(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-368342 (P2002-368342A)

(43)公開日 平成14年12月20日(2002.12.20)

(51) Int.Cl.7

識別記号

FI Unio 5/242 テーマコード(参考)

5F073

H01S 5/343

H 0 1 S 5/343

審査請求 未請求 請求項の数3 OL (全 12 頁)

(21)出願番号

特願2001-176363(P2001-176363)

(22)出願日

平成13年6月11日(2001.6.11)

(71)出願人 000000572

アンリツ株式会社

東京都港区南麻布5丁目10番27号

(72)発明者 吉田谷 弘明

東京都港区南麻布五丁目10番27号 アンリ

ツ株式会社内

F ターム(参考) 5F073 AA22 AA74 BA01 CA01 CA12

CB02 DA05 DA11 EA15 EA24

(54) 【発明の名称】 多重量子井戸半導体素子

(57)【要約】

【課題】 各量子井戸へのホールおよび電子注入の不均一が抑制された多重量子井戸半導体素子を提供する。 【解決手段】 多重量子井戸半導体素子の量子井戸層を n型導伝性とする物質を不純物として量子井戸層のみ、 もしくは、主に量子井戸層にドーピングする。

【特許請求の範囲】

【請求項1】第1の導伝性を有する半導体基板上に第1 の導伝性を有する半導体クラッド層、半導体よりなる活 性層、第2の導伝性を有する半導体クラッド層および第 2の導伝性を有する半導体よりなるコンタクト層が順次 積層され、かつ、前記半導体基板表面および前記コンタ クト層表面に、それぞれ電極が形成されて成るダブルへ テロ構造における、前記活性層が、前記第1の導伝性を 有するクラッド層に接して形成された、該第1の導伝性 を有するクラッド層よりバンドギャップの小さい半導体 10 よりなる分離閉じ込め層と、前記第2の導伝性を有する クラッド層に接して形成された、該第2の導伝性を有す るクラッド層よりバンドギャップの小さい半導体よりな る分離閉じ込め層との間に、量子井戸層と障壁層が交互 に積層され、かつ、該量子井戸層が2層以上である層構 成から成る多重量子井戸半導体素子において、前記量子 井戸層を n型導伝性とする物質を不純物として前記量子 井戸層のみ、もしくは、主に前記量子井戸層にドーピン グすることを特徴とする多重量子井戸半導体素子。

【請求項2】前記量子井戸層を n型導伝性とする物質を不純物として前記量子井戸層のみ、もしくは、主に前記量子井戸層にドーピングすることにより得られる前記量子井戸層内の電子密度が少なくとも前記障壁層の電子密度の 2.3倍以上となることを特徴とする請求項1記載の多重量子井戸半導体素子。

【請求項3】前記量子井戸層内の電子密度が 1×10^{24} m 3 から 3×10^{24} m 3 の間にあることを特徴とする請求項2記載の多重量子井戸半導体素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光通信および光計 測などの分野において光源となる半導体レーザー(以 降、LD (Laser Diode)と呼ぶ)、スーパールミネッセ ントダイオード (以降、SLD (Super Luminescent Dode)と呼ぶ)および発光ダイオード (以降、LED (Light Emitting Diode)と呼ぶ)、また、光信号を増幅する半 導体直接光増幅器 (以降、SOA (Semiconductor Optica l Amplifier)と呼ぶ)などのように電子とホールが再 結合する活性層に多重量子井戸 (以降、MQW (Multiple Quantum Well)と呼ぶ)を有する半導体素子に関する ものである。

[0002]

【従来の技術】MQW 構造は、バンドギャップの狭い半導体からなる量子井戸層と、この量子井戸層よりバンドギャップの広い半導体からなる障壁層が交互に積層されてなっており、特に量子井戸層の厚さは半導体内電子のド・ブロイ波長程度とし、一方、障壁層は電子のトンネル確率が無視できる厚さとするものである。例えば、MQW-LDの構造について簡単に述べると、MQW 構造は、その積層方向軸に沿って対向する側面から分離閉じ込め層など 50

を介して、それぞれ、p型およびn型導伝性を有する半 導体からなるクラッド層によって挟み込まれており、そ して、これらクラッド層には、それぞれの導伝性に対応 するキャリアを注入できるよう電極が形成されている。 このような層構造とすることで電子およびホールの量子 井戸層への量子閉じ込め効果が現われ、量子効果が働か ないバルク型層構造では得られない優れた素子特性が得 られている。

【0003】このような MQW-LD の MQWにおけるキャリア、即ち電子およびホールの動きを説明すると次のようになる。n型導伝性クラッド層および p型導伝性クラッド層から MQWに注入された、それぞれ電子およびホールは 3次元の運動自由度を有する電子およびホールとして MQW内障壁層のバンド端近傍を主に拡散過程により輸送される。これら 3次元-キャリアは輸送過程中に量子井戸に捕獲され、量子井戸面内の2次元にのみ運動の自由が許される 2次元-キャリアとなった後、発光再結合を通して誘導放出が生じレーザー光が得られる。

