Let
$$\frac{3}{(3r+2)(3r+5)} = \frac{A}{3r+2} + \frac{B}{3r+5}$$

$$= \frac{A(3r+5) + B(3r+2)}{(3r+2)(3r+5)}$$

$$3 = A(3r+5) + B(3r+2)$$

$$= (3A+3B)r + 5A + 2B$$

$$3A + 3B = 0 \quad 5A + 2B = 3$$

$$A + B = 0$$

$$3A = 3$$

$$A = 1$$

$$B = -1$$

$$\frac{3}{(3r+2)(3r+5)} = \frac{1}{3r+2} - \frac{11}{3r+5}$$
Since $\frac{3}{(3r+2)(3r+5)} = \frac{1}{3r+2} - \frac{1}{3r+5}$

$$\frac{A}{(3r+2)(3r+5)} = \frac{2}{3} \sum_{r=1}^{n} \frac{3}{(3r+2)(3r+5)}$$

 $= \frac{2}{3} \sum_{r=1}^{n} \frac{1}{3r+2} - \frac{1}{3r+5}$

$$= \frac{2}{3} \left(\frac{1}{5} - \frac{1}{8} \right)$$

$$+ \frac{1}{3} - \frac{1}{11}$$

$$+ \frac{1}{3} - \frac{1}{14}$$

$$+ \frac{1}{3n + 4} - \frac{1}{3n + 2}$$

$$+ \frac{1}{3n + 2} - \frac{1}{3n + 5}$$

$$= \frac{2}{3} \left(\frac{1}{5} - \frac{1}{3n + 5} \right)$$

$$= \frac{2}{3} \left(\frac{3n + 5 - 5}{5(3n + 5)} \right)$$

$$= \frac{2}{3} \left(\frac{3n + 5 - 5}{5(3n + 5)} \right)$$

$$= \frac{2}{3} \left(\frac{3n + 5 - 5}{5(3n + 5)} \right)$$

2.
$$4x^{4} - 5x^{3} + 6x^{2} + x - 9 = 0$$

 $\alpha, \beta, \gamma, \delta$ are the roots
 $2\alpha^{2} + 1, 2\beta^{2} + 1, 2\gamma^{2} + 1, 2\delta^{2} + 1$
Let $u = 2\alpha^{2} + 1$
 $\alpha = \pm \sqrt{\frac{u-1}{2}}$
 α is a root
 $4\alpha^{4} - 5\alpha^{3} + 6\alpha^{2} + \alpha - 9 = 0$
 $4\left(\pm \sqrt{\frac{u-1}{2}}\right)^{4} - 5\left(\pm \sqrt{\frac{u-1}{2}}\right)^{3}$
 $4\left(\pm \sqrt{\frac{u-1}{2}}\right)^{2} \pm \sqrt{\frac{u-1}{2}} - 9 = 0$
 $4\left(\frac{u-1}{2}\right) \pm \sqrt{\frac{u-1}{2}} - 9 = 0$
 $4\left(\frac{u^{2} - 2u + 1}{4}\right) + 3(u-1) - 9$
 $4\left(\frac{u^{2} - 2u + 1}{4}\right) + 3(u-1) - 9$

$$u^{2} - 2u + 1 + 3u - 3 - 9$$

$$= \pm \sqrt{u - 1} \left(\frac{5(u - 1)}{2} - 1\right)$$

$$u^{2} + u - 11 = \pm \sqrt{u - 1} \left(\frac{5u - 6}{2}\right)$$

$$(u^{2} + u - 11)^{2} = \left(\frac{u - 1}{2}\right)\left(\frac{5u - 7}{2}\right)^{2}$$

$$u^{4} + u^{3} - 11u^{2} + u^{3} + u^{2} - 11u$$

$$-11u^{2} - 11u + 121$$

$$= \left(\frac{u - 1}{2}\right)\left(\frac{25u^{2} - 70u + 49}{4}\right)$$

$$8(u^{4} + 2u^{3} - 21u^{2} - 22u^{2} + 121)^{3} = 1$$

$$= (u - 1)(25u^{2} - 70u + 49)$$

$$8u^{4} + 16u^{3} - 168u^{2} - 176u + 968$$

$$= 25u^{3} - 70u^{2} + 49u - 25u^{2} + 70u - 49$$

$$8u^{4} - 9u^{3} - 7u^{2} - 295u + 1017 = 0$$
The equation having roots
$$2\alpha^{2} + 1, 2\beta^{2} + 1, 2r^{2} + 1, 28^{2} + 1 \text{ is}$$

$$8u^{4} - 9u^{3} - 7u^{2} - 295u + 1017 = 0$$

$$8u^{4} - 9u^{3} - 7u^{2} - 295u + 1017 = 0$$

3.
$$q_n = 2 \cdot 5^{2n-1} + 2^{n-1} \cdot 3^{n+1}$$

 $q_1 = 2 \cdot 5^1 + 2^0 3^2 = 10 + 9 = 19$
 $q_2 = 2 \cdot 5^3 + 2^1 3^3 = 250 + 54 = 304 = 19 \times 16$
 $q_3 = 2 \cdot 5^5 + 2^2 3^4 = 6574 = 19 \times 346$.

when n=1 $q_1 = 19$. True when n=1Suppose $q_k = 2 \cdot 5^{2K-1} + 2^{K-1} \cdot 3^{K+1}$ is divisible by 19.

