

Intégration de connaissance a priori en classification automatique

V. Antoine¹

B. Quost² M.-H. Masson² T. Denœux² N. Labroche³

¹Limos, UMR CNRS 6158, Clermont-Ferrand ²Heudiasyc, UMR CNRS 6599, Compiègne ³LI, EA 6300, Tours

Séminaire LIFO, février 2015

Plan

- Introduction
 - O Classification automatique
 - Classification sous contraintes
 - Motivations
- Contributions
 - O ECM-Mah
 - O SECM
 - O CECM
- Expérimentations
 - O Comportement des algorithmes
 - O Applications
- Conclusion

Plan

- Introduction
 - O Classification automatique
 - Classification sous contraintes
 - Motivations
- Contributions
 - O ECM-Mah
 - O SECM
 - O CECM
- Expérimentations
 - O Comportement des algorithmes
 - Applications
- Conclusion

Introduction

Classification automatique

Grouper N individus en classes selon une notion de similarité

Types de partitions

- Partition dure (k-means)
 - O un objet x_i appartient à une classe de manière exclusive

- Partition floue (FCM)
 - O degré d'appartenance d'un objet x_i à chaque classe ω_k : u_{ik}

- Partition crédale (ECM, EVCLUS)
 - O degré de croyance d'un objet x_i à chaque sous-ensemble

$$A_i$$
 de $\Omega = \{\omega_1, \ldots, \omega_c\}$: m_{ij}

Types de partitions

- Partition dure (k-means)
 - O un objet x_i appartient à une classe de manière exclusive

- Partition floue (FCM)
 - O degré d'appartenance d'un objet x_i à chaque classe ω_k : u_{ik}

- Partition crédale (ECM, EVCLUS)
 - O degré de croyance d'un objet x_i à chaque sous-ensemble

$$A_j$$
 de $\Omega = \{\omega_1, \ldots, \omega_c\}$: m_{ij}

Algorithme des c-moyennes floues (FCM)

Partition floue

$$U = (u_{ik}),$$
 $\sum_{k=1}^{C} u_{ik} = 1 \text{ et } u_{ik} \ge 0 \quad \forall i \in \{1 \dots n\}, k \in \{1 \dots c\}$

Modèle géométrique

Chaque classe ω_k est représentée par un centre v_k

Algorithme des c-moyennes floues (FCM)

Modèle géométrique

Distance

- Euclidienne : $d_{ik}^2 = \|\mathbf{x}_i \mathbf{v}_k\|$
- lacktriangle Mahalanobis, méthode GK [1] : $d_{ik}^2 = (\mathbf{x}_i \mathbf{v}_k)^{\top} \mathbf{S}_k (\mathbf{x}_i \mathbf{v}_k)$

Fonction objectif

$$J_{FCM}(U, V, S) = \sum_{i=1}^{N} \sum_{k=1}^{C} u_{ik}^{\beta} d_{ik}^{2}$$

Optimisation alternée

[1] D. Gustafson & W. Kessel, Fuzzy clustering with a fuzzy covariance matrix, IEEE Conference on Decision and Control, 1978

Théorie des fonctions de croyance

Soit Y une variable prenant des valeurs dans un ensemble fini Ω .

Fonction de masse m

$$\sum_{A\subset\Omega}m(A)=1$$

- m(A) : degré de croyance spécifique que $Y \in A$
- Si m(A)>0 alors m est appelé élément focal

Notions dérivées

Fonction de plausibilité

Degré Potentiel de croyance qui peut être attribué à A:

$$pI(A) = \sum_{B \cap A \neq \emptyset} m(B), \quad \forall A \subseteq \Omega$$

Prise de décision : la transformation pignistique

Espace des fonctions de croyance — espace probabiliste

$$BetP(\omega) = \frac{1}{1 - m(\emptyset)} \sum_{\{A \subset \Omega \mid \omega \in A\}} \frac{m(A)}{|A|}$$

Partition crédale

Problème de classification

 $\Rightarrow \Omega$: ensemble des classes $\{\omega_1, \ldots, \omega_c\}$

 $\Rightarrow Y$: la classe réelle de l'objet o_i

 \Rightarrow **m**_i: connaissance partielle sur la classe de l'objet i

 \Rightarrow **M** = (**m**_i) : partition crédale

Exemple

Α	m_1	m_2	m_3	m_4
Ø	0	0	0	1
$\{\omega_{1}\}$	1	0.3	0	0
$\{\omega_{2}\}$	0	0.7	0	0
$\{\omega_1,\omega_2\}$	0	0	1	0

