Structural Optimization for Large-Scale Problems

Lecture 6: Optimization in Relative Scale

Yurii Nesterov

Minicourse: November 15, 16, 22, 23, 2024 (SDS, Shenzhen)

Outline

Complexity of Convex Optimization

Conic unconstrained minimization problem

Subgradient method

Smoothing for relative scale

Rounding ellipsoids

Application example

Complexity of Convex Optimization

Problem: $\min_{x} \{ f(x) : x \in Q \subseteq \mathbb{R}^n \} \stackrel{\text{def}}{=} f^*,$

with convex f and Q. Assume $\exists x^* : f(x^*) = f^*$.

Solution: $\bar{x} \in Q$: $f(\bar{x}) - f^* \le \epsilon$.

Model of the problem:

1. Black box. $\hat{x} \in Q \Rightarrow \boxed{\text{Oracle}} \Rightarrow f(\hat{x}), f'(\hat{x}).$

Analytical complexity		
	Problem Class	Calls of Oracle
(a)*	$n o \infty, \ f$ is Lipschitz	$pprox O\left(rac{L^2R^2}{\epsilon^2}\right)$
(b)	$n o \infty, \ f'$ is Lipschitz	$pprox O\left(\sqrt{rac{LR^2}{\epsilon}} ight)$
(c)*	$n << \infty$, f is Lipschitz	$pprox O\left(n\ln\frac{LR}{\epsilon}\right)$

where L is the Lipschitz constant and $R = ||x_0 - x^*||$.

Interior-Point Methods

- $f(x) = \langle c, x \rangle.$
- ▶ Set Q is described by a computable self-concordant barrier $F(\cdot)$ with parameter ν .

Complexity: $O(\sqrt{\nu} \ln \frac{1}{\epsilon})$ (*) iterations of a Newton-type method.

Note:

- ▶ For any Q there exists $F(\cdot)$ with $\nu = O(n)$.
- From the view point of Black-Box Theory, (*) is impossible.
- ▶ In order to form $F(\cdot)$, we need to look *inside* Q.

Can we do better?

Do we always need polynomial-time methods?

1. Polynomial-time methods have complexity

$$O\left(p(n)\ln\frac{1}{\epsilon}\right)$$
 (instead of $O\left(p\left(\frac{1}{\epsilon}\right)\right)$)

where $p(\cdot)$ is a polynomial.

- **2.** Dependence $\ln \frac{1}{\epsilon}$ is very weak. Hence, any accuracy is achievable.
- **3.** The *higher* is performance of a method, the *smaller* is its field of applications.
- **4.** Accepting the solutions with *reasonable* accuracy, we significantly increase the class of *solvable* problems.
- **5.** In many situations $n=p_1\left(\frac{1}{\xi}\right)$, where ξ is the <u>accuracy of the model</u>. Then, we should choose

$$\epsilon = \varphi(\xi) \quad \Leftrightarrow \quad \xi = \varphi^{-1}(\epsilon)$$

and the notion of polynomial-time complexity looses any sense.

Smoothing technique

Main idea: Use the huge difference in complexity of smooth and non-smooth optimization,

$$O\left(\sqrt{\frac{LR^2}{\epsilon}}\right) \Leftrightarrow O\left(\frac{L^2R^2}{\epsilon^2}\right).$$

Primal problem: Find $f^* = \min_{x} \{ f(x) : x \in Q_1 \}$,

where $Q_1 \subset E_1$ is convex closed and bounded.

Model of objective function:

$$f(x) = \max_{u} \{ \langle Ax + b, u \rangle_2 : u \in Q_2 \},$$

where $Q_2 \subset E_2$ is a closed convex bounded set.

Adjoint problem:
$$\max_{u} \{\phi(u) : u \in Q_2\},$$

$$\phi(u) = \min_{x} \{\langle Ax + b, u \rangle_2 : x \in Q_1\}.$$

(Adjoint problem is not uniquely defined.)

Smooth approximations

Prox-function: $d_2(\cdot)$ is continuous and *strongly convex* on Q_2 :

$$d_2(v) \geq d_2(u) + \langle \nabla d_2(u), v - u \rangle_2 + \frac{1}{2}\sigma_2 ||v - u||_2^2.$$

Assume: $d_2(u_0) = 0$ and $d_2(u) \ge 0 \ \forall u \in Q_2$.

Fix $\mu > 0$, the *smoothness* parameter, and define

$$f_{\mu}(x) = \max_{u} \{ \langle Ax + b, u \rangle_2 - \mu d_2(u) : u \in Q_2 \}.$$

Denote by $u_{\mu}(x)$ the solution of this problem.

