

Operating Systems

"Computer System Overview"

Operating System

- Exploits the hardware resources of one or more processors
- Provides a set of services to system users
- Manages secondary memory and I/O devices

Basic Elements

- Processor
 - Two internal registers
 - Memory address register (MAR)
 - Specifies the address for the next read or write
 - Memory buffer register (MBR)
 - Contains data written into memory or receives data read from memory
 - I/O address register
 - I/O buffer register

https://www.soundonsound.com/sound advice/core-wars-amd-intel-cpus-tested

-

Basic Elements

- Main Memory
 - Volatile
 - Referred to as real memory or primary memory
- I/O Modules
 - Secondary Memory Devices
 - Communications equipment
 - Terminals
- System bus
 - Communication among processors, main memory, and I/O modules

Processor Registers

- User-visible registers
 - Enable programmer to minimize main memory references by optimizing register use
- Control and status registers
 - Used by processor to control operating of the processor
 - Used by privileged OS routines to control the execution of programs

User-Visible Registers

- May be referenced by machine language
- Available to all programs application programs and system programs
- Data register: either general purpose or dedicated
- Address register
 - Index register: Adding an index to a base value to get the effective address
 - Segment pointer: When memory is divided into segments, memory is referenced by a segment and an offset
 - Stack pointer: Points to top of stack-push/pop (no address)

7

Control and Status Registers

- Program counter (PC)
 - Contains the address of an instruction to be fetched
- Instruction register (IR)
 - Contains the instruction most recently fetched
- Program status word (PSW)
 - Contains status information: interrupt enable/disable bit, a kernel/user mode bit, etc.
- Condition codes or flags
 - Bits set by processor hardware as a result of operations
 - Example
 - Positive, negative, zero, or overflow result

Instruction Execution

- Two steps
 - Processor reads (fetches) instructions from memory
 - · Processor executes each instruction

Instruction Fetch and Execute

- The processor fetches the instruction from memory
- Program counter (PC) holds address of the instruction to be fetched next
- PC is incremented after each fetch

Instruction Register

- Fetched instruction loaded into instruction register
- Categories of the instructions
 - Processor-memory, processor-I/O, data processing, control

11

Characteristics of a Hypothetical Machine Opcode Address (a) Instruction format O 1 15 S Magnitude (b) Integer format Program counter (PC) = Address of instruction Instruction register (IR) = Instruction being executed Accumulator (AC) = Temporary storage (c) Internal CPU registers O001 = Load AC from memory O101 = Add to AC from memory O102 = Add to AC from memory O103 = Add to AC from memory O104 = Add to AC from memory O105 = Add to AC from memory O106 = Add to AC from memory O107 = Add to AC from memory O108 = Add to AC from memory O109 = Add to AC from memory

Interrupts

- Interrupt the normal sequencing of the processor
- Most I/O devices are slower than the processor
 - Processor must pause to wait for device

Classes of Interrupts

Table 1.1 Classes of Interrupts

Program	Generated by some condition that occurs as a result of an instruction execution, such as arithmetic overflow, division by zero, attempt to execute an illegal machine instruction, and reference outside a user's allowed memory space.
Timer	Generated by a timer within the processor. This allows the operating system to perform certain functions on a regular basis.
I/O	Generated by an I/O controller, to signal normal completion of an operation or to signal a variety of error conditions.
Hardware failure	Generated by a failure, such as power failure or memory parity error.

15

Interrupt Stage

- Processor checks for interrupts
- If interrupt
 - Suspend execution of program
 - Execute interrupt-handler routine

Multiprogramming

- Processor has more than one program to execute
- The sequence in which programs are executed depend on their relative priority and whether they are waiting for I/O
- After an interrupt handler completes, control may not return to the program that was executing at the time of the interrupt

Memory Hierarchy

- Faster access time, greater cost per bit
- Greater capacity, smaller cost per bit
- Greater capacity, slower access speed
- \rightarrow key characteristics of memory: namely, capacity, access time, and cost

27

The Memory Hierarchy Suppose 95% of the memory accesses are found in the cache (H=0.95). Then the average time to access a byte can be expressed as $(0.95)(0.1 \ \mu s) + (0.05)(0.1 \ \mu s) = 0.095 + 0.055 = 0.15 \ \mu s$

Going Down the Hierarchy

- Decreasing cost per bit
- Increasing capacity
- Increasing access time
- Decreasing frequency of access to the memory by the processor

29

Secondary Memory

- Auxiliary memory
- External
- Nonvolatile
- Used to store program and data files

Cache Memory

- Processor speed faster than memory access speed
- Exploit the principle of locality with a small fast memory

31

Cache and Main Memory Byte or word transfer Main Memory Figure 1.16 Cache and Main Memory

Cache Principles

- Contains copy of a **portion** of main memory
- Processor first checks cache
- If desired data item not found, relevant block of memory read into cache
- Because of locality of reference, it is likely that future memory references are in that block

Cache Principles

- Cache size
 - Even small caches have significant impact on performance
- Block size
 - The unit of data exchanged between cache and main memory
 - Larger block size yields more hits until probability of using newly fetched data becomes less than the probability of reusing data that have to be moved out of cache

Cache Principles

- Mapping function
 - Determines which cache location the block will occupy
 - Two constraints
 - when one block is read in, another may have to be replaced (which block will be used in the near future ?)
 - the more flexible the mapping function, the more complex is the circuitry required to search the cache to determine if a given block is in the cache
- Replacement algorithm
 - Chooses which block to replace
 - Least-recently-used (LRU) algorithm
 - First in First Out (FIFO) algorithm
 - · Least Frequently Used (LFU) algorithm

37

Cache Principles

- Write policy
 - Dictates when the memory write operation takes place
 - · Can occur every time the block is updated
 - · Can occur when the block is replaced
 - Minimize write operations
 - Leave main memory which are in an obsolete state

I/O COMMUNICATION Issue Read command to I/O module **TECHNIQUES** Programmed I/O Read status of I/O module • I/O module performs the action, not the processor eady Checl • Sets the appropriate bits in the I/O status register Ready No interrupts occur Read word from I/O • Processor checks status until operation is complete

ineedlesslyI/O instructions

 Main disadvantage: a time-consuming process that keeps the processor busy

- Control
- Status
- transfer

I/O COMMUNICATION Issue Read command to Do something I/O module **TECHNIQUES** SEMANGAT BARU Interrupt-Driven I/O --- Interrupt of I/O I/O→CPU module • No needless waiting, more efficient than programmed I/O Error status condition Consumes a lot of processor Ready time because every word read Read word from I/O I/O→CPU or written passes through the Module processor Write word CPU→memory into memory Done Next instruction (b) Interrupt-driven I/O

