IE 554 Project – Mathematical Models

Emek Irmak & Ömer Turan Şahinaslan

CONTENTS

1	Introduction	1
2	Mathematical Formulation of Dominator Partition Problem	1
3	Valid Inequalities	1
4	Impact of Valid Inequalities to Performance	1
5	Conclusion	1

1 Introduction

2 Mathematical Formulation of Dominator Partition Problem

Sets & Parameters

G = (V, E): a graph with vertex set V and edge set E

 π : dominator partition of size k of G

Decision Variables

 x_{vi} : 1 if vertex v is assigned to the i^{th} block

 d_{vi} : 1 if vertex v dominates block i

Objective Function & Constraints

min 0 (no objective)

s.t. $\sum_{i=1}^{k} x_{vi} = 1$, $\forall v \in V$ (each vertex is assigned to one block)

 $\sum_{v \in V} x_{vi} \ge 1 \quad \forall i \in \pi$ (no empty blocks)

 $x_{ui} + d_{vi} \leq 1 \quad \{ \forall u, v \in V \mid \{u, v\} \not\in E \}, i \in \pi \quad \text{(domination condition)}$

 $\sum_{i=1}^{k} d_{vi} \ge 1 \quad \forall v \in V$ (each vertex dominates at least one block)

 $\sum_{v \in V} x_{vi} \ge \sum_{v \in V} x_{v,i+1} \quad \forall i \in \{1, 2, \dots, k-1\}$ (blocks are used in order)

 $x_{vi}, d_{vi} \quad \forall v \in V, i \in \pi$ (binary variables)

3 Valid Inequalities

4 Impact of Valid Inequalities to Performance

5 Conclusion