POWERED BY Dialog

Synergistic herbicide compsn. - contg. mixt. of N-substd.-chloroacetanilide and pyrazole deriv. Patent Assignee: TOKUYAMA SODA KK

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week	Type
JP 60202803	A	19851014	JP 8458510	A	19840328	198547	В
JP 93002642	В	19930113	JP 8458510	A	19840328	199305	

Priority Applications (Number Kind Date): JP 8458510 A (19840328)

Patent Details

Patent	Kind	Language	Page	Main IPC	Filing Notes
JP 60202803	A		17		
JP 93002642	В		32	A01N-043/56	Based on patent JP 60202803

Abstract:

JP 60202803 A

Compsn. contains as active component a mixt. of N-substd.-chloroacetanilide of formula (I) (where A is H, halogen, alkyl, alkoxy or alkylthio; R1, R2 and R3 are independently H, halogen, alkyl, alkoxy, or alkylthio) and pyrazole deriv. of formula (II) (where R4 and R5 are alkyl; Y is halogen or nitro; n is 1 or 2; Z is alkyl; acetylalkyl; opt. substd. phenyl, benzyl, phenacyl; or (IV) (Z' is H or halogen)).

(I) is prepd. by reacting cpd. of formula (III) with chloroacetyl halide in presence of acid binder (e.g., trimethylamine pyridine, sodium alcoholate or sodium carbonate).

ADVANTAGE - The mixt. has broad herbicidal spectrum at low use rate. The mixt. can be used in uplands, paddy fields, fruit gardens, turf, forests and non-crops land. (I) is new excepting (I) (where A is H or alkyl; R1 is alkyl; R2 is H, alkyl or alkoxy; R3 is H, alkyl or halogen).

0/0

Derwent World Patents Index © 2001 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 4466738

		÷				•	
						•	
		•					
	÷						
				4			
				•			
			<u>-</u>				

19日本国特許庁(JP)

⑩特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭60-202803

@Int_Cl.4

識別記号

雅

彦

庁内整理番号

昭和60年(1985)10月14日 **③公開**

A 01 N 43/56 //(A 01 N 43/56 43:10) 7215-4H 7215-4H

7215-4H

審査請求 未請求 発明の数 1 (全17頁)

❷発明の名称 除草剤組成物

者

创特 願 昭59-58510

魯出 昭59(1984) 3月28日

四発 明 祥 藤沢市遠藤1090 者 藤 加 Ξ @発 明 者 松 夫 哲 竹 宇都宮市峰町612 砂発 明 者 小 笠 原

崎

宇都宮市今泉町2844-7 相模原市松ケ枝町9-19

四発 明 创出. 徳山曹達株式会社 頣

石

徳山市御影町1番1号

明

1. 発明の名称

除草剂组成物

2. 特許請求の範囲

次式

(但し、式中Aは水素原子・ハロゲン原子・ アルキル基、アルコキシ基、またはアルキル チォ基を示し、R1.R2及びR3はそれぞれ何 種または異種の水素原子,ハロゲン原子,ブ ルキル基,アルコキシ基,アルキルチオ基を 示す。)で扱わされるN-筐換-クロロアセー トアニリドと

次式

(但し、R₄・R5 はアルキル基・Yはハロゲ ン原子又はニトロ基、ロは1又は2,2はア ルキル基:アセチルアルキル基:置換又は非 置換のフエニル基 . ペンジル基 , フエナシル ÇH₃ 基:又は -CH₂COÇCH₂Z' 素原子又はハロゲン原子)である。)で表わ されるピラゾール誘導体とを有効成分とする ととを特徴とする除草剤組成物。

3. 発明の詳細な説明

本発明はN-屋換-クロロアセトアニリド とピラゾール勝導体を有効成分とすることを 特徴とする除草剤組成物に関するものである。 本質的に除草剤に要求される性質として、 下配の4つの事項がある。即ち、1つには作

特開昭60-202803(2)

物に安全であること、2つには作物生育地域 に生育する多種類の雑草を完全枯死せしめる のに必要な幅広い殺草スペクトルを有するこ と、3つには除草剤の効力が長期的に持続す ること、4つには少量施用でより効果的な除 草作用を有すること、である。

本発明者らは以上のような性質を満たす優れた除草剤の開発を目指して鋭意研究を重ね、 下記の一般式[]]

(ただし、式中Aはハロゲン原子・アルコキシ またはアルキルチオ基を示し、RL・R2 及びRs は それぞれ同種または異種の水 素原子・ハロゲン原子・アルキル基・アルコキシ基・アルキルチオ基を示す)で示されるドー世換・クロロアセトアニリドを既に提案した(特質的58~111077号)。本発

明者はさらに、上記一般式[1]で示されるN
- 信換 - クロロアセトアニリドとピラゾール

勝導体を有効成分とする除草剤組成物が、それぞれ単独の性質からは全く予期できない程
の相乗作用を現わすこと、即ち、低楽量で程
広い段草スペクトルをもつことを見い出した。
本発明者らはこれらの新知見に基づき、本発
明を完成し提案するに至った。

即ち、本発明は、下記一般式〔1〕

(但し、式中Aは水素原子・ハロゲン原子・アルキル芸・アルコキシ芸・またはアルキルチオ基を示し、R1・R2及びRs はそれぞれ同種または異種の水素原子・ハロゲン原子・アルキル芸・アルコキシ芸・アルキルチオ芸を示す。)で表わされるN-世換-クロロアセトアニリドと

下記一般式〔1〕〕

(但し、R4 · R5 はアルキル基・Yはハロゲン原子又はニトロ基・nは1又は2・2はアルキル基:アセチルアルキル基:置換又は非置換のフェニル基・ペンジル基・フェナシル

CHa ・ 文は - CH2 CO C CH2 Z' (但し、Z'は

水素原子又はハロゲン原子)である。)で表 わされるピラゾール誘導体とを有効成分とす ることを特徴とする除草剤組成物である。

本発明の除草剤組成物の一方の成分は、下配の一般式[]]で示されるN-置換クロロアセトアニリドである。

(但し、式中Aは水果原子・ハロゲン原子・アルキル基・アルコキシ基・またはアルキルチオ基を示し、R1・R2及びRsはそれぞれ同様または異種の水素原子・ハロゲン原子・アルキル基・アルコキシ基・アルキルチオ基を示す。)

上記一般式[1]で示されるNー世換クロロアセトアニリドのうち、Aが水素原子またはアルギル基であり、Riはアルギル基であり、Riはアルギル基であり、Riは水素原子・アルギル基またはプロゲン原子である化合物は、米国特許館3901917号により公知である。しかし、その他の大部分は、新規な化合物である。

前記一般式[[]中、A.R₁,R₂及び Rs

特開昭60-202803 (3)

で示されるハロゲン原子の具体例としては、 塩素、臭素、フッ素、ヨウ素の各原子が挙げ られる。前記一般式[]]中、A、R1、R2及 びR3で示されるアルコキシ基は特に限定されないが、一般には炭素原子数1~6個の値 鋭状または分枝状の飽和あるいは不飽和萎が 好適である。一般に好適に使用される酸アルコキシ基の具体例を提示すると、メトキシ基、エープロポキシ基、エープトキシ基、ローペントキシ基、ローペキソキシ基、アリルオキシ基等が挙げられる。

