Artificial intelligence project.-PLE and FIF Computation Center W. ?

OPERATION OF A 25MAN OF STREET OF STREET

1 1041

Operation of a Semantic Question-Answering System by Bertram Raphael

1. Introduction

A. Preliminary Remarks

A computer program has been written in the LISP programming language match accepts information and answers questions presented to it in a restricted form of natural English language. The program achieves its effects by automatically creating, adding to, and searching a relational model for factual information. The purpose of this memo is to describe and emplain the behavior of the program.

The remainder of this section briefly describes the structure of the model. Section IX presents sample conversations illustrating various features of the program, and describes the implementation of those features. Section III is a brief survey of conclusions drawn from this messeauch. It is assumed throughout that the reader is at least somewhat familiar with the LISP programming system (and its meta-language notation), the concept of property (description) lists, and the usual notations of Mathematical Logic.

B. Structure of the Model

The program usually interprets a simple declarative sentence as empressing the fact that a certain relation holds between certain objects; these objects are usually defined by words which name them.

Every word has associated with it a list of pairs called its property

to be the name of an <u>setribute</u> of the word, and the second element the <u>value</u> of that appribute. If a statement asserts that relation <u>n</u> holds between words <u>n</u> and <u>v</u>, then this relationship is represented by placing appribute-value pairs which express this fact on the property-lists of both <u>n</u> and <u>v</u>, and these links are considered to be the model for the relation.

Since in general relations are not commutative, relation R must be factored into two relations RI and R2 so that if relation R holds between M and χ , R can say that χ stands in relation RI to χ , and χ stands in R2 to χ . RI and R2 are used as attributes on the property lists of χ and χ , respectively.

If one and only one object can be in relation R1 to any word \underline{x} , then the value of attribute R1 can be simply the name of that object, \underline{y} . It this case I say that a <u>type-1</u> link exists from \underline{x} to \underline{y} following the attribute R1. If R holds between \underline{x} and \underline{y} and also between \underline{x} and \underline{z} , type-1 links are inadequate (since there can only be one occurrence of a given attribute on a property list). The value of R1 is then a list, e.g., in this case the value of R1 of \underline{x} is the list " $(\underline{y}, \underline{z})$ ". These are called apper 2 links.

Occasionally descriptive information is desired in addition to a fact like "y stands in relation R1 to x", say information pertinent to that particular occurrence of the R1 relation. This can be handled by using type-3 links, where the value of an attribute is a list of items, each of which is itself in property list format; e.g., if R holds between m and y and also between x and z, and type-3 links are used, the following

they are bound to, even in quoted expressions.

structure would be placed on the property list of x:

"(... RE ((PLIST WARE y)(PLIST MARE 2)) ...)

"PLIST" identifies an item as a sub-property list, and "NAME" is an attri-

and the interest of generality and uniformity, type-3 links are the predominant mechanism for structuring the model.

it. Operation of the Program

A. Relations and Functions

Each part of this section will illustrate the use of a different group of relation-attributes. With minor exceptions the parts are cumulative, i.e., later parts freely use functions introduced earlier but not conversely. Each part consists of a list of relations involved; a dialogue illustrating their use; and a section describing the operation of relevant files functions.

Each portion of the dialogue consists of a sentence, prafixed by """,", which is the statement presented to the program; a LISP form to be evaluated, which represents the results of the natural-language-to-LISP-function translation phase of the program, and which normally does not appear on the output unless specifically requested; and the responses produced during the evaluation of the form.

In the "operation of functions" portions of the following, the "method" pactions are meant to serve as explanations of the principles used in specifying the functions. The "procedure" sections may be thought of as yough flow-charts. English and logical notation are frequently intermixed

while operation of this part of the program involves rather straightforward format matching and is beyond the scope of this memo.

in order to emplain methods and procedures clearly and concisely.

1) Bolomons: SUESEM, SUPERSET

Malague

cost (NEWPONCH-OPERATOR IS A GIRL) sctt(NEWPONCH-OPERATOR; GIRL) (L BULERSTAND)

(ABOV. ABY GIRL)S AN EXAMPLE OF A PERSON)
SECURGERL; PERSON;
(A UNDERSTAND)

(YOUR. US A KEYPUNCH-OPERATOR A PERSON Q) sourq[KEYPUNCH-OPERATOR; PERSON] (YES)

(wow. AS A PERSON A PERSON Q) sating[PERSON;PERSON] (YES)

(AAM. IS A PERSON A GIRL Q)
setro[PERSON;GIRL]
(SCHETIMES)

(***. IS A MONKEY A KEYPUNCH-OPERATOR Q)
setuc[MONUEY; KEYPUNCH-OPERATOR]
(THEUFFICIENT INFORMATION)

Operation of functions

1. setr[x;y]

purpose: To specify in the model that set \underline{x} is included in set \underline{y} . method: Create a type-3 link between \underline{x} and \underline{y} which indicates setinclusion.

- procedure: a) Add "(PLIST NAME x)" to the value list of attribute
 "SUBSET" of y.
 - b) Add "(PLIST NAME y)" to the value list of attribute "SUPERSER" of x.
 - c) Respond "(I UNDERSTAND)".

setro[x;y]

purpose: To reply as to whether an arbitrary element of set \underline{x} is an element of set y.

method: A member of <u>m</u> is considered to be a member of <u>w</u> if the sets <u>m</u> and <u>w</u> are identical; or if there is a chain of emplicit set-inclusion links proving that <u>w</u> is a subset of <u>w</u>, i.e., if there exists a (possibly empty) sequence of sets v,w,..., s such that

*C VA.VC WA ... AZC Y.

A member of \underline{x} is "sometimes" in \underline{y} if there is a chain of explicit set-inclusion links proving that \underline{y} is a subset of \underline{x} .

- procedure: a) If x = y, respond "YES".
 - b) If there is a path from x to y through type-3 links following the attribute "SUPERSET", respond "YES".
 - c) If there is a path from y to x through type-3 links following the attribute "SUPERSEL", respond "SOMETIMES".
 - d) Otherwise, respond "(INSUFFICIENT INFORMATION)".
- 2) Relations: MEMBER, ELEMENTS

Dialogue

(****: HAY IS AN (EM-7094) secrs[MAX; IBM-7094] (I UNDERSTAND)

(WWW. AN TEM-7094 IS A COMPUTER) setr[IEM-7094;COMPUTER]
(% UNDERSTAND)

come. IS MAX A COMPUTER Q)
secusq[MAX;COMPUTER]
(MAS)

(max. The boy is an mit-student)
course[boy;mht-student]
(Google is a boy)
(I unlersymb)

(AMM. US THE BOY A ERTERT-PERSON Q) setrolq[DOY; DRLONG-PERSON] (VES)

(10%. GORG TS A BOY)
setms[GORK; DOY]
G UMDERSTAND)

(NAME. IS THE DOY A ERIGHT-PERSON Q)

SETTED [BOY; NRTGHM-PERSON]
(HILLOH DOY . . (600018 JOHN))

Operation of functions

i. setro[x;y]

purpose: To specify in the model that \underline{x} is a member of the set \underline{y} . method: Create a type-3 link between \underline{x} and \underline{y} which indicates set-membership.

