Alberi di decisione per la classificazione

Note per Metodi di Ottimizzazione per *Big Data* A.A. 2018-19

Un esempio introduttivo: Classificare le "mattine del sabato" in base alle condizioni meteo

da: J.R. Quinlan. Induction of Decision Trees, Machine Learning, 1, 81-106, 1986

Table 1. A small training set

No.	Attributes				Class
	Outlook	Temperature	Humidity	Windy	
1	sunny	hot	high	false	N
2	sunny	hot	high	true	N
3	overcast	hot	high	false	P
4	rain	mild	high	false	P
5	rain	cool	normal	false	P
6	rain	cool	normal	true	N
7	overcast	cool	normal	true	P
8	sunny	mild	high	false	N
9	sunny	cool	normal	false	P
10	rain	mild	normal	false	P
11	sunny	mild	normal	true	P
12	overcast	mild	high	true	P
13	overcast	hot	normal	false	P
14	rain	mild	high	true	N

Un albero di classificazione semplice per le "mattine del sabato"

J.R. Quinlan. Induction of Decision Trees, Machine Learning, 1, 81-106, 1986

Un albero di classificazione più complesso per le "mattine del sabato"

J.R. Quinlan. Induction of Decision Trees, Machine Learning, 1, 81-106, 1986

Optimal classification trees

Dimitris Bertsimas & Jack Dunn

Machine Learning

ISSN 0885-6125 Volume 106 Number 7

Mach Learn (2017) 106:1039-1082 DOI 10.1007/s10994-017-5633-9

OCT-MIO

Variabili

$$z_{it}, l_t \in \{0, 1\}, \quad i = 1, ..., n, \quad \forall t \in T_L,$$

 $a_{jt}, d_t \in \{0, 1\}, \quad j = 1, ..., p, \quad \forall t \in T_B.$
 $b_t \in [0, 1], \quad t \in \mathcal{T}_B$

Variabili "ausiliarie"

$$c_{kt} \in \{0,1\}, L_t \in \mathbb{R}_+ \quad k = 1,...,K; \ t \in \mathcal{T}_L$$

Variabili "riassuntive"

$$N_t \in \mathbb{Z}_+, N_{kt} \in \mathbb{Z}_+, \quad k = 1, ..., K; \ t \in \mathcal{T}_L$$

Vincoli: Tree structure

$$\sum_{j=1}^{p} a_{jt} = d_t, \quad \forall t \in T_B,$$

$$0 \le b_t \le d_t, \quad \forall t \in T_B,$$

$$d_t \le d_{p(t)}, \quad \forall t \in T_B \setminus \{1\},$$

Vincoli: Allocazione (punti-foglie)

$$\sum_{t \in \mathcal{T}_L} z_{it} = 1, \quad i = 1, \dots, n,$$

$$z_{it} \le l_t, \quad \forall t \in \mathcal{T}_L,$$

$$\sum_{i=1}^n z_{it} \ge N_{\min} l_t, \quad \forall t \in \mathcal{T}_L,$$

Vincoli: Consistency

$$\mathbf{a}_{m}^{\mathsf{T}} \mathbf{x}_{i} \geq \mathbf{b}_{t} - (1 - z_{it}), \quad i = 1, \dots, n, \quad \forall t \in \mathcal{T}_{B}, \quad \forall m \in A_{R}(t),$$

$$\mathbf{a}_{m}^{\mathsf{T}} (\mathbf{x}_{i} + \boldsymbol{\epsilon}) \leq \mathbf{b}_{t} + (1 + \epsilon_{\max})(1 - z_{it}), \quad i = 1, \dots, n, \quad \forall t \in \mathcal{T}_{B}, \quad \forall m \in A_{L}(t),$$

$$\mathcal{F}_{L}^{\mathsf{T}} (\mathbf{x}_{i} + \boldsymbol{\epsilon}) \leq \mathbf{b}_{t} + (1 + \epsilon_{\max})(1 - z_{it}), \quad i = 1, \dots, n, \quad \forall t \in \mathcal{T}_{B}, \quad \forall m \in A_{L}(t),$$

Vincoli: Misclassification error

$$L_t \ge N_t - N_{kt} - n(1 - c_{kt}), \quad k = 1, ..., K, \quad \forall t \in T_L,$$

$$L_t \leq N_t - N_{kt} + nc_{kt}, \quad k = 1, ..., K, \quad \forall t \in \mathcal{T}_L,$$
 Vincoli non necessari.

$$L_t \geq 0, \quad \forall t \in \mathcal{T}_L,$$

$$N_{kt} = \frac{1}{2} \sum_{i=1}^{n} (1 + Y_{ik}) z_{it}, \quad k = 1, \dots, K, \quad \forall t \in \mathcal{T}_L,$$

Perché
$$C_{kt}$$
 assume il val. corretto?

$$N_t = \sum_{i=1}^n z_{it}, \quad \forall t \in \mathcal{T}_L,$$

$$\sum_{k=1}^{K} c_{kt} = l_t, \quad \forall t \in \mathcal{T}_L,$$

Obiettivo

$$\min \quad \frac{1}{\hat{L}} \sum_{t \in \mathcal{T}_L} L_t + \alpha \sum_{t \in \mathcal{T}_B} d_t.$$

