Qanary – A Methodology for Vocabulary-driven Open Question Answering Systems

Andreas Both¹, Dennis Diefenbach², Kuldeep Singh³, Saedeeh Shekarpour⁴, Didier Cherix⁵, Christoph Lange³

¹Mercateo AG, Germany, ²Laboratoire Hubert Curien, Saint-Etienne, France, ³Fraunhofer IAIS, Sankt Augustin, Germany, ⁴University of Bonn, Bonn, Germany, ⁵FLAVIA IT-Management GmbH, Germany

2016-06-01, 13th European Semantic Web Conference

Qanary an initiative of the WDAqua project

"Answering Questions using Web Data" (WDAqua) is a Marie Skłodowska-Curie ITN

Field: Question Answering

- embedded into WDAqua project
 - "Answering Questions using Web Data" (WDAqua) is a Marie Skłodowska-Curie ITN
 - http://wdaqua.informatik.uni-bonn.de

Field: Question Answering

- embedded into WDAqua project
 - "Answering Questions using Web Data" (WDAqua) is a Marie Skłodowska-Curie ITN
 - http://wdaqua.informatik.uni-bonn.de

Observations

- state of the art not as advanced as expected
- see also QALD challenge

Field: Question Answering

- embedded into WDAqua project
 - "Answering Questions using Web Data" (WDAqua) is a Marie Skłodowska-Curie ITN
 - http://wdaqua.informatik.uni-bonn.de

Observations

- state of the art not as advanced as expected
- see also QALD challenge

Reasons: How are question answering systems created?

Field: Question Answering

- embedded into WDAqua project
 - "Answering Questions using Web Data" (WDAqua) is a Marie Skłodowska-Curie ITN
 - http://wdaqua.informatik.uni-bonn.de

Observations

- state of the art not as advanced as expected
- see also QALD challenge

Reasons: How are question answering systems created?

in general: hard and complex task

Field: Question Answering

- embedded into WDAqua project
 - "Answering Questions using Web Data" (WDAqua) is a Marie Skłodowska-Curie ITN
 - http://wdaqua.informatik.uni-bonn.de

Observations

- state of the art not as advanced as expected
- see also QALD challenge

Reasons: How are question answering systems created?

- in general: hard and complex task
- cumbersome and inefficient

Field: Question Answering

- embedded into WDAqua project
 - "Answering Questions using Web Data" (WDAqua) is a Marie Skłodowska-Curie ITN
 - http://wdaqua.informatik.uni-bonn.de

Observations

- state of the art not as advanced as expected
- see also QALD challenge

Reasons: How are question answering systems created?

- in general: hard and complex task
- cumbersome and inefficient
 - lack of methodology for creating question answering systems

Observations

- limited compatibility
- use predefined QA process
- less reusable implementations
- limited semantics

Observations

- limited compatibility
- use predefined QA process
- less reusable implementations
- limited semantics

Derived demands

- + interoperable infrastructure
- exchangeable components
- flexible granularity
- + isolation of components

Observations

- limited compatibility
- use predefined QA process
- less reusable implementations
- limited semantics

Derived demands

- + interoperable infrastructure
- exchangeable components
- flexible granularity
- + isolation of components

Goals

- 1. easy-to-build QA systems on-top of reusable components
- 2. establish an ecosystem of components for QA systems

Observations

- limited compatibility
- use predefined QA process
- less reusable implementations
- limited semantics

Derived demands

- + interoperable infrastructure
- + exchangeable components
- flexible granularity
- + isolation of components

Goals

- 1. easy-to-build QA systems on-top of reusable components
- 2. establish an ecosystem of components for QA systems
- ightarrow tackle the challenge of retrieving data from large data sets

Observations

- limited compatibility
- use predefined QA process
- less reusable implementations
- limited semantics

Derived demands

- + interoperable infrastructure
- exchangeable components
- flexible granularity
- + isolation of components

Goals

- 1. easy-to-build QA systems on-top of reusable components
- 2. establish an ecosystem of components for QA systems
- → tackle the challenge of retrieving data from large data sets
- → best-of-breed QA system and QA components

- 1. abstract knowledge representation
 - advantage: independent representation

- 1. abstract knowledge representation
 - advantage: independent representation
- 2. align the input/output of the each component
 - on a logical and sound level

