A Bayesian Meta-analysis Method that Corrects for Publication Bias

Jonas Moss

University of Oslo

June 26, 2018 Nordstat 2018

This is What *p*-hacking Looks Like!

• Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$

- Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - θ_i are normalized they are *effect sizes*.

- Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - \bullet θ_i are normalized they are effect sizes.
 - ▶ Most common is the *standardized mean difference*, $\frac{\mu_1 \mu_2}{\sigma}$.

- Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - \bullet θ_i are normalized they are effect sizes.
 - ▶ Most common is the *standardized mean difference*, $\frac{\mu_1 \mu_2}{\sigma}$.
 - ▶ Fixed effects: $\theta_i = \theta$ for all *i*.

- Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - \bullet θ_i are normalized they are *effect sizes*.
 - ▶ Most common is the *standardized mean difference*, $\frac{\mu_1 \mu_2}{\sigma}$.
 - ▶ Fixed effects: $\theta_i = \theta$ for all *i*.
 - ▶ Random effects: $\theta_i \sim N(\theta_0, \sigma_0^2)$.

- Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - \bullet θ_i are normalized they are *effect sizes*.
 - ▶ Most common is the *standardized mean difference*, $\frac{\mu_1 \mu_2}{\sigma}$.
 - ▶ Fixed effects: $\theta_i = \theta$ for all *i*.
 - ▶ Random effects: $\theta_i \sim N(\theta_0, \sigma_0^2)$.
- The effect sizes are usually closely related:

- Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - \bullet θ_i are normalized they are *effect sizes*.
 - ▶ Most common is the *standardized mean difference*, $\frac{\mu_1 \mu_2}{\sigma}$.
 - ▶ Fixed effects: $\theta_i = \theta$ for all *i*.
 - ▶ Random effects: $\theta_i \sim N(\theta_0, \sigma_0^2)$.
- The effect sizes are usually closely related:
 - Effect of a class of anti-depressiva;

- Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - \bullet θ_i are normalized they are *effect sizes*.
 - ▶ Most common is the standardized mean difference, $\frac{\mu_1 \mu_2}{\sigma}$.
 - ▶ Fixed effects: $\theta_i = \theta$ for all *i*.
 - ▶ Random effects: $\theta_i \sim N(\theta_0, \sigma_0^2)$.
- The effect sizes are usually closely related:
 - Effect of a class of anti-depressiva;
 - effect of some psychological intervention.

- Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - \bullet θ_i are normalized they are *effect sizes*.
 - ▶ Most common is the *standardized mean difference*, $\frac{\mu_1 \mu_2}{\sigma}$.
 - ▶ Fixed effects: $\theta_i = \theta$ for all *i*.
 - ▶ Random effects: $\theta_i \sim N(\theta_0, \sigma_0^2)$.
- The effect sizes are usually closely related:
 - Effect of a class of anti-depressiva;
 - effect of some psychological intervention.
 - but they don't have to be that closely related!

- Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - \bullet θ_i are normalized they are *effect sizes*.
 - ▶ Most common is the *standardized mean difference*, $\frac{\mu_1 \mu_2}{\sigma}$.
 - ▶ Fixed effects: $\theta_i = \theta$ for all *i*.
 - ▶ Random effects: $\theta_i \sim N(\theta_0, \sigma_0^2)$.
- The effect sizes are usually closely related:
 - Effect of a class of anti-depressiva;
 - effect of some psychological intervention.
 - but they don't have to be that closely related!
- Question: Is the classical model realistic in presence of *p*-hacking?

What the Previous Plot Should Have Looked Like!

What the previous plot should have looked like!

ullet Happens when only statistically significant results (p < 0.05) are published.

- ullet Happens when only statistically significant results (p < 0.05) are published.
 - ▶ In this case

$$p(x_i \mid \theta_i, se_i) = \phi_{(1.96 \cdot se_i, \infty)}(\theta_i, se_i)$$

- Happens when only statistically significant results (p < 0.05) are published.
 - ▶ In this case

$$p(x_i \mid \theta_i, se_i) = \phi_{(1.96 \cdot se_i, \infty)}(\theta_i, se_i)$$

• $\phi_{(a,b)}$ is a truncated normal.

