Math 336 Homework 1

a lipson

March 31, 2025

Problem 1. Describe geometrically the sets of points z in the complex plane defined by the following relations:

- (a) $|z z_1| = |z z_2|$ where $z_1, z_2 \in \mathbb{C}$.
- (b) $1/z = \overline{z}$.
- (c) Re(z) = 3.
- (d) $\operatorname{Re}(z) > c$, (resp., $\geq c$) where $c \in \mathbb{R}$.
- (e) $\operatorname{Re}(az+b) > 0$ where $a, b \in \mathbb{C}$.
- (f) |z| = Re(z) + 1.
- (g) $\operatorname{Im}(z) = c$ with $c \in \mathbb{R}$.

Proof.

Problem 2. With $\omega = se^{i\varphi}$, where $s \geq 0$ and $\varphi \in \mathbb{R}$, solve the equation $z^n = \omega$ in \mathbb{C} where n is a natural number. How many solutions are there?

Proof.

Problem 3. The family of mappings introduced here plays an important role in complex analysis. These mappings, sometimes called **Blaschke factors**, will reappear in various applications in later chapters.

(a) Let z, w be two complex numbers such that $\overline{z}w \neq 1$. Prove that

$$\left|\frac{w-z}{1-\overline{w}z}\right|<1\quad\text{if }|z|<1\text{ and }|w|<1,$$

and also that

$$\left|\frac{w-z}{1-\overline{w}z}\right|=1\quad\text{if }|z|=1\text{ or }|w|=1.$$

[Hint: Why can one assume that z is real? It then suffices to prove that

$$(r-w)(r-\overline{w}) \le (1-rw)(1-r\overline{w})$$

a lipson March 31, 2025

with equality appropriate for r and |w|.

Prove that for a fixed w in the unit disc \mathbb{D} , the mapping

$$F: z \mapsto \frac{w-z}{1-\overline{w}z}$$

satisfies the following conditions:

- (i) F maps the unit disc to itself (that is, $F: \mathbb{D} \to \mathbb{D}$), and is holomorphic.
- (ii) F interchanges 0 and w, namely F(0) = w and F(w) = 0.
- (iii) |F(z)| = 1 if |z| = 1.
- (iv) $F: \mathbb{D} \to \mathbb{D}$ is bijective. [Hint: Calculate $F \circ F$]

Proof.

Problem 4. Consider the function defined by

$$f(x+iy) = \sqrt{|x||y|}$$
, whenever $x, y \in \mathbb{R}$.

Show that f satisfies the Cauchy-Reimann equations at the origin, yet f is not holomorphic at 0.

Proof.

Problem 5. In this problem we will go through a proof of the Fundamental Theorem of Algebra, that is: If

$$p(z) = a_n z^n + \dots + a_0$$

is a polynomial with an $a_n \neq 0$, then there exists $z_0 \in \mathbb{C}$ such that $p(z_0) = 0$.

- (i) Suppose for the sake of contradiction that $p(z) \neq 0$ for all $z \in \mathbb{C}$. Show that the function g(z) = |p(z)| has a minimum at some point $z_0 \in \mathbb{C}$. (Hint: Remember that \mathbb{C} is definitely not compact!)
- (ii) Consider the function $q(z) = \frac{1}{|p(z)|}p(z-z_0)$. Show that q is a polynomial with q(0) = 1 and that |q(z)| has its minimum at z = 0.
- (iii) Show that for any sufficiently small $\epsilon > 0$, there is some θ for which $|q(\epsilon e^{i\theta})| < 1$, which provides the desired contradiction.

Proof.

Problem 6. Consider the function f defined on R by

$$f(x) = \begin{cases} 0 & \text{if } x \le 0, \\ e^{-1/x^2} & \text{if } x > 0. \end{cases}$$

Prove that f is indefinitely differentiable on R, and that $f^{(n)}(0) = 0$ for all $n \ge 1$. Conclude that f does not have a converging power series expansion $\sum_{n=0}^{\infty} a_n x^n$ for x near the origin.

a lipson March 31, 2025

Proof.

Problem 7. Show that if |a| < r|b|, then

$$\int_{\gamma} \frac{1}{(z-a)(z-b)} dz = \frac{2\pi i}{a-b},$$

where γ denotes the circle centered at the origin, of radius r, with the positive orientation.

Proof.