Binary Classification

This Lecture

- Two discriminative models:
 - logistic regression
 - perceptron

• Datapoint x with label $y \in \{0, 1\}$

- Datapoint x with label $y \in \{0, 1\}$
- Embed datapoint in a feature space $f(x) \in \mathbb{R}^n$

- Datapoint x with label $y \in \{0, 1\}$
- Embed datapoint in a feature space $f(x) \in \mathbb{R}^n$

- Datapoint x with label $y \in \{0, 1\}$
- Embed datapoint in a feature space $f(x) \in \mathbb{R}^n$
- Linear decision rule: $w^T f(x) + b > 0$

- Datapoint x with label $y \in \{0, 1\}$
- Embed datapoint in a feature space $f(x) \in \mathbb{R}^n$
- Linear decision rule: $w^T f(x) + b > 0$

• Can delete bias if we augment feature space:

- Datapoint x with label $y \in \{0, 1\}$
- Embed datapoint in a feature space $f(x) \in \mathbb{R}^n$
- Linear decision rule: $w^T f(x) + b > 0$

• Can delete bias if we augment feature space: f(x) = [0.5, 1.6, 0.3]

- Datapoint x with label $y \in \{0, 1\}$
- Embed datapoint in a feature space $f(x) \in \mathbb{R}^n$
- Linear decision rule: $w^T f(x) + b > 0$ $w^T f(x) > 0$

• Can delete bias if we augment feature space:

$$f(x) = [0.5, 1.6, 0.3]$$

$$\downarrow$$

$$[0.5, 1.6, 0.3, 1]$$

Classification: Sentiment Analysis

this movie was great! would watch again

Positive

that film was awful, I'll never watch again

Negative

Classification: Sentiment Analysis

this movie was great! would watch again

Positive

that film was awful, I'll never watch again Negative

- Surface cues can basically tell you what's going on here:
 - presence or absence of certain words (great, awful)

Classification: Sentiment Analysis

this movie was great! would watch again

Positive

that film was awful, I'll never watch again

Negative

- Surface cues can basically tell you what's going on here:
 - presence or absence of certain words (great, awful)
- Steps to classification:
 - Turn examples like this into feature vectors
 - Pick a model / learning algorithm
 - Train weights on data to get our classifier

this movie was great! would watch again

Positive

this movie was great! would watch again

Positive

• Convert this example to a vector using bag-of-words features

this movie was great! would watch again Positive

• Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film] ... feature 0 feature 1 feature 2 feature 3 feature 4

this movie was great! would watch again Positive

• Convert this example to a vector using bag-of-words features

[contains <i>the</i>]	[contains a] [contains was]	[contains <i>movie</i>]	[contains film]
feature 0	feature 1	feature 2	feature 3	feature 4	
f(x) = [0	0	1	1	0	• • •

this movie was great! would watch again Positive

• Convert this example to a vector using bag-of-words features

[contains *the*] [contains *a*] [contains *was*] [contains *movie*] [contains *film*]...

feature 0 feature 1 feature 2 feature 3 feature 4 $f(x) = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & \dots \end{bmatrix}$

• Very large vector space (size of vocabulary), sparse features

this movie was great! would watch again Positive

• Convert this example to a vector using bag-of-words features

[contains *the*] [contains *a*] [contains *was*] [contains *movie*] [contains *film*]...

feature 0 feature 1 feature 2 feature 3 feature 4 $f(x) = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & \dots \end{bmatrix}$

- Very large vector space (size of vocabulary), sparse features
- Requires *indexing* the features (mapping them to axes)

this movie was great! would watch again Positive

• Convert this example to a vector using bag-of-words features

```
[contains the] [contains a] [contains was] [contains movie] [contains film]...

feature 0 feature 1 feature 2 feature 3 feature 4

f(x) = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & \dots \end{bmatrix}
```

- Very large vector space (size of vocabulary), sparse features
- Requires indexing the features (mapping them to axes)
- More sophisticated feature mappings possible:
 - character n-grams, parts of speech, lemmas, ...

