

Redes e Comunicações

Modelos de Comunicação por Camadas Camada de Transporte Camada de Enlace de Dados

		OSI		TCP/IP
	7	Aplicação	4	Aplicação
Software	6	Apresentação		
Layers	5	Sessão		
	4	Transporte	3	Transporte
	3	Rede	2	Internet
Hardware	2	Data-link		
Layers	1	Física	1	Network Access

		OSI		TCP/IP
	7	Aplicação	4	Aplicação
Software	6	Apresentação		
Layers	5	Sessão		
	4	Transporte	3	Transporte
	3	Rede	2	Rede
Hardware	2	Data-link LLC *		
Layers	1	Física MAC **	1	Network Access

^{*}Subcamada LLC - Logical Link Control

^{**}Subcamada MAC

Subcamada LLC - Logical Link Control

O LLC é implementado no software, a sua implementação é independente do hardware. Num computador, o LLC pode ser considerado o software do driver da placa de rede, que é um programa que interage diretamente com o hardware na placa de rede para transmitir os dados entre a subcamada MAC e os meios físicos;

Subcamada MAC – Medium Access Control

O MAC constitui a subcamada inferior da camada Data Link. O MAC é implementado pelo hardware, normalmente na placa de rede do computador. Os detalhes estão especificados nos padrões IEEE 802.3;

- LLC (Logical Link Control)
 - Compatibiliza os serviços oferecidos a camada de rede
 - Realiza multiplexação
 - Faz controle de erros e de fluxo

- Prepara os quadros a serem transmitidos
- Inclui informações de endereçamento e deteção de erros
- Responsável pelo acesso ao meio

Subcamadas: LLC e MAC

^{*}PDU - Protocol Data Unit

TCP/IP - Camada de Transporte

TCP/IP - Camada de Transporte

4 Aplicação

3 Transporte

A camada de transporte move os dados das aplicações entre os dispositivos na rede

- 2 Rede
- 1 Network Access

TCP/IP - Camada de Transporte - Definição

4 Aplicação

3 Transporte

2 Rede

Responsável por estabelecer uma sessão de comunicação temporária entre dois aplicativos e entregar os dados entre eles;

Link entre a camada de aplicação e as camadas inferiores responsáveis pela transmissão da rede

1 Network Access

TCP/IP - Camada de Transporte - Responsabilidades

4 Aplicação

Rastreio da comunicação - Rastreia cada transmissão no fluxo individual entre um aplicativo de origem e de destino;

3 Transporte

Segmentação - divide os dados em segmentos, mais simples de gerir e de transportar. O cabeçalho tem os dados da segmentação para a remontagem e também para o rastreio;

2 Rede

Identificar a aplicação - garante que, mesmo com várias aplicações em execução no dispositivo, todas as aplicações recebam os dados corretos através dos números de porta;

1 Network Access

^{*}Portos ou Port number – Intervalos de números de porta TCP e UDP usados pelos protocolos da camada de aplicação do conjunto de protocolos da Internet para o estabelecimento da conetividade host-to -host.

Camada de Transporte - Visão geral do TCP e UDP/Sockets de Portos

Origem e destino colocados em segmentos;

Segmentos encapsulados no pacote IP;

IP e Numero de porto = Socket;

Os Sockets permitem que vários processos (aplicações) sejam destintos;

Porta de origem atua como endereço de retorno;

s'segmentos encapsulados no pacote ip

Modelos de Comunicação

Grupos de números de porta

Intervalo	Grupo	Descrição
0 a 1023	Portas conhecidas	Reservadas para dispositivos e aplicações
1024 a 49151	Portas registadas	Registadas pela IANA a pedido das entidades que utilizam processos e aplicações especificas;
49152 a 65535	Portas privadas e/ou dinâmicas	Usualmente registadas dinamicamente pelos OS clientes e utilizadas para identificar a aplicação cliente durante o processo de comunicação;

s'segmentos encapsulados no pacote ip

Modelos de Comunicação

Grupos de números de porta (exemplos)

Port Number	Protocol	Application	Acronym	
20	TCP	File Transfer Protocol (data)	FTP	
21	TCP	File Transfer Protocol (control)	FTP	
22	TCP	Secure Shell	SSH	
23	TCP	Telnet	-	
25	TCP	Simple Mail Transfer Protocol	SMTP	
53	UDP, TCP	Domain Name Service	DNS	
67, 68	UDP	Dynamic Host Configuration Protocol	DHCP	
69	UDP	Trivial File Transfer Protocol	TFTP	
80	TCP	Hypertext Transfer Protocol	HTTP	
110	TCP	Post Office Protocol version 3	POP3	
143	TCP	Internet Message Access Protocol	IMAP	
161	UDP	Simple Network Management Protocol	SNMP	
443	TCP	Hypertext Transfer Protocol Secure	HTTPS	

• Enlace de Dados ou Data Link?

