Relatório Lista 12: Redes Neurais Convolucionais (CNN)

Douglas Nicolas Silva Gomes 8 de junho de 2025

Código-fonte disponível em: https://github.com/dominicnsg/IA12.git

Conteúdo

1	Introdução	1
2	Pré-processamento dos Dados	2
	2.1Organização dos Dados	2
3	Arquitetura da CNN	2
	3.1 Configuração do Modelo	2
4	Compilação e Treinamento	3
	4.1 Configurações	3
5		3
	5.1 Desempenho	3
	5.2 Gráficos de Treinamento	4
6	Avaliação no Conjunto de Teste	4
	6.1 Métricas Quantitativas	4
	6.2 Métricas Quantitativas	
	6.3 Predições Externas	
7	Conclusão	6

1 Introdução

Este relatório documenta o desenvolvimento de um modelo de classificação binária para distinguir entre imagens de cachorros e gatos utilizando Redes Neurais Convolucionais (CNN). O trabalho foi implementado com TensorFlow/Keras

e segue o pipeline completo: pré-processamento, construção do modelo, treinamento e avaliação.

2 Pré-processamento dos Dados

2.1 Organização dos Dados

O dataset foi organizado em três conjuntos:

- Treino (70%)
- Validação (15%)
- Teste (15%)

2.2 Técnicas Aplicadas

- Redimensionamento para 128x128 pixels
- Normalização (valores de pixel entre 0 e 1)
- Data augmentation (apenas para treino):
 - Rotação aleatória (20°)
 - Zoom aleatório (20%)
 - Flip horizontal

```
train_datagen = ImageDataGenerator(
    rescale=1./255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True
)
```

3 Arquitetura da CNN

3.1 Configuração do Modelo

- 3 camadas Conv2D + MaxPooling2D
- 1 camada Dense com Dropout (50%)
- Saída binária com ativação sigmoid

```
model = Sequential([
    Conv2D(32, (3,3), activation='relu', input_shape=(128,128,3)),
    MaxPool2D((2,2)),
    Conv2D(64, (3,3), activation='relu'),
```

```
MaxPool2D((2,2)),
Conv2D(128, (3,3), activation='relu'),
MaxPool2D((2,2)),
Flatten(),
Dense(256, activation='relu'),
Dropout(0.5),
Dense(1, activation='sigmoid')
])
```

4 Compilação e Treinamento

4.1 Configurações

• Otimizador: Adam

• Função de perda: Binary Crossentropy

• Métrica: Acurácia

• Batch size: 32

• Épocas: 50 (com EarlyStopping)

```
early_stop = EarlyStopping(
    monitor='val_loss',
    patience=5,
    restore_best_weights=True
)
```

5 Melhor Modelo Obtido

5.1 Desempenho

 \bullet Acurácia de validação: 81.86%

• Loss de validação: 0.4396

• Épocas de treinamento: 23 (com early stopping)

5.2 Gráficos de Treinamento

Figura 1: Evolução da acurácia e loss durante o treinamento

6 Avaliação no Conjunto de Teste

6.1 Métricas Quantitativas

6.2 Métricas Quantitativas

Classe	Precisão	Recall	F1-Score	Suporte
Cats	0.82	0.80	0.81	1011
Dogs	0.81	0.83	0.82	1012
Acurácia Total		0.82 (2023 amostras)		
Macro Média	0.82	0.82	0.82	2023
Média Ponderada	0.82	0.82	0.82	2023

Tabela 1: Métricas de desempenho no conjunto de teste

Detalhes adicionais:

• Acurácia final no teste: 0.8151

• Loss final no teste: 0.4225

• Tempo por etapa: ~3s, 49ms/step

6.3 Predições Externas

Imagem	Predição	Confiança	
gato1.jpg	Cachorro (Incorreta)	64.58%	
gato2.jpg	Gato (Correta)	81.41%	
gato3.jpg	Gato (Correta)	98.34%	
cachorro1.jpg	Cachorro (Correta)	98.10%	
cachorro2.jpg	Cachorro (Correta)	92.68%	
cachorro3.jpg	Cachorro (Correta)	98.63%	

Tabela 2: Resumo das predições externas com respectivas confianças

Figura 2: Imagem: gato
1.jpg - Predição incorreta como Cachorro (Confiança: 64.58%)

Figura 3: Imagem: gato
2.jpg - Predição correta como Gato (Confiança: 81.41%)

Figura 4: Imagem: gato3.jpg - Predição correta como Gato (Confiança: 98.34%)

Figura 5: Imagem: cachorro
1.jpg - Predição correta como Cachorro (Confiança: 98.10%)

Figura 6: Imagem: cachorro
2.jpg - Predição correta como Cachorro (Confiança: 92.68%)

Figura 7: Imagem: cachorro
3.jpg - Predição correta como Cachorro (Confiança: 98.63%)

7 Conclusão

O modelo desenvolvido alcançou:

- Boa capacidade de generalização (81.51% de acurácia)
- Balanceamento entre as classes (F1-score de 0.81-0.82)
- Alta confiança na maioria das predições corretas (¿90%)
- O tempo médio de predição foi de 75ms por imagem
- O modelo classificou incorretamente a imagem gato1.jpg como cachorro