In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as py
 import seaborn as sns
 from sklearn.linear\_model import LogisticRegression

#### Out[2]:

|        | date                       | BEN  | со   | EBE  | MXY   | NMHC | NO_2       | NOx        | OXY  | O_3   | PM10      |
|--------|----------------------------|------|------|------|-------|------|------------|------------|------|-------|-----------|
| 0      | 2002-<br>04-01<br>01:00:00 | NaN  | 1.39 | NaN  | NaN   | NaN  | 145.100006 | 352.100006 | NaN  | 6.54  | 41.990002 |
| 1      | 2002-<br>04-01<br>01:00:00 | 1.93 | 0.71 | 2.33 | 6.20  | 0.15 | 98.150002  | 153.399994 | 2.67 | 6.85  | 20.980000 |
| 2      | 2002-<br>04-01<br>01:00:00 | NaN  | 0.80 | NaN  | NaN   | NaN  | 103.699997 | 134.000000 | NaN  | 13.01 | 28.440001 |
| 3      | 2002-<br>04-01<br>01:00:00 | NaN  | 1.61 | NaN  | NaN   | NaN  | 97.599998  | 268.000000 | NaN  | 5.12  | 42.180000 |
| 4      | 2002-<br>04-01<br>01:00:00 | NaN  | 1.90 | NaN  | NaN   | NaN  | 92.089996  | 237.199997 | NaN  | 7.28  | 76.330002 |
|        |                            |      |      |      |       |      |            |            |      |       |           |
| 217291 | 2002-<br>11-01<br>00:00:00 | 4.16 | 1.14 | NaN  | NaN   | NaN  | 81.080002  | 265.700012 | NaN  | 7.21  | 36.750000 |
| 217292 | 2002-<br>11-01<br>00:00:00 | 3.67 | 1.73 | 2.89 | NaN   | 0.38 | 113.900002 | 373.100006 | NaN  | 5.66  | 63.389999 |
| 217293 | 2002-<br>11-01<br>00:00:00 | 1.37 | 0.58 | 1.17 | 2.37  | 0.15 | 65.389999  | 107.699997 | 1.30 | 9.11  | 9.640000  |
| 217294 | 2002-<br>11-01<br>00:00:00 | 4.51 | 0.91 | 4.83 | 10.99 | NaN  | 149.800003 | 202.199997 | 1.00 | 5.75  | NaN       |
| 217295 | 2002-<br>11-01<br>00:00:00 | 3.11 | 1.17 | 3.00 | 7.77  | 0.26 | 80.110001  | 180.300003 | 2.25 | 7.38  | 29.240000 |

217296 rows × 16 columns

### In [3]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 217296 entries, 0 to 217295 Data columns (total 16 columns):

| #             | Column  | Non-Null Count    | Dtype     |  |  |
|---------------|---------|-------------------|-----------|--|--|
|               |         |                   |           |  |  |
| 0             | date    | 217296 non-null   | object    |  |  |
| 1             | BEN     | 66747 non-null    | float64   |  |  |
| 2             | CO      | 216637 non-null   | float64   |  |  |
| 3             | EBE     | 58547 non-null    | float64   |  |  |
| 4             | MXY     | 41255 non-null    | float64   |  |  |
| 5             | NMHC    | 87045 non-null    | float64   |  |  |
| 6             | NO_2    | 216439 non-null   | float64   |  |  |
| 7             | NOx     | 216439 non-null   | float64   |  |  |
| 8             | OXY     | 41314 non-null    | float64   |  |  |
| 9             | 0_3     | 216726 non-null   | float64   |  |  |
| 10            | PM10    | 209113 non-null   | float64   |  |  |
| 11            | PXY     | 41256 non-null    | float64   |  |  |
| 12            | S0_2    | 216507 non-null   | float64   |  |  |
| 13            | TCH     | 87115 non-null    | float64   |  |  |
| 14            | TOL     | 66619 non-null    | float64   |  |  |
| 15            | station | 217296 non-null   | int64     |  |  |
| dtypes: float |         | 64(14), int64(1), | object(1) |  |  |

dtypes: float64(14), int64(1), object(1)

