- Oly	ARTIFICIAL INTELLIGENCE ASSIGNMENT OT
(1)	Rationality refers to the ability of an agent to make decisions
-	that optimize its goals or objectives given the available
	information and resources
	- OBJECTIVE - DRIVEN: Rational agents consistently select actions are
1	likely to achieve their objectives based on their
400	undesstanding of the environment and consequences of
	their actions
	- MAXIMIZING LITILITY: Selecting actions that maximize expected
	utility as minimize expected assis, aiming to achieve the
	best possible outcome given the circumstances
	- ENVIRONMENT INTERACTION: Guides agents to interact with their
8.3	envisonments by analyzing available information, predicting
	outcomes, and selecting actions that lead to desirable
	results.
	Eg: In self-deiving cons, realismality means ravigating through
	traffic while minimizing risk of accidents and reaching
	the destination efficiently
25 (46)	- DECISION MAKING PROCESS - Rotional agents consider their beliefs
	about the world, their goals, potential consequences of
	their actions when making decisions.
	- OUTCOME- ORIENTED: Rationality focuses on achieving classicable
	outcomes in various domains, including physical navigation,
	stadegic decision-making and passonalized recommendation
(5)	An envisionment is the context in which an agent operates,
-	consisting of everything outside the agent that con
	potentially affect its behaviour.
	-Some envisonments provide agents with complete
	information about their state

- Deterministic envisonments have predictable outcomes for given actions, while stochastic envisonments involve randomness or uncertainty.
- In episodic envisonments, each episode is independent of others, while in sequential envisonments, actions influence future states
- Static environments remain unchanged while the agent is acting, whereas dynamic environments may change during execution
- -Envisonments can have discovere states and actions or continuous
- The characteristics of the environment heavily influence the design of agents, affecting their perception, decision-making and learning mechanisms:
- -Agents must adopt their strategies and behaviours based on the nature of the environment to achieve their objectives effectively.
 - Eg: Chess: The game etwisonment is fully observable, deterministic, sequential, and discrete: Agents like chesplaying programs utilize search algorithms to explose possible fiture states and make optimal moves:

- Uncestainty - CHALLENGES :

- (1)Uncertainty- Dealing with incomplete or uncertain information
- (2) Complexity-Novigating complex envisaments with numerous possible states and actions:
- (3) Dynamics Adopting to changes in the envisonment over time
- (4) Trade-offs-Balancing exploration (toying new actions) with exploitation (using known actions).

(3) STRUCTURE OF INTELLIGENT AGENTS:

- Perception Receives inputs from the environment through sensors
- -Decision-Making: Processes information to select actions
- Action: Executes actions to affect the emissionment.
- knowledge Base: Stores information for decision-making
- -Goal: Objectives or tasks the agent aims to achieve

TYPES OF AGENTS:

- Simple reflex agents: Act based solely on current percept, mapping directly to actions:
- -Model-based reflex agents: Maintain internal state to track aspects of the world that are not directly observable

J	
آ	-Goal-Based agents: Plan actions to achieve specific goals,
	earsidering future states
	-Utility-based agents: Figluate actions based on utility
	functions to moximize outcomes
	- Learning agents: Improve performance over time through
_	learning from experience.
_	INTERACTION OF COMPONENTS:
	- Perception gathers information from the environment
	- Knowledge base stores Information used for decisions
	-Decision-making processes information to select appropria
	-Actions are executed to affect the environment, leading
	to new pesceptions
_	Eg: Simple Reflex Agents: Automated vaceuum deaners
	that change disection when encountering obstacles
4	ROLE OF PROBLEM-SOLVING AGENTS:
	-Am to find solutions to given tasks on digerties
	-Analyse problems, formulate them into a suitable
	methods
	FORMULATION OF PROBLEMS:
	-Problems are typically formulated by defining the initial
_	state, possible actions, transition model, goal test and
	bath cost.
	-Formulation provides a standward representation of the
9	FOR EDUCATIONAL USE

PROCESS OF PROBLEM-SOLVING BY SEARCHING:

- -Analysis: Problem-solving agents analyze the given problem to understand its structure and requirements.
- -Formulation: They formulate the problem into a suitable representation, such as a state space or a graph.
- Seasch: Problem solving agents use various search algorithm to explore problem space and find solutions
- Evaluation: They evaluate potential solutions based on coitesic such as optimality, completeness, and efficiency.
- Execution: Execute set of actions to achieve goal

METHODS USED FOR SEARCHING:

- -Uninformed search algorithms BFS, DFS
- -Informed seasch algorithms -A*seasch, Heusistic
- -Local seasch algorithms Hill Climbing, simulated annealing -Adversarial seasch algorithms Minimax, alpha-beta pouning
- Eg: Route Planning: Finding the stootest path between two locations using algorithms like Dijkstoa's or At search

the production of the second o

and the time in the state of the second to the second the second to the

and the second of the second o