Morita theorems for categories of comodules

By Mitsuhiro TAKEUCHI

(Communicated by N. Iwahori)

Introduction

We show that the well-known Morita theorems on equivalences of categories of modules hold true of categories of *comodules* over a field k. We go parallel with [H. Bass, Algebraic K-Theory, Chap. II Categories of Modules and their Equivalences, W. A. Benjamin, Inc., New York, 1968].

Let $\mathbf{Com}_{-\Gamma}$ and $\mathbf{Com}_{\Lambda^{-}}$ denote the categories of right Γ -comodules and left Λ -comodules, where Γ and Λ are k-coalgebras.

If ${}_{A}P_{\Gamma}$ is a A- Γ -bicomodule, the co-tensor product \square determines a "k-linear" functor: $X_{A} \mapsto X \square P_{\Gamma}$ from \mathbf{Com}_{-A} to $\mathbf{Com}_{-\Gamma}$.

Every "k-linear" equivalence from Com_{-I} onto Com_{-I} is of the form $? \bigsqcup_{A} P_{I}$ for some bicomodule ${}_{A}P_{I}$.

We must describe the "co-hom" and "co-end" functors.

A right Γ -comodule X_{Γ} is *quasi-finite*, if $\operatorname{Com}_{\Gamma}(F, X)$, the space of Γ -colinear maps from F to X, is finite dimensional for all finite dimensional comodule F_{Γ} .

Let X_{Γ} and Y_{Γ} be right Γ -comodules, where X is quasi-finite. There are a k-vector space $h_{-\Gamma}(X, Y)$ and a Γ -colinear map $\theta \colon Y \to h_{-\Gamma}(X, Y) \otimes X$ satisfying the following universal property: If W is a k-vector space and $F \colon Y_{\Gamma} \to W \otimes X_{\Gamma}$ a Γ -colinear map, there is a *unique* k-linear map $f \colon h_{-\Gamma}(X, Y) \to W$ such that $F = (f \otimes I) \circ \theta$.

The "co-hom" $h_{-\Gamma}(X, Y)$ is a contra-variant functor of X_{Γ} and a covariant functor of Y_{Γ} .

The "co-end" $e_{-\Gamma}(X) = h_{-\Gamma}(X, X)$ has the following coalgebra structure: There are unique linear maps $\Delta \colon e_{-\Gamma}(X) \to e_{-\Gamma}(X) \otimes e_{-\Gamma}(X)$ and $\eta \colon e_{-\Gamma}(X) \to k$ such that $(\Delta \otimes I) \circ \theta = (I \otimes \theta) \circ \theta \colon X \to e_{-\Gamma}(X) \otimes e_{-\Gamma}(X) \otimes X$ and $(\eta \otimes I) \circ \theta = I \colon X \to k \otimes X = X$. Then $(e_{-\Gamma}(X), \Delta, \eta)$ is a k-coalgebra and X is an $e_{-\Gamma}(X)$ - Γ -bicomodule, where $\theta \colon X \to e_{-\Gamma}(X) \otimes X$ is the left $e_{-\Gamma}(X)$ -comodule structure map.

By symmetry, for left Λ -comodules ${}_{A}X$ and ${}_{A}Y$, where ${}_{A}X$ is quasi-finite, the "co-hom" $h_{\Lambda^{-}}(X, Y)$ with the canonical Λ -colinear map $\theta \colon Y \to X \otimes h_{\Lambda^{-}}(X, Y)$ exists. The "co-end" $e_{\Lambda^{-}}(X) = h_{\Lambda^{-}}(X, X)$ has a unique k-coalgebra structure making $\theta \colon X \to X \otimes e_{\Lambda^{-}}(X)$ into a right comodule structure map.

The co-hom and co-end have many properties similar to the usual hom and end. In particular, if ${}_{A}X_{\Gamma}$ is a A- Γ -bicomodule and ${}_{S}Y_{\Gamma}$ a S- Γ -bicomodule, where S is a k-coalgebra and X_{Γ} is quasi-finite, then $h_{-\Gamma}(X,Y)$ has a natural S- Λ -bicomodule structure.

THEOREM. Let $_{\varLambda}P_{\varGamma}$ be a \varLambda - \varGamma -bicomodule.

- a) The following are equivalent.
- (i) The functor $? \sqsubseteq_{A} P_{\Gamma}$: Com- $A \rightarrow$ Com- Γ is an equivalence.
- (ii) The functor $_{A}\ddot{P}\Box$?: $\mathbf{Com}_{\Gamma}\rightarrow\mathbf{Cem}_{A}$ is an equivalence.
- (iii) The right comodule P_{Γ} is a quasi-finite injective cogenerator and there is a canonical isomorphism of k-coalgebras $e_{-\Gamma}(P) \simeq \Lambda$.
- (iv) The left comodule $_{A}P$ is a quasi-finite injective cogenerator and there is a canonical isomorphism of k-coalgebras $e_{A^{-}}(P) \simeq \Gamma$.
- b) Suppose the above equivalent conditions hold. The Γ - Λ -bicomodules $Q = h_{-\Gamma}(_{\Lambda}P_{\Gamma}, _{\Gamma}\Gamma_{\Gamma})$ and $Q' = h_{\Lambda}-(_{\Lambda}P_{\Gamma}, _{\Lambda}\Lambda_{\Lambda})$ are canonically isomorphic. The functor $? \sqsubseteq_{\Gamma} Q_{\Lambda}$ (resp. $_{\Gamma}Q \sqsubseteq_{\Lambda} ?$) is a quasi-inverse of $? \sqsubseteq_{\Lambda} P_{\Gamma}$ (resp. $_{\Lambda}P \sqsubseteq_{\Gamma} ?$).

The bicomodules ${}_{A}P_{\Gamma}$ satisfying the conditions of a) can be called "invertible". Construction of the "inverse" bicomodule ${}_{\Gamma}Q_{\Lambda}$ is given in b). Two coalgebras Λ and Γ may be called "Morita equivalent" if there is an invertible bicomodule ${}_{A}P_{\Gamma}$.

The above theorem implies that, if X_{Γ} is a quasi-finite injective cogenerator right Γ -comodule, then the bicomodule $_{e_{-\Gamma}(X)}X_{\Gamma}$ is invertible with inverse $h_{-\Gamma}(X,\Gamma) \simeq h_{e_{-\Gamma}(X)}(X,e_{-\Gamma}(X))$ and there is a canonical isomorphism of k-coalgebras $e_{e_{-\Gamma}(X)}(X) \simeq \Gamma$.

Similar results are valid with quasi-finite injective cogenerator left Λ -comodules. The categories of comodules can be characterized as follow:

THEOREM. Let A be a k-abelian category. A is k-linearly equivalent to $Com_{-\Gamma}$ for some k-coalgebra Γ if and only if A is locally finite in the sense of [2, p. 356] and the space A(M,N) is finite dimensional over k for each objects M and N of finite length of A.

§ 0. Conventions

k is a fixed ground field.

All vector spaces and linear maps are k-vector spaces and k-linear maps. Unadorned \otimes and Hom mean \otimes_k and Hom_k.

If V is a vector space, $V^* = \text{Hom}(V, k)$.

Med denotes the category of vector spaces.

A coalgebra is a triple (C, Δ, η) where C is a vector space, $\Delta: C \rightarrow C \otimes C$ and $\eta: C \rightarrow k$ are linear maps such that $(I \otimes \Delta) \circ \Delta = (\Delta \otimes I) \circ \Delta: C \rightarrow C \otimes C \otimes C$ and $(\eta \otimes I) \circ \Delta = I = (I \otimes \eta) \circ \Delta: C \rightarrow k \otimes C = C \otimes k$.

