# 國立臺灣大學電子工程學研究所 碩士論文

Graduate Institute of Electronic Engineering
National Taiwan University
Master Thesis

### 支援 Xilinx AXI DMA 的 Linux UIO 驅動程式 Linux UIO driver for Xilinx AXI DMA

劉宇唐 Yu-Tang Liu

指導教授:鄭振牟博士

Advisor: Chen-Mou Cheng, Ph.D.

中華民國 107 年 7 月 July 2018 近年來,由於 AI、VR 產業的崛起,FPGA 產業越來越受到重視。為了簡化 FPGA 的開發流程,使用嵌入式 Linux 會是一個不錯的方法。透過 Linux Kernel 提供的 UIO 驅動程式,我們可以把我們在硬體端設計出來的 IP 視為一個外部裝置,然後在 Linux 使用者空間裡的程式中,輕鬆地開發軟體端的應用。然而,有些硬體端的設計,卻無法透過同樣的方法,利用 UIO 驅動程式,建立裝置節點,而帶有直接記憶體存取 IP 的設計就是其中之一。由於 UIO 驅動程式並無法支援此種設計,我們必須擁有"root"權限,才能使用我們的設計,但是提供"root"給一般使用者並不是一個好方法。在此論文中,我們修改了 Linux 內建的 UIO 驅動程式,使得一般用戶也能在使用者空間中使用帶有 DMA 的硬體設計。

關鍵字:賽靈思,直接記憶體存取,AXI,Linux UIO 驅動程式

Abstract

In recent year, increasingly importance has been attached to FPGAs with the development

of AI,VR. To simplify the development process on FPGAs, embedded Linux on FPGAs

will be a good way. With UIO driver provided in Linux Kernel, we can mount our block

design, that is, custom IP(Intellectual Property) core in Vivado as a device node, and

program it in Linux user space. However, there are some designs that UIO driver cannot

recognizes. The design with DMAs(Direct Memory Access) is the one of them. With this

kind of design, because UIO driver is not work, we need "root" to controll our IP, and

providing root privileges to users is never a good solution. In this thesis, we modify UIO

driver so that users can easily use designs with DMA in user-space.

**Keywords:** Xilinx, DMA, AXI, Linux UIO driver

### **Contents**

| 1 | Intr                               | oduction                  | 1 |  |  |  |
|---|------------------------------------|---------------------------|---|--|--|--|
|   | 1.1                                | Motivation                | 1 |  |  |  |
|   | 1.2                                | Contribution              | 1 |  |  |  |
| 2 | Prel                               | iminaries                 | 2 |  |  |  |
|   | 2.1                                | Embedded Linux            | 2 |  |  |  |
|   |                                    | 2.1.1 Device Tree         | 2 |  |  |  |
|   |                                    | 2.1.2 Linux Kernel Driver | 2 |  |  |  |
|   | 2.2                                | UIO Driver                | 2 |  |  |  |
|   | 2.3                                | AXI Bus                   | 2 |  |  |  |
|   |                                    | 2.3.1 AXI Stream          | 2 |  |  |  |
|   | 2.4                                | DMA                       | 2 |  |  |  |
|   |                                    | 2.4.1 DMA Engine          | 2 |  |  |  |
| 3 | Proposed solution and evaluation 3 |                           |   |  |  |  |
|   | 3.1                                | Motivation                | 3 |  |  |  |
|   | 3.2                                | Contribution              | 3 |  |  |  |
| 4 | Env                                | ironment Framework        | 4 |  |  |  |
| 5 | Ana                                | lysis                     | 5 |  |  |  |
|   | 5.1                                | FIFO                      | 5 |  |  |  |
|   | 5.2                                | Stream IP                 | 5 |  |  |  |
|   | 5 3                                | Comparison                | 5 |  |  |  |

| 6          | Conclusion |              |   |  |
|------------|------------|--------------|---|--|
|            | 6.1        | Motivation   | 6 |  |
|            | 6.2        | Contribution | 6 |  |
| References |            |              |   |  |

# **List of Figures**

### **List of Tables**

#### Introduction

FPGA(Field Programmable Gate Array) is

- 1.1 Motivation
- 1.2 Contribution

#### **Preliminaries**

In this chapter, we introduce the background technology for our work.

- 2.1 Embedded Linux
- 2.1.1 Device Tree
- 2.1.2 Linux Kernel Driver
- 2.2 UIO Driver
- 2.3 AXI Bus
- 2.3.1 AXI Stream
- 2.4 **DMA**
- 2.4.1 DMA Engine

m

# Proposed solution and evaluation

- 3.1 Motivation
- 3.2 Contribution

### **Environment Framework**

# **Analysis**

- **5.1 FIFO**
- 5.2 Stream IP
- 5.3 Comparison

### Conclusion

- 6.1 Motivation
- 6.2 Contribution

#### References