UFJF - ICE - Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 2

1- Resolva a inequação $|x^2 - 4| < 3x$.

Resp.: (1,4)

- 2- Dizemos que uma relação entre dois conjuntos não vazios A e B é uma função de A em B quando:
- a) todo elemento de B é imagem de algum elemento de A.
- b) todo elemento de B é imagem de um único elemento de A.
- c) todo elemento de A possui somente uma imagem em B.
- d) todo elemento de A possui, no mínimo, uma imagem em B.
- e) todo elemento de A possui somente uma imagem em B e vice-versa.

GABARITO: C

- 3- Seja $f: R \to R$ uma função. O conjunto dos pontos de interseção do gráfico de f com uma reta vertical
- a) possui exatamente dois elementos.
- b) é vazio.
- c) é infinito.
- d) possui, pelo menos, dois elementos.
- e) possui um só elemento.

GABARITO: E

- **4-** A função $f: R \to R$ é tal que, para todo $x \in R$, f(3x) = 3f(x). Se f(9) = 45, então:
- a) f(1) = 5
- b) f(1) = 6 c) f(1) = 9 d) f(1) não pode ser calculado
- e) f(1) = 1

GABARITO: A

5- Seja f(n) uma função definida para todo n inteiro satisfazendo as seguintes condições:

$$f(2) = 2 e f(p+q) = f(p).f(q).$$

O valor de f(0) é:

a) 0 b) 1

c) 2 d) $\sqrt{2}$ e) 3

GABARITO: B

6- Seja f(n) uma função definida para todo n inteiro satisfazendo as seguintes condições:

e) 2

$$f(2) = 2 e f(p+q) = f(p).f(q)$$
.

O valor de f(-2) é:

b) $\frac{1}{2}$

a) $-\frac{1}{2}$

c) 0

d) - 2

GABARITO: B

7- A função f é definida por f(x) = ax + b, onde a e b são números reais. Sabe-se que f(-1) = 3 e f(1) = 1.

O valor de f(3) é:

a) 0 b) 2 **GABARITO: E**

8- Na função f definida por f(x) = ax + b, onde a e b são números reais e $a \ne 0$, temos:

a) o coeficiente b determina o ponto em que a reta corta o eixo das abscissas.

c) -5 d) -3 e) -1

- b) o coeficiente a determina o ponto em que a reta corta o eixo das ordenadas.
- c) o coeficiente b determina a inclinação da reta.
- d) o coeficiente a determina o ponto em que a reta corta o eixo das abscissas.
- e) o coeficiente b determina o ponto em que a reta corta o eixo das ordenadas.

GABARITO: E

- 9- A função $\frac{y}{2} = x + 1$ representa no plano cartesiano uma reta:
- a) paralela à reta de equação y = x + 3.
- b) concorrente à reta de equação y = 2x + 5.
- c) igual à reta de equação y = x + 2.
- d) que intercepta o eixo das ordenadas no ponto (0, 1).
- e) que intercepta o eixo das abscissas no ponto (-1, 0).

GABARITO: E

10- A função quadrática $y = (m^2 - 4)x^2 - (m + 2)x - 1$ está definida quando:

b) $m \ne 2$ c) $m \ne -2$ d) m = -2 ou m = 2 e) $m \ne \pm 2$

GABARITO: E

11- Sabe-se que o gráfico abaixo representa uma função quadrática *f*.

