FCC RF Test Report

APPLICANT: TCL Communication Ltd.

EQUIPMENT: Tablet PC

BRAND NAME : ALCATEL ONETOUCH

MODEL NAME : 9006W

MARKETING NAME : ONETOUCH PIXI 2 (7)

FCC ID : 2ACCJB014

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Apr. 01, 2015 and testing was completed on May 15, 2015. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

1F & 2F, Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili Town, Nanshan District, Shenzhen, Guangdong, P. R. China

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 1 of 38
Report Issued Date : May 15, 2015

Testing Laboratory 2353

Report No.: FR540109C

Report Version : Rev. 01

TABLE OF CONTENTS

RE	VISIC	ON HISTORY	3
SU	ММА	RY OF TEST RESULT	4
1	GEN	IERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification subjective to this standard	6
	1.5	Specification of Accessory	
	1.6	Modification of EUT	
	1.7	Testing Location	
	1.8	Applicable Standards	7
2	TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	8
	2.2	Pre-Scanned RF Power	9
	2.3	Test Mode	10
	2.4	Connection Diagram of Test System	11
	2.5	Support Unit used in test configuration and system	
	2.6	EUT Operation Test Setup	12
	2.7	Measurement Results Explanation Example	12
3	TES	T RESULT	13
	3.1	6dB Bandwidth Measurement	13
	3.2	Output Power Measurement	
	3.3	Power Spectral Density Measurement	16
	3.4	Conducted Band Edges and Spurious Emission Measurement	
	3.5	Radiated Band Edges and Spurious Emission Measurement	
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	
4	LIST	OF MEASURING EQUIPMENT	37
5	UNC	ERTAINTY OF EVALUATION	38
ΑF	PEND	DIX A. CONDUCTED TEST RESULTS	
ΑF	PEND	DIX B. RADIATED TEST RESULTS	
ΑF	PEND	DIX C. SETUP PHOTOGRAPHS	

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014

Page Number : 2 of 38 Report Issued Date: May 15, 2015 Report Version

: Rev. 01

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR540109C	Rev. 01	Initial issue of report	May 15, 2015

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 3 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.2	15.247(b)	Power Output Measurement	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
2.4	15.247(d)	Conducted Band Edges	, 00 dD -	Pass	-
3.4		Conducted Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 3.01 dB at 2389.920 MHz
3.6	3.6 15.207 AC Conducted Emission		15.207(a)	Pass	Under limit 3.85 dB at 0.520 MHz
3.7	3.7 15.203 & Antenna Requirement		N/A	Pass	-

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 4 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

1 General Description

1.1 Applicant

TCL Communication Ltd.

5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park, Pudong Area Shanghai, P.R. China. 201203

1.2 Manufacturer

TCL Communication Ltd.

5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park, Pudong Area Shanghai, P.R. China. 201203

1.3 Product Feature of Equipment Under Test

Product Feature						
Equipment	Tablet PC					
Brand Name	ALCATEL ONETOUCH					
Model Name	9006W					
Marketing Name	ONETOUCH PIXI 2 (7)					
FCC ID	2ACCJB014					
	GSM/GPRS/EGPRS/WCDMA/HSPA/HSPA+(Downlink					
	Only)/DC-HSDPA/LTE					
EUT supports Radios application	WLAN 2.4GHz 802.11b/g/n HT20					
	WLAN 5GHz 802.11a/n HT20/ HT40					
	Bluetooth v3.0 + EDR/Bluetooth v4.1 LE					
	Conducted: 014399000021048					
IMEI Code	Radiated: 014399000021063					
	Conduction: 014399000021071					
HW Version	V03					
SW Version	B2E					
EUT Stage	Production Unit					

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 5 of 38

Report Issued Date : May 15, 2015

Report Version : Rev. 01

1.4 Product Specification subjective to this standard

Product Specification subjective to this standard						
Tx/Rx Channel Frequency Range 802.11b/g/n : 2412 MHz ~ 2462 MHz						
Maximum (Peak) Output Power to	802.11b : 15.05 dBm (0.0320 W)					
Antenna	802.11g : 20.17 dBm (0.1040 W)					
Antenna	802.11n HT20 : 20.04 dBm (0.1009 W)					
Antenna Type	IFA Antenna with gain 1.5 dBi					
Type of Medulation	802.11b: DSSS (DBPSK / DQPSK / CCK)					
Type of Modulation	802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)					

1.5 Specification of Accessory

Specification of Accessory						
	Brand Name	ALCATEL	Model Name	UC13US		
AC Adoptor	Brana Name	onetouch	Woder Harrie	001000		
AC Adapter	Power Rating	I/P: 100-240Vac, 500mA, O/P: 5Vdc, 2000mA				
	P/N	CBA0059AG0C1				
	Brand Name	ALCATEL	Model Name	TLp032B2		
Dottom:	Dianu Name	onetouch	Model Name	ТЕРОЗЕВЕ		
Battery	Power Rating	3.7Vdc, 3240mAh				
	P/N	C3240009C2YHYKFG				
IISB Cabla	Brand Name	NA	Model Name	NA		
USB Cable	Signal Line Type	0.8m shielded with	nout core			

