LT1 Summary

Constants

Coulomb's Constant: $k=rac{1}{4\pi\epsilon_0}=8.99 imes10^9\,\mathrm{m}^2\mathrm{C}^{-2}$

Mass of an electron: $m_e = 9.11 imes 10$

Electrical Equations

Coulomb's Law: $ec{F}=krac{q_1q_2}{r^2}\hat{r}$

Electric Field: $ec{E}=krac{q}{r^2}\hat{r}$

Electric Potential: $V=krac{q}{r}$

Electric Flux/Gauss' Law: $\phi_{
m net} = \oint_S ec{E} \cdot dec{A} = rac{q}{\epsilon_0}$

Circuits

Ohm's Law: V = IR

Series

Current: $I_{\text{net}} = I_1 = I_2 = I_3 = \dots$

Potential Difference: $V_{\mathrm{net}} = V_1 + V_2 + V_3 + \dots$

Resistance: $R_{\text{net}} = R_1 + R_2 + R_3 + \dots$

Parallel

Current: $I_{\mathrm{net}} = I_1 + I_2 + I_3 + \dots$

Potential Difference: $V_{\mathrm{net}} = V_1 = V_2 = V_3 = \dots$

Resistance: $R_{
m net}=\left(rac{1}{R_1}+rac{1}{R_2}+rac{1}{R_3}+\ldots
ight)^{-1}$

Capacitance

Capacitance Equation: $C = \frac{Q}{V}$ (unit, Farad)

Energy Stored: $\frac{1}{2}QV = \frac{1}{2}CV^2$

Series: $\frac{1}{C_{total}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$

Parallel: $C_{ ext{total}} = C_1 + C_2 + C_3 + \dots$