BROUILLON - CARRÉS PARFAITS ET PRODUITS D'ENTIERS CONSÉCUTIFS

CHRISTOPHE BAL

Document, avec son source $L^{A}T_{E}X$, disponible sur la page https://github.com/bc-writing/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International ».

Table des matières

1.	Ce qui nous intéresse	2
2.	Notations utilisées	2
3.	Cas 0	2
4.	Cas 1	2
5.	Cas 2	3
6.	Cas 3	3
7.	Cas 4	3
8.	AFFAIRE À SUIVRE	4

Date: 25 Jan. 2024 - 27 Jan. 2024.

1. CE QUI NOUS INTÉRESSE

Existe-t-il $(n,k) \in \mathbb{N}^* \times \mathbb{N}$ tel que $\prod_{i=0}^k (n+i)$ soit le carré d'un entier?

2. Notations utilisées

Dans la suite, nous utiliserons les notations suivantes.

- ${}^{2}\mathbb{N} = \{n^{2}, n \in \mathbb{N}\} \text{ et } {}^{2}\mathbb{N}_{*} = {}^{2}\mathbb{N} \cap \mathbb{N}^{*}.$
- $\forall (n,k) \in \mathbb{N}^* \times \mathbb{N}$, $\pi_n^k = \prod_{i=0}^k (n+i)$. Par exemple, nous avons $\pi_n^0 = n$ et $\pi_n^1 = n(n+1)$.
- P désigne l'ensemble des nombres premiers.
- $\forall (p;n) \in \mathbb{P} \times \mathbb{N}^*$, $v_p(n) \in \mathbb{N}$ est la valuation p-adique de n, c'est-à-dire $p^{v_p(n)} \mid n$, autrement dit $p^{v_p(n)}$ divise n, mais $p^{v_p(n)+1} \nmid n$.
- $\forall (n,m) \in \mathbb{N}^2$, $n \wedge m$ désigne le PGCD de n et m.
- 2 N désigne l'ensemble des nombres naturels pairs.
- $2 \mathbb{N} + 1$ désigne l'ensemble des nombres naturels impairs.

3. Cas 0

Donnons juste un fait basique concernant l'ensemble ²N, fait qui nous sera utile par la suite.

Fait 3.1. $\forall (n,m) \in {}^{2}\mathbb{N}_{*} \times {}^{2}\mathbb{N}_{*}$, si $n \neq m$, alors nous avons:

(1)
$$|n-m|=3 \iff (n,m) \in \{(1,4);(4,1)\}$$

(2)
$$|n-m| \ge 5$$
 si $(n,m) \notin \{(1,4); (4,1)\}$.

 $D\acute{e}monstration$. Quitte à échanger les rôles, on peut supposer n>m. Par hypothèse, nous avons $(N,M)\in \mathbb{N}^*\times \mathbb{N}^*$ tel que $n=N^2$ et $m=M^2$. Comme n>m, nous avons aussi N>M. Pour conclure, il suffit de s'appuyer sur les équivalences suivantes.

$$\iff N \ge M + 1$$

$$\iff N^2 \ge (M+1)^2$$

$$\iff n \ge m + 2M + 1$$

$$\iff n-m \ge 2M+1$$

4. Cas 1

Supposons que $\pi_n^1 = n(n+1) \in {}^2\mathbb{N}_*$.

Clairement $\forall p \in \mathbb{P}$, $v_p(\pi_n^1) \in 2\mathbb{N}$. Or $p \in \mathbb{P}$ ne pent diviser à la fois n et n+1. Nous savons donc que $\forall p \in \mathbb{P}$, $v_p(n) \in 2\mathbb{N}$ et $v_p(n+1) \in 2\mathbb{N}$, autrement dit $(n,n+1) \in {}^2\mathbb{N} \times {}^2\mathbb{N}$. D'après le fait 3.1, nous savons que ceci est impossible. Nous arrivons donc au fait suivant.

Fait 4.1.
$$\forall n \in \mathbb{N}^*$$
, $n(n+1) \notin {}^2\mathbb{N}$.

Supposons que $\pi_n^2 = n(n+1)(n+2) \in {}^2\mathbb{N}_*$.

Posant m=n+1, nous avons $\pi_n^2=(m-1)m(m+1)=m(m^2-1)$ où $m\in\mathbb{N}_{\geq 2}$.

Comme $\forall p \in \mathbb{P}$, $v_p(\pi_n^2) \in 2\mathbb{N}$, et comme de plus $p \in \mathbb{P}$ ne pent diviser à la fois m et $m^2 - 1$, nous savons que $\forall p \in \mathbb{P}$, $v_p(m) \in 2\mathbb{N}$ et $v_p(m^2 - 1) \in 2\mathbb{N}$, d'où $(m, m^2 - 1) \in {}^2\mathbb{N} \times {}^2\mathbb{N}$. D'après le fait 3.1, $m^2 - 1 \in {}^2\mathbb{N}$ est impossible. Nous arrivons donc au fait suivant.

Fait 5.1. $\forall n \in \mathbb{N}^*$, $n(n+1)(n+2) \notin {}^2\mathbb{N}$.

Nous pouvons ici faire les manipulations algébriques naturelles suivantes.

$$\pi_n^3 = n(n+3) \cdot (n+1)(n+2)$$

$$= (n^2 + 3n) \cdot (n^2 + 3n + 2)$$

$$= (m-1)(m+1)$$

$$= m^2 - 1$$

De nouveau, le fait 3.1 nous permet d'aboutir au fait suivant.

