Paper Reading Group

vision@ouc Li Na

CVPR 2017

Articles List

- 1.Fast Haze Removal for Nighttime Image Using Maximum Reflectance Prior
- 2.WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images

Title and Authors

Fast Haze Removal for Nighttime Image Using Maximum Reflectance Prior

Jing Zhang, Yang Cao,

University of Science and Technology of China Hefei

Abstract

Propose a simple but effective image prior, **maximum reflectance prior** to estimate the varying ambient illumination.

For the nighttime haze image, **the local maximum intensities** at each color channel are mainly contributed by the ambient illumination.

Introduction

The hazy images suffer from significant visibility degradation:

- the attenuation of the direct reflection light
- * the accumulation of the scattering ambient light.

Daytime hazy imaging model and priors do not hold for most nighttime hazy scenes.

- assume the ambient illumination is globally consistent.
- estimate a white ambient light from the brightest region in the image.

• The goal:

Estimate the ambient illumination and the atmospheric transmission for each pixel

the direct attenuation term

the nighttime hazy imaging model

the scattering term

varicolored ambient illumination

non-uniform ambient illumination

$$I_i^{\lambda} = J_i^{\lambda} t_i + A^{\lambda} (1 - t_i)$$

$$I_{i}^{\lambda} = A^{\lambda} R_{i}^{\lambda} t_{i} + A^{\lambda} (1 - t_{i})^{\Delta} = L_{i} \eta_{i}^{\lambda} R_{i}^{\lambda} t_{i} + A^{\lambda} (1 - t_{i})$$

Nighttime image dehazing

- Estimation of ambient illumination
- Haze removal
- A Faster Approximated Estimation Method

Maximum reflectance prior

Maximum reflectance map and Estimation of ambient illumination

$$M_{\Omega_i}^{\lambda} = \max_{j \in \Omega_i} I_j^{\lambda} = \max_{j \in \Omega_i} L_j R_j^{\lambda}$$

Maximum reflectance prior

Maximum reflectance map and Estimation of ambient illumination

$$M_{\Omega_i}^{\lambda} = \max_{j \in \Omega_i} I_j^{\lambda} = \max_{j \in \Omega_i} L_j R_j^{\lambda}$$

$$I_{i}^{\lambda} = A^{\lambda} R_{i}^{\lambda} t_{i} + A^{\lambda} (1 - t_{i})^{\Delta} = L_{i} \eta_{i}^{\lambda} R_{i}^{\lambda} t_{i} + A^{\lambda} (1 - t_{i})$$

$$M_{\Omega_i}^{\lambda} = \max_{j \in \Omega_i} I_j^{\lambda} = \max_{j \in \Omega_i} (L_i \eta_i^{\lambda} R_i^{\lambda} t_i + L_i \eta_i^{\lambda} (1 - t_i)) = L_i \eta_i^{\lambda}$$

$$\eta_{\Omega i}^{\lambda} = rac{M_{\Omega_i}^{\lambda}}{L_{\Omega_i}}$$

Haze removal

$$\hat{I}_{j}^{\lambda} \stackrel{\Delta}{=} \frac{I_{j}^{\lambda}}{\eta_{j}^{\lambda}} \qquad L_{\Omega_{i}} = \max_{j \in \Omega_{i}} \hat{I}_{j}^{\lambda} \qquad t_{\Omega_{i}} = 1 - \min_{j \in \Omega_{i}} I_{j}^{\lambda}$$

$$J_{j}^{\lambda} = \frac{I_{j}^{\lambda} - L_{j}}{\max(t_{j}, t_{0})} + L_{j}$$

Experimental results and discussion

- Results on intermediate hazy image estimation
- Qualitative comparisons on real images
- Quantitative comparisons on synthesized images
- Runtime evaluation

Table 1. PSNR and SSIM for the dehazing results on synthetic hazy images.

	PSNR	SSIM
Hazy image	13.89	0.9938
Zhang et al.	15.99	0.9962
Li et al.	15.74	0.9958
MRP	16.88	0.9966
MRP_Faster	14.43	0.9950

Figure 8. Runtime evaluation of the proposed MRF and MRF-Faster approaches.

Discussion and Conclusion

- When the scene objects are inherently with solely distinct color, the maximum reflectance prior becomes invalid.
- The proposed scheme will generate color distortions for these objects, such as the grasses and leaves in Fig.

Title and Authors

WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images

Jie Li, Katherine A. Skinner, Ryan M, Eustice Matthew Johnson-Roberson

Abstract

- Using WaterGAN, we generate a large training dataset of paired imagery, both raw underwater and true color in-air, as well as depth data.
- This data serves as input to a novel end-to-end network for color correction of monocular underwater images.
- The end-to-end network implicitly learns a coarse depth estimate of the underwater scene from monocular underwater images.

Technical approach

Two-part:

- Generating Realistic Underwater Images
- End-to-end model Learning

Fig. 1: System flowchart displaying both the GAN network and the end-to-end color correction network proposed.

Fig. 1: System flowchart displaying both the GAN network and the end-to-end color correction network proposed.

$$\log(D(x)) + \log(1 - D(G(z)))$$

Fig. 2: WaterGAN: The GAN for generating water column attenuated images with similar image formation properties to those of unlabeled underwater data taken in the field.

Two networks training:

a generator G
 a discriminator, D

Three main stages:

- attenuation(G-1)
- scattering(G-2)
- vignetting(G-3)

Input: **RGB-D** and alter the **color** and **intensity not** alter the **structure** or **texture**

$$\log(D(x)) + \log(1 - D(G(I_{air}, r_c, z)))$$

G-I: Attenuation

Fig. 3: Generator: attenuation layers

Fig. 4: Generator: scattering layers

Fig. 5: Generator: vignetting layers

Range-dependent attenuation of light Jaffe-McGlamery model

$$G_1 = I_{air} e^{-\eta(\lambda)r_c}$$

Backward scattering a characteristic haze effect model:

$$B(\lambda) = \beta(\lambda)(1 - e^{-\eta(\lambda)r_c})$$

$$G_2 = G_1 + M_2$$

Vignetting model a shading pattern around the borders of an image due to effects from lens

$$M_3 = A \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$
 $G_3 = M_3 G_2$

Module1:

estimates depth from underwater images using the information encoded in attenuation.

Module2:

takes that estimated depth and inverts the underwater image formation process.

• A state-of-the-art fully convolutional encoder-decoder network for end-to-end dense learning.

The encoder network consists of 9 convolution layers followed by ReLU and 3 max-pooling layers for downsampling.

The decoder use the upsample layers.

Fig. 9: Air images rendered using the generator trained on as if taken in the MHL tank water column. A is the original image, B is with attenuation applied, C with attenuation and vignetting, and D with attenuation, vignetting, and scattering.

Result

Discussion

We would like to experiment with adding additional layers to this stage for capturing more complex effects, such as lighting patterns from sunlight in shallow water surveys.

Thank you