修士学位論文

雷雲を想定した強制により生じる 巨大惑星表層流の数値計算

北海道大学 理学院 宇宙理学専攻 惑星宇宙グループ 地球流体力学研究室 学籍番号: 15S2015

鈴木 綾馬

2021年1月29日

北海道大学大学院理学院修士課程

目 次

第1章	はじめに	1
1.1	巨大惑星表層流の特徴	1
1.2	先行研究	
	1.2.1 Showman et al. (2007)	
	1.2.2 Brueshaber et al. (2019)	
1.3	研究目的	
1.4	本論文の構成	
第2章	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
2.1	支配方程式系	6
2.2	実験手法・実験設定	9
第3章	実験結果 実験結果	11
3.1	標準実験結果:A1	11
3.2	実験 1: Burger 数の変化による影響	
第4章	考察 ····································	16
第5章	· 結論	17
付録		18
A	: 1.5 層浅水方程式系の導出	18
В	:モデルで使用した方程式系	23
\mathbf{C}	: 実験図集	27
	C.1 実験1	27
謝辞		29
参考文献	Ы	30

第1章 はじめに

1.1 巨大惑星表層流の特徴

巨大惑星*1大気の大規模循環は 1970 年代に Pioneer, Voyger といった探査機によって,これらの惑星の高解像度画像が撮影されて以来,大きな謎となっている. 巨大惑星表層の風速分布を図1に示す (Showman et al., 2009). 風速分布の大きな特徴として,巨大ガス惑星 (木星,土星)では赤道域で幅の広い西風とバンド構造に対応した中緯度域の縞状構造,一方,巨大氷惑星では赤道域の幅の広い東風が見られ,縞状構造は見られないといった特徴がある.

図 1: 上段:木星, 土星, 天王星, 海王星の可視光領域画像. 下段: 縦軸が緯度, 横軸がクラウドトラッキングによって得られた東西平均した東西風速分布. 巨大ガス惑星 (木星, 土星) は赤道域で幅の広い西風と中緯度で東風/西風ジェットが交互に約20個の縞状構造を形成しているのに対し, 巨大氷惑星 (天王星, 海王星) は赤道域で幅の広い東風ジェットを含め3つのジェットを形成している (Showman et al., 2009).

^{*1}ここで、巨大惑星とは組成の主体が水素やヘリウムといったガスである巨大ガス惑星 (木星, 土星) とそれに比べ、水やメタンを多く含む巨大氷惑星 (天王星,海王星) の総称として用いる.

図 2: 左は Juno による木星観測 (波長: 5μ m). 黒の等緯度線は 80° (Adriani et al., 2018). 右は Cassini による土星観測 (波長:750 nm) (Antuñano et al., 2015). 上は北極域,下は南極域である.

一方,極域の観測では低中緯度ではあまり見られない空間スケールの大きい低気圧性渦 (自転と同じ向きに回転する渦) が存在し,そのレジームが巨大惑星ごとに異なることが近年の Juno, Cassini といった探査機の観測によって明らかになった.図 2 に木星と土星の極域観測を示した.木星では複数の低気圧性渦が極付近にある低気圧性渦を取り囲んでいるという特徴がある.北極域では極から約 0.5° 離れた位置に低気圧性渦があり,その渦の周りを 8 つの低気圧性渦が囲んでいる.それぞれの渦の半径は約 2000 - 2300 km (緯度幅で \sim 2°) である.南極域では極から約 $1 \sim 2^\circ$ 離れた位置に低気圧性渦があり,その渦の周りを 5 つの低気圧性渦が囲んでいる.それぞれの渦の半径は光極域のものより大きく,約 5 2800 - 5 3500 km (緯度幅で \sim 5 3°) である (Adriani et al., 5 2018).

複数の低気圧性渦が存在する木星に対し、土星では半径約 2000 km (緯度幅で $\sim 2^\circ$) の単一の低気圧性渦が各極域を支配している。天王星、海王星も Voyger 2 号と地上観測から土星の低気圧性渦よりもサイズの大きい、単一の低気圧性渦 (緯度幅で $\sim 10^\circ$) が存在することが示唆されている。

1.2 先行研究

巨大惑星の内部構造の観測が難しいこともあり、大気循環の力学的描像と理解は数値計算を行い、1.1節で述べた表層流の特徴の再現を通して、理解を試みてきた.しかし、巨大惑星の内部構造は内部熱源があることなど、地球型惑星の内部構造と大きく異なっており、地球大気とのアナロジーで表層流を理解することは難

しい.特に,数値計算を行う際に問題になるのは観測される表層の大気運動の深さである.これについては大きく分けて,2つの説が考えられている.1つは惑星内部の対流層と観測可能な雲が存在する大気上層部の大気の運動が直接つながっているとする「深いモデル」である.このモデルにおいては比較的,赤道域で強い西風ジェットは形成されるものの,中高緯度域の縞状構造が発達しないという問題点がある(Christensen, 2002).もう1つは,惑星深部の対流と大気上層部の対流は独立しており,深部からの強制はあるものの深部の対流とは別のメカニズムで構造が形作られているという「浅いモデル」である.このモデルでは比較的,中高緯度の縞状構造が形成されるが,赤道での西風ジェットが形成しないという問題点がある(Scott and Polyani, 2007).現在のところ決定的な議論は出来ていない.

1.2.1 Showman et al. (2007)

これまでの「浅いモデル」の研究では初期に小スケールの乱流を与え、時間発展をみる自由減衰乱流実験 (Yoden and Yamada, 1993) や小規模な渦度強制を加える実験 (Scott and Polvani, 2007) などが行われてきた。しかし、このような全球的かつ連続的な強制が巨大惑星に働いているとは考えにくい。擾乱を引き起こす現象として木星、土星で観測されている雷雲 (Gierasch et al. (2000), Porco (2005)) が考えられている。Showman (2007) はこの雷雲を想定した局所的かつ離散的な強制を与え、球面浅水実験を行った。彼らは緯度 $0-70^\circ$ 、経度 $0-120^\circ$ の範囲の領域を計算した。その結果、中緯度の変形半径が小さい場合 (< 2000 km) には図3のように赤道域で幅の広い東風ジェットが形成し、中緯度では渦が支配的になることがわかった。中緯度の変形半径が大きい場合 (> 4000 km) には、弱い渦は伴うものの、ジェットが支配的になことがわかった。雷雲の強さ、ニュートン冷却の緩和時間などのパラメータを変更した実験を行ったが、どのケースも赤道域では東風ジェットになり、木星、土星で見られるような赤道加速は見られなかった。

図 3: Showman (2007) のジオポテンシャルと速度ベクトルの計算結果 (4190 地球日、中緯度の変形半径 : $L_d \sim 1200 \text{ km}$).

1.2.2 Brueshaber et al. (2019)

Brueshaber et al. (2019) は Showman (2007) の雷雲を想定した強制浅水実験を極域 (約 ~ 60° の等緯度線より高緯度) で計算し、極渦とそのレジームに注目した。その結果、図 4 に示すように Burger 数: $Bu=(L_{d0}/a)^2$ と呼ばれる極での変形半径: L_{d0} と惑星半径:a で書かれる無次元量の値によって、極渦のレジームが変化することがわかった。 Burger 数の値が $Bu \leq 2.40 \times 10^{-4}$ の場合、木星で観測されるような極のまわりを囲むような配置は見られないが、複数の小さな低気圧性渦が形成する。この特徴からこのレジームを木星的と分類した。 Burger 数の値が $4.00 \times 10^{-4} \leq Bu \leq 8.16 \times 10^{-4}$ の場合、高気圧性渦と低気圧性渦が混在するレジームがあらわれる。 Burger 数が木星的レジームと土星的レジームの間にあるためこのレジームを遷移状態と分類した。 Burger 数の値が $8.16 \times 10^{-4} \leq Bu \leq 2.50 \times 10^{-3}$ の場合、土星で観測されるような極を中心とした単一の低気圧性渦が形成する。この特徴からこのレジームよりも強力な極を中心とした単一の低気圧性渦が形成する。この特徴からこのレジームを氷巨大惑星的と分類した。

図 4: Brueshaber et al. (2019) の無次元ポテンシャル渦度 : Q_e^* の計算結果 (20000 地球日). Burger 数の値に応じて巨大惑星で観測されるような極渦のレジームが変化する. $Q_e^*=0$ は静止流体 (相対渦度や流体層の厚さの水平平均からの変化はない), $Q_e^*>0$ は低気圧性渦, $Q_e^*<0$ は高気圧性渦を表す.

