Missing Data Analysis

William Murrah

Packages we will use:

```
require(texreg)
require(mice)
require(VIM)
require(ztable)

doctype <-
    "latex"
    # "html"

txreg <- ifelse(doctype == "latex", texreg, htmlreg)
options(ztable.type = doctype)</pre>
```

Notation we will use:

- n = number of units (number of cases or people) indexed by i.
- p = number of variables (including outcome and predictors), indexed by j.
- $Y = n \times p$ matrix containing the data values on n units for p variables in the sample.
- R = response indicator, a $n \times p$ matrix with each cell containing either a 0 or a 1, where

$$r_{ij} = \begin{cases} 1 \text{ if } y_{ij} \text{ is observed and,} \\ 0 \text{ if } y_{ij} \text{ is missing.} \end{cases}$$
 (1)

- Y_{obs} = the observed data, collectively (i.e. contains all elements y_{ij} where $r_{ij} = 1$).
- Y_{mis} = the missing data, collectively (i.e. contains all elements y_{ij} where $r_{ij} = 0$).

Missing Data Patterns

print(tp41[4])

A simple data frame with some missing data:

general

A B C

```
1 22 50 17
2 82 76 90
3 53 18 NA
4 92 85 NA
5 84 87 NA
6 5 NA 14
7 NA NA 11
8 NA NA 52
```

Create an R matrix

R <- 1 - is.na(general)
R

md.pattern(pattern4)

aggr(general, numbers = TRUE, prop = FALSE)

Proportion of usable cases

Imputing Y_j from Y_k , the proportion of usable cases is the number of cases missing in Y_j that are observed in Y_k divided by the number of missing cases in Y_j .

```
p <- md.pairs(general)
p$mr/(p$mr + p$mm) # proportion of usable cases.</pre>
```

A B C A 0.0000000 0 1 B 0.3333333 0 1 C 1.0000000 1 0

Influx and Outflux

Influx - I_j the influx coefficient is how well the other variables connect to Y_j .

- I_j is 0 for a completely observed variable
- I_j is 1 for a completely missing variable

Outflux - O_j the outflux coefficient is how well Y_j is connected to other variables.

- O_j is 1 for a completely observed variable
- O_j is 0 for a completely missing variable

```
print(tp41[1])
fluxplot(pattern1, main = NULL)
```



```
print(tp41[2])
fluxplot(pattern2, main = NULL)
```


print(tp41[3])
fluxplot(pattern3, main = NULL)

print(tp41[4])
fluxplot(general, main = NULL)

Missing Data Analysis

Data we will use:

```
# ?nhanes
data("nhanes2")
ztable(nhanes)
```

	age	bmi	$_{ m hyp}$	chl
1	1.00			
2	2.00	22.70	1.00	187.00
3	1.00		1.00	187.00
4	3.00			
5	1.00	20.40	1.00	113.00
6	3.00			184.00
7	1.00	22.50	1.00	118.00
8	1.00	30.10	1.00	187.00
9	2.00	22.00	1.00	238.00
10	2.00			
11	1.00			
12	2.00			
13	3.00	21.70	1.00	206.00
14	2.00	28.70	2.00	204.00
15	1.00	29.60	1.00	
16	1.00			
17	3.00	27.20	2.00	284.00
18	2.00	26.30	2.00	199.00
19	1.00	35.30	1.00	218.00
20	3.00	25.50	2.00	
21	1.00			
22	1.00	33.20	1.00	229.00
23	1.00	27.50	1.00	131.00
24	3.00	24.90	1.00	
25	2.00	27.40	1.00	186.00

Model

$$chl_i = \beta_0 + \beta_1 age_i + \beta_2 bmi_i + \beta_3 hyp_i + \epsilon_i$$
(2)

Missing Data Patterns

md.pattern(nhanes)

```
age hyp bmi chl
13 1 1 1 1 0
1 1 1 1 0 1 1
3 1 1 1 0 1
```

aggr(nhanes, numbers = TRUE, prop = FALSE)

p <- md.pairs(nhanes)
p\$mr/(p\$mr + p\$mm)</pre>

 age
 bmi
 hyp
 ch1

 age
 NaN
 NaN
 NaN

 bmi
 1
 0.0
 0.1111111
 0.2222222

 hyp
 1
 0.0
 0.0000000
 0.1250000

 chl
 1
 0.3
 0.3000000
 0.0000000

fluxplot(nhanes)

Influx-outflux pattern for nhanes

Predictors of missingness

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

	chl	bmi	hyp
(Intercept)	-9.18	14.75	-24.57
	(8.61)	(9598.75)	(303112.73)
age	1.72	-18.21	0.00
	(1.36)	(6513.98)	(95787.74)
$_{ m bmi}$	0.20		0.00
	(0.26)		(13515.52)
hyp	-0.90	-0.31	
	(1.76)	(11600.34)	
chl		0.01	-0.00
		(0.03)	(1497.48)
AIC	21.19	13.55	8.00
BIC	24.28	16.10	10.26
Log Likelihood	-6.60	-2.77	-0.00
Deviance	13.19	5.55	0.00
Num. obs.	16	14	13

 $^{^{***}}p < 0.001, \, ^{**}p < 0.01, \, ^{*}p < 0.05$

Table 1: Statistical models

```
pmC <- glm(is.na(hyp) ~ age + bmi + chl, family = binomial, data = nhanes)
txreg(list(pmA, pmB, pmC), custom.model.names = c("chl", "bmi", "hyp"))</pre>
```

R version 3.2.2 (2015-08-14)

Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 14.04.3 LTS

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] grid stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] ztable_0.1.5 VIM_4.4.1 data.table_1.9.6 colorspace_1.2-6

[5] mice_2.22 Rcpp_0.12.1 texreg_1.35 knitr_1.11

[9] mosaic_0.12 mosaicData_0.9.1 car_2.1-0 ggplot2_1.0.1

[13] lattice_0.20-33 dplyr_0.4.3

loaded via a namespace (and not attached):

[1]	zoo_1.7-12	reshape2_1.4.1	splines_3.2.2
[4]	htmltools_0.2.6	yaml_2.1.13	mgcv_1.8-7
[7]	chron_2.3-47	e1071_1.6-7	nloptr_1.0.4
[10]	DBI_0.3.1	sp_1.2-0	plyr_1.8.3
[13]	robustbase_0.92-5	stringr_1.0.0	MatrixModels_0.4-1

[16] munsell_0.4.2 gtable_0.1.2 evaluate_0.8

[19] SparseM_1.7	lmtest_0.9-34	quantreg_5.19
[22] pbkrtest_0.4-2	parallel_3.2.2	class_7.3-14
[25] vcd_1.4-1	DEoptimR_1.0-3	proto_0.3-10
[28] scales_0.3.0	formatR_1.2.1	lme4_1.1-10
[31] gridExtra_2.0.0	digest_0.6.8	stringi_0.5-5
[34] tools_3.2.2	magrittr_1.5	randomForest_4.6-12
[37] ggdendro_0.1-17	MASS_7.3-44	Matrix_1.2-2
[40] assertthat_0.1	${\tt minqa_1.2.4}$	rmarkdown_0.8.1
[43] R6_2.1.1	rpart_4.1-10	nnet_7.3-11
[46] nlme_3.1-122		