计算机网络编程 第5章 IP地址的合法性判断

信息工程学院 方徽星 fanghuixing@hotmail.com

大纲

- 设计目的
- 相关知识
- 例题分析

1. 设计目的

- IP地址是TCP/IP协议在网络层使用的地址
- IP地址唯一地标识一台接入Internet的主机
- 根据IP地址的基本结构,通过分析IP地址来了解地址格式与类型,深入理解网络层协议的工作过程

OSI参考模型

应用层

表示层

会话层

传输层

网络层

数据链路层

物理层

IP地址

2. 相关知识—IP地址的基本概念

2. 相关知识—IP地址的基本概念

IP地址的点分十进制表示: X.X.X.X, 每个X是占8个二进制位, 00000000表示0, 1111111表示255, X∈ [0, 255]

IPv4 地址示例

Dotted-Quad Representation	Binary Representation
0.0.0.0	00000000 00000000 00000000
1.2.3.4	0000001 00000010 00000011 00000100
10.0.0.255	00001010 00000000 00000000 11111111
165.195.130.107	10100101 11000011 10000010 01101011
255.255.255	11111111 11111111 11111111

2. 相关知识—IP地址的分类方法

• IPv4地址的最初分类方法

2. 相关知识—IP地址的分类方法

• IPv4地址的最初分类方法

```
D类 1110 组播地址
(32 bits;28自由)
```

```
E类 1111 (32 bits; 28自由)
```

参考:

- https://tools.ietf.org/html/rfc1112
- https://tools.ietf.org/html/rfc1365
- http://www.kohala.com/start/typos.tcpipiv1.txt

2. 相关知识—IP地址的分类方法

• IPv4地址的最初分类方法

IPv4 地址空间划分

Class	Address Range	High- Order Bits	Use	Fraction of Total	Number of Nets	Number of Hosts
A	0.0.0.0-127.255.255.255	0	Unicast/special	1/2	128	16,777,216
В	128.0.0.0–191.255.255.255	10	Unicast/special	1/4	16,384	65,536
С	192.0.0.0–223.255.255.255	110	Unicast/special	1/8	2,097,152	256
D	224.0.0.0–239.255.255.255	1110	Multicast	1/16	N/A	N/A
Е	240.0.0.0–255.255.255.255	1111	Reserved	1/16	N/A	N/A

容易产生地址浪费和分配不均的问题

(注:每类网络的首尾地址一般不可用)

特殊IP地址

• 直接广播地址

网络号

主机号(全1)

- 1. 将IP包以广播形式发送给特定网络中的所有主机
- 2. 直接广播地址只能作为IP包中的目的地址
- 3. 参考: RFC0919、RFC1812、RFC2644
- 4. 路由器可能直接忽略

特殊IP地址

• 受限广播地址(255.255.255.255)

网络号(全1)

主机号(全1)

- 1. 将IP包以广播形式发送给本地网络中的所有主机
- 2. 不会被路由器转发

特殊IP地址

• "本网络中的特定主机"地址

网络号(全0) 主机号

参考: https://tools.ietf.org/html/rfc1122

特殊IP地址	Special Address	NetID	HostID	Example	Use
	Network itself	Non-0	All zeros (0 s)	192.168.14.0	Used by routers: on a host, means "some host," but it is not used.
	Directed broadcast	Non-0	All ones (1 s)	192.168.14.255	Destination only: used by routers to send to all host on this network.
	Limited broadcast	All 1s	All 1s	225.255.255.255	Destination only: direct broadcast when NetID is not known.
Walter Goralski. The Illustrated Network, Second	This host on this network	All 0 s	All 0 s	0.0.0.0	Source only: used when host does not know its IPv4 address.
Edition: How TCP/IP Works in a Modern	Specific host on this network	All 0 s	Non-0	0.0.0.46	Destination only: defined, but not used
<i>Network.</i> Morgan Kaufmann, 2017	Loopback	127	Any	127.0.0.0	Destination only: packet is not sent out onto network.

