SECTION 9.11, page 453

1. ±1

3. ±1

7. 0

11. 21 **13.** 0

15. 0

SECTION 9.12, page 461

1. Exact

3. Exact

5. Not exact

7. u = x + y + z + c

9. $u = \sin x - 2\cos y$

11. $u = -1/(x^2 + y^2)$

13. $u = \sinh(y^2 + z^2)$

15. 5

17. −2

19. $-e^{-2}-1$

SECTION 10.1, page 464

1. 2π , 2π , π , π , 2, 2, 1, 1

17. 0 (*n* even), 2/n (*n* odd)

19. $0 \ (n=0), \ 2\pi/n \ (n=1,3,\cdots), \ -2\pi/n \ (n=2,4,\cdots)$

23. $n[(-1)^n e^{-\pi} - 1]/(1 + n^2)$

21. 0

 $2.3. \ n[(-1) \ c \ -1]$

25. $2\pi^3/3$ (n=0), $(-1)^n 4\pi/n^2$ $(n=1,2,\cdots)$

SECTION 10.2, page 471

1.
$$\frac{1}{2} + \frac{2}{\pi} \left(\cos x - \frac{1}{3} \cos 3x + \frac{1}{5} \cos 5x - + \cdots \right)$$

3.
$$\frac{1}{2} + \frac{2}{\pi} \left(\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right)$$

5.
$$\frac{4}{\pi} \left(\cos x - \frac{1}{3} \cos 3x + \frac{1}{5} \cos 5x - + \cdots \right)$$

7.
$$2\left(\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \frac{1}{4}\sin 4x + \cdots\right)$$

9.
$$\frac{\pi^2}{3} - 4\left(\cos x - \frac{1}{4}\cos 2x + \frac{1}{9}\cos 3x - \frac{1}{16}\cos 4x + \cdots\right)$$

11.
$$\frac{\pi}{2} + \frac{4}{\pi} \left(\cos x + \frac{1}{9} \cos 3x + \frac{1}{25} \cos 5x + \cdots \right)$$

13.
$$\frac{4}{\pi} \left(\sin x - \frac{1}{9} \sin 3x + \frac{1}{25} \sin 5x - + \cdots \right)$$

SECTION 10.3, page 474

3. Use (1b).

5.
$$\frac{4}{\pi} \left(\sin \pi t + \frac{1}{3} \sin 3\pi t + \frac{1}{5} \sin 5\pi t + \cdots \right)$$

7.
$$\frac{1}{2} + \frac{2}{\pi} \left(\sin \frac{\pi \tau}{2} + \frac{1}{3} \sin \frac{3\pi \tau}{2} + \frac{1}{5} \sin \frac{5\pi \tau}{2} + \cdots \right)$$

9.
$$\frac{1}{4} - \frac{2}{\pi^2} \left(\cos \pi t + \frac{1}{9} \cos 3\pi t + \cdots \right) + \frac{1}{\pi} \left(\sin \pi t - \frac{1}{2} \sin 2\pi t + \cdots \right)$$

11.
$$\frac{2}{3} + \frac{4}{\pi^2} \left(\cos \pi t - \frac{1}{4} \cos 2\pi t + \frac{1}{9} \cos 3\pi t - + \cdots \right)$$

13.
$$-\frac{4}{\pi^2} \left(\cos \pi t + \frac{1}{9} \cos 3\pi t + \cdots \right) + \frac{2}{\pi} \left(2 \sin \pi t - \frac{1}{2} \sin 2\pi t + \cdots \right)$$

SECTION 10.4, page 478

- 1. Neither odd nor even, even, odd, even, odd, neither odd nor even, even, even.
- 3. Odd

5. Odd

7. Neither odd nor even

9. Odd

15.
$$(1 + x^2)/(1 - x^2)^2 + 2x/(1 - x^2)^2$$

17.
$$-x^2/(1-x^2) + x/(1-x^2)$$

23.
$$\frac{1}{2} + \frac{2}{\pi} \left(\cos x - \frac{1}{3} \cos 3x + \frac{1}{5} \cos 5x - + \cdots \right)$$

25.
$$\frac{4}{\pi} \left(\sin x - \frac{1}{9} \sin 3x + \frac{1}{25} \sin 5x - + \cdots \right)$$

27.
$$\frac{\pi}{2} - \frac{4}{\pi} \left(\cos x + \frac{1}{9} \cos 3x + \frac{1}{25} \cos 5x + \cdots \right)$$

