Лабораторная работа 3

Решить краевую задачу для дифференциального уравнения эллиптического типа. Аппроксимацию уравнения произвести с использованием центрально-разностной схемы. Для решения дискретного аналога применить следующие методы: метод простых итераций (метод Либмана), метод Зейделя, метод простых итераций с верхней релаксацией. Вычислить погрешность численного решения путем сравнения результатов с приведенным в задании аналитическим решением Исследовать зависимость погрешности от сеточных параметров h_x , h_y .

1.
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$

$$u(0, y) = y,$$

$$u(1, y) = 1 + y,$$

$$u(x,0) = x,$$

$$u(x,1) = 1 + x.$$
A Harmthueckoe peulehme: $U(x, y) = x + y$

Аналитическое решение: U(x, y) = x + y.

2.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$

$$u_x(0, y) = 0,$$

$$u(1, y) = 1 - y^2,$$

$$u_y(x, 0) = 0,$$

$$u(x, 1) = x^2 - 1.$$

Аналитическое решение: $U(x, y) = x^2 - y^2$.

3.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$

$$u(0, y) = \cos y,$$

$$u(1, y) = e \cos y,$$

$$u_y(x, 0) = 0,$$

$$u_y(x, \frac{\pi}{2}) = -\exp(x).$$

Аналитическое решение: $U(x, y) = \exp(x) \cos y$.

4.
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$

$$u_x(0, y) = \exp(y),$$

$$u_x(\pi, y) = -\exp(y),$$

$$u(x, 0) = \sin x,$$

$$u(x, 1) = e \sin x.$$
 Аналитическое решение: $U(x, y) = \sin x \exp(y)$.

5.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -u,$$

$$u_x(0, y) = \cos y,$$

$$u_x(1, y) - u(1, y) = 0,$$

$$u(x, 0) = x,$$

$$u(x, \frac{\pi}{2}) = 0.$$

Аналитическое решение: $U(x, y) = x \cos y$.

6.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -u,$$

$$u(0, y) = 0,$$

$$u(\frac{\pi}{2}, y) = y,$$

$$u_y(x, 0) = \sin x,$$

$$u_y(x, 1) - u(x, 1) = 0.$$

Аналитическое решение: $U(x, y) = y \sin x$.

7.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -2u,$$

$$u(0, y) = \cos y,$$

$$u(\frac{\pi}{2}, y) = 0,$$

$$u(x,0) = \cos x,$$

$$u(x, \frac{\pi}{2}) = 0.$$

Аналитическое решение: $U(x, y) = \cos x \cos y$.

8.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -2\frac{\partial u}{\partial x} - 3u,$$

$$u(0, y) = \cos y,$$

$$u(\frac{\pi}{2}, y) = 0,$$

$$u(x, 0) = \exp(-x)\cos x,$$

$$u(x, \frac{\pi}{2}) = 0.$$

Аналитическое решение: $U(x, y) = \exp(-x)\cos x \cos y$.

9.
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -2\frac{\partial u}{\partial y} - 3u,$$

$$u(0, y) = \exp(-y)\cos y,$$

$$u(\frac{\pi}{2}, y) = 0,$$

$$u(x,0) = \cos x,$$

$$u(x,0) = \cos x$$

$$u(x,\frac{\pi}{2})=0.$$

Аналитическое решение: $U(x, y) = \exp(-y)\cos x \cos y$.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -2\frac{\partial u}{\partial x} - 2\frac{\partial u}{\partial y} - 4u,$$

$$u(0, y) = \exp(-y)\cos y,$$

$$u(\frac{\pi}{2}, y) = 0,$$

$$u(x,0) = \exp(-x)\cos x,$$

$$u(x,\frac{\pi}{2})=0.$$

Аналитическое решение: $U(x, y) = \exp(-x - y)\cos x \cos y$.