DE 2431178

機能を持いませい

DEUTSCHLAND

® BUNDESREPUBLIK ® Patentschrift ₁₀ DE 2431178 C2

(5) Int. Cl. 4: C07 D 401/06

A 61 K 31/495

DEUTSCHES PATENTAMT

Aktenzeichen: Anmeldetag: Offenlegungstag:

P 24 31 178.2-44 28. 6.74 16. 1.75

Veröffentlichungstag der Patenterteilung:

24. 10. 85

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

30 Unionspriorität: 32 33 33 29.05.73 CH 9528-73

20.05.74 CH 6899-74

73 Patentinhaber: Cermol S.A., Evionnaz, CH

(4) Vertreter:

Jung, E., Dipl.-Chem. Dr.phil.; Schirdewahn, J., Dipl.-Phys. Dr.rer.nat., Pat.-Anw., 8000 München @ Erfinder:

Szabo, Suzanne, La Tour de Peilz, CH; Molnar, Francois, Blonay, CH; Mauvernay, Roland-Yves, Riom, Puy-de-Dôme, FR; Statkov, Peter Radanov, Genf/Genève, CH; Le Van, Chau, Monthey, CH; Lerik-Milovanovic, Olga, Bex, CH; Straumann, Danielle, Martigny, CH

(56) Im Prüfungsverfahren entgegengehaltene Druckschriften nach § 44 PatG:

Ehrhart - Ruschig: Arzneimittel, 1, 1972, 307, 312, 313; Houben-Wayl: Meth.d.org.Ch., XI/1, 1957, 643; C.A., 61, 1964, 16076h;

(9) Piperazinderivate, Verfahren zu ihrer Herstellung und diese Verbindungen enthaltende Arzneipräparate

Patentansprüche:

1. Piperazinderivate der allgemeinen Formel (I) und deren pharmakologisch verträgliche Salze

$$X \longrightarrow CH - N \longrightarrow N - CH_2 - CH = CH \longrightarrow 0$$

in der X ein Chlor- oder Fluoratom bedeutet.

2. Verfahren zur Herstellung der Verbindungen nach Anspruch 1, dadurch gekennzeichnet, daß man in an sich bekannter Weise

a) eine Verbindung der allgemeinen Formel (II)

$$X \longrightarrow CH - A$$
 (II)

in der X nach Anspruch 1 definiert ist und A ein Chlor- oder Bromatom oder ein p-Toluolsulfonylrest ist, mit einer Verbindung der Formel (III)

30
$$HN N-CH_2-CH=CH$$
 (III)

umsetzt; oder

10

15

20

25

35

40

45

50

55

b) eine Verbindung der allgemeinen Formel (IV)

$$X \longrightarrow CH - N \longrightarrow N - CO - CH = CH \longrightarrow (IV)$$

in der X nach Anspruch 1 definiert ist, reduziert.

3. Arzneipräparate, enthaltend eine Verbindung nach Anspruch 1 als Wirkstoff in Kombination mit üblichen Trägerstoffen und/oder Verdünnungsmitteln.

Die Erfindung betrifft Piperazinderivate der allgemeinen Formel (I) und deren pharmakologisch verträgliche Salze

$$X \longrightarrow CH - N \longrightarrow N - CH_1 - CH = CH \longrightarrow (I)$$

in der X ein Chlor- oder Fluoratom bedeutet.

Diese Verbindungen zeichnen sich aus durch eine überraschend günstige Kombination von Eigenschaften. Sie zeigen eine ausgeprägte Antihistaminaktivität bei gleichzeitiger deutlicher myorelaxierender und vasodilatorischer Wirkung, ohne daß jedoch toxische oder sedative Nebenwirkungen auftreten.

Infolge der deutlichen Zunahme der zerebralen Durchblutung bei Verabreichung als Medikament eignen sie sich daher auch zur Bekämpfung von Kreislaufstörungen, wie Schwindelanfälle, Ohrensausen und Ohnmachten, wie sie insbesondere bei älteren Personen, z. B. auf Reisen, auftreten.

Die Erfindung betrifft auch ein Verfahren zur Herstellung der Verbindungen nach Anspruch 1, welches dadurch gekennzeichnet ist, daß man in an sich bekannter Weise

a) eine Verbindung der allgemeinen Formel (II)

$$X \longrightarrow CH - A$$
 (II)

10

15

20

25

30

50

55

in der X nach Anspruch 1 definiert ist und A ein Chlor- oder Bromatom oder ein p-Toluolsulfonylrest int, mit einer Verbindung der Formel (III)

$$HN N-CH_2-CH=CH-CH$$

umsetzt; oder

b) eine Verbindung der allgemeinen Formel (IV)

$$X \longrightarrow CH - N \longrightarrow N - CO - CH = CH \longrightarrow (IV)$$

in der X nach Anspruch i definiert ist, reduziert, vorzugsweise mit Lithiumaluminiumhydrid.

