DATABASE MANAGEMENT SYSTEMS

PROJECT REPORTZOO MANAGEMENT SYSTEM

Risheek Nayak (B20Al058)

Suyog Gupta (B20Al059)

Shubham Solanki (B20AI040)

Introduction

- Our goal is to show an initial overview of how a zoo's data is managed centrally by using a database management system.
- An overview of our project:
 - Animal Details: Proper details about how, when, and from where animals have been imported, their basic type, and their information.
 - Staff Details: Used to store all the valid details of the staff i.e. salary, name, job type, shifts, etc.
 - Zoo Museum: An attraction site for the zoo. It includes different types of precious things from ancient to modern times.
 - Zoo's visitors: Details of the visitors of the zoo.

Entities

We have used 11 entities in our database. The detailed explanation of each one of them are given below:

1. Animal Details:

- This table contains all the basic information about the individual animal types that are kept in the cages.
- Attributes: animal_id, cage_no, animal_type, scientific_name, gender, gestation_month, present_health, birth_date, class
- Primary Key animal_id
- Foreign Key animal_type

2. Animal Habitat:

- This table keeps track of what time and what food the animals are fed by the name of the staff member. The animals are generally fed thrice a day (morning, noon, and evening).
- Attributes: animal_type, staff_id, breakfast_timing,
 breakfast_food, breakfast_stock, lunch_timing, lunch_food,
 lunch_stock, dinner_timing, dinner_food, dinner_stock
- Primary key animal_type
- Foreign key a_name

3. Animal Import:

- The animals are imported from different countries and the data regarding this is recorded such as from which country it is imported, the date of import, cost, and present age during exportation.
- Attributes: Import_id, animal_id, animal_name, entry_date, import_cost, age_during_export
- Primary Key import_id
- Foreign Key animal_id

4. Expense:

- This table tracks the expense of each animal which includes food, medicines, and other additional charges per cage.
- Attributes: Expense_id, animal_id, food_cost, medicine_cost,cleaning_cost, service_charge
- Primary key Expense_id
- Foreign Key animal_id

5. Staff Details:

- This table includes all the information about the employees working in the zoo.
- This includes the type of job, duration, designation, salary, etc,
- Attributes: Staff_id,Staff_name , Gender,Job_type,Salary,
 Email_address, shifting_time, date_of_joining,job_duration.

- Primary Key Staff_id
- Foreign Key None

6. Manager Details:

- Managers are responsible for handling different sections of the zoo and staff.
- Attributes: Manager_id, Staff_id, Manager_name, gender,
 job_type, salary, email_address, Managing_Area,
 Managing_Experience, General_Manager, admin_privilages
- Primary Key manager_id
- Foreign Key Staff_id

7. Vet Details:

- The responsibilities of the vets are to monitor the health of the animals and diagnose them when they are sick.
- Attributes: vet_id, Staff_id, vet_name, head_vet, specialty, veternity_experience
- Primary Key vet_id
- Foreign key staff_id

8. Visitor Details:

The visitors are the main motive behind a zoo. Three
categories of tickets are available based on the customer's
age. If the visitor wants to visit the museum, he needs an
additional museum ticket.

- Attributes: visitor_id, age, ticket_type, zoo_ticket_code, museum_ticket_code, ticket_price, coupon_no
- Primary Key Visitor_id
- Unique coupon_no

9. Food Court:

- The zoo also has a food court for visitors. The visitors with a coupon only have access.
- Attributes: coupon_no, staff_id ,order_id, food_type, food_name, price, vat
- Primary Key order_id
- Foreign Key coupon_no

10. Zoo Museum:

- The zoo museum consists of living and non-living animals' information including their import place and year.
- Attributes: meseum_id, name, Type, import_from, year
- Primary Key museum_id
- Foreign Key None

11. Record:

 Keeps track of any unexpected situation occurred in the zoo such as death etc.

