

Transforming Complex Sentences into a Semantic Hierarchy

Christina Niklaus, Matthias Cetto, André Freitas and Siegfried Handschuh

Text Simplification

Semantic Hierarchy

- 1) sentence splitting
- (2a) contextual hierarchy
- (2b) rhetorical relations

minimal propositions preservation of coherence structure

Discourse-aware Sentence Simplification

- Recursive transformation stage
- 35 hand-crafted grammar rules
- Encode syntactic and lexical features

RULE	TREGEX PATTERN	EXTRACTED SENTENCE
SubordinationPostExtractor	ROOT <<: (S < (NP \$ (VP < +(VP) (SBAR <, (IN \$+ (S < (NP \$ VP))))))))	S < (NP \$ VP

(1) Sentence Splitting

Rules encode both the splitting points and rephrasing procedure

	CLAUSAL/PHRASAL TYPE	# RULES	
Clausal disembedding			
1	Coordinate clauses	1	
2	Adverbial clauses	6	
3a	Relative clauses (non-defining)	8	
3b	Relative clauses (defining)	5	
4	Reported speech	4	
Phrasal disembedding			
5	Coordinate verb phrases (VPs)	1	
6	Coordinate noun phrases (NPs)	2	
7a	Appositions (non-restrictive)	1	
7b	Appositions (restrictive)	1	
8	Prepositional phrases (PPs)	3	
9	Adjectival and adverbial phrases	2	
10	Lead NPs	1	
	Total	35	

(1) Sentence Splitting: Example

(2a) Constituency Type Classification

- Establishes a **contextual hierarchy** between the split sentences (based on syntax)
- Adopts the concept of nuclearity from RST

(2a) Constituency Type Classification: Example

(2b) Rhetorical Relation Identification

- Identifies and classifies **rhetorical relations** that hold between a pair of split sentences
- Based on syntactic and lexical features

(2b) Rhetorical Relation Identification: Example

Discourse Tree

• **Recursive** simplification of leaf nodes in a **top-down** fashion until no more rule matches

Evaluation: Baselines

- Focus on **splitting subtask**
- Comparison with state-of-the-art syntactic TS systems that explicitly model splitting operations

syntax-driven rule-based approaches:

- 1. RegenT (Siddharthan and Mandya, 2014)
- 2. YATS (Ferrés et al., 2016)

manual definition of a set of grammar rules based on syntactic information sentence into its main semantic constituents

approaches based on **semantic parsing**:

- 3. Hybrid (Narayan and Gardent, 2014)
- 4. DSS (Sulem et al., 2018)

data-driven approaches:

5. Seq2Seq (Botha et al., 2018)

rewrites from examples of aligned complex source and simplified target sentences

Evaluation: Corpora

Wikilarge

(359 test sentences) (Xu et al., 2016)

WikiSplit

(5000 test sentences) (Botha et al., 2018)

Newsela

(1077 test sentences) (Xu et al., 2015)

Evaluation: Basic Statistics

- Average sentence length of the simplified sentences
- Average number of simplified sentences per complex input
- Percentage of sentences that are copied from the source
- Average Levenshtein distance from the input

Wikilarge	#T/S	#S/C	%SAME	LD _{sc}
Complex	22.06	1.03	100	0.00
Simple reference	20.19	1.14	0.00	7.14
DisSim	11.01	2.82	0.00	11.90
DSS	12.91	1.87	0.00	8.14
Hybrid	13.44	1.03	0.00	13.04
YATS	18.83	1.40	18.66	4.44
RegenT	18.20	1.45	41.50	3.77

Evaluation: Syntactic Complexity

- SAMSA: high correlation with simplicity and grammaticality (Sulem et al., 2018)
- SAMSA_{abl}: high correlation with **meaning preservation** (Sulem et al., 2018)

SAMSA is maximized

When each split
sentence represents
exactly 1 semantic unit
in the input.