1.6 Modification of EUT

No modifications are made to the EUT during all test items.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 6 of 38

Report Issued Date : May 15, 2015

Report Version : Rev. 01

1.7 Testing Location

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.				
Test Site Location 1F & 2F,Building A, Morning Business Center, No. 4003 S Nanshan District, Shenzhen, Guangdong, P. R. China TEL: +86-755-8637-9589 FAX: +86-755-8637-9595					
Test Site No.	Sportor TH01-SZ	Site No.			

Test Site	SPORTON INTERNATIONAL INC.	SPORTON INTERNATIONAL INC.				
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,					
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.					
rest Site Location	TEL: +886-3-327-3456					
	FAX: +886-3-328-4978					
Test Site No.	Sporton Site No.	FCC Registration No.				
rest site No.	03CH05-HY	TW1022				

Note: The test site complies with ANSI C63.4 2009 requirement.

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. FCC permits the use of the 1.5 meter table as an alternative in C63.10-2013 through inquiry tracking number 961829.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 7 of 38

Report Issued Date : May 15, 2015

Report Version : Rev. 01

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
2400-2483.5 MHz	3	2422	9	2452
2400-2403.3 IVITZ	4	2427	10	2457
	5	2432	11	2462
	6	2437	-	-

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 8 of 38

Report Issued Date : May 15, 2015

Report Version : Rev. 01

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test shown in the following tables.

	2.4GHz 802.11b RF Output Power (dBm)								
Po	wer vs. Char	nnel		Power	vs. Data Rate				
Channel Frequency Data Rate (MHz) 1Mbps		Channel 2Mbps 5.5Mbps		11Mbps					
CH 01	2412 MHz	14.15							
CH 06	2437 MHz	14.44	CH 11	14.98	15.03	15.02			
CH 11	2462 MHz	<mark>15.05</mark>							

	2.4GHz 802.11g RF Output Power (dBm)									
Po	wer vs. Chan	nel				Power vs.	Data Rate			
Channel	Frequency	Data Rate	Channel	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
	(MHz)	6Mbps								
CH 01	2412 MHz	19.75								
CH 06	2437 MHz	19.83	CH 11	20.14	20.11	20.09	20.07	20.06	20.03	19.98
CH 11	2462 MHz	<mark>20.17</mark>								

	2.4GHz 802.11n HT20 RF Output Power (dBm)									
Po	wer vs. Chan	nel				Power vs. I	MCS Index			
Channel	Frequency	MCS Index	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
	(MHz)	MCS0								
CH 01	2412 MHz	19.46								
CH 06	2437 MHz	19.64	CH 11	20.00	19.99	20.01	19.89	19.88	19.89	19.90
CH 11	2462 MHz	<mark>20.04</mark>								

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 9 of 38

Report Issued Date : May 15, 2015

Report Version : Rev. 01

2.3 Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates from the power table described in section 2.2.

Modulation	Data Rate
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS0

Test Cases			
AC Conducted Emission	Mode 1 : GPRS850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from Adapter) + Earphone + Battery		
Remark: For radiated test cases, the tests were performed with adapter, battery, earphone and USB cable.			

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 10 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

2.4 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 11 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	ASUSTek	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded,2.7m
3.	Bluetooth Earphone	Nokia	BH-108	PYAHS-107W	N/A	N/A
4.	Notebook	Lenovo	E540	PRC4	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	Earphone	Lenovo	SH100	N/A	N/A	N/A

Report No.: FR540109C

: 12 of 38

: Rev. 01

Report Issued Date: May 15, 2015

Page Number

Report Version

2.6 EUT Operation Test Setup

For WLAN RF test items, an engineering test program was provided and enabled to make EUT continuously transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 5 + 10 = 15 (dB)

3 Test Result

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 13 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A of this test report.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 14 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

3.2 **Output Power Measurement**

3.2.1 **Limit of Output Power**

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting Antenna of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the Antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the Antenna exceeds 6dBi.

3.2.2 **Measuring Instruments**

The measuring equipment is listed in the section 4 of this test report.

3.2.3 **Test Procedures**

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A of this test report.

3.2.6 Test Result of Average output Power (Reporting Only)

Please refer to Appendix A of this test report.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014

Page Number : 15 of 38 Report Issued Date: May 15, 2015 Report Version

: Rev. 01

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 16 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A of this test report.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 17 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

3.4 **Conducted Band Edges and Spurious Emission Measurement**

3.4.1 **Limit of Conducted Band Edges and Spurious Emission Measurement**

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

3.4.2 **Measuring Instruments**

The measuring equipment is listed in the section 4 of this test report.