Warm start

Fig. 3 Comparison of *upper* and *lower* bound evolution while solving MIO problem (24) with and without warm starts for a tree of depth D = 2 for the Wine dataset with n = 178 and p = 13. **a** Without warm start, **b** with warm start

Warm start

- La soluzione iniziale (warm start) fornita da un alg. greedy (CART, ID3, C4.5) può essere lontana dall'ottimo
- La maggior parte del tempo di calcolo serve a provare che la sol. corrente è un ottimo, non a determinarlo

idea per euristica: early stop

 Soluzioni del MIO a profondità D possono essere usate come warm start per il modello a D+1

Addestramento di un OCT

Scelta degli iper-parametri

- Profondità: scegli una profondità max D_{max}, genera i DT a partire da D = 2 fino a D_{max}, usando le soluzioni come warm start per i problemi a D maggiore (pool di soluzioni warm start)
- Parametro di complessità α: portare il termine di complessità nei vincoli

Pb(C):
$$\sum_{t \in \mathcal{T}_R} d_t \le C$$

Ricerca su $C = 1, ..., C_{max} = 2^{D} - 1$ (max numero split). La soluzione con C = k è feasible (warm start) con C = k+1

 I valori di α che rendono le soluzioni del problema Pb(C) ottime per OCT-MIO costituiscono i candidati per la scelta del parametro di complessità

Addestramento di un classificatore ad albero di decisione da OCT-MIO

- 1. Scegli profondità max D_{max} e min leaf size N_{min}
- 2. For $D = 1, ..., D_{max}$ do:
 - For $C = 1, ..., 2^{D} 1$ do:
 - A. Run CART con $\alpha = 0$ e N_{min}. Prune a profondità D, max num. split = C. Inserisci la sol. nel pool di warm start
 - B. Scegli candidato più accurato (su validation set) nel pool di warm start
 - C. Risolvi Pb(C) con profondità D e C split usando il warm start selezionato. Inserisci la sol. nel pool di warm start
- 3. Post-process: rimuovi le sol. non ottime per OCT-MIO per alcun valore di α
- 4. Seleziona le sol. migliori sul validation set. Determina range per α

Addestramento di un classificatore ad albero di decisione da OCT-MIO

- 1. Scegli profondità max D_{max} , min e max leaf size N_{min} e N_{max}
- 2. For size = N_{max} downto N_{min} do:
 - For $D = 1, ..., D_{max}$ do:
 - For $C = 1, ..., 2^{D} 1$ do:
 - A. Run CART con α = 0 e size. Prune a profondità D, max num. split = C. Inserisci la sol. nel pool di warm start
 - B. Scegli candidato più accurato (su validation set) nel pool di warm start
 - C. Risolvi Pb(C) con profondità D e C split usando il warm start selezionato. Inserisci la sol. nel pool di warm start
- 3. Post-process: rimuovi le sol. non ottimali per OCT-MIO per qualche α
- 4. Seleziona le sol. migliori sul validation set. Determina range per α

Adattamento di OCT-MIO al caso di alberi di decisione multivariati

. . .

Pruning

- Alberi complessi (che danno ottimi risultati sul training set) soggetti a overfit
- Alberi più semplici/piccoli (meno split) possono
 - essere più interpretabili
 - produrre risultati con minore varianza (al costo di maggior bias)
- Una strategia: costruire albero complesso e ricavare un sottoalbero significativo attraverso il taglio di alcuni rami/ sottoalberi (pruning)

Alberi di decisione: Pro & Con.s

- Semplici da spiegare/giustificare ai non esperti. Sono illustrati graficamente e facilmente interpretabili
- Rappresentano in modo più verosimile il processo decisionale umano rispetto ad altri metodi di regressione e classificazione
- Gli alberi modellano in modo più immediato variabili qualitative
- Livello di accuratezza inferiore rispetto ad altri metodi di regressione e classificazione
- Poco "robusti": piccole variazioni nei dati producono significativi cambiamenti nell'albero prodotto

Bagging, Random Forests, Boosting

- DT soffrono di varianza elevata:
 - estrai in modo casuale due (o più) dataset da una popolazione
 - ricava alberi di decisione sulla base dei nuovi dataset
 - alberi di decisione (probabilmente) molto dissimili
- Bootstrap aggregation (bagging): metodo general-purpose per ridurre la varianza – aumentando l'accuratezza della predizione – aggregando un insieme di osservazioni
- Idealmente, potrei
 - ricavare un certo numero B di training set dalla popolazione osservata
 - considerare la media delle B predizioni come predizione del modello aggregato
- Tipicamente, non si ha disponibilità di molteplici training set

Bagging

Bootstrap:

- ricavare B campioni con <u>reimmissione</u> (estrazione bernouilliana) dal training set, ottenendo dei (bootstrap) training set 1,..., B
- Bagging (regressione dati quantitativi)
 - For b = 1,..., B do
 - addestra il sistema sui dati del training set bootstrap b
 - ricava una predizione fb(x)
 - Output predizione media ($1/B \sum_b f^b(x)$)

