Algorithm 1: Self-paced contrastive learning in pretraining stage.

Input: Unlabeled dataset \mathcal{U} and their respective meta-label set D_{meta} ; Encoder of the segmentation network $E(\cdot)$; Temperature τ ; Learning pace γ scheduler;

Output: Pre-trained model parameters $\{\theta\}$ for $E(\cdot)$; Initialize network parameters θ ;

Initialize hyper-parameters: learning pace: $\gamma \leftarrow \gamma_0 = \text{Scheduler}(0)$;

for epoch = $1, \ldots, n_{\text{epochs}}$ do

```
for n = 1, ..., n_{iter} do
Sample unlabeled training batch \{U_n\};
```

For all $\mathbf{x}_u \in \mathcal{U}_n$, do random transformation and get \mathbf{x}_u^T ; Compute z using non-linear project $g(\cdot)$ for the features $E(\mathbf{x}_u)$; Compute the sample-wise contrastive loss using Eq. (2): $\lim_{t \to -\infty} \frac{\exp\left(z_i^{\mathsf{T}} z_j / \tau\right)}{\left(z_i^{\mathsf{T}} z_j / \tau\right)}$

$$\ell_{ij} = -\log \frac{\exp\left(z_i^{\mathsf{T}} z_j / \tau\right)}{\sum_{a \in \mathcal{A}(i)} \exp\left(z_i^{\mathsf{T}} z_a / \tau\right)};$$
Compute self-paced importance weight ω_{ij} using Eq. (6):

 $w_{ij}^* = \underset{w_{ij} \in [0,1]}{\min} w_{ij} \ell_{ij} + R_{\gamma}(w_{ij});$ Compute self-paced contrastive loss using Eq. (3):

$$\mathcal{L}_{\text{sp-con}}^{k} = \frac{1}{2N} \sum_{i=1}^{2N} \frac{1}{|\mathcal{P}^{k}(i)|} \sum_{j \in \mathcal{P}^{k}(i)} w_{ij} \, \ell_{ij} + R_{\gamma}(w_{ij});$$

According to Eq. (14), do a batch gradient descent step on the model's parameters θ ; Update the model's parameters θ ;

Adjust the SGD learning rate;

Update learning pace according to the scheduler: $\gamma \leftarrow$ Scheduler (epoch)

return $\{\theta\}$;