Theorem: $f_{\mu}(x)$ is convex and differentiable for $x \in E_1$. For its gradient $\nabla f_{\mu}(x) = A^* u_{\mu}(x)$ we have $L_{\mu} = \frac{1}{\mu \sigma_2} ||A||_{1,2}^2$, where

$$||A||_{1,2} = \max_{x,u} \{ \langle Ax, u \rangle_2 : ||x||_1 = 1, ||u||_2 = 1 \}.$$

Note: 1. for any $\mu \geq 0$ and $x \in E_1$ we have

$$f_0(x) \geq f_{\mu}(x) \geq f_0(x) - \mu D_2$$

where $D_2 = \max_{u} \{ d_2(u) : u \in Q_2 \}$.

2. All the norms are very important.

Smoothing strategy

Smoothed problem: $f_{\mu}(x) \rightarrow \min : x \in Q_1$.

Lipschitz constant: $L_{\mu} = \frac{1}{\mu \sigma_2} \|A\|_{1,2}^2$.

Denote $D_1 = \max_x \{d_1(x) : x \in Q_1\}.$

Theorem: Let us choose $N \ge 1$. Define

$$\mu = \mu(N) = \frac{2\|A\|_{1,2}}{N+1} \cdot \sqrt{\frac{D_1}{\sigma_1 \sigma_2 D_2}}.$$

After N iterations of FGM set $\hat{x} = y_N \in Q_1$ and

$$\hat{u} = \sum_{i=0}^{N} \frac{2(i+1)}{(N+1)(N+2)} u_{\mu}(x_i) \in Q_2.$$

Then $0 \le f(\hat{x}) - \phi(\hat{u}) \le \frac{4||A||_{1,2}}{N+1} \cdot \sqrt{\frac{D_1 D_2}{\sigma_1 \sigma_2}}$.

Corollary. In order to get ϵ -solution we choose

$$\mu = \frac{\epsilon}{2D_2}, \quad L = \frac{D_2}{2\sigma_2} \cdot \frac{\|A\|_{1,2}^2}{\epsilon}, \quad N \ge 4\|A\|_{1,2} \sqrt{\frac{D_1 D_2}{\sigma_1 \sigma_2}} \cdot \frac{1}{\epsilon}.$$

Main question

What can we do if D_1 or D_2 are very big?

Example:
$$f(x) = \sum_{j=1}^{m} |\langle a_j, x \rangle + b_j| \rightarrow \min_{x \in \mathbb{R}^n}$$

Suggestion:

If $f^* > 0$, then we can try to find an approximate solution with relative accuracy $\delta > 0$:

$$f(\bar{x}) \leq (1+\delta)f^*$$

However:

- We need a new model for our problem.
- ▶ This model must ensure $f^* > 0$.

Conic unconstrained minimization problem

Problem: Find
$$f^* = \min_{x} \{ f(x) : x \in \mathcal{L} \},$$

- $ightharpoonup \mathcal{L} = \{x \in \mathbb{R}^n: Cx = b\}, C \in \mathbb{R}^{p \times n} \text{ (full rank), and } b \neq 0.$
- f is a convex homogeneous of degree one function.

Main assumptions: $\operatorname{dom} f \equiv \mathbb{R}^n$, $0 \in \operatorname{int} \partial f(0)$. (Hence $f^* > 0$.)

Remark. Any unconstrained minimization problem $\min_{y \in \mathbb{R}^{n-1}} \phi(y)$ can be written in a *homogenized* form:

$$x = (y, \tau) \in \mathbb{R}^{n-1} \times R^1_+, \quad f(x) = \tau \phi(y/\tau), \quad Cx \equiv \tau, \quad b = 1.$$

However, we cannot guarantee $0 \in \operatorname{int} \partial f(0)$.

Asphericity

Let us fix $\|\cdot\|$. Define $\gamma_1 \geq \gamma_0 > 0$ as follows:

$$B_{\|\cdot\|^*}(\gamma_0)\subseteq \partial f(0)\subseteq B_{\|\cdot\|^*}(\gamma_1).$$

Denote
$$\alpha = \frac{\gamma_0}{\gamma_1} < 1$$
.

