Package 'ern'

April 22, 2024

_
Title Effective Reproduction Number Estimation
Version 2.0.0
Maintainer David Champredon <david.champredon@canada.ca></david.champredon@canada.ca>
Description Estimate the effective reproduction number from wastewater and clinical data sources.
License MIT + file LICENSE
Imports assertthat, coda, dplyr, EpiEstim, ggplot2, lubridate, patchwork, rjags, runjags, stats, stringr, tibble, tidyr, zoo
Suggests knitr, rmarkdown, bookdown, purrr, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.3.1
Depends R (>= $4.1.0$)
LazyData true
NeedsCompilation no
Author David Champredon [aut, cre] (https://orcid.org/0000-0001-5571-8122), Irena Papst [aut] (https://orcid.org/0000-0001-5901-7585)
Repository CRAN
Date/Publication 2024-04-22 13:22:33 UTC
R topics documented:
agg_to_daily cl.data

2 agg_to_daily

																														2	1
ww.data	•	•		•			•	•		•	•	•				•						•	•		•				•	20	_
plot_traces																															
plot_gelman_rubin																															
plot_dist																														18	*
plot_diagnostic_ww	<i>.</i>																													16	5
plot_diagnostic_cl .																														14	4
linear_int_daily																														14	4
get_discrete_dist .		•	•					•	•				•	•			•	•	•	•	•			•		•		•	•	13	3

agg_to_daily

Infer daily counts from aggregates

Description

Infer daily counts from aggregates

Usage

Index

```
agg_to_daily(cl.data, dist.gi, prm.daily, silent = FALSE)
```

Arguments

cl.data Data frame. Must have variables:

- · date: calendar date of report
- value: count of reported cases

dist.gi List. Parameters for the generation interval distribution in the same format as returned by def_dist().

prm.daily List. Parameters for daily report inference via MCMC. Elements include:

- method: String. Method name to infer the daily incidence reports from aggregated ones. Either linear or renewal is currently implemented. The linear method simply performs a linear interpolation that matches the aggregated values. The renewal method fits a SIR-like model using a renewal equation to infer the daily incidence. In this case, the fitting algorithm is a Markov Chain Monte Carlo (MCMC) implemented in JAGS and needs the parameters below (e.g., burn,iter,chains,...). The renewal method is more adapted for short single wave epidemics as this models i) naturally fits a single wave and ii) has longer computing time. For longer time series, user may perfer the linear method.
- popsize: Integer. Population size to use in MCMC simulation to infer daily observations from aggregated input data.
- burn: Numeric. Length of burn-in period (number of days).
- iter: Numeric. Number of iterations after burn-in period (number of days).
- chains: Numeric. Number of chains to simulate.

agg_to_daily 3

• prior_R0_shape: Shape of the (hyper-)parameter for the prior Gamma distribution for R0.

- prior_R0_rate: Rate of the (hyper-)parameter for the prior Gamma distribution for R0.
- prior_alpha_shape: Shape of the (hyper-)parameter for the prior Gamma distribution for alpha.
- prior_alpha_rate: Rate of the (hyper-)parameter for the prior Gamma distribution for alpha.
- first.agg.period: length of aggregation period for first aggregated observation (number of days); if NULL, assume same aggregation period as observed for second observation (gap between first and second observations)

silent

Logical. Flag to suppress all output messages, warnings, and progress bars.

Value

A list containing a data frame with individual realizations of daily reported cases and the JAGS object.

```
# Importing data attached to the `ern` package
# and selecting the Omicron wave in Ontario, Canada.
# This is *weekly* incidence.
data(cl.data)
data = cl.data[cl.data$pt == 'on' &
                  cl.data$date > as.Date('2021-11-30') &
                  cl.data$date < as.Date('2021-12-31'),]</pre>
head(data)
dist.gi = ern::def_dist(
         = "gamma",
 dist
          = 6.84,
 mean_sd = 0.7486,
 shape = 2.39,
 shape_sd = 0.3573,
        = 15
 max
)
a = agg_to_daily(
cl.data = data,
dist.gi = dist.gi,
  prm.daily = list(
  method = "renewal",
  popsize = 14e6,
  # MCMC parameters.
  # small values for computation speed for this example.
  # Increase for better accuracy
  burn = 100,
  iter = 100,
  chains = 2,
```

