ТЕОРИЯ К КУРСУ «АНАЛИТИЧЕСКАЯ МЕХАНИКА II» ФОПФ

 За авторством:
 Хоружего К. Примака Е.

 От:
 10 февраля 2021 г.

 Содержание
 2

 Устойчивость движения
 2

 15.1 Возмущенное движение
 2

Устойчивость движения

15.1 Возмущенное движение

Пусть уравнение движение представлено в виде:

$$\frac{dy_i}{dt}Y_i(y_1, y_2, \dots, y_m, t) \ (i = 1, 2, \dots, m). \tag{15.1}$$

Рассмотрим частное движение — частное решение этой системы с начальными условиями

$$y_i^* = f_i(t)(i = 1, 2, \dots, m), \quad y_{i0} = f_i(t_0)(i = 1, 2, \dots, m).$$
 (15.2)

Нас будут интересовать движения системы при отклонении от начальных условий y_{i0} от значений $f_i(t_0)$.

Def 15.1. Движение системы, описываемое (15.2) называется *невозмущенным* движением. Все другие движения механической системы при тех же силах, что и движение (15.2) — возмущенные движения.

Def 15.2. Возмущениями назовём разности вида:

$$x_i = y_i - f_i(t) \ (i = 1, 2, \dots, m).$$
 (15.3)

Def 15.3. Теперь, произведя замену по формулам (15.3) в уравнениях (15.1) получим дифференциальные уравнения возмущенного движения:

$$\frac{dx_i}{dt} = X_i(x_1, x_2, \dots, x_m, t) \ (i = 1, 2, \dots, m).$$
(15.4)

Уравнения (15.4) имеют частное решение $x_i \equiv$ отвечающее невозмущенному движению.

Def 15.4. Движение называется установившимся, если $X_i \neq g(t)$, в противном же случае — неустановившимся. сл.

Def 15.5 (Устойчивость по Ляпунову). Невозмущенное движение называется *устойчивым* по отношению к переменным y_i , если $\forall \varepsilon > 0 \ \exists \delta(\varepsilon)$: \forall возмущенных движений, для которых

$$|x_i(t_0)| < \delta, \ \forall t > t_0 \$$
выполняется $|x_i(t)| < \varepsilon.$ (15.5)

Def 15.6 (Асимптотическая устойчивость). Невозмущенное движение называется *асимптотически устойчиевым* по отношению к переменным y_i , если оно устойчиво и $\exists \delta$ – маленькие такие, что для возмущенных движений удовлетворяющим условиям (15.5) верно:

$$\lim_{t \to \infty} x_i(t) = 0 \ (i = 1, 2, \dots, m). \tag{15.6}$$