

UNIVERSIDADE ESTADUAL DE SANTA CRUZ (UESC)

Criada pela Lei 6.344, de 05.12.1991, e reorganizada pela Lei 6.898, de 18.08.1995 e pela Lei 7.176, de 10.09.1997

CET115 – Processamento Digital de Imagens

Compressão de Imagens

Prof. Dra. Vânia Cordeiro da Silva
Departamento de Ciências Exatas e Tecnológicas
Universidade Estadual de Santa Cruz (UESC)
vania(at)uesc(dot)br

- Grande evolução tecnológica e científica no campo das telecomunicações, computação e entretenimento (TV/cinema)
 - Integração de funcionalidades entre áreas distintas
- Ampla utilização de informação:
 - A troca, armazenamento e manipulação de todos os tipos de informação têm tido uma importância crescente na sociedade moderna
- A partir de 60 novas metodologias e técnicas digitais foram estudadas e desenvolvidas

- Compressão orientada a caracter está bem consolidada
 - Huffman
 - Run-lenght coding
 - Lempel-Ziv
- Estado da arte: pouco se pesquisa para este tipo de fonte
- Áudios, imagens e vídeos necessitam de uma grande quantidades de dados para serem representados / armazenados e uma grande largura de banda para serem transmitidos

- Não existiria multimídia hoje sem o drástico progresso que ocorreu nos últimos anos em algoritmos de compressão e suas implementações
- Representação digital de sinais:
 - Processamento, transmissão e armazenamento de dados
- Sinal analógico pode ser convertido para a forma digital:
 - Amostragem, quantização e codificação
- Teoria da Harmonia/Informação: quantidade de símbolos utilizada e a probabilidade de ocorrência deles

- Permite-nos verificar se é possível a otimização da quantidade de bits utilizados para representação de determinado conjunto de símbolos
- Compressão de dados:
 - Codificar um certo conjunto de informação tal que o código gerado seja menor do que o de origem
- Compressão digital:
 - Redução da quantidade total de bits necessária para representar a informação contida na fonte

- Descompressão: processo inverso
 - Cada algoritmo de compressão deve ter seu respectivo descompressor
- Aplicações: Armazenamento e Transmissão
- Técnicas de compressão tornam viável a manipulação, armazenamento e transmissão da informação
 - Ex: transmissão de imagem digital de 256x256 com 8 bits por pixel num canal de 1200 bps: 7,28 min
 - Enciclopédia Britânica: 25 gigabytes de dados com páginas digitalizadas a 300 dpi e 2 n.c.

- O grande requisito de armazenamento de dados multimídia
- Velocidade lenta dos dispositivos de armazenamento para apresentar dados multimídia em tempo-real
- A largura de banda da rede que não permite a transmissão de vídeo em tempo-real
- Sem compressão 80 M de HD:
 - 8 mim de som estéreo
 - 3,5 segundos de vídeo de qualidade TV

- É extremamente necessária a utilização de técnicas de compressão de dados multimídia para viabilizar o armazenamento destas informações
- Mesmo que tenhamos enorme capacidade de armazenamento, não seríamos capazes de apresentar um vídeo em tempo-real devido a taxa de bits insuficiente dos dispositivos de armazenamento
- Solução: comprimir os dados antes de armazenar e descomprimir ele antes da apresentação

- Transmissão de som estéreo: taxa de 1,4 Mbits/s
- Transmissão de vídeo: 160 Mbits/s, possível em redes locais, mas inviável em redes de media e longa distância
- Ethernet: 10 Mbits/s
- Fast Ethernet ou FDDI: 100 Mbits/s
- Cabos terrestres nestas taxas existem, mas o custo de dedicar a rede para uma único canal de vídeo torna esta transmissão proibitiva

- O volume do uso da informação não foi acompanhado na mesma proporção pelos dispositivos de armazenamento e técnicas de transmissão de dados:
- Faz-se necessário cada vez mais o uso de técnicas de compressão
- Aplicações básicas:
 - Armazenamento: economia de espaço
 - Transmissão: economia de canais de transmissão, ou simplesmente para agilizar a transmissão

Princípio da Compressão

- Taxa de compressão: razão entre o tamanho do dado original e tamanho após compressão
- Complexidade de implementação e velocidade de compressão: esforço computacional (número de operações aritméticas – flops)
- Cada algoritmo de compressão possui um conjunto de características diferentes, apresentando ganhos diferentes em determinados tipos de dados
 - Por exemplo: algoritmos que têm bons ganhos com texto podem não ter um bom ganho com imagens

Princípio da Compressão

- Decomposição da informação dos sinais:
 - Componente relevante

 - Componente não-redundante
 - Componente redundante: pode ser reconstruída automaticamente

Redundante

Não-Redundante

Interessante

Princípio da Compressão

- Armazenamento: algoritmos mais complexos
 - Têm a possibilidade de executar um pré e/ou pósprocessamento em off-line
 - Devem ser rápidos e eficientes para minimizar o tempo de execução do processo de compressão
- Transmissão: algoritmos mais simples
 - Os algoritmos operam em tempo-real e variam de acordo com a capacidade e a complexidade do HW em que operam
- Algoritmos de compressão são utilizados, ainda, para desenvolvimento de algoritmos mais rápidos pois estes trabalham diretamente com os dados comprimidos
 - Redução do número de operações requeridas

Aplicações

- Videoconferência
- Transmissão de fax
- Multimídia
- Imagens de satélite
- Transmissão de TV
- Armazenamento de imagens médicas e documentos em geral
- Telefonia digital
- Internet
- HDTV
- Protocolo FTP

