

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN LÓGICA

Práctica 5: Lógica de Predicados, Semántica

- 1) Considere la sentencia ϕ definida como $\forall x \exists y (\neg(x=y) \land (R(x,y) \rightarrow R(y,x)))$, donde R es un símbolo de predicado de aridad 2.
- a) Sea $A = \{a, b, c\}$ y $R^M = \{(b, c), (b, b), (b, a)\}$. Decida si $\mathcal{M} \models \phi$.
- b) Sea $A' = \{a, b, c\}$ y $R^{M'} = \{(b, c), (a, b), (c, b)\}$. Decida si $\mathcal{M}' \models \phi$.
- 2) Considere la fórmula

$$\phi \equiv \forall x (P(g(x), y) \lor Q(x))$$

donde P es un predicado de aridad 2, Q un predicado de aridad 1 y g una función de aridad 1.

- a) Defina un modelo \mathcal{M} y dos entornos s y s' tales que $[\![\phi]\!]_{\mathcal{M},s} = T$ y $[\![\phi]\!]_{\mathcal{M},s'} = F$. Demuéstrelo.
- b) Encuentre, si es posible, un modelo \mathcal{M}' tal que $[\![\phi]\!]_{\mathcal{M}',s} = T$ para cualquier s. Demuéstrelo.
- **3**) Considere la siguiente signatura: $\mathcal{P} = \emptyset$ 1 y $\mathcal{F} = \{\cdot, ^{-1}, e\}$, con ar $(\cdot) = 2$, ar $(^{-1}) = 1$ y ar(e) = 0. Utilizaremos las notaciones $t \cdot t'$ para $\cdot (t, t')$ y t^{-1} para $^{-1}(t)$.
- a) Un modelo para esta signatura se denomina grupo si la operación binaria es asociativa, la constante es elemento neutro de la operación binaria y el producto de un elemento x con el resultado de aplicar la operación unaria a x da como resultado la constante.
 - Podemos pensar entonces en un grupo como un modelo de la signatura que satisface determinadas fórmulas en FORM. Exprese estas fórmulas en lógica de predicados.
- b) ¿Es el conjunto de los números enteros un grupo, tomando la suma como la operación binaria, al 0 como la constante y la función opuesto como la operación unaria?
- c) ¿Es el conjunto de los racionales un grupo, tomando al producto como la operación binaria, al 1 como la constante y el recíproco como la operación unaria?
- d) Dé un modelo finito que satisfaga las propiedades de grupo.
- e) Un grupo se dice *abeliano* si la operación binaria es conmutativa. Exprese en lógica de predicados esta propiedad.
- 4) En este ejercicio trabajaremos con la estructura algebraica conocida como anillo.

Sea $\mathcal{F} = \{\bar{+}, \bar{\cdot}, \bar{e}, \bar{u}\}$, con $ar(\bar{+}) = ar(\bar{\cdot}) = 2$, $ar(\bar{e}) = ar(\bar{u}) = 0$ y $\mathcal{P} = \emptyset$. Un modelo $\mathcal{M} = \langle A, +, \cdot, e, u \rangle$ de $(\mathcal{F}, \mathcal{P})$ es un anillo sii

- (A, +, e) es un grupo abeliano. Es decir, + es asociativa y conmutativa, tiene a e como elemento neutro, y cada elemento tiene su inverso aditivo.
- \bullet (A,\cdot,u) es un monoide. Es decir, \cdot es asociativa y u es elemento neutro de \cdot .
- \blacksquare La operación \cdot distribuye a izquierda y derecha respecto de +.
- a) Exprese como fórmulas de la lógica de predicados sobre $(\mathcal{F}, \mathcal{P})$ el conjunto de propiedades Γ que un modelo de la signatura debe cumplir para ser un anillo.
- b) Exprese la propiedad "e es absorvente para ·" como una fórmula ψ .
- c) Demuestre que $\Gamma \models \forall x((x + \bar{u}) \cdot \bar{e} = x \cdot \bar{e}).$

Práctica 5 2024 Página 1/3

¹recordemos que a la igualdad siempre la usamos como predicado

5) Normalmente, los problemas de formalización en lógica de predicados se nos presentan de una forma diferente a la planteada en el ejercicio anterior. En general uno tiene un problema concreto, que puede representar mediante un modelo \mathcal{M} sobre una determinada signatura $(\mathcal{F}, \mathcal{P})$.

A partir de esta signatura, expresa determinadas propiedades que su modelo cumple como fórmulas sobre $(\mathcal{F}, \mathcal{P})$. Llamemos Γ a este conjunto de propiedades. Luego, usando estos hechos, intenta deducir nuevas propiedades que necesariamente tienen que cumplirse a partir de Γ . Es decir, busca fórmulas ϕ tales que $\Gamma \models \phi$.

Consideremos el caso de la aritmética de los números naturales tal como la describió Peano. En este caso, el modelo \mathcal{M} tiene como universo a \mathbb{N} y como funciones a $\{s, +, \times, 0\}$. No utilizaremos relaciones aparte de la igualdad.

