Homework 0

Ray Tsai A16848188 Professor McKernan

Source Consulted: Textbook, Lecture, Discussion

Question 1.1.1. Let S be a set having an operation * which assigns an element a*b of S for any $A, B \in S$. Let us assume that the following two rules hold:

- 1. If a, b are any objects in S, then a * b = a.
- 2. If a, b are any objects in S, then a * b = b * a.

Show that S can only have at most one object.

Proof. Suppose for the sake of contradiction that S has more than one object. Let $a, b \in S$ be two distinct objects. By rule one, a * b = a and b * a = b, contradicting rule 2's statement that a * b = b * a. Therefore, S has at most one object.

Question	1.1.2.	Let S	be the	set of a	all integers	$0, \pm 1, \pm 2,$	$1,\ldots,\pm n,\ldots$	For a, b in	S define	* by
a * b = a -	b. Veri	fy the	following	g:						

(a) $a * b \neq b * a$ unless a = b.

Proof. True. Let $a,b \in S$ such that $a \neq b$. Then $a+a \neq b+b$, and so $a*b=a-b \neq b-a=b*a$.

(b) $(a*b)*c \neq a*(b*c)$ in general. Under what condition on a,b,c is (a*b)*c = a*(b*c)?

Proof. True. Let $a, b, c \in S$.

$$(a*b)*c = (a-b)-c = a-b-c \neq a-b+c = a-(b-c) = a*(b*c).$$

Suppose that (a * b) * c = a * (b * c).

$$(a * b) * c = a * (b * c)$$

 $a - b - c = a - b + c$
 $c = 0$.

Only when c = 0 is (a * b) * c = a * (b * c).

(c) The integer 0 has the property that a * 0 = a for every a in S.

Proof. True. a * 0 = a - 0 = a.

(d) For a in S, a * a = 0.

Proof. True. a * a = a - a = 0.

Question 2.1.1. Determine if the following sets G with the operation indicated form a group. If not, point out which of the group axioms fail.

(a) G =the set of all integers, a * b = a - b.

Proof. Fails the associative property. Let $a, b, c \in \mathbb{Z}$.

$$a * (b * c) = a - (b - c) = a - b + c \neq (a - b) - c = (a * b) * c$$

(b) G =the set of all integers, a * b = a + b + ab.

Proof. Fails the inverse property. Let $a, b \in \mathbb{Z}$. Since a * 0 = 0 * a = a, we know the identity element of G is 0. Let a = 1. Since a * b = b * a = 1 + b + b = 1 + 2b = 0 has no integer solutions, (G, *) does not fulfill the inverse property.

(c) G =the set of non-negative integers, a * b = a + b.

Proof. Fails the inverse property. We know the identity element $e \in G$ is 0, as s+0=0+s=s for any $s \in G$. For $a, b \in G$ such that $a \neq 0$, since a+b>0, any positive element in G has no inverse.

(d) G =the set of all rational numbers $\neq -1$, a * b = a + b + ab.

Proof. (G,*) forms a group. Let $a,b,c \in G$.

We first prove the closed property. We know $a+b+ab \in \mathbb{Q}$. Suppose for the sake of contradiction that a+b+ab=-1. Rearranged, we get (a+1)b=-(a+1). Since $a\neq -1$, we cancel (a+1) from each side and get b=-1, contradiction. Therefore, $a+b+ab \in G$.

The associative property is met, as

$$(a * b) * c = (a + b + ab) * c$$

= $a + b + c + ab + ac + bc + abc$
= $a + (b + c + bc) + a(b + c + bc)$
= $a * (b * c)$.

Since a * 0 = 0 * a = a, $e = 0 \in G$ is the identity element.

Finally, we show the inverse property. Let $b = \frac{-a}{a+1}$. Since

$$a * b = b * a = a + \frac{-a}{a+1} + a \cdot \frac{-a}{a+1} = \frac{a^2 + a - a - a^2}{a+1} = 0,$$

for all $a \in G$, a has an inverse $b = \frac{-a}{a+1} \in G$.

Since all four properties are met, G with * form a group.

