MIT OpenCourseWare http://ocw.mit.edu

2.007 Design and Manufacturing I Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

2.007 –Design and Manufacturing I Optimization and Solution of Systems

Today's Agenda

- Seeding and impounding procedures
- Methods for Solving Systems
 - Newton-Raphson
 - Secant
 - Bisection
- Examples related to mechanism design

Seeding

- Run on the table unopposed
- Timing and set-up as in the actual contest
- Three tries best of three counts
- Your <u>"seeding card"</u> is essential
 - Get your scores recorded and initialed
 - Don't lose your card
- "In-lab" competition
 - Basically a way to get round 1 partly finished
 - Same as next Weds but not broadcast

Impounding

- A way to bring the work to an end
- Your machine is checked
 - Safety
 - Wiring
 - Rules issues
- Your <u>"seeding card"</u> is essential
 - Your impound checks are recorded
 - Your card goes in the WOODEN BOX

Linear Systems (Back Solving)

```
A=[1 \ 1 \ 1;
   0 2 3;
   0 0 6];
b=[3; 1; 4];
x(3)=b(3)/A(3,3)
x(2)=(b(2)-x(3)*A(2,3))/A(2,2)
x(1)=(b(1)-x(2)*A(1,2)-x(3)*A(1,3))/A(1,1);
norm(b-A*x')
```

Linear Systems (Solving)

```
A = [1 \ 1 \ 1;
    1 2 3;
   1 3 6];
b=[3; 1; 4];
x=A\b
b=[5; 0; -10];
x=A\b
```

Linear Systems (Existence of Soln)

```
A=[1 \ 1 \ 1;
   1 2 3;
   1 3 6;
  -1 -1 1];
b=[3; 1; 4; 7];
x=A\b;
norm(b-A*x)
```

Linear Systems (Existence of Soln)

```
A=[1 \ 1 \ 1;
   1 2 3;
   1 3 6;
  -1 -1 1];
b=[3; 1; 4; 6];
x=A\b;
norm(b-A*x)
```

Linear Systems (Multiple Solutions)

```
A=[1 \ 1 \ 1;
                   b3=5*b1-2*b2;
     1 2 3;
                   x3=A\b3;
     1 3 6:
                   norm(b3-A*x3)
    -1 -1 1];
                   norm(x3-(5*x1-2*x2))
 b1=[3; 1; 4; 7];
 x1=A\b1; norm(b1-A*x1)
 b2=[5; 0; -10; -15];
 x2=A\b2; norm(b2-A*x2)
What will happen when I run this code?
```

Comparisons

Linear Systems

- Sometimes solved sequentially
- # of equations =# of unknowns
- # of equations ># of unknowns
- When we can find two solutions

Nonlinear systems

• ?

• ?

• ?

• ?

Newton-Raphson Method

- Make a guess at the solution
- Make a linear approximation of a function by e.g., finite difference
- Solve the linear system
- Use that solution as a new guess
- Repeat until some criterion is met

Newton-Raphson Method

If one equation in one variable

$$x_{k+1} = x_k + \frac{f(x_k)}{f'(x_k)}$$

Generalizing to systems of equations

$$\mathbf{J}_{F}(\mathbf{x}_{k})(\mathbf{x}_{k+1}-\mathbf{x}_{k})=-\mathbf{F}(\mathbf{x}_{k})$$

Solve this system for \mathbf{x}_{k+1}

A Fundamental Difficulty

 If there are many solutions, which solution you find will depend on the initial guess

- If you seek to find a root of a function f(x), and you use the Newton-Raphson method.
- Choose all the numbers corresponding to outcomes that are NOT possible:
 - 1) You find the same solution no matter what initial guess you use
 - 2) You find many different solutions using many different initial guesses
 - 3) You cannot find a solution because none exists
 - 4) You cannot find a solution even though one exists, even with many, many initial guesses

Secant Method

No derivative needed!
Uses the current and the last iterate to compute the next one

