EMD3

Exercice1 (3,5 point)

On pose:
$$F(x) = \int_{1}^{+\infty} \frac{1 - \cos(t)}{t^2} e^{-xt} dt$$
.

- 1) Montrer que F est continue sur $[0, +\infty[$.
- 2) Montrer que F est de classe C^1 sur $]0,+\infty[$.

Exercice 2 (3,5 points)

Etudier la nature des séries numériques suivantes:

1)
$$\sum_{n=1}^{\infty} 2^{-n^2}$$
, 2) $\sum_{n=1}^{\infty} \frac{\log n}{n} \cos(na)$ (suivant les valeurs du paramètre a).

Exercice3 (5 points)

Considérons la série entière $\sum_{n\geq 1} a_n x^{2n+1}$ où l'on a:

$$a_n = (-1)^{n+1} \frac{x^{2n+1}}{(2n+1)(2n-1)} \quad n \ge 1$$

- 1) Déterminer son rayon ainsi que son domaine de convergence, puis calculer sa somme *S*.
- 2) En déduire la somme de la série numérique $\sum_{n\geq 0} \frac{(-1)^{n+1}}{4n^2-1}$.

Exercice4 (8 points)

Soit la série de fonction de terme général $f_n(x)$ telle que:

$$f_n(x) = \frac{x}{n(1+nx^2)} \quad n \ge 1$$

I. 1) Montrer que la série $\sum f_n(x)$ converge normalement sur \mathbb{R} .

Posons
$$S(x) = \sum_{n\geq 1}^{n} f_n(x)$$
.

- 2) Montrer que S est continue sur \mathbb{R} .
- 3) Montrer que S est dérivable sur \mathbb{R}^* .
- II. Dans cette partie, on admettra que:

$$\int_{1}^{+\infty} \frac{1}{u(1+x^{2}u)} du \leq \sum_{\substack{n\geq 1\\ +\infty}} \frac{x}{n(1+nx^{2})} \leq 1 + \int_{1}^{+\infty} \frac{1}{u(1+x^{2}u)} du \ \forall x \in \mathbb{R}^{*}.$$

- 2) Pour $x \in \mathbb{R}^*$, calculer $\int_{1}^{+\infty} \frac{1}{u(1+x^2u)} du$.
- 3) En déduire que $S(x) \sim x \log\left(1 + \frac{1}{x^2}\right)$.
- 4) Montrer que S n'est pas dérivable en 0.

Un corrigé de l'EMD3 2009/2010:

Exercice 1:

1) Continuité de F sur \mathbb{R}_+ : posons $f(t,x) = \frac{1-\cos(t)}{t^2}e^{-xt^2}$, on a :

a) f est continue sur $[1,+\infty[\times\mathbb{R}_+]$

b) Etudions la convergence uniforme de $\int_{-\infty}^{+\infty} f(t,x)dt$:

Comme $|f(t,x)| \leq \frac{2}{t^2}e^{-xt^2} \leq \frac{2}{t^2} \ \forall \ x \in \mathbb{R}_+, \ \text{or} \ \int\limits_{1}^{1} \frac{1}{t^2}dt \ \text{converge} \ (\ \text{Riemann}).$

D'où d'après Weirestrass $\int\limits_{-\infty}^{+\infty} f(t,x)dt$ converge uniformément sur \mathbb{R}_+ .

De a) et b) F est continue sur \mathbb{R}_+ .

2) Dérivabilité de F sur \mathbb{R}_+ : $\frac{\partial f}{\partial x}(t,x) = (\cos t - 1)e^{-xt^2}$. on a :

c) f et $\frac{\partial f}{\partial x}$ sont continues sur $[1,+\infty[\times\mathbb{R}_+]$.

d) Etudions la convergence uniforme de $\int_{-\infty}^{+\infty} \frac{\partial f}{\partial x}(t,x)dt$:

Comme $\left|\frac{\partial f}{\partial x}(t,x)\right| \leq 2e^{-xt^2} \leq 2e^{-at^2} \ \forall \ x \in [a,+\infty[,\ a>0,$

or $\int_{1}^{+\infty} e^{-at^2} dt$ converge ($\lim_{t \to +\infty} e^{-at^2} = 0$).

D'où d'après Weirestrass $\int_{-\infty}^{\infty} f(t,x)dt$ converge uniformément sur tout $[a,+\infty[, a>0.$

De c) et d) F est dérivable sur tout $[a, +\infty[$, a > 0 ie F dérivable sur \mathbb{R}_+ .

