

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Host/Guest Communication

x86 Virtualization

Corentin Derbois Marc Angel

corentin@lse.epita.fr null@lse.epita.fr
http://lse.epita.fr/

July 17, 2013

- x86 Virtualization
- Corentin Derbois, Marc Angel
- Virtualization 101
- Hardware/Software Techniques
- Host/Guest Communication

- 1 Virtualization 101
- 2 Hardware/Software Techniques
- 3 Host/Guest Communication

What?

- Single computer, multiple OSs
- Hardware-level virtualization
 - As opposed to OS-level virtualization
 - LXC, OpenVZ, FreeBSD jails...

Guest Processes	Guest Processes					
Virtualization Layer						
Host OS						
Hardwarc						

OS-level Virtualization

Hardware-level Virtualization

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

What

How

Hardware/Software Techniques

Why?

- x86 Virtualization
- Corentin Derbois, Marc Angel
- Virtualization 101 What Why
- How
- Hardware/Software Techniques
- Host/Guest
- Communication

- Kernel Debugging
- Money
- Flexibility

How?

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101 What Why How

Hardware/Software **Techniques**

Host/Guest

Communication

- Popek and Goldberg requirements
 - Fidelity
 - Safety
 - Performance
- Binary Translation
 - VMware, VirtualBox, KQEMU
- Paravirtualization
 - Xen
- Full Virtualization
 - KVM, VMware, VirtualBox, Xen...

Instruction Set Virtualization

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Instruction Set Virt. Memory Virtualization I/O Virtualization

- Run the VMM at a higher level of privilege
- trap-and-emulate
 - Sensitive instructions yield control to ring 0
 - The VMM emulates them
- Some instructions do not trap (popf, sidt...)
 - 17 of those

Software: Binary Translation

LSE Irrailly System

- Replace critical instructions with traps
- Let the VMM emulate them
- Run userland code "as is"
- Need to emulate syscalls

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Instruction Set Virt.
Memory Virtualization
I/O Virtualization

Software: Paravirtualization

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Instruction Set Virt.
Memory Virtualization
I/O Virtualization

Intel & AMD Hardware Solution

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques Instruction Set Virt.

Memory Virtualization I/O Virtualization

Host/Guest

Communication

- VT-x and AMD-v
- One ring to rule them all
 - new set of instructions at ring -1
- Guest OS goes back to ring 0

Intel: VMX

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Instruction Set Virt.

Memory Virtualization
I/O Virtualization

AMD: SVM

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Instruction Set Virt.

Memory Virtualization
I/O Virtualization

Intel & AMD Hardware Solution

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Instruction Set Virt. Memory Virtualization I/O Virtualization

Host/Guest

Communication

- Add protection to specific instructions
 - CPUID
 - LGDT
 - . . .
- Two ways to handle critical instructions
 - Trigger VMEXIT
 - Let the processor handle them directly

Hardware: VMEXIT & native

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Instruction Set Virt.

Memory Virtualization

I/O Virtualization

Host/Guest Communication

Processor data are stored in specific data structures

AMD: VMCBIntel: VMCS

• Store to CRx, GDT, selectors...

Hardware: VMEXIT & native

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques Instruction Set Virt.

Memory Virtualization I/O Virtualization

Host/Guest

Communication

- Some behaviors can't be automatically handled by the CPU
 - I/O
 - CPUID
 - PageFault
- In this case, a VMEXIT is triggered to ask the host OS to emulate them

MMU Virtualization

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101
Hardware/Software

Techniques
Instruction Set Virt.
Memory Virtualization
I/O Virtualization

- Three levels of memory
 - Guest virtual address space
 - Guest physical address space
 - VMM physical memory

Software: Shadow Page Tables

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Instruction Set Virt. Memory Virtualization I/O Virtualization

Hardware: Intel EPT, AMD RVI

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques Instruction Set Virt.

