CS1231/CS1231S (AY2020/21 Semester 1) Exam Answer Keys

(Workings/explanations on page 5 onwards.)

Part A:

- 1. D 2. B 3. D 4. C 5. D 6. C
- 7. **A** 8. **C** 9. **B** 10. **D** 11. **C** 12. **D**

Part B:

13. A, B, C 14. A, B 15. B, D 16. B, D 17. A, B, C

18. [Total: 5 marks]

Answer:

- (a) 1. (Reflexivity) For all $(a, b) \in A$, we have ab = ab and so (a, b) R (a, b).
 - 2. (Symmetry)
 - 2.1. Let $(a, b), (c, d) \in A$ such that (a, b) R (c, d).
 - 2.2. Then ab = cd by the definition of R.
 - 2.3. Thus cd = ab by the symmetry of =.
 - 2.4. So (c,d) R (a,b) by the definition of R.
 - 3. (Transitivity)
 - 3.1. Let $(a, b), (c, d), (e, f) \in A$ such that (a, b) R (c, d) and (c, d) R (e, f).
 - 3.2. Then ab = cd and cd = ef by the definition of R.
 - 3.3. Thus ab = ef by the transitivity of =.
 - 3.4. So (a, b) R (e, f) by the definition of R.

(b)
$$[(1,1)] = \{(a,b) \in A : (1,1) \ R \ (a,b)\} = \{(a,b) \in A : ab = 1 \times 1 = 1\} = \{(1,1)\}.$$

 $[(4,3)] = \{(a,b) \in A : (4,3) \ R \ (a,b)\} = \{(a,b) \in A : ab = 4 \times 3 = 12\}$
 $= \{(1,12), (2,6), (3,4), (4,3), (6,2), (12,1)\}.$

19. [Total: 4 marks]

Answer:

- (a) $\{\{1231,2040,3230\},\{1101,2030,2103\},\{2100,2106\}\},$ $\{\{1231,2040,3230\},\{2030,2103\},\{1101,2100,2106\}\}.$
- (b) {{1101,1231}, {2030,2040,2100}, {2103,2106,3230}}, {{1101,1231}, {2030,2040,2106}, {2100,2103,3230}}, {{1101,2040}, {1231,2030,2100}, {2103,2106,3230}}, {{1101,2040}, {1231,2030,2106}, {2100,2103,3230}}.

20. Counting and Probability [Total: 20 marks]

- (a) **3240**. [3 marks]
- (b) (i) **15** [1 mark]; (ii) **55** or **35** [2 marks]
- (c) $\frac{1}{8}$ [3 marks]
- (d) (i) 512 [1 mark]; (ii) 448 [2 marks]
- (e) $\frac{16}{23}$ or **0**. **696** . (See page 8 for working.) [4 marks]

(f)

Suppose all the scores are different. We may then arrange them in strictly increasing order: $s_1 < s_2 < \dots < s_{21}$. The smallest possible scores are $s_1 = 0$, $s_2 = 1$, \dots , $s_{21} = 20$. Summing the scores we have $0 + 1 + 2 + \dots + 20 = 210 > 200$, hence a contradiction. Therefore, the scores cannot be all different. [4 marks]

21. Graphs and Trees [Total: 18 marks]

- (a) Weight of MST = **251** [1 mark] List of edges: $\{e, g\}, \{g, h\}, \{b, d\}, \{d, g\}, \{f, g\}, \{a, d\}, \{c, e\}$. [2 marks]
- (b) $\frac{n(n-1)}{4} [2 \text{ marks}]$

By the definition of complement graph, the union graph of G and \bar{G} is a complete graph with n vertices, which has $\binom{n}{2} = \frac{n(n-1)}{2}$ edges. Since G has half of this number of edges, therefore it has $\frac{n(n-1)}{4}$ edges.

(It's okay if students give the correct answer without working/explanation.)

(c) From part (b), a self-complementary graph with n vertices has $\frac{n(n-1)}{4}$ edges.