前記一般式[I]中、A・R1・R2 及び R5
で示されるアルキルチオ基は、特に限定され ず公知のものが使用出来るが、一般には炭素
原子数 1 ~ 6 個の直鎖状または分枝状の飽和
あるいは不飽和基が好適である。好適に使用
される肢アルキルチオ基の具体例を提示する
と、メチルチオ基・エテルチオ基・ローペンチ ルチオ基・ローヘキシルチオ基・アリルチオ

される各ピーク(一般にはイオン質量数mをイオンの荷電数 e で除したm/eで表わされる値)に相当する組成式を算出することにより、御定に供した化合物の分子量ならびに該分子内における各原子団の結合様式を知ることが出来る。すなわち、御定に供した試料を一般式〔1〕

で扱わした場合、一般に分子イオンピーク(以下M[®]と略記する)が分子中に含有されるハロゲン原子の個数に応じて同位体存在比に従った強度比で観察されるため、御定に供した化合物の分子量を決定することが出来る。さらに前記一般式〔1〕で示されるN-世換-クロロアセトアニリドについては、M[®]-COCH2CL及び

前記一般式[1]で示されるN-健康-クロロアセトアニリドの構造は、次の手段によって確認することができる。

- (4) 赤外吸収スペクトル(IR)を測定する ことにより、3150~2800cm⁻¹付近 にC日結合に基づく吸収、1680~1670 cm⁻¹付近にアミド基のカルポニル結合に基 づく特性吸収を観察することが出来る。
- (ロ) 質量スペクトル(mg)を測定し、観察

A-L_S CH₂ に相当する特徴的な強い ピークが観察され、該分子の結合様式を知るととが出来る。

すなわち、2.0 ppm にプロトン 6 個分に相当する一重線が認められ、フェニル基の2及び 6 位に置換したメテル基(山によるものと帰属できる。3.6 ppm にプロトン2個分に相当する一重線が認められ、クロルア・ル本中のメチレン基(山によるものと帰属できる。4.7 5 ppm にプロトン2個分に相当するのと帰属できる。6.6 7 ppm にプロトン2個分に相当する四重線が認められ、チオフェン環に置換したプロトン3個分に相当するのと帰属できる。6.9 5~7.3 0 ppm にプロトン3 個分に相当する多重線が認められ、フェニル基に置換したプロトン

前配一般式[]]で示されるN-置換-クロロプセトアニリドの製造方法は特に限定されるものではない。代表的な製造方法を配述すれば以下のようになる。

一般式

$$A = \begin{pmatrix} R_1 \\ R_2 \end{pmatrix}$$

$$CH_2 - NH = \begin{pmatrix} R_1 \\ R_2 \end{pmatrix}$$

$$R_3$$

特開昭60-202803(4)

đ5

(e),(j),(g)によるものと帰属できる。

前述の一般式[1]で示されるN-置換ークロロアセトアニリドの「H-NMR の特徴を総括すると、クロロアセチル基のメチレンプロトンは、通常 3.6~3.8 ppm 付近に一重線で、アミノメチレン基のメチンンプロトンは 4.8 ppm 付近に一重線で(ただし、アニリン側の2.6位が非対称的に置換基が存在する場合には二重線となって現われる場合がある)、チォフェン環側のプロトンは 5.8~7.4 ppm に、ベンセン網のプロトンは 6.0~7.7 ppm に特徴的なピークを示す傾向がある。

(二) 元素分析によって炭素・水素・窒素・及びハロゲンの各重量%を求め、さらに認知された各元素の重量%の和を100から減じるととにより、酸素の重量%を算出するとが出来、従って、組成式を決定するととが出来る。

また、N-世換ークロロアセトアニリドは、

(ただし、Aは水素原子・ハロゲン原子・アルキル基・アルコキシ基・またはアルキルチオ基を示し、R1・R2及びRs はそれぞれ同様または異種の水素原子・ハロゲン原子・アルキル基・アルコキシ基・アルキルチオ基を示す。)で表わされる化合物と、一般式でよてR2COX(ただし、Xはハロゲン原子を示す。)で表わされるクロロアセチルハロゲニドとを反応させるととによって、前記一般式「1]で表わされるNー置換・クロロアセトアニリドを得るとが出来る。

原料となる前配一般式 [四] で表わされるアニリン誘導体は如何なる方法で得られたものでも使用出来る。

前配一般式[II]で表わされる化合物とクロロアセチルハロゲニドとの反応において、両化合物の仕込みモル比は必要に応じて適宜決定すればよいが、通常等モルもしくはクロロアセチルハロゲニドをヤや過剰モルを使用するのが一般的である。

特開昭60-202803 (5)

前記反応に際しては一般に有機溶媒を用いるのが好ましい。肢溶媒として好適に使用されるものを例示すれば、ペンゼン・トルエン・キシレン・ヘキサン・ヘブタン・石油エーテル・クロロホルム・塩化メチレン・塩化エチレン等の脂肪族または芳香族の炭化水素類。 ひょうと かいは ハロゲン化炭化水素類 こ ジェテルエーテル・ジョキサン・テトラヒドロフラン等の

反応系から目的生成物すなわち前配一般式 [1]で示されるN-置換~クロロアセトアニ リドを単離精製する方法は特に限定されず公 知の方法を採用出来る。例えば反応液を冷却 または自然放冷で、室温またはその近くにも どし、反応溶媒・残存するハロゲン化水素捕 挺剤を留去した後、残渣をペンセン抽出する。 上記操作で、副生するハロゲン化水素とハロ ゲン化水素捕捉剤とから生成する塩及び高分 子量化合物を分離する。該ペンゼン層につい ては、芒硝・塩化カルシウム等の乾燥剤で乾 燥した後、ペンセンを留去し、残渣を真空蒸 留するととによって目的物を取得する。真空 蒸留により単触精製する他、クロマトグラフ イーによる精製、あるいは生成物が固体であ る場合にはヘキサン等の溶媒から再結晶する ととにより精製することも出来る。

さらにまた、一般式

エーテル類: アセトン・メチルエチルケトン 等のケトン類: アセトニトリルなどのニトリ ル類: N・N・ジメチルホルムアミド・ N・N ・ジエチルホルムアミド等のN・N・ジアルキ ルアミド類; ジメチルスルホキシド等が挙げ られる。

前記反応における原料の添加順序は特に限定されないが、一般には溶媒に前記一般式 「凹」で示される化合物を溶解して反応器に 仕込み溶媒に溶解したクロロアセチルハロゲニドを攪拌下に添加するのがよい。勿論連続 的に反応系に原料を添加し生成した反応物を 連続的に該反応系から取出すことも出来る。

前記反応における温度は広い範囲から選択 出来、一般には-20℃~150℃、好まし くは0℃~120℃の範囲から選べば十分で ある。反応時間は原料の種類によってもちが うが、通常5分~10日間、好ましくは1~ 40時間の範囲から選べば十分である。また 反応中においては、提择を行うのが好ましい。

(ただし、Aは水素原子・ハロゲン原子・ア ルキル基・アルコキシ基・またはアルキルチ オ基を示し、Xはハロゲン原子を示す。)で 扱わされる2-健換チオフエンと、一般式

(ただし、R1・R2 及び R5 は同種または異種の水素原子・ハロゲン原子・アルキル基・アルキルチオ基を示す。)で表わされるクロロアセトアニリドとを反応させることによっても前記一般式[]]で表わされるNー置換・クロロアセトアニリドを得るとが出来る。

