

RECEIVED TO THE TECH CENTER TO T

<110> Dunstan, Colin R. Wooden, Scott K. Mann, Michael B.

<120> OPGFusion Protein Compositions and Methods

<130> A-604

<140> 09/389,782

<141> 1999-09-03

<160> 57

<170> PatentIn version 3.1

<210> 1

<211> 232

<212> PRT

<213> Homo sapiens

<400> 1

Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala 1 5 10 15

Pro Glu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro 20 25 30

Lys-Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 35 40 45

Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val 50 55 60

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 65 70 75 80

Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 85 90 95

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala 100 105 110

Page 1

Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro 115 120 125

Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr 130 135 140

Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 145 150 155 160

Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr .165 170 175

Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 180 185 190

Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe 195 200 205

Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 210 215 220

Ser Leu Ser Leu Ser Pro Gly Lys 225 230

<210> 2

<211> 401

<212> PRT

<213> Homo sapiens

<400> 2

Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Leu Leu Asp Ile Ile 1 5 10 15

Glu Trp Thr Thr Gln Glu Thr Leu Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Pro Glu Thr Gly His Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro Cys Pro Asp His Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Val Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Ser Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Ser Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys Ile Lys His Thr Asn Cys Ser Thr Phe Gly Leu Leu Ile Gln Lys Gly Asn Ala Thr His Asp Asn Val Cys Ser Gly Asn Arg Glu Ala Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Ile Ile Pro Asn Trp Leu Ser Val Leu Val Asp Ser Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Arg His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Page 3

Trp Lys His Gln Asn Arg Asp Gln Glu Met Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Ser Ser Val Gln Arg His Leu Gly His Ser Asn Leu Thr Thr Glu Gln Leu Leu Ala Leu Met Glu Ser Leu Pro Gly Lys Lys Ile Ser Pro Glu Glu Ile Glu Arg Thr Arg Lys Thr Cys Lys Ser Ser Glu Gln Leu Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met Tyr Ala Leu Lys His Leu Lys Thr Ser His Phe Pro Lys Thr Val Thr His Ser Leu Arg Lys Thr Met Arg Phe Leu His Ser Phe Thr Met Tyr Arg Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu <210> <211> <212> PRT <213> Homo sapiens <400> Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His

Page 4

Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Ala Ala Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Page 5

220

Val 225	Asp	Val	Ser	His	Glu 230	Asp	Pro	Glu	Val	Lys 235	Phe	Asn	Trp	Tyr	Val 240
Asp	Gly	Val	Glu	Val 245	His	Asn	Ala	Lys	Thr 250	Lys	Pro	Arg	Glu	Glu 255	Gln
Tyr	Asn	Ser	Thr 260	Tyr	Arg	Val	Val	Ser 265	Val	Leu	Thr	Val	Leu 270	His	Gln
Asp	Trp	Leu 275	Asn	Gly	Lys	Glu	Tyr 280	Ļys	Cys	Lys	Val	Ser 285	Asn	Lys	Ala
Leu	Pro 290	Ala	Pro	Ile	Glu	Lys 295	Thr	Ile	Ser	Lys	Ala 300	Lys	Gly	Gln	Pro
Arg 305	Glu	Pro	Gln	Val	Tyr 310	Thr	Leu	Pro	Pro	Ser 315	Arg	Asp	Glu	Leu	Thr 320
Lys	Asn	Gln	Val	Ser 325	Leu	Thr	Cys	Leu	Val 330	Lys	Gly	Phe	Tyr	Pro 335	Ser
Asp	Ile	Ala	Val 340	Glu	Trp	Glu	Ser	Asn 345	Gly	Gln	Pro	Glu	Asn 350	Asn	Tyr
Lys	Thr	Thr 355	Pro	Pro	Val	Leu	Asp 360	Ser	Asp	Gly	Ser	Phe 365	Phe	Leu	Tyr
Ser	Lys 370	Leu	Thr	Val	Asp	Lys 375	Ser	Arg	Trp	Gln	Gln 380	Gly	Asn	Val	Phe
Ser 385	Cys	Ser	Val	Met	His 390	Glu	Ala	Leu	His	Asn 395	His	Tyr	Thr	Gln	Lys 400
Ser	Leu	Ser	Leu	Ser 405	Pro	Gly								,	

