

## **Analysing Liquor** Sales in lowa for Inventory Optimization Team 4: Brendan Wilcox, M Zaid , Nimisha Agarwal, Quan Nguyen

### **Problem Statement**



#### **Problem Statement:**

New liquor sellers in Iowa struggle to forecast demand and manage inventory

#### Goals:

Analyzes historical sales data to deliver insights for demand prediction and inventory optimization



### Who Cares and Why?

Sellers: gain market entry insights

Retailers: ensure efficient stock management

Consumers: enjoy consistent supply and good pricing

liquor store







### **Data Source**

- Iowa Liquor Sales Data
- Provided by Iowa's Alcoholic Beverages Division
- Published on data.iowa.gov
- Also available on BigQuery under bigquery-public-data

### **About the Dataset**

The dataset offers detailed records of liquor sales by Iowa Class "E" license holders.

| Timeline            | Focused on post covid period, taking the data points from July 2021 to October 2024                                                  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Store Information   | Fields such as store ID, name, address, city, and county, which will allow us to analyze geographic differences in demand            |
| Product Information | Details such as product ID, description, category, vendor, and bottle volume, enable the categorization for a more targeted analysis |
| Sales Data          | Key metrics like order date, volume / bottles sold, etc. are essential for forecasting sales trends                                  |
| Data Types          | Mixture of text (store and product descriptions), Numeric (sales figures, bottle costs), and Datetime (order dates) variables        |
| Granularity         | The dataset provides sales at the product-store-day level                                                                            |

## **Exploring the Data**



#### **Strong Positive Correlation**

Sales Amount, Bottles Sold & Volume Sold

#### **Low Correlation**

Cost and Retail price of Bottles

\* The correlation matrix helps validate the integrity of the data and performs a sanity check to proceed with feature selection for the data



### Total Sales by top 10 Counties

- Polk County dominates liquor sales, followed by Linn and Scott, with a steep drop.
- Geography is critical for sales forecasting.

### **Exploring the Data**



#### **Total Sales by Top 10 Items**

- Tito's Handmade Vodka leads total sales, followed by Black Velvet and Fireball.
- Top 10 items reflect customer preferences.

## End-to-end ML Process (1)





#### **Cleaning & Preprocessing**

- **Rows:** 30M → 16K (GroupBy)
- No imputation
- ~15K encoded columns
- Adj data types (date, objects)
- Standard Preprocessing



#### **Feature Selection**

- ElasticNetCV
- Lasso + Ridge combo
- Improved untuned model performance for % models
- Use reduced feature set

## End-to-end ML Process (2)





### **Hyperparameter Tuning**

- Exhaustive approach
- Grid, Randomized, Halving, Bayesian 👎
- All models tuned: Decision Tree, XGBoost, RF, Ridge, Lasso



#### **Model Selection & Test**

- Lasso, best RMSE
- Random Forest, 3rd best RMSE
- Ridge *not* chosen, 2nd best RMSE (Redundancy)
- Stacking impractical

### **Main Result**

Our **Random Forest** model demonstrated strong performance in predicting Iowa liquor sales, balancing routine accuracy (**low MAE**) and handling outliers (**low RMSE**).

It achieved the lowest Mean Absolute Percentage Error (MAPE) of 57.17% and relatively low RMSE on test data (13,538.83).

This dual capability ensures reliable inventory management while mitigating risks during high-impact events like holidays or promotions, making it an invaluable tool for supply chain optimization.

### Challenges

#### **Computing Power**

Limited computing power and the massive dataset slowed processes, required heavy transformations, and reduced predictive efficiency, adding significant delays to our workflow.

#### **Delay in Establishing Objective**

We hastily chose "sales" as our prediction target without fully understanding the dataset limitations, leading to late-stage errors and setbacks.

#### **Errors**

Realizing the need to remove "vendor\_name" and "vendor\_number" late in the process forced us to restart, significantly extending project time.

#### **Not Fully Reliable**

Despite exploring all feasible approaches, our models remain suboptimal due to the limited predictive power of our data, which was disappointing given our effort.





## Key Takeaways

## **Future Analysis**

# Thank You





#### Notebook:

https://colab.research.google.com/drive/1WbTVjyd5M5yKvj-KHM\_2g oayqLI4CWP4?usp=sharing