## **Coreference-Based Summarization and Question Answering:** a Case for High Precision Anaphor Resolution

#### **Roland Stuckardt**

Johann Wolfgang Goethe University Frankfurt am Main Germany

roland@stuckardt.de

## **Text Summarization and Question Answering**

- generic applications that require a robust, domain-independent text analysis technology
- coreference information is known to be of particular relevance
- coreference-based Text Summarization (TS):
  - Baldwin & Morton (1998)
  - Azzam, Humphreys, and Gaizauskas (1999)

- ...

- coreference-based Question Answering (QA):
  - Breck et al. (1999)
  - Morton (1999)

- ...

## Coreference vs. Anaphor Resolution

#### • coreference resolution:

determine classes of coreferring occurrences (discourse entity mentions)

## • anaphor resolution:

assign coreferring antecedents to anaphoric occurrences

## • these tasks are closely related:

- solutions to the latter contribute to the former
- the level of consideration differs

#### • claim:

coreference processing for TS and QA should be considered as a task of **anaphor** resolution.

## **Contents**

- 1. Study of coreference-based approaches to TS and QA
- 2. Analysis of the type of coreference processing needed
- 3. Conclusions:
  - coreference processing should be considered as a problem of anaphor resolution
  - the anaphor resolution engine should be biased towards high precision
- 4. Empirical investigation of three approaches to high precision pronoun resolution
- 5. Implications

#### **Coreference-Based TS**

- Baldwin & Morton (1998), user-focused TS for IR:
  - stage 1: relating query terms to document terms
  - stage 2: exploitation of document-internal coreference:
    - (1) selecting important coreference chains
    - (2) selecting a subset of important sentences
    - (3) supplementing anaphoric expressions with maximally informative expressions
- Azzam, Humphreys, & Gaizauskas (1999), generic TS:

exploitation of document-internal coreference:

- (1) selecting a single important coreference chain
- (2) selecting a subset of important sentences (supported by a focus mechanism)
- (3) supplementing anaphoric expressions with maximally informative expressions

## **Coreference-Based QA**

- Breck et al. (1999), Morton (1999), TREC-8:
  - stage 1: relating query terms to document terms
  - stage 2: exploitation of document-internal coreference:
    - (1) searching coreference classes for queryrelevant occurrences
    - (2) selecting a context that answers the question
    - (3) supplementing anaphoric expressions with maximally informative expressions

## Use Cases of Coreference for TS and QA

• two common stages:

stage 1: relating query terms to document terms (user-focused TS, QA)

stage 2: exploitation of document-internal coreference: (TS, QA)

- QA: looking at coreference classes in order to retrieve relevant information
- TS: traversing coreference chains and selecting subsequences of sentences
- TS and QA: identifying lexically informative antecedents for anaphors

 $\rightarrow$ 

 in most cases, an asymmetric perspective towards coreference is assumed

# Stage 1: Accessing Query-Relevant Coreference Classes



- access via lexically informative occurrences
- asymmetry between anaphors (pronouns) and more informative expressions

 $\rightarrow$ 

how to assess coreference technology for TS & QA?

# Scoring Coreference Interpretation Errors: Coreference vs. Anaphor Resolution



according to model-theoretic coreference scoring (MUC,
 Vilain et al., 1996), the following errors count equal:

(1) Leporello 
$$\stackrel{-}{\longleftarrow}$$
 he  $\stackrel{+}{\longleftarrow}$  him  $\stackrel{+}{\longleftarrow}$  his

(2) Leporello 
$$\stackrel{+}{\longleftarrow}$$
 he  $\stackrel{+}{\longleftarrow}$  him  $\stackrel{-}{\longleftarrow}$  his

