Коммутативная алгебра.

1 Идеалы

Все кольца будут коммутативными $(1 \neq 0)$. R по умолчанию кольцо. Идеал считаем отличным от всего кольца.

Определение 1.1. Идеал называется *максимальным*, если он не содержится ни в каком другом идеале.

Лемма Цорна. Если в частично упорядоченном множестве M для всякого линейного упорядоченного подмножества существует верхняя грань, то в M существует максимальный элемент.

Теорема 1.1. Каждый идеал содержится в каком-то максимальном.

Доказательство. Рассмотрим какую-то цепочку вложенных идеалов, там есть верхняя грань. Тогда по <u>лемме Цорна</u> есть максимальный элемент. \Box

Задача 1.1. Пусть I, J — идеалы. Докажите, что $I \cup J$ — идеал тогда и только тогда, когда один из этих идеалов вкладывается в другой.

Доказательство. Предположим противное, тогда существует элемент $i \in I, i \notin J$ и такой элемент $j \in J, j \notin I$. Тогда $i + j \notin I \cup J$.

Напоминание. Для любого необратимого элемента существует содержащий его илеал.

Определение 1.2. Кольцо называется *покальным (полулокальным)*, если в нем ровно один (конечно) максимальный идеал.

Предложение 1.1. Пусть $\mathfrak{m} \subset R$ — идеал. Если любое $x \in R \backslash \mathfrak{m}$ обратимо, тогда кольцо локально, а \mathfrak{m} — максимальный.

Доказательство. Пусть I — какой-то другой идеал. Он не содержит обратимых элементов, следовательно, содержится в \mathfrak{m} , то есть \mathfrak{m} — максимальный и единственный среди максимальных.

Предложение 1.2. Пусть \mathfrak{m} — такой максимальный идеал, что любой элемент из множества $1+\mathfrak{m}$ обратим, тогда (R,\mathfrak{m}) — локальное.

Доказательство. Докажем, что выполнено условие предыдущего предложения. Пусть $x \in R \backslash \mathfrak{m}$, тогда сущетвует такие $t \in \mathfrak{m}$ и $y \in R$, что xy + t = 1 (потому что $(\mathfrak{m}, x) = R$). Таким образом, xy обратимо, а значит, x — тоже.

 \Box

Определение 1.3. Идеал $\mathfrak p$ называется *простым*, если для любого $ab \in \mathfrak p$ или $a \in \mathfrak p$, или $b \in \mathfrak p$.

Напоминание. Идеал прост, если и только если $R \setminus \mathfrak{p}$ — область целостности.

Следствие 1.1. Любой максимальный идеал является простым.

Замечание 1.1. Но существуют простые идеалы, не являющиеся максимальными. Например, $\langle x \rangle \in \mathbb{k}[x,y]$ прост, но не максимален.

2 Радикалы

Определение 2.1. Радикалом идеала I называется $\sqrt{I} = \{x \in R \mid x^n \in I\}$. Замечание 2.1. Это, кстати, тоже идеал.

Определение 2.2. Подмножество $S \subset R$ называется *мультипликативным*, если выполнены следующие свойства:

- **(1)** если $x, y \in S$, то $xy \in S$;
- (2) $1 \in S$.

Теорема 2.1. Пусть S — мультипликативно, I — идеал. $I \cap S = \emptyset$. Тогда существует такой простой идеал P, что $I \subset P$ и $S \cap P = \emptyset$.

Доказательство. По лемме Цорна в множестве идеалов, содержащих I и не пересекающихся с S, есть максимальный элемент P.

Докажем, что P прост. Действтельно, пусть так случилось, что $x,y \notin P$.

Тогда $(P+xR)\cap S\neq\varnothing$ и $(P+yR)\cap S\neq\varnothing$ в силу максимальности P. Тогда по мультипликативности $(P+xR)(P+yR)\cap S\neq\varnothing$. Но отсюда следует, что $(P+xyR)\cap S\neq\varnothing$, значит $xy\notin P$ тоже.

Теорема 2.2.
$$\sqrt{I}=\bigcap_{I\subset \mathfrak{p}}\mathfrak{p},$$
 где $\mathfrak{p}-$ простой.

Доказательство. Пусть $I\subset \mathfrak{p},$ тогда $x^n\in I\subset \mathfrak{p},$ тогда $x\in \mathfrak{p}.$ То есть все элементы \sqrt{I} содержатся в правой части.

Осталось доказать, что справа нет ничего лишнего. Пусть элемент $x \notin \sqrt{I}$. Тогда мультипликативное множество $S = \left\{1, x, x^2, \dots, \right\}$ не пересекается с I и по предыдущей теореме существует идеал \mathfrak{p} , разделяющий их.

Определение 2.3. *Нильрадикалом* называется $nil(R) = \sqrt{0}$ — множество всех *нильпотентных* элементов.

Замечание 2.2. В силу теоремы $2.2 \ nil(R) = \bigcap_{\mathfrak{p}} \mathfrak{p}$, где \mathfrak{p} — простой.

Определение 2.4. Если nil(R) = 0, то R называется pedyцированным, а

взятие фактора $R_{red} = R \setminus nil(R) - pedyкцией$.

Определение 2.5. Paдикалом Джекобсона называется $J(R) = rad(R) = \bigcap_{m} \mathfrak{m}$, где \mathfrak{m} — максимальный идеал.

Теорема 2.3. $x \in J(R)$ тогда и только тогда, когда 1-xy обратим для любого $y \in R$.

Доказательство. Пусть $x \in rad(R)$ и 1-xy необратим. Тогда (1-xy) — идеал, содержащийся в некотором максимальном \mathfrak{m} . Но тогда $1 \in \mathfrak{m}$.

Обратно, предположим, такое $x \notin rad(R)$. Тогда существует такой максимальный идеал \mathfrak{m} , что $x \notin \mathfrak{m}$. Тогда $\mathfrak{m} + xR = R$ и 1 = u + xy (для некоторых $u \in \mathfrak{m}, y \in R$). Тогда $1 - xy = u \in m$ — необратимый, что и требовалось.

П

3 Операции над идеалами

Задача 3.1. Если I + J = (1), то $IJ = I \cap J$.

Доказательство. Очевидно, что $IJ \subset I \cap J$. С другой стороны,

$$(I+J)(I\cap J)=I(I\cap J)+J(I\cap J)\subset IJ.$$

Первое равенство верно в силу дистрибутивности

$$(a+b)c = ac + bc.$$

Определение 3.1. Идеалы I,J называются *взаимно простыми*, если I+J=(1).

Китайская теорема об остатках. Пусть I_1,I_2,\ldots,I_n — идеалы и гомоморфизм $\varphi:R\to\prod R\backslash I_i$. Тогда

- (1) Если $I_i + I_j = (1)$, то $\bigcap I_i = \prod I_i$;
- (2) φ сюръективно тогда и только тогда, когда $I_i + I_j = (1)$;
- (2) φ инъективно тогда и только тогда, когда $\bigcap I_i = (0)$.

Prime Avoidance. Пусть $I \subset R$ содержится в $\bigcup_{i=1}^n p_i$, где p_i — идеалы, последние (n-2) из которых просты. Тогда $I \subset p_i$ для какого-то i.

• n = 1. Тут и доказывать нечего.

• Выберем $x_i \in p_i \cap I$ и $x_i \notin \bigcup_{j \neq i} p_j$ (иначе побеждаем по предположению индукции).

Теперь случай для n=2 тоже стал тривиальным: $x_1+x_2 \in I$ (противоречие с выбором x_i).

Пусть $n\geqslant 3$ и $x=x_1x_2\dots x_{n-1}+x_n\in I,$ но $x\notin p_n$ (из простоты p_n) и $x\notin p_j$ (в силу выбора x_n).

 \Box

 \Box

Предложение 3.1. (1) Пусть I_1, \ldots, I_n — идеалы, p — такой простой идеал, что $\bigcap I_i \subset p$ тогда $I_i \subset p$ для некоторого i.

(2) Если $\bigcap I_i = p$, то $I_i = p$ для некоторого i.

Доказательство. (1) Предположим противное, тогда для любого i существует $x_i \notin p$ и $x_i \in I_i$. Тогда $x_1 x_2 \dots x_n \notin p$.

(2) Если это не так, то и первое равенство не верно.

Определение 3.2. *Частным* идеалов I, J называется множество

$$(I:J) = \{ x \in R \mid xJ \subset I \}.$$

Нетрудно заметить, что это тоже идеал.

Задача **3.2.** (1) $I \subset (I:J)$;

- **(2)** $(I:J)J \subset J;$
- (3) ((I:K):K) = (I:JK) = ((I:K):J);
- **(4)** $(\bigcap I_i : J) = \bigcap (I_i : J);$
- **(5)** $(I: \sum J_i) = \bigcap (I: J_i)$.

Пусть $f:R \to S$ — гомоморфизм колец. Пусть $J \subset S$ — идеал.

Определение 3.3. *Сужением* идеала J называется $J^c = f^{-1}(J)$ — тоже идеал.