memory usage: 26.5+ MB

In [4]: df1=df.fillna(value=0)
 df1

## Out[4]:

|        | date                       | BEN  | со   | EBE  | MXY   | NМНС | NO_2       | NOx        | ОХҮ  | O_3   | PM10      |
|--------|----------------------------|------|------|------|-------|------|------------|------------|------|-------|-----------|
| 0      | 2002-<br>04-01<br>01:00:00 | 0.00 | 1.39 | 0.00 | 0.00  | 0.00 | 145.100006 | 352.100006 | 0.00 | 6.54  | 41.990002 |
| 1      | 2002-<br>04-01<br>01:00:00 | 1.93 | 0.71 | 2.33 | 6.20  | 0.15 | 98.150002  | 153.399994 | 2.67 | 6.85  | 20.980000 |
| 2      | 2002-<br>04-01<br>01:00:00 | 0.00 | 0.80 | 0.00 | 0.00  | 0.00 | 103.699997 | 134.000000 | 0.00 | 13.01 | 28.440001 |
| 3      | 2002-<br>04-01<br>01:00:00 | 0.00 | 1.61 | 0.00 | 0.00  | 0.00 | 97.599998  | 268.000000 | 0.00 | 5.12  | 42.180000 |
| 4      | 2002-<br>04-01<br>01:00:00 | 0.00 | 1.90 | 0.00 | 0.00  | 0.00 | 92.089996  | 237.199997 | 0.00 | 7.28  | 76.330002 |
|        |                            |      |      |      |       |      |            |            |      |       |           |
| 217291 | 2002-<br>11-01<br>00:00:00 | 4.16 | 1.14 | 0.00 | 0.00  | 0.00 | 81.080002  | 265.700012 | 0.00 | 7.21  | 36.750000 |
| 217292 | 2002-<br>11-01<br>00:00:00 | 3.67 | 1.73 | 2.89 | 0.00  | 0.38 | 113.900002 | 373.100006 | 0.00 | 5.66  | 63.389999 |
| 217293 | 2002-<br>11-01<br>00:00:00 | 1.37 | 0.58 | 1.17 | 2.37  | 0.15 | 65.389999  | 107.699997 | 1.30 | 9.11  | 9.640000  |
| 217294 | 2002-<br>11-01<br>00:00:00 | 4.51 | 0.91 | 4.83 | 10.99 | 0.00 | 149.800003 | 202.199997 | 1.00 | 5.75  | 0.000000  |
| 217295 | 2002-<br>11-01<br>00:00:00 | 3.11 | 1.17 | 3.00 | 7.77  | 0.26 | 80.110001  | 180.300003 | 2.25 | 7.38  | 29.240000 |

217296 rows × 16 columns

```
In [5]: df1.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 217296 entries, 0 to 217295
        Data columns (total 16 columns):
             Column
                      Non-Null Count
                                       Dtype
         0
             date
                      217296 non-null object
             BEN
         1
                      217296 non-null float64
         2
             CO
                      217296 non-null float64
         3
             EBE
                      217296 non-null
                                      float64
         4
                      217296 non-null
                                      float64
             MXY
         5
             NMHC
                      217296 non-null
                                       float64
         6
             NO_2
                      217296 non-null float64
         7
             NOx
                      217296 non-null float64
         8
             OXY
                      217296 non-null
                                      float64
         9
             0_3
                      217296 non-null
                                      float64
         10 PM10
                      217296 non-null
                                      float64
         11 PXY
                      217296 non-null float64
         12 SO_2
                      217296 non-null
                                      float64
         13 TCH
                      217296 non-null
                                      float64
         14 TOL
                      217296 non-null float64
         15 station 217296 non-null int64
        dtypes: float64(14), int64(1), object(1)
        memory usage: 26.5+ MB
In [6]: df1.columns
Out[6]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_
        3',
               'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station'],
              dtype='object')
```

```
In [7]: | df2=df1[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
                  'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
         df2
               0 0.00 1.39 0.00
                                   0.00
                                          0.00 145.100006 352.100006 0.00
                                                                             6.54 41.990002 0.00 🔺
               1 1.93 0.71 2.33
                                   6.20
                                           0.15
                                                 98.150002 153.399994
                                                                       2.67
                                                                             6.85 20.980000 2.53
               2 0.00 0.80 0.00
                                   0.00
                                          0.00 103.699997 134.000000
                                                                       0.00 13.01 28.440001 0.00
               3
                  0.00 1.61 0.00
                                   0.00
                                           0.00
                                                 97.599998
                                                           268.000000
                                                                       0.00
                                                                             5.12 42.180000
                                                                                             0.00
                  0.00 1.90
                             0.00
                                   0.00
                                           0.00
                                                 92.089996
                                                           237.199997
                                                                       0.00
                                                                             7.28
                                                                                  76.330002 0.00
                         ...
                                    ...
                                                                        ...
          217291 4.16 1.14 0.00
                                   0.00
                                           0.00
                                                 81.080002
                                                           265.700012
                                                                       0.00
                                                                             7.21
                                                                                  36.750000 0.00
          217292 3.67 1.73 2.89
                                   0.00
                                           0.38
                                                           373.100006
                                                                                  63.389999
                                                                                             0.00
                                                113.900002
                                                                       0.00
                                                                             5.66
                                                                                   9.640000 0.94
          217293 1.37 0.58 1.17
                                   2.37
                                           0.15
                                                 65.389999
                                                           107.699997
                                                                       1.30
                                                                             9.11
          217294 4.51 0.91 4.83 10.99
                                           0.00 149.800003 202.199997
                                                                             5.75
                                                                                   0.000000 5.52
                                                                       1.00
          217295 3.11 1.17 3.00
                                  7.77
                                           0.26
                                                 80.110001 180.300003 2.25
                                                                             7.38 29.240000
                                                                                             3.35
```

