Procesos biotecnológicos

Instrumentación

Definiciones

<u>Tipos de análisis</u>

- On-line/In-line: continuo, muestreo automático, ubicado directamente en el proceso.
- Off-line: discontinuo, se retira muestra manualmente, se la procesa y analiza.
- At-line: similar al off-line, pero un equipo automatiza las tareas.

Off-line y at-line requieren mayor tiempo: menos adecuados para control.

On-line e in-line: medida rápida, adecuado para control.

Medidas típicas (on-line)

accepted standard of M&C: necessary, important & reliable

- Fase líquida:
 - Temperatura.
 - pH.
 - Oxígeno disuelto.
 - Pesos y caudales.
- Fase gaseosa:
 - Flujo y presión.
 - Composición (presiones parciales).

Medidas no tan típicas (on-line)

accepted standard of M&C: necessary, important & reliable

- Fase líquida:
 - Concentración de microorganismos.
 - Conductividad, alcalinidad, ORP.
 - Concentración de FN (amoníaco, amonio).
 - Concentración de FCE (COD, glucose, lactato).

Sensores electroquímicos

Sensores potenciométricos

Sensores potenciométricos

Ante cambios en la concentración de una solución muestran cambios de potencial.

En particular los *ion selective electrodes* (ISE) se basan en la tensión generada en la interfaz entre fases con diferentes concentraciones.

High Impedance mV Meter

Suponiendo que hay una única especie de ión (o que una membrana deja pasar solamente un tipo).

Los iones tienden a migrar de la zona de mayor concentración a la de menor.

Debido a la diferencia de cargas aparece un potencial eléctrico en oposición.

Sensores potenciométricos

Ante cambios en la concentración de una solución muestran cambios de potencial.

En particular los *ion selective electrodes* (ISE) se basan en la tension generada en la interfaz entre fases con diferentes concentraciones.

Ecuación de Nernst

$$E = \frac{R \cdot T}{n \cdot F} \cdot ln\left(\frac{C_1}{C_2}\right)$$

$$E = E_0 + \frac{R \cdot T}{n \cdot F} \cdot ln(C_1)$$

E = diferencia de potencial (mV)

R = constante de gases ideales (8.31439 $J \times mol^{-1} \times K^{-1}$)

F = constante de Faraday (96495.7 $C \times mol^{-1}$)

T = temperature absoluta(K)

n = número de carga del ión ($n_H = 1$)

C1 = concentración de iones H activa en solución C_1

C2 = concentración de iones H activa en solución C_2

Para $C_1/C_2 = 10$ a 25°C el potencial es $U_N = 59.16 \ mV$

рН

Es una medida de acidez o alcalinidad en soluciones. Se calcula como el logaritmo de la activdad de iones de hidrógeno.

$$pH = -\log_{10} a_{H^+}$$

Los microorganismos y las enzimas son muy sensibles al al pH.

El pH cambia por actividad la actividad de los microorganismos (ej. consumo de NH_3 da lugar a NH_4^+ que baja al pH)

H+ concentration (mole/liter)	OH- concentration (mole/liter)	pН
1	0.0000000000001	0
0.1	0.000000000001	1
0.01	0.00000000001	2
0.001	0.0000000001	3
0.0001	0.000000001	4
0.00001	0.000000001	5
0.000001	0.00000001	6
0.0000001	0.0000001	7
0.0000001	0.000001	8
0.00000001	0.00001	9
0.000000001	0.0001	10
0.0000000001	0.001	11
0.00000000001	0.01	12
0.000000000001	0.1	13
0.0000000000001	1	14

pH: determinación por método polarimétrico

Lo usual son electrodos combinados de vidrio:

- Membrana de vidrio sensible al pH
- Solución buffer
- Solución de referencia
- Diafragma

pH: determinación por método polarimétrico

$$E = E_0(T) - \frac{R \cdot T}{n \cdot F} \cdot pH \cdot cte$$

Acondicionamiento

Los ISE pueden presenter impedancias desde los $10M\Omega$ hasta los $5G\Omega$.

Se requieren instrumentos con alta impedancia de entrada.

