Ex: 9.1 Referring to Fig. 9.3,

If  $R_D$  is doubled to 5 k $\Omega$ ,

$$V_{D1} = V_{D2} = V_{DD} - \frac{I}{2} R_D$$

$$= 1.5 - \frac{0.4 \text{ mA}}{2} (5 \text{ k}\Omega) = 0.5 \text{ V}$$

$$V_{CM_{\text{max}}} = V_t + V_D = 0.5 + 0.5 = +1.0 \text{ V}$$

Since the currents  $I_{D1}$ , and  $I_{D2}$  are still 0.2 mA each,

$$V_{GS} = 0.82 \text{ V}$$

So, 
$$V_{CM_{min}} = V_{SS} + V_{CS} + V_{GS}$$
  
= -1.5 V + 0.4 V + 0.82 V = -0.28 V

So, the common-mode range is

$$-0.28 \text{ V to } +1.0 \text{ V}$$

Ex: 9.2 (a) The value of  $v_{id}$  that causes  $Q_1$  to conduct the entire current is  $\sqrt{2} V_{OV}$ 

$$\rightarrow \sqrt{2} \times 0.316 = 0.45 \text{ V}$$



$$V_{OV} = \sqrt{\frac{2I_D}{k'_n \left(\frac{W}{L}\right)}} = \sqrt{\frac{2 (0.4 \text{ mA})}{0.2 (\text{mA/V}^2) (100)}}$$

$$= 0.2 \text{ V}$$

$$g_m = \frac{I_D}{V_{OV}/2} = \frac{0.4 \text{ mA} \times 2}{0.2 \text{ V}} = 4 \text{ mA/V}$$

$$r_o = \frac{V_A}{I_D} = \frac{20 \text{ V}}{0.4 \text{ mA}} = 50 \text{ k}\Omega$$

# $\underset{A.S.S.}{\overset{\text{then, } V_{D1} = V_{DD} - I \times R_{D}}{\text{ASSIZED}} } \underline{\text{ment Project}}_{A}^{t} \underbrace{\underset{\text{Texture}}{\overset{\text{R}_{D}}{\text{Froject}}}}_{K_{d}} \underbrace$

$$V_{D2} = V_{DD} = +1.5 \text{ V}$$

(b) For  $Q_2$  to conduct the entire durrent:  $v_{id} = -\sqrt{2} V_{ov} - \frac{100 \mu \text{A}}{2} = \frac{100 \mu \text{A}}{2} =$ 

 $V_{D1} = V_{DD} = +45 \text{ M}_{2.5} = 0.5 \text{ WeChat powerede}_{I_D}$ 

(c) Thus the differential output range is

$$V_{D2} - V_{D1}$$
:from 1.5 - 0.5 = +1 V  
to 0.5 - 1.5 = -1 V

Ex: 9.3 Refer to answer table for Exercise 9.3 where values were obtained in the following way:

$$\begin{aligned} V_{OV} &= \sqrt{I/k_n W/L} \Rightarrow \frac{W}{L} = \frac{I}{k_n V_{OV}^2} \\ g_m &= \frac{2(I/2)}{V_{OV}} = \frac{I}{V_{OV}} \\ \left(\frac{v_{id}/2}{V_{OV}}\right)^2 &= 0.1 \rightarrow v_{id} = 2 \ V_{OV} \sqrt{0.1} \end{aligned}$$

Ex: 9.4 
$$I_D = \frac{I}{2} = \frac{0.8 \text{ mA}}{2} = 0.4 \text{ mA}$$
  
 $I_D = \frac{1}{2} k'_n \left(\frac{W}{L}\right) (V_{OV})^2$ 

$$= \frac{(10 \ V/\ \mu m) \ (0.36 \ \mu m)}{0.1 \ mA} = 36 \ k\Omega$$

Since 
$$I_{D1} = I_{D2} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) V_{OV}^2$$
,

$$\left(\frac{W}{L}\right)_1 = \left(\frac{W}{L}\right)_2 = \frac{2I_D}{\mu_n C_{ox} V_{OV}^2}$$

$$\frac{2(100 \,\mu\text{A})}{\left(400 \,\mu\text{A}/\text{V}^2\right) \left(0.2 \,\text{V}\right)^2} = 12.5$$

$$\left(\frac{W}{L}\right)_3 = \left(\frac{W}{L}\right)_4 = \frac{2I_D}{\mu_p C_{ox} |V_{OV}|^2}$$

$$\frac{2(100\,\mu A)}{\left(100\,\mu A/V^2\right)(0.2)^2}=50$$

$$g_m = \frac{I_D}{V_{OV}/2} = \frac{(100 \,\mu\text{A})(2)}{0.2 \,\text{V}} = 1 \,\text{mA/V},$$

$$A_d = g_{m1}(r_{o1} \parallel r_{o3}) = 1 \text{(mA/V)} (36 \text{ k}\Omega \parallel 36 \text{ k}\Omega)$$
  
= 18 V/V

Ex: 9.6 
$$L = 2 (0.18 \,\mu\text{m}) = 0.36 \,\mu\text{m}$$

All 
$$r_o = \frac{\left|V_A'\right| \cdot L}{I_D}$$

The drain current for all transistors is

$$I_D = \frac{I}{2} = \frac{200 \,\mu\text{A}}{2} = 100 \,\mu\text{A}$$

$$r_o = \frac{(10 \text{ V/} \mu\text{m}) (0.36 \mu\text{m})}{0.1 \text{ mA}} = 36 \text{ k}\Omega$$

Referring to Fig. 9.13(a),

Since 
$$I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) V_{OV}^2$$
 for all NMOS transistors,

$$\left(\frac{W}{L}\right)_{1} = \left(\frac{W}{L}\right)_{2} = \left(\frac{W}{L}\right)_{3} = \left(\frac{W}{L}\right)_{4}$$
$$= \frac{2I_{D}}{\mu_{n}C_{ox}V_{OV}^{2}} = \frac{2(100 \,\mu\text{A})}{400 \,\mu\text{A}/\text{V}^{2}(0.2 \,\text{V})^{2}} = 12.5$$

$$\left(\frac{W}{L}\right)_5 = \left(\frac{W}{L}\right)_6 = \left(\frac{W}{L}\right)_7 = \left(\frac{W}{L}\right)_8$$

$$= \frac{2I_D}{\mu_p C_{ox} V_{OV}^2} = \frac{2(100 \,\mu\text{A})}{100 \,\mu\text{A/V}^2 (0.2 \,\text{V})^2} = 50$$



$$I_{C1} = I_{C2} \simeq I_{E1} = I_{E2} = \frac{I}{2} = \frac{0.4 \text{ mA}}{2}$$
  
= 0.2 mA

$$V_{CM\,{
m max}} \simeq V_C + 0.4~{
m V}$$

$$= V_{CC} - I_C R_C + 0.4 \text{ V}$$

$$= 2.5 - 0.2 \text{ mA} (5 \text{ k}\Omega) + 0.4 \text{ V} = +1.9 \text{ V}$$

# A stransister project $V_{CM min} = -2.5 \text{ V} + 0.3 \text{ V} + 0.7 \text{ V} = -1.5 \text{ V}$ $g_m = \frac{|I_D|}{|V_{OV}|/2} = \frac{(0.1 \text{ mA})(2)}{(0.2 \text{ V})} = 1 \text{ mA/V}$

Input common-mode range is -1.5 V to +1.9 V

From Fig. 9.13(b),

 $R_{on} = (g_{m3}r_o)$  ttps://epowcodext.com,  $i_{E1} + i_{E2} = I$  in Eqn. (9.45) yields  $= 1.296 M\Omega$ 

 $R_{op} = (g_{m5}r_{o5})r_{o7} = (1 \times 36) \times 36$ = 1.296 MΩ Add WeC

$$A_d = g_{m1}(R_{on} \parallel R_{op})$$
  
= (1 mA/V) (1.296 M $\Omega$  || 1.296 M $\Omega$ )

hat  $\mathbf{p}_{0.99I}^{i_{E1}} = \frac{1}{\mathbf{v}_{1}^{*}} \mathbf{v}_{0}^{*} \mathbf{v}_{0}^{*} \mathbf{v}_{0}^{*} \mathbf{v}_{0}^{*}$ 

$$v_{B1} - v_{B2} = -V_T \ln \left( \frac{1}{0.99} - 1 \right)$$

$$= -25 \ln{(1/99)}$$

$$= 25 \ln (99) = 115 \text{ mV}$$

Ex: 9.7

= 648 V/V



Ex: 9.10 (a) The DC current in each transister is 0.5 mA. Thus  $V_{BE}$  for each will be

$$V_{BE} = 0.7 + 0.025 \ln \left( \frac{0.5}{1} \right)$$

= 0.683 V

$$\Rightarrow v_E = 5 - 0.683 = +4.317 \text{ V}$$

(b) 
$$g_m = \frac{I_C}{V_T} = \frac{0.5}{0.025} = 20 \frac{\text{mA}}{\text{V}}$$

(c) 
$$i_{C1} = 0.5 + g_{m1} \Delta v_{BE1}$$

$$= 0.5 + 20 \times 0.005 \sin(2\pi \times 1000t)$$

$$= 0.5 + 0.1 \sin(2\pi \times 1000t), \text{ mA}$$

$$i_{C2} = 0.5 - 0.1 \sin(2\pi \times 1000t), \text{ mA}$$

(d) 
$$v_{C1} = (V_{CC} - I_C R_C) - 0.1$$

 $\times R_C \sin(2\pi \times 1000t)$ 

$$= (15 - 0.5 \times 10) - 0.1 \times 10 \sin(2\pi \times 1000t)$$

$$= 10 - 1\sin(2\pi \times 1000t)$$
, V

$$v_{C2} = 10 + 1\sin(2\pi \times 1000t)$$
, V

(e) 
$$v_{C2} - v_{C1} = 2 \cdot \sin(2\pi \times 1000t)$$
, V

(f) Voltage gain 
$$\equiv \frac{v_{C2} - v_{C1}}{v_{B1} - v_{B2}}$$

$$=\frac{2 \text{ V peak}}{0.01 \text{ V peak}} = 200 \text{ V/V}$$

Ex: 9.11 The transconductance for each transistor is

$$g_m = \sqrt{2\mu_n C_{ox} (W/L) I_D}$$

$$I_D = \frac{I}{2} = \frac{0.8 \text{ mA}}{2} = 0.4 \text{ mA}$$

$$g_m = \sqrt{2 \times 0.2 \times 100 \times 0.4} = 4 \text{ mA/V}$$

 $g_m = \sqrt{2 \times 0.2 \times 100 \times 0.4} = 4 \text{ mA/V}$ 

If we ignore the 1% here, then we obtain

 $A_{d} = g_{m}R_{D} = \text{Artips:} 2 \neq \text{powcoder.com} Q_{5}$   $|A_{cm}| = \left(\frac{R_{D}}{2R_{SS}}\right) \left(\frac{\Delta R_{D}}{R_{D}}\right)$ 

$$|A_{cm}| = \left(\frac{R_D}{2R_{SS}}\right) \left(\frac{\Delta R_D}{R_D}\right)$$

# $=(\frac{5}{2\times25})$ Add We Chat powcoder

CMRR (dB) = 20 log 
$$\frac{|A_d|}{|A_{CM}|}$$
 = 20 log  $\left(\frac{20}{0.001}\right)$ 

 $= 86 \, \mathrm{dB}$ 

Ex: 9.12 From Exercise 9.11,

$$W/L = 100$$
,  $\mu_n C_{ox} = 0.2 \text{ mA/V}^2$ ,

$$I_D = \frac{I}{2} = \frac{0.8 \text{ mA}}{2} = 0.4 \text{ mA}$$

$$g_m = \sqrt{2\mu_n C_{ox} \left(\frac{W}{L}\right)} I_D$$

$$= \sqrt{2 \left(0.2 \text{ mA/V}^2\right) (100) (0.4 \text{ mA})}$$

$$g_m = 4 \text{ mA/V}$$

Using Eq. (9.88) and the fact that  $R_{SS} = 25 \text{ k}\Omega$ ,

CMRR = 
$$\frac{(2 \, g_m R_{SS})}{\left(\frac{\Delta g_m}{g_m}\right)} = \frac{2(4 \, \text{mA/V}) (25 \, \text{k}\Omega)}{0.01}$$

= 20,000

CMRR (dB) = 
$$20 \log_{10} (20,000) = 86 \text{ dB}$$

Ex: 9.13 If the output of a MOS differential amplifier is taken single-endedly, then

$$|A_d| = \frac{1}{2} g_m R_D$$

(that is, half the gain obtained with the output taken differentially), and from Fig. 9.25(d) we

$$|A_{cm}| \simeq rac{R_D}{2R_{SS}}$$

Thus,

$$CMRR \equiv \frac{|A_d|}{|A_{cm}|} = g_m R_{SS} \qquad Q.E.D.$$

Ex: 9.14



Thus, 
$$g_{m} = \sqrt{2 \times 0.2 \times 100 \times 0.4} = 4 \text{ mA/V}$$
The differential satisfactory and the project  $I_{A}$  and  $I_{B}$  are given that  $I_{B}$  and  $I_{B}$  are given that  $I_{B}$  and  $I_{B}$  are given that  $I_{B}$  are given the  $I_{B}$  are given then we obtain  $I_{A} = g_{m}R_{D} = I_{A}$  and  $I_{B}$  are given the  $I_{B}$  are given the  $I_{B}$  are given then we obtain  $I_{A} = g_{m}R_{D} = I_{A}$  and  $I_{B}$  are given the  $I_{B}$  and  $I_{B}$  are given the  $I_{B}$  and  $I_{B}$  are given the  $I_{B}$  are given the  $I_{B}$  and  $I_{B}$  are given the  $I_{B}$  and  $I_{B}$  are given the  $I_{B}$  are given the  $I_{B}$  are given the  $I_{B}$  are given the  $I_{B}$  and  $I_{B}$  are given the  $I_{B}$  are given the  $I_{B}$  are given the  $I_{B}$  and  $I_{B}$  are given the  $I_{B}$  are given the  $I_{B}$  are given the  $I_{B}$  and  $I_{B}$  are given the  $I_{B}$  are given the  $I_{B}$  and  $I_{B}$  are given the  $I_{B}$  are given the  $I_{B}$  are given the  $I_{B}$  and  $I_{B}$  are given the  $I_{B}$  are given the  $I_{B}$  and  $I_{B}$  are given the  $I_{B}$  are given the

$$I = 200 \,\mu\text{A}$$
  
Since  $\beta \gg 1$ ,

$$I_{C1} \approx I_{C2} \approx \frac{I}{2} = \frac{200 \,\mu\text{A}}{2} = 100 \,\mu\text{A}$$

$$g_{m1} = g_{m2} = g_m = \frac{I_C}{V_T} = \frac{100 \,\mu\text{A}}{25 \,\text{mV}} = 4 \,\text{mA/V}$$

$$R_{C1} = R_{C2} = R_C = r_o = \frac{|V_A|}{I_C}$$

$$=\frac{10 \text{ V}}{100 \text{ µA}} = 100 \text{ k}\Omega$$

$$r_{o1} = r_{o2} = \frac{V_A}{I/2} = \frac{10}{0.1} = 100 \text{ k}\Omega$$

$$r_{e1} = r_{e2} = r_e = \frac{V_T}{I_F} = \frac{25 \text{ mV}}{0.1 \text{ mA}} = 0.25 \text{ k}\Omega$$

$$|A_d| = \frac{R_C \parallel r_o}{r_e} = \frac{100 \text{ k}\Omega \parallel 100 \text{ k}\Omega}{0.25 \text{ k}\Omega}$$
$$= 200 \text{ V/V}$$

$$R_{id} = 2r_{\pi}, \quad r_{\pi} = \frac{\beta}{g_m} = \frac{100}{4 \text{ mA/V}} = 25 \text{ k}\Omega$$

$$R_{id} = 2(25 \text{ k}\Omega) = 50 \text{ k}\Omega$$

$$R_{EE} = \frac{V_A}{I} = \frac{10 \text{ V}}{200 \,\mu\text{A}} = 50 \text{ k}\Omega$$

If the total load resistance is assumed to be mismatched by 1%, then we have

$$|A_{cm}| = \frac{R_C}{2R_{EE}} \frac{\Delta R_C}{R_C}$$
  
=  $\frac{100}{2 \times 50} \times 0.01 = 0.01 \text{ V/V}$ 

CMRR (dB) = 
$$20 \log_{10} \left| \frac{A_d}{A_{cm}} \right| = 20 \log_{10} \left| \frac{200}{0.01} \right|$$

Using Eq. (9.96), we obtain

$$R_{icm} = \beta R_{EE} \cdot \frac{1 + \frac{R_C}{\beta r_o}}{1 + \frac{R_C + 2R_{EE}}{r_o}}$$

$$= 100 \times 50 \times \frac{1 + \frac{100}{100 \times 100}}{1 + \frac{100 + 2 \times 50}{100}}$$

$$R_{icm} \simeq 1.68 \,\mathrm{M}\Omega$$

$$= \sqrt{3 \times \left(2 \times 10^{-3}\right)^2}$$

$$= 3.46 \, \text{mV}$$

Ex: 9.16 From Eq. (9.120), we get

$$V_{OS} = V_T \sqrt{\left(\frac{\Delta R_C}{R_C}\right)^2 + \left(\frac{\Delta I_S}{I_S}\right)^2}$$

$$= 25\sqrt{(0.02)^2 + (0.1)^2}$$

$$= 2.55 \text{ mV}$$

$$I_B = \frac{100}{2(\beta + 1)} = \frac{100}{2 \times 101} \cong 0.5 \,\mu\text{A}$$

$$I_{OS} = I_B \left(\frac{\Delta \beta}{\beta}\right)$$

$$= 0.5 \times 0.1 \,\mu\text{A} = 50 \,\text{nA}$$

**Ex: 9.17** 
$$I_D = \frac{1}{2}I = 0.4 \text{ mA}$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) V_{OV}^2$$

# Assignment Project Exam Help

 $V_{OV} = 0.2 \text{ V}$ 

Using Eq. (9:101) we obtain  $V_{OI}$  due to  $\Delta R_D/R_D$   $g_{m1,2} = \frac{2I_D}{V_{OV}} = \frac{2 \times 0.4}{0.2} = 4 \text{ mA/V}$  as:  $V_{OS} = \left(\frac{V_{OV}}{2}\right) \cdot \left(\frac{\Delta R_D}{R_D}\right)$   $V_{A...} = 20$ 

$$V_{OS} = \left(\frac{V_{OV}}{2}\right) \cdot \left(\frac{\Delta R_D}{R_D}\right)$$

$$r_{o2} = \frac{V_{An}}{I_D} = \frac{20}{0.4} = 50 \text{ k}\Omega$$

# $=\frac{0.2}{2}\times0.02\text{And}\text{ i.WeChat powcoder}_{L_{D}}$

To obtain  $V_{OS}$  due to  $\frac{\Delta(W/L)}{W/L}$ ,

use Eq. (9.106)

$$V_{OS} = \left(\frac{V_{OV}}{2}\right) \left(\frac{\Delta(W/L)}{W/L}\right)$$

$$\Rightarrow V_{OS} = \left(\frac{0.2}{2}\right) \times 0.02 = 0.002$$

$$\Rightarrow 2 \text{ mV}$$

The offset voltage arising from  $\Delta V_t$  is obtained from Eq. (9.109):

$$V_{OS} = \Delta V_t = 2 \text{ mV}$$

Finally, from Eq. (9.110) the total input offset is

$$V_{\rm oc} =$$

$$\left[ \left( \frac{V_{OV}}{2} \frac{\Delta R_D}{R_D} \right)^2 + \left( \frac{V_{OV}}{2} \frac{\Delta (W/L)}{W/L} \right)^2 + (\Delta V_t)^2 \right]^{1/2} \qquad \text{Ex: 9.19} \\
G_m = g_{m1} = g_{m2} \simeq \frac{I/2}{V_T} = \frac{0.5 \text{ mA}}{0.025 \text{ V}} = 20 \text{ mA/V} \\
= \sqrt{(2 \times 10^{-3})^2 + (2 \times 10^{-3})^2 + (2 \times 10^{-3})^2} \qquad r_{o4} = \frac{V_A}{I/2} = \frac{100 \text{ V}}{0.5 \text{ mA}} = 200 \text{ k}\Omega$$

$$R_o = r_{o2} \parallel r_{o4} = 50 \parallel 50 = 25 \text{ k}\Omega$$

$$A_d = G_m R_o = 4 \times 25 = 100 \text{ V/V}$$

Ex: 9.18 
$$G_m = g_{m1,2} \simeq \frac{I/2}{V_T} = \frac{0.4 \text{ mA}}{0.025 \text{ V}}$$

$$= 16 \text{ mA/V}$$

$$r_{o2} = r_{o4} = \frac{V_A}{I_C} = \frac{V_A}{I/2} = \frac{100}{0.4} = 250 \text{ k}\Omega$$

$$R_o = r_{o2} \parallel r_{o4} = 250 \parallel 250 = 125 \text{ k}\Omega$$

$$A_d = G_m R_o = 16 \times 125 = 2000 \text{ V/V}$$

$$R_{id} = 2r_{\pi} = 2 \times \frac{\beta}{g_{m1,2}} = 2 \times \frac{160}{16} = 20 \text{ k}\Omega$$

$$G_m = g_{m1} = g_{m2} \simeq \frac{I/2}{V_T} = \frac{0.5 \text{ mA}}{0.025 \text{ V}} = 20 \text{ mA/V}$$

$$r_{o4} = \frac{V_A}{I/2} = \frac{100 \text{ V}}{0.5 \text{ mA}} = 200 \text{ k}\Omega$$

 $= -0.775 (200 \parallel 200) = -77.5 \frac{V}{V}$ 

Eq. (9.169):

 $= -95 \, V/V$ 

 $A_2 = -g_{m6} (r_{o6} \parallel r_{o7})$ 

Using Eq. (9.165),

 $20 \log CMRR = 104 dB$ 

 $|A_{cm}| = \frac{r_{o4}}{\beta_3 R_{EE}} = \frac{250}{160 \times 125} = 0.0125 \text{ V/V}$ 

 $CMRR = \frac{|A_d|}{|A_{cm}|} = \frac{2000}{0.0125} = 160,000 \text{ V/V}$ 

Overall voltage gain is

$$A_1 \times A_2 = -77.5 \times -95 = 7363 \text{ V/V}$$

**Ex: 9.23**  $R_{id} = 20.2 \text{ k}\Omega$ 

$$A_{vo} = 8513 \text{ V/V}$$

$$R_a = 152 \Omega$$

With  $R_S = 10 \text{ k}\Omega$  and  $R_L = 1 \text{ k}\Omega$ ,

$$G_v = \frac{20.2}{20.2 + 10} \times 8513 \times \frac{1}{(1 + 0.152)}$$
  
= 4943 V/V

**Ex: 9.24** 
$$\frac{i_{e8}}{i_{h8}} = \beta_8 + 1 = 101$$

$$\frac{i_{b8}}{i_{c7}} = \frac{R_5}{R_5 + R_{i4}} = \frac{15.7}{15.7 + 303.5} = 0.0492$$

$$\frac{i_{c7}}{i_{b7}} = \beta_7 = 100$$

$$\frac{i_{b7}}{i_{c5}} = \frac{R_3}{R_3 + R_{i3}} = \frac{3}{3 + 234.8} = 0.0126$$

$$\frac{i_{c5}}{i_{b5}} = \beta_5 = 100$$

$$\frac{i_{b5}}{i_{c2}} = \frac{R_1 + R_2}{R_1 + R_2 + R_{i2}} = \frac{40}{40 + 5.05} = 0.888$$

$$\frac{i_{c2}}{i_1} = \beta_2 = 100$$

Thus the overall current gain is

$$\frac{i_{e8}}{i_1} = 101 \times 0.0492 \times 100 \times 0.0126 \times 100$$

$$\times 0.888 \times 100$$

$$= 55,599 \text{ A/A}$$

and the overall voltage gain is

$$\frac{v_o}{v_{id}} = \frac{R_6}{R_{i1}} \cdot \frac{i_{e8}}{i_1}$$

$$=\frac{3}{20.2}\times55599=8257 \text{ V/V}$$

# Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

9.1 Refer to Fig. 9.2.

(a) 
$$\frac{I}{2} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_{1,2} V_{OV}^2$$

$$0.08 = \frac{1}{2} \times 0.4 \times 10 \times V_{OV}^2$$

$$\Rightarrow V_{OV} = 0.2 \text{ V}$$

$$V_{GS} = V_{tn} + V_{OV} = 0.4 + 0.2 = 0.6 \text{ V}$$

(b) 
$$V_{CM} = 0$$

$$V_S = 0 - V_{GS} = -0.6 \text{ V}$$

$$I_{D1} = I_{D2} = \frac{I}{2} = 0.08 \text{ mA}$$

$$V_{D1} = V_{D2} = V_{DD} - I_{D1,2}R_D$$

$$= 1 - 0.08 \times 5 = +0.6 \text{ V}$$

(c) 
$$V_{CM} = +0.4 \text{ V}$$

$$V_S = 0.4 - V_{GS} = 0.4 - 0.6 = -0.2 \text{ V}$$

$$I_{D1} = I_{D2} = \frac{I}{2} = 0.08 \text{ mA}$$

# $V_{D1} = V_{D2} = V_{DD} - I_{D1,2}R_D$ = 1 -0.88 S1 2.11

Since  $V_{CM} = 0.4 \text{ V}$  and  $V_D = 0.6 \text{ V}$ ,

 $V_{GD} = -0.2 \text{ V}$ , which is less than  $V_{tn}$  (0.4 V),

indicating that our implicit assumption of saturation-mode operation is justified.

(d) 
$$V_{CM} = -0.1 \text{ V}$$

$$V_S = -0.1 - V_{GS} = 0.1$$
  $0.6$   $0.6$   $0.7$   $0.6$   $0.6$   $0.7$   $0.6$   $0.6$   $0.7$   $0.6$   $0.6$   $0.7$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$   $0.6$ 

$$I_{D1} = I_{D2} = \frac{I}{2} = 0.08 \,\mathrm{mA}$$

$$V_{D1} = V_{D2} = V_{DD} - I_{D1,2}R_D$$

$$= 1 - 0.08 \times 5 = +0.6 \text{ V}$$

(e) The highest value of  $V_{CM}$  for which  $Q_1$  and  $Q_2$  remain in saturation is

$$V_{CM \max} = V_{D1,2} + V_{tn}$$

$$= 0.6 + 0.4 = 1.0 \text{ V}$$

(f) To maintain the current-source operating properly, we need to keep a minimum voltage of 0.2 V across it, thus

$$V_{\text{Smin}} = -V_{\text{SS}} + V_{\text{CS}} = -1 + 0.2 = -0.8 \text{ V}$$

$$V_{CM \min} = V_{S \min} + V_{GS}$$

$$= -0.8 + 0.6$$

$$= -0.2 \text{ V}$$

**9.2** Refer to Fig. P9.2.

(a) For 
$$v_{G1} = v_{G2} = 0$$
 V,

$$I_{D1} = I_{D2} = \frac{1}{2} \times 0.5 = 0.25 \text{ mA}$$

$$I_{D1,2} = \frac{1}{2} k_p' \left(\frac{W}{L}\right) |V_{OV}|^2$$

$$0.25 = \frac{1}{2} \times 4 \times |V_{OV}|^2$$

$$\Rightarrow |V_{OV}| = 0.35 \text{ V}$$

$$V_{SG} = |V_{tp}| + |V_{OV}|$$

$$= 0.8 + 0.35 = 1.15 \text{ V}$$

$$V_S = 0 + V_{SG} = +1.15 \text{ V}$$

$$V_{D1} = V_{D2} = -V_{SS} + I_D R_D$$

$$= -2.5 + 0.25 \times 4$$

$$= -1.5 \text{ V}$$

Since for each of  $Q_1$  and  $Q_2$ ,

$$V_{SD} = 1.15 - (-1.5)$$

$$= 2.65 \text{ V}$$

which is greater than  $|V_{OV}|$ ,  $Q_1$  and  $Q_2$  are operating in saturation as implicitly assumed.