A-604.ST25.txt <210> <211> 413 <212> PRT <213> Homo sapiens <400> 4 Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His 10 Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His 25 20 Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro 55 50 Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His 80 75 65 70 Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe 95 90 Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala 110 100 105

Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe 115 120 125

Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn 130 135 140

Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His 145 150 155 160

Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile 165 170 175

Asp	Val	Thr	Ala 180	Ala	Ala	Glu	A-60 Pro)4.S7 Lys 185			Asp	Lys	Thr 190	His	Thr
Cys	Pro	Pro 195	Cys	Pro	Ala	Pro	Glu 200	Leu	Leu	Gly	Gly	Pro 205	Ser	Val	Phe
Leu	Phe 210	Pro	Pro	Lys	Pro	Lys 215	Asp	Thr	Leu	Met	Ile 220	Ser	Arg	Thr	Pro
Glu 225	Val	Thr	Cys	Val	Val 230	Val	Asp	Val	Ser	His 235	Glu	Asp	Pro	Glu	Val 240
Lys	Phe	Asn	Trp	Tyr 245	Val	Asp	Gly	Val	Glu 250	Val	His	Asn	Ala	Lys 255	Thr
Lys	Pro	Arg	Glu 260	Glu	Gln	Tyr	Asn	Ser 265	Thr	Tyr	Arg	Val	Val 270	Ser	Val
Leu	Thr	Val 275	Leu	His	Gln	Asp	Trp 280	Leu	Asn	Gly	Lys	Glu 285	Tyr	Lys	Cys
Lys	Val 290	Ser	Asn	Lys	Ala	Leu 295	Pro	Ala	Pro	Ile	Glu 300	Lys	Thr	Ile	Ser
Lys 305	Ala	Lys	Gly	Gln	Pro 310	Arg	Glu	Pro	Gln	Val 315	Tyr	Thr	Leu	Pro	Pro 320
Ser	Arg	Asp	Glu	Leu 325	Thr	Lys	Asn	Gln	Val 330	Ser	Leu	Thr	Cys	Leu 335	Val
Lys	Gly	Phe	Tyr 340	Pro	Ser	Asp	Ile	Ala 345	Val	Glu	Trp	Glu	Ser 350	Asn	Gly
Gln	Pro	Glu 355	Asn	Asn	Tyr	Lys	Thr 360	Thr	Pro	Pro	Val	Leu 365	Asp	Ser	Asp
Gly	Ser 370	Phe	Phe	Leu	Tyr	Ser 375	Lys	Leu	Thr	Val	Asp 380	Lys	Ser	Arg	Trp

Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 385 390 395 400

Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 405 410

<210> 5

<211> 400

<212> PRT

<213> Homo sapiens

<400> 5

Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His
1 10 15

Gln Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His 20 25 30

Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr 35 40 45

Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro 50 55 60

Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His 65 70 75 80

Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe 85 90 95

Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala 100 105 110

Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe 115 120 125

Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn 130 135 140

Cys 145	Ser	Val	Phe	Gly	Leu 150	Leu	Leu	Thr	Gln	Lys 155	Gly	Asn	Ala	Thr	His 160
Asp	Asn	Ile	Cys	Ser 165	Gly	Asn	Ser	Glu	Ser 170	Thr	Gln	Lys	Val	Asp 175	Lys
Thr	His	Thr	Cys 180	Pro	Pro	Cys	Pro	Ala 185	Pro	Glu	Leu	Leu	Gly 190	Gly	Pro
Ser	Val	Phe 195	Leu	Phe	Pro	Pro	Lys 200	Pro	Lys	Asp	Thr	Leu 205	Met	Ile	Ser
Arg	Thr 210	Pro	Glu	Val	Thr	Cys 215	Val	Val	Val	Asp	Val 220	Ser	His	Glu	Asp
Pro 225	Glu	Val	Lys	Phe	Asn 230	Trp	Tyr	Val	Asp	Gly 235		Glu	Val	His	Asn 240
Ala	Lys	Thr	Lys	Pro 245	Arg	Glu	Glu	Gln	Tyr 250	Asn	Ser	Thr	Tyr	Arg 255	Val
Val	Ser	Val	Leu 260	Thr	Val	Leu	His	Gln 265	Asp	Trp	Leu	Asn	Gly 270	Lys	Glu
Tyr	Lys	Cys 275	Lys	Val	Ser	Asn	Lys 280	Ala	Leu	Pro	Ala	Pro 285	Ile	Glu	Lys
Thr	Ile 290	Ser	Lys	Ala	Lys	Gly 295	Gln	Pro	Arg	Glu	Pro 300	Gln	Val	Tyr	Thr
Leu 305	Pro	Pro	Ser	Arg	Asp 310	Glu	Leu	Thr	Lys	Asn 315	Gln	Val	Ser	Leu	Thr 320
Cys	Leu	Val	Lys	Gly 325	Phe	Tyr	Pro	Ser	Asp 330	Ile	Ala	Val	Glu	Trp 335	Glu
Ser	Asn	Gly	Gln 340	Pro	Glu	Asn	Asn	345		Thr	Thr	Pro	Pro 350	Val	Leu
								Page	: TO						

Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly <210> <211> <212> PRT <213> Homo sapiens <400> Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe

Page 11

Phe	Ser 130	Asn	Glu	Thr	Ser	Ser 135	Lys	Ala	Pro	Cys	Arg 140	Lys	His	Thr	Asn
Cys 145	Ser	Val	Phe	Gly	Leu 150	Leu	Leu	Thr	Gln	Lys 155	Gly	Asn	Ala	Thr	His 160
Asp	Asn	Ile	Cys	Ser 165	Gly	Asn	Ser	Glu	Ser 170	Thr	Gln	Lys	Cys	Gly 175	Ile
Asp	Val	Thr	Val 180	Asp	Lys	Thr	His	Thr 185	Cys	Pro	Pro	Cys	Pro 190	Ala	Pro
Glu	Leu	Leu 195	Gly	Gly	Pro	Ser	Val 200	Phe	Leu	Phe	Pro	Pro 205	Lys	Pro	Lys
Asp	Thr 210	Leu	Met	Ile	Ser	Arg 215	Thr	Pro	Glu	Val	Thr 220	Cys	Val	Val	Val
Asp 225	Val	Ser	His	Glu	Asp 230	Pro	Glu	Val	Lys	Phe 235	Asn	Trp	Tyr	Val	Asp 240
Gly	Val	Glu	Val	His 245	Asn	Ala	Lys	Thr	Lys 250	Pro	Arg	Glu	Glu	Gln 255	Tyr
Asn	Ser	Thr	Tyr 260	Arg	Val	Val	Ser	Val 265	Leu	Thr	Val	Leu	His 270	Gln	Asp
Trp	Leu	Asn 275	Gly	Lys	Glu	Tyr	Ĺys 280	Cys	Lys	Val	Ser	Asn 285	Lys	Ala	Leu
Pro	Ala 290	Pro	Ile	Glu	Lys	Thr 295	Ile	Ser	Lys	Ala	Lys 300	Gly	Gln	Pro	Arg
Glu 305	Pro	Gln	Val	Tyr	Thr 310	Leu	Pro	Pro	Ser	Arg 315	Asp	Glu	Leu	Thr	Lys 320
Asn	Gln	Val	Ser	Leu	Thr	Cys		Val Page		Gly	Phe	Tyr	Pro	Ser	Asp

