02910.000098

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)	
		:	Examiner: Unassigned
SHIGEKI YABU, ET AL.)	
		:	Group Art Unit: Unassigned
Application No.: 10/697,278)	
		:	
Filed: October 31, 2003)	
E	DICHI AV DEVICE AND DRIVE	:	March 12, 2004
For:	DISPLAY DEVICE AND DRIVE CONTROL METHOD THEREFOR) :	March 12, 2004
	CONTROL METHOD HIERENOR	•	

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

SUBMISSION OF PRIORITY DOCUMENT

Sir:

In support of Applicants' claim for priority under 35 U.S.C. § 119, enclosed is a certified copy of the following foreign application, together with the English translation of the front page:

2002-329347, filed November 13, 2002.

Applicants' undersigned attorney may be reached in our Washington, D.C. office by telephone at (202) 530-1010. All correspondence should continue to be directed to our below-listed address.

Respectfully submitted,

Attorney for Applicants

Scott D. Malpede

Registration No. 32,533

FITZPATRICK, CELLA, HARPER & SCINTO 30 Rockefeller Plaza
New York, New York 10112-3801
Facsimile: (212) 218-2200

SDM\mm DC_MAIN 160078v1

JAPAN PATENT OFFICE

This is to certify that the annexed is a true copy of the following application as filed with this Office.

Date of Application: November 13, 2002

Application Number: Japanese Patent Application

No. 2002-329347

Applicant:

CANON KABUSHIKI KAISHA

Dated this 2nd day of December 2003

Commissioner, Japan Patent Office

Yasuo Imai (Seal)

Certificate Issuance No. 2003-3099353

App/n. No : 10/691,218
Filed: 10/81/03
Imentivo: Shigeki Yabu, et al.
Out Unit: Unassigned

١

CFQ 00098 US

CN

PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年11月13日

出 番

特願2002-329347

Application Number: [ST. 10/C]:

 $[\; \mathsf{J}\;\;\mathsf{P}\;\;2\;\;0\;\;0\;\;2\;-\;3\;\;2\;\;9\;\;3\;\;4\;\;7\;]$

出 人 Applicant(s):

キヤノン株式会社

2003年12月

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

226706

【提出日】

平成14年11月13日

【あて先】

特許庁長官 太田 信一郎 殿

【国際特許分類】

G09G 3/30 301

H01J 1/30

H01J 31/12

H04N 5/68

【発明の名称】

表示装置及びその駆動制御方法

【請求項の数】

14

【発明者】

【住所又は居所】

東京都大田区下丸子3丁目30番2号 キヤノン株式会

社 内

【氏名】

藪 成樹

【発明者】

【住所又は居所】

東京都大田区下丸子3丁目30番2号 キヤノン株式会

社 内

【氏名】

塚本 健夫

【特許出願人】

【識別番号】

000001007

【氏名又は名称】

キヤノン株式会社

【代表者】

御手洗 富士夫

【代理人】

【識別番号】

100085006

【弁理士】

【氏名又は名称】

世良 和信

【電話番号】

03-5643-1611

【選任した代理人】

【識別番号】

100100549

【弁理士】

【氏名又は名称】 川口 嘉之

【選任した代理人】

【識別番号】

100106622

【弁理士】

【氏名又は名称】 和久田 純一

【手数料の表示】

【予納台帳番号】

066073

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 表示装置及びその駆動制御方法

【特許請求の範囲】

【請求項1】

カソード、ゲート及びアノードを有し、前記カソードと前記ゲートとがマトリクス接続された表示パネルを備え、カソード・アノード間にのみ電圧を印加した状態において電子放出を行い得る電子放出体が前記カソードに設けられ、カソード・ゲート間に遮断電圧を印加して前記電子放出体から前記アノードに向かう電子放出を遮断することにより画素を暗状態として表示を行う表示装置において、

表示開始信号が発生した場合、前記カソード・ゲート間に前記遮断電圧又は特定の表示状態を呈し得る駆動電圧の印加を開始してから所定時間経過した後に、前記アノードの電位が前記電子放出体からの電子放出を行い得る閾値電位以上となるように表示パネル駆動回路の動作を制御する制御手段を備えることを特徴とする表示装置。

【請求項2】

前記カソード・ゲート間への前記遮断電圧又は前記特定の表示状態を呈し得る 駆動電圧の印加を、前記表示パネルの全画素について同時に行うことを特徴とす る請求項1に記載の表示装置。

【請求項3】

前記表示パネルの少なくとも1行の走査配線に走査選択電位を供給し、残りの 行の走査配線に走査非選択電位を供給し、前記走査選択電位の供給に同期して前 記表示パネルの全列の変調信号配線に最暗状態を生成し得る変調電位又は所定の 変調電位を供給することによって、

前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を前記カソード・ゲート間へ印加することを特徴とする請求項1に記載の表示装置。

【請求項4】

前記表示パネル駆動回路は、前記アノード電位を供給するためのアノード電源 回路と、前記カソードを駆動するためのカソード駆動回路と、前記ゲートを駆動 するためのゲート駆動回路と、前記カソード駆動回路及び前記ゲート駆動回路に 前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を生成するための駆動 用基準電位を供給する駆動電源回路と、を有することを特徴とする請求項1に記 載の表示装置。

【請求項5】

前記駆動電源回路は、前記カソード駆動回路及び前記ゲート駆動回路に論理回路用駆動電位が供給されている状態で、前記駆動用基準電位の供給を開始し、

その後、前記カソード駆動回路及び前記ゲート駆動回路は、前記遮断電圧又は 前記特定の表示状態を呈し得る駆動電圧の印加を開始することを特徴とする請求 項4に記載の表示装置。

【請求項6】

前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を開始する期間において、

前記アノード電源回路は、前記アノード電源回路に論理回路用駆動電位が供給 されている状態で、前記アノードを前記電子放出体から電子放出を行い得る閾値 電位より十分に低い特定電位に保持することを特徴とする請求項4に記載の表示 装置。

【請求項7】

前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を開始した後に、前記カソード駆動回路及び前記ゲート駆動回路から前記表示パネルへの入力された表示画像データに基づいた表示用駆動電圧の印加を許可することを特徴とする請求項4に記載の表示装置。

【請求項8】

前記カソード・ゲート間の電圧を不定状態から零に遷移させた後に、前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を開始することを特徴とする請求項1に記載の表示装置。

【請求項9】

前記表示パネルの走査配線となるカソード配線又はゲート配線の何れか一方に 、変調信号配線となる他方の配線の電位にかかわらず、前記遮断電圧を印加し得 る走査非選択電位を供給するか、

又は、変調信号配線となるカソード配線又はゲート配線の何れか一方に、走査配線となる他方の配線の電位にかかわらず、前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を印加し得る変調電位を供給することによって、

前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を前記カソード・ゲート間へ印加することを特徴とする請求項1に記載の表示装置。

【請求項10】

前記表示パネルの変調信号配線となるカソード配線又はゲート配線の何れか一方に供給される変調電位は3以上の複数レベルから選択された電位であり、そのうち2以上は走査選択電位と同期して供給されることにより電子を放出し得る駆動電圧を生成する電位であり、そのうち1つは前記遮断電圧を生成する電位であることを特徴とする請求項1に記載の表示装置。

【請求項11】

前記電子放出体が半導体若しくは導電体からなる繊維状のナノ構造体又は炭素 を主成分とするナノ構造体であることを特徴とする請求項1に記載の表示装置。

【請求項12】

前記ナノ構造体は、カーボンナノチューブ、グラファイトナノファイバー、アモルファスカーボン、カーボンナノホーン、グラファイト、ダイヤモンドライクカーボン、ダイヤモンド、フラーレンから選択される少なくとも一種を含むことを特徴とする請求項11に記載の表示装置。