1.3 研究目的

木星、土星で観測される雷雲を想定した強制を与えた浅水数値実験を Showman (2007) は低緯度から中緯度の領域を計算し、赤道域のジェットと縞状構造に着目した.境界条件としては、経度方向に周期境界、緯度方向は free - slip 境界 である.一方、Brueshaber et al. (2019) は極域の領域で計算を行い、極渦のレジームに着目した.境界条件としては、周期境界だが、スポンジ層により、流れは減衰する. どちらの先行研究も領域計算であり、このような領域の制限は流れ場全体の構造に影響を与える可能性がある. 例えば、Brueshaber et al. (2019) では低緯度

からの運動量輸送が考慮できていなく、これは、現実的ではない。そのため本研究では、雷雲を想定した強制浅水実験を全球で行い、低緯度から中緯度の主に東西ジェットの構造を Showman (2007)の計算と比較、極域の渦の構造を Brueshaber et al. (2019)と比較する。そして、雷雲を想定した強制により、1.1 節で述べた巨大惑星の表層流の特徴が雷雲による強制により、形成されるのかを調べることが本研究の目的である。

1.4 本論文の構成

本論文の構成を簡単に述べる. 2章では用いた 1.5 層浅水方程式系と数値実験の 手法および設定について述べる. 3章では Burger 数,放射緩和時間,低気圧性渦/ 高気圧性渦の割合,解像度のそれぞれの値を変化させたときの実験結果を示す. 4 章では東西ジェットと極渦のレジームに注目し考察を行う. 5章で本論文の結論を 述べる. 修士学位論文 2 モデルと手法 6

第2章 モデルと手法

ここでは本研究で用いるモデルと実験手法・実験設定について述べる.

2.1 支配方程式系

本研究では球面上の1.5層浅水方程式系を用いる.これはShowman (2007), Brueshaber et al. (2019) で用いられた系と同じである.このモデルにおいて上層と下層はそれぞれの層で密度一定であり、上層は活動的な層、下層は無限に深く静止したそうであると仮定する.上層に対する運動量方程式と質量保存の式は

$$\frac{\mathbf{D}\boldsymbol{u}}{\mathbf{D}t} + g'\nabla h + f\boldsymbol{k} \times \boldsymbol{u} = -\boldsymbol{D}_{\boldsymbol{u}},\tag{1}$$

$$\frac{\partial g'h}{\partial t} + \nabla \cdot (g'h\boldsymbol{u}) = \Sigma S_{\text{storm}} + S_{\text{rad}} - D_h$$
 (2)

である*2. u は水平風速,g' は有効重力加速度,h は上層の厚さ,f はコリオリパラメータ,k は鉛直方向の単位ベクトル, D_h , D_h はそれぞれ計算が発散しないための数値粘性・拡散項*3, S_{storm} は雷雲を想定した質量強制項, S_{rad} は放射緩和項である.また,物質微分は

$$\frac{\mathbf{D}}{\mathbf{D}t} = \frac{\partial}{\partial t} + \frac{u}{a\cos\vartheta} \frac{\partial}{\partial\lambda} + \frac{v}{a} \frac{\partial}{\partial\vartheta}.$$
 (3)

それぞれの強制項は

$$S_{\text{storm}} = s \cdot \exp\left[-\frac{R^2}{R_{\text{storm}}^2} - \frac{(t^* - t_0)^2}{\tau_{\text{storm}}^2}\right],$$
 (4)

$$S_{\rm rad} = -\frac{\langle g'h\rangle - g'h_{\rm eq}}{\tau_{\rm mass}} - \frac{g'h - \langle g'h\rangle}{\tau_{\rm APE}}$$
 (5)

である.ここで,s は質量強制の最大値,またその正負の割合を α とする. $\alpha=1.0$ のとき,正の質量強制のみが与えられる (つまり,高気圧性渦が質量強制を与えた場所で発生する).R は質量強制の中心位置からの距離, $R_{\rm storm}$ は質量強制の半径, t^* は質量強制が局所的に与えられてからの時間, t_0 は質量強制がピークを迎える時間, $\tau_{\rm storm}$ は質量強制の特徴的な緩和時間, $\langle \rangle$ はその瞬間の水平平均, $h_{\rm eq}$ は平

^{*2}導出は付録 A を参照.

^{*3}詳細は付録 B を参照.

修士学位論文 2 モデルと手法 7

図 5: 質量強制: S_{storm} のスナップショット $(s_{max}=0.333,\ R_{\text{storm}}=2.62\times 10^6\ \text{m}\ (2.1^\circ)$, $\alpha=0.5$ の場合). ある時刻と位置に雷雲を想定した質量強制を式 (4) で与える. 質量強制は $R>2.2R_{\text{storm}},t^*>2.2\tau_{\text{storm}}$ で 0 とする. 質量強制が与えられてから, $2.2\tau_{\text{storm}}$ 秒後に消滅. そこから $\tau_{interval}$ 秒後に違う位置に質量強制が与えられる.

衡状態での厚さ, $\tau_{\rm mass}$ はエネルギーに影響を与えず, $\langle h \rangle$ を $h_{\rm eq}$ に向かって平衡化するときの緩和時間, $\tau_{\rm APE}$ は質量に影響を与えず,h を $\langle h \rangle$ に向かって平衡化するときの緩和時間である。図 5 に質量強制のスナップショットを示す。質量強制は $R > 2.2R_{\rm storm}, t^* > 2.2\tau_{\rm storm}$ で 0 とする。質量強制が与えられてから, $2.2\tau_{\rm storm}$ 秒 が経過し,消滅後,そこから $\tau_{interval}$ 秒後に違う位置に質量強制が与えられる。

式 (5) の放射緩和項の右辺第 1 項は緩和時間 τ_{mass} で $\langle h \rangle$ を平衡厚さ h_{eq} に向かって,緩和する.右辺第 2 項は緩和時間 τ_{APE} で局所的な流体層の厚さの変化を $\langle h \rangle$ に向かって,緩和する.これら 2 つの項により,統計的定常状態を実現する.Brueshaber et al. (2019) ではこれらの強制項に加え,加えた質量強制を層から差し引く質量調整項を加えていたが,ここでは Showman (2007) にならい,加えない.使用する記号を表 1 にまとめる.

表 1: 本論文中で使用する記号一覧

意味	記号	意味	記号			
緯度(rad)	θ	質量強制の最大値	s			
経度(rad)	λ	質量強制の正負の割合	α			
時間	t	質量強制の中心位置からの位置	R			
水平風速ベクトル	u	質量強制の半径	R _{storm}			
東西風速	u	質量強制が与えられてからの時間	t*			
南北風速	v	質量強制が最大になる時間	t _o			
有効重力加速度	g'	質量強制の緩和時間	$\tau_{ m storm}$			
上層の厚さ	h	水平平均	()			
平衡厚さ	h _{eq}	〈h〉を h _{eq} に緩和するときの緩和時間	τ_{APE}			
コリオリパラメータ	f	h を (h)に緩和するときの緩和時間	$ au_{ m mass}$			
極でのコリオリパラメータ	f ₀	1つの質量強制の時間間隔	T _{interval}			
自転角速度	Ω	数值粘性項	D _u			
惑星半径	а	数值拡散項	D_h			
鉛直方向の単位ベクトル	k	渦度に対する数値粘性項	D_{ζ}			
相対渦度	ζ	発散に対する数値粘性項	D_D			
発散	D	水平拡散係数	K_m			
質量強制項	$S_{ m storm}$	水平拡散係数	K_h			
放射緩和項	Srad	超粘性次数	N_m			
変形半径	L _d	超拡散次数	N_h			

修士学位論文 2 モデルと手法 9

2.2 実験手法・実験設定

球面上の支配方程式系 (1), (2) を解く、その際,運動量方程式はベクトル量である速度のままだと球面座標系では格子点が集中する極点付近で,計算が難しい、そのため,式 (1) を変形しスカラー量である渦度と発散に関する式を用いる*4. また,数値的な安定性を維持するためにラプラシアン 4 次の超粘性を加える.空間離散化にはスペクトル法を用いる.時間離散化は数値粘性項についてはクランク・ニコルソン法,それ以外の項には 4 次のルンゲクッタ法を用いる.また数値モデルの作成には地球流体電脳倶楽部の階層的地球スペクトルモデル集 (SPMODEL; Takehiro et al. (2006), Takehiro et al. (2013)) を使用する.初期に上層は静止しており, $10\tau_{interval}$ 秒経過する間に最初の質量強制がランダムな位置に最大で 50 個加えられる.自転角速度は木星の値を用いる.また,計算時間は 3000 地球日とする.本研究で用いた共通パラメータを表 2 に示す.表 3 に計算を行った数値実験のケースとその用いたパラメータを示す.

