

The Data Book Project

DatasheetArchive.com has launched an ambitious effort to digitize thousands of obsolete data books and technical manuals, making them searchable via the DatasheetArchive website.

Scroll down to see the scanned document.

Programmable Sound Generator

FEATURES

- Full Software Control of Sound Generation
- Interfaces to Most 8-Bit and 16-Bit Microprocessors
- Three Independently Programmed Analog Outputs
- Two 8-Bit General Purpose I/O Ports (AY-3-8910)
- One 8-Bit General Purpose I/O Port (AY-3-8912)
- Single +5 Volt Supply

DESCRIPTION

The AY-3-8910/8912/8913 Programmable Sound Generator (PSG) is a LSI Circuit which can produce a wide variety of complex sounds under software control. The AY-3-8910/8912/8913 is manufactured in the General Instrument N-Channel Ion Implant Process. Operation requires a single +5V power supply, a TTL compatible clock, and a microprocessor controller such as the General Instrument 16-bit CP1610 or one of the PIC1650 series of 8-bit microcomputers.

The PSG is easily interfaced to any bus oriented system. Its flexibility makes it useful in applications such as music synthesis, sound effects generation, audible alarms, tone signalling and FSK modems. The analog sound outputs can each provide 4 bits of logarithmic digital to analog conversion, greatly enhancing the dynamic range of the sounds produced.

In order to perform sound effects while allowing the processor to continue its other tasks, the PSG can continue to produce sound after the initial commands have been given by the control processor. The fact that realistic sound production often involves more than one effect is satisfied by the three independently controllable channels available in the PSG.

All of the circuit control signals are digital in nature and intended to be provided directly by a microprocessor/microcomputer. This means that one PSG can produce the full range of required sounds with no change in external circuitry. Since the frequency response of the PSG ranges from sub-audible at its lowest frequency to post-audible at its highest frequency, there are few sounds which are beyond reproduction with only the simplest electrical connections.

Since most applications of a microprocessor/PSG system would also require interfacing between the outside world and the microprocessor, this facility has been designed into the PSG. The AY-3-8910 has two general purpose 8-bit I/O ports and is supplied in a 40 lead package; the AY-3-8912 has one port and 28 leads; the AY-3-8913 has no ports and 24 leads.

PIN FUNCTIONS

DATA-DA0 (input/output/high impedance): pins 30--37 (AY-3-8910)
 pins 21--28 (AY-3-8912)
 pins 4--11 (AY-3-8913)

These 8 lines comprise the 8-bit bidirectional bus used by the microprocessor to send both data and addresses to the PSG and to receive data from the PSG. In the data mode, DA7--DA0 correspond to Register Array bits B7--B0. In the address mode, DA3--DA0 select the register number (0--17_b) and a DA7--DA4 in conjunction with address inputs A9 and A8 for the high order address (chip select).

A8 (input): pin 25 (AY-3-8910)
 pin 17 (AY-3-8912)
 pin 23 (AY-3-8913)

A9 (input): pin 24 (AY-3-8910)
 pin 22 (AY-3-8913)
 (not provided on AY-3-8912)

Address 9, Address 8

These "extra" address bits are made available to enable the positioning of the PSG (assigning a 16 word memory space) in a total 1,024 word memory area rather than in a 256 word memory area as defined by address bits DA7--DA0 alone. If the memory size does not require the use of these extra address lines they may be left unconnected as each is provided with either an on-chip pull down (A9) or pull-up (A8) resistor. In "noisy" environments, however, it is recommended that A9 and A8 be tied to an external ground and +5V, respectively, if they are not to be used.

