PowerMOS transistor Voltage clamped logic level FET with temperature sensing diodes

BUK9120-48TC

GENERAL DESCRIPTION

Protected N-channel enhancement mode logic level field-effect power transistor in a plastic envelope suitable for surface mounting. Using 'trench' technology the device features very low on-state resistance and has integral zener diodes giving ESD protection up to 2kV and active drain voltage clamping. Temperature sensitive diodes are incorporated for monitoring chip temperature.

The device is intended for use in automotive and general purpose switching applications.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
$V_{(CL)DSR}$ I_D P_{tot} T_j $R_{DS(ON)}$	Drain-source clamp voltage Drain current (DC) Total power dissipation Junction temperature Drain-source on-state	40	45	55 52 116 175 20	V A W °C mΩ
V _F -S _F	resistance; V _{GS} = 5 V Forward voltage,temperature sense diodes Negative temperature coefficient, temperature sense diodes	685 1.26	710 1.4	735 1.54	mV mV/K

PINNING - SOT426

PIN	DESCRIPTION	
1	gate	
2	T1	
3	(connected to mb)	
4	T2	
5	source	
mb	drain	

PIN CONFIGURATION

SYMBOL

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DS}	Drain-source voltage	continuous	-	40	V
V_{DG}	Drain-gate voltage	continuous	-	38	V
±V _{GS}	Gate-source voltage	-	-	10	V
I _D	Drain current (DC)	$T_{mb} = 25 ^{\circ}C$	-	52	Α
I _D	Drain current (DC)	$T_{mb} = 100 ^{\circ}C$	-	37	Α
I _D	Drain current (DC)	$T_{mb} = 140 ^{\circ}C$	-	25	Α
I _{DM}	Drain current (pulse peak	$T_{mb}^{mb} = 25 ^{\circ}C$	-	208	Α
	value)				
P _{tot}	Total power dissipation	$T_{mb} = 25 ^{\circ}C$	-	116	W
I_{GD}	Drain-gate clamp current	5ms pulse; $\Delta = 0.01$	-	50	mA
I _{GS}	Gate-source clamp current	5ms pulse; $\Delta = 0.01$	-	50	mA
V_{TS}	Source T1/T2 voltage	-	-	±100	V
T _{stg}	Storage temperature	-	- 55	175	°C
T _j	Junction temperature	-	- 55	175	°C

PowerMOS transistor

BUK9120-48TC

Voltage clamped logic level FET with temperature sensing diodes

ESD LIMITING VALUE

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _C	Electrostatic discharge voltage, pins 1,3,5	Human body model (100pF,1.5KΩ)	-	2	kV

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
R _{th j-mb}	Thermal resistance junction to mounting base		-	-	1.29	K/W
R _{th j-a}	, ,	minimum footprint, FR4 board	-	50	-	K/W

