¿La aversión al riesgo afecta el retorno esperado de las acciones?

Gabriel Cabrera G.

Universidad de Chile Facultad de Economía y Negocios

3 de Mayo del 2019

Gabriel Cabrera G.

Información de contacto

- ⋪ gcabrerag@fen.uchile.cl
 - % gcabrerag.rbind.io
 - **y** GaboC_g
 - **○** GaboCg
- ♥ Facultad de Economía & Negocios, Universidad de Chile

Tabla de contenido

- 1 Motivación
- 2 Estimación Aversion al riesgo
- 3 Time-varying Risk Aversion
- 4 Predictibilidad de los Retornos Accionarios
- 5 Conclusiones

Motivación

Motivación

- La variable no es observable y dificil de estimar.
- Interes en estudiar las propiedades de algunos proxies tales como VIX, *Variance Risk Premium* (VRP), entre otros.
- Estimamos una función time-varying risk aversion (TVRA) siguiendo los parametros de Bollerslev, Gibson, and Zhou (2011).
- 8 países (Francia, Alemania, Reino Unido, China, Japón, Suiza, Estados Unidos y Corea del Sur).
- Estudiamos si la variable TVRA puede predecir el retorno accionario in-sample.

5/26

Estimación Aversion al riesgo

Motivación Teórica I

7/26

• Considerando el modelo de volatilidad estocástica de Heston (1993), donde la volatilidad del logarítmo del precio de la acción sigue un proceso:

$$dp_t = \mu_t()dt + \sqrt{V_t}dB_{1t}$$

$$dV_t = \kappa(\theta - V_t)dt + \sigma_t()dB_{2t}$$
(1)

• Bollerslev and Zhou (2002) muestran que la distribución risk-neutral está dado por:

$$dp_t = r_t^* dt + \sqrt{V_t} dB_{1t}^*$$

$$dV_t = \kappa^* (\theta^* - V_t) dt + \sigma_t() dB_{2t}^*$$
(2)

• Siguiendo la notación de Bollerslev, Gibson, and Zhou (2011), $\mathcal{V}^{\mathcal{N}}_{t,t+\Delta}$ denota la volatilidad realizada, computada como la suma al cuadrado del retornos entre t y $t+\Delta$.

Motivación Teórica II

• Bollerslev and Zhou (2002) documentan que el primer momento del proceso de la volatilidad en (1) esta dado por:

$$\mathsf{E}(\mathcal{V}_{t+\Delta,t+2\Delta}|\mathfrak{F}_t) = \alpha_{\Delta}\mathsf{E}(\mathcal{V}_{t,t+\Delta}|\mathfrak{F}_t) + \beta_{\Delta} \tag{3}$$

• Britten-Jones and Neuberger (2000) prueban que la medida de volatilidad puede ser computada como el promedio de un continuo de Δ -maturity options.

$$IV_{t,t+\Delta}^* = 2\int \frac{C(t+\Delta,K) - C(t+\Delta)}{K^2} dK$$

• Donde $C(t + \Delta, K)$ es el precio de una opción Europea con madurez al tiempo t con precio strike K, es igual a la expectativa real de neutralidad de riesgo de la volatilidad integrada

8/26

$$IV_{t,t+\Delta}^* = \mathsf{E}^*(\mathcal{V}_{t,t+\Delta}|\mathfrak{F}_t) \tag{4}$$

• Usando este resultado, Bollerslev and Zhou (2006) muestran que existe una relación entre la voltilidad neutral al riesgo en (2) y la volatilidad física de (1):

$$E(\mathcal{V}_{t,t+\Delta}|\mathfrak{F}_t) = \mathcal{A}_{\Delta}\mathsf{IV}^*_{t,t+\Delta} + \mathfrak{B}_{\Delta} \tag{5}$$

• Donde $\mathcal{A}_{\cdot \cdot} = \frac{(1-e^{-k\Delta})/k}{(1-e^{-k^*\Delta})/k^*}$ y $\mathfrak{B}_{\Delta} = \theta[\Delta - (1-e^{-k\Delta})/k] - A_{\Delta}\theta^*[\Delta - (1-e^{-k^*\Delta})/k^*]$ son funciones del los parámetros κ , θ y λ .

