西安交通大学 数学实验报告 2003-SARS 传播问题

Xi'an Jiaotong University

Report on Mathematical Experiments

The Propagation Problem of SARS in 2003

评分表:

班级	学号	姓名	班号	组号	任务	成绩
电类 938	2194323176	胡欣盈			模型的代码实现	
电类 937	2196123402	何佩阳	7	52	建立数学模型	
电类 935	2196123421	刘雪婷			撰写实验报告	

2020年7月13日

2003-SARS 传播问题

一、问题重述

1.1 问题背景

2003 年的 SARS 疫情对中国部分行业的经济发展产生了一定的影响,特别是对帮分疫情较严重的省市的相关行业所造成的影响 是明显的,经济影响主要分为直接经济影响和间接影响.直接经济影响 涉及到商品零售业、旅游业、综合服务等行业.很多方面难以进行定量 地评估,现仅就 SARS 疫情较重的某市旅游业的影响进行定量的评估分析。

1.2 目标任务

根据上述基本要求,需要解决以下问题:

- (1) 通过预测模型对 2003 年 (未发生 SARS 疫情的情况下) 接待海外旅游人数进行预测。
 - (2) 对比现实数据和预测数据,评估 SARS 对该市旅游业的影响。

二、模型假设

给出下面两条假设:

- (1) 假设该市的统计数据都是可靠准确的;
- (2)假设该市在 SARS 疫情流行期间和结束之后,数据的变化只与 SARS 疫情的影响有关,不考虑其他随机因素的影响。

三、符号说明

<i>z</i> ₁	x ⁽¹⁾ 邻值生成数列
а	发展灰度
b	内生控制灰度
\bar{x}	2003 年月平均值
\overline{u}	每月比例
ν	2003 年 1-12 月预测值

四、问题分析

本题是一个与数据预测有关的,基于灰色系统理论的评价和预测问题。问题要求 我们定量地评估 SARS 对疫情较重的某市旅游业的影响,并建立数学模型对此影响进 行描述。

五、模型的建立与求解

5.1 模型的整体分析

根据所掌握的历史统计数据可以看出,在正常情况下,全年的平均值较好地反映了相关指标的变化规律,这样可以把预测评估分成两部分:(1)利用灰色理论建立灰微分方程模型,由 1997~2002 年的平均值预测 2003 年平均值;(2)通过历史数据计算每个月的指标值与全年总值的关系,从而可预测出正常情况下 2003 年每个月的指标值,再与实际值比较可以估算出 SARS 疫情实际造成的影响。

5.2 建立灰色预测模型 GM(1, 1)

5.2.1 数据的检验与处理

为了保证 GM(1,1)建模方法的可行性,需要对已知数据做必要的检验处理。

设 1997-2002 接待海外旅游人数年平均值为

$$\mathbf{x}^{(0)} = (\mathbf{x}^{(0)}(1), \mathbf{x}^{(0)}(2), \dots, \mathbf{x}^{(0)}(n)) = (19.10, 16.62, 18.35, 24.39, 24.78, 27.18),$$

计算数列的级比:

$$\lambda(k) = \frac{x^{(0)}(k-1)}{x^{(0)}(k)}, k = 2,3,...,n.$$

计算得级比为 1.15, 0.90, 0.75, 0.98, 0.91, 所有的级比都落在可容覆盖区间 $X=(e^{\frac{-2}{n+1}},e^{\frac{2}{n+1}})=(0.75,1.33)$ 内,故数据列 $x^{(0)}$ 可以建立 GM(1,1)模型且可以进行灰色预测。

5.2.2 建立 GM (1,1) 模型

由以上级比检验可知 $x^{(0)}=(x^{(0)}(1),x^{(0)}(2),...,x^{(0)}(n))$ 满足上面的要求,以它为数据列建立 GM(1.1)模型

$$x^{(0)}(k) + az^{(1)}(k) = b$$

其1次累加生成数列为

$$\mathbf{x}^{(1)} = (x^{(1)}(1), x^{(1)}(2), \dots, x^{(1)}(n)) = (19.1, 35.72, 54.07, 78.46, 103.24, 130.42)$$

其中

$$x^{(1)}(k) = \sum_{i=1}^{k} x^{(0)}(i), k = 1, 2, ..., n,$$

用回归分析求得 a, b 的估计值, 于是相应的白化模型为

$$\frac{dx^{(1)}(t)}{dt} + ax^{(1)}(t) = b,$$
解为 $x^{(1)}(t) = \left(x^{(0)}(1) - \frac{b}{a}\right)e^{-a(t-1)} + \frac{b}{a}$ (3)