4 cl.data

```
prior_R0_shape = 2,
 prior_R0_rate = 0.6,
 prior_alpha_shape = 1,
 prior_alpha_rate = 1
))
# This is a Bayesian inference, so we
# have a posterior distribution of
# daily incidences. Here we just plot
# one single draw:
 df = a df
df1 = df[df$id==1,]
 plot(x = df1$t, y = df1$value, typ = 'o',
     xlab = 'days', ylab = 'daily incidence',
     main = 'Posterior daily incidence infered from weekly incidence')
 # Extract of the parameters values from the first chain
 a$jags.object[[1]][1:9,1:9]
```

cl.data

Sample of aggregated clinical reports

Description

A subset of COVID-19 weekly reports in the Government of Canada Health Infobase. See https://health-infobase.canada.ca/covid-19/

Usage

cl.data

Format

cl.data:

A data frame with 96 rows and 3 columns:

- pt: standard two-character abbreviation (lowercase) of the province name (based on Statistics Canada 2021 census abbreviations)
- date: report date
- value: count of reported cases for the previous week

Filter indicating a specific province to extract a sample dataset for use with $estimate_R_cl()$, e.g.

```
estimate_R_cl(cl.data = dplyr::filter(cl.data, pt == 'bc'), ...)
```

def_dist 5

def_dist

Define a family of distributions.

Description

Define a family of distributions.

Usage

```
def_dist(dist, ...)
```

Arguments

dist

distribution type. Distributions currently supported are:

- norm = normal,
- lnorm = log-normal,
- gamma = Gamma,
- unif = uniform

. . .

a series of distribution parameters. Included should be the following:

- mean distribution mean (only for dist = lnorm or gamma).
- mean_sd standard deviation of the mean (only for dist = lnorm or gamma).
- sd standard deviation (only for dist = lnorm or gamma).
- sd_sd standard deviation of the standard deviation (only for dist = lnorm or gamma).
- min minimum value of the random variable modelled by this distribution (only for dist = unif).
- max maximum value of the random variable modelled by this distribution.

Value

List with components specified in the parameters.

```
d = def_dist(
  dist = "gamma",
  mean = 3.49,
  mean_sd = 0.1477,
  shape = 8.5,
  shape_sd = 1.8945,
  max = 8
)
print(d)
```

estimate_R_cl

Estimate the effective reproduction from clinical report data

Description

Estimate the effective reproduction from clinical report data

Usage

```
estimate_R_cl(
   cl.data,
   dist.repdelay,
   dist.repfrac,
   dist.incub,
   dist.gi,
   prm.daily = list(method = "linear", popsize = NULL, burn = 500, iter = 2000, chains =
    3, prior_R0_shape = 2, prior_R0_rate = 0.6, prior_alpha_shape = 1, prior_alpha_rate =
    1, first.agg.period = NULL),
   prm.daily.check = list(agg.reldiff.tol = 10),
   prm.smooth = list(method = "rollmean", align = "right", window = 7),
   prm.R = list(iter = 10, CI = 0.95, window = 7, config.EpiEstim = NULL),
   RL.max.iter = 10,
   silent = FALSE
)
```

Arguments

cl.data Data frame. Must have variables:

• date: calendar date of report

• value: count of reported cases

dist.repdelay List. Parameters for the reporting delay distribution in the same format as re-

turned by def_dist().

dist.repfrac List. Parameters for the reporting fraction distribution in the same format as returned by def_dist().

dist.incub List. Parameters for the incubation period distribution in the same format as returned by def_dist().

dist.gi List. Parameters for the generation interval distribution in the same format as returned by def_dist().

prm.daily List. Parameters for daily report inference via MCMC. Elements include:

• method: String. Method name to infer the daily incidence reports from aggregated ones. Either linear or renewal is currently implemented. The linear method simply performs a linear interpolation that matches the aggregated values. The renewal method fits a SIR-like model using a renewal equation to infer the daily incidence. In this case, the fitting algorithm is a Markov Chain Monte Carlo (MCMC) implemented in JAGS and needs the

parameters below (e.g., burn, iter, chains, ...). The renewal method is more adapted for short single wave epidemics as this models i) naturally fits a single wave and ii) has longer computing time. For longer time series, user may perfer the linear method.

