直交補空間

内積を導入すると、ベクトルの長さや直交性が利用できるようになる 直交性は、ベクトルだけでなく、部分空間に対しても拡張できる

計量空間の部分空間に直交するベクトルの集合を、直交補空間と呼ぶ

ref: 図で整理!例題で 納得!線形空間入門 p136~140

■ 直交補空間 計量空間 V の部分空間 W に対し、W の直交 補空間 W^{\perp} を次のように定義する

$$W^{\perp} := \{ \boldsymbol{v} \in V \mid \forall \boldsymbol{w} \in W, (\boldsymbol{v}, \boldsymbol{w}) = 0 \}$$

直交補空間もまた、計量空間の部分空間になっている

和について

 $\mathbf{a}_1, \mathbf{a}_2 \in W^{\perp}$ とすると、任意の $\mathbf{b} \in W$ に対して、

$$(a_1 + a_2, b) = (a_1, b) + (a_2, b) = 0 + 0 = 0$$

となるので、 $oldsymbol{a}_1 + oldsymbol{a}_2 \in W^\perp$ である

スカラー倍について

 ${m a} \in W^{\perp}$ とすると、任意のスカラー ${m c} \in K$ と任意の ${m b} \in W$ に対して、

$$(ca, b) = c(a, b) = c \cdot 0 = 0$$