ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ БИОЛОГИЧЕСКОЙ И МЕДИЦИНСКОЙ ФИЗИКИ

Лабораторная работа № 2.5.1 Измерение коэффициента поверхностного натяжения жидкости

Пискунова Ольга Группа Б06-205 **Цель работы:** 1) измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта; 2) определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

В работе используются: прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы.

1 Теоретическая часть

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta P = \frac{2\sigma}{r},\tag{1}$$

где σ — коэффициент поверхностного натяжения, ΔP — разница давлений внутри и снаружи пузырька, r — радиус кривизны поверхности раздела двух фаз. Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости.

2 Экспериментальная установка

Исследуемая жидкость (дистиллированная вода) наливается в сосуд (колбу) В (рис. 1). Тестовая жидкость (этиловый спирт) наливается в сосуд Е. При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла С. Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воздуха в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения ΔP (1), необходимого для прохождения пузырьков (при известном радиусе иглы). Разряжение в системе создается с помощью аспиратора А. Кран К2 разделяет две полости аспиратора. Верхняя полость при закрытом кране **К2** заполняется водой. Затем кран **К2** открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней полости при открывании крана K1, когда вода вытекает из неё по каплям. В колбах В и С, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром.

Рис. 1: Схема установки для измерения температурной зависимости коэффициента поверхностного натяжения.

3 Ход работы

- 1. Проверим герметичность установки.
- **2.** Откроем кран K1. Подберём частоту падения капель около одной капли в 5 секунд.

В таблице 1 приведены константы, используемые в лабораторной работе.

Плотность этанола ρ_0 , ${\rm K}{\Gamma}/{\rm M}^3$	Плотность воды ρ , $\kappa \Gamma/M^3$	Ускорение свободного падения $g, \mathrm{M/c^2}$	Пересчетный коэффициент k	Коэффициент поверхностного натяжения этанола ($T=20^{\circ}C$) $\sigma_0, \mathrm{MH/M}$
809,5	1000,0	9,81	0,2	22,75

Таблица 1: Постоянные величины.

3. Измерим максимальное давление ΔP при пробулькивании пузырьков воздуха через спирт. Данные занесём в Таблицу 2. По разбросу результатов оценим случайную погрешность измерения.

S	1	2	3	4	5	
<i>h</i> , дел	45	45	45	45	45	
$h = 45.0$ дел; $\sigma_h = 0$ дел						

Таблица 2: Измерения для спирта (h)

В таблице учтена только случайная погрешность величины, которая оказывается незначительной и не проявляется в серии из пяти последовательных измерений; в то время как приборная погрешность составляет две цены деления (1 деление – инструментальная погрешность и плюс ещё одно – это моя реакция и способность зафиксировать правильное деление), то есть её относительный вклад $\approx 2/45 \approx 4.4\%$.

По формуле $\Delta P = 0.2 \cdot 9.80665 \cdot h$ вычислим ΔP .

$$\Delta P = (92.6 \pm 4.0)$$

Пользуясь табличным значением коэффициента поверхностного натяжения спирта, определим по формуле (1) диаметр иглы.

$$d_{\cdot} = \frac{4\sigma_0, \cdot}{\Delta P} \approx 0.99 .$$

$$\frac{\sigma_d}{d} = \sqrt{\left(\frac{\sigma_{\Delta P}}{\Delta P}\right)^2} \approx 4.3\%.$$

Тогда итоговое значение $d = (0.99 \pm 0.05)$.

Для проверки достоверности полученного результата диаметр иглы был измерен дополнительно на микроскопе (важно измерить внутренний диаметр):

$$d = 1.05 \pm 0.05$$
 mm.

Рис. 2: Измерение диаметра иглы микросокопом

4. Теперь перенесём иглу в колбу с водой, предварительно промыв её. Измерим максимальное давление P_1 при пробулькивании пузырьков, когда игла лишь касается поверхности воды. Отрегулируем скорость поднятия уровня спирта в манометре (около одной капли в 5 секунд) и будем сохранять её в течение всех экспериментов.