Exercice 2:

1) Utilisons la régle de Cauchy: $\lim_{n \to +\infty} \left(2^{-n^2}\right)^{\frac{1}{n}} = \lim_{n \to +\infty} 2^{-n} = \lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0 < 1.$ On en déduit que la série numérique donnée est convergente.0

2) <u>1er cas:</u> $a \neq 2k\pi$, $k \in \mathbb{Z}$. Utilisons Abel, posons $u_n = \frac{\log n}{n}$ et $v_n = \cos(na)$.

$$\bigstar \operatorname{Soit} f(t) = \frac{\log t}{t}, f'(t) = \frac{t \cdot \frac{1}{t} - \log t}{t^2} = \frac{1 - \log t}{t^2} < 0 \text{ pour } t >> \operatorname{donc} (u_n)_n \searrow.$$

 \bigstar lim $u_n = 0$.

$$\star \left| \sum_{k=1}^{n} v_n \right| \leq \frac{1}{\left| \sin(\frac{a}{2}) \right|} \ \forall a \neq 2k\pi.$$

Conclusion: $\sum_{n\geq 1} \frac{\log n}{n} \cos(na)$ converge $\forall a \neq 2k\pi$.

<u>2ème cas:</u> $a = 2k\pi$, $k \in \mathbb{Z}$. La série $\sum_{n=1}^{\infty} \frac{\log n}{n}$ diverge (Bertrand).

Exercice 3:

1) a) Soit
$$\sum_{n\geq 1} u_n(x) = \sum_{n\geq 1} a_n x^{2n+1} = x \sum_{n\geq 1} \frac{(-1)^{n+1} (x^2)^n}{(2n+1)(2n-1)}$$
, posons $y = x^2$.

Considérons alors la s.e $\sum_{n\geq 1} \frac{(-1)^{n+1}y^n}{(2n+1)(2n-1)}$, calculons son rayon R_y :

 $\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$ (rapport de polynomes), d'après le théorème de Hadamard : $R_y = \frac{1}{1} = 1 \implies R = \sqrt{1} = 1$. Donc $\Delta =]-1,1[$ est son intervalle de covergence.

b) Déterminons le domaine de convergence *D*, ie étude aux bornes.

On a que
$$|u_n(\pm 1)| = \frac{1}{(2n+1)(2n-1)} \sim \frac{1}{4n^2}$$
 et $\sum_{n\geq 1} \frac{1}{n^2}$ converge.

Donc $\sum_{i} u_n(\pm 1)$ convergent absolument ie il ya convergence aus deux bornes.

Conclusion : D = [-1, 1].

c) Calculons sa somme S.

Tout d'abord on a
$$\frac{1}{(2n+1)(2n-1)} = \frac{1}{2} \left(\frac{1}{(2n-1)} + \frac{-1}{(2n+1)} \right)$$

Donc $S(x) = \frac{1}{2} \sum_{n \ge 1} \frac{(-1)^{n+1}}{(2n-1)} x^{2n+1} - \frac{1}{2} \sum_{n \ge 1} \frac{(-1)^{n+1}}{(2n+1)} x^{2n+1} = \frac{1}{2} S_1(x) - \frac{1}{2} S_2(x)$ ce

partage est possible car les deux s.e sont convergentes sur D (elles ont 1 pour rayon et convergent en ± 1).

$$\star S_1(x) = \sum_{n \ge 1} \frac{(-1)^{n+1}}{(2n-1)} x^{2n+1}$$
, posons $N = n-1$ pour avoir

$$2n-1 = 2(n-1) + 1 = 2N + 1.$$

$$2n-1 = 2(n-1)+1 = 2N+1.$$
ie $S_1(x) = \sum_{N \ge 0} \frac{(-1)^{N+2}}{(2N+1)} x^{2N+3} = x^2 \sum_{N \ge 0} \frac{(-1)^N}{(2N+1)} x^{2N+1} = x^2 (Arctgx) \ \forall x \in [-1,1].$

$$\bigstar S_2(x) = \sum_{n \ge 1} \frac{(-1)^{n+1}}{(2n+1)} x^{2n+1} = -\sum_{n \ge 1} \frac{(-1)^n}{(2n+1)} x^{2n+1} = -(Arctgx - x) \ \forall x \in [-1,1].$$

Conclusion: $S(x) = \frac{1}{2} [x^2(Arctgx) + Arctgx - x] \ \forall x \in [-1, 1].$

2)
$$\sum_{n\geq 1} \frac{(-1)^{n+1}}{4n^2-1} = \sum_{n\geq 1} \frac{(-1)^{n+1}}{(2n+1)(2n-1)} = S(1) = \frac{1}{2} \left[\frac{\pi}{2} - 1 \right].$$

Exercice4:

I 1) Convergence normale:

On a que sup $|f_n(x)| = \sup |f_n(x)| \operatorname{car} f_n$ est paire.

