UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM MODELAGEM COMPUTACIONAL

Welson de Avelar Soares Filho

Aprendizado de máquina com dados categóricos na modelagem chuva-vazão para previsão de vazão em bacias hidrográficas de Minas Gerais

Welson de A	welar Soares Filho
	os categóricos na modelagem chuva-vazão acias hidrográficas de Minas Gerais
	Dissertação apresentada ao Programa de Pós-Graduação em Modelagem Computacional da Universidade Federal de Juiz de Fora como requisito parcial à obtenção do título de Mestre em Modelagem Computacional. Área de concentração: Modelagem Computacional
Orientador: Doutor Leonardo Goliatt	

Ficha catalográfica elaborada através do Modelo Latex do CDC da UFJF com os dados fornecidos pelo(a) autor(a)

Soares Filho, Welson de Avelar.

Aprendizado de máquina com dados categóricos na modelagem chuvavazão para previsão de vazão em bacias hidrográficas de Minas Gerais / Welson de Avelar Soares Filho. -2024.

69 f. : il.

Orientador: Leonardo Goliatt

Dissertação (Mestrado) – Universidade Federal de Juiz de Fora, Instituto de Ciências Exatas. Programa de Pós-Graduação em Modelagem Computacional, 2024.

1. recursos hídricos. 2. redes neurais. 3. previsão de vazão. I. Goliatt, Leonardo, orient. II. Doutor.

Welson de Avelar Soares Filho

Apren	dizad	o de má	quina	com da	ados ca	tegóricos r	na mod	elagem	chuva-va	ızão
	para p	orevisão	de va	zão em	bacias	hidrográfi	icas de	Minas	Gerais	

Dissertação apresentada ao Programa de Pós-Graduação em Modelagem Computacional da Universidade Federal de Juiz de Fora como requisito parcial à obtenção do título de Mestre em Modelagem Computacional. Área de concentração: Modelagem Computacional

Aprovada em (dia) de (mês) de (ano)

BANCA EXAMINADORA

Doutor Leonardo Goliatt - Orientador Universidade Federal de Juiz de Fora

Titulação Nome e sobrenome Universidade ???

Titulação Nome e sobrenome Universidade??

AGRADECIMENTOS

Agradeço aos meus pais, Regina e Welson, por terem se dedicado, desde sempre, para que eu, meu irmão e irmã, buscássemos nos aprimorar enquanto cidadãos através dos estudos. A participação e acompanhamento em cima de nossos estudos fixaram em mim o desejo pela busca do conhecimento. Este trabalho tem parte de vocês. Muito obrigado.

Meu irmão Raphael e irmã Patrícia. Precisei me abster, em muito, de seu convívio, mas eu nunca esqueci de seu companheirismo, de sua amizade e do quanto apoio tive neste momento da vida.

Minha noiva, Juliana, minha companheira, que tanto precisou abdicar de seu próprio lazer, de feriados e finais de semana, para que eu ficasse em casa totalmente dedicado e focado neste trabalho. Obrigado por tanto e a vida ao seu lado é, certamente, mais saborosa por isso.

Ao Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, em especial ao campus de Juiz de Fora, por ter me apoiado no meu desejo de qualificar através do mestrado. Eu saí um tipo de servidor público e retorno agora bastante diferente, e desejo, profundamente, contribuir com a instituição e comunidade acadêmica para nosso aprimoramento.

Todos amigos de repartição, que aqui faço questão de nomear: Diego, Matheus, Bruno, Marcus e Jacqueline. Precisaram cobrir minhas atividades, e o fizeram com maestria, enquanto eu me dedicava ao mestrado. Vocês moram em meu coração.

Meus amigos e amigas pessoais que pouco me viram neste período, familiares também. Jamais esqueci de vocês e o quanto torciam por mim e pelo meu sucesso no cumprimento da atividade enquanto estive ausente do nosso viver. Tivemos conversas apenas por aplicativos, distantes, e anseio poder rever seus olhos.

Aos meus colegas do PGMC: meu muito obrigado. Conhecer pessoas tão incríveis com certeza ajuda a compor a relevância deste trabalho, e a amizade de vocês tornou a caminhada menos árdua.

Leonardo, meu caro orientador. Obrigado por partilhar de seu conhecimento comigo. Suas dicas e observações irão comigo onde quer que eu vá, onde quer que eu esteja.

Ao professor Celso Bandeira e à colega de projeto Paula pelas conversas e debates sobre os trabalhos desenvolvidos, ideias e tudo mais.

E, finalmente, à Rhama Analysis pela gentileza em me conceder acesso ao seu principal sistema de dados hidrológicos quando mais precisei e à Agência Nacional de Águas e Saneamento Básico (ANA) pelo hercúleo trabalho desenvolvido na gestão e conhecimento de nossas águas.

Meu muito obrigado.

RESUMO

Resumo do trabalho

Palavras-chave: Aprendizado de máquina. Recursos hídricos. Previsão de vazão.

ABSTRACT

Project summary

Keywords: Machine learning. Water resources. Runoff forecasting.

LISTA DE ILUSTRAÇÕES

Figura 3.1 – Série temporal incompleta da estação t_vz_54790000	
(fonte: o autor)	7
Figura 3.2-Detalhe da série temporal da estação t_vz_54790000, ainda sem dados imp	u-
tados, de 2013 a 2016 (fonte: o autor)	7
Figura 3.3–Detalhe da série temporal da estação t_vz_54790000, com dados imputado	s,
de 2013 a 2016 (fonte: o autor)	7
Figura 3.4–Série temporal incompleta da estação t_vz_54790000 no detalhe entre 2021	e
2022 (fonte: o autor)	8
Figura 3.5–Série temporal completa da estação t_vz_54790000 no detalhe entre 2021	е
2022 (fonte: o autor)	8
Figura 3.6–Série temporal completa da estação t_vz_54790000	
(fonte: o autor)	8
Figura 3.7–Série temporal incompleta da estação t_cv_54790000	
(fonte: o autor)	9
Figura 3.8–Série temporal completa da estação t_cv_54790000	
(fonte: o autor)	9
Figura 3.9–Série temporal completa da estação t_cv_01640000	
(fonte: o autor)	9
Figura 3.10–Série temporal completa da estação c_vz_56994500	
(fonte: o autor)	80
Figura 3.11–Série temporal da estação t_cv_56990850 - não utilizada	
(fonte: o autor)	31
Figura 3.12–Série temporal da estação t_cv_56994500 - não utilizada	
(fonte: o autor)	31
Figura 3.13–Série temporal completa da estação c_cv_01941010	
(fonte: o autor)	1
Figura 3.14–Série temporal completa da estação c_cv_01941004	
(fonte: o autor)	32
Figura 3.15–Série temporal completa da estação c_cv_01941006	
(fonte: o autor)	32
Figura 3.16–Série temporal completa da estação t_cv_56990005	
(fonte: o autor)	32
Figura 3.17–Série temporal incompleta da estação t_vz_62020080	
(fonte: o autor)	3
Figura 3.18–Série temporal completa da estação t_vz_62020080	
(fonte: o autor)	4

Figura 3.19-	Série completa da estação t_cv_61998080	
	(fonte: o autor)	34
Figura 3.20-	-Detalhe do trecho com dados nulos da estação c_vz_44290002	
	(fonte: o autor)	35
Figura 3.21-	-Série temporal completa da estação c_vz_44290002	
	(fonte: o autor)	35
Figura 3.22-	-Série temporal completa da estação c_cv_01544017	
	(fonte: o autor)	36
Figura 3.23-	-Série temporal completa da estação c_cv_01544032	
	(fonte: o autor)	36
Figura 3.24-	-Série temporal completa da estação c_cv_01544036	
	(fonte: o autor)	36
Figura 3.25-	-Autocorrelação para a vazão do rio Jequitinhonha	
	(fonte: o autor)	39
Figura 3.26-	-Componente sazonal da série de vazão do rio Jequitinhonha	
	(fonte: o autor)	40
Figura 3.27-	-Autocorrelação para a vazão do rio Doce	
	(fonte: o autor)	40
Figura 3.28-	-Componente sazonal da série de vazão do rio Doce	
	(fonte: o autor)	41
Figura 3.29-	-Autocorrelação para a vazão do rio Grande	
	(fonte: o autor)	41
Figura 3.30-	-Componente sazonal da série de vazão do rio Grande	
	(fonte: o autor)	41
Figura 3.31-	-Autocorrelação para a vazão do rio São Francisco	
	(fonte: o autor)	42
Figura 3.32-	-Componente sazonal da série de vazão do rio São Francisco	
	$(fonte:\ o\ autor) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	42
Figura 3.33-	-Dados originais para o rio Jequitinhonha	
	$(fonte:\ o\ autor) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	43
Figura 3.34-	-Dados transformados para o rio Jequitinhonha	
	$(fonte:\ o\ autor) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	43
Figura 3.35-	-Dados originais para o rio Doce	
	(fonte: o autor)	44
Figura 3.36-	-Dados transformados para o rio Doce	
	(fonte: o autor)	44
Figura 3.37-	-Dados originais para o rio Grande	
	(fonte: o autor)	44

Figura 3.38–Dados transformados para o rio Grande	
(fonte: o autor)	45
Figura 3.39–Dados originais para o rio São Francisco	
(fonte: o autor)	45
Figura 3.40–Dados transformados para o rio São Francisco	
(fonte: o autor)	45
Figura 3.41–Diagrama mostrando a divisão dos dados de treino/teste com refit.	
(fonte: (14))	51
Figura 3.42 -WFV com janela expandida e $refit$ - imagem 1.	
(fonte: (14))	51
Figura 3.43 -WFV com janela expandida e $refit$ - imagem 2 .	
(fonte: (14))	51
Figura 3.44-WFV com janela expandida e refit - imagem 3.	
(fonte: (14))	51
Figura 3.45–Diagrama mostrando a divisão dos dados de treino/teste sem refit.	
(fonte: (14))	52
Figura 3.46–Previsão multietapas sem reajuste (refit) - imagem 1.	
(fonte: (14))	52
Figura 3.47–Previsão multietapas sem reajuste (refit) - imagem 2.	
(fonte: (14))	52
Figura 3.48–Previsão multietapas sem reajuste (refit) - imagem 3.	
(fonte: (14))	53
Figura 3.49–Fluxo de trabalho	
(fonte: o autor)	54
Figura 4.1 – Seasonal Naive para o horizonte de previsão de 1 dia	
(fonte: o autor)	56
Figura 4.2-Seasonal Naive para o horizonte de previsão de 3 dias	
(fonte: o autor)	56
Figura 4.3-Seasonal Naive para o horizonte de previsão de 7 dias	
(fonte: o autor)	57
Figura 4.4 – Seasonal Naive para o horizonte de previsão de 15 dias	
(fonte: o autor)	57
Figura 4.5–Regressão Linear para o horizonte de previsão de 1 dia	
(fonte: o autor)	58
Figura 4.6-Regressão Linear para o horizonte de previsão de 3 dias	
(fonte: o autor)	58
Figura 4.7–Regressão Linear para o horizonte de previsão de 7 dias	
(fonte: o autor)	59