【0004】1480 nm 光波長帯 LD に用いられる、InP 基板上に InP結晶および GaInAsP混晶の多層構造をエピタキシャル成長してなる量子井戸を例にとってみると、価電子帯側のヘテロ障壁が伝導帯側のヘテロ障壁に比べ 1.3から 1.6倍程度高い。先に述べたキャリアのうち、ホールには 軽いホール と 重いホール が存在し、重いホールは状態密度が大きいためホールの大多数を占め、かつ、有効質量が大きいことによる縮退度の強い重いホールは、価電子帯側のヘテロ障壁が高いため電子に比較すると、3 次元状態の重いホールが一度量子井戸に捕獲され、2 次元状態の重いホールになった後、再度、量子井戸から放出され 3次元状態の重いホールになることが困難となる。

【0005】即ち、p 型導伝性クラッド層から MQWに注 入された重いホールの多くは、MQW内の p型導伝性クラ ッド層に最も近い量子井戸に捕獲され、n 型導伝型性ク ラッド層寄りの量子井戸に達する重いホールは極僅かと なり MQW内量子井戸に重いホール密度分布の不均一が生 じる。これに加え、障壁層の価電子帯端近傍における重 いホールのモビリティ (70~80 cm 2 V 1 s 1 程 度) は、例えば電子 (3500 cm ² V ⁻ ' s ⁻ ' 程度) に 比較して大変小さいため輸送速度も 10 ° m/s 程度と遅 くなり、特に高い光出力で LD を動作させるような状態 では、量子井戸におけるキャリアの誘導放出による消費 が著しくなるため、 MQW層の厚さである数十ナノメート ル (nm)程度の領域においても重いホール密度の分布 の変化は大きく、図12に示すように、 MQW内において p型導伝性クラッド層側に高く片寄り不均一を一層著し いものとする。

【0006】また、MQW 内では電荷中正条件を満たすようにキャリアが配置することから電子も、この重いホールの分布に一致するように分布するため、MQW 内のそれ

30

ぞれの量子井戸へ捕獲されるキャリア密度も p型導伝性 クラッド層に近い程、高くなり量子井戸へのキャリア注 入不均一が生じる。このような現象は MQW内において、 動作している量子井戸数の減少、各量子井戸の光学利得 係数および微分利得係数の不均一を招き LD の潜在的能 力を引き出せないという問題があった。

【0007】即ち、これらの問題は、例えば、文献、A. Hangleiter, A. Grabmaier, and G. Fuchs, "Damping of the Relaxastion Resonance in Multiple-quantumwellLasers by Slow Interwell Transport ", Appl. Ph 10 ys. Lett., Vol. 62 (19), pp. 2316-2318, 1993 〔文献 1)〕に示されているように、価電子帯側のヘテロ障壁 が高いため、3 次元状態の重いホールの量子井戸へ捕獲 される捕獲寿命が、量子井戸から3次元状態の重いホー ルへ放出される過程である放出寿命に比較し著しく短い こと、および、例えば、文献、C. H. Lin, C. L. Chua, Z. H. Zhu, and Y. H. Lo, "On Nonuniform Pumpiung for Multiple-quantum Well Semiconductor Lasers ", Appl. Phys. Lett. Vol. 65 (19), pp. 2383-2385, 1994 〔文献 2〕〕に述べられているように、重いホールのモ ビリティが小さいことなどが原因となって重いホールの 輸送が緩慢になることに集約される。

【0008】これらの問題は、従来より実験および理論 を通して研究が行われてきており、例えば以下の文献、 N. Tessler and G. Eisenstein, "On Carrier Injecti on and Dynamics in Quantum Well Lasers ", IEEE J. Quantum Electron., Vol. 29, pp. 1586-1595, 1993 〔文 献 3)〕論文で取り上げられ MQW内の量子井戸へのキャ リア注入不均一の存在することが指摘されている。

[0009]

【発明が解決しようとする課題】従来構造の MQWを有す る LD などの半導体光素子において MQW内の各量子井戸 へのキャリア注入不均一に起因して、内部微分量子効率 および微分利得係数が低下するため光出力の低下や直接 変調帯域の減少などの素子特性の抑圧が生じていた。こ の問題を避けるためには、量子井戸と障壁層の間の価電 子帯側へテロ障壁高さを低減する必要がある。このよう に量子井戸と障壁層の間の価電子帯側へテロ障壁高さを 低減することにより、重いホールが量子井戸から、単位 時間当たりに放出される密度が増大、即ち、放出寿命が 40 短縮される。このように重いホールが量子井戸より放出 される割り合いが多くなると、この重いホールは元の量 子井戸へ捕獲されるものもあるが、他の量子井戸へ捕獲 されるものの割合が増加するため、MQW 内の各量子井戸 における重いホール密度の分布を均一にすることができ る。しかし、量子井戸と障壁層の間の価電子帯側へテロ 障壁高さは、量子井戸と障壁層に使用する結晶および混 晶の組み合わせで決まってしまうため、直接このヘテロ 障壁高さを制御することはできていない。この問題の改 善のため、例えば、先に示した文献1)において、量子 50