Memory Virtualization I/O Virtualization

I/O Virtualization

Guest operating system

Traps
Hypervisor
(Full virtualization)

Hardware

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques Instruction Set Virt. Memory Virtualization

I/O Virtualization
Host/Guest
Communication

IOMMU

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Instruction Set Virt.
Memory Virtualization
I/O Virtualization

CPUID

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Host/Guest Communication

CPUID

PCI Virtio

I/O Ports

Triggers VMEXIT

- Offers a decent interface for Question/Answer
- Static
- Xen
 - CPUID is overwritable in PVM
 - Can get specific value from Xen

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Host/Guest Communication

CPUID

I/O Ports PCI

Virtio

Triggers VMEXIT

Offers a large choice to make I/O requests

Dynamic discussion at each VMEXIT

VMware

Port: 0x5658

- Can get lots of information:
 - Processor Speed
 - VMware version
 - Memory size

x86 Virtualization

Corentin Derbois. Marc Angel

Virtualization 101

Hardware/Software Techniques

Communication

Host/Guest CPUID I/O Ports

Virtio

PCI offers a decent interface to communicate

- Some HVM use it to make their video driver and do some communication
- Mainly for Desktop drivers
- VirtualBox
 - BEEF -> video driver
 - CAFE -> some other driver
- VMware
 - PCI driver for SVGA monitor

Virtio

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Host/Guest Communication CPUID I/O Ports PCI

Virtio

- A common framework for I/O virtualization for hypervisors
- Main I/O virtualization platform in KVM
- High performance

Virtio Architecture

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Host/Guest Communication CPUID I/O Ports PCI Virtio

Supported Devices

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Host/Guest Communication CPUID

I/O Ports PCI

Virtio

Network

Block

Console

Entropy

Balloon

• Rpmsg

SCSI Host

Virtio Devices

x86 Virtualization

Corentin Derbois. Marc Angel

Virtualization 101

Hardware/Software Techniques

Host/Guest CPUID I/O Ports

Communication PCI Virtio

- Presented by the host as a regular PCI device
 - Vendor ID: 0x1AF4 (Qumranet)
 - Device ID for each type of device
 - Configuration header at the start of the BAR
- Memory mapped header for embedded devices without PCI support

Virtio PCI Header

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Host/Guest Communication CPUID I/O Ports

I/O Por PCI Virtio

Bits 32 32 32 16 16 16 Read/Write R+WR+WR+WR+WR+WR Purpose Device Queue Device ISR Guest Queue Queue Queue Features bits 0:31 Features bits 0:31 Address Size Select Notify Status Status

Can be followed by device specific headers:

- MAC addresses for network devices
- Other information for block devices (cylinder/head/sector counts...)

Virtio PCI Device Init.

									Corentin Der
D:4	20	20	20	1.0	1.0	1.0	0	0	Marc Ange

Bits	32	32	32	10	16	16	8	8
Read/Write	R	R+W	R+W	R	R+W	R+W	R+W	R
Purpose	Device	Guest	Queue	Queue	Queue	Queue	Device	ISR
	Features bits 0:31	Features bits 0:31	Address	Size	Select	Notify	Status	Status

- RESET
- **ACKNOWLEDGE**
 - Valid virtio PCI device
- DRIVER
 - We know how to use the device
- DRIVER OK
 - Virtqueue configuration
 - Feature exchange

x86 Virtualization

rbois,

Virtualization 101

Hardware/Software Techniques

Host/Guest Communication CPUID I/O Ports PCI Virtio

Virtqueues

LSE Irrailly System

- 0 or more virtqueues per devices
- Spans 2 pages

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Host/Guest Communication CPUID I/O Ports PCI Virtio

Conclusion

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Host/Guest Communication

Conclusion

Questions?

x86 Virtualization

Corentin Derbois, Marc Angel

Virtualization 101

Hardware/Software Techniques

Host/Guest Communication

Thank you