Bruce Campell NCSU ST 534 HW 4

Problems 3.32, 3.35(a), and 3.43

Shumway, Robert H.; Stoffer, David S. Time Series Analysis and Its Applications: With R Examples (Springer Texts in Statistics)

08 November, 2017

3.32 oil time series analysis

Crude oil prices in dollars per barrel are in oil; see Appendix R for more details. Fit an ARIMA(p, d, q) model to the growth rate performing all necessary diagnostics. Comment.

```
library(astsa)
data(oil, package = "astsa")
df <- oil
plot(oil, main = "Crude oil, WTI spot price FOB (in dollars per barrel) weekly")</pre>
```

Crude oil, WTI spot price FOB (in dollars per barrel) weekly

Here is the acf of the oil series.

acf2(df, 52)

As expected the trend obscures the underlying structure of the fluctuations. We will now calculate $y_t = \nabla log(x_t)$ and display the ACF and PACF.

```
y <- diff(log(df))
plot(y, main = TeX("$y_t =\\nabla log(oil_t)$"))</pre>
```


We now see the underlying structure better. There's a period around 2008-2009 that one could argue requires more sophisiteated modelling such as stochastic volatility.

acf2(y, 52)

Based on the ACF and PACF of the differenced log series - we will try to fit an ARIMA(3,1,3) model to $log(x_t)$

invisible(model <- sarima(df, 3, 1, 3))</pre>

For lag 1 the Ljung-Box statistic shows significant correlation in the residuals.

For fun let's calculate the Ljung-Box-Pierce Q-statistic to check for systemic autocorrelation in the residuals. We'll extract the residuals and do the calculation by hand - there's and R function for this Box-Test that we've experiemnted with. we'll revisit this.

```
n <- length(df)
H <- 20
r <- model$fit$residuals[1:H]
acf.residuals <- acf(r, H, main = "ACF of residuals")</pre>
```

ACF of residuals


```
sum.denominator <- n - seq(H, 1, by = -1)
r.s <- acf.residuals$acf^2/sum.denominator
Q <- n * (n + 2) * sum(r.s)
Q</pre>
```

[1] 720.2996

We see based on the Q-statistic that we have significant correlation structure remaining in the residuals.

We didn't expect the residuals to be normally distributed. Starting in 2005 there is a change in the volatility.

3.35 Seasonal Model

Consider the ARIMA model $x_t = w_t + \Theta w_{t-2}$.

- (a) Identify the model using the notation $ARIMA(p, d, q)\ddot{O}(P, D, Q)s$
- (b) Show that the series is invertible for $|\Theta| < 1$, and find the coefficients in the representation $w_t = \sum_{k=0}^{\infty} \pi_k x_{t-k}$.

(c) Develop equations for the m-step ahead forecast, \tilde{x}_{n+m} , and its variance based on the infinite past, xn, xn???1,

3.43 Use Theorem B.2 and B.3 to verify (3.116).