

# Relative importance of management and natural flooding on spider, carabid and plant assemblages in extensively used grasslands along the Loire

Denis Lafage, Julien Pétillon

#### ▶ To cite this version:

Denis Lafage, Julien Pétillon. Relative importance of management and natural flooding on spider, carabid and plant assemblages in extensively used grasslands along the Loire. Basic and Applied Ecology, Elsevier, 2016, In press. <10.1016/j.baae.2016.04.002>. <hal-01302406>

#### HAL Id: hal-01302406

https://hal-univ-rennes1.archives-ouvertes.fr/hal-01302406

Submitted on 14 Apr 2016

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

36 Relative importance of management and natural flooding on spider, carabid and plant 37 assemblages in extensively used grasslands along the Loire 38 Denis Lafage<sup>a,b,\*</sup> & Julien Pétillon<sup>a</sup> 39 40 41 <sup>a</sup>Université de Rennes 1, EA 7316, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France 42 <sup>b</sup>Université d'Angers, LUNAM, GECCO, 2 Boulevard Lavoisier, 49045 Angers, France. 43 44 \*Corresponding author; Email: <u>lafage.denis@gmail.com</u>, tel: +33 6 11 49 77 36 45 46 Running title: Efficiency of AES in flooded meadows 47 48 Word count: 5124 49

\* Corresponding author. Tel.: +33 228205167; fax: +33 228205075. E-mail address: lafage.denis@gmail.com.

| 50         | A 1      |
|------------|----------|
| <b>711</b> | Abstract |
| .,,,,      | ADSHACE  |

| _ | 1 |
|---|---|
|   |   |
|   |   |
|   |   |

61

52 In Europe, agri-environment schemes (AES) have been implemented to counteract the effects of 53 agricultural intensification. Studies investigating the role of management improvement induced by 54 AES are quite numerous, but rarely take into account the effect of natural perturbations such as 55 flooding, although severe disturbances are well known to shape community structure. Here we 56 investigated the relative importance of management improvement and flooding to explain 57 community parameters of two dominant arthropod groups and vegetation in alluvial meadows. 58 Sampling took place in 2013, using suction samplers for arthropods and phytosociological relevés 59 for vegetation, in 83 meadows distributed along 200 km of the Loire Valley (France). Pair-matched 60 approach (by R-ANOVA) was used to assess overall effects of AES whereas a gradient analysis (GLM) was carried out to assess the impact of AES prescriptions (fertilisation and cutting-date) 62 together with indirect (long-term) and direct (short-term) effects of flooding. 63 No significant effect of AES was found on arthropod and plant assemblages, 64 abundance/productivity or diversity (both  $\alpha$  and  $\beta$ ), but the number of rare plant species was higher 65 in sites under AES. Prescriptions had little impact on most response variables considered; the only significant impact being the positive effect of high-amounts of fertilisers on spider  $\alpha$ - and  $\beta$ -66 diversities. Conversely, systematic long-term effects of flooding were found on all response 67 68 variables of spiders, carabids and plants, underlining the key role of this factor in alluvial meadows. 69 Our study demonstrates that maintaining or enhancing hydrological functioning of ecosystems is 70 even more important than regulating both the cutting-dates and the low input of fertilisers for conservation purposes in flooded, already naturally nutrient rich, meadows.

72

71

73 Keywords: Coleoptera Carabidae, Araneae, stochastic disturbance, cutting-date, fertilizers.

### Introduction

| 75 | Over the last decades, agricultural intensification has accelerated adverse effects on wildlife      |
|----|------------------------------------------------------------------------------------------------------|
| 76 | (Millennium Ecosystem Assessment 2005). In Europe, agri-environment schemes (AES) have been          |
| 77 | implemented to counteract these effects by providing financial incentive for farmers to adopt        |
| 78 | extensive agricultural practices. Farmers involved in AES preferentially engage fields which are     |
| 79 | less suitable for intensive farming (Kleijn & van Zuijlen, 2004), explaining why semi-natural        |
| 30 | grasslands are especially targeted by AES.                                                           |
| 31 | Investments in AES were substantial, with for example 34.9 billion Euros provided for 2007-2013      |
| 32 | programmes (COM, 2008). They currently cover 21% of all farmlands in the 27 EU countries.            |
| 33 | Despite these high financial inputs, AES seem to have contrasting successes (Kleijn et al., 2006),   |
| 34 | depending on the AES type and the model studied. For example, AES are recognised to have             |
| 35 | positive effects on birds in the UK (Brereton, Warren, Roy, & Stewart, 2007) and on pollinators in   |
| 36 | Switzerland (Albrecht, Duelli, Muller, Kleijn, & Schmid, 2007). However, AES also prove              |
| 37 | damaging when poorly designed or when targeting single taxon (Konvicka et al., 2007). Results on     |
| 38 | plant diversity are usually reported to be positive (e.g., Kleijn, Berendse, Smit, & Gilissen, 2001; |
| 39 | Critchley, Walker, Pywell, & Stevenson, 2007). Monitoring and evaluating these schemes is            |
| 90 | imperative to improve their efficiency and maximize the conservation outcomes.                       |
| 91 | Evaluation of AES impact has usually focused on birds (Kleijn, Berendse, Smit, & Gilissen, 2001,     |
|    |                                                                                                      |
| 92 | Kleijn et al., 2006; Marshall, West, & Kleijn, 2006) and vegetation (Critchley, Walker, Pywell, &    |
| 93 | Stevenson, 2007) mainly because they are the main targets of AES as arthropods are often neglected   |
| 94 | in biodiversity conservation policies (e.g., Cardoso, Erwin, Borges, & New, 2011). Nevertheless,     |
| 95 | some studies also dealt with arthropods- mainly bees and grasshoppers (Kleijn, Berendse, Smit, &     |
| 96 | Gilissen, 2001; Knop, Kleijn, Herzog, & Schmid, 2005), and found positive effects of AES. Despite    |

| 97  | their recognised indicator value in agricultural landscapes, predator arthropods like spiders and                  |
|-----|--------------------------------------------------------------------------------------------------------------------|
| 98  | carabid beetles remain relatively less studied in the context of AES compared to other taxa.                       |
| 99  | Flooding is a key driver of intertidal and riparian ecosystems, and particularly of arthropod                      |
| 100 | communities (Desender & Maelfait, 1999) and vegetation (Violle et al., 2011). Arthropod                            |
| 101 | communities of European rivers are likely to use a 'risk strategy' to survive in this naturally                    |
| 102 | disturbed habitat. The strategy consists of a suite of life history traits such as high productivity ('r-          |
| 103 | strategy'), high capacity for dispersion, and active recolonisation from areas that have been                      |
| 104 | sheltered from flooding (Zulka, 1994). Vertical emigration to uplands or higher vegetation is also                 |
| 105 | expected to increase recolonisation success (Adis & Junk, 2002). A few terrestrial species also                    |
| 106 | withstand short to prolonged (up to several weeks) periods of submersion (e.g., insects: Hoback &                  |
| 107 | Stanley, 2001, spiders: Pétillon et al., 2009). Conversely, flood events can be seen as a way to                   |
| 108 | colonise new habitats and exchange individuals between distant populations (Lambeets et al.,                       |
| 109 | 2010), possibly enhancing among-site diversity in the long term. In the short-term, flood events                   |
| 110 | strongly reduce local diversity. Floodplains are generally characterized by a low percentage of                    |
| 111 | stenotopic species (Lafage, Papin, Secondi, Canard, & Pétillon, 2015). Specialist species with                     |
| 112 | adaptations to flooding are found in more regularly flooded habitats like gravel banks (Lambeets,                  |
| 113 | Vandegehuchte, Maelfait, & Bonte, 2008) or salt marshes (Pétillon, Potier, Carpentier & Garbutt,                   |
| 114 | 2014).                                                                                                             |
| 115 | No study has assessed the relative effects of AES vs. stochastic disturbances induced by flooding in               |
| 116 | such ecosystems, yet their expected effects on biodiversity are potentially opposite. Consequently,                |
| 117 | no or few effects of AES in shaping arthropod and plant assemblages are expected in floodplains.                   |
| 118 | To test this hypothesis, we evaluated the role of AES and flooding in explaining $\alpha$ and $\beta$ diversities, |
| 119 | abundances (biomass for plants), species rarity and assemblage composition of two non-target                       |
| 120 | groups (spiders and carabids) and vegetation in the flooded meadows of the Loire River (France).                   |
| 121 | For spiders and carabids, analyses of rarity were not performed because of the lack of proper 5                    |

