INFERÊNCIA ESTATÍSTICA (EST0035)

AULA01: AMOSTRA ALEATÓRIA

Frederico Machado Almeida frederico.almeida@unb.br

Departamento de Estatística Instituto de Exatas Universidade de Brasília (UnB)

Revisitando Alguns Conceitos

Revisitando Alguns Conceitos

Definição 1 (Inferência Estatística)

É a área da Estatística que engloba um conjunto de técnicas que tem por objetivo, estudar a população através de evidências fornecidas por uma amostra.

- Ou seja, uma amostra é a parte do todo (população), que contêm os elementos que podem ser observados, e a partir daí, quantidades de interesse (parâmetros) podem ser mensurados.
- O objetivo é inferir (conjecturar a respeito do verdadeiro (ou verdadeiros) valor(es) de θ possivelmente um vetor), ou seja, a respeito do(s) parâmetro(s) de interesse.

Revisitando Alguns Conceitos

- Em linhas gerais, a Inferência Estatística pode ser classificada em dedutiva e indutiva.
- A inferência indutiva é baseada em uma sequência de premissas, chega-se a conclusões de interesse, através de nexos causais lógicas.
- A inferência dedutiva tem com base em uma parte da população, obter conclusões para o todo (esta é a que será abordada no curso).

Definição 2 (Amostra aleatória)

A coleção de variáveis aleatórias (v.a.) X_1, \dots, X_n é dita ser uma amostra aleatória (a.a.) se (i) os X_i' s forem variáveis aleatória (v.a's) independentes, e (ii) cada X_i tiver a mesma distribuição de probabilidades.

- Simbolicamente escrevemos $X_i \stackrel{iid}{\sim} F$ para representar v.a's independentes e identicamente distribuídas (*iid*).
- No caso em que a amostra não é aleatória, mas sim baseada em julgamentos ou qualquer outra maneira, então os métodos estatísticos não funcionarão de forma apropriada e levarão a decisões incorretas.
- Considere X_1, X_2, \cdots, X_n uma a.a. proveniente de uma população descrita pela função $f(x|\theta)$ e caracterizada pelo parâmetro $\theta \in \Theta$.

- Além do que foi dito, a coleção X₁,..., X_n denota uma a.a. porque o modelo de amostragem que foi utilizado para obter tal coleção foi baseado em "processo de amostragem aleatória simples".
- Se x_1, \dots, x_n denota uma amostra observada de X_1, \dots, X_n , com função densidade de probabilidade (fdp) ou função de probabilidade (fp), $f(x|\theta)$, segue imediatamente que,

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} f(x_i|\theta).$$
 (1)

 Em suma, a a.a. que será objeto de estudo nessa disciplina, fornece uma ligação importante entre os dados observados, e a distribuição na população de interesse.

É importante destacar que, todas as quantidades de interesse (amostrais) que serão estudadas nessa disciplina, serão baseadas (ou expressas), como função da a.a.

Definição 3 (Estatística)

Seja X_1, \dots, X_n uma a.a. de tamanho n extraída de uma população com fdp (ou fp), f ($x|\theta$). A função T (X_1, \dots, X_n) da a.a. (ou amostra observada), cujo o domínio inclui o espaço amostral \mathcal{X} , é dita ser uma Estatística.

• Por ser função de uma a.a. $T_n = T(X_1, \dots, X_n)$ é uma v.a. e portanto, ela apresenta uma distribuição de probabilidades (distribuição amostral da estatística).

Definição 4 (Estimador)

Qualquer estatística T_n que assume valores no espaço paramétrico Θ , é chamado de estimador de θ , ou $g(\theta)$, se ela não depender do parâmetro de interesse.

Observação 1

O conjunto $\Theta \subset \mathbb{R}^d$ em que θ toma valores é denominado espaço paramétrico.

Existem vários tipos de estatísticas, a saber:

$$T_1 = \sum_{i=1}^n X_i$$
.

$$T_2 = \sum_{i=1}^n X_i / n = T_1 / n.$$

$$T_3 = \sum_{i=1}^n (X_i - \bar{X})^2 / (n-1).$$

$$T_4 = \frac{X_1 + (n-1)X_n}{n}.$$

$$T_5 = \frac{X_{(1)} + X_{(n)}}{2}$$
.

$$T_6 = \frac{X_1 + X_3 + 2X_4}{3}$$
, etc.

Onde $X_{(1)} = \min\{X_1, \dots, X_n\}$ e $X_{(n)} = \max\{X_1, \dots, X_n\}$, denotam as estatísticas extremais da a.a.

Observação 2

Denotemos por $\epsilon = T_n - \theta$ o erro amostral que cometemos ao estimar o parâmetro θ da distribuição da v.a. X pelo estimador T_n .

Observação 3

Ao valor numérico que o estimador T_n assume depois que a amostra x_1, \dots, x_n for observada, isto é, $T_n = T(\mathbf{x})$ recebe o nome de estimativa.

