Latent Semantic Analysis (LSA)

KE_Team 2

Nội dung

- 1. Giới thiệu tổng quan
- 2. Latent Semantic Analysis
- 3. Triển khai
- 4. Nhận xét, đánh giá

Giới thiệu tổng quan

Thu thập thông tin từ lượng lớn văn bản?

Biểu diễn tri thức như thế nào?

Sự liên quan/ tương đồng giữa dữ liệu?

Phân tích ngữ nghĩa tiềm ẩn (LSA)

- + Nền tảng toán học
- + Biểu diễn tri thức
- + Cách sử dụng
- + Demo thuật tonas

Biểu diễn không gian vector

- Biểu diễn đầu vào dưới dạng các vector
- Các chiều là các features
- Tính toán dựa trên biểu diễn vector

Term-Document Matrix

Example Documents (Corpus)

- d1: Romeo and Juliet.
- d2: Juliet: O happy dagger!
- d3: Romeo died by dagger.
- d4: "Live free or die", that's the New-Hampshire's motto.
- d5: Did you know, New-Hampshire is in New-England.

	d_1	d_2	d_3	d_4	d_5
romeo	1	0	1	0	0
juliet	1	1	0	0	0
happy	0	1	0	0	0
dagger	0	1	1	0	0
live	0	0	0	1	0
die	0	0	1	1	0
free	0	0	0	1	0
$new ext{-}hampshire$	0	0	0	1	1

Example of Document Term Matrix

Singular Value Decomposition

Document-Term Matrix rank r (8x5)

1	0	1	0	0
1	1	0	0	0
0	1	0	0	0
0	1	1	0	0
0	0	0	1	0
0	0	1	1	0
0	0	0	1	0
0	0	0	1	1

-0.396153	0.280057	-0.571171	0.449685	-0.101839
-0.314268	0.449532	0.410591	0.513018	0.203906
-0.17824	0.268992	0.497321	-0.256998	0.0430523
-0.438364	0.368508	0.0128792	-0.577329	-0.21964
-0.263881	-0.345921	0.145789	0.0474849	0.417484
-0.524005	-0.246405	-0.338652	-0.272846	0.154791
-0.263881	-0.345921	0.145789	0.0474849	0.417484
-0.326373	-0.459669	0.317003	0.237244	-0.724851

-0.310866	-0.40733	-0.594461	-0.603046	-0.142814
0.362933	0.540742	0.200054	-0.695391	-0.228662
-0.118013	0.676704	-0.659179	0.198375	0.232971
0.860986	-0.28736	-0.358175	0.0530948	0.212177
0.128132	0.0342945	-0.209255	0.332558	-0.909958

Left Singular Vectors (8x5)

Singular Values (5x5)

Right Singular Value (5x5)

Xấp xỉ low-rank

Low-rank Approximations

Xấp xỉ của ma trận A

$$\widetilde{A} = \underset{X:rank}{Min} \|A - X\|_F$$
 Frobenius norm
$$\|A\| = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$
 Nghiệm tối ưu Truncated SVD
$$A_k = U_k \Sigma_k V_k^T$$

Truncated SVD

New Matrix - rank k < r

0.485762	0.673199	0.65081	0.154457	0.00056003
0.551237	0.781199	0.607724	-0.195303	-0.104067
0.322878	0.45832	0.35032	-0.130389	-0.0654744
0.580283	0.808641	0.743726	0.0889825	-0.0263216
-0.0649144	-0.130389	0.219371	0.847233	0.245133
0.19249	0.219931	0.612777	1.0666	0.284286
-0.0649144	-0.130389	0.219371	0.847233	0.245133
-0.103507	-0.195863	0.258524	1.09237	0.317815