以下では A1 のケースを標準実験とし,3.1 節でその実験結果について述べる.その次に,3.2 節では $g'h_{eq}$ の値を変化させ,Burger 数の影響を調べた実験 1 の結果について示す.??節では τ_{APE} の値を変化させ,放射緩和の影響を調べた実験 2 の結果について示す.??節では α の値を変化させ,質量強制の正負の影響を調べた実験 3 の結果について示す.??節では解像度の違いによる変化を調べた実験 4 の 結果について示す.

表 2: 実験で用いた共通パラメータ

パラメータ [単位]	值
自転角速度 [s-1]	1.74×10^{-4}
τ_{mass} [s ⁻¹]	1.0×10^{6}
雷雲の個数	50
超粘性の次数	4

^{*4}付録 B を参照.

表 3: 実験のケースと用いたパラメータ

信 考	8072 の 43 に対応.	g'h < 0 となる.	g'h < 0 となる. 77 の A4 に対応. g'h < 0 となる.	jh < 0 となる. 7 の M に対応。 jh < 0 となる. 7 の A5 に対応	9.1k < 0 となる. 7. の M に対応。 9.1k < 0 となる. 7. の A5 に対応	9.1k < 0 となる. 7.0 M に対応。 9.1k < 0 となる. 7.0 M5 に対応	9.1k < 0 となる. 7. の M. に対応, 9.1k < 0 となる. 7. の A5 に対応	9.1k < 0 となる. 7 の M に対応. 9.1k < 0 となる. 7 の A5 に対応	9.1k < 0 となる. 7 の M に対応, 9.1k < 0 となる. 7 の A5 に対応	9.1k < 0 となる。 7. の M に対応。 9.1k < 0 となる。 7. の M5 に対応	g h < 0 となる. 807 の A4 に対応。 807 の A5 に対応。 807 の D1a に対応。 807 の D1a に対応。 g h < 0 となる.	976 C 2 4 4 C 2 4 4 C 2 4 4 C 2 4 4 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9'h < 0 となる. 7 の A4 に対応. 9'h < 0 となる. 7 の A5 に対応. 9'h < 0 となる. 7 の D1b に対応.	976 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9'h < 0 となる. 7 の A4 に対応, 9'h < 0 となる. 7 の D1a に対応, 9'h < 0 となる. 7 の D1b に対応	9.h < 0 となる. 7 の A4 に対応. 7 の A5 に対応. 7 の D1a に対応. 9.h < 0 となる. 7 の D1b に対応.	9'h < 0 となる. 7 の A4 に対応. 7 の A5 に対応. 9'h < 0 となる. 7 の D1b に対応. 7 の D1b に対応	9.h < 0 となる. 7 の A4 に対応 9.h < 0 となる. 7 の D1a に対応 9.h < 0 となる. 7 の D1b に対応 7 の D1 に対応 7 の A1 に対応	9 h < 0 となる. 507 の A4 に対応、 9 h < 0 となる. 507 の D1a に対応、 9 h < 0 となる. 507 の D1b に対応 507 の D1b に対応 507 の A1 に対応 507 の A2 に対応 9 h < 0 となる.
	4		3 S07 Ø A4 g'h < 0 ≥	8 8	ω	S S				∞ ×	00	n	m	m	no	m			
1. 2. 4		1, 3		Н	1 1													1 1 1 1 1 1 2 2 2 2 2 8 8 4	1
9.72×10 ⁻⁵ (J)		$4.86 \times 10^{-4} (T)$	1.46×10^{-3} (S)		$1.00 \times 10^{-2} (I)$	$1.00 \times 10^{-2} (I)$ $1.00 \times 10^{-2} (I)$	$1.00 \times 10^{-2} (I)$ $1.00 \times 10^{-2} (I)$ $9.72 \times 10^{-8} (J)$	$1.00 \times 10^{-2} (l)$ $1.00 \times 10^{-2} (l)$ $9.72 \times 10^{-8} (l)$ $4.86 \times 10^{-4} (T)$	$1.00 \times 10^{-2} (f)$ $1.00 \times 10^{-2} (f)$ $9.72 \times 10^{-5} (f)$ $4.86 \times 10^{-4} (T)$ $1.00 \times 10^{-2} (f)$	$1.00 \times 10^{-2} (f)$ $1.00 \times 10^{-2} (f)$ $9.72 \times 10^{-5} (f)$ $4.86 \times 10^{-4} (T)$ $1.00 \times 10^{-2} (f)$ $1.00 \times 10^{-2} (f)$	$1.00 \times 10^{-2} (f)$ $1.00 \times 10^{-2} (f)$ $9.72 \times 10^{-5} (f)$ $4.86 \times 10^{-4} (T)$ $1.00 \times 10^{-2} (f)$ $1.00 \times 10^{-2} (f)$ $9.72 \times 10^{-5} (f)$	1.00 × 10 ⁻² (f) 1.00 × 10 ⁻² (f) 9.72 × 10 ⁻⁵ (f) 4.86 × 10 ⁻⁴ (f) 1.00 × 10 ⁻² (f) 1.00 × 10 ⁻² (f) 9.72 × 10 ⁻⁵ (f)	1.00 × 10 ⁻² (f) 1.00 × 10 ⁻² (f) 9.72 × 10 ⁻⁵ (f) 4.86 × 10 ⁻⁴ (f) 1.00 × 10 ⁻² (f) 1.00 × 10 ⁻² (f) 9.72 × 10 ⁻⁵ (f) 9.72 × 10 ⁻⁵ (f)	1.00 × 10 ⁻² (f) 1.00 × 10 ⁻² (f) 9.72 × 10 ⁻⁵ (f) 4.86 × 10 ⁻⁴ (f) 1.00 × 10 ⁻² (f) 1.00 × 10 ⁻² (f) 9.72 × 10 ⁻⁵ (f) 9.72 × 10 ⁻⁵ (f) 9.72 × 10 ⁻⁵ (f)	1.00×10 ⁻² (f) 1.00×10 ⁻² (f) 9.72×10 ⁻⁵ (f) 4.86×10 ⁻⁴ (T) 1.00×10 ⁻² (f) 1.00×10 ⁻² (f) 9.72×10 ⁻⁵ (f) 9.72×10 ⁻⁵ (f) 9.72×10 ⁻⁵ (f) 9.72×10 ⁻⁵ (f)	1.00 × 10 ⁻² (f) 1.00 × 10 ⁻² (f) 9.72 × 10 ⁻⁵ (f) 4.86 × 10 ⁻⁴ (f) 1.00 × 10 ⁻² (f) 1.00 × 10 ⁻² (f) 9.72 × 10 ⁻⁵ (f)	1.00×10 ⁻² (f) 1.00×10 ⁻² (f) 9.72×10 ⁻⁵ (f) 1.00×10 ⁻² (f) 1.00×10 ⁻² (f) 9.72×10 ⁻⁵ (f)	1.00×10 ⁻² (f) 1.00×10 ⁻² (f) 4.86×10 ⁻⁴ (T) 1.00×10 ⁻² (f) 1.00×10 ⁻² (f) 9.72×10 ⁻⁵ (f)	1.00×10 ⁻² (f) 1.00×10 ⁻² (f) 4.86×10 ⁻⁴ (T) 1.00×10 ⁻² (f) 1.00×10 ⁻² (f) 9.72×10 ⁻⁵ (f)
1.1 × 10 ⁴³	1.1×10 ⁴¹		1.1×10^{41}	11×1041		+-	1.1 × 10 ⁴¹ 1.1 × 10 ⁴³	1.1 × 10 ⁴¹ 1.1 × 10 ⁴³ 1.1 × 10 ⁴¹	1.1 × 10 ⁴¹ 1.1 × 10 ⁴² 1.1 × 10 ⁴³ 1.1 × 10 ⁴⁴ 1.1 × 10 ⁴⁴	1.1 × 10 ⁴¹ 1.1 × 10 ⁴² 1.1 × 10 ⁴³ 1.1 × 10 ⁴⁴ 1.1 × 10 ⁴⁴ 1.1 × 10 ⁴⁴	1.1 × 10 ⁴¹ 1.1 × 10 ⁴² 1.1 × 10 ⁴³	1.1 × 10 ⁴¹ 1.1 × 10 ⁴² 1.1 × 10 ⁴³ 1.1 × 10 ⁴³ 1.1 × 10 ⁴³	1.1 × 10 ⁴¹ 1.1 × 10 ⁴² 1.1 × 10 ⁴³	1.1 × 10 ⁴¹ 1.1 × 10 ⁴³ 1.1 × 10 ⁴³	1.1 × 10 ⁴¹ 1.1 × 10 ⁴¹ 1.1 × 10 ⁴¹ 1.1 × 10 ⁴¹ 1.1 × 10 ⁴³	1.1 × 10 ⁴¹ 1.1 × 10 ⁴¹ 1.1 × 10 ⁴¹ 1.1 × 10 ⁴² 1.1 × 10 ⁴³ 1.1 × 10 ⁴⁴ 1.1 × 10 ⁴⁴ 1.1 × 10 ⁴⁴	11. × 10 ⁴¹ 11. × 10 ⁴¹ 11. × 10 ⁴¹ 11. × 10 ⁴¹ 11. × 10 ⁴² 11. × 10 ⁴³ 11. × 10 ⁴⁴	1.1 × 10 ⁴¹ 1.1 × 10 ⁴¹ 1.1 × 10 ⁴¹ 1.1 × 10 ⁴¹ 1.1 × 10 ⁴³ 1.1 × 10 ⁴³ 1.1 × 10 ⁴³ 1.1 × 10 ⁴³ 1.1 × 10 ⁴⁴ 1.1 ×	11. × 10 ⁴¹ 11. × 10 ⁴¹ 11. × 10 ⁴¹ 11. × 10 ⁴¹ 11. × 10 ⁴² 11. × 10 ⁴³ 11. × 10 ⁴³ 11. × 10 ⁴³ 11. × 10 ⁴³ 11. × 10 ⁴⁴
