Fisher's exact test

More examples

07/22/2021

In the previous lecture,

LRT for the multinomial distribution:

$$egin{aligned} &\circ & ext{ For } H_0:\, (p_1,\; \dots,\; p_m) = \left(p_1(heta),\; \dots,\; p_m(heta)
ight), \ &-2\log\lambda(\mathbf{X}_n) = 2\sum_{i=1}^m O_i\lograc{O_i}{E_i} \stackrel{d}{ o} \chi_{m-2}^2, ext{ as } n o\infty. \end{aligned}$$

Goodness-of-fit test:

To divide up the interval of possible values into *m* "cells" or "categories".

• Fisher's exact test:

Looks at a 2x2 table:

$$\begin{array}{c|ccccc} n_{11} & n_{12} & \textbf{\textit{n}}_1 \\ \hline n_{21} & n_{22} & \textbf{\textit{n}}_2 \\ \hline \textbf{\textit{n}}_{.1} & \textbf{\textit{n}}_{.2} & \textbf{\textit{n}}_{.} \end{array}$$

If there is no relation between the row and column classifications:

$$P(\underbrace{N_{11}}_{} = n_{11} \, | \, H_0) = rac{inom{n_1}{n_{11}}inom{n_2}{n_1 - n_{11}}}{inom{n_2}{n_1}} \sim ext{ Hypergeometric distribution}$$

Only feasible for 2x2 table and small samples.

Hypergeometric distribution

$$\begin{array}{c} -n_{.1} = 50, \, n_{.2} = 450, \, n_{1.} = 50 \\ -n_{.1} = 50, \, n_{.2} = 450, \, n_{1.} = 100 \\ -n_{.1} = 50, \, n_{.2} = 450, \, n_{1.} = 250 \\ -n_{.1} = 50, \, n_{.2} = 450, \, n_{1.} = 400 \\ -n_{.1} = 50, \, n_{.2} = 450, \, n_{1.} = 450 \\ \hline \\ R = \{N_{11} \leq c_{1} \text{ or } N_{11} \geq c_{2}\} \\ \hline \\ P \left(N_{11} \leq b \text{ ov } N_{11} \geq a \right) \end{array}$$

Tea-tasting experiment

 H_0 : Bristol has no skills in determining the order.

	Milk first	Tea first	
Milk first	4	0	4
Tea first	0	4	4
	4	4	8

Hypergeometric distribution:

$$P(N_{11} = n_{11} | H_0) = \frac{\binom{4}{n_{11}}\binom{4}{4-n_{11}}}{\binom{8}{4}}$$

$$\frac{N_{11}}{p} \begin{vmatrix} 0 & 1 & 2 & 3 & 4 \\ 0.014 & 0.229 & 0.514 & 0.229 & 0.014 \end{vmatrix}$$

$$p - \sqrt{\alpha} | 4\ell - p | N_{11} \leq 0 \quad \text{or} \quad N_{11} \geq 4 \mid H_0 |$$

$$= 2 \times 0.014 = 0.028 < 0.05$$

4

lower . tail = FALSE

1- p(xex) = p(x>x)

Dependencies between row and column classifications

Example 6. A group of supervisors each examined a personnel file to decide whether to promote the employee or not. The files are identical except for the gender label.

 H_0 : There is no gender bias. Any imbalance is due to randomization.

Nn: 0, 1, -, 24

	Male	Female	
Promote	21	14	35
Hold file	3	10	13
	24	24	24+24

Hypergeometric distribution:

* From 13.2 of Rice

dhyper(n11, m=24, n=24, k=35) \subseteq

$$2*P(N_1 \ge 21 | H_0)$$
 $2*P(N > 20 | H_0)$
 $2*P(N > 21 | H_0)$

p-value = 2*phyper(21-1, m=24, n=24, k=35, lower.tail = FALSE) < 0.05

We reject to that there is no gouder brus.

Example 5 *cont'd.* During phase 3 trial, some vaccine recipients were asked to complete diaries of their symptoms during the 7 days after vaccination.

 H_0 : There is no relation. Any imbalance is due to randomization.