原料となる該2 - 置換チオフエンならびに 該クロロアセトアニリドは如何なる方法で得 られたものでも使用出来る。また、該反応を 実施する際の諸条件ならびに単離精製方法は 既に述べた一般式[III]で示される化合物とク ロロアセチルハロゲニドとの反応において用

特開昭60-202803(6)

いた諸条件ならびに単離精製方法とほぼ同様 な条件が採用出来る。

前記の一般式[1]で示されるNー置換ークロフセトアニリドは水田に発生するノビエ・コナギ等の一年生雑草に加え、ホタルイ・ミズガヤッり、オモダカ・ウリカワ等の多年生雑草に対して幅広い数草スペクトラムを有じ、かつ水稲に楽客を与えることなって、効率的になっている多年生のミズガヤッリに対しては低く少量の撒布により他の除草剤には何を見ない卓越した除草活性をもっている。

本発明の除草剤組成物の他の成分は、下配 一般式〔1〕

(伹し、R4,R5 はアルキル基,Yはハロゲ

ルアルキル基としては、アセチルメチル基・アセチルエチル基等を挙げることができる。 さらにまた、上配一般式〔11〕中の2で示されるフエニル基・ペンジル基・フェネ・ヨウ 素等のハロゲン原子、メチル基・エチル基等のアルキル基又はニトロ基が挙げられる。 これらの置換基が1万至2置換したものが通常使用される。

上記一般式 [1] で示されるピラゾール誘導 体の製造方法としては、公知の製造方法が何 ら制限されず採用される。

前記一般式〔1〕で示されるピラゾール誘導体は、カロチノイドの生合成阻害に基づくクロコストの光酸化によってクロロシスを誘起するととが知られており、多年生雑草を含めて広葉雑草には卓効を示すが、ノビエ・アセナ・ミズガヤツリ等の雑草にはその効果が弱いという性質を有する。

本発明の除草剤組成物は、前配一般式〔1〕

ン原子又はニトロ茶・nは1又は2.2はアルキル茶:アセチルアルキル茶:置換又は非 世換のフェニル茶。ペンジル茶。フェナシル CH3 茶:又は -CH2CO CCH2 Z' (但し、Z' は

水素原子又はハロゲン原子)である。)で表 わされるピラゾール誘導体とを有効成分とす るととを特徴とする除草剤組成物である。

上記一般式[1]中のR4・R5 及び2で示されるアルキル落としては、メチル茶・エチル茶・ローブロビル茶・1 ー プロビル茶等が挙げられる。就中、メチル茶のものが除草活性が高いために好適に使用される。また、上記一般式[1]中のY及び2'で示されるハロゲン原子の具体例としては、塩素・臭素・ファボ塩素・の各原子が挙げられる。就中、Yが塩素・ローが2であり、且つペンゼン獲の2位及び4位に塩素が結合したピラゾール誘導体は、特に除草活性が高く好適に使用される。さらに、上記一般式[1]中の2で示されるアセチ

で示されるN-世換-クロロアセトアニリドと、前記一般式(量)で示されるピラゾール酵 学体との使用割合の広い範囲で優れた除草効 果が得られる。しかし、両者の使用割合は、 N-世換-クロロアセトアニリド1重量部に 対して、ピラゾール酵導体が 0.0 1~5 0 章 最初の範囲であることが一般的である。 アニリド1重量部に対して、ピラゾール酵導体を リド1重量部に対して、ピラゾール酵導体を 0.2~20重量部とすることにより、除草効 果はより優れたものとなる。

本発明の除草剤組成物を水田土壌に同時に 播種されたノビエと水稲に対して使用すると き、1アール当り0.1%の機度で処理すると ノビエの発芽は完全に阻止されるが、水稲は 100%処理した場合でも全く影響がない。 従って、一般に1アール当り0.15~200 %、好ましくは0.5~50%の有効成分量と して水田に使用すればよい。

本発明の除草剤組成物は、雑草の発芽的を

特開昭60-202803(ア)

よび発芽後に処理しても効果を有し、土壌処理・茎葉処理においても高い効果が得られる。 施用場所としては水田はもちろんのこと、各種数類・マメ類・ワタ・そ菜類等の畑・果樹園・芝生地・牧草地・茶園・桑園・森林地・非農耕地等で広範囲に有用である。

本発明の除草剤組成物は、原体そのものを 撒布しても良く、担体や必要に応じてば他の 補助剤と混合して調製した製剤として撒布し ても良い。製剤形態は特に制限されず、従来 公知の製剤形態が使用される。たとえば粉剤、 粗粉剤、微粒剤、粒剤、水和剤、乳剤、フロ アブル製剤、油懸濁剤等に調製して使用する とよが出来る。

本発明の除草剤組成物を製剤に調製するに 際し、使用する適当な固体担体としては、従 来公知のものが何ら制限なく使用し得る。本 発明に於て好道に使用される固体担体を例示 すると次のとおりである。例えばカオリナイ ト群、モンモリロナイト群、アメパルジャイ

また、本発明に於いて使用される液体担体 としては、従来公知のものが何ら制限されず に使用し得る。本発明に於て好適に使用され る液体担体を例示すると次のとおりである。 ケロシン・鉱油・スピンドル油・ホワイトオ イル等のパラフィン系もしくはナフテン系炭

化水素:ペンゼン、トルエン、キシレン、エ チルペンゼン,クメン,メチルナフタリン等。 の芳香族炭化水素:四塩化炭素,クロロホル ム,トリクロルエチレン,モノクロルペンゼ ン,o-クロルトルエン等の塩素系炭化水素 : ジォキサン . テトラヒドロフランのような エーテル艦しアセトン,メチルエチルケトン。 ジイソプチルケトン,シクロヘキサノン,ア セトフエノン,イソホロン等のケトン類「酢 酸エチル,酢酸アミル,エチレングリコール アセテート,ジェチレングリコールアセテー ト,マレイン酸ジプチル,コハク酸ジエチル 答のエステル類:メタクール . ューヘキサノ ール、エチレングリコール、ジエチレングリ コール等のアルコール擬:エチレングリコー ルエチルエーテル,エチレングリコールフィ ニルエーテル,ジエチレングリコールエチル エーテル、クエチレングリコールプチルエー テル終のエーテルアルコール類;ジメチルホ ルムアミド,ジメチルスルホキシド等の極性

溶媒あるいは水等が挙げられる。

また、本発明に於ける製剤の調製には、乳 化,分散,覆潤,鉱展,結合,崩壞性觸筋, 有効成分安定化,流動性改良,防欝等の目的 で従来公知の界面活性剤が何ら制限されず使 用し得る。界面活性剤としては、非イオン性。 陽イオン性,隂イオン性及び両イオン性のも のが使用されるが、通常は非イオン性および (または)陰イオン性のものが使用される。 適当な非イオン性界面活性剤としては、たと えば、ラウリルアルコール,ステアリルアル コール,オレイルアルコール等の高級アルコ ールにエチレンオキシドを重合付加させたも の: イソオクチルフエノール . ノニルフエノ ール等のアルキルフエノールにエチレンオキ シドを重合付加させたもの、プチルナフトー ル,オクチルナフトール等のアルキルナフト ールにエチレンオキシドを重合付加させたも の;パルミチン酸,ステアリン酸,オレイン 酸等の高級脂肪酸にエチレンオキシドを重合