Estimación GMM

- Dados los momentos de (3) y (5), se utiliza el método de estimación GMM.
- Consideramos los momentos definidos en (3) y (5), y el rezago de la volatilidad realizada como instrumento adicional.
- El conjunto final de los momentos para recuperar el vector de parametros $\xi=(\kappa,\theta,\lambda)$ es:

$$f_{t}(\xi) \equiv \begin{pmatrix} \nu_{t+\Delta,t+2\Delta} - \alpha_{\Delta}\nu_{t,t+\Delta} - \beta_{\Delta} \\ (\nu_{t+\Delta,t+2\Delta} - \alpha_{\Delta}\nu_{t,t+\Delta} - \beta_{\Delta})\nu_{t-\Delta,t} \\ \nu_{t,t+\Delta} - \mathcal{A}_{\Delta}i\nu_{t,t+\Delta}^{*} - \mathfrak{B}_{\Delta} \\ (\nu_{t,t+\Delta} - \mathcal{A}_{\Delta}i\nu_{t,t+\Delta}^{*} - \mathfrak{B}_{\Delta})\nu_{t-\Delta,t} \end{pmatrix}$$

• Por construcción $E(f_t(\xi)|\mathcal{G}_t) = 0$, y el estimador GMM es definido como:

$$\hat{\xi_t} = \arg\min_{\xi} g_t(\xi)' W g_t(\xi)$$

- 1. La muestra está compuesta por 8 países; Francia, Alemania, Reino Unido, China, Japón, Suiza, Estados Unidos y Corea del Sur.
- 2. La volatilidad realizada es computada para cada mes como la suma al cuadrado de los retornos diarios en es mes.

$$RV_t \equiv \sum_{i=1}^n \left(p_{t+rac{i}{n}} - p_{t+rac{i-1}{n}}
ight)^2$$

3. La volatilidad implicita se obtiene del índice VIX de cada país.

Estadística Descriptiva

12 / 26

Table 1: Summary Statistics for Monthly Realized and Implied Volatility

	CAC 40		DAX 30		FTSE 100		HS	HSI		EI 225	SM	I 20	S&F	500	KO	SPI
	RV_t	IV_t	RV_t	IV_t	RV_t	IV_t	RV_t	IV_t	RV_t	IV_t	RV_t	IV_t	RV_t	IV_t	RV_t	IV_t
Mean	20.68	23.11	21.81	22.49	16.48	19.83	19.93	23.12	21.51	25.29	16.03	18.41	15.21	19.5	17.89	21.56
SD	11.01	8.40	11.43	8.41	9.57	8.31	11.49	9.73	10.57	8.79	9.52	7.46	9.05	7.5	10.12	9.26
Skew.	1.94	1.54	1.85	1.5	2.43	1.73	3.39	2.15	3.35	2.45	2.58	2.16	2.89	1.7	2.67	2
Kurt.	5.87	2.79	4.55	2.11	9.49	4.01	19.24	6.08	22.07	10.12	9.55	6.1	13.48	4.46	12.13	5.95
Min.	6.75	11.97	6.32	11.67	4.17	9.99	6.66	11.8	6.34	12.21	5.73	9.26	4.24	10.26	5.91	10.75
5 %	9.32	13.55	10.02	13.39	7.3	11.09	9.81	13.66	9.92	15.22	7.36	11.39	6.71	11.56	8.06	11.86
25 %.	13.07	17.46	14.58	16.89	10.27	13.94	13.48	16.63	15.39	19.61	10.44	13.77	9.66	13.75	11.69	15.03
50 %	18.62	21.41	18.57	20.74	14.12	17.6	16.87	20.36	19.33	24.07	13.31	16.14	12.86	17.66	15.61	19.51
75 %	24.32	25.77	25.31	25.65	19.22	23.26	22.53	26.2	25.64	28.31	18.15	20.2	17.61	23.52	20.58	24.92
95 %	45.35	41.49	42.65	41.14	35.28	36.58	41.76	43.23	40.58	37.72	37.01	34.49	30.18	32.04	37.76	36.48
Max.	84.61	59.09	80.62	52.78	79.29	59.98	110.26	71.97	109.61	78.9	77.64	56.92	82.92	59.89	86.8	70.29