Im erfindungsgemäßen Verfahren gemäß a) erhitzt man die betreffenden Ausgangsverbindungen zweckmäßig in etwa in äquimolaren Mengen in Gegenwart eines Alkalimetallcarbonats am Rückfluß. Die Mineralsalze werden entfernt, anschließend wird das Gemisch mit Äthylacetat versetzt und mit Salzsäure angesäuert. Man erhält das entsprechende Produkt in Form des kristallisierten Hydrochlorids. Als Alkalimetallcarbonat geeignet ist Natriumbicarbonat.

Besonders günstig ist es, die Umsetzung gemäß a) in N.N-Dimethylformamid durchzuführen. Dieses Gemisch wird in Gegenwart eines Alkalimetallcarbonats, wie Kaliumcarbonat, auf 40 bis 50°C erhitzt, mit Äthylacetat versetzt und mit Salzsäure angesäuert.

Für die Ausführungsform b) des erfindungsgemäßen Verfahrens wird das Gemisch in ätherischer Lösung am Rückfluß erhitzt, bis die Reaktion vollständig abgelaufen ist, danach auf etwa —10°C abgekühlt. Der Komplex wird bei etwa —5 bis —10°C zersetzt, das Gemisch wird filtriert, die wäßrige Lösung wird mit Äther extrahiert. Die ätherische Phase wird mit Natriumsulfat getrocknet und mit Salzsäure angesäuert. Man erhält das entsprechende Produkt in Form des kristallisierten Dihydrochlorids.

Für die Extraktion der wäßrigen Phase wird vorzugsweise Isopropyläther verwendet.

Das Ansäuern mit Salzsäure erfolgt vorzugsweise mit einem mit Salzsäure gesättigten organischen Lösungsmittel, wie Äthanol.

Die Erfindung betrifft ferner Arzneipräparate, die eine Verbindung nach Anspruch 1 als Wirkstoff in Kombination mit üblichen Trägerstoffen und/oder Verdünnungsmitteln gekennzeichnet sind. Für die erfindungsgemäßen Verbindungen beträgt die Tagesdosis etwa 5 bis 500 mg, je nach Verabreichungsart und Toxizität der Verbindung.

Beispiel 1

0.1 Mol 1-Cinnamylpiperazin (Fp. 44 bis 46°C), 14 g wasserfreies Kaliumcarbonat und 0.1 Mol (2'-Pyridyl-4"-chlorphenyl)-methylchlorid, das frisch aus (2'-Pyridyl-4"-chlorphenyl)-methylchlorid-hydrochlorid freigesetzt wrude, werden in 100 ml N,N-Dimethylformamid 8 Stunden auf 40 bis 50°C erhitzt. Nach dem Abkühlen werden die Mineralsalze abfiltriert, das Filtrat wird unter vermindertem Druck bei einer Temperatur unter 50°C eingedampft. Der kristalline Rückstand wird aus 220 ml Leichtbenzin umkristallisiert. Man erhält 23,6 g 1-(2'-Pyridyl-4"-chlorphenyl)-methyl-4-cinnamylpiperazin, Fp. 105 bis 108°C.

Beispiel 2

11,6 g (0,065 Mol) N-Brom-\alpha-succinimid und 0,2 g Benzoylperoxid in 100 ml Tetrachlorkohlenstoff werden tropfenweise mit 10 g (0,05 Mol) 2-(4-Chlorbenzyl)-pyridin versetzt. Das Gemisch wird 2 Stunden am Rückfluß erhitzt, dann wird das gebildete Succinimid bei Raumtemperatur abfiltriert. Das Filtrat wird zur Trockene

eingedampft. Der bräunliche ölige Rückstand (11,7 g), der aus α-(2-Pyridyl)-4-chlorbenzylbromid besteht, wird ohne vorhergehende Reinigung mit 10,1 g 1-Cinnamylpiperazin und 12,0 g wasserfreiem Natriumcarbonat in 80 ml trockenem Xylol 4 Stunden lang erhitzt. Nach dem Abkühlen werden die Mineralsalze abfültriert und das Lösungsmittel abdestilliert. Der halb ölige, halb kristalline Rückstand wird aus 250 ml Leichtbenzin (Siedebereich 60 bis 90°C) umkristallisiert. Man erhält 15,6 g 1-(2'-Pyridyl-4"-chlorphenyl)-methyl-4-cinnamylpiperazin, Fp. 105 bis 107°C. Ausbeute: 71%, bezogen auf 2-(4-Chlorbenzyl)-Pyridin.