(b) The <u>high</u>est value of  $V_{CM}$  is <u>limited</u> by the

enced to keen a minimum of 0.1 Vacco

$$V_{CM \, \text{max}} = +2.5 - 0.4 - V_{SG}$$

$$= +2.5 - 0.4 - 1.15 = +0.95 \text{ V}$$

Of Corver value Of the limited by the need to

keep  $Q_1$  and  $Q_2$  in saturation, thus

$$V_{CM\,\text{min}} = V_{D1,2} - |V_{tp}|$$

$$-2.3 \text{ V} \le V_{ICM} \le +0.95 \text{ V}$$

9.3



(a) For 
$$i_{D1} = i_{D2} = 0.08$$
 mA,

$$v_{G1} = v_{G2}$$

Thus,

$$v_{id} = 0 \text{ V}$$

$$i_{D1} = i_{D2} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) V_{OV}^2$$

$$0.08 = \frac{1}{2} \times 0.4 \times 10 \times V_{OV}^2$$

$$\Rightarrow V_{OV} = 0.2 \text{ V}$$

$$v_{GS1} = v_{GS2} = 0.2 + 0.4 = 0.6 \text{ V}$$

$$v_{\rm S} = -0.6 \, {\rm V}$$

$$v_{D1} = v_{D2} = V_{DD} - i_{D1,2}R_D$$

$$= 1 - 0.08 \times 5 = 0.6 \text{ V}$$

$$v_{D2} - v_{D1} = 0 \text{ V}$$

(b) For 
$$i_{D1} = 0.12$$
 mA and  $i_{D2} = 0.04$  mA,

$$i_{D2} = \frac{1}{2} \mu_n C_{ox} \left( \frac{W}{L} \right) (v_{GS2} - V_{tn})^2$$

$$0.16 = \frac{1}{2} \times 0.4 \times 10 \ (v_{id} + 0.4 - 0.4)^2$$

$$\Rightarrow v_{id} = 0.283 \text{ V}$$

which is  $\sqrt{2}V_{OV}$ , as derived in the text.

$$v_{GS1} = 0.283 - (-0.4) = 0.683 \text{ V}$$

$$v_{D1} = V_{DD} - i_{D1}R_D$$

$$= 1 - 0.16 \times 5 = +0.2 \text{ V}$$

Note that since  $v_{G1} = v_{id} = 0.283 \text{ V}$ ,  $Q_1$  is still operating in saturation, as implicitly assumed.

$$v_{D2} = V_{DD} - i_{D2}R_D$$

$$= 1 - 0 \times 5 = 1 \text{ V}$$

$$v_{D2} - v_{D1} = 1 - 0.2 = 0.8 \text{ V}$$

(d)  $i_{D1} = 0.04 \text{ mA}$  and  $i_{D2} = 0.12 \text{ mA}$ . Since this split of the current I is the complement of that in case (b) above, the value of  $v_{id}$  must be the negative of that found in (b). Thus,

# 0.04 Assignment Project Exam Help

$$\Rightarrow v_{GS2} = 0.541 \text{ V}$$

$$v_S = -0.645 \text{ V}$$

# $v_s = -0.541 \text{ V}$ https://powcoder.com

$$i_{D1} = \frac{1}{2} \mu_n C_{ox} \left( \frac{W}{L} \right) (v_{GS1} - V_{tn})^2$$

$$= 1 - 0.04 \times 5 = 0.8 \text{ V}$$

# $i_{D1} = \frac{1}{2} \mu_n C_{ox} \left( \frac{W}{L} \right) (v_{GS1} - V_m)^2$ $= 1 - 0.04 \times 5 = 0.8 \text{ V}$ $0.12 = \frac{1}{2} \times 0.4 \times 10 (v_{id} - v_S - V_m)^2$ $= 1 - 0.04 \times 5 = 0.8 \text{ V}$ $v_{D2} - v_{D1} = -0.4 \text{ V}$

$$= \frac{1}{2} \times 0.4 \times 10 \ (v_{id} + 0.541 - 0.4)^2$$

$$\Rightarrow v_{id} = 0.104 \text{ V}$$

$$v_{GS1} = 0.104 - (-0.541) = 0.645 \text{ V}$$

$$v_{D1} = V_{DD} - i_{D1}R_D$$

$$= 1 - 0.12 \times 5 = 0.4 \text{ V}$$

$$v_{D2} = V_{DD} - i_{D2}R_D$$

$$= 1 - 0.04 \times 5 = 0.8 \text{ V}$$

$$v_{D2} - v_{D1} = 0.8 - 0.4 = 0.4 \text{ V}$$

(c)  $i_{D1} = 0.16$  mA and  $i_{D2} = 0$  with  $Q_2$  just cutting off, thus

$$v_{GS2} = V_{tn} = 0.4 \text{ V}$$

$$\Rightarrow v_{S2} = -0.4 \text{ V}$$

$$i_{D1} = \frac{1}{2} \times 0.4 \times 10 \ (v_{GS1} - V_{tm})^2$$

(e)  $i_{D1} = 0$  ( $Q_1$  just cuts off) and  $i_{D2} = 0.16$  mA. This case is the complement of that in (c) above,

$$v_{GS1} = V_{tn} = 0.4 \text{ V}$$

$$v_{GS2} = 0.683 \text{ V}$$

$$v_S = -0.683 \text{ V}$$

$$v_{id} = -0.683 + 0.4 = -0.283 \text{ V}$$

which is  $-\sqrt{2} V_{OV}$ , as derived in the text.

$$v_{D1} = V_{DD} - i_{D1}R_D = 1 - 0 \times 5 = 1 \text{ V}$$

$$v_{D2} = V_{DD} - i_{D2}R_D = 1 - 0.16 \times 5 = 0.2 \text{ V}$$

$$v_{D2} - v_{D1} = -0.8 \text{ V}$$

## **Summary**

A summary of the results is shown in the following table on the next page.

| Case | $i_{D1}(mA)$ | $i_{D2}(mA)$ | $v_{id}(V)$ | $v_S(\mathbf{V})$ | $v_{D1}(V)$ | $v_{D2}(V)$ | $v_{D2} - v_{D1}(V)$ |
|------|--------------|--------------|-------------|-------------------|-------------|-------------|----------------------|
| a    | 0.08         | 0.08         | 0           | -0.6              | +0.6        | +0.6        | 0                    |
| b    | 0.12         | 0.04         | +0.104      | -0.541            | +0.4        | +0.8        | +0.4                 |
| С    | 0.16         | 0            | +0.283      | -0.4              | +0.2        | +1.0        | +0.8                 |
| d    | 0.04         | 0.12         | -0.104      | -0.645            | +0.8        | +0.4        | -0.4                 |
| e    | 0            | 0.16         | -0.283      | -0.683            | +1.0        | +0.2        | -0.8                 |

## 9.4 Refer to Fig. P9.2.

To determine  $V_{OV}$ ,

$$0.25 = \frac{1}{2} \times 4 \times |V_{OV}|^2$$

$$\Rightarrow |V_{OV}| = 0.354 \text{ V}$$

With  $v_{G2} = 0$  and  $v_{G1} = v_{id}$ , to steer the current from one side of the differential pair to the other,  $v_{id}$  must be the ends of the range

$$-\sqrt{2} |V_{OV}| \le v_{id} \le \sqrt{2} |V_{OV}|$$

 $v_{D2} = -2.5 + 0.5 \times 4 = -0.5 \text{ V}$ 

which verifies that  $Q_2$  is operating in saturation, as implicitly assumed.



9.5

# WeChat powcoder

$$= 0.5 \text{ mA}$$

which is the entire bias current.

$$v_{D1} = -2.5 + 0.5 \times 4 = -0.5 \text{ V}$$

Observe that since  $v_{G1} = v_{D1}$ ,  $Q_1$  is still operating in saturation, as implicitly assumed.

$$v_{D2} = -2.5 \text{ V}$$

At  $v_{id} = +0.5 \text{ V}$ ,  $Q_1$  just cuts off, thus  $v_{SG1} = |V_{tp}| = 0.8 \text{ V}$  and

$$v_S = +0.5 + 0.8 = +1.3 \text{ V}$$

and thus

$$v_{SG2} = 1.3 \text{ V}$$

which results in

$$i_{D1} = \frac{1}{2} \times 4 (1.3 - 0.8)^2$$

$$= 0.5 \text{ mA}$$

which is the entire bias current. Here,

For 
$$i_{D1} = 0.09$$
 mA and  $i_{D2} = 0.07$  mA,

$$i_{D2} = \frac{1}{2} \mu_n C_{ox} \left( \frac{W}{L} \right) (v_{GS2} - V_{tn})^2$$

$$0.07 = \frac{1}{2} \times 0.4 \times 10(v_{GS2} - 0.4)^2$$

$$\Rightarrow v_{GS2} = 0.587 \text{ V}$$

and

$$v_S = -0.587 \text{ V}$$

$$i_{D1} = \frac{1}{2} \mu_n C_{ox} \left( \frac{W}{L} \right) (v_{GS1} - V_{tn})^2$$

$$0.09 = \frac{1}{2} \times 0.4 \times 10 \ (v_{GS1} - 0.4)^2$$

$$\Rightarrow v_{GS1} = 0.612 \text{ V}$$

$$v_{id} = v_S + v_{GS1} = -0.587 + 0.612$$

$$= 0.025 \text{ V}$$

$$v_{D2} = V_{DD} - i_{D2}R_D$$

$$= 1 - 0.07 \times 5 = 0.65 \text{ V}$$

$$v_{D1} = 1 - 0.09 \times 5 = 0.55 \text{ V}$$

$$v_{D2} - v_{D1} = 0.65 - 0.55 = 0.10 \text{ V}$$

Voltage gain = 
$$\frac{v_{D2} - v_{D1}}{v_{id}} = \frac{0.10}{0.025} = 4 \text{ V/V}$$

To obtain the complementary split in current, that is,  $i_{D1} = 0.07$  mA and  $i_{D2} = 0.09$  mA,

$$v_{id} = -0.025 \text{ V}$$

9.6 Refer to the circuit in Fig. P9.6.

For 
$$v_{G1} = v_{G2} = 0 \text{ V}$$
,

$$I_{D1} = I_{D2} = \frac{0.4}{2} = 0.2 \text{ mA}$$

To obtain

$$V_{D1} = V_{D2} = +0.1 \text{ V}$$

$$V_{DD} - I_{D1,2} R_D = 0.1$$

$$0.9 - 0.2 R_D = 0.1$$

$$\Rightarrow R_D = 4 \text{ k}\Omega$$

The upper limit on  $V_{CM}$  is determined by the need to keep  $Q_1$  and  $Q_2$  in saturation, thus

$$V_{ICM\,\text{max}} = V_{D1,2} + V_{tn}$$

$$= 0.1 + 0.4 = 0.5 \text{ V}$$

Thus,

$$-0.2 \text{ V} < V_{ICM} < +0.5 \text{ V}$$

**9.7** From Exercise 9.3 and the accompanying table, we note that  $|v_{id}|_{\text{max}}$  is proportional to  $V_{OV}$ :

$$\frac{|v_{id}|_{\text{max}}}{V_{OV}} = \frac{0.126}{0.2} = 0.63$$

Thus, to obtain  $|v_{id}|_{\text{max}} = 220 \text{ mV} = 0.22 \text{ V}$  at the same level of linearity, we use

$$V_{OV} = \frac{0.22}{0.63} = 0.35 \text{ V}$$

For this value of  $V_{OV}$ , the required (W/L) can be found from

$$0.2 = \frac{1}{2} \times 0.2 \times \left(\frac{W}{L}\right) \times 0.35^2$$

# For And Signment Project Exam Help $I_{D1,2} = \frac{1}{2} \mu_n C_{ox} \left(\frac{V_0^2}{L}\right)_{1,2} V_{OV}^2$ The value of $g_m$ is

The value of  $g_m$  is

$$0.2 = \frac{1}{2} \times 0.4 \left( \frac{W}{L} \right) \times \frac{1}{2} = \frac{2 \times 0.2}{2} \times \frac{1.14 \text{ mA/V}}{2}$$

$$\Rightarrow \left(\frac{W}{L}\right)_{1,2} = 44.4$$

**9.8** Refer to Eq. (9.23). For

# $0.4 = \frac{1}{2} \times 0.4 \times \left(\frac{W}{L}\right)_2 \times 0.15^2$

$$0.4 = \frac{1}{2} \times 0.4 \times \left(\frac{n}{L}\right)_3 \times 0.15$$

$$\Rightarrow \left(\frac{W}{L}\right)_3 = 88.8$$

Since  $Q_3$  and  $Q_4$  form a current mirror with  $I_{D3} = 4I_{D4}$ 

$$\left(\frac{W}{L}\right)_{4} = \frac{1}{4} \left(\frac{W}{L}\right)_{3} = 22.2$$

$$V_{GS4} = V_{GS3} = V_{tn} + V_{OV} = 0.4 + 0.15$$

$$R = \frac{0.9 - (-0.9) - 0.55}{0.1}$$

The lower limit on  $V_{CM}$  is determined by the need to keep  $Q_3$  operating in saturation. For this to happen, the minimum value of  $V_{DS3}$  is  $V_{OV} = 0.15 \text{ V. Thus,}$ 

$$V_{ICM\,\mathrm{min}} = -V_{SS} + V_{OV3} + V_{GS1,2}$$

$$= -0.9 + 0.15 + 0.4 + 0.15$$

$$= -0.2 \text{ V}$$

For Q3, Add WeChat (pa) wcoder  $\Rightarrow \left(\frac{v_{id}/2}{V_{OV}}\right) \leq \sqrt{k}$ 

$$\Delta I = I \left( \frac{v_{id}/2}{V_{OV}} \right) \sqrt{1 - \left( \frac{v_{id}/2}{V_{OV}} \right)^2}$$

$$\triangle I_{\text{max}} = I \sqrt{k} \sqrt{1 - k}$$

$$\frac{\Delta I_{\text{max}}}{I/2} = 2\sqrt{k(1-k)} \qquad \text{Q.E.D.}$$
 (2)

(1)

and the corresponding value of  $v_{id}$  is found from Eq. (2) as

$$v_{id\text{max}} = 2\sqrt{k}V_{OV}$$
 Q.E.D. (3)

Equations (2) and (3) can be used to evaluate

$$\frac{\Delta I_{\text{max}}}{I/2}$$
 and  $\frac{v_{id\text{max}}}{V_{OV}}$  for various values of k:

| k                                    | 0.01 | 0.1   | 0.2   |
|--------------------------------------|------|-------|-------|
| $\frac{v_{id \mathrm{max}}}{V_{OV}}$ | 0.2  | 0.632 | 0.894 |
| $\frac{\triangle I_{\max}}{I/2}$     | 0.2  | 0.6   | 0.8   |

9.9 Switching occurs at

$$v_{id} = \sqrt{2}V_{OV}$$

Thus,

$$0.3 = \sqrt{2}V_{OV}$$

$$\Rightarrow V_{OV} = 0.212 \text{ V}$$

Now, to obtain full current switching at  $v_{id} = 0.5 \text{ V}, V_{OV} \text{ must be increased to}$ 

$$V_{OV} = 0.212 \times \frac{0.5}{0.3} = 0.353 \text{ V}$$

Since  $I_D$  is proportional to  $V_{OV}^2$  the current  $I_D$  and hence the bias current I must be increased by the ratio  $(0.353/0.212)^2$ , then I must be

$$I = 200 \times \left(\frac{0.353}{0.212}\right)^2 = 554.5 \ \mu A$$

9.10 Refer to Fig. 9.5.

(b) In Eqs. (9.23) and (9.24) let

$$i_{D1} = \left(\frac{I}{2}\right) + \left(\frac{I}{2}\right) \times \triangle$$

$$i_{D2} = \left(\frac{I}{2}\right) - \left(\frac{I}{2}\right) \times \triangle$$

where

$$\Delta = \left(\frac{v_{id}}{V_{OV}}\right) \sqrt{1 - \left(\frac{v_{id}/2}{V_{OV}}\right)^2}$$

If  $v_{id}$  is such that

$$\frac{i_{D1}}{i_{D2}} = m$$

$$m = \frac{1 + \triangle}{1 - \triangle}$$

$$\Rightarrow \triangle = \frac{m-1}{m+1}$$

 $g_{m} = \underbrace{\frac{2(I/2)}{P^{2}}}_{1} = \underbrace{\frac{I}{V}}_{0.25}$ For  $m = 1, \Delta = 0$  and  $v_{id} = 0$  Project = Exam Help  $\Delta = \frac{2-1}{2+1} = \frac{1}{3}$ 

$$\Rightarrow I = 0.25 \text{ mA}$$

$$\frac{I}{2} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) \text{ https://powcodefices.} \frac{1}{3} = \frac{1}{3}$$

 $\frac{1}{2} \times 0.25 = \frac{1}{2} \times 0.4 \times \left(\frac{W}{4}\right) 0.25^{2}$  Squaring both sides, we obtain a quadratic equal on  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal on  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal on  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadratic equal of  $\left(\frac{W}{V_{OV}}\right)^{2}$  Squaring both sides, we obtain a quadr  $\Rightarrow \frac{W}{I} = 10$ 

**9.11** Equations (9.23) and (9.24):

$$i_{D1} = \frac{I}{2} + \frac{I}{2} \left( \frac{v_{id}}{V_{OV}} \right) \sqrt{1 - \left( \frac{v_{id}/2}{V_{OV}} \right)^2}$$
 (9.23)

$$i_{D2} = \frac{I}{2} - \frac{I}{2} \left(\frac{v_{id}}{V_{OV}}\right) \sqrt{1 - \left(\frac{v_{id}/2}{V_{OV}}\right)^2}$$
 (9.24)

(a) For 10% increase above the equilibrium value of  $\frac{I}{2}$ ,

$$\left(\frac{I}{2}\right)\left(\frac{v_{id}}{V_{OV}}\right)\sqrt{1-\left(\frac{v_{id}/2}{V_{OV}}\right)^2}=0.1\times\frac{I}{2}$$

$$\left(\frac{v_{id}}{V_{OV}}\right)\sqrt{1-\frac{1}{4}\left(\frac{v_{id}}{V_{OV}}\right)^2}=0.1$$

$$\Rightarrow rac{v_{id}}{V_{OV}} \simeq 0.1$$

$$v_{id} \simeq 0.1 V_{OV}$$

 $v_{id} = 0.338 V_{OV}$ 

For m = 1.1,

$$\Delta = \frac{1.1 - 1}{1.1 + 1} = \frac{0.1}{2.1} \simeq 0.05$$

Thus,

$$\left(\frac{v_{id}}{V_{OV}}\right)\sqrt{1-\frac{1}{4}\left(\frac{v_{id}}{V_{OV}}\right)^2}=0.05$$

$$\Rightarrow v_{id} \simeq 0.05 V_{OV}$$

For m = 1.01

$$\triangle = \frac{1.01 - 1}{1.01 + 1} \simeq 0.005$$

$$\left(\frac{v_{id}}{V_{OV}}\right)\sqrt{1-\frac{1}{4}\left(\frac{v_{id}}{V_{OV}}\right)^2}=0.005$$

$$v_{id} \simeq 0.005 V_{OV}$$

For m = 20,

$$\triangle = \frac{m-1}{m+1} = \frac{19}{21} = 0.905 \text{ V}$$

$$\left(\frac{v_{id}}{V_{OV}}\right)\sqrt{1-\frac{1}{4}\left(\frac{v_{id}}{V_{OV}}\right)^2}=0.905$$

$$\Rightarrow v_{id} = 1.072 V_{OV}$$

**9.12** 
$$0.1 = \frac{1}{2} \times 0.2 \times 32V_{oV}^2$$

$$\Rightarrow V_{OV} = 0.18 \text{ V}$$

$$g_m = \frac{2 \times (0.2/2)}{0.18} = 1.11 \text{ mA/V}$$

$$r_o = \frac{V_A}{I_D} = \frac{10}{0.1} = 100 \text{ k}\Omega$$

$$A_d = g_m(R_D \parallel r_o)$$

$$= 1.11 \times (10 \parallel 100) = 10.1 \text{ V/V}$$

Using this value, we obtain

$$V_D = V_{DD} - \frac{I}{2} R_D$$

$$0.2 = 1 - 0.25 \times R_D$$

$$\Rightarrow R_D = 3.2 \text{ k}\Omega$$

$$A_d = g_m R_D$$

$$10 = g_m \times 3.2$$

$$g_m = \frac{10}{3.2} = 3.125 \text{ mA/V}$$

$$g_m = \frac{2 \times (I/2)}{V_{OV}} = \frac{I}{V_{OV}}$$

$$3.125 = \frac{0.5}{V_{OV}}$$

$$\Rightarrow V_{OV} = 0.16 \text{ V}$$

To obtain W/L, we use

$$I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) V_{OV}^2$$

## 9.13 For $v_{id}$ so $v_{id}$ $\Rightarrow \frac{W}{I} = 48.8 \simeq 50$

$$\frac{v_{id}/2}{V} = 0.2$$

# https://powcoder.com

$$\frac{0.1/2}{V_{OV}} = 0.2$$

$$\frac{0.1/2}{V_{OV}} = 0.2$$

$$P = (V_{DD} + V_{SS}) \times I$$

# $V_{OV}$ $\Rightarrow V_{OV} = 0.25 \text{ V}$ $g_m = \frac{2 \times (I/2)}{V_{OV}}$ Add WeChat $P = (V_{DD} + V_{SS}) \times I$ then the maximum allowable I is $I = \frac{2 \times (I/2)}{V_{OV}} = 0.5 \text{ mA}$

$$2 = \frac{I}{0.25}$$

$$\Rightarrow I = 0.5 \text{ mA}$$

$$A_d = \frac{1 \text{ V}}{0.1 \text{ V}} = 10$$

$$g_m R_D = 10$$

$$\Rightarrow R_D = \frac{10}{2} = 5 \text{ k}\Omega$$

$$\frac{I}{2} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) V_{OV}^2$$

$$0.25 = \frac{1}{2} \times 0.2 \times \frac{W}{I} \times 0.25^2$$

$$\Rightarrow \frac{W}{I} = 40$$

We shall utilize this value. The value of  $V_{OV}$  can be found from

$$\sqrt{2} V_{OV} = 0.25 V$$

$$\Rightarrow V_{OV} = \frac{0.25}{\sqrt{2}} = 0.18 \text{ V}$$

The realized value of  $g_m$  will be

$$g_m = \frac{2 \times (I/2)}{V_{OV}}$$

$$=\frac{0.5}{0.18}=2.8 \text{ mA/V}$$

To obtain a differential gain  $A_d$  of 10 V/V,

$$A_d = g_m R_D$$

$$10 = 2.8 \times R_D$$

$$\Rightarrow R_D = 3.6 \text{ k}\Omega$$

Finally, the required value of W/L can be determined from

$$I_D = \frac{I}{2} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} V_{OV}^2$$

9.14 To limit the power dissipation to 1 mW,

$$P = (V_{DD} + V_{SS})I$$

Thus, the maximum value we can use for I is

$$I = \frac{1 \text{ mW}}{2 \text{ V}} = 0.5 \text{ mA}$$

$$0.25 = \frac{1}{2} \times 0.4 \times \frac{W}{L} \times 0.18^{2}$$

$$\Rightarrow \frac{W}{L} = 38.6$$

**9.16** (a) 
$$A_d = g_m R_D$$

$$20 = g_m \times 47$$

$$\Rightarrow g_m = \frac{20}{47} = 0.426 \text{ mA/V}$$

(b) 
$$g_m = \frac{2I_D}{V_{OV}} = \frac{2(I/2)}{V_{OV}} = \frac{I}{V_{OV}}$$

$$0.426 = \frac{I}{0.2}$$

$$\Rightarrow I = 0.085 \text{ mA} = 85 \text{ }\mu\text{A}$$

(c) Across each  $R_D$  the dc voltage is

$$\frac{I}{2}R_D = \frac{0.085}{2} \times 47 = 2 \text{ V}$$

(d) The peak sine-wave signal across each gate source is 5 mV, thus at each drain the peak sine wave is

where

$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} \left(\frac{I}{2}\right)}$$

$$A_d = \sqrt{2\mu_n C_{ox} \frac{W}{I}} \sqrt{I/2} R_D \tag{2}$$

Equating the gains from Eqs. (1) and (2), we get

$$I = 2I_D$$

That is, the differential pair must be biased at a current twice that of the CS amplifier. Since both circuits use equal power supplies, the power dissipation of the differential pair will be twice that of the CS amplifier.

**9.18** Since both circuits use the same supply voltages and dissipate equal powers, then their currents must be equal, that is,

$$I_D = I$$

 $|A| = g_m R_D$ 

where  $I_D$  is the bias current of the CS amplifier and I is the biax current of the differential pair. The gain of the CS amplifier is (e) The minimum voltage at each drain will be

$$v_{D\min} = V_{DD} - R_D I_D - V_{\text{peak}}$$

 $v_{Dmin} = V_{DD} - R_D I_D - V_{peak}$   $= V_{DD} - 2 - 0.1$ https://powcoelega

For the transistor to remain in saturation

$$g_m = \sqrt{2\mu_n C_{ox} \left(\frac{W}{L}\right)_{CS}} I_D$$

## $v_{D\min} \geq v_{G\max} - V_{tm}$ dd WeChatpowcoder

$$v_{Gmax} = V_{CM} + V_{peak}(input)$$
  
= 0.5 + 0.005 = 0.505 V

Thus,

$$V_{DD} - 2.1 > 0.505 - 0.5$$

$$V_{DD} \ge 2.105 \text{ V}$$

Thus, the lowest value of  $V_{DD}$  is 2.21 V.

 $|A| = \sqrt{2\mu_n C_{ox} \left(\frac{W}{I_o}\right)_{ac}} I_D R_D$ (1)

The gain of the differential amplifier is

$$A_d = g_m R_D$$

where

$$g_m = \sqrt{2\mu_n C_{ox} \left(\frac{W}{L}\right)_{\text{diff}} \left(\frac{I}{2}\right)}$$

Thus,

$$A_d = \sqrt{2\mu_n C_{ox} \left(\frac{W}{L}\right)_{\text{diff}} \left(\frac{I}{2}\right)} R_D \tag{2}$$

Equating the gains in Eqs. (1) and (2) and substituting  $I_D = I$  gives

$$\sqrt{\left(\frac{W}{L}\right)_{\rm CS}} = \sqrt{\left(\frac{W}{L}\right)_{\rm diff}} \times \frac{1}{2}$$

$$\Rightarrow \left(\frac{W}{L}\right)_{\text{diff}} = 2\left(\frac{W}{L}\right)_{\text{CS}}$$

If all transistors have the same channel length, each of the differential pair transistors must be twice as wide as the transistor in the CS amplifier.

**9.17** For a CS amplifier biased at a current  $I_D$  and utilizing a drain resistance  $R_D$ , the voltage gain is

$$|A| = g_m R_D$$

where

$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$

Thus,

$$|A| = \sqrt{2\mu_n C_{ox} \frac{W}{I}} \sqrt{I_D} R_D \tag{1}$$

For a differential pair biased with a current I and utilizing drain resistances  $R_D$ , the differential gain is

$$A_d = g_m R_D$$

9.19



(a) The figure shows the differential half-circuit. Recalling that the incremental (small-signal) resistance of a diode-connected transistor is given

by  $\left(\frac{1}{g_m} \parallel r_o\right)$ , the equivalent load resistance of  $Q_1$  will be

$$R_D = \frac{1}{g_{m3}} \parallel r_{o3}$$

and the differential gain of the amplifier in

Fig. PA19Silbignment
$$A_d \equiv \frac{v_{od}}{r_{l+1}} = g_{m1} \begin{bmatrix} g \\ g \end{bmatrix} \parallel r_{o3} \parallel r_{o1} \end{bmatrix}$$

9.20



From symmetry, a virtual ground appears at the mid point of  $R_s$ . Thus, the differential half circuit will be as shown in the figure, and

$$A_d \equiv rac{v_{od}}{v_{id}} = rac{R_D}{rac{1}{g_m} + rac{R_s}{2}}$$

For 
$$R_s = 0$$
,

$$A_d = \frac{R_D}{1/\epsilon_m} = g_m R_D,$$

To reduce the gain to half this value, we use

Since both sides of the amplifier are matched, this expression can be written in the grant and way  $V = \frac{R_s}{1 - \frac{1}{2}}$ 

$$A_{d} = g_{m1,2} \begin{bmatrix} \frac{1}{g_{m3,4}} & || r_{o3,4} & || r_{o1,2} \\ A & A & C \\ \text{(b) Neglecting } r_{o1,2} & \text{and } r_{o3,4} & \text{(much larger that)} \end{bmatrix}$$
(b) Neglecting  $r_{o1,2}$  and  $r_{o3,4}$  (much larger that)
$$(a) \text{ With } v_{G1} = v_{G2} = 0,$$

 $1/g_{m3,4}),$ 

$$A_d \simeq rac{g_{m1,2}}{g_{m3,4}}$$

$$= \frac{\sqrt{2\mu_n C_{ox}(W/L)_{1,2}(I/2)}}{\sqrt{2\mu_p C_{ox}(W/L)_{3,4}(I/2)}}$$

$$= \sqrt{\frac{\mu_n(W/L)_{1,2}}{\mu_p(W/L)_{3,4}}}$$

(c)  $\mu_n = 4\mu_p$  and all channel lengths are equal,

$$A_d = 2\sqrt{\frac{W_{1,2}}{W_{3,4}}}$$

For 
$$A_d = 10$$
,

$$10 = 2\sqrt{\frac{W_{1,2}}{W_{3,4}}}$$

$$\Rightarrow \frac{W_{1,2}}{W_{3,4}} = 25$$

$$v_{GS1} = v_{GS2} = V_{OV1,2} + V_{tn}$$

Thus

$$V_{S1} = V_{S2} = -(V_{OV1,2} + V_{tn})$$

(b) For the situation in (a),  $V_{DS}$  of  $Q_3$  is zero, thus zero current flows in  $Q_3$ . Transistor  $Q_3$  will have an overdrive voltage of

$$V_{OV3} = V_C - V_{S1,2} - V_{tn}$$

$$= V_C + (V_{OV1,2} + V_{tn}) - V_{tn}$$

$$= V_C + V_{OV1,2}$$

(c) With  $v_{G1} = v_{id}/2$  and  $v_{G2} = -v_{id}/2$  where  $v_{id}$  is a small signal, a small signal will appear between drain and source of  $Q_3$ . Transistor  $Q_3$ will be operating in the triode region and its drain-source resistance  $r_{DS}$  will be given by

$$r_{DS} = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right)_2 V_{OV3}}$$

Thus,

$$R_s = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right)_3 V_{OV3}}$$

$$g_{m1,2} = (\mu_n C_{ox}) \left(\frac{W}{L}\right)_{1,2} V_{OV1,2}$$

$$g_{m3} = (\mu_n C_{ox}) \left(\frac{W}{L}\right)_3 V_{OV3}$$

For 
$$\left(\frac{W}{L}\right)_3 = \left(\frac{W}{L}\right)_{1,2}$$
,

$$\mu_n C_{ox} \left( \frac{W}{L} \right) = \frac{g_{m1,2}}{V_{OV1,2}}$$

Thus,

$$R_s = \frac{1}{\frac{g_{m1,2}}{V_{OV1,2}} \times V_{OV3}} = \frac{1}{g_{m1,2}} \frac{V_{OV1,2}}{V_{OV3}}$$

(d) (i) 
$$R_s = \frac{1}{1}$$

$$g_{m1,2} = \mu_n C_{ox} \left(\frac{W}{L}\right)_{1,2} V_{OV}$$
 (2)

substituting from (2) into (1) gives

$$r_{DS3,4} = \frac{1}{g_{m1,2}} \frac{(W/L)_{1,2}}{(W/L)_{3,4}}$$

and since

$$R_s = r_{DS3} + r_{DS4}$$

$$R_s = \frac{2}{g_{m1.2}} \frac{(W/L)_{1,2}}{(W/L)_{3,4}} \tag{3}$$

(b) With  $v_{G1} = v_{id}/2$  and  $v_{G2} = -v_{id}/2$  where  $v_{id}$  is a small signal,

$$A_d \equiv \frac{v_{od}}{v_{id}}$$

$$= \frac{2 R_D}{\frac{1}{g_{m1}} + R_s + \frac{1}{g_{m2}}}$$

# (d) (i) $R_s = \frac{1}{g_{m1.2}}$ $V_{OV3}$ Aussignment Project Exam Help $\frac{1}{g_{m1.2}} + \frac{1}{g_{m1.2}} \frac{(W/L)_{1.2}}{(W/L)_{3.4}}$

$$V_{OV3} = V_C + V_{OV1.2}$$

$$\Rightarrow V_C = 0$$

$$V_{OV3} = V_C + V_{OV1.2}$$

$$\Rightarrow V_C = 0$$

$$V_C = 0$$

$$V_C$$

(ii) 
$$R_s = \frac{0.5}{g_{m1.2}}$$

## ⇒ V<sub>0V3</sub> = 2 V<sub>0V1,2</sub> Add WeChat.porwcoder

$$V_{OV3} = V_C + V_{OV1,2}$$

$$\Rightarrow V_C = V_{OV1,2}$$

### 9.22 Refer to Fig. P9.22.

(a) With  $v_{G1} = v_{G2} = 0$  V,

$$V_{S1} = V_{S2} = -V_{GS1,2} = -(V_t + V_{OV})$$

The current through  $Q_3$  and  $Q_4$  will be zero because the voltage across them  $(v_{DS3} + v_{DS4})$  is zero.

