

THEORY OF COMPUTATION EXCERCISE FOR TTF (4)

Dimitri Tabatadze · Friday 22-03-2024

Problem 4.1:

Problem 4.2:

The equivalent grammar in Chomsky normal form would be $(\{S,A,B,U,V,X,Y\},\{0,1\},P,S)$ with productions

$$S \rightarrow XA, \qquad S \rightarrow YB, \\ A \rightarrow YS, \qquad B \rightarrow XS, \\ A \rightarrow 0, \qquad B \rightarrow 1, \\ A \rightarrow XU, \qquad B \rightarrow YV, \\ U \rightarrow AA, \qquad V \rightarrow BB, \\ X \rightarrow 1, \qquad Y \rightarrow 0.$$

Problem 4.3:

(1) Let $G_1=(N_1,T_1,P_1,S_1)$ be a grammar with $L(G_1)=L$ and $G_2=(N_2,T_2,P_2,S_2)$ be a grammar with $L(G_2)=L'$. The combined grammar

 $G = (N_1 \cup N_2 \cup \{\xi\}, \quad T_1 \cup T_2, \quad P_1 \cup P_2 \cup \{(\xi, S_1), (\xi, S_2)\}, \quad \xi)$

- would have $L(G) = L \cup L'$.
- (2) Let $M=\{a^nb^nc^k:n,k\in\mathbb{N}_0\},N=\{a^kb^nc^n:n,k\in\mathbb{N}_0\}$ and $L=\overline{M}\cup\overline{N}$. Assume that the complement of a context free language is also context free. Then \overline{M} and \overline{N} are context-free, therefore L will be context-free aswell. By our assumption \overline{L} should be context free but we see that

$$\overline{L} = \overline{\left(\overline{N} \cup \overline{M}\right)} = N \cap M = \underbrace{\left\{\mathbf{a}^n \mathbf{b}^n \mathbf{c}^n : n \in \mathbb{N}_0\right\}}_{\text{not context free}}.$$

We have a contradiction — complement of a context free grammar is not always context free.

1

Problem 4.4:

Let $M = (\mathbf{Z}, \Sigma, \Gamma, \delta, z_0, \mathbf{Z}_A)$

- $(1) \ \ \text{We can set} \ M' = (\mathbf{Z}, \Sigma, \Gamma, \delta', z_0, \mathbf{Z}_A) \ \text{and} \ \delta'(\alpha, \varepsilon, \beta) = \begin{cases} \{(\alpha, \text{pop})\} & \quad \text{if} \ \alpha \in \mathbf{Z}_A \land \beta \neq \varepsilon \\ \{\} & \quad \text{otherwise} \end{cases}$
- (2) We can set $M'=(\mathbf{Z},\Sigma,\Gamma,\delta,z_0,\mathbf{Z}).$

Problem 4.5:

Proof: We can employ the construction:

If a state transition wants to push a sequence of symbols on the store

$$(\omega, \text{push } ABCD) \in \delta(\alpha, \beta, \gamma)$$

it would first transition through a sequence of intermediate states

$$\begin{split} \left\{ \left(\langle (\alpha, \omega, ABCD)_1 \rangle, \operatorname{push} \, A \right) \right\} &= \delta(\alpha, \beta, \gamma) \\ \left\{ \left(\langle (\alpha, \omega, ABCD)_2 \rangle, \operatorname{push} \, B \right) \right\} &= \delta \left(\langle (\alpha, \omega, ABCD)_1 \rangle, \varepsilon, \varepsilon \right) \\ \left\{ \left(\langle (\alpha, \omega, ABCD)_3 \rangle, \operatorname{push} \, C \right) \right\} &= \delta \left(\langle (\alpha, \omega, ABCD)_2 \rangle, \varepsilon, \varepsilon \right) \\ \left\{ (\omega, \operatorname{push} \, D) \right\} &= \delta \left(\langle (\alpha, \omega, ABCD)_3 \rangle, \varepsilon, \varepsilon \right). \end{split}$$

This way, the sequence ABCD will get pushed on the store and the state will become α .