	Pfizer / BNT162b2	Placebo	
Fever ≥ 38.0°C	331	10	341)
No fever	1,767	2,093	3860
	2,098	2,103	n

^{*} Systemic reactions in persons aged 18-55 years

Hypergeometric distribution:

$$P(N_{11}=n_{11}\,|\,H_0)=rac{inom{2098}{n_{11}}inom{2103}{341-n_{11}}}{inom{2098+2103}{341}}$$

dhyper(n11, m=2098, n=2103, k=341)
$$\leftarrow$$

Benefits of more trials and repeated tests ⇒ More significant results

Example 7. Phase 3 trial was a large, randomized, double-blind, placebo-controlled clinical trial: $^{\alpha}$

 H_0 : Infection rate is not related to vaccine/placebo treatment. $\leftrightarrow H_1$: It is related.

	Pfizer / BNT162b2	Placebo	
SARS-CoV-2 infected	9	169	178
No infection	21,711	21,559	43,439
	21,720	21,728	

Hypergeometric distribution:

$$P(N_{11} = n_{11} \, | \, H_0) = rac{inom{21720}{n_{11}}inom{21728}{178-n_{11}}}{inom{21720+21728}{178}} \quad \leftarrow$$

dhyper(n11, m=21720, n=21728, k=178)

^{*} Age \geq 16, infections observed with onset at least 7 days after the second dose

Example 7 *cont'd*. Phase 3 trial was a large, randomized, double-blind, placebo-controlled clinical trial:

 H_0 : Infection rate is not related to vaccine/placebo treatment. $\leftrightarrow H_1$: Infection rate is lower in the vaccine group.

	Pfizer / BNT162b2	Placebo	
SARS-CoV-2 infected	9	169	178
No infection	21,711	21,559	43,439
	21,720	21,728	

Hypergeometric distribution:

$$P(N_{11}=n_{11}\,|\,H_0)=rac{inom{21720}{n_{11}}inom{21728}{178-n_{11}}}{inom{21720+21728}{178}}\quad \longleftarrow$$

dhyper(n11, m=21720, n=21728, k=178)

$$P = \{ N_{11} \leq C \}$$

$$P - value = P(N_{11} \leq 9 \mid H_{0})$$

^{*} Age \geq 16, infections observed with onset at least 7 days after the second dose

χ^2 test of independence

13.4 of Rice

07/22/2021

Example 8. A random sample of 650 residents of the city is taken. Their occupations and neighborhoods are recorded.

	A	В	C	D	total
White collar	90	60	104	95	349
Blue collar	30	50	51	20	151
No collar	30	40	45	35	150
Total	150	150	200	150	650

$$\times \text{LL} \iff P(x=x) P(x=y)$$

$$= P(x=x) P(x=y)$$

Assume that Neighborhood (N) II Outupation (O)

uncle Ho.

$$P(N=A, O=W) = TAW = \sum_{i=\{W,B,W\}} P(N=A, O=i)$$

$$P(N=B, O=W) = TBW$$

$$TAW = P(N=A)$$

$$P(N=A)$$

Example 8 *generalized*. A sample of size n is cross-classified in a table with I rows and J columns.

$$H_{0}: \pi_{ij} = \pi_{i}.\pi_{.j}, \ i = 1, \dots, I, \ j = 1, \dots, J \ \leftrightarrow H_{1}: H_{0} \text{ is not true.}$$

$$\downarrow 1 \quad 2 \quad \dots \quad \downarrow J \quad \downarrow I \quad \downarrow I \quad \downarrow J \quad \downarrow I \quad \downarrow J \quad \downarrow I \quad \downarrow J \quad \downarrow J \quad \downarrow I \quad \downarrow J \quad \downarrow J$$

$$H_{1}: H_{0} \text{ is not true.}$$

$$I \times J \text{ Cells} \rightarrow \text{mulnomial}$$

$$\Theta_{0} = \begin{cases} \exists ij = \pi_{i} : \pi_{j} \neq \pi_{i} = 1 \end{cases} \quad (A) = (A) \cup (A) = (A) \cdot (A) = (A) \cdot$$

$$-2\log \lambda(E_n) = 2\sum_{i=1}^{n} \sum_{j=1}^{n} -n_i j \log \frac{\pi_{ij}}{\pi_{ij}}$$

$$= 2\sum_{i=1}^{n} \sum_{j=1}^{n} n_i j \log \frac{n\pi_{ij}}{n\pi_{ij}}$$

$$= 2\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} n_i j \log \frac{n\pi_{ij}}{n\pi_{ij}}$$