- popsize: Integer. Population size to use in MCMC simulation to infer daily observations from aggregated input data.
- burn: Numeric. Length of burn-in period (number of days).
- iter: Numeric. Number of iterations after burn-in period (number of days).
- chains: Numeric. Number of chains to simulate.
- prior_R0_shape: Shape of the (hyper-)parameter for the prior Gamma distribution for R0.
- prior_R0_rate: Rate of the (hyper-)parameter for the prior Gamma distribution for R0.
- prior_alpha_shape: Shape of the (hyper-)parameter for the prior Gamma distribution for alpha.
- prior_alpha_rate: Rate of the (hyper-)parameter for the prior Gamma distribution for alpha.
- first.agg.period: length of aggregation period for first aggregated observation (number of days); if NULL, assume same aggregation period as observed for second observation (gap between first and second observations)

prm.daily.check

List. Parameters for checking aggregated to daily report inference. Elements include:

• agg.reldiff.tol: numerical tolerance (%) for relative error between aggregated inferred daily reports and original aggregated reports; chronological observations are dropped until this tolerance is first acheived (convergence at the start of the timeseries is often the worst, need to maintain uninterrupted daily timeseries for input into Rt calculation).

Set this entire argument to NULL to use inferred daily reports as is.

prm.smooth

List. list of smoothing parameters. Parameters should be specified as followed:

- method: smoothing method, either 'rollmean' (rolling mean) or 'loess' (LOESS smoothing via stats::loess())
- window: for method = 'rollmean only; width of smoothing window in days
- align: for method = 'rollmean only; smoothing alignment, either 'center', 'left', 'right'
- span: for method = 'loess' only; smoothing span (see the documentation for stats::loess() for details)
- floor: optional call for wastewater concentration smoothing with method = 'loess' only; user defined minimum smoothing concentration

Set this entire list to NULL to turn off smoothing

prm.R

List. Settings for the ensemble when calculating Rt. Elements include:

• iter: Integer. Number of iterations for the Rt ensemble

- CI: Numeric between 0 and 1. Confidence interval width for Rt estimates after sampling uncertain distributions.
- window: Integer. Number of days defining the window of data used by EpiEstim to estimate Rt. If NULL, will default to 7.
- config.EpiEstim: (optional) configuration for EpiEstim defined via EpiEstim::make_config(). If NULL, will use default config from EpiEstim.

RL.max.iter

Integer. Maximum of iterations for the Richardson-Lucy deconvolution algorithm.

silent

Logical. Flag to suppress all output messages, warnings, and progress bars.

Value

List. Elements include:

- cl.data: original aggregated reports signal
- cl.daily: reports as input for Rt calculation (inferred daily counts, smoothed)
- inferred.agg: inferred daily reports aggregated on the reporting schedule as input in cl.data
- R: the effective R estimate (summary from ensemble)

See Also

```
plot_diagnostic_cl() estimate_R_ww()
```

```
# -- THIS EXAMPLE TAKES ABOUT 30 SECONDS TO RUN --
# Estimate Rt
## Not run:
# Load SARS-CoV-2 reported cases in Quebec
# during the Summer 2021
dat <- (ern::cl.data
    |> dplyr::filter(
      pt == "qc",
      dplyr::between(date, as.Date("2021-06-01"), as.Date("2021-09-01"))
   )
# distributions
dist.repdelay = ern::def_dist(
   dist = 'gamma',
   mean = 5,
   mean\_sd = 1,
   sd = 1,
   sd_sd = 0.1,
   max = 10
dist.repfrac = ern::def_dist(
   dist = "unif",
   min = 0.1,
```

```
max = 0.3
)
dist.incub = ern::def_dist(
    dist = "gamma",
    mean = 3.49,
    mean\_sd = 0.1477,
    shape = 8.5,
    shape\_sd = 1.8945,
   max = 8
)
dist.gi = ern::def_dist(
    dist = "gamma",
    mean = 6,
    mean\_sd = 0.75,
    shape = 2.4,
    shape\_sd = 0.3,
    max = 10
)
# settings
prm.daily <- list(</pre>
    method = "renewal",
    popsize = 8.5e6, # Q3 (July 1) 2022 estimate for Quebec
    burn = 500,
    iter = 500,
    chains = 2,
    prior_R0_shape = 1.1, prior_R0_rate = 0.6,
    prior_alpha_shape = 1, prior_alpha_rate = 1
)
prm.daily.check <- list(</pre>
    agg.reldiff.tol = 10
)
prm.smooth <- list(</pre>
    method = "rollmean",
    align = "center",
    window = 7
)
prm.R <- list(</pre>
    iter = 20,
    CI = 0.95,
    window = 7,
    config.EpiEstim = NULL
)
x <- estimate_R_cl(</pre>
  dat,
  dist.repdelay,
  dist.repfrac,
  dist.incub,
  dist.gi,
  prm.daily,
  prm.daily.check,
  prm.smooth,
```