• Por exemplo, $T_n = 1,87$ metros pode ser uma estimativa da altura média dos alunos matriculados em Inferência Estatística.

Exemplo 1: Suponha que X_1, \dots, X_n é uma a.a. de uma v.a. X proveniente de uma população caracterizada pela fdp (ou fp), $f(x|\theta)$. Portanto, possíveis estimadores pontuais são: (i) a média aritmética, $\bar{X}_n = \sum_{i=1}^n X_i/n$, e (ii) a variância amostral $S^2 = \sum_{i=1}^n \left(X_i - \bar{X}\right)^2/(n-1)$.

Exemplo 2: Assuma agora que a v.a. X segue uma distribuição de Bernoulli (θ) , tal que, $\theta = P(X=1)$ e $1-\theta = P(X=0)$, com $0<\theta<1$. Portanto, supondo que o experimento foi executado n vezes de forma independente, então, um estimador natural para θ seria a proporção amostral, $\hat{\theta}_n = \sum_{i=1}^n X_i/n$.

- Nos slides anteriores vimos que, vários estimadores para uma mesma quantidade θ ou para uma função $g(\theta)$, podem ser definidos com base na a.a. X_1, \dots, X_n .
- Portanto, um dos grandes problemas da estatística é o de encontrar um estimador razoável para a quantidade de interesse.
- Duas perguntas de interesse podem ser feitas. A saber: (i) qual, entre os estimadores apresentados no SLIDE 9, é o melhor? E, (ii) qual(is) é/são o(s) procedimentos para escolher o melhor o estimador que melhor representa a quantidade de interesse?

- O procedimento comumente utilizado para avaliar a qualidade de um estimador, inclui avalia a:
 - Tendenciosidade (não-viesamento).
 - Consistência.
 - Eficiência.
 - Deve apresentar uma variância (ou erro quadrático médio), menor possível.

Exemplo 3: Considere a Figura abaixo, em que o alvo representa o valor do parâmetro e os "tiros", indicados pelos símbolo x, representam os diferentes valores amostrais da estatística de interesse.

Figura: Nos painéis acima temos estimadores: (a) muito acurado mas pouco preciso; (b) muito acurado e muito preciso; (c) pouco acurado e pouco preciso, e (d) muito preciso, mas pouco acurado.

Definição 5 (Estimador Não-Viesado)

Um estimador $T_n = T(X_1, \dots, X_n)$, de θ é dito ser não-viesado (ou não-tendencioso), se $\mathbb{E}_{\theta}(T_n) = \theta$, para todo $\theta \in \Theta$.

- A definição 5 diz que, se o processo de estimação for repetido várias vezes para diferentes amostras extraídas na mesma população, e para a mesma característica de interesse, a média das médias amostrais deve estar próxima do alvo, θ .
- Caso a definição 5 não seja verificada, o estimador é dito ser viesado (ou tendencioso).

Exemplo 4: Seja X_1, \dots, X_n uma a.a. de uma v.a. X com $\mathbb{E}(X) = \mu$ e $Var(X) = \sigma^2$. Se $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ e $\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \bar{X} \right)^2$ denotam os estimadores pontuais para a média e variância, o que se pode dizer quanto a tendenciosidade ou não dos estimadores?

Observação 4

Um estimador T_n de θ é dito ser assintoticamente não-viesado, se:

$$\lim_{n\to\infty}\mathbb{E}_{\theta}\left(T_{n}\right)=\theta,\;\;$$
 para $todo\,\theta\in\Theta.$

- Neste caso, temos que $\lim_{n\to\infty}b\left(T_{n}\right)=0$. Com $b\left(T_{n}\right)=\mathbb{E}_{\theta}\left(T_{n}\right)-\theta$ denotando o viés (vício) do estimador T_n .
- A observação 4 indica que, quando o tamanho de amostra aumenta, o viés de gualquer estimador não centrado pode ser considerado desprezível.

Definição 6 (Consistência)

Seja X_1, \dots, X_n uma a.a. proveniente da distribuição de uma v.a. X. Uma sequência de estimadores $\{T_n\}_{n\geq 1}$ é dita ser consistente para o parâmetro de interesse θ , se:

- $\lim_{n\to\infty}\mathbb{E}_{\theta}\left(T_{n}\right)=\theta.$
- $\lim_{n\to\infty} Var_{\theta}\left(T_n\right) = 0.$

Observação 5

A definição clássica de consistência de uma sequência de estimadores $\{T_n\}_{n\geq 1}$ segue da definição de convergência em probabilidade, i.e., a sequência $\{T_n\}_{n\geq 1}$ é consistente para θ , se $T_n \stackrel{p}{\to} \theta$, quando $n \to \infty$.

Definição 7 (Eficiência)

Se T_n e T_n^* denotam dois estimadores não-viesados do parâmetro θ , a definição mais simplista de eficiência assume que, o estimador T_n é mais eficiente que T_n^* , se $Var_{\theta}(T_n) < Var_{\theta}(T_n^*)$.