Because the voltages at their gates are zero and at their sources are  $-(V_t + V_{OV})$ , each of  $Q_3$  and  $Q_4$ will be operating at an overdrive voltage equal to  $V_{OV}$ . Thus each of  $Q_3$  and  $Q_4$  will have an  $r_{DS}$ 

$$r_{DS3,4} = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right)_{3,4} V_{OV}}$$
 (1)

The value of R is found as follows:

$$R = \frac{V_{G6} - V_{G7}}{I_{REF}}$$
$$= \frac{0.8 - (-0.8)}{0.2} = 8 \text{ k}\Omega$$

Since  $I = I_{REF}$ ,  $Q_3$  and  $Q_6$  are matched and are operating at

$$|V_{OV}| = 1.5 - 0.8 - 0.5 = 0.2 \text{ V}$$

$$0.2 = \frac{1}{2} \times 0.1 \times \left(\frac{W}{L}\right)_{6.3} \times 0.2^2$$

$$\Rightarrow \left(\frac{W}{L}\right)_3 = \left(\frac{W}{L}\right)_6 = 100$$

Each of  $Q_4$  and  $Q_5$  is conducting a dc current of (I/2) while  $Q_7$  is conducting a dc current  $I_{\text{REF}} = I$ . Thus  $Q_4$  and  $Q_5$  are matched and their W/L ratios are equal while  $Q_7$  has twice the (W/L) ratio of  $Q_4$  and  $Q_5$ . Thus,

$$\frac{I}{2} = \frac{1}{2} \mu_n C_{ox} \left( \frac{W}{L} \right)_{4.5} V_{OV4,5}^2$$

$$V_{OV4,5} = -0.8 - (-1.5) - 0.5 = 0.2 \text{ V}$$

$$0.1 = \frac{1}{2} \times 0.25 \times \left(\frac{W}{L}\right)_{4.5} \times 0.04$$

$$\Rightarrow \left(\frac{W}{L}\right)_4 = \left(\frac{W}{L}\right)_5 = 20$$

$$\left(\frac{W}{L}\right)_7 = 40$$

$$r_{o4} = r_{o5} = \frac{|V_{Ap}|}{I/2} = \frac{10}{0.1} = 100 \text{ k}\Omega$$

$$r_{o1} = r_{o2} = \frac{V_{An}}{I/2} = \frac{10}{0.1} = 100 \text{ k}\Omega$$

$$A_d = g_{m1,2}(r_{o1,2} \parallel r_{o4,5})$$

$$50 = g_{m1,2}(100 \parallel 100)$$

## 9.24 Refer to Fig. P9.24

(a) Since the dc voltages  $V_{GS1}$  and  $V_{GS2}$  are equal,  $Q_1$  and  $Q_2$  will be operating at the same value of  $V_{OV}$  and their dc currents  $I_{D1}$  and  $I_{D2}$  will have the same ratio at their (W/L) ratios, that is,

$$I_{D1} = I/3$$

$$I_{D2} = 2I/3$$

(b)  $Q_1$  and  $Q_2$  will be operating at the same  $V_{OV}$ , obtained as follows:

$$\frac{I}{3} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) V_{OV}^2$$

$$\Rightarrow V_{OV} = \sqrt{\frac{2I}{3\mu_n C_{ox} \left(\frac{W}{L}\right)}}$$

(c) 
$$A_d \equiv \frac{v_{od}}{v_{id}}$$

$$=\frac{2R_D}{\frac{1}{g_{m1}}+\frac{1}{g_{m2}}}$$

# $\Rightarrow g$ Assignment Projecte $E_{g_{m1}} = E_{g_{m1}} = E_{g_{m1}}$ Help

$$g_{m1,2} = \frac{2(I/2)}{|V_{OV1,2}|}$$

$$1 = \frac{0.2}{|V_{OV1,2}|}$$

$$A_d = \frac{2 \times (2I/3)}{(3 + \frac{3}{2})(V_{OV}/I)} = \frac{4I}{9} \frac{V_{OV}}{V_{OV}}$$

## $\Rightarrow |V_{OV1,2}| = 0.2 \text{ V}$ The (W/L) ratio for add can be the Chat op Q few C. Oder determined from

 $0.1 = \frac{1}{2} \times 0.1 \times \left(\frac{W}{L}\right)_{1.2} \times 0.2^2$ 

$$\Rightarrow \left(\frac{W}{L}\right)_1 = \left(\frac{W}{L}\right)_2 = 50$$

A summary of the results is provided in the table below.

| Transistor | W/L | $I_D(mA)$ | $ V_{GS} (V)$ |
|------------|-----|-----------|---------------|
| $Q_1$      | 50  | 0.1       | 0.7           |
| $Q_2$      | 50  | 0.1       | 0.7           |
| $Q_3$      | 100 | 0.2       | 0.7           |
| $Q_4$      | 20  | 0.1       | 0.7           |
| $Q_5$      | 20  | 0.1       | 0.7           |
| $Q_6$      | 100 | 0.2       | 0.7           |
| $Q_7$      | 40  | 0.2       | 0.7           |

All transistors have the same channel length and are carrying a dc current I/2. Thus all transistors have the same  $r_o = \frac{|V_A|}{I/2}$ . Also, all transistors are operating at the same  $|V_{OV}|$  and have equal dc currents, thus all have the same

$$g_m = \frac{2(I/2)}{|V_{OV}|} = I/|V_{OV}|$$
. Thus all transistors have equal intrinsic gain  $g_m r_o = 2|V_A|/|V_{OV}|$ . Now, the gain  $A_d$  is given by

 $A_d = g_m(R_{on} \parallel R_{op})$ 

$$= \frac{1}{2} g_m R_{on}$$

$$= \frac{1}{2} g_m (g_m r_o) r_o = \frac{1}{2} (g_m r_o)^2$$

$$A_d = \frac{1}{2} \left[ \frac{2|V_A|}{V_{OV}} \right]^2$$
$$= 2(|V_A|/|V_{OV}|)^2 \qquad \text{Q.E.D.}$$

To obtain  $A_d = 500 \text{ V/V}$  while operating all transistors at  $|V_{OV}| = 0.2$  V, we use

$$500 = 2 \frac{|V_A|^2}{0.04}$$

$$\Rightarrow |V_A| = 3.16 \text{ V}$$

Since  $|V_4'| = 5 \text{ V}/\mu\text{m}$ , the channel length L (for all transistors) must be

$$3.16 = 5 \times L$$

$$L = 0.632 \; \mu \text{m}$$

To obtain the highest possible  $g_m$ , we operate at the highest possible I consistent with limiting the power dissipation (in equilibrium) to 0.5 mW. Thus,

$$I = \frac{0.5 \text{ mW}}{(0.9 + 0.9)\text{V}} = 0.28 \text{ mA}$$

## **9.26** Refer to Fig. 9.15(a).

The current I will split equally between  $Q_1$  and

$$I_{E1} = I_{E2} = 0.2 \text{ mA}$$

$$I_{C1} = I_{C2} = \alpha \times 0.2 = 0.99 \times 0.2 = 0.198 \text{ mA}$$

$$V_{BE1} = V_{BE2} = 0.7 + 0.025 \text{ n} \left(\frac{198}{1}\right) \text{ PO}$$

$$V_{BE1} = V_{BE2} = 0.7 + 0.025 \ln \left( \frac{198}{1} \right)$$

= 0.660 V $V_{E1} = V_{E2} = -1 - 0.5$ 

$$V_{C1} = V_{C2} = V_{CC} - I_{C1.2} R_C$$

$$= 2.5 - 0.198 \times 5 = +1.51 \text{ V}$$

9.27





(a) For  $v_{B1} = +0.5 \text{ V}$ ,  $Q_1$  conducts all the current I (0.4 mA) while  $Q_2$  cuts off. Thus  $Q_1$  will have a  $V_{BE}$  obtained as follows:

Thus,

$$= +0.52 \text{ V}$$

$$V_{C2} = V_{CC} - I_{C2} \times R_C$$

$$= 2.5 - 0 \times 5 = 2.5 \text{ V}$$

Observe that  $Q_1$  is operating in the active mode, as implicitly assumed, and the current source has a voltage of 2.323 V across it, more than sufficient for its proper operation.

(b) With  $v_{B1} = -0.5$  V,  $Q_1$  turns off and  $Q_2$ conducts all the bias current (0.4 mA) and thus exhibits a  $V_{BE}$  of 0.677 V, thus

$$V_E = -0.677 \text{ V}$$

which indicated that  $V_{BE1} = +0.177$  V, which is too small to turn  $Q_1$  on. Also, note that the current source has a voltage of -0.677 + 2.5 = 1.823 Vacross it, more than sufficient for its proper operation.

$$V_{C1} = V_{CC} - I_{C1}R_C$$

$$= 2.5 - 0 \times 5 = 2.5 \text{ V}$$

$$V_{C2} = 2.5 - 0.99 \times 0.4 \times 5 = +0.52 \text{ V}$$

9.28 Refer to Fig. 9.15(a) and assume the current source I is implemented with a single BJT that requires a minimum of 0.3 V for proper operation. Thus, the minimum voltage allowed at the emitters of  $Q_1$  and  $Q_2$  is -2.5 V + 0.3 V = -2.2 V. Now, since each of  $Q_1$  and  $Q_2$  is conducting a current of 0.2 mA, their  $V_{BE}$  voltages will be equal:

$$V_{BE1,2} = 0.7 + 0.025 \ln \left( \frac{0.99 \times 0.2}{1} \right)$$

= 0.660 V

Thus, the minimum allowable  $V_{CM}$  is

$$V_{CM \min} = -2.2 + 0.660 = -1.54 \text{ V}$$

The upper limit on  $V_{CM}$  is dictated by the need to keep  $Q_1$  and  $Q_2$  operating in the active mode, thus

$$V_{CM \max} = 0.4 + V_{C1,2}$$
  
= 0.4 + (2.5 - 0.99 × 0.2 × 5)  
= +1.91 V

Thus, the input common-mode range is

## $= 1.2 - 9.8 \times 10^{-3} \times 82$

(b) Refer to Fig. 9.15(a).

The maximum value of  $V_{CM}$  is limited by the need to keep  $Q_1$  and  $Q_2$  in the active mode. This is achieved by keeping  $v_{CE1,2} \ge 0.3 \text{ V}$ .

Since 
$$V_{C1,2} = 0.4 \text{ V}$$
,

$$V_{Emax} = 0.4 - 0.3 = 0.1 \text{ V}$$

and

 $\simeq 0.4 \text{ V}$ 

$$V_{CM \max} = V_{BE1,2} + V_{E\max}$$

$$V_{CM \, \text{max}} = 0.574 + 0.1 = 0.674 \, \text{V}$$

The minimum value of  $V_{CM}$  is dictated by the need to keep the current source operating properly, i.e. to keep 0.3 V across it, thus

$$V_{Emin} = -1.2 + 0.3 = -0.9 \text{ V}$$

and

$$V_{CM \min} = V_{E \min} + V_{BE1,2}$$

$$e \in 0.9 \quad \text{E.X4am} = \text{Help}$$

9.29 OWCOO LETTE COM  $i_{C1} = 10.78 \, \mu A,$ = 0.5767 V

The solution is given on the circuit diagram.

**9.30** (a) Refer to Fig. 9.15(a).

$$I_{E1} = I_{E2} = \frac{I}{2} = 10 \text{ }\mu\text{A}$$
  
 $I_{C1} = I_{C2} = \alpha \times 10 = 0.98 \times 10 = 9.8 \text{ }\mu\text{A}$ 

$$I_{C1} = I_{C2} = \alpha \times 10 = 0.98 \times 10 = 9.8 \,\mu\text{A}$$

$$V_{BE1} = V_{BE2} = 0.690 + 0.025 \ln\left(\frac{9.8 \times 10^{-3}}{1}\right)$$

= 0.574 V

Thus,

$$V_E = -0.574 \text{ V}$$

$$V_{C1} = V_{C2} = V_{CC} - I_C R_C$$

 $-0.326 \text{ V} \le V_{ICM} \le +0.674 \text{ V}$ 

$$i_{E1} = 11 \,\mu\text{A}, \qquad i_{E2} = 9 \,\mu\text{A}$$

$$u_{C1} = 10.78 \,\mu\text{A}, \qquad u_{C2} = 8.82 \,\mu\text{A}$$

$$= 0.5767 \text{ V}$$

$$v_{BE2} = 0.69 + 0.025 \ln \left( \frac{8.82 \times 10^{-3}}{1} \right)$$

$$= 0.5717 \text{ V}$$

Thus,

$$v_{B1} = v_{BE1} - v_{BE2}$$

$$= 0.5767 - 0.5717 = 0.005 \text{ V}$$

$$= 5 \text{ mV}$$

**9.31** Refer to Fig. 9.15(a) with  $V_{CC}$  replaced by

$$v_{C1} = (V_{CC} + v_r) - \alpha \frac{I}{2} R_C$$

$$= (V_{CC} - \alpha \frac{I}{2}R_C) + v_r$$

$$v_{C2} = (V_{CC} + v_r) - \alpha \frac{I}{2} R_C$$

$$= (V_{CC} - \alpha \frac{I}{2}R_C) + v_r$$

$$v_{od} \equiv v_{C2} - v_{C1} = 0$$

Thus, while  $v_{C1}$  and  $v_{C2}$  will include a ripple component  $v_r$ , the difference output voltage  $v_{od}$  will be ripple free. Thus, the differential amplifier rejects the undesirable supply ripple.

### 9.32 Refer to Fig. 9.14.

(a) 
$$V_{CM \max} = V_{CC} - \frac{I}{2}R_C$$

(b) For 
$$V_{CC} = 2 \text{ V}$$
 and  $V_{CM \text{max}} = 1 \text{ V}$ ,

$$1=2-\frac{1}{2}(IR_C)$$

$$\Rightarrow IR_C = 2 \text{ V}$$

(c) 
$$I_B = \frac{I/2}{\beta + 1} \le 2 \, \mu A$$

$$I \le 2 \times 101 \times 2 = 404 \,\mu\text{A}$$

Select

# then Assignment Proj

$$R_C = \frac{2}{0.4} = 5 \text{ k}\Omega$$

**9.34** Require  $v_{od} = 1 \text{ V}$  when  $v_{id} = 10 \text{ mV}$  and I = 1 mA.

Using Eq. (9.48), we obtain

$$i_{E1} = \frac{1 \text{ (mA)}}{1 + e^{-10/25}} = 0.599 \text{ mA}$$

$$i_{E2} = I - i_{E1} = 1 - 0.599 = 0.401 \text{ mA}$$

$$v_{od} = v_{C2} - v_{C1}$$

$$= (V_{CC} - i_{C2}R_C) - (V_{CC} - i_{C1}R_C)$$

$$=(i_{C1}-i_{C2})R_C$$

$$\simeq (i_{E1}-i_{E2})R_C$$

$$= 0.198 R_C$$

For  $v_{od} = 1$  V, we have

$$R_C = \frac{1}{0.198} = 5.05 \text{ k}\Omega$$

$$V_{C1} = V_{C2} = V_{CC} - \frac{I}{2}R_C$$

$$= 5 - 0.5 \times 5.05 \simeq 2.5 \text{ V}$$

With a signal of 10 mV applied, the voltage at one collector rises to 3 V and at the other falls to 2 V.

Consumer that We days for a provident the ctive region, the maximum common-mode input

voltage must be limited to (2 - 0.4) = +1.6 V.

# 9.33 $\frac{\triangle i_{E1}}{I} = \frac{i_{E1} - (I/2)}{I}$ POWCOLET 10 $v_{od} = v_{C2} - v_{C1}$

$$= \frac{i_{E1}}{I} - 0.5$$

$$= (V_{CC} - i_{C2}R_C) - (V_{CC} - i_{C1}R_C) - (V_{CC} - i_{C2}R_C) - (V_{CC} - i_{C1}R_C) - (V_{CC} - i_{C2}R_C) - (V_{CC} - i_{C1}R_C) - (V_{CC} - i_{C2}R_C) - (V_{CC} - i_{C2}R_$$

Using Eq. (9.48), we obtain

$$\frac{\triangle i_{E1}}{I} = \frac{1}{1 + e^{-v_{id}/V_T}} - 0.5$$

Observe that for  $v_{id} < 10$  mV the proportional transconductance gain is nearly constant at about 10. The gain decreases as  $v_{id}$  further increases, indicating nonlinear operation. This is especially pronounced for  $v_{id} > 20$  mV.

Using Eqs. (9.48) and (9.49) and assuming  $\alpha \simeq 1$  so that  $i_{C1} \simeq i_{E1}$  and  $i_{C2} \simeq i_{E2}$ , we get

$$v_{od} = IR_C \left[ \frac{1}{1 + e^{-v_{id}/V_T}} - \frac{1}{1 + e^{v_{id}/V_T}} \right]$$

$$= 5 \left[ \frac{1}{1 + e^{-v_{id}/V_T}} - \frac{1}{1 + e^{v_{id}/V_T}} \right]$$

This relationship can be used to obtain the data in the table below.

This table belongs to Problem 9.33.

| $v_{id}(\mathrm{mV})$                                             | 2    | 5    | 8    | 10   | 20   | 30   | 40   |
|-------------------------------------------------------------------|------|------|------|------|------|------|------|
| $\left[\frac{\triangle i_{E1}}{I}/v_{id}\right](\mathbf{V}^{-1})$ | 9.99 | 9.97 | 9.92 | 9.87 | 9.50 | 8.95 | 8.30 |

This table belongs to Problem 9.35.

| $v_{id}(\mathrm{mV})$          | 2   | 5     | 10    | 15    | 20   | 25    | 30    | 35    | 40    |
|--------------------------------|-----|-------|-------|-------|------|-------|-------|-------|-------|
| $v_{od}(V)$                    | 0.2 | 0.498 | 0.987 | 1.457 | 1.90 | 2.311 | 2.685 | 3.022 | 3.320 |
| $Gain = \frac{v_{od}}{v_{id}}$ | 100 | 99.7  | 98.7  | 97.1  | 95.0 | 92.4  | 89.5  | 86.3  | 83.0  |



The figure shows  $v_{od}$  versus  $v_{id}$  and the gain versus  $v_{id}$ . Observe that the transfer characteristic is nearly linear and the gain is nearly constant for  $v_{id} \leq 10$  mV. As  $v_{id}$  increases, the transfer characteristic bends and the gain is reduced. However, for  $v_{id}$  even as large as 20 mV, the gain is only 5% below its ideal value of 100.

where we have denoted the scale current of  $Q_1$  by  $I_S$  and that of  $Q_2$  as  $2I_S$ . Dividing (1) by (2), we get

$$\frac{i_{C1}}{i_{C2}} = \frac{1}{2} e^{(v_{B1} - v_{B2})/V_T}$$

For  $i_{C1} = i_{C2}$ , we obtain

$$v_{B1} - v_{B2} = V_T \ln 2$$

$$= 25 \ln 2 = 17.3 \text{ mV}$$

**9.37** (a) 
$$V_{BE} = 0.69 + 0.025 \ln\left(\frac{0.1}{1}\right)$$

$$= 0.632 \text{ V}$$

(b) Using Eq. (9.48), we obtain

$$i_{C1} = \alpha i_{E1} \simeq rac{I}{1 + e^{-v_{id}/V_T}}$$

For 
$$v_{id} = 20 \text{ mV}$$
,

$$i_{C1} = \frac{200 \,\mu\text{A}}{1 + e^{-20/25}} = 138 \,\mu\text{A}$$



Since  $Q_2$  has twice the EBJ area of  $Q_1$ , the 1.5-mA bias current will split in the same ratio, that is,

$$i_{E2}=2\ i_{E2}$$

Thus,

$$i_{E2} = 1 \text{ mA}$$
 and  $i_{E1} = 0.5 \text{ mA}$ 

To equalize the collector currents, we apply a signal

$$v_{id} = v_{B1} - v_{B2}$$

Now,

$$i_{C1} = \frac{I_S}{\alpha} e^{(\mathcal{V}_{B1} - \mathcal{V}_E)/V_T} \tag{1}$$

$$i_{C2} = \frac{2I_S}{\alpha} e^{(U_{B2} - U_E)/V_T}$$
 (2)

(d) Without  $R_e$ ,

$$v_{id} = 20 \text{ mV} \rightarrow i_{C1} - i_{C2} = 76 \text{ } \mu\text{A}$$

$$G_m = \frac{76 \text{ } \mu\text{A}}{20 \text{ mV}} = 3.8 \text{ mA/V}$$

With  $R_e$ ,

$$v_{id} = 200 \text{ mV} \rightarrow i_{C1} - i_{C2} = 76 \text{ } \mu\text{A}$$

$$G_m = \frac{76 \ \mu A}{200 \ \text{mV}} = 0.38 \ \text{mA/V}$$

Thus, the effective  $G_m$  has been reduced by a factor of 10, which is the same factor by which the allowable input signal has been increased while maintaining the same linearity.

**9.38** 
$$g_m = \frac{I_C}{V_T} = \frac{\alpha \times 0.2}{0.025} \simeq 8 \text{ mA/V}$$

$$R_{id} = 2r_{\pi} = 2\frac{\beta}{g_m} = 2 \times \frac{160}{8} = 40 \text{ k}\Omega$$

**9.39** 
$$R_{id} = 2r_{\pi} = 20 \text{ k}\Omega$$

$$r_{\pi} = 10 \text{ k}\Omega$$

$$\frac{\beta}{g_m} = 10 \text{ k}\Omega$$

$$\frac{100}{g_m} = 10$$

$$\Rightarrow g_m = 10 \text{ mA/V}$$

$$A_d = 100 = g_m R_C$$

$$R_C = \frac{100}{g_m} = \frac{100}{10} = 10 \text{ k}\Omega$$

$$g_m = \frac{I_C}{V_T} \simeq \frac{I/2}{V_T}$$

$$\Rightarrow I = 2V_T g_m$$

$$= 2 \times 0.025 \times 10 = 0.5 \text{ mA}$$

## **9.40** $v_{id} = 10 \text{ mA/V}$



 $v_{id} = 100 \text{ mV}$  appears across  $(2 r_e + 2 R_e)$ . Thus the signal across  $(r_e + R_e)$  is 50 mV. Since the signal across  $r_e$  is 5 mV, it follows that the signal across  $R_e$  must be 50 - 5 = 45 mV and thus

 $I = 200 \,\mu\text{A}$ , the bias current of the half-circuit is  $100 \mu A$  and,

The input resistance  $R_{id}$  is

$$r_e = \frac{25 \text{ mV}}{0.1 \text{ mA}} = 250 \text{ attps://powcoder.eom}$$

$$= 2(100 + 1) (r_e + R_e)$$

Gain of half-circuit = 
$$-\frac{R_C}{r_e} = -\frac{10}{0.25}$$
  
= -40 V/V

$$t = -\frac{1}{r_e} = -\frac{1}{0.25}$$

$$= 2 \times 101 \times (r_e + 9r_e)$$

At each collector we expect a signal of  $40 \times 5 \text{ mV} = 200 \text{ mV}$ . Between the two collectors, the signal will be 400 mV.

**9.41** (a) 
$$r_e = \frac{25 \text{ mV}}{0.25 \text{ mA}} = 100 \Omega$$

The 0.1-V differential input signal appears across  $(2r_e + 2R_e)$ , thus

$$i_e = \frac{100 \text{ mV}}{200 + 2 \times 400} = 0.1 \text{ mA}$$

$$v_{be} = 0.1 \times 100 = 10 \text{ mV}$$

(b) The total emitter current in one transistor is

$$\frac{I}{2} + i_e = 0.35$$
 mA and in the other transistor

$$\frac{I}{2} - i_e = 0.15 \text{ mA}.$$

(c) At one collector the signal voltage is  $-\alpha i_e R_C \simeq -i_e R_C = -0.1 \times 10 = -1 \text{ V}$  and at the other collector the signal voltage is +1 V.

(d) Voltage gain = 
$$\frac{2 \text{ V}}{0.1 \text{ V}} = 20 \text{ V/V}$$

To obtain  $R_{id} = 100 \text{ k}\Omega$ ,

$$100 = 2 \times 101 \times 10 \times r_e$$

$$\Rightarrow r_e \simeq 50 \ \Omega$$

Since

$$r_e = \frac{V_T}{I_T}$$

$$50 = \frac{25 \text{ mV}}{I_E}$$

$$\Rightarrow I_E = 0.5 \text{ mA}$$

$$I = 1 \text{ mA}$$

$$R_e = 9r_e = 9 \times 50 = 450 \ \Omega$$

$$Gain = \frac{\alpha \times 2R_C}{2r_e + 2R_e}$$

$$\simeq rac{R_C}{r_e + R_e}$$

But the gain required is

Gain = 
$$\frac{v_{od}}{v_{id}} = \frac{2 \text{ V}}{0.1 \text{ V}} = 20 \text{ V/V}$$

Thus.

$$20 = \frac{R_C}{0.05 + 0.45}$$

$$\Rightarrow R_C = 10 \text{ k}\Omega$$

The determination of a suitable value of  $V_{CC}$ requires information on the required input common-mode range (which is not specified). Suffice it to say that the dc voltage drop across  $R_C$ is 5 V and that each collector swings  $\pm 1$  V. A supply voltage  $V_{CC} = 10 \text{ V}$  will certainly be

9.43 (a) The maximum allowable value of the bias current I is found as

$$I = \frac{P}{(V_{CC} + V_{EE})} = \frac{1 \text{ mW}}{5 \text{ V}} = 0.2 \text{ mA}$$

We choose to operate at this value of I. Thus

$$g_m = \frac{I_C}{V_T} = \frac{\alpha(0.2/2)}{0.025} \simeq 4 \text{ mA/V}$$

where

$$A_d = g_m R_C \simeq \frac{I/2}{V_T} R_C$$

$$=\frac{IR_C}{2V_T}$$

Thus.

$$\frac{IR_C}{2} = A_d V_T \tag{2}$$

Substituting from (2) into (1), we obtain

$$v_{C1\min} = V_{CC} - A_d \left( V_T + \frac{\hat{v}_{id}}{2} \right) \tag{3}$$

$$v_{B1} = V_{CM \max} + \frac{\hat{v}_{id}}{2}$$

to keep  $Q_1$  in the active mode,

$$v_{B1} \leq 0.4 + v_{C1\min}$$

Thus,

$$\begin{array}{ll}
A_d = A_{\times R_C} & \text{Signment Project Exam} \\
A_d = A_{\times R_C} & \text{Signment Project Exam} \\
A_d = A_{\times R_C} & \text{Exam} \\
A_d = A_{\times R_C}$$

$$\Rightarrow R_C = 15 \text{ k}\Omega$$

$$\Rightarrow R_C = 15 \text{ k}\Omega$$

$$V_{C1} = V_{C2} = V_{CC} \frac{\hat{v}_{id}}{2} \text{ Q.E.D.}$$

$$V_{C1} = V_{C2} = V_{CC} \frac{\hat{v}_{id}}{2} \text{ Q.E.D.}$$

$$=2.5-\frac{0.2}{2}\times15$$

$$= 2.5 - \frac{0.2}{2} \times 15$$

$$= +1 \text{ V}$$
(b)  $R_{id} = 2r_{\pi} = 2\frac{\beta}{g_m}$ 

$$A_d = 50 \text{ V/V},$$

$$V_{CM \max} = 2.5 + 0.4 - 0.005 - 50(25 + 5) \times 10^{-3}$$

$$\text{POWCOder}$$

$$\hat{v}_{od} = A_d \times \hat{v}_{id} = 50 \times 10 = 500 \text{ mV}$$

(b) 
$$R_{id} = 2r_{\pi} = 2\frac{\beta}{g_m}$$

$$=2\times\frac{100}{4}=50~\text{k}\Omega$$

(c) 
$$v_{od} = A_d \times v_{id}$$

$$= 60 \times 10 = 600 \text{ mV} = 0.6 \text{ V}$$

Thus, there will be  $\pm 0.3$  V signal swing at each collector. That is, the voltage at each collector will range between 0.7 V and +1.3 V.

