Machine learning software to detect ARP poisoning and sniffers: WLAN Unal

By: Nicolas Ricardo Enciso

Topics:

- ARP poisoning/spoofing
- Packages sniffers
- Related paper
- Case of study
- Methodology: ML
- Conclusions
- References

ARP Protocol: brief explanation

IP: 192.168.0.3

MAC: 01-00-5f-02-00-09

IP address	MAC address	Туре
192.168.0.2	01-00-5e-00-00-16	Dynamic
192.168.0.255	FF-FF-FF-FF	Static

IP: 192.168.0.2

MAC: 01-00-5e-00-00-16

IP address	MAC address	Туре
192.168.0.3	01-00-5f-02-00-09	Dynamic
192.168.0.255	FF-FF-FF-FF	Static

ARP poisoning/spoofing

Router IP: 192.168.1.9 MAC: c8:bc:c8:a7:38:d5

Who is 192.168.1.1?

Router IP: 192.168.1.1 MAC: 00:09:5b:d4:bb:fe

Router IP: 192.168.1.9 MAC: c8:bc:c8:a7:38:d5

ı'm 192.168.1.1

with MAC 00:09:5b:d4:bb:fe

Router IP: 192.168.1.1 MAC: 00:09:5b:d4:bb:fe

Router IP: 192.168.1.9 MAC: c8:bc:c8:a7:38:d5

I'm 192.168.1.1 with MAC 00:09:5b:d4:bb:fe

Router IP: 192.168.1.1 MAC: 00:09:5b:d4:bb:fe

ARP Table cache

192.168.1.1 : = 00:09:5b:d4:bb:fe

Router IP: 192.168.1.9 MAC: c8:bc:c8:a7:38:d5

I'm 192.168.1.1

with MAC aa:bb:cc:dd:ee:ff

ARP Table cache

192.168.1.1 : = 00:09:5b:d4:bb:fe

Router IP: 192.168.1.1 MAC: 00:09:5b:d4:bb:fe

Attacker IP: 192.168.1.14 MAC: aa:bb:cc:dd:ee:ff

Router IP: 192.168.1.9 MAC: c8:bc:c8:a7:38:d5

I'm 192.168.1.1

with MAC aa:bb:cc:dd:ee:ff

192.168.1.1 : = 00:09:5b:d4:bb:fe

192.168.1.1 : = aa:bb:cc:dd:ee:ff

Router IP: 192.168.1.1 MAC: 00:09:5b:d4:bb:fe

Attacker IP: 192.168.1.14 MAC: aa:bb:cc:dd:ee:ff

Sniffers in wifi

Related paper: brief review

Intrusion Detection in 802.11 Networks: Empirical Evaluation of Threats and a Public Dataset

Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Stefanos Gritzalis

Topics at the paper

- Provides an open dataset for NIDS
- Explains architecture and components in 802.11
- Focus on wifi attacks
- Apply some machine learning techniques

WEP encryption

Attacks in WEP: IVs attack

1. Scan the network

2. Capture IVs and force deauthentication

4. Perform a PTW, FMS or KoreK

Attack against WPA/PSK

Capturing IVs for each attack

Number of IVs needed to perform the attacks:

TABLE II
AVERAGE IVS REQUIRED FOR WEP CRACKING BY VARIOUS ATTACKS

Attack	IVs (average)	Success	Year
FMS	5,000,000	50%	2001
KoreK	700,000-2,000,000	50%	2004
PTW	40,000-500,000	50%-95%	2007
VX	32,700	50%-95%	2007
Modified PTW	24,200	50%-95%	2008

For more related info, references 9 and 10

Data set: Hardware and software

- 1 desktop
- 2 laptops
- 2 smartphones
- 1 tablet
- 1 smartTV
- 1 laptop attacker
- 1 router
- 1 Monitor Node

Data set: AWID

Machine learning algorithms

All machine learning algorithms:

- AdaBoost
- Hyper Pipes
- J48 / C4.5
- Naive bayes
- OneR
- Random Forest
- Random Tree
- ZeroR

First run: misclassified

- Very accurate but with high misclassified
- The 9 to 1 ratio between neutral and attack cases
- From 152 variables to 20 variables

