Structural Estimation of Dynamic Stochastic Optimizing Models of Intertemporal Choice For Dummies!

Christopher Carroll¹

¹Johns Hopkins University and NBER ccarroll@jhu.edu

June 2012

http://www.econ2.jhu.edu/people/ccarroll/SolvingMicroDSOPs-Slides.pdf

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

The Basic Problem at Date t

$$\max \mathbb{E}_t \left[\sum_{n_{\theta}=0}^{T-t} \beth^{n_{\theta}} u(c_{t+n}) \right], \tag{1}$$

$$y_t = \boldsymbol{p}_t \theta_t \tag{2}$$

$$\begin{array}{lll} \mathsf{R}_t = & \mathsf{R} \; \forall \; t & \text{- constant interest factor} = 1 + \mathsf{r} \\ \boldsymbol{p}_{t+1} = & \Gamma_{t+1} \boldsymbol{p}_t & \text{- permanent labor income dynamic} (3) \\ \log \; \theta_{t+n} \sim & \mathcal{N}(-\sigma_\theta^2/2, \sigma_\theta^2) & \text{- lognormal transitory shocks} \; \forall \; n > 0. \end{array}$$

Bellman Equation

$$\mathbf{v}_t(m_t, \boldsymbol{\rho}_t) = \max_{c_t} u(c_t) + \mathbb{E}_t[\exists \mathbf{v}_{t+1}(m_{t+1}, \boldsymbol{\rho}_{t+1})] \qquad (4)$$

m - 'market resources' (net worth plus current income)

p – permanent labor income

Trick: Normalize the Problem

$$v_{t}(m_{t}) = \max_{c_{t}} u(c_{t}) + \mathbb{E}_{t} \left[\beta \Gamma_{t+1}^{1-\rho} v_{t+1}(m_{t+1})\right]$$
s.t.
$$a_{t} = m_{t} - c_{t}$$

$$m_{t+1} = \underbrace{\left(R/\Gamma_{t+1}\right)}_{-\mathcal{P}_{t+1}} a_{t} + \theta_{t+1}$$

where nonbold variables are bold ones normalized by p:

$$m_t = m_t/\boldsymbol{p}_t \tag{6}$$

Yields $c_t(m)$ from which we can obtain

$$c_t(m_t, \boldsymbol{p}_t) = c_t(m_t/\boldsymbol{p}_t)\boldsymbol{p}_t \tag{7}$$

- Non-CRRA utility
- Non-Friedman (transitory/permanent) income process
 - e.g., AR(1)
 - But micro evidence is consistent with Friedman

- Non-CRRA utility
- Non-Friedman (transitory/permanent) income process
 - e.g., AR(1)
 - But micro evidence is consistent with Friedman

- Non-CRRA utility
- Non-Friedman (transitory/permanent) income process
 - e.g., AR(1)
 - But micro evidence is consistent with Friedman

- Non-CRRA utility
- Non-Friedman (transitory/permanent) income process
 - e.g., AR(1)
 - But micro evidence is consistent with Friedman

Trick: View Everything from End of Period

Define

$$\mathfrak{v}_t(a_t) = \mathbb{E}_t[\beta \Gamma_{t+1}^{1-\rho} \mathbf{v}_{t+1} (\mathcal{R}_{t+1} a_t + \theta_{t+1})] \tag{8}$$

SO

$$v_t(m_t) = \max_{c_t} u(c_t) + v_t(m_t - c_t)$$
 (9)

with FOC

$$u'(c_t) = v'_t(m_t - c_t). \tag{10}$$

and Envelope relation

$$u'(c_t) = v'_t(m_t) \tag{11}$$

Trick: Discretize the Risks

E.g. use an equiprobable 7-point distribution:

Trick: Discretize the Risks

$$\mathfrak{v}_t'(a_t) = \beta \mathsf{R} \mathsf{\Gamma}_{t+1}^{-\rho} \left(\frac{1}{n}\right) \sum_{i=1}^n u' \left(\mathsf{c}_{t+1} (\mathcal{R}_{t+1} a_t + \theta_i) \right) \quad (12)$$

So for any particular m_{T-1} the corresponding c_{T-1} can be found using the FOC:

$$u'(c_t) = \mathfrak{v}'_t(m_t - c_t). \tag{13}$$

Trick: Discretize the Risks

$$\mathfrak{v}_t'(a_t) = \beta \mathsf{R} \mathsf{\Gamma}_{t+1}^{-\rho} \left(\frac{1}{n}\right) \sum_{i=1}^n u' \left(c_{t+1} (\mathcal{R}_{t+1} a_t + \theta_i) \right) \quad (12)$$

So for any particular m_{T-1} the corresponding c_{T-1} can be found using the FOC:

$$u'(c_t) = v'_t(m_t - c_t). \tag{13}$$

- **1** Define a grid of points \vec{m} (indexed m[i])
- ② Use numerical rootfinder to solve $u'(c) = v'_t(m[i] c)$ • The c that solves this becomes c[i]
- Construct interpolating function è by linear interpolation
 'Connect-the-dots'

- Define a grid of points \vec{m} (indexed m[i])
- ② Use numerical rootfinder to solve $u'(c) = v'_t(m[i] c)$
 - The c that solves this becomes c[i]
- Onstruct interpolating function è by linear interpolation
 - 'Connect-the-dots'

- Define a grid of points \vec{m} (indexed m[i])
- ② Use numerical rootfinder to solve $u'(c) = v'_t(m[i] c)$
 - The c that solves this becomes c[i]
- Onstruct interpolating function è by linear interpolation
 - 'Connect-the-dots'

