In [2]:	Cyfrowe przetwarzanie sygnałów i obrazów - Laboratorium 1 Daria Jeżowska, 252731 Szymon Hutnik, 252736 Import pandas as pd import matplotlib.pyplot as plt
	import numpy as np import matplotlib as mpl from scipy import signal Zadanie 1 Napisz skrypt w Pythonie/Matlabie umozliwiajacy wczytywanie i wizualizacje badanych sygnałów. Program powinien umozliwiac obserwowanie wycinka sygnału dla zadanego przedziału czasowego, skalowanie osi wykresów i ich opis oraz zapis dowolnego wycinka sygnału do pliku o podanej nazwie.
In [3]:	1. ekg1.txt – 12 kolumn odpowiada odprowadzeniom, fs = 1000 Hz Poniżej zostają wczytane z pliku 'ekg1.txt' do zmiennej ekg1. Następnie ustalana jest częstotliwość, czas trwania sygnału oraz stworzenie kolumny opisującej czas trwania sygnału dla danej próbki. Wyświetlone jest 5 pierwszych rekordów kolumny. ekg1 = pd.read_csv('ekg1.txt',
Out[3]:	ekg1 = ekg1.set_index('t') ekg1.head() k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 t 0.000 106 335 228 -227 -59 291 -392 -45 443 372 908 395 0.001 106 335 228 -227 -59 291 -392 -45 443 372 908 395 0.002 106 325 219 -219 -60 284 492 837 239 372 908 405 0.003 86 306 219 -214 -55 274 487 832 240 404 179 -63
In [4]:	0.004 96 320 224 -195 -65 264 492 842 244 404 174 -62 Do ekg100 zostały wczytane dane z pliku 'ekg100.txt', ustalona została częstotliwość i czas trwania sygnału oraz jak powyżej ustalony czas trwania dla każdej próbki i ustawiony jako indeks tabeli. Wyświetlone jest 5 pierwszych rekordów kolumny. ekg100 = pd.read_csv('ekg100.txt', names = ['column']) fs_ekg100 = 360 # częstotliwość sygnału [Hz] t_ekg100 = (ekg100.shape[0] - 1) / fs_ekg100 # czas trwania sygnału, t = f/T [s] ekg100['t'] = ekg100.index/fs_ekg100 ekg100 = ekg100.set_index('t') ekg100.head()
Out[4]:	column t 0.000000 -0.145 0.002778 -0.145 0.005556 -0.145 0.008333 -0.145 0.011111 -0.145
<pre>In [5]: Out[5]:</pre>	Wczytany został 'ekg_noise.txt' do ekg_noise, ustalona została częstotliwość sygnału oraz czas jego trwania. Wyświetlone jest 5 pierwszych rekordów kolumny.
	t 0.000000 -0.325000 0.002778 -0.273038 0.005556 -0.268038 0.008333 -0.320000 0.011111 -0.391962 Poniższe wykresy przedstawiają wykresy, gdzie oś x to czas trwania sygnału, a oś y to wartość próbki w danej chwili. Wykresy zostały
In [6]:	<pre>plt.figure(figsize=(20,30)) for i in range(1, 13): x = ekg1.index # ustalenie osi x y = ekg1[f'k{i}'] # ustalenie osi y plt.subplot(6, 2, i) # ustalenie miejsca na siatce wykresów danego wykresu plt.plot(x, y) # stworzenie wykresu plt.grid(axis='both') # dodanie siatki plt.xlabel('t [s]') # dodanie onisu osi x</pre>
	plt.xlabel('t [s]') # dodanie opisu osi x plt.title(f'Kolumna nr {i}') # nazwanie wykresu Kolumna nr 1 Kolumna nr 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	-200
	-400 -600 -300 -400 -400 -400 -400 -400 -400 -4
	-200 -400 -200 -200 -400 -200 -400 -200 -400 -200 -400 -200 -400 -200 -400 -200 -400 -4
	200 -200 -400 0 1 2 3 4 5 0 1 2 3 4 5 Kolumna nr 9 Kolumna nr 10 1000 750 800 600