Figura 4.8-Regressão Linear para o horizonte de previsão de 15 dias	
(fonte: o autor)	59
Figura 4.9-CatBoost para o horizonte de previsão de 1 dia	
(fonte: o autor)	60
Figura 4.10-LightGBM para o horizonte de previsão de 1 dia	
(fonte: o autor)	60
Figura 4.11–CatBoost para o horizonte de previsão de 3 dias	
(fonte: o autor)	61
Figura 4.12-LightGBM para o horizonte de previsão de 3 dias	
(fonte: o autor)	61
Figura 4.13–CatBoost para o horizonte de previsão de 7 dias	
(fonte: o autor)	62
Figura 4.14–LightGBM para o horizonte de previsão de 7 dias	
(fonte: o autor)	62
Figura 4.15–CatBoost para o horizonte de previsão de 15 dias	
(fonte: o autor)	63
Figura 4.16-LightGBM para o horizonte de previsão de 15 dias	
(fonte: o autor)	63

LISTA DE TABELAS

Tabela 3.1 – Estações usadas no rio Jequitinhonha	
(fonte: o autor)	23
Tabela 3.2 – Estações usadas no rio Doce	
(fonte: o autor)	23
Tabela 3.3 – Estações usadas no rio Grande	
(fonte: o autor)	24
Tabela 3.4 – Estações usadas no rio São Francisco	
(fonte: o autor)	24
Tabela $3.5-{\rm Esta} {\it \varsigma} {\rm \tilde{o}} {\rm es}$ de precipitação usadas - final	
(fonte: o autor)	30
Tabela 3.6 – Variáveis utilizadas - rio Jequitinhonha	
(fonte: o autor)	37
Tabela 3.7 – Variáveis utilizadas - rio Doce	
(fonte: o autor)	37
Tabela 3.8 – Variáveis utilizadas - rio Grande	
(fonte: o autor)	37
Tabela 3.9 – Variáveis utilizadas - rio São Francisco	
(fonte: o autor)	37

LISTA DE ABREVIATURAS E SIGLAS

ANA Agência Nacional de Águas e Saneamento Básico

Fil. Filosofia

IBGE Instituto Brasileiro de Geografia e Estatística

INMETRO Instituto Nacional de Metrologia, Normalização e Qualidade Industrial

LISTA DE SÍMBOLOS

 \forall Para todo

 \in Pertence

SUMÁRIO

1	INTRODUÇÃO
1.1	Contextualização
1.2	Justificativa
1.3	Problema de pesquisa
1.4	Objetivos
1.5	Estrutura da Dissertação
2	REVISÃO DA LITERATURA SOBRE O TEMA 19
2.1	Conceitos Teóricos Fundamentais
2.2	Estudos Relacionados
2.3	Aprendizado de Máquina na Hidrologia
2.4	Dados de Precipitação e Vazão
2.5	Modelos de Previsão de Vazão
3	PROCEDIMENTOS METODOLÓGICOS 20
3.1	Descrição da Área de Estudo
3.2	Dados Utilizados
3.3	Pré-processamento dos Dados
3.3.1	Rio Jequitinhonha
3.3.2	Rio Doce
3.3.3	Rio Grande
3.3.4	Rio São Francisco
3.4	Variáveis Utilizadas
3.5	Análise exploratória dos dados
3.6	Modelos de Aprendizado de Máquina
3.6.1	Seasonal Naive
3.6.2	Regressão Linear
3.6.3	CatBoost e LightGBM
3.7	Métricas de Avaliação
3.8	Modelo proposto
4	RESULTADOS E DISCUSSÃO 55
4.1	Desempenho dos modelos
4.1.1	Rio Jequitinhonha
4.2	Importância das variáveis
4.3	Discussão dos resultados
5	CONCLUSÃO E PERSPECTIVAS 65
5.1	Conclusão
5.2	Contribuições para a área
5.3	Recomendações para Trabalhos Futuros

REFERÊNCIAS	66
-------------	----

1 INTRODUÇÃO

A gestão dos recursos hídricos desempenha um papel crucial nas políticas públicas. Nos âmbitos socioeconômico, cultural e de saúde pública, conhecer a dinâmica dos recursos hídricos e entender como fatores externos impactam seu comportamento é de grande importância para os administradores públicos. A compreensão desses aspectos permite uma melhor tomada de decisões, garantindo a sustentabilidade dos recursos, a segurança hídrica e o bem-estar da população.

Neste sentido, prever a vazão de rios é um componente essencial na gestão de recursos hídricos, operação de reservatórios e mitigação de desastres naturais, especialmente em regiões onde a hidroelectricidade desempenha um papel crucial na matriz energética, como é o caso do Brasil. De acordo com o Balanço Energético Nacional de 2023, ano-base 2022, divulgado pelo Ministério de Minas e Energia, esta matriz energética representa cerca de 64% da oferta interna total de geração de energia elétrica (15). Desta forma, a previsão da vazão dos rios que abastecem os reservatórios das hidrelétricas tem importância no impacto econômico que uma usina em baixa capacidade de geração pode causar.

Em uma perspectiva mais direcionada à população, os rios abastecem represas e açudes que fornecem água potável para consumo humano e animal, além de irrigar a lavoura . Não apenas os rios, mas também a chuva têm impacto significativo nesse cenário. Uma análise criteriosa da previsibilidade da vazão dos rios nos dias seguintes permite ao poder público, por exemplo, reduzir ou até mesmo suspender outorgas para retirada de água, visando o bem-estar populacional. Além disso, essa análise pode auxiliar no planejamento de regimes de racionamento. Basta lembrarmos do ano de 2015, quando noticiava-se o 'uso do volume morto' na Cantareira, no estado de São Paulo, pois a estiagem fora além do previsto e o abastecimento de cidades, da cidade de São Paulo propriamente, foram severamente afetados.(16)

E quando se fala em bem-estar populacional, não podemos deixar de considerar os eventos climáticos extremos.

Basta lembrar dos últimos desastres ocorridos nos estados de Minas Gerais, Rio de Janeiro, Paraná, São Paulo e Bahia que trouxeram não só perda econômica como também perda de vidas humanas. (3) (4) (18) (17)

Especificamente no estado de Minas Gerais há lacunas de conhecimento sobre os processos hidrológicos das bacias hidrográficas

tem
referencia
para
esta
parte?
seria
bom
colocar alguma
coisa

reference

aspas no latex é feito assim "exemplo de aspas", deixe as aspas

simples para as variáveis

- 1.1 Contextualização
- 1.2 Justificativa
- 1.3 Problema de pesquisa
- 1.4 Objetivos

Separa objetivo e objetivo específico em seções

O trabalho tem como escopo a modelagem de recursos hídricos baseada em dados históricos de vazão, contrastando com os modelos físicos tradicionalmente aplicados na área, como o modelo SMAP (Soil Moisture Accounting Procedure) e o SWAT (Soil and Water Assessment Tool). Ao invés de utilizar as abordagens físicas que simulam processos hidrológicos baseados em equações diferenciais e características fisiográficas das bacias, a proposta é aplicar métodos de modelagem orientados a dados para prever séries temporais univariadas de vazão. Essas previsões serão realizadas com o suporte de variáveis exógenas, como precipitação, e variáveis categóricas, a serem melhor descritas a posteri, que ajudam a capturar a sazonalidade e outros padrões importantes do regime de águas.

O objetivo específico deve vir em tópicos e em uma subseção do objetivo

O objetivo mais específico é desenvolver um modelo de previsão eficiente e preciso que possa ser utilizado para auxiliar na gestão dos recursos hídricos em Minas Gerais. Em uma etapa posterior, pretende-se criar uma aplicação web para disponibilizar essas previsões ao Instituto Mineiro de Gestão das Águas (IGAM (27)), permitindo que as informações estejam acessíveis para planejamento e tomada de decisões estratégicas.

Este trabalho se insere como um componente fundamental de um sistema gerencial maior, que visa aprimorar o planejamento e a gestão dos recursos hídricos do estado de Minas Gerais. Ao integrar previsões baseadas em dados históricos, o modelo permitirá uma melhor alocação dos recursos, suporte em períodos críticos, como secas e enchentes, e uma gestão mais eficiente das bacias hidrográficas do estado.

1.5 Estrutura da Dissertação

não é muito usual, alguns membros da banca podem não gostar, verificar com o léo se cabe esta parte na sua dissertação

Resumo breve da organização dos capítulos.

esta
parte
me parece
mais
uma
descrição do
trabalho do
que
um
obje-

tivo

2 REVISÃO DA LITERATURA SOBRE O TEMA

2.1 Conceitos Teóricos Fundamentais

Conceitos e teorias básicas relacionadas ao tema.

2.2 Estudos Relacionados

Revisar literatura existente, destacar pesquisas similares e identificar lacunas.

2.3 Aprendizado de Máquina na Hidrologia

Discutir a aplicação de técnicas de ML na hidrologia, citando estudos relevantes.

2.4 Dados de Precipitação e Vazão

Descrever os tipos de dados utilizados no estudo e respectivas fontes.

2.5 Modelos de Previsão de Vazão

Comparar diferentes modelos de previsão de vazão (vou comparar com Seasonal-Naive e Linear Regression, duas baselines comumente aplicadas).

3 PROCEDIMENTOS METODOLÓGICOS

3.1 Descrição da Área de Estudo

FAZER IMAGEM DAS BACIAS

As bacias de estudo são as bacias dos rios Jequitinhonha, Doce, Grande e São Francisco. Em todas estas, o corpo d'água principal da bacia, seus respectivos rios, passam dentro do estado de Minas Gerais, por isso a escolha. Isso é para distinguir do não uso do rio Paraíba do Sul no estudo, visto que parte de sua bacia está nos limites do estado, mas o rio não passa dentro dos limites administrativos estaduais.

O rio Jequitinhonha, com sua bacia hidrográfica abrangendo cerca de 65 mil quilômetros quadrados, é uma peça fundamental na paisagem e na vida socioeconômica de Minas Gerais. Seu curso percorre 82 municípios mineiros, abrigando uma população de aproximadamente 939 mil habitantes que dependem diretamente de suas águas.(9) (10) (11) (12)

A Mata Atlântica é o bioma predominante e a atividade econômica principal na região é a agropecuária, ocupando uma área considerável de 2,6 milhões de hectares, em contraste com os 3,8 milhões de hectares de floresta. Essa dinâmica evidencia a pressão exercida sobre o ecossistema, demandando um olhar atento para a gestão sustentável dos recursos naturais.(5)

O rio Doce, com sua nascente na Serra da Mantiqueira, em Minas Gerais, percorre 853 quilômetros até desaguar no Oceano Atlântico, no Espírito Santo, delineando uma bacia hidrográfica muito importante para o Sudeste brasileiro. Com uma área de drenagem de 86 mil quilômetros quadrados, abriga 200 municípios mineiros, onde residem cerca de 3,5 milhões de pessoas, e desempenha um papel crucial na dinâmica socioeconômica e ambiental da região.

