$\acute{\mathbf{A}}\mathbf{r}\mathbf{boles}$

Sacar y agregar un eje

Enunciado

Sea G un grafo conexo con pesos asociados a sus ejes. Sean v y w dos vértices distintos de G.

Decimos que un camino entre v y w es G-min-max si minimiza el peso del eje más pesado del camino (sobre el conjunto de todos los caminos entre v y w que haya en G). Sea T un árbol generador mínimo de G, y sea p el único camino entre v y w que hay en T. Demostrar que p es un camino G-min-max entre v y w. Es decir, demostrar que para todo camino p' entre v y w que haya en G, el peso del eje más pesado de p es menor o igual que el peso del eje más pesado de p'.

SUGERENCIA: Por absurdo.

Lema 1

Sea G un grafo y A un bosque subgrafo de G con dos componentes conexas (C_1, C_2) y sean v, w dos vértices tal que $v \in C_1$ y $w \in C_2$.

Si $p = (e_1, e_2, ..., e_k)$ es un camino en G que une v y w, entonces existe e_i que une C_1 con C_2 , es decir, que tiene un extremo en C_1 y otro en C_2 .

Demostración: Supongamos que no existe ningún e_i con un extremo en C_1 y otro en C_2 . Entonces todos los ejes unen nodos de C_1 con otros nodos de C_1 ó nodos de C_2 con otro nodos de C_2 . Por lo tanto, p es un camino entre v y w que tiene todos sus nodos en la misma componente conexa, entonces, v y w peretenecen a la misma componente conexa. Abs!

Demostración

Supongamos que $p = (e_1, e_2, ..., e_k)$ no es G - min - max. Llamemos e_m al eje con mayor peso de p. Sea $p' = (e'_1, e'_2, ..., e'_q)$ un camino G - min - max entre v y w. [0] Notar que $(\forall \ 1 \le i \le q) \ w(e'_i) < w(e_m)$ porque p' es G - min - max.

Sea $T' = T - e_m$, T' es un bosque con 2 componentes conexas, una contiene a v y otra a w. Por el lema antes demostrado, existe $e'_j \in p'$ que une ambas componentes conexas.

Construyo $T'' = T' + e'_j$, que es un árbol porque es conexo (unimos ambas componentes conexas) y tiene n-1 ejes (porque es T sin un eje, más un eje).

Vale entonces: $w(T'') = w(T') + w(e'_j) = w(T) + w(e_m) + w(e'_j) < w(T)$ (por [0]). Pero T'' es un árbol y tiene menor peso que T que es AGM. Absurdo, vino de suponer que p no era G - min - max.