29.
$$\frac{\pi^2}{12} - \cos x + \frac{1}{4} \cos 2x - \frac{1}{9} \cos 3x + \frac{1}{16} \cos 4x - + \cdots$$

SECTION 10.5, page 482

1.
$$2\left(\sin t - \frac{1}{2}\sin 2t + \frac{1}{3}\sin 3t - \frac{1}{4}\sin 4t + \cdots\right)$$

3.
$$\frac{2}{\pi} \left(\sin \pi t - \frac{1}{2} \sin 2\pi t + \frac{1}{3} \sin 3\pi t - + \cdots \right)$$

5.
$$\left(1 + \frac{2}{\pi}\right) \sin t - \frac{1}{2} \sin 2t + \left(\frac{1}{3} - \frac{2}{9\pi}\right) \sin 3t - \frac{1}{4} \sin 4t + \cdots$$

7.
$$\frac{1}{\pi} \left(\sin 4t - \frac{1}{9} \sin 12t + \frac{1}{25} \sin 20t - \frac{1}{49} \sin 28t + \cdots \right)$$

9.
$$f(t) = 1$$

11.
$$\frac{l^2}{3} - \frac{4l^2}{\pi^2} \left(\cos \frac{\pi t}{l} - \frac{1}{4} \cos \frac{2\pi t}{l} + \frac{1}{9} \cos \frac{3\pi t}{l} - \frac{1}{16} \cos \frac{4\pi t}{l} + \cdots \right)$$

13.
$$\frac{2}{\pi} - \frac{4}{\pi} \left(\frac{1}{1 \cdot 3} \cos \frac{2\pi t}{l} + \frac{1}{3 \cdot 5} \cos \frac{4\pi t}{l} + \frac{1}{5 \cdot 7} \cos \frac{6\pi t}{l} + \cdots \right)$$

17.
$$i \sum_{\substack{n=-\infty\\n\neq 0}}^{\infty} \frac{(-1)^n}{n} e^{inx}$$

19.
$$\frac{\sinh \pi}{\pi} \sum_{n=-\infty}^{\infty} (-1)^n \frac{1+in}{1+n^2} e^{inx}$$

SECTION 10.6, page 488

11.
$$12\left(\sin x - \frac{1}{2^3}\sin 2x + \frac{1}{3^3}\sin 3x - + \cdots\right)$$

13.
$$\frac{l^3}{4} + \frac{6l^3}{\pi^2} \left[\left(\frac{4}{\pi^2} - 1 \right) \cos \frac{\pi x}{l} + \frac{1}{2^2} \cos \frac{2\pi x}{l} + \left(\frac{4}{3^4 \pi^2} - \frac{1}{3^2} \right) \cos \frac{3\pi x}{l} + \cdots \right]$$

15.
$$a_0 = \pi^4/5$$
, $a_n = (-1)^n 8(\pi^2 n^2 - 6)/n^4$, $b_n = 0$ $(n = 1, 2, \cdots)$

SECTION 10.7. page 491

1.
$$y = C_1 \cos \omega t + C_2 \sin \omega t + A(\omega) \sin t$$
, $A(\omega) = 1/(\omega^2 - 1)$, $A(0.5) = -1.33$, $A(0.7) = -0.20$, $A(0.9) = -5.3$, $A(1.1) = 4.8$, $A(1.5) = 0.8$, $A(2) = 0.33$, $A(10) = 0.01$

3. $y = C_1 \cos \omega t + C_2 \sin \omega t + B_1 \sin t + B_3 \sin 3t + B_5 \sin 5t$ where

ω	0.5	0.9	1.1	2.0	2.9	3.1	4.0	4.9	5.1	6.0	8.0
$B_1 = 1/(\omega^2 - 1)$ $B_3 = 1/9(\omega^2 - 9)$ $B_5 = 1/25(\omega^2 - 25)$	-0.013	-0.014	-0.014	-0.02	-0.19	0.18	0.02	0.01	0.01	0.004	0.002

5.
$$y = C_1 \cos \omega t + C_2 \sin \omega t + \sum_{n=1}^{N} \frac{b_n}{\omega^2 - n^2} \sin nt$$

7.
$$y = C_1 \cos \omega t + C_2 \sin \omega t + \frac{\pi^2}{12\omega^2} - \frac{1}{\omega^2 - 1} \cos t + \frac{1}{4(\omega^2 - 4)} \cos 2t - \cdots$$

$$9. \ y = -\frac{K}{c} \cos t$$

11.
$$y = \frac{1 - n^2}{D} a_n \cos nt + \frac{nc}{D} a_n \sin nt$$
, $D = (1 - n^2)^2 + n^2 c^2$