 Needs two starting values

Secant Method

$$x_{k+1} = \frac{x_k f(x_{k-1}) - x_{k-1} f(x_k)}{f(x_{k-1}) - f(x_k)}$$

Bisection Methods

- Given an interval in which a solution is known to lie
- Look in the middle and determine which half has the root
- Iterate until the remaining interval is small enough

Bisection Methods

You seek to find a root of a continuous function f(x), and you use the bisection method. Your initial guesses are such that

$$f(x_0)f(x_1) < 0$$

What are the possible outcomes? Choose all the numbers that apply:

- 1) You find a solution
- 2) You cannot find a solution even though one exists
- 3) You cannot find a solution because no solution exists

Rates of Convergence

Linear convergence

$$\left| x_{k} - x^{*} \right| \leq \alpha \left| x_{k-1} - x^{*} \right|$$

$$\left| x_{k} - x^{*} \right| \leq \alpha^{k} \left| x_{0} - x^{*} \right|$$

• Super linear convergence

$$\left| x_{k} - x^{*} \right| \le \alpha_{k-1} \left| x_{k-1} - x^{*} \right|$$

$$\alpha_{k-1} \to 0 \quad \text{as } k \to \infty$$

Quadratic convergence

$$\left|x_{k}-x^{*}\right| \leq \alpha \left|x_{k-1}-x^{*}\right|^{2}$$

Rates of Convergence

- Linear convergence
 - Bisection (with α =1/2)

$$\left| x_k - x^* \right| \le \alpha \left| x_{k-1} - x^* \right|$$

- Super linear convergence
 - Secant method if x^* is simple

$$\left| x_{k} - x^{*} \right| \le \alpha_{k-1} \left| x_{k-1} - x^{*} \right|$$

$$\alpha_{k-1} \to 0 \quad \text{as } k \to \infty$$

 $|x_k - x^*| \le \alpha |x_{k-1} - x^*|^2$

- Quadratic convergence
 - Newton-Raphson method if x^* is simple

You seek to find a root of a continuous function f(x), and you use the bisection method. Your initial guesses are such that

$$x_0 - x_1 = 10$$

You want to know that your estimated solution satisfies $|x_k - x^*| < 10^{-5}$

About how many iterations (i.e. k=?)

- 1) ~2
- 2) ~20
- 3)~200
- 4)~10^5

Optimization

- You seek $\min f(\mathbf{x})$
- The first order optimilality condition is

$$\nabla f(\mathbf{x}_*) = \mathbf{0}^T$$

Example Problem

- Here is a leg from a simple robot
- If the servo motor starts from the position shown and rotates 45 deg CCW
- How far will the "foot" descend?

Representing the Geometry

```
a = [0 \ 0 \ 0 \ 1]';
b=[1.527 0.556 0 1]';
c=[2.277 -1.069 0 1]';
d=[0.75 -1.625 0 1]';
e=[2.277 -3.069 0 1]';
f = [-1.6 -1.3 \ 0 \ 1]';
q=[-1.4 -1.75 0 1]';
h=[-1.527 -0.556 \ 0 \ 1]';
leq=[f q h a b c d c e];
names=char('f','q','h','a','b
','c','d','c','e');
plot(leg(1,:),leg(2,:),'o-b')
axis equal
axis([-2.5 \ 3.5 \ -4.5 \ 1.5]);
for i=1:length(leg)
    text(leg(1,i)+0.1,
leg(2,i)-0.1, names(i)
end
```


Define a Few Functions

```
R=@(theta) [cos(theta) -sin(theta) 0 0;
             sin(theta) cos(theta) 0 0;
                                  1 0;
             ()
                                    0 1];
T=@(p) [1 0 0 p(1);
        0 \ 1 \ 0 \ p(2);
        0 \ 0 \ 1 \ p(3);
        0 0 0 11;
Rp=@(theta,p) T(p)*R(theta)*T(-p);
```

