Machine Learning, Compilers and Mobile Systems

Institute for Computing Systems Architecture University of Edinburgh, UK

Hugh Leather

Introduction

- Mobile is the next big thing
- Machine learning key to power and performance
- Prior work making machine learning in compilers practical at scale

Problem:

- Tuning heuristics is hard
- Architectures and compilers keep changing

Goal:

- Replace an heuristic with a Machine Learned one
- ML performs very well

Start with compiler data structures AST, RTL, SSA, CFG, DDG, etc.

Human expert determines a mapping to a feature vector

Now collect many examples of programs, determining their feature values

Execute the programs with different compilation strategies and find the best for each

Now give these examples to a machine learner

It learns a model

This model can then be used to predict the best compiler strategy from the features of a new program

- Fit a curve (model) to data
- Look new point on curve for prediction

The pillars of machine learning in compilers

Need to make practical at scale

Compiler Internals Access *lib*Plugin

Sourceforge – 400+ downloads

Cost of Iterative Compilation

Profile Races
LCTES 09

Enough Benchmarks

Automatic Benchmark Generation
In preparation

Choosing the Features

Automatic Feature Generation
CGO 09

Automatic Feature Generation

Choosing Features

- Problem
 - ML relies on good features
 - Subtle interaction between features and ML
 - Infinite number of features to choose from
- Solution
 - Automatically search for good features!

An example – Loop unrolling

- Set up
 - 57 benchmarks from MiBench, MediaBench and UTDSP
 - Found best unroll factor for each loop in [0-16]
 - Exhaustive evaluation to find oracle

An example – Loop unrolling

Original Loop

```
for( i = 0; i < n; i = i ++ ) {
    c[i] = a[i] * b[i];
}
```

Unrolled 5 times

```
for(i = 0; i < n; i = i + k) {
  c[i+0] = a[i+0] * b[i+0];
  c[i+1] = a[i+1] * b[i+1];
  c[i+2] = a[i+2] * b[i+2];
  c[i+3] = a[i+3] * b[i+3];
  c[i+4] = a[i+4] * b[i+4];
  c[i+5] = a[i+5] * b[i+5];
```

GCC vs Oracle

- GCC gets 3% of maximum
- On average mostly not worth unrolling

State of the art features

- Lots of good work with hand-built features
 - Dubach, Cavazos, etc
- Stephenson was state of the art
 - Tackled loop unrolling heuristic
 - Spent some months designing features
 - Multiple iterations to get right

GCC vs Stephenson

- Gets 59% of maximum!
- Machine learning does well

GCC vs Stephenson

	GCC	Stephenson	
Heuristic	Months		
Features	-	Months	
Training	-	Days	
Learning	- Seconds		
Results	3%	59%	

 To scale up, must reduce feature development time

- Simple language the compiler accepts:
 - Variables, integers, '+', '*', parentheses

- Examples:
 - a = 10
 - b = 20
 - c = a * b + 12
 - d = a * ((b + c * c) * (2 + 3))

$$a = ((b+c)*2 + d) * 9 + (b+2)*4$$

$$a = ((b+c)*2 + d) * 9 + (b+2)*4$$

$$a = ((b+c)*2 + d) * 9 + (b+2)*4$$


```
count-nodes-matching(
  is-times &&
  left-child-matches(
    is-plus
  )&&
  right-child-matches(
    is-constant
   Value = 3
```

```
a = ((b+c)*2 + d) * 9 + (b+2)*4
         var
                      const
                                       const
                  var
                            var
                                    const
          const
       var
var
```

Define a simple feature language:

- GCC grammar is huge >160kb
- Genetic search for features that improve machine learning prediction

- GCC 3% Stephenson 59% Ours 75%
- Automated features outperform human ones

Top Features Found

39% • get-attr(@num-iter)

Top Features Found

```
39% • get-attr(@num-iter)
```

14% • count(filter(//*, !(is-type(wide-int) || (is-type(float extend) &&[(is-type(reg)]/count(filter(//*,is-type(int))))) || is-type(union type))))

Top Features Found

```
39% • get-attr(@num-iter)
14% • count(filter(//*, !(is-type(wide-int) || (is-type(float extend) &&[(is-
        type(reg)]/count(filter(//*,is-type(int))))) || is-type(union type))))
     count(filter(/*, (is-type(basic-block) && (
8%
           !@loop-depth==2 ||
           (0.0 > (
               (count(filter(//*, is-type(var decl))) -
               (count(filter(//*, (is-type(xor) && @mode==HI))) +
               sum(
                   filter(/*, (is-type(call insn) && has-attr(@unchanging))),
                   count(filter(//*, is-type(real type)))))) /
                   count(filter(/*, is-type(code label)))))))))
```