Throughout the paper Λ , Γ , Θ and Ξ are coalgebras.

A right Γ -comodule is a pair (X, ρ) where X is a vector space and $\rho: X \to X \otimes \Gamma$ a linear map such that $(I \otimes \mathcal{A}) \circ \rho = (\rho \otimes I) \circ \rho: X \to X \otimes \Gamma \otimes \Gamma$ and $(I \otimes \eta) \circ \rho = I: X \to X \otimes k = X$.

A comodule is *finite dimensional* if it is as a vector space. Every comodule is the union of finite dimensional subcomodules.

A Γ -colinear map $f: X \rightarrow Y$ of right Γ -comodules is a linear map such that $\rho_Y \circ f = (f \otimes I) \circ \rho_X$ where ρ_X and ρ_Y denote the structure maps of X and Y.

 $\operatorname{Com}_{-\Gamma}$ denotes the category of right Γ -comodules and Γ -colinear maps. This is abelian, and has direct sums and direct products. (See Note.) The forgetful functor $\operatorname{Com}_{-\Gamma} \to \operatorname{Mod}$ is exact and preserves direct sums.

If $W \in \mathbf{Mod}$ and $X \in \mathbf{Com}_{-\Gamma}$, $W \otimes X$ has the right Γ -comodule structure $I \otimes \rho_X$, where $\rho_X \colon X \to X \otimes \Gamma$ denotes the structure map of X. We then have canonically

$$\operatorname{Com}_{-\Gamma}(W \otimes X, Y) \simeq \operatorname{Hom}(W, \operatorname{Com}_{-\Gamma}(X, Y))$$

for all $Y \in \mathbf{Com}_{-\Gamma}$.

Here and later A(X, Y) denotes the A-morphisms from X to Y, where A is a category and X and Y are objects in A.

 Γ is a right Γ -comodule with structure map $\Delta \colon \Gamma \to \Gamma \otimes \Gamma$. We have canonically $\operatorname{\mathbf{Com}}_{-\Gamma}(X, W \otimes \Gamma) \simeq \operatorname{Hom}(X, W)$ for all $X \in \operatorname{\mathbf{Com}}_{-\Gamma}$ and $W \in \operatorname{\mathbf{Mod}}$. Hence $W \otimes \Gamma$ is injective in $\operatorname{\mathbf{Com}}_{-\Gamma}$. In particular Γ is an injective cogenerator of $\operatorname{\mathbf{Com}}_{-\Gamma}$.

By symmetry left Λ -comodules and Λ -colinear maps are defined. Com $_{\Lambda^{-}}$ denotes the category of left Λ -comodules. For $X \in \mathbf{Com}_{\Lambda^{-}}$ and $W \in \mathbf{Mod}$, $X \otimes W$ has the canonical left Λ -comodule structure.

A Λ - Γ -bicomodule is a left Λ -comodule and a right Γ -comodule P such that the Λ -comodule structure map $\rho_{\Lambda} \colon P {\to} \Lambda {\otimes} P$ is Γ -colinear or equivalently that the Γ -comodule structure map $\rho_{\Gamma} \colon P {\to} P {\otimes} \Gamma$ is Λ -colinear.

 Γ is a Γ - Γ -bicomodule, where $\Delta \colon \Gamma \to \Gamma \otimes \Gamma$ is the left and right Γ -comodule structure map.

In the following we write X_{Γ} , ${}_{A}Y$ and ${}_{A}Z_{\Gamma}$ to denote that X is a right Γ -comodule, Y a left Λ -comodule, and Z a Λ - Γ -bicomodule.

For comodules X_{Γ} and $_{\Gamma}Y$, the co-tensor product $X \underset{\Gamma}{\square} Y$ is the kernel of

$$\rho_X \otimes I$$
, $I \otimes \rho_Y : X \otimes Y \longrightarrow X \otimes \Gamma \otimes Y$

where ρ_X and ρ_Y denote the structure maps of X and Y.

The functors $X \sqsubseteq_{\Gamma}$? and ? $\sqsubseteq_{\Gamma} Y$ are left exact and preserve direct sums. In particular $X \sqsubseteq_{\Gamma} (Y \otimes W) \simeq (X \sqsubseteq_{\Gamma} Y) \otimes W$ and $(W \otimes X) \sqsubseteq_{\Gamma} Y \simeq W \otimes (X \sqsubseteq_{\Gamma} Y)$ for $W \in \mathbf{Mod}$.

When ${}_{A}X_{\Gamma}$ and ${}_{\Gamma}Y_{\theta}$ are bicomodule, the structure maps $\rho_{A} \colon X \to A \otimes X$ and $\rho_{\theta} \colon Y \to Y \otimes \Theta$ induce the structure maps $\rho_{A} \sqsubseteq I \colon X \sqsubseteq_{\Gamma} Y \to (A \otimes X) \sqsubseteq_{\Gamma} Y = A \otimes (X \sqsubseteq_{\Gamma} Y)$ and $I \sqsubseteq_{\Gamma} \rho_{\theta} \colon X \sqsubseteq_{\Gamma} Y \to X \sqsubseteq_{\Gamma} (Y \otimes \Theta) = (X \sqsubseteq_{\Gamma} Y) \otimes \Theta$ with which $X \sqsubseteq_{\Gamma} Y$ is a Λ - Θ -bicomodule.

The co-tensor product is associative: For comodules and bicomodules X_{Γ} , $_{\Gamma}Y_{\Theta}$ and $_{\theta}Z$, we have

$$(X \underset{\Gamma}{\square} Y) \underset{\theta}{\square} Z = X \underset{\Gamma}{\square} (Y \underset{\theta}{\square} Z)$$

in $X \otimes Y \otimes Z$. This subspace is denoted by $X \bigsqcup_{\Gamma} Y \bigsqcup_{\theta} Z$.

For comodules X_{Γ} and $_{\Gamma}Y$, the structure maps ρ_{X} and ρ_{Y} induce Γ -colinear isomorphisms $X \cong X \sqsubseteq_{\Gamma} \Gamma$ and $Y \cong \Gamma \sqsubseteq_{\Gamma} Y$. In particular we have $X \otimes W \cong X \sqsubseteq_{\Gamma} (\Gamma \otimes W)$ and $W \otimes Y \cong (W \otimes \Gamma) \sqsubseteq_{\Gamma} Y$ for $W \in \mathbf{Mod}$.

Let A be an abelian category and $I_A: A \rightarrow A$ the identity. The natural transformations $\operatorname{End}(I_A)$ from I_A to I_A form a commutative ring.

A k-abelian category is a pair (A, σ) where A is an abelian category and $\sigma: k \to \operatorname{End}(I_A)$ a ring homomorphism preserving unit. Giving σ is equivalent to making A(X, Y) into vector spaces for all $X, Y \in A$ so that the composition maps $A(Y, Z) \times A(X, Y) \to A(X, Z)$ are bilinear.

 $\mathbf{Com}_{-\Gamma}$ and $\mathbf{Com}_{A^{-}}$ are k-abelian categories.

When **A** and **B** are k-abelian categories, a functor $T: \mathbf{A} \rightarrow \mathbf{B}$ is linear if $T: \mathbf{A}(X, Y) \rightarrow \mathbf{B}(T(X), T(Y))$ are linear for all $X, Y \in \mathbf{A}$.

