# Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

March 24, 2011

### Today:

- Non-linear regression
- Artificial neural networks
- · Backpropagation
- · Cognitive modeling
- · Deep belief networks

### Reading:

- Mitchell: Chapter 4
- · Bishop: Chapter 5

## Artificial Neural Networks to learn f: X → Y

- · f might be non-linear function
- X (vector of) continuous and/or discrete vars
- Y (vector of) continuous and/or discrete vars
- Represent f by <u>network</u> of logistic units
- Each unit is a logistic function

$$unit\ output = \frac{1}{1 + exp(w_0 + \sum_i w_i x_i)}$$

- MLE: train weights of all units to minimize sum of squared errors of predicted network outputs
- MAP: train to minimize sum of squared errors plus weight magnitudes





## Connectionist Models

### Consider humans:

- $\bullet$  Neuron switching time  $\tilde{\ }$  .001 second
- $\bullet$  Number of neurons  $\tilde{\ }$   $10^{10}$
- Connections per neuron  $\sim 10^{4-5}$
- $\bullet$  Scene recognition time  $\tilde{\ }$  .1 second
- 100 inference steps doesn't seem like enough
- $\rightarrow$  much parallel computation

Properties of artificial neural nets (ANN's):

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process

## Sigmoid Unit



 $\sigma(x)$  is the sigmoid function

$$\frac{1}{1+e^{-x}}$$

Nice property:  $\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$ 

We can derive gradient decent rules to train

- One sigmoid unit
- Multilayer networks of sigmoid units  $\rightarrow$  Backpropagation

# M(C)LE Training for Neural Networks

Consider regression problem f:X→Y, for scalar Y

$$y = f(x) + \varepsilon$$
 assume noise  $N(0, \sigma_{\varepsilon})$ , iid deterministic

· Let's maximize the conditional data likelihood

$$W \leftarrow \arg\max_{W} \ \ln\prod_{l} P(Y^{l}|X^{l},W)$$
 
$$W \leftarrow \arg\min_{W} \underbrace{\sum_{l} (y^{l} - \hat{f}(x^{l}))^{2}}_{\text{Learned}}$$
 
$$\text{neural network}$$

# MAP Training for Neural Networks

Consider regression problem f:X→Y, for scalar Y

$$y = f(x) + \varepsilon$$
 noise  $N(0, \sigma_{\varepsilon})$  deterministic

Gaussian 
$$P(W) = N(0,\sigma I)$$

$$W \leftarrow \arg \max_{W} \text{ In } P(W) \prod_{l} P(Y^{l}|X^{l},W)$$

$$W \leftarrow \arg \min_{W} \left[ c \sum_{i} w_{i}^{2} \right] + \left[ \sum_{l} (y^{l} - \hat{f}(x^{l}))^{2} \right]$$

$$\ln P(W) \iff c \sum_{i} w_{i}^{2}$$

## Error Gradient for a Sigmoid Unit



$$\begin{split} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\ &= \sum_{d} (t_d - o_d) \left( -\frac{\partial o_d}{\partial w_i} \right) \\ &= -\sum_{d} (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i} \end{split}$$

But we know: 
$$\frac{\partial o_d}{\partial net_d} = \frac{\partial \sigma(net_d)}{\partial net_d} = o_d(1 - o_d)$$
$$\frac{\partial net_d}{\partial w_i} = \frac{\partial (\vec{w} \cdot \vec{x}_d)}{\partial w_i} = x_{i,d}$$

So:

$$\left(\frac{\partial E}{\partial w_i} = -\sum_{d \in D} (t_d - o_d) o_d (1 - o_d) x_{i,d}\right)$$

$$x_d = input$$

t<sub>d</sub> = target output

o<sub>d</sub> = observed unit output

w<sub>i</sub> = weight i

### Gradient Descent



Gradient

$$\nabla E[\vec{w}] \equiv \left[ \frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

## Incremental (Stochastic) Gradient Descent

### Batch mode Gradient Descent: Do until satisfied



- 1. Compute the gradient  $\nabla E_D[\vec{w}]$
- 2.  $\vec{w} \leftarrow \vec{w} \eta \nabla E_D[\vec{w}]$

# → Incremental mode Gradient Descent: Do until satisfied

- $\bullet$  For each training example d in D
  - 1. Compute the gradient  $\nabla E_d[\vec{w}]$
  - 2.  $\vec{w} \leftarrow \vec{w} \eta \nabla E_d[\vec{w}]$

$$E_D[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$E_d[\vec{w}] \equiv \frac{1}{2}(t_d - o_d)^2$$

Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if  $\eta$  made small enough

## Backpropagation Algorithm (MLE)



- Initialize all weights to small random numbers. Until satisfied, Do
  - For each training example, Do
    - 1. Input the training example to the network and compute the network outputs
    - 2. For each output unit k

$$\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k)$$

3. For each hidden unit h

where

$$\delta_h \leftarrow o_h(1-o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

4. Update each network weight  $w_{i,j}$ 





x<sub>d</sub> = input

t<sub>d</sub> = target output

o<sub>d</sub> = observed unit

output

w<sub>ij</sub> = wt from i to j





# **Dealing with Overfitting**



e.g. the n that minimizes error rate of neural net over future data

# **Dealing with Overfitting**

Our learning algorithm involves a parameter n=number of gradient descent iterations How do we choose n to optimize future error?



- Separate available data into <u>training</u> and <u>validation</u> set
- · Use training to perform gradient descent
- n ← number of iterations that optimizes <u>validation</u> set error
- → gives unbiased estimate of optimal n (but a <u>biased</u> estimate of true error)

# K-Fold Cross Validation

Idea: train multiple times, leaving out a disjoint subset of data each time for test. Average the test set accuracies.

Partition data into K disjoint subsets

For k=1 to K

testData = kth subset

h ← classifier trained\* on all data except for testData
 accuracy(k) = accuracy of h on testData

end

FinalAccuracy = mean of the K recorded testset accuracies

\* might withhold some of this to choose number of gradient decent steps

## Leave-One-Out Cross Validation

This is just k-fold cross validation leaving out one example each iteration

Partition data into K disjoint subsets, <u>each containing one example</u>

For k=1 to K

testData = kth subset

 $\textbf{h} \leftarrow \textbf{classifier trained*} \ \textbf{on all data except for testData}$ 

accuracy(k) = accuracy of h on testData

end

FinalAccuracy = mean of the K recorded testset accuracies

<sup>\*</sup> might withhold some of this to choose number of gradient decent steps

## Expressive Capabilities of ANNs

#### Boolean functions:

- Every boolean function can be represented by network with single hidden layer
- but might require exponential (in number of inputs) hidden units

### Continuous functions:

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer [Cybenko 1989; Hornik et al. 1989]
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988].

## Learning Hidden Layer Representations



### A target function:

| Output   |
|----------|
| 10000000 |
| 01000000 |
| 00100000 |
| 00010000 |
| 00001000 |
| 00000100 |
| 00000010 |
| 00000001 |
|          |

Can this be learned??











