WO9009381

Publication Title:
4-HYDROXYTHIAZOLES AS 5-LIPOXYGENASE INHIBITORS
Abstract:

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C07D 417/04, 417/14

(11) International Publication Number: **A1**

WO 90/09381

A61K 31/44

(43) International Publication Date:

23 August 1990 (23.08.90)

(21) International Application Number:

PCT/US90/00653

(22) International Filing Date:

2 February 1990 (02.02.90)

(30) Priority data:

308,177

8 February 1989 (08.02.89) US

(71) Applicant: ABBOTT LABORATORIES [US/US]; CHAD 0377/AP6D-2, One Abbott Park Road, Abbott Park, IL 60064-3500 (US).

(72) Inventors: BROOKS, Dee, W.; 1127 Kristin Drive, Libertyville, IL 60048 (US). KERDESKY, Francis, A., J.; 207 Windjammer Lane, Grayslake, IL 60030 (US). HOLMS, James, H.; 521 Magnolia Street, Gurnee, IL 60031 (US).

(74) Agents: GORMAN, Edward, Hoover, Jr. et al.; Abbott Laboratories, CHAD-0377, AP6D/2, One Abbott Park Road, Abbott Park, IL 60064-3500 (US).

(81) Designated States: AT (European patent), BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

Published

With international search report.

(54) Title: 4-HYDROXYTHIAZOLES AS 5-LIPOXYGENASE INHIBITORS

(57) Abstract

A composition for the inhibition of lipoxygenase enzymes comprising a pharmaceutically acceptable carrier and a compound of formula (I), wherein R₁ and R₂ are independently selected from the group consisting of alkyl, alkenyl, cycloalkyl, cycloalkenyl, arylalkyl, arylalkenyl, reduced heteroaryl, and reduced heteroarylalkyl and substituted derivatives thereof having one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR4, R7 SO₂R₄, NR₅R₆, OR₆, COCX₁X₂NR₆R₇, CON(OH)R₆, NR₆COR₄, CR₅(NH₂)CO₂R₅, NHCX₁X₂CO₂R₅, N(OH)CONR₅R₆, N(OH)COR₄, NHCONR₅R₆, C(NOH)NHOH and CONHNR₅R₆; R₃ is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt, COR₄, COCX₁X₂NR₆R₇, CR₈R₉OR₁₀, CH₂CR₈(OR₁₀)CH₂OR₁₁ and SiR₁₂R₁₃R₁₄; R₄ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl, OR5, NHCX₁X₂CO₂R₅ and NR₆R₇; R₅ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, and reduced heteroarylalkyl; R₆ and R₇ are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl;, reduced heteroarylalkyl and (CH₂)_nOR₅ where n is 2-4 and R₅ is as defined above; R₈, R₉, R₁₀ and R₁₁ are independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and (CH₂)_nOR₅ or at least two of R₈, R₉, R₁₀ and R₁₁ together form a ring system containing 5-10 atoms wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and R₅ and n are as defined above; R₁₂, R₁₃ and R₁₄ are independently selected from the group consisting of alkyl and aryl; and X₁ and X₂ are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; and the acid addition salts thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Austria	ES	Spain	MG	Madagascar
Australia	FI	Finland	ML	Mali
Barbados	FR	France	MR	Mauritania
Belgium	GA	Gabon	MW	Malawi
Burkina Fasso	GB	United Kingdom	NL	Netherlands
Bukaria	HU	Hungary	NO	Norway
Benin	TT	Italy	RO	Romania
Brazil	JP	Japan	SD	Sudan
Canada	KP	Democratic People's Republic	SE	Sweden
Central African Republic		of Korea	SN	Senegal
•	KR	Republic of Korea	SU	Soviet Union
_	П	•	TD	Chad
			TG	Togo
		"	us .	United States of America
	Australia Barbados Belgium Burkina Fasso Bulgaria Benin Brazil	Australia FI Barbados FR Belgium GA Burkina Fasso GB Bulgaria HU Benin IT Brazil JP Canada KP Central African Republic Congo KR Switzerland U Cameroon LK Germany, Federal Republic of	Australia Barbados Belgium GA Gabon Burkina Fasso Bulgaria Bunin Brazil Canada Central African Republic Congo Switzerland Cameroon GA Gabon United Kingdom HU Hungary Hungary Hungary JP Japan Central African Republic Cof Korea LK Sri Lanka Germany, Federal Republic of LL Luxembourg	Australia Barbados FR France MR Belgium GA Gabon MW Burkina Fasso GB United Kingdom NL Bulgaria HU Hungary NO Benin TT Italy Brazil JP Japan SD Canada KP Democratic People's Republic SE Central African Republic Congo KR Republic of Korea SV Switzerland LI Liechtenstein TD Cameroon LK Sri Lanka TG Germany, Federal Republic of US

-1-

4-HYDROXYTHIAZOLES AS 5-LIPOXYGENASE INHIBITORS

Background of the Invention

5

This invention relates to compounds which inhibit lipoxygenase enzymes. It also relates to methods of inhibiting lipoxygenase enzymes in human and animal hosts in need of such treatment.

The lipoxygenases are a family of enzymes which catalyze the oxygenation of arachidonic acid. The enzyme 5-lipoxygenase converts arachidonic acid 10 to 5-hydroperoxy-eicosatetraenoic acid (5-HPETE). This is the first step in the metabolic pathway yielding 5-hydroxyeicosatetraenoic acid (5-HETE) and the important class of potent biological mediators, the leukotrienes (LTs). Similarly 12- and 15 15-lipoxygenase convert arachidonic acid to 12- and 15-HPETE respectively. Biochemical reduction of 12-HPETE leads to 12-HETE, while 15-HPETE is the precursor of the class of biological agents known as 20 the lipoxins. 12-HETE has been found in high levels in epidermal tissue of patients with psoriasis. Lipoxins have recently been shown to stimulate elastase and superoxide ion release from neutrophils.

associated with these products from lipoxygenase metabolism of arachidonic acid and they have been implicated as mediators in various disease states. For example, the LTs C₄ and D₄ are potent constrictors of human airways in vitro and aerosol administration of these substances to non-asthmatic volunteers induces bronchoconstriction. LTB4 and 5-HETE are potent chemotactic factors for inflammatory cells such as polymorphonuclear leukocytes. They also have been found in the synovial fluid of rheumatoid arthritic patients.

-2-

Leukotrienes have been implicated as important mediators in asthma, allergic rhinitis, rheumatoid arthritis, psoriasis, adult respiratory distress syndrome, gout, inflammatory bowel disease, endotoxin shock, Crohn's disease, and ischemia induced myocardial injury. The biological activity of the LTs has been reviewed by Lewis and Austen, J. Clinical Invest. 73, 89, 1984 and by J. Sirois, Adv. Lipid Res., 21, 78, (1985).

10 Thus, lipoxygenase enzymes are believed to play an important role in the biosynthesis of mediators of asthma, allergy, arthritis, psoriasis, and inflammation. Agents which block or modulate the activity of lipoxygenase enzymes will likely be useful in the treatment of diseases involving leukotriene pathogenesis. Some examples of 5-lipoxygenase inhibitors known to the art are: AA-861, disclosed in U.S. Patent 4,393,075, issued July 12, 1983, to Terro et al., pyrazolopyridines, disclosed in European Patent Application of Iriburn et al., S. N. 121,806, 20 published October 17, 1984; arachidonyl hydroxamic acid, disclosed in E. J. Corey et al., J. Am. Chem. Soc., 106, 1503 (1984) and European Patent Application of P. H. Nelson, S. N. 104, 468, published April 4, 25 1984; BW-755C, disclosed in Radmark et al., FEBS Lett, 110, 213, (1980); nordihydroguaiaretic acid, disclosed in Marris et al, Prostaglandins, 19, 371 (1980); Rev-5901, disclosed in Coutts, Meeting Abstract 70, Prostaglandins and Leukotrienes '84; benzoxaprofen, 30 disclosed in J. Walker, Pharm. Pharmacol., 31, 778 (1979), and hydroxamic acids, disclosed in U.S. Patent Nos. 4,608,390 and 4,623,661, issued August 16, and

November 18, 1986 respectively.

Summary of the Invention

The compounds of this invention possess unexpected activity as inhibitors of lipoxygenase enzymes, and reduce the biosynthesis of leukotrienes B_4 , C_4 , D_4 and E_4 . The compounds and compositions containing these compounds are useful for the treatment of disease states, in mammals, which involve leukotrienes B_4 , C_4 , D_4 and E_4 .

The compounds of this invention are of the formula:

15

I

20

25

30

35

wherein R₁ is selected from the group consisting of aryl and substituted derivatives thereof with one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR₄, SO₂R₄, NR₃R₆, OR₆, COCX₁X₂NR₆R₇, CON(OH)R₆, NR₆COR₄, CR₅(NH₂)CO₂R₅, N(OH)COR₅R₆, N(OH)COR₄, NHCN₁X₂CO₂R₅, N(OH)CONR₅R₆, N(OH)COR₄, NHCONR₅R₆, C(NOH)NHOH and CONHNR₅R₆;

R₂ is selected from the group consisting of aryl, substituted derivatives thereof and substituted alkyl with one or more substituents independently selected from the group consisting of

-4-

halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR_4 , SO_2R_4 , NR_3R_6 , OR_6 , $\text{COCX}_1\text{X}_2\text{NR}_6\text{R}_7$, $\text{CON}(\text{OH})\text{R}_6$, NR_6COR_4 ,

CR₅(NH₂)CO₂R₅, NHCX₁X₂CO₂R₅,
N(OH)CONR₅R₆, N(OH)COR₄, NHCONR₅R₆,
C(NOH)NHOH and CONHNR₅R₆; and arylalkyl and
substituted derivatives thereof with one or more
substituents independently selected from the group
consisting of halogen, alkyl, halosubstituted alkyl,
cyano, nitro, COR₄, SO₂R₄, NR₅R₆ and OR₆;

 R_3 is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt, COR_4 , $COCX_1X_2NR_6R_7$, $CR_8R_90R_{10}$,

15 $CH_2CR_8(OR_{10})CH_2OR_{11}$ and $SiR_{12}R_{13}R_{14}$

 $\rm R_4$ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl, $\rm OR_5$, $\rm NHCX_1X_2CO_2R_5$

20 and NR_6R_7 ;

35

R₅ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, and reduced heteroarylalkyl;

 R_6 and R_7 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl and $(CH_2)_nOR_5$ where n is 2-4 and R_5 is as defined above;

 $\rm R_8$, $\rm R_9$, $\rm R_{10}$ and $\rm R_{11}$ are independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and $\rm (CH_2)_nOR_5$ or at least two of $\rm R_8$, $\rm R_9$, $\rm R_{10}$ and $\rm R_{11}$ together form a ring system containing 5-10 atoms

-5-

wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and R_5 and n are as defined above;

 R_{12} , R_{13} and R_{14} are independently selected from the group consisting of alkyl and aryl; and

 X_1 and X_2 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; provided that when R_1 is phenyl or substituted phenyl R_2 cannot be substituted alkyl, when R_1 is aryl or substituted aryl R_2 cannot be phenyl, substituted phenyl, $CH(C_6H_5)_2$, $CH(C_6H_5)_2$, $CH(C_6H_5)_2$ and $CH(C_6H_5)_2$ and $CH(C_6H_5)_3$ and $CH(C_6H_5)_4$ and $CH(C_6H_5)_4$ and $CH(C_6H_5)_5$ a

10

15

20

25

35

This invention also relates to pharmaceutical compositions and a method of inhibiting lipoxygenase enzymes and related disorders comprising the administration to a host in need of such treatment of a compound of the formula:

30

wherein R_1 and R_2 are independently selected from the group consisting of alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, arylalkyl, arylalkenyl, reduced heteroaryl, and reduced

•

heteroarylalkyl and substituted derivatives thereof having one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced

- heteroaryl, arylalkoxy, cyano, nitro, COR_4 , SO_2R_4 , NR_5R_6 , OR_6 , $COCX_1X_2NR_6R_7$, $CON(OH)R_6$, NR_6COR_4 , $CR_5(NH_2)CO_2R_5$, $NHCX_1X_2CO_2R_5$, $N(OH)CONR_5R_6$, $N(OH)COR_4$, $NHCONR_5R_6$, C(NOH)NHOH and $CONHNR_5R_6$;
- R₃ is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt, $^{\text{COR}_4, \text{ COCX}_1 X_2 \text{NR}_6 R_7, \text{ CR}_8 R_9 \text{OR}_{10}, } ^{\text{CR}_8 (\text{OR}_{10}) \text{CH}_2 \text{OR}_{11} } ^{\text{R}_1 2 R_{13} R_{14}; }$

 R_4 is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl, OR_5 , $NHCX_1X_2CO_2R_5$ and NR_6R_7 ;

R₅ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, and reduced heteroarylalkyl;

R₆ and R₇ are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl and (CH₂)_nOR₅ where n is 2-4 and R₅ is as defined above;

 R_8 , R_9 , R_{10} and R_{11} are independent—

30 ly selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and $(CH_2)_nOR_5$ or at least two of R_8 , R_9 , R_{10} and R_{11} together form a ring system containing 5-10 atoms wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and R_5 and n are as defined above;

-7-

 R_{12} , R_{13} and R_{14} are independently selected from the group consisting of alkyl and aryl; and

X₁ and X₂ are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; and the acid addition salts thereof.

Detailed Description of the Invention

The present invention provides for compounds which exhibit unexpected activity for lipoxygenase enzyme inhibition, particularly, 5-lipoxygenase, and thereby reduce the biosynthesis of leukotrienes B_4 , C_4 , D_4 , and E_4 .

