Introduction to Statistical Machine Learning

Introduction to Statistical Machine Learning © 2019

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Cheng Soon Ong & Christian Walder

Machine Learning Research Group
Data61 | CSIRO
and
College of Engineering and Computer Science
The Australian National University

Canberra February – June 2019

(Many figures from C. M. Bishop, "Pattern Recognition and Machine Learning")

Part II

Introduction

Introduction to Statistical Machine Learning

© 2019 Ong & Walder & Webers Data61 | CSIRO The Australian National University

Polynomial Curve Fitting

Curve Fitting

Probability Theory

Motivation

© 2019 Ong & Walder & Webers Data61 | CSIRO The Australian National University

Polynomial Curve Fitting

Curve Fitting

Probability Theory

Motivation

- Formalise intuitions about problems
- Use language of mathematics to express models
- Geometry, vectors, linear algebra for reasoning
- Probabilistic models to capture uncertainty
- Design and analysis of algorithms
- Numerical algorithms in python
- Understand the choices when designing machine learning methods

curve rilling

Probability Theory

Motivation

- Use 1D regression as illustration (more regression next week)
- Model
- Performance
- Generalization
- Finding best parameters

Curve Fitting

Probability Theory

wouvalion

Probability Distributions

Definition (Mitchell, 1998)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

some artificial data created from the function

$$\sin(2\pi x) + \text{random noise}$$
 $x = 0, \dots, 1$

$$x = 0, \ldots, 1$$

Introduction to Statistical

Ong & Walder & Webers Data61 | CSIRO The Australian National

Polynomial Curve Fitting

Polynomial Curve Fitting - Input Specification

$$N = 10$$

$$\mathbf{x} \equiv (x_1, \dots, x_N)^T$$

$$\mathbf{t} \equiv (t_1, \dots, t_N)^T$$

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Polynomial Curve Fitting

Curve Fitting

Probability Theor

Motivation

Polynomial Curve Fitting - Input Specification

$$N = 10$$

$$\mathbf{x} \equiv (x_1, \dots, x_N)^T$$

$$\mathbf{t} \equiv (t_1, \dots, t_N)^T$$

$$x_i \in \mathbb{R} \quad i = 1, \dots, N$$

$$t_i \in \mathbb{R} \quad i = 1, \dots, N$$

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Polynomial Curve Fitting

urve Fitting

Probability Theory

Motivation

© 2019 Ong & Walder & Webers Data61 | CSIRO The Australian National University

Polynomial Curve Fitting

urve Fitting

Probability Theory

Aotivation |

Probability Distributions

M: order of polynomial

- nonlinear function of x
- linear function of the unknown model parameter w
- How can we find good parameters $\mathbf{w} = (w_1, \dots, w_M)^T$?

Learning is Improving Performance

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National

Polynomial Curve Fitting

Curve Fitting

Probability Theory

Motivation

Learning is Improving Performance

 Performance measure: Error between target and prediction of the model for the training data

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2$$

• unique minimum of $E(\mathbf{w})$ for argument \mathbf{w}^*

Introduction to Statistical Machine Learning

© 2019 Ong & Walder & Webers Data61 | CSIRO The Australian National University

Polynomial Curve Fitting

Curve Fitting

Probability Theory

Motivation

$$y(x, \mathbf{w}) = \sum_{m=0}^{M} w_m x^m \bigg|_{M=0}$$
$$= w_0$$

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Polynomial Curve Fitting

Curve Fitting

Probability Theory

Motivation

$$y(x, \mathbf{w}) = \sum_{m=0}^{M} w_m x^m \Big|_{M=1}$$
$$= w_0 + w_1 x$$

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National

Polynomial Curve Fitting

Curve Fitting

Probability Theory

Motivation

$$y(x, \mathbf{w}) = \sum_{m=0}^{M} w_m x^m \bigg|_{M=3}$$

= $w_0 + w_1 x + w_2 x^2 + w_3 x^3$

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National

Polynomial Curve Fitting

Curve Fitting

Probability Theory

Motivation

$$y(x, \mathbf{w}) = \sum_{m=0}^{M} w_m x^m \bigg|_{M=9}$$

= $w_0 + w_1 x + \dots + w_8 x^8 + w_9 x^9$

overfitting

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Polynomial Curve Fitting

Curve Fitting

Probability Theory

Motivation

- Introduction to Statistical Machine Learning
- © 2019
 Ong & Walder & Webers
 Data61 | CSIRO
 The Australian National
 University
 - DATA |
- Polynomial Curve Fitting
- Curve Fitting
- Probability Theory
- Motivation
- Probability Distributions