Wikilarge	SAMSA	SAMSA _{abl}
Complex	0.59	0.96
Simple reference	0.48	0.78
DisSim	0.67	0.84
DSS	0.64	0.75
Hybrid	0.47	0.76
YATS	0.56	0.80
RegenT	0.61	0.85

Evaluation: Human Annotation

- **Grammaticality**: Is the output fluent and grammatical? (1 5)
- Meaning preservation: Does the output preserve the meaning of the input? (1 5)
- **Structural simplicity**: Is the output simpler than the input, ignoring the complexity of the words? (-2 2)

• 50 randomly sampled sentences 2 annotators

Wikilarge	G	М	s	avg.
Simple reference	4.70	4.56	-0.2	3.02
DisSim	4.36	4.50	1.30	3.39
DSS	3.44	3.68	0.06	2.39
Hybrid	3.16	2.60	0.86	2.21
YATS	4.40	4.60	0.22	3.07
RegenT	4.64	4.56	0.28	3.16

Extrinsic Evaluation: Open IE

• Open IE: turn unstructured information into a structured representation in the form of relational tuples

```
Supervised-OIE (alone): (Stanovsky et al., 2018)

(1) (A fluoroscopic study; known; as an upper gastrointestinal series)

(2) (caution with non water soluble contrast; is; mandatory as the statlack

(3) (as the usage; of barium can impede; surgical revision

(4) (; to increased; post operative complications)

loose arrangement of tuples that lack

(b) loose arrangement of tuples that lack

(caution with non water soluble contrast; is; mandatory as the statlack

(caution with non water soluble contrast; is; mandatory as the statlack

(d) (interpretation of tuples that lack

(d) (interpretation of tuples that lack

(d) (interpretation of tuples that lack

(expressiveness needed for a proper statlack

(expressiveness needed for a proper statlack

(f) (interpretation of tuples that lack

(interpretation of complex assertions)
```

- Integration of DisSim as a preprocessing step into state-of-the-art Open IE approaches
 - o enrich extractions with **contextual information**
 - o allows to restore the semantic relationship between a set of propositions

Extrinsic Evaluation: Open IE

```
Supervised-OIE (using framework):
(5) #1 0 (A fluoroscopic study; is; typically, the next step in management)
           L: ELABORATION
                           #2
(5a)
(5b)
          L: CONTRAST
                           #3
(6) #2 1 (This; fluoroscopic study is known; as an upper gastrointestinal series)
(7) #3 0 (Caution with non water soluble; is; mandatory)
(7a)
          L:CONTRAST
                           #1
                                                                       semantic hierarchy:
(7b)
          L:CONDITION
(7c) L:BACKGROUND
                          #4
(7d)
          L:BACKGROUND
                          #5
                                                                      downstream tasks
(7e)
                           #6
          L: BACKGROUND
(8) #4 1 (The usage of barium; can impede; surgical revision)
(8a)
          L:LIST
                           #5
(8b)
                           #6
          L:LIST
(9) #5 1 (The usage of barium; can lead; to increased post operative complications)
(9a)
          L:LIST
                           #4
(9b)
                           #6
        L:LIST
(10) #6 1 (The usage of barium; to increased; post operative complications)
(10a)
            L:LIST
                            #4
(10b) L:LIST
(11) #7 1 (Volvulus; is suspected; )
```


Extrinsic Evaluation: Open IE

• Minimality: improve performance of state-of-the-art Open IE approaches in terms of precision and recall

System	Precision	Recall	AUC
Stanford Open IE (Angeli et al., 2015)	+346%	+52%	+597%
ReVerb (Fader et al., 2011)	+28%	+40%	+57%
OLLIE (Mausam et al., 2012)	+38%	+8%	+20%
ClausiE (Del Corro and Gemulla, 2013)	+50%	-20%	+15%
OpenIE-4 (Mausam, 2016)	+20%	-1%	+3%

Cetto et al., 2018

Conclusion

- Transformation of complex sentences into a set of hierarchically ordered and semantically interconnected sentences that present a simplified syntax
 - minimal semantic units
 - semantic hierarchy
- DisSim outperforms the state of the art in syntactic TS
 - fine-grained output with high level of grammaticality and meaning preservation
 - o improvement of 5%, 4% and 6% in SAMSA against the second best-performing approach
 - domain independence
- Application as a preprocessing step:
 - improves the performance of downstream applications in precision and recall
 - enriches their output with important contextual information

Code:
https://github.com/Lambda-3/DiscourseSimplification