Lecture 13: Vectors, Work, Planes

Last Time: (11 Vectors

(2) Dot Product

$$G \xrightarrow{\alpha \cdot b} is maximized when $\theta = 0$, 180°$$

Today: (1) Projections

- (2) Work
 - (s) Planes

(1) Projections

Def^h: Scalar Projection of
$$\vec{a}$$
 onto \vec{b} : = $\frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|} \in \mathbb{R}$

Note: If \vec{a} represents a force $(\vec{F} = m\vec{a})$ then $p = \vec{b} = \vec{a}$ represents the effective force in the direction of \vec{b} .

Corollary: If ∂ is the angle between two nonzero vectors \vec{a} and \vec{b} then $\cos \vec{\sigma} = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|} \implies \vec{\sigma} = \cos^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|}\right)$

Corollary: Two vectors \vec{a} and \vec{b} are orthogonal iff $\vec{a} \cdot \vec{b} = 0$

het
$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$
 be a vector \vec{l} to $\vec{i} + \vec{j}$ the $\vec{i} + \vec{k}$.

Then we will have that
$$(a_1\vec{i} + a_2\vec{j} + a_3\vec{k}) \cdot (\vec{i} + \vec{j}) = 0$$

 $(a_1\vec{i} + a_2\vec{j} + a_3\vec{k}) \cdot (\vec{i} + \vec{k}) = 0$

$$\bigcirc$$
 \Rightarrow $\alpha_1 + \alpha_3 = 0$

We also have
$$||a|| = 1$$
 i.e. $a_1^2 + a_2^2 + a_3^2 = 1$

Sub
$$0$$
 into 3 \Rightarrow $a_1^2 + (-a_1)^2 + (-a_1)^2 = 1$

$$\Rightarrow$$
 $3a_1^2 = 1$

$$\Rightarrow a_1 = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{3}$$

So
$$a_1 = \pm \frac{\sqrt{3}}{3}$$
 and hence Subbing into \bigcirc to we get that $a_2 = a_3 = \pm \frac{\sqrt{3}}{3}$.

$$S_{c} \quad \overrightarrow{a} = \frac{\sqrt{3}}{3} \cdot (1 - \frac{\sqrt{3}}{3}) \cdot (1$$

Def": The work W, done by a force \vec{F} acting on an object through a displacement \vec{d} is given by $W = \vec{F} \cdot \vec{d}$

Ex. A crate is hauled 6 neters up a ramp under a constant force of 300N applied at an angle of 25° to the ramp. Use the def to calculate the work done.

Solution: Given $\|\vec{F}\| = 3\infty N$ $\vec{F} \Rightarrow \vec{F}_1 + \vec{F}_2$

$$W = \overrightarrow{F} \cdot \overrightarrow{d}$$

= ||F| ||d|| cos o

= (300 N) (6 m) cos (25°)

~ 1631 Joules.

Let $P_0 = (x_0, y_0, z_0)$ be a fixed p_1 and $P = (x_1, y_1, z_1)$ be an arbitrary p_1 which both lie in a plane. Then $P_0P = (x_0 - x_0)\vec{i} + (y_0 - y_0)\vec{j} + (z_0 - z_0)\vec{k}$

is a vector which lies in the plane. It is

Consider a vector $\vec{n} = \vec{a} \cdot \vec{i} + \vec{b} \cdot \vec{j} + \vec{c} \cdot \vec{k}$ which is normal to the plane.

Defⁿ: The equation of a plane in \mathbb{R}^3 that contains the pt (x_0, y_0, z_0) and has normal vector $\vec{n} = \langle a_1 b, c \rangle$ can be written as $\vec{n} \cdot \vec{P} \cdot \vec{P} = 0$.

i.e. $\vec{n} \cdot \vec{P} \cdot \vec{P} = a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$.

Remark: a(x-x0)+b(y-y0)+c(2-20)=0

$$\Rightarrow -c(z-z_0) = \alpha(x-x_0) + b(y-y_0)$$

$$= -\frac{a}{c}(x-x_0) - \frac{b}{c}(y-y_0) + z_0$$

$$\Rightarrow$$
 $z = M(x-x_0) + N(y-y_0) + z_0$

Note: To use the formula $\vec{n} \cdot \vec{P} \cdot \vec{P} = a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$ we need a pt and a normal vector to the plane.

Ex Find a normal vector to the plane 2x + 3y - 5z = 4.