3.4.3 **Test Procedures**

- The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02. 1.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014

Page Number : 18 of 38 Report Issued Date: May 15, 2015 Report Version

: Rev. 01

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

Test Mode :	802.11b	Temperature :	24~25 ℃
Test Band :	2.4GHz Low	Relative Humidity :	48~49%
Test Channel :	01	Test Engineer :	Mygai Mo

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 19 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	24~25℃
Test Band :	2.4GHz Mid	Relative Humidity :	48~49%
Test Channel :	06	Test Engineer :	Mygai Mo

Page Number : 20 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	24~25℃
Test Band :	2.4GHz High	Relative Humidity :	48~49%
Test Channel :	11	Test Engineer :	Mygai Mo

Page Number : 21 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~25℃
Test Band :	2.4GHz Low	Relative Humidity :	48~49%
Test Channel :	01	Test Engineer :	Mygai Mo

Page Number : 22 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~25℃
Test Band :	2.4GHz Mid	Relative Humidity :	48~49%
Test Channel :	06	Test Engineer :	Mygai Mo

Page Number : 23 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~25 ℃
Test Band :	2.4GHz High	Relative Humidity :	48~49%
Test Channel :	11	Test Engineer :	Mygai Mo

Page Number : 24 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~25℃
Test Band :	2.4GHz Low	Relative Humidity :	48~49%
Test Channel :	01	Test Engineer :	Mygai Mo

Page Number : 25 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~25℃
Test Band :	2.4GHz Mid	Relative Humidity :	48~49%
Test Channel :	06	Test Engineer :	Mygai Mo

Page Number : 26 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

 Test Mode :
 802.11n HT20
 Temperature :
 24~25°C

 Test Band :
 2.4GHz High
 Relative Humidity :
 48~49%

 Test Channel :
 11
 Test Engineer :
 Mygai Mo

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 27 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 28 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
802.11b	97.79	8.24	0.121	300Hz
802.11g	86.97	1.362	0.734	1kHz
2.4GHz 802.11n HT20	86.42	1.279	0.782	1kHz

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 29 of 38

Report Issued Date : May 15, 2015

Report Version : Rev. 01

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014

Page Number : 30 of 38 Report Issued Date: May 15, 2015 : Rev. 01

Report No.: FR540109C

Report Version

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.5.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 31 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

AC Conducted Emission Measurement 3.6

3.6.1 **Limit of AC Conducted Emission**

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBμV)					
(MHz)	Quasi-Peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 **Test Procedures**

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF bandwidth = 9kHz) with Maximum Hold Mode.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014

: 32 of 38 Page Number Report Issued Date: May 15, 2015 Report Version

: Rev. 01

3.6.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 33 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

3.6.5 Test Result of AC Conducted Emission

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 34 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

Test Mode :	Mode 1			Ten	Temperature :		21~2	21~22℃		
Test Engineer :	Jack Tian			Rel	Relative Humidity :			41~43%		
Test Voltage :	120Vac / 60Hz			Pha	Phase :			Neutral		
Function Type :	GPRS850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging fr Adapter) + Earphone + Battery									
	_evel (dBuV)					Date	e: 2015-0	4-16 Time: 10:02	:25	
100										
90-										
80-									_	
70										
60								FCC 15C_Q	<u>(P</u>	
								FCC 15C AV	/G	
50			A CONTRACTOR	ילים וילועונה	Α	14			- M m	
40	1 /N. W. J. //	$\Delta\Delta\Delta\Delta$	TA JURIL OF THE	4 7 9 11	A JOHN	The property party	W.Westerna	COLEAN ARTHUR MANAGEMENT AND THE PROPERTY AND THE PROPERT	<u> </u>	
30	A. MAA.	e W h		\Box	 	W W	7 14	and a distributed with a said of the said		
20										
10-										
10										
0-	15 .2	.5	1		2	5	10	20	30	
				Frequ	ency (MHz)				
Site Conditio	: CO01-S on: FCC 15		SN_N_2014	0304 NE	UTRAL					
			Over	Limit	Read	LISN	Cable			
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark		
_	MHz	dBu∇	dB	dBu∀	dBu∇	dB	dB			
1 *	0.52	42.15	-3.85	46.00	31.60	0.39	10.16	Average		
2			-8.75							
3			-10.82					Average		
4 5			-15.72 -13.21	56.00 46.00	29.80		10.15	QP Average		
5			-15.21		29 59			_		

1.13 40.09 -15.91 56.00 29.59

1.13 40.09 -13.91 36.00 29.39 1.34 34.21 -11.79 46.00 23.69 1.34 42.11 -13.89 56.00 31.59 1.50 34.03 -11.97 46.00 23.51 1.50 41.43 -14.57 56.00 30.91 1.67 34.04 -11.96 46.00 23.50 1.67 41.04 -14.96 56.00 30.50

