

NATIONAL SENIOR CERTIFICATE EXAMINATION

MATHEMATICS P1

SEPTEMBER 2021

GRADE 12

MEMORANDUM

MARKS: 150

TIME: 3 HOURS

This MEMORANDUM consists of 11 pages.

QUESTIC	ON 1	[23]
1.1.1	x(2-x) = 0 $x = 0 or x = 2$	✓ ✓ answers (2)
1.1.2	$(2x+3)(3-x) = 2$ $6x-2x^2+9-3x-2=0$ $2x^2+3x+7=0$ $x = \frac{-(3) \pm \sqrt{(3)^2 - 4(-2)(-2)}}{2(-2)}$ $x = \frac{-3 \pm \sqrt{65}}{-4}$ $x = 2,77 or x = -1,27$ -1 for rounding	✓ standard form ✓ substitution into correct formula ✓ $\sqrt{65}$ ✓ answers (4)
1.1.3	$27^{x} \cdot 9^{x-2} = 1$ $(3^{3})^{x} \cdot (3^{2})^{x-2} = 1$ $3^{3x+2x-4} = 3^{0}$ $5x = 4$ $x = \frac{4}{5}$	✓ exponential law ✓ 3 ⁰ ✓ answer (3)
1.1.4	$\sqrt{5-2x} = \frac{x}{2} + 4$ $(\sqrt{5-2x})^2 = \left(\frac{x}{2} + 4\right)^2$ $5-2x = \frac{x^2}{4} + 4x + 16$ $20-8x = x^2 + 16x + 64$ $x^2 + 24x + 44 = 0$ $(x+2)(x+22) = 0$ $x = -2 \text{ or } x \neq -22$	✓ squaring both sides ✓ standard form ✓ factors ✓ both <i>x</i> -values ✓ exclusion (5)

1.1.5	x([x+4])≥ –3
-------	----	-------	-------

$$x^2 + 4x + 3 \ge 0$$

$$(x+3)(x+1) \ge 0$$

$$x \le -3$$
 or $x \ge -1$

OR
$$x \in (-\infty; -3] \cup [-1; \infty)$$

✓ standard form

✓ factors

✓ method

✓ answer

(4)

$$1.2 \qquad x - y = 1$$

$$x = y + 1$$

$$(2x - y)(x + 2y - 3) = 0$$

$$(2(y+1)-y)((y+1)+2y-3)=0$$

$$(y+2)(3y-2)=0$$

$$y = \frac{2}{3} \quad or \quad y = -2$$

$$x = \frac{2}{3} + 1 = \frac{5}{3}$$
 $x = -2 + 1 = -1$

$$x = -2 + 1 = -1$$

✓isolation

✓ substitution

✓ standard form

✓ y-values

 \checkmark x-values (5)

OR

$$y = x - 1$$

$$(2x - y)(x + 2y - 3) = 0$$

$$(2x-(x-1))(x+2(x-1)-3)=0$$

$$(x+1)(3x-5)=0$$

$$x = \frac{5}{3} \quad or \quad x = -1$$

$$y = \frac{5}{3} - 1 = \frac{2}{3}$$
 $y = -1 - 1 = -2$

✓ isolation

✓ substitution

✓ standard form

 $\checkmark x$ -values

✓y - values (5)

Copyright reserved

Please turn over

MDoE/September 2021 Mathematics P1

QUESTIC	ON 2	[25]
2.1.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	✓ value of a ✓ value of b ✓ value of c ✓ equation (4)
2.1.2	$T_{n} = -n^{2} - 3n + 5$ $-643 = -n^{2} - 3n + 5$ $n^{2} + 3n - 648 = 0$ $(n - 24)(n + 27) = 0$ $n = 24 \text{ or } n = -27$ $T_{24} = -648$	✓ standard form ✓ factors ✓ answer (3)
2.2	$S_{n} = \frac{n}{2} [a+l]$ $155 = \frac{n}{2} [2+29]$ $310 = 31n$ $n = 10$	✓ substitution into the correct formula \checkmark value of n
	$T_n = a + 9d$ $29 = 2 + 9d$ $9d = 27$ $d = 3$	✓ substitution into the correct formula ✓ answer (4)
2.3	$\sum_{3}^{14} (15 - 4n)$ $3 - 1 - 5 \dots$ $S_{n} = \frac{n}{2} [2a + (n - 1)d]$ $= \frac{12}{2} [2(3) + 11(-4)]$ $= -228$	✓ value of a , d and n ✓ substitution into the correct formula ✓ answer (3)