S	1	2	3	4	5	
<i>h</i> , дел	133	133	133	133	133	
h = 133 дел						

Таблица 3: Измерения для воды (h)

Аналогично п.3 основной вклад в погрешность величины h определяется инструментальной погрешностью, которая равна $2/133 \approx 1.5\%$.

$$P_1 = (274.3 \pm 4.1) \text{ }\Pi a$$

Измерим расстояние между верхним концом иглы и любой неподвижной частью прибора h_1 . Не забудем учесть инструментаальную погрешность железной линейки, равную 0.05 см.

$$h_1 = (1.80 \pm 0.05) \text{ cm}$$

5. Утопим иглу до предела. Аналогично п. 4 измерим h_2 и P_2 .

S	1	2	3	4	5	
<i>h</i> , дел	203	203	203	203	203	
h = 203 дел						

Таблица 4: Измерение давления P_2

$$P_2 = (400.2 \pm 3.9) \text{ }\Pi a.$$

$$h_2 = (0.50 \pm 0.05) \text{ cm}$$

По разности давлений $\Delta P = P_2 - P_1$ определим глубину погружения Δh_1 иглы и сравним с $\Delta h_2 = h_1 - h_2$. Погрешности при этом получаются по формулам:

$$\frac{\sigma_{\Delta h_1}}{\Delta h_1} = \sqrt{\left(\frac{\sigma_{P_1}}{P_1}\right)^2 + \left(\frac{\sigma_{P_2}}{P_2}\right)^2}$$
 и $\frac{\sigma_{\Delta h_2}}{\Delta h_2} = \sqrt{\left(\frac{\sigma_{h_1}}{h_1}\right)^2 + \left(\frac{\sigma_{h_2}}{h_2}\right)^2}$

$$\Delta h_2 = h_1 - h_2 = (1.30 \pm 0.08) \text{ см}$$

$$\Delta h_1 = \frac{P_1 - P_2}{\rho q} = (1.50 \pm 0.06) \text{ cm}$$

Полученные значения для глубины погружения близки, но всё же не перекрываются погрешностью. Скорее всего расхождения обусловлены влиянием краевых эффектов, которое дало нам слегка завышенное значение P_2 , также мы предполагали несжимаемость жидкость и независимость ρgh от температуры, так как подъем уровня жидкости компенсируется уменьшением ее плотности (произведение ρh определяется массой всей жидкостии поэтому постоянно); зависимости соответственно вносят некоторую малую ошибку.

6. Исследуем зависимость натяжения от температуры, измерив показатели манометра через каждые пять градусов.

По полученным данным вычислим коэффициент поверхностного натяжения для каждой из температур по формуле

$$\sigma = \frac{Pd}{4},\tag{2}$$

где d – диаметр иглы. Погрешность такого результата вычисляется по следующей формуле:

$$\sigma_{\sigma} = \sigma \sqrt{\varepsilon_P^2 + \varepsilon_d^2}.$$
 (3)

Полученные результаты заносим в таблицу (5). В таблице ${\bf 5}$ приведены результаты измерений, позволяющих исследовать зависимость $\sigma = \sigma(T)$.

T, °C	< h >, MM	Р, Па	σ , м H /м	σ_{σ} , м $H/$ м	$\sigma_T,^{\circ}\mathrm{C}$
25,2	202,0	251,2	62,8	1,6	0,2
30,2	201,0	247,6	61,9	1,6	0,2
35,2	200,0	244,0	61,0	1,6	0,2
40,2	199,0	240,4	60,1	1,5	0,2
45,2	198,0	236,8	59,2	1,5	0,2
50,2	196,0	229,6	57,4	1,5	0,2
55,2	194,0	222,4	55,6	1,5	0,2

Таблица 5: Результаты измерений.

Полученную зависимость наносим на график (рис. 3).

Рис. 3: Зависимость $\sigma = \sigma(T)$.