Замечание 3.1. В другую сторону не работает: f(I) в общем случае — не идеал (например, вложение \mathbb{Z} в \mathbb{Q}).

Определение 3.4. Расширением идеала I называется $I^e = \{ \sum y_i f(x_i) \mid x_i \in I, y_i \in S \}$ — тоже идеал (в определении буквально написано, что это идеал, натянутый на образ f(I)).

Задача 3.3. (1) $I \subset I^{ec}, J \supset J^{ce};$

- (2) $I^e = I^{ece}, J^c = J^{cec};$
- (3) Пусть C множество идеалов в R, которые являются сужениями, а E множество идеалов в S, которые являются расширениями. Тогда

$$C = \{ I \in R \mid I^{ec} = I \}, E = \{ J \in S \mid J^{ce} = J \}$$

Кроме того, отображение $I\mapsto I^e$ является биекцией $C\to E$ с обратным отображением $J\mapsto J^c$.

4 Модули

Определение 4.1. Пусть M — это R — модуль. Aннулятором M называется Ann $(M) = \{x \in R \mid xM = 0\} = (0:M)$.

 $Ann(M) = \{x \in K \mid xM = 0\} = \{0 . M\}.$ Определение 4.2. Padukanom модуля M называется $rad(M) = \bigcap_{Ann(M) \subset m} m$, где m — максимальный идеал.

Замечание 4.1. Ясно, что **(1)** $rad(M)/Ann(M) \simeq rad(R/Ann(M))$.

- (2) Если N подмодуль M, то $Ann(M) \subset Ann(N)$ и $rad(M \subset rad(N))$.
- (3) $Ann(M) \subset Ann(M/N)$ u $rad(M) \subset rad(M/N)$.

Определение 4.3. M называется (nолу)локальным, если R/Ann(M) (полу) локально.

Определение 4.4. Модуль называется *строгим*, если у него нулевой аннулятор.

Предложение 4.1. Пусть $x \in rad(M), m \in M$. Если (1+x)m = 0, то m = 0

Доказательство. Рассмотрим идеал I=(AnnM,1+x). Если I=R, то для некоторых $n\in AnnM,\,y\in R$ выполнено n+(1+x)y=1. Тогда

$$m = 1 \cdot m = nm + y(1+x)m = 0,$$

что и требовалось.

В противном случае I содержится в некотором максимальном идеале \mathfrak{m} . По условию $x \in \mathfrak{m}$, а по построению $1 + x \in \mathfrak{m}$, то есть $\mathfrak{m} = R$, противоречие.

Напоминание. Модуль M конечно порожден тогда и только тогда, когда $M \simeq R^n/N, \, N \subset R^n$ — подмодуль.

Пусть $A \in Mat_{n \times n}(R), P_A(t)$ — характеристический многочлен.

Теорема Гамильтона-Кэли. Пусть M — модуль, порожденный m_1,\ldots,m_n . Отображение $\varphi\in End(M)$ таково, что $\varphi(m_i)=\sum\limits_{j=1}^nA_i^jm_j$. Тогда $P_A(\varphi)=0$.

Доказательство. Напишем тождество:

$$(tE - A)(tE - A)^* = P_A(t)E,$$

звездочкой обозначается сопряженная матрица (та, которая из миноров состоит). Подставим t=A, получим то, что хотелось.

Следствие 4.1. Пусть M — конечно порожденный модуль, I — идеал. Тогда M = IM тогда и только тогда, когда существует такое $a \in I$, что (1+a)M = 0.

Доказательство. Пусть M=IM. Тогда существует матрица A, выражающая образующие друг через друга с коэффициентами из I. Пусть $P_A(t)=t^n+c_{n-1}t^{n-1}+\ldots+c_0$. Положим $a=c_0+\ldots+c_{n-1}$. Тогда $(1+a)M=P_A(Id)M=0$ (последнее верно по теореме Гамильтона-Кэли).

Обратно, если (1+a)M=0, то m=-am. То есть $M\subset MI$.

Следствие 4.2. M — конечно порожденнный модуль, $\varphi \in End(M)$. Если φ сюръективное, то это изоморфизм.

П

Доказательство. Рассмотрим кольцо P=R[x], пусть x действует на M как φ . Таким образом, M-P – модуль. Применим предыдущее следствие к $I=(x)\subset P$. Из условия следует, что M=IM. Тогда существует такое $x\cdot g(x)=a\in I$, что (1+a)M=0. Таким образом, $Id+\varphi g(\varphi)=0$. Обратное отображение существует (это в точности $-g(\varphi)$).

Следствие 4.3. Пусть R^n — свободный модуль, тогда любые его n образующих v_1,\ldots,v_n — свободный базис.

Доказательство. Рассмотрим сюръекцию, переводящую свободные образующие e_i в данные v_i . По следствию 4.2 эта сюръекция — изоморфизм. Но тогда никаких соотношений на образующие нет(иначе было бы ядро).

Следствие 4.4. Пусть m, n — натуральные. Тогда $R^n \simeq R^m$ только тогда, когда n=m.

Доказательство. Пусть без ограничения общности $m\leqslant n$. Дополним m образующих в R^m n-m нулями и посмотрим на образ получившейся системы при изоморфизме. Получилась снова система образующих, тогда по следствию 4.3 не может быть нулей.

Лемма Накаямы. Пусть M — конечно порожденный R — модуль, $I \subset rad(M)$ — некоторый идеал. Если IM = M, то M = 0.

Доказательство. По следствию 4.1 существует такое $a \in I$, (1+a)M = 0. Тогда по предложению 4.1 M = 0.

Предложение **4.2.** $N \subset M$, $I \in rad(M)$.

- (1) Если M/N конечнопорожденный и N+IM=M, тогда N=M.
- (2) Если M конечнопорожденный, то $m_1, \ldots m_n$ порождают M тогда и только тогда, когда m'_1, \ldots, m'_n порождают M/IM (штрихи тут обозначают как класс эквивалентности при факторизации, так и некоторых представителей класса).

Доказательство. (1) I(M/N) = (M/N), отсюда по лемме Накаямы (N/M) = 0.

(2) Доказательство прямого утверждения очевидно, докажем обратное. Пусть N — подмодуль, порожденный m'_1,\ldots,m'_n . Поскольку M — конечнопорожденный, M/N — тоже. Тогда N+IM=M и по предыдущему утверждению N=M.

5 Произведения и прямые суммы модулей.

Пусть $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ — семейство R-модулей.

Определение 5.1. Произведением называется множество

$$\prod_{\lambda \in \Lambda} M_{\lambda} = \{ (m_{\lambda}) \mid m_{\lambda} \in M_{\lambda} \}.$$

Замечание 5.1. $\operatorname{Hom}(R^{\oplus \Lambda}, M) = \prod_{\lambda \in \Lambda} M.$

Определение 5.2. Прямой суммой называется множество

$$\bigoplus_{\lambda \in \Lambda} M_{\lambda} = \big\{ (m_{\lambda}) \; \big| \; m_{\lambda} \in M_{\lambda}, \; \text{где лишь конечное число} m_{\lambda} \; \text{отлично от нуля} \big\}.$$

Определение 5.3. *Каноническая проекция* $\pi_k:\prod M_\lambda\to M_k$ определяется естественным образом.

Определение 5.4. Каноническое вложение $i_k:M_k\to\bigoplus M_\lambda$ тоже определяется естественным образом.

6 Точные последовательности

Тут мы обычно считаем модули конечно порожденными.

Определение 6.1. Последовательность R-модулей и гомоморфизмов

$$\dots M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \dots$$

называется точной, если $\operatorname{im}(f_i) = \ker(f_{i+1})$.

Пример 6.1. (1) $0 \to M \xrightarrow{g} M'$ точна тогда и только тогда, когда g инъективен.

- (2) $M \xrightarrow{f} M' \to 0$ точна тогда и только тогда, когда f сюръективен.
- (3) $0 \to M' \xrightarrow{g} M \xrightarrow{f} M'' \to 0$ точна тогда и только тогда, когда g инъективен, f сюръективен и $\operatorname{im}(g) = \ker(f)$. Такая последовательность называется короткой точной последовательностью.

Замечание 6.1. Пусть дано семейство $0 \to M_\lambda' \xrightarrow{g} M_\lambda \xrightarrow{f} M_\lambda'' \to 0$ коротких точных последовательностей. Тогда

$$0 \to \bigoplus_{\lambda \in \Lambda} M_{\lambda}' \xrightarrow{g} \bigoplus_{\lambda \in \Lambda} M_{\lambda} \xrightarrow{f} \bigoplus_{\lambda \in \Lambda} M_{\lambda}'' \to 0$$

И

$$0 \to \prod_{\lambda \in \Lambda} M_{\lambda}' \xrightarrow{g} \prod_{\lambda \in \Lambda} M_{\lambda} \xrightarrow{f} \prod_{\lambda \in \Lambda} M_{\lambda}'' \to 0$$

— тоже точные.

