Chapter 2: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP, POP3, IMAP
- **2.4 DNS**

- 2.5 P2P applications
- 2.6 video streaming and content distribution networks
- 2.7 socket programming with UDP and TCP

DNS: domain name system

people: many identifiers:

- SSN, name, passport #
- Internet hosts, routers:
 - IP address used for addressing datagrams
 - 4 bytes or 32 bits
 - · e.g., 129.23.4.51
 - used for routing
 - "name",
 - e.g., <u>www.uci.edu</u>
 - used by humans
 - variable length
- Q: how to map between IP address and name, and vice versa?

Domain Name System:

- distributed database
 - implemented in hierarchy of many name servers
- application-layer protocol:
 - hosts, name servers communicate to resolve names (address/name translation)
 - runs on top of UDP, port 53
 - note: core Internet function, implemented as applicationlayer protocol
 - complexity at network's "edge"

DNS services

hostname to IP address translation

nslookup (or host, dig, whois) athina.calit2.uci.edu

Name: athina.calit2.uci.edu

Address: 128.195.177.83

host aliasing: canonical vs. alias names

nslookup (or dig) www.cnn.com

www.cnn.com canonical name = www.cnn.com.vgtf.net

www.cnn.com.vgtf.net canonical name = cnn-56m.gslb.vgtf.net.

Name: cnn-56m.gslb.vgtf.net

Address: 157.166.249.11

Name: cnn-56m.gslb.vgtf.net

Address: 157.166.248.10

mail server aliasing

Nslookup -type=mx stanford.edu

Stanford.edu mail exchanger = 40 mx1.stanford.edu. stanford.edu mail exchanger = 20 mx2.stanford.edu. stanford.edu mail exchanger = 20 mx3.stanford.edu.

- load distribution
 - replicated Web servers: set of IP addresses for one canonical name
 - rotating

nslookup (or dig) google.com

Name: google.com
Address: 74.125.227.167
Name: google.com
Address: 74.125.227.168
Name: google.com

Address:

74.125.227.169

••••

DNS structure

why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database
- maintenance

A: doesn't scale!

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; Ist approximation:

- client queries root server to find com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: a distributed, hierarchical database

Local (Default)

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; Ist approximation:

- client queries root server to find com DNS server
- client queries com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: root name servers

- 13 root name servers worldwide: a, b...m
 - in fact replicated: 247 root servers as of 2011
 - https://www.iana.org/domains/root/servers
- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

TLD, authoritative servers

top-level domain (TLD) servers:

- responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
 - http://www.iana.org/domains/root/db
- Network Solutions maintains servers for .com TLD
- Educause for .edu TLD: http://whois.educause.edu

authoritative DNS servers:

- organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- can be maintained by organization or service provider

Local DNS name server

- does not strictly belong to hierarchy
- each ISP (residential ISP, company, university) has one
- also called "default name server"
- when host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy
 - forwards query into hierarchy
 - caches records
- Ex: more /etc/resolv.conf

DNS name resolution example

 host at cis.poly.edu wants IP address for gaia.cs.umass.edu

iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

root DNS server

DNS name resolution example

recursive query:

- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy?

root DNS server

DNS: caching, updating records

- once (any) name server learns a mapping, it caches it
 - cache entries timeout (disappear) after some time (TTL)
 - Time-to-live (TTL) by default is 2 days
 - Needed because records change often
 - TLD servers typically cached in local name servers
 - thus root name servers are not visited often
- cached entries may be out-of-date (best effort name-to-address translation!)
 - if name host changes IP address, may not be known Internet-wide until all TTLs expire
- How to configure the records in the database
 - statically
 - update/notify mechanisms RFC 2136

DNS records -Summary

DNS: distributed database storing resource records (RR)

RR format: (name, value, type, ttl)

type=A

- name is hostname
- value is IP address

<u>type=NS</u>

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

type=MX

 value is name of mailserver associated with name

DNS: distributed db storing resource records (RR)

```
RR format: (name, value, type, ttl)
```

Type=A

- name is hostname
- value is IP address
- Stored at authoritative server of that domain

- (odysseas.calit2.uci.edu, 128.195.185.112, A)
 - You can lookup this info (both directions)
 - by command line, e.g.: nslookup or dig or host
 - or on the web, e.g.
 - http://www.kloth.net/services/nslookup.php
 - http://www.iana.org/domains/root/db
 - http://whois.educause.edu
 - or in the old days: gethostbyname(), gethostbyaddr()

DNS: distributed db storing resource records (RR)

```
RR format: (name, value, type, ttl)
```

Type=NS

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain
- this record is used to route a request further

- (uci.edu, ns1.service.uci.edu, NS)
 - type "nslookup -ty=ns uci.edu"
 - Or simply "nslookup uci.edu"

DNS: distributed db storing resource records (RR)

```
RR format: (name, value, type, ttl)
```

Type=MX

value is name of mailserver associated with name

- (uci.edu, mta.service.uci.edu, MX)
 - type "nslookup -ty=mx uci.edu"
 - type "nslookup -ty=mx stanford.edu"
 - Can have multiple NS and MS records
 - several MX records, allow for load balancing

DNS: distributed db storing resource records (RR)

```
RR format: (name, value, type, ttl)
```

Type=CNAME

- name is alias name for some "canonical" (the real) name
- value is canonical name

- (www.networkedsystems.uci.edu, odysseas.calit2.uci.edu, CNAME)
 - type "nslookup -type=cname www.networkedsystems.uci.edu"
 - Or simply "nslookup www.networkedsystems.uci.edu"
 - "nslookup -type=cname www.ibm.com"
 - alias, and potential for load balancing
 - a company can have the same alias for several servers...