PIN CONFIGURATIONS

40 LEAD DUAL IN LINE
 AY-3-8910

Top View	
V _{ss} (GND)	•1
N.C.	2
ANALOG CHANNEL B	3
ANALOG CHANNEL A	4
N.C.	5
IOB7	6
IOB6	7
IOB5	8
IOB4	9
IOB3	10
IOB2	11
IOB1	12
IOB0	13
IOA7	14
IOA6	15
IOA5	16
IOA4	17
IOA3	18
IOA2	19
IOA1	20
V _{cc} (+5V)	40
TEST 1	39
ANALOG CHANNEL C	38
DA0	37
DA1	36
DA2	35
DA3	34
DA4	33
DA5	32
DA6	31
DA7	30
BC1	29
BC2	28
BDIR	27
TEST 2	26
AB	25
A9	24
RESET	23
CLOCK	22
IOAO	21

28 LEAD DUAL IN LINE
 AY-3-8912

Top View	
ANALOG CHANNEL C	•1
TEST 1	2
V _{cc} (+5V)	3
ANALOG CHANNEL B	4
ANALOG CHANNEL A	5
V _{ss} (GND)	6
IOA7	7
IOA6	8
IOA5	9
IOA4	10
IOA3	11
IOA2	12
IOA1	13
IOA0	14
DA0	28
DA1	27
DA2	26
DA3	25
DA4	24
DA5	23
DA6	22
DA7	21
BC1	20
BC2	19
BDIR	18
A8	17
RESET	16
CLOCK	15

24 LEAD DUAL IN LINE

Top View	
V _{ss} (GND)	•1
BDIR	2
BC1	3
DA7	4
DA6	5
DA5	6
DA4	7
DA3	8
DA2	9
DA1	10
DA0	11
TEST OUT	12
CHIP SELECT	24
A8	23
A9	22
RESET	21
CLOCK	20
V _{ss} (GND)	19
ANALOG C	18
ANALOG A	17
NO CONNECT	16
ANALOG B	15
TEST IN	14
V _{cc}	13

PSG BLOCK DIAGRAM

AUDIO

OPERATION

Since all functions of the PSG are controlled by the processor via a series of register loads, a detailed description of the PSG operation can best be accomplished by relating each PSG function to the control of its corresponding register. The function of creating or programming a specific sound or sound effect logically follows the control sequence listed:

Operation	Registers	Function
Tone Generator Control	R0--R5	Program tone periods.
Noise Generator Control	R6	Program noise period.
Mixer Control	R7	Enable tone and/or noise on selected channels.
Amplitude Control	R10--R12	Select "fixed" or "envelope-variable" amplitudes.
Envelope Generator Control	R13--R15	Program envelope period and select envelope pattern

Tone Generator Control

(Registers R0, R1, R2, R3, R4, R5)

The frequency of each square wave generated by the three Tone Generators (one each for Channels A, B, and C) is obtained in the PSG by first counting down the input clock by 16, then by further counting down the result by the programmed 12-bit Tone Period value. Each 12-bit value is obtained in the PSG by combining the contents of the relative Coarse and Fine Tune registers, as illustrated in the following:

Noise Generator Control

(Register R6)

The frequency of the noise source is obtained in the PSG by first counting down the input clock by 16, then by further counting down the result by the programmed 5-bit Noise Period value. This 5-bit value consists of the lower 5 bits (B4--B0) of register R6, as illustrated in the following:

Mixer Control-I/O Enable

(Register R7)

Register R7 is a multi-function Enable register which controls the three Noise/Tone Mixers and the two general purpose I/O Ports.

The Mixers, as previously described, combine the noise and tone frequencies for each of the three channels. The determination of combining neither/either/both noise and tone frequencies on each channel is made by the state of bits B5--B0 of R7.

The direction (input or output) of the two general purpose I/O Ports (IOA and IOB) is determined by the state of bits B7 and B6 of R7.

These functions are illustrated in the following:

Amplitude Control

(Registers R10, R11, R12)

The amplitudes of the signals generated by each of the three D/A Converters (one each for Channels A, B, and C) is determined by the contents of the lower 5 bits (B4--B0) of registers R10, R11, and R12 as illustrated in the following:

Envelope Generator Control

(Registers R13, R14, R15)

To accomplish the generation of fairly complex envelope patterns, two independent methods of control are provided in the PSG: first, it is possible to vary the frequency of the envelope using registers R13 and R14; and second, the relative shape and cycle pattern of the envelope can be varied using register R15. The following paragraphs explain the details of the envelope control functions, describing first the envelope period control and then the envelope shape/cycle control.

