Dzyaloshinskii offset explanation

Lucas Myers

November 23, 2023

The differential equation governing an isolated disclination in 2D under bend-splay anisotropy

is:

$$\frac{d^2\theta}{d\varphi^2} = \epsilon \left[\frac{d^2\theta}{d\varphi^2} \cos 2(\theta - \varphi) + \left(2\frac{d\theta}{d\varphi} - \left(\frac{d\theta}{d\varphi} \right)^2 \right) \sin 2(\theta - \varphi) \right]$$
 (1)

with θ the director angle, φ the polar angle (as measured from the domain center), and ϵ the anisotropy parameter. Take $\theta_{\rm DZ}(\varphi)$ to be the solution whose boundary condition gives a +1/2 disclination. Then consider the corresponding director configuration $\hat{\bf n}_{\rm DZ}=(\cos\theta_{\rm DZ},\sin\theta_{\rm DZ},0)$, and the corresponding Q-tensor configuration:

$$Q_{\rm DZ} = S_0 \left(\hat{\mathbf{n}}_{\rm DZ} \otimes \hat{\mathbf{n}}_{\rm DZ} - I \right) \tag{2}$$

Here S_0 is the equilibrium value of the scalar order parameter for a uniaxial, uniform nematic configuration. If we initialize our system to this configuration in a circular domain of radius $20/\sqrt{2}$ and fix the boundary (i.e. impose Eq. (2) as a Dirichlet condition) then the disclination center¹ moves slightly to the right. Call this equilibrated configuration $Q_{\rm eq}$, call the equilibrated disclination center $(x_{\rm eq}, 0)$, and call (r', φ') the polar coordinates centered at $(x_{\rm eq}, 0)$. Explicitly:

$$\varphi' = \operatorname{atan2}(y, x - x_{eq}) \tag{3}$$

$$r' = \sqrt{(x - x_{\rm eq})^2 + y^2} \tag{4}$$

We can schematically understand Q_{eq} with Fig. 1.

As the configuration relaxes, the yellow region remains unchanged from the initial configuration $Q_{\rm DZ}$ while the white region updates. The result of the white region updating is to move the disclination core to the red dot. As a representative example, we plot the director angle (calculated from $Q_{\rm eq}$) as a function of φ' at several radii r' in Fig. 2.

The r' = 10.0 curve lies wholly in the unchanged region – we should compare to the initial $Q_{\rm DZ}$ configuration. To calculate the director angle from $Q_{\rm DZ}$ as a function of φ' along the r' = 10.0 curve, we must make a change of variables. Note that:

$$x = r'\cos\varphi' + x_{\rm eq} \tag{5}$$

$$y = r' \sin \varphi' \tag{6}$$

so that:

$$\varphi = \operatorname{atan2}(r'\sin\varphi', r'\cos\varphi' + x_{\text{eq}}) \tag{7}$$

Then the blue curve on our plot is given by:

$$\theta_{\rm DZ}({\rm atan2}(r'\sin\varphi', r'\cos\varphi' + x_{\rm eq})) \tag{8}$$

This matches with the red dotted curve, which indicates good agreement between $Q_{\rm DZ}$ and $Q_{\rm eq}$ in the yellow region.

¹the point where S = P

Figure 1

Figure 2