(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2006年3月9日(09.03.2006)

(10) 国際公開番号 WO 2006/025601 A1

(51) 国際特許分類:

H01M 4/62 (2006.01) H01M 4/02 (2006.01) H01M 4/48 (2006.01) H01M 4/58 (2006.01)

(21) 国際出願番号:

PCT/JP2005/016467

(22) 国際出願日:

2005年9月1日(01.09.2005)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

Љ

(30) 優先権データ: 2004年9月3日(03.09.2004) 特願2004-257145

(71) 出願人(米国を除く全ての指定国について): アヴェ スタ リミテッドパートナーシップ (AVESTOR LIM-ITED PARTNERSHIP) [CA/CA]; J4B 7Z7 ケベック、 ブシェヴィル、ルドゥクローン、1560 Quebec (CA).

(72) 発明者; および

(75) 発明者/出願人(米国についてのみ): ヴァリー アライ ン (VALLEE, Alan) [CA/CA]; J4B 7Z7 ケベック、 ブ シェヴィル、ル ドゥ クローン、 1560 アヴェ スタ リミテッド パートナーシップ内 Quebcc (CA). ラヴォワ ポール・アンドレ (LAVOIE, Paul-André) [CA/CA]; J4B 7Z7 ケベック、 ブシェヴィル、ル ドゥックローン、 1560 アヴェスタ リミテッド パー トナーシップ内 Quebec (CA). 村田 和彦 (MURATA, Kazuhiko) [JP/JP]; 〒5648512 大阪府吹田市西御旅町 5番8号株式会社日本触媒内 Osaka (JP). 松下 輝 紀 (MATSUSHITA, Teruki) [JP/JP]; 〒5648512 大阪府 吹田市西御旅町5番8号 株式会社日本触媒内 Osaka (JP). 水田 圭一郎 (MIZUTA, keiichiro) [JP/JP]; 〒 5648512 大阪府吹田市西御旅町 5番8号 株式会社日本

触媒内 Osaka (JP). 竹井 一男 (TAKEI, Kazuo) [JP/JP]; 〒5648512 大阪府吹田市西御旅町 5 番 8 号 株式会 社日本触媒内 Osaka (JP). 橋本 浩伸 (HASHIMOTO, Hironobu) [JP/JP]; 〒5648512 大阪府吹田市西御旅町 5番8号株式会社日本触媒内 Osaka (JP).

- (74) 代理人: 松本 武彦 (MATSUMOTO, Takehiko); 〒 5450021 大阪府大阪市阿倍野区阪南町 1 丁目 2 5 番 6号 松本特許事務所 Osaka (JP).
- (81) 指定国(表示のない限り、全ての種類の国内保護 が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国(表示のない限り、全ての種類の広域保護が可 能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 国際調査報告書
- 補正書・説明書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: POSITIVE ELECTRODE MATERIAL COMPOSITION FOR LITHIUM SECONDARY BATTERY

(54) 発明の名称: リチウム2次電池用正極材料組成物

(57) Abstract: Disclosed is a positive electrode material composition for lithium secondary batteries which does not cause deterioration in the battery performance of a lithium secondary battery using a positive electrode which is produced from the positive electrode material composition even though the composition contains a polymer, an electrode active material and a conductive rioration in the battery performance of a lithium secondary battery using a positive electrode which is produced from the positive assistant beforehand. Specifically disclosed is a positive electrode material composition for lithium secondary batteries essentially containing a polymer, an electrode active material and a conductive assistant which is characterized by further containing one or more

containing a polymer, an electrode active material and a conductive assistant which is characterized by further containing one or more antioxidants selected from the group consisting of amine antioxidants, phosphorus antioxidants and phenothiazine antioxidants.

(57) 要約: ポリマー、電極活物質および導電助剤をあらかじめ含有しているにもかかわらず、作製された正極を用いたリチウム2次電池の電池性能が低下することがない、リチウム2次電池用正極材料組成物を提供することを課題とし、かかる課題を解決する手段として、本発明にかかるリチウム2次電池用正極材料組成物は、ポリマー、電極活物質および導電助剤を必須とする正極材料用組成物であって、アミン系酸化防止剤、リン系酸化防止剤およびフェノチアジン系酸化防止剤からなる群より選ばれる1種以上の酸化防止剤を含有することを特徴とする。

THIS PAGE BLANK (USPTO)

明細書

リチウム2次電池用正極材料組成物

技術分野

本発明は、リチウム2次電池の作製に用いられる正極材料組成物に関する。

背景技術

リチウム 2 次電池に用いられる正極は、マトリックスを構成するポリマー、リチウムイオンの移動を助ける電解質塩(リチウム塩)、リチウムイオンを蓄えておくための電極活物質、および電子の移動を手助けするための導電助剤と、必要に応じて溶媒とを混合(混練)してなる組成物を材料として作製されるのが一般的であり、これまでに、そのような組成物を材料として形成された正極を用いた電池が種々提案されている(例えば、特許文献1~4 参照)。詳しくは、正極は、前記のような組成物を押し出し成形する方法か、もしくは溶液キャストしたのちに溶媒を脱揮する方法で成形することにより作製されている

ところで、従来、工業的に正極を製造する際には、ポリマー、電解質塩、電極活物質および導電助剤などを混合する工程と、得られた混合物を成形する工程とは引き続き行なうのが通常であった。すなわち、正極の原料となるポリマー、電解質塩、電極活物質および導電助剤などは正極の成形の直前に混合されているのであり、正極を製造する際に用いる各原料は、通常それぞれ個別に調達されていた。

【特許文献1】特表2002-535235号公報

【特許文献2】米国特許第5755985号明細書

【特許文献3】国際公開第03/75375号パンフレット

【特許文献4】国際公開第03/92017号パンフレット

発明の開示

発明が解決しようとする課題

しかしながら、正極製造時の工程の簡略化等を考慮し、前述した正極の原料のうち電極活物質および導電助剤をあらかじめマトリックスとするポリマーに混合(混練)したものを原料として調達する形態が採用されることがある。ところが、そのような調達形態を採用すると、各原料をそれぞれ個別に調達し成形直前に混合(混練)して得た正極を用いて電池を作製した場合に比べ、電池性能が著しく劣るという問題が起こることがあった。

そこで、本発明が解決しようとする課題は、ポリマー、電極活物質および導電助剤をあらかじめ含有しているにもかかわらず、作製された正極を用いたリチウム2次電池の電池性能が低下することがない、リチウム2次電池用正極材料組成物を提供することにある。

