The external procedure, the modelly of model electrons is about \$1.40 \text{ (P)} might be an about \$1.40 \text{ (P)} make electrons per m³. Calculate the consolitive of the about the modelly of them that measurement. What are the current will find or? What are the current will find or? What (P) (What (P) (What (P)																		
The service of the se											8.4 × 10 ²	¹⁸ mobile	electrons	per m ³ .	Calculate t	ne conduc	tivity σ. I	n actua
The state of the state of the patential is 19 vists. Calculate the criestance A and the current 3.		the correct units f	or σ?															
The second substance is a second substance of the seco		/m)																
The second state of the second state of the second state of the strength of the very small electric field required to drive this current through the wire. The second state of the second state of the strength of the very small electric field required to drive this current through the wire. The second state of the second state of the second state of the strength of the very small electric field required to drive this current through the wire. The second state of the second state o																		
sider a magnetium wire $(c = 2.2 \times 10^7 \Omega^{-1} \cdot m^{-1})$ with a cross-sectional area of t . t	n/A)/(V/	m ³)																
sider a magnetium wine ($e = 2.3 \times 10^7 \Omega^{-1} \cdot m^{-1}$) with a cross-sectional area of 1 mm² (similar to your connecting wires) and carrying 0.3 amperes of current, which is about what you it with a round bulb and two batteries in series. Calculate the strength of the very small electric field required to drive this current through the wire. $ \begin{array}{c} \Gamma \\ \Gamma \\$		~																
sider a magnetium wine ($e = 2.3 \times 10^7 \Omega^{-1} \cdot m^{-1}$) with a cross-sectional area of 1 mm² (similar to your connecting wires) and carrying 0.3 amperes of current, which is about what you it with a round bulb and two batteries in series. Calculate the strength of the very small electric field required to drive this current through the wire. $ \begin{array}{c} \Gamma \\ \Gamma \\$																		
sider a magnetium wine ($e = 2.3 \times 10^7 \Omega^{-1} \cdot m^{-1}$) with a cross-sectional area of 1 mm² (similar to your connecting wires) and carrying 0.3 amperes of current, which is about what you it with a round bulb and two batteries in series. Calculate the strength of the very small electric field required to drive this current through the wire. $ \begin{array}{c} \Gamma \\ \Gamma \\$	0	-= a	100															
sider a magnetium wine ($e = 2.3 \times 10^7 \Omega^{-1} \cdot m^{-1}$) with a cross-sectional area of 1 mm² (similar to your connecting wires) and carrying 0.3 amperes of current, which is about what you it with a round bulb and two batteries in series. Calculate the strength of the very small electric field required to drive this current through the wire. $ \begin{array}{c} \Gamma \\ \Gamma \\$		19	1 110															
sider a magnetium wine ($e = 2.3 \times 10^7 \Omega^{-1} \cdot m^{-1}$) with a cross-sectional area of 1 mm² (similar to your connecting wires) and carrying 0.3 amperes of current, which is about what you it with a round bulb and two batteries in series. Calculate the strength of the very small electric field required to drive this current through the wire. $ \begin{array}{c} \Gamma \\ \Gamma \\$			_															
sider a magnetium wine ($e = 2.3 \times 10^7 \Omega^{-1} \cdot m^{-1}$) with a cross-sectional area of 1 mm² (similar to your connecting wires) and carrying 0.3 amperes of current, which is about what you it with a round bulb and two batteries in series. Calculate the strength of the very small electric field required to drive this current through the wire. $ \begin{array}{c} \Gamma \\ \Gamma \\$		= 1.0	308p	$7 \stackrel{4}{a}$, /	V.												
all with a round bulb and two batteries in series. Calculate the strength of the very small electric field required to drive this current through the wire. The round bulb and two batteries in series. Calculate the strength of the very small electric field required to drive this current through the wire. The round bulb and two batteries in series. Calculate the strength of the very small electric field required to drive this current through the wire. The round bulb and two batteries in series. Calculate the strength of the very small electric field required to drive this current through the wire. The round bulb and two batteries in series. Calculate the restaurch that the current is a small all the pole of the pole of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is σ		-				M												
all with a round bulb and two batteries in series. Calculate the strength of the very small electric field required to drive this current through the wire. The round bulb and two batteries in series. Calculate the strength of the very small electric field required to drive this current through the wire. The round bulb and two batteries in series. Calculate the strength of the very small electric field required to drive this current through the wire. The round bulb and two batteries in series. Calculate the strength of the very small electric field required to drive this current through the wire. The round bulb and two batteries in series. Calculate the restaurch that the current is a small all the pole of the pole of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is $\sigma = 3 \times 10^4$ per ohn-m. In a circuit its potential at one end of the round temperature is σ	sider a <mark>m</mark>	lagnesium wire (d	$\sigma = 2.2 \times 10^7 \Omega^{-1}$	1 · m ⁻¹) wit	h a cross-	sectional	area of 1	mm ² (sim	ilar to yo	ur connec	ting wire	s) and ca	rrying <mark>0.3</mark>	ampere	s of curren	t, which is	s about w	hat yo
$E = \frac{1}{Ao}$ $= 1.3636 e - 2 \text{ Ym}$ $= 1.3636 e - $	it with a	round bulb and t																
$E = \frac{1}{Ao}$ $= 1.3636 e - 2 \text{ Ym}$ $= 1.3636 e - $																		
$E = \frac{1}{Ao}$ $= 1.3636 e - 2 \text{ /m}$ $= 1.3636 e - $	7	I																
$E = \frac{I}{A\sigma}$ $= 1.3636 \text{ e} - 2 \text{ //m}$	J	Ā																
$F = \frac{T}{A\sigma}$ $= 1.3636 \text{ e} - 2 \text{ //m}$			T											1		,		
$F = \frac{T}{A\sigma}$ $= 1.3636 \text{ e} - 2 \text{ //m}$	 	-	÷							YИ	W			In	1 M			
$F = \frac{T}{A\sigma}$ $= 1.3636 \text{ e} - 2 \text{ //m}$	L	0	A					_			. '	-					2	
rbon resistor is 7 mm long and has a constant cross section of 0.4 mm ² . The conductivity of carbon at room temperature is $\sigma = 3 \times 10^4$ per ohm·m. In a circuit its potential at one end of the other is 15 volts relative to ground, and at the other end the potential is 19 volts. Calculate the resistance R and the current I . $R = \frac{L}{\sigma A}$ $= 0.583 2$		T) (B	LA	1	10	21	CC	m)	
rbon resistor is 7 mm long and has a constant cross section of 0.4 mm ² . The conductivity of carbon at room temperature is $\sigma = 3 \times 10^4$ per ohm·m. In a circuit its potential at one end of the other is 15 volts relative to ground, and at the other end the potential is 19 volts. Calculate the resistance R and the current I . $R = \frac{L}{\sigma A}$ $= 0.583 2$	F	= =	_						10			•	0					
rbon resistor is 7 mm long and has a constant cross section of 0.4 mm ² . The conductivity of carbon at room temperature is $\sigma = 3 \times 10^4$ per ohm·m. In a circuit its potential at one end of the other is 15 volts relative to ground, and at the other end the potential is 19 volts. Calculate the resistance R and the current I . $R = \frac{L}{\sigma A}$ $= 0.583 2$	F	A0																
rbon resistor is 7 mm long and has a constant cross section of 0.4 mm ² . The conductivity of carbon at room temperature is $\sigma = 3 \times 10^4$ per ohm·m. In a circuit its potential at one end of the other is 15 volts relative to ground, and at the other end the potential is 19 volts. Calculate the resistance R and the current I . $R = \frac{L}{\sigma A}$ $= 0.583 2$		1 -	1- 6		1.													
rbon resistor is 7 mm long and has a constant cross section of 0.4 mm ² . The conductivity of carbon at room temperature is $\sigma = 3 \times 10^4$ per ohm·m. In a circuit its potential at one end of the toris is 15 volts relative to ground, and at the other end the potential is 19 volts. Calculate the resistance R and the current I . R		= . :	636 6	2-2	m													
tor is 15 volts relative to ground, and at the other end the potential is 19 volts. Calculate the resistance R and the current I . Ω amperes $R = \frac{L}{\sigma A}$ $= 0.583 - \Omega$																		
$R = \frac{L}{\sigma_A}$ $= 0.583 - 2$.0 ⁴ per oh	m∙m. In	a circuit its	potential	at one er	nd of t
$R = \frac{L}{\sigma_A}$ $= 0.583 - 2$	tor is 15		round, and at the	e other end t	he potenti	al is <mark>19</mark> vo	lts. Calcu	late the re	esistance	R and the	current I							
		amperes																
	^	L																
	R	= =																
	•	7																
		- 0																
		- U.	J83.	17														
\/_ \tag{\tau}																		
	١	/_ T v)															