6.00 × 10 ⁴ 3.00 × 10 ⁵	3.00×10 ⁵		9.00 × 10 ⁵	2.74×10 ⁶	6200106	0.20 × 10	9.00 × 10 ⁵	9.00 × 10 ⁵	9.00 × 10 ⁵ 9.00 × 10 ⁵ 9.00 × 10 ⁵	9,00×10 ⁵ 9,00×10 ⁵ 9,00×10 ⁵ 9,00×10 ⁵	9,00×10 ⁵ 9,00×10 ⁵ 9,00×10 ⁵ 9,00×10 ⁶ 6,00×10 ⁴	9,00×10 ⁵ 9,00×10 ⁵ 9,00×10 ⁵ 9,00×10 ⁶ 6,00×10 ⁴	9,00×10 ⁵ 9,00×10 ⁵ 9,00×10 ⁵ 9,00×10 ⁴ 6,00×10 ⁴ 6,00×10 ⁴	9,00 × 10 ⁵ 9,00 × 10 ⁵ 9,00 × 10 ⁵ 9,00 × 10 ⁴ 6,00 × 10 ⁴ 6,00 × 10 ⁴ 6,00 × 10 ⁴	9,00 × 10 ⁵ 9,00 × 10 ⁵ 9,00 × 10 ⁵ 9,00 × 10 ⁵ 6,00 × 10 ⁴ 6,00 × 10 ⁴ 6,00 × 10 ⁴ 6,00 × 10 ⁴	9,00×10 ⁵ 9,00×10 ⁵ 9,00×10 ⁵ 9,00×10 ⁵ 6,00×10 ⁴ 6,00×10 ⁴ 6,00×10 ⁴ 6,00×10 ⁴ 6,00×10 ⁴ 8,00×10 ⁴	9,00 × 10 ⁵ 9,00 × 10 ⁵ 9,00 × 10 ⁵ 9,00 × 10 ⁴ 6,00 × 10 ⁴ 3,00 × 10 ⁵ 3,00 × 10 ⁵ 3,00 × 10 ⁵	9,00×10 ⁵ 9,00×10 ⁵ 9,00×10 ⁵ 9,00×10 ⁴ 6,00×10 ⁴ 6,00×10 ⁴ 6,00×10 ⁴ 6,00×10 ⁴ 6,00×10 ⁴ 6,00×10 ⁴ 6,00×10 ⁴ 6,00×10 ⁵ 8,00×10 ⁵ 9,00×10 ⁵ 9,00×1	9,00 × 10 ⁵ 9,00 × 10 ⁵ 9,00 × 10 ⁵ 9,00 × 10 ⁵ 6,00 × 10 ⁴ 6,00 × 10 ⁴ 6,
8 8	8		8	8	8		8	8 8	8 8 8	8 8 8 8	00 00 00 1.0 × 10 ⁸	00 00 00 1.0 × 10 ⁸ 1.0 × 10 ⁷	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 1.0 × 10 ⁸ 1.0 × 10 ⁶ 1.0 × 10 ⁶ 1.0 × 10 ⁶	00 00 1.0 × 10 ⁸ 1.0 × 10 ⁶ 1.0 × 10 ⁶ 1.0 × 10 ⁶ 1.0 × 10 ⁶	00 00 1.0 × 10 ⁸ 1.0 × 10 ⁷ 1.0 × 10 ⁶ 1.0 × 10 ⁸ 1.0 × 10 ⁸	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00
$2.62 \times 10^6 (2.1)$ $2.62 \times 10^6 (2.1)$	છ		$2.62 \times 10^6 \ (2.1)$	$2.62 \times 10^6 \ (2.1)$	2.62×10^{6} (2. 1)		$1.01 \times 10^7 \ (2.1)$	$1.01 \times 10^7 (2.1)$ $4.53 \times 10^6 (2.1)$	1.01×10 ⁷ (2.1) 4.53×10 ⁶ (2.1) 1.50×10 ⁶ (2.1)	1.01×10 ⁷ (2.1) 4.53×10 ⁶ (2.1) 1.50×10 ⁶ (2.1) 9.97×10 ⁵ (2.1)	1.01×10 ⁷ (2.1) 4.53×10 ⁶ (2.1) 1.50×10 ⁶ (2.1) 9.97×10 ⁵ (2.1) 2.62×10 ⁶ (2.1)	1.01×10 ⁷ (2.1) 4.53×10 ⁶ (2.1) 1.50×10 ⁶ (2.1) 9.97×10 ⁵ (2.1) 2.62×10 ⁶ (2.1) 2.62×10 ⁶ (2.1)	1.01×10 ⁷ (2.1) 4.53×10 ⁶ (2.1) 1.50×10 ⁶ (2.1) 9.97×10 ⁵ (2.1) 2.62×10 ⁶ (2.1) 2.62×10 ⁶ (2.1) 2.62×10 ⁶ (2.1)	1.01×10 ⁷ (2.1) 4.53×10 ⁶ (2.1) 1.50×10 ⁶ (2.1) 9.97×10 ⁵ (2.1) 2.62×10 ⁶ (2.1) 2.62×10 ⁶ (2.1) 2.62×10 ⁶ (2.1) 2.62×10 ⁶ (2.1) 2.62×10 ⁶ (2.1)	හි හි හි හි හි හි හි	1.01×10 ⁷ (2.1) 4.53×10 ⁶ (2.1) 1.50×10 ⁶ (2.1) 2.62×10 ⁶ (2.1)	1.01×10 ⁷ (2.1) 4.53×10 ⁶ (2.1) 1.50×10 ⁶ (2.1) 2.62×10 ⁶ (2.1)	1.01×10 ⁷ (2.1) 4.53×10 ⁶ (2.1) 1.50×10 ⁶ (2.1) 2.62×10 ⁶ (2.1)	
1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0	1.0 1.0 1.0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 11 0 1 0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 0.0 0.5 0.0 0.0	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.333	0.333	0.333		0.333	0.333	000	0. 333	0.333	0. 333	0.333	0. 333	0. 333	0. 333 0. 333 0. 333 0. 333 0. 333 0. 333 0. 333 0. 333 0. 333	0. 333 0. 333 0. 333 0. 333 0. 333 0. 333 0. 333 0. 333	0. 333 0. 333 0. 333 0. 333 0. 333 0. 333 0. 333 0. 333 0. 333	0. 333 0. 333	0. 333 0.	0. 333 0. 333	0. 333 0. 333
7.1400×10 ⁷ 7.1400×10 ⁷ 7.1400×10 ⁷	7.1400×10 ⁷ 7.1400×10 ⁷	7.1400×10^{7}		7.1400×10^{7}	7.1400×10^{7}	2.7654×10^{8}		1.2367×10^{8}	1.2367×10 ⁸ 4.0920×10 ⁷	1.2367×10 ⁸ 4.0920×10 ⁷ 2.7200×10 ⁷	1.2367×108 4.0920×107 2.7200×107 7.1400×107	1,2367×108 4,0920×107 2,7200×107 7,1400×107 7,1400×107	1,2367×108 4,0920×107 2,7200×107 7,1400×107 7,1400×107 7,1400×107	1,2367×108 4,0920×107 2,7200×107 7,1400×107 7,1400×107 7,1400×107	1,2367×108 4,0920×107 2,7200×107 7,1400×107 7,1400×107 7,1400×107 7,1400×107 7,1400×107	1,2367×108 4,0920×107 2,7200×107 7,1400×107 7,1400×107 7,1400×107 7,1400×107 7,1400×107 7,1400×107	1,2367×108 4,0920×107 2,7200×107 7,1400×107 7,1400×107 7,1400×107 7,1400×107 7,1400×107 7,1400×107 7,1400×107	1,2367×108 4,0920×107 2,7200×107 7,1400×107 7,1400×107 7,1400×107 7,1400×107 7,1400×107 7,1400×107 7,1400×107 7,1400×107 7,1400×107	4.0920×10 ⁷ 2.7200×10 ⁷ 2.7200×10 ⁷ 7.1400×10 ⁷
20		20	20	20	20	20		20	8 8	8 8 8	20 20 20 20 20	8 8 8 8	02 02 02 02 03 03	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	02 02 02 02 02 02 02 02	10 20 20 20 20 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	20 20 20 20 20 20 20 20 20 20 20 20 20 2
T170		T170	021I	T170	T170	1170		1170	0717	1170 1170 1170	07.17 07.17 07.17	07.17 07.17 07.17 07.17	07.17 07.17 07.17 07.17 07.17	07.11 07.11 07.11 07.11 07.11	07.11 07.11 07.11 07.11 07.11	07.11 07.11 07.11 07.11 07.11 07.11	07.11 07.11 07.11 07.11 07.11 07.11	1170 1170 1170 1170 1170 1170 1170 1170	1170 1170 1170 1170 1170 1170 1170 1170
	A1	A2	A3	A4	A5	B1		B2	B3 B3	B3 B3 B4	B3 B3 C1 C1	2	23 E8 B4 E3	BB BB BB C1 C1 C2 C2 C2 C3 C3 C5	BB	BB BB BB CC C	BB	H H H H H H H H H H H H H H H H H H H	# # # # # # # # # # # # # # # # # # #