	250 -250 -500 -750 -750 -750 -750 -750 -750 -7
	Zadanie 2
In [7]:	Celem cwiczenia jest praktyczne wypróbowanie funkcji numpy.fft i numpy.ifft do wyznaczania prostej i odwrotnej transformaty Fouriera [1, 3]. 1. Wygeneruj ciag próbek odpowiadajacy fali sinusoidalnej o czestotliwosci 50 Hz i długosci 65536. Ustawienie danych: length = 65536 # długość fali
In [8]:	<pre>f = 50 # częstotliwość fs = 480000 # częstotliwość próbkowania Wygenerowanie sinusa o zadanej długości i częstotliwości oraz stworzenie wykresu: x = np.arange(length) # równomierne rozłożenie próbek dla długości 65536 y = np.sin(2 * np.pi * x * f / fs) # obliczenie wartości sinuda dla danej próbki x, pulsacja n-tej próbki bę plt.figure(figsize=(20,5)) plt.plot(x, y) # stworzenie wykresu z wartości x i y plt.xlabel('Nr próbki') # nadanie nazwy osi x plt.ylabel('Amplituda') # nadanie nazwy osi y</pre>
	plt.title('Fala sinusoidalna') # nadanie tytułu wykresowi plt.grid(True, which='both') # włączenie siatki x = plt.show() Fala sinusoidalna 100 0.75 0.50 0.25
	1. Wyznacz dyskretna transformate Fouriera tego sygnału i przedstaw jego widmo amplitudowe na wykresie w zakresie czestotliwosci [0, fs/2], gdzie fs oznacza czestotliwosc próbkowania.
In [9]:	Funkcja np.fft.rfft to dyskretna transformata Fouriera dla n-punktów w zakresie częstotliwości dla rzeczywistego sygnału. Oznacza to, że zobaczymy tylko jeden prążek, bez jego zespolonego sprzężenia. Ponadto skalujemy widmo dzieląc je przez połowę długości (length/2), aby wartości widmowe reprezentowały energię poszczególnych składowych. sin = y # dla dalszej czytelności kodu zmieniamy x na sin spectrum = np.abs(np.fft.rfft(sin)) / (length / 2) fs = 480000
	<pre>T = 1/fs f = np.fft.rfftfreq(length, T) # częstotliwość dyskretnej transformaty fouriera plt.plot(figsize=(20, 5)) plt.plot(f, spectrum) plt.xlim(0, 500) plt.xlabel('Częstotliwość [Hz]') plt.ylabel('Amplituda') plt.title('Widmo sygnału sinusoidalnego') plt.show()</pre>
	Widmo sygnału sinusoidalnego 0.8 -
	1. Wygeneruj ciag próbek mieszaniny dwóch fal sinusoidalnych (tzn. ich kombinacji liniowej) o czestotliwościach 50 i 60 Hz. Wykonaj zadanie z punktu 2 dla tego sygnału. Funkcja generuje najpierw dwa sinusy o zadanych częstotliwościach 50Hz (y1) oraz 60Hz (y2), a następnie je sumuje. Następnie
In [10]:	<pre>def spectrum_two_sinuses(f1, f2, fs): length = 65536</pre>
	<pre>plt.subplot(1, 2, 1) plt.plot(x, y) plt.title('Kombinacja liniowa fal sinusoidalnych') plt.xlabel('Częstotliwść [Hz]') plt.ylabel('Amplituda') plt.subplot(1, 2, 2) plt.plot(f, np.abs(spectrum2) / (length/2)) plt.xlim(0, 2000) plt.title('Widmo fal sinusiodalnych') plt.xlabel('Częstotliwość [Hz]') plt.ylabel('Wartość')</pre>
In [11]:	spectrum_two_sinuses(50, 60, 480000) Kombinacja liniowa fal sinusoidalnych Vidmo fal sinusiodalnych 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9
	1. Powtórz eksperymenty dla róznych czasów trwania sygnałów, tzn. dla róznych czestotliwości próbkowania. Wywołanie funkcji spectrum_two_sinuses dla różnych częstotliwości próbkowania.
