Orf. X, Y- nuneurone nopumpobarrere afoarance. Myan: f: $X \rightarrow Y$, Donnf - obracto enfiguence f Range f - obracto gnarem fKer $f = 2 \times E$ Donnf: f = 0Donf CX, Range of CY. 7- municipal outant, com Don f- mineinse nognfordenciso X u $f(\lambda_1 X_1 + \lambda_2 X_2) = \lambda_1 f(x,) + \lambda_2 f(x_e), \quad \forall x_1, x_2 \in Dom f$ Out. Ny 1076 J: X- Y - meirin ongarof. Ox orfanires, ecan обрез пробого обраниченного иномента браничен. Out. Pyer 2f. 3- no caegoles enouse onegosopol, fr: X-> Y. Ifn & cognica na useomeerse DCX x onegosopy of, ecan DC Donfu Vn, n $f_n(x) \xrightarrow{n \to \infty} f(x) \quad \forall x \in D.$ hm 11f. (x) -f(x) 1/2 = 0 Out. Itis cognice palmorepus x f, In = 1 econ $\lim_{\kappa \to \infty} \sup_{x \in D} \|f_{\kappa}(x) - f(x)\|_{Y} = 0.$ · Id- regestermin augosop, Id! X->X. . X= C((0,13), Af(x):= x.f(x)

> Dom A = X = (10,13) Range A & C(10,13)

• $M: \mathbb{R}^n \to \mathbb{R}^m$

ympospepus he ncipusy nxm.

Don M = IR ? Range M = pagnoe.

•
$$X = C(Lo, 1]$$

 $A: f \rightarrow \frac{1}{8}f$

Don A & ([0,1]) Range A = pogresse. Ker A = sponst.

OSogram L(X,Y) = 2 organizement unestern onegorofn $X \rightarrow Y$.

Nerno hyero, 200 A & L(XX) neufufuben (A Kenfepuben Pryme.

 $X_{o} \in D_{out}A$, $x \to x_{o}$ $A(x) \to A(x_{o})$ - neufopoloooso $l(x_{o})$. $A(x) - A(x_{o}) = A(x-x_{o})$, $x \to x_{o} \in x \to x_{o} \to 0$.

yob. Nyob A: X→Y, offanner La equeurran mape, 7.e.

 $\forall x \in Dom A \qquad ||A(x)|| \in C,$ $||x|| \leq 1$

Torge A-orp. onyonop.

Dongoverson. My co $E \subset D$ on A, E- of parureno, rough $\exists R$: $||x|| \in R$ $\forall x \in E$, a rough $||A(x)|| = R \cdot ||A(\frac{x}{R})|| \leq CR$.

Onfregenerue Myos A: X > Y, nopus II All oneparofa A ecro:

| A||:= sup | A(x)|), x & Dom A.

Nervo lugero, no A-orfaturen (\Rightarrow) $\|A\| < +\infty$; $\|A\| \ge 0$ \underline{J} th. Nuncinurá eneperof $A: X \Rightarrow Y$ orfaturen (\Rightarrow) \overline{J} C > 0, 7. 4. $\|A(x)\| \le C \cdot \|x\|$ $\forall x \in Dan A$.

3. A-organizer => 1/A1/<+=> => sup ||A(x)|| & C < +=>.

Thetransmo. $|X| \leq 1$ $|X| \leq 1$

```
\frac{y_{\text{R}}}{\|A\|} = \sup_{\|A\|=1} \|A(x)\| = \sup_{x \neq 0} \frac{\|A(x)\|}{\|x\|}, x \in \text{Dom } A.
   Donagorensiño. | | A| => sup | AG)||. C gfyroù croproseor, nywo O< | http://
             \|A(x)\| = \|x\| \cdot \|A(\frac{x}{\|x\|})\| \leq \|A(\frac{x}{\|x\|})\| \leq \sup_{\|y\| = 1} \|Ay\|.
               | A(x)| ≤ | A||. ||x|| , x∈ Don A.
 Chegabre Een A-afrancier. ) A rugepuler. Dévidurente,
                                                           11 A (x) - A(x) 11 E
                                                               E | All. | | X-Xo| | @
 Yth. Nycho Don A = X. Torga A - orfammen @
   (=) A neufefuler l'ayre.
Dongas encho: (5) enegabue loure.
            D. Ryes A-renjfolen l'rouxe O, no re organizer.
 Targer \forall n \exists x_n \in X: ||x_n|| \leq 1; ||A(x_n)|| \geq N \Rightarrow ||A(\frac{x_n}{N})|| \geq 1,
   \left\|\frac{x_n}{n}\right\| \leq \frac{1}{n} \approx 0 \Rightarrow \|A\left(\frac{x_n}{n}\right)\| \approx 0 \Rightarrow \text{when loperne}.
Tespera. Nycro A - orjanización mucinario oneparop, A: X > Y,
  Don't morres 1X; Y-Sanoxolo. Torga 3 A': X > Y, Taxori no
   A'(x)=A(x) \ x \ DomA, DomA'=\(\tilde{X}\), \ \ A'\(\| = \lambda \rangle \).
Dongacerocato. Myero XEX, XA DonA, xorum confegencio A'E).
 Don A marie 1X => 37 X2 C Don A: X1 -> X.
       1 A(xu) -A(xu)| ∈ | A| · ||xu-xu|| => 2 A(xn) - nour - Form,

aoro suro => Per A(xu) ∈ I. Nonoxus recepti:
        A'(z):- Com A(xu).
```

