Reguläre Ausdrücke

Michael Jäger

4. April 2017

Zeichenketten und Sprachen

Ein Alphabet ist eine endliche Menge von Symbolen.

Beispiele:

1.
$$\Sigma_1 = \{0, 1\}$$

2.
$$\Sigma_2 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$$

3.
$$\Gamma_1 = \{0, 1, a, b, \$\}$$

4. $\Gamma_2 = \{IfStmt, AssignStmt, WhileStmt, DoWhileStmt\}$

Beachte: IfStmt ist **ein** Symbol!

Wörter

• Sei Σ ein Alphabet. Ein Wort über Σ (auch Zeichenkette, String) ist eine endliche Aneinanderreihung (Sequenz) von Symbolen aus Σ .

Beispiele:

- 0101100 ist ein Wort über {0, 1}
- abrakadabra ist ein Wort über $\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}.$
- Die Aneinanderreihung heißt Konkatenation und ist assoziativ:

```
(uv)w = u(vw) für alle Wörter u, v, w über einem Alphabet.
```

ullet Die Länge eines Worts w ist die Anzahl der Symbole von w.

Notation: |w|

Das leere Wort

- Das Wort der Länge 0 heißt leeres Wort und wird durch ε repräsentiert. Anm.: nicht mit dem Leerzeichen ($_{-}$) oder der leeren Menge (\emptyset) verwechseln!
- Das leere Wort ist das neutrale Element bzgl. der Konkatenation:

$$w\varepsilon = \varepsilon w = w$$

Notation: Für ein Alphabet Σ sei

$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$

Sprachen

• Σ^* ist die Menge der Wörter über Σ :

$$\Sigma^* = \{ w = a_1 \dots a_n \mid n \ge 0, a_1, \dots, a_n \in \Sigma \}$$

• Σ^+ ist die Menge der *nichtleeren* Wörter über Σ :

$$\Sigma^{+} = \{ w = a_1 \dots a_n \mid n > 0, a_1, \dots, a_n \in \Sigma \}$$

- $\Sigma^* = \Sigma^+ \cup \{\varepsilon\}$
- Eine Sprache L über Σ ist eine Menge von Wörtern über Σ , anders ausgedrückt: $L\subseteq \Sigma^*.$

Beispiele für Sprachen

- 1. $L = \{01, 110110, \varepsilon\}$ ist eine Sprache über $\{0, 1\}$
- 2. $L = \{\varepsilon\}$ ist eine Sprache über jedem Alphabet.

Achtung: $\{\varepsilon\} \neq \{\}$

3. Die Menge aller Primzahlen in Dezimalschreibweise ist eine Sprache über $\{0,1,2,3,4,5,6,7,8,9\}$

Wortproblem: Ist das Wort 17 in der Sprache?

Man sieht:

Sprachen haben mit Berechnungen zu tun!

4. Die Menge aller korrekten Java-(Quelltext-)Programme.

Operationen für Sprachen: Konkatenation zweier Sprachen

Seien L_1 und L_2 Sprachen, dann ist die Konkatenation von L_1 und L_2

$$L_1L_2 = \{ w \mid w = uv, u \in L_1, v \in L_2 \}$$

• Beispiel:

$$L_1 = \{ja, aber\}, L_2 = \{ja, NICHT, DOCH\}$$

 $L_1L_2 = \{jaja, jaNICHT, jaDOCH, aberja, aberNICHT, aberDOCH\}$

- Die Konkatenation ist **assoziativ**: $(L_1L_2)L_3 = L_1(L_2L_3)$
- Die Sprache $\{\varepsilon\}$ ist neutrales Element bezüglich der Sprachkonkatenation.

Potenzen einer Sprache

Für $i = 0, 1, \ldots$ ist die i-te Potenz einer Sprache L

$$L^i = \{w_1 w_2 \dots w_i \mid w_1, w_2, \dots, w_i \in L\}$$

Genauer:

$$L^0 = \{\varepsilon\}$$

$$L^i = LL^{i-1}$$
, für alle $i > 0$

Beispiel:

Gegeben seien $L = \{ja, aber\}.$

$$L_1^2 = \{jaja, jaaber, aberja, aberaber\}$$

 $L_1^3 = \{jajaja, jajaaber, jaaberja, jaaberaber, aberjaja, aberjaaber, jaaberjaja, jajaaber, jaaberjaja, jajaaber, jaaberjaja, jajaaber, jaaberjaja, jajaaber, jajaa$ aberaberja, aberaberaber}

Mengenoperationen für Sprachen

Seien L_1 und L_2 Sprachen. Die Definitionen der Mengenoperationen Vereinigung, Schnittmenge und Komplementmengen sind auch für Sprachen sinnvoll:

