Identificação de Sistema por Erro de Predição com Modelos Polinomiais

Guilherme de Paoli Beal

Universidade Federal do Rio Grande do Sul Programa de Pós-Graduação em Engenharia Elétrica Aprendizado Supervisionado de Modelos Paramétricos

Maio de 2023

Sistema

Sistema SISO, discreto, linear e invariante no tempo:

$$y(t) = G_0(q) u(t) + \nu(t)$$
$$\nu(t) = H_0(q) e(t)$$

- $t \in \mathbb{N}$ variável de tempo discreto
 - q operador de avanço
 - y(t) sinal de saída
 - u(t) sinal de entrada
 - u(t) ruído de medição desconhecido
 - e(t) ruído branco
- $G_0(q)$ função de transferência do sistema
- $H_0(q)$ função de transferência do filtro

Modelos Polinomiais

- ARX Autorregressivo com Entrada Externa, ou *Autoregressive with* Extra Input
- ARMAX Autorregressivo com Média Móvel e Entrada Externa, ou Autoregressive Moving Average with Extra Input
 - OE Erro na Saída, ou Output Error
 - **BJ** Box-Jenkins

Formato genérico:

$$A(q) y(t) = \frac{B(q)}{F(q)} u(t) + \frac{C(q)}{D(q)} e(t)$$

Modelos Polinomiais

Predição

$$\hat{y}(t) = L_u(q) u(t) + L_y(q) y(t)$$

$$L_u(q) = \frac{G(q)}{H(q)}$$

$$L_y(q) = 1 - \frac{1}{H(q)}$$

Erro de predição:

$$\varepsilon(t) = y(t) - \hat{y}(t)$$
$$= \frac{y(t) - G(q) u(t)}{H(q)}$$

Erro quadrático médio:

$$J = \frac{1}{N} \sum_{t=0}^{N-1} (\varepsilon(t))^2$$

ARX

- $n_c = 0$
- $ightharpoonup n_d = 0$
- $ightharpoonup n_f = 0$

$$G(q) = \frac{B(q)}{A(q)}$$
 $H(q) = \frac{1}{A(q)}$

$$A(q) = 1 + a_1 q^{-1} + \dots + a_{n_a} q^{-n_a}$$

$$B(q) = q^{-n_k} \left(b_0 + b_1 q^{-1} + \dots + b_{n_b} q^{-n_b} \right)$$

J é quadrático nos parâmetros

ARMAX

- $ightharpoonup n_d = 0$
- $ightharpoonup n_f = 0$

$$G(q) = \frac{B(q)}{A(q)}$$
 $H(q) = \frac{C(q)}{A(q)}$

$$A(q) = 1 + a_1 q^{-1} + \dots + a_{n_a} q^{-n_a}$$

$$B(q) = q^{-n_k} \left(b_0 + b_1 q^{-1} + \dots + b_{n_b} q^{-n_b} \right)$$

$$C(q) = 1 + c_1 q^{-1} + \dots + c_{n_c} q^{-n_c}$$

Generalização do ARX

Ouput Error

- $ightharpoonup n_a = 0$
- $n_c = 0$
- $n_d = 0$

$$G(q) = \frac{B(q)}{F(q)}$$
 $H(q) = 1$

$$B(q) = q^{-n_k} \left(b_0 + b_1 q^{-1} + \dots + b_{n_b} q^{-n_b} \right)$$

$$F(q) = 1 + f_1 q^{-1} + \dots + f_{n_f} q^{-n_f}$$

Assume $\nu(t) = e(t)$

Box-Jenkins

$$ightharpoonup n_a = 0$$

$$G(q) = \frac{B(q)}{F(q)}$$
 $H(q) = \frac{C(q)}{D(q)}$

$$B(q) = q^{-n_k} \left(b_0 + b_1 q^{-1} + \dots + b_{n_b} q^{-n_b} \right)$$

$$C(q) = 1 + c_1 q^{-1} + \dots + c_{n_c} q^{-n_c}$$

$$D(q) = 1 + d_1 q^{-1} + \dots + d_{n_d} q^{-n_d}$$

$$F(q) = 1 + f_1 q^{-1} + \dots + f_{n_f} q^{-n_f}$$

Modelo mais livre

Critério de Informação de Akaike

$$\begin{split} \mathsf{AIC} &= N\,\log\left(J\right) + 2\,k \\ \mathsf{AICc} &= \mathsf{AIC} + \frac{2\,k\,\left(k+1\right)}{N-k-1} \end{split}$$