In [12]:	Spectrum_two_sinuses(50, 60, 120000) Kombinacja liniowa fal sinusoidalnych Widmo fal sinusiodalnych 0.8 -
In [13]:	Spectrum_two_sinuses(50,60, 360000) Sooo Sooo Sooo Sooo Sooo Sooo Sooo Soo S
In [14]:	1. Wyznacz odwrotne transformaty Fouriera ciagów wyznaczonych w zadaniu 2 i porównaj z ciagami oryginalnymi. length = 65536 # długość fali f = 50 # czestotliwość
	fs = 480000 # częstotliwość próbkowania x = np.arange(length) # równomierne rozłożenie próbek dla długości 65536 y = np.sin(2 * np.pi * x * f / fs) # obliczenie wartości sinuda dla danej próbki x, pulsacja n-tej próbki bę plt.figure(figsize=(20,5)) plt.plot(x, y) # stworzenie wykresu z wartości x i y plt.xlabel('Nr próbki') # nadanie nazwy osi x plt.ylabel('Amplituda') # nadanie nazwy osi y plt.title('Fala sinusoidalna') # nadanie tytułu wykresowi plt.grid(True, which='both') # włączenie siatki
	<pre>x = plt.show() y_spectrum = np.fft.rfft(sin) # wygenerowanie widma fali sinusoidalnej plot = np.real(np.fft.irfft(y_spectrum)) # funkcja np.fft.irfft oblicza odwrotną transformatę fouriera dla sygna plt.figure(figsize=(20, 5)) plt.plot(plot) plt.title('Sygnał sinusoidalny wygenerowany za pomocą odwrotnej tranformaty Fouriera') plt.xlabel('Nr próbki') plt.ylabel('Amplituda') plt.grid(True, which='both')</pre>
	plt . show() Fala sinusoidalna 100 0.75 0.50 0.25 0.00 0.25 0.00 0.25
	-0.50 -0.75 -1.00 0 10000 20000 30000 40000 50000 60000 Sygnał sinusoidalny wygenerowany za pomocą odwrotnej tranformaty Fouriera 1.00 0.75 0.50
	0.25 -0.25 -0.50 -0.75 -1.00 0 10000 20000 30000 Nr próbki
In [15]:	Zadanie 3 Celem cwiczenia jest obserwacja widma sygnału EKG. 1. Wczytac sygnał ekg100.txt i ocenic go wizualnie na wykresie ekg100 = pd.read_csv('ekg100.txt', names = ['1']) fs_ekg100 = 360 n = 3600 ekg100_10s = ekg100.head(n) # wybranie próbek odpowiadającym 10s
	<pre>t_ekg100 = (ekg100.shape[0] - 1) /fs_ekg100 # czas trwania sygnału ekg100['czas'] = ekg100.index/fs_ekg100 # obliczenie czasu wystąpienia każdej próbki ekg100 = ekg100.set_index('czas') plt.figure(figsize=(25, 5)) plt.plot(ekg100.index, ekg100['1']) plt.title('Sygnał ekg100') plt.xlabel('Czas[s]') plt.ylabel('Sygnał') plt.show()</pre> <pre>Sygnal ekg100</pre>
	1 - 0 - 1
In [16]:	Aby wykres był czytelniejszy stworzyliśmy kolejny wykres sygnału dla pierwszych 10 sekund. ekg100_10s['czas'] = ekg100_10s.index / fs_ekg100 ekg100_10s = ekg100_10s.set_index('czas') plt.figure(figsize=(25, 5)) plt.plot(ekg100_10s.index, ekg100_10s['1']) plt.title('Sygnał ekg100 dla pierwszych 10 sekund') plt.xlabel('Czas[s]') plt.ylabel('Sygnał') plt.show()
	Sygnat ekg100 dla pierwszych 10 sekund 10 08 06 04 -02 -04 -06 0 0 2 4 6 8 10
In [17]:	1. Wyznaczyc jego dyskretna transformate Fouriera i przedstawic widmo amplitudowe sygnału w funkcji czestotliwosci w zakresie [0, fs/2], gdzie fs oznacza czestotliwosc próbkowania. T_s = 1/fs_ekg100 # okres próbkowania x = np.fft.fftfreq(ekg100.shape[0], T_s) # obliczenie poszczególnych częstotliwości za pomocą dyskretnej transfy y = np.fft.fft(ekg100['1']) y_freq = 2*np.abs(y/(ekg100.shape[0]/2)) positive = x > 0 # maska, która mówi w którym miejscu x jest większe od 0
