

Fundamentals of Cryptography

Homework 1

Sepehr Ebadi 9933243

Question 1

1. What is the multiplicative inverse of 7 in Z9, Z10, and Z11?

$$m=9=3^2$$

$$a = 7$$

$$\phi(m) = m \times \prod_{i=1}^{k} \left\{ 1 - \frac{1}{\rho_i} \right\} = 9 \times \left(1 - \frac{1}{3} \right) = 6$$

$$a^{-1} = a^{\phi(m)-1} mod \ m = 7^{6-1} mod \ 9 = 4$$

$$m = 10 = 2 \times 5$$

$$a = 7$$

$$\phi(m) = m \times \prod_{i=1}^{k} \left\{ 1 - \frac{1}{\rho_i} \right\} = 10 \times \left(1 - \frac{1}{2} \right) \times \left(1 - \frac{1}{5} \right) = 4$$

$$a^{-1} = a^{\phi(m)-1} mod \; m = 7^{4-1} mod \; 10 = 3$$

$$m = 11 = 11$$

$$a = 7$$

$$\phi(m) = m \times \prod_{i=1}^{k} \left\{ 1 - \frac{1}{\rho_i} \right\} = 11 \times \left(1 - \frac{1}{11} \right) = 10$$

$$a^{-1} = a^{\phi(m)-1} mod \ m = 7^{10-1} mod \ 11 = 8$$

2. What is the multiplicative inverse of 9, 10, and 11 in Z7?

9:
$$m = 7 = 7$$
 $a = 9$

$$\phi(m) = m \times \prod_{i=1}^{k} \left\{ 1 - \frac{1}{\rho_i} \right\} = 7 \times \left(1 - \frac{1}{7} \right) = 6$$

$$a^{-1} = a^{\phi(m)-1} mod \ m = 9^{6-1} mod \ 7 = 4$$

$$m = 7 = 7$$

$$a = 10$$

$$\phi(m) = m \times \prod_{i=1}^{k} \left\{ 1 - \frac{1}{\rho_i} \right\} = 7 \times \left(1 - \frac{1}{7} \right) = 6$$

$$a^{-1} = a^{\phi(m)-1} mod \ m = 10^{6-1} mod \ 7 = 5$$

$$m = 7 = 7$$

$$a = 11$$

$$\phi(m) = m \times \prod_{i=1}^{k} \left\{ 1 - \frac{1}{\rho_i} \right\} = 7 \times \left(1 - \frac{1}{7} \right) = 6$$

$$a^{-1} = a^{\phi(m)-1} mod \ m = 11^{6-1} mod \ 7 = 2$$

Question 2

1.
$$x = 3^3 \mod 13$$

 $\equiv 27 \mod 13 \equiv 1 \mod 13$

2.
$$x = 3^{100} \mod 13$$

 $\equiv 3^{99} \times 3 \mod 13 \equiv (3^3)^{33} \times 3 \mod 13 \equiv 1^{33} \times 3 \mod 13 \equiv 3 \mod 13$

3.
$$x = 6^2 \mod 13$$

 $\equiv 36 \mod 13 \equiv 10 \mod 13$

4.
$$x = 6^{100} \mod 13$$

 $\equiv (6^2)^{50} \mod 13 \equiv 10^{50} \mod 13 \equiv (10^2)^{25} \mod 13 \equiv 9^{25} \mod 13$
 $\equiv (9^2)^{12} \times 9 \mod 13 \equiv (3^3)^4 \times 9 \mod 13 \equiv 9 \mod 13$

Question 3

In the affine cipher, given two pairs of plaintext-ciphertext:

$$y_1 = a. x_1 + b \bmod m$$

$$y_2 = a. x_2 + b \mod m$$

By subtracting the two ciphertexts, we have:

$$y_1 - y_2 \equiv a(x_1 - x_2) mod m$$

$$a \equiv (y_1 - y_2) \times (x_1 - x_2)^{-1} mod m$$

This is how **a** is calculated. Then for **b**, we have:

$$b \equiv y_1 - a. x_1 mod \ m \ OR \ b \equiv y_2 - a. x_2 mod \ m$$

The condition for selecting x_1 and x_2 is that the inverse of $x_1 - x_2$ must exist in mod m:

$$\gcd(x_1 - x_2, m) = 1$$

Question 4

$$P(x) = x^8 + x^4 + x^3 + x + 1$$

S_7	<i>s</i> ₆	S_5	S_4	s_3	s_2	s_1	s_0	output
1	1	1	1	1	1	1	1	$1(s_0)$
0	1	1	1	1	1	1	1	$1(s_1)$
0	0	1	1	1	1	1	1	$1(s_2)$
0	0	0	1	1	1	1	1	$1(s_3)$
0	0	0	0	1	1	1	1	$1(s_4)$
1	0	0	0	0	1	1	1	$1(s_5)$
0	1	0	0	0	0	1	1	$1(s_6)$
0	0	1	0	0	0	0	1	$1(s_7)$
1	0	0	1	0	0	0	0	$0(s_8)$
1	1	0	0	1	0	0	0	$0(s_{9})$
1	1	1	0	0	1	0	0	$0(s_{10})$
0	1	1	1	0	0	1	0	$0(s_{11})$
0	0	1	1	1	0	0	1	$1(s_{12})$
1	0	0	1	1	1	0	0	$0(s_{13})$
0	1	0	0	1	1	1	0	$0(s_{14})$
0	0	1	0	0	1	1	1	$1(s_{15})$

the first 16-bit output based on the table : $(10010000111111111)_2 = (90FF)_{16}$

Question 5

1. What is the initialization vector?

Given that the degree of the LFSR is 3, therfore 3 first bit of key is equal to initial value of LFSR(3 initial bits go out of the LFSR without changing).

LFSR Initialization Vector = 001

2. Determine the feedback coefficients of the LFSR.

Now, by substituting the key value (0010111), we find the feedback coefficients:

$$s0=0$$
, $s1=0$, $s2=1 \Rightarrow 1p2+0p1+0p0=0$ (s3)
 $s1=0$, $s2=1$, $s3=0 \Rightarrow 0p2+1p1+0p0=1$ (s4)

$$s2=1$$
, $s3=0$, $s4=1 \Rightarrow 1p2+0p1+1p0=1$ ($s5$)

By solving these 3 equations and 3 unknowns, the feedback coefficients are obtained as:

$$p0=1$$
 , $p1=1$, $p2=0$

Thus, the LFSR's characteristic polynomial is as follows:

$$P(x) = x^3 + p_2 x^2 + p_1 x + p_0$$

$$P(x) = x^3 + x + 1$$

3. Draw a circuit diagram and verify the output sequence of the LFSR.

<i>S</i> ₂	S_1	s_0	output
1	0	0	$0(s_0)$
0	1	0	$0(s_1)$
1	0	1	$1(s_2)$
1	1	0	$0(s_3)$
1	1	1	$1(s_4)$
0	1	1	$1(s_5)$
0	0	1	$1(s_6)$

"CrypTool"

Question 6

Question 7