Ile	Ala	Val	Glu 340	Trp	Glu	Ser	Asn	Gly 345	Gln	Pro	Glu	Asn	Asn 350	Tyr	Lys
Thr	Thr	Pro 355	Pro	Val	Leu	Asp	Ser 360	Asp	Gly	Ser	Phe	Phe 365	Leu	Tyr	Ser
Lys	Leu 370	Thr	Val	Asp	Lys	Ser 375	Arg	Trp	Gln	Gln	Gly 380	Asn	Val	Phe	Ser
Cys 385	Ser	Val	Met	His	Glu 390	Ala	Leu	His	Asn	His 395	Tyr	Thr	Gln	Lys	Ser 400
Leu	Ser	Leu	Ser	Pro 405	Gly										
<210 <211 <211 <211	1> 4 2> 1	7 104 PRT Homo	sapi	iens									•		
<400)> '	7													
Glu 1	Thr	Phe	Pro	Pro 5	Lys	Tyr	Leu	His	Tyr 10	Asp	Glu	Glu	Thr	Ser 15	His
Gln	Leu	Leu	Cys 20	Asp	Lys	Cys	Pro	Pro 25	Gly	Thr	Tyr	Leu	Lys 30	Gln	His
Cys	Thr	Ala 35	Lys	Trp	Lys	Thr	Val 40	Cys	Ala	Pro	Cys	Pro 45	Asp	His	Tyr

Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Page 13

Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro

Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His

95 85

Суѕ	Leu	Lys	His 100	Arg	Ser	Cys	Pro	Pro 105	Gly	Phe	Gly	Val	Val 110	Gln	Ala
Gly	Thr	Pro 115	Glu	Arg	Asn	Thr	Val 120	Cys	Lys	Arg	Cys	Pro 125	Asp	Gly	Phe
Phe	Ser 130	Asn	Glu	Thr	Ser	Ser 135	Lys	Ala	Pro	Cys	Arg 140	Lys	His	Thr	Asn
Cys 145	Ser	Val	Phe	Gly	Leu 150	Leu	Leu	Thr	G1n	Lys 155	Gly	Asn	Ala	Thr	His 160
Asp	Asn	Ile	Суѕ	Ser 165	Gly	Asn	Ser	Glu	Ser 170	Thr	Gln	Lys	Ser	Gly 175	Gly
Gly	Gly	Gly	Gly 180	Gly	Gly	Thr	Cys	Pro 185	Pro	Cys	Pro	Ala	Pro 190	Glu	Leu
Leu	Gly	Gly 195	Pro	Ser	Val	Phe	Leu 200	Phe	Pro	Pro	Lys	Pro 205	Lys	Asp	Thr
Leu	Met 210	Ile	Ser	Arg	Thr	Pro 215	Glu	Val	Thr	Cys	Val 220	Val	Val	Asp	Val
Ser 225	His	Glu	Asp	Pro	Glu 230	Val	Lys	Phe	Asn	Trp 235	Tyr	Val	Asp	Gly	Val 240
Glu	Val	His	Asn	Ala 245	Lys	Thr	Lys	Pro	Arg 250	Glu	Glu	Gln	Tyr	Asn 255	Ser
Thr	Tyr	Arg	Val 260	Val	Ser	Val	Leu	Thr 265	Val	Leu	His	Gln	Asp 270	Trp	Leu
Asn	Gly	Lys 275	Glu	Tyr	Lys	Cys	Lys 280	Val	Ser	Asn	Lys	Ala 285	Leu	Pro	Ala