【請求項13】

カソード、ゲート及びアノードを有し、前記カソードと前記ゲートとがマトリクス接続された表示パネルを備え、カソード・アノード間にのみ電圧を印加した状態において電子放出を行い得る電子放出体が前記カソードに設けられ、カソード・ゲート間に遮断電圧を印加して前記電子放出体から前記アノードに向かう電子放出を遮断することにより画素を暗状態として表示を行う表示装置の駆動制御方法において、

表示開始信号が発生した場合、前記カソード・ゲート間に前記遮断電圧又は特定の表示状態を呈し得る駆動電圧を印加する印加工程、

前記印加工程を開始してから所定時間経過した後に、前記アノードの電位を前記電子放出体からの電子放出を行い得る閾値電位以上にするアノード電位供給工程、

を含むことを特徴とする表示装置の駆動制御方法。

【請求項14】

駆動電源回路は、カソード駆動回路及びゲート駆動回路に論理回路用駆動電位が供給されている状態で、前記カソード駆動回路及び前記ゲート駆動回路に前記 遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を生成するための駆動用基準電位の供給を開始し、

その後、前記印加工程を開始すると共に、前記印加工程の開始時期において、 アノード電源回路は、前記アノード電源回路に論理回路用駆動電位が供給されて いる状態で、前記アノードを前記電子放出体から電子放出を行い得る閾値電位よ り十分に低い特定電位に保持し、

その後更に、前記アノード電位供給工程を開始して前記アノードを前記電子放出体から電子放出を行い得る閾値電位より十分に高い電位に保持し、前記カソード駆動回路及び前記ゲート駆動回路から前記表示パネルへの入力された表示画像データに基づいた表示用駆動電圧の印加を許可することを特徴とする請求項13に記載の表示装置の駆動制御方法。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、コンピュータのモニター、テレビジョン装置などに用いられる表示装置に関し、特に、アノード、カソード及びゲートの3端子を有し、カソードとゲートとがマトリクス接続された表示パネルを有する表示装置に関する。

[0002]

【従来の技術】

近年、電子放出素子を用いた平面型表示装置が注目されている。

[0003]

電子放出素子としては、熱陰極型と冷陰極型とがあるが、平面型表示装置の表

示パネルにおいては主として冷陰極型が用いられており、電界放出型(以下FE型という)、金属/絶縁層/金属型(以下MIM型という)や表面伝導型(以下SC型という)等が知られている。

[0004]

F E 型の例としては、C.A. Spindt、"Physical properties of thin-film fie Id emission cathodes with molybdenium cones"、J. Appl. Phys. 、47、5248(1976)に開示されたものが有名である。M I M型の例としては、C.A. Mead、"Ope ration of Tunnel-Emission Devices"、J. Appl. Phys. 、32、646(1961)に開示されたものが知られている。またSC型としては、M. I. Elinson、Radio Eng. Electron Phys. 、10、1290(1965)に開示されているものが知られている。

[0005]

これらの電子放出素子を電子源として用いて表示パネルを実現するためには、 XYマトリクス状に接続されたカソード及びゲートが形成された基板と、それに 対向して配置される蛍光体を有するアノードを設け、カソードの電子放出体から 放出された電子をアノード側の蛍光体に照射して蛍光体を発光させる構成として いる。

[0006]

こうした電子放出素子として、電子放出のための仕事関数が小さく閾値電圧が 低い炭素系の材料や繊維状の電子放出体が注目されており、それらの電子放出素 子を用いた例が、特許文献1~3に開示されている。

[0007]

これらはいずれも、フラーレン、ダイヤモンド、ダイヤモンドライクカーボン (DLC)、カーボンナノチューブ (CNT)、繊維状カーボン等を電子放出体として用いたものである。

[0008]

このように、閾値電圧の低い電子放出体では、3端子の場合、カソード・ゲート間に電圧を印加することなく、単にアノード・カソード間に通常の高電圧(アノード電圧という)を印加するだけで、カソードに付設された電子放出体から電界電子放出により電子が放出される。よって、放出時にはカソード・ゲート間に

電圧を印加せずに電子放出を行い、非放出時にはカソード・ゲート間に遮断電圧 を印加することによって電子放出の抑制を行うように構成することができる。こ うした動作をノーマリーオン型ということにする。

[0009]

以下、炭素繊維の電子放出体を用いたノーマリーオン型の単一の電子放出素子 を例に挙げて説明する。

[0010]

図12は単一の電子放出素子の電位分布を示す模式図であり、電子を放出している駆動状態(図12(a))と、電子放出を停止している遮断状態(図12(b))と、の電位分布を示している。

$[0\ 0\ 1\ 1]$

図12(a)に示す状態では、カソード2上の電子放出体5に電子放出が開始 される閾値電界より大きな電界がカソード2・アノード6間の電圧のみによって 生成され、電子放出が起こる駆動状態であることを示しており、これをノーマリ ーオン状態と呼ぶことにする。

[0012]

例えば、電子放出体 5 の閾値電界が 3 V/μ mであるとすると、アノード 6 をカソード 2 から 2 mmの距離を隔てた位置に設けた場合、カソード 2 を 0 V としカソード 2 ・アノード 6 間のアノード電圧 6 k V となるように印加すると電子放出が開始される。

$[0\ 0\ 1\ 3]$

なお、好適なノーマリーオン状態にするためにはさらに高いアノード電圧を印加してもよく、アノード電圧は電子放出素子の電圧—電流特性により必要な電流密度の得られる電界強度によって決めればよい。

$[0\ 0\ 1\ 4]$

例えば、 $5 \text{ V}/\mu \text{ m}$ の電界強度で必要な電流密度が得られるのであれば、アノード 6 をカソード 2 から 2 m mの距離を隔てた位置に設けた場合、アノード電圧として 1 0 k Vを印加するようにすればよい。

[0015]

図12(a)には、この時の等電位面の様子を図示してある。図12(a)では、アノード6と電子放出体5の間にほぼ均等に等電位面が存在し、電子放出体5近傍の電界強度も約5 V/μ mとなり電子放出が起こる。

[0016]

また、電子放出のためにカソード2・ゲート4間に印加する電圧は、アノード電圧による電界強度に影響を与えない電位であればよいが、上記ノーマリーオン状態では0Vに設定した例を示している。

[0017]

一方、図12(b)に示す状態では、カソード2に対してゲート4に負の電位を供給すると、電子放出体5近傍においてアノード6から受ける電界強度が小さくなり電子放出に必要な閾値電界以下となり、電子放出が停止する。この時のカソード2・ゲート4間の電圧を遮断電圧と呼ぶ。

[0018]

カソード2・ゲート4間に遮断電圧を印加した時の等電位面は、図12(b)に示したようにカソード2及び電子放出体5は0Vで、ゲート4が負電位となるために電子放出体5近傍の等電位面の間隔が広くなり、電界強度が小さくなることがわかる。

[0019]

なお、この時のカソード2・ゲート4間に印加する遮断電圧は、電子放出体5の閾値電界及びノーマリーオン状態のアノード電圧による電界強度によって必要な電界強度が決まり、電子放出体5の寸法及びカソード・ゲート間距離、ゲート寸法等の設計によって適宜決定される。

[0020]

以上のように、ノーマリーオン型の電子放出素子においては、カソード・アノード間の電圧の印加のみによって電子放出が行われ、カソード・ゲート間に遮断電圧を印加して電子放出を遮断することにより電子放出を制御するようにしているので、カソード・ゲート間の電圧を電子放出に必要な閾値以上にする必要がないため、より低電圧で安定した駆動制御が可能となる。

[0021]

【特許文献1】

特開2000-251783号公報

【特許文献2】

特開2000-268706号公報

【特許文献3】

特開2002-100279号公報

[0022]

