Fast Geographic Routing in Fixed-Growth Graphs

Ofek Gila, Michael Goodrich, Abraham Illickan, and Vinesh Sridhar Special thanks to Evrim Ozel

University of California, Irvine

CIAC, 2025

ullet Kansas and Nebraska o Massachusetts

- Kansas and Nebraska → Massachusetts
- Forward package only to acquaintances

- Kansas and Nebraska \rightarrow Massachusetts
- Forward package only to acquaintances
- How many 'hops'?

- ullet Kansas and Nebraska o Massachusetts
- Forward package only to acquaintances
- How many 'hops'? ~6!

- Kansas and Nebraska \rightarrow Massachusetts
- Forward package only to acquaintances
- How many 'hops'? ~6!
- Popularized "six degrees of separation"

- Kansas and Nebraska \rightarrow Massachusetts
- Forward package only to acquaintances
- How many 'hops'? ~6!
- Popularized "six degrees of separation"
- How to model?

Preferential Attachment Models

- Rich get richer
- $P(u \rightarrow v) \propto d_v$

Preferential Attachment Models

- Rich get richer
- $P(u \rightarrow v) \propto d_v$
- ✓ Low $\mathcal{O}(\log n)$ diameter

Preferential Attachment Models

- Rich get richer
- $P(u \rightarrow v) \propto d_v$
- ✓ Low $\mathcal{O}(\log n)$ diameter

Kleinberg's Model $\mathcal{K}(n,p,\overline{q})$ [3]

• 2-D $n \times n$ lattice \mathcal{L}

Figure 2: Kleinberg's Model \mathcal{K}^*

Kleinberg's Model $\mathcal{K}(n, p, q)$ [3]

- 2-D $n \times n$ lattice \mathcal{L}
- 'local' connections

Figure 2: Kleinberg's Model \mathcal{K}^*

Kleinberg's Model $\mathcal{K}(n, p, q)$ [3]

- 2-D $n \times n$ lattice \mathcal{L}
- 'local' connections
- long-range connections

Figure 2: Kleinberg's Model \mathcal{K}^*

Kleinberg's Model $\mathcal{K}(n, p, q)$ [3]

- 2-D $n \times n$ lattice \mathcal{L}
- 'local' connections
- long-range connections
- $P(u \to v) \propto \delta(u, v)^{-s}$

Figure 2: Kleinberg's Model \mathcal{K}^*

Kleinberg's Results

•
$$P(u \rightarrow v) \propto \delta(u, v)^{-s}$$

Kleinberg's Results

- $P(u \rightarrow v) \propto \delta(u, v)^{-s}$
- $\mathcal{O}(\log^2 n)$ greedy routing [3, 4] when s=2

Kleinberg's Results

- $P(u \rightarrow v) \propto \delta(u, v)^{-s}$
- $\mathcal{O}(\log^2 n)$ greedy routing [3, 4] when s=2

• Big impact, but... not 6!

Neighborhood Preferential Attachment (NPA) [2]

- Idea: Combine Kleinberg w/ Preferential Attachment
 - Preferential Attachment: $P(u o v) \propto d_v$
 - Kleinberg: $P(u \rightarrow v) \propto \delta(u, v)^{-s}$

Neighborhood Preferential Attachment (NPA) [2]

- Idea: Combine Kleinberg w/ Preferential Attachment
 - Preferential Attachment: $P(u o v) \propto d_v$
 - Kleinberg: $P(u \to v) \propto \delta(u, v)^{-s}$
- What if $P(u \rightarrow v) \propto d_v/\delta(u,v)^s$?

