```
In [1]:
    import pandas as pd
    import numpy as np
    import statsmodels.api as sm
    import matplotlib.pyplot as plt
    import warnings
    import random
    import time
    from sklearn.neighbors import kneighbors_graph
    from sklearn.cluster import KMeans
    from scipy.sparse.linalg import eigsh
    from sklearn.datasets import fetch_openml
    warnings.filterwarnings("ignore")
    from sklearn.preprocessing import normalize
    from sklearn.metrics import adjusted_rand_score
    from sklearn.metrics import normalized_mutual_info_score
```

Data Import

```
In [2]: ### Handwritten Digits data mentioned in the paper
    mnistX, mnisty = fetch_openml('mnist_784', version=1, return_X_y=True)
    mnistX = mnistX / 255.0

In [3]: ### Shaped Data Given for Clustering Computational Assignment #2
    shaped_data=pd.read_csv('ShapedData.csv',header=None)
```

Plot Function - To show clustering of shaped data

```
In [4]: def plot_clusters(clusters,k,title='Spectral Clustering'):
    plt.figure(figsize=(10, 6))
    cmap=plt.cm.get_cmap('tab10',k)
    for cluster_label in clusters['cluster'].unique():
        cluster_points=clusters[clusters['cluster']==cluster_label]
        plt.scatter(cluster_points[0],cluster_points[1],alpha=0.7,c=cmap(cluplt.title(title)
        plt.xlabel('Dimension 1')
        plt.ylabel('Dimension 2')
        plt.legend()
        plt.grid(True)
        plt.show()
```

Part 1. Before moving onto big, real datasets like MNIST, we would like to test the performance on a visually comparable dataset - ShapedData.csv given for comp assignment 2.

We are doing an extension of the assignment by also testing the performance (running time) & clustering accuracy for the fast and simple method making use of power method

```
In [5]: #### Weighted Adjacency Matrix, Diagonal Matrix & Laplacian Matrix
        X=np.matrix(shaped_data)
        t1=time.time()
        #K Nearest Neighbours
        K=100
        sigma=2
        W=np.zeros((len(X),len(X))) #Weighted Matrix
        for i in range(len(W)):
            dis=np.linalg.norm(X-X[i], axis=1)
            k_nearest_idx=np.argsort(dis)[1:K+1]
            for j in k_nearest_idx:
                W[i,j]=np.exp(-dis[j]**2 /(2*(sigma**2))) # Setting Gaussian similar
        W = 0.5 * (W + W.T)
        D=np.sum(W,axis=1)
        Dsinv=np.diag(1/np.sqrt(D)) #Inverse of square root
        Lnorm=np.eye(len(X))-np.dot(Dsinv,np.dot(W,Dsinv))
        eigenvalues, eigenvectors = eigsh(Lnorm, k=4, which='SM')
        # Clustering
        runs=0
        mini=np.inf
        while runs<10:</pre>
            runs+=1
            km = KMeans(n_clusters=4, random_state=42,init='k-means++')
            C_temp = km.fit_predict(eigenvectors)
            if km.inertia_<runs:</pre>
                 mini=km.inertia_
                 C=C temp
        t2=time.time()
        runningtime=t2-t1
        #Plotting
        shaped data['cluster']=C
        plot_clusters(shaped_data,k=4,title=f'Classical Spectral Clustering with run
```

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D arr ay with a single row if you intend to specify the same RGB or RGBA value for all points.

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D arr ay with a single row if you intend to specify the same RGB or RGBA value for all points.

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D arr ay with a single row if you intend to specify the same RGB or RGBA value for all points.

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D arr ay with a single row if you intend to specify the same RGB or RGBA value for all points.

Fast & Simple Spectral CLustering Using Power Method

```
In [6]: ### Power Function
def power_method(M, x0, t):
    for _ in range(t):
        x0 = M @ x0
    return x0
```