If n=4k+2, then there are $\frac{(4k+2)(4k+1)}{4}=\frac{(2k+1)(4k+1)}{2}$ edges. Since both (2k+1) and (4k+1) are odd, their product is odd (Tutorial #1 question 9 or Lemma 1). As odd number is not divisible by 2, the number of edges would not be an integer. Therefore, there are no self-complementary simple undirected graph with 4k+2 vertices. [4 marks]

(It is okay if students didn't quote Tutorial #1 question 9, as that is a basic result.)

(d) [4 marks]

(e) [5 marks]

There are 9 non-isomorphic rooted trees with 5 vertices. Students need to draw the remaining 7 of them.

22. n = 212, x = 2, y = 5, z = 5. [3 marks] (See explanation on page 9.)

23. [Total: 8 marks]

- (a) No. It can be readily verified that there is exactly one equivalence class with respect to R_6 . (More generally, the counterexamples are precisely those R_n 's where n is a product of at least two distinct primes; see the theorem on page 9.)
- (b) Yes.
- 1. Let n be a prime number.
- 2. We prove by contradiction that $a^k \not\equiv 0 \pmod{n}$ for all $a \in A_n$ and all $k \in \mathbb{Z}^+$.
 - 2.1. Let $a \in A_n$ and $k \in \mathbb{Z}^+$ such that $a^k \equiv 0 \pmod{n}$.
 - 2.2. Then gcd(a, n) = 1 by Proposition P.
 - 2.3. Use Theorem 8.6.19 to find a multiplicative inverse b of a modulo n.
 - 2.4. Then we can deduce from line 2.1 that $a^k b^{k-1} \equiv 0 \cdot b^{k-1} = 0 \pmod{n}$.

2.5. Note
$$a^k b^{k-1} = \underbrace{a \cdot a \cdot \cdots \cdot a}_{k \ a's} \cdot \underbrace{b \cdot b \cdot \cdots \cdot b}_{(k-1) \ b's} = a \underbrace{(ab)(ab) \dots (ab)}_{(k-1) \ ab's}$$

$$\equiv a \cdot 1 \cdot 1 \cdot \cdots \cdot 1 \pmod{n} \qquad \text{as } b \text{ is a multiplicative inverse}$$
of $a \mod n$;
$$= a.$$

- 2.6. Combining lines 2.4 and 2.5, we have $a \equiv 0 \pmod{n}$.
- 2.7. So Proposition P implies $gcd(a, n) \neq 1$, which contradicts line 2.2.
- 3. It follows from line 2 that all elements of A_n are R_n -related.
- 4. So there is exactly one equivalence class with respect to R_n .

Alternative argument for block 2.

- 2. We claim that $a^k \not\equiv 0 \pmod{n}$ for all $a \in A_n$ and all $k \in \mathbb{Z}^+$.
 - 2.1. Let $a \in A_n$ and $k \in \mathbb{Z}^+$.
 - 2.2. Then $a \not\equiv 0 \pmod{n}$ by Proposition P.
 - 2.3. \therefore $n \nmid a$ by the alternative definitions of congruence.
 - 2.4. \therefore $n \nmid a^k$ by Euclid's Lemma, as n is prime.
 - 2.5. \therefore $a^k \not\equiv 0 \pmod{n}$ by the alternative definitions of congruence.

Explanations/workings

Part A

Q1. Answer: D.

1 | 0 as $0 = 1 \times 0$. Remember from our definition of remainders that $0 \le -1 \mod 12 < 12$.

- Q2. Answer: B.
 - Take any integer $n \ge 2$. Then (n + 2)! + 2, (n + 2)! + 3, ..., (n + 2)! + (n + 2) are all composite.
 - Let n = 3. Then whenever a is a positive integer, there must be an even number in a, a + 1, a + 2, a + 3 that is at least 4. This even number is not prime.
- Q3. Answer: D.

