Zadanie 1.

Niech $(X_1,Y_1),(X_2,Y_2),\dots,(X_n,Y_n)$ będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością oczekiwaną $EX_i=EY_i=m$, wariancją $VarX_i=\frac{1}{4}VarY_i=1$ i współczynnikiem korelacji $Corr(X_i,Y_i)=\frac{1}{2}$. Osobno na podstawie prób losowych X_1,X_2,\dots,X_n i Y_1,Y_2,\dots,Y_n zbudowano dwa przedziały ufności dla wartości oczekiwanej m, każdy na poziomie ufności 0,8. Oblicz prawdopodobieństwo, że tak zbudowane przedziały okażą się rozłączne.

- (A) 0,15
- (B) 0,05
- (C) 0,03
- (D) 0,12
- (E) 0.08

Zadanie 2.

Zakładamy, że zależność czynnika Y od czynnika x (nielosowego) opisuje model regresji liniowej $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$. Obserwujemy 20 elementową próbkę, w której $x_1 = x_2 = \ldots = x_{10} = 1$ i $x_{11} = x_{12} = \ldots = x_{20} = 3$. Zmienne losowe Y_1, Y_2, \ldots, Y_n są niezależne i błędy mają rozkłady normalne o wartości oczekiwanej 0, przy czym $Var\varepsilon_i = \sigma^2$, gdy $i = 1, 2, \ldots, 10$, i $Var\varepsilon_i = 4\sigma^2$, gdy $i = 11, 12, \ldots, 20$. Wyznaczono estymatory $\hat{\beta}_0$ i $\hat{\beta}_1$ parametrów β_0 i β_1 wykorzystując metodę najmniejszych kwadratów, czyli minimalizując wielkość $\sum_{i=1}^{20} \left(Y_i - \beta_0 - \beta_1 x_i\right)^2$. Wyznacz stałe z_0 i z_1 tak, aby $P\left(\left|\hat{\beta}_0 - \beta_0\right| < z_0\sigma\right) = 0,95$ i $P\left(\left|\hat{\beta}_1 - \beta_1\right| < z_1\sigma\right) = 0,95$. Spośród podanych odpowiedzi wybierz odpowiedź będącą najlepszym przybliżeniem.

(A)
$$z_0 = 0.98 \text{ i } z_1 = 0.69$$

(B)
$$z_0 = 0.93$$
 i $z_1 = 0.69$

(C)
$$z_0 = 0.93$$
 i $z_1 = 0.54$

(D)
$$z_0 = 1.18 \text{ i } z_1 = 0.69$$

(E)
$$z_0 = 1.18 \text{ i } z_1 = 0.54$$

Zadanie 3.

Niech (X,Y) będzie dwuwymiarową zmienną losową o funkcji gęstości

$$f(x, y) = \begin{cases} 6x & \text{gdy } x > 0 \text{ i } y > 0 \text{ i } x + y < 0 \\ 0 & \text{w przeciwnym przypadku.} \end{cases}$$

 $f(x,y) = \begin{cases} 6x & \text{gdy } x > 0 \text{ i } y > 0 \text{ i } x + y < 1 \\ 0 & \text{w przeciwnym przypadku.} \end{cases}$ Niech S = X + Y i V = Y - X. Wyznacz $Var\left(V \mid S = \frac{1}{2}\right)$

- (A)
- (B)
- (C)
- (D)
- (E)

Zadanie 4.

Niech A, B, C będą zdarzeniami losowymi spełniającymi warunki P(C-B)>0 i P(B-C)>0 i $P(B\cap C)>0$ i P(A|C-B)>P(A|B). Wtedy

- (A) $P(A \mid B \cup C) < P(A \mid C)$
- (B) $P(A \mid B \cap C) < P(A \mid B)$
- (C) P(A | B C) > P(A | C B)
- (D) $P(A \mid B \cup C) > P(A \mid B)$
- (E) żadna z podanych wyżej nierówności nie jest prawdziwa

Zadanie 5.

Obserwujemy n niezależnych zmiennych losowych $X_1, X_2, ..., X_n$ o tym samym rozkładzie o gęstości $f_{\theta}(x) = \begin{cases} \frac{2x}{\theta^2} & \text{gdy } x \in (0; \theta) \\ 0 & \text{w przeciwnym przypadku,} \end{cases}$

gdzie $\theta > 0$ jest nieznanym parametrem. Rozważmy test jednostajnie najmocniejszy dla weryfikacji hipotezy $H_0: \theta = 1$ przy alternatywie $H_1: \theta > 1$ na poziomie istotności 0,1. Jak najmniej liczną próbą należy dysponować, aby moc otrzymanego testu przy alternatywie $\theta_1 = \frac{3}{2}$ była nie mniejsza niż 0,9.

- (A) $n \ge 10$
- (B) n = 8
- (C) n = 6
- (D) n = 4
- (E) n = 3

Zadanie 6.