Neighborhood Preferential Attachment (NPA) [2]

- Idea: Combine Kleinberg w/ Preferential Attachment
 - Preferential Attachment: $P(u \rightarrow v) \propto d_v$
 - Kleinberg: $P(u \to v) \propto \delta(u, v)^{-s}$
- What if $P(u \to v) \propto d_v/\delta(u, v)^s$?
- Experimentally good, but no theory

Figure 4: Average hop length when q = 30 [2]

- $P(u \rightarrow v) \propto d_v/\delta(u,v)^s$
- Problem: Dependent probabilities

Figure 5: Randomized KH Graph n = 9

- $P(u \rightarrow v) \propto d_v/\delta(u, v)^s$
- Problem: Dependent probabilities
- Idea: 'highway'
- $P(\text{highway}) = \frac{1}{k}$

Figure 5: Randomized KH Graph n = 9 k = 9

- $P(u \rightarrow v) \propto d_v/\delta(u,v)^s$
- Problem: Dependent probabilities
- Idea: 'highway'
- $P(\text{highway}) = \frac{1}{k}$
- 'highway'—Qk long-range edges

Figure 5: Randomized KH Graph n = 9 k = 9 Q = 1/9

- $P(u \rightarrow v) \propto d_v/\delta(u,v)^s$
- Problem: Dependent probabilities
- Idea: 'highway'
- $P(\text{highway}) = \frac{1}{k}$
- 'highway'—Qk long-range edges
- Only to other highway nodes!

Figure 5: Randomized KH Graph n = 9 k = 9 Q = 1/9

- $P(u \rightarrow v) \propto d_v/\delta(u,v)^s$
- Problem: Dependent probabilities
- Idea: 'highway'
- $P(\text{highway}) = \frac{1}{k}$
- 'highway'—Qk long-range edges
- Only to other highway nodes!
- ✓ Constant average degree
- ✓ Independent probabilities

Figure 5: Randomized KH Graph n = 9 k = 9 Q = 1/9

- Reach highway
- Traverse highway
- Reach destination

Figure 6: Randomized Kleinberg Highway Graph

- Reach highway $\mathcal{O}(k)$
- Traverse highway
- Reach destination

Figure 6: Randomized Kleinberg Highway Graph

- **1** Reach highway $\mathcal{O}(k)$
- Traverse highway
- 3 Reach destination $\mathcal{O}(k)$

Figure 6: Randomized Kleinberg Highway Graph

- Reach highway $\mathcal{O}(k)$
- 2 Traverse highway $\mathcal{O}(\log^2(n))$?
- **3** Reach destination $\mathcal{O}(k)$

Figure 6: Randomized Kleinberg Highway Graph

- Reach highway $\mathcal{O}(k)$
- Traverse highway $\mathcal{O}(\log^2(n)/k)$
- Reach destination $\mathcal{O}(k)$

Figure 6: Randomized Kleinberg Highway Graph

- **1** Reach highway $\mathcal{O}(k)^*$ in expectation
- 2 Traverse highway $\mathcal{O}(\log^2(n)/k)^*$
- 3 Reach destination $\mathcal{O}(k)^*$

Figure 6: Randomized Kleinberg Highway Graph

Kleinberg Highway – Results

Theorem

For $k \in o\left(\frac{\log n}{\log\log\log n}\right)$, the expected decentralized greedy routing path length is $\mathcal{O}(\log^2 n)$, while for $\Theta\left(\frac{\log n}{\log\log\log n}\right) \leq k < \Theta(\log n)$, it is $\mathcal{O}(\log^2(n)/k)$, for $\Theta(\log n) \leq k \leq \Theta(n)$, it is $\mathcal{O}(k)$ and finally, for $k \in \Omega(n)$, it is $\mathcal{O}(n)$.

ullet Nested lattices w/ radius ℓ

- ullet Nested lattices w/ radius ℓ
- $\Theta(\ell^2)$ nodes in ball

- ullet Nested lattices w/ radius ℓ
- $\Theta(\ell^2)$ nodes in ball
- Expected $\Theta(\ell^2/k)$ highway

- Nested lattices w/ radius ℓ
- $\Theta(\ell^2)$ nodes in ball
- Expected $\Theta(\ell^2/k)$ highway

Radius ℓ	Lower	Upper
$3\sqrt{k\log n}$	9 log <i>n</i>	41 log <i>n</i>
$3\sqrt{k\log\log n}$		41 log log <i>n</i>
$2\sqrt{k}$		18

Chernoff bounds!

