

Software für Industrie 4.0 (Vorlesung & Übung)

Einführung in die Automatisierungstechnik

Technischer Prozess

Definition nach [Lauber 1999]:

Ein **technischer Prozess** ist ein Vorgang, durch den **Materie, Energie oder Information in ihrem Zustand verändert** wird.

Diese Zustandsänderung kann beinhalten, dass ein Anfangszustand in einen Endzustand überführt wird.

Technischer Prozess (Beispiele)

Anfangszustand	Technischer Prozess	Technisches System	Endzustand
niedrige Raumtemperatur	Beheizung eines Wohnhauses	Ölheizungsanlage	Erhöhte Raumtemperatur
Verschmutzte Wäsche	Waschvorgang	Waschmaschine	saubere Wäsche
unsortierte Pakete	Transport- und Verteilvorgänge	Paketverteilanlage	nach Zielorten sortierte Pakete
fossile oder Kernbrennstoffe	Energie-Umwandlungs- und Erzeugungsvorgänge	Kraftwerk	elektrischer Strom
Einzulagernde Teile	Lagervorgänge	Hochregallager	zu Kommissionen zusammengestellte Teile
Zug in Ort A	Verkehrsablauf	Zug	Zug in Ort B
ungeprüftes Gerät	Prüfabläufe	Prüffeld	geprüftes Gerät
Teile ohne Bohrung	Bohrvorgang	Bohrmaschine	Teile mit Bohrung
Schadstoffe in der Luft	Schadstoffüberwachung	System zur Schadstoff- überwachung der Luft	Informationen über Schadstoff- konzentrationen werden in der Überwachungszentrale angezeigt

Quelle: [Lauber 1999]

Technischer Prozess

Definition nach [DIN 66201]:

Ein Prozess ist eine Gesamtheit von aufeinander einwirkenden Vorgängen in einem System, durch die Materie, Energie oder Information umgeformt oder gespeichert werden.

Ein **technischer Prozess** ist ein Prozess, dessen physikalische Größen mit **technischen Mitteln** erfasst und beeinflusst werden.

Technisches System mit einem technischem Prozess

Technisches System (Beispiel)

Klassifizierungen für technische Systeme

- nach Art des dominierenden Vorgangs:
 - Fließprozess: Kontinuierlicher Prozessablauf
 - Batchprozess: Diskontinuierlicher (sequentieller) Prozessablauf
 - Stückgutprozesse: Objektbezogene (diskontinuierliche) Vorgänge

Eine klare Unterscheidung ist nicht immer möglich.

- nach Art des umgeformten oder transportierten Mediums
 (z.B. Materialprozesse, Energieprozesse, Informationsprozesse)
- nach Art der Einwirkung (z.B. Erzeugungsprozesse, Verteilungsprozesse, Aufbewahrungsprozesse)
- nach Art der stofflichen Wandlung
 (z.B. verfahrenstechnische/fertigungstechnische Prozesse)

Zuordnung von Vorgängen zu Produktionsprozessen

Technischer Prozess	Typen von Vorgängen
Energietechnische Prozesse	kontinuierliche Vorgänge, sequenzielle Vorgänge
Verfahrenstechnische Prozesse	kontinuierliche Vorgänge, sequenzielle Vorgänge
Fertigungstechnische Prozesse	kontinuierliche Vorgänge, sequenzielle Vorgänge, objektbezogene Vorgänge
Fördertechnische Prozesse	kontinuierliche Vorgänge, sequenzielle Vorgänge, objektbezogene Vorgänge

Technische Prozesse können mehrere Vorgänge umfassen.

Ein Vorgang kann ein technischer Prozess sein.

Beispiele

- Erzeugung elektr. Energie in einem Turbogenerator
 - Kontinuierliche Vorgänge
 - Anfahren des Prozesses als sequenzieller Vorgang
- Chargenprozesse
 - Einzelvorgänge sind kontinuierliche Prozesse
 - Aufeinanderfolge der Einzelvorgänge ist ein sequenzieller Vorgang
- Herstellung eines Drehteils
 - Transportvorgang eines Rohlings ist ein objektbezogener Vorgang
 - Fertigungsablauf wie Rohling einspannen, Reitstock vorfahren, usw. ist ein sequenzieller Vorgang
 - Zerspanungsvorgang beim Abdrehen ist ein kontinuierlicher Vorgang