- 1. abstract knowledge representation
 - advantage: independent representation
- align the input/output of the each component
 - on a logical and sound level
- $ightarrow \ \mathit{Qanary}$ methodology for creating question answering systems

Idea

Represent all the knowledge about a question

Idea

Represent all the knowledge about a question

requirements for knowledge representation

- self-describing, sound knowledge representation
- represent provenance for (all) information
- represent trust for (all) information

Idea

Represent all the knowledge about a question

requirements for knowledge representation

- self-describing, sound knowledge representation
- represent provenance for (all) information
- represent trust for (all) information
- → use RDF

Idea

Represent all the knowledge about a question

requirements for knowledge representation

- self-describing, sound knowledge representation
- represent provenance for (all) information
- represent trust for (all) information
- \rightarrow use RDF
- ightarrow "qa" vocabulary already established

K. Singh, A. Both, D. Diefenbach, and S. Shekarpour. "Towards a message-driven vocabulary for promoting the interoperability of question answering systems." In Proc. of the 10th IEEE Int. Conf. on Semantic Computing (ICSC), 2016

Web Annotation Data Model (WADM)

Web Annotation Data Model (WADM)

(W3C Working Draft 15 October 2015, http://www.w3.org/TR/annotation-model)

oa:Annotation

Web Annotation Data Model (WADM)

- oa:Annotation
- oa:hasTarget

Web Annotation Data Model (WADM)

- oa:Annotation
- oa:hasTarget
- oa:hasBody

Web Annotation Data Model (WADM)

- oa:Annotation
- oa:hasTarget
- oa:hasBody
- oa:annotatedAt

Web Annotation Data Model (WADM)

- oa:Annotation
- oa:hasTarget
- oa:hasBody
- oa:annotatedAt
- oa:annotatedBy

Web Annotation Data Model (WADM)

(W3C Working Draft 15 October 2015, http://www.w3.org/TR/annotation-model)

- oa:Annotation
- oa:hasTarget
- oa:hasBody
- oa:annotatedAt
- oa:annotatedBy

<myIRI> a oa:Annotation;

Web Annotation Data Model (WADM)

- oa:Annotation
- oa:hasTarget
- oa:hasBody
- oa:annotatedAt
- oa:annotatedBy

```
<myIRI> a oa:Annotation;
  oa:hasTarget <questionIRI>;
```


Web Annotation Data Model (WADM)

- oa:Annotation
- oa:hasTarget
- oa:hasBody
- oa:annotatedAt
- oa:annotatedBy

```
<myIRI> a oa:Annotation;
  oa:hasTarget <questionIRI> ;
  oa:hasBody <TextSelector> ;
```


Web Annotation Data Model (WADM)

- oa:Annotation
- oa:hasTarget
- oa:hasBody
- oa:annotatedAt
- oa:annotatedBy

```
<myIRI> a oa:Annotation;
oa:hasTarget <questionIRI> ;
oa:hasBody <TextSelector> ;
oa:annotatedBy <DBpediaSpotlight> ;
```


Web Annotation Data Model (WADM)

- oa:Annotation
- oa:hasTarget
- oa:hasBody
- oa:annotatedAt
- oa:annotatedBy

```
<myIRI> a oa:Annotation;
oa:hasTarget <questionIRI> ;
oa:hasBody <TextSelector> ;
oa:annotatedBy <DBpediaSpotlight> ;
oa:annotatedAt "..."^^xsd:date ;
```


Web Annotation Data Model (WADM)

(W3C Working Draft 15 October 2015, http://www.w3.org/TR/annotation-model)

- oa:Annotation
- oa:hasTarget
- oa:hasBody
- oa:annotatedAt
- oa:annotatedBy

qa vocabulary

```
<myIRI> a oa:Annotation;
  oa:hasTarget <questionIRI> ;
  oa:hasBody <TextSelector> ;
  oa:annotatedBy <DBpediaSpotlight> ;
  oa:annotatedAt "..."^^xsd:date ;
```


Web Annotation Data Model (WADM)

(W3C Working Draft 15 October 2015, http://www.w3.org/TR/annotation-model)