Nested Lattice Construction

- ullet Nested lattices w/ radius ℓ
- $\Theta(\ell^2)$ nodes in ball
- Expected $\Theta(\ell^2/k)$ highway

 Chernoff bounds 	C	hernott	bound	ls
-------------------------------------	---------------------	---------	-------	----

Radius ℓ	Lower	Upper
$3\sqrt{k\log n}$	9 log <i>n</i>	41 log <i>n</i>
$3\sqrt{k\log\log n}$		$41 \log \log n$
$2\sqrt{k}$		18

Not all w.h.p.

ullet Previous analyses: underlying lattice ${\cal L}$

- \bullet Previous analyses: underlying lattice ${\cal L}$
- The US road network:

- \bullet Previous analyses: underlying lattice ${\cal L}$
- The US road network: not that

- ullet Previous analyses: underlying lattice ${\cal L}$
- The US road network: not that

- ullet Previous analyses: underlying lattice ${\cal L}$
- The US road network: not that not even whole number?

- ullet Previous analyses: underlying lattice ${\cal L}$
- The US road network: not that not even whole number?

Definition

Graph family $\mathcal F$ has fixed-growth (FG) dimensionality α if $|\mathcal B_\ell(u)| = \Theta(\ell^\alpha)$.

Definition

Graph family $\mathcal F$ has fixed-growth (FG) dimensionality α if $|\mathcal B_\ell(u)| = \Theta(\ell^\alpha)$.

Definition

Graph family $\mathcal F$ has fixed-growth (FG) dimensionality α if $|\mathcal B_\ell(u)| = \Theta(\ell^\alpha)$.

ullet Constants in $\Theta(\ell^lpha)$ can be extreme

Definition

Graph family $\mathcal F$ has fixed-growth (FG) dimensionality α if $|\mathcal B_\ell(u)| = \Theta(\ell^\alpha)$.

• Constants in $\Theta(\ell^{\alpha})$ can be extreme – infinite graphs?

Definition

Graph family $\mathcal F$ has fixed-growth (FG) dimensionality α if $|\mathcal B_\ell(u)| = \Theta(\ell^\alpha)$.

- Constants in $\Theta(\ell^{\alpha})$ can be extreme infinite graphs?
- s = 2... only for infinite graphs?

Definition

Graph family $\mathcal F$ has fixed-growth (FG) dimensionality α if $|\mathcal B_\ell(u)| = \Theta(\ell^\alpha)$.

- Constants in $\Theta(\ell^{\alpha})$ can be extreme infinite graphs?
- s = 2... only for infinite graphs?
- ullet Experimentally 'estimate' lpha for finite graphs...

Definition

Graph family \mathcal{F} has fixed-growth (FG) dimensionality α if $|\mathcal{B}_{\ell}(u)| = \Theta(\ell^{\alpha})$.

- Constants in $\Theta(\ell^{\alpha})$ can be extreme infinite graphs?
- s = 2... only for infinite graphs?
- ullet Experimentally 'estimate' lpha for finite graphs...

Definition

Graph family $\mathcal F$ has fixed-growth (FG) dimensionality α if $|\mathcal B_\ell(u)| = \Theta(\ell^\alpha)$.

- Constants in $\Theta(\ell^{\alpha})$ can be extreme infinite graphs?
- s = 2... only for infinite graphs?
- Experimentally 'estimate' α for finite graphs... better routing!

ullet Balls w/ radius ℓ

- ullet Balls w/ radius ℓ
- ullet $\Theta(\ell^{\alpha})$ nodes in ball

- ullet Balls w/ radius ℓ
- ullet $\Theta(\ell^{\alpha})$ nodes in ball
- Expected $\Theta(\ell^{\alpha}/k)$ highway

- Balls w/ radius ℓ
- $\Theta(\ell^{\alpha})$ nodes in ball
- Expected $\Theta(\ell^{\alpha}/k)$ highway
- Chernoff bounds!