! Brueshaber et al. (2019) で Burger 数の値で分類したレジーム? Showman (2007)

第3章 実験結果

3.1 標準実験結果: A1

ここでは、標準実験とした A1 のケースの結果を図 6-10 に示す。用いたパラメータは表 3 を参照。図 6 の東西風速を見てわかるように、赤道域で幅が広く、風速が約 $220~{\rm m\cdot s^{-1}}$ と強力な東風ジェットと緯度約 $\pm 30^\circ$ で風速約 $100~{\rm m\cdot s^{-1}}$ の西風ジェットが見られる。また、その西風ジェットに対応して、図 7 のジオポテンシャルがその領域で値が小さくなっている。正 (負) の質量強制の場合、流体層に局所的な膨らみ (窪み) を作る。この局所的に膨らんだ場所はコリオリカにより、高気圧性 (低気圧性) 渦を形成する。このケースでは正の質量強制のみ与えられるため、図 8 の相対渦度分布を見て分かるように、高気圧性渦が見て取れる。さらに、渦の正負を分かりやすくするために、無次元ポテンシャル渦度を定義する。無次元ポテンシャル渦度: Q_s^* は

$$Q_e^* = \left[\frac{\zeta + f}{h} - \frac{f}{\langle h \rangle}\right] \cdot \frac{\langle h \rangle}{f_0} \tag{6}$$

である. ここで, ζ は相対渦度, f はコリオリパラメータ, f_0 は極でのコリオリパラメータの値である. $Q_e^*=0$ は静止流体 (相対的な渦度や厚さの摂動はない) を表す. $Q_e^*>0$ は低気圧性の渦度を表し, $Q_e^*<0$ は高気圧性の渦度を表す. 図 9 の極域を見てみると巨大な低気圧性渦の中に, 複数の高気圧性渦が形成していることがわかる. 図 10 に有効ポテンシャルエネルギー: APE と運動エネルギー: KE

$$APE = \frac{1}{2} \int \left[(g'h)^2 - \langle g'h \rangle^2 \right] dA. \tag{7}$$

$$KE = \frac{1}{2} \int g' h(u^2 + v^2) dA.$$
 (8)

を示す. ここで, A は計算領域の面積, u,v はそれぞれ経度, 緯度方向の速度である. A1 のケースでは $\tau_{APE} = \infty$ のため, APE と KE は時間とともに増加する.

図 6: A1の実験結果. 左:東西風速,右:東西平均した東西風速 (3000 地球日).

図 7: A1 の実験結果. ジオポテンシャル (3000 地球日). 左:緯度 0° , 経度 0° から見た球面投影. 中:緯度 90° , 経度 0° から見た球面投影. 右:緯度 -90° , 経度 0° から見た球面投影.

図 8: A1 の実験結果. 相対渦度 (3000 地球日). 左:緯度 0° , 経度 0° から見た球面投影. 中:緯度 90° , 経度 0° から見た球面投影. 右:緯度 -90° , 経度 0° から見た球面投影.

図 9: A1 の実験結果. 無次元ポテンシャル渦度 (3000 地球日). 左:緯度 0° , 経度 0° から見た球面投影. 中:緯度 90° , 経度 0° から見た球面投影. 右:緯度 -90° , 経度 0° から見た球面投影.

図 10: A1 の実験結果. 有効ポテンシャルエネルギー: APE (実線) と運動エネルギー: KE (点線) の時間発展.

3.2 実験1: Burger 数の変化による影響

この節ではBurger 数

$$Bu = \left(\frac{L_{d0}}{a}\right)^2 \tag{9}$$

の変化による影響を調べる. a は惑星半径, L_{d0} は極での変形半径

$$L_{d0} = \frac{\sqrt{g' h_{\text{eq}}}}{f_0}, \qquad f_0 = 2\Omega \tag{10}$$

である。Brueshaber et al. (2019) では Burger 数を初期の値から変化しないように、質量強制によって加えられた質量を全球の流体層の厚さから取り除く項を入れているが、本研究では平衡厚さ $g'h_{eq}$ で Burger 数を定義する。図 11 に Burger 数を変化させて行った実験の無次元ポテンシャル渦度を示す。図の下に示されているアルファベットは Brueshaber et al. (2019) が Burger 数によって、分類した極渦のレジームを示している。それぞれ、次の特徴によって、分類されている。

- J 木星的レジーム
 - 複数の渦が発生し、極に渦がとどまらない。
- T 遷移的レジーム
- S 土星的レジーム
- I 巨大氷惑星的レジーム

Nondimensional potential vorticity

図 11: 無次元ポテンシャル渦度 (3000 地球日). 上にケース,下に Burger 数と Brueshaber et al. (2019) で分類された極渦のレジームを示している.

zonal-mean zonal wind

図 12: 東西平均した東西風速 (3000 地球日). 上にケース,下に Burger 数と Brueshaber et al. (2019) で分類された極渦のレジームを示している.

修士学位論文 4 考察 16

第4章 考察

ddd

修士学位論文 5 結論 17

第5章 結論

SSS

 def

付録

A : 1.5 層浅水方程式系の導出

ここでは、Vallis (2017) 3.2 節 有効重力の方程式系を参考に、1.5 層浅水モデルの方程式を導出する.

