

Bridge of Life edul Education

量子啟發演算法用於 貨幣套利高頻交易

https://www.boledu.org/ 2022/5

量子技術用於金融問題之現況

• 這是JPMorgan及Chicago大學在2022年發表的研究資料,其中分類了金融領域常見的問題及對應的量子技術解決方案

問題分類	案例	傳統解決方案	量子解決方案
Numerical Risk Modeling	(1) Derivative Pricing(2) Risk Analysis	(1) Monte Carlo Integration(2) Machine Learning	(1) Quantum Monte Carlo Integration(2) Quantum Machine Learning
Optimization	(1) Portfolio Optimization(2) Hedging(3) Swap Netting(4) Optimal Arbitrage(5) Credit Scoring(6) Financial Crash Prediction	(1) Branch-and-bound for non- convex cases and Interior- Point Methods for certainconvex cases	(1) Quantum Optimization
Machine Learning	(1) Anomaly Detection(2) Natural Language Modeling(3) Risk Clustering	(1) Deep Learning(2) Cluster Analysis	(1) Quantum Machine Learning(2) Quantum Cluster Analysis

貨幣套利

- 貨幣套利交易是貨幣市場上最受歡迎的交易策略之一,它基於"低買高賣"。實施套利交易的最佳方法是確定哪種貨幣提供高收益,哪種貨幣提供較低收益。
 - 匯率價差套利的例子,假設倫敦交易所的匯率(扣除交易成本)為1美元兌換100日元;東京交易所的匯率為1美元兌換83日元。套利者可以在東京賣出日元買入美元,在倫敦賣出美元買入日元,例如用1000日元在東京兌換12美元再將此12美元在倫敦兌換1200日元,獲取200日元的利潤。

貨幣套利問題

- 交叉匯率套利是一連串的匯率轉換用來套利
- 範例中最佳套利路徑是EUR->JPY->USD-> CHF->EUR,獲利率為1.002424
- 找到套利機會可被當作有方向圖形中的最佳路徑 尋找問題,其中節點是貨幣;邊是貨幣交換率,這 是組合最佳化問題
- 目前已展示可以解決組合最佳化問題有
 - D-wave's的量子退火(Amazon Braket有提供)
 - 相干伊辛機(Coherent Ising Machine)
 - ASIC或是FPGA的模擬退火加速器
 - 模擬分叉具高平行度的算法加速器

量子電腦 vs 傳統電腦

- 這裡參考了一篇2022年的技術資料,比較了D-wave's的混合量子退火與其它方案用於 投資組合問題之解決,其中Tensor Networks在傳統電腦上使用了量子啟發演算法
- 下面3個表格各別為Dataset複雜度(例如Nt為business months及Ntot為解組合問題時複雜度的相關係數), Profits percentage及計算時間(sec)

Param.	XS	S		M	L	XI.	XXL
N	3	4		4	8	8	8
N_i N_q N_{tot} $2^{N_{\text{lost}}}$	2	5		7	17	29 2	53
N_a	1	1		1	2	2	3
N _{tot}	6	20		28	272	464	1272
2 ^{Not}	64	O(10 ⁶)		$O(10^8)$	$O(10^{81})$	$O(10^{139})$	$O(10^{382})$
K	2	3		3	5	10	15
K.	1	1		1	3	3	7
Method	- 1	xs	S	М	L	XL	XXL
VQE	2.	4%	110.000				
Exhaustive	5.	1%	13.9%				
VQE constrained	5.	1%	9.1%	7.1%			
Gekko	5.	8%	13.9%	13.69	54.1%	71.6%	
D-wave hybrid	5	8%	13.9%	13.69	18.9%	29.3%	67.6%
Tensor networks	5.	8%	13.9%	15.49	38.2%	39.6%	39.7%
Method	- 8	xs	S	М	t.	XL	XXL
VQE	- 3	278					
Exhaustive	- 0	.005	34				
VQE constrained		123	412	490			
Gekko		24	27	21	221	261	
D-wave hybrid		8	39	19	52	74	171
Tensor networks	0	.838	51	120	26649	82698	116833