Consider $q_{K+1} = 2 \cdot 5^{2(K+1)-1} + 2^{(K+1)-1} \cdot 3^{(K+1)+1}$ $= 2 \cdot 5^{2K+1} + 2^{K} \cdot 3^{K+2}$ $= 2 \cdot 5^{2} \cdot 5^{2K-1} + 2 \cdot 2^{K-1} \cdot 3 \cdot 3^{K+1}$

 $= 50.5^{2k-1} + 6.2^{k-1}.3^{k+1}$ $= 6(2.5^{k-1} + 2^{k-1}.3^{k+1}) + 38.5^{2k-1}$

divisible by 19 $= 6(9_K) + 19 \times 2 \times 5^{2K-1}$

=> an is divisible by 19

=> an is divisible by n7/1

4.
$$\times + y + z = 0$$

 $\times + ky + z = 0$
 $\times + y + k^{2}z = 0$
 $-0 + 3 : (k-1)y = 0$
 $(k+1)z = 0$
When $k = 1 : 0z = 0$
Let $z = s, s \in R$
Let $y = t, t : R$
 $x = -s - t$
When $k \neq -1, 0z = 0$
Let $z = s, s \in R$
 $y = 0$
 $y = 0$

× = 0

5 a)
$$\times + 2y - 4z = 3$$

 $2 \times + 3y - 5z = 1$
 $-2 \times 0 + 2$;
 $\times + 2y - 4z = 3$
 $-y + 3z = -5$
 $-y + 3z = -5$
Let $z = s, s \in R$
 $y = 3s + 5$
 $\times + 6s + 10 - 4s = 3$
 $\times = -2s - 7$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2s - 7 \\ 3s + 5 \\ s \end{pmatrix}$
 $= \begin{pmatrix} -7 \\ 5 \\ 0 \end{pmatrix} + s \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$
The equation of the line of intersection of the planes $\times + 2y - 4z = 3$
and $2x + 3y - 5z = 1$ is $\begin{cases} z = \begin{pmatrix} -7 \\ 5 \\ 3 \end{pmatrix} + s \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$

The distance of the point (1, 4, -3) from the line of intersection of the two planes is $\begin{pmatrix} 8 \\ -1 \\ -3 \end{pmatrix}$ sin Θ

$$\begin{pmatrix} 8 \\ -1 \\ -3 \end{pmatrix} \times \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 8 & -1 & -3 \\ -2 & 3 & 1 \end{vmatrix}$$

$$= \begin{pmatrix} 8 \\ -2 \\ 22 \end{pmatrix}$$

$$= \hat{2} \begin{pmatrix} 4 \\ -1 \\ 11 \end{pmatrix}$$

$$\begin{vmatrix} \binom{8}{-1} \\ \binom{-1}{-3} \end{vmatrix} \times \begin{pmatrix} \binom{-2}{3} \\ \binom{1}{-3} \end{vmatrix} = \begin{vmatrix} \binom{8}{-1} \\ \binom{-1}{-3} \end{vmatrix} \begin{vmatrix} \binom{-2}{3} \\ \binom{-1}{-3} \end{vmatrix} \sin \theta$$

$$2\sqrt{138} = \sqrt{14} \begin{vmatrix} \binom{8}{-1} \\ \binom{-3}{-3} \end{vmatrix} \sin \theta$$

$$2\sqrt{138} = \sqrt{14} \begin{vmatrix} \binom{8}{-1} \\ \binom{-1}{-3} \end{vmatrix} \sin \theta$$

$$\begin{vmatrix} \binom{8}{-1} \\ \binom{-3}{-3} \end{vmatrix} \sin \theta = \frac{2\sqrt{138}}{\sqrt{14}}$$

$$= \frac{2\sqrt{69}}{\sqrt{7}}$$

$$= 2\sqrt{\frac{69}{7}}$$

6 i)
$$y = \frac{2x^2 - 8x + 8}{x^2 - 16} = 2 + \frac{40 - 8x}{x^2 - 16}$$

Let $\frac{40 - 8x}{(x - 4)(x + 4)} = \frac{Q}{x - 4} + \frac{R}{x + 4}$
 $40 - 8x = Q(x + 4) + R(x - 4)$
 $x = 4$, $8 = Q(8)$ $Q = 1$
 $x = -4$, $72 = R(-8)$ $R = -9$
 $y = 2 + \frac{1}{x - 4} - \frac{9}{x + 4}$

ii) Asymptotes:
$$y = 2$$

 $x = 4$
 $x = -4$

iii)
$$\frac{dy}{dx} = -\frac{1}{(x-4)^2} + \frac{9}{(x+4)^2}$$

$$-9(x-4)^2 - (x+4)^2 = 0$$

$$8x^2 - 80x + 128 = 0$$

$$x^2 - 10x + 16 = 0$$

$$(x-2)(x-8) = 0$$

(iii) (continue)
$$x = 2, y = 0$$
 (2,0)
 $x = 8, y = \frac{3}{2}$ (8, $\frac{3}{2}$)

