$12n_{0552} (K12n_{0552})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 5u^{20} + 56u^{19} + \dots + 4b - 116, \ 9u^{20} + 75u^{19} + \dots + 16a + 72, \ u^{21} + 11u^{20} + \dots - 80u - 16 \rangle$$

$$I_2^u = \langle -u^{16} + u^{15} + \dots + b + 5, \ -3u^{16} - 9u^{15} + \dots + 2a - 4, \ u^{17} + u^{16} + \dots + 2u + 2 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 38 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 5u^{20} + 56u^{19} + \dots + 4b - 116, \ 9u^{20} + 75u^{19} + \dots + 16a + 72, \ u^{21} + 11u^{20} + \dots - 80u - 16 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.562500u^{20} - 4.68750u^{19} + \dots - 16.7500u - 4.50000 \\ -\frac{5}{4}u^{20} - 14u^{19} + \dots + \frac{241}{2}u + 29 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{3}{16}u^{20} + \frac{31}{16}u^{19} + \dots - \frac{85}{8}u^{2} - \frac{7}{2}u \\ -\frac{5}{8}u^{20} - \frac{49}{8}u^{19} + \dots + 29u + 7 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{3}{18}u^{20} + 3u^{19} + \dots + \frac{159}{4}u + \frac{23}{2} \\ 11^{8}u^{20} + \frac{121}{8}u^{19} + \dots - \frac{275}{2}u - 34 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.562500u^{20} - 4.43750u^{19} + \dots - 7.25000u + 0.500000 \\ -\frac{7}{4}u^{20} - \frac{39}{2}u^{19} + \dots + \frac{281}{2}u + 33 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{3}{16}u^{20} + \frac{31}{16}u^{19} + \dots - \frac{63}{2}u - 8 \\ \frac{9}{8}u^{20} + \frac{85}{8}u^{19} + \dots - 42u - 11 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{11}{16}u^{20} - \frac{85}{16}u^{19} + \dots - \frac{213}{4}u - 14 \\ -\frac{5}{2}u^{20} - 27u^{19} + \dots + 225u + 55 \end{pmatrix}$$

(ii) Obstruction class = -1

$$\begin{array}{l} \textbf{(iii) Cusp Shapes} = \frac{21}{2}u^{20} + \frac{225}{2}u^{19} + \frac{1289}{2}u^{18} + 2524u^{17} + \frac{14905}{2}u^{16} + \frac{34975}{2}u^{15} + \\ \frac{67375}{2}u^{14} + 54537u^{13} + \frac{151085}{2}u^{12} + \frac{181727}{2}u^{11} + \frac{191943}{2}u^{10} + \frac{179037}{2}u^{9} + 73543u^{8} + \\ 52381u^{7} + 31237u^{6} + \frac{28777}{2}u^{5} + 3949u^{4} - 589u^{3} - 1353u^{2} - 726u - 166 \end{array}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{21} + 9u^{20} + \dots + 896u - 256$
c_{2}, c_{7}	$u^{21} + 11u^{20} + \dots - 80u - 16$
c_3	$u^{21} - 11u^{20} + \dots - 8656u - 2512$
c_4, c_6, c_{10} c_{11}	$u^{21} + 27u^{19} + \dots + u - 1$
c_5, c_8	$u^{21} + 2u^{20} + \dots + 28u^2 - 1$
c_9, c_{12}	$u^{21} + 4u^{20} + \dots - 5u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{21} + 5y^{20} + \dots + 2367488y - 65536$
c_2, c_7	$y^{21} + 9y^{20} + \dots + 896y - 256$
<i>c</i> ₃	$y^{21} - 107y^{20} + \dots - 395058816y - 6310144$