| 122 | national or regional statuses of rarity (the English classification cannot be applied here: Pétillon,   |
|-----|---------------------------------------------------------------------------------------------------------|
| 123 | Courtial, Canard, & Ysnel, 2007), and also because the number of stenotopic and/or rare species is      |
| 124 | low in these habitats (Lafage, Papin, Secondi, Canard, & Pétillon, 2015).                               |
| 125 |                                                                                                         |
| 126 | Material and methods                                                                                    |
| 127 | Study area and sampling design                                                                          |
| 128 | The study area covered 200 km of the Loire Valley (France: Fig. 1). Land is mainly covered by hay       |
| 129 | meadows with an extensive hedgerow network. Meadows are usually cut in early or mid-summer              |
| 130 | with second-crop grazing. The amount of fertilisers is generally low as regular winter and spring       |
| 131 | floods bring a large amount of organic matter into the system. Pesticides are seldom used. Thus, the    |
| 132 | management intensity is rather low. The study site included four AES zones with various                 |
| 133 | prescriptions regarding cutting-dates and fertilizers. Cutting-dates were between June 5th to July      |
| 134 | 20th, within four defined classes: free (not under AES), before June 20th, between June 20th and        |
| 135 | July 1st, after July 1st. Fertiliser prescriptions were 0, 30 or 60 N unit/ha. A 'free' class was added |
| 136 | for sites not under AES. Almost all meadows are flooded during winter for about 3 months, but in        |
| 137 | 2012 and 2013, the study sites were also flooded during spring for 5 to 22 days. Spring-flood had       |
| 138 | not occurred since 2004 in the Loire Valley.                                                            |

Carabids, spiders and plants were sampled in 83 hay meadows. To reduce the variance between

fields, a paired-matched approach was used to test the impact of AES (see statistical analysis

section). Paired sites (with and without AES contract) were chosen with same vegetation types and

142 flooding regime. Distance between sites belonging to a pair was inferior to 1 km. Table 1

summarizes the number of sites per treatment and moisture level. Site size ranged from 1.3 ha to

144 265.3 ha (mean =  $34.7 \pm 50.3$  SD ha).

140

| 145                                                  | Carabids and spiders were sampled using suction sampling (a standard technique providing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 146                                                  | quantitative data, i.e. abundance of individuals, on arthropods: Brook, Woodcock, Sinka, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 147                                                  | Vanbergen, 2008). Each site was sampled once during June 2015 before the first cutting date- given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 148                                                  | the strong impact of cutting on spiders and carabids (e.g., Lafage & Pétillon 2014). Suction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 149                                                  | sampling was realised using a 12.5 cm diameter intake placed on the ground. At each sampling site,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 150                                                  | 5 samples (10 x 15 s suctions) were taken (total area: 0.12 m²/sample). Samples were stored in 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 151                                                  | alcohol and taken to the laboratory for sorting and identification to species level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 152                                                  | At each site, plants were sampled once during spring 2013 (from June 1st 2013 to July 10th 2013,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 153                                                  | before the first cutting date). Sampling followed the Braun-Blanquet (1928) method. One                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 154                                                  | phytosociological relevé per sampling site was made in a 16 m² plot. Vegetation biomass was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 155                                                  | approximated using a vegetation index derived from MODIS satellite imagery: the Enhanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 156                                                  | Vegetation Index (EVI: Lafage, Secondi, Georges, Bouzillé, & Pétillon, 2014) measured during 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 157                                                  | days by LP DAAC (product MOD13Q1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 158                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul><li>158</li><li>159</li></ul>                    | Statistical analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                      | Statistical analysis  Spatial autocorrelation, tested using Moran's I, was low enough (see Appendix A, table 1) to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 159                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 159<br>160                                           | Spatial autocorrelation, tested using Moran's I, was low enough (see Appendix A, table 1) to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 159<br>160<br>161                                    | Spatial autocorrelation, tested using Moran's I, was low enough (see Appendix A, table 1) to be neglected (Gerisch, Dziock, Schanowski, Ilg, & Henle, 2012). Spatial patterns in response variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 159<br>160<br>161<br>162                             | Spatial autocorrelation, tested using Moran's I, was low enough (see Appendix A, table 1) to be neglected (Gerisch, Dziock, Schanowski, Ilg, & Henle, 2012). Spatial patterns in response variables were also researched using Moran's eigenvector maps (MEM) following Borcard, Gillet, and                                                                                                                                                                                                                                                                                                                                                                                     |
| 159<br>160<br>161<br>162<br>163                      | Spatial autocorrelation, tested using Moran's I, was low enough (see Appendix A, table 1) to be neglected (Gerisch, Dziock, Schanowski, Ilg, & Henle, 2012). Spatial patterns in response variables were also researched using Moran's eigenvector maps (MEM) following Borcard, Gillet, and Legendre (2011), but they were not significant (see Appendix A, table 2).                                                                                                                                                                                                                                                                                                           |
| 159<br>160<br>161<br>162<br>163                      | Spatial autocorrelation, tested using Moran's I, was low enough (see Appendix A, table 1) to be neglected (Gerisch, Dziock, Schanowski, Ilg, & Henle, 2012). Spatial patterns in response variables were also researched using Moran's eigenvector maps (MEM) following Borcard, Gillet, and Legendre (2011), but they were not significant (see Appendix A, table 2). Arthropod $\alpha$ -diversities were estimated for each sampling site using the average of four non-                                                                                                                                                                                                      |
| 159<br>160<br>161<br>162<br>163<br>164<br>165        | Spatial autocorrelation, tested using Moran's I, was low enough (see Appendix A, table 1) to be neglected (Gerisch, Dziock, Schanowski, Ilg, & Henle, 2012). Spatial patterns in response variables were also researched using Moran's eigenvector maps (MEM) following Borcard, Gillet, and Legendre (2011), but they were not significant (see Appendix A, table 2). Arthropod $\alpha$ -diversities were estimated for each sampling site using the average of four non-parametric estimators based on species incidence: Chao1, Jacknife1, Jacknife2 and Bootstrap                                                                                                           |
| 159<br>160<br>161<br>162<br>163<br>164<br>165<br>166 | Spatial autocorrelation, tested using Moran's I, was low enough (see Appendix A, table 1) to be neglected (Gerisch, Dziock, Schanowski, Ilg, & Henle, 2012). Spatial patterns in response variables were also researched using Moran's eigenvector maps (MEM) following Borcard, Gillet, and Legendre (2011), but they were not significant (see Appendix A, table 2). Arthropod $\alpha$ -diversities were estimated for each sampling site using the average of four non-parametric estimators based on species incidence: Chao1, Jacknife1, Jacknife2 and Bootstrap (Carvalho et al. 2012). $\beta$ -diversity was estimated through a dissimilarity matrix (corresponding to |

