ToC Class-1: Alphabets and Languages

Computer Science Department RKMVERI

2025-07-23

Alphabet and String

Alphabet (Σ): A **Finite** set of **symbols**.

- Alphabet (Σ): A Finite set of symbols.
 - **1**,2,3
 - {a,b,c,d}
 - {1,2,a,b,c}
 - Binary alphabet: $\{0,1\}$

- Alphabet (Σ): A Finite set of symbols.
 - **1**,2,3
 - {a,b,c,d}
 - {1,2,a,b,c}
 - Binary alphabet: {0,1}
- String over an alphabet: Finite sequence of symbols from the alphabet.

- **Alphabet** (Σ): A **Finite** set of **symbols**.
 - {1,2,3}
 - {a,b,c,d}
 - {1,2,a,b,c}
 - Binary alphabet: {0,1}
- String over an alphabet: Finite sequence of symbols from the alphabet.
 - AUTOMATA is a string over alphabet $\{A, ..., Z\}$.
 - 110000110 is a string over alphabet {0,1}.
 - A is a string over alphabet $\{A, \dots, Z\}$
 - **Empty string:** String without any symbols (we will use *e* to denote empty string).

Kleene closure (*)

- \blacksquare Let Σ be an alphabet.
- Kleene closure (Σ^*) : Set of all strings, including empty string, over Σ .

- \blacksquare Let Σ be an alphabet.
- Kleene closure (Σ^*) : Set of all strings, including empty string, over Σ .

- \blacksquare Let Σ be an alphabet.
- Kleene closure (Σ^*) : Set of all strings, including empty string, over Σ .

 - Finite or Infinite ?
 - Countable or Uncountable ?

- Let Σ be an alphabet.
- Kleene closure (Σ^*) : Set of all strings, including empty string, over Σ .

 - Finite or Infinite ?
 - Countable or Uncountable ?
 - Σ * is Infinite but Countable.
- **Enumeration** of Σ^* .
 - Let $\Sigma = \{a_1, a_2, \dots, a_n\}$.
 - All strings of length k is enumerated before all strings of length k+1.
 - Length k strings are enumerated **lexicographically**, that is $a_{i_1} \ldots a_{i_k}$ proceeds $a_{j_1} \ldots a_{j_k}$ if $0 \le m \le k 1$, $a_{i_m} = a_{j_m}$ and $a_{i_k} < a_{j_k}$.
 - \blacksquare If $\Sigma=\{0,1\}$, then

$$e, 0, 1, 00, 01, 10, 11, 000, \dots$$

Operations on Strings

- Length: Number of symbols in the string.
 - |101| = 3.
 - w = aabbab, |w| = 6.
 - |e| = 0.

- **Length:** Number of symbols in the string.
 - |101| = 3.
 - w = aabbab, |w| = 6.
 - |e| = 0.
- **Occurrence:** Let $w \in \Sigma^*$, can be considered as a function

$$w:\{1,\ldots,|w|\}\to \Sigma$$

such that, w(i) is the symbol in the i^{th} position of w, where $i \in \{1, ..., |w|\}$.

If w = occurrence, then w(1) = o, w(2) = c, w(3) = c, w(4) = u, w(5) = r, w(6) = r, w(7) = e, w(8) = n, w(9) = c.

■ Concatenation: Let $x, y \in \Sigma^*$, then $x \cdot y$ or xy is the string w where:

$$|w| = |x| + |y|,$$

$$w(i) = x(i)$$
 where $i \in \{1, ..., |x|\},\$

$$w(|x|+i) = y(i)$$
 where $i \in \{1, ..., |y|\}.$

- $001 \cdot 110 = 001110.$
- $\mathbf{w} \cdot e = e \cdot w = w.$
- **Associative:** w(xy) = (wx)y.

- **Substring:** A string $v \in \Sigma^*$ is substring of string $w \in \Sigma^*$ if and only if there exists $x, y \in \Sigma^*$ such that w = xvy.
 - ababbabb,aabbba,abbabba,abbabba.
- **Prefix:** If w = xv then x is prefix of w.
 - **abba**bb,**bba**,**abbab**bba.
- **Suffix:** If w = xv then v is prefix of w.
 - ababba,aabbba.
- **Power:** For $w \in \Sigma^*$ and a natural number i, w^i :

$$w^0 = e$$

 $w^{i+1} = w^i \cdot w \text{ for } i \ge 0$

 $\mathbf{w} = ab, \ w^3 = ababab.$

■ **Reversal:** Let $w \in \Sigma^*$, If |w| = 0, then $w^R = w = e$. If |w| = n + 1, then w = va for some $a \in \Sigma$, and $w^r = av^r$. ■ $automata^R = atamotua$.

