

LAB SEMINAR

20160804 Lee KyooChul

Image Caption

Image Caption

Image Caption

- Dealing with two most advanced tasks in the deep learning area(vision & language)
- Picking up the salient information from the dense environment
 - → similar environment with vehicle perception

Paper Introduction

- Show and Tell : A neural Image Caption Generator (NIC)
 - ✓ 2015 CVPR
 - ✓ Oriol Vinyals et al. (Google)
- Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (SAT)
 - ✓ 2015 ICML
 - ✓ Kelvin Xu et al. (Kyunghyun Cho, Yoshua Bengio)
- 1) Model 2) Training 3) Evaluation

Encoder-Decoder framework from Machine Translation

- Encoder-Decoder framework from Machine Translation
 - ✓ Grammar based methods, Semantic based methods, Statistical methods etc.
 - ✓ Feedforward language modeling (Bengio et al., 2003)
 - ✓ RNN encoder-decoder framework (Cho et al., 2014)

- Encoder-Decoder framework from Machine Translation
 - ✓ Grammar based methods, Semantic based methods, Statistical methods etc.
 - ✓ Feedforward language modeling (Bengio et al., 2003)
 - ✓ RNN encoder-decoder framework (Cho et al., 2014)

Encoder-Decoder framework from Machine Translation

Encoder-Decoder framework from Machine Translation

- Encoder-Decoder framework from Machine Translation
 - ✓ Use GooleNet^[1] (the winner of the classification competition of ILSVRC 2014)
 - ✓ Pre-trained with ImageNet data
 - ✓ Apply as the input only at the beginning

[1] Szegedy et al., Going Deeper with Convolutions. CVPR, 2015

- Encoder-Decoder framework from Machine Translation
 - ✓ Use GooleNet^[1] (the winner of the classification competition of ILSVRC 2014)
 - ✓ Pre-trained with ImageNet data
 - ✓ Apply as the input only at the beginning

[1] Szegedy et al., Going Deeper with Convolutions. CVPR, 2015

- Encoder-Decoder framework from Machine Translation
 - ✓ Use GooleNet^[1] (the winner of the classification competition of ILSVRC 2014)
 - ✓ Pre-trained with ImageNet data
 - ✓ Apply as the input only at the beginning

To avoid overfitting

[1] Szegedy et al., Going Deeper with Convolutions. CVPR, 2015

NIC - LSTM Decoder

The goal of LSTM : Remembering the previous state better

```
■ 3 gates i_{t} = \sigma(W_{ix}x_{t} + W_{im}m_{t-1})
f_{t} = \sigma(W_{fx}x_{t} + W_{fm}m_{t-1})
o_{t} = \sigma(W_{ox}x_{t} + W_{om}m_{t-1})
1 memory cell c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot h(W_{cx}x_{t} + W_{cm}m_{t-1})
1 hidden state m_{t} = o_{t} \odot c_{t}
1 output p_{t+1} = \text{Softmax}(m_{t})
```


NIC – Word embedding

A word represented as the one-hot vector

- Embedding matrix W_e
 - ✓ Mapping the words to the same space with the image
 - ✓ Trainable parameters

• $\theta^* = argmax_{\theta} \sum_{(I,S)} \log p(S|I;\theta)$ I: input image S: correct transcription of I

 θ : parameters of the model

 $\log p(S|I) = \sum_{t=0}^{N} \log p(S_t|I, S_0, \dots, S_{t-1})$

How the dataset looks

IMAGE 4046071738

SENTENCES

- A small child with blondhair and a pink shirt stands alone on a bridge.
- Blond child standing alone looking down a balloon filled street.
- A child is standing on a walkway with the sun to her back.
- A kid is standing on a boardwalk while the parents watch .
- A little girl walking on a concrete boardwalk .

[Flickr30k dataset example]

How the dataset looks

IMAGE 4046071738

SENTENCES

- A small child with blondhair and a pink shirt stands alone on a bridge.
- Blond child standing alone looking down a balloon filled street.
- A child is standing on a walkway with the sun to her back.
- A kid is standing on a boardwalk while the parents watch .
- A little girl walking on a concrete boardwalk .