Cofficie cooperer, $||A \times || \le ||A|| \cdot || \times ||A|| \quad \forall x = 0$ $= ||A| \times || \le ||A|| \cdot || \times ||A|| \quad \forall x \Rightarrow ||A'| (\le ||A||)$

L(X,Y)= & A: X -> Y, Don A = X, A - exp. 3.

Teopenia. L(X,Y) - antientoe rophingalattise infoliparelos, knowe 1010, ean Y-Sanaxolo, 1013a L(X,Y) -Sanaxolo.

Dokopoverocito. Ecan A, B- municipul orp. oneparopor, Dom A = Dom B = X, To $\lambda_1 A + \lambda_2 B - \tau$ okoù te, rge $(\lambda_1 A + \lambda_2 B)(x) := \lambda_1 A(x) + \lambda_2 B(x), x \in X$ municipo colean ovelugna. Or anusernoció:

- · A, B orpanium, 10 A+B roxe. Decisioneroro, || A+B|| = sup || A(A) +B(A)| =
- $\leq \sup_{\|x\| \leq 1} (\|A(x)\| + \|B(x)\|) \leq \|A\| + \|B\|.$
- - . || A||=0 ⇒ A = 0, r.e. A(x)=0 ∀ x ∈ X. || Sup || A(x)|| = 0 ⇒ A(x)=0 ∀x. x+0 || X+1 || = 0 ⇒ A(x)=0 ∀x.

Crymnoes 1 L(X,Y) - exgressor no repute, 7-e.

An $\longrightarrow A \hookrightarrow A \hookrightarrow \|A_n - A\| \longrightarrow O$.

An -A = sup An (x) - A(x) , cresolarenono
An −A = Sup An (x) − A(x) , cugolaxenoro x ≤ 1 Cxoquinació no ropue € pobronepnoù exoquinoum An no mape 2 x < 1?
Nucleusen Sanaxoloca L(X, X) no mayoro Sanaxoloca X
Nycro 2 An3-pyrganerianonal.
11 Amora (x) - Au (x) 11 & 11 Amora - Au 11- 1(x) =
Amor (x) - An (x) \in Amor - An \cdot =) -> 2 An (x) \(\) - oppregamentarioned. Y normo \(\) \(
nonosner $A(x) := y - un Jagam onegorap A, Don A = X.$
Ponaxeu, 20 A orformer. Uneen: Hn: 11 An (x) 11 ≤ 11 An 11.11 ≤
E C. (1x1), T.K. 211 Ax113-pynganensonar, 7-12-
Amon - 11 An \(\)
Pepergner R Muzery, Rom 11 An (x) 11 & C/1x1/=>
=) A(x) < C- x +xex,
che solarenous A- orf. oney arop.
Tyrung, An -> A = podresnepras exgrusor. 1/2/21 > 0
Myrrucp. An A pobreourphas exgrusor. MXILL 20. An wordering A, T.e. $\forall x \in X$ An (x) $\longrightarrow A(x)$.
$P_n: \times \in \ell^2 \longrightarrow (\times_1,, \times_n, o, o, o, o,)$
$P_{n}(x) \xrightarrow{\longrightarrow} x \forall x \in X, \text{ get all weapons}$

$$\|P_{n}(x) - x\|^{2} = \sum_{k=n}^{\infty} |x_{k}|^{2} \longrightarrow 0 \Rightarrow P_{n} \xrightarrow{p_{n}} Jd$$

$$C \text{ gyrain curpons, exsyntation we patricular that:}$$

$$C_{k} = (O, -, 1, -, 0, -,), \|e_{k}\| = 1$$

$$Sup \|P_{n}(x) - x\| = 1 \qquad \text{if } n \in \mathbb{N}.$$

$$x \in de_{k} \xrightarrow{sup} \|P_{n}(x) - x\| = \|P_{n} - Jd\| \xrightarrow{x} 0.$$

$$\|x\| = 1$$

l², egummi wap b l².

Teopena (Xan-Bakax). Nycho p-ograpogno-longumi opyregnonan, $p:X \to \mathbb{R}$, X-leogecilennoe $\mathbb{A} \oplus \mathbb{N}$, nycho X_0 -runeidra ngufadfambo \mathbb{N} . Can A_0 - runeimi opyregnonan, songanumi na X_0 , π axoù π o $A_0(x) \in p(x)$, $x \in X_0$, so π og cynedys opyregonan $A:X \to \mathbb{R}$, mueimmi, $A(x) \in p(x)$, $x \in X_0$, $A_0(x) \in A_0$.