課題を解決するための手段

本発明者は、上記課題を解決するべく、鋭意検討を行った。その結果、ポリマー、電極

活物質および導電助剤の混合(混練)時(特に、高温下で溶融混練する場合)や、混合(混練)したのち成形に供するまでに輸送や貯蔵などのため一定期間保存されている間に、マトリックスとなるポリマーの分子量が僅かながら低下していること、さらに、このポリマーの分子量低下は、正極材料用途以外の他の用途では大して問題にならない程度のものであるが、リチウム 2 次電池用の正極材料においては電池性能に大きな悪影響を及ぼす原因となることをつきとめた。そして、この知見に基づき、ポリマー、電極活物質および導電助剤の混合(混練)時や、混合(混練)したのち成形に供するまでに輸送や貯蔵などのため一定期間保存されている間に生じるポリマーの分子量低下を電池性能に影響を及ぼさない範囲に抑制する手段について種々検討した結果、ポリマー、電極活物質および導電助剤を含む正極材料組成物に特定の酸化防止剤を含有させておくことが有効であることを見出し、このような特定の酸化防止剤を含有する正極材料組成物により作製された正極を用いたリチウム 2 次電池であれば電池性能が低下することがないことを確認して、本発明を完成した。

すなわち、本発明にかかるリチウム2次電池用正極材料組成物は、ポリマー、電極活物質および導電助剤を必須とする正極材料用組成物であって、アミン系酸化防止剤、リン系酸化防止剤およびフェノチアジン系酸化防止剤からなる群より選ばれる1種以上の酸化防止剤を含有することを特徴とする。

発明の効果

本発明のリチウム2次電池用正極材料組成物は、ポリマー、電極活物質および導電助剤をあらかじめ含有しているものであるので、正極製造時の工程の簡略化等が図れると同時に、作製された正極を用いたリチウム2次電池の電池性能が低下するのを防ぐことができる。

発明を実施するための最良の形態

以下、本発明にかかるリチウム 2 次電池用正極材料組成物(以下、単に「正極材料組成物」と称することもある)について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更実施し得る。

本発明のリチウム 2 次電池用正極材料組成物は、ポリマー、電極活物質および導電助剤を必須とする組成物である。このように、本発明の組成物は、正極材料として必要なポリマー、電極活物質および導電助剤を含むものであるので、正極製造時の工程の簡略化等が図れるという利点がある。

正極材料組成物の必須成分である前記ポリマーは、リチウム 2 次電池用正極材料のマトリックスとして通常使用されているものであればよく、特に制限されないが、イオン導電性のポリエーテル重合体であることが好ましい。特に、前記ポリマーがエチレンオキシド系ポリマーであることが正極材料としてより優れた電池性能を発現しうる点で好適である

· 前記ポリマーとして好適なエチレンオキシド系ポリマーは、例えば、エチレンオキシドと、下記一般式 (1) :

(式 (1) 中、 R_1 は、 R_2 は、 R_3

で示される置換オキシラン化合物とを必須とする単量体混合物を重合させることにより得ることができる。前記単量体混合物は、エチレンオキシドおよび前記置換オキシラン化合物のほかに、他の単量体を含んでいてもよい。なお、前記単量体混合物中に占める各モノマーの割合は、特に制限されるものではなく適宜設定すればよい。

前記構造式 (1) で示される置換オキシラン化合物としては、例えば、プロピレンオキ シド、ブチレンオキシド、1,2-エポキシペンタン、1,2-エポキシヘキサン、1, 2-エポキシオクタン、シクロヘキセンオキシドおよびスチレンオキシド、または、メチ ルグリシジルエーテル、エチルグリシジルエーテル、エチレングリコールメチルグリシジ ルエーテル等を挙げることができる。また、置換基R」が架橋性の置換基であるものとし ては、例えば、エポキシブテン、3,4-エポキシ-1-ペンテン、1,2-エポキシー 5, 9-シクロドデカジエン、3, 4-エポキシー1-ビニルシクロヘキセン、1, 2-エポキシー5-シクロオクテン、アクリル酸グリシジル、メタクリル酸グリシジル、ソル ビン酸グリシジルおよびグリシジルー4ーヘキサノエート、または、ビニルグリシジルエ ーテル、アリルグリシジルエーテル、4 - ビニルシクロヘキシルグリシジルエーテル、α ーテルペニルグリシジルエーテル、シクロヘキセニルメチルグリシジルエーテル、4ービ ニルベンジルグリシジルエーテル、4-アリルベンジルグリシジルエーテル、アリルグリ シジルエーテル、エチレングリコールアリルグリシジルエーテル、エチレングリコールビ ニルグリシジルエーテル、ジエチレングリコールアリルグリシジルエーテル、ジエチレン グリコールビニルグリシジルエーテル、トリエチレングリコールアリルグリシジルエーテ ル、トリエチレングリコールビニルグリシジルエーテル、オリゴエチレングリコールアリ ルグリシジルエーテルおよびオリゴエチレングリコールビニルグリシジルエーテル等が挙 げられる。置換オキシラン化合物は、1種のみであっても2種以上であってもよい。

前記エチレンオキシド系ポリマーを得るに際しては、前記単量体混合物を溶媒の中で撹拌しながら重合するようにすればよい。このような重合の方法としては、特に限定はされないが、例えば、溶液重合法や沈殿重合法などを好ましく挙げることができ、なかでも、溶液重合法が生産性に優れているためより好ましく、予め仕込んだ溶媒に原料となる各モノマーを供給しながら重合を行う溶液重合法が、反応熱を除熱しやすいなどの安全性のため、特に好ましい。なお、前記重合においては、通常用いられている重合開始剤、可溶化

剤などを添加して用いるようにしてもよい。

前記溶媒としては、例えば、ベンゼン、トルエン、キシレンおよびエチルベンゼンなどの芳香族炭化水素系溶媒;ヘプタン、オクタン、nーヘキサン、nーペンタン、2, 2, 4ートリメチルペンタンなどの脂肪族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサンなどの脂環式炭化水素系溶媒;ジエチルエーテル、ジブチルエーテル、メチルブチルエーテルなどのエーテル系溶媒;ジメトキシエタンなどのエチレングリコールジアルキルエーテル類の溶媒;THF(テトラヒドロフラン)、ジオキサンなどの環状エーテル系溶媒;等の水酸基等の活性水素を含まない有機溶媒が好ましく、トルエンおよびキシレンがより好ましい。さらに、前記溶媒は、水を全く含まない有機溶媒であることが、水分と金属イオン分などとが反応して生成する水酸化物等が絶縁層となり電池のサイクル特性が悪化するという問題を回避するうえでは、好ましい。

前記ポリマーの重量平均分子量(Mw)は、特に限定はされないが、20,000~500,000であることが好ましく、より好ましくは30,000~300,000、さらに好ましくは40,000~200,000である。重量平均分子量が20,000未満であると、成形して正極とする際にタックが生じるおそれがあり、一方、500,00を超えると、成形自体が困難となり、加工性およびハンドリング性が低下するおそれがある。