In [7]: ### Only change from previous Laplacian is that we make this a signless lapl

```
shaped data=pd.read csv('ShapedData.csv', header=None)
X=np.matrix(shaped data)
t1=time.time()
#K Nearest Neighbours
K = 100
sigma=2
k=4
W=np.zeros((len(X),len(X))) #Weighted Matrix
for i in range(len(W)):
    dis=np.linalg.norm(X-X[i], axis=1)
    k nearest idx=np.argsort(dis)[1:K+1]
    for j in k nearest idx:
        W[i,j]=np.exp(-dis[j]**2 /(2*(sigma**2))) # Setting Gaussian similar
W = 0.5 * (W + W.T)
D=np.sum(W,axis=1)
Dsinv=np.diag(1/np.sqrt(D)) #Inverse of square root
Lnorm=np.eye(len(X))-np.dot(Dsinv,np.dot(W,Dsinv))
M = np.eye(X.shape[0]) - 0.5 * Lnorm #Signless Laplacian
l = int(k)
t = 10*int(np.log(len(M)/k))
print(1,t)
Y = []
for _ in range(1):
   x0 = np.random.randn(M.shape[0])
    y = power method(M, x0, t)
    Y.append(y)
Y = np.array(Y).T
Y = normalize(Y, norm='12')
# Clustering with 10 trials
runs=0
mini=np.inf
while runs<10:
    runs+=1
    km = KMeans(n clusters=4, random state=42,init='k-means++')
    C temp = km.fit predict(Y)
    if km.inertia <runs:</pre>
        mini=km.inertia
        C=C_temp
t2=time.time()
runningtime=t2-t1
shaped data['cluster']=C
plot_clusters(shaped_data, k=4, title=f'Fast & Simple Spectral Clustering with
```

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D arr ay with a single row if you intend to specify the same RGB or RGBA value for all points.

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D arr ay with a single row if you intend to specify the same RGB or RGBA value for all points.

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D arr ay with a single row if you intend to specify the same RGB or RGBA value for all points.

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D arr ay with a single row if you intend to specify the same RGB or RGBA value for all points.

Application on realworld Datasets.