【発明が解決しようとする課題】

ところで、こうしたノーマリーオン型の電子放出素子をXYマトリクス型の平面型表示装置に応用することが考えられている。このような平面型表示装置の場合には、カソード・アノード間に電子放出の閾値以上の電界強度を与えるような電圧が印加されていて、且つ、カソード・ゲート間に遮断電圧が印加されていない時には、表示画面の全面にわたって最高輝度で全白表示が行われる。

[0023]

よって、テレビジョン装置やコンピュータ用のモニターとしてこの平面型表示 装置を使用する場合、たとえ短時間であっても全白表示が行われるとユーザーが 装置の故障と誤認したり、不快感を覚えたりすることがある。

[0024]

また、上述した繊維状物質やナノ構造体のように、電子放出のための閾値電圧が比較的低い電子放出体を用いた場合には、カソード・ゲート間電圧を無制御状態にしておくと、カソード・アノード間電圧による電子放出が起こりやすい状況が継続することになり、最高輝度での全白表示にはならずとも、不本意な電子放出による発光が生じるおそれがある。

[0025]

とりわけ、最高輝度での全白表示や不本意な発光は、表示装置本体の電源オン時や、省電力のための非表示モードから表示モードに復帰する時など、表示開始信号の発生に応じてアノード電位を遮断状態から供給状態に遷移させる場合に生じ易い。

[0026]

本発明の目的は、表示開始信号の発生に応じてアノード電位を遮断状態から供給状態に遷移させる場合における、不本意な表示状態の発生や不本意な発光を抑制することができる表示装置及びその駆動制御方法を提供することにある。

[0027]

【課題を解決するための手段】

本発明においては、上記課題を解決するために、カソード・アノード間にアノード電圧を印加した状態において電子放出を行うような閾値を持つ電子源をカソードとして用いて、カソード近傍に設けられたゲートとのカソード・ゲート間に遮断電圧を印加して電子放出を遮断することにより表示を制御するXYマトリクス型の平面型ディスプレイのような表示装置において、例えば電源投入時のように表示開始信号が発生してから、少なくともカソード・ゲート間に所定の制御電圧を印加した後に、アノード電圧によって生じる平均電界強度が電子源の閾値以上となるアノード電圧の印加を行うように制御する制御手段を設けるものである。

[0028]

本発明の骨子は以下のとおりである。

[0029]

(1)カソード、ゲート及びアノードを有し、前記カソードと前記ゲートとがマトリクス接続された表示パネルを備え、カソード・アノード間にのみ電圧を印加した状態において電子放出を行い得る電子放出体が前記カソードに設けられ、カソード・ゲート間に遮断電圧を印加して前記電子放出体から前記アノードに向かう電子放出を遮断することにより画素を暗状態として表示を行う表示装置において、

表示開始信号が発生した場合、前記カソード・ゲート間に前記遮断電圧又は特定の表示状態を呈し得る駆動電圧の印加を開始してから所定時間経過した後に、前記アノードの電位が前記電子放出体からの電子放出を行い得る閾値電位以上となるように表示パネル駆動回路の動作を制御する制御手段を備えることを特徴とする表示装置。

[0030]

これにより、表示開始信号の発生に応じてアノードの電位を遮断状態から供給状態に遷移させる場合における、不本意な表示状態の発生や不本意な発光を抑制することができる。

[0031]

(2) 前記カソード・ゲート間への前記遮断電圧又は前記特定の表示状態を呈 し得る駆動電圧の印加を、前記表示パネルの全画素について同時に行うことを特 徴とする(1) に記載の表示装置。

[0032]

これにより、アノードの電位を遮断状態から供給状態に遷移させて全白(明)相当のアノード電位となっても、画面全体を最低輝度レベルの全黒(暗)状態又は特定の表示状態に保持することができる。

[0033]

(3) 前記表示パネルの少なくとも1行の走査配線に走査選択電位を供給し、 残りの行の走査配線に走査非選択電位を供給し、前記走査選択電位の供給に同期 して前記表示パネルの全列の変調信号配線に最暗状態を生成し得る変調電位又は 所定の変調電位を供給することによって、

前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を前記カソード・ゲート間へ印加することを特徴とする(1)に記載の表示装置。

$[0\ 0\ 3\ 4]$

これにより、通常の表示動作と同じ動作により、アノードの電位を遮断状態から供給状態に遷移させて全白(明)相当のアノード電位となっても、画面を最低輝度レベルの全黒(暗)状態又は特定の表示状態に保持することができる。

[0035]

(4)前記表示パネル駆動回路は、前記アノード電位を供給するためのアノード電源回路と、前記カソードを駆動するためのカソード駆動回路と、前記ゲートを駆動するためのゲート駆動回路と、前記カソード駆動回路及び前記ゲート駆動回路に前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を生成するための駆動用基準電位を供給する駆動電源回路と、を有することを特徴とする(1)に記載の表示装置。

[0036]

これにより、各回路への給電状態が細やかに制御可能となる。

[0037]

(5)前記駆動電源回路は、前記カソード駆動回路及び前記ゲート駆動回路に 論理回路用駆動電位が供給されている状態で、前記駆動用基準電位の供給を開始 し、

その後、前記カソード駆動回路及び前記ゲート駆動回路は、前記遮断電圧又は 前記特定の表示状態を呈し得る駆動電圧の印加を開始することを特徴とする(4) に記載の表示装置。

[0038]

これにより、装置には低電圧供給後に高電圧が印加されることになり、また、各回路に順次電圧が印加されるので、回路の誤動作や破壊を抑止できる。

[0039]

(6) 前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を開始 する期間において、

前記アノード電源回路は、前記アノード電源回路に論理回路用駆動電位が供給されている状態で、前記アノードを前記電子放出体から電子放出を行い得る閾値電位より十分に低い特定電位に保持することを特徴とする(4)に記載の表示装置。

[0040]

これにより、アノードの帯電を防止し、アノード電位が閾値を越えるタイミングの制御をし易くする。

[0041]

(7) 前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を開始した後に、前記カソード駆動回路及び前記ゲート駆動回路から前記表示パネルへの入力された表示画像データに基づいた表示用駆動電圧の印加を許可することを特徴とする(4)に記載の表示装置。

[0042]

これにより、表示不良を抑止し、入力表示画像データに基づく表示にスムーズ

に移ることができる。

[0043]

(8) 前記カソード・ゲート間の電圧を不定状態から零に遷移させた後に、前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧の印加を開始することを特徴とする(1) に記載の表示装置。

[0044]

これにより、帯電による悪影響を防止することができる。

[0045]

(9) 前記表示パネルの走査配線となるカソード配線又はゲート配線の何れか 一方に、変調信号配線となる他方の配線の電位にかかわらず、前記遮断電圧を印 加し得る走査非選択電位を供給するか、

又は、変調信号配線となるカソード配線又はゲート配線の何れか一方に、走査配線となる他方の配線の電位にかかわらず、前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を印加し得る変調電位を供給することによって、

前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を前記カソード・ゲート間へ印加することを特徴とする(1)に記載の表示装置。

[0046]

これにより、走査側又は変調信号側の駆動回路の制御のみで、不本意な画面の 発光を抑制することができる。

[0047]

(10) 前記表示パネルの変調信号配線となるカソード配線又はゲート配線の何れか一方に供給される変調電位は3以上の複数レベルから選択された電位であり、そのうち2以上は走査選択電位と同期して供給されることにより電子を放出し得る駆動電圧を生成する電位であり、そのうち1つは前記遮断電圧を生成する電位であることを特徴とする(1) に記載の表示装置。

[0048]

これにより、変調電位により幾つかの階調レベルを表示しようとした場合に、 それに用いられる電位と遮断電圧を生成する電位を兼用できるので、基準電位レベルの数を抑えることができる。

[0049]

(11)前記電子放出体が半導体若しくは導電体からなる繊維状のナノ構造体 又は炭素を主成分とするナノ構造体であることを特徴とする(1)に記載の表示 装置。

[0050]

