

Towards Binary-Valued Gates for Robust LSTM Training

Zhuohan Li, Di He, Fei Tian, Wei Chen, Tao Qin, Liwei Wang, Tie-Yan Liu Peking University & Microsoft Research Asia

1. Long Short-Term Memory (LSTM) RNN

•
$$f_t = \sigma (W_{xf}x_t + W_{hf}h_{t-1} + b_f)$$

•
$$i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_i)$$

•
$$g_t = \tanh(W_{xg}x_t + W_{hg}h_{t-1} + b_g)$$

$$\bullet \quad o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o)$$

Figure credit to: Christopher Olah, "Understanding LSTM Networks"

2. Histograms of Gate Distributions in LSTM

LSTM Forget gates

3. Training LSTM Gates Towards Binary Values

Push the gate values to the boundary of range (0, 1)

Well aligns with **the original purpose** of gates: to get the information in or skip by "opening" or "closing"

Ready for further compression by pushing the activation function to be binarized

Enables better generalization

4. Gumbel-Softmax Estimator

- Straight forward idea: sharpen the Sigmoid function by using a smaller temperature au < 1

$$f_{W,b}(x) = \sigma((Wx+b)/\tau) = \sigma((W/\tau)x + (b/\tau))$$

• We leverage the **Gumbel-Softmax estimator** to estimate the Bernoulli distribution $D_{\alpha} \sim B(\sigma(\alpha))$ with prob. $\sigma(\alpha)$. Define

$$G(\alpha, \tau) = \sigma \left(\frac{\alpha + \log U - \log(1 - U)}{\tau} \right)$$

where $U \sim \text{Uniform}(0,1)$, then the following holds for $\epsilon \in (0,1/2)$: $P(D_{\alpha}=1)-(\tau/4)\log(1/\epsilon) \leq P(G(\alpha,\tau) \geq 1-\epsilon) \leq P(D_{\alpha}=1)$ $P(D_{\alpha}=0)-(\tau/4)\log(1/\epsilon) \leq P(G(\alpha,\tau) \leq \epsilon) \leq P(D_{\alpha}=0)$

5. Gumbel-Gate LSTM (G²-LSTM)

•
$$h_t, c_t = \text{LSTM}(h_{t-1}, c_{t-1}, x_t)$$
 • $g_t = \tanh(W_{xg}x_t + W_{hg}h_{t-1} + b_g)$

•
$$f_t = G(W_{xf}x_t + W_{hf}h_{t-1} + b_f, \tau)$$
 • $o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o)$

•
$$i_t = G(W_{xi}x_t + W_{hi}h_{t-1} + b_i, \tau)$$
 • $c_t = f_t \odot c_{t-1} + i_t \odot g_t$

• $h_t = o_t \odot \tanh(c_t)$

6. Experimental Results

Model	Result	Round	Round & Clip	SVD	SVD+
Penn Treebank (Perpelexity)					
Baseline	52.8	53.2 (+0.4)	53.6 (+0.8)	56.6 (+3.8)	65.5 (+12.7)
Sharpened Sigmoid	53.2	53.5 (+0.3)	53.6 (+0.4)	54.6 (+1.4)	60.0 (+6.8)
G ² -LSTM	52.1	52.2 (+0.1)	52.8 (+0.7)	53.3 (+1.2)	56.0 (+3.9)
IWSLT'14 German→English (BLEU)					
Baseline	31.00	28.65 (-2.35)	21.97 (-9.03)	30.52 (-0.48)	29.56 (-1.44)
Sharpened Sigmoid	29.73	27.08 (-2.65)	25.14 (-4.59)	29.17 (-0.53)	28.82 (-0.91)
G ² -LSTM	31.95	31.44 (-0.51)	31.44 (-0.51)	31.62 (-0.33)	31.28 (-0.67)
WMT'14 English→German (BLEU)					
Baseline	21.89	16.22 (-5.67)	16.03 (-5.86)	21.15 (-0.74)	19.99 (-1.90)
Sharpened Sigmoid	21.64	16.85 (-4.79)	16.72 (-4.92)	20.98 (-0.66)	19.87 (-1.77)
G ² -LSTM	22.43	20.15 (-2.28)	20.29 (-2.14)	22.16 (-0.27)	21.84 (-0.51)

7. Histograms of Gate Distributions in G²-LSTM

G²-LSTM Input gates

G²-LSTM Forget gates

8. Visualization of Average Gate Values

Zhuohan Li is **applying for a Ph.D**. in Fall 2018
Please contact if you are interested!
Email: lizhuohan@pku.edu.cn
https://zhuohan.li

Microsoft Research Asia
Contact: Tao Qin
Email: taoqin@Microsoft.com
http://research.microsoft.com/~taoqin