Now that we have seen that the fast and simple clustering method works as good/with close approximation to the classical spectral clustering, our next step is to extend this to the MNIST dataset and compare the running time performance for different lengths of data.

```
In [8]: ### Function for Classical Spectral Clustering
        def classical_spectral_clustering(X, k):
          A = kneighbors_graph(X, n_neighbors=10, include_self=False)
          # Calculate Degree Matrix (D)
          degrees = np.asarray(A.sum(axis=1)).flatten() # d(v) for each vertex
          D = np.diag(degrees)
          # Calculate Normalized Laplacian (N)
          D_inv_sqrt = np.diag(1 / np.sqrt(degrees))
          LNorm = D_inv_sqrt @ (D - A) @ D_inv_sqrt
          print(LNorm.shape)
          eigenvalues, eigenvectors = eigsh(LNorm, k=k, which="SM")
          embedding = eigenvectors
          print(embedding.shape)
          km = KMeans(n_clusters=10, random_state=42,init='k-means++')
          mini=np.inf
          for trials in range(0,10):
                labels = km.fit_predict(embedding) # Use predict to get cluster ass
                if km.inertia_<mini:</pre>
                    final_labels=labels
          return final_labels
```

```
In [9]: ### Function for Fast & Simple Clustering
        def power method(M, x0, t):
            for in range(t):
                x0 = M @ x0
                x0 /= np.linalg.norm(x0) # Normalize the vector to prevent overflow
            return x0
        def fast_spectral_clustering(X, k, epsilon=0.1, max_iterations=100,d=1):
          n = X.shape[0] # |V|, number of vertices
          \#1 = int(np.log(k)) \# Number of random vectors
          l = int(np.log(k))
          max_iterations=int(10*np.log2(n/k)) # Number of random vectors
          # Calculate Adjacency Matrix (A) using k-nearest neighbors
          A = kneighbors graph(X, n neighbors=10, include self=False)
          # Calculate Degree Matrix (D)
          degrees = np.asarray(A.sum(axis=1)).flatten() # d(v) for each vertex
          D = np.diag(degrees)
          # Calculate Normalized Laplacian (N)
          D_inv_sqrt = np.diag(1 / np.sqrt(degrees))
          N = D_inv_sqrt @ (D - A) @ D_inv_sqrt
          # Calculate Signless Laplacian (M)
          M = np.eye(n) - 0.5 * N
          #print(M.shape)
          Y = np.zeros((n, 1))
          for i in range(1):
                x0 = np.random.normal(size=(n, 1))
                #print(x0.shape)
                y = power_method(M, x0, max iterations)
                #print(y.shape)
                Y[:, i] = y.flatten() # Flatten and append
                #print(f"Shape of vector {i}: {y.shape}")
          print(Y.shape)
          Y = normalize(Y, norm='12') # Normalize the rows of Y
          #kmeans = KMeans(n clusters=k, random state=0).fit(embedding)
          km = KMeans(n_clusters=10, random_state=42,init='k-means++')
          mini=np.inf
          for trials in range(0,20):
                labels = km.fit predict(Y) # Use predict to get cluster assignments
                if km.inertia_<mini:</pre>
                    final labels=labels
          return final labels
```

```
In [10]: results=[]
         for length in [4000,5000,6000,7000,8000,9000,10000,11000,12000]:
             X=mnistX[:length]
             y=mnisty[:length]
             # Classical Spectral Clustering
             start_time = time.time()
             labels classical = classical_spectral_clustering(X,k=10)
             time_classical = time.time() - start_time
             ari classical = adjusted rand score(y, labels classical)
             nmi classical = normalized mutual info score(y, labels classical)
             #print(f"Classical Spectral Clustering: Time = {time_classical:.2f}s, AF
             results.append({'Clustering Method':'Classical','Length of Data':length,
             # Fast Spectral Clustering
             start time = time.time()
             labels_fast = fast_spectral_clustering(X, k=10, epsilon=0.1, max_iterati
             time fast = time.time() - start time
             ari_fast = adjusted_rand_score(y, labels_fast)
             nmi fast = normalized mutual info score(y, labels fast)
             #print(f"Fast Spectral Clustering: Time = {time fast:.2f}s, ARI = {ari f
             results.append({'Clustering Method':'Power Methode','Length of Data':len
         resultsdf=pd.DataFrame(results)
         (4000, 4000)
         (4000, 10)
         (4000, 2)
         (5000, 5000)
         (5000, 10)
         (5000, 2)
         (6000, 6000)
         (6000, 10)
         (6000, 2)
         (7000, 7000)
         (7000, 10)
         (7000, 2)
         (8000, 8000)
         (8000, 10)
         (8000, 2)
         (9000, 9000)
         (9000, 10)
         (9000, 2)
         (10000, 10000)
         (10000, 10)
         (10000, 2)
         (11000, 11000)
         (11000, 10)
         (11000, 2)
         (12000, 12000)
         (12000, 10)
         (12000, 2)
```

```
In [11]: results2=[]
         for length in [4000,5000,6000,7000,8000,9000,10000,11000,12000]:
             X=mnistX[:length]
             y=mnisty[:length]
             # Classical Spectral Clustering
             start_time = time.time()
             labels_classical = classical_spectral_clustering(X,k=np.log(10))
             time_classical = time.time() - start_time
             ari classical = adjusted rand score(y, labels classical)
             nmi classical = normalized mutual info score(y, labels classical)
             #print(f"Classical Spectral Clustering: Time = {time_classical:.2f}s, AF
             results2.append({'Clustering Method':'Classical logK eig','Length of Dat
             # Fast Spectral Clustering
             start time = time.time()
             labels_fast = fast_spectral_clustering(X, k=10, epsilon=0.1, max_iterati
             time fast = time.time() - start time
             ari_fast = adjusted_rand_score(y, labels_fast)
             nmi fast = normalized mutual info score(y, labels fast)
             #print(f"Fast Spectral Clustering: Time = {time_fast:.2f}s, ARI = {ari_f
             results2.append({'Clustering Method': 'Power Methode logK vectors', 'Lengt
         results2df=pd.DataFrame(results2)
         (4000, 4000)
         (4000, 2)
         (4000, 2)
         (5000, 5000)
         (5000, 2)
         (5000, 2)
         (6000, 6000)
         (6000, 2)
         (6000, 2)
         (7000, 7000)
         (7000, 2)
         (7000, 2)
         (8000, 8000)
         (8000, 2)
         (8000, 2)
         (9000, 9000)
         (9000, 2)
         (9000, 2)
         (10000, 10000)
         (10000, 2)
         (10000, 2)
         (11000, 11000)
         (11000, 2)
         (11000, 2)
         (12000, 12000)
         (12000, 2)
         (12000, 2)
```

```
In [12]: resultsfinal=pd.concat([resultsdf,results2df.reset_index()],axis=0)
    resultsfinal.sort_values(by=['Length of Data','Clustering Method'],inplace=T

In [13]: plt.figure(figsize=(8,5))
    cmap=plt.cm.get_cmap('viridis')
    for method in resultsfinal['Clustering Method'].unique():
        cluster_points=resultsfinal[resultsfinal['Clustering Method']==method]
        plt.plot(cluster_points['Length of Data'],cluster_points['Running Time']
        plt.title('Runtime Performance')
        plt.xlabel('Length of Data/ No. of Vertices')
        plt.ylabel('Run Time')
        plt.legend()
        plt.grid(True)
        plt.show()
```