10 estimate_R_ww

```
prm.R
# Rt estimates
print(x$R)
## End(Not run)
```

estimate_R_ww

Estimate the effective reproduction from wastewater concentration data.

Description

Estimate the effective reproduction from wastewater concentration data.

Usage

```
estimate_R_ww(
  ww.conc,
  dist.fec,
  dist.gi,
  scaling.factor = 1,
 prm.smooth = list(window = 14, align = "center", method = "loess", span = 0.2),
  prm.R = list(iter = 10, CI = 0.95, window = 7, config.EpiEstim = NULL),
  silent = FALSE,
  RL.max.iter = 9
)
```

Arguments

dist.gi

Data frame. Must have variables: ww.conc

• date: calendar date of wastewater collection

• value: pathogen concentration

dist.fec List. Parameters for the fecal shedding distribution in the same format as returned by def_dist().

> List. Parameters for the generation interval distribution in the same format as returned by def_dist().

scaling.factor Numeric. Scaling from wastewater concentration to prevalence. This value may be assumed or independently calibrated to data.

prm.smooth List. list of smoothing parameters. Parameters should be specified as followed:

> • method: smoothing method, either 'rollmean' (rolling mean) or 'loess' (LOESS smoothing via stats::loess())

estimate_R_ww 11

- window: for method = 'rollmean only; width of smoothing window in days
- align: for method = 'rollmean only; smoothing alignment, either 'center', 'left', 'right'
- span: for method = 'loess' only; smoothing span (see the documentation for stats::loess() for details)
- floor: optional call for wastewater concentration smoothing with method = 'loess' only; user defined minimum smoothing concentration

Set this entire list to NULL to turn off smoothing

prm.R

List. Settings for the ensemble when calculating Rt. Elements include:

- iter: Integer. Number of iterations for the Rt ensemble
- CI: Numeric between 0 and 1. Confidence interval width for Rt estimates after sampling uncertain distributions.
- window: Integer. Number of days defining the window of data used by EpiEstim to estimate Rt. If NULL, will default to 7.
- config.EpiEstim: (optional) configuration for EpiEstim defined via EpiEstim::make_config(). If NULL, will use default config from EpiEstim.

silent

Logical. Flag to suppress all output messages, warnings, and progress bars.

RL.max.iter

Integer. Maximum of iterations for the Richardson-Lucy deconvolution algorithm.

Value

List. Elements include:

- ww.conc: original wastewater signal
- ww.smooth: smoothed wastewater signal
- inc: inferred incidence
- R: the effective reproduction number estimate

See Also

```
plot_diagnostic_ww() estimate_R_cl()
```

```
# Load data of viral concentration in wastewater
data("ww.data")

# Run the estimation of Rt based on the wastewater data
x = estimate_R_ww(
    ww.conc = ww.data,
    dist.fec = ern::def_dist(
        dist = "gamma",
        mean = 12.90215,
        mean_sd = 1.136829,
```

12 extract_mcmc_values

```
shape = 1.759937,
   shape_sd = 0.2665988,
   max = 33
   ),
 dist.gi = ern::def_dist(
   dist
          = "gamma",
            = 6.84,
   mean_sd = 0.7486,
            = 2.39,
   shape
   shape\_sd = 0.3573,
            = 15
   max
   ),
         = TRUE
 silent
# Rt estimates
head(x$R)
# inferred daily incidence
head(x$inc)
```

extract_mcmc_values

Extract MCMC chains from a JAGS object

Description

Extract MCMC chains from a JAGS object

Usage

```
extract_mcmc_values(chain, jags.obj)
```

Arguments

chain Integer. Chain number.

jags.obj
JAGS object as returned by code.sample()

Value

A dataframe of the chain values for selected parameters.

get_discrete_dist 13

get_discrete_dist

Get a discretized, truncated version of a distribution

Description

Get a discretized, truncated version of a distribution

Usage

```
get_discrete_dist(params)
```

Arguments

params

distribution params (output of def_dist_*() function)