Algorithm	Correctly Classified%	Incorrectly Classified%
AdaBoost	92.2073	7.7927
Hyperpipes	92.2073	7.7927
J48	96.1982	3.801
Naive Bayes	89.4323	10.5677
OneR	94.5758	5.4242
Random Forest	95.5891	4.4109
Random Tree	91.4379	8.5621
ZeroR	92.2073	7.7927

Second run: Better results

- -Random forest and J48 algorithms were better
- To classify: 95% and 96% precision with low error in the confusion matrix

Algorithm	Correctly Classified%	Incorrectly Classified%
AdaBoost	92.2073	7.7927
Hyperpipes	92.2363	7.7637
J48	96.2574	3.7426
Naive Bayes	90.5504	9.4496
OneR	94.5741	5,4259
Random Forest	95.8247	4.1753
Random Tree	96.2258	3.7742
ZeroR	92.2073	7.7927

Conclusions

- 1. With a good dataset, ML is reliable in NIDS
- 2. Careful with the false positive
- 3. Unsupervised machine learning with good results avoiding labeling
- 4. Can be used for WPA/PSK research
- 5. Select the most important variables: more doesn't mean better
- 6. Keep in mind: Ratio between number of cases for each group in datset

My Project: Used software

Project: Environment

- Wifi Unal_invitados
- Domestic wifi network
- Laptop running Kali linux
- Virtual machine with linux
- Extra wifi antenna TP- link

Project: Training data

Project: ARP spoofing training

Project: Sniffing training

Machine learning algorithm

K - means algorithm

- Actual case
- Neutral case
- Attack case

$$\sqrt{(X_1-X_2)^2+(Y_1-Y_2)^2}$$

Project: K -means algorithm

Conclusions

- Nearly 60% accuracy.
- Tool with potential but relative high error
- Depends on the training data
- Needs larger data sets
- Better with combined ML techniques
- Very big field to research and create

References

- 1- Verizon 2017 Data Breach Investigations Report (DBIR,2017),Revisado en October 23, 2017 de http://www.verizonenterprise.com/verizon-insights-lab/dbir/20 17/
- 2- Sanjay Kumar, Ari Viinikainen, Timo Hamalainen, « Machine learning classification model for network based intrusion detection system », in 11th International conference for internet technology and secured transactions (ICITST), 2016
- 3- Kriangkrai Limthing, Thidarat Tawsook, « Network traffic anomaly detection using machine learning approaches », Computer engineering department Bngkok University, 2015.
- 4 Marek Majkowski, « Detection of promiscuous nodes using ARP packets », NMAP documentation.
- 5- Book: Bob Fleck, Bruce Potter. (2015). 802.11 Security Securing Wireless Networks. Estados Unidos: O'Reily.

References

- 6- Book: Stuart McClure, Joel Scambray, George Kurtz. (2016). Hacking exposed 7: network security secrets & solutions. Estados Unidos, New York: Mc Graw Hill. Nguyen Thanh Van, Tran Ngoc Thinh, Le Thanh Sach, « An amomaly-based network intrusion detection system using deep learning », International conference on system science an engineering (ICSSE), 2017.
- 7 Jinsheng Xu1, Xiaohong Yuan, Anna Yu, Jung Hee Kim, Taehee Kim, Jinghua Zhang, "Developing and Evaluating a Hands-On Lab for Teaching Local Area Network Vulnerabilities», Departamento de ciencias de la computación, Universidad del Estado de Carolina del Norte Greensboro A&T, Departamento de ciencias de la computación
- 8- Kazuki Fukuyama, Yoshiaki Taniguchi, Nobukazu Iguchi, « A Study on Attacker Agent in Virtual Machine-based Network Security Learning System", Universidad de Kink, Osaka Japón, IEEE 4ta Conferencia de electronica de consume, 2015.
- 9- Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, « Intrusion Detection in 802.11 Networks: Empirical Evaluation of Threats and a Public Dataset », IEEE Encuestas de comunicaciones y tutoriales volúmen 18, Universidad del Egeo, Samos, Grecia, 2015.

References

10- Serge Vaudenay and Martin Vuagnoux, « Passive–Only Key Recovery Attacks on RC4 » , EPFL Laussane Switzertland CH- 1015 URL: https://link.springer.com/content/pdf/10.1007/978-3-540-77360-3_22.pdf