- Attributes: record_id, cage_no, staff_id, visitor_id, museum_id, type_of_record, date_record_created, record_details
- Primary Key record_id
- Foreign key animal_id, staff_id, visitor_id, museum_id

ER Model

Trigger:

We have also added a trigger to add to our functionality.

We are using this to increase the count whenever there is a new_entry.

CREATE TRIGGER decree

ON Animal_details

FOR INSERT

AS

BEGIN

update species_count

set species_count.count1=species_count.count1+1

where species_count.scintific_name = new.scintific_name;

END;

SQL Queries

1. Using WHERE Clause

Animals with Gestation Month less than 5 years

select *

from Animal_details

where gestation month < 5;

Relational Algebra: $\pi(\sigma_{gestation_month>5}(animal details))$

2. Using BETWEEN Clause

visitor's age between 3 and 10.

SELECT visitor_id, age, museum_ticket_code, zoo_ticket_code, ticket_type_enum

FROM visitor_details

where age BETWEEN 3 and 10;

Relational Algebra:

 $\pi_{vistor_id,age,mueseum_ticket_code,zoo_ticket_code,ticker_type_enum}(\sigma_{age>=3~and})$ age=<10(animal~details))

	visitor_id	age	museum_ticket_code	zoo_ticket_code	ticket_type_enum
1	V-10003	10	M-1003	Z-1003	child
2	V-10009	10	M-1009	Z-1009	child
3	V-10010	9	M-1010	Z-10010	child
4	V-10011	9	M-1011	Z-1011	child
5	V-10013	5	M-1013	Z-1013	child
6	V-10014	7	M-1014	Z-1014	child
7	V-10016	6	M-1016	Z-1016	child
8	V-10018	8	M-1018	Z-1018	child

3. Using CONCAT Clause

Feedback of the customer who had pasta

SELECT CONCAT(coupon_no ,' ENJOYED ',food_name) AS '
FEEDBACK '

FROM food_court WHERE food_name='Pasta';

4. Using IN/NOT IN Clause

Show the details of the staff whose job duration is 8,9 &15 years

SELECT staff_id,staff_name,job_type,salary,job_duration

FROM staff_details

WHERE job_duration IN ('9 years','15 years','8 years');

	staff_id	staff_name	job_type	salary	job_duration
1	S-10010	Rohima Akter	Food Manager	40,000tk	8 years
2	S-10013	Hasan	Waiter	9,000tk	8 years
3	S-10015	Rohima Akter	Kennel Assistant	10,000tk	8 years
4	S-10016	Forhad	Kennel Assistant	5,000tk	9 years
5	S-10018	Giash	Kennel Assistant	5,000tk	9 years
6	S-10019	Rahima Akter	Kennel Assistant	5,000tk	15 years
7	S-10020	Tawhid Hossain	Veterinarian	55,000tk	9 years
8	S-10022	Mirazul Rahman	Veterinarian	55,000tk	9 years
9	S-10025	Nurul Islam	Veterinarian	50,000tk	8 years
10	S-10028	Fahim Alom	Canteen Cashier	13,000tk	8 years
11	S-10031	Sarkar	Zoo Manager	41,000tk	8 years

Relational Algebra:

 $\pi_{\text{staff_id,staff_name,job_type_salary_job_duration}}(\sigma_{\text{job_duration}=\text{'8'and'9'and'15'}}(animal\ details))$

5. Using ORDER BY Clause

Import Cost in Ascending Order

SELECT animal_id 'ID', IMPORT_COST 'COST' FROM animal_import

ORDER BY COST ASC;

	ID	COST
1	horse 1	6000
2	girraf 1	106000
3	hippo 1	4000000
4	sd 1	4000000
5	rbt 1	4800000
6	bd 1	4800000
7	IL 1	4800000

Relational Algebra: $\pi_{id,cost}(\gamma_{orderby(cost)}(animal_import))$

6. Using GROUP BY and HAVING Clause

Group the staffs on the basis of their salary

SELECT salary, count(salary)