Die folgende Verbindung wird in entsprechender Weise hergestellt: 1-(2'-Pyridyl-4"-fluorphenyl)-methyl-

4-cinnamylpiperazin, Fp. 92 bis 94°C.

1. Toxizitāt

1.1. Akute Toxizitāt

15

20

25

30

35

45

50

55

65

1-(2'-Pyridyl-4"-chlorphenyl)-methyl-4-cinnamylpiperazin (Verbindung A) und 1-(2'-Pyridyl-4"-fluorphenyl)-methyl-4-cinnamylpiperazin (Verbindung B) werden, jeweils in Form des Trichlorids, oral an Mäuse und Ratten verabreicht.

Tabelle I

Akute Toxizităt

	LI (mg/kg)	LD ₅₀ (mg/kg)	LD ₁₀₀ (mg/k ₆)
a) Mäuse			
A	400	1180	2200
В	300	÷97,50	700
b) Ratten			
A	500	1458,40	2500
В	350	591,67	900
	Tabelle II		
	Toxizitātsvergle	eich bei Mäusen	
	Verbindung	LD ₅₀ (mg/kg)	

LD ₅₀ (mg/kg)		
180,0		
497,50		
164,0		
200		

Tabelle III

Toxizitätsvergleich bei Ratten

TOXIZITALS VET BICICII DEI INALLEII		
LD ₅₀ (mg/kg)		
1458,40		
~1200		
500		

2. Antihistamin-Aktivität

2.1. Wirkung auf Histamin-Rezeptoren des Meerschweinenen-Ileums in vitro gemäß R. Magnus, »Ges. Physiol.«, 102, 123 (1904), und J. M. Rossum, »Arch. Int. Pharmacodyn.«. 143, 299—330, (1963). Vergleich: Diphenhydramin. Die Dosis, die eine 50prozentige Hemmung der durch 1 x 10-8 g/nil Histamin-dihydrochlorid verursachten Spasmen hemmt, wird als ED₅₀ definiert.

Tabelle V

Antihistamin-Aktivität in vitro

	Verbindung A	Verbindung B	Diphenhydramin
€D ₅₀ g/ml	3,6 · 10-8	1 - 10-8*)	1 · 10-9

*) 5.32 10⁻⁸ g/ml Histamin-dihydrochlorid

Die erfindungsgemäßen Verbindungen haben somit in vitro eine deutliche Antihistamin-Aktivität.

2.2 Wirkung auf experimentelle Bronchospasmen in vivo beim Meerschweinchen, verusacht durch Inhalation eines Histamin-Aerosols gemäß H. Lee, R. Anderson, P. Harris, »Proc. Soc. Exp. Biol. Med.«, 80, 458-462 (1952).

Vergleich: Diphenhydramin. Die Dosis, die 50% der Tiere vor Bronchospasmen schützt, ist die ED₅₀ in mg/kg.

Tabelle VI

Antihistamin-Aktivität in vivo

	Verbindung A	Verbindung B	Diphenhydramin	
ED ₅₀ mg/kg	6,64	1,75	5,0	

10

35

40

55

65

Die Verbindung B ist also deutlich wirksamer als Diphenhydramin, wogegen die Verbindung A eine ähnliche Wirkung wie Diphenhydramin hat. Beide erfindungsgemäße Verbindungen zeigen einen günstigeren therapeutischen Index LD₅₀/ED₅₀ als die Vergleichsverbindung.

2.3. Wirkung auf die hypotensive Aktivität von Histamin bei der Katze.

Die durch Histamin induzierten hypotensiven Spitzen bei der Katze werden durch vorherige Gaben der Verbindung A gehemmt.

Die Katzen werden mit Phenobarbital anästhesiert. Der Blutdruck wird an einer Kopfschlagader mit einem Sensor gemessen und auf einem Dynographen aufgezeichnet.

Es werden erst 0,1 µg/kg Histamin, dann 5 mg/kg Verbindung A i.v. verabreicht.

Wird die Verbindung 10 Minuten nach dem Histamin verabreicht, so beträgt die Hemmung der hypotensiven Spitzen 72,47%, bei 30 Minuten nach dem Histamin 69,91% und bei 60 Minuten nach dem Histamin 68,39%.