特開昭60-202803 (8)

付加させたもの;ステアリルりん酸.ジラウ リルりん酸等のモノもしくはジアルギルりん 酸にエチレンオキシドを重合付加させたもの : ドデシルアミン . ステアリン酸アミド等の アミンにエチレンオキシドを重合付加させた もの、ソルピタン等の多価アルコールの高級 脂肪酸エステルおよびそれにエチレンオキシ ドを重合付加させたもの;エチレンオキシド とプロピレンオキシドを重合付加させたもの ; ジォクチルサクシネート等の多価脂肪酸と アルコールとのエステル等があげられる。道 当な陰ィォン性界面活性剤としては、たとえ ば、ラウリル硫酸ナトリウム。オレイルアル コール硫酸エステルアミン塩等のアルキル硫 酸エステル塩:スルホとはく酸ジオクチルエ ステルナトリウム , 2 - エチルヘキセンスル ホン酸ナトリウム等のアルキルスルホン酸塩 ;イソプロピルナフタレンスルホン酸ナトリ ウム、メチレンピスナフタレンスルホン酸ナ トリウム,リグニンスルホン酸ナトリウム。

ドデシルペンゼンスルホン酸ナトリウム等の アリールスルホン酸塩;トリポリリン酸ソー ダ等のリン酸塩等があげられる。

上配の担体,界面活性剤および補助剤は、 製剤の剤型,適用場面等を考慮して、目的に 応じてそれぞれ単独にあるいは組合わせて適 宜使用される。

本発明に於ける製剤の調製方法は、特に限

定されるものではなく、従来公知の方法が使用される。例えば、水和剤の具体的な一調製方法として、ピラゾール誘導体10重量部とN-蹬換-クロロアセトアニリド1重量部を有機溶剤に溶かし、該溶液に界面活性剤及び担体を加えよく粉砕混合した後、有機溶剤を除去するととにより水和剤を得る方法がある。

また、たとえば乳剤の具体的な一調製方法として、ピラゾール誘導体10重量部・N-置換-クロロアセトアニリド5重量部と界面 活性剤15重量部をキシレン等の石油系溶剤 によく混合して乳剤を得る方法がある。

さらにまた、たとえば粒剤の具体的な一調 製方法として、ピラゾール誘導体10重量部・ N-個換-クロロアセトアニリド1重量部・ 界面活性剤及び水をよく混練し、続いて、超 体及び界面活性剤を加え、よくかきませた後 所定の粒径に押し出し、乾燥することにより 粒剤を得る方法がある。

以上に説明した本発明の除草剤組成物は、

その各成分単独の性質からは全く予想できない除草効果を示す。即ち、幅広い殺草スペクトルを有する。さらに、各成分単独の施用量と同程度でより大きい除草効果を有する。しかも、作物に対しては安全である。

従って、本発明の除草剤組成物は、除草剤 に要求される性質を十分に満たするのであっ て、その有用性は極めて大きいものである。

以下に、本発明の除草剤組成物を実施例で 具体的に説明するが、本発明は、これら実施 例に限定されるものではない。

N-置換-クロロアセトアニリドの合成

(合成例1)

N-[2'-(5'-プロム)-チエニルメチル]-2,6-ジメチルアニリン1.819(6.14×10⁻⁵mole)をペンセン40転に溶解しトリエチルアミン0.819(7.98×10⁻⁵mole)を加え、氷水中に設置した。次いでクロルアセチルクロリド0.839(7.37×10⁻⁵mole)のペンセン溶液(15 配)を

徐々に添加した。 3 時間撹拌した後、 5 0 ででではいかいでは、 3 0 ml ・2 N - 塩酸 5 0 ml ・統 いて水 5 0 ml によって順次洗浄し、 ペンゼン 層を無水硫酸ナトリウムで乾燥した。 その後 カラムクロマトにて精製し、 黄色固体 1・1 3 9 を得た。 このものの赤外スペクトルを測定した結果、 3 1 10 ~ 2 9 0 0 cm⁻¹ に C - H 結合に基づく吸収・ 1 6 7 0 cm⁻¹ に アミド基のカルボニル結合に基づく強い吸収を示した。 その元素分析値は C 4 8・4 3 %・H 4・0 5 %・N 3・9 9 %であって、 C15 H15 N8 OB r C と (3 7 2・7 1)に対する計算値である C 4 8・2 0 %・H 4・3 2 %・N 3・7 5 %に良く一致した。

また、質量スペクトルを測定したところ、m/e371に分子量に対応する分子イオンピーク・ M^{\oplus} ・m/e336に M^{\oplus} -CLに対応するピーク・m/e293に M^{\oplus} -COCH2CLに対応するピーク・m/e293に M^{\oplus} -COCH2

%)に Br B CH2 に対応する各ピークを示した。

さらに、「H-核磁気共 スペクトルについては、明細費中に具体例として示したとかりである。

上配の結果から、単離生成物がN-〔2'-(5'-プロム)ーチエニルメチル]ーN-クロアセトー2・6ージメチルアニリド(以下、化合物(1)と略記する)であることが明らかとなった。収率はN-〔2'-(5'-プロム)ーチエニルメチル]-2・6ージメチルアニリンに対し、49.5%(3.04×10⁻³mole)であった。

(合成例2)

合成例1と同様にして合成したN~置換~ クロロアセトアニリドの性状、物性(沸点)。 赤外吸収スペクトルにおける特性吸収値及び 元素分析結果を併せて第1袋に略配した。

第1表中の一般式

は、前記一般式〔I〕

特周昭60-202803 (10)

	1	_		_	<u> </u>		3		~		=	4	4	7	~	+	5	8	8 0
(% () () () () () () () () ()	Z	4.64	474	444	4.52	4.57	£:4	3.98	4.12	4.30	4.24	37.	37	4.3	433	4.3	4.1	4.1	398
を育 (名) (義十郎の海) (徳下昀の裔)	Ħ	479	478	5.12	5.2.2	5.65	561	5.38	5.3	396	3.98	3.58	350	5.64	561	5.97	5.98	642	631
光	C	5679	5684	57.71	58.14	5930	59.33	57.01	5654	5089	5091	4425	4487	59.20	59.33	6023	6043	6192	6143
1 18 ·	(c=0)	1670		1670	2	3677	0		0	0077	000		6	;	6/9	,	0/0		> 0
事 3	-	/2891	0.40=EB	1715/	0.58=H9	1855/	0.38mBg	4 6 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	英	1455	0.50 mHg	4940	ない。	1655/	0.3 0 HP	1865/	0.70mHg	1755/	0.30mHp
#		*₹ \$(粘稠液体		粘稠液体	######################################		¥ <	奇智数年	78		1	± and X		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	#X #X #0)	粘稠液体	184	
8 - X	C m	Ç)	ς)	5) ;	7,00.	5	y,K	?	Br	P	Car		K _{ED}) into	Calla	J _H ² O
		Image: Control of the	20		8.0		(B)		\8 \ 00 E		E ₁ CO AS		√s∕ oo¹¤		B tco AB A		B, co B		B, CO ^{A8}
X-3HU-Q .	Α.		H,CO		H s CO		H, CQ		m		M]	P	i	Ħ	i	m	'	-
1	Α.		8	!	Ü		-												- 111

