Doing Bayesian Data Analysis

John K. Kruschke

O John K. Kruschke, 2013

Outline of Talk:

- Bayesian reasoning generally.
- Bayesian estimation applied to two groups. Rich information.
- The NHST *t* test: perfidious *p* values and the con game of confidence intervals.
- Conclusion: Bayesian estimation supersedes NHST.

Bayesian Reasoning

The role of data is to re-allocate credibility:

Prior Credibility with New Data

→ Posterior Credibility

via Bayes' rule

© John K. Kruschke, 2013

Bayesian Reasoning

The role of data is to re-allocate credibility:

Bayesian reasoning in everyday life is intuitive:

Bayesian Reasoning

The role of data is to re-allocate credibility:

Bayesian reasoning in everyday life is intuitive:

Sherlock Holmes: "How often have I said to you that when you have eliminated the impossible, whatever remains, however improbable, must be the truth?" (Doyle, 1890)

© John K. Kruschke, 201

Bayesian Reasoning

The role of data is to re-allocate credibility:

Bayesian reasoning in everyday life is intuitive:

Sherlock Holmes: "How often have I said to you that when you have eliminated the impossible, whatever remains, however improbable, must be the truth?" (Doyle, 1890)

Judicial exoneration: For unaffiliated suspects, the incrimination of one exonerates the others.

Credibility of the claim that the suspect committed the crime.

John K. Kruschke. 201

Bayesian Data Analysis

The role of data is to re-allocate credibility:

Bayesian reasoning in data analysis is intuitive:

Possibilities are *parameter values* in a model, such as the *mean* of a normal distribution.

We reallocate credibility to parameter values that are consistent with the data.

© John K. Kruschke, 201

Bayesian Data Analysis

The role of data is to re-allocate credibility:

- 1. Define a meaningful descriptive model.
- 2. Establish prior credibility regarding parameter values in the model. The prior credibility must be acceptable to a skeptical scientific audience.
- 3. Collect data.
- 4. Use Bayes' rule to re-allocate credibility to parameter values that are most consistent with the data.

Robust Bayesian estimation for comparing two groups Consider two groups; e.g., IQ of "smart drug" group and of control group. Step 1: Define a model for describing the data. Data Group 1 w. Post. Pred. Data Group 2 w. Post. Pred.

Computer Software:

Packaged for easy use! Underlying program is never seen.

```
# Specify data as vectors (replace with your own data):
y1 = c(101,100,102,104,102,97,105,105,98,...,101)
y2 = c(99,101,100,101,102,100,97,101,104,...,99)

# Run the Bayesian analysis:
mcmcChain = BESTmcmc( y1 , y2 )

# Plot the results of the Bayesian analysis:
BESTplot( y1 , y2 , mcmcChain )
```

© John K. Kruschke, 201

32

An example of a t test:

Data:

Group 1: 5.70 5.40 5.75 5.25 4.25 4.74; M1 = 5.18 Group 2: 4.55 4.98 4.70 4.78 3.26 3.67; M2 = 4.32

t = 2.33

Show of hands please:

Who bets that p < .05? Who bets that p > .05?

An example of a t test:

Data:

Group 1: 5.70 5.40 5.75 5.25 4.25 4.74; M1 = 5.18 Group 2: 4.55 4.98 4.70 4.78 3.26 3.67; M2 = 4.32

t = 2.33

Show of hands please:

Who bets that p < .05? Who bets that p > .05?

You're right! You're right!

© John K. Kruschke, 2013

34

Null Hypothesis Significance Testing (NHST)

Consider how we draw conclusions from data:

- Collect data, carefully insulated from our intentions.
 - ➤ Double blind clinical designs.
 - > No datum is influenced by any other datum before or after.
- Compute a summary statistic, e.g., for a difference between groups, the *t* statistic.
- Compute p value of t. If p < .05, declare the result to be "significant."

🕽 John K. Kruschke, 201

16

Null Hypothesis Significance Testing (NHST)

Consider how we draw conclusions from data:

- Collect data, carefully insulated from our intentions.

> Double blind clinical d Value of p depends on the intention of the experimenter!

No datum is influence Compute a summary

between groups, the i statistic

Compute p value of t. If p < .05, declare the result to be significant.

The road to NHST is paved with good intentions.

The p value is the probability that the actual sample statistic, or a result more extreme, would be obtained from the null hypothesis, if the intended experiment were repeated ad infinitum.

