Listas e Tuplas

Exemplo Motivacional

- Programa para auxiliar a escrever "Parabéns!" nas melhores provas de uma disciplina com 3 alunos
 - Ler os nomes e as notas de 3 alunos
 - Calcular a média da turma
 - Listar os alunos que tiveram nota acima da média

Exemplo Motivacional

```
nome1 = input('Informe o nome do aluno 1: ')
nome2 = input('Informe o nome do aluno 2: ')
nome3 = input('Informe o nome do aluno 3: ')
nota1 = float(input('Informe a nota de ' + nome1 + ':'))
nota2 = float(input('Informe a nota de ' + nome2 + ':'))
nota3 = float(input('Informe a nota de ' + nome3 + ':'))
media = (nota1 + nota2 + nota3)/3
print('A media da turma foi', media)
if nota1 > media:
    print('Parabens', nome1)
if nota2 > media:
    print('Parabens', nome2)
if nota3 > media:
    print('Parabens', nome3)
```


E se fossem 40 alunos?

- É possível definir variáveis que guardam mais de um valor de um mesmo tipo
- Essas variáveis são conhecidas como variáveis compostas, variáveis subscritas, variáveis indexáveis ou arranjos (array)
- Em Python existem três tipos principais de variáveis compostas:
 - Listas
 - Tuplas
 - Dicionários

Vetores

- Variável composta unidimensional
 - Contém espaço para armazenar diversos valores
 - É acessada via um índice
- A ideia de vetor é comum na matemática, com o nome de variável subscrita
 - \triangleright Exemplo: $x_1, x_2, ..., x_n$

Vetores

- O que vimos até agora são variáveis com somente um valor
 - Exemplo: y = 123
- No caso de vetores, uma mesma variável guarda ao mesmo tempo múltiplos valores
 - \triangleright Exemplo: $x_1 = 123, x_2 = 456, ...$
 - x = [123, 456, ...]

Listas

- Em outras linguagens de programação, listas são chamadas de vetores e possuem restrições que Python não impõe:
 - Em Python, os valores de uma lista podem ser de qualquer tipo
 - Em outras linguagens, os valores precisam ser do mesmo tipo
 - Em Python
 - ▶ lista = ['A', I, 2, 'Casa', 2.3]
 - \rightarrow notas = [10, 5, 6.7, 2, 7.5]

Utilização de listas

Para acessar (ler ou escrever) uma posição do vetor,
 basta informar a posição entre colchetes

```
notas = [8.0, 5.5, 1.5]
media = (notas[0] + notas[1] + notas[2]) / 3
```


Utilização de listas

Pode-se iterar por todos os seus valores usando um comando for

```
notas = [8.0, 5.5, 1.5]
for i in range(3):
    print(notas[i])
```


Criação de uma lista a partir de valores lidos do teclado

Armazenar as notas de 3 alunos em uma lista. A nota de cada aluno será informada pelo teclado.

```
notas[0] = float(input('Digite a nota do primeiro aluno: '))
notas[1] = float(input('Digite a nota do segundo aluno: '))
notas[2] = float(input('Digite a nota do terceiro aluno: '))
```

Criação de uma lista a partir de valores lidos do teclado

Armazenar as notas de 3 alunos em uma lista. A nota de cada aluno será informada pelo teclado.

```
notas[0] = float(input('Digite a nota do primeiro aluno: '))
notas[1] = float(input('Digite a nota do segundo aluno: '))
notas[2] = float(input('Digite a nota do terceiro aluno: '))
```

Digite a nota do primeiro aluno: 8

```
Traceback (most recent call last):
```

File "/Users/vanessa/workspace/PyCharmProjects/AloMundo/notas.py", line 1. in <module>

notas[0] = float(input('Digite a nota do primeiro aluno: '))

NameError: name 'notas' is not defined

Process finished with exit code 1

É preciso primeiro criar a lista...

 Como não sabemos o que colocar em cada posição da lista, vamos criar uma lista vazia

```
notas = []
```

Depois vamos adicionar valores na lista usando append

```
n = float(input('Digite a nota do primeiro aluno: '))
notas.append(n)
```

Voltando ao exemplo

Armazenar as notas de 3 alunos em uma lista. A nota de cada aluno será informada pelo teclado.

```
notas = []
notas.append(float(input('Digite a nota do primeiro aluno: ')))
notas.append(float(input('Digite a nota do segundo aluno: ')))
notas.append(float(input('Digite a nota do terceiro aluno: ')))
print(notas)
```

Retomando: E se fossem 40 alunos?