鮾

Ì								
¥	N-CHJ-Q.	д 	和 \$	\$9 \$1	1 kg (元矣理,杂缺略,存值值值	神会の	(名) 物の解) 物の解)
 .	Ω	B B		(妊娠)	Î	ບ	н	N
		CH;	# 4	1820/	ŭ.,	59.88	5.88	0 0.5
	H, co H		X 000 X	0.25=H9	18/0	6043	5.98	4.15
		CHI	表 (4)	1765/	47.7	6145	432	4.08
(25)	H₃CO KB	ED ² (9E)	赵	0.20 - BP	10/3	6143	631	3.98
1		C1812	7,84	1786/	407	6919	662	3.9 1
(13)	H3CO AB	(GEL) CH		0.30mBp	1660	6236	662	3.83
		1 8	€0	1782/		5930	593	4.57
(45)	H _s co ^R		挺	0.40 - 11	70/0	5833	5.61	4.5 3
1		K E	1	2020/	007	9855	5.29	403
(SE)	B, cs €8) F		0.45mBg	1000	5453	5.3.3	4.12
1 3		Calls	# 6	1955/	9077	5881	909	3.85
9	Hacs A	C3 He		0.09 at 19	000	58.75	404	381
1 :	BCH a	K, ED	1	1815/	0679	8595	. 923	411
3	,			0.15mB9	10/0	5663	5.35	412
1 6		C3 Hs	₩	1825/	0477	1229	199	390
9	Hsc20^8) sec	粘稠液体	0.3 0 = B9		6236	462	3.84
1 2		ؠ	8	1655/	9677	5208	407	406
	A8√ B8C20) <u>,</u>	K 60 64	0.40 BP	0,0	5210	409	4.05
1								

特開昭 60-202803 (11)

R 元素 4 作 信 (%) 果型 (糖上部の値) 品質 (糖下部の値)	(C=0)	59.20 5.64 4.37	5933 561 433	6190 604 409	6043 5.98 4.15	6126 652 390	6143 631 398	5292 4.40 4.25	5233. 440 404	6201 647 399	6143 431 398	6161 662 391	6236 662 383	5881 601 377	5876 604 381	6396 7.11 3.60	64.01 7.18 3.56	
# # # # #	(((((((((((((((((((★ \$ 172c/	4 0.15mHg	表	品物液体 0.25mmg 10′	\$ 180c/	粘稠液体 0.25mHg 10c	# & 165c/	∰ 0.10=E₽	/35Z1 8	站積液体 0.35=Eg 1.5	# & 178c/	四次件 0.40mBp	# 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	本とは、	大 も よ り	なる。	4 4 4 4
到 707E200 E N	Ø	CH1.		₩ K	Tar.	C ₃ H ₂		**	N S III	₩ K K K K K K K K K K K K K K K K K K K		KK LIBED	HOZ (PD)	(CHr) ₂ CHO		#¥ (Œ)	<u> </u>	
D - C H 2 - N	ρ.	1 BOO	 ka	S HOO	<u></u>	OCH	≼ ₈	1800	<u></u>	1 OCB1	√ 2	1 E00	≼ 8 #	SEE S	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	00(38)1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	O - (CH2)2CH 8
ų	L	(8	<u> </u>	3	3	(3	(8)	9	(3)	<u> </u>	į	<u>§</u>	3	(97)	(8	

<u> </u>								·										r	
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	N	3.7.3	371	3.36	3.50	361	356	992	3.60	4.3.1	427	4.04	293	4.01	407	444	4.2.7	4.03	393
か (機上部 (機下路)	H	641	640	4.78	479	309	3.08	4.08	3,90	471	4.62	541	5.3 9	4.5.7	440	4.60	4.62	5.4.7	5.39
元素級強	ပ	6358	6356	50.97	5094	4280	4277	47.36	4634	54.91	5488	57.62	57.30	5244	5233	55.08	54.88	57.47	57.30
I B (m-1)	(c=0)	•	16/0	3677	6/0	4,77	0/0	0677	701		0801	9977	000		2/91		9/01	,	16/5
##	(妊娠)	t	カマドの発送	1782/	0.30mHg	1855/	0.30=H9	17021	0.20mHp	1755/	0.20=Hg	1802/	0.40 mH p	1885/	0.3 5 mHg	1.625/	0.15mHg	1675/	0.15=Hp
4g 4		1	京 四 年	4		# B		· 包	挺	# #	大 (1)	11 11 11 11 11 11 11 11 11 11 11 11 11		#K	挺	表 40	凝原	#X #X €0	
N-B cocm;ca	Ø	C(Œ8))2	7	C2H6	C,H;	CH 1	73	S BO	0.5	CH I		Care	C2H5	CH BO		CB3	A BO	CB(CB ₁) ₂) #B
Z-780-0	Q		083-CHIE50		₹.# 		Bragara, Bra	. [₹8 ₹4		√ 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		√ 3		¥3 7 3	70	={ ::::::::::::::::::::::::::::::::::::	70	l'β.λ
ų			<u>8</u>	3	ਤੇ ਭ	(1)	(IS)	((%	(g.		3	[3	3	<u>ક</u>		

特開昭60-202803(12)

	D-CH2-N	a - z		4	æ H	15 g 06 g 4 g		(%)
Æ		COCHICA	執		([[]	はいる。		(口下部の位)
	Q	В		(新展)	(0=0)	υ.	н	×
(82)	70	L _{1ED}	数件	/2851	087+	5684	5.16	4.3 2
3	(B	C2HS	铅粒液体	0.2 5 mH s	0	5614	502	4.09
(02)	السلم	C2HR	\$ \	/2591	0275	57.48	5.33	3.98
<u> </u>	"B"	C2H6	四谷	0.15⇔B9	2	57.30	5.39	3.9.3
(3)	70	CIHE	改立色	/29/1	0471	5833	5.69	3.8 1
}	\ <u>9</u>	(CEI,)2CE	图称	0.2 5□Hg	2	5837	5.7 3	373
(97)	70	√ _{0°BO}	该 公色	/2891	4770	53.10	4.42	4.13
(a)	\ 8) I BO	站和被	0.2 5mHp	2	5233	4.40	4.07
٤	70	C2HsO	\$3 \$1 4 0	/3/81	2677	5354	4.80	392
(78)	√8 ,		稻	0.15chg	7/0	5363	4.79	391
(11)	#	CHS	€ I	0 4 A A A A A A A A A A A A A A A A A A		48.19	4.3.1	3.7.6
3	(<u>19</u>) in		B#	2	4820	4.32	375
(1)	H.	CB10	校 红 旬	46	0077	4635	3.9.2	3.63
3	ДВ,			ちななない。	0001	4634	3.90	3.60
(46)	88	Z2-825	级 (二 (立	カラムク	3677	59.28	4.59	4.3.1
<u>}</u>	\8\ \		阿 农	は、は	6/01	5934	4.68	4.5 3
(1)		ED P	液 穴 的	10	4 2 0 0	4433	86%	. 3.2.1
ĝ	√ 2√1			て報復	000	4430	396	3.23

