3 - M - MD - Besprechung am:

Übungsserie - Ableitung 3

- 1. Bestimme die Ableitung folgender Funktionen:
 - a) $f(x) = \frac{3}{2\pi^2}$
- b) $f(u) = 2\sqrt{u}$
- c) $f(t) = \frac{1}{3} \sqrt[3]{t}$
- d) $f(x) = \frac{1}{4\sqrt{x}}$

- e) $f(z) = \frac{5}{4\sqrt{z}}$ f) $f(m) = \sqrt[5]{m^3}$ g) $f(x) = \frac{x^n}{n!}$ h) $f(k) = -4\cos k$

- i) $f(i) = 5i\sqrt{i}$ j) $f(x) = 4 \ln x$ k) $f(t) = \sqrt[4]{\frac{5}{t^3}}$ l) $f(x) = x^2 + y^2$
- 2. Wie Aufgabe 1:
 - a) $f(x) = 2x^4 + x^3 + 2$
- b) $f(x) = (x^2 1)(x^3 + 2)$ c) $g(t) = \sqrt{3t} t^{12} + \frac{2}{11}$

- d) $f(z) = \frac{a}{z^2} + \frac{b}{z} + c$
- e) $f(k) = (\sqrt{k} + 2)^2$ f) $f(u) = \frac{1}{3} \sin u \frac{8}{u^2}$
- g) $f(u) = e^{u+3} + 7$
- h) $h(x) = 4 \log 2x \frac{5}{4}$ i) $f(s) = a \log_2(s^4) + b \ln s$
- 3. Für welche Werte der unabhängigen Variablen sind die gegebenen Funktionen fallend? Für welche ist die Steigung null?

 - a) $x \mapsto -3x^3$ b) $x \mapsto -2x+1$ c) $t \mapsto \frac{t^3}{4}$

- d) $u \mapsto e^u$
- e) $x \mapsto \frac{x^2 1}{x}$ f) $t \mapsto \ln t \sqrt{t}$
- g) $u \mapsto \sin u \cos u$

- h) $x \mapsto -2x^4 + 5x^2 + 9$
- 4. Bestimme die Ableitung folgender Funktionen mit Produkt- oder Quotientenregel:
 - a) $f(x) = \sin x \cos x$

- b) $f(x) = \sin^2 x$ c) $f(t) = t \sin t$ d) $f(u) = -\frac{u^2}{2} \cos u$

- e) $f(x) = \sin x x \cos x$ f) $f(u) = \sqrt{u} \cos u$ g) $f(t) = \frac{1}{t^2} \sin t$ h) $f(x) = (-2x + x^2) \sin x$
- i) $f(z) = ze^z$
- j) $f(m) = e^m \sin m$ k) $f(u) = u \ln u$
- 1) $f(k) = t^2 e^t$

- m) $f(x) = \frac{1}{1+x}$ n) $f(x) = \frac{2x-7}{2x+7}$
- o) $f(y) = \frac{a-y}{a+y}$
- p) $f(x) = \frac{2x+1}{x^2+x+1}$

- r) $f(r) = \frac{r-1}{3r}$ s) $f(y) = \frac{3-\sqrt{y}}{3+\sqrt{y}}$
- t) $f(z) = \frac{z^3 \sqrt{z}}{1+z^2}$
- u) $f(x) = \frac{\sin x}{1 + \cos x}$

- 5. Leite mit der Kettenregel ab:
 - a) $f(x) = 4(5x-3)^2$ b) $f(x) = (4 \cdot \frac{2}{x})^2$
- c) $f(t) = \frac{1}{(3t-2)^2}$
- d) $f(u) = \sqrt{8u 3}$

- e) $f(z) = \frac{1}{\sqrt{2z+4}}$ f) $f(k) = k\sqrt[3]{1-k}$ g) $f(u) = \cos^3 u$
- h) $f(x) = (\ln x)^2$

- i) $f(y) = \ln \frac{1}{1+y}$ j) $f(x) = e^{\sin x}$
- k) $f(z) = e^{\sqrt{2z+1}}$
- $f(x) = \ln(\sin^2 x)$

