Greatest Common Divisors and Diophantine Equations

Learning Objectives. By the end of class, students will be able to:

- Prove the formula for integer solutions to ax + by = c.
- State when integer solution exist for $a_1x_1 + \cdots + a_kx_k = c$.

Instructor Notes: Read Strayer, Section 6.1

Turn in Exercise 2a. Find all integer solutions to 18x + 28y = 10

Lemma 1. Let $a, b, c \in \mathbb{Z}$, with $a \neq 0$. Then (a, b, c) = ((a, b), c).

Proof Let $a, b, c \in \mathbb{Z}$, with $a \neq 0$. Define d = (a, b, c) and e = ((a, b), c). We will show that $d \mid e$ and $e \mid d$. Since the greatest common divisor is positive, we can conclude that d = e.

Since d = (a, b, c), we know $d \mid a, d \mid b$, and $d \mid c$. By Lemma 2, which we are about to prove, $d \mid (a, b)$. Thus, d is a common divisor of (a, b) and c, so $d \mid e$.

Since e = ((a,b),c), $e \mid (a,b)$ and $e \mid c$. Since $e \mid (a,b)$, we know $e \mid a$ and $e \mid b$ by Lemma 2. Thus, e is a common divides of a,b and c

Lemma 2. Let $a, b \in \mathbb{Z}$, not both zero. Then any common divisor of a and b divides the greatest common divisor.

Proof Let $a, b \in \mathbb{Z}$, not both zero. By $\ref{eq:combination}$, (a, b) = am + bn for some $n, m \in \mathbb{Z}$. Thus, $d \mid (a, b)$ by linear combination.

Lemma 3. Let $a, b \in \mathbb{Z}$, not both zero. Then any divisor of (a, b) is a common divisor of a and b.

Proof Let c be a divisor of (a,b). Since $(a,b) \mid a$ and $(a,b) \mid b$, then $c \mid a$ and $c \mid b$ by transitivity.

Proposition 1. Let $a_1, \ldots, a_n \in \mathbb{Z}$ with $a_1 \neq 0$. Then

$$(a_1,\ldots,a_n)=((a_1,a_2,a_3,\ldots,a_{n-1}),a_n).$$

Proof Let k = 2. The since $((a_1, a_2)) = (a_1, a_2)$ by the definition of ?? of one integer, $(a_1, a_2) = ((a_1, a_2))$. The k = 3 case is the first lemma in this section (1).

Assume that for all $2 \le k < n$,

$$(a_1,\ldots,a_k)=((a_1,a_2,a_3,\ldots,a_{k-1}),a_k).$$

Let $d = (a_1, a_2, a_3, ..., a_k)$, $e = ((a_1, a_2, a_3, ..., a_k), a_{k+1}) = (d, a_{k+1})$, and $f = (a_1, a_2, a_3, ..., a_k, a_{k+1})$. We will show that $e \mid f$ and $f \mid e$. Since both e and f are positive, this will prove that e = f.

Note that $e \mid (a_1, a_2, a_3, \ldots, a_k)$ and $e \mid a_{k+1}$ by definition. Since $(a_1, \ldots, a_k) = ((a_1, a_2, a_3, \ldots, a_{k-1}), a_k)$ by the induction hypothesis, $e \mid (a_1, a_2, a_3, \ldots, a_{k-1})$ and $e \mid a_k$ by Lemma 3. Again, by the induction hypothesis, $(a_1, a_2, a_3, \ldots, a_{k-1}) = ((a_1, a_2, a_3, \ldots, a_{k-2}), a_{k-1})$, so $e \mid a_{k-1}$ and $e \mid (a_1, a_2, a_3, \ldots, a_{k-2})$ by Lemma 3. Repeat this process until we get $(a_1, a_2, a_3) = ((a_1, a_2), a_3)$, so $e \mid a_3$ and $e \mid (a_1, a_2)$ by Lemma 3. Thus $e \mid a_1, a_2, \ldots, a_{k+1}$ by repeated applications of Lemma 3. By the generalized version of the Lemma 2 on Homework 3, $e \mid f$.

Learning outcomes:

Author(s): Claire Merriman

This is not true in general and a common mistake. In general $d=\pm e$

To show that $f \mid e$, we note that $f \mid a_1, a_2, \ldots, a_k, a_{k+1}$ by definition. Then $f \mid d$ by the generalized version of the Lemma 2 on Homework 3. Since $e = (d, a_k)$, we have that $f \mid e$ by Lemma 2.