Билет №5

Определение несобственных интегралов. Формула Ньютона-Лейбница и формула замены переменной для несобственных интегралов.

Пусть функция f(x) определена на конечном или бесконечном полуинтервале [a, b), $-\infty < a < b \le +\infty$, и для любого $\eta \in [a, b)$ интегрируема по Риману на отрезке $[a, \eta]$.

• Если существует конечный предел функции $F(\eta) = \int_{\alpha}^{\eta} \Box f(x) dx$ при $\eta \to b - 0$, то этот предел называется несобственным интегралом функции f(x) на промежутке [a,b):

$$\int_{a}^{b} f(x) dx := \lim_{\eta \to b} \int_{a}^{\eta} f(x) dx \tag{1}$$

Если предел (1) существует, то говорят, что несобственный интеграл сходится, в противном случае — расходится. Если несобственный интеграл сходится, то говорят, что функция f(x) интегрируема в несобственном смысле на промежутке [a, b). Возможны два случая: b – конечное число, b = +∞

Если b – конечно и функция f интегрируема по Риману на [a, b], то по свойству непрерывности интеграла с переменным верхним пределом существует:

$$\lim_{\eta \to b} \int_a^{\eta} f(x) dx = \int_a^b f(x) dx$$

Таким образом, определенный ранее интеграл Римана является частным случаем несобственного интеграла. Если b – конечно, то Определение (1) содержательно только если функция f не ограничена в любой окрестности точки b.

Геометрический смысл несобственного интеграла от неотрицательной функции f состоит в том, что он равен площади криволинейной трапеции.

• Если функция f определена на полуинтервале (a, b], ¬∞ ≤ a < b < +∞ и для любой точки ξ ∈ (a, b] интегрируема по Риману на отрезке [ξ, b], то несобственный интегралопределяется как предел:

$$\int_{a}^{b} f(x) dx := \lim_{\varepsilon \to a} \int_{\varepsilon}^{b} f(x) dx \qquad (2)$$

Формула Ньютона-Лейбница

Пусть функция f(x) определена на полуинтервале [a, b) и интегрируема по Риману на любом отрезке [a, η], a ≤ η < b.

• Если f непрерывна на полуинтервале [a, b) и F – какая-либо ее первообразная, то:

$$\int_{a}^{b} f(x) dx = F(b-0) - F(a)$$
 (1)

В равенстве (1) либо обе части имеют смысл, и тогда они равны, либо они одновременно не имеют смысла, то есть стоящие в них пределы не существуют. С учетом определений :

$$\int_{\alpha}^{b} \Box f(x) d \underset{x = \lim_{\eta \to b} \int_{\alpha}^{\eta} f(x) dx = i}{\lim_{\eta \to b} \int_{\alpha}^{\eta} f(x) dx = i}; F(b-0) - F(a) = \lim_{\eta \to b} F(\eta) - F(a)$$

Замена переменной в несобственном интеграле.

• Если функция f(x) непрерывна на полуинтервале $\Delta x = [a, b)$, функция u(t) непрерывно дифференцируема на полуинтервале $\Delta t = [\alpha, \beta), -\infty < \alpha < \beta \le +\infty, u(\Delta t)$ $\subset \Delta x, \ a=u(a), b=\lim_{t\to \beta} u(t)$, то:

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(u(t)) u'(t) dt (5)$$

причем из существования интеграла, стоящего слева в (5), следует существование интеграла, стоящего справа.

Замечание

Если функция и такова, что обратная функция и^ −1 однозначна и удовлетворяет условиям, аналогичным условиям, наложенным на и и, следовательно, в интеграле в правой части (5) можно сделать замену t = ^ −1 (x), то оба интеграла сходятся или расходятся одновременно.

Примеры:

1)
$$\int_{a}^{b} \frac{dlx}{(x-a)^{p}} = |t=x-a, x=t+a| = \int_{0}^{b-a} \frac{dlt}{t^{p}}$$
 - — сходится при p < 1 и расходится при p ≥ 1 .

2)
$$\int_{1}^{\infty} \frac{dx}{x\sqrt{x^{2}-1}} = \left| x = \frac{1}{t} \right| = \int_{1}^{0} \Box \frac{-\left(\frac{1}{t^{2}}\right)}{\frac{1}{t}\sqrt{\frac{1}{t^{2}}-1}} = \int_{0}^{1} \frac{dt}{\sqrt{1-t^{2}}} = \arcsin \vee \Box_{0}^{1} = \frac{\pi}{2}$$