- procedure: a) Add "(PLIST NAME y)" to the value list of attribute
 "MANUBER" of x.
 - b) Add "(PLIST NAMER)" to the value list of attribute "ELEMENTS" of y.
 - c) Respond "(I UNDERSTAND)".

setrsq[x;y]

pumpose: To reply as to whether m is a member of set y.

method: Reply "YES" if the following is true:

 $(\exists u)[[u = x \lor [\underline{u} \text{ is equivalent} to \underline{x}]] \land$

[(1z)[[there is a link indicating that \underline{u} is a member of \underline{x}] \vee [(1z)[[there is a link indicating that \underline{u} is a member of \underline{z}] \wedge [any member of set \underline{x} is a member of set \underline{y}]]]]

who next section for an explanation of "equivalent".

- procedure: a) Make a list of the items connected to \underline{x} by a type-3 link following the attribute "MEMBER".
 - b) If y is on the list, respond "YES".
 - c) If, for any member z of the list,

 secre[z;y] = YES,

respond "YES".

- d) Repeat steps (a) through (c) with x replaced by each item equivalent* to x (if any), until a "YES" response is made.
- e) Otherwise respond "(INSUFFICIENT INFORMATION)".

3. setrsl[x;y]

purpose: To specify in the model that the unique element (if any) of the set x is also an element of the set y.

method: Create a type-3 link from the unique element, if any,

of x to y which indicates set-membership. If x has more
than one element don't set up any link.

- procedure: a) Compute u = specify[x]
 - b) If u = NIL, terminate.
 - c) Execute setms[u;y].

4. specify[x]

purpose: To determine the unique element, if any, of the set x.

method: If x has one element, find its pame. If x has no ele
ments, creat one and give it a rame. If x has more than

one element, ask which one and indicate failure.

procedure: a) Get the value list of the attribute "ELEMENTS" of \underline{x} .

^{*}See next section for an explanation of "equivalent".

- b) If no list, create a new symbol u, respond
 "(u IS A x)", execute setrs[u;x], and return u
 as the value of specify[x].
- c) If there is just one element named on the list, or all the elements named are equivalent, return the name of the first element as the value of specify[x].
- d) Otherwise respond "(WHICH x . . v)", where v is a list of names of the elements, and return "NIL" as the value of specify[x].

5. setrslq[x;y]

purpose: To reply as to whether the unique element, if any, of the set \underline{x} , is a member of the set \underline{y} .

method: Determine the element referred to and apply setreq.

- procedure: a) Compute u = specify[x].
 - b) If u = NIL, terminate.
 - c) Execute setrsq[u;y].

3) Relation: EQUIV

Dialogue

(***. THE MAN IS A FINK)
cotrol[MAN;FINK]
(GCOOLS IS A MAN)
(I UNDERSTAND)

(AMM. JACK IS A MOPE)
SECTE[JACK; DOPE]
(I UNDERSTAND)

(****. JOHN IS JACK)
equáv[JOHN;JACK]
(T UNDERSTAND)

(white. is John a dope Q) secting[John; DOPE] (MES)

(% %. MS THE MAN A DOPE Q) setrogl[MAN;DOPE]
(MESOFFICKEUT INFORMATION)

Charles THE NAW)

cquiv1[JOHH;MAN]

CU UNDERSTAND)

(selw. is THE NAW A DOPE Q) cetrsql[MAN;DOPE] (YES)

(dow. Jim is A man)
setus[Jim;MAN]
(I UMDERSTAND)

(value, is the Man a dope Q)
cotroq1[MAN;DOPE]
(WHICH MAN . . (G00019 JIM))

Operation of functions

l. equiv[x;y]

purpose: To specify in the model that x and y are equivalent, method: Create a type-2 link between x and y which indicates equivalence.

- procedure: a) Add \underline{x} to the value list of attribute "EQUIV" of y.
 - b) Add y to the value list of attribute "EQUIV" of x.
 - c) Respond "(I UNDERSTAND)".

2. equivl[x;y]

purpose: To specify in the model that \underline{x} is equivalent to the unique element of the set \underline{y} .

mothod: Determine the element referred to and apply equiv.

- procedure: a) Compute u = specify[y]
 - b) If u = NIL, terminate.
 - c) Execute equiv[x;u].

4) Relations: OWNED-BY-EACH, POSSESS-EX-RACH

Dialogue

(*4*. EVERY FIREMAN OWNS A PAIR-OF-RED-SUSPENDERS)

OWNT [PAIR-OR-RED-SUSPENDERS; PIREMAN]

(I UNDERSTAND)

(***. DOES A PATR-OF-RED-SUSPENDERS OWN A PATR-OF-RED-SUSPENDERS Q)
owdrq[PA(R-OF-RED-SUSPENDERS;PAIR-OF-RED-SUSPENDERS]
(NO ** THEY ARE THE SAME)

(***: DOES A DOCTOR OWN A PAIR-OF-RED-SUSPENDERS Q)

OWD:rq[PAIR-OF-RED-SUSPENDERS; DOCTOR]

(INSUPPICIENT INFORMATION)

(***: A FINECEIEF IS A FIREMAN)
setr[FIRECEIEF;FIREMAN]
(I UNDERSTAND)

(***. DOES A FIRECHIEF OWN A PAIR-OF-RED-SUSPENDERS Q)
OWRTH (PAIR-OF-RED-SUSPENDERS; FIRECHIEF)
(YES)

Operation of functions

1. ownxlx;yl

purpose. To specify in the model that every member of set y owns some member of set x.

method: Create a type-3 link between x and y which indicates the conership-relation between their members.

- procedure: a) Add "(PLIST NAME x)" to the value list of attribute
 "OWNED-BY-EACH" of y.
 - b) Add "(PLIST NAME y)" to the value list of attribute
 "OWNED-BY-EACH" of x
 - c) Respond "(1 UNDERSTAND)"

2. owarg[x;y]

purpose: To raply as to whether an arbitrary member of set y owns some member of set x.

method. The nnewer is "YES" if x # y, and

(3z)[y=z V[y is a subset of z]] A [there exists the appropriate ownership-relation link between x and x]]

- procedure: a) If may, respond "(NO wa THEY ARE THE SAME)".
 - b). Create the list I containing y and all sets u for which there is a path from y to u through type-3 links following the attribute "SUPERSIT".
 - following the attribute "POSSESS-EY-RACH", respond
 "YES".
 - d) Otherwise respond "(INSUFFICIENT INFORMATION)".
- 5) Roletions: OWNED, POSSESS

<u>Dialogue</u>

(add. Alyred Owns a log-log-decetrig) owners(log-log-decetrig; alyred) (I enderstand)

(ASA. A LOG-LOG-DECYTRAG IS A SLIDE-RULE)
cotr[LOG-LOG-DECYTRIG; SLIDE-RULE]
(I ENDERSYAND)

(wak. DOES ALFRED OWN A SLIDE-RULE Q) owngoug[SLYDE-RULE; ALFRED] (YES)

