

Reshaping mobile crowd sensing using cross validation to improve data credibility

6 December 2017

Tony T. Luo*, Leonit Zeynalvand^

* Institute for Infocomm Research (I²R), A*STAR, Singapore ^ School of CSE, Nanyang Technological University, Singapore

IoT & mobile crowd sensing

Ultimate goal of IoT: improve people's life

Internet of People

People's role in IoT:

People are not merely service consumers; They can also act as data providers

A critical issue in MCS

- Data credibility: Quality of crowdsensed data can be poor and inconsistent
- Existing solution approaches
 - Incentive mechanisms
 - Trustworthiness/quality of worker or data
 - Truth discovery
- "Power of crowds" not fully explored

New approach: Cross validation

Introduce Validating Crowd

Contributing Crowd

- To clarify:
 - Not expert-sourcing
 - Not the same concept as in statistics or machine learning

Challenges

- Introduces another quality/credibility issue? (of validation)
- 2. How to present crowdsensed data to validators?
- 3. How to deal with validators' bias?
- 4. Privacy issue?
- 5. How to consolidate validation result with original crowdsensed data?
- Need incentives for validators? And How?

Cross validation mechanism

1) Profiling

- To obtain $\chi = (V, P)$
 - $V = \{v_i\}$: representative values of original data
 - $P = \{p_i\}$: probabilities of each $v_i \in V$
- Procedure
 - Create histogram
 - Select representative values
 - Normalize to probability measure

How to present data to validators?

- Candidate methods
 - Expose χ or V at a public venue (e.g., website)
 - Ex: Amazon, Quora, Stackoverflow, TripAdvisor
 - Expose χ or V to a selected group of workers
 - Ex: "Elite users" or forum admins
 - Present a subset of V to each selected worker
 - For each of the above, ask for a ranking or picking the best
 - Then perform preference aggregation, e.g., by using Borda count or Condorcet winner
 - All have issues: details see paper; more discussion in upcoming arXiv version
- Our method
 - Single value, single rating

Illustration

2) Sampling

- How to select that "single value"?
 - Sample V with a certain probability distribution
 - Present each sampled value (not necessarily unique) to a (unique) validator
- Sampling methods:
 - Random sampling: $s_i = 1/n$, where n = |V|
 - Proportional sampling: $s_i = p_i$, $\forall p_i \in P$
- Other thoughts
 - Frequent values may need less validation
 - Catch "outliers": could they be uncommon truth?
- Additional sampling methods
 - Reverse sampling: $s_i \propto d p_i$
 - We use: $s_i = \frac{d-p_i}{nd-1}$ where $d = p_{min} + p_{max}$
 - note: avoid d=1 (see paper)
 - Inverse sampling: $s_i \propto 1/p_i$
 - So by normalization, $s_i = \frac{1/p_i}{\sum_i 1/p_i}$

Given the sampled values...

How to approach workers to seek ratings?

3) Privacy-aware competency-adaptive push (PACAP)

- Proactive approach: Push rating tasks to a set of strategically selected validators (raters)
- Issues with push:
 - (Privacy) intrusive
 - Competency: "are you pushing to the right people?"
- Other restrictions:
 - Quantity requirement: desire m ratings with a shortfall tolerance α , i.e., below $m(1-\alpha)$ unacceptable
 - Time constraint: collect all ratings within deadline T_o
- Solution: privacy-aware competency-adaptive push (PACAP)

Design considerations

- Anti-bias
- Competency control
- Privacy awareness

Select a rater j at time t with prob. $q_i(t)$:

$$q_j(t) = \frac{1 - e^{-\lambda_j(t - t_j^-)(R_j + \epsilon)}}{\sum_{j \in \Psi} \left[1 - e^{-\lambda_j(t - t_j^-)(R_j + \epsilon)} \right]}$$

 R_i : Reputation of j; $R_i \ge 0$

 λ_j : personalized elasticity parameter catering for j's privacy

preference; $\lambda_j \in [1, \lambda_{max}]$

 t_i^- : the time when j receives the last offer

 ϵ : ensure users with R_i =0 (e.g. new users) still have chance

Intuition:

- higher reputation, higher chance
- 2) avoid too frequent pushes to the same rater while mitigating starvation
- 3) privacy customization via λ (details in paper)

Challenge

 Rater behaviors are highly uncertain and dynamic (decline offer, accept offer, delay, non-response)

Solution:

- Divide T_o into multiple cycles
- Perform progressive push over cycles
 - Each cycle to approach a different group of raters of a different group size with a different number of offers
 - Accumulate statistics for each cycle
 - Determine group size for next cycle by predicting an effective response ratio by learning from historical statistics
 - Select the group members using the selection probability $q_i(t)$

Algorithm

Algorithm 1: Progressive PACAP

```
Input: Crowdworkers \mathcal{U}, contributors \mathcal{C}, representatives \mathcal{V},
           target m, tolerance \alpha, deadline T_0
```

