Refine your types!

Romain Ruetschi

31.05.2018

Two words about me

Hi, my name is Romain Ruetschi, but you can also call me Romac.

I am usually found online under various spellings of "romac".

Twitter: https://twitter.com/_romac

GitHub: https://github.com/romac

Homepage: https://romac.me

A quick introduction

2 Under the hood

In the wild

A quick introduction

Int

 Romain Ruetschi
 Refine your types!
 31.05.2018
 6 / 30

Int

Boolean

Int

Boolean

List[Int]

Int

Boolean

List[Int]

 $\mathtt{List}[\mathtt{A}] \to \mathtt{Int}$

3: **Int**

3: **Int**

true: Boolean

3: Int

true: Boolean

List(1,2,3):List[Int]

3: **Int**

true: Boolean

List(1,2,3):List[Int]

 $(\mathtt{xs} \colon \mathtt{List}[\mathtt{A}]) \; \texttt{=>} \; \mathtt{xs}.\mathtt{length} : \mathtt{List}[\mathtt{A}] \to \mathtt{Int}$

$$\{x:T\mid p\}$$

 $\{ n: Int \mid n > 0 \}$

```
\{ n : Int \mid n > 0 \}
\{ xs : List[A] \mid !xs.isEmpty \}
```

```
 \left\{ \begin{array}{l} n: \mathtt{Int} \mid n > 0 \end{array} \right\}          \left\{ \begin{array}{l} xs: \mathtt{List}[\mathtt{A}] \mid !xs. \mathtt{isEmpty} \end{array} \right\}          \left\{ \begin{array}{l} t: \mathtt{Tree} \mid \mathtt{isBalanced}(t) \end{array} \right\}
```

$$\{ xs : \texttt{List[A]} \mid xs.\texttt{length} \neq 0 \} \rightarrow A$$

$$\{ xs : \texttt{List[A]} \mid xs.\texttt{length} \neq 0 \} \rightarrow A$$

$$\texttt{List}[A] \rightarrow \{ n : \texttt{Int} \mid n \ge 0 \}$$

$$A \rightarrow \{ n : \text{Int} \mid x \ge 0 \} \rightarrow \{ xs : \text{List[A]} \mid xs. \text{length} = n \}$$

Relation with dependent types

Not easy to precisely define either system. One view is that:

- With dependent types, types can refer to terms, the calculus is normalizing.
- With refinement types, types don't necessarily need to be able to refer to terms, and the calculus does not need to be normalizing, because proofs are discharged to a *solver*.
- In practice, it is natural to allow refinement types to refer to terms.

Relation with dependent types, continued

If we restrict ourselves to the view that dependent types \approx Coq and refinement types \approx LiquidHaskell, then:

- Dependent types are more expressive than refinement types, ie. one can model pretty much any kind of mathematics using dependent types, tactics, and manual proofs.
- Refinement types are more suited for automation, as predicates are drawn from a decidable logic, and proof obligations can thus be discharged to an SMT solver.

Under the hood

Subtyping

Refinement types rest on the following notion of subtyping:

$$\Gamma \vdash \{ \ x : A \mid p \ \} \preceq \{ \ y : A \mid q \ \}$$

$$\Leftrightarrow$$

$$Valid(\llbracket \Gamma \rrbracket \land \llbracket p \rrbracket \Rightarrow \llbracket q \rrbracket)$$

$$\Leftrightarrow$$

$$CheckSat(\lnot(\llbracket \Gamma \rrbracket \land \llbracket p \rrbracket \Rightarrow \llbracket q \rrbracket)) = UNSAT$$

Subtyping (example)

{ val x: Int = 42 }
$$\vdash$$
 { y: Int | y > x } \preceq { z: Int | z > 0 } \Leftrightarrow
$$Valid((x = 42 \land y > x \land z = y) \Rightarrow z > 0)$$
 \Leftrightarrow
$$CheckSat(\neg((x = 42 \land y > x \land z = y) \Rightarrow z > 0)) = UNSAT$$

16 / 30

Contracts

This function

def f(x: Int { x > 0 }): { y: Int | y < 0 } = 0 - x is correct if
$$\{x: \text{ Int } | x > 0\} \vdash \{z: \text{ Int } | z = 0 - x\} \preceq \{y: \text{ Int } | y < 0\}$$

$$\Leftrightarrow$$

$$Valid((x > 0 \land (z = 0 - x) \land (y = z)) \Rightarrow y < 0)$$

Solving constraints with SMT solvers

- Satisfiability Modulo Theories: Akin to a SAT solver with support for additional theories: algebraic data types, integer arithmetic, real arithmetic, bitvectors, sets, etc.
- Can choose from Z3, CVC4, Yices, Princess, and others.
- In practice, cannot just translate from the host language into SMT because of quantifiers, recursive functions, polymorphism, etc.
- Lots of work, difficult to get right (ie. sound and complete).

Solving constraints with Inox²

- Solver for higher-order functional programs which provides first-class support for features such as:
 - Recursive and first-class functions
 - 2 ADTs, integers, bitvectors, strings, set-multiset-map abstractions
 - 3 Quantifiers
 - 4 ADT invariants
- 2 Implements a very involved *unfolding strategy* to deal with all of the above [1, 2, 3]
- 3 Powers Stainless, a verification system for Scala¹

¹https://github.com/epfl-lara/stainless

²https://github.com/epfl-lara/inox

Write your own language with refinement types

Demo

 Romain Ruetschi
 Refine your types!
 31.05.2018
 20 / 30

In the wild

LiquidHaskell

- Modern incarnation of refinement types for Haskell, ie. *Liquid types* [4]
- Refinement are quantifier-free predicates drawn from a decidable logic.
 [4]
- Type refinement are specified as comments in the source code.

Romain Ruetschi Refine your types! 31.05.2018 22 / 30

Liquid Haskell

Demo

 Romain Ruetschi
 Refine your types!
 31.05.2018
 23 / 30

- General-purpose dialect of ML with effects aimed at program verification.
- Dependently-typed language with refinements, type checking done via an SMT solver.
- Can be extracted to efficient OCaml, F, or C code.
- Initially developed at Microsoft Research.

■ Part of *Project Everest*, an in-progress verified implementation of HTTPS, TLS, X.509, and cryptographic algorithms.³

³https://project-everest.github.io

Scala 3 (one day?)

 Ongoing effort by Georg Schmid to add refinement types to Dotty/Scala 3[5]

 Romain Ruetschi
 Refine your types!
 31.05.2018
 26 / 30

Acknowledgement

Many thanks to Georg Schmid for his insights and for taking time to answer my questions.

Go check out his work! [5]

Thanks!

References I

- [1] P. Suter, A. S. Köksal, and V. Kuncak, "Satisfiability modulo recursive programs," in *Proceedings of the 18th International Conference on Static Analysis*, SAS'11, Springer-Verlag, 2011.
- [2] N. Voirol and V. Kuncak, "Automating verification of functional programs with quantified invariants," p. 17, 2016.
- [3] N. Voirol and V. Kuncak, "On satisfiability for quantified formulas in instantiation-based procedures," 2016.
- [4] R. Jhala, "Refinement types for haskell," in *Proceedings of the ACM SIGPLAN 2014 Workshop on Programming Languages Meets Program Verification*, PLPV '14, pp. 27–27, ACM, 2014.

References II

[5] G. S. Schmid and V. Kuncak, "Smt-based checking of predicate-qualified types for scala," in *Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala*, SCALA 2016, pp. 31–40, ACM, 2016.

 Romain Ruetschi
 Refine your types!
 31.05.2018
 30 / 30