(12) 前記ナノ構造体は、カーボンナノチューブ、グラファイトナノファイバー、アモルファスカーボン、カーボンナノホーン、グラファイト、ダイヤモンドライクカーボン、ダイヤモンド、フラーレンから選択される少なくとも一種を含むことを特徴とする(11)に記載の表示装置。

[0051]

(13)カソード、ゲート及びアノードを有し、前記カソードと前記ゲートとがマトリクス接続された表示パネルを備え、カソード・アノード間にのみ電圧を印加した状態において電子放出を行い得る電子放出体が前記カソードに設けられ、カソード・ゲート間に遮断電圧を印加して前記電子放出体から前記アノードに向かう電子放出を遮断することにより画素を暗状態として表示を行う表示装置の駆動制御方法において、

表示開始信号が発生した場合、前記カソード・ゲート間に前記遮断電圧又は特定の表示状態を呈し得る駆動電圧を印加する印加工程、

前記印加工程を開始してから所定時間経過した後に、前記アノードの電位を前記電子放出体からの電子放出を行い得る閾値電位以上にするアノード電位供給工程、

を含むことを特徴とする表示装置の駆動制御方法。

[0052]

(14) 駆動電源回路は、カソード駆動回路及びゲート駆動回路に論理回路用 駆動電位が供給されている状態で、前記カソード駆動回路及び前記ゲート駆動回 路に前記遮断電圧又は前記特定の表示状態を呈し得る駆動電圧を生成するための 駆動用基準電位の供給を開始し、

その後、前記印加工程を開始すると共に、前記印加工程の開始時期において、 アノード電源回路は、前記アノード電源回路に論理回路用駆動電位が供給されて いる状態で、前記アノードを前記電子放出体から電子放出を行い得る閾値電位より十分に低い特定電位に保持し、

その後更に、前記アノード電位供給工程を開始して前記アノードを前記電子放出体から電子放出を行い得る閾値電位より十分に高い電位に保持し、前記カソード駆動回路及び前記ゲート駆動回路から前記表示パネルへの入力された表示画像データに基づいた表示用駆動電圧の印加を許可することを特徴とする(13)に記載の表示装置の駆動制御方法。

[0053]

【発明の実施の形態】

以下に図面を参照して、本発明の好適な実施の形態を例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、配置等については、特に特定的な記載なき限りは、本発明の範囲をそれらのみに限定する趣旨のものではない。

[0054]

(第1実施形態)

図1は本発明の第1実施形態による表示装置の駆動制御方法を説明するためのタイミングチャートを示す。図2は本発明の第1実施形態に用いられる表示パネルの構成を示す。図3は本発明の第1実施形態による表示装置の駆動制御系のブロックを示す。

[0055]

本実施形態に係る平面型ディスプレイである表示装置は、マトリクス接続された複数の電子放出素子を行列状に配置して得られるものである。

[0056]

図2において、201は電子源基板であり、206はフェースプレートであり、214は外枠であり、211は行方向配線であり、212は列方向配線であり、200はノーマリーオン型の電子放出素子である。

[0057]

単純マトリクスの電子源基板201に対向して、電子放出素子200の上部に 対応するフェースプレート206上に画像形成部材として設けられた蛍光体20 8を位置合わせして配置している。

[0058]

蛍光体208上には、高電圧印加用の導体として蒸着等によってアルミニウム 系配線材料をメタルバック209として設けてある。メタルバック209には、 高電位を供給するための高圧端子213が電気的に接続されている。

[0059]

また、メタルバック209を設けた側とは反対側の蛍光体208表面には、ア ノード基板207が設けられている。

[0060]

図2において、行方向配線211はC1、C2・・・Cmのm本の配線からなり、ストライプ状に配列され、各々がカソード202を形成している。行方向配線211は蒸着法等にて形成されたアルミニウム、銀等の導電性材料で構成されている。なお、配線の材料、膜厚、線巾は、適宜設計されるものであり、また製造法も適宜選択されるものである。

[0061]

このストライプ状に配列されたカソード202上の電子放出素子200の位置に電子放出体205が形成されている。なお、電子放出体205としては、前述のように電子放出閾値が低い炭素系又は炭素系以外の半導体や導電体からなる繊維状のナノ構造体を用いるとよい。

$[0\ 0\ 6\ 2]$

列方向配線212はG1、G2・・・Gnのn本の配線からなり、行方向配線2 11と直交するストライプ状に配列され、各々がゲート204を形成している。 列方向配線212は行方向配線211と同様に構成されている。

[0063]

このストライプ状に配列されたゲート204には、カソード202の電子放出体205の上部に対応する部分に開孔したホール部210が設けられている。

[0064]

なお、ストライプ状に配列されたゲート204及びホール部210は、図面を 見易くするために一番手前側のカソード202(C1)上については図示してい ない。

[0065]

また、行方向配線211にカソード202を設け、列方向配線212にゲート204を設けるようにしたが、この接続配置は逆でもよい。

[0066]

これらm本の行方向配線211とn本の列方向配線212との間には、図面を 見易くするために不図示とした層間絶縁層が設けられており、両者を電気的に分離している(以上m、nは、共に正の整数)。なお、層間絶縁層は、電子放出体 205とホール部210に対応する部分には設けられていない。

[0067]

不図示の層間絶縁層は、スパッタ法等を用いて形成された絶縁層である。例えば、行方向配線211を形成した電子源基板201の全面或は一部に所望の形状で形成され、特に、行方向配線211と列方向配線212の交差部の電位差に耐え得るように、膜厚、材料、製法等が適宜選択されるものである。

[0068]

行方向配線211と列方向配線212は、それぞれ外部端子として引き出されている。

[0069]

本実施形態においては、電子放出素子200を構成する一対の電極の層自体が、m本の行方向配線211とn本の列方向配線212としての機能も果たしているが、素子毎に配線とは独立したカソード202及びゲート204を設け、Y方向の複数の独立ゲート204を列方向配線で共通に接続し、X方向の複数の独立カソード202を列方向配線で共通に接続するように、ゲート電極とゲート配線、カソード電極とカソード配線とに分けて形成することも好ましいものである。

[0070]

図3に示すように、行方向配線211には、X方向に配列した電子放出素子200の行を選択するための走査選択信号を印加する走査信号印加手段301が接続される。

[0071]

一方、列方向配線212には、Y方向に配列した電子放出素子200の各列を 入力信号に応じて変調するための変調信号印加手段302が接続される。

[0072]

各電子放出素子200に印加されるカソード202・ゲート204間の遮断電圧は、当該素子に印加される走査信号と変調信号の差電圧として供給される。なお、本実施形態においては、行方向配線211をカソード202とし、そこに走査信号として零電位又は正電位を供給し、列方向配線212をゲート204とし、そこに変調信号として零電位又は負電位を供給するように構成されている。

[0073]

各画素を構成する電子放出素子200の駆動は次のように行われる。

[0074]

メタルバック209 (以後アノードという) に高電位を供給し、カソード20 2・ゲート204間の電圧に依存してアノード電位を電子放出体205から電子 放出をせしめるに十分な値に保持しておく。

[0075]

この状態において、非選択の走査行にあたる行方向配線211のカソード20 2に走査非選択電位として正電位を供給する。また、選択走査行にあたる行方向 配線211のカソード202には走査選択電位として零電位を供給する。これと 同時に、列方向配線212のゲート204には、変調信号として零電位又は負電 位が与えられる。

[0076]

非選択の行においては変調信号の電位(零電位又は負電位)に因らずに、カソード202・アノード間の電圧は電子放出体205からの電子放出を生起しない値に設定されているので、非選択行上にある電子放出体205からは電子が放出されず、その行の画素は発光しない。

[0077]

一方、選択行において零電位の変調信号が与えられた素子では、カソード20 2・ゲート204間の電圧は零となり、カソード202・アノード間の電圧は電子放出の閾値電圧を超えているので、当該素子から電子が放出され、画素は発光 する。