The novel compounds of this invention are those of the formula:

20

15

I

25

30

wherein R₁ is selected from the group consisting of aryl and substituted derivatives thereof with one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR₄, SO₂R₄, NR₃R₆, OR₆, COCX₁X₂NR₆R₇, CON (OH) R₆, NR₆COR₄, CR₅(NH₂)CO₂R₅,

-8-

3

NHCX₁X₂CO₂R₅, N(OH)CONR₅R₆, N(OH)COR₄, NHCONR₅R₆, C(NOH)NHOH and CONHNR₅R₆;

R₂ is selected from the group consisting of aryl, substituted derivatives thereof and substituted alkyl with one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR₄, SO₂R₄, NR₃R₆, OR₆,

CCX₁X₂NR₆R₇, CON(OH)R₆, NR₆COR₄,

CR₅(NH₂)CO₂R₅, NHCX₁X₂CO₂R₅,

N(OH)CONR₅R₆, N(OH)COR₄, NHCONR₅R₆,

C(NOH)NHOH and CONHNR₅R₆; and arylalkyl and substituted derivatives thereof with one or more

substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, cyano, nitro, COR_4 , SO_2R_4 , NR_5R_6 and OR_6 ;

 $\rm R_3$ is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt, $\rm COR_4$, $\rm COCX_1X_2NR_6R_7$, $\rm CR_8R_90R_{10}$,

 $^{\rm CH_2CR_8(OR_{10})CH_2OR_{11}}$ and $^{\rm SiR_{12}R_{13}R_{14}}$ $^{\rm R_4}$ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl, $^{\rm OR_5}$, $^{\rm NHCX_1X_2CO_2R_5}$

reduced heteroarylalkyl, OR_5 , $NHCX_1X_2CO_2R_5$ and NR_6R_7 ;

R₅ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, and reduced heteroarylalkyl;

 R_6 and R_7 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl and

20

25

-9-

 $(CH_2)_nOR_5$ where n is 2-4 and R_5 is as defined above;

R₈, R₉, R₁₀ and R₁₁ are independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and (CH₂)_nOR₅ or at least two of R₈, R₉, R₁₀ and R₁₁ together form a ring system containing 5-10 atoms wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and R₅ and n are as defined above;

 $^{\rm R}{\rm 12}$, $^{\rm R}{\rm 13}$ and $^{\rm R}{\rm 14}$ are independently selected from the group consisting of alkyl and aryl; and

from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; provided that when R₁ is phenyl or substituted phenyl R₂ cannot be substituted alkyl, when R₁ is aryl or substituted aryl R₂ cannot be phenyl, substituted phenyl, CH(C₆H₅)₂, CH(C₆H₅)CO₂ Et or 2-methylindole and when R₃ is SiR₁₂R₁₃R₁₄, R₁ and R₂ cannot both be unsubstituted phenyl; and the acid addition salts thereof.

The compounds useful in the method of treatment for inhibition of lipoxygenase enzymes are of the following formula:

s

R

OR₃

35

-10-

wherein R₁ and R₂ are independently selected from the group consisting of alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, arylalkenyl, reduced heteroaryl, and reduced

- heteroarylalkyl and substituted derivatives thereof having one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR,
- SO₂R₄, NR₅R₆, OR₆, COCX₁X₂NR₆R₇, CON (OH) R₆, NR₆COR₄, CR₅ (NH₂)CO₂R₅, NHCX₁X₂CO₂R₅, N (OH) CONR₅R₆, N (OH) COR₄, NHCONR₅R₆, C (NOH) NHOH and CONHNR₅R₆;

 R_3 is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt, ${^{COR}_4}, \ {^{COCX}_1}^{X_2}{^{NR}_6}^{R_7}, \ {^{CR}_8}^{R_9}{^{OR}_{10}}, \\ {^{CH}_2}{^{CR}_8}({^{OR}_{10}}) {^{CH}_2}{^{OR}_{11}} \ \text{and} \ {^{SiR}_1}_2{^{R}_1}_3{^{R}_1}_4;$

 R_4 is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl,

cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl, OR_5 , $NHCX_1X_2CO_2R_5$ and NR_6R_7 ;

R₅ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced beteroaryl, and reduced

arylalkyl, reduced heteroaryl, and reduced heteroarylalkyl;

25

R₆ and R₇ are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced beteroaryl, and

heteroaryl, reduced heteroarylalkyl and $(CH_2)_n OR_5$ where n is 2-4 and R_5 is as defined above;

 $^{
m R}_{8}$, $^{
m R}_{9}$, $^{
m R}_{10}$ and $^{
m R}_{11}$ are independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and $({
m CH}_2)_{
m n}{
m OR}_5$

-11-

or at least two of R_8 , R_9 , R_{10} and R_{11} together form a ring system containing 5-10 atoms wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and R_5 and n are as defined above;

 $^{\rm R}{\rm 12}$, $^{\rm R}{\rm 13}$ and $^{\rm R}{\rm 14}$ are independently selected from the group consisting of alkyl and aryl; and

10 from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; and the acid addition salts thereof.

5

15

35

The compounds of Formula II may also be substituted with one or more substituents as noted above for the compounds of Formula I.

Pharmaceutical compositions which contain compounds of Formula I and a pharmaceutically acceptable carrier are also part of this invention.

Preferred compounds of Formula II that are 20 useful for the inhibition of lipoxygenase enzymes are those where R₁ is aryl, alkyl, or substituted aryl and alkyl, R_2 is aryl or substituted aryl, and R_3 is hydrogen, acyl or a pharmaceutically acceptable salt. Also preferred are those compounds where R1 is aryl or substituted aryl, R₂ is a substituted 25 alkyl or substituted arylalkyl, and R3 is hydrogen, acyl or a pharmaceutically acceptable salt. Most preferred are those compounds where R_1 is aryl or substituted aryl and R_2 is aryl or substituted 30 aryl, and R_3 is hydrogen, acyl, or a pharmaceutically acceptable salt.

The term "alkyl" as used herein refers to straight and branched chain radicals having 1 to 12 carbon atoms which may be optionally substituted as herein defined above. Representative of such

-12-

É

radicals are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, and the like.

5

10

15

20

25

30

35

The term "alkenyl" as used herein refers to straight and branched chain unsaturated radicals having 2 to 12 carbon atoms, which may be optionally substituted as defined above. Representative of such groups are ethenyl, 1-propenyl, 2-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, and the like.

The term "carbocylic" as used herein refers to a monocyclic or polycyclic hydrocarbon containing fused or non-fused ring system which may be optionally substituted as defined above. Representative of such groups are cyclopentyl, cyclohexyl, 2-cyclohexenyl, tetrahydronaphthalene.

Representative examples of the CR₈R₉OR₁₀ radical are 1-methoxy cyclohexane, 2-Hydroxy-pyrrol, 1-Methyl- tetrahydrofuran, 2-Oxazole and 1, 2, 4-Oxadiazole.

The terms "cycloalkyl" and "cycloalkenyl" as used herein refer to saturated and unsaturated cyclic or bicyclic radicals having 3 to 12 carbon atoms which may be optionally substituted as defined above. Representative of such groups are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, norbornyl, 2-chlorocyclohexyl, and the like.

The term "aryl" as used herein refers to mono or polycyclic hydrocarbon group containing fused or nonfused aromatic ring systems which may contain one or more hetero atoms such as O, N or S in the ring system and which may be optionally substituted as defined herein. Representative of such groups are phenyl, naphthyl, biphenyl, triphenyl, pyridinyl, pyrrolyl, pyrimidinyl, furyl, thienyl, indolyl,

-13-

pyrazinyl, isoquinolyl, benzopyranyl, benzofuryl, benzothiophenyl, imidazolyl, carbazolyl, and the like.

The term "aroyl" as used herein refers to the radical aryl-CO- wherein the aryl ring may be optionally substituted as herein before defined.

The term "reduced heteroaryl" as used herein refers to a mono- or polycyclic group comprising fused or non-fused ring systems which contain at least one ring which is non-aromatic in character.

- The ring system may be fully or partially saturated, may contain one or more heteroatoms such as O, N, or S and may be optionally substituted as herein before defined. Representative of such ring systems are tetrahydrofuran, dihydropyran, indane,
- 2,3-dihydrobenzofuran, piperidine, indane, piperidine, and the like.

5

20

25

30

The term "alkoxy" as used herein refers to straight and branched chain oxygen ether radicals having 1 to 12 carbon atoms which may be optionally substituted. Representative of such groups are methoxy, ethoxy, isopropoxy, n-butoxy, sec-butoxy, isobutoxy, tert-butoxy, and the like.

The term "aryloxy" as used herein refers to substituted or unsubstituted aryl ethers which may be optionally substituted as herein before defined. Representative of such groups are 4-acetylphenoxy, phenoxy, 1-naphthoxy, 2-naphthoxy, and the like.

The terms "halo" and "halogen" as used herein refer to radicals derived from the elements fluorine, chlorine, bromine and iodine.

The term "halo-substituted" alkyl, alkenyl or alkinyl refers to a radical as described above substituted with one or more halogens, and which may also be additionally substituted as defined above.

Representatives of such groups are chloromethyl,

5

35

-14-

trifluoromethyl, 2,2,2-trichloroethyl, 2,2-dichloro, 1-hydroxybutyl, and the like.

All of the alkyl, alkenyl, alkinyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl, X₁ and X₂ radicals may in turn be substituted with various groups as defined above. Representatives of this group are 2-chlorophenyl-l-naphthyl, 2,4-dichlorophenyl-4-benzyl and 2-fluoromethyl-cyclohexyl-methyl.

The term "pharmaceutically acceptable salts" 10 refers to the relatively non-toxic, inorganic or organic acid addition salts and alkaline earth metal salts of the compounds of this invention. salts can be prepared in situ during the final isolation and purification of the compounds, or by 15 separately reacting the free base with a suitable organic or inorganic acid. Representative salts include the hydrochloride, hydrobromide, sulfate, phosphate, nitrate, bisulfate, acetate, oxalate, 20 valerate, oleate, palmitate, stearate, laurate, borate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, lauryl sulphate, and the like. Representative alkali or alkaline earth metal sales include sodium, 25 calcium, potassium and magnesium salts, and the like. It will be apparent to those skilled in the art that, depending upon the number of available amino groups for salt formation, the salts of this 30 invention can be per-N-salts.

Certain compounds of this invention may exist in optically active forms. The R and S isomers and mixtures thereof, including racemic mixtures as well as the cis and trans mixtures are contemplated by this invention. Additional assymetric carbon

-15-

atoms may be present in a substituent group such as an alkyl group. All such isomers as well as the mixtures thereof are intended to be included in the invention.

The present invention includes one or more of the compounds of Formula II formulated into compositions together with one or more non-toxic pharmaceutically acceptable carriers, adjuvants or vehicles which are collectively referred to herein as carriers, for parenteral injection, for oral administration in solid or liquid form, for rectal administration, and the like.

The compositions can be administered to humans and animals either orally, rectally, parenterally (intravenously, intramuscularly or subcutaneously), intracisternally, intravaginally, intraperitoneally, locally (powders, ointments or drops), or as a buccal or nasal spray.

15

Compositions suitable for parenteral 20 injection may comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions and sterile powders for reconstitution into sterile injectable solutions or dispersions. Examples of suitable aqueous and 25 nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (propylene glycol, polyethylene glycol, glycerol, and the like), suitable mixtures thereof, vegetable oils (such as olive oil) and injectable organic esters such as 30 ethyl oleate. Proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants.

These compositions may also contain

35 adjuvants such as preserving, wetting, emulsifying,

5

10

15

20

-16-

and dispensing agents. Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, for example sugars, sodium chloride and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monosterate and gelatin.

If desired, and for more effective distribution, the compounds can be incorporated into slow release or targeted delivery systems such as polymer matrices, liposomes, and microspheres. They may be sterilized, for example, by filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use.

Solid dosage forms for oral administration include capsules, tablets, pills, powders and granules. In such solid dosage forms, the active compound is admixed with at least one inert customary 25 excipient (or carrier) such as sodium citrate or dicalcium phosphate or (a) fillers or extenders, as for example, starches, lactose, sucrose, glucose, mannitol and silicic acid, (b) binders, as for example, carboxymethylcellulose, alignates, gelatin, 30 polyvinylpyrrolidone, sucrose and acacia, (c) humectants, as for example, glycerol, (d) disintegrating agents, as for example, agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain complex silicates and sodium carbonate, (e) solution retarders, as for example paraffin, 35

-17-

(f) absorption accelerators, as for example, quaternary ammonium compounds, (g) wetting agents, as for example, cetyl alcohol and glycerol monostearate, (h) adsorbents, as for example, kaolin and bentonite, and (i) lubricants, as for example, talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate or mixtures thereof. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents.

Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols, and the like.

Solid dosage forms such as tablets, dragees, capsules, pills and granules can be prepared with coatings and shells, such as enteric coatings and others well known in this art. They may contain opacifying agents, and can also be of such

composition that they release the active compound or compounds in a certain part of the intestinal tract in a delayed manner. Examples of embedding compositions which can be used are polymeric substances and waxes.

The active compounds can also be in micro-encapsulated form, if appropriate, with one or more of the abovementioned excipients.

30

35

Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art, such as water or other solvents, solubilizing agents and emulsifiers, as for example, ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl

5

10

15

30

35

-18-

acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils, in particular, cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil and sesame oil, glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan or mixtures of these substances, and the like.

Besides such inert diluents, the composition can also include adjuvants, such as wetting agents, emulsifying and suspending agents, sweetening, flavoring and perfuming agents.

Suspensions, in addition to the active compounds, may contain suspending agents, as for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, or mixtures of these substances, and the like.

