

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1949

Stress distribution in two circular cylinders intersecting at right angles under the influence of internal pressure

Harmon, Leonard Edward

Pasadena, California; California Institute of Technology

http://hdl.handle.net/10945/6549

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

GUGGENHEIM AERONAUTICAL LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

STRESS DISTRIBUTION IN TWO
CIRCULAR CYLINDERS INTERSECTING AT RIGHT
ANGLES UNDER THE INFLUENCE OF
INTERNAL PRESSURE

Thesis by

Commander Leonard E. Harmon, U. S. Navy

Library
U. S. Naval Postgraduate School
Annapolis, Md.

Thesis H28

PASADENA, CALIFORNIA

STRESS DISTRIBUTION IN TWO CIRCULAR CYLINDERS INTERSECTING AT RIGHT ANGLES UNDER THE INFLUENCE OF INTERNAL PRESSURE

Commander Leonard E. Harmon, U. S. Navy

Library
U. S. Naval Postgraduate School
Annapolis, Md.

In Partial Fulfillment of the Requirements

For the Degree of

Aeronautical Engineer

California Institute of Technology

Pasadena, California

1949

ACKNOWLEDGEMENT

The author is indebted to Dr. Ernest E. Sechler, Professor of Aeronautics, California Institute of Technology, chairman of the supervising committee, for his valuable guidance in the formulation of this thesis, and to Dr. Yuan C. Fung, Research Fellow in Aeronautics, and Dr. George W. Housner, Assistant Professor of Applied Mechanics, other members of the supervising committee for the helpful comments and suggestions offered. He is also grateful to Mr. William H. Bowen, Superintendent, Guggenheim Aeronautical Laboratory, California Institute of Technology for his able assistance and advice in the procurement and preparation of the test specimens and testing equipment.

Further indebtedness is acknowledged to Lieutenant Commander Vernon E. Teig, U. S. Navy who collaborated in conducting the experiments and in the preparation of all tables and graphs presented herein.

ABSTRACT

This investigation is an experimental study of the stress distribution in two circular cylinders intersecting at right angles and acted on by internal pressure. Two specimens of the thick-wall category were tested to rupture and a strain gage analysis was made of critical points. The specifications of the specimens tested were so chosen that this investigation would be the logical beginning of an overall study of intersecting cylinders under the influence of internal pressure.

The results of two tests are insufficient to indicate trends or establish facts as conclusive. The conclusions reached as a result of this investigation are, therefore, of such a nature as to require confirmation by subsequent continuation of this study. These conclusions are:

- l. The maximum stresses present in specimens of the type tested are in the plane of intersection and tangent to the ellipse of intersection at a point approximately fifteen degrees from the crotch.
- 2. Additional resistance to the high stresses at the plane of intersection is necessary over that required in the wall of a straight pipe.
- 3. Bending associated with the stressing of this type of intersection by the application of internal pressure is of minor importance in specimens in the thick wall range.

All the tests were made in collaboration with Lieutenant Commander Vernon E. Teig, U. S. Navy in the Structures Laboratory, Guggenheim Aeronautical Laboratory, California Institute of Technology, Pasadana, California, during the school year 1948-49.

TABLE OF CONTENTS

PARC	ŢITIZ	I AGE
I	Introduction	1
II	Equipment and Procedure	3
III	Results	6
IA	Discussion	7
V	Conclusions	12
AI	Recommendations	13
AII	Equations and Sample Calculations	14
VIII	References and Bibliography	18
IX	Tables	A-l
X	Figures	B-1

LIST OF TABLES

TABLE	TITLE	PAGE
I	Variation of Tengential and Axial Strains with	
	Variation of Internal Pressure, Position 1.	
	Test I	A-1
II	Variation of Tangential and Axial Strains with	
	Variation of Internal Pressure, Position 2,	
	Test I	A-2
III	Variation of Tangential and Axial Strains with	
	Variation of Internal Pressure, Position 3,	
	Test I	A-3
IV	Variation of Tangential and Axial Strains with	
	Variation of Internal Pressure, Position 4,	
	Test I	A-4
A	Variation of Tangential and Axial Strains with	
	Variation of Internal Pressure, Position 5,	
	Test I	A-5
VI	Variation of Tangential and Axial Strains with	
	Variation of Internal Pressure, Position 6,	
	Test I	A-6
VII	Variation of Tangential and Axial Strains with	
	Variation of Internal Pressure, Position 7,	
	Test I	A-7
VIII	Variation of Tangential and Axial Strains with	
	Variation of Internal Pressure, Position 8,	
	Test I	A-8

LIST OF TABLES (Cont'd)

TABLE	TIULI	JA:
IX	Variation of Tangential and Axial Strains with	
	Variation of Internal Pressure, Position 9,	
	Test I	A-9
X	Variation of Tangential and Axial Strains with	
	Variation of Internal Pressure, Fosition 1,	
1	Test II	A-10
KI	Variation of Tangential and Axial Strains with	
	Variation of Internal Pressure, Position 2,	
	Test II	A-11
XII	Variation of Tangential and Axial Strains with	
	Variation of Internal Pressure, Position 3,	
	Test II	A-12
XIII	Variation of Tangential and Axial Strains with	
	Variation of Internal Pressure, Position 4.	
	Test II	A-13
XIV	Variation of Tangential and Axial Strains with	
	Variation of Internal Pressure, Position 5,	
	Test II	A-14
XV	Variation of Tangential and Axial Strains with	
	Variation of Internal Pressure, Position 6.	
	Test II	A-15
XVI	Variation of Tangential and Axial Strains with	
	Variation of Internal Pressure, Position 7,	
	Test II	A-16

LIST OF TABLES (Cont'd)

TABLE	TITLE	PAGE
IIVX	Variation of Tangential and Axial Strains with	
	Variation of Internal Pressure, Position 8,	
	Test II	A-17
XVIII	Variation of Tangential and Axial Strains with	
	Variation of Internal Pressure, Position 9	
	Test II	A-18
XIX	P vs. PR Tests I and II	A-19

IIJI OF TIGURDS

FIGUL	as to part in the second into	: 21GE
1	First Specimen and Test Set up	B-1
2	Closeup View of First Specimen Showing Rupture	3-2
3	Second Specification and Test Set up	B-3
4	Closeup View of Second Specimen Showing Rupture	3-4
5	Design Details of Test Specimens	B-5
6	Assembly Details of Test Specimens	B-6
7	Location of Strain Gages, Tests I and II	B?
8	Orientation of Strain Gages, Test I	B-8
9	Orientation of Strain Gages, Test II	B-9
10	Comparison of Tangential Strains, Test I	3-10
11	Comparison of Axial Strains, Test I	B-11
12	Comparison of Tangential Strains, Test II	3-12
13	Comparison of Axial Strains, Test II	3-13
14	Lord vs. Tangential Strain, Position 1, Tests I+II	B-14
15	Load vs. Tangential Strain, Position 2, Tests I+II	3-15
16	Load vs. Tengential Strain, Position 3, Tests I+II	B-16
17	Load vs. Tangential Strain, Position 4, Tests I+II	B-17
18	Load vs. Tangential Strain, Position 5, Tests I+II	D-18
19	Load vs. Tangential Strain, Position 6, Tests I+II	B-19
20	Load vs. Tangential Strain, Position 7, Tests I+II	B-20
21	Load va. Fangential Strain, Position 8, Tests ItII	B-21
22	Load vs. Tangential Strain, Position 9, Tests I+II	3-22
23	Load vs. Axial Strain, Position 1, Tests I+II	B-23
24	Load vs. Axial Strain, Position 2, Tests I+II	B-24

LIST OF FIGURES (Cont'd)

FIGURE	TITLE	1 423
25	Load ve. Axial Strain, Position 3, Tests I+II	B-28
26	Load vs. Axial Strain, Position 4, Tests I+II	B-26
27	Load vs. Axial Strain, Position 5, Tests I+II	B-27
38	Load vs. Axial Strain, Fosition 6, Tests I+II	B-28
59	Load vs. Axial Strain, Position 7, Tests I+II	B-29
30	Load vs. Axial Strain, Position 8, Tests I+II	B-30
31	Load vs. Axial Strain, Position 9, Tests I+II	B-31
32	Principal Strain vs. Axial Position, Test I	B-32
3 3	Tangential Strain vs. Axial Position, Test I	B-33
34	Axial Strain vs. Axial Position, Test I	B-34
35	Principal Strain vs. Axial Posítion, Test I	B-38
36	Tangential Strain vs. Axial Position, Test I	B-36
37	Axial Strain vs. Axial Position, Test I	B-37
38	Principal Strain vs. Fosition on Intersection,	
	Test I	B-38
39	Tangential Strain vs. Position on Intersection,	
	Test I	B-39
40	Axial Strain vs. Position on Intersection, Test I	B-40
41	Principal Strain vs. Axial Position, Test II	B-41
42	Tangential Strain vs. Axial Fosition, Test II	B-42
43	Axial Strain vs. Axial Position, Test II	B-43
44	Principal Strain vs. Axial Position, Test II	B-44
45	Tangential Strain vs. Axial Position, Test II	B-45

LIST OF FIGURES (Cont'd)

FIGNE	TITLI	TAKT
46	Axial Strain vs. Axial Position, Test II	B-46
A ***	Principal Strain vs. Position on Intersection, Test II	B-47
48	Tangential Strain vs. Position on Intersection. Test II	B-48
49	Axial Strain vs. Position on Intersection, Test I	II B-49
50	Sketches of Breaks in Welds, Tests Itl	3-50

EXPLANATION OF SYMBOLS

```
Young's Modulus of Elasticity (assumed as 30,000,000 psi)
 E
           Strain Gage Reading
           Internal Radius of Pipe (inches)
 a and R
           External Radius of Pipe (inches)
           Strain Gage Constant (-200)
 k
           Internal Pressure (psi)
 p
           Thickness of Pipe (inches)
           Axial Strain (in/in)
6 r
           Radial Strain (in/in)
Et
           Tangential Strain (in/in)
\epsilon_1
           Principal Strain (in/in)
           Axial Stress (psi)
Sa
           Radial Stress (psi)
Or.
\sigma_{t}
           Tangential Stress (psi)
O1.2
           Principal Stresses (psi)
           Poisson's Ratio (assumed to be 0.3)
```

INTRODUCTION

This investigation represents the first phase of a thorough study of the stress distribution in two intersecting circular cylinders under internal pressure being undertaken by the California Institute of Technology. In this phase all specifications of the specimens were held constant except wall thickness. Two mild steel specimens were tested having an internal radius of 3.84 inches and wall thicknesses of 0.4 inches for the first specimen and 0.3 inches for the second.