- Define a grid of points \vec{m} (indexed m[i])
- ② Use numerical rootfinder to solve $u'(c) = v'_t(m[i] c)$
 - The c that solves this becomes c[i]
- Construct interpolating function è by linear interpolation
 - 'Connect-the-dots'

- Define a grid of points \vec{m} (indexed m[i])
- ② Use numerical rootfinder to solve $u'(c) = v'_t(m[i] c)$
 - The c that solves this becomes c[i]
- Construct interpolating function è by linear interpolation
 - 'Connect-the-dots'

Example: $\vec{m}_{T-1} = \{0., 1., 2., 3., 4.\}$ (solid is 'correct' soln)

Problem: Numerical Rootfinding is Slow

Numerical search for values of c_{T-1} satisfying $u'(c) = v'_t(m[i] - c)$ at, say, 6 gridpoints of \vec{m}_{T-1} may require hundreds or even thousands of evaluations of

$$\mathfrak{v}_{T-1}'(\overbrace{m_{T-1}-c_{T-1}}^{a_{T-1}}) = \beta_T \Gamma_T^{1-\rho} \left(\frac{1}{n}\right) \sum_{i=1}^n \frac{\left(\mathcal{R}_{T} a_{T-1} + \theta_i\right)^{1-\rho}}{1-\rho}$$

- Define vector of *end-of-period* asset values \vec{a}
- For each a[j] compute $v'_{t}(a[j])$

Each of these $v'_{+}[i]$ corresponds to a unique c[i] via FOC:

$$c[j]^{-\rho} = v_t'(a[j]) \tag{14}$$

$$\varepsilon[j] = \left(v_t'(a[j])\right)^{-1/\rho} \tag{15}$$

But the DBC says

$$a_t = m_t - c_t \tag{16}$$

$$m[j] = a[j] + c[j] \tag{17}$$

So computing v'_t at a vector of \vec{a} values has produced for us the corresponding \vec{c} and \vec{m} values at virtually no cost!

From these we can interpolate as before to construct $c_t(m)$.

- Define vector of end-of-period asset values \vec{a}
- For each a[j] compute $v'_t(a[j])$

Each of these $\mathfrak{v}'_*[i]$ corresponds to a unique c[i] via FOC:

$$c[j]^{-\rho} = v'_{t}(a[j]) \tag{14}$$

$$\varepsilon[j] = \left(v_t'(a[j])\right)^{-1/\rho} \tag{15}$$

But the DBC says

$$a_t = m_t - c_t \tag{16}$$

$$m[j] = a[j] + c[j] \tag{17}$$

So computing v'_t at a vector of \vec{a} values has produced for us the corresponding \vec{c} and \vec{m} values at virtually no cost!

from these we can interpolate as before to construct $c_t(m)$.

- Define vector of end-of-period asset values \vec{a}
- For each a[j] compute $v'_t(a[j])$

Each of these $\mathfrak{v}'_{+}[i]$ corresponds to a unique c[i] via FOC:

$$c[j]^{-\rho} = v_t'(a[j]) \tag{14}$$

$$\varepsilon[j] = \left(v_t'(a[j])\right)^{-1/\rho} \tag{15}$$

But the DBC says

$$a_t = m_t - c_t \tag{16}$$

$$m[j] = a[j] + c[j] \tag{17}$$

So computing v_t' at a vector of \vec{a} values has produced for us the corresponding \vec{c} and \vec{m} values at virtually no cost!

From these we can interpolate as before to construct $\grave{c}_t(m)$

- Define vector of end-of-period asset values \vec{a}
- For each a[j] compute $v'_t(a[j])$

Each of these $\mathfrak{v}'_+[i]$ corresponds to a unique c[i] via FOC:

$$c[j]^{-\rho} = v_t'(a[j]) \tag{14}$$

$$\varepsilon[j] = \left(v_t'(a[j])\right)^{-1/\rho} \tag{15}$$

But the DBC says

$$a_t = m_t - c_t \tag{16}$$

$$m[j] = a[j] + c[j] \tag{17}$$

So computing v_t' at a vector of \vec{a} values has produced for us the corresponding \vec{c} and \vec{m} values at virtually no cost!

from these we can interpolate as before to construct $\grave{\mathrm{c}}_t(m)$

- Define vector of end-of-period asset values \vec{a}
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = v'_t(a[j]) \tag{14}$$

$$c[j] = (\mathfrak{v}'_t(a[j]))^{-1/\rho} \tag{15}$$

But the DBC says

$$a_t = m_t - c_t \tag{16}$$

$$m[j] = a[j] + c[j] \tag{17}$$

So computing v_t' at a vector of \vec{a} values has produced for us the corresponding \vec{c} and \vec{m} values at virtually no cost!

From these we can interpolate as before to construct $\grave{\mathrm{c}}_t(m)$.

- Define vector of end-of-period asset values \vec{a}
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = \mathfrak{v}'_t(a[j]) \tag{14}$$

$$c[j] = (\mathfrak{v}'_t(a[j]))^{-1/\rho} \tag{15}$$

But the DBC says

$$a_t = m_t - c_t \tag{16}$$

$$m[j] = a[j] + c[j] \tag{17}$$

So computing v_t' at a vector of \vec{a} values has produced for us the corresponding \vec{c} and \vec{m} values at virtually no cost!

From these we can interpolate as before to construct $\grave{\mathrm{c}}_t(m)$.

- Define vector of end-of-period asset values \vec{a}
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = \mathfrak{v}'_t(a[j]) \tag{14}$$

$$c[j] = (\mathfrak{v}'_t(a[j]))^{-1/\rho} \tag{15}$$

But the DBC says

$$a_t = m_t - c_t \tag{16}$$

$$m[j] = a[j] + c[j] \tag{17}$$

So computing v_t' at a vector of \vec{a} values has produced for us the corresponding \vec{c} and \vec{m} values at virtually no cost!

- Define vector of end-of-period asset values \vec{a}
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = \mathfrak{v}'_t(a[j]) \tag{14}$$

$$c[j] = (\mathfrak{v}'_t(a[j]))^{-1/\rho} \tag{15}$$

But the DBC says

$$a_t = m_t - c_t \tag{16}$$

$$m[j] = a[j] + c[j] \tag{17}$$

So computing v_t' at a vector of \vec{a} values has produced for us the corresponding \vec{c} and \vec{m} values at virtually no cost!

From these we can interpolate as before to construct $c_t(m)$.

Why Directly Approximating v_t is a Bad Idea

Principles of Approximation

- ullet Hard to approximate things that approach ∞ for relevant m
 - ullet Not a prob for Rep Agent models: 'relevant' m's are pprox SS
- Hard to approximate things that are highly nonlinear

Why Directly Approximating v_t is a Bad Idea

Principles of Approximation

- Hard to approximate things that approach ∞ for relevant m
 - ullet Not a prob for Rep Agent models: 'relevant' \emph{m} 's are pprox SS
- Hard to approximate things that are highly nonlinear

Why Directly Approximating v_t is a Bad Idea

Principles of Approximation

- Hard to approximate things that approach ∞ for relevant m
 - ullet Not a prob for Rep Agent models: 'relevant' \emph{m} 's are pprox SS
- Hard to approximate things that are highly nonlinear

Approximate Something That Would Be Linear in PF Case

Perfect Foresight Theory:

$$c_t(m) = (m + \mathfrak{h}_t)\underline{\kappa}_t \tag{18}$$

for market resources m and end-of-period human wealth \mathfrak{h} .

This is why it's a good idea to approximate c_t

Bonus: Easy to debug programs by setting $\sigma^2 = 0$ and testing whether numerical solution matches analytical!

Approximate Something That Would Be Linear in PF Case

Perfect Foresight Theory:

$$c_t(m) = (m + \mathfrak{h}_t)\underline{\kappa}_t \tag{18}$$

for market resources m and end-of-period human wealth \mathfrak{h} .

This is why it's a good idea to approximate c_t

Bonus: Easy to debug programs by setting $\sigma^2 = 0$ and testing whether numerical solution matches analytical!

Approximate Something That Would Be Linear in PF Case

Perfect Foresight Theory:

$$c_t(m) = (m + \mathfrak{h}_t)\underline{\kappa}_t \tag{18}$$

for market resources m and end-of-period human wealth \mathfrak{h} .

This is why it's a good idea to approximate c_t

Bonus: Easy to debug programs by setting $\sigma^2 = 0$ and testing whether numerical solution matches analytical!

But What if You *Need* the Value Function?

Perfect foresight value function:

$$\bar{\mathbf{v}}_t(m_t) = u(\bar{c}_t) \mathbb{C}_t^T \tag{19}$$

$$= u(\bar{c}_t)\underline{\kappa}_t^{-1} \tag{20}$$

$$= u((\mathbf{\Lambda} m_t + \mathbf{\Lambda} \mathfrak{h}_t) \underline{\kappa}_t) \underline{\kappa}_t^{-1} \tag{21}$$

$$= u(\mathbf{\Lambda} m_t + \mathbf{\Lambda} \mathfrak{h}_t) \underline{\kappa}_t^{1-\rho} \underline{\kappa}_t^{-1} \tag{22}$$

$$= u(\mathbf{\Lambda} m_t + \mathbf{\Lambda} \mathfrak{h}_t) \underline{\kappa}_t^{-\rho} \tag{23}$$

where the second line uses the fact demonstrated in Carroll (2020) that $\mathbb{C}_t = \kappa_t^{-1}$.

This can be transformed as

$$\bar{\Lambda}_t \equiv ((1-\rho)\bar{\mathbf{v}}_t)^{1/(1-\rho)} \\
= c_t (\mathbb{C}_t^T)^{1/(1-\rho)} \\
= (\mathbf{\Lambda} m_t + \mathbf{\Lambda} \mathfrak{h}_t) \underline{\kappa}_t^{-\rho/(1-\rho)}$$

which is linear.

But What if You *Need* the Value Function?

Perfect foresight value function:

$$\bar{\mathbf{v}}_t(m_t) = u(\bar{c}_t) \mathbb{C}_t^T \tag{19}$$

$$= u(\bar{c}_t) \kappa_t^{-1} \tag{20}$$

$$= u((\mathbf{A}m_t + \mathbf{A}\mathfrak{h}_t)\underline{\kappa}_t)\underline{\kappa}_t^{-1} \tag{21}$$

$$= u(\mathbf{A}m_t + \mathbf{A}\mathbf{h}_t)\kappa_t^{1-\rho}\kappa_t^{-1} \tag{22}$$

$$= u(\mathbf{\Lambda} m_t + \mathbf{\Lambda} \mathfrak{h}_t) \underline{\kappa}_t^{1-\rho} \underline{\kappa}_t^{-1} \tag{22}$$

$$= u(\mathbf{\Lambda}m_t + \mathbf{\Lambda}\mathfrak{h}_t)\underline{\kappa}_t^{-\rho} \tag{23}$$

where the second line uses the fact demonstrated in Carroll (2020) that $\mathbb{C}_t = \kappa_t^{-1}$.

This can be transformed as

$$\bar{\Lambda}_t \equiv ((1-\rho)\bar{\mathbf{v}}_t)^{1/(1-\rho)} \\
= c_t (\mathbb{C}_t^T)^{1/(1-\rho)} \\
= (\mathbf{\Lambda} m_t + \mathbf{\Lambda} \mathbf{h}_t) \kappa_t^{-\rho/(1-\rho)}$$

which is linear.

Approximate Slope Too

Carroll (2020) shows that c_t^m exists everywhere.

Define consumed function and its derivative as

$$c_t(a) = (v_t'(a))^{-1/\rho} \tag{25}$$

$$c_t^a(a) = -(1/\rho) \left(v_t'(a) \right)^{-1-1/\rho} v_t''(a) \tag{26}$$

and using chain rule it is easy to show that

$$\mathbf{c}_t^m = \mathbf{c}_t^a / (1 + \mathbf{c}_t^a) \tag{27}$$

Approximate Slope Too

Carroll (2020) shows that c_t^m exists everywhere.

Define consumed function and its derivative as

$$\mathfrak{c}_t(a) = (\mathfrak{v}_t'(a))^{-1/\rho} \tag{25}$$

$$c_t^a(a) = -(1/\rho) \left(v_t'(a) \right)^{-1-1/\rho} v_t''(a) \tag{26}$$

and using chain rule it is easy to show that

$$\mathbf{c}_t^m = \mathbf{c}_t^a / (1 + \mathbf{c}_t^a) \tag{27}$$

Approximate Slope Too

Carroll (2020) shows that c_t^m exists everywhere.

Define consumed function and its derivative as

$$\mathfrak{c}_t(a) = (\mathfrak{v}_t'(a))^{-1/\rho} \tag{25}$$

$$c_t^a(a) = -(1/\rho) \left(v_t'(a) \right)^{-1-1/\rho} v_t''(a)$$
 (26)

and using chain rule it is easy to show that

$$c_t^m = c_t^a/(1+c_t^a) \tag{27}$$

To Implement: Modify Prior Procedures in Two Ways

- Construct \vec{c}_t^m along with \vec{c}_t in EGM algorithm
- ② Approximate $c_t(m)$ using piecewise Hermite polynomial • Exact match to both level and derivative at set of points

To Implement: Modify Prior Procedures in Two Ways

- Construct \vec{c}_t^m along with \vec{c}_t in EGM algorithm
- ② Approximate $c_t(m)$ using piecewise Hermite polynomial
 - Exact match to both level and derivative at set of points

To Implement: Modify Prior Procedures in Two Ways

- Construct \vec{c}_t^m along with \vec{c}_t in EGM algorithm
- 2 Approximate $c_t(m)$ using piecewise Hermite polynomial
 - Exact match to both level and derivative at set of points

Problem: è Below Bottom m Gridpoint and Extrapolation

Consider what happens as a_{T-1} approaches $\underline{a}_{T-1} \equiv -\underline{\theta} \mathcal{R}_T^{-1}$,

$$\lim_{\substack{a \downarrow \underline{a}_{T-1} \\ a \downarrow \underline{a}_{T-1}}} \mathfrak{v}'_{T-1}(a) = \lim_{\substack{a \downarrow \underline{a}_{T-1} \\ = \infty}} \beta \mathsf{R} \mathsf{\Gamma}_{T}^{-\rho} \left(\frac{1}{n}\right) \sum_{i=1}^{n} \left(a \mathcal{R}_{T} + \theta_{i}\right)^{-\rho}$$

This means our lowest value in \vec{a}_{T-1} should be $> \underline{a}_{T-1}$.

Suppose we construct \grave{c} by linear interpolation:

$$\dot{c}_{T-1}(m) = \dot{c}_{T-1}(\vec{m}_{T-1}[1]) + \dot{c}'_{T-1}(\vec{m}_{T-1}[1])(m - \vec{m}_{T-1}[1])$$

True c is strictly concave $\Rightarrow \exists m^- > \underline{m}_{T-1}$ for which $m^- - c_{T-1}(m^-) < a_{T-1}$

Theory says that

$$\lim_{m \downarrow m_{T-1}} c_{T-1}(m) = 0 (28)$$

$$\lim_{m \downarrow m_{T-1}} c_{T-1}^m(m) = \bar{\kappa}_{T-1}$$
 (29)

- **1** Redefine \vec{a} relative to \underline{a}_{T-1}
- ② Construct corresponding \vec{m}_{T-1} and \vec{c}_{T-1}
- ③ Prepend \underline{m}_{T-1} to \vec{m}_{T-1}
- Prepend 0. to \vec{c}_{T-1}
- Solution Prepend $\bar{\kappa}_{T-1}$ to $\vec{\kappa}_{T-1}$

Theory says that

$$\lim_{m \downarrow m_{T-1}} c_{T-1}(m) = 0 \tag{28}$$

$$\lim_{m \downarrow \underline{m}_{T-1}} c_{T-1}^{m}(m) = \bar{\kappa}_{T-1}$$
 (29)

- **1** Redefine \vec{a} relative to \underline{a}_{T-1}
- ② Construct corresponding \vec{m}_{T-1} and \vec{c}_{T-1}
- \bigcirc Prepend \underline{m}_{T-1} to \vec{m}_{T-1}
- Prepend 0. to \vec{c}_{T-1}
- **6** Prepend $\bar{\kappa}_{T-1}$ to $\vec{\kappa}_{T-1}$

Theory says that

$$\lim_{m \downarrow m_{T-1}} c_{T-1}(m) = 0 (28)$$

$$\lim_{m \downarrow \underline{m}_{T-1}} c_{T-1}^{m}(m) = \bar{\kappa}_{T-1}$$
 (29)

- **1** Redefine \vec{a} relative to \underline{a}_{T-1}
- ② Construct corresponding \vec{m}_{T-1} and \vec{c}_{T-1}
- **3** Prepend \underline{m}_{T-1} to \vec{m}_{T-1}
- 4 Prepend 0. to \vec{c}_{T-1}
- **6** Prepend $\bar{\kappa}_{T-1}$ to $\vec{\kappa}_{T-1}$

Theory says that

$$\lim_{m \downarrow m_{T-1}} c_{T-1}(m) = 0 (28)$$

$$\lim_{m \downarrow \underline{m}_{T-1}} c_{T-1}^{m}(m) = \bar{\kappa}_{T-1}$$
 (29)

- **1** Redefine \vec{a} relative to \underline{a}_{T-1}
- 2 Construct corresponding \vec{m}_{T-1} and \vec{c}_{T-1}
- **3** Prepend \underline{m}_{T-1} to \vec{m}_{T-1}
- Prepend 0. to \vec{c}_{T-1}
- **5** Prepend $\bar{\kappa}_{T-1}$ to $\vec{\kappa}_{T-1}$

Theory says that

$$\lim_{m \downarrow m_{T-1}} c_{T-1}(m) = 0 (28)$$

$$\lim_{m \downarrow \underline{m}_{T-1}} c_{T-1}^{m}(m) = \bar{\kappa}_{T-1}$$
 (29)

- **1** Redefine \vec{a} relative to \underline{a}_{T-1}
- 2 Construct corresponding \vec{m}_{T-1} and \vec{c}_{T-1}
- **3** Prepend \underline{m}_{T-1} to \vec{m}_{T-1}
- Prepend 0. to \vec{c}_{T-1}
- **9** Prepend $\bar{\kappa}_{T-1}$ to $\vec{\kappa}_{T-1}$

Trick: Improving the a Grid

Grid Spacing: Uniform

$$(u_{T-1}(a_{T-1}))^{-1/\rho}$$
, $c_{T-1}(a_{T-1})$

5

4

3

2

1

2

3

4

 a_{T-1}

Trick: Improving the a Grid

Grid Spacing: Same $\{\underline{a}, \bar{a}\}$ But Triple Exponential $e^{e^{e^{\cdot\cdot\cdot}}}$ Growth

$$(u_{T-1}(a_{T-1}))^{-1/\rho}$$
, $\dot{c}_{T-1}(a_{T-1})$

5

4

3

2

1

2

3

4

4

4

7

1

The Method of Moderation

- Further improves speed and accuracy of solution
- See my talk at the conference!

The Method of Moderation

- Further improves speed and accuracy of solution
- See my talk at the conference!

$$v_{T-1}(m_{T-1}) = \max_{c_{T-1}} u(c_{T-1}) + \mathbb{E}_{T-1}[\beta \Gamma_T^{1-\rho} v_T(m_T)]$$
s.t.
$$a_{T-1} = m_{T-1} - c_{T-1}$$

$$m_T = \mathcal{R}_T a_{T-1} + \theta_T$$

$$a_{T-1} > 0.$$

Define c_{t}^{*} as soln to unconstrained problem. Then

$$\dot{\mathbf{c}}_{T-1}(m_{T-1}) = \min[m_{T-1}, \dot{\mathbf{c}}_{T-1}^*(m_{T-1})].$$
(30)

$$\mathbf{v}_{T-1}(m_{T-1}) = \max_{c_{T-1}} u(c_{T-1}) + \mathbb{E}_{T-1}[\beta \Gamma_T^{1-\rho} \mathbf{v}_T(m_T)]$$

s.t.
 $\mathbf{a}_{T-1} = m_{T-1} - c_{T-1}$
 $m_T = \mathcal{R}_T \mathbf{a}_{T-1} + \theta_T$
 $\mathbf{a}_{T-1} \geq 0$.

Define \grave{c}_t^* as soln to unconstrained problem. Then

$$\dot{\mathbf{c}}_{T-1}(m_{T-1}) = \min[m_{T-1}, \dot{\mathbf{c}}_{T-1}^*(m_{T-1})].$$
(30)

Point where constraint makes transition from binding to not is

$$u'(m_{T-1}^{\#}) = v'_{T-1}(0.)$$

 $m_{T-1}^{\#} = (v'_{T-1}(0.))^{-1/\rho}$

- Add 0. as first point in \vec{a}
 - $\bullet \Rightarrow \vec{m}[1] = m_{T-}^{\#}$
 - Above $m_{T-1}^{\#}$, $\grave{c}_{T-1}(m)$ obtained as before
 - Below $m_{T-1}^{\#}$, $\grave{c}_{T-1}(m) = m$

Point where constraint makes transition from binding to not is

$$u'(m_{T-1}^{\#}) = v'_{T-1}(0.)$$

 $m_{T-1}^{\#} = (v'_{T-1}(0.))^{-1/\rho}$

- Add 0. as first point in \vec{a}
- $\bullet \Rightarrow \vec{m}[1] = m_{T-1}^{\#}$
- Above $m_{T-1}^{\#}$, $c_{T-1}(m)$ obtained as before
- Below $m_{T-1}^{\#}$, $c_{T-1}(m) = m$

Point where constraint makes transition from binding to not is

$$u'(m_{T-1}^{\#}) = v'_{T-1}(0.)$$

 $m_{T-1}^{\#} = (v'_{T-1}(0.))^{-1/\rho}$

- Add 0. as first point in \vec{a}
- $\bullet \Rightarrow \vec{m}[1] = m_{T-1}^{\#}$
- Above $m_{T-1}^{\#}$, $c_{T-1}(m)$ obtained as before
- Below $m_{T-1}^{\#}$, $c_{T-1}(m) = m$

Point where constraint makes transition from binding to not is

$$u'(m_{T-1}^{\#}) = v'_{T-1}(0.)$$

 $m_{T-1}^{\#} = (v'_{T-1}(0.))^{-1/\rho}$

- Add 0. as first point in \vec{a}
- $\bullet \Rightarrow \vec{m}[1] = m_{T-1}^{\#}$
- Above $m_{T-1}^{\#}$, $c_{T-1}(m)$ obtained as before
- Below $m_{T-1}^{\#}$, $c_{T-1}(m) = m$

Point where constraint makes transition from binding to not is

$$u'(m_{T-1}^{\#}) = v'_{T-1}(0.)$$

 $m_{T-1}^{\#} = (v'_{T-1}(0.))^{-1/\rho}$

- Add 0. as first point in \vec{a}
- $\bullet \Rightarrow \vec{m}[1] = m_{T-1}^{\#}$
- Above $m_{T-1}^{\#}$, $c_{T-1}(m)$ obtained as before
- Below $m_{T-1}^{\#}$, $c_{T-1}(m) = m$

Figure: Constrained (solid) and Unconstrained (dashed) Consumption

Recursion: Period t Solution Given Period t + 1

Construct

$$\mathfrak{c}_{t,i} = (\mathfrak{v}'_t(a_{t,i}))^{-1/\rho}, \qquad (31)$$

$$= \left(\beta \mathbb{E}_t \left[\mathsf{R}\Gamma_{t+1}^{-\rho} (\grave{c}_{t+1}(\mathcal{R}_{t+1}a_{t,i} + \theta_{t+1}))^{-\rho} \right] \right)^{-1/\rho} (32)$$

- ② Call the result \vec{c}_t and generate the corresponding $\vec{m}_t = \vec{c}_t + \vec{a}_t$
- Interpolate to create $c_t(m)$

Recursion: Period t Solution Given Period t + 1

Construct

$$c_{t,i} = (\mathfrak{v}'_t(a_{t,i}))^{-1/\rho},$$

$$= \left(\beta \mathbb{E}_t \left[\mathsf{R} \Gamma_{t+1}^{-\rho} (\grave{c}_{t+1}(\mathcal{R}_{t+1} a_{t,i} + \theta_{t+1}))^{-\rho} \right] \right)^{-1/\rho} (32)$$

- ② Call the result \vec{c}_t and generate the corresponding $\vec{m}_t = \vec{c}_t + \vec{a}_t$
- ③ Interpolate to create $\dot{c}_t(m)$

Recursion: Period t Solution Given Period t + 1

Construct

$$\mathfrak{c}_{t,i} = (\mathfrak{v}'_{t}(a_{t,i}))^{-1/\rho},$$

$$= \left(\beta \mathbb{E}_{t} \left[\mathsf{R} \Gamma_{t+1}^{-\rho} (\grave{c}_{t+1}(\mathcal{R}_{t+1}a_{t,i} + \theta_{t+1}))^{-\rho} \right] \right)^{-1/\rho} (32)$$

- ② Call the result \vec{c}_t and generate the corresponding $\vec{m}_t = \vec{c}_t + \vec{a}_t$
- **1** Interpolate to create $\dot{c}_t(m)$

Consumption Rules c_{T-n} Converge

Figure: Converging $\grave{c}_{\mathcal{T}-n}(m)$ Functions for $n=\{1,5,10,15,20\}$

Portfolio Choice

Now the consumer has a choice between a risky and a safe asset.

The portfolio return is

$$\mathbb{R}_{t+1} = \mathbb{R}(1 - \varsigma_t) + \mathbf{R}_{t+1}\varsigma_t \tag{33}$$

$$= R + (R_{t+1} - R)\varsigma_t \tag{34}$$

so (setting $\Gamma=1$) the maximization problem is

$$\mathbf{v}_{t}(m_{t}) = \max_{\{c_{t}, \varsigma_{t}\}} u(c_{t}) + \beta \mathbb{E}_{t}[\mathbf{v}_{t+1}(m_{t+1})]$$
s.t.
$$\mathbb{R}_{t+1} = \mathbb{R} + (\mathbf{R}_{t+1} - \mathbb{R})\varsigma_{t}$$

$$m_{t+1} = (m_{t} - c_{t})\mathbb{R}_{t+1} + \theta_{t+1}$$

$$0 < \varsigma_{t} < 1$$

Portfolio Choice

Now the consumer has a choice between a risky and a safe asset. The portfolio return is

$$\mathbb{R}_{t+1} = \mathbb{R}(1 - \varsigma_t) + \mathbf{R}_{t+1}\varsigma_t \tag{33}$$

$$= R + (\mathbf{R}_{t+1} - R)\varsigma_t \tag{34}$$

so (setting $\Gamma=1)$ the maximization problem is

$$v_{t}(m_{t}) = \max_{\{c_{t}, \varsigma_{t}\}} u(c_{t}) + \beta \mathbb{E}_{t}[v_{t+1}(m_{t+1})]$$
s.t.

 $\mathbb{R}_{t+1} = \mathbb{R} + (\mathbb{R}_{t+1} - \mathbb{R})\varsigma_{t}$
 $m_{t+1} = (m_{t} - c_{t})\mathbb{R}_{t+1} + \theta_{t+1}$
 $0 < \varsigma_{t} < 1$.

