4.2 Числення висловлювань (формальна теорія

 $\boldsymbol{L})$

4.2.1 Числення висловлювань

Числення висловлювань — це формальна теорія L, в якій:

- 1) Алфавіт включає пропозиційні літери: A, B, C,... з індексами або без; пропозиційні зв'язки: \neg (заперечення) та \rightarrow (імплікація); допоміжні символи: (та);
- 2) Визначення формули числення L:
 - довільна пропозиційна літера є формулою;
 - \bullet якщо A та B формули, то формулами також ϵ $(\neg A)$ та $(A \rightarrow B)$;
 - \bullet інших формул в численні L не існує.

3) У численні L визначена нескінченна множина аксіом, які будуються за допомогою трьох **схем** аксіом:

A1.
$$A \rightarrow (B \rightarrow A)$$
;

A2.
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C));$$

A3.
$$(\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$
.

4) У численні L визначено єдине правило виведення MP: $A, A \rightarrow B \mid B$.

Приклад. Зі схеми $A1. A \rightarrow (B \rightarrow A)$ матимемо:

$$\bullet A \rightarrow (A \rightarrow A);$$

$$\bullet (A \rightarrow B) \rightarrow (B \rightarrow (A \rightarrow B));$$

$$\bullet A \rightarrow (\neg A \rightarrow A).$$

Вирази для логічних зв'язок \, \, \, \ через імплікацію та заперечення:

$$\bullet A \land B = \neg (A \rightarrow \neg B);$$

$$\bullet A \lor B = \neg A \rightarrow B;$$

$$\bullet A \sim B = \neg((A \rightarrow B) \rightarrow \neg(B \rightarrow A)).$$

Теорема $L1. \vdash A \rightarrow A$

1.
$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)) A2$$

$$2. A \rightarrow ((A \rightarrow A) \rightarrow A)$$

$$3. A \rightarrow (A \rightarrow A)$$
 A1

4.
$$(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$$
 MP (1,2)

$$5. A \rightarrow A$$
 MP (3,4)

Теорема $L2.A \vdash B \rightarrow A$

1. *A* гіпотеза

2. $A \rightarrow (B \rightarrow A)$ A1

3. $B \rightarrow A$ MP (1,2)

Теорема $L3. \vdash (\neg A \rightarrow A) \rightarrow A$

1.
$$(\neg A \rightarrow \neg A) \rightarrow ((\neg A \rightarrow A) \rightarrow A)$$
 A3

2.
$$\neg A \rightarrow \neg A$$
 L1

3.
$$(\neg A \rightarrow A) \rightarrow A$$
 MP (1,2)

4.2.2 Теорема дедукції

Теорема 1 (теорема дедукції Ербрана)

Нехай Γ — множина формул, A і B — формули й Γ , $A \models B$. Тоді $\Gamma \models A {\rightarrow} B$.

Теорема 2 (зворотна теорема дедукції)

Якщо існує вивід $\Gamma \vdash A \rightarrow B$, то формула B виводиться з Γ та A, тобто якщо $\Gamma \vdash A \rightarrow B$, то Γ , $A \vdash B$.

Наслідок 1 (правило силогізму)

$$A \rightarrow B$$
, $B \rightarrow C \vdash A \rightarrow C$.

<u>Наслідок 2</u> (правило видалення середньої посилки)

$$A \rightarrow (B \rightarrow C), B \vdash A \rightarrow C.$$

4.2.3 Приклади виведень у теорії L

Теорема $L4. \vdash \neg \neg A \rightarrow A$

1.
$$(\neg A \rightarrow \neg \neg A) \rightarrow ((\neg A \rightarrow \neg A) \rightarrow A)$$
 A3

$$2. \neg A \rightarrow \neg A$$

3.
$$(\neg A \to \neg \neg A) \to A$$
 наслідок 2 до 1,2

4.
$$\neg \neg A \rightarrow (\neg A \rightarrow \neg \neg A)$$

5.
$$\neg \neg A \rightarrow A$$
 наслідок 1 до 3,4

Теорема L5. $\vdash A \rightarrow \neg \neg A$

1.
$$(\neg\neg\neg A \rightarrow \neg A) \rightarrow ((\neg\neg\neg A \rightarrow A) \rightarrow \neg\neg A)$$
 A3

$$2. \neg \neg A \rightarrow \neg A$$

3.
$$(\neg\neg\neg A \rightarrow A) \rightarrow \neg\neg A$$
 MP (2,3)

$$4. A \rightarrow (\neg \neg \neg A \rightarrow A)$$

5.
$$A \to \neg \neg A$$
 наслідок 1 до 3,4

Теорема L6.
$$\vdash \neg A \rightarrow (A \rightarrow B) \Leftrightarrow \neg A, A \vdash B$$

