Ecoles Al-Mabarrat		En son nom	
Direction générale			
Code: EDD-F49	Ed: 01	Fiche de révision 02 / 2022	ر وقایق

Année scolaire : 2021 – 2022 Date : 22 / 04 /2022

Nom: Classe: 3ème année secondaire – S. V. T et S.G.

Probabilités

Problème I

Les deux parties A et B peuvent être traitées indépendamment.

Les résultats seront donnés sous forme décimale en arrondissant à 10^{-4} .

Dans un pays, il y a 2 % de la population contaminée par un virus.

Partie A

On dispose d'un test de dépistage de ce virus qui a les propriétés suivantes :

- La probabilité qu'une personne contaminée ait un test positif est de 0,99 (sensibilité du test).
- La probabilité qu'une personne non contaminée ait un test négatif est de 0,97 (spécificité du test).

On fait passer un test à une personne choisie au hasard dans cette population.

On note V l'évènement « la personne est contaminée par le virus » et T l'évènement « le test est positif ».

- 1) a. Préciser les valeurs des probabilités P(V), P(T/V), $P(\overline{T}/\overline{V})$.
 - **b.** Traduire la situation à l'aide d'un arbre de probabilités.
 - **c.** En déduire la probabilité $P(V \cap T)$.
- 2) Démontrer que la probabilité que le test soit positif est 0,0492.
- 3) a. Justifier par un calcul la phrase :
 - « Si le test est positif, il n'y a qu'environ 40 % de « chances » que la personne soit contaminée ».
 - **b.** Déterminer la probabilité qu'une personne ne soit pas contaminée par le virus sachant que son test est négatif.

Partie B

On choisit successivement 10 personnes de la population au hasard, on considère que les tirages sont indépendants.

Calculer la probabilité qu'il y ait au moins une personne contaminée parmi les 10.

QI	Réponses		
A.1.a.	• $P(V) = 0.02$; • $P(T / V) = 0.99$; • $P(\overline{T} / \overline{V}) = 0.97$.		
A.1.b	Arbre de probabilités : $0.99 T$ $0.02 V_{0.01} \overline{T}$ $0.98 \overline{V}_{0.97} \overline{T}$		
A.1.c.	$P(V \cap T) = P(T / V) \times P(V) = 0.99 \times 0.02 = 0.0198.$		
A.2.	D'après la formule des probabilités totales :		

	$P(T) = P(T \cap V) + P(T \cap \overline{V}) = 0.0198 + P(T / \overline{V}) \times P(\overline{V}) = 0.0198 + 0.03 \times 0.98 = 0.0492.$
A.3.a.	$P(V / T) = \frac{P(V \cap T)}{P(T)} = \frac{0.0198}{0.0492} \approx 0.4024 \text{ arrondi à } 10^{-4} \text{ près ; Cette probabilité se}$
	traduit en une phrase par :« Si le test est positif, il n'y a qu'environ 40 % de « chances » que la personne soit contaminée ».
A.3.b	$P(\overline{V}/\overline{T}) = \frac{P(\overline{V} \cap \overline{T})}{P(\overline{T})} = \frac{P(\overline{T}/\overline{V}) \times P(\overline{V})}{1 - P(T)} = \frac{0.97 \times 0.98}{1 - 0.0492} \approx 0.9998 \text{ arrondi à } 10^{-4} \text{ près.}$
В.	P(il y a au moins une personne contaminée parmi les 10) = $1 - P(10 \text{ non contaminées })$
	$= 1 - \underbrace{P(\overline{V}) \times P(\overline{V}) \times \times P(\overline{V})}_{10 \text{ fois}} = 1 - \left[P(\overline{V})\right]^{10} = 1 - (0.98)^{10} \approx 0.1829 \text{ arrondi à } 10^{-4} \text{ près.}$

Problème II

Une entreprise fait fabriquer des paires de chaussette auprès de trois fournisseurs F_1 , F_2 , F_3 . Dans l'entreprise, toutes ces paires de chaussettes sont regroupées dans un stock unique. La moitié des paires de chaussettes est fabriquée par le fournisseur F_1 , le tiers par le fournisseur F_2 et le reste par le fournisseur F_3 .

Une étude statistique a montré que :

- 5 % des paires de chaussette fabriquées par le fournisseur F₁ ont un défaut ;
- 1,5 % des paires de chaussette fabriquées par le fournisseur F₂ ont un défaut ;
- Sur l'ensemble du stock, 3,5 % des paires de chaussette ont un défaut.
- 1. On prélève au hasard une paire de chaussettes dans le stock de l'entreprise.

