LABORATORIO

0

PAR DIFERENCIAL

OBJETIVOS:

Estudiar los circuitos del par diferencial con MOSFET y BJT.

En este laboratorio el estudiante desarrollará las siguientes destrezas:

- Comprensión de las excitaciones de circuitos en Modo Común y Modo Diferencial.
- Análisis y diseño de circuitos con par diferencial.
- Selección de los resistores apropiados para satisfacer la ganancia de voltaje esperada.
- Simulación de circuitos y su comparación con los resultados calculados.
- Implementación experimental del circuito del amplificador y comparación de su desempeño con los resultados teóricos y simulados.

MATERIALES:

- 2 transistor Mosfet de enriquecimiento canal N (2N7000) y su hoja de especificaciones (datasheet)
- 2 transistor BJT NPN (2N2222, NTE 2321, etc.) y su hoja de especificaciones
- 1 placa de pruebas (Protoboard or Breadboard)
- Resistores
- Multímetro
- Alambres para conexiones
- 1 generador de funciones (function generator)
- 1 osciloscopio (oscilloscope)
- 3 fuentes de voltaje DC (también puede usar fuentes duales)

PARTE I: EXCITACIONES EN MODO COMÚN Y MODO DIFERENCIAL

Arme el circuito de par diferencial mostrado en la figura L0.1, en el programa de simulación que utilice (Mulsism, Workbench, etc.).

Figura L0.1: Excitación en Modo Común y Modo Diferencial

Ajuste las configuraciones de las fuentes de voltaje variables a un mínimo de -1V y un máximo de +1V, con incrementos del 5%.

1.1 Con los valores de Kn y Vt que encuentre en las hojas de características del transistor, calcule los voltajes y las corrientes en los drenadores de los transistores, cuando V1 = V2 = 0 V. Compare con los resultados simulados.

Calculados	Simulados
$V_{D1} = V_{D2} = \underline{\hspace{1cm}}$	$V_{D1} = V_{D2} = \underline{\hspace{1cm}}$
$I_{D1} = I_{D2} = \underline{\hspace{1cm}}$	$I_{D1} = I_{D2} = \underline{\hspace{1cm}}$
$V_{GS1} = V_{GS2} = $	$V_{GS1} = V_{GS2} =$

1.2 Para ver el comportamiento del par diferencial con excitación en Modo Común, simule y rellene la siguiente tabla de valores.

$V1 = V2 = V_{MC}$	-1	-0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1
$V_{D1} = V_{D2}$											
$V_{Sal} = V_{D2} - V_{D1}$											
V_S											
$V_{GS1} = V_{GS2}$											
$I_{D1} = I_{D2} = I_{MC}$											

;	Por	aué	los	Vas	de	los	transistores	son	iguales	?
6	1 01	quo	103	v go	uС	103	ti di ibibitoi co	3011	iguaics	•

R. - .

¿ Existe variación en el voltaje de los drenadores de los transistores ? ¿ Por qué ?

R. -

1.3 ¿ Cuánto vale la ganancia en modo común del par diferencial ?

$$A_{MC} = \frac{V_{Sal}}{V_{MC}} = \underline{\hspace{1cm}}$$

- ¿ Qué puede concluir con respecto al comportamiento del par diferencial con excitación en modo común ?
- 1.4 Para ver el comportamiento del par diferencial con excitación en Modo Diferencial, simule y rellene la siguiente tabla de valores.

$V1 = -V2 = V_{MD}/2$	-0.5	-0.4	-0.3	-0.2	-0.1	0.0	0.1	0.2	0.3	0.4	0.5
V_{D1}											
V_{D2}											
$V_{Sal} = V_{D2} - V_{D1}$											
V_S											
I_{D1}											

I_{D2}						
$\Delta I_{D1} = I_{D1} - I_{MC}$						
$\Delta I_{D2} = I_{D2} - I_{MC}$						

- 1.5 Grafique el voltaje en modo diferencial en función de las corrientes en los drenadores V_{MD} vs I_{D1} , I_{D2} .
- 1.6 Calcule la ganancia en modo diferencial para cada una de las excitaciones encontradas en el punto anterior.

V_{MD}					
$rac{V_{Sal}}{V_{MD}}$					

- 1.7 Grafique el voltaje en modo diferencial vs la ganancia en modo diferencial (V_{MD} vs A_{MD}).
- 1.8 Para ver el comportamiento del par diferencial con cualquier tipo de excitación, simule y rellene la siguiente tabla de valores.

V1	-0.2	-0.5	-0.3	0.0	0.5	0.0	0.8	0.5	0.6	0.5
V2	8.0	0.5	0.2	0.5	0.5	0.0	0.3	0	-0.4	-0.5
$V_{MC} = (V1 + V2)/2$										
$V_{MD} = V1 - V2$										
V_{D1}										
V_{D2}										
$V_{Sal} = V_{D2} - V_{D1}$										
V_S										
I_{D1}										
I_{D2}										
$\Delta I_{D1} = I_{D1} - I_{MC}$										
$\Delta I_{D2} = I_{D2} - I_{MC}$										

En la tabla ¿ cuántos y cuáles voltajes diferenciales diferentes se usaron para excitar el circuito ?