7 8

10

11

12

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 35 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

0.34 10.16 QP

0.36 10.18 QP

0.35 10.17 Average 0.35 10.17 QP

0.35 10.17 Average

0.35 10.17 QP 0.36 10.18 Average

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 36 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration	Test Date	Due Date	Remark
instrument	wanulacturer	woder No.	Seriai No.	Characteristics	Date	Test Date	Due Date	Remark
Spectrum	R&S	FSP30	101400	9kHz~40GHz	Jan. 28, 2015	May 08, 2015~	Jan. 27, 2016	Conducted
Analyzer						May 15, 2015		(TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1207253	30MHz~40GHz	Jan. 28, 2015	May 08, 2015~ May 15, 2015	Jan. 27, 2016	Conducted (TH01-SZ)
				50MHz		May 08, 2015~		Conducted
Power Meter	Anritsu	ML2495A	1218010	Bandwidth	Jan. 28, 2015	May 15, 2015	Jan. 27, 2016	(TH01-SZ)
Spectrum	Rohde &	FSP40	100055	9kHz~40GHz	Jun. 09, 2014	May 03, 2015	Jun. 08, 2015	Radiation
Analyzer	Schwarz	1 01 40	100055	38112 400112	oun. 05, 2014	Way 03, 2013	oun. 00, 2010	(03CH05-HY)
Bilog Antenna	Schaffner	CBL6111C	2725	30MHz~1GHz	Sep. 27, 2014	May 03, 2015	Sep. 26, 2015	Radiation
								(03CH05-HY) Radiation
Horn Antenna	ESCO	3117	00066584	1GHz~18GHz	Aug. 30, 2014	May 03, 2015	Aug. 29, 2015	(03CH05-HY)
SHF-EHF Horn	SCHWARZBE	DD114 0470	BBHA917025	40011- 40011-	O-t 00 2014	May 02 2015	0-1-04-2045	Radiation
Antenna	CK	BBHA 9170	1	18GHz~40GHz	Oct. 02, 2014	May 03, 2015	Oct. 01, 2015	(03CH05-HY)
	COM-POWE							Radiation
Preamplifier	R	PA-103A	161075	10MHz~1GHz	Apr. 09, 2015	May 03, 2015	Apr. 08, 2016	(03CH05-HY)
		AMF-7D-001						
Preamplifier	MITEQ	01800-30-10	1590074	100kHz~18GHz	Jul. 07, 2014	May 03, 2015	Jul. 06, 2015	Radiation
		Р			, ,	•		(03CH05-HY)
Preamplifier	COM-POWE	PA-103	161075	9kHz~30MHz	Apr. 09, 2015	May 03, 2015	Apr. 08, 2016	Radiation
1 reampline	R	174-100	101073	JKI IZ JOWN IZ	Арт. 00, 2010	may 60, 2010	Арт. 00, 2010	(03CH05-HY)
Preamplifier	Miteq	TTA0204	1872107	18GHz~40GHz	May 23, 2014	May 03, 2015	May 22, 2015	Radiation
								(03CH05-HY) Radiation
Turn Table	HD	HD100	420/611	0 - 360 degree	N/A	May 03, 2015	N/A	(03CH05-HY)
Antonna Maat	<u> </u>	110100	240/666	1 - 1 -	NI/A	May 03, 2015	NI/A	Radiation
Antenna Mast	HD	HD100	240/666	1 m - 4 m	N/A	Way 03, 2013	N/A	(03CH05-HY)
Loop Antenna	R&S	HFH2-Z2	100315	9 kHz~30 MHz	Jul. 28, 2014	May 03, 2015	Jul. 27, 2015	Radiation
						-		(03CH05-HY)
EMI Receiver	R&S	ESCI7	100724	9kHz~3GHz	Jan. 28, 2015	Apr. 16, 2015	Jan. 27, 2016	Conduction (CO01-SZ)
407.55	E1400	0040/001/	100000	0111 62111	F 00 00/=	40.001=	E 0/ 00/5	Conduction
AC LISN	EMCO	3816/2SH	103892	9kHz~30MHz	Feb. 02, 2015	Apr. 16, 2015	Feb. 01, 2016	(CO01-SZ)
AC LISN								Conduction
(for auxiliary	MessTec	AN3016	16850	9kHz~30MHz	Feb. 02, 2015	Apr. 16, 2015	Feb. 01, 2016	(CO01-SZ)
equipment)			040000000					•
AC Power Source	Chroma	61602	6160200008	100Vac~250Vac	Sep. 29, 2014	Apr. 16, 2015	Sep. 28, 2015	Conduction
			91		-, -,	, ,, = •	-, -,,	(CO01-SZ)

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 37 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of	2.3 dB
Confidence of 95% (U = 2Uc(y))	2.3 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	5.1 dB
Confidence of 95% (U = 2Uc(y))	5.1 UB