| 169 | 2012). Vegetation diversity was estimated by the classical Shannon index. Plant rarity was                    |
|-----|---------------------------------------------------------------------------------------------------------------|
| 170 | estimated using the number of plants red-listed at either national or regional scale per sample. As no        |
| 171 | red list exists for spiders and carabids in France, analyses on arthropod rarity were not performed.          |
| 172 | A paired-sample approach (with or without AES) was used to test the overall AES effect on                     |
| 173 | abundance/productivity, $\alpha$ -diversity, $\beta$ -diversity and rarity (plants) of arthropods and plants. |
| 174 | Repeated analyses of variance (R-ANOVA) with site as the within-subjects factor (e.g., Varet,                 |
| 175 | Burel, Lafage & Pétillon, 2013) and AES presence/absence as a fixed factor were performed                     |
| 176 | between paired sites presenting similar abiotic conditions (see similar designs in previous studies on        |
| 177 | AES efficiency: Knop, Kleijn, Herzog, & Schmid, 2005; Kleijn et al. 2006; Scheper et al. 2013).               |
| 178 | To test for differences in spider, carabid and plant assemblages between sites under AES and sites            |
| 179 | not under AES, analyses of variance (ANOSIM) were performed.                                                  |
| 180 | To test for differences in $\beta$ -diversities among groups (i.e., between sites under AES and not under     |
| 181 | AES), multiple-site dissimilarity matrices were computed using the betapart package for R (Baselga            |
| 182 | & Orme 2012) and the Simpson dissimilarity index. We then performed a re-sampling procedure in                |
| 183 | the $\beta$ -diversity matrix (50 pairs of sites were randomly sampled 50 times) to perform multiple          |
| 184 | comparison tests.                                                                                             |
| 185 | To investigate arthropod and plant responses to management and flooding, drivers of species                   |
| 186 | assemblages were investigated using constrained analysis. The choice between redundancy analysis              |
| 187 | (RDA) and constrained correspondence analysis (CCA) was made according to the axis length of a                |
| 188 | detrended correspondence analysis (DCA). Abundances of all species (for arthropods) and Braun-                |
| 189 | Blanquet coefficients of abundance (for plants) were the response variables. The cutting-date (four           |
| 190 | classes), fertiliser input (three levels), a variable describing whether or not the site had been flooded     |
| 191 | during spring 2013 (i.e., binary variable for short-term effects of flooding), and a moisture gradient        |
| 192 | (i.e., discrete variable for long-term effects of flooding) were predictors. Five moisture classes were       |
|     |                                                                                                               |

| 193        | defined from low (1) to very high (5) according to the mean Ellenberg indicator value (Ellenberg et                                                          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 194        | al., 1992) of each vegetation type (defined by a Two-Way Indicator Species Analysis). Class 1                                                                |
| 195        | corresponded to sites with mean Ellenberg value lower the 5 (mean=4.6), class 2 to sites with                                                                |
| 196        | 5 <ellenberg (mean="6.4)," 3="" 4="" 6="" 6<ellenberg="" class="" sites="" td="" to="" to<="" value<="" value<7="" with=""></ellenberg>                      |
| 197        | sites with 7 <ellenberg (mean="7.5)" 5="" 8<="" and="" class="" ellenberg="" higher="" sites="" td="" than="" to="" value="" value<8="" with=""></ellenberg> |
| 198        | (mean=8.3). Monte Carlo tests with 999 permutations were carried out to test the significance of                                                             |
| 199        | the selected environmental factors and constrained analyses axes.                                                                                            |
| 200        |                                                                                                                                                              |
| 200        | Responses of arthropod and plant $\alpha$ -diversities, and abundances and vegetation productivity to both                                                   |
| 201        | the cutting-date (four classes) and fertiliser input (three levels) were tested using Generalised Linear                                                     |
| 202        | Models (GLMs) with gaussian distribution and a stepwise model selection by AIC (Akaike, 1974).                                                               |
| 203        | Flooding (i.e., binary variable for short-term effects of flooding) and moisture (five classes)                                                              |
| 204        | variables were also included. As flooding was expected to influence both the effects of the cutting-                                                         |
| 205        | date and of fertiliser amounts, interactions between those variables were also included. The same                                                            |
| 206        | GLM were applied to explain plant rarity. Pairwise-t-test were relalised to compare means of                                                                 |
| 207        | response variables depending on significant factors by GLM.                                                                                                  |
| 200        | To identify the variables significantly inflyencing orthropod and plant R diversities similarity                                                             |
| 208        | To identify the variables significantly influencing arthropod and plant $\beta$ -diversities, similarity                                                     |
| 209        | matrices corresponding to species turnover were regressed against environmental variables using                                                              |
| 210        | the Canonical Analysis of Principal Coordinates (CAP) implemented in the vegan package for R                                                                 |
| 211        | (Oksanen et al. 2013). The model included the same explanatory variables as previous GLMs.                                                                   |
| 212        |                                                                                                                                                              |
| 213        | Statistical analyses were performed using R software (R Development Core team 2013) with vegan                                                               |
| 214        | (Oksanen et al., 2013), MASS (Venables & Ripley 2002) and PCNM packages (Legendre, Borcard,                                                                  |
| 215        | Blanchet, & Dray, 2013).                                                                                                                                     |
| 216        |                                                                                                                                                              |
| <b>-10</b> |                                                                                                                                                              |

### 217 **Results**

| 218 | A total of 6,036 spiders belonging to 97 species (see Appendix A, Table 3 for a detailed list of                               |
|-----|--------------------------------------------------------------------------------------------------------------------------------|
| 219 | species), 383 carabids (see Appendix A, Table 4 for a detailed list of species) belonging to 43                                |
| 220 | species, and 150 plant species (see Appendix A, Table 5 for a detailed list of species), 3 of them                             |
| 221 | being red-listed, were sampled. Spider and carabid assemblages were dominated by small aerial                                  |
| 222 | dispersers: 78% of spiders were Linyphiidae and 78% of carabids were small winged species.                                     |
| 223 | Spider assemblages were dominated by six linyphiid species Tenuiphantes tenuis (29.4% of                                       |
| 224 | individuals), Meioneta rurestris (7.0%), Erigone dentipalplis (4.8%), Bathyphantes gracilis (4.8%),                            |
| 225 | Oedothorax fuscus (4.4%) and Meioneta mollis (4.2%). Carabid assemblages were dominated by                                     |
| 226 | two harpaline species (Acupalpus exiguus: 51.0% and Syntomus obscuroguttatus: 15.4%) and one                                   |
| 227 | bembidiine species (Bembidion biguttatus: 7.8%). Plant assemblages were more balanced with ten                                 |
| 228 | species cumulatively covering 35%, with a frequency ranging from 6.1% (Lolium perenne) to 2.3%                                 |
| 229 | (Plantago lanceolata).                                                                                                         |
| 230 | Spider $\beta$ -diversity was 0.97, corresponding to $\beta t = 0.95$ and $\beta n = 0.02$ . Carabid $\beta$ -diversity was    |
| 231 | 0.95, corresponding to $\beta t = 0.92$ and $\beta n = 0.03$ . Plant $\beta$ -diversity was 0.96, corresponding to $\beta t =$ |
| 232 | $0.95~\beta n = 0.01$ . $\beta n$ of the three groups was thus considered negligible and was not included in                   |
| 233 | further analyses.                                                                                                              |
| 234 | Repeated ANOVAs revealed no significant effect of AES, site, or of the interaction between AES                                 |
| 235 | and site on estimated $\alpha$ -diversity and abundance of spiders and carabids, or on plant productivity                      |
| 236 | and $\alpha$ -diversity (Table 2). A significant difference was found for plant rarity (Table 2), the number                   |
| 237 | of rare plants being higher in sites under AES. No significant difference was found between                                    |
| 238 | assemblages of sites under AES vs. sites not under AES for spiders (R=0.011, P=0.365), carabids                                |
| 239 | (R=0.008, $P$ =0,347) or plants (R=-0.039, $P$ =0,879). No significant difference was found between β-                         |