井戸を GaInAs 混晶とし、かつ、障壁層を InGaAlAs 混 晶とする MQW構造を InP基板上に成長してなる、発振光 波長が 1500 nm程度の LD において、重いホール密度の MQW内分布が従来構造に比較して均一化することがシミ ュレーションにより示されている。

【0010】これは、以下の理由による。InP 基板上に 量子井戸および障壁層ともに GaInAsPからなる従来構造 の MQWでは、先にも述べたように、価電子帯側へテロ障 壁高さが伝導帯側ヘテロ障壁高さの 1.3~1.6 倍となる が、InP 基板上に成長された GaInAs / InGaAlAs系 MQW では、価電子帯側へテロ障壁高さが伝導帯側へテロ障壁 高さの 1/2 以下となるため重いホールの量子井戸から の放出寿命が大幅に減少するからである。しかし、この InP基板上に成長された GaInAs / InGaAlAs系 MQWに は、次のような問題がある。例えば、LDにおいて、発振 光モードの安定化、および、しきい注入電流の低減化の ためには発光領域の幅を化学エッチングにより 1~2 μ m程度にまで狭窄化し、これに埋め込み成長を施して、 発振光モードの安定化、および、しきい注入電流の低減 化を行うことは、欠くことのできない工程となってい る。しかし、GaInAs / InGaAlAs MQW のように Al を含 む混晶系では表面に極めて安定な Al 酸化物が形成され るため、化学エッチングされて露出した、この A1系混 晶界面上への良好な埋め込み成長が極めて困難となるの である。

【0011】また、文献、山田みつき、他、 "GaAsSb 系長波長面発光レーザ ", 信学技報, LQE 99-133, (20 00-02) 〔文献 4)〕において、GaAsSb/GaAs 系面発光 半導体レーザについて MQW内の障壁層のみに p型導伝性 不純物をドーピングする、いわゆる変調ドープ構造をと ることにより、実効的な価電子帯側へテロ障壁高さを低 減する手法が報告されている。

【0012】このメカニズムについて若干の説明を行う と次のようになる。障壁層にドープされた不純物から生 じたホールのうち、イオン化されたアクセプタとホール の間に生じる電場のために量子井戸に近いもののみ量子 井戸に捕獲されるが、それ以外のものは障壁層に残り、 障壁層における価電子帯側フェルミ準位を高く保つ。一 方、量子井戸に捕獲されたホールは、先にも述べたよう に、障壁層の量子井戸近傍から来たものであるから量子 井戸内のホール密度は、それほど高くならず、これに加 え、ホールの有効質量が大きいことに由来する、大きな 状態密度のため量子井戸の価電子帯側フェルミ準位は比 較的低い。定常状態では、障壁層と量子井戸の間のフェ ルミ準位が、ほぼ一致するようにバンドが配置するから 図13のように価電子帯側へテロ障壁高さが低減される のである。しかし、この報告では、MQW 内量子井戸への ホールの注入効率の改善による、しきい注入電流密度の 低減は見られたが光吸収損失も増大することが明らかに なっている。このように、光吸収が増大すると、例え

5

ば、LDにおいてはスロープ効率の低下による光出力の低下、線幅増大係数の増加による発振線幅広がりや波長チャーピングなどの望ましくない特性の悪化が生じる問題がある。

【0013】本発明は、このような問題を解決するためになされたものであり、量子井戸と障壁層の間の実効的な価電子帯側へテロ障壁高さを低減し、各量子井戸へのホールおよび電子注入の不均一が抑制された多重量子井戸半導体素子を提供するものである。

[0014]

【課題を解決するための手段】前述の課題を解決するた めに、本発明の第1の態様によると、第1の導伝性を有 する半導体基板上に第1の導伝性を有する半導体クラッ ド層、半導体よりなる活性層、第2の導伝性を有する半 導体クラッド層および第2の導伝性を有する半導体より なるコンタクト層が順次積層され、かつ、前記半導体基 板表面および前記コンタクト層表面に、それぞれ電極が 形成されて成るダブルヘテロ構造における、前記活性層 が、前記第1の導伝性を有するクラッド層に接して形成 された、該第1の導伝性を有するクラッド層よりバンド 20 ギャップの小さい半導体よりなる分離閉じ込め層と、前 記第2の導伝性を有するクラッド層に接して形成され た、該第2の導伝性を有するクラッド層よりバンドギャ ップの小さい半導体よりなる分離閉じ込め層との間に、 量子井戸層と障壁層が交互に積層され、かつ、該量子井 戸層が2層以上である層構成から成る多重量子井戸半導 体素子において、前記量子井戸層を n型導伝性とする物 質を不純物として前記量子井戸層のみ、もしくは、主に 前記量子井戸層にドーピングすることを特徴とする多重 量子井戸半導体素子が提供される。