- oa:Annotation
- oa:hasTarget
- oa:hasBody
- oa:annotatedAt
- oa:annotatedBy

qa vocabulary

e.g., new property: qa:score

```
<myIRI> a oa:Annotation;
oa:hasTarget <questionIRI>;
oa:hasBody <TextSelector>;
oa:annotatedBy <DBpediaSpotlight>;
oa:annotatedAt "..."^^xsd:date;
qa:score "..."^^xsd:float.
```


Web Annotation Data Model (WADM)

(W3C Working Draft 15 October 2015, http://www.w3.org/TR/annotation-model)

- oa:Annotation
- oa:hasTarget
- oa:hasBody
- oa:annotatedAt
- oa:annotatedBy

qa vocabulary

- e.g., new property: qa:score
- many new Annotation classes

```
<myIRI> a oa:Annotation;
oa:hasTarget <questionIRI> ;
oa:hasBody <TextSelector> ;
oa:annotatedBy <DBpediaSpotlight> ;
oa:annotatedAt "..."^^xsd:date ;
qa:score "..."^^xsd:float.
```

```
qa:Question
   rdfs:subClassOf oa:Annotation.
qa:Answer, ...
qa:Dataset, ...
qa:AnnotationQuestion, ...
```

FROM KNOWLEDGE REPRESENTATION TO METHODOLOGY

Advantages of using an ontology

Advantages of using an ontology

agnostic to question format (text, structured, audio, ...)

Advantages of using an ontology

- agnostic to question format (text, structured, audio, ...)
- agnostic to question answering processing steps

Advantages of using an ontology

- agnostic to question format (text, structured, audio, ...)
- agnostic to question answering processing steps
- agnostic to implementation
 - programming language
 - component granularity

Methodology

- 1. abstract knowledge representation
 - o advantage: independent representation
- 2. align the input/output of the each component
 - on a logical and sound level

Methodology

- 1. abstract knowledge representation
 - advantage: independent representation
- 2. align the input/output of the each component
 - on a logical and sound level

Component data alignment: 2 options

Component data alignment: 2 options

alignment of input/output of each component with qa

Component data alignment: 2 options

alignment of input/output of each component with qa

- input represented using **qa** (RDF)
 - → input required for the component C

Component data alignment: 2 options

alignment of input/output of each component with qa

- input represented using qa (RDF)
 - → input required for the component C
- output from the component C
 - → output represented using qa (RDF)

alignment of input/output of each component with qa if component provides output using a presentation as

alignment of input/output of each component with qa if component provides output using a presentation as

... semantic data (RDF)

alignment of input/output of each component with qa if component provides output using a presentation as

- ... semantic data (RDF)
 - logical representation of alignment
 - ontology alignment (OWL, DOL)

- NER/NED
 - DBpedia Spotlight (NIF)
 P. N. Mendes, M. Jakob, A. García-Silva, and
 Ch. Bizer: "DBpedia Spotlightshedding light
 on the web of documents." In I-SEMANTICS,
 2011

alignment of input/output of each component with qa if component provides output using a presentation as

- ... semantic data (RDF)
 - logical representation of alignment
 - ontology alignment (OWL, DOL)
 - SPARQL query

- NER/NED
 - DBpedia Spotlight (NIF)
 P. N. Mendes, M. Jakob, A. García-Silva, and
 Ch. Bizer: "DBpedia Spotlight:shedding light on the web of documents." In I-SEMANTICS, 2011
- relation detection
 - PATTY

N. Nakashole, G. Weikum, and F. M. Suchanek. PATTY: "A taxonomy of relational patterns with semantic types." In EMNLP-CoNLL, 2012

alignment of input/output of each component with qa

if component provides output using a presentation as

- ... semantic data (RDF)
 - logical representation of alignment
 - ontology alignment (OWL, DOL)
 - SPARQL query
- ... non-semantic data (API, JSON, XML, CSV, ...)