(NAME OF THE PROPERTY OF A SLIDE-RULE)
OWAT[SLIDE-RULE; ENGINEERING-STUDENT]
(I UNDERSTAND)

(***** VERNON IS A TECH-MAN)
- SOURC [VERNON; TECH-MAN]
(I UNEURSTAND)

(THE A TECH-MAN IS AN ENGINEERING-STUDENT)
SCUT[TECH-MAN; ENGINEERING-STUDENT]
(1 UHDERSTAND)

(*** DOES VERNON OWN A SLIDE-RULE Q)
outingual SLIDE-RULE; VERNON]
(YES)

(***: ALYRED IS A TUCH-HAW)
setro[ALFRED; TECH-MAW]
(I UNDERSTAND)

(***** DOME AN ENGINEERING-STUDENT OWN THE LOG-LOG-DECITATE Q)
OWNERS (LOG-LOG-DECITATE)
(G00025 IS A LOG-LOG-DECITATE)

Operation of functions

l. ownrgu[x;y]

purpose: To specify in the model that \underline{x} come a member of the set \underline{x} .

method: Create a type-3 link between \underline{x} and \underline{y} which indicates the intended ownership relation.

- procedure: a) Add "(PLIST NAME x)" to the value list of attribute "POSSESS" of Y.
 - b) Add "(PLIST NAME y)" to the value list of attribute "CONNED" of x.
 - c) Respond "(I UNDERSTAND)".

oumrguq[x;y]

purpose: To reply as to whether \underline{y} orms a member of set \underline{x} .

method: The reply is "YES" if there is a link indicating that

 \underline{y} owns a member of \underline{x} or of some subset of x; or if

(3z)[[y is a member of z].

 $(\exists u)[[u=z \lor z \subset u]_{\Lambda}$

[there is a link indicating that every member of set \underline{u} owns a member of the set \underline{x}]]]

- procedure: a) Consider each set \underline{z} such that there is a link indicating \underline{y} is an element of \underline{z} .
 - b) For each z, construct a list 1 containing every set u for which setrq[z;u] = YES.

- c) Compute m = the list of all sets y such that there is a type-3 link from x to y following the attribute "CWNED-EY-RACH".
- d) If, for some z, the intersection of 1 and m is non-empty, respond "YES".
- e) Otherwise, respond "(INSUFFICIENT INFORMATION)".

ownrsgq[x;y]

purpose: To reply as to whether the unique element, if any, of the set x, is owned by some element of the set y.

method: Determine that a unique element of m exists. Then, the reply is "YES" if

(Ez)[[there is a link indicating that a member of set x is comed by z] A

(Ev)[[v=z V[v is equivalent to z]] A

(Ew)[[there is a link indicating, that \underline{y} is an element of \underline{y}].

[there are links indicating that \underline{y} is a subset of \underline{y}]]

procedure: a) Compute u = specify[x]

- b) If u=NIL, terminate
- c) Generate the individuals \underline{w} which are linked to \underline{x} as type-3 values of the attribute "OWEED".
- d) For each w, generate the sets z which w, and any individual equivalent to w, is a member of.
- e) If, for some z, setrq[z;y]=YES, respond" (ES".
- f) Otherwise respond "(INSUFFICIENT INFORMATION)".

5) Relations: SUPPART-OF-EACH, SUPERPART-OF-EACH

Diclosue

(AMAL. A MOSE MS PART OF A PIRSON)
part=[MOSE;PERSON]
(I UNDIRSTAND)

("MAR. A NOSTREL IS PART OF A NOSE)
partr(NOSTRAL; NOSE)
(I UNDERSTAND)

(with. A PROFISSOR IS A TRACHER)

netr[PROFESSOR; TRACHER]
(I UNDERSTAND)

(MAA. A TEACHER IS A PERSON)

SOTT[REACHER; PERSON]

(I ENDERSTAND)

(****, IS A HOSTRIL PART OF A FROYESSOR Q)

partro[MOSTRIL;PROFESSOR]
(%ES)

(MARCO PART OF A MOSE Q)

parting[MOSE; MOSE]

(MO, PART MEANS PROPER SUBPART)

(SDE. A PERSON IS A LIVING-CREATURE)
cett[PERSON;LLVING-CREATURE]
(I UNDERSTAND)

(***. IS A NOSTRIL PART OF A LIVING-CREATURE Q)

PRINTING (NOSTRIL; LIVING-CREATURE)
(SOMETTHES)

(MAC). IS A LIVING-CREATURE PART OF A NOSE Q)
partro[LIVING-CREATURE; NOSE]
(MO, NOSE IS SOMETIMES PART OF LIVING-CREATURE)

Operation of functions

1. partr[x;y]

purpose: To specify in the model that every element of set \underline{x} is part of some element of set \underline{y} .

method: Create a type-3 link between \underline{x} and \underline{y} which indicates the part-whole relation between their members.

procedure: a) Add "(PLIST NAME x)" to the value list of attribute

"SUBPART-OF-EACH" of y.

- b) Add "(PLIST NAME y)" to the value list of attribute "SUPERPART-OF-EACH" of x.
- c) Réspond "(I UNDERSTAND)".

2. partro[x;y]

purpose: To reply as to whether an ambitrary member of set \underline{x} is a part of some member of set \underline{y} .

method: No element may be part of itself. Reply "YMS" if

(w)[[there is a chain of links indicating that an arbitrary wamber of set \underline{x} is part of some member of \underline{w}] [[\underline{y}] [[there is a chain of links indicating that \underline{y} is a subset of \underline{w}]].

Reply "SOMETIMES" if

(w)[[there is a chain of links indicating that an arbitrary member of set x is part of some member of w] [there is a chain of links indicating that y is a subset of y]]

Reply "NO" if an arbitrary member of set \underline{x} is always or sometimes a part of some member of set \underline{x} .

procedure: 2) If x=y, respond "(NO, THEY ARE THE SAME)".

- b) Generate those sets w which can be reached from X through a chain of type-3 links following the attribute "SUPERPART-OF-EACH".
- c) If, for some w, setrq[y;w]=YES or SCMETIMES, respond
 "YES" or "SOMETIMES", respectively.
- d) If the response for partrq[y;x] would be YES or SOMETIMES, respond "(NO, y IS PART OF x)" or "(NO, y IS SOMETIMES PART OF x)", respectively.
- e) Otherwise respond "(INSUFFICIENT INFORMATION)".
- 7) Relations: SUBPART, SUPERPART