于是得到预测值

$$\hat{x}^{(1)}(k+1) = \left(x^{(0)}(1) - \frac{b}{a}\right)e^{-ak} + \frac{b}{a}, k = 1, 2, \dots, n-1,$$

从而相应地得到预测值:

$$\hat{x}^{(0)}(k+1) = \hat{x}^{(1)}(k+1) - \hat{x}^{(1)}(k), k = 1, 2, ..., n-1,$$

5.2.3 模型求解(接待海外旅游人数)

计算可得每年月平均值,一次累加值分别为

 $x^{(0)} = (19.10, 16.62, 18.35, 24.39, 24.78, 27.18),$

 $\mathbf{x}^{(1)} = (19.1, 35.72, 54.07, 78.46, 103.24, 130.42)$

显然 $x^{(0)}$ 的所有级比都在可行域内,经检验,在这里取参数 $\alpha = 0.4$ 比较合适,则有 $z^{(1)} = (26.34, 45.54, 67.80, 92.33, 118.05).$

由最小二乘法求得a = -0.0946, b = 16.4256, 可得 2003 年的月平均值为 $\bar{x} =$

30.6961万人; 年总值为 $X = 12 \cdot \bar{x} = 368.3532$, 每月的比例为

u = (0.0407, 0.0732, 0.0703, 0.0878, 0.0907, 0.0848, 0.0836, 0.1022, 0.1010, 0.1041, 0.0914, 0.0701)

故 2003 年 1-12 月的预测值为

v = (15.0101, 26.9588, 25.9078, 32.3505, 33.4243, 31.2310, 30.7970, 37.6509, 37.1940,

38.3363,33.6528,25.8393)(万人)

将预测值与实际统计值进行比较如下表所示.

月份	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
预测值	15	16.9	25.9	32.4	33.4	31.2	30.8	37.6	37.2	38.3	33.6	25.8
实际值	15.4	17.1	23.5	11.6	1.78	2.61	8.8	16.2	20.1	24.9	26.5	21.8

5.3 代码实现

clc,clear

han1=[9.4 11.3 16.8 19.8 20.3 18.8 20.9 24.9 24.7 24.3 19.4 18.6

9.6 11.7 15.8 19.9 19.5 17.8 17.8 23.3 21.4 24.5 20.1 15.9

10.1 12.9 17.7 21.0 21.0 20.4 21.9 25.8 29.3 29.8 23.6 16.5

 $11.4\ 26.0\ 19.6\ 25.9\ 27.6\ 24.3\ 23.0\quad 27.8\quad 27.3\quad 28.5\ 32.8\ 18.5$

 $11.5\ 26.4\ 20.4\ 26.1\ 28.9\ 28.0\ 25.2 \quad \ 30.8 \quad \ 28.7 \quad \ 28.1\ 22.2\ 20.7$

 $13.7\ 29.7\ 23.1\ 28.9\ 29.0\ 27.4\ 26.0\quad 32.2\quad 31.4\quad 32.6\ 29.2\ 22.9$

15.4 17.1 23.5 11.6 1.78 2.61 8.8 16.2 20.1 24.9 26.5 21.8];

han1(end,:)=[];m=size(han1,2);

x0=mean(han1,2);

x1=cumsum(x0);

alpha=0.4;n=length(x0);

```
\begin{split} z1 = &alpha*x1(2:n) + (1-alpha)*x1(1:n-1) \\ Y = &x0(2:n); B = [-z1,ones(n-1,1)]; \\ ab = &B \setminus Y \\ k = 6; \\ x7hat = &(x0(1)-ab(2)/ab(1))*(exp(-ab(1)*k)-exp(-ab(1)*(k-1))) \\ z = &m*x7hat \\ u = &sum(han1)/sum(sum(han1)) \\ v = &z*u \end{split}
```

5.4 模型的整体分析

对于旅游业来说是受影响最严重的行业之一,最严重的 4、5、6、7 四个月就损失 100 多万人,按最新统计数据,平均每人消费 1002 美元计算,大约损失 10 亿美元。全年大约损失 160 万人,约合 16 亿美元,到年底基本恢复正常。

从预测结果可以看出,虽然下半年没有发生疫情,但人们一直担心 SARS 会卷土重来,所以,对这些行业还是有一定的影响,即 SARS 影响的延续性的作用。

该模型虽是就某经济指标的发展规律进行评估预测而建立的,但类似的也适用于其他方面的一些数据规律的评估预测问题,即该模型具有很广泛的应用性。

六、参考文献

- [1]韩中庚,数学建模方法及应用(第二版),2009,北京:高等教育出版社
- [2]李继成,数学实验(第二版),2014,北京:高等教育出版社
- [3]姜启源、谢金星、叶俊,数学模型(第四版),2011,北京:高等教育出版社