Определение 6.2. Короткая точная последовательность

$$0 \to M' \xrightarrow{g} M \xrightarrow{f} M'' \to 0$$

называется расщепленной, если существует изоморфизм $\varphi: M \xrightarrow{\cong} M' \oplus M''$, для которого $\varphi g = i_{M'}, f = \pi_{M''} \varphi$.

Предложение 6.1. Пусть дана точная последовательность $M' \xrightarrow{g} M \xrightarrow{f} M''$. Следующие утверждения эквивалентны:

- (1) Её дополнение до короткой точной расщепленная.
- (2) Существует такое $\rho: M \to M'$, что $\rho g = \mathrm{id}_{M'}$ (ретракция) и f сюръекция.
 - (3) Существует такое $\sigma: M'' \to M$, что $f\sigma = \mathrm{id}_{M''}$ (сечение) и g инъекция.

Доказательство. (1) \Rightarrow (2) В качестве такого ρ подойдет $\rho = \pi_{M'} \varphi$, сюръективность f в силу точности последовательности.

- $(2)\Rightarrow (3)$ g инъективно (если g(m)=0, то $\mathrm{id}(m)=0$). Ясно, что $M/\ker(f)\simeq M''$. Тогда можно выбрать подмодуль $N\subset M$, для которого $f:N\stackrel{\simeq}{\to} M''$. Пусть тогда σ отправляет элементы M'' в их представителей в N.
- $(3)\Rightarrow (1)$ В силу предыдущих обозначений $M\simeq (M/N)\oplus N$, причем $\sigma:M''\xrightarrow{\simeq}N$ и $g:M'\xrightarrow{\simeq}(M/N)$. Если два изоморфизма склеить, получится искомый φ .

Предложение 6.2. Последовательность $M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$ точна тогда и только тогда, когда точна $0 \to \operatorname{Hom}(M'',N) \xrightarrow{\bar{\beta}} \operatorname{Hom}(M,N) \xrightarrow{\bar{\alpha}} \operatorname{Hom}(M',N)$, где $\bar{\alpha}(f) = f\alpha, \; \bar{\beta}(f) = f\beta.$

Доказательство. Из первого второе следует очевидно.

Теперь, $\bar{\beta}$ инъективно, $\operatorname{im}(\bar{\beta}) = \ker(\bar{\alpha})$. Тогда β сюрьективно. Теперь нужно показать, что $\ker \beta = \operatorname{im} \alpha$. Положим N = M'', рассмотрим $f = \operatorname{id}_{M''} \in \operatorname{Hom}(M'', M'')$. По условию $0 = \overline{\alpha}(\bar{\beta}(f)) = \overline{\alpha}(\beta) = \beta \alpha$. Таким образом, $\operatorname{im}(\alpha) \in \ker(\beta)$.

Положим теперь $N=M/\mathrm{im}(\alpha),\ \varphi\in\mathrm{Hom}(M,N)$ — отображение факторизации. Поскольку $\overline{\alpha}(\varphi)=0$, то существует такое $\psi\in\mathrm{Hom}(M'',N)$, что $\varphi=\overline{\beta}(\psi)=\psi\beta$. То есть в образе ничего лишнего нет.

Предложение 6.3. Последовательность $0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M''$ точна тогда и только тогда, когда точна $0 \to Hom(N.M') \xrightarrow{\bar{\alpha}} Hom(N,M) \xrightarrow{\bar{\beta}} Hom(N,M'')$.

Доказательство. Аналогично доказательству предложения 6.2 здесь будет игра в подбирание N и гомоморфизма.

Определение 6.3. Представлением (конечным) модуля называется точная последовательность $F_1 \to F_0 \to M \to 0$, где F_1, F_0 свободные (конечного ранга).

Предложение 6.4. Пусть R — кольцо, R — модуль, $\{m_{\lambda}\}_{{\lambda}\in\Lambda}$ — семейство образующих. Тогда существует короткая точная последовательность

$$0 \to K \to R^{\oplus \Lambda} \xrightarrow{\alpha} M \to 0,$$

где $\alpha(r_{\lambda}) = m_{\lambda}$, $K = \ker K$. Эта последовательность определяет представление

$$R^{\oplus \Sigma} \to R^{\oplus \Lambda} \xrightarrow{\alpha} M \to 0.$$

Доказательство. Построенная последовательность точна по жизни. Нужно лишь отметить, что Σ — множество индексов образующих ядра K.

Определение 6.4. Модуль P называется npoexmuehum если для любого эпиморфизма $f:N\to M$ и любого гомоморфизма $g:P\to M$ существует такое $h:P\to N,$ что g=fh или диаграмма коммутативна:

Теорема 6.1. Следующие утверждения эквивалентны:

- **(1)** P проективный R модуль;
- (2) любая точная последовательность $0 \to K \to M \to P \to 0$ расщепленная;
- (3) существует такой модуль K, что $K \oplus P$ свободный;

- (4) для каждой точной последовательности $N' \to N \to N''$ последовательность $Hom(P,N') \to Hom(P,N) \to Hom(P,N'')$;
 - **(5)** любое сюрьективное отображение $N \xrightarrow{\beta} N'' \to 0$ индуцирует сюрьекцию $Hom(P,N) \xrightarrow{\overline{\beta}} Hom(P,N'') \to 0.$

Доказательство. (1) \Rightarrow (2) Рассмотрим произвольную точную последовательность

$$0 \to K \xrightarrow{g} M \xrightarrow{f} P \to 0.$$

Для сюръекции f существует сечение $h:P\to M,$ которое делает диаграмму коммутативной:

$$P \xrightarrow{h} M .$$

$$\downarrow_{f}$$

$$\downarrow_{f}$$

$$P$$

Тогда по предложению 6.1 последовательность действительно расщепленная.

- $(2)\Rightarrow (3)$ Рассмотрим K и $M=R^{\oplus \lambda}$ из предложения 6.4 (такой M свободен).
- $(3) \Rightarrow (4)$ Продублируем данную точную поледовательность для всех $\lambda \in \Lambda$:

$$N'_{\lambda} \to N_{\lambda} \to N''_{\lambda}$$
.

В силу замечания 6.1 есть точная последовательность:

$$\prod_{\lambda \in \Lambda} N_{\lambda}' \to \prod_{\lambda \in \Lambda} N_{\lambda} \to \prod_{\lambda \in \Lambda} N_{\lambda}''.$$

А по замечанию 5.1 есть точная последовательность:

$$\operatorname{Hom}(R^{\otimes \Lambda}, N_{\lambda}') \to \operatorname{Hom}(R^{\otimes \Lambda}, N_{\lambda}) \to \operatorname{Hom}(R^{\otimes \Lambda}, N_{\lambda}'').$$

Поскольку $K \oplus P = R^{\otimes \Lambda}$, последнюю точную последовательность пожно расщепить на две, одна из которых икомая.

- $(4) \Rightarrow (5)$ Достаточно положить $N' = \ker \beta$.
- $(5) \Rightarrow (1)$ Следствие того, что диаграмма коммутативна

Лемма Шаунеля. Предположим, что M-R – модуль и есть две точные последовательности

$$\begin{split} 0 \to K_1 \xrightarrow{i_1} P_1 \xrightarrow{\alpha_1} M \to 0, \\ 0 \to K_2 \xrightarrow{i_2} P_2 \xrightarrow{\alpha_2} M \to 0. \end{split}$$

Модули P_1 , P_2 — проективны. Тогда существуют такие вертикальные стрелки, что диаграмма коммутативна:

$$0 \longrightarrow K_1 \oplus P_2 \xrightarrow{i_1 \otimes id_{P_2}} P_1 \oplus P_2 \xrightarrow{(\alpha_1,0)} M \longrightarrow 0$$

$$\simeq \left| \beta \right| \qquad \qquad \simeq \left| \gamma \right| \qquad \simeq \left| id_M \right|$$

$$0 \longrightarrow K_2 \oplus P_1 \xrightarrow{i_1 \otimes id_{P_1}} P_2 \oplus P_1 \xrightarrow{(\alpha_2,0)} M \longrightarrow 0$$

Тогда $K_1 \oplus P_2 = K_2 \oplus P_1$.

Доказательство. Построим коммутативную диаграмму

$$0 \longrightarrow K_1 \oplus P_2 \xrightarrow{i_1 \otimes id_{P_2}} P_1 \oplus P_2 \xrightarrow{(\alpha_1, 0)} M \longrightarrow 0$$

$$\cong \uparrow \lambda \qquad \qquad \cong \uparrow id \qquad \qquad \downarrow id \qquad \downarrow$$

где $L=\ker(\alpha_1,\alpha_2),\ \theta=\begin{pmatrix} 1&\pi\\0&1\end{pmatrix}$ (здесь π — такой гомоморфизм, который существует по проективности, то есть $\alpha_1\pi=\alpha_2$). Изоморфизм λ индуцируется изоморфизмом θ . Чтобы завершить доказательство леммы, нужно нарисовать еще одну точно такую же диаграмму.

