Read Me

Question 1: Naive Bayes to predict whether the mail is spam or not https://www.kaggle.com/muditr97/assignment-5-question-1?scriptVersionId=1249
7429

Question 2 : Naive Bayes Classifier to predict whether river or non river using satellite image

https://www.kaggle.com/muditr97/assignment-5-question-2?scriptVersionId=1249 7436

Data Set:

- 1. Spam Image
- 2. Hooghly River

The Assignment is on Jupyter Notebook

FileName for Naive bayes to predict whether the mail is spam or not:

ICM2015502_Assignment 5_question_1

FileName for Naive bayes to predict whether river or not :

ICM2015502_Assignment_Question_2

Open the file which (is public) add this to Notebook, Data set Name :

"assignment6" and run the code, for question 1.

This will predict the accuracy of our model to classify the given mail whether it is ham or spam.

Open the file which (is public) add this to Notebook, Data set Name :

"Assignment Hoogly" and run the code, for question 2.

The code will produce two images black and white that is 0 and 255 Libraries used:

- 1. NumPy
- 2. SciPy
- 3. Pandas
- 4. Os

- 5. Sklearn
- 6. Matplotlib
- 7. PIL
- 8. Random
- 9. csv

Analysis for Assignment for Naive Bayesian classifier

Train_Test Split = 70 % and 30 % randomly using sklearn train test split tts()

```
# probability for some value of y, for some jth word of dictionary
def x_probability(phi, x_val) :
    val1 = phi ** x_val
    val2 = (1 - phi) ** (1 - x_val)

return val1 * val2
```

This function will return the probability for x data values when the word is present in the dictionary.

The average accuracy of the model is about 86%.

How I Implemented

- Four satellite Images of Kolkata (Rband, Gband, Bband and Iband) are given to you with equal image size (512 * 512).
- The feature vector dimension is 4
- Each pixel location we have four values.
- Two Classes are given (River and NonRiver)
- Take 50 sample points (Pixel location's corresponding pixel values) from river class for training for each band
- Take 100 sample points (Pixel location's corresponding pixel values) from non river class for training for each band.
- Take (512 * 512) sample points (Pixel location's corresponding pixel values) for testing for each band.
- Apply baye's decision rule to classify all the test sample either in river or nonriver

class denoting 0 and 255 at corresponding pixel locations.

• Show the result in image form with black and white image (either 0 and 255)

