Министерство образования и науки Российской Федерации (МИНОБРНАУКИ РОССИИ) ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ТГУ) Институт прикладной математики и компьютерных наук Кафедра защиты информации и криптографии

КУРСОВАЯ РАБОТА

БИБЛИОТЕКА ДЛЯ РАБОТЫ С БУЛЕВЫМИ ФУНКЦИЯМИ ДЛЯ ЯЗЫКА ПРОГРАММИРОВАНИЯ LYAPAS

Муругов Михаил Алексеевич

Рук	оводите	ЛЬ
кан	д. физм	мат. наук, доцент
		_И.А.Панкратова
«	>>>	г.
Сту,	дент гру	ппы № 1155
		М.А.Муругов

ОГЛАВЛЕНИЕ

Введение
1 Описание алгоритмов на математическом языке
1.1 Принадлежность булевой функции к классу T^0
1.3 Преобразование Мёбиуса булевой функции
1.4 Принадлежность булевой функции к классу линейных булевых функций
2 Программные реализации
2.1
3 Экспериментальные данные
Заключение
Список литературы
Приложения

введение

Целью этой курсовой работы было написание библиотеки для работы с булевыми функциями для языка программирования LYaPAS. В дальнейшем планируется, что эта библиотека будет использоваться для реализации криптографических алгоритмов и прочих нужд.

ОПИСАНИЕ АЛГОРИТМОВ НА МАТЕМАТИЧЕСКОМ ЯЗЫКЕ

Принадлежность булевой функции к классу T^0

Определение. Булева функция *сохраняет константу* 0 (*принадлежит классу* T^0), если на наборе из всех нулей функция принимает значение нуль.

Алгоритм:

Вход:
$$f(x_1, x_2, ..., x_n)$$
 – булева функция

Выход: "f принадлежит классу T^0 ?"

Шаг 1) Если
$$f(0,0,...,0) = 0$$
, то ответ "Да"

Иначе ответ "Нет"

Принадлежность булевой функции к классу T^1

Определение. Булева функция *сохраняет константу 1* (*принадлежит классу T^1*), если на наборе из всех единиц функция принимает значение единица.

Алгоритм:

Вход:
$$f(x_1, x_2, ..., x_n)$$
 – булева функция

Выход: "f принадлежит классу T^1 ?"

Шаг 1) Если
$$f(1, 1, ..., 1) = 1$$
, то ответ "Да"

Иначе ответ "Нет"

Преобразование Мёбиуса булевой функции

Определение. Положительной конъюнкцией называется элементарная конъюнкция, не содержащая инверсий переменных. Договоримся обозначать положительную конъюнкцию через K^+ .

Определение. Полиномом Жегалкина, или алгебраической нормальной формой (АНФ), булевой функции $f(x_1, x_2, ..., x_n)$ называется дизьюнкция с исключением различных положительных конъюнкций переменных из множества $X = \{x_1, ..., x_n\}$, то есть формула вида $P = K_1^+ \oplus ... \oplus K_p^+$ задающая функцию $f(x_1, x_2, ..., x_n)$.

Определение. Преобразованием Мёбиуса называется функция μ : $P_2(n) \to P_2(n)$, где $P_2(n)$ – множество всех булевых функций от n переменных. С помощью преобразования Мёбиуса решается задача построения АНФ булевой функции, и вычислить его значения для функции f(x) можно по формуле $\mu(f(a)) = \bigoplus_{x \le a} f(x)$. Рассмотрим возможный способ выполнения этого вычисления.

///Убрать способ? Написать сразу рекурсивный алгоритм?///

Построим матрицу отношения предшествования булевых векторов $M_{2^n} = \|m_{ax}\|$, строкам и столбцам которой сопоставлены булевы векторы длины n и $m_{ax} = \begin{cases} 1, \text{если } x \leq a \\ 0, \text{иначе} \end{cases}$

Нетрудно убедиться, что $M_{2^n} = \left\| \begin{matrix} M_{2^{n-1}} & 0 \\ M_{2^{n-1}} & M_{2^{n-1}} \end{matrix} \right\|^{(*)}$ и $\mu(f) = M_{2^n} \cdot f$, где f — векторстолбец значений функции f. Если f_0 и f_1 — соответственно младшая и старшая половины вектора значений f, то по формуле (*) получим следующую рекурсивную формулу:

$$M_{2^{n}} \cdot f = \left\| \begin{array}{cc} M_{2^{n-1}} & 0 \\ M_{2^{n-1}} & M_{2^{n-1}} \end{array} \right\| \cdot \left\| \begin{array}{c} f_{0} \\ f_{1} \end{array} \right\| = \left\| \begin{array}{c} M_{2^{n-1}} \cdot f_{0} \\ M_{2^{n-1}} \cdot (f_{0} \oplus f_{1}) \end{array} \right\|.$$

На «дне» рекурсии для функции от одной переменной

$$\mu(f) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} f(0) \\ f(1) \end{bmatrix} = \begin{bmatrix} f(0) \\ f(1) \oplus f(1) \end{bmatrix}$$

На основании этого способа преобразование Мёбиуса реализовано программно.

Принадлежность булевой функции к классу линейных булевых функций

Определение. *Длиной* булева вектора назовем количество его компонент, а *весом* вектора – количество компонент, равных единице

Длину булева вектора a в дальнейшем будем обозначать l(a). Запись l(f), где f — булева функция, будет обозначать длину вектора её значений.

Вес булева вектора a в дальнейшем будем обозначать w(a). Запись w(f), где f – булева функция, будет обозначать вес вектора её значений.

Определение. Длиной полинома Жегалкина назовем количество конъюнкций в полиноме, а его *степенью* – наибольший из рангов конъюнкций, входящих в полином.

Определение. Полином Жегалкина называется *линейным*, если его степень не превышает единицы.

Определение. Булева функция называется *линейной* (*принадлежит классу* L), если ее полином Жегалкина линеен.

Алгоритм:

Вход:
$$f(x_1, \dots, x_n)$$
 — булева функция

Выход: "
$$f$$
 – линейна?"

Шаг 1)
$$g := \mu(f)$$

Шаг 2)
$$g(0, ..., 0) := 0$$

Шаг 3) Для всех векторов a таких, что l(a) = n и w(a) = 1:

Шаг 3.1)
$$g(a) := 0$$

Шаг 4) Если
$$w(g) = 0$$
, то ответ "Да"

Иначе ответ "Нет"

Принадлежность булевой функции к классу самодвойственных булевых функций

Определение. Булева функция $f(x_1,...,x_n)$ называется двойственной булевой функции $g(x_1,...,x_n)$, если она получена из $g(x_1,...,x_n)$ инверсией всех аргументов и самой функции, то есть $f(x_1,...,x_n) = \bar{g}(\overline{x_1},...,\overline{x_n})$.

Определение. Булева функция $f(x_1,...,x_n)$ самодвойственна (принадлежит классу S), если она равна двойственной себе функции, то есть $f(x_1,...,x_n) = \bar{f}(\overline{x_1},...,\overline{x_n})$.

////Нужно ли вводить определение для reverseBits?///

Алгоритм:

Bход: $f(x_1, ..., x_n)$ – булева функция

Выход: "f – самодвойственна?"

Шаг 1) f_0 – младшая половина вектора значений f

 f_1 – старшая половина вектора значений f