§ 5.环

- ●环的基本概念
- •环的基本性质
- •无零因子环和含零因子环
- •整环与除环

§ 5.环

定义1.设〈R, \oplus , \otimes 〉是代数系统, \oplus 和 \otimes 是R上的两个二元运算,若

- (1) 〈R,⊕〉是交换群;
- (2) 〈R,⊗〉是半群;
- (3) ⊗对⊕满足分配律: 对任何a,b,c∈R, 都有

$$a\otimes(b\oplus c)=(a\otimes b)\oplus(a\otimes c)$$

$$(b \oplus c) \otimes a = (b \otimes a) \oplus (c \otimes a)$$
;

则称〈R,⊕,⊗〉是环。

注: •环中,〈R, \oplus 〉是群,故关于 \oplus 有幺元存在,将关于 \oplus 的么元记为0,称为环的零元。

- •环中,〈R, \oplus 〉是群,故R中每个元素有逆元,设a \in R,将a关于 \oplus 的逆元记为-a,称为a的负元,且将a \oplus (-b)简记为 a-b。
 - •环中,对于⊗运算,若有幺元,则记为1或e。
 - •环中,设a∈R,若a关于⊗有逆元,则记为a-1。
 - ●以后谈到环,只讨论|R|≥2的情况,即不讨论一个元素的环。
 - 环的定义中,不要求⊕对⊗满足分配律,只要求⊗对⊕满足分配律。

例1. $\langle I,+,\times \rangle$ 是环。 称此环为整数环。I是整数集合,+和 \times 是整数的普通加法运算和普通乘法运算。由前两节知:

- (1) 〈I,+〉 是交换群;
- (2) 〈I,×〉是半群;
- (3)×对+满足分配律:由算术知识知整数乘法对整数加法满足分配律。即 ∀a,b,c∈I 有

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})$$

由×的交换律知×对+满足分配律;

由环的定义知〈I,+,×〉是环。

例2. $\langle M_{n\times n}, +, \times \rangle$ 是环。 称此环为矩阵环。 $M_{n\times n}$ 是全体 $n\times n$ 阶实矩阵,十与×是矩阵的加法运算和乘法运算......

例3. $\langle N_m, +_m, \times_m \rangle$ 是环。

称此环为整数模环。 $N_m = \{[0]_m, [1]_m, ..., [m-1]_m\}$, $+_m$ 和 \times_m 是 N_m 上的模加运算和模乘运算......

例4. $\langle 2^{X}, \oplus, \cap \rangle$ 是环。 称此环为X的子集环。X是一个非空集合, 2^{X} 是X的幂集, \oplus 是集合的对称差运算, \cap 是集合的交运算……

例5. $\langle P[x], +, \times \rangle$ 是环。 称此环为多项式环。

这里: P[x] 是实系数多项式的全体,+和×是多项式的加法运算和乘法运算,由前两节知

- (1) 〈P[x],+〉是交换群;
- (2) 〈P[x],×〉是半群;

.

• • • • •

(3)×对+满足分配律:由于实数乘法对实数加法满足分配律,故多项式乘法对多项式加法满足分配律。

即 $\forall h(x),p(x),q(x)\in P[x]$,有

 $\mathbf{h}(x) \times (\mathbf{p}(x) + \mathbf{q}(x)) = (\mathbf{h}(x) \times \mathbf{p}(x)) + (\mathbf{h}(x) \times \mathbf{q}(x))$

由×的交换律知×对+满足分配律;

由环的定义知〈P[x],+,×〉是环。

例6. $\langle Z_m[x], +_m, \times_m \rangle$ 是环。 称此环为模数多项式环。

这里: $Z_m = \{0,1,2,...,m-1\}$, $Z_m[x]$ 是系数在 Z_m 上的多项式的全体, $+_m$ 和 \times_m 是多项式的模加法运算和模乘法运算。

即
$$\forall p(x), q(x) \in \mathbb{Z}_m[x]$$
,有 $p(x) +_m q(x) = (p(x) + q(x)) \mod m$
$$p(x) \times_m q(x) = (p(x) \times q(x)) \mod m$$
 (以上取模均是针对系数取模)

于是, 有 (1) $\langle Z_m[x], +_m \rangle$ 是交换群;

①封闭性: $\forall p(x), q(x) \in Z_m[x]$, 有 $p(x)+q(x) \in P[x]$,

从而 $(p(x)+q(x)) \mod m \in \mathbb{Z}_m[x]$,因而 $p(x)+_m q(x) \in \mathbb{Z}_m[x]$;

②结合律: $\forall h(x), p(x), q(x) \in \mathbb{Z}_m[x]$,有

$$h(x)+_{m}(p(x)+_{m}q(x))=h(x)+_{m}((p(x)+q(x)) \mod m)$$

$$=(h(x)+(p(x)+q(x)) \mod m) \mod m$$

$$=(h(x)+(p(x)+q(x))) \mod m$$

$$=((h(x)+p(x))+q(x)) \mod m$$

$$=(h(x)+p(x)) \mod m+q(x)) \mod m$$

$$=(h(x)+p(x)) \mod m+mq(x)$$

$$=(h(x)+_{m}p(x))+_{m}q(x)$$
;

③有幺元:存在着 $0(x)=0 \in Z_m[x]$,使得

$$\forall p(x) \in Z_m[x]$$
, 都有 $0(x) + p(x) = p(x) + 0(x) = p(x)$;

④有逆元: $\forall p(x) \in Z_m[x]$, 可设

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \qquad a_k \in Z_m \ (0 \le k \le n)$$

 $\diamondsuit: b_k = m - a_k \in Z_m (0 \le k \le n)$

则有
$$p^{-1}(x) = b_n x^n + b_{n-1} x^{n-1} + ... + b_1 x + b_0 \in Z_m[x]$$
,

使得
$$p^{-1}(x) + {}_{m}p(x) = p(x) + {}_{m}p^{-1}(x) = 0(x)$$

⑤交换律: $\forall p(x), q(x) \in Z_m[x]$, 有

$$p(x)+_{m}q(x)=(p(x)+q(x)) \mod m$$

$$=(q(x)+p(x)) \mod m$$

(普通多项式加法的交换律)

$$=q(x)+_{m}p(x)$$
;

