Lecture Note 13

Dr. Jeff Chak-Fu WONG

Department of Mathematics
Chinese University of Hong Kong

jwong@math.cuhk.edu.hk

MATH1020 General Mathematics

THE CROSS PRODUCT

he Cross Product

Find the Cross Product of Two Vectors

For vectors in space, and only for vectors in space, a second product of two vectors defined, called the *cross product*. The cross product of two vectors in space is, in fact also a vector that has applications in both geometry and physics.

Definition 1 If $\mathbf{v} = a_1 \mathbf{i} + b_1 \mathbf{j} + c_1 \mathbf{k}$ and $\mathbf{w} = a_2 \mathbf{i} + b_2 \mathbf{j} + c_2 \mathbf{k}$ are two vectors in space, the **cross product** $\mathbf{v} \times \mathbf{w}$ is defined as the vector

$$\mathbf{v} \times \mathbf{w} = (b_1 c_2 - a_2 c_1)\mathbf{i} - (a_1 c_2 - a_2 c_1)\mathbf{j} + (a_1 b_2 - a_2 b_1)\mathbf{k}. \tag{1}$$

HE CROSS PRODUCT

Notice that the cross product $\mathbf{v} \times \mathbf{w}$ of two vectors is a vector. Because of this, it is sometimes referred to as the **vector product.**

he Cross Product

Example 1 Finding Cross Products Using Equation (1)

 $= -\mathbf{i} - \mathbf{j} + \mathbf{k}$.

If
$$\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$$
 and $\mathbf{w} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, an application (1) gives
$$\mathbf{v} \times \mathbf{w} = (3 \cdot 3 - 2 \cdot 5)\mathbf{i} - (2 \cdot 3 - 1 \cdot 5)\mathbf{j} + (2 \cdot 2 - 1 \cdot 3)\mathbf{k}$$
$$= (9 - 10)\mathbf{i} - (6 - 5)\mathbf{j} + (4 - 3)\mathbf{k}$$

HE CROSS PRODUCT

Determinants may be used as an aid in computing cross products. A 2 by 2 determinant, symbolized by

$$\left|\begin{array}{ccc} a_1 & b_1 \\ a_2 & b_2 \end{array}\right|$$

has the value $a_1b_2 - a_2b_1$; that is,

$$\left| \begin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \end{array} \right| = a_1 b_2 - a_2 b_1.$$

A 3 by 3 determinant has the value

$$\begin{vmatrix} A & B & C \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} A - \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} B + \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} C.$$

Example 2 Evaluating Determinants

(a)
$$\begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = 2 \cdot 2 - 1 \cdot 3 = 4 - 3 = 1.$$

(b)
$$\begin{vmatrix} A & B & C \\ 2 & 3 & 5 \\ 1 & 2 & 3 \end{vmatrix} = \begin{vmatrix} 3 & 5 \\ 2 & 3 \end{vmatrix} A - \begin{vmatrix} 2 & 5 \\ 1 & 3 \end{vmatrix} B + \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} C$$
$$= (9 - 10)A - (6 - 5)B + (4 - 3)C$$
$$= -A - B + C.$$

The cross product of the vectors

$$\mathbf{v} = a_1 \mathbf{i} + b_1 \mathbf{j} + c_1 \mathbf{k}$$

and

$$\mathbf{w} = a_2 \mathbf{i} + b_2 \mathbf{j} + c_2 \mathbf{k},$$

that is,

$$\mathbf{v} \times \mathbf{w} = (b_1c_2 - b_2c_1)\mathbf{i} - (a_1c_2 - a_2c_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

may be written symbolically using determinants as

$$\mathbf{u} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \mathbf{k}.$$

Example 3 Using Determinants to Find Cross Products

If $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$ and $\mathbf{w} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, find:

- (a) $\mathbf{v} \times \mathbf{w}$
- (b) $\mathbf{w} \times \mathbf{v}$
- (c) $\mathbf{v} \times \mathbf{v}$
- (d) $\mathbf{w} \times \mathbf{w}$

Solution

(a)
$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & 5 \\ 1 & 2 & 3 \end{vmatrix} = \begin{vmatrix} 3 & 5 \\ 2 & 3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 2 & 5 \\ 1 & 3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} \mathbf{k} = -\mathbf{i} - \mathbf{j} + \mathbf{k}.$$

((b)
$$\mathbf{w} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 2 & 3 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ 3 & 5 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 3 \\ 2 & 5 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} \mathbf{k} = \mathbf{i} + \mathbf{j} - \mathbf{k}.$$

(c)
$$\mathbf{v} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & 5 \\ 2 & 3 & 5 \end{vmatrix} = \begin{vmatrix} 3 & 5 \\ 3 & 5 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 2 & 5 \\ 2 & 5 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 2 & 3 \\ 2 & 3 \end{vmatrix} \mathbf{k} = 0\mathbf{i} - 0\mathbf{j} + 0\mathbf{k}$$

= $\mathbf{0}$.

