

RSA, and Digital Signatures

CS 642: Computer Security and Privacy

Earlence Fernandes

Public-Key/Asymmetric-key cryptography

Given: Everybody knows Bob's public key

- How is this achieved in practice?

Only Bob knows the corresponding private key

- Goals: 1. Alice wants to send a message that only Bob can read
 - 2. Bob wants to send a message that only Bob could have written

Applications of Public-Key Crypto

- Encryption for confidentiality
 - Anyone can encrypt a message
 - With symmetric crypto, must know the secret key to encrypt
 - Only someone who knows the private key can decrypt
 - E.g., Emails, messaging
- Digital signatures for authentication
 - Only someone who knows the private key can sign
- Session key establishment
 - Exchange messages to create a secret session key
 - Then switch to symmetric cryptography (why?)

Public-Key Encryption

- Key generation: generate a pair (public key PK, private key SK)
 - Should be computationally easy
- Encryption: given plaintext M and public key PK, easy to compute ciphertext C=E_{PK}(M)
- Decryption: given ciphertext C=E_{PK}(M) and private key SK, easy to compute plaintext M
 - Infeasible to learn anything about M from C and PK without SK
 - <u>Trapdoor</u> function: Decrypt(SK, Encrypt(PK, M))=M

Some Number Theory Facts

- Euler totient function $\varphi(n)$ where $n\geq 1$ is the number of integers in the [1,n] interval that are relatively prime to n
 - Two numbers are relatively prime if their greatest common divisor (gcd) is 1
 - Easy to compute for primes $\varphi(p) = p 1$
 - Note that $\varphi(ab) = \varphi(a) \varphi(b)$

RSA Cryptosystem

- Key generation:
 - Generate large primes p, q
 - At least 2048 bits each... need primality testing!
 - Compute n=pq
 - Note that $\varphi(n) = (p-1)(q-1)$
 - Choose small e, relatively prime to $\varphi(n)$
 - Typically, e=3 (may be vulnerable) or $e=2^{16}+1=65537$ (why?)
 - Compute unique d such that ed $\equiv 1 \mod \varphi(n)$
 - Public key = (e,n); private key = d
- Encryption of m: $c = m^e \mod n$
- Decryption of c: $c^d \mod n = (m^e)^d \mod n = m$

[Rivest, Shamir, Adleman 1977]

Why Is RSA Secure?

- RSA problem: given c, n=pq, and e such that gcd(e,(p-1)(q-1))=1,
 - find m such that me=c mod n
 - In other words, recover m from ciphertext c and public key (n, e) by taking eth root of c modulo n
 - There is <u>no known efficient algorithm</u> for doing this

Factoring problem: given positive integer n, find primes $p_1, ..., p_k$ such that $n=p_1^{e_1}p_2^{e_2}...p_k^{e_k}$

It is widely *believed* factoring is hard: we don't know how to do it yet.

If factoring is easy, then RSA problem is easy, but it might be possible to break RSA without factoring n

"Textbook" RSA Is Bad Encryption

- Deterministic
 - Attacker can guess plaintext, compute ciphertext, and compare for equality
 - If messages are from a small set (for example, yes/no), can build a table of corresponding ciphertexts
- Does not provide semantic security (security against chosen-plaintext attacks)
- Can tamper with encrypted messages
- Small e can be dangerous $(\log_e(m^e) \to m$, if e and m are small)
- If $\frac{1}{4}$ -th of the secret key d is leaked, one can recover the full key

Integrity in RSA Encryption

- "Textbook" RSA does not provide integrity
 - Given encryptions of m₁ and m₂, attacker can create encryption of m₁·m₂
 - $(m_1^e) \cdot (m_2^e) \mod n \equiv (m_1 \cdot m_2)^e \mod n$
 - Attacker can convert m into m^k without decrypting
 - $(m^e)^k \mod n \equiv (m^k)^e \mod n$

- In practice, OAEP is used: instead of encrypting M,
 - encrypt $M \oplus G(r)$; $r \oplus H(M \oplus G(r))$
 - r is random and fresh, G and H are hash functions
 - Resulting encryption is plaintext-aware: infeasible to compute a valid encryption without knowing plaintext
 - ... if hash functions are "good" and RSA problem is hard

Digital Signature

Digital Signatures: Basic Idea

Given: Everybody knows Bob's public key
Only Bob knows the corresponding private key

Goal: Bob sends a "digitally signed" message

- 1. Only bob can sign: To compute a signature, must know the private key
- 2. Anyone can verify: To verify a signature, only the public key is needed

RSA Signatures

- Public key is (n, e), private key is d
- To sign message m: $s = (hash(m))^d mod n$
 - Signing and decryption are the same mathematical operation in RSA
- To verify signature s on message m:

```
s^e \mod n = (hash(m)^d)^e \mod n = hash(m)
```

- Verification and encryption are the same mathematical operation in RSA
- Message must be hashed
 - Roughly, RSA cannot accommodate messages larger than the key
 - In symmetric encryption, we solve using block cipher modes
 - In signature scheme, we solve using cryptographic hash

Cryptography summary

Goal	Tools/techniques
Privacy/Confidentiality	Symmetric keys - One-time pad - Block cipher (e.g., 3DES, AES) → modes: ECB, CBC, CTR Asymmetric keys - RSA
Integrity	- Hash functions (e.g., MD5, SHA-256) - MACs (HMAC, CBC-MAC)
Confidentiality & Integrity	- Authenticated Encryption w/ Associated Data (AEAD)- Encrypt-then-MAC, AEAD
Authenticity & Integrity	- Digital signatures (e.g., RSA, DSS)

UW-Madison CS642