Ellipsoidal norms:

- **1.** In view of John theorem, we can always ensure $\alpha \geq \frac{1}{n}$.
- **2.** If $\partial f(0)$ is symmetric, then $\alpha \geq \frac{1}{\sqrt{n}}$.
- **3.** Let we know a self-concordant barrier $\psi(v)$ for the convex set $\partial f(0)$ and $\psi'(0) = 0$. Then we can use

$$||v||^* = \langle v, \psi''(0)v \rangle^{1/2}, \quad ||x|| = \langle [\psi''(0)]^{-1}x, x \rangle^{1/2}.$$

Hence, $\gamma_0 = 1$, $\gamma_1 = \nu + 2\sqrt{\nu}$, where ν is the parameter of $\psi(\cdot)$.

Polyhedral $\partial f(0)$

Lemma. Let $f(x) = \max_{1 \le i \le m} \langle a_i, x \rangle$, matrix $A = (a_1, \dots, a_m)$ has full row rank, and $\sum_{i=1}^m a_i = 0$. Then the norm $||x|| = \left[\sum_{i=1}^m \langle a_i, x \rangle^2\right]^{1/2}$ is well defined, and we can choose $\gamma_1 = 1$, $\gamma_0 = \frac{1}{\sqrt{m(m-1)}}$.

Proof. Since
$$G = \sum_{i=1}^m a_i a_i^T \succ 0$$
, then $||v||^* = \langle v, G^{-1}v \rangle^{1/2}$ and
$$(||a_i||^*)^2 = \langle a_i, G^{-1}a_i \rangle = \max_{x \in \mathbb{R}^n} \{2\langle a_i, x \rangle - \langle Gx, x \rangle\}$$

$$= \max_{x \in \mathbb{R}^n} \left\{ 2\langle a_i, x \rangle - \sum_{k=1}^m \langle a_k, x \rangle^2 \right\} \leq \max_{x \in \mathbb{R}^n} \{ 2\langle a_i, x \rangle - \langle a_i, x \rangle^2 \} = 1.$$

Since $\partial f(0) = \operatorname{Conv} \{a_i, i = 1, \dots, m\}$, we can take $\gamma_1 = 1$.

On the other hand, for any $x \in \mathbb{R}^n$ we have $\sum_{i=1}^m \langle a_i, x \rangle = 0$. Therefore

$$\langle Gx, x \rangle = \sum_{i=1}^{m} \langle a_i, x \rangle^2$$

$$\leq \max_{s \in \mathbb{R}^m} \left\{ \sum_{i=1}^m (s^{(i)})^2 : \sum_{i=1}^m s^{(i)} = 0, \ s^{(i)} \leq f(x), \ i = 1, \dots, m \right\}.$$

The extremum in the above maximization problem is attained, for example, at

$$\hat{s} = f(x) \cdot (e - me_1).$$

Hence,
$$\langle Gx, x \rangle \leq m(m-1)f^2(x)$$
. That is $f(x) \geq \frac{\|x\|}{\sqrt{m(m-1)}}$, and we can take $\gamma_0 = \frac{1}{\sqrt{m(m-1)}}$.

Projection of the origin

Denote
$$||x_0|| = \min_{x} \{||x|| : Cx = b\} \stackrel{\text{def}}{=} \rho.$$

Theorem. 1.
$$\gamma_0 \cdot ||x|| \le f(x) \le \gamma_1 \cdot ||x||$$
, $x \in \mathbb{R}^n$.

Hence, $f(\cdot)$ is Lipschitz continuous with constant γ_1 .

2.
$$\alpha f(x_0) \leq \gamma_0 \cdot ||x_0|| \leq f^* \leq f(x_0) \leq \gamma_1 \cdot ||x_0||$$

3. For any
$$x^*$$
, we have $||x_0 - x^*|| \le \frac{2}{\gamma_0} f^* \le \left(\frac{2}{\gamma_0} f(x_0)\right)$.

If
$$\|\cdot\|$$
 is Euclidean, then $\|x_0-x^*\|\leq \frac{1}{\gamma_0}f^*\leq \frac{1}{\gamma_0}f(x_0)$.