 $\frac{\widehat{SUB}L}{\widehat{SUB}L} = \frac{\widehat{T}_1}{\widehat{T}_1} \frac{\widehat{T}_2}{\widehat{T}_2} \frac{\widehat{T}_2}{\widehat{T}_2} = \frac{\widehat{T}_1 \cdot \widehat{T}_2}{\widehat{T}_2} = \frac{\widehat{T}_1 \cdot \widehat{T}_2}{\widehat{T}$

λ(Xn) =

Example 8 *cont'd*. A random sample of 650 residents of the city is taken. Their occupations and neighborhoods are recorded.

	A	В	C	D	total
White collar	90	60	104	95	349
Blue collar	30	50	51	20	151
No collar	30	40	45	35	150
Total	150	150	200	150	650

```
> row_sum <- c(349, 151, 150)
> column_sum <- c(150, 150, 200, 150)
> I = length(row_sum); J = length(column_sum); n = sum(row_sum)
>
> Expected <- matrix(NA, nrow = I, ncol=J)
> for (i in 1:I){
+    for (j in 1:J){
+        Expected[i,j] = row_sum[i]*column_sum[j]/n
+    }
+ }
> Expected
        [,1]        [,2]        [,3]        [,4]
[1,] 80.53846 80.53846 107.38462 80.53846
[2,] 34.84615 34.84615 46.46154 34.84615
[3,] 34.61538 34.61538 46.15385 34.61538
```

Example 8 *cont'd*. A random sample of 650 residents of the city is taken. Their occupations and neighborhoods are recorded.

```
> Observed <- matrix(c(90, 30, 30, 60, 50, 40, 104, 51, 45, 95, 20, 35), ncol=4)

> sum((Observed-Expected)^2/Expected)
[1] 24.5712

> qchisq(0.05, df = (I-1)*(J-1), lower.tail=FALSE)
[1] 12.59159

> pchisq(24.5712, df = (I-1)*(J-1), lower.tail = FALSE)
[1] 0.0004098431
```



```
> row_sum <- c(349, 151, 150)
> column_sum <- c(150, 150, 200, 150)
> I = length(row_sum); J = length(column_sum); n = sum(row_sum)
> Expected <- matrix(NA, nrow = I, ncol=J)
> for (i in 1:I){
+    for (j in 1:J){
+        Expected[i,j] = row_sum[i]*column_sum[j]/n
+    }
+ }
> Expected
        [,1]        [,2]        [,3]        [,4]
[1,] 80.53846 80.53846 107.38462 80.53846
[2,] 34.84615 34.84615 46.46154 34.84615
[3,] 34.61538 34.61538 46.15385 34.61538
```

Example 8 *cont'd*. A random sample of 650 residents of the city is taken. Their occupations and neighborhoods are recorded.

	A	В	C	D	total
White collar	90	60	104	95	349
Blue collar	30	50	51	20	151
No collar	30	40	45	35	150
Total	150	150	200	150	650

Example 7 *cont'd.* Phase 3 trial was a large, randomized, double-blind, placebo-controlled clinical trial:

 H_0 : Infection rate is not related to vaccine/placebo treatment. $\leftrightarrow H_1$: It is related.

	Pfizer / BNT162b2	Placebo	
SARS-CoV-2 infected	9	169	178
No infection	21,711	21,559	43,439
	21,720	21,728	

^{*} Age \geq 16, infections observed with onset at least 7 days after the second dose

χ^2 test of independence:

- 1. The population concerns two categorical variables;
- 2. Tickets in each cell are independent;
- 3. Large sample size n so that no more than 20% of expected counts less than 5.