Time-varying Risk Aversion

Gabriel Cabrera G. Tesis Magister en Finanzas 3 de Mayo del 2019 13/26

Estimación País

- 1. Bollerslev, Gibson, and Zhou (2011) muestra que la volatility risk premium es proporcional a la aversión al riesgo del inversionista, aproximandose mediante $-\lambda$.
- 2. Para incorporar variación en el tiempo, se implementa un AR(1) aumentado.

$$\lambda_{t+1} = \alpha + b\lambda_t + \sum_{k=1}^k c_k \times state_{t,k}$$

3. Se incluye en $x_{t,k}$ el rezago de la volatilidad realizada al cuadrado, rezago de la volatilidad implícita y con cunjunto de varialbes macro-financieras. Aaa corporate bond spreads, housing starts, industrial production, Producer price index, Total payroll employment y Price-earnings (PE) ratio.

Table 2: GMM Estimates of Constant and Time-Varying Volatility Risk Premium Function

	Franc	e (CAC 40)	Germa	ny (DAX 30)	UK (FTSE 100)	Ch	ina (HSI)
	Constant	Macro Finance	Constant	Macro Finance	Constant	Macro Finance	Constant	Macro Finance
λ	-4.705*		-1.776		-2.578***		-2.031**	
	(2.559)		(1.232)		(0.540)		(1.003)	
α	, ,	-0.527***	` ,	-0.435***	, ,	-0.526***	, ,	-0.527***
		(0.070)		(0.160)		(0.026)		(0.178)
β		0.812***		0.779***		0.818***		0.855***
		(0.035)		(0.038)		(0.012)		(0.061)
c ₁ Realized Volatility		-0.323***		-0.319***		-0.317***		-0.319*
-		(0.105)		(0.079)		(0.100)		(0.173)
c ₂ Aaa Bond		0.190**		0.192***		0.187***		0.291**
		(0.086)		(0.036)		(0.061)		(0.127)
c ₃ Housing Start		-0.325		-0.103***		-0.212***		-0.230
		(0.288)		(0.046)		(0.071)		(0.253)
c ₄ Industrial Production		0.137		0.091***		0.069**		0.041
		(0.095)		(0.022)		(0.027)		(0.029)
c ₅ Producer Price Index		-0.056		-0.034		-0.037***		-0.031
		(0.062)		(0.048)		(0.010)		(0.097)
c ₆ Payroll Employment		-0.032***		-0.045***		-0.048		-0.052
		(0.011)		(0.007)		(0.052)		(0.127)
c ₇ PE Ratio		0.440**		0.384***		0.393***		0.302**
		(0.190)		(0.086)		(0.129)		(0.152)

Table 3: GMM Estimates of Constant and Time-Varying Volatility Risk Premium Function

	Japan ((NIKKEI 225)	Switzerl	and (SMI 20)	US	(S&P 500)	South K	orea (KOSPI)
	Constant	Macro Finance	Constant	Macro Finance	Constant	Macro Finance	Constant	Macro Finance
λ	-3.118**		-3.153***		-2.504*		-3.382***	
	(1.565)		(0.756)		(1.347)		(0.986)	
α	` '	-0.232*	` ′	-0.777***	, ,	-0.200	, ,	-0.320***
		(0.127)		(0.229)		(0.120)		(0.042)
3		0.931***		0.425***		0.740***		0.890***
		(0.019)		(0.087)		(0.222)		(0.017)
Realized Volatility		-0.319***		-0.362***		-0.423**		-0.216
,		(0.055)		(0.076)		(0.194)		(0.166)
2 Aaa Bond		0.191***		0.210***		0.251***		0.192*
		(0.054)		(0.042)		(0.088)		(0.106)
3 Housing Start		-0.230***		-0.201***		-0.212***		-0.233**
		(880.0)		(0.062)		(0.063)		(0.112)
c4 Industrial Production		0.037		0.079***		0.093***		0.056
		(0.118)		(0.029)		(0.023)		(0.073)
5 Producer Price Index		-0.052		-0.083***		-0.045***		-0.061*
		(0.093)		(0.028)		(0.011)		(0.036)
6 Payroll Employment		-0.030		0.018		-0.034		-0.052
		(0.096)		(0.049)		(0.031)		(0.062)
c ₇ PE Ratio		0.302**		0.302***		0.114**		0.264
•		(0.137)		(0.067)		(0.057)		(0.195)