[0078]

また、選択行において負電位の変調信号が与えられた素子では、カソード20 2・ゲート204間の電圧は遮断電圧となり、カソード202・アノード間の電 圧は電子放出の閾値電圧を超えているにもかかわらず、ゲート電位の影響により 、実際の電子放出体205における電界強度は電子放出の閾値を越えないので、 当該素子からは電子が放出されず、画素は発光しない。

[0079]

このような走査を少なくとも1行を順次選択しながら行うことによって、一画 面走査が完了し、入力された表示画像データに応じて画像を表示することになる。

[0800]

ここで、図1、図3を用いて表示開始シーケンスの説明をする。

[0081]

図3に示すように、走査信号印加手段301と変調信号印加手段302には、それぞれ走査信号と変調信号を生成するために必要な信号が制御手段としてのコントロール回路303から供給される。また、コントロール回路303からはアノード電源回路304の動作を制御するための制御信号も供給される。

$[0\ 0\ 8\ 2]$

また、これらのコントロール回路303やアノード電源回路304の動作に必要な電圧を供給するために給電上流側には本体電源305が設けられている。

[0083]

なお、ここで、画像表示に必要な他の信号処理用回路、あるいは走査信号印加 手段301及び変調信号印加手段302の構成等の詳述は省く。

[0084]

さて、図1に示すように、上流側の電源スイッチがオンとなった場合、本体電源305からの電源供給によりコントロール回路303において、時刻t0においてハイレベルの表示開始信号DSが発生する。

[0085]

表示開始信号DSが発生してから走査信号印加手段301及び変調信号印加手段302をアクティブにするのに必要な所定期間経過した後、時刻t1において、走査信号印加手段301からカソード202への正電位の供給が開始され、ほぼ同時に、変調信号印加手段302からゲート204に負電位の供給が開始される。

[0086]

表示開始信号DSが発生してから、正電位の走査非選択信号(Vx)、負電位の変調信号(Vy)が印加されるまでの間、カソード202やゲート204の電位が不定であるとカソード202・ゲート204間電圧が電子放出体205の電子放出閾値を越え、電子を放出する可能性がある。よって、必要に応じて、カソード202及びゲート204は同電位に保持することが望ましい。通常はVx=Vy=0Vとすればよい。

[0087]

カソード202・ゲート204間に遮断電圧を供給するためには、行方向配線217又は列方向配線212のうち少なくともどちらか一方の電位を素子に遮断電圧を印加し得る電位にしてから所定の遅延時間Td経過後にアノード電位Vaが電子放出体の閾値電界以上の電界強度が得られる電位Vthを越えるように、時刻t2において、高圧端子213へのアノード電位Vaの供給を開始する。

[0088]

前述のように本実施形態においては、カソード202を行方向配線211とし、ゲート204を列方向配線212としているので、列方向配線212側の変調信号を、全て遮断電圧を生成し得る負電位となるように、すなわち表示画像データとして全黒表示を行うデータをコントロール回路303より変調信号印加手段302に与えるように制御すればよい。この場合の走査信号は走査選択電位(零電位)であってもよく、また、それより高い電位であってもよい。

[0089]

あるいは、行方向配線 2 1 1 の走査信号を、全て遮断電圧を生成し得る正電位 としてもよい。この場合の変調信号は、零電位又はそれより低い電位であればよ いので、黒表示データ(負電位)であろうが白表示データ(零電位)であろうが 構わない。

[0090]

図1のシーケンスでは、全ての行方向配線211の走査信号を正電位、全ての列方向配線212の変調信号を負電位として、カソード202・ゲート204間に印加される遮断電圧を大きくして、確実に電子放出を抑止する例を示しているが、前述したとおり、カソード202又はゲート204の何れか一方の電位を、遮断電圧を生成し得る電位とすればよい。

[0091]

各電位の遷移タイミングは、コントロール回路303の制御によって実現できる。

[0092]

[0093]

なお、アノード電位 V a を高電位にした後にアノード電位 V a が一定になってからは、コントロール回路 3 0 3 より、走査信号印加手段 3 0 1 及び変調信号印加手段 3 0 2 から通常の走査信号及び変調信号が供給されるように、それらを制御すれば、入力表示画像データに基づく通常の画面表示が行える。

[0094]

この時、画像の階調表示を行うには変調信号の零電位のパルス幅を変化させることによる時間制御 (パルス幅変調) を行えばよい。

[0095]

このようなシーケンスにより、電源オン時や表示再開時などの表示開始信号D Sの発生時に最高輝度で全面が全白点灯するという現象を防止することができる

[0096]

なお、カソード202・ゲート204間に所定の遮断電圧の印加を開始するよりも前にアノード電位Vaの供給を始めて、アノード電位Vaが閾値電位Vthを越える前にカソード202・ゲート204間に遮断電圧が印加されるように、タイミングを決めることも可能ではある。しかしながら、アノード電位Vaを供給する際の過渡的な電圧によってカソード202・アノード間の電界強度が閾値電界を越え電子放出する可能性が皆無とはいえないため、カソード202・ゲート204間に遮断電圧が印加された後にアノード電位Vaの供給を開始することがより望ましいものである。

[0097]

また、表示開始信号DSの発生時に、通常の走査信号と変調信号を表示パネルに先に供給して特定の表示状態を呈し得る駆動電圧を印加しておいて、アノード電位Vaの立ち上がりと共に所定の表示が行われるようにすることも可能であり、その場合でもアノード電位Vaはほぼ即時に立ち上がる(1秒以内)ように設定できるため、表示開始時に違和感をいだくことはない。

[0098]

(第2実施形態)

図4~図9には、第2実施形態が示されている。本実施形態では、第1実施形態よりも詳しく各種回路を用いた本発明の構成を説明する。

[0099]

図4は本発明の第2実施形態による表示装置の駆動制御系のブロックを示す。 図5は本発明の第2実施形態による表示装置の駆動制御方法を説明するためのタ イミングチャートを示す。

$[0\ 1\ 0\ 0]$

300は、カソード、ゲート及びアノードを有し、カソードとゲートとがマトリクス接続された表示パネルであり、図4では1つの電子放出素子200しか描かれていないが、現実には素子がマトリクス状に多数配列されている。表示パネル300の例としては、第1実施形態に挙げたものがあるので、本実施形態ではその詳しい説明は省略する。

[0101]

そして、この表示パネル300には、カソード・アノード間にのみ電圧を印加した状態において電子放出を行い得る電子放出体がカソードに設けられ、カソード・ゲート間に遮断電圧を印加して電子放出体からアノードに向かう電子放出を遮断することにより画素を暗状態とし、カソード・ゲート間に駆動電圧を印加して電子放出体からアノードに向かう電子放出を生起させることにより画素を明状態として表示を行う。

[0102]

表示パネル300を駆動するための表示パネル駆動回路は、アノードにアノード電位Vaを供給するためのアノード電源回路304と、カソードを駆動するためのカソード駆動回路21と、ゲートを駆動するためのゲート駆動回路22と、カソード駆動回路21及びゲート駆動回路22に遮断電圧又は特定の表示状態を呈し得る駆動電圧を生成するための駆動用基準電位Vs, Vi を供給する駆動電源回路24と、を有する。

[0103]

駆動用基準電位Viは、例えば、階調表示用の電圧振幅変調(PHM)駆動のために、3つ以上の駆動基準電位からなることが好ましいものである。

[0104]

図6は駆動電源回路の回路構成図である。図7は行駆動回路(ここではカソード駆動回路21)の回路構成図である。図8は列駆動回路(ここではゲート駆動回路22)の回路構成図である。図9はアノード電源回路304の回路構成図である。これらのいずれの回路も5V又は3.3Vのような論理回路用駆動電位Vccが動作電源となる何らかの論理回路を備えている。

