

ÜBUNGEN

zur Veranstaltung *Quantencomputing* im Studiengang Angewandte Informatik

No. 3 Martin Rehberg

Präsenzsaufgaben

Aufgabe 1: Zeigen Sie, dass das Toffoli-Gatter

$$T: \{0,1\}^3 \to \{0,1\}^3, \quad T(a,b,c) := (a,b,(a \cdot b) \oplus c).$$

universell ist, indem Sie zeigen das

- (i) NOT(a)
- (ii) AND(a, b)
- (iii) OR(a, b)

mittels Toffoli-Gattern beschrieben werden kann. Zeigen Sie im Anschluss, dass das Toffoli-Gatter auch umkehrbar ist.

Hinweis: Verwenden Sie die Hilfsfunktion $BIT_3(a, b, c) = c$.

Aufgabe 2: Bestimmen Sie das Tensorprodukt $A \otimes B$ und $B \otimes A$ der Matrizen

$$A = \begin{pmatrix} 6 & 5 & 4 \\ 3 & 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}.$$

Aufgabe 3: Zeigen Sie, dass der Zustand

$$|\psi\rangle = \frac{1}{2\sqrt{2}} \left(\sqrt{3}|00\rangle - \sqrt{3}|01\rangle + |10\rangle - |11\rangle\right)$$

separabel ist.

Übungsaufgaben

Aufgabe 1: Implementieren Sie den n-Bit Zufallsgenerator so, dass dieser ein Zufallsbyte erzeugt.

Aufgabe 2: Der Zustand eines Quantenregisters bestehend aus drei Qubits sei

$$|q_2q_1q_0\rangle = \frac{1}{\sqrt{2}}|000\rangle + \frac{1}{2}|100\rangle + \frac{1}{\sqrt{8}}|101\rangle + \frac{1}{\sqrt{8}}|111\rangle$$

Bestimmen Sie das Ergebnis der Messung, wenn Sie

- (i) $|q_0\rangle$ messen.
- (ii) $|q_2\rangle$ messen.

Aufgabe 3: Zur Verdeutlichung von Kontrollqubit und Zielqubit schreibt man auch CNOT_{ij} für das CNOT-Gatter mit Kontrollqubit i und Zielqubit j. In diesem Sinne gilt CNOT = CNOT₁₀ für das kennengelernte Gatter CNOT : $|x,y\rangle \mapsto |x,x\oplus y\rangle$. Das lässt sich vertauschen: Sei CNOT₀₁ : $|x,y\rangle \mapsto |x\oplus y,y\rangle$ das CNOT-Gatter mit Kontrolle im 2. Qubit.

- (i) Zeigen Sie, dass $CNOT_{01}$ eine unitäre Transformation beschreibt.
- (ii) Konstruieren Sie CNOT₀₁ aus CNOT und vier Hadamard-Gattern.