前記ポリマーの分子量分布(Mw/Mn)は、特に限定はされないが、3以下であることが好ましく、より好ましくは2以下である。分子量分布が3を超えると、成形して正極とする際にタックが生じたり、ハンドリング性が悪くなるおそれがある。

正極材料組成物の必須成分である前記電極活物質は、リチウムイオンを可逆的に挿入/脱離することにより充電/放電することを可能にするものであり、正極を形成するのに通常用いられているものであればよく、特に制限されないが、例えば、リチウムバナジウム複合酸化物、リチウムコバルト複合酸化物、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物等が挙げられ、中でも、LixVyOz(ただし、x、yおよびzは、それぞれ互いに独立、かつ、 $0 < x \le 2$ 、y = (mx + 2z) / n、およびz = (mx + ny) / 2(ただし、mはLiの価数であり、nはVの価数で4以上の実数ある。)を満足する実数である。)であることが、高容量かつ高電圧の優れた性能を有するリチウム2次電池を作製しうる正極が得られる点で、特に好ましい。電極活物質は1種のみであってもよい。

正極材料組成物に占める前記電極活物質の割合は、特に制限されないが、例えば、前記ポリマーに対して重量基準で0.1~50倍であることが好ましく、より好ましくは0.3~20倍、さらに好ましくは0.5~10倍であるのがよい。電極活物質が少なすぎると、正極としての機能が充分に発揮されない恐れがあり、一方、電極活物質が多すぎると、成形が困難となる恐れがある。

正極材料組成物の必須成分である前記導電助剤としては、正極を形成するのに通常用いられているものであればよく、特に制限されないが、例えば、アセチレンブラック、ケッチェンブラック、グラファイト等が挙げられる。導電助剤は1種のみであってもよいし、2種以上であってもよい。

正極材料組成物に占める前記導電助剤の割合は、特に制限されないが、例えば、前記電

極活物質100重量部に対して0.1~20重量部であることが好ましく、より好ましくは1~15重量部であるのがよい。導電助剤が少なすぎると、正極の導電性が不充分となる恐れがあり、一方、導電助剤が多すぎると、成形が困難となる恐れがある。

本発明の正極材料組成物は、アミン系酸化防止剤、リン系酸化防止剤およびフェノチアジン系酸化防止剤からなる群より選ばれる1種以上の酸化防止剤を含有するものである。これにより、前記ポリマーの分子量低下を電池性能に影響を及ぼさない範囲に抑制し、作製された正極を用いたリチウム2次電池の電池性能が低下するのを防ぐことができる。本発明においては、特に、前記酸化防止剤がアミン系酸化防止剤およびリン系酸化防止剤であることが、少ない量で効果的に分子量低下を抑制できる点から好ましい。

前記アミン系酸化防止剤としては、例えば、ビス(4-t-ブチルフェニル)アミン、ポリ(2, 2, 4-トリメチルー1, 2-ジヒドロキノリン)、6-エトキシー1, 2-ジヒドロー2, 2, 4-トリメチルキノリン、ジフェニルアミンとアセトンとの反応物、1-(N-フェニルアミノ)ーナフタレン、ジフェニルアミン誘導体、ジアルキルジフェニルアミン類、N, N' -ジフェニルーp-フェニレンジアミン、混合ジアリルーp-フェニレンジアミン、N-フェニルーN' -イソプロピルーp-フェニレンジアミン、N, N' -ジー2-ナフチルーp-フェニレンジアミン等が挙げられ、これらの中でも特に、ビス(4-t-ブチルフェニル)アミンが好ましい。なお、アミン系酸化防止剤は、1種のみであってもよいし、2種以上であってもよい。

前記リン系酸化防止剤としては、例えば、トリフェニルホスファイト、ジフェニルイソ デシルホスファイト、フェニルジイソデシルホスファイト、4, 4'ープチリデンービス (3-メチル-6-tープチルフェニルジトリデシル)ホスファイト、

サイクリックネオペンタンテトライルビス(オクタデシルホスファイト)、トリス(ノニルフェニルホスファイト)、トリス(モノ(またはジ)ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールジホスファイト、9,10ージヒドロー9ーオキサー10ーホスファフェナントレンー10ーオキサイド、10ー(3,5ージー t ーブチルー4ーヒドロキシベンジル)ー9,10ージヒドロー9ーオキサー10ーホスファフェナントレンー10ーオキサイド、10ージヒドロー9ーオキサー10ーホスファフェナントレンー10ーオキサイド、トリス(2,4ージー t ーブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6ージー t ーブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6ージー t ーブチルー4ーメチルフェニル)ホスファイト、2,2ーメチレンビス(4,6ージー t ーブチルフェニル)オクチルホスファイト等が挙げられ、これらの中でも特に、サイクリックネオペンタンテトライルビス(2,6ージー t ーブチルフェニル)オクチルボスファイト等が挙げられ、これらの中でも特に、サイクリックネオペンタンテトライルビス(2,6ージー t ーブチルー4ーメチルフェニル)ホスファイトが好ましい。なお、リン系酸化防止剤は、1種のみであってもよいし、2種以上であってもよい。

前記フェノチアジン系酸化防止剤としては、例えば、フェノチアジン、10-メチルフェノチアジン、2-メチルフェノチアジン、2-トリフルオロメチルフェノチアジン等が挙げられ、これらの中でも特に、フェノチアジンが好ましい。なお、フェノチアジン系酸化防止剤は、1種のみであってもよいし、2種以上であってもよい。

正極材料組成物に占める前記酸化防止剤の割合は、特に制限されないが、例えば、前記

ポリマー(固形分)に対して100~50000ppmであることが好ましく、500~2000ppmであることがより好ましい。酸化防止剤が少なすぎると、ポリマーの分子量低下を充分に抑制することができず、作製された正極を用いたリチウム2次電池の電池性能が不充分となる恐れがあり、一方、酸化防止剤が多すぎると、酸化防止剤が可塑剤として作用しポリマーの物性低下を招いたり、電池内でリチウムイオンが酸化防止剤と反応しやすくなったりし、結果として電池性能の低下を引き起こす恐れがある。

本発明の正極材料組成物は、正極を形成するのに必要となる電解質塩としてリチウム塩をも含有していることが好ましい。前記リチウム塩としては、正極を形成するのに通常用いられているものであればよく、特に制限されないが、例えば、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン、ヘプタフルオロプロピルスルホン酸イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(ヘプタフルオロプロピルスルホニル)イミドイオン、トリフルオロスルホンイミドイオン、テトラフルオロホウ素酸イオン、硝酸イオン、AsF₆-、PF₆-、ステアリルスルホン酸イオン、オクチルスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、ナフタレンスルホン酸イオン、ドデシルナフタレンスルホン酸イオン、および7、7、8、8ーテトラシアノーpーキノジメタンイオントのなる群より選ばれた陰イオンと、Liイオンとからなる塩等が挙げられる。これらの中でも、LiBF₄、LiPF₆、LiCF₃SO₃、LiC₄F₉SO₃、LiN(CF₃SO₂)2、LiN(C₂F₆SO₂)2がより好ましい。電解質塩は1種のみであってもよいし、2種以上であってもよい。

