

Суждения

Суждение может быть истинным, ложным или неопределённ ым

Суждение простым, если ни одна его часть не может рассматриваться как суждение

Состав

субъекта суждения (S) – класс вещей, о котором нечто утверждается

предиката суждения (P) — класс вещей; предикат выражает то, что утверждается относительно S;

утвердительной или отрицательной связки « есть » или « не есть », которая ставится между S и P

слов **« все », « некоторые », « ни один »,** которые ставятся перед субъектом

Выска́зыв ание

Когда суждение рассматривается в связи с какой-то конкретной формой его языкового выражения, оно называется высказыванием. Термин «суждение» употребляют, когда отвлекаются от того, какова именно его знаковая форма

Сложные высказывания, как и сложные предложения, также составляются из простых, а роль знаков препинания, союзов или оборотов при этом играют логические связки

Логические связки

- □ знак ¬ или аналог частицы «НЕ»;
- □ знак ^ аналог союза «И»;
- □ знак [∨] аналог союза «ИЛИ»;
- □ знак → аналог словосочетания «ЕСЛИ ...ТО»;
- □ знак ↔ аналог словосочетания «ТОГДА И ТОЛЬКО ТОГДА, КОГДА».

Логические операции и функции

В алгебре логики

логическая переменная может принимать только одно из двух возможных значений — 0 (заменяет словесное обозначение "лжи") или 1 (синоним "истины").

Логическая функция, аналогом которой можно считать составное высказывание, принимает только значения 0 или 1, причём последние "вычисляются" в результате выполнения логических операций, входящих в соответствующую логическую формулу, на основе таблиц истинности

В таблице истинности отображаются все возможные сочетания (комбинации) входных переменных и соответствующие им значения функции у, получающиеся в результате выполнения какой-либо логической операции.

Основные логические функции двух переменных

Основные положения алгебры логики

NOT

A	He A
0	1
1	0

Дизъюнкция

OR

A	В	$\mathbf{A} \lor \mathbf{B}$
0	0	0
0	1	1
1	0	1
1	1	1

Основные логические функции двух переменных

Основные положения алгебры логики

Основные логические функции двух переменных

Основные положения алгебры логики

Штрих Шеффера

Сложные логические функции двух переменных

Основные положения алгебры логики

Сложной является логическая функция, значение истинности которой зависит от истинности других функций - аргументов сложной функции.

Импликация

A	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

Эквиваленция

A	В	$A \leftrightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

Основные положения алгебры логики

Правила старшинства логических операций

Для указания порядка выполнения логических действий используют круглые скобки.

Убывание приоритета

Отрицание → конъюнкция → дизъюнкция → сильная дизъюнкция → импликация → эквиваленция

Основные положения алгебры логики

Получение логической формулы по таблице истинности

Алгоритм:

Для каждого набора аргументов, на котором функция равна 1, записываем логическое произведение переменных, причём, если какой-то аргумент в этом наборе равен 0, берется его отрицание, затем все полученные произведения логически складываются.

Законы и тождества алгебры логики

Переместительный закон

$$X V Y = Y V X;$$

 $X \wedge Y = Y \wedge X$

Сочетательный закон

$$X V Y V Z = (X V Y) V Z = X V(Y V Z)$$

Закон идемпотентности

$$X V X = X; X \wedge X = X$$

Продолжение

Законы и тождества алгебры логики

Распределительный закон

$$(X \lor Y) \cdot \wedge Z =$$

 $X \cdot \wedge Z \lor Y \cdot \wedge Z X$

Закон двойного отрицания

$$\overline{(X)} = X$$

Закон двойственности (Правило де Моргана)

$$\underline{X \ V \ Y} = \overline{X} \land \overline{Y}
\underline{X \land Y} = \overline{X} \lor \overline{Y}$$

Продолжение

Законы и тождества алгебры логики

Закон исключённого третьего

$$X V X = 1$$

Правило поглощения

$$X \lor (X \land Y) = X$$

 $X \land (X \lor Y) = X$

Правило склеивания

$$(X \wedge Y) \vee (X \wedge \underline{Y}) = X$$

 $(X \vee Y) \wedge (X \vee Y) = X$

Логические элементы

Комбинационные схемы Преобразование информации в компьютере осуществляется электронными устройствами двух Цифровой автомат классов

Логические элементы

Комбинационные схемы

комбинационных схемах совокупность выходных сигналов у в каждый дискретный момент времени t_i однозначно определяется комбинацией входных сигналов х, поступивших на входы схемы в ЭТОТ же момент времени. Соответствие между входом выходом задается табличным способом или в аналитической форме

$$y_{1} = f_{1}(x_{1}, x_{2}, ..., x_{n}),$$

$$y_{2} = f_{2}(x_{1}, x_{2}, ..., x_{n}),$$

$$...$$

$$y_{m} = f_{m}(x_{1}, x_{2}, ..., x_{n}).$$

Логические элементы

Цифровой автомат

Имеет конечное число различных внутренних состояний, причем может переходить из одного из них в другое под воздействием входного слова с получением соответствующих выходных слов. Переход от заданных условий работы цифрового автомата к его функциональной схеме осуществляется с помощью аппарата алгебры логики

Обязательно содержит память.

Логические элементы

Условные графические обозначения (УГО)

а) Инвертор, б) ИЛИ, в) И, г) Исключающее ИЛИ, д) ИЛИ-НЕ, е) И-НЕ