- Criaríamos dois vetores (nomes e notas) de 40 posições
- Vincularíamos a posição i do vetor de nomes à posição i do vetor de notas

Retomando: E se fossem 40 alunos?

```
num alunos = 40
nomes = []
notas = []
media = 0
for i in range(num alunos):
    nomes.append(input('Informe o nome do aluno: '))
    notas.append(float(input('Informe a nota de ' + nomes[i] + ': ')))
    media = media + notas[i]
media = media / num alunos
print('A media da turma eh ', media)
for i in range (num alunos):
    if notas[i] > media:
        print('Parabens', nomes[i])
```


Cuidados no uso de listas

 Certifique-se de que não esteja querendo acessar posição da lista que não existe

Exemplo:

```
alunos = ['Andre', 'Lucas', 'Antonio', 'Maria']
print(alunos[4])
```

Cuidados no uso de listas

 Certifique-se de que não esteja querendo acessar posição da lista que não existe

Exemplo:

```
alunos = ['Andre', 'Lucas', 'Antonio', 'Maria']
print(alunos[4])
```

```
Traceback (most recent call last):

File "/Users/vanessa/workspace/PyCharmProjects/AloMundo/notas.py",
line 2, in <module>
    print(alunos[4])
```

IndexError: list index out of range

Process finished with exit code 1

Índices para acesso aos elementos da lista

- Python permite acesso à lista em ordem crescente ou decrescente de posição
 - Primeira posição é 0
 - Última posição é I

>>> c = [-45, 6, 0, 72, 1543] >>> c[3]	c[0]	-45	c[-5]
72	c[l]	6	c[- 4]
>>> c[-2]	c[2]	0	c[-3]
72 >>> c[0] = c[-5]	c[3]	72	c[-2]
True	c[4]	1543	c[-1]

Funções de manipulação de listas

- len(lista)
 - Retorna o tamanho da lista

```
>>> numeros = [3,1,6,7,10,22,4]
>>> len(numeros)
```

Exemplo

 Programa que lê uma lista do teclado, soma l aos elementos da lista e imprime a lista resultante

```
continua = True
lista = []
while (continua):
    n = int(input('Digite um numero: '))
    lista.append(n)
    op = input('Deseja continuar? (s/n): ')
    if op !== 's' and op != 'S':
        continua = False
print(lista)
for i in range (len (lista)):
    lista[i] = lista[i] + 1
print(lista)
```

Concatenação de listas

É possível anexar os valores de uma lista em outra usando o operador "+"

```
>>> lista = [1,2,3]

>>> lista = lista + [4]

[1,2,3,4]

>>> lista = lista + [4,5,6]

[1,2,3,4,4,5,6]
```

Exemplo

 Programa que retorna uma lista com todos os números pares entre 2 e um número n, inclusive

```
n = int(input('Digite um numero: '))
lista = []
for i in range(2,n+1,2):
    lista = lista + [i]
print(lista)
```

Exemplo

 Programa que retorna uma lista com todos os números pares entre 2 e um número n, inclusive, em ordem reversa

```
n = int(input('Digite um numero: '))
lista = []
for i in range(2,n+1,2):
    lista = [i] + lista
print(lista)
```

"Multiplicação" de listas

- O operador "*" repete n vezes os elementos que já estão na lista
- ▶ lista * n equivale a lista + lista + ... + lista (n vezes)

```
>>> lista = [1,2,3]
>>> lista = lista * 3
[1,2,3,1,2,3,1,2,3]
```

Inicialização de listas com zero

- Em diversas situações onde já sabemos de antemão qual será o tamanho de uma lista de inteiros, é útil inicializar a lista com o valor 0
- Isso evita que precisemos usar o append para adicionar valores

```
>>> tamanho = 10
>>> lista = [0] * tamanho
>>> lista
[0, 0, 0, 0, 0, 0, 0, 0, 0]
```

Exemplo

```
# inicializa vetor de notas com 0
notas = [0] * 3
soma = 0
# preenche vetor de notas, sem usar append
for i in range(3):
    notas[i] = float(input("Digite a nota do aluno " +
str(i) + ": "))
    soma = soma + notas[i]
print("A media da turma é", soma/3)
```

Teste de Pertinência

 Retornar True caso o valor 10 pertença à lista, e False caso contrário

Teste de Pertinência

 Retornar True caso o valor 10 pertença à lista, e False caso contrário

```
lista = [1, 2, 3, 4]
valor = 7
resultado = False
for i in range(len(lista)):
    if lista[i] == valor:
        resultado = True
print(resultado)
```

False

Alternativa: elemento in lista

```
lista = [1, 2, 3, 4]
resultado = 7 in lista
print(resultado)
```


Conhecimento útil: **split** retorna um vetor

```
>>>x = input("Digite valores
separados por espaços: ").split()
Digite valores separados por espaços:
10 20 30 40
>>>x
['10', '20', '30', '40']
>>>x[0]
'10'
```

Representação de Listas em Memória

 O valor de uma variável de lista na verdade é um endereço de memória

Representação de Listas em Memória

Em Phyton

```
notas = [8.2, 5.0, 7.1]
turma = 'B'
media = 0
for i in range(len(notas)):
    media = media + notas[i]
media = media/len(notas)
```