【0015】また、本発明の第2の態様によると、前記量子井戸層を n型導伝性とする物質を不純物として前記量子井戸層のみ、もしくは、主に前記量子井戸層にドーピングすることにより得られる前記量子井戸層内の電子密度が少なくとも前記障壁層の電子密度の 2.3倍以上となることを特徴とする第1の態様に記載の多重量子井戸半導体素子が提供される。

【0016】さらに、本発明の第3の態様によると、前記量子井戸層内の電子密度が 1×10^{24} m から 3×10^{24} m かの間にあることを特徴とする第2の態様に 40記載の多重量子井戸半導体素子が提供される。

【0017】本発明の多重量子井戸半導体素子は、III-V族化合物半導体よりなる MQWを例にとれば、Si、S、 Ge、Se、Sn、Te など、この化合物半導体を n型導伝性 とする物質を不純物として、MQW 内における量子井戸の みもしくは主に量子井戸に、ドーピングする。ここで述 べたような、不純物はキャリアとして電子を生じるが、電子の拡散は上でような、不純物はキャリアとして電子を生じるが、電子はホールに比較して有効質量が数分の一から十分の 一と小さいため伝導体側の状態密度が小さく、同一のド ーピング量では価電子帯側に比較して伝導体のフェルミ 50 出がトンネル効果により容易に可能となる。

準位は容易に上昇する利点がある。

【0018】また、価電子帯側のスプリットオフバンドから重いホールバンドへ電子が光励起されるために起きる、いわゆる、価電子帯間吸収がホール密度が高くなると価電子帯側で生じるが、伝導体側はバンドが簡素な構造となっているため、このような光吸収機構がないという利点もある。これに加えて、Siなどの不純物は自己拡散が弱く急峻なドーピングプロファイルが得られること、および、例えば、GaInAsP/InP系では、n型導伝性GaInAsP系混晶はp型導伝性のものに比較し、図11にInPを例にとって示すように電気的な抵抗率が一桁以上小さいという、電流注入により動作する半導体素子にとって極めて好都合な性質がある。

【0019】本発明により、量子井戸と障壁層の間の実効的な価電子帯側へテロ障壁高さが低減されることによる、MQW 内キャリア密度均一化に与える作用について述べる。GaInAsP/InP 系 MQW-LD を例にとると、通常は光吸収損失の増大などを避けるため MQW領域にはドーピングを行わない。しかし、このままでは伝導帯へテロ障壁高さ(V.)に比較し価電子帯へテロ障壁高さ(V.)は、1.3 から1.6 倍になり、例えば、先に述べた文献3)、N. Tessler and G. Eisenstein, "On Carrier Injection and Dynamics in Quantum Well Lasers", IEEE J. Quantum Electron., Vol. 29, pp. 1586-1595, 1993によると、従来用いられる量子井戸と障壁層のバンドギャップの組み合わせの範囲において、重いホールの量子井戸からの放出寿命は捕獲寿命に比較して、数十倍から千倍長くなってしまう。

【0020】これに対し、本発明においては、以下に述 べる機構により量子井戸と障壁層の間の実効的な価電子 帯側へテロ障壁高さ (Vhh-err) を低減する。図1 (a) は、通常の LD などに用いられる無ドープ MQWに おける量子井戸と障壁層の間のバンドラインナップであ る。これに対して、本発明では、 MQWを n型導伝体とす る不純物を、量子井戸のみ、もしくは、主に量子井戸に ドープするため、伝導帯側フェルミ準位に関して量子井 戸の準位 (E_{F-q v}) が障壁層の準位 (E_{F-Barri}) より 大幅に高くなる。この状態で量子井戸と障壁層のフェル ミ準位が一致するようにバンドが配置し擬平衡状態が成 立する。このとき、図1(b)に示すように、量子井戸 と障壁層の間の実効的な価電子帯側へテロ障壁高さ(V hh---r;)を、無ドープ量子井戸の場合の価電子帯側へテ 口障壁髙さ (V_{kk})よりも低減させることができる。ま た、量子井戸側の電子が障壁層側に拡散するため、量子 井戸と障壁層の界面でバンドが歪み、障壁層の価電子帯 端にスパイクを形成するが、電子の拡散は量子井戸内の イオン化されたドナーと障壁層に拡散した電子の間に働 く電場のために制限されることからスパイクの幅は狭 く、ホールの量子井戸への捕獲および量子井戸からの放

