

WIZ-IP51S User Manual V1.0

Document Revision History

Version	Date	Note
V1.0	2025/08/07	First release

Table of Contents

1	Introdu	ction		3
	1.1	Ov	verview	3
	1.3	1.1	Functional Features	
	1.3	1.2	Product Features	4
	1.2	Pre	oduct Specifications	
	1.2	2.1	Electrical Parameters	4
	1.2	2.2	Mechanical Dimensions	5
	1.2	2.3	Temperature Characteristics	5
2	Hardwa	are Se	ection Description	6
	2.1	Piı	n Layout Description	6
	2.2	Int	troduction to the Evaluation Board	8
	2.3	Qι	uick Evaluation Board Wiring Instructions	9
3	SPI ope		ons	
4	Timing	Diag	gram	10
	4.1	Re	eset Timing	10
	4.2		PI Access Read Timing	
	4.3		PI Access Write Timing	

1 Introduction

1.1 Overview

The WIZ-IP51S is a network offloading module that integrates the W5100S chip (with built-in PHY physical layer and TCP/IP hardware protocol stack) and an RJ45 connector with integrated network transformer. As a plug-and-play component, it enables seamless interface connection between the W5100S and the transformer without the need for additional circuit design.

For users who wish to quickly develop networked systems, the WIZ-IP51S is an ideal choice.

Note: For detailed information regarding the hardware TCP/IP protocol stack, please refer to W5100S Data Manual.

- Network port connector section: Integrated network transformer network port (including W5100S chip, network transformer and RJ45).
- TCP/IP protocol stack and Ethernet MAC: Implemented by W5100S chip.
- Ethernet PHY: Integrated by W5100S chip.

1.1.1 Functional Features

- Supports full hardware TCP/IP protocol: TCP, UDP, WOL, ICMP, IGMPv1/v2, IPv4, ARP, PPPoE
- Supports SOCKET-less instructions: ARP-request, PING-request
- Supports 4 independent SOCKET concurrent communication
- Supports half-duplex/full-duplex operation mode
- Supports Ethernet power-off mode and master clock selection energy-saving mode
- Supports UDP-based network wake-up (WOL) function
- High-speed SPI interface (MODE 0/3)
- Built-in total 16Kbytes of send/receive cache
- Integrated 10BaseT/100BaseTX Ethernet PHY
- Supports Ethernet auto-negotiation (full/half-duplex, 10Base-T/100Base-TX)
- Supports Auto-MDIX function (only supported in Ethernet auto-negotiation mode)
- Operating voltage: 3.3V (I/O compatible with 5V signal voltage)
- 19-pin pin header interface
- Package size (length×width×height):32.5×16.5×17.3(mm)
- Compatible with WIZnet's IO module carrier board development board

1.1.2 Product Features

- ◆ All-hardware TCP/IP protocol stack network chip W5100S
- Ethernet
 - → 10/100Mbps Adaptive Ethernet
- Connect to the host interface
 - → Standard SPI: MISO、MOSI、CLK、CSn
- Power supply
 - ▶ Input power supply: 3.3V DC
- Mechanical parameters
 - → Dimensions (length ×width×height):32.5×16.5×17.3(mm)
- Working temperature
 - ▼ Industrial grade: -40~+85°C
 - Preserve the environment
 - → -40~+85°C,5~95%RH

1.2 Product Specifications

1.2.1 Electrical Parameters

1.2.1.1 Power Parameters

Unless otherwise specified, the parameters listed in Table 1-1 and Table 1-2 refer to the values at a temperature of 25°C.

Table 1-1 Power supply parameters

Numbering	Category	Specification				
		Minimum	Typical	The greatest	Organization	
VDD	Module voltage	2.97	3.3	3.63	V	
I	Module current	124	130	137	mA	

1.2.1.2 Power Consumption Parameters

Table 1-1 Power consumption parameters

Working condition	Test value (mA)	Working condition	Test value (mA)
Standby	43	100Mbps Connectionless	42
10Mbps Connectionless	25	100 Mbps for data communication	130
100 Mbps for data communication	130		

1.2.2 Mechanical Dimensions

Figure 1-1 All views of the product

1.2.3 Temperature Characteristics

Table 1-2 Temperature Characteristics

Name	Level	Working temperature	Storage temperature	
WIZ-IP51S	Industrial grade	-40~+85°C	-40~+85°C	

2 Hardware Section Description

2.1 Pin Layout Description

Now, we will introduce the pins of WIZ-IP51S and the usage of the IO module carrier board of the accompanying evaluation board respectively.