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : 38 of 38
Report Issued Date : May 15, 2015
Report Version : Rev. 01

Appendix A. Conducted Test Results

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : A1 of A1
Report Issued Date : May 15, 2015
Report Version : Rev. 01

Test Engineer:	Mygai Mo	Temperature:	21~25	°C
Test Date:	2015/5/8~2015/5/15	Relative Humidity:	51~54	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

	2.4GHz Band												
Mod.	Data Rate	ate		Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail					
11b	1Mbps	1	1	2412	13.60	9.00	0.50	Pass					
11b	1Mbps	1	6	2437	13.60	8.52	0.50	Pass					
11b	1Mbps	1	11	2462	13.65	9.02	0.50	Pass					
11g	6Mbps	1	1	2412	18.20	16.36	0.50	Pass					
11g	6Mbps	1	6	2437	18.35	16.36	0.50	Pass					
11g	6Mbps	1	11	2462	18.20	16.32	0.50	Pass					
HT20	MCS0	1	1	2412	19.10	17.54	0.50	Pass					
HT20	MCS0	1	6	2437	19.10	17.56	0.50	Pass					
HT20	MCS0 1 11		11	2462	19.05	17.60	0.50	Pass					

TEST RESULTS DATA Peak Power Table

	2.4GHz Band													
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail				
11b	1Mbps	1	1	2412	14.15	30.00	1.50	15.65	36.00	Pass				
11b	1Mbps	1	6	2437	14.44	30.00	1.50	15.94	36.00	Pass				
11b	1Mbps	1	11	2462	15.05	30.00	1.50	16.55	36.00	Pass				
11g	6Mbps	1	1	2412	19.75	30.00	1.50	21.25	36.00	Pass				
11g	6Mbps	1	6	2437	19.83	30.00	1.50	21.33	36.00	Pass				
11g	6Mbps	1	11	2462	20.17	30.00	1.50	21.67	36.00	Pass				
HT20	MCS0	1	1	2412	19.46	30.00	1.50	20.96	36.00	Pass				
HT20	MCS0	1	6	2437	19.64	30.00	1.50	21.14	36.00	Pass				
HT20	MCS0	1	11	2462	20.04	30.00	1.50	21.54	36.00	Pass				

TEST RESULTS DATA Average Power Table (Reporting Only)

			:	2.4GHz	Band	
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)
11b	1Mbps	1	1	2412	0.10	11.57
11b	1Mbps	1	6	2437	0.10	11.64
11b	1Mbps	1	11	2462	0.10	12.52
11g	6Mbps	1	1	2412	0.61	10.84
11g	6Mbps	1	6	2437	0.61	11.08
11g	6Mbps	1	11	2462	0.61	11.79
HT20	MCS0	1	1	2412	0.63	10.76
HT20	MCS0	1	6	2437	0.63	11.06
HT20	MCS0	1	11	2462	0.63	11.71

TEST RESULTS DATA Peak Power Density

	2.4GHz Band												
Mod.	Data Rate	NTX CH.		Freq. (MHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail					
11b	1Mbps	1	1	2412	-11.07	1.50	8.00	Pass					
11b	1Mbps	1	6	2437	-10.94	1.50	8.00	Pass					
11b	1Mbps	1	11	2462	-9.40	1.50	8.00	Pass					
11g	6Mbps	1	1	2412	-14.34	1.50	8.00	Pass					
11g	6Mbps	1	6	2437	-13.21	1.50	8.00	Pass					
11g	6Mbps	1	11	2462	-14.45	1.50	8.00	Pass					
HT20	MCS0	1	1	2412	-12.62	1.50	8.00	Pass					
HT20	MCS0	1	6	2437	-13.65	1.50	8.00	Pass					
HT20	MCS0	1	11	2462	-13.54	1.50	8.00	Pass					