3. Myorelaxierende Wirkung

3.1. Myorelaxierende Wirkung auf die glatte Muskelfasern des isolierten Meerschweinchen-Ileums, das durch Bariumchlorid (10-4 g/ml) kontraktiert wird, gemäß R. Magnus, »Arch. Ges. Physiol.«, 102, 123 (1904), und J. M. van Rossum, »Arch. Int. Pharmacodyn«, 143, 299 – 330 (1963).

Vergleicht Papaverin ED: ist die Dosis in g/ml die 50% der durch Bariumchlorid verursachten Kontrak-

Vergleich: Papaverin. ED₅₀ ist die Dosis in g/ml, die 50% der durch Bariumchlorid verursachten Kontraktionen hemmt.

Tabelle VIII

Spasmolytische Wirkung auf das Meerschweinchen-Ileum

	Verbindung A	Verbindung B	Papaverin
ED ₅₀ g/ml	1 - 10-6	1 · 10-6	4 - 10-6

Die Verbindungen A und B haben somit eine deutlich myorelaxierende (spasmolytische) Wirkung auf die glatte Muskulatur des Meerschweinchen-Ileums.

Auf durch Serotonin oder Acetylcholin induzierte Kontraktionen des isolierten Meerschweinchen-Ileums haben die erfindungsgemäßen Verbindungen keine spezifische Wirkung.

Auch die durch Adrenalin verursachten Kontraktionen des Vas deferens beim Schwein werden durch die Verbindung A nicht gehemmt.

3.2. Myorelaxierende Wirkung auf die glatten Muskelfasern der Gefäße, die durch Depolarisation kontraktiert sind, am perfundierten Kaninchen-Ohr, gemäß dem modifizierten Verfahren von J. A. Gaddum und H. Kwiatnowsky, »J. Physiol.« (London), 94, 87 (1938).

Vergleich: Cinnarizin. Die ED₅₀ ist die Dosis in mMol/ml, die 50% der glatten Muskelfasern der druch Depolarisation kontraktierten Gefäße entspannt und die Menge an Perfusat um 50% erhöht.

Tabelle IX

Vasodilatorische Wirkung

	Verbindung A		Cinnarizin	60
ED ₅₀ mMol/ml	1,30 - 10-5	_	1,35 · 10-5	

Die Wirkung der Verbindung A ist mit der von Cinnarizin vergleichbar, bei höheren Konzentrationen ist sie allerdings deutlicher ausgeprägt.

3.3 Wirkung auf die glatte Muskulatur der Luftröhre beim Meerschweinchen. Die Luftröhre eines durch Schlag getöteten Meerschweinchens wird in Spiralform in Tyrode-Lösung suspendiert und bei 37°C mit einem Gemisch von 95% Sauerstoff und 5% Kohlendioxid begast. Nach 3 Stunden wird das Präparat mit verschiedenen Konzentrationen der Verbindung B behandelt. Die Kontraktionen der Luftröhre werden isotonisch aufgezeichnet.

Bei einer Konzentration von $1 \cdot 10^{-7}$ g/ml hat die Verbindung B eine relaxierende Wirkung von 32 ± 23.5 mm, bei einer Konzentration von $1 \cdot 10^{-6}$ g/ml beträgt sie 107.3 ± 24.1 mm (jeweils Mittel von acht Versuchen).

10

4. Wirkungen auf das zentrale Nervensystem

Zur Feststellung von neurotoxischen, sedativen oder psychotropischen Nebenwirkungen werden folgende Tests durchgeführt:

- 5 Irwin-Test (Irwin, s., »Gordon Res. Conf. on Medicinal Chem.«, 1959)
 - Flucht-Test (Kneip, P., »Arch. Int. Pharmacodyn.«, 126, 238, 1960)
 - Kamin-Test (Boissier, J. R. Tarolyj und Diverres, J. G., »Med. Exp.«, 3, 81, 1960)
 - Rota-Rod-Test (Tripod, S., Studer, A., und Meier, R., »Arch. Int. Pharmacodyn.«. 112, 319, 1957)
- Hemmung der Aggressivität (Yen et al., »Arch. Int. Pharmacodyn.α, 123, 179)
- 20 Spontane Motilität (gekreuzte photoelektrische Strahlenmethode)
 - Supramaximaler Elektroschock (Corneal-Elektroden, Rechteckwellen von konstanter Intensität: 40 mA, 50 Hz, 10 ms, Dauer 0,2 s)