Let a = 10 and b = 2. Then gcd(a, a + 2) = 2 and $gcd(a, b) = 2 \neq 4 = gcd(a + b, a - b)$

- Q4. Answer: C.
 - (i) If $x, y, z \in \mathbb{Z}$, then $10x + 15y 35z \equiv 5 \pmod{5}$ but $2 \not\equiv 5 \pmod{5}$.
 - (ii) Note $\gcd(10,15)=5$. Apply Bézout's Lemma to find $r,s\in\mathbb{Z}$ such that 5=10r+15s. Next, note that $\gcd(5,42)=1$. Apply Bézout's Lemma to find $w,z\in\mathbb{Z}$ such that 1=5w+42z. Then 1=(10r+15s)w+42z=10(rw)+15(sw)+42z.
- Q5. Answer: D.

Recall that there are infinitely many primes. Let n be a prime number and $a \in \mathbb{Z}$ satisfying $a \not\equiv 0 \pmod{n}$. Then $\gcd(a,n) = 1$ and so a has a multiplicative inverse modulo n.

- Q6. Answer: C.
 - (i) For example, $2 \equiv 4 \pmod{2}$ but $2 \not\equiv 4 \pmod{4}$.
 - (ii) If mn | (a b), then n | (a b).
- Q7. Answer: A.

Let $R_1 = \{(0,1), (1,2)\}$ and $R_2 = \{(2,3), (3,4)\}$. Then $\bigcap_{i=1}^n R_i = \emptyset$ is both symmetric and transitive, but R_1 and R_2 are neither symmetric nor transitive. If $\bigcap_{i=1}^n R_i$ is reflexive, then (x,x) is in each R_i for all $x \in \mathbb{Z}$, and thus each R_i is reflexive.

- Q8. Answer: C.
 - (1,2) R(2,1) and (2,1) R(1,2), but $(1,2) \neq (2,1)$.
 - If $a, b, c, d, e, f \in \mathbb{Z}^+$ such that $ab \leq cd$ and $cd \leq ef$, then $ab \leq ef$.
- Q9. Answer: B.

With respect to the partial order "divides" on $\mathbb{Z}_{\geqslant 2}$, the number 2 is minimal, but it is not smallest and it is not the unique minimal element.

Q10. Answer: D.

Expected value is $\frac{1}{6} \times (1+2+3+4+5+6) = 3.5$ for rolling a fair die. By linearity of expectation, expected sum for rolling three dice is $3.5 \times 3 = 10.5$.

Q11. Answer: C.

The given statement can be simplified to $c \lor \sim d \lor \sim e$. Since the only assignment to make this statement false is c = false, d = true, e = true, the probably is $1/2^3$.

Q12. Answer: D.

The graph is shown above.

There are **7** walks of length 3: $1 \rightarrow 1 \rightarrow 1 \rightarrow 4$; $1 \rightarrow 1 \rightarrow 2 \rightarrow 4$; $1 \rightarrow 4 \rightarrow 2 \rightarrow 4$; $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$; $1 \rightarrow 1 \rightarrow 4 \rightarrow 4 \rightarrow 4$; $1 \rightarrow 2 \rightarrow 4 \rightarrow 4$; $1 \rightarrow 4 \rightarrow 4 \rightarrow 4 \rightarrow 4$.

Alternatively, compute A^3 and obtain its A_{14}^3 value.

Part B.

Q13. Answer: A,B,C.

Q14. Answer: A,B.

- C. $2^3 = 8$ and $2^6 = 64$. Note $3 \equiv 6 \pmod{3}$ but $2^3 \not\equiv 2^6 \pmod{3}$.
- D. gcd(2,3) = 1 and gcd(2,6) = 2. Note $3 \equiv 6 \pmod{3}$ but $gcd(2,3) \not\equiv gcd(2,6) \pmod{3}$.

Q15. Answer: B,D.