- (2) $\langle Z_m[x], \times_m \rangle$ 是(交换含幺)半群;
 - ①封闭性: $\forall p(x), q(x) \in Z_m[x]$, 有 $p(x) \times q(x) \in P[x]$, 从而

 $(p(x)\times q(x)) \mod m\in Z_m[x]$, 因而 $p(x)\times_m q(x)\in Z_m[x]$;

②结合律: $\forall h(x), p(x), q(x) \in Z_m[x]$,有

$$h(x) \times_{m}(p(x) \times_{m}q(x)) = h(x) \times_{m}((p(x) \times q(x)) \mod m)$$

$$= (h(x) \times (p(x) \times q(x)) \mod m \mod m$$

$$= (h(x) \times (p(x) \times q(x))) \mod m$$

$$= ((h(x) \times p(x)) \times q(x)) \mod m \qquad (普通多项式乘法的结合律)$$

$$= ((h(x) \times p(x)) \mod m \times q(x)) \mod m$$

$$= (h(x) \times p(x)) \mod m \times q(x)$$

$$= (h(x) \times p(x)) \mod m \times q(x)$$

$$= (h(x) \times p(x)) \times_{m} q(x)$$

$$= (h(x) \times_{m} p(x)) \times_{m} q(x)$$

③有幺元:存在着 $1(x)=1 \in Z_m[x]$,使得 $\forall p(x) \in Z_m[x]$,都有 $1(x) \times_m p(x) = p(x) \times_m 1(x) = p(x)$;

④交换律: $\forall p(x), q(x) \in \mathbb{Z}_m[x]$, 有 $p(x) \times_m q(x) = (p(x) \times q(x)) \mod m$ $= (q(x) \times p(x)) \mod m$ (普通多项式乘法的交换律) $= q(x) \times_m p(x)$;

$(3) \times_{\mathbf{m}}$ 对 $+_{\mathbf{m}}$ 满足分配律: 即 \forall h(x),p(x),q(x) \in Z_m[x],有

$$h(x) \times_m (p(x) +_m q(x))$$

$$= h(x) \times_m (p(x) + q(x)) \mod m$$

$$= (h(x) \times (p(x)+q(x)) \mod m) \mod m$$

$$= (h(x) \times (p(x)+q(x))) \mod m$$

$$= ((h(x) \times p(x)) + (h(x) \times q(x))) \mod m$$

(普通多项式乘法对加法的分配律)

$$= ((h(x) \times p(x)) \mod m + (h(x) \times q(x)) \mod m) \mod m$$

$$= ((h(x) \times_m p(x)) + (h(x) \times_m q(x))) \mod m$$

$$= (h(x) \times_{m} p(x)) +_{m} (h(x) \times_{m} q(x))$$

由×_m的交换律知×_m对+_m满足分配律;

由环的定义知〈 $Z_m[x],+_m,\times_m$ 〉是(交换含幺)环。

例7. $\langle Z_p[x:n], +_f, \times_f \rangle$ 是环。 称此环为多项式模环。

这里: p是素数, $Z_p = \{0,1,2,...,p-1\}$; $Z_p[x:n]$ 是系数在 Z_p 上的次数不超过n-1的多项式全体; $f \in Z_p[x]$ 是一n次首1多项式, $+_f$ 和 \times_f 是多项式的模f加法运算和模f乘法运算。即 $\forall p(x),q(x) \in Z_p[x:n]$,有

$$p(x)+_f q(x) = (p(x)+_p q(x)) \bmod f$$

$$p(x) \times_f q(x) = (p(x) \times_p q(x)) \mod f$$

• • • • •

于是,有

(1) $\langle \mathbf{Z}_{\mathbf{p}}[x:\mathbf{n}],+f\rangle$ 是交换群;

①封闭性: $\forall p(x), q(x) \in Z_p[x:n]$, 有 $p(x)+_pq(x) \in Z_p[x]$,

从而(p(x)+pq(x)) mod $f \in \mathbb{Z}_p[x:n]$,因而p(x)+pq(x) $\in \mathbb{Z}_p[x:n]$;

②结合律: $\forall h(x), p(x), q(x) \in Z_p[x:n]$,有

$$h(x)+_f(p(x)+_fq(x))=h(x)+_f((p(x)+_pq(x)) \mod f)$$

$$= (h(x)+_p(p(x)+_pq(x)) \mod f) \mod f$$

$$= (h(x)+_p(p(x)+_pq(x))) \mod f$$

$$= ((h(x)+_pp(x))+_pq(x)) \mod f \qquad (模数多项式加法的结合律)$$

$$= ((h(x)+_pp(x)) \mod f+_pq(x)) \mod f$$

$$= (h(x)+_pp(x)) \mod f+_fq(x)$$

$$= (h(x)+_fp(x))+_fq(x);$$

③有幺元: 存在着 $0(x)=0\in \mathbb{Z}_p[x:n]$,使得 $\forall p(x)\in \mathbb{Z}_p[x:n]$ 都有

$$0(x)+_{f} p(x) = p(x)+_{f} 0(x) = p(x)$$
;

④有逆元: $\forall p(x) \in \mathbb{Z}_p[x:n]$, 可设

$$p(x) = a_s x^s + a_{s-1} x^{s-1} + ... + a_1 x + a_0$$
 $a_k \in \mathbb{Z}_p (0 \le k \le s)$

 \Leftrightarrow : $b_k = p - a_k \in Z_p \ (0 \le k \le s)$

则有 $p^{-1}(x) = b_s x^s + b_{s-1} x^{s-1} + ... + b_1 x + b_0 \in \mathbb{Z}_p[x:n]$,

使得 $p^{-1}(x)+_f p(x)=p(x)+_f p^{-1}(x)=0(x)$;

.