障壁高さの低減ができる。

【0021】本発明における、量子井戸および障壁層の 電子密度と実効的な価電子帯側へテロ障壁高さ(V mm-...)の関係を 1480 nm光波長帯歪み MQW-LD につ いて図2に示すが、障壁層電子密度 (Narr.) に係わ らず、量子井戸内電子密度 (N₀,) の増大と共に実効的 な価電子帯側へテロ障壁高さは、ほぼ同じ傾きで低減し て行く。図2から明らかなように障壁層の電子密度が低 いほど価電子帯側のヘテロ障壁高さが低減されるが、例 えば、埋め込み型半導体レーザーにおける多重量子井戸 の製作過程においては、不純物の拡散などにより 10 21 m ³ から 10²² m ³台のキャリア密度になることか ら、障壁層の電子密度 (Na.rr.) の設定をこれより 1 桁程度高い 1×10²³ m³ と設定することが現実的であ る。また、N B.,,, として ·1×10²¹ m ³ 以上と成ると 価電子帯側へテロ障壁高さの低減効果は弱くなることも 図2からわかり、N s.rr. の範囲として 1×10²³ m⁻³ から 1 ×10²¹ m⁻³ が適当である。

【0022】このことから、少ない No.rr. により価電 子帯側へテロ障壁高さを低減することのできる条件は図 2における3種の曲線のうち中央のものをとれば良く、 この曲線が示す価電子帯側のヘテロ障壁高さが従来構造 の障壁高さ(Vnn)より低くなる量子井戸内電子密度 は、1 ×10²⁴ m⁻³ となる。一方、量子井戸内電子密度 が 3 ×10²⁴ m ³ を超えるようなドーピングを行うと 量子井戸の結晶性を損なうため、実際に製作する多重量 子井戸における量子井戸の電子密度は 1 ×10²⁴ m⁻³ から 3 ×10²¹ m⁻³ の間にあることが適当である。

【0023】例えば、障壁層電子密度が N Barr : 0. 1 ×10² m ³ および 1 ×10² m ³ の場合は、それ ` ³および 約 2.3×10²¹ m ³ 以上において、実効的 な価電子帯側へテロ障壁高さは、図3における斜線で示 した領域で無ドープ量子井戸の価電子帯側へテロ障壁高 さ(V,,) よりも低減することができる。このことか ら、量子井戸内の電子密度が少なくとも障壁層の電子密 度の 2.3倍以上であれば、実効的な価電子帯側のヘテロ

【0024】障壁層へのドーピング量制御の容易さか ら、 Na.rr. : 0.1 ×1024 m 3 程度が MQW作製条件と し適当であるから、このドーピング条件における伝導帯 側へテロ障壁高さ (V.-.,) および価電子帯側へテロ 障壁高さと量子井戸内電子密度の関係を図4に示す。こ のような条件で MQWを作製することで、 Nov: 約 0.8 7 ×10²⁴ m⁻³ (図中矢印 A) において V h--- が V -- . . . より低くなり、また、 No. :約 1.5から 1 /2 から1/3 となり、V トト・・・・ は V トト に比較 して 60 meV から 90 meV 程度と大幅に低減される。こ こで、述べたレベルの電子密度はドナー不純物のイオン 化率が極めて高いため容易に達成することができる。

【0025】次に、4層の量子井戸よりなる共振器長が 1 mm を有する 1480 nm光波長帯LDの光出力 (Pour) が 400 mW のとき、価電子帯側へテロ障壁高さの低減 量 (ΔV hh) が、0 meV 、40meV 、80meV の場合の MQW 内における 3次元状態の重いホールの密度 (Pso) と M QW内の位置 (x) の関係は図5のようになり、 ΔV_{hh} が大きくなる程、量子井戸からのホールの放出寿命が短 くなるため P₃ 。 は髙くなる。

【0026】表1は、本発明による実効的な価電子帯側 ヘテロ障壁高さの低減と、3 次元自由度を有する重いホ ールの MQW内分布の偏りの緩和を表わす表である。MQW 領域の両端にあたる位置である x : 0 nm と x : 80 nm における 3次元状態の重いホールの密度における P sp (o) とx:80 nmにおける Psp (so na) の差 は、何れのΔV_h。 においても、ほぼ同一である。 P ぞれ、量子井戸の電子密度が Now : 約 0.7×10²⁴ m 30 30 (0) と P3p(80 nm) の差を P3p(0) と P 3D(80 na) の相加平均で割った量を、MQW 領域の 3次元状態の重いホール密度の不均一と定義すると、 ΔV kkが大きくなる程、この不均一は表1に示すように減 少する。