240 diversity of sites under vs. not under AES for spiders ( $\chi^2=49$ , P=0.473), carabids ( $\chi^2=45.60$ , P=0.555) or plants ( $\chi^2=46.74$ , P=0.625). 241 242 CCA on spider assemblages was significant (F=1.61, P=0.048) and explained 55.5% of the total variance, with the first three axes of the CCA being significant (respectively P=0.005; P=0.020 and 243 244 P=0.020). Axis 1 and 3 were associated with moisture index and axis 2 with cutting date but the 245 only variable significantly explaining spider species composition was moisture (F=1.67, P=0.050) 246 (Fig. 2). 247 RDA on carabid assemblages was not significant (F=0.98, P=0.430). RDA on plant assemblages 248 was significant (F=1.58, P=0.005) and explained 66.3% of the total variance, with the first three axes of the RDA being significant (respectively P=0.005; P=0.015 and P=0.005). Cutting-date, 249 occurrence of a spring flood in 2013 and moisture were the three variables significantly explaining 250 species assemblages (respectively F=1.99, P=0.010; F=1.64, P=0.010; F=2.89, P=0.010). 251 252 In the GLMs performed on spider, carabid and plant  $\alpha$  and  $\beta$ -diversities, abundance, and rarity, no interaction between flooding and prescriptions (i.e., fertiliser amount and cutting-date) were found, 253 indicating that the impact of prescriptions, if any, was not influenced by flooding (Table 3). 254 Spider estimated  $\alpha$ -diversity was significantly influenced by fertiliser amount and moisture (Table 255 256 3). Sites under AES with 60 kg/ha nitrogen had higher estimated spider species richness (Fig. 3A). 257 Sites with low moisture level (classes 1 and 3, i.e. with less frequent floods) presented higher 258 estimated spider species richness than sites with very high moisture level (class 5) (Fig. 3B). Spider 259 abundance was significantly affected by fertilisation but post-hoc tests were not significant (Table 3 and Fig. 3C). 260 261 Spider β-diversity was significantly influenced by fertiliser amount and cutting-date (Table 3 and Fig. 3D and 3E). Spider mean β-diversity increased with increasing fertiliser amount, with the 262 263 mean β-diversity being maximal with 60 kg/ha and free fertilisation. An opposite response was 11

| 264 | found for the cutting-date: mean $\beta\text{-diversity}$ was lower with later cutting dates and was maximal in         |
|-----|-------------------------------------------------------------------------------------------------------------------------|
| 265 | fields not under AES.                                                                                                   |
| 266 | Carabid estimated α-diversity was not influenced by predictive variables. Carabid abundance was                         |
| 267 | significantly influenced by moisture (Table 3), with higher carabid abundances in sites presenting                      |
| 268 | very high moisture level (class 5) (Fig. 3F).                                                                           |
| 269 | Carabid $\beta$ -diversity was significantly influenced by the occurrence of a flooding in spring 2013,                 |
| 270 | with the mean $\beta$ -diversity being higher in fields that were not flooded during spring 2013 (Fig. 3G).             |
| 271 | Plant $\alpha$ -diversity was significantly influenced by moisture (Table 3). Plant $\alpha$ -diversity of sites with a |
| 272 | high moisture level (Class 5) was significantly lower than those with a lower moisture level (class                     |
| 273 | 1: Fig. 3H). Plant biomass (EVI) was significantly and positively impacted by moisture. Higher EVI                      |
| 274 | was found in moister sites, although differences among means were not significant. Fertiliser                           |
| 275 | amount, cutting-date, flooding, and moisture all had a significant effect on plant $\beta$ -diversity (Table            |
| 276 | 3) but no significant effect of fertiliser amount and cutting-date were found when comparing mean                       |
| 277 | β-diversity between classes (Fig. 3I, 3J). Plant rarity was significantly impacted by moisture, with a                  |
| 278 | higher number of rare plants in moister sites (Table 3 and Fig. 3K).                                                    |
| 279 |                                                                                                                         |
| 280 | Discussion                                                                                                              |
| 281 | Overall, our results demonstrated no significant impact of AES on $\alpha$ -diversity, $\beta$ -diversity,              |
| 282 | abundance / biomass and assemblages of the three groups studied in flooded meadows. A positive                          |
| 283 | effect was still found on rare plants. The absence of differences between meadows with vs.                              |
| 284 | meadows without AES is in accordance with some previous studies in non-flooded habitats that                            |
| 285 | focussed on spiders (Knop, Kleijn, Herzog, & Schmid, 2005; Marshall, West, & Kleijn, 2006),                             |
| 286 | carabids (Marshall, West, & Kleijn, 2006) and plants (Kleijn, Berendse, Smit, & Gilissen, 2001;                         |
|     |                                                                                                                         |

| 287 | Marshall, West, & Kleijn, 2006). However, the existence of different levels in AES prescriptions                    |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 288 | could potentially lower the impact of the most binding AES. Furthermore, meadows not under AES                      |
| 289 | remain rather extensively managed. It is thus possible that AES prescriptions do not constitute a                   |
| 290 | sufficient change in practices to have a detectable impact. The positive impact of AES                              |
| 291 | contractualisation on protected plants might not be a consequence of a change in farmers' practices.                |
| 292 | Indeed, farmers preferentially engage in AES fields which are less suitable for intensive farming                   |
| 293 | (Kleijn & van Zuijlen, 2004). In our case, fields with higher moisture levels are preferentially                    |
| 294 | engaged because soil bearing does not allow early cutting-dates. In the Loire Valley, most of the                   |
| 295 | protected plants are hygrophilous and are thus located in the engaged fields. In a large-scale study,               |
| 296 | Kleijn et al. (2006) found no impact of AES on rare arthropods and plants, except for a positive one                |
| 297 | on plant rarity in two countries. Our results are partly in opposition but, like in Kleijn et al. (2006),           |
| 298 | the low number of rare species encountered prevents reliable estimates of AES impacts.                              |
| 299 | Spider assemblages and $\alpha$ -diversity were significantly influenced by moisture which is in                    |
| 300 | accordance with Desender and Maelfait (1999), Pétillon, Georges, Canard, Lefeuvre, Bakker and                       |
| 301 | Ysnel (2008) and Lafage, Maugenest, Bouzillé, and Pétillon (2015). Cutting-date only influenced                     |
| 302 | spider $\beta$ -diversity. Cutting-date has recently been shown to have little impact on spider $\alpha$ -diversity |
| 303 | and abundance, but a significant impact on traits (Lafage & Pétillon 2014), suggesting a potential                  |
| 304 | impact on $\beta$ -diversity in accordance with our results.                                                        |
| 305 | We found spider $\beta$ -diversity to decrease when cutting-dates were delayed. That could be explained             |
| 306 | by the fact that the engaged farmers have to cut their fields in a very narrow time-frame in order to               |
| 307 | maximise the nutritional value of hays (that decreases over time: Nocera, Parsons, Milton, &                        |
| 308 | Fredeen, 2005). In fields not under AES, the diversity of cutting dates would oppositely increase the               |
| 309 | $\beta$ -diversity of spiders.                                                                                      |
| 310 | As opposed to the biodiversity-productivity theory (Grime, 1973), sites fertilised with 60 kg/ha                    |
| 311 | nitrogen supported highest spider $\alpha$ -diversity. Sites not under AES were also not different from sites       |

| 312 | with medium or low nitrogen inputs. This is in accordance with studies suggesting a "bottom-up"            |
|-----|------------------------------------------------------------------------------------------------------------|
| 313 | control of arthropod diversity (Siemann, 1998; Patrick, Fraser, & Kershner, 2008) mediated by plant        |
| 314 | and consumer biomass (Borer, Seabloom, & Tilman, 2012). Nevertheless, these findings are still             |
| 315 | being discussed as, for example, Haddad, Haarstad, and Tilman (2000) found insect diversity to be          |
| 316 | negatively influenced by long-term fertiliser input. The lack of fertilisation effects on spider and       |
| 317 | carabid abundances could be explained by a threshold effect. Fertiliser inputs remained low, even in       |
| 318 | fields not under AES contract, compared to the large quantities of organic matter introduced in the        |
| 319 | system by winter floods (Junk & Wantzen, 2004). Consequently, the fertiliser levels might remain           |
| 320 | too low to initiate a trophic cascade which is confirmed by the absence of impact of fertilisers on        |
| 321 | plant biomass and $\alpha$ -diversity (see below).                                                         |
| 322 | As expected, carabids were only influenced by spring floods and moisture, for $\beta$ -diversity and       |
| 323 | abundance respectively. Carabids have been shown to recover less rapidly than spiders after spring         |
| 324 | floods (Lafage, Papin, Secondi, Canard, & Pétillon, 2015), especially regarding species                    |
| 325 | composition, which could explain the impact of spring floods on carabid $\beta$ -diversity. Gerisch et al. |
| 326 | (2012) demonstrated that carabid $\beta$ -diversity remains high after important flooding events,          |
| 327 | indicating persistent shifts in species assemblages. Gerisch et al. (2012) and Lafage, Papin,              |
| 328 | Secondi, Canard, and Pétillon (2015) finally show massive decreases in carabid abundance after             |
| 329 | spring floods. This dominance of small species could first be attributed to a sampling effect,             |
| 330 | although suction sampling is usually recommended to quickly obtain a representative sample of              |
| 331 | epigeic arthropod communities (e.g. Duffey 1974). In fact, Mommertz, Schauer, Kösters, Lang, and           |
| 332 | Filser (1996) considered it an inefficient way to sample large arthropods (such as Carabidae and           |
| 333 | Lycosidae). However, Brook, Woodcock, Sinka, and Vanbergen (2008) considered suction sampling              |
| 334 | an efficient technique to sample arthropods, including Carabidae, pending a sufficient sampling            |
| 335 | effort. Here we performed sampling duration and replication higher than recommanded by Brook,              |
| 336 | Woodcock, Sinka, and Vanbergen (2008) for spiders (16x2s recommanded vs 5x10x15s performed)                |