⑤交换律:
$$\forall p(x), q(x) \in \mathbb{Z}_p[x:n]$$
, 有
$$p(x) +_f q(x) = (p(x) +_p q(x)) \bmod f$$

$$= (q(x) +_p p(x)) \bmod f$$
 (模数多项式加法的交换律)
$$= q(x) +_f p(x) \; ;$$

- (2) 〈 $Z_p[x:n], \times_f$ 〉是(交换含幺)半群;
 - ①封闭性: $\forall p(x), q(x) \in Z_p[x:n]$, 有 $p(x) \times_p q(x) \in Z_p[x]$,

从而
$$(p(x)\times_p q(x)) \mod f \in Z_p[x:n]$$
,因而 $p(x)\times_f q(x)\in Z_p[x:n]$;

②结合律: $\forall h(x), p(x), q(x) \in Z_p[x:n]$, 有

$$h(x) \times_{f}(p(x) \times_{f}q(x)) = h(x) \times_{f}((p(x) \times_{p}q(x)) \mod f)$$

$$= (h(x) \times_{p}(p(x) \times_{p}q(x)) \mod f) \mod f$$

$$= (h(x) \times_{p}(p(x) \times_{p}q(x))) \mod f$$

$$= ((h(x) \times_{p}p(x)) \times_{p}q(x)) \mod f \qquad (模数多项式乘法的结合律)$$

$$= ((h(x) \times_{p}p(x)) \mod f \times_{p}q(x)) \mod f$$

$$= (h(x) \times_{p}p(x)) \mod f \times_{f}q(x)$$

$$= (h(x) \times_{f}p(x)) \times_{f}q(x) ;$$

③有幺元:存在着 $1(x)=1\in Z_p[x:n]$,使得 $\forall p(x)\in Z_p[x:n]$ 都有

$$1(x) \times_f p(x) = p(x) \times_f 1(x) = p(x) ;$$

④交换律: $\forall p(x), q(x) \in Z_p[x:n]$, 有

$$p(x) \times_f q(x) = (p(x) \times_p q(x)) \mod f$$

$$=(q(x)\times_{p}p(x)) \mod f$$

$$=q(x)\times_f p(x)$$
;

(模数多项式乘法的交换律)

.

 $(3) \times_f$ 对 $+_f$ 满足分配律: 即 $\forall h(x), p(x), q(x) \in Z_p[x:n]$,有

$$h(x) \times_f (p(x) +_f q(x))$$

$$= h(x) \times_f (p(x) + pq(x)) \mod f$$

$$= (h(x) \times_{p} (p(x) +_{p} q(x)) \bmod f) \bmod f$$

$$= (h(x) \times_{p} (p(x) +_{p} q(x))) \mod f$$

$$= ((h(x) \times_{p} p(x)) +_{p} (h(x) \times_{p} q(x))) \mod f$$

(模数多项式乘法对模数多项式加法的分配律)

$$= ((h(x) \times_{p} p(x)) \bmod f +_{p} (h(x) \times_{p} q(x)) \bmod f) \bmod f$$

$$= ((h(x) \times_f p(x)) +_p (h(x) \times_f q(x))) \mod f$$

$$= (h(x) \times_f p(x)) +_f (h(x) \times_f q(x))$$

由×_f的交换律知×_f对+_f满足分配律;

由环的定义知 $\langle Z_p[x:n], +_f, \times_f \rangle$ 是(交换含幺)环。

定义2.交换环 含幺环 交换含幺环

设〈R,⊕,⊗〉是环。

- (1)若⊗运算满足交换律,则称 $\langle R, \oplus, \otimes \rangle$ 是交换环。
- (2)若关于⊗运算有幺元,则称〈R,⊕,⊗〉是含幺环。
- (3)若⊗运算满足交换律又关于⊗运算有幺元,则 称〈R,⊕,⊗〉是交换含 幺环。

- 例8. (1)整数环〈I,+,×〉是交换含幺环吗?关于×运算的幺元是什么?
 - (2)矩阵环〈 $M_{n\times n}$,+,×〉是交换含幺环吗?关于×运算的幺元是什么?
 - (3)整数模环 $\langle N_m, +_m, \times_m \rangle$ 是交换含幺环吗?关于 \times_m 运算的幺元是什么?
 - (4)X的子集环〈 2^{X} , \oplus , \cap 〉是交换含幺环吗?关于 \cap 运算的幺元是什么?

• • • • •

- (5)多项式环〈P[x],+,x〉是交换含幺环吗?关于x运算的幺元是什么?
- (6)模数多项式环〈 $Z_m[x],+_m,\times_m$ 〉是交换含幺环吗?关于 \times_m 运算的幺元是?
- (7)多项式模环〈 $\mathbf{Z}_{p}[x:n],+_f,\times_f$ 〉是交换含幺环吗?关于 \times_f 运算的幺元是?

定理1.环的基本性质

设 $\langle R, \oplus, \otimes \rangle$ 是环。则 $\forall a,b,c \in R, 有$

$$(1) \ 0 \otimes a = a \otimes 0 = 0$$

(加法幺元是乘法的零元)

(2)
$$a\otimes(-b) = (-a)\otimes b = -(a\otimes b)$$
;

$$(3) (-a) \otimes (-b) = a \otimes b;$$

$$(4)(-1) \otimes a = -a$$

(-1是乘法幺元1的负元)

$$(5)(-1)\otimes(-1)=1$$

(-1的乘法逆元是其本身,即 $(-1)^{-1}=-1$)

(6)左分配律: a⊗(b-c)=(a⊗b)-(a⊗c)

(乘法对减法的)

右分配律: $(b-c)\otimes a=(b\otimes a)-(c\otimes a)$

(乘法对减法的)