Classificação

- Primeiro enfoque: mutuamente excludentes
 - Com perdas ou irreversíveis: eliminam informações redundantes e as que julgarem irrelevantes
 - Reconstrução aproximada
 - Sem perdas ou reversíveis: eliminam somente as informações redundantes
 - Reconstrução total
- Segundo enfoque: Informação eliminada
 - Redundância na codificação
 - Redundância espacial
 - Redundância psicovisual

- Algoritmos com perdas atingem taxas de compressão bem mais elevadas quando comparados com os sem perdas
- Alta compressão é atingida às custas de muita degradação
- A maioria dos algoritmos sem perdas poder ser modificados para aceitarem perdas, mas a recíproca não é verdadeira
- Algoritmos com perdas são a maioria

- Uso de algoritmos sem perdas:
 - Imagens médicas
 - Imagens de satélite
 - Arquivos texto
 - Arquivos executáveis
 - Impressões digitais

- Tipos de Informação eliminadas:
 - Redundância na codificação
 - Redundância espacial
 - Psicovisual
- Eliminadas de forma combinada
- Redundância na codificação:
 - Altera a forma como a informação é codificada
 - Por natureza sem perdas
 - Algoritmos consagrados: Huffman e LZW (baseados na estatística da fonte)
 - Precisa da fonte completa: off-line

- Redundância na codificação (cont.):
 - Suponha uma fonte que possa ter 8
 símbolos no seu alfabeto: 0 1 2 3 4 5 6 7
 - Cada símbolo, normalmente, é codificado com um número fixo de bits: no caso 3
 - Entretanto, nem sempre todos os símbolos aparecem na fonte, e os que aparecem não o fazem na mesma proporção:

544370232223467566

 Com base nesta informação foram e são desenvolvidas técnicas que usam tamanho de código variável para os símbolos

0	000	
1	001	
2	010	
3	011	
4	100	
5	101	
6	110	
7	111	

- Redundância na codificação (cont.):
 - Valores que aparecem com mais freqüência recebem menor código
 - Problema: garantir que não terá ambigüidades!
 - -00011100010101000

S	C 1	C 2
0	000	0
1	001	1
2	010	00
3	011	01
4	100	10
5	101	11
6	110	000
7	111	111

• Redundância na codificação (cont.):

0001110001

S	C 1	C 3	C 4
0	000	0	11
1	001	10	01
2	010	110	10
3	011	1110	001
4	100	11110	0001
5	101	111110	00001
6	110	1111110	000001
7	111	1111111	000000

- Redundância espacial:
 - Explora a correlação entre símbolos próximos
 - Num sinal contínuo a diferença entre valores costuma ser pequena
 - O valor de um símbolo pode ser razoavelmente previsto considerando-se seus vizinhos
 - A diferença entre valores adjacentes pode ser utilizadas para representar o sinal

- Redundância espacial (cont.):
 - 149 148 149 150 152 152 151 ...
 - 149 -1 0 +1 +3 +3 +2 ...
 - Totalmente reversível: reconstrução através da soma
 - A representação da 2ª linha requer muito menos bits
 - Em fontes caracterizadas por longas seqüências de mesmos símbolos esta codificação pode e deve ser aplicada

- Redundância espacial (cont.):
 - Armazena-se a quantidade de 0´s e 1´s
 - 00000011111111000000011110
 - Informação necessária para reconstrução: 0 6 8 7 4 1
 - Também requer menos bits
 - Preditor: o símbolo inicial utilizado para predizer outros valores
 - Principal representante: DPCM

- Redundância Psicovisual:
 - Baseada na capacidade de percepção humana
 - Nossos sentidos não respondem com a mesma sensibilidade a toda informação
 - Pode ser eliminada sem empobrecimento ou não da qualidade da percepção

- Redundância Psicovisual (cont.):
 - Certas informações têm menos importância relativa do que outras:
 - 203 204 203 195 190 187 178 172 172 171
 - Qual observador perceberia a mudança sutil de valor de 203 para 204?
 - Resulta em perda de informação de caracter irreversível

- Redundância Psicovisual (cont.):
 - A maioria dos métodos encontrados na literatura a respeito preocupam-se em eliminar essa informação

- Compressão multi-nível (híbrida)
 - A mais utilizada
 - Combinação dos compressões anteriores
 - As mais altas taxas de compressão
 - Mais complexo, em off-line e normalmente precisa da fonte completa

Dados Multimídia

- Áudio digital: série de valores amostrados
- Imagem digital: matriz de valores amostrados (pixels)
- Vídeo digital: seqüência de imagens apresentadas numa certa taxa
- Áudio (voz): remoção do silêncio
- Vídeo: redundância temporal
 - imagens vizinhas em vídeos são geralmente similares

Dados Multimídia

- Todos: eliminação das 3 redundâncias
- Qualidade da mídia reconstituída:
 - Métodos com perdas: quantidade de distorção na percepção
 - Avaliação objetiva: comparações matemáticas diretas computacionais
 - Avaliação subjetiva: comparações diretas feitas por um grupo de pessoas

Atividade 8

- Implementar um falso DPCM:
 - Usar como preditor a moda da imagem: valor que mais aparece
 - Calcular a quantidade de bits necessária para armazenar a imagem comprimida:
 - Imagem original: 8 (bits) * resolução
 - Imagem comprimida: varrer a imagem calculando e somando a quantidade de bits necessária para cada pixel (não esquecer de considerar um bit para o sinal)
 - Implementar o descompressor
 - O preditor deve vir no cabeçalho
 - Usar imagens monocromáticas