Определение 6.5. Модуль называется n*лоским*, если тензорное умножение на него точно.

П

Замечание 6.2. Это значит, что любая точная последовательность при тензорном домножении на него остается точной. Достаточно проверять только для коротких.

Лемма о змейке. Пусть дана коммутативная диаграмма, строчки которой — цепные комплексы $\mathcal{A}, \mathcal{B}, \mathcal{C}$ соответственно, а столбцы, кроме, возможно, первого

(на картинке он скорее (-1)-ый), — короткие точные последовательности.

Тогда существуют такие граничные гомоморфизмы, что длинная последовательность

$$0 \to H_0(\mathcal{A}) \xrightarrow{\hat{h}_0} H_0(\mathcal{B}) \xrightarrow{\hat{l}_0} H_0(\mathcal{C}) \xrightarrow{\hat{\delta}_0} H_1(\mathcal{A}) \xrightarrow{\hat{h_1}} H_1(\mathcal{B}) \xrightarrow{\hat{l}_1} H_1(\mathcal{C}) \xrightarrow{\hat{\delta}_1} H_2(\mathcal{A}) \to$$
— точна.

Доказательство. Достаточно описать построение всех гомоморфизмов. Точность — упражнение, которое рано или поздно должен сделать каждый. Хотя и гомоморфизмы проще самому придумать, чем прочитать.

- (1) Построим \hat{h}_k . Хотелось бы, чтобы это было просто ограничение h_k . Для этого достаточно проверить, что образ переходит в образ, а ядро в ядро. Первое (как и второе) очевидно: если у элемента есть прообраз, то в силу коммутативности можно обойти квадратик в другую сторону.
 - (2) \hat{l}_k получается аналогично ограничением l_k .
- (3) Построим $\hat{\delta}_k: H^k(\mathcal{C}) \to H^{k+1}(\mathcal{A})$. Тут нужно пройти по трем самым естественным уже нарисованным стрелочкам. Выберем $c \in Z^k(\mathcal{C})$. Отображение l_k сюръективно из точности, следовательно, существует такое $b \in B_k$, что $l_k(b) = c$. Поскольку строчки цепные комплексы, то $\gamma_k(c) = 0$. $\beta_k(b) \in B_{k+1}$, поэтому из коммутативности диаграммы и точности столбика следует, что $\beta_k(b) \in \ker(l_{k+1}) = \operatorname{im}(h(k+1))$. Кроме того, h_{k+1} инъективно, поэтому существует и единственное такое $a \in A_{k+1}$, что $h_{k+1}(a) = \beta_k(b)$. Определим $\hat{\delta}_k[c] = [a]$. Мы помним, что была свобода в красных буквах.

Мы почти все сделали. Осталось доказать несколько вещей:

- (a) $a \in Z^{k+1}(\mathcal{A})$. Действительно, $\beta_{k+1}(\beta_k(b)) = 0$ по определению комплекса. Тогда из коммутативности $h_{k+2}(\alpha_{k+1}(a)) = 0$, но h_{k+2} инъективно, поэтому $\alpha_{k+1}(a) = 0$.
- (b) Класс [a] не зависит от выбора прообраза b. Для этого достаточно доказать, что если $b' \in ker(l_k) = im(h_k)$, то $a' \in im(\alpha_k)$. Действительно, тогда найдется такое a^* , что $h_k(a^*) = b'$. Но тогда $a' = \alpha_k(a^*)$, что и требовалось.
- (c) Класс [a] не зависит от выбора представителя . Для этого достаточно показать, что если $c' \in im(\gamma_{k-1})$, то соотетствующий ему прообраз $b^* \in im(\beta_{k-1})$. Действительно, существует такое $c^* \in C_{k-1}$, что $\gamma_{k-1}(c^*)$. В силу точности у c^* существует прообраз $b'' \in B_{k-1}$. Уже по доказанному в пункте (b) класс [a] не зависит от выбора прообраза во второй строке, значит, можно считать, что $l_k(b^*) = c'$.

Замечание, которое нужно увидеть перед тем, как посмотреть на диаграмму. Формально она ни в коем случае не коммутативна. Смотреть на нее надо слоями (каждый из которых по-честному коммутативен): черный слой — доказательство пункта (а) и построение, зеленый слой — доказательство (b), синий слой — доказательство (с).

$$a^* \xrightarrow{\alpha_k} a + \alpha_k(a^*) \xrightarrow{\alpha_{k+1}} \alpha_{k+1}(a) = 0$$

$$\downarrow h_k \qquad \qquad \downarrow h_{k+1} \qquad \qquad \downarrow h_{k+2}$$

$$b'' \xrightarrow{\beta_{k-1}} b^* + b + b' \xrightarrow{\beta_k} \beta_k(b) = h_{k+1}(a) \xrightarrow{\beta_{k+1}} 0$$

$$\downarrow l_{k-1} \qquad \qquad \downarrow l_k \qquad \qquad \downarrow l_{k+1}$$

$$c^* \xrightarrow{\gamma_{k-1}} c' + c = l_k(b) \xrightarrow{\gamma_k} 0$$

7 Алгебры

Пусть R,S — два кольца, $f:R\to S$ — гомоморфизм, M-S — модуль. Тогда про M можно мыслить как про R — модуль: $(r,m)\mapsto f(r)m$. Это называется ограничением скаляров.

Пусть M-R – модуль, расширением скаляров называется S – модуль $S\oplus M$: $(s_1,s_2\oplus m)=s_1s_2\oplus m.$

Определение 7.1. Алгеброй над коммутативным кольцом с 1 называется такой R— модуль \mathcal{A} с умножением: $A \oplus A \to A$, которое ассоциативно; и единичным

элементом $1_{\mathcal{A}}$.

Определение 7.2. Алгебра называется *конечной*, если она конечнопорожденный свободный модуль.

Определение 7.3. Алгебра называется алгеброй конечного типа, если $\mathcal{A} \simeq R[x_1,\ldots,x_n]/I,\ I$ — произвольный идеал.

Определение 7.4. Пусть A_1, A_2 — две R— алгебры. Их тензорное произведение определено естественным образом.

8 Нётеровость

Замечание 8.1. В чуме следующие два утверждения эквивалентны:

- (1) любая возрастающая последовательность стабилизируется;
- (2) в любом подмножестве есть максимальный элемент.

Определение 8.1. Пусть внутри модуля M дана нестрого возрастающая цепь подмодулей $M_0 \subset M_1 \subset \dots$ Если любая такая цепь стабилизируется, то такой модуль называется $n\ddot{e}$ теровым.

Замечание 8.2. В силу замечания 8.1 модуль называется *нётеровым*, если выполнено любое из эквивалентных условий: (1) Любое множество подмодулей имеет максимальный элемент. (2) Любая возрастающая цепочка идеалов стабилизируется. (3) Любой идеал конечно порожден.

Предложение 8.1. В нётеровом кольце любой идеал содержит некоторую степень своего радикала.

Доказательство. Пусть
$$I\subset R$$
 — идеал, e_1,\ldots,e_n — образующие \sqrt{I} . Пусть $e_i^{d_i}\in I$. Тогда $(\sqrt{I})^{\sum d_i}\subset I$.

Следствие 8.1. В нётеровом кольце нильрадикал нильпотентен.

Предложение 8.2. Предположим, последовательность $0 \to M' \to M \to M'' \to 0$ точна. Тогда M нётеров тогда и только тогда, когда M', M'' нётеровы.

Доказательство. Достаточно рассмотреть цепочку в M и её образ и прообраз при гомоморфизмах. Если крайние последовательности стабилизируются, то центральный тоже.

Определение 8.2. Кольцо называется *нётеровым*, если оно нётерово как модуль над самим собой.

Следствие 8.2. Конечнопорожденный модуль над нётеровым кольцом сам нётеров.

Доказательство. Напишем точную последовательность

$$0 \to K \to M \to R^n \to 0.$$

Тогда M — нетеров по предложению 8.2.

Теорема 8.1. Если любой простой идеал конечно порожден, то R — нётерово.

Доказательство. Пусть P — семейство не конечнопорожденных идеалов. По лемме Цорна существует максимальный элемент $I \in P$ (для любой цепочки можем рассмотреть объединение, оно не конечнопорождено, поскольку каждый элемент цепочки не конечнопорожден). I не прост. Значит, существуют такие $a,b \notin I$: $ab \in I$. Идеал $\langle I,a \rangle$ конечнопорожден (больше максимального в P), $(x_i + \omega_i a)$ — его порождающие, $x_i \in I$. Таким образом, $\langle a, x_1, x_2, \ldots, x_n \rangle = \langle I,a \rangle$. Пусть $z \in I$. Тогда $z = \sum b_i x_i + xa$. Значит, $xa \in I$ и $x \in (I:(a)) \supset I + Rb \supset I$. Таким образом, $(I:a) = \langle u_1, \ldots, u_m \rangle$. Следовательно, модуль $I = \langle x_1, \ldots, x_n, u_1, \ldots, u_m \rangle$.