Radius ℓ	# Highway
$\Omega(\sqrt[\alpha]{k\log n})$	$\Theta(\ell^{lpha}/k)$
$\Theta(\sqrt[\alpha]{k \log \log n})$	$\Theta(\log \log n)$
$\Theta(\sqrt[\alpha]{k})$	$\Theta(1)$

Not all w.h.p.

- Balls w/ radius ℓ
- $\Theta(\ell^{\alpha})$ nodes in ball
- Expected $\Theta(\ell^{\alpha}/k)$ highway
- Chernoff bounds!
- Nested shapes?

$Radius\ \ell$	# Highway
$\Omega(\sqrt[\alpha]{k\log n})$	$\Theta(\ell^{lpha}/k)$
$\Theta(\sqrt[\alpha]{k \log \log n})$	$\Theta(\log \log n)$
$\Theta(\sqrt[\alpha]{k})$	$\Theta(1)$

Not all w.h.p.

- ullet Balls w/ radius ℓ
- $\Theta(\ell^{\alpha})$ nodes in ball
- Expected $\Theta(\ell^{\alpha}/k)$ highway
- Chernoff bounds!

Radius ℓ	# Highway
$\Omega(\sqrt[\alpha]{k\log n})$	$\Theta(\ell^{lpha}/k)$
$\Theta(\sqrt[\alpha]{k \log \log n})$	$\Theta(\log\log n)$
$\Theta(\sqrt[\alpha]{k})$	$\Theta(1)$

Not all w.h.p.

Nested shapes? – no easy geometry

- ullet Balls w/ radius ℓ
- ullet $\Theta(\ell^{\alpha})$ nodes in ball
- Expected $\Theta(\ell^{\alpha}/k)$ highway
- Chernoff bounds!

Radius ℓ	# Highway
$\Omega(\sqrt[\alpha]{k \log n})$	$\Theta(\ell^{lpha}/k)$
$\Theta(\sqrt[\alpha]{k \log \log n})$	$\Theta(\log\log n)$
$\Theta(\sqrt[\alpha]{k})$	$\Theta(1)$

- Not all w.h.p.
- Nested shapes? no easy geometry
- Shells $S_b^{(w)}$
- $w = \Theta(\sqrt[\alpha]{k \log n})$

- ullet Balls w/ radius ℓ
- $\Theta(\ell^{\alpha})$ nodes in ball
- Expected $\Theta(\ell^{\alpha}/k)$ highway
- Chernoff bounds!

Radius ℓ	# Highway
$\Omega(\sqrt[\alpha]{k \log n})$	$\Theta(\ell^{lpha}/k)$
$\Theta(\sqrt[\alpha]{k \log \log n})$	$\Theta(\log\log n)$
$\Theta(\sqrt[\alpha]{k})$	$\Theta(1)$

Not all w.h.p.

- Nested shapes? no easy geometry
- Shells $S_b^{(w)}$
- $w = \Theta(\sqrt[\alpha]{k \log n})$
- $\Theta(b^{\alpha-1} \log n)$ highway nodes

- Maximum distance to the highway?
- Chernoff bound: $\forall_u \ |\mathcal{B}_{\sqrt[\alpha]{k \log n}}(u)| = \Theta(\log n) \text{ w.h.p.}$

- Maximum distance to the highway?
- Chernoff bound: $\forall_u \ |\mathcal{B}_{\sqrt[\alpha]{k \log n}}(u)| = \Theta(\log n) \text{ w.h.p.}$
- Any node can get to highway in $\mathcal{O}(\sqrt[\alpha]{k \log n})$ hops

- Maximum distance to the highway?
- Chernoff bound: $\forall_u \mid \mathcal{B}_{\sqrt[\alpha]{k \log n}}(u) \mid = \Theta(\log n) \text{ w.h.p.}$
- Any node can get to highway in $\mathcal{O}(\sqrt[\alpha]{k \log n})$ hops
- Is this tight?