R.	
11.	

- 1.9 Grafique el voltaje en modo diferencial en función de las corrientes en los drenadores V_{MD} vs I_{D1} , I_{D2} . Compare con la gráfica del punto 1.5.
- 1.10Calcule la ganancia en modo diferencial para cada una de las excitaciones encontradas en el punto anterior.

V			
v_{MD}			

	$rac{V_{Sal}}{V_{MD}}$							
Compare con la t	abla del p	ounto 1.6	S.					
R							_•	
1.11Grafique el voltajo Compare con la g				a gananci	a en mo	do difere	ncial ($V_{\scriptscriptstyle MD}$)	vs A_{MD}).
R						·		
1.12 ¿ Qué puede cor de excitación ?	ncluir con	respect	o al com _l	portamie	nto del pa	ar diferer	ncial ante cu	ıalquier tipo

PARTE 2: DISEÑO DE UN PAR DIFERENCIAL MOSFET

El amplificador diferencial de la figura utiliza un resistor Rss de 1 K Ω para establecer una corriente de polarización de 1 mA a través de este. Observe que este amplificador usa una sola fuente de alimentación de 5 V. Y por tanto necesita un voltaje de modo común de corriente continua V_{MC} .

Figura L0.2: Diseño de par diferencial Mosfet

Para el circuito mostrado en la figura, encuentre lo siguiente.

2.1. Utilizando la hoja de características del transistor encuentre los valores de Vt y Kn.

$$V_t = \underline{\hspace{1cm}} . \qquad K_n = \underline{\hspace{1cm}} .$$

Nota: si no encuentra el valor específico de Kn, derívelo utilizando las gráficas en la hoja de características.

2.2. Encuentre el valor requerido de *Vmc* para la corriente de polarización de 1 mA.

$$V_{MC} =$$

2.3. Encuentre el valor requerido de R_D para obtener una ganancia diferencial Ad de 8 V/V.

$$R_D =$$
_____.

2.4. Encuentre la ganancia en modo común $\Delta V_{D1}/\Delta V_{MC}$.

$$\Delta V_{D1}/\Delta V_{MC} = \underline{\hspace{1cm}}.$$

2.5.	Usando el valor encontrado en el punto ar	nterior, determinar el valor de	V_{MC} que hace que los
	transistores entren en la región de triodo.	Muestre el cálculo realizado.	

$$V_{MC} = \underline{\hspace{1cm}}$$
.

2.6. Simule el circuito diseñado y rellene la siguiente tabla.

$V1 = V2 = V_{MC}$	1	1.5	2	2.25	2.5	2.75	3	3.25	3.5	4	4.5	5
$V_{GS1} = V_{GS2}$												
I_{R3}												
V_S												
$V_{D2} = V_{D1}$												
$V_{GD1} = V_{GD2}$												

- 2.7. Arme el circuito y rellene una tabla idéntica a la del punto 2.6, con los valores experimentales encontrados, al armar el circuito.
- 2.8. Grafique el voltaje en modo común, para los datos simulados y experimentales, en función de la corriente de polarización V_{MC} vs I_{R3} . Determine a partir de los mismos, el valor del V_{MC} al que la corriente de polarización es de 1 mA y el porcentaje de error respecto al valor calculado en el punto 2.2.

2.8.1.Simulado

$$V_{MC} =$$
_____. % $err =$ ____.

2.8.2. Experimental

$$V_{MC} =$$
_____. % $err =$ ____.

¿ A qué se deben las diferencias ?

2.9. Para que V_{MC} se entra en la región de triodo. ¿ Cuál es el porcentaje de error en referencia al valor encontrado en el punto 2.5 ?

2.9.1. Simulado

$$V_{MC} =$$
_____. % $err =$ ____.

2.9.2. Experimental

¿ A qué se deben las diferencias ?

2.10. Utilizando el valor de V_{MC} experimental encontrado en el punto 2.8, simule y rellene la siguiente tabla, utilizando un Vd con frecuencia de 1 KHz, con las amplitudes indicadas en la tabla.

V_{MD}	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
$A_{MD} = rac{V_{Sal}}{V_{MD}}$										

Grafique el voltaje en modo diferencial vs la ganancia en modo diferencial ($V_{\!\scriptscriptstyle MD}$ $\,$ vs $\,$ $A_{\!\scriptscriptstyle MD}$).

2.11. ¿ Encuentre y compruebe experimentalmente el valor de RD necesario para tener la ganancia de 8 V/V en modo diferencial ? ¿ Cuál es el porcentaje de error en referencia al valor encontrado en el punto 2.3 ?

$R_D = $	% <i>err</i> =

¿ A qué se deben las diferencias ?