正極材料組成物に占める前記電解質塩の割合は、特に制限されないが、例えば、前記ポリマーがポリエーテル重合体である場合、該ポリエーテル重合体中のエーテル酸素の総モル数/電解質塩のモル数の値が1~36となるようにするのが好ましく、より好ましくは3~33、さらに好ましくは6~30となるようにするのがよい。電解質塩が少なすぎると、イオン伝導性が不足するため電気特性の低下をもたらすことになり、一方、電解質塩が多すぎても、ある程度以上になるとイオン伝導性の向上効果は現れないため、無駄な添加となりコスト的に不利になる。

本発明の正極材料組成物は、溶媒を含有するものであってもよい。溶媒は、成形して正極とする際には最終的に脱揮などの手段によって除去されるものであるが、組成物中に溶媒を含有させておくことにより、電解質塩等のように前記ポリマーには溶解しにくい成分を溶媒に溶解させて各成分の混合を容易にしたり、輸送・貯蔵などの際に取扱い易いよう粘度を調整したりすることができる。溶媒としては、特に制限はないが、例えば、前記エチレンオキシド系ポリマーを得る際に用いることのできる溶媒として前述したもの等が挙よい。 正極材料組成物に占める前記溶媒の割合は、特に制限されず、適宜設定すれば重合法で得る場合には、重合反応液中に溶媒が含まれているので、該重合反応液をそのままで得る場合には、重合反応液中に溶媒が含まれているので、該重合反応液をそのまま正極材料組成物の成分として混合するようにしてもよいし、重合反応液から一旦溶媒を除去したのちに正極材料組成物の成分として他の溶媒を加えるようにしてもよい。

本発明の正極材料組成物は、さらに必要に応じて、例えば、前述した必須の酸化防止剤 以外の酸化防止剤(例えば、汎用のフェノール系酸化防止剤)、老化防止剤、光安定剤、 滑剤、帯電防止剤、補強剤、充填剤等の添加剤を、本発明の効果を損なわない範囲で適宜

含有していてもよい。また、正極材料組成物は、例えば、前記ポリマーを得る際の重合で 得られた重合反応液に含まれる成分を含有していてもよい。

本発明の正極材料組成物は、溶液状、スラリー溶液状、ペースト状、粒子状、ペレット状、微粒子状、所望の形の塊状など、いかなる形態であってもよく、前記ポリマー、前記電極活物質および前記導電助剤を必須とする前述した各成分を混合もしくは混練し、必要に応じて脱揮や造粒を施すことにより得ることができる。また、例えば、一度造粒して粒子状やペレット状で得た組成物に、再度溶媒を加え、溶液状やスラリー溶液状の組成物として得ることもできる。

前記ポリマー、前記電極活物質および前記導電助剤を必須とする前述した各成分を混合もしくは混練する方法については、従来公知の方法を採用すればよく特に制限されないが、正極材料組成物は、特に、前記ポリマー、前記電極活物質および前記導電助剤が均一に混合されてなることが好ましく、これら3成分を均一に混合しうる混合方法もしくは混練方法を採用することが望ましい。

本発明の正極材料組成物中の水分含有量は、多すぎると、該組成物を成形してなる正極を電池に用いた際に、水分と金属イオン分などとが反応して生成する水酸化物等が絶縁層となり電池のサイクル特性が悪化するおそれがあり、好ましくないのであるが、該組成物を正極に成形する際に良好な成形性を得るためには、適度に水分を含有させておく方が良い場合がある。この場合、具体的には、組成物中の水分含有量は、前記ポリマーに対しては、好ましくは0.005~5%、より好ましくは0.1~0.8%であるのがよく、組成物に対しては、その組成等によって異なるが、好ましくは0.001~2%、より好ましくは0.05~0.5%であるのがよい。組成物中の水分含有量を前記範囲に調節する方法としては、例えば、脱揮を経て組成物を得るようにし、脱揮の際に溶媒とともに水分も除去したり、逆に水を加えながら脱揮を行ったりして調整するか、脱揮後に調湿(加湿)することで調整するようにすればよい。

本発明の正極材料組成物は、コーティング用または成形用の組成物であることが好ましい。本発明の正極材料組成物は正極の作製に用いるものであり、コーティングにより膜状の正極とするか、例えば押し出し成形などにより所望の形状に成形して正極とされるからである。正極材料組成物をコーティング用または成形用の組成物とする場合、コーティングや成形に用いる装置に応じた最適な粘度になるよう、溶媒をその量を調整して添加したり、脱揮を施したり、加工温度(混合・混練時の温度など)を調整したりすることによって、組成物中の溶媒の含有量を調整すればよい。

本発明の正極材料組成物は、下記で定義される組成物中のポリマーの重量平均分子量の減少率(D_{Mw})が、0.5時間放置後には20%以下であり、かつ、1時間放置後には30%以下であることが好ましい。より好ましくは、0.5時間放置後の減少率(D_{Mw})は15%以下であり、かつ、1時間放置後の減少率(D_{Mw})は20%以下であるのがよい。

組成物中のポリマーの重量平均分子量の減少率(D_{Mw}):120℃の空気雰囲気下に 一定時間放置したときの組成物中のポリマーの重量平均分子量をMwとし、前記雰囲気下 に置く前の組成物中のポリマーの重量平均分子量をMwoとしたときに、

 D_{Mw} (%) = [($Mw_0 - Mw$) $/Mw_0$] ×100 で表される値である。

このように0.5時間放置後の減少率(D_{Mw})および1時間放置後の減少率(D_{Mw})が前述した範囲となる組成物であれば、保存方法に関わらず、輸送・貯蔵後に正極材料を作製し、該正極材料を用いてリチウム2次電池を作製したときにも、良好な電池性能を発現させることができる。本発明においては、前述したように、アミン系酸化防止剤、リン系酸化防止剤およびフェノチアジン系酸化防止剤からなる群より選ばれる1種以上の酸化防止剤を含有することにより、前述した減少率を容易に達成することができる。

本発明の正極材料組成物は、電解質塩を含有しない場合にはこれを含有させるなど必要 に応じてさらに正極材料に要する成分を配合したのち、通常の方法で成形することによっ て正極とすることができる。このようにして得られた正極を用いて通常の方法で作製され たリチウム電池は、ショートテストやサイクル特性などの各種電池性能に優れたものとな る。