217296 rows × 15 columns

In [8]: sns.pairplot(df2)

Out[8]: <seaborn.axisgrid.PairGrid at 0x20a881eaa90>



```
In [9]: sns.distplot(df2['station'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='station', ylabel='Density'>



In [24]: from sklearn.model\_selection import train\_test\_split
x\_train,x\_test,y\_train,y\_test = train\_test\_split(x,y,test\_size=0.3)

## linear

```
In [12]: from sklearn.linear_model import LinearRegression
```

```
In [13]: lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[13]: LinearRegression()

```
In [14]: coeff =pd.DataFrame(lr.coef_,x.columns,columns=["Co-efficient"])
coeff
```

#### Out[14]:

|      | Co-efficient      |
|------|-------------------|
| BEN  | 2.833498          |
| СО   | 4.218625          |
| EBE  | -1.896436         |
| MXY  | 0.996361          |
| NMHC | -11.596930        |
| NO_2 | <b>-</b> 0.044724 |
| NOx  | -0.038944         |
| O_3  | -0.014382         |
| PM10 | 0.032646          |
| PXY  | 4.152622          |
| SO_2 | -0.108335         |
| ТСН  | 6.355155          |
| TOL  | -0.418133         |
| OXY  | -2.160064         |
|      |                   |

```
In [15]: print(lr.intercept_)
```

28079023.010687977

```
In [16]: prediction =lr.predict(x_test)
py.scatter(y_test,prediction)
```