13.
$$y = A_1 \cos t + B_1 \sin t + A_3 \cos 3t + B_3 \sin 3t + \cdots$$

where $A_n = -ncb_n/D$, $B_n = (1 - n^2)b_n/D$, $D = (1 - n^2)^2 + n^2c^2$, $b_1 = 1$, $b_2 = 0$, $b_3 = -\frac{1}{9}$, $b_4 = 0$, $b_5 = \frac{1}{25}$, \cdots

15.
$$I = \sum_{n=1}^{\infty} (A_n \cos nt + B_n \sin nt), A_n = \frac{80(10 - n^2)}{\pi n^2 D_n}, B_n = \frac{800}{n\pi D_n} (n \text{ odd}),$$

 $A_n = 0, B_n = 0 \text{ (n even)}, D_n = (10 - n^2)^2 + 100 n^2,$
 $I = 1.266 \cos t + 1.406 \sin t + 0.003 \cos 3t + 0.094 \sin 3t + \cdots$

SECTION 10.8, page 494

1.
$$F = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \dots + \frac{1}{N} \sin Nx \right]$$
 (N odd)

5.
$$F = \frac{\pi^2}{3} - 4\left(\cos x - \frac{1}{4}\cos 2x + \frac{1}{9}\cos 3x - \dots + \frac{(-1)^{N+1}}{N^2}\cos Nx\right)$$

 $E^* = \frac{2\pi^5}{5} - \pi\left(\frac{2\pi^4}{9} + 16 + 1 + \frac{16}{81} + \frac{1}{16} + \dots\right)$

SECTION 10.9, page 501

9.
$$\frac{2}{\pi} \int_0^\infty \left[\left(1 - \frac{2}{w^2} \right) \sin w + \frac{2}{w} \cos w \right] \frac{\cos wx}{w} dw$$

11.
$$\frac{2}{\pi} \int_0^\infty \left[\frac{a \sin aw}{w} + \frac{\cos aw - 1}{w^2} \right] \cos xw \, dw$$

13.
$$\frac{6}{\pi} \int_0^\infty \frac{2 + w^2}{4 + 5w^2 + w^4} \cos xw \, dw$$

15. Differentiating (10) we have
$$\frac{d^2A}{dw^2} = -2 \int_0^\infty f^*(v) \cos wv \, dv$$
, $f^*(v) = v^2 f(v)$, and the result follows.

SECTION 11.1, page 505

19.
$$u = c(x)e^{-y^2}$$

21.
$$u = v(x) + w(y)$$

23.
$$u = v(x)e^{-y} + w(y)$$

25.
$$u = axy + bx + cy + k$$

27.
$$u = cx + g(y)$$

SECTION 11.3, page 514

1.
$$u = 0.02 \cos t \sin x$$

3.
$$u = k(\cos t \sin x - \cos 2t \sin 2x)$$

5.
$$u = \frac{4}{5\pi} \left(\frac{1}{4} \cos 2t \sin 2x - \frac{1}{36} \cos 6t \sin 6x + \frac{1}{100} \cos 10t \sin 10x - + \cdots \right)$$

7.
$$u = \frac{8k}{\pi} \left(\cos t \sin x + \frac{1}{3^3} \cos 3t \sin 3x + \frac{1}{5^3} \cos 5t \sin 5x + \cdots \right)$$

9.
$$u = 12k \left(\cos t \sin x - \frac{1}{2^3}\cos 2t \sin 2x + \frac{1}{3^3}\cos 3t \sin 3x - + \cdots\right)$$

11.
$$u = \sum_{n=1}^{\infty} B_n^* \sin nx \sin nt$$
, $B_n^* = \frac{0.04}{\pi n^3} \sin \frac{n\pi}{2}$

15. 27,
$$960/\pi^6 \approx 0.9986$$

17.
$$u = ke^{c(x-y)}$$

19.
$$u = kv^c e^{cx}$$

21.
$$u = k \exp(x^2 + y^2 + c(x - y))$$

23.
$$u = k \exp(cx + v/c)$$

SECTION 11.4, page 517

9.
$$F_n = \sin(n\pi x/l)$$
, $G_n = a_n \cos(cn^2\pi^2t/l^2)$

11.
$$u(0, t) = 0$$
, $u(l, t) = 0$, $u_x(0, t) = 0$, $u_x(l, t) = 0$

13.
$$\beta l \approx \frac{3}{2}\pi, \frac{5}{2}\pi, \frac{7}{2}\pi, \cdots$$
 (more exactly 4.730, 7.853, 10.996, ...)

