Домашняя работа №3 "Свойства бинарных отношений"

№ группы	N3149
Фамилия	Чан Ван
Имя	Хоанг
№ варианта	23

ИНСТРУКЦИЯ В КОНЦЕ ДОКУМЕНТА

1. **Найдите** область определения, область значений отношения P_{I} .

Область определения D={a,b,c}

Область значенмй $R=\{1,2,3,4\}$

2.Изобразите P_1, P_2 графически.

3. Запишите матрицы $[P_2], [P_2^{-1}], [P_2]^{\mathrm{T}}.$

$\begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$
--	--	--

$[P_2]$	$[P_2^{-1}]$	$[P_2]^{\mathrm{T}}$

4. Найдите композицию отношений $P_1 \circ P_2$.

$$P_1 \circ P_2 = \{(a,3),(a,4),(b,1),(b,2),(b,4),(c,3),(c,4)\}$$

5. Найдите обратное отношение $(P_1 \circ P_2)^{-1}$.

$$(P_1 \circ P_2)^{-1} = \{(1,b),(2,b),(3,a),(3,c),(4,a),(4,b),(4,c)\}$$

6. Найдите $[P_2 \cup P_2^{-1}], [P_2 \cap P_2^{-1}].$

$$[P_2 \cup P_2^{-1}]$$
 $[P_2 \cap P_2^{-1}]$

7. Проверьте, является ли отношение P_2 : рефлексивным, антирефлексивным, нерефлексивным?

Р является рефлексивным если

если
$$[P] = \begin{pmatrix} \mathbf{1} & & & \\ & \mathbf{1} & & \\ & & \mathbf{1} & \\ & & \mathbf{1} \end{pmatrix}$$
но $[P_2] = \begin{pmatrix} \mathbf{0} & & & \\ & \mathbf{0} & & \\ & & \mathbf{0} & \\ & & \mathbf{0} \end{pmatrix}$

$$\Rightarrow P_2 \text{ не является}$$

⇒ P₂ не является рефлексивным

Р является антирефлексивным если

 $\begin{vmatrix}
[P] = \begin{pmatrix} \mathbf{0} & \mathbf{0} & & \\ & \mathbf{0} & & \\ & & \mathbf{0} & \\ & & \mathbf{0} & \\ & & \mathbf{0} & \\ & & & & \mathbf{0} & \\ \end{vmatrix}$

 Нет, т.к P_2 является антирефлективным.

Антирефлексивность

Нерефлексивность

8. Проверьте, является ли отношение P_2 : симметричным, антисимметричным, несимметричным?

Нет, т.к: $[P_2] \neq [P_2]^{T}.$	Да, т.к: $[P_2 \cap P_2^{-1}] = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	Нет, т.к P_2 является антисимметричным
Симметричность	Антисимметричность	Несимметричность

9. Проверьте, является ли отношение P_2 : транзитивным, интранзитивным, нетранзитивным?

Нет, т.к $P_{2^{2}}=P_{2}\circ P_{2} = \{(1,2),(1,3),(4,2),(2,3),(2,4),(3,4)\}$	Есть пара $(1,4) \in P_2$ $(4,3) \in P_2$ но $(1,3) \in P_2$ $\Rightarrow P_2$ не является интранзитивным	Да, т.к P_2 не является транзитивным и не является интранзитивным.
Транзитивность	Интранзитивность	Нетранзитивность

10. Сделайте вывод, является ли множество $\langle B, P_2 \rangle$ ч.у.м.-ом, л.у.м.-ом?

Т.к P_2 является антирефлективным, антисимметричным и нетранзитивным, P_2 не является отношением частичного порядка. Значит $\langle B, P_2 \rangle$ не является ч.у.м.-ом

=> не является л.у.м.-ом

11. Достройте граф отношения P_2 до:

- 1) Отношения эквивалентности,
- 2) Отношения частичного порядка,
- 3) Отношения строгого порядка,
- 4) Отношения линейного порядка.

Q: Отношения эквивалентности если Q: рефлексивно, симметрично и транзитивно	Q: Отношения частичного порядка если Q: рефлексивно, антисимметрично и транзитивно. В моем случае я не могу получить т.к: пара $(2,4)$ и $(4,3) \in P_2 =>$ пара $(2,3) \in Q$ но $(3,2) \in P_2 =>$ $(3,2) \in Q => Q$ не является антисимметричным .	Q: Отношения строгого порядка если Q: антирефлективно, ансимметрично и транзитивно. В моем случае я не могу получить т.к: пара $(2,4)$ и $(4,3) \in P_2 =>$ пара $(2,3) \in Q$ но $(3,2) \in P_2 =>$ $(3,2) \in Q => Q$ не является антисимметричным	Q: Отношения линейного порядка если это отношенние частичного порядка и для которого любые два элемента сравнимы. В моем случае я не могу получить т.к: я не могу получить отношения частичного порядка
Отношения эквивалентности	Отношения частичного порядка	Отношения строгого порядка	Отношения линейного порядка

ИНСТРУКЦИЯ:

1. задание 1 - ответ в виде множества

задание 2 - ответ в виде двух рисунков (либо в графическом редакторе, либо средствами word)

задания 3 и 4 - ответ в виде множества

задание 5 - ответ в виде матриц

задания 6 и 7 - ответ в виде матриц и для каждого свойства подписать выполняется или нет

задание 8 - ответ в виде множества и для каждого свойства подписать выполняется или нет

задание 9 - сделать вывод на основе свойств отношения (рефлексивность, симметричность, транзитивность)

задание 10 - достроить граф до отношения... означает, что мы в берем граф для P_2 из задания 1 и достраиваем к нему дуги так, чтобы получить нужное отношение (по свойствам рефлексивность, симметричность, транзитивность). Если такое отношение построить нельзя, то так и пишем.

- 2. Сохраняем файл в "номер группы_ФИО.**pdf**" например "3142 ИвановИИ.pdf".
- 3. Отправляем мне на почту <u>kainagr@mail.ru</u> и указываем тему "домашняя работа 3 дм"
- 4. Срок выполнения работы 7 дней со дня нашей с вами практики, когда было выдано дз