Algorithmes évidentiels

modèle vectoriel : ECM

modèle relationnel : EVCLUS

Type de contraintes

- au niveau du modèle
 - O classes équilibrées
 - O information négative : un modèle rejeté
- au niveau des classes
- au niveau des objets

Type de contraintes

- au niveau du modèle
 - O classes équilibrées
 - O information négative : un modèle rejeté
- au niveau des classes
- au niveau des objets

Type de contraintes

- au niveau du modèle
 - O classes équilibrées
 - O information négative : un modèle rejeté
- au niveau des classes
- au niveau des objets

Must-Link

Cannot-Link

- M ensemble de contraintes Must-Link
- C ensemble de contraintes Cannot-Link

Type de contraintes

- au niveau du modèle
 - O classes équilibrées
 - O information négative : un modèle rejeté
- au niveau des classes
- au niveau des objets
- étiquettes : $x_i \in \omega_k$
- étiquettes floues : $x_i \in \{\omega_k, \omega_l\} \Rightarrow x_i \in \omega_k$ ou $x_i \in \omega_l$

Motivations

Classification automatique évidentielle

[1] M.-H. Masson & al, ECM: An evidential version of the fuzzy c-means algorithm, 2008

[2] T. Denœux & al, EVCLUS: evidential clustering of proximity data. 2004

[3] V. Antoine & al, CECM: Constrained Evidential C-Means algorithm, 2012

[4] V. Antoine& al, CEVCLUS: Evidential clustering with instance-level constraints for relational data. 2014

[5] V. Antoine & al, *Evidential* seed-based semi-supervised clusterina, 2014.

Plan

- Introduction
 - O Classification automatique
 - Classification sous contraintes
 - Motivations
- Contributions
 - O ECM-Mah
 - O SECM
 - O CECM
- Expérimentations
 - Comportement des algorithmes
 - Applications
- Conclusion

Principe

- Généralisation des c-moyennes floues
- Objectif : enrichir le concept de partition en utilisant une partition crédale

Modèle géométrique

- Chaque classe ω_k est représentée par un centre v_k
- Distance Euclidienne d_{ij}^2 entre x_i et \overline{v}_i

Fonction objectif

$$J_{ECM}(M,V) = \sum_{i=1}^{N} \sum_{A_j \subseteq \Omega, \ A_j \neq \emptyset} |A_j|^{\alpha} \quad m_i(A_j)^{\beta} d_{ij}^2 + \sum_{i=1}^{N} \delta^2 m_i(\emptyset)^{\beta}$$

sous contraintes :
$$\left\{\begin{array}{l} \displaystyle \sum_{A_j\subseteq\Omega,\;A_j\neq\emptyset} m_i(A_j) + m_i(\emptyset) = 1 \\ m_i(A_j) \geq 0 \quad \forall i,j \end{array}\right.$$

Fonction objectif

$$J_{ECM}(M,V) = \sum_{i=1}^{N} \sum_{\substack{A_j \subseteq \Omega, \ A_j \neq \emptyset}} |A_j|^{\alpha} \underbrace{m_i(A_j)^{\beta} d_{ij}^2}_{\text{comme FCM}} + \sum_{i=1}^{N} \delta^2 m_i(\emptyset)^{\beta}$$
tous les sous-ensembles

sous contraintes :
$$\left\{\begin{array}{l} \sum_{A_j\subseteq\Omega,\;A_j\neq\emptyset} m_i(A_j)+m_i(\emptyset)=1\\ m_i(A_i)\geq 0 \quad \forall i,j \end{array}\right.$$

Fonction objectif

Pénalisation des sous-ensembles de fortes cardinalités

Gestion des points aberrants

$$J_{ECM}(M, V) = \sum_{i=1}^{N} \sum_{\substack{A_j \subseteq \Omega, \ A_j \neq \emptyset}} |A_j|^{\alpha} |m_i(A_j)^{\beta} d_{ij}^2 + \sum_{i=1}^{N} \delta^2 m_i(\emptyset)^{\beta}$$

tous les sous-ensembles

sous contraintes :
$$\left\{\begin{array}{l} \displaystyle \sum_{A_j\subseteq\Omega,\;A_j\neq\emptyset} m_i(A_j) + m_i(\emptyset) = 1 \\ m_i(A_j) \geq 0 \quad \forall i,j \end{array}\right.$$

Distance de Mahalanobis pour chaque classe ω_k

- Chaque classe ω_k est représentée par un centre v_k
- Chaque classe ω_k est associée à une matrice de covariance S_k