・1.5 層浅水モデルの概要

浅水系で最も単純な 1 層モデルは密度が変化しない一層の流体層を考えている. しかし、現実の流体の密度は変化するはずである. 特に成層していれば、鉛直方向に変化すると考えられる. 1.5 層モデルでは上層は活動的、下層は無限に深く静止した密度の異なる 2 つの流体層を考え、単純ではあるが鉛直方向の密度変化を考慮する. 海洋では下層はほとんど静止し、運動のある上層は数 100 m の厚さであるため、このモデルが使われることがある. 図 A.1 に 1.5 層モデルの模式図を示す.ここで、 η_0 は上層の高さ、 η_1 は下層の高さ、h は上層の厚さ、上層、下層の密度はそれぞれ ρ_1 , ρ_2 ($\rho_1 < \rho_2$) である.上端の境界条件は自由表面と剛体表面の 2 つの場合がある. Showman (2007)、Brueshaber et al. (2019) では剛体表面近似を用いていると考えられる.以下ではそれぞれの境界条件の場合で方程式系を導く.

図 A.1: 1.5 層浅水方程式系の模式図 (Vallis (2017) の図 3.3 を改変). 左は自由表面近似,右は剛体表面近似である. 上層の厚さ h は上層の高さ η_0 と下層の高さ η_1 を用いて, $h=\eta_0-\eta_1$ で書かれる.

· 自由表面近似

運動量方程式

まずは上層について考える. 上層の静水圧の式は

$$\frac{\partial p_1}{\partial z} = -\rho_1 g. \tag{A.1}$$

これを、上層の上端 η_0 からある深さ z まで積分すると

$$\int_{0}^{p_{1}} dp = -\rho_{1} g \int_{p_{0}}^{z} dz. \tag{A.2}$$

自由表面近似では上層の上端で $p(\eta_0) = 0$ なので,

$$p_1(x, y, z, t) = \rho_1 g(\eta_0 - z). \tag{A.3}$$

式 (A.3) の水平勾配をとると,

$$\nabla_z p_1 = \rho_1 g \nabla_z \eta_0,$$

$$\frac{1}{\rho_1} \nabla_z p_1 = g \nabla_z \eta_0.$$
(A.4)

ここで,

$$\nabla_z = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right).$$

次に下層について考える. 下層の静水圧の式は

$$\frac{\partial p_2}{\partial z} = -\rho_2 g. \tag{A.5}$$

これを、下層の上端 η_1 からある深さ z まで積分すると

$$\int_{p_1}^{p_2} dp = -\rho_2 g \int_{\eta_1}^{z} dz,$$

$$p_2 - p_1 = \rho_2 g(\eta_1 - z). \tag{A.6}$$

 p_1 は式 (A.3) で $z = \eta_1$ とした値なので

$$p_{2} = p_{1} + \rho_{2}g(\eta_{1} - z)$$

$$= \rho_{1}g(\eta_{0} - \eta_{1}) + \rho_{2}g(\eta_{1} - z)$$

$$= \rho_{1}g(\eta_{0} - \eta_{1}) + \rho_{2}g(\eta_{1} - z). \tag{A.7}$$

式 (A.7) の水平勾配をとると,

$$\nabla_z p_2 = \rho_1 g(\nabla_z \eta_0 - \nabla_z \eta_1) + \rho_2 g \nabla_z \eta_1$$

$$= \rho_1 g \nabla_z \eta_0 + \rho_1 g \frac{(\rho_2 - \rho_1)}{\rho_1} \nabla_z \eta_1$$

$$= \rho_1 g \nabla_z \eta_0 + \rho_1 g' \nabla_z \eta_1. \tag{A.8}$$

ここで, q' は有効重力加速度 (reduced gravity)

$$g' = g \frac{(\rho_2 - \rho_1)}{\rho_1}$$

である. 下層は運動がないので、式 (A.8) の左辺の圧力勾配 $\nabla_z p_2$ は 0 になる. よって,

$$g\nabla_z\eta_0 = -g'\nabla_z\eta_1. \tag{A.9}$$

式(A.4) より

$$\frac{1}{\rho_1} \nabla_z p_1 = -g' \nabla_z \eta_1. \tag{A.10}$$

上層の回転の効果を含む非粘性流体の運動量方程式は

$$\frac{\mathbf{D}\boldsymbol{u_1}}{\mathbf{D}t} + \frac{1}{\rho_1}\nabla_z p_1 + f\boldsymbol{k} \times \boldsymbol{u_1} = 0. \tag{A.11}$$

ここで、kはz方向の単位ベクトルである。式(A.11)に式(A.10)を代入すると

$$\frac{\mathbf{D}\boldsymbol{u_1}}{\mathbf{D}t} - g'\nabla_z\eta_1 + f\boldsymbol{k} \times \boldsymbol{u_1} = 0 \tag{A.12}$$

となる.

連続の式

連続の式は1層の浅水系と同様に考えることができ,

$$\frac{\partial g'h}{\partial t} + \nabla_z(g'h\boldsymbol{u_1}) = 0. \tag{A.13}$$

まとめると

自由表面近似。

・運動量方程式
$$\frac{\mathrm{D}\boldsymbol{u_1}}{\mathrm{D}t} - g'\nabla_z\eta_1 + f\boldsymbol{k} \times \boldsymbol{u_1} = 0$$
 (A.11)
・連続の式 $\frac{\partial g'h}{\partial t} + \nabla_z(g'h\boldsymbol{u_1}) = 0$. (A.12)

・連続の式
$$\frac{\partial g'h}{\partial t} + \nabla_z(g'h\boldsymbol{u_1}) = 0.$$
 (A.12)

· 剛体表面近似

表面での運動が小さいならば、剛体表面を置いたという近似をしてもよいだろう。上端にふたをすることで、上端の上下運動は許されなくなる。その圧力の強制を P(x,y,t) とする。また、上層の上端を基準面にとり、そこで z=0 とする $(\eta_0=0)$ 。自由表面近似と同様に上層での静水圧の式を z=0 からある深さ z まで積分すると

$$\int_{P}^{p_{1}} dp = -\rho_{1}g \int_{0}^{z} dz,$$

$$p_{1} - P = -\rho_{1}gz. \tag{A.14}$$

式 (A.14) の水平勾配をとると,

$$\nabla_z p_1 = \nabla_z P. \tag{A.15}$$

下層の静水圧の式を η_1 からある深さzまで積分すると

$$\int_{p_1}^{p_2} dp = -\rho_2 g \int_{\eta_1}^{z} dz,$$

$$p_2 - p_1 = \rho_2 g(\eta_1 - z),$$

$$p_2 = p_1 + \rho_2 g(\eta_1 - z).$$
(A.16)

 p_1 に式 (A.14) で $z = \eta_1$ にしたものを代入すれば

$$p_2 = -\rho_1 g \eta_1 + \rho_2 g(\eta_1 - z) + P$$

= \rho_1 g h - \rho_2 g(h - z) + P. (A.17)

水平勾配をとると

$$\nabla_z p_2 = -g(\rho_2 - \rho_1) \nabla_z h + \nabla_z P,$$

= $-\rho_1 g' \nabla_z h + \nabla_z P.$ (A.18)

下層では運動がないので $\nabla_z p_2 = 0$. よって

$$\frac{1}{\rho_1} \nabla_z P = g' \nabla_z h. \tag{A.19}$$

式 (A.15) より

$$\frac{1}{\rho_1} \nabla_z p_1 = g' \nabla_z h. \tag{A.20}$$

式 (A.11) に式 (A.20) を代入すると

$$\frac{\mathbf{D}\boldsymbol{u_1}}{\mathbf{D}t} + g'\nabla_z h + f\boldsymbol{k} \times \boldsymbol{u_1} = 0 \tag{A.21}$$

となる. まとめると

剛体表面近似 ——

· 運動量方程式
$$\frac{\mathbf{D}\boldsymbol{u_1}}{\mathbf{D}t} + g'\nabla_z h + f\boldsymbol{k} \times \boldsymbol{u_1} = 0$$
 (A.21)

・運動量方程式
$$\frac{\mathrm{D}\boldsymbol{u_1}}{\mathrm{D}t} + g'\nabla_z h + f\boldsymbol{k} \times \boldsymbol{u_1} = 0$$
 (A.21)
・連続の式 $\frac{\partial g'h}{\partial t} + \nabla_z (g'h\boldsymbol{u_1}) = 0$. (A.12)

剛体表面近似の方程式系は1層モデルの底面地形がない場合の方程式系の重力加 速度 : g が有効重力加速度 : g' に置きかわるだけである。本研究はこの剛体表面 近似を用いる.