Теорема Гильберта о базисе. R — нётерово кольцо, тогда R[x] — тоже.

Доказательство. Пусть I — не конечнопорожденный идеал. Рассмотрим ненулевой многочлен минимальной степени $f_i \in I/I_i, I_1 = \{0\}, I_k = \langle f_1, \dots, f_{k-1} \rangle$. Посмотрим на старшие коэффициенты этих многочленов. Они содержатся в конечнопорожденном идеале в R. Тогда начиная с какого-то индекса они выражаются через первые k. Таким образом, f_{k+1} многочлен можно уменьшить.

9 Артиновость

Определение 9.1. Модуль называется *артиновым*, если в нем любая убывающая цепочка подмодулей стабилизируется.

Замечание 9.1. Для артиновых модулей верен аналог предолжения 8.2.

Предложение 9.1. Любой простой идеал в артиновом кольце максимален.

Доказательство. Пусть $\mathfrak{p} \subset R$ — простой, тогда $A = R/\mathfrak{p}$ — артинова область целостности. Рассмотрим $x \in A$, покажем, что он обратим.

В силу артиновости для некоторого n $(x^n) = (x^{n+1})$. Тогда для некоторого $y \in R$ $x^n = x^{n+1}y$, это и есть обратный элемент.

Следствие 9.1. nil(R) = J(R). Более того, этот идеал нильпотентен.

Доказательство. Первое утверждение следует из совпадения максимальных и простых идеалов.

Для доказательства второго утверждения рассмотрим цепочку $(nil(R))^i$, она стабилизируется:

$$\mathfrak{a} = (nil(R))^k = (nil(R))^{k+1} = \dots$$

Рассмотрим множество Σ , состоящее из тех идеалов \mathfrak{b} , для которых $\mathfrak{a}\mathfrak{b} \neq 0$. Оно непусто, потому что сам \mathfrak{a} там лежит. Значит, можно выбрать минимальный элемен, он обязательно имеет вид $(x) \subset R$. Поскольку

$$(x\mathfrak{a})\mathfrak{a} = x\mathfrak{a}^2 = x\mathfrak{a} \neq 0,$$

то $(x\mathfrak{a})=(x)(\mathfrak{b}$ силу минимальности). Следовательно, для некоторого $a\in\mathfrak{a}$ выполнено x=ax. Тогда

$$x = ax = a^2x = a^3x = \dots = 0.$$

Предложение 9.2. Максимальных идеалов в артиновом кольце конечно.

Доказательство. Рассмотрим множество всевозможных конечных пересечений максимальных идеалов, там есть минимум $\mathfrak{m}_1 \cap \ldots \cap \mathfrak{m}_k$. Тогда для любого максимального идеала \mathfrak{m} выполнено

$$\mathfrak{m}_1 \cap \ldots \cap \mathfrak{m}_k \subset \mathfrak{m}$$
.

По предложению $3.1 \ \mathfrak{m} = \mathfrak{m}_{\mathfrak{j}}$ для некоторого j.

10 Длина модуля

Определение 10.1. Модуль называется *простым*, если он не имеет собственных подмодулей.

Определение 10.2. Композиционным рядом модуля M называется конечная последовательность подмодулей $0=M_0\subsetneq M_1\subsetneq\ldots\subsetneq M_{n-1}\subsetneq M_n=M,$ где M_i/M_{i-1} — простой модуль.

Определение 10.3. Длиной модуля $\ell(M)$, имеющего композиционный ряд, называется минимальная из длин композиционных рядов n.

Лемма 10.1. Если модуль M представим в виде композиционного ряда, то любой его собственный подмодуль N имеет меньшую длину:

$$\ell(N) < \ell(M)$$
.

Доказательство. Пусть $N_i = M_i \cap N$.

$$N_i/N_{i-1} = (M_i \cap N)/(M_{i-1} \cap N) \subset M_i/M_{i-1}.$$

В силу простоты длина N_i/N_{i-1} не превосходит 1. Предположим, $N_i/N_{i-1}=M_i/M_{i-1}$ при всех i. Тогда N=M, противоречие.

П

Теорема 10.1. Если M представимо в виде композиционного ряда длины n, то любой композиционный ряд имеет длину n. В таком случае $n = \ell(M) - \partial nuna$ модуля.

Доказательство. Докажем индукцией по длине $\ell(M)$, что $\ell(M) \geqslant k$, где $N_0 \subset \ldots \subset N_k$ — какая-то другая композиционная серия. Для N_{k-1} выполнено предположение индукции. Кроме того, по лемме $\ell(N_{k-1}) \leqslant \ell(M) - 1$. Таким образом заключаем, что $\ell(M) - 1 \leqslant k - 1$.

Теорема 10.2. M — модуль конечной длины тогда и только тогда, когда он нётеров и артинов.

Доказательство. Если модуль имеет конечную длину, то у всех его подмодулей длина меньше, они артиновы и нётеровы по предположению индукции. Тогда сам модуль тоже артинов и нётеров.

Предположим, модуль M артинов и нётеров, построим явно для него композиционную серию. Пусть $M_0 = 0$, определим M_i как минимальное содержащее M_{i-1} (существует по артиновости). Эта цепочка законится в силу нётеровости

Определение 10.4. Простой идеал $\mathfrak{p} \subset R$ называется ассоциированным простым модуля M, если для некоторого $m \in M$

$$\mathfrak{p} = Ann(m) := \{ x \in R \mid xm = 0 \}.$$

Обозначение 10.1. Множество ассоциированных простых обозначается Ass(M). **Лемма 10.2.** Если $Ann(m) = \mathfrak{p}$, то $Ann(xm) = \mathfrak{p}$ в случае, когда $x \notin \mathfrak{p}$, и Ann(xm) = R в случае, когда $x \in R$.

Доказательство. Если $x \notin \mathfrak{p}$ и xym=0. Из то из того, что $xy \in \mathfrak{p}$, в силу простоты следует, что $y \in \mathfrak{p}$.

Если
$$x \in \mathfrak{p}$$
, то $xm = 0$.

Лемма 10.3. Для нётерового модуля не существует бесконечно убывающей по включению цепочки ассоциированных простых.

Доказательство. Пусть нашлась такая цепочка $\mathfrak{p}_1\subset\mathfrak{p}_2\subset\dots$ и $Ann(m_i)=\mathfrak{p}_i.$ В силу нётеровости цепочка подмодулей $M_i=(m_1,\dots,m_i)$ стабилизируется. Тогда для некоторого k

$$m_{k+1} = a_1 m_1 + \ldots + a_k m_k.$$

Домножим это равенство на некоторый $x \in \mathfrak{p}_k \backslash \mathfrak{p}_{k+1}$, справа получился ноль, а слева — не ноль. Противоречие.

Лемма 10.4. Пусть $\mathfrak{m}_0 \cdot \ldots \cdot \mathfrak{m}_k = 0$ — произведение максимальных идеалов в R. Тогда нётеровость этого кольца равносильна его артиновости.

Доказательство. Рассмотрим $V_i = \mathfrak{m}_1 \cdot \ldots \cdot \mathfrak{m}_i/\mathfrak{m}_1 \cdot \ldots \cdot \mathfrak{m}_{i-1}$ — векторные пространства над R/\mathfrak{m}_i . Для векторных пространств артиновость и нетеровость равносильны, а в силу предложения 8.2 и замечания 9.1 получаем требуемое.

Точность длины. Пусть $N\subset M$ — подмодуль модуля конечной длины M. Тогда

$$\ell(N) + \ell(M/N) = \ell(M).$$

Доказательство. Заметим, что N — тоже артинов и нётеров, следовательно по теореме 10.2 имеет конечную длину. Кроме того, в силу нётеровости и артиновости любую цепочку можно продолжить до композиционного ряда. Продолжим композиционный ряд для N до композиционного ряда для M.

11 Локализация колец.

Определение 11.1. Назовем элементы $(r_1, s_1), (r_2, s_2) \in R \times S$, где S — мультипликативное подмножество R, эквивалентными, если существует такое $u \in S$, что $r_1s_2u = r_2s_1u$.

Замечание 11.1. Это честное отношение эквивалентности, не очевидна только транзитивность. Пусть еще есть пара (r_3, s_3) и $r_2s_3v = r_3s_2v$. Тогда $r_1s_3s_2uv = r_2s_1us_3v = r_3s_2s_1u$.

Определение 11.2. Кольцо $S^{-1}R$ определим как множество классов эквивалентности. Умножение и сложение там хорошо определены. Это называется локализацией.

Замечание 11.2. Это корректное определение, которое удовлетворяет аксиомам. Достаточно проверить независимость от выбора представителей.

Пусть $\varphi_S: R \to S^{-1}R$ — такое отображение колец, что $\varphi_S(x) = \frac{x}{1}$. Это отображение отправляет S в обратимые элементы.

Определение 11.3. Пусть S_0 — подмножество R, элементы которого — это в точности не делители нуля. Полным кольцом частных $S_0^{-1}R$ называется локализация по этому множеству.

