目录

	一部分 概率函数: PMF (离散型数据的, 称为"概率质量函数 Probabil-y mass function") & PDF (连续性数据的, 称为"概率密度函数 Probabil-	
	y Density Function")	2
1	离散型数据的 PMF	2
2	连续性数据的 PDF 2.1 连续型随机变量,取任一"个别值"的概率,都为0	
	二部分 累积函数 $F(x) = P\{X \le x\} = \sum_{x_k \le x} p_k$ Cumulative Distribution Function (CDF) \leftarrow 是对"概率函数"值的累加果	5
3	★累加函数的计算公式	8
4	对"概率函数 $f(x)$ "求积分,就得到"累加函数 $F(x)$ ".反之,对"累加函数 $F(x)$ "求导,就得到"概率函数 $f(x)$ ".即:① \int 概率函数 $f(x)$ = 累加函数 $F(x)$,② (累加函数 $F(x)$) 概率函数 $f(x)$)' = 8
5	性质	10
	5.1 性质1: 有界性. $F(x) = P\{$ 随机变量 $X \le $ 随机变量的取值 $x\}$, $x \in (-\infty, +\infty)$. 即 $F(x) \le 1$	10 11 11
笙	三部分 随机变量函数的分布	12

文件名

第一部分 概率函数: PMF (离散型数据的, 称为"概率质量函数 Probability mass function") & PDF (连续性数据的, 称为"概率密度函数 Probability Density Function")

第二部分 累积函数 $F(x) = P\{X \le x\} = \sum_{x_k \le x} p_k$: Cumulative Distribution Function (CDF) \leftarrow 是对"概率 函数"值的累加结果

对于随机变量,我们通常关心的,并不是它取某个值的概率(即我们并不关心它的分布律),而是更关心它落在某个区间内的概率.

比如, 对某考试, 我们更关心的是"不及格的总人数", 和比如"分数≥80分的总人数".

累积函数 Cumulative Distribution Function (CDF) \leftarrow 是对"概率函数"值的累加结果.即对"概率密度函数"的积分.

概率值 P(X=x)

这一块的 每个x的值 的总和, 即y值的累加, 就是``累加函数'' F(x)

在这些个区间段所占的概率值, 就是用"累加函数"(又叫"分布函数")来表示的. 即:

(随机变量 $X \le$ 自变量x) = F(x) ← 它表示随机变量X 落在 $(-\infty, x]$ 这段区间上的概率.

累加函数
$$F(x) = P\{X \le x\} = \sum_{x_k \le x} p_k$$

累加函数 F(x) 就是 "X取 $\leq x$ 的所有值 x_k " 的概率之和.

P(X≤x) 即"X的取值不超过x"的概率. 这里P后面写()或{}都行, 意思是一样的.

下图, 左边两张是"概率函数", 右边两张就是"累加函数 CDF".

例

下面的图, 左边是"概率函数", 右边是"累加函数".

离散型数据的:

连续型数据的:

1 ★累加函数的计算公式

累加函数 $F(x) = PX \le x$ 的公式有	图中: 蓝-绿=橙
$(1) P\{X \le a\} = F(a)$	
(2) $P\{X < a\} = F(a - 0) \leftarrow$ 其中的 F(a-	
0): 就是从左边逼近a, 不包括a点. 所以是"左	
极限". 就是(-∞,a)这段区间的概率之和, 不包	
括a点上的概率.	
$(3) P\{X > a\} = 1 - P\{X \le a\} = 1 - F(a)$	
	1
	F(a-0)
	-∞ +∞ a b
$(4) P\{X \ge a\} = 1 - F(a - 0)$	$P\{X >= a\}$
	F(a)
	F(a-0)
	-∞ 1 + →
	a b P{X=a}
(5) $P{X = a} = F(a) - F(a - 0)$	
	蓝-绿=橙
	$P\{x <= b\}$
	$P\{x <= a\}$
	-∞ — — — — — — — — — — — — — — — — — — —
(6) $P\{a < X \le b\} = P(X \le b) - P(X \le a)$	P{a < X <= b}
	F(b)
	F(a-0) _
	-∞ — → a b
(7) $P\{a \le X \le b\} = F(b) - F(a-0)$	P{a <= X <= b}

2 对"概率函数f(x)"求积分,就得到"累加函数F(x)".反之,对"累加函数F(x)"求导,就得到"概率函数f(x)"。即:① \int 概率函数f(x) = 累加函数F(x),② (累加函数F(x))' = 概率函数f(x)

对"概率函数f(x)"求积分, 就得到"累加函数 F(x)"对"累加函数 F(x)" 求导, 就得到"概率函数f(x)".