[0105]

図6に示す駆動電源回路24は、本体電源305からの電力供給、即ち、+50 V, -50 Vのような電位 VDD, VEEの供給を制御信号RCONTに応じてオン/オフするスイッチ31,32と、ボルテージホロワのオペアンプ33と、複数の抵抗器34と、を有する。そして、駆動電源回路24は、列駆動回路に 3つの負電位(Vi1、Vi2、Vi3)を供給すると共に、行駆動回路に走査

選択電位Vssを供給するマルチ電源である。

[0106]

図7に示す行駆動回路(ここではカソード駆動回路21)は、クロックYCL Kに同期して一行毎に出力レベルがシフトする垂直シフトレジスタSR35と、 走査非選択電位の供給をイネーブル信号YENで制御するためのアンドゲート3 6と、出力電圧を論理回路用低電圧(Vcc—0V)から駆動用高電圧(Vss —0V)に昇圧するためのレベルシフト回路37と、走査選択電位又は走査非選 択電位を与える走査信号が出力される出力段の高電圧CMOSインバータ38と 、を有する。なお、ここでは1チャンネルのみ示している。

[0107]

図8に示す列駆動回路(ここではゲート駆動回路22)は、駆動制御回路23から入力されるデジタル表示画像データを変調電位に変調するためのパルス変調器PM39と、3つの変調電位Vi1、Vi2、Vi3 を選択的に出力するための3つの選択回路40,41,42と、を有している。また、各選択回路40,41,42は、変調電位の供給をイネーブル信号XENで制御するためのアンドゲート43と、レベルシフト回路44と、出力段の高電圧CMOSインバータ45と、をそれぞれ有する。なお、ここでは1 チャンネルのみ示している。

[0108]

図9に示すアノード電源回路304は、制御信号PCNOTに応答して高圧出力トランス47の動作を制御するフィードバック制御型のトランス制御回路46と、高圧に変換された交流を整流する整流回路48と、を有している。アノード電源回路304は、制御信号PCNOTに応答して、本体電源305から供給された電位Vaaをアノードに供給する高電位のアノード電位Vaに変換して出力する。なお、本体電源305とアノード電源回路304は1つの回路ブロックで構成されていてもよい。

[0109]

図4に戻り、本体電源305は、電源プラグ26が商用電源に接続され、給電上流側にある本体電源スイッチ25がオンになると、各回路21~24,304の中の論理回路に論理回路用駆動電位Vccを供給する。この本体電源スイッチ

25のオン状態を検知して、これと同時か若干遅れて、図5に示す時刻 t 10に、表示開始信号DSとしてのスタート信号を発生させる。また、本体電源スイッチ 25がオンになると、本体電源 305はアノード電源回路 304と駆動電源回路 24にアノード電位 Va や駆動用基準電位 Vs, Vi を発生させるための源になる動作電圧を供給する。

[0110]

駆動制御回路23は、通常MPUのような中央演算処理部を有する制御手段である。この駆動制御回路23が、アノード電源回路304に制御信号PCONTを供給し、駆動電源回路24に制御信号RCONTを供給し、カソード駆動回路21に垂直走査用のクロックYCLK、イネーブル信号YEN、制御信号YCONTを供給し、ゲート駆動回路22に水平走査用のクロックXCLK、イネーブル信号XEN、制御信号XCONT、表示画像データDATAを供給するように構成されている。

$[0\ 1\ 1\ 1]$

アノード電源回路304は、制御信号PCONTがオフの時、電子放出体から の電子放出を行い得る閾値電位Vthより十分に低い零電位のような特定電位に 、アノードの電位を保持している。

$[0\ 1\ 1\ 2\]$

駆動電源回路 2 4 は、通常、零電位を出力しているが、論理回路用駆動電位 V c c が供給されている状態で、図 5 に示す時刻 t 11に、入力される制御信号 R C O N T がオンになると、駆動用基準電位 V s , V i をカソード駆動回路 2 1 及びゲート駆動回路 2 2 に供給し始める。この時、カソード駆動回路 2 1 やゲート駆動回路 2 2 の出力は、ハイインピーダンスの電位不定状態から零電位に遷移し、カソード・ゲート間は同電位に保たれる。

[0113]

時刻 t 12に、イネーブル信号 X E N , Y E N がハイレベルになると、カソード 駆動回路 2 1 から全てのカソード(行方向配線 2 1 1)への高電位の非選択電位 の供給が開始され、それとほぼ同時刻に、ゲート駆動回路 2 2 から全てのゲート (列方向配線 2 1 2)への低電位の非選択電位の供給が開始される。これにより

、電子放出素子200のカソード・ゲート間には遮断電圧が印加されることになる。

[0114]

時刻 t 12から遅れた時刻 t 13に、入力される制御信号 P C O N T がオンになり、アノード電源回路 3 0 4 からアノードへ高いアノード電位 V a の供給が開始される。

[0115]

アノード電源回路304の出力側の時定数に因り一定のアノード電位Vaに到達した後の時刻t14において、制御信号XCONT, YCONTにより、マトリクス交点の電子放出素子200へ表示用駆動電圧の印加が許可される。即ち、カソード駆動回路21が走査を開始し、ゲート駆動回路22から表示パネル300への表示画像データDATAに基づいた変調電位の供給が開始される。

[0116]

こうして、1水平走査期間 (1 H) に少なくとも1行の行方向配線211が選択されて零電位が供給され、これに同期して多数の列方向配線212に表示画像データに基づいた変調電位が供給される。この走査を垂直方向に順次行う線順次駆動によって1フレームの画像表示が行われる。この時、走査非選択行の画素と、走査選択行であって黒表示データの変調電位が与えられた画素と、のカソード・ゲート間には遮断電圧が印加され、当該画素は暗状態となる。

[0117]

(第3実施形態)

図10、図11には、第3実施形態が示されている。本実施形態では、第2実施形態と同様に第1実施形態よりも詳しく各種回路を用いた本発明の構成を説明する。

[0118]

図10は本発明の第3実施形態による表示装置の駆動制御系のブロックを示す。図11は本発明の第3実施形態による表示装置の駆動制御方法を説明するためのタイミングチャートを示す。本実施形態では図4、図5と同じ構成、動作については詳述を省く。

[0119]

図10において図4と異なる点は、カソード駆動回路21、が列方向配線212に接続され、ゲート駆動回路22、が行方向配線211に接続されている点である。そして、ゲート駆動回路22、に垂直走査用のクロックYCLK、イネーブル信号YEN、制御信号YCONTを供給し、カソード駆動回路21、に水平走査用のクロックXCLK、イネーブル信号XEN、制御信号XCONT及び表示画像データDATAを、供給する点である。更に、無線又は有線で駆動制御回路23を制御し表示装置を操作するための遠隔操作器27から表示開始信号DSを発生させている点である。特に、回路21、,22、,24、の詳細は、前述した第2実施形態と異なる構成となることに注意されたい。

[0120]

ここでは、電源プラグ26が商用電源に接続され、給電上流側にある本体電源スイッチ25がオン状態にあり、各回路の論理回路に論理回路用駆動電位Vcc が供給されている省電力の非表示モードから表示モードに遷移するシーケンスについて図11を用いて説明する。

[0121]

この非表示モードの状態で、時刻 t 10に、遠隔操作器 2 7 の操作により、表示開始信号 D S が発生し、駆動制御回路 2 3 に供給される。

[0122]

駆動電源回路 2 4 'は、通常、零電位を出力しているが、時刻 t 11に、入力される制御信号R C O N T がオンになると、駆動用基準電位 V s , V i 1 をカソード駆動回路 2 1 '及びゲート駆動回路 2 2 'に供給し始める。この時、カソード駆動回路 2 1 'やゲート駆動回路 2 2 'の出力は、ハイインピーダンスの電位不定状態から零電位に遷移し、カソード・ゲート間は同電位に保たれる。

