CMPSC 465 Spring 2024

Data Structures & Algorithms Mehrdad Mahdavi and David Koslicki

Worksheet 2

Wednesday, January 24, 2023

1. Growth Rate. Sort the following functions based by their growth rate. (You may assume all logarithms have base 2.)

- (a) $(\sqrt{2})^{\log n}$ (b) n^2
- (h) log(n!)
 - $\log(n!)$ (n) $2^{2^{2n+1}}$

(c) n!(d) (log n)!

(i) 2^{2^n} (i) $n^{\frac{1}{\log n}}$

(g) n^3

(o) $2^{\log n}$

(e) $(\frac{3}{2})^n$

(k) $\log \log n$

(p) $2^{\sqrt{2\log n}}$

(m) $n^{(\log \log n)^2}$

(f) $(\log n)^2$

(1) $n2^n$

(q) $\sqrt{\log n}$

Solution: Note that here the symbol < represents a comparison of growth rates, not actual function values.

$$n^{\frac{1}{\log n}} < \log \log n < \sqrt{\log n} < (\log n)^2 < 2^{\sqrt{2\log n}} < (\sqrt{2})^{\log n} < 2^{\log n} < \log(n!) < n^2 < n^3 < (\log n)! < n^{(\log \log n)^2} < (\frac{3}{2})^n < n2^n < n! < 2^{2^n} < 2^{2^{2n+1}}$$

- $n^{\frac{1}{\log n}} < \log \log n$. Taking the log of both sides gives $\frac{1}{\log n} \cdot \log n < \log \log \log n$, or $1 < \log \log \log n$.
- $\log \log n < \sqrt{\log n}$. Substituting $k = \log n$: $\log k < k^{\frac{1}{2}}$. Any polynomial dominates any logarithm
- $\sqrt{\log n} < (\log n)^2$. Substituting $k = \log n$: $k^{\frac{1}{2}} < k^2$.
- $(\log n)^2 < 2^{\sqrt{2\log n}}$. Taking the log of both sides gives $2\log\log n < (\sqrt{2\log n})(\log_2 2)$. Substituting $k = \log n$ gives $2\log k < (2k)^{\frac{1}{2}}$. Any polynomial dominates any logarithm.
- $2^{\sqrt{2\log n}} < (\sqrt{2})^{\log n}$. Taking the log of both sides gives $(\sqrt{2\log n})(\log_2 2) < (\log n)(\log_2 2^{\frac{1}{2}})$. Substituting $k = \log n$ gives $(2k)^{\frac{1}{2}} < \frac{1}{2}k$. Higher degree polynomial dominates.
- $(\sqrt{2})^{\log n} < 2^{\log n}$. With equal exponents, the higher base dominates.
- $2^{\log n} < \log(n!)$. $2^{\log_2 n} = n$ while $\log(n!) = \Theta(n \log n)$.
- $\log(n!) < n^2$. $\log(n!) = \Theta(n \log n)$ while $n^2 = \Theta(n^2)$.
- $n^2 < n^3$. Higher degree polynomial dominates.
- $n^3 < (\log n)!$. Taking the log of both sides gives $3\log n < \log((\log n)!)$. Substituting $k = \log n$ gives $3k < \log(k!) = \Theta(k\log k)$.
- $(\log n)! < n^{(\log \log n)^2}$. Taking the log of both sides gives $\log((\log n)!) < (\log \log n)^2(\log n)$. Substituting $k = \log n$ gives $\log(k!) < k(\log k)^2$. $\log(k!) = \Theta(k \log k) < k(\log k)^2$.

- $n^{(\log \log n)^2} < (\frac{3}{2})^n$. Taking the log of both sides gives $(\log \log n)^2 (\log n) < n \log (\frac{3}{2})$. Any polynomial dominates any logarithm.
- $(\frac{3}{2})^n < n2^n$. $\frac{3}{2} < 2$, higher base exponent dominates.
- $n2^n < n!$. Taking the log of both sides gives $\log n + n\log(2) < \log(n!) = \Theta(n\log n)$.
- $n! < 2^{2^n}$. Taking the log of both sides gives $\log(n!) < 2^n \log 2$. $\log(n!) = \Theta(n \log n)$ is dominated by any exponential.
- $2^{2^n} < 2^{2^{2n+1}}$. $2^{2^{2n+1}} = 2^{2^{2n} \cdot 2} = (2^{2^{2n}})^2$. Substituting $k = 2^{2^{2n}}$ gives $k < k^2$.
- **2. Find run time.** How long does the recursive multiplication algorithm (shown below) take to multiply a non-negative *n*-bit number by a non-negative *m*-bit number? Justify your answer.

```
Algorithm 1 multiply(x,y)
```

```
Input: An n-bit integer x and an m-bit integer y, where x, y \ge 0
Output: Their product

if y = 0 then
	return 0
end if
z = \text{multiply}(x, \lfloor \frac{y}{2} \rfloor)
if y = \text{even then}
	return 2z
else
	return x + 2z
end if
```