Niech X_1 i X_2 będą niezależnymi zmiennymi losowymi o rozkładzie jednostajnym na przedziale [0,1]. Rozważmy zmienną losową równą bezwzględnej wartości różnicy pierwotnych zmiennych X_1 i X_2 . Wartość oczekiwana μ oraz wariancja σ^2 zmiennej $|X_1-X_2|$ wynoszą:

(A)
$$\mu = \frac{1}{3}$$
 $\sigma^2 = \frac{1}{36}$

(B)
$$\mu = \frac{1}{2}$$
 $\sigma^2 = \frac{1}{12}$

(C)
$$\mu = \frac{1}{2}$$
 $\sigma^2 = \frac{1}{24}$

(D)
$$\mu = \frac{1}{3}$$
 $\sigma^2 = \frac{1}{18}$

(E)
$$\mu = \frac{1}{3}$$
 $\sigma^2 = \frac{1}{6}$

Zadanie 7.

Niech $X_1, X_2, ..., X_n, ...$ będą niezależnymi zmiennymi losowymi o jednakowym rozkładzie wykładniczym z wartością oczekiwaną równą 3. Niech N będzie zmienną losową niezależna od zmiennych $X_1, X_2, ..., X_n, ...$, o rozkładzie Poissona z wartością oczekiwaną 2. Niech

$$Z_N = \begin{cases} \frac{1}{N+1} \sum_{i=1}^{N} iX_i & \text{gdy} \quad N > 0\\ 0 & \text{gdy} \quad N = 0. \end{cases}$$

Oblicz $VarZ_N$.

- (A) 9
- (B) $9,75-0,75e^{-2}$
- (C) $6,75+0,75e^{-2}$
- (D) $14,25-0,75e^{-2}$
- (E) $5,25+1,5e^{-2}$

Wskazówka:
$$1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Zadanie 8.

Niech X_1, X_2, \dots, X_{10} będą niezależnymi zmiennymi losowymi o rozkładzie prawdopodobieństwa o gęstości

$$p_{\theta}(x) = \begin{cases} \theta x^{\theta - 1} & \text{gdy } x \in (0, 1) \\ 0 & \text{w przeciwnym przypadku,} \end{cases}$$

a Y_1,Y_2,\ldots,Y_{10} niezależnymi zmiennymi losowymi o rozkładzie prawdopodobieństwa o gęstości

$$f_{\theta}(x) = \begin{cases} 2\theta x^{2\theta-1} & \text{gdy } x \in (0,1) \\ 0 & \text{w przeciwnym przypadku,} \end{cases}$$
gdzie $\theta > 0$ jest nieznanym parametrem. Wszystkie zmienne losowe są niezależne.

Dobierz stałą a tak, aby

$$P_{\theta}\left(\frac{T}{\theta} > a\right) = 0.9$$

wiedząc, że T jest estymatorem największej wiarogodności parametru θ otrzymanym na podstawie zmiennych losowych $X_1, X_2, ..., X_{10}, Y_1, Y_2, ..., Y_{10}$.

- (A) 1,377
- (B) 0,772
- (C) 1,408
- (D) 0,704
- (E) 0,626

Zadanie 9.

Wykonujemy n niezależnych doświadczeń, z których każde może się zakończyć jednym z czterech wyników: A_1 , A_2 , A_3 , A_4 . Niech N_i oznacza liczbę doświadczeń, w których uzyskano wynik A_i , a p_i prawdopodobieństwo uzyskania wyniku A_i w pojedynczym doświadczeniu, gdzie i=1,2,3,4. Wiadomo, że $p_1=\frac{1}{15}$ i $p_2=\frac{4}{15}$. Jaka jest wartość p_3 , jeżeli zmienne losowe N_1+N_2 i $N_2+N_3-N_4$ są nieskorelowane.

- (A) $\frac{45}{75}$
- (B) $\frac{1}{75}$
- (C) $\frac{31}{75}$
- (D) $\frac{30}{75}$
- (E) nie istnieje p_3 spełniające warunki zadania

Zadanie 10.

Niech X_1, X_2, \ldots, X_n będą niezależnymi zmiennymi losowymi z rozkładu normalnego $N(m,\sigma^2)$, z nieznanymi parametrami m i σ^2 . Rozważamy problem testowania hipotezy $H_0: m=0$ przy alternatywie $H_1: m\neq 0$ za pomocą testu, który odrzuca H_0 jeśli $\frac{|\overline{X}|}{Z} > t$, gdzie $Z = \sqrt{\frac{1}{n}\sum_{i=1}^n X_i^2}$. Dobierz stałą t tak, aby prawdopodobieństwo błędu pierwszego rodzaju testu było równe 0,05, jeśli wiadomo, że n=9.

- (A) 0,769
- (B) 0,569
- (C) 0,754
- (D) 0,399
- (E) 0,632

Egzamin dla Aktuariuszy z 16 maja 2005 r.

Prawdopodobieństwo i statystyka

Arkusz odpowiedzi*

Imię i nazwisko :	K L U C Z	ODPOWIE	D Z I	
Pesel				

Zadanie nr	Odpowiedź	Punktacja⁴
1	С	
2	D	
3	A	
4	D	
5	Е	
6	D	
7	В	
8	В	
9	A	
10	Е	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w *Arkuszu odpowiedzi*.

^{*} Wypełnia Komisja Egzaminacyjna.