

COMP 5212

Machine Learning

Lecture 2

Supervised Learning: Regression

Junxian He Feb 7, 2024

Announcement

Slides are now available BEFORE each lecture at our course website

https://jxhe.github.io/teaching/comp5212s24

lacktriangle A hypothesis or a prediction function is function $h:\mathcal{X} o \mathcal{Y}$

lacktriangle A hypothesis or a prediction function is function $h:\mathcal{X} o\mathcal{Y}$

lacktriangle A hypothesis or a prediction function is function $h:\mathcal{X} o\mathcal{Y}$

lacktriangle A hypothesis or a prediction function is function $h:\mathcal{X} o\mathcal{Y}$

lacksquare A hypothesis or a prediction function is function $h:\mathcal{X} o\mathcal{Y}$

- lacksquare A hypothesis or a prediction function is function $\,h:\mathcal{X} o\mathcal{Y}$
- A training set is set of pairs $\{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$ s.t. $x^{(i)} \in \mathcal{X}$ and $y^{(i)} \in \mathcal{Y}$ for $i = 1, \dots, n$.

- lacksquare A hypothesis or a prediction function is function $\,h:\mathcal{X} o\mathcal{Y}$
- A training set is set of pairs $\{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$ s.t. $x^{(i)} \in \mathcal{X}$ and $y^{(i)} \in \mathcal{Y}$ for $i = 1, \dots, n$.

lacktriangle Given a training set our goal is to produce a good prediction function h

- lacktriangle A hypothesis or a prediction function is function $\,h:\mathcal{X} o\mathcal{Y}$
- A training set is set of pairs $\{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$ s.t. $x^{(i)} \in \mathcal{X}$ and $y^{(i)} \in \mathcal{Y}$ for $i = 1, \dots, n$.

lacktriangle Given a training set our goal is to produce a good prediction function h

- lacktriangledown If ${\mathcal Y}$ is continuous, then called a regression problem
- lacktriangle If ${\mathcal Y}$ is discrete, then called a classification problem

- How to define "good" for a prediction function?
 - Metrics / performance

- How to define "good" for a prediction function?
 - Metrics / performance

- How to define "good" for a prediction function?
 - Metrics / performance

$$|\hat{y} - y^*|$$

 \hat{y} is the prediction, y^* is the truth

- How to define "good" for a prediction function?
 - Metrics / performance

$$|\hat{y} - y^*|$$

 \hat{y} is the prediction, y^* is the truth

- How to define "good" for a prediction function?
 - Metrics / performance

$$|\hat{y} - y^*|$$

 \hat{y} is the prediction, y^* is the truth

$$\mathbb{I}(\hat{y} = y*) = \begin{cases} 1, & \hat{y} = y* \\ 0 & otherwise \end{cases}$$

- How to define "good" for a prediction function?
 - Metrics / performance
 - Good on unseen data

- How to define "good" for a prediction function?
 - Metrics / performance
 - Good on unseen data

Validation dataset is another set of pairs $\{(\hat{x}^{(1)}, \hat{y}^{(1)}), \cdots, (\hat{x}^{(m)}, \hat{y}^{(m)})\}$

- How to define "good" for a prediction function?
 - Metrics / performance
 - Good on unseen data

Validation dataset is another set of pairs $\{(\hat{x}^{(1)}, \hat{y}^{(1)}), \cdots, (\hat{x}^{(m)}, \hat{y}^{(m)})\}$

Does not overlap with training dataset

- How to define "good" for a prediction function?
 - Metrics / performance
 - Good on unseen data

Validation dataset is another set of pairs $\{(\hat{x}^{(1)}, \hat{y}^{(1)}), \cdots, (\hat{x}^{(m)}, \hat{y}^{(m)})\}$

Does not overlap with training dataset

Which curve to choose?

- How to define "good" for a prediction function?
 - Metrics / performance
 - Good on unseen data

Validation dataset is another set of pairs $\{(\hat{x}^{(1)}, \hat{y}^{(1)}), \cdots, (\hat{x}^{(m)}, \hat{y}^{(m)})\}$

Does not overlap with training dataset

- How to define "good" for a prediction function?
 - Metrics / performance
 - Good on unseen data

Validation dataset is another set of pairs $\{(\hat{x}^{(1)}, \hat{y}^{(1)}), \cdots, (\hat{x}^{(m)}, \hat{y}^{(m)})\}$

Does not overlap with training dataset

Test dataset is another set of pairs $\{(\tilde{x}^{(1)}, \tilde{y}^{(1)}), \cdots, (\tilde{x}^{(L)}, \tilde{y}^{(L)})\}$