Dislogue

(and a van-dike is part of perran)

```
porergu[VAN-DXKE;FFRRAN]
La cuinteration
(Mesh, A VAN-) O IS A BEARD)
fulkan 11.0 maylang
CE UNDERSAME
greet. IS A I D PART OF FERRAN Q)
pantrguq[BD ;FENRAN]
(323)
green. A CRY IS PART OF THE PDP-1)
powings [CRO; PDR-1]
(0.00051 IS A PDP-1)
(I UNDERSTAND)
(RAME, A CREETS A DESPLAY-DEVACE)
 sebu (CRI; DISPLAY-NEVICE)
(I UNDERSTAND)
Cook. SAM IS THE PDP-1)
ecuivl[SAM;PDP-1]
(I DIDERSTAND)
CAME. A SCREEN IS PART OF EVERY DISPLAY-DEVICE;
 parer [SCREEN; DESPLAY-DEVICE]
(Tunersmand)
Chart. IS A SCREEN PART OF SAM Q)
 partrauq[SCREEM;S/M]
(YES)
(man) A BRARD IS PART OF A BRATHER!)
 parer[BEARBAREARIK]
 (I UNDERSTAND).
 COMM. EVERY COFFEE-HOUSE-CUCYCMER IS A BEATNIK)
 setr[coffee-housz-customen;leathix]
 (1 UNDERSTAND)
 (with BUZZ IS A COVYEE-HOUSE-CUSTOMER)
 cetre [Buzz; COFFEZ-HOUSE-CUSTONER]
 (I UNDERSTAND)
 (when. IS A BRARD PART OF BUZZ Q)
  partrauq[BEARD;BUZZ]
 (YZS)
 (NAME THE HAND IS PART OF THE ARM)
  pautros [HAND; AFM]
 (GOOGAL IS A MAMD)
 (G00042 IS A ARM)
 (I UNDERSTAND)
 (mant. AR ARM IS PART OF A PERSON)
  partr[ARM; PERSON]
```

(I UNDERSTAND)

Type, A DOY (S A PERSON)

SCIP[NOY; PERSON]

(1 (HERELETAND)

(TEN. IS THE EARD PART OF A BOY Q)
FREEDESS(EAMD; BOY)
(YES)

Operation of functions

perergu[x;y]

purpose: To specify in the model that some element of set \underline{x} is a part of the individual \underline{y} .

method: Create a type-3 link between \underline{x} and \underline{y} which indicates the appropriate part-whole relation.

- procedure: a) Add "(PLIST NAME x)" to the value list of attribute "SUBPART" of y.
 - b) Add "(PLIST NAME y)" to the value list of attribute "SUPERPART" of x.
 - c) Respond "(I UNDERSTAND)".

partrgs[x;y]

purpose: To specify in the model that some element of set \underline{x} is a part of the unique element, if any, of the set \underline{y} .

- method: a) Determine \underline{z} , the unique element of \underline{y} .
 - b) Specify that some element of x is part of z.
- procedure: a) Compute $\underline{z} = \text{specify}[y]$.
 - b) If z=NIL, terminate.
 - c) Otherwise, compute partrgu[x;z]

partrguq[x;y]

purpose: To reply as to whether some element of set x is part of the individual y.

method: A member of x is part of y if

(3u)[[u=y V [u is equivalent to y]] A

[(3w)[[thane is a link indicating that an element of \underline{w}

is a subpart of ula

[[w=x V [there are links indicating that w is a subset of x]V

(3z) [[there are links indicating that every element of x

has some element of x as a part] A [w=z V [there are

links indicating that w is a subset of x]]]] V

[($\exists z$)[[\underline{u} is an element of set \underline{z}] \wedge [

(3v) [there are links indicating that every element of \underline{v} has some element of \underline{x} as a part] \wedge [z=v \vee [there are links indicating that \underline{z} is a subset of \underline{v}]]]]]]]]

- or from any node equivalent to y, by a chain of type-3
 links following the attribute "SUBPART".
 - b) If, for any \underline{w} , setrq[w;x]=YES, respond "YES".
 - c) Otherwise, generate those nodes <u>z</u> which can be reached from <u>x</u> by a chain of type-3 links following the attribute "SUPERPART-OF-EACH".
 - d) If, for any z and any w, setrq[w;z]=YES respond "YES".
 - e) Otherwise, compute the list 1 of sets for which there is a type-3 link from y, or any node equivalent to y, following the attribute "MEMBER".
 - f) Generate the nodes <u>v</u> which can be reached by a chain of type-3 links from <u>x</u> following the attribute,
 "SUPERPART-OF-EACH".
 - g) If, for any <u>v</u> and any <u>u</u> in <u>l</u>, setrq[u;v]=YES, respond
 "YES".
 - h) Otherwise, respond "(INSUFFICIENT INFCEMATION)".

4. partrec[x;y]

purpose: To specify in the model that the unique element, if any, of set x is part of the unique element, if any, of set y. method: Meentify the unique elements u and y of sets x and y, respectively. Specify that some element of set x is part of the individual y. Then create a type-2 link from the appropriate type-3 link from x to u, specifying which element of x is involved.

procedure: a) Compute v = specify[b], and u = specify[a].

- b) If u or y = MIL, terminate.
- c) Execute partrgu[x;v]
- d) Add \underline{u} to the value list of attribute "ELEMENTS" on that member of the "SUPERPART" value list of \underline{x} which refers to \underline{y} .
- e) Respond "(I UNDERSTAND)".

partragq[x;y]

purpose: To reply as to whether the unique element of set \underline{x} is part of some element of set \underline{y} .

method: The answer is "YES" if there exists a unique element \underline{z} of set \underline{x} and if

 $(\exists w)$ [[there is a link indicating that some \underline{x} is part of \underline{w}] \wedge

 $(\exists u)[[u=w \lor \underline{u} \text{ is equivalent to } \underline{w}] \land$

(av)[[there is a link indicating that \underline{u} is an element of $\underline{v}]_A$ [[y=v] V [there are links indicating that \underline{v} is a subset of \underline{v}] V [there are links indicating that every \underline{v} is part of some \underline{u}] A [[v=q] V [there are links indicating that \underline{v} is a subset of \underline{u}] 1]] [1]

procedure: a)Compute z = specify[x]

- b) If z=Will, terminate.
- c) Generate those nodes w which can be reached from z by a type-3 link following the attribute "SUPERPART"
- d) For each w, compute the list 1 of those sets which
 w, or any set equivalent to w, is a rember of.
- e) If y is in 1, respond "YES".
- f) If, for any yel, setrq[y;v]=YES, respond "YES".
- g) Otherwise, generate those nodes g which can be reached from y by a type-3 link following the attribute "SUPERPART-OF-EACH".
- h) If, for any g, setrq[v;q]=YES, respond "YES".
- i) Otherwise, respond "(INSUFFICIENT INFORMATION)".

8) Relation: NUMBER

Dialogue

(max. A DOY IS A PERSON)
setr[DCY;PERSON]
{\text{\text{UNDERSTAND}}

(%%%. JOHN IS A BOY) setro[JOHN;BOY] (I UNDERSTAND)

(note: A FINGER IS PART OF A HAND)
party[FINGER; HAND]
(I UNDERSTAND)

(****. HOW MANY FINGERS DOES JOHN HAVE Q)
PARTYPHON [FINGER; JOHN]
(I DUNKT KNOW WHETHER FINGER IS PART OF JOHN)

(with THERE IS ONE HAND ON EACH ARM)
portun[HAND; ARM; 1]
(I UNDERSTAND)

(****: THERE ARE TWO ARMS ON A PERSON)

partyn(ARM; PERSON; 2]
(I UNDERSTAUD)

(**** HOW MANY FINGERS DOES JOHN HAVE Q)

POTETHIC[MANGER;JOHN]

(HOW ILMY FINGER PER HAND Q)

("AA. A HAND HAS FIVE FINGERS)

partin[HAND;FINGER;5]
(X UNDERSTAND)

(NOTE: NOW MANY FINCERS DOES JOHN HAVE Q)

PROTEURING [MINGER, JOHN]
(THE ANSWER IS 10)

(Phon. THERE ARE 11 TOES ON JIM)
PRINTED TO (TOES; JIM; 11]
(T UNDERSTAND)

Operation of functions

pertun[x;y;n]

purpose: To specify in the model that there are \underline{n} elements of set \underline{x} which are parts of every element of set \underline{y} .

method: Create a type-3 link between x and y specifying that an element of set x is part of some element of set y. Create type-1 links associating the number n with that type-3 link.