[0123]

より、全画素のカソード・ゲート間には同時に遮断電圧が印加される。

[0124]

時刻 t 12から遅れた時刻 t 13に、入力される制御信号 P C O N T がオンになり、アノード電源回路 3 0 4 からの出力は、電子放出体からの電子放出を行い得る 関値電位 V t h より十分に低い零電位のような特定電位から高電位への遷移を開始する。

[0125]

アノード電源回路 3 0 4 の出力側の時定数に因り一定のアノード電位 V a に到達した後の時刻 t 14において、制御信号 X C O N T, Y C O N T により、マトリクス交点の電子放出素子へ表示用駆動電圧の印加が許可される。即ち、ゲート駆動回路 2 2 が走査を開始し、カソード駆動回路 2 1 から表示パネル 3 0 0 への表示画像データ D A T A に基づいてパルス幅変調された低電位の供給が開始される。

[0126]

こうして、ゲートの線順次走査により1水平走査期間(1H)に少なくとも1行の行方向配線211が選択されて選択電位(零電位)が供給され、残りの行方向配線211には非選択電位(負電位)が供給され、これに同期して多数の列方向配線212に表示画像データに基づいてパルス幅変調された低電位の変調電位が供給される。この時、走査非選択行の画素と、走査選択行であって黒表示データの変調電位(正電位)が与えられた画素と、のカソード・ゲート間には遮断電圧が印加され、当該画素は暗状態となる。

[0127]

前述した実施形態においては、遮断電圧は、全黒表示データに基づく変調電位をゲート又はカソードに与え続けておいて、カソード又はゲートを垂直走査してもよいし、走査線の選択・非選択にかかわらず、全黒表示データに基づく変調電位をゲート又はカソードに与え続けることによって実現することも可能である。或いは、変調電位にかかわらず、全走査線に非選択電圧を与え続けてもよい。また、遮断電圧は、走査選択電位や走査非選択電位或いは変調電位等の表示動作に用いられる電位とは別の電位から生成されてもよい。

[0128]

また、時刻 t 12において、遮断電圧を印加する代わりに、全面灰色表示や初期 画像のような特定の表示状態を呈し得る駆動電圧の印加を開始しておいて、アノ ード電位が閾値を越えた時に、当該特定の表示状態が現れるように制御すること も可能である。この場合、カソード又はゲートを垂直走査し、表示画像データに 基づく変調電位をゲート又はカソードに与える。

[0129]

さらには、時刻 t 13の後、アノードの電位が電子放出体からの電子放出を行い得る閾値以上となってから、線順次で行を選択しながら、表示パネル300の全列に最暗状態を呈し得る変調電位を供給することによって遮断電圧を印加する状態を経て、時刻 t 14後に、入力された表示画像データに基づく表示を行ってもよい。または、アノード電位 V a が当該閾値以上となってから、線順次で行を選択しながら、表示パネル300の複数の列に所定の変調電位を供給することによって特定の表示状態を呈し得る駆動電圧を印加する状態を経て、時刻 t 14後に、入力された表示画像データに基づく表示を行ってもよい。

[0130]

本発明に用いられる変調電位としては、表示画像データの表示階調レベルに応じて、3以上の複数の電位から変調電位を選択する電圧振幅変調(PHM)や、3以上の複数のパルス幅から変調電位のパルス幅を選択するパルス幅変調(PWM)や、PHMとPWMの組み合わせによる変調方式を採用することができる。特に、変調信号配線となるカソード配線又はゲート配線の何れか一方に供給される変調電位が3以上の複数レベルの電位から選択される場合には、そのうち1つを、遮断電圧を生成する電位に設定することが望ましい。

[0131]

また、本発明に用いられる遮断電圧は、走査選択電位や走査非選択電位或いは変調電位などの表示動作に用いられる電位とは、別の電位から生成されてもよい

[0132]

表示開始信号DSとしては、前述したように、表示装置の最も上流にある本体

電源スイッチのオン状態を示す信号や、表示装置を無線又は有線で操作する遠隔操作器からの出力信号に限らず、中央演算処理部からの出力信号や、表示装置に接続されたコンピュータからの出力信号などのうち、すくなくとも何れか1つであってもよい。また、これらの表示開始信号DSは、アノード電源回路、カソード駆動回路、ゲート駆動回路に少なくとも論理回路用駆動電位Vccが供給されている状態で発生した、非表示モードから表示モードへの復帰信号であるとよい。

[0133]

或いは、カソード駆動回路及びゲート駆動回路に少なくとも駆動用基準電位 V s, V i が供給されている状態で、発生した非表示モードから表示モードへの復帰信号(表示開始信号)をトリガとして、この復帰信号に応答して、イネーブル信号 X E N, Y E N を発生させ、カソード駆動回路及びゲート駆動回路をイネーブルとして遮断電圧などを与えてもよい。

[0134]

また、スイッチオンの後の非表示モードにおいては、Vccの供給を維持しているが、アノード電源回路、カソード駆動回路及びゲート駆動回路へはVccの供給をも遮断しておいて、表示開始信号DSが発生した後に、Vccの供給を復帰してもよい。

[0135]

本発明に用いられる、画素を構成するための電子放出素子としては、図示したようなカソードよりアノード側にゲートが配されている上ゲート構造であってもよいが、ゲートよりアノード側にカソードが配されている下ゲート構造や基板の同一平面上にカソードとゲートが配されている水平ゲート構造であってもよい(特開2002-170483号公報、US公開20020475139号公報、特開2002-150925号公報、US公開2002074947号公報等を参照)。

[0136]

また、本発明に用いられる電子放出閾値の低い電子放出体は、半導体若しくは 導電体からなる繊維状のナノ構造体又は炭素を主成分とするナノ構造体であるこ とが望ましい。ナノ構造体は、具体的には、カーボンナノチューブ、グラファイトナノファイバー、アモルファスカーボン、カーボンナノホーン、グラファイト、ダイヤモンドライクカーボン、ダイヤモンド、フラーレンから選択される少なくとも一種を含む。

[0137]

このように、各実施形態によれば、駆動制御回路23により、表示開始信号DSが発生した場合、カソード・ゲート間に、遮断電圧又は特定の表示状態を呈し得る駆動電圧の印加を開始してから所定時間Td経過した後に、アノードの電位が電子放出体からの電子放出を行い得る閾値電位Vth以上となるように表示パネル駆動回路の動作を制御することにより、不本意な表示状態の発生や不本意な発光を抑制することができる。

[0138]

また、本発明は電子放出閾値の近い材料を用いた場合には、ノーマリーオン型 に限らず、ノーマリーオフ型にも適用できる。

[0139]

【実施例】

(実施例1)

図2に示したような表示パネルを以下のようにして作製した。

[0140]

十分に洗浄を行った基板に、アルミニウム系配線材料を用いてスパッタ法およびフォトリングラフィー法を用いて、カソード202を、厚さ約1μm、幅300μmの連続した平行ストライプ状の配列に形成した。

[0141]

さらにカソード202上には、電子放出体205となる部分に、密着層として TiNe、この上に触媒層としてPd/Co(各50重量%)をいずれもスパッタ法およびフォトリソグラフィー法を用いて、 $\phi10\mu$ mとなるように形成した。 なお触媒層としては他にFe, Ni 及びこれらと前述のPd, Co等の混合物を用いることもできる。

[0142]

この上に電子放出体 2 0 5 を除く部分に、層間絶縁層として S i O 2 をスパッタ法およびフォトリソグラフィー法を用いて、厚さ約 2 μ mにて形成した。

[0143]

さらに層間絶縁層上にカソード 202と同様に、ゲート 204 を、厚さ約0. $5 \mu m$ 、幅 200 μm で、カソード 202と直交するように連続した平行ストライプ状の配列に形成した。

