SPECIALIST MATHEMATICS

Units 3 & 4 – Written examination 1

2007 Trial Examination

SOLUTIONS

Question 1

a.

A1

b.
$$\sin \theta = \frac{0.5}{2} = \frac{1}{4}$$
 so by triangle or Pythagoras, $\cos \theta = \frac{\sqrt{15}}{4}$.

A1

$$20g = T\cos\theta = \frac{T\sqrt{15}}{4} \quad \text{(downward)}$$

A1

$$F = T\sin\theta = \frac{T}{4} \quad \text{(horizontally)}$$

Eliminating *T* and rationalizing gives
$$F = \frac{4g\sqrt{15}}{3}$$

$$y = \int \frac{e^{2x} dx}{(e^{2x})^2 + 3} \, .$$

A1

Substitution is $u = e^{2x}$ so $\frac{du}{dx} = 2e^{2x}$.

A1

$$y = \frac{1}{2} \int \frac{du}{u^2 + 3} = \frac{1}{2\sqrt{3}} \int \frac{\sqrt{3} \, du}{u^2 + 3}$$
$$= \frac{1}{2\sqrt{3}} \tan^{-1} \frac{e^{2x}}{\sqrt{3}} + c$$

M1, A1

If y = 0 when x = 0, $c = -\frac{1}{2\sqrt{3}} \tan^{-1} \frac{1}{\sqrt{3}} = \frac{-\pi}{12\sqrt{3}}$

$$y = \frac{1}{2\sqrt{3}} \tan^{-1} \frac{e^{2x}}{\sqrt{3}} - \frac{\pi}{12\sqrt{3}}$$

A1

Question 3

a.
$$-2-2\sqrt{3}i = 4 cis \frac{-2\pi}{3}$$

A1

M1

b.
$$z-2+i = \pm 2 cis \frac{-\pi}{3} = \pm (1-\sqrt{3}i)$$

 $z = 3-(1+\sqrt{3})i \text{ or } 1-(1-\sqrt{3})i$

A1 + A1

Question 4

Using implicit differentiation (product rule on LHS) gives

$$2x + 4xy' + 4y + 2y' = 0$$

M1

Regrouping (4x+2)y' = -2x-4y

So
$$\frac{dy}{dx} = -\frac{2x+4y}{4x+2}$$
$$\frac{dy}{dx} = -\frac{x+2y}{2x+1}$$

A1

b. If
$$x = 1$$
, $1 + 4y + 2y = -11$ so $y = -2$.

A1

Substituting in derivative
$$\frac{dy}{dx} = -\frac{1-4}{2+1} = 1$$
.

2007 SPECMATH EXAM 1

Question 5

a.
$$x = t + 3$$
, so $t = x - 3$. $y = \frac{4}{t^2} = \frac{4}{(x - 3)^2}$,

Domain: $1 \le t \le 3$ becomes $1 \le x - 3 \le 3$ or $4 \le x \le 6$.

b.

Shape A1

End points A1

a. Asymptotes x = -2, x = 4. A1

Turning point $\left(1, \frac{8}{9}\right)$, intercept (0,1).

b.
$$\int_{0}^{2} \frac{8dx}{(4-x)(x+2)} = \frac{8}{6} \int_{0}^{2} \left(\frac{1}{4-x} + \frac{1}{x+2}\right) dx$$

$$= \left[\frac{4}{3} \log_{e}(x+2) - \frac{4}{3} \log_{e}(4-x)\right]_{0}^{2}$$

$$= \frac{4}{3} (\log_{e} 4 - \log_{e} 2 - \log_{e} 2 + \log_{e} 4)$$

$$= \frac{4}{3} \log_{e} 4 = \frac{8}{3} \log_{e} 2$$
M1 A1

a.
$$y = \int \frac{dx}{\sqrt{4 - x^2}} = \sin^{-1} \frac{x}{2} + c$$
 A1
If $x = 0$, $y = \frac{\pi}{4}$ so $c = \frac{\pi}{4}$.

$$y = \sin^{-1}\frac{x}{2} + \frac{\pi}{4}$$

b.

Shape A1 End points A1

$$u = \sin 3x$$
, so $\frac{du}{dx} = 3\cos 3x$, $dx = \frac{du}{3\cos 3x}$

$$y = \int \frac{dx}{\cos 3x} = \frac{1}{3} \int \frac{du}{\cos^2 3x} = \frac{1}{3} \int \frac{du}{1 - u^2}$$

$$= \frac{1}{6} \int \left(\frac{1}{1 - u} + \frac{1}{1 + u}\right) du = \frac{1}{6} \log_e \frac{1 + u}{1 - u} + c,$$

$$= \frac{1}{6} \log_e \frac{1 + \sin 3x}{1 - \sin 3x} + c. \text{ So } a = \frac{1}{6}, \quad f(x) = \frac{1 + \sin 3x}{1 - \sin 3x}$$
A1

Question 9

$$\mathbf{a.} \quad V = \pi \int_0^a \cos^2 \frac{x}{4} dx \,.$$

b.
$$V = \frac{\pi}{2} \int_{0}^{a} \left(1 + \cos \frac{x}{2} \right) dx = \frac{\pi}{2} \left[x + 2 \sin \frac{x}{2} \right]_{0}^{a}$$
 M1

$$=\frac{\pi}{2}\left(a+2\sin\frac{a}{2}\right)$$

c. We require
$$\frac{\pi}{2} \left(\frac{\pi}{3} + 1 \right) = \frac{\pi}{2} \left(a + 2 \sin \frac{a}{2} \right).$$

If
$$a = \frac{\pi}{3}$$
, it is easy to check that $2 \sin \frac{a}{2} = 2 \sin \frac{\pi}{6} = 2 \times \frac{1}{2} = 1$.