Esta função é definida por:

c)
$$f(x) = -\frac{x^2}{2} - x - \frac{3}{2}$$

e)
$$f(x) = x^2 + 2x - 3$$

b)
$$f(x) = \frac{x^2}{2} - x - \frac{3}{2}$$

d)
$$f(x) = x^2 - 2x - 3$$

GABARITO: B

12- Se $y = ax^2 + bx + c$ é a equação da parábola da figura abaixo, pode-se afirmar que:

a) ab < 0 b) ac > 0 c) bc < 0 d) $b^2 - 4ac < 0$ e) $b^2 - 4ac = 0$

GABARITO: A

13- O valor máximo da função $y = ax^2 + bx + c$, com $a \ne 0$, é:

a)
$$-\frac{\Delta}{4a}$$
, se $a < 0$

a)
$$-\frac{\Delta}{4a}$$
, se $a < 0$ b) $-\frac{b}{2a}$, se $a < 0$ c) $-\frac{\Delta}{4a}$, se $a > 0$ d) $-\frac{b}{2a}$, se $a > 0$ e) $b^2 - 4ac$, se $a < 0$

c)
$$-\frac{\Delta}{4a}$$
, se $a > 0$

d)
$$-\frac{b}{2a}$$
, se $a > 0$

GABARITO: A

14- Seja a função $y = 3x^2 - 12$ definida no intervalo $-4 < x \le 3$. A imagem de tal função é tal que:

a)
$$-2 \le y \le 2$$

a)
$$-2 \le y \le 2$$
 b) $15 \le y < 36$ c) $15 \le y \le 36$ d) $-12 \le y < 36$ e) $-12 \le y \le 36$

c)
$$15 \le y \le 36$$

d)
$$-12 \le v < 36$$

GABARITO: D

 $\begin{array}{ll} \textbf{15- O conjunto solução da desigualdade} & \frac{x+1}{x^2-3x+2} \geq 0 \ \text{\'e}: \\ \textbf{a) } \left[-1,1\right) \cup \left(2,+\infty\right) & \textbf{b) } \left[-1,1\right] \cup \left[2,+\infty\right) & \textbf{c) } \left(-\infty,-1\right] \cup \left[2,+\infty\right) & \textbf{d) } \left(-\infty,1\right] \cup \left(2,+\infty\right) & \textbf{e) } \left(2,+\infty\right) \end{array}$

a)
$$[-1.1) \cup (2.+\infty)$$

b)
$$\begin{bmatrix} -1,1 \end{bmatrix} \cup \begin{bmatrix} 2,+\infty \end{bmatrix}$$

c)
$$(-\infty,-1] \cup [2,+\infty)$$

d)
$$(-\infty,1] \cup (2,+\infty)$$

GABARITO: A

16- O conjunto de todos os números reais x para os quais a expressão $\frac{\sqrt{4-x^2}}{\sqrt[3]{x-1}}$ está definida é:

a)
$$\{x \in R; 1 < x \le 2\}$$

d)
$$\{x \in R; -2 \le x \le 2 \text{ e } x \ne 1\}$$

b)
$$\{x \in R; 1 < x < 2\}$$

d)
$$\{x \in R; -2 \le x \le 2$$

e) $\{x \in R; -2 \le x \le 2\}$

c) $\{x \in R; -2 < x < 2 \text{ e } x \neq 1\}$

GABARITO: D

17- Considere as funções $f: R \to R$ e $g: R \to R$ definidas por f(x) = 2x + b e $g(x) = x^2$, sendo b um número real. Conhecendo-se a composta $(gof)(x) = 4x^2 - 12x + 9$, podemos afirmar que b pertence ao intervalo:

a)
$$(-4,0)$$

b)
$$(0,2)$$
 c) $(2,4)$ d) $(4,+\infty)$ e) $(-\infty,4)$

GABARITO: A

18- Se $f(x) = \frac{1}{1-x}$, então [fo(fof)](x) é igual a: a) 2x b) 3x c) 4x d) x e) -x

GABARITO: D

19- O domínio da função composta [fo(fof)] do exercício anterior é o conjunto:

b)
$$R - \{0, 1\}$$

c)
$$R - \{0\}$$

d)
$$R - \{1\}$$
 e) $R - \{-1, 0, 1\}$

GABARITO: B

20- Sejam $f(x) = \sqrt{x-4}$, $g(z) = [f(z)]^2$ e h(y) = y-4.