[证].(1)a
$$\otimes$$
0 = (a \otimes 0) \oplus 0
$$= (a \otimes 0) \oplus ((a \otimes 0)-(a \otimes 0))
$$= (a\otimes0)\oplus((a\otimes0)\oplus(-(a\otimes0)))$$

$$= ((a\otimes0)\oplus(a\otimes0))\oplus(-(a\otimes0)) \text{ (结合律)}$$

$$= (a\otimes(0\oplus0))\oplus(-(a\otimes0)) \text{ (分配律)}$$

$$= (a\otimes0)\oplus(-(a\otimes0)) \text{ (0}\oplus0=0)$$

$$= (a\otimes0)-(a\otimes0)$$

$$= 0;$$$$

$$a\otimes(-b) = (a\otimes(-b))\oplus 0$$

 $= (a\otimes(-b))\oplus ((a\otimes b)-(a\otimes b))$
 $= (a\otimes(-b))\oplus ((a\otimes b)\oplus (-(a\otimes b)))$
 $= ((a\otimes(-b))\oplus (a\otimes b))\oplus (-(a\otimes b))$ (结合律)
 $= (a\otimes((-b)\oplus b))\oplus (-(a\otimes b))$ (分配律)
 $= (a\otimes 0)\oplus (-(a\otimes b))$ ((-b)\Delta 0)
 $= 0\oplus (-(a\otimes b))$ (根据(1) $a\otimes 0 = 0$)
 $= -(a\otimes b)$;

定义3.含零因子环 无零因子环

设 $\langle R, \oplus, \otimes \rangle$ 是环。若在环 $\langle R, \oplus, \otimes \rangle$ 中

- $(1)(\exists a \in R)(\exists b \in R)(a \neq 0 \land b \neq 0 \land a \otimes b = 0)$,则称环 (R, \oplus, \otimes) 是含零因子环;称a是环中的左零因子,称b是环中的右零因子;
- $(2)(\forall a \in R)(\forall b \in R)(a \neq 0 \land b \neq 0 \Rightarrow a \otimes b \neq 0)$,即环中无零因子(no nil-factor),则称环 $\langle R, \oplus, \otimes \rangle$ 是无零因子环。

例9.整数环 $\langle I,+,\times \rangle$ 是无零因子环

已知〈 $I,+,\times$ 〉是环,由于任意两个不为零的整数相乘,其积不为零,故由定义3知〈 $I,+,\times$ 〉是无零因子环。

例10.矩阵环 $\langle M_{n\times n}, +, \times \rangle$ 是含零因子环

已知 $\langle M_{n\times n}, +, \times \rangle$ 是环 $(n\geq 2)$ 。不妨设n=2,于是有

因为存在着
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ \neq $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, 但 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ = $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

即两个不为零的矩阵相乘其积为零矩阵,由定义3知是〈 $M_{n\times n}$,+,×〉含零因子环。

例11.整数模环〈N_m,+_m,×_m〉,

当m为素数时,是无零因子环;

当m不是素数时,是含零因子环.....

例12.X的子集环 $\langle 2^{X}, \oplus, \cap \rangle$ 是含零因子环.....

例13.多项式环〈 $P[x],+,\times$ 〉是无零因子环......

例14.模数多项式环 $\langle Z_m[x], +_m, \times_m \rangle$,

当m为素数时,是无零因子环;

当m不是素数时,是含零因子环。

已知〈 $Z_m[x],+_m,\times_m$ 〉是环。

• • • • •

(1)当m为素数时,对任意的 $p(x),q(x) \in Z_m[x]$, $p(x) \neq 0$, (其首项系数 $a_r \neq 0$, 即 $0 < a_r < m$),且 $q(x) \neq 0$ (其首项系数 $b_s \neq 0$,即 $0 < b_s < m$),从而必有 $p(x) \times_m q(x) \neq 0$ (否则, 若 $p(x) \times_m q(x) = 0$,则其首项系数 $c_{r+s} = a_r \times_m b_s = 0$,因此 $a_r \times b_s = km$,由m是素数,则必有m $|a_r \neq 0|$ 。

即两个非零多项式经过 \times 运算后仍为非零多项式。由定义3知〈 $\mathbb{Z}_{m}[x],+$ \times 是无零因子环。

(2)当m不是素数时,必存在着 $p(x),q(x) \in Zm[x]$,

 $p(x) = a_r x^r$, $0 < a_r < m$ (即其首项系数 $ar \neq 0$), 故 $p(x) \neq 0$,

且 $q(x) = b_s x^s$, $0 < b_s < m$ (即其首项系数 $bs \neq 0$), 故 $q(x) \neq 0$, 使得 $m = a_r \times b_s$

即有 $p(x) \times_{m} q(x) = (p(x) \times q(x)) \mod m$

 $= (\mathbf{a}_{\mathbf{r}} x^{\mathbf{r}} \times \mathbf{b}_{\mathbf{s}} x^{\mathbf{s}}) \bmod \mathbf{m}$

 $= (\mathbf{a}_{\mathbf{r}} \times \mathbf{b}_{\mathbf{s}}) x^{\mathbf{r}+\mathbf{s}} \mod \mathbf{m}$

 $= mx^{r+s} \mod m$

 $=0 \mod m$

=0

即p(x),q(x)是 $Z_m[x]$ 中的零因子,由定义3知〈 $Z_m[x]$,+ $_m$,× $_m$ 〉是含零因子环。

例15. 多项式模环 $\langle Z_p[x:n], +_f, \times_f \rangle$

当f为素多项式时,是无零因子环;

当f不是素多项式时,是含零因子环。

注: •素多项式,也称为既约多项式,是 $Z_p[x]$ 中首1,且在 Z_p 中不能分解因式的多项式。

已知〈 $Z_p[x:n],+_f,\times_f$ 〉是环。

(1)当f为素多项式时,对任意的 $p(x),q(x) \in \mathbb{Z}_p[x:n]$,

 $p(x) \neq 0$, (即 $p(x) \neq k_1(x) f(x)$),且 $q(x) \neq 0$ (即 $q(x) \neq k_2(x) f(x)$),

从而必有 $p(x) \times_f q(x) \neq 0$ (否则, 若 $p(x) \times_f q(x) = 0$,则必有 $p(x) \times_p q(x) = k(x) f(x)$,由f(x)是 素多项式,则必有 $f(x) \mid p(x)$ 或 $f(x) \mid q(x)$,于是应有 $p(x) = k_1(x) f(x)$)或q $(x) = k_2(x) f(x)$,矛盾)。