- N Número de amostras
- J Erro quadrático médio de predição
- k Número de parâmetros no modelo

Dados

Tracejado: divisão entre dados de identificação e de validação

Dados - Espectro de Amplitude

Identificação - Ordens

Classe	n_a	n_b	n_c	n_d	n_f	n_k	Total
ARX	[1, 4]	[0, 4]	-	-	_	[1, 4]	80
ARMAX	[1, 4]	[0, 4]	[1, 4]	_	_	[1, 4]	320
OE	-	[0, 4]	_	_	[1, 4]	[1, 4]	80
BJ	-	[0, 4]	[0, 4]	[1, 4]	[1, 4]	[1, 4]	1600
Total							2080

Identificação - Resultados por Classe

#	Classe	n_a	n_b	n_c	n_k	$AICc_v$	$AICc_i$	J_v	J_i
24	ARX	2	1	_	1	79,5	288	5,80	5,75
44	ARX	3	1	_	1	80,4	290	5,56	5,74
28	ARX	2	2	_	1	80,6	277	5,59	5,28
20	ARX	2	0	_	1	80,8	290	6,38	5,91
40	ARX	3	0	_	1	81,3	292	6,07	5,88
32	ARX	2	3	_	1	82,1	278	5,41	5,26
160	ARMAX	2	0	1	1	82,4	292	6,24	5,91
240	ARMAX	3	0	1	1	82,4	292	5,85	5,80
192	ARMAX	2	2	1	1	83,3	279	5,58	5,28
144	ARMAX	1	4	1	1	83,4	299	5,20	5,92
112	ARMAX	1	2	1	1	83,6	294	6,02	5,90
336	ARMAX	4	1	1	1	84,0	283	5,28	5,34

Identificação - Resultados por Classe

#	Classe	n_b	n_c	n_d	n_f	n_k	$AICc_v$	$AICc_i$	J_v	J_i
465	OE	4	_	_	1	2	204	636	113	49,1
469	OE	4	_	_	2	2	205	637	109	48,9
466	OE	4	_	_	1	3	208	688	127	68,2
468	OE	4	_	_	2	1	211	621	125	44,2
470	OE	4	_	_	2	3	211	690	127	68,2
464	OE	4	_	-	1	1	211	622	137	45,1
1136	BJ	2	0	2	1	1	82,9	277	5,52	5,21
816	BJ	1	0	2	1	1	83,0	274	5,94	5,18
832	BJ	1	0	3	1	1	84,0	276	5,68	5,19
1456	BJ	3	0	2	1	1	84,9	278	5,40	5,17
1140	BJ	2	0	2	2	1	85,8	279	5,52	5,21
848	BJ	1	0	4	1	1	87,0	275	5,68	5,08

Identificação - Resultados Gerais

#	Classe	n_a	n_b	n_c	n_d	n_f	$AICc_v$	$AICc_i$	J_v	J_i
24	ARX	2	1	_	_	_	79,5	288	5,80	5,75
44	ARX	3	1	_	_	_	80,4	290	5,56	5,74
28	ARX	2	2	_	_	_	80,6	277	5,59	5,28
20	ARX	2	0	_	-	-	80,8	290	6,38	5,91
40	ARX	3	0	_	-	-	81,3	292	6,07	5,88
32	ARX	2	3	_	-	-	82,1	278	5,41	5,26
64	ARX	4	1	-	-	_	82,1	288	5,42	5,61
160	ARMAX	2	0	1	-	-	82,4	292	6,24	5,91
240	ARMAX	3	0	1	-	-	82,4	292	5,85	5,80
1136	BJ	_	2	0	2	1	82,9	277	5,52	5,21
816	BJ	_	1	0	2	1	83,0	274	5,94	5,18
36	ARX	2	4	_	-	_	83,3	281	5,18	5,30
192	ARMAX	2	2	1	-	-	83,3	279	5,58	5,28

 $\overline{n_k} = 1$ em todos os modelos

Comparação - Resposta em Frequência - G(q)

Comparação - Resposta em Frequência - H(q)