	D-CH2-	Ø %		#	ц	公公 公公公	化战华产每(%) 机场布产每(%)	% (新色
Æ		COCE CC	和 袟		(22-1)	超的位	(包下部の低)	(の度)
	۵	æ	٠	(25点)	(c=o)	ວ	н	×
1]		1	1	3677	4338	2.67	3.35
(4)	 ¥8 ∌	Cach	女的回女	となるとは彼の	c/01	4334	2.67	337
		CB3	#X ₹1	1675/	32.7	6111	5.49	4.78
8	∀ Β	CHI		0.4039	U / O L	6131	5.50	4.7.7
	CB 3	CHI	## CX ®0	1906/	00,,	0009	5.5 9	4.30
&				0.15coHg	1000	59.33	5.61	4.3 3
	CH	(H)	122 (12 40	1755/	3677	6243	5.88	4.57
<u> </u>	 		化 超被体	. ц.7 5cэHg	6/01	6242	591	4.5 5-
		CHI	战 仁 龟	1585/	0477	6242	5.90	4.56
(51)	Hacks A			0.20cm	0	6242	5.9 1	4.5 5
		CH3	沒 红 0	/3191	27.76	6240	က် ဆ ဆ	4.5 6
(25)	Bsc₂ Bsc	?	- 哈西依你	0.15mBg	10/3	6242	5.9 1	4.55

次に、本発明の除草剤組成物の配合剤及び 実施例を示す。尚、配合剤及び実施例中、N -置換-クロロアセトアニリドは合成例中の 化合物番号[(1)~(52)]で表わし、ピラ ソール酵導体は下配の配号([A]~[0]) で表わした。

ピラゾール誘導体	記号
CH ₃ CL CO—CL N OCH ₂ CO—CL CH ₅	(A)
CH ₃ CO CC CH ₃ CO CH ₂ CO CH ₃ CH ₃	(B)
CH ₅ CCL CCL CCL CCL CCL CCL CCL CCL CCL CC	(c)

CH ₃	(1)
CH ₃ OCL CH ₃ CCL CH ₅ CCL	(ĸ)
CH ₃ O CL N OCH ₂ COCH ₃ CH ₅	(r)
CH ₅ O CL N O C NO 2 CH ₃ NO 2	(M)
CH ₃ CH ₂ CH ₅ CCL NO 2	(א)

CH ₃ CO-C-CH ₃ CH ₃ CH ₃	(p)
CH ₅ CC CL CH ₂ COC (CH ₃) B	(B)
CH ₅ CH ₅ CH ₅ CH ₅ CCL CCL CCL CCL CCL CCL CCL CCL CCL CC	(F)
CH : CC CL CH2 COC (CH2) 2 CH 2 Br	(o)
CH ₅ CH ₂ CO CH ₃ CO	(H)
CH ₅	(1)

配合例

化合物 [A] 10重量部・化合物(1)4重量部・界面活性剤ソルポール800A[東邦化学工業(株)商標]1.5重量部・界面活性剤デタージェント60[ライオン油脂(株)商標]1.5重量部をよびジークライト83重量部をよく粉砕混合して水和剤を得た。

配合例 2

配合例 3

化合物 [A] 10重量部,化合物(10) 5重量部,界面活性剤ソルポール8 M 100 (東邦化学工業(株)商標] 15重量部かよびキシレン70重量部をよく混合して乳剤を得た。

化合物 [A] 7 重量部,化合物 (20) 1.0 重量部。ジオクチルサクシネート 4.0 重量部,トリポリリン酸ソーダ 4.0 重量部,ベントナイト 4 2 重量部かよびタルク 4 2 重量部をよく混合粉砕し、水を加えて溶練した浸透粒乾燥し、1 4~3 2 メッシュに整粒して粒剤を得た。

(0)

特開昭60-202803 (14)

配合例 4

ペントナイト40重量部,タルク5.5重量部,およびトリポリリン酸ソーダ5重量部を粉砕混合し、加水,混練後途粒乾燥し、活性成分を含まない粒状物を作る。この粒状物85重量部に化合物 [A]を7重量部,化合物(30)を8重量部を含浸させ粒剤を得た。

実施例 1

5000分の1 アール相当のワグナーポットに、加水混練した水田土壌を充填し、土壌 没層にノビエ,タマガヤツリ,ホタルイをよびコナギ,アゼナ・キカングサ等の広葉 超子を播種し、ウリカワ,ミズガヤツリの低子を増し、ウリカワ,ミズガヤツリの低子を増し、ウリカワ,ミズガロのででは、からに2.5 葉期の稲からに3本1は 社会にアキニシャ)を2cmの磁水条件とした。そのガラス室内で育成し、稲移は7日後(ノビエが約2葉期の時期)に、配合例1に単じて調製した水和剤を水に希釈し

所定量摘下処理した。その後ガラス室内で育成し、楽剤処理後21日目に除草効果および 水稲におよぼす楽客を調査した。その結果は 第2表に示した。

除草効果 水稲楽客 抑草率(%) ー:正常 5:100(完全枯死) ±:僅小客 4:75~99 +:小客 3:50~74 #:中客 2:25~49

0:0 (全く効果が駆められない)

1:1~24

- 1	糖	*				•		1	•		1	i	ı			,	1		i	1	1	ı	ı	ı	ı		ı	1	1	ı	ı	ş	ŀ		1	ŀ	ŧ	ı	ı	ī	i	,
	¥	*	L		<u>'</u>			<u> </u>	· 		<u>.</u>	•			<u>.</u>			\perp	_															_								
		"XXX	.20	7	ស	ю	ເດ	4	Ŋ	ı	N)	-	ω	8	ហ	∢	ഗ	2	10	-	ഹ	~	ഹ	ю	ທ່	4	∢	ю	'n	4	ស	ഹ	ى 	2	4	ю	4	*	ഹ	ഹ	w 	2
	和	6414	0	0	0	0	ស	ß	က	က	0	0	0	0	<u>.</u>	O		2	0	0	0	0	က	ഹ	ις	2	0	0	ю	7	w	ιΩ	ß	2	0	0	ю	8	ın	ທ	z,	5
	熇	林多九人	4	ю	4	ю	s	4	ທ	ည	2	8	4	7	ro .	4	ري د	'n	ю	-	4	8	ß	4	ស	4	*	₹	ഗ	4	<u>س</u>	بر ا	ro i	2	7	M	4	4	ഹ	ഹ	ى س	2
**	#	(I California	5	4	Ŋ	4	က	Ŋ	S	3	2	7	'n	ಶ	so.	S	က	2	M)	8	4	ю	Ŋ	ഹ	ഹ	2	ß	∢	ιΩ	4	ro C	ιΩ —	ß	2	2	∢	ഗ	4	S	တ	S	လ
2	*	内推飾車	4	ю	4	ю	ιΩ	ഹ	ĸ	S	3	8	4	Ю	w	Ŋ	ιΩ	ည	₩.	8	4	ю	ഗ	വ	ß	2	4	4	ın _.	4	ഹ	ιΩ	ഗ	2	4	4	*	4	S.	2	S	S
糯		1 K I	2	'n	S	ស	'n	ഹ	ιΩ ·	Ω	2	ഹ	ເດ	ທ	so.	က	S I	2	ro	ß	ß	ഹ	'n	ທ	ın ا	2	2	ഹ	ഹ	Ń	ري د	ഹ	ທ	2	S	ശ	ഹ	S	ഹ	ഹ	S	2
	処理期		7	14	7	14	7	14	7	14	7	14	^	14	^	14	^	14	7	4	^	4	^	14	7	14	4	14	^	14	_	14	^	14	2	14		14	7	14	7	14
	加用量	(%)	2	1	10		8+2		10+2		2		0		8+2		10+2		2		0		8 + 2		.10+2		•		10		9+1		10+1		-		10		9+1		10+1	——
	1	6. 6. 7.	(3)	•			(A)+(3)		(x)+(x)		(11)				£€+(42)		E +(4)		(48)				S+(18)				(20)				会		•		(23)				(S)+(33)		(S)+(33)	