A predominância da Mata Atlântica, com uma pequena fração de Cerrado, confere à bacia uma vasta biodiversidade, ao mesmo tempo em que a coloca em posição de vulnerabilidade frente às pressões antrópicas. As principais atividades ecônomicas são a agropecuária, a agroindústria e o setor de mineração/siderurgia (Quadrilátero Ferrífero) e impulsionam a economia regional. A cobertura do solo, com 2,4 milhões de hectares de floresta e 5,5 milhões de hectares dedicados à agropecuária, reflete essa dualidade entre desenvolvimento e preservação.

O rio Grande é um dos cursos d'água mais importantes do Brasil, escorrendo por Minas Gerais e São Paulo até se unir ao rio Paranaíba e formar o rio Paraná. Com uma área de drenagem de 143 mil quilômetros quadrados, sua bacia abrange 393 municípios, impactando a vida de cerca de 9 milhões de pessoas.

Nascido na Serra da Mantiqueira, o rio Grande é um rio de planalto, percorrendo

1286 km até seu encontro com o Paranaíba. O Cerrado é o bioma predominante em sua bacia, com trechos que se limitam à Mata Atlântica, criando uma rica diversidade de ecossistemas.

A agroindústria é a principal atividade econômica na região, impulsionada pela fertilidade do solo e pela disponibilidade de água. No entanto, o rio Grande também é fundamental para a geração de energia elétrica, abrigando 13 barragens, incluindo a importante usina de Furnas. Essa combinação de agropecuária e geração de energia molda a paisagem da bacia, com 11,1 milhões de hectares dedicados à agricultura e 2,1 milhões de hectares cobertos por florestas.

Por fim, mas certamente, não menos importante, rio São Francisco. Carinhosamente apelidado de "Velho Chico", conecta regiões, culturas e economias ao longo de seus quase 3 mil quilômetros de extensão. Com uma bacia hidrográfica que abrange 639 mil quilômetros quadrados, a bacia do São Francisco corresponde a 8% do território nacional, impactando diretamente a vida de cerca de 15 milhões de pessoas.

Sua grandiosidade é tamanha que sua bacia abrange seis estados brasileiros - Minas Gerais, Goiás, Bahia, Pernambuco, Alagoas e Sergipe - e devido à tanta complexidade, a bacia é dividida em quatro regiões fisiográficas distintas: Alto, Médio, Submédio e Baixo São Francisco, cada qual com particularidades geográficas, sociais e econômicas.

A diversidade de biomas que o Velho Chico atravessa é outro ponto marcante: do Cerrado à Caatinga, passando por fragmentos da Mata Atlântica, essa variedade se reflete também na cobertura do solo de sua bacia, com predominância de áreas destinadas à agropecuária (12,4 milhões de hectares) e florestas (15,3 milhões de hectares), indicando a importância tanto da produção agrícola quanto da preservação ambiental. Suas águas impulsionam atividades como a siderurgia, mineração, indústria química e têxtil, além de pesca e agropecuária.

3.2 Dados Utilizados

FAZER IMAGEM DE ONDE ESTÃO AS ESTAÇÕES

A coleta dos dados foi realizada com um misto da biblioteca HydroBR (8) e funções próprias de extração de dados. A biblioteca permitiu a listagem de todas as estações hidrométricas disponíveis, como, por exemplo, as estações convencionais de medição de vazão. Após a identificação e seleção das estações de interesse, cujos códigos estavam disponíveis na base de dados da ANA, desenvolveu-se um conjunto de funções para automatizar o processo de extração. Essas funções permitiram o download dos dados referentes ao período especificado diretamente do webservice fornecido pela ANA.

O período de dados analisado compreende de 1º de janeiro de 2013 a 31 de dezembro de 2023, totalizando 11 anos completos.

Foram utilizadas **séries temporais diárias** de precipitação e vazão. As colunas correspondentes às datas foram formatadas como "datetime", enquanto os dados de precipitação e vazão foram representados como valores de ponto flutuante ("float"). Embora a frequência diária tenha sido adotada, é importante destacar que nem todas as séries temporais estavam originalmente nesse formato. Foi necessário lidar com quebra na continuidade das datas e com dados ausentes. Estes aspectos serão discutidos em detalhes em seções subsequentes.

Os dados de precipitação e vazão obtidos do site da ANA já estavam ajustados nas escalas padrão utilizadas em estudos hidrológicos. A precipitação foi fornecida em milímetros por dia (mm/dia), refletindo a quantidade de chuva que cai sobre uma unidade de área em um período de 24 horas e as vazões, por sua vez, foram disponibilizadas em metros cúbicos por segundo (m³/s), indicando o volume de água que passa por uma seção transversal do rio a cada segundo. Em algumas estações, foram observados valores extremamente elevados para determinados dias, tanto nas séries de precipitação quanto nas de vazão, os quais podem ser considerados outliers. Em relação aos dados de vazão, verificou-se a ocorrência de valores nulos (vazão igual a 0), o que indicaria a interrupção completa do fluxo do rio. Esse fenômeno, no entanto, não faz sentido, considerando que não há registro de eventos de seca tão severos nos rios analisados. Apesar destas anomalias, os dados não foram descartados, pois tanto os registros de vazão quanto os de precipitação utilizados nesta pesquisa foram considerados consistidos pela ANA, ou seja, foram medidos e validados pela agência. O presente trabalho não questionou a veracidade dos dados; eles foram utilizados conforme disponibilizados pela ANA.

É relevante destacar que a consulta prévia ao sistema on-line da ANA foi essencial, pois frequentemente selecionavam-se códigos de estação que, ao final, não possuíam dados para o período especificado ou apresentavam códigos alterados na base de dados, sendo retornados como "inexistentes". Quando um código de estação não retornava resultados na consulta ao sistema, foi necessário utilizar o sistema gentilmente cedido pela Rhama Analysis para verificar se o código da estação havia sido modificado. Nos casos em que se constatava a alteração, o novo código foi adotado, enquanto o código anteriormente informado como inexistente foi descartado.

Em cada rio analisado, a estação alvo, com a vazão que se pretendia prever, foram destacadas em itálico para ficar claro ao leitor como identificá-las.

A distinção entre estação convencional e telemétrica deve-se a esta ter informações a cada quinze minutos, a cada trinta minutos ou ser do tipo horária. Onde ocorreu de ter informações tão granuladas assim, para a precipitação foi feito o somatório para um dia e a vazão foi a média de um dia.

Por fim, é importante destacar a existência de estações híbridas, classificadas como "pluviométricas/fluviométricas". Em alguns casos, o código da estação pode indicar que

se trata de uma estação de vazão (com códigos iniciados em 5 ou 6, por exemplo), mas que também possui informações de precipitação. O inverso também ocorre, onde códigos indicam estações pluviométricas (com códigos iniciados em 016 ou 019, por exemplo) que, no entanto, contêm dados de vazão. Para garantir a consistência com a nomenclatura utilizada pela ANA, manteve-se a classificação original das estações, mesmo que estas contenham apenas dados de precipitação ou vazão.

Para facilitar a visualização, as estações de vazão e precipitação utilizadas no trabalho são apresentadas abaixo.

Tabela 3.1 – Estações usadas no rio Jequitinhonha (fonte: o autor)

Telemétricas						
Pluviométricas/Fluviométricas						
Código	Nome	Município	Latitude	Longitude		
54790000	UHE Itapebi montante 1	Salto da Divisa	-16,08	-40,0521		
01640000	Jacinto	Jacinto	-16,1386	-40,2903		

Tabela 3.2 – Estações usadas no rio Doce (fonte: o autor)

Convencionais					
Pluviométricas					
Código	Nome	Município	Latitude	Longitude	
01941010	São Sebastião da Encruzilhada	Aimorés	-19,4925	-41,1617	
01941004	Resplendor - jusante	Resplendor	-19,3431	-41,2461	
01941006	Assarai - montante	Pocrane	-19,5947	-41,4581	
Telemétricas					
Pluviométricas/Fluviométricas					
Código	Nome	Município	Latitude	Longitude	
56990005	UHE Aimorés rio Manhuaçu	Aimorés	-19,4917	-41,1614	
56994500	Colatina ponte	Colatina	-19,5333	-40,6297	

Tabela 3.3 – Estações usadas no rio Grande (fonte: o autor)

Telemétricas					
Fluviométricas					
Código	Nome	Município	Latitude	Longitude	
62020080	UHE Ilha Solteira barramento	Ilha Solteira	-20,3797	-51,3686	
Pluviométricas/Fluviométricas					
Código	Nome	Município	Latitude	Longitude	
61998080	UHE Água Vermelha barramento	Ouroeste	-19,8628	-50,3475	

Tabela 3.4 – Estações usadas no rio São Francisco (fonte: o autor)

Convencionais					
Fluviométricas					
Código	Nome	Município	Latitude	Longitude	
44290002	Pedras de Maria	Pedras de Maria	-15,6011	-44,3967	
	da Cruz	da Cruz			
Pluviométricas/Fluviométricas					
Código	Nome	Município	Latitude	Longitude	
01544017	Pedras de Maria	Januária	-15,5978	-44,3903	
	da Cruz			-44,5505	
01544032	Usina do Pandeiros	Januária	-15,4831	-44,7672	
	montante			-44,7072	
01544036	Lontra	Lontra	-15,9056	-44,3072	

É importante destacar algumas observações sobre as estações do rio Grande. Durante o período pesquisado, apenas foram encontrados dados de precipitação e vazão em estações localizadas no estado de São Paulo. As estações utilizadas para o rio Grande, as mais próximas da foz do rio e próximas à divisa com o estado de Minas Gerais, são aquelas listadas na tabela.

Uma situação semelhante ocorreu com o rio Doce. Não foram encontradas estações com dados disponíveis na foz do rio Doce, localizada no estado de Minas Gerais. Portanto, foi necessário utilizar a estação 56994500, situada no estado do Espírito Santo.

Estas são as únicas observações relevantes sobre as estações utilizadas.

3.3 Pré-processamento dos Dados

Com os dados disponíveis localmente, o primeiro passo antes de qualquer análise foi garantir a continuidade temporal dos mesmos. Existiam dias faltantes, e, para garantir uma linha do tempo contínua, foi necessário preencher essas lacunas. Os 11 anos de dados diários resultaram em um total de 4017 linhas de dados após essa etapa.

