Michael Sipser

Problem Set 4

Read all of Chapter 7.

- 1. Let $MODEXP = \{\langle a, b, c, p \rangle | a, b, c, p \text{ are positive binary integers such that } a^b \equiv c \pmod{p} \}$. Show that $MODEXP \in P$. (You can assume that basic arithmetical operations, such as +, ×, and mod, are computable in polynomial time.)
- 2. Let UNARY-SSUM be the subset sum problem in which all numbers are represented in unary, i.e., 1^k represents the number k. Why does the NP-completeness proof for SUBSET-SUM (see textbook) fail to show UNARY-SSUM is NP-complete? Show that $UNARY-SSUM \in P$.
- 3. Show that if P = NP, then every language $A \in P$, except $A = \emptyset$ and $A = \Sigma^*$, is NP-complete.
- 4. Show that if P = NP, we can factor integers in polynomial time. (Note: The algorithm you are asked to provide computes a function, and NP contains languages, not functions. Therefore, you cannot solve this problem simply by saying "factoring is in NP and P = NP so factoring is in P". The assumption P = NP implies that all languages in NP are in P, so you need to find an NP language that relates to the factoring function.)
- 5. Let $CNF_k = \{\langle \phi \rangle | \phi \text{ is a satisfiable cnf-formula where each variable appears at most } k \text{ times} \}$. Show that $CNF_2 \in P$.
- 6. Define CNF_k as above. Show that CNF_3 is NP-complete.
- 7.* (optional) The difference hierarchy D_iP is defined recursively as
 - i. $D_1P = NP$, and
 - ii. $D_iP = \{A \mid A = B \setminus C \text{ for } B \text{ in NP and } C \text{ in } D_{i-1}P\}.$ (Here $B \setminus C = B \cap \overline{C}$.)

For example, a language in D_2P is the difference of two NP languages. Let $DP = D_2P$. Let

$$Z = \{\langle G_1, k_1, G_2, k_2 \rangle | G_1 \text{ has a } k_1\text{-clique and } G_2 \text{ doesn't have a } k_2\text{-clique}\}.$$

- a. Show that Z is complete for DP. In other words, show that Z is in DP and every language in DP is polynomial time reducible to Z.
- **b.** Let $MAX\text{-}CLIQUE = \{\langle G, k \rangle | \text{ a largest clique in } G \text{ is of size exactly } k \}.$ Use part (a) to show that MAX-CLIQUE is DP-complete.