В этом случае отображение φ_{S_0} — инъективно, поскольку если $\varphi_{S_0}(x)=0$, то существует такой $s\in S_0$, что xs=0, но s — не делитель нуля, значит, x=0. Таким образом, если R — область целостности, то можно рассматривать R как подкольцо $S^{-1}R$.

Если $S \subset S_0$ — мультипликативное, то $R \subset S^{-1}R \subset S_0^{-1}R$, где первое включение осуществляется вложением φ_S , а второе — честное включение множеств (оно верно в данном случае, но вообще для любых двух мультипликативных вложенных множеств — не всегда).

В случае, когда R — область целостности, $S_0 = R \setminus \{0\}$, а $S_0^{-1}R = Frac(R)$ — поле частных.

Универсальное свойство. Пусть R — кольцо, S — мультипликативное подмножество, $\psi: R \to R'$ — отображение колец, тогда $\psi(S) \subset R'^{\times}$ тогда и только тогда, когда существует такое ρ , что диаграмма коммутативна (то есть $\rho \circ \varphi_S = \psi$).

В этом случае ρ — единственно, $\ker(\rho) = \ker(\psi) S^{-1} R$.

Доказательство. Предположим, что такое ρ существует, $s \in S$. Тогда $\psi(s) = \rho\left(\frac{s}{1}\right)$. Но $\frac{s}{1}$ — обратимо, значит $\psi(s)$ — тоже. Таким образом, $\psi(S) \subset R'^{\times}$.

Пусть теперь выполнено второе: $\psi(S) \subset R'^{\times}$. Поскольку $\psi_S(x) = \frac{x}{1}$, то если ρ существует, то $\rho\left(\frac{x}{1}\right) = \psi(x)$ из коммутативности диаграммы. Кроме того, $\rho(1) = \rho\left(\frac{s}{1}\right) \cdot \rho\left(\frac{1}{s}\right) = 1$, то есть $\rho\left(\frac{1}{s}\right) = \psi^{-1}(s)$. Таким образом, если ρ существует, то он определен так $\rho\left(\frac{x}{s}\right) = \frac{\psi(x)}{\psi(s)}$. Это определение корректно в силу предположения: пусть $(x,s) \sim (y,t)$ (то есть существует такое $u \in S$, что xtu = ysu). Тогда $\psi(xtu) = \psi(ysu)$, значит, $\psi(xt) = \psi(ys)$ (поскольку $\psi(u) -$ обратим). Таким образом, $\rho\left(\frac{x}{s}\right) = \frac{\psi(s)}{\psi(s)} = \frac{\psi(y)}{\psi(t)} = \rho\left(\frac{y}{t}\right)$.

Осталось доказать, что $\ker(\rho) = \ker(\psi) S^{-1} R$. А это очевидно из формулы для ρ .

 \Box

Следствие 11.1. ψ_S — изоморфизм тогда и только тогда, когда S состоит из единиц (обратимых элементов).

Доказательство. Предположим, ψ_S — изоморфизм. Как мы знаем, $\psi_S(S)$ состоит из обратимых элементов. Тогда и S — тоже.

Теперь пусть S состоит из обратимых элеменов. Применим тогда универсальное свойство для R'=R и $\psi=id_R$. Нужное ρ существует и инъективно (потому что $\ker(\rho)=\ker(\psi)S^{-1}R=0$), тогда ψ_S — сюрьективно, но оно же и инъективно, поскольку в S нет делителей нуля.

Задача 11.1. Пусть R' и R'' — кольца. Определим $R=R'\times R''$ и $S=\{(1,1),(1,0)\}$. Докажите, что $R'=S^{-1}R$.

Доказательство. Нетрудно проверить, что $\frac{(x,y)}{(1,1)}\sim \frac{(x,z)}{(1,0)}$ при всех $x,y,z\in R'.$

Таким образом, эквивалентны те и только те элементы $\frac{(x,y)}{s}$, у которых одинаковая первая координата числителя. То есть получается биекция с R', которая является изоморфизмом, потому что локализация обладает структурой кольца.

Определение 11.4. Пусть R — кольцо, $f \in R$. Положим $S_f = \{f^n \mid n \geqslant 0\}$, это мультипликативное множество. Назовем кольцо $S_f^{-1}R = R_f$ — локализацией R по f. Обозначим $\psi_{S_f} = \psi_f$.

Предложение 11.1. $R_f = R[x]/\langle 1 - fx \rangle$.

Доказательство. Пусть $R'=R[x]/\langle 1-fx\rangle$, $\psi:R\to R'$ — каноническое вложение. Проверим, что универсальное свойство применимо. Действительно, пусть $\psi(f)x-1=0$, то есть $\psi(f)\in R'^{\times}$. Тогда существует и единственно $\rho:R_f\to R'$, покажем, что ρ — изоморфизм.

Проверим инъективность. Это очевидно, поскольку $\ker \psi = 0$.

Проверим сюрьективность. Очевидно, что $\rho(f) = x$ (по определению ρ в доказательстве универсального свойства), то есть любой многочлен можно получить.

Предложение 11.2. Пусть $\mathfrak{a} \subset R$ — идеал. Тогда

- (1) $aS^{-1}R = \{(a, s) \in R \times S \mid a \in \mathfrak{a}, s \in S\};$
- (2) $\mathfrak{a} \cap S \neq \varnothing$ равносильно $\mathfrak{a}S^{-1}R = S^{-1}R$ равносильно $\psi_S^{-1}(\mathfrak{a}S^{-1}R) = R$.

Доказательство. (1) Это очевидно.

(2) Пусть $a \in \mathfrak{a} \cap S$. Тогда $\frac{x}{s} = \frac{ax}{as} \in \mathfrak{a}S^{-1}R$ и из первого следует второе. Из второго третье чледует очевидно, потому что у любого x прообраз в $S^{-1}R = \mathfrak{a}S^{-1}R$. Покажем, что из третьего следует первое. Действительно, $\frac{1}{1} \in \mathfrak{a}S^{-1}R$. Это значит, что для некоторого $a \in \mathfrak{a}$, $s \in S$ существует такое $u \in S$, что au = su. Этот элемент принадлежит одновременно \mathfrak{a} и S.

Определение 11.5. Пусть R — кольцо, S — мультипликативное подмножество, $\mathfrak{a} \subset R$ — какое-то подмножество. *Насыщением* \mathfrak{a} относительно S называется множество

П

$$\mathfrak{a}^S = \{a \in R \mid \text{ существует такое } s \in S, \text{ что } as \in \mathfrak{a}\}.$$

В случае, когда $\mathfrak{a}^S=\mathfrak{a}$, множество \mathfrak{a} называется насыщенным.

Предложение 11.3. (1) $\ker(\varphi_S) = \langle 0 \rangle^S$.

- (2) $\mathfrak{a} \subset \mathfrak{a}^S$.
- (3) В случае, когда \mathfrak{a} идеал, \mathfrak{a}^S тоже идеал.

Доказательство. (1) Нетрудно заметить, что $x \in \ker(\varphi_S)$ тогда и только тогда, когда xs = 0 для некотрого $s \in S$, а это равносильно равенству.

- **(2)** Это так, просто потому что $1 \in S$.
- (3) Чтобы доказать, что \mathfrak{a}^S идеал, нужно показать, что это множество замкнуто относительно сложения и относительно умножения на что угодно. Пусть $a,b\in\mathfrak{a}^S$, то есть для некоторых $s,t\in S$ выполнено $as,bt\in\mathfrak{a}$. Но тогда $ast,bst\in\mathfrak{a}$, значит, $(a+b)st\in\mathfrak{a}$, следовательно, $(a+b)\in\mathfrak{a}^S$. А про умножение совсем очевидно.

Предложение 11.4. Пусть R — кольцо, S — мультипликативное подмножество.

- (1) Предположим, $\mathfrak b$ идеал в $S^{-1}R$. Тогда $\varphi_S^{-1}(\mathfrak b)$ насыщенный идеал и $\mathfrak b=(\varphi_S^{-1}(\mathfrak b))S^{-1}R$.
 - (2) Пусть \mathfrak{a} идеал в R. Тогда $\mathfrak{a}S^{-1}R = \mathfrak{a}^S S^{-1}R$ и $\varphi_S^{-1}(\mathfrak{a}S^{-1}R) = \mathfrak{a}^S$.
- (3) Пусть $\mathfrak p$ простой идеал в R и $\mathfrak p\cap S=\varnothing$. Тогда $\mathfrak p^S=\mathfrak p$ и $\mathfrak pS^{-1}R$ простой идеал в $S^{-1}R$.