An exact theoretical solution of this problem involves mixed boundary conditions and the attendant complexities, and therefore, has not been solved. Prior to the construction of the 20-inch supersonic wind tunnel at the Jet Propulsion Laboratory, California Institute of Technology, it had been assumed generally that for piping which is to be stressed tangentially up to a value allowed by the governing code, the safe procedure would be to furnish heavy ribs to take all bending stresses of the elliptical intersection. Analysis of the loading induced in the joints of that wind tunnel, however, indicated that axial stiffness of the pipe itself would materially aid in resisting the deformation of the elliptical intersection. This prompted the series of tests reported in Reference (a). The results of these tests were not conclusive, and the investigator recommended that a more thorough study be made. No other study of this problem could be found in the engineering publications and indexes available at the California Institute of Technology.

The tests reported herein were made in collaboration with Lieutenant Commander Vernon E. Teig, U. S. Navy in the Structures Laboratory, Guggenheim Aeronautical Laboratory, California Institute of Technology, *asadena, California during the school year 1948-49.

EQUIPMENT AND LOCETURE

The test specimens used in this investigation were made from two sections of eight-inch National Extra Strong Welded Steel Pipe, ASTM 53-47, having a yield point of 30,000 psi and an ultimate strength of 48,000 psi. These pipe sections were machined to the dimensions and uniformity shown in Figure 5. The axial dimension was made two and one half diameters to insure that the end effects would not interfere with the effects at the intersection. The sections were joined by welding so as to make ninety degree elbows. Any excess weld metal was ground down so as to approximate an integral specimen of constant wall thickness machined out of a single billet.

The pire ends were sealed with standard eight-inch welding caps containing a three-quarters inch threaded stud located on the center-line having a nut provided for attaching a restraint between the ends of the specimen. The restraint was not used in these tests, however. The studs were drilled and tapped to receive hydraulic fittings. Except for wall thickness, which was 0.4 inch for specimen I and 0.3 inch for number II, the specimens were identical in all respects.

A large can was placed under the specimens to receive the oil upon rupture and to prevent the pan walls from interfering with the hydraulic fittings connected to the pipes, the specimen was cradled in blocks at points about six and sixteen inches from the ends of the specimen.

Surface strains were measured with variable resistance wire strain gages of the Baldwin-Southwark AR-7 and A-8 types. The positions of

the active gages used in the tests are shown in Fig. 7.

Other equipment consisted of a potentiometer and Wheatstone's bridge circuit, a six-volt battery, a Blackhawk hand-operated hydraulic pump, hydraulic pressure gage and miscellaneous plumbing and electrical wiring.

The set ups of the test equipment are shown in Figures 1 and 3. The procedure followed in each test was identical. Within the elastic limit of the specimens, strain gage readings were recorded with the specimens alternately loaded and unloaded, thereby providing average zero readings for each set of load readings and indicating yielding in the specimens when the gage readings failed to return to their preload values. Above the yield point of the specimens, strain gage readings were recorded as before with the specimen alternately loaded and unloaded, but only the zero reading obtained after loading was used in computing strains. In this region of plasticity, however, at intervals, before proceeding to a higher load, strain gage readings were recorded at intermediate loads. Readings at zero load were not taken after these intermediate loads but only after a load was applied which exceeded the highest previous load on the specimen. In order to obtain good results in the region of high strains, internal pressure was held constant, until strain readings stopped increasing, before data was recorded.

The amount of opening of the legs was measured during and after the application of each load. The measurement was made with a tram

bar between two punch marks made in the top of the stude located at the ends of the specimens. It was intended to report that portion of each test which was in the elastic range with the restraint applied across the legs to prevent bending. Since the amount of opening of the legs of each specimen was so small as to be unmeasurable in the elastic range, this portion of the intended investigation was abanoned.

RESULTS

The following results were obtained from the tests made on the two specimens described in EQUIPMENT AND PROCEDURE:

- 1. Stress and strain data recorded in Tables I to XVIII.
- 2. The leads resulting in yielding and rupture of the specimens were:

Internal Pressure (psi)

	Yield	Rupture
Specimen I	1800	3350
Specimen II	1200	2950

- 3. Rupture occurred across the weld at a point about 14.7 degrees above the crotch in both specimens.
- 4. The elliptical intersection was distorted into an egg shape with the broadest part of the egg on the crotch side of the elbow.
- 5. A visible area of cold-working was evident in the vicinity of the crotch of both specimens when high values of internal pressure were applied.

DISCUSSION

The data recorded during these tests were strain gage and battery voltage readings. In addition, the distance between two punch marks at the ends of the specimens (described in EQUIPMENT AND PROCEDURE) were measured. This distance did not change until immediately before repture of the specimens.

The reduction of the strain gage readings taken within the elastic range into strains and stresses in the axial, tangential, and principal directions involved only the usual strain gage reduction equations and the classical elesticity equations for resolving stresses in a plane (see sample calculations). In the computation of stresses, a value of Young's Modulus of Elasticity equal to 30,000,000 psi and a value of Poisson's ratio of 0.3 were used.

In a uniform stress field, stresses and strains may be computed in the plasticity region from strain gage readings. This is possible because an elastic material strained beyond its elastic limit unloads and reloads along a curve parallel to the original curve of the material below the elastic limit. In a non-uniform stress field such as was present in the specimens tested, stresses can be computed only until the local yield point is reached. After any point in the specimen has yielded, all points in the specimen show strain when the applied load has been removed. For those points which have not reached their local yield point, these strains are due to residual stresses in the material set up by parts of the specimen which have taken on permanent set.

Utilizing this fact, the value of all stresses and strains can be computed from strain gage readings until the local yield point is reached. For the tests conducted, no stresses were computed after first yield of the specimens were reached since it is considered that they do not contribute to the analysis of the problem under investigation at this stage. After local yielding, the determination of stresses are impossible using elasticity equations since it is not known what part of the zero-load strain is due to permanent set and what part is due to residual stresses. Since the theory of plasticity is in a nebulous stage, computations in this range have been left for later study.

As an assistance in analyzing the stresses and strains measured and computed in this investigation, the graphs shown in Figs. 10 through 49 were prepared.

previously have been considered in general to be unreliable. The similarity of strain curves for the two specimens at the various positions investigated, and at positions on the same specimen but removed from the critical intersection (i.e. curves 1, 2, and 4 of Fig. 12), indicate that strain gage readings taken above the elastic limit can be trusted in a qualitative analysis. Since the mechanical and electrical properties of the strain gages are not known to a high degree of certainty in this range, however, the readings obtained are of unknown reliability in a quantitative analysis.

Previous discussions of the intersection of circular cylinders under internal pressure have showed concern for the bending effects present. Results of this investigation do not indicate that the bending effects are of great relative importance. In tests of both specimens, no bending deformations were visible or measurable within the elastic range and were not of measurable magnitude in the plastic range until the load was increased to very nearly the rupture point. Furthermore, it is significant that the actual rupture of both specimens apparently was caused by tangential stresses despite the fact that specimen II had a tangential defect at the weld in the vicinity of the rupture point. This defect in specimen II was a small crack between the weld and the parent metal in the vicinity of the crotch. It opened visibly during the early stages of loading but eventual rupture was at right angles to this crack.

The classical equation for the tengential stress in a thickwalled cylinder under internal pressure is:

$$G_t = \frac{pa^2}{r^2} + \frac{r^2 + b^2}{b^2 - a^2}$$

which in the case of a pipe having the dimensions of specimen II is:

$$\sigma_t = 12.3188 p$$

Thus, for the second specimen

p yield =
$$\frac{30.000}{12.3188}$$
 = 2.435 psi

p ultimate =
$$\frac{48.000}{13.3188}$$
 = 3.978 psi

The internal pressure causing yielding of specimen II was found experimentally to be 1200 psi, and of rupture to be 3350 psi.