20 preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax, which are solid at ordinary temperatures but liquid at body temperature and therefore, melt in the rectum or vaginal cavity and release the active component.

Dosage forms for topical administration of a compound of this invention include powders, sprays and inhalants. The active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives, buffers or propellants as may be required. Opthalmic formulations, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.

-19-

Actual dosage levels of active ingredient in the compositions of the invention may be varied so as to obtain an amount of active ingredient that is effective to obtain a desired therapeutic response for a particular composition and method of administration. The selected dosage level therefore depends upon the desired therapeutic effect, on the route of administration, on the desired duration of treatment and other factors.

Total daily dose of the compounds of this invention administered to a host in single or divided doses may be in amounts, for example, of from about 0.901 to about 100 mg/kg body weight daily and preferably 0.01 to 10 mg/kg/day. Dosage unit 15 compositions may contain such amounts of such submultiples thereof as may be used to make up the daily dose. It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the body weight, general health, sex, diet, time and route of administration, rates of absorption and excretion, combination with other drugs and the severity of the particular disease being treated.

25

20

5

10

-20-

Representative Compounds of Formula I and Formula II are shown in Table I.

Table I

5	Compound	$\frac{R_1}{}$	$\frac{R_2}{R_2}$	R ₃	-
	1	methyl	2-pyridyl		H
	2	methyl	3-pyridyl		H
	3	methyl	4-pyridyl		H
10	4	methyl	3-quinolinyl		Н
	5	methyl	2-furany1		H
	5	methyl	2-(6-methoxybenzothiazolyl)		H
	7	methyl	2-thiopheny1		H
	8	methyl	4-pyrazoly1		H
15	9	methyl	4-fluorophenyl		H
	10	methyl	4-bromopheny1		H
	11	methyl	4-chlorophenyl		H
	12	methyl	4-nitrophenyl		H
	13	methyl	4-C ₆ H ₄ -CO ₂ CH ₂ CH ₂ C ₆ H ₅		H
20 -	14	methyl	4-C ₆ H ₄ -CONH ₂		H
	15	methyl	4-C ₆ H ₄ -C ₆ H ₅		H
	16	methyl	4-C ₆ H ₄ -CF ₃		H
	17	methyl	4-C ₆ H ₄ -CO ₂ CH ₃		H
	18	methyl	4-C ₆ H ₄ -COCH ₃		H
25	19	methyl	4-C ₆ H ₄ -CO ₂ H		H
	20	methyl	$4-C_6H_4-CN$		H
	21	methyl	4-C6H4-CSNH2		H
	22	methyl	4-C ₆ H ₄ -SCF ₃		Ħ
	23	methyl	4-C ₆ H ₄ -CO ₂ CH ₂ CH ₃		H
30	24	methyl	2-fluorophenyl		H
	25	methyl	3-fluorophenyl		H
	26	methyl	3-bromophenyl		Н

-21-

	Compound	<u>R</u> 1	<u>R₂</u>	R ₃
5	27	methyl	3,5-bis-trifluoromethylphe	nyl H
	28	methyl	3,5-dinitrophenyl	Ħ
	29	methyl	2-chloro-3-methylphenyl	Н
	30	phenyl	4-C ₆ H ₄ -CO ₂ H	Н
	31	methyl	phenyl	Н
10	32	methyl	4-methoxyphenyl	H
	33	methyl	4-methylphenyl	н
	34	phenyl	phenyl	Н
	35	-CH ₂ CH ₃	phenyl	H
	36	-(CH ₂) ₂ CH ₃	phenyl	Н
15	37	-(CH ₂) ₃ CH ₃	phenyl	H
	38	-(CH ₂) ₂ C ₆ H ₅	phenyl	H
	39	-CH2CO2CH3	phenyl	H
	40	-CH ₂ CON (OH) CH ₃	phenyl	H
	41	phenyl	3-pyridyl	H
20	42	pheny1	4-pyridyl	H
	43	phenyl	4-methoxyphenyl	H
	44	phenyl	4-biphenyl	H
	45	phenyl	methyl	Н
	46	phenyl	4-methylphenyl	H
25	47	phenyl	4-fluorophenyl	Н
	48	phenyl	4-ethoxyphenyl	Н
	49	phenyl	-(CH ₂) ₄ CH ₃	H
	50	phenyl	phenyl	-оссн ₃
30	51	pheny1	phenyl -	oc (ch _{2) 4} ch ₃

	Compound	<u>R</u> 1	R ₂	_R ₃
5				
	52	phenyl	phenyl	-со (сн ₃) 3
	53	phenyl	phenyl	-со (сн ₂) ₂ со ₂ сн ₂ сн ₃
	54	-(CH ₂) ₂ CH ₃	phenyl	-cooch ₂ CH ₃
	55	-(CH ₂) ₂ CH ₃	phenyl	-CONHCH ₂
10	56	-(CH ₂) ₂ CH ₃	phenyl	-coc ₆ H ₅
	57	-(CH ₂) ₂ CH ₃	phenyl	-CONHC (CH ₃) ₃
	58	-(CH ₂) ₂ CH ₃	phenyl	-CONHC ₆ H ₅
	59	-(CH ₂) ₂ CH ₃	phenyl	-coch3
	60	methyl	4-C6H4-CO2CH3	-coch ₃
15	61	methyl	6-methoxybenzothiazoyl	-cocH ₃
	62	phenyl	4-methylphenyl	-coch ₃
	63	phenyl	4-ethoxyphenyl	-coch3
	64	methyl	$4-C_{6}H_{4}-CO_{2}(CH_{2})_{2}-C_{6}H_{5}$	-coch3
	66	methyl	4-C6H4-C02H	-coch ₃
20	67	(CH ₂) ₃ CH ₃	phenyl	-coch3
	68	(CH ₂) ₂ CH ₃	(CH ₂) ₄ CH ₃	-cocH ₃

25

30

5

R₃

H

H

H

H

 \mathbf{H}

H

H

H

-23-

Other representative compounds which are useful in the methods of this invention for the inhibition of lipoxygenase enzymes are shown in Table II below.

Table II

	<u>R</u> 1	R ₂	
	methy1	benzyl	
10	4-methy1pheny1	4-chloropheny1	
	CO ₂ CH ₂ CH ₃	2-furany1	
	phenyl	4-chloropheny1	
	4-methylphenyl	phenyl	
	methyl	6-methylbenzothiazole	
15	methyl	benzothiazole	
	methyl	s.	

20	3-C ₆ H ₄ -NHCOCH ₃	phenyl	Н
	N	phenyl	H

		phenyl	H
	4-C ₆ H ₄ -COCH ₃	methyl	Н
	4-nitrophenyl	methyl	Н
25	4-chloropheny1	methyl	H
	-(CH ₂) ₂ CH ₃	2,6 dichlorophenyl	H
	-(CH ₂) ₃ CH ₃	2,6-dichlorophenyl	H
	-CH ₂ CO ₂ CH ₂ CH ₃	2,6-dichlorophenyl	Н
	methyl	2-benzimidazolyl	Н
30	methyl	2-benzothiazole	Н
	methyl	5-hydroxy-2-benzothiazole	Н
	methyl	2-naphthylthiazole	H
	methyl	l-piperidinyl	Н
	phenyl	1-piperidiny1	H
35	4-methylphenyl	l-piperidinyl	H

-24-

		-24-	
	<u>R</u> 1	<u>R</u> 2	$\frac{R_3}{}$
	phenyl	4-methyl-1-piperidinyl	H
	4-isopropylphenyl	4-methyl-l-piperidinyl	H
5	4-methoxyphenyl	4-methyl-l-piperidinyl	H
	4-fluorophenyl	4-methyl-1-piperidinyl	H
	2-chlorophenyl	4-methyl-l-piperidinyl	H
	pheny1	4-propyl-1-piperidinyl	H
	phenyl	4-(2-propene)-1-piperidinyl	H
10	phenyl	4-(2-hydroxypropyl)-1-piperidinyl	H
	4-fluorophenyl	$-N$ \longrightarrow CH_3	Н
15	4-fluorophenyl	-N_O	Н
	methyl	N CH ₃	H
20	2-quinolinyl	phenyl	H
	4-methyl-2-quinolin	yl phenyl	H
	4-methoxy-2-quinoli	nyl phenyl	H
	3-bromo-2-quinolin	nyl phenyl	H
	1-isoquinolinyl	phenyl	H
25	(CH ₂) ₂ —N CH ₃	methyl	H
	4-fluorophenyl	1-pyrrolidiny1	H
	4-methylphenyl	4-methyl-1-piperidinyl	H
30	phenyl	CH ₂ CON	Н
35	phenyl	CH ₂ CON O	H

		-25-	
	<u>R</u> 1	R ₂	R ₃
	phenyl	CH ₂ CONH ₂	${f H}$
	phenyl	CH ₂ SO ₂ C ₆ H ₅	H
5	phenyl	CH ₂ COC ₆ H ₅	H
	phenyl	CH (C ₆ H ₅) ₂	H
	phenyl	CH_2	H
10	phenyl	CH ₂ CN	H
	phenyl	CH(C ₆ H ₅)CO ₂ CH ₂ CH ₃	H
	phenyl	2-chlorophenyl	-COCH ₂
	phenyl	phenyl	-COCH ₃
	phenyl	4-chlorophenyl	-COCH ₃
15	4-methylphenyl	phenyl	-COCH ₃
	CO ₂ CH ₂ CH ₃	2-furany1	COC ₆ H ₅
	CO ₂ CH ₂ CH ₃	phenyl	COC ₆ H ₅
	4-methylphenyl	4-chlorophenyl	-COCH ₃
	4-chlorophenyl	phenyl	-COCH ₃
20	methy1	4-acety1-5-methy1-2-thiazo	ole -COCH ₃
	methyl	4-pyridyl	-CH ₂ CHOHCH ₂ NHC (CH ₃) ₃
	pheny1	methyl	-COCH ₃
	methyl	(CH ₂) ₂ CH ₂ OH	Э Н
	methy1	(CH ₂) ₂ CHOHCH ₃	Н
25	phenyl	CH ₂ CH ₂ OH	H
	phenyl	CH ₂ OH	H
	phenyl	CH ₂ OCH ₂ CH ₃	H
	methyl	CH ₂ OCH ₂ CH ₂ OCH ₃	Ħ
	methyl	(CH ₂) ₂ C ₆ H ₅	H
30	methyl	СH (CH ₃) С ₆ H ₅	H
	methyl		H
35	phenyl	$CH(CH_3)$ — $CH(CH_3)_2$	H

WO 90/09381

	<u>R</u> 1	-26- R ₂	R ₃
5	methyl	CH(CH ₃)	H
	methyl	CH(CH ₃)	H
10	methyl	$CH(CH_3)$ CH_3	H
	phenyl	CH(CH ₃) CH ₃	Н
15	methyl	(CH ₂) ₂ CH ₂ NH ₂	H
	methyl	(CH ₂) ₂ CH ₂ N (CH ₂ CH ₃) ₂	H
	methyl	(CH ₂) ₃ CH (NH ₂) CO ₂ H	Н
	pheny1	(CH ₂) ₃ CH (NH ₂) CO ₂ H	H
-	phenyl	CH2CHNH2CO2H	H
20	methyl	$(CH_2)_3C(CH_3)(NH_2)CO_2H$	H
	phenyl	CH ₂ C(CH ₃)(NH ₂)CO ₂ H	Н
	methyl	4-C ₆ H ₄ -CH ₂ NH ₂	H
	methyl	CH=CH-CH ₂ N(CH ₂ CH ₃) ₂	Н
25	methyl	CH=CH-CH ₂ -N O	H
	methyl	(CH ₂) ₃ NHCONH ₂	Н
	methyl	CH (CH ₃) NHCONH ₂	Н
	methyl	CH (CH ₃) N (OH) CONH ₂	H
30	methyl	CH (CH ₃) N (OH) COCH ₃	Н
•	methyl	CH (CH ₃) C (NOH) NHOH	H
	methyl	CH (CH ₃) CONHNH ₂	Ħ
	methyl	CH (CH ₃) CONHNHC ₆ H ₅	H
	methyl	CH (CH ₃) CON (OH) CH ₃	Н
35	phenyl	CH (CH ₃) CON (OH) CH ₃	H

		-27-	
	$\frac{R_1}{}$	R ₂	R ₃
	phenyl	CH (CH ₃) N (OH) CONH ₂	H
5	phenyl	CH(CH ₃)-N O	. H
	methyl	(CH ₂) ₃ NHCH ₂ CO ₂ CH ₃	Н
10	methyl	(CH2)3 - N N - CH3	H
	methyl	4-C ₆ H ₄ -CH(NH ₂)CO ₂ H	H
	methyl	4-C ₆ H ₄ -CHNHCONH ₂	Н
	methyl	4-C ₆ H ₄ -CH (CH ₃)-NHCONH ₂	H
	methyl	4-C ₆ H ₄ -CH (CH ₃)-N (OH) CONH ₂	H
15	methyl	4-C ₆ H ₄ -CH (CH ₃)-N (OH) COCH ₃	Н
	methy1	4-C ₆ H ₄ -CONHCH ₂ CH ₂ N(CH ₂ CH ₃) ₂	H
	methyl	4-C ₆ H ₄ -CONHCH (CH ₃) CO ₂ H	H
20 .	methyl	4-C ₆ H ₅ -NH	Н
	methyl	2-benzofurany1	H
	methyl	1-methy1-2-indoly1	H
25	methyl		H
	methyl	2-benzoxazole	H
	phenyl	5-methyl-2-thiophenyl	Н
30	phenyl		H
	methyl		H
	phenyl	phenyl -CH ₂ OC	H_CH_OCH
35	phenyl		COCH ₂ NH ₂

 $\frac{R_1}{R_2}$ $\frac{R_2}{R_3}$

-28-

-COCH (CH₃) NH₂ methyl phenyl $-\text{COCH}(C_6^{\text{H}_5})\text{NH}_2$ 5 methyl phenyl CH₂CH (NCOCH₃) CO₂CH₃ phenyl -coch₃ methyl $-CH_2N(CH_2CH_3)_2$ phenyl -CH (CH₃) OCH₃ methyl phenyl 10 phenyl phenyl -Si(CH₃)₂C₆H₅ phenyl phenyl $-si(CH_3)_2C(CH_3)_3$ phenyl phenyl phenyl phenyl -CH₂CHOHCH₂OH 15

phenyl phenyl -CH₂OOO

20

25

30

-29-

The compounds of Table II and many other compounds having lipoxygenase inhibiting activity are included in Formula II. While many of these compounds are old and are disclosed in the following list of references, none are taught to possess lipoxygenase inhibiting activity.