(d) To maintain the BJT in the active mode at all times, the maximum allowable  $V_{CM}$  is limited to

$$V_{CM \max} = 0.4 + v_{C \min}$$
  
= 0.4 + 0.7 = 1.1 V

**9.44** (a) Consider transistor  $Q_1$ ,

$$v_{C1\min} = (V_{CC} - \frac{I}{2}R_C) - A_d \left(\frac{\hat{v}_{id}}{2}\right) \tag{1}$$

(4)

$$\hat{v}_{od} = A_d \times \hat{v}_{id} = 50 \times 10 = 500 \text{ m}$$

$$= 0.5 \text{ V}$$

Using Eq. (2), we obtain

$$IR_C = 2A_d V_T = 2 \times 50 \times 0.025$$

$$= 2.5 \text{ V}$$

To limit the power dissipation in the quiescent state to 1 mV, the bias current must be limited to

$$I = \frac{P_{\text{max}}}{V_{CC} + V_{FF}} = \frac{1}{5} = 0.2 \text{ mA}$$

Using this value for I, we get

$$R_C = \frac{2.5}{0.2} = 12.5 \text{ k}\Omega$$

(c) To obtain  $V_{CM \text{ max}} = 1$  V, we use Eq. (4) to determine the allowable value of  $A_d$ ,

$$1 = 2.5 + 0.4 - 0.005 - A_d(25 + 5) \times 10^{-3}$$

$$\Rightarrow A_d = 63.2 \text{ V/V}$$

Thus, by reducing  $V_{CM \max}$  from 1.4 V to 1 V, we are able to increase the differential gain from 50 V/V to 63.2 V/V.

**9.45**  $A_d = g_m R_C$  $=\frac{I_C}{V_T}R_C$  $\simeq \frac{(I/2)}{V_T} R_C$  $=\frac{IR_C}{2V_T}$  $= \frac{4}{2 \times 0.025} = 80 \text{ V/V}$  $V_{C1} = V_{C2} = V_{CC} - \frac{1}{2}R_C$ 

$$V_{C1} = V_{C2} = V_{CC} - \frac{1}{2}R_C$$

$$-5 - 2 - 3V$$

$$= 5 - 2 = 3 \text{ V}$$

$$v_{C1} = 3 - 80 \times 0.005 \sin(\omega t)$$

$$= 3 - 0.4 \sin(\omega t)$$

9.46 See figure on next page. The circuit together with its equivalent half-circuit are shown in the figure.

$$A_d = g_{m1,2}(r_{o1,2} \parallel r_{o3,4})$$

9.47

$$r_{o1,2} = r_{o3,4} = \frac{V_A}{\alpha(I/2)} \simeq \frac{2V_A}{I}$$

$$g_{m1,2} = \frac{I_{C1,2}}{V_T} \simeq \frac{I}{2V_T}$$

$$A_d = \frac{I}{2V_T} \left( \frac{2V_A}{I} \parallel \frac{2V_A}{I} \right)$$

$$=\frac{I}{2V_T}\times\frac{V_A}{I}=\frac{V_A}{2V_T}$$

$$= \frac{20}{2 \times 0.025} = 400 \text{ V/V}$$



The waveforms are sketched in the figure below.



Both circuits have the same differential half-circuit shown in the figure. Thus, for both

$$A_d = \frac{\alpha R_C}{r_e + R_e}$$

$$R_{id} = (\beta + 1)(2r_e + 2R_e)$$

$$= 2(\beta + 1)(r_e + R_e)$$

With  $v_{id} = 0$ , the dc voltage appearing at the top end of the bias current source will be

(a) 
$$V_{CM} - V_{BE} - \left(\frac{I}{2}\right)R_C$$

(b) 
$$V_{CM} - V_{BE}$$

Since circuit (b) results in a larger voltage across the current source and given that the minimum value of  $V_{CM}$  is limited by the need to keep a certain specified minimum voltage across the current source, we see that circuit (b) will allow a larger negative  $V_{CM}$ .

This figure belongs to Problem 9.46.





 $A_d = \alpha rac{ ext{Total resistance between collectors}}{ ext{Total resistance in the emitter circuit}}$   $= \alpha rac{(2R_C \parallel R_L)}{2r_e}$ 

**9.49** Refer to Fig. P9.47(a).

$$\frac{I}{2}R_e = 4V_T$$

$$\Rightarrow R_e = \frac{8V_T}{I}$$

$$\alpha \left(\frac{I}{2}\right)R_C = 60V_T$$

$$R_C = \frac{120V_T}{\alpha I}$$
(2)

$$A_d = \alpha \frac{\text{Total resistance in collector circuit}}{\text{Total resistance in emitter circuit}}$$

$$A_d = \alpha \frac{2R_C}{2r_e + 2R_e} = \alpha \frac{R_C}{r_e + R_e}$$

$$\frac{v_{id}}{v_{\text{sig}}} = \frac{2(\beta + 1)(r_e + R_e)}{2(\beta + 1)(r_e + R_e) + R_{\text{sig}}}$$
(2)

$$\frac{v_{od}}{v_{id}} = \frac{\alpha \times \text{Total resistance between collectors}}{\text{Total resistance in emitters}}$$

$$=\frac{2\alpha R_C}{2r_e+2R_e}$$

$$\frac{v_{od}}{v_{id}} = \frac{\alpha R_C}{r_e + R_e} \tag{3}$$

Using (2) and (3), we get

$$G_v \equiv \frac{v_{od}}{v_{\rm sig}} = \frac{2\alpha(\beta+1)R_C}{2(\beta+1)(r_e+R_e)+R_{\rm sig}}$$

Since 
$$\alpha = \frac{\beta}{\beta + 1}$$
,  $\alpha(\beta + 1) = \beta$ , we have

$$G_v = \frac{2\beta R_C}{2(\beta + 1)(r_e + R_e) + R_{\text{sig}}}$$
(4)

If  $v_{id} = 0.5 \ v_{sig}$ , then from (1) we obtain

$$R_{id} = R_{\rm sig}$$

This figure belongs to Problem 9.50.



Substituting for  $R_{\text{sig}} = R_{id} = 2(\beta + 1)(r_e + R_e)$  into Eq. (4) gives

$$G_v = \frac{2\beta R_C}{4(\beta + 1)(r_e + R_e)} = \frac{1}{2} \frac{\alpha R_C}{r_e + R_e}$$
 (5)

**9.52** Refer to Fig. P9.52.

$$\frac{v_o}{v_i} = \frac{\alpha \times \text{Total resistance in collectors}}{\text{Total resistance in emitters}}$$

If  $\beta$  is Aubstrightneint its Project + Exam Help

(6)

$$R_{\rm sig} = 2(\beta + 1)(r_e + R_e)$$

then the new value of  $G_k$  is obtained by replacing  $\beta$  by  $2\beta$  in Fig. (1) and substituting to WC of  $\frac{r_e}{C}$   $\frac{V_T}{C}$  =  $\frac{25 \text{ mV}}{C}$  =  $\frac{250 \text{ N}}{C}$  =  $\frac{250 \text{ N}}{C}$ 

$$G_{v} = \frac{4\beta R_{C}}{2(2\beta + 1)(r_{e} + R_{e})} = \frac{4\beta R_{C}}{2(2\beta + 1)(r_{e} + R_{e})} = \frac{2\beta R_{C}}{2(2\beta + 1)(2r_{e} + R_{e})} = \frac{2\beta R_{C}}{2(2\beta + R_{e})} = \frac{$$

Thus the gain increases from approximately  $\frac{1}{2}R_C/(r_e+R_e)$  to  $\frac{2}{3}R_C/(r_e+R_e)$ .

= 
$$2 \times 101 \times (0.25 + 0.25)$$
  
=  $101 \text{ k}\Omega$ 

**9.51** 
$$R_{id} = 2r_{\pi} = 2\frac{\beta}{g_m}$$

$$g_m = \frac{I_C}{V_T} \simeq \frac{0.2}{0.025} = 8 \text{ mA/V}$$

$$R_{id} = \frac{2 \times 100}{8} = 25 \text{ k}\Omega$$

$$G_v = \frac{R_{id}}{R_{id} + R_{\text{sig}}} \; \frac{\alpha (2R_C \parallel R_L)}{2r_e}$$

$$G_v = \frac{R_{id}}{R_{id} + R_{\text{sig}}} \times \frac{1}{2} g_m(2R_C \parallel R_L)$$

$$=\frac{25}{25+100}\times\frac{1}{2}\times8\times(40\parallel40)$$

**9.53** Refer to Fig. P9.53.

$$r_e = \frac{V_T}{I_E} = \frac{25 \text{ mV}}{0.1 \text{ mA}} = 250 \Omega$$

 $\frac{v_o}{v_i} = \frac{\alpha \times \text{Total resistance in collectors}}{\text{Total resistance in emitters}}$ 

$$=\frac{0.99\times25~\text{k}\Omega}{2r_e+500~\Omega}$$

$$= \frac{0.99 \times 25 \text{ k}\Omega}{500 \Omega + 500 \Omega} \simeq 25 \text{ V/V}$$

$$R_{\rm in} = (\beta + 1)(2r_e + 500 \ \Omega)$$

$$= 101 \times (2 \times 250 \ \Omega + 500 \ \Omega)$$

$$= 101 \text{ k}\Omega$$

**9.54** (a) Refer to the circuit in Fig. P9.54. As a differential amplifier, the voltage gain is found from

$$\frac{v_o}{v_i} = \frac{\alpha \times \text{Total resistance in collectors}}{\text{Total resistance in emitters}}$$

$$=\frac{\alpha\times R_C}{2r_e}$$

$$=\frac{\alpha R_C}{2r_a}$$

(b) The circuit in Fig. P9.54 can be considered as the cascade connection of an emitter follower  $Q_1$  (biased at an emitter current I/2) and a common-gate amplifier  $Q_2$  (also biased at an emitter current of I/2). Referring to the figure below:

**9.56** Refer to Fig. P9.2.

$$I_D = 0.25 \text{ mA} = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L}\right) |V_{OV}|^2$$

$$0.25 = \frac{1}{2} \times 4 \times |V_{OV}|^2$$

$$\Rightarrow |V_{OV}| = 0.353 \text{ V}$$

$$g_m = \frac{2I_D}{|V_{OV}|} = \frac{2 \times 0.25}{0.353} = 1.416 \text{ mA/V}$$

$$|A_d| = g_m R_D = 1.416 \times 4 = 5.67 \text{ V/V}$$

$$|A_{cm}| = \left(\frac{R_D}{2R_{SS}}\right) \left(\frac{\triangle R_D}{R_D}\right)$$

$$=\frac{4}{2\times30}\times0.02$$

$$= 1.33 \times 10^{-3} \text{ V/V}$$

CMRR = 4252.5 or 72.6 dB



(a) Assume  $v_{id} = 0$  and the two sides of the differential amplifier are matched. Thus,

https://powcoder.com

 $\frac{v_{e1,2}}{v_i} = \frac{r_{e2}}{r_{e1} + r_{e2}} = \frac{1}{A} dd WeChat powcoder$   $v_o = \alpha R_C$   $\frac{v_{e1,2}}{v_o} = \frac{1}{2} \times 2.5 \times V_{OV}^2$ 

$$\frac{v_o}{v_{e1,2}} = \frac{\alpha R_C}{r_{e2}}$$

Thus

$$\frac{v_o}{v_i} = \frac{1}{2} \times \frac{\alpha R_C}{r_{e2}} = \frac{\alpha R_C}{2r_e}$$

which is identical to the expression found in (a) above.

**9.55** 
$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$
  
=  $\sqrt{2 \times 3 \times 0.1} = 0.77 \text{ mA/V}$ 

$$|A_d| = g_m R_D = 0.77 \times 10 = 7.7 \text{ V/V}$$

$$|A_{cm}| = \left(\frac{R_D}{2R_{SS}}\right) \left(\frac{\triangle R_D}{R_D}\right)$$

$$= \frac{10}{2 \times 100} \times 0.01 = 5 \times 10^{-4} \text{ V/V}$$

CMRR = 
$$\frac{|A_d|}{|A_{cm}|}$$
 = 1.54 × 10<sup>4</sup> or 83.8 dB

 $\Rightarrow V_{OV} = 0.632 \text{ V}$ 

$$V_{CM} = V_{GS} + 1 \text{ mA} \times R_{SS}$$

$$= V_t + V_{OV} + 1 \times R_{SS}$$

$$= 0.7 + 0.632 + 1$$

= 2.332 V

(b) 
$$g_m = \frac{2I_D}{V_{OV}} = \frac{2 \times 0.5}{0.632} = 1.58 \text{ mA/V}$$

$$A_d = g_m R_D$$

$$8 = 1.38 \times R_D$$

$$\Rightarrow R_D = 5.06 \text{ k}\Omega$$

(c) 
$$V_{D1} = V_{D2} = V_{DD} - I_D R_D$$

$$= 5 - 0.5 \times 5.06 = 2.47 \text{ V}$$



where

$$g_m = \frac{2I_D}{V_{OV}} = \frac{2(0.1/2)}{0.2} = 0.5 \text{ mA/V}$$

For CMRR of 80 dB, the CMRR is 10<sup>4</sup>; thus

$$10^4 = 2 \times 0.5 \times R_{SS}/0.02$$

$$R_{SS} = 200 \text{ k}\Omega$$

For the current source transistor to have  $r_o = 200 \text{ k}\Omega$ ,

$$200 = \frac{V_A' \times L}{0.1 \text{ mA}}$$

$$L = \frac{200 \times 0.1}{5} = 4 \ \mu \text{m}$$

The figure shows the common-mode half-circuit,

$$\frac{\Delta V_{D1}}{\Delta V_{CM}} = -\frac{R_D}{\frac{1}{g_m} + 2 R_{SS}}$$

$$\frac{\Delta V_{D1}}{\Delta V_{CM}} = -\frac{5.06}{\frac{1}{1.58} + 2} = -1.92 \text{ V/V}$$

**9.60** It is required to raise the CMRR by 40 dB, that is, by a factor of 100. Thus, the cascoding of the bias current source must raise its output resistance  $R_{SS}$  by a factor of 100. Thus the cascode transistor must have  $A_0 = 100$ . Since

# $\frac{\triangle V_{D1}}{\triangle V_{CM}} = -\frac{5.06}{\frac{1}{1.58} + 2} = -1.92 \text{ V/V}$ resistance $R_{SS}$ by a factor of 10 cascode transistor must have $R_{SS}$ resistance $R_{SS}$ by a factor of 10 cascode transistor must have $R_{SS}$ resistance $R_{SS}$ by a factor of 10 cascode transistor must have $R_{SS}$ resistance $R_{SS}$ by a factor of 10 cascode transistor must have $R_{SS}$ resistance $R_{SS}$ by a factor of 10 cascode transistor must have $R_{SS}$ resistance $R_{SS}$ by a factor of 10 cascode transistor must have $R_{SS}$ resistance $R_{SS}$ by a factor of 10 cascode transistor must have $R_{SS}$ resistance $R_{SS}$ by a factor of 10 cascode transistor must have $R_{SS}$ resistance $R_{SS}$ by a factor of 10 cascode transistor must have $R_{SS}$ resistance $R_{SS}$ by a factor of 10 cascode transistor must have $R_{SS}$ resistance $R_{SS}$ by a factor of 10 cascode transistor must have $R_{SS}$ resistance $R_{SS}$ by a factor of 10 cascode transistor must have $R_{SS}$ resistance $R_{SS}$ by a factor of 10 cascode transistor must have $R_{SS}$ resistance $R_{SS}$ by a factor of 10 cascode transistor must have $R_{SS}$ resistance $R_{SS}$ by a factor of 10 cascode transistor must have $R_{SS}$ resistance $R_{SS}$ resistance $R_{SS}$ by a factor of 10 cascode transistor must have $R_{SS}$ resistance $R_{SS}$ re $100 = \frac{2V_A}{0.2}$

Substituting  $V_{CM} = 2.332, V_t = 0.7 \text{ V},$ 

$$V_{D1} = 2.47 \text{ V}$$
, and  $\Delta V_{DL} = -1.92 \Delta V_{DM}$  results in  $\Rightarrow V_{L} = 10 \text{ V}$   
 $2.332 + \Delta V_{CM} = 0.04 \pm 1.92 \Delta V_{CM}$  POWCOA COMP

$$\Rightarrow \triangle V_{CM} = 0.287 \text{ V}$$

$$10 - 5 \times I$$

With this change,  $V_{CM} = 2.619 \text{ V}$  and  $V_{D1,2} = 1.919 \text{ V}$ ; thus C = 2.619 V and  $V_{D1,2} = 1.919 \text{ V}$ ; thus C = 2.619 V and C

**9.58** The new deliberate mismatch  $\triangle R_D/R_D$ cancels the two existing mismatch terms in the expression for  $A_{cm}$  given in the problem statement so as to reduce  $A_{cm}$  to zero. Thus,

$$\frac{R_D}{2R_{SS}} \times \frac{\Delta R_D}{R_D} = -0.002$$

$$\frac{5}{2 \times 25} \times \frac{\Delta R_D}{R_D} = -0.002$$

$$\Rightarrow \frac{\Delta R_D}{R_D} = -0.02 \text{ or } -2\%$$

(Note the sign of the change is usually determined experimentally.)

9.59 
$$|A_{cm}| = \left(\frac{R_D}{2R_{SS}}\right) \frac{\triangle(W/L)}{W/L}$$
  
 $|A_d| = g_m R_D$   
 $CMRR = \frac{|A_d|}{|A_{cm}|} = 2g_m R_{SS} / \frac{\triangle(W/L)}{W/L}$ 

**9.61** Refer to Fig. P9.61.

(a) 
$$\frac{v_o}{v_{id}} = \frac{1}{\alpha}$$
 Total resistance across which  $v_o$  appears Total resistance in the emitter 
$$= \alpha \times \frac{2 \text{ k}\Omega}{1 + \alpha}$$

To determine  $r_{e1} = r_{e2} = r_e = \frac{V_T}{I_E}$ , where  $I_E$  is the dc emitter current of each of  $Q_1$  and  $Q_2$ , we

$$V_E = V_B - V_{BE} = 0 - 0.7$$
  
= -0.7 V  
 $2I_E = \frac{-0.7 - (-5)}{4.3} = 1 \text{ mA}$   
 $I_E = 0.5 \text{ mA}$   
 $r_{e1} = r_{e2} = \frac{25 \text{ mV}}{0.5 \text{ mA}} = 50 \Omega$   
 $\frac{v_o}{v_{e2}} = \alpha \times \frac{2 \text{ k}\Omega}{0.1 \text{ k}\Omega} \simeq 20 \text{ V/V}$ 



The common-mode half-circuit is shown in the figure,

$$\frac{v_o}{v_{icm}} = -\frac{\alpha \times 2 \text{ k}\Omega}{(0.05 + 8.6) \text{ k}\Omega}$$

$$\simeq -0.23 \text{ V/V}$$

$$\left| \frac{v_o}{v_{icm}} \right| = 0.23 \text{ V/V}$$

Figure (a) shows the differential half-circuit.

$$I_E = 0.5 \text{ mA}, \qquad I_C = \alpha I_E \simeq 0.5 \text{ mA}$$

$$g_m = \frac{I_C}{V_T} = \frac{0.5 \text{ mA}}{0.025 \text{ V}} = 20 \text{ mA/V}$$

$$r_e = \frac{25 \text{ mV}}{0.5 \text{ mA}} = 50 \text{ }\Omega$$

$$r_o = \frac{V_A}{I_C} = \frac{100}{0.5} = 200 \text{ k}\Omega$$

$$A_d = \frac{\alpha \times \text{Total resistance in collectors}}{\text{Total resistance in emitters}}$$

$$\simeq \frac{10~\text{k}\Omega \parallel 10~\text{k}\Omega}{(50+150)~\Omega}$$

$$=\frac{5}{0.2}=25 \text{ V/V}$$

We have neglected  $r_o$  because its equivalent value at the output will be  $r_o[1+(R_e/r_e)]=200[1+(150/50)]=800~\mathrm{k}\Omega$  which is much greater than the effective load resistance of 5 k $\Omega$ .

$$R_{id} = 2 \times (\beta + 1)(50 \Omega + 150 \Omega)$$

(c) ARSSIZ-MEET Project  $\underset{|A_{cm}|}{\text{ent}} = 2 \times \underset{|A_{cm}|}{\text{heavy}} \times 0.2 \text{ (k}\Omega) = 40 \text{ Help}$ 

(d)  $v_o = -0.023 \sin 2\pi \times 60t + 0.2 \sin 2t \text{ to Svolts/powcoler} / \text{powcoler} / \text{powc$ 

9.62





 $\begin{array}{c} R_{icm} \simeq \beta R_{EE} \frac{1 + (R_C/\beta r_o)}{1 + \frac{R_C + 2R_{EE}}{1 + \frac{$ 

$$R_{icm} = 100 \times 100 \ \frac{1 + (10/(100 \times 200))}{1 + \frac{10 + 200}{200}}$$

$$= 4.88 \text{ M}\Omega$$

**9.63** (a) 
$$g_m = \frac{I_C}{V_T} \simeq \frac{0.1 \text{ mA}}{0.025 \text{ V}} = 4 \text{ mA/V}$$

$$A_d = g_m R_C = 4 \times 25 = 100 \text{ V/V}$$

(b) 
$$R_{id} = 2r_{\pi} = 2\frac{\beta}{g_m} = 2 \times \frac{100}{4} = 50 \text{ k}\Omega$$

(c) 
$$|A_{cm}| = \left(\frac{R_C}{2R_{EE}}\right) \left(\frac{\triangle R_C}{R_C}\right)$$

$$=\frac{25}{2\times500}\times0.01$$

$$= 2.5 \times 10^{-4} \text{ V/V}$$

(d) CMRR = 
$$\frac{|A_d|}{|A_{cm}|} = \frac{100}{2.5 \times 10^{-4}} = 4 \times 10^5$$

(e) 
$$r_o = \frac{V_A}{I_C} \simeq \frac{100}{0.1} = 1000 \text{ k}\Omega$$

$$R_{icm} \simeq \beta R_{EE} \ rac{1 + (R_C/\beta r_o)}{1 + rac{R_C + 2R_{EE}}{r_o}}$$

$$= 100 \times 500 \ \frac{1 + (25/(100 \times 1000))}{1 + \frac{25 + 1000}{1000}}$$

 $\simeq 25~M\Omega$ 

**9.64** 
$$R_{EE} = \frac{V_A}{I} = \frac{20}{0.2} = 100 \text{ k}\Omega$$

For the transistors in the differential pair, we have

$$r_o = \frac{V_A}{I/2} = \frac{20}{0.1} = 200 \text{ k}\Omega$$

$$R_{icm} \simeq \beta R_{EE} \; rac{1 + (R_C/\beta r_o)}{1 + rac{R_C + 2R_{EE}}{r_o}}$$

(c) If the bias current I is generated using a Wilson mirror.

 $R_{EE} = R_o |_{\text{Wilson mirror}}$ 

$$=\frac{1}{2}\beta r_o$$

where  $r_o$  is that of the transistors in the Wilson mirror, then

$$r_o = \frac{50}{0.5} = 100 \text{ k}\Omega$$

$$R_{EE} = \frac{1}{2} \times 100 \times 100 = 5 \text{ M}\Omega$$

$$|A_{cm}| = \left(\frac{5}{2 \times 5,000}\right) \times 0.1$$

$$= 5 \times 10^{-5} \text{ V/V}$$

$$CMRR = \frac{50}{5 \times 10^{-5}} = 10^{6}$$

or 120 dB

For  $R_C \ll r_o$ ,

# $R_{icm}$ Assignment Project 2. Link amad Help $V_{b,c2} = -2.5 \sin(\omega t)$ , mV

$$= \frac{\frac{50 \times 100}{1 + \frac{2 \times 100}{200}}}{\frac{1}{1 + \frac{2 \times 100}{200}}} = \frac{2.5 \text{ M}\Omega}{\frac{1}{1 + \frac{2 \times 100}{200}}} = \frac{v_{C1} \simeq V_{CC} - \left(\frac{I}{2}\right) R_C - g_m R_C \times 2.5 \times 10^{-3} \sin(\omega t)}{\frac{1}{1 + \frac{2 \times 100}{200}}} = \frac{1}{1 + \frac{2 \times 100}{200}} = \frac{1}{1 + \frac{2 \times$$

9.65 For the differential-pair transistors, we have

$$g_m = \frac{I/2}{V_T} = \frac{I \text{ mA}}{0.05 \text{ V}}$$

 $I_C \simeq 0.25 \text{ mA}$ 

$$g_m = \frac{0.25}{0.025} = 10 \text{ mA/V}$$

$$r_o = \frac{V_A}{I_C} = \frac{50}{0.25} = 200 \text{ k}\Omega$$

(a) 
$$A_d = g_m R_C = 10 \times 5 = 50 \text{ V/V}$$

where we have neglected the effect of  $r_o$  since  $r_o \gg R_C$ .

(b) If the bias current is realized using a simple current source,

$$R_{EE} = r_o|_{\text{current source}} = \frac{V_A}{I} = \frac{50}{0.5} = 100 \text{ k}\Omega$$

$$|A_{cm}| = \left(\frac{R_C}{2R_{FE}}\right) \left(\frac{\triangle R_C}{R_C}\right)$$

$$= \left(\frac{5}{2 \times 100}\right) \times 0.1$$

$$= 2.5 \times 10^{-3} \text{ V/V}$$

CMRR = 
$$\frac{|A_d|}{|A_{cm}|} = \frac{50}{2.5 \times 10^{-3}} = 2 \times 10^4$$

or 86 dB

Add WeChat<sup>Th</sup>powcoder  $v_{C1} = 5 - \frac{7}{2} \times 10 - \frac{7}{0.05} \times 10 \times 2.5 \times 10^{-3} \sin(\omega t)$ 

$$= 5 - 5I - 0.5I \sin(\omega t)$$

Similarly,

$$v_{C2} = 5 - 5I + 0.5I \sin(\omega t)$$

To ensure operation in the active mode at all times with  $v_{CB} = 0$  V, we use

$$v_{C1min} = 0.005$$

$$5 - 5.5I = 0.005$$

$$\Rightarrow I \simeq 0.9 \text{ mA}$$

With this value of bias current, we obtain

$$g_m = \frac{0.9}{0.05} = 18 \text{ mA/V}$$

$$A_d = g_m R_C = 18 \times 10 = 180 \text{ V/V}$$

At each collector there will be a sine wave of  $180 \times 2.5 = 450 \text{ mV} = 0.45 \text{ V}$  amplitude superimposed on the dc bias voltage of  $5 - 0.45 \times 10 = 0.5$  V. Between the two collectors there will be a sine wave with 0.9 V peak amplitude. The figure illustrates the waveforms obtained.



