USB

- Universal Serial Bus
- Pro připojení nejrůznějších periferií k danému zařízení
 - Navrženo kvůli sjednocení připojování periferií
- Nástupce RS-232
 - o Jednoduší na správu, ale pomalejší na přenos
 - Také náhrada za IEEE 1284 (LPT), PS/2, Game Port, ...
- Umožňuje:
 - Přenos informací mezi zařízeními
 - Napájet nejrůznější zařízení
 - Lampičky, mobily, laptopy, powerbanky, ...
- Podpora "plug & play"
 - Možnost připojení za chodu a není nutný restart zařízení
 - o Během "chvíle" je možno periferii používat
 - o Známé ovladače se instalují automaticky, jinak ručně
- Komunikační vzdálenost do 5m s využitím TP
- Využívá tzv. vrstvenou hvězdicovou architekturu
 - V centru je vždy jeden USB HUB (Max 5)
- Možnost připojit až 127 zařízení
 - o Každé zařízení má přidělenou jedinečnou adresu
 - Získána po připojení ke sběrnici
 - Během inventarizace sběrnice (enumerated)
- Jedná se o řízenou sběrnici
 - Veškeré datové přenosy inicializuje hostitelský řadič spolu s operačním systémem
 - Žádné 2 USB zařízení spolu nemohou komunikovat přímo

USB charakteristika

- Hostitelský řadič
 - o Rozhraní mezi USB systémem a hostitelským PC
 - o Implementace buď SW nebo HW typu
 - Společně je implementován i "kořenový rozbočovač" a nabízí tak možnost připojení ke sběrnici
- Kořenový rozbočovač
 - o Root HUB (Master)
 - Nejvyšší úroveň, k níž se připojují zařízení (slave)
 - o Může požadovat data od jednoho zařízení, ale žádné zařízení nemůže vysílat samo

USB - Logická sturktura

USB – konkurenti

- FireWire
 - V každé specifikace vždy rychlejší než USB
 - O Využití u digitálních kamer, automobilů, větrných turbín, armáda
 - o Dražší na výrobu (nutná řídící jednotka v zařízení)
 - Vývoj: Apple, Texas Intruments, Sony, IBM (1986)
- Thunderbolt
 - o Výhrada firmy Apple a Intel
 - Podporuje PCI Express, DisplayPort, dodávka energie až 100W, možnost připojit až 6 zařízení za sebou
 - o Rychlejší (až 40GB/s), dražší, speciální kabel
 - Vývoj: Intel (2011)

USB – krátká historie (od 1994)

- USB 1.0 (1996)
- USB 2.0 (2000)
- USB 3.0 (2008)
 - o Později: USB 3.1 Gen 1
 - o Nyní: USB 3.2 Gen 1

- USB 3.1 (2013)
 - o Později: USB 3.1 Gen 2
 - o Nyní: USB 3.2 Gen 2
- USB 3.2 (2017)
 - o Nyní: USB 3.2 Gen 2x2
- USB 4 (2019)
 - o Nyní: USB 4 Gen 2x2 a 3x2

USB 1.X

- Low Speed: 1.5Mbit/s
- Full Speed: 12Mbit/s
- 4 pinový konektor
 - o 2x data
 - o VCC a GND
- Pouze 1 datový proud
 - Half duplex
 - o Data vždu jedním směrem v jednom časovém okamžiku
- Bez podpory prodlužovacího kabelu
 - Špatné časování a omezený výkon
- USB 1.1
 - Přijata širokou veřejností

USB 2.0

- Navýšení rychlosti
- Zpětně kompatibilní s USB 1.x
- High Speed: 480Mbit/s
 - o Bohužel díky omezení přístupu ke sběrnici je možné dosáhnout rychlosti 280Mbit/s
- Half duplex
- Odběr do 100mA na port
 - Max 500mA jedno zařízení na celé sběrnici
 - Většinou podpora jediného portu na MB
- Definice malých portů

- Mini A, Mini B
- Specifikace kabelů a konektorů Micro USB (A/B)

USB 4

- Neproprietární standardizovaná otevřená verze standardu Thunderbolt 3
- Princip přenosu dat je založen na PCle 3.0
 - o USB 4 Gen 2x2
 - Stejné jako USB 3.2 Gen 2x2
 - o USB 4 Gen 3x2
 - 40Gbit/s
- Podpora
 - o Display Port 2.0
 - o Rozlišení až 8k
- Nabíjení zařízení