Compute a Solution

```
0
-3
      -2
                  -1
```

```
theta=45*pi/180;
q2=Rp(theta,f)*q;
link1=@(phi) norm(q-h)-norm(q2-Rp(phi,a)*h);
phi=fzero(link1,0);
h2=Rp(phi,a)*h;
b2=Rp(phi,a)*b;
link2=@(qamma) norm(b-c)-norm(b2-Rp(qamma,d)*c);
gamma=fzero(link2,0);
c2=Rp(gamma,d)*c;
link3=@(beta) norm(b-c)-norm(b2-Rp(beta,b2)*T(b2-b)*c);
beta=fzero(link3,0);
e2=Rp(beta,b2)*T(b2-b)*e;
leq2=[f q2 h2 a b2 c2 d c2 e2];
hold on
plot(leg2(1,:),leg2(2,:),'o-r')
```

Compute Another Solution

```
theta=45*pi/180;
q2=Rp(theta,f)*q;
                                                 -2
link1=@(phi) norm(g-h)-norm(g2-Rp(phi,a)*h);
phi=fzero(link1,pi);
h2=Rp(phi,a)*h;
b2=Rp(phi,a)*b;
link2=@(gamma) norm(b-c)-norm(b2-Rp(gamma,d)*c
gamma=fzero(link2,0);
c2=Rp(gamma,d)*c;
link3=@(beta) norm(b-c)-norm(b2-Rp(beta,b2)*T(
beta=fzero(link3,0);
e2=Rp(beta,b2)*T(b2-b)*e;
leg2=[f g2 h2 a b2 c2 d c2 e2];
hold on
plot(leq2(1,:), leq2(2,:), 'o-r')
```

Representing the Geometry

```
a=[0 0 0 1]';
b=[1.527 0.556 0 1]';
c=[2.277 -1.069 0 1]';
d=[0.75 -1.625 0 1]';
e=[2.277 -3.069 0 1]';
f=[-1.6 -1.3 0 1]';
g=[-1.4 -1.75 0 1]';
h=[-1.527 -0.556 0 1]';
leg=[f g h a b c b b+0.0
```



```
leg=[f g h a b c b b+0.05*Rp(-pi/2,b)*(h-b)
h+0.05*Rp(pi/2,h)*(b-h) h b c d c e e+0.1*Rp(-pi/2,e)*(c-e)
c+0.1*Rp(-pi/2,c)*(b-c) b+0.1*Rp(pi/2,b)*(c-b) b];
names=char('f','g','h','a','b','c','d','e');
plot(leg(1,:),leg(2,:),'o-b')
axis equal
axis([-2.5 \ 3.5 \ -4.5 \ 1.5]);
loc=[1 2 3 4 5 6 13 15];
for i=1:8
    text(leg(1,loc(i))+0.1, leg(2,loc(i))-0.1, names(i))
end
```

Animate the Leg Mechanism

```
instant = 0.0001; % pause between frames
leg=[f g h a b c b b+0.05*Rp(-pi/2,b)*(h-b) h+0.05*Rp(pi/2,h)*(b-h) h b c d c
e e+0.1*Rp(-pi/2,e)*(c-e) c+0.1*Rp(-pi/2,c)*(b-c) b+0.1*Rp(pi/2,b)*(c-b) b];
p = plot(leq(1,:), leq(2,:), 'o-b', ...
              'EraseMode', 'normal');
axis equal
axis([-2.5 \ 3.5 \ -4.5 \ 1.5]);
options = optimset('Display','off');
for theta=0:0.5*pi/180:210*pi/180
      q2=Rp(theta,f)*g;
       link1=@(phi) norm(q-h)-norm(q2-Rp(phi,a)*h);
      phi=fzero(link1,0);
      h2=Rp(phi,a)*h;
      b2=Rp(phi,a)*b;
                                                                                                                                                                              -3
       link2=@(gamma) norm(b-c)-norm(b2-Rp(gamma,d)*c);
      gamma=fzero(link2,0);
      c2=Rp(gamma,d)*c;
                                                                                                                                                                                                   -1
       link3=@(beta) norm(c2-Rp(beta,b2)*T(b2-b)*c);
      beta=fsolve(link3,0,options);
       e2=Rp(beta,b2)*T(b2-b)*e;
    leg=[f g2 h2 a b2 c2 b2 b2+0.05*Rp(-pi/2,b2)*(h2-b2) h2+0.05*Rp(pi/2,h2)*(b2-b2) h2+
h2) h2 b2 c2 d c2 e2 e2+0.1*Rp(-pi/2,e2)*(c2-e2) c2+0.1*Rp(-pi/2,c2)*(b2-c2)
b2+0.1*Rp(pi/2,b2)*(c2-b2) b2];
       set(p,'XData',leg(1,:), 'YData',leg(2,:))
      pause(instant)
end
```