- Happens when only statistically significant results (p < 0.05) are published.
 - ▶ In this case

$$p(x_i \mid \theta_i, se_i) = \phi_{(1.96 \cdot se_i, \infty)}(\theta_i, se_i)$$

- $\phi_{(a,b)}$ is a truncated normal.
- ▶ Can be caused by both p-hacking and publication bias.

- Happens when only statistically significant results (p < 0.05) are published.
 - ▶ In this case

$$p(x_i \mid \theta_i, se_i) = \phi_{(1.96 \cdot se_i, \infty)}(\theta_i, se_i)$$

- $\phi_{(a,b)}$ is a truncated normal.
- Can be caused by both p-hacking and publication bias.
- How to account for selection for significance?

- Happens when only statistically significant results (p < 0.05) are published.
 - ▶ In this case

$$p(x_i \mid \theta_i, se_i) = \phi_{(1.96 \cdot se_i, \infty)}(\theta_i, se_i)$$

- $\phi_{(a,b)}$ is a truncated normal.
- Can be caused by both p-hacking and publication bias.
- How to account for selection for significance?
 - Use the random / fixed effects model with a truncated normal!

- Happens when only statistically significant results (p < 0.05) are published.
 - ▶ In this case

$$p(x_i \mid \theta_i, se_i) = \phi_{(1.96 \cdot se_i, \infty)}(\theta_i, se_i)$$

- $\phi_{(a,b)}$ is a truncated normal.
- Can be caused by both p-hacking and publication bias.
- How to account for selection for significance?
 - Use the random / fixed effects model with a truncated normal!
 - ▶ Goes back to Hedges (1984), recently discussed by Gelman.

- Happens when only statistically significant results (p < 0.05) are published.
 - ▶ In this case

$$p(x_i \mid \theta_i, se_i) = \phi_{(1.96 \cdot se_i, \infty)}(\theta_i, se_i)$$

- $\phi_{(a,b)}$ is a truncated normal.
- Can be caused by both p-hacking and publication bias.
- How to account for selection for significance?
 - Use the random / fixed effects model with a truncated normal!
 - ▶ Goes back to Hedges (1984), recently discussed by Gelman.
- **Problem**: The first plot also contains studies that weren't affected by selection for significance!

Revisiting the First Plot

• Key idea: Use partial selection for significance!

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i} \mid \theta_{i}, se_{i}, p\right) = p\phi_{\left(1.96 \cdot se_{i}, \infty\right)}\left(\theta_{i}, se_{i}\right) + \left(1 - p\right)\phi\left(\theta_{i}, se_{i}\right)$$

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i}\mid\theta_{i},se_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi\left(\theta_{i},se_{i}\right)$$

• The parameter *p* is the *propensity to p-hack*!

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i}\mid\theta_{i},se_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi\left(\theta_{i},se_{i}\right)$$

- The parameter *p* is the *propensity to p-hack*!
 - ▶ Beta is a reasonable prior for $p \mid p_0, \psi \sim \text{Beta}(p_0, \psi)$

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i}\mid\theta_{i},se_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi\left(\theta_{i},se_{i}\right)$$

- The parameter *p* is the *propensity to p-hack*!
 - ▶ Beta is a reasonable prior for $p \mid p_0, \psi \sim \text{Beta}(p_0, \psi)$
 - But can and will depend on covariates!

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i} \mid \theta_{i}, se_{i}, p\right) = p\phi_{\left(1.96 \cdot se_{i}, \infty\right)}\left(\theta_{i}, se_{i}\right) + \left(1 - p\right)\phi\left(\theta_{i}, se_{i}\right)$$

- The parameter p is the propensity to p-hack!
 - ▶ Beta is a reasonable prior for $p \mid p_0, \psi \sim \text{Beta}(p_0, \psi)$
 - But can and will depend on covariates!
- Model for θ_i could be normal: $\theta_i \mid \theta_0, \sigma_0 \sim N(\theta_0, \sigma_0^2)$

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i} \mid \theta_{i}, se_{i}, p\right) = p\phi_{\left(1.96 \cdot se_{i}, \infty\right)}\left(\theta_{i}, se_{i}\right) + \left(1 - p\right)\phi\left(\theta_{i}, se_{i}\right)$$

- The parameter p is the propensity to p-hack!
 - ▶ Beta is a reasonable prior for $p \mid p_0, \psi \sim \text{Beta}(p_0, \psi)$
 - But can and will depend on covariates!
- Model for θ_i could be normal: $\theta_i \mid \theta_0, \sigma_0 \sim N(\theta_0, \sigma_0^2)$
 - ▶ Other models possible, for instance skew-normal.