GCC vs Stephenson vs Ours

	GCC	Stephenson	Ours
Heuristic	Months	-	-
Features	-	Months	-
Training	-	Days	Days
Learning	-	Seconds	Hours
Results	3%	59%	75%

Machine Learning for Mobile Systems

Mobiles

- Mobile devices will become THE consumer computing platform
- Need to make mobile devices faster
 - Quad cores here already
 - Increased power demand
- Need to make mobile devices lower power
 - Battery life measured in hours
 - Battery capacity not improving

- Mobile is a different beast
 - Application characteristics
 - Customers
 - Information available
- Needs different techniques

Desktop

- Applications
 - No app store
 - Many languages
 - Opaque binaries

Mobile (Android)

- Applications
 - Central app store
 - Mostly Java
 - Recompilable classes

Desktop

- Customers = Devs
 - Training in lab
 - Few benchmarks
 - Bad points OK

Mobile

- Customers = Users
 - Training in wild
 - All applications
 - Bad points, umm, bad

Desktop

- No user knowledge
 - Static code features

Mobile

- User knowledge
 - Static code features
 - Application history
 - Geographical
 - Temporal
 - OS states
 - Usage patterns

Optimise applications

- All Android programs use Dalvik JIT - very slow
- Create a market replacement
- Light-weight profiling identifies hot methods
- Updates get experimental code
- System learns how to optimise similar apps for similar users

Optimise applications

- Needs zero user impact
 - ML directed profiling
 - ML guided iterative compilation
 - ML guided version selection
- Huge scope for research

Optimise power

Recharge prediction allows power choices

Other topics

- Optimise communications
- Power modelling
- Scheduling heterogeneous multi-cores
- JIT optimisation

Conclusion

- Machine learning in compilers
 - Choosing Features
 - Enough Benchmarks
 - Cost of Iterative Compilation
 - Compiler Internals
- Machine learning the key to mobile systems
- Mobile is the next big thing
- Huge scope for research

Backup Slides

Compiler internals

Problem

- Compilers not built for ML
- Must access all internals
- Prior approach was to hack the source

Solution

- libPlugin
- Opens up GCC internals
- Modern software engineering
- Cooperative, extensible plug-ins, with AOP
- Plug-ins now adopted in GCC

Cost of iterative compilation

Problem

- Gathering training data can take months
- Statistical soundness often overlooked

Solution

- Profile Races (H.Leather, B.Worton, M.O'Boyle)
- Program version race each other, losers quit early
- Reduces training time by order of magnitude
- Ensures statistically sound data

Enough benchmarks

Problem

- ML would like 10^5 examples
- Only got a few dozen benchmarks

Solution

- Automatic Benchmark Generation
 (H.Leather, Z. Wang, A. Magni, C. Thompson In preparation)
- Genetic programming + constraint satisfaction to make 'human like' programs
- Active learning to cover the training space

Difficulties choosing features

 The expert must do a good job of projecting down to features

Difficulties choosing features

 Machine learning doesn't work if the features don't distinguish the examples

Difficulties choosing features

Better features might allow classification

Searching the Feature Space

Overview of searching

Features for GCC

Overview of grammar production

ML for Mobile

Server side native compilation of hot methods

ML for Mobile - Downsizing Down Sides

- Experiments on real users' phones
- What about the bad search points?
- Multiple versions known good and experimental
- P(experimental) ∝ confidence(experimental)

Optimise communications

- Comms updates are expensive
- Updates need to be fresh and not wasted
- Build cost models
- Predictor 'use' times
- Schedule updates for predicted lowest cost

Power models

- Need power models
 - Energy sensors are low fidelity
 - Batteries non-linear
 - Allow relaxation
 - Lowest power solution may not give longest battery life
- Power aware workloads needed

Heterogeneous multi-cores

- Simple heterogeneous multi-cores here now
- Scheduling is NP-hard
 - Even when application characteristics known
- Use ML to tune scheduling heuristics for power and performance

Performance - Dijkstra

Performance

Energy

Figure 5.2: Maximum energy improvement rates

Energy vs Performance

Are energy and performance correlated?

- Not really! Why?
- If could predict recharge time, change version