Let $S: \mathbf{B} \to \mathbf{A}$ and $T: \mathbf{A} \to \mathbf{B}$ be functors, where \mathbf{A} and \mathbf{B} are categories. If $\mathbf{A}(S(X), Y) \simeq \mathbf{B}(X, T(Y))$ naturally for $X \in \mathbf{B}$ and $Y \in \mathbf{A}$, S is left adjoint to T or T is right adjoint to S. In this case we write $S \dashv T$.

The left adjoint of T and the right adjoint of S are uniquely determined if they exist.

If **A** and **B** are k-abelian and one of S and T, where $S \dashv T$, is linear, so is the other. The natural isomorphisms $\mathbf{A}(S(X), Y) \simeq \mathbf{B}(X, T(Y))$ then are linear isomorphisms. S is right exact and T is left exact. In fact S preserves *colimts*.

If $S \dashv T$, where S is exact, then T preserves injectives. Indeed if $U \in \mathbf{A}$ is injective, then $\mathbf{B}(X, T(U)) \simeq \mathbf{A}(S(X), U)$ is an exact functor of $X \in \mathbf{B}$.

§ 1. The "co-hom" functor $h_{-\Gamma}(-,-)$

- 1.1 DEFINITION. A comodule X_{Γ} is quasi-finite, if $\mathbf{Com}_{-\Gamma}(F, X)$ is finite dimensional for all finite dimensional comodule F_{Γ} .
- 1.2 EXAMPLE. A comodule X_{Γ} is finitely cogenerated, if it is isomorphic to a subcomodule of $W \otimes \Gamma$ for some finite dimensional vector space W. Finitely cogenerated comodules are quasi-finite.
 - 1.3 Proposition. For a comodule X_{Γ} , the following are equivalent.
 - (i) X_{Γ} is quasi-finite.
 - (ii) The functor $\mathbf{Mod} \rightarrow \mathbf{Com}_{-\Gamma}$, $W \mapsto W \otimes X$ has the left adjoint.

PROOF. Assume (i). If F_{Γ} is a finite dimensional comodule, $\operatorname{Com}_{-\Gamma}(F, W \otimes X) \simeq W \otimes \operatorname{Com}_{-\Gamma}(F, X) \simeq \operatorname{Hom}(\operatorname{Com}_{-\Gamma}(F, X)^*, W)$ for $W \in \operatorname{Mod}$. When Y_{Γ} is an arbitrary comodule, let $\{Y_{\lambda}\}$ be the finite dimensional subcomodules of Y. Then

$$\mathbf{Com}_{-\Gamma}(Y, W \otimes X) = \lim_{\stackrel{\longleftarrow}{\downarrow}} \mathbf{Com}_{-\Gamma}(Y_{\lambda}, W \otimes X) \simeq \lim_{\stackrel{\longleftarrow}{\downarrow}} \mathrm{Hom}(\mathbf{Com}_{-\Gamma}(Y_{\lambda}, X)^{*}, W) \\
= \mathrm{Hom}(\lim_{\stackrel{\longrightarrow}{\downarrow}} \mathbf{Com}_{-\Gamma}(Y_{\lambda}, X)^{*}, W).$$

Hence (ii) holds.

Conversely if $W \mapsto W \otimes X$ has the left adjoint, then for each finite dimensional comodule F_{Γ} , the functor $W \mapsto \mathbf{Com}_{-\Gamma}(F, W \otimes X) = W \otimes \mathbf{Com}_{-\Gamma}(F, X)$, $\mathbf{Mod} \mapsto \mathbf{Mod}$ preserves direct products. Since a vector space V is finite dimensional if and only if the functor $W \mapsto W \otimes V$ preserves direct products, it follows that X_{Γ} is quasi-finite.

1.4 DEFINITION. For a quasi-finite comodule X_{Γ} , the left adjoint of $W \mapsto W \otimes X$ is written as $Y_{\Gamma} \mapsto h_{-\Gamma}(X, Y)$, $\mathbf{Com}_{-\Gamma} \to \mathbf{Mod}$. We have canonical isomorphisms

$$\mathbf{Com}_{-\Gamma}(Y, W \otimes X) \simeq \mathbf{Hom}(h_{-\Gamma}(X, Y), W).$$

Let $\theta\colon Y\to h_{-\Gamma}(X,\,Y)\otimes X$ denote the Γ -colinear map associated with the identity of $h_{-\Gamma}(X,\,Y)$. For any $W\in\operatorname{Mod}$ and any Γ -colinear map $f\colon Y\to W\otimes X$, there is a unique linear map $u\colon h_{-\Gamma}(X,\,Y)\to W$ such that $f=(u\otimes I)\circ\theta$.

1.5 Let $u: X'_{\Gamma} \to X_{\Gamma}$ and $v: Y_{\Gamma} \to Y'_{\Gamma}$ be Γ -colinear maps of right Γ -comodules, where X_{Γ} and X'_{Γ} are quasi-finite. The composite $Y \xrightarrow{v} Y' \xrightarrow{\theta} h_{-\Gamma}(X', Y') \otimes X'$

 $\xrightarrow{I \otimes u} h_{-\Gamma}(X', Y') \otimes X$ is of the form

$$Y \xrightarrow{\theta} h_{-\Gamma}(X, Y) \otimes X \xrightarrow{h_{-\Gamma}(u, v) \otimes I} h_{-\Gamma}(X', Y') \otimes X$$

with a uniquely determined linear map $h_{-\Gamma}(u,v)$. In this way $h_{-\Gamma}(X,Y)$ is a "bilinear" functor, covariant in Y_{Γ} and contra-variant in X_{Γ} .

1.6 For a quasi-finite X_{Γ} , the functor $h_{-\Gamma}(X,?)$ is right exact and preserves direct sums, since it has the right adjoint. In particular there is the canonical isomorphism $W \otimes h_{-\Gamma}(X,Y) \simeq h_{-\Gamma}(X,W \otimes Y)$ for all $W \in \mathbf{Mod}$ and $Y \in \mathbf{Com}_{-\Gamma}$. Or equivalently the colinear map

$$I \otimes \theta \colon W \otimes Y \longrightarrow W \otimes h_{-\Gamma}(X, Y) \otimes X$$

satisfies the universal mapping property of (1.4).

- 1.7 For a quasi-finite comodule X_{Γ} and a bicomodule ${}_{A}Y_{\Gamma}$, the structure map ${}_{\rho_{A}}: Y \rightarrow A \otimes Y$ induces the structure map $h_{-\Gamma}(I, \rho_{A}): h_{-\Gamma}(X, Y) \rightarrow h_{-\Gamma}(X, A \otimes Y) \simeq A \otimes h_{-\Gamma}(X, Y)$ with which $h_{-\Gamma}(X, Y)$ is a left Λ -comodule. The canonical map $\theta: Y \rightarrow h_{-\Gamma}(X, Y) \otimes X$ is then Λ - Γ -bicolinear.
- 1.8 Let ${}_{\mathcal{I}}X_{\Gamma}$ be a bicomodule, where X_{Γ} is quasi-finite. For each comodule Y_{Γ} , the composite $Y \xrightarrow{\theta} h_{-\Gamma}(X, Y) \otimes X \xrightarrow{I \otimes \rho_{\mathcal{I}}} h_{-\Gamma}(X, Y) \otimes \mathcal{I} \otimes X$, where $\rho_{\mathcal{I}}$ denotes the \mathcal{E} -comodule structure of X, is of the form

$$Y \xrightarrow{\theta} h_{-\Gamma}(X, Y) \otimes X \xrightarrow{\rho \otimes I} h_{-\Gamma}(X, Y) \otimes \mathcal{Z} \otimes X$$

with a uniquely determined linear map $\rho: h_{-\Gamma}(X, Y) \to h_{-\Gamma}(X, Y) \otimes \mathcal{E}$. With the structure map ρ , $h_{-\Gamma}(X, Y)$ is a right \mathcal{E} -comodule. The image of θ is contained in $h_{-\Gamma}(X, Y) \underset{\mathbb{Z}}{\square} X$.