**9.67** 
$$\frac{v_{o1}}{v_{id}} = -100 \text{ V/V} \quad \frac{v_{o2}}{v_{id}} = +100 \text{ V/V}$$

$$\frac{v_{o1,2}}{v_{icm}} = -0.1 \text{ V/V}$$

$$R_{id} = 10 \text{ k}\Omega$$

$$I = 2 \text{ mA}$$

$$I_{E1} = I_{E2} = 1 \text{ mA}$$

$$r_{e1}=r_{e2}=25~\Omega$$

$$g_{m1} = g_{m2} = 40 \text{ mA/V}$$

$$r_{\pi 1} = r_{\pi 2} = \frac{\beta}{g_m} = \frac{100}{40} = 2.5 \text{ k}\Omega$$

Since  $R_{id} > r_{\pi}$ , we need emitter resistances, as shown in the figure.





$$r_e + R_e = \frac{10}{2 \times 101} \simeq 50 \ \Omega$$

$$R_e = 25 \Omega$$

$$\frac{v_{o1}}{v_{id}} = -\frac{\alpha R_C}{2(r_e + R_e)}$$

$$-100 = \frac{-\alpha R_C}{2(0.025 + 0.025)}$$

$$\Rightarrow R_C \simeq 10 \text{ k}\Omega$$

To allow for  $\pm 2$  V swing at each collector,

$$V_{CC} - \frac{I}{2}R_C - 2 \ge 0$$

assuming that  $V_{CM} = 0$  V. Thus,

$$V_{CC} = \frac{2}{2} \times 10 + 2 = 12 \text{ V}$$

We can use  $V_{CC} = 15 \text{ V}$  to allow for  $V_{ICM}$  as high as +3 V.

$$|A_{cm}|$$
 (to each collector)  $\simeq \frac{R_C}{2R_{EE}}$ 

For 
$$|A_{cm}| = 0.1$$
,

$$0.1 = \frac{10}{2R_{EE}}$$

$$\Rightarrow R_{EE} = 50 \text{ k}\Omega$$

This is the minimum value of  $R_o$  of the bias current source. If the current source is realized by a simple current mirror, we obtain

$$R_{EE} = r_o = \frac{V_A}{I}$$

Thus,

$$50 = \frac{V_A}{2}$$

$$\Rightarrow V_A = 100 \text{ V}$$

**9.69** If 
$$Q_1$$
 has twice the base-emitter junction area of  $Q_2$ , the bias current  $I$  will split  $\frac{2}{3}I$  in  $Q_1$ 

 $20\log\frac{2}{\Delta R_C/R_C} = 34 \text{ dB}$ 

 $\Rightarrow \frac{\triangle R_C}{R_c} = 0.04 = 4\%$ 

and  $\frac{1}{2}I$  in  $Q_2$ . This is because with  $B_1$  and  $B_2$ grounded the two transistors will have equal  $V_{BE}$ 's. Thus their currents must be related by the ratio of their scale currents  $I_S$ , which are proportional to the junction areas.



$$r_o = \frac{V_A}{I/2} = \frac{100}{1} = \frac{100}{1$$

h a common-mode input signal  $v_{icm}$  applied,

$$|A_{cm}| = \frac{R_C}{2R_{EE}}$$

$$|A_d| = \frac{1}{2} g_m R_C$$

$$CMRR_{s} = \frac{|A_{cm}|}{|A_{d}|} = g_{m}R_{EE}$$

If the output is taken differentially, then

$$|A_{cm}| = \left(\frac{R_C}{2R_{EE}}\right) \left(\frac{\triangle R_C}{R_C}\right)$$

$$|A_d| = g_m R_C$$

$$CMRR_{d} = 2g_{m}R_{EE} / \left(\frac{\Delta R_{C}}{R_{C}}\right)$$

Thus,

$$\frac{\text{CMRR}_{\text{d}}}{\text{CMRR}_{\text{s}}} = \frac{2}{\Delta R_C / R_C}$$

as shown in the figure, the current 
$$(v_{icm}/R_{EE})$$
 will split between  $Q_1$  and  $Q_2$  in the same ratio as that of their base-emitter junction areas, thus

$$i_{e1} = \frac{2}{3} \frac{v_{icm}}{R_{EE}}$$

$$i_{e2} = \frac{1}{3} \frac{v_{icm}}{R_{EE}}$$

$$v_{o1} = -i_{c1}R_C \simeq -i_{e1}R_C = -\frac{2}{3}\frac{R_C}{R_{EF}}v_{icm}$$

$$v_{o2} = -\frac{1}{3} \frac{R_C}{R_{EE}} v_{icm}$$

With the output taken differentially, we have

$$v_{o2} - v_{o1} = \frac{1}{3} \frac{R_C}{R_{EE}} v_{icm}$$

$$A_{cm} = \frac{1}{3} \frac{R_C}{R_{FF}} = \frac{1}{3} \times \frac{12}{500} = 0.008 \text{ V/V}$$

**9.70** 
$$g_m = \sqrt{2 k'_n(W/L)I_D}$$
  
=  $\sqrt{k'_n(W/L)I}$ 

$$A_d = g_m R_D$$

$$V_{OV} = \frac{2 I_D}{g_m} = \frac{I}{g_m}$$

$$V_{OS} = \left(\frac{V_{OV}}{2}\right) \left(\frac{\triangle R_D}{R_D}\right)$$

For  $I = 160 \,\mu\text{A}$ , we have

$$g_m = \sqrt{4 \times 0.16} = 0.8 \text{ mA/V}$$

$$A_d = 0.8 \times 10 = 8 \text{ V/V}$$

$$V_{OV} = \frac{0.16}{0.8} = 0.2 \text{ V}$$

$$V_{OS} = \frac{0.2}{2} \times 0.02 = 2 \text{ mV}$$

For  $I = 360 \mu A$ , we have

$$g_m = \sqrt{4 \times 0.36} = 1.2 \text{ mA/V}$$

$$A_d = 1.2 \times 10 = 12 \text{ V/V}$$

**9.72** The offset voltage due to  $\triangle V_t$  is

$$V_{OS} = \pm 5 \text{ mV}$$

The offset voltage due to  $\triangle R_D$  is

$$V_{OS} = \left(\frac{V_{OV}}{2}\right) \left(\frac{\triangle R_D}{R_D}\right) = \frac{0.3}{2} \times 0.02 = 3 \text{ mV}$$

The offset voltage due to  $\triangle(W/L)$  is

$$V_{OS} = \left(\frac{V_{OV}}{2}\right) \frac{\triangle(W/L)}{(W/L)} = \frac{0.3}{2} \times 0.02 = 3 \text{ mV}$$

The worst-case offset voltage will be when all three components add up,

$$V_{OS} = 5 + 3 + 3 = 11 \text{ mV}$$

The major contribution to the total is the variability of  $V_t$ .

To compensate for a total offset of 11 mV by appropriately varying  $R_D$ , we need to change  $R_D$  by  $\triangle R_D$  obtained from

11 mV = 
$$\left(\frac{V_{OV}}{2}\right) \times \frac{\triangle R_D}{R_D}$$

# vov A. Ssignment Projee € Exam 73 Help

$$V_{os} = \frac{0.3}{2} \times 0.02 = 3 \text{ mV}$$

or 7.33%

Thus by increasing the blase upont, both the gain V COG  $C_{VV}$  =  $C_{VV}$ 

# 9.71 (a) $g_m = \sqrt{2k} \frac{A_D}{A_D} = \sqrt{k_D} \frac{1}{R_D} = \sqrt{k_D} \frac{1}{R_$

$$V_{OV} = \sqrt{\frac{I/2}{\frac{1}{2}k_n}} = \sqrt{\frac{I}{k_n}}$$

$$V_{OS} = \left(\frac{V_{OV}}{2}\right) \left(\frac{\triangle R_D}{R_D}\right)$$

Thus,

$$V_{OS} = \frac{1}{2} \sqrt{I/k_n} \left( \frac{\Delta R_D}{R_D} \right) \tag{2}$$

(b) For each value of  $V_{OS}$  we use Eq. (2) to determine I and then Eq. (1) to determine  $A_d$ . The results are as follows:

| $V_{OS}$ (mV) | 1    | 2    | 3    | 4    | 5    |
|---------------|------|------|------|------|------|
| I (mA)        | 0.04 | 0.16 | 0.36 | 0.64 | 1.00 |
| $A_d$ (V/V)   | 4    | 8    | 12   | 16   | 20   |

We observe that by accepting a larger offset we are able to obtain a higher gain. Observe that the gain realized is proportional to the offset voltage one is willing to accept.

$$\frac{\triangle R_D}{R_D} = 0.04 \Rightarrow V_{OS} = \left(\frac{V_{OV}}{2}\right) \left(\frac{\triangle R_D}{R_D}\right)$$

$$= \frac{0.224}{2} \times 0.04 = 4.5 \text{ mV}$$

$$\frac{\triangle (W/L)}{(W/L)} = 0.04 \Rightarrow V_{OS} = \left(\frac{V_{OV}}{2}\right) \left(\frac{\triangle (W/L)}{(W/L)}\right)$$

$$= \frac{0.224}{2} \times 0.04 = 4.5 \text{ mV}$$

$$\triangle V_t = 5 \text{ mV} \Rightarrow V_{OS} = \triangle V_t = 5 \text{ mV}$$

Worst-case 
$$V_{OS} = 4.5 + 4.5 + 5 = 14 \text{ mV}$$

If the three components are independent,

$$V_{OS} = \sqrt{4.5^2 + 4.5^2 + 5^2} = 8.1 \text{ mV}$$

**9.74** 
$$V_{OS} = V_T \left( \frac{\triangle R_C}{R_C} \right)$$

$$= 25 \times 0.1 = 2.5 \text{ mV}$$

$$9.75 \ V_{OS} = V_T \left( \frac{\triangle I_S}{I_S} \right)$$

$$= 25 \times 0.1 = 2.5 \text{ mV}$$

**9.76** With both input terminals grounded, a mismatch  $\triangle R_C$  between the two collector resistors gives rise to an output voltage

$$V_O = \alpha \left(\frac{I}{2}\right) \triangle R_C \tag{1}$$

With a resistance  $R_E$  connected in the emitter of each transistor, the differential gain becomes

$$|A_d| = \frac{\alpha \times 2R_C}{2(r_e + R_E)} = \frac{\alpha R_C}{R_E + r_e}$$
 (2)

The input offset voltage  $V_{OS}$  is obtained by dividing  $V_O$  in (1) by  $|A_d|$  in (2),

$$V_{OS} = \frac{I}{2}(r_e + R_E) \left(\frac{\triangle R_C}{R_C}\right)$$

Since 
$$r_e = \frac{V_T}{I/2}$$
,

$$V_{OS} = (V_T + \frac{1}{2}IR_E)\left(\frac{\Delta R_C}{R_C}\right)$$

9.77

Thus,

$$V_{OS} = V_T(\alpha_1 - \alpha_2)$$

Substituting, we obtain

$$\alpha_1 = \frac{\beta_1}{\beta_1 + 1}$$

and

$$\alpha_2 = \frac{\beta_2}{\beta_2 + 1}$$

$$V_{OS} = V_T \left( \frac{\beta_1}{\beta_1 + 1} - \frac{\beta_2}{\beta_2 + 1} \right)$$

$$= V_T \frac{\beta_1 \beta_2 + \beta_1 - \beta_1 \beta_2 - \beta_2}{(\beta_1 + 1)(\beta_2 + 1)}$$

$$= V_T \frac{\beta_1 - \beta_2}{(\beta_1 + 1)(\beta_2 + 1)}$$

$$\simeq V_T \frac{\beta_1 - \beta_2}{\beta_1 \beta_2}$$

$$= V_T \left( \frac{1}{\beta_2} - \frac{1}{\beta_1} \right) \qquad \text{Q.E.D}$$

Assignment Project Lixam Help  $R_{C} = \sum_{C} \sum_{i=0}^{N_{C}} \sum_{C} \sum_{i=0}^{N_{C}} \sum_{C} \sum_{i=0}^{N_{C}} \sum_{C} \sum_{i=0}^{N_{C}} \sum_{C} \sum_{i=0}^{N_{C}} \sum_{C} \sum_{i=0}^{N_{C}} \sum_{C} \sum_{C} \sum_{i=0}^{N_{C}} \sum_{C} \sum_{C$ 

Add WeChat powcoder

The current I splits equally between the two emitters. However, the unequal  $\beta$ 's will mean unequal  $\alpha$ 's. Thus, the two collector currents will be unequal,

$$I_{C1} = \alpha_1 I/2$$

$$I_{C2} = \alpha_2 I/2$$

and the collector voltages will be unequal,

$$V_{C1} = V_{CC} - \alpha_1(I/2)R_C$$

$$V_{C2} = V_{CC} - \alpha_2(I/2)R_C$$

Thus a differential output voltage  $V_O$  develops:

$$V_0 = V_{C2} - V_{C1}$$

$$=\frac{1}{2}IR_C(\alpha_1-\alpha_2)$$

The input offset voltage  $V_{OS}$  can be obtained by dividing  $V_O$  by the differential gain  $A_d$ :

$$A_d = g_m R_C \simeq \frac{I/2}{V_T} R_C = \frac{IR_C}{2V_T}$$

For the BJT amplifier:

$$V_{OS} = V_T \left( \frac{\triangle R_C}{R_C} \right)$$

$$= 25 \times 0.04 = 1 \text{ mV}$$

If in the MOS amplifier the width of each device is increased by a factor of 4 while the bias current is kept constant,  $V_{OV}$  will be reduced by a factor of 2. Thus  $V_{OS}$  becomes

$$V_{OS} = 2 \text{ mV}$$

**9.79** Since the only difference between the two sides of the differential pair is the mismatch in  $V_A$ , we can write

$$I_{C1} = I_C \left( 1 + \frac{V_{CE1}}{V_{A1}} \right)$$

$$I_{C2} = I_C \left( 1 + \frac{V_{CE2}}{V_{A2}} \right)$$

$$I_{C1} + I_{C2} = \alpha I$$

$$I_C \left( 2 + \frac{V_{CE1}}{V_{A1}} + \frac{V_{CE2}}{V_{A2}} \right) = \alpha I$$

$$\Rightarrow I_C = \alpha I / \left( 2 + \frac{V_{CE1}}{V_{A1}} + \frac{V_{CE2}}{V_{A2}} \right)$$

$$I_{C1} = \frac{\alpha I}{2} \frac{1 + \frac{V_{CE1}}{V_{A1}}}{1 + \frac{V_{CE1}}{2V_{A1}} + \frac{V_{CE2}}{2V_{A2}}}$$

For 
$$\frac{V_{CE1}}{V_{A1}} \ll 1$$
 and  $\frac{V_{CE2}}{V_{A2}} \ll 1$  we have

$$I_{C1} \simeq \frac{\alpha I}{2} \left( 1 + \frac{1}{2} \frac{V_{CE1}}{V_{A1}} - \frac{1}{2} \frac{V_{CE2}}{V_{A2}} \right)$$

$$I_{C2} \simeq rac{lpha I}{2} \left( 1 + rac{1}{2} rac{V_{CE2}}{V_{A2}} - rac{1}{2} rac{V_{CE1}}{V_{A1}} 
ight)$$

The voltage  $V_O$  between the two collectors will be

$$V_O = V_{C2} - V_{C1}$$

$$= I_{C1}R_C - I_{C2}R_C$$

$$= \frac{\alpha I}{2}R_C \times \left(\frac{V_{CE1}}{V_{A1}} - \frac{V_{CE2}}{V_{A2}}\right)$$

Since we still have  $I_{C1} \simeq I_{C2} = \alpha \frac{I}{2}$ , the

Consider only the incremental currents involved.

Assume the mismatch  $\Delta R_S$  is split between the two base (source) resistances. The emitter currents will be different, as shown.

Equating the voltage drop from each grounded input to the common emitters, we have

$$I_{B1}\left(R_S + \frac{\Delta R_S}{2}\right) + \left(\frac{I}{2} - \frac{\Delta I}{2}\right)r_e$$

$$=I_{B2}\left(R_S-\frac{\Delta R_S}{2}\right)+\left(\frac{I}{2}+\frac{\Delta I}{2}\right)r_e$$

Subtracting out the  $\frac{I}{2}r_e$  terms, we have

$$I_{B1}\left(R_S + \frac{\Delta R_S}{2}\right) - \frac{\Delta I}{2}r_e$$

$$=I_{B2}\left(R_S-\frac{\Delta R_S}{2}\right)+\frac{\Delta I}{2}r_e$$

In terms of the emitter currents, this becomes

differential gain is still given by  $A_d = g_m R_c = \frac{1}{V_T} \frac{1}{2V_T} \frac{$ 

(1)

Dividing (1) by (2) give

$$A_{d} = g_{m}R_{C} = \frac{1}{V_{T}} = \frac{1}{2V_{T}}$$
Dividing (1) by (2) gives
$$V_{OS} = V_{T} \left( \frac{V_{CE1}}{V_{A1}} \right) + \frac{V_{CE1}}{V_{A2}} + \frac{V_{CE1}}{V_{A$$

As a first-order approximation, we can assume

 $V_{CE1} \simeq V_{CE2} = 10$  And  $V_{A2} = 20$  Chat 400,  $W_2 = 20$  and substitute  $V_{A1} = 10$  And  $V_{A2} = 20$  Chat 400,  $W_2 = 20$ 

$$V_{OS} = 25 \left( \frac{10}{100} - \frac{10}{200} \right)$$

$$= 25 \times 0.05 = 1.25 \text{ mV}$$

 $= -\frac{I\Delta R_S}{4(\beta+1)} + \frac{\Delta IR_S}{2(\beta+1)} + \frac{\Delta Ir_e}{2}$ 

Combining terms, we have

$$\frac{I\Delta R_S}{2(\beta+1)} = \frac{\Delta IR_S}{(\beta+1)} + \Delta Ir_e$$

$$\Delta I \left( \frac{R_S}{(\beta + 1)} + r_e \right) = \frac{I \Delta R_S}{2 (\beta + 1)}$$
 so that

$$\Delta I = \frac{I \Delta R_S}{2 (\beta + 1)} \cdot \frac{1}{\frac{R_S}{(\beta + 1)} + r_e}$$

$$\Delta V_C = \Delta I_C R_C$$
. If  $\frac{\beta}{\beta + 1} \approx 1$ , we have

$$\Delta V_C = \frac{I \Delta R_S R_C}{2 (\beta + 1)} \cdot \frac{1}{\frac{R_S}{(\beta + 1)} + r_e}$$

Now  $V_{OS}$  can be obtained by dividing  $\Delta V_C$  by  $A_d$ 

9.80

$$R_{S} + \frac{\Delta R_{S}}{2}$$

$$Q_{1}$$

$$Q_{2}$$

$$R_{S} - \frac{\Delta R_{S}}{2}$$

$$\frac{I}{2} - \frac{\Delta I}{2}$$

$$\frac{I}{2} - \frac{\Delta I}{2}$$

$$-V_{CD}$$

$$V_{OS} = \frac{\Delta V_C}{A_d} = \frac{\frac{I\Delta R_S R_C}{2\left(\beta+1\right)} \cdot \frac{1}{\frac{R_S}{\left(\beta+1\right)} + r_e}}{\frac{g_m R_C}{2\left(\beta+1\right)} \cdot \frac{1}{g_m \left[\frac{R_S}{\left(\beta+1\right)} + r_e\right]}}$$

$$V_{OS} = \frac{I\Delta R_S}{2} \cdot \frac{1}{g_m R_S + (\beta + 1) r_e g_m}$$

Since  $(\beta + 1)$   $r_e = r_{\pi}$  and  $r_{\pi}$   $g_m = \beta$ , we have

$$V_{OS} = \frac{\left(\frac{I}{2\beta}\right) \cdot \Delta R_S}{1 + \frac{g_m R_S}{\beta}} \qquad \text{Q.E.D.}$$

## **9.81** Refer to Fig. P9.81.

(a) 
$$R_{C1} = 1.04 \times 5 = 5.20 \text{ k}\Omega$$

$$R_{C2} = 0.96 \times 5 = 4.80 \text{ k}\Omega$$

# To equal essolages and entire Project Exam Help we adjust the potentiometer so that

$$R_{C1} + x \times 1 \text{ k}\Omega = R_{C2} + (1 - x) \times 1 \text{ k}\Omega$$
  
 $5.2 + x = 4.8 + 1$  - https://powcoder.com  
 $\Rightarrow x = 0.3 \text{ k}\Omega$ 

(b) If the area of  $Q_1$  and hence  $I_{S1}$  is 5% larger than nominal, then we have  $Q_1$  where  $Q_2$  that

$$I_{S1}=1.05I_S$$

and the area of  $Q_2$  and hence  $I_{S2}$  is 5% smaller than nominal,

$$I_{S2} = 0.95I_S$$

Thus,

$$I_{E1} = 0.5 \times 1.05 = 0.525 \text{ mA}$$

$$I_{E2} = 0.5 \times 0.95 = 0.475 \text{ mA}$$

Assuming  $\alpha \simeq 1$ , we obtain

$$I_{C1} = 0.525 \text{ mA}$$
  $I_{C2} = 0.475 \text{ mA}$ 

To reduce the resulting offset to zero, we adjust the potentiometer so that

$$V_{C1} = V_{C2}$$
  
 $\Rightarrow V_{CC} - (R_{C1} + x)I_{C1} = V_{CC} - (R_{C2} + 1 - x)I_{C2}$ 

$$I_{C1}(R_{C1} + x) = I_{C2}(R_{C2} + 1 - x)$$

$$0.525(5 + x) = 0.475(5 + 1 - x)$$

$$\Rightarrow x = 0.225$$

**9.82** 
$$I_{B\text{max}} = \frac{400}{2 \times 81} \simeq 2.5 \, \mu\text{A}$$

$$I_{Bmin} = \frac{400}{2 \times 201} = 1 \ \mu A$$

$$I_{OSmax} = \frac{200}{81} - \frac{200}{201} \simeq 1.5 \ \mu A$$

### 9.83



From Fig. (a) we see that the transistor with twice the area  $(Q_1)$  will carry twice the current in the other transistor  $(Q_2)$ . Thus

(b)

$$I_{E1} = \frac{2I}{3}, \qquad I_{E2} = \frac{I}{3}$$

$$I_{C1} = \frac{\alpha 2I}{3}, \qquad I_{C2} = \frac{\alpha I}{2}$$

Thus

 $v_{id}$ 

$$V_{C1} = V_{CC} - \frac{\alpha 2I}{3}R_C$$

$$V_{C2} = V_{CC} - \frac{\alpha I}{3} R_C$$

and the dc offset voltage at the output will be

$$V_O = V_{C2} - V_{C1}$$

$$V_O = \frac{1}{3} \alpha I R_C$$

To reduce this output voltage to zero, we apply a dc input voltage  $v_{id}$  in the direction shown in Fig. (b). The voltage  $v_{id}$  is required to produce  $v_{od}$  in the direction shown which is opposite in direction to  $V_O$  and of course  $|v_{od}| = |V_O|$ , thus

$$A_d v_{id} = \frac{1}{3} \alpha I R_C \tag{1}$$

The gain  $A_d$  is found as follows:

$$A_d = \frac{\alpha \times \text{Total resistance in collectors}}{\text{Total resistance in emitters}}$$

$$\alpha \times 2R_C$$

$$=\frac{\alpha\times 2R_C}{r_{e1}+r_{e2}}$$

$$r_{e1} = \frac{V_T}{I_{E1}} = \frac{V_T}{2I/3} = \frac{3V_T}{2I} = \frac{1.5V_T}{I}$$
 $r_{e2} = \frac{V_T}{I_{e3}} = \frac{V_T}{I/3} = \frac{3V_T}{I}$ 

$$A_d = \frac{2\alpha R_C}{4.5 \ V_T/I} = \frac{2\alpha I R_C}{4.5 \ V_T} \tag{2}$$

adjustment mechanism raises one  $R_C$  and lowers the other, then each need to be adjusted by only  $(1.6 \text{ k}\Omega/2) = 0.8 \text{ k}\Omega.$ 

If a potentiometer is used (as in Fig. P9.81), the total resistance of the potentiometer must be at least 1.6 k $\Omega$ . If specified to a single digit, we use  $2 k\Omega$ .

**9.85** 
$$G_m = 2 \text{ mA/V}$$

With 
$$R_L = \infty$$
,

$$A_d = G_m R_o$$

and

$$v_o = G_m R_o v_{id}$$

With 
$$R_L = 20 \text{ k}\Omega$$
,

$$v_o = G_m R_o v_{id} \frac{R_L}{R_L + R_o}$$

$$= G_m R_o \frac{20}{20 + R_o} v_{id} = \frac{1}{2} G_m R_o v_{id}$$

## Substituting in Eq. 2) Figure 1. $v_{id} = 0.75 V_T = 18.75 \text{ mV}$ Project Exam Help

Now, using large signal analysis:

$$A_d$$
 (with  $R_L = \infty$ ) =  $G_m R_o = 2 \times 20 = 40$  V/V

$$I_{C1} = I_{S1}e^{(V_{B1} - V_E)/V_T}$$
 (3)

**9.86** 
$$G_m = g_{m1,2} = \frac{2(I/2)}{V_{OV}} = \frac{I}{V_{OV}} = \frac{I}{0.25}$$

## where $I_{S1} = 2 I_{S2}$ . Add We( Chat powcoder

 $I_{C2} = I_{S2}e^{(V_{B2}-V_E)/V_T}$ 

$$I_{S1}e^{(V_{B1}-V_E)/V_T} = I_{S2}e^{(V_{B2}-V_E)/V_T}$$

$$e^{(V_{B2}-V_{B1})/V_T}=2$$

$$V_{B2} - V_{B1} = V_T \ln 2$$

Thus.

$$v_{id} = 17.3 \text{ mV}$$

which is reasonably close to the approximate value obtained using small-signal analysis.

$$r_{o2} = r_{o4} = \frac{|V_A|}{I/2} = \frac{|V_A'|L}{I/2}$$
$$= \frac{2 \times 5 \times 0.5}{I} = \frac{5}{I}$$
$$R_o = \frac{1}{2} \times \frac{5}{I} = \frac{2.5}{I}$$

$$A_d = G_m R_o = \frac{I}{0.25} \times \frac{2.5}{I} = 10 \text{ V/V}$$

**9.84** A 2-mV input offset voltage corresponds to a difference 
$$\triangle R_C$$
 between the two collector resistances.

$$2 = V_T \frac{\triangle R_C}{R_C}$$

$$=25\times\frac{\triangle R_C}{20}$$

$$\Rightarrow \triangle R_C = 1.6 \text{ k}\Omega$$

Thus a 2-mV offset can be nulled out by adjusting one of the collector resistances by 1.6 k $\Omega$ . If the

**9.87** 
$$\frac{I}{2} = \frac{1}{2} \mu_n C_{ox} \left( \frac{W}{L} \right) V_{OV}^2$$

$$0.1 = \frac{1}{2} \times 0.2 \times 50 \times V_{OV}^2$$

$$\Rightarrow V_{OV} = 0.14 \text{ V}$$

$$g_{m1,2} = \frac{2 \times (I/2)}{V_{OV}} = \frac{2 \times 0.1}{0.14} = 1.4 \text{ mA/V}$$

$$r_{o2} = r_{o4} = \frac{|V_A|}{I/2} = \frac{|V'_A| \times L}{I/2} = \frac{5 \times 0.5}{0.1}$$

$$A_d = g_{m1,2}(r_{o2} \parallel r_{o4})$$
  
= 1.4 × (25 || 25)  
= 17.5 V/V

**9.88** 
$$A_d = g_{m1,2}(r_{o2} \parallel r_{o4})$$

$$g_{m1,2} = \sqrt{2k'_n \left(\frac{W}{L}\right) I_D}$$

$$=\sqrt{4I}=2\sqrt{I}$$

$$r_{o2} = r_{o4} = \frac{|V_A|}{I/2} = \frac{2|V_A|}{I} = \frac{2 \times 5}{I} = \frac{10}{I}$$

$$A_d = 2\sqrt{I} \times \frac{1}{2} \times \frac{10}{I} = \frac{10}{\sqrt{I}}$$

$$20 = \frac{10}{\sqrt{I}}$$

$$\Rightarrow I = 0.25 \text{ mA}$$

For  $Q_5$ ,  $Q_6$ ,  $Q_7$ , and  $Q_8$ :

$$I_D = 0.2 \text{ mA}$$

$$0.2 = \frac{1}{2} \times 5 \times V_{OV}^2$$

$$\Rightarrow V_{OV} = 0.28 \text{ V}$$

$$V_{GS} = 0.5 + 0.28 = 0.78 \text{ V}$$

From the figure we see that for each transistor to operate at  $V_{DS}$  at least equal to  $V_{GS}$ , the total power supply is given by

$$V_{DD} + V_{SS} = V_{DS4} + V_{DS2} + V_{DS7} + V_{DS6}$$

$$=V_{GS4}+V_{GS2}+V_{GS7}+V_{GS6}$$

$$= 0.7 + 0.7 + 0.78 + 0.78$$

$$= 2.96 \simeq 3.0 \text{ V}$$

9.90

 $Q_7$   $Q_8$ 

9.89

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Q1

Q2

PROSE

Add WeChat powcoder

Q2

PROSE

P

(a) See figure.(b) A = a ...

(b) 
$$A_d = g_{m1,2}(R_{o4} \parallel R_{o6})$$

$$g_{m1,2} = \frac{2(I/2)}{V_{OV}} = \frac{I}{V_{OV}}$$

$$R_{o6} = g_{m6} r_{o6} r_{o8}$$

Since all transistors are operated at a bias current (I/2) and have the same overdrive voltage  $|V_{OV}|$  and the same Early voltage,  $|V_A|$ , all have the same  $g_m = I/|V_{OV}|$  and the same

$$r_o = \frac{|V_A|}{I/2} = 2|V_A|/I$$
. Thus,

$$R_{o6} = g_m r_o^2$$

$$R_{o4} = g_{m4}r_{o4}r_{o2} = g_m r_o^2$$

$$A_d = g_m(g_m r_o^2 \parallel g_m r_o^2)$$

$$=\frac{1}{2}(g_m r_o)^2$$

 $I = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) V_{OV}^2$   $0.1 = \frac{1}{2} \times 5 \times V_{OV}^2$   $\Rightarrow V_{OV} = 0.2 \text{ V}$   $V_{GS} = V_t + |V_{OV}|$  = 0.5 + 0.2 = 0.7 V

For  $Q_1$ ,  $Q_2$ ,  $Q_3$  and  $Q_4$ :

This figure belongs to Problem 9.91.



$$g_{m}r_{o} = \frac{I}{|V_{OV}|} \times \frac{2|V_{A}|}{I} = \frac{2|V_{A}|}{|V_{OV}|}$$
9.92  $G_{m} = g_{m1,2} = \frac{2(I/2)}{V_{OV1,2}} = \frac{0.2}{0.2} = 1 \text{ mA/V}$ 
 $A_{d} = 2V_{OV} + 2$ 

**9.91** The currents  $i_1$  to  $i_{13}$  are shown on the circuit diagram. Observe that  $i_{11} = i_7 = i_7$  (the current that enters a transistorie (ii). It he one expectation of  $Q_3$  and  $Q_4$  is indeed functioning properly as the drain currents of  $Q_3$  and  $Q_4$  are equal  $(i_{12} = i_2 = \frac{1}{4}g_m v_{id})$ . However, the currents in their  $r_o$ 's are far from being equal!

There are some inconsistencies that result from the approximations made to obtain the results shown in Fig. P9.91, namely,  $g_m r_o \gg 1$ . Note for instance that although we find the current in  $r_o$  of  $Q_2$  to be  $\frac{1}{2}g_m v_{id}$ , the voltages at the two ends of  $r_o$  are  $\frac{1}{2}(g_m r_o)v_{id}$  and  $v_{id}/4$ ; thus the current must be  $v_{id}\left(\frac{1}{2}g_m r_o - \frac{1}{4}\right) / r_o$ , which is approximately  $\frac{1}{2}g_m v_{id}$ .

