

Azure Machine Learning

Typical Machine Learning Workflow

Typical Machine Learning Workflow

How to deal with

missing values?

	Data Processing	Model Building and Selection	Hyperpar	rameter Tuning	Evaluate and Select
•	ID Credit Given Gender Education Marital Status Default?	 Logistic Regression Boosted Decision Tree Decision/Random Forest Support Vector Machines Deep Learning 	Max DeSplits p	nce er of trees	Select Best model based on the goal
	Which Features to select?	 Which Algorithm to Select? 	• How to	o tune the eters?	 Compare the goals

Azure AutoML

Define Goal

Constraints

Rank	Run	Accuracy
1	Run 5	92%
2	Run 3	91%
3	Run 2	82%
4	Run 4	74%
5	Run 1	62%

e on ngen.

Note on norm_micro_recall

© litesh Khull

 $Recall = \frac{Correct\ Predictions\ of\ the\ class}{Total\ Actual\ Observations\ of\ the\ class}$

$$Recall_{(C2)} = \frac{46}{46 + 66} = 0.4107$$

$$Recall_{(C1)} = \frac{253}{253 + 115} = 0.687$$

Macro Recall

Predicted

$$Recall = \frac{Correct\ Predictions\ of\ the\ class}{Total\ Actual\ Observations\ of\ the\ class}$$

66

C2

$$Recall_{(C2)} = \frac{46}{46 + 66} = 0.4107$$

$$Recall_{(C1)} = \frac{253}{253 + 115} = 0.6875$$

$$macro\ recall = \frac{Recall_{C1} + Recall_{C2}}{Number\ of\ classes} = \frac{0.4107 + 0.6875}{2} = 0.5491$$

46

Normalized Macro Recall

Predicted

 $Recall = \frac{Correct\ Predictions\ of\ the\ class}{Total\ Actual\ Observations\ of\ the\ class}$

$$Recall_{(C2)} = \frac{46}{46 + 66} = 0.4107$$

Actual

$$Recall_{(C1)} = \frac{253}{253 + 115} = 0.6875$$

$$macro\ recall = 0.5491$$

$$norm\ macro\ recall = rac{macro\ recall\ - R}{1-R}$$

$$R = \frac{1}{C}$$
 $C \rightarrow Number\ of\ classes$

Normalized Macro Recall

Predicted

 $Recall = \frac{Correct\ Predictions\ of\ the\ class}{Total\ Actual\ Observations\ of\ the\ class}$

$$Recall_{(C2)} = \frac{46}{46 + 66} = 0.4107$$

$$Recall_{(C1)} = \frac{253}{253 + 115} = 0.6875$$

 $macro\ recall = 0.5491$

$$norm\ macro\ recall = rac{macro\ recall\ - R}{1-R} = rac{0.5491\ - 0.5}{1-0.5} = 0.0982$$

Normalized Macro Recall

C1

368

112

Predicted

C2

0

Actual

C1

C2

0

$$Recall_{(C1)} = \frac{368}{368 + 0} = 1$$

$$Recall_{(C2)} = \frac{0}{0+112} = 0$$
 $macro\ recall = 0.5$
 $0.5 - 0.5$

$$norm\ macro\ recall = \frac{0.5\ -0.5}{1\ -0.5} = 0$$

Predicted

C1

0

368

C2

0

112

$$Recall_{(C1)} = \frac{368}{368 + 0} = 1$$

$$Recall_{(C2)} = \frac{112}{112 + 0} = 1$$

 $macro\ recall = 1$

$$norm\ macro\ recall = \frac{1-0.5}{1-0.5} = 1$$

Azure Machine Learning

Thank You..!!