Cópia de listas

- Ao copiar uma lista para outra, o que é feito é copiar o valor do endereço de memória
 - Ambas passam a apontar para o mesmo endereço, portanto o que for modificado em uma lista também será modificado na outra

Cópia de Listas

Em Phyton

```
>>> lista1 = [1, 2, 3]
>>> lista2 = lista1
```


Cópia de Listas

Em Phyton

```
>>> lista1 = [1, 2, 3]
>>> lista2 = lista1
>>> lista1[0] = 10
>>> lista1
[10, 2, 3]
>>> lista2
[10, 2, 3]
```


Cópia de Listas

Em Phyton

```
>>>  lista1 = [1, 2, 3]
>>> lista2 = lista1
>>> lista1[0] = 10
>>> lista1
[10, 2, 3]
>>> lista2
[10, 2, 3]
>>> lista2[1] = 20
>>> lista2
[10, 20, 3]
>>> lista1
[10, 20, 3]
```


Como evitar isso?

Usar um for para copiar valor a valor

Exemplo

```
>>>  lista1 = [1, 2, 3]
>>> lista2 = []
>>> for i in range(len(lista1)):
                                                          &123
        lista2.append(lista1[i])
                                               &123
                                      lista1
                                      lista2
                                               &180
                                         0
                                                          &180
```


Dessa forma...

Alterações em uma lista não são refletidas na outra

```
>>> lista1 = [1, 2, 3, 4, 5]
>>> for i in range(len(listal)):
       lista2.append(lista1[i])
>>> lista2[0] = 10
>>> lista1
[1, 2, 3, 4, 5]
>>> lista2
[10, 2, 3, 4, 5]
>>> lista1[3] = 20
>>> lista2
[10, 2, 3, 4, 5]
```

Tuplas

Tuplas

- Tuplas são sequências de valores, da mesma forma que listas
- Mas, existem diferenças...
 - Os valores de uma tupla, ao contrário de uma lista, são imutáveis
 - Tuplas usam parênteses enquanto listas usam colchetes

```
>>> lista = [1, 2, 3, 4]
>>> tupla = (1, 2, 3, 4)
```

Tuplas

▶ Tupla vazia

```
>>> tupla = ()
```

 Tupla com um único elemento (note a necessidade da vírgula, mesmo sendo um único elemento)

```
>>>  tupla = (1,)
```

Acesso aos Elementos de uma Tupla

Acesso é feito pela posição, da mesma forma que nas listas

```
>>> tupla = ("Maria", "Joao", "Carlos")
>>> tupla[0]
"Maria"
```

Atualização de Tuplas

 Como são imutáveis, não é permitido atualizar os valores dentro de uma tupla

```
>>> tupla = ("Maria", "Joao", "Carlos")
>>> tupla[0] = "Ana"
TypeError: 'tuple' object does not support
item assignment
```

Operadores Básicos sobre Tuplas

Expressão	Resultado	Descrição
len((1,2,3))	3	Número de elementos que a tupla contém
(1,2,3)+(4,5,6)	(1, 2, 3, 4, 5, 6)	Concatenação
(1,) * 4	(1,1,1,1)	Repetição
3 in (1, 2, 3)	True	Pertencimento
for x in (1,2,3): print(x)	1 2 3	Iteração

Exercícios

- Faça um programa que leia dois vetores de 3 posições, que representam forças sobre um ponto no espaço 3D, e escreva a força resultante
 - Dica: força resultante é obtida pela soma dos valores das coordenadas correspondentes nos dois vetores: (x | + x2), (y | + y2), (z | + z2)
- 2. Faça um programa que preencha por leitura um vetor de 10 posições, e conta quantos valores diferentes existem no vetor.
- 3. Faça um programa que preencha por leitura um vetor de 5 posições, e informe a posição em que um valor x (lido do teclado) está no vetor. Caso o valor x não seja encontrado, o programa deve imprimir o valor l

Exercícios

- 4. Um dado é lançado 50 vezes, e o valor correspondente é armazenado em um vetor. Faça um programa que determine o percentual de ocorrências de face 6 do dado dentre esses 50 lançamentos.
- 5. Faça um programa que leia um vetor **vet** de 20 números inteiros. O programa deve gerar, a partir do vetor lido, um outro vetor **pos** que contenha apenas os valores inteiros positivos de **vet**. A partir do vetor pos, deve ser gerado um outro vetor **semdup** que contenha apenas uma ocorrência de cada valor de **pos**.

Exercícios

- Leia um vetor de 10 números inteiros e ordene o vetor, usando 3 métodos de ordenação diferentes (crie um programa para cada um)
 - a. Insertion Sort
 - b. Selection Sort
 - c. Bubble Sort
 - Em cada alternativa, conte o número de comparações realizadas, e imprima o número de comparações junto com o vetor ordenado
 - Observe qual dos algoritmos executou a ordenação com o menor número de comparações

Referências

▶ Slides baseados nas aulas de Leonardo Murta e Aline Paes