Automatisierungstechnik

- Automatisierung nach [DIN 19233] (engl. Automation): "Das Ausrüsten einer Einrichtung, so dass sie ganz oder teilweise ohne Mitwirkung des Menschen bestimmungsgemäß arbeitet."
 - Erfassung des Zustandes/Verlaufes von dynamischen Prozessen und
 - deren gezielte Beeinflussung derart,
 - dass sie vorgegebene Aufgaben und Funktionen selbsttätig erfüllen.
- Prozessautomatisierung: Automatisierung technischer Prozesse
 - → Gegenstand der Automatisierungstechnik
- Nach Art der zu automatisierenden technischen Prozesse wird unterschieden in
 - Verfahrensprozess-Automatisierung (Automatisierung verfahrenstechnischer Anlagen)
 - Fertigungsprozess-Automatisierung (Fertigungsautomatisierung)

Aufbau eines automatisierten Systems

Automatisiertes Gesamtsystem:

- Technisches System mit dem zugrundliegenden technischem Prozess
- Automatisierungssystem
 (Rechner- und Kommunikationssystem)
- Bedienpersonal

Automatisierungsgrad

- Der Nutzen einer Automatisierung hängt vom technischen Prozess und den Rahmenbedingungen (z.B. Wirtschaftlichkeit) ab.
- Der Automatisierungsgrad beschreibt den Umfang der in die Automatisierung einbezogenen Vorgänge
 - Bandbreite: Keine Automatisierung → Vollautomatischer Betrieb

Rechnereinsatzarten

- Open-Loop-Betrieb (offen prozessgekoppelter Betrieb)
 für einen mittleren Automatisierungsgrad
- Closed-Loop-Betrieb (geschlossener prozessgekoppelter Betrieb) für einen hohen Automatisierungsgrad

Open-Loop-Betrieb eines Rechnersystems

Universität Augsburg University

Closed-Loop-Betrieb eines Rechnersystems

Universit Augsburg Universit

Produktautomatisierung vs. Anlagenautomatisierung

Produktautomatisierung

- Automatisierte Gesamtsysteme, bei denen der technische Prozess in einem Gerät oder einer einzelnen Maschine abläuft.
- Beispiele: Heizungssyteme, Waschmaschinen, Werkzeugmaschinen

Anlagenautomatisierung

- Automatisierte Gesamtsysteme, bei denen der technische Prozess aus einzelnen Teilvorgängen (Teilprozessen) besteht, die auf größeren, z.T. auch räumlich ausgedehnten technischen Anlagen ablaufen.
- Beispiele: Gebäudetechnische Anlagen, Kraftwerksanlage, Hochregallager,
 Fertigungstechnische Anlagen

Produktautomatisierung

• Kennzeichen der Produktautomatisierung:

- Technischer Prozess in einem Gerät oder einer Maschine
- Dedizierte Automatisierungsfunktionen
- Automatisierungscomputer in Form von Mikrocontrollern oder SPS
- Wenige Sensoren und Aktoren
- Automatisierungsgrad 100%, Online/Closed-loop Betrieb
- Sehr große Stückzahlen (Serien- oder Massenprodukte)
- Engineering- und Softwarekosten spielen eine untergeordnete Rolle, da sie durch die Stückzahl zu dividieren sind

Struktur einer Produktautomatisierung

Hierarchische Struktur einer Produktautomatisierung

Anlagenautomatisierung

Kennzeichen der Anlagenautomatisierung:

- Technischer Prozess in einer oft räumlich ausgedehnten industriellen Anlage
- Umfangreiche und komplexe Automatisierungsfunktionen
- SPS-, PC- oder Prozessleitsysteme als Automatisierungs-Computersysteme
- Sehr viele Sensoren und Aktoren
- Mittlerer bis hoher Automatisierungsgrad
- Einmalige bzw. sehr spezielle Systeme
- Die Engineering- und Softwarekosten sind für die Gesamtkosten entscheidend

Struktur einer Anlagenautomatisierung

Engineering

Quelle: [Lauber 1999]

Anlagenautomatisierung

Quelle: https://www.youtube.com/watch?v=TxQLwAoCmfE

BESTANDTEILE EINES AUTOMATISIERUNGSSYSTEMS

Bestandteile eines Automatisierungssystems

Sensoren

- Erfassung von Informationen über den aktuellen Prozesszustand
 - Erfassung analoger physikalischer Größen
 - Umformung in elektrische bzw. optische Signale
- Messwertverarbeitung
 - Erfassung und Digitalisierung mit ggf. analoger Filterung
 - Linearisierung und Skalierung
 - Signalübertragung in Schaltraum
- Beispiele: Druck, Temperatur, Drehzahl, Durchfluss, Füllstand