Runtime Performance


```
In [809...
         results2=[]
         for length in [4000,5000,6000,7000,8000,9000,10000,11000,12000]:
             X=mnistX[:length]
             y=mnisty[:length]
             # Classical Spectral Clustering
             start_time = time.time()
             labels_classical = classical_spectral_clustering(X,k=np.log(10))
             time classical = time.time() - start time
             ari classical = adjusted rand score(y, labels classical)
             nmi classical = normalized mutual info score(y, labels classical)
             print(f"Classical Spectral Clustering: Time = {time_classical:.2f}s, ARI
             results2.append({'Clustering Method':'Classical logK eig','Length of Dat
             # Fast Spectral Clustering
             start_time = time.time()
             labels_fast = fast_spectral_clustering(X, k=10, epsilon=0.1, max_iterati
             time_fast = time.time() - start_time
             ari_fast = adjusted_rand_score(y, labels_fast)
             nmi_fast = normalized_mutual_info_score(y, labels_fast)
             print(f"Fast Spectral Clustering: Time = {time fast:.2f}s, ARI = {ari fa
             results2.append({'Clustering Method':'Power Methode logK vectors','Lengt
```

```
(4000, 4000)
(4000, 2)
Classical Spectral Clustering: Time = 29.69s, ARI = 0.2322, NMI = 0.4085
(4000, 2)
Fast Spectral Clustering: Time = 7.47s, ARI = 0.3026, NMI = 0.4401
(5000, 5000)
(5000, 2)
Classical Spectral Clustering: Time = 41.40s, ARI = 0.2407, NMI = 0.4278
(5000, 2)
Fast Spectral Clustering: Time = 13.27s, ARI = 0.2798, NMI = 0.4266
(6000, 6000)
(6000, 2)
Classical Spectral Clustering: Time = 63.63s, ARI = 0.2475, NMI = 0.4152
(6000, 2)
Fast Spectral Clustering: Time = 20.16s, ARI = 0.3068, NMI = 0.4275
(7000, 7000)
(7000, 2)
Classical Spectral Clustering: Time = 87.62s, ARI = 0.1876, NMI = 0.3833
(7000, 2)
Fast Spectral Clustering: Time = 33.82s, ARI = 0.2484, NMI = 0.3970
(8000, 8000)
(8000, 2)
Classical Spectral Clustering: Time = 125.66s, ARI = 0.3347, NMI = 0.5064
(8000, 2)
Fast Spectral Clustering: Time = 41.44s, ARI = 0.2495, NMI = 0.4020
(9000, 9000)
(9000, 2)
Classical Spectral Clustering: Time = 192.60s, ARI = 0.2715, NMI = 0.4355
(9000, 2)
Fast Spectral Clustering: Time = 76.49s, ARI = 0.3801, NMI = 0.4962
(10000, 10000)
(10000, 2)
Classical Spectral Clustering: Time = 183.47s, ARI = 0.1980, NMI = 0.3584
(10000, 2)
Fast Spectral Clustering: Time = 130.59s, ARI = 0.2452, NMI = 0.3995
(11000, 11000)
(11000, 2)
Classical Spectral Clustering: Time = 248.57s, ARI = 0.1954, NMI = 0.3579
(11000, 2)
Fast Spectral Clustering: Time = 191.96s, ARI = 0.3444, NMI = 0.4965
(12000, 12000)
(12000, 2)
Classical Spectral Clustering: Time = 294.85s, ARI = 0.1051, NMI = 0.2747
(12000, 2)
Fast Spectral Clustering: Time = 208.98s, ARI = 0.3967, NMI = 0.5088
```

```
In [821... | results2df=pd.DataFrame(results2)
    resultsfinal=pd.concat([resultsdf2,results2df.reset_index()],axis=0)
    resultsfinal.sort_values(by=['Length of Data','Clustering Method'],inplace=T
```


In [18]: resultsfinal.drop(columns='index').reset_index(drop=True,inplace=True)
 resultsfinal.groupby('Clustering Method').agg(Run_Time=('Running Time','mean

Out[18]:		Clustering Method	Run_Time	Average_ARI	Average_NMI
	0	Classical	53.396813	0.391639	0.569865
	1	Classical logK eig	82.245914	0.251837	0.431163
	2	Power Methode	31.411882	0.335207	0.459641
	3	Power Methode logK vectors	33.954710	0.302774	0.431422