- Maximum distance to the highway?
- Chernoff bound: $\forall_u |\mathcal{B}_{\frac{\alpha}{k \log n}}(u)| = \Theta(\log n)$ w.h.p.
- Any node can get to highway in $\mathcal{O}(\sqrt[\alpha]{k \log n})$ hops
- Is this tight? yes

$$\lim_{n \to \infty} e^{-c_2 \frac{n}{\ell^{\alpha}} e^{-\frac{c_1 \ell^{\alpha}}{k-1}}} = 0 \tag{1}$$

- Maximum distance to the highway?
- Chernoff bound: $\forall_u |\mathcal{B}_{\frac{\alpha}{k \log n}}(u)| = \Theta(\log n)$ w.h.p.
- Any node can get to highway in $\mathcal{O}(\sqrt[\alpha]{k \log n})$ hops
- Is this tight? yes

$$\lim_{n \to \infty} e^{-c_2 \frac{n}{\ell^{\alpha}} e^{-\frac{c_1 \ell^{\alpha}}{k-1}}} = 0 \tag{1}$$

• $\exists u \ d(u, \mathcal{H}) = \Omega(\sqrt[\alpha]{k \log n}) \text{ w.h.p.}$

- Maximum distance to the highway?
- Chernoff bound: $\forall_u |\mathcal{B}_{\frac{\alpha}{k \log n}}(u)| = \Theta(\log n)$ w.h.p.
- Any node can get to highway in $\mathcal{O}(\sqrt[\alpha]{k \log n})$ hops
- Is this tight? yes

$$\lim_{n \to \infty} e^{-c_2 \frac{n}{\ell^{\alpha}} e^{-\frac{c_1 \ell^{\alpha}}{k-1}}} = 0 \tag{1}$$

- $\exists u \ d(u, \mathcal{H}) = \Omega(\sqrt[\alpha]{k \log n}) \text{ w.h.p.}$
- Limits greedy routing and diameter w.h.p.

• Idea: Improve distance by constant factor

- Idea: Improve distance by constant factor
- $\mathcal{O}(\log n)$ steps

- Idea: Improve distance by constant factor
- $\mathcal{O}(\log n)$ steps
- Improvement by factor c

- Idea: Improve distance by constant factor
- $\mathcal{O}(\log n)$ steps
- Improvement by factor c

- Idea: Improve distance by constant factor
- $\mathcal{O}(\log n)$ steps
- Improvement by factor c
- Worst case: all as far away (d + d/c)

- Idea: Improve distance by constant factor
- $\mathcal{O}(\log n)$ steps
- Improvement by factor c
- Worst case: all as far away (d + d/c)

Lemma

 $rac{1}{(c+1)^{lpha}} <$ probability of factor c improvement $<rac{1}{(c-1)^{lpha}}$

- Idea: Improve distance by constant factor
- $\mathcal{O}(\log n)$ steps
- Improvement by factor c
- Worst case: all as far away (d + d/c)

Lemma

 $rac{1}{(c+1)^{lpha}} <$ probability of factor c improvement $< rac{1}{(c-1)^{lpha}}$ – constant

Staying on the Highway – Lattice

- Traversing Highway:
 - If can halve the distance, take it

Figure 10: A highway node u routing to the destination t

- Traversing Highway:
 - If can halve the distance, take it $-\Theta(\log n)$ times

Figure 10: A highway node u routing to the destination t

- Traversing Highway:
 - If can halve the distance, take it $-\Theta(\log n)$ times
 - If not, local contact?

Figure 10: A highway node u routing to the destination t

- Traversing Highway:
 - If can halve the distance, take it $-\Theta(\log n)$ times
 - If not, local contact? might not be highway!

Figure 10: A highway node *u* routing to the destination *t*

- Traversing Highway:
 - If can halve the distance, take it $-\Theta(\log n)$ times
 - If not, local contact? might not be highway!
 - Closer long-range contact?