Définition

$$d_{ij}^2 = (\mathbf{x}_i - \overline{\mathbf{v}}_j)^t \overline{\mathbf{S}}_j (\mathbf{x}_i - \overline{\mathbf{v}}_j)$$
 tel que

$$\overline{\mathbf{S}}_{j} = \frac{1}{|A_{j}|} \sum_{\omega_{k} \in A_{j}} \mathbf{S}_{k},$$
 $\forall A_{j} \subseteq \Omega, A_{j} \neq \emptyset$

$$\forall A_j \subseteq \Omega, A_j \neq \emptyset$$

Distance de Mahalanobis pour chaque classe ω_k

- Chaque classe ω_k est représentée par un centre v_k
- Chaque classe ω_k est associée à une matrice de covariance S_k

Définition

$$d_{ij}^2 = (\mathbf{x}_i - \overline{\mathbf{v}}_j)^t \overline{\mathbf{S}}_j (\mathbf{x}_i - \overline{\mathbf{v}}_j)$$
 tel que

$$\overline{\mathbf{S}}_{j} = \frac{1}{|A_{j}|} \sum_{\omega_{k} \in A_{j}} \mathbf{S}_{k},$$
 $\forall A_{j} \subseteq \Omega, A_{j} \neq \emptyset$

$$\forall A_j \subseteq \Omega, A_j \neq \emptyset$$

Nouvelle fonction objectif

Minimiser J_{ECM} par rapport m_{ij} , \mathbf{v}_k , \mathbf{S}_k s.c. $|\mathbf{S}_k| = 1$ $\forall k = 1, C$

Optimisation

Les conditions de Kuhn-Tucker donnent :

- ullet $m_i(A_i)$ identique à ECM avec une distance Euclidienne
- **v**_k : système d'équations linéaires
- S_k: similaire à Gustafson et Kessel

Exemple

$$\begin{array}{c|cccc}
\mathbf{x}_1 \in \omega_1 \\
+ \downarrow & \times \\
+ + + + & \times \times \times \\
+ & \times
\end{array}$$

$$\mathbf{x}_1 \in \omega_1 \Rightarrow m_1(\omega_1) = 1$$
 $A_j \mid m_1(A_j)$
 $\emptyset \mid 0 \mid 0 \mid 0$
 $\omega_1 \mid 1 \mid 0 \mid 0$
 $\omega_2 \mid 0 \mid 1 \mid 0$
 $\Omega \mid 0 \mid 0 \mid 1$

Exemple

$$\mathbf{x}_{1} \in \omega_{1} \Rightarrow m_{1}(\omega_{1}) = 1$$
 $A_{j} \mid m_{1}(A_{j})$
 $\emptyset \mid 0 \mid 0 \mid 0$
 $\omega_{1} \mid 1 \mid 0 \mid 0$
 $\omega_{2} \mid 0 \mid 1 \mid 0$
 $\Omega \mid 0 \mid 0 \mid 1$

$$\mathbf{x}_{2} \in \{\omega_{1}, \omega_{2}\} \Rightarrow m_{2}(\{\omega_{1}, \omega_{2}\}) = 1$$

$$\begin{array}{c|cccc} A_{j} & m_{2}(A_{j}) \\ \hline \emptyset & 0 & 0 & 0 \\ \omega_{1} & 0 & 1 & 0 \\ \omega_{2} & 0 & 0 & 1 \\ \hline \Omega & 1 & 0 & 0 \\ \hline \end{array}$$

Exemple

$$\begin{array}{c|cccc}
\mathbf{X}_{1} \in \omega_{1} \Rightarrow m_{1}(\omega_{1}) = 1 \\
\underline{A_{j}} & m_{1}(A_{j}) \\
\emptyset & 0 & 0 & 0 \\
\omega_{1} & 1 & 0 & 0 \\
\omega_{2} & 0 & 1 & 0 \\
\underline{\Omega} & 0 & 0 & 1 \\
\hline
& \checkmark & X & X
\end{array}$$

$$\mathbf{x}_{2} \in \{\omega_{1}, \omega_{2}\} \Rightarrow m_{2}(\{\omega_{1}, \omega_{2}\}) = 1$$

$$A_{j} \quad m_{2}(A_{j})$$

$$\emptyset \quad 0 \quad 0 \quad 0$$

$$\omega_{1} \quad 0 \quad 1 \quad 0$$

$$\omega_{2} \quad 0 \quad 0 \quad 1$$
Trop rigide!
$$\Omega \quad 1 \quad 0 \quad 0$$