15.
$$\beta l \approx \frac{1}{2}\pi, \frac{3}{2}\pi, \frac{5}{2}\pi, \cdots$$
 (more exactly 1.875, 4.694, 7.855, ...)

17.
$$u = f_1(x) + f_2(x + y)$$

19.
$$u = xf_1(x + y) + f_2(x + y)$$

21.
$$u = f_1(x + y) + f_2(2x - y)$$

25.
$$y'^2 - 2y' + 1 = (y' - 1)^2 = 0$$
, $y = x + c$, $\Psi(x, y) = x - y$, $v = x$, $z = x - y$

SECTION 11.5, page 523

3. The solutions of the wave equation are periodic in t.

5.
$$u = \sin 0.1\pi x e^{-1.752\pi^2 t/100}$$

7.
$$u = \frac{40}{\pi^2} \left(\sin 0.1 \pi x \ e^{-0.01752 \pi^2 t} - \frac{1}{9} \sin 0.3 \pi x \ e^{-0.01752(3\pi)^2 t} + - \cdots \right)$$

9.
$$u = \frac{800}{\pi^3} \left(\sin 0.1\pi x \, e^{-0.01752\pi^2 t} + \frac{1}{3^3} \sin 0.3\pi x \, e^{-0.01752(3\pi)^2 t} + \cdots \right)$$

11. Since the temperatures at the ends are kept constant, the temperature will approach a steady-state (time-independent) distribution $u_I(x)$ as $t \to \infty$, and $u_I = U_1 + (U_2 - U_1)x/l$, the solution of (1) with $\partial u/\partial t = 0$, satisfying the boundary conditions.

15.
$$u = 1$$

17.
$$u = 0.5 \cos 2x e^{-4t}$$

19.
$$u = \frac{\pi}{4} - \frac{8}{\pi} \left(\frac{1}{4} \cos 2t \, e^{-4t} + \frac{1}{36} \cos 6t \, e^{-36t} + \cdots \right)$$

21.
$$u = \frac{\pi}{8} + \left(1 - \frac{2}{\pi}\right)\cos x \, e^{-t} - \frac{1}{\pi}\cos 2x \, e^{-4t} - \left(\frac{1}{3} + \frac{2}{9\pi}\right)\cos 3x \, e^{-9t} + \cdots$$

25.
$$w = e^{-\beta t}$$

SECTION 11.6, page 528

7.
$$\frac{1}{\sqrt{\pi}} \int_{(a-x)/\tau}^{(b-x)/\tau} e^{-w^2} dw - \frac{1}{\sqrt{\pi}} \int_{(a+x)/\tau}^{(b+x)/\tau} e^{-w^2} dw$$

SECTION 11.8, page 537

3. c increases and so does the frequency.

9.
$$B_{mn} = (-1)^{m+n} \frac{4ab}{mn\pi^2}$$

11.
$$B_{mn} = 0$$
 (*m* or *n* even), $B_{mn} = \frac{64a^2b^2}{\pi^6m^3n^3}$ (*m*, *n* both odd)

13.
$$B_{mn} = (-1)^{m+n} \frac{144a^3b^3}{m^3n^3\pi^6}$$
 15. $u = k\cos\pi\sqrt{5} t\sin\pi x\sin2\pi y$

17.
$$u = \frac{144k}{\pi^6} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{(-1)^{m+n}}{m^3 n^3} \cos(\pi t \sqrt{m^2 + n^2}) \sin m\pi x \sin n\pi y$$

21.
$$u = \frac{440}{\pi} \sum_{n=0}^{\infty} \frac{\sin \frac{1}{20} (2n+1)\pi x \sinh \frac{1}{40} (2n+1)\pi y}{(2n+1)\sinh (2n+1)\pi}$$

23.
$$u_y(x, 0, t) = u_y(x, \pi, t) = 0$$
, $u = \sin mx \cos ny \exp(-c^2(m^2 + n^2)t)$

25.
$$u = \frac{64}{\pi^2} \sum_{\substack{m=1 \ m=1}}^{\infty} \sum_{\substack{n=1 \ m \text{ odd}}}^{\infty} \frac{1}{m^3 n^3} \sin mx \sin ny \, e^{-c^2(m^2+n^2)t}$$

SECTION 11.9, page 540

9.
$$5 + 5r^2 \cos 2\theta$$

11.
$$u = \frac{200}{\pi} \left(r \sin \theta + \frac{1}{3} r^3 \sin 3\theta + \frac{1}{5} r^5 \sin 5\theta + \cdots \right)$$

