SKNCOE_COMP_Unit Test 2_Sem II_21-22

swapnilbankar1010@gmail.com Switch account

Draft saved

* Required

Email *

swapnilbankar1010@gmail.com

Sinhgad Technical Education Society's Smt. Kashibai Navale College Of Engineering Pune - 41 Department of Computer Engineering

Unit Test-II(A.Y. 2021-22 Sem-II)

Class: SE Marks: 30

Your answer

30

Subject: Data Structures & Algorithms

Date: 02/05/2022

Total Questions: 30

Time: 45 Minutes

Total Marks:

1. Enter your name *

SWAPNIL BABASAHEB BANKAR

2. Enter your roll number(e.g 21U101) *
21U371
3. Enter PRN *
72148633K
4. Select your division *
O Division 1
O Division 2
Division 3
O Division 4
O Division 5
1. A graph is a set of and set of *
o variables, values
o vertices, edges
vertices, distances
ovariable, equation

!

2. What is the maximum number of possible non zero values in an adjacency	*
matrix of a simple graph with n vertices?	

- (n * (n 1))/2
- (n * (n + 1))/2
- n * (n 1)
- n * (n + 1)
- 3. Graph having every pair of vertices connected is called_____. *
- Oycle graph
- Complete graph
- O Peterson graph
- Negative graph
- 4. The operation of processing each element in the list is known as ______*
- sorting
- merging
- inserting
- traversal

5. A graph with n vertices will definitely have a parallel edge or self loop of the total number of edges are	*
o more than n	
more than n + I	
omore than (n + 1)/2	
o more than n(n - 1)/2	
 6. How many undirected graphs (not necessarily connected) can be constructed out of a given set V= {V1, V2,Vn} of n vertices? n(n-1)/2 2^n n! 2 ^(n(n-1)/2) 	*
7. Graphs are represented using* O Adjacency Tree	

- Adjacency graph
- Adjacency list
- Adjacency Queue

8. Let G be a complete undirected graph on 6 vertices. If vertices of G are * labelled, then the number of distinct cycles of length 4 in G is equal to	
15	
O 30	
O 90	
O 160	
9. Dijkstra's Algorithm is used to solve problems. *	
a) All pair shortest path	
b) Single source shortest path	
C) Network flow	
O d) Sorting	
10. Let G be an undirected graph. Consider a depth-first traversal of G, and let * T be the resulting depth-first search tree. Let u be a vertex in G and let v be the first new (unvisited) vertex visited after visiting u in the traversal. Which of the following statements is always true?	
(u, v) must be an edge in G, and u is a descendant of v in T	
(u, v) must be an edge in G, and v is a descendant of u in T	
if {u, v} is not an edge in G then u is a leaf in T	
if { u, v} is not an edge in G then u and v must have the same parent in T	

11. State True, False. (i) Network is a graph that has weights or costs associated with it. (ii) An undirected graph which contains no cycles is called forest. (iii) A graph is said to be complete if there is no edge between every pair of vertices.
(a) True, False, True
(b) True, True, False
(c) True, True
(d) False,True, True
12. Which of the following properties does a simple graph not hold? *
Must be connected
Must be unweighted
Must have no loops or multiple edges
Must have no multiple edges
13. In a graph if E=(u,v) means *
a) u is adjacent to v but v is not adjacent to u
b) e begins at u and ends at v
C) u is processor and v is successor
o both (b) and (c)

!

14. Which of the following is true? *
A graph may contain no edges and many vertices
A graph may contain many edge and no vertices
A graph may contain no edges and no vertices
A graph may contain no vertices and many edges
15. In Breadth First Search of Graph, which of the following data * structure is used?
○ Stack
Queue
C Linked List
Stack or Linked List
16. The spanning tree of connected graph with 10 vertices contains*
9 edges
O 10edges
11 edges
O 8 vertices

17. Let w be the minimum weight among all edge weights in an undirected connected graph. Let e be a specific edge of weight w. Which of the following is FALSE?	*
There is a minimum spanning tree containing e.	
O If e is not in a minimum spanning tree T, then in the cycle formed by adding e to T, all edges have the same weight.	
Every minimum spanning tree has an edge of weight w	
e is present in every minimum spanning tree.	
18. Which of the following algorithms solves the all-pair shortest path problem?	*
O Prim's algorithm	
Kruskal's algorithm	
O Dijkwa's algonlhm	
Floyd Warshall algorithm	
19. In an unweighted, undirected connected graph, the shortest path from a node S to every other node is computed most efficiently, in terms of time complexity by	*
O Dijkstra's algorithm starting from S.	
Warshall's algorithm	
Performing a DFS starting from S.	
Performing a BFS starting from S.	

20. Given an adjacency matrix A = [[0, 1, 1], [1, 0, 1], [1, 1, 0]], The total no. of ways in which every vertex can walk to itself using 2 edges is	*
O 2	
O 4	
O 8	

21. Consider the given graph. What is the weight of the minimum spanning tree * using the Prim's algorithm, starting from vertex a?

- **28**
- 27
- 34
- 38
- Other:

22. Which of the following edges form the MST of the given graph using Prim's * algorithm, starting from vertex 4.

- a) (4-3)(5-3)(2-3)(1-2)
- b) (4-3)(3-5)(5-1)(1-2)
- c) (4-3)(3-5)(5-2)(1-5)
- (a) (4-3)(3-2)(2-1)(1-5)

23. Consider the given graph. What is the weight of the minimum spanning tree * using the Kruskal's algorithm?

- O 23
- **28**
- 19
- **1**7

24. Which of the following edges form minimum spanning tree on the graph using Kruskal's algorithm?

- a) (B-E)(G-E)(E-F)(D-F)(D-G)
- b) (B-E)(G-E)(E-F)(B-G)(D-F)
- c) (B-E)(G-E)(E-F)(D-E)
- (a) (B-E)(G-E)(E-F)(D-F)

25. In the given graph, what is the minimum cost to travel from vertex 1 to vertex 3? Solve by Floyd-Warshall Algorithm

- \bigcirc 3
- \bigcirc 2
- -3
- **1**0

26. A AVL is traversed in the following order recursively: Right, root, left The output sequence will be in_____

- Ascending order
- Descending order
- Level-wise order
- O No specific order

27. A binary search tree whose left subtree and right subtree differ in height by * at most 1 unit is called
Red-Black Tree
Game Tree
AVL Tree
O Heap Tree
28. Insertion in AVL tree takes place at *
At nay place in tree
At the root node of the tree
At leaf nodes
At the intermediate levels
29. What is an AVL tree? *
tree which is balanced and is a height balanced tree
a tree which is unbalanced and is a height balanced tree
a tree with three children
a tree with atmost 3 children

30. AVL trees have faster	*
Insertion	
O Deletion	
Updation	
Retrieval	

Never submit passwords through Google Forms.

Submit

This form was created inside of Sinhgad Technical Education Society. Report Abuse

Google Forms

Clear form