- 1.9 If $_{\mathcal{B}}X_{\Gamma}$ and $_{\Lambda}Y_{\Gamma}$ are bicomodules, where X_{Γ} is quasi-finite, then $h_{-\Gamma}(X,Y)$ is a Λ - \mathcal{E} -bicomodule and the map $\theta\colon Y{\to}h_{-\Gamma}(X,Y) \underset{_{\mathcal{B}}}{\square} X$ is Λ - Γ -bicolinear.
 - 1.10 Proposition. For a bicomodule $_{\mathbb{Z}}X_{\Gamma}$, the following are equivalent.
 - (i) X_{Γ} is quasi-finite.
 - (ii) The functor $\mathbf{Com}_{-S} \to \mathbf{Com}_{-\Gamma}$, $Z_{S} \mapsto Z \bigsqcup_{S} X_{\Gamma}$ has the left adjoint. In this case the left adjoint of $Z_{S} \mapsto Z \bigsqcup_{S} X_{\Gamma}$ is given by $Y_{\Gamma} \mapsto h_{-\Gamma}(X, Y)$.

PROOF. Suppose (i). Then $h_{-\Gamma}(X, Y)$ is a right \mathcal{E} -comodule for all comodule Y_{Γ} . We claim that the map $\theta \colon Y \to h_{-\Gamma}(X, Y) \sqsubseteq_{\mathbb{F}} X$ satisfies the following universal map-

ping property: For each comodule $Z_{\mathcal{B}}$ and each Γ -colinear map $f\colon Y\to Z_{\overline{\mathcal{B}}}$ X, there is a unique \mathcal{B} -colinear map $u\colon h_{-\Gamma}(X,\,Y)\to Z$ such that $f=(u\,\Box\, I)\circ\theta$. Indeed there is a unique linear map $u\colon h_{-\Gamma}(X,\,Y)\to Z$ such that $f=(u\otimes I)\circ\theta\colon Y\to Z\otimes X$. The composites $q_1\colon h_{-\Gamma}(X,\,Y)\stackrel{\rho}{\longrightarrow} h_{-\Gamma}(X,\,Y)\otimes \mathcal{B}\stackrel{u\otimes I}{\longrightarrow} Z\otimes \mathcal{B}$ and $q_2\colon h_{-\Gamma}(X,\,Y)\stackrel{v}{\longrightarrow} Z\stackrel{\rho_Z}{\longrightarrow} Z\otimes \mathcal{B}$ coincide, since $(q_1\otimes I)\circ\theta=(I\otimes \rho_X)\circ f=(\rho_Z\otimes I)\circ f=(q_2\otimes I)\circ\theta\colon Y\to Z\otimes \mathcal{B}\otimes X$, where $\rho,\,\rho_X$ and ρ_Z denote the \mathcal{B} -comodule structure maps of $h_{-\Gamma}(X,\,Y),\,X$ and Z respectively. Hence the map u is \mathcal{B} -colinear. Thus (i) implies (ii).

Suppose (ii). Since the functor $W \mapsto W \otimes \mathcal{E}$, $\mathbf{Mod} \to \mathbf{Com}_{-\mathcal{E}}$ has the left adjoint by (1.2) and (1.3), so has the composite, $\mathbf{Mod} \to \mathbf{Com}_{-\mathcal{F}}$, $W \mapsto (W \otimes \mathcal{E}) \bigsqcup_{\mathcal{E}} X \simeq W \otimes X$. Hence $X_{\mathcal{F}}$ is quasi-finite by (1.3).

- 1.11 REMARK. Let ${}_{\mathcal{S}}X_{\Gamma}$, ${}_{\Lambda}Y_{\Gamma}$ and ${}_{\Lambda}Z_{\mathcal{S}}$ be bicomodules, where X_{Γ} is quasi-finite. If $f\colon Y\to Z \bigsqcup_{\mathcal{S}} X$ is a Λ - Γ -bicolinear map, then it is easy to check that the associated map $u\colon h_{-\Gamma}(X,\,Y)\to Z$ is Λ - \mathcal{S} -bicolinear.
- 1.12 If the quasi-finite comodule X_{Γ} is *injective*, then the functor $h_{-\Gamma}(X,?)$ is exact. Indeed the functor $Y_{\Gamma} \mapsto h_{-\Gamma}(X,Y)^* \simeq \mathbf{Com}_{-\Gamma}(Y,X)$ is exact.
- 1.13 For comodules and bicomodules X_{Γ} , Z_{Λ} and ${}_{\Lambda}Y_{\Gamma}$, where X_{Γ} is quasi-finite, the canonical map

$$\partial: h_{-\Gamma}(X, Z \sqsubseteq_A Y) \longrightarrow Z \sqsubseteq_A h_{-\Gamma}(X, Y)$$

is a unique map such that the composite

$$Z \sqsubseteq_{A} Y \xrightarrow{\theta} h_{-\Gamma}(X, \ Z \sqsubseteq_{A} Y) \otimes X \xrightarrow{\partial \otimes I} Z \sqsubseteq_{A} h_{-\Gamma}(X, \ Y) \otimes X$$

equals $I \cap \theta$, where note that $\theta: Y \rightarrow h_{-r}(X, Y) \otimes X$ is left Λ -colinear.

- 1.14 Proposition. The map ô is an isomorphism if either
- a) Z_A is injective, or
- b) X_{Γ} is (quasi-finite and) injective.

PROOF. By definition $\partial: h_{-\Gamma}(X, \Lambda \bigsqcup_A Y) \to A \bigsqcup_A h_{-\Gamma}(X, Y)$ is an isomorphism. Consider both hand sides of $\partial: h_{-\Gamma}(X, Z \bigsqcup_A Y) \to Z \bigsqcup_A h_{-\Gamma}(X, Y)$ as functors of Z_A . Since they commute with direct sums, it follows that ∂ is an isomorphism if Z_A is injective. If X_Γ is injective, then they are left exact by (1.12). Since each comodule Z_A can be imbedded into an exact sequence of the form $0 \to Z \to W_1 \otimes A \to W_2 \otimes A$ for some $W_i \in \mathbf{Mod}$, ∂ is then isomorphic.

