TDs optimisation numérique

JÉRÔME MALICK, SÉLIM CHRAIBI, YU-GUAN HSIEH, DMITRY GRISHCHENKO, YASSINE LAGUEL

TD 1 – Rappels de calcul différentiel et débuts avec l'optimisation

Exercice 1 — Différentiabilité de la norme au carré. Calculer, avec simplement la définition, la différentielle en $a \in \mathbb{R}^n$ de l'application $\|\cdot\|^2$, norme euclidienne canonique de \mathbb{R}^n au carrée. En déduire son gradient en $a \in \mathbb{R}^n$. Retrouver cette expression en utilisant les dérivées partielles.

Exercice 2 - Appliquer le lemme de différentiation d'une composée.

- a) Soient A une matrice de taille $m \times n$ et b un vecteur de \mathbb{R}^m ; on définit l'application $f(x) := ||Ax b||^2$ pour $x \in \mathbb{R}^n$. Calculer $\nabla f(x)$.
- **b)** Soit $G: \mathbb{R}^n \to \mathbb{R}^m$ une fonction différentiable; on définit l'application $\varphi(x) := ||G(x)||^2$ pour $x \in \mathbb{R}^n$. Calculer $\nabla \varphi(x)$.

Exercice 3 – Hessien. Calculer le gradient et le Hessien des fonctions suivantes :

- a) $f(x) := x^{\top} A x + p^{\top} x + c$, avec A une matrice symétrique de taille n, p un vecteur de \mathbb{R}^n et c une constante réelle.
- **b)** $g(x) := \sum_{i=1}^m g_i(x)^2$, avec $g_i : \mathbb{R}^n \to \mathbb{R}$ des fonctions 2 fois différentiables.

Exercice 4 – Conditions d'optimalité. Soient $f: \mathbb{R}^n \to \mathbb{R}$ une fonction différentiable, et $\bar{x} \in \mathbb{R}^n$.

- a) Pour toute direction $u \in \mathbb{R}^n$, on définit l'application $q(t) := f(\bar{x} + tu)$ pour $t \in \mathbb{R}$. Calculer q'(t).
- **b)** Supposons que f soit deux fois différentiable. Calculer q''(t).

On suppose que f admet un minimum local en \bar{x} , c'est-à-dire

pour tout x dans un voisinage de \bar{x} , $f(x) \ge f(\bar{x})$.

- c) En utilisant le développement de Taylor-Young de la fonction q au premier ordre en 0, montrer que $\nabla f(\bar{x}) = 0$.
- **d)** En utilisant le développement au second ordre, montrer que $\nabla^2 f(\bar{x})$ est « semidéfinie positive » (ce qui est aussi appelé « positive », c'est-à-dire que pour tout $u \in \mathbb{R}^n$, on a $u^\top \nabla^2 f(\bar{x}) u \geqslant 0$).
- e) Pour le cas de la dimension n=2, donner les conditions sur les dérivées partielles équivalentes aux deux propriétés des questions précédentes.

Exercice 5 - Problème séparable.

a) Soient $f: X \to \mathbb{R}$ et $g: Y \to \mathbb{R}$; montrer que l'on peut « découpler » la minimisation de f+g:

$$\inf_{(x,y)\in X\times Y} f(x) + g(y) = \left(\inf_{x\in X} f(x)\right) + \left(\inf_{y\in Y} g(y)\right)$$

Montrer aussi que si le minimum est atteint pour f par $\bar{x} \in X$ et pour g par $\bar{y} \in Y$, alors (\bar{x}, \bar{y}) atteint le minimum de f + g sur $X \times Y$.

b) Soient $c, \ell, u \in \mathbb{R}^n$; résoudre explicitement la minimisation de $c^{\top}x$ sous la contrainte $\ell \leqslant x \leqslant u$ (minimiser une fonction linéaire sur un rectangle).

Exercice 6 – Lemme de descente. Soit une fonction $f: \mathbb{R}^n \to \mathbb{R}$ differentiable telle que son gradient $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ est L-Lipchitz, c'est-à-dire, que pour tous $x, y \in \mathbb{R}^n$,

$$\|\nabla f(x) - \nabla f(y)\| \leqslant L\|x - y\|.$$

a) Se rappeler le « théorème fondamental de l'analyse » qui donne ici, pour tous $x,y\in\mathbb{R}^n,$

$$f(x) - f(y) = \int_0^1 (x - y)^{\mathsf{T}} \nabla f(y + t(x - y)) dt$$

b) En déduire que pour tous $x, y \in \mathbb{R}^n$

$$f(x) \le f(y) + (x - y)^{\mathsf{T}} \nabla f(y) + \frac{L}{2} ||x - y||^2$$

c) Donner une fonction f pour laquelle l'égalité est atteinte dans l'inégalité ci-dessus (et une autre pour laquelle elle ne l'est pas).