Warsztat 7

Płaszczyzna sterowania

- Podejmuje działania, których nie może podjąć program P4
 - Decyzje związane z routingiem
 - Obsługa skomplikowanych protokołów (zmienna długość nagłówka) OSPF
 - Dodawanie/modyfikacja/usuwanie wpisów w tabelach
- Komunikacja za pomocą P4Runtime

Protokół OSPF (uproszczony)

- Format nagłówków zgodny z OSPFv2
 - o RFC 1247
 - Można użyć programu Wireshark do analizy pakietów
- Obsługa 2 rodzajów wiadomości
 - o Hello
 - Link State Update (LSU)
 - Brak obsługi pozostałych wiadomości (można je ignorować/odrzucać)

Obszar działania OSPF

Nagłówek OSPF

- Packet lenght długość całej wiadomości OSPF (począwszy od pola Version)
- Pole Authentication może zawierać cokolwiek, jeśli Autype jest równe 0
- Checksum suma kontrolna wyliczana w taki sam sposób jak w IP/TCP/UDP (bez pola Authentication)

Walidacja nagłówka przychodzących wiadomości OSPF

- Wersja: 2 (zawsze)
- Suma kontrolna
- ID obszaru (Area ID)
- Rodzaj uwierzytelniania (Autype): 0 (brak)
- Niewłaściwe wartości powinny skutkować odrzuceniem pakietu i zignorowaniem go

Wiadomość Hello

- Służy do odkrywania sąsiednich routerów i wykrywania aktywności
- Nie podlega routingowi nie jest przekazywana dalej na routerach
- Wysyłanie
 - Wysyłana cyklicznie co HelloInt sekund (np. co 30s)
 - Dedykowany wątek w sterowniku, który będzie w pętli wysyłał pakiet na odpowiednią grupę multicast, a potem usypiał się na HelloInt sekund
 - Adres docelowy IP to AllRouters (224.0.0.5)
 - Można stworzyć grupę multicast w celu wysyłania tej wiadomości
 - Adres docelowy MAC to broadcast (nieznany)
 - Adres źródłowy IP/MAC taki sam jak skonfigurowany na interfejsie, który ma wysłać wiadomość

Wiadomość Hello

Odbieranie

- Jeśli sąsiedni router nie był aktywny (nie odebrano wiadmości Hello) w ciągu ostatnich 2xHelloInt sekund, to należy uznać za nieaktywny
 - Usunięcie z listy sąsiednich routerów
 - Aktualizacja tras
- Walidacja dodatkowych pól nagłówka OSPF: Network Mask, HelloInt
- Aktualizacja stanu sąsiedniego routera (dopasowanie: źródłowy adres IP) lub utworzenie nowego sąsiada
 - Sygnatura czasowa odebrania ostatniej wiadomości Hello

Wiadomość Hello

0	1 2 3 4 5 6 7 8 9 0 1 2 3 4	2 5 6 7 8 9 0 1 2 3 4 5 6 7 8	3 9 0 1
+	-+		
	Version # 1	Packet length	
+			-+-+-+
!		er ID	!
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-			
+	Checksum +-+-+-+-+-+-+-+-+-+-+-+-++	-+-+-+-+-+-+-+	+-+-+
Authentication			
Authentication			
Network Mask			
ı	HelloInt	Options Rtr Pr	i
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-			
Designated Router			
Backup Designated Router			
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-			
÷-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+			
		• • •	I

- Pola od Options włącznie nieużywane
 - Ustawić wartość na 0
 - Pole Neighbor (jeśli jest) ignorowane
 - Dzięki ich obecności można użyć Scapy do tworzenia/parsowania wiadomości