-0.396153 0.280057 -0.571171 0.449685 -0.101839 -0.314268 0.449532 0.410591 0.513018 0.203906 -0.17824 0.268992 -0.256998 0.0430523 0.497321 -0.438364 0.368508 0.0128792 -0.577329 -0.21964-0.263881 -0.345921 0.145789 0.0474849 0.417484 -0.524005 -0.246405 -0.272846 -0.338652 0.154791 -0.263881 -0.345921 0.145789 0.0474849 0.417484 -0.326373 -0.459669 0.317003 0.237244 -0.724851

2x5 2x2 -0.310866 -0.40733 -0.594461

2.2853 2.01026 1.3607 1.11814 0.796577 Demo: k = 2

0.362933	0.540742	0.200054	-0.695391	-0.228662
-0.118013	0.676704	-0.659179	0.198375	0.232971
0.860986	-0.28736	-0.358175	0.0530948	0.212177
0.128132	0.0342945	-0.209255	0.332558	-0.909958

8x2

-0.142814

-0.603046

Không gian LSA

Term Vectors Matrix

$$U_2\Sigma_2$$

romeo	-0.905327	-0.562988
	-0.718196	-0.903676
happy	-0.40733	-0.540742
dagger	-1.00179	-0.740797
live	-0.603046	0.695391
die	-1.19751	0.495337
free	-0.603046	0.695391
new-hampshire	-0.74586	0.924053

Document Vectors Matrix

$$\Sigma_2 S_2^T$$

d1	-0.710421	0.72959
	-0.930871	1.08703
	-1.35852	0.402161
d4	-1.37814	-1.39792
d5	-0.326373	-0.459669

Không gian LSA

• Query q = [q1, q2, ...]

$$q = \frac{\sum_{i=1}^{N} q_i}{N}$$

Ví dụ: Query q = [die, dagger]

Centroid

Độ tương đồng giữa q và document d

$$s = \frac{q.d}{|q||d|}$$

Updating/ Downdating

Out of Vocabulary (OOV)? New Documents?

Folding-in k-dimension representation

$$t_n = t.V_k.\Sigma_k^- 1$$
$$d_n = d^T.U_k.\Sigma_k^- 1$$

=> LSA có khả năng biểu diễn những từ/ văn bản mới dù chưa từng gặp

Triển khai

Áp dụng mô hình vào dữ liệu thực

- 1. Tiền xử lý dữ liệu
- 2. Lựa chọn mô hình
- 3. Biểu diễn trực quan

Chuẩn bị dữ liệu

Nguồn dữ liệu:

A Large-scale Vietnamese News Text Classification Corpus (https://github.com/duyvuleo/VNTC)

10Topics/Ver1.1/Train_Full

- Chính trị xã hội
- Đời sống
- Khoa học
- Kinh doanh
- Pháp luật

- Sức khỏe
- Thế giới
- Thể thao
- Văn hoá
- Vi tính

'Hà Nôi sắp ngừng đăng ký xe máy tại 3 quân \n Theo Phó chủ tịch UBND thành phố Đỗ Hoàng Ân, đầu năm 2005 có thể tiếp tục hạn chế đăng ký xe máy mới tại 3 quận Cầu Giấy, Thanh Xuân, Tây Hồ theo lộ trình. Hiện các ban ngành thành phố đang nghiên cứu để đưa ra thời điểm chính thức. \n- Thưa ông, tai sao phải ngừng đăng ký xe máy thêm 3 quân nôi thành?\n- Theo Nghi quyết HĐND, thành phố sẽ ngừng đặng ký xe máy mới tại các quân theo lộ trình nhằm hạn chế phương tiên cá nhận. Hiện nay, quản lý của nhà nước chưa rõ, phương tiên do người dân mua nhiều gây rối loan thi trường và ùn tắc giao thông. \n- Han chế xe mới ở nôi thành thì có thể xe ngoại tỉnh tràn vào thành phố, có ý kiến nên hạn chế cả xe ngoại tỉnh, ông nghĩ sao?\n- Không thể hạn chế xe ngoại tỉnh vì người dân sống trong và ngoài thành phố vẫn sử dụng phương tiên theo nhu cầu cuộc sống. \n Song có lẽ trong thành phố nghĩ đến han chế bớt phương tiên vào khu vực trung tâm, tạo ra những tuyến chuyên dành cho xe buýt để han chế giao thông cá nhân. Như ở một một số nước, phương tiên cá nhân nào sử dụng thời gian lâu ở trong nôi thành sẽ có khoản phí nhất định, sẽ han chế xe cá nhân và thúc đẩy phương tiên công công....