- 1. M. Ferrey, A. Robert, and A. Foucaud, Synthesis,
- 10 2. F. Duro, <u>Gazz. Chim. Ital.</u>, <u>93</u>, 215(1963); <u>Chem. Abstr.</u>, <u>59</u>, 2793.
 - 3. P.O. Shvaika, V.N. Artemov, S.N. Baranov, Zh. Org. Khim., 1, 1968(1971).
- 4. T. Matsuda, N. Honjo, M. Yamazaki, and Y. Goto, Chem. Pharm. Bull., 25, 3270(1977).
 - 5. K. Popov-Pergal, M. Pergal, and D. Jeremic, Bull. Sci. Cons. Acad. Sci. Arts RSF Yougosl., Sect. A, 21, 197(1976): Chem. Abstr., 86, 170347m.
 - 6. Fr. Demande FR 2164520, 7 Sep 1973; Chem. Abstr., 80, 27244w.
 - 7. Ger. Offen. DE 2711330, 22 Sep 1977; Chem Abstr., 88, 68680.
 - 8. N. Susuki, and T. Goto, <u>Agr. Biol. Chem.</u>, <u>36</u>, 2213 (1972).
- 9. G. Satzinger, <u>Justus Liebigs Ann. Chem.</u> 473(1978).
 - 10. Ger. Offen. DE 2252070, 10 May 1973 to J.A.
 Edwards, Syntex US Appl. 193, 172. Chem. Abstr.,
 79, 32036p.
- 11. E.P. Nesynov, M.M. Besporzvannaya, and P.S.

 Pel'kis, Khim. Geterotsikl. Soedinenii, 11, 1487

 (1973). Chem. Abstr., 80, 82785.
 - 12. S.H. Dandegaonkar and J.B. Patil, <u>J. Shivaji</u>
 <u>Univ.</u>, 1, 159(1974). <u>Chem. Abstr.</u>, <u>86</u>, 106454s.

5

20

261 (1976).

-30-

- 13. Eur. Pat. Appl. EP 153709A2, 4 Sep 1985, Chem. Abstr., 104, 148630s.
- 14. K.T. Potts, K.G. Bordeaux, W.R. Kuehnling, and R.L. Salsbury, J. Org. Chem., 50, 1666(1985).
- 5 15. Japanese Patent No. 11256'66; Chem. Abstr., 65, 13716f.
 - 16. H. Behringer and D. Weber, <u>Annalen</u>, <u>682</u>, 201(1965).
- 17. A. Robert, M. Ferrey, and A. Foucaud, <u>Tetrahedron</u>
 10 <u>Lett.</u>, <u>16</u>, 1377(1975).
 - 18. I.V. Smolanka, S.M. Khripak, and V.I. Staninets, <u>Ukr. Khim. Zh., 32</u> 202 (1966); <u>Chem. Abstr., 64</u>, 15863.
- 19. W. Reeve and E.R. Barron, <u>J. Org. Chem.</u>, <u>40</u>, 1917 15 (1975).
 - 20. P. Chabrier and S. Renard, <u>Compt. Rend.</u>, <u>226</u>, 582 (1948).
 - 21. Belgian Patent No. 623714; Chem. Abstr., 60, 9299.
 - 22. U.S. Patent No. 3,418,331; Chem. Abstr., 70, 57824.
 - 23. S.C. Mutha and R. Ketcham, <u>J. Org. Chem.</u>, <u>34</u>, 2053 (1969).
 - 24. I. Ito, S. Murakami, and K. Tanabe, Yakugaku Zasshi, 86, 300(1966); Chem, Abstr., 65, 3852F.
- 25 25. German Patent No. 2611089; Chem. Abstr., 86, 43693.
 - 26. Hungarian Patent Nos. 133776, 133971, and 133972; Chem. Abstr., 43, 3851.
 - 27. R. Bally, Acta. Crystallogr., B29, 2635(1973).
- 30 28. French Patent No. 2164520; Chem. Abstr., 80, 27244.
 - 29. German Patent No. 2064307; Chem Abstr., 77, 101576.

-31-

- 30. J. Metzger, H. Larive, R. Dennilauler, R. Baralle, and C. Gaurat, Bull. Soc. Chim. France, 11, 2857(1964); Chem. Abstr., 62, 9263.
- 31. U.S. Patent No. 3850947; Chem. Abstr., 82, 72978.
- 32. C. Broquet and A. Tohoukarine, <u>Compt. Rend.</u>, <u>C-262</u>, 1017(1966); <u>Chem. Abstr.</u>, <u>64</u>, 19590.
 - 33. German Patent No. 2413937. Chem. Abstr., 82, 4239.
- 34. K.T. Potts, J. Baum, s. Datta and E. Houghton, J. Org. Chem., 41, 813(1976).
 - 35. U.S. Patent No. 3438992; Chem. Abstr., 71, 61386.
 - 36. K.A. Jensen and I. Crossland, <u>Acta. Chem. Scand.</u>, <u>17</u>, 144(1963).
 - 37. French Patent No. 2067436; Chem. Abstr., 77, 5473.
- 15 38. Ger. Offen. DE 2541720, 8 Apr 1976; Chem. Abstr., 85, 78112n.
 - 39. Eur. Pat. Appl. EP 97323 A2, 4 Jan 1984; Chem. Abstr., 100, 139093j.
 - 40. Fr. Demande FR 2045672, 9 Apr. 1971; Chem. Abstr., 76, 3860k.
 - 41. Fr. FR 2046114, 5 Mar 1971; Chem. Abstr., 75, 151800k.
 - 42. Fr. FR 1449800, 19 Aug. 1966; Chem. Abstr., 66, 105907s.
- 25 43. Jpn. Kokai Tokkyo Koho JP 61/171480 A2 [86/171480], 2 Aug. 1986; Chem. Abstr., 106, 5019e.
 - 44. Fr. FR 1604530, 7 Jan. 1972; Chem. Abstr., 79, 32038r.
- 30 45. Ger. Offen. DE 1915564, 13 Nov. 1969; Chem. Abstr., 72, 68226v.
 - 46. U.S. Patent No 4208327, 17 Jun. 1980; Chem. Abstr., 94, 30804y.

-32-

47. S.H. Dandegaonkar and J.B. Patil, J. Shivaji Univ., 7, 159(1974); Chem. Abstr., 86, 106454s.

48. I. Kopka, <u>Tetrahedron Lett.</u>, 29, 3765 (1988).

5

10

15

20

25

30

5

Synthesis of the Compounds of the Invention

The 4-hydroxythiazole compounds of this invention can be prepared by reaction schemes I - III below. While more than one reaction scheme may be used to make many of the 4-hydroxythiazole compounds of this invention, the examples are grouped according to the preferred synthetic scheme. The compounds produced by the examples following Scheme I are preferably made according to Scheme I and so on.

4-Hydroxythiazoles of general Formula I may 10 be prepared by the reaction sequence outlined in Scheme I. The meanings of R_1 and R_2 correspond to the definitions provided above. The reaction of nitriles with alpha-mercaptoacetic acid derivatives 15 at high temperature for several hours provides the 4-hydroxythiazoles. Where groups R₁ and R₂ contain functionality which would ordinarily interfere with the desired reaction to form the thiazole system, conventional procedures to block the 20 potentially interfering functionality followed by deblocking after thiazole formation may be utilized by those skilled in the art.

Scheme I

25

$$R_1$$
CHSHCO₂H + R_2 - CN \longrightarrow N

35

-34-

Example 1

2-(2-Pyridy1)-4-hydroxy-5-methylthiazole

Pyridine (2 g, 0.025 mol) was added to a mixture of thiolactic acid (10.6 g, 0.1 mol) and 2-cyanopyridine (10.4 g, 0.1 mol) at 23°C under an argon atmosphere. The reaction mixture was then heated at 100°C and maintained for 2 hours. After cooling, the precipitate was collected and washed with absolute ethanol. Recrystallization from

with absolute ethanol. Recrystallization from methanol afforded the product (14 g, 73%). mp 230°C (MeOH)

¹H NMR (60 MHz, DMSO-d₆); delta 2.25 (s, 3H),

7.32-7.67 (m, lH), 8.00-8.30 (m, lH), 8.54-8.70 (m, lH), 8.98-9.10 (m, lH), 10.55 (s, lH).

Mass Spectrum: 192 (M⁺)

Annal. Calc'd. for C₉H₈N₂OS: C, 56.25;

H, 4.17; N, 14.58.

20 Found: C, 56.26; H, 4.18; N, 14.77.

Example 2

2-(3-Pyridyl)-4-hydroxy-5-methylthiazole

25

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 3-cyanopyridine was used instead of 2-cyanopyridine.

35 N, 14.58.

-35-

Found: C, 56.09; H, 4.17; N, 14.39.

Example 3

5 2-(4-Pyridy1)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-cyanopyridine was used instead of 2-cyanopyridine.

mp 223-224°C (EtOH)

1H NMR (60 MHz, DMSO-d₆): delta 2.28 (s, 3H),

7.67-7.84 (m, 2H), 8.67-8.85 (m, 2H), 10.65 (s, 1H).

Mass Spectrum: 192 (M⁺).

Anal. Calc'd. for C₉H₈N₂OS: C, 56.25; H, 4.17; N, 14.58. Found: C, 56.37; H, 4.19; N, 14.33.

Example 4

20

10

2-(3-Quinoliny1)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to

Example 1 except 3-quinolinecarbonitrile was used instead of 2-cyanopyridine.

mp 279-280°C (EtOH)

¹H NMR (300 MHz, DMSO-d₆): delta 2.28 (s, 3H), 7.75-7.82 (m, 1H), 7.60-7.68 (m, 1H), 8.02-8.06 (s,

30 lH), 8.10-8.15 (m, lH), 8.69-8.72 (m, lH) 9.32-9.35 (m, lH), 10.55 (s, lH).

Mass Spectrum: 242 (M⁺).

Anal. Calc'd. for $C_{13}H_{10}N_{2}O_{5}$: C, 64.46; H, 4.13; N, 11.57.

35 Found: C, 64.76; H, 4.13; N, 11.48.

-36-

Example 5

2-(2-Furyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 2-cyanofuran was used instead of 2-cyanopyridine.

mp 173-174°C (EtOH)

10 1 H NMR (300 MHz, DMSO- d_{6}): delta 2.21 (s, 3H), 6.64-6.68 (m, 1H), 6.86-6.89 (m, 1H), 7.78-7.82 (m, 1H), 10.46 (s, 1H).

Mass Spectrum: 181 (M⁺)

Anal. Calc'd. for C₈H₇NO₂S: C, 53.03; H, 3.87;

15 N, 7.73.

Found: C, 53.13; H, 3.88; N, 7.63.

Example 6

2-[2-(6-Methoxybenzothiazoly1)]-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to

Example I except 2-cyano 6-methoxybenzothiazole was used instead of 2-cyanopyridine.

mp 249-250°C (EtOH)

¹H NMR (300 MHz, DMSO- d_6): delta 2.28 (s, 3H), 3.86 (s, 3H), 7.11-7.17 (m, 1H), 7.68-7.72 (m, 1H),

30 7.90-7.96 (m, 1H), 10.11 (s, 1H).

Mass Spectrum: 278 (M⁺)

Anal. Calc'd. for $C_{12}H_{10}N_2O_2S_2$: C, 51.80; H, 3.60; N, 10.07.

Found: C, 51.65; H, 3.60; N, 10.27.

35

-37-

Example 7

2-(2-Thienyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 2-thiophenecarbonitrile was used instead of 2-cyanopyridine.

mp 152-153°C (EtOH)

15 Found: C, 48.62; H, 3.56; N, 7.24.

Example 8

2-(4-Pyrazolyl)-4-hydroxy-5-methylthiazole

20

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-cyanopyrazole was used instead of 2-cyanopyridine.

25 mp 124-125°C (EtOH)

¹H NMR (60 MHz, DMSO-d₆): delta 2.16 (s, 3H),

8.00 (s 1H) 8.35 (s, 1H) 9.02 (s, 1H).

Mass Spectrum: 181 (M⁺)

Anal. Calc'd. for C₇H₇N₃OS: C, 46.41; H, 3.87;

30 N, 23.20.

Found: C, 46.32; H, 3.87; N, 23.35.

Example 9

35 2-(4-Fluorophenyl)-4-hydroxy-5-methylthiazole

-38-

1

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-fluorobenzonitrile was used instead of 2-cyanopyridine.

5 mp 173-174°C (EtOH)

1H NMR (60 MHz, DMSO-d₆): delta 2.20 (s, 3H),

7.16-8.00 (m, 4H), 10.0 (s, 1H).

Mass Spectrum: 209 (M⁺)

Anal. Calc'd. for C₁₀H₈FNOS: C, 57.42; H, 3.83; N, 6.70.