							A-60)4.S	r25.t	ext					
Pro	Ile 290	Glu	Lys	Thr	Ile	Ser 295	Lys				Gln 300	Pro	Arg	Glu	Pro
Gln 305	Val	Tyr	Thr	Leu	Pro 310	Pro	Ser	Arg	Asp	Glu 315	Leu	Thr	Lys	Asn	Gln 320
Val	Ser	Leu	Thr	Cys 325	Leu	Val	Lys	Gly	Phe 330	Tyr	Pro	Ser	Asp	Ile 335	Ala
Val	Glu	Trp	Glu 340	Ser	Asn	Gly	Gln	Pro 345	Glu	Asn	Asn	Tyr	Lys 350	Thr	Thr
Pro	Pro	Val 355	Leu	Asp	Ser	Asp	Gly 360	Ser	Phe	Phe	Leu	Tyr 365	Ser	Lys	Leu
Thr	Val 370	Asp	Lys	Ser	Arg	Trp 375	Gln	Gln	Gly	Asn	Val 380	Phe	Ser	Суз	Ser
Val 385	Met	His	Glu	Ala	Leu 390	His	Asn	His	Tyr	Thr 395	Gln	Lys	Ser	Leu	Ser 400
Leu	Ser	Pro	Gly												
<210 <211 <211 <211	L> 4 2>]	3 101 PRT Homo	sapi	iens											
<400)> {	3													
Met 1	Asp	Lys	Thr	His 5	Thr	Cys	Pro	Pro	Cys 10	Pro	Ala	Pro	Glu	Leu 15	Leu
Gly	Gly	Pro	Ser 20	Val	Phe	Leu	Phe	Pro 25	Pro	Lys	Pro	Lys	Asp 30	Thr	Leu
Met	Ile	Ser 35	Arg	Thr	Pro	Glu	Val 40	Thr	Суѕ	Val	Val	Val 45	Asp	Val	Ser

							A-60)4.SI	r25.t	xt					
His	Glu 50	Asp	Pro	Glu	Val	Lys 55					Val 60	Asp	Gly	Val	Glu
Val 65	His	Asn	Ala	Lys	Thr 70	Lys	Pro	Arg	Glu	Glu 75	Gln	Tyr	Asn	Ser	Thr 80
Tyr	Arg	Val	Val	Ser 85	Val	Leu	Thr	Val	Leu 90	His	Gln	Asp	Trp	Leu 95	Asn
Gly	Lys	Glu	Tyr 100	Lys	Cys	Lys	Val	Ser 105	Asn	Lys	Ala	Leu	Pro 110		Pro
Ile,	Glu	Lys 115	Thr	Ile	Ser	Lys	Ala 120	Lys	Gly	Gln	Pro	Arg 125	Glu	Pro	Gln
Val	Tyr 130	Thr	Leu	Pro	Pro	Ser 135	Arg	Asp	Glu	Leu	Thr 140	Lys	Asn	Gln	Val
Ser 145	Leu	Thr	Cys	Leu	Val 150	Lys	Gly	Phe	Tyr	Pro 155	Ser	Asp	Ile	Ala	Val 160
Glu	Trp	Glu	Ser	Asn 165	Gly	Gln	Pro	Glu	Asn 170	Asn	Tyr	Lys	Thr	Thr 175	Pro
Pro	Val	Leu	Asp 180	Ser	Asp	Gly	Ser	Phe 185	Phe	Leu	Tyr	Ser	Lys 190	Leu	Thr
Val	Asp	Lys 195	Ser	Arg	Trp	Gln	Gln 200	Gly	Asn	Val	Phe	Ser 205	Cys	Ser	Val
Met	His 210	Glu	Ala	Leu	His	Asn 215	His	Tyr	Thr	Gln	Lys 220	Ser	Leu	Ser	Leu
Ser 225	Pro	Gly	Lys	Glu	Thr 230	Phe	Pro	Pro	Lys	Tyr 235	Leu	His	Tyr	Asp	Glu 240
Glu.	Thr	Ser	His	Gln 245	Leu	Leu	Cys	Asp	Lys 250	Cys	Pro	Pro	Gly	Thr 255	Tyr

Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys 260 265 270

Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu 275 280 285

Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys 290 295 300

Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu 305 310 315 320

Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly 325 330 335

Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys 340 345 350

Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg 355 360 365

Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Thr Gln Lys Gly 370 375 380

Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln 385 390 395 400

Lys

<210> 9

<211> 30

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<400> 9

aagtctagac caccatgaac aagttgctgt

30

```
<210>
       10
<211>
       32
<212>
      DNA
<213>
      Artificial sequence
<220>
<223>
       Synthetic oligonucleotide
<400>
       10
gctagtcgac tactcgaagg tgaggttagc at
32
<210>
       11
<211>
       29
<212>
      DNA
<213>
      Artificial sequence
<220>
       Synthetic oligonucleotide
<223>
<400>
       11
atctgtcgac tatttttgag ttgattcac
29
<210>
       12
<211>
       30
<212>
      DNA
      Artificial sequence
<213>
<220>
<223>
       Synthetic oligonucleotide
<400>
       12
aagtctagac caccatgaac aagttgctgt
30
<210>
       13
<211>
       35
<212>
      DNA
<213>
       Artificial sequence
<220>
<223>
       Synthetic oligonucleotide
<400>
       13
```

```
cacgcgtcga ctttttgagt tgattcactg tttcc
35
<210>
       14
<211>
       26
<212>
       DNA
<213>
       Artificial sequence
<220>
<223>
       Synthetic oligonucleotide
<400>
       14
aatctgtcga caaaactcac acatgc
26
<210>
       15
<211>
       33
<212>
       DNA
<213>
      Artificial sequence
<220>
<223>
       Synthetic oligonucleotide
<400>
       15
ccatgctcga gttatcattt acccggagac agg
33
<210>
       16
<211>
       44
<212>
       DNA
<213>
       Artificial sequence
<220>
<223>
       Synthetic oligonucleotide
<400>
       16
aatccggagg aggtggtgga ggtgggggta cctgcccacc gtgc
44
<210>
       17
<211>
       33
<212>
       DNA
<213>
      Artificial sequence
<220>
<223>
       Synthetic oligonucleotide
```

```
<400> 17
ccatgctcga gttatcattt acccggagac agg
33
<210>
       18
<211>
       30
<212>
       DNA
<213>
       Artificial sequence
<220>
<223>
       Synthetic oligonucleotide
<400>
       18
aagtctagac caccatgaac aagttgctgt
30
<210>
       19
<211>
       35
<212>
       DNA
<213>
       Artificial sequence
<220>
<223>
       Synthetic oligonucleotide
<400>
       19
cctccggatt tttgagttga ttcactgttt ccaga
35
<210>
       20
<211>
       29
<212>
       DNA
<213>
       Artificial sequence
<220>
       Synthetic oligonucleotide
<223>
<400>
       20
ttggcgcgcc caaatcttgt gacaaaact
29
<210>
       21
<211>
       36
<212>
       DNA
<213>
       Artificial sequence
<220>
<223>
       Synthetic oligonucleotide
```

```
<400> 21
ctttggagga aacgtttctt tacccggaga caggga
36
<210>
       22
<211>
      36
<212>
      DNA
<213>
      Artificial sequence
<220>
<223>
      Synthetic oligonucleotide
<400> 22
tccctqtctc cgggtaaaga aacgtttcct ccaaag
36
<210>
      23
<211>
     29
<212>
      DNA
