华 タ 程 z 大 タ 《物理化学》(下) 单元测试卷(五)

电化学

	选择题(每小题 1 分, 共 30 分) 电池在恒温恒压条件下可逆放电,则它吸收或放出的热量应为。
1.	A: $\Delta_{ m r} H_{ m m}$; B: $\Delta_{ m r} G_{ m m}$; C: $T\Delta_{ m r} S_{ m m}$
2.	适用于恒温恒压下电化学过程的可逆性判据为。
	A: $\Delta G \ge W'$; B: $\Delta G \le 0$; C: $\Delta G \le W'$
3.	关于阴极阳极和正极负极,以下说法不准确的是。
	A: 电势较高的电极称为正极,反之为负极; B: 在阴极上发生得到电子的还原反应,反之发生失去电子的氧化反应;
	C: 正极就是阳极, 负极就是阴极
4.	电化学反应的热力学特征是。
	A: 反应中吉氏函数的变化值大于系统与环境间交换的电功; B: 反应中吉氏函数的变化值小于系统与环境间交换的电功;
	C: 反应中吉氏函数的变化值等于系统与环境间交换的电功
5.	已知 $H_2O(1)$ 的标准摩尔生成焓为-285.85kJ mol^{-1} ,标准摩尔生成吉氏函数为
	-237.14 kJ mol^{-1} 。若采用电解的方法使 $1molH_2O$ 分解产生氢气和氧气,且反应进度 $\Delta\xi$ = $1mol$,以下说法正确的是
	A: 理论上输入的电功至多为 237.14 kJ;
	B: 理论上输入的电功至少为 237.14 kJ;
	C: 理论上与外界交换的热量为 285.85 kJ
6.	氢氧燃料电池的电池反应为 $H_2(p^*)+0.5O_2(p^*)\to H_2O(l)$,在 298K 时 $E^*=1.229V$,则
	电池反应的平衡常数 K* 为。
	A: 1.0; B: 1.44×10^{20} ; C: 3.71×10^{41}
7.	若 E° {Fe ²⁺ Fe}= a , E° {Fe ²⁺ ,Fe ³⁺ Pt}= b ,则 E° {Fe ³⁺ Fe}=。
	A: $(2a-b)/3$; B: $(2a+b)/3$; C: $(a+b)/2$
8.	电池反应 0.5 Cu $+ 0.5$ Cl ₂ $= 0.5$ Cu ²⁺ $+$ Cl ⁻ 的标准电势为 E_1° , Cu $+$ Cl ₂ $=$ Cu ²⁺ $+$ 2Cl ⁻ 的标准电
	势为 E_2^{ullet} ,则 E_1^{ullet}
	A: 大于; B: 等于; C: 小于
9.	若将氢氧(燃料) 电池的电池反应写为 $H_2(g) + 0.5O_2(g) \rightarrow H_2O(l)$, 或写为
	$2H_2(g)+O_2(g)\to 2H_2O(l)$ 。相应电池反应的电势和化学反应的标准平衡常数分别为 E_1 、 E_2 和
	K_1^{ullet} 、 K_2^{ullet} 。则它们间的关系为。
	A: $E_1 = E_2$, $K_1^{\circ} = K_2^{\circ}$; B: $2E_1 = E_2$, $K_2^{\circ} = (K_1^{\circ})^2$; C: $E_1 = E_2$, $K_2^{\circ} = (K_1^{\circ})^2$

