- 5.2.2 (a) Use Definition 5.2.1 to produce the proper formula for the derivative of $f(x) = \frac{1}{x}$.
 - (b) Combine the result in part (a) with the chain rule (Theorem 5.2.5) to supply a proof for part (iv) of Theorem 5.2.4.
 - (c) Supply a direct proof of Theorem 5.2.4 (iv) by algebraically manipulating the difference quotient for $(\frac{f}{g})$ in a style similar to the proof of Theorem 5.2.4 (iii).
- 5.2.5 Let

$$g_a(x) = \begin{cases} x^a sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

Find a particular (potentially noninteger) value for a so that

- (a) g_a is differentiable on \mathbb{R} but such that g'_a is unbounded on [0,1].
- (b) g_a is differentiable on \mathbb{R} with g'_a continuous but not differentiable at zero.
- (c) g_a is differentiable on \mathbb{R} with g'_a is differentiable on \mathbb{R} , but such that g_a^n is not continuous at zero.
- 5.2.8 Decide whether each conjecture is true or false. Provide an argument for those that are true and a counterexample for each one that is false.
 - (a) If a derivative function is not constant, then the derivative must take on some irrational values.
 - (b) If f' exists on an open interval, and there is some point c where f'(c) > 0, then there exists a δ -neighborhood $V_{\delta}(c)$ around c in which f'(x) > 0 for all $x \in V_{\delta}(c)$.
 - (c) If f is differentiable on an interval containing zero and if $\lim_{x\to 0} f'(x) = L$, then it must be that L = f'(0).
 - (d) Repeat conjecture (c) but drop the assumption that f'(0) necessarily exists. If f'(x) exists for all $x \neq 0$ and if $\lim_{x\to 0} f'(x) = L$, then f'(0) exists and equals L.
- 5.3.1 Recall from Exercise 4.4.9 that a function $f:A\to\mathbb{R}$ is Lipschitz on A if there exists an M>0 such that $\left|\frac{f(x)-f(y)}{x-y}\right|\leq M$ for all $x,y\in A$. Show that if f is differentiable on a closed interval [a,b] and if f' is continuous on [a,b], then f is Lipschitz on [a,b].
- 5.3.5 A fixed point of a function f is a value x where f(x) = x. Show that if f is differentiable on an interval with $f'(x) \neq 1$, then f can have at most one fixed point.
- 5.3.8 Assume $g:(a,b)\to\mathbb{R}$ is differentiable at some point $c\in(a,b)$. If $g'(c)\neq 0$, show that there exists a δ -neighborhood $V_{\delta}(c)\subseteq(a,b)$ for which $g(x)\neq g(c)$ for all $x\in V_{\delta}(c)$. Compare this result with Exercise 5.3.7.
- 5.4.2 Fix $x \in \mathbb{R}$. Argue that the series $\sum_{n=0}^{\infty} \frac{1}{2^n} h(2^n x)$ converges absolutely and thus g(x) is properly defined.

- 5.4.4 Show that $\frac{g(x_m)-g(0)}{x_m-0}=m+1$, and use this to prove that g'(0) does not exist.
- 5.4.5 (a) Modify the previous argument to show that g'(1) does not exist. Show that $g'(\frac{1}{2})$ does not exist.
 - (b) Show that g'(x) does not exist for any rational number of the form $x = \frac{p}{2^k}$ where $p \in \mathbb{Z}$ and $k \in \mathbb{N} \cup \{0\}$.