- 1.15 If ${}_{\mathcal{I}}X_{\Gamma}$, ${}_{\theta}Z_{\Lambda}$ and ${}_{\Lambda}Y_{\Gamma}$ are bicomodules, where X_{Γ} is quasi-finite, then the map $\partial: h_{-\Gamma}(X, Z \bigsqcup_{\Lambda} Y) \to Z \bigsqcup_{\Lambda} h_{-\Gamma}(X, Y)$ is Θ - \mathcal{E} -bicolinear. The proof is similar to (1.10).
- 1.16 By definition the ϑ map satisfies the following associativity: If X_{Γ} , W_{ϑ} , ${}_{\vartheta}Z_{\varLambda}$ and ${}_{\varLambda}Y_{\Gamma}$ are comodules and bicomodules, where X_{Γ} is quasi-finite, then the following diagram commutes:

1.17 Assume X_{Γ} is a quasi-finite comodule. Put $e_{-\Gamma}(X) = h_{-\Gamma}(X, X)$. Let Δ : $e_{-\Gamma}(X) \rightarrow e_{-\Gamma}(X) \otimes e_{-\Gamma}(X)$ and η : $e_{-\Gamma}(X) \rightarrow k$ be the linear maps such that $(\Delta \otimes I) \circ \theta = (I \otimes \theta) \circ \theta$: $X \rightarrow e_{-\Gamma}(X) \otimes e_{-\Gamma}(X) \otimes X$ and $I = (\eta \otimes I) \circ \theta$: $X \rightarrow X = k \otimes X$. Then $(e_{-\Gamma}(X), \Delta, \eta)$ is a coalgebra and X an $e_{-\Gamma}(X)$ - Γ -bicomodule, where θ : $X \rightarrow e_{-\Gamma}(X) \otimes X$ is the left $e_{-\Gamma}(X)$ -comodule structure map.

The coalgebra $e_{-\Gamma}(X)$ is the coalgebra of "co-endomorphisms" of X.

1.18 If ${}_{\mathcal{S}}X_{\Gamma}$ is a bicomodule, where X_{Γ} is quasi-finite, then the structure map $\rho_{\mathcal{S}} \colon X \to \mathcal{S} \otimes X$ corresponds to a linear map $c \colon e_{-\Gamma}(X) \to \mathcal{S}$ by $\rho_{\mathcal{S}} = (c \otimes I) \circ \theta$. Then c is a coalgebra map.

Conversely a coalgebra map $c: e_{-\Gamma}(X) \to \mathcal{E}$ makes X_{Γ} into a bicomodule ${}_{\mathcal{E}}X_{\Gamma}$. The coalgebra $e_{-\Gamma}(X)$ is a \mathcal{E} - \mathcal{E} -bicomodule through c. This structure coincides

with $e_{-\Gamma}(X) = h_{-\Gamma}({}_{S}X_{\Gamma}, {}_{S}X_{\Gamma})$.

- 1.19 By symmetry, if $_{\mathcal{S}}X$ is a quasi-finite comodule, the functor $W \mapsto X \otimes W$, $\mathbf{Mcd} \to \mathbf{Com}_{\mathcal{S}^{\perp}}$ has the left adjoint $h_{\mathcal{S}^{\perp}}(X,?)$ with adjunction $\theta \colon Y \to X \otimes h_{\mathcal{S}^{\perp}}(X,Y)$ for each comodule $_{\mathcal{S}}Y$.
- $e_{\mathcal{Z}^-}(X) = h_{\mathcal{Z}^-}(X, X)$ has a unique coalgebra structure making X into a $\mathcal{Z}^-e_{\mathcal{Z}^-}(X)$ -bicomodule through $\theta: X \to X \otimes e_{\mathcal{Z}^-}(X)$.

§ 2. Pre-equivalence data

2.1 PROPOSITION. Let $T: \mathbf{Com}_{-\Lambda} \to \mathbf{Com}_{-\Gamma}$ be a "linear" functor. If T is left exact and preserves direct sums, there is a bicomodule ${}_{\Lambda}P_{\Gamma}$ such that $T(Z_{\Lambda}) \simeq Z \bigsqcup_{\Lambda} P$ as a functor of $Z \in \mathbf{Com}_{-\Lambda}$.

PROOF. Since T preserves direct sums, $W \otimes T(Z_{\Lambda}) \simeq T(W \otimes Z)$ for all $W \in \mathbf{Mod}$ and $Z \in \mathbf{Com}_{-\Lambda}$. If we put $P = T(\Lambda)$, the exact sequence

$$Z \xrightarrow{\rho} Z \otimes \Lambda \xrightarrow{\rho \otimes I} Z \otimes \Lambda \otimes \Lambda,$$

where ρ is the structure map, induces the exact sequence

$$T(Z) \xrightarrow{T(\rho)} Z \otimes P \xrightarrow{\rho \otimes I} Z \otimes A \otimes P$$

for all comodule Z_A , since T is left exact.

This means that P is a Λ - Γ -bicomodule, where $T(\Delta): P \to \Lambda \otimes P$ is the left Λ -comodule structure map. For each comodule Z_{Λ} , $T(\rho)$ induces a natural isomorphism $T(Z) \cong Z \bigsqcup_{\Lambda} P$.

2.2 Lemma. Let ${}_{A}P_{\Gamma}$ and ${}_{A}R_{\Gamma}$ be bicomodules and let $T=? \bigsqcup_{A} P$ and $U=? \bigsqcup_{A} R$ be the associated functors: $\mathbf{Com}_{-A} {\to} \mathbf{Com}_{-\Gamma}$. Let $\alpha \colon T {\to} U$ be a natural transformation. There is a unique bicolinear map $f \colon P {\to} R$ such that $\alpha = ? \bigsqcup_{A} f$.

PROOF. Put $f = \alpha(\Lambda) : P = T(\Lambda) \to U(\Lambda) = Q$. Then for each $W \in \mathbf{Mod}$, $I \otimes f = \alpha(W \otimes \Lambda) : W \otimes P = T(W \otimes \Lambda) \to U(W \otimes \Lambda) = W \otimes Q$. Since $\Lambda : \Lambda \to \Lambda \otimes \Lambda$ is right Λ -colinear, the following diagram commutes:

$$T(A) = P \xrightarrow{f} Q = U(A)$$

$$\downarrow^{\rho_P} \qquad \downarrow^{\rho_Q} \qquad \downarrow^{U(A)}$$

$$T(A \otimes A) = A \otimes P \xrightarrow{I \otimes f} A \otimes Q = U(A \otimes A)$$

where ρ_P and ρ_Q denote the Λ -comodule structure maps of P and Q. Hence f is bicolinear. If Z_{Λ} is a comodule, $\alpha(Z) = I \square f$, since $\alpha(Z \otimes \Lambda) = I \square f$ and Z is a subcomodule of $Z \otimes \Lambda$.

2.3 DEFINITION. A set of pre-equivalence data $(\Lambda, \Gamma, {}_{\Lambda}P_{\Gamma}, {}_{\Gamma}Q_{\Lambda}, f, g)$ consists of coalgebras Λ and Γ , bicomodules ${}_{\Lambda}P_{\Gamma}$ and ${}_{\Gamma}Q_{\Lambda}$, and bicolinear maps $f \colon \Lambda \to P \bigsqcup_{\Gamma} Q$ and $g \colon \Gamma \to Q \bigsqcup_{\Lambda} P$ making the following diagrams commute:

$$P \simeq P \underset{\Gamma}{\square} \Gamma \qquad Q \simeq Q \underset{A}{\square} A$$

$$\downarrow \downarrow \qquad \qquad \downarrow \iota \square \sigma \qquad \downarrow \downarrow \qquad \qquad \downarrow \iota \square \sigma \qquad \downarrow \square \sigma \qquad \square$$

If f and g are isomorphisms, (P, Q, f, g) is a set of equivalence data.