How the dataset looks

IMAGE 4046071738

SENTENCES

- A small child with blondhair and a pink shirt stands alone on a bridge.
- Blond child standing alone looking down a balloon filled street.
- A child is standing on a walkway with the sun to her back.
- A kid is standing on a boardwalk while the parents watch .
- A little girl walking on a concrete boardwalk .

- Loss function $L(I,S) = -\sum_{t=0}^{N} log p_t(S_t)$
- End-to-End training with stochastic gradient descent
- Techniques for avoiding overfitting
 - ✓ Pre-trained CNN weights (rest of the parameters are initialized randomly)
 - ✓ Dropout & Ensembling the model
 - ✓ Limitation insufficient number of data (10 times less than the ImageNet)

hidden layer 1

Dropout

hidden layer 2

Ensembling

Dropout

Ensembling

Dropout

Ensembling

Iteration 2

Iteration 1

Initial weight

Dropout

Ensembling

- Loss function $L(I,S) = -\sum_{t=0}^{N} \log p_t(S_t)$
- End-to-End training with stochastic gradient descent
- Techniques for avoiding overfitting
 - ✓ Pre-trained CNN weights (rest of the parameters are initialized randomly)
 - ✓ Dropout & Ensembling the model
 - ✓ Limitation insufficient number of data (10 times less than the ImageNet)

NIC - Sentence Generation

- Sampling
 - ✓ Sample the n-th word according to p_n
- BeamSearch
 - \checkmark Consider only the k best word for each time step
 - $\checkmark S = argmax_{S'}p(S'|I)$

NIC – Sentence Generation

• BeamSearch k = 2 $S = argmax_{S'}p(S'|I)$ log p2(S2) log pn(Sn) W_eS_1 W_eS_{N-I} S_{N-I} image

NIC – Sentence Generation

- Sampling
 - ✓ Sample the first word according to p_1
- BeamSearch
 - \checkmark Consider only the k best sentence for each time step
 - $\checkmark S = argmax_{S'}p(S'|I)$
 - ✓ Used in this model with k = 20
 - \checkmark It is experimentally found that if k = 1 (greedy search), performance degrades

BLEU(Bi-Lingual Evaluation Understudy) score

- BLEU(Bi-Lingual Evaluation Understudy) score
 - ✓ BLEU-1 score example

Candidate: It is a guide to action which ensures that the military always obey the commands the party.

Reference 1 : It is a guide to action that ensures that the military will forever heed Party commands.

Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.

Reference 3: It is the practical guide for the army always to heed directions of the party

- BLEU(Bi-Lingual Evaluation Understudy) score
 - ✓ BLEU-1 score example

Candidate: It is a guide to action which ensures that the military always obey the commands the party.

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.

Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.

Reference 3: It is the practical guide for the army always to heed directions of the party

- BLEU(Bi-Lingual Evaluation Understudy) score
 - ✓ BLEU-1 score example

Candidate: It is a guide to action which ensures that the military always obey the commands the party.

BLEU-1 score: 17

- Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
- Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
- Reference 3: It is the practical guide for the army always to heed directions of the party

- BLEU(Bi-Lingual Evaluation Understudy) score
- METEOR, CIDER ...

Result

Approach	PASCAL	Flickr	Flickr	SBU
	(xfer)	30k	8k	
Im2Text [24]				11
TreeTalk [18]				19
BabyTalk [16]	25			
Tri5Sem [11]			48	
m-RNN [21]		55	58	
MNLM [14] ⁵		56	51	
SOTA	25	56	58	19
NIC	59	66	63	28
Human	69	68	70	

[BLEU-1 score] *SOTA: State-Of-The-Art

Metric	BLEU-4	METEOR	CIDER
NIC	27.7	23.7	85.5
Random	4.6	9.0	5.1
Nearest Neighbor	9.9	15.7	36.5
Human	21.7	25.2	85.4

[Scores on the MSCOCO]

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Describes without errors

A dog is jumping to catch a

A refrigerator filled with lots of food and drinks.

