Topics in Macro 2 Week 5 - TD 8 and TD 9

Oscar Fentanes www.oscarfentanes.com

TSE

Tuesday (17:00-18:30)

0/23

TD First Part: Inequality (6 Weeks)

What's going on?

- Exercise 1: The Height of Inequality (Week 1)
- Exercise 2: Skilled biased technological change and wage dispersion (Week 2)
- Exercise 3: Top wages and incomes (Week 3)

How do we measure it?

- Exercise 4: Interdecile ratios of income (Week 3)
- Exercise 5: Lorenz curve and Gini basics (Week 3)

What do we (have to) do?

- Exercise 6: Taxes, consumption and inequality (Week 4)
- Exercise 7: Variance based inequality indicators (Week 4)
- Exercise 8: Social Welfare Function and inequality aversion (Week 5)
- Exercise 9: The Atkinson inequality index (Week 5)

Exercise 8: Social Welfare Function and inequality aversion

We consider a Social Welfare Function (SWF) that has the 5 Assumptions seen in class. The SWF is generally defined as:

$$W = W(y_1, y_2, y_3, ..., y_n)$$

We can think of y_i , $i \in [1, n]$ as the level of income of the n individuals in the economy. The associated social utility function (or welfare index) U has the following functional form:

$$U(y_i) = \frac{y^{1-\varepsilon}-1}{1-\varepsilon}$$

with ε the inequality aversion parameter.

Question 1. Define what a SWF is.

A Social Welfare Function **ranks** all the possible **states** of society in the order of (this society's) preference.

What are the states?

Who ranks them?

Question 2. List the 5 Assumptions of a SWF used in class.

Individualistic and nondecreasing

$$W = W(y_{1A}, y_{2A}, y_{3A}, ..., y_{4A})$$

 $W = W(y_{1B}, y_{2B}, y_{3B}, ..., y_{4B})$

If $y_{iB} \geq y_{iA} \ \forall i$, then $W_B \geq W_A$.

Symmetry

$$W = W(y_1, y_2, y_3, ..., y_n) = W(y_2, y_1, y_3, ..., y_n) = W(y_n, y_2, y_3, ..., y_1)$$

Additivity

$$W(y_1, y_2, y_3, ..., y_n) = \sum_{i=1}^n U_i(y_i) = U_1(y_1) + U_2(y_2) + ... + U_n(y_n)$$

 $U(y_i)$ is the **social utility** or **welfare index** of individual i.

Concavity

$$U'(y_i) > 0$$
 and $U''(y_i) < 0$

Constant elasticity

$$U(y_i) = \frac{y^{1-\varepsilon} - 1}{1-\varepsilon}$$

Question 3. Explain why $U'(y_i)$ can be interpreted as a social weight.

Hint: Total derivative. $\frac{dW}{dt} = \sum_{i=1}^{n} \frac{\partial W}{\partial v_i} \frac{dy_i}{dt}$

We consider the following situation: there are n individuals in the economy. We know that individual k has $\mathbf{5}$ times the income of individual j. We consider a transfer of $\mathbf{1}$ Euro from individual k to j. We assume that during the transfer from k to j, there are no other income variations in the economy.

Question 4. Explain why under the conditions given for our SWF, individual k would be willing to give up on her money in favor of j.

Hint: Inequality aversion. Different welfare weights.

Question 5. How much is individual k willing to give up so that individual j gets exactly 1 Euro when $\varepsilon=0$?

Hint: 1 Euro. Same social marginal utility. No cost of tax collection.

Question 6. How much is individual k willing to give up so that individual j gets exactly 1 Euro when $\varepsilon=1/2$. What about $\varepsilon=1$ or $\varepsilon=5$?

Case where $\varepsilon = 1/2$

Case where $\varepsilon = 1$

Case where $\varepsilon = 5$

Question 7. What about $\varepsilon \to \infty$?

Hint: $dy_k = -(\frac{y_k}{y_i})^{\varepsilon}$.

Exercise 9: The Atkinson inequality index

15 / 23

Recall

- The Dalton inequality index
 - It measures how far the current average social utility is from potential average social utility.
 - ullet $D_arepsilon=1-rac{ar{U}}{U(ar{v})}$.

- The Atkinson inequality index
 - How far the equally distributed equivalent income y_e is from the average income \bar{y} .
 - $\bullet \ y_e = U^{-1}(\bar{U})$
 - ullet $A_arepsilon=1-rac{y_e}{ar{y}}$.

We consider a fictitious economy with 10 individuals that each has the income yi that we report in the following table:

	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9	y_{10}
Gross income	1	5	11	35	40	45	50	90	95	100

We assume that the social utility function is:

$$U(y) = \frac{y^{1-\varepsilon} - 1}{1 - \varepsilon}$$

with ε the social aversion parameter.

Question 1. Compute the Atkinson inequality index in this economy when $\varepsilon = 1.5$.

Individual	y1	y2	у3	y4	у5	у6	у7	у8	у9	y10
Income	1	5	10	35	40	45	50	90	95	100
Utility	0.000	1.106	1.368	1.662	1.684	1.702	1.717	1.789	1.795	1.800

Average y	47.1000
Average U	1.4622
U(Avg y)	1.7086
Equivalent y	13.8290

Dalton Index 0.144212 Atkinson Index 0.706391

Question 2. The government consider 3 alternative transfer schemes.

- Take 1 from the agent earning y_{10} to give it to the agent earning y_8 .
- The same between y_7 and y_5 .
- Do the same between y_3 and y_1 .

According to the Atkinson index, which policy reduces inequality the most? Comment.

Individual	y1	y2	у3	y4	у5	у6	у7	y8	у9	y10
Income	1	5	10	35	40	45	50	91	95	99
Utility	0.000	1.106	1.368	1.662	1.684	1.702	1.717	1.790	1.795	1.799

Average y	47.1000
Average U	1.4622
U(Avg y)	1.7086
Equivalent y	13.8298

Dalton Index 0.144203 Atkinson Index 0.706374

Individual	y1	y2	у3	y4	у5	у6	у7	у8	у9	y10
Income	1	5	10	35	41	45	49	90	95	100
Utility	0.000	1.106	1.368	1.662	1.688	1.702	1.714	1.789	1.795	1.800

Average y	47.1000
Average U	1.4623
U(Avg y)	1.7086
Equivalent y	13.8342

Dalton Index 0.144153 Atkinson Index 0.706281

<ロ > < 回 > < 回 > < 差 > < 差 > 差 からで

Individual	y1	y2	у3	y4	у5	у6	у7	у8	у9	y10
Income	2	5	9	35	40	45	50	90	95	100
Utility	0.586	1.106	1.333	1.662	1.684	1.702	1.717	1.789	1.795	1.800

47.1000
1.5173
1.7086
17.1703

Dalton Index 0.111929 Atkinson Index 0.635450 Question 3. We consider the exact same 3 transfer policies but for an inequality aversion parameter of $\varepsilon = 3$. How does that change inequality rankings.

Atkinson Index

Epsilon	1.5	3
Initial Distribuion	0.706391	0.934562
Scheme 1	0.706374	0.934562
Scheme 2	0.706281	0.934561
Scheme 3	0.635450	0.878432