

CSCE 580: Introduction to Al

Lecture 14: Unsupervised Machine Learning

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 3RD OCTOBER, 2024

Carolinian Creed: "I will practice personal and academic integrity."

Organization of Lecture 14

- Introduction Segment
 - Recap of Lecture 13
- Main Segment
 - Unsupervised ML
 - Setting and characteristics
 - Method: k-means
 - Working with Weka
- Concluding Segment
 - About Next Lecture Lecture 15
 - Ask me anything

Introduction Segment

Recap of Lecture 13

- We talked about
 - The variety of methods for classification
 - Logistic Regression
 - Decision trees
 - Random forest
 - Naïve Bayes
 - Boosting
 - Metrics AUC / ROC
 - Discussion: Choosing a method that works

Intelligent Agent Model

Relationship Between Main Al Topics

CSCE 580, 581 - FALL 2023

Where We Are in the Course

CSCE 580/581 - In This Course

- Week 1: Introduction, Aim: Chatbot / Intelligence Agent
- Weeks 2-3: Data: Formats, Representation and the Trust Problem
- Week 4-5: Search, Heuristics Decision Making
- Week 6: Constraints, Optimization Decision Making
- Week 7: Classical Machine Learning Decision Making, Explanation
- Week 8: Machine Learning Classification
- Week 9: Machine Learning Classification <u>Trust Issues and</u>

Mitigation Methods

- Topic 10: Learning neural network, deep learning, Adversarial attacks
- Week 11: Large Language Models Representation, Issues
- Topic 12: Markov Decision Processes, Hidden Markov models Decision making
- Topic 13: Planning, Reinforcement Learning Sequential decision making
- Week 14: <u>AI for Real World: Tools, Emerging Standards and Laws;</u>
 Safe AI/ Chatbots

CSCE 580, 581 - FALL 2023

Main Segment

Machine Learning – Insights from Data

- Descriptive analysis
 - Describe a past phenomenon
 - Methods: classification (feedback from label), <u>clustering</u>, dimensionality reduction, anomaly detection, neural methods, reinforcement learning (feedback from hint/ reward)
- Predictive analysis
 - Predict about a new situation
 - Methods: time-series, neural networks
- Prescriptive analysis
 - · What an agent should do
 - Methods: simulation, reinforcement learning, reasoning

- New areas
 - Counterfactual analysis
 - Causal Inferencing
 - Scenario planning

Unsupervised Machine Learning

- Group data into clusters/ classes without supervision
 - Limited supervision
- What is a good cluster?
 - Samples within a cluster should be "near" to each other (cohesiveness)
 - Samples in a cluster should be "far" from other samples in other clusters. (distinctiveness)

Data Representation

- Data matrix representation
 - N objects (data rows) x p attributes (columns)
 - Similar to classification
- Dissimilarity matrix
 - Object x Object structure
 - D(i, j) is difference or dissimilarity between (i, j), 0 means similar and 1 means dissimilar

Clustering for Data Understanding and Applications

- Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- Information retrieval: document clustering
- Land use: Identification of areas of similar land use in an earth observation database
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- •City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
- •Climate: understanding earth climate, find patterns of atmospheric and ocean
- Economic Science: market resarch

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Clustering as a Preprocessing Tool (Utility)

•Summarization:

 Preprocessing for regression, PCA, classification, and association analysis

•Compression:

- Image processing: vector quantization
- Finding K-nearest Neighbors
 - Localizing search to one or a small number of clusters
- Outlier detection
 - Outliers are often viewed as those "far away" from any cluster

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Considerations for a Clustering Algorithm

- Need a distance measure for far and near
- Be able to explain what a cluster means
- Handle different types of attributes: numeric, categorical (nominal, ordinal), binary
- Detect different shapes of clusters
- Handle noisy data
- Scale
 - Size
 - Dimensions

Snapshot of Clustering Methods

A comparison of the clustering algorithms in scikit-learn

Major Clustering Approaches (I)

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS

Hierarchical approach:

- · Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Typical methods: Diana, Agnes, BIRCH, CAMELEON

Density-based approach:

- Based on connectivity and density functions
- Typical methods: **DBSACN**, OPTICS, DenClue

Grid-based approach:

- based on a multiple-level granularity structure
- Typical methods: STING, WaveCluster, CLIQUE

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Major Clustering Approaches (II)

Model-based:

- A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
- Typical methods: EM, SOM, COBWEB

Frequent pattern-based:

- Based on the analysis of frequent patterns
- Typical methods: p-Cluster

<u>User-guided or constraint-based:</u>

- Clustering by considering user-specified or application-specific constraints
- Typical methods: COD (obstacles), constrained clustering

Link-based clustering:

- Objects are often linked together in various ways
- Massive links can be used to cluster objects: SimRank, LinkClus

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Partitioning Algorithms: Basic Concept

<u>Partitioning method:</u> Partitioning a database D of n objects into a set of k clusters, such that the sum of squared distances is minimized (where c_i is the centroid or medoid of cluster C_i)

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (p - c_i)^2$$

Given *k*, find a partition of *k* clusters that optimizes the chosen partitioning criterion

- Global optimal: exhaustively enumerate all partitions
- Heuristic methods: *k-means* and *k-medoids* algorithms
- <u>k-means</u> (MacQueen'67, Lloyd'57/'82): Each cluster is represented by the center of the cluster
- <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87):
 Each cluster is represented by one of the objects in the cluster

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

An Example of K-Means Clustering

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Comments on the K-Means Method

- <u>Strength</u>: *Efficient*: *O*(*tkn*), where *n* is # objects, *k* is # clusters, and *t* is # iterations. Normally, *k*, *t* << *n*.
 - Comparing: PAM: O(k(n-k)²), CLARA: O(ks² + k(n-k))
- Comment: Often terminates at a local optimal.
- Weakness
 - Applicable only to objects in a continuous n-dimensional space
 - Using the k-modes method for categorical data
 - In comparison, k-medoids can be applied to a wide range of data
 - Need to specify *k*, the *number* of clusters, in advance (there are ways to automatically determine the best k (see Hastie et al., 2009)
 - Sensitive to noisy data and outliers
 - Not suitable to discover clusters with non-convex shapes

Exercise: Weka

- Use K-means on weather.arff
- Vary k

Distance Metrics – Numeric Variables

- Numeric quantity
 - Interval-scaled variables: continuous measurements of a roughly linear scale.
- Standardize with mean absolute deviation
 - $s_f = (1 / n) * (|x_{1f} m_f| + ... + |x_{1f} m_f|)$
 - s_{nf} and m_f are measurements and mean, respectively
 - $z_{if} = (x_{if} m_f) / s_f$

Examples: weight, height, latitude, longitude, temperature

- Distances for numbers
 - Euclidean: $d(i,j) = \text{square root} \left(|x_{i1} x_{i1}|^2 + ... + |x_{ip} x_{ip}|^2 \right)$, for p-dimensional data
 - Manhattan: $d(i,j) = |x_{i1} x_{j1}| + ... + |x_{ip} x_{jp}|$, for p-dimensional data
 - Minlowski: 1/q root ($|x_{i1} x_{i1}|^q + ... + |x_{ip} x_{ip}|^q$), for p-dimensional data

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Distance Metrics – Binary Variables

	Object J			
		1	0	Sum
Object I	1	q	r	q+r
	0	S	t	s+t
	Sum	q+s	r+t	q+r+s+t

Contingency table for binary variables

- Notation
 - q: number of binary variables that equal 1 for both objects I and J
- Distance between objects by matching
- •d(I, J) = (r + s) / (q + r + s + t)

Examples:

Smoker/ non-smoker, electric v/s non-electric car

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Distance Metrics – Nominal Variables

- Notation
 - m: number of matches in values of nominal variables between objects I and J
 - M: total number of variables
- Distance between objects defined by matching
- •d(I, J) = (p m) / (p)

Examples:

map-color - red, yellow, green, pink, blue

Distance Metrics – Ordinal Variables

- Conversion and notation
 - $z_{if} = (r_{if} 1) / (M_{if} 1)$
 - variable f of i-th object has 1..M_f states in that order
- Now reuse distances for numbers
 - Euclidean: $d(i,j) = \text{square root} \left(|x_{i1} x_{j1}|^2 + ... + |x_{ip} x_{jp}|^2 \right)$, for p-dimensional data
 - Manhattan: $d(i,j) = |x_{i1} x_{j1}| + ... + |x_{ip} x_{jp}|$, for p-dimensional data
 - Minlowski: 1/q root ($|x_{i1}-x_{j1}|^q + ... + |x_{ip}-x_{jp}|^q$) , for p-dimensional data

Examples:

professor ranks – assistant, associate, full Medals – bronze, silver, gold Military - ...