 $1. \neg A$

гіпотеза 1

2. *A*

гіпотеза 2

3. $(\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$ A3

4. $\neg A \rightarrow (\neg B \rightarrow \neg A)$

A1

5. $A \rightarrow (\neg B \rightarrow A)$

A1

6. $\neg B \rightarrow \neg A$

MP(1,4)

7. $\neg B \rightarrow A$

MP(2,5)

8. $(\neg B \rightarrow A) \rightarrow B$

MP(3,5)

9. *B*

MP(7,9)

Теорема
$$L7$$
. $\vdash (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A) \Leftrightarrow \neg A \rightarrow \neg B$
 $\vdash B \rightarrow A$

1.
$$\neg A \rightarrow \neg B$$

гіпотеза

2.
$$(\neg A \rightarrow \neg B) \rightarrow ((\neg A \rightarrow B) \rightarrow A)$$

3.
$$(\neg A \rightarrow B) \rightarrow A$$

MP(1,2)

4.
$$B \rightarrow (\neg A \rightarrow B)$$

A1

A3

5.
$$B \rightarrow A$$

наслідок 1 до 3,4

Теорема L8. \vdash ($B \rightarrow A$) \rightarrow ($\neg A \rightarrow \neg B$) \Leftrightarrow $B \rightarrow A \vdash$

$$\neg A \rightarrow \neg B$$

1. $B \rightarrow A$

 $2. \neg \neg B \rightarrow B$

 $3. A \rightarrow \neg \neg A$

 $4. \neg \neg B \rightarrow A$

5. $\neg\neg B \rightarrow \neg\neg A$

 $6. \ (\neg \neg B \rightarrow \neg \neg A) \rightarrow (\neg A \rightarrow \neg B)$

7. $\neg A \rightarrow \neg B$

гіпотеза

L4

L5

наслідок 1 з 1,2

наслідок 1 з 3,4

L7

MP(5,6)

Теорема L9. $\vdash A \rightarrow (\neg B \rightarrow \neg (A \rightarrow B)) \Leftrightarrow A \vdash \neg B \rightarrow \neg (A \rightarrow B)$

1. *A*

гіпотеза

2.
$$((A \rightarrow B) \rightarrow B) \rightarrow (\neg B \rightarrow \neg (A \rightarrow B))$$
 L8

3.
$$A, A \rightarrow B - B$$

правило МР

4.
$$A \vdash (A \rightarrow B) \rightarrow B$$

теорема дедукції до 3

5.
$$(A \rightarrow B) \rightarrow B$$

MP(1,4)

6.
$$\neg B \rightarrow \neg (A \rightarrow B)$$

MP(2,5)

Теорема $L10. \mid (A \rightarrow B) \rightarrow ((\neg A \rightarrow B) \rightarrow B) \Leftrightarrow A \rightarrow B,$ $\neg A \rightarrow B \mid B$

1.
$$A \rightarrow B$$
 гіпотеза 1

2.
$$\neg A \rightarrow B$$
 гіпотеза 2

3.
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$
 L8

4.
$$(\neg A \rightarrow B) \rightarrow (\neg B \rightarrow \neg \neg A)$$
 L8

5.
$$\neg B \rightarrow \neg A$$
 MP (1,3)

6.
$$\neg B \rightarrow \neg \neg A$$
 MP (2,4)

7.
$$(\neg B \rightarrow \neg \neg A) \rightarrow ((\neg B \rightarrow \neg A) \rightarrow B)$$
 A3

8.
$$(\neg B \rightarrow \neg A) \rightarrow B$$
 MP (6,7)

9.
$$B$$
 MP (5,8)

4.2.4 Методи перевірки тотожної істинності формул логіки висловлювань

- 1) побудова таблиці істинності;
- 2) зведення довільної формули логіки висловлювань до ДНФ або КНФ;
- 3) побудова для обраної формули виводу у формальній теорії L;
- 4) метод Квайна;
- 5) метод редукції.

Метод Квайна

Нехай $\{A_1, A_2, ..., A_n\}$ — упорядкована множина пропозиційних літер, що зустрічаються у формулі $P(A_1, A_2, ..., A_n)$.

Візьмемо першу з літер — A_1 і припишемо їй, наприклад, значення Т (F). Підставимо це значення у формулу P і виконаємо обчислення, які можуть виникнути в результаті такої підстановки.

Після виконання обчислень одержимо деяку формулу $P'(A_2,...,A_n)$, до якої знову застосовується описана процедура, тобто вибираємо літера A_2 , приписується їй значення T(F), виконується обчислення і т.д.

Приклад 1. $P = (((A \land B) \rightarrow C) \land (A \rightarrow B)) \rightarrow (A \rightarrow C).$

1) A = T:

$$P = (((T \land B) \rightarrow C) \land (T \rightarrow B)) \rightarrow (T \rightarrow C) =$$
$$= ((B \rightarrow C) \land B) \rightarrow C = P'.$$

1.1) B = T:

$$P' = ((T \rightarrow C) \land T) \rightarrow C = (C \land T) \rightarrow C = C \rightarrow C$$

тавтологія.