B:モデルで使用した方程式系

ここでは実際にモデル内で計算した方程式系を示す.

・渦度・発散型の運動量方程式への変形

運動量方程式(1)はオイラー形式で書くと

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} + g'\nabla h + f\boldsymbol{k} \times \boldsymbol{u} = -\boldsymbol{D}_{\boldsymbol{u}}, \tag{B.1}$$

ここで, 左辺第2項の移流項の部分を変形すると

$$(\boldsymbol{u} \cdot \nabla)\boldsymbol{u} = \nabla\left(\frac{\boldsymbol{u} \cdot \boldsymbol{u}}{2}\right) + \zeta \boldsymbol{k} \times \boldsymbol{u}$$
 (B.2)

となる. これを式 (B.1) に代入すると

$$\frac{\partial \boldsymbol{u}}{\partial t} + \nabla \left(\frac{\boldsymbol{u} \cdot \boldsymbol{u}}{2} \right) + \zeta \boldsymbol{k} \times \boldsymbol{u} + g' \nabla h + f \boldsymbol{k} \times \boldsymbol{u} = -\boldsymbol{D}_{\boldsymbol{u}},
\frac{\partial \boldsymbol{u}}{\partial t} + \nabla \left(\frac{\boldsymbol{u} \cdot \boldsymbol{u}}{2} + g' \nabla h \right) + (\zeta + f) \boldsymbol{k} \times \boldsymbol{u} = -\boldsymbol{D}_{\boldsymbol{u}}$$
(B.3)

となる.式(B.3)の回転と発散をとると、それぞれ

$$\frac{\partial \zeta}{\partial t} = -\nabla \cdot (\zeta + f) \boldsymbol{u} - D_{\zeta}, \tag{B.4}$$

$$\frac{\partial D}{\partial t} = \mathbf{k} \cdot \nabla \times (\zeta + f)\mathbf{u} - \nabla^2 \left(g'h + \frac{\mathbf{u} \cdot \mathbf{u}}{2} \right) - D_D$$
 (B.5)

である*5. ここで, 渦度: (と発散: D は

$$\zeta \equiv \mathbf{k} \cdot (\nabla \times \mathbf{u})$$

$$= \frac{1}{a \cos \vartheta} \left[\frac{\partial v}{\partial \lambda} - \frac{\partial u \cos \vartheta}{\partial \vartheta} \right], \tag{B.6}$$

 $D \equiv \nabla \cdot \boldsymbol{u}$

$$= \frac{1}{a\cos\vartheta} \left[\frac{\partial v}{\partial\lambda} + \frac{\partial u\cos\vartheta}{\partial\vartheta} \right]. \tag{B.7}$$

球面座標系での物質微分、発散、勾配、回転は

$$\frac{D\phi}{Dt} = \frac{\partial\phi}{\partial t} + \frac{u}{a\cos\vartheta}\frac{\partial\phi}{\partial\lambda} + \frac{v}{a}\frac{\partial\phi}{\partial\vartheta},\tag{B.8}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{a \cos \vartheta} \left[\frac{\partial A_{\lambda}}{\partial \lambda} + \frac{\partial (A_{\vartheta} \cos \vartheta)}{\partial \vartheta} \right], \tag{B.9}$$

$$\nabla \phi = \frac{\mathbf{i}}{a \cos \vartheta} \frac{\partial \phi}{\partial \lambda} + \frac{\mathbf{j}}{a} \frac{\partial \phi}{\partial \vartheta}, \tag{B.10}$$

$$\nabla \times \mathbf{A} = \frac{1}{r^2 \cos \vartheta} \begin{vmatrix} \mathbf{i} r \cos \vartheta & \mathbf{j} r & \mathbf{k} \\ \frac{\partial}{\partial \lambda} & \frac{\partial}{\partial \vartheta} & \frac{\partial}{\partial r} \\ A_{\lambda} r \cos \vartheta & A_{\vartheta} r & A_r \end{vmatrix}.$$
(B.11)

これを用いて,式(B.4),(B.5)を書き下せば

$$\frac{\partial \zeta}{\partial t} = -\frac{1}{a\cos\vartheta} \frac{\partial}{\partial\lambda} [(\zeta + f)u] - \frac{1}{a\cos\vartheta} \frac{\partial}{\partial\vartheta} [(\zeta + f)v\cos\vartheta] - D_{\zeta}, \tag{B.12}$$

$$\frac{\partial D}{\partial t} = \frac{1}{a\cos\vartheta} \frac{\partial}{\partial\lambda} [(\zeta + f)v] - \frac{1}{a\cos\vartheta} \frac{\partial}{\partial\vartheta} [(\zeta + f)u\cos\vartheta]
- \nabla^2 [g'h + E] - D_D.$$
(B.13)

$$\begin{split} -\hat{\mathbf{k}} \cdot \nabla \times \left[(\zeta + f) \hat{\mathbf{k}} \times \boldsymbol{v} \right] &= -\hat{\mathbf{k}} \cdot \nabla \times \left[(\zeta + f) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} u \\ v \\ w \end{pmatrix} \right] \\ &= -\hat{\mathbf{k}} \cdot \nabla \times \left[(\zeta + f) \begin{pmatrix} -v \\ u \\ 0 \end{pmatrix} \right] \\ &= -\hat{\mathbf{k}} \cdot \left[(\zeta + f) \begin{pmatrix} -\frac{\partial u}{\partial z} \\ -\frac{\partial v}{\partial z} \\ -\frac{\partial v}{\partial z} \\ \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \end{pmatrix} \right] \\ &= -\nabla \cdot (\zeta + f) \boldsymbol{v}. \end{split}$$

また,発散演算子を作用させると

$$-\nabla \cdot \left[(\zeta + f)\hat{\mathbf{k}} \times \boldsymbol{v} \right] = \hat{\mathbf{k}} \cdot \nabla \times (\zeta + f)\boldsymbol{v}.$$

ここで、ベクトル公式 $\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot \nabla \times \mathbf{B}$ を用いた.

^{*5}式 (B.5) の左辺第3項に回転演算子を作用させると

ここで, E は運動エネルギーで $E = (u^2 + v^2)/2$. ∇^2 は

$$\nabla^2 = \frac{1}{a^2 \cos \theta^2} \frac{\partial^2}{\partial \lambda^2} + \frac{1}{a^2 \cos \theta} \frac{\partial}{\partial \theta} \left(\cos \theta \frac{\partial}{\partial \theta} \right). \tag{B.14}$$

・サイン緯度への変形

 $U = u\cos\theta, V = v\cos\theta$ と $\mu = \sin\theta$ を用い、サイン緯度に書きかえると

$$\frac{\partial \zeta}{\partial t} = -\frac{1}{a(1-\mu^2)} \frac{\partial}{\partial \lambda} [(\zeta+f)U] - \frac{1}{a} \frac{\partial}{\partial \mu} [(\zeta+f)V] - D_{\zeta}, \tag{B.15}$$

$$\frac{\partial D}{\partial t} = \frac{1}{a(1-\mu^2)} \frac{\partial}{\partial \lambda} [(\zeta+f)V] - \frac{1}{a} \frac{\partial}{\partial \mu} [(\zeta+f)U]$$

$$-\nabla^2 [g'h + E] - D_D, \tag{B.16}$$

$$\frac{\partial g'h}{\partial t} = -\frac{1}{a(1-\mu^2)} \frac{\partial}{\partial \lambda} (g'hU) - \frac{1}{a} \frac{\partial}{\partial \mu} (g'hV)$$

$$+ \Sigma S_{\text{storm}} + S_{\text{rad}} - D_h. \tag{B.17}$$

また、上層の厚さhを上層の厚さの平均場 $h_{\rm eq}$ とそこからのずれh'を用いて、 $h=h'(\lambda,\phi,t)+h_{\rm eq}$ と書くと

$$\frac{\partial \zeta}{\partial t} = -\frac{1}{a(1-\mu^2)} \frac{\partial}{\partial \lambda} [(\zeta + f)U] - \frac{1}{a} \frac{\partial}{\partial \mu} [(\zeta + f)V] - D_{\zeta}, \tag{B.18}$$

$$\frac{\partial D}{\partial t} = \frac{1}{a(1-\mu^2)} \frac{\partial}{\partial \lambda} [(\zeta+f)V] - \frac{1}{a} \frac{\partial}{\partial \mu} [(\zeta+f)U] - \nabla^2 [g'h' + E] - D_D, \quad (B.19)$$

$$\frac{\partial g'h'}{\partial t} = -\frac{1}{a(1-\mu^2)} \frac{\partial}{\partial \lambda} (g'h'U) - \frac{1}{a} \frac{\partial}{\partial \mu} (g'h'V) - g'h_{eq}D + \Sigma S_{\text{storm}} + S_{\text{rad}} - D_h.$$
(B.20)

