

Approximation Algorithms

- Q. Suppose I need to solve an NP-hard problem. What should I do?
- A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.

- Solve problem to optimality.
- Solve problem in poly-time.
- Solve arbitrary instances of the problem.

ρ -approximation algorithm.

- Guaranteed to run in poly-time.
- Guaranteed to solve arbitrary instance of the problem
- \blacksquare Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without even knowing what optimum value is!

11.1 Load Balancing

Load Balancing

Input. m identical machines; n jobs, job j has processing time ti.

- Job j must run contiguously on one machine.
- A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The load of machine i is L_i = $\Sigma_{j \in J(i)} t_j$.

Def. The makespan is the maximum load on any machine $L = \max_i L_i$.

Load balancing. Assign each job to a machine to minimize makespan.

Load Balancing: List Scheduling

List-scheduling algorithm.

- Consider n jobs in some fixed order.
- Assign job j to machine whose load is smallest so far.


```
List-Scheduling (m, n, t_1, t_2, ..., t_n) {
    for i = 1 to m {
        L_i \leftarrow 0 \leftarrow load on machine i
        J(i) \leftarrow \varphi \leftarrow jobs assigned to machine i
    }

for j = 1 to n {
        i = argmin_k \ L_k \leftarrow machine i has smallest load
        J(i) \leftarrow J(i) \ U \ \{j\} \leftarrow assign job j to machine i

Textbook, Ti is used instead of Li

return J(1), ..., J(m)
}
```

Implementation. O(n log m) using a priority queue.

Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan $L^* \ge \max_j t_j$. Pf. Some machine must process the most time-consuming job. •

Lemma 2. The optimal makespan $L^* \ge \frac{1}{m} \sum_j t_j$. Pf.

- \blacksquare The total processing time is $\Sigma_i \, t_i$.
- One of m machines must do at least a 1/m fraction of total work.

Copyright 2000, Kevin Wayne

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load Li of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is L_i t_j \Rightarrow L_i t_j \leq L_k for all $1 \leq k \leq m$.

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load L_i of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is L_i t_j \Rightarrow L_i t_j \leq L_k for all $1 \leq k \leq m$.
- Sum inequalities over all k and divide by m:

Now
$$L_i = \underbrace{(L_i - t_j)}_{\leq L^*} + \underbrace{t_j}_{\leq L^*} \leq 2L^*.$$

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in **descending** order of processing time, and then run list scheduling algorithm.

```
\begin{split} & \text{LPT-List-Scheduling} \, (\text{m}, \ \text{n}, \ t_1, t_2, \dots, t_n) \, \, \{ \\ & \text{Sort jobs so that} \, t_1 \geq t_2 \geq \dots \geq t_n \end{split} & \text{for i = 1 to m } \{ \\ & L_i \leftarrow 0 \qquad \longleftarrow \text{ load on machine i } \\ & J(i) \leftarrow \phi \qquad \longleftarrow \text{ jobs assigned to machine i } \} & \text{for j = 1 to n } \{ \\ & i = \text{argmin}_k \ L_k \qquad \longleftarrow \text{ machine i has smallest load } \\ & J(i) \leftarrow J(i) \ U \, \{j\} \qquad \longleftarrow \text{ assign job j to machine i } \\ & L_i \leftarrow L_i + t_j \qquad \longleftarrow \text{ update load of machine i } \} \\ & \text{return J(1), ..., J(m)} \} \end{split}
```

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal. Pf. Each job put on its own machine. •

Lemma 3. If there are more than m jobs, $L^* \ge 2 t_{m+1}$.

- Consider first m+1 jobs t₁, ..., t_{m+1}.
- Since the t_i 's are in descending order, each takes at least t_{m+1} time.
- There are m+1 jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs. ■

Theorem. LPT rule is a 3/2 approximation algorithm.

Pf. Same basic approach as for list scheduling.

11.2 Center Selection

Center Selection Problem

Input. Set of n sites s_1 , ..., s_n and integer k > 0.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Center Selection Problem

Input. Set of n sites s_1 , ..., s_n and integer k > 0.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Notation.

- dist(x, y) = distance between x and y.
- dist(s_i , C) = min_{c∈C} dist(s_i , c) = distance from s_i to closest center.
- $r(C) = \max_i dist(s_i, C)$

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

- dist(x, x) = 0 (identity)
- dist(x, y) = dist(y, x) (symmetry)
- $dist(x, y) \le dist(x, z) + dist(z, y)$ (triangle inequality)

16

Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the plane, dist(x, y) = Euclidean distance.

Remark: search can be infinite!

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!

18

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site farthest from any existing center.

```
Greedy-Center-Selection(k, n, s<sub>1</sub>,s<sub>2</sub>,...,s<sub>n</sub>) {

C = $\phi$
Select any site s and add s to C;
repeat k-1 times {

Select a site s<sub>i</sub> with maximum dist(s<sub>i</sub>, C)
Add s<sub>i</sub> to C

}

site farthest from any center
return C
}
```

Observation. Upon termination all centers in $\mathcal C$ are pairwise at least $r(\mathcal C)$ apart.

Pf. By construction of algorithm.

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$. Pf. (by contradiction) Assume $r(C^*) < \frac{1}{2} r(C)$.

- For each site c_i in C, consider ball of radius $\frac{1}{2}$ r(C) around it.
- Exactly one c_i* in each ball; let c_i be the site paired with c_i*.
- Consider any site s and its closest center c;* in C*.
- dist(s, C) \leq dist(s, c_i) \leq dist(s, c_i*) + dist(c_i*, c_i) \leq 2r(C*).
- Thus $r(C) \le 2r(C^*)$. Δ -inequality $\int_{C^*} r(C^*) \operatorname{since} c_i^* is closest center$

20

Center Selection

Theorem. Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$.

Theorem. Greedy algorithm is a 2-approximation for center selection problem.

Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.

e.g., points in the plane

11.4 The Pricing Method: Vertex Cover

Weighted Vertex Cover

Definition. Given a graph G = (V, E), a vertex cover is a set $S \subseteq V$ such that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight.

weight = 11

Pricing Method

Pricing method. Each edge must be covered by some vertex. Edge e = (i, j) pays price $p_e \ge 0$ to use vertex i and j.

Fairness. Edges incident to vertex i should pay $\leq w_i$ in total.

for each vertex i: $\sum_{e=(i,j)} p_e \le w_i$

Lemma. For any vertex cover S and any fair prices p_e : $\sum_e p_e \le w(S)$. Pf.

$$\sum_{e \in E} p_e \ \leq \ \sum_{i \in S} \ \sum_{e = (i,j)} p_e \ \leq \ \sum_{i \in S} w_i \ = \ w(S).$$

each edge e covered by at least one node in S

sum fairness inequalities for each node in S

25

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

```
Weighted-Vertex-Cover-Approx(G, w) {

foreach e in E

pe = 0

while (∃ edge i-j such that neither i nor j are tight)

select such an edge e

increase pe as much as possible until i or j tight
}

S ← set of all tight nodes

return S
}
```


Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let S = set of all tight nodes upon termination of algorithm. S is a vertex cover: if some edge i-j is uncovered, then neither i nor j is tight. But then while loop would not terminate.
- Let S^* be optimal vertex cover. We show $w(S) \le 2w(S^*)$.

$$w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e = (i,j)} p_e \leq \sum_{i \in V} \sum_{e = (i,j)} p_e = 2 \sum_{e \in E} p_e \leq 2w(S^*).$$
all nodes in S are tight
$$S \subseteq V,$$
 each edge counted twice fairness lemma prices ≥ 0