Back-Drive the Leg with Link cd

```
instant = 0.0001; % pause between frames
leg=[f g h a b c b b+0.05*Rp(-pi/2,b)*(h-b) h+0.05*Rp(pi/2,h)*(b-h) h b c d c
e e+0.1*Rp(-pi/2,e)*(c-e) c+0.1*Rp(-pi/2,c)*(b-c) b+0.1*Rp(pi/2,b)*(c-b) b];
p = plot(leg(1,:), leg(2,:), 'o-b', ...
              'EraseMode', 'normal');
axis equal
axis([-2.5 \ 3.5 \ -4.5 \ 1.5]);
                                                                                                                                                                          0
for qamma=0:-0.5*pi/180:-50*pi/180
      c2=Rp(gamma,d)*c;
      link1=@(phi) norm(b-c)-norm(Rp(phi,a)*b-c2);
      phi=fzero(link1,0);
      b2=Rp(phi,a)*b;
      h2=Rp(phi,a)*h;
      link2=@(theta) norm(q-h)-norm(Rp(theta,f)*q-h2);
                                                                                                                                                                         -3
      theta=fzero(link2,0);
      g2=Rp(theta,f)*g; leg=[f g2 h2 a b2 c2 d c2 e2];
      link3=@(beta) norm(c2-Rp(beta,b2)*T(b2-b)*c);
      beta=fsolve(link3,0,options);
                                                                                                                                                                                   -2
                                                                                                                                                                                                  -1
                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                 2
                                                                                                                                                                                                                                                                3
                                                                                                                                                                                                                                 1
      e2=Rp(beta,b2)*T(b2-b)*e;
   leg=[f g2 h2 a b2 c2 b2 b2+0.05*Rp(-pi/2,b2)*(h2-b2) h2+0.05*Rp(pi/2,h2)*(b2-b2) h2+
h2) h2 b2 c2 d c2 e2 e2+0.1*Rp(-pi/2,e2)*(c2-e2) c2+0.1*Rp(-pi/2,c2)*(b2-c2)
b2+0.1*Rp(pi/2,b2)*(c2-b2) b2];
      set(p,'XData',leg(1,:), 'YData',leg(2,:))
      pause(instant)
end
```

Matlab's fsolve

```
myfun=inline('[2*x(1) - x(2) - exp(-x(1));
-x(1) + 2*x(2) - exp(-x(2))]');

x0 = [-5; -5]; % Make a starting guess at the solution options=optimset('Display','iter');
[x,fval] = fsolve(myfun,x0,options)
```

			Norm of	First-order	Trust-region
Iteration	Func-coun	f(x)	step	optimality	radius
0	3	47071.2		2.29e+004	1
1	6	12003.4	1	5.75e+003	1
2	9	3147.02	1	1.47e+003	1
3	12	854.452	1	388	1
4	15	239.527	1	107	1
5	18	67.0412	1	30.8	1
6	21	16.7042	1	9.05	1
7	24	2.42788	1	2.26	1
8	27	0.032658	0.759511	0.206	2.5
9	30	7.03149e-006	0.111927	0.00294	2.5
10	33	3.29525e-013	0.00169132	6.36e-007	2.5
Ontimigation				logg than optio	

Optimization terminated: first-order optimality is less than options.TolFun.

