Zusammenfassung Platzeffiziente Alg.

© M Tim Baumann, http://timbaumann.info/uni-spicker

Ziel. Algorithmen entwerfen, die wenig Speicherplatz und Speicherzugriffe benötigen, aber trotzdem schnell sind.

Problem (Erreichbarkeit). Gegeben sei ein gerichteter oder ungerichteter Graph, ein Startknoten und ein Zielknoten darin. Frage: Ist der Zielknoten vom Startknoten erreichbar?

Algorithmus. Algorithmen, mit denen man Problem lösen kann, sind Breiten- und Tiefensuche.

Lem. Es sei ein Graph mit n Knoten und m Kanten gegeben. Tiefensuche benötigt $\Theta(n+m)$ Zeit und $\Theta(n \log n)$ Speicherplatz.

Algorithmus (Savitch).

- 1: **function** SREACHABLE(u, v, k)
- 2: **if** u = v **then return** true
- 3: **if** k = 0 **then return** false
- 4: **if** $(u, v) \in E$ **then return** true
- 5: **if** k = 1 **then return** false

10: **return** reachable(s,t,n-1)

Lem. Savitch's Algorithmus löst das Erreichbarkeits-Problem in $\mathcal{O}((\log n)^2)$ Zeit.

 $Bem.\ {\it Die}$ Laufzeit von Savitch's Algorithmus ist allerding sehr schlecht.