c_4, c_6, c_{10} c_{11}	$y^{21} + 54y^{20} + \dots - 9y - 1$
c_5, c_8	$y^{21} - 46y^{20} + \dots + 56y - 1$
c_9, c_{12}	$y^{21} + 2y^{20} + \dots - y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.472469 + 0.828155I		
a = -0.488123 - 0.166277I	0.20225 + 1.98003I	2.28798 - 3.26174I
b = 0.188036 + 0.222130I		
u = 0.472469 - 0.828155I		
a = -0.488123 + 0.166277I	0.20225 - 1.98003I	2.28798 + 3.26174I
b = 0.188036 - 0.222130I		
u = -0.771804 + 0.719603I		
a = -1.319550 - 0.250548I	3.69054 + 0.94413I	3.84004 + 4.58061I
b = 0.47482 + 1.81639I		
u = -0.771804 - 0.719603I		
a = -1.319550 + 0.250548I	3.69054 - 0.94413I	3.84004 - 4.58061I
b = 0.47482 - 1.81639I		
u = 0.036593 + 0.936717I		
a = 0.078038 - 0.908614I	-1.84690 + 1.45685I	-2.25321 - 5.17450I
b = -0.472625 + 0.388644I		
u = 0.036593 - 0.936717I		
a = 0.078038 + 0.908614I	-1.84690 - 1.45685I	-2.25321 + 5.17450I
b = -0.472625 - 0.388644I		
u = -0.710005 + 0.988627I		
a = 1.54173 + 0.94297I	2.87016 - 6.56510I	-1.92301 + 3.76598I
b = -0.24228 - 2.12126I		
u = -0.710005 - 0.988627I		
a = 1.54173 - 0.94297I	2.87016 + 6.56510I	-1.92301 - 3.76598I
b = -0.24228 + 2.12126I		
u = -0.769484 + 0.051011I	0.04.050 . 4.00.100.7	0.45505 0.05005
a = -0.141173 + 0.103619I	-2.61653 + 1.28499I	0.15587 - 3.07961I
b = -0.347832 + 0.454102I		
u = -0.769484 - 0.051011I	0.01050 1.001007	0.15505 - 0.050615
a = -0.141173 - 0.103619I	-2.61653 - 1.28499I	0.15587 + 3.07961I
b = -0.347832 - 0.454102I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.435565 + 1.195780I		
a = -0.004901 - 0.689508I	-6.21856 - 2.94897I	-0.504582 + 0.049416I
b = -0.468235 + 0.470276I		
u = -0.435565 - 1.195780I		
a = -0.004901 + 0.689508I	-6.21856 + 2.94897I	-0.504582 - 0.049416I
b = -0.468235 - 0.470276I		
u = -0.472104 + 1.199130I		
a = 0.644752 + 0.145048I	-5.96069 - 5.81849I	-5.01229 + 8.57270I
b = -0.345148 - 0.550837I		
u = -0.472104 - 1.199130I		
a = 0.644752 - 0.145048I	-5.96069 + 5.81849I	-5.01229 - 8.57270I
b = -0.345148 + 0.550837I		
u = -1.49061 + 0.03728I		
a = 0.034735 + 0.714146I	-15.8145 - 3.8268I	1.96641 + 1.96096I
b = 0.00483 - 2.16677I		
u = -1.49061 - 0.03728I		
a = 0.034735 - 0.714146I	-15.8145 + 3.8268I	1.96641 - 1.96096I
b = 0.00483 + 2.16677I		
u = 0.423148		
a = -1.20478	0.913214	11.0410
b = 0.358221		
u = -0.76209 + 1.50016I		
a = 1.21983 + 1.44613I	19.0348 - 11.6307I	0. + 4.72402I
b = -0.15370 - 2.09019I		
u = -0.76209 - 1.50016I		
a = 1.21983 - 1.44613I	19.0348 + 11.6307I	04.72402I
b = -0.15370 + 2.09019I		
u = -0.80898 + 1.48155I		
a = -1.21294 - 1.39486I	19.3623 - 4.1247I	0
b = 0.18302 + 2.08076I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.80898 - 1.48155I		
a = -1.21294 + 1.39486I	19.3623 + 4.1247I	0