-24-

特別昭60-202803(15)

		_																			_	_				_	_		_					_									
	1	ı	ı	ł	ŀ	. 1	ı	1	i	1	1	ı	1		1	١	i	ı	1	ļ	!	ı	1	ł	Í	ı	ı	1	ŀ	J	1	1	1	ı	ı	1	1	!	i	,	ı	ı	ı
м	~	·	м	က	4	Ŋ	4	×	8	Ŋ	ю	S	4	က	4	3	2	S	4	S	マ	S	4	3	-	Ω	7	Ŋ	ю	ß	3	သ	4	ß	Ŋ.	5	4	ß	4	2	4	2	4
0	0	6	0	ιΩ	'n	Ŋ	ĸ	0	0	0	. 0	ß	n	ı,	5	0	0	-		ß	ທ	ري م	5	-	0	-	0	ຜ	ഗ	ហ	5	5	2	ιΩ	20	2	ည	ŵ	ß	2	4	2	4
4	м	4	ю	ß	ß	:	ີ.	4	ю	4	ю	S)	FO.	ß	2	7	4	ស	4	S	ເດ	Ŋ	2	2	8	4	2	r,	ro	Ŋ	20	2	2	ທ	5	ß	ഗ	3	Ŋ	2	2	2	r.
ເດ	4	4	. 4					l		·				S	i																.		- 1					1					ß
4	×	ю	10	S	ช	'n	2	4	ю	4	ю	Ŋ	ຜ	ro	5	ю	8	4	ю	ഹ	ß	ιĢ	5	M	7	4	ю	ις, ·	S	ĸ	5	ហ	2	ĸ	5	5	J.	S	5	2	5		ro.
5	w	ည	വ	25	S	S.	5	5	co	ഹ	ις.	ις.	2	ın	S	ß	4	ις,	rs.	ı,	ഹ	ß	5	2	4	ស	လ	ഗ	ഗ	ທ	zi.	10	2	w	5	£	5	5	5	2	5	S	ro
,	14	7	14	7	4	7	14	4	14		14	7	14	^	44	7	4 4	7	14	^	4 4	^	14	1	14	7	14	^	1.4	ŗ	4	^	44	7	14	7	14	4	14	7	14	4	7
2		10		8 + 2		10+2		2		10		8 + 2		10+2		- -		-	٠	4 + 4		10+1		7		10		8+2		10+2		10+4		10+6		10+4		10+4		10+3		10+4	
(30)			,	(A)+(30)		(S)+(30)		(92)				(%)+(%)		(S)+(36)		(38)				(8)	,	(2		(46)		٠		(\$)+(\$)	,	(\$		3		(S) 13		3		(S)+(5)		3 (§		<u>\$</u>	

1	6	1	1	ı	1		1	_	1	_	1	_	t	1	ı	-	1	1	•	1 1		1 1	,	ı	1	ł	1	1	ı	1	-	ŧ	- .	ı	-	1	-	_	1	ŧ	ı	t
S.	S	5	4	5	4	5	4	5	. 4	4	4	5	5	ស	S.	10	3	S 4	•	rv n	,	v 4	5	4	5	4	5	3	5	3	S	3	5	3	2	4	9	5	S.	S	5.	4
ro.	2	2	2	ß	2	9	5	2	2	2	S	ç	2	ഹ	သ	2	2	دی ت	C	יט ע	,	ം ഗ	25	ഹ	20	ഹ ,	·	2	9	S	10	2	ın	S	ις.	S	S	5	2	ည	20	2
r.	5	5	5	5	4	5	4	2	4	S	4	5	5	ß	သ	CO ·	4	ר מו	*	us u	,	n 4	ຜ	4	5	ю	2	3	S	3	ß	ю	S.	3	ស	4	ß	5	5	2	s ·	4
လ	ည	22	S	ß	5	9	5	2	5	2	5	2	5	ιΩ	ည	S.	2	LO LI	,	so v	,	n 10	2	ທ	5	S	တ	S	9	2	r)	2	LÇ)	5	S	5	ιΩ	2	သ	2	יטי	0
S	5	5	5	3	5	S	5	Ω.	5	2	5	2	5	េះ	ហ	ın ı	n	τυ ⊿		o ro		n un	25	w	S	2	S	5	ഗ	2	ហ	2	LO I	2	ن د	5	ro I	2	2	5	S U	?
ĸ	5	5	5	9	5	9	5	2	5	S	5	S	5	ı,	2	ıo I	2	10 H	3		,		25	2	2	2	S	2	ည	.5	w	ည	Ŋ	D	ທ	2	ı,	2	S	2	2	c
7	14	7	14	7	14	7	14.	7	14	7	14	7	14		14		7			7 4	ı	14		14	4	14	[14	7	14	7	14	7	14		14	7	14	7	14	7	•
10+4		10+2		10+2		10+3		10+2		10+2		10+2		10+4		10+4		10+4		2+0	0,00	2 + 0 1	10+4		10+4		10+4		10+6		10+6		10+5		10+4		10+4		10+2		10+4	_
(8)+(Y)		(s)+(s)		€¥(10)		(L)+(3)		S+(12)		S+(33)		E E E E E E E E E E		S +(15)		3		<u>\$</u>		(F23-2)	(4)1/20)	W. 22)	(X)+(24)		(2)+(2)		(S)+(26)		(C)+(21)		(8)		(%) (%)		()		(Z+(32)		£ (33)		(<u>%</u>	

特局昭60-202803(16)

