データの分析と処理科学研究に必要な統計学

青森大学ソフトウェア情報学部 角田均

科学研究と統計学

実験データと統計処理

統計学の重要性

(例) 10回の測定値と平均値

る当中

Aの測定			
10.27	10.32	10.28	10.28
10.04	10.25	10.34	10.15
10.18	10.12	10.16	10.40
10.24	10.19	10.22	10.24
10.29	10.25	10.24	10.04
10.25	10.13	10.34	10.40
10.19	10.21	10.04	10.20
10.38	10.27	10.25	10.29
10.27	10.32	10.34	10.27
10.28	10.26	10.24	10.16
10.24	10.23	10.25	10.24

Bの測定			
10.57	7.82	11.09	12.49
9.72	12.26	10.19	12.91
10.87	8.41	8.62	11.18
9.45	7.26	9.22	9.74
7.11	9.49	10.47	8.66
10.16	11.00	9.68	13.25
7.55	6.40	7.60	9.36
14.00	11.88	7.59	8.36
12.09	6.50	12.41	13.28
10.88	11.64	11.83	11.91
10.24	9.27	9.87	11.11

平均值

測定值

データの「確からしさ」を統計学で説明・記述する

統計とは

• 「統計」 = データを整理して分析する

測定や調査で データを集める 表やグラフに 整理・まとめ

分析、検証、予測

統計学の分類

- 記述統計学
 - グラフや表で大量の事象(データ)を記述する
- 数理統計学
 - 推測統計学
 - 少ないサンプルから全体を予測する
 - 多変量解析
 - 複雑に絡み合った要因を分解、因果関係を明らかにする

統計学の3つの源流

Adolphe Quetelet (1796-1874)

近代統計学の祖

Augustus (BC63-14)

William Petty (1632-87)

Edmond Halley (1656-1742)

大量の事象をとらえる

Blaise Pascal (1623-62)

Pierre de Fermat (16??-1665)

確率的な事象をとらえる

統計学の過去、現在、未来

- 統計学は難しい?
 - 学校で習わない
 - 処理、計算が大変
- 統計学は最強?
 - コンピュータの普及で変わった世界
 - ビジネスの世界に浸透
- これからの統計学
 - 「ビッグデータ」で変わる統計学
 - 「データサイエンス」「機械学習」「人工知能」

人工知能と統計学

・機械学習は応用統計学?

データの整理と俯瞰

個票とヒストグラム

データを整理する

• 「個票」を作る

個票 (一次データ)

番号	身長(cm)	体重(kg)	
1	169.6	63.3	
2	172 2	62.8	_
3	175.3	74.8	
4	181	体(レコ-	_ F*)
5		☆(レコ‐ . 1 組のデ	
6	168.9	. 1/11 > /	
7	183.5	69.7	
8	169.9	59.0	
9	158.6	46.1	
10	164.2	70.3	

「変量」

データ全体を視覚化する

得点区間

1

4 5 人数

• 度数分布表とヒストグラム

クラス**1**の 得点分布

得点データ

平均値は どちらも**3.0**

クラス**2**の 得点分布

番号	得点
Α	2
В	5
С	2
D	3
Е	4
F	1
G	3
Н	3
1	4
J	3

番号

В

D

F

G

得点

5

3

5

4

$\neg /$

☆* *** 八 ★ ★			
	一一类	4	在 丰

得点区間	人数
1	
2	
3	
4	
5	

ヒストグラム

データの代表値

平均值、中央值、最頻值

データの代表値

- 主な代表値
 - 平均值
 - 中央値(メジアン)
 - 最頻値 (モード)
 - 最大値・最小値
 - ・レンジ

平均值

データを平らに均した値

$$\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$
 (平均値の公式)

例)5人分のテストの成績

番号	得点
А	7
В	5
С	3
D	9
E	6

$$\frac{7+5+3+9+6}{5} = \frac{30}{5} = 6$$

平均値は最も重要な代表値

大数の法則

サンプルの平均値は、サンプル数を増やすと真の平均値に近づく

偶然、異常値を得る 可能性もある

(サンプル1個)平均162.6

(母集団10000個) 平均170.0

(サンプル10個)平均171.4

(サンプル10000個) 平均170.0

中心極限定理

• 元がどんな分布のデータでも、サンプルの平均 値は母集団の平均値の周辺に正規分布する

正規分布

• 定義

実際にやってみる

中央値 (メジアン)

• 中央値 = 変量の真ん中の値

中央值 3

中央值

異常値

20

6

最頻値 (モード)

• 最頻値 = 最も頻繁に現れる値

平均值

最頻值

どれが「代表値」?

データのばらつき

標準偏差

ばらつき度合いの表現

• 同じ平均値でも、ばらつきの違うデータ

データ数10000、平均値50.0

データ数10000、平均値50.0

ばらつき度合いを表す指標

• 「偏差」…平均値との差

偏差=
$$x - \bar{x}$$

・「分散」…偏差の2乗の平均

$$\sigma^2 = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n}$$

• 「標準偏差」 ... 分散の平方根

$$\sigma = \sqrt{\sigma^2}$$

偏差

個別のデータごとの指標

• 偏差 ... 平均値との差

分散

データ全体の指標

分散…偏差の2乗の平均

標準偏差

・標準偏差…分散の平方根

$$\sigma = \sqrt{\sigma^2}$$

標準偏差は元のデータと直接比較できる

標準偏差の意味

(例) **7**人分のテスト

番号	得点	偏差	偏差の2乗
А	9		
В	4		
С	10		
D	5		
Е	8		
F	7		
G	6		

正規分布と標準偏差

• 平均値の周りにデータが含まれる確率

標本標準偏差と母標準偏差

- 標本の場合はnをn-1に置き換える。
- 理由
 - 標本の平均値を使うと、標本の偏差が最小になる (標本の平均値がそのように定義されている)
 - この、標本の平均値によって拘束された1次元分の 自由度の減少を反映させる
- Excelの場合
 - STDEV.S ... 標本標準偏差
 - STDEV.P ... 母標準偏差