<213>
      Artificial sequence
<220>
       Synthetic oligonucleotide
<223>
<400> 23
atctgtcgac tatttttgag ttgattcac
29
<210>
       24
<211>
       34
<212>
      DNA
      Artificial sequence
<213>
<220>
      Synthetic oligonucleotide
<223>
<400>
       24
aacaaactct agatttgttt taactaatta aagg
34
<210>
       25
<211>
      50
<212>
       DNA
<213>
      Artificial sequence
<220>
```

```
A-604.ST25.txt
      Synthetic oligonucleotide
<400>
      25
aggaataaca tatggaaact tttccaccta aatatcttca ttatgatgaa
50
<210>
       26
<211>
       50
<212>
      DNA
<213>
      Artificial sequence
<220>
<223>
      Synthetic oligonucleotide
<400>
gaaactagtc accagctgct gtgcgacaaa tgtcctccgg gtacctacct
50
<210>
       27
<211>
      50
<212>
      DNA
      Artificial sequence
<213>
<220>
<223>
      Synthetic oligonucleotide
<400>
       27
gaaacagcac tgcaccgcta aatggaaaac cgtttgcgct ccttgtccgg
50
<210>
       28
<211>
       50
<212>
       DNA
<213>
      Artificial sequence
<220>
<223>
       Synthetic oligonucleotide
<400>
accactacta caccgactcc tggcacacct ccgacgaatg cctgtactgc
50
<210>
       29
<211>
       50
<212>
       DNA
      Artificial sequence
<213>
```

```
<220>
<223>
       Synthetic oligonucleotide
       29
<400>
tcaccggttt gcaaggagct gcagtacgtt aaacaggaat gcaaccgtac
50
<210>
       30
<211>
       50
<212>
       DNA
       Artificial sequence
<213>
<220>
<223>
       Synthetic oligonucleotide
<400>
       30
gcacaaccgt gtttgcgaat gcaaagaagg tcgttacctg gagatcgaat
50
<210>
       31
<211>
       50
<212>
       DNA
<213>
       Artificial sequence
<220>
<223>
       Synthetic oligonucleotide
<400>
tctgcctgaa acaccgttcc tgtccgcctg gtttcggtgt tgtacaggct
50
<210>
       32
<211>
       50
<212>
       DNA
<213>
       Artificial sequence
<220>
       Synthetic oligonucleotide
<223>
<400>
       32
ggtaccccgg aacgtaacac cgtttgcaaa cgttgcccgg acggtttctt
50
<210>
       33
<211>
       50
<212>
       DNA
<213>
       Artificial sequence
```

```
<220>
       Synthetic oligonucleotide
<223>
<400>
      33
ctccaacgaa acctcgagca aagctccgtg ccgtaaacac accaactgct
50
<210>
      34
<211>
      50
<212>
      DNA
<213>
      Artificial sequence
<220>
<223>
       Synthetic oligonucleotide
<400>
ccgttttcgg tctcctgtta acccagaaag gtaacgctac ccacgacaac
50
<210>
      35
<211>
      50
<212>
      DNA
<213>
      Artificial sequence
<220>
<223>
      Synthetic oligonucleotide
<400>
      35
atctgctccg gtaactccga gtcgacccag aaataatgga tcccaaacaa
50
<210>
       36
<211>
       34
<212>
      DNA
<213>
      Artificial sequence
<220>
       Synthetic oligonucleotide
<223>
<400>
       36
ttgtttggga tccattattt ctgggtcgac tcgg
34
<210>
       37
<211>
       50
<212>
      DNA
```

```
<213>
       Artificial sequence
<220>
<223>
       Synthetic oligonucleotide
<400>
       37
agttaccgga gcagatgttg tcgtgggtag cgttaccttt ctgggttaac
50
<210>
       38
<211>
       50
<212>
       DNA
<213>
       Artificial sequence
<220>
       Synthetic oligonucleotide
<223>
<400>
       38
aggagaccga aaacggagca gttggtgtt ttacggcacg gagctttgct
50
<210>
       39
<211>
       50
<212>
       DNA
<213>
       Artificial sequence
<220>