i I		1	1	7	ı	1	ı	,	ı	1	_	ı	_	ŧ	•	1 !		1 1		. !	ı		J	ľ	ļ	L	ı	-	ı	1	ŧ	-	1	1	l	-	1	-	ı	ı	1	ı
ر د	4	<u>.</u> م	4	2	4	2	ю	5	4	5	4	S	5	ro (2	Юн	,	ภัพ	22	4	5	5	5	. 3	5	4	. 5	3	S.	4	ın ·	4	ιΩ :	2	'n	5	2	5	S.	8	2	4
ro r	2	S.	5	2	5	S	က	2	4	က	ß	വ	2	ומו	2	ro r	,	υ ,4	2	4	5	4	2	4	2	4	က	4	20	4	່ ເກ	4	ភេ	2	ي. س	5	2	4	2	ស	5	4
w r	,	ιΩ	4	ъ	4	2	3	2	ည	5	4	ß	2	ហ	ո	(C) H	,	ΩМ	ss.	. 2	r0	5	2	3	2	2	3	4	2	2	S I	2	ro I	2	ഹ	5	2	S	5	ທ	ഹ	2
ro r	•	ហ	2	ιΩ	5	2	5	5.	5	5	5	S	3	ro ('n	n n	, .	വ	ຜ	ß	S	5	2	2	2	5	ß	2	2	2	r)	S	ທ	5	ı,	5	2	2	2	ın	5	53
សល		က်	2	<u>က</u>	2	S	5	·	ເດ	2	2	ທຸ	2	KO I	n	n n	,	വ	5	5	5	. 5	2	5	5.	5	2	5	5	5	ည	2	Ω.	5	Ŋ	S.	5	r3	2	S.	ည	ഹ
លេស	,	ري د	2	ເດ	5	2	5	2	5	2	5	2	2	ي دي د	n	n n	,	n w	က	S	2	2	2	ຜ	9	5	2	5	2	2	က	2	ស	5	'n	5	2	5	9	Ŋ	5	ເດ
7	-	_	4	^	4	^	14	2	14	2	14	7	14	' ;	*	4		. 4	7	14	7	14	7	14	• •	14	7	14	7	14	7	14	~	14	7	14	7	14	7	14	7	14
10+4	1.	10+2		10+2		10+4		10+2		10+3	- 1	10+6	- 1	10+6		9+0+	101	0 -	10+6	- 1	10+3	- 1	10+4		1.0+4		10+4		10+4		10+4		10+2		10+2		10+3		10+4	·	10+6	
(5)+(35)		(4) + (3/)		S * (38)		(全) (4)		SF(43)		(S)+(42)		(£) (£)		(\$		(\$) +(\$)	(4)7(42)	(/5)(7)	(8)+(Y)		SE (%)		(S) (S) (S)		(S)+(S1)	Ţ	(C)+(52)		(8)+(B)		(B)+(15)		(B)+(S)		(B)+(Z3)		(B)+(30)		(9£)+(B)		(8)+(s)	

	- 1		 ,							· · · •	4 1						_,						- ,												<u>.</u>		_				 !	r 	
ı	1	ı	1	1	1		1	1		1	1	ı	ı	ı	1	ı	•	ı	۱,	ı	•	i		1	1	ı	1	ı	ı	i	1	t	-	f	1	ı	ı	1	١	ı	1	I	•
5	4	ഹ	5	ഹ	2	'n	5	ഹ	4	5	4	S.	5	S.	4	ທີ່	^	ın ı	^	ro.	4	Ŋ	4	ıo	4	*	. 2	. 2	4	ស	4	ស	5	ß	5	5	4	*	3	5	4	က	₹
5	4	ເກ	5	5	5	ស	4	2	4	5	4	2	വ	S	4	ro r	^	ıs i	^	S (2	ည	4	S	4	5	4	2	4	5	4	ഗ	S	S	2	2	4	4	4	5	4	ഹ	→
9	5	Ω.	5	2	2	9	4	9	4	2	2	9	4	2	4	2	n	ທີ່	n	ហ	2	ß	2	S	5	2	4	2	. 2	S	ည	ın	2	ις,	2	9	4	2	S	S	5	က	ς -
ស	5	Ŋ	5	Ŋ	2	5	5	2	S	2	5	5	5	ß	5	ic i	٨	LO 1	2	LC) I	2	ro	2	ស	5	Ŋ	5	2	5	2	5	က	5	വ	5	2	5	S	5	5	5	ഹ	ഹ
5	2	ស	5	5	5	5	2	5	5	5	5	5	5	5	5	S	^	ry i	S	G	S	വ	5.	2	5	ß	5	5	5	5	5	5	5	Ŋ	5	5	5	5	5	5	ည	5	w
S	S	ιΩ	5	2	5	9	5	2	5	2	S	2	2	2	S.	5	2	ro i	2	رم ا	2	ĸ	5	5	2	2	5	2	S	2		9	5	S	5	2	2	9	5	Ş	ີເດ	2	S
7	14	7	14	2	14	4	14	4	14	4	14	2	14	7	14	4	14	^;	7	^	14	^	14	4	14	7	14	4	14	4	14	7	14	7	14	2	14	7	14	7	14	_	14
10+4		10+2		10+2		10+3		10+4		10+4		10+4		10+4		10+2		10+2		10+4		10+3		10+3		10+5		10+4		10+4		10+2		10+2		10+3		10+4		10+6		10+4	
(51)+(3)		[c]+(z0)		(c)+(z)		(c)+(c)		(%)+(3)		(b)+(3)		(D)+(12)	·	(D)+(18)		(0)+(0)		(23)+(03)		(05)+(03)		(95)+(0)		(92)+(0)		(D)+(46)		(8)+(国)		(E)+(15)		(R)+(20)		(年)+(23)		(E)+(E)		(%)+(图)	·	(F)+(B)		(F)+(1S)	

特闻昭60-202803 (17)

					_																										_								
1 1		j		l	i	1	i ,	1	_	1	1	-		1		ł	1	-	ı	-		1	1	1	1	-	ı	1	ı	ı	l	1	1	į	1	-	-	1	-
ro r	ו	ស	5	Ŋ	4	5	3	5	4	5	5	S	5	ហ	2	5	4	5	2	5	4	5	4	5	ω.	ភ	ß	3.	ß	2	ຜ	ည	ഗ	ស	5	0	0	0	0
5 4	,	ហ	S	ເດ	2	4	3	2	4	2	4	2	5	S	2	4	3.	ည	4	ည	4	သ	4	2	. 7	2	ស	. 2	2	5	7	2	4	5	4	0	0	3	4
ro r	ה י	rc.	2	ın	4	2	22	5	2	ß	2	5	5	S	2	2	4	2	4	S	4	2	4	5	4	2	S.	2	သ	2	4	2	4	ည	4	0	0	4	3
ro r	,	w	5	5	5	3	2	S	S	S	5	2	ည	5	5	2	2	2	S	2		S	5	2	ഹ	S	5	S	5	5	2	2	ഗ	w	5	0	0	5	4
மை	2	ഗ	5	5	ß	ស	2	5	2	2	5	2	S	5	Ŋ	2	2	2	Ŋ	2	Ŋ	ည	S	Ω.	ည	5	2	2	2	2	2	2	ഹ	က	2	0	0	7	3
S d		'n	5	S	. 5	5	5	2	5	ò	5	9	2	9	2 .	2	5	9	Ŋ	5	ß	5	2	2	Ŋ	5	2	2	ည	9	S	2	က	2	5	0	0	S	0
7	•	7	14	7	14	7	14	7	14	7	14	7	14	4	14	4	14	4	14	7	14	7	14	7	14	7	14	4	14	4	14	7	14	4	14	7	14	4	14
10+2		10+2		10+3		10+4		10+4		10+4		10+2		10+2		10+3		10+4		10+6		10+6		10+6		10+4		10+4		10+6		10+5		10+5		ı		1 0	
(F)+(Z0)		(F)+(23)		[F]+(30)		(F)+(36)		(0)+(0)		[0]+(12)		[G]+(20)		(a)+(23)		(05)+(0J		(%)+[0]		(H)+(3)	-	(1)+(1)		(1)+(18)		(K)+(20)		(£2)+(£3)		(05)+(00)		(%)+(X)		(82)+(0)		年が祖内	THE YES	(Y)	

4. 図面の簡単な説明

第 1 図は合成例 1 で得られた N - 貸穀 - クロロアセトアニリドの「H - 核磁気共吸スペクトルのチャートを示す。

等许出頃人 位山 口 迫 炔 式 会 社

₹__'