> [0027]【表 1】

無ドーブ MQW における 価電子帯側へテロ障壁 V _{hh-0} (meV)	価電子帯側 実効へテロ 障壁の低減量 △V _{hh} : V _{hh-0} - V _{hh-eff} (meV)	3 次元 重いホール の密度不均一 2 (P _{3D(0)} - P _{3D(80 mm)}) (P _{3D(0)} + P _{3D(80 mm)})
	0	0.462
146.403	40	0.149
	80	0.0402

【0028】この LD の光出力 400 mW における 4層の 個別量子井戸への注入電流と ΔV ,, の関係は図 6 のよう になり、従来構造では、最も p側クラッド層に近い量子 井戸(N₀ *: 1) と最も遠い量子井戸(N₀ *: 4) の間 の注入電流の差は約 40 mAであるが、本発明による Δ V_ь, が 80 meV を例にとると、この差が約 6.4 mAと

【0029】このように、本発明を採用することによ り、MQW 内において、動作している量子井戸数の減少、 各量子井戸の光学利得係数および微分利得係数の不均一 10 を招きLD の潜在的能力を引き出せないという問題を、 光吸収が増大および埋め込み結晶成長品質の低下をとも なわず解決できる。

なり 1/6 程度に抑圧することができる。

[0030]

【発明の実施の形態】本発明を適用した半導体レーザー 素子の製造手順を通して、本発明の第1の実施の形態を 図7および図8を用いて説明する。ここでは、材料とし ては、良好な埋め込み成長が可能な InPを基板とする G aInAsP系混晶を用いることとする。

【0031】先ず、n 型導伝性 InP基板 1上に有機金属 20 気相成長法などにより n型導伝性 InPバッファー層 2を 成長する。次に、 n型導伝性 GaInAsP混晶よりなる分離 閉じ込め層および無ドープ GaInAsP混晶よりなるスペー サ層を、それぞれ、層厚 2μm 、15 nm および 10 nm程 度成長した後、数 nm から十数 nm の層厚を有する量子 井戸および障壁層を交互に成長を行い MQWを形成する が、この成長時に、Si、S、Ge、Se、Sn、Teなど、量子 井戸および障壁層を n型導伝性とする物質を不純物とし て、量子井戸のみ、もしくは、主に量子井戸にドーピン グする。

【0032】即ち、このドーピングにより図8 (a)に 示す電子密度分布となると、図8(b) に示す従来構造 の MQWのバンドギャッププロファイルが図8(c)のよ うに変型し、実効的な価電子帯側へテロ障壁高さが低減 される。尚、障壁層および量子井戸としては、無歪み、 圧縮歪みおよび伸張歪みを印加する何れの混晶でもよ い。この上に、無ドーブ GaInAsP混晶よりなるスペーサ 層、p 型導伝性の GaInAsP混晶よりなる分離閉じ込め層 を成長し、MQW 構造とスペーサ層および分離閉じ込め層 からなる活性層 3を形成する。

【0033】これに引き続き、p 型導伝性 InPクラッド 層 4を成長して図7 (a)のような、活性層を有する多 層構造半導体基板 5を作製する。次に、この多層構造半 導体基板 5上に幅として数μm程度の誘電体膜などから なるストライプ状耐エッチングマスク 6を形成した後、 臭素系エッチング液などを用いて、多層構造半導体基板 5を活性層 3より深い位置までエッチングを行い、先の 耐エッチングマスク 6で保護された部分以外の多層構造 半導体を除去し、図7 (b)のような、活性層 3を含ん だメサ状ストライプが形成された基板 7を作製する。こ 50 ギャップエネルギーが小さい量子井戸では、よりバンド

のメサ形成ストライプ基板 7上に有機金属気相成長法も しくは液相成長法により p型導伝性 InP第1埋め込み層 8および n型導伝性 InP第 2埋め込み層 9を順次、埋め 込み成長した後、耐エッチングマスク 6を除去し、この 上に p型導伝性 GaInAsP混晶よりなるコンタクト層 10 を成長して図7 (c)に示すような、埋め込み結晶成長 基板 11 を完成する。

10

【0034】この埋め込み結晶成長基板 11 を 100 µ m 程度になるまで n型導伝性 InP基板1側を研摩した後、 この研摩された n型導伝性 InP基板面および p型導伝性 GaInAsPコンタクト層10側の結晶成長面に、それぞれ A u-Geおよび Au-Znを真空蒸着法により被着し、熱処理を 行って、 n側電極 12 および p側電極 13 とし、図7(d)に示すオーミック電極形成基板 14 を完成する。引 き続いて、このオーミック電極形成基板 14 をメサスト ライプ垂直方向に共振器長とするため数 100μ mから数 mm間隔で劈開切断し、埋め込まれた複数のメサストラ イプが並列に並んでいる半導体レーザーバーとした後、 このバーをメサストライプを中心に幅として数 100 μm 間隔で切断して半導体レーザーチップを完成させる。