- Train the model and get w*
- Get 100 new data points
- Root-mean-square (RMS) error

$$E_{\mathsf{RMS}} = \sqrt{2E(\mathbf{w}^{\star})/N}$$

DATA	IIIII CSIRO
------	----------------

rve Fitting

Probability Theory

otivation

Probability Distributions

	M = 0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Table: Coefficients \mathbf{w}^* for polynomials of various order.

Curve Fitting

Probability Theor

Motivation

Curve Fitting

Probability Theory

lotivation

- N = 100
- heuristics: have no less than 5 to 10 times as many data points than parameters
- but number of parameters is not necessarily the most appropriate measure of model complexity!
- later: Bayesian approach

Curve Fitting

Probability Theory

Motivation

Probability Distributions

- How to constrain the growing of the coefficients w?
- Add a regularisation term to the error function

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Squared norm of the parameter vector w

$$\|\mathbf{w}\|^2 \equiv \mathbf{w}^T \mathbf{w} = w_0^2 + w_1^2 + \dots + w_M^2$$

Curve Fitting

Probability Theor

Motivation

Curve Fitting

Probability Theor

Motivation

Curve Fitting

Probability Theor

Motivatio.

urve Fitting

Probability Theory

Probability Distributions

Definition (Mitchell, 1998)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

- Task: regression
- Experience: x input examples, t output labels
- Performance: squared error
- Model choice
- Regularisation
- do not train on the test set!

Linear Curve Fitting - Input Specification

$$N = 10$$

$$\mathbf{x} \equiv (x_1, \dots, x_N)^T$$

$$\mathbf{t} \equiv (t_1, \dots, t_N)^T$$

$$x_i \in \mathbb{R} \quad i = 1, \dots, N$$

$$t_i \in \mathbb{R} \quad i = 1, \dots, N$$

Introduction to Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Polynomial Curve Fitting

Curve Fitting

Probability Theory

Motivation

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Polynomial Curve Fitting

Curve Fitting

Probability Theory

1otivation

- Estimate best predictor = training = learning Given data $(x_1, y_1), \dots, (x_n, y_n)$, find a predictor $f_{\mathbf{w}}(\cdot)$.
 - Identify the type of input x and output y data
 - $oldsymbol{\circ}$ Propose a (linear) mathematical model for $f_{\mathbf{w}}$
 - Design an objective function or likelihood
 - Calculate the optimal parameter (w)
 - Model uncertainty using the Bayesian approach
 - Implement and compute (the algorithm in python)
 - Interpret and diagnose results