• Data points (x_i, y_i) provided (j indexes over examples)

- Data points (x_i, y_i) provided (j indexes over examples)
- Find values of P(y), $P(x_i | y)$ that maximized data likelihood:

- Data points (x_i, y_i) provided (j indexes over examples)
- Find values of P(y), $P(x_i | y)$ that maximized data likelihood:

$$\prod_{j=1}^{m} P(y_j, x_j) = \prod_{j=1}^{m} P(y_j) \left[\prod_{i=1}^{n} P(x_{ji}|y_j) \right]$$

- Data points (x_i, y_i) provided (j indexes over examples)
- Find values of P(y), $P(x_i | y)$ that maximized data likelihood:

- Data points (x_i, y_i) provided (j indexes over examples)
- Find values of P(y), $P(x_i | y)$ that maximized data likelihood:

- Data points (x_i, y_i) provided (j indexes over examples)
- Find values of P(y), $P(x_i | y)$ that maximized data likelihood:

• Imagine a coin flip which is heads with probability p

- Imagine a coin flip which is heads with probability p
- Observe (H, H, H, T)

m

- Imagine a coin flip which is heads with probability p
- Observe (H, H, H, T) and maximize likelihood: $\prod_{j=1}^{n} P(y_j) = p^3(1-p)$

Maximum Likelihood Estimation

- Imagine a coin flip which is heads with probability p
- Observe (H, H, H, T) and maximize likelihood: $\prod_{j=1}^{m} P(y_j) = p^3(1-p)$
- Easier: maximize log likelihood

$$\sum_{j=1}^{m} \log P(y_j) = 3 \log p + \log(1-p)$$

$$P(y = +|x) = \text{logistic}(w^{\top}x)$$

$$P(y = +|x) = \text{logistic}(w^{\top}x)$$

$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$

$$P(y = +|x) = \operatorname{logistic}(w^{\top}x)$$

$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$

• To learn weights: maximize discriminative log likelihood of data P(y|x)

$$P(y = +|x) = \text{logistic}(w^{\top}x)$$

$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$

• To learn weights: maximize discriminative log likelihood of data P(y|x)

$$\mathcal{L}(x_j, y_j = +) = \log P(y_j = +|x_j|)$$

$$P(y = +|x) = \text{logistic}(w^{\top}x)$$

$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$

• To learn weights: maximize discriminative log likelihood of data P(y|x)

$$\mathcal{L}(x_j, y_j = +) = \log P(y_j = +|x_j)$$

$$= \sum_{i=1}^n w_i x_{ji} - \log \left(1 + \exp\left(\sum_{i=1}^n w_i x_{ji}\right)\right)$$

$$P(y = +|x) = \text{logistic}(w^{\top}x)$$

$$= \exp(\sum_{i=1}^{n} w_{i}x_{i})$$

$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$

• To learn weights: maximize discriminative log likelihood of data P(y|x)

$$\mathcal{L}(x_j, y_j = +) = \log P(y_j = +|x_j)$$

$$= \sum_{i=1}^n w_i x_{ji} - \log \left(1 + \exp\left(\sum_{i=1}^n w_i x_{ji}\right)\right)$$

sum over features

$$\mathcal{L}(x_j, y_j = +) = \log P(y_j = +|x_j) = \sum_{i=1}^n w_i x_{ji} - \log \left(1 + \exp\left(\sum_{i=1}^n w_i x_{ji}\right) \right)$$

$$\frac{\partial \mathcal{L}(x_j, y_j)}{\partial w_i} =$$

$$\mathcal{L}(x_j, y_j = +) = \log P(y_j = +|x_j) = \sum_{i=1}^n w_i x_{ji} - \log \left(1 + \exp\left(\sum_{i=1}^n w_i x_{ji}\right) \right)$$

$$\frac{\partial \mathcal{L}(x_j, y_j)}{\partial w_i} = x_{ji} - \frac{\partial}{\partial w_i} \log \left(1 + \exp\left(\sum_{i=1}^n w_i x_{ji}\right) \right)$$