Fait 6.1.
$$\forall n \in \mathbb{N}^*, \ n(n+1)(n+2)(n+3) \notin {}^2\mathbb{N}$$
.

Nous allons démontrer le fait suivant de deux façons différentes, toutes les deux étant intéressantes dans leur approche.

Fait 7.1.
$$\forall n \in \mathbb{N}^*, \ n(n+1)(n+2)(n+3)(n+4) \notin {}^2\mathbb{N}$$
.

Démonstration 1. Supposons que $\pi_n^4 = n(n+1)(n+2)(n+3)(n+4) \in {}^2\mathbb{N}_*$.

Posant m = n + 2, nous avons $\pi_n^4 = (m - 2)(m - 1)m(m + 1)(m + 2) = m(m^2 - 1)(m^2 - 4)$ où $m \in \mathbb{N}_{\geq 3}$. On notera dans la suite $u = m^2 - 1$ et $q = m^2 - 4$.

Supposons d'abord que $m \in {}^{2}\mathbb{N}_{*}$.

- De $muq \in {}^2\mathbb{N}_*$, nous déduisons $uq \in {}^2\mathbb{N}_*$.
- \bullet Comme $u-q=3\,,$ nous savons que $u\wedge q\in\{1,3\}\,.$
- Si $u \wedge q = 1$, alors $\forall p \in \mathbb{P}$, $v_p(u) \in 2\mathbb{N}$ et $v_p(q) \in 2\mathbb{N}$, d'où $(u,q) \in {}^2\mathbb{N} \times {}^2\mathbb{N}$. Or ceci est impossible d'après le fait 3.1^{1} .
- Si $u \wedge q = 3$, alors $\forall p \in \mathbb{P} \{3\}$, $v_p(u) \in 2\mathbb{N}$ et $v_p(q) \in 2\mathbb{N}$, mais aussi $v_3(u) \in 2\mathbb{N} + 1$ et $v_3(q) \in 2\mathbb{N} + 1$. Donc $u = 3U^2$ et $q = 3Q^2$ avec $(U,Q) \in \mathbb{N}^2$. Or u q = 3 donne $U^2 Q^2 = 1$, et le fait 3.1 nous indique une contradiction.

Supposons maintenant que $m \notin {}^2\mathbb{N}_*$.

- Nous avons vu ci-dessus que $u \notin {}^{2}\mathbb{N}$ et $q \notin {}^{2}\mathbb{N}$. On peut donc écrire $m = \alpha M^{2}$, $u = \beta U^{2}$, $q = \gamma Q^{2}$ où $(M, U, Q) \in \mathbb{N}^{3}$, et $(\alpha, \beta, \gamma) \in (\mathbb{N}_{>1})^{3}$ forme un triplet de naturels sans facteur carré.
- Notons que $\beta \neq \gamma$ car, dans le cas contraire, nous aurions $3 = u q = \beta (U^2 Q^2)$ qui fournirait $0 < |U^2 Q^2| < 3$, et ceci contredirait le fait 3.1.

^{1.} On peut aussi noter que le fait 5.1 lève une contradiction car nous avons $m \in {}^2\mathbb{N}$ et $u \in {}^2\mathbb{N}$ qui donnent $(m-1)m(m+1) \in {}^2\mathbb{N}$

- Nous avons $m \wedge u = 1$, $m \wedge q \in \{1, 2, 4\}$ et $u \wedge q \in \{1, 3\}$ avec $m \wedge u = m \wedge q = u \wedge q = 1$ impossible car sinon on aurait $(m, u, q) \in ({}^{2}\mathbb{N})^{3}$ via $muq \in {}^{2}\mathbb{N}$. Dès lors, $\forall p \in \mathbb{P}_{>3}$, $(v_{p}(m), v_{p}(u), v_{p}(q)) \in (2\mathbb{N})^{3}$.
- Les points précédents donnent $\{\alpha, \beta, \gamma\} \subseteq \{2, 3, 6\}$, et aussi $\alpha \wedge \beta = 1$, $\alpha \wedge \gamma \in \{1, 2\}$, $\beta \wedge \gamma \in \{1, 3\}$ avec $\alpha \wedge \beta = \alpha \wedge \gamma = \beta \wedge \gamma = 1$ impossible. Le tableau « mécanique » ci-après nous amène à juste considérer $(\alpha, \beta, \gamma) = (2, 3, 2)$ et $(\alpha, \beta, \gamma) = (2, 3, 6)$.

α	β	γ	$\alpha \wedge \beta$	$\alpha \wedge \gamma$	$\beta \wedge \gamma$	Statut
2	3	2	1	2	1	OK
2	3	6	1	2	3	OK
3	2	3	1	3	1	КО
3	2	6	1	3	2	КО

- $(\alpha, \beta, \gamma) = (2, 3, 2)$ nous donne $m = 2M^2, m^2 1 = 3U^2$ et $m^2 4 = 2Q^2$.
- $(\alpha, \beta, \gamma) = (2, 3, 6)$ nous donne $m = 2M^2$, $m^2 1 = 3U^2$ et $m^2 4 = 6Q^2$. Modulo 3, nous avons :

- $-m \equiv 0$ ou $m \equiv -1$ via $m = 2M^2$.
- $-m^2 \equiv 1 \text{ via } m^2 1 = 3U^2.$
- Nous en déduisons que $m \equiv -1$, puis $m-2 \equiv 0$, soit $3 \mid m-2$.

Via $m = 2M^2$, nous obtenons $2 \mid m-2$, et donc $6 \mid m-2$.

Démonstration 2. XXX

8. AFFAIRE À SUIVRE...