(e)	G = the set of all rational numbers with denominator divisible by 5 (written so that numerators and denominator are relatively prime), $a * b = a + b$.
	<i>Proof.</i> Fails the identity property. Suppose for the sake of contradiction that there exists $e \in G$ such that $a * e = a + e = a$. Then $e = 0$. However, $0 \notin G$, as the numerator 0 is not relatively prime to any integer denominators divisible by 5, contradiction.
(f)	G is the set having more than one element, $a*b=a$ for all $a,b\in G$.
	<i>Proof.</i> Fails the identity property. Let $a, e \in G$ be two distinct elements. Suppose for the sake of contradiction that e is the identity element. We then have $e * a = e \neq a$, contradiction.

Question 2.1.2. In the group G defined in Example 6, show that the set $H = \{T_{a,b} | a = \pm 1, b \text{ any real } \}$ forms a group under the * of G.

Proof. We prove all four properties of a group.

Closed property: Let $T_{a,b}, T_{c,d} \in H$. We then have

$$T_{a,b} * T_{c,d} = T_{ac,ad+b}.$$

Since $ac = \pm 1$ and $ad + b \in \mathbb{R}$, $f * g \in H$.

Associative property: Let $f, g, h \in H$. Since all three functions are $\mathbb{R} \to \mathbb{R}$, we get (f * g) * h = f * (g * h) by lemma 1.3.1 in Herstein.

Identity property: For all $T_{a,b} \in H$, we have $T_{1,0}$ such that

$$T_{a,b} * T_{1,0} = T_{a,b},$$

 $T_{1,0} * T_{a,b} = T_{a,b},$

and thus G has an identity element $T_{1,0}$ under *.

Inverse property: For all $T_{a,b} \in H$, we have $T_{a,-a^{-1}b} \in H$, such that

$$T_{a,b} * T_{a,a^{-1}b} = T_{a^2,a \cdot a^{-1}b + b} = T_{1,0}$$

 $T_{a,a^{-1}b * T_{a,b}} = T_{a^2,a^{-1}b \cdot a + b} = T_{1,0}$.

Since all four properties are fulfilled, H forms a group under the * of G.

Question 2.1.5. in Example 9, prove that $g * f = f * g^{-1}$, and that G is a group, is non-abelian, and is order of 8.

Proof. We restate that $S = \{(x,y) \in \mathbb{R}^2\}$, $f,g \in A(S)$ such that f(x,y) = (-x,y) and g(x,y) = (-y,x), and $G = \{f^ig^j \mid i=0,1; j=0,1,2,3\}$. Note that since f is a reflection and g is a 90° rotation, both $f^k = f^{(k \mod 2)}$ and $g^l = g^{(l \mod 4)}$ are in G, for $k,l \in \mathbb{Z}$. And also note that $g^4 = f^2 = \text{identity mapping } e$.

We first prove that $g * f = f * g^{-1}$. We first note that since $e = g^4$, $g^{-1} = g^3 = (y, -x)$. On the left-hand side of the statement, we have

$$(g * f)(x,y) = g(f(x,y)) = g(-x,y) = (-y,-x).$$

On the right-hand side, we have

$$(f * g^{-1})(x, y) = f(g^{3}(x, y)) = f(y, -x) = (-y, -x).$$

Thus, we have $g * f = f * g^{-1} = (-y, -x)$.

We now show that G fulfills the 4 properties of a group. Let $a, b, c \in G$.

Associative property: Since a, b, c are all $S \to S$, we get (a * b) * c = a * (b * c) by lemma 1.3.1 in Herstein.

Closed property: We first show $g^n f = fg^{-n}$ by induction. The base case $gf = fg^{-1}$ is done above. For n > 1, $g^n f = gfg^{-(n-1)}$. By the associative property, we get

$$g^n f = (gf)g^{-(n-1)} = fg^{-n}.$$
 (1)

We now show that for $i, j, k, l \in \mathbb{Z}$, $f^i g^j f^k g^l = f^{i+k} g^{(-1)^k j + l}$. If k is even, then $f^i g^j f^k g^l = f^i g^{j+l}$. If k is odd, then $f^i g^j f^k g^l = f^i (g^j f) g^l = f^{i+1} g^{-j+l}$, by (1). Combining two cases, we get a generalized equality

$$f^{i}g^{j}f^{k}g^{l} = f^{i+k}g^{(-1)^{k}j+l}. (2)$$

Finally, we show that G is closed under *. Let $a = f^i g^j, b = f^k g^l \in G$. Then,

$$(a*b)(x,y) = (f^{i}g^{j}f^{k}g^{l})(x,y)$$

$$= (f^{i+k}g^{(-1)^{k}j+l})(x,y)$$
 by (2)
$$= f^{i+k}(g^{(-1)^{k}j+l \mod 4}(x,y))$$

$$= (f^{i+k \mod 2}g^{(-1)^{k}j+l \mod 4})(x,y) \in G$$

Identity property: Let $a = f^i g^j, e = g^4 = f^2 \in G$. Then, we have

$$a * e = f^{i}g^{j+4} = f^{i}g^{j} = a,$$

 $e * a = f^{i+2}g^{j} = f^{i}g^{j} = a.$

Thus, G has e as the identity element under *.

