Министерство образования Республики Беларусь Белорусский национальный технический университет Факультет транспортных коммуникаций Кафедра «Геодезия и аэрокосмические геотехнологии»

Отчет по лабораторной работе №4 «Уравнивание ГНСС измерений» Вариант №6

Выполнил: ст.гр.11405118

Давидович Н.Ю.

Проверил: ст. преподаватель

Будо А.Ю.

Цель работы: выполнить уравнивание базовых линий ГНСС.

Исходные данные представлены в таблице 1, а измеренные линии приведены в приложении A

Таблица 1

Название пункта	X	Y	Z
SEST	2760131.814	1590488.584	5507184.417
LOM2	2783846.261	1593451.095	5494457.516

Сначала составляем ковариационную матрицу К.

После составляем матрицу весов измерений P размерности $N \times N$, где N- количество измеренных величин

$$P = K^{-1} \tag{1}$$

Затем составляем матрицу A (приложение B). Для этого заполняем данную матрицу значениями 1; 0; -1.

Далее составляем вектор свободных членов L:

$$\begin{split} L_{\Delta X} &= X_{_{\rm BM^{\rm I}}} - X_{_{\rm H3M}}, \\ L_{\Delta Y} &= Y_{_{\rm BM^{\rm I}}} - Y_{_{\rm H3M}}, \\ L_{\Delta Z} &= Z_{_{\rm BM^{\rm I}}} - Z_{_{\rm H3M}}; \end{split} \tag{2}$$

Вычисляем вектор свободных поправок в наши измерения:

$$X = -(A^T P A)^{-1} \cdot A^T P L. \tag{3}$$

2767097.107298916671 1614808.225419755559 5496655.424633320421 2751239.315466009546 X = 1617658.335092389490 5503744.461884979159 2775646.589174386114 1585307.107740548439 5500884.640846147202

Определяем вектор поправок по следующей формуле:

$$V = A \cdot X + L \,. \tag{4}$$

Вектор поправок представлен в Приложении Γ . Вычислим СКП

$$\mu = \sqrt{\frac{V^T P V}{N - k}} \,\,\,(5)$$

где N — число параметров измерений, а k — число определяемых параметров.

$$\mu = 11.04338465755$$

Ковариационная матрица определяемых параметров:

$$Q = \left(A^T P A\right)^{-1} \tag{6}$$

Ковариационная матрица измерений

$$Q_{y} = AQA^{T} \tag{7}$$

Вычисляем СКП уравненных параметров

$$m_i = \mu \cdot \sqrt{Q_i} \tag{8}$$

Результат вычислений:

$$m_{X_{\text{Ba3a}}} = 0.00370138041,$$

 $m_{Y_{\text{Ba3a}}} = 0.00368139843,$
 $m_{Z_{\text{Ba3a}}} = 0.00676892887;$
 $m_{X_{0673}} = 0.00270208041,$
 $m_{Y_{0673}} = 0.00265838514,$
 $m_{Z_{0673}} = 0.00507744766;$
 $m_{X_{\text{Kyxap}}} = 0.00302163895,$
 $m_{Y_{\text{Kyxap}}} = 0.00298532305,$
 $m_{Z_{\text{Kyxap}}} = 0.00554674108.$

Проведем статистический тест Хи-квадрат.

$$\chi_{npag}^{2} = XU2.OEP\left(\frac{q}{2}; r\right) = 10.28289778252$$

$$\chi_{npag}^{2} = XU2.OEP\left(1 - \frac{q}{2}; r\right) = 35.47887590573$$

$$\sqrt{\frac{\chi_{neg}^{2}}{r}} \le \mu \le \sqrt{\frac{\chi_{npag}^{2}}{r}}$$

$$0.69975 \le 11.04338 \le 1,2998$$

То есть статистический тест не выполняется Коэффициент τ вычисляется по формуле:

$$\tau = \frac{t_{\alpha/2, r-1 \cdot \sqrt{r}}}{\sqrt{r-1 + \left(t_{\alpha/2, r-1}\right)^2}}$$

где r – число степеней свободы;

t – коэффициент стьюдента с вероятностью 95%

 $\tau = 2.73150286720$

После проведения сравнения нормативных поправок с коэффициентом τ грубых ошибок не выявлено.