(d)
$$\mathbf{w} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ 2 & 3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 3 \\ 1 & 3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} \mathbf{k} = 0\mathbf{i} - 0\mathbf{j} + 0\mathbf{k}$$

= $\mathbf{0}$.

Interpret Algebraic Properties of the Cross Product

Notice in Example 3(a) and (b) that $\mathbf{v} \times \mathbf{w}$ and $\mathbf{w} \times \mathbf{v}$ are negatives of one another.

From Examples 3(c) and (d), we might conjecture that the cross product of a vector with itself is the zero vector.

These and other algebraic properties of the cross product are given next.

he Cross Product

Theorem 1 Algebraic Properties of the Cross Product

If \mathbf{u}, \mathbf{v} , and \mathbf{w} are vectors in space and if α is a scalar, then

$$\mathbf{u} \times \mathbf{u} = \mathbf{0}. \tag{2}$$

$$\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}. \tag{3}$$

$$\alpha(\mathbf{u} \times \mathbf{v}) = (\alpha \mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (\alpha \mathbf{v}). \tag{4}$$

$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}. \tag{5}$$

Proof:

We only prove properties (2) and (4) here.

To prove property (2), we let $\mathbf{u} = a_1 \mathbf{i} + b_1 \mathbf{j} + c_1 \mathbf{k}$. then

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \mathbf{k}$$
$$= 0\mathbf{i} - 0\mathbf{j} + 0\mathbf{k} = \mathbf{0}.$$

To prove property (4), we let $\mathbf{u} = a_1 \mathbf{i} + b_1 \mathbf{j} + c_1 \mathbf{k}$ and $\mathbf{v} = a_2 \mathbf{i} + b_2 \mathbf{j} + c_2 \mathbf{k}$. Then

$$\alpha(\mathbf{u} \times \mathbf{v}) = \alpha[(b_1c_2 - a_2c_1)\mathbf{i} - (a_1c_2 - a_2c_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}]$$
 Apply (1)
= $\alpha(b_1c_2 - b_2c_1)\mathbf{i} - \alpha(a_1c_2 - a_2c_1)\mathbf{j} + \alpha(a_1b_2 - a_2b_1)\mathbf{k}.$ (6)

Since $\alpha \mathbf{u} = \alpha(a_1 \mathbf{i} + b_1 \mathbf{j} + c_1 \mathbf{k})$, we have

$$(\alpha \mathbf{u}) \times \mathbf{v} = \alpha(\alpha b_1 c_2 - b_2 \alpha c_1) \mathbf{i} - \alpha(\alpha a_1 c_2 - a_2 \alpha c_1) \mathbf{j} + \alpha(\alpha a_1 b_2 - a_2 \alpha b_1) \mathbf{k}$$
$$= \alpha(b_1 c_2 - a_2 c_1) \mathbf{i} - \alpha(a_1 c_2 - a_2 c_1) \mathbf{j} + \alpha(a_1 b_2 - a_2 b_1) \mathbf{k}. \tag{7}$$

Based on equations (6) and (7), the first part of property (4) follows. The second part can be proved in a similar fashion.

Interpret Geometric Properties of the Cross Product The cross product has several interesting geometric properties.

Theorem 2 Geometric Properties of the Cross Product

Let \mathbf{u} and \mathbf{v} be vectors in space.

$$\mathbf{u} \times \mathbf{v}$$
 is orthogonal to both \mathbf{u} and \mathbf{v} . (8)

$$||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| ||\mathbf{v}|| \sin \theta$$
, where θ is the angle between \mathbf{u} and \mathbf{v} . (9)

 $||\mathbf{u} \times \mathbf{v}||$ is the area of the parallelogram having $\mathbf{u} \neq \mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$ as adjacent sides. (10)

 $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ if and only if \mathbf{u} and \mathbf{v} are parallel. (11)

Proof of Property (8)

Let $\mathbf{u} = a_1 \mathbf{i} + b_1 \mathbf{j} + c_1 \mathbf{k}$ and $\mathbf{v} = a_2 \mathbf{i} + b_2 \mathbf{j} + c_2 \mathbf{k}$. Then $\mathbf{u} \times \mathbf{v} = (b_1 c_2 - b_2 c_1) \mathbf{i} - (a_1 c_2 - a_2 c_1) \mathbf{j} + (a_1 b_2 - a_2 b_1) \mathbf{k}$.

Now we compute the dot product $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v})$.

$$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = (a_1 \mathbf{i} + b_1 \mathbf{j} + c_1 \mathbf{k})[(b_1 c_2 - b_2 c_1) \mathbf{i} - (a_1 c_2 - a_2 c_1) \mathbf{j} + (a_1 b_2 - a_2 b_1) \mathbf{k}]$$

$$= a_1 (b_1 c_2 - b_2 c_1) - b_1 (a_1 c_2 - a_2 c_1) + c_1 (a_1 b_2 - a_2 b_1) = 0.$$

Since two vectors are orthogonal if their dot product is aero, it follows that ${\bf u}$ and ${\bf u}\times {\bf v}$ are orthogonal.