ENVELOPE PERIOD CONTROL (Registers R13, R14)

The frequency of the envelope is obtained in the PSG by first counting down the input clock by 256, then by further counting down the result by the programmed 16-bit Envelope Period value. This 16-bit value is obtained in the PSG by combining the contents of the Envelope Coarse and Fine Tune registers, as illustrated in the following:

ENVELOPE SHAPE/CYCLE CONTROL (Register R15)

The Envelope Generator further counts down the envelope frequency by 16, producing a 16-state per cycle envelope pattern as defined by its 4-bit counter output, E3 E2 E1 E0. The particular shape and cycle pattern of any desired envelope is accomplished by controlling the count pattern (count up/count down) of the 4-bit counter and by defining a single-cycle or repeat-cycle pattern.

This envelope shape/cycle control is contained in the lower 4 bits (B3--B0) of register R15. Each of these 4 bits controls a function in the envelope generator, as illustrated in the following:

Fig. 1 ENVELOPE SHAPE/CYCLE OPERATION

Fig. 3 D/A CONVERTER OUTPUT

Fig. 2 DETAIL OF TWO CYCLES OF Fig. 1
(ref. waveform "1010" in Fig. 1)

Fig. 4 SINGLE TONE WITH ENVELOPE SHAPE/CYCLE PATTERN 1010

Fig. 5 MIXTURE OF THREE TONES
WITH FIXED AMPLITUDES**I/O Port Data Store**
(Registers R16, R17)

Registers R16 and R17 function as intermediate data storage registers between the PSG/CPU data bus (DA0–DA7) and the two I/O ports (IOA7–IOA0 and IOB7–IOB0). Both ports are available in the AY-3-8910; only I/O Port A is available in the AY-3-8912; none are available on the AY-3-8913. Using registers R16 and R17 for the transfer of I/O data has no effect on sound generation.

D/A Converter Operation

Since the primary use of the PSG is to produce sound for the highly imperfect amplitude detection mechanism of the human ear, the D/A conversion is performed in logarithmic steps with a normalized voltage range of from 0 to 1 Volt. The specific amplitude control of each of the three D/A Converters is accomplished by the three sets of 4-bit outputs of the Amplitude Control block, while the Mixer outputs provide the base signal frequency (Noise and/or Tone).

ELECTRICAL CHARACTERISTICS (AY-3-8910, AY-3-8912)**Maximum Ratings***

Storage Temperature -55°C to $+150^{\circ}\text{C}$
 Operating Temperature 0°C to $+40^{\circ}\text{C}$
 V_{CC} and all other Input/Output
 Voltages with Respect to V_{SS} -0.3V to $+8.0\text{V}$

Standard Conditions (unless otherwise noted):

$V_{\text{CC}} = +5\text{V} \pm 5\%$
 $V_{\text{SS}} = \text{GND}$
 Operating Temperature = 0°C to $+40^{\circ}\text{C}$

* Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at these conditions is not implied—operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Data labeled “typical” is presented for design guidance only and is not guaranteed.