Доказательство. (1) Очевидно, что $\varphi_S^{-1}(\mathfrak{b})$ — идеал. Докажем, что он насыщенный. Пусть $x \in (\varphi_S^{-1})^S$, тогда для некоторого $s \in S$ выполнено $xs \in \varphi_S^{-1}$. Это значит, что $\frac{xs}{1} \in \mathfrak{b}$. Но тогда $\frac{xs}{1} \cdot \frac{1}{s} = \frac{x}{1} \in \mathfrak{b}$. Что и требовалось. Аналогично

доказывается и второе утверждение: $\frac{x}{s} \in \mathfrak{b}$ тогда и только тогда, когда $\frac{x}{1} \in \mathfrak{b}$, а это равносильно тому, что прообраз состоит из всех числителей \mathfrak{b} .

- (2) Для доказательства первого утверждения достаточно проверить включение $\mathfrak{a}^S S^{-1} R \subset \mathfrak{a} S^{-1} R$. Пусть $a \in \mathfrak{a}^S$. Тогда для некоторого $s \in S$ выполнено $as \in \mathfrak{a}$. Нужно доказать, что $\frac{a}{u} \in \mathfrak{a} S^{-1} R$ для любого $u \in S$. Ну а это так, потому что $\frac{as}{us} \in \mathfrak{a} S^{-1} R$. Докажем второе: прообраз насыщенный идеал, содержащий \mathfrak{a} , то есть как минимум \mathfrak{a}^S . А больше ничего нет, потому что если $\frac{x}{1} = \frac{a}{s} \in \mathfrak{a} S^{-1} R$ (тут $a \in \mathfrak{a}$), то xsu = au для некоторого $u \in S$, это значит, что $x \in \mathfrak{a}^S$.
- (3) Пусть $x \in \mathfrak{p}^S$. Тогда для некоторого $s \in S$ верно, что $xs \in \mathfrak{p}$. По условию \mathfrak{p} простой и $s \notin \mathfrak{p}$, значит, $x \in \mathfrak{p}$. Далее, по одному из предыдущих замечаний, все числители $\mathfrak{p}S^{-1}R$ принадлежат \mathfrak{p} , то есть если перемножить две дроби с числителями не из \mathfrak{p} , то получится число не из $\mathfrak{p}S^{-1}R$, что и требовалось.

Следствие 11.2. Насыщенные идеалы в R находятся в биекции с идеалами в $S^{-1}R$, причем простые — с простыми.

П

Определение 11.6. Пусть $\mathfrak p$ — простой, тогда $S_{\mathfrak p}=R\backslash \mathfrak p$ — мультипликативное и $S_{\mathfrak p}^{-1}R=R_{\mathfrak p}$ называется *локализацией* R по $\mathfrak p$.

Предложение 11.5. $R_{\mathfrak{p}}$ — локально с максимальным идеалом $\mathfrak{p}R_{\mathfrak{p}}$.

Доказательство. Это уже почти очевидно. Биекция между идеалами в R и $R_{\mathfrak{p}}$ сохраняет включения, и мы хотим, чтобы идеал в R не пересекался с $S_{\mathfrak{p}}$, то есть он должен целиком лежать в \mathfrak{p} . Но максимальный среди таких идеалов это и есть \mathfrak{p} .

12 Локализация модулей.

Тут во многом все то же самое.

Пусть есть гомоморфизм модулей $\alpha:M\to N.$ Он индуцирует гомоморфизм локализаций $S^{-1}\alpha:S^{-1}M\to S^{-1}N,$ который действует по правилу

$$S^{-1}\alpha\left(\frac{m}{s}\right) = \frac{\alpha(m)}{s}.$$

Замечание 12.1. Заданный таким образом гомоморфизм локализаций корректно действует на классах эквивалентности.

Точность локализации. Пусть $0 \to M'' \xrightarrow{\alpha} M \xrightarrow{\beta} M' \to 0$ точна, тогда $0 \to S^{-1}M'' \xrightarrow{S^{-1}\alpha} S^{-1}M \xrightarrow{S^{-1}\beta} S^{-1}M' \to 0$ тоже.

Доказательство. Нужно проверить точность в каждом из трех средних членах.

- <u>Локализация сохраняет инъективность.</u> Предположим, $S^{-1}\alpha\left(\frac{m''}{s}\right)=0$. Это означает, что существует такой $u\in S$, что $0=\alpha(m'')u=\alpha(m''u)$, но тогда $\frac{m''}{s}=0$ из инъективности α .
- Точность в среднем члене. Рассмотрим произвольный элемент $\frac{\alpha(m'')}{c} \in \operatorname{im}(S^{-1}\alpha)$, посмотрим на его браз при $S^{-1}\beta$:

$$S^{-1}\beta\left(\frac{\alpha(m'')}{s}\right) = \frac{\beta(\alpha(m''))}{s} = 0.$$

Таким образом, $\operatorname{im}(S^{-1}\alpha) \subset \ker(S^{-1}\beta)$.

Рассмотрим произвольный элемент $\frac{m}{s} \in \ker(S^{-1}\beta)$, для него существует такой $u \in S$, что $mu \in \ker \beta$. Тогда найдется $m'' \in M''$, для которого $\alpha(m'') = mu$. Рассмотрим $\frac{m''}{su} \in S^{-1}M''$:

$$S^{-1}\alpha\left(\frac{m''}{su}\right) = \frac{mu}{su} = \frac{m}{s},$$

откуда следует, что $\operatorname{im}(S^{-1}\alpha) \supset \ker(S^{-1}\beta)$.

• Докализация сохраняет сюръективность. Это видно из определения отображения $S^{-1}R$

Предложение 12.1. Пусть $S \subset R$ — мультипликативное подмножество тогда $S^{-1}R \otimes_R M \simeq S^{-1}M.$

Доказательство. Построим изоморфизм явно на образующих:

$$\frac{x}{s} \otimes m \mapsto \frac{mx}{s}.$$

Это отображение корректно определено на классах эквивалентности и действительно изоморфизм.

Определение 12.1. Алгебра ${\mathcal A}$ называется *плоской*, если она плоская как R-модуль.

Следствие 12.1. $S^{-1}R$ — плоская алгебра.

23

13 Носитель модуля

Определение 13.1. Спектром кольца R называется

$$Spec(R) = \{ \mathfrak{p} \subset R \mid \mathfrak{p} - \text{простой идеал} \};$$

$$Specm(R) = \{ \mathfrak{m} \subset R \mid \mathfrak{m} - \text{ максимальный идеал} \}.$$

Определение 13.2. *Многообразием* идеала $I \subset R$ называется

$$V(I) = \big\{ \mathfrak{p} \ \big| \ I \subset \mathfrak{p} \in Spec(R) \big\}.$$

Замечание 13.1. Очевидно, что если $I \subset J$, то $V(I) \supset V(J)$.

Обратно, если $V(I)\supset V(J)$, то каждый идеал, содержащий J, содержит и I. Как мы помним, $\sqrt{J}=\bigcap_{\mathfrak{p}\supset J}\mathfrak{p}$, таким образом, $\sqrt{J}\supset I$.

В случае, когда V(I)=V(J) аналогичным образом получается $\sqrt{I}=\sqrt{J}.$

Определение 13.3. *Топологией Зарисского* на Spec(R) называется такая топология, где замкнутые множества суть V(I).

Пуст дан элемент $f \in R$. Тогда открытые множество

$$D_f = D(f) = Spec(R) - V(\langle f \rangle)$$

называется главным открытым множеством.

Такие множества образуют базу в топологии Зарисского.

Пусть есть отображение колец $\varphi: R \to R'$. Оно индуцирует отображение множеств $\varphi^*: Spec(R') \to Spec(R)$ (поскольку прообраз простого идеала прост).

Определение 13.4. Пусть M-R-модуль. Его *носитель* это множество

$$Supp(M) = \{ \mathfrak{p} \in Spec(R) \mid M_{\mathfrak{p}} \neq 0 \}.$$

Замечание 13.2. Если $Ann(M) \cap (R - \mathfrak{p}) \neq \emptyset$, то уж точно $M_{\mathfrak{p}} = 0$, следовательно $Supp(M) \subset V(Ann(M))$, а в случае, когда модуль конечнопорожден, достигается равенство.

Предложение 13.1. (1) Если последовательность $0 \to L \to M \to N \to 0$ точна, то $Supp(M) = Supp(L) \cup Supp(N)$.

- (2) Пусть M_{λ} подмодули M, причем $\sum M_{\lambda} = M$. Тогда $Supp(M) = \bigcup Supp(M_{\lambda})$.
- (3) rad(M) содержится в пересечении всех максимальных идеалов в Supp(M), Равенство достигается, когда модуль конечно порожден.

Доказательство. (1) Поскольку локализация сохраняет точность, $M_{\mathfrak{p}} \neq 0$ не может стоять в последовательности между двумя нулями. Следовательно, $Supp(M) \subset Supp(L) \cup Supp(N)$.

Обратно, если средний член точной последовательности нулевой, то два крайних тоже обязаны быть нулями.

- (2) Если локализация по $\mathfrak p$ не зануляет хотя бы один M_λ , то не зануляет и их сумму. Обратно, предположим, локализация по $\mathfrak p$ зануляет все M_λ . По третьему пункту доказательства, при локализации сюръективное отображение $\oplus M_\lambda \to M$ переходит в сюръективное $0 = (M_\lambda)_{\mathfrak p} \to M_{\mathfrak p}$.
- (3) По определению rad(M) состоит из максимальных идеалов, которые содержат Ann(M), в силу замечания 13.2 получаем требуемое.