結論是D-wave's的混合量子退火與Tensor Networks都能處理計算複雜度高問題 (CPU Bound問題)。但若是需即時處理的金融問題如高頻交易時,系統有網路低延遲(IO Bound問題)的要求,相較下目前傳統電腦尚有系統整體效能之優勢。

量子啟發演算法加速器

 模擬分叉算法 (Simulated Bifurcation Algorithm)是TOSHIBA於2020年發表用 於分析市場數據的新算法,儘管在傳統電腦上運行但藉助了量子啟發演算法及 FPGA加速器來處理市場數據,其運算比同時期的Coherent Ising Machine的 處理要快,並可用於貨幣套利機會的計算。

TOSHIBA的貨幣套利系統

BoLedu基金會的方案

• 我們以賽靈思(Xilinx)開源碼的加速算法交易(Accelerated Algorithmic Trading, AAT)框架為基礎並模擬芝加哥交易所(CME)環境驗證。以高階合成(High-Level Synthesis, HLS)技術來實現兩種量子啟發算法加速器: 模擬分叉機(Simulated Bifurcation Machine, SBM)及模擬量子退火(Simulated Quantum Annealing, SQA)用於貨幣套利。

模擬CME環境驗證 本地端機器 封包監控工具 外匯經紀商主機 外匯交易中心主機 可置換的SBM. Management/Control SQA **XDMA** 100000 |||•••• 交易策略 **PCle** 擴充槽 |||•••• •••• **FPGA** SPF網卡 Engine UDP /IP 遠端機器 本地端機器 OrderBook. CME封包 (PCAP檔案 tcpreplay服務 AAT Shell工具 Netcat (nc)服務 套利機會

方案比較

	BoLedu基金會的方案	TOSHIBA的方案
交易模組	Line Handler, Feed Handler, OrderBook, Pricing Engine(可置換SBM或SQA), Order Entry	Feed Handler, Exchange Rate Manager, SB Accelerator, Trading Engine, Line Handler
SB模組效能 (兩個方案Testsuite不同)	91.04%的最佳套利路徑偵測率 (5種貨幣及9組貨幣對)	90.96%的最佳套利路徑偵測率 (8種貨幣及15組貨幣對)
開源碼	軟體及硬體都開源 (Xilinx的部分依照其授權方式) 連結: https://github.com/bol-edu/quantum-inspired_trading	-
HLS技術	使用C++並基於Xilinx開發設計流程	使用OpenCL並基於Intel開發設計流程
線下(Offline)的驗證方案	提供開發者不需透過網路 可進行交易模組的設計驗證	-
主機使用者介面	提供AAT系統的交談Shell工具	-
封包格式	CME MDP 3.0 Market Data並提供 Generator及Decoder工具	FX Market Data
封包監控工具	支援CME封包的WireShark工具	-

參考資料

新聞稿

• https://theprint.in/science/toshiba-claims-it-has-developed-algorithm-faster-than-a-supercomputer/350821/

• 技術論文

- A Survey of Quantum Computing for Finance, arXiv, Jan 8, 2022
- Dynamic portfolio optimization with real datasets using quantum processors and quantum-inspired tensor networks, American Physical Society, 3 January 2022
- <u>Live Demonstration: Capturing Short-lived Currency Arbitrage Opportunities with a Simulated Bifurcation Algorithm-based Trading System, ISCAS 2020, Sevilla, Spain, October 12-14, 2020</u>
- A Currency Arbitrage Machine Based on the Simulated Bifurcation Algorithm for Ultrafast Detection of Optimal Opportunity, ISCAS 2020, Sevilla, Spain, October 12-14, 2020
- <u>Large-scale combinatorial optimization in real-time systems by FPGA-based accelerators for simulated bifurcation, HEART '21, Online, Germany, June 21-23, 2021</u>

開源專案

https://qc.stanford.edu/tensornetwork

BackUp

Reference: https://www.sciencedirect.com/science/article/abs/pii/S0141933119303333

Reference: https://link.springer.com/chapter/10.1007/978-3-540-25928-2_14