χ^2 test of homogeneity

13.4 of Rice

07/22/2021

Example 9. Jane Austen left the novel *Sandition* unfinished when she died. An admirer completed the novel while emulating her style. Morton counted the occurrences of various words in several works.

 H_0 : Admirer's usage of the words is consistent with Austin's. $\leftrightarrow H_1$: It is not.

Word	Sense and Sensibility	Emma	Sanditon I	Sanditon II
а	147	186	101	83
an	25	26	11	29
this	32	39	15	15
that	94 T i1	105772	37 Tis	22 Tity
with	59	74	28	43
without	18	10	10	4
Total	375	440	202	196

エー

Ho:
$$\pi_{i1} = \dots = \pi_{iJ}$$
 versus $H_1: Ho is not time $\Theta_0 = \{\pi_{i1} = \dots = \pi_{iJ}, \prod_{i=1}^{J} \pi_{ij} = 1\}$, $\Theta = \{\prod_{i=1}^{J} \pi_{ij} = 1\}$ $dim \Theta_0 = I - dim \Theta_0 = J(I - 1)$
 $V = dim \Theta_0 - clim \Theta_0 = (J - 1)(I - 1)$.

$$Sup L(\pi_{ij} \mid n_{ij}) = \frac{J}{J_{i1}} \frac{N_{ij}!}{N_{ij}!} \frac{T_{i1}}{T_{i1}} \frac{\pi_{ij}}{T_{i1}}$$

$$\Rightarrow \hat{\pi}_{ij} = \frac{N_{ij}}{N_{ij}!} \frac{T_{i1}}{N_{ij}!} \frac{T_{i1}}{N_{ij}!} \frac{T_{i1}}{N_{ij}!} \frac{T_{i1}}{N_{ij}!} \frac{T_{i1}}{N_{ij}!}$$$

Example 8 *generalized*. Compare *J* independent multinomial distributions each having *I* categories.

Example 9 *cont'd*. Jane Austen left the novel *Sandition* unfinished when she died. An admirer completed the novel while emulating her style. Morton counted the occurrences of various words in several works.

 H_0 : Admirer's usage of the words is consistent with Austin's. $\leftrightarrow H_1$: It is not.

Word	Sense and Sensibility	Emma	Sanditon I	Sanditon II	
а	147	186	101	83	517
an	25	26	11	29	91
this	32	39	15	15	101
that	94	105	37	22	258
with	59	74	28	43	204
without	18	10	10	4	42
Total	375	440	202	196	1,213

Example 9 *cont'd*. Jane Austen left the novel *Sandition* unfinished when she died. An admirer completed the novel while emulating her style. Morton counted the occurrences of various words in several works.

 H_0 : Admirer's usage of the words is consistent with Austin's. \leftrightarrow H_1 : It is not.

Example 9 *cont'd*. Jane Austen left the novel *Sandition* unfinished when she died. An admirer completed the novel while emulating her style. Morton counted the occurrences of various words in several works.

 H_0 : Admirer's usage of the words is consistent with Austin's. $\leftrightarrow H_1$: It is not.

Word	Sense and Sensibility	Emma	Sanditon 1	Sanditon II	
а	147	186	101	83	517
an	25	26	11	29	91
this	32	39	15	15	101
that	94	105	37	22	258
with	59	74	28	43	204
without	18	10	10	4	42
Total	375	440	202	196	1,213

Example 9 *cont'd*. Jane Austen left the novel *Sandition* unfinished when she died. An admirer completed the novel while emulating her style. Morton counted the occurrences of various words in several works.

 H_0 : Admirer's usage of the words is consistent with Austin's. \leftrightarrow H_1 : It is not.

Examine the contributions to the chi-square statistic (or relative frequencies) cell by cell:

 χ^2 test of homogeneity:

- 1. The population concerns *J* multinomial variables;
- 2. Tickets in each cell and across columns are independent;
- 3. Large sample size n so that no more than 20% of expected counts less than 5.

Next Tuesday ...

- Analysis of variance (ANOVA)
- Kruskal-Wallis test (Non-parametric)