STATIC CHARACTERISTICS

 $T_j = 25$ °C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{(BR)DG}	Drain-gate zener voltage	250uA; -55°C ≤ T _i ≤ 175°C	38	43		V
V _{GS(TO)}	Gate threshold voltage	$V_{DS} = V_{GS}$; $I_{D} = 1 \text{ mA}$;	1.0	1.5	2.0	V
		$T_{j} = 175^{\circ}C$	0.5	-	-	V
١.	Zana anta walta na dunia awana	$\dot{T}_{j} = -55^{\circ}C$	-	-	2.3	V
I _{DSS}	Zero gate voltage drain current	$V_{DS} = +35 \text{ V}; V_{GS} = 0 \text{ V};$	-	0.1	100	μΑ
		T _j =175 °C	-	-	250	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{DS} = +15 \text{ V}; V_{GS} = 0 \text{ V};$	-	0.004	2	μΑ
1000		T _i =175 °C	-	-	250	μΑ
		1				·
I _{GSS}	Gate source leakage current	$V_{GS} = \pm 5 \text{ V}; V_{DS} = 0 \text{ V};$	-	0.02	1	μΑ
	la	T _j =175 °C	-	-	10	μΑ
$\pm V_{(BR)GSS}$	Gate source breakdown voltage	±1 mA;	10	-	-	V
R _{DS(ON)}	Drain-source on-state	$V_{GS} = 5 \text{ V}; I_{D} = 20 \text{ A}$	_	16	20	$\mid_{m\Omega}\mid$
DS(ON)	resistance	T _i =175 °C	-	-	42	m^{Ω}_{Ω}
		.,				V
V _F	Forward voltage, temperature	$I_F = 250 \text{ uA};$	685	710	735	mV
	sense diodes					
-S _F	Negative temperature	I _F = 250 uA	1.26	1.4	1.54	mV/K
	coefficient, temperature sense					
. ,	diodes from 25 °C to 140 °C	1 125 \ to 250 \	25		E0	m\/
V _{HYS}	Forward voltage hysteresis; temperature sense diodes	I _F = 125 uA to 250uA	25		50	mV
	Temperature sense diodes					

PowerMOS transistor

BUK9120-48TC

Voltage clamped logic level FET with temperature sensing diodes

DYNAMIC CHARACTERISTICS

T_i = 25 °C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$V_{(CL)DSR}$	Drain source clamp voltage (peak value)	R_G = 10 kΩ; I_D = 10 A; -55 ≤ T_j ≤ 175°C	40	45	55	V
g fs	Forward transconductance	$V_{DS} = 25 \text{ V}; I_{D} = 10 \text{ A}$	20	53	-	S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Feedback capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$	- - -	2200 400 215	2900 500 300	pF pF pF
$egin{array}{c} t_{d\ on} \ t_r \ t_{d\ off} \ t_f \end{array}$	Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time	$V_{DD} = 30 \text{ V}; I_D = 25 \text{ A};$ $V_{GS} = 5 \text{ V}; R_G = 10 \text{ k}\Omega;$	- - -	12 55 60 45	18 80 85 60	μs μs μs μs
L _d	Internal drain inductance Internal source inductance	Measured from upper edge of drain tab to centre of die Measured from source lead soldering point to source bond pad	-	2.5 7.5	-	nH nH

REVERSE DIODE LIMITING VALUES AND CHARACTERISTICS

T_i = 25 °C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{DR}	Continuous reverse drain current	-	-	-	52	Α
V_{SD}	Pulsed reverse drain current Diode forward voltage	$I_F = 20 \text{ A}$; $V_{GS} = 0 \text{ V}$ $I_F = 40 \text{ A}$; $V_{GS} = 0 \text{ V}$	- - -	- 0.95 1	208 1.2 -	A V V

CLAMPED ENERGY LIMITING VALUE

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
W _{DSRS}		T_j = 25°C prior to clamping; I_D = 20 A; V_{DD} ≤ 16 V; V_{GS} = 5 V; R_G = 10 kΩ; inductive load	1	450	mJ

Fig.14. Normalised drain-source on-state resistance $a = R_{DS(ON)}/R_{DS(ON)25\ C} = f(T_j); I_D = 25\ A; V_{GS} = 5\ V$

PowerMOS transistor

BUK9120-48TC

Voltage clamped logic level FET with temperature sensing diodes

MECHANICAL DATA

MOUNTING INSTRUCTIONS

Notes

- 1. Observe the general handling precautions for electrostatic-discharge sensitive devices (ESDs) to prevent damage to MOS gate oxide.
- 2. Epoxy meets UL94 V0 at 1/8".

PowerMOS transistor BUK9120-48TC Voltage clamped logic level FET with temperature sensing diodes

DEFINITIONS

Data sheet status					
Objective specification	This data sheet contains target or goal specifications for product development.				
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.				
Product specification	This data sheet contains final product specifications.				
Limiting values					

Limiting values

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 1998

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.