b = 0.18302 - 2.08076I		

$$II. \\ I_2^u = \langle -u^{16} + u^{15} + \dots + b + 5, \ -3u^{16} - 9u^{15} + \dots + 2a - 4, \ u^{17} + u^{16} + \dots + 2u + 2 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{3}{2}u^{16} + \frac{9}{2}u^{15} + \dots + \frac{19}{2}u + 2 \\ u^{16} - u^{15} + \dots - 8u - 5 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{16} - \frac{3}{2}u^{15} + \dots + \frac{3}{2}u - 1 \\ u^{15} + u^{14} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{5}{2}u^{16} + \frac{11}{2}u^{15} + \dots + \frac{21}{2}u + 8 \\ u^{16} - u^{15} + \dots - 4u - 5 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{5}{2}u^{16} + \frac{13}{2}u^{15} + \dots + \frac{21}{2}u + 3 \\ -3u^{15} - 5u^{14} + \dots - 12u - 7 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{3}{2}u^{16} - \frac{5}{2}u^{15} + \dots - \frac{1}{2}u - 1 \\ u^{16} + 2u^{15} + \dots + 3u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 5u^{16} + 9u^{15} + \dots + 20u + 6 \\ u^{16} - 3u^{15} + \dots - 13u - 10 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$u^{16} - 2u^{15} - 3u^{14} - 13u^{13} - 16u^{12} - 34u^{11} - 48u^{10} - 74u^9 - 85u^8 - 100u^7 - 105u^6 - 105u^5 - 96u^4 - 75u^3 - 56u^2 - 30u - 16$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{17} - 9u^{16} + \dots - 32u + 4$
c_2	$u^{17} - u^{16} + \dots + 2u - 2$
<i>c</i> ₃	$u^{17} + u^{16} + \dots + 6u - 2$
c_4,c_{11}	$u^{17} + u^{16} + \dots - u - 1$
c_5, c_8	$u^{17} - u^{16} + \dots + 2u + 1$
c_6, c_{10}	$u^{17} - u^{16} + \dots - u + 1$
<i>C</i> ₇	$u^{17} + u^{16} + \dots + 2u + 2$
<i>c</i> ₉	$u^{17} + 7u^{16} + \dots + 5u + 1$
c_{12}	$u^{17} - 7u^{16} + \dots + 5u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{17} + 5y^{16} + \dots - 8y - 16$
c_2, c_7	$y^{17} + 9y^{16} + \dots - 32y - 4$
c_3	$y^{17} + y^{16} + \dots - 24y - 4$
c_4, c_6, c_{10} c_{11}	$y^{17} + 5y^{16} + \dots + 9y - 1$
c_5, c_8	$y^{17} - 3y^{16} + \dots - 6y - 1$
c_9, c_{12}	$y^{17} + y^{16} + \dots + y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.281134 + 0.946456I		
a = 1.24113 - 1.45623I	0.52851 - 1.83462I	0.29796 + 3.58847I
b = 0.36623 + 1.54673I		
u = 0.281134 - 0.946456I		
a = 1.24113 + 1.45623I	0.52851 + 1.83462I	0.29796 - 3.58847I
b = 0.36623 - 1.54673I		
u = -0.969290		
a = 0.776451	-1.53916	3.39910
b = -0.382171		
u = 0.728050 + 0.766886I		
a = 1.70484 - 0.42800I	3.93432 - 1.40561I	11.9334 + 8.1612I
b = -0.50880 + 2.22693I		
u = 0.728050 - 0.766886I		
a = 1.70484 + 0.42800I	3.93432 + 1.40561I	11.9334 - 8.1612I
b = -0.50880 - 2.22693I		
u = 0.224277 + 0.858763I		
a = -1.56206 + 0.82631I	0.93314 + 4.06440I	0.37552 - 3.75729I
b = 0.127397 - 1.349340I		
u = 0.224277 - 0.858763I		