Value

Numeric. Vector with discretized density.

```
# Define distributions
fec = ern::def_dist(
 dist = "gamma",
 mean = 12.90215,
 mean\_sd = 1.136829,
 shape = 1.759937,
 shape_sd = 0.2665988,
 max = 33
gi = ern::def_dist(
          = "gamma",
 dist
          = 6.84,
 mean
 mean_sd = 0.7486,
 shape
         = 2.39,
 shape\_sd = 0.3573,
 max
          = 15
 )
# Get their (discretized) densities
d.fec = get_discrete_dist(fec)
d.gi = get_discrete_dist(gi)
print(d.fec)
print(d.gi)
```

14 plot_diagnostic_cl

linear_int_daily	Daily incidence from linear interpolation
TINCAL _INC_AAII,	Ban, includence from timedi interpolation

Description

Daily incidence from linear interpolation

Usage

```
linear_int_daily(cl.data)
```

Arguments

cl.data Aggregated incidence.

Value

A dataframe of daily incidence

 ${\tt plot_diagnostic_cl} \qquad \textit{Diagnostic plot for R estimation from clinical report data}$

Description

Diagnostic plot for R estimation from clinical report data

Usage

```
plot_diagnostic_cl(r.estim, caption = NULL, wrap.plots = TRUE)
```

Arguments

r.estim List. Output of estimate_R_cl().

caption String. Caption to be inserted in the plot. Default is caption = NULL which

disables the caption.

wrap.plots Logical. Wrap the plots together into a single ggplot object? If wrap.plots =

TRUE (the default) will return wrapped plots in a single object, else will return a

list of separate ggplot objects.

Value

Plots of the clinical data used, the inferred daily incidence and Rt estimates. If wrap.plots = TRUE (the default) will return wrapped plots (with x-axis aligned to facilitate the comaprison) in a single object, else will return a list of separate ggplot objects.

A ggplot object (or a list of ggplot objects if wrap.plots = FALSE).

plot_diagnostic_cl 15

See Also

```
estimate_R_cl()
```

```
# -- THIS EXAMPLE TAKES ABOUT 30 SECONDS TO RUN --
# Estimate Rt
## Not run:
# Load SARS-CoV-2 reported cases in Quebec
# during the Summer 2021
dat <- (ern::cl.data</pre>
   |> dplyr::filter(
     pt == "qc",
      dplyr::between(date, as.Date("2021-06-01"), as.Date("2021-09-01"))
   )
)
# distributions
dist.repdelay = ern::def_dist(
   dist = 'gamma',
   mean = 5,
   mean\_sd = 1,
   sd = 1,
   sd_sd = 0.1,
   max = 10
dist.repfrac = ern::def_dist(
   dist = "unif",
   min = 0.1,
   max = 0.3
dist.incub = ern::def_dist(
   dist = "gamma",
   mean = 3.49,
   mean_sd = 0.1477,
   shape = 8.5,
   shape_sd = 1.8945,
   max = 8
dist.gi = ern::def_dist(
   dist = "gamma",
   mean = 6,
   mean\_sd = 0.75,
   shape = 2.4,
   shape_sd = 0.3,
   max = 10
)
# settings
prm.daily <- list(</pre>
   method = "renewal",
```

plot_diagnostic_ww

```
popsize = 8.5e6, # Q3 (July 1) 2022 estimate for Quebec
    burn = 500,
    iter = 500,
    chains = 2,
    prior_R0_shape = 1.1, prior_R0_rate = 0.6,
    prior_alpha_shape = 1, prior_alpha_rate = 1
prm.daily.check <- list(</pre>
    agg.reldiff.tol = 10
prm.smooth <- list(</pre>
    method = "rollmean",
    align = "center",
    window = 7
)
prm.R <- list(</pre>
    iter = 20,
    CI = 0.95,
    window = 7,
    config.EpiEstim = NULL
)
x <- estimate_R_cl(</pre>
  dat,
  dist.repdelay,
  dist.repfrac,
  dist.incub,
  dist.gi,
  prm.daily,
  prm.daily.check,
  prm.smooth,
  prm.R
)
# Diagnostic plot for Rt estimates
# from clinical data
g = plot_diagnostic_cl(x)
plot(g)
g2 = plot_diagnostic_cl(x, caption = 'This is your caption', wrap.plots = FALSE)
plot(g2$clinical_data)
plot(g2$inferred_incidence)
plot(g2$Rt)
## End(Not run)
```

plot_diagnostic_ww 17

Description

Diagnostic plot for R estimation from wastewater data

Usage

```
plot_diagnostic_ww(r.estim, caption = NULL, wrap.plots = TRUE)
```

Arguments

```
r.estim List. Output of estimate_R_ww().
caption Character. Optional plot caption.
wrap.plots Logical. Wrap all diagnostic plots into one single gaplot object (default = TRUE).
```

Value

A ggplot object.