| 337 | and slightly inferior than recommanded by Brook, Woodcock, Sinka, and Vanbergen (2008) for                        |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 338 | beetles (54,8x15,6s recommended vs 5x10x15s performed) with similar sampling area. We can thus                    |
| 339 | consider that our results were not biased by the sampling technique, and that the dominance of                    |
| 340 | small aerial dispersers was a consequence of an environmental filter, here the stochasticity due to               |
| 341 | flooding (Zulka 1994).                                                                                            |
| 342 | Plant $\alpha$ -diversity, $\beta$ -diversity, biomass and assemblages were systematically influenced by flooding |
| 343 | (i.e., moisture and occurrence of spring floods) because of both its large spatial extent (including              |
| 344 | both AES and non-AES meadows) and its duration (here several months). These results are in                        |
| 345 | accordance with previous studies. The central role of moisture in shaping plant communities has                   |
| 346 | indeed been demonstrated by many authors (e.g., Dwire, Kauffman, Brookshire, & Baham, 2004;                       |
| 347 | Wassen, Peeters, & Olde Venterink, 2002; Zelnik & Čarni, 2008). Moisture's role on plant diversity                |
| 348 | has also been demonstrated. For example, Zelnik and Čarni (2008) found plant $\alpha$ and $\beta$ -diversities    |
| 349 | to be strongly and negatively influenced by moisture in wetlands. Plant rarity was also positively                |
| 350 | affected by moisture, which is not surprising as most plant species protected in the area are                     |
| 351 | hygrophilous or meso-hydrophilous species.                                                                        |
| 352 | Regarding AES prescriptions, cutting-date significantly influenced $\beta$ -diversity and plant                   |
| 353 | assemblages. Late cutting dates are indeed well known to induce vegetation modifications by                       |
| 354 | favouring annual plant species; maximum plant $\alpha$ -diversity being usually observed for late cutting-        |
| 355 | dates (mid-June to mid-July) in European grasslands (e.g. Critchley, Walker, Pywell, & Stevenson,                 |
| 356 | 2007).                                                                                                            |
| 357 | Fertilisation level had a significant impact only on plant $\beta$ -diversity, which is in accordance with        |
| 358 | Klimek et al. (2008) who found plant species $\beta$ -diversity being influenced, at a local scale, by            |
| 359 | fertilisation input. A significant reduction of $\alpha$ -diversity and a biomass increase are usually observed   |
| 360 | even for low levels of fertilizers (e.g., Plantureux, Peeters, & Mccracken, 2005). Nevertheless, in               |
| 361 | flooded grasslands, no effect of fertilisation on plant diversity was reported under 90 kg/ha/yr                  |

| 362 | (Bonis, Dausse, Dia, & Bouhnik-le Coz, 2008). Thus, the fertilisation level permitted in sites under     |
|-----|----------------------------------------------------------------------------------------------------------|
| 363 | AES and effectively used in sites not under AES, may be too low to allow a detection of their            |
| 364 | impact.                                                                                                  |
| 365 | Our results suggest that flooding might be a stronger driver of vegetation and arthropod                 |
| 366 | assemblages than differences in cutting dates or low fertilizer inputs. The impact of flooding and       |
| 367 | management practices seems to vary with organism mobility (Adis & Junk, 2002). Indeed, we                |
| 368 | found plants to be the organisms that are the most sensitive to perturbations induced by flooding,       |
| 369 | and also to variations in management practices. Conversely, carabid assemblages, mainly composed         |
| 370 | of highly mobile small species, were only influenced by flooding.                                        |
| 371 | Our results further suggest that the regulation of cutting dates and low input fertilisers of grasslands |
| 372 | has few, if any, effects on arthropods and plants compared to those induced by a prolonged flooding      |
| 373 | Conservation actions in such ecosystems might have to focus on maintaining and/or enhancing              |
| 374 | hydrological functioning in order to rewild those ecosystems (Merckx & Pereira, 2014).                   |
| 375 | Nevertheless, because natural meadows are in constant regression by conversion to intensive              |
| 376 | agriculture (Millennium Ecosystem Assessment 2005), AES can yet be considered an efficient way           |
| 377 | of maintaining an endangered habitat, despite their limited efficiency in flooded systems.               |
| 378 |                                                                                                          |
| 379 |                                                                                                          |
| 380 |                                                                                                          |
| 381 | Acknowledgements                                                                                         |
| 382 | We would like to thank the CORELA for its support, Charlotte Papin and Thomas Joubin for field           |
| 383 | and laboratory assistance, Arnaud Horellou for his help in identifying problematic carabids, and         |
| 384 | Aldyth Nys and Len Gambla for editing the English. Two anonymous referees provided very useful           |

| 385 | comments on  | earlier draft | s. This study was  | funded by ' | Plan Loire | Grandeur Na | ature' (FFDFR) |
|-----|--------------|---------------|--------------------|-------------|------------|-------------|----------------|
| 202 | COMMITTEE ON | carrier drait | s. Tiiis stuuv was | Tullucu DV  | rian Lone  | Granucui in | ature trepers. |

386 'Région Pays de la Loire' and 'Agence de l'Eau Loire-Bretagne'.

387

388 "Appendix A. Supplementary data

389 Supplementary data associated with this article can be found, in the online version, at XXXXX."

| 390        | References                                                                                                                                                                                              |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 391<br>392 | Adis J., & Junk, W. J. (2002). Terrestrial invertebrates inhabiting lowland river floodplains of Central Amazonia and Central Europe: a review. <i>Freshwater Biology 47</i> , 711–731.                 |
| 393        | Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on                                                                                                             |
| 394        | Automatic Control, 19, 716–723.                                                                                                                                                                         |
| 395        | Albrecht, M., Duelli, P., Muller, C., Kleijn, D., & Schmid, B. (2007). The Swiss agri-environment                                                                                                       |
| 396        | scheme enhances pollinator diversity and plant reproductive success in nearby intensively                                                                                                               |
| 397        | managed farmland. Journal of Applied Ecology, 44, 813–822.                                                                                                                                              |
| 398<br>399 | Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. <i>Global Ecology and Biogeography</i> , <i>19</i> , 134–143.                                                |
| 400        | Baselga, A., & Orme, C.D.L. (2012). betapart: an R package for the study of beta diversity. Methods                                                                                                     |
| 401        | in Ecology Evolution, 3, 808–812.                                                                                                                                                                       |
| 402        | Bonis, A., Dausse, A., Dia, A., & Bouhnik-le Coz, M. (2008). Fertilisation et qualité de l'eau en                                                                                                       |
| 403        | prairies naturelles humides (marais de l'Ouest). Fourage, 196, 485–489.                                                                                                                                 |
| 404        | Borcard, D., Gillet, F., & Legendre, P. (2011). Numerical ecology with R. Springer, New York.                                                                                                           |
| 405<br>406 | Borer, E. T., Seabloom, E. W., & Tilman, D. (2012). Plant diversity controls arthropod biomass and temporal stability. <i>Ecology Letters</i> , <i>15</i> , 1457–1464. http://doi.org/10.1111/ele.12006 |
| 407<br>408 | Braun-Blanquet, J. (1928). Pflanzensoziologie. Grundzüge der Vegetationskunde. <i>Springer, Wien, AT</i> .                                                                                              |
| 409        | Brereton, T. M., Warren, M. S., Roy, D. B., & Stewart, K. (2007). The changing status of the                                                                                                            |
| 410        | Chalkhill Blue butterfly <i>Polyommatus coridon</i> in the UK: the impacts of conservation policies                                                                                                     |
| 411        | and environmental factors. Journal of Insect Conservation, 12, 629-638.                                                                                                                                 |
| 412        | Brook, A. J., Woodcock, B. A., Sinka, M., & Vanbergen, A.J. (2008). Experimental verification of                                                                                                        |
| 413        | suction sampler capture efficiency in grasslands of differing vegetation height and structure.                                                                                                          |
| 414        | Journal of Applied Ecology, 45, 1357–1363.                                                                                                                                                              |

