I completed this assignment entirely on my own.

Finite-state Machine → simple rending machine

1) Run examples

NNG - G

DG -> G

NNNC-C

NDC → C

NNNG - N, G

DNNG - NINIG

 $DC \rightarrow D$

NG -N

2) states: how much & is in the vending machine (up to 15¢)

inputs: N = nickel

D = dime

G = request gum

C = request candy

outputs: On=nickel

Oo = dime

Og = gum

Oc = candy.

3) Itate diagram

Candy = 15d

Qum = 10¢

Och 5d

No 15d

No 1

4) state reduction - don't need to keep track of different inputs to get to same state!

to reduce states:

- · 2 nickels = 1 dime
- · 3 mckels = (dime +1 hickel
- · max \$ = 15 ¢

(don't care about values >)

· reduce 4 input to 2 bit input

۲)	state	assi	ghment ime	:
	FF A	= D	ine	
	FF B	=	Nickel	

state	FF A	FFB
04	0	0
5 ¢ 10 ¢	0	ı
10¢	I	0
15 ¢)	1

0

ı

0

input N

D G C

Inputs:

_	Coin.	input:	
	Colin	input	

•	nickel	=	00	

mielea l					_
nickel _ dime _ request _ qum _ request _ candy _					
request _	, ,	-			
request candy _			1	 	
		1	ا ا		
			Σ,	I,	

6) J-K flip flops (edge-triggered)

7) full-state table + flip-flop excitation table

J-K flip flop

Exci	tation	Tabl	e
			l .

Orece			
Qŧ	Qtrl	J	LK_
Ö	0	0	Х
0	ſ	(X
t	0	Х	1
1	1	X	0

1	77 7	
FA	l ee r	8
(D)	(n)	J.
		له

	cumer	nt state	inp	ut	next	state	l FF	A	FF	B	dij	out	put	7
State	Α	ದಿ	\mathcal{I}_{ι}	Г°	Α	B	Ja	KA	JB	кß	O۵	0,2	DG	٥٥
0¢	0	0	0	0	0	}	0	X	l	×	0	0	٥	0
0¢	0	0	0	١	ı	0	1	X	O	X	0	O	0	0
04	0	0	l	Ō	0	٥	O	×	0	×	٥	0	ں	0
0¢	0	0	ι	(0	0	0	×	0	×	0	0	0	0
5∮	0	1	٥	٥	l	0	1	×	X	l	0	0	0	0
s¢.	0	1	0	t	ı	ı	\ \	X	×	0	0	0	0	0
S¢,	0	1	l	D	٥	D	0	×	×	l	0	ı	0	0
5 ¢	0	1	ι	l	٥	D	0	×	×	}	0	ı	0	0
l0 <i>∲.</i>	l	٥	0	0	l	1	X	D	1	×	0	O	0	0
104	l	0	ø	f	ı	ı	X	D	L	×	٥	l	0	0
[0¢,	1	0	ı	O	0	D	X	1	0	×	0	0)	0
10 ¢	l	0	1	(O	O	×	1	0	N N	l l	D	0	0
154	1	(0	0	ı	J	×	D	X		0	t	0	0
15¢	(1	0	t	1	ı	×	0	×	0	lι	0	0	0
15 ¢	1	١ ١	1	อ	ס	0	×	5	×	1	o	ı	l	٥
15%		lt	1	(0	0	اير		x	J	0	O	0	

8) K-mays

· Flip - Flops:

· Outputs:

By inspection: $O_D = A B'I_1I_0 + ABI_1'I_0$ $O_D = AI_0 (B'I_1 + BI_1')$

0N = ABIO' + A'BII + AB'II'IO ON = B(AIO' + A'II) + AB'II'IO

By inspection: $O_G = AB'I_1I_0' + ABI_1I_0'$ $O_G = AI_1I_0' + ABI_1I_0'$ $O_G = AI_1I_0'$

Oc = ABICTO

9) circuit diagram

10) unused states

· there are no unused states as we cover all 24 = 16 possible states.