Found: C, 57.30; H, 3.84; N, 6.72.

Example 10

2-(4-Bromophenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-bromobenzonitrile was used instead

of 2-cyanopyridine.

mp 206-207°C (EtOH)

lH NMR (60 MHz, DMSO-d₆): delta 2.25 (s, 3H),

7.50-7.90 (m, 4H), 10.32 (s, 1H)

Mass Spectrum: 269 (M⁺)

25 Anal. Calc'd. for C₁₀H₈BrNOS: C, 44.61; H, 2.97; N, 5.20. Found: C, 44.38; H, 2.99; N, 5.32.

Example 11

30

10

2-(4-Chlorophenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to

Example 1 except 4-chlorobenzonitrile was used

WO 90/09381

-39-

instead of 2-cyanopyridine.

mp 198-199°C (EtOH)

1H NMR (300 MHz, DMSO-d₆): delta 2.23 (s, 3H),
7.48-7.54 (m,2H), 7.75-7.83 (m, 2H), 10.40 (br s,

5 lH).

Mass Spectrum: 225 (M⁺)

Anal. Calc'd. for C₁₀H₈ClNOS: C, 53.93;

H, 3.60; N, 6.21.

Found: C, 54.06; H, 3.62; N, 6.22.

10

Example 12

2-(4-Nitrophenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-nitrobenzonitrile was used instead of 2-cyanopyridine.

mp 244-248°C (EtOH)

20 LH NMR (60 MHz, DMSO-d₆) 10.41 (br s, 1H).
Mass Spectrum: 236 (M⁺)

Anal. Calc'd. for C₁₀H₈N₂O₃S: C, 50.85;

H, 3.39; N, 11.86.

Found: C, 50.78; H, 3.41; N, 11.77.

25

Example 13

2-(4-Carbo-2-phenethoxyphenyl)-4-hydroxy-5methylthiazole

30

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-(carbo-2-phenethoxy) benzonitrile was used instead of 2-cyanopyridine.

35 mp 251-252°C (EtOH)

-40-

 1 H NMR (60 MHz, DMSO- d_{6}): delta 2.25 (s, 3H), 3.08 (t, 2H, J=7Hz), 4.55 (t, 2H J=7Hz), 7.32-7.50 (m, 5H), 7.95-8.05 (m, 4H), 10.35 (br s, 1H). Mass Spectrum: 339 (M⁺)

5 Anal. Calc'd. for C₁₉H₁₇NO₃S: C, 67.24; H, 5.05; N, 4.13. Found: C, 67.00; H, 4.99; N, 4.00.

Example 14

10

2-(4-Benzamido)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to

Example 1 except 4-cyanobenzamide was used instead of 2-cyanopyridine.

mp 274-277°C (dec.) (EtOH)

1H NMR (60 MHz, DMSO-d₆): delta 2.21 (s, 3H),

7.30-8.10 (m, 5H), 10.15 (br s, 1H)

20 Mass Spectrum: 234 (M⁺)
Anal. Calc'd. for C₁₁H₁₀N₂O₂S: C, 56.40;
H, 4.30; N, 11.96.
Found: C, 56.37; H, 4.33; N, 11.81.

Example 15

2-(4-Biphenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to

the method of Scheme I in a manner analogous to

Example 1 except 4-biphenylcarbonitrile was used

instead of 2-cyanopyridine.

mp 265-266°C (EtOH)

1H NMR (60 MHz, DMSO, d₆): delta 2.16 (s, 3H),

7.32-8.00 (m, 9H), 10.25 (s, 1H).

WO 90/09381

-41-

Mass Spectrum: 267 (M^+) Anal. Calc'd. for $C_{16}^{H_{13}}NOS$: C, 71.91; H, 4.87; N, 5.24.

Found: C, 72.12; H, 4.87; N, 5.36.

5

Example 16

2-(4-Trifluoromethylphenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-trifluoromethylbenzonitrile was used instead of 2-cyanopyridine.

mp 232-233°C (EtOH)

20 Found: C, 50.77; H, 3.08; N, 5.27.

Example 17

2-(4-Carbomethoxyphenyl)-4-hydroxy-5-methylthiazole

25

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except methyl 4-cyanobenzoate was used instead of 2-cyanopyridine.

mp 219-220°C (EtOH)

H NMR (60 MHz, DMSO-d₆): delta 2.35 (s, 3H),

3.80 (s, 3H), 7.85-8.15 (m, 4H), 10.41 (br s, 1H).

Mass Spectrum: 249 (M⁺)

Anal. Calc'd. for C₁₂H₁₁NO₃S: C, 57.83;

35 H, 4.42; N, 5.62.

-42-

Found: C, 57.95; H, 4.39; N, 5.49.

Example 18

5 2-(4-Acetylphenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-acetylbenzonitrile was used

- instead of 2-cyanopyridine.

 mp 219-220°C (EtOH)

 H NMR (60 MHz, DMSO-d₆): delta 2.25 (s, 3H),

 2.59 (s, 3H), 7.89-7.95 (m, 2H), 8.0-8.06 (m, 2H),

 10.50 (s, 1H).
- 15 Mass Spectrum: 233 (M⁺)
 Anal. Calc'd. for C₁₂H₁₁NO₂S: C, 61.86;
 H, 4.72; N, 9.72.
 Found: C, 61.80; H, 4.72; N, 9.80.

20 Example 19

2-(4-Carboxyphenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-carboxybenzonitrile was used instead of 2-cyanopyridine.

mp 276°C dec. (EtOH)

1H NMR (300 MHz, DMSO-d₆): delta 2.25 (s, 3H),

30 7.88-7.94 (m, 2H), 7.98-8.04 (m, 2H), 10.49 (br s, 1H), 12.07 (br s, 1H).

Mass Spectrum: 235 (M⁺) Anal. Calc'd. for $C_{11}^{H_9}NO_3S$: C, 56.17; H, 3.83; N, 5.96.

35 Found: C, 56.29; H, 3.83; N, 5.88.

-43-

Example 20

2-(4-Cyanophenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-cyanobenzonitrile was used instead of 2-cyanopyridine.

mp 220-221°C (EtOH)

15 Found: C, 61.22; H, 3.72; N, 12.82.

Example 21

2-(4-Thiobenzamido)-4-hydroxy-5-methylthiazole

20

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-cyanothiobenzamide was used instead of 2-cyanopyridine.

25 mp 256-257°C (EtOH)

1H NMR (60 MHz, DMSO-d₆): delta 2.20 (s, 3H),
6.65 (s, 2H), 7.32-7.66 (m, 2H), 7.85-8.10 (m, 2H).

Mass Spectrum: 270 (M⁺)

Anal. Calc'd. for C₁₀H₁₀N₂O₃S₂: C, 44.44;

30 H, 3.70; N, 10.37. Found: C, 44.27; H, 3.73; N, 10.42.

-44-

Example 22

2-(4-Thiotrifluoromethylphenyl)-4-hydroxy-5methylthiazole

5

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 4-thiotrifluoromethylbenzonitrile was used instead of 2-cyanopyridine.

Mass Spectrum: 291 (M⁺)

Anal. Calc'd. for C₁₁H₈F₃NOS₂: C, 45.36; H, 2.75; N, 4.81. Found: C, 45.26; H, 2.74; N, 4.79.

Example 23

20

2-(4-Carboethoxyphenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to

Example 1 except 4-carboethoxybenzonitrile was used instead of 2-cyanopyridine.

mp 207-208°C (EtOH)

¹H NMR (60 MHz, DMSO-d₆): delta 1.25 (t, 3H, J=7Hz), 2.35 (s, 3H), 4.32 (q, 2H, J=7Hz), 7.85-8.15

30 (m, 4H), 10.41 (br s, 1H).

Mass Spectrum: 263 (M⁺)

Anal. Calc'd. for C₁₃H₁₃NO₃S: C, 59.32;

H, 4.94; N, 5.32.

Found: C, 59.27; H, 4.96; N, 5.29.

35

-45-

Example 24

2-(2-Fluorophenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 2-fluorobenzonitrile was used instead of 2-cyanopyridine.

mp 159-160°C (EtOH)

10 1 H NMR (300 MHz, DMSO- 1 delta 2.25 (s, 3H), 7.30-7.51 (m, 4H), 8.05-8.15 (m, 1H), 10.43 (br s, 1H).

Mass Spectrum: 209 (M⁺)

Anal. Calc'd. for C₁₀H₈FNOS: C, 57.42; H, 3.83;

15 N, 6.70. Found: C, 57.29; H, 3.81; N, 6.68.

Example 25

20 2-(3-Fluorophenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 3-fluorobenzonitrile was used

- instead of 2-cyanopyridine.

 mp 162-163°C (EtOH)

 1H NMR (300 MHz, DMSO-d₆): delta 2.25 (s, 3H),

 7.23-7.31 (m, 1H), 7.48-7.66 (m, 3H), 10.45 (s, 1H).

 Mass Spectrum: 209 (M⁺)
- Anal. Calc'd. for C₁₀H₈FNOS: C, 57.42; H, 3.83; N, 6.70. Found: C, 57.48; H, 3.84; N, 6.72.

-46-

Example 26

2-(3-Bromophenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 3-bromobenzonitrile was used instead of 2-cyanopyridine.

mp 148-149°C (EtOH)

15 Found: C, 44.60; H, 2.98; N, 5.25.

Example 27

2-(3,5-bis-trifluoromeţhylphenyl)-4-hydroxy-5methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 3,5-bis-trifluoromethylbenzonitrile

- was used instead of 2-cyanopyridine.
 mp 182-183°C (EtOH)

 lh NMR (300 MHz, DMSO-d₆): delta 2.29
 (s, 3H), 8.12 (s, 1H), 8.30 (s, 2H), 10.65 (s, 1H).
 Mass Spectrum: 327 (M⁺)
- Anal. Calc'd. for C₁₂H₇F₆NOS: C, 44.04; H, 2.14; N, 4.28. Found: C, 44.23; H, 2.16; N, 4.31.

-47-

Example 28

2-(3,5-Dinitrophenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to example 1 except 3,5-dinitrobenzonitrile was used instead of 2-cyanopyridine.

mp 247-248°C (EtOH)

15 Found: C, 42.62; H, 2.48; N, 14.82.

Example 29

2-(2-Chloro-3-methylphenyl)-4-hydroxy-5-methylthiazole

20

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except 2-chloro-3-methylbenzonitrile was used instead of 2-cyanopyridine.

- 25 mp 183-184°C (EtOH)

 1H NMR (60 MHz, DMSO-d₆): delta 2.20

 (s, 3H), 2.35 (s,3H), 7-407-86 (m, 3H), 10.32 (s, 1H).

 Mass Spectrum: 239 (M^t)

 Anal. Calc'd. for C₁₁H₁₀C|NOS: C, 55.11;
- 30 H, 4.84; N, 5.85.
 Found: C, 55.31; H, 4.86; N, 5.86.

-48-

Example 30

2-(4-Carboxyphenyl)-4-hydroxy-5-phenylthiazole

The title compound was prepared according to the method of Scheme I in a manner analogous to Example 1 except thiomandelic acid and 4-cyanobenzoic acid were used instead of thiolactic acid and 2-cyanopyridine respectively.

15 H, 3.70; N, 4.71.
Found: C, 64.74; H, 3.71; N, 4.58.

also prepared by the reaction sequence outlined in Scheme II. The meanings of R₁ and R₂ correspond to the definitions provided above. The reaction of an alpha-haloester with an appropriately substituted thioamide in toluene at high temperature for several hours provides the 4-hydroxythiazoles. Where groups R₁ and R₂ contain functionality which would

4-Hydroxythiazoles of general Formula I are

ordinarily interfere with the desired reaction to form the thiazole system, conventional procedures to block the potentially interfering functionality followed by deblocking after thiazole formation may be utilized by those skilled in the art.

30

WO 90/09381

-49-

Scheme II

5
$$R_{1}^{CHBrCO_{2}CH_{3}} + R_{2}^{-CSNH_{2}} \longrightarrow R_{2}^{N}$$
10

Example 31

2-Phenyl-4-hydroxy-5-methylthiazole

Ethyl bromopropionate (3.96 g, 21.87 mmol) was added dropwise to a solution of thiobenzamide (3.00 g, 21.87 mM) and pyridine (7 ml, 87.48 mmol) in toluene (200 ml) at 23°C. The reaction mixture was heated to 80°C and maintained for 2 hours and allowed to cool to 23°C. The precipitate was collected and

to 23°C. The precipitate was collected and recrystallized from ethanol to afford 3.3 g (81%) of product.

mp 192-193°C (EtOH)

¹H NMR (300 MHz, DMSO-d₆): delta 2.20 (s, 3H),

7.32-7.55 (m, 3H), 7.75-7.82 (m, 2H), 10.31 (s, 1H).
Mass Spectrum: 191 (M⁺)

Anal. Calc'd for $C_{10}H_{9}NOS$: C, 62.83; H, 4.71; N, 7.33.

Found: C, 62.92; H, 4.71; N, 7.18.

30

Example 32

2-(4-Methoxyphenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to

-50-

the method of Scheme II in a manner analogous to Example 31 except 4-methoxythiobenzamide was used instead of thiobenzamide.

mp 149-150.5°C (EtOH)

Mass Spectrum: 221 (M⁺)

Anal. Calc'd for $C_{11}H_{11}NO_2S$: C, 59.72;

10 H, 4.97; N, 6.33.
Found: C, 59.86; H, 4.99; N, 6.22.

Example 33

2-(4-Methylphenyl)-4-hydroxy-5-methylthiazole

The title compound was prepared according to the method of Scheme II in a manner analogous to Example 31 except 4-methylthiobenzamide was used

- instead of thiobenzamide.
 mp 172-174°C (EtOH)
 - 1H NMR (60 MHz, DMSO-d₆): delta 2.15 (s, 3H),
 2.25 (s, 3H), 7.15-7.35 (m, 2H), 7.55-7.85 (m, 2H),

9.82 (s, 1H).