| 415 | Cardoso, P., Erwin, T. L., Borges, P. A. V., & New, T. R. (2011). The seven impediments in   |
|-----|----------------------------------------------------------------------------------------------|
| 416 | invertebrate conservation and how to overcome them. Biological Conservation, 144, 2647-      |
| 417 | 2655.                                                                                        |
| 418 | Carvalho, J. C., Cardoso P., Crespo, L. C., Henriques, S., Carvalho, R., & Gomes, P. (2012). |

- 419 Determinants of spider species richness in coastal dunes along a gradient of mediterraneity.
- 420 *Insect Conservation and Diversity, 5,127–137.*
- 421 COM (2008). Rural development in the European Union: Statistical and economic information.
- 422 Brussels.
- Critchley, C. N. R., Walker, K. J., Pywell, R. F., & Stevenson, M. J. (2007). The contribution of 423
- 424 English agri-environment schemes to botanical diversity in arable field margins, in: Aspects of
- Applied Biology. pp. 293-300. 425
- 426 Desender, K., & Maelfait, J. P. (1999). Diversity and conservation of terrestrial arthropods in tidal
- 427 marshes along the River Schelde: a gradient analysis. *Biological Conservation*, 87, 221–229.
- 428 Duffey, E. (1974). Comparative sampling methods for grassland spiders. Bulletin of the British
- 429 Arachnological Socity, 3, 34–37.
- 430 Dwire, K. A., Kauffman, J. B., Brookshire, E. N. J., & Baham, J. E. (2004). Plant biomass and
- 431 species composition along an environmental gradient in montane riparian meadows.
- 432 Oecologia, 139, 309-17. http://doi.org/10.1007/s00442-004-1498-2
- Ellenberg, H., Weber, H. E., Düll, R., Wirth, V., Werner, W., & Paulißen, D. (1992). Zeigerwerte 433
- 434 von Pflanzen in Mitteleuropa, 2nd ed. Scripta Geobotanica, 18, 1–258.
- Gerisch, M., Dziock, F., Schanowski, A., Ilg, C., & Henle, K. (2012). Community resilience 435
- 436 following extreme disturbances: the response of ground beetles to a severe summer flood in a
- 437 central European lowland stream. River Research and Applications, 28, 81–92.
- Grime, J. P. (1973). Control of species density in herbaceous vegetation. Journal of Environmental 438
- 439 Management, 1, 151–167.

| 440 | Hoback, W. W., & Stanley D. | W. (2001). Insects in hypo | ox1a. Journal of Insect Physiology 47, 533– |
|-----|-----------------------------|----------------------------|---------------------------------------------|
| 441 | 542.                        |                            |                                             |

- Junk, W. J., & Wantzen, M. (2004). The flood pulse concept: new aspects, approaches and
- applications an update. In Second International Symposium on the Management of Large
- 444 Rivers for Fisheries (pp. 117–140). Food and Agriculture Organization and Mekong River
- Commission, FAO Regional Office for Asia and the Pacific.
- 446 Kleijn, D., Baquero, R. A., Clough, Y., Díaz, M., De Esteban, J., Fernández, F., Gabriel, D., Herzog,
- F., Holzschuh, A., Jöhl, R., Knop, E., Kruess, A., Marshall, E. J. P., Steffan-Dewenter, I.,
- Tscharntke, T., Verhulst, J., West, T. M., & Yela, J. L. (2006). Mixed biodiversity benefits of
- agri-environment schemes in five European countries. *Ecological Letters*, 9, 243–54;
- 450 discussion 254–7.
- 451 Kleijn, D., Berendse, F., Smit, R., & Gilissen, N. (2001). Agri-environment schemes do not
- effectively protect biodiversity in Dutch agricultural landscapes. *Nature*, 413, 723–725.
- Kleijn, D., & van Zuijlen, G. J. C. (2004). The conservation effects of meadow bird agreements on
- farmland in Zeeland, the Netherlands, in the period 1989–1995. *Biological Conservation*, 117,
- 455 443–45.
- Klimek, S., Marini, L., Hofmann, M., & Isselstein, J. (2008). Additive partitioning of plant diversity
- with respect to grassland management regime, fertilisation and abiotic factors. *Basic and*
- 458 Applied Ecology, 9, 626–634.
- Knop, E., Kleijn, D., Herzog, F., & Schmid, B. (2005). Effectiveness of the Swiss agri-environment
- scheme in promoting biodiversity. *Journal of Applied Ecology*, 43, 120–127.
- Konvicka, M., Benes, J., Cizek, O., Kopecek, F., Konvicka, O., & Vitaz, L. (2007). How too much
- care kills species: Grassland reserves, agri-environmental schemes and extinction of *Colias*
- 463 myrmidone (Lepidoptera: Pieridae) from its former stronghold. Journal of Insect Conservation,
- 464 *12*, 519–525.
- Lafage, D., & Pétillon, J. (2014). Impact of cutting date on carabids and spiders in a wet meadow.
- 466 Agriculture, Ecosystems & Environment, 185, 1–8.

| 467<br>468<br>469        | Lafage, D., Maugenest, S., Bouzillé, JB., & Pétillon, J. (2015). Disentangling the influence of local and landscape factors on alpha and beta diversities: opposite response of plants and ground-dwelling arthropods in wet meadows. <i>Ecological Research</i> , <i>30</i> , 1025–1035.          |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 470                      | Lafage, D., Papin, C., Secondi, J., Canard, A., & Pétillon, J. (2015). Short term recolonisation by                                                                                                                                                                                                |
| 471                      | arthropod after a spring flood, with a focus on spiders and carabids. Ecohydrology, 8, 1584-                                                                                                                                                                                                       |
| 472                      | 1599. doi: 10.1002/eco.1606                                                                                                                                                                                                                                                                        |
| 473                      | Lafage, D., Secondi, J., Georges, A., Bouzillé, JB., & Pétillon, J. (2014). Satellite-derived                                                                                                                                                                                                      |
| 474                      | vegetation indices as surrogate of species richness and abundance of ground beetles in                                                                                                                                                                                                             |
| 475                      | temperate floodplains. Insect Conservation and Diversity, 7, 327–333.                                                                                                                                                                                                                              |
| 476                      | Lambeets, K., Breyne, P., & Bonte, D. (2010). Spatial genetic variation of a riparian wolf spider                                                                                                                                                                                                  |
| 477                      | Pardosa agricola (Thorell, 1856) on lowland river banks: The importance of functional                                                                                                                                                                                                              |
| 478                      | connectivity in linear spatial systems. <i>Biological Conservation</i> , 143, 660–668.                                                                                                                                                                                                             |
| 479<br>480<br>481<br>482 | Lambeets, K., Vandegehuchte, M. L., Maelfait, JP., & Bonte, D. (2008). Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks. <i>Journal of Animal Ecology</i> , 77, 1162–74. doi:10.1111/j.1365-2656.2008.01443.x |
| 483                      | Legendre, P., Borcard, D., Blanchet, F. G., & Dray, S. (2013). PCNM: MEM spatial eigenfunction                                                                                                                                                                                                     |
| 484                      | and principal coordinate analyses.                                                                                                                                                                                                                                                                 |
| 485                      | Marshall, E. J. P., West, T. M., & Kleijn, D. (2006). Impacts of an agri-environment field margin                                                                                                                                                                                                  |
| 486                      | prescription on the flora and fauna of arable farmland in different landscapes. Agriculture,                                                                                                                                                                                                       |
| 487                      | Ecosystems & Environment, 113, 36–44.                                                                                                                                                                                                                                                              |
| 488                      | Merckx, T., & Pereira, H. M. (2014). Reshaping agri-environmental subsidies: From marginal                                                                                                                                                                                                         |
| 489                      | farming to large-scale rewilging. Basic and Applied Ecology, 16, 95-103.                                                                                                                                                                                                                           |
| 490                      | Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-Being: Biodiversity                                                                                                                                                                                                              |
| 491                      | Synthesis. Washington DC.                                                                                                                                                                                                                                                                          |