5	
NSC	

	NSC	
2.4	$S_8: S_4 = 97:81$	
	$\frac{S_8}{S_4} = \frac{a(r^8 - 1)}{r - 1} \div \frac{a(r^4 - 1)}{r - 1} = \frac{97}{81}$	✓ substitution into the correct formula
	$\frac{a(r^4-1)(r^4+1)}{r-1} \times \frac{r-1}{a(r^4-1)} = \frac{97}{81}$	✓ factors of $r^8 - 1$
	$1 + r^4 = \frac{97}{81}$ $r^4 = \frac{16}{81}$	$\checkmark r^4 = \frac{16}{81}$
	$r^4 = \frac{2^4}{3^4}$ $r = \frac{2}{3}$	
	2	\checkmark value of r
	$7 - \frac{1}{3}$ Sequence: 9; 6; 4	✓ sequence (5)
2.5	$2(p-5) + (p-5)^2 + \frac{1}{2}(p-5)^3 + \dots p \neq 5$	
2.5.1	$r = \frac{1}{2}(p-5)$	\checkmark value of r
	-1 < r < 1	✓ -1 < <i>r</i> < 1
	$-1 < \frac{1}{2} \left(p - 5 \right) < 1$	
	-2 < p-5 < 2	✓answer
	3	(3)
2.5.2	$2(4-5) + (4-5)^{2} + \frac{1}{2}(4-5)^{3} + \dots p \neq 5$	✓ value of a and r
	$-2;1;-\frac{1}{2}$	
	$S_{\infty} = \frac{a}{1 - r}$	✓ substitution into the correct formula
	$S_{\infty} = \frac{-2}{1 - \left(-\frac{1}{2}\right)}$	✓ answer
	$=-\frac{4}{3}$	(3)
	J	(-)

QUESTIO [14]			
3.1	$g(x) = \frac{-6}{x - 3} + 1$		
3.1.1	x = 3	✓ x = 3	
	y = 1	$\checkmark y = 1$	(2)
3.1.2	$y = \frac{-6}{0-3} + 1$	✓ answers (1)	
	y = 3		
3.1.3	$0 = \frac{-6}{x-3} + 1$ $-6 = -1(x-3)$ $x = 9$	✓ ✓ answers (2)	
3.1.4	$\begin{array}{c c} 3 \\ \hline 1 \\ 0 \\ 3 \\ 9 \\ x \end{array}$	✓ asymptotes ✓ intercepts ✓ shape	(3)
3.2	x < 3 or $9 < xORx \in (-\infty; 3) \cup (9; \infty)$	✓ ✓ answers	(2)
3.3	h(x) = x + c $1 = 3 + c$ $c = -2$	✓ substitution \checkmark value of c (2)	
3.4	Reflection $y = 1$ Translation 6 units to the left	✓ reflection $y = 1$ ✓ 6 units to the left	(2)

OHECTIO	NT 4				
4.1.1	QUESTION 4 4.1.1 $f(x) = 2^0 - 8$				
7.1.1	$ \begin{cases} f(x) = 2 - 8 \\ f(x) = 1 - 8 \end{cases} $ B(0; -7)	Carolina of			
	$\int (\lambda)^{-1} = 0 \qquad \qquad \mathbf{B}(0^{-1})$	✓ value of y			
	$0 = 2^x - 8$				
	$2^x = 2^3$	$\checkmark y = 0$			
	x = 3 $C(3; 0)$	✓ value of x			
		(3)			
4.1.2	$y = a(x+p)^2 + q$				
	$4.5 = a(0-3)^2 + 0$	✓ substitution of $A(0; 4,5)$			
		✓ substitution of C(3; 0)			
	$a = \frac{1}{2}$	✓ value of <i>a</i>			
	$y = \frac{1}{2}(x-3)^{2} + 0$ $y = \frac{1}{2}(x^{2} - 6x + 9)$				
	2 7	✓ value of b			
	$y = \frac{1}{2}(x^2 - 6x + 9)$	(4)			
	b = -3				
4.1.3	$-f(x) = -2^x + 8$	✓ ✓ answer			
	$\therefore y \leq 8$	(2)			
	OR				
4.1.4	$y \in (-\infty; 8]$ $h(x) = f(2x) + 8$				
4.1.4	$n(x) = f(2x) + 8$ $= 2^{2x} - 8 + 8$	$\checkmark h(x) = 4^x$			
	_ , , ,	\checkmark swop x and y			
	$h(x) = 4^x$	✓ answer			
	$h^{-1}(x) = \log_4 x$	(3)			
4.1.5.a	$x \leq 3$	✓ ✓ answers			
	OR	(2)			
/ 1 F L	$x \in (-\infty; 3]$	/ us 2			
4.1.5.b	g'(x) = x - 3	$\checkmark x > 3$ $\checkmark x < 0$ answers			
	$x > 3$ or $x < 0$ OR $x \in (3, \infty) \cup (-\infty, 0)$	(2)			
4.2	$y = 4x - x^2$	✓ y'			
	y' = 4 - 2x	· y			
	$m_{OA} = 4$	✓ gradient of OA			
	$\tan X \hat{O} A = 4$	(NÔA - 75 060			
	$\hat{XOA} = 75,96^{\circ}$	✓ XÔA = 75,96°			
	$\tan X \hat{O} B = \frac{1}{2}$	✓ XÔB = 26,56°			
	<u></u>				