Characteristics	Sym	Min	Typ **	Max	Units	Conditions
DC CHARACTERISTICS						
All Inputs						
Low Level	V_{IL}	0	—	0.6	V	
High Level	V_{IH}	2.4	—	V_{CC}	V	
All Outputs (except Analog Channel Outputs)						
Low Level	V_{OL}	0	—	0.5	V	$I_{OL} = 1.6\text{mA}, 20\text{pf}$
High Level	V_{OH}	2.4	—	V_{CC}	V	$I_{OH} = 100\mu\text{A}, 20\text{pf}$
Analog Channel Outputs	V_o	0	—	60	dB	Test Circuit: Fig. 6
Power Supply Current	I_{CC}	—	45	85	mA	
AC CHARACTERISTICS						
Clock Input	/					
Frequency	f_c	1	—	2	MHz	
Rise Time	t_r	—	—	50	ns	
Fall Time	t_f	—	—	50	ns	
Duty Cycle	—	25	50	85	%	
Bus Signals (BDIR, BC2, BC1)						
Associative Delay Time	t_{AO}	—	—	50	ns	
Reset						
Reset Pulse Width	t_{RW}	500	—	—	ns	
Reset to Bus Control Delay Time	t_{RB}	100	—	—	ns	
A9, A8, DA7--DA0 (Address Mode)						
Address Setup Time	t_{AS}	400	—	—	ns	
Address Hold Time	t_{AH}	100	—	—	ns	
DA7--DA0 (Write Mode)						
Write Data Pulse Width	t_{DW}	500	—	10,000	ns	
Write Data Setup Time	t_{DS}	50	—	—	ns	
Write Data Hold Time	t_{DH}	100	—	—	ns	
DA7--DA0 (Read Mode)						
Read Data Access Time	t_{RA}	—	250	500	ns	
DA7--DA0 (Inactive Mode)						
Tristate Delay Time	t_{RS}	—	100	200	ns	
Fig. 7						
Fig. 8						
Fig. 9						
Fig. 10						
Fig. 11						

** Typical values are at $+25^{\circ}\text{C}$ and nominal voltages.

Fig. 6 ANALOG CHANNEL OUTPUT TEST CIRCUIT

AUDIO

ELECTRICAL CHARACTERISTICS (AY-3-8913)**Maximum Ratings***

Storage Temperature -55°C to $+150^{\circ}\text{C}$
 Operating Temperature 0°C to $+70^{\circ}\text{C}$
 V_{CC} and all other Input/Output Voltages
 with Respect to V_{SS} -0.3V to $+8.0\text{V}$

* Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at these conditions is not implied—operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Data labeled “typical” is presented for design guidance only and is not guaranteed.

Standard Conditions (unless otherwise noted):

V_{CC} = $+5\text{V} \pm 5\%$
 V_{SS} = GND
 Operating Temperature = 0°C to $+70^{\circ}\text{C}$

Characteristics	Sym	Min	Max	Units	Conditions
DC CHARACTERISTICS					
Input Voltage Levels					
Low Level	V _{IL}	0	0.7	V	
High Level	V _{IH}	2.2	V _{CC}	V	
Output Voltage Levels (except Analog Channel Outputs)					
Low Level	V _{OL}	0	0.4	V	1 TTL Load
High Level	V _{OH}	2.4	V _{CC}	V	+100pf
Analog Channel Outputs	V _O	0	2000	μA	Test Circuit: Fig. 6
Power Supply Current	I _{CC}	—	85	mA	
AC CHARACTERISTICS					
Clock Input					
Frequency	f _c	1	2.5	MHz	
Rise Time	t _r	—	50	ns	Fig. 7
Fall Time	t _f	—	50	ns	
Duty Cycle	—	40	60	%	
Bus Signals (BDIR, BC2, BC1)	t _{BD}	—	50	ns	
Associative Delay Time					
Reset	t _{RW}	5	—	μs	Fig. 8
Reset Pulse Width	t _{RB}	100	—	ns	
Reset to Bus Control Delay Time					
A9, A8, DA7--DA0 (Address Mode)	t _{AS}	300	—	ns	Fig. 9
Address Setup Time	t _{AH}	50	—	ns	
Address Hold Time					
DA7--DA0 (Write Mode)	t _{DW}	1800	—	ns	Fig. 10
Write Data Pulse Width	t _{DS}	50	—	ns	
Write Data Setup Time	t _{DH}	100	—	ns	
Write Data Hold Time					
DA7--DA0 (Read Mode)	t _{DA}	—	350	ns	Fig. 11
Read Data Access Time					
DA7--DA0 (Inactive Mode)	t _{TS}	—	400	ns	
Tritate Delay Time					