- procedure: a) Execute partr[x;y].
 - b) Add "(NUMBER n)" to both the list which was added to the value list of attribute "SUBPART-OF-EACE" of y, and the list which was added to the value list of attribute "SUPERPART-OF-EACH" of x.

partrnu(x;y;n)

purpose: To specify in the model that there are n elements of set x which are parts of individual y.

method: Create a type-3 link between \underline{x} and \underline{y} which indicates that some element of set \underline{x} is part of \underline{y} . Create type-1 links associating the number \underline{n} with that type-3 link.

- procedure: a) Execute partrgu[x;y].
 - b) Add "(NUMBER n)" to both the list which was added to the value list of attribute "SUBPART" of y, and the list which was added to the value list of attribute "SUPERPART" of x.

3. partrauq[x;y]

purpose: To reply as to how many elements of set \underline{x} are parts of the individual y.

method: If

(Su)[[there is a link indicating that an element of \underline{u} is part of \underline{y}] \wedge

[[u=x] \vee ($\exists v$)[[there is a chain of links indicating that a \underline{v} is part of every \underline{u}] \wedge

- [[x=v] V [there is a chain of links indicating that x is
 a subset of v]]]]] V
- (3u)[[there is a link indicating that y is an element of set \underline{u}] A
- ($\exists v$)[[there is a chain of links indicating that a \underline{v} is a part of every \underline{u}] \wedge

[[x=v] \bigvee [there is a chain of links indicating that \underline{x} is a subset of \underline{v}]]],

then the answer is the product of the values of the type-1 link following the attribute "NUMBER", associated with each type-3 link used in proving the required part relations.

If any such "NUMBER" attribute is missing, the reply explicitly requests it. If the part-whole relation cannot be established, the reply indicates that fact.

- procedure: a) Follow the procedure of partrauq[x;y] until links
 are found which warrant a "YES" response. Save a
 list 1 of all required links which follow a "SUBPART"
 or a "SUPERPART-OF-MACE" attribute.
 - b) If no such list can be found, respond "(I DON'T KNOW WEETHER X IS PART OF y)".
 - c) For each element α of 1, where α specifies a "SUPERPART-OF-EACH" link from u to v, get the value of the attribute "NUMBER" of α. If, for some α, no such value exists, respond "(HOW MANY u PER v Q)".
 - d) Compute z = the product of the numbers obtained above.

 Respond "(THE AMSWER IS z)".
- 9) Relations: LEFT, RIGHT, JLEFT, JRIGHT

Dialogue

(www. THE TELEPHONE IS JUST-TO THE RIGHT OF THE BOOK)
juight[TELEPHONE; BOOK]
(G03096 IS A TELEPHONE)
(G03097 IS A BOOK)
(I UNDERSTAND)

(which. THE TELEPHONE IS JUST TO THE LEFT OF THE PAD) jright[PAD;TELEPHONE] (G03098 IS A PAD) (I UNDERSTAND)

(Whith. IS THE PAD JUST TO THE RIGHT OF THE BOOK Q) jrightssq[PAD;BOOK]

(White. IS THE BOOK TO THE LEFT OF THE PAD Q) rightesq[PAD;BOOK]
YES

(****. THE PAD IS TO THE RIGHT OF THE TELEPHONE)
TIGHT[PAD;TELEPHONE]
(THE ABOVE STATEMENT IS ALREADY KNOWN)

```
(with The PAD IS TO THE LEFT OF THE TELEPHONE)
 right [TELEPHONE; PAD]
(THE ADOVE STATEMENT IS IMPOSSIBLE)
(with THE ASH-TRAY IS TO THE LEFT OF THE BOOK)
 right [BOOK; ASH-TRAY]
(C03099 IS A ASE-TRAY)
(Y UNDERSTAND)
(whith THE PENCYL IS TO THE LEFT OF THE PAD)
 right [PAD; PEHCIL]
(GOSIOO NE A PEMCIL)
(I UNDERSTAND)
(white THE PAPER IS TO THE RIGHT OF THE TELEPHONE)
 right [PAPER; RELEPHONE]
(GOBLOI IS A PAPER)
(I UNDERSTAND)
(ANT). WHERE IS THE PAD Q)
 whores[PAD]
(JUST TO THE RIGHT OF THE TELEPHONE)
(SOMEWHERE TO THE RIGHT OF THE FOLLOWING . . (PENCIL))
(white what is the position of the pad Q)
 locates[PAD]
(THE LEFT-TO-RIGHT ORDER IS AS FOLLOWS)
(PENCIL (BOOK TELEPHONE PAD) PAPER)
(TO FURTHER SPECIFY THE POSITIONS YOU MUST INDICATE WHERE THE ASU-TRAY
 IS WITH RESPECT TO THE PENCIL)
. THE BOOK IS JUST TO THE RIGHT OF THE ASH-TRAY)
 iright[DCOK;ASH-TRAY]
(I UNDERSTAND)
(***: WHAT IS THE POSITION OF THE PAD Q)
 locates[PAD]
(THE LEFT-TO-RIGHT ORDER IS AS FOLLOWS)
(PENCYL (ASH-TRAY BOOK TELEPHONE PAD) PAPER)
(which A TELEPHONE IS AN AUDIO-TRANSDUCER)
 sotr [TELEPHONE; AUDIO-TRANSDUCER]
(I UNDERSTAUD)
(****: A DIAPPEACH IS PART OF AN AUDIO-TRANSDUCER)
 partr[DIAPHRAGM; AUDIO-TRANSDUCER]
(I UNDERSTAND)
(AND. WHERE IS A DIAPERACH Q)
 whoreS[DIAPHRAGM]
(JUST TO THE RIGHT OF THE BOOK)
```

(JUST TO THE LEFT OF THE PAD)

Operation of functions .

1. jright[x;y]

is located just to the right of the unique element of set <u>x</u> is located just to the right of the unique element of set <u>y</u>.

method: Check whether the statement is consistent with existing knowledge; i.e., that nothing is known to be between <u>x</u> and <u>y</u> and that <u>y</u> is not known to be to the right of <u>x</u>.

If it is not consistent, complain. Otherwise, create a type-1 link indicating the positional relation.

procedure: a) If specify [x] or specify[y] = NIL, terminate.