即两个非零多项式经过 \times_f 运算后仍为非零多项式。由定义3知〈 $Z_p[x:n],+_f,\times_f$ 〉是无零因子环。

(2)当f不是素多项式时,必存在着p(x), $q(x) \in Z_p[x:n]$, $p(x) \neq 0$,且 $q(x) \neq 0$,使得 $f(x) = p(x) \times_p q(x)$,从而 $p(x) \times_f q(x) = (p(x) \times_p q(x)) \bmod f$ $= f(x) \bmod f$ = 0

即p(x), q(x)是 $Z_p[x:n]$ 中的零因子。

由定义3知〈 $Z_p[x:n],+_f,\times_f$ 〉是含零因子环。

定义4.整环(integral domain)

交换含幺的无零因子环称为整环。

注:●整环又称为整区。

定义4.除环(division ring)

每个非零元都有(乘法)逆元的含幺环称为除环。即,若含幺环 $\langle R, \oplus, \otimes \rangle$ 满足:

$$(\forall a \in R)(a \neq 0 \Rightarrow a^{-1} \in R)$$

则称其为除环。

- **例16.** (1)整数环〈I,+,×〉是整环: 因为整数环〈I,+,×〉是交换含幺环(例8(1)),又是 无零因子环(例9)。
 - 但整数环〈 $I,+,\times$ 〉不是除环:因为在整数环〈 $I,+,\times$ 〉中,除幺元1及其负元-1外,其它非零整数 $a\in I(a\neq 0)$ 都没有(乘法)逆元($a-1=1/a\notin I$)。
 - (2)矩阵环〈 $M_{n\times n}$,+,×〉不是整环:因为矩阵环〈 $M_{n\times n}$,+,×〉不是交换环,矩阵的乘法没有交换律(例8(2)),而且还是含零因子环(例10)。
 - 矩阵环〈 $M_{n\times n}$,+,×〉也不是除环:因为矩阵环〈 $M_{n\times n}$,+,×〉中一些非零矩阵(行列式是零)关于矩阵乘法没有逆元(逆矩阵)。

(3) 整数模环 $\langle N_m, +_m, \times_m \rangle$ 当m是素数时是整环:因为整数模环 $\langle N_m, +_m, \times_m \rangle$ 是交换含幺环(例8(3)),并且当m为素数时,又是无零因 子环(例11);并且也是除环(见下面注)。

整数模环 $\langle N_m, +_m, \times_m \rangle$ 当m不是素数时不是整环:因为整数模环 $\langle N_m, +_m, \times_m \rangle$ 当m不是素数时是含零因子环(例11);并且也不是除环 (见下面注)。

(4)X的子集环〈 2^{x} , \oplus , \bigcirc 〉不是整环:因为X的子集环〈 2^{x} , \oplus , \bigcirc 〉是含零因子环(例 12);并且也不是除环(见下面注)......

- (5)多项式环〈P[x],+,×〉是整环:因为多项式环〈P[x],+,×〉是交换含幺环(例8(5)),又是无零因子环(例13)。
 - 但多项式环〈P[x],+,×〉不是除环:因为有非零多项式 $ax \in P[x]$ ($a \ne 0$),关于多项式乘法没有逆元(否则,若 $ax \times q(x) = 1$,则用比较系数法,可得 q(x) = 0,于是又有 $ax \times q(x) = 0$,矛盾)。

(6)模数多项式环〈 $Z_m[x],+_m,\times_m$ 〉当m为素数时是整环:因为模数多项式环〈 $Z_m[x],+_m,\times_m$ 〉是交换含幺环(例8(6)),并且当m为素数时,又是无零因子环(例14)。

模数多项式环〈 $Z_m[x],+_m,\times_m$ 〉当m不是素数时不是整环:因为模数多项式环〈 $Z_m[x],+_m,\times_m$ 〉当m不是素数时,是含零因子环(例14)。

模数多项式环〈 $Z_m[x]$,+ $_m$,× $_m$ 〉无论如何不是除环:因为有非零多项式 $a^x \in Z_m[x]$ (0 < a < m),关于模数多项式乘法没有逆元(否则,若 $a^x \times_m q(x) = 1$,则用比较系数法,可得 $a^x \times_m q(x) = 0$,矛盾)。

(7)多项式模环〈 $Z_p[x:n],+_f,\times_f$ 〉当f为素多项式时是整环:因为多项式模环〈 $Z_p[x:n],+_f,\times_f$ 〉是交换含幺环(例8(7)),并且当f为素多项式时,是无零因子环(例15);并且也是除环(见下面注)。

多项式模环〈 $Z_p[x:n],+_f,\times_f$ 〉当f不是素多项式时不是整环:因为多项式模环〈 $Z_p[x:n],+_f,\times_f$ 〉当f不是素多项式时,是含零因子环(例15);并且也不是除环(见下面注)。

- 注: ●在下面定理4中,将可证:在有限含**么环**中 无零因子⇔(非零元)有**逆**元 ;
 - •而整数模环 $\langle N_m, +_m, \times_m \rangle$,多项式模环 $\langle Z_p[x:n], +_f, \times_f \rangle$ 都是有限含**幺环**。

定理2. 在环〈R,⊕,⊗〉中,无零因子⇔消去律,即 \forall a,b,c∈R且a \neq 0,都有

$$a\otimes b=a\otimes c\Rightarrow b=c$$
; $b\otimes a=c\otimes a\Rightarrow b=c$ 。

[证]. 先证⇒): $\forall a,b,c\in R L a\neq 0$, $a\otimes b=a\otimes c$ $\Rightarrow (a\otimes b)-(a\otimes c)=0$ (两边同时⊕上-(a⊗c)) $\Rightarrow a\otimes (b-c)=0$ (分配律) $\Rightarrow b-c=0$ ($a\neq 0$ 及无零因子) $\Rightarrow b=c$

次证⇐): 用反证法。假设环中有零因子, 因此,

必有一对元素a,b \in R, a \neq 0且b \neq 0,使得a \otimes b=0。但是 a \otimes 0 =0,

于是 $fa\otimes b=a\otimes 0$, 由 $a\neq 0$ 及消去律可得 b=0, 这与已知 $b\neq 0$ 矛盾。

这个矛盾说明假设错误, 环中无零因子。

定理3. 除环是含幺的无零因子环。

- 注: ●因此,除环未必是整环,整环也未必是除环;
 - •除环要成为整环, 差乘法交换律; 整环要成为除环, 差(非零元)有乘法逆元;
- [证].除环是含幺环,因此只须证环无零因子即可。