実施例

以下に、実施例および比較例によって本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。以下、特に断りのない限り、「重量%」を「%」と、「重量部」を「部」と、記すこととする。

〔実施例1〕

攪拌翼(「スーパーブレンド翼」住友重機械工業(株)製)、温水ジャケット、添加口を備えた100Lの反応器内の空気を窒素ガスで置換したのち、該反応器に、アミン系酸化防止剤(ビス(4-tーブチルフェニル)アミン:精工化学製「ステアラーSTAR」)47.5g、リン系酸化防止剤(サイクリックネオペンタンテトライルビス(2,6-ジーtープチルー4ーメチルフェニル)ホスファイト:旭電化製「アデカスタブPEPー36」)47.5g、トルエン30.8kg、電極活物質と導電助剤との混合物(「Lithiated vanadium oxide/carbon blend」US AVESTOR LLC社製)39.6kgを順次投入した。その後、ホッパーや配管に残った電極活物質と導電助剤との混合物をトルエン5kgで反応器内に洗い流したのち、常温、常圧で30分間、内翼回転75гpm、外翼回転29гpmで攪拌し、均一に混合した。次いで、内翼回転75гpm、外翼回転29гpmで攪拌しながら、ポリマー(エチレンオキシド/ブチレンオキシド共重合体:重量平均分子量(Mw)124,000、分子量分布(Mw/Mn)1.4)のトルエン溶液(固形分45%)42.4kgを投入したのち、温水ジャケットで昇温し、内温が50℃に達してからさらに2時間攪拌して、均つなスラリー溶液として正極材料組成物を得た。

得られた正極材料組成物のスラリー溶液約1gをアルミカップに秤りとったものを3個用意し、それらを120℃の乾燥機内に入れ、0.5時間後、1時間後にそれぞれ取り出して、試料とした。次いで、各試料にアセトニトリルをポリマー濃度が1%となるように追加して溶解させて2000грmで3分間遠心分離し、上澄み液をGPC装置(東ソー製「HCL-8120」)にて分析し、ポリエチレンオキシドの標準分子量サンプルにより作製した検量線から、試料中のポリマーの重量平均分子量を求めた。溶離液としては水/アセトニトリル(volk)=50/50を用いた。そして、ポリマーの初期重量平均分子量(124,000)を Mw_0 とし、試料中のポリマーの重量平均分子量をMwとし

て、下記式に基づき、ポリマーの初期重量平均分子量(124,000)に対する分子量 減少率を算出した。結果を表1に示す。

分子量減少率 (%) = $(Mw_0 - Mw) / Mw_0 \times 100$

他方、得られた正極材料組成物のスラリー溶液が入った前記反応器の内温を50~53℃に保ちながら、反応器に減圧ラインを接続して6.7~13.3 k Pa(50~100 mmHg)の減圧をかけ、トルエン29 k g を留去させ、固形分約70%のスラリー溶液とした。次に、KRCニーダー本体内の空気を窒素ガスで置換したのち、ニーダーを38 r pmで回転させながら内温を90℃に設定しておき、前記反応器からギヤポンプを介してニーダー本体に前記スラリー溶液をフィードし、34.7 k Pa(260 mmHg)の減圧をかけて脱揮を行い、トルエンを留去した。そして、ニーダーの出口にベルトクーラーを繋ぎ、ニーダーの出口から押し出されたストランドを冷却しながらパットに受けるようにし、パットを12時間以上室温で放置し、乾燥させた。このとき、乾燥中を含め終始、ベルトクーラーからパットまでをフードで覆って内部の空気を窒素ガスで置換しておいた。次いで、ストランドカッターを用い、この装置全体をフードで覆って局所排気しながらストランドをカッティングしてペレットとし、該ペレットをタンプルドライヤーの中に入れて常温で12時間以上真空乾燥し、ペレット状の正極材料組成物を得た。

得られたペレット状の正極材料組成物を空気中 20 Cで放置し、表 2 に示す経過時間で取り出し、これを試料とした。次いで、各試料にアセトニトリルをポリマー濃度が 1% となるように追加し、タッチミキサーおよびシェーカーにて充分に攪拌してポリマー分を溶解させたのち、フィルター(非水系、 0.45μ m)で不溶物を濾過し、得られた濾液をGPC装置(東ソー製「HCL-8120」)にて分析し、ポリエチレンオキシドの標準分子量サンプルにより作製した検量線から、試料中のポリマーの重量平均分子量を求めた。溶離液としては水/アセトニトリル(volk)=50/50を用いた。そして、ポリマーの初期重量平均分子量(124,000)を124,000)を124,0000)に対する分子量減少率を算出した。結果を表 124,0000)に対する分子量減少率を算出した。結果を表 124,00000。に対する分子量減少率を算出した。結果を表 124,00000。これを計算を

分子量減少率 (%) = [($Mw_0 - Mw$) $/Mw_0$] × 100

[実施例2~3]

アミン系酸化防止剤およびリン系酸化防止剤の量を、それぞれ、実施例2ではアミン系酸化防止剤19g、リン系酸化防止剤19gに変え、実施例3ではアミン系酸化防止剤95g、リン系酸化防止剤95gに変えたこと以外は、実施例1と同様にして、均一なスラリー溶液として正極材料組成物を得た。

得られた正極材料組成物のスラリー溶液を用い、実施例1と同様にして、試料中のポリマーの重量平均分子量を求めた。そして、ポリマーの初期重量平均分子量(124,00)に対する分子量減少率を算出した。結果を表1に示す。

〔比較例1〕

アミン系酸化防止剤およびリン系酸化防止剤を用いないこと以外は、実施例1と同様に して、均一なスラリー溶液として正極材料組成物を得た。

得られた正極材料組成物のスラリー溶液を用い、実施例1と同様にして、試料中のポリマーの重量平均分子量を求めた。そして、ポリマーの初期重量平均分子量(124,00

0) に対する分子量減少率を算出した。結果を表1に示す。〔比較例2〕

アミン系酸化防止剤47.5gおよびリン系酸化防止剤47.5gに変えて、フェノール系酸化防止剤(4,4'ープチリデンビス(6-tープチルー3ーメチルフェノール):エーピーアイコーポレーション製「ヨシノックスBB」)95gを用いたこと以外は、実施例1と同様にして、均一なスラリー溶液として正極材料組成物を得た。

得られた正極材料組成物のスラリー溶液を用い、実施例1と同様にして、試料中のポリマーの重量平均分子量を求めた。そして、ポリマーの初期重量平均分子量(124,00 0)に対する分子量減少率を算出した。結果を表1に示す。