- b) If there already is a type-1 link from y to x following the attribute "JRIGHT", respond "(THE ABOVE STATEMENT IS ALREADY KNOWN)".
- c) If it can be proven that y is to the right of x, i.e., if rightp[y;x]=T; or if there is any type-l link from y following the attribute "JRIGHT"; or if there is any type-l link from x following the attribute "JREFT"; then respond, "(THE ABOVE STATE-MENT IS HAPOSSIBLE)".
- d) If rightp[x;y]=T, and there does not exist a direct type-2 link from y to x following the attribute "RIGHT", respond "(THE ABOVE STATEMENT IS IMPOSSIBLE)".
- e) Otherwise, create a type-1 link from <u>y</u> to <u>x</u> following the attribute "JRIGHT"; create a type-1 link from <u>x</u> to <u>y</u> following the attribute "JLRFT"; respond "(I UNDERSTAND)".

rishtp[x;y]

purpose: To test whether it is known that the x is located to the

right of the y.

nethod: rightp[k;y] is defined recursively as follows: if there is no type-1 link from y following the attribute "JUNGHT", and no type-2 link from y following the attribute "RECHT", the value of <u>mightp</u> is MTL; if either of the above links emists and links to x, the value is T. Otherwise value is the disjunction of the values of rightp[u;y] for all u which are linked to y by one of the above links.

- procedure: a) Compute u, the value of the type-1 link from y following the attribute "JREGHT".
 - b) If u=x, value is T; if there is no u, go to step (d).
 - c) If rightp[x;u]=T, value is T.
 - d) Compute 1, the value of the type-2 link from y following the attribute "RIGHT".
 - e) If m is a member of list 1, value is T; if there is no 1, value is F.
 - f) If, for any vel, rightp[x;v]=T, value is T; otherwise value is F.

3. right[x;y]

purpose: To specify in the model that the unique element of set \underline{x} is located to the right of the unique element of set \underline{y} .

method: Check whether the statement is consistent with existing knowledge. If not, complain. Otherwise, create a type-2 link indicating the positional relation.

- procedure: a) If opecativ[x]=NIL or specify[y]=NIL, terminate.
 - b) If rightp[x;y]=T, respond, "(THE ABOVE STATEMENT IS ALREADY KNOWN)".

- e) WE wightply; ml=E, weepend, "(THE ABOVE STATEMENT NO IMPOSSIBLE)".
- d) Otherwise, create a type-2 link from y to x following the attribute "RTCHY"; create a type-2 link
 from x to y following the attribute "LEFT"; respond
 "(I UNDERSTAND)".

4. jrighteoq[x;y]

pumpose: To reply as to whether the $\underline{\kappa}$ is located just to the right of the y.

method: Determine whether the links in the model indicated that \underline{x} is just to the right of \underline{y} , \underline{x} cannot be just to the right of \underline{y} , or neither.

precedure: a) If specify[x]=NTL or specify[y]=NTL, terminate.

- b) If there is a type-1 link from y to x following the attribute "JRIGHT", respond "YES".
- c) If rightp[y;x]=T, or if there is any type-1 link from y following the attribute "JRYGHM"; or if there is any type-1 link from x following the attribute "JLETT"; then respond, "NO".
- d) If rightp[x;y]=T, and there does not exist a direct type-2 link from y to x following the attribute "RIGHT", respond "NO".
- e) Otherwise, respond "(INSURTICIEMY INFORMATION)".

5. rightnoq[x;y]

purpose: To reply as to whether the \underline{x} is located to the right of the y.

method: Determine whether the links in the model indicate that \underline{x} is to the right of \underline{y} , to the left of \underline{y} , or neither.

- procedure: a) If specify[n]=ATL or specify[y]=HTL, terminate.
 - b) If rightp[m;y]=T, respond "YES".
 - c) If rightp[y;u]=T, recpond "MO".
 - d) Otherwise, respond "(MEDFFECIME INFORMATION)".

5. wheres[x]

purpose: To determine the locations of those objects which have been positioned with respect to the unique element of set $\underline{\mathbf{x}}$.

method: Reply with the information provided by each positional link associated with x.

procedure: a) If specify[x]=NIL, terminate.

- b) Compute <u>u</u> = the value of the type-1 link from <u>x</u>

 following the attribute "JLEFT"; <u>v</u> = the value of
 the type-1 link from <u>x</u> following the attribute
 "JRIGHT"; <u>l</u> = the value of the type-2 link from
 <u>x</u> following the attribute "TEFT"; <u>m</u> = the value
 of the type-2 link from <u>x</u> following the attribute
 "RICHT".
- c) If w, w, k, and m all do not exist, respond "(NO POSITION IS KNOWN)".
- d) If u does not exist, go to step (f).
- e) Respond, "(JUST TO THE RIGHT OF THE u)", and go to the next step.
- f) If \underline{v} does not exist, go to step (h).
- g) Respond, "(JUST TO THE LEFT OF THE v)", and go to the next step.
- h) If 1 does not exist, go to step (j).
- i) Respond, "(SOMEWHERE TO THE RIGHT OF THE FOLLOWING . . 1)",

and go to the next step.

- j) If m does not exist, terminate.
- k) Respond, "(SOMEWHERE TO THE LEFT OF THE FOLLOWING . . m)".

locates[x]

purpose: To determine the location of the unique element of set \underline{x} with respect to as many other objects as possible.

by searching through all chains of positional links starting from x and proceeding recursively. The form of the
diagram is a list, with objects known to be adjacent
appearing in sublists. If no positional links from x
exist or if a well-ordering cannot be determined, make
an appropriate comment.

- procedure: a) If specify[x]=NIL, terminate.
 - b) Set the initial diagram g="(x)".
 - c) Compute u = [the value of the type-1 link from \underline{x} following the attribute "JRYGHT"]. If no \underline{u} exists or if \underline{u} is already in \underline{x} , so to step (f).
 - d) Insert \underline{u} just to the right of \underline{x} in \underline{z} , i.e., insert \underline{u} right after \underline{x} in a sublist of \underline{z} .
 - c) Replace g by the result of executing this procedure starting from step (c), with the current value of u replacing the argument x and the current value of g as the diagram.
 - f) Repeat step (c) for the attribute "JIMFT". In case of failure, go to step (i).

- g) Insert u just to the left of x in g.
- h) Repeat step (e).
- i) Compute 1 = [the value of the type=2 link from x following the attribute "RTCMT"]. If no 1 exists, go to step (1).
- j) For each mel: If m is already in the current Z, ignore it; if there exists a w in m which is the object (or first object on a sublist) following x (or the sublist containing x), go to step (k). Otherwise insert m after x (or the sublist containing x) in g, and repeat step (e), with the current value of m replacing x. When all mel have been treated go to step (1).
- k) If rightp[v;m]=T, insert m ofter x and continue with the next m in step (j). If rightp[m;v]=T, then just for this value of m replace x by y and continue as in step (j). Otherwise, respect "(THE LEFT-TO-REGET ORDER IS)

g

(TO FURTHER SPECIFY THE POSITIONS YOU MUST INDICATE WHERE THE m is with respect to the v)".