 $\forall a,b,c \in R$ $\bot a\neq 0$,

 $a \otimes b = a \otimes c$

⇒ b=c (两边同时乘上a-1 (因a≠0))

⇒无零因子 (定理2)。

定理4.在有限含幺环中,无零因子⇔(非零元)有逆元。

[证]. 先证⇒): 因环无零因子,故⊗运算对R\{0}是封闭的,因此〈R\{0},⊗〉是代数系统。于是。 在代数系统〈R\{0},⊗〉中,因R有限,故对任何 $r \in R \setminus \{0\}$,

有i, j∈N,j>i≥1(j-i≥1),使得 rⁱ=r^j

$$\Rightarrow r^j = r^i$$

$$\Rightarrow$$
 r⁻¹= r^{j-i-1} \vee r=e (j-i>1 \vee j-i=1)

即, 非零元有逆元。

次证⇐): 非零元有逆元

⇒ 消去律 (两边同时乘上a-1 (因a≠0))。

⇒无零因子 (定理2)。

注: ●关于消去律、无零因子、非零元有逆元之间的关系,见下图:

§ 6.域

定义1.域(field)

设 $\langle F, \oplus, \otimes \rangle$ 是代数系统, \oplus 和 \otimes 是R上的两个二元运算,若

- (1) 〈F,⊕〉是交换群;
- (2) 〈F\{0},⊗〉是交换群;
- (3) ⊗对⊕满足分配律:对任何 $a,b,c \in F$,都有

$$a\otimes(b\oplus c)=(a\otimes b)\oplus(a\otimes c)$$
;

则称 $\langle F, \oplus, \otimes \rangle$ 是域。

例1.〈Q,+,×〉是域。 称为有理数域。

这里: Q是有理数集, $+,\times$ 分别是普通的有理数的加法运算和乘法运算,则〈 $Q,+,\times$ 〉是域……

例2.〈R,+,×〉是域。 称为实数域。

这里: R是实数集,+,×分别是普通的实数的加法运算和乘法运算,则〈R,+,×〉是域......

例3.〈C,+,×〉是域。 称为复数域。

这里: C是复数集,+,×分别是普通的复数的加法运算和乘法运算,则〈C,+,×〉是域......

例4. $\langle X_1,+,\times \rangle$ 是域。 称为算术分类域。

这里: $X_1 = \{a+b\sqrt{2}: a,b \in Q\}$, $+,\times$ 分别是普通数的加法运算和乘法运算。

包含性: $X_1 \subseteq R$, $X_1 \setminus \{0\} \subseteq R$;

非空性: $X_1 \neq \emptyset$ (因0=0+0 $\sqrt{2} \in X_1$)

$$X_1 \setminus \{0\} \neq \emptyset$$
(因1=1+0 $\sqrt{2} \in X_1 \setminus \{0\}$)

(1) 〈X₁,+〉是交换群;

- ① 封闭性: $\forall a+b\sqrt{2}$, $c+d\sqrt{2} \in X_1$ $(a+b\sqrt{2})+(c+d\sqrt{2})=(a+c)+(b+d)\sqrt{2} \in X_1$;
- ②有逆元: $\forall a+b\sqrt{2} \in X_1$, 有- $(a+b\sqrt{2}) = (-a)+(-b)\sqrt{2} \in X_1$,

使(a+b
$$\sqrt{2}$$
)+((-a)+(-b) $\sqrt{2}$)=0;

故根据§6定理14可知〈 X_1 ,+〉是交换群〈R,+〉的子群。因此,〈 X_1 ,+〉是交换群;

(2) $\langle X_1 | \{0\}, \times \rangle$ 是交换群; 须证它是交换群 $\langle R | \{0\}, \times \rangle$ 的子群。

①封闭性: $\forall a+b\sqrt{2}$ $c+d\sqrt{2} \in X_1\setminus\{0\}$,于是a,b至少有一不为零,c,d至少有一不为零,从而 $(a+b\sqrt{2})\times(c+d\sqrt{2})=(ac+2bd)+(ad+bc)\sqrt{2}\in X_1\setminus\{0\}$

否则 ac+2bd =0, ad+bc =0,由a,b至少有一不为零可反解出c=0,d=0

(因为齐次线性方程组

(否则a,b全为零与a,b至少有一不为零矛盾,或者全不为零且 =a/b是有理数,与其是无理数 矛盾) 而这与c,d至少有一不为零矛盾。

②有逆元: ∀a+b√2 ∈X₁\{0} ,有

$$(a+b\sqrt{2})^{-1} = (a-b\sqrt{2})/(a^2-2b^2) \in X_1 \setminus \{0\}$$

使
$$(a+b\sqrt{2}) \times (a-b\sqrt{2})/(a^2-2b^2) = 1$$
;

故根据§6定理14可知 $(X_1\setminus\{0\},\times)$ 是交换群 $(R\setminus\{0\},\times)$ 的子群。因此, $(X_1\setminus\{0\},\times)$ 是交换群;

(3)×对+满足分配律:由老代数〈R,+,×〉遗传; 所以按定义1知则〈 $X_1,+,×$ 〉是域。

注: \bullet 实际上易证 $\langle X_k, +, \times \rangle$ 都是域。这里 $X_k = \{a + b\sqrt{p_k} : a, b \in Q\}$,其中 p_k 是第k个素数。这正是为什么称此类域为算术分类域。

定理1. 可交换的除环是域。

[证].除环是每个非零元都有(乘法)逆元的含幺环,它与域概念仅差(乘法)交换律。现在正好补齐,所以,可交换的除环是域。

定理2.有限整环是域。

[证].整环是交换含幺的无零因子环,它与域概念仅差每个非零元都有(乘法)逆元。但在有限环的情况下,上节定理4已经证明:

无零因子⇔每个非零元都有(乘法)逆元 因此,有限整环是域。

- **例5.** (1)整数环〈I,+,x〉不是域:因为整数环〈I,+,x〉虽是整环,但不是有限环。实际上,它的非零整数 $a \in I(a \neq 0)$,除幺元1及其负元-1外,都没有(乘法)逆元($a^{-1} = 1/a \notin I$);
 - (2)矩阵环〈M_{n×n},+,×〉不是域:因为它是含零因子环,它的一些非零矩阵(行列式是零)关于矩阵乘法没有逆元(逆矩阵);
 - (3)整数模环 $\langle N_m, +_m, \times_m \rangle$ 当m是素数时是域:因为当m为素数时它是整环,并且又是有限的(|Nm|=m);

整数模环 $\langle N_m, +_m, \times_m \rangle$ 当m不是素数时不是域:因为当m不是素数时,它是含零因子环,因而并非每个非零元都有(乘法)逆元;

(4)X的子集环〈2^X,⊕,△〉不是域:因为它是含零因子环,因而并非每个非零元都有(乘法)逆元;

(5)多项式环〈P[x],+,×〉不是域:因为有非零多项式关于多项式乘法没有逆元;

(6)模数多项式环 $\langle Z_m[x],+_m,\times_m \rangle$ 不是域:因为有非零多项式关于模数多项式乘法没有逆元;

(7)多项式模环〈 $Z_p[x:n],+_f,\times_f$ 〉当f为素多项式时是域:因为它是整环,并且又是有限的;

实际上,对任何多项式 $p(x) \in Z_p[x:n]$,可设

$$p(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + ... + a_1x + a_0$$
 $a_k \in Z_p \ (0 \le k \le n-1)$

因为 $Z_p = \{0,1,2,...,p-1\}$,因而每个系数都有p种选择,故按乘法原理,可组成 p^n 个 $Z_p[x:n]$ 中的多项式,因此 $|Z_p[x:n]| = p^n$,所以 $Z_p[x:n]$ 是有限的;

多项式模环 $\langle Z_p[x:n], +_f, \times_f \rangle$ 当f不是素多项式时不是域:因为当f不是素多项式时,是含零因子环,因而并非每个非零元都有(乘法)逆元。

设 < N_m, +_m, ×_m > 是环,当m=15时, < N_m, +_m, ×_m > 是域。

- A 此命题成立
- B 此命题不成立

环	(I,+ ,×)	(M _{n×n} , ,+,×)	$(N_m, +_m, \times_m)$		(2 ^x ,⊕ ,∩)	(P[x],+, ×)	$(Z_{\mathbf{m}}[x],+_{\mathbf{m}},\times_{\mathbf{m}})$		$(\mathbf{Z}_{\mathbf{p}}[x:\mathbf{n}],+_{f},\times_{f})$	
运算	×	×	\times_{m}		\cap	×	× _m		$ imes_f$	
交换律	有	无	有		有	有	有		有	
幺元	1	Е	$[1]_{\mathrm{m}}$		X	1	1		1	
			m是 素数	m是 合数			m是 素数	m是 合数	f是素 多项式	f非素 多项式
零因子	无	有	无	有	有	无	无	有	无	有
整环	是	不是	是	不是	不是	是	是	不是	是	不是
除环	不是	不是	是	不是	不是	不是	不是	不是	是	不是
域	不是	不是	是	不是	不是	不是	不是	不是	是	不是

§ 7.同余关系(*)

- ●同余关系
- ●商代数
- •积代数
- ●同态图

§ 7.同余关系

定义1.同余关系(congruence relation)

设(X,*,E)是代数系统, *是X上的二元运算, E是X上的等价关系。若E关于*具有替换性, 即

 $(\forall x_1, x_2 \in X) (\forall y_1, y_2 \in X) (x_1 E x_2 \land y_1 E y_2 \Rightarrow x_1 * y_1 E x_2 * y_2)$

则称E是代数系统(X,*)上的同余关系。

例1.(I,+),(I,×)都是代数系统,模m数同余关系为 ∀a,b∈I,a≡b (mod m)⇔(∃k∈I)(a-b=km)

是I上的等价关系,即∀a,b,c∈I

 $a{\equiv}a\ (mod\ m), \qquad \quad a{\equiv}b\ (mod\ m) \Rightarrow b{\equiv}a\ (mod\ m)$

 $a\equiv b \pmod{m} \land b\equiv c \pmod{m} \Rightarrow a\equiv c \pmod{m}$

关于+和×运算都具有替换性,即∀a,b,c,d∈I

 $a\equiv b \pmod{m} \land c\equiv d \pmod{m} \Rightarrow a+c\equiv b+d \pmod{m}$

 $a \equiv b \pmod{m} \land c \equiv d \pmod{m} \Rightarrow a \times c \equiv b \times d \pmod{m}$

所以模m数同余关系是代数系统(I,+)和(I,×)上的同余关系。

- 注: •模n数同余关系是同余关系概念的一个具体实例;
 - •同余关系概念正是模m数同余关系概念的抽象和推广;

定义2.商代数(quotient algebras)

设(X,*,E)是代数系统,*是X上的二元运算,E是X上的同余关系, $X/E=\{[x]_E: x\in X\}$ 是X上E的商集,其中 $[x]_E=\{y: y\in X \land yEx\}$ 。定义X/E上的二元运算 \otimes 如下:

$$\otimes$$
 : $X/E \times X/E \rightarrow X/E$

$$\forall x, y \in X, [x]_{E} \otimes [y]_{E} = [x*y]_{E}$$

则 $(X/E, \otimes)$ 是代数系统, 称 $(X/E, \otimes)$ 为由(X,*)上同余关系E诱导出的商代数。

注: ●要证明⊗是X/E上的二元运算,应证明如下两点:

(1)后者唯一: $\forall x_1, x_2 \in X, \forall y_1, y_2 \in X$

$$[x_1]_E = [x_2]_E \wedge [y_1]_E = [y_2]_E$$

 $\Rightarrow x_1 E x_2 \land y_1 E y_2$

(第四章 § 5定理1(2))

 $\Rightarrow x_1 * y_1 E x_2 * y_2$ (E是同**余**关系,**具**有**替换**性)