Вычислим коэффициенты аппроксимирующей прямой $\sigma = kT + b,$ где $k = \frac{d\sigma}{dT},$ используя метод наименьших квадратов:

$$k = \frac{\langle T\sigma \rangle - \langle T \rangle \langle \sigma \rangle}{\langle T^2 \rangle - \langle T \rangle^2} \approx -0.155 \,\, \frac{\mathrm{MH}}{\mathrm{M} \cdot \mathrm{K}},$$

$$b = \langle \sigma \rangle - k \langle T \rangle \approx 108.6 \frac{\text{MH}}{\text{M}}.$$

Случайные погрешности определения этих коэффициентов вычислим по следующим формулам:

$$\sigma_k^{\text{случ}} = \sqrt{\frac{1}{N-2} \left(\frac{\left\langle \left(\sigma - \left\langle \sigma \right\rangle\right)^2 \right\rangle}{\left\langle \left(T - \left\langle T \right\rangle\right)^2 \right\rangle} \right) - k^2} \approx 0,005 \,\, \frac{\text{MH}}{\text{M} \cdot \text{K}},$$

$$\sigma_b^{\text{случ}} = \sigma_k^{\text{случ}} \sqrt{\langle x^2 \rangle} \approx 1.7 \, \frac{\text{MH}}{\text{M}}.$$

Систематические погрешности оценим по следующим формулам:

$$\sigma_k^{\text{chct}} = |k| \sqrt{\varepsilon_T^2 + \varepsilon_\sigma^2} \approx 0.004 \frac{\text{MH}}{\text{M} \cdot \text{K}},$$
$$\sigma_b^{\text{chct}} = |b| \sqrt{\varepsilon_T^2 + \varepsilon_\sigma^2} \approx 2.8 \frac{\text{MH}}{\text{M}}.$$

Таким образом, полные погрешности измерений определяются следующими соотношениями:

$$\sigma_k = \sqrt{(\sigma_k^{\text{cmct}})^2 + (\sigma_k^{\text{cnyq}})^2} \approx 0,006 \, \frac{\text{MH}}{\text{M} \cdot \text{K}},$$

$$\sigma_b = \sqrt{(\sigma_b^{\text{cmct}})^2 + (\sigma_b^{\text{cnyq}})^2} \approx 3,3 \, \frac{\text{MH}}{\text{M}}.$$

Окончательно получаем:

•
$$k = \frac{d\sigma}{dT} = (-0.155 \pm 0.006) \frac{\text{MH}}{\text{M} \cdot \text{K}}, \ (\varepsilon = 4.2\%);$$

•
$$b = (108.6 \pm 3.3) \frac{\text{MH}}{\text{M}}, (\varepsilon = 2.9\%).$$

По полученным данным можно нанести на график зависимость от температуры коэффициента поверхностного натяжения $\underline{\sigma(T)}$, теплоты образования единицы поверхности жидкости $\underline{q}=-T\frac{d\sigma}{dT}$ и поверхностной энергии U единицы площади F: $\underline{\frac{U}{F}=\left(\sigma-T\frac{d\sigma}{dT}\right)}$. Результаты вычислений представлены в таблице $\mathbf{6}$, а графики на рис. $\mathbf{4}$.

Таблица 6: Результаты дополнительных вычислений.

T, K	298.2	303.2	308.2	313.2	318,2
q , мДж/м 2					
U/Π , мДж/м 2	108.8	108.8	108.7	108.6	108.5

Рис. 4: Зависимость q = q(T).

Обсуждение полученных результатов

- В интервале температур от 25°C до 55°C поверхностное натяжение уменьшается с увеличением температуру. Зависимость $\sigma = \sigma(T)$ является линейной с коэффициентом наклона $d\sigma/dT = (-0.155 \pm 0.006) \text{ мH/м·°C}$. Стоит отметить, что наш результат в пределах погрешности совпадает с табличным значением $d\sigma/dT \approx -0.16$.
- Теплоты образования единицы поверхности жидкости q=q(T) линейно зависит от температуры на исследуемом интервале температур.
- Внутренняя энергия поверхности U/F практически не зависит зависит от температуры и есть константа $U=109~\mathrm{M}\mathrm{Д}\mathrm{ж/m}^2$, что подтверждается теорией.