他方、実施例1と同様にして、得られた正極材料組成物のスラリー溶液を用いて、ペレット状の正極材料組成物を得た。

得られたペレット状の正極材料組成物を空気中20℃で放置し、表2に示す経過時間で取り出し、これを試料として実施例1と同様の方法で試料中のポリマーの重量平均分子量を求めた。そして、ポリマーの初期重量平均分子量(124,000)に対する分子量減少率を算出した。結果を表2に示す。

[実施例4]

マックスプレンド翼、温水ジャケット、添加口を備えた100Lの反応器(該反応器を「反応器A」とする)内の空気を窒素ガスで置換したのち、温水ジャケット温度を70℃まで昇温しておき、その中に、あらかじめ80℃に加温保温したポリマー(エチレンオキシド/ブチレンオキシド共重合体:重量平均分子量(Mw)124,000、分子量分布(Mw/Mn)1.4)のトルエン溶液(固形分45%)42.4 kgを投入した。次いで、翼回転90rpmで攪拌しながら、リチウム塩としてリチウムビス(トリフルオロメタンスルホン)イミド(LiN(CF₃SO₂)₂)4,08kgをホッパーから反応器へ投入した。その後、ホッパーや配管に残ったリチウム塩をトルエン4kgで反応器内に洗い流したのち、内温70℃、翼回転90rpmで2時間攪拌した。

次に、攪拌翼(「スーパーブレンド翼」住友重機械工業(株)製)、温水ジャケット、添加口を備えた100Lの反応器(該反応器を「反応器B」とする)内の空気を窒素置換したのち、該反応器に、フェノール系酸化防止剤(4,4'ープチリデンビス(6-tープチルー3ーメチルフェノール):エーピーアイコーポレーション製「ヨシノックスBB」) 95g、トルエン22kg、電極活物質と導電助剤との混合物(「Lithiated vanadium oxide/carbon blend」US AVESTORLLC社製)39.6kgを順次投入した。その後、ホッパーや配管に残った電極活物質と導電助剤との混合物をトルエン4.5kgで反応器内に洗い流したのち、常温、常圧で30分間、内翼回転75rpm、外翼回転29rpmで攪拌し、均一に混合した。

次いで、反応器B内を、内翼回転75rpm、外翼回転29rpmで攪拌しながら、反応器Aと反応器Bを繋ぐようあらかじめ付設した配管を経由して、反応器Aの内容物(ポリマーとリチウム塩との混合溶液)の全量を反応器Bへ投入したのち、温水ジャケットで昇温し、50℃で2時間攪拌して、均一なスラリー溶液として前駆組成物を得た。

次に、前駆組成物100部と、アミン系酸化防止剤(ビス(4 ー t ープチルフェニル)アミン:精工化学製「ステアラーSTAR」)の0.25%アセトニトリル溶液32部と

を、常温下、マグネチックスターラーにて酸化防止剤が溶解するまで攪拌し、均一なスラリー溶液として正極材料組成物を得た。

得られた正極材料組成物のスラリー溶液を用い、実施例1と同様にして、試料中のポリマーの重量平均分子量を求めた。そして、ポリマーの初期重量平均分子量(124,00)に対する分子量減少率を算出した。結果を表1に示す。

〔実施例5〕

実施例4と同様にして前駆組成物を得た。

次に、前駆組成物100部と、アミン系酸化防止剤(ビス(4-t-ブチルフェニル)アミン:精工化学製「ステアラーSTAR」)の0.25%アセトニトリル溶液16部と、リン系酸化防止剤(サイクリックネオペンタンテトライルビス(2,6-ジーt-ブチルー4-メチルフェニル)ホスファイト:旭電化製「アデカスタブPEP-36」)の0.25%アセトニトリル溶液16部とを、常温下、マグネチックスターラーにて酸化防止剤が溶解するまで攪拌し、均一なスラリー溶液として正極材料組成物を得た。

得られた正極材料組成物のスラリー溶液を用い、実施例1と同様にして、試料中のポリマーの重量平均分子量を求めた。そして、ポリマーの初期重量平均分子量(124,00)に対する分子量減少率を算出した。結果を表1に示す。

〔比較例3〕

実施例4と同様にして前駆組成物を得、該前駆組成物を正極材料組成物とした。

得られた正極材料組成物のスラリー溶液を用い、実施例1と同様にして、試料中のポリマーの重量平均分子量を求めた。そして、ポリマーの初期重量平均分子量(124,00)に対する分子量減少率を算出した。結果を表1に示す。

[表1]

	48年十	一般化防止到				野袋	经温時間		
	十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二		-*#	2	日本語		0± 86	1	8813
	01774		4	5	7 E	0.0時间	時间	医	画生
	植の有無	建筑	dd)	重量平均	重量平均 分子量減	重量平均 分子量減	分子量減	重量平均	平均 分子書派
			E	分子圖	(%) 掛令	やイキ	(%)图介	神子	(%) 船 (%)
阳落室1	#	アミン系酸化防止剤	2500	000707		_		1	74/0/
	3	リン系酸化防止剤	2500	124000		113000	ω σ:	107000	13.7
明祐열つ	4	アミン系酸化防止剤	1000	000707					
		リン系酸化防止剤	1000	124000	I	113000	8 6.9	103000	16.9
服特包3	#	アミン系酸化防止剤	5000	40,400					
		リン系酸化防止剤	5000	124000	1	112000	9.7	107000	13.7
比較例1	ゴな	なし	0	124000	1	65000	47.6	53000	57.3
子標色の	4	フェノール系酸化防止	1						
10-tx 10-12		承	0000	124000	ı	85000	31.5	71000	42.7
軍権倒4	有印	アミン系酸化防止剤	5000	000707					
		フェノール系酸化防止剤	2000	154000		000111	10.5	104000	16.1
1		アミン系酸化防止剤	2500						
来配列の	一の世	リン系酸化防止剤	2500	124000	1	110000	11.3	10200	177
		フェノール系酸化防止剤	5000				<u> </u>		:
比較倒3	一种	フェノール系酸化防止	5000	40,400		00000			
		灰		000471		00006	27.4	58000	53.2
								-	_

*1:酸化防止剤の量は、ポリマーの固形分量に対する割合で表した

(表2)

	日本 日							野球	野盟					
		***	盤〇		3		12日		1		日6	П	15	5 B
	種類	1 <u>0</u>	重量平均	分子量減	重量平均	7子量減	重量平均	子量	朝 重量平均 分子量減 重	分子量減	重量平均 分子量減	分子量減	重量平均	分子量減
		Ê	分子量	(%)概令	分子量)率(%)	分子量	少率(%)	分子量	少型(%)	分子量	少降(%)	分子量	少單(%)
D 445 / 701 4	アミン系酸化防止剤	2500	424000	ı	I	i	l	1	123000	80	l	ı	123000	0.8
医医医	リン系酸化防止剤	2500	2004-21											
で物色の	ノエノール	5000	124000	i	122000	1.6	1.6 120000	3.2	1	1	116000	6.5	ļ	1
1	防止剤													