Figure 10: A highway node u routing to the destination t

- Traversing Highway:
 - If can halve the distance, take it $-\Theta(\log n)$ times
 - If not, local contact? might not be highway!
 - Closer long-range contact? might not exist!

Figure 10: A highway node u routing to the destination t

- Traversing Highway:
 - If can halve the distance, take it $-\Theta(\log n)$ times
 - If not, local contact? might not be highway!
 - Closer long-range contact? might not exist!
- Claim: Closer long-range contacts exist w.h.p.

Figure 10: A highway node u routing to the destination t

- Traversing Highway:
 - If can halve the distance, take it $-\Theta(\log n)$ times
 - If not, local contact? might not be highway!
 - Closer long-range contact? might not exist!
- Claim: Closer long-range contacts exist w.h.p. proof uses structure

Figure 10: A highway node u routing to the destination t

- Traversing Highway:
 - If can halve the distance, take it $-\Theta(\log n)$ times
 - If not, local contact? might not be highway!
 - Closer long-range contact? might not exist!
- Claim: Closer long-range contacts exist w.h.p. proof uses structure

Figure 10: A highway node u routing to the destination t

- Traversing Highway:
 - If can halve the distance, take it $-\Theta(\log n)$ times
 - If not, local contact? might not be highway!
 - Closer long-range contact? might not exist!
- Claim: Closer long-range contacts exist w.h.p. proof uses structure

Figure 10: A highway node u routing to the destination t

- Traversing Highway:
 - If can halve the distance, take it $-\Theta(\log n)$ times
 - If not, local contact? might not be highway!
 - Closer long-range contact? might not exist!
- Claim: Closer long-range contacts exist w.h.p. proof uses structure

Figure 10: A highway node *u* routing to the destination *t*

- Traversing Highway:
 - If can halve the distance, take it $-\Theta(\log n)$ times
 - If not, local contact? might not be highway!
 - Closer long-range contact? might not exist!
- Claim: Closer long-range contacts exist w.h.p. proof uses structure

Figure 10: A highway node u routing to the destination t

- Traversing Highway:
 - If can halve the distance, take it $-\Theta(\log n)$ times
 - If not, local contact? might not be highway!
 - Closer long-range contact? might not exist!
- Claim: Closer long-range contacts exist w.h.p. proof uses structure

Figure 10: A highway node u routing to the destination t

- Traversing Highway:
 - If can halve the distance, take it $-\Theta(\log n)$ times
 - If not, local contact? might not be highway!
 - Closer long-range contact? might not exist!
- Claim: Closer long-range contacts exist w.h.p. proof uses structure

Figure 10: A highway node u routing to the destination t

• Claim: Closer long-range contacts exist w.h.p. - no lattice structure?

Ofek Gila (UCI) Fast Geographic Routing CIAC, 2025

- Claim: Closer long-range contacts exist w.h.p. no lattice structure?
- How many nodes at which distance?

i

- Claim: Closer long-range contacts exist w.h.p. no lattice structure?
- How many nodes at which distance?
- Consider a shortest path from $u \rightarrow t$

- Claim: Closer long-range contacts exist w.h.p. no lattice structure?
- How many nodes at which distance?
- Consider a shortest path from $u \rightarrow t$
- Pick points along path with distance w between them

- Claim: Closer long-range contacts exist w.h.p. no lattice structure?
- How many nodes at which distance?
- ullet Consider a shortest path from u o t
- Pick points along path with distance w between them
- Consider balls of radius $b \times w$ around point c_b

- Claim: Closer long-range contacts exist w.h.p. no lattice structure?
- How many nodes at which distance?
- Consider a shortest path from $u \rightarrow t$
- Pick points along path with distance w between them
- Consider balls of radius $b \times w$ around point c_b

- Claim: Closer long-range contacts exist w.h.p. no lattice structure?
- How many nodes at which distance?
- Consider a shortest path from $u \rightarrow t$
- Pick points along path with distance w between them
- Consider balls of radius $b \times w$ around point c_b just like shells

Ofek Gila (UCI) Fast Geographic Routing CIAC, 2025 17 / 23

✓ Constant distance-halving probability

- ✓ Constant distance-halving probability
- ✓ Stay on highway if not w.h.p.