Camada de Enlace (lógica)

Características

Fornece serviços a camada 3

Encapsula os dados em quadros

Controla o acesso ao meio

Pode operar a 10, 100, 1000 ou 10.000Mb/s

Protocolo mais comum da camada 2: Ethernet

Camada de Enlace (lógica)

Ethernet

- O padrão Ethernet foi criado pela Xerox
- Atua na camada 2 do modelo OSI
- Foi normalizado como IEEE 802.3 apenas com uma subtil diferença
- A velocidade de transmissão do Ethernet inicial era de 2,94Mb/s

Conceitos básicos

• Frame Ethernet

• Controlo de acesso ao meio

• Acesso ao meio e modos de transmissão

Modos de transmissão

- Half-duplex
 - Ou envia, ou recebe informações;
- Full-duplex
 - Pode enviar e receber simultaneamente;

Endereço MAC

- Composto por 48 bits
- Escrito em notação hexadecimal
- Tem duas partes
 - Identifica a fabricante do dispositivo
 - Identifica o dispositivo
- Usado para comunicação intrarrede

Preâmbulo	Endereço de Destino	Endereço de Origem	Tipo	Dados	FCS	

Preâmbulo	nbulo Endereço de Destino	Endereço de Origem	Tipo	Dados	FCS	
-----------	---------------------------	--------------------	------	-------	-----	--

- Preâmbulo:
 - 8 bytes
 - 10101010...
 - Último byte: 10101011 (SFD)

Preâmbulo	Endereço de Destino	Endereço de Origem	Tipo	Dados	FCS	
-----------	---------------------	--------------------	------	-------	-----	--

- Preâmbulo:
 - 8 bytes
 - 10101010...
 - Último byte: 10101011 (SFD)

Preâmbulo	Endereço de Destino	Endereço de Origem	Tipo	Dados	FCS	
-----------	---------------------	--------------------	------	-------	-----	--

- Endereço de Origem:
 - Endereço MAC (48 bits)
 - Endereço do próximo host

Preâmbulo	Endereço de Destino	Endereço de Origem	Tipo	Dados	FCS
-----------	---------------------	--------------------	------	-------	-----

- Tipo (2 bytes):
 - Se o valor for inferior a 0x600 (1500), representa o tamanho do quadro
 - Se o valor for maior que 0x600 (1500), representa o número do protocolo da camada 3 que deve receber o quadro

Preâmbulo	oulo Endereço de Destino	Endereço de Origem	Tipo	Dados	FCS	
-----------	--------------------------	--------------------	------	-------	-----	--

- Dados (de 46 a 1500 bytes):
 - Onde as informações recebidas da camada 3 são armazenadas
 - Não pode ultrapassar o tamanho de 1500 bytes (limite da unidade de transmissão)
 - Não pode ter comprimento inferior a 46 bytes devido a possibilidade de colisão
 - Caso seja menor do que 46 bytes, deve-se complementar com 0 (padding)

Preâmbulo	Endereço de Destino	Endereço de Origem	Tipo	Dados	FCS	
-----------	---------------------	--------------------	------	-------	-----	--

- Frame Check Sequence (4 bytes):
 - Valor da soma
 - Utilizado para verificação de integridade

Acesso ao meio - CSMA/CD

- CS (Carrier Sense): Capacidade de identificar se há transmissão, ou seja, o primeiro passo na transmissão de dados numa rede Ethernet é verificar se o meio físico (passivo) está livre.
- MA (Multiple Access): Capacidade de múltiplos nós concorrerem pela utilização da estrutura, ou seja o protocolo CSMA/CD não gera nenhum tipo de prioridade (daí o nome de Multiple Access, acesso múltiplo). Como o CSMA/CD não gera prioridade pode ocorrer se duas placas tentarem transmitir dados ao mesmo tempo. Quando isso ocorre, há uma colisão e interrompe a transmissão;
- CD (Collision Detection): Responsável por identificar colisões na rede.

Acesso ao meio - CSMA/CD

- É o algoritmo utilizado para controle de acesso ao meio
- Escuta o meio antes de transmitir
- Reduz a probabilidade de colisão, mas não a elimina devido ao retardo de propagação
- Continua a verificar o meio por um tempo para saber se a transmissão foi bem sucedida (não ocorreu colisão)
- Para reduzir a probabilidade de uma nova colisão, a estação espera um tempo (back-off) aleatório para retransmissão

Acesso ao meio - CSMA/CD

- Na "espera exponencial binária", a estação espera um intervalo entre 0 e (2N - 1) × tempo máximo de propagação do sinal no meio, onde N é o número de tentativas transmissão
- Estação que tem quadro(s) da transmitir escolhe backoff com N=0
- Ao detetar colisão, envia sinal de congestionamento (jam) para informar as demais estações sobre a colisão, que descartam quadro recebido, e incrementa o N (1) até 15 (transmissão é abortada)

Topologias físicas (Ethernet)

- Barramento
 - Presente na Ethernet original e comutada

- Estrela
 - Topologia mais utilizada atualmente.
 - Opera com um equipamento central (switch ou hub)

Evolução do Protocolo Ethernet