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i}\mid\theta_{i},\mathsf{se}_{i},p\right)=p\phi_{\left(1.96\cdot\mathsf{se}_{i},\infty\right)}\left(\theta_{i},\mathsf{se}_{i}\right)+\left(1-p\right)\phi\left(\theta_{i},\mathsf{se}_{i}\right)$$

- The parameter p is the propensity to p-hack!
 - ▶ Beta is a reasonable prior for $p \mid p_0, \psi \sim \text{Beta}(p_0, \psi)$
 - But can and will depend on covariates!
- Model for θ_i could be normal: $\theta_i \mid \theta_0, \sigma_0 \sim N(\theta_0, \sigma_0^2)$
 - Other models possible, for instance skew-normal.
 - Can also depend on covariates.

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i}\mid\theta_{i},se_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi\left(\theta_{i},se_{i}\right)$$

- The parameter p is the propensity to p-hack!
 - ▶ Beta is a reasonable prior for $p \mid p_0, \psi \sim \text{Beta}(p_0, \psi)$
 - But can and will depend on covariates!
- Model for θ_i could be normal: $\theta_i \mid \theta_0, \sigma_0 \sim N(\theta_0, \sigma_0^2)$
 - Other models possible, for instance skew-normal.
 - Can also depend on covariates.
- Computationally feasible due to STAN.

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i} \mid \theta_{i}, se_{i}, p\right) = p\phi_{\left(1.96 \cdot se_{i}, \infty\right)}\left(\theta_{i}, se_{i}\right) + \left(1 - p\right)\phi\left(\theta_{i}, se_{i}\right)$$

- The parameter p is the propensity to p-hack!
 - ▶ Beta is a reasonable prior for $p \mid p_0, \psi \sim \text{Beta}(p_0, \psi)$
 - ▶ But can and will depend on covariates!
- Model for θ_i could be normal: $\theta_i \mid \theta_0, \sigma_0 \sim N(\theta_0, \sigma_0^2)$
 - Other models possible, for instance skew-normal.
 - ► Can also depend on covariates.
- Computationally feasible due to STAN.
- On to examples!

The Effect Size Distribution in Psychology

Likelihood:

$$p\left(x_{i}\mid\theta_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}^{f}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi^{f}\left(\theta_{i},se_{i}\right)$$

The Effect Size Distribution in Psychology

Likelihood:

$$p\left(x_{i}\mid\theta_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}^{f}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi^{f}\left(\theta_{i},se_{i}\right)$$

▶ Here ϕ^f is the *folded normal*, distribution of |Z| where Z is normal.

The Effect Size Distribution in Psychology

Likelihood:

$$p\left(x_{i}\mid\theta_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}^{f}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi^{f}\left(\theta_{i},se_{i}\right)$$

- ▶ Here ϕ^f is the *folded normal*, distribution of |Z| where Z is normal.
- Used because the effect sizes have no inherent sign.

$$p\left(x_{i}\mid\theta_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}^{f}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi^{f}\left(\theta_{i},se_{i}\right)$$

- ▶ Here ϕ^f is the *folded normal*, distribution of |Z| where Z is normal.
- Used because the effect sizes have no inherent sign.
- Note: θ_i can still be negative.

$$p\left(x_{i}\mid\theta_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}^{f}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi^{f}\left(\theta_{i},se_{i}\right)$$

- ▶ Here ϕ^f is the *folded normal*, distribution of |Z| where Z is normal.
- Used because the effect sizes have no inherent sign.
- ▶ *Note:* θ_i can still be negative.
- Effect size distribution: $\theta_i \sim \text{Gumbel}(\mu, \sigma)$

$$p\left(x_{i}\mid\theta_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}^{f}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi^{f}\left(\theta_{i},se_{i}\right)$$

