ENEL 476 – Assignment #3

Due on Thurs April 6 at 4 pm

Drop boxes on 2nd floor of ICT

An antenna with impedance $Z_L=72$ -j43 Ω is connected to a lossless transmission line with impedance $Z_0=75\Omega$. Use the Smith Chart to solve the following problems.

- a) Plot the normalized impedance, z_L
- b) Find the reflection coefficient, Γ .
- c) Find the standing wave ratio (VSWR, SWR or s).
- d) Find the shortest distances from the antenna to the location of the voltage maximum (V_{max}) and voltage minimum (V_{min}) on the transmission line.
- e) Indicate the locations of the short and open on the Smith Chart.
- f) The antenna is connected to transmission line of length of 0.625 $\!\lambda$. What is Z_{in} at this location?
- g) A generator supplies 20 V and has internal impedance of $\rm Z_g$ = 75 Ω . How much power is absorbed by the load connected to the generator and the 0.625 λ line?

a)
$$3L = \frac{72.143}{75}$$
 $= 0.96 - j0.573$

b) $171 = 0.38$
 $x = -76^{\circ}$

C) $5 = 1.75 - 1.8$
 $3L > 3in > 0.3564$
 $3L > 3in > 0.3564$
 $3L > 3in > 0.3564$
 $3in = 0.575 - j0.08$
 $3in = 0.575 - j0.08$

PL= 0.610W

