Nonlinear resistor and harmonics 3. Let v be the voltage across the nonlinear resistor whose characteristic is $v = 50i^3$

Calculate the voltage v when a current $i = 0.01 \cos 377t$ flows through the nonlinear resistor (express the result as a sum of sinusoids). What frequencies are present in the output?

Imaginary natural frequencies and steady-state response 8. The circuit shown in Fig. P7.8 is made of linear time-invariant elements. The input is e_s , and the response is v_c . Knowing that $e_s(t) = \sin 2t$ volts, and at time t = 0 the state is $i_L = 2$ amp and $v_c = 1$ volt, calculate the complete response.

Fig. P7.8

Phasor diagram 15. Assuming $v_c(t) = \cos 2t$, construct a phasor diagram showing all voltages and currents indicated (see Fig. P7.15). Find the sinusoidal steady-state voltage $e_1(t)$. (Express it as a real-valued function of time.)

Fig. P7.15

Ladder circuit and network functions

- 19. For the ladder circuit shown in Fig. P7.19,
- a. Determine the driving point admittance $Y(j\omega)$.
- b. Calculate the steady-state current i_1 due to the sinusoidal voltage source $e_s(t) = 2 \cos 2t$.
- c. Determine the transfer admittance $Y_{21}(j\omega) = I_2/E_s$ where I_2 and E_s are phasors which represent the sinusoidal current i_2 and sinusoidal voltage e_s , respectively.
- d. Calculate the steady-state current i2.

Fig. P7.19

Mesh analysis

22. Determine the sinusoidal steady-state current in the inductor and the sinusoidal steady-state voltage across the 1-farad capacitor for the circuit shown in Fig. P7.22. The input voltage source is $e_s(t) = \cos 2t$.

Fig. P7.22

Node analysis

23. Change the series connection of the voltage source and the resistor in the circuit of Fig. P7.22 to the parallel connection of a current source and a resistor. Use node analysis to determine the sinusoidal steady-state current in the inductor and the sinusoidal steady-state voltage across the 1-farad capacitor.

تمرین کامپیوتری:

۱- با استفاده از اسپایس مسأله 8 را حل کنید.

۲- با استفاده از اسپایس مسأله 22 را حل کنید. (برای تحلیل ac)

۳- با استفاده از متلب مسأله 22 را حل كنيد. (براى حل معادلات)