Aktuatoren

- Umsetzung von Steuerungsinformationen zur Beeinflussung von Prozessgrößen
 - Erzeugung der Stellgrößen
 - Meist durch Stellventile (Stellgeräte) oder Antriebe
- Art der Verstellung
 - Stetig (analog bzw. kontinuierlich) mit linearer oder modifizierter Kennlinie
 - Binär (schaltend bzw. diskontinuierlich) direkt oder invertiert
- Beispiele: Relais, Magnete, Ventile, Stellmotoren

Kommunikationssysteme bei der Produktautomatisierung

• "Einfache" Produkte

- Wenige Sensoren und Aktoren
- Kurze Leitungen
- Beispiele: Waschmaschinen, Kaffeemaschine, etc.

Bild: BSH

• "Komplexe" Produkte

- Kommunikation zwischen Teilsystemen über Bus-System
- Typische Bus-Systeme: CAN, Flex Ray, etc.
- Beispiele: Automobil

Quelle: [Weyrich 2015]

Kommunikationssysteme bei der Anlagenautomatisierung

- Viele Sensoren und Aktoren weit verteilt
- Viele Automatisierungscomputer weit verteilt
- Zusätzliche Anforderungen:
 - Eigensicherheit bzgl. Explosionsschutz
 - Redundanz, Ausfallsicherheit
- Kommunikationsaufgaben auf mehreren Ebenen
 - Fabrik-Bus
 - Anlagen-Bus (Prozess-Bus)
 - Feld-Bus (prozessnah)

Rechnerhardware: Übersicht

- In einem Automatisierungssystem einsetzbare Rechner müssen folgende Eigenschaften aufweisen:
 - Erfüllung der Echtzeitbetrieb-Anforderungen, d.h. zeitgerechte Erfassung,
 Verarbeitung und Ausgabe von Prozessdaten
 - Möglichkeiten zur Ein-/Ausgabe von Prozess-Signalen (direkt oder über Kommunikationssystem) zur Prozessankopplung
 - Effektive Verarbeitung von Zahlen, Zeichen und Bits

Arten von Automatisierungscomputer

- Speicherprogrammierbare Steuerungen (SPS)
- Mikrocontroller
- (Industrielle) Personal Computer

Rechnerhardware: Speicherprogrammierbare Steuerung

- Speicherprogrammierbare Steuerungen (SPS, engl.: *Programmable Logic Controller, PLC*) können je nach Anwendungsfall unterschiedlich konfiguriert werden:
 - Netzteil
 - Zentralbaugruppe
 - Konfigurierbare I/O-Module
- Programmierung erfolgt in standardisierten Sprachen [DIN 61131]
 - Zielgruppe: Anwender ohne Informatik-Studium, Elektriker
 - Beispiel: Verknüpfung binärer Signale in einfachen Darstellungen beschreiben
 - Kontaktplan (abgeleitet aus dem Stromlaufplan)
 - Funktionsplan (abgeleitet aus dem Logikplan)
- Vorteile:
 - Einsatz von Geräten mit Zertifizierungen (z.B. EMV, sicherheitsgerichtete Systeme)
 - Proprietärer Hardware mit oft langfristigen Zusagen für die Ersatzteillieferung

Rechnerhardware: Mikrocontroller

- Hochintegrierte Bausteine für den Einsatz in Massenprodukten (z.B. in der Produktautomatisierung)
- Aufbau
 - Standard-Mikroprozessor
 - Datenspeicher/ Programmspeicher
 - Bus-Schnittstellen (z.B. CAN, SPI, I²C)
 - Prozess-Signal-Schnittstellen
- Programmierung z.B. über Assembler, C, C++
- Vorteile
 - Extrem niedriger Preis
 - Hohe Anforderungen bezüglich Umgebungsbedingungen
 - Hohe Zuverlässigkeit und Lebensdauer

Mikrocontroller als Single-Board-Computer (z.B. Arduino, Rasberry Pi)