Out[17]:	positive = x > 0 # maska, która mówi w którym miejscu x jest większe od 0 plt.figure(figsize = (30, 10)) plt.plot(x[positive], y_freq[positive]) plt.title('Widmo aplitudowe sygnały ekg100') plt.xlabel('Częstotliwość [Hz]') plt.ylabel('Wartość') Text(0, 0.5, 'Wartość') Widmo aplitudowe sygnały ekg100
	0.020 - 0.015 - 0.010 -
In [18]:	1. Wyznaczyc odwrotna dyskretna transformate Fouriera ciagu wyznaczonego w punkcie 2 i porównac otrzymany ciag próbek z pierwotnym sygnałem ecg100 (mozna wyznaczyc róznice sygnałów). y = np.fft.ifft(y) # wyznaczenie odwrotnej transformaty fouriera
	<pre>plt.figure(figsize=(20, 5)) plt.subplot(1, 1, 1) plt.plot(ekg100.index, y) plt.title('Odwrotna trasformata Fouriera dla sygnału ekg100') plt.xlabel('Czas [s]') plt.ylabel('Wartość') plt.show()</pre>
	/home/daria/.local/lib/python3.10/site-packages/matplotlib/cbook/initpy:1298: ComplexWarning: Casting complex values to real discards the imaginary part return np.asarray(x, float) Odwrotna trasformata Fouriera dla sygnalu ekgl00
	-2 - 1000 2000 3000 4000 5000 Zadanie 4
<pre>In [19]: Out[19]:</pre>	Celem cwiczenia jest praktyczne wypróbowanie działania filtrów w celu wyeliminowania niepozadanych zakłócen z sygnału EKG. Prosze wybrac rodzaj filtra do eksperymentowania, np. Butterwortha lub Czebyszewa. Do filtracji wykorzystac gotowe funkcje z biblioteki scipy.signal [7]. Biblioteka posiada równiez funkcje wspomagajace projektowanie filtrów, które mozna zastosowac. ekg_noise = pd.read_csv('ekg_noise.txt', names=['czas', 'A'], sep='\s+', index_col = 0) fs_ekg_noise = 360 t_ekg_noise = (ekg_noise.shape[0]-1)/fs_ekg_noise ekg_noise.head()
	0.000000 -0.325000 0.002778 -0.273038 0.005556 -0.268038 0.008333 -0.320000 0.011111 -0.391962 1. Wczytaj sygnał ekg noise.txt i zauwaz zakłócenia nałozone na sygnał. Wykreslic czestotliwosciowa charakterystyke amplitudowa
In [20]:	<pre>plt.figure(figsize=(25, 5)) plt.plot(ekg_noise.index, ekg_noise['A']) plt.title('Wykres sygnału ekg_noise') plt.ylabel('Amplituda') plt.xlabel('Czas [s]') plt.grid(axis='both')</pre> plt.show()
	Wykres sygnatu ekg_noise 100 075 050 025 -0.25 -0.50 2 Czas [s]
In [21]:	
	plt.plot(ekg_noise.index, filtered_signal) plt.title('Sygnał po filtrze dolnoprzepustowym Butterwortha o częstotliwości granicznej 60Hz') plt.ylabel('Amplituda') plt.xlabel('Czas [s]') plt.grid(axis='both') plt.show() Sygnał po filtrze dolnoprzepustowym Butterwortha o częstotliwości granicznej 60Hz
In [22]:	plt.figure(figsize=(25, 5)) plt.plot(ekg_noise.index, filtered_signal - ekg_noise['A'])
	plt.title('Różnica między sygnałem przed oraz po użyciu filtra') plt.ylabel('Amplituda') plt.xlabel('Czas [s]') plt.grid(axis='both') plt.show() Różnica między sygnałem przed oraz po użyciu filtra
	02 -0.2 -0.4 -0.6 -0.5 -0.2 -0.4 -0.6 -0.5 -0.2 -0.4 -0.6 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5