Linear Curve Fitting

$$N = 10$$

$$\mathbf{x} \equiv (x_1, \dots, x_N)^T$$

$$\mathbf{t} \equiv (t_1, \dots, t_N)^T$$

$$x_i \in \mathbb{R} \quad i = 1, \dots, N$$

$$t_i \in \mathbb{R} \quad i = 1, \dots, N$$

Introduction to Statistical Machine Learning

© 2019 Ong & Walder & Webers Data61 | CSIRO The Australian National University

Polynomial Curve Fitting

Curve Fitting

Probability Theory

Motivation

Linear Curve Fitting - Choice of model

$$N = 10$$

$$\mathbf{x} \equiv (x_1, \dots, x_N)^T$$

$$\mathbf{t} \equiv (t_1, \dots, t_N)^T$$

$$x_i \in \mathbb{R} \quad i = 1, \dots, N$$

$$t_i \in \mathbb{R} \quad i = 1, \dots, N$$

$$y(x, \mathbf{w}) = w_1 x + w_0$$

Introduction to Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National

Polynomial Curve Fitting

Curve Fitting

Probability Theory

Motivation

Linear Curve Fitting - Augment for convenience

$$N = 10$$

$$\mathbf{x} \equiv (x_1, \dots, x_N)^T$$

$$\mathbf{t} \equiv (t_1, \dots, t_N)^T$$

$$x_i \in \mathbb{R} \quad i = 1, \dots, N$$

$$t_i \in \mathbb{R} \quad i = 1, \dots, N$$

$$y(x, \mathbf{w}) = w_1 x + w_0$$

$$X \equiv [\mathbf{x} \quad 1]$$

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Polynomial Curve Fitting

Curve Fitting

Probability Theory

Motivation

Linear Algebra concepts

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Polynomial Curve Fitting

Curve Fitting

Probability Theor

Motivation

- matrix, vector, multiplication
- inner product
- projection
- rank
- inverse

Linear Curve Fitting - Project onto plane

 $y(x, \mathbf{w}) = w_1 x + w_0$ $X \equiv \begin{bmatrix} \mathbf{x} & 1 \end{bmatrix}$

$$N = 10$$

$$\mathbf{x} \equiv (x_1, \dots, x_N)^T$$

$$\mathbf{t} \equiv (t_1, \dots, t_N)^T$$

$$x_i \in \mathbb{R} \quad i = 1, \dots, N$$

Find the best plane that will fit the data.

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Polynomial Curve Fitting

Curve Fitting

Probability Theory

Aotivation |

Curve Fitting

Probability Theory

lotivation

- Assume we have data points $(x_1, t_1), (x_2, t_2), \dots, (x_N, t_N)$
- Want to solve

$$Xw = \mathbf{t}$$

- If points don't fall perfectly on the line, cannot be solved
- Find a point t that lies in the column space of X, and is closest to y.
- $\hat{\mathbf{t}}$ is found by the orthogonal projection of \mathbf{t} onto the column space of X.

Linear Curve Fitting - Least Squares

$$N = 10$$

$$\mathbf{x} \equiv (x_1, \dots, x_N)^T$$

$$\mathbf{t} \equiv (t_1, \dots, t_N)^T$$

$$x_i \in \mathbb{R} \quad i = 1, \dots, N$$

$$t_i \in \mathbb{R} \quad i = 1, \dots, N$$

$$y(x, \mathbf{w}) = w_1 x + w_0$$

$$X \equiv [\mathbf{x} \quad 1]$$

$$w^* = (X^T X)^{-1} X^T \mathbf{t}$$

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Polynomial Curve Fitting

Curve Fitting

Probability Theory

Antivation

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Polynomial Curve Fitting

Curve Fitting

Probability Theory

1otivation

- Differentiation
- Partial differentiation
- Differentiation of vector valued functions $f: \mathbb{R}^n \to \mathbb{R}^m$
- Product rule, Quotient rule, Sum rule, Chain rule

Curve Fitting

Probability Theory

aouvanon

Probability Distributions

- Assume we have data points $(x_1, t_1), (x_2, t_2), \dots, (x_N, t_N)$
- Define a loss function

$$\|\mathbf{t} - \hat{\mathbf{t}}\|^2$$

where $\hat{\mathbf{t}} = X\mathbf{w}$.

• Take the gradient

$$\frac{dl}{d\mathbf{w}} = 2(\mathbf{t} - X\mathbf{w})^{\top} X.$$

Solve for stationary point

$$X^{\top}X\mathbf{w} = X^{\top}\mathbf{t}$$

Linear Curve Fitting - Least Squares

$$N = 10$$

$$\mathbf{x} \equiv (x_1, \dots, x_N)^T$$

$$\mathbf{t} \equiv (t_1, \dots, t_N)^T$$

$$x_i \in \mathbb{R} \quad i = 1, \dots, N$$

$$t_i \in \mathbb{R} \quad i = 1, \dots, N$$

$$y(x, \mathbf{w}) = w_1 x + w_0$$

$$X \equiv [\mathbf{x} \quad 1]$$

$$w^* = (X^T X)^{-1} X^T \mathbf{t}$$

How do we choose a noise model?