10.	使用盐桥的目的是。
	A: 消除液接电势; B: 减小液接电势; C: 减小接触电势
11.	盐桥中使用的电解质不合适的是。
	A: NH_4NO_3 ; B: KCl ; C: $Li NO_3$
12.	电解时,阳极上首先析出的物质是。
	A: 析出电极电势最高者; B: 电极反应电势最低者; C: 析出电极电势最低者
13.	电解时,阴极上首先析出的物质是。
	A: 析出电极电势最高者; B: 电极反应电势最高者; C: 析出电极电势最低者
14.	氢电极可写为 $H^+ H_2$, Pt ,也可写为 $OH^- H_2$, Pt ,以下说法错误的是。
A: 1	$E^{\bullet} \{ H^{+} H_{2} Pt \} = 0; B: E^{\bullet} \{ OH^{-} H_{2} Pt \} = 0; C: E^{\bullet} \{ OH^{-} H_{2} Pt \} = E \{ H^{+} (a_{H^{+}} = K_{w}) H_{2} Pt \}$
15.	关于浓差电池,以下说法不正确的是。
	A: 浓差电池包括电极浓差电池和溶液浓差电池;
	B: 浓差电池中发生的变化是物理变化;
	C: 浓差电池中发生的变化是化学变化
16.	浓差电池 $Cd-Hg(a_1)$ $CdSO_4(b)$ $Cd-Hg(a_2)$,若要求电池电势 $E>0$,则: a_1 a_2 。
	A: >: B: =: C: <
17.	气体浓差电池: -) Pt , $H_2(p_1)$ $HCl(b)$ $H_2(p_2)$, Pt (+, 已知 $p_1 > p_2$ 。则 $E =$ 。
	A: $\frac{RT}{2F}\ln\frac{p_2}{p_1}$; B: $\frac{RT}{2F}\ln\frac{p_1}{p_2}$; C: $\frac{RT}{F}\ln\frac{p_1}{p_2}$
18.	电极反应的标准电势小于零,意味着。
10.	A: 该电极比标准氢电极更容易发生还原的电极反应:
	B: 该电极比标准氢电极更容易发生氧化的电极反应;
	C: 组成电池时, 该电极一定发生氧化的电极反应
19.	已知 E^{\bullet} {Fe ²⁺ / Fe} = -0.4402V, E^{\bullet} {Ca ²⁺ / Ca} = -2.866V, E^{\bullet} {Zn ²⁺ / Zn} = -0.7628V,
	$E^{\circ}\left\{\mathrm{Cu^{2+}}/\mathrm{Cu}\right\}=0.337\mathrm{V}$ 。通电于含有 $\mathrm{Fe^{2+}}$ 、 $\mathrm{Ca^{2+}}$ 、 $\mathrm{Zn^{2+}}$ 、 $\mathrm{Cu^{2+}}$ 的电解质溶液中,当不考虑
	超电势时,在阴极上金属析出的顺序是。
	A: $Cu \rightarrow Fe \rightarrow Zn \rightarrow Ca$; B: $Cu \rightarrow Zn \rightarrow Fe \rightarrow Ca$; C: $Ca \rightarrow Cu \rightarrow Zn \rightarrow Fe$
20.	某燃料电池的反应为 $H_2(g)+0.5O_2(g) \rightarrow H_2O(l)$,在 298.15K 下 $\Delta_r H_m$ 和 $\Delta_r S_m$ 分别为
20.	-251.6kJ·mol ⁻¹ 和 -50J·K ⁻¹ ·mol ⁻¹ ,则该电池反应电势等于。
	A: -1.2 V; B: 1.2 V; C: 2.4 V
21.	298 K 时,应用盐桥将反应 H^+ + OH^- = $H_2O(1)$ 设计成的电池是。
	A: $Pt, H_2 OH^- H^+ H_2, Pt; B: Pt, H_2 H^+ OH^- H_2, Pt; C: Pt, H_2 H^+ OH^- O_2, Pt$
22.	CI, $ AgCl Ag$ 的标准电极电势与温度的关系为 $E^{\circ}/V = 0.23659 - 4.8564 \times 10^{-4} (t/{}^{\circ}C)$ 。当
	温度为 298.15K 时, 反应 AgCl(s)+0.5H ₂ (g)→Ag(s)+HCl(aq)的标准摩尔反应吉氏函数
	$\Delta_{ m r} G_{ m m}^{ m e}$ = \circ
	A: 32.66 kJ/mol; B: 28.66 kJ/mol; C: -21.66 kJ/mol
23.	下列电池中液接电势不能忽略的是。
	A: Pt, $H_2(p_1) \mid HCl(m_1) \mid H_2(p_2)$, Pt;
	B: Pt, $H_2(p) \mid HCl(m_1) \parallel HCl(m_2) \mid H_2(p)$, Pt;
	C: Pt, $H_2(p) \mid HCl(m_1) \mid HCl(m_2) \mid H_2(p)$, Pt
24.	$\operatorname{Cu} \left[\operatorname{Cu}^{2+}(a_2) \parallel \operatorname{Cu}^{2+}(a_1) \right] \operatorname{Cu}$ 的电动势为 E_1 , $\operatorname{Pt} \left[\operatorname{Cu}^{2+}(a_2), \operatorname{Cu}^+(a') \parallel \operatorname{Cu}^{2+}(a_1), \operatorname{Cu}^+(a') \right] \operatorname{Pt}$ 为 E_2 。
	它们间的关系为。