3 - M - MD - Besprechung am:

Übungsserie - Ableitung 3

- 1. Bestimme die Ableitung folgender Funktionen:
 - a) $f(x) = \frac{3}{2-2}$ b) $f(u) = 2\sqrt{u}$
- c) $f(t) = \frac{1}{3} \sqrt[3]{t}$
 - d) $f(x) = \frac{1}{4\sqrt{x}}$

- e) $f(z) = \frac{5}{4/z}$ f) $f(m) = \sqrt[5]{m^3}$ g) $f(x) = \frac{x^n}{n!}$ h) $f(k) = -4\cos k$

- i) $f(i) = 5i\sqrt{i}$ j) $f(x) = 4\ln x$ k) $f(t) = \sqrt[4]{\frac{5}{t^3}}$ l) $f(x) = x^2 + y^2$
- 2. Wie Aufgabe 1:
 - a) $f(x) = 2x^4 + x^3 + 2$
- b) $f(x) = (x^2 1)(x^3 + 2)$
- c) $q(t) = \sqrt{3t} t^{12} + \frac{2}{11t}$
- d) $f(z) = \frac{a}{z^2} + \frac{b}{z} + c$ e) $f(k) = (\sqrt{k} + 2)^2$
- f) $f(u) = \frac{1}{3}\sin u \frac{8}{3}$

- g) $f(u) = e^{u+3} + 7$ h) $h(x) = 4 \log 2x \frac{5}{4}$ i) $f(s) = a \log_2(s^4) + b \ln s$
- 3. Für welche Werte der unabhängigen Variablen sind die gegebenen Funktionen fallend? Für welche ist die Steigung null?

 - a) $x \mapsto -3x^3$ b) $x \mapsto -2x+1$ c) $t \mapsto \frac{t^3}{4}$

- d) $u \mapsto e^u$ e) $x \mapsto \frac{x^2 1}{x}$ f) $t \mapsto \ln t \sqrt{t}$
- g) $u \mapsto \sin u \cos u$

- h) $x \mapsto -2x^4 + 5x^2 + 9$
- 4. Bestimme die Ableitung folgender Funktionen mit Produkt- oder Quotientenregel: :
 - a) $f(x) = \sin x \cos x$ b) $f(x) = \sin^2 x$ c) $f(t) = t \sin t$ d) $f(u) = -\frac{u^2}{2} \cos u$

- e) $f(x) = \sin x x \cos x$ f) $f(u) = \sqrt{u} \cos u$ g) $f(t) = \frac{1}{t^2} \sin t$ h) $f(x) = (-2x + x^2) \sin x$

- i) $f(z) = ze^z$ j) $f(m) = e^m \sin m$ k) $f(u) = u \ln u$ l) $f(k) = t^2 e^t$
- m) $f(x) = \frac{1}{1+x}$ n) $f(x) = \frac{2x-7}{2x+7}$ o) $f(y) = \frac{a-y}{a+y}$ p) $f(x) = \frac{2x+1}{x^2+x+1}$

- r) $f(r) = \frac{r-1}{3r}$ s) $f(y) = \frac{3-\sqrt{y}}{3+\sqrt{y}}$ t) $f(z) = \frac{z^3\sqrt{z}}{1+z^2}$ u) $f(x) = \frac{\sin x}{1+\cos x}$
- 5. Leite mit der Kettenregel ab:
 - a) $f(x) = 4(5x-3)^2$ b) $f(x) = (4 \cdot \frac{2}{\pi})^2$
- c) $f(t) = \frac{1}{(3t-3)^2}$ d) $f(u) = \sqrt{8u-3}$

- e) $f(z) = \frac{1}{\sqrt{2z+4}}$ f) $f(k) = k\sqrt[3]{1-k}$ g) $f(u) = \cos^3 u$
- h) $f(x) = (\ln x)^2$

- i) $f(y) = \ln \frac{1}{1+x}$ j) $f(x) = e^{\sin x}$
- k) $f(z) = e^{\sqrt{2z+1}}$
- $1) f(x) = \ln(\sin^2 x)$