Derivata	Integrale	Operazioni con ∞	Limiti Notevoli
$D[f(x)^n] = n[f(x)^{n-1}] \cdot f^I(x)$	$\int k \cdot f(x) dx = k \int f(x) dx$	$\frac{n^+}{+\infty} = 0^+$	$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$
$D\left[\sqrt{f(x)}\right] = \frac{1}{2\sqrt{f(x)}} \cdot f^{I}(x)$	$\int f(x)^n \cdot f^I(x) dx = \frac{f(x)^{n+1}}{n+1} + c$	$\frac{n^-}{-\infty} = 0^-$	$\lim_{x \to 0} \frac{\tan(x)}{x} = 1$
$D[\sin f(x)] = \cos f(x) \cdot f^{I}(x)$	$\int \frac{f^{I}(x)}{f(x)} dx = \ln f(x) + c$	$+\infty(+\infty) = +\infty$	$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$
$D[\cos f(x)] = -\sin f(x) \cdot f^{I}(x)$	$\int \sin f(x) \cdot f^{I}(x) dx = -\cos f(x) + c$	$+\infty(-\infty) = -\infty$	$\lim_{x \to 0} \frac{\arctan(x)}{x} = 1$
$D[\ln f(x)] = \frac{1}{f(x)} \cdot f^{I}(x)$	$\int \cos f(x) \cdot f^{I}(x) dx = \sin f(x) + c$	$-\infty(-\infty) = +\infty$	$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$
$D[e^{f(x)}] = e^{f(x)} \cdot f^{I}(x)$	$\int \frac{1}{\cos^2 f(x)} dx = \tan f(x) + c$	$\frac{0}{\infty} = 0\left(\frac{1}{\infty}\right) = 0$	$\lim_{x \to 0} \frac{\log_a(1+x)}{x}$ $= \log_a e$
$D[a^{f(x)}] = a^{f(x)} \cdot \ln a \cdot f^{I}(x)$	$\int \frac{1}{\sin^2 f(x)} dx = -\cot f(x) + c$	$\frac{\infty}{0} = \infty \left(\frac{1}{0}\right) = \infty$	$ \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a $
$D[\log_a f(x)] = \frac{1}{f(x) \cdot \ln a} \cdot f^I(x)$	$\int e^{f(x)} \cdot f^{I}(x) dx = e^{f(x)} + c$	$\frac{n}{0^{\pm}} = \pm \infty$	$\lim_{x \to 0} \frac{\arcsin(x)}{x} = 1$
$D[\arcsin f(x)] = \frac{1}{\sqrt{1 - f(x)^2}} \cdot f^I(x)$	$\int a^{f(x)} \cdot f^{I}(x) dx = \frac{a^{f(x)}}{\ln a}$	$\begin{array}{c c} \underline{\infty_n} & n > m \to \infty \\ \hline \infty_m & n < m \to 0 \end{array}$	$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$
$D[arcos f(x)] = -\frac{1}{\sqrt{1 - f(x)^2}} \cdot f^I(x)$	$\int \frac{f^{I}(x)}{1 + f(x)^{2}} dx = \arctan f(x) + c$		$ \lim_{x \to 1} \frac{\log_a x}{x - 1} = \log_a e $
$D[\arctan f(x)] = \frac{1}{1 + f(x)^2} \cdot f^I(x)$	$\int \frac{f^{I}(x)}{\sqrt{1 - f(x)^{2}}} dx = \arcsin f(x) + c$		$\lim_{x \to 0} \frac{(1+x)^a - 1}{x} = a$
$D[arcotan f(x)] = -\frac{1}{\sqrt{1+f(x)^2}} \cdot f^I(x)$	$\int f^{I}(x)g(x)dx = f(x)g(x) - \int f(x)g^{I}(x)$		$\lim_{x \to +\infty} \frac{a^x}{x^a} = +\infty$
$D[\tan f(x)] = \frac{1}{\cos^2 f(x)} \cdot f^I(x)$			$\lim_{x \to +\infty} \frac{\log_a x}{x^a} = 0$
$D[f(x)g(x)] = f^{l}(x)g(x) + f(x)g^{l}(x)$			$\lim_{x \to -\infty} (-x)^a a^x = 0$
$D\left[\frac{f(x)}{g(x)}\right] = \frac{f^I(x)g(x) - f(x)g^I(x)}{g(x)^2}$			$\lim_{x \to 0^+} x^a \log_a x = 0$
$D\left[\frac{1}{f(x)}\right] = -\frac{f^{I}(x)}{f(x)^{2}}$			$\lim_{x\to x_0} g(x) \ln(f(x))$
$D[f(g(x))] = f^{I}(g(x)) \cdot g^{I}(x)$		$\lim_{x \to -\infty} a^x = 0 \{a > 1\}$	$\lim_{x \to +\infty} a^x = 0 \{ 0 < a < 1 \}$
$D[f(x)] = \frac{ f(x) }{x} \cdot f^{I}(x) \text{ oppure } D[f(x)]$	$\lim_{x \to -\infty} a^x = +\infty \left\{ 0 < a < 1 \right\}$		

