Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

25	Giugno	2020 -	9:00
F	SAME	ONLIN	JE.

1. Siano assegnate le matrici

$$\mathbf{A} = \begin{bmatrix} 10 & -4 & 4 & 0 \\ -4 & 10 & 0 & 2 \\ 4 & 0 & 10 & 2 \\ 0 & 2 & 2 & 0 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{B} = \begin{bmatrix} 5 & -2 & 2 & 0 \\ -2 & 5 & 0 & 1 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 1 & 5 \end{bmatrix}.$$

, , , , , , , , , , , , , , , , , , ,	a)	Stabilire se le	matrici A	$e \mathbf{B}$	ammettono l	a fa	$ttorizzazion\epsilon$	di	Cholesky,	motivandone	la risposta.
---------------------------------------	----	-----------------	-----------	----------------	-------------	------	------------------------	----	-----------	-------------	--------------

Punti: 3

b) Stabilire se le matrici **A** e **B** ammettono la fattorizzazione LU senza pivoting, motivandone la risposta.

Punti: 3

c) Scrivere una function Matlab che, presa in input una matrice **M** che ammette fattorizzazione LU senza pivoting, calcoli e restituisca in output le matrici di tale fattorizzazione.

Punti: 5

d) Scrivere uno script che sfrutti l'output dell'algoritmo di fattorizzazione LU senza pivoting per calcolare nella maniera più efficiente possibile (senza ricorrere alla risoluzione di sistemi lineari) sia il determinante di \mathbf{M} che il determinante di \mathbf{M}^{-1} .

Eseguire lo script scegliendo come matrice \mathbf{M} la/le matrici per cui al punto b) si è mostrata l'esistenza della fattorizzazione LU senza pivoting.

Punti: 5

Totale: 16