Systems of linear equations

Our Matlab function for naive Gaussian elimination looks like this:

```
function x = naiv_gauss(A,b);
n = length(b); x = zeros(n,1);
for k=1:n-1 % forward elimination
  for i=k+1:n
    xmult = A(i,k)/A(k,k);
    for j=k+1:n
      A(i,j) = A(i,j)-xmult*A(k,j);
    end
    b(i) = b(i)-xmult*b(k);
  end
end
% back substitution
x(n) = b(n)/A(n,n);
for i=n-1:-1:1
  sum = b(i);
  for j=i+1:n
    sum = sum-A(i,j)*x(j);
  end
  x(i) = sum/A(i,i);
end
```

Example:

$$\begin{pmatrix} 1^9 & 1^8 & 1^7 & \cdots & 1 & 1 \\ 2^9 & 2^8 & 2^7 & & 2 & 1 \\ 3^9 & 3^8 & 3^7 & & 3 & 1 \\ \vdots & & & & \vdots \\ 10^9 & 10^8 & 10^7 & \cdots & 10 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 3 \\ 4 \\ \vdots \\ 11 \end{pmatrix}$$

Exact solution: $x = [0, 0, 0, \dots, 0, 1, 1]^T$.

Max error:

$$1.6 \cdot 10^{-6}$$

$$8.6 \cdot 10^{-13}$$

LU factorization

```
>> % LU factorization
```

$$\gg$$
 [L,U] = lu(A)

$$L =$$

$$U =$$

$$>> v = L b;$$

$$>> xs = U \v$$

- 1.0000
- 1.0000
- 1.0000
- 1.0000

Iterative mathods for systems of linear equations

Example: We wish to solve a system:

$$Ax = b$$

where A is a 6×6 matrix

and the rhs vector is:

$$b = [1; 5; 0; 3; 1; 5].$$

The exact solution becomes:

$$x = [1; 2; 1; 2; 1; 2].$$

We solve the system with iterative methods, with the initial value:

$$x^{(0)} = [0.25; 1.25; 0; 0.75; 0.25; 1.25].$$

Jacobi iterations:

k	x1	x2	x 3	x4	x5	x6
1	0.2500	1.2500	0	0.7500	0.2500	1.2500
2	0.5625	1.5000	0.3125	1.3750	0.5625	1.5000
3	0.7031	1.7344	0.6250	1.5781	0.7031	1.7344
4	0.8398	1.8203	0.7461	1.7734	0.8398	1.8203
5	0.8916	1.9033	0.8633	1.8467	0.8916	1.9033
6	0.9417	1.9346	0.9075	1.9175	0.9417	1.9346
7	0.9605	1.9648	0.9502	1.9442	0.9605	1.9648
8	0.9787	1.9762	0.9663	1.9699	0.9787	1.9762
9	0.9856	1.9872	0.9819	1.9797	0.9856	1.9872
10	0.9923	1.9913	0.9877	1.9890	0.9923	1.9913
11	0.9948	1.9953	0.9934	1.9926	0.9948	1.9953
12	0.9972	1.9968	0.9955	1.9960	0.9972	1.9968
13	0.9981	1.9983	0.9976	1.9973	0.9981	1.9983
14	0.9990	1.9988	0.9984	1.9985	0.9990	1.9988
15	0.9993	1.9994	0.9991	1.9990	0.9993	1.9994
16	0.9996	1.9996	0.9994	1.9995	0.9996	1.9996
17	0.9997	1.9998	0.9997	1.9996	0.9997	1.9998
18	0.9999	1.9998	0.9998	1.9998	0.9999	1.9998
19	0.9999	1.9999	0.9999	1.9999	0.9999	1.9999
20	1.0000	1.9999	0.9999	1.9999	1.0000	1.9999

One needs more iterations to get the convergence.

Gauss-Seidal iterations:

k	x1	x2	хЗ	x4	x5	x6	
1	0.2500	1.2500	0	0.7500	0.2500	1.2500	
2	0.5625	1.5781	0.3906	1.5547	0.6602	1.8037	
3	0.7422	1.8242	0.7393	1.8418	0.8857	1.9319	
4	0.8909	1.9332	0.9046	1.9424	0.9591	1.9754	
5	0.9594	1.9755	0.9652	1.9790	0.9852	1.9910	
6	0.9852	1.9911	0.9873	1.9924	0.9946	1.9967	
7	0.9946	1.9967	0.9954	1.9972	0.9980	1.9988	
8	0.9980	1.9988	0.9983	1.9990	0.9993	1.9996	
9	0.9993	1.9996	0.9994	1.9996	0.9997	1.9998	
10	0.9997	1.9998	0.9998	1.9999	0.9999	1.9999	
11	0.9999	1.9999	0.9999	2.0000	1.0000	2.0000	
12	1.0000	2.0000	1.0000	2.0000	1.0000	2.0000	
=======================================							
13	1.0000	2.0000	1.0000	2.0000	1.0000	2.0000	
14	1.0000	2.0000	1.0000	2.0000	1.0000	2.0000	
15	1.0000	2.0000	1.0000	2.0000	1.0000	2.0000	

We see that after 12 iterations the method converges.

SOR iterations with $\omega = 1.12$:

k	x1	x2	x3	x4	x5	x6
1	0.2500	1.2500	0	0.7500	0.2500	1.2500
2	0.6000	1.6280	0.4480	1.6813	0.7254	1.9239
3	0.7893	1.8964	0.8411	1.9434	0.9671	1.9841
4	0.9518	1.9831	0.9805	1.9922	0.9940	1.9980
5	0.9956	1.9986	0.9972	1.9992	0.9994	1.9998
6	0.9994	1.9998	0.9998	1.9999	1.0000	2.0000
7	0.9999	2.0000	1.0000	2.0000	1.0000	2.0000
8	1.0000	2.0000	1.0000	2.0000	1.0000	2.0000
===					======	======
9	1.0000	2.0000	1.0000	2.0000	1.0000	2.0000
10	1.0000	2.0000	1.0000	2.0000	1.0000	2.0000

We see that after 8 iterations the method converges.

Error against number of iterations