Proprietà dei logaritmi	Proprietà delle potenze	Calcolo degli integrali di funzioni fratte $(\frac{mx+q}{(x-x_1)(x-x_2)})$	
$a^{\log_a b} = b$	$a^m \cdot a^n = a^{(m+n)}$	$\frac{A}{(x-x_1)} + \frac{B}{(x-x_2)} = Ax - Ax_1 + Bx - Bx_2 \to \begin{cases} A+B=m\\ -Ax_1 - Bx_2 = q \end{cases}$	
$\log_a(b \cdot c) = \log_a b + \log_a c$	$\frac{a^m}{a^n} = a^{(m-n)}$	Formule Trigonometria	
$\log_a(b^c) = c \log_a b$	$(a^m)^n = a^{m \cdot n}$	sen(2x) = 2senxcosx	
$\log_a \frac{b}{c} = \log_a b - \log_a c$	$a^n \cdot b^n = (a \cdot b)^n$	cos(2x) =	$cos^{2}x - sen^{2}x$ $2cos^{2}x - 1$ $1 - 2sen^{2}x$
$\log_a b = \frac{\log_c b}{\log_c a}$	$\frac{a^n}{b^n} = (\frac{a}{b})^n$	Formula di derivazione: $f^I(x) = \lim_{h \to 0} \frac{f^{(x+h)-f(x)}}{h}$	
$\log_a b = \frac{1}{\log_b a}$		$ax^{2} + bx + c \rightarrow x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$	

Calcolo della tangente in un punto $P(x_0, y_0)$

$$y = f^{I}(x_0) \cdot x + f(x_0) - f^{I}(x_0) \cdot x_0$$

Logaritmo

 $\log_a 1 = 0$

 $\log_a a = 1$

$$\log_a\left(\frac{1}{a}\right) = -1$$

 $\log_b(x) = n \to b^n = x \ (argomento \log > 0)$

$$b^n = x \to \log_b(x) = n \ (argomento \log > 0)$$

Parità e disparità

$$f(x) = f(-x) \rightarrow pari$$

$$f(x) = -f(-x) \rightarrow dispari$$

Hopital

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{0}{0} / \frac{\infty}{\infty} \xrightarrow{Hopital} \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Asintoti

 $\lim_{x \to +\infty} f(x) = n \to asintoto \ orizzontale$

$$\lim_{x \to r_{-}} f(x) = \pm \infty \to asintoto \ verticale$$

$$\lim_{x \to \pm \infty} f(x) = \pm \infty \to possibile \ as into to \ obliquo$$

Calcolo Asintoto Obliquo

$$\lim_{x\to\pm\infty}\frac{f(x)}{x}\to se\ il\ risultato\ \grave{e}\ finito\ e\ \neq 0\ allora\ \grave{e}\ il\ coefficiente\ angolare\ dell'asintoto\ y=mx+q$$

$$q = \lim_{x \to +\infty} [f(x) - mx]$$

Studio di funzione

- Dominio denominatore $\neq 0$
- Limiti prendi il dominio e identifica gli asintoti
- Segno: $f(x) \ge 0$
- Monotonia: $f'^{(x)} > 0$
- Concavità: f''(x) > 0

Se abbiamo una disequazione di secondo grado si può utilizzare la "parabola" dopo aver calcolato x_1, x_2

- Se il coefficiente quadrato è negativo la parabola a U rovesciata
- Se il coefficiente quadrato è positivo la parabola a U

