Exploding and vanishing gradients Problem statement

Previously on this week: BPTT

To train an RNN we need to backpropagate through layers and time

Previously on this week: BPTT

To train an RNN we need to backpropagate through layers and time

$$\frac{\partial L}{\partial W} = \sum_{i=0}^{T} \frac{\partial L_i}{\partial W}$$

$$\frac{\partial L_t}{\partial W} \propto \sum_{k=0}^t \left(\prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial W}$$

Contribution of a state at time step *k* to the gradient of the loss at time step *t*

$$\frac{\partial L_t}{\partial W} \propto \sum_{k=0}^t \left(\prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial W}$$

The more steps between the time moments k and t, the more elements are in this product

Values of these Jacobian matrices have particularly severe impact on the contributions from faraway steps

$$\frac{\partial L_t}{\partial W} \propto \sum_{k=0}^t \left(\prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial W}$$

Let's suppose for a moment that h_i is a scalar and consequently $\frac{\partial h_i}{\partial h_{i-1}}$ is also a scalar

$$\frac{\partial L_t}{\partial W} \propto \sum_{k=0}^t \left(\prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial W}$$

Let's suppose for a moment that h_i is a scalar and consequently $\frac{\partial h_i}{\partial h_{i-1}}$ is also a scalar

$$\left| \frac{\partial h_i}{\partial h_{i-1}} \right| < 1$$
 The product goes to 0 exponentially fast

$$\left| \frac{\partial h_i}{\partial h_{i-1}} \right| > 1$$
 The product goes to infinity exponentially fast

$$\frac{\partial L_t}{\partial W} \propto \sum_{k=0}^t \left(\prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial W}$$

Let's suppose for a moment that h_i is a scalar and consequently $\frac{\partial h_i}{\partial h_{i-1}}$ is also a scalar

$$\left| \frac{\partial h_i}{\partial h_{i-1}} \right| < 1$$

Vanishing gradients

- $\left| \frac{\partial h_i}{\partial h_{i-1}} \right| < 1$ contributions from faraway steps vanish and don't affect the training
 - difficult to learn long-range dependencies

$$\frac{\partial L_t}{\partial W} \propto \sum_{k=0}^t \left(\prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial W}$$

Let's suppose for a moment that h_i is a scalar and consequently $\frac{\partial h_i}{\partial h_{i-1}}$ is also a scalar

Exploding gradients

- make the learning process unstable
- gradient could even become a NaN

$$\frac{\partial L_t}{\partial W} \propto \sum_{k=0}^t \left(\prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial W}$$

The same is true for matrices but with the spectral matrix norm instead of the absolute value:

$$\left\| \frac{\partial h_i}{\partial h_{i-1}} \right\|_2 < 1$$

The product goes to zero-norm matrix exponentially fast

$$\left\| \frac{\partial h_i}{\partial h_{i-1}} \right\|_2 > 1$$

The product goes to a matrix of infinite norm exponentially fast

$$h_t = f_h(Vx_t + Wh_{t-1} + b_h) = f_h(pr_t)$$

$$h_t = f_h(Vx_t + Wh_{t-1} + b_h) = f_h(pr_t)$$

$$\frac{\partial h_t}{\partial h_{t-1}} = \frac{\partial h_t}{\partial pr_t} \frac{\partial pr_t}{\partial h_{t-1}} = diag(f_h'(pr_t)) \cdot ?$$

$$h_t = f_h(Vx_t + Wh_{t-1} + b_h) = f_h(pr_t)$$

$$\frac{\partial h_t}{\partial h_{t-1}} = \frac{\partial h_t}{\partial pr_t} \frac{\partial pr_t}{\partial h_{t-1}} = diag(f_h'(pr_t)) \cdot W$$

$$h_t = f_h(Vx_t + Wh_{t-1} + b_h) = f_h(pr_t)$$

$$\frac{\partial h_t}{\partial h_{t-1}} = \frac{\partial h_t}{\partial pr_t} \frac{\partial pr_t}{\partial h_{t-1}} = \boxed{diag(f_h'(pr_t))} \cdot W$$

sigmoid, tanh, ReLU

Derivatives

Vanishing gradients are very likely especially with sigmoid and tanh

$$h_t = f_h(Vx_t + Wh_{t-1} + b_h) = f_h(pr_t)$$

$$\frac{\partial h_t}{\partial h_{t-1}} = \frac{\partial h_t}{\partial pr_t} \frac{\partial pr_t}{\partial h_{t-1}} = diag(f'_h(pr_t)) \cdot W$$

||W|| may be either small or large

Small ||W|| could aggravate the vanishing gradient problem

Large ||W|| could cause exploding gradients (especially with ReLU)

Summary

- In practice vanishing and exploding gradients are common for RNNs. These problems also occur in deep Feedforward NNs.
- Vanishing gradients make the learning of long-range dependencies very difficult.
- Exploding gradients make the learning process very unstable and may even crash it.

In the next video:

How to deal with these issues?