Appendix B. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

WIFI 802.11b (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2383.8	59.63	-14.37	74	53.6	33.04	6.65	33.66	124	169	Р	Н
		2386.86	45.22	-8.78	54	39.2	33.02	6.65	33.65	124	169	Α	Н
000 445	*	2411.105	106.81	-	-	100.74	33	6.7	33.63	124	169	Р	Н
802.11b CH 01	*	2411.189	102.5	-	-	96.43	33	6.7	33.63	124	169	Α	Н
2412MHz		2356.98	58.4	-15.6	74	52.42	33.07	6.59	33.68	119	307	Р	V
241211112		2386.77	45.55	-8.45	54	39.53	33.02	6.65	33.65	119	307	Α	V
	*	2410.855	108.88	-	-	102.81	33	6.7	33.63	119	307	Р	V
	*	2411.189	104.3	-	-	98.23	33	6.7	33.63	119	307	Α	V
		2384.88	58.41	-15.59	74	52.38	33.04	6.65	33.66	129	313	Р	Н
		2380.92	45.16	-8.84	54	39.13	33.04	6.65	33.66	129	313	Α	Н
	*	2437.992	108.97	-	-	102.91	32.96	6.7	33.6	129	313	Р	Н
	*	2436.239	104.34	-	-	98.28	32.98	6.7	33.62	129	313	Α	Н
222 441		2499.12	58.13	-15.87	74	51.98	32.9	6.81	33.56	129	313	Р	Н
802.11b		2492.84	44.61	-9.39	54	38.46	32.9	6.81	33.56	129	313	Α	Н
CH 06 2437MHz		2381.91	57.94	-16.06	74	51.91	33.04	6.65	33.66	100	225	Р	٧
2437 WITIZ		2381.19	44.99	-9.01	54	38.96	33.04	6.65	33.66	100	225	Α	٧
	*	2438.076	108.93	-	-	102.87	32.96	6.7	33.6	100	225	Р	٧
	*	2437.742	104.85	-	-	98.79	32.96	6.7	33.6	100	225	Α	٧
		2496.24	58.58	-15.42	74	52.43	32.9	6.81	33.56	100	225	Р	٧
		2492.36	45	-9	54	38.85	32.9	6.81	33.56	100	225	Α	٧

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : B1 of B12
Report Issued Date : May 15, 2015
Report Version : Rev. 01

	*	2463.209	108.35	-	-	102.24	32.94	6.76	33.59	202	308	Р	Н
802 11h	*	2461.206	103.85	-	-	97.74	32.94	6.76	33.59	202	308	Α	Н
		2491.88	58.38	-15.62	74	52.23	32.9	6.81	33.56	202	308	Р	Н
802.11b		2487.6	46.83	-7.17	54	40.73	32.9	6.76	33.56	202	308	Α	Н
CH 11 2462MHz	*	2460.872	108.44	-	-	102.33	32.94	6.76	33.59	107	309	Р	٧
	*	2461.289	103.79	-	-	97.68	32.94	6.76	33.59	107	309	Α	٧
		2496.2	58.2	-15.8	74	52.05	32.9	6.81	33.56	107	309	Р	٧
		2487.64	46.16	-7.84	54	40.06	32.9	6.76	33.56	107	309	Α	٧
Remark	1. No other spurious found. 2. All results are PASS against Peak and Average limit line.												

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : B2 of B12
Report Issued Date : May 15, 2015
Report Version : Rev. 01

2.4GHz 2400~2483.5MHz

WIFI 802.11b (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	
802.11b CH 01		4824	44.18	-29.82	74	60.56	32.53	9.7	58.61	100	0	Р	Н
2412MHz		4824	41.46	-32.54	74	57.84	32.53	9.7	58.61	100	0	Р	٧
		4875	46.8	-27.2	74	63	32.58	9.74	58.52	100	0	Р	Н
802.11b		7311	42.16	-31.84	74	54.41	34.06	11.85	58.16	100	0	Р	Н
CH 06		4875	44.54	-29.46	74	60.74	32.58	9.74	58.52	100	0	Р	V
2437MHz		7311	41.29	-32.71	74	53.54	34.06	11.85	58.16	100	0	Р	V
		4926	43.98	-30.02	74	59.98	32.63	9.79	58.42	100	0	Р	Н
802.11b		7386	41.12	-32.88	74	53.38	34.08	11.97	58.31	100	0	Р	Н
CH 11 2462MHz		4923	42.09	-31.91	74	58.09	32.63	9.79	58.42	100	0	Р	V
2402IVITIZ		7386	40.4	-33.6	74	52.66	34.08	11.97	58.31	100	0	Р	V

Remark

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014

: B3 of B12 Page Number Report Issued Date : May 15, 2015

Report No. : FR540109C

Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz WIFI 802.11g (Band Edge @ 3m)

