

Rasterização

- □ Vetorial vs Matricial
- □ O monitor do computador é matricial
- □ A transformação de representação vetorial em matricial é chamada de rasterização

Ponto

- Matematicamente pode ser representado por um par ordenado de números.
 - $\Box(x,y)$
- No caso da CG um ponto é um pixel e além de do par ordenado, este tem uma cor.
 - $\Box(x,y) \rightarrow cor$

Operações com Pixels

- □ **Ler** um pixel:
 - □ Entrada: (x,y)
 - □ Saída: cor

- □ **Pintar** um pixel:
 - □ Entrada: (x, y, cor)
 - □ Saída: vazia
 - □ Resultado: pixel muda de cor.

Linhas Retas

- □ Matematicamente:
 - $\Box y = mx + b$

$$\Box m = \frac{y_B - y_A}{x_B - x_A}$$

$$\Box b = y_A - mx_A$$

Problema

- □ Deseja-se desenhar uma linha entre os pontos
- □ Como escolher os pixels a serem pintados?

Problema

- Deseja-se desenhar uma linha entre os pontos
- Como escolher os pixels a serem pintados?

P1(0,0) P2(5,3)

$$m = \frac{3-0}{5-0} = \frac{3}{5} = 0.6$$
 $b = 0 - \frac{3}{5} \times 0 = 0$

 $y = \frac{3x}{5}$

X	Y	Y _{num}	Y _{disc}
0	0	0	0
1	$\frac{3\times1}{5} = \frac{3}{5}$	0.6	1
2	$\frac{3\times1}{5} = 6/5$	1.2	1
3	$\frac{3\times1}{5} = \frac{9}{5}$	1.8	2
4	$\frac{3\times1}{5} = \frac{12}{5}$	2.4	2
5	3	3	3

Problema

- Deseja-se desenhar uma linha entre os pontos
- Como escolher os pixels a serem pintados?

P1(0,0) P2(5,3)

$$m = \frac{3-0}{5-0} = \frac{3}{5} = 0.6$$
 $b = 0 - \frac{3}{5} \times 0 = 0$

$$y = \frac{3x}{5}$$

X	Y	Y _{num}	Y _{disc}
0	0	0 _ + m	0
1	3/5	0.6 $+m$	1
2	6/5	1.2 + m	1
3	9/5	1.8 +m	2
4	$^{12}/_{5}$	2.4 > +m	2
5	3	3	3

Algoritmo de Bresenham

- Algoritmo clássico da computação gráfica
- Algoritmo incremental que utiliza apenas soma e subtração de inteiros
- □ Ideia básica:
 - Em vez de computar o valor do próximo y decide se o próximo pixel vai ter coordenadas (x + 1, y) ou (x + 1, y + 1)
 - Decisão requer que se avalie se a linha passa acima ou abaixo do ponto médio $(x + 1, y + \frac{1}{2})$

Problema

- Deseja-se desenhar uma linha entre os pontos
- □ Como escolher os pixels a serem pintados?

P1(0,0) P2(5,3)

$$m = \frac{3-0}{5-0} = \frac{3}{5} = 0.6$$
 $b = 0 - \frac{3}{5} \times 0 = 0$

$$y = \frac{3x}{5} \qquad e = m - 0.5 = 0.1$$

X	e	e > 0	e	Y_{disc}
0	-	-	-	0
1	0.1	e $Y_{disc}++$	-0.9	1
2	-0.3	-	-0.3	1
3	0.3	e $Y_{disc}++$	-0.7	2
4	-0.1	-	-0.1	2
5	-	-	-	3

 $\begin{array}{l}
e += m \\
e += m
\end{array}$

e += m

Algoritmo de Bresenham

- reflexao(p1,p2)
- 2. **x=x1**
- 3. **y=y1**
- 4. $\Delta x = x2 x1$
- 5. Δy=y2-y1
- 6. $m = \Delta y / \Delta x$
- 7. e=m-1/2
- 8. Desenhaponto(x,y)

- 7. Enquanto x < x2 faça
 - Se e>= 0 faça
 - 1. y=y+1
 - 2. e=e-1
 - 2. Fim se
 - 3. **x=x+1**
 - 4. **e=e+m**
 - Desenhaponto(x,y)
- 8. FimEnquanto
- 9. reflexao⁻¹(p[])