3 性质 7

→ 求:

$$P\left\{0.3 < X < 0.7\right\} = \underbrace{F\left(0.7\right)}_{=\int_{-\infty}^{0.7} f(t)dt} - \underbrace{F\left(0.3\right)}_{=\int_{-\infty}^{0.3} f(t)dt}$$

因为在 $0 \le x < 1$ 的区间上, $F(x) = Ax^2$,而其中的A我们上面已经算出 = 1,

所以
$$F(x) = Ax^2 = (1)x^2 = x^2$$

所以:
$$F(0.7) = (0.7)^2 = 0.49$$

$$F(0.3) = (0.3)^2 = 0.09$$

因此:
$$P\left\{0.3 < X < 0.7\right\} = F\left(0.7\right) - F\left(0.3\right) = 0.49 - 0.09 = 0.4$$

事实上,本例的
$$P\{0.3 < X < 0.7\} = \int_{0.3}^{0.7} \underbrace{(2x)}_{\text{即概率函数}f(x)} dx$$

3 性质

3.1 性质1: 有界性. $F(x) = P\{$ 随机变量 $X \le$ 随机变量的取值 $x\}, x \in (-\infty, +\infty)$. 即 $0 F(x) \le 1$

累加函数(CDF) F(x), 就是一个普通的实函数. 其定义域是 $x \in (-\infty, +\infty)$. 值域是 $y \in [0, 1]$.

3 性质

累加函数:

$$P(a \leq X \leq b) = P(a < X < b) = \int_a^b f(x) \, dx = F(b) - F(a)$$
 这块面积是 $F(b) = P(X \leq b)$ 这块面积是 $F(a)$ 这段面积就是 $F(b) - F(a)$

$$P(x_1 < X \le x_2)$$
,对于随机变量 X 在 $(x_1, x_2]$ 这段区间上的概率,它的值
$$= F(x_2) - F(x_1)$$

$$= P\{X \le x_2\} - P\{X \le x_1\}$$

对于"连续型随机变量",有没有两端的端点,无所谓,不影响概率值(因为它在任何一个"确定点"的概率都是0嘛).即:

$$P\{a \le X \le b\}$$
 $= P\{a < X \le b\} \leftarrow 即, 两端是否有"等于号", 无所谓.$
 $= P\{a \le X < b\}$
 $= P\{a < X < b\}$

同样:

$$P\{X < a\} = P\{X \le a\} \leftarrow$$
 有没有"等于号"无所谓 $P\{X > a\} = P\{X \ge a\}$

3.2 性质2: 单调不减性. 即对于任意的 $x_1 < x_2$, 有: $F(x_1) \le F(x_2)$

F(x)是关于x的"不减函数", 类似于"单调递增"的概念. "不减"的意思就是, 该函数的y值不会下降, 只会"增长"或"平移向前".

比如, "分数小于等于70分的人" 其概率一定是小于等于 "分数小于80分的人". 即 $F(70) \le F(80)$.

3.3 性质3: 规范性. $F(-\infty)=0$, $F(+\infty)=1$

$$\underbrace{F(-\infty)}_{=P(X \le -\infty)} = \lim_{x \to -\infty} F(x) = P(X < -\infty) = P(\Phi) = 0 \leftarrow$$
 称之为 "不可能事件".

如果随机变量X的取值, 比 -∞还小, 那其概率, 就只能是0了.

$$\boxed{\underbrace{F(+\infty)}_{=P(X\leq +\infty)} = \lim_{x\to +\infty} F(x) = P(X<+\infty) = P(\Omega) = 1} \leftarrow 称之为 "必然事件".$$

如果随机变量X的取值, 在 $+\infty$ 以下, 那其概率, 肯定就是100%了, 就是1.

F(+∞) 跨越全面积, 概率肯定就是1了

3.4 性质4:右连续性. $\lim_{x\to x_0^+} F(x) = F(x_0)$

这个等式的意思就是说: 累加函数在 x_0 点的右极限, 就等于累加函数在该点处的函数值.

右连续	所谓"右连续",就是"函数从x在某点的右侧,逼近该点"的极限值,就等于"该点处	
	的y值",即: $\lim_{x\to a^+} F(x) = F(a)$.	
左连续	同理, "左连续"就是: $\lim_{x\to a^-} F(x) = F(a)$.	
连续	同时满足"左连续"和"右连续"的函数, 就称为是"连续"的. 即 $\lim_{x\to a} F(x) = F(a)$.	

满足上面4条性质的, 就一定是"累加函数". 反之, "累加函数"也一定有这4条性质.

第三部分 随机变量函数的分布

意思就是说,假如我们已经知道某个X 是某种类型的分布了,比如 X 它是几何分布的,二项分布的等.则进一步,而我们还想知道,用这个X 来构造出的其他函数,会是什么类型的分布呢?比如,Y=3X-5,这个Y是由X构造出来的,那么这个Y,也是和X相同类型的分布吗?还是说,Y是其他类型的分布?

- → 随机变量X, 它取x时, 其"累加函数"是: $F_X(x) = P\{X \le x\}$
- → 由随机变量X, 构造出的一个新 Y (比如 Y="多少倍的X, 再加上某个数"之类), 这个Y 的"累加函数", 是: $\boxed{F_Y(x) = P\{Y \le x\}}$ ← 等号左边的 $F_Y(x)$ 意思是: Y是从X构造出来的. 累加函数(用F表示), 所以 $F_Y(x)$ 就是指"由X构造出来的新的Y"的累加函数.