A sazonalidade é um fenômeno bem conhecido e estabelecido na análise hidrológica das bacias hidrográficas da América do Sul. O aumento da precipitação começa na primavera, em setembro, e atinge seus picos nos meses de dezembro e janeiro, durante o verão. Consequentemente, as vazões dos rios aumentam. Com a chegada do outono e, posteriormente, do inverno, os índices pluviométricos diminuem, assim como as vazões nos rios. (33)

Considerando esse fenômeno, o preenchimento dos dados faltantes foi realizado replicando o padrão sazonal. Para preencher um dia faltante em julho, por exemplo, foi utilizado o valor correspondente ao mesmo dia nos anos anteriores. Para evitar a repetição exata do ano anterior, utilizou-se a média dos últimos três anos. As funções desenvolvidas para essa finalidade são personalizáveis, permitindo que se opte por repetir exatamente o ano anterior ou considerar mais de três anos, dependendo das necessidades do estudo.

Note que a estratégia de realizar a média, para o dia, dos anos anteriores nem sempre preenchia exatamente as lacunas. Quando havia muitos dados faltantes no início da série, por exemplo, isso causava problema e a inserção de dados falhava. O que é o comportamento normal.

Foi então que realizou-se uma nova contagem dos dados que ainda permaneciam faltantes. Para esses casos nulos, foi aplicada a imputação de dados utilizando o modelo kNN (k-Nearest Neighbors - k-vizinhos mais próximos), com o objetivo de garantir uma melhor dispersão dos valores imputados. O modelo kNN operou calculando a distância euclidiana dos pontos nulos utilizando os sete vizinhos mais próximos, atribuindo maior peso aos vizinhos mais próximos no cálculo. Esse método de imputação visou preservar

a tendência local e o comportamento da série temporal dentro da semana em que o dado faltante estava. Após esta nova fase de imputação dos dados as séries ficaram completamente preenchidas.

É muito importante o destaque para esta fase de preenchimento de dados faltantes, e os desafios que isso apresentou ao trabalho, porque a escassez de informação foi um problema. Quando o período faltante era curto, o comportamento da série temporal preservou coerentemente os padrões sazonais, de tendência e estacionariedade. Contudo, mais especificamente para o rio Grande, isso tudo ainda não foi suficiente. A série temporal de vazão não preservou o comportamento sazonal esperado, ficando com muitos ruídos.

Neste momento cabe explicar uma nomenclatura utilizada no trabalho para rapidamente identificar o tipo de estação, se convencional ou telemétrica, de que dado ela trata (chuva ou vazão) e o código da estação. Tomemos dois exemplos que serão vistos nesta seção. Esta é a estação 'c_cv_01941010', utilizada na análise do rio Doce. A letra 'c' designa 'convencional' e as letras 'cv' significam 'chuva', consequentemente, a sequência numérica é o código da estação registrado nos sistemas da ANA. A mesma analogia serve para as estações telemétricas. O nome 't_cv_54790000' significa 'estação telemétrica de precipitação, código 54790000'.

3.3.1 Rio Jequitinhonha

A estação de vazão utilizada no rio Jequitinhonha apresentou uma quantidade significativa de dados faltantes, especialmente no início da série temporal. Observa-se uma clara sazonalidade na série, com picos de vazão ocorrendo predominantemente no final e início de cada ano (figura 3.1). As figuras (3.1), (3.6), (3.2), (3.3), (3.4) e (3.5) apresentam gráficos comparativos entre a série original, sem dados imputados (incompleta), e a série após a imputação de dados (completa). Essa comparação, contrapondo a série fornecida pela ANA e os resultados após a inserção de dados, permitirá uma visualização mais clara do impacto das técnicas de preenchimento. Cabe relembrar que, inicialmente, foi aplicada a média dos últimos três anos para replicar a sazonalidade. Para os dados que permaneceram ausentes, utilizou-se o modelo kNN para completar a série. Esta estação, identificada como t_vz_54790000, apresentou 532 dias de dados nulos, o que corresponde a aproximadamente 13,24% do total. Essa é a estação-alvo para a previsão das vazões.

A seguir, destaca-se o trecho da série com a maior quantidade de dados faltantes (figura 3.2), que abrange o período de janeiro de 2013 a janeiro de 2016. Em sequência, é apresentada a série após a imputação dos dados (figura 3.3). Notavelmente, essa seção não apresentou resultados ideais, uma vez que a imputação atribuiu vazões zero em vários dias, o que não é realista, pois isso indicaria a secagem completa do rio, o que é improvável. No entanto, esses valores zero não impactaram significativamente os resultados finais da análise, já que se referem a um período distante do foco principal deste estudo. Uma

Figura 3.1 – Série temporal incompleta da estação t_vz_54790000 (fonte: o autor)

alternativa seria excluir todo o trecho anterior ao ano de 2016, mas optou-se por manter a uniformidade nos critérios de aproveitamento dos dados ao longo do trabalho, dado que outros rios também foram analisados, e buscava-se assegurar consistência nos resultados.

Figura 3.2 – Detalhe da série temporal da estação t_vz_54790000, ainda sem dados imputados, de 2013 a 2016 (fonte: o autor)

Figura 3.3 – Detalhe da série temporal da estação t_vz_54790000, com dados imputados, de 2013 a 2016 (fonte: o autor)

Observe também o trecho de dados faltantes mais próximo ao final dos anos analisados, em 2021 e 2022 (figura 3.4). Esta porção da série ficou boa visto que havia

informação prévia suficiente, a inserção de dados respeitou coerentemente a sazonalidade (figura 3.5).

Figura 3.4 – Série temporal incompleta da estação t_vz_54790000 no detalhe entre 2021 e 2022 (fonte: o autor)

Figura 3.5 – Série temporal completa da estação t_vz_54790000 no detalhe entre 2021 e 2022 (fonte: o autor)

Por fim, uma visão ampla de como ficou a série temporal após os procedimentos de imputar os dados. (figura 3.6)

Figura 3.6 – Série temporal completa da estação t_vz_54790000 (fonte: o autor)

A mesma análise foi realizada para as estações de chuva. Na estação t $_{cv}_{54790000}$ (figura 3.7) faltavam 273 dias de dados (6,79%). Já a estação t $_{cv}_{01640000}$ estava totalmente preenchida, sem valores nulos. (figura 3.9)

Figura 3.7 – Série temporal incompleta da estação t_cv_54790000 (fonte: o autor)

Note que no início desta série de precipitação, o ano de 2013, não possuem dados. As séries de chuva completas ficaram desta forma (figuras 3.8 e 3.9)

Figura 3.8 – Série temporal completa da estação t_cv_54790000 (fonte: o autor)

Figura 3.9 – Série temporal completa da estação t_cv_01640000 (fonte: o autor)

3.3.2 Rio Doce

A estação alvo para o rio Doce é a estação c_vz_56994500. Sua série temporal foi a que apresentou melhor qualidade no que diz respeito à frequência de medições realizadas. Havia falta de apenas 3 dias, dos 4017 dias do período inteiro. Apenas o preenchimento sazonal bastou para completar a série e não foi preciso mais que isso. Cabe destacar a sazonalidade da série. Ficou bastante evidente este comportamento. (figura 3.10)

Figura 3.10 – Série temporal completa da estação c_vz_56994500 (fonte: o autor)

Se para os dados de vazão no rio Doce a série foi, digamos, mais comportada, o mesmo não se pode dizer exatamente das estações de chuva. Ao menos, não para duas delas. Estas estações tiveram os dados desconsiderados e foram removidos das análises. Primeiro foi a estação t_cv_56990850 que possuía valores discrepantes demais para serem considerados. Valores da ordem de 7000 mm/dia, 8500 mm/dia. Além deste problema, havia ainda 3134 dias com dados nulos, o que representava 78% do total. (figura 3.11)

A outra estação removida foi a t_cv_56994500. Conforme pode ser observado na figura 3.12, nela havia um longo hiato de dados zerados, voltando à normalidade apenas mais recentemente. Como as informações de precipitação que deveria haver para a estação no período do hiato, pode ser retirado de outras estações usadas na modelagem, optou-se por remover esta estação completamente do trabalho.

As estações que, enfim, foram empregadas na modelagem são as que estão na tabela e, adiante, o gráfico da série temporal de cada uma delas. (figuras 3.13, 3.14, 3.15 e 3.16)

Tabela 3.5 – Estações de precipitação usadas - final (fonte: o autor)

Estação	# dados faltantes	% dados faltantes
c_cv_01941010	153	3,81
c_cv_01941004	31	0,77
c_cv_01941006	0	0,00
t_cv_56990005	1395	34,73

Figura 3.11 – Série temporal da estação t_cv_56990850 - não utilizada (fonte: o autor)

Figura 3.12 – Série temporal da estação t_cv_56994500 - não utilizada (fonte: o autor)

Figura 3.13 – Série temporal completa da estação c_cv_01941010 (fonte: o autor)

Série temporal completa da estação c_cv_01941004

Figura 3.14 – Série temporal completa da estação c_cv_01941004 (fonte: o autor)

Série temporal completa da estação c_cv_01941006

Figura 3.15 – Série temporal completa da estação c_cv_01941006 (fonte: o autor)

Série temporal completa da estação t_cv_56990005

Figura 3.16 – Série temporal completa da estação t_cv_56990005 (fonte: o autor)

3.3.3 Rio Grande

O rio Grande apresentou desafios significativos ao longo de todo o desenvolvimento deste trabalho. A dificuldade inicial surgiu na ausência de dados disponíveis em estações dentro do estado de Minas Gerais para o período de análise estipulado, conforme mencionado anteriormente. Foi necessário buscar uma estação o mais próxima possível da divisa com Minas Gerais, localizada no estado de São Paulo, especificamente no município de Ilha Solteira. Entretanto, os desafios não se limitaram a essa questão geográfica.

A série temporal de vazão da estação selecionada, denominada t_vz_62020080, estava incompleta e não abrangia todo o período de 11 anos estipulado para a análise. (figura 3.17) Os dados disponíveis mais antigos datavam de 2020. Contudo, em conformidade com o escopo estabelecido para este estudo, foi realizado o preenchimento dos dados faltantes, aplicando-se o mesmo protocolo utilizado para os demais rios analisados. Este procedimento foi necessário para garantir a consistência, integridade e comparabilidade das análises subsequentes.

Figura 3.17 – Série temporal incompleta da estação t_vz_62020080 (fonte: o autor)

Infelizmente, o caráter ruidoso da série permaneceu mesmo após a aplicação do protocolo de preenchimento dos dados ausentes, conforme pode ser observado na imagem final gerada. (figura 3.18) A série em questão apresentava 2099 dias faltantes, correspondendo a aproximadamente 64% de dados nulos. Outro aspecto relevante para essa estação é que, diferentemente das outras, não foram utilizados os 4.017 registros previstos inicialmente. As informações mais antigas disponíveis datavam de 2015, resultando, assim, em um total de 3289 registros diários utilizados especificamente para o rio Grande.

A estação de precipitação utilizada, a única neste caso, foi a estação t_cv_61998080, pois foi a única que apresentou dados válidos. Curiosamente, outra estação de precipitação disponível também apresentou dados para o período analisado, mas a base de dados consistia exclusivamente em valores zero. Por essa razão, a estação t_cv_62020080 foi completamente excluída do estudo.

