Vettori e funzioni

In matematica un polinomio è una funzione esprimibile nella forma:

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n = \sum_{i=0}^n a_i x^i,$$
(1)

dove n è il grado del polinomio e a_0, a_1, \ldots, a_n sono i suoi coefficienti. Si scriva un programma C che legga da terminale:

- Il grado del polinomio n (max. 10);
- I coefficienti $a_0, a_1, \dots a_n$;

se il grado del polinomio è 0, negativo o maggiore di 10 stampi a video

[ERRORE]

Grado non accettabile

e termini immediatamente.

Sono anche date le seguenti richieste:

Richiesta 1. stampi a video i coefficienti del polinomio letto in ordine decrescente di grado usando il formato:

[STAMPA]

4.000000

3.000000

2.000000

-6.000000

Richiesta 2. Per valutare un polinomio in un certo punto \hat{x} è sufficiente sostituire il valore di \hat{x} nell'espressione (1) ed eseguire i calcoli. Si chieda all'utente il valore di \hat{x} e si calcoli il valore $p(\hat{x})$. L'output deve avere il formato:

[VALUTA]

42.000000

Richiesta 3. La derivata di un polinomio è ancora un polinomio. Ad esempio, la derivata di $x^3 - 2x + 1$ è il polinomio $3x^2 - 2$. Più in generale, la derivata del generico polinomio p(x) definito nell'equazione (1) è il polinomio d(x) definito come:

$$d(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1}.$$
 (2)

Si noti che il grado di d è inferiore di uno rispetto al grado di p.

Si calcoli la derivata del polinomio inserito e se ne stampino i coefficienti in ordine decrescente di grado usando il formato:

[DERIVATA]

12.000000

6.000000

2.000000

Anche l'integrale di un polinomio è un polinomio. Ad esempio, l'integrale di di $x^3 - 2x + 1$ è il polinomio $x^4/4 - x^2 + x$ (in questo esercizio assumiamo che il coefficiente di grado 0 dell'integrale sia nullo). Più in generale, l'integrale del generico polinomio p(x) definito nell'equazione (1) è il polinomio P(x) definito come:

$$P(x) = 0 + a_0 x + \frac{a_1}{2} x^2 + \frac{a_2}{3} x^3 + \dots + \frac{a_n}{n+1} x^{n+1}.$$
 (3)

Si noti che il grado di P è superiore di uno rispetto al grado di p.

Si calcoli l'integrale del polinomio inserito e se ne stampino i coefficienti in ordine decrescente di grado usando il formato:

[INTEGRALE]

- 1.000000
- 1.000000
- 1.000000
- -6.000000
- 0.00000

Richiesta 4. Un metodo per risolvere un'equazione del tipo p(x) = 0 è il metodo delle tangenti: in questo metodo iterativo si sceglie un valore x_0 in modo arbitrario e poi si itera la formula:

$$x_{n+1} = x_n - \frac{p(x_n)}{p'(x_n)}$$

con p'(x) derivata di p(x). L'algoritmo termina quando il valore $|p(x_n)| < \varepsilon$. Si usi $\varepsilon = 10^{-7}$. Si implementi il metodo sopra descritto per risolvere l'equazione p(x) = 0 con p(x) il polinomio inserito. Per comunicare l'output si usi il formato:

[SOLUZIONE]

0.829091

Si strutturi il programma in più sottofunzioni, ognuna delle quali risolva una singola richiesta.

Verifica automatica

Si utilizzi il tool di verifica automatica per verificare il corretto funzionamento del programma:

./pvcheck polinomi.test ./polinomi

Il riepilogo dovrà essere:

RIEPILOGO

```
programma>:
               3 successi,
                               O avvertimenti, O errori
DERIVATA:
               2 successi,
                               0 avvertimenti, 0 errori
ERRORE:
               1 successi,
                               O avvertimenti, O errori
INTEGRALE:
               2 successi,
                               O avvertimenti, O errori
SOLUZIONE:
               2 successi,
                               0 avvertimenti, 0 errori
                               O avvertimenti, O errori
STAMPA:
               2 successi,
               2 successi,
                               O avvertimenti, O errori
VALUTA:
```