FROM staff_details GROUP BY salary;

	salary	(No column name)
1	10,000tk	4
2	13,000tk	4
3	30,000tk	3
4	40,000tk	4
5	41,000tk	2
6	5,000tk	4
7	50,000tk	3
8	55,000tk	3
9	7,000tk	1
10	8,000tk	2
11	9,000tk	3

 $\underline{Relational\ Algebra:} \pi_{\mathsf{salary},\mathsf{count}(\mathsf{salary})}(\gamma_{\mathsf{groupby}(\mathsf{salary})}(\mathsf{staff_details}))$

7. Using LIKE Clause

Staff who had morning shift

SELECT STAFF_ID, staff_name, email_address, shifting_time

FROM staff_details WHERE shifting_time like '%MORNING%';

	STAFF_ID	staff_name	email_address	shifting_time
1	S-10001	Abdul Alom	abdulalam707@gmail.com	Moming
2	S-10003	Rahim Rahman	Rahim@gmail.com	Moming
3	S-10004	Abul Kashim	Abul@gmail.com	Moming
4	S-10005	Nurul Islam	Nurul54lslam@gmail.com	Moming
5	S-10007	Mahfuz Sarkar	Mahfuz@gmail.com	Moming
6	S-10008	Hasan	Hasan@gmail.com	Moming
7	S-10010	Rohima Akter	Akter45@gmail.com	Moming
8	S-10011	Abdul	Abdul@gmail.com	Moming
9	S-10013	Hasan	abdulalam707@gmail.com	Moming
10	S-10015	Rohima Akter	Rohima@gmail.com	Moming
11	S-10016	Forhad	Forhad@gmail.com	Moming
12	S-10017	Forid	Forid@gmail.com	Moming
13	S-10018	Giash	Giash@gmail.com	Moming
14	S-10019	Rahima Akter	Rahima@gmail.com	Moming
15	S-10020	Tawhid Hossain	Tawhid@gmail.com	Moming
16	S-10022	Mirazul Rahman	Mirazul@gmail.com	Moming
17	S-10024	Rowshan Karim	Rowshan@gmail.com	Moming
18	S-10025	Nurul Islam	Nurul@gmail.com	Moming
19	S-10027	Almas	Almas@gmail.com	Moming
20	S-10029	Farzina	Farzina87@gmail.com	Moming
21	S-10032	Siddik Bosh	Sarkar@gmail.com	Moming

8. Using JOIN Clause

Show details of animals imported from africa.

SELECT *

FROM animal_import i JOIN Animal_details l

ON (i.animal_id = l.animal_id)

where i.PLACE = 'AFRICA' ;

Relational Algebra:

 $\pi(\sigma_{animal\ import,place='africa''}(animal_import = animal_details))$

9. NESTED SUBQUERIES

Visitors who had a coupon and had pasta

SELECT visitor_details.visitor_id, visitor_details.coupon_no,

visitor_details.ticket_type_enum,visitor_details.age,visitor_details.z oo_ticket_code

FROM visitor_details

WHERE visitor_details.coupon_no

IN(select food_court.coupon_no from food_court where food_name ='Pasta');

10. AGGREGATE FUNCTIONS

Show maximum import cost

SELECT MAX(IMPORT_COST) 'MAXIMUM COST' FROM animal_import;

 $\underline{Relational\ Algebra:} \pi_{\mathsf{max}(\mathsf{import_cost})}(animal_cost)$

Contributions:

Group Member	Contributions
Risheek Nayak (B20Al058)	4 entity design (), SQL queries, Relational Algebra, Presentation Slides, report,
Suyog Gupta (B20Al059)	4 entity design (), SQL queries, Relational Algebra, Presentation Slides, report,
Shubham Solanki (B20Al040)	3 entity design (), SQL queries, Relational Algebra, Presentation Slides, images insertion.,