TIMING DIAGRAMS

Fig. 7 CLOCK AND BUS SIGNAL TIMING

Fig. 8 RESET TIMING

Fig. 9 LATCH ADDRESS TIMING

Fig. 10 WRITE DATA TIMING

Fig. 11 READ DATA TIMING

AUDIO

Programable Sound Generator

FEATURES

- Full software control of sound generation
- Interfaces to most 8-bit and 16-bit microprocessors
- Three independently programmed analog outputs
- Two 8-bit general purpose I/O ports (AY-3-8910)
- One 8-bit general purpose I/O port (AY-3-8912)
- Single +5V Supply

DESCRIPTION

The AY-3-8910/8912/8913 Programable Sound Generator (PSG) is a Large Scale Integrated Circuit which can produce a wide variety of complex sounds under software control. The AY-3-8910/8912/8913 is manufactured in the General Instrument N-Channel Ion Implant Process. Operation requires a single 5V power supply, a TTL compatible clock, and a microprocessor controller such as the General Instrument 16-bit CP1600/1610 or one of the General Instrument PIC1650 series of 8-bit microcomputers.

The PSG is easily interfaced to any bus oriented system. Its flexibility makes it useful in applications such as music synthesis, sound effects generation, audible alarms, tone signalling and FSK modems. The analog sound outputs can each provide 4 bits of logarithmic digital to analog conversion greatly enhancing the dynamic range of the sounds produced.

In order to perform sound effects while allowing the processor to continue its other tasks, the PSG can continue to produce sound after the initial commands have been given by the control processor. The fact that realistic sound production often involves more than one effect is satisfied by the three independently controllable channels available in the PSG.

All of the circuit control signals are digital in nature and intended to be provided directly by a microprocessor/microcomputer. This means that one PSG can produce the full range of required sounds with no change in external circuitry. Since the frequency response of the PSG ranges from sub-audible at its lowest frequency to post-audible at its highest frequency, there are few sounds which are beyond reproduction with only the simplest electrical connections. Since most applications of a microprocessor/PSG system would also require interfacing between the outside world and the microprocessor, this facility has been designed into the PSG. The AY-3-8910 has two general purpose 8-bit I/O ports and is supplied in a 40 lead package; the AY-3-8912 has one port and 28 leads; the AY-3-8913 has no I/O ports and 24 leads.

See complete data sheets of AY-3-8910/8912/8913 in Audio Section.

VIDEO

PIN CONFIGURATION

40 LEAD DUAL IN LINE
AY-3-8910

Top View	
V _{SS} (GND)	•1
N.C.	2
ANALOG CHANNEL B	3
ANALOG CHANNEL A	4
N.C.	5
IOB7	6
IOB6	7
IOB5	8
IOB4	9
IOB3	10
IOB2	11
IOB1	12
IOB0	13
IOA7	14
IOA6	15
IOA5	16
IOA4	17
IOA3	18
IOA2	19
IOA1	20
V _{CC} (+5V)	40
TEST 1	39
ANALOG CHANNEL C	38
DA0	37
DA1	36
DA2	35
DA3	34
DA4	33
DA5	32
DA6	31
DA7	30
BC1	29
BC2	28
BDIR	27
TEST 2	26
A8	25
A9	24
RESET	23
CLOCK	22
IOA0	21

28 LEAD DUAL IN LINE
AY-3-8912

Top View	
ANALOG CHANNEL C	•1
TEST 1	2
V _{CC} (+5V)	3
ANALOG CHANNEL B	4
ANALOG CHANNEL A	5
V _{SS} (GND)	6
IOA7	7
IOA6	8
IOA5	9
IOA4	10
IOA3	11
IOA2	12
IOA1	13
IOA0	14
DA0	28
DA1	27
DA2	26
DA3	25
DA4	24
DA5	23
DA6	22
DA7	21
BC1	20
BC2	19
BDIR	18
A8	17
RESET	16
CLOCK	15