The purpose of this problem is to show the huge imbalance that exists in this circuit. In fact,  $Q_1$  has  $|v_{gs}| = \frac{1}{4}v_{id}$  while  $Q_2$  has  $|v_{gs}| = \frac{3}{4}v_{id}$ . This imbalance results from the fact that the current mirror is *not* a balanced load. Nevertheless, we know that this circuit provides a reasonably high common-mode rejection.

$$A_d = G_m R_o = 1 \times 75 = 75 \text{ V/V}$$

The air vector of 2 with  $R_c = R_o = 75 \text{ k}\Omega$ .

9.93



(a) Let

$$\left(\frac{W}{L}\right)_{1} = \left(\frac{W}{L}\right)_{A} + \frac{1}{2} \triangle \left(\frac{W}{L}\right)_{A}$$
$$\left(\frac{W}{L}\right)_{2} = \left(\frac{W}{L}\right)_{A} - \frac{1}{2} \triangle \left(\frac{W}{L}\right)_{A}$$

 $Q_1$  and  $Q_2$  have equal values of  $V_{GS}$  and thus of  $V_{OV}$ , thus

$$I_{D1} = \frac{1}{2} k'_n \left[ \left( \frac{W}{L} \right)_A + \frac{1}{2} \Delta \left( \frac{W}{L} \right)_A \right] V_{OV}^2$$

$$=\frac{1}{2}\;k_n'\left(\frac{W}{L}\right)_{\!A}\left[1+\frac{1}{2}\;\frac{\triangle(W/L)_A}{(W/L)_A}\right]\!V_{OV}^2$$

Since, in the ideal case

$$I_{D1} = \frac{I}{2} = \frac{1}{2} k'_n \left(\frac{W}{L}\right)_A V_{OV}^2$$

$$I_{D1} = \frac{I}{2} \left[ 1 + \frac{1}{2} \frac{\triangle (W/L)_A}{(W/L)_A} \right]$$

Similarly, we can show that

At the output node, we have

$$I_O = I_{D4} - I_{D2}$$

$$= I_{D3} \left[ 1 + \frac{\triangle (W/L)_M}{(W/L)_M} \right] - I_{D2}$$

$$=I_{D1}\left[1+\frac{\triangle(W/L)_{M}}{(W/L)_{M}}\right]-I_{D2}$$

$$=\frac{I}{2}\,\frac{\triangle(W/L)_M}{(W/L)_M}$$

and the corresponding  $V_{OS}$  will be

$$V_{OS} = \frac{I_O}{G_{m}} = \frac{I_O}{I/V_{OV}}$$

$$= \left(\frac{V_{OV}}{2}\right) \frac{\triangle (W/L)_M}{(W/L)_M} \qquad \text{Q.E.D.}$$

(c) 
$$V_{OS}|_{Q_1,Q_2 \text{ mismatch}} = \left(\frac{0.2}{2}\right) \times 0.02 = 2 \text{ mV}$$

$$V_{OS}|_{Q_3,Q_4 \text{ mismatch}} = \left(\frac{0.2}{2}\right) \times 0.02 = 2 \text{ mV}$$

## ID2 = A1s signment Project Exam Help

The current mirror causes

$$I_{D4} = I_{D3} = I_{D1}$$

https://powcoder.com

$$I_O = I_{D4} - I_{D2}$$

$$g_{m1,2} = \frac{I_{C1,2}}{V_T} = \frac{0.25 \text{ mA}}{0.025 \text{ V}} = 10 \text{ mA/V}$$

**9.94**  $I_{E1} = I_{E2} = 0.25 \text{ mA}$ 

$$= I_{D1} - I_{D2}$$

$$= \frac{I}{2} \frac{\Delta(W/L)_A}{(W/L)_A}$$

## Add WeChat powender

The input offset voltage is

$$V_{OS} = \frac{I_O}{G_m}$$

where

$$G_m = g_{m1,2} = \frac{2(I/2)}{V_{OV}} = \frac{I}{V_{OV}}$$

Thus

$$V_{OS} = (V_{OV}/2) \frac{\triangle (W/L)_A}{(W/L)_A}$$
 Q.E.D.

(b) 
$$I_{D1} = I_{D2} = \frac{I}{2}$$

$$I_{D3}=I_{D1}$$

If the (W/L) ratios of the mirror transistors have a mismatch  $\triangle(WL)_M$ , the current transfer ratio of the mirror will have an error of  $[\triangle(W/L)_M/(W/L)_M]$ . Thus

$$I_{D4} = I_{D3} \left[ 1 + \frac{\triangle (W/L)_M}{(W/L)_M} \right]$$

$$R_{id} = 2 r_{\pi} = 2 \frac{\beta}{g_m} = 2 \times \frac{100}{10} = 20 \text{ k}\Omega$$

$$R_o = r_{o2} \parallel r_{o4} = 40 \parallel 40 = 20 \text{ k}\Omega$$

$$G_m = g_{m1.2} = 10 \text{ mA/V}$$

$$A_d = G_m R_o = 10 \times 20 = 200 \text{ V/V}$$

If 
$$R_L = R_{id} = 20 \text{ k}\Omega$$
, then

$$G_v = 200 \times \frac{R_L}{R_L + R_o}$$

$$= 200 \times \frac{20}{20 + 20} = 100 \text{ V/V}$$

**9.95** Using Eq. (9.145), we obtain

$$V_{OS} = -\frac{2V_T}{\beta_P}$$

$$-2 = -\frac{2 \times 25}{\beta_n}$$

$$\Rightarrow \beta_p = 25$$

9.97





# ment Project Example 1

The figure shows a BJT differential amplifier loaded in a base-current ton Sated current mirror. To determine the systematic input offset voltage resulting from the error in the current-transfer ratio of the mirror, we ground the two input terminals and determine the current  $\triangle i$  as follows:

the systematic input offset voltage resulting from the error in the current-transfer ratio of the mirror, we ground the two input terminals and determine

$$\Delta i = I_{C2} - I_{C4}$$

$$= \alpha \frac{I}{2} - \alpha \frac{I}{2} \frac{1}{1 + (2/\beta_p^2)}$$

$$\simeq \alpha \frac{I}{2} \frac{2}{\beta_p^2} = \frac{\alpha I}{\beta_p^2}$$

$$\simeq \alpha \frac{I}{2} \frac{2}{\beta_p^2} = \frac{\alpha I}{\beta_p^2}$$

$$=\alpha\frac{I}{2}\left[1-\frac{1}{1+(2/\beta_p^2)}\right]$$
 Dividing  $\Delta i$  by  $G_m=g_{m1,2}=\frac{\alpha I/2}{V_T}$  provides the input offset voltage  $V_{OS}$ :

$$\simeq -\alpha \frac{I}{2} \frac{2}{\beta_p^2} = -\alpha \frac{I}{\beta_p^2}$$
  $V_{OS} = -$ 

Dividing 
$$\triangle i$$
 by  $G_m = g_{m1,2} = \frac{\alpha I}{2V_T}$  gives

$$V_{OS} = -\frac{2V_T}{\beta_p^2}$$

 $\triangle i = I_{C2} - I_{C4}$ 

For 
$$\beta_p = 50$$
,

$$V_{OS} = -\frac{2 \times 25}{50^2} = -20 \,\mu\text{V}$$

$$V_{OS} = -\frac{2V_T}{\beta_p^2}$$

For 
$$\beta_p = 50$$
,

$$V_{OS} = -\frac{2 \times 25}{50^2} = -20 \,\mu\text{V}$$

The figure shows a BJT differential amplifier

paled with Wisser Current mirror. To determine

9.98 Refer to Fig. P9.98.

$$A_d = G_m R_o$$

where

$$G_m = g_{m1,2} \simeq \frac{I/2}{V_T}$$

and

$$R_o = R_{o4} \parallel R_{o7}$$

Here  $R_{o4}$  is the output resistance of the cascode amplifier (looking into the collector of  $Q_4$ ), thus

$$R_{o4} = g_{m4}r_{o4}(r_{o2} \parallel r_{\pi 4})$$

Usually  $r_{\pi 4} \ll r_{o2}$ ,

$$R_{o4} \simeq g_{m4} r_{\pi 4} r_{o4} = \beta_4 r_{o4}$$

The resistance  $R_{o7}$  is the output resistance of the Wilson mirror and is given by

$$R_{o7} = \frac{1}{2}\beta_7 r_{o7}$$

Thus

$$R_o = (\beta_4 r_{o4}) \parallel \left(\frac{1}{2}\beta_7 r_{o7}\right)$$

Since all  $\beta$  and  $r_o$  are equal, we obtain

$$V_{C1,2} = V_{BIAS} - V_{BE3,4}$$
  
= 1.4 - 0.7 = +0.7 V

The upper limit on  $V_{CM}$  is 0.4 V above  $V_{C1,2}$ :

$$V_{CM \, \text{max}} = 0.7 + 0.4 = +1.1 \, \text{V}$$

#### 9.100



## Ro = Assignment Project Exam Help

$$=\frac{1}{3}\beta r_o$$

and

## https://powcoder.com

$$A_d = \frac{1}{3}\beta g_m r_o$$

Q.E.D.

For 
$$\beta = 100$$
 and  $V_A = 20$  V, we have
$$g_m r_o = \frac{I_C}{V_T} \frac{V_A}{I_C} = \frac{V_A}{V_T} \underbrace{\frac{1}{1}}_{0.025} = 800$$

$$Solve Chat_{I_{C1}} \underbrace{\frac{I_{E1}}{2}}_{I_{C2}} = \underbrace{\frac{I}{2}}_{\beta + 1} \underbrace{\frac{I}{2}}_{2}$$

$$A_d = \frac{1}{3} \times 100 \times 800 = 2.67 \times 10^4 \text{ V/V}$$

**9.99** Refer to Fig. P9.98.

(a) 
$$V_{B7} = +5 - V_{EB6} - V_{EB7} = 5 - 0.7 - 0.7$$
  
= +3.6 V

$$v_{Omax} = V_{B7} + 0.4 = +4 \text{ V}$$

(b) The dc bias voltage should be

$$V_O = v_{Omax} - 1.5$$
  
= 4 - 1.5 = +2.5 V

(c) For  $v_O$  to swing negatively (i.e., below the dc bias value of 2.5 V) by 1.5 V, that is, to +1 V with  $Q_4$  remaining in saturation,  $V_{\rm BIAS}$  should be

$$V_{\rm BIAS} = v_{O \rm min} + 0.4$$

$$= 1.4 \text{ V}$$

(d) With  $V_{\rm BIAS} = 1.4$  V, the bias voltage at the collectors of  $Q_1$  and  $Q_2$  is

$$I_{E4} = I_{C2} = \frac{\beta}{\beta + 1} \frac{I}{2}$$

$$I_{B4} = \frac{I_{E4}}{\beta + 1} = \frac{1}{\beta + 1} \frac{\beta}{\beta + 1} \frac{I}{2}$$

$$I_{E3} = I_{C1} + I_{B4}$$

$$= \frac{\beta}{\beta+1} \frac{I}{2} + \frac{1}{\beta+1} \frac{\beta}{\beta+1} \frac{I}{2}$$

$$= \frac{\beta}{\beta + 1} \frac{I}{2} \left( 1 + \frac{1}{\beta + 1} \right)$$

$$I_{B3} = \frac{I_{E3}}{\beta + 1} = \frac{\beta}{(\beta + 1)^2} \left( 1 + \frac{1}{\beta + 1} \right) \frac{I}{2}$$

Since  $I_{B3}$  is the input current to the  $Q_7 - Q_8$  mirror and  $I_{C8}$  is its output current, we have

$$\frac{I_{C8}}{I_{B3}} = \frac{1}{1 + \frac{2}{\beta}} = \frac{\beta}{\beta + 2}$$

Thus.

$$I_{C8} = \frac{\beta^2}{(\beta+1)^2(\beta+2)} \left(1 + \frac{1}{\beta+1}\right) \frac{I}{2}$$

At the input node, we have

$$\begin{split} I_{B} &= I_{B1} - I_{C8} \\ &= \frac{I/2}{\beta + 1} - \frac{\beta^{2}}{(\beta + 1)^{2}(\beta + 2)} \left(1 + \frac{1}{\beta + 1}\right) \frac{I}{2} \\ I_{B} &= \frac{I/2}{\beta + 1} \left[1 - \frac{\beta^{2}}{(\beta + 1)(\beta + 2)} \left(1 + \frac{1}{\beta + 1}\right)\right] \\ &= \frac{I/2}{\beta + 1} \left[1 - \frac{\beta^{2}}{(\beta + 1)(\beta + 2)} \frac{\beta + 2}{\beta + 1}\right] \\ &= \frac{I/2}{\beta + 1} \frac{(\beta + 1)^{2} - \beta^{2}}{(\beta + 1)^{2}} \\ &= \frac{I/2}{\beta + 1} \frac{2\beta + 1}{(\beta + 1)^{2}} \\ &\simeq \frac{I/2}{\beta + 1} \frac{2\beta}{\beta^{2}} \\ &= \frac{I/2}{\beta + 1} / \left(\frac{\beta}{2}\right) \end{split}$$

Thus, including the current mirror  $Q_7 - Q_8$  reduces the input bias current by a factor equal to  $(\beta/2)$  substantial decrease  $P_1$ 

 $i_{e3} = i_{c1} - i_{b4} = \frac{\beta}{\beta + 1} \frac{v_{id}}{2r_e} - \frac{\beta}{(\beta + 1)^2} \frac{v_{id}}{2r_e}$   $= \frac{\beta}{\beta + 1} \frac{v_{id}}{2r_e} \left( 1 - \frac{1}{\beta + 1} \right)$   $= \left( \frac{\beta}{\beta + 1} \right)^2 \frac{v_{id}}{2r_e}$   $i_{b3} = \frac{i_{e3}}{\beta + 1} = \frac{\beta^2}{(\beta + 1)^3} \frac{v_{id}}{2r_e}$   $i_{c8} = i_{b3} \frac{1}{1 + \frac{2}{\beta}} = i_{b3} \frac{\beta}{\beta + 2}$   $= \frac{\beta^3}{(\beta + 1)^3} \frac{1}{\beta + 2} \frac{v_{id}}{2r_e}$ 

At the input node, we have

$$i_{i} = i_{b1} - i_{c8}$$

$$= \frac{v_{id}/2r_{e}}{\beta + 1} - \frac{\beta^{3}}{(\beta + 1)^{3}} \frac{1}{\beta + 2} \frac{v_{id}}{2r_{e}}$$

$$= \underbrace{\frac{v_{id}}{2(\beta + 1)r_{e}}}_{r_{e}} \begin{bmatrix} 1 - \frac{\beta^{3}}{(\beta + 1)^{3}} \end{bmatrix} \underbrace{\frac{1}{\beta + 2}}_{r_{e}} \underbrace{\frac{1}{\beta + 1}}_{r_{e}} \underbrace{\frac{1$$



Thus the input current is reduced by a factor  $(\beta/3)$ , which results in  $R_{id}$  increasing by a factor  $(\beta/3)$ .

The analysis follows the same process used above, except that here we deal with signal quantities.

(b)

$$i_e = \frac{v_{id}}{2r_e}$$
where  $r_e = r_{e1} = r_{e2}$ 
 $i_{c1} = i_{c2} = \frac{\beta}{\beta + 1} \frac{v_{id}}{2r_e}$ 
 $i_{e4} = i_{c2} = \frac{\beta}{\beta + 1} \frac{v_{id}}{2r_e}$ 

$$i_{b4} = \frac{i_{e4}}{\beta + 1} = \frac{\beta}{(\beta + 1)^2} \frac{v_{id}}{2r_a}$$

**9.101** To maximize the positive output voltage swing, we select  $V_{\rm BIAS}$  as large as possible while maintaining the *pnp* current sources in saturation. For the latter to happen, we need a minimum of 0.3 V across each current source. Thus the maximum allowable voltage at the emitters of  $Q_3$  and  $Q_4$  is  $V_{CC} - 0.3 = 5 - 0.3 = +4.7$  V. Then, the maximum allowable value of  $V_{\rm BIAS} = 4.7 - 0.7 = +4$  V. To keep  $Q_4$  in saturation,

$$v_{Omax} = V_{BIAS} + 0.4 = 4.4 \text{ V}$$

If the dc voltage at the output is 0 V, then the maximum positive voltage swing is 4.4 V. In the negative direction,

$$v_{O\min} = -V_{EE} + V_{BE7} + V_{BE5} - 0.4$$

$$= -5 + 0.7 + 0.7 - 0.4$$
$$= -4 \text{ V}$$

Thus,

$$-4 \text{ V} \le v_O \le +4.4 \text{ V}$$

$$G_m = g_{m1,2} \simeq \frac{0.25 \text{ mA}}{0.025 \text{ V}} = 10 \text{ mA/V}$$

$$R_{o4} = \beta_4 r_{o4} = 50 \times \frac{|V_A|}{I/2}$$

$$= 50 \times \frac{100 \text{ V}}{0.25 \text{ mA}} = 20 \text{ M}\Omega$$

$$R_{o5} = \frac{1}{2}\beta_5 r_{o5} = \frac{1}{2} \times 100 \times \frac{100}{0.25}$$

$$R_o = R_{o4} \parallel R_{o5} = 20 \text{ M}\Omega \parallel 20 \text{ M}\Omega = 10 \text{ M}\Omega$$

$$A_d = G_m R_o = 10 \times 10,000 = 10^5 \text{ V/V}$$

 $A_d = G_m R_o = 10 \times 10,000 = 10^5 \text{ V/V}$ 

$$\Rightarrow \left(\frac{W}{L}\right)_3 = \left(\frac{W}{L}\right)_4 = 50$$

(b) 
$$G_m = g_{m1,2} = \frac{2(I/2)}{V_{OV}} = \frac{I}{V_{OV}} = \frac{0.2}{0.2} = \frac{0.2}{0.2}$$

$$A_d = G_m R_o$$

$$50 = 1 \times R_o$$

$$\Rightarrow R_a = 50 \text{ k}\Omega$$

$$R_o = r_{o2} \parallel r_{o4}$$

and  $r_{o2} = r_{o4}$  ( $Q_2$  and  $Q_4$  have the same  $I_D = \frac{I}{2}$ and the same  $V_A$ ). Thus

$$r_{o2} = r_{o4} = 100 \text{ k}\Omega = \frac{|V_A|}{I/2}$$

$$|V_A| = \frac{I}{2} \times 100 \text{ k}\Omega = 10 \text{ V}$$

$$10 = |V_A'|L = 20 L$$

 $\Rightarrow L = 0.5 \,\mu\text{m}$ 

**9.102** The overdrive voltage,  $|V_{OV}|$ , at which  $Q_1$ and  $Q_2$  are operating is found from

## 1/2 = Assignment Project Exam Help

$$0.1 = \frac{1}{2} \times 6.4 \times |V_{QV}|^2$$

$$v_{O\text{max}} = V_{DD} - |V_{OV}| = 1 - 0.2 = 0.8 \text{ V}$$

# $v_{Omax} = V_{DD} - |V_{OV}| = 1 - 0.2 = 0.8 \text{ V}$ $v_{Omax} = V_{DD} - |V_{OV}| = 1 - 0.2 = 0.8 \text{ V}$ $v_{Omax} = V_{DD} - |V_{OV}| = 1 - 0.2 = 0.8 \text{ V}$

$$G_m = g_{m1,2} = \frac{2(I/2)}{|V_{OV}|}$$

$$-0.5 \text{ V} \le v_O \le 0.8 \text{ V}$$

$$= \frac{0.2}{0.18} = 1.13 \text{ mA/Add WeChat}_{Th}^{(d)} \frac{R_{SS}}{R_{SS}} = \frac{|V_A|}{0.2} = \frac{10}{0.2} = 50 \text{ k}\Omega$$

$$= \frac{0.2}{0.18} = 1.13 \text{ mA/Add WeChat}_{Th}^{(d)} \frac{R_{SS}}{R_{SS}} = \frac{|V_A|}{0.2} = \frac{10}{0.2} = 50 \text{ k}\Omega$$

$$r_{o2} = \frac{|V_{Ap}|}{L/2} = \frac{10}{0.1} = 100 \text{ k}\Omega$$

$$r_{o4} = \frac{|V_{Anpn}|}{I/2} = \frac{30}{0.1} = 300 \text{ k}\Omega$$

$$R_o = r_{o2} \parallel r_{o4} = 100 \text{ k}\Omega \parallel 300 \text{ k}\Omega = 75 \text{ k}\Omega$$

$$A_d = G_m R_o = 1.13 \times 75 = 85 \text{ V/V}$$

$$CMRR = (g_m r_o)(g_m R_{SS})$$

$$= (1 \times 100)(1 \times 50)$$

$$= 5000 \text{ or } 74 \text{ dB}$$

#### **9.104** The CMRR is given by Eq. (9.158):

CMRR = 
$$[g_{m1,2}(r_{o2} \parallel r_{o4})] [2 g_{m3}R_{SS}]$$

(a) Current source is implemented with a simple current mirror.

$$R_{SS} = r_o|_{Q_S} = \frac{|V_A|}{I}$$

$$g_{m1,2} = g_{m3} = \frac{2(I/2)}{V_{OV}} = \frac{I}{V_{OV}}$$

$$r_{o2} = r_{o4} = \frac{|V_A|}{I/2} = \frac{2|V_A|}{I}$$

$$CMRR = \frac{I}{V_{OV}} \times \frac{1}{2} \times \frac{2|V_A|}{I} \times 2 \times \frac{I}{V_{OV}} \times \frac{|V_A|}{I}$$

$$= 2\left(\frac{V_A}{V_{OV}}\right)^2 \qquad \text{Q.E.D.}$$

**9.103** (a) For  $O_1$  and  $O_2$ .

$$\frac{I}{2} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_{1,2} V_{OV}^2$$

$$0.1 = \frac{1}{2} \times 0.4 \times \left(\frac{W}{L}\right)_{1.2} \times 0.04$$

$$\Rightarrow \left(\frac{W}{L}\right)_1 = \left(\frac{W}{L}\right)_2 = 12.5$$

For  $O_3$  and  $O_4$ .

$$\frac{I}{2} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_{3,4} |V_{OV}|^2$$

$$0.1 = \frac{1}{2} \times 0.1 \times \left(\frac{W}{L}\right)_{3.4} \times 0.04$$

(b) Current source is implemented with the modified Wilson mirror in Fig. P9.89:

$$R_{SS} = g_{m7} r_{o7} r_{o9}$$

Transistor  $Q_7$  has the same k'(W/L) as  $Q_1$  and  $Q_2$ , but  $Q_7$  carries a current I twice that of  $Q_1$  and  $Q_2$ .

$$V_{OV7} = \sqrt{2}V_{OV1,2} = \sqrt{2}V_{OV}$$

$$g_{m7} = \frac{2I}{V_{OV7}} = \frac{2I}{\sqrt{2}V_{OV}} = \frac{\sqrt{2}I}{V_{OV}}$$

$$r_{o7} = r_{o9} = \frac{V_A}{I}$$

$$R_{SS} = \frac{\sqrt{2}I}{V_{OV}} \left(\frac{V_A}{I}\right)^2 = \frac{\sqrt{2}V_A^2}{V_{OV}I}$$

CMRR = 
$$\frac{I}{V_{OV}} \times \frac{1}{2} \times \frac{2|V_A|}{I} \times 2 \times \frac{I}{V_{OV}} \times \frac{\sqrt{2}V_A^2}{V_{OV}I}$$

$$R_{im} = \frac{1}{g_{m3}} \parallel r_{o3}$$

$$g_{m3} = g_{m1} = g_{m2} = 1 \text{ mA/V}$$

$$r_{o3} = r_{o2} = r_{o4} = 50 \text{ k}\Omega$$

$$R_{im} = 1 \text{ k}\Omega \parallel 50 \text{ k}\Omega = 0.98 \text{ k}\Omega$$

$$A_m = 1 / \left(1 + \frac{1}{g_m r_{o3}}\right)$$
  
=  $1 / \left(1 + \frac{1}{1 \times 50}\right) = 0.98 \text{ A/A}$ 

$$R_{om} = r_{o4} = 50 \text{ k}\Omega$$

$$R_{o2} = r_{o2} + 2R_{SS} + 2g_{m2}r_{o2}R_{SS}$$

$$= 50 + 50 + 2 \times 1 \times 50 \times 25$$

$$= 2600 \text{ k}\Omega$$

$$A_{cm} = -(1 - A_m)G_{mcm}(R_{om} \parallel R_{o2})$$

$$A_{cm} = -(1 - 0.98) \times 0.02 \times (50 \parallel 2600)$$

$$= -0.0196 \text{ V/V}$$

## =2A(SS) gnment Projecte Exame Help

For  $k'(W/L) = 4 \text{ mA/V}^2$  and  $I = 160 \mu\text{A}$ ,

or 62.1 dB

Alternatively, using the approximate expression  $0.080 = \frac{1}{2} \times 4 \times \text{https://powcodens.com$ 

$$\Rightarrow |V_{OV}| = 0.2 \text{ V}$$

For 
$$|V_A| = 5 \text{ V}$$
:

 $A_{cm} \simeq -\frac{1}{2g_{a2}R_{cc}} = -\frac{1}{2 \times 1 \times 25} = -0.02 \text{ V/V}$ 

# Add WeChat $\underset{5}{\text{mono}} \underset{0.02}{\text{mono}} = 1250$

CMRR = 
$$2 \times \left(\frac{5}{0.2}\right)^2 = 1250 \text{ or } 62 \text{ dB}$$

or 61.9 dB

For case (b),

CMRR = 
$$2\sqrt{2} \left(\frac{5}{0.2}\right)^3 = 4.42 \times 10^4$$

**9.105**  $G_m = g_{m1,2} = \frac{2(I/2)}{V_{OV}} = \frac{0.2}{0.2} = 1 \text{ mA/V}$ 

or 93 dB

 $= 25 \text{ k}\Omega$ 

$$A_{cm} = -(1 - A_m)G_{mcm}(R_{om} \parallel R_{o2})$$

$$G_{mcm} = \frac{1}{2R_{SS}} = \frac{1}{2 \times 45} = 0.011 \text{ mA/V}$$

Using the fact that  $R_{o2} \gg R_{om}$ , we obtain

$$A_{cm} \simeq -(1 - 0.98) \times 0.011 \times 45$$

$$= -0.01 \text{ V/V}$$

CMRR = 
$$\left| \frac{A_d}{A_{cm}} \right| = \frac{30}{0.01} = 3000$$

or 69.5 dB

$$A_d = G_m R_o = 1 \times 25 = 25 \text{ V/V}$$

 $r_{o2} = r_{o4} = \frac{|V_A|}{I/2} = \frac{5}{0.1} = 50 \text{ k}\Omega$ 

 $R_o = r_{o2} \parallel r_{o4} = 50 \text{ k}\Omega \parallel 50 \text{ k}\Omega$ 

$$R_{SS} = \frac{|V_A|}{I} = \frac{5}{0.2} = 25 \text{ k}\Omega$$

$$G_{mcm} = \frac{1}{2R_{SS}} = \frac{1}{2 \times 25} = 0.02 \text{ mA/V}$$

**9.107** CMRR = 
$$\left| \frac{A_d}{A_{cm}} \right|$$

CMRR = 60 dB or equivalently 1000. Thus,

$$1000 = \frac{50}{|A_{cm}|}$$

$$\Rightarrow |A_{cm}| = 0.05 \text{ V/V}$$

But from Eq. (9.153), we obtain

$$|A_{cm}| = (1 - A_m)G_{mcm}(R_{om} \parallel R_{o2})$$

Since  $R_{om} \ll R_{o2}$  and  $G_{mcm} = 1/2R_{SS}$ , we have

$$|A_{cm}| = (1 - A_m) \frac{R_{om}}{2R_{SS}}$$

$$0.05 = (1 - A_m) \times \frac{20}{2 \times 20}$$

$$\Rightarrow (1 - A_m) = 0.1$$

#### 9.108

= 4.3 + 0.4 = 4.7 VThus the input common-mode range is  $-4 \text{ V} \le V_{ICM} \le +4.7 \text{ V}$ The common-mode gain can be found using Eq. (1961): Exam Help  $A_{cm} = -\frac{r_{o4}}{\beta_3 R_{EE}}$ trepowegeler ko -5 V

$$G_m = g_{m1,2} \simeq \frac{I/2}{V_T}$$

$$5 = \frac{I/2}{V_T}$$

$$\Rightarrow I = 0.25 \text{ mA}$$

Utilizing two matched transistors,  $Q_5$  and  $Q_6$ , the value of R can be found from

$$I = \frac{0 - (-5) - 0.7}{R} = 0.25 \text{ mA}$$

$$\Rightarrow R = 17.2 \text{ k}\Omega$$

$$R_{id} = 2r_{\pi} = 2\frac{\beta}{g_m} = 2 \times \frac{100}{5} = 40 \text{ k}\Omega$$

$$R_o = r_{o2} \parallel r_{o4}$$

where

$$r_{o2} = r_{o4} = \frac{|V_A|}{I/2} = \frac{100}{0.125} = 800 \text{ k}\Omega$$

#### thus

$$R_o = 800 \text{ k}\Omega \parallel 800 \text{ k}\Omega = 400 \text{ k}\Omega$$

$$A_d = G_m R_o = 5 \times 400 = 2000 \text{ V/V}$$

$$I_B = \frac{I/2}{\beta + 1} \simeq \frac{0.125 \text{ mA}}{100} = 1.25 \text{ }\mu\text{A}$$