То есть статистический тест выполняется

Вывод: в данной работе выполнялось уравнивание базовых линий ГНСС. В ходе оценки точности был проведен статистический тест Хи-квадрат, который показал, что данные измерения подходят под нормальный закон распределения. Так же было выявлено отсутствие грубых ошибок.

ПРИЛОЖЕНИЕ А

Направление	ΔΧ	ΔΥ	ΔZ	mX	mY	mZ	cov(ΔΧΔΥ)	cov(ΔΧΔΖ)	cov(ΔΥΔΖ)
GORN MURN	-15857.80474	2850.1118001	7089.0544324	0.0009880	0.0009854	0.0017870	0.00000049316504414843	0.00000053228373641830	0.00000032036878777375
KRON MURN	-24407.2731	32351.2291522	2859.8182449	0.0002813	0.0002760	0.0005092	0.00000003946276417707	0.00000003974140229459	0.00000002242046213776
GORN SEST	-6965.286015	-24319.6462076	10528.9895051	0.0007948	0.0007886	0.0014336	0.00000031625109925012	0.00000034378338905932	0.00000020314557923708
KRON LOM2	8199.667748	8143.9856488	-6427.1192148	0.0006266	0.0006219	0.0011324	0.00000019371139011902	0.00000021398723252492	0.00000012350173001252
KRON SEST	-15514.77648	5181.4714369	6299.7829641	0.0006752	0.0006706	0.0012269	0.00000022470921269463	0.00000024901196159876	0.00000014316684546559
LOM2 MURN	-32606.94319	24207.2373521	9286.9463181	0.0003031	0.0002973	0.0005823	0.00000004599028149466	0.00000005352280241707	0.00000001871772927247
LOM2 SEST	-23714.44434	-2962.5142289	12726.9022137	0.0007605	0.0007551	0.0013776	0.00000028600247845407	0.00000031570325943354	0.00000018251595906898
MURN SEST	8892.518759	-27169.7581699	3439.9350382	0.0010163	0.0010104	0.0018407	0.00000051761250005010	0.00000056251186857574	0.00000033378089459478
GORN KRON	8549.481257	-29501.1167933	4229.2156674	0.0003291	0.0003309	0.0006107	0.00000005730410938720	0.00000005941864834628	0.00000003671259161549
GORN LOM2	16749.15818	-21357.1319562	-2197.9129978	0.0007530	0.0007473	0.0013524	0.00000028392695415246	0.00000030820841122405	0.00000018280973039206

ПРИЛОЖЕНИЕ Б

	-1	0	0	0	0	0	0	0	0
	0	-1	0	0	0	0	0	0	0
	0	0	-1	0	0	0	0	0	0
	-1	0	0	1	0	0	0	0	0
	0	-1	0	0	1	0	0	0	0
	0	0	-1	0	0	1	0	0	0
	0	0	0	-1	0	0	0	0	0
	0	0	0	0	-1	0	0	0	0
	0	0	0	0	0	-1	0	0	0
	-1	0	0	0	0	0	1	0	0
A =	0	-1	0	0	0	0	0	1	0
	0	0	-1	0	0	0	0	0	1
	-1	0	0	0	0	0	0	0	0
	0	-1	0	0	0	0	0	0	0
	0	0	-1	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	-1	0	0
	0	0	0	0	0	0	0	-1	0
	0	0	0	0	0	0	0	0	-1

ПРИЛОЖЕНИЕ В

1-0.007774706930 -0.011284234235 -0.043598170392 0.002173341556 -0.002092045493 -0.025717375862 -0.004061048385 -0.006760188611 -0.006760188611 -0.001331661335 V = 0.0016438607550.000217351810 0.006375993136 0.008540465962 0.031207229011 -0.001675354317 -0.011515805265 -0.030340077356 -0.003205745481 -0.007629894884 -0.035113922320