x =

0.5671

0.5671

fval =

1.0e-006 *

-0.4059

-0.4059

Add a Link

```
a=[0 \ 0 \ 0 \ 1]';
b=[1.527 \ 0.556 \ 0 \ 1]';
c=[2.277 -1.069 0 1]';
d=[0.75 -1.625 0 1]';
e=[2.277 -3.069 0 1]';
f = [-1.6 -1.3 \ 0 \ 1]';
q=[-1.4 -1.75 0 1]';
h=[-1.527 -0.556 \ 0 \ 1]';
i=a+(c-b)/2;
j=b+(c-b)/2;
leg=[f g h a b j i j c b b+0.05*Rp(-
pi/2,b)*(h-b) h+0.05*Rp(pi/2,h)*(b-h) h b c d
c = e+0.1*Rp(-pi/2,e)*(c-e) c+0.1*Rp(-
pi/2,c)*(b-c) b+0.1*Rp(pi/2,b)*(c-b) b];
plot(leg(1,:),leg(2,:),'o-b')
axis equal
axis([-2.5 \ 3.5 \ -4.5 \ 1.5]);
```


Animate the New Mechanism

```
instant = 0.0001; % pause between frames
leq=[f q h a b j i j c b b+0.05*Rp(-pi/2,b)*(h-b) h+0.05*Rp(pi/2,h)*(b-h) h b c d c e
e+0.1*Rp(-pi/2,e)*(c-e) c+0.1*Rp(-pi/2,c)*(b-c) b+0.1*Rp(pi/2,b)*(c-b) b];
p = plot(leq(1,:), leq(2,:), 'o-b', ...
            'EraseMode', 'normal');
axis equal
axis([-2.5 \ 3.5 \ -4.5 \ 1.5]);
options = optimset('Display','on','TolX',10^-6, 'TolFun',10^-6);
for theta=0:0.5*pi/180:210*pi/180
      q2=Rp(theta,f)*q;
      link1=@(phi) norm(q-h)-norm(q2-Rp(phi,a)*h);
     phi=fzero(link1,0);
     h2=Rp(phi,a)*h;
     b2=Rp(phi,a)*b;
      link2=@(gamma) norm(b-c)-norm(b2-Rp(gamma,d)*c);
      gamma=fzero(link2,0);
     c2=Rp(qamma,d)*c;
      link3=@(beta) norm(c2-Rp(beta,b2)*T(b2-b)*c);
     beta= fsolve(link3,0,options);
                                                                                                                                                                                                     -2
                                                                                                                                                                                                                 -1
                                                                                                                                                                                                                                                        2
      e2=Rp(beta,b2)*T(b2-b)*e;
      joint3=@(alpha) norm(Rp(beta,b2)*T(b2-b)*j -Rp(alpha,i)*j);
      alpha=fsolve(joint3,0, options);
      j2= Rp(alpha,i)*j;
      leg=[f g2 h2 a b2 j2 i j2 c2 b2 b2+0.05*Rp(-pi/2,b2)*(h2-b2) h2+0.05*Rp(pi/2,h2)*(b2-b2) h2+0.05*Rp(pi/2,h2)*(b2
h2) h2 b2 c2 d c2 e2 e2+0.1*Rp(-pi/2,e2)*(c2-e2) c2+0.1*Rp(-pi/2,c2)*(b2-c2)
b2+0.1*Rp(pi/2,b2)*(c2-b2) b2];
set(p,'XData',leg(1,:), 'YData',leg(2,:))
     pause(instant)
end
```