2.4 REMARK. Let $S=? \prod_{\Gamma} Q: \mathbf{Com}_{-\Gamma} \to \mathbf{Com}_{-\Lambda}$ and $T=? \prod_{\Lambda} P: \mathbf{Com}_{-\Lambda} \to \mathbf{Com}_{-\Gamma}$ be the linear functors determined by Q and P. The bicolinear maps f and g can be identified with the natural transformations $f: I \to ST$ and $g: I \to TS$ by (2.2). The diagrams of (2.3) commute if and only if $Tf = gT: T \to TST$ and $fS = Sg: S \to STS$.

Hence if f is an isomorphism, then the pair $(f^{-1}: ST \rightarrow I, g: I \rightarrow TS)$ gives an adjoint relation $S \rightarrow T$.

If f and g are isomorphisms, then S and T are equivalence.

- 2.5 THEOREM. Let $(\Lambda, \Gamma, P, Q, f, g)$ be a set of pre-equivalence data. Assume $f \colon \Lambda \to P \bigsqcup_{\Gamma} Q$ is injective.
 - (1) f is an isomorphism.
 - (2) The comodules P_{Γ} and $_{\Gamma}Q$ are quasi-finite injective.
 - (3) The comodules ${}_{A}P$ and Q_{A} are cogenerators.
 - (4) g induces bicomodule isomorphisms

$$h_{-\Gamma}(P,\Gamma) \simeq Q$$
 and $h_{\Gamma}(Q,\Gamma) \simeq P$.

(5) The bicomodule structures ${}_{\Lambda}P_{\Gamma}$ and ${}_{\Gamma}Q_{\Lambda}$ induce coalgebra isomorphisms $e_{-\Gamma}(P) \cong \Lambda$ and $e_{\Gamma^{-}}(Q) \cong \Lambda$.

PROOF. (1) Put $_{\varLambda}V_{\varLambda}=P \underset{I}{\bigsqcup} Q.$ View \varLambda as a sub-bicomodule of V via f. The diagram

commutes, since $I \underset{\Gamma}{\square} I \underset{A}{\square} f = I \underset{\Gamma}{\square} g \underset{A}{\square} I = f \underset{\Gamma}{\square} I \underset{A}{\square} I : P \underset{\Gamma}{\square} Q \to P \underset{\Gamma}{\square} Q \underset{A}{\square} P \underset{\Gamma}{\square} Q$. But in $V \underset{A}{\square} V$ we have $A \underset{A}{\square} V \cap V \underset{A}{\square} A = A \underset{A}{\square} A$. Hence A = V.

(2) Since f is an isomorphism, $S = ? \underset{\Gamma}{\square} Q \to T = ? \underset{A}{\square} P$. Hence P_{Γ} is quasi-finite

- (2) Since f is an isomorphism, $S = ? \prod_{\Gamma} Q \dashv T = ? \prod_{A} P$. Hence P_{Γ} is quasi-finite by (1.10). Since S is exact, T preserves injectives. Hence $P_{\Gamma} = T(\Lambda_A)$ is injective. By symmetry ΓQ is quasi-finite injective.
 - (3) Since $A \simeq P \prod_{\Gamma} Q \subseteq P \otimes Q$, ${}_{A}P$ and Q_{A} are cogenerators.
- (4) Since S and the functor $Y_{\Gamma}\mapsto h_{-\Gamma}(P,\,Y)$ are the left adjoints of T (1.10), there is a canonical isomorphism of functors $h_{-\Gamma}(P,\,Y)\simeq Y \bigsqcup_{\Gamma} Q,\,\forall\,Y\in\mathbf{Com}_{-\Gamma}$. Hence

 $h_{-\Gamma}(P,\Gamma) \simeq \Gamma \prod_{\Gamma} Q = Q$. This equals the bicolinear map (1.11) induced by g. By symmetry g induces a bicomodule isomorphism $h_{\Gamma}(Q,\Gamma) \simeq P$.

(5) The composite isomorphism

$$e_{-\Gamma}(P) = h_{-\Gamma}(P, P) \stackrel{\theta}{\simeq} P \stackrel{\square}{\underset{r}{\longrightarrow}} h_{-\Gamma}(P, \Gamma) \simeq P \stackrel{\square}{\underset{r}{\longrightarrow}} Q \stackrel{f}{\simeq} \Lambda$$

equals the coalgebra map $e_{-\Gamma}(P) \to \Lambda$ determined by the bicomodule structure ${}_{\Lambda}P_{\Gamma}$. By symmetry the bicomodule ${}_{\Gamma}Q_{\Lambda}$ induces a coalgebra isomorphism $e_{\Gamma^{-}}(Q) \simeq \Lambda$.

§ 3. Constructing an equivalence from a comodule.

Let P_{Γ} be a *quasi-finite* comodule and $A=e_{-\Gamma}(P)$. View ${}_{A}P_{\Gamma}$ as a bicomodule. Let ${}_{\Gamma}Q_{A}=h_{-\Gamma}(P,\ \Gamma), \quad g=\theta\colon \Gamma\to Q \ \underset{A}{\square}\ P$ and $f\colon A=h_{-\Gamma}(P,\ P)=h_{-\Gamma}(P,\ P)=h_{-\Gamma}(P,\ P) \xrightarrow{\vartheta} P \ \underset{\Gamma}{\square}\ h_{-\Gamma}(P,\ \Gamma)=P \ \underset{\Gamma}{\square}\ Q.$

3.1 PROPOSITION. (P, Q, f, g) is a set of pre-equivalence data.

PROOF. f and g are bicolinear by (1.9) and (1.15). The equality $f \square I = I \square g \colon P \to P \underset{\Gamma}{\square} Q \underset{\Lambda}{\square} P$ follows from the defining relation of ∂ (1.13) and the equality $I \square f = g \square I \colon Q \to Q \underset{\Lambda}{\square} P \underset{\Gamma}{\square} Q$ from the associativity of ∂ (1.16).

3.2 PROPOSITION. f is injective if and only if P_{Γ} is injective.

PROOF. The "if" part follows from (1.14) and the "only if" part from (2.5).

3.3 Proposition. g is injective if and only if P_{Γ} is a cogenerator.

PROOF. The "only if" part follows from (2.5). The functor $W \mapsto W \otimes P$, $\mathbf{Mod} \to \mathbf{Com}_{-\Gamma}$ preserves direct products, since it has the left adjoint. Hence, if P_{Γ} is a cogenerator, there is an injective right Γ -colinear map $i \colon \Gamma \to W \otimes P$ for some $W \in \mathbf{Mod}$. Since there is a linear map $t \colon Q = h_{-\Gamma}(P, \Gamma) \to W$ such that $i = (I \otimes t) \circ g$, g is injective.

- 3.4 COROLLARY. (P,Q,f,g) is a set of a equivalence data if and only if P_{Γ} is a (quasi-finite) injective cogenerator.
 - 3.5 THEOREM. Let $_{A}P_{\Gamma}$ be a bicomodule.
 - a) The following are equivalent.
 - (i) The functor $\mathbf{Com}_{-A} \rightarrow \mathbf{Com}_{-\Gamma}$, $Z_A \mapsto Z \square P$ is an equivalence.
 - (ii) The functor $\mathbf{Com}_{\Gamma} \rightarrow \mathbf{Com}_{\Lambda}$, $\Gamma Y \mapsto P \bigcap_{\Gamma}^{\Lambda} Y$ is an equivalence.
- (iii) The comodule P_{Γ} is a quasi-finite injective cogenerator and $e_{-\Gamma}(P) \simeq \Lambda$ as coalgebras.