標準誤差

・標準誤差…推定値(平均値)の標準偏差

標準誤差= $\frac{\sigma}{\sqrt{n}}$

2種類の測定データ

①多くのバラついた値を測定する場合 平均値 + 標準偏差 集団全体の特性を記述・分析する 例) 40人のクラスのボール投げの距離を集計した

②唯一の正しい値を測定する場合
誤差を含む測定から、正しい値を推定する
例)学校から自宅までの距離を10回測った

標準誤差の意味

(例) 10回の測定値と平均値と標準誤差

Aの測定			
10.57	7.82	11.09	12.49
9.72	12.26	10.19	12.91
10.87	8.41	8.62	11.18
9.45	7.26	9.22	9.74
7.11	9.49	10.47	8.66
10.16	11.00	9.68	13.25
7.55	6.40	7.60	9.36
14.00	11.88	7.59	8.36
12.09	6.50	12.41	13.28
10.88	11.64	11.83	11.91
10.24	9.27	9.87	11.11

Bの測定			
10.27	10.32	10.28	10.28
10.04	10.25	10.34	10.15
10.18	10.12	10.16	10.40
10.24	10.19	10.22	10.24
10.29	10.25	10.24	10.04
10.25	10.13	10.34	10.40
10.19	10.21	10.04	10.20
10.38	10.27	10.25	10.29
10.27	10.32	10.34	10.27
10.28	10.26	10.24	10.16
10.24	10.23	10.25	10.24

測定の信頼度を上げる

• 標準誤差を小さくするために

測定精度を高める

標準偏差(ばらつき)を小さくする

標準誤差= $\frac{\sigma}{\sqrt{n}}$

測定回数を増やす

100倍の回数で10倍の精度

仮説の検証

統計的仮説検定

仮説と検定

- 仮説
 - 母集団の性質(平均値、分散、比率など)を説明する ために立てた仮定(命題)

(仮説) 男子高校生の平均身長は女子の平均身長より高い

(検証) 男子10名、女子10名の 平均身長を比較する

- 検定
 - 標本(サンプル)から仮説を検証する
 - 仮説から導かれる結果が得られているか
 - 仮説が正しく測定結果を説明しているか
 - 偶然ではないのか

仮説検定の基本

• 基本的な考え方

仮説検定の基本

帰無仮説の方を検証→棄却することで 対立仮説の正しさを主張する

- 仮説の設定
 - 帰無仮説… 支持したい仮説の逆の命題を設定
 - 対立仮説 ... 支持したい仮説
- t検定
 - 母集団の平均値の違いを検定
 - 母集団が正規分布
 - 標本数が少ない場合
 - 標本のt値はt分布に従う

t値
$$T = \frac{\bar{X} - \mu}{S / \sqrt{n}}$$

スチューデントのt分布

仮説検定の例

- 問題設定:解熱剤の効果
 - 10人の患者に投薬
 - 投薬前と投薬後の体温を測定
 - 解熱剤は効いたのか?
- 仮説
 - 「解熱剤によって体温が下がった」
- 検定手順
 - 帰無仮説: 投薬前と投薬後の平均体温に差はない
 - 対立仮説: 投薬前と投薬後の平均体温に差がある
 - 帰無仮説の矛盾を示す(棄却する)
- 利用するExcelの関数
 - 平均 ... average(データ範囲)
 - 標準偏差 ... stdev.s(データ範囲)
 - 平方根 ... sqrt(値)
 - t検定 ... t.test(系列1,系列2,検定の種類,データの種類)

表. 投薬前後の体温測定

患者	投薬前	投薬後	低下体温
1	35.4	35.3	0.1
2	38.8	36.2	2.6
3	37.0	34.8	2.2
4	38.2	38.1	0.1
5	38.8	36.2	2.6
6	37.9	36.6	1.3
7	38.5	36.2	2.3
8	37.6	36.0	1.6
9	38.7	36.6	2.1
10	39.4	36.5	2.9

変量同士の関係

回帰分析と相関係数

散布図と相関

(例) 身長と体重を同時にプロット

番号	身長	体重
1	147.9	41.7
2	163.5	60.2
3	159.8	47.0
4	155.1	53.2
5	163.3	48.3
6	158.7	55.2
7	172.0	58.5
8	161.2	49.0
9	153.9	46.7
10	161.6	52.5

相関

• 変量間の関係

一方の変量の変化に対する 他方の変量の変化の傾向

正の相関

一方が増えれば 他方も増える

負の相関

一方が増えれば 他方が減る

無相関

どちらでもない

共分散

定義

$$s_{xy} = \frac{(x_1 - \bar{x})(y_1 - \bar{y}) + (x_2 - \bar{x})(y_2 - \bar{y}) + \dots + (x_n - \bar{x})(y_n - \bar{y})}{n}$$

 $s_{xy} > 0$ ならば正の相関

 $s_{xy} = 0$ ならば無相関

 $s_{xy} < 0$ ならば負の相関

相関係数

• 定義

回帰直線

• 多変量解析

最後に

実験科学と統計学

統計学の位置づけ

