND、OR、XOR 等)
- 使用 Softmax 對 w_i 初始化每個logic gate被選擇機率 (p_i) :

$$p_i = rac{e^{w_i}}{\sum_{j=0}^{15} e^{w_j}}$$

 w_i 是每個logic operation被選擇的優先程度,初始為常態分布隨機抽樣,代表每個 logic gate的機率分布是均勻的, w_i 會在Backward Propagation中被更新,目的就是 要改變每個神經元對Logic ate的選擇機率

定義超參數(A13):

- 初始化output layer之分組:將輸出層神經元分為 k 組(if k classes) · 會在 forward propagation 的aggregate output中使用到
- 定義learning rate, loss function (Softmax Cross-Entropy Loss)

Forward Propagation(A2):

輸入數據處理(A21):

若輸入是連續數據(如圖像像素值 [0,255]),則進行nomilization,使 $a\in[0,1]$:

$$a=rac{{f m}ackslash{\it Q}{f g}{f g}}{255}$$

神經元activation value 計算(A22):

每個神經元接受兩個輸入,假設為 a_1,a_2 (如上提到的a),並計算所有 \log ic gate的加權期望值:

$$a' = \sum_{i=0}^{15} \mathbf{p}_i \cdot f_i(a_1, a_2) = \sum_{i=0}^{15} \frac{e^{\mathbf{w}_i}}{\sum_j e^{\mathbf{w}_j}} \cdot f_i(a_1, a_2).$$

 p_i 即是上面提到的每個logic gate被選擇機率,使用softmax算得 $f_i(a_1,a_2)$ 為輸入 a_1 , a_2 ,第i個logic operation 的輸出

計算aggregate output(A23):

將output layer的 n 個神經元分成 k 組(if k classes),每組 $\frac{n}{k}$ 個神經元,計算每個 class的aggregate output:

$$\hat{y}_i = \sum_{j=i\cdot n/k+1}^{(i+1)\cdot n/k} a_j / \tau + \beta$$

• \hat{y}_i : class i 的信心分數

• a_j : output layer中第 j 個神經元的activation value

• au 及 eta : normalization value 及 offset

Backward Propagation(A3):

計算loss(A31):

Loss function: Softmax Cross-Entropy Loss \cdot 計算模型的的預測機率 (q_i) 相對於真實目標 (t_i) 的loss:

先對每個class 的aggregate output (\hat{y}_i) 求softmax \cdot 得 q_i :

$$q_i = rac{e^{\hat{y}_i}}{\sum_i^k e^{\hat{y}_i}}$$

再把 q_i 代入cross entropy loss \cdot 得 L:

$$L = -\sum_i t_i * log(q_i)$$

計算梯度(A32):

計算loss對logic gate參數 w_i 的梯度:

$$\frac{\partial L}{\partial w_i} = \frac{\partial L}{\partial x_1} * \dots * \frac{\partial x_i}{\partial w_i}$$

更新參數(A33):

更新 $w_i \cdot \forall i$ = ith logic operation:

$$w_i = w_i - \eta * rac{\partial L}{\partial w_i}$$

訓練階段多次迭代Foward Propagationr及Backward Prapagation 來更新 w_i ,並且更新後的 w_i 透過Softmax來更新 p_i (選取每個logic opeartion 的機率),

使最適合的 p_i 最大化,進而在推理階段時讓每個神經元選擇最適合的 \log ic operation

Grafcet 離散事件模型