1. Vereinigung

$$L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ oder } w \in L_2 \}$$

2. Schnittmenge

$$L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ und } w \in L_2 \}$$

3. Komplementmenge

$$\overline{L} = \Sigma^* \setminus L$$

Kleenesche Hülle

• Kleenesche Hülle (Konkateniere 0 oder mehr beliebige Wörter aus L_1)

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

• positive Hülle (Konkateniere 1 oder mehr beliebige Wörter aus L_1)

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

Anmerkungen:

- L^* besteht aus \in und den Wörtern, die sich in Bestandteile aus L zerlegen lassen.
- Die Kleenesche Hülle nennen wir auch einfach *-Operation, die positive Hülle +-Operation
- Zu L^+ gehört \in nur dann, wenn es auch zu L gehört.
- Es gilt: $L^* = L^+ \cup \{\varepsilon\}$

Beispiele

- 1. $\{0,1\}^+$ = Menge aller nichtleeren Binärzahlen
- 2. $\{00, 01, 10, 11\}^* = Menge aller Binärzahlen mit einer geraden Ziffernzahl$

Reguläre Ausdrücke

Reguläre Ausdrücke sind eine kompakte Schreibweise für die oben definierten Operationen zur Verknüpfung von Sprachen.

Beispiele:

	Ausdruck	Sprache
1	xyz	$\{xyz\}$
2	011 100	$\{011\} \cup \{100\} = \{011, 100\}$
3	0*10*	$\{0\}^*\{1\}\{0\}^*$
4	$(01)^*$	$(\{0\}\{1\})^* = \{01\}^*$
5	ja nein doch	$\{ja\} \cup \{nein\} \cup \{doch\} = \{ja, nein, doch\}$
6	$(a b)^*abb$	$(\{a\} \cup \{b\})^* \{a\} \{b\} \{b\}$
7	$(- \varepsilon)(0 1 2 3 4 5 6 7 8 9)^+$	$\{-,\varepsilon\}\{0,1,2,3,4,5,6,7,8,9\}^+$
8	0(0 1)*0 1(0 1)*1 0 1	$\{w \in \{0,1\}^* w \text{ beginnt und endet mit dem selben Ze}\}$

Formale Definition regulärer Ausdrücke

Definition 1: Sei Σ ein Alphabet. Die Menge der regulären Ausdrücke über Σ ist induktiv definiert. Jeder reguläre Ausdruck r repräsentiert eine Sprache $L(r) \subseteq \Sigma^*$.

- 1. Für jedes Symbol $a \in \Sigma$ ist a ein regulärer Ausdruck. $L(a) = \{a\}$
- 2. ϵ ist ein regulärer Ausdruck. $L(\epsilon) = \{\epsilon\}$
- 3. \emptyset ist ein regulärer Ausdruck. $L(\emptyset) = \emptyset$.
- 4. Seien r_1 und r_2 reguläre Ausdrücke (über Σ). Dann ist (r_1r_2) ein regulärer Ausdruck. $L((r_1r_2))=L(r_1)L(r_2)$
- 5. Seien r_1 und r_2 reguläre Ausdrücke. Dann ist $(r_1 \mid r_2)$ ein regulärer Ausdruck. $L((r_1 \mid r_2)) = L(r_1) \cup L(r_2)$
- 6. Seien r ein regulärer Ausdruck. Dann ist r^* ein regulärer Ausdruck. $L(r^*) = L(r)^*$

Definition 2: Seien r und s reguläre Ausdrücke über Σ . r und s heißen **äquivalent** (Notation: r=s), genau dann, wenn L(r)=L(s).

Anmerkungen

- Den |-Operator nennen wir auch ODER-Operator oder Vereinigungs-Operator.
 (Manchmal auch als ∪ notiert.)
- Wie bei den zugrunde liegenden Sprachoperationen definieren wir auch einen +-Operator als Schreibabkürzung:

$$r^+ = rr^*$$

Operator-Präzedenz für reguläre Ausdrücke

Unter den Operatoren wird eine Präzedenzfolge festgelegt, ein Operator höherer Präzedenz bindet stärker.

Die höchste Präzedenz haben die Operatoren * und +, danach kommt die Konkatenation und schließlich mit der niedrigsten Präzedenz der |-Operator.

