The Link Layer

aka Physical Layer

Goals for today & Wednesday

1. Capacity:

What determines the maximum data rate of a link?

► How can we get close to the maximum capacity?

2. Clocks: Two communicating entities cannot have exactly the same clock or frequency. How can they communicate?

The 4 Layer Internet Model

CS144, Stanford University

Total time to send a packet across a link: The time from when the first bit is transmitted until the last bit arrives.

Example: A 100bit packet takes $10 + 5 = 15\mu s$ to be sent at 10Mb/s over a 1km link.

CS144, Stanford University

CS144, Stanford University

What determines the data rate?

Q: What determines the steepness (i.e. rate) of this change?

Q: How does the rate of change affect the data rate?

Fiber-optic links

Packets are sent by turning a laser on and off very fast

Each fiber is smaller than a human hair

Used for very long, very fast communications (e.g. 100 Gb/s and 200km)

CS144, Stanford University

What determines the <u>maximum</u> data rate of a cable, fiber, wireless link, etc?

Q: What happens if we put the "bits" closer and closer together?

Q: If we can't put them closer together, how can we increase the number bits of information transmitted per second?

Q: What other factors limit the number of bits per second we can transmit?

Q: Are there any other factors other than "Bandwidth" and "Noise" that determine the maximum data rate of a channel?

Claude Shannon

1937: MS Thesis proposed using Boolean algebra for digital circuit design.

1948: "A Mathematical Theory of Communication" led to the field of Information Theory and Shannon Capacity

(Juggling Machines!)

Claude Shannon (1916 – 2001) Mathematician, Electrical Engineer

Shannon Capacity

- Shannon capacity represents the maximum error-free rate we can transmit through a channel
- The maximum data rate.
- Under some mild assumptions:

Shannon Capacity = B
$$log_2 \left(1 + \frac{S}{N}\right)$$

- In other words, it depends only on Bandwidth and Signal-to-Noise ratio!
- EE376A: Information Theory. Wow.

Analog signals

Frequency = 1/wavelength

Bandwidth: size of frequency range

Phase: location of peak within the wavelength

On-Off Keying (OOK)

- One frequency
- 2 amplitudes

Sending Os and 1s

Frequency Shift Keying (FSK)

Amplitude Shift Keying (ASK)

Phase Shift Keying (PSK)

- For the same frequency + amplitude, vary the phase
- No variation in power (amplitude) or wavelength (frequency)

Phase in Analog signals

Phase in Analog signals

I/Q constellations

For the same frequency:

- What I/Q constellation (amplitude, phase) should I select?
- How should I assign a symbol (amplitude, phase) = to bits?

Quadrature Phase Shift Keying (QPSK)

- 1. For each symbol:
 - What is the amplitude?
 - What is the phase?
- 2. Represent each symbol as a bit (or bits).

Quadrature Amplitude Modulation (16-QAM)

- 1. How many symbols?
- 2. How many amplitude variations?
- 3. How many phase variations?
- 4. How many bits per symbol?

Example 32 bit word transmission using 16-QAM

1100 1001 0100 1110 1100 0110 1100 1111 0 1 2 3 4 5 6 7

Examples today

ASK/OOK: Wired Ethernet

FSK: Bluetooth

BPSK: 802.11 abgn

QPSK: 802.11 abgn, LTE

16-QAM: 802.11abgn, LTE

64-QAM: 802.11 abgn, LTE, 5G

256-QAM: 5G

1024-QAM: Home powerline communication

32768-QAM: ADSL (digital data over long telephone cables)

Clocks

If we don't know the sender's (TX) clock

If the RX clock is p% slower than the TX clock, then: $T_{RX} = T_{TX} \left(1 + \frac{p}{100} \right)$

After $\frac{0.5}{10^{-2}p}$ bit times, the RX clock will miss a bit completely.

Synchronous communication on network links

Encoding for clock recovery

If the clock is not sent separately, the data stream must have sufficient transitions so that the receiver can determine when to sample the arriving data.

Encoding for clock recovery

Example #1: 10Mb/s Ethernet

Advantages of Manchester encoding:

- Guarantees one transition per bit period.
- Ensures d.c. balance (i.e. equal numbers of hi and lo).

Disadvantages

- Doubles bandwidth needed in the worst case.

CS144, Stanford University

Encoding for clock recovery

Example #2: 4b/5b encoding

4-bit data	5-bit code
0000	11110
0001	01001
0010	10100

Advantages of 4b/5b encoding:

- More bandwidth efficient (only 25% overhead).
- Allows extra codes to be used for control information.

Disadvantages

- Fewer transitions makes clock recovery a little harder.

Sizing an elasticity buffer

Sizing an elasticity buffer

- 1. Hold buffer nominally at B/2.
 - At start of new packet, allow buffer to fill to B/2.
 - Or, make sure buffer drains to B/2 before new packet.
- 2. Size buffer so that it does not overflow or underflow before packet completes.
- 3. $(R_{tx} > R_{rx})$: Given inter packet gap, size B/2 for no overflow.
- 4. $(R_{rx} > R_{tx})$: Given max length packet, pick B/2 for no underflow.

Preventing overflow

Preventing underflow

Sizing an elasticity buffer Example

Maximum packet size 4500bytes Clock tolerance +/- 100ppm

$$\left(\frac{R_{\text{max}} - R_{\text{min}}}{R}\right) = 200 \times 10^{-6}$$

$$\therefore B \ge 2(4500 \times 8 \times 200 \times 10^{-6}) = 14bits$$

Therefore,

- 1. Elasticity buffer needs to be at least 14 bits
- 2. Wait for at least 7 bits before draining buffer
- 3. Inter-packet gap at least 7 bits