\A/I=1		_											
WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant		Peak	Pol.
Ant.		/ MU= \	(dDu\//m \	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	(110.0
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	, ,
		2389.83	68.12	-5.88	74	62.1	33.02	6.65	33.65	269	310	Р	Н
		2389.92	50.05	-3.95	54	44.03	33.02	6.65	33.65	269	310	Α	Н
802.11g CH 01 2412MHz	*	2410	105.79	-	-	99.72	33	6.7	33.63	269	310	Р	Н
	*	2410	95.61	-	-	89.54	33	6.7	33.63	269	310	Α	Н
		2390	70.35	-3.65	74	64.33	33.02	6.65	33.65	100	311	Р	V
		2389.92	50.61	-3.39	54	44.59	33.02	6.65	33.65	100	311	Α	V
	*	2414	107.75	-	-	101.68	33	6.7	33.63	100	311	Р	V
	*	2414	97.52	-	-	91.45	33	6.7	33.63	100	311	Α	٧
		2384.88	58.1	-15.9	74	52.07	33.04	6.65	33.66	100	311	Р	Н
		2384.52	45.7	-8.3	54	39.67	33.04	6.65	33.66	100	311	Α	Н
	*	2435	106.64	-	-	100.58	32.98	6.7	33.62	100	311	Р	Н
	*	2435	96.44	-	-	90.38	32.98	6.7	33.62	100	311	Α	Н
		2490.36	57.64	-16.36	74	51.49	32.9	6.81	33.56	100	311	Р	Н
802.11g		2489.64	45.95	-8.05	54	39.8	32.9	6.81	33.56	100	311	Α	Н
CH 06 2437MHz		2383.44	57.56	-16.44	74	51.53	33.04	6.65	33.66	353	179	Р	٧
2437 WIF1Z		2384.34	45.71	-8.29	54	39.68	33.04	6.65	33.66	353	179	Α	٧
	*	2439	106.81	-	-	100.75	32.96	6.7	33.6	353	179	Р	٧
	*	2439	96.43	-	-	90.37	32.96	6.7	33.6	353	179	Α	٧
		2489.92	57.71	-16.29	74	51.56	32.9	6.81	33.56	353	179	Р	V
		2489.4	45.9	-8.1	54	39.75	32.9	6.81	33.56	353	179	Α	V

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : B4 of B12
Report Issued Date : May 15, 2015
Report Version : Rev. 01

	*	2460	104.54	-	-	98.43	32.94	6.76	33.59	100	326	Р	Н
	*	2460	93.85	-	-	87.74	32.94	6.76	33.59	100	326	Α	Н
802.11g CH 11 2462MHz		2483.92	69.92	-4.08	74	63.81	32.92	6.76	33.57	100	326	Р	Н
		2483.52	50.67	-3.33	54	44.56	32.92	6.76	33.57	100	326	Α	Н
	*	2456.196	107.83	-	-	101.72	32.94	6.76	33.59	344	180	Р	٧
2402111112	*	2457.531	96.62	-	-	90.51	32.94	6.76	33.59	344	180	Α	٧
		2484.08	70.23	-3.77	74	64.12	32.92	6.76	33.57	344	180	Р	<
		2483.52	50.72	-3.28	54	44.61	32.92	6.76	33.57	344	180	Α	٧
Remark		o other spurious		Peak and	Average lim	iit line.							

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : B5 of B12
Report Issued Date : May 15, 2015
Report Version : Rev. 01

2.4GHz 2400~2483.5MHz

WIFI 802.11g (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	
802.11g CH 01		4824	40.01	-33.99	74	56.39	32.53	9.7	58.61	100	0	Р	Н
2412MHz		4824	39.32	-34.68	74	55.7	32.53	9.7	58.61	100	0	Р	V
802.11g CH 06		4875	42.86	-31.14	74	59.06	32.58	9.74	58.52	100	0	Р	Н
		7311	42.66	-31.34	74	54.91	34.06	11.85	58.16	100	0	Р	Н
		4875	40.18	-33.82	74	56.38	32.58	9.74	58.52	100	0	Р	٧
2437MHz		7311	41.07	-32.93	74	53.32	34.06	11.85	58.16	100	0	Р	٧
		4923	40.11	-33.89	74	56.11	32.63	9.79	58.42	100	0	Р	Н
802.11g CH 11 2462MHz		7386	40.56	-33.44	74	52.82	34.08	11.97	58.31	100	0	Р	Н
		4923	39.06	-34.94	74	55.06	32.63	9.79	58.42	100	0	Р	٧
		7386	41.44	-32.56	74	53.7	34.08	11.97	58.31	100	0	Р	٧

Remark

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : B6 of B12
Report Issued Date : May 15, 2015
Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	($dB\mu V$)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2390	66.89	-7.11	74	60.87	33.02	6.65	33.65	131	314	Р	Н
		2390	48.43	-5.57	54	42.41	33.02	6.65	33.65	131	314	Α	Н
802.11n	*	2410	104.92	-	-	98.85	33	6.7	33.63	131	314	Р	Н
HT20	*	2410	94.31	-	-	88.24	33	6.7	33.63	131	314	Α	Н
CH 01		2389.74	69	-5	74	62.98	33.02	6.65	33.65	100	312	Р	V
2412MHz		2389.92	50.99	-3.01	54	44.97	33.02	6.65	33.65	100	312	Α	٧
	*	2414	106.75	-	-	100.68	33	6.7	33.63	100	312	Р	V
	*	2414	96.52	-	-	90.45	33	6.7	33.63	100	312	Α	٧
		2384.61	57.86	-16.14	74	51.83	33.04	6.65	33.66	101	312	Р	Н
		2385.33	46.38	-7.62	54	40.35	33.04	6.65	33.66	101	312	Α	Н
	*	2435	106.92	-	-	100.86	32.98	6.7	33.62	101	312	Р	Н
	*	2435	96.57	-	-	90.51	32.98	6.7	33.62	101	312	Α	Н
802.11n		2489.2	58.82	-15.18	74	52.67	32.9	6.81	33.56	101	312	Р	Н
HT20		2488.76	46.43	-7.57	54	40.28	32.9	6.81	33.56	101	312	Α	Н
CH 06		2385.51	58.98	-15.02	74	52.96	33.02	6.65	33.65	100	347	Р	٧
2437MHz		2385.33	47.43	-6.57	54	41.4	33.04	6.65	33.66	100	347	Α	٧
	*	2435	107.42	-	-	101.36	32.98	6.7	33.62	100	347	Р	٧
	*	2435	97.27	-	-	91.21	32.98	6.7	33.62	100	347	Α	V
		2488.24	58.07	-15.93	74	51.92	32.9	6.81	33.56	100	347	Р	V
		2488.64	46.35	-7.65	54	40.2	32.9	6.81	33.56	100	347	Α	V