Considere as seguintes afirmativas:

- I) Os domínios de g(z) e h(y) coincidem.
- II) O domínio de g(z) contem estritamente o domínio de h(y).
- III) O domínio de f(x) não tem pontos em comum com o domínio de g(z).
- IV) Qualquer que seja z real, g(z) = z 4.

Marque a alternativa **CORRETA**.

- a) Todas as afirmativas são verdadeiras.
- b) Todas as afirmativas são falsas.
- c) Apenas uma afirmativa é verdadeira.
- d) Apenas duas afirmativas são verdadeiras.
- e) Apenas três afirmativas são verdadeiras.

GABARITO: B

21- Sejam A, B e D conjuntos não vazios do conjunto dos números reais e sejam as funções $f: A \to B$, $g: D \to R$ e a função composta $(f \circ g) : E \to K$. Podemos afirmar que os conjuntos E e K são tais que:

- a) $E \subset A$ e $K \subset D$
- b) $E \subset B$ e $K \supset A$
- c) $E \supset D$, $D \neq E$ e $K \subset B$
- d) $E \subset D$ e $K \subset B$
- e) $E \subset B$ e $K \subset D$

GABARITO: D

22- Sendo $f(x) = \begin{cases} -x^2, & \text{se } x \le 1 \\ x+1, & \text{se } x > 1 \end{cases}$ e g(x) = x+3, podemos afirmar que:

a)
$$(f \circ g)(x) = \begin{cases} -(x+3)^2, & \text{se } x \le -2 \\ x+4, & \text{se } x > -2 \end{cases}$$

b) $(f \circ g)(x) = \begin{cases} -x^2+3, & \text{se } x \le 1 \\ x+4, & \text{se } x > 1 \end{cases}$
c) $(f \circ g)(x) = \begin{cases} -(x+3)^2, & \text{se } x \le 1 \\ x+4, & \text{se } x > 1 \end{cases}$
d) $(f \circ g)(x) = \begin{cases} -x^2+3, & \text{se } x \le -2 \\ x+4, & \text{se } x > -2 \end{cases}$

b)
$$(fog)(x) = \begin{cases} -x^2 + 3, & \text{se } x \le 1\\ x + 4, & \text{se } x > 1 \end{cases}$$

c)
$$(fog)(x) = \begin{cases} -(x+3)^2, & \text{se } x \le 1\\ x+4, & \text{se } x > 1 \end{cases}$$

d)
$$(fog)(x) = \begin{cases} -x^2 + 3, & \text{se } x \le -2 \\ x + 4, & \text{se } x > -2 \end{cases}$$

e) Nenhuma das respostas anteriores

GABARITO: A

23- Ao lado está representado o gráfico de uma função *f*.

Um exame deste gráfico nos permite concluir que:

- a) f é injetora
- b) f é periódica
- c) $f(\pi) < 0$
- d) $f(\sqrt{3}) \le 0$
- e) f(1) + f(2) = f(3)

GABARITO: D

24- A função f definida em $R - \{2\}$ por $f(x) = \frac{2+x}{2-x}$ é inversível. O seu contradomínio é $R - \{a\}$.
O valor de a é: a) -2 b) 2 c) 1 d) -1 e) 0 GABARITO: D
25- Considere o conjunto solução S da equação $x = \left \sqrt{2+x} \right $. Podemos afirmar que:
 a) S é o conjunto vazio. b) S possui apenas um elemento. c) S possui apenas dois elementos. d) S possui apenas três elementos. e) S é um conjunto infinito. GABARITO: B
 26- Sobre o conjunto solução da equação √4x+1 = 2x-1, podemos afirmar que: a) é vazio. b) possui infinitos elementos. c) é um conjunto unitário. d) possui apenas dois elementos. e) possui apenas três elementos. GABARITO: C
27- Marque a alternativa CORRETA . a) $0.21^2 > 0.21^3$ b) $0.21^7 < 0.21^8$ c) $0.21^4 > 0.21^3$ d) $0.21^{0.21} > 0.21^{0.20}$ e) $0.21^{-2} < 1$ GABARITO: A
28- O domínio da função inversa da função $y = 1 - 2^{-x}$ é o intervalo:
a) $(-\infty, 1)$ b) $(1, +\infty)$ c) $(-\infty, -1)$ d) $(2, +\infty)$ e) $(-\infty, +\infty)$ GABARITO: A
29- Se $y = \log_{x-2}(x^2 - 4x)$, então para que y exista devemos ter x:
a) igual a 4 b) menor que 4 c) maior que 4 d) igual a 2 e) menor que 0 ou maior que 4

