Midterm 2

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy

March 26, 2020

1 Memory Bank

- 1. $\vec{\mathbf{F}} = k \frac{q_1 q_2}{r_1} \hat{\mathbf{r}}$... Coulomb Force
- 2. $k = 9 \times 10^9$ M C⁻² m² ... Remember $k = 1/(4\pi\epsilon_0)$.
- 3. $q_e = 1.6 \times 10^{-19} \text{ C}$... Charge of an electron/proton
- 4. $\vec{F} = q\vec{E}$... Electric field and charge
- 5. $\vec{E}(z) = \frac{\sigma}{\epsilon_0} \hat{z}$... Electric field of two oppositely charge planes each with charge density $\vec{\sigma}$
- $m/T ^{21}-01 \times 38.8 \approx 8.8 \approx .0$
- 7. $dE = \int kdq/r^2$... Remember that dq takes the form below
- 8. $dq = \lambda dx$... Linear charge density (C/m)
- 9. $\vec{E} \cdot \vec{A} = Q_{enc}/\epsilon_0$... Gauss' Law, constant electric field over the surface area.
- 10. $U=q\Delta V$... Potential energy and voltage
- 11. I eV: an electron-Volt is the amount of energy one electron gains through 1 V.
- 12. $V(r) = k \frac{q}{r}$... Voltage of a point charge
- 13. $\vec{E} = -\frac{\Delta V}{\Delta x}$... E-field is the slope or change in voltage with respect to distance
- 14. $V(x) = -Ex + V_0$... Voltage is linear between two charge planes
- 15. Q = CV ... Definition of capacitance
- 16. $C = \frac{\epsilon_0 A}{d}$... Capacitance of a parallel plate capacitor
- 17. $C_{tot}^{-1} = C_1^{-1} + C_2^{-1}$... Adding two capacitors in series.
- 18. $C_{tot} = C_1 + C_2$... Adding two capacitors in parallel.
- 19. i(t) = dQ/dt ... Definition of current.
- 20. $v_d = i/(nqA)$... Charge drift velocity in a current i in a conductor with number density n and area A.
- 21. $R_{tot}^{-1} = R_1^{-1} + R_2^{-1}$... Adding two capacitors in parallel.
- 22. $R_{tot} = R_1 + R_2$... Adding two capacitors in series.
- 23. $\Delta V = IR_{tot}$, $\vec{J} = \sigma \vec{E}$... Versions of Ohm's Law. (\vec{J} is the current density with units of Amps per meter-squared).
- 24. P = IV ... Relationship between power, current, and voltage.
- 25. $V_C(t) = \epsilon_1 \left(1 \exp(-t/\tau)\right)$... voltage across the capacitor in an RC series circuit. The time constant $\tau = RC$.
- 26. $i(t) = \frac{c_1}{R} \exp(-t/\tau)$... Current in an RC series circuit.
- 27. $i_{
 m in}=i_{
 m out}$... Kirchhoff's junction rule.
- 28. $\epsilon_1 + \epsilon_2 + \epsilon_3 + \ldots = 0$... Kirchhoff's loop rule.
- 29. $\vec{F} = a\vec{v} \times \vec{B}$... The Lorentz force on a charge q with velocity \vec{v} in a magnetic field \vec{B} .
- \$\alpha\$ that aitement a mil transme a primmen \(\begin{align*}
 & \alpha\$ the material and a contract of the contract of the material and a contract of the contract of the contract

amplitude of the patient's heartbeat is 60 mV, when does the voltage rise to 30 mV in the EKG monitor (using to less than the value found in (a)? (c) If the patient's resistance really is 1.00 kΩ, and the typical maximum what is the maximum capacitance of the circuit? (b) Would it be difficult in practice to limit the capacitance over small time intervals. (a) If the resistance of the circuit (due mostly to that of the patients chest) is 1.00 kD, 1. An ECG monitor must have an RC time constant less than 100µs to be able to measure variations in voltage

2. Imagine an alternating current (AC) system, as opposed to the DC systems we normally consider. In AC circuits,

the voltage follows a form

$$(1) \qquad (\phi + i \ln 2) \operatorname{mis}_0 V = (i) V$$

max power delivered to a 1kW resistor? (c) What is the average power delivered to a 1kW resistor? much like choosing the zero-point of voltage. (a) Suppose $\phi = 0$. At what times will V(t) = 0? (b) What is the The wall outlets in the USA have $f=60~{
m Hz}$ and $V_0=120~{
m V}$. We have the freedom to choose ϕ in this example,

$$V(t) = V_0 \sin(2\pi t_0 + 0) = 0$$
 $V(t) = 0$
 $V(t) = 0$

California, electricity costs about 0.2 dollars per kiloWatt-hour. How much money does this student spend if bulb, an overhead light with a 60-W bulb, and various other small devices adding up to 3.00 W. In Southern a small refrigerator that runs with a current of 3.00 A and a voltage of 110 V, a lamp that contains a 100-W 3. For those of us stuck at home! A physics student has a single-occupancy dorm room. The student has

the total wattage is on for 12 hours per day for one month?

Chapter 10: Direct-Current (DC) Circuits

$$O = (21-x) + (x) + (x)$$

Figure 1: A circuit with two batteries and three resistors.

1. Solve for i_1 , i_2 , and i_3 in Fig. 1, if $R = 1k\Omega$, and V = 12.0 Volts. What power is consumed in the resistors?

current flow? (b) If the batteries each have a charge $q=2.5~\mathrm{A}$ hr, how long will the current flow? The composited (x, x), in parameter with the device, (x) if (x - 20.7) while is the

connected in parallel. (b) A circuit diagram representing the circuit in (a). Figure 2: Two AA batteries are connected in parallel to power a calculator represented by R. (a) The batteries are

Chapter 11: Magnetic Forces and Fields

Figure 3: The trajectory of a sub-atomic particle through a cloud chamber.

in what direction was the force? had a strength of 0.05 T and the velocity of the paricle was 10^6 m/s. What was the force on the particle, and particle had the mass of an electon, from the radius of curvature. Why is that strange? (c) Imagine the B-field magnetic field is into the page. What is the sign of the charge of this particle? (b) It was later deduced that this a device called a cloud chamber. The particle bends to the left after passing through a lead plate. (a) The 1. The experimental result depicted in Fig. 3 shows the trajectory of a sub-atomic particle that is revealed by

SIMOI - V TEOD.O - 8.0

$$O = 1.6 \times 10^{-19} C$$

 $O = 1.6 \times 10^{-19} C$
 $O = 1.6 \times 10^{-19} C$

·H +110d may antisod SI +1 tout bried 271 02 surupan Subotromic Pointains ore but different charges. SSOUL JULDS JUL DOUG SUCTOMO & SUCHODID JUL Demond Devents 5, 11 9

and to the 18th. qu eniog 21 ADHIDG 294 DELLINE DECRUSE THE PIDHILDY SIGH TO HIP SAT D

a, aboto