⇒ $[x_1*y_1]_E$ = $[x_2*y_2]_E$ (第四章§5定理1(2))

$$\Rightarrow [x_1]_E \otimes [y_1]_E = [x_2]_E \otimes [y_2]_E ;$$

(2)**封**闭性: $\forall [x]_E, [y]_E$

$$[x]_E, [y]_E \in X/E$$

 $\Rightarrow x,y \in X$

 $\Rightarrow x^* y \in X$

(因(X,*)是代数系统,*运算具有封闭性)

 $\Rightarrow [x^* y]_E \in X/E$

 $\Rightarrow [x]_{E} \otimes [y]_{E} \in X/E \qquad (\boxtimes [x]_{E} \otimes [y]_{E} = [x*y]_{E});$

•⊗具有封闭性已经证明了(X/E,⊗)是代数系统。

例2. (N_m,+_m)是(I,+)上模m数同余关系诱导出的商代数。

$$N_{m} = I/ \equiv_{m} = \{[0]_{m}, [1]_{m}, [2]_{m}, ..., [m-2]_{m}, [m-1]_{m}\}$$

$$\forall [i]_{m}, [j]_{m} \in N_{m}$$

$$[i]_{m} +_{m} [j]_{m} = [(i+j) \mod m]_{m} .$$

例3. (N_m, x_m) 是(I, x)上模m数同余关系诱导出的商代数。

$$N_{m} = I/ \equiv_{m} = \{[0]_{m}, [1]_{m}, [2]_{m}, ..., [m-2]_{m}, [m-1]_{m}\}$$

$$\forall [i]_{m}, [j]_{m} \in N_{m}$$

$$[i]_{m} \times_{m} [j]_{m} = [(i \times j) \mod m]_{m} .$$

定理1. 代数系统(X,*)满同态于由其上的同余关系E诱导出的商代数(X/E, \otimes)。 [证].建立自然映射(典范映射 canonical mapping):

 $h:X \to X/E$

 $\forall x \in \mathbf{X}, \mathbf{h}(x) = [x]_{\mathbf{E}}$

于是有

(1)后者唯一: $\forall x \in X$, 若 $\exists [y_1]_E$, $[y_2]_E \in X/E$, 使得

$$h(x)=[y_1]_{\mathbb{E}} \wedge h(x)=[y_2]_{\mathbb{E}}$$

$$\Rightarrow y_1 Ex \land y_2 Ex$$
 (定义)

$$⇒y_1Ey_2$$
 (E是等价关系,具有传递性)

$$\Rightarrow [y_1]_E = [y_2]_E \quad (第二章 § 5定理1(2))$$

(2)同态公式:
$$\forall x, y \in X$$
, $h(x*y)=[x*y]_E=[x]_E \otimes [y]_E=h(x) \otimes h(y)$

(3)满射: $\forall [x]_{E} \in X/E, \exists x \in X,$ 使得 $h(x) = [x]_{E}$ 。

注: •由此而得的同态函数h称为自然同态(natural homomorphism)。

定理2. 设代数系统(X,*)满同态于代数系统(Y,o)。即有同态函数 $f: X \rightarrow Y$,且 $\Re(f)=Y$ 。现在由f在X上建立等价关系E: $\forall x, y \in X$

$$xEy \iff f(x)=f(y)$$

则(1) E是X上的同余关系;

(2) (Y, o)同构于商代数(X/E, ⊗)。

[证].只证(2) 建立映射 $g:X/E\rightarrow Y$

$$\forall [x]_E \in X/E$$
, $g([x]_E) = f(x)$

则有(1) 双射:

(a)后者唯一:
$$\forall [x]_{E}, [y]_{E} \in X/E$$
,

$$[x]_{E} = [y]_{E}$$

$$\Rightarrow f(x)=f(y)$$

$$\Rightarrow$$
 g([x]_E)= g([y]_E)

(b)单射: $\forall [x]_E, [y]_E \in X/E$,

$$g([x]_E) = g([y]_E)$$

 $\Rightarrow f(x) = f(y)$
 $\Rightarrow x \to y$ (第四章 § 5定理1(2))
 $\Rightarrow [x]_E = [y]_E$;
(c)满射:对于任何 $y \in Y$,由于 f 是满射,故知
存在着 $x \in X$,使 $f(x) = y$,从而有 $[x]_E \in X/E$,使 $g([x]_E) = f(x) = y$;

(2)同态公式:
$$\forall [x]_{E}, [y]_{E} \in X/E$$
,
$$g([x]_{E} \otimes [y]_{E}) = g([x*y]_{E})$$

$$= f(x*y)$$

$$= f(x)^{O}f(y) \quad (f是同态函数)$$

$$= g([x]_{E})^{O} g([y]_{E}) .$$

定义3.积代数(product algebras)

两个代数系统(X,*)和(Y,O)的积代数定义为如下的代数系统:

$$(X,*)\times(Y,O)=(X\times Y,\otimes)$$

使得 $\forall (x1, y1), (x2, y2) \in X \times Y$,

$$(x1, y1) \otimes (x2, y2) = (x1*x2, y1 \circ y2)$$
.

注: ●积代数⊗运算的**封**闭性由两个代数系统的*, O运算的**封**闭性来**保**证; 因此**积**代数 (X×Y, ⊗) 显然是代数系统。

```
例2. (N_2, +_2, [0]_2)和 (N_3, +_3, [0]_3)的积代数 (N_2 \times N_3, \oplus, ([0]_2, [0]_3)),
其中
```

$$\begin{split} &N_2\times N_3 = \{([0]_2,[0]_3),([1]_2,[1]_3),([0]_2,[2]_3),\ ([1]_2,[0]_3),([0]_2,[1]_3),([1]_2,[2]_3)\}\\ &\forall\ ([a]_2,[b]_3)\,,\,([c]_2,[d]_3)\in N_2\times N_3\\ &([a]_2,[b]_3)\oplus ([c]_2,[d]_3)\\ &=([(a+c)\ mod\ 2]_2,[(b+d)\ mod\ 3]_3)\quad . \end{split}$$