A: $E_1=1/2E_2$; B: $E_1=2E_2$; C: $E_1=E_2$

25. 298 K 时,在电池 Pt | H₂(0.1MPa) | H⁺(a=1) || CuSO₄(0.01 mol kg⁻¹) | Cu(s)右边溶液中加 入 0.1 mol kg-1 Na₂SO₄ 溶液时(不考虑稀释效应),则电池反应电势将_____。

A: 上升; B: 下降; C: 基本不变

- 下列电池中,电池反应电势与 CI 离子活度无关的是。
 - A: $Zn \mid ZnCl_2(aq) \mid Cl_2(g) \mid Pt$;
 - B: $Zn \mid ZnCl_2(aq) \parallel KCl(aq) \mid AgCl(s) \mid Ag$;
 - C: Ag | AgCl(s) | KCl(aq) | $Cl_2(g)$ | Pt
- 27. 电池 Pt | H₂(0.1MPa) | KOH(0.1 mol·kg⁻¹) | O₂(0.1MPa) | Pt 的反应电势为 E₁,另一个电池 Pt | H₂(0.1MPa) | H₂SO₄(0.0l mol kg⁻¹) | O₂(0.1MPa) | Pt 的反应电势为 E₂。则_____。
 - A: $E_1 < E_2$; B: $E_1 = E_2$; C: $E_1 > E_2$
- 不能用于测定溶液 pH 值的电极是_

A: 氢电极; B: Cl | Ag | AgCl(s)电极; C: 玻璃电极

29. 如电池反应电势与温度呈线性关系,且 $(\partial E/\partial T)_p = -0.85 \times 10^{-3} \text{V} \cdot \text{K}^{-1}$ 。当 T = 298 K 时, E=1.229V, 当 T=273K 时, E=

A: 1.229; B: 1.250; C: 1.350

30. 三种 KCl 浓度(饱和, $1 \, \text{mol} \cdot \text{dm}^{-3} \,$ 和 $0.1 \, \text{mol} \cdot \text{dm}^{-3}$)的甘汞电极的电极反应电势分别为 E_1 , E_2 , E_3 , 298 K 时三者的相对大小为____。 A: $E_1 > E_2 > E_3$; B: $E_3 > E_1 = E_2$; C: $E_3 > E_2 > E_1$

二、(每小题5分,共10分)

- 1. 将水的生成反应 $H_2(0.1\text{MPa}) + \frac{1}{2}O_2(0.1\text{MPa}) \to H_2O(1)$ 设计成电池,已知 298.15K 时,所设 计电池的电池反应的标准电势为 1.229V, 并且在 298.15K 附近, 温度每升高 1K, 电池反 应的电势下降 0.85×10^{-3} V。计算 $H_2O(I)$ 在 298.15K 时的标准摩尔生成焓 $\Delta_f H_m^e$,标准摩尔 生成吉氏函数 $\Delta_{f}G_{m}^{\circ}$ 和以上反应的标准摩尔反应熵 $\Delta_{r}S_{m}^{\circ}$ 。
- 2. 某电池的反应电势 E 与温度的关系为 $E/V=1.229-1.881\times 10^{-3}T/K$ 。求电池反应电势的温 度系数并计算 298.15K、反应的电荷数 z=1,电池反应的 $\Delta_{r}G_{m}$ 、 $\Delta_{r}S_{m}$ 、 $\Delta_{r}H_{m}$ 。

三、(此题总分10分)

25°C时, 电池 Pt | H₂(p^e) | H₂SO₄(4mol·kg⁻¹) | Hg₂SO₄(s) | Hg(l) 的电池反应的电势为 0.6120V, 电池反应的标准电势为 0.6152V。