DNS protocol, messages

query and reply messages, both with same message

format

message header

- identification: 16 bit # for query, reply to query uses same #
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

_ 10,000	,
identification	flags
# questions	# answer RRs
# authority RRs	# additional RRs
questions (variable # of questions)	
answers (variable # of RRs)	
authority (variable # of RRs)	
additional info (variable # of RRs)	
	# questions # authority RRs questions (variab) answers (variab) authority (variab)

DNS protocol, messages

Inserting records into DNS

- example: new startup "Network Utopia"
- register name networkuptopia.com at DNS registrar(*)
 - provide names, IP addresses of authoritative name servers (primary and secondary)
 - registrar inserts two RRs into .com TLD server: (networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, 212.212.212.1, A)
- create authoritative server type A record for www.networkuptopia.com; type MX record for networkutopia.com
- (*) E.g. Network Solutions for .com, see <u>www.internic.net</u> for registrars accredited by ICANN)

Inserting records into DNS

- Example: new startup "Network Utopia"
- Register name networkuptopia.com at DNS registrar (e.g., Network Solutions, see www.internic.net for approved registrars by ICANN)
 - provide names, IP addresses of authoritative name server (primary and secondary), verifies uniqueness, puts into database for a small fee, acredited by ICANN
 - registrar inserts two RRs into .com TLD server:

```
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)
(networkutopia.com, dns2.networkutopia.com, NS)
(dns2.networkutopia.com, 212.212.212.2, A)
```

Create Type A record in your own authoritative server

```
(www.networkutopia.com, 212.212.212.3, A)
```

Create Type MX record in your own authoritative server

```
(mail.networkutopia.com, 212.212.212.4, MX)
```

Inserting records into DNS

TLD DNS server for .com

(networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, 212.212.212.1, A) (networkutopia.com, dns2.networkutopia.com, NS) (dns2.networkutopia.com, 212.212.212.2, A)

networkutopia.com

Primary authoritative DNS server 2-ary authoritative DNS server dns1.networktutopia.com 212.212.212.1

dns2.networktutopia.cpm 212.212.212.2

(www.networkutopia.com, 212.212.212.3, A) (mail.networkutopia.com, 212.212.212.4, MX)

Mail server mail.networkutopia.com 212.212.212.4

Web server www.networkutopia.com 212.212.212.3

Example cont'd: quering DNS records

Q: How do people visit the website www.networkutopia.com?

❖ A:

- Host: sends query to local DNS server
- Local DNS server: asks TLD server [or root, if TLD not in cache]
- TLD server: provides A and NS records for dnsl.networkutopia.com (networkutopia.com, dnsl.networkutopia.com, NS)

```
(networkutopia.com, dnsl.networkutopia.com, NS)
(dnsl.networkutopia.com, 212.212.212.1, A)
```

- Local DNS server: sends query to authoritative server (212.212.212.1)
- Authoritative name server: provides type A record (www.networkutopia.com, 212.212.212.3, A)
- Local DNS server: returns this info to host (and caches RR for future use)
- Host: establishes TCP/HTTP connection to (IP: 212.212.212.3, port 80)

Resolving www.networkutopia.com

TLD DNS server for .com

DNS Load balancing

- DNS may return many RRs in same response
 - E.g. try "dig www.amazon.com" multiple times
- Clients:
 - by default, they pick the first one
 - could also choose not to this part is not standard
- Order of multiple records: Unspecified
 - most often: Round Robin
 - or static or preference to numerically "closer"networks
 - or taking into account load or RTT, or other metric computed by the client or by other (non DNS) servers
- Some references
 - http://en.wikipedia.org/wiki/Domain_Name_System
 - http://en.wikipedia.org/wiki/Round-robin_DNS
 - RFC1794: http://tools.ietf.org/html/rfc1794
 - http://technet.microsoft.com/en-us/library/cc787484(v=ws.10).aspx

Attacking DNS

- ICANN: http://www.icann.org/
- Attacks against root servers (2002, 2007):
 - DNS root servers proved robust (to pings or queries). Traffic filtering, caching, anycast load balancing: http://www.icann.org/en/announcements/factsheet-dns-attack-08mar07_v1.1.pdf
 - DDoS attacks to TLD more dangerous
 - 98% of TLD DNS queries are invalid: http://www.caida.org/publications/papers/2008/root_internet/root_internet.pdf
- Redirect/Man in the middle
 - Cache poisoning: send bogus replies to DNS servers that cache
 - Using DNS to redirect traffic
 - 2008: Kaminsky vulnerability: http://www.unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html
 - 2009: Twitter Blackout: http://www.theregister.co.uk/2009/12/18/dns_twitter_hijack/
 - 2015: Tesla's DNS hacked (CPS threat): http://www.tripwire.com/state-of-security/security-data-protection/teslas-dns-hacked-leads-website-and-twitter-hijack/
 - Intercept queries: E.g. to block access to Facebook in China
- Using DNS to launch DDoS attacks
 - Send requests with spoofed source address (target) responses flood target
 - Requires amplification

DNS Summary

- Core Internet functionality
- Implemented as a network application
 - On top of UDP (or TCP) port 53
 - Defined in RFCs: 1034, 1035 (1987)
 - http://www.ietf.org/rfc/rfc1035.txt
 - Proposed by Mockapertis (UCI PhD 1982)
 - http://en.wikipedia.org/wiki/Paul_Mockapetris
 - Many extensions, e.g. DNSSEC

Practice

- Interactive Exercise:
 - Delay when browsing: DNS+TCP+HTTP:
 - https://gaia.cs.umass.edu/kurose_ross/interactive/DNS_HTTP_delay.php
- Interactive Animation
 - Recursive vs iterative DNS Queries
 - https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/recursive-iterative-queries-in-dns/index.html
- Problems from the book