Messplan FP Radioteleskop Onsala

Versuchsdurchführende: Philipp Gebauer und Simon Keegan

Messplan ausgerichtet auf einen Start um 8 Uhr am 13.05.2020

Zeitaufwand	<u>Tätigkeit</u>
0.5 h	Einschalten und verbinden mit dem Remote-Computer/Teleskop
0.5 h	Vertraut machen mit dem Teleskop
	(Testaufnahmen machen, funktionsweise testen)
1h	Messung an einer Position in Quadrant I (b=0°) für Belichtungszeiten
	von 1 s, 3 s, 10 s, 30 s, 100 s und 300 s (I>50° gut sichbar um ca. 9Uhr;
	l>30° gut sichtbar um 5 Uhr -> verzicht auf sehr gute Messungen bei 30° <l<50°)< td=""></l<50°)<>
1 h	Aufnahmen im ersten Quadranten (b = 0° +- 1° ; l > 30° ; Bel.: 30 - 60 s;
	Schrittweite I=5°) zur Bestimmung der Geschwindigkeitskurve der Milchstraße V(R)
1.5 h	Messung bei min. 12 verschiedenen Galaktischen Längen
	zur Untersuchung der Auswirkung des Dopplereffekts.
	(Schrittweite l=10°; Bei Quadrant I und IV (215° <l<90°) auch="" bei<="" td=""></l<90°)>
	kleinere laterale Veränderung Aufnahmen notwendig)
0.5 h	Vermessung Punktlichtquelle (Sonne) zur Vermessung der Charakterisitka
	der Antennen (bestmögliche Zeit ca. 13 Uhr; Bel.: 10s; Rasterweite 5°)
	(Kreuz-Scan in Azimut und Höhe (jeweils -16° bis +16°, 2°-Schritte))
0.5 h	Zeit zum Speichern und verwalten der Daten
0.5 h	Arbeitsplatz und Teleskop in Ursprungszustand bringen
6 h	benötigte Gesamtzeit