ECEN 758 Data Mining and Analysis

Assignment 3: due 11:59pm, Thursday October 17, 2019

Procedure: Please Read

Please follow these guidelines to ensure your solutions reach me, and help me attribute your marks correctly

- Format: solutions must be typeset (using e.g. Microsoft Word or LaTex) and rendered in pdf.
- *Transmittal*: email your pdf solutions to me at duffielding AT tamu DOT edu using the required subject line for the assignment: "DMA Assignment n" where is the number of the assignment (1,2,3, etc).
- *File name*: use file name DMA-n-UIN.pdf where n is the number of the assignment (1,2,3, etc), and UIN is your UIN.
- Identification: please include your name and UIN near the top of the first page of your solutions.
- Numerical Computations: you may use packages or write code etc. to do the numerical computations. You must include function calls or your code in your solutions.
- Algebraic Computations: You must include your derivation to receive full credit.

1 K-means: [25 marks]

	X_1	X_2
x_1	0	2
$ x_2 $	0	0
$ x_3 $	1.5	0
$ x_4 $	5	0
$oldsymbol{x}_5$	5	2

Data for Question 1

For the two-dimensional points in the table above, assume k=2 clusters initially assign as $C_1=\{\boldsymbol{x}_1,\boldsymbol{x}_2,\boldsymbol{x}_4\}$ and $C_2=\{\boldsymbol{x}_3,\boldsymbol{x}_5\}$. Apply the K-means algorithm until convergence, i.e., until the clusters do not change, using usual Euclidean distance $\|\boldsymbol{x}_i-\boldsymbol{x}_j\|_2=(\sum_{a=1,2}|x_{i,a}-x_{j,a}|^2)^{1/2}$. Show the clusters at each stage of the iteration.

2 Gaussian Mixture Models: 37 Marks

	X_1	X_2
\boldsymbol{x}_1	0.5	4.5
x_2	2.2	1.5
x_3	3.9	3.5
$oldsymbol{x}_4$	2.1	1.9
$oldsymbol{x}_5$	0.5	3.2
x_6	0.8	4.3
x_7	2.7	1.1
$oldsymbol{x}_8$	2.5	3.5
$oldsymbol{x}_9$	2.8	3.9
$oldsymbol{x}_{10}$	0.1	4.1

Data for Question 2

 $m{x}_1,\dots m{x}_{10}$ are ten data point with two attributes: see the table above. This question will use three Gaussian clusters with initial means $\mu_1=(0.5,4.5)^T$, $\mu_2=(2.2,1.6)^T$ and $\mu_3=(3,3.5)^T$, initial covariance matrices $\Sigma_1=\Sigma_2=\Sigma_3=\{\{1,0\},\{0,1\}\}$ and initial mixture probabilities $\mathbb{P}(C_1)=\mathbb{P}(C_2)=\mathbb{P}(C_3)=1/3$.

In the following parts (A), (C) and (D), quote the relevant general formulae, then apply it to the data.

- (A) Compute the first EM iterates of the cluster means.
- (B) Show the data on a scatter plot, together with the initial and iterated means. Comment on your answer.
- (C) Compute the first EM iterates of the mixture probabilities.
- (D) Compute the first iterates of the covariance matrices for the three clusters.