The appearance of WIZ-IP51S is shown in Figure 2-1.

Figure 2-2 is the pin layout diagram of WIZ-IP51S, and Table 2-1 provides the pin description for WIZ-IP51S.

Figure 2-1 The external appearance diagram of the WIZ-IP51S module

Figure 2-2 WIZ-IP51S Pin Assignment

Table 2-1 Pin Description

Pin number	Pin name	Function		
P1	ACT_LED	Data reception/transmission activity indicator light		
P2	VCC	3.3V Power pin		
Р3	GND	Power ground		
P4	CSn	SPI interface chip selects signal pin, with low level as the effective state		
P5	CLK	SPI clock input pin		
Р6	MISO	SPI master input, slave output		
Р8	MOSI	SPI master output from slave input		
Р9	INTn	Interrupt output pin, low level is effective		
P10 RESETn		Reset pin, low level effective (must be maintained for at least 500us)		
P11 NC Retention function		Retention function		
P12	NC	Retention function		
P13	LINK_LED	Network connection indicator light		
L1	LED1-	Connect to P1		
L2	LED1+	Connected in series with the resistor to VCC		
L3	LED2+	Connected in series with the resistor to VCC		
L4	LED2-	Connect to P13		
S1	SHILD1	Shell		
S2	SHILD2	Shell		

2.2 Introduction to the Evaluation Board

The IO module carrier board is an evaluation board that facilitates users to test and apply the modules. This evaluation board integrates the mainstream single-chip microcontroller STM32F103RCT6 and the USB to TTL converter chip CP2102. The schematic diagram of the IO module carrier board is shown in Figure 2-3.

Figure 2-3 IO module carrier board outline drawing

- The USB Mini interface provides the evaluation board with 5V DC power supply and one serial port for the MCU, which can be used for ISP-style program download and data communication testing.
- Key Instructions for IO Module Carrier Board

Table 2-2 IO module carrier board Key Instructions

Numbering	Explanation
RESET (SW1)	Hardware reset button
BOOT (SW2)	Enter the BOOT button of the microcontroller

• Program download method for IO module carrier board

The IO module carrier board supports the ISP download method. The operation steps are as follows: first, press and hold the BOOT button, then press the RESET button once, and finally release the BOOT button. This will enable you to enter the program download mode. Open the ISP tool of STM32 and select the corresponding firmware to complete the download.

• The reference design schematic diagram of the peripheral circuits for WIZ-IP51S is shown in Figure 2-4.

Figure 2-4 Reference design schematic diagram of the peripheral circuit of WIZ-IP51S

2.3 Quick Evaluation Board Wiring Instructions

Users can download the corresponding reference code for W5100S from www.w5500.com and burn it onto the IO module carrier board for performance testing and evaluation, as shown in Figure 2-5.

Figure 2-5 Test and Evaluation Schematic Diagram of IO Module Carrier Board

3 SPI operations

The SPI configuration method of WIZ-IP51S is detailed in the following W5100S datasheet.

4 Timing Diagram

4.1 Reset Timing

Figure 4-1 Reset Timing

Table 4-1 Reset Timing Table

Flag bit	Description	Min	Typical	Max
Trst	Reset time	210ns	330ns	560ns
Tsta	Stable time	-	1	60.3ms

4.2 SPI Access Read Timing

Figure 4-2 SPI Read Timing

Table 4-1 SPI Read Timing

Symbol	Description	Min	Max	Units
F _{SCK}	SCK Clock Frequency	-	70	MHz
T _{CSS}	SCSn Setup Time	3 SYS_CLK	-	ns
Tcsn	SCSn Next Time	2 SYS CLK	-	ns
T_{DS}	Data In Setup Time	3	-	ns
T_{DH}	Data in Hold Time	3	-	ns
T _{DI}	Data Invalid Time	7	-	ns
T_{DR}	Data Ready Time	6 SYS CLK+30	-	ns

4.3 SPI Access Write Timing

Figure 4-3 SPI Write Timing

Table 4-3 SPI Write Timing

Flag bit	Description	Min	Max	Units
Fsck	SCK Clock Frequency	-	70	MHz
Tcss	SCSn Setup Time	3 SYS_CLK	-	ns
Tcsn	SCSn Next Time	3 SYS_CLK	-	ns
T_{DS}	Data In Setup Time	3	-	ns
T_{DH}	Data In Hold Time	3	-	ns
T_{DI}	Data Invalid Time	7	-	ns