$$\mathcal{L}(x_j, y_j = +) = \log P(y_j = +|x_j) = \sum_{i=1}^n w_i x_{ji} - \log \left(1 + \exp \left(\sum_{i=1}^n w_i x_{ji} \right) \right)$$

$$\frac{\partial \mathcal{L}(x_j, y_j)}{\partial w_i} = x_{ji} - \frac{\partial}{\partial w_i} \log \left(1 + \exp \left(\sum_{i=1}^n w_i x_{ji} \right) \right)$$

$$\mathcal{L}(x_{j}, y_{j} = +) = \log P(y_{j} = +|x_{j}) = \sum_{i=1}^{n} w_{i} x_{ji} - \log \left(1 + \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right)\right)$$

$$\frac{\partial \mathcal{L}(x_{j}, y_{j})}{\partial w_{i}} = x_{ji} - \frac{\partial}{\partial w_{i}} \log \left(1 + \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right)\right)$$

$$= x_{ji} - \frac{1}{1 + \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right)} \frac{\partial}{\partial w_{i}} \left(1 + \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right)\right)$$
deriv of log

$$\mathcal{L}(x_{j}, y_{j} = +) = \log P(y_{j} = +|x_{j}) = \sum_{i=1}^{n} w_{i} x_{ji} - \log \left(1 + \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right)\right)$$

$$\frac{\partial \mathcal{L}(x_{j}, y_{j})}{\partial w_{i}} = x_{ji} - \frac{\partial}{\partial w_{i}} \log \left(1 + \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right)\right)$$

$$= x_{ji} - \frac{1}{1 + \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right)} \frac{\partial}{\partial w_{i}} \left(1 + \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right)\right) \qquad \text{deriv}$$
of log
$$= x_{ji} - \frac{1}{1 + \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right)} x_{ji} \exp\left(\sum_{i=1}^{n} w_{i} x_{ji}\right) \qquad \text{of exp}$$

$$\mathcal{L}(x_{j}, y_{j} = +) = \log P(y_{j} = +|x_{j}) = \sum_{i=1}^{n} w_{i}x_{ji} - \log\left(1 + \exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right)\right)$$

$$\frac{\partial \mathcal{L}(x_{j}, y_{j})}{\partial w_{i}} = x_{ji} - \frac{\partial}{\partial w_{i}} \log\left(1 + \exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right)\right)$$

$$= x_{ji} - \frac{1}{1 + \exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right)} \frac{\partial}{\partial w_{i}} \left(1 + \exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right)\right)$$

$$= x_{ji} - \frac{1}{1 + \exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right)} x_{ji} \exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right)$$

$$= x_{ji} - x_{ji} \frac{\exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right)}{1 + \exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right)}$$

$$= x_{ji} - x_{ji} \frac{\exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right)}{1 + \exp\left(\sum_{i=1}^{n} w_{i}x_{ji}\right)}$$

- Recall that , for positive instances, $y_{\it j}=1$ and $\,$ for negative instances, $y_{\it j}=0$
- Gradient of w_i on positive example = $x_{ji}(y_j P(y_j = + \mid x_j))$
 - If P(+) is close to 1, make very little update
 - Otherwise make w_i look more like x_{ji} , which will increase P(+)

- Recall that , for positive instances, $y_j=1$ and for negative instances, $y_j=0$
- Gradient of w_i on positive example = $x_{ji}(y_j P(y_j = + \mid x_j))$
 - If P(+) is close to 1, make very little update
 - Otherwise make w_i look more like x_{ii} , which will increase P(+)
- Gradient of w_i on positive example = $x_{ji}(-P(y_j = + \mid x_j))$
 - If P(+) is close to 0, make very little update
 - Otherwise make w_i look more like x_{ji} , which will decrease P(+)

- Recall that , for positive instances, $y_{j}=1$ and $\,$ for negative instances, $y_{j}=0$
- Gradient of w_i on positive example = $x_{ji}(y_j P(y_j = + \mid x_j))$
 - If P(+) is close to 1, make very little update
 - Otherwise make w_i look more like x_{ii} , which will increase P(+)
- Gradient of w_i on positive example = $x_{ji}(-P(y_j = + \mid x_j))$
 - If P(+) is close to 0, make very little update
 - Otherwise make w_i look more like x_{ji} , which will decrease P(+)
- Can combine these gradient as : $x_j(y_j P(y_j = 1 \mid x_j))$