专用(私有) IP地址

- https://tools.ietf.org/html/rfc1918
- 10.0.0.0 ~ 10.255.255.255 (10.0.0.0/8, or 10/8 prefix)
- 172.16.0.0 ~ 172.31.255.255 (172.16.0.0/12, or 172.16/12 prefix)
- 192.168.0.0 ~ 192.168.255.255 (192.168.0.0/16, or 192.168/16 prefix)
- ✓ 路由器认为这些地址是内部网络使用的IP地址,不会向Internet转发该IP包;
- ✓如果出于安全等原因,组建专用的内部网络,不准备连接到Internet;
- ✓或转发IP包到外部时希望使用网络地址转换(NAT),则可以使用专用IP地址

• 子网地址划分(RFC940)

- IP地址的有效利用率问题,A、B类网络号数量少,容易耗尽地址
- 考虑路由器的工作效率
- 借用主机号的一部分作为子网号,划分出更多的子网IP地址,而对外部路由器的寻址没有影响

• 子网地址划分(RFC940)

• 为了从划分子网的IP地址中提取子网号, 提出子网掩码的概念

子网掩码的表示方法:网络号与子网号置1, 主机号置0

未划分子网

IP地址:142.16.2.21 10001110 00010000 00000010 00010101

掩码: 255.255.0.0 11111111 1111111 00000000 00000000

网络号:142.16;无子网

• 子网地址划分(RFC940)

• 为了从划分子网的IP地址中提取子网号, 提出子网掩码的概念

子网掩码的表示方法:网络号与子网号置1, 主机号置0

划分子网

掩码: 255.255.255.0 11111111 1111111 1111111 00000000

IP地址: 142.16.2.0 10001110 00010000 00000010 00000000

网络号:142.16;子网号:2

• 子网地址划分(RFC940)

• 子网地址划分(RFC940)

• 无类别域间路由

- 斜线记法: <IP地址>/<网络前缀>
- 200.16.23.1/20, 前20位是网络前缀, 后12位是主机号
- 主机号全0或全1的地址不分配给主机

• 网络地址转换

- 主要用于动态IP地址分配:ISP(互联网服务提供商)、ADSL、有 线电视与无线移动接入
- 维护内部IP地址与外部IP地址在转换过程中的对应关系
 - NAT:只完成专用IP地址与全局IP地址的转换
 - NAPT: 还转换TCP或UDP的端口号

3. 例题分析—设计要求

- 根据IPv4协议规定的IP地址的标准格式,编写程序对输入的IP地址进行分析,判断IP地址的合法性与地址类型
- 整个过程**不借助**任何inet函数
 - inet_addr:将字符串形式的IP地址转换成32位整数型数据
 - inet_ntoa:将网络字节序整数型IP地址转换成字符串形式
- 只需判断A类、B类和C类地址

3. 例题分析—设计要求

• 具体要求

•程序为命令行程序。例如,可执行文件名为IpAddress.exe,则程序的命令行格式为:

IpAddress ip_address

其中, ip_address为输入的IP地址

• 将IP地址的类型显示在控制台上,具体格式为:

X.X.X.X的类型为:X类地址

3. 例题分析—设计要求

• 具体要求

- 有良好的编程规范与注释。编程所使用的操作系统、语言和编译环境不限,但是在提交的说明文档中需要加以注明
- 撰写说明文档,包括程序的开发思路、工作流程、关键问题、解决思路 以及进一步的改进等内容

3. 例题分析——关键问题

- 判断IP地址的合法性
 - · 需要自行编写函数执行判断过程, 而不能使用inet系列函数
 - 伪代码:课本P52~P53

错误类型	错误例子
总长度超过15位	123.234.123.2345
含非法字符	123\$234.123.234
分隔符个数不等于3	123.12.123
分隔符连续出现	123.12123
以分隔符结尾	123.12.123.
第一个数字是0	0.234.123.234
任一数字超过4位	1.234.123.2346
任一数字大于255	1.234.123.256

3. 例题分析——关键问题

- 判断IP地址的类型
 - 在IP地址合法性检查之后

规则: A类地址:1.0.0.0~127.255.255.255

B类地址:128.0.0.0~191.255.255.255

C类地址:192.0.0.0~223.255.255.255

不在上述范围,则判定为其他类型

3. 例题分析——关键问题

• 程序流程图

程序演示

练习

• 课本-第59页

本章小结

- •设计目的
 - 分析IP地址来了解地址格式与类型,深入理解网络层协议的工作过程
- 相关知识
 - IP地址结构、分类、特殊IP地址、专用IP地址
- 例题分析
 - 判断IP地址的合法性, 类型