Für die regulären Ausdrücke p, q, r gilt also

$$\begin{array}{rcl}
p \mid qr & = & (p \mid (qr)) \\
pq \mid r & = & ((pq) \mid r) \\
pq^* & = & (p(q^*)) \\
p \mid q^* & = & (p \mid (q^*)) \\
pq^+ & = & (p(q^+)) \\
p \mid q^+ & = & (p \mid (q^+))
\end{array}$$

Beispiel

Welche Sprache repräsentiert der folgende reguläre Ausdruck?

$$r = (a \mid b)^*abb$$

Wir betrachten dazu einige Teilausdrücke:

$$L(a \mid b) = L(a) \cup L(b) = \{a\} \cup \{b\} = \{a, b\}$$

$$L((a \mid b)^*) = (L(a \mid b))^* = \{a, b\}^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, baa, abb, bab, bba, bbb, aaaa . . . \}$$

$$L(((((a \mid b)^*)a)b)b) = \{a, b\}^*\{a\}\{b\}\{b\}$$

Die Sprache besteht aus allen Wörtern über $\{a,b\}$, die mit abb enden.

Exkurs: UNIX-Notation für reguläre Ausdrücke

- Für den praktischen Umgang mit Programmen, die reguläre Ausdrücke verarbeiten, sind weitere Operatoren nützlich, die eine kompaktere Notation ermöglichen.
- Daneben gibt es auch noch das Problem mit der fehlenden ε -Taste an der Rechnertastatur!
- Wir benutzen die in UNIX-Systemen übliche Schreibweise, wie sie vom Scannergenerator lex und von anderen Programmen (grep, egrep, sed, emacs usw.) benutzt wird
- Man beachte, dass in den meisten Programmiersprachen auch eine Programmierschnittstelle zur Verwendung regulärer Ausdrücke verfügbar ist (C/C++: regcomp, regexec, Java: Pattern und Matcher)

Man unterscheidet Sonderzeichen und normale Zeichen. Sonderzeichen sind z.B. :

- * + [] ? ^ () . \$
- ein "normales" Zeichen steht für sich selbst
- Ein Punkt . steht für ein beliebiges Zeichen außer '\n'
- Falls ein Sonderzeichen nicht als solches interpretiert werden soll, ist ein "Backslash"
 \ voranzustellen
- Auch innerhalb von in Apostrophe eingeschlossenen Strings werden keine Sonderzeichen interpretiert.
- Klammerung erfolgt durch (und)
- Konkatenation zweier reg. Ausdrücke erfolgt ohne expliziten Operator
- Alternativen werden mittels | gebildet
- ein nachgestellter * steht für beliebige Wiederholung

- ein nachgestelltes + steht für nichtleere Wiederholung
- ein nachgestelltes ? bezeichnet einen optionalen Anteil
- ^ am Anfang eines regulären Ausdrucks steht für Zeilenanfang
- \$ am Ende eines regulären Ausdrucks steht für Zeilenende
- eine **Zeichenklasse** wird mittel eckiger Klammern [...] notiert und steht immer für genau ein Zeichen.

Sie kann durch **Zeichen-Aufzählung** $x_1x_2...x_n$ und **Bereichsangaben** x_1-x_n gebildet werden:

- $x_1 x_n$ steht für ein Zeichen aus dem Bereich, z.B. [0-9]
- $-x_1x_2...x_n$ steht für ein Zeichen aus der Menge der angegebenen Zeichen, z.B. [abcx]
- beide Schreibweisen können kombiniert werden z.B. [0-9a-zA-Z_]
- Eine ^-Zeichen am Anfang einer Zeichenklasse [^...] spezifiziert die komplementäre Zeichenmenge, z.B. steht [^0-9] für ein beliebiges Zeichen außer einer Ziffer

Beispiele:

- a) Alle mit kleinem "a" beginnenden Zeichenketten: a.*
- b) Alle nichtleeren Dezimalziffernfolgen: [0-9]+
- c) Alle Wörter, die aus genau 3 Zeichen bestehen und nicht mit einer Ziffer enden: ...[^0-9]
- d) C-Bezeichner = [A-Za-z][A-Za-z0-9]*
- e) C-Float-Literale = $-?[0-9]+((\.[0-9]+)|((\.[0-9]+)?[eE]-?[0-9]+)$
 - C-Float-Literale bestehen aus
 - einem "Vorkomma-Anteil" (ggf. mit Minuszeichen) (Syntax: -?[0-9]+)
 - einem optionalen Nachkomma-Anteil (Syntax: \. [0−9]+)
 - und einem ebenfalls optionalen Exponenten-Anteil (Syntax: [eE] -? [0-9]+).

Dabei ist zu beachten, dass entweder der Nachkomma-Anteil oder der Exponent vorhanden sein muss. Wenn beides fehlt, liegt eine Integer-Konstante vor. Daher ist die folgende Spezifikation nicht korrekt:

$$-?[0-9]+(\.[0-9]+)?([eE]-?[0-9]+)?$$

(Viel komplizierter wird es in der Praxis nur selten !)