A yellow school bus parked

Unrelated to the image

Model

LSTM Decoder

$$\begin{pmatrix} \mathbf{i}_t \\ \mathbf{f}_t \\ \mathbf{o}_t \\ \mathbf{g}_t \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} T_{D+m+n,n} \begin{pmatrix} \mathbf{E} \mathbf{y}_{t-1} \\ \mathbf{h}_{t-1} \\ \hat{\mathbf{z}}_t \end{pmatrix}$$

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \mathbf{g}_t$$

$$\mathbf{h}_t = \mathbf{o}_t \odot \tanh(\mathbf{c}_t).$$

Model

LSTM Decoder

$$\begin{pmatrix} \mathbf{i}_{t} \\ \mathbf{f}_{t} \\ \mathbf{o}_{t} \\ \mathbf{g}_{t} \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} T_{D+m+n,n} \begin{pmatrix} \mathbf{E} \mathbf{y}_{t-1} \\ \mathbf{h}_{t-1} \\ \widehat{\mathbf{z}_{t}} \end{pmatrix}$$

$$\mathbf{c}_{t} = \mathbf{f}_{t} \odot \mathbf{c}_{t-1} + \mathbf{i}_{t} \odot \mathbf{g}_{t}$$

$$\mathbf{h}_{t} = \mathbf{o}_{t} \odot \tanh(\mathbf{c}_{t}).$$

$$\mathbf{c}_{t} = \mathbf{f}_{t} \odot \mathbf{c}_{t-1} + \mathbf{i}_{t} \odot \mathbf{g}_{t}$$

$$\mathbf{c}_{t} = \mathbf{c}_{t} \odot \mathbf{c}_{t-1} + \mathbf{c}_{t} \odot \mathbf{g}_{t}$$

SAT – Attention model

Context Vector

 \checkmark a_i : annotation vector the feature vector of the image extracted via the CNN

$$\checkmark$$
 $\alpha_i = \frac{\exp(e_{tk})}{\sum_{k=1}^{L} \exp(e_{tk})}$, where $e_{ti} = f_{att}(a_i, h_{t-1})$

: the probability that location i is the right place to focus to produce the next word

$$\checkmark \hat{z}_t = \phi(\{a_i\}, \{\alpha_i\})$$

SAT – Attention model

Context Vector

 \checkmark a_i : annotation vector the feature vector of the image extracted via the CNN

$$\checkmark$$
 $\alpha_i = \frac{\exp(e_{tk})}{\sum_{k=1}^{L} \exp(e_{tk})}$, where $e_{ti} = f_{att}(a_i, h_{t-1})$

: the probability that location i is the right place to focus to produce the next word

$$\checkmark \hat{z}_t = \phi(\{a_i\}, \{\alpha_i\})$$

Word inference

$$\checkmark p(y_t|a, y_{1:t-1}) \propto \exp(L_o(Ey_{t-1} + L_h h_t + L_z \hat{z}_t))$$

Attention model

$$p(s_{t,i}) = 1 \mid s_{j < t}, \mathbf{a}) = \alpha_{t,i}$$

$$\hat{\mathbf{z}}_t = \sum_i s_{t,i} \mathbf{a}_i.$$

- 1) A location variable
- 2) One-hot encoded
- 3) A latent variable
- 4) Assigned with a multinoulli distribution parametrized by $\{\alpha_i\}$

■ Loss function \rightarrow Maximizing the lower bound of the marginal log-likelihood log p(y|a)

$$\log p(y|a)$$

$$= \log \sum_{s} p(s|a)p(y|s,a)$$

$$\geq \sum_{s} p(s|a) \log p(y|s,a) = L_{s}$$

Derivative

$$\frac{\partial L_s}{\partial W} = \sum_{s} p(s|a) \left[\frac{\partial log p(y|s,a)}{\partial W} + log p(y|s,a) \frac{\partial log p(s|a)}{\partial W} \right]$$