In the case of specimen I:

- p yield (straight tube theoretical) = 3,288 psi
- p yield (intersecting tubes experimental) = 1,800 psi
- p ultimate (straight tube theoretical) = 5,261 psi
- p ultimate (intersecting tubes experimental) = 2,950 psi

The results of these tests, therefore, do not indicate "that welded pipe fittings can be designed with an ample safety factor against both excessive deformation and rupture, without the use of any ribbing and without increasing the thickness ratio of the fittings materially over that needed for plain pressure pipe", as was suggested in the conclusions of Reference (a.).

The deformation and point of rupture obtained with the "second specimen of 90 degree elbow made from seamless tubing, 4.5 inches 0.D. with 0.12 inch wall thickness", reported in Reference (a), shows close egreement with the results obtained in this investigation. Since other tests on the 90-degree elbow reported in Reference (a) showed apparent structural defects in the pipe from which the specimens were made, it is considered that the results obtained therefrom (which did not agree with the results obtained in this investigation) are unreliable, and lead to false conclusions if considered.

Since yielding occurred at a load of approximately 54 per cent of the rupture pressure in the first specimen and at approximately 41 per cent of the rupture pressure in the second specimen, it is considered that limit design would be fessible in the construction of elbows similar to those tested where small permanent deformations could be tolerated. However, fatigue limitations to the theory of limit design must not be ignored.

The specimens used in this investigation were large and contained approximately eleven gallons of oil while tests were in progress.

Large gravity effects were present, therefore, which may have had a considerable effect on stress distribution at low values of applied load. These gravity forces may cause highly undesirable bending effects when the specimen is supported by point reactions as was the case during these tests. These undesirable effects would be more in evidence in tests conducted on thinner-walled specimens, and it is recommended that for subsequent tests that a continuous support be provided.

whereas experimental results obtained with the two specimens compared favorably in most respects, no explanation for the divergence of the axial strain curves of Figs. 29 and 30 can be offered. The divergence at these positions could be foreseen while data was being taken with the second specimen but no faulty techniques or instrumental failures were discovered. It is recommended that later phases of this investigation explore further the regions concerned.

CONCLUSIONS

The results of two tests are insufficient to indicate trends or establish facts as conclusive. The conclusions reached as a result of this investigation are, therefore, of such a nature as to require confirmation by subsequent continuation of this study. These conclusions are:

- are in the plane of the intersection and tangent to the ellipse of intersection at a point approximately fifteen degrees from the crotch. It is probable that when the legs of the specimen lie in the horizontal plane that the highest stress concentration is at an angle of approximately fifteen degrees above the crotch.
- 2. For two circular cylinders intersecting at right angles and acted on by internal pressure, the area in the vicinity of the intersection requires additional resistance to the high stresses present.

 For cylinders of about 8 inches internal diameter and 0.3 to 0.4 inches wall thickness, the wall thickness in the vicinity of the intersection should be increased approximately 100 per cent.
- 3. Bending associated with the stressing of two circular cylinders intersecting at right angles by the application of internal pressure appears to be of minor importance.

RECOMMENDATIONS

It is recommended that:

- 1. In any further experimental work conducted on this problem, that strain gage rosettes be located near the weld 15 degrees above and below the crotch.
- 2. In any further experimental work conducted on this problem, that a continuous support be provided on the under side of the specimens.
- 3. In any further work conducted on this problem that an investigation be made of the apparently incongruous results obtained in these
 tests for the axial strains near the weld at the rear of the intersection.
- 4. Further investigation be made of the bending present and of the effects of bending restraints.

EQUATIONS AND SAMPLE CALCULATIONS A.REDUCTION OF STRAIN GAGE DATA

The test gage mounted on the specimen and a dummy gage mounted on identical, unstrained material are included in a Wheatstone Bridge

circuit. The opposite sides of the circuit are two precision resistances of magnitude Q.

Varied so that no current flows between points A and B. We wish to determine the relation between the voltage V.

across \overline{AB} and the unit strain, ϵ , in the test specimen.

From the circuit diagram, we determine that

$$I_1(2Q) = R$$
 $I_2(2R + \Delta R) = B$ $V = I_1Q - I_2R$

Hence

$$V = \frac{E}{2} - \frac{ER}{2R + \Delta R} = \frac{E}{4} \frac{\Delta R}{R} \left[1 + \frac{R}{2R} \right] \approx \frac{A}{4} \frac{\Delta R}{R}$$

To eliminate the ratio Δ R/R, the following relation for resistivity of a conductor is employed.

$$R = K \frac{L}{A}$$

where K is a resistivity constant, L the length of the conductor, and A its cross-sectional area. Then

Hence

$$\frac{\Delta_R}{R} = \frac{\Delta_L}{L} - \frac{\Delta_A}{A}$$

For a cylindrical conductor

$$\frac{\Delta_A}{\lambda} = 2 \frac{\Delta_T}{T} = -2 \sqrt{\frac{1}{L}} = -2 \sqrt{\epsilon}$$

r is the radius of the

Therefore

$$\frac{\Delta R}{R} = (1 + 3) \epsilon$$

is the Poisson's ratio for the strain gage material.

Substituting directly into the equation for the voltage reading

V.

$$V = \frac{3}{4} (1 + 2 \sqrt{3}) \epsilon$$

Hence

$$\epsilon = \frac{4V}{(1+2\sqrt{3})E}$$

This equation is usually employed in the form

where ξ is obtained in inches per inch times 10^{-3} .

B. COMPUTATION OF STRAINS FROM STRAIN GAGE R'S (ROSETTES)

(a)
$$\Delta \in \mathbb{R}_1 - \frac{1}{k} R_3$$

(b)
$$\Delta \epsilon_2 = 1.02 \epsilon_2 - \frac{1}{k} (R_1 + R_3)$$

(c)
$$\Delta \in_3 = R_3 - \frac{1}{k} R_1$$

where k = -200 for the rosettes used in these tests.

C. COMPUTATION OF AXIAL AND TANGENTIAL STRAINS

(a)
$$\sigma_a = \frac{E}{1-\mu^2} \left[\epsilon_a + \mu(\epsilon_t) \right]$$

(b)
$$\sigma_t = \frac{E}{1-\mu^2} \left[\epsilon_t + \mu \left(\epsilon_z \right) \right]$$

D. COMPUTATION OF PRINCIPAL STRESSES

$$\sigma_{1,2} = \frac{E}{2(1-\mu)(1+k)} \left[(R_1 + R_3) \pm \frac{(1-\mu)(1+k)}{(1+\mu)(1-k)} \cdot r \right]$$

where

$$Y = \left| \frac{R_1 + R_3 + 2R_2}{\sin 2\theta} \right|$$

$$\tan 2\theta = -\frac{R_1 + R_3 - 2R_2}{R_1 - R_3}$$

B. COMUTATION OF PRINCIPAL STRAIN

$$E_1 = \frac{1}{E} (\sigma_1 - \mu \sigma_2)$$

F. COMPUTATION OF STRAINS ABOVE ELASTIC LIMIT

Beyond the elastic limit, strains computed as above are but one component of the total strain. The other component is the strain remaining at a point with zero external load applied.

REFERENCES AND BIBLIOGRAPHY

- a. Sandberg, William A.: "Tests of Welded Pipe Fittings", Progress
 Report No. 11-2. Jet Propulsion Laboratory, California Institute
 of Technology, Pasadena, California, 6 October 1948.
- b. Omsted, Harold and Serrurier, Mark: "Stress Analysis of Southern California Cooperative Wind Tunnel", CWT Report T-22, Southern California Cooperative Wind Tunnel, Pasadena, California (no date).
- c. Sechler, E.: "Elasticity in Angineering", California Institute of Technology, Pasadena, California (classroom notes, 1949).

TABLE I

VARIATION OF TANGENTIAL AND AXIAL STRAINS WITH WARIATION OF INTERNAL PRESSURE

Gages 2.3	* 12 12 12 12 12 12 12 12 12 12 12 12 12	Jang. Larxa. Jang.	4170 .0436 .113			8930 .1080 .2386	.1298		- 10	- 1460 .7388	- 1704 .7403	- 2075 .7209	- 7222	2449 .7873	1239 .4540		2581 .7481	2861 .7438	- 2938 .8333			9139 4.1237	- 1.1340 5.510	רדוב
	-	AXIAL	2560	3550	4725	5910			7800	ı	ı	ı	ı	ı	ŧ	ı	ı	١	ı	١	ı	1	1	
	A grad	rrinc.	1	ı	t	1	ı	1	ı	ı	1	1	1	1	ı	t	1	i	ı	ı	1	ı	1	0
n A	đ	D	1	1	1	1	1	1	١	ŧ	1	1	1	ı	ŧ	ł	1	١	1	1	ı	1	ı	1
Position #1	A Pad	rring.	1	1	i	1	i	ı	ı	i	1	1	i	1	ì	ı	1	1	ı	i	1	i	1	s
	Tang.	1 aug.	.1135	.1419	.1896	.2386	.2896	.3010	.31.67	.3342	.3560	.3864	.3907	.4816	.1483	.3344	.4356	7877	.4932	.4812	.3955	.6003	.6937	7982
	+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TRIXV	.0436	.0652	.0865	.1080	.1298	.1340	.1414	.1485	.1564	9791.	.1693	.1833	.0623	.1437	.1871	.1963	.2018	.21.59	.0824	.2126	.2161	1276
	¥ 0	nreig.	1	1	1	1	1	1	0	1	1	1	1	ı	1	1	•	ŧ	1	1	1	i	1	ı
	Tong.	· Sine r	.1133																					
•	1 3	Terxv	.0430	.0645	.0856	,1068	.1284	.1325	.1398	.1468	.15%	.1627	.1674	.1809	.0616	.1420	.1850	.1941	.1993	.2135	.0804	.2096	.2146	1176
Test I	0	rream	200	750	1000	1250	1500	1,600	1700	1800	1900	2000	2050	2150	750	1700	2200	2300	2400	2500	2600	2800	3000	22.50