| 492 | Mommertz, S. | ., Schauer, C | C., Kösters, N | ., Lang, A., & | & Filser, J. | (1996). A ( | comparison of | f D-Vac |
|-----|--------------|---------------|----------------|----------------|--------------|-------------|---------------|---------|
|-----|--------------|---------------|----------------|----------------|--------------|-------------|---------------|---------|

- suction, fenced and unfenced pitfall trap sampling of epigeal arthropods in agro- ecosystems.
- 494 Annales Zoologici Fennici, 33, 117–124.
- Nocera, J. J., Parsons, G. J., Milton, G. R., & Fredeen, A. H. (2005). Compatibility of delayed
- cutting regime with bird breeding and hay nutritional quality. *Agriculture, Ecosystems &*
- 497 Environment, 107(2-3), 245–253. doi:10.1016/j.agee.2004.11.001
- Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L.,
- Solymos, P., Henry, M. H., Wagner, S., & Wagner H. (2013). vegan: Community Ecology
- 500 Package.
- Patrick, L. B., Fraser, L. H., & Kershner, M. W. (2008). "Brown" World Invertebrates Contradict
- "Green" World Biodiversity Theory. *Research Letters in Ecology*, 2008, 1–4.
- Pétillon, J., Courtial, C., Canard, A., & Ysnel, F. (2007). First assessment of spider rarity in Western
- France. *Revista Ibérica de Arachnologia*, 15, 106-113.
- Pétillon J., Georges A., Canard A., Lefeuvre J.-C., Bakker J. P., & Ysnel, F. (2008) Influence of
- abiotic factors on spider and ground beetles communities in different salt-marsh systems. *Basic*
- *and Applied Ecology*, 9, 743-751.
- Pétillon, J., Montaigne, W., & David, R. (2009). Hypoxic coma as a strategy to survive inundation
- in a salt-marsh inhabiting spider. *Biology Letters*, 5, 442–445.
- Pétillon J., Potier, S., Carpentier, A., & Garbutt, A. (2014). Evaluating the success of managed
- realignment for the restoration of salt marshes: lessons from invertebrate communities.
- 512 Ecological Engineering, 69, 70-75.
- Plantureux, S., Peeters, A., & Mccracken, D. (2005). Biodiversity in intensive grasslands: Effect of
- management, improvement and challenges. *Agronomy Research*, *3*, 153–164.
- R Development Core team (2013) R: A Language and Environment for Statistical Computing.

| 516                                           | Scheper, J., Holzschuh, A., Kuussaari, M., Potts, S. G., Rundlöf, M., Smith, H. G., & Kleijn, D.                                                                                                                            |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 517                                           | (2013). Environmental factors driving the effectiveness of European agri-environmental                                                                                                                                      |
| 518                                           | measures in mitigating pollinator loss – a meta-analysis. <i>Ecology Letters</i> , 16, 912–920.                                                                                                                             |
| 519                                           | Siemann, E. (1998). Experimental tests of effects of plant productivity and diversity on grassland                                                                                                                          |
| 520                                           | arthropod diversity. <i>Ecology</i> , 79, 2057–2070                                                                                                                                                                         |
| <ul><li>521</li><li>522</li><li>523</li></ul> | Varet, M., Burel, F., Lafage, D., & Pétillon, J. (2013). Age-dependent colonisation of urban habitats: a diachronic approach using carabid beetles and spiders. <i>Animal Biology</i> , <i>63</i> , 257–269.                |
| 524                                           | Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S, Fourth. ed. Springer,                                                                                                                            |
| 525                                           | New York.                                                                                                                                                                                                                   |
| 526                                           | Violle, C., Bonis, A., Plantegenest, M., Cudennec, C., Damgaard, C., Marion, B., Le Cœur, D., &                                                                                                                             |
| 527                                           | Bouzillé, JB. (2011) Plant functional traits capture species richness variations along a                                                                                                                                    |
| 528                                           | flooding gradient. Oikos, 120, 389–398.                                                                                                                                                                                     |
| 529<br>530<br>531                             | Wassen, M. J., Peeters, W. H. M., & Olde Venterink, H. (2002). Patterns in vegetation, hydrology and nutrient availability in an undisturbed river floodplain in Poland. <i>Plant Ecology</i> , <i>165</i> , 27 43.         |
| <ul><li>532</li><li>533</li><li>534</li></ul> | Zelnik, I., & Čarni, A. (2008). Distribution of plant communities, ecological strategy types and diversity along a moisture gradient. <i>Community Ecology</i> , <i>9</i> , 1–9.<br>http://doi.org/10.1556/ComEc.9.2008.1.1 |
| 535                                           | Zulka, K. P. (1994). Carabids in a Central Europe floodplain: species distribution and survival                                                                                                                             |
| 536                                           | during inundations. In K. Desender et al. (Ed.), Carabid Beetles: Ecology and Evolution.                                                                                                                                    |
| 537                                           | Kluwer Academic Publishers, Netherlands.                                                                                                                                                                                    |
| 538                                           |                                                                                                                                                                                                                             |
| 539                                           |                                                                                                                                                                                                                             |
| 540                                           |                                                                                                                                                                                                                             |

| 541 | Figure caption                                                                                        |
|-----|-------------------------------------------------------------------------------------------------------|
| 542 | Fig. 1. Location of the study sites in the Loire watershed (France). Grey surfaces indicate meadows   |
| 543 | and black dots correspond to the sampled meadows.                                                     |
| 544 | Fig. 2. CCA on spider species. Sites under AES are represented by triangles and sites not under       |
| 545 | AES by circles. Only species most contributing to axes are represented. ( CHEPEN:                     |
| 546 | Cheiracanthium pennyi, CRUSTI: Crustulina sticta, DIPLAT: Diplocephalus latifrons, DRALAP:            |
| 547 | Drassodes lapidosus, ENOOVA: Enoplognatha ovata, EUOFRO: Euophrys frontalis, EUOHER:                  |
| 548 | Euophrys herbigrada, EVAARC: Evarcha arcuata, ERIVAG: Erigone vagans, HAPSIG:                         |
| 549 | Haplodrassus signifer, HYPPYG: Hypsosinga pygmaea, LARCOR: Larinioides cornutus,                      |
| 550 | LEPZYM: Leptyphantes zimmermanni, MEIBEA: Meioneta beata, MEISIM: Meioneta                            |
| 551 | simplicitarsis, METPRO: Metopobactrus prominulus, NEOSUA: Neottiura suaveolens, OEDAGR:               |
| 552 | Oedothorax agrestis, OZYRAU: Ozyptila rauda, OZYTRU: Ozyptila trux, PARAGR: Pardosa                   |
| 553 | agrestis, PARPAL: Pardosa palustris, PISMIR: Pisaura mirabilis, PORMIC: Porrhomma                     |
| 554 | microphtalmum, PORPYG: Porrhomma pygmaeum, SAVFRO: Savignia frontata, SILELE:                         |
| 555 | Silometopus elegans, STEPHA: Steatoda phalerata, THASTRE: Thanatus striatus, THEBIM:                  |
| 556 | Theridion bimaculatum, THEIMP: Theridion impressum, TIBOBL: Tibelus oblongus, TRISAX:                 |
| 557 | Trichoncus saxicola, TROSPI: Trochosa spinipalpis, XERNEM: Xerolycosa nemoralis, XYSERR:              |
| 558 | Xysticus erraticus, ZELCIV: Zelotes civicus, ZORPAR: Zora parallela.                                  |
| 559 |                                                                                                       |
| 560 | Fig. 3. Variations in mean response variables depending on significant factors by GLM (different      |
| 561 | successive letters indicate significant differences in means according to Tukey's post-hoc tests with |
| 562 | Bonferroni correction). (A) Mean estimated spider richness by fertiliser class (Free: not under       |
| 563 | AES). (B) Mean estimated spider richness by moisture gradient (1 to 5: increasing moisture            |
| 564 | gradient). (C) Spider abundance per 0.12m² by fertiliser class. (D): Spider mean β-diversity by       |
|     |                                                                                                       |