[0144]

・ さらにゲート 2 0 4 には、電子放出体 2 0 5 の真上に対応する位置に、ホール 部 2 1 0 を開口径 ϕ 1 0 μ mとなるように形成した。

[0145]

なお、上記電子放出体205及びホール部210については各電子放出素子200について1個のみ図示しているが、複数個設けることもできる。

[0146]

この後、この電子源基板201を大気中で熱処理を行いPd/Coをそれぞれ酸化させた後、CVD装置中に入れ、水素を流入させながら熱処理を行い、酸化パラジウム及び酸化コバルトを水素還元し、微粒子化した。

[0147]

この後、エチレンを流入させながら550℃にて1時間熱処理した。即ち、熱 CVDにより、電子放出体205として多数のグラフェンが繊維の長手方向に積 層された構造のグラファイトナノファイバー(GNF)を、触媒の作用によりT iNの密着層上に形成した。なお、エチレンに替えてアセチレン、メタン等の炭 化水素ガスを用いることもでき、ガス流量、温度、時間等を適宜選択することに より、同様のGNFを形成することができる。

[0148]

こうして作成した電子源基板 2 0 1 とあらかじめ形成したフェースプレート 2 0 6 及び外枠 2 1 4 とを、 1 0 - 7 P a 以下の圧力まで排気した真空チャンバー中にてガラスフリットを用いて 4 0 0 $\mathbb C$ に加熱することにより外囲器を形成した

[0149]

なおこの時、図示していないスペーサーを電子源基板201上のX方向に配置して大気圧支持構造を形成し、外枠214及びスペーサーによって電子源基板201及びフェースプレート206のアノード(メタルバック209)が2mmの間隔をもって対向し保持されるようにした。

[0150]

このようにして作成した表示パネルのカソード202を0V、ゲート204を 0 Vとし、アノードに電位Vaを印加して、アノード電位を徐々に上昇させたところ、Va=7kV(これがカソード202・アノード間の電子放出閾値電圧) より電子放出が行われフェースプレート206の蛍光体208が発光することが 確認され、電子放出素子200の閾値電界強度が約3.5 V/ μ mであることが わかった。さらにVa=10kVまで供給することにより、カソード202・アノード間の電界強度を5 V/ μ mとしてノーマリーオン型の電子放出素子200として確実に動作するようにした。

[0151]

[0152]

そして、図3に示すように、表示パネル300の行方向配線211に走査信号印加手段301を接続し、列方向配線212に変調信号印加手段302を接続した。

[0153]

た。なお、前述のようにVx=50VあるいはVy=-50Vのみの供給でも電子放出体205からアノードに向かう電子の放出を遮断できる。

[0154]

その後、図1に示すTdが200msとなるように、コントロール回路303よりTノード電源回路304に制御信号を送り、Va=10k Vの供給を開始した。なお、本実施例のTノードの電子放出閾値電位(Vth)はTkVである。

[0155]

更に、その後、表示画像データに基づいて、走査選択電位を 0 V、走査非選択電位を + 5 0 V、白の変調電位を 0 V、黒の変調電位を + 5 0 Vとして、線順次走査により、画像表示を行った。

[0156]

この実施例1によれば、パワーオンシーケンスにおいて、電源オン時に全面白 表示とならずに、スムーズに入力表示画像データに基づく画像表示を開始するこ とができた。

[0157]

(実施例2)

実施例 1 と同様にして、触媒層および熱 C V D の条件を適宜選択することにより、周知の方法でグラフェンが円筒状となっている構造のカーボンナノチューブ(<math>C N T)を形成し、同様に閾値電界強度約 3 . 5 V / μ m の電子放出素子を得た。

[0158]

実施例1と同様にVa=10kV印加によりノーマリーオン型の電子放出素子が得られ、その時のカソード・ゲート間の遮断電圧はほぼ-50Vであることが確認された。

[0159]

この実施例 2 においても、パワーオンシーケンスにおいて、電源オン時に全面 白表示とならずに、スムーズに入力表示画像データに基づく画像表示を開始する ことができた。

[0160]

【発明の効果】

以上説明したように、本発明は、例えば電源オン時等の表示開始信号の発生に 応じてアノード電位を遮断状態から供給状態に遷移させる場合に全面白表示とな ることを防止し、自然な画像表示を開始できる。よって、たとえ短時間であって もユーザーが装置の故障と誤認したり、不快感を覚えたりするような現象を防止 することができる。

【図面の簡単な説明】

【図1】

本発明の第1実施形態による表示装置の駆動制御方法のタイミングチャートを 示す図である。

【図2】

本発明の第1実施形態に用いられる表示パネルの一部破断模式図である。

【図3】

本発明の第1実施形態による表示装置の駆動制御系のブロック図である。

【図4】

本発明の第2実施形態による表示装置の駆動制御系のブロック図である。

【図5】

本発明の第2実施形態による表示装置の駆動制御方法のタイミングチャートを 示す図である。

【図6】

本発明の第2実施形態に用いられる駆動電源回路の一例を示す回路構成図である。

【図7】

本発明の第2実施形態に用いられる行駆動回路の一例を示す回路構成図である

【図8】

本発明の第2実施形態に用いられる列駆動回路の一例を示す回路構成図である

【図9】

本発明の第2実施形態に用いられるアノード電源回路の一例を示す回路構成図である。

【図10】

本発明の第3実施形態による表示装置の駆動制御系のブロック図である。

【図11】

本発明の第3実施形態による表示装置の駆動制御方法のタイミングチャートを 示す図である。

【図12】

電子放出素子の動作を説明するための模式図である。

【符号の説明】

- 2 カソード
- 4 ゲート
- 5 電子放出体
- 6 アノード
- 21 カソード駆動回路
- 22 ゲート駆動回路
- 23 駆動制御回路
- 24 駆動電源回路
- 25 本体電源スイッチ
- 26 電源プラグ
- 27 遠隔操作器
- 31, 32 スイッチ
- 33 オペアンプ
- 3 4 抵抗器
- 36 アンドゲート
- 37 レベルシフト回路
- 38 インバータ
- 40,41,42 選択回路
- 43 アンドゲート

- 44 レベルシフト回路
- 45 インバータ
- 46 トランス制御回路
- 47 高圧出力トランス
- 48 整流回路
- 200 電子放出素子
- 201 電子源基板
- 202 カソード
- 204 ゲート
- 205 電子放出体
- 206 フェースプレート
- 207 アノード基板
- 208 蛍光体
- 209 メタルバック
- 210 ホール部
- 211 行方向配線
- 212 列方向配線
- 2 1 3 高圧端子
- 2 1 4 外枠
- 300 表示パネル
- 301 走査信号印加手段
- 302 変調信号印加手段
- 303 コントロール回路
- 304 アノード電源回路
- 3 0 5 本体電源

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

[図7]

【図8】

【図9】

【図10】

【図11】

【図12】

【書類名】 要約書

【要約】

【課題】 表示開始信号の発生に応じてアノード電位を遮断状態から供給状態に 遷移させる場合における、不本意な表示状態の発生や不本意な発光を抑制するこ とができる表示装置及びその駆動制御方法を提供する。

【選択図】 図1

特願2002-329347

出願人履歴情報

識別番号

[000001007]

1. 変更年月日 [変更理由]

 定性田」

 住所

 氏名

1990年 8月30日

新規登録

東京都大田区下丸子3丁目30番2号

キヤノン株式会社

Creation date: 03-17-2004

Indexing Officer: AKIDANE1 - AZIEB KIDANE

Team: OIPEBackFileIndexing

Dossier: 10689845

Legal Date: 03-10-2004

No.	Doccode	Number of pages
1	PEFR	4
2	OATH	2
3	FRPR	23
4	FRPR	59
5	FRPR	82
6	FRPR	72

Total number of pages: 242

Remarks:

Order of re-scan issued on