NER/NED

- DBpedia Spotlight (NIF)
 P. N. Mendes, M. Jakob, A. García-Silva, and
 Ch. Bizer: "DBpedia Spotlightshedding light
 on the web of documents." In I-SEMANTICS,
 2011
- relation detection
 - PATTY
 N. Nakashala C. Wa

N. Nakashole, G. Weikum, and F. M. Suchanek. PATTY: "A taxonomy of relational patterns with semantic types." In EMNLP-CoNLL, 2012

alignment of input/output of each component with qa

if component provides output using a presentation as

- ... semantic data (RDF)
 - logical representation of alignment
 - ontology alignment (OWL, DOL)
 - SPARQL query
- ... non-semantic data (API, JSON, XML, CSV, ...)
 - SPARQL query

NER/NED

DBpedia Spotlight (NIF)
P. N. Mendes, M. Jakob, A. García-Silva, and
Ch. Bizer: "DBpedia Spotlightshedding light
on the web of documents." In I-SEMANTICS,
2011

- relation detection
 - PATTY
 N. Nakashole, G. Weikum, and F. M. Suchanek. PATTY: "A taxonomy of relational patterns with semantic types." In EMNLP-CoNLL, 2012
- query construction
 - SINA

S. Shekarpour, E. Marx, A.-C.N. Ngomo, and S. Auer. SINA: "Semantic interpretation of use queries for question answering on interlinked data." Web Semantics: Science, Services and Agents on the WWW, 2015

alignment of input/output of each component with qa

if component provides output using a presentation as

- ... semantic data (RDF)
 - logical representation of alignment
 - ontology alignment (OWL, DOL)
 - SPARQL query
- ... non-semantic data (API, JSON, XML, CSV, ...)
 - SPARQL query

Note: many options for alignment

NER/NED

DBpedia Spotlight (NIF)
P. N. Mendes, M. Jakob, A. García-Silva, and
Ch. Bizer: "DBpedia Spotlightshedding light
on the web of documents." In I-SEMANTICS,
2011

- relation detection
 - PATTY
 N. Nakashole, G. Weikum, and F. M. Suchanek. PATTY: "A taxonomy of relational patterns with semantic types." In EMNLP-CoNLL, 2012
- query construction
 - SINA

S. Shekarpour, E. Marx, A.-C.N. Ngomo, and S. Auer. SINA: "Semantic interpretation of use queries for question answering on interlinked data." Web Semantics: Science, Services and Agents on the WWW, 2015

Component

- 1. DBpedia Spotlight
- 2. PATTY
- 3. SINA query execution

Component

Process within components

- 1. DBpedia Spotlight
- 2. PATTY
- 3. SINA query execution

Component

- 1. DBpedia Spotlight
- 2. PATTY
- 3. SINA query execution

Process within components

1. retrieve data from KB

Component

- 1. DBpedia Spotlight
- PATTY
- 3. SINA query execution

Process within components

- 1. retrieve data from KB
- 2. process data

Component

- 1. DBpedia Spotlight
- PATTY
- 3. SINA query execution

Process within components

- 1. retrieve data from KB
- 2. process data
- 3. extend KB

 \rightarrow vocabulary-driven, component-oriented QA system possible

OUTLOOK: ONGOING WORK

goal: easy-to-use framework for creating QA systems

- Qanary: knowledge-driven methodology for QA systems
- build on-top of the qa vocabulary

- Qanary: knowledge-driven methodology for QA systems
- build on-top of the qa vocabulary
- agile approach for creating QA systems
 - interoperable infrastructure, exchangeable components, flexible granularity, isolation of components

- Qanary: knowledge-driven methodology for QA systems
- build on-top of the qa vocabulary
- agile approach for creating QA systems
 - interoperable infrastructure, exchangeable components, flexible granularity, isolation of components
- first step towards an ecosystem of QA components enabling best-of-breed approaches for future QA systems

- Qanary: knowledge-driven methodology for QA systems
- build on-top of the qa vocabulary
- agile approach for creating QA systems
 - interoperable infrastructure, exchangeable components, flexible granularity, isolation of components
- first step towards an ecosystem of QA components enabling best-of-breed approaches for future QA systems

Join *Qanary* at Github!
github.com/WDAqua/Qanary

Visit the *Qanary* demo!

Thursday

Visit WDAqua at the project networking session! **Wednesday**

Andreas Both contact@andreasboth.de

xing.com/profile/Andreas_Both6 linkedin.com/in/andreas-both-9426722

