Dados do Plano de Trabalho										
	Estudo e aplicações da metodologia de geração de Equações IDF a partir de dados pluviométricos									
Modalidade de bolsa solicitada:										
9	Desenvolvimento de uma ferramenta computacional para a geração de Equações IDF a partir de dados pluviométricos									

1. OBJETIVOS

1.1 Objetivo Geral

Estudar metodologias de geração de Equações IDF a partir de dados pluviométricos.

1.2 Objetivos específicos

- Fazer uma revisão e avaliar modificações da metodologia de geração de Equações IDF, quando utilizados métodos de desagregação de chuvas;
- Coletar e realizar tratamento estatístico de dados pluviométricos, disponíveis nas bases de dados da Agência Nacional de Águas;
- Realizar aplicações dos dados e avaliar o resultado da metodologia implementada no *software*, desenvolvido pelo projeto.

2. METODOLOGIA

2.1 Estudo da metodologia de geração de Equações IDF a partir de dados pluviométricos

Neste eixo de atuação da pesquisa serão investigadas alternativas de modificações nas diferentes etapas da metodologia de geração das Equações IDF quando são utilizados dados pluviométricos. A avaliação das melhorias no método se dará pela comparação com Equações IDF geradas a partir de dados pluviográficos para municípios que disponham dos dois tipos de dados (pluviométricos e pluviográficos).

Para o desenvolvimento das equações IDF de um determinado município, basicamente, executam-se as etapas descritas a seguir.

2.1.1 Seleção dos dados

Seleciona-se o posto pluviométrico com maior quantidade de anos de observação para cada cidade. A entrada de dados se dá através de arquivos txt disponibilizados nas bases das agências de monitoramento meteorológico e de recursos hídricos. Desses arquivos são geradas as séries anuais de precipitações diárias máximas.

2.1.2 Ajuste a uma distribuição de probabilidade

Determina-se a distribuição de probabilidade que se ajusta aos dados de precipitação através dos testes de aderência do Qui-Quadrado e o de Lilliefors e, adicionalmente, são realizados estudos descritivos com o cálculo de Desvio Quadrático Médio, Desvio Quadrático Residual e Desvio Médio Absoluto aplicados a cinco distribuições de probabilidade: Gamma com dois e três parâmetros, Log Normal com dois e três parâmetros e Gumbel. Após a escolha da distribuição de melhor ajuste, são determinadas as precipitações associadas aos períodos de retorno de 5, 10, 15, 20, 25, 30, 50 e 100 anos através da utilização da função inversa da distribuição ajustada.

2.1.3 Escolha da Isozona

Através da localização do posto pluviométrico, determina-se a isozona e, assim, os coeficientes de desagregação da precipitação de 24 h para cada duração e período de retorno.

2.1.4 Desagregação da chuva diária

A chuva diária é transformada em chuva de 24h pelo coeficiente de Torrico (1974). Os valores das precipitações para a duração de 6 min e 1 hora são encontrados pela multiplicação da precipitação de 24 horas pelos respectivos coeficientes de desagregação. Para as durações intermediárias, utiliza-se a interpolação logarítmica.

2.1.5 Determinação dos parâmetros da Equação IDF

Para a determinação dos parâmetros da equação IDF utiliza-se a metodologia proposta por Sobrinho (2014). A formulação geral tem a seguinte forma:

$$I = \frac{a \left(Tr + S\right)^b}{(t + c)^n} \tag{1}$$

Em que: a, b, n, S e C são os parâmetros a serem definidos, I é a intensidade da chuva, Tr é o tempo de retorno e t é a duração do evento.

Os parâmetros *a, b e n* são determinados por análise de regressão múltipla, através do método dos mínimos quadrados, aplicada aos valores das intensidades de precipitação encontradas. O parâmetro *C* é determinado pelo método de Wilken (1978) e o parâmetro *S* é obtido pelo processo gráfico analítico de minimização do Quiquadrado, através de uma função polinomial com referencia a linha de tendência dos pontos.

3. CRONOGRAMA DE ATIVIDADES

Para execução do projeto, são requeridos 02 (DOIS) bolsistas. O Bolsista 01 trabalhará no aprimoramento metodológico do processo de geração de Equações IDF e o Bolsista 02 terá suas atividades concentradas na implementação computacional dos métodos. Importante destacar que a equipe deve apresentar integração entre os trabalhos, com complementaridade das atividades.

N° -		2019					2020						
		09	10	11	12	01	02	03	04	05	06	07	
AT1: Revisão bibliográfica e													
aprofundamento teórico relacionados	\mathbf{X}	X	X	X									
ao estudo de chuvas intensas;													
AT2: Seleção e análise de dados de													
precipitação disponíveis nos bancos													
de dados da Fundação Cearense de				X	X								
Meteorologia e Recursos Hídricos e													
da Agência Nacional de Águas;													
AT3: Estudos estatísticos dos dados													
de precipitação, com ênfase no ajuste						X	X	X	X				
de modelos probabilísticos;													
AT4: Desenvolvimento de Equações													
IDF: análise e propostas de										X	X		
modificações da metodologia;													
AT5: Produção de artigos a serem			_				_						
publicados em eventos e periódicos e												\mathbf{x}	
elaboração do relatório final da												Λ	
pesquisa.													

REFERÊNCIAS

WILKEN, P. S. Engenharia de drenagem superficial. São Paulo: CETESB, 1978. 478p.