Comparação - Predições

$$\hat{y}(t) = L_u(q) u(t) + L_y(q) y(t)$$

$$L_u(q) = \frac{G(q)}{H(q)} \qquad L_y(q) = 1 - \frac{1}{H(q)}$$

Comparação - Resíduos

$$\varepsilon(t) = y(t) - \hat{y}(t)$$
$$= \frac{y(t) - G(q) u(t)}{H(q)}$$

Comparação - Resíduos - Autocorrelação

$$R_{\varepsilon}(\Delta t) = \sum_{t=-N}^{N} \varepsilon(t) \, \varepsilon(t + \Delta t)$$

Sistema Verdadeiro

$$G_0(q) = \frac{2q^2 + 2q - 1.5}{q^3 - 1.4q^2 + 0.48q}$$

$$= \frac{q^{-1} (2 + 2q^{-1} - 1.5q^{-2})}{1 - 1.4q^{-1} + 0.48q^{-2}}$$

$$H_0(q) = \frac{q^3}{q^3 - 1.4q^2 + 0.48q}$$

$$= \frac{1}{1 - 1.4q^{-1} + 0.48q^{-2}}$$

Sistema Verdadeiro

$$G_0(q) = \frac{2q^2 + 2q - 1.5}{q^3 - 1.4q^2 + 0.48q}$$

$$= \frac{q^{-1} (2 + 2q^{-1} - 1.5q^{-2})}{1 - 1.4q^{-1} + 0.48q^{-2}}$$

$$H_0(q) = \frac{q^3}{q^3 - 1.4q^2 + 0.48q}$$

$$= \frac{1}{1 - 1.4q^{-1} + 0.48q^{-2}}$$

Menor Modelo de Ordem Completa:

ARX com
$$n_a=2$$
, $n_b=2$, e $n_k=1$

$$A(q) = 1 + a_1 q^{-1} + a_2 q^{-2}$$

$$B(q) = q^{-1} (b_0 + b_1 q^{-1} + b_2 q^{-2})$$

Menor Modelo de Ordem Completa

ARX com $n_a=2$, $n_b=2$, e $n_k=1$ equivale ao modelo #28

$$\begin{split} A_{28}(q) &= 1 - 1,407\,q^{-1} + 0,4826\,q^{-2} \\ B_{28}(q) &= q^{-1}\,\left(2,162 + 1,611\,q^{-1} - 1,602\,q^{-2}\right) \end{split}$$

$$\begin{aligned} \mathsf{AICc}_v &= 80,\!82 \qquad \mathsf{AICc}_i = 290,\!4 \qquad J_v = 6,\!384 \qquad J_i = 5,\!910 \\ G_{28}(q) &= \frac{2,\!162\,q^2 + 1,\!611\,q - 1,\!602}{q^3 - 1,\!407\,q^2 + 0,\!4826\,q} \\ H_{28}(q) &= \frac{q^3}{q^3 - 1,\!407\,q^2 + 0,\!4826\,q} \end{aligned}$$

Menor Modelo de Ordem Completa

ARX com $n_a=2$, $n_b=2$, e $n_k=1$ equivale ao modelo #28

$$A_{28}(q) = 1 - 1,407 q^{-1} + 0,4826 q^{-2}$$

 $B_{28}(q) = q^{-1} (2,162 + 1,611 q^{-1} - 1,602 q^{-2})$

$$AICc_v = 80.82$$
 $AICc_i = 290.4$ $J_v = 6.384$ $J_i = 5.910$

$$G_{28}(q) = \frac{2,162 q^2 + 1,611 q - 1,602}{q^3 - 1,407 q^2 + 0,4826 q}$$

$$H_{28}(q) = \frac{q^3}{q^3 - 1,407 q^2 + 0,4826 q}$$

$$G_0(q) = \frac{2 q^2 + 2 q - 1,5}{q^3 - 1,4 q^2 + 0,48 q}$$

$$H_0(q) = \frac{q^3}{q^3 - 1,4 q^2 + 0,48 q}$$

Menor Modelo de Ordem Completa - Previsão

$$J_v = 6,384$$

Menor Modelo de Ordem Completa - Resposta em Frequência - ${\cal G}(q)$

Menor Modelo de Ordem Completa - Resposta em Frequência - H(q)

Identificação de Sistema por Erro de Predição com Modelos Polinomiais

Guilherme de Paoli Beal

Universidade Federal do Rio Grande do Sul Programa de Pós-Graduação em Engenharia Elétrica Aprendizado Supervisionado de Modelos Paramétricos

Maio de 2023