=> 33 759 files, 143.5 MiB

Văn bản mẫu

Xử lý dữ liệu

- 1. Tách văn bản thành các tokens để xử lý
- 2. Loại bỏ các từ không hợp lệ
- 3. Loại bỏ các stopwords
- 4. Tạo 1 bộ từ điển idx2term
- 5. Tạo term-document matrix từ bộ dữ liệu

['a lô', 'a ha', 'ai', 'ai ai', 'ai nấy']

Stopwords trong tiếng Việt

[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 8), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 3), (16, 1), (17, 1), (18, 4), (19, 2), (20, 1), (21, 7), (22, 5), (23, 1), (24, 1), (25, 1), (26, 1), (27, 1), (28, 1), (29, 1), (30, 1)]

'ubnd',
'thanh xuân'
'ban ngành',
'nghiên cứu'
'nghị quyết'
'mua',
'giao thông'
'ngoại tỉnh'

Tách tokens

61732 words 0 : ban ngành 1 : cao tầng 2 : chuyên 3 : duy trì 4 : qia tăng 5 : qiao 6 : giao thông 7 : italy 8 : khoản 9 : khu vức 10 : khuyên 11 : kinh nghiệm 12 : mua 13 : nghiên cứu 14 : nghị quyết 15 : ngoại tỉnh 16 : nguy hiếm 17 : nguyên nhân

Từ điển từ

19: quy hoạch

18 : nhu cầu

Xây dựng mô hình

- Sử dụng gensim.LsiModel
- Đầu vào:
 - idx2term dictionary
 - term-document matrix

Lựa chọn số lượng topic như thế nào?

- gensim.CoherenceModel
- coherence score = 'u_mass'
- Thử từ topic = 2 -> 30

=> Best: 5 topic

Topic 1

Topic 2

Topic 3

Biểu diễn trực quan

Visualization

Topic 4

tham gia phi m chiếu Vai gia đình thuốc

Topic's Wordclouds

Biểu diễn từ sử dụng Isa 2 topic (10 từ đầu)

Nhận xét

Điểm manh:

- + Đơn giản
- + Đạt hiệu quả khá tốt
- + Khả năng ứng dụng cao

Điểm yếu:

- Mô hình chưa hoàn thiện
- Cần dữ liệu lớn để đạt hiệu quả

Kết luận

- Mô hình đơn giản nhưng hoạt động khá tốt
- Dễ dùng, dễ hiểu
- Có khả năng ứng dụng nhiều
- Mô hình ngôn ngữ chưa hoàn thiện

Tham khảo

[1] Thomas K. Landauer, Susan T. Dumais, A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction and Representation of Knowledge http://lsa.colorado.edu/papers/plato/plato.annote.html

[2] Thomas K. Landauer, Danielle S. McNamara, Handbook of Latent Semantic Analysis, First Edition, Psychology Press

[3] Alex Thomo, Latent Semantic Analysis (Tutorial)

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwie64vhjNDIAhWMF4gKHVkaAKgQFjABegQIAhAC&url=https%3A%2F%2Fpdfs.semanticscholar.org%2F3efd%2Fa6e61747fea6b5cb5fa4f3ff0a14c86a638c.pdf&usg=AOvVaw0HGIDVpOS5vRNX-VMA1ilN

[4] Christopher D. Manning, Chapter 18: Matrix Decomposition and Latent semantic indexing, Introduction to Information Retrieval, First Edition, Cambridge University Press

• • • •

Cảm ơn thầy và các bạn đã lắng nghe!