Modules and Homorphism

July 30, 2020

Definition 1. Let R be a ring, an (left) \mathbf{R} – **module** (denoted by A) is an abelian group with a function $R \times A \to A$ satisfies $\forall r, s \in \mathbb{R}, \forall a, b \in A$, the following conditions holds:

$$r(a+b) = ra + rb$$
$$(r+s)a = ra + sa$$
$$(rs)a = r(sa)$$

note:

- (i) Let R be a ring with identity, and A satisfies: $1_R a = a, \forall a \in A$, then A is called **unitary** R-module
- (ii) If R is a division ring and A is an unitary R-module, then A is called vector space

Corollary 1. $\forall r \in \mathbb{R}, a \in \mathbb{A}, we have:$

- (i) $r0_A = 0_A, 0_r a = 0_A$
- (ii) -ra = (-r)a = r(-a)
- (iii) n(ra)=(nr)a=r(na)

Proof. the proof is trivial

Definition 2. Let R be a ring and A, B be R-module. A R – module homorphism f is an abelian group homorphism $A \to B$ satisfies: $\forall a, b \in A, r \in R$:

$$f(a+b) = f(a) + f(b), f(ra) = rf(a)$$

if f is an abelian group monomorphism(resp.epimorphism, isomorphism) then f is called an R-module monomorphism(resp.epimorphism, isomorphism). The kernel of f is the kernel of f as an abelian group homorphism: $\ker f = \{a \in A | f(a) = 0_B\}$

note:

- (i) f is monomorphism if and only if $\ker f = 0_A$
- (ii) f is isomorphism if and only if there is an R-module $g: B \to A$ such that: $fg = 1_B, gf = 1_A$
- (iii) $f(0_A) = 0_B$

Definition 3. Let R be a ring and A be an R-module. A submodule of A, say B, is a subset of A, satisfies: $\forall a, b \in A, r \in R$:

$$a - b \in \mathcal{B}, ra \in \mathcal{B}$$

In other words, B is a subgroup of A and is closed under the map. It's obviously that B is an R-module itself. A submodule of a vector space is called a subspace.

EXAMPLES

- (i) Let $f:A\to B$ be an R-module homorphism, then $\ker f$ is a submodule of A and $\operatorname{Im} f$ is a submodule of B
- (ii) Let I be a left ideal of R, A an R-module, S a nonempty subset of A. Define IS as follows:

$$IS = \{ \sum_{i=1}^{n} r_i s_i | r_i \in I, s_i \in S, n \in \mathbb{N}^* \}$$

then IS is a submodule of A

(iii) Let A be an R-module and $A_i, i \in I$ is a family of submodules of A.Then $\cap_{i \in I} A_i$ is a submodule of A

Definition 4. Let R be a ring, A a R-module. X is a nonempty set of A. A submodule generatedby X is the intersection of all submodules that contains X.Let B is the submodule generated by X. If X is finite, then B is called **finitely generated**; If $X = \{a\}$, then B is called **cyclic submodule**. Let B_i , $i \in I$ be a family of submodules of A, the submodule generated by $\bigcup_{i \in I} B_i$ is called the **sum** of submodules B_i , $i \in I$.

REMARK Submodule generated by X is the smallest submodule that contains X. In other words, Let B be the submodule of A generated by X and C is any submodule of A that contains X, we must have: $B \subset C$.

To prove this, we only need to notice that $B = \bigcap_{X \subset C} C$. For any submodule that contains X, it must on the right side.

Theorem 1. Let R be a ring, A an R-module, X a subset of A, $\{B_i \mid i \in I\}$ a family of submodules of A and $a \in A$. Let Ra = $\{ra \mid r \in R\}$.

- (i) Ra is a submodule of A
- (ii) The cyclic submodule C generated by $\{a\}$ is $\{ra + na \mid r \in R, n \in \mathbb{Z}\}$
- (iii) The submodule generated by X is

$$\{\sum_{i=1}^{n} r_{i} a_{i} + \sum_{j=1}^{m} s_{j} b_{j} \mid r_{i} \in \mathbb{R}, n, m \in \mathbb{N}^{*}, a_{i}, b_{j} \in X, s_{j} \in \mathbb{Z}\}$$

Proof. (i) $\forall ra, sa \in Ra, \forall t \in R$, we have:

$$ra - sa = (r - s)a \in Ra, \ t(sa) = (ts)a \in Ra$$

According to the definiton of submodule, Ra is a submodule of A.

(ii) First we need to show that $C = \{ra + na \mid r \in R, n \in \mathbb{Z}\}$ itself is a submoduel of A. The reason is as follows: $\forall r_1, r_2, s \in \mathbb{R}, n_1, n_2 \in \mathbb{Z}$:

$$(r_1a + n_1a) - (r_2a + n_2a) = (r_1 - r_2)a + (n_1 - n_2)a \in C$$

 $s(r_1a + n_1a) = (sr_1)a + s(n_1a) = (sr_1)a + (n_1s)a = (sr_1 + n_1s)a \in C$

Hence C is a submodule of A that contains $\{a\}$. Besides, for any submodule B_i that contains $\{a\}$, it's obviously $ra \in B_i, r \in R$ and $na \in B_i, n \in \mathbb{Z}$. Hence $C \subset B_i$.

Let B be the submodule generated by X. Then $B = \bigcap_{i \in I} B_i$, $B \subset C$ because C is a submodule of A contains X, hence one of B_i . $C \subset B$ is trivial since $C \subset B_i$ hence $C \subset \bigcap_{i \in I} B_i = B$. Therefore, B = C.

(iii) The method to proving (iii) is the same as the method used in (ii).

REMARK In Theorem 1(ii), if R is a ring with identity and C an unitary module over R. The submodule generated by $\{a\}$ is Ra as $na = (n1_R)a, n1_R \in R$.