Out[16]: <matplotlib.collections.PathCollection at 0x20aa0591eb0>



```
In [17]: |print(lr.score(x_test,y_test))
         0.13971016103643064
In [18]: print(lr.score(x_train,y_train))
         0.1377927917601448
         Ridge
In [19]: from sklearn.linear_model import Ridge,Lasso
In [20]: rr=Ridge(alpha=10)
         rr.fit(x train,y train)
Out[20]: Ridge(alpha=10)
In [21]: rr.score(x_test,y_test)
Out[21]: 0.13971942807063387
         Lasso
In [22]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[22]: Lasso(alpha=10)
In [23]: la.score(x_test,y_test)
Out[23]: 0.05961311096197963
         elasticnet
In [24]: | from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[24]: ElasticNet()
In [25]: print(en.coef_)
         [ 0.52192221 0.06008224 -0.
                                               0.79420303 0.
                                                                      -0.05650403
          -0.0175735 -0.01514683 0.04193206 0.86416339 -0.09613152 1.46701895
          -0.02315909 0.
                                 ]
```

```
In [26]: |print(en.intercept_)
         28079025.64837437
In [27]:
         print(en.predict(x_test))
         [28079022.98173612 28079021.18830581 28079020.94239793 ...
          28079040.90115401 28079016.84820627 28079026.37385159]
In [28]: | print(en.score(x_test,y_test))
         0.10679846191048736
         logistic
 In [8]: | feature_matrix=df2.iloc[:,0:14]
         target_vector=df2.iloc[:,-1]
 In [9]: feature_matrix=df2[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'O_3','PN
         y=df2['station']
In [10]: | feature_matrix.shape
Out[10]: (217296, 14)
In [11]: target vector.shape
Out[11]: (217296,)
In [12]: from sklearn.preprocessing import StandardScaler
In [13]: | fs=StandardScaler().fit transform(feature matrix)
In [14]: logr =LogisticRegression()
         logr.fit(fs,target_vector)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:
         763: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
         t-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regres
         sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
         ession)
           n_iter_i = _check_optimize_result(
Out[14]: LogisticRegression()
```

```
In [15]: observation=[[1.4,2.3,5.0,11,12,13,14,15,4,5,7,6,7,13]]
In [16]: prediction=logr.predict(observation)
         print(prediction)
         [28079099]
In [17]: logr.classes_
Out[17]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                28079017, 28079018, 28079019, 28079021, 28079022, 28079023,
                28079024, 28079025, 28079035, 28079036, 28079038, 28079039,
                28079040, 28079099], dtype=int64)
In [18]: logr.score(fs,target_vector)
Out[18]: 0.9224836168176128
In [19]: logr.predict_proba(observation)[0][0]
Out[19]: 0.0
In [20]: logr.predict_proba(observation)[0][1]
Out[20]: 0.0
         random forest
In [21]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.tree import plot tree
In [22]: x=df2.drop('station',axis=1)
         y=df2['station']
In [25]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.70)
In [26]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[26]: RandomForestClassifier()
In [27]: parameters = {'max_depth':[1,2,3,4,5],
                      'min_samples_leaf':[5,10,15,20,25],
                       'n estimators':[10,20,30,40,50]}
In [28]: from sklearn.model_selection import GridSearchCV
```

```
In [29]: grid_search = GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring='ad
         grid_search.fit(x_train,y_train)
Out[29]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [30]: |grid_search.best_score_
Out[30]: 0.46224765294225933
In [31]: | rfc_best =grid_search.best_estimator_
In [32]:
         py.figure(figsize=(80,50))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,filled=True)
Out[32]: [Text(2317.846153846154, 2491.5, 'BEN <= 0.08\ngini = 0.96\nsamples = 41186
         \nvalue = [2613, 2648, 2619, 2168, 2497, 320, 2540, 2737, 2575\n2576, 2686,
         2622, 2476, 2383, 2628, 2641, 2616, 2607\n2667, 2543, 2591, 2678, 2659, 272
         0, 2751, 2627]'),
          Text(1373.5384615384614, 2038.5, 'CO <= 0.685\ngini = 0.943\nsamples = 285
         22\nvalue = [2613, 2648, 2619, 16, 2497, 320, 2540, 2737, 2575\n2576, 44, 2
         622, 2476, 2383, 2628, 2641, 155, 10, 179\n41, 72, 2678, 2659, 2720, 2751,
         25]'),
          Text(686.7692307692307, 1585.5, 'NMHC <= 0.005\ngini = 0.939\nsamples = 17
         000\nvalue = [778, 1645, 1812, 16, 1245, 83, 935, 2041, 1386, 767\n32, 200
         8, 1895, 1726, 1675, 1960, 106, 10, 146, 37\n57, 1910, 930, 1801, 1893, 1
         9]'),
          Text(343.38461538461536, 1132.5, 'CO <= 0.205\ngini = 0.919\nsamples = 125
         54\nvalue = [778, 1645, 1812, 16, 70, 2, 935, 10, 1269, 767, 18\n2008, 189
         5, 56, 1675, 1960, 106, 9, 9, 37, 24\n1910, 930, 1801, 90, 4]'),
          Text(171.69230769230768, 679.5, 'TCH <= 1.205\ngini = 0.886\nsamples = 222
         7\nvalue = [59, 137, 428, 16, 20, 2, 22, 10, 508, 77, 2, 291\n575, 53, 58,
         658, 20, 9, 3, 12, 14, 134, 177\n223, 25, 2]'),
          Text(85.84615384615384, 226.5, 'gini = 0.884\nsamples = 2169\nvalue = [59,
```

# conclusion

The bestfit model is Logistic Regression with score of 0.9224836168176128

In [ ]: