Radiative seesaw and baryogenesis

with gauged Lepton number

Diego Restrepo

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co

Focus on
arXiv:xxxxxxxxx
In collaboration with
W. Novelo, L. Leite, O. Peres (UNICAMP)

Model building

Grupos de Lie

$$U = \exp\left(i\sum_{j} T_{j}\theta^{j}\right),\tag{1}$$

where θ^{j} are the parameters of the transformation and T_{i} are the generators.

Consider the 1×1

$$K = -i, (2)$$

which generates an element of dilaton group , SO(1), $R(\xi)$

$$\lambda(\xi) = e^{\xi}, \tag{3}$$

which are just the group of the real exponentials. Such a number can be transformed as

$$x \to x' = e^{\xi} x, \tag{4}$$

that corresponds to a boost by e^{ξ} . We can defin the invariant scalar product just as the division of real numbers, such that

$$x \cdot y \to x' \cdot y' \equiv \frac{x'}{y'} = \frac{e^{\xi} x}{e^{\xi} y} = \frac{x}{y} = x \cdot y.$$
 (5)

Under a general Lorentz transformation we have.

$$A^{\mu}(x) \to A'^{\mu}(x) = \Lambda^{\mu}{}_{\nu}A^{\nu}(\Lambda^{-1}x).$$
 (6)

A pure underscript 4-vector iso

$$\partial_{\mu} = \frac{\partial}{\partial x^{\mu}} = \left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) = (\partial_{0}, \nabla). \tag{7}$$

From

$$\frac{1}{\chi'^{\mu}} = \left(\Lambda^{-1}\right)^{\nu}{}_{\mu}\frac{1}{\chi^{\nu}}\,,\tag{8}$$

the tranformation properties for a $\partial_{\mu} = \partial/\partial x^{\mu}$, are

$$\partial_{\mu}^{\prime} = \left(\Lambda^{-1}\right)^{\nu}_{\mu} \partial_{\nu} \,. \tag{9}$$

In this way, the invariant scalar product between the 4-vector field and the four-gradient is just

$$\partial_{\mu}A^{\mu} \to \partial'_{\mu}A'^{\mu} = \partial_{\mu}A^{\mu} \,. \tag{10}$$

Name	Syn	nbol	SU(N)	
scalar <i>N</i> -plet	Ψ		UΨ	
scalar anti- <i>N</i> -	Ψ^{\dagger}		$\Psi^\dagger U^\dagger$	
Name	Symbol		Lore	ntz
Photon	\mathcal{A}^{μ}		$\Lambda^{\mu}{}_{ u}$	$4^{ u}$
4-gradient	∂_{μ}		$\partial_{\nu}(I)$	$\left(\lambda^{-1} \right)^{ u}_{\mu_{-}}$

Table 1: Scalar products: $\Psi^{\dagger}\Psi$, $\partial_{\mu}A^{\mu}$, $A^{\nu}A_{\nu}$, $\partial_{\mu}\partial^{\mu}$

Name	Symbol	Lorentz	U(1)
e _L : electron left	ξ_{α}	$S_{\alpha}{}^{\beta}\xi_{\beta}$	$e^{i\theta}\xi_{\alpha}$
$(e_L)^{\dagger}$: positron right	$(\xi_{m{lpha}})^\dagger = \xi_{\dot{m{lpha}}}^\dagger$	$\xi^{\dagger}_{\dot{eta}}ig[S^{\dagger}ig]^{\dot{eta}}_{\dot{lpha}}$	$\xi^{\dagger}_{\dot{lpha}}e^{-i heta}$
e _R : electron right	$(\eta^{lpha})^{\dagger}=\eta^{\dagger\dot{lpha}}$	$\left[\left(S^{-1} ight)^{\dagger} ight]^{\dot{lpha}}_{}\dot{eta}}\eta^{\dagger\dot{eta}}$	$e^{i heta}\eta^{\dagger}\dot{lpha}$
$(e_R)^{\dagger}$: positron left	$\eta^{\color{red}lpha}$	$\eta^{\beta} [S^{-1}]_{\beta}^{\alpha}$	$e^{-i\theta}\eta^{\alpha}$

Table 2: electron components

Scalar products

- Majorana scalars: $\xi^{\alpha}\xi_{\alpha} + \xi^{\dagger}_{\dot{\alpha}}\xi^{\dagger\dot{\alpha}}$, $\eta^{\alpha}\eta_{\alpha} + \eta^{\dagger}_{\dot{\alpha}}\eta^{\dagger\dot{\alpha}}$.
- Dirac scalar: $\eta^{\alpha}\xi_{\alpha} + \xi_{\dot{\alpha}}^{\dagger}\eta^{\dagger\dot{\alpha}}$.
- Scalar under subgroup SL(2, C) but vector under SO(1,3): $S^{\dagger} \overline{\sigma}^{\mu} S = \Lambda^{\mu}{}_{\nu} \overline{\sigma}^{\nu}$

Field	Lorentz	SU(3) _C	$SU(2)_L$	$U(1)_Y$
Q	ξ^1_{α}	3	2	1/6
L	ξ_{α}^{2}	1	2	-1/2
$\left(u_R^-\right)^\dagger$	η_1^{lpha}	3	1	-2/3
$\left(d_R^-\right)^\dagger$	η_2^{lpha}	3	1	1/3
$\left(e_{R}^{-} ight) ^{\dagger }$	η_3^{lpha}	1	1	1
Н	-	1	2	1/2

Table 3: Standar Model fundamental fields

como por ejemplo,

$$(u_R)^{\dagger} Q \cdot H, \tag{11}$$

which can be represented by the "Kircchoff Law":

$$Y_Q + Y_H = Y_u \rightarrow \frac{1}{6} + \frac{1}{2} = \frac{2}{3}$$

Dark sectors

 $\mathcal{L} = -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + i\sum_{i}\chi_{i}^{\dagger}\mathcal{D}\chi_{i}$

$$-h(\chi_1\chi_2\Phi + h.c)$$

Anomalons: SM-singlet Dirac fermion dark matter $m_{\Psi} = h \langle \Phi \rangle$

LHC productio

Gauged Symmetry: $\mathcal{X} \to B$: $q\overline{q} \to Z \to \text{jets}$

Gauged Symmetry: $\mathcal{X} \to L$:

$$\overline{\Psi}\Psi = \chi_1 \chi_2 + \chi_1^{\dagger} \chi_2^{\dagger} \to \chi_{\alpha} \chi_{\beta} \Phi^{(*)},$$

 $lpha=1,\ldots N' o N'>4$

Local $U(1)_{\mathcal{X}}$ $\mathcal{L} = -rac{1}{4}V_{\mu
u}V^{\mu
u} + i\sum_{i}\chi_{i}^{\dagger}\mathcal{D}\chi_{i}$

$$-h(\chi_1\chi_2\Phi + h.c)$$

Anomalons: SM-singlet Dirac fermion dark matter $m_{\Psi} = h \langle \Phi \rangle$

Gauged Symmetry: $\mathcal{X} \to B$: $q\overline{q} \to Z' \to \text{jets}$

Gauged Symmetry:
$$\mathcal{X} \rightarrow \mathcal{L}$$
:

multi-component dark matter

 $\alpha = 1, \dots N' \rightarrow N' > 4$

Local $U(1)_{\mathcal{X}}$ $\mathcal{L} = -rac{1}{4}V_{\mu
u}V^{\mu
u} + i\sum_{i}\chi_{i}^{\dagger}\mathcal{D}\chi_{i}$

$$-h(\chi_1\chi_2\Phi + h.c)$$

Anomalons: SM-singlet Dirac fermion dark matter $m_{\Psi} = h \langle \Phi \rangle$

Gauged Symmetry: $\mathcal{X} \to B$: $q\overline{q} \to Z' \to \text{jets}$

Gauged Symmetry:
$$\mathcal{X} \rightarrow \mathcal{L}$$
:

multi-component dark matter

 $\alpha = 1, \dots N' \rightarrow N' > 4$

Local $U(1)\chi$ $\mathcal{L} = -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + i\sum_{i}\chi_{i}^{\dagger}\mathcal{D}\chi_{i}$

$$-y(\chi_1\chi_2S+h.c)$$

Anomalons: SM-singlet Dirac fermion

CP violation Yukawa y

LHC productio

Gauged Symmetry: $\mathcal{X} \to B$: $q\overline{q} \to Z' \to \text{jets}$

Gauged Symmetry:
$$\mathcal{X} \rightarrow \mathcal{L}$$
:

multi-component
dark matter

 $lpha=1,\ldots N' o N'>4$

Standard model extended with $U(1)_{\mathcal{X}=L \text{ or } \mathbf{B}}$ gauge symmetry

Fields	$SU(2)_L$	$U(1)_Y$	$U(1)_{\mathcal{X}=B \text{ or } L}$
Q_i^{\dagger}	2	-1/6	Q
d_{Ri}	1	-1/2	d
u_{Ri}	1	+2/3	и
L_i^{\dagger}	2	+1/2	L
e_{Ri}	1	-1	e
Н	2	1/2	h = 0
χ_{α}	1	0	z_{α}
$(L'_L)^{\dagger}$	2	1/2	-x'
$L_R^{\prime\prime}$	2	-1/2	x''
e_R'	1	-1	×
$(e_L^{\prime\prime})^\dagger$	1	1	-x''
Ф	1	0	ϕ
S	1	0	5

Table 4: A minimal set of new fermion content: L = e = 0 for $\mathcal{X} = B$. Or Q = u = d = 0 for $\mathcal{X} = L$.

 $i = 1, 2, 3, \ \alpha = 1, 2, \dots, N'$

Effective Dirac neutrino mass operator

$$\chi_1 \to \nu_{R1}, \cdots, \chi_{N_{\nu}} \to \nu_{RN_{\nu}}, \qquad 2 \le N_{\nu} \le 3,$$
(12)

$$\mathcal{L}_{\mathrm{eff}} = h_{
u}^{lpha i} \left(
u_{Rlpha}
ight)^{\dagger} \, \epsilon_{ab} \, \mathcal{L}_{i}^{a} \, \mathcal{H}^{b} \left(rac{\Phi^{*}}{\Lambda}
ight)^{\delta} + \mathrm{H.c.}, \qquad \mathrm{with} \, \, i=1,2,3 \, ,$$

S is the complex singlet scalar responsible for the SSB of the anomaly-free gauge symmetry with D or X-charge

$$\phi = -(\nu + \mathbf{L})/\delta \,, \tag{13}$$

Anomaly cancellation I

The anomaly-cancellation conditions on $[SU(3)_c]^2 U(1)_X$, $[SU(2)_L]^2 U(1)_X$, $[U(1)_Y]^2 U(1)_X$, allow us to express three of the X-charges in terms of the others

$$\mathbf{u} = -\mathbf{e} - \frac{2}{3}\mathbf{L} - \frac{1}{9}\left(x' - x''\right) , \quad \mathbf{d} = \mathbf{e} + \frac{4}{3}\mathbf{L} - \frac{1}{9}\left(x' - x''\right) , \quad \mathbf{Q} = -\frac{1}{3}\mathbf{L} + \frac{1}{9}\left(x' - x''\right) , \quad (14)$$

while the $[U(1)_X]^2 U(1)_Y$ anomaly condition reduces to

$$(e+L)(x'-x'')=0.$$
 (15)

- Previously: x' = x''
- We choose instead (h = 0):

$$e = -L, (16)$$

so that (L is still a free parameter)

$$Q = -u = -d = -\frac{1}{3}L + \frac{1}{9}(x' - x''). \tag{17}$$

If
$$B = 0 \rightarrow U(1)_L$$

Anomaly cancellation II

The gravitational anomaly, $[SO(1,3)]^2 U(1)_Y$, and the cubic anomaly, $[U(1)_X]^3$, can be written as the following system of Diophantine equations, respectively,

$$\sum_{\alpha=1}^{N} z_{\alpha} = 0, \qquad \sum_{\alpha=1}^{N} z_{\alpha}^{3} = 0, \qquad (18)$$

where N = N' + 5 and

$$z_{N'+1} = -x',$$
 $z_{N'+2+i} = L, \quad i = 1, 2, 3$ (19)

 \rightarrow

$$9Q = -\sum_{\alpha = N'+1}^{N'+5} z_{\alpha} = -x' + x'' + L + L + L, \qquad (20)$$

$$Q = 0 \gg U(1)_L$$

390074 solutions with $5 \le N \le 12$ integers until '1321' [JSON]

Anomaly free | Diophantine equations | Abelian symmetry

Creative Commons Attribution 4.0 International

Keyword(s):

License (for files):

$U(1)_{\mathbb{B}}$ selection

• L = 0

$$(5,5,-3,-2,1,-6)$$

$U(1)_{\mathbf{B}}$ selection

- L=0
- Effective neutrino mass: $\phi = -\nu = -5$

$$(5,5,-3,-2,1,-6)$$

$U(1)_{\mathbf{E}}$ selection

- L = 0
- Effective neutrino mass: $\phi = -\nu = -5$
- Electroweak-scale vector-like fermions:

$$(L'_L)^{\dagger} L''_R \Phi^* \to x' = -1, \ x'' = 6$$

$$(5, 5, -3, -2, 1, -6)$$

$U(1)_{\mbox{\scriptsize B}}$ selection

- L=0
- Effective neutrino mass: $\phi = -\nu = -5$
- Electroweak-scale vector-like fermions:

$$(L'_L)^{\dagger} L''_R \Phi^* \to x' = -1, \ x'' = 6$$

• Dirac-fermionic DM: $(\chi_L)^{\dagger} \chi_R'' \Phi^* \rightarrow z_3 = -3, \ z_4 = -2$

$$(5, 5, -3, -2, 1, -6)$$

$U(1)_{\mathbf{B}}$ selection

- L=0
- Effective neutrino mass: $\phi = -\nu = -5$
- Electroweak-scale vector-like fermions:

$$(L'_L)^{\dagger} L''_R \Phi^* \to x' = -1, \ x'' = 6$$

- Dirac-fermionic DM: $(\chi_L)^{\dagger} \chi_R'' \Phi^* \rightarrow z_3 = -3, \ z_4 = -2$
- 959 solutions from \sim 400,000

(5,5,-3,-2,1,-6)

Scotogenic realization

Any realization which does not affect anomaly cancellation is allowed

Scotogenic realization

Any realization which does not affect anomaly cancellation is allowed

i is allowed				
	Field	$SU(2)_L$	$U(1)_Y$	$U(1)_B$
	u_{Ri}	1	2/3	u = 1/3
	d_{Ri}	1	-1/3	d = 1/3
	$(Q_i)^{\dagger}$	2	-1/6	Q = -1/3
	$(L_i)^{\dagger}$	2	1/2	L=0
	e_R	1	-1	e = 0
	$(L'_L)^{\dagger}$	2	1/2	-x' = -3/5
	e_R'	1	-1	x' = 3/5
	$L_R^{\prime\prime}$	2	-1/2	x'' = 18/5
	$\left(e_L^{\prime\prime} ight)^\dagger$	1	1	-x'' = -18/5
	$ u_{R,1}$	1	0	-3
	$\nu_{R,2}$	1	0	-3
	χ_R	1	0	6/5
	$(\chi_L)^{\dagger}$	1	0	9/5
	Н	2	1/2	0
	S	1	0	3
	Φ	1	0	3
	σ_{lpha}^-	1	1	3/5
	σ'_{α}^{-}	1	-1	-12/5

Electroweak baryogenesis

Problems

- Standard model (SM) $m_h \sim$ 40 GeV. \bigcirc
- Beyond the SM: Source of CP contains fields charged under SM
 - ightarrow too large electric dipole moments 😩

Dark sectors

- Inert SM-singlet complex scalar field which acquires vev with temperature to have strong electroweak phase transition
- CP violation (CPV) triggered in dark sectors through SM gauge singlets
 - → CPV Yukawa between SM-singlet complex scalar and SM-singlet quiral fermions \(\to\)

Anomalons:

DM

Method to find $\Sigma n=0$, $\Sigma n^3=0$ solutions 1905.13729 [PRL] Costa...

Anomalons:

Multicomponent DM

Scotogenic neutrino masses

hep-ph/0601225 [PRL→PRD] Ma

Dark sector baryogenesis

Baryogenesis

CP violation occurs in the dark sector and is transmitted to SM sector by the new Z' gauge boson.

- High scale fields: Φ , $(\langle \Phi \rangle \to L'_L, L''_R, e'_L, e''_R$: EW-scale vector-like anomalons)
- Electroweak scale (EW) fields: Z'_{μ} , S, χ_L , χ_R
- CP-violation

$$\mathcal{L}_{\mathsf{Dirac}\;\mathsf{DM}} = h(\chi_L)^{\dagger} \chi_R \Phi^* + y(\chi_L)^{\dagger} \chi_R S^* + \mathsf{h.c}\,, \qquad y \in \mathbb{C}$$
$$\supset \left(m_{\chi} + |y| \,\mathrm{e}^{i\theta} \,|S| \right) (\chi_L)^{\dagger} \chi_R + \mathsf{h.c}\,.$$

CP-violation Portal

$$\mathcal{L}_{\text{anomalous}} \supset g' Z'_{\mu} \left[3\bar{\chi}_{L} \gamma^{\mu} \chi_{L} - 2\bar{\chi}_{R} \gamma^{\mu} \chi_{R} + \bar{Q}_{i} \gamma^{\mu} Q_{i} + \bar{q}_{Ri} \gamma^{\mu} q_{Ri} \right]$$

Strong electroweak phase transition (EWPT) portal

$$\mathcal{L}_{\mathsf{first}\ \mathsf{order}\ \mathsf{EWPT}} \supset -\lambda_{\mathsf{SH}} H^\dagger H S^* S$$
 .

$$h = H/\sqrt{2}$$
, $s = |S|$ with vevs: $v(T)$ and $w(T)$ such that $v(T_c) = w(T_c)$

$$V_T(h,s) = \frac{\lambda_H v_c^4}{4} \left(\frac{h^2}{v_c^2} + \frac{s^2}{w_c^2} - 1 \right)^2 + \frac{\lambda_H v_c^2}{m_{s,c}^2 w_{0,c}^4} h^2 s^2 + (T^2 - T_c^2) (c_h h^2 + c_s s^2),$$
 (21)

$$c_h = \frac{1}{48} \left(9g_2^2 + 3g_1^2 + 12y_t^2 + 24\lambda_H + \lambda_{HS} \right) , \quad c_s = \frac{1}{12} \left(3\lambda_S + 2\lambda_{HS} \right) .$$
 (22)

$$h = H/\sqrt{2}$$
, $s = |S|$ with vevs: $v(T)$ and $w(T)$ such that $v(T_c) = w(T_c)$

$$V_T(h,s) = \frac{\lambda_H v_c^4}{4} \left(\frac{h^2}{v_c^2} + \frac{s^2}{w_c^2} - 1 \right)^2 + \frac{\lambda_H v_c^2}{m_{s,c}^2 w_0^4} h^2 s^2 + (T^2 - T_c^2)(c_h h^2 + c_s s^2), \tag{21}$$

$$c_h = \frac{1}{48} \left(9g_2^2 + 3g_1^2 + 12y_t^2 + 24\lambda_H + \lambda_{HS} \right) , \quad c_s = \frac{1}{12} \left(3\lambda_S + 2\lambda_{HS} \right) . \tag{22}$$

$$h = H/\sqrt{2}$$
, $s = |S|$ with vevs: $v(T)$ and $w(T)$ such that $v(T_c) = w(T_c)$

$$V_T(h,s) = \frac{\lambda_H v_c^4}{4} \left(\frac{h^2}{v_c^2} + \frac{s^2}{w_c^2} - 1 \right)^2 + \frac{\lambda_H v_c^2}{m_{s,c}^2 w_0^4} h^2 s^2 + (T^2 - T_c^2)(c_h h^2 + c_s s^2), \tag{21}$$

$$c_h = \frac{1}{48} \left(9g_2^2 + 3g_1^2 + 12y_t^2 + 24\lambda_H + \lambda_{HS} \right) , \quad c_s = \frac{1}{12} \left(3\lambda_S + 2\lambda_{HS} \right) . \tag{22}$$

$$h = H/\sqrt{2}$$
, $s = |S|$ with vevs: $v(T)$ and $w(T)$ such that $v(T_c) = w(T_c)$

$$V_T(h,s) = \frac{\lambda_H v_c^4}{4} \left(\frac{h^2}{v_c^2} + \frac{s^2}{w_c^2} - 1 \right)^2 + \frac{\lambda_H v_c^2}{m_{s,c}^2 w_{0,c}^4} h^2 s^2 + (T^2 - T_c^2) (c_h h^2 + c_s s^2), \tag{21}$$

$$c_h = \frac{1}{48} \left(9g_2^2 + 3g_1^2 + 12y_t^2 + 24\lambda_H + \lambda_{HS} \right) , \quad c_s = \frac{1}{12} \left(3\lambda_S + 2\lambda_{HS} \right) . \tag{22}$$

CP assymetry generation i

Using the thin wall approximantion for the nucleation bubbles, we use the ansatz in which the space dependence of the fields is given by

$$h(z) = \frac{1}{2}v(T_n)(1-\tanh(z/L_w)), \qquad s(z) = \frac{1}{2}w_0(T_n)(1+\tanh(z/L_w)),$$

where z is the direction normal to the wall and L_w is the wall width.

CP assymetry generation ii

The nucleation temperature, T_n , is defined by the condition

$$\exp(-S_3/T_n) = \frac{3}{4\pi} \left(\frac{H(T_n)}{T_n}\right)^4 \left(\frac{2\pi T_n}{S_3}\right)^{\frac{3}{2}},$$

where S_3 is the Euclidean action of the bubble and H(T) is the Hubble rate.

The *CP* violating phase, θ , from

$$M_{\chi}(z) = m_{\chi}(z) + |y| e^{i\theta} |S(z)|, \qquad (23)$$

Boltzmann equation i

$$egin{align} \xi_i(z) &\equiv \mu_i(z)/T = \left.6\left(n_i - \overline{n}_i\right)/T^3,
ight. \ &\left. -D_L \xi_{\chi_L}'' - v_w \xi_{\chi_L}' + \Gamma_L (\xi_{\chi_L} - \xi_{\chi_R}) = \mathcal{S}_{\mathcal{QP}},
ight. \end{aligned}$$

where D_L is the diffusion constant for χ_L , which is related to the scattering rate Γ_L by

$$D_{L} = \frac{3x+2}{x^{2}+3x+2} \frac{1}{3\Gamma_{L}}, \qquad x \equiv m_{\chi}/T$$
 (24)

and

$$S_{\mathcal{CP}} = -\frac{\lambda}{2} \frac{v_w D_L}{\frac{3x+2}{x^2+3x+2} T} \frac{(1-x)e^{-x} + x^2 E_1(x)}{4m_\chi^2 K_2(x)} \frac{m_\chi w_0(T_n) \lambda \left(-2 + \cosh\left(\frac{2z}{L_w}\right)\right) \sin\theta}{L_w^3 \cosh^4\left(\frac{z}{L_w}\right)}, \qquad (25)$$

where v_w is the wall's velocity $E_1(x)$ is the error function and $K_2(x)$ is the modified Bessel function of the second kind.

Transfer DM assymetry to SM quarks

The chiral particle give rise to a non-zero $U(1)_B$ charge density in the proximity of the wall. This results in a Z' background that couples to the SM fields with $U(1)_B$ charge,

$$\langle Z_0'(z) \rangle = \frac{g_B (q_{\chi_L} - q_{\chi_R}) T_n^3}{6 M_{Z'}} \int_{-\infty}^{\infty} dz_1 \, \xi_{\chi_L}(z_1) \, e^{-M_{Z'}|z-z_1|} \,,$$

which generates a chemical potential for the SM quarks,

$$\mu_Q(z) = \mu_{d_R,u_R}(z) = 3 \times \frac{5}{9} \times g_B \langle Z'_0(z) \rangle.$$

This chemical potential sources a thermal-equilibrium asymmetry in the quarks,

$$\Delta n_Q^{\text{EQ}}(z) \sim T_n^2 \mu_Q(z).$$

From [1]

If the Z' is sufficiently light, it mediates a long range force that extends into the region outside the bubble wall with unbroken electroweak symmetry.

Finally, the baryon-number asymmetry is then given by

$$n_B = \frac{\Gamma_{\mathrm{sph}}}{v_w} \int_0^\infty \mathrm{d}\,z\, n_Q^{\mathrm{EQ}}(z) \, \exp\left(-\frac{\Gamma_{\mathrm{sph}}}{v_w}\,z\right) \,,$$

where $\Gamma_{\rm sph}$ is the sphaleron rate. The baryon-to-photon-number ratio is then obtained by

$$\eta_B = \frac{n_B}{s(T_n)}, \quad s(T) \equiv \frac{2\pi^2}{45} g_{*S}(T) T^3,$$

where $g_{*S}(T)$ is the effective number of relativistic degrees of freedom.

Our goal is to find what regions of the parameter space yield

$$0.82 \times 10^{-10} < \eta_B < 0.92 \times 10^{-10} \,. \tag{26}$$

https://github.com/anferivera/DarkBariogenesis

- SARAH→SPheno→MicroMegas
- η_B calculation code
- Python notebook with the scan

arXiv:1810.08055

Ten Simple Rules for Reproducible Research in Jupyter Notebook Fernando Pérez, et al

[...] In this paper, we address several questions about reproducibility [...] Combined with software repositories and open source licensing, notebooks are powerful tools for transparent, collaborative, reproducible, and reusable data analyses.

Results

We vary the typical Dirac-fermion DM parameter space and for each point that satisfy neutrino oscillation data, relic density and DM direct detection constraints. For each point we ...

Parameter	Range
θ	$(-\pi/2,\pi/2)$
$w_0(T_n)/{ m GeV}$	100 - 500
$T_n/{ m GeV}$	100 - 200
$L_w/{ m GeV^{-1}}$	$1/T_n - 10/T_n$
V_W	0.05 - 0.5

Table 5: Scan ranges for the free parameters that are involved in the baryogenesis mechanism.

Black points: Dirac neutrinos with proper DM and baryon assymetry

Conclusions

A $U(1)_B$ is presented as an example of models where all new fermions required to cancel out the anomalies are used to solve phenomenological problems of the standard model (SM):

- EW-scale fermion vector-like doublets and iso-singlet charged singlets, in conjunction
 with right-handed neutrinos with repeated Abelian charges, participate in the generation
 of small neutrino masses through the Dirac-dark Zee mechanism
- The other SM-singlets are used to explain the dark matter in the universe, while their coupling to an inert singlet scalar is the source of the CP violation.

In the presence of a strong first-order electroweak phase transition, this "dark" CP violation allows for successful electroweak baryogenesis by using long range force mediated by a sufficiently light Z' which transfers the assymmetry from the Dark sector into the SM.