

Categorical Plot Types

Chris Moffitt
Instructor

Categorical Data

- Data which takes on a limited and fixed number of values
- Normally combined with numeric data
- Examples include:
 - Geography (country, state, region)
 - Gender
 - Ethnicity
 - Blood type
 - Eye color

Plot types - show each observation

Plot types - abstract representations

Plot types - statistical estimates

Plots of each observation - stripplot

Plots of each observation - swarmplot

Abstract representations - boxplot

Abstract representation - violinplot

Abstract representation - lvplot

Statistical estimates - barplot

Statistical estimates - pointplot

Statistical estimates - countplot

sns.countplot(data=df, y="DRG Code", hue="Region")

Let's practice!

Regression Plots

Chris Moffitt Instructor

Bicycle Dataset

- Aggregated bicycle sharing data in Washington DC
- Data includes:
 - Rental amounts
 - Weather information
 - Calendar information
- Can we predict rental amounts?

Plotting with regplot

```
sns.regplot(data=df, x='temp', y='total_rentals', marker='+')
```


Evaluating regression with residplot

- A residual plot is useful for evaluating the fit of a model
- Seaborn supports through residplot function

```
sns.residplot(data=df, x='temp', y='total_rentals')
```


Polynomial regression

• Seaborn supports polynomial regression using the order parameter

```
sns.regplot(data=df, x='temp', y='total_rentals', order=2)
```


residplot with polynomial regression

```
sns.residplot(data=df, x='temp', y='total rentals', order=2)
```


Categorical values

```
sns.regplot(data=df, x='mnth', y='total_rentals', x_jitter=.1, order=2)
```


Estimators

• In some cases, an x_estimator can be useful for highlighting trends

Binning the data

- x bins can be used to divide the data into discrete bins
- The regression line is still fit against all the data

```
sns.regplot(data=df, x='temp', y='total_rentals', x_bins=4)
```


Let's practice!

Matrix Plots

Chris Moffitt Instructor

Getting data in the right format

- Seaborn's heatmap () function requires data to be in a grid format
- pandas crosstab() is frequently used to manipulate the data

weekday	0	1	2	3	4	5	6
mnth							
1	1816.0	1927.0	2568.0	2139.0	2513.0	2446.0	1957.0
2	2248.0	2604.0	2824.0	2813.0	2878.0	2933.0	2266.0
3	3301.0	3546.0	3574.0	3670.0	3817.0	3926.0	3939.0
4	4417.0	4516.0	4556.0	4331.0	4764.0	4387.0	4446.0
5	5320.0	4512.0	5025.0	5119.0	5893.0	5751.0	5978.0
6	5940.0	5478.0	5681.0	5701.0	5622.0	5616.0	6344.0
7	5298.0	5792.0	5844.0	5814.0	5624.0	5406.0	5232.0
8	4703.0	5518.0	5930.0	6077.0	6038.0	5958.0	5224.0
9	6160.0	5637.0	5184.0	5668.0	5486.0	5747.0	6394.0
10	4735.0	4632.0	5065.0	5505.0	5537.0	5623.0	5445.0

Build a heatmap

Customize a heatmap

Centering a heatmap

Seaborn support centering the heatmap colors on a specific value

Plotting a correlation matrix

- Pandas corr function calculates correlations between columns in a dataframe
- The output can be converted to a heatmap with seaborn

sns.heatmap(df.corr())

Let's practice!