See Also

```
estimate_R_ww() plot_diagnostic_cl()
```

```
# Load data of viral concentration in wastewater
data("ww.data")
# Estimate Rt based on wastewater data
x = estimate_R_ww(
  ww.conc = ww.data,
  dist.fec = ern::def_dist(
   dist = "gamma",
   mean = 12.9,
   mean\_sd = 1.13,
   shape = 1.75,
   shape_sd = 0.26,
   max = 33
   ),
  dist.gi = ern::def_dist(
   dist
          = "gamma",
            = 6.84,
   mean
   mean\_sd = 0.74,
   shape = 2.39,
   shape\_sd = 0.35,
            = 15
   max
    ),
  silent
         = TRUE
)
# Diagnostic plot
g = plot_diagnostic_ww(x)
```

18 plot_dist

```
plot(g)

g2 = plot_diagnostic_ww(x, wrap.plots = FALSE, caption = "This is your caption")
plot(g2$wastewater_data)
plot(g2$inferred_incidence)
plot(g2$Rt)
```

plot_dist

Plot a distribution

Description

Plot a distribution

Usage

```
plot_dist(d)
```

Arguments

d

List that defines the distribution (as returned by def_dist_incubation_period() for example)

Value

A ggplot object.

```
# Define a `ern` distribution:
gi = ern::def_dist(
          = "gamma",
 dist
          = 6.84,
  mean
 mean_sd = 0.7486,
  shape
         = 2.39,
  shape\_sd = 0.3573,
  max
          = 15
  )
# Plot can be customized like any `ggplot` object:
g = plot_dist(gi) + ggplot2::labs(subtitle = 'your subtitle')
plot(g)
```

plot_gelman_rubin 19

plot_gelman_rubin

Plot the Gelman Rubin statistic for all parameters.

Description

Plot the Gelman Rubin statistic for all parameters.

Usage

```
plot_gelman_rubin(jags.obj)
```

Arguments

jags.obj

JAGS object as returned by code.sample()

Value

A ggplot plot.

 $plot_traces$

Plot MCMC traces

Description

Plot MCMC traces

Usage

```
plot_traces(jags.obj)
```

Arguments

jags.obj

JAGS object as returned by code.sample()

Value

A ggplot plot.

20 ww.data

ww.data

Sample of wastewater concentration

Description

A subset of SARS-CoV-2 (N2 gene) concentration data in wastewater sampled from the Iona Island wastewater treatment plant in Vancouver between 7 July 2023 and 5 November 2023. Units are in N2 gene copies per milliliter of wastewater. Concentration was measured using RT-qPCR assays; RNA was extracted from suspended solids. See https://health-infobase.canada.ca/covid-19/wastewater/

Usage

ww.data

Format

ww.data:

A data frame with 47 rows and 3 columns:

• date: sampling date

• value: mean sample concentration between multiple replicates

Index

```
* datasets
    cl.data,4
    ww.data,20
{\tt agg\_to\_daily, \textcolor{red}{2}}
{\tt cl.data}, {\tt 4}
def_dist, 5
def_dist(), 2, 6, 10
EpiEstim::make_config(), 8, 11
estimate_R_cl, 6
estimate_R_cl(), 4, 11, 14, 15
estimate_R_ww, 10
estimate_R_ww(), 8, 17
extract_mcmc_values, 12
get\_discrete\_dist, 13
linear\_int\_daily, 14
plot_diagnostic_cl, 14
plot_diagnostic_cl(), 8, 17
plot_diagnostic_ww, 16
plot_diagnostic_ww(), 11
plot_dist, 18
plot_gelman_rubin, 19
plot_traces, 19
stats::loess(), 7, 10, 11
ww.data,20
```