【0035】これまで、InP 結晶基板上に GaInAsP混晶 および InP結晶層を成長してなる GaInAsP/InP系半導体 レーザー素子について説明を行ってきたが、本発明は、 この結晶および混晶系に限らず、例えば、InGaAlAs/In P、GaInAsP/GaAs、AlGaAs/GaAs 、AlGaInP/GaAs系など の III-V族化合物半導体ばかりではなく、例えば、C1な どの VII原子を含む化合物をドーパントに用いること で、本発明を II-VI族化合物半導体よりなる MQW構造に 適用できることも明らかである。

【0036】本発明は MQW構造について係わるものであ るから、第1の実施の形態におけるMQW構造以外の部分 は全て同一として、その他の実施の形態について述べ る。第2の実施の形態について図9に示す。この実施の 形態は、特に、InP 基板上に形成された GaInAsP系混晶 や GaAs 基板上に形成された AlGaInP系混晶などのよう に、価電子帯側へテロ障壁高さが伝導帯側へテロ障壁よ りも高い混晶系材料よりなる、波長可変 LD、SLD およ び SOAに本発明を適用したもので、特に光波長スペクト ラム幅および利得増幅帯域が、従来からある、これらの 素子に比較して、拡大する。 40

【0037】波長可変 LD、SLD および SOAは、これら の素子が動作する光波長帯域を拡大するため、図9 (b)のように異なるバンドギャップエネルギーを有する量 子井戸からなる MQWを活性層とする素子構造が試みられ てきた。しかし、実際に素子を作製し動作させた場合、 光スペクトラム幅および利得増幅帯域の拡大は、最もバ ンドギャップエネルギーが小さい量子井戸の光学利得ス ペクトラムを中心として、僅かでしかない問題があっ た。この理由は、この構造を有する MQW内の最もバンド

ギャップの大きい量子井戸と比べると、ホールの量子井戸からの放出寿命が捕獲寿命に比較して圧倒的に長いため、注入されたホールがバンドギャップが最も小さい量子井戸に集中するからである。この問題を軽減するためには、MQW内の異なるバンドギャップエネルギーを有する量子井戸の間で、価電子帯側へテロ障壁高さを同一とすればよい。

11

【0038】本発明は、このような目的を実現することも可能であり、図9(a)に示すように、量子井戸および障壁層を n型導伝性とする物質を、この MQW内にある 10複数の量子井戸のうちバンドギャップの小さい量子井戸ほど不純物のドープ量を高く設定し、電子密度を高くするのである。このようにすることで、図9(c)に示すように MQW内の異なるバンドギャップエネルギーを有する量子井戸の間で、価電子帯側へテロ障壁高さを同一とすることができるため、それぞれの量子井戸へのキャリア注入が、より一定となり、LD、SLD および SOAなどの発光波長スペクトラム幅および利得増幅帯域が拡大する。

【0039】一方、先にも障壁層と量子井戸層の間のへ 20 テロ接合界面近傍でバンドラインナップにスパイクの生じることを述べた。スパイクの幅は狭いため、重いホールはトンネル効果により比較的容易にスパイクを通過するが、このスパイクがない方がホールの輸送促進効果が大きいことは明らかである。そこで、図10には、本発明における価電子帯端のスパイクを抑制する構造の例を示す。

【0040】図10(a)は、本発明におけるスパイク抑制構造を持たないものであり、スパイクがヘテロ界面近傍に生じている。これに対して、図10(b)に示すように、障壁層と量子井戸の間に、バンドギャップ量が量子井戸より大きく、かつ、障壁層より小さい遷移障壁層を形成することでスパイクの形成を抑制できる。この遷移障壁層は、量子井戸より大きく、かつ、障壁層より小さいバンドギャップ量を持つものあればよいので、基板に格子整合した結晶および混晶のみならず、歪みを印加してバンドギャップを変更したものでも成立することは明らかである。

【0041】図10(c)は、障壁層と量子井戸の間に、超格子遷移障壁層を形成することでスパイクを形成 40 する部分にホールのミニバンドを生じさせ、ホールの輸送を促進させる例である。また、図10(d)は、障壁層と量子井戸の間に、障壁層よりも低ドープの、低ドープ遷移障壁層を形成することで価電子帯端のスパイクを抑制する構造の例である。この構造では、伝導帯端側にポテンシャルの凸部が生じるが、電子はホールに比較し一桁程度有効質量が軽いため電子輸送の障害とはならない。このような構造を採用することにより本発明の作用が一層促進され、MQW 内の各量子井戸の光学利得係数および微分利得係数均一化を実現しLD、SLD およびSOA 50