Rechnerhardware: Industrie-PCs

- Industrie-PCs sind spezielle Personal Computer, die für raue Umgebungsbedingungen ausgelegt sind:
 - Temperaturschwankungen
 - Stöße und Erschütterungen
 - Staub und Feuchtigkeit
 - Elektrische oder elektromagnetische Störungen
- Verwendung eines Echtzeitbetriebssystems

 (entweder als einziges Betriebssystem oder zusätzlich zu einem Standard-Betriebssystem)
- Programmierung in Hochsprache (C++, Java, C#)
- Einsatzgebiete von Industrie-PCs:
 - Prozess-Visualisierung
 - Prozessauswertung und -überwachung
 - Übergeordnete Steuerungsaufgaben (Leitstandsaufgaben)
 - Robotersteuerung oder CNC-Steuerung

Echtzeitsysteme

• Echtzeitbetrieb nach [DIN 44300]:

Echtzeitbetrieb ist der Betrieb eines Rechnersystems, bei dem Programme zur Verarbeitung anfallender Daten **ständig betriebsbereit** sind, derart, dass die **Verarbeitungsergebnisse** innerhalb einer **vorgegebenen Zeitspanne verfügbar** sind. Die Daten können je nach Anwendungsfall nach einer zufälligen, zeitlichen Verteilung oder zu bestimmten Zeitpunkten auftreten.

• Anforderungen an Echtzeitsysteme:

- Rechtzeitigkeit: zur richtigen Zeit reagieren
- Gleichzeitigkeit: auf mehrere Dinge gleichzeitig reagieren
- Verlässlichkeit: zuverlässig, sicher, verfügbar
- Vorhersehbarkeit: alle Reaktionen müssen planbar und deterministisch sein

Echtzeitsysteme

- Harte Echtzeitsysteme:
 Einhaltung von strengen Zeitschranken (Deadlines) ist unabdingbar
- Weiche Echtzeitsysteme: Systeme bei denen eine Verletzung von Zeitschranken toleriert werden kann.

Universi Augsbur Universi

Prozessperipherie

• Prozessperipherie:

Anschluss von Sensoren und Aktoren an das Automatisierungssystem

• Ein-/Ausgabeschnittstellen:

Es existiert eine 2-Wege-Kommunikation bei der Übertragung von Prozess-Signalen zwischen dem technischen Prozess und dem Automatisierungssystem:

- Prozess-Signalausgabe: Ansteuerung von Stellgliedern
- Prozess-Signaleingabe: Prozessgrößenerfassung

Prozessperipherie: Realisierung

Direkter Anschluss über Leitungsbündel

- Einzelne Prozess-Signale sternförmig über Mehraderleitungen von den Sensoren zum Automatisierungssystem
- Prozessdatenaufbereitung im Computersystem

Einsatz in Produktautomatisierung, da kurze Leitungen zum Mikrocontroller

Anschluss über Feldbussystemen

- Verbindung über Buskoppler bzw. E/A-Knoten zum Automatisierungscomputersystem
- Prozessdatenaufbereitung im Computersystem

Anschluss über Sensor-/Aktor-Bus-System

- Direkter Anschluss des Sensors/Aktors an Bussystem
- Prozessdatenaufbereitung im Sensor

Einsatz in Anlagenautomatisierung zur Reduzierung der Verkabelung und Installationskosten

Prozessperipherie: Realisierung

Quelle: [Weyrich 2015]

Automatisierungssoftware

Automatisierungssoftware:

Menge aller Programme, die zur Ausführung der Automatisierungsaufgaben erforderlich sind, inklusive ihrer Dokumentation

Trennung zwischen ausführenden und organisatorischen/verwaltenden

Aufgabenbereichen:

Automatisierungssoftware

Anwenderprogramme

Prozessgrößenerfassung

Prozessüberwachung

Prozesssteuerung

Prozessregelung

Prozessoptimierung

Prozessschutz und -sicherung

Systemprogramme

Organisation des Ablaufs der Anwenderprogramme

Steuerung der Peripheriegeräte

Organisation des Datenverkehrs

Mensch-Rechner-Interaktion

Übersetzungs-Programme

Laufzeit-Programme

Betriebssystem

STRUKTUR VON AUTOMATISIERUNGSSYSTEMEN

Ebenen der Automatisierungspyramide

Quelle: [Weyrich 2015]

