In this worksheet, we outline a proof that SAT is NP-Complete (known as the **Cook-Levin Theorem**) (from Wikipedia). This proof has two parts.

- 1. SAT \in NP.
- 2. SAT is *NP-hard*: Any language $L \in NP$ will satisfy $L \leq_p SAT$.

Exercise 1. Show that $SAT \in NP$. That is, build a poly-time nondeterministic Turing machine that decides SAT.

SAT is NP-hard

Let $L \in \text{NP}$. We will show that $L \leq_p \text{SAT}$ by constructing a poly-time computable function f such that $x \in L \Leftrightarrow f(x) \in \text{SAT}$.

Since $L \in \mathrm{NP}$, there is a poly-time nondeterministic Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathrm{acc}}, q_{\mathrm{rej}})$ that decides L. Since M is poly-time, we may assume M halts in $\leq p(n)$ steps on any input of size n (where p(n) is some polynomial). We will make use of the following lemma:

Lemma. Suppose M(x) has executed s steps. Then, only cells -s to s can be nonblank; cells $-\infty$ to -s-1, and cells s+1 to ∞ must be blank.

Exercise 2. Briefly justify the Lemma. *Hint: How long does it take to move the read/write head?*

The Lemma guarantees that if M is given an input x of size n, then throughout M(x)'s execution, only cells -p(n) to p(n) can be overwritten.

Now, given an input x, we will define the following collections of variables:

Variables	Range	Intended Interpretation		
$T_{i,j,k}$	$-p(n) \le i \le p(n), j \in \Sigma, 0 \le k \le p(n)$	Cell i has symbol j at step k of execution.		
$H_{i,k}$	$-p(n) \le i \le p(n), 0 \le k \le p(n)$	The read/write head is at cell i at step k of execution.		
$Q_{q,k}$	$q \in Q$, $0 \le k \le p(n)$	The NTM is at state q at step k of execution.		

Table 1: Variables and their intended interpretations

Exercise 3. Suppose M is the *deterministic* Turing machine below (with $\Sigma = \{a, b\}$). You may assume that M(x) halts in p(n) = n + 1 steps or less.

Execute M on the input x = bba (so M halts in p(n) = 3 + 1 = 4 steps), and label the variables below with their intended interpretations (consulting Table 1).

Variable	Value	Variable Val	lue Variable	Value	Variable	Value
$T_{0,a,0}$	F	$T_{3,\square,2}$	$\overline{H_{0,0}}$	T	$\overline{Q_{q_0,0}}$	T
$T_{1,b,0}$	T	$T_{-2,\square,2}$	$H_{1,0}$	F	$Q_{q_1,0}$	F
$T_{2,b,0}$	F	$T_{2,b,2}$	$H_{1,1}$	T	$Q_{q_1,1}$	F
$T_{0,a,1}$		$T_{0,a,3}$	$H_{2,1}$		$Q_{q_1,2}$	
$T_{1,a,1}$		$T_{1,a,4}$	$H_{2,2}$		$Q_{q_1,3}$	
$T_{2,a,2}$		$T_{2,a,4}$	$H_{3,3}$		$Q_{q_{ m acc},4}$	
			1			

In Table 1, there are:

- $(2p(n) + 1) \cdot |\Sigma| \cdot (p(n) + 1) = \mathcal{O}(p(n)^2)$ variables of the form $T_{i,j,k}$.
- $(2p(n) + 1) \cdot (p(n) + 1) = \mathcal{O}(p(n)^2)$ variables of the form $H_{i,k}$.
- $|Q| \cdot (p(n) + 1) = \mathcal{O}(p(n))$ variables of the form $Q_{q,k}$.

In total, we have created $\mathcal{O}(p(n)^2)$ variables given an input x of size n.

Recall that we want to create a poly-time computable f so that $x \in L \Leftrightarrow f(x) \in SAT$. In other words, given an x, we want to create a boolean formula f(x) in polynomial time, so that f(x) is satisfiable iff $x \in L$. Here's how we create this boolean formula f(x):

- The variables of this boolean formula are the $T_{i,j,k}$'s, the $H_{i,k}$'s, and the $Q_{q,k}$'s, as defined in Table 1. There are $\mathcal{O}(p(n)^2)$ variables.
- The formula is the *conjunction* (\wedge) of all of the following boolean subformulae (with $-p(n) \le i \le p(n)$, $0 \le k \le p(n)$):

Formulae	Range	Interpretation	How many formulae?	
$T_{i,j,0}$	$j \in \Sigma$ cell i initially contains symbol j	Initial contents of the tape	$\mathcal{O}(p(n))$	
$\overline{Q_{q_0,0}}$		TM starts in state q_0	1	
$\overline{H_{0,0}}$		R/W head starts at cell 0	1	
$\overline{\neg T_{i,j,k} \lor \neg T_{i,j',k}}$	$j, j' \in \Sigma$ with $j \neq j'$	At most 1 symbol per cell	$\mathcal{O}(p(n)^2)$	
$\bigvee_{i \in \Sigma} T_{i,j,k}$		At least 1 symbol per cell	$\mathcal{O}(p(n)^2)$	
$T_{i,j,k} \wedge T_{i,j',k+1} \to H_{i,k}$	$j,j'\in\Sigma$ with $j\neq j'$	To change cell i , head must be at cell i	$\mathcal{O}(p(n)^2)$	
$\overline{\neg Q_{q,k} \lor \neg Q_{q',k}}$	$q, q' \in Q$ with $q \neq q'$	Only one state at a time	$\mathcal{O}(p(n))$	
$\neg H_{i,k} \vee \neg H_{i',k}$	$i \neq i'$	Only one head position at a time	$\mathcal{O}(p(n)^3)$	
$(H_{i,k} \land Q_{q,k} \land T_{i,j,k}) \rightarrow \bigvee_{\substack{(q,j),(q',j',d) \in \delta}} \begin{pmatrix} H_{i+d,k+1} \\ \land Q_{q',k+1} \\ \land T_{i,j',k+1} \end{pmatrix}$	$j \in \Sigma$ $q \in Q$ $k \neq p(n)$	Non-deterministic transition function δ is obeyed	$\mathcal{O}(p(n)^2)$	
$\bigvee_{0 \leq k \leq p(n)} Q_{q_{\mathrm{acc}},k}$		Accepting state $q_{\rm acc}$ reached within $p(n)$ steps	1	

Table 2: f(x) is the conjunction (\wedge) of all of the following subformulae.

Notice that this huge boolean formula f(x) is satisfiable iff $x \in L$:

- If f(x) is satisfiable, then there is some execution path in M(x) that ends in the accepting state q_{acc} . It follows from the definition (since M is a nondeterministic decider for L) that $x \in L$.
- If $x \in L$, then there is some execution path in M(x) leading to acceptance. We may then assign the $T_{i,j,k}$'s, the $H_{i,k}$'s, and the $Q_{q,k}$'s according to their intended interpretation to satisfy f(x).

f(x) takes $\mathcal{O}(p(n)^3)$ time to produce, and since p(n) is polynomial, so is $p(n)^3$. Thus f is indeed poly-time computable. This shows $L \leq_p \mathrm{SAT}$. \square

Exercise 4. Referring back to the Turing machine M in Exercise 3, M accepts the input x = bba.

- (a) List the variables in f(x) (consulting Table 1).
- (b) Write down the boolean formula f(x) (consulting table 2).