PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA IOP224 INVESTIGACIÓN DE OPERACIONES

Examen Parcial Primer semestre 2024

Indicaciones generales:

- Duración: 180 minutos.
- Materiales o equipos a utilizar: 2 hojas A4 con apuntes de clase (físicos).
- No está permitido el uso de ningún material o equipo electrónico adicional al indicado (no celulares, no tablets, no libros).
- La presentación, la ortografía y la gramática de los trabajos influirán en la calificación.

Puntaje total: 20 puntos (ponderación de 0.65, Tarea: ponderación de 0.35).

Pregunta 1. (3 puntos)

Resuelva las siguientes cuestiones:

- **1.1)** Proponga condiciones bajo las cuales el producto de funciones $f, g : \mathbb{R} \to \mathbb{R}$ convexas y de clase C^2 es una función convexa.
- **1.2)** Sea $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$, donde $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$, $c \in \mathbb{R}^n$ y $A \in \mathcal{M}_{n \times n}$. ¿Bajo qué condiciones sobre A, \mathbf{b} y c la función f es convexa?
- 1.3) Pruebe que si f es convexa sobre [a, b], entonces se cumple la siguiente desigualdad:

$$\frac{1}{b-a} \int_a^b f(x)dx \le \frac{f(a) + f(b)}{2}.$$

Pregunta 2. (4 puntos)

Considere el problema de minimización del gasto:

$$\min_{\mathbf{x}} \mathbf{p} \cdot \mathbf{x}$$
s. a. : $u(\mathbf{x}) \ge \overline{u}$

$$\mathbf{x} \ge \mathbf{0},$$

donde u es una función de utilidad continua tal que $\mathbf{x}_2 \geq \mathbf{x}_1$, $\mathbf{x}_2 \neq \mathbf{x}_1 \Rightarrow u(\mathbf{x}_2) > u(\mathbf{x}_1)$ y $u(\mathbf{0}) = 0$. Por otro lado, \overline{u} es un parámetro positivo, $\mathbf{p} \in \mathbb{R}^n_{++}$ y $\mathbf{x} \in \mathbb{R}^n_{+}$ representa una canasta de consumo.

2.1) Explique con detalle la formulación del problema. Definimos la función «valor óptimo» por

$$e(\mathbf{p}, \overline{u}) = \min_{\mathbf{x} \ge \mathbf{0}, \ u(\mathbf{x}) \ge \overline{u}} \mathbf{p} \cdot \mathbf{x}.$$

¿Qué espera que suceda con la función valor óptimo si \overline{u} aumenta?

- **2.2)** Demuestre que la función valor óptimo es cóncava con respecto al vector de precios **p**. ¿A qué se debe esto (analice)?
- **2.3)** Resuelva el problema gráficamente si $n=2, u(x_1,x_2)=2x_1+3x_2, \overline{u}=5$ y $p_1=p_2=1$. Interprete la solución.
- **2.4)** Resuelva el problema cuando $u(x_1,...,x_n) = \sum_{i=1}^n x_i$ y $p_1 > p_2 > \cdots > p_n$. Interprete su solución (explique lo obtenido en sus propias palabras).

Pregunta 3. (6 puntos)

3.1) Demuestre que

$$u(\mathbf{x}) = \prod_{i=1}^{n} x_i^{\alpha_i}, \ \alpha_i \ge 0 \ \forall \ i = 1, ..., n$$

es cuasi cóncava sobre \mathbb{R}^n_{++} .

3.2) Considere una función de producción de tipo CES (Constant Elasticity of Substitution) generalizada $f: \mathbb{R}^n_{++} \to \mathbb{R}$

$$f(\mathbf{x}) = \left(\sum_{i=1}^{n} \alpha_i x_i^{\rho}\right)^{1/\rho}, \ \rho \neq 0, \ \alpha_i > 0.$$
 (1)

Demuestre que f es cuasi cóncava para $\rho \leq 1$.