Problema do Octante

□ E se os pontos forem

Problema do Octante

P1(0,0) P2(2,5)

$$m = \frac{5-0}{2-0} = \frac{5}{2} = 2.5$$
 $b = 0 - 2.5 \times 0 = 0$

$$y = 2.5x$$
 $e = m - 0.5 = 2$

X	e	e > 0	e	Y_{disc}
0	-	-	-	0
1	2	e $Y_{disc}++$	1	1
2	_	-	-	5

e += m

Problema do Octante

- O algoritmo de Bresenham funciona corretamente somente no 1º Octante
 - $\square \Delta x \geq \Delta y$
 - $\Delta x \geq 0$
 - $\square \Delta y \geq 0$

Resolvendo o Problema do Octante

- □ Resolve-se em 3 etapas
 - Reflete os dois pontos iniciais para o 1º Octante;
 - 2. Calcula o alg. de Bresenham;
 - 3. Reflete todos os pontos encontrados no algoritmo de volta para o Octante original.

Resolvendo o Problema do Octante

reflexao():

- 1. Se m > 1 ou m < -1
 - 1. troca x por y
 - trocaxy ← TRUE
- 2. Se $x_1 > x_2$
 - 1. $x_1 \leftarrow -x_1$
 - $x_2 \leftarrow -x_2$
 - 3. trocax ← TRUE
- 3. Se $y_1 > y_2$
 - 1. $y_1 \leftarrow -y_1$
 - $2. \quad y_2 \leftarrow -y_2$
 - 3. trocay ← TRUE

Resolvendo o Problema do Octante

$reflexao^{-1}()$:

- Se trocay = TRUE
 - Para cada ponto gerado
 - 1. $y_n \leftarrow -y_n$
- 2. Se trocax = TRUE
 - Para cada ponto gerado
 - 1. $x_n \leftarrow -x_n$
- 3. Se trocaxy = TRUE
 - Para cada ponto gerado
 - 1. troca x_n por y_n

Exercício

- Desenhe o segmento de linha entre os pontos seguintes utilizando o alg. de Bresenham
 - $p_1(0,3), p_2(3,9)$

Exercício

- $p_1(0,3), p_2(3,9)$
- $\Box m = \frac{\Delta y}{\Delta x} = \frac{6}{3} = 2$
- Utilizando a função reflexao()
- \square m > 1 então
 - Deve-se aplicar reflexão (troca x por y)
 - $p_1'(3,0) e p_2'(9,3)$

Exercício

- $p_1'(3,0), p_2'(9,3)$
- Aplica-se o alg. de Bresenham

$$m' = \frac{\Delta y}{\Delta x} = \frac{3-0}{9-3} = \frac{3}{6} = \frac{1}{2} = 0.5$$

$$e = m - 0.5 = 0$$

Exercício

- $p_1'(3,0), p_2'(9,3)$
- Aplica-se o alg. de Bresenham

$$m' = \frac{\Delta y}{\Delta x} = \frac{3-0}{9-3} = \frac{3}{6} = \frac{1}{2} = 0.5$$

$$e = m - 0.5 = 0$$

X	e	e > 0	e	Y_{disc}
3	-	-	-	0
4	0	-	0	0
5	0.5	e Y _{disc} ++	-0.5	1

- Deve-se refletir os pontos encontrados para a posição desejada
- □ Utilizando a função reflexao⁻¹()
- □ Troca-se x por y de cada ponto encontrado

Exercício

 Descarta-se os valores antigos e desenha-se os pontos refletidos.

Polilinhas

- Linhas retas são a base para uma grande variedade de figuras, que são compostas por segmentos de retas.
- Podem-se citar polígonos, caracteres, figuras geométricas complexas, etc.
- A polilinha é um conjunto de segmentos de retas sequenciais no qual o fim de um segmento é o início do segmento seguinte.

Polilinhas

- Ou seja, é um conjunto de segmentos de retas, cujas as extremidades coincidem
- Polilinha tem as seguintes propriedades:
 - É composta de n segmentos de reta, sendo $n \ge 1$
 - \Box É definida por n+1 pontos

Exemplo prático

O SVG utiliza o conceito de polilinha.
 Por exemplo, o seguinte código

Produz o seguinte desenho The sequinte des

Exercício de Fixação

- Desenhe um Hexágono
 - □ Desvende os pontos do hexágono pretendido
 - Dica: Use valores acima de 3
 - Converta para valores discretos e utilize o algoritmo de Bresenham