Wiadomość Link State Update

- Służy do budowy grafu topologii sieci przez każdy z routerów
- Wysyłana w momencie wykrycia zmiany topologii sieci przez jeden z routerów
 - Dołączył się nowy router
 - Jeden z sąsiednich routerów został oznaczony jako nieaktywny (awaria łącza, routera, itp.)
 - Po każdym wysłaniu należy zwiększyć numer sekwencyjny
- Wiadomości są propagowane (flood) do pozostałych routerów, więc po obsłużeniu wiadomości LSU nie ma potrzeby generowania własnej wiadomości LSU
- Adresy źródłowe IP i MAC odpowiadają tym skonfigurowanym na danym interfejsie (połączenie punkt-punkt) i są wysyłane bezpośrednio do sąsiedniego routera
 - o Zmianie nie ulega router ID w wiadomości OSPF

Link State Update – obsługa wiadomości przychodzących

- 1. Jeśli wiadomość została wygenerowana przez ten router odrzucić (używając pola Router ID)
- 2. Jeśli numer sekwencyjny zgadza się z ostatnio odebranym od tego routera (Router ID) odrzucić, wiadomość była (jest) przetworzona
- 3. Aktualizacja stanu (topologia sieci, tabela routingu)
 - Algorytm Dijkstry (gotowa implementacja w pliku dijkstra.py)
- 4. Przesłanie wiadomości do wszystkich pozostałych sąsiednich routerów
 - Innych niż od tego, od którego otrzymano wiadomość
 - Zmiana adresów IP i MAC na odpowiednia na danych łączach
 - Obsługa pola TTL (IP i OSPF) odrzucić, jeśli osiągnie wartość mniejszą lub równą 0

Wiadomość LSU

- Nie jest zgodny ze standardem
- Scapy może wymagać napisania obsługi tego nagłówka
 - Standardowa wersja nagłówka kończy się na polu Authentication

Link State Advertisment

- Może być powtarzany wielokrotnie w jednej wiadomości LSU
- Subnet IP rozgłaszanej podsieci
- Mask maska rozgłaszanej podsieci
- Router ID ID sąsiedniego routera na danym łączu (0 jeśli go nie ma)
- Niestandardowy format nagłówka

Link State Advertisment - przykład tras

Router A powinien rozgłaszać następujące trasy:

- 10.0.1.0/24, RID: 0
- 10.0.2.0/24, RID: Router B
- 10.0.3.0/24, RID: Router C

Dzięki obecności RID, każdy router może zbudować pełny graf topologii sieci

Aktualizacja tras

- Dla każdego znanego routera jest wyznaczana najkrótsza ścieżka
 - o Liczba węzłów pośredniczących, zakładamy każde łącze o takiej samej wadze
- Listę routerów posortować wg rosnącej liczby węzłów pośredniczących
- Po kolei dodawać wszystkie trasy rozgłaszane przez router z wyjątkiem wcześniej dodanych
 - Dzięki temu zostanie wybrana lepsza trasa, jeśli dwa routery rozgłaszają tą samą podsieć

Parametry protokołu OSPF

- HelloInt = 30s
- Area ID: 0.0.0.0
- Network Mask: 0.0.0.0
- Router ID: 10.0.0.NN
- Rozgłaszane trasy: 10.NN.0.0/16
- Podsieci na łączach między interfejsami: 172.16.NN.(X*4)/30

Gdzie NN to numer (jednego z) zespołu z zapisów, a X to dowolna liczba całkowita z przedziału [0; 63]

Przydatne materiały

- Specyfikacja OSPFv2 https://datatracker.ietf.org/doc/html/rfc1247
- PWOSPF https://github.com/p4lang/p4pi/wiki/PWOSPF
- Implementacja nagłówków OSPF w Scapy: https://github.com/secdev/scapy/blob/master/scapy/contrib/ospf.py

Ocenianie projektu

- Punkty przyznawane na koniec projektu
 - Kod źródłowy płaszczyzny przekazu danych (P4) 14 pkt
 - Ethernet, ARP, IPv4, OSPF, MAC Learning, routing/forwarding, multicast po 2 pkt
 - Kod sterownika (python) 20 pkt
 - Wysyłanie/odbieranie wiadomości Hello/LSU po 5 pkt
 - Uruchomienie 11 pkt
- Sprawozdanie
 - Kod źródłowy
 - Sposób uruchomienia
- Testów PTF brak