1.2) B = F:

$$P' = ((F \rightarrow C) \land F) \rightarrow C = (T \land F) \rightarrow C = F \rightarrow C = T.$$

2)
$$A = F$$
:

$$P = (((F \land B) \rightarrow C) \land (F \rightarrow B)) \rightarrow (F \rightarrow C) =$$

$$= ((F \rightarrow C) \land T) \rightarrow T = (T \land T) \rightarrow T = T \rightarrow T = T.$$

Дана формула є тавтологією.

Метод редукції

Нехай формула P має вигляд імплікації: $P = A \rightarrow B$.

Припустимо, що для деякої інтерпретації I формула P приймає значення F. Тоді A = T та B = F.

Таким чином, перевірка формули P зводиться до перевірки формул A та B.

Після цього даний процес застосовується до формул A та B і т.д.

Приклад 2. $P = ((A \land B) \rightarrow C) \rightarrow (A \rightarrow (B \rightarrow C)).$

Нехай для деякої інтерпретації I маємо P = F.

Тоді
$$(A \land B) \rightarrow C = T$$
, а $A \rightarrow (B \rightarrow C) = F$.

Застосуємо цю процедуру до другої з формул.

Отримуємо A = T та $B \rightarrow C = F$.

Звідси знаходимо, що A = T, B = T, C = F.

Але при отриманих значеннях $(A \land B) \to C = F$, що суперечить припущенню.

Отже, формула P тотожньо істинна.

Приклад 3. Перевірити, чи є дана формула тавтологією

$$A \to ((A \to B) \to B).$$

1 спосіб. За допомогою таблиці істинності:

Α	В	$A \rightarrow B$	$(A \to B) \to B$	$A \to ((A \to B) \to B)$
F	F	Т	F	T
F	Т	Т	Т	T
T	F	F	Т	T
T	T	Т	Т	T

Приклад 3. $A \rightarrow ((A \rightarrow B) \rightarrow B)$.

2 спосіб. Метод редукції

Припустимо що, $A \to ((A \to B) \to B) = F$.

Тоді $(A \rightarrow B) \rightarrow B = F$ та A = T.

3 першого виразу: $A \to B = T$ та $B = F \implies A = F$.

Раніше ми отримали, що A = T.

Отже, ми прийшли до суперечності. Таким чином, наше припущення було невірне, тобто формула є тавтологією.

Приклад 3. $A \rightarrow ((A \rightarrow B) \rightarrow B)$.

3 спосіб. Метод Квайна

Нехай
$$A = T$$
, тоді $T \to ((T \to B) \to B)$.

Якщо
$$B = T$$
, то $T \to ((T \to T) \to T) = T$.

Якщо
$$B = F$$
, то $T \to ((T \to F) \to F) = T$.

Нехай
$$A = F$$
, тоді $F \to ((F \to B) \to B)$.

Якщо
$$B = T$$
, то $F \to ((F \to T) \to T) = T$.

Якщо
$$B = F$$
, то $F \to ((F \to F) \to F) = T$.

Таким чином, формула є тавтологією.

1)
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$
.

$$A \vdash ((A \rightarrow B) \rightarrow B)$$

$$A, (A \rightarrow B) \vdash B$$

- 1. *A* Γ1
- 2. $A \rightarrow B$ Γ 2
- 3. B MP(1,2)

$$(2) \neg A \rightarrow (A \rightarrow B).$$

$$\neg A$$
, $A \vdash B$

3.
$$(\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$
 A3

4.
$$\neg A \rightarrow (\neg B \rightarrow \neg A)$$
 A1

5.
$$A \rightarrow (\neg B \rightarrow A)$$

6.
$$\neg B \rightarrow \neg A$$
 MP(1,4)

7.
$$\neg B \rightarrow A$$
 MP(2,5)

8.
$$(\neg B \rightarrow A) \rightarrow B$$
 MP(3,6)

9.
$$B$$
 MP(7,8)

3)
$$(A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A)$$
.

$$(A \rightarrow \neg B) \vdash (B \rightarrow \neg A)$$

1.
$$A \rightarrow \neg B$$

2.
$$(A \rightarrow \neg B) \rightarrow (\neg \neg B \rightarrow \neg A)$$
 L8

3.
$$\neg \neg B \rightarrow \neg A$$
 MP(1,2)

4.
$$B \rightarrow \neg \neg B$$
 L5

5.
$$B \to \neg A$$
. Правило силогізму (3,4)

4)
$$A \rightarrow B$$
, $A \rightarrow (B \rightarrow C) \vdash A \rightarrow C$.

1.
$$A \rightarrow B$$

2.
$$A \rightarrow (B \rightarrow C)$$

5.
$$A \rightarrow C$$

$$\Gamma 1$$

$$\Gamma 2$$

середньої посилки (2,4)