Exemple

$$\mathbf{x}_{1} \in \omega_{1} \Rightarrow Pl_{1}(\omega_{1}) = 1$$
 $A_{j} \mid m_{1}(A_{j})$
 $\emptyset \mid 0 \mid 0 \mid 0$
 $\omega_{1} \mid 1 \mid 0 \mid 0$
 $\omega_{2} \mid 0 \mid 1 \mid 0$
 $\Omega \mid 0 \mid 0 \mid 1$

⇒ robuste au bruit

$$\mathbf{x}_2 \in \{\omega_1, \omega_2\} \Rightarrow Pl_2(\{\omega_1, \omega_2\}) = 1$$

1, ~2)	. ′ •		, 00 1 , 0	~2)/	
A_{j}	n	$n_2(\hat{A})$	j)		
Ø	0	0	0		
ω_{1}	0	1	0		
ω_2	0	0	1		
Ω	1	0	0		
	✓	✓	1		

⇒ résultats plus précis

ECM avec des étiquettes

• Idée : si $x_i \in A_i \Rightarrow pl_i(A_i)$ élevée

Fonction objectif

$$egin{aligned} J_{SECM} = & \left(1-arphi
ight)\sum_{i=1}^{N}\sum_{A_{j}\subseteq\Omega,\;A_{j}
eq\emptyset}|A_{j}|^{lpha}m_{i}(A_{j})^{eta}d_{ij}^{2}+\sum_{i=1}^{N}\delta^{2}m_{i}(\emptyset)^{eta}\ &+arphi\sum_{\mathbf{x}_{i}\in A_{i}}1- extit{pl}_{i}(A_{j}), \end{aligned}$$

sous contraintes : $\sum m_i(A_j) + m_i(\emptyset) = 1$ and $m_i(A_j) \ge 0 \quad \forall i, j$

ECM avec des étiquettes

• Idée : si $x_i \in A_i \Rightarrow pl_i(A_i)$ élevée

Fonction objectif

$$egin{aligned} J_{SECM} = & \left(1-arphi
ight)\sum_{i=1}^{N}\sum_{A_{j}\subseteq\Omega,\;A_{j}
eq\emptyset}|A_{j}|^{lpha}m_{i}(A_{j})^{eta}d_{ij}^{2}+\sum_{i=1}^{N}\delta^{2}m_{i}(\emptyset)^{eta}\ &+arphi\sum_{\mathbf{x}_{i}\in A_{i}}1- extit{pl}_{i}(A_{j}), \end{aligned}$$

sous contraintes : $\sum m_i(A_j) + m_i(\emptyset) = 1$ and $m_i(A_j) \geq 0 \quad \forall i, j$

 \Rightarrow SECM quadratique quand $\beta = 2$, constraintes linéaires

Exemple Toy

ECM-Mah

Ajout de contraintes

Ajout de contraintes

SECM, contraintes certaines

SECM, contraintes incertaines

Formalisation

lacktriangle Degré d'appartenance conjointe de \mathbf{x}_i , \mathbf{x}_i

$$m_{i\times i}(A\times B)=m_i(A)m_i(B) \quad \forall A,B\subseteq\Omega,A\neq\emptyset,B\neq\emptyset$$

- Dans Ω², les événements
 - O $\theta \Rightarrow$ " \mathbf{x}_i et \mathbf{x}_i appartiennent à la même classe"
 - $\bigcirc \overline{\theta} \Rightarrow$ "**x**_i et **x**_j sont dans deux classes différentes"
- ⇒ Plausibilité d'appartenance à la même classe

$$pl_{i\times j}(\theta) = \sum_{A\cap B\neq\emptyset} m_i(A) \ m_j(B)$$

⇒ Plausibilité d'appartenance à une classe différente

$$pl_{i\times j}(\overline{\theta}) = 1 - m_{i\times j}(\emptyset) - \sum_{k=1,\ldots,c} m_i(\{\omega_k\}) m_j(\{\omega_k\})$$

Exemple

Α	m_1	m_2	m_3	m_4	m_5			$pl_{1\times 2}$	$pl_{1\times3}$	$pl_{1\times4}$	<i>pl</i> _{1×5}
Ø	0	0	0	0	1	\Rightarrow	θ	1	0	1	0
ω_{1}	1	1	0	0	0		$\overline{ heta}$	0	1	1	0
ω_2	0	0	1	0	0			•'			•
Ω	0	0	0	1	0						