1450	
$\hat{XOB} = 26,56^{\circ}$ $\therefore \hat{AOB} = 75,96^{\circ} - 26,56^{\circ} = 49^{\circ}$	✓ 49° (rounded to nearest degree) (5)

QUESTIC [15]	ON 5		
5.1.1	$A = P(1+i)^n$		
	$150000 = 18000 \left(1 + \frac{0.12}{12}\right)^{12n}$ $150000 = 18000 \left(1 + \frac{0.12}{12}\right)^{12n}$	✓ substitution into correct formula	
	$\log(1.01)^{12n} = \log\left(\frac{150}{18}\right)$ $12n = \frac{\log\left(\frac{150}{18}\right)}{\log(1.01)}$	✓ correct use of logs	
	log(1,01)	✓ n value	
	12n = 213,084 $n = 17,76$	✓ answer	(4)
5.1.2	$\therefore 18 \text{ years}$ $r \left[(1+i)^n - 1 \right]$		
	$F = \frac{x \left[(1+i)^n - 1 \right]}{i}$ $= \frac{150 \left[\left(1 + \frac{0,12}{12} \right)^{216} - 1 \right]}{\frac{0,12}{12}}$ $F = R113 679,09$	 ✓ i value ✓ n value ✓ substitution into correct formula ✓ answer 	(4)
5.2.1	$\left(1 + \frac{i}{2}\right)^2 = \left(1 + \frac{0,16}{4}\right)^4$ $= (1,04)^4$ $i = 2[(1,04)^2 - 1]$ $= 0,1632$	$\checkmark \left(1 + \frac{i}{2}\right)^{2}$ $\checkmark \left(1 + \frac{0.16}{4}\right)^{4}$ $\checkmark \text{ simplification}$	
	Rate = 16,32%		(3)
5.2.2	$P = \frac{x \left[1 - (1 + i)^{-n}\right]}{i}$ $P = \frac{2500 \left[1 - \left(1 + \frac{0,1632}{2}\right)^{-15}\right]}{\frac{0,1632}{2}}$	✓ substitution into correct formula ✓ value of <i>i</i> ✓ value of <i>n</i>	

NSC	
= R21191,22	✓answer
	(4)

Penalty of -1 for notation in Question 6

QUESTIO	N 6	[14]
6.1	$f(x) = 3x^{2} - 2$ $f(x+h) = 3(x+h)^{2} - 2$ $f(x+h) = 3x^{2} + 6xh + 3h^{2} - 2$	✓ substitute $f(x+h)$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h)^2 - f(x)}{h}$	
	$f'(x) = \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 2 - (3x^2 - 2)}{h}$	✓ correct substitution into formula and notation
	$f'(x) = \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 2 - 3x^2 + 2}{h}$	✓ simplification
	$f'(x) = \lim_{h \to 0} \frac{6xh + 3h^2}{h}$	
	$f'(x) = \lim_{h \to 0} \frac{h(6x + 3h)}{h}$	✓ common factor
(0.1	= 6x	✓ answer (5)
6.2.1	$f(x) = 3x^2 - 5x$ f'(x) = 6x - 5	$\begin{array}{c c} \checkmark & 6x \\ \checkmark & -5 \end{array} \tag{2}$
6.2.2	$D_{x} \left[\frac{-2x + \sqrt{x}}{x^{2}} \right]$ $= D_{x} \left[-\frac{2x}{x^{2}} + \frac{x^{\frac{1}{2}}}{x^{2}} \right]$ $= D_{x} \left[-2x^{-1} + x^{\frac{-3}{2}} \right]$ $= 2x^{-2} - \frac{3}{2}x^{\frac{-5}{2}}$	$ √ √x = x^{\frac{1}{2}} $ ✓ simplified expression $ √ 2x^{-2} $ $ √ - \frac{3}{2}x^{\frac{-5}{2}} $ (4)
6.3	$y = \left(\frac{1 - 8x^3}{1 - 2x}\right)$ $y = \left(\frac{(1 - 2x)(1 + 2x + x^2)}{1 - 2x}\right)$	✓ factors
	$y = 1 + 2x + x^2$ $\frac{dy}{dx} = 2 + 2x$	✓✓ derivative (3)