Try Another Geometry

```
i=a+(c-b)/4; i=b+(c-b)/2;
instant = 0.0001; % pause between frames
leq=[f q h a b j i j c b b+0.05*Rp(-pi/2,b)*(h-b) h+0.05*Rp(pi/2,h)*(b-h) h b c d c e
e+0.1*Rp(-pi/2,e)*(c-e) c+0.1*Rp(-pi/2,c)*(b-c) b+0.1*Rp(pi/2,b)*(c-b) b];
p = plot(leg(1,:), leg(2,:), 'o-b', ...
            'EraseMode', 'normal');
axis equal; axis([-2.5 \ 3.5 \ -4.5 \ 1.5]);
for theta=0:0.5*pi/180:210*pi/180
      q2=Rp(theta,f)*q;
      link1=@(phi) norm(q-h)-norm(q2-Rp(phi,a)*h);
     phi=fzero(link1,0);
     h2=Rp(phi,a)*h;
     b2=Rp(phi,a)*b;
      link2=@(gamma) norm(b-c)-norm(b2-Rp(gamma,d)*c);
      gamma=fzero(link2,0);
      c2=Rp(qamma,d)*c;
      beta=acos((b-c)'*(b2-c2)/norm(b-c)^2);
      e2=Rp(beta,b2)*T(b2-b)*e;
      joint3=@(alpha) norm(Rp(beta,b2)*T(b2-b)*j -Rp(alpha,i)*j);
      options = optimset('Display','on','TolX',10^-6, 'TolFun',10^-6);
      alpha=fsolve(joint3,0, options);
      j2= Rp(alpha,i)*j;
   leg=[f g2 h2 a b2 j2 i j2 c2 b2 b2+0.05*Rp(-pi/2,b2)*(h2-b2) h2+0.05*Rp(pi/2,h2)*(b2-b2) h2+0.05*Rp(pi/2,h2)*(b2
h2) h2 b2 c2 d c2 e2 e2+0.1*Rp(-pi/2,e2)*(c2-e2) c2+0.1*Rp(-pi/2,c2)*(b2-c2)
b2+0.1*Rp(pi/2,b2)*(c2-b2) b2];
      set(p,'XData',leg(1,:), 'YData',leg(2,:))
     pause(instant)
end
```

3 Position Synthesis

- Say we want a mechanism to guide a body in a prescribed way
- Pick 3 positions
- Pick two attachment points
- The 4 bar mechanism can be constructed graphically

Discussion Question

 If you do not specify the attachment point, how many positions can you specify and still generally retain the capability to synthesize a mechanism?

1)3

2)4

3)5

4)>5

Representing the Desired Motions

```
-2
b=[1.527 0.556 0 1]';
c=[2.277 -1.069 0 1]';
                                               -3
e=[2.277 -3.069 0 1]';
leg=[b c e e+0.1*Rp(-pi/2,e)*(c-e) c+0.1*Rp(-pi/2,c)*(b-c)
b+0.1*Rp(pi/2,b)*(c-b) b];
Beta12=-5*pi/180; Beta13=-10*pi/180; Beta14=-12*pi/180;
dy12=-0.3; dy13=-0.7; dy14=-1.3;
leq2 = T([0,dy12,0])*Rp(Beta12,e)*leq;
leg3= T([0,dy13,0])*Rp(Beta13,e)*leg;
leq4 = T([0,dy14,0])*Rp(Beta14,e)*leq;
plot(leg(1,:), leg(2,:), 'o-b'); hold on;
plot(leg2(1,:),leg2(2,:),'o-r')
plot(leq3(1,:),leq3(2,:),'o-y')
plot(leq4(1,:), leq4(2,:), 'o-q')
axis equal; axis([-2.5 \ 3.5 \ -4.5 \ 1.5]);
```