- A. Following the left path up, we see that n is a product of 3 primes. Following the right path up, we see that n is a product of 2 primes. This is impossible by the Fundamental Theorem of Arithmetic.
- B. Let $n = pq^2$, where p, q are distinct primes.
- C. There are exactly 3 vertices adjacent to the minimum element. So n has exactly 3 distinct prime factors. However, following the paths up, we see that n is a product of 2 primes. This is impossible by the Fundamental Theorem of Arithmetic.
- D. Let n = pqr, where p, q, r are distinct primes.

Q16. Answer: B,D.

- A. 180 is not largest because $21 \nmid 180$.
- B. 180 is maximal because no $a \in A$ that is different from 180 satisfies 180 | a.
- C. 42 is not largest because $180 \nmid 42$.
- D. 42 is maximal because no $a \in A$ that is different from 42 satisfies 42 | a.

Q17. Answer: A,B,C.

With respect to this partial order, the numbers 4 and 18 are incomparable. So one can linearize to make either bigger than the other.

Note that 6 | 36. So 6 must be smaller than 36 in any linearization.

Part C Q19.

(a)

(b)

Q20.

(a)

The problem is equivalent to finding the number of non-negative solutions for the following equation: x' + y' + z' = 79.

Using the multiset formula: $n=3, r=79; \binom{r+n-1}{r}=\binom{79+3-1}{79}=\binom{81}{79}=\binom{81}{2}=\mathbf{3240}.$

(If students solve the given equation assuming x, y, z are non-negative integers, the answer would be $\binom{90}{88} = 4005$.)

(b)

- (i) The two 'I's are fixed. Therefore, there are $\binom{6}{2} = 15$ ways. (1 mark)
- (ii) Interpretation 1: The I's are distinguishable. There are $\binom{8}{4}=70$ ways to choose 4 tiles, out of which 15 are with duplicates. Therefore, there are $70-15=\mathbf{55}$ ways to choose 4 tiles without duplicates.

Interpretation 2: The I's are indistinguishable. There are $\binom{6}{4} = 15$ ways for no I and $\binom{6}{3} = 20$ ways for one I. So there are 15 + 20 = 35 ways.

We accept both interpretations. (2 marks)

(c)

$$\binom{10}{4} \left(\frac{1}{2\sqrt{x}}\right)^6 \left(-\frac{1}{2}\right)^4 = 210 \left(\frac{1}{64x^3}\right) \left(\frac{1}{16}\right) = 105$$

$$x^3 = \frac{210}{(64)(16)(105)} = \frac{1}{512} = \frac{1}{2^9}$$

$$\therefore x = \frac{1}{2^3} = \frac{1}{8}$$

(d)

- (i) There are $2^{(n^2)}$ directed graphs on n vertices. For n=3, $2^{(n^2)}=2^{(3^2)}=2^9=$ **512.** (1 mark)
- (ii) There are $2^6 = 64$ directed graphs on 3 vertices a, b, c without any loops. Therefore there are 512 64 = 448 directed graphs on three vertices with a least a loop. (2 marks)

(e)

Let A: Bag 1 from 1994 and bag 2 from 1996, and B: Bag 1 from 1996 and bag 2 from 1994.

$$P(A) = P(B) = \frac{1}{2}$$
.

Let *E*: yellow M&M from bag 1, green M&M from bag 2.

Then $P(E|A) = 0.2 \times 0.16 = 0.032$ (yellow from 1994 and green from 1996)

and $P(E|B) = 0.14 \times 0.1 = 0.014$ (yellow from 1996 and green from 1994)

By Bayes' Theorem,

$$P(A|E) = \frac{P(E|A) \cdot P(A)}{P(E|A) \cdot P(A) + P(E|B) \cdot P(B)} = \frac{0.032 \times \frac{1}{2}}{0.032 \times \frac{1}{2} + 0.014 \times \frac{1}{2}} = \frac{0.016}{0.023} = \frac{16}{23} \text{ or } \mathbf{0.696}.$$

Alternatively:

$$P(Y1994 \mid Y\&G) = \frac{P(Y1994 \land G1996)}{P(Y\&G)} = \frac{P(Y1994 \land G1996)}{P(Y1994 \land G1996) + P(G1994 \land Y1996)}$$
$$= \frac{0.2 \times 0.16}{(0.2 \times 0.16) + (0.1 \times 0.14)} = \frac{16}{23}.$$

Q21.