1. Kim (2014) evidencia que la correlación dinámica entre la aversión al riesgo y el desempleo disminuye a lo largo del tiempo. Concluyendo que la variable tiene un comportamiento contra cíclico.

$$Corr(-\lambda_t^i, Uempl_{t+k}^i)$$

Table 4: Correlation between Time-varying Risk Aversion and Unemployment Rate

Countries (Indices)	t – 5	t – 4	t – 3	t-2	t-1	t	t+1	t+2	t+3	t + 4	t+5
France (CAC 40)	0.412***	0.410***	0.406***	0.399***	0.389***	0.376***	0.360***	0.339***	0.317***	0.291***	0.261***
Germany (DAX 30)	0.125*	0.122*	0.119*	0.116*	0.113	0.108	0.103	0.099	0.094	0.090	0.086
UK (FTSE 100)	0.311***	0.327***	0.340***	0.347***	0.350***	0.350***	0.341***	0.330***	0.316***	0.301***	0.285***
China (HSI)	0.379***	0.333***	0.283***	0.232***	0.184**	0.140*	0.109	0.085	0.067	0.055	0.046
Japan (NIKKEI 225)	0.262***	0.234***	0.205***	0.175**	0.146**	0.117*	0.092	0.069	0.050	0.032	0.015
Switzerland (SMI 20)	0.449***	0.458***	0.454***	0.440***	0.412***	0.356***	0.326***	0.294***	0.260***	0.225***	0.188***
US (S&P 500)	0.376***	0.348***	0.318***	0.283***	0.247***	0.208***	0.164**	0.121*	0.080	0.039	0.001
South Korea (KOSPI)	0.132*	0.125	0.120	0.117	0.113	0.099	0.084	0.077	0.060	0.041	0.019

Gabriel Cabrera G. Tesis Magister en Finanzas

Predictibilidad de los Retornos Accionarios

Gabriel Cabrera G. Tesis Magister en Finanzas 3 de Mayo del 2019 18 / 26

Estimación Panel

$$h^{-1}r_{t,t+h}^{i} = a(h) + b(h)TVRA_{t}^{i} + \gamma(h)'X_{t}^{i} + \alpha_{i} + u_{t,t+h}^{i}$$
 $h = 1, 2, ..., 12$

Table 5: Panel Stock Return Predictability Regressions

					Par	nel A: Baseli	ne						
Horizon	1	2	3	4	5	6	7	8	9	10	11	12	
TVRA	1.212***	0.621***	0.413***	0.312***	0.246***	0.206***	0.179***	0.157***	0.142***	0.126***	0.113***	0.105***	
	(0.445)	(0.222)	(0.148)	(0.112)	(0.090)	(0.074)	(0.064)	(0.055)	(0.049)	(0.045)	(0.041)	(0.037)	
%Adj. <i>R</i> ²	0.22	0.23	0.23	0.23	0.22	0.22	0.23	0.23	0.24	0.23	0.23	0.23	
Obs.	1627	1619	1611	1603	1595	1587	1579	1571	1563	1555	1547	1539	
	Panel B: Baseline + Variance Risk Premium												
TVRA	1.191***	0.610***	0.406***	0.307***	0.242***	0.202***	0.176***	0.155***	0.139***	0.124***	0.112***	0.103***	
	(0.421)	(0.209)	(0.139)	(0.105)	(0.084)	(0.070)	(0.059)	(0.052)	(0.046)	(0.042)	(0.038)	(0.035)	
VRP	0.198*	0.099**	0.066**	0.050**	0.040*	0.033**	0.028**	0.025**	0.022**	0.020**	0.018**	0.016*	
	(0.064)	(0.032)	(0.021)	(0.016)	(0.013)	(0.011)	(0.009)	(800.0)	(0.007)	(0.006)	(0.006)	(0.005)	
% Adj. <i>R</i> ²	2.07	2.08	2.09	2.1	2.09	2.1	2.11	2.11	2.11	2.09	2.08	2.07	
Obs.	1627	1619	1611	1603	1595	1587	1579	1571	1563	1555	1547	1539	
				Pa	nel C: Basel	ine + Inves	tor Sentime	nt					
TVRA	1.147**	0.588**	0.391**	0.296**	0.234**	0.196**	0.170***	0.149***	0.135***	0.120***	0.108***	0.100***	
	(0.463)	(0.229)	(0.152)	(0.115)	(0.093)	(0.077)	(0.065)	(0.057)	(0.050)	(0.046)	(0.042)	(0.038)	
Sentiment	-0.131	-0.068	-0.046	-0.035	-0.028	-0.023	-0.021	-0.018	-0.017	-0.015	-0.014	-0.013	
	(0.090)	(0.046)	(0.031)	(0.023)	(0.018)	(0.015)	(0.013)	(0.012)	(0.010)	(0.009)	(800.0)	(0.008)	
% Adj. <i>R</i> ²	0.31	0.33	0.34	0.34	0.33	0.34	0.35	0.35	0.37	0.36	0.35	0.37	
Obs.	1561	1553	1545	1537	1529	1521	1513	1505	1497	1489	1481	1473	