25 Mass Spectrum: 205 (M⁺)
Anal. Calc'd for C₁₁H₁₁NOS: C, 64.36; H, 5.40;
N, 6.82.

Found: C, 64.15; H, 5.38; N, 6.71.

Example 34

2-Phenyl-4-hydroxy-5-phenylthiazole

Ť.

The title compound was prepared according to the method of Scheme II in a manner analogous to

-51-

Example 31 except chlorophenylacetylchloride was used instead of ethyl 2-bromopropionate.

mp 212-213°C (EtOH)

¹H NMR (300 MHz, CDC1₃): delta 7.22-7.30 (m,

5 2H), 7.38-7.53 (m, 4H), 7.82-7.87 (m, 2H), 7.92-8.00 (m, 2H).

Mass Spectrum: 253 (M⁺)

Anal. Calc'd for $C_{15}H_{11}NOS$: C, 71.15; H, 4.35; N, 5.53.

10 Found: C, 71.22; H, 4.33; N, 5.44.

Example 35

2-Phenyl-4-hydroxy-5-ethylthiazole

15

The title compound was prepared according to the method of Scheme II in a manner analogous to Example 31 except methyl 2-bromobutyrate was used instead of ethyl 2-bromopropionate.

- 20 mp 175-177°C dec. (MeOH)

 1H NMR (300 MHz, DMSO-d₆): delta 1.18 (t, 3H, J=7Hz), 2.66 (q, 2H, J=7Hz), 7.40-7.50 (m, 3H), 7.75-7.85 (m, 2H), 9.52 (br s, 1H).

 Mass Spectrum: 205 (M⁺)
- 25 Anal. Calc'd for C₁₁H₁₁NOS: C, 64.39; H, 5.36; N, 6.83.

Found: C, 64.28; H, 5.38; N, 6.97.

Example 36

30

2-Phenyl-4-hydroxy-5-propylthiazole

The title compound was prepared according to the method of Scheme II in a manner analogous to Example 31 except ethyl 2-bromovalerate was used

-52-

4

10 Found: C, 65.71; H, 5.95; N, 6.41.

Example 37

2-Phenyl-4-hydroxy-5-butylthiazole

15

The title compound was prepared according to the method of Scheme II in a manner analogous to Example 31 except ethyl 2-bromohexanoate was used instead of ethyl 2-bromopropionate.

- 20 mp 69-71°C (EtOH)

 ¹H NMR (300 MHz, DMSO-d₆): delta 0.90
 (t, 3H, J=7Hz), 1.28-1.41 (m, 2H), 1.48-1.60 (m, 2H), 2.63 (t, 2H, J=7Hz), 7.40-7.50(m, 3H), 7.82-7.85 (m, 2H), 10.35 (s, 1H).
- 25 Mass Spectrum: 233 (M⁺)
 Anal. Calc'd for C₁₃H₁₅NOS: C, 66.92; H, 6.48;
 N, 6.00.
 Found: C, 66.32; H, 6.47; N, 5.83.

30 Example 38

2-Phenyl-4-hydroxy-5-phenethylthiazole

The title compound was prepared according to the method of Scheme II in a manner analogous to

-53-

Example 31 except ethyl 3-phenyl-2-bromobutyrate was used instead of ethyl 2-bromopropionate.

mp 127-128°C (EtOH)

¹H NMR (60 MHz, DMSO-d₆): delta 2.88 (s 4H),

5 7.21-7.90 (m, 10H), 9.84 (br s, 1H).

Mass Spectrum: 281(M⁺)

Anal. Calc'd for $C_{17}^{H}_{15}^{N}$ NOS: C, 72.60; H, 5.34; N, 4.98.

Found: C, 72.66; H, 5.35; N, 4.97.

10

35

Example 39

2-Phenyl-4-hydroxy-5-(methylcarbomethoxy)-thiazole

The title compound was prepared according to the method of Scheme II in a manner analogous to Example 31 except ethyl bromosuccinate was used instead of ethyl 2-bromopropionate.

mp 114-116°C (EtOH)

¹H NMR (300 MHz, DMSO- d_6): delta 3.65 (s 2H), 3.80 (s, 3H), 7.35-7.55 (m, 3H), 7.72-7.89 (m, 2H), 10.50 (s, 1H).

Mass Spectrum: 249 (M⁺)

Anal. Calc'd for C₁₂H₁₁NO₃S: C, 57.83;

25 H, 4.42; N, 5.62.

Found: C, 57.90; H, 4.42; N, 5.64.

Example 40

2-Phenyl-4-hydroxy-5-methylhydroxyaminocarbonylmethylthiazole

The title compound was prepared from the acid chloride of Example 39 using methylhydroxyl-amine.

-54-

3

*

mp 156-157°C (Ether)

1H NMR (300 MHz, DMSO-d₆): delta 3.12 (s 3H),

3.80 (s, 2H), 7.38-7.52 (m, 3H), 7.75-7.86 (m, 2H),

10.10 (br s, 1H), 10.51 (s, 1H).

5 Mass Spectrum: 264 (M⁺)
Anal. Calc'd for C₁₂H₁₂N₂O₃S: C, 54.54;
H, 4.55; N, 10.61.
Found: C, 54.28; H, 4.55; N, 10.47.

10 Example 41

2-(3-Pyridy1)-4-hydroxy-5-phenylthiazole

The title compound was prepared according to 15 the method of Scheme II in a manner analogous to Example 31 except thioisonicotinamide was used instead of ethyl 2-bromopropionate. mp 273-276°C (EtOH) ¹H NMR (300 MHz, DMSO-d₆): delta 7.20-7.30 20 (m,1H), 7.35-7.48 (m 2H), 7.52-7.80 (m, 3H), 8.25-8.40 (m, 1H), 8.63-8.80 (m, 1H), 9.01-9.15 (m, 1H), 10.20 (br s, 1H). Mass Spectrum: 254 (M⁺) Anal. Calc'd for $C_{14}H_{10}N_2OS$: C, 66.14; H, 3.94; N, 11.02. 25 Found: C, 66.32; H, 3.94; N, 11.22.

Example 42

30 2-(4-Pyridyl)-4-hydroxy-5-phenylthiazole

The title compound was prepared according to the method of Scheme II in a manner analogous to Example 31 except 4-thioamidopyridine was used instead of thiobenzamide and 2-chloro-2-phenylacetyl

-55-

chloride was used instead of 2-bromopropionate.

mp 280°C dec. (EtOH)

lH NMR (60 MHz, DMSO-d₆): delta 7.15-7.95

(m,9H), 8.55 (br s, lH).

Mass Spectrum: 254 (M⁺)

Anal. Calc'd for C₁₄H₁₀N₂OS: C, 66.14; H, 3.94; N, 11.02.

Found: C, 66.27; H, 3.95; N, 11.18.

10

Example 43

2-(4-Methoxyphenyl)-4-hydroxy-5-phenylthiazole

The title compound was prepared according to the method of Scheme II in a manner analogous to Example 31 except 4-methoxythiobenzamide was used instead of thiobenzamide and 2-chloro-2-phenylacetyl chloride was used instead of 2-bromopropionate.

mp 218-221°C (EtOH)

25 Found: C, 67.73; H, 4.96; N, 4.91.

Example 44

2-Biphenyl-4-hydroxy-5-phenylthiazole

30

35

The title compound was prepared according to the method of Scheme II in a manner analogous to Example 31 except 4-phenylthiobenzamide was used instead of thiobenzamide and 2-chloro-2-phenylacetyl chloride was used instead of 2-bromopropionate.

-56-

mp 242-243°C (EtOH)

H NMR (60 MHz, DMSO-d₆): delta 7.15-8.05 (m, 14H), 11.25 (br s, 1H),

Mass Spectrum: 329 (M⁺)

5 Anal. Calc'd for C₂₁H₁₅NOS: C, 76.57; H, 4.59; N, 4.25.

Found: C, 76.75; H, 4.58; N, 4.08.

Example 45

10

2-Methy1-4-hydroxy-5-phenylthiazole

The title compound was prepared according to the method of Scheme II in a manner analogous to

Example 31 except methylthioamide was used instead of thiobenzamide and 2-chloro-2-phenylacetyl chloride was used instead of 2-bromopropionate.

mp 208-211°C (EtOH)

H NMR (300 MHz, DMSO-d₆): delta 2.56 (s, 3H),

7.13-7.20 (m, 1H), 7.30-7.40 (m 2H), 7.59-7.65 (m, 4H), 8.50 (br s, 1H).

Mass spectrum: 191 (M⁺)

Anal. Calc'd for C₁₀H₉NOS: C, 62.80; H, 4.74;

N, 7.32.

25 Found: C, 62.90; H, 4.76; N, 7.41.

Example 46

2-(4-Methylphenyl)-4-hydroxy-5-phenylthiazole

30

35

The title compound was prepared according to the method of Scheme II in a manner analogous to Example 31 except 4-methylthiobenzamide was used instead of thiobenzamide and 2-chloro-2-phenylacetyl chloride was used instead of 2-bromopropionate.

WO 90/09381

-57-

mp 252-255°C (EtOH)

¹H NMR (60 MHz, DMSO-d₆): delta 2.32 (s, 3H),

7.20-7.95 (m,9H), 10.75 (br s, 1H).

Mass Spectrum: 267 (M⁺)

5 Anal. Calc'd for $C_{16}^{H}_{13}^{NOS}$: C, 71.88; H, 4.90; N, 5.24.

Found: C, 72.01; H, 4.86; N, 5.21.

Example 47

10

2-(4-Fluorophenyl)-4-hydroxy-5-phenylthiazole

The title compound was prepared according to the method of Scheme II in a manner analogous to

Example 31 except 4-fluorothiobenzamide was used instead of thiobenzamide and 2-chloro-2-phenylacetyl chloride was used instead of 2-bromopropionate.

mp 231-233°C (EtOH)

H NMR (60 MHz, DMSO-d₆): delta 7.20-8.05 (m,

20 9H), 11.10 (br s, 1H).

Mass Spectrum: 271 (M⁺)

Anal. Calc'd for C₁₅H₁₀FNOS: C, 66.41; H, 3.72;

N, 5.16.

Found: C, 66.61; H, 3.82; N, 5.28.

25

Example 48

2-(4-Ethoxyphenyl)-4-hydroxy-5-phenylthiazole

- The title compound was prepared according to the method of Scheme II in a manner analogous to Example 31 except 4-ethoxythiobenzamide was used instead of thiobenzamide and 2-chloro-2-phenylacetyl chloride was used instead of 2-bromopropionate.
- 35 mp 214-216°C (EtOH)

-58-

 1 H NMR (60 MHz, DMSO- 1 G): delta 1.55 (t, J=7Hz, 3H), 4.35 (q, J=7Hz, 2H), 7.15-8.25 (m, 9H), 10.50 (br s, 1H).

Mass Spectrum: 297 (M⁺)

5 Anal. Calc'd for C₁₇H₁₅NO₂S: C, 68.66; H, 5.37; N, 4.98.

Found: C, 68.46; H, 5.27; N, 4.80.

Example 49

10

2-Pentyl-4-hydroxy-5-phenylthiazole

The title compound was prepared according to the method of Scheme II in a manner analogous to

Example 31 except thiohexanamide was used instead of thiobenzamide and 2-chloro-2-phenylacetyl chloride was used instead of 2-bromopropionate.

mp 128-130°C (Acetone)

¹H NMR (300 MHz, DMSO-d₆): delta 0.88 (t, 3H,

J=7Hz), 1.22-1.40 (m, 4H), 1.65-1.75 (m, 4H), 2.85 (t, 2H, J=7Hz), 7.10-7.20 (m, 1H), 7.30-7.40 (m, 2H), 7.58-7.65 (m, 2H).

Mass Spectrum: 247 (M⁺)

Anal. Calc'd for C₁₄H₁₇NOS: C, 68.02; H, 6.88;

25 N, 5.66.

30

Found: C, 67.88; H, 6.90; N, 5.69.

4-Hydroxythiazole derivatives of general Formula I may also be prepared directly from the parent 4-hydroxythiazole. In many cases the group R_3 is a metabolically cleavable group. When the group R_3 is removed by metabolic processes, the group R_3 can be substituted with a hydrogen , another group, or a salt which yields an active

enzyme inhibitor. Examples of metabolically cleavable groups for R_3 include COR_4 and

-59-

 ${\rm CONR}_5{\rm R}_6$ wherein ${\rm R}_4$, ${\rm R}_5$ and ${\rm R}_6$ are as before defined.

Scheme III

5

Example 50

15

10

2-Phenyl-4-acetoxy-5-phenylthiazole

The title compound was prepared by reacting the compound of Example 34 with one equivalent of acetic anhydride and pyridine in methylene chloride at 23°C for 10 hours.

mp 101-103°C (EtOAc/hexane)

1H NMR (300 MHz, DMSO-d₆): delta 2.40 (s, 3H),

7.38-7.62 (m, 8H), 7.86-7.96 (m, 2H).