Figura 3.18 – Série temporal completa da estação t_vz_62020080 (fonte: o autor)

Em relação à estação t_cv_61998080, houve necessidade de preencher apenas um número reduzido de dados ausentes, totalizando 169 registros, o que correspondia a 5,14% do total. (figura 3.19) Trata-se de uma série com uma quantidade expressiva de dados, que efetivamente pôde contribuir de maneira significativa para as análises realizadas.

Série temporal completa da estação t_cv_61998080

Figura 3.19 – Série completa da estação t_cv_61998080 (fonte: o autor)

Ressalta-se que o trecho de dados faltantes para a estação t_cv_61998080 concentrava-se no início da série temporal, especificamente no ano de 2015. No gráfico os dados já estão imputados.

3.3.4 Rio São Francisco

Por fim, foi realizado o procedimento de preenchimento dos dados nulos para o rio São Francisco. A estação-alvo c_vz_44290002 apresentou uma série bastante completa ao longo do período de análise, com apenas 120 dias nulos em um total de 4017 dias. O trecho com dados faltantes pode ser observado em detalhe na figura (3.20).

Para esta estação, o preenchimento sazonal foi suficiente para suprir as lacunas existentes, não sendo necessário aplicar procedimentos adicionais de imputação de dados. (figura 3.21)

Figura 3.20 – Detalhe do trecho com dados nulos da estação c_vz_44290002 (fonte: o autor)

Figura 3.21 – Série temporal completa da estação c_vz_44290002 (fonte: o autor)

No que se refere às estações de precipitação selecionadas para a análise no rio São Francisco, não foi necessário realizar nenhuma inserção de dados, uma vez que todas as séries estavam completas, abrangendo a totalidade dos 4017 dias de registro. As séries temporais correspondentes podem ser visualizadas nos gráficos apresentados a seguir. (figuras 3.22, 3.23, 3.24)

Figura 3.22 – Série temporal completa da estação c_cv_01544017 (fonte: o autor)

Série temporal completa da estação c_cv_01544032

Figura 3.23 – Série temporal completa da estação c_cv_01544032 (fonte: o autor)

Série temporal completa da estação c_cv_01544036

Figura 3.24 – Série temporal completa da estação c_cv_01544036 (fonte: o autor)

3.4 Variáveis Utilizadas

As variáveis do trabalho, exceto as categóricas, obviamente, são todas contínuas. Todas as séries temporais foram ajustadas para estarem completas dentro do período trabalhado, totalizando 4017 registros diários. A exceção ficou por conta dos dados do rio Grande, em que o dado mais antigo foi o dia 30 de dezembro de 2014.

Para que se tenha uma noção melhor, abaixo seguem alguns dados estatísticos relevantes que informam sobre os dados de vazão e precipitação utilizados. Conste-se que as unidades de precipitação estão em mm/dia e vazão em m^3/s .

Tabela 3.6 – Variáveis utilizadas - rio Jequitinhonha (fonte: o autor)

Variável	#	Média	Desvio-padrão	Mín	< 50%	Máx
t_cv_01640000	4017	1,58	6,85	0,00	0,00	166,60
t_cv_54790000	4017	1,68	6,31	0,00	0,00	102,60
t_vz_54790000 (y)	4017	160,95	267,90	0,00	95,95	3716,65

Tabela 3.7 – Variáveis utilizadas - rio Doce (fonte: o autor)

Variável	#	Média	Desvio-padrão	Mín	< 50%	Máx
c_cv_01941010	4017	2,21	8,41	0,00	0,00	125,60
c_cv_01941004	4017	2,59	9,83	0,00	0,00	131,00
c_cv_01941006	4017	2,44	9,76	0,00	0,00	156,60
t_cv_56990005	4017	1,15	5,19	0,00	0,00	124,80
c_vz_56994500 (y)	4017	542,05	656,99	75,15	341,26	11655,20

Tabela 3.8 – Variáveis utilizadas - rio Grande (fonte: o autor)

Variável	#	Média	Desvio-padrão	Mín	< 50%	Máx
t_cv_61998080	3289	3,13	13,92	0,00	0,00	330,40
t_vz_62020080 (y)	3289	3405,27	873,88	1603,58	3170,08	11939,49

Tabela 3.9 – Variáveis utilizadas - rio São Francisco (fonte: o autor)

Variável	#	Média	Desvio-padrão	Mín	< 50%	Máx
c_cv_01544017	4017	1,60	7,39	0,00	0,00	110,00
c_cv_01544032	4017	2,30	8,13	0,00	0,00	125,40
c_cv_01544036	4017	1,99	7,59	0,00	0,00	112,00
c_vz_44290002 (y)	4017	1115,88	998,40	254,75	812,26	7338,65

É possível identificar algumas questões importantes sobre a massa de dados a partir destas tabelas. Observe que para o rio Jequitinhonha (tabela 3.6) a vazão mínima foi $0.00 \, m^3/s$, o que denotaria que o rio passou por um período de seca. Porém não foi encontrado, seja em artigos científicos sobre o rio, quanto em matérias de jornais, que o rio Jequitinhonha tenha passado por isso no período analisado. Não é de se surpreender, contudo, que estes valores zero tenham sido inseridos quando da imputação dos dados, visto que este trecho da série temporal era onde estava a maior lacuna. No entanto, não foi feita substituição dos valores zero por, por exemplo, a média de vazão. Problemas com falta de dados e crítica quanto aos dados inseridos não foram feitas. Estas e outras incertezas que permearam todas análises foram, onde puder e couber, discutidas, mas manteve-se o trabalho mesmo com estas questões levantadas, sem fazer um tratamento específico. Uma observação geral sobre os dados de vazão é que existe uma amplitude elevada entre o mínimo e o máximo, em todas as estações utilizadas, com uma pequena variação para o rio Grande. Contudo, com este rio especificamente, os dados de vazão tiveram alguns problemas e dificuldades e é provável que estes números não estejam coerentes com a realidade. Mas o rio Doce é realmente considerável. (tabela 3.7) Vale destacar, no entanto, que esta amplitude não especifica se foi dentro de um ano. É ao longo de toda série temporal, ou seja, ao longo dos 11 anos de dados considerados.

As variáveis de precipitação, mesmo considerando o somatório diário de precipitação, tiveram muitos dados zero. Nota-se isso a partir da análise da coluna "< 50%", que significa metade de toda massa de dados de precipitação estavam abaixo deste valor, ou seja, metade de todos os dados de precipitação estavam em 0,00 mm/dia. Não foi, no entanto, um problema tamanha quantidade de valores zero. Para precipitação é até esperado, mas não foi possível ter certeza se de fato não houve precipitação na sub-bacia onde a estação estava inserida ou se isso reflete a dificuldade em se obter dados de medição.

Quanto aos dados categóricos utilizados neste estudo, foram extraídas do campo de data as informações de dia do ano ('dayofyear'), semana do ano ('week'), mês ('month'), trimestre ('quarter') e estação do ano. Com exceção da variável 'estação do ano', para a qual foi desenvolvido um algoritmo específico, as demais informações foram extraídas utilizando a biblioteca Pandas.(32) Essas variáveis categóricas foram incorporadas com o objetivo de capturar o comportamento sazonal da série temporal. Observa-se que os regimes de precipitação e vazão tendem a se repetir nas estações de primavera e verão, com uma redução significativa durante o outono e inverno. A inclusão das variáveis 'semana do ano' e 'dia do ano' visa também identificar possíveis variações pontuais que possam ocorrer ao longo do tempo.

3.5 Análise exploratória dos dados

Com os dados ajustados, algumas variáveis removidas e as séries temporais contínuas, deu-se início à análise exploratória dos dados. Esta etapa é fundamental para compreender o comportamento das séries temporais.

As análises realizadas foram idênticas para todos os rios estudados, de modo que a descrição desta fase será apresentada de forma geral, sem a necessidade de subdivisão por bacia hidrográfica.

O primeiro passo foi verificar a sazonalidade dos dados. Foram avaliadas apenas as variáveis endógenas, ou seja, as vazões. Um teste de autocorrelação foi suficiente para identificar a presença de sazonalidade. Além disso, realizou-se a decomposição das séries temporais em suas componentes sazonais para uma análise mais detalhada. A autocorrelação é uma ferramenta essencial para identificar como os valores passados influenciam os valores futuros em uma série temporal, permitindo a detecção de padrões sazonais, ciclos e tendências.

A decomposição das séries temporais foi realizada utilizando a biblioteca Stats-Models, aplicando o modelo aditivo.(35) A série temporal do rio Grande apresentou o pior desempenho em termos de autocorrelação.(figura 3.29) A decomposição da série também revelou um comportamento mais ruidoso, o que pode ser atribuído ao fato de esta série conter mais lacunas e apresentar maiores desafios no preenchimento dos dados ausentes.(figura 3.30) Nos gráficos de autocorrelação, o *lag* de 365 dias – correspondente a um ano – foi destacado com uma linha preta vertical.

Figura 3.25 – Autocorrelação para a vazão do rio Jequitinhonha (fonte: o autor)

As séries temporais consideradas, digamos, mais bem comportadas foram as dos rios Doce e São Francisco. A decomposição sazonal da série do rio Jequitinhonha apresentou algum nível de ruído, embora a sazonalidade tenha sido identificada de forma clara.

Decomposição da série temporal: t_vz_54790000

Figura 3.26 – Componente sazonal da série de vazão do rio Jequitinhonha (fonte: o autor)

Figura 3.27 – Autocorrelação para a vazão do rio Doce (fonte: o autor)

Outra característica investigada neste estudo foi a presença de 'cauda longa' nos dados de precipitação e vazão. Esse comportamento é comumente observado em dados ambientais dessa natureza.(31)

A 'cauda longa' refere-se a uma distribuição de frequência na qual uma proporção significativa dos eventos ocorre em uma região distante do centro ou da média da distribuição. Em uma distribuição normal, a maioria dos eventos se concentra em torno da média, com poucas ocorrências nas extremidades (caudas). No entanto, na distribuição com cauda longa, essas extremidades contêm uma quantidade substancial de eventos, que, somados, podem representar uma fração importante do total. A análise de cauda longa é um campo específico da estatística, desenvolvido para lidar com eventos de baixa frequência, mas de alta magnitude. No entanto, este trabalho não se aprofundou nas técnicas avançadas de análise de cauda longa; o foco aqui foi identificar a presença desse fenômeno e determinar

Decomposição da série temporal: c_vz_56994500

Figura 3.28 – Componente sazonal da série de vazão do rio Doce (fonte: o autor)

Figura 3.29 – Autocorrelação para a vazão do rio Grande (fonte: o autor)

Figura 3.30 – Componente sazonal da série de vazão do rio Grande (fonte: o autor)

Figura 3.31 – Autocorrelação para a vazão do rio São Francisco (fonte: o autor)

Figura 3.32 – Componente sazonal da série de vazão do rio São Francisco (fonte: o autor)

um tratamento adequado para os dados.