formula $I = |\Delta V|/R$, what is R for each of these cases?

$R_{3.1 \text{ V}} =$		2
R _{1.55 V} =		3

 $R_{50 \text{ mV}} =$

- (b) Is a high-resistance (long) bulb an ohmic resistor over this whole range of currents?
- The bulb is ohmic, because it is not possible for the resistance of any resistor to change.
- $\rlap{\circ}$ The bulb is not ohmic, because its resistance changes if the current through the bulb changes.
- \bigcirc The bulb is ohmic because one can use the formula $R = |\Delta V|/I$.
- O The bulb is ohmic, because light bulbs are ohmic.

A certain ohmic resistor has a resistance of 40 ohms. A second resistor is made of the same material but is three times as long and has half the cross-sectional area. What is the resistance of the second resistor?

Ω

What is the effective resistance of the two resistors in series?

In the circuit shown in the figure below, the emf of the battery is 9.1 V. Resistor R_1 has a resistance of 19 Ω , and resistor R_2 has a resistance of 39 Ω . A steady current flows through the circuit.

(a) What is the absolute value of the potential difference across R_1 ?

V

(b) What is the conventional current through R_2 ?

Part One |XV| on the only |Cop| |9.1-|9I-39I=0| |58I=9.1| |I=0.157A|

In the	circuit showr	n in the fig	gure belov	w the emf	of the bat	tery is 7.	2 V. Resist	or R ₁ l	nas a resista	ance of 25	Ω, resisto	r R ₂ has	a resistano	ce of 48 C	l, and res	sistor R ₃ h	nas a resis	tance of	58 Ω. A stead
curren	flows throu	gh the cir	cuit.																

(a) What is the equivalent resistance of R_1 and R_2 ?

Ω

A	al current through R ₃ ?				
Ŋ _	$\frac{R_1R_2}{R_1R_2}$				
Rland 2	R ₁ + R ₂				
	11 *>0				
-	16.438 1				
Reg = R	Plane 2 + R3				
	74.4382				
	19.95011				
V=IR					
$V = IR$ $I = \frac{v}{R}$					
= 96.	7 m A				