- 1) Perform operations analogous to (i), (j), and (k) for the attribute "LETY" of $\underline{\kappa}$.
- m) If the current g="(x)", respond
 "(HO RELATIVE POSITION IS KHOWN)".
- n) Otherwise respond,
 "(THE LEFT-TO-RIGHT ORDER IS) go

3. whoregin]

purpose: To determine the locations of these objects which have been positioned with respect to some element of set x. mathod: Find an object u of which an x is an example or a part, and which has positional links. Then find the locations of those objects which have been positioned with respect to u.

- procedure: a) If w has any positional links, i.e., Af the attributes "JRIGET", "JLEFT", "REGRY", and "REFT" of w are not all missing, execute wheres[x].
 - (Eu)[[there is a sequence of links following the attribute "SUPERPART-OF-EACH" from m to ul A
 [u has at least one positional link]], then execute wheres[u].
 - c) If the hypotheses of step (b) hold for the attribute "SUBSET", execute wheres[u].
 - d) If

 (@u)[[there is a sequence of links following the
 attribute "SUPERPART-OF-EACH" from x to u].A

 (@w)[[there is a sequence of links following the
 attribute "SUBSET" from u to w].A

[w has at least one positional link]]], then execute wheres[w].

e) Otherwise respond "(NO RELATIVE POSITION IS NEWN)".

D. Special Peatures

1) Wracobion Principle

Pinlogue

(www. TIMPE ARE 5 FINGERS ON EVERY HAND)
pautwa[WINGER; HAND; 5]
(N UNDERSTAND)

(www. THERE ARE THO HANDS ON A PERSON)
pandum[MAND; PERSON; 2]
(N UNDERSTAND)

(www. A DOS ES A PERSON) sest[BOY;PERSON] (I UNDERSTAND)

(****: TOM ES A BOY) serva[TOM; BOY] (I UNDERSTAND)

(****. DICK IS A BOY)
sours[DICK;BOY]
(1 UNDERSEAND)

(www. MARRY IS A BOY)
cocts[MARRY;DOY]
(M UNDERSYAND)

(MAW. TOM BAS NEED FINGERS)

partorno [TENGER; TOM; 9]

(I UNDERSTAND)

(www. DEOK MAS GN: MAND) pamerns[MAND;DEGK;1] (I UNDERSTAND)

(man. HOW MAIN FINGERS DOES TOM MAVE Q)

partured[TINGER; TOM]

(THE ANSWER IS 9)

(VANNO. NOW MARY PINGERS DOES DICK HAVE Q)
DOUBTHOSQ!PINGER:DICK]
(THE AMSMER IS 5)

(MANY FINGERS DOES HARRY HAVE Q)

parturnoq[FINGER; HARRY]

(TIME ANSWER IS 10)

<u> Princunction</u>

Concret information about "all the elements" of a set is considered to apply to particular elements only in the absence of more specific information about those elements. Thus it is not necessarily controdictory to learn that "mammals are land animals" and yet "a whale in a samual which always lives in water". In the program, this idea is implemented by always referring for desired information to the property list of the individual concerned before looking at the descriptions of sets to which the individual belongs.

The justification for this departure from the no-exception principles of Amistotelian logic is that this precedence of specific facts over background knowledge seems to be the way people operate, and I wish the computer to communicate with people as naturally as possible.

The present program does not experience the uncomfortable feeling people frequently when they must face facts like "a whale is a marmal which lives in water although mormals as a rule live on land". However, minor programming additions to the present system could require it to identify those instances in which specific information and general information differ; the program could then empress its amusement at such paradoxes.

2) Repolving Ambiguities

Dialegue

(man. John is a person) (I understand)

(1994). DECK IS A PERSON) (I UNDERSTAND)

(MARK. A BIOYCLE HAS A CHAIN) (THE ABOVE SENTENCE IS AMBIGUOUS *** PLEASE RE-PHRASE IT)

```
(WHEN A CHAIN TO PART OF A DICYCLE)

(WHO ABOVE SEMEENCE IS AMERICUOUS *** BUT I ASSUME (MAS) MEANS (MAS AS PARTS))

(WHO ABOVE SEMEENCE IS AMERICUOUS *** BUT I ASSUME (MAS) MEANS (MAS AS PARTS))

(WHO BESTAND)

(WHO BESTAND)
```

Discussion

The oritoria used by the program to decide whether "has", in the format "x has y", should be interpreted "has as parts" or "owns" are the following:

- a) Let P be the proposition, "either y is known to be part of something, or y is an element of some set whose elements are known to be parts of something".
- b) Let M be the proposition, "either y is known to be owned by something, or y is an element of some set whose elements are known to be owned by something".
- e) If PA ~N, assume "has" means "has as parts".

 If ~PAN, assume "has" means "owns".

 If ~PA~N, give up and ask for re-phrasing.
- 4) Let P' be the proposition,
 (Eu)[[[y is known to be part of u] A [y is an element of some set whose elements are known to be parts of the elements of u]] A
 (Yu)[[u ∈ w ∨ u ⊂ w] A [x ∈ w ∨ x ⊂ w]]]

- a) Let N' be the proposition,

 (Au)[[[y is known to be owned by n] V [y is an element of some set whose elements are known to be owned by the elements of n]] A

 (Ew)[[u \in w V u C w] A [n \in w V x C w]]]
- f) If P'A ~N', assume "has" means "has as parta".
 If ~P' A N', assume "has" means "owns".
 Caherwise, give up and ask for re-phrasing.

These criteria are simple, yet they are sufficient to enable the program to make quite reasonable decisions about the intended pupose in various sentences of the ambiguous word "has". Of course, the program can be feeled into making mistakes, e.g., as if the sentence, "Dick has a chain", had been presented before the sentence "John owns a chain", in the above dialogue; however, a human being exposed to a new word in a similar situation would probably make a similar error. The point here do that it is feasible to automatically resolve ambiguities in sentence meaning by referring to the descriptions of the words in the sentence-descriptions which can automatically be exceeded through proper prior exponents to unambiguous sentences.

3) <u>Sameenlining linkopos</u>

Dialogue

(waw. Joze to A Person) (% understand)

(Mark, John is an mit-studeni) (M understand)

(****: JOHN IS A BOY) (Y UNDERSTAND)

```
(arter. John is a shippent)
 (CERMINGRAMED)
 (with EVERY DOY IS A PURSON)
 (C. ULLERGIAMD)
(www. Direct line-scuding as a penson)
CONTENENT E
(who. AN MIT-STUDIME IS A BRIGHT-PERSON)
(CELAREARED II)
(final An resu-student to a student)
(I UNDERSOLED)
(which A BRIGHT-PERSON IS A PERSON)
(I Undrestable)
(1244. A SEUDENE IS A DRIGHT-PERSON)
(I UNDERSTAND)
(think. A STUDENT IS A PERSON)
(T DEDINGRAD)
(war. Surerenant (som))
(i podouc the maiber-bermis ralmions beiwhen parion and join)
(I DONATE THE RELEASIN-REMAINES RULATIONS BETWEEN STUDENT AND JOIN)
(n forcer the sem-emonusion relation between purson and non-soudert)
ÇR POLICHI THE SET-YMCLUDYCW RELATYON BYYMEYN BRIGHT-PERSON AND MIT-SYUDZIT)
(X Forget the Sev-inclusion relation between Person and Student)
```

<u>Dinombation</u>

All question-enswaring (model-searching) functions which involve references to set-inclusion or set-membership relations must "know" about the basic properties of those relations, i.e., those functions must have built into them the ability to apply theorems like

bimited information available in the form of explicit links. On the other hand, since the functions involved will be "aware" of these theorems, then the set of questions which can be answered is independent of the presence

or obscame of emplicit links which provide the information to the wight of the "p," (provided the information to the left of the "p," is available, emplicitly or otherwise).