Pressures and stresses in 1b./so.in. Strains given in inches per inch x 103

II	n 42
TABLE	Position

Diag. Axial Tang. Axial Tang. Axial Tang. .0696 .0188 .1319 .1322 2-42 4540 1889 4530 .0188 .1319 .1052 .0244 .1909 .1909 0-39 6534 2690 6540 .0244 .1909 .1052 .0244 .1909 .1909 0-39 6534 2690 6540 .0244 .1909 .1052 .0244 .1909 .1909 0-15 9189 3707 9177 .034 .1909 .1780 .0480 .3902 .2690 0-15 9189 3707 9177 .0318 .2694 .1780 .0480 .3902 .3906 .2-10 11382 .4855 11340 .0480 .3902 .2194 .0596 .4053 .4022 .4071 .4053 .4053 .4053 .4053 .4053 .4053 .4053 .4053 .4053 .4054 .4054 .4				Posi	Position #2		,	·	į	0 8 8 8	Gages 4,5,6
0188 1319 .1322 2-42 4540 1889 4530 .0188 0244 1909 .1909 0-39 6534 2690 6540 .0244 0318 .2694 .2690 0-15 9189 3707 9177 .0318 0480 .3302 .3306 2-10 11382 4855 11340 .0480 0596 .4053 .4302 .0-47 14722 6045 14690 .0543 0554 .4603 .4601 0-47 15719 6380 15700 .0554 0604 .4810	xfal Tang.	Diage	Axfal	Tang.	Princ.	Ф	Princ.	Ax La1	Tang.	Axial	Teng
0244 1909 1909 0-39 6534 2690 6540 00244 0318 2694 2690 0-15 9189 3707 9177 0318 0480 3302 2306 2-10 11382 4855 11340 0.0480 0596 4053 4053 1-58 1364 5973 13920 0.0596 0596 4053 4302 0-47 14722 6045 14690 0.0543 0543 4303 4502 0-47 14722 6045 14690 0.0543 0604 4810	.0181 .1318	9690.	.0138	.1319	.1322	3-42	0757	1.889	4530	.0138	.1319
0318	.1908	.1052	.0244	.1909	.1909	0-39	6534	2690	6540	.0244	1509
0.0480 .3302 .3306 2-10 11.382 4855 11.340 .0480 .0596 .4053 .4058 1-58 13964 5973 13920 .0596 .0543 .4303 .4302 0-47 14722 6045 14690 .0543 .0554 .4603 .4601 0-47 15719 6380 15700 .0543 .0604 .4810 - - - - .0548 .0682 .4979 - - - .0546 .0682 .4979 - - - .0548 .0682 .4979 - - - .0548 .0693 .2411 - - - .0548 .0634 .5300 - - - .0107 .0550 .4403 - - - .0107 .0741 .4522 - - - .0107 .0967 .6445 - - - - .0107 .1209 .6688 <td< td=""><td></td><td>.1489</td><td>.0318</td><td>.2694</td><td>.2690</td><td>0-15</td><td>91.89</td><td>3707</td><td>7776</td><td>.0318</td><td>7696</td></td<>		.1489	.0318	.2694	.2690	0-15	91.89	3707	7776	.0318	7696
0596 .4053 .4058 1-58 13964 5973 13920 .0596 0543 .4303 .4302 0-47 14722 6045 14690 .0543 0554 .4603 .4601 0-47 15719 6380 15700 .0554 0682 .4979 0548 0670 .5214 0548 0670 .5214 0548 0717 .5322 0572 0634 .5300 0234 0721 .5646 0234 0731 .5645 0234 0731 .5645 0234 0741 .4522 02362 0781 .5415 0362 0781 .5415 0362 0782 .5837 0362 0783 .1378 .8358 0780 .	.3300	.1780	.0480	.3302	.3306	2-10	11382	4.855	11,340	0870°	. 3302
0543	.4050	.2194	9650	.4053	8,0%	1-58	13964	5973	13920	.0596	.4053
.0554	0067.	.2360	.0543	.4303	04302	27-0	14722	60.45	1,4690	°0543	.4303
.0604 .4810	0097	.2510	.0554	.4603	.4601	27-0	15719	6380	15700	°0554	609770
0682 .4979	.4807	.2619	7090	.4810	1	8	1	1	1	.0546	7667°
0670 5214	.4976	.2736	.0682	62.67	1	1	1	1	1	.0512	.5335
0717 5322 - 0191 0634 5300 - 0191 0209 2411 - 0234 0550 4403 - 0107 0721 5646 - 01088 1 0721 5415 - 0171 2 0906 5587 - 0362 2 0987 6445 - 0780 3 1209 6688 - 0781 1209 6688 - 0781 1209 6688 - 0781 1209 6688 - 0781	. 5211	,2866	0.0670	. 5214	1	1	1	1	ı	8770°	6209
0634 5300 - 0191 0209 2411 0234 0550 4403 - 0107 0721 5646 0107 0722 - 0107 07362 2 07362 2 07362 2 07363 0107 07363 0107 07362 2 07362 2 07362 2 07362 2 07362 2 07362 2 07363 0107 07362 2 07362 2 0736	. 5319	.2935	.0717	. 5322	1	1	1	•	1	.0379	.6365
. 0209 . 2411 0234	. 5297	.2921	.0634	.5300	1	t	1	1	1	1610.	.8161
.0550 .4403	.2410	.1035	.0209	.2411	ı	1	1	ł	1	0234	.5272
.0721 .5646	0077	.2409	.0550	.4403	1	i	1	ı	8	.0107	.7264
.0741 .4522	. 5643	.3106	.0721	.5646	ì	1	ı	1		.0302	8649
.0781 .5415	.4518	.2357	.0741	.4522	1	1	1	ı	ı	.0188	1.5388
.0906 .5587	.5411	.2932	.0781	.5415	1	1	1	1	1	L10.	2,1654
.0987 .6445	. 5583	3058	9060	.5587	ı	ı	1	1	1	.0362	2.7001
.1209 .6688		3646	.0987	.6445	1	1	1	١	ı	0780	3.8779
.1378 .83581406 .9520		.3796	.1209	.6688	1	1,	1	1	1	2543	5.5926
.1406		.4486	.1378	.8358	ı	1	ı	i	2	/013	7.8630
		.5011	.1406	.9520	1	ı	1	1	1	0.164	9.4319

Pressures and atresses in 1b./sq.in. Strains given in inches per inch z 103

TABLE III

Gages 7.8.9	- E -> Tang.		0		o	o		0					5 5.3378					· ·				1	ı
Gages	Arfal	-0.0119	0155	- 0145	0253	0343	0370	0458	2812	43%	7452	7604	-1.0346	0066.	-1.0258	-1.0363	-1.3724	-1.8190	-2.2653	-2.9376	1	1	1
	Tang.	5025	7595	10690	13200	16050	17500	18700			1	1	ŧ	1	1	•	8	1	t	1	1	ł	1
	Artal	1151	1813	2760	3200	37775	4135	4235	1	1	1	1	ı	1	i	ı	1	D	1	ı		1	1
	Princ	1705				16118	17561	18760	1	1	1	1	ı	9	1	1	ŧ	1	8	1	1	i	ŧ
	Φ	86-59	85-54	86-06	87-17	85-28	85-57	86-01	1	1	1	i	1	1	ŧ	í	ŧ	1	£	1	1	•	1
Position #3	Princ	.1566	.2362	3289	.4117	.5002	.5/16	.5836	1	1	ı	1	ŧ	1	1	ı	ŧ	1	t	t	0	1	1
Posit	Tang.	0.1561		0.3272	0.4079	0.4968	0.5418	0.5808	•			•		.2484				· 9980	1.0536	1.1333	t	ŧ	1
	Axial	-0.0119	-0.0155	0145	0253	-0.0343	-0.0370	-0.0458	0390	+ .0019	0605	0567	0190	7910	0522	9780	0285	0435	0608	0832	1	ı	8
	Diag.		0.0910										.2941									.6350	DI
,	Tang.	0.1562	0.2350	0.3273	0.4080	0.4970	0.5420	0.5810	0.6126	0.5102	0.72%	0.6597	0.7677	0.2486	0.6031	0.8357	0.9655	0.9982	1.0539	1.1337	CJ FE	02	O
	Axtal	-0.0127	-0.0167	-0.0161	-0.0273	-0.0368	0397	0487	0421	0007	1790	0090	- 06/8	0176	0552	- 0888	0333	0485	0661	6880 -	1780	1180	1311
Test I	Press.	500	750	1000	1250	1500	1600	1700	1800	1980	2000	2050	2150	750	1700	2200	2300	2400	2500	2600	2800	3000	3250

Pressures and stresses in 1b./sq.in. Strains given in inches per inch \times 10 3