- 1. 写出该电池的电极反应和电池反应;
- 2. 试求 $H_{\gamma}SO_{\alpha}$ 溶液的平均活度因子 γ_{+} 。

四、(此题总分10分)

已知 25°C时反应 $H_2(0.1 \text{MPa}) + \frac{1}{2}O_2(0.1 \text{MPa}) \rightarrow H_2O(l)$ 的 $\Delta_r H_m^e = -285.85 \text{ kJ} \cdot \text{mol}^{-1}$,

 $\Delta_{\rm r} G_{\rm m}^{\rm e} = -237.14 \, {\rm kJ \cdot mol^{-1}} \, \circ$

1. 试写出燃料电池 $Pt,H_2(0.1 \text{ MPa}) \mid H^+(a_{H^+}) \mid O_2(0.1 \text{ MPa}),Pt$ 的电极反应,并计算它的电 池反应电势;

- 2. 计算 H^+ O_2 ,Pt 的电极反应的标准电势;
- 3. 求该电池在5℃时电池反应的电势。

五、(此题总分10分)

电池 Pt $| H_2(0.1 \text{ MPa}) |$ HBr $(a_{\pm} = 1) |$ AgBr (s) | Ag 在 25°C时的电池反应电势 E = 0.0713 V,电池反应电势的温度系数 $(\partial E/\partial T)_n = -5.0 \times 10^{-4} \text{ V} \cdot \text{K}^{-1}$ 。

- 1. 写出电极反应和电池反应;
- 2. 若有 $1 \mod Ag$ 参加反应, 试计算 25 °C时电池反应的 $\Delta_r G_m$, $\Delta_r S_m$, $\Delta_r H_m$ 。
- 3. 若 25°C时 HBr 溶液的浓度 $b = 0.2 \, \text{mol·kg}^{-1}$,电池反应电势 $E = 0.0815 \, \text{V}$,试求电解质 HBr 作为整体的活度 a_{HBr} 。

六、(此题总分10分)

电池 Zn|ZnCl, $(0.05mol \cdot kg^{-1})|AgCl|Ag$ 的电动势与温度的关系为:

$$E/V = 1.162 - 0.492 \times 10^{-3} (T/K)$$

- 1. 写出电极反应和电池反应;
- 2. 25° C 时,若有 1mol Zn 参与反应,计算该电池反应的 $\Delta_{r}G_{m}$ 、 $\Delta_{r}S_{m}$ 、 $\Delta_{r}H_{m}$;
- 3. 若将电池短路, 计算 1 mol Zn 参与反应时, 吸热或放热是多少?

七、(此题总分10分)

已知电池 $\operatorname{Zn}\left|\operatorname{Zn}^{2+}(a=0.1)\right|\left|\operatorname{Cu}^{2+}(a=0.01)\right|\operatorname{Cu}$, $E^{\circ}\left\{\operatorname{Cu}^{2+}\right|\operatorname{Cu}\right\}=0.3417\,\mathrm{V}$, $E^{\circ}\left\{\operatorname{Zn}^{2+}\right|\operatorname{Zn}\right\}=-0.7620\,\mathrm{V}$ 。

- 1. 试写出该电池的电极反应和电池反应:
- 2. 试求25℃时电池反应的电势;
- 3. 当1molZn发生反应时,计算电池反应的 $\Delta_r G_m$ 。

八、(此题总分10分)

试为反应 $Zn(s)+Hg_2Cl_2(s)\rightarrow 2Hg(l)+ZnCl_2$ (b=0.0050mol kg^{-1} , $\gamma_{\pm}=0.700$)设计一个可逆电池。

- 1. 写出所设计的可逆电池的表示式;
- 2. 写出电极反应并计算 25°C时电池反应的电势,已知电池反应的标准电势 $E^{\circ}=1.0306V$;
- 3. 25°C该电池反应电势的温度系数 $(\partial E/\partial T)_p = -4.29 \times 10^{-4} \text{V} \cdot \text{K}^{-1}$,试求电池可逆放电并有 1mol Zn(s) 发生反应时,吸收或放出的热量。
- 4. 试计算上述反应的 $\Delta_{r}C_{p,m}$ 。