- ▶ Here ϕ^f is the *folded normal*, distribution of |Z| where Z is normal.
- Used because the effect sizes have no inherent sign.
- Note: θ_i can still be negative.
- Effect size distribution: $\theta_i \sim \text{Gumbel}(\mu, \sigma)$
 - ▶ Has positive skewness, which we probably want.

$$p\left(x_{i}\mid\theta_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}^{f}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi^{f}\left(\theta_{i},se_{i}\right)$$

- ▶ Here ϕ^f is the *folded normal*, distribution of |Z| where Z is normal.
- Used because the effect sizes have no inherent sign.
- Note: θ_i can still be negative.
- Effect size distribution: $\theta_i \sim \text{Gumbel}(\mu, \sigma)$
 - ▶ Has positive skewness, which we probably want.
 - ▶ Has much better fit than the normal distribution.

$$p\left(x_{i}\mid\theta_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}^{f}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi^{f}\left(\theta_{i},se_{i}\right)$$

- ▶ Here ϕ^f is the *folded normal*, distribution of |Z| where Z is normal.
- Used because the effect sizes have no inherent sign.
- Note: θ_i can still be negative.
- Effect size distribution: $\theta_i \sim \text{Gumbel}(\mu, \sigma)$
 - ▶ Has positive skewness, which we probably want.
 - ▶ Has much better fit than the normal distribution.
- **Priors:** $\theta_0 \sim N(0,1)$, $\sigma \sim \text{Exp}(1)$, $\rho \sim \text{Uniform}$

Posterior Predictive Distributions

A Simulation from the Posterior

Bangert-Drowns, Hurley & Wilkinson (2004)

• Question I: Are the red effects different from the black effects?

- Question I: Are the red effects different from the black effects?
 - Results from conventional random effects meta-analysis:

- Question I: Are the red effects different from the black effects?
 - Results from conventional random effects meta-analysis:
 - * Grand mean: 0.22 (p < 0.0001)

- Question I: Are the red effects different from the black effects?
 - Results from conventional random effects meta-analysis:
 - **★** Grand mean: 0.22 (p < 0.0001)
 - ★ red mean mean: 0.35 (p = 0.01)

- Question I: Are the red effects different from the black effects?
 - ▶ Results from conventional random effects meta-analysis:
 - **★** Grand mean: 0.22 (p < 0.0001)
 - * red mean mean: 0.35 (p = 0.01)
 - ★ black mean mean: 0.12 (p = 0.03)

- Question I: Are the red effects different from the black effects?
 - Results from conventional random effects meta-analysis:
 - **★** Grand mean: 0.22 (p < 0.0001)
 - **★** red mean mean: 0.35 (p = 0.01)
 - ★ black mean mean: 0.12 (p = 0.03)
 - But has the covariate itself been selected for significance?

- Question I: Are the red effects different from the black effects?
 - Results from conventional random effects meta-analysis:
 - **★** Grand mean: 0.22 (p < 0.0001)
 - * red mean mean: 0.35 (p = 0.01)
 - ★ black mean mean: 0.12 (p = 0.03)
 - But has the covariate itself been selected for significance?
- Question II: What is the effect size distribution?

- Question I: Are the red effects different from the black effects?
 - Results from conventional random effects meta-analysis:
 - **★** Grand mean: 0.22 (p < 0.0001)
 - * red mean mean: 0.35 (p = 0.01)
 - **★** black mean mean: 0.12 (p = 0.03)
 - But has the covariate itself been selected for significance?
- Question II: What is the effect size distribution?
 - Fixed effects or random effects?