On considère les évènements F₁, F₂, F₃ et D suivants :

- F₁: « La paire de chaussettes prélevée est fabriquée par le fournisseur F₁ » ;
- F₂: « La paire de chaussettes prélevée est fabriquée par le fournisseur F₂ » ;
- F₃ : « La paire de chaussettes prélevée est fabriquée par le fournisseur F₃ » ;
- D : « La paire de chaussettes prélevée présente un défaut ».
- **a.** Traduire en termes de probabilités les données de l'énoncé en utilisant les évènements précédents.
 - Dans la suite, on pourra utiliser un arbre pondéré associé à cette expérience.
- **b.** Calculer la probabilité qu'une paire de chaussettes prélevée soit fabriquée par le fournisseur F₁ et présente un défaut.
- **c.** Calculer la probabilité de l'évènement $F_2 \cap D$.
- **d.** En déduire la probabilité de l'évènement $F_3 \cap D$.
- **e.** Sachant que la paire de chaussettes prélevée est fabriquée par le fournisseur F₃, quelle est la probabilité qu'elle présente un défaut ?
- 2. L'entreprise choisit un lot de 400 paires de chaussettes pour la vente.
 - Un client choisi au hasard 3 paires l'une après l'autre sans remise.

Calculer la probabilité qu'exactement une seule paire présente un défaut (donner la réponse à 10^{-3} près).

Problème III

Le secteur de production d'une entreprise est composé de 3 catégories de personnel :

- Les ingénieurs ;
- Les opérateurs de production ;
- Les agents de maintenance.

Il y a 8 % d'ingénieurs et 82 % d'opérateurs de production.

Les femmes représentent 50 % des ingénieurs, 25 % des agents de maintenance et 60 % des opérateurs de production.

Partie A

Dans cette partie, on interroge au hasard un membre du personnel de cette entreprise.

On note:

- M l'évènement : « le personnel interrogé est un agent de maintenance » ;
- O l'évènement : « le personnel interrogé est un opérateur de production » ;
- I l'évènement : « le personnel interrogé est un ingénieur » ;
- F l'évènement : « le personnel interrogé est une femme ».
- 1. Construire un arbre pondéré correspondant aux données.
- 2. Calculer la probabilité d'interroger :
 - **a.** Un agent de maintenance ;
 - **b.** Une femme agent de maintenance ;
 - **c.** Une femme.

Partie B

Le service de maintenance effectue l'entretien des machines, mais il est appelé aussi à intervenir en cas de panne. Pour cela une alarme est prévue ; des études ont montré que sur une journée :

- la probabilité qu'il n'y ait pas de panne et que l'alarme se déclenche est égale à 0,002 ;
- la probabilité qu'une panne survienne et que l'alarme ne se déclenche pas est égale à 0,003 ;
- la probabilité qu'une panne se produise est égale à 0,04.

On note:

- A l'évènement : « l'alarme se déclenche » ;
- B l'évènement : « une panne se produit » ;
- 1. Démontrer que la probabilité qu'une panne survienne et que l'alarme se déclenche est égale à 0.037.
- 2. Calculer la probabilité que l'alarme se déclenche.
- 3. Calculer la probabilité qu'il y ait une panne sachant que l'alarme se déclenche.

QIII	Réponses			
A.1.	$ \begin{array}{c} 0,25 \\ \hline M \\ 0,75 \\ \hline F \\ 0,82 \end{array} $ $ \begin{array}{c} 0,6 \\ \hline F \\ 0,08 \end{array} $ $ \begin{array}{c} 0,82 \\ \hline 0,4 \\ \hline F \\ 0,5 \end{array} $ $ \begin{array}{c} F \\ \hline 0,5 \\ \hline F \end{array} $			
A.2.a.	P(M) = 1 - 0.08 - 0.82 = 0.1;			
A.2.b	$P(F \cap M) = P(F / M) \times P(M) = 0.25 \times 0.1 = 0.025.$			
A.2.c	D'après la formule des probabilités totales : $P(F) = P(F \cap M) + P(F \cap O) + P(F \cap I) = 0,025 + P(F \cap O) \times P(O) + P(F \cap I) \times P(I);$ $P(F) = 0,025 + 0,6 \times 0,82 + 0,5 \times 0,08 = 0,557.$			
B.1.	 P(B∩A) = 0,002; P(B∩Ā) = 0,003; P(B) = 0,04; D'après la formule des probabilités totales : P(B) = P(B ∩ A) + P(B ∩Ā) alors P(B ∩ A) = P(B) - P(B ∩Ā) = 0,04 - 0,003 = 0,037. 			
B.2.	D'après la formule des probabilités totales : $P(A) = P(A \cap B) + P(A \cap \overline{B}) = 0.037 + 0.002 = 0.039.$			
В.З.	$P(B / A) = {P(B \cap A) \over P(A)} = {0,037 \over 0,039} = {37 \over 39}$.			

Bon travail