Synthesize the Leg Mechanism

```
ax=0; ay=0;
bx=1.527; by=0.556;
cx=2.277; cy=-1.069;
dx=0.75; dy=-1.625;
links=@(x)...
    [norm([x(1); x(2); 0; 1]-[x(3); x(4); 0; 1])-norm([x(1); x(2);
0; 1]-T([0,dy12,0])*Rp(Beta12,e)*[x(3); x(4); 0; 1]);...
    norm([x(1); x(2); 0; 1]-[x(3); x(4); 0; 1])-norm([x(1); x(2);
0; 1]-T([0,dy13,0])*Rp(Beta13,e)*[x(3); x(4); 0; 1]);...
   norm([x(1); x(2); 0; 1]-[x(3); x(4); 0; 1])-norm([x(1); x(2);
0; 1]-T([0,dy14,0])*Rp(Beta14,e)*[x(3); x(4); 0; 1]);...
   norm([x(7); x(8); 0; 1]-[x(5); x(6); 0; 1])-norm([x(7); x(8);
0; 1]-T([0,dy12,0])*Rp(Beta12,e)*[x(5); x(6); 0; 1]);...
    norm([x(7); x(8); 0; 1]-[x(5); x(6); 0; 1])-norm([x(7); x(8);
0; 1]-T([0,dy13,0])*Rp(Beta13,e)*[x(5); x(6); 0; 1]);...
   norm([x(7); x(8); 0; 1]-[x(5); x(6); 0; 1])-norm([x(7); x(8);
0; 1]-T([0,dy14,0])*Rp(Beta14,e)*[x(5); x(6); 0; 1])];
xq=[ax;ay;bx;by;cx;cy;dx;dy];
x=fsolve(links,xq);
a=[x(1); x(2); 0; 1]; bs=[x(3); x(4); 0; 1];
cs=[x(5); x(6); 0; 1]; d=[x(7); x(8); 0; 1];
```

Animate the Synthesized Mechanism

```
instant = 0.0001; % pause between frames
leq=[b c e +0.1*Rp(-pi/2,e)*(c-e) c+0.1*Rp(-pi/2,c)*(b-c) b+0.1*Rp(pi/2,b)*(c-b) b bs cs
cl;
mech=[f q h a bs h bs cs d cs c];
p2 = plot(mech(1,:),mech(2,:),'o-r','EraseMode', 'normal'); hold on;
p1 = plot(leg(1,:),leg(2,:),'o-b','EraseMode', 'normal');
axis equal
axis([-2.5 \ 3.5 \ -4.5 \ 1.5]);
for theta=0:0.5*pi/180:70*pi/180
  q2=Rp(theta,f)*q;
  link1=@(phi) norm(q-h)-norm(q2-Rp(phi,a)*h);
  phi=fzero(link1,0);
  h2=Rp(phi,a)*h;
  bs2=Rp(phi,a)*bs;
  link2=@(gamma) norm(bs-cs)-norm(bs2-Rp(gamma,d)*cs);
  gamma=fzero(link2,0);
  cs2=Rp(gamma,d)*cs;
  link3=@(beta) norm(cs2-Rp(beta,bs2)*T(bs2-bs)*cs);
  beta=fsolve(link3,0,options);
  b2=Rp(beta,bs2)*T(bs2-bs)*b;
  c2=Rp(beta,bs2)*T(bs2-bs)*c;
  e2=Rp(beta,bs2)*T(bs2-bs)*e;
  leg=[b2 c2 e2 e2+0.1*Rp(-pi/2,e2)*(c2-e2) c2+0.1*Rp(-pi/2,c2)*(b2-c2)
b2+0.1*Rp(pi/2,b2)*(c2-b2) b2 bs2 cs2 c2];
  set(p1,'XData',leg(1,:), 'YData',leg(2,:))
  mech=[f q2 h2 a bs2 h2 bs2 cs2 d cs2 c2];
  set(p2,'XData',mech(1,:), 'YData',mech(2,:))
  set(p1,'XData', leg(1,:), 'YData',leg(2,:))
  pause(instant)
end
```

Path Generation

- Define a set of points through which a location on a moving body should travel
- Allow this point to be freely selected on the moving body
- Allow the body to rotate as needed
- Solve the system of equations

Discussion Question

 How many points can you specify and still generally retain the capability to synthesize a mechanism?

1)4

2)5-7

3)7-9

4)>9

Optimization

An "optimal"
 mechanism if the
 goal is to minimize
 the sum squared
 deviations

Optimization Under Constraints

- An "optimal"
 mechanism if the
 goal is to minimize
 the sum squared
 deviations
- AND limit the link lengths to less than a specified amount

Next Steps

- Thursday 30 April
 - Exam discussion
 - Professional ethics
- Tuesday 5 May
 - Contest procedures
- Weds 6 May (First night)
- Thursday 7 May
 - No lecture
 - Second night of contest