Does not overlap with training and validation dataset

- How to define "good" for a prediction function?
 - Metrics / performance
 - Good on unseen data

Validation dataset is another set of pairs $\{(\hat{x}^{(1)}, \hat{y}^{(1)}), \cdots, (\hat{x}^{(m)}, \hat{y}^{(m)})\}$

Does not overlap with training dataset

Test dataset is another set of pairs $\{(\tilde{x}^{(1)}, \tilde{y}^{(1)}), \cdots, (\tilde{x}^{(L)}, \tilde{y}^{(L)})\}$

Does not overlap with training and validation dataset

Completely unseen before deployment

Realistic setting

- How to define "good" for a prediction function?
 - Metrics / performance
 - Good on unseen data

Validation dataset is another set of pairs $\{(\hat{x}^{(1)}, \hat{y}^{(1)}), \cdots, (\hat{x}^{(m)}, \hat{y}^{(m)})\}$

Does not overlap with training dataset

Test dataset is another set of pairs $\{(\tilde{x}^{(1)}, \tilde{y}^{(1)}), \cdots, (\tilde{x}^{(L)}, \tilde{y}^{(L)})\}$

Does not overlap with training and validation dataset

Completely unseen before deployment

Realistic setting

Hyperparameter tuning is a form of training

Supervised Training

Train

Validation

Test

Not only for supervised learning

Example: Regression using Housing Data

Example Housing Data

	SalePrice	Lot.Area
4	189900	13830
5	195500	9978
9	189000	7500
10	175900	10000
12	180400	8402
22	216000	7500
36	376162	12858
47	320000	13650
55	216500	7851
56	185088	8577

Represent h as a Linear Function

$$h(x) = \theta_0 + \theta_1 x_1$$
 is an affine function
Popular choice

Represent h as a Linear Function

$$h(x) = \theta_0 + \theta_1 x_1$$
 is an affine function
Popular choice

The function is defined by **parameters** θ_0 and θ_1 , the function space is greatly reduced

Simple Line Fit

More Features

	size	bedrooms	lot size		Price
$\chi^{(1)}$	2104	4	45k	$y^{(1)}$	400
$X^{(2)}$	2500	3	30k	$y^{(2)}$	900

More Features

	size	bedrooms	lot size		Price
$\chi^{(1)}$	2104	4	45k	$y^{(1)}$	400
$X^{(2)}$	2500	3	30k	y ⁽²⁾	900

What's a prediction here?

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3.$$

More Features

	size	bedrooms	lot size		Price
$\chi^{(1)}$	2104	4	45k	$y^{(1)}$	400
$X^{(2)}$	2500	3	30k	y ⁽²⁾	900

What's a prediction here?

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3.$$

With the convention that $x_0 = 1$ we can write:

$$h(x) = \sum_{j=0}^{3} \theta_j x_j$$

	size	bedrooms	lot size		Price
$\chi^{(1)}$	2104	4	45k	$y^{(1)}$	400
$x^{(2)}$	2500	3	30k	$y^{(2)}$	900

We write the vectors as (important notation)

$$\theta = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix} \text{ and } x^{(1)} = \begin{pmatrix} x_0^{(1)} \\ x_1^{(1)} \\ x_2^{(1)} \\ x_3^{(1)} \end{pmatrix} = \begin{pmatrix} 1 \\ 2104 \\ 4 \\ 45 \end{pmatrix} \text{ and } y^{(1)} = 400$$

	size	bedrooms	lot size		Price
$\chi^{(1)}$	2104	4	45k	$y^{(1)}$	400
$x^{(2)}$	2500	3	30k	$y^{(2)}$	900

We write the vectors as (important notation)

$$\theta = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix} \text{ and } x^{(1)} = \begin{pmatrix} x_0^{(1)} \\ x_1^{(1)} \\ x_2^{(1)} \\ x_3^{(1)} \end{pmatrix} = \begin{pmatrix} 1 \\ 2104 \\ 4 \\ 45 \end{pmatrix} \text{ and } y^{(1)} = 400$$

We call θ parameters, $x^{(i)}$ is the input or the **features**, and the output or **target** is $y^{(i)}$. To be clear,

(x, y) is a training example and $(x^{(i)}, y^{(i)})$ is the i^{th} example.

	size	bedrooms	lot size		Price
$\chi^{(1)}$	2104	4	45k	$y^{(1)}$	400
$X^{(2)}$	2500	3	30k	$y^{(2)}$	900

We write the vectors as (important notation)

$$\theta = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix} \text{ and } x^{(1)} = \begin{pmatrix} x_0^{(1)} \\ x_1^{(1)} \\ x_2^{(1)} \\ x_3^{(1)} \end{pmatrix} = \begin{pmatrix} 1 \\ 2104 \\ 4 \\ 45 \end{pmatrix} \text{ and } y^{(1)} = 400$$

We call θ parameters, $x^{(i)}$ is the input or the **features**, and the output or **target** is $y^{(i)}$. To be clear,

(x, y) is a training example and $(x^{(i)}, y^{(i)})$ is the i^{th} example.

