Bicycles use in Paris State of the art and future

Damian Borsiak

Data Analytics Bootcamp December 2022

Plan of Presentation

- 1. Introduction
- 2. Data sources
- 3. Data collection
- 4. Data cleaning
- 5. Exploratory data analysis
- 6. Database comparison
- 7. Entity-relationship model of MySQL database
- 8. Forecast
- 9. Conclusions
- 10. Q&A

1. Introduction

City of Paris has been deploying permanent bicycle counters for the last several years to assess the development of cycling.

Goals:

- Provide insight into bicycles traffic in Paris
- Visualize map of counters / data collection points
- Decide which Paris District has the highest bicycle traffic
- See the influence of Covid-19 pandemy on the bicycle use
- Forecast future traffic

Main data source: https://opendata.paris.fr/

Website was created by an initiative of the City of Paris. We can find there datasets published by the City's services and its partners under the ODbL licence.

Producer: Department of Roads and Transport - City of Paris

Territory: Paris

Time zone: Europe/Paris

Language: French

Last processing:

April 25, 2022 12:28 (metadata)

April 30, 2020 12:23 (data created and posted

3. Data collection

Data were downloaded separately for each year: 2018, 2019, 2020, 2021

Format: compressed (zip) .csv files

https://opendata.paris.fr/explore/dataset/comptage-velo-historique-donnees-compteurs/information/

111 111 1 ₂ 1 ₂ 1 ₃ 2 ₂	2018	2019	2020	2021	
Number of Rows:	157,825	436,729	2,314,738	5,851,680	Total Rows
Number of Columns	9	9	7	6	8,760,972

Starting Features (max columns):

'Identifiant du compteur'

'Nom du compteur'

'Identifiant du site de comptage'

'Nom du site de comptage'

'Comptage horaire'

'Date et heure de comptage'

'Date d'installation du site de comptage'

'Lien vers photo du site de comptage'

'Coordonnées géographiques'

- ID / Counter identification number
- Name of the counter
- Another ID / Counter identification number
- Counting site name
- Number of bike rides counter
- Date and time of measurement
- Counter installation date
- Link to photo of counting site
- Geographical coordinates

4. Data cleaning

To achieve my goals, I was using below Python Libraries:

Python Libraries					
#Plots					
import matplotlib.pyplot as plt					
import seaborn as sns					
%matplotlib inline					
#Forecasting					
from prophet import Prophet					
from prophet.plot import plot_plotly					
import plotly.offline as py					
<pre>py.init_notebook_mode()</pre>					
from prophet.plot import add_changepoints_to_plot					

Import of 4 files with data into Python

```
#We import all datasets (for years 2018,2019,2020,2021)

data2018 = pd.read_csv(r'C:\Users\borys\IronHack\Final Project\Data Cycles in Paris\2018_comptage-velo-donnees-
data2019 = pd.read_csv(r'C:\Users\borys\IronHack\Final Project\Data Cycles in Paris\2019_comptage-velo-donnees-
data2020 = pd.read_csv(r'C:\Users\borys\IronHack\Final Project\Data Cycles in Paris\2020_comptage-velo-donnees-
data2021 = pd.read_csv(r'C:\Users\borys\IronHack\Final Project\Data Cycles in Paris\2021-comptage-velo-donnees-
```


4. Data cleaning

Identify data Shapes - number of rows and columns

```
#We might want to combine all datasets into 1 dataframe
#Lets check if they are of the same shape and what are their sizes?

print("Shape of DataFrames:\n")
print("Number of rows and columns for year 2018:",data2018.shape)
print("Number of rows and columns for year 2019:",data2019.shape)
print("Number of rows and columns for year 2020:",data2020.shape)
print("Number of rows and columns for year 2021:",data2021.shape)

print("\nColumns on each DataFrames:\n")
print("List of columns for 2018:\n\n",data2018.columns)
print("\nList of columns for 2019:\n\n",data2020.columns)
print("\nList of columns for 2020:\n\n",data2020.columns)
print("\nList of columns for 2021:\n\n",data2021.columns)
```

```
#We check if any data are missing

print("\nList of blanks for 2018:\n\n",data2018.isnull().sum())
print("\nList of blanks for 2019:\n\n",data2019.isnull().sum())
print("\nList of blanks for 2020:\n\n",data2020.isnull().sum())
print("\nList of blanks for 2021:\n\n",data2021.isnull().sum())
```

```
Identifiant du site de comptage 6
Nom du compteur 35132
Comptage horaire 0
Date et heure de comptage 0
```

data2020 = data2020.dropna()

List of blanks for 2020:

4. Data cleaning

Addition of extra column with separate Year number for each dataset

```
data2018['Year'] = '2018'
data2019['Year'] = '2019'
data2020['Year'] = '2020'
data2021['Year'] = '2021'
```

```
Separation of Lat and Lon from column "Coordonnées géographiques"
```

```
data2018[['Lat', 'Lon']] = data2018['Coordonnées géographiques'].str.split(',', expand=True) data2019[['Lat', 'Lon']] = data2019['Coordonnées géographiques'].str.split(',', expand=True) data2020[['Lat', 'Lon']] = data2020['Coordonnées géographiques'].str.split(',', expand=True) data2021[['Lat', 'Lon']] = data2021['Coordonnées géographiques'].str.split(',', expand=True)
```

```
Extraction of Hour, Week Day, Month from column "Date et heure de comptage"
```

```
data2018["Date et heure de comptage"]=pd.to_datetime(data2018["Date et heure de comptage"], utc=True )
data2018['hour']=data2018["Date et heure de comptage"].dt.hour
data2018['weekday']=data2018["Date et heure de comptage"].dt.day_name()
data2018['month']=data2018["Date et heure de comptage"].dt.month
```

