1. Find by double integration, the area lying between the parabola $y = 4x - x^2$ and the line y = x ans: 4.5

$$y = 4n - n^2$$
 $y = n$
 $n = 0$ $y = 0$
 $n = 1$ $y = 3$
 $n = 2$ $y = 4$
 $n = 3$ $y = 3$

2. Find the volume bounded by the xy-plane, the cylinder $x^2+y^2=1$ and the plane x+y+z=3 ans: 3π

$$x = 3 - x - y$$

$$\int_{-1}^{\sqrt{1-x^2}} \frac{3y-yy-y^2}{3} dy dx$$

$$= \int_{-1}^{\sqrt{1-x^2}} 3y-yy-\frac{y^2}{3} \int_{1-x^2}^{\sqrt{1-x^2}} dx$$

$$= \int_{-1}^{\sqrt{3}(1-x^2)} -(-3\sqrt{1-x^2}) -(x\sqrt{1-x^2}-(-x\sqrt{1-x^2}) -(-x\sqrt{1-x^2}) -(-x\sqrt{1-x^2}) dx$$

$$= \int_{-1}^{\sqrt{3}(1-x^2)} -(-3\sqrt{1-x^2}) dx$$

For
$$②$$
, $\int 2\pi \sqrt{1-n^2} d\pi$

$$u = 1-n^2$$

$$du = -2\pi dx$$

$$-\int \sqrt{u} du = 0$$

$$6(\sqrt{17}2) - 0 = 3\pi$$

3. Find the average value of the function e^{x+y} over the region $R = [0,2] \times [0,2]$ ans: $\frac{\left(e^2 - 1\right)^2}{4}$

A.
$$2 \iint_{0}^{2} e^{\pi x y} dy d\pi = \int_{0}^{2} [e^{y}]_{0}^{2} e^{\pi x} = \int_{0}^{2} (e^{2} - 1) e^{\pi} d\pi = (e^{2} - 1)^{2}$$

Now, $2 \iint_{0}^{2} dy d\pi = \int_{0}^{2} (a - 0) d\pi = \int_{0}^{2} 2 d\pi = 2 \times (2 - 0) = 4$

Average value = $(e^2 - 1)^2$