- (iv) The comodule $_{\it A}P$ is a quasi-finite injective cogenerator and $e_{\it A}$ -(P) \simeq Γ as coalgebras.
 - (v) There is a set of equivalence data $(\Lambda, \Gamma, P, Q, f, g)$.
 - (vi) There is a set of equivalence data $(\Gamma, \Lambda, Q', P, f', g')$.
- b) When the above equivalent conditions hold, there is a canonical bicomodule isomorphism $h_{-\Gamma}(P,\Gamma) \simeq h_{\Lambda^-}(P,\Lambda)$. Let ${}_{\Gamma}Q_{\Lambda}$ denote this bicomodule. Then $? \underset{\Gamma}{\square} Q$ (resp. $Q \underset{\Lambda}{\square} ?$) is a quasi-inverse of the functor of (i) (resp. (ii)).

PROOF. This follows immediately from (2.1), (2.2), (2.5), and (3.4).

3.6 COROLLARY. If P_{Γ} is a quasi-finite injective cogenerator comodule, there are a Γ - $e_{-\Gamma}(P)$ -bicomodule isomorphism $h_{-\Gamma}(P,\Gamma) \cong h_{e_{-\Gamma}(P)}$ - $(P,e_{-\Gamma}(P))$ and a coalgebra isomorphism $e_{e_{-\Gamma}(P)}$ - $(P) \cong \Gamma$. They are canonical.

§4. Locally finite abelian categories

4.1 DEFINITION [2, p. 356]. An abelian category A is locally finite, if i) A has direct sums, ii) for each directed family $\{P_{\alpha}\}$ of subobjects of an object $P \in A$ the canonical map: $\lim_{\alpha \to P} P_{\alpha} \to P$ induces an isomorphism: $\lim_{\alpha \to P} P_{\alpha} \to P_{\alpha}$, and iii) there is a set of generators $\{M_i\}$ of A where each M_i is of finite length.

The conditions i) and ii) mean that A has exact directed colimits [2, p. 337, Prop. 6]. The subobjects of an object of A form a 'set' by iii).

The category $Com_{-\Gamma}$ is locally finite, since it is generated by finite dimensional comodules. (Note that the isomorphism classes of finite dimensional Γ -comodules clearly form a set).

4.2 Let A be a locally finite abelian category. A has injective hulls [2, p. 362, Th. 2]. The direct sum of a set of injective objects is injective [2, p. 387, Prop. 6]. Each object $M \in A$ is clearly an essential extension [2, p. 358] of its socle s(M) (=the sum of all simple subobjects of M). Hence an injective object I of A is indecomposable if and only if the socle s(I) is simple by [2, p. 361, Prop. 11].

Let $\{S_{\omega}\}_{\omega\in\mathcal{Q}}$ be a complete set of representatives of isomorphism classes of simple objects of A. (The set \mathcal{Q} exists by condition iii) of (4.1)). Let I_{ω} be the injective hull of S_{ω} . Then the I_{ω} , $\omega\in\mathcal{Q}$, are injective indecomposable non isomorphic with each other, since $s(I_{\omega})=S_{\omega}$. If I is an indecomposable injective object of A, then $s(I)\simeq S_{\omega}$ for some $\omega\in\mathcal{Q}$. Since I is the injective hull of s(I), $I\simeq I_{\omega}$. Thus $\{I_{\omega}\}_{\omega\in\mathcal{Q}}$ is a complete set of representatives of isomorphism classes of indecomposable injective objects of A.

For each object $M \in A$ and a cardinal number a let $M^{(a)}$ denote the direct sum of a isomorphic copies of M.

Then by [2, p. 388, Th. 2], each injective object I of A is isomorphic to the direct sum $\bigoplus_{\omega \in \mathcal{Q}} I_{\omega}^{(a_{\omega})}$ with a uniquely determined set of cadinal numbers $\{a_{\omega}\}_{\omega \in \mathcal{Q}}$.

The direct sum $I=\bigoplus_{\omega\in \mathcal{Q}}I_{\omega}^{(a_{\omega})}$ is an *injective cogenerator* of **A** if and only if $a_{\omega}>0$ for all $\omega\in\mathcal{Q}$. Indeed I is an injective cogenerator if and only if $\mathbf{A}(S_{\omega},I)\neq 0$ for all $\omega\in\mathcal{Q}$. Since $\mathbf{s}(I)=\bigoplus_{\omega\in\mathcal{Q}}S_{\omega}^{(a_{\omega})}$, the assertion follows.

- 4.3 Proposition. Let A be a locally finite k-abelian category. The following are equivalent.
- a) If M and N are objects of finite length of A, then the vector space A(M, N) is finite dimensional over k.
- b) For each simple object S of A, the endomorphism algebra A(S,S) is finite dimensional over k.
- PROOF. Let M and N be objects of finite length of A. Let S be a simple subobject of M. Then the sequence $0 \rightarrow A(M/S, N) \rightarrow A(M, N) \rightarrow A(S, N)$ is exact. Since condition b) means that A(S, N) is finite dimensional over k, it follows by induction on length of M that A(M, N) is finite dimensional.
- 4.4 DEFINITION. A k-abelian category A is of *finite type* if A is locally finite (as an abelian category) and the equivalent conditions of (4.3) are satisfied.

The category $\mathbf{Com}_{-\Gamma}$ is of finite type, since $\mathbf{Com}_{-\Gamma}(M, N)$ is finite by dimensional, if M and N are finite dimensional comodules.

- 4.5 Proposition. Let A be a finite type k-abelian category and F an object of A. The following are equivalent.
- a) For each object M of finite length of A, the space A(M, F) is finite dimensional over k.
- b) For each simple object S of A, the space A(S, F) is finite dimensional over k.
- c) The socle s(F) is isomorphic to $\bigoplus_{\omega \in \mathcal{Q}} S_{\omega}^{n_{\omega}}$ where $\{S_{\omega}\}_{\omega \in \mathcal{Q}}$ is a complete set of representatives of isomorphism classes of simple objects and n_{ω} are finite cardinal numbers.

PROOF. The equivalence $a)\Leftrightarrow b$) is proved by induction on length of M. The equivalence $b)\Leftrightarrow c$) is obvious.

4.6 DEFINITION. An object F of a finite type k-abelian category A is quasifinite if the equivalent conditions of (4.5) are satisfied.

With the same notations as in (4.2), the injective object $I = \bigoplus_{\omega \in \Omega} I_{\omega}^{(a_{\omega})}$ is quasifinite if and only if each cardinal number a_{ω} is finite, since $s(I) = \bigoplus_{\omega \in \Omega} S_{\omega}^{(a_{\omega})}$. In particular A always has a quasi-finite injective cogenerator. (Take $a_{\omega} = 1$ for all $\omega \in \Omega$).

§ 5. Characterization of categories of comodules.

5.1 THEOREM. Let A be a k-abelian category. A is k-linearly equivalent to $Com_{-\Gamma}$ for some coalgebra Γ if and only if A is of finite type.

PROOF. We have only to prove the 'if' part. Let A be a finite type k-abelian category. A has a quasi-finite injective cogenerator U (4.6).

5.2 Since A has direct sums, for each $W \in \mathbf{Mod}$ and $X \in \mathbf{A}$, there is an object $W \otimes X \in \mathbf{A}$ such that

$$\mathbf{A}(W \otimes X, Y) \simeq \mathrm{Hom}(W, \mathbf{A}(X, Y))$$

naturally for all $Y \in A$.