13.
$$u = \frac{4u_0}{\pi} \left(\frac{r}{a} \sin \theta + \frac{1}{3a^3} r^3 \sin 3\theta + \frac{1}{5a^5} r^5 \sin 5\theta + \cdots \right)$$

SECTION 11.10, page 545

9.
$$u = 4k \sum_{m=1}^{\infty} \frac{J_2(\alpha_m)}{\alpha_m^2 J_1^2(\alpha_m)} \cos \alpha_m t J_0(\alpha_m r)$$

SECTION 11.11, page 549

3.
$$u = 160/r + 30$$

5.
$$u = -40 \ln r/(\ln 2) + 150$$

17.
$$[(u_1 - u_0) \ln r + u_0 \ln r_1 - u_1 \ln r_0] / \ln (r_1/r_0)$$

SECTION 11.12, page 553

3.
$$u = 1$$

5.
$$u = -\frac{2}{3}r^2P_2(\cos\phi) + \frac{2}{3} = r^2(-\cos^2\phi + \frac{1}{3}) + \frac{2}{3}$$

7.
$$\cos 2\phi = 2\cos^2 \phi - 1$$
, $2x^2 - 1 = \frac{4}{3}P_2(x) - \frac{1}{3}$, $u = \frac{4}{3}r^2P_2(\cos \phi) - \frac{1}{3}$

15.
$$i_{xx} = LCi_{tt} + (RC + GL)i_t + RGi$$

SECTION 11.13, page 557

5.
$$U(x,s) = \frac{c(s)}{x^s} + \frac{x}{s^2(s+1)}$$
, $U(0,s) = 0$, $c(s) = 0$,

$$u(x, t) = x(t - 1 + e^{-t})$$

9. Set $x^2/4c^2\tau = z^2$. Use z as a new variable of integration. Use erf $(\infty) = 1$.

SECTION 12.1, page 564

3.
$$32 - 24i$$

5.
$$-\frac{7}{41} + \frac{22}{41}i$$

7.
$$-\frac{46}{13}$$

9.
$$2xy/(x^2 + y^2)$$

SECTION 12.2, page 567

5.
$$(x^2 + y^2)^2$$

7.
$$\frac{1}{25}$$

9.
$$\sqrt{2}(\cos \pi/4 + i \sin \pi/4)$$

11.
$$8(\cos \pi + i \sin \pi)$$

3. $\sqrt{(x+1)^2+y^2}/\sqrt{(x-1)^2+y^2}$

15.
$$\pi/3$$

19. (10) holds when
$$z_1 + z_2 = 0$$
. Let $z_1 + z_2 \neq 0$ and $c = a + ib = z_1/(z_1 + z_2)$. By (12), $|a| \leq |c|$, $|a - 1| \leq |c - 1|$. Thus $|a| + |a - 1| \leq |c| + |c - 1|$. Clearly $|a| + |a - 1| \geq 1$. Together we have the inequality below; multiply it by $|z_1 + z_2|$ to get (10).

$$1 \le |c| + |c - 1| = \left| \frac{z_1}{z_1 + z_2} \right| + \left| \frac{z_2}{z_1 + z_2} \right|$$

SECTION 12.3, page 570

- 3. The region between the two branches of the hyperbola $x^2 y^2 = 1$.
- 5. Horizontal strip of width 2π
- 7. $(x \frac{17}{15})^2 + y^2 = (\frac{8}{15})^2$
- **9.** The left half-plane without the closed disk of radius $\frac{1}{2}$ and center at $-\frac{1}{2}$.

SECTION 12.4, page 574

1.
$$2 + 4i$$
, $-1 + 2i$, $20 - 20i$

3.
$$(9-13i)/500$$
, $-i$, $(-2-11i)/1000$

5.
$$2(x^3 - 3xy^2) - 3x$$
, $2(3x^2y - y^3) - 3y$

7.
$$|\arg w| \le 3\pi/4$$

9.
$$|w| > 9$$

11.
$$Re(z^2)/|z^2| = (x^2 - y^2)/(x^2 + y^2) = 1$$
 if $y = 0$ and -1 if $x = 0$. Ans. No.

13.
$$6z(z^2-4)^2$$

15.
$$2/(1-z)^3$$
 17. $-\frac{1}{27}$

19. Use Re
$$f(z) = [f(z) + \overline{f(z)}]/2$$
, Im $f(z) = [f(z) - \overline{f(z)}]/2i$.