Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики № *labnum*

name of your labwork

Автор:

your name *groupname*

Долгопрудный, 2021

Рис. 1: Зависимость обратной магнитной восприимчивости от температуры

Запишем закон Кюри-Вейесса

$$\chi \propto \frac{1}{T - \theta_p} \tag{1}$$

где θ_p — параметр размерности температуры. Закон Кюри-Вейесса хорошо выполняется вдали от θ_K — температуры Кюри, однако нарушается при $T \to \theta_K$. Поэтому параметр θ_p отличается от температуры Кюри (как правило $\theta_K < theta_p$). На практике наблюдается картина, изображенная на рисунке.

Для практического исследования будем применять формулу

$$\frac{1}{\chi} \propto (T - \theta_p) \propto \frac{1}{\tau^2 - \tau_0^2} \tag{2}$$

au — период колебания автогениратора, au_0 — период колебаний автогениратора в отсутствии исследуемого образца.

Запишем параметры установки

 $au_0 = 9{,}045\,\,\mathrm{mkc}$ – период колебаний автогениратора в отсутствии исследуемого образца $L_0 = 1602\,\,\mathrm{mk\Gamma}$ н – индуктивность в отсутствии исследуемого образца $k = 24\,\,\mathrm{град/mB}$ – чувствительность термопары

Отсюда посчитаем точность определения температуры

$$24 \cdot 3 \cdot 10^{-3} \text{ MB} = 0.072 \ C^{\circ}$$

Выражение для индуктивности тороидальной катушки в СИ

$$L = \frac{\mu_0 \mu N}{2\pi R} S \tag{3}$$

Период колебаний по формуле Джоуля-Томсона

$$\tau = 2\pi\sqrt{LC} \tag{4}$$

$$\frac{\tau^2 - \tau_0^2}{\tau_0^2} = \frac{\tau^2}{\tau_0^2} - 1 = \frac{\mu}{\mu_0} - 1 = \mu - 1 = \chi \tag{5}$$

Таким образом, получаем

t, C^o	τ , MKC	χ	$1/\chi$	T, K	μ	L , мк Γ н
10,77	10,86101	0,44186	2,26315	283,92	1,44186	2309,86073
12,12	10,8358	0,43517	2,29792	285,27	1,43517	2299,15012
14,14	10,76926	0,41760	2,39461	287,29	1,41760	2270,99978
16,13	10,66155	0,38938	2,56813	289,28	1,38938	2225,79962
18,12	10,4786	0,34211	2,92300	291,27	1,34211	2150,06650
20,11	10,17474	0,26540	3,76782	293,26	1,26540	2027,17858
22,1	9,79891	0,17364	5,75872	295,25	1,17364	1880,18640
24,1	9,52033	0,10786	9,27084	297,25	1,10786	1774,79981
26,1	9,39631	0,07918	12,6280	299,25	1,07918	1728,86086
30,09	9,27918	0,05245	19,0652	303,24	1,05245	1686,02716

Таблица 1: Экспериментальные данные

$$\chi = \frac{\tau^2}{\tau_0^2} - 1\tag{6}$$

Используя данные, полученные при проведении эксперимента, построим графики зависимости $1/\chi(T),\,\chi(T),\,\mu(T)$ и L(T).

Используя эксперементальные данные и графики получаем значение параметра θ_p :

$$\theta_p = 291 \ K = 18 \ C^o$$

Рис. 2: Зависимость обратной магнитной восприимчивости от температуры

Рис. 3: Графики зависимости магнитной восприимчивости и магнитной проницаемости от температуры

Рис. 4: Зависимость индуктивности от температуры