Portfolio Choice

Now the consumer has a choice between a risky and a safe asset. The portfolio return is

$$\mathbb{R}_{t+1} = \mathbb{R}(1 - \varsigma_t) + \mathbf{R}_{t+1}\varsigma_t \tag{33}$$

$$= R + (\mathbf{R}_{t+1} - R)\varsigma_t \tag{34}$$

so (setting $\Gamma=1$) the maximization problem is

$$v_{t}(m_{t}) = \max_{\{c_{t},\varsigma_{t}\}} u(c_{t}) + \beta \mathbb{E}_{t}[v_{t+1}(m_{t+1})]$$
s.t.
$$\mathbb{R}_{t+1} = \mathbb{R} + (\mathbb{R}_{t+1} - \mathbb{R})\varsigma_{t}$$

$$m_{t+1} = (m_{t} - c_{t})\mathbb{R}_{t+1} + \theta_{t+1}$$

$$0 < \varsigma_{t} < 1.$$

Portfolio Choice

Now the consumer has a choice between a risky and a safe asset. The portfolio return is

$$\mathbb{R}_{t+1} = \mathbb{R}(1 - \varsigma_t) + \mathbf{R}_{t+1}\varsigma_t \tag{33}$$

$$= R + (\mathbf{R}_{t+1} - R)\varsigma_t \tag{34}$$

so (setting $\Gamma=1$) the maximization problem is

$$\mathbf{v}_{t}(m_{t}) = \max_{\{c_{t},\varsigma_{t}\}} u(c_{t}) + \beta \mathbb{E}_{t}[\mathbf{v}_{t+1}(m_{t+1})]$$
s.t.
$$\mathbb{R}_{t+1} = \mathbb{R} + (\mathbb{R}_{t+1} - \mathbb{R})\varsigma_{t}$$

$$m_{t+1} = (m_{t} - c_{t})\mathbb{R}_{t+1} + \theta_{t+1}$$

$$0 < \varsigma_{t} < 1,$$

Portfolio Choice

The FOC with respect to c_t now yields an Euler equation

$$u'(c_t) = \mathbb{E}_t[\beta \mathbb{R}_{t+1} u'(c_{t+1})]. \tag{35}$$

while the FOC with respect to the portfolio share yields

$$0 = \mathbb{E}_{t}[\mathbf{v}'_{t+1}(m_{t+1})(\mathbf{R}_{t+1} - \mathbf{R})a_{t}]$$

= $a_{t}\mathbb{E}_{t}[u'(\mathbf{c}_{t+1}(m_{t+1}))(\mathbf{R}_{t+1} - \mathbf{R})].$ (36)

Portfolio Choice

The FOC with respect to c_t now yields an Euler equation

$$u'(c_t) = \mathbb{E}_t[\beta \mathbb{R}_{t+1} u'(c_{t+1})]. \tag{35}$$

while the FOC with respect to the portfolio share yields

$$0 = \mathbb{E}_{t}[v'_{t+1}(m_{t+1})(\mathbf{R}_{t+1} - \mathbf{R})a_{t}]$$

= $a_{t}\mathbb{E}_{t}[u'(c_{t+1}(m_{t+1}))(\mathbf{R}_{t+1} - \mathbf{R})].$ (36)

Convergence

When the problem satisfies certain conditions (Carroll (2020)), it defines a 'converged' consumption rule with a 'target' ratio \check{m} that satisfies:

$$\mathbb{E}_t[m_{t+1}/m_t] = 1 \text{ if } m_t = \check{m} \tag{37}$$

Define the target m implied by the consumption rule c_t as \check{m}_t .

Then a plausible metric for convergence is to define some value ϵ and to declare the solution to have converged when

$$|\check{m}_{t+1} - \check{m}_t| < \epsilon \tag{38}$$

Convergence

When the problem satisfies certain conditions (Carroll (2020)), it defines a 'converged' consumption rule with a 'target' ratio \check{m} that satisfies:

$$\mathbb{E}_t[m_{t+1}/m_t] = 1 \text{ if } m_t = \check{m} \tag{37}$$

Define the target m implied by the consumption rule c_t as \check{m}_t .

Then a plausible metric for convergence is to define some value ϵ and to declare the solution to have converged when

$$|\check{m}_{t+1} - \check{m}_t| < \epsilon \tag{38}$$

Convergence

When the problem satisfies certain conditions (Carroll (2020)), it defines a 'converged' consumption rule with a 'target' ratio \check{m} that satisfies:

$$\mathbb{E}_t[m_{t+1}/m_t] = 1 \text{ if } m_t = \check{m} \tag{37}$$

Define the target m implied by the consumption rule c_t as \check{m}_t .

Then a plausible metric for convergence is to define some value ϵ and to declare the solution to have converged when

$$|\check{m}_{t+1} - \check{m}_t| < \epsilon \tag{38}$$

- **1** Start with coarse grid for θ (say, 3 points)
- Solve to convergence; call period of convergence n
- **o** Construct finer grid for θ (say, 7 points)
- Solve for period T n 1 assuming c_{T-n}
- Continue to convergence

- **1** Start with coarse grid for θ (say, 3 points)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for θ (say, 7 points)
- Solve for period T n 1 assuming c_{T-n}
- © Continue to convergence

- **1** Start with coarse grid for θ (say, 3 points)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for θ (say, 7 points)
- **○** Solve for period T n 1 assuming c_{T-n}
- 6 Continue to convergence

- **1** Start with coarse grid for θ (say, 3 points)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for θ (say, 7 points)
- **4** Solve for period T n 1 assuming \grave{c}_{T-n}
- Ontinue to convergence

- **1** Start with coarse grid for θ (say, 3 points)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for θ (say, 7 points)
- **9** Solve for period T n 1 assuming \grave{c}_{T-n}
- Ontinue to convergence