TABLE IV

10,11,12	Tang.	.1584	27.86	35.65	9687.	. 5228	.5528	.5833	.6169	·77.43	8531	1.3555	0.9547	1.2396	1.3850	2.0265	2.76%	3.3265	3.92%	5.2937	6.9961	8.6785
Cages 1	Axial	.0377	.0576	1016	.1174	.1528	.1577	.1562	.1532	.1.345	.1422	.1570	.0302	9711.	.1725	-4297	.7248	.9061	1.0969	1.5359	2.1318	2.6431
Position 44	Tang.	5,590	7,840	14,120	17,280	18.70	19,780	1	ı	1	ŧ				1	1	1	1	1	1	t	t
	Ax181	2805	27.75	22%	8720	1018	10650	1	ì	1	0	ı		8	•	1	9	1	1	1	ı	ı
	Princ.	597.6	-		18136	1.9632	20655	1	1	1	8	ŧ	1			1		1	1	1	1	ŧ
	Φ	-17-51	-20-22	-16-40	-16-34	-17-04	-16-28	1	1	1	1	ı	•		1	0	1	1	i	1	i	ŧ
	Princ.	.1723	.3533	4754.	. 5257	.5611	. 5905	ŧ	1			t	i	1	ŧ	ŧ	ł		1	1		1
	Teng.	.1584	3274	3985	.4896	. 5228	.5528	. 5848	8709	.61.72	.6142	62.98	.2290	.51.39	.6554	.5781	.6083	.6322	.7053	.7221	·7746	.8573
	Axtal	.0377	.0576	.1016	.1174	.1528	.1577	.1458	.1625	.1681	.1769	.1924	.0661	.1507	.1977	.1850	.21.95	.2501	-2702	.2967	.3307	.3673
	Diag.	.1411	2862	.3467	0727	.4620	0.4820	.5168	.5370	.5539	.5646	. 587B	.2057	.4655	- 5990 -	. 5305	.571A	.6210	.6368	.6524	.6833	.6837
	Teng.	.1582	.3270	.3977	0687	• 5220	0.5520	. 5841	07/09	·6164	.61.33	.6289	22287	.51.32	.6584	.5TT2	.6072	.6392	.7040	.7206	.7730	.8555
	Axtel	.0369	0565	9660*	.1150	-1505	0.1549	.1429	.1595	.1650	.1738	.1893	.0650	1481	.1944	.1821	.2165	.2469	.2667	.2931	. 3268	.3630
Test I	Presse	200	1000 1000	1250	1500	1,600	1700	1800	1900	2000	2050	21.50	750	1700	2200	2300	2400	2500	2600	2800	3000	3250

Pressures and stresses in 10./sq.in. Strains given in inches per inch x 103

	15	4	l Tang.									7 .4711			76597		1 .5298	9 .6762	pj	-		3 1.8820	4 2,4601		
	Oages 13,14,15	Y	Axtal	0.2210	.3356	.450	.5473	8699	.721.6	.7576°	.8933	1,1027	1.3280	1.4455	1.8839	1.2546	1.670]	1.9229	2.9586	3.625	4.2130	5,0013	. 6.81.6L	8.9184	10:7605
	Oage		Tang.	6420	9758	13158	15892	19350	20880	21917	t		i	ı	ŧ	ı	ŧ	ı	ŧ	8	1	ì	1	8	1
		0	Axfal	8474	12816	17306	21076	25634	27748	29381	t	8	ı	i	ŧ	å	ŧ	8	8	ì	8	1	i	1	ı
		Y	Princ.						28979	30596	0	ı	1	i	ŧ	ı	ŧ	ı	1	ŧ	1		ı	ŧ	t
			Φ	66-45	67-01	66-31	66-16	66-43	66-19	65-32	ŧ	t	1	•	1	ł	1	ŧ	ı	ŧ	ı	1	ŧ	1	1
N E	on #5	1	Princ.	.2344	.3555	.4783	. 5834	.77.20	7694	.8128	ı	1	ı	ŧ	í	1	i,	ŧ	1	i	ı	1	1	ŧ	1
TABLE	Position #5	- A E-	Tang.	0.1293	0.1970	0.2655	.3190	.3887	.4185	.4343	.4560	.4892	.5115	. 5249	.5486	.1811	.4187	.5404	.5700	.5615	.7058	.6229	.6829	.77770	.9095
		+	Axial	0.2210	0.33%	.4503	.5473	0.6698	0.7216	0.7576	.8016	8504	.8983	.9092	.9502	.3209	.7364	.9509	.9920	1.0307	1.0391	1.0980	1.0884	1.1180	1.1956
		1000	to Weld	0.2170	0.3286	0.4440	0.5420	0.6590	0.77.40	0.7580	0.7959	0.8498	0.8907	0.9001	0.9376	0,3096	0.7269	0.9381	1,0095	1.0292	1.0229	1.0510	1.0585	1.0629	1.0636
		A A	Weld	0.1288	0.1955	0.2633	0.3163	0.3854	0.4150	0.4330	0.4558	0.4849	0.5068	0.5203	0.5438	0.1795	0.4150	0.5356	0.5649	0.5841	0.5920	0.6175	0.6775	0.7703	0.9040
		1	Axial	0.2150	0.3265	0.4380	0.5324	0.6515	0.7020	0.7370	0.7797	0.8272	0.8738	0.8844	0.9243	0.3123	0.7164	0.9250	0.9648	1,0026	1,0108	1.0683	1.0585	1.0871	1.1626
	Test I		en e	200	750	1000	1250	1500	1600	1700	1800	1900	2000	2050	21.50	750	1700	2200	2300	2400	2500	2600	2800	3000	3250

Pressures and stresses in 1b./sq.in. Strains given in inches per inch x 103

TABLE VI

9,7
do
45
ං <u>ෆ්</u>
0

Test I

Gages 16,17,18

Tang.	204.5	7506.	.4169	6205	.6234	.6720	6504	. 6983	.8339	1.0209	.8756	1.8557	1.2267	1.7328	1.90%	3.8451	5.27.42	6.2563	7.4738	1678.6	12.0549	1
Axial	1600-	0112	0120	0101	0095	0059	0126	.0332	.0883	.2527	.2884	.6063	. 5835	.6050	. 5930	1.3146	1.8874	2.2353	2.5718	2.9724	2.7935	1
Tang.	6650	9950	13640	16690	20470	22100	23270	t	ŧ	ı	i	ı	P	1	ŧ	1	ı	ŧ	t	ì	ą	1
Axiel	1725	2650	3730	7200	5850	6450	0.199	0	١	t	ı	1	ı	1	i	1	ı	1	1	ı	1	1
Prince	01.69		1,4655			23780	25042	1	1	ı	1	ı	1	ı	ı	1	1	ł	1	1	1	1
Φ	13-28	16-47	17-04	17-03	17-14	17-20	17-11	ı	ı	ı	ı	ì	1	ı	ı	ŧ	ı	1	1	1	1	1
Princ.	.2180		.4615			.7450	.7362	1	1	1	1	1	1	1	1	1	1	1	1	ı	1	ı
Tang.	.2045	.3054	.4169	. 5089	.6234	·672C	.7099	7494	.8001	.8535	8551	.9247	.2957	.8018	6976	1.0083	1.1058	1.1748	1.2382	1.3153	1.3167	ł
A C C C C C C C C C C	1600	0112	0120	0101	0095	0059	0126	0039	0033	0000	9600	.0306	.0078	.0293	.0442	.0682	.1246	.1733	.2333	.3214	.3900	.3106
Dieg	.0429	.0408	0.0554	0.0717	.0273	0.0959	0.0987	C.1074	0.1144	0.1308	0.1434	0.1562	7,200	.1281	1609	.1958	.2224	.2418	.2678	3051	.3416	.3779
Pang.	,2050	. 3055	0.4170	0.50%	.6235	0.6720	0.77.00	C.7495	C. 8001	0.8535	C.8551	0.9246	.2957	8017	1976.	1.0085	1.1052	1.1740	1.2371	1.3137	1.31/8	O ZZ
Tarxy	0101	01.27	01/1	0126	0126	0093	0162	0126	0073	.0056	.0053	.0260	.0063	.0253	.0395	.0632	1211.	.1674	.22TI	.3148	.3834	.3106
Presson.	200	750	0001	12.50	1.500	1688	1700	1800	1900	2000	2050	27.50	750	1700	2200	2300	2400	2500	2600	2800	3000	3250

