The center of a ring R is

$$Z(R) := \{ x \in R \mid xa = ax \quad \forall a \in R \}$$

1. Show Z(R) is a subring of R.

pf.

Let $x, y \in Z(R), a \in R$. Then,

$$a, x, y \in R \implies a(x - y) = ax - ay$$

$$y \in Z(R) \implies a(x - y) = ax - ya$$

$$x \in Z(R) \implies a(x - y) = xa - ya$$

$$a, x, y \in R \implies xa - ya = (x - y)a$$

$$\implies a(x - y) = (x - y)a$$

$$y \in R \implies xy = yx$$
Multiplication by $a \implies axy = ayx$

Multiplication by
$$a \implies axy = ayx$$

$$y \in Z(R) \implies axy = yax$$

$$x \in Z(R) \implies axy = yxa$$

So, $x,y\in\mathbb{Z}(R)\implies 0, x-y,$ and $xy\in\mathbb{Z}(R).$

Thus, by the conclusion of exercise 48 in p. 176 Z(R) is a sub-ring of R

2. Show that the center of $M_{2\times 2}(\mathbb{R})$ is spanned (as a vector space) by the identity matrix. $\underline{\mathrm{pf}}$.

Suppose,
$$\exists X = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \in Z\left(M_{2\times 2}(\mathbb{R})\right) : \forall r \in \mathbb{R} \quad X \neq rI. \text{ Let } A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$XA = AX \implies \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} x_1 & 0 \\ x_3 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} x_1 & x_2 \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} x_1 & x_2 \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$$

$$\implies x_2 = x_3 = 0 \implies X = \begin{pmatrix} x_1 & 0 \\ 0 & x_4 \end{pmatrix}$$

$$XB = BX \implies \begin{pmatrix} x_1 & 0 \\ 0 & x_4 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & x_1 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & x_4 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 & 0 \\ 0 & x_4 \end{pmatrix}$$
$$\implies x_1 = x_4$$
$$\implies X = x_1 I$$

 $X \neq rI \rightarrow \leftarrow X = x_1I$. So by contradiction X = rI.

Therefore, $Z(M_{2\times 2}(\mathbb{R}))=\operatorname{Span}\left\{I\right\}$

3. Let $R=\mathbb{R}S_n$ be the group algebra of the symmetric group, and define the element

$$x = \sum_{1 \leq i \neq j \leq n} (i \, j)$$

(For example, if n=3, then $x=(1\,2)+(1\,3)+(2\,3)$.) Show that for any transposition $(k\,\ell)\in S_n$ we have $(k\,\ell)x(k\,\ell)=x$.

(Hint: you can use the fact that if $\sigma \in S_n$ and $(a_1 \cdots a_k)$ is a cycle in S_n , then $\sigma(a_1 a_2 \cdots a_k) \sigma^{-1} = (\sigma(a_1) \cdots \sigma(a_k))$.)

Note: this actually shows $x \in Z(S_n)$, because any element of S_n is a product of transpositions. pf.

$$(k\,l)x(k\,l) = \sum_{1 \leq i \neq j \leq n} (k\,l)(i\,j)(k\,l) \quad \text{ by left and right distribution}$$

Now either, (I) $i \neq k$ and $j \neq k$, (II) i = k and $j \neq l$, (III) $i \neq k$ and j = l, or (IV) i = k and j = l.

(I):
$$(k l)(i j)(k l) = (k l)(k l)(i j) = (i j)$$

(II):
$$(k l)(k j)(k l) = (k l)(l j) = (k j)$$

(III):
$$(k l)(i l)(k l) = (k l)(k i) = (i l)$$

(I):
$$(k l)(k l)(k l) = (k l)(k l)(k l) = (k l)$$

Thus,

$$(k l)x(k l) = x$$

4. Use Fermat's theorem to compute the remainder of 37^{49} when it is divided by 7.

$$\underbrace{\text{SLU.}}\ 37^{49} = 37^{48+1} = 37^{48}37 = 37^{6\cdot8}37 = (37^6)^837 \equiv_7 1^837 \equiv_7 37 \equiv_7 5 \cdot 7 + 2 \equiv_7 2 \text{ So, 2} \quad \blacklozenge$$

- 5. Let $\phi_a:R[x]\to R$ be the evaluation homomorphism, defined by $\phi_a(f)=f(a)$. Let f(x)=(x-2)(x+3).
 - (a) If $R=\mathbb{Z}$, find all $a\in R$ with $\phi_a(f)=0$. slu. \mathbb{Z} is an integral domain, thus a=2, or a=-3
 - (b) If $R=\mathbb{Z}/8\mathbb{Z}$, find all $a\in R$ with $\phi_a(f)=0$. slu.

$$f(1) = (1-2)(1+3) \equiv_8 4$$

$$f(2) = (2-2)(2+3) \equiv_8 0$$

$$f(3) = (3-2)(3+3) \equiv_8 6$$

$$f(4) = (4-2)(4+3) \equiv_8 6$$

$$f(5) = (5-2)(5+3) \equiv_8 0$$

$$f(6) = (6-2)(6+3) \equiv_8 4$$

$$f(7) = (7-2)(7+3) \equiv_8 2$$

So,
$$a=2$$
 or $a=5$ \diamondsuit