- Start with coarse grid for \vec{a} (say, 5 gridpoints)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for \vec{a} (say, 20 points)
- **Or Solve for period** T n 1 assuming c_{T-n}
- © Continue to convergence

- Start with coarse grid for \vec{a} (say, 5 gridpoints)
- Solve to convergence; call period of convergence n
- **©** Construct finer grid for \vec{a} (say, 20 points)
- Solve for period T n 1 assuming c_{T-n}
- © Continue to convergence

- Start with coarse grid for \vec{a} (say, 5 gridpoints)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for \vec{a} (say, 20 points)
- **○** Solve for period T n 1 assuming c_{T-n}
- © Continue to convergence

- Start with coarse grid for \vec{a} (say, 5 gridpoints)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for \vec{a} (say, 20 points)
- **4** Solve for period T n 1 assuming \grave{c}_{T-n}
- 6 Continue to convergence

- Start with coarse grid for \vec{a} (say, 5 gridpoints)
- Solve to convergence; call period of convergence n
- **One of Struct 19** Solution **One of Struct 19** One of the or and of the original of the origi
- **4** Solve for period T n 1 assuming \grave{c}_{T-n}
- Ontinue to convergence

Life Cycle Maximization Problem

$$v_{t}(m_{t}) = \max_{c_{t}} \left\{ u(c_{t}) + \mathbb{I} \aleph_{t+1} \hat{\beta}_{t+1} \mathbb{E}_{t} [(\psi_{t+1} \Gamma_{t+1})^{1-\rho} v_{t+1}(m_{t+1})] \right\}$$
s.t.
$$a_{t} = m_{t} - c_{t}$$

$$m_{t+1} = a_{t} \underbrace{\left(\frac{\mathbb{R}}{\psi_{t+1} \Gamma_{t+1}}\right)}_{-\mathcal{R}} + \theta_{t+1}$$

 $leph_s$: probability alive (not dead) until age s given alive at age s-1

 \hat{eta}_s : time-varying discount factor between age s-1 and s

 Ψ_s : mean-one shock to permanent income

☐ : time-invariant discount factor

Details follow Cagetti (2003)

- Parameterization of Uncertainty
- Probability of Death
- ullet Demographic Adjustments to eta

Details follow Cagetti (2003)

- Parameterization of Uncertainty
- Probability of Death
- Demographic Adjustments to β

Details follow Cagetti (2003)

- Parameterization of Uncertainty
- Probability of Death
- ullet Demographic Adjustments to eta

Empirical Wealth Profiles

Figure: m from SCF (means (dashed) and medians (solid))

Given a set of parameter values $\{\rho, \beth\}$:

- Start at age 25 with empirical m data
- Draw shocks using calibrated $\sigma_{\eta_l}^2, \sigma_{\theta}^2$
- ullet Consume according to solved c_t
- $\Rightarrow m$ distribution by age

Given a set of parameter values $\{\rho, \beth\}$:

- Start at age 25 with empirical m data
- Draw shocks using calibrated $\sigma_{\psi}^2, \sigma_{\theta}^2$
- ullet Consume according to solved \mathbf{c}_t
- $\Rightarrow m$ distribution by age

Given a set of parameter values $\{\rho, \beth\}$:

- Start at age 25 with empirical *m* data
- Draw shocks using calibrated $\sigma_{\psi}^2, \sigma_{\theta}^2$
- \bullet Consume according to solved \mathbf{c}_t

 $\Rightarrow m$ distribution by age

Given a set of parameter values $\{\rho, \beth\}$:

- Start at age 25 with empirical *m* data
- Draw shocks using calibrated $\sigma_{\psi}^2, \sigma_{\theta}^2$
- \bullet Consume according to solved \mathbf{c}_t

 $\Rightarrow m$ distribution by age

Given a set of parameter values $\{\rho, \beth\}$:

- Start at age 25 with empirical *m* data
- Draw shocks using calibrated $\sigma_{\psi}^2, \sigma_{\theta}^2$
- \bullet Consume according to solved \mathbf{c}_t
- $\Rightarrow m$ distribution by age

Choose What to Simulate

```
GapEmpiricalSimulatedMedians[\rho, \beth]:=
[ ConstructcFuncLife[\rho, \beth]; 
Simulate;
\sum_{i}^{N} \omega_{i} |\varsigma_{i}^{\tau} - \mathbf{s}^{\tau}(\xi)| 
];
```

Calculate Match Between Theory and Data

$$\xi = \{\rho, \beth\} \tag{39}$$

solve

$$\min_{\xi} \sum_{i}^{N} \omega_{i} \left| \varsigma_{i}^{\tau} - \mathbf{s}^{\tau}(\xi) \right| \tag{40}$$

Bootstrap Standard Errors (Horowitz (2001))

Yields estimates of

Table: Estimation Results

$\overline{\rho}$	٦
4.68	1.00
(0.13)	(0.00)

Contour Plot

Figure: Point Estimate and Height of Minimized Function

References |

- CAGETTI, MARCO (2003): "Wealth Accumulation Over the Life Cycle and Precautionary Savings," <u>Journal of</u> Business and Economic Statistics, 21(3), 339–353.
- CARROLL, CHRISTOPHER D. (2020): "Theoretical Foundations of Buffer Stock Saving," Forthcoming,
 Quantitative Economics, Available at http://econ.jhu.edu/people/ccarroll/papers/BufferStockTheory.
- HOROWITZ, JOEL L. (2001): "The Bootstrap," in <u>Handbook of Econometrics</u>, ed. by James J. Heckman, and Edward Leamer, vol. 5. Elsevier/North Holland.