Exemple

Α	m_1	m_2	m_3	m_4	m_5
Ø	0	0	0	0	1
ω_1	1	1	0	0	0
ω_2	0	0	1	0	0
Ω	0	0	0	1	0

Exemple

Α	m_1	m_2	m_3	m_4	m_5
Ø	0	0	0	0	1
ω_1	1	1	0	0	0
ω_2	0	0	1	0	0
Ω	0	0	0	1	0

Ajout de contraintes : CECM

Principe de base

Si $(\mathbf{x}_i, \mathbf{x}_i) \in \mathcal{M} \Rightarrow pl_{i \times j}(\overline{\theta})$ faible et si $(\mathbf{x}_i, \mathbf{x}_i) \in \mathcal{C} \Rightarrow pl_{i \times j}(\theta)$ faible

Fonction objectif

$$J_{CECM} = (1 - \phi)(\sum_{i=1}^{N} \sum_{A_j \subseteq \Omega, \ A_j \neq \emptyset} |A_j|^{\alpha} m_i (A_j)^{\beta} d_{ij}^2 + \sum_{i=1}^{N} \delta^2 m_i (\emptyset)^{\beta})$$
$$+ \phi(\sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{M}} p l_{i \times j}(\overline{\theta}) + \sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{C}} p l_{i \times j}(\theta))$$

sous contraintes $\sum m_i(A_j) + m_i(\emptyset) = 1$ et $m_i(A_j) \geq 0 \quad \forall i, j$

 $\Rightarrow J_{CFCM}$ quadratique quand $\beta = 2$, contraintes linéaires

Ajout de contraintes : CECM

Plan

- Introduction
 - O Classification automatique
 - Classification sous contraintes
 - Motivations
- Contributions
 - O ECM-Mah
 - O SECM
 - O CECM
- Expérimentations
 - O Comportement des algorithmes
 - O Applications
- Conclusion

Protocole expérimental

Jeux de données

	# attributs	# objets	# classes
Iris	4	150	3
LettersIJL	16	227	3

Méthode d'évaluation

Hyperparamètres

O SECM, CECM : $\alpha = 1$, $\delta^2 = 1000$ et $\xi = 0.5$

Sélection aléatoire des contraintes

• Décision : maximum de probabilité pignistique

Critère : Indice de Rand

⇒ mesure de la concordance globale entre 2 partitions

Comportement des algorithmes

RI total

RI sur les objets non contraints

Comparaison avec d'autres algorithmes

	Base	respect	modif.
	algorithmique	contraintes	distance
COP [1]	k-Means	Oui	
DML-FCM [2]	k-Means	/	Χ
CFCM [3]	FCM	/	Х
CECM	ECM	/	X

[1] K. Wagstaff & al, Constrained k-means clustering with background knowledge, KDID, 2001

[2] E. Xing & al, Distance Metric Learning with application to clustering with side-information, 2002

[3] N. Grira & al, *Active semi-supervised fuzzy clustering*, Pattern Recognition, 2008

Comparaison avec d'autres algorithmes

Iris

LettersIJL

Application à la segmentation d'images, SECM

Image avion

image originale

ECM+distance de Mahalanobis

Image avion

définition des étiquettes

SECM+distance de Mahalanobis

Applica

Application à la segmentation d'images, CECM

Image cerveau*

image originale

ECM+distance Euclidienne

^{*} Fournie par le Prof. Catherine Adamsbaum (Hôpital St Vincent de Paul, Paris, France) et le Prof. Isabelle Bloch (Ecole Nationale Supérieure des Télécommunications, Paris, France)

Application à la segmentation d'images, CECM

Image cerveau*

définition des contraintes

CECM+distance de Mahalanobis

^{*} Fournit par le Prof. Catherine Adamsbaum (Hôpital St Vincent de Paul, Paris, France) et le Prof. Isabelle Bloch (Ecole Nationale Supérieure des Télécommunications, Paris, France)

Plan

- Introduction
 - O Classification automatique
 - Classification sous contraintes
 - Motivations
- Contributions
 - O ECM-Mah
 - O SECM
 - O CECM
- Expérimentations
 - O Comportement des algorithmes
 - Applications
- Conclusion

Conclusion

Conclusion

Algorithmes de classification sous contraintes

- Les contraintes mènent vers une solution désirée
- Amélioration des performances
- Sensibilité à certains jeux de contraintes

Utilisation d'une partition crédale

Avantage

- Bon résultats
- Partition riche en information
- Apprentissage actif facilité

Inconvénient

 Complexité calculatoire

Conclusion

Perspectives

Pistes de recherche

- Création de SEVCLUS
- Étude de l'influence des contraintes
 - O Apprentissage actif
 - O Suppression de contraintes redondantes ou incohérentes
- Amélioration des algorithmes évidentielles
 - O diminution de la complexité calculatoire
 - O ajout de distances pour ECM

Merci pour votre attention