 $\rightarrow$ 

 not sufficiently expressive with respect to the contributions to TS & QA

## **Towards Scoring Informative Anchors**

- ullet let's look at pairs  $(\alpha, \gamma)$  consisting of **anaphors**  $\alpha$  and system-determined **antecedents**  $\gamma$
- disjoint partition of the pairs into the sets:
  - $o_{++}$  (lpha and  $\gamma$  corefer)
  - $o_{+-}$  (lpha and  $\gamma$  do not corefer)
  - $o_{+}$  ( $\gamma$  empty, no antecedent assigned)
  - $o_{+}$ ? ( $\gamma$  denotes a spurious occurrence)
- precision and recall measures:

$$P := \frac{|o_{++}|}{|o_{++}| + |o_{+-}| + |o_{+?}|}$$

$$R := \frac{|o_{++}|}{|o_{++}| + |o_{+-}| + |o_{+?}| + |o_{+-}|}$$

### ightarrow two disciplines:

- ullet immediate antecedency:  $(P_{ia},R_{ia})$   $\gamma$  arbitrary
- ullet informative (= non-pronominal) anchoring:  $(P_{na},R_{na})$   $\gamma$  non-pronominal

## **Interim Result**

• of relevance is:

the anchoring of lexically less informative (typically: anaphoric) occurrences in lexically more informative occurrences

- mere model-theoretic coreference scoring is not sufficiently expressive
- pronouns are an important special case:
  - TS: pronouns resume discourse entities in focus
  - QA: significant contribution according to the empirical study by Vicedo & Ferrández (2000a)
- however, it is not proposed to reduce coreference processing to mere pronominal anaphor resolution;
   general coreference information is required

## The Case for High Prec Anaphor Resolution

- coreference-based TS:
  - precision errors affect the output quality:
    - inclusion of irrelevant sentences
    - incorrect lexically informative expressions
  - recall errors typically have local impact only
- coreference-based QA:
  - precision errors affect the output quality:
    - wrong answers
    - incorrect lexically informative expressions
  - recall errors have (possibly limited) impact:
    - relevant contexts may not be found
    - however, the document set may exhibit redundancy (Vicedo & Ferrández (2000b), TREC-9)

 $\rightarrow$ 

• high precision anaphor resolution should be investigated

# High Precision Anaphor Resolution: Three Approaches

- requirements:
  - domain independency
  - robustness
  - knowledge poorness
- focus on: third-person pronominal anaphora
- starting points:
  - ROSANA, manually designed (Stuckardt, 2001)
  - ROSANA-ML, machine-learning-based (Stuckardt, 2002)

## **Approach 1: ROSANA-CogNIAC**

- based on CogNIAC (Baldwin, 1997)
- covers third-person pronominal anaphora
- high precision antecedent preference ruleset:
  - (CR1) unique in discourse
  - (CR2) reflexive pronouns, nearest possible
  - (CR3) unique in current and prior
  - (CR4) possessive pronouns, unique exact match in prior
  - (CR5) unique in current
  - (CR6) unique subject in prior (for subject pronouns)
  - otherwise, the pronoun remains *unresolved*
- new: robust implementation of antecedent filters
   (in particular, syntactic disjoint reference)
- ightarrow ROSANA-CogNIAC

# **Approach 2: ROSANA with Salience Threshold**

- immediate adaption of the antecedent selection phase of classical, salience-based approaches:
  - given a **salience threshold**  $\theta$ , only such candidates are considered the salience of which exceeds the threshold  $\theta$ .
- rationale: salience as an heuristic estimate for
  - the relative plausibility of candidates
  - the probability that a specific candidate is a correct antecedent
- ightarrow ROSANA-heta

## **Approach 3: ROSANA-ML towards High Prec**

- architecture of ROSANA-ML:
  - antecedent filters are manually designed
  - antecedent preferences are machine-learned (C4.5)
- decision tree lookup predicts CO ∨ NON\_CO
- decision tree lookup yields further information:
  - number  $\mu$  of **matching** training cases
  - number  $\varepsilon$  of **wrongly classified** training cases

 $\rightarrow$ 

- ullet estimate  $rac{arepsilon}{\mu}$  of classification error probability
- ullet candidate acceptance threshold  $heta:=( heta_{CO}, heta_{\neg CO})$ :
  - accepting CO candidates with  $\frac{\varepsilon}{\mu} \leq \theta_{CO}$
  - accepting NON\_CO candidates with  $\frac{\varepsilon}{\mu} \geq \theta_{\neg CO}$
- ightarrow ROSANA-ML-heta