The lower limit on  $V_{ICM}$  is determined by the lowest voltage allowed at the collector of  $Q_5$ while  $Q_5$  is in the active mode. This voltage is -5 + 0.3 = -4.7 V. Thus

$$V_{ICM \min} = -4.7 + V_{BE1.2} = -4.7 + 0.7$$

$$= -4 \text{ V}$$

The upper limit on  $V_{ICM}$  is determined by the need to keep  $Q_1$  in the active mode. Thus

$$V_{ICM\,\text{max}} = V_{C1} + 0.4$$

$$CMRR = \frac{|A_d|}{|A_{cm}|} = \frac{2000}{0.02} = 100,000$$

or 100 dB

#### 9.109 See figure on next page.

From the solution to Problem 9.108, we know that I = 0.25 mA. For the Widlar current source, use  $R = 2 \text{ k}\Omega$ . Thus

$$I_{\text{REF}} = \frac{5 - 0.7}{2} = 2.15 \text{ mA}$$

The value of  $R_E$  can be found from

$$IR_E = V_{BE6} - V_{BE5} = V_T \ln\left(\frac{I_{REF}}{I}\right)$$

$$0.25 \times R_E = 0.025 \ln \left( \frac{2.15}{0.25} \right)$$

$$R_E = 215 \Omega$$



$$R_o = 200 \text{ k}\Omega \parallel 200 \text{ k}\Omega = 100 \text{ k}\Omega$$

$$A_d = G_m R_o = 8 \times 100 = 800 \text{ V/V}$$

$$R_{id} = 2r_{\pi} = 2\beta/g_m$$

$$=\frac{300}{8}=37.5 \text{ k}\Omega$$

$$R_{EE} = \frac{|V_A|}{I} = \frac{40}{0.4} = 100 \text{ k}\Omega$$

The common-mode gain can be found

using Eq. (9.165):

$$A_{cm} = -\frac{r_{o4}}{\beta_3 R_{EE}}$$
$$= -\frac{200}{150 \times 100} = -0.013 \text{ V/V}$$

The CMRR can be obtained from

$$CMRR = \frac{|A_d|}{|A_{cm}|} = \frac{800}{0.013} = 60,000$$

or 96 dB

$$G_v = \frac{R_{id}}{R_{id} + R_{\rm sig}} \times A_d$$

The output resistance of the Widlar current is given by School. 22 Huller Court Programme 12 The Widlar current programme 12 T

$$R_{EE} = [1 + g_{m5}(R_E \parallel r_{\pi 5})]r_{o5}$$

$$g_{m5} = \frac{I}{V_T} = \frac{0.25 \text{ mattps:}}{0.025 \text{ V}} / \text{powcodeffer Golon}$$
. To determine the bias current  $I$ , which is the current in the collector of  $r_{\pi 5} = \frac{\beta}{I_0} = \frac{100}{I_0} = 10 \text{ k}\Omega$ 

$$r_{\pi 5} = \frac{\beta}{g_{m 5}} = \frac{100}{10} = 10 \text{ k}\Omega$$

$$r_{o 5} = \frac{V_A}{I} = \frac{100}{0.25} = 400 \text{ k}\Omega$$
We Chat  $f$ , which is the distribution of  $g$ , we first find the reference cut  $g$ , which is the first find the reference cut  $g$ , which is the first find the reference cut  $g$ , which is the first find the reference cut  $g$ , which is the first find the reference cut  $g$ , which is the first find the reference cut  $g$ , which is the first find the reference cut  $g$ , which is the first find the reference cut  $g$ , which is the first find the reference cut  $g$ , and  $g$  are  $g$  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  and  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  and  $g$  are  $g$  are  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  and  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  and  $g$  are  $g$  are  $g$  are  $g$  and  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  are  $g$  are  $g$  and  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  are  $g$  are  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are  $g$  are  $g$  and  $g$  are

$$R_{EE} = [1 + 10(0.215 \parallel 10)] \times 400$$

 $= 1.24 \text{ M}\Omega$ 

 $R_{id}$ ,  $R_o$ ,  $A_d$ ,  $I_B$ , and the range of  $V_{ICM}$  will be the same as in Problem 9.108. The common-mode gain, however, will be lower:

$$A_{cm} = -\frac{r_{o4}}{\beta_3 R_{EE}}$$

$$= -\frac{800}{100 \times 1240} = 6.45 \times 10^{-3} \text{ V/V}$$

and the CMRR will be

$$\text{CMRR} = \frac{|A_d|}{|A_{cm}|} = \frac{2000}{6.45 \times 10^{-3}} = 3.1 \times 10^5$$

or 110 dB

**9.110** 
$$G_m = g_{m1,2} \simeq \frac{I/2}{V_T} = \frac{0.2}{0.025} = 8 \text{ mA/V}$$

$$R_o = r_{o2} \parallel r_{o4}$$

$$r_{o2} = r_{o4} = \frac{|V_A|}{I/2} = \frac{40}{0.2} = 200 \text{ k}\Omega$$

Assuming  $Q_5$  and  $Q_6$  are matched, we have

$$I = 2 \text{ mA}$$

(a) 
$$g_{m1,2} \simeq \frac{I/2}{V_T} = \frac{1 \text{ mA}}{0.025 \text{ V}} = 40 \text{ mA/V}$$

$$R_{id}=2r_{\pi}=2\beta/g_{m1,2}$$

$$=\frac{2\times100}{40}=5~\mathrm{k}\Omega$$

(b) 
$$A_d = G_m R_o$$

where

$$G_m = g_{m1,2} = 40 \text{ mA/V}$$

$$R_o = r_{o2} \parallel r_{o4}$$

$$r_{o2} = r_{o4} = \frac{|V_A|}{I/2} = \frac{60}{1} = 60 \text{ k}\Omega$$

$$R_o = 60 \text{ k}\Omega \parallel 60 \text{ k}\Omega = 30 \text{ k}\Omega$$

$$A_d = 40 \times 30 = 1200 \text{ V/V}$$

(c)  $A_{cm}$  can be found using Eq. (9.165),

$$A_{cm} = -\frac{r_{o4}}{\beta_3 R_{FF}}$$

where

$$R_{EE} = r_{o5} = \frac{|V_A|}{I} = \frac{60}{2} = 30 \text{ k}\Omega$$

$$A_{cm} = -\frac{60}{100 \times 30} = -0.02 \text{ V/V}$$

$$CMRR = \frac{|A_d|}{|A_{cm}|} = \frac{1200}{0.02} = 60,000$$

or 95.6 dB

9.112 Refer to Fig. P9.112. To determine the bias current I, which is the drain current of  $Q_7$ , we analyze the Wilson mirror circuit as follows: All four transistors,  $Q_5 - Q_8$ , are conducting equal currents (I) and have the same  $V_{GS}$ ,

$$V_{GS} = V_t + V_{OV}$$

Thus

$$IR = 15 - (-5) - 2 V_{GS}$$

$$144I = 20 - 2 V_t - 2 V_{OV}$$

(c)  $A_{cm}$  can be found from Eq. (9.165):

$$A_{cm} = -\frac{r_{o4}}{\beta_3 R_{EE}}$$

where  $R_{EE}$  is the output resistance of the Wilson mirror,

$$R_{EE} = g_{m7} r_{o7} r_{o5}$$

where

$$g_{m7} = \frac{2I}{V_{OV}} = \frac{2 \times 0.12}{0.35}$$

$$= 0.7 \text{ mA/V}$$

$$r_{o7} = r_{o5} = \frac{|V_A|}{I} = \frac{60}{0.12} = 500 \text{ k}\Omega$$

$$R_{EE} = 0.7 \times 500^2 = 175 \text{ M}\Omega$$

$$A_{cm} = -\frac{1}{100 \times 175} = 5.7 \times 10^{-5} \text{ V/V}$$

CMRR = 
$$\frac{|A_d|}{|A_{cm}|} = \frac{1200}{5.7 \times 10^{-5}} = 21 \times 10^6$$

or 146 dB

# But Assignment Project Recrusion Help $I = \frac{1}{2}k'_n(W/L)V_{OV}^2$ But Project Recrusion Help $W_6$ can be determined using Eq. (9.172):

$$= \frac{1}{2} \times 2 \times V_{OV}^{2} = \text{left ps://powco} \frac{(W/L)_{6}}{(W/L)_{5}} = 2 \frac{(W/L)_{7}}{(W/L)_{5}}$$
Thus
$$= \frac{1}{2} \times 2 \times V_{OV}^{2} = \text{left ps://powco} \frac{(W/L)_{6}}{(W/L)_{5}} = 2 \frac{(W/L)_{7}}{(W/L)_{5}} = 2 \frac{(W/L)_{7}}{(00/0.5)} =$$

$$144 \ V_{OV}^2 = 20 - 2 \times 0.7 - 2V_{OV}$$

# $144 \ V_{OV}^2 = 20 - 2 \times 0.7 - 2V_{OV}$ $\Rightarrow W_6 = 20 \ \mu\text{m}$ $144 \ V_{OV}^2 + 2V_{OV} - 126 \ \text{Od}$ We Chat Fo alder We Car ve late $I_D$ as follows:

$$\rightarrow V_{\rm ov} - 0.35 \text{ V}$$

and

$$I = 0.35^2 = 0.12 \text{ mA}$$

(a) 
$$R_{id} = 2r_{\pi} = 2\beta/g_m$$

$$g_m = g_{m1,2} \simeq \frac{I/2}{V_T} = \frac{0.06}{0.025} = 2.4 \text{ mA}$$

$$R_{id} = \frac{2 \times 100}{2.4} = 83.3 \text{ k}\Omega$$

(b) 
$$A_d = g_{m1,2}R_o$$

where

$$R_o = r_{o2} \parallel r_{o4}$$

$$r_{o2} = r_{o4} = \frac{|V_A|}{I/2} = \frac{60}{0.06} = 1 \text{ M}\Omega$$

$$R_o = 500 \text{ k}\Omega$$

$$A_d = 2.4 \times 500 = 1200 \text{ V/V}$$

 $I_{D8} = I_{REF} = 225 \,\mu A$ 

$$I_{D5} = I_{REF} \frac{(W/L)_5}{(W/L)_9} = I_{REF} = 225 \ \mu A$$

$$I = I_{D5} = 225 \,\mu\text{A}$$

$$I_{D1} = I_{D2} = \frac{1}{2}I_{D5} = 112.5 \,\mu\text{A}$$

$$I_{D3} = I_{D4} = I_{D1} = 112.5 \,\mu\text{A}$$

$$I_{D6} = I_{D7} = I_{REF} = 225 \,\mu\text{A}$$

With  $I_D$  in each device known, we can use

$$I_{Di} = \frac{1}{2} \mu C_{ox} \left( \frac{W}{L} \right)_i |V_{OVi}|^2$$

to determine  $|V_{OVi}|$  and then

$$|V_{GSi}| = |V_{OVi}| + |V_t|$$

The values of  $g_{mi}$  and  $r_{oi}$  can then be determined

$$g_{mi} = \frac{2I_{Di}}{|V_{OVi}|}$$

$$r_{oi} = \frac{|V_A|}{I_{Di}}$$

The results are summarized in the following table.

|                       | $Q_1$ | $Q_2$ | $Q_3$ | $Q_4$ | $Q_5$ | $Q_6$ | $Q_7$ | $Q_8$ |
|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| $I_D$ ( $\mu$ A)      | 112.5 | 112.5 | 112.5 | 112.5 | 225   | 225   | 225   | 225   |
| $ V_{OV} $ (V)        | 0.25  | 0.25  | 0.25  | 0.25  | 0.25  | 0.25  | 0.25  | 0.25  |
| $ V_{GS} $ (V)        | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   |
| g <sub>m</sub> (mA/V) | 0.9   | 0.9   | 0.9   | 0.9   | 1.8   | 1.8   | 1.8   | 1.8   |
| $r_o$ (k $\Omega$ )   | 80    | 80    | 80    | 80    | 40    | 40    | 40    | 40    |

$$A_1 = -g_{m1}(r_{o2} \parallel r_{o4})$$

$$= -0.9 \times (80 \parallel 80) = -36 \text{ V/V}$$

$$A_2 = -g_{m6}(r_{o6} \parallel r_{o7})$$

$$= -1.8 \times (40 \parallel 40) = -36 \text{ V/V}$$

$$A_0 = A_1 A_2 = -36 \times -36 = 1296 \text{ V/V}$$

The upper limit of  $V_{ICM}$  is determined by the need to keep  $Q_5$  in saturation, thus

$$I_{D5} = I_{D7} = I_{D8} = 200 \,\mu\text{A}$$

$$200 = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_{5,7,8} V_{OV}^2$$

$$= \frac{1}{2} \times 400 \times \left(\frac{W}{L}\right)_{5.7.8} \times 0.04$$

$$\left(\frac{W}{L}\right)_5 = \left(\frac{W}{L}\right)_7 = \left(\frac{W}{L}\right)_8 = 25$$

 $V_{ICM \, \text{max}} = V_{DD} - |V_{OV5}| - |V_{SG1}|$ 

### Project<sup>2</sup>Exam)Help

The lower limit of  $V_{ICM}$  is determined by the need to keep  $Q_1$  and  $Q_2$  in saturation, thus

$$200 = \frac{1}{2} \times 100 \times \left(\frac{W}{L}\right)_{6} \times 0.04$$

$$V_{ICM \min} = V_{G3} - \frac{\text{https://powcoder_iocom}}{|V_{ICM \min}| = V_{G3}| - |V_{I}|}$$

$$= -1.5 + 1 - 0.75 = -1.25 \text{ V}$$

The results are summarized in the following table:

$$-1.25 \text{ V} < V_{ICM} < +0.25 \text{ V}$$

The output voltage range is

$$-V_{SS} + V_{OV6} \le v_O \le V_{DD} - |V_{OV7}|$$

that is,

$$-1.25 \text{ V} \le v_O \le +1.25 \text{ V}$$

(a) 
$$I_{D1} = I_{D2} = 100 = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_{1,2} V_{OV}^2$$

$$100 = \frac{1}{2} \times 400 \times \left(\frac{W}{L}\right)_{12} \times 0.04$$

$$\Rightarrow \left(\frac{W}{L}\right)_1 = \left(\frac{W}{L}\right)_2 = 12.5$$

$$I_{D3} = I_{D4} = 100 = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L}\right)_{3,4} |V_{OV}|^2$$

$$100 = \frac{1}{2} \times 100 \times \left(\frac{W}{L}\right)_{3.4} \times 0.04$$

$$\Rightarrow \left(\frac{W}{L}\right)_3 = \left(\frac{W}{L}\right)_4 = 50$$

| ransistor | $Q_1$ | $Q_2$ | $Q_3$ | $Q_4$ | $Q_5$ | $Q_6$ | $Q_7$ | $Q_8$ |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|
| W/L       | 12.5  | 12.5  | 50    | 50    | 25    | 100   | 25    | 25    |

Ideally, the dc voltage at the output is zero.

(b) The upper limit of  $V_{ICM}$  is determined by the need to keep  $Q_1$  and  $Q_2$  in saturation, thus

$$V_{ICM\,\text{max}} = V_{D1} + V_t$$

$$= V_{DD} - |V_{SG4}| + V_t$$

$$= 0.9 - |V_t| - |V_{OV4}| + V_t$$

$$= 0.9 - 0.2 = +0.7 \text{ V}$$

The lower limit of  $V_{ICM}$  is determined by the need to keep  $Q_5$  in saturation,

$$V_{ICM\,\text{min}} = -0.9 + |V_{OV5}| + |V_{GS1}|$$

$$= -0.9 + 0.2 + 0.2 + 0.4 = -0.1 \text{ V}$$

Thus

$$-0.1 \text{ V} \le V_{ICM} \le +0.7 \text{ V}$$

(c) 
$$v_{Omax} = V_{DD} - |V_{OV6}|$$

$$= 0.9 - 0.2 = +0.7 \text{ V}$$

$$v_{Omin} = -V_{SS} + |V_{OV7}|$$
  
= -0.9 + 0.2 = -0.7 V

Thus

$$-0.7 \text{ V} \le v_O \le +0.7 \text{ V}$$

(d) 
$$A_1 = -g_{m1,2}(r_{o2} \parallel r_{o4})$$

where

$$g_{m1,2} = \frac{2 \times 0.1}{0.2} = 1 \text{ mA/V}$$

$$r_{o2} = r_{o4} = \frac{|V_A|}{0.1 \text{ mA}} = \frac{6}{0.1} = 60 \text{ k}\Omega$$

$$A_1 = -1 \times (60 \parallel 60) = -30 \text{ V/V}$$

$$A_2 = -g_{m6}(r_{o6} \parallel r_{o7})$$

where

$$g_{m6} = \frac{2 \times 0.2}{0.2} = 2 \text{ mA/V}$$

$$r_{o6} = r_{o7} = \frac{|V_A|}{0.2} = \frac{6}{0.2} = 30 \text{ k}\Omega$$

$$V_O = 18 \times 10^{-3} \times (111 \parallel 92.6)$$

$$= 909 \text{ mV}$$

The corresponding input offset voltage will be

$$V_{OS} = \frac{V_O}{A_0}$$
  
=  $\frac{909}{1109} = 0.82 \text{ mV}$ 

$$I_{D1} = I_{D2} = \frac{I}{2}$$

If  $Q_3$  has a threshold voltage  $V_t$  and  $Q_4$  has a threshold voltage  $V_t + \Delta V_t$  then

$$I_{D3} = \frac{I}{2} = \frac{1}{2} k_{n3} (V_{GS3} - V_t)^2$$

$$\Rightarrow V_{GS3} = V_t + \sqrt{I/k_{n3}}$$

$$I_{D4} = \frac{1}{2} k_{n4} (V_{GS4} - V_t - \triangle V_t)^2$$

# $A_2 = A \times SS$ in the project $k_{nA} = k_{nA} \times SS$ is the project $k_{nA} = k_{nA} \times SS$ in the project $k_{nA} = k_{nA} \times SS$ is the project $k_{nA} = k_{nA} \times SS$ in the project $k_{nA} = k_{nA} \times SS$ is the project

# 9.115 (a) Increasing $(W/L)_1$ and $(W/L)_2$ by a factor of 4 reduces $V_1V_2$ by a factor of 2. The WCG $V_2V_2$ increased by a factor of 2.

- (b)  $A_1$  is proportional to  $g_{m1,2}$ , thus  $A_1$  increases by a factor of 2 and the overall voltage gain increases by a factor  $A_1^2$  we that  $A_2^2$  increases by a factor  $A_2^2$  we the input offset voltage is proportional  $A_1^2$  increases  $A_2^2$  and  $A_3^2$  increases  $A_4^2$  and  $A_4^2$  increases  $A_4^2$  inc
- (c) Since the input offset voltage is proportional to  $|V_{OV1,2}|$ , it will decrease by a factor of 2. This, however, does not apply to  $V_{OS}$  due to  $\triangle V_t$ .

**9.116** If  $(W/L)_7$  becomes 48/0.8,  $I_{D7}$  will become

$$I_{D7} = I_{D8} \frac{(W/L)_7}{(W/L)_8}$$

$$= I_{\text{REF}} \; \frac{(48/0.8)}{(40/0.8)}$$

$$= 90 \times 1.2 = 108 \,\mu\text{A}$$

Thus  $I_{D7}$  will exceed  $I_{D6}$  by 18  $\mu$ A, which will result in a systematic offset voltage,

$$V_O = 18 \, \mu A(r_{o6} \parallel r_{o7})$$

where

$$r_{o6} = 111 \text{ k}\Omega$$

and  $r_{o7}$  now becomes

$$r_{o7} = \frac{10}{0.108} = 92.6 \text{ k}\Omega$$

Thus

$$I_O = I_{D2} - I_{D4}$$

$$=\frac{I}{2}-\frac{I}{2}\left(1-\frac{\Delta V_t}{V_{OV3}}\right)^2$$

For 
$$\frac{\Delta V_t}{V_{OV3}} \ll 1$$
 we obtain

$$I_O \simeq rac{I}{2} - rac{I}{2} \left( 1 - rac{2 \Delta V_t}{V_{OV3}} 
ight)$$

$$=\frac{2(I/2)}{V_{OV3}}\,\Delta V_t$$

$$= g_{m3} \triangle V_t$$
 Q.E.D.

The corresponding input offset voltage will be

$$V_{OS} = \frac{I_O}{g_{m1,2}}$$

$$=\frac{g_{m3} \triangle V_t}{g_{m1}}$$

$$V_{OS} = \frac{g_{m3}}{g_{m1,2}} \Delta V_t$$

9.118



(a) With the two input terminals connected to a dc voltage of  $V_{DD}/2 = +0.6$  V and for  $Q_1 - Q_4$  to conduct a current of 200  $\mu$ A, we have

$$400 = \frac{1}{2} \times 100 \times \left(\frac{W}{L}\right)_{6} \times 0.15^{2}$$

$$I_{D1,2} = \frac{1}{2} k'_n \left(\frac{W}{L}\right)_{1,2} V_{OV}^2$$

$$\Rightarrow \left(\frac{W}{L}\right)_6 = 356$$

Assignment Projectes us axsomable it colors table:

$$\Rightarrow \left(\frac{W}{L}\right)_{1,2} = 32.9 \text{https://powco}$$

$$I_{D3,4} = \frac{1}{2}k'_{p}\left(\frac{W}{L}\right)_{3,4}|V_{OV}|^{2}$$

|   | Tra     | nsistor | $Q_1$ | Q  | 22  | Q  | 3 | $Q_4$ | $Q_5$ | $Q_6$ | $Q_7$ | $Q_8$ |
|---|---------|---------|-------|----|-----|----|---|-------|-------|-------|-------|-------|
| 1 | $I_{I}$ |         | 200   | 2  | )6  | 26 | 0 | 200   | 400   | 400   | 400   | 200   |
|   | )       | W/L     | 32.9  | 32 | 2.9 | 17 | 8 | 178   | 65.8  | 356   | 65.8  | 32.9  |

 $200 = \frac{1}{2} \times 100 \times \text{Add} \cdot 15 \text{WeChat}$ 

$$\Rightarrow \left(\frac{W}{L}\right)_{3.4} = 178$$

Transistor Q<sub>5</sub> must carry a current of 400 μA, thus

$$400 = \frac{1}{2} k'_n \left(\frac{W}{L}\right)_5 V_{OV}^2$$
$$= \frac{1}{2} \times 540 \times \left(\frac{W}{L}\right)_5 \times 0.15^2$$
$$\Rightarrow \left(\frac{W}{L}\right)_5 = 65.8$$

Similarly,  $Q_7$  is required to conduct a current of 400  $\mu$ A, thus

$$\left(\frac{W}{L}\right)_{7} = \left(\frac{W}{L}\right)_{5} = 65.8$$

Transistor  $Q_8$  conducts a current of 200  $\mu$ A, thus

$$\left(\frac{W}{L}\right)_{8} = \frac{1}{2} \left(\frac{W}{L}\right)_{5} = 32.9$$

Finally,  $Q_6$  must conduct a current equal to that of  $Q_7$ , that is, 400  $\mu$ A, thus

hat (b) The upper limit on  $V_{CM}$  is determined by the

$$V_{ICM \text{ max}} = V_{D1,2} + |V_t|$$
  
=  $V_{DD} - |V_t| - |V_{OV}| + |V_t|$   
=  $1.2 - 0.15 = 1.05 \text{ V}$ 

The lower limit on  $V_{ICM}$  is determined by the need to keep  $Q_5$  in saturation, thus

$$V_{ICM} = |V_{OV5}| + V_{GS1,2}$$
  
= 0.15 + 0.15 + 0.35 = 0.65 V

Thus

$$0.65 \text{ V} \le V_{ICM} \le 1.05 \text{ V}$$

Note that the input dc voltage in part (a) falls outside the allowable range of  $V_{ICM}$ ! Thus, part (a) should have specified a  $V_{ICM}$  greater than 0.65 V. The results of part (a), however, will not change.

(c) 
$$0.15 \text{ V} \le v_O \le (1.2 - 0.15)$$

that is,

$$0.15 \text{ V} \le v_O \le 1.05 \text{ V}$$

(d) 
$$g_{m1,2} = \frac{2 \times 0.2}{0.15} = 2.67 \text{ mA/V}$$
  
 $r_{o2} = r_{o4} = \frac{|V_A|}{0.2 \text{ mA}} = \frac{1.8}{0.2} = 9 \text{ k}\Omega$   
 $A_1 = -g_{m1,2}(r_{o2} \parallel r_{o4}) = 2.67(9 \parallel 9)$   
 $= -12 \text{ V/V}$   
 $g_{m6} = \frac{2 \times 0.4}{0.15} = 5.33 \text{ mA/V}$   
 $r_{o6} = r_{o7} = \frac{|V_A|}{0.4 \text{ mA}} = \frac{1.8}{0.4} = 4.5 \text{ k}\Omega$ 

$$A_2 = -g_{m6}(r_{o6} \parallel r_{o7})$$

$$= -5.33(4.5 \parallel 4.5) = 12 \text{ V/V}$$

$$A_0 = A_1 A_2 = -12 \times -12 = 144 \text{ V/V}$$

#### **9.119** Refer to Fig. P9.119.

(a) With the inputs grounded and the output at 0 V dc, we have

where  $R_{C5}$  is the total resistance in the collector of  $Q_5$ . Since  $r_{o5} = \infty$ ,  $R_{C5}$  is simply the input resistance of the emitter follower  $Q_6$ , we have

$$R_{C5} = R_{i6} = (\beta + 1)(r_{e6} + R_L)$$

where

$$r_{e6} = \frac{V_T}{I_{E6}} = \frac{25 \text{ mV}}{1 \text{ mA}} = 25 \Omega$$

$$R_{i6} = (100 + 1)(0.025 + 1)$$

$$= 103.5 \text{ k}\Omega$$

Thus

$$A_2 = -20 \times 103.5 = -2070 \text{ V/V}$$

The gain of the third stage is given by

$$A_3 = \frac{v_o}{v_5} = \frac{R_L}{R_L + r_{e6}} = \frac{1}{1 + 0.025} = 0.976 \text{ V/V}$$

The overall voltage gain can now be obtained as

$$A_0 \equiv \frac{v_o}{v_{id}} = A_1 A_2 A_3$$

$$= -40 \times -2070 \times 0.976 = 8.07 \times 10^4 \text{ V/V}$$

## <sup>IEI</sup> = Assignment Project Exam Help

$$I_{E5} \simeq 0.5 \text{ mA}$$

$$I_{E6} = 1 \text{ mA}$$

https://powcoder.com

(b) The short-circuit transconductance of the first stage is



The voltage gain of the first stage can be obtained by multiplying  $G_m$  by the total resistance at the output node of the stage, i.e., the common collectors of  $Q_2$  and  $Q_4$  and the base of  $Q_5$ . Since  $r_{o2} = r_{o4} = \infty$ , the resistance at this node is equal to the input resistance of  $Q_5$  which is  $R_{\pi 5}$ ,

$$r_{\pi 5} = \frac{\beta}{g_{m5}}$$

where

$$g_{m5} = \frac{I_{C5}}{V_T} = \frac{0.5}{0.025} = 20 \text{ mA/V}$$

thus

$$r_{\pi 5} = \frac{100}{20} = 5 \text{ k}\Omega$$

Thus the voltage gain of the first stage is given by

$$A_1 \equiv \frac{v_{b5}}{v_{id}} = -G_m r_{\pi 5}$$

$$= -8 \times 5 = -40 \text{ V/V}$$

The voltage gain of the second stage is

$$A_2 \equiv \frac{v_{c5}}{v_{b5}} = -g_{m5}R_C$$



$$R_{\rm in2} = 2(\beta + 1)(25 + 25)$$

$$= 2 \times 101 \times 50 \simeq 10 \text{ k}\Omega$$

Effective load of first stage =  $R_{in2} \parallel (5+5)$ 

$$= 10 \parallel 10 = 5 \text{ k}\Omega$$

$$A_1 =$$

 $\alpha \frac{\text{Total resistance between collectors of } Q_1 \text{ and } Q_2}{\text{Total resistance in emitters of } Q_1 \text{ and } Q_2}$ 

$$\simeq \frac{5~\text{k}\Omega}{4\times 50~\Omega} = 25~\text{V/V}$$

$$R_{\rm in} = (\beta + 1)(4 \times 50 \ \Omega)$$

$$= 101 \times 200 \simeq 20 \text{ k}\Omega$$

$$\frac{i_{c1}}{i_{b1}} = \beta_1 = 100$$

$$i_{b3} \qquad (5+5)$$

$$\frac{i_{b3}}{i_{c1}} = \frac{(5+5)}{(5+5) + R_{\text{in}2}} = \frac{10}{10+10} = 0.5$$

$$\frac{i_{c3}}{i_{b3}} = \beta_3 = 100$$

Thus

$$\frac{i_{c3}}{i_{b1}} = \frac{i_{c3}}{i_{b3}} \times \frac{i_{b3}}{i_{c1}} \times \frac{i_{c1}}{i_{b1}} = 100 \times 0.5 \times 100$$
$$= 5000 \text{ A/A}$$

**9.121** Refer to Fig. 9.41. From Example 9.7, we obtain

$$I_{C1} = I_{C2} = 0.25 \text{ mA}$$

$$I_{C4} = I_{C5} = 1 \text{ mA}$$

$$I_{C7} = 1 \text{ mA}$$

$$I_{C8} = 5 \text{ mA}$$

The gain of the second stage will now be

$$A_2 = \frac{v_{o2}}{v_{o1}} = -\alpha \frac{3 \text{ k}\Omega \parallel R_{i3}}{2 \times 0.025 + 2 \times 0.025}$$

From Example 9.8,  $R_{i3} = 234.8 \text{ k}\Omega$ , thus

$$A_2 \simeq -\frac{3 \parallel 234.8}{0.1} = -29.6 \text{ V/V}$$

which is about half the value without the two 25- $\Omega$  emitter resistances. The gain of the third stage remains unchanged at -6.42 V/V, and the gain of the fourth stage remains unchanged at 1 V/V. Thus the overall voltage gain becomes

$$\frac{v_o}{v_{id}} = A_1 A_2 A_3 A_4$$

$$= 20 \times -29.6 \times -6.42 \times 1$$

$$= 3800.6 \text{ V/V}$$

which is less than half the gain obtained without the emitter resistances. This is the price paid for doubling  $R_{id}$ .