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Distance for Mixed Variable Types

- Keep separate and perform cluster analysis separately
 - Impractical
- Combine them into one scale between 0 to 1

• d(i,j) =
$$\frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- Where $\delta_{ij}^{(f)}$ is 0 if \mathbf{x}_{if} or \mathbf{x}_{if} are missing, otherwise 1
- $d_{ij}{}^{(f)}$ is distance between i and j for feature f and type
- There can be a weighted variation too

Exercise - 1

- Consider clustering of days
 - What are some possible groups?
 - What features make sense?
 - What distances make sense?

Exercise - 2

Consider clustering of documents, like resumes, into groups

- What are some possible groups?
 - By areas: Technology, finance, services, manufacturing, ...
- What features make sense?
 - Syntactic: Words, sentiments, ...
 - Semantic: qualification, experience, ...
- What distances make sense?

Clustering Quality

Case A: Ground Truth is Known

- homogeneity: each cluster contains only members of a single class.
- completeness: all members of a given class are assigned to the same cluster
- Example:
 - true labels = [0, 0, 0, 1, 1, 1]
 - P1: Predicted labels = [0, 0, 1, 1, 2, 2]
 - P2: Predicted labels = [0, 0, 0, 2, 2, 2]
- In example P1, informally
 - Homogeneity (Predicted) 1 has members of 0 and 1
 - Completeness (Actual) 0 is assigned to 0 and 1, (Actual) 1 is assigned 1 and 2

Note: P2 is homogeneous and complete

Content acknowledgement: Sci-kit: https://scikit-learn.org/stable/modules/clustering.html # clustering-performance-evaluation

Case A: Ground Truth is Known

- homogeneity: each cluster contains only members of a single class.
- completeness: all members of a given class are assigned to the same cluster
- v-measure

$$v = rac{(1 + eta) imes ext{homogeneity} imes ext{completeness}}{(eta imes ext{homogeneity} + ext{completeness})}$$

Content acknowledgement: Sci-kit: https://scikit-learn.org/stable/modules/clustering.html # clustering-performance-evaluation

Case B: Ground Truth is Unknown

Silhouette Coefficient

- a: The mean distance between a sample and all other points in the same class.
- **b**: The mean distance between a sample and all other points in the *next nearest cluster*.

The Silhouette Coefficient s for a single sample is then given as:

$$s = rac{b-a}{max(a,b)}$$

The Silhouette Coefficient for a set of samples is given as the mean of the Silhouette Coefficient for each sample.

Question: can you calculate when all data is in one cluster?

-1: incorrect clustering+1: highly dense clustering.Scores around zero indicate overlapping clusters.

Content acknowledgement: Sci-kit: https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation

Case B: Ground Truth is Unknown

Davies-Bouldin Index

- s_i , the average distance between each point of cluster i and the centroid of that cluster also know as cluster diameter.
- d_{ij} , the distance between cluster centroids i and j.

A simple choice to construct R_{ij} so that it is nonnegative and symmetric is:

$$R_{ij} = rac{s_i + s_j}{d_{ij}}$$

Then the Davies-Bouldin index is defined as:

$$DB = rac{1}{k} \sum_{i=1}^k \max_{i
eq j} R_{ij}$$

0: best 1: worst

Limitation: Needs euclidean distances

Content acknowledgement: Sci-kit: https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation

Measuring Clustering Quality

- •Two methods: extrinsic vs. intrinsic
- •Extrinsic: supervised, i.e., the ground truth is available
 - Compare a clustering against the ground truth using certain clustering quality measure
 - Ex. Recall precision and recall metrics in classification
- •Intrinsic: unsupervised, i.e., the ground truth is unavailable
 - Evaluate the goodness of a clustering by considering how well the clusters are separated, and how compact the clusters are
 - Ex. Silhouette coefficient

Measuring Clustering Quality: Extrinsic Methods

- •Clustering quality measure: $Q(C, C_g)$, for a clustering C given the ground truth C_g .
- Q is good if it satisfies the following 4 essential criteria
 - Cluster homogeneity: the purer, the better
 - Cluster completeness: should assign objects belong to the same category in the ground truth to the same cluster
 - Rag bag: putting a heterogeneous object into a pure cluster should be penalized more than putting it into a rag bag (i.e., "miscellaneous" or "other" category)
 - Small cluster preservation: splitting a small category into pieces is more harmful than splitting a large category into pieces

Content: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed.