The "STREAMENT" operation starts with the object m which is its argument, and considers all objects linked to m, directly or indirectly, through set-inclusion or set-membership. All explicit links among those objects which can also be deduced by use of the above theorems are deleted. I response of the form "(I FORGHT THE SET-THREADEN RELATION BREATION BREATING y AFD z)" indicates that whatever links were created by some sentence of a form similar to "(EVERY z IS A y)" are being deleted, and the space they occupied being made available for other use.

In the above example, the SEREAMINES operation deleted almost half the emisting links, at no reduction in the question-answering power of the system. However, the time required to obtain answers to certain succeptions may have been significantly increased.

TIII. Survey of Conclusions

- A. Results in Guastion-Answering
- 2) The system described above illustrates approximately the largest established, in terms of number and complexity of relations and language formats, with the present LESP programming system on an IRM-7090 32K computer.
- 2) The processing time per statement was about 1 second. The maximum number of statements processed in any one experiment was about 30.
- 3) The system achieved its goal, which was to investigate the feasibility, possible advantages, and particular problems of the model structure used, rather than to obtain a practical question-answering system.

- 4) The model used door provide a fermible basis for a larger system,
- 5) Bowever, the development of such a system would be particularly difficult because of the interactions between different relations.
- 6) A question-crewacing system counct give negative raplies without openial information about the completeness or consistency of its data.
- 7) An important feature of the model was that information could be added to it, as well as extracted from it, automatically (unlike, say, the "Passball" system).
- 8) Also, submatic restructuring of the model to possible and uneful (e.g., as in the "stresmline" operation).
- 9) The input phase of the program illustrates how far one may go coward "understanding" natural language with little, if any, reference to grammatical structure.
- 10) The system's responses demonstrate that a few fixed formats for replies are sufficient to give the impression of coherent discourse.

D. Possible Extensions of the System

- 1) All the relations in the present system are binary relations. The model could be extended in obvious ways to handle unary operators (e.g., edjectives), trinery relations (e.g., those involving transitive verbs), etc.
- 2) Criteria should be developed for choosing "principal objects" in the model; i.e., those objects which should exist as independent described entities, rather than just in the descriptions of other objects.
- 3) The use of a dictionary and parsing program would greatly increase the power of the input scheme and also the number and kinds of relations to be represented in the model.

- 4) The intended interpretation of certain class relations, e.g.,
 "SUFFREED-CO-MACH", is somewhat confused. Actually different input recogmatter forms, and corresponding relations, are needed to distinguish between
 consenses like, "Every m is part of some y", and, "Some m is part of every

 N". If these cases were distinguished, however, it is not clear how "An
 m is past of a y" should be interpreted.
- 5) A more elaborate parating scheme might include provision for replacing pronouns by their antecedents, and saving cortain information from previous sentences to sid in deceding future sentences.
- 6) Eventually programs must be developed which will automatically produce the programs for handling new relations, so that the capability for handling new relations can be introduced to the system merely by describing, in a suitable English-like language, the relations and their effects.

C. Programming Conclusions

- 1) This entire project would have been tremendously more difficult if not for the availability of list-processing computer languages such as LEEP.
- 2) In order to handle the interactions between relations, I had to develop some fairly general tree-tracing functions, which proved to be of invaluable use. A programming system based on an elaborate set of such functions would be a valuable aid in developing a new, larger version of this system.
- 3) A uniform tree linkage and search procedure, flexible enough to hendle the most complicated cases, would simplify coding and facilitate the development of the tree-tracing functions described above.

(4) Constant feed-back from the program describing are actions and weasons for failure, in readable form, was an essential programming aid.

D. Subjects for Future Experimento

- 1) The relative merics of different tree-searching procedures should be investigated. In seaking a path between two nodes one might, for example, move one step alternately from each node, rather then moving steadily from one mode looking for the other. This former procedure would cut the depth of a successful search in half, at the expense of an elaborate marking or matching procedure.
- 2) The optimum number of explicit links needed should be investigated--i.e., the relative merita of removing links by "streamlining" procedures versus, say, adding as explicit links all question-answers which are successfully obtained.
- 3) Methods should be investigated for using the present ideas in a computer system involving large amounts of high-speed auxilliary storage-e.g., by gradually transfering data structures to "read-only" photo storage.
- 4) Psychological experiments might be developed to test this model as a model for human representations of "meaning" in language. Ideas might thus be obtained for both improving the model and understanding human cognitive processes.
- 5) A system similar to the one described here could be used as a basis for a study of ambiguity in language. One could investigate algorithms for resolving those kinds of ambiguities which don't seem to give people much trouble.

CS-TR Scanning Project Document Control Form

Date: <u>| | | 30 | 95</u>

Report # 11 - 59 Each of the following should be identified by a checkmark: **Originating Department:** Artificial Intellegence Laboratory (AI) ☐ Laboratory for Computer Science (LCS) Document Type: ☐ Technical Report (TR) ☐ Technical Memo (TM) Other: Document Information Number of pages: 4 (45-15-25) Not to include DOD forms, printer intstructions, etc... original pages only. Intended to be printed as: Originals are: Single-sided or Single-sided or Double-sided □ Double-sided Print type: ☐ Typewriter ☐ Offset Press ☐ Laser Print ☐ InkJet Printer ☐ Unknown ☐ Other: Copy OF MINEO GRACH Check each if included with document: Cover Page ☐ Funding Agent Form ☐ DOD Form Photo negatives ☐ Printers Notes ☐ Spine Other: Page Data: Blank Pages(by page number):_____ Photographs/Tonal Material (by page number): Other (note description/page number). Page Number: Description: IMAGE MAP: (1-41) UNH'ED TITLE, 1-40 (42-45) SCANCONTROL, TROT'S (7) Scanning Agent Signoff: Date Received: 1130195 Date Scanned: 1216195 Date Returned: 1317195 Scanning Agent Signature: Michael W. Cook

Scanning Agent Identification Target

Scanning of this document was supported in part by the Corporation for National Research Initiatives, using funds from the Advanced Research Projects Agency of the United states Government under Grant: MDA972-92-J1029.

The scanning agent for this project was the **Document Services** department of the **M.I.T Libraries.** Technical support for this project was also provided by the **M.I.T. Laboratory for Computer Sciences.**

Scanned

Date: 12/6/1995

M.I.T. Libraries

Document Services