

编译原理(H) 习题课 H3-1, H3-2

彭浩然

为下列正规式手工构造NFA和DFA, 再用算法将NFA变换成DFA, 并构造 最简的DFA: (a|b)*abb(a|b)*

为下列正规式手工构造NFA和DFA, 再用算法将NFA变换成DFA, 并构造最简的DFA: (a|b)*abb(a|b)*

手工DFA

手工NFA

为下列正规式手工构造NFA和DFA, 再用算法将NFA变换成DFA, 并构造最简的DFA: (a|b)*abb(a|b)*

状态	输入符号	
	a	b
$A = \{ 0 \}$	В	A
$B = \{ 0, 1 \}$	В	С
$C = \{ 0, 2 \}$	В	D
$D = \{ 0, 3 \}$	E	D
$E = \{ 0, 1, 3 \}$	E	F
$F = \{0, 2, 3\}$	Е	D

算法DFA

为下列正规式手工构造NFA和DFA, 再用算法将NFA变换成DFA, 并构造

最简的DFA: (a|b)*abb(a|b)*

最简算法 DFA 应该用move()语言描述,但如何快速找到应该如何拆分? "消消乐"

状态	输入符号	
小 総	a	b
A	В	A
В	В	С
С	В	D
D	E	D
E	E	F
F	E	D

状态	输入符号	
小 総	a	b
A	В	A
В	В	С
С	В	D
D	Е	D
E	E	D

44大	输入符号	
状态	a	b
A	В	A
В	В	С
С	В	D
D	E	D
E	E	D

输入符号	
a	b
В	A
В	С
В	D
D	D
	a B B

考虑文法 $S \rightarrow aSbS \mid bSaS \mid \varepsilon$

- (a) 为句子abab构造两个不同的最左推导,以此说明该文法是二义的。
- (b) 为abab构造对应的最右推导。
- (c) 为abab构造对应的分析树。
- (d) 这个文法产生的语言是什么?

考虑文法 $S \rightarrow aSbS \mid bSaS \mid \varepsilon$

(a) 为句子abab构造两个不同的最左推导,以此说明该文法是二义的。

- (1) $S \Rightarrow aSbS \Rightarrow abSaSbS \Rightarrow ab\varepsilon aSbS \Rightarrow ab\varepsilon a\varepsilon bS \Rightarrow ab\varepsilon a\varepsilon b\varepsilon$
- ② $S \Rightarrow aSbS \Rightarrow a\varepsilon bS \Rightarrow a\varepsilon baSbS \Rightarrow a\varepsilon ba\varepsilon bS \Rightarrow a\varepsilon ba\varepsilon b\varepsilon$

(b) 为abab构造对应的最右推导。

- (3) $S \Rightarrow aSbS \Rightarrow aSbE \Rightarrow abSaSbE \Rightarrow abSaEbE \Rightarrow abEaEbE$
- (4) $S \Rightarrow aSbS \Rightarrow aSbaSbS \Rightarrow aSbaSbE \Rightarrow aSbaEbE \Rightarrow aEbaEbE$

考虑文法 $S \rightarrow aSbS \mid bSaS \mid \varepsilon$

(c) 为abab构造对应的分析树。

13

考虑文法 $S \rightarrow aSbS \mid bSaS \mid \varepsilon$

(d) 这个文法产生的语言是什么?

在字母表 $\{a,b\}$ 上的a和b数量相等的所有串集合

文法 R --> R '|' R|R R | R* | (R) | a | b

产生字母表 $\{a, b\}$ 上所有不含 ϵ 的正规式。注意,第一条竖线加了引号,它是正规式的或运算符号,而不是文法产生式右部各选择之间的分隔符,另外*在这儿是一个普通的终结符。该文法是二义的。

- (a) 证明该文法产生字母表{a, b}上的所有正规式。
- (b) 为该文法写一个等价的非二义文法。它给予算符*、连接和 | 的优先级和结合性同2.2节中定义的一致。
- (c) 按上面两个文法构造句子 ab|b^*a 的分析树。

(a) 证明该文法产生字母表{a, b}上的所有正规式。

最完整的证明思路: 充分必要

- 1. 所有的正规式都可以由该文法产生 对正规式中的字母数量,使用第二类数学归纳法(第一类不行)
- 2. 该文法产生的所有串都是合法的正规式 对正规式中的字母数量,使用第二类数学归纳法(第一类不行)

简单的证明思路:将正规式的定义与该文法——对应("同构映射")

(c) 按上面两个文法构造句子 ab|b*a 的分析树。

$$R \rightarrow R' | T | T$$

$$T \rightarrow TF | F$$

$$F \rightarrow F^* | A$$

$$A \rightarrow (R) | a | b$$

为字母表 $Σ = {a, b}$ 上的下列每个语言设计一个文法,其中哪些语言是正规的?

(c) a和b的个数不相等的所有串。

$$S \to \tilde{A} \mid \tilde{B}$$

$$\tilde{A} \to \tilde{A} A \mid A$$

$$\tilde{B} \to \tilde{B} B \mid B$$

$$A \rightarrow EaE$$

$$B \rightarrow EbE$$

$$E \rightarrow aEbE \mid bEaE \mid \varepsilon$$

不是正规文法

(d) 不含abb作为子串的所有串。

$$S \rightarrow bS \mid aT \mid \varepsilon$$

$$T \rightarrow aT \mid bR \mid \varepsilon$$

$$R \rightarrow aT \mid \varepsilon$$

是正规文法,因为等价于正规式

$$b^*(a|ab)^*$$

(a) 消除习题3.1文法的左递归。

注: 习题3.1的文法如下

 $S \rightarrow (L) \mid a \quad L \rightarrow L, S \mid S$

 $S \rightarrow (L) \mid a$

 $L \rightarrow SM$

 $M \rightarrow SM \mid \varepsilon$