LM358	ВЈТ	45nA
TLC2274	CMOS	Typ 1pA / max 60pA
ADA4530-1	PMOS	< 20 <i>fA</i>
AD8625	JFET	< 1pA
AD8603	CMOS	Typ 200 <i>fA</i> /max 1 <i>pA</i>

$$i \ll \frac{50mV}{1G\Omega} = 50pA$$

$$0.2mV < 0.5\%$$

Acondicionamiento (pH)

Acondicionamiento (pH)

 $I_b < 600fA$

Oxígeno gaseoso: dióxido de zircono

- El electrolito es sólido: dióxido de zirconio.
- Se calienta a 600 o 700°C -> Iones de oxígeno puede pasar de una zona de alta concentración a una de baja.

ISFET (no es electroquímico)

En lugar de tener un gate metálico, tiene una membrana selectiva

ISFET (no es electroquímico)

ISFET (no es electroquímico)

Sensores electroquímicos

Sensores amperométricos

Principio de funcionamiento

- Entre el WE y el gas sucede una oxidación (pierde electrones) o una reducción (gana electrones)
- En el CE se da la reacción complementaria
- Las reacciones generan un flujo de cargas, que tiende a mantener la carga del electrolito
- Las cargas se mueven entre WE y CE
- La corriente resultante es proporcional a la concentración del gas

Principio de funcionamiento

- WE debe polarizarse a una tensión adecuada para favorecer su oxidación/reducción.
- El movimiento de cargas hace variar el potencial de la interfaz electrolito/WE, lo que puede afectar la medida.
- RE sirve para fijar ese potencial.
- La corriente por RE es nula

Potenciostatos

Acondicionamiento para la configuración de 3 electrodos:

- Mantener tensión adecuada entre WE y RE.
- Proveer corriente de WE a través de CE.
- Corriente nula por RE.
- Carga adecuada para WE ($10\Omega \sim 100\Omega$).

Oxígeno disuelto: electrodos de Clark

The Clark Dissolved Oxygen Sensor

- 2 electrodos (ánodo de plata, cátodo de platino) sumergidos en solución de KCl (electrolito).
- Membrana permeable para el oxígeno separa electrolito del medio.
- El cátodo está aislado y solamente la punta está expuesta al electrolito.
- Se polariza con alrededor de -600mV.
- El flujo de electrones es proporcional a la concentración de oxígeno en el medio.
- Corriente típica del orden de 100nA

Acondicionamiento para 2 electrodos

Fluorescence quenching

Fluorescence quenching: Oxígeno gaseoso

Fluorescence quenching: Oxígeno disuelto

- Método rápido y simple para determinar la concentración de biomasa o niveles de pigmentos.
- Se mide la intensidad de luz transmitida a través de una muestra con células en suspensión:
- Se necesita conocimiento previo del proceso para calibrar.

Ley de Beer Lambert

$$OD = -\log_{10}\left(\frac{I}{I_0}\right) = \varepsilon \cdot c \cdot l$$

 I_0 : intensidad de luz incidente.

I : intensidad de luz transmitida.

ε: coeficiente de atenuación.

c : concentración de la muestra.

l: longitude del camino óptico.

Si el coeficiente de atenuación y longitud de camino son constantes:

$$x\left[\frac{g}{l}\right] = m \cdot OD$$

Mecanismos de atenuación:

- Absorción: la luz es absorbida y convertida a otra forma de energía.
- Dispersión: la luz es absorbida y reemitida en una dirección diferente (a la misma frecuencia: elástica).

- La absorción sucede a longitudes de onda específicas relacionadas a los pigmentos-> selección de longitud de onda.

La correlación es más robusta si se selecciona una longitud de onda de poca absorción.

Fotodiodos

Fotodiodos

Acondicionamiento para fotodiodos

Espectroscopía dieléctrica

Bajo la influencia de un campo eléctrico, se produce una separación de cargas (iones) en las células, que actúan como pequeños capacitores.

Espectroscopía dieléctrica

Si se aplica un campo variable en el rango de 0,1 a 10MHz (dispersión beta) se producen cambios en la polarización, relacionados con la movilidad de las cargas.

$$C = \frac{C_0 - C_\infty}{1 + \left(\frac{f}{f_c}\right)^{1 - \alpha}} + C_\infty$$

$$\varepsilon = C \cdot \frac{K}{\varepsilon_0}$$

Espectroscopía dieléctrica

Referencias

- Hamilton Company, pH Measurement Guide
- Analog Devices, Circuit Note CN-0326, Isolated Low Power pH Monitor with Temperature Compensation.
- ST, Application Note AN4348, Signal conditioning for electrochemical sensors