A mitigação do efeito de cauda longa é particularmente relevante para modelos como a Regressão Linear, que pressupõe uma distribuição normal dos dados. Uma distribuição assimétrica pode comprometer a convergência do modelo. Embora os modelos baseados em boosting utilizados neste estudo, como o CatBoost e o LightGBM, não sejam tão sensíveis a esse efeito, pois captam relações não-lineares e complexas de forma eficiente, optou-se por aplicar o mesmo tratamento a todos os modelos para garantir uma padronização na apresentação dos dados.

Dado que os dados contêm valores iguais a zero, a transformação pelo logaritmo natural (ln(.)) não foi aplicada, pois o cálculo de logaritmo não é definido para valores zero. Em vez disso, foi utilizada a transformação 'log1p(.)' da biblioteca NumPy (20), que adiciona 1 ao valor antes da transformação, evitando erros relacionados ao logaritmo

de zero.

Após a transformação a distribuição dos eventos ficou menos assimétrica, como pode ser visto nas figuras 3.33, 3.34, 3.35, 3.36, 3.37, 3.38, 3.39, 3.40. Para o rio Grande, visualmente, parece não ter havido tanta diferença, mas quando se analisa os valores, houve um achatamento na distância entre os valores máximo e o mínimo da série.

Figura 3.33 – Dados originais para o rio Jequitinhonha (fonte: o autor)

Figura 3.34 – Dados transformados para o rio Jequitinhonha (fonte: o autor)

Variável c_vz_56994500 Histograma da série original 500 400 200 100 0 2k 4k 6k 8k 10k 12k valor

Figura 3.35 – Dados originais para o rio Doce (fonte: o autor)

Figura 3.36 – Dados transformados para o rio Doce (fonte: o autor)

Figura 3.37 – Dados originais para o rio Grande (fonte: o autor)

Figura 3.38 – Dados transformados para o rio Grande (fonte: o autor)

Figura 3.39 – Dados originais para o rio São Francisco (fonte: o autor)

Figura 3.40 – Dados transformados para o rio São Francisco (fonte: o autor)

Para finalizar, uma análise comumente realizada em séries temporais é a verificação de sua estacionariedade. No entanto, neste estudo, essa avaliação não foi realizada, pois séries temporais de dados ambientais, como precipitação e vazão, geralmente apresentam sazonalidade e tendências que violam o conceito de estacionariedade conforme explicado em Hyndman and Athanasopoulos (26). Outros desafios a esta análise também incluem a rápida mudança no uso do solo e remoção de cobertura vegetal original, alterando significativamente a dinâmica hidrológica da região.(6)

A estacionariedade pressupõe que as características estatísticas da série, como média, variância e autocorrelação, permaneçam constantes ao longo do tempo. No entanto, dados ambientais, especialmente os relacionados a fenômenos hidrológicos, costumam exibir padrões sazonais marcados e eventos extremos, o que torna inadequada a aplicação de testes de estacionariedade tradicionais. As séries de precipitação podem ser influenciadas por fatores externos, como mudanças climáticas ou eventos meteorológicos excepcionais, resultando em variações significativas ao longo do tempo. No caso da vazão, variações no uso e ocupação do solo causam impacto no escoamento.

Essas características, longe de serem consideradas como ruído ou anomalias, fazem parte da própria natureza dos dados ambientais e são cruciais para a modelagem e previsão. Assim, em vez de tentar forçar a estacionariedade, este trabalho optou por lidar com a sazonalidade e as tendências diretamente, utilizando técnicas que captam essas dinâmicas, visando garantir previsões mais realistas e representativas dos processos hidrológicos.

3.6 Modelos de Aprendizado de Máquina

3.6.1 Seasonal Naive

O modelo **Seasonal Naive** não pode ser considerado um modelo de previsão sofisticado. Em vez disso, ele funciona como uma linha de base (baseline), servindo como ponto de partida para avaliar o desempenho de outros modelos de previsão. Este modelo simplesmente repete a sazonalidade observada no período anterior, ou seja, assume que o comportamento do próximo ciclo sazonal será o mesmo do anterior, com um possível ajuste por *drift* (desvio).(25)

Esse método é útil para fornecer uma idéia inicial do comportamento esperado, permitindo que os modelos subsequentes sejam comparados a ele. Por ser um modelo simples, ele não captura tendências ou variações complexas, mas estabelece um benchmark mínimo para o qual outros métodos mais elaborados e complexos devem se comparar.

3.6.2 Regressão Linear

O modelo de Regressão Linear (*Linear Regression*) é uma abordagem estatística simples, porém poderosa, que busca modelar o relacionamento entre uma variável dependente

e uma ou mais variáveis independentes através de uma linha reta.

O funcionamento da Regressão Linear envolve o cálculo de coeficientes para as variáveis independentes, que determinam o peso de cada uma destas variáveis na previsão da variável dependente. O objetivo do modelo é minimizar o erro quadrático médio, ou seja, a soma dos quadrados das diferenças entre os valores previstos e os valores reais.(24)

Os resultados obtidos com este modelo mostraram-se muito bons, e na verdade, ele se destacou como um modelo-base robusto para os outros modelos mais complexos. Sua simplicidade e eficácia tornam-no uma escolha bastante sólida. Isso será discutido.

3.6.3 CatBoost e LightGBM

Estes dois modelos são descritos juntos pois o funcionamento de ambos se baseia no mesmo princípio: ambos algoritmos constroem modelos fracos de árvores de decisão (decision tree) de forma sequencial, onde cada árvore sucessiva é treinada para corrigir os erros da árvore anterior. Contudo, o LightGBM adota uma estratégia denominada "Leaf-wise Growth" ao invés da forma de construção tradicional "Level-wise Growth". Nesta estratégia, o crescimento ocorre folha a folha, a árvore expande as folhas com a maior redução de erro, resultando em árvores mais profundas e precisas.(28)(7) O revés nessa estretégia é que fica mais suscetível a overfitting, mas existem parâmetros no modelo, como por exemplo 'min_data_in_leaf' (quantidade mínima de dados em cada folha) que cuidam para que isso seja evitado.

O CatBoost, por sua vez, adota uma estratégia denominada "Ordered Boosting", em que a construção das árvores se dá de maneira sequencial, porém não se usa todos os dados disponíveis para esta construção. Os dados de treinamento são ordenados de maneira aleatória e apenas partições destes dados são utilizados no processo. Por trabalhar sempre com uma amostra dos dados de treinamento, e a apresentação aleatória destes dados ao modelos, o CatBoost tem resiliência ao overfitting, mas parâmetros que realizam ajustes nas árvores de decisão também estão presentes e o pesquisador tem controle sobre eles.(37)(13)(34)

A escolha do modelo certo para um problema de previsão desta natureza depende das características dos dados e dos objetivos do estudo. O SeasonalNaive, embora simples, é um importante ponto de referência inicial. O modelo de Regressão Linear serve como uma baseline confiável devido à sua eficácia e simplicidade. Já os modelos CatBoost e LightGBM foram opções mais avançadas, capazes de lidar com a complexidade dos dados e oferecer previsões precisas e eficientes. A comparação entre todos estes modelos permitiu que se escolhesse a abordagem que melhor atendesse às necessidades específicas da previsão de vazões.

3.7 Métricas de Avaliação

Para avaliar o desempenho dos modelos de previsão utilizados neste estudo, foram adotadas quatro métricas: MAPE (Mean Absolute Percentage Error), RMSE (Root Mean Square Error), PBIAS (Percent Bias) e KGE (Kling-Gupta Efficiency). A escolha dessas métricas baseia-se na necessidade de uma avaliação abrangente que considere diferentes aspectos da qualidade das previsões, como precisão, erro médio, tendência e correlação.

• MAPE (Mean Absolute Percentage Error): O MAPE é uma métrica amplamente utilizada para medir a precisão das previsões em termos percentuais. O algoritmo calcula a média das diferenças absolutas entre os valores observados e previstos, normalizadas pelos valores observados. O bom da métrica MAPE é a sua facilidade de interpretação, já que expressa o erro em termos percentuais, e por ser "livre de escala", ou seja, independente da escala dos dados, tornando os resultados comparáveis entre diferentes séries temporais e modelos. Contudo, o MAPE pode ser sensível a valores muito baixos e esta característica deve ser considerada ao interpretar os resultados. Quanto mais próximo de 0, melhor.(23)

$$MAPE = \frac{100}{n} \sum_{i=1}^{n} \left| \frac{O_i - P_i}{O_i} \right|$$
 (3.1)

- $\diamond O_i$ valores observados
- \diamond P_i valores previstos
- \diamond n o número total de observações
- RMSE (Root Mean Square Error): O RMSE mede o erro médio das previsões, penalizando erros maiores devido à sua formulação quadrática. Essa métrica é amplamente utilizada por sua sensibilidade a grandes desvios entre as previsões e os valores observados, o que a torna adequada para identificar erros extremos. O RMSE é uma escolha natural quando se deseja minimizar grandes erros e garantir maior precisão nas previsões. Quanto menor, melhor.(23)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)^2}$$
 (3.2)

- $\diamond O_i$ valores observados
- \diamond P_i valores previstos
- $\diamond\,\,n$ o número total de observações
- R² (Coefficient of Determination): O Coeficiente de Determinação, que é o quadrado do coeficiente de correlação de Pearson, mede a proporção da variância total nos dados observados que pode ser explicada pelo modelo. Ele varia de 0,0 a 1,0,

com valores mais alto indicando uma melhor concordância entre os dados observados e os previstos. Embora o R^2 seja amplamente utilizado, ele apresenta limitações que podem resultar em uma avaliação imprecisa do desempenho de modelos hidrológicos, tal como ser uma métrica sensível a valores discrepantes (outliers) e avaliar apenas relações lineares. Deve ser empregado com outras métricas para garantir uma boa interpretabilidade dos resultados dos modelos.(30)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (O_{i} - P_{i})^{2}}{\sum_{i=1}^{n} (O_{i} - \bar{O})^{2}}$$
(3.3)

- $\diamond O_i$ valores observados
- \diamond P_i valores previstos
- \diamond \bar{O} média dos valores observados
- $\diamond\,\,n$ o número total de observações
- PBIAS (*Percent Bias*): O PBIAS avalia o viés das previsões, ou seja, a tendência do modelo em superestimar (PBIAS positivo) ou subestimar (PBIAS negativo) os valores observados. Ele expressa a diferença percentual entre a soma dos valores previstos e observados, permitindo identificar se o modelo apresenta uma tendência sistemática de erro. Um valor de PBIAS próximo de zero indica que o modelo não possui viés significativo. Não se espera que esta métrica seja 0, senão indicaria que a previsão foi exatamente o valor observado, mas ao mostrar o viés das previsões, isso tem impacto diretamente nas decisões de gestão de recursos hídricos.(29)

$$PBIAS = 100 \times \frac{\sum_{i=1}^{n} (P_i - O_i)}{\sum_{i=1}^{n} O_i}$$
 (3.4)

