SITUATION

Afin de déterminer le nombre de solutions d'une équation du type $f\left(x\right)=k$ sur \emph{I} , on utilise le corollaire du théorème des valeurs intermédiaires pour chaque intervalle de \emph{I} sur lequel la fonction est strictement monotone.

ÉNONCÉ

Déterminer le nombre de solutions de l'équation $x^3+x^2-x+1=0$ sur ${\mathbb R}$.

Etape 1

Se ramener à une équation du type f(x) = k

On détermine une fonction f telle que l'équation soit équivalente à une équation du type $f\left(x
ight)=k$.

APPLICATION

On pose:

$$orall x \in \mathbb{R}$$
 , $f\left(x
ight) = x^3 + x^2 - x + 1$

On cherche à déterminer le nombre de solutions de l'équation $\,f\,(x)=0\,$ sur $\,\mathbb{R}\,$.

Etape 2

Dresser le tableau de variations de f

On étudie les variations de f au préalable, si cela n'a pas été fait dans les questions précédentes. On dresse ensuite le tableau de variations de f sur I (limites et extremums locaux inclus).

APPLICATION

f est dérivable sur $\mathbb R$ en tant que fonction polynôme, et :

$$orall x \in \mathbb{R}$$
 , $f'\left(x
ight) = 3x^2 + 2x - 1$

On étudie le signe de $f'\left(x
ight)$. On reconnaît un trinôme du second degré. Son discriminant est :

$$\Delta=2^2-4 imes3 imes(-1)$$

Donc:

$$\Delta = 16$$

 $\Delta>0$ donc le trinôme est du signe de a(>0) sauf entre les racines que l'on détermine :

•
$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-2 - \sqrt{16}}{2 \times 3} = \frac{-6}{6} = -1$$

$$ullet x_2 = rac{-b + \sqrt{\Delta}}{2a} = rac{-2 + \sqrt{16}}{2 imes 3} = rac{2}{6} = rac{1}{3}$$

Ainsi, on obtient le signe de la dérivée :

X	- ∞	- 1		<u>1</u> 3		+ ∞
f'(x)	+	0	_		+	

De plus, on a:

$$ullet \lim_{x o -\infty}\left(x^3+x^2-x+1
ight)=\lim_{x o -\infty}x^3\left(1+rac{1}{x}-rac{1}{x^2}+rac{1}{x^3}
ight)=-\infty$$

$$ullet \lim_{x o +\infty} \left(x^3+x^2-x+1
ight) = \lim_{x o +\infty} x^3 \left(1+rac{1}{x}-rac{1}{x^2}+rac{1}{x^3}
ight) = +\infty$$

Enfin:

•
$$f(-1) = (-1)^3 + (-1)^2 - (-1) + 1 = 2$$

•
$$f\left(\frac{1}{3}\right) = \left(\frac{1}{3}\right)^3 + \left(\frac{1}{3}\right)^2 - \left(\frac{1}{3}\right) + 1 = \frac{1}{27} + \frac{1}{9} - \frac{1}{3} + 1 = \frac{1}{27} + \frac{3}{27} - \frac{9}{27} + \frac{27}{27} = \frac{22}{27}$$

On dresse le tableau de variations de f sur $\mathbb R$:

Etape 3

Déterminer le nombre de solutions de l'équation pour chaque intervalle

On identifie les intervalles $I_i \in I$ sur lesquels la fonction f est strictement monotone. Pour chaque intervalle I_i , on procède de la manière suivante :

- On justifie que f est continue.
- On justifie que f est strictement monotone.
- ullet On donne les limites ou les valeurs aux bornes de I_i . Soit J_i l'intervalle image de I_i par \emph{f} , on détermine si $k \in J_i$.

On en conclut:

- ullet Si $k
 otin J_i$ alors l'équation $f\left(x
 ight)=k$ n'admet pas de solution sur I_i .
- ullet Si $k\in J_i$ alors d'après le corollaire du théorème des valeurs intermédiaires, l'équation $f\left(x
 ight)=k$ admet une unique solution sur I_i .

On répète cette démarche pour chacun des intervalles $\,I_i$.

APPLICATION

On identifie trois intervalles sur lesquels la fonction f est strictement monotone : $]-\infty;-1]$, $\left|-1;\frac{1}{3}\right|$ et

 $\left\lceil rac{1}{3}; +\infty
ight
ceil$. On applique donc le corollaire du théorème des valeurs intermédiaires trois fois.

Sur $]-\infty;-1]$:

- fest continue.
- fest strictement croissante.

• $\lim_{x o -\infty} f\left(x
ight) = -\infty$ et $f\left(-1
ight) = 2$. Or $0 \in \left]-\infty; 2
ight]$.

D'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x)=0 admet une unique solution sur $]-\infty;-1]$.

Sur
$$\left[-1; \frac{1}{3}\right]$$
:

- fest continue.
- fest strictement décroissante.

•
$$f\left(-1
ight)=2$$
 et $f\left(rac{1}{3}
ight)=rac{22}{27}$. Or $0
otin\left[rac{22}{27};2
ight]$.

Donc l'équation $f\left(x
ight)=0$ n'admet pas de solution sur $\left[-1;rac{1}{3}
ight]$.

Sur
$$\left[\frac{1}{3};+\infty\right[:$$

- fest continue.
- fest strictement croissante.

•
$$f\left(rac{1}{3}
ight)=rac{22}{27}$$
 et $\lim_{x o +\infty}f\left(x
ight)=+\infty$, or $0
otin \left[rac{22}{27};+\infty
ight[$.

Donc l'équation $f\left(x
ight)=0$ n'admet pas de solution sur $\left[rac{1}{3};+\infty
ight[.$

Etape 4

Conclure

On conclut en donnant le nombre total de solutions sur I.

APPLICATION

L'équation $f\left(x
ight)=0$ admet donc une unique solution sur $\mathbb R$.

Dans le tableau de variations, en suivant les flèches, on peut dès le début déterminer le nombre de solutions de l'équation $f\left(x\right)=k$. Il ne reste ensuite qu'à rédiger la réponse de manière organisée.