○-페닐렌디아민과 뇨소축합에 의한 벤즈이미다졸론의 제조

박혁일, 박철웅, 홍영범

벤즈이미다졸론은 의약품과 농약, 색감, 물감 등의 중요한 합성중간체의 하나이다. 벤즈이미다졸론유도체색감은 그 응용분야가 넓은 아조형유기색감의 하나이며 그 특성도 좋다.[1, 2]

벤즈이미다졸론을 합성하는 일반적인 방법에는 뇨소법과 포스젠법, 탄산디메틸에스 테르법이 있다.[3] 보통 뇨소법을 많이 리용하는데 이때 용매로 에틸렌글리콜을 리용하다.

우리는 o-페닐렌디아민과 뇨소를 원료로, 이소아밀알콜을 용매로 하여 벤즈이미다 졸론을 합성하기 위한 연구를 하였다.

실 험 방 법

벤즈이미다졸론의 합성반응식은 다음과 같다.

시약으로는 o-페닐렌디아민(공업순, 98%이상), 뇨소(공업순, 98%이상), 이소아밀알콜 (푸젤유를 정류하여 얻은 130∼132℃의 류분)을 리용하였다.

벤즈이미다졸론의 제조방법은 다음과 같다. 250mL 플라스크에 o-페닐렌디아민과 뇨소를 물질량비 1:1.3의 비률로 넣는다. 다음 여기에 이소아밀알콜을 넣고 가열, 교반하면서 고체를 완전히 용해시킨 다음 일정한 시간 반응시킨다. 반응이 끝나면 랭각하고 얻어진 결정을 려과한 다음 물로 2회 세척한다. 다음 녹음점을 측정하여 생성물을 확인하였다.

실험결과 및 고찰

반응온도의 영향 반응시간이 12h일 때 반응온도에 따르는 생성물의 거둠률변화를 고찰한 결과는 표 1과 같다.

표 1. 반응온도에 따르는 생성물의 거둠률변화

온도/℃	100	110	120	130	140
거둠률/%	41	59	72	75	70

이소아밀알콜 10mL, o-페닐렌디아민 5.4g, 뇨소 3.3g

표 1에서 보는바와 같이 생성물의 거둠률은 온도가 증가함에 따라 증가하다가 130℃이상에서는 약간 감소하였다. 그것은 뇨소가 130℃로 가열되면 비우레트반응 등의 부반

응들이 진행되기때문이다. 그러므로 합리적인 반응온도는 130℃이다.

반음시간의 영향 반응온도 130°C에서 반응시간에 따르는 생성물의 거둠률변화는 표 2 와 같다.

표 2. 반응시간에 따르는 생성물의 거둠률변화

반응시간/h	6	8	10	12	14
거 둠률/%	44	60	71	75	75

이소아밀알콜 10mL, o-페닐렌디아민 5.4g, 뇨소 3.3g

표 2에서 보는바와 같이 반응시간이 증가할수록 생성물의 거둠률이 증가하다가 12h 이상부터는 변화가 거의나 없었다. 그러므로 합리적인 반응시간은 12h이다.

o-페닐렌디아민과 뇨소물질량비의 영향 반응온도 130℃, 반응시간 12h인 조건에서 뇨소와 o-페닐렌디아민의 물질량비에 따르는 생성물의 거둠률변화는 표 3과 같다.

표 3. 뇨소: 0-페닐렌디아민물질량비에 따르는 생성물의 거둠률변화

물질량비	1.1	1.2	1.3	1.4	1.5
거둠률/%	54	74	75	73	71

이소아밀알콜 10mL, o-페닐렌디아민 5.4g

표 3에서 보는바와 같이 뇨소와 o-페닐렌디아민의 물질량비가 1.3일 때 거둠률이 제일 높다. 그것은 뇨소와 o-페닐렌디아민의 물질량비가 1.3보다 크거나 작은 경우 뇨소의 물작용분해와 비우레트반응 등의 부반응들이 진행되기때문이다. 따라서 뇨소와 o-페닐렌디아민의 합리적인 물질량비는 1.3이다.

생성물의 녹음점측정 생성물의 녹음점을 측정한 결과 300℃인데 선행연구[2](310~312℃)와 일치하다는것을 알수 있다.

생성물이 구조확인 생성물의 적외선투과스펙트르는 그림과 같다.

그림. 생성물의 적외선투과스펙트르

그림에서 보는바와 같이 1 629, 1 484cm⁻¹에서 나타난 흡수봉우리는 벤졸고리의 C -C신축진동에 해당한것이고 1 741cm⁻¹에서의 흡수봉우리는 -C=O신축진동에 해당한것이다

또한 3 128, 3 021cm⁻¹에서의 흡수봉우리는 벤졸고리에서의 C-H신축진동, 3 655cm⁻¹에서의 흡수봉우리는 -NH신축진동에 해당되며 3 218cm⁻¹근방의 제일 센 흡수봉우리는 벤즈이미다졸론고리의 특성봉우리로서 생성물이 벤즈이미다졸론이라는것을 말하여준다.

생성물의 녹음점과 적외선투과스펙트르분석을 진행한 결과 실험값과 선행연구[2]값 이 기본적으로 일치하였으며 이것은 생성물의 구조가 정확하다는것을 의미한다.

맺 는 말

실험을 통하여 반응온도와 반응시간, 뇨소와 o-페닐렌디아민의 물질량비가 벤즈이 미다졸론의 거둠률에 미치는 영향을 연구하였다. 합리적인 제조조건은 다음과 같다.

뇨소: o-페닐렌디아민(물질량비)=1.3, 반응온도 130℃, 반응시간이 12h일 때 벤즈이 미다졸론의 거둠률은 75%이상이다.

참 고 문 헌

- [1] H. B. Fritz; US 3338916[P] 1967.
- [2] 刘坤 等; 化学工程与装备, 北京化学工业出版社, 4, 2014.
- [3] 茹婷婷 等; 辽宁化工. 43, 2, 2014.

주체109(2020)년 1월 5일 원고접수

Synthesis of Benzimidazolone by the Condensation of o-Phenylene Diamine and Urea

Pak Hyok Il, Pak Chol Ung and Hong Yong Bom

We established the synthesis method of benzimidazolone by the condensation of o-phenylene diamine and urea.

Keywords: o-phenylene diamine; benzimidazolone