- $\diamond O_i$ valores observados
- \diamond P_i valores previstos
- \diamond n o número total de observações
- KGE (Kling-Gupta Efficiency): O KGE fornece uma avaliação integrada do desempenho do modelo, considerando simultaneamente três componentes: correlação, viés e variabilidade relativa entre os valores previstos e observados. O KGE é uma métrica robusta que combina esses três fatores de forma equilibrada, fornecendo um entendimento geral da qualidade das previsões. Essa métrica é especialmente útil em estudos hidrológicos, pois tem capacidade de capturar a complexidade das relações entre variáveis hidrológicas de maneira mais eficaz do que métricas tradicionais focadas em um único aspecto. Quanto mais próximo de 1, melhor o desempenho do modelo.(19)

$$KGE = 1 - \sqrt{(r-1)^2 + (\alpha - 1)^2 + (\beta - 1)^2}$$
(3.5)

- \diamond r é o coeficiente de correlação linear entre os valores observados e previstos
- \diamond $\alpha = \frac{\sigma_p}{\sigma_o}$ é a variabilidade relativa, sendo σ_p o desvio-padrão das previsões e σ_o o desvio-padrão das observações
- $\Leftrightarrow \beta = \frac{\mu_p}{\mu_o}$ é o viés, em que μ_p é a média dos valores previstos e μ_o a média dos valores observados

3.8 Modelo proposto

Tudo detalhado até aqui, agora é preciso descrever o fluxo de trabalho. Por fim, será apresentado o fluxograma do modelo proposto para uma rápida depreensão visual.

Primeiramente é necessário especificar o período histórico de análise. Depois de estipulado o período, deve-se identificar as estações de vazão para as quais serão realizadas as previsões.

Identificadas estas estações de vazão, verifica-se em linha reta, em sentido montante da estação de vazão, as estações de precipitação a 50km nas sub-bacias que deságuam no corpo hídrico analisado. Para este passo foi utilizado o programa QGis com *shapefiles* das ottobacias.(36) Para o *shapefile* de todas as estações do estado de Minas Gerais foi preciso acesso ao sistema da empresa Rhama Analysis. Sistema fechado este, no caso.

Aqui uma importante etapa: aplicar transformação logarítmica nos dados de vazão e precipitação para tratar o fenômeno de "cauda" longa dos dados.

A separação dos dados do último ano, 2023, foi para posteriormente simular o uso dos modelos ao longo de um ano. Realizar ajuste ('fit') e previsão ('predict'), dia-a-dia, durante um ano inteiro, para avaliar a estabilidade dos modelos. Este procedimento é referido na literatura como Walk-Forward Validation (WFV) e pode ser por uma janela deslizante ou por janela expandida, que foi a técnica aplicada neste trabalho. Além disso, tem duas formas de realizar as previsões: criando vários modelos que irão prever cada um dos dias futuros ('direct forecasting'), o que geraria 365 modelos distintos e, consequentemente, consumiria muita mémoria, ou o que foi adotado neste trabalho que foi realizar reajustes ('refit') ao modelo inicial num processo recursivo ('recursive forecasting'). Esse processo de WFV permite capturar mudanças ao longo do tempo e avaliar a capacidade do modelo de generalizar para o futuro de forma mais realista. Perceba o funcionamento nas imagens a seguir (observação: a fonte de onde as imagens foram retiradas nomeia o processo de Walk-Forward Validation como 'backtesting' (14))

Com os dados restantes, a saber, de 2013 a 2022, foram realizadas avaliações em alguns horizontes de previsão antes de partir para a análise mais complexa (WFV). A intenção era compreender o comportamento da modelagem em horizontes curtos e médios. Foram escolhidos os horizontes de previsão de 1, 3, 7 e 15 dias. As previsões utilizaram a previsão multietapas, com modelos diretos, ou seja, após feito o ajuste, cada dia foi

Time series backtesting with refit

Figura 3.41 – Diagrama mostrando a divisão dos dados de treino/teste com refit. (fonte: (14))

Figura 3.42 – WFV com janela expandida e refit - imagem 1. (fonte: (14))

Figura 3.43 – WFV com janela expandida e refit - imagem 2. (fonte: (14))

Figura 3.44 - WFV com janela expandida e refit - imagem 3. (fonte: (14))

previsto reiteradamente sem reajuste dos pesos e parâmetros internos dos modelos ("direct forecast"). Veja a seguir o procedimento.

Figura 3.45 – Diagrama mostrando a divisão dos dados de treino/teste sem refit. (fonte: (14))

Figura 3.46 – Previsão multietapas sem reajuste (refit) - imagem 1. (fonte: (14))

Figura 3.47 – Previsão multietapas sem reajuste (refit) - imagem 2. (fonte: (14))

Evidentemente que para o horizonte de previsão de 1 dia não há reexecução do modelo, apenas para os outros horizontes.

O desempenho dos resultados são avaliados com as métricas propostas, para cada modelo do trablaho e para cada horizonte de previsão. Para cada horizonte de previsão foram calculados intervalos de previsão ("prediction intervals") de 90%. A interpretação do intervalo de previsão é: calculados os valores inferior e superior do intervelo de 90%

Figura 3.48 – Previsão multietapas sem reajuste (*refit*) - imagem 3. (fonte: (14))

("lo-90" e "hi-90"), o valor real observado futuro tem 90% de probabilidade de estar dentro destes limites.(22)

Estes resultados encerram a análise para o comportamento de curto e médio prazo da modelagem proposta para os modelos propostos. Na sequência foi empreendida uma análise quanto à forma de uso que este trabalho pode vir a ter na prática, que é a Walk-Forward Validation. E finalmente, análise das variáveis do trabalho, buscando entendimento quanto à importância desemepenhada por cada uma, empregando o método SHAP.

Os resultados serão apresentados no capítulo 4.

REFAZER O FLUXOGRAMA

Figura 3.49 – Fluxo de trabalho (fonte: o autor)

4 RESULTADOS E DISCUSSÃO

4.1 Desempenho dos modelos

Os resultados obtidos pelos modelos variaram significativamente em termos de precisão, tanto nas previsões pontuais quanto nos intervalos de previsão, refletindo diferentes graus de precisão para cada cenário analisado. Observou-se que a capacidade dos modelos em captar a variabilidade dos dados e as incertezas associadas às previsões foi particularmente sensível ao horizonte temporal considerado. Em horizontes mais curtos, como o de 1 dia, os modelos tenderam a apresentar um desempenho satisfatório, com baixos valores de erro e intervalos de previsão bem ajustados aos dados observados. No entanto, à medida que o horizonte de previsão foi expandido para 7 e 15 dias, notou-se um aumento substancial no erro percentual e uma maior discrepância entre os valores previstos e os observados, indicando dificuldades do modelo em captar tendências de longo prazo com a mesma precisão. Além disso, os intervalos de previsão tornaram-se menos eficientes na captura dos valores reais, especialmente nos horizontes mais extensos. Essa dinâmica de variação dos resultados será discutida em maior detalhe, dividida por bacia hidrográfica, o que permitirá uma análise mais específica das particularidades de cada região e a identificação de padrões específicos que possam influenciar o desempenho dos modelos.

4.1.1 Rio Jequitinhonha

Começando pela menor bacia estudada, os resultados mostraram-se bastante satisfatórios, especialmente no que tange à Regressão Linear, que se destacou com boas previsões tanto em termos pontuais quanto nos intervalos de previsão. Este modelo demonstrou uma boa capacidade de capturar a dinâmica hidrológica do rio, refletindo precisão nas métricas e um desempenho consistente para o horizonte de curto prazo. E com um tempo de execução baixo. O modelo simples Seasonal Naive apresentou resultados aquém do esperado em todas as situações avaliadas, incluindo previsões pontuais e intervalos de previsão. Independentemente do horizonte de previsão considerado, o modelo gerou valores previstos que se distanciaram significativamente dos valores reais observados.

Saltando de 1 dia para 3 dias, o modelo piorou consideravelmente o resultado, praticamente dobrando o MAPE, porém, à medida que o horizonte foi aumentando a partir de 3 dias, os resultados melhoraram, chegando ao ponto de a previsão de 15 dias superar até mesmo a previsão de 1 dia. É provável que o preenchimento de dados realizado aplicando a sazonalidade de anos anteriores tenha influenciado neste desempenho. Os intervalos de previsão estreitos denotam que a previsão não captou todas as incertezas presentes na dinâmica do fenômeno.(21)

Os resultados obtidos utilizando o modelo de Regressão Linear mostraram-se pro-

Figura 4.1 – Seasonal Naive para o horizonte de previsão de 1 dia (fonte: o autor)

Figura 4.2 – Seasonal Naive para o horizonte de previsão de 3 dias (fonte: o autor)

missores. Para o horizonte de previsão de 1 dia, o modelo apresentou uma superestimação nos valores previstos, conforme indicado pelo PBias positivo, e obteve um MAPE de apenas 4,7%.(figura 4.5) Este resultado demonstra uma precisão bastante elevada, com um erro percentual baixo, o que é muito satisfatório. À medida que o horizonte de previsão foi ampliado, observou-se um aumento no erro. No horizonte de 3 dias, o modelo manteve a tendência de superestimação e registrou um MAPE de 15,9%, ainda dentro de um intervalo

Figura 4.3 – Seasonal Naive para o horizonte de previsão de 7 dias (fonte: o autor)

Figura $4.4 - Seasonal \ Naive$ para o horizonte de previsão de 15 dias (fonte: o autor)

de erro que pode ser considerado aceitável, mas superior ao do horizonte de 1 dia. (figura 4.6) Para o horizonte de 7 dias, o modelo continuou a superestimar os valores e obteve um MAPE de 26,5%, indicando um erro mais pronunciado à medida que o período de previsão aumentou. (figura 4.7) No horizonte de 15 dias, pela primeira vez, o modelo subestimou as previsões, refletido por um PBias negativo, e apresentou um MAPE de 60,3%, o que representa um erro bastamte elevado. (figura 4.8) Além disso, foi observado que, para os

horizontes de 1, 3 e 7 dias, os intervalos de previsão capturaram os valores observados, enquanto que, para o horizonte de 15 dias, poucas vezes o valor observado esteve dentro da faixa de previsão calculada. Isso sugere que o modelo enfrentou dificuldades em captar as incertezas a partir dos dados de treinamento para previsões de longo prazo, mesmo ao considerar os intervalos de previsão, o que reflete uma limitação na capacidade de generalização do modelo para horizontes mais extensos.