Solution: Assume we want to multiply the *n*-bit number x with the *m*-bit number y. The algorithm terminates after at most m recursive calls; at each call y is halved and the number of digits is decreased by one. Each recursive call requires dividing y by 2 (rounded down), which can be done in O(1) time by shifting. Checking the parity of y can be done in O(1) by checking its rightmost bit (if the rightmost bit is 0, y is even). Similarly, 2z can be calculated by shifting. Note that z is the result of multiplying x by $\lfloor \frac{y}{2} \rfloor$ and thus has $O(\log(x \cdot \lfloor \frac{y}{2} \rfloor)) = O(n+m)$ digits. Therefore, the sum x+2z takes O(n+m) time. Counting all of these operations, each recursive call takes O(n+m) time, and the total running time is $O(m \cdot (n+m))$.

- **3. Computing Factorials.** Consider the problem of computing $N! = 1 \times 2 \times \cdots \times N$.
 - 1. If N is a b-bit number, how many bits long is N! (Θ notation suffices)?
 - 2. Consider the simple algorithm to compute N! that does the multiplication in sequence, $1 \times 2 \times 3 \times ... \times N$. Analyze its running time.

Solution:

- 1. We know that the number of bits of N! is $\Theta(\log_2(N!))$ which we know from the previous worksheet that it is $\Theta(N \log N) = \Theta(b \cdot N)$ since $b = \Theta(\log_2 N)$.
- 2. We can compute N! naively as follows:

$$\frac{\text{factorial}}{f=1} (N)$$

for
$$i=2$$
 to N

$$f=f\cdot i$$
return f

Running time: we have N iterations, each one multiplying an $(N \cdot b)$ -bit number (at most) by a b-bit number. Using the naive multiplication algorithm, each multiplication takes time $O(N \cdot b^2)$. Hence, the running time is $O(N^2b^2)$.

- **4. Fibonacci growth.** The Fibonacci numbers F_0 , F_1 , F_2 ... are defined by the recurrence $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$. In this problem we will confirm that this sequence grows exponentially fast and obtain some bounds on its growth.
 - (a) Use induction to prove that $F_n \ge 2^{0.5n}$ for $n \ge 6$.
 - (b) Find a constant c > 0 such that $F_n \ge 2^{cn}$ for all $n \ge 3$. Show that your answer is correct.
 - (c) Find the maximum constant c > 0 for which $F_n = \Omega(2^{cn})$?

Solution:

(a) Base cases: $F_6 = 8 \ge 8 = 2^{6/2}$ and $F_7 = 13 \ge 11.314 \approx 2^{7/2}$.

Inductive Step: For $n \ge 7$, we have

$$F_{n+1} = F_n + F_{n-1} \ge 2^{n/2} + 2^{(n-1)/2} = 2^{(n-1)/2} (2^{1/2} + 1) \ge 2^{(n-1)/2} 2 \ge 2^{(n+1)/2}$$

as desired.

- (b) $F_3 = 2$ and $2^{3c} = 8^c$. $2 \le 8^c$ is true for any value of $c \le \frac{1}{3}$. Therefore, $F_n > 2^{cn}$ for all $n \ge 3$ is true for any constant $c \le \frac{1}{3}$. Notice how reducing n_0 from 6 to 3 also loosened the lower bound from $2^{\frac{1}{2}n}$ to $2^{\frac{1}{3}n}$. This implies that to prove a very tight lower bound, we will need to pick a sufficiently large n_0 .
- (c) The argument in part (a) holds as long as we have, in the inductive step, $2^{c(n-1)}(2^c+1) \ge 2^{c(n+1)}$. Substituting $k=2^c$ gives $k^{(n-1)}(k+1) \ge k^{(n+1)}$.

Then we divide both sides by $k^{(n-1)}$ to get $k+1 \ge k^2$, or $k^2-k-1 \le 0$.

The maximum solution to this quadratic is $k = 2^c \le \frac{1+\sqrt{5}}{2}$, the golden ratio.