Nota histórica: La función CES (Elasticidad Constante de Sustitución) es un tipo de función de producción utilizada en economía para representar una tecnología que permite sustituir entre insumos con una elasticidad constante. Fue introducida por Kenneth Arrow (matemático y premio nobel de economía de 1972), H. B. Chenery, B. S. Minhas, y Robert Solow matemático y premio nobel de economía de 1987) en 1961. Los parámetros α_i representan las participaciones de los insumos en la producción, y ρ determina la facilidad de sustitución entre estos insumos, con ρ cerca de cero indicando sustitutos cercanos y ρ muy negativo indicando complementos cercanos. La elasticidad de sustitución es una medida económica que indica qué tan fácilmente los consumidores o productores pueden sustituir un bien o insumo por otro en respuesta a cambios en los precios relativos. Esencialmente, refleja la sensibilidad de la proporción en la que se usan dos bienes o insumos ante cambios en la relación de sus precios. Si la elasticidad de sustitución es alta, significa que los bienes o insumos se pueden sustituir fácilmente entre sí. Por ejemplo, si el precio de un bien aumenta, los consumidores o productores pueden cambiar rápidamente a un bien sustituto más barato sin mucha pérdida en utilidad o productividad. Por otro lado, una elasticidad baja indica que los bienes o insumos son más complementarios, lo que significa que es difícil sustituir uno por el otro sin afectar significativamente el consumo o la producción.

3.3) Demuestre que si una función $g: \mathbb{R}^n \to \mathbb{R}$ es cuasi cóncava y homogénea de grado 1, entonces es cóncava. Use esto para deducir que la CES generalizada (Ecuación (1)) es cóncava para $\rho \leq 1$.

Pregunta 4. (4 puntos)

Dada una tecnología $Y \subset \mathbb{R}^n$ y dado un vector de precios \mathbf{p} (tanto de inputs como de outputs) definimos la función de beneficios $\pi(\mathbf{p}) = \max_{\mathbf{y} \in Y} \mathbf{p} \cdot \mathbf{y}$.

- **4.1)** Explique la formulación del problema de optimización y demuestre que $\pi(\cdot)$ es homogénea de grado 1. Interprete esto último.
- **4.2)** Demuestre que la función $\pi(\cdot)$ es convexa.
- **4.3)** Demuestre que si Y es cerrada (es decir Y es un conjunto cerrado) y convexa (es decir Y es un conjunto convexo), entonces

$$Y = \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{p} \cdot \mathbf{y} \le \pi(\mathbf{p}), \ \forall \ \mathbf{p} \in \mathbb{R}^n \}.$$

4.4) Demuestre que si Y es cerrada es decir Y es un conjunto cerrado) y convexa (es decir Y es un conjunto convexo) y posee la propiedad de libre disposición (recuerde de la PC2 que esto es, dado $\mathbf{y} \in Y$ e $\mathbf{y}' \leq \mathbf{y}$, entonces $\mathbf{y}' \in Y$), entonces

$$Y = \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{p} \cdot \mathbf{y} \le \pi(\mathbf{p}), \ \forall \ \mathbf{p} \in \mathbb{R}^n_+ \}.$$

Pregunta 5. (3 puntos)

Sea $u(x_1, x_2) : \mathbb{R}^2 \to \mathbb{R}$ una función de utilidad cuasi cóncava y de clase C^2 , con utilidades marginales estrictamente positivas, con utilidades marginales positivas.

- **5.1)** Demuestre que su tasa marginal de sustitución (TMS) u_{x_1}/u_{x_2} es decreciente en x_1 . Para esto, suponga que x_2 es función diferenciable de x_1 , $x_2 = x_2(x_1)$.
- **5.2)** ¿Es cierto que cuando la TMS es decreciente el consumidor está dispuesto a dar cada vez más unidades del bien x_1 por una unidad del bien x_2 cuando su consumo en x_1 es mucho mayor que el de x_2 ? Justifique su respuesta.
- 5.3) Pruebe que

$$f(x_1, ..., x_n) = \ln \left(\sum_{i=1}^n e^{x_i} \right)$$

es convexa sobre \mathbb{R}^n .

Sugerencia. Aplique la designaldad de Holder: dados $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ y $p, q \in]1, \infty[$, tales que $\frac{1}{p} + \frac{1}{q} = 1$, entonces $\sum_{i=1}^n |x_i y_i| \le \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \left(\sum_{i=1}^n |y_i|^q\right)^{1/q}$.

Profesor del curso: Jorge Chávez.

San Miguel, 18 de mayo de 2024