などの潜在的能力を十分引き出すことができる。

[0042]

【発明の効果】本発明の多重量子井戸半導体素子は、量子井戸層をn型導伝性とする物質を不純物として、量子井戸層のみ、もしくは、主に量子井戸層にドーピングすることとしたから、量子井戸と障壁層との間の実効的な価電子帯側へテロ障壁高さを低減し、各量子井戸へのホールおよび電子注入の不均一が抑制された多重量子井戸半導体素子を提供することができる。

【0043】多重量子井戸半導体光素子について言え ば、従来構造の MQWを有する LD 、SLD 、LED および S 0Aなどの半導体光素子に比較して、光出力の向上や直接 変調周波数帯域の拡大、光学増幅利得の向上した半導体 光素子を提供することができる。本発明を MQW-LD に適 用した場合、MQW 内の量子井戸に注入されるキャリア密 度が均一化されるため、注入されるキャリア密度の増加 に対する、しきい注入電流の増加の割合が低下し、特 に、高出力動作における注入電流-光出力特性の線形性 が向上する。また、p 型変調ドープ構造に比較し光吸収 損失が低下するため、この構造に比べて光出力の向上が 可能となる。これに加え、量子井戸層数の多い MQW構造 においては、同一の注入電流で比較すると微分利得が高 い状態で動作が可能となり線幅増大係数の減少によるレ ーザー発振線幅の狭窄化など LD の高性能化が実現でき る。

【図面の簡単な説明】

【図1】本発明による、実効的な価電子帯側へテロ障壁 高さが低減される原理を表わす図である。

【図2】障壁層電子密度に依存する、実効的な価電子帯 30 側の実効的なヘテロ障壁高さと量子井戸内電子密度の関 係を表わす図である。

【図3】障壁層電子密度と量子井戸内電子密度の関係に おいて、顕著な効果を有する範囲を表わす図である。

【図4】量子井戸内電子密度と伝導帯側および価電子帯側の実効的なヘテロ障壁高さの関係を表わす図である。

【図5】本発明による実効的な価電子帯側へテロ障壁高 さの低減と、3次元自由度を有する重いホールの MQW内 分布の偏りの緩和を表わす図である。

【図6】本発明による実効的な価電子帯側へテロ障壁高さの低減と、MQW 内の個別量子井戸に注入される電流を表わす図である。

【図7】本発明を適用した半導体レーザー素子の製作工程を表わす図であり、(a) は多層構造半導体基板を、(b) はメサ状ストライプが形成された基板を、(c) は埋め込み結晶成長基板を、(d) はオーミック電極形

【図8】本発明の第1の実施の形態を説明するための図であり、(a)はMQW内の電子密度分布を、(b)は従来構造のMQWのバンドギャッププロファイルを、(c)は本発明でのMQWのバンドギャッププロファイルをそれ

成基板をそれぞれ示す図である。

ぞれ示す図である。

【図9】本発明の第2の実施の形態を説明するための図であり、(a)はMQW内の電子密度分布を、(b)は従来構造のMQWのバンドギャッププロファイルを、(c)は本発明でのMQWのバンドギャッププロファイルをそれぞれ示す図である。

13

【図10】本発明における価電子帯端のスパイクを抑制する構造の例を説明するための図であり、(a)はスパイク抑制構造を持たない場合のバンドギャッププロファイルを、(b)は遷移障壁層を設けてスパイク抑制構造 10とした場合のバンドギャッププロファイルを、(c)は超格子遷移障壁層を設けてスパイク抑制構造とした場合のバンドギャッププロファイルを、(d)は低ドープ遷移障壁層を設けてスパイク抑制構造とした場合のバンドギャッププロファイルをそれぞれ示す図である。

【図11】InP の導伝性とキャリア密度と抵抗率の関係を表わす図である。

【図12】従来構造の MQW内における、3 次元自由度を 有する重いホール密度分布の偏りを表わす図である。 【図13】従来技術であるp 型変調ドープによる、実効的な価電子帯側ヘテロ障壁高さが低減される原理を表わす図である。

【符号の説明】

- 1 n型導伝性InP 基板
- n 型導伝性InP バッファー層
- 3 活性層
- 4 p型導伝性InP クラッド層
- 5 多層構造半導体基板
- 6 ストライプ状耐エチングマスク
- 7 メサ形成ストライプ基板
- 8 p型導伝性InP 第1埋め込み層
- 9 n 型導伝性InP 第2埋め込み層
- 10 コンタクト層
- 11 埋め込み結晶成長基板
- 12 Au-Ge を蒸着してなるn側電極
- 13 Au-Zn を蒸着してなるp側電極
- 14 オーミック電極形成基板

【図1】

【図2】

【図3】

【図4】

【図8】

【図9】

【図13】