Pressures and atresses in 1b./sq.in. Streins given in inches per inch x 103

-		٦.
4	_	4
1	-	3
1	1	1
1	۰.	Į
1	1	1
4	7	A W
1		

=	†	Tang.	0381	9090-	0809	1029	1386	142	1438	1899	2175	3066	3159	4078	3087	3048	4109	5308	6319	7219	8354	-1.0814	-1-3375	-1.4149
19,20,21	+	Axtal	.0716	.1069	.1372	.1772	.2328	.2437	.2534	.3051	.3469	.4062	.4235	.4603	.2502	.3939	9027	1097	.4598	.4973	.5333	.6613	.7355	•
Gages	†	Tang.	-399	-770	-931	-1339	-1917	-1957	-1881	1	1	ı	ł	1	1	t	1	ı	ł	1	ť	1	ŧ	t
	10-	Axtal	2479	3518	4983	5827	4469	1967	8113	t	1	1	ı	1	1	1	ı	1	ı	1	1	ŧ	i	1
	1	Princ.			5 5594	6779			_	1	1	1	1	1	1	ŧ	ı	ŧ	ı	1	t	1	1	ŧ
		Φ	63-06	-63-55	-62-06	20-10	-6-4	6430	-64-30	ŧ	ŧ	ı	•	•	1	1	ı	1	ŧ	ŧ	١	١	1	t
lon #7	†	Princ.	.1015	.1451	-2019	-2488	.3206	.3368	.3508	1	1	ı	1	1	ı	ı	•	1	í	t	1	1	1	1
Position #	- 96 -	Tang.	0381	0608	0809	1029	1386	1442	1438	1492	1525	1633	1500	1614	0623	0584	1622	1520	1595	1578	1523	1435	1344	0991
	↓ .	Axial	·0776	.1069	.1372	.1772	.2328	.2437	.2534	.2608	.2753	.2817	.3010.	.3135	.1034	.2471	.3249	.3197	.3304	.33%6	.3462	.3572	.3722	.4397
	Normal	to weld	9980.	.1253	.1759	.2082	.2633	.2780	.2900	.3186	-3344	.3544	.3635	.3728	1220	.2942	.3826	.3890	.4048	.4109	.4311	.4686	.5138	.5800
	Along		0385	0615	081B	1040	-134	1400	1452	1508	1542	1650	1581	1632	0599	0599	1641	1560	1614	1598	1544	1458	1373	1021
	+	Axfal	.0700	.1045	.1340	.1732	.2276	.2382	.2477	.2549	.2690	.2753	.2941	3064	.1011	.2411	.3175	.3123	.3228	. 3268	.3380	.3486	.3630	.4287
Test I		Press.	200	750	1000	1250	1500	1600	1700	1800	1900	2000	2050	2150	750	1700	2200	2300	2400	2500	2600	2800	3000	3250

Pressures and stresses in 10./sq.in. Strains given in inches per inch x 103

-.4651 -.2100 -. 3382 -.8523 -1263 -.2280 -.2680 -1.21.50 -1.7719 -. 3850 -.1784 -.294 -.330. -.2959 Axial Tang. Gages 22&23 2665 22.48 45.84 72.45 72.45 9385 9058 4200 8100 0419 0218 2329 .0118 .3098 fang. -1965 -2832 -4148 -5407 -6574 -6574 -415 -686 -1190 -1266 -916 -916 Prince -415 -1266 -1266 -916 -916 Princ. 0054 0018 0018 0218 0352 Position #8 0613 1263 1263 11675 11675 11675 11675 12425 12425 12425 12636 12636 .0325 -.2606 -. 3248 -. 3318 - 3092 -.2891 -.2000 Tang. 0118 0218 0219 0417 0417 0417 0597 0598 0003 0003 0008 Axtal 1060 00.58 00.54 00.018 1400 Dieg. -.3318 Tang. -.2425 -,2280 -, 3029 -, 3248 -. 3549 -.0875 -.1263 -.1956 -.2100 •-2563 -.2696 -.2696 - 2891 -. 3259 -.1675 -.0825 -,2606 -.2942 - 20CC 0474 0597 0640 0789 0789 0903 1060 1161 1161 0058 0218 0218 0352 0419 0417 Axial Test I Press. 3500 2800 3000

Fressures and streames in 10./sq.in. Streins given in inches per inch x 100

Test I					Post	Position #9					Gages 1-24	1-24
	+	8	1	+	- 46-	^		1	101	+	+	A
Press.	Axlel	Tang.	Dieg.	Artal	Tang.	Princ.	Φ	Princ.	Axial	Tang.	Axtal	Tang.
200	0.0468	0.2245	ı	0.0468	0.2245	0.2245	060	7860	3762	7860	8970	.2245
750			1	0.0646	0.3290	0.3290	060	11500	5385	11500	9790.	.3290
0001			ı	50	0,4560	0.4560	060	15600	6440	15600	.0585	.4560
1250			1		0.5720	0.5720	88	20000	9535	20000	1178	.5720
1500			ı	Q	0.6980	0.6980	060	24300	11320	24300	.1340	0869
1600			1		0.7580	0.7580	88	26200	11560	26200	-1235	.7580
1700	0.1310	0.8120	1	310	0.8120	0.8120	060	28050	12350	28050	.1310	.8120
1800			1		0.8602	1	1	1	ı	1	.1246	1.0058
1900			1		0.9786	1	1		1	1	.1843	2.0139
2000			ı		1.0962	ł	1	ı	ŧ	1	.2643	3.7938
2050			1		1.1037	ł	1	1	1	1	.3632	4.1425
27.50			1	.1140	1.1809	1	1	1	1	1	.5995	6.6369
750			1	.0346	.3310	1	1	1	ı	1	.5201	5.7870
1700	8560	.8170	•	8560.	.8170	1	ı	1	1		.5813	6.2730
2200	.1198	1.0619	1	.1198	1.0619	1	1	1	1	1	.5911	6.3979
2300	.0827	NG	1	.0827	1	1	1	1	1	1	.9537	8
2400	.1373	C	1	.1373	t	1	1	1	ì	ı	1.1481	1
2500	1609	NG	t	.1609	1	•	1	ı	1	1	1.1530	1
2600	.1669	MG	1	.1669	1	i	1	1	t	1	1.0149	8
2800	.1644	S S	1	.1644	1	ŀ	1	1	ı	1	.4478	1
2000	,1006	MC	1	.1006	1	1	ı	1	1	ı	2094	1
3250	.0175	NG	1	.0175	1	ı	i	1	1	ı	6431	1.
	9	•	1 26	40		Acres 1 to 1 to	op do	were down	1 300			

Pressures and stresses in 1b./sq.in. Strains given in inches per inch x 10°

TABLE NO.X

VARIATION OF TANGENTIAL AND AXIAL STRAINS WITH VARIATION OF INTERNAL PRESSURE

Test II					0.	Position #1					Oages	200
		8	1	+	— <u>A</u> E —	†	,	+		•	-	1
Press.	Axial	Tang.	Diage	Axial	Tang.	Princ.	Φ	Princ.	Axial	Tang.	Artel	Tang.
400	0090	.1385	ı	0.0670	.1388	1	1	•	3580	5239	0730.	.1388
009	.081.5	.1970	1	.0825	.1974	f	1	1	4672	7326	.0825	1977
800	.11/2	.2680	1	.1155	.2686	i	ŧ	1	6465	9666	.1155	,2686
1000	.1376	.3298	1	.1392	.3305	1	1	1	7860	12275	.1392	.3305
1100	.1535	.3677	ŧ	.1553	.3685	1		1	8767	13686	.1553	3685
1200	.1657	.4020	1	.1677	.4028	1	1	1	ŧ	ŧ	°1795	.3331
1250	1724	.4182	1	.1745	.4191	i	i	t	1	8	.1905	3906
1300	.1848	.4316	ŧ	.1870	.4325	1	1	t	1	1	.2070	.3978
200	.0705	.1632	1	.0713	.1636	•	1	t	1	ŧ	.0913	.1289
006	.1254	.3019	1	.1269	.3025	1	ì	ŧ	1	ı	.1769	.2678
1400	.1940	4627	•	1967	4804	1	1	1	ŧ	i	.2531	3806
1600	.2226	.5814	1	,2255	. 5825	ı	\$	1	i	1	.3474	.3389
009	6980	717.	1	.0880	.2175	1	1	1	1	t	.2099	0261
1200	.1718	.4421	1	.1740	.4430	ţ	1	1	1	ı	.2959	.1994
1800	.1989	.6038	0	.2019	8709.	1	•	1	ł	1	7279	1.7911
2000	.2622	.8185	1	.2663	.8198	ı	1	t	1	ı	1.1349	4.1168
2200	,2623	8706.	\$.2668	1606.	1	1	1	1	1	1.4475	6.6002
2400	.2727	1.0532	1	.2780	1.0546	1	1	1	1	1	1.7004	9.4359
2600	.2848	1.1135	1	.2904	1.1149	i	1	1	•	1	1.8471	12.5249
2800	. 2852	足	i	1	ŧ	1	1	1	i	1	1	1

Pressures and stresses in lb./sq.in. Strains given in inches per inch x 103

Test II						Post	Position #2	01			8	Gages 4.5.6
	1	- R	^		-90-	^	,	+	6	4	+	†
reas.	Artal	Tang.	Diag.	Axtal	Tang.	Princ.	Φ	Princ.	Artal	Tang.	Axtal	Tang.
700	.0112	.1296	.0739	.0118	.1297	.1296	-1-28	1077	1672	4392	.0118	1297
9	.0172	.1824	.1164	.0181	.1825	.1841	-5-47	6234	2404	6195	.0181	.1825
800	.0228	.2475	.1564	.0240	.2476	.2497	-5-21	8450	3241	8401	.0220	.2476
000	.0284	.3047	.1918	.0299	3048	3070	-5-11	10397	3899	10346	.0299	3048
100	.0307	.3374	.2152	.0324	.3376	3408	-5-45	11524	8077	11450	.0324	.3376
200	.0358	37708	.2357	.0377	3770	i	t	i	i		.0247	.3668
250	.0375	.3804	.2408	•0394	.3806	1	1	1	ı	•	.0246	.3797
300	.0375	*3944	.2456	.0395	3946	1	1	1	1	1	.0216	.3968
200	.0140	.1506	.0941	.0148	.1507	ł	1	•	1	1	0031	.1529
900	.0253	.2773	.1742	.0267	.2T74	1	1	1	ì	1	.0088	.2796
700	.0392	.4182	.2618	.0413	4184	1	0	1	•	8	.0087	.4508
009	.0443	9087	.3925	1970	4808	1	8	1	ı	•	01.48	9009
0009	9910.	1751.	.1109	.0175	.1752	1	1	1	ı	ı	0440	.2950
200	.0296	.3525	.2184	-0314	.3526	ı	1	1	t	1	0301	4274
800	.0653	.5121	.3289	6290	.5124	1	1	•	1	8	0584	.7023
000	7620.	.6330	6807°	.0826	.6334	i	1	ı	1	1	2413	4.3461.
200	.1129	.7303	8567	.1166	.7309	1		1	ı	ı	5001	6.8078
2007	.1365	.8720	.5836	.1409	.8727	1	t	1	ł	· •	6110	9.2633
000	.1419	.9022	.6138	.1464	.9029	ŧ	ı	1	1	t	6156	11.1987
008	.1772	.9618	.6995	.1820	.9627	1	ı	1	ı	1	5345	12.4117