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : B7 of B12
Report Issued Date : May 15, 2015
Report Version : Rev. 01

	*	2464	105.07	-	-	98.96	32.94	6.76	33.59	264	304	Р	Н
	*	2464	93.85	-	-	87.74	32.94	6.76	33.59	264	304	Α	Н
802.11n		2483.72	67.2	-6.8	74	61.09	32.92	6.76	33.57	264	304	Р	Н
HT20		2483.64	49.74	-4.26	54	43.63	32.92	6.76	33.57	264	304	Α	Н
CH 11	*	2460	105.19	-	-	99.08	32.94	6.76	33.59	345	180	Р	V
2462MHz	*	2460	94.92	-	-	88.81	32.94	6.76	33.59	345	180	Α	V
		2484.72	70.13	-3.87	74	64.02	32.92	6.76	33.57	345	180	Р	٧
		2483.52	50.69	-3.31	54	44.58	32.92	6.76	33.57	345	180	Α	V
Remark		o other spurious		Peak and	Average lim	it line.							

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : B8 of B12
Report Issued Date : May 15, 2015
Report Version : Rev. 01

2.4GHz 2400~2483.5MHz

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	
802.11n HT20		4824	37.92	-36.08	74	54.3	32.53	9.7	58.61	100	0	Р	Н
CH 01 2412MHz		4824	38.76	-35.24	74	55.14	32.53	9.7	58.61	100	0	Р	٧
802.11n		4875	41.38	-32.62	74	57.58	32.58	9.74	58.52	100	0	Р	Н
HT20		7311	41.43	-32.57	74	53.68	34.06	11.85	58.16	100	0	Р	Н
CH 06		4875	39.94	-34.06	74	56.14	32.58	9.74	58.52	100	0	Р	V
2437MHz		7311	40.77	-33.23	74	53.02	34.06	11.85	58.16	100	0	Р	V
802.11n		4923	39.56	-34.44	74	55.56	32.63	9.79	58.42	100	0	Р	Н
HT20		7386	40.55	-33.45	74	52.81	34.08	11.97	58.31	100	0	Р	Н
CH 11		4923	42.01	-31.99	74	58.01	32.63	9.79	58.42	100	0	Р	٧
2462MHz		7386	41.89	-32.11	74	54.15	34.08	11.97	58.31	100	0	Р	V

Remark

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014

Page Number : B9 of B12 Report Issued Date : May 15, 2015 Report Version : Rev. 01

All results are PASS against Peak and Average limit line.

Emission below 1GHz 2.4GHz WIFI 802.11n (LF)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		64.29	15.6	-24.4	40	38.84	5.98	1.22	30.44			Р	Н
		117.48	18.7	-24.8	43.5	35.94	11.68	1.48	30.4			Р	Н
		188.76	16.31	-27.19	43.5	35.94	8.82	1.89	30.34			Р	Н
		518.4	30.24	-15.76	46	38.95	18.1	2.96	29.77			Р	Н
0.4011		748.7	32.69	-13.31	46	36.38	22.2	3.54	29.43	100	0	Р	Н
2.4GHz		851.6	29.11	-16.89	46	31.34	23.18	3.84	29.25			Р	Н
802.11n LF		76.44	19.3	-20.7	40	41.61	6.9	1.22	30.43			Р	V
		144.48	15.07	-28.43	43.5	32.23	11.5	1.71	30.37			Р	V
		199.02	15.37	-28.13	43.5	34.77	9.04	1.89	30.33			Р	٧
		486.2	22.55	-23.45	46	31.8	17.82	2.77	29.84			Р	V
		650	26.97	-19.03	46	32.74	20.4	3.37	29.54			Р	V
		787.2	28.29	-17.71	46	31.93	22.03	3.72	29.39	100	0	Р	V
Remark		o other spurious		mit line.									

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : B10 of B12
Report Issued Date : May 15, 2015
Report Version : Rev. 01

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB014 Page Number : B11 of B12
Report Issued Date : May 15, 2015
Report Version : Rev. 01

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".