We have n examples. There are d features. $x^{(i)}$ and θ are d+1 dimensional (since $x_0 = 1$)

Vector Notation of Prediction

$$h_{\theta}(x) = \sum_{j=0}^{d} \theta_j x_j = x^T \theta$$

Vector Notation of Prediction

$$h_{\theta}(x) = \sum_{j=0}^{d} \theta_j x_j = x^T \theta$$

We want to choose θ so that $h_{\theta}(x) \approx y$

Loss Function

$$h_{\theta}(x) = \sum_{j=0}^{d} \theta_j x_j = x^T \theta$$

We want to choose θ so that $h_{\theta}(x) \approx y$

How to quantify the deviation of $h_{\theta}(x)$ from y

Least Squares

$$h_{\theta}(x) = \sum_{j=0}^{d} \theta_{j} x_{j} = x^{T} \theta$$
 $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$

Least Squares

$$h_{\theta}(x) = \sum_{j=0}^{d} \theta_{j} x_{j} = x^{T} \theta$$
 $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$

Choose

$$\theta = \underset{\theta}{\operatorname{argmin}} J(\theta).$$

Questions?

Direct Minimization

$$h_{\theta}(x) = \sum_{i=0}^{d} \theta_{i} x_{j} = x^{T} \theta$$
 $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$

Choose

$$\theta = \underset{\theta}{\operatorname{argmin}} J(\theta).$$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - \vec{y})^T (X\theta - \vec{y})$$

$$= \frac{1}{2} \nabla_{\theta} \left((X\theta)^T X \theta - (X\theta)^T \vec{y} - \vec{y}^T (X\theta) + \vec{y}^T \vec{y} \right)$$

$$= \frac{1}{2} \nabla_{\theta} \left(\theta^T (X^T X) \theta - \vec{y}^T (X\theta) - \vec{y}^T (X\theta) \right)$$

$$= \frac{1}{2} \nabla_{\theta} \left(\theta^T (X^T X) \theta - 2(X^T \vec{y})^T \theta \right)$$

$$= \frac{1}{2} \left(2X^T X \theta - 2X^T \vec{y} \right)$$

$$= X^T X \theta - X^T \vec{y}$$

$$X^T X \theta = X^T \vec{y}$$

$$\theta = (X^T X)^{-1} X^T \vec{y}.$$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - \vec{y})^T (X\theta - \vec{y})$$

$$= \frac{1}{2} \nabla_{\theta} \left((X\theta)^T X \theta - (X\theta)^T \vec{y} - \vec{y}^T (X\theta) + \vec{y}^T \vec{y} \right)$$

$$= \frac{1}{2} \nabla_{\theta} \left(\theta^T (X^T X) \theta - \vec{y}^T (X\theta) - \vec{y}^T (X\theta) \right)$$

$$= \frac{1}{2} \nabla_{\theta} \left(\theta^T (X^T X) \theta - 2(X^T \vec{y})^T \theta \right)$$

$$= \frac{1}{2} \left(2X^T X \theta - 2X^T \vec{y} \right)$$

$$= X^T X \theta - X^T \vec{y}$$

Normal equations
$$X^TX\theta=X^T\vec{y}$$

$$\theta=(X^TX)^{-1}X^T\vec{y}.$$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - \vec{y})^T (X\theta - \vec{y})$$

$$= \frac{1}{2} \nabla_{\theta} \left((X\theta)^T X \theta - (X\theta)^T \vec{y} - \vec{y}^T (X\theta) + \vec{y}^T \vec{y} \right)$$

$$= \frac{1}{2} \nabla_{\theta} \left(\theta^T (X^T X) \theta - \vec{y}^T (X\theta) - \vec{y}^T (X\theta) \right)$$

$$= \frac{1}{2} \nabla_{\theta} \left(\theta^T (X^T X) \theta - 2(X^T \vec{y})^T \theta \right)$$

$$= \frac{1}{2} \left(2X^T X \theta - 2X^T \vec{y} \right)$$

$$= X^T X \theta - X^T \vec{y}$$

Normal equations
$$X^TX\theta=X^T\vec{y}$$

$$\theta=(X^TX)^{-1}X^T\vec{y}.$$

When is X^TX invertible? What if it is not invertible?