Monte Carlo based sampling approximation

 $\tilde{s}_t \sim Multinoulli_L(\{\alpha_i\})$

$$\frac{\partial L_{s}}{\partial W} \approx \frac{1}{N} \sum_{n=1}^{N} \left[\frac{\partial logp(y|\tilde{s}^{n}, a)}{\partial W} + \lambda_{r}(logp(y|\tilde{s}^{n}, a) - b) \frac{\partial \log p(\tilde{s}^{n}|a)}{\partial W} + \lambda_{e} \frac{\partial H[\tilde{s}^{n}]}{\partial W} \right]$$

Reinforcement learning

Game	SAT		
Action in the game	Choosing s_t		
Game score	p(y a)		
Reward	±1		
Objective function	$L_{\scriptscriptstyle \mathcal{S}}$		
Parameter update	$W^* = W + \alpha \frac{\partial L_s}{\partial W}$		
State	image		

$$\begin{split} \tilde{s}_t &\sim Multinoulli_L(\{\alpha_i\}) \\ \frac{dL_s}{dW} &\approx \frac{1}{N} \sum_{n=1}^N \left[\frac{\partial logp(y|\tilde{s}^n, a)}{\partial W} + \\ \lambda_r(logp(y|\tilde{s}^n, a) - b) \frac{\partial \log p(\tilde{s}^n|a)}{\partial W} + \lambda_e \frac{\partial H[\tilde{s}^n]}{\partial W} \right] \end{split}$$

Reinforcement learning

$$\begin{split} \tilde{s}_t &\sim Multinoulli_L(\{\alpha_i\}) \\ \frac{dL_s}{dW} &\approx \frac{1}{N} \sum_{n=1}^{N} \left[\frac{\partial logp(y|\tilde{s}^n, a)}{\partial W} + \\ \lambda_r(logp(y|\tilde{s}^n, a) - b) \frac{\partial logp(\tilde{s}^n|a)}{\partial W} + \lambda_e \frac{\partial H[\tilde{s}^n]}{\partial W} \right] \end{split}$$

Reinforcement learning

Game	SAT
Action in the game	Choosing s_t
Game score	p(y a)
Reward	<u>±</u> 1
Objective function	$L_{\scriptscriptstyle S}$
Parameter update	$W^* = W + \alpha \frac{\partial L_s}{\partial W}$
State	image

$$\begin{split} \tilde{s}_t &\sim Multinoulli_L(\{\alpha_i\}) \\ \frac{dL_s}{dW} &\approx \frac{1}{N} \sum_{n=1}^N \left[\frac{\partial logp(y|\tilde{s}^n, a)}{\partial W} + \right. \\ &\left. \lambda_r(logp(y|\tilde{s}^n, a) - b) \frac{\partial \log p(\tilde{s}^n|a)}{\partial W} + \lambda_e \frac{\partial H[\tilde{s}^n]}{\partial W} \right] \end{split}$$

SAT - Deterministic "Soft" Attention

$$E_{p(s_t|a)}[\hat{z}_t] = \sum_{z} z P(z = z)$$

$$= \sum_{z} \left(\sum_{j=1}^{L} s_{t,j} a_j \right) P(s_{t,i} = 1|a)$$

$$= \sum_{s} a_i \alpha_{t,i} = \sum_{i=1}^{L} \alpha_{t,i} a_i \stackrel{\text{def}}{=} \phi(\{a_i\}, \{\alpha_i\})$$