Logistic Regression: Summary

• Model

$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$

Logistic Regression: Summary

Model

$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$

Inference

$$\operatorname{argmax}_{y} P(y|x)$$

$$P(y = 1|x) \ge 0.5 \Leftrightarrow w^{\top}x \ge 0$$

Logistic Regression: Summary

Model

$$P(y = +|x) = \frac{\exp(\sum_{i=1}^{n} w_i x_i)}{1 + \exp(\sum_{i=1}^{n} w_i x_i)}$$

• Inference

$$\operatorname{argmax}_{y} P(y|x)$$

$$P(y = 1|x) \ge 0.5 \Leftrightarrow w^{\top}x \ge 0$$

• Learning: gradient ascent on the (regularized) discriminative log-likelihood

• Simple error-driven learning approach similar to logistic regression

- · Simple error-driven learning approach similar to logistic regression
- Decision rule: $w^T x > 0$

- · Simple error-driven learning approach similar to logistic regression
- Decision rule: $w^T x > 0$
 - If incorrect: if positive, $w \leftarrow w + x$

if negative,
$$w \leftarrow w - x$$

- · Simple error-driven learning approach similar to logistic regression
- Decision rule: $w^T x > 0$
 - If incorrect: if positive, $w \leftarrow w + x$ if negative, $w \leftarrow w - x$

Logistic Regression

$$w \leftarrow w + x(1 = P(y = 1 | x))$$

 $w \leftarrow w - x(1 = P(y = 1 | x))$

- · Simple error-driven learning approach similar to logistic regression
- Decision rule: $w^T x > 0$
 - If incorrect: if positive, $w \leftarrow w + x$ if negative, $w \leftarrow w - x$

Logistic Regression

$$w \leftarrow w + x(1 = P(y = 1 | x))$$

 $w \leftarrow w - x(1 = P(y = 1 | x))$

• Guaranteed to eventually separate the data if the data are separable

Comparing Gradient Updates (Reference)

Logistic regression

$$x(y - P(y = 1|x)) = x(y - \text{logistic}(w^{\top}x))$$

y = 1 for pos,0 for neg

Perceptron

(2y-1)x if classified incorrectly

0 else

Classification: Sentiment Analysis

this movie was great! would watch again

Positive

that film was awful, I'll never watch again

Negative

- Surface cues can basically tell you what's going on here:
 - presence or absence of certain words (great, awful)
- Steps to classification:
 - Turn examples like this into feature vectors
 - Pick a model / learning algorithm
 - Train weights on data to get our classifier

Sentiment Analysis

```
this movie was great! would watch again

the movie was gross and overwrought, but I liked it

this movie was not really very enjoyable

+
```

- •Bag-of-words doesn't seem sufficient (discourse structure, negation)
- •There are some ways around this:
 - extract bigram feature for "not X" for all X following the not
 - character n-grams, parts of speech, lemmas, ...

Sentiment Analysis

	Movie	Product
	Reviews	Reviews
Unigram only	64.1	42.91
Bigram only	76.15	69.62
Trigram only	76.1	71.37
(Uni + Bi) gram	77.15	72.94
(Uni + Bi + Tri) gram	80.15	78.67

Table 1: Results of Simple NGram

	Movie	Product
	Reviews	Reviews
POS-(U + B + T)-JJ	75.00	50.425
POS-(U + B + T)-RB	65.50	36.76
POS-(U + B + T)-(JJ + RB)	76.50	62.06

Table 2: Results of POS-Tagged NGram. U = Unigram, B = Bigram, T = Trigram

Recap

- Logistic regression, and perceptron are closely related
- Perceptron inference require taking maxes, logistic regression has a similar update but is "softer" due to its probabilistic nature
- All gradient updates: "make it look more like the right thing and less like the wrong thing"