If Z is an object of finite length of A, then $A(Z, W \otimes X) \simeq W \otimes A(Z, X)$, since the image f(Z), where $f \in A(Z, W \otimes X)$, must be contained in $W' \otimes X$ for some finite dimensional subspace W' of W.

In particular, since A(Z, U) is finite dimensional, $A(Z, W \otimes U) \simeq \operatorname{Hom}(A(Z, U)^*, W)$.

5.3 LEMMA. For each object $X \in A$, there is a vector space h(X) such that $\operatorname{Hom}(h(X), W) \simeq A(X, W \otimes U)$ naturally for all $W \in \operatorname{Mod}$.

PROOF. When X is of finite length, we have only to put $h(X) = A(X, U)^*$. In general let $\{X_{\lambda}\}$ be the subobjects of finite length of X. Since $X = \lim_{\stackrel{\longrightarrow}{\lambda}} X_{\lambda}$, it is enough to put $h(X) = \lim_{\stackrel{\longrightarrow}{\lambda}} h(X_{\lambda})$.

5.4 Let $\alpha_X \colon X \to h(X) \otimes U$ denote the A-morphism corresponding to the identity of h(X). For each A-morphism $f \colon X \to W \otimes U$, where $W \in \mathbf{Mcd}$, there is a unique linear map $q \colon h(X) \to W$ with $f = (q \otimes I) \circ \alpha_X$. If $u \colon X \to X'$ is an A-map, there is a unique linear map $h(u) \colon h(X) \to h(X')$ such that $(h(u) \otimes I) \circ \alpha_X = \alpha_{X'} \circ u \colon X \to h(X') \otimes U$. The functor $h \colon \mathbf{A} \to \mathbf{Mod}$, $X \mapsto h(X)$ is the left adjoint of $W \mapsto W \otimes U$, $\mathbf{Mod} \to \mathbf{A}$. Hence h is linear and preserves direct sums.

In particular for each $X \in \mathbf{A}$ and $W \in \mathbf{Mod}$, the map $I \otimes \alpha_X \colon W \otimes X \to W \otimes h(X) \otimes U$ induces an isomorphism

$$h(W \otimes X) \simeq W \otimes h(X)$$
.

5.5 LEMMA. The functor h is exact.

PROOF. Indeed $X \mapsto h(X)^* \simeq A(X, U)$ is exact, since U is injective.

5.6 Put $\Gamma = h(U)$. Let $\Delta: \Gamma \to \Gamma \otimes \Gamma$ and $\eta: \Gamma \to k$ be the unique linear maps such that $(I \otimes \alpha_U) \circ \alpha_U = (\Delta \otimes I) \circ \alpha_U : U \to \Gamma \otimes \Gamma \otimes U$ and $I = (\eta \otimes I) \circ \alpha_U : U \to k \otimes U = U$.

Then (Γ, Δ, η) is a coalgebra.

5.7 For each object $X \in A$, let $\rho: h(X) \to \Gamma \otimes h(X)$ be the unique linear map such that $(I \otimes \alpha_{II}) \circ \alpha_X = (\rho \otimes I) \circ \alpha_X \colon X \to h(X) \otimes \Gamma \otimes U$.

Then $(h(X), \rho)$ is a right Γ -comodule. If $u: X \to X'$ is an A-morphism, then $h(u): (h(X) \to h(X')$ is Γ -colinear.

- 5.8 The functor $h: A \rightarrow Com_{-\Gamma}$ is linear exact, and commutes with colimits.
- 5.9 LEMMA. For each $X \in A$, the map $\alpha_X : X \rightarrow h(X) \otimes U$ is a monomorphism.

PROOF. Let X' be a subobject of finite length of X contained in $\operatorname{Ker}(\alpha_X)$. Then $\alpha_{X'}=0$, since $h(X')\subset h(X)$. This means that $h(X')=A(X',U)^*=0$. Hence X'=0.

5.10 LEMMA. The functor $h: A \rightarrow Com_{-\Gamma}$ is fully faithful.

PROOF. Let X and $Y \in A$. Consider the natural map

$$A(X, Y) \longrightarrow Com_{-\Gamma}(h(X), h(Y))$$

induced by h. Both hand sides are left exact as functors of Y. Since there is an exact sequence of the form $0 \rightarrow Y \rightarrow W_1 \otimes U \rightarrow W_2 \otimes U$, where $W_i \in \text{Mod}$, by (5.9), it is enough to consider the case $Y = W \otimes U$ in order to say that the above map is an isomorphism.

But then

$$\mathbf{A}(X, W \otimes U) \simeq \operatorname{Hom}(h(X), W) \simeq \operatorname{Com}_{-\Gamma}(h(X), W \otimes \Gamma)$$

$$\simeq \operatorname{Com}_{-\Gamma}(h(X), h(W \otimes U)),$$

where the composite coincides with the above map. Hence h is fully faithful.

5.11 We claim that $h: \mathbf{A} \to \mathbf{Com}_{-\Gamma}$ is an equivalence. This completes the proof of (5.1). Let Z_{Γ} be an arbitrary comodule. There is an exact sequence $0 \to Z \to W_1 \otimes \Gamma \xrightarrow{u} W_2 \otimes \Gamma$ of Γ -comodules, where $W_i \in \mathbf{Mod}$. Since $W_i \otimes \Gamma \cong h(W_i \otimes U)$, there is a unique \mathbf{A} -morphism $\tilde{u}: W_1 \otimes U \to W_2 \otimes U$ such that $u = h(\tilde{u})$, since h is fully faithful. If $X = \mathrm{Ker}(\tilde{u})$, then $h(X) \cong Z$, since h is exact. Therefore h is an equivalence.

Note: An object X of a category A which has direct products is a *cogenerator* if each $Y \in A$ is embeddable into the direct product of a set of isomorphic copies of X.

If Γ is a coalgebra, Γ^* is an algebra, and each right Γ -comodule is a left Γ^* -module. Each left Γ^* -module M contains a unique maximal righte sub- Γ -comodule M^f . If $(M_\alpha)_{\alpha\in I}$ is a family of right Γ -comodules, $(\prod_{\alpha\in I}M_\alpha)^f$ gives the direct product in $\operatorname{\mathbf{Com}}_{-\Gamma}$. This contains $\bigoplus_{\alpha\in I}M_\alpha$ as a subcomodule. Hence a comodule P_Γ is a cogenerator of $\operatorname{\mathbf{Com}}_{-\Gamma}$ if $\Gamma_\Gamma\subset W\otimes P_\Gamma$ for some $W\in\operatorname{\mathbf{Mod}}$. The converse is true if P_Γ is quasi-finite (3.3).

After this paper was completed, it came to the author's attention that similar subjects were treated by Bertrand I-peng Lin, Morita's Theorem for Coalgebras, Communications in Algebra, vol. 1 (1974), 311-344. The results of the present paper are not contained in his work. He considers only strong equivalences between categories of comodules. It seems that he does not use the co-tensor product nor the co-hom functor. The characterization of the categories of comodules is not given in his paper. The author thanks Professor E. Taft for informing him of the Lin's paper.

References

- [1] Bass, H., Algebraic K-Theory, W. A. Benjamin Inc., New York, 1968.
- [2] Gabriel, P., Des categories abeliennes, Bull. Soc. math. France 90 (1962), 323-448.
- [3] Milnor, J. and J. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264.
- [4] Sweedler, M., Hopf Algebras, W. A. Benjamin Inc., New York, 1969.

(Received August 13, 1976)

Department of Mathematics University of Tsukuba Sakura-Mura Ibaraki-Ken 300-31 Japan