SAT - Deterministic "Soft" Attention

$$\begin{pmatrix} \mathbf{i}_{t} \\ \mathbf{f}_{t} \\ \mathbf{o}_{t} \\ \mathbf{g}_{t} \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} T_{D+m+n,n} \begin{pmatrix} \mathbf{E} \mathbf{y}_{t-1} \\ \mathbf{h}_{t-1} \\ \hat{\mathbf{z}}_{t} \end{pmatrix}$$

$$\mathbf{c}_{t} = \mathbf{f}_{t} \odot \mathbf{c}_{t-1} + \mathbf{i}_{t} \odot \mathbf{g}_{t}$$

$$\mathbf{h}_{t} = \mathbf{o}_{t} \odot \tanh(\mathbf{c}_{t}).$$

$$E_{p(s_t|a)}[\hat{z}_t] = \sum_{z} z P(z = z)$$

$$= \sum_{z} \left(\sum_{j=1}^{L} s_{t,j} a_j\right) P(s_{t,i} = 1|a)$$

$$= \sum_{s} a_i \alpha_{t,i} = \sum_{i=1}^{L} \alpha_{t,i} a_i \stackrel{\text{def}}{=} \phi(\{a_i\}, \{\alpha_i\})$$

From the LSTM equation,
$$h_t = o_t \odot \tanh(c_t)$$

$$\tanh(x) \approx x - \frac{1}{3}x^3...$$

 $E_{p(s_t|a)}[h_t] \rightarrow$ forward propagation with $E_{p(s_t|a)}[\hat{z}_t]$

SAT - Deterministic "Soft" Attention

$$E_{p(s_t|a)}[\hat{z}_t] = \sum_{z} z P(z = z)$$

$$= \sum_{z} \left(\sum_{j=1}^{L} s_{t,j} a_j\right) P(s_{t,i} = 1|a)$$

$$= \sum_{s} a_i \alpha_{t,i} = \sum_{i=1}^{L} \alpha_{t,i} a_i \stackrel{\text{def}}{=} \phi(\{a_i\}, \{\alpha_i\})$$

From the LSTM equation, $h_t = o_t \odot \tanh(c_t)$

$$\tanh(x) \approx x - \frac{1}{3}x^3...$$

 $E_{p(s_t|a)}[h_t] \rightarrow$ forward propagation with $E_{p(s_t|a)}[\hat{z}_t]$

Let
$$n_t = L_o(Ey_{t-1} + L_h h_t + L_z \hat{z}_t)$$

Considering NWGM for the softmax k-th word prediction,

$$NWGM[p(y_{t} = k|a)] = \frac{\prod_{i} \exp(n_{t,k,i}) p(s_{t,i}=1|a)}{\sum_{j} \prod_{i} \exp(n_{t,k,i}) p(s_{t,i}=1|a)} = \frac{\exp(E_{p(s_{t}|a)}[n_{t,k}])}{\sum_{j} \exp(E_{p(s_{t}|a)}[n_{t,k}])}$$

$$\approx E[p(y_{t} = k|a)] \text{ (Baldi & Sadowski, 2014)}$$

- \rightarrow The expectation of the outputs is computed by simple forward propagation with $E[\hat{z}_t]$
- → End-to-end learning using standard backpropagation becomes possible

SAT – Training

- Pre-trained Oxford VGGnet^[2]
- Dropout & Early stopping on BLEU score (to avoid overfitting)
- 3 days on the NVIDIA Titan Black GPU

[2] Simonyan, K and Zisserman, A. Very deep convolutional networks for large-scale image recognition. CoRR, 2014

		BLEU				
Dataset	Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR
	Google NIC(Vinyals et al., 2014) ^{† Σ}	63	41	27		
Flickr8k	Log Bilinear (Kiros et al., 2014a)°	65.6	42.4	27.7	17.7	17.31
Human: 63	Soft-Attention	67	44.8	29.9	19.5	18.93
Tullian . 05	Hard-Attention	67	45.7	31.4	21.3	20.30
	Google NIC $^{\dagger \circ \Sigma}$	66.3	42.3	27.7	18.3	_
Flickr30k	Log Bilinear	60.0	38	25.4	17.1	16.88
	Soft-Attention	66.7	43.4	28.8	19.1	18.49
Human: 66	Hard-Attention	66.9	43.9	29.6	19.9	18.46
	CMU/MS Research (Chen & Zitnick, 2014) ^a	_	_	_	_	20.41
	MS Research (Fang et al., 2014) ^{† a}	_	_	_	_	20.71
	BRNN (Karpathy & Li, 2014)°	64.2	45.1	30.4	20.3	_
COCO	Google NIC $^{\dagger \circ \Sigma}$	66.6	46.1	32.9	24.6	_
	Log Bilinear°	70.8	48.9	34.4	24.3	20.03
	Soft-Attention	70.7	49.2	34.4	24.3	23.90
	Hard-Attention	71.8	50.4	35.7	25.0	23.04