TABLE XI

TABLE XII	Position #3
	LI C

Y			1		Position #3	#3				Gages 7.2,9	5
	Tang.	Diago	Axial	Teng.	Princ.	Φ	Princ.	Axial	Tang	Axial	Pang.
0145	.1962	.0762	0135	.1961	.1972 +86-02	6-02	6356	1671	6334	0135	.1561
	.2798	.1.095	0197	.2797	·2811+8	+86-14	9058	2117	5027	019	.2757
	. 3848	.1515	0265	.3847	.3863 +86-19		12459	2931	1.2420	0265	.3847
	.4796	.1862	0362	4624	.4819+86-13		15504	35/8	154,46	0362	.479%
	. 5384	.2080	0419	.5382	.5410+RK=12		17394	3943	1733	0419	.5382
	.6036	.2287	044.5	.6034	1	1	ı	1	1	1597	8508
	.6186	.2355	0514	.6183	ı	1	1	ŧ	ı	2109	1,0195
	.6543	.2466	0555	.6540	•	ţ	1		ı	31.37	1,3860
	.2354	8760.	0174	.2353	1	1	1	1	,	2756	.9673
	.4492	1706	0364	.1490	i	1	1	1	ŧ	2946	1.1810
	.7153	.2831	0616	.7150	ı	ı	1	ı	ı	8225	3.1558
1002	7866	.3850	0952	.9979	1	ı	1	1	1	-2.0917	8.4310
	.3196	.1352	0287	.3194	1	1	1	8		-2.0252	7.7525
0583	.6458	.2583	0551	.6455	i	i	ı	1	1	-2.0516	8.0786
	OZ	.4931	1	1	ı	1	ı	ı	1	1	1
	DM	.3516	1	1	ı	1	1	t	ı	1	1
	NO	.7002	ı	1	1	1	1	ı	1	1	ı
	O	.8117	ı	1	t	ŧ	i	ı	ğ	ı	1
	NO	OZ	1	1	ě	1	ı	1	ı	1	t
	OH	ON	i	ı	1	ì	1	1	1	ı	1
								7			

Pressures and stresses in 1b./sq.in. Strains given in inches per inch x 103

H
1-
\vdash
×
闽
\vdash
m
4
5

Position #4

Test II

Gages 10,11,12

		0	•	10	m	10	m	2	10	~	*	30	~	~	~	3 C	<t< th=""><th></th><th></th><th>~</th><th>-1</th></t<>			~	-1
1	у, впв.	.1819	.258	.351	431	. 478	.514	. 521	. 528	.193	.370	.5115	.541	.170	707	2.430	4-816	1.036	9.9191	13.2397	18,8651
+	axlal	.0375	0850	.0747	9760	.1047	.1022	.1017	8660.	.0185	.0595	.0795	0536	1833	1095	.6633	7-6984	2.5154	3-5395	4.8255	6.9492
†	. Tang.	9969	9110	12327	15156	16811	1	8	1		ı	•	ŧ	ı	•	1	1	1 -		1	ŧ
10	Axial	3036	7/7/7	5938	7385	8186	t	1	1		ı	ı	1	1	ŧ	1	1	ŧ	1	t	ŧ.
+	Princ.	6873	9844	13273	16418	18124	1	ł	1	ı	1	ı	ı	1	1	ŧ	1	1	1	ŧ	1
	Φ	-19-57	-20-18	-19-46	-20-30	19-58	ı	1	1	1	1	1	1	1	1	1	1	1	1	ŧ	i
1	Princ.	.2038	2907	3925	7860	.5354	ş	1	ŧ.		1		ł	ı	1	t	1	ı	1	ı	ı
- 46-	Tang.	.1819	.2589	.3515	.4313	.4785	. 5232	.5351	.5476	.2127	.3894	. 5826	.6117	.2407	-4747	.6725	.7119	.8025	.9380	1.0254	1,0114
+	Axial	.0375	.0580	.0747	9760	.1047	.1188	.1239	.1286	.0473	.0883	.1433	.1958	.0661	.1399	.2313	.3218	3832	.4377	8567	.5128
^	Diag.	.1698	.2441	.3267	.4087	.4473	1,847	6667	.5117	.1975	.3411	.5403	5701	.2171	.4328	.5814	.5727	. 5930	.674,2	6069	.7735
- R	Teng.	.1817	.2586	.3511	.4308	.4780	. 5226	.5345	.5470	.2125	.3890	. 5819	.6107	.2404	.4740	.6Th	.7103	8006	.9358	1.0230	1.0089
+	Axlel	.0366	.0567	.0729	.0924	.1023	.1162	.1212	.1259	.0462	7980	.1404	1927	6790	.1375	.2279	.3182	3792	.4330	.4897	.5078
	Press.	700	009	800	1000	1100	1200	1250	1300	200	000	1400	1600	009	1200	1800	2000	2200	2400	2600	2800

Pressures and stresses in 1b./sq.in. Strains given in inches por inche 10

Property.
H
×
चि
\rightarrow
13
4
\leftarrow

13,14,15	1	Tang.	.1345	.1942	.2609	.3226	.3494	3298	.3201	. 3248	.0848	.2164	.3315	.5085	,2197	.3911	6688	1.0764	1.6676	2.81.94	4.8068	1
Gages 1	+	Axfal	. 2632	.3738	. 5045	.6308	.6926	.9014	.9568	1.0488	.5571	8114	1.4479	3.0029	2.3958	2.7163	4.7072	6.2507	8.7857	11.6937	14.6300	ı
	1	Tang.	7039	10099	13594	16874	18371		ŧ	1	ı		1	1		•	ı	t	ı	í	1	1
	6	Axial	10010	14246	19215	23989	26290	1	1	1	1	0	1	t	1	1	1	ı	1	1	1	1
	+	Princ.	10356	14481	19950	24900	27302	1	ı	1	1	ı	ŧ	1	i	1	ı	í	í	1	ı	ı
50		Ф	72-05	~	71-13		71-26	1	ı	ı	1	1	1	ı	1	i	1	1	1	1	•	ł
Position #5	†	Princ.	。2783十	+	afra	.6625+	·7364+	8	8	ı	ı	t	ı	1	1	i	i	í	1	ı	i .	ı
Po	- 96-	Tang.	.1345	.1942	.2609	. 3226	.3494	3816	.3866	.3938	.1538	.2854	.4301	.4766	.1878	.3592	.5345	. 5859	.707¢	.8411	.9228	
	+	Axlal	.2632	.3738	.5045	.6308	.6926	.7589	.7719	.7964	.3047	.5590	8278	6076.	.3338	.6543	.9356	.9105	.9181	.9903	1.0544	ı
	†	Dieg.	.2447	.3520	6747	.5919	0679.	.7105	.7258	.7434	.2876	.5277	.8154	.8862	.3163	.6259	.8630	.8339	.8174	.8385	.9190	.9618
	X	Tang.	.1332	.1923	.2584	.3195	.3459	. 3778	.3827	. 3898	.1523	.2826	.4258	6TL7	.1861	.3559	. 5298	.5814	.7028	.8362	.9176	.9635
	-	Axtal	.2625	.3728	. 5032	.6292	6069.	.7570	.7700	.725	.3039	.5576	.8687	.9385	.3329	.6525	.9330	.9076	9776.	. 2861	1.0498	S
Test II		press.	700	009	800	1000	1100	1200	1250	1300	200	200	1400	1600	9	1200	1800	2000	2200	2400	2600	2800