 $r_{e1} = AS_{0.25}^{25} \text{ mV}$  The output resistance is mostly determined projects. The output resistance is mostly determined to  $r_{e4} = r_{e5} = \frac{25 \text{ mV}}{1 \text{ mA}} = 25 \Omega$   $R_o = \frac{152}{2} = R_6 \parallel \left[ r_{e6} + \frac{R_5}{\beta + 1} \right]$ 

$$r_{e4} = r_{e5} = \frac{25 \text{ mV}}{1 \text{ mA}} = 25 \Omega$$

$$R_o = \frac{25 \text{ mV}}{1 \text{ mA}} = 25 \Omega$$

$$R_o = \frac{25 \text{ mV}}{2} = R_6 \parallel \left[ r_{e6} + \frac{5}{\beta + 1} \right]$$
With 100- $\Omega$  resistable equation (respectively) each of  $T$  and  $T$  and  $T$  and  $T$  and  $T$  are  $T$  and  $T$  and  $T$  are  $T$  and  $T$  and  $T$  are  $T$  and  $T$  are  $T$  and  $T$  and  $T$  are  $T$  are  $T$  and  $T$  are  $T$  and  $T$  are  $T$  and  $T$  are  $T$  and  $T$  are  $T$  are  $T$  and  $T$  are  $T$  are  $T$  and  $T$  are  $T$  and  $T$  are  $T$  and  $T$  are  $T$  and  $T$  are  $T$  are  $T$  and  $T$  are  $T$  and  $T$  are  $T$  are  $T$  and  $T$  are  $T$  are  $T$  and  $T$  are  $T$  and  $T$  are  $T$  are  $T$  are  $T$  are  $T$  and  $T$  are  $T$  are  $T$  are  $T$  are  $T$  are  $T$  and  $T$  are  $T$  and  $T$  are  $T$  are  $T$  are  $T$  and  $T$  are  $T$  are  $T$  are  $T$  and  $T$  are  $T$  are  $T$  are  $T$  are  $T$  are  $T$  are  $T$  and  $T$  are  $T$  are  $T$  and  $T$  are  $T$  are  $T$  are  $T$  are  $T$  are  $T$  and  $T$  are  $T$ 

$$R_{id} = (\beta + 1)(2r_{e1,2} + 2R_{e1,2})$$

$$= {}^{101} \times (2 \times 0.1 + 2 \times 0.1) + 2 \times 0.1 \times 0.1 \times 0.4 \times 0.1 \times 0.4 \times 0.1 \times 0$$

Thus,  $R_{id}$  increases by a factor of 2. With 25- $\Omega$ resistance in the emitter of each of  $Q_4$  and  $Q_5$ , the input resistance of the second stage becomes

$$R_{i2} = (\beta + 1)(2r_{e4,5} + 2R_{e4,5})$$
  
= 101 (2 × 0.025 + 2 × 0.025)  
= 10.1 k $\Omega$ 

Thus,  $R_{i2}$  is increased by a factor of 2. The gain of the first stage will be

$$\frac{v_{o1}}{v_{o1}} =$$

 $\alpha \times \text{Total}$  resistance between the collectors of  $Q_1$  and  $Q_2$ 

Total resistance in emitters of  $Q_1$  and  $Q_2$ 

$$\simeq \frac{40 \text{ k}\Omega \parallel 10 \text{ k}\Omega}{2 \times 0.1 + 2 \times 0.1} = 20 \text{ V/V}$$

Thus the gain of the first stage decreases but only slightly. Of course, the two  $100-\Omega$  resistances in the emitters reduce the gain but some of the reduction is mitigated by the increase in  $R_{i2}$ , which increases the effective load resistance of the first stage.

This change in  $R_5$  will affect the gain of the third

stip which for the state  $A_2 = -\frac{R_5 \parallel (\beta + 1)(r_{e8} + R_6)}{4}$ 

$$= -\frac{7.37 \parallel (101)(0.005 + 3)}{2.3 + 0.025}$$

$$= -3.1 \text{ V/V}$$

 $\Rightarrow R_5 = 7.37 \text{ k}\Omega$ 

which is about half the original value (not surprising since  $R_5$  is about half its original value). To restore the gain of the third stage to its original value, we can reduce  $R_4$ . This will, however, change  $R_{i3}$  and will reduce the gain of the second stage, though only slightly. For instance, to restore the gain of the third stage to -6.42 V/V, we use

$$\frac{2.3 + 0.025}{R_4 + 0.025} = \frac{6.42}{3.1}$$

$$\Rightarrow R_4 = 1.085 \text{ k}\Omega$$

Now  $R_{i3} = 101 \times (1.085 + 0.025) = 112 \text{ k}\Omega$  and the gain of the second stage becomes

$$A_2 = -\frac{3 \text{ k}\Omega \parallel 112 \text{ k}\Omega}{30 \Omega} = -58.4 \text{ V/V}$$

which is a slight decrease in magnitude from the original value of -59.2 V/V.

**9.123** Refer to Fig. 9.41(a). With  $R_5$  replaced with a 1-mA constant-current source with a high output resistance, the total resistance in the collector of  $Q_7$  now becomes the input resistance of  $Q_8$ , which is

$$R_{i4} = (\beta + 1)(r_{e8} + R_6)$$
  
= 101 × (0.005 + 3) = 303.5 k\Omega

Thus the gain of the third stage now becomes

$$A_3 = -\alpha \frac{303.5}{2.3 + 0.025}$$

 $\simeq -130.5 \text{ V/V}$ 

and the overall voltage gain increases to

$$\frac{v_o}{v_{id}} = 8513 \times \frac{130.5}{6.42} = 1.73 \times 10^5 \text{ V/V}$$

(b) The output resistance now becomes

$$R_o = 3 \text{ k}\Omega \parallel \left(r_{e8} + \frac{\text{very large resistance}}{\beta + 1}\right)$$

 $\simeq 3 \text{ k}\Omega$ 

Refer to Fig. (a) for the dc analysis. Replacing the  $68 \text{ k}\Omega$ -33 k $\Omega$  divider network by its Thévenin equivalent, we obtain

$$V_{BB} = -5 \text{ V} + \frac{33}{33 + 68} \times 10 \text{ V}$$
$$= -1.73 \text{ V}$$

$$R_{BB} = 68 \text{ k}\Omega \parallel 33 \text{ k}\Omega = 22.2 \text{ k}\Omega$$

Now, we can determine  $I_{E1}$  from

$$I_{E1} = \frac{V_{BB} - (-5) - 0.7}{4.7 + \frac{R_{BB}}{\beta + 1}}$$
$$= \frac{-1.73 + 5 - 0.7}{4.7 + \frac{22.2}{101}} = 0.52 \text{ mA}$$

$$I_{C1} = \alpha_1 \times 0.52 = 0.99 \times 0.52 \simeq 0.52 \text{ mA}$$

The collector current  $I_{C1}$  and the 8.2-k $\Omega$  resistor it feeds can be replaced by a Thévenin equivalent as shown in Fig. (b). Thus

When the amplifier is loaded with  $R_L = 100$  Project Exam Help  $G_v = 1.73 \times 10^5 \text{ Project Exam Help}$ 

$$1.73 \times 10^5 \times \frac{100}{3000}$$
 $G_v = 5581 \text{ V/V}$ 
https://powcoder.com

If the original amplifier is loaded in  $R_L = 100 \Omega$ ,

$$G_v = 8513 \times \frac{100}{152 + 100}$$
 3378 We Chat powcoder  $V_{I_{C2}}$ 

original amplifier is much lower than that of the modified one, the overall voltage gain realized when the original amplifier is loaded in  $100-\Omega$  resistance is much lower than that obtained with the modified design. Thus, replacing the 15.7-k $\Omega$  resistance with a constant-current source is an excellent modification to make!

$$I_{E2} = \frac{5 - 0.74 - 0.7}{3.3 + \frac{8.2}{101}}$$

= 1.05 mA

$$I_{C2} \simeq 1.04 \text{ mA}$$

The collector current  $I_{C2}$  and the 5.6-k $\Omega$  resistance it feeds can be replaced by a Thévenin equivalent as shown in Fig. (c). Thus





$$I_{E3} = \frac{0.824 - 0.7 - (-5)}{2.4 + \frac{5.6}{101}}$$

= 2.1 mA

$$V_O = -5 + 2.1 \times 2.4 = 0 \text{ V}$$

(b) 
$$R_{\text{in}} = 68 \text{ k}\Omega \parallel 33 \text{ k}\Omega \parallel r_{\pi 1}$$

where

$$r_{\pi 1} = \frac{\beta}{g_{m1}}$$
 
$$g_{m1} = \frac{I_{C1}}{V_T} = \frac{0.52}{0.025} = 20.8 \text{ mA/V}$$
 
$$r_{\pi 1} = \frac{100}{20.8} = 4.81 \text{ k}\Omega$$

$$R_{\rm in} = 68 \text{ k}\Omega \parallel 33 \parallel 4.81 \simeq 4 \text{ k}\Omega$$

$$R_{\text{out}} = 2.4 \text{ k}\Omega \parallel \left( r_{e3} + \frac{5.6 \text{ k}\Omega}{\beta + 1} \right)$$

$$r_{e3} = \frac{V_T}{I_{E3}} = \frac{25 \text{ mV}}{2.1 \text{ mA}} = 11.9 \Omega$$

$$i_{c1} = g_{m1}v_i = 20.8v_i$$

$$R_{i2} = r_{\pi 2} = \frac{\beta}{g_{m2}}$$

$$g_{m2} = \frac{I_{C2}}{V_T} = \frac{1.04 \text{ mA}}{0.025 \text{ V}} = 41.6 \text{ mA}$$

$$r_{\pi 2} = \frac{100}{41.6} = 2.4 \text{ k}\Omega$$

$$i_{b2} = g_{m1}v_i \frac{8.2}{8.2 + 2.4} = 16.1v_i$$

$$i_{c2} = \beta_2 i_{b2} = 100 \times 16.1 v_i = 1610 v_i$$

$$R_{i3} = (\beta + 1)(r_{e3} + 2.4 \text{ k}\Omega)$$

$$= 101(0.0119 + 2.4) = 243.6 \text{ k}\Omega$$

$$i_{b3} = i_{c2} \times \frac{5.6}{5.6 + 243.6} = 0.0225i_{c2}$$

$$= 0.0225 \times 1610v_i = 36.18v_i$$

$$i_{e3} = (\beta + 1)i_{b3}$$

$$= 101 \times 36.18 = 3654v_i$$

## $R_{\text{out}}$ As significant Project $i_{e3}$ E2 $\frac{4}{2}$ $k_{\text{out}}$ Help

 $=65.5 \Omega$ 

Thus

# (c) Refer to Fig. (https://



$$v_{gs1} = i_i \left( r_{o1} \parallel \frac{1}{g_{m1}} \right)$$

$$R_i \equiv \frac{v_{gs1}}{i_i} = \frac{1}{q_{m1}} \parallel r_o$$

$$i_{osc} = g_{m2}v_{gs2} = g_{m2}v_{gs1} = g_{m2}\left(\frac{1}{g_{m1}} \parallel r_{o1}\right)i$$

$$A_{is} \equiv \frac{i_{osc}}{i_i} = g_{m2} - \frac{\frac{1}{g_{m1}} r_{o1}}{\frac{1}{g_{m1}} + r_{o1}}$$

This figure belongs to Problem 9.125.





$$=\frac{g_{m2}}{g_{m1}}\frac{1}{1+\frac{1}{g_{m1}r_{o1}}}$$

Since  $g_{m1}r_o \gg 1$ ,

$$A_{is} \simeq \frac{g_{m2}}{g_{m1}} \left( 1 - \frac{1}{g_{m1} r_{o1}} \right)$$
$$= A_{is}|_{ideal} \left( 1 - \frac{1}{g_{m1} r_{o1}} \right)$$

where

$$A_{is}|_{ideal} = \frac{g_{m2}}{g_{m1}}$$

Finally, from inspection,

$$R_o = r_{o2}$$

**9.126** (a) Refer to Fig. P9.126. The current  $I_D$  in each of the eight transistors can be found by inspection. Then,  $g_m$  of each transistor can be determined as  $2I_D/|V_{OV}|$  and  $r_o$  as  $|V_A|/I_D$ . The results are given in the table below:

and since the output resistance is

$$R_o = r_{o6} \parallel r_{o8} = \frac{1}{2} \frac{|V_A|}{I}$$

then

$$v_o = 4 i_d R_o = 4 \times \frac{I}{2|V_{OV}|} \times \frac{1}{2} \frac{|V_A|}{I} \times v_{id}$$

Thus

$$A_d \equiv \frac{v_o}{v_{id}} = \frac{|V_A|}{|V_{OV}|}$$
 Q.E.D.

(c) See figure on next page. With  $v_{icm}$  applied to both input terminals, we can replace each of  $Q_1$  and  $Q_2$  with an equivalent circuit composed of a controlled current,  $v_{icm}/2R_{SS}$  in parallel with a very large output resistance ( $R_{o1}$  and  $R_{o2}$  which are equal). The resistances  $R_{o1}$  and  $R_{o2}$  will be much larger than the input resistance of each of the mirrors  $Q_3-Q_5$  and  $Q_4-Q_6$  and thus we can neglect  $R_{o1}$  and  $R_{o2}$  altogether. The short-circuit output current of the  $Q_4-Q_6$  mirror will be

### (b) See figure below. Observe that at the output project $g_{mb}$ (i.e., $g_{mb}$ ) and the total strategie below. Observe that at the output project $g_{mb}$ (i.e., $g_{mb}$ ) $g_{mb}$ (i.e., $g_{mb}$

$$i_{d} = g_{m1,2} \frac{v_{id}}{2}$$

$$= \frac{I}{2|V_{OV}|} v_{id} \quad \frac{1}{|V_{OV}|} v_{id} \quad \frac{v_{icm}}{|V_{OV}|} v_{id}$$

This table belongs to Problem 9.126.

|            |                      | A 1                  |                      |                      |                      |                       |                      |                       | 1   |
|------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|----------------------|-----------------------|-----|
| Transistor | $Q_1$                | 40                   | $Q_3$                | <b>V</b> & (         |                      | 166                   | Q <sub>7</sub> V     | <b>10:0</b>           | der |
| $I_D$      | $\frac{I}{2}$        | $\frac{I}{2}$        | $\frac{I}{2}$        | $\frac{I}{2}$        | $\frac{I}{2}$        | I                     | $\frac{I}{2}$        | I                     |     |
| $g_m$      | $\frac{I}{ V_{OV} }$ | $\frac{2I}{ V_{OV} }$ | $\frac{I}{ V_{OV} }$ | $\frac{2I}{ V_{OV} }$ |     |
| $r_o$      | $\frac{2 V_A }{I}$   | $\frac{ V_A }{I}$     | $\frac{2 V_A }{I}$   | $\frac{ V_A }{I}$     |     |

This figure belongs to Problem 9.126, part (b).



This figure belongs to Problem 9.126, part (c).



and the output resistance will be  $r_{o6}$ . The short-circuit output current of the  $Q_3 - Q_5$  mirror will be

$$|A_{cm}| = \frac{r_{o6} \parallel r_{o8}}{R_{SS}} \frac{1}{g_{m7} r_{o7}}$$
 Q.E.D.

 $i_{0S} = A_{Sm3}$  signment Project  $E_{NS}$  am Help

$$= \left(1 - \frac{|V_{OV}|}{2|V_A|}\right) \left(\frac{v_{icm}}{2R_{SS}}\right)$$

and the output resistance with the ross. Sin Pros WCO  $\frac{1}{|V_{cm}|}$  [ $I/|V_{ov}|$ ] [ $I/|V_{ov}|$ ] [ $I/|V_{ov}|$ ] [ $I/|V_{ov}|$ ]

inder larger than the input resistance of the  $Q_7 - Q_8$  mirror ( $\simeq 1/g_{m7}$ ), most of  $i_{o5}$  will flow into  $Q_7$ , resulting in an output short-pirouit

current i<sub>o8</sub>: Add WeChat

$$i_{o8} = \frac{g_{m8}}{g_{m7}} \left( 1 - \frac{1}{g_{m7} r_{o7}} \right) i_{o5}$$

$$= 2\left(1 - \frac{1}{g_{m7}r_{o7}}\right)i_{o5}$$

$$= \left(1 - \frac{|V_{OV}|}{2|V_A|}\right) \left(1 - \frac{1}{g_{m7}r_{o7}}\right) \frac{v_{icm}}{R_{SS}}$$

and the output resistance is  $r_{o8}$ . Thus, at the output node we have a net current

$$i_{o6} - i_{o8} = \left(1 - \frac{|V_{OV}|}{2|V_A|}\right) \left(\frac{1}{g_{m7}r_{o7}}\right) \left(\frac{v_{icm}}{R_{SS}}\right)$$

$$\simeq \left(\frac{1}{g_{m7}r_{o7}}\right)\left(\frac{v_{icm}}{R_{SS}}\right)$$

This current flows into the output resistance  $(r_{o6} \parallel r_{o8})$  and thus produces an output voltage

$$v_o = \frac{r_{o6} \parallel r_{o8}}{R_{SS}} \frac{1}{g_{m7} r_{o7}} v_{icm}$$

and the common-mode gain becomes

$$|A_{cm}| = \frac{1}{|V_A|/I} \frac{|I/|V_{OV}|}{|I/|V_{OV}|} \frac{1}{2} \frac{2|V_{OV}|}{|V_A|} = \frac{1}{4} \frac{|V_{OV}|}{|V_A|}$$

$$CMRR = 4 \left| \frac{V_A}{V_{OV}} \right|^2 \qquad Q.E.D.$$

(e) The upper limit on  $V_{ICM}$  is determined by  $Q_1$  and  $Q_2$  remaining in saturation, thus

$$V_{ICM_{\text{max}}} = V_{DD} - |V_{SG}| + |V_t|$$

$$=V_{DD}-|V_{OV}|$$

The lower limit on  $V_{ICM}$  is determined by the need to keep the bias current source in saturation, i.e. maintaining a minimum voltage across it of  $|V_{OV}|$ , thus

$$V_{ICM_{min}} = -V_{SS} + |V_{OV}| + |V_{GS}|$$

$$= -V_{SS} + 2|V_{OV}| + |V_t|$$

Thus

$$-V_{SS} + |V_t| + 2|V_{OV}| < V_{ICM} < V_{DD} - |V_{OV}|$$

The output linear range is

$$|V_{DD} - |V_{OV}| \le v_O \le -V_{SS} + |V_{OV}|$$



$$R = \frac{+3.6 - (-4.3)}{40.1} = 79 \text{ k}\Omega$$
See Figure (a) for the de analysis.
$$V_A = -4.3 \text{ V} \quad V_B = -0.7 \text{ V} \quad V_C = +0.7 \text{ V}$$

$$V_D = 0 \text{ V} \quad V_E = +1.6 \text{ V} \quad V_E = +4.3 \text{ V}$$
(b) See table below. Results are obtained from 
$$\frac{v_{c3}}{v_{t1}} = \frac{1}{2} \times g_{m1,2} \times 1.65 \text{ M}\Omega$$

(b) See table below. Results are obtained from Fig. (a) and

$$g_m = \frac{I_C}{V_T}$$

$$r_o = \frac{|V_A|}{I_C}$$

| Transistor | $I_C$ (mA) | $g_m \text{ (mA/V)}$ | $r_o$ (M $\Omega$ ) |
|------------|------------|----------------------|---------------------|
| $Q_1$      | 0.1        | 4                    | 2                   |
| $Q_2$      | 0.1        | 4                    | 2                   |
| $Q_3$      | 0.1        | 4                    | 2                   |
| $Q_4$      | 1.0        | 40                   | 0.2                 |
| $Q_5$      | 0          | 0                    | $\infty$            |
| $Q_A$      | 0.1        |                      |                     |
| $Q_B$      | 0.2        |                      |                     |
| $Q_C$      | 0.1        |                      | 2                   |
| $Q_D$      | 1.0        |                      | 0.2                 |
| $Q_E$      | 0.1        |                      |                     |
| $Q_F$      | 0.1        |                      |                     |
| $Q_G$      | 0.2        |                      | 1                   |

$$\frac{}{v_{c3}} \stackrel{\sim}{=} 1$$

Thus

$$\frac{v_o}{v_{id}} = 3300 \text{ V/V}$$

Observe that the polarity of the two input terminals are correct.

(d) 
$$R_{id} = 2 r_{\pi 1,2}$$
  
=  $2 \times \frac{\beta}{g_{m1,2}} = 2 \times \frac{100}{4} = 50 \text{ k}\Omega$ 

$$R_o = r_{o4} \parallel r_{oD} \parallel \left[ r_{e4} + \frac{r_{oC} \parallel \beta r_{o3}}{\beta + 1} \right]$$
$$= 0.2 \parallel 0.2 \parallel \left[ 0.025 \times 10^{-3} + \frac{2 \parallel 200}{101} \right]$$

$$\simeq (0.2 \parallel 0.2 \parallel 0.02) \ \text{M}\Omega$$

$$= 16.7 \text{ k}\Omega$$

(e)  $V_{ICM_{\text{max}}}$  is limited by  $Q_2$  saturating,

$$V_{ICM_{\text{max}}} = V_G + 0.4 = +4.7 \text{ V}$$

This figure belongs to Problem 9.127, part (c).



This figure belongs to Problem 9.127, part (g).



 $V_{ICM_{\min}}$  is limited by  $Q_B$  saturating,

$$V_{ICM_{\min}} = V_A - 0.4 + 0.7$$

$$= -4.3 - 0.4 + 0.7 = -4 \text{ V}$$

(f) The voltage at the base of  $Q_4$  can rise to  $(V_{B3}+0.4)$  before  $Q_3$  saturates, i.e. to +3.6+0.4=+4 V. Thus  $v_O$  can go to  $+4-V_{BE4}=+3.3$  V. The output voltage can go down to the value that causes the voltage at C to be 0.4 V below the base voltage of  $Q_C$ . Thus

$$v_{O_{\min}} = -4.3 - 0.4 + V_{EB5} = -4 \text{ V}$$

Thus

$$-4.0 \text{ V} \le v_O \le +3.3 \text{ V}$$

(g) With  $v_O$  at its maximum positive value of +3.3 V, and  $R_L$  small enough to cause  $Q_2$  to cut off, the conditions in the circuit become as shown in Fig. (c).

The value of  $R_L$  can be found from

$$R_L = \frac{3.3}{9.1} = 363 \ \Omega$$

With  $v_O$  at its maximum negative value of -4 V and with  $R_L$  sufficiently small to cause  $Q_1$  to cut off,  $Q_2$  will conduct 200  $\mu$ A which leaves  $Q_3$  with zero current (cut off). Transistor  $Q_4$  also cuts off, and the circuit conditions become as shown in Fig. (d).



Thus

$$R_L = \frac{4}{9.1} = 360 \ \Omega$$

#### 9.128 DC analysis

(a) 
$$I_{REF} = 10 \,\mu\text{A} = \frac{1}{2} \times 40 \times \frac{5}{5} (V_{GS_A} - V_t)^2$$

$$\Rightarrow V_{GS_A} = 1.71 \text{ V} \approx 1.7 \text{ V}$$

$$10 = \frac{1}{2} \times 20 \times \frac{5}{5} (V_{GS_{EF}} - 1)^2$$

$$\Rightarrow V_{GS_{EF}} = 2 \text{ V}$$

$$R = \frac{1 - (-3.3)}{10 \,\mu\text{A}} = 430 \,\text{k}\Omega$$

(b) See figure (a) below.

$$V_{GS1} = V_{GS2} = V_{GSA} \approx 1.7 \text{ V}$$

$$V_{GS3} = \sqrt{\frac{2 \times 10}{20 \times \frac{10}{5}}} + 1 = 1.71 \text{ V} \approx 1.7 \text{ V}$$

$$V_{GS5} = V_{GS3} = 1.7 \text{ V}$$

For 
$$Q_6$$
:  $50 = \frac{1}{2} \times 40 \times \frac{50}{5} (V_{GS6} - V_t)^2$ 

(c)

| Transistor | $I_D$     | $V_{GS}$ | $g_m$       | $r_o$       |
|------------|-----------|----------|-------------|-------------|
|            | $(\mu A)$ | (V)      | $(\mu A/V)$ | $(M\Omega)$ |
| $Q_1$      | 10        | 1.7      | 28.3        | 5           |
| $Q_2$      | 10        | 1.7      | 28.3        | 5           |
| $Q_3$      | 10        | 1.7      | 28.3        | 5           |
| $Q_4$      | 20        | 1.7      | 56.6        | 2.5         |
| $Q_5$      | 10        | 1.7      | 28.3        | 5           |
| $Q_6$      | 50        | 1.5      | 200         | 1           |
| $Q_7$      | 0         | -1.5*    | 0           | $\infty$    |
| $Q_A$      | 10        | 1.7      | 28.3        | 5           |
| $Q_B$      | 20        | 1.7      | 56.6        | 2.5         |
| $Q_C$      | 10        | 1.7      | 28.3        | 5           |
| $Q_D$      | 50        | 1.7      | 141.4       | 1           |
| $Q_E$      | 10        | 2        | 20          | 5           |
| $Q_F$      | 10        | 2        | 20          | 5           |
|            |           |          |             |             |

\* Cut-off.

(d) Refer to Fig. (b). The total resistance at the source of the cascode transistor  $Q_5$  is  $(r_{o2} \parallel r_{o4})$ . Thus the output resistance of the cascode

 $V_C = +1.5 \text{ V},$   $V_D = 0 \text{ V}$   $V_E = +1 \text{ V},$   $V_T = +2.7 \text{ V}$ and the total resistance at the drain of  $Q_5$  will be

 $= [(28.3 \times 5)(5 \parallel 2.5)] \parallel 5$ 

### $= 4.9 \text{ M}\Omega$ This figure belongs to rable 10.12 (Art (4))



This figure belongs to Problem 9.128, part (d).



The voltage gain to the drain of  $Q_5$  can be found

as 
$$\underset{v_{i,j}}{Assignment}$$
 Project + E xam Help  $\underset{v_{i,j}}{\underline{v}_{(i,j)}} = g_{m1,2}R_{total}$  28.3 × 4.9 = 138.7 V/V

The gain of the source-follower output stage is

$$\frac{v_o}{v_{d5}} = \frac{(r_{o6} \parallel r_{oD}) + \frac{1}{g_{m6}}}{(r_{o6} \parallel r_{oD}) + \frac{1}{g_{m6}}} PS://powcoder!eam$$
Thus

$$=\frac{1\parallel1}{(1\parallel1)+\frac{1}{200}}\text{Add} \text{ WeChat} \xrightarrow{-4.3\text{ V}\leq v_o\leq+0.5\text{ V}} \text{ (a) the depicted in Fig. (c)}.$$

and the overall voltage gain is

$$\frac{v_o}{v_{id}} = 138.7 \text{ V/V}$$

$$R_{\rm in}=\infty$$

$$R_o = r_{oD} \parallel r_{o6} \parallel \left(\frac{1}{g_{m6}}\right)$$

$$=1\parallel1\parallel\frac{1}{200}$$

$$\simeq 5~k\Omega$$

(e) 
$$V_{ICM_{\text{max}}} = V_G + |V_t|$$

$$= 3.3 + 1 = +4.3 \text{ V}$$

$$V_{ICM_{\min}} = V_{B\min} + V_{GS1,2}$$

$$= V_A - |V_t| + V_{GS1,2}$$

$$= -3.3 - 1 + 1.7 = -2.6 \text{ V}$$

Thus

$$-2.6 \text{ V} \le V_{ICM} \le 4.3 \text{ V}$$



Observe that  $Q_6$  is cut off and  $Q_7$  has not yet conducted. Thus all the load current is sourced by  $Q_D$ . It follows that the maximum negative load current must be  $50 \,\mu A$ 

$$50 = \frac{1 \text{ V}}{R_L}$$

$$\Rightarrow R_L = 20 \text{ k}\Omega$$

(h) With  $R_L = 2 \text{ k}\Omega$  and  $v_O$  is at its maximum allowable value (to be determined), the circuit conditions are as indicated in Fig. (d).



With  $R_L = 2 \text{ k}\Omega$  and  $v_O$  is at its minimum allowable value (to be determined), the circuit conditions become as shown in Fig. (e).



Here

$$V_{C_{\text{max}}} = V_E + |V_t| = 2 \text{ V}$$

Now

$$I_{D6} = \frac{\hat{V}_o}{R_I} + 50 \,\mu\text{A}$$

Here  $Q_7$  turns on and its current becomes

$$I_{D7} = \left(\frac{\hat{V}_o}{2} - 0.05\right) \text{ mA}$$

$$I_{D7} = \frac{1}{2} \mu_p C_{ox} \left( \frac{W}{L} \right)_7 (-\hat{V}_o - V_{Cmin} - |V_t|)^2$$

= 
$$\left(\frac{\hat{V}_{o}}{2}\right)$$
 ignment Project Exam Help  
But  $\frac{\hat{V}_{o}}{2} - 0.05 = \frac{1}{2} \times 20 \times 20 \times 10^{-3} (-\hat{V}_{o} + 4.3 - 1)^{2}$ 

 $I_{D6} = \frac{1}{2} \mu_n C_{ox} \left( \frac{W}{L} h t t p \hat{S} \right) / powco \hat{d} \hat{e}^{1.45} Com$ 

$$\frac{\hat{V}_{o}}{\frac{2}{2}} + 0.05 = \frac{1}{2} \times 40 \times 10 \times 10^{-3} (2 - \hat{V}_{o} - 1)^{2} -1.45 \text{ V} \leq v_{o} \leq +0.17 \text{ V}$$

$$\Rightarrow \hat{V}_{o} = 0.17 \text{ V} \quad Add \quad We Chat powcoder$$