Final Result

data = data2018.append([data2019,data2020,data2021])

	ID	Counter_Name	Bikes_Recorded	Year	Lat	Lon	hour	weekday	month
0	100047547	6 rue Julia Bartet NE-SO	4.0	2018	48.82648	2.303149	0	Thursday	11
1	100047547	6 rue Julia Bartet NE-SO	30.0	2018	48.82648	2.303149	21	Thursday	11
2	100047547	6 rue Julia Bartet NE-SO	116.0	2018	48.82648	2.303149	16	Friday	11
3	100047547	6 rue Julia Bartet NE-SO	0.0	2018	48.82648	2.303149	0	Monday	12

5. Exploratory data analysis

Presentation in:

6. Database comparison

I have selected MySQL Database as its one of the most popular relational database systems in the industry and offer perfect capabilities for my project scale and complexity. As it is widely used and I am already familiar with it, it was the best choice.

Most popular database systems. Source: 2021 Developer Survey by StackOverflow

I was also considering PostgreSQL as a potential Database, but decided that it could be less tailored to my needs, simply by offering other - not needed in this project functionalities.

PostgreSQL	MySQL
Great scalability	Free installation
Support for custom data types	Simple syntax and mild complexity
Easily-integrated third-party tools	Cloud compatibility
Open-source and community-driven support	

7. Entity-relationship model of MySQL database


```
create database if not exists Final_Project;
      use Final Project;
     ⊖ create table sql sample 2018 (
       ID int.
      Counter Name varchar(255),
      Bikes Recorded float,
       Year int.
       hour int.
      Date Full varchar(255)
     create table data streets districts (
14
       ID int.
      Correct Counter Name varchar(255),
      District_of_Paris int
     District of Paris int,
      District Name varchar(255),
      district Full varchar(255)
      create table id lat lonA (
      ID int,
      Lat float,
       Lon float
       );
      -- We are importing the data into tables
      -- using Table Data Import Wizard
```

7. Entity-relationship model of MySQL database

Queries aimed to check if content of tables was correctly imported

select * from sql_sample_2018;

ID	Counter_Name	Bikes_Recorded	Year	hour	Date_Full
100042374	Voie Georges Pompidou SO-NE	10	2018	10	2018-01-01
100003097	105 Rue La Fayette E-O	4	2018	1	2018-01-01
100041488	27 Boulevard Diderot E-O	0	2018	4	2018-01-01

select * from data streets districts;

ID	Correct_Counter_Name	District_of_Paris
100003096	97 Avenue Denfert Rochereau SO-NE	75014
100003097	105 Rue La Fayette E-O	75010
100003098	106 Avenue Denfert Rochereau NE-SO	75014

select * from district names paris;

District_of_Paris	District_Name	District_Full
75001	Louvre	01 - Louvre
75002	Bourse	02 - Bourse
75003	Temple	03 - Temple

select * from id_lat_lon;

ID	Lat	Lon
100047547	48.82648	2.303149
100047546	48.8295233	2.38699
100047544	48.860852	2.372279

Query Group By

- Grouping to see number of bicycles per Date

SELECT Date_Full, Bikes_recorded FROM sql_sample_2018 GROUP BY Date_Full ORDER BY Bikes_Recorded Desc;

Date_Full	Bikes_recorded
2018-11-01	176
2018-09-01	97
2018-05-01	33

Query Joining 2 tables

- addition of geographical dimensions (Lat/Lon) to the main table

left join id lat lon on sql sample 2018.ID = id lat lon.ID;

ID	Counter_Name	~	Bikes_Recorded	Year	hour	Date_Full	Lat	Lon
100042374	Voie Georges Pompidou SO-NE		10	2018	10	2018-01-01	48.848399	2.275932
100003097	105 Rue La Fayette E-O		4	2018	1	2018-01-01	48.877667	2.350556
100041488	27 Boulevard Diderot E-O		0	2018	4	2018-01-01	48.846099	2.375456

Query Joining 2 tables

- addition of corrected name of the street with Counter and District number

from sql sample 2018

left join data_streets_districts on sql_sample_2018.ID = data_streets_districts.ID;

ID	Bikes_Recorded	Date_Full	Correct_Counter_Name	District_of_Paris
100036719	33	2018-05-01	18 quai de l'hotel de ville NO-SE	75004
100044495	1	2018-10-01	7 Avenue de la Grande Armee NO-SE	75016
100007049	17	2018-06-01	28 Boulevard Diderot E-O	75012

8. Forecasting - Time Series Forecasting with Prophet

The Prophet library is an open-source library designed for making forecasts for univariate time series datasets. It is easy to use and designed to automatically find a good set of hyperparameters for the model in an effort to make skillful forecasts for data with trends and seasonal structure by default.

We can expect a **strong increase in the number of bicycle rides in Paris** - despite temporarily lower numbers during the Covid-19 pandemy. Trend is clearly positive and together with earlier information about plans to make Paris completely cyclable by 2026 - **we can be optimistic about their future**.

9. Conclusions

Based on detailed analysis of received data, we can conclude that Bicycles have a bright future in the city of Paris.

Number of bicycle rides is expected to increase significantly in coming years, despite Covid-19 Pandemic

Top 3 Districts with highest number of travelers are:

District Full	
11 - Popincourt	16,643,303
10 - Entrepôt	11,849,945
13 - Gobelins	11,369,603

District Full	
11 - Popincourt	14.08%
10 - Entrepôt	10.02%
13 - Gobelins	9.62%

While working on the data, I had to consider an uneven number of the counting machines that were first installed in small numbers in 2018 - factor that could negatively affect my analysis and the forecast.

QUESTIONS?

Let's stay in touch!

Damian Borsiak

Email: damian@borsiak.com

LinkedIn: <u>link</u>