Proof. For any $x \in \mathbb{R}^n$ we have

$$f(x) = \max_{v} \{ \langle v, x \rangle : v \in \partial f(0) \}$$

$$\geq \max_{u} \{ \langle v, x \rangle : v \in B_{\|\cdot\|^*}(\gamma_0) \} = \gamma_0 \cdot \|x\|,$$

$$f(x) = \max_{v} \{ \langle v, x \rangle : v \in \partial f(0) \}$$

$$\leq \max_{v} \{ \langle v, x \rangle : v \in B_{\|\cdot\|^*}(\gamma_1) \} = \gamma_1 \cdot \|x\|.$$

Therefore for any x and $h \in \mathbb{R}^n$ we have

$$f(x + h) \le f(x) + f(h) \le f(x) + \gamma_1 \cdot ||h||.$$

Moreover,

$$f^* = \min_{x} \{ f(x) : Cx = b \} \ge \min_{x} \{ \gamma_0 ||x|| : Cx = b \} = \gamma_0 \cdot \rho.$$

Hence, $f^* \ge \gamma_0 \cdot ||x_0|| \ge \alpha f(x_0)$, $f^* \le f(x_0) \le \gamma_1 \cdot ||x_0||$.

3. Note that $||x_0 - x^*|| \le ||x_0|| + ||x^*|| \le \frac{2}{\gamma_0} \cdot f^*$.

If the norm is Euclidean, then

$$||x_0 - x^*||^2 = ||x^*||^2 - ||x_0||^2 < ||x^*||^2.$$

Subgradient approximation scheme $G_N(R)$

for
$$k := 0$$
 to N **do** Compute $f(x_k)$ and $g(x_k)$. Define $x_{k+1} := \pi_{\mathcal{L}} \left(x_k - \frac{R}{\sqrt{N+1}} \cdot \frac{g(x_k)}{\|g(x_k)\|^*} \right)$.

Output: $G_N(R) = \arg \min \{ f(x) : x = x_0, ..., x_N \}.$

Rate of convergence:
$$f(G_N(R)) - f^* \le \frac{(\gamma_1)}{\sqrt{N+1}} \cdot \frac{\|x_0 - x^*\|^2 + R^2}{2R} \le \frac{(\gamma_1)^2}{2R}$$

We need to choose R properly! What about $\hat{\rho} \stackrel{\text{def}}{=} \frac{1}{\gamma_0} f(x_0)$?

We need to choose
$$R$$
 properly! What about $\hat{\rho} \stackrel{\text{def}}{=} \frac{1}{\gamma_0} f(x_0)$?

Theorem. For $\delta \in (0,1)$, let us choose $N = \begin{bmatrix} \frac{1}{\gamma_0} f(x_0) \\ \frac{1}{\alpha^4 \delta^2} \end{bmatrix}$. Then $f(G_N(\hat{\rho})) \leq (1+\delta) \cdot f^*$.

Proof.
$$f(G_N(\hat{\rho})) - f^* \le \alpha^2 \delta \gamma_1 \cdot \frac{\|x_0 - x^*\|^2 + \hat{\rho}^2}{2\hat{\rho}}$$

 $\le \alpha^2 \delta \gamma_1 \hat{\rho} = \alpha \delta f(x_0) \le \delta \cdot f^*.\Box$

NB: Bad dependence in
$$\alpha$$
.

Accelerated subgradient method

Denote $\hat{N} = \left| \frac{e}{\alpha^2} \cdot \left(1 + \frac{1}{\delta} \right)^2 \right|$. Consider the process:

Set $\hat{x}_0 = x_0$, and for $t \ge 1$ iterate

$$\hat{x}_t := G_{\hat{\mathcal{N}}}\left(\frac{1}{\gamma_0}f(\hat{x}_{t-1})\right); \text{ if } f(\hat{x}_t) \geq \frac{1}{\sqrt{e}}f(\hat{x}_{t-1}) \text{ then } \{T := t, \text{ Stop.}\}$$

Theorem. $T \leq 1 + 2 \ln \frac{1}{\alpha}$ and $f(\hat{x}_T) \leq (1 + \delta) f^*$.

The total number of gradient steps does not exceed

$$\frac{e}{\alpha^2} \cdot \left(1 + \frac{1}{\delta}\right)^2 \cdot \left(1 + 2 \ln \frac{1}{\alpha}\right)$$
.

Proof. At the beginning of stage t, $\left(\frac{1}{\sqrt{e}}\right)^{t-1} f(x_0) \ge f(\hat{x}_{t-1})$.

Thus,
$$\left(\frac{1}{\sqrt{e}}\right)^{T-1} f(x_0) \ge f(\hat{x}_{T-1}) \ge f^* \ge \alpha f(x_0)$$
.