- a) Defina una signatura $(\mathcal{F}, \mathcal{P})$ tal que el modelo anterior sea un modelo para esta signatura.
- b) Exprese en $\text{FORM}_{(\mathcal{F},\mathcal{P})}$ los axiomas de Peano (si no los conoce, pregunte). A este conjunto de axiomas lo llamamos $\Gamma_{\mathbb{N}}$.
- c) Exprese en $FORM_{(\mathcal{F},\mathcal{P})}$ la siguiente propiedad ϕ : "cero es distinto de dos".
- d) Demuestre que $\Gamma_{\mathbb{N}} \models \phi$. Observe que su demostración es independiente de los números naturales. Es decir, cualquier otro conjunto que cumpla con los axiomas de Peano cumplirá esta propiedad, no sólo \mathbb{N} .
- e) Exprese las siguientes propiedades: "la suma es conmutativa", "el producto distribuye a derecha respecto a la suma".

Una forma de definir predicados unarios sobre los números naturales sin alterar la signatura, es dar una fórmula ϕ que tenga una única variable libre (digamos x). A esta fórmula convenimos en llamarla P(x). Por ejemplo,

$$P(x) := \exists y (x = y + y)$$

Observemos que esta fórmula es cierta para un entorno s si y sólo si s(x) es par.

Esta idea puede generalizarse a relaciones R de cualquier aridad n, expresando fórmulas con n variables libres que sean verdaderas en un determinado modelo sólo cuando la propiedad se cumple. Usando esta idea, defina fórmulas para las siguientes relaciones sobre \mathcal{M} :

- x ≤ y
- *x* < *y*
- \bullet Primo(x), que representa que x es un número primo
- 6) Considere una signatura sin símbolos de función y con un único símbolo de predicado R de aridad 2. En clase vimos que un grafo dirigido G = (V, E) era un modelo de esta signatura, donde V es el universo del modelo y $R^{\mathcal{M}} = E$. Decíamos que un modelo de esta signatura es un grafo simple si $R^{\mathcal{M}}$ es una relación simétrica y antireflexiva.

En este ejercicio estamos interesados en representar grafos simples **bipartitos**. Es decir, grafos en donde se puede particionar el conjunto de vértices en dos conjuntos no vacíos U y W tales que cada arista del grafo une un vértice de U con uno de W o viceversa. Para esto, agregamos a nuestra signatura dos símbolos de predicados U y W de aridad 1, con la intención de representar los dos conjuntos de vértices. Por lo tanto, definimos la siguiente signatura:

$$\mathcal{F} = \emptyset, \mathcal{P} = \{R, U, W\}$$

con ar(R) = 2, ar(U) = ar(W) = 1.

Observe que no cualquier modelo de esta signatura es un grafo simple bipartito.

- a) Dé un modelo \mathcal{M} de $(\mathcal{F}, \mathcal{P})$ que no sea un grafo simple.
- b) Dé un modelo \mathcal{M}' de $(\mathcal{F}, \mathcal{P})$ que sea un grafo simple pero no bipartito.
- c) Dé un modelo \mathcal{M}'' de $(\mathcal{F},\mathcal{P})$ que sea un grafo simple bipartito.

Para que un modelo $\mathcal{M} = \langle V, R^{\mathcal{M}}, U^{\mathcal{M}}, W^{\mathcal{M}} \rangle$ de $(\mathcal{F}, \mathcal{P})$ sea un grafo simple bipartito, debe cumplir algunas propiedades, las cuales expresaremos como fórmulas de la lógica de predicados. Por ejemplo, sabemos que $R^{\mathcal{M}}$ debe ser antireflexiva, es decir, nuestra primera restricción es:

$$\forall x \neg R(x, x)$$

- d) Exprese en lenguaje natural y como fórmulas de FORM las otras propiedades que debe cumplir un modelo \mathcal{M} para ser un grafo bipartito.
- 7) Demuestre:
- a) $\exists x \forall y \phi \models \forall y \exists x \phi$
- b) $\forall x \exists y \phi \not\models \exists y \forall x \phi$
- c) Si $\models \phi$ entonces $\models \forall x \phi$ y $\models \exists x \phi$
- d) $\not\models \exists x \phi \to \forall x \phi$
- e) $\not\models \exists x \phi \land \exists x \psi \rightarrow \exists x (\phi \land \psi)$
- 8) Definimos la clausura universal de una fórmula ϕ (la notaremos como $Cl(\phi)$) el siguiente modo:

Si
$$FV(\phi) = \{z_1, z_2, ..., z_k\}$$
 entonces $Cl(\phi) = \forall z_1 \forall z_2 ... \forall z_k(\phi)$

Sea ϕ una fórmula tal que $FV(\phi)=\{x\}$. Demuestre que para cualquier modelo \mathcal{M} :

$$\mathcal{M} \models \phi \text{ sii } \mathcal{M} \models Cl(\phi).$$

9) Demuestre el teorema de sustitución para términos: $\models t_1 = t_2 \rightarrow s[t_1/x] = s[t_2/x]$.