25 Mass Spectrum: 295 (M⁺)
Anal. Calc'd for C₁₇H₁₃NO₂S: C, 69.15;
H, 4.40; N, 4.75.
Found: C, 69.18; H, 4.41; N, 4.77.

30 Example 51

2-Phenyl-4-hexanoxy-5-phenylthiazole

The title compound was prepared by reacting the compound of Example 34 with one equivalent of

-60-

hexanoyl chloride in methylene chloride at 23°C for 5 hours.

mp 70-72°C (EtOH)

¹H NMR (300 MHz, CDC1₃): delta 0.90 (t, 3H,

5 J=7Hz), 1.23-1.40 (m, 4H), 1.65-1.80 (m, 2H), 2.61
(t, 2H, J=7Hz), 7.28-7.58 (m, 8H), 7.88-7.96 (m, 2H).
Mass Spectrum: 351 (M⁺)

Anal. Calc'd for $C_{21}H_{21}NO_{2}S$: C, 71.77; H, 6.02; N, 3.99.

10 Found: C, 71.54; H, 5.95; N, 3.96.

Example 52

2-Phenyl-4-trimethylacetoxy-5-phenylthiazole

15

35

The title compound was prepared by reacting the compound of Example 34 with one equivalent of pivaloyl chloride and 4-dimethylaminopyridine in methylene chloride at 23°C for 2 hours.

mp 134-136°C (EtOAc/hexane)

1H NMR (300 MHz, CDCl₃): delta 1.38 (s, 9H),

7.40 (m, 6H), 7.56 (m, 2H), 7.92 (m, 2H).

Mass Spectrum: 337 (M⁺)

Anal. Calc'd for C₂₀H₁₉NO₂S: C, 71.22;

25 H, 5.64; N, 4.15.

Found: C, 71.30; H, 5.64; N, 4.14.

Example 53

30 2-Phenyl-4-ethyl succinyloxy-5-phenylthiazole

The title compound was prepared by reacting the compound of Example 34 with one equivalent of ethyl succinyl chloride and 4-dimethylaminopyridine in methylene chloride at 23°C for 10 hours.

-61-

mp 55-58°C (EtOAc/hexane)

H NMR (300 MHz, CDCl₃): delta 1.25 (g, J=7Hz,

3H), 2.73 (t, J=7Hz, 2H), 2.98 (t, J=7Hz, 2H), 4.15

(q, J=7Hz, 2H), 7.45 (m, 6H), 7.55 (m, 2H), 7.92 (m, 2H).

Mass Spectrum: 381 (M⁺)
Anal. Calc'd for C₂₁H₁₉NO₄S: C, 66.14;
H, 4.99; N, 3.67.
Found: C, 66.33; H, 4.99; N, 3.73.

10

5

Example 54

2-Phenyl-[4-(carboethoxy)oxy]-5-propylthiazole

The title compound was prepared by reacting the compound of Example 36 with one equivalent of ethyl chloroformate and pyridine in toluene at 23°C for 2 hours to afford a colorless oil.

1 NMR (300 MHz, CDCl₃): delta 1.00 (t, 3H,

J=7Hz), 1.40 (t, 3H, J=7Hz), 1.62-1.76 (m, 2H), 2.69 (t, 2H, J=7Hz), 4.35 (q, 2H, J=7Hz), 7.40 (m, 3H), 7.87 (m, 2H).

Mass Spectrum: 291 (M+)

Anal. Calc'd for C₁₅H₁₇NO₃S: C, 61.83;

25 H, 5.88; N, 4.81.
Found: C, 61.78; H, 5.98; N, 4.65.

Example 55

30 2-Phenyl-4-(N-methylcarbamyl)oxy-5-propylthiazole

The title compound was prepared by reacting Example 36 with one equivalent of methyl isocyanate and triethylamine in benzene at 23°C for 20 hours.

35 mp 55-58°C (toluene)

-62-

l_H NMR (60 MHz, CDCl₃): delta 0.90 (t, 3H,
J=7Hz), 1.67 (m, 2H), 2.66 (t, 24, J=7Hz), 2.85 (d,
3H, J=7Hz), 5.50 (br s, 1H), 7.75 (m, 2H), 7.40 (m,
3H).

5 Mass Spectrum: 276 (M⁺)
Anal. Calc'd for C₁₄H₁₆N₂O₂S: C, 60.85; H, 5.84; N, 10.14.
Found: C, 60.55; H, 5.85; N, 10.08.

10

Example 56

2-Phenyl-[4-(benzoyl)oxy]-5-propylthiazole

The title compound was prepared by reacting
the compound of Example 36 with one equivalent of
benzylchloroformate in toluene at 23°C for 6 hours.

mp 62-64°C (toluene)

1 NMR (60 MHz, DMSO-d₆): delta 7.15-8.05 (m,
14H), 11.25 (br s, 1H).

Mass Spectrum: 329 (M⁺)
Anal. Calc'd for C₂₁H₁₅NOS: C, 76.57; H, 4.59;
N, 4.25.

Found: C, 76.75; H, 4.58; N, 4.08.

25

Example 57

2-Phenyl-4-(N-t-butylcarbamyl)oxy-5-propylthiazole

The title compound was prepared by reacting

the compound of Example 36 with one equivalent of
t-butyl isocyanate and triethylamine in benzene at

23°C for 20 hours.

mp 97-98°C (benzene)

l_H NMR (300 MHz, CDCl₃): delta 0.89 (t, 3H,

J=7Hz), 1.21-1.45 (m, 2H), 0.99 (s, 9H), 2.55 (t, 2H,

WO 90/09381

-63-

J=7Hz), 7.05-7.10 (m, lH), 7.30-7.60 (m, 4H). Mass Spectrum: 318 (M⁺) Anal. Calc'd for $C_{17}^{H}_{22}^{N}_{20}^{O}_{2}^{S}$: C, 64.15; H, 6.92; N, 8.80.

5 Found: C, 64.37; H, 7.01; N, 8.62.

Example 58

2-Phenyl-4-(N-phenylcarbamyl)oxy-5-propylthiazole

10

The title compound was prepared by reacting the compound of Example 36 with one equivalent of phenyl isocyanate in benzene at 23°C for 20 hours. mp 104-105°C (Ether)

Mass Spectrum: 338 (M⁺)

20 Anal. Calc'd for C₁₉H₁₈N₂O₂S: C, 67.43; H, 5.36; N, 8.28. Found: C, 67.45; H, 5.40; N, 8.28.

Example 59

25

2-Phenyl-4-acetoxy-5-propylthiazole

The title compound was prepared by reacting the compound of Example 36 with one equivalent of acetic anhydride and pyridine in methylene chloride at 23°C for 10 hours. The product was a colorless oil.

1 NMR (300 MHz, DMSO-d₆): delta 0.90 (t, 3H, J=Hz), 1.50-1.65 (m, 2H), 2.28 (s, 3H), 2.62 (t, 2H, 35 J=7Hz), 7.35-7.55 (m, 3H), 7.75-7.83 (m, 2H).

-64-

Mass Spectrum: 261 (M⁺)
Anal. Calc'd for C₁₄H₁₅NO₂S: C, 64.37;
H, 5.75; N, 5.36.
Found: C, 64.39; H, 5.75; N, 5.39.

5

Example 60

2-(4-Carbomethoxyphenyl)-4-acetoxy-5-methylthiazole

The title compound was prepared by reacting the compound of Example 17 with one equivalent of acetic anhydride and pyridine in methylene chloride at 23°C for 10 hours.

mp 124-125°C (EtOH)

20 Found: C, 57.69; H, 4.48; N, 4.83.

Example 61

2-[2-(6-Methoxy)benzothiazoyl]-4-acetoxy-5methylthiazole

The title compound was prepared by reacting the compound of Example 6 with one equivalent of acetic anhydride and pyridine in methylene chloride

at 23°C for 10 hours.

mp 183-184°C (EtOH)

H NMR (60 MHz, CDCl₃): delta 2.30 (s, 3H), 2.33

(s, 3H), 3.85 (s, 3H), 7.0-7.5 (m, 2H), 7.80-8.00 (m, 1H).

35 Mass Spectrum: 320 (M+)

-65-

Anal. Calc'd for $C_{14}^{H_{12}N_{2}O_{3}S_{2}}$: C, 52.50; H, 4.27; N, 8.75. Found: C, 52.45; H, 3.75; N, 8.77.

5

Example 62

2-(4-Methylphenyl)-4-acetoxy-5-phenylthiazole

The title compound was prepared by reacting the compound of Example 46 with one equivalent of acetic anhydride and pyridine in methylene chloride at 23°C for 10 hours.

mp 122-125°C (EtOH)

¹H NMR (60 MHz, CDCl₃): delta 2.20 (s, 3H), 2.30

15 (s, 3H), 7.207.95 (m, 9H).

Mass Spectrum: 267 (M⁺)

Anal. Calc'd for C₁₈H₁₅NO₂S: C, 69.88;

H, 4.89; N, 4.53.

Found: C, 70.02; H, 4.90; N, 4.27.

20

Example 63

2-(4-Ethoxyphenyl)-4-acetoxy-5-phenyl-thiazole

The title compound was prepared by reacting Example 48 with one equivalent of acetic anhydride and pyridine in methylene chloride at 23°C for 10 hours.

mp 149-150°C (EtOH)

¹H NMR (60 MHz, CDCl₃): delta 1.50 (t, 3H, J=7Hz), 2.25 (s, 3H), 4.25 (q, 2H, J=7Hz), 6.90-7.70 (m, 9H).

Mass Spectrum: 339 (M⁺)

Anal. Calc'd for $C_{19}H_{17}NO_3S$: C, 67.24; H, 5.05

35 N, 4.13.

-66-

Ţ

Found: C, 67.17; H, 5.03; N, 3.98.

Example 64

5 2-(4-Carbo-2-phenethoxypheny1)-4-acetoxy-5methylthiazole

The title compound was prepared by reacting the compound of Example 13 with one equivalent of acetic anhydride and pyridine in methylene chloride at 23°C for 10 hours.

mp 109-111°C (EtOH)

1H NMR (60 MHz, CDCl₃): delta 2.10 (s, 3H), 2.20 (s, 3H), 3.05 (t, 2H, J=7Hz), 4.60 (t, 2H, J=7Hz), 7.25-7.50 (m, 5H) 7.808.15 (m, 4H).

Mass Spectrum: 383 (M⁺)

Anal. Calc'd for C₂₁H₁₉NO₄S: C, 66.12; H,

Found: C, 66.27; H, 5.04; N, 3.69.

20 -

Example 65

2-Biphenyl-4-acetoxy-5-phenylthiazole

The title compound was prepared by reacting the compound of Example 44 with one equivalent of acetic anhydride and pyridine in methylene chloride at 23°C for 10 hours.

mp 146-147°C (EtOH)

5.02; N, 3.67.

35 Found: C, 74.16; H, 4.60; N, 3.69.

-67-

Example 66

2-(4-Carboxyphenyl)-4-acetoxy-5-methylthiazole

The title compound was prepared by reacting the compound of Example 19 with one equivalent of acetic anhydride and two equivalents of pyridine in methylene chloride at 23°C for 10 hours.

mp 227-230°C (EtOH)

15 Found: C, 56.11; H, 4.04; N, 5.03.

Example 67

2-Phenyl-4-acetoxy-5-butylthiazole

20

The title compound was prepared by reacting the compound of Example 37 with one equivalent of acetic anhydride and pyridine in methylene chloride at 23°C for 10 hours. The product was a colorless

- Oil.

 1H NMR (60 MHz, CDCl₃): delta 0.85 (t, 3H,

 J=7Hz), 1.0-1.65 (m, 4H), 2.20 (s, 3H), 2.55 (t, 2H,

 J=7Hz), 7.32-7.50 (m, 3H), 7.80-8.00 (m, 2H).

 Mass Spectrum: 275 (M⁺)
- Anal. Calc'd for C₁₅H₁₇NO₂S: C, 65.43; H, 6.22; N, 5.09.

 Found: C, 65.44; H, 6.18; N, 4.97.

-68-

Example 68

2-Pentyl-4-acetoxy-5-propylthiazole

The title compound was prepared by reacting the compound of Example 49 with one equivalent of acetic anhydride and pyridine in methylene chloride at 23°C for 10 hours. The product was a colorless oil.

Anal. Calc'd for C₁₃H₂₁NO₂S: C, 61.14; H, 8.29; N, 5.48. Found: C, 60.97; H, 8.24; N, 5.45.

Mass Spectrum: 255 (M⁺)

5-Lipoxygenase IC₅₀ Determination

20

The compounds of this invention are potent inhibitors of 5-lipoxygenase. An assay to determine 5-lipoxygenase activity was performed in incubations containing various concentrations of the test 25 compound and the 20,000 X g supernatant from 7.5 X 10⁶ homogenized RBL-1 cells in a manner similar to that reported by Dyer et al., Fed. Proc., Fed. Am. Soc. Exp. Biol. 1984, 43, 1462A. Reactions were initiated by the addition of radiolabeled arachidonic acid and terminated by acidification and ether 30 extraction. Reaction products were separated from nonconvented substrate by thin layer chromatography and measured by liquid scintillation spectroscopy. Inhibition of 5-lipoxygenase activity was calculated 35 as the ratio of the amounts of product formed in the

WO 90/09381

-69-

presence and absence of inhibitor. IC_{50} values were computed as the 50% intercept from linear regression analysis of plots of percentage inhibition versus log concentration of the compound and are shown in Table 3.

