The M⁶ Competition Risk Model – Construction & Application

Ross Hollyman
University of Exeter

University of Nicosia
Institute for the Future
National Technical University of Athens
Forecasting & Strategy Unit
University of Bath

Risk Modeling and Decision Making in M⁶

- Role of risk left implicit in competition rules
- Competitors asked to maximize Sharpe Ratio:

$$SR_w = w\alpha/\sqrt{w\Sigma w'}$$

- α represents forecast return, Σ represents forecast risk
- w are the portfolio weights ('decisions')

Problem: Estimate Σ , Calibrate α , Choose w

Estimating Σ - The good news...

Distribution of AR(1) coefficient for M6 Assets: Mean and Standard Deviation of 20 day returns

Univariate variance is **much** more persistent than return - i.e. risk is **much** easier to forecast.

Estimating Σ - The bad news...

- Σ is very large for most reasonable portfolio construction problems
 - For M6, Σ has $100 \times 100 = 10,000$ terms
 - We only have approximately 144 trading months of data.
 - Covariance is time varying and most of this data is too old to be very reliable
- Thus, Σ is very difficult to estimate
 - Estimation errors are guaranteed
- Errors in Σ are ruthlessly exploited by optimisation software...
 - Covariance errors mistaken for arbitrage opportunities
 - These positions get levered up in resultant portfolios

Solution: Dimension reduction and/or shrinkage

M⁶-Estimating Σ in Practice

- Take account of 'stylised facts' about volatility
- Desiderata:
 - Use readily accessible data
 - Available to participants ex-ante
 - (Relatively!) Simple tools and techniques
- Split the problem in to two components:
 - 1. Univariate volatility
 - 2. Correlation

Objective: A simple and robust risk model

Volatility Clustering, Heteroskedasticity

Constant volatility assumption is not appropriate

Volatility spillover

Return Time Series, Selected M6 ETFs

Volatlity peaks & troughs often coincide, even for dissimilar assets

Exploring Centered Return Distributions

RVs - similar distributions for dissimilar assets

'Hexp' Volatility Model

Model of Bollerslev et al 2018

- Modification uses range based daily volatility estimates
- Models 'centered' volatility (less long run volatility)

Explanatory variables

- 4 exponentially weighted moving averages (less the long run volatility)
- EWMA at [1,5,25,125] centers of mass
- Plus a 'global' volatility factor

Estimation

- OLS on pooled data
- Easy to fit
- Global model
- Uses all the data
- Re-estimated Friday before each submission date

A simple, robust, proven approach

Multivariate Estimation - Technique

- Utilise a D(ynamic) C(onditional) C(orrelation) style model (Engle)
 - Estimate univariate models
 - Use these to standardize return series
 - 3. Estimate quasi correlation of these values
- Quasi correlation terms follow a GARCH style process:
 - i.e. for standardized asset returns x_t, y_t:

$$h_t = \omega h_0 + \alpha x_t \cdot y_t + \beta h_{t-1}$$

- Constrain $\omega + \alpha + \beta = 1$
- Choose α, β
- h₀ is 'long run target' value

Multivariate Estimation – The Factor Model

- Workhorse model in Finance
 - Returns expressed as a function of a small number of factors + residual
 - Significant dimension reduction
 - Lots of 'art' in choosing / specifying a model!
- For M6 we specify factors as various combinations of ETF Assets
 - Easy to do
 - No additional data required
 - Simple to explain
 - Model is 'hierarchical' Market / Risk factors / Industries
- Estimate factor / asset covariance with DCC
 - But: Long run correlation based on a single factor model (CAPM style)
 - Provides additional shrinkage
 - Choose α , β by grid search before competition
 - Choices reflect significant shrinkage

Dimension reduction and shrinkage are **key** to sensible portfolio construction

Calibrating α

- Participants provided probabilistic forecasts
- We translate these to return forecasts using standard techniques in quantitative asset management (Grinold & Kahn / Black Litterman)
- Prior assumption:
 - Each asset has zero expected return, with SD estimated from risk model
- Forecasts are shrunk towards the prior
 - Shrinkage intensity set at 'high', 'medium' or 'low'
 - Based on realistic assumptions and historical data
 - Forecasts are thus calibrated to the risk estimates
- Alternative assumptions, in particular re consensus / equilibrium expected returns are also reasonable (eg historic equity / bond risk premia)

Realistic forecasts based on sensible risk estimates

Choosing w - Optimization

- Maximum Sharpe ratio portfolios available in closed form given certain assumptions
- These don't (quite) apply in M6
- So optimize numerically
 - Two scenarios:
 - Unconstrained
 - Risk target
- Bear in mind:
 - Diversification is famously 'the only free lunch in finance'
 - Poor implementation has a cost in terms of diversification forgone
 - Excess risk is a killer of geometric (compound) returns
- Reverse optimization
 - If w is considered known, what can we deduce about α?

Key Results – Part 1

IC Quintile	Realized IC	Submission Risk (Ex Ante) %	Optimal Risk (Ex Ante) %	Submission Return (Ex Post) %	Optimal Return (Ex Post) %	Submission IR (Ex Post)	Optimal IR (Ex Post)
1	-0.24	10.8	6.2	-12.4	-20.9	-1.4	-2.8
2	-0.08	11.7	5.9	-5.2	-7.9	-0.8	-1.2
3	0.00	11.9	5.9	2.5	-0.1	0.5	-0.1
4	0.08	11.5	5.8	4.7	8.3	0.7	1.6
5	0.22	10.3	6.1	16.5	25.4	2.5	4.3

Overconfidence – Participants systematically assumed more risk than could be justified by the accuracy of their forecasts. Within the optimized portfolios, we observe a much clearer relationship between α and IR

Key Results Part II

Information Ratio of top 10 Participants - Decision Making

No evidence that superior returns come from return forecasts, or are strongly related to submitted portfolios weights (given the risk model)

The M6 Competition - Risk based Analysis

Conclusions

- Participants exhibited substantial overconfidence
- We observe substantial noise in the connection between forecasts and decisions
- No evidence that results of the returns based 'decision making' competition were determined by superior information in forecasts (or portfolio weights)

Implications

- 1. Investors should focus on realistically assessing the accuracy of their forecasts
- 2. They should build and utilize simple and robust risk models
- 3. Only then are accurate return forecasts economically valuable
- Investment outcomes are often a poor indicator of investment insight

Thank you for your attention Questions?

If you would like to learn more about M6 visit

https://mofc.unic.ac.cy/the-m6-competition/