Introduction to Statistical Machine Learning

© 2019 Ong & Walder & Webers Data61 | CSIRO The Australian National University

Polynomial Curve Fitting

arve Funng

Probability Theory

lotivation

Surve Fitting

Probability Theory

Motivatio

Probability Distributions

Sum Rule

$$p(X) = \sum_{Y} p(X, Y)$$

Product Rule

$$p(X,Y) = p(X \mid Y) p(Y)$$

urve Fitting

Probability Theory

lotivation

Probability Distributions

Use product rule

$$p(X,Y) = p(X \mid Y) p(Y) = p(Y \mid X) p(X)$$

Bayes Theorem

$$p(Y \mid X) = \frac{p(X \mid Y) \, p(Y)}{p(X)} \qquad \qquad \text{only defined for } p(X) > 0$$

and

$$p(X) = \sum_{Y} p(X,Y) \qquad \qquad \text{(sum rule)}$$

$$= \sum_{Y} p(X \mid Y) \, p(Y) \qquad \qquad \text{(product rule)}$$

Motivation

 Weighted average of a function f(x) under the probability distribution p(x)

$$\mathbb{E}[f] = \sum_{x} p(x)f(x)$$
 discrete distribution $p(x)$

$$\mathbb{E}\left[f\right] = \sum_{x} p(x) f(x) \qquad \text{discrete distribution } p(x)$$

$$\mathbb{E}\left[f\right] = \int p(x) f(x) \; \mathrm{d}x \qquad \text{probability density } p(x)$$

The Gaussian Distribution

- $x \in \mathbb{R}$
- Gaussian Distribution with mean μ and variance σ^2

$$\mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{\frac{1}{2}}} \exp\{-\frac{1}{2\sigma^2}(x - \mu)^2\}$$

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National

Polynomial Curve Fittin

irve Fitting

Probability Theory

Motivation

Curve Fitting

Probability Theory

Motivation

Probability Distributions

- $\mathcal{N}(x | \mu, \sigma^2) > 0$
- $\int_{-\infty}^{\infty} \mathcal{N}(x \mid \mu, \sigma^2) dx = 1$
- Expectation over x

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x \mid \mu, \sigma^2) x \, dx = \mu$$

Expectation over x²

$$\mathbb{E}\left[x^{2}\right] = \int_{-\infty}^{\infty} \mathcal{N}(x \mid \mu, \sigma^{2}) x^{2} dx = \mu^{2} + \sigma^{2}$$

Variance of x

$$\operatorname{var}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2$$

Linear Curve Fitting - Least Squares

$$N = 10$$

$$\mathbf{x} \equiv (x_1, \dots, x_N)^T$$

$$\mathbf{t} \equiv (t_1, \dots, t_N)^T$$

$$x_i \in \mathbb{R} \quad i = 1, \dots, N$$

$$t_i \in \mathbb{R} \quad i = 1, \dots, N$$

$$y(x, \mathbf{w}) = w_1 x + w_0$$

$$X \equiv [\mathbf{x} \quad 1]$$

$$w^* = (X^T X)^{-1} X^T \mathbf{t}$$

We assume

$$t = \underbrace{y(\mathbf{x}, \mathbf{w})}_{ ext{deterministic}} + \underbrace{\epsilon}_{ ext{Gaussian noise}}$$

Introduction to Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Polynomial Curve Fitting

urve Fitting

Probability Theory

Motivation

urve Fitting

Probability Theory

Motivation

- Estimate best predictor = training = learning Given data $(x_1, y_1), \dots, (x_n, y_n)$, find a predictor $f_{\mathbf{w}}(\cdot)$.
 - Identify the type of input x and output y data
 - $oldsymbol{\circ}$ Propose a (linear) mathematical model for $f_{\mathbf{w}}$
 - Design an objective function or likelihood
 - Calculate the optimal parameter (w)
 - Model uncertainty using the Bayesian approach
 - Implement and compute (the algorithm in python)
 - Interpret and diagnose results

Topics to Review

©2019 Ong & Walder & Webers Data61 | CSIRO The Australian National University

Introduction to Statistical

Machine Learning

Polynomial Curve Fitting

urve ruung

Probability Theory

Motivation

Probability Distributions

- Linear Algebra
- Analytic Geometry
- Matrix Decomposition
- Vector Calculus
- Probability and Statistics
- Continuous Optimization

https://mml-book.com