*1.酸化防止剤の量は、ポリマーの固形分量に対する割合で表した

<電池性能>

以上の実施例および比較例において得られた正極材料組成物について、実施例 4、5 および比較例 3 で得られた正極材料組成物についてはそのまま、実施例 1 ~ 3 および比較例 1 、2 で得られた正極材料組成物については、電解質塩としてリチウムビス(トリフルオロメタンスルホン)イミド(LiN (CF $_3$ SO $_2$) $_2$)を該電解質塩が組成物中 7 重量%となるように加えて均一に混合したのち、直ちに成形して正極を作製した。そして、該正極を用いてリチウム電池を作製し、得られた電池の性能(ショートテストおよびサイクル特性)を比較したところ、各実施例において保存した正極材料組成物に基づく電池はいずれも、各比較例において保存した正極材料組成物に基づく電池よりも良好な性能を発揮するものであった。

産業上の利用可能性

本発明にかかるリチウム2次電池用正極材料組成物は、リチウム2次電池の正極を作製 するための材料として好適に用いられる。

請求の範囲

- 1. ポリマー、電極活物質および導電助剤を必須とする正極材料用組成物であって、アミン系酸化防止剤、リン系酸化防止剤およびフェノチアジン系酸化防止剤からなる群より選ばれる1種以上の酸化防止剤を含有することを特徴とする、リチウム2次電池用正極材料組成物。
- 2. 前記酸化防止剤がアミン系酸化防止剤およびリン系酸化防止剤である、請求項1に 記載のリチウム2次電池用正極材料組成物。
- 3. コーティング用または成形用の組成物である、請求項1または2に記載のリチウム 2次電池用正極材料組成物。
- 4. 前記ポリマー、前記電極活物質および前記導電助剤が均一に混合されてなる、請求項1から3までのいずれかに記載のリチウム2次電池用正極材料組成物。
- 5. 電解質塩としてのリチウム塩をも含有する、請求項1から4までのいずれかに記載のリチウム2次電池用正極材料組成物。
- 6. 下記で定義される組成物中のポリマーの重量平均分子量の減少率(D_{Mw})が、0. 5時間放置後には20%以下であり、かつ、1時間放置後には30%以下である、請求項1から5までのいずれかに記載のリチウム2次電池用正極材料組成物。

組成物中のポリマーの重量平均分子量の減少率(D_{Mw}):120 $\mathbb C$ の空気雰囲気下に一定時間放置したときの組成物中のポリマーの重量平均分子量をMwとし、前記雰囲気下に置く前の組成物中のポリマーの重量平均分子量をMw0 としたときに、

 D_{Mw} (%) = { ($Mw_0 - Mw$) $/Mw_0$ } ×100 で表される値である。

- 7. 前記電極活物質が、LixVyOz(ただし、x、 $yおよびzは、それぞれ互いに独立、かつ、<math>0 < x \le 2$ 、y = (mx + 2z) / n、およびz = (mx + ny) / 2(ただし、mはLio 価数であり、nはVo 価数で4以上の実数である。)を満足する実数である。)である、請求項1から6までのいずれかに記載のリチウム2次電池用正極材料組成物。
- 8. 前記ポリマーがイオン導電性のポリエーテル重合体である、請求項1から7までのいずれかに記載のリチウム2次電池用正極材料組成物。

補正書の請求の範囲

補正書の請求の範囲 [2006年1月31日 (31.01.06) 国際事務局受理:出願 当初の請求の範囲2-7は補正された;出願当初の請求の範囲1及び8は取り下げられた ;他の請求の範囲は変更なし。(1頁)]

1. (削除)

- 2. (補正後)ポリマー、酸化防止剤、電極活物質および導電助剤を必須とする正極材料用組成物であって、前記酸化防止剤がアミン系酸化防止剤およびリン系酸化防止剤を必須とする酸化防止剤であり、かつ、前記ポリマーがエチレンオキシド系ポリマーであることを特徴とする、リチウム2次電池用正極材料組成物。
- 3. (補正後) コーティング用または成形用の組成物である、請求項2に記載のリチウム2次電池用正極材料組成物。
- 4. (補正後)前記ポリマー、前記電極活物質および前記導電助剤が均一に混合されてなる、請求項2または3に記載のリチウム2次電池用正極材料組成物。
- 5. (補正後)電解質塩としてのリチウム塩をも含有する、請求項2から4までのいずれかに記載のリチウム2次電池用正極材料組成物。
- 6. (補正後)下記で定義される組成物中のポリマーの重量平均分子量の減少率 (D_{Mw}) が、0.5時間放置後には20%以下であり、かつ、1時間放置後には30%以下である、請求項2から5までのいずれかに記載のリチウム2次電池用正極材料組成物。

組成物中のポリマーの重量平均分子量の減少率(D_{Mw}):120 $\mathbb C$ の空気雰囲気下に一定時間放置したときの組成物中のポリマーの重量平均分子量をMwとし、前記雰囲気下に置く前の組成物中のポリマーの重量平均分子量をMw。としたときに、

 D_{Mw} (%) = [($Mw_o - Mw$) $/Mw_o$] ×100 で表される値である。

- 7. (補正後) 前記電極活物質が、LixVyOz (ただし、x、yおよびzは、それぞれ互いに独立、かつ、 $0 < x \le 2$ 、y = (mx + 2z) / n、およびz = (mx + ny) / 2 (ただし、mはLiの価数であり、nはVの価数で4以上の実数である。) を満足する実数である。) である、請求項2から6までのいずれかに記載のリチウム2次電池用正極材料組成物。
 - 8. (削除)

条約19条に基づく説明書

国際調査機関の見解書で引用されている文献1~4は請求項1の発明を開示している。しかし、国際調査機関の見解書が請求項2の発明も引用文献1~4に開示されていると認定しているのは誤りである。請求項2の発明では酸化防止剤としてアミン系酸化防止剤およびリン系酸化防止剤を併用するが、引用文献1、2 および4には、上記アミン系酸化防止剤およびリン系酸化防止剤のうち、アミン系の化合物しか開示されていないからである。他方、引用文献3には、酸化防止剤としてアミン系酸化防止剤およびリン系酸化防止剤の両方が例示されてはいるが、それらに限定していないとともに、それらの併用も開示されていないからである。