Figura 4.5 – Regressão Linear para o horizonte de previsão de 1 dia (fonte: o autor)

Figura 4.6 – Regressão Linear para o horizonte de previsão de 3 dias (fonte: o autor)

Figura 4.7 – Regressão Linear para o horizonte de previsão de 7 dias (fonte: o autor)

Figura 4.8 – Regressão Linear para o horizonte de previsão de 15 dias (fonte: o autor)

Continuando a análise, agora os modelos principais do trabalho, ajustados com variáveis categóricas para melhor realizar as previsões a partir da sazonalidade.

Houve uma intercalação no desempenho dos resultados. Para o horizonte de 1 dia, o LightGBM apresentou um resultado melhor em relação ao CatBoost em todas as métricas. O intervalo de previsão também foi melhor pois capturou o valor observado, coisa que o CatBoost não fez.(figuras 4.10 e 4.9)

Quando aumentou o horizonte para 3 dias, o CatBoost apresentou melhor desempenho, inclusive nos intervalos de previsão.(figura 4.11)

Figura 4.9 – CatBoost para o horizonte de previsão de 1 dia (fonte: o autor)

Figura 4.10 – LightGBM para o horizonte de previsão de 1 dia (fonte: o autor)

Figura 4.11 – CatBoost para o horizonte de previsão de 3 dias (fonte: o autor)

Figura 4.12 – LightGBM para o horizonte de previsão de 3 dias (fonte: o autor)

Figura 4.13 – CatBoost para o horizonte de previsão de 7 dias (fonte: o autor)

Figura 4.14 – LightGBM para o horizonte de previsão de 7 dias (fonte: o autor)

Figura 4.15 – CatBoost para o horizonte de previsão de 15 dias (fonte: o autor)

Figura 4.16 – LightGBM para o horizonte de previsão de 15 dias (fonte: o autor)

- 4.2 Importância das variáveis
- 4.3 Discussão dos resultados

5 CONCLUSÃO E PERSPECTIVAS

5.1 Conclusão

Resumo das principais descobertas da pesquisa

5.2 Contribuições para a área

Destacar as contribuições do estudo para a área de hidrologia (aperfeiçoamento da previsão com uso de atributos categóricos, além das variáveis contínuas; dados de chuva fazendo "ajuste fino" na previsão de vazão).

5.3 Recomendações para Trabalhos Futuros

Sugerir direções para futuras pesquisas baseadas nas descobertas e limitações do meu estudo.

REFERÊNCIAS

- 1 Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-generation hyperparameter optimization framework. In *Proceedings* of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pages 2623–2631, 2019.
- 2 Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A Next-generation Hyperparameter Optimization Framework, 2019. URL https://optuna.readthedocs.io/en/stable/index.html. Acessado em: agosto de 2024.
- 3 BBC News Brasil. Chuvas na bahia: os fenômenos extremos que causam a tragédia no estado, julho 2024. URL https://www.bbc.com/portuguese/brasil-59804297. Acessado em: julho de 2024.
- 4 CNN Brasil. Temporais causam estragos em minas gerais e deixam desabrigados e desalojados, julho 2024. URL https://www.cnnbrasil.com.br/nacional/temporais-causam-estragos-em-min as-gerais-e-deixam-desabrigados-e-desalojados/. Acessado em: julho de 2024.
- 5 MapBiomas Brasil. Plataforma mapbiomas uso e cobertura, 2024. URL https://plataforma.brasil.mapbiomas.org/cobertura. Acessado em: junho de 2024.
- 6 R.T. Clarke. Hydrological prediction in a non-stationary world. *Hydrology and Earth System Sciences*, 11(1):408–414, 2007.
- 7 Microsoft Corporation. *LightGBM Documentation*, 2024. URL https://lightgbm.readthedocs.io/en/stable/index.html. Accessed: 2024-08-17.
- 8 Wallisson Moreira de Carvalho. Hydrobr: A python package to work with brazilian hydrometeorological time series, julho 2020. URL http://doi.org/10.5281/zenodo.3931027. Version 0.1.1.
- 9 Instituto Brasileiro de Geografia e Estatística. Brasil | cidades e estados | ibge brasil |, 2024. URL https://cidades.ibge.gov.br/. Acessado em: junho de 2024.
- 10 Instituto Mineiro de Gestão das Águas. Comitê da bacia hidrográfica do rio jequitinhonha alto rio jequitinhonha, 2024. URL https://comites.igam.mg.gov.br/comites-estaduais-mg/jq1-cbh-do-alto-rio-jequitinhonha. Acessado em: junho de 2024.
- 11 Instituto Mineiro de Gestão das Águas. Comitê da bacia hidrográfica do rio araçuai, 2024. URL https:
 //comites.igam.mg.gov.br/comites-estaduais-mg/jq2-cbh-do-rio-aracuai.
 Acessado em: junho de 2024.
- 12 Instituto Mineiro de Gestão das Águas. Comitê da bacia hidrográfica do rio jequitinhonha médio e baixo rio jequitinhonha, 2024. URL https://comites.igam.mg.gov.br/comites-estaduais-mg/jq3-cbh-do-medio-e-baixo-rio-jequitinhonha.

- 13 Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363, 2018.
- 14 Joaquin Amat Rodrigo e Javier Escobar Ortiz. skforecast, 8 2024. URL https://skforecast.org/.
- 15 Empresa de Pesquisa Energética (Brasil). Balanço Energético Nacional 2023: Ano base 2022 / Brazilian Energy Balance 2023 Year 2022. Empresa de Pesquisa Energética (EPE), Rio de Janeiro, 2023. 274 p., 182 ill., 23 cm.
- 16 G1. Há 1 ano no volume morto, cantareira precisará de reserva até final de 2015, maio 2015. URL https://g1.globo.com/sao-paulo/noticia/2015/05/ha-1-ano-no-volume-morto-cantareira-precisara-de-reserva-ate-final-de-2015.html. Acessado em: julho de 2024.
- 17 G1. Temporal em petrópolis: entenda o que provocou as chuvas intensas que causaram destruição na cidade, fevereiro 2022. URL https://g1.globo.com/meio-ambiente/noticia/2022/02/15/temporal-em-petropolis-entenda-o-que-provocou-as-c huvas-intensas-que-causaram-destruicao-na-cidade.ghtml. Acessado em: julho de 2024.
- 18 G1. Entenda o que causou temporal na região sul do es e o que pode ser feito para evitar novas tragédias, março 2024. URL https://g1.globo.com/es/espirito-san to/noticia/2024/03/27/entenda-o-que-causou-temporal-na-regiao-sul-do-e s-e-o-que-pode-ser-feito-para-evitar-novas-tragedias.ghtml. Acessado em: julho de 2024.
- 19 Hoshin V. Gupta, Harald Kling, Koray K. Yilmaz, and Guillermo F. Martinez. Decomposition of the mean squared error and use performance criteria: Implications for improving hydrological modelling. *Journal of Hydrology*, 377(1-2):80–91, 2009. doi: 10.1016/j.jhydrol.2009.08.003. URL https://doi.org/10.1016/j.jhydrol.2009.08.003.
- 20 Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, 2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.
- 21 Rob J. Hyndman. Prediction intervals too narrow, 2014. URL https://robjhyndman.com/hyndsight/narrow-pi/. Acessado em: agosto de 2024.
- 22 Rob J. Hyndman and George Athanasopoulos. Forecasting: Principles and practice (3rd ed.) 5.5 distributional forecasts and prediction intervals, 2024a. URL https://otexts.com/fpp3/prediction-intervals.html. Acessado em: junho de 2024.
- 23 Rob J. Hyndman and George Athanasopoulos. Forecasting: Principles and practice (3rd ed.) 5.8 evaluating point forecast accuracy, 2024b. URL https://otexts.com/fpp3/accuracy.html. Acessado em: junho de 2024.

- 24 Rob J. Hyndman and George Athanasopoulos. Forecasting: Principles and practice (3rd ed.) 7.2 least squares estimation, 2024c. URL https://otexts.com/fpp3/least-squares.html. Acessado em: junho de 2024.
- 25 Rob J. Hyndman and George Athanasopoulos. Forecasting: Principles and practice (3rd ed.) 5.2 some simple forecasting methods, 2024d. URL https://otexts.com/fpp3/simple-methods.html. Acessado em: junho de 2024.
- 26 Rob J. Hyndman and George Athanasopoulos. Forecasting: Principles and practice (3rd ed.) 9.1 stationarity and differencing, 2024e. URL https://otexts.com/fpp3/stationarity.html. Acessado em: junho de 2024.
- 27 Instituto Mineiro de Gestão das Águas (IGAM). Instituto mineiro de gestão das Águas, 2024. URL http://www.igam.mg.gov.br/. Acessado em: agosto de 2024.
- 28 Guolin Ke, Qi Meng, Thomas Finely, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems 30 (NIP 2017), December 2017. URL https://www.microsoft.com/en-us/research/publication/lightgbm-a-highly-efficient-gradient-boosting-decision-tree/.
- 29 A. Kolling Neto, V.A. Siqueira, C.H.D.A. Gama, R.C.D.D. Paiva, F.M. Fan, W. Collischonn, R. Silveira, C.S.A. Paranhos, and C. Freitas. Advancing medium-range streamflow forecasting for large hydropower reservoirs in brazil by means of continental-scale hydrological modeling. *Water (Switzerland)*, 15(9), 2023.
- 30 David R. Legates and Gregory J. McCabe Jr. Evaluating the use of "goodness-of-fit"measures in hydrologic and hydroclimatic model validation. *Water Resources Research*, 35(1):233–241, 1999. doi: 10.1029/1998WR900018. URL https://agupubs.onlinelibrary.wiley.com/doi/10.1029/1998WR900018.
- 31 Elena Macdonald, Bruno Merz, Björn Guse, Viet D. Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn. What controls the tail behaviour of flood series: Rainfall or runoff generation?, 2023.
- 32 Wes McKinney et al. pandas: a foundational python library for data analysis and statistics. *Python for high performance and scientific computing*, 14(9):1–9, 2011.
- 33 Ingrid Petry, Fernando Mainardi Fan, Vinicius Alencar Siqueira, Walter Collishonn, Rodrigo Cauduro Dias de Paiva, Erik Quedi, Cléber Henrique de Araújo Gama, Reinaldo Silveira, Camila Freitas, and Cassia Silmara Aver Paranhos. Seasonal streamflow forecasting in south america's largest rivers. *Journal of Hydrology: Regional Studies*, 49:101487, 10 2023. ISSN 2214-5818.
- 34 Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin. Catboost: unbiased boosting with categorical features. *Advances in neural information processing systems*, 31, 2018.
- 35 Skipper Seabold and Josef Perktold. statsmodels: Econometric and statistical modeling with python, 2010.

- 36 Sistema Nacional de Informações sobre Recursos Hídricos (SNIRH). Portal de metadados snirh pesquisa por ottobacia, 2024. URL https://metadados.snirh.gov.br/geonetwork/srv/search?keyword=Ottobacia. Acessado em: abril de 2024.
- 37 Yandex. CatBoost Documentation, 2024. URL https://catboost.ai/en/docs/. Acessado em: junho de 2024.