Posons
$$g_n(x) = |f_n(x)| = \frac{|x|}{n(1+nx^2)} = \frac{x}{n(1+nx^2)} \ \forall x \in \mathbb{R}_+, \ g_n(x) = \frac{1-nx^2}{n(1+nx^2)^2}.$$

Nous avons le TV

suivant:
$$x$$
 0 $\frac{1}{\sqrt{n}}$ $+\infty$ \Rightarrow $\sup_{x \in \mathbb{R}_+} |f_n(x)| = g_n(\frac{1}{\sqrt{n}}) = \frac{1}{2n^{\frac{3}{2}}}$ $g_n'(x)$ $+$ g_n

or $\sum_{n\geq 1}\frac{1}{n^{\frac{3}{2}}}$ converge (Riemann) donc $\sum f_n$ converge normalement sur \mathbb{R} .

- 2) La continuité de S:
- (1) Toutes les f_n sont de classe C^1 sur \mathbb{R}_+^* (car produit, composée, rapport et somme de fonctions C^1).
- (2) $\sum_{n\geq 0} f_n$ converge normalement donc uniformément sur \mathbb{R} .

De (1) et (2) on obtient la continuité de F sur \mathbb{R} .

- 3) La dérivabilité de S:
- (3) Etude de la convergence uniforme de $\sum_{n=0}^{\infty} f'_n$:

On a
$$f'_n(x) = \frac{1 - nx^2}{n(1 + nx^2)^2}$$
 \Rightarrow $|f'_n(x)| \le \frac{1 + nx^2}{n(1 + nx^2)^2} = \frac{1}{n(1 + nx^2)} \le \frac{1}{n^2x^2} \le \frac{1}{n^2a^2}$ ceci est vrai $\forall x \in]-\infty, -a] \cup [a, +\infty[, a > 0. \text{ or } \sum_{n \ge 1} \frac{1}{n^2} \text{ converge (Riemann)}$

donc $\sum f_n$ converge normalement donc uniformément sur tout $]-\infty,-a]\cup [a,+\infty[,\ a>0.$

De (1) et (3) on obtient la dérivabilité de F sur tout $]-\infty,-a] \cup [a,+\infty[, a > 0.$ F est donc dérivable sur \mathbb{R}^* .

II. 1) Calculons
$$\int_{1}^{+\infty} \frac{1}{u(1+x^2u)} du$$
: on a $\frac{1}{u(1+x^2u)} = \frac{1}{u} - \frac{x^2}{1+x^2u} \ \forall x \in \mathbb{R}^*$.

$$\int_{1}^{+\infty} \frac{1}{u(1+x^{2}u)} du = \left[\log u - \log(1+x^{2}u)\right]_{1}^{+\infty} = \left[\log\left(\frac{u}{1+x^{2}u}\right)\right]_{1}^{+\infty} = -\log x^{2} + \log(1+x^{2}u)$$

On trouve
$$\int_{0}^{+\infty} \frac{1}{u(1+x^2u)} du = \log\left(1+\frac{1}{x^2}\right) \, \forall x \in \mathbb{R}^*.$$

2)
$$\log\left(1+\frac{1}{x^2}\right) \le \sum_{n\geq 1} \frac{1}{n(1+nx^2)} \le 1 + \log\left(1+\frac{1}{x^2}\right) \, \forall x \in \mathbb{R}^*.$$

$$\Rightarrow x \log\left(1 + \frac{1}{x^2}\right) \le x \sum_{n \ge 1} \frac{1}{n(1 + nx^2)} \le x + x \log\left(1 + \frac{1}{x^2}\right) \, \forall x \in \mathbb{R}^*.$$

$$\Rightarrow 1 \leq \frac{\sum_{n\geq 1} f_n(x)}{h(x)} \leq \frac{1}{\log\left(1+\frac{1}{x^2}\right)} + 1 \ \forall x \in \mathbb{R}^* / h(x) = x\log\left(1+\frac{1}{x^2}\right).$$

Et on a bien
$$\lim_{x\to 0} \frac{1}{\log\left(1+\frac{1}{x^2}\right)} = 0 \implies S(x) \sim x\log\left(1+\frac{1}{x^2}\right).$$

3)
$$\lim_{x\to 0^+} \frac{S(x)-S(0)}{x-0} = \lim_{x\to 0^+} \frac{S(x)}{x} = \lim_{x\to 0^+} \log\left(1+\frac{1}{x^2}\right) = +\infty.$$
 S n'est pas dérivable à droite de $0^+ \Rightarrow S$ n'est pas dérivable en 0 .