Q22.

Explanation:

Suppose $n = (xyz)_9 = (zyx)_6$. Then $9^2x + 9y + z = n = 6^2z + 6y + x$. From this, we deduce that 80x + 3y - 35z = 0.

Since $5 \mid 35z$ and $5 \mid 80x$, we know $5 \mid 35z - 80x$ by the Closure Lemma. So $5 \mid 3y$. Hence Euclid's Lemma tells us $5 \mid y$. This implies y = 0 or y = 5 as $y \in \{0,1,2,3,4,5\}$, being a digit in the base-6 representation of a number.

Suppose y=0. Then 80x-35z=0. This simplifies to 16x-7z=0 or 16x=7z. By successively applying Euclid's Lemma 4 times, we deduce that $16 \mid z$. This implies z=0 as $z \in \{0,1,2,3,4,5\}$, being a digit in the base-6 representation of a number. Substituting back gives x=0. All these tell us that n=0, which is not a case we are interested in because the n we want is positive.

So it must be the case that y=5. Then 80x+15-35z=0, and thus 16x+3-7z=0. If z is even, then 3=7z-16x is also even, which is not true. So z is odd. This implies $z\in\{1,3,5\}$, as z is a digit in the base-6 representation of a number. Note that $7\times 1-3=4$ and $7\times 3-3=18$, both of which are not multiples of 16. So z=5 and $x=(7\times 5-3)/16=2$. Hence $n=5\times 6^2+5\times 6+2=212$. It can be directly verified that $212=(255)_9$.

Q23.

Additional information:

Theorem. Let $n \in \mathbb{Z}_{\geqslant 2}$. Then R_n has exactly one equivalence class if and only if n is a product of distinct primes.

Proof. Consider first the "only if" direction. Suppose n is not a product of distinct primes, say,

$$n=p^2m$$
,

where p is a prime number and $m \in \mathbb{Z}^+$. Let a=pm. It can readily be verified that $a \in A_n$. On the one hand, we have

$$a^2 = (pm)^2 = p^2m \cdot m = nm \equiv 0 \pmod{n}$$
.

On the other hand, Proposition P implies $1^2 = 1 \not\equiv 0 \pmod{n}$. So $\sim (a R_n 1)$. It follows that [1] and [a] are different equivalence classes.

Next, consider the "if" direction. Suppose n is a product of distinct primes, say,

$$n=p_1p_2\dots p_\ell,$$

where $p_1, p_2, ..., p_\ell$ are distinct prime numbers and $\ell \in \mathbb{Z}^+$. It suffices to show that $a^k \not\equiv 0 \pmod{n}$ for all $a \in A_n$ and all $k \in \mathbb{Z}^+$.

Let $a \in A_n$ and $k \in \mathbb{Z}^+$. If $\gcd(a,n)=1$, then we can follow the argument in (b). So suppose not. Then there must be $I \subsetneq \{1,2,\ldots,\ell\}$ such that $a=\prod_{i\in I}p_i$. Fix such an I, and pick any $j\in\{1,2,\ldots,\ell\}\setminus I$. Now

 $p_j \nmid (\prod_{i \in I} p_i)^k$ as the p_i 's are distinct and $j \notin I$;

 $\therefore \qquad p_j \nmid a^k \qquad \qquad \text{by the choice of } I;$

 \therefore $n \nmid a^k$ by the transitivity of divisibility, as $p_j \mid n$;

 $a^k \not\equiv 0 \pmod{n}$ by the alternative definitions of congruence.