Summary

- Cluster analysis groups objects based on their similarity and has wide applications
- Measure of similarity can be computed for various types of data
- •Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based methods
- K-means and K-medoids algorithms are popular partitioning-based clustering algorithms
- •Birch and Chameleon are interesting hierarchical clustering algorithms, and there are also probabilistic hierarchical clustering algorithms
- •DBSCAN, OPTICS, and DENCLU are interesting density-based algorithms
- •STING and CLIQUE are grid-based methods, where CLIQUE is also a subspace clustering algorithm
- Quality of clustering results can be evaluated in various ways

Code Examples

- Clustering quality
 - https://github.com/biplav-s/course-d2d-ai/blob/main/sample-code/l10-11-unsupervised-ml/clustering-quality-measures.ipynb
- Clustering methods
 - https://github.com/biplav-s/course-d2d-ai/blob/main/sample-code/l10-11-unsupervised-ml/Cluster-exploration-syntheticdata.ipynb

Exercise: Weka

- Pick a data-set with at least 5 attributes
- Cluster with 2 methods
- Review cluster quality

Explaining Clusters

- How to describe them?
 - Centroid
 - Exemplars
- What name to give them?
 - Using features of the members
 - Algorithm may produce (Concept Clustering)
- Explanations can be based on domain specific rules

Lecture 14: Concluding Comments

- Understood Clustering problem
- Understood k-means
- A range of clustering methods
- Measuring cluster quality
- Explaining clusters
- Working with Weka, scikit and python code samples

Concluding Section

Course Project

Discussion: Projects

- New: two projects
 - Project 1: model assignment
 - Project 2: single problem/ Ilm based solving / fine-tuning/ presenting result

CSCE 580- FALL 2024 43

Project Discussion

- 1. Go to Google spreadsheet against your name
- Enter model assignment name and link from (<u>http://modelai.gettysburg.edu/</u>)
- 1. Create a private Github repository called "CSCE58x-Fall2024-<studentname>-Repo". Share with Instructor (biplay-s) and TA (vishalpallagani)
- Create Google folder called "CSCE58x-Fall2024-<studentname>-SharedInfo". Share with Instructor (prof.biplav@gmail.com) and TA (vishal.pallagani@gmail.com)
- 3. Create a Google doc in your Google repo called "Project Plan" and have the following by next class (Sep 5, 2024)

Timeline

- 1. Title:
- 2. Key idea: (2-3 lines)
- 3. Data need:
- 4. Methods:
- 5. Evaluation:
- 6. Milestones
 - 1. // Create your own
- 7. Oct 3, 2024

Reference: Project 1 Rubric (30% of Course)

Assume total for Project-1 as 100

- Project results 60%
 - Working system ? 30%
 - Evaluation with results superior to baseline? 20%
 - Went through project tasks completely ? 10%
- Project efforts 40%
 - Project report 20%
 - Project presentation (updates, final) 20%

Bonus

- Challenge level of problem 10%
- Instructor discretion 10%

Penalty

 Lack of timeliness as per your milestones policy (right) - up to 30%

Milestones and Penalties

- Project plan due by Sep 5, 2024 [-10%]
- Project deliverables due by Oct 3, 2024 [-10%]
- Project presentation on Oct 8, 2024 [-10%]

Report Format

- 1. Title:
- 2. Key idea: (2-3 lines)
- 3. Data need:
- 4. Methods:
- 5. Screen shot (as applicable)
- 6. Evaluation:
- 7. Experience: what learnt, anything special to discuss with class

Presentation Format

2 minute video

Screen Shot

- 1. Title:
- 2. Key idea: 1 line summary
- 3. Data need:
- 4. Effort and Result
 - 1. What was done (scope)
 - What was not done (decided not to, couldn't)
 - 3. Result

Experience

About Next Lecture – Lecture 15

Lecture 15: Student Presentations

- Project-1 presentations
 - 1-2 minute video from uploaded presentation
 - 1 minute Q/A

9	Sep 17 (Tu)	Local search
10	Sep 19 (Th)	Adversarial games and search
11	Sep 24 (Tu)	Constraints & optimization
12	Sep 26 (Th)	Machine Learning - Basics
13	Oct 1 (Tu)	Machine Learning –
		Classification – Decision Trees,
		Random Forest, NBC, Gradient
		Boosting, ML-Text
14	Oct 3 (Th)	ML – Unsupervised / Clustering
15	Oct 8 (Tu)	Student presentations - project
16	Oct 10 (Th)	ML – NN, Deep Learning