RINO: some implementation notes

Sylvie Putot

No Institute Given

1 ODEs

We are given a system of ODEs

$$\dot{z}(t) = f(z, u, t)$$

with $z(0) = z^0$. Here, for efficiency reasons, we do not systematically rewrite u as a dimension of the system.

- sysdim is the dimension of the state space of the system of ODE
- sysdim_params is the dimension of the (possibly uncertain) parameters u that are not dimensions of the Jacobian
- inputs dim is the dimension of the uncertain parameters and inputs u that appear in the Jacobian
- when these parameters can be piecewise constant and not constant, fullinputsdim is the full dimension of these uncertain parameters and inputs
- jacdim = sysdim + fullinputsdim

TM_Jac::build and TM_Jac::eval_Jac build and evaluate the Taylor model for the Jacobian $J_{ij}(t, \boldsymbol{z}_0) = \frac{\partial z_i}{\partial z_{0,j}}(t, \boldsymbol{z}_0)$ and $J_{ij}(t, \boldsymbol{z}_0) = \frac{\partial z_i}{\partial u_{0,j}}(t, \boldsymbol{z}_0)$, as defined in Equation (17) of [HSCC2017]:

- in class TM_Jac, J corresponds to J_j in (17), and J_rough to R_{j+1} .
- in TM Jac::eval Jac, Jaci corresponds to $Jac_z f^{[i]}$ in (17)

The code is slightly more difficult to understand when jacdim is not equal to sysdim. Let us consider an example with dimension 2 and 2 parameters, the sensitivity matrix J we want to compute relies on products

$$\operatorname{Jac}_z f^{[i]}([{m z}_j]).[{m J}_j]$$

of matrices of dimensions dimension (jacdim \times jacdim) with, for example for i=1,

$$\operatorname{Jac}_{\boldsymbol{z}} f^{[1]}([\boldsymbol{z}_j]).[\boldsymbol{J}_j] = \begin{pmatrix} \frac{\partial f_0}{\partial z_0} & \frac{\partial f_0}{\partial z_1} & \frac{\partial f_0}{\partial u_0} & \frac{\partial f_0}{\partial u_1} \\ \frac{\partial f_1}{\partial z_0} & \frac{\partial f_1}{\partial z_1} & \frac{\partial f_1}{\partial u_0} & \frac{\partial f_1}{\partial u_1} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}. \begin{pmatrix} \frac{\partial z_0}{\partial z_0} & \frac{\partial z_0}{\partial z_1} & \frac{\partial z_0}{\partial u_0} & \frac{\partial z_0}{\partial u_1} \\ \frac{\partial z_1}{\partial z_0} & \frac{\partial z_1}{\partial z_1} & \frac{\partial z_1}{\partial u_0} & \frac{\partial z_1}{\partial u_1} \\ \frac{\partial z_1}{\partial z_0} & \frac{\partial z_0}{\partial z_1} & \frac{\partial z_1}{\partial u_0} & \frac{\partial z_1}{\partial u_1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Thus, only part of the matrices are relevant. For efficiency, we store only the submatrices of dimension (sysdim \times jacdim), and adapt the matrix operations such as matrix multiplication (multJacfzJaczz0) in that respect. We thus write

$$\operatorname{Jac}_{z} f.[\mathbf{J}_{j}] = \left(\operatorname{Jac}_{z} f.\operatorname{Jac}_{z^{0}} z \operatorname{Jac}_{z} f \operatorname{Jac}_{u} z + Jac_{u}^{f}\right)$$

This actually corresponds to Equations (8) and (9) (where beta is z0) of [HSCC2019].

2 Examples

 $Piecewise\ constant\ inputs\ {\it Examples}\ 19\ {\it and}\ 21\ {\it are}\ the\ following\ system:$

$$\dot{x}(t) = f(u,t) = 2 + 2u + (1 - 2u)t$$

with $u \in [0,1]$ and x(0) = 0. For now, time is embedded as a component of the system.

This example is a good example to test piecewise constant time-varying inputs. Let us take time horizon of 2 and stepsize of 1. If u is constant equal to u_0 on the whole interval, then

$$x(t) = \int_0^t 2 + 2u_0 + (1 - 2u_0)sds = [(2 + 2u_0)s + (1 - 2u_0)s^2/2]_0^t$$

and in particular x(2) = 6. If u is only piecewise constant on each time setp of size 1, then

$$x(2) = \int_0^1 2 + 2u_1 + (1 - 2u_1)sds + \int_1^2 2 + 2u_2 + (1 - 2u_2)sds$$

and if both u_1 and u_2 are in [0,1] then $x(2) \in [5,7]$.

On thix example, the maximal outer and inner approximations are exact. I thus added a non linearity to get non exact approximations in Example 22 which encodes

$$\dot{x}(t) = f(u,t) = 2 + 2(u^2 + u) + (1 - 2(u^2 + u))t$$

with $u \in [0, 1]$ and x(0) = 0.