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

Assume

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

Assume

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

x, y: random variable

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

Assume

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

x, y: random variable

 ϵ : deviation of prediction from the truth, Gaussian random variable

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

Assume

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

x, y: random variable

 ϵ : deviation of prediction from the truth, Gaussian random variable

 $x^{(i)}, y^{(i)}$: observations, or the data

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

Assume

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

x, y: random variable

 ϵ : deviation of prediction from the truth, Gaussian random variable

 $x^{(i)}, y^{(i)}$: observations, or the data

 $\epsilon^{(i)}$: the actual prediction error of the i_{th} example, sampled from the Gaussian distribution, IID (independently and identically distributed)

$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\epsilon^{(i)})^2}{2\sigma^2}\right)$$

$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\epsilon^{(i)})^2}{2\sigma^2}\right)$$

$$p(y^{(i)}|x^{(i)};\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right)$$

$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\epsilon^{(i)})^2}{2\sigma^2}\right)$$

$$p(y^{(i)}|x^{(i)};\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right)$$

$$p(\vec{y}|X;\theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)};\theta)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T}x^{(i)})^{2}}{2\sigma^{2}}\right)$$

$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\epsilon^{(i)})^2}{2\sigma^2}\right)$$

$$p(y^{(i)}|x^{(i)};\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right)$$

$$\begin{split} p(\vec{y}|X;\theta) &= \prod_{i=1}^n p(y^{(i)} \mid x^{(i)};\theta) \\ \text{Function of } \theta &= \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right) \end{split}$$

$$L(\theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right)$$

$$\begin{array}{lcl} L(\theta) & = & \prod_{i=1}^n p(y^{(i)} \mid x^{(i)}; \theta) \\ \\ & = & \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right) & \text{Likelihood Function} \end{array}$$

$$\begin{array}{lcl} L(\theta) & = & \prod_{i=1}^n p(y^{(i)} \mid x^{(i)}; \theta) \\ \\ & = & \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right) & \text{Likelihood Function} \end{array}$$

What is a reasonable guess of θ ?

$$L(\theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T}x^{(i)})^{2}}{2\sigma^{2}}\right)$$
 Likelihood Function

What is a reasonable guess of θ ?

Maximize the probability of Y's happening!

Maximum Likelihood Estimation (MLE)

$$\ell(\theta) = \log L(\theta)$$

$$= \log \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right)$$

$$= \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right)$$

$$= n \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^{2}} \cdot \frac{1}{2} \sum_{i=1}^{n} (y^{(i)} - \theta^{T} x^{(i)})^{2}.$$

Why MLE?

$$L(\theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T}x^{(i)})^{2}}{2\sigma^{2}}\right)$$
 Likelihood Function

What is a reasonable guess of θ ?

Maximize the probability of Y's happening?

Why MLE?

$$L(\theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T}x^{(i)})^{2}}{2\sigma^{2}}\right)$$
 Likelihood Function

What is a reasonable guess of θ ?

Maximize the probability of Y's happening?

Maximizing likelihood estimation -> $\hat{\theta}$

Why MLE?

$$L(\theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T}x^{(i)})^{2}}{2\sigma^{2}}\right)$$
 Likelihood Function

What is a reasonable guess of θ ?

Maximize the probability of Y's happening?

Maximizing likelihood estimation -> $\hat{\theta}$

Ground-truth θ^*

Another Solution — Gradient Descent

$$h_{\theta}(x) = \sum_{j=0}^{d} \theta_{j} x_{j} = x^{T} \theta$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

Choose

$$\theta = \underset{\theta}{\operatorname{argmin}} J(\theta).$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

The direction of the steepest descrease of J

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

The direction of the steepest descrease of J

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

This update is simultaneously performed for all values of j = 0,...,d.

The direction of the steepest descrease of J

For a single training example:

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} \left(\sum_{i=0}^{d} \theta_{i} x_{i} - y \right)$$

$$= (h_{\theta}(x) - y) x_{j}$$

For a single training example:

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} \left(\sum_{i=0}^{d} \theta_{i} x_{i} - y \right)$$

$$= (h_{\theta}(x) - y) x_{j}$$

LMS (Least Mean Square) Update Rule

Batch Gradient Descent

For a multiple training examples:

$$\theta_j := \theta_j + \alpha \sum_{i=1}^n (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$$

Repeat until convergence

Local Minimum

Local Minimum

For least square optimization, are we likely to get local minima rather than the global minima through gradient descent?

J is a convex quadratic function

There is only one local minima for ${\cal J}$

Convex Function

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$
 for $0 \le t \le 1$

Thank You! Q&A