4 D > 4 A > 4 B > 4 B > B 9 Q P

An inductive proof

- Claim: Let $w, x \in \Sigma^*$, then $(w \cdot x)^R = x^R \cdot w^R$.
 - Example: $(catdog)^R = (dog^R) \cdot (cat)^R = godtac$.
- **Proof:** We use **induction on length of** *x*.
 - Induction Base: |x| = 0, then x = e and,

$$(w \cdot x)^R = (w \cdot e)^R = w^R = e \cdot w^R = e^R \cdot w^R = (e \cdot w)^R = (x \cdot w)^R$$

- Induction Hypothesis: If $|x| \le n$, then $(w \cdot x)^R = x^R \cdot w^R$.
- Induction step: Let |x| = n + 1, then $x = v \cdot a$ for some $v \in \Sigma^*$ and $a \in \Sigma$. Here |v| = n.

$$(w \cdot x)^R = (w \cdot (v \cdot a))^R$$
, Since $x = v \cdot a$
 $= ((w \cdot v) \cdot a))^R$, From associativity of concatenation
 $= a(wv)^R$, From definition of reversal
 $= a \cdot v^R \cdot w^R$, From induction hypothesis
 $= (v \cdot a)^R \cdot w^R$, From definition of reversal
 $= x^R \cdot w^R$, Since $x = v \cdot a$

Language

- **Language** over Σ is a subset of Σ^* .
 - $\{a, abba, ababa, aaaaa, bbbbb\}$ is a language over $\{a, \ldots, z\}$
 - $\{w \in \{0,1\}^* : w \text{ has equal number of 0 and 1}\}.$

Operations on Language

- **Complement:** $L \subseteq \Sigma^*$, then $\overline{L} = \Sigma^* \setminus L$.
- **Concatenation:** $L = L_1 \cdot L_2$ or $L = L_1 L_2$ if,

$$L = \{w \in \Sigma^* : w = x \cdot y \text{ where } x \in L_1, y \in L_2\}$$

• **kleene star:** Consider alphabet Σ and a language $L \subseteq \Sigma^*$. Then,

$$L^* = \{ w \in \Sigma^* : w = w_1 \cdot \ldots \cdot w_k \text{ where } k \geq 0 \text{ and } w_1, \ldots, w_k \in L \}$$

■ Let $L = \{01, 1, 100\}$, then, $011100011 \in L^*$, which is $01 \cdot 1 \cdot 100 \cdot 01 \cdot 1$.

■ Claim: $L = \emptyset$, then $L^* = ?$

- Claim: $L = \emptyset$, then $L^* = e$.
- **Proof:** From definition $w_1 \cdot \ldots \cdot w_k$, with $k \geq 0$, and $w_1, \ldots, w_k \in \emptyset^*$.
- Here, k = 0, and concatenation of zero strings is e.

- **Claim:** $L_1 \subseteq \Sigma^*$, and $L_2 \subseteq \Sigma^*$. If $L_1 \subseteq L_2$ then $L_1^* \subseteq L_2^*$.
- **Proof:** Let $w \in L_1^*$ such that $w = w_1 \cdot \ldots \cdot w_k$ and $w = w_1, \ldots, w_k \in L_1$.
 - Since $L_1 \subseteq L_2$ it follows that $w_1, \ldots, w_k \in L_2$. Hence $w \in L_2^*$.
 - For all $w \in L_1^* \Rightarrow w \in L_2^*$.
 - Hence $L_1^* \subseteq L_2^*$.

■ L^+ : Consider alphabet Σ and a language $L \subseteq \Sigma^*$. Then,

$$L^* = \{ w \in \Sigma^* : w = w_1 \cdot \ldots \cdot w_k \text{ where } k \geq 1 \text{ and } w_1, \ldots, w_k \in L \}$$