• Uma definição mais abrangente de eficiência consiste em comparar a variância do estimador T_n , com o limite inferior limite inferior da variância dos estimadores não viciados de θ .

Definição 8 (Erro Quadrático Médio)

O erro quadrático médio (EQM) é um dos procedimentos comumente utilizado para avaliar a qualidade de um estimador. Assim, o EQM de um estimador T_n de $\theta \in \Theta$ é dado por:

$$EQM(T_n) = \mathbb{E}_{\theta}\left[\left(T_n - \theta\right)^2\right] = Var_{\theta}\left(T_n\right) + \left[b\left(T_n\right)\right]^2. \tag{2}$$

- Observe que, na expressão 2 a quantidade $[b(T_n)]^2$ denota um termo de penalidade no EQM.
- Assim, se T_n for um estimador não-viesado, então, $EQM(T_n) = Var_{\theta}(T_n)$. Consequentemente, a consistência de um estimador T_n pode ser aferida usando o EQM.

Exemplo 5: Seja X_1, \dots, X_5 uma a.a. da v.a. X, com $\mathbb{E}_{\theta}(X) = \theta$ e $Var_{\theta}(X) = 1$. Considere os seguintes estimadores, $T_{1n} = \sum_{i=1}^{5} X_i/5$; $T_{2n} = (X_1 + 2X_2 + X_3 + 3X_4 + X_5)/8$ e $T_{3n} = (X_2 + 3X_4 + X_5)/3$.

- Qual(is) dos estimadores é/são não-viesados?
- Obtenhas os EQM's dos três estimadores.
- Qual dos três estimadores é o mais eficiente?

Definição 9

Seja X_1, \dots, X_n denota uma aa proveniente de uma população caracterizada por uma fdp (ou fp) f $(x|\theta)$. Assim, a esperança matemática da va X é dada por:

$$\mathbb{E}_{\theta}\left(X\right) = \left\{ \begin{array}{ll} \int\limits_{\mathcal{A}} x f\left(x|\theta\right) & \text{se } X \text{ for continua,} \\ \\ \sum\limits_{x \in \mathcal{A}} x P\left(X = x|\theta\right) & \text{se } X \text{ for discreta,} \end{array} \right.$$

com A denotando o suporte da va X (equivalente ao espaço amostral X).

Lema 1

Seja X_1, \dots, X_n uma aa obtida a partir de uma população caracterizada pela fdp (ou fp) f $(x|\theta)$. Seja igualmente g(x) uma função, tal que, $\mathbb{E}(g(X_1))$ e $Var(g(X_1))$ existam. Então,

- $\mathbb{E}_{\theta}\left(\sum_{i=1}^{n}g\left(X_{i}\right)\right)=n\mathbb{E}_{\theta}\left(g\left(X_{1}\right)\right)$
- $Var_{\theta} \left(\sum_{i=1}^{n} g(X_{i}) \right) = nVar_{\theta} (g(X_{1})).$

Teorema 2

Se X_1, \dots, X_n denota uma aa da va X, seja $T_n = \sum\limits_{i=1}^n a_i X_i$ uma estatística qualquer. Supondo que $\mathbb{E}\left(|X_i|\right) < \infty$ e $\mathbb{E}\left(X_i^2\right) < \infty$, para todo $i=1,\dots,n$. Então,

- $\mathbb{E}\left(T_n\right) = \sum_{i=1}^n a_i \mathbb{E}\left(X_i\right)$
- **b** $Var(T_n) = \sum_{i=1}^n a_i^2 Var(X_i).$

Prova: a prova do Teorema 1 é imediata, e segue das propriedades da esperança matemática, e da independência das va's

Função Geradora de Momentos

Definição 10 (Função Geradora de Momentos)

Seja X uma va com função de distribuição $F_X(x)$, ou fdp/fp $f_X(x)$. A função geradora de momentos (fgm), com a notação $M_X(t)$, é dada por:

$$M_{X}\left(t
ight)=\mathbb{E}\left[\mathrm{e}^{tX}
ight]=\left\{ egin{array}{ll} \int\limits_{\mathcal{A}}\mathrm{e}^{tX}dF_{X}, & ext{se X for continua,} \ \sum\limits_{x\in\mathcal{A}}\mathrm{e}^{tX}P\left(X=x
ight), & ext{se X for discreta,} \end{array}
ight.$$

Teorema 3

Suponha que a fgm de uma va X exista para $|t| < t_0$, com $t_0 > 0$. Então,

$$\mathbb{E}\left(X^{(s)}\right) \text{ existe para todo } s=1,2,\cdots \text{ e temos:}$$

$$\mathbb{E}\left(X^{s}\right) = \frac{d^{(s)}}{dt^{s}} M_{X}\left(t\right) = \frac{d^{(s)}}{dt^{s}} \int_{A} e^{tX} dF_{X}, \ \forall_{|t| < t_{0}}.$$