### **Empirical Experiments, Evaluation Results**

- training on 31 news agency press releases, 11,808 words, 202 non-possessives, 115 possessives
- evaluation on 35 news agency press releases, 12,904 words, 204 non-possessives, 131 possessives
- 10-fold / 6-fold cross-validation of ROSANA-ML

|                                         | antecedents $(P_{ia},R_{ia})$ |              | anchors $(P_{na},R_{na})$ |              |
|-----------------------------------------|-------------------------------|--------------|---------------------------|--------------|
| experiment                              | PER3                          | POS3         | PER3                      | POS3         |
| (0) ROSANA (salience-based)             | (0.71, 0.71)                  | (0.76, 0.76) | (0.68, 0.67)              | (0.66, 0.66) |
| (1) ROSANA-CogNIAC                      | (0.66, 0.49)                  | (0.82, 0.53) | (0.62, 0.42)              | (0.79, 0.45) |
| (2) ROSANA-CogNIAC, (R6)'               | (0.74, 0.59)                  | (0.82, 0.53) | (0.71, 0.53)              | (0.77, 0.45) |
| (3) ROSANA- $\theta$ ( $\theta = 90$ )  | (0.75, 0.67)                  | (0.79, 0.74) | (0.74, 0.62)              | (0.72, 0.63) |
| (4) ROSANA- $\theta$ ( $\theta = 110$ ) | (0.79, 0.62)                  | (0.81, 0.50) | (0.77, 0.56)              | (0.74, 0.38) |
| (5) ROSANA-ML- $\theta$ , $p$           | (0.79, 0.51)                  | (0.86, 0.60) | (0.75, 0.45)              | (0.83, 0.54) |
| (6) ROSANA-ML- $\theta$ , $p^-$         | (0.74, 0.56)                  | (0.78, 0.63) | (0.71, 0.52)              | (0.76, 0.59) |
| (7) ROSANA-ML- $\theta$ , $p^+$         | (0.81, 0.45)                  | (0.89, 0.50) | (0.74, 0.36)              | (0.67, 0.30) |
| (8) ROSANA-ML- $\theta$ , $p^{++}$      | (0.83, 0.31)                  | (1.00, 0.17) | (0.80, 0.08)              | (1.00, 0.12) |

#### Findings:

- lexically informative anchoring (na) is more difficult than immediate antecedency (ia)
- precision biasing works
- winner depends on pronoun type and tradeoff level:
  - nonpossessives: ROSANA- $\theta$
  - possessives: ROSANA-ML- $\theta$ , p
- ROSANA-CognIAC doesn't reach original CognIAC's performance level ((0.78,0.60) vs. (0.92,0.64)) presumably due to:
  - conditions of robust processing
  - different genre
- experiments on different corpus indicate **genre dependency**

## **Implications**

- achievable tradeoffs, (na) discipline:
  - nonpossessives:  $(0.77,0.56) \doteq (+9\% \text{ P,-}11\% \text{ R})$
  - possessives:  $(0.83,0.54) \doteq (+17\% \text{ P, } -12\% \text{ R})$
- general interpretation:
  - reducing pronoun anchoring errors to 20%
  - still retrieving 55% of all pronoun mentions
- regarding TS, an in-depth analysis shows:
  - CO chain spread of five biggest CO classes not affected
- regarding QA, much depends on
  - the relevance of pronominal occurrences
  - the corpus redundancy
     with respect to the specific task
  - ightarrow presumably best served by threshold-based approaches

## **Conclusion and Further Research**

- coreference processing for TS and QA should be considered as a task of anaphor resolution
- the anchoring of lexically less informative occurrences in lexically more informative occurrences is relevant.
- anaphor resolution should be biased towards high precision
- study of three high precision pronoun resolution approaches:
  - $\approx$  (0.80,0.55) (na) on possessives  $\cup$  nonpossessives
  - different tradeoff levels achievable
  - performance depends on genre
  - spread of coreference chains is sustained

#### • further reseach:

- extrinsic evaluation of high precision anaphor resolution in TS and QA scenarios
- genre dependency of high precision strategies