fertiliser class. (E) Spider mean  $\beta$ -diversity by cutting date (Free: not under AES, CD1: before 20th June, CD2: between 20th June and 1st July, CD3: after 1st July). (F) Carabid abundance by moisture gradient. (G) Carabid mean  $\beta$ -diversity by flooding (Yes: sites flooded during summer 2013, No: sites not flooded). (H) Plant Shannon Index by moisture gradient. (I) Plant mean  $\beta$ -diversity by flooding. (J) Plant mean  $\beta$ -diversity by moisture gradient. (K) Number of rare plant species by moisture gradient. The horizontal bar in box-plots indicates the median, the ends of the boxes indicate the interquartile range, and the whiskers indicate the 10th and 90th quantiles.



Figure 1. Lafage and Pétillon, 2015



576 Figure 2 : Lafage and Pétillion, 2015



Figure 3: Lafage and Pétillon, 2015

579

Table 1. Number of sites per class. Contract: whether or not sites are under AES contract;

Fertilisers: classes of fertiliser input alowed in kg/Ha; Cutting date: classes of cutting dates (Free:

not under AES, CD1: before 20th June, CD2: between 20th June and CD3: 1st July, after 1st July.);

Flooding: whether or not site has been flooded during summer 2013; Moisture: classes of Ellenberg

inidicator value for moisture from low (1) to very high (5).

585

583

584

586

|              | classe | #sites |
|--------------|--------|--------|
| Contract     | Yes    | 42     |
|              | No     | 41     |
| Fertilisers  | 0      | 15     |
|              | 30     | 17     |
|              | 60     | 10     |
|              | Free   | 41     |
| Cutiing date | CD1    | 12     |
|              | CD2    | 14     |
|              | CD3    | 16     |
|              | Free   | 41     |
| Flooding     | No     | 33     |
|              | Yes    | 50     |
| Moisture     | 1      | 16     |
|              | 2      | 15     |
|              | 3      | 28     |
|              | 4      | 27     |
|              | 5      | 6      |

Table 2. Per site means  $\pm$  s.e. of response variables for fields under AES or not (Free), with F and P values for fixed factor (contract), within-subject factor (site) and their interaction (R-ANOVA). Abundance: total number of individuals per  $0.12m^2$ . Estimated species richness: average of four non-parametric estimators based on species incidence: Chao1, Jacknife1, Jacknife2 and Bootstrap.

|          |                           | AES             | Free             | Contract                   | Site            | Interaction      |
|----------|---------------------------|-----------------|------------------|----------------------------|-----------------|------------------|
|          |                           | Mean $\pm$ s.e. | Mean $\pm$ s.e.  | F P                        | F P             | F P              |
| Spiders  | Abundance                 | $2.24 \pm 1.84$ | $1.83 \pm 1.19$  | 0.96 0.338                 | 2.12 0.158      | 0.04 0.838       |
|          | Esimated species richness | 14.74 ± 7.14    | $10.50 \pm 3.97$ | 3.98 0.060                 | 0.24 0.630      | 0.143 0.709      |
| Carabids | Abundance                 | $1.02 \pm 1.01$ | $1.64 \pm 1.47$  | 1.53 0.228                 | 0.06 0.804      | 0.05 0.833       |
|          | Esimated species richness | $2.08 \pm 2.40$ | $3.45 \pm 3.46$  | 1.13 0.298                 | 2.47 0.129      | 0.10 0.760       |
| Plants   | Shannon Index             | $2.15 \pm 0.42$ | $2.24 \pm 0.37$  | 0.19 0.667                 | 2.08 0.162      | 0.02 0.883       |
|          | EVI                       | $5366 \pm 1187$ | $5135 \pm 1097$  | 0.31 0.594                 | 0.29 0.594      | 1.43 0.243       |
|          | Rarity                    | $4.73 \pm 2.81$ | $2.06 \pm 1.98$  | 7.9 <b>0.00</b> 9 <b>9</b> | 1.8 0.18<br>7 4 | 0.68 0.41<br>3 7 |

Table 3. GLM selected by stepwise procedure for spider, carabid and plant abundance / biomass (approximated by EVI index), estimated richness ( $\alpha$ -diversity),  $\beta$ -diversity, and rarity (for plants only).

| Group    | Response                                 | Variables kept | F    | P     |
|----------|------------------------------------------|----------------|------|-------|
|          | Estimated species richness               |                |      |       |
| Spiders  | (α-diversity)                            | Fertilisers    | 4.28 | 0.008 |
|          |                                          | Moisture       | 4.45 | 0.003 |
|          |                                          | F x VT         | 1.92 | 0.101 |
|          | Abundance                                | Fertilisers    | 3.33 | 0.024 |
|          | Toundance                                |                |      | >     |
|          |                                          | Moisture       | 1.75 | 0.150 |
|          |                                          | F x VT         | 1.99 | 0.090 |
|          |                                          |                |      |       |
|          | β-diversity                              | Fertilisers    | 1.59 | 0.020 |
|          |                                          | Cutting date   | 1.69 | 0.020 |
|          |                                          |                |      |       |
| Carabids | Estimated species richness (α-diversity) |                |      |       |
|          | (u-diversity)                            | -              | -    | -     |
|          | Abundance                                | Fertilisers    | 1.16 | 0.330 |
|          |                                          | Moisture       | 2.89 | 0.028 |
|          |                                          | F x VT         | 2.11 | 0.074 |
|          | O dissamiles                             | Elandina       | 1.02 | 0.010 |
|          | β-diversity                              | Flooding       | 1.03 | 0.010 |

| Plants | Shannon Index (α-diversity) | Cutting date | 0.03 | 0.993  |  |
|--------|-----------------------------|--------------|------|--------|--|
|        | (u-diversity)               | _            |      |        |  |
|        |                             | Fertilisers  | 1.21 | 0.303  |  |
|        |                             | Moisture     | 7.47 | <0.001 |  |
|        | EVI                         | Cutting date | 0.03 | 0.993  |  |
|        |                             | Fertilisers  | 1.21 | 0.303  |  |
|        |                             | Moisture     | 7.48 | <0.001 |  |
|        |                             |              |      |        |  |
|        | β-diversity                 | Fertilisers  | 1.99 | 0.010  |  |
|        |                             | Cutting date | 2.35 | 0.010  |  |
|        |                             | Flooding     | 3.51 | 0.010  |  |
|        |                             | Moisture     | 8.76 | 0.010  |  |
|        |                             |              |      |        |  |
|        | Rarity                      | Moisture     | 5.23 | 0.025  |  |
|        |                             |              |      |        |  |
|        |                             |              |      |        |  |
|        |                             |              |      |        |  |
|        |                             |              |      |        |  |
|        |                             |              |      |        |  |