Caleb Logemann MATH 520 Methods of Applied Math II Homework 7

Section 13.6

#6 Let

$$Tu(x) = \frac{1}{x} \int_0^x u(y) \, dy$$
 $u \in L^2(0,1)$

Show that $(0,2) \subset \sigma_p(T)$ and that T is not compact.

Proof. Let $\lambda \in (0,2)$ and define $\alpha = \frac{1}{\lambda} - 1$. Since $\lambda \in (0,2)$ this is well-defined and this implies that $\alpha \in (-1/2,\infty)$. Now let $u(x) = x^{\alpha}$, and first note that $u \in L^2(0,1)$ for any $\alpha \in (-1/2,\infty)$.

$$\int_0^1 |u(x)|^2 dx = \int_0^1 |x^{\alpha}|^2 dx$$
$$= \int_0^1 x^{2\alpha} dx$$

Since $\alpha > -1/2$, this implies that $2\alpha > -1$ and this integral can be evaluated using the power rule

$$= \frac{1}{2\alpha + 1} x^{2\alpha + 1} \Big|_{x=0}^{1}$$
$$= \frac{1}{2\alpha + 1}$$
$$< \infty$$

This shows that $u \in L^2(0,1)$.

Now Tu(x),

$$Tu(x) = \frac{1}{x} \int_0^x u(y) \, dy$$

$$= \frac{1}{x} \int_0^x y^\alpha \, dy$$

$$= \frac{1}{x} \frac{1}{\alpha + 1} y^{\alpha + 1} \Big|_{y=0}^x$$

$$= \frac{1}{x} \frac{1}{\alpha + 1} x^{\alpha + 1}$$

$$= \frac{1}{\alpha + 1} x^\alpha$$

$$= \frac{1}{\alpha + 1} u(x)$$

$$= \lambda u(x)$$

This shows that λ and u(x) are an eigenvalue and eigenfunction pair for T. Thus $\lambda \in \sigma_p(T)$ and $(0,2) \subset \sigma_p(T)$

#9 Let T be the integral operator with kernel $K(x,y) = e^{-|x-y|}$ on $L^2(-1,1)$. Find all the eigenvalues and eigenfunctions of T. Suggestion: $Tu = \lambda u$ is equivalent to an ODE problem. Don't forget

about boundary conditions. the eigenvalues may need to be characterized in terms of the roots of a certain nonlinear functions.

In order to find the eigenvalues and eigenfunctions of T we must find solutions to $Tu = \lambda u$.

$$\lambda u(x) = Tu(x)$$

$$\lambda u(x) = \int_{-1}^{1} e^{-|x-y|} u(y) \, dy$$

$$\lambda u(x) = \int_{-1}^{x} e^{-|x-y|} u(y) \, dy + \int_{x}^{1} e^{-|x-y|} u(y) \, dy$$

$$\lambda u(x) = \int_{-1}^{x} e^{-|x-y|} u(y) \, dy - \int_{1}^{x} e^{-|x-y|} u(y) \, dy$$

In the first integral y < x and in the second integral x < y

$$\lambda u(x) = \int_{-1}^{x} e^{-x+y} u(y) \, dy - \int_{1}^{x} e^{x-y} u(y) \, dy$$
$$\lambda u(x) = e^{-x} \int_{-1}^{x} e^{y} u(y) \, dy - e^{x} \int_{1}^{x} e^{-y} u(y) \, dy$$

Differentiating both sides

$$\lambda u'(x) = -e^{-x} \int_{-1}^{x} e^{y} u(y) \, dy + e^{-x} e^{x} u(x) - e^{x} \int_{1}^{x} e^{-y} u(y) \, dy - e^{x} e^{-x} u(x)$$

$$\lambda u'(x) = -e^{-x} \int_{-1}^{x} e^{y} u(y) \, dy + u(x) - e^{x} \int_{1}^{x} e^{-y} u(y) \, dy - u(x)$$

$$\lambda u'(x) = -e^{-x} \int_{-1}^{x} e^{y} u(y) \, dy - e^{x} \int_{1}^{x} e^{-y} u(y) \, dy$$

#10 We say that $T \in \mathcal{B}(\mathbf{H})$ is a positive operator if $\langle Tx, x \rangle \geq 0$ for all $x \in \mathbf{H}$. If T is a positive self-adjoint compact operator show that T has a square root, more precisely there exists a compact self-adjoint operator S such that $S^2 = T$. (Suggestion: If $T = \sum_{n=1}^{\infty} (\lambda_n P_n)$ try $S = \sum_{n=1}^{\infty} (\sqrt{\lambda_n} P_n)$. In a similar manner, one can define other fractional powers of T.)