ここで,

$$S_{\text{storm}} = s \cdot \exp\left[-\frac{R^2}{R_{\text{storm}}^2} - \frac{(t^* - t_0)}{\tau_{\text{storm}}^2}\right],\tag{B.21}$$

$$S_{\rm rad} = -\frac{\langle g'h' \rangle}{\tau_{\rm mass}} - \frac{g'h' - \langle g'h' \rangle}{\tau_{\rm APE}}$$
 (B.22)

である^{*6}.

$$\begin{split} S_{\mathrm{rad}} &= -\frac{\langle g'h\rangle - g'h_{\mathrm{eq}}}{\tau_{\mathrm{mass}}} - \frac{g'h - \langle g'h\rangle}{\tau_{\mathrm{APE}}} \\ &= -\frac{\langle g'(h' + h_{\mathrm{eq}})\rangle - g'h_{\mathrm{eq}}}{\tau_{\mathrm{mass}}} - \frac{g'(h' + h_{\mathrm{eq}}) - \langle g'(h' + h_{\mathrm{eq}})\rangle}{\tau_{\mathrm{APE}}} \\ &= -\frac{\langle g'h'\rangle + g'h_{\mathrm{eq}} - g'h_{\mathrm{eq}}}{\tau_{\mathrm{mass}}} - \frac{g'h' + g'h_{\mathrm{eq}} - \langle g'h'\rangle - g'h_{\mathrm{eq}}}{\tau_{\mathrm{APE}}} \\ &= -\frac{\langle g'h'\rangle}{\tau_{\mathrm{mass}}} - \frac{g'h' - \langle g'h'\rangle}{\tau_{\mathrm{APE}}}. \end{split}$$

^{*6}S_{rad} の変形は

·数值粘性·拡散項

式 (B.18), (B.19), (B.20) の数値粘性・拡散項 : D_{ζ}, D_{D}, D_{h} はそれぞれ

$$D_{\zeta} = K_m \left[(-1)^{N_m} \nabla^{2N_m} - \left(\frac{2}{a^2}\right)^{2N_m} \right] \zeta,$$
 (B.23)

$$D_D = K_m \left[(-1)^{N_m} \nabla^{2N_m} - \left(\frac{2}{a^2}\right)^{2N_m} \right] D,$$
 (B.24)

$$D_h = (-1)^{N_h} K_h \nabla^{2N_h} g' h'. \tag{B.25}$$

ここで、 K_m は水平粘性係数、 K_h は水平拡散係数、 N_m は超粘性の次数 (水平ラプラシアンの階数)、 N_h は超拡散の次数 (水平ラプラシアンの階数) である.

2021/01/29(鈴木 綾馬)

修士学位論文 C:実験図集 27

C : 実験図集

C.1 実験1

実験1では $g'h_{eq}$ を変化させた実験を行う。用いたパラメータは表3を参照。

C.1.1 A1: $g'h_{eq} = 6 \times 10^4 \text{ m}^2 \cdot \text{s}^{-3}$

図 C.1.1:

修士学位論文 C: 実験図集 28

図 C.1.2:

修士学位論文 謝辞 29

謝辞

ddd

修士学位論文 参考文献 30

参考文献

A. Adriani, A. Mura, G. Orton, C. Hansen, F. Altieri, M. L. Moriconi,
J. Rogers, G. Eichstädt, T. Momary, A. P. Ingersoll, G. Filacchione, G. Sindoni,
F. Tabataba-Vakili, B. M. Dinelli, F. Fabiano, S. J. Bolton, J. E. P. Connerney, S. K. Atreya, J. I. Lunine, F. Tosi, A. Migliorini, D. Grassi, G. Piccioni,
R. Noschese, A. Cicchetti, C. Plainaki, A. Olivieri, M. E. O'Neill, D. Turrini,
S. Stefani, R. Sordini, and M. Amoroso.

Clusters of cyclones encircling jupiter's poles.

Nature, 555(7695):216–219, Mar. 2018.

doi: 10.1038/nature25491.

URL https://doi.org/10.1038/nature25491.

A. Antuñano, T. del Río-Gaztelurrutia, A. Sánchez-Lavega, and R. Hueso.

Dynamics of saturn's polar regions.

Journal of Geophysical Research: Planets, 120(2):155–176, Feb. 2015.

doi: 10.1002/2014je004709.

URL https://doi.org/10.1002/2014je004709.

S. R. Brueshaber, K. M. Sayanagi, and T. E. Dowling.

Dynamical regimes of giant planet polar vortices.

Icarus, 323:46–61, May 2019.

doi: 10.1016/j.icarus.2019.02.001.

URL https://doi.org/10.1016/j.icarus.2019.02.001.

U. R. Christensen.

Zonal flow driven by strongly supercritical convection in rotating spherical shells. Journal of Fluid Mechanics, 470:115–133, Oct. 2002.

doi: 10.1017/s0022112002002008.

URL https://doi.org/10.1017/s0022112002002008.

P. J. Gierasch, A. P. Ingersoll, D. Banfield, S. P. Ewald, P. Helfenstein, A. Simon-Miller, A. Vasavada, H. H. Breneman, D. A. Senske, and G. I. Team.

Observation of moist convection in jupiter's atmosphere.

Nature, 403(6770):628-630, Feb. 2000.

doi: 10.1038/35001017.

修士学位論文 参考文献 31

URL https://doi.org/10.1038/35001017.

C. C. Porco.

Cassini imaging science: Initial results on saturn's atmosphere.

Science, 307(5713):1243–1247, Feb. 2005.

doi: 10.1126/science.1107691.

URL https://doi.org/10.1126/science.1107691.

R. K. Scott and L. M. Polvani.

Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets.

Journal of the Atmospheric Sciences, 64(9):3158–3176, Sept. 2007.

doi: 10.1175/jas4003.1.

URL https://doi.org/10.1175/jas4003.1.

A. P. Showman.

Numerical simulations of forced shallow-water turbulence: Effects of moist convection on the large-scale circulation of jupiter and saturn.

Journal of the Atmospheric Sciences, 64(9):3132–3157, Sept. 2007.

doi: 10.1175/jas4007.1.

URL https://doi.org/10.1175/jas4007.1.

A. P. Showman, J. Y.-K. Cho, and K. Menou.

Atmospheric circulation of exoplanets, 2009.

S. Takehiro, M. Odaka, K. Ishioka, M. Ishiwatari, and Y.-Y. Hayashi.

Spmodel: A series of hierarchical spectral models for geophysical fluid dynamics. http://www.nagare.or.jp/mm/2006/spmodel/, 2006.

S. Takehiro, Y. SASAKI, K. Ishioka, M. Odaka, Y. O. Takahashi, K. Nakajima, M. Ishiwatari, Y.-Y. Hayashi, and S. D. Group.

Hierarchical spectral models for gfd (spmodel).

http://www.gfd-dennou.org/library/spmodel/, 2013.

G. K. Vallis.

Atmospheric and Oceanic Fluid Dynamics.

Cambridge University Press, 2017.

doi: 10.1017/9781107588417.

URL https://doi.org/10.1017/9781107588417.

S. Yoden and M. Yamada.

A numerical experiment on two-dimensional decaying turbulence on a rotating sphere.

修士学位論文 参考文献 32

 $\label{eq:control_solution} \begin{tabular}{ll} \it Journal\ of\ the\ Atmospheric\ Sciences,\ 50(4):631-644,\ Feb.\ 1993. \\ \it doi:\ 10.1175/1520-0469(1993)050\langle0631:aneotd\rangle2.0.co;2. \\ \it URL\ https://doi.org/10.1175/1520-0469(1993)050<0631:aneotd>2.0.co;2. \\ \it co;2. \end{tabular}$