引用文献 $1 \sim 4$ の開示により請求項 1 の発明には新規性がないので、請求項 1 を削除した。請求項 2 に対し、請求項 1 の内容を前文(Preamble)として付け加えて、従属項であった請求項 2 を独立項に変えるとともに、ポリマーを、請求項 8 で限定しているイオン導電性のポリエーテル重合体をさらに限定したエチレンオキシド系ポリマー(明細書第 2 頁第 3 4 \sim 3 8 行)に限定する補正を行った。そして、これら請求項 1 \sim 2 の補正に伴い、従属項 3 \sim 7 について、その引用番号を修正する補正を行うとともに、請求項 8 を削除した。

上記補正後の請求項2の発明は、酸化防止剤がアミン系酸化防止剤およびリン系酸化防止剤を必須とする酸化防止剤であり、かつ、ポリマーがエチレンオキシド系ポリマーであることを特徴としている。アミン系酸化防止剤およびリン系酸化防止剤を必須とする酸化防止剤とエチレンオキシド系ポリマーとの組み合わせは、どの引用文献にも開示されていない。したがって、補正後の請求項2の発明は新規性および進歩性を有する。

請求項3~7は上記新規性・進歩性を有する補正請求項2に従属するものである。したがって、請求項3~7の発明は新規性・進歩性を有している。

THIS PAGE BLANK (USP))

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2005/016467

A. CLASSIFICATION OF SUBJECT MATTER

H01M4/62(2006.01), H01M4/02(2006.01), H01M4/48(206.01), H01M4/58(2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H01M4/62(2006.01), H01M4/02(2006.01), H01M4/48(206.01), H01M4/58(2006.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho

1922-1996 Jitsuyo Shinan Toroku Koho

1996-2005

Kokai Jitsuyo Shinan Koho

1971-2005

Toroku Jitsuyo Shinan Koho

1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 10-106579 A (Sanyo Electric Co., Ltd.),	1-4,6
Y	24 April, 1998 (24.04.98), Claims 1 to 4; examples (cells A34, A35 etc.), (Family: none)	5,7,8
x	JP 11-86903 A (Fuji Photo Film Co., Ltd.),	1-4,6
Y	30 March, 1999 (30.03.99), Claims 1 to 8; Par. Nos. [0006] to [0021] (Family: none)	5,7,8
X	JP 11-67211 A (Ricoh Co., Ltd.),	
Y	09 March, 1999 (09.03.99), Claims 1 to 9; Par. No. [0009] (Family: none)	1-4,6 5,7,8

ı x	Errethan	documents		Lint.d	:	412.2		+:	~F	Day	$\boldsymbol{\mathcal{C}}$
	ruittei	documents	are	moteu	ш	me com	шиа	ион	O1	DUX	┖.

See patent family annex.

- Special categories of cited documents:
- -A" document defining the general state of the art which is not considered to be of particular relevance
- -Еearlier application or patent but published on or after the international filing date
- document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other
- special reason (as specified) document referring to an oral disclosure, use, exhibition or other means
- document published prior to the international filing date but later than the priority date claimed
- later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search 25 November, 2005 (25.11.05)

Date of mailing of the international search report 06 December, 2005 (06.12.05)

Name and mailing address of the ISA/ Japanese Patent Office Authorized officer

Telephone No.

Facsimile No. Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/016467

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim N
X Y	JP 2003-282063 A (Denso Corp.), 03 October, 2003 (03.10.03), Claims 1 to 13; Par. Nos. [0025], [0026] (Family: none)	1-4,6 5,7,8
Y	JP 2002-216744 A (Japan Storage Battery Co., Ltd.), 02 August, 2002 (02.08.02), Claims 1 to 3; Par. No. [0041] (Family: none)	5,8
Υ	JP 2003-132877 A (Sony Corp.), 09 May, 2003 (09.05.03), Claims 1 to 15; examples (Family: none)	5,8
Y	JP 2002-93405 A (Hitachi Maxell, Ltd.), 29 March, 2002 (29.03.02), Claims 1 to 9 (Family: none)	5
Y	JP 4-500883 A (DOWTY ELECTONIC COMPONENTS LTD.), 13 February, 1992 (13.02.92), Claims 1 to 19; full description & WO 91/1572 A & EP 435991 A1	7
Y	JP 63-307663 A (Bridgestone Corp.), 15 December, 1988 (15.12.88), Claims 1 to 3; full description & US 4803137 A & DE 3816778 A	7
Y	JP 2002-319434 A (Sharp Corp.), 31 October, 2002 (31.10.02), Par. No. [0021] & WO 2002/87004 A1 & US 2005/74675 A1	7

A. 発明の属する分野の分類(国際特許分類(IPC))

Int.Cl. H01H4/62 (2006.01), H01H4/02 (2006.01), H01H4/48 (2006.01), H01H4/58 (2006.01)

B. 調査を行った分野

. : .

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl. H01M4/62 (2006.01), H01M4/02 (2006.01), H01M4/48 (2006.01), H01M4/58 (2006.01)

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 10-106579 A(三洋電機株式会社)1998.04.24,	1-4, 6
Y	請求項1-4,実施例(電池 A34,A35 など)(ファミリーなし)	5, 7, 8
X	JP 11-86903 A(富士写真フイルム株式会社)1999.03.30,	1-4, 6
Y	請求項 1-8,段落 0006-0021(ファミリーなし)	5, 7, 8
X	JP 11-67211 A(株式会社リコー)1999.03.09,	1-4, 6
Y	請求項1-9,段落.0009(ファミリーなし)	5, 7, 8

▼ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

25.11.2005

国際調査報告の発送日

06.12.2005

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

4X 9445

植前 充司

電話番号 03-3581-1101 内線 3477

国際調査報告

川用文献の	関連すると認められる文献 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する
カテゴリー* ・	JP 2003-282063 A (株式会社デンソー) 2003.10.03,	請求の範囲の番号
	請求項 1-13,段落 0025,0026(ファミリーなし)	1-4, 6 5, 7, 8
,	JP 2002-216744 A(日本電池株式会社)2002.08.02, 請求項 1-3,段落 0041(ファミリーなし)	5, 8
,	JP 2003-132877 A(ソニー株式会社)2003.05.09, 請求項 1-15,実施例(ファミリーなし)	5, 8
,	JP 2002-93405 A(日立マクセル株式会社)2002.03.29, 請求項 1-9(ファミリーなし)	5
,	JP 4-500883 A(ドウテイー エレクトロニツク コンポーネンツ リミテツド)1992.02.13,請求項 1-19,明細書全体 & WO 91/1572 A & EP 435991 A1	7
,	JP 63-307663 A(株式会社ブリヂストン)1988.12.15, 請求項 1-3,明細書全体 & US 4803137 A & DE 3816778 A	7
,	JP 2002-319434 A(シャープ株式会社)2002.10.31, 段落0021 & WO 2002/87004 A1 & US 2005/74675 A1	7