> $p \text{ value} = p(|t_{\text{null}}| > |t_{\text{act}}|)$ for $t_{\rm null}$ sampled according to the intended experiment

Problem is not solved by "fixing" the intention

- All we need to do is decide in advance exactly what our intention is (or use a Neuralyzer after the fact), and have everybody chant a mantra to keep that intention fixed in their minds while the experiment is being conducted. Right?
- Wrong. The data don't know our intention, and the same data could have been collected under many other intentions.

The intention to examine data thoroughly

Many experiments involve multiple groups, and **multiple comparisons** of means.

Example: Consider 2 different drugs from chemical family A, 2 different drugs from chemical family B, and a placebo group. Lots of possible comparisons...

Problem: With every test, there is possibility of false alarm! False alarms are bad; therefore, keep the experimentwise false alarm rate down to 5%.

© John K. Kruschke, 201

50

"The" p value depends on intended tests: Space of possible outcomes from null hypothesis for 1 comparison

Multiple Corrections for Multiple Comparisons

Begin: Is goal to identify the best treatment?

Yes: Use Hsu's method.

No: Contrasts between control group and all other groups?

Yes: Use Dunnett's method.

No: Testing all pairwise and no complex comparisons (either planned or post hoc) and choosing to test only some pairwise comparisons post hoc?

Yes: Use Tukey's method.

No: Are all comparisons planned?

Yes: Use Scheffe's method.

No: Is Bonferroni critical value less than Scheffe critical value?

Yes: Use Bonferroni's method.

No: Use Scheffe's method (or, prior to collecting the data, reduce the number of contrasts to be tested).

Adapted from Maxwell & Delaney (2004). Designing experiments and analyzing data: A model comparison perspective. Frlbaum.

© John K. Kruschke, 201

54

Multiple Corrections for Multiple Comparisons

Begin: Is goal to identify the best treatment?

Yes: Use Hsu's method.

No: Contrasts between control group and all other groups?

Yes: Use Dunnett's method.

No: Testing all pairwise and no complex comparisons (either planned or post

hoc) and choosing to test only some pairwise comparisons post hoc?

Yes: Use Tukey's method.

No: Are all comparisons planned?

Yes: Use Scheffe's method.

No: Is Bonferroni critical value less than Scheffe critical value?

Yes: Use Bonferroni's method.

No: Use Scheffe's method (or, prior to collecting the data,

reduce the number of contrasts to be tested).

Adapted from Maxwell & Delaney (2004). Designing experiments and analyzing data: A model comparison perspective.

Good intentions make any result insignificant

- Consider an experiment with two groups.
- Collect data; compute t test on difference of means.
 Suppose it yields p < .05
- Now, think thoroughly about all the other comparison groups and other experiment groups you should and could meaningfully run.
- Earnestly intend to run them eventually, and to compare your current results with those results.
- · Poof! Your current data are no longer significantly different.

© John K. Kruschke, 201

56

Good intentions make many results *significant*

- Consider an experiment with two groups.
- Collect data; compute t test on difference of means, using df corresponding to actual N.
 Suppose p > .05, but not by much.
- You had intended to collect a much larger sample size, but you were unexpectedly interrupted.
- Use the larger intended N for df in the *t* test.
- · Poof! Your current data are now significantly different!

© John K. Kruschke, 201:

58

Confidence Intervals provide no confidence

General definition of CI:

95% CI is the range of parameter values (e.g., $\mu_1 - \mu_2$) that would not be rejected by p < .05

Hence, the 95% CI is as ill-defined as the p value.

We see this dramatically in confidence intervals corrected for multiple comparisons.

© John K. Kruschke, 201

27

Confidence intervals provide no distributional information:

We have no idea whether a point at the limit of the confidence interval is any less credible than a point in the middle of the interval.

© John K. Kruschke, 201

Confidence Intervals provide no confidence

Confidence intervals provide no distributional information:

We have no idea whether a point at the limit of the confidence interval is any less credible than a point in the middle of the interval.

Implies

vast range for predictions of new data, and "virtually unknowable" power.

NHST autopsy

- p values are ill-defined: depend on sampling intentions of data collector. Any set of data has many different p values.
- Confidence intervals are as ill-defined as p values because they are defined in terms of p values.
- Confidence intervals carry no distributional information.

© John K. Kruschke, 201

Group 1 Mean **Recall** Bayesian estimation for comparing two groups **Summary:** Data Group 2 w. Post, Pred → Complete distribution of credible parameter values (not merely point estimate with ends of mean = 1.03 confidence interval). → Decisions about multiple aspects of parameters (without reference to p values). → Flexible descriptive model, robust to outliers (unlike NHST t test).