USB Type – C

- Představen 2014 jako univerzální konektor
 - o Postupně nahradí dosavadní USB konektory
 - Nic negarantuje (rychlosti apod.)
 - Vše záleží na certifikaci příslušného kabelu / zařízení, kde je použit!
- Nejen pro USB standard!
 - o Thunderbolt 3 a 4
 - o PCle
 - Přenos obrazu
 - Display Port, HDMI, DVI, VGA
- Možnost nabíjení zařízení USB PD (Power Delivery)
 - o 20V a 5A (až 100W)
 - 5V a 900mA (až 4.5W; USB 3.2 Gen 1)
 - 5v a 50mA (až 2.5W; USB 2.0)

USB – princip přenosu

- Data jsou přenášena v tzv. "rámcích", kde každý má délku 1ms
 - o Rámec se skládá z paketů
- Druhy paketů
 - o Token paket
 - Data paket
 - Handshake paket

USB - Paket

- Základní prvek USB přenosu
- Token paket
 - o Definuje transakce na USB
 - SOF Start Of Frame
 - IN přenos od hostitele k zařízení
 - OUT přenos od zařízení k hostiteli
 - SETUP Start řídícího přenosu
- Data paket

- Samotná data, identifikátor se pravidelně mění, ošetření ztráty paketu; přenos od LSB po MSB
 - Data0
 - Data 1
- Handshake paket
 - ACK kladné potvrzení (data přišla v pořádku)
 - NAK záporné potvrzení (data nelze přijmout)
 - o STALL využito pokud není přenost kompletní
- Preamble paket
 - o Přepínání sběrnice mezi Low a Full speed

USB protokol

- Využívá tzv. pozitivní potvrzování
 - Dojdou-li data v pořádku, vyšle přijímač ACK paket,
 - Nastane-li chyba při přenosu, přijímač mlčí a přijatá data zahodí
 - Po určité době odesílatel pošle data znovu
- Paket NAK je vysílán
 - Když není zařízení schopno přijmout data
 - Většinou dočasný problém
 - Přenos typu OUT -> přijímač má plný vstupní Buffer
 - V případě přenosu IN, je vysílán paket NAK, pokud již nejsou další data pro hostitele k odeslání
 - Paket NAK nikdy neposílá hostitel
- Pro komunikaci mezi hostitelem a EP je využíváno tzv. routy (pipe)
 - Na jedné straně End Point (Samotné zařízení)
 - Na druhé straně vyrovnávací paměť (hostitel)
- Komunikace v rámci roury je jednosměrná
 - Pro případ obousměrné komunikace je nutno vytvořit 2 roury
- Typy rour
 - Messages
 - Strams

USB – inventarizace sběrnice

- Bus Enumeration
- Prováděna průběžně z důvodu možnosti připojení / odpojení zařízení v libovolném okamžiku
- Identifikace zpráv o odpojení zařízení
- Identifikace zařízení -> přidělení adresy
- Detekování zpráv o odpojení zařízení

USB – zjednodušená činnost

- Po sběrnici neustále kolují rámce, jak datové, tak servisní
- Chce-li zařízení vysílat/přijímat, čeká na servisní rámec

- Zde zapíše své informace a čeká na potvrzení od Root Hubu
- Po potvrzení s dalším příchozím datovým rámcem může začít komunikovat (číst / zapisovat)
- Podpora CRC Cyclic Redundancy Check
 - o Jak HW, tak SW

USB – činnost podrobněji

- 1. Většina přenosů dat (transakcí je složena z vysílání 3 paketů)
 - a. Konkrétní zařízení rozpozná svou adresu a připraví se k přenosu
- 2. Zařízení nebo systém vysílají datový paket, případně oznámí, že nemají co vysílat (součástí jsou i kontrolní bity)
- 3. Ukončení transakce nastává vysílačem handshake paketu, jímž se potvrdí úspěšnost

USB – typy přenosů

- USB rozlišuje celkem 4 typy EP -> typy přenosů
- Control Transfer
 - Pouze pomocí roury zpráv
 - Využit k detekci a konfiguraci zařízení při jeho připojení
 - Vysoká priorita a hlídání chyb
- Interrupt Transfer
 - Tam kde se periodicky vysílá malý objem dat (myš, klávesnice)
 - Systém se periodicky dotazuje na nová data (cca 100ms)
 - V případě chyby nastává opakování
 - Náročné časování
- Isynchronous Transfer
 - Probíhá v reálném čase (audio, video)
 - Nutné zajištění konstantní přenosové rychlosti
 - Chyby se neopravují, chybní data jsou zahozena
 - Nároční časování
- Bulk Transfer
 - Přenos většího množství dat, jež vyžaduje detekci chyb, ale nejsou časově kritická (skener, tiskárna, externí disk)
 - Rychlost je dána vytížením sběrnice
 - Opakování přenosu v případě chyb