【集合论】二元关系(二元关系记法 | A 到 B 的 二元关系 | 二元关系个数 | 二元关系示例)

文章目录

- 一、二元关系
- 二、二元关系记法
- 三、A到B的二元关系
- 四、A到B的二元关系个数
- 五、A到B的二元关系举例

一、二元关系

n 元关系:

元素 都是 有序 n 元组的集合;

n 元关系示例:

3 元关系: $F_1 = \{ <1, 2, 3 >, < a, b, c >, < 数学, 物理, 化学 > \}$

 F_1 是 3 元关系, 其每个元素都是 有序 3 元组;

4 元关系: $F_2 = \{ <1, 2, 3, 4>, <a,b,c,d>, < 语文, 数学, 物理, 化学> \}$

 F_2 是 4 元关系, 其每个元素都是 有序 4 元组;

上述有序 n 元组, 个数相同, 元素性质可以不同;

二、二元关系记法

如果 F 是二元关系 (F 是有序 2 元组 集合)

则有:

热门

6 **2**4 $<\mathbf{x},\mathbf{y}>\in\mathbf{F}$

 \Leftrightarrow

x与y有F关系

 \Leftrightarrow

xFy

二元关系记法:

- ① 中缀记法 (infix): xFy
- ② 前缀记法 (prefix): F(x,y),或Fxy
- ③ 后缀记法 (suffix) : < x, y > \in F , 或 xyF

如:2 < 5,2小于5;

- ① 中缀记法 (infix) : 2 < 5
- ② 前缀记法 (prefix): <(2,5)
- ③ 后缀记法 (suffix): $<2,5>\in<$

三、A到B的二元关系

A 到 B 的二元关系概念:

 $A \times B$ 的 任意子集 是 A 到 B 的二元关系

 \Leftrightarrow

 $R\subseteq A\times B$

 \Leftrightarrow

 $R \in P(A \times B)$

A 到 B 的二元关系 其中可能有 1 个集合 , 2 个集合 , \cdots , n 个集合 ;

四、A到B的二元关系个数

A **到** B **的二元关系个数**:

 $|\mathbf{A}| = \mathbf{m}$, $|\mathbf{B}| = \mathbf{n}$

A 集合元素个数 m 个 , B 集合元素个数 n 个 ;

有序对个数 : $|A \times B| = mn$

一、二元決 系记法 、E

热门

二元关系 个数: $|P(A \times B) = 2^{mn}|$, 即上述 mn 个有序对总集合的 幂集 个数;

A 到 B 的二元关系个数 = $A \times B$ 幂集个数 = 2^{mn} 个

五、 A 到 B 的二元关系举例

 $A=\{a_1,a_2\}$, $B=\{b\}$

A 集合 与 B 集合的卡氏积是:

 $A \times B = \{\emptyset, \{\langle a_1, b \rangle\}, \{\langle a_2, b \rangle\}\}$

分析: 其中有 3 个有序对,其二元关系个数有 $2^{2\times 1}=4$ 个,即 上述 有序对集合的幂集,分别是 有 0 个有序对的个数 0 个,1 个有序对的个数 2 个,2 个有序对个数 1 个;

A 集合 到 B 集合的 二元关系: 有 $4 \land$;

 $\mathbf{R_1} = \emptyset$, $\mathbf{a_1}$ 与 \mathbf{b} 没有关系, $\mathbf{a_2}$ 与 \mathbf{b} 没有关系;

 $R_2 = \{ \langle a_1, b \rangle \}$, $a_1 = b$ 有关系, $a_2 = b$ 没有关系;

 $R_3 = \{ \langle a_2, b \rangle \}$, $a_1 = b$ 有关系, $a_2 = b$ 没有关系;

 $R_4 = \{ \langle a_1, b \rangle, \langle a_2, b \rangle \}$, $a_2 = b$ 有关系, $a_1 = b$ 有关系;

B 集合与 A 集合的卡氏积是:

 $A \times B = \{\emptyset, \{\langle b, a_1 \rangle\}, \{\langle b, a_2 \rangle\}\}$

分析: 其中有3个有序对,其二元关系个数有 $2^{2\times 1}=4$ 个,即上述有序对集合的幂集,分别是有0个有序对的个数0个,1个有序对的个数2个,2个有序对个数1个;

B 集合 到 A 集合的 二元关系: 有 $4 \land$;

 $\mathbf{R}_5 = \emptyset$, b 与 \mathbf{a}_1 没有关系, b 与 \mathbf{a}_2 没有关系;

 $R_6 = \{ < b, a_1 > \}$, b与 a_1 有关系, b与 a_2 没有关系;

 $R_7 = \{ \langle b, a_2 \rangle \}$, b 与 a_1 没有关系, b 与 a_2 有关系;

 $R_8 = \{ < b, a_1 >, < b, a_2 > \}$, b与 a_1 有关系, b与 a_2 有关系;

离散数学 - 二元关系

PGZXB的博客 ① 1885

二元关系基本概念 AxBAxBAxB的子集叫做A到B的一个二元关系,当A=BA=BA=B时叫做A上的二...

【集合论】等价关系个数计算问题(有... 让学习成为一种习惯(韩曙亮の技术博客) ◎ 1万+等价关系与划分对应问题 第二类斯特林数计算公式 4元集等价关系计算 6元集等价关系计算

评论 2条>

写评论

學 韩

韩曙亮 <mark>热评</mark> 二元关系 是 有序对集合, 二元关系中可能包含 0 个有序对, 1 个有序对, 2 个 有序对 ...

离散数学复习——二元关系_

【集合论】

一、 二元夬 系记法 、 Ξ

热门