		BLEU				
Dataset	Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR
	Google NIC(Vinyals et al., 2014) ^{†Σ}	63	41	27	_	_
Flickr8k	Log Bilinear (Kiros et al., 2014a)°	65.6	42.4	27.7	17.7	17.31
Human: 63	Soft-Attention	67	44.8	29.9	19.5	18.93
Tullian . 05	Hard-Attention	67	45.7	31.4	21.3	20.30
	Google NIC [†] °Σ	66.3	42.3	27.7	18.3	
Flickr30k	Log Bilinear	60.0	38	25.4	17.1	16.88
	Soft-Attention	66.7	43.4	28.8	19.1	18.49
Human: 66	Hard-Attention	66.9	43.9	29.6	19.9	18.46
	CMU/MS Research (Chen & Zitnick, 2014) ^a	_	_	_	_	20.41
	MS Research (Fang et al., 2014) ^{† a}	_	_	_	_	20.71
	BRNN (Karpathy & Li, 2014)°	64.2	45.1	30.4	20.3	_
COCO	Google NIC $^{\dagger \circ \Sigma}$	66.6	46.1	32.9	24.6	_
	Log Bilinear°	70.8	48.9	34.4	24.3	20.03
	Soft-Attention	70.7	49.2	34.4	24.3	23.90
	Hard-Attention	71.8	50.4	35.7	25.0	23.04

		BLEU				
Dataset	Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR
	Google NIC(Vinyals et al., 2014) ^{†Σ}	63	41	27	_	_
Flickr8k	Log Bilinear (Kiros et al., 2014a)°	65.6	42.4	27.7	17.7	17.31
Human: 63	Soft-Attention	67	44.8	29.9	19.5	18.93
Tullian . 05	Hard-Attention	67	45.7	31.4	21.3	20.30
	Google NIC $^{\dagger \circ \Sigma}$	66.3	42.3	27.7	18.3	_
Flickr30k	Log Bilinear	60.0	38	25.4	17.1	16.88
	Soft-Attention	66.7	43.4	28.8	19.1	18.49
Human: 66	Hard-Attention	66.9	43.9	29.6	19.9	18.46
	CMU/MS Research (Chen & Zitnick, 2014) ^a	_	_	_	_	20.41
	MS Research (Fang et al., 2014) ^{† a}	_	_	_	_	20.71
	BRNN_(Karpathy & Li, 2014)°	64.2	45.1	30.4	20.3	
COCO	Google NIC $^{\dagger \circ \Sigma}$	66.6	46.1	32.9	24.6	_
	Log Bilinear°	70.8	48.9	34.4	24.3	20.03
	Soft-Attention	70.7	49.2	34.4	24.3	23.90
	Hard-Attention	71.8	50.4	35.7	25.0	23.04

Hard attention

(a) A man and a woman playing frisbee in a field.

Soft attention

(b) A woman is throwing a frisbee in a park.

Hard attention

(a) A giraffe standing in the field with trees.

Soft attention

(b) A large white bird standing in a forest.

Conclusion

NIC

- ✓ Great improvement with Encoder-Decoder framework
- ✓ End-to-End trainable system

SAT

- ✓ Attention to the salient part of the image for caption generation
- ✓ Stochastic "Hard" attention & Deterministic "Soft" attention

Some notes

- ✓ Encoder-Decoder framework is effective
- ✓ CNN with pre-trained weights is better for generalization
- ✓ The amount of the good data is essential for the performance

