Basi di dati Normalizzazione

Normalizzazione e modello ER

- □ La metodologia di progettazione basata su schemi ER produce normalmente schemi relazionali normalizzati
- \supset Le verifiche di normalizzazione possono essere applicate anche agli schemi ER

5

Esame Superato

<u>MatrStudente</u>	Residenza	CodCorso	NomeCorso	Voto
s94539	Milano	04FLYCY	Calcolatori elettronici	30
s94540	Torino	01FLTCY	Basi di dati	26
s94540	Torino	01KPNCY	Reti di calcolatori	28
s94541	Pescara	01KPNCY	Reti di calcolatori	29
s94542	Lecce	04FLYCY	Calcolatori elettronici	25

Ridondanza e Anomalie ☐ In tutte le righe in cui compare uno studente è ripetuta la sua residenza ∑ Se la residenza di uno studente cambia, occorre modificare tutte le righe in cui compare contemporaneamente anomalia di aggiornamento

 $D_{\mathbf{M}}^{\mathbf{B}}G$

ridondanza

Ridondanza e Anomalie ∑ Se un nuovo studente si iscrive all'università, non può essere inserito nella base dati fino a quando non supera il primo esame anomalia di inserimento $D_{M}^{B}G$ 10

11

 $D_{\mathbf{M}}^{\mathbf{B}}G$

- □ Le informazioni ridondanti devono essere aggiornate in modo atomico (tutte contemporaneamente)
- □ La cancellazione di una tupla comporta la cancellazione di tutti i concetti in essa rappresentati
 - inclusi quelli che potrebbero essere ancora validi
- ∠ L'inserimento di una nuova tupla è possibile solo se esiste almeno l'informazione completa relativa alla chiave primaria
- $D_{M}^{B}G$

 non è possibile inserire la parte di tupla relativa ad un solo concetto

Forma normale di Boyce Codd

 $D_{M}^{B}G$

17

Dipendenza funzionale

- ∑ E' un tipo particolare di vincolo d'integrità
- □ Descrive legami di tipo funzionale tra gli attributi di una relazione
- ∑ Esempio: la residenza è unica per ogni studente
 - ogni volta che compare lo stesso studente, il valore è ripetuto
 - il valore di MatrStudente determina il valore di Residenza

Dipendenza funzionale

- \supset Una relazione r soddisfa la dipendenza funzionale $X \to Y$ se, per ogni coppia t_1 , t_2 di tuple di r, aventi gli stessi valori per gli attributi in X, t_1 e t_2 hanno gli stessi valori anche per gli attributi in Y
 - X determina Y (in r)

19

Dipendenza funzionale

- \supset Una relazione r soddisfa la dipendenza funzionale $X \to Y$ se, per ogni coppia t_1 , t_2 di tuple di r, aventi gli stessi valori per gli attributi in X, t_1 e t_2 hanno gli stessi valori anche per gli attributi in Y
 - X determina Y (in r)

MatrStudente → Residenza

MatrStudente CodCorso → NomeCorso

Forma normale di Boyce Codd (BCNF)

- □ BCNF = Boyce Codd Normal Form
- Una relazione r è in BCNF se, per ogni dipendenza funzionale (non banale) X → Y definita su di essa, X contiene una chiave di r (X è superchiave di r)

27

Decomposizione in forma normale

Contraction of the Contraction o	A CONTRACTOR							
Esempio: ricomposizione (n.1)								
\supset Ricomponendo $R_1 \bowtie R_2$								
	Impiegato	Categoria	Stipendio					
	Rossi	2	1800					
	Rossi	3	1800					
$D_{M}^{B}G$				52				

Decomposizione senza perdita

Data la relazione r(X) e gli insiemi di attributi X₁ e X₂ tali che

$$X = X_1 \cup X_2$$
$$X_0 = X_1 \cap X_2$$

se r soddisfa la dipendenza funzionale

$$X_0 \rightarrow X_1 \circ X_0 \rightarrow X_2$$

la decomposizione di r su X₁ e X₂ è senza perdita

○ Gli attributi comuni formano una chiave per almeno una delle relazioni decomposte

59

Esempio: perdita di informazione

R₁ (Impiegato, Stipendio)

R₂ (Categoria, Stipendio)

 ○ Verifica della condizione per la decomposizione senza perdita

X₁ = Impiegato, Stipendio

 X_2 = Categoria, Stipendio

 ○ Verifica della condizione per la decomposizione senza perdita

X₁ = Impiegato, StipendioX₂ = Categoria, Stipendio

 X_0 = Stipendio

61

Esempio: perdita di informazione

R₁ (Impiegato, Stipendio)

R₂ (Categoria, Stipendio)

Verifica della condizione per la decomposizione senza perdita

 X_1 = Impiegato, Stipendio

 X_2 = Categoria, Stipendio

 $X_0 = Stipendio$

 ∠ L'attributo Stipendio non soddisfa la condizione per la decomposizione senza perdita

Esempio: inserimento di una nuova tupla

- \supset Cosa avviene se inserisco la tupla (Gialli,3500) in R_2 ?
 - nella relazione originaria l'inserimento è vietato perché causa la violazione della dipendenza Categoria → Stipendio
 - nella decomposizione non è più possibile riconoscere alcuna violazione, poiché gli attributi Categoria e Stipendio sono in relazioni separate
- ∑ E' stata persa la dipendenza tra Categoria e Stipendio

77

Conservazione delle dipendenze

- ☐ Una decomposizione conserva le dipendenze se ciascuna delle dipendenze funzionali dello schema originario è presente in una delle relazioni decomposte
- E' opportuno che le dipendenze siano conservate, in modo da garantire che nello schema decomposto siano soddisfatti gli stessi vincoli dello schema originario

- □ Le decomposizioni devono sempre soddisfare le proprietà
 - decomposizione senza perdita
 - garantisce che le informazioni nella relazione originaria siano ricostruibili con precisione (senza tuple spurie) a partire da quelle nelle relazioni decomposte
 - conservazione delle dipendenze
 - garantisce che le relazioni decomposte abbiano la stessa capacità della relazione originaria di rappresentare i vincoli di integrità