-70-

Table 3

In Vitro Inhibitory Potencies of Compounds of this

Invention Against 5-lipoxygenase from RBL-l

20,000xg Supernatant

	Example	IC ₅₀	(MM) (95% CL)
10	6 9 10 11	0.89 0.35 0.51 0.57	(0.71-1.1) (0.28-0.43) (0.50-0.51) (0.52-0.63)
15	13 17 18 20 23 24 25 26	0.98 0.88 0.90 0.70 0.71 0.50 0.66 0.48	(0.78-1.30) (0.65-1.1) (0.66-1.2) (0.58-0.83) (0.60-0.85) (0.43-0.59) (0.56-0.76) (0.39-0.63)
20	29 31 33 34 35 36 38 53	0.69 0.75	(0.76-0.89) (0.8-1.1) (0.62-0.64) (0.52-0.55) (0.73-0.92) (0.55-0.62) (0.62-0.78) (0.69-0.80)
25	54 60 67 Example	0.69	(0.83-0.99) (0.64-0.73) (0.81-1.1) on at MM Conc.
30	41 43 46 47 48 50 62 65 68	88% a 91% a 82% a 77% a 88% a 93% a	at 0.3 at 0.4 at 0.4 at 0.4 at 0.4 at 0.5 at 0.5 at 1

35

What is claimed is:

1. A compound of the formula:

wherein R_1 is selected from the group consisting of aryl and substituted derivatives thereof with one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR_4 , SO_2R_4 , NR_3R_6 , OR_6 , $COCX_1X_2NR_6R_7$, $CON(OH)R_6$, NR_6COR_4 , $CR_5(NH_2)CO_2R_5$, $NHCX_1X_2CO_2R_5$, $N(OH)CONR_5R_6$, $N(OH)COR_4$, $NHCONR_5R_6$, C(NOH)NHOH and $CONHNR_5R_6$;

R₂ is selected from the group consisting of aryl, substituted derivatives thereof and substituted alkyl with one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR₄, SO₂R₄, NR₃R₆, OR₆, COCX₁, X₂NR₆R₇, CON(OH)R₆, NR₆COR₄, CR₅(NH₂)CO₂R₅, NHCX₁X₂CO₂R₅, N(OH)CONR₅R₆, N(OH)COR₄, NHCONR₅R₆, C(NOH)NHOH and CONHNR₅R₆; and arylalkyl and substituted derivatives thereof with one or more substituents independently selected from the group consisting of halogen, alkyl,

-72-

15

halosubstituted alkyl, cyano, nitro, COR_4 , SO_2R_4 , NR_5R_6 and OR_6 ;

 $\rm R_3$ is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt, $\rm ^{COR}_4$, $\rm ^{COCX}_1^{X}_2^{NR}_6^{R}_7$, $\rm ^{CR}_8^{R}_9^{0R}_{10}$, $\rm ^{CH}_2^{CR}_8^{(OR}_{10})^{CH}_2^{OR}_{11}$ and $\rm SiR_{12}R_{13}R_{14}$

 R_4 is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl, OR_5 , $NHCX_1X_2CO_2R_5$ and NR_6R_7 ;

R₅ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, and reduced heteroarylalkyl;

 R_6 and R_7 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl and $(CH_2)_nOR_5$ where n is 2-4 and R_5 is as defined above;

 R_8 , R_9 , R_{10} and R_{11} are independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and $(CH_2)_nOR_5$ or at least two of R_8 , R_9 , R_{10} and R_{11} together form a ring system containing 5-10 atoms wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and R_5 and n are as defined above;

 $\rm R_{12},\ R_{13}$ and $\rm R_{14}$ are independently selected from the group consisting of alkyl and aryl; and

X₁ and X₂ are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; provided that when R_1 is phenyl or substituted phenyl R_2 cannot be substituted alkyl, when R_1 is aryl or substituted aryl R_2 cannot be phenyl, substituted phenyl, $CH(C_6H_5)_2$, $CH(C_6H_5)_{CO_2}$ Et or 2-methylindole and when R_3 is $SiR_{12}R_{13}R_{14}$, R_1 and R_2 cannot both be unsubstituted phenyl; and the acid addition salts thereof.

2. A compound as in Claim 1 wherein R_1 is aryl or a substituted derivative thereof with one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, cyano, nitro, COR_4 , SO_2R_4 , NR_5R_6 and OR_6 ; and

 R_2 is arylalkyl or a substituted derivative thereof.

3. A compound according to Claim 1 wherein R₁ is selected from the group consisting of radicals derived from benzene, thiophene, pyridine, furan, benzothiophene, indole, quinoline and substituted derivatives thereof with one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, cyano, nitro, COR₄, SO₂R₄, NR₅R₆ and OR₆; and

 $\rm R_3$ is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt and $\rm COR_4.$

A compound as in Claim 1 wherein R₁ is a radical derived from thiophene, pyridine, furan or benzothiophene;

 $\rm R_2$ is a radical derived from benzene or pyridine or a substituted derivative thereof with one or more substituents independently selected from the

-74-

group consisting of halogen, alkyl, halosubstituted alkyl, cyano, nitro, ${\rm COR}_4$, ${\rm SO_2R_4}$, ${\rm NR_5R_6}$ and ${\rm OR_6}$; and

 R_3 is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt and COR_A .

5. A composition for the inhibition of lipoxygenase enzymes comprising a pharmaceutically acceptable carrier and a compound of the formula:

wherein R_1 and R_2 are independently selected from the group consisting of alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, arylalkenyl, reduced heteroaryl, and reduced heteroarylalkyl and substituted derivatives thereof having one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR_4 , SO_2R_4 , NR_5R_6 , OR_6 , $COCX_1X_2NR_6R_7$, $CON(OH)R_6$, NR_6COR_4 , $CR_5(NH_2)CO_2R_5$, $NHCX_1X_2CO_2R_5$, $N(OH)CONR_5R_6$, $N(OH)COR_4$, $NHCONR_5R_6$, C(NOH)NHOH and $CONHNR_5R_6$;

 R_3 is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt, COR_4 , $COCX_1X_2NR_6R_7$, $CR_8R_9OR_{10}$,

CH₂CR₈(OR₁₀)CH₂OR₁₁ and SiR₁₂R₁₃R₁₄;

 $\rm R_4$ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl, or NHCX1X2CO2R5 and NR6R7;

R₅ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, and reduced heteroarylalkyl;

 R_6 and R_7 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl and $(CH_2)_n OR_5$ where n is 2-4 and R_5 is as defined above;

 $^{R}8$, $^{R}9$, $^{R}10$ and $^{R}11$ are independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and $(CH_2)_nOR_5$ or at least two of $^{R}8$, $^{R}9$, $^{R}10$ and $^{R}11$ together form a ring system containing 5-10 atoms wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and $^{R}8$, and n are as defined above;

 $^{R}\mbox{12.}$ $^{R}\mbox{13}$ and $R\mbox{14}$ are independently selected from the group consisting of alkyl and aryl; and

 x_1 and x_2 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; and the acid addition salts thereof.

6. A method for the inhibition of lipoxygenase enzymes comprising administering to a mammal in need

-76-

of such treatment an effective amount of a compound of the formula:

wherein R₁ and R₂ are independently selected from the group consisting of alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, arylalkenyl, reduced heteroaryl, and reduced heteroarylalkyl and substituted derivatives thereof having one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR₄, SO₂R₄, NR₅R₆, OR₆, COCX₁X₂NR₆R₇, CON(OH)R₆, NR₆COR₄, CR₅(NH₂)CO₂R₅, NHCX₁X₂CO₂R₅, N(OH)CONR₅R₆, N(OH)COR₄, NHCONR₅R₆, C(NOH)NHOH AND CONHNR₅R₆;

 $\rm R_3$ is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt, $\rm ^{COR}_4$, $\rm ^{COCX}_1X_2NR_6R_7$, $\rm ^{CR}_8R_9OR_{10}$, $\rm ^{CH}_2CR_8$ (OR_{10})CH_2OR_{11} and SiR_1_2R_1_3R_1_4;

 $\rm R_4$ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl, $\rm OR_5$, $\rm NHCX_1X_2CO_2R_5$ and $\rm NR_6R_7$;

 R_5 is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl,

¥3

1

arylalkyl, reduced heteroaryl, and reduced heteroarylalkyl;

 $^{R}6$ and $^{R}7$ are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl and $^{(CH_2)}_{n}^{OR_5}$ where n is 2-4 and $^{R}_5$ is as defined above;

 $^{R}8$, $^{R}9$, $^{R}10$ and $^{R}11$ are independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and $(CH_2)_nOR_5$ or at least two of $^{R}8$, $^{R}9$, $^{R}10$ and $^{R}11$ together form a ring system containing 5-10 atoms wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and $^{R}6$ and n are as defined above;

 $^{R}\!_{12},~^{R}\!_{13}$ and $^{R}\!_{14}$ are independently selected from the group consisting of alkyl and aryl; and

 x_1 and x_2 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; and the acid addition salts thereof.

7. A method for treating asthma, allergic rhinitis, rheumatoid arthritis, gout, adult respiratory distress syndrome, Chrohn's disease, inflammatory bowel disease, psoriasis, endotoxin shock, or ischemia-induced myocardial injury in a human and lower animal in need of such treatment, comprising administering to such human or lower animal a therapeutically effective amount of a compound of the formula:

wherein R₁ and R₂ are independently selected from the group consisting of alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, arylalkenyl, reduced heteroaryl, and reduced heteroarylalkyl and substituted derivatives thereof having one or more substituents independently selected from the group consisting of halogen, alkyl, halosubstituted alkyl, aryl, arylalkyl, reduced heteroaryl, arylalkoxy, cyano, nitro, COR₄, SO₂R₄, NR₅R₆, OR₆, COCX₁X₂NR₆R₇, CON(OH)R₆, NR₆COR₄, CR₅(NH₂)CO₂R₅, NHCX₁X₂CO₂R₅, N(OH)CONR₅R₆, N(OH)COR₄, NHCONR₅R₆, C(NOH)NHOH and CONHNR₅R₆;

 $\rm ^{R}_{3}$ is selected from the group consisting of hydrogen, a pharmaceutically acceptable salt, $\rm ^{COR}_{4}$, $\rm ^{COCX}_{1}X_{2}NR_{6}R_{7}$, $\rm ^{CR}_{8}R_{9}OR_{10}$, $\rm ^{CH}_{2}CR_{8}(OR_{10})CH_{2}OR_{11}$ and $\rm SiR_{12}R_{13}R_{14}$;

 $\rm R_4$ is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, cycloalkyl, cycloalkenyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl, $\rm OR_5$, $\rm NHCX_1X_2CO_2R_5$ and $\rm NR_6R_7$;

 R_5 is selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, and reduced heteroarylalkyl;

 R_6 and R_7 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, arylalkyl, reduced heteroaryl, reduced heteroarylalkyl and $(CH_2)_n OR_5$ where n is 2-4 and R_5 is as defined above;

 $^{R}8$, $^{R}9$, $^{R}10$ and $^{R}11$ are independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and $(^{CH}2)_n ^{OR}5$ or at least two of $^{R}8$, $^{R}9$, $^{R}10$ and $^{R}11$ together form a ring system containing 5-10 atoms wherein said ring system is carbocyclic, heterocyclic or reduced heterocyclic and $^{R}5$ and n are as defined above;

 $^{\rm R}{\rm 12}$, $^{\rm R}{\rm 13}$ and $^{\rm R}{\rm 14}$ are independently selected from the group consisting of alkyl and aryl; and

 x_1 and x_2 are independently selected from the group consisting of hydrogen, alkyl, alkenyl, cycloalkyl, aryl, and arylalkyl; and the acid addition salts thereof.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US90/00653

1. CLASSIFIC	ATION OF	SUBJECT MATTER (if several cla	Seification over the	· · · · · · · · · · · · · · · · · · ·	7 00307 00033
According to In	COZD /	Patent Classification (IPC) or to both to 17/04.	National Classification	and IPC	
U.S. CL.					
II FIELDS SE	ARCHED	280; 548/182; 544/33	3; 514/342;	369, 367, 2	56
		Minimum Docur	mentation Searched 7		
Classification Sys	stem	o o cui	Classification Symt		
				0015	
U.S. CL.		46/280; 548/182; 544	/333		
	5	14/342;369; 367; 256			
		Documentation Searched other	or than Minimum One		
		to the Extent that such Documer	its are included in the	mentation Fields Searched 8	
	-				
					
_		DERED TO BE RELEVANT 9			
Category •	Citation of C	Pocument, 11 with indication, where a	opropriate, of the relev	ant passages 12	Relevant to Claim No. 13
77		/ Jon of -			
X	U.S., A	, 4,735,957 TAKAYA E	ΓAL.		1-7
		05 APRIL 1988 (05-0	04-88)		
		See entire documen	t.		
X 1	EP. Δ 0 097 323 UTTVOUCKT FOR AT				
	EP, A, 0,097,323 WITKOWSKI ET AL. 04 JANUARY 1984 (04-01-84)				1-7
		04 2VIANIT T304 (04=()1 - 04)		
]
į					
• Special catego					
 Special categor "A" document d 	lefining the d	eneral state of the act which is and	"T" later docume	nt published after th	e international filing date t with the application but
00.13(04)40	to be of par	icular relevance	cited to unde	erstand the principle	or theory underlying the
filing date		blished on or after the international	"X" document of	particular relevance	e; the claimed invention
which is cited to establish the publication date of provider involve an inventive step					cannot be considered to
citation of C	mer abacisi	reason (as specified)	"Y" document of	particular relevance	the claimed invention invention the
ourse megnis	•	oral disclosure, use, exhibition or	gocnweut is	combined with one c	or more other such docu-
"P" document p					
V. CERTIFICAT			a document me	mber of the same pa	itent family
		of the International Search	Data of Marin		
				his.International Sea	rch Report
20 APRIL	1990		C 22 MA	Y 1990	
nternational Searc	hing Authori	ty	Signature of Author	rized Officer.	
ISA/US			Signature of Author	MANT Zelene	70
			ALAN L. ROT	LIVIN	<i>U</i>

OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING SUPPLEMENTAL SHEET CON'T

3

or indirectly substituted by aryl, heteroaryl or arylalkyl moieties; R_3 is as claimed as set forth in claim 1 provided that said term R_3 is not directly or indirectly substituted by aryl, arylalkyl or heteroaryl.