Ebenen der Automatisierungspyramide

Ebenen eines Unternehmens	Automatisierungs- funktionen	
Unternehmens- führungs-Ebene	Kostenanalysen, statistische Auswertungen	
Produktions-/ Betriebsleitebene	Betriebsablaufplanung Kapazitäts-Optimierung Auswertung der Prozess- ergebnisse	
Prozess- leitebene	Prozess-Überwachung, An- und Abfahren, Störungsbehandlung, Prozessführung, Prozess-Sicherung	
Prozessgrößen- Ebene	Messen, Steuern, Stellen, Regeln, Verriegeln, Not- Bedienen, Abschalten, Schutz	
1 1 1 1		
Feldebene	Erfassung und Beeinflussung von Prozessgrößen mit Sensoren und Aktoren	

Enterprise Resource Planning (ERP)

Manufacturing Execution System (MES)

Supervision Control And Data Acquisition (SCADA)

Programmable Logic Control (PLC)

Universität Augsburg University

Ebenen der Automatisierungspyramide

- Betriebsleitebene zur Durchsetzung der übergeordneten Planungsvorgaben der Unternehmensleitebene
 - MES-Systeme dienen der zeitnahen Lenkung und Kontrolle des Prozesses in Echtzeit.
 - Datenerfassung und Datenaufbereitung.
 - Kennzahlenermittlung, wie z.B. Verfügbarkeit, Verbrauch von Hilfs- und Betriebsstoffen
- Von der Prozessleitebene aus wird der Prozess bedient und beobachtet:
 - In SCADA-Systemen werden die Anlagenzustände visualisiert, Alarme angezeigt sowie Prozessdaten aufgezeichnet und als Trendkurven angezeigt.
 - Zudem werden Sollwerte vorgegeben und es erfolgen notwendige Handeingriffe durch das Bedienpersonal.
- In der **Steuerungsebene** wird die Prozesslogik in Automatisierungsstationen umgesetzt.
 - Sensoren aus dem Feld melden Messwerte an die Steuerungen.
 - In den Steuerungen erfolgt die logische Verknüpfung der Signale und abhängig von den Verknüpfungsergebnissen werden die Aktoren im Feld angesteuert.
 - Die Ergebnisse der logischen Verknüpfungen und die Informationen aus der Feldebene werden an die Prozessleitebene gemeldet und dort visualisiert.

Zykluszeit vs. Datenmenge

Unternehmensführungsebene:

Produktions-/Betriebsleitebene:

Prozessleitebene:

Prozessgrößenebene:

Universi Augsbur Universi

Verfügbarkeit vs. Verarbeitungsleistung

Anforderungen an Verfügbarkeit und Verarbeitungsleistung

Universität Augsburg University

Prozessleitsystem

- Bei **Prozessleitsystemen** (PLS, engl.: *Distributed Control System, DCS*) handelt es sich um dezentrale Rechnersysteme, die Produktionsprozesse von mehreren Ebenen aus überwachen:
 - Messwerterfassung (Sensorik)
 - Prozesssteuerung (SPS, Aktorik)
 - Bedienen & Beobachten (SCADA)

Bestandteile eines PLS:

- Anzeige- und Bedienkomponente (ABK):
 Visualisierung, Bedienen, Melden, Dokumentieren
- Prozessnahe Komponenten (PNK):
 Erfassen, Regeln, Steuerung, Überwachen
- Systemkommunikation/System-Bus
- Engineering-Stationen (ES):
 Konfiguration, Programmierung und Wartung des PLS

Herstellerspezifische Lösungen (z.B. SIEMENS PCS 7)

Prozessleitsystem (Schema)

Prozessleitsystem (Beispiel)

& Systems

Quelle: Siemens

Empfohlene und weiterführende Literatur

- [Lauber 1999] Rudolf Lauber, Peter Göhner: "Prozessautomatisierung 1"; 1999; Springer
- [DIN 19233] "Leittechnik Prozeßautomatisierung Automatisierung mit Prozeßrechensystemen, Begriffe"; DIN 19233:1996-07
- [DIN 44300] "Informationsverarbeitung Begriffe Allgemeine Begriffe"; DIN 44300-1:1988-11
- [DIN 61131] "Speicherprogrammierbare Steuerungen Teil 3: Programmiersprachen" (IEC 61131-3:2013); Deutsche Fassung EN 61131-3:2013
- [DIN 66201] "Prozeßrechensysteme; Begriffe"; DIN 66201-1:1981-05

