

Missing values

Main objectives:

- Identifying Missingness Patterns
- Assessing Data Completeness
- Understanding Missingness Mechanisms: Different missingness mechanisms, such as missing completely at random (MCAR), missing at random (MAR), or missing not at random (MNAR), require different handling approaches.
- Evaluating Impact on Analysis
- Implementing Handling Strategies

Why look for Missing Values?

- Identify important information that was lost
- Prepare Variable for mode

How to solve?

Complete Case Analysis or Mean/Median Imputation

KNN Imputation and Interative Imputation

Outliers

"An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism." [D. Hawkins. Identification of Outliers, Chapman and Hall, 1980.]

Methods that help to identify Outliers

If the variable is Normally distributed (Gaussian)

• Outliers = mean +/- 3* std

If the variable is skewed distributed, a general approach is to calculate the quantiles and then the inter-quantile range (IQR), as follows:

•IQR = 75th quantile - 25th quantile

An outlier will sit outside the following upper and lower boundaries:

- •Upper boundary = 75th quantile + (IQR * 1.5)
- •Lower boundary = 25th quantile (IQR * 1.5)

or for extreme cases:

- •Upper boundary = 75th quantile + (IQR * 3)
- •Lower boundary = 25th quantile (IQR * 3)

Why look for Outiliers?

- Identify suspicious information
- Prepare Variable for mode

How to solve?

Trimming
or
Censoring
or
Discretization

* Considering equal width discretization

Discretization | Part 2

- Considering equal frequency discretization;
- Each "Bin" has the same N° of observations;
- Application Method: quantiles.

Example: **Titanic dataset**

• Equal width discretization

- Standardization
- MinMaxScaling
- Categorical to dummy variables
- Why is it importante?
 - The regression coefficients of linear models are directly influenced by the scale of the variable.
 - Variables with bigger magnitude / larger value range dominate over those with smaller magnitude / value range
 - Gradient descent converges faster when features are on similar scales
 - Feature scaling helps decrease the time to find support vectors for SVMs
 - Euclidean distances are sensitive to feature magnitude.
 - Some algorithms, like PCA require the features to be centered at 0.

- Standardization
- Normalization

Feature Scaling

- MinMaxScaling
- Categorical to dummy variables

Centres the variable at zero and sets the variance to 1.

$$Z - Score = \frac{x - Mean(X)}{Std(X)}$$

Efect:

- Standardization
- Normalization
- Feature Scaling
- MinMaxScaling
- Categorical to dummy variables

Centres the variable at zero and re-scale the Variable in the value range.

$$X-Scaled = \frac{x - Mean(X)}{Max(X) - Min(X)}$$

Efect:

- Standardization
- Normalization

Feature Scaling

- MinMaxScaling
- Categorical to dummy variables

Scales de Variable between 0 and 1.

$$Z - Scaled = \frac{x - Min(X)}{Max(X) - Min(X)}$$

Efect:

- Standardization
- Normalization
- MinMaxScaling
- Categorical to dummy variables

- Some machine learning algorithms cannot directly work with categorical data;
- Dummy variables are also known as **binary**, because they can assume just two values: 0 or 1.

Efect:

PANDAS GET DUMMIES CREATES DUMMY VARIABLES FROM CATEGORICAL DATA

Asynchronous Topic

- Unsupervised learning : Clustering
 - K-Means
 - Elbow and Silhouette Methods

- Learning Material:
 - Path: 2024 CDS Training > Virtual Classroom Training > Asynchronous Topics > 1. Unsupervised learning

Thank you!

Kamilla Silva