Inverse property: For all $a = f^i g^j \in G$, we have $b = f^i g^{(-1)^i j}$ such that

$$a * b = f^{i}g^{j} * f^{i}g^{(-1)^{i+1}j} = f^{2i}g^{(-1)^{i}j+(-1)^{i+1}j} = f^{0}g^{0} = e,$$

$$b * a = f^{i}g^{(-1)^{i+1}j} * f^{i}g^{j} = f^{2i}g^{(-1)^{2i+1}j+j} = f^{0}g^{0} = e$$

by (2). Thus, the inverse property holds. Since all four properties hold, G is a group under *. We will prove that G is a non-abelian group. Since

$$(f * g)(x, y) = f(g(x, y)) = f(-y, x) = (y, x),$$

but

$$(g * f)(x, y) = g(f(x, y)) = g(-x, y) = (-y, -x),$$

we get that $f * g \neq g * f$. Thus, G is a non-abelian group.

Finally, we prove that G is order of 8. Since there are 2 possible values for i and 4 possible values for j, G has at most 8 elements. We will show that each combination of i,j leads to a distinct f^ig^j . Let $a=f^ig^j$, $b=f^kg^l$, for i,k=0,1, j,l=0,1,2,3, and $i\neq k$ or $j\neq l$. Suppose for the sake of contradiction that a=b. Then

$$a = b$$

$$f^{i}g^{j} = f^{k}g^{l}$$

$$f^{-k}f^{i}g^{j}g^{-l} = e$$

$$f^{i-k}g^{j-l} = e.$$

However, since $i \neq k$ or $j \neq l$, $f^{i-k}g^{j-l} \neq e$, contradiction. Therefore, G has an order of 8.

Question 2.1.21. Show that a group of order 5 must be abelian.

Proof. Suppose for sake of contradiction that there exists a non-abelian group $G = \{e, f, g, h, j\}$ of order 5 with e as the identity element. Since G is non-abelian, there exists a pair of elements, say f, g, such that $fg \neq gf$, where $fg, gf \in G$. $fg, gf \neq e$ as otherwise it would contradict the rule of inverse. And since $fg, gf \neq f, g$, we know fg, gf must be the rest of the 2 elements, namely h, j. Let h = fg and j = gf. Thus, we can represent any non-abelian group of order 5 in the form of $G = \{e, f, g, fg, gf\}$. Note that any non-abelian group of order 5 can be represented in this form. Then,

```
f^2 \neq f otherwise f \neq e f^2 \neq g otherwise fg = fff = gf otherwise f = g otherwise f = g otherwise f(gf) = f(fg) = e \rightarrow gf = fg fgf \neq f, fg, gf otherwise e is not unique
```

Thus, $f^2 = e$ and fgf = g. However, ffg = g = fgf, and so fg = gf, contradiction. Therefore, a group of order 5 must be abelian.

Question 2.1.23. In the group G of Example 6, find all elements $U \in G$ such that $U * T_{a,b} = T_{a,b} * U$ for every $T_{a,b} \in G$.

Proof. We will show that $U=T_{1,0}$ is the only solution. Let $m,n,a,b,c,d\in\mathbb{R}$. Suppose that $T_{m,n}*T_{a,b}=T_{a,b}*T_{m,n}$, and $T_{m,n}*T_{c,d}=T_{c,d}*T_{m,n}$. Then, for $r\in\mathbb{R}$, we have mar+mb+n=amr+an+b and mcr+md+n=cmr+cn+d, and thus we get the system of equations

$$\begin{cases} bm + (1-a)n = b \\ dm + (1-c)n = d. \end{cases}$$

Suppose that b=0, we get n=0 from the first equation. Plugging n=0 into the equation, we get m=1. Suppose that $b\neq 0$, we solve the system and get $(\frac{b-cb-d+da}{b})n=0$, and thus, in general, n=0. Plugging n=0 into equation 1, we get m=1. Therefore, $U=T_{1,0}$.