Bagging

- Applicare questa idea agli alberi di classificazione (dati qualitativi)
- Costruire un albero di classificazione a partire da ciascuno dei training set bootstrap 1, ..., B
- Classificare sulla base del "voto di maggioranza": la predizione è la classe più frequente tra i risultati ottenuti dai B alberi
- Non viene effettuato pruning degli alberi generati a partire dai training set bootstrap (alberi con alta varianza ma basso bias). La varianza viene ridotta prendendo il risultato "a maggioranza" sulle B classificazioni

Stima dell'errore "Out-Of-Bag"

- Tecnica di stima dell'errore che riduce il costo computazionale (risp. ad altre tecniche, ad es. cross-validazione)
- Un DT nel bagging usa in media circa 2/3 dei dati originali
- 1/3 circa delle osservazioni non sono utilizzati per generare un singolo DT: punti/osservazioni Out-Of-Bag (OOB)
- Idea: usare i risultati prodotti dai DT che hanno x_i OOB (quindi circa B/3 alberi) per ottenere una predizione su x_i (voto di maggioranza sui circa B/3 risultati)
- Ripetere la procedura per tutti gli n punti x_i i = 1,..., n e calcolare l'errore di classificazione complessivo
- Stima valida (i punti del dataset che non sono stati utilizzati per la generazione degli alberi di cui si considera il risultato, vengono usati come punti di un validation set)

Bagging

- Bagging aumenta l'accuratezza della predizione al costo di una minore interpretabilità
- Gini index come misura dell'importanza di una variabile indipendente/feature i :
 - Forall albero T_b dal training set bootstrap b = 1, ..., B:
 - Calcola diminuzione d_{bj} del Gini index associata allo split sulla variabile j
 - Output ($1/B \sum_b d_{bj}$) : importanza relativa della variabile j

Random Forests

- Random Forests © sono un miglioramento del bagging basato sulla scelta di alberi meno correlati tra loro
- Come nel bagging, costruiamo B alberi di decisione (a partire da B training set bootstrap)
- Nella costruzione top-down degli alberi, ad ogni split:
 - considera soltanto un campione random di m candidate (solo questo sottoinsieme è candidato)
 - tipicamente si pone $p \approx \sqrt{m}$

Random Forests

- Ridurre il numero di alternative a ogni split?
 - riduce rischi di possibile forte correlazione tra alberi (p.es. in presenza di pochi strong predictor)
 - aumenta la riduzione della varianza promuovendo la costruzione di alberi poco correlati tra loro
- ponendo m = p random forests = bagging
- Con un numero alto di attributi fortemente correlati, scegliere m piccolo (risp. a p) può migliorare molto le performance di random forests rispetto al bagging

Bagging e Random Forests su Patologie cardiache (James et. al. Introduction to Statistical Learning, Springer)

K = 2 classi, p = 13 attributi, n = 303

Risultati di Random Forests su Livelli di attività di geni e classi tumorali (James et. al. Introduction to Statistical Learning, Springer)

K = 15 classi, p = 500 attributi, $n \approx 350$ (divisi in modo casuale tra training e test set)

Boosting

- Il boosting è un approccio applicabile a metodi diversi di apprendimento statistico di regressione e classificazione
- Nel bagging (e Random Forests), B alberi di decisione sono costruiti a partire da B training set bootstrap in modo indipendente gli uni da gli altri
- Nel boosting ogni albero viene creato a partire da informazioni sugli alberi creati in precedenza
- Anche in questo caso si tratta di combinare un numero (sufficientemente elevato) B di alberi di decisione a partire da B training set
- I training set <u>non sono</u> bootstrap: creati modificando opportunamente i dati originali

Boosting

- I campioni successivi sono determinati "pesando" i dati dei campioni precedenti
- Il peso di un'osservazione x_i al passo b è maggiore (maggiore probabilità di essere ripetuto) se il DT non ha classificato correttamente x_i al passo (b - 1)
- La classificazione viene effettuata pesando opportunamente i risultati dei vari DT

Boosting

AdaBoost (Freund, Shapire, 1996)

- Init. pesi dei dati x_i del training set: $w_i = (1/n), i = 1, ..., n$
- For b = 1, ..., B do:
 - Genera DT(b) su training data b-mo usando pesi w_i
 - Calcola errore pesato di DT(b) : $e(b) = \sum w_i * I(i \text{ misclass.}) / \sum w_i$
 - Calcola $a(b) = \log[(1 e(b)) / e(b)]$
 - Aggiorna: $w_i = w_i * \exp[\alpha(b) * I(i misclass.)]$ e rinormalizza
- Output risultato pesato con gli α(b)

Boosting vs. Bagging

100 Node Trees

T. Hastie, Stanford U.:
Problema delle sfere annidate in dim. 10
n = 2000 K = 2

Boosting di "stump"

T. Hastie, Stanford U.: Problema delle sfere annidate in dim. 10 n = 2000 K = 2