Seymour's Theorem Formalization Project Status Update

Martin Dvořák, Ivan Sergeev

03 July 2025

Overall Status

Current Status of 3-Sum

01	3-Sum of Matrices	Basic definitionsAPI
02	Re-signing of Matrices	 Re-signing 3x3 matrices Re-signing matrices based on 3x3 submatrices Total unimodularity
03	Canonical Signing of 3-Sum	 Re-signing of summands Canonical signing of 3-sum Total unimodularity
04	Family of 3-Sum-Like Matrices	 Structural definition 3-sums are generalized Total unimodularity
05	3-Sum of Matroids	 Standard representations Matroids having a standard representation Regularity

List of Contributions

Left block in canonically signed 3-sum is TU	Rida Hadamani
3-sum-like matrices are TU	Evgenia Karunus
Form of rows and columns of bottom-left block in canonically signed 3-sum	Alex Meiburg
Bottom-left block of canonically signed 3-sum = sum of outer products of vectors	Ivan Sergeev
Correctness of canonical signing of 3-sum (resulting form, is indeed signing)	Ivan Sergeev
Pivoting in top-left block of 3-sum-like matrix yields a 3-sum-like matrix	Ivan Sergeev & Martin Dvorak
TUness of extension of TU left summand matrix with parallel and zero rows	Martin Dvorak
Merging pull requests + reviewing and optimizing code + maintaining blueprint	Martin Dvorak

MVP Milestone Reached!

Verification of Verification: 2-Sum

```
def standardRepr2sumComposition {\alpha : Type} [DecidableEq \alpha] {a : \alpha} {S_1 : StandardRepr \alpha Z2} (ha : S_1.X n S_r.Y = {a}) (hXY : S_r.X \supset \subset S_1.Y) :

noncomputable def standardReprSum2 {\alpha : Type} [DecidableEq \alpha] {S_1 : StandardRepr \alpha Z2} {x y : \alpha} (hXX : S_1.X n S_r.X = {x}) (hYY : S_1.Y n S_r.Y = {y}) (hXY : S_1.X \supset \subset S_r.Y) (hYX : S_1.Y \supset \subset S_r.X) :
```

Verification of Verification: 2-Sum

Verification of Verification: Standard Representation Level

```
/-- `StandardRepr`-level 1-sum of two matroids.

It checks that everything is disjoint (returned as `.snd` of the output). -/

def standardReprIsumComposition {Si Sr.: StandardRepr of Z2} (hXY: Si,X ⊃C Sr.Y) (hYX: Si,Y ⊃C Sr.X):

StandardRepr of Z2 × Prop :=

{

(

Si.X U Sr.X,

Si.Y U Sr.Y,

by simp only [Set.disjoint_union_left, Set.disjoint_union_right]; exact ((Si,hXY, hYX.symm), (hXY, Sr.hXY)),

(matrix1sumComposition Si.B Sr.B).toMatrixUnionUnion,

inferInstance,

inferInstance,

inferInstance,

),

Si.X ⊃C Sr.X ∧ Si.Y ⊃C Sr.Y

}
```

```
/-- `StandardRepr`-level 1-sum of two matroids. Returns the result only if valid. -/
noncomputable def standardReprSum1 \{S_1, S_r : StandardRepr \alpha Z2\} (hXY : S_1.X \supset S_r.Y) (hYX : S_1.Y \supset S_r.X) :
    Option (StandardRepr α Z2) :=
  open scoped Classical in if
    SI,X DC Sa,X A SI,Y DC Sa,Y
    some (
      -- row indices
      SI.X U S.X.
      -- col indices
      SI.Y U S.Y.
      -- row and col indices are disjoint
      by rw [Set.disjoint union right, Set.disjoint union left, Set.disjoint union left]
          exact ((S<sub>1</sub>.hXY, hYX.symm), (hXY, S<sub>r</sub>.hXY)),
      -- standard representation matrix
      (matrixSum1 S<sub>1</sub>.B S<sub>r</sub>.B).toMatrixUnionUnion,
      -- decidability of row indices
      inferInstance,
      -- decidability of col indices
      inferInstance)
```

Verification of Verification: Matroid Level

```
/-- Binary matroid M is a result of 1-summing M and M_r in some way. -/
structure Matroid. Is 1 sum Of (M : Matroid \alpha) (M, M, : Matroid \alpha) where
  S : StandardRepr α Z2
                                                                                                                              def Matroid. Is 1 sum Of (M : Matroid \alpha) (M M r : Matroid \alpha) : Prop :=
  S_1: StandardRepr \alpha Z2
                                                                                                                                 \exists S S<sub>1</sub> S<sub>r</sub> : StandardRepr \alpha Z2,
  S_r: StandardRepr \alpha Z2
                                                                                                                                 \exists hXY : S_1.X \supset \subseteq S_r.Y,
  hS<sub>1</sub>: Finite S<sub>1</sub>.X
                                                                                                                                 \exists hYX : S_1.Y \supset \subset S_r.X,
  hS<sub>r</sub> : Finite S<sub>r</sub>.X
  hM : S.toMatroid = M
                                                                                                                                 standardReprSum1 hXY hYX = some S
  hM: : S.toMatroid = M:
                                                                                                                                 Λ Finite S₁.X
  hM_r : S_r.toMatroid = M_r
                                                                                                                                 Λ Finite S..X
  hXY : S_1.X \supset \subset S_r.Y
                                                                                                                                 ∧ S.toMatroid = M
  hYX : S_1.Y \supset \subset S_r.X
                                                                                                                                 \Lambda S<sub>1</sub>.toMatroid = M<sub>1</sub>
  IsSum : (standardRepr1sumComposition hXY hYX).fst = S
                                                                                                                                 \Lambda S<sub>r</sub>.toMatroid = M<sub>r</sub>
  IsValid : (standardRepr1sumComposition hXY hYX).snd
```

Verification of Verification: Extension of 3-Sum

For this book, 3-sums are of considerable importance. A good choice for the matrix \overline{B} representing \overline{M} turns out to be

$$(8.3.9) \overline{B} = \begin{bmatrix} C^1 & 0 \\ \overline{D} & C^2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ \overline{D} & 1 \\ 1 \end{bmatrix}$$

Matrix \overline{B} of 3-sum

where \overline{D} is any 2×2 GF(2)-nonsingular matrix. If \overline{D} is the 2×2 identity matrix, then by (5.2.8), \overline{B} represents up to indices $M(W_3)$, which is the graphic matroid of the wheel with three spokes. If \overline{D} contains exactly three 1s, the only other choice, then by one GF(2)-pivot, say in $C^1 = [1 \ 1]$, we obtain the former case. Thus, in all instances, \overline{M} is an $M(W_3)$ minor of M.

Current: D is either the identity or contains exactly three ones

Desired: *D* is invertible

Next Steps: Timeline

Jul 07-11	Finalize 3-sum
Jul 14–18	Paper draft 1
Jul 21–25	Paper draft 1
Jul 28-Aug 1	Paper draft 2
Aug 04-08	Paper draft 3
Aug 11–15	Paper draft 4
Aug 18–22	Paper draft 5
Aug 25–29	Backup

Venue: CPP 2026

Abstract: 5 September 2025

Paper: 12 September 2025

Conference: January 12–13 2026