GABARITO: C

30- A equação $\log_x(x+1) = \log_{x+1} x$, sendo x um número real:

- a) não tem solução. d) tem duas soluções.
- b) tem uma única solução igual a $\frac{-1+\sqrt{5}}{2}$. e) tem três soluções.
- c) tem uma única solução igual a $\frac{1+\sqrt{2}}{2}$.

GABARITO: B

31- Se $\log_x 25 > \log_x 16$ então:

a)
$$x > 0$$
 b) $x < 0$ c) $x > -1$ d) $x > 1$ e) $0 < x < 1$ **GABARITO:** D

32- Sejam x e y dois números reais tais que $0 \le x < y < \frac{\pi}{2}$.

Marque a alternativa **INCORRETA**.

a)
$$2^{tgx} < 2^{tgy}$$
 d) $tgx < tgy$

b)
$$\cos x < \cos y$$
 e) $\left(\frac{1}{2}\right)^{seny} < \left(\frac{1}{2}\right)^{senx}$

c) senx < seny

GABARITO: B

33- Qual dos seguintes conjuntos de valores de
$$x$$
 poderia constituir um domínio para a função $\log(senx)$?

a) $x \le 0$ b) $\frac{\pi}{2} < x < \pi$ c) $x > 0$ d) $\frac{3\pi}{2} < x < 2\pi$ e) $x \ne k\pi$, sendo $k = 0,1,2,...$

34- A função $f(x) = sen x. \log_{\frac{1}{2}} x$ é:

a) sempre negativa, para $0 < x < \pi$.

d) negativa para 0 < x < 1 e positiva para $1 < x < \pi$.

b) sempre positiva, para $0 < x < \pi$.

e) positiva para $0 < x < \frac{\pi}{2}$ e negativa para $\frac{\pi}{2} < x < \pi$.

c) positiva para 0 < x < 1 e negativa para $1 < x < \pi$.

GABARITO: C

35- O domínio da função definida por $y = arcsen(\sqrt{2x-3})$ é: a) $\left[\frac{3}{2}, +\infty\right)$ b) $\left[\frac{3}{2}, 2\right]$ c) $\left[0, 2\right]$ d) $\left[-2, 0\right] \cup \left[\frac{5}{2}, 4\right]$ e) $\left[-1, 1\right]$

a)
$$\left[\frac{3}{2}, +\infty\right)$$

b)
$$\left[\frac{3}{2}, 2\right]$$

d)
$$[-2,0] \cup [\frac{5}{2},4]$$

GABARITO: B

36- Admitindo a variação de arcsenx no intervalo $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, a solução da equação $arcsenx = 2arcsen\frac{1}{2}$ é: b) x = 1 c) $x = \pi$ d) $x = \frac{\pi}{4}$ e) $x = \frac{\sqrt{3}}{2}$

a)
$$x = -2$$

b)
$$x = 1$$

c)
$$x = \pi$$

d)
$$x = \frac{\pi}{4}$$

e)
$$x = \frac{\sqrt{3}}{2}$$

GABARITO: E

37- Exercícios do livro texto:

Páginas 20 a 24: exercícios 2, 3, 5, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 29, 30, 31, 33 e 36 Páginas 53 a 59: exercícios 1 a 16, 19, 25, 29, 30, 31, 32, 34, 41, 42, 43, 47, 48, 49, 50, 52, 53, 54, 57 e 59