Similarly, $\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$, so \mathbf{v} and $\mathbf{u} \times \mathbf{v}$ are orthogonal.

Find a Vector Orthogonal to Two Given Vectors

As long as the vectors \mathbf{u} and \mathbf{v} are not parallel, they will form a place in space. See Figure 1.

Figure 1:

Based on property (8), the vector $\mathbf{u} \times \mathbf{v}$ is normal to this plane.

As Figure 1 illustrates, there are essentially (without regard to magnitude) two vectors normal to the plane containing **u** and **v**. It can be shown that the vector

 $\mathbf{u} \times \mathbf{v}$ is the one determined by the thumb of the right hand when the other fingers of the right hand are cupped so that they point in a direction from \mathbf{u} to \mathbf{v} . See Figure 2.

Figure 2:

Example 4 Finding a Vector Orthogonal to Two Given Vectors

Find a vector that is orthogonal to $\mathbf{u} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and $\mathbf{v} = -\mathbf{i} + 3\mathbf{j} - \mathbf{k}$.

Solution:

Based on property (8), such a vector is $\mathbf{u} \times \mathbf{v}$.

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & 5 \\ 1 & 2 & 3 \end{vmatrix} = (2-3)\mathbf{i} - [-3 - (-1)]\mathbf{j} + (9-2)\mathbf{k} = -\mathbf{i} + 2\mathbf{j} + 7\mathbf{k}.$$

The vector $-\mathbf{i} + 2\mathbf{j} + 7\mathbf{k}$ is orthogonal to both \mathbf{u} and \mathbf{v} .

Check: Two vectors are orthogonal if their dot product is zero.

$$\mathbf{u} \times (-\mathbf{i} + 2\mathbf{j} + 7\mathbf{k}) = (3\mathbf{i} - 2\mathbf{j} + \mathbf{k}) \cdot (-\mathbf{i} + 2\mathbf{j} + 7\mathbf{k}) = -3 - 4 + 7 = 0.$$

$$\mathbf{v} \times (-\mathbf{i} + 2\mathbf{j} + 7\mathbf{k}) = (-\mathbf{i} + 3\mathbf{j} - \mathbf{k}) \cdot (-\mathbf{i} + 2\mathbf{j} + 7\mathbf{k}) = 1 + 6 - 7 = 0.$$

Proof of Property (10)

Suppose that ${\bf u}$ and ${\bf v}$ are adjacent sides of a parallelogram. See Figure 3.

Figure 3:

Then the lengths of these sides are $||\mathbf{u}||$ and $||\mathbf{v}||$.

If θ is the angle between **u** and **v**, then the height of the parallelogram is $||\mathbf{v}|| \sin \theta$

HE CROSS PRODUCT 20

and its area is

Area of parallelogram = Base × Height
=
$$||\mathbf{u}||[||\mathbf{v}||\sin\theta]$$
 Property (9)
= $||\mathbf{u} \times \mathbf{v}||$.

he Cross Product

Find the Area of a Parallelogram

Example 5 Find the Area of a Parallelogram

Find the area of the parallelogram whose vertices are

$$P_1 = (0,0,0), P_2 = (3,-2,1), P_3 = (-1,3,-1), \text{ and } P_4 = (2,1,0).$$

Solution:

Two adjacent sides of this parallelogram are

$$\mathbf{u} = \overrightarrow{P_1 P_2} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$$

and

$$\mathbf{v} = \overrightarrow{P_1 P_3} = -\mathbf{i} + 3\mathbf{j} - \mathbf{k}.$$

Since $\mathbf{u} \times \mathbf{v} = -\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ (Example 4), the area of the parallelogram is

Area of parallelogram =
$$||\mathbf{u}|| ||\mathbf{v}||$$

= $\sqrt{1+4+49} = \sqrt{54} = 3\sqrt{6}$ square units.

Proof of Property (11)

The proof requires two parts.

If **u** and **v** are parallel, then there is a scalar α such that $\mathbf{u} = \alpha \mathbf{v}$. Then

$$\mathbf{u} \times \mathbf{v} = (\alpha \mathbf{v}) \times \mathbf{v}$$
 Property (4)
= $\alpha(\mathbf{v} \times \mathbf{v})$ Property (2)
= $\mathbf{0}$.

If $\mathbf{u} \times \mathbf{v} = \mathbf{0}$, then , by property (9), we have

$$||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| ||\mathbf{v}|| \sin \theta = 0.$$

Since $\mathbf{u} \neq \mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$, we must have $\sin \theta = 0$, so $\theta = 0$ or $\theta = \pi$. In either case, since θ is the angle between \mathbf{u} and \mathbf{v} , then \mathbf{u} and \mathbf{v} are parallel.