Table 6: Panel Stock Return Predictability Regressions

	Panel A: Baseline													
Horizon	1	2	3	4	5	6	7	8	9	10	11	12		
	Panel D: Baseline + Economic Uncertainty													
TVRA	1.161***	0.592***	0.394***	0.296***	0.234***	0.196***	0.170***	0.150***	0.136***	0.121***	0.110***	0.101***		
	(0.431)	(0.214)	(0.142)	(0.107)	(0.086)	(0.071)	(0.061)	(0.053)	(0.047)	(0.043)	(0.040)	(0.036)		
Uncertainty	0.035	0.017	0.011	0.009	0.007	0.006	0.005	0.004	0.003	0.003	0.002	0.002		
	(0.022)	(0.011)	(0.008)	(0.006)	(0.005)	(0.004)	(0.004)	(0.003)	(0.003)	(0.003)	(0.003)	(0.002)		
% Adj. <i>R</i> ²	0.39	0.4	0.4	0.4	0.41	0.41	0.39	0.38	0.37	0.36	0.32	0.31		
Obs.	1428	1421	1414	1407	1400	1393	1386	1379	1372	1365	1358	1351		
	Panel E: Baseline + All controls variables													
TVRA	1.1684***	0.5950***	0.3946***	0.2973***	0.2337***	0.1950***	0.1690***	0.1478***	0.1337***	0.1193***	0.1082***	0.1005***		
	(0.4294)	(0.2115)	(0.1405)	(0.1061)	(0.0860)	(0.0715)	(0.0601)	(0.0522)	(0.0465)	(0.0419)	(0.0386)	(0.0349)		
VRP	0.2079**	0.1038**	0.0693**	0.0521**	0.0417**	0.0348**	0.0298***	0.0260***	0.0230**	0.0207***	0.0188***	0.0171**		
	(0.0648)	(0.0324)	(0.0216)	(0.0162)	(0.0129)	(0.0108)	(0.0092)	(0.0080)	(0.0071)	(0.0064)	(0.0058)	(0.0053)		
Sentiment	-0.0821	-0.0432	-0.0299	-0.0226	-0.0171	-0.0144	-0.0130	-0.0117	-0.0108	-0.0095	-0.0088	-0.0085		
	(0.0648)	(0.0331)	(0.0223)	(0.0168)	(0.0132)	(0.0107)	(0.0094)	(0.0082)	(0.0074)	(0.0066)	(0.0059)	(0.0059)		
Uncertainty	0.0530***	0.0263***	0.0176***	0.0135***	0.0112***	0.0092***	0.0077***	0.0065***	0.0057***	0.0052***	0.0045***	0.0040**		
•	(0.0201)	(0.0100)	(0.0068)	(0.0052)	(0.0042)	(0.0035)	(0.0031)	(0.0027)	(0.0025)	(0.0023)	(0.0022)	(0.0020)		
% Adj. <i>R</i> ²	2.71	2.72	2.74	2.76	2.77	2.77	2.75	2.73	2.7	2.69	2.62	2.59		
Obs.	1561	1553	1545	1537	1529	1521	1513	1505	1497	1489	1481	1473		

Regresión a Nivel País

Table 7: Stock Return Predictability Regressions by Country

Horizon (h)		1	2	3	4	5	6	7	8	9	10	11	12
France	$\hat{\beta}_{TVRA}$	1.20	0.68	0.45	0.35	0.26	0.21	0.20	0.19	0.18	0.16	0.15	0.14
	R^2	0.21	0.27	0.27	0.28	0.25	0.23	0.29	0.32	0.36	0.35	0.37	0.39
Germany	$\hat{\beta}_{TVRA}$	0.98	0.49	0.33	0.24	0.20	0.17*	0.14*	0.12**	0.11**	0.10**	0.09***	0.08***
	R^2	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
UK	$\hat{\beta}_{TVRA}$	1.83***	0.92***	0.61***	0.46***	0.37***	0.31***	0.27***	0.23***	0.20***	0.18***	0.16***	0.15***
	R^2	1.24	1.25	1.25	1.27	1.25	1.26	1.29	1.26	1.22	1.23	1.09	1.18
China	$\hat{\beta}_{TVRA}$	5.81	2.91	1.93	1.46	1.17	0.97	0.83	0.73	0.64	0.58	0.53	0.48
	R^2	2.32	2.33	2.31	2.38	2.38	2.37	2.37	2.37	2.37	2.40	2.41	2.41
Japan	$\hat{\beta}_{TVRA}$	1.49***	0.74***	0.49***	0.37*	0.30	0.25	0.21	0.18	0.16	0.15	0.13	0.12
	R^2	0.87	0.87	0.87	0.87	0.87	0.88	0.86	0.85	0.87	0.85	0.86	0.84
Switzerland	$\hat{\beta}_{TVRA}$	6.21***	3.26***	2.13***	1.67***	1.29***	1.05**	0.88**	0.73**	0.65**	0.53	0.48	0.47
	R^2	1.06	1.15	1.08	1.17	1.06	0.99	0.95	0.85	0.82	0.67	0.66	0.75
US	$\hat{\beta}_{TVRA}$	0.54	0.27	0.19	0.15	0.12	0.12	0.11	0.11	0.11	0.09	0.08	0.07
	R^2	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.04	0.05	0.04	0.04	0.04
South Korea	$\hat{\beta}_{TVRA}$	6.54***	3.38***	2.26***	1.65***	1.30***	1.06***	0.94***	0.82***	0.71***	0.63***	0.57***	0.52***
	R^2	0.95	1.02	1.02	0.97	0.93	0.90	0.94	0.95	0.91	0.89	0.87	0.86

Conclusiones

Gabriel Cabrera G. Tesis Magister en Finanzas 3 de Mayo del 2019 24 /

Conclusiones

- 1. La función de aversión al riesgo es contra cíclica, consitente con la teoría de asset pricing.
- 2. Corporate bond spreads, industrial production growth, and price-earnings ratios son los componentes principales de la aversión al riesgo a nivel agregado en la mayoría de los países de la muestra.
- 3. En promedio, Japón, Suiza y Francia son los países más aversos.
- 4. En promedio Estados Unidos, China y Reino Unido son los menos aversos.
- 5. Usando datos de panel, encontramos que la función de aversión al riesgo puede predecir los retornos accionarios de los próximo 12 meses.
- 6. El resultado es robusto al agregar como controles variance risk premium, investor's sentiment e incertidumbre económica (EPU).

Referencia I

- Tim Bollerslev, Michael Gibson, and Hao Zhou. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities". In: *Journal of econometrics* 160.1 (2011), pp. 235–245.
- Tim Bollerslev and Hao Zhou. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility". In: *Journal of Econometrics* 109.1 (2002), pp. 33–65.
- Tim Bollerslev and Hao Zhou. "Volatility puzzles: a simple framework for gauging return-volatility regressions". In: *Journal of Econometrics* 131.1-2 (2006), pp. 123–150.
- Mark Britten-Jones and Anthony Neuberger. "Option prices, implied price processes, and stochastic volatility". In: *The Journal of Finance* 55.2 (2000), pp. 839–866.
 - Steven L Heston. "A closed-form solution for options with stochastic volatility with applications to bond and currency options". In: *The review of financial studies* 6.2 (1993), pp. 327–343.

Referencia II

Kun Ho Kim. "Counter-cyclical risk aversion". In: *Journal of Empirical Finance* 29 (2014), pp. 384–401.