- Question I: Are the red effects different from the black effects?
 - Results from conventional random effects meta-analysis:
 - **★** Grand mean: 0.22 (p < 0.0001)
 - * red mean mean: 0.35 (p = 0.01)
 - **★** black mean mean: 0.12 (p = 0.03)
 - But has the covariate itself been selected for significance?
- Question II: What is the effect size distribution?
 - Fixed effects or random effects?
 - ▶ Does p-hacking change the estimated effect sizes?

$$p(x_i \mid \theta_i, se_i, p) = p\phi_{(1.96 \cdot se_i, \infty)}(\theta_i, se_i) + (1 - p)\phi(\theta_i, se_i)$$

Likelihood:

$$p(x_i \mid \theta_i, se_i, p) = p\phi_{(1.96 \cdot se_i, \infty)}(\theta_i, se_i) + (1 - p)\phi(\theta_i, se_i)$$

• Effect size distribution:

$$\theta_i \sim N(\theta_0 + \theta_M \cdot \text{Meta?}, \sigma)$$

Likelihood:

$$p(x_i \mid \theta_i, se_i, p) = p\phi_{(1.96 \cdot se_i, \infty)}(\theta_i, se_i) + (1 - p)\phi(\theta_i, se_i)$$

• Effect size distribution:

$$\theta_i \sim N(\theta_0 + \theta_M \cdot \text{Meta?}, \sigma)$$

• Priors: $\theta_0, \theta_M \sim N(0, 1)$, $\sigma \sim \text{Exp}(1)$, $\rho \sim \text{Uniform}$

Likelihood:

$$p\left(x_{i} \mid \theta_{i}, se_{i}, p\right) = p\phi_{\left(1.96 \cdot se_{i}, \infty\right)}\left(\theta_{i}, se_{i}\right) + \left(1 - p\right)\phi\left(\theta_{i}, se_{i}\right)$$

Effect size distribution:

$$\theta_i \sim N(\theta_0 + \theta_M \cdot \text{Meta?}, \sigma)$$

• Priors: $\theta_0, \theta_M \sim N(0, 1)$, $\sigma \sim \text{Exp}(1)$, $\rho \sim \text{Uniform}$

Model	$ heta_{0}$	θ_{M}	σ	р
Corrected	0.02(0.06)	0.14(0.16)	0.1(0.1)	0.3(0.07)
Not corrected	0.14(0.05)	0.21(0.10)	0.2(0.05)	NA

ullet Logistic regression for the propensity to p-hack!

- Logistic regression for the propensity to p-hack!
- $p \mid n = \text{logit} (p_0 + p_1 \log n)$

- Logistic regression for the propensity to p-hack!
- $p \mid n = \text{logit} (p_0 + p_1 \log n)$
- $p_0, p_1 \sim N(0, 1)$

- Logistic regression for the propensity to p-hack!
- $p \mid n = \text{logit} (p_0 + p_1 \log n)$
- $p_0, p_1 \sim N(0, 1)$
- p-hacking becomes harder with increasing sample size.

- Logistic regression for the propensity to p-hack!
- $p \mid n = \text{logit} (p_0 + p_1 \log n)$
- $p_0, p_1 \sim N(0, 1)$
- p-hacking becomes harder with increasing sample size.
- Publication is easier with larger *n*.

Visually Evidence for Logistic Regression on *p*

Results without Meta-cognition

Model	θ_0	σ	p_0	p_1
Random effects Fixed effects	0.07(0.07) 0.04(0.07)	0.1(0.05) <i>NA</i>	` ,	-0.5(0.3) $-0.6(0.4)$

The Shape of the *p*-hacking Propensity

• p-hacking is everywhere and must be accounted for!

- p-hacking is everywhere and must be accounted for!
- When correcting for publication bias we should

- p-hacking is everywhere and must be accounted for!
- When correcting for publication bias we should
 - Care about selection for significance!

- p-hacking is everywhere and must be accounted for!
- When correcting for publication bias we should
 - Care about selection for significance!
 - Try out the mixture model to do the correction!

- p-hacking is everywhere and must be accounted for!
- When correcting for publication bias we should
 - Care about selection for significance!
 - Try out the mixture model to do the correction!
 - Stay Bayesian!

- p-hacking is everywhere and must be accounted for!
- When correcting for publication bias we should
 - Care about selection for significance!
 - Try out the mixture model to do the correction!
 - Stay Bayesian!
- An R-package at GitHub:

straussR

Statistical Reanalysis under Selection for Significance

https://github.com/JonasMoss/straussR