Output:
$$\mathcal{R} = \{ \langle r_j(v_i), j, v_i \rangle | r_j(v_i) \neq 0, j \in \mathcal{U}, v_i \in \mathcal{V} \}$$
 with $|\mathcal{R}| \geq m \cdot (1 - \alpha)$, or FAIL otherwise

```
1 \mathcal{R} \leftarrow \emptyset, \Psi \leftarrow \mathcal{U} \setminus \mathcal{C}
                                                                                                                        11
                                                                                                                        12
2 m(1) \leftarrow m, M_V(0) \leftarrow 0, M_N(0) \leftarrow 0
                                                                                                                        13
3 for k \leftarrow 1 to T_0/\tau do
```

```
select m(k) raters, denoted by a set \mathcal{M}(k), from \Psi
                                                                     14
      according to Eq. (3)
                                                                     15
5
```

for each
$$j \in \mathcal{M}(k)$$
 do

obtain one $v_i \in \mathcal{V}$ using a sampling method from 16 Section III-B

wrap v_i in a rating task and push it to rater j to

```
seek rating r_i(v_i)
      end
8
```

wait for τ while collecting ratings:

$$\begin{array}{ll}
\circ & \mathcal{R}(k) \leftarrow \{\langle r_j(v_i), j, v_i \rangle | r_j(v_i) \neq 0\} \\
\circ & m_{\mathcal{N}}(k) \leftarrow \Sigma
\end{array}$$

$$\circ$$
 $m_N(k) \leftarrow \sum_{j=r_j(v_i)=0}^{n}$

$$\mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}(k), \quad m_Y(k) \leftarrow |\mathcal{R}(k)|$$

```
if |\mathcal{R}| \geq m then
    return R // SUCCESS *
end
// Prepare for the next cycle:
update \Psi \leftarrow \Psi \setminus \mathcal{M}(k)
M_Y(k) \leftarrow M_Y(k-1) + m_Y(k)
M_N(k) \leftarrow M_N(k-1) + m_N(k)
determine the scale of next outreach:
    m(k+1) \leftarrow [m-M_Y(k)] \left| 1 + \frac{M_N(k)}{M_Y(k)} \right|
```

18 if
$$|\mathcal{R}| < m(1-\alpha)$$
 then
19 | return FAIL

20 else

17 end

return \mathcal{R} // SUCCESS

22 end

Next...

Given the ratings, how to consolidate them with the original data?

4) Reshaping

- Given: $\chi = \{V, P\}$ and R (set of ratings)
- Output: \(\chi' = \{V,P'\}\) (reshaped profile)

$$\hat{p_i} = \frac{\kappa_i + \eta g_i \frac{\sum_{i=1}^n \kappa_i}{|\mathcal{R}|}}{\sum_{i=1}^n \kappa_i + \eta (g_i + b_i) \frac{\sum_{i=1}^n \kappa_i}{|\mathcal{R}|}}$$
$$= \frac{p_i + \eta \frac{g_i}{|\mathcal{R}|}}{1 + \eta \frac{g_i + b_i}{|\mathcal{R}|}}.$$

$$g_i = rac{1}{w_l} \sum_j r_j(v_i) \mathbb{1}_{r_j(v_i) > 0},$$
 $b_i = -rac{1}{w_l} \sum_j r_j(v_i) \mathbb{1}_{r_j(v_i) < 0}$

Intuition: each original p_i can be interpreted as the ratio of contributors who "voted" for v_i to be the truth; during CV, each v_i receives another set of votes from the raters to whom the same v_i was pushed.

5) Incentive scheme

- Need to cater for two crowds
- Raters: update reputation as

$$R_j' = [R_j + \Delta_j(v_i)]^+$$

where $[x]^+ = \max(0, x)$, and

$$\Delta_j(v_i) = egin{cases} rac{p_i' - p_i}{1 - p_i} rac{r_j(v_i)}{w_l}, & ext{if } p_i' > p_i \ rac{p_i' - p_i}{p_i} rac{r_j(v_i)}{w_l}, & ext{if } p_i' < p_i. \end{cases}$$
 2) how much her rating r_i has contributed to the belief adjustment

Intuition: reputation depends on

- how consistent is her rating r_i with the final belief adjustment $(p'_i - p_i)$
- how much her rating r_i has adjustment
- **Contributors**: receive payments as

$$\pi'_{c} = \pi_{c} \left(u_{c} \frac{p'_{i}(c)}{p_{i}(c)}, \mathbf{u}'_{-c} \right),$$

$$\mathbf{u}'_{-c} = \left\{ u_{\tilde{c}} \frac{p'_{\tilde{i}}(\tilde{c})}{p_{\tilde{i}}(\tilde{c})} \middle| \tilde{c} \in \mathcal{C} \setminus \{c\} \right\}$$

Intuition: p'_i and p_i can be interpreted as the quality of contribution v_i (likelihood of v_i being the truth)

Performance evaluation

- Application: avg. traffic speed of a major road in CBD
- A platform like mTurk has 50,000 registered users
- 1,000 contributors
- Aim to collect m=1,000 ratings from the rest 49,000 users within $T_0=1$ hour, shortfall tolerance $\alpha=0.1$
- Raters: commuters who work in the CBD and travelers who frequent the CBD
- Simulate rater behaviors: prob. of accepting /declining offers, distribution of individual beliefs of truth, how each rater rates, delay in response, etc. (details in paper)

Result of Profiling: $\chi = (V, P)$

Case A: Truth reinforcement

Case B: Scavenging hidden truth

Conclusion

- Cross validation approach (general)
 - Further exploits power of crowds: crowd validates crowd
 - "Plug-in" (rather than redesign): co-crowdsourcing
- Cross validation mechanism (specific)
 - Profiling + Sampling + PACAP + Reshaping + Incentive
 - Suitable for time-sensitive and quality-critical applications
- Practicality:
 - No assumption on (game-theoretical) rationality
 - No assumption on underlying distribution (e.g., Gaussian) of the sensing phenomenon
 - No assumption on single or multiple truths
 - Minimal effort from validators
 - Simple to implement & operate

Thank You!

Slides can be downloaded at: https://tonylt.github.io
 (including arXiv version once available)