Homework 1 CS6490

Darpan Gaur CO21BTECH11004

Pair 1

Part a

- INT32: As there are 32 bits, it can represent $2^{32} = 4294967296$ unique numbers.
- **FP32**: As there are 32 bits, it can represent $2^{32} = 4294967296$ unique numbers.

Part b

Range

- INT32: The range of INT32 is $-2^{31} = -2147483648$ to $2^{31} 1 = 2147483647$.

Precision

- INT32: Here, minimum distance between two numbers is 1, so precision is 1.
- **FP32**: For this precision is not constant, depends on exponent and mantissa. High precision for small numbers.

 - Similarly, low precision $\approx 2.02 \cdot 10^{31}$. Hence, precision varies in range $1.4 \cdot 10^{-45}$ to $2.03 \cdot 10^{31}$.

Part c

9999999999999 can be represented in INT32 but not in FP32, equivalent FP32 value is $1.00000000 \cdot 10^8$, with error of 1.

Part d

1.25 can be represented in FP32 but not in INT32, equivalent INT32 value is 1, with error of 0.25.

Pair 2

Part a

- INT32 (18-14): As there are 32 bits, it can represent $2^{32} = 4294967296$ unique numbers.
- **FP32**: As there are 32 bits, it can represent $2^{32} = 4294967296$ unique numbers.

Part b

Range

- **FP32**: Here, special values like $+\infty$, $-\infty$ and NaN are also included. Positive minimum value $\approx 1.4 \cdot 10^{-45}$ and maximum value $\approx 3.4 \cdot 10^{38}$. Negative minimum value $\approx -3.4 \cdot 10^{38}$, and maximum value $\approx -1.4 \cdot 10^{-45}$. Also, zero is represented.

Precision

- INT32 (18-14): Precision is constant and equal to $2^{-14} \approx 6.1035 \cdot 10^{-5}$.
- **FP32**: For this precision is not constant, depends on exponent and mantissa. Precision varies in range $1.4 \cdot 10^{-45}$ to $2.03 \cdot 10^{31}$.

Part c

14295.515563964844 can be represented in INT32 (18-14) but not in FP32, equivalent FP32 value is 14295.515625, with error of 0.000061035.

Part d

1.0099999904632568359375 can be represented in FP32 but not in INT32 (18-14), equivalent INT32 (18-14) value is 1, with error of 0.25.

Pair 3

Part a

- INT32 (14-18): As there are 32 bits, it can represent $2^{32} = 4294967296$ unique numbers.
- **FP16**: As there are 16 bits, it can represent $2^{16} = 65536$ unique numbers.

Part b

Range

- **FP16**: Here, special values like $+\infty$, $-\infty$ and NaN are also included. Positive minimum value $\approx 5.96 \cdot 10^{-8}$ and maximum value ≈ 65504 . Negative minimum value ≈ -65504 , and maximum value $-5.96 \cdot 10^{-8}$. Also, zero is represented.

Precision

- INT32 (14-18): Precision is constant and equal to $2^{-18} \approx 3.815 \cdot 10^{-6}$.
- **FP16**: For this precision is not constant, depends on exponent and mantissa. High precision for small numbers. Eg:- 0|00000|0000000000 and 0|00000|0000000001 have difference of $\approx 5.96 \cdot 10^{-8}$. Similarly, low precision = 32.

Part c

9999 can be represented in INT32 (14-18) but not in FP16, equivalent FP16 value is 10000, with error of 1.

Part d

65504 can be represented in FP16 but not in INT32 (14-18).

Pair 4

Part a

- INT32 (14-18) : As there are 32 bits, it can represent $2^{32} = 4294967296$ unique numbers.
- bfloat16: As there are 16 bits, it can represent $2^{16} = 65536$ unique numbers.

Part b

Range

Precision

- INT32 (14-18): Precision is constant and equal to $2^{-18} \approx 3.815 \cdot 10^{-6}$.
- **bfloat16**: For this precision is not constant, depends on exponent and mantissa. High precision for small numbers. Eg:- 0|00000|0000000000 and 0|00000|000000001 have difference of $\approx 9.1835 \cdot 10^{-41}$. Similarly, low precision $\approx 1.329 \cdot 10^{36}$.

Part c

4096.00390625 can be represented in INT32 (14-18) but not in bfloat16, equivalent bfloat16 value is 4128, with error of 32.

Part d

Max value of bfloat 16 is $3.3895314 \cdot 10^{38},$ which can't be represented in INT32 (14-18).

Pair 5

Part a

- **FP16**: As there are 16 bits, it can represent $2^{16} = 65536$ unique numbers.
- bfloat16: As there are 16 bits, it can represent $2^{16} = 65536$ unique numbers.

Part b

Range

- **FP16**: Here, special values like $+\infty$, $-\infty$ and NaN are also included. Positive minimum value $\approx 5.96 \cdot 10^{-8}$ and maximum value ≈ 65504 . Negative minimum value ≈ -65504 , and maximum value $-5.96 \cdot 10^{-8}$. Also, zero is represented.
- **bfloat16**: Here, special values like $+\infty$, $-\infty$ and NaN are also included. Smallest positive value $\approx 9.1835 \cdot 10^{-41}$ and largest positive value $\approx 3.3895314 \cdot 10^{38}$. Smallest negative value $\approx -3.3895314 \cdot 10^{38}$, and largest negative value $\approx -9.1835 \cdot 10^{-41}$. Also, zero is represented.

Precision

- **FP16**: For this precision is not constant, depends on exponent and mantissa. High precision for small numbers. Eg:- 0|00000|0000000000 and 0|00000|0000000001 have difference of $\approx 5.96 \cdot 10^{-8}$. Similarly, low precision = 32.
- bfloat16: For this precision is not constant, depends on exponent and mantissa. High precision for small numbers. Eg:- 0|00000|0000000000 and 0|00000|0000000001 have difference of $\approx 9.1835 \cdot 10^{-41}$. Similarly, low precision $\approx 1.329 \cdot 10^{36}$.

Part c

 $5.96 \cdot 10^{-8}$ can be represented in FP16 but not in bfloat16.

Part d

 $3.3895314 \cdot 10^{38}$ can be represented in bfloat 16 but not in FP16.

Pair 6

Part a

- INT8: As there are 8 bits, it can represent $2^8 = 256$ unique numbers.
- **FP16**: As there are 16 bits, it can represent $2^{16} = 65536$ unique numbers.

Part b

Range

• **INT8**: The range of INT8 is $-2^7 = -128$ to $2^7 - 1 = 127$.

Precision

- INT8: Here, minimum distance between two numbers is 1, so precision is 1.
- **FP16**: For this precision is not constant, depends on exponent and mantissa. High precision for small numbers. Eg:- 0|00000|0000000000 and 0|00000|0000000001 have difference of $\approx 5.96 \cdot 10^{-8}$. Similarly, low precision = 32.

Part c

9999 can be represented in INT8 but not in FP16, equivalent FP16 value is 10000, with error of 1.

Part d

1.25 can be represented in FP16 but not in INT8, equivalent INT8 value is 1, with error of 0.25.