Pressures and stresses in 10./su.in. Strains Eiven in inches you inch x 103

ΛX	
BLE	
TA	

18	Tang.	.2512	.3614	.4903	.6188	.6812	.9130	3996	1-0455	.5392	8008	1.5374	5.4698	4.7174	5.1103	10.6465	16.1530	1	1	1	ŧ
Gages 16,17,18	Axfal	- 6600	0309	0209	0240	0233	.0675	.1160	.1944	.1952	.1838	.5171	2.1334	2.0521			2.9129	ı	1	i	ŧ
3	Tang.	8183	11609	15957	20164	22228	1	1	1	1	ı	1	ı	ı	1	1	1	i	1	1	1
	Axtal	2160	2555	1917	5328	1765	1	1	1	ŧ	ı	1	1	1	i	1	1		i	•	1
	Princ.	8924	12493	17320	57675	24192	1	ı	ŧ	1	ı	ı	1	1	1	1	1	1	ŧ	1	1
9# 1	Φ	-18-16	16-35	17-	18-09	18-10	1	1	1	ŧ	ŧ	1	1	1	1	1	t	1	1	1	1
Position #6	Princ.	.2833 +		· 5494 +	+ 2969.	.7663 +	ı	ŀ	1	1	ı	ı	1	1	ı	ı	1	ı	1	1	t
	Tang.	.2512	.3614	.4903	.6188	.6812	.7515	.7699	*908	.3001	.5618	.9046	1.1520	.3996	.7925	1-3337	1.4883	1	1	i	1
	Axfal	0099	0309	0209	0240	0233	0201	0198	0116	0108	0172	.0108	.1056	.0243	.0423	.1846	2706	ı	1	1	1
	Di eg.	.0228	.0356	.0492	.0588	0670	.0764	.0807	.0871	.0269	.0592	.1094	.1934	.0636	.1262	.2289	.2820	.3126	.3324	.2928	1957
	Tang.	.2513	.3616	*4904	.6189	.6813	.7516	.7700	.8065	3005	.5619	9706	1,1515	0.3995	0.7923	1.3328	1.4870	NO	NG	NG	ON
	Axlal	0112	0327	0234	0271	0267	0239	0236	0156	0123	0200	.0063	8660.	.0223	.0383	.1779	.2632	.3718	9697	.5635	.6793
Test II	Press.	007	009	800	1000	1100	1200	1250	1,300	500	006	1400	1600	009	1200	1800	2000	2200	2400	2600	2800

Pressures and stresses in 1b./sq.in. Strains given in inches per inch x 103

2
Position #7
. bush
Test II

Gages 19,20,21

rang.	0336 0476 0476 07766 1169 1169 11686 12237 12237 122551 14977 14977 16263	C1210
Axial	00114 001178 001178 00178 00178 00178 00178 00178 00178 00178 00178 00178 00178 00178 00178 00178 00178 00178	(356.4
Tang.	-1174 -1681 -2730 -3010	
Axial	1503	
Prince	- 862 - 1118 -1391 - 1570	
Φ	39-25-33-23-33-25-25-33-25-25-33-25-25-25-25-25-25-25-25-25-25-25-25-25-	
Prince	1026	
Tang.	- 0336 - 0476 - 0476 - 0839 - 0897 - 0360 - 1033 - 1024 - 0257 - 0261 - 0261 - 0261	
1eixà	0068 0178 0278 0273 0206 0273 0498 0498 0498 0498	
Dlage	0614 0614 1132 1132 1236 1236 1236 1239 1229 1229 1229	
Tang.	0.0555 0.0555 0.0555	>+->0
Axisl	00000 00000 00000 00000 00000 00000 0000	
60 60 60 60 60 60	1,250 1,250	2

Pressures and stresses in 10./sr.in. Strains given in inches par inch x 103

.22 & 23	†	Teng.	0307	0432	0597	0741	0801	0846	0848	0833	0268	0588	0732	0248	.0314	6200-	.3800	0032	0405	.1302	. 2580	.5097
Oages 22	+	Axial	-0360	0579	0730	0934	1.023	1270	1.355	1370	0642	1067	1465	22.95	1451	2064	3453	4368	6109	7606	9359	-1.2371
	1	Tang.	-1398	-1998	-2690	-3366	-3653	1	9	1	ı	ı	*	1	t	ł	1	1	ŧ	1	1	1
	6	Axisl	-1589	-2338	-2997	-381.1	-41.64	1	ı	ı	t	i	1	1	1	1	ı	ŧ	ı	1	i	ı
		Prd.nc.	1	i	1	ı	1	ı	3	ı	1	1	1	ı	1	ı	ı	1	3	ì	ı	ſ
40		(1	ı	1	ı	9	9	1	1	ŧ	ŧ		ŧ	ŧ	ſ	ł	ł	1	ı	1	f
Position #8		Princ.	0307	0432	0597	0741	0801	ı	1	1	ı	0	1	ı	ı	ı	ı	t	ı	1	ı	1
č	18	Tang.	0307	0438	0997	0741	0801	0856	9680	0918	0353	-°0674	0963	0923	0361	0754	0787	0733	0610	0502	0276	-°0113
	*	axial	0390	0579	0730	0934	1023	1083	1145	1171	0443	0868	1255	1479	0635	1248	1697	125	1808	1527	1447	1137
	1	Diag.	ı	8	ŧ	1	1	1	1	1	1	1	ı	ı	ı	ı	ı	ı	t	ı	\$	t
	AR -	Tang.	0307	0432	0597	0742	0801	0356	0896	0918	0353	-,0674	0963	0923	0361	0754	0787	0733	0610	0503	0276	0113
		Axial	0350	0579	0730	0931	1023	1083	11145	1171	0443	0868	1255	1479	0635	1248	1697	19/5	1808	1527	1447	1137
Test II		Press.	7.00	003	800	1100	1100	1200	1250	1300	500	9006	1400	0031	900	1200	1800	2000	2200	2400	2600	2800

TABLE AVII

Fressures and stresses in 15./sq.in. Strains given in inches per inch z 103

1 8 24	A bid as	5609	3750	.51.28	.6519	.7238	1.1963	1.422	1.8342	1.3107	1.5997	4.1.393	9	1	1	8	1	0	ı	0	8
Carres .	W. Seel	.0379	.0586	0670	.1023	.2774	1902.	100 mm	.4146	3855	.4262	8126	1.3072	1.2249	1.2437	1.4052	.7650	0639	7222	7927	-1.0672
	T. Bung.	3973	13076	17688	22,505	25024	1		ę	1	t	t	1	1	. 1	ŧ	ŧ	0	1	1	1
	Axtal	3831	5681	7675	9822	11028	ŧ	1	•	í	ŧ	1	١	ì	8	1	1	t	i	ŧ	t
	Prince	ŧ	8	1	1	8	0	9	1		1	1	1	1	1	ð	ı	1	ı	i	t
	Φ	1	ı	ę	1	١	i	ş	ı	i	\$	6	1	ı	i	ŧ	ı	ŀ	1	t	i
Position 49	Princ.	.2609	.3790	. 5128	62139	.7238	ŀ	1	ı	ì	1	1	1	1	ı	ı	t	ł	1	t	ı
Pog	Teng.	.2609	3790	.5128	6139	.7238	.8185	.8575	9106.	.3181	.60TL	7.0540	1	1	1	t	1	1	1	1	1
	Axfal	.0379	.0586	.0790	.1023	.1174	.0953	.0911	.07774	.0483	0680	.1186	.1198	.0375	.0563	.1484	.0664	.0468	0429	0770-	0856
	Diag.		1	1	1	t	i	i	ŧ	1	i	ı	\$	ı	1	1	i	ŧ	t	1	1
	C 5	2609	37%	. 51.28	6259	.7238	.8185	.8575	9006.	.3181	.607I	1.0540	3	2	377	O C	O	OE	NO	D Z	NO
	Leixa		.0586	.0720	.1023	.11,74	.0953	1160.	-07774	.0483	0630	.1186	.1193	.0375	.0560	.1434	°,0664	.0463	0429	0440	-: 0856
Test II	Press	400	83	Se	3.700	11.00	1200	1250	1300	200	35	1700	1660	000	1,200	1300	2000	2200	2400	2600	2800

TABLE XVIII

Pressures and stresses in 10./sq.in. Strains given in inches per inch x 100

TABLE NO. XIX

Relation	of	load to	P.t
Test I:	R	3.84	9.6
	R	7 94	

Test II: $\frac{R}{t} = \frac{3.84}{.3} = 12.8$		Test	IIı	<u>t</u>	.3	12.8
---	--	------	-----	----------	----	------

	Test I	Tes	t II
p	$p.\frac{R}{t}$	р	$p.\frac{R}{t}$
500	4800	400	5120
750	7200	600	7680
1000	9600	800 '	10240
1250	12000	1000	12800
1500	14400	1100	14080
1600	15360	1200	15360
1700	16320	1250	16000
1800	17280	1300	16640
1900	18240	1400	17920
2000	19200	1600	20480
2050	19680	1800	23040
2150	20640	3000	25600
2200	21120	2200	28160
. 2300	32080	2400	30720
2400	23040	2600	33280
2500	24000	2800	35840
2600	24960		
2800	26880		
3000	28800		
3250	31200		

Fig. 1 First specimen and test setup.

Fig. 2 Closeup view of first specimen showing rupture.

Fig. 3 Second specimen and test setup.

Fig. 4 Closeup view of second specimen showing rupture.

FIG. 7 <u>LOCATION</u> OF STRAIN GAGES TESTS I ANDII

FIG. 8 ORIENTATION OF STRAIN GAGES, TEST I

FIG.9 ORIENTATION OF STRAIN GAGES, TEST II

FIG.50 SKETCHES OF BREAKS IN WELDS

DATE DUE			
^			

Thesis

H28 Harmon

Stress distribution in two circular cylinders intersecting at right angles under the influence of internal pressure

Thesis
H28 Harmon

11371

Stress distribution in two circular cylinders intersecting at right angles under the influence of internal pressure. thesH28
Stress distribution in two circular cyli

3 2768 002 08198 6
DUDLEY KNOX LIBRARY