11	
NSC	

QUESTIO	N 7	[13	3]
7.1	f(x) = (x+2)(x-1)(x-3) = (x+2)(x ² -4x+3)	✓ substitution into correct for	mula
	$= x^{3} - 4x^{2} + 3x + 2x^{2} - 8x + 6$ $= x^{3} - 2x^{2} - 5x + 6$	✓ simplification	(2)
	b = -2 $c = -5$ $d = 6$		
7.2	$3x^2 - 4x - 5 = 0$	\checkmark derivative = 0	
	$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(3)(-5)}}{2(3)}$		
		✓ formula	
	$x = \frac{4 \pm \sqrt{76}}{6}$		
	$\begin{cases} x = 2,12 & or \ x = -0,79 \end{cases}$		
		\checkmark x – values	(3)
7.3	f is decreasing	✓answers	(1)
7.4	6x - 4 > 0	√inequality	
	$x > \frac{2}{3}$	✓answer	(2)
7.5	$PQ = x^3 - 2x^2 - 5x + 6 - 2x$	✓ length of PQ in terms of x	
	$= x^3 - 2x^2 - 7x + 6$		
	Max/Min: $3x^2 - 4x - 7 = 0$ (3x - 7)(x + 1) = 0	✓ derivative	
	$x = \frac{7}{3} or x = -1$	✓ x – values ✓ substitution	
	$PQ = (-1)^3 - 2(-1)^2 - 7(-1) + 6$ = 10	✓ value of PQ	(5)

QUESTION 8		[10]
8.1	$-\frac{3}{80}x^2 + 6x - 180 = 0$	✓P=0
	$x^{2} - 160x + 4800 = 0$ $(x - 120)(x - 40) = 0$	✓factors
	x = 120 or $x = 20\thereforeNo profit at 120km/h or 40km/h$	✓answer (3)
8.2	$-\frac{6}{80}x + 6 = 0$	✓ derivative
	x = 80	✓ value of x
	$P = -\frac{3}{80}(80)^2 + 6(80) - 180$	✓ substitution into correct formula
	P = 60 ∴ Most economical speed is 80km/h And a Profit of R60/h	✓ value of P (4)

TIBC	

8.3	$-\frac{3}{80}x^2 + 6x - 180 < 0$				
	$x^2 - 160x + 4800 > 0$	-	$\bigcirc\!$	✓ inequality	
	(x-120)(x-40) > 0	40	120	✓ method	
	$30 \le x < 40 or x > 120$			✓ answer	(3)

QUESTIC	ON 9	[15]	
9.1.1	Not Mutually exclusive because P(A and B) ≠0	\checkmark No \checkmark P(A and B) \neq 0	(2)
9.1.2	P(Male and Vodacom) = $\frac{48}{236} = \frac{12}{59} = 0,203$	✓answer	(1)
9.1.3	$P(Male) = \frac{120}{236} = 0,508$	✓ 0,508	
	$P(Vodacom) = \frac{100}{236} = 0,424$	✓ 0,424	
	$P(Male) \times P(Vodacom) = 0,508 \times 0,424 = 0,215$ $P(Male) \times P(Vodacom) \neq P(Male and Vodacom)$	✓ P(Male) × P(Vodacom) ≠ P(Male and Vodacom)	
	∴not independent		(3)
9.2	2!×5! 1	✓ 2! 5!	
	$\frac{2! \times 5!}{7!} = \frac{1}{21}$	✓ 7!	
		✓ answer	(3)
9.3.1	$7^3 = 343$	✓ 7 ³	
		✓ answer	(2)
9.3.2	$\frac{7!}{4!} = 210$ OR $7 \times 6 \times 5 = 210$	✓ 7!	
		✓ answer	(2)
9.3.3	$4 \times 7 \times 2 - 1 = 55$ OR $14 \times 4 - 1 = 55$	✓ 4×7×2	
		✓ answer	(2)

TOTAL: 150