- ✓ Constant distance-halving probability
- ✓ Stay on highway if not w.h.p.

- ✓ Constant distance-halving probability
- ✓ Stay on highway if not w.h.p.
- ? Can we do better?

- ✓ Constant distance-halving probability
- ✓ Stay on highway if not w.h.p.
- ? Can we do better? no
- Let x_i be factor improvement of i-th hop
- $\bullet \ d_f \times x_f \times x_{f-1} \times \cdots \times x_0 = d_0$
- $\sum_{i} \log x_i = \log d_0 \log d_f \approx \log n$
- $\mathbb{E}[\sum_{i} \log x_{i}] = f \mathbb{E}[\log x]$
- $\mathbb{E}_{x>c_0}[\log x] \leq \int_{c_0}^{\infty} \log c \cdot \Pr(x=c) \ dc \leq \int_{c_0}^{\infty} \log c \cdot \frac{1}{(c-1)^{\alpha}} dc = \Theta(1)$
- $\mathbb{E}[\sum_{i} \log x_{i}] = \Theta(f) \implies f = \Theta(\log n)$

Greedy Routing – Results

• In expectation:

Theorem

In any fixed-growth graph $\mathcal G$ with FG dimensionality α and highway constant $k \in \Theta(\log n)$, greedy routing between two arbitrary nodes s and t can expect to take $\Theta(\log n)$ hops, if $d(s,t) = \Theta(\sqrt[\alpha]{n})$.

With high probability:

Theorem

Let \mathcal{G} be a randomized highway graph with FG dimensionality α and highway constant $k \in \Theta(\log n)$. If $d(s,t) = \Theta(\sqrt[\alpha]{n})$, then greedy routing between any two nodes s and t succeeds with high probability in $\Theta(\log n)$ hops if $\alpha \geq 2$, and in $\Theta(\sqrt[\alpha]{\log^2 n})$ hops if $\alpha \leq 2$.

Diameter - Results

Theorem

Let $\mathcal G$ be a randomized highway graph with FG dimensionality α and highway constant $k \in \Theta(\log n)$. The diameter of $\mathcal G$ is $\Theta(\frac{\log n}{\log \log n})$ if $\alpha > 2$, and $\Theta(\sqrt[\alpha]{\log^2 n})$ if $\alpha \leq 2$.

• Gap for $\alpha > 2$

Diameter – Results

Theorem

Let $\mathcal G$ be a randomized highway graph with FG dimensionality α and highway constant $k \in \Theta(\log n)$. The diameter of $\mathcal G$ is $\Theta(\frac{\log n}{\log \log n})$ if $\alpha > 2$, and $\Theta(\sqrt[\alpha]{\log^2 n})$ if $\alpha \leq 2$.

• Gap for $\alpha > 2$

Open Problems

- Is $k = \Theta(\log n)$ always optimal?
- Non-uniform α ($\alpha(\ell)$? $\alpha(n)$?)
- Other greedy routing algorithms?
- Imprecise distances?

References I

M. T. GOODRICH AND E. OZEL, *Modeling the small-world phenomenon with road networks*.

Number: arXiv:2209.09888.

J. KLEINBERG, *The small-world phenomenon: an algorithmic perspective*, in Proceedings of the thirty-second annual ACM symposium on Theory of computing, STOC '00, Association for Computing Machinery, 2000, pp. 163–170.

J. M. KLEINBERG, *Navigation in a small world*, 406 (2000), pp. 845–845.

Number: 6798 Publisher: Nature Publishing Group.

References II

S. MILGRAM, *The small-world problem*, (1967).