a = -1.56206 - 0.82631I	0.93314 - 4.06440I	0.37552 + 3.75729I
b = 0.127397 + 1.349340I		
u = -0.737443 + 0.842981I		
a = 1.105660 - 0.250731I	-3.11346 - 2.81675I	2.33737 + 2.85701I
b = -0.533874 + 0.383844I		
u = -0.737443 - 0.842981I		
a = 1.105660 + 0.250731I	-3.11346 + 2.81675I	2.33737 - 2.85701I
b = -0.533874 - 0.383844I		
u = -0.382757 + 1.099770I		
a = -0.682974 - 0.515143I	-7.10806 - 3.64002I	-7.66149 + 4.40489I
b = 0.561927 + 0.046321I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.382757 - 1.099770I		
a = -0.682974 + 0.515143I	-7.10806 + 3.64002I	-7.66149 - 4.40489I
b = 0.561927 - 0.046321I		
u = 0.676951 + 0.964759I		
a = -1.78717 + 1.20472I	3.30875 + 6.79114I	13.3760 - 11.7173I
b = 0.10658 - 2.49443I		
u = 0.676951 - 0.964759I		
a = -1.78717 - 1.20472I	3.30875 - 6.79114I	13.3760 + 11.7173I
b = 0.10658 + 2.49443I		
u = -0.306582 + 0.677700I		
a = -1.79619 + 0.12408I	-5.45769 + 0.67304I	-4.27931 - 3.12764I
b = 0.674089 - 0.611126I		
u = -0.306582 - 0.677700I		
a = -1.79619 - 0.12408I	-5.45769 - 0.67304I	-4.27931 + 3.12764I
b = 0.674089 + 0.611126I		
u = -0.498985 + 1.260640I		
a = 0.388541 - 0.408565I	-5.41541 - 5.16567I	1.42099 + 1.44225I
b = -0.102456 + 0.376600I		
u = -0.498985 - 1.260640I		
a = 0.388541 + 0.408565I	-5.41541 + 5.16567I	1.42099 - 1.44225I
b = -0.102456 - 0.376600I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u^{17} - 9u^{16} + \dots - 32u + 4)(u^{21} + 9u^{20} + \dots + 896u - 256) $
c_2	$(u^{17} - u^{16} + \dots + 2u - 2)(u^{21} + 11u^{20} + \dots - 80u - 16)$
c_3	$ (u^{17} + u^{16} + \dots + 6u - 2)(u^{21} - 11u^{20} + \dots - 8656u - 2512) $
c_4, c_{11}	$(u^{17} + u^{16} + \dots - u - 1)(u^{21} + 27u^{19} + \dots + u - 1)$
c_5, c_8	$ (u^{17} - u^{16} + \dots + 2u + 1)(u^{21} + 2u^{20} + \dots + 28u^{2} - 1) $
c_6, c_{10}	$ (u^{17} - u^{16} + \dots - u + 1)(u^{21} + 27u^{19} + \dots + u - 1) $
C ₇	$(u^{17} + u^{16} + \dots + 2u + 2)(u^{21} + 11u^{20} + \dots - 80u - 16)$
<i>C</i> 9	$(u^{17} + 7u^{16} + \dots + 5u + 1)(u^{21} + 4u^{20} + \dots - 5u - 1)$
c_{12}	$(u^{17} - 7u^{16} + \dots + 5u - 1)(u^{21} + 4u^{20} + \dots - 5u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{17} + 5y^{16} + \dots - 8y - 16)(y^{21} + 5y^{20} + \dots + 2367488y - 65536)$
c_2, c_7	$(y^{17} + 9y^{16} + \dots - 32y - 4)(y^{21} + 9y^{20} + \dots + 896y - 256)$
c_3	$(y^{17} + y^{16} + \dots - 24y - 4)$ $\cdot (y^{21} - 107y^{20} + \dots - 395058816y - 6310144)$
c_4, c_6, c_{10} c_{11}	$(y^{17} + 5y^{16} + \dots + 9y - 1)(y^{21} + 54y^{20} + \dots - 9y - 1)$
c_5, c_8	$(y^{17} - 3y^{16} + \dots - 6y - 1)(y^{21} - 46y^{20} + \dots + 56y - 1)$
c_9, c_{12}	$(y^{17} + y^{16} + \dots + y - 1)(y^{21} + 2y^{20} + \dots - y - 1)$