Proof. Let T be a positive self-adjoint compact operator. Note that the eigenvalues of T must all be nonnegative. To see this, let u be an eigenvector of T with eigenvalue λ , then

$$0 < \langle Tu, u \rangle = \langle \lambda u, u \rangle = \lambda ||u||^2$$

This implies that $\lambda \geq 0$, since $||u||^2 \geq 0$. Also since T is self-adjoint and compact, the set of eigenvectors make an orthonormal basis of \mathbf{H} and T can be expressed as the following infinite sum

$$T = \sum_{n=1}^{\infty} (\lambda_n P_n)$$

where P_n is the projection operator onto the eigenvector u_n and λ_n is the corresponding eigenvalue. Since $\lambda_n \geq 0$ for all n, we can define the following operator.

$$S = \sum_{n=1}^{\infty} \left(\sqrt{\lambda} P_n \right)$$

This operator is compact as can be seen by noting that

$$S_N = \sum_{n=1}^{N} \left(\sqrt{\lambda} P_n \right)$$

is a sequence of compact operators that converge to S. That is $S_N \in \mathcal{K}(\mathbf{H})$ as it has a finite dimensional range. Also $S_N \to S$ so $S \in \mathcal{K}(\mathbf{H})$ as $\mathcal{K}(\mathbf{H})$ is a closed subspace.

Also S is self adjoint because it is a sum of self-adjoint operators. Lastly $S^2 = T$ because $P_n P_n = P_n$ and $P_n P_m = 0$ when $n \neq m$.

#14 If $Q \in \mathcal{B}(\mathbf{H})$ is a Fredholm operator of index zero, show that there exists a one-to-one operator $S \in \mathcal{B}(\mathbf{H})$ and $T \in \mathcal{K}(\mathbf{H})$ such that Q = S + T. (Hint: Define T = AP where P is the orthogonal projection onto N(Q) and $A: N(Q) \to N(Q^*)$ is one-to-one and onto.)

Proof. Let $Q \in \mathcal{B}(\mathbf{H})$ be a Fredholm operator of index zero. This implies that $\dim(N(Q)) = \dim(N(Q^*)) < \infty$ and that R(Q) is closed. Since $\dim(N(Q)) = \dim(N(Q^*))$ there exists a one-to-one and onto operator $A: N(Q) \to N(Q^*)$. Note that since A is bounded because it is a linear operator from one finite dimensional space to another finite dimensional space, see exercise 10.9.6. Now let P be the projection from P to P(Q). Since P is a projection it is bounded and since $\dim(N(Q)) < \infty$, P is compact. Define P be the projection of a bounded operator with a compact operator.

Next let S=Q-T. Since $Q,T\in\mathcal{B}(\mathbf{H})$ this implies that $S\in\mathcal{B}(\mathbf{H})$. Lastly I will show that S is one-to-one. Let $u\in\mathbf{H}$ such that Su=0. This implies that Qu-Tu=0 or that Qu=Tu. Since Qu=Tu, this implies that $Tu\in R(Q)$ or since the range of Q is closed, $T\in\overline{R(Q)}$. However it is known that $\overline{R(Q)}=N(Q^*)^\perp$, so therefore $Tu\in N(Q^*)^\perp$. One the other hand Tu=APu and therefore $Tu\in R(A)=N(Q^*)$. Since $Tu\in N(Q^*)$ and $Tu\in N(Q^*)^\perp$ this implies that Tu=0 and therefore Qu=0 because Qu=Tu. Since Qu=0 this shows that $u\in N(Q)$. Also with Tu=0, this implies that APu=0 and since A is one-to-one, Pu=0. Because Pu=0 this implies that u must be orthogonal to $u\in N(Q)$ as $u\in N(Q)$ as $u\in N(Q)$, therefore $u\in N(Q)$. Now that $u\in N(Q)$ and $u\in N(Q)^\perp$, this shows that u=0. We have now shown that $u\in N(Q)$ and therefore $u\in N(Q)$ is one-to-one.

Thus there exists a one-to-one and bounded function S and a compact function T, such that Q = S + T for any Fredholm operator of index 0, Q.