Subjectul A. MECANICĂ

Nr. item	Soluţie/Rezolvare
III.a.	
	Lucrul mecanic al forței de frecare: $L_f = -\mu \cdot N \cdot d$
	Stabilirea expresiei forței normale de apăsare: $N=m\cdot g-F_t\cdot\coslpha$
	Rezultat final: $L_f = -\mu \cdot (m \cdot g - F_t \cdot \cos \alpha) \cdot d = -200J$
b.	
	Aplicarea teoremei variației energiei cinetice: $\Delta E_c = L_{total} = L_f + L_{tr.}$; $\Delta E_c = m \cdot v^2 / 2$
	Exprimarea lucrului mecanic al forței de tracțiune: $L_{tr} = F_t \cdot d \cdot \cos lpha$
	Rezultat final: $v = \sqrt{\frac{2 \cdot (F_t \cdot d \cdot \cos \alpha + L_f)}{m}} \cong 16,4 m/s$
C.	Fundamental D. F.
	Exprimarea puterii: $P = F_t \cdot v_m \cdot \cos \alpha$
	Determinarea vitezei medii: $v_m = v/2$
d.	Rezultat final: $P \cong 5674,4 W$
u.	aplicarea teoremei variației energiei cinetice: $\Delta E_{G}^{'} = L_{f}^{'}$;
	$L'_{f} = -\mu \cdot m \cdot g \cdot x; \Delta E'_{c} = -m \cdot v^{2} / 2$
	Rezultat final: $x = v^2 / (2 \cdot \mu \cdot g) \cong 67,24 m$