Since $||x_0 - x^*|| \le \frac{1}{\gamma_0} f^* \le \frac{1}{\gamma_0} f(\hat{x}_{T-1})$, we get

$$f(\hat{x}_T) - f^* \leq \frac{\gamma_1}{\sqrt{\hat{N}+1}} \cdot \frac{1}{\gamma_0} \cdot f(\hat{x}_{T-1}) \leq \frac{\sqrt{e}}{\alpha \sqrt{\hat{N}+1}} \cdot f(\hat{x}_T) \leq \frac{\delta}{1+\delta} \cdot f(\hat{x}_T).$$

Smoothing for relative scale

Problem: $f(x) = F(A^Tx) \rightarrow \min : x \in \mathcal{L} = \{x : Cx = b\},$

where $F(\cdot)$ is a convex homogeneous function of degree one:

$$F(y) = \max_{s \in Q_2} \langle s, y \rangle, \quad 0 \in \text{int } Q_2 \subset \mathbb{R}^m.$$

Thus, $f^* > 0$.

Let $\|\cdot\|_2$ be a Euclidean norm in \mathbb{R}^m . Define

$$B(r) = \{y : ||y||_2 \le r\},$$

 $\gamma_0 = \max_r \{r : B(r) \subseteq Q_2\}, \quad \gamma_1 = \max_r \{r : B(r) \supseteq Q_2\}.$

Then for the norm $||x||_1 = ||A^Tx||_2$ we have

$$\gamma_0 ||x||_1 \le f(x) \le \gamma_1 ||x||_1$$
.

Moreover, for $x_0 = \arg\min_{x \in \mathcal{L}} \|x\|_1$ and any $x \in \mathcal{L}$ we have

$$||x_0 - x^*||_1 \le \frac{1}{\gamma_0} f^* \le \frac{1}{\gamma_0} f(x).$$

Denote
$$Q_1(R)=\{x\in\mathcal{L}:\ \|x\|_1\leq R\}$$
 and
$$f_{\mu}(x)=\max_s\{\langle A^Tx,s\rangle-\tfrac{1}{2}\mu\|s\|_2^2:\ s\in Q_2\}.$$

Let $x_N(R)$ be an output of the method FGM after N steps as applied to function f_μ with

$$\mu = \frac{2R}{\gamma_1 \cdot (N+1)}, \quad Q_1 = Q_1(R).$$

Denote $\alpha = \frac{\gamma_0}{\gamma_1} \le 1$, and $\tilde{N} = \lfloor 2\frac{e}{\alpha} \cdot \left(1 + \frac{1}{\delta}\right) \rfloor$.

Consider the following process.

Set $\hat{x}_0 = x_0$.

For $t \ge 1$ iterate

$$\hat{x}_t := x_{\tilde{N}}\left(\frac{1}{\gamma_0}f(\hat{x}_{t-1})\right)$$
; If $f(\hat{x}_t) \geq \frac{1}{e}f(\hat{x}_{t-1})$ then $T := t$, Stop.

Theorem. $T \leq 1 + \ln \frac{1}{\alpha}$ and $f(\hat{x}_T) \leq (1 + \delta)f^*$.

The total number of gradient steps $\leq 2\frac{e}{\alpha} \cdot \left(1 + \frac{1}{\delta}\right) \cdot \left(1 + \ln \frac{1}{\alpha}\right)$.

Example

$$f(x) = \max_{1 \leq j \leq m} |\langle a_j, x \rangle|, \ m > n.$$

Define
$$F(s) = \max_{1 \le j \le m} |s^{(j)}|, ||s||_2^2 = \sum_{j=1}^m s_j^2$$
,

$$\gamma_0 = \frac{1}{\sqrt{m}}, \quad \gamma_1 = 1, \quad \alpha = 1/\sqrt{m}.$$

Number of iterations: $2e\sqrt{m}\cdot\left(1+\frac{1}{\delta}\right)\cdot\left(1+\frac{1}{2}\ln m\right)$.

Each iteration takes O(mn) operations. Thus, the total complexity is

$$O\left(mn^2 + \frac{m^{1.5}n}{\delta} \ln m\right)$$
 a.o.

For IPM the theoretical bound is $O\left((m^{1.5}n + m^{0.5}n^3)\ln\frac{1}{\delta}\right)$ a.o.

The switching rule is $\frac{m}{n^2} \leq \delta \ln \frac{1}{\delta}$.

Question: *Is it possible to improve* α ?

