

DW02_prod_sum1

Multiplier-Adder

Version, STAR and Download Information: IP Directory

Features and Benefits

■ Parameterized word length

Applications

- Multiply and accumulate
- Digital filtering

Description

DW02_prod_sum1 performs the mathematical operation $SUM = A \times B + C$. This component is an extended version of DW02_mac, offering automatic sign extension on the output port SUM according to the parameter SUM_width. This component can also be considered a special case of DW02_prod_sum.

Table 1-1 Pin Description

Pin Name	Width	Direction	Function
Α	A_width bit(s)	Input	Input data
В	B_width bit(s)	Input	Input data
С	SUM_width bit(s)	Input	Input data
тс	1 bit	Input	Two's complement 0 = unsigned 1 = signed
SUM	SUM_width bit(s)	Output	Sum of products

Table 1-2 Parameter Description

Parameter	Values	Description
A_width	≥ 1	Word length of A
B_width	≥ 1 ^a	Word length of B
SUM_width	≥ 1	Word length of C and output SUM

a. For nbw implementation, $A_width + B_width \le 36$. Due to concern of implementation selection run time, a limitation is set for A_width and B_width .

Table 1-3 Synthesis Implementations^a

Implementation Name	Function	License Feature Required
pparch	Delay-optimized flexible parallel-prefix	DesignWare
apparch	Area-optimized flexible architecture that can be optimized for area, for speed, or for area, speed	DesignWare

a. During synthesis, Design Compiler will select the appropriate architecture for your constraints. However, you may force Design Compiler to use any architectures described in this table. For more, see *DesignWare Building Block IP User Guide*

Table 1-4 Obsolete Synthesis Implementations^a

Implementation	Function	Replacement Implementation
csa	Carry-save array synthesis model	pparch
wall	Booth-recoded Wallace-tree synthesis model ^b	pparch
nbw	Either a non-Booth ($A_width + B_width \le 41$) or a Booth Wallace-tree ($A_width + B_width > 41$) synthesis model ^c	pparch

- a. DC versions and DesignWare EST releases linked to DC versions prior to 2007.03 will still incude these implementations.
- b. In most cases, the wall implementation generates both faster and smaller circuits for medium- to large-sized multipliers.
- c. In cases where *A_width* + *B_width* ≤ 41, the nbw implementation generates a non-Booth recoded Wallace-tree multiplier. For multipliers having products larger than 41 bits (such as, *A_width* + *B_width* > 41), the nbw implementation produces a Booth-recoded multiplier identical to the wall implementation.

Table 1-5 Simulation Models

Model	Function	
DW02.DW02_PROD_SUM1_CFG_SIM	Design unit name for VHDL simulation	
dw/dw02/src/DW02_prod_sum1_sim.vhd	VHDL simulation model source code	
dw/sim_ver/DW02_prod_sum1.v	Verilog simulation model source code	

Related Topics

- Math Arithmetic Overview
- DesignWare Building Block IP Documentation Overview

HDL Usage Through Component Instantiation - VHDL

```
library IEEE, DWARE, DWARE;
use IEEE.std logic 1164.all;
use DWARE.DWpackages.all;
use DWARE.DW foundation comp.all;
entity DW02_prod_sum1_inst is
  generic ( inst_A_width : NATURAL := 5;
            inst_B_width : NATURAL := 5;
            inst_SUM_width : NATURAL := 11 );
  port ( inst_A : in std_logic_vector(inst_A_width-1 downto 0);
         inst_B : in std_logic_vector(inst_B_width-1 downto 0);
         inst_C
                : in std_logic_vector(inst_SUM_width-1 downto 0);
         inst TC : in std logic;
         SUM_inst : out std_logic_vector(inst_SUM_width-1 downto 0) );
end DW02 prod sum1 inst;
architecture inst of DW02_prod_sum1_inst is
begin
  -- Instance of DW02_prod_sum1
  U1 : DW02 prod_sum1
    generic map ( A_width => inst_A_width,
                                             B_width => inst_B_width,
                 SUM_width => inst_SUM_width )
    port map ( A => inst_A,  B => inst_B,
                                             C \Rightarrow inst_C
               TC => inst_TC,
                                SUM => SUM_inst );
end inst;
-- pragma translate_off
configuration DW02 prod sum1 inst cfg inst of DW02 prod sum1 inst is
  for inst
  end for; -- inst
end DW02_prod_sum1_inst_cfg_inst;
-- pragma translate_on
```

HDL Usage Through Component Instantiation - Verilog

```
module DW02_prod_sum1_inst( inst_A, inst_B, inst_C, inst_TC, SUM_inst );
  parameter A_width = 5;
  parameter B width = 5;
  parameter SUM_width = 11;
  input [A_width-1 : 0] inst_A;
  input [B_width-1 : 0] inst_B;
  input [SUM_width-1 : 0] inst_C;
  input inst_TC;
  output [SUM_width-1 : 0] SUM_inst;
  // Instance of DW02_prod_sum1
  DW02_prod_sum1 #(A_width, B_width, SUM_width)
    U1 ( .A(inst_A), .B(inst_B), .C(inst_C), .TC(inst_TC), .SUM(SUM_inst) );
endmodule
```

Copyright Notice and Proprietary Information

© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc. 690 E. Middlefield Road Mountain View, CA 94043

www.synopsys.com