Tabelle X

Wirkungen auf das zentrale Nervensystem. Vergleich: Cinnarizin und Diphenhydramin Versuchstiere: Mäuse

Tests	Verbindung B 50 mg/kg	100 mg/kg	200 mg/kg	Verbindung A 100 mg/kg	Cinnarizin · 2 HCl 100 mg/kg	hydramin
Irwin-Test	keine anormalen Manifesta- tionen	keine anormalen Manifesta- tionen	Muskeltonus gering vermindert	-	- .	-
Flucht-Test % Zu-(†) oder Abnahme (‡ der Fluchtversuche	† 23,64%)	1 24,70%	1 48,49%	1 18,32%	† 31%	1 44,64%
Kamin-Test, % Ausbrüche in weniger als 30 Sekunden	100%	100%	~ 90%	100%	100%	0%
Elektroschock % Schutz	0%	0%	16,67%	10%	0%	100%
Motilität: Aktimeter % Zu- oder Abnahme	1 24,06%	26,91%	1 39,64%	15,25%	1 24,3%	1 24,22%
Hemmung der Aggressivität, % Paare an männlichen Mäusen, die die Aggressivität verloren haben	0%	0%	-	0%	0%	100%
Rota-Rod-Test, % Tiere, die den Test bestehen	100%	100%	100%	100%	100%	25%
Potenzierung einer in- aktiven Nembutaldosis % der Tiere, die den Aufrichtreflex	-	- 1	~	0%	16,66	0%

Die erfindungsgemäßen Verbindungen A und B haben somit keinerlei sedative oder neurotoxische Wirkun-

gen. Auch bei zwei nicht narkotisierten Katzen und sechs nicht narkotisierten Meerschweinchen konnte bei oraler Verabreichung der Verbindung B in Dosen von 15 bzw. 100 mg/kg (höher als die therapeutische Dosis) keine Veränderung im Verhalten beobachtet werden.

Zusammenfassend hat die erfindungsgemäße Verbindung A, d. h. 1-(2'-Pyridyl-4"-chlorphenyl)-methyl-4-cinnamylpiperazin, folgende pharmakologische Eigenschaften:

Sie relexiert die glatten Muskelfasern der Gefäße und erhöht die periphere Durchblutung, ohne eine erhöhte Herzleistung zu verursachen und unabhängig vom autonomen Nervensystem.

Sie erniedrigt die Empfindlichkeit der glatten Muskelfasern der Gefäße gegen gefäßverengende Substanzen. Sic verursacht eine anhaltende Erhöhung der zerebralen Blutzirkulation. Durch diese Erhöhung ist das Angebot an Sauerstoff an das Hirn deutlich vergrößert. Diese Wirkungen sind nicht von einer gleichzeitigen 10 Veränderung des Blutdrucks begleitet.

Die Verbindung A ist in vitro und in vivo ein Histamin-Antagonist.

Bei Tieren, die mit einer um etwa 15mal größeren Dosis als die therapeutische Dosis behandelt worden sind, zeigen sich keine Veränderungen im Verhalten.

Die Verbindung A ist nicht toxisch und wird von Ratten und Menschen gut vertragen.

Die Verbindung A ist somit für die Behandlung von systemischen zerebralen Durchblutungsstörungen geeig-

Die erfindungsgemäße Verbindung B, d. h. 1-(2'-Pyridyl-4"-fluorphenyl)-methyl-4-cinnamylpiperazin, hat folgende pharmakologische Eigenschaften:

Sie relaxiert die glatten Muskelfasern, insbesondere die glatte Muskulatur der Bronchien.

Die geringe Dosis von 1.75 mg/kg, oral verabreicht, schützt 50% der behandelten Tiere vor experimentellen

Sie erniedrigt die Empfindlichkeit der glatten Muskelfasern gegenüber kontrahierenden Substanzen.

Sie ist in vitro und in vivo ein Histamin-Antagonist.

Sie hat keine sedative Wirkung auf das zentrale Nervensystem.

Sie verursacht bei Tieren, die mit therapeutischen Dosen behandelt worden sind, keine Veränderungen im Verhalten.

Die Verbindung B scheint somit als Bronchodilator geeignet.

Die Vergleichssubstanz Avil ist zwar ein typisches Antihistaminikum, doch zeigt es immer noch einschläfernde Wirkung und ist daher z. B. für Kraftsahrer nicht geeignet. Außerdem zeigt es weder myorelaxierende noch vasodilatorische Wirkung.

35

40

45

50

55

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☑ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☑ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.