Remarks

Main inequality

$$\gamma_0 \|x\|_1 \leq f(x) \leq \gamma_1 \|x\|_1, \quad x \in \mathbb{R}^n$$

is used for

- **b** bounding of the dual set $\partial f(0)$ (f is homogeneous);
- controlling the distance to the solution by

$$\gamma_0 ||x_0 - x^*||_1 \le f^* \le f(x), \quad x \in \mathcal{L}.$$

John Theorem: For any bounded convex *symmetric* set $Q \subset \mathbb{R}^n$ there exists a Euclidean norm $\|\cdot\|$ such that

$$B_{\|\cdot\|}(1)\subseteq Q\subseteq B_{\|\cdot\|}(\sqrt{n}).$$

Thus, if f(x) = f(-x), we can expect $\alpha \approx 1/\sqrt{n}$.

In which cases such a norm is computable?

Finding the rounding ellipsoid

Consider
$$f(x) = \max_{1 \le j \le m} |\langle a_j, x \rangle|$$
. Then $Q \equiv \partial f(0) = \operatorname{Conv} \{\pm a_j, \ j = 1, \dots, m\}$.

Denote
$$G_0 = \frac{1}{m} \sum_{j=1}^m a_j a_j^T$$
, $||a||_G^* = \langle G^{-1}a, a \rangle^{1/2}$.

Choose tolerance $\gamma > 1$. Consider the process

For $k \ge 0$ iterate:

- **1.** Compute $g_k \in Q$: $||g_k||_{G_k}^* = r_k \stackrel{\text{def}}{=} \max_{g} \{ ||g||_{G_k}^* : g \in Q \}$.
- 2. If $r_k \leq \gamma n^{1/2}$ then Stop else

$$\alpha_k = \frac{1}{n} \cdot \frac{r_k^2 - n}{r_k^2 - 1}, \quad G_{k+1} = (1 - \alpha_k)G_k + \alpha_k g_k g_k^*.$$

Theorem. The scheme terminates after at most $N = \frac{n \ln m}{2 \ln \gamma - 1 + \gamma^{-2}}$ iterations with $B_{\|\cdot\|_{G_N}^*}(1) \subset Q \subset B_{\|\cdot\|_{G_N}^*}(\gamma \sqrt{n})$.

Note: Complexity of each iteration is O(mn) a.o.

Idea of the proof

1. Let $\xi \in \Delta_m$. Define $G(\xi) = \sum_{j=1}^m \xi^{(i)} a_i a_i^T$. Then

$$\langle G(\xi)x,x\rangle^{1/2}\leq f(x),\ x\in\mathbb{R}^n.$$

This means that $B_{\|\cdot\|_{G(\mathcal{E})}^*}(1) \subseteq \partial f(0)$.

- **2.** Consider the function $\psi(\alpha) = \ln \det((1 \alpha)G + \alpha aa^T)$. Its derivative is $\psi'(\alpha) = \langle [(1 \alpha)G + \alpha aa^T]^{-1}, aa^T G \rangle$. Thus, $\psi'(0) = (\|a\|_G^*)^2 n$.
- 3. Denote $\sigma \stackrel{\text{def}}{=} \frac{1}{n}(\|a\|_G^*)^2 1 > 0$. Then $\max_{\alpha \in [0,1]} \psi(\alpha) \psi(0) \ge \frac{\sigma^2}{2(1+\sigma)^2}.$

Application example

Problem: $f(x) = \max_{1 \le j \le m} |\langle a_j, x \rangle| \rightarrow \min_{x \in \mathbb{R}^n} : \langle c, x \rangle = 1.$

Phase 1: find a rounding norm $\|\cdot\|^*$ for the set

$$Q \equiv \partial f(0) = \operatorname{Conv} \{\pm a_i, j = 1, \dots, m\}$$

with tolerance parameter $\gamma > 1$.

Complexity (by Ellipsoid Algorithm): $O(mn^2 \ln m)$ a.o.

Complexity: $O\left(\frac{\sqrt{n}}{\delta} \ln n \sqrt{\ln m}\right)$ iterations of a gradient scheme. In total, $O\left(\frac{mn^{1.5}}{\delta} \ln n \sqrt{\ln m}\right)$ a.o.

Competitors: Ellipsoid method: $(n^2 \ln \frac{1}{\delta}) \times mn$.

Interior point: $\left(\sqrt{m} \ln \frac{m}{\delta}\right) \times mn^2$.

Conclusion

1. We discussed a new direction in *Structural Optimization*, Optimization with *relative* accuracy.

It is very much "problem oriented".

- 2. In many situations, the complexity of our algorithms is proportional to the square root of the number of iterations of the Black Box Schemes.
- **3.** Our bounds *do not* depend on the data.
- **4.** Very often we do not need very high *relative* accuracy.
- **5.** Low complexity of each iteration.
- **6.** Low memory requirements. (Sometimes very low.)