RNAseq Deduplication with UMIs

Radha Ganesh & David Ho

Under the Guidance of Dr. Barbara Novak

Table of Contents

Background Methods Results

4 Conclusion

5 Future Plans

What is RNAseq?

- Uses next-generation sequencing (NGS) to reveal the presence and quantify RNA in a biological sample.
- Strictly speaking this could be any type of RNA (mRNA, IncRNA, miRNA) from any type of biological sample.
- One goal is to profile gene expression by identifying genes that are differentially expressed (DE) between two or more biological conditions

Duplicates

- When you sequence cDNA, you get multiple short sequences, referred to as reads, from each sample
- A duplicate is when you get more than one read with the exact same sequence.

Biological vs. Technical Duplicates

- Biological duplicates are true duplicates that came from multiple copies of a transcript from the original sample.
- Technical duplicates came from a technical aspect of either library preparation or sequencing.
- When deduplicating, we want to remove the technical duplicates

Types of Technical Duplicates

The Use of Unique Molecular Identifiers (UMIs)

- UMIs help labs keep track of molecules and remove errors during amplification and sequencing
- Before the PCR step, every molecule in a sample is uniquely labeled with a UMI, which is typically a random sequence of oligonucleotides.
- When we see two identical tags on two identical sequences, we can assume that they are from the same original molecule and are therefore technical duplicates. A finding of two different tags on the same sequence means the sequences came from two different original molecules and are therefore biological duplicates.

Problems with Removing Technical Duplicates Using UMIs

- As of now, there exists no single approach to efficiently remove technical duplicates using UMIs.
- Many programs that exist are very time and memory intensive
- Through this project, we evaluated the efficiency of different deduplication methods and attempted to determine the effect of removing technical duplicates on differential gene expression.
- The tools we used for deduplication were Picard's MarkDuplicates & UMItools' dedup.

Tools Used for Picard's MarkDuplicates

What is fgbio?

- Java based toolset created by Fulcrum Genomics
- Allow users to manipulate read-level data (SAM, BAM, FASTQ)
 - Perfect tool to extract UMIs from a readname

What is Picard?

- Java based toolset created by Broad Institute
- Has tools to collect statistics on a given SAM or BAM file
- Can mark any duplicates found in a SAM or BAM file

How Do They Work Together?

- OSD-511 dataset was preprocessed by UMItools
 - UMIs are placed at the ends of the readnames
- Problematic for Picard
 - The tool will not facilitate duplicate marking using molecular barcodes unless the UMIs are in a SAM tag.
- Therefore, a preprocessing step is required
 - Parse through all of the readnames to strip the UMIs and make them into tags

fgbio's CopyUmiFromReadName

As the name suggests, this tool will parse through every readname to copy the UMI at the end to create an RX tag.

```
fgbio CopyUmiFromReadName \
--input=input.bam \
--output=output.bam \
--remove-umi=true \
--field-delimiter=_
```

Picard's MarkDuplicates

- Picard's MarkDuplicates goes through
 3 main steps:
 - Loads a sorted BAM file and it iterates through each read in order
 - Goes through each input list and builds a duplicate set
 - Marks any duplicate reads and write non-duplicate reads to a resulting output BAM file.

```
picard MarkDuplicates \
I=input.bam \
O=output.bam \
M=metrics_data.txt \
REMOVE_DUPLICATES=true \
OPTICAL_DUPLICATE_PIXEL_DISTANCE=2500 \
ASSUME_SORT_ORDER=queryname \
BARCODE_TAG=RX
```

Tools Used for UMItools dedup

What is SAMtools?

- A software package that allow users to manipulate alignment files in SAM, BAM, and CRAM formats
 - Good for sorting and indexing alignment files

What is UMItools?

- A toolset designed for working with UMIs and barcodes
- Has tools to remove PCR duplicates using UMIs

How Do They Work Together?

- UMItools deduplication requires a sorted (by position) and indexed alignment file as input
 - Files need to be preprocessed using SAMtools' sort and index commands prior to deduplication
- UMItools prepare for rsem requires a deduplicated file sorted (by name) as input
 - Files need to be preprocessed using SAMtools' collate command

SAMtools' sort and index

- sort command: sorts the input file by position
- index command: indexes the sorted file
 - allows for fast random access

```
samtools sort \
input.bam \
-o output_sorted.bam

samtools index \
input_sorted.bam
```

UMItools dedup

 Removes duplicate reads based on mapping coordinates and the UMI attached to it

```
umi_tools dedup \
-I input_sorted.bam \
--paired \
-S output_deduplicated.bam \
-L log_file.log \
-E error_file.err
```

SAMtools collate

 collate command: sorts the input file by name

```
samtools collate \
-o output_sorted.bam \
input.bam
```

UMItools prepare-for-rsem

- The output from UMItools dedup is not compatible with rsem (the next step in the DP pipeline)
- prepare-for-rsem command: outputs a file compatible with rsem

```
umi_tools prepare-for-rsem \
-I input_deduplicated_sorted.bam \
-S output.bam \
-L log_file.log \
-E error_file.err
```

Picard's Time & Resources

- From what we were able to run:
 - Process for Picard + fgbio was fairly quick, totalling an average of 70 minutes for each sample run.
 - Memory wise, Picard required an average of 65GB of RAM to properly run.
- In short, Picard was fairly quick to run but a memory hog

UMItools' Time & Resources

- From what we were able to run:
 - Process for UMItools took an entire day
 - Sorting takes about 1 hour per sample
 - Deduplication took around 5.5 hours per sample (one sample took over 21 hours to deduplicate)
 - Needed 60GB of RAM for most of the samples tested but some need more

Duplication Rates

Sample Name	Original % Duplication	UMItools %Duplication	Picard % Duplication
FLT_LAR_OLD_FL4	50.86	31.08	17.42
GC_LAR_YNG_GL2	49.68	20.31	9.61
VIV_LAR_OLD_VL12	57.92	44.46	28.65
VIV_LAR_OLD_VL15	41.92	21.66	12.65
VIV_LAR_YNG_VL17	45.18	17.49	8.84

Conclusions

- Our results suggest that UMItools and Picard could work in deduplicating GeneLab RNAseq data
- The difference in duplication rates for UMItools and Picard could be due to the different deduplication methods used by both tools
 - Picard deduplicated using query name sorted files
 - UMItools uses mapping coordinates and UMIs to deduplicate

Next Steps

- Run differential gene expression analysis on deduplicated samples
- Look more into why the UMItools and Picard duplication rates are different
- Optimize the tools used for running on the cluster
 - Time and resource efficiency
- If applicable, update the RNAseq pipeline to include deduplication

Current RNAseq Pipeline

Acknowledgements

- Funding for this project was provided by the NASA/BMSIS
 YSP
- Special thanks to
 - Dr. Barbara Novak
 - Dr. Amanda Saravia-Butler
 - Alexis Torres
 - NASA GeneLab Data Processing Team