       Synthetic oligonucleotide
<223>
<400>
       39
cgaggtttcg ttggagaaga aaccgtccgg gcaacgtttg caaacggtgt
50
<210>
       40
<211>
       50
<212>
       DNA
<213>
      Artificial sequence
<220>
       Synthetic oligonucleotide
<223>
<400>
       40
tacgttccgg ggtaccagcc tgtacaacac cgaaaccagg cggacaggaa
50
<210>
       41
<211>
       50
```

```
<212>
      DNA
<213> Artificial sequence
<220>
<223>
       Synthetic oligonucleotide
<400>
       41
cggtgtttca ggcagaattc gatctccagg taacgacctt ctttgcattc
50
       42
<210>
<211>
       50
<212>
       DNA
<213>
       Artificial sequence
<220>
<223>
       Synthetic oligonucleotide
<400>
       42
gcaaacacgg ttgtgcgtac ggttgcattc ctgtttaacg tactgcagct
50
<210>
       43
<211>
       50
<212>
       DNA
<213>
      Artificial sequence
<220>
       Synthetic oligonucleotide
<223>
<400>
       43
ccttgcaaac cggtgagcag tacaggcatt cgtcggaggt gtgccaggag
50
<210>
       44
<211>
       5.0
<212>
       DNA
<213>
       Artificial sequence
<220>
       Synthetic oligonucleotide
<223>
<400>
       44
tcggtgtagt agtggtccgg acaaggagcg caaacggttt tccatttagc
50
<210> 45
```

```
<211>
      50
<212>
      DNA
      Artificial sequence
<213>
<220>
      Synthetic oligonucleotide
<223>
<400> 45
ggtgcagtgc tgtttcaggt aggtacccgg aggacatttg tcgcacagca
<210> 46
<211>
      50
<212>
      DNA
      Artificial sequence
<213>
<220>
<223>
      Synthetic oligonucleotide
<400> 46
gctggtgact agtttcttca tcataatgaa gatatttagg tggaaaagtt
<210>
      47
<211>
      50
<212>
      DNA
<213>
      Artificial sequence
<220>
<223>
      Synthetic oligonucleotide
<400>
      47
tccatatgtt attcctcctt taattagtta aaacaaatct agagtttgtt
50
<210>
      48
<211>
       25
<212>
       DNA
<213>
      Artificial sequence
<2.20>
<223>
      Synthetic oligonucleotide
<400> 48
cgtacaggtt tacgcaagaa aatgg
25
```

```
A-604.ST25.txt
<210>
       49
<211>
       48
<212>
       DNA
       Artificial sequence
<213>
<220>
       Synthetic oligonucleotide
<223>
<400>
       49 .
acaaacacta gtttcttcat cataatgaag atatttaggt ggaaacgt
48
<210>
       50
<211>
       44
<212>
       DNA
       Artificial sequence
<213>
<220>
<223>
       Synthetic oligonucleotide
<400>
       50
gaagatattt aggtggaaac gtttctttac ccggagacag ggag
44
<210>
       51
<211>
       4
<212>
       PRT
<213>
       Artificial sequence
<220>
<223>
       Synthetic
<400>
       51
Ala Ala Ala Ala
<210>
       52
<211>
       5
<212>
       PRT
<213>
       Artificial sequence
<220>
<223>
       Synthetic
```

<400>

52

Ala Ala Ala Ala

Page 28

1

```
<210> 53
```

<213> Artificial sequence

5

<220>

<223> Synthetic

<400> 53

Gly Gly Gly Gly 5

<210> 54

<211> 7

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic

<400> 54

Gly Gly Gly Gly Gly Gly 1

<210> 55

<211> 5

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic

<400> 55

Gly Gly Pro Gly Gly
1 5

<210> 56

<211> 9

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic

<400> 56

Ser Gly Gly Gly Gly Gly Gly Gly 1

<210> 57

<211> 19

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic

<400> 57

Gly Gly Ser Gly Ser Gly Ala Gly Ser Gly Ser Gly Gly Gly Ser Gly 1 5 10 15

Ser Gly Gly