 \Box

 \Box

Предложение 13.2. Пусть M-R-модуль, тогда следующие условия эквивалентны:

- (1) M = 0;
- (2) $M_{\mathfrak{p}} = 0$ для любого $\mathfrak{p} \in Spec(R)$;
- (3) $M_{\mathfrak{m}} = 0$ для любого $\mathfrak{m} \in Specm(R)$.

Доказательство. Очевидно, что $(1) \Rightarrow (2), (2) \Rightarrow (3)$.

Докажем (3) \Rightarrow (1). Известно, что для любого максимального идеала $Ann(M) \cap (R-\mathfrak{m})$ непусто. Тогда Ann(M) = R (иначе он сам содержится в некотором максимальном идеале и предположение неверно). Тогда M=0.

Следствие 13.1. M = 0 тогда и только тогда, когда $Supp(M) = \varnothing$.

Замечание 13.3. Пусть $\mathcal{A}-$ плоская алгебра, N- плоский модуль. Тогда $N\otimes\mathcal{A}-$ плоский $\mathcal{A}-$ модуль.

Предложение 13.3. Следующие условия эквивалентны:

- **(1)** *М* плоский;
- (2) $M_{\mathfrak{p}}$ плоский для любого $\mathfrak{p} \in Spec(R)$;
- (3) $M_{\mathfrak{m}}$ плоский для любого $\mathfrak{m} \in Specm(R)$.

Доказательство. (1) \Rightarrow (2) Это верно в силу предложения 12.1 и замечания 13.3.

- $(2) \Rightarrow (3)$ Очевидно.
- $(3) \Rightarrow (1)$ A вот тут нужно что-то написать.

14 Еще про ассоциированные простые

Предложение 14.1. Если $\mathfrak{p} \in Spec(R)$, то $\mathfrak{p} \in Ass(M)$ тогда и только тогда, когда существует инъективное $R/\mathfrak{p} \hookrightarrow M$.

Доказательство. Пусть $\mathfrak{p} = Ann(m)$, тогда зададим искомую инъекцию явно:

$$[x]\mapsto mx,$$

это определение корректно (то есть не зависит от выбора представителя класса эквивалентности).

Обратно, пусть существует инъекция $\varphi:R/\mathfrak{p}\hookrightarrow M$. Положим $\varphi(1)=m$. Тогда $Ann(m)=\mathfrak{p}$.

П

Лемма 14.1. Пусть $[x] \in R/\mathfrak{p}$ — ненулевой. Тогда $Ann([x]) = \mathfrak{p}$ и $Ass(R/\mathfrak{p}) = \{\mathfrak{p}\}.$

Доказательство. Заметим, что [x][y] = 0 тогда и только тогда, когда $xy \in \mathfrak{p}$. По условию $x \notin \mathfrak{p}$, следовательно, это бывает только если $y \in \mathfrak{p}$.

Предложение 14.2. Пусть $N \subset M$ — подмодуль. Тогда

$$Ass(N) \subset Ass(M) \subset Ass(N) \cup Ass(M/N).$$

Доказательство. Первое включение верно просто по определению.

Пусть $Ann(m) = \mathfrak{p}$, в силу предложения 14.1 существует инъекция $\varphi : R/\mathfrak{p} \hookrightarrow M$. Если $\varphi(R/\mathfrak{p}) \cap N = 0$, то при факторизации φ перейдет в инъекцию $R/\mathfrak{p} \hookrightarrow M/N$, следовательно, по предложению 14.1 $\mathfrak{p} \in Ass(M/N)$.

Иначе рассмотрим ненулевой $\varphi(x)\in N.$ Тогда по лемме 14.1 $Ann(x)=Ann(\varphi(x))=\mathfrak{p}.$

Предложение 14.3. Пусть $\Psi \subset Ass(M)$. Тогда существует такой подмодуль $N \subset M$, что $Ass(M/N) = \Psi$ и $Ass(N) = Ass(M) - \Psi$.

Доказательство. По лемме Цорна выберем такое максимальное $N\subset M$, что $Ass(N)\subset Ass(M)-\Psi$. Тогда по предложению 14.2 выполнено $Ass(M/N)\supset\Psi$.

Пусть $\mathfrak{p} \in Ass(M/N)$. Из предложения 14.1 следует, что некоторый подмодуль N'/N изоморфен R/\mathfrak{p} . По предложению 14.2 $Ass(N') \subset Ass(N) \cup \{\mathfrak{p}\}$. Поскольку N максимально, $\mathfrak{p} \notin Ass(M) - \Psi$. Тогда $\mathfrak{p} \in \Psi$ и $Ass(M/N) = \Psi$.

Предложение 14.4. Пусть S — мультипликативное подмножество. Если $\mathfrak{p}\cap S=\varnothing$ и $\mathfrak{p}\in Ass(M),$ то $S^{-1}\mathfrak{p}\in Ass(S^{-1}M).$

 \mathcal{A} оказательство. Заметим, что $S^{-1}\mathfrak{p}$ — простой по предложению 11.4. Если $\mathfrak{p}=Ann(m)$, то $S^{-1}\mathfrak{p}=Ann\left(\frac{m}{s}\right)$ в силу того, что $\mathfrak{p}\cap S=\varnothing$.

Лемма 14.2. Пусть \mathfrak{p} — максимальный элемент в множестве аннуляторов ненулевых $m \in M$. Тогда $\mathfrak{p} \in Ass(M)$.

Доказательство. Предположим, что $\mathfrak{p} = Ann(m)$ не является простым. Тогда наудутся два таких $x,y \in R$, что $xy \in \mathfrak{p}$, но $x,y \notin \mathfrak{p}$. Тогда $mx \neq 0$ и $y \in Ann(mx)$. Но $\mathfrak{p} \subset Ann(mx)$, следовательно, $(\mathfrak{p},y) \subset Ann(mx)$, противоречие с максимальностью.

Следствие 14.1. Пусть R или M нётеров. Тогда M=0 тогда и только тогда, когда $Ass(M)=\varnothing$.

Доказательство. В одну сторону утверждение очевидно, докажем во вторую. Понятно, что мы хотим воспользоваться леммой 14.2, то есть доказать, что во множестве аннуляторов есть максимальный элемент.

Пусть R — нётерово. Тогда в любом множестве идеалов есть максимальный элемент по лемме Цорна.

Пусть M — нётеров. Посмотрим на лемму 10.3, на самом деле мы там нигде не пользовались простотой, то есть не существует строго возрастающей цепочки аннуляторов и опять все верно по лемме Цорна.

Предложение 14.5. Пусть M — нётеров модуль. Тогда можно построить цепочку

$$0 = M_0 \subset \ldots \subset M_n = M$$

так, чтобы $M_i/M_{i-1} \simeq R/\mathfrak{p}_i$ (\mathfrak{p}_i — простой) и для любой такой цепочки $Ass(M) \subset \{\mathfrak{p}_i\}_i \subset Supp(M)$, кроме того, множества минимальных простых Ass(M) и Supp(M) совпадают, а Ass(M) — конечно.

Доказательство. Предположим, что это утверждение не верно для модуля M, рассмотрим его максимальный подмодуль N, для которого оно выполнено $(M/N \neq 0)$. По следствию 14.1 найдется такой подмодуль M', что $Ass(N'/N) = \mathfrak{p}$, противоречие с максимальностью.

Первое включение верно по индукции. Заметим, что в силу замечания 13.2 простой идеал \mathfrak{p}_i принадлежит Supp(M), если содержит его аннулятор, таким образом второе включение тоже верно.

Рассмотрим произвольный минимальный простой $\mathfrak{p} \in Supp(M)$. Кольцо $R_{\mathfrak{p}}$ локально и других простых там нет в силу минимальности. Таким образом (поскольку $M_{\mathfrak{p}} \neq 0$) по следствию 14.1 $Ass(M_{\mathfrak{p}}) = \mathfrak{p}R_{\mathfrak{p}}$. Тогда $\mathfrak{p} \in Ass(M)$.

Теорема Акизуки — **Хопкинса.** Пусть M — конечнопорожденный R — модуль. Следующие условия эквивалентны:

- (1) R нетерово и любой простой идеал макисмален;
- (2) R артиново.

Доказательство. (1) \Rightarrow (2) Поскольку простые идеалы совпадают с максимальными, в силу нётеровости $nil(R) = \bigcap_{\mathfrak{m} \in Specm(R)} \mathfrak{m}$ — нильпотентен, тогда по пред-

ложению 14.5 получился композиционный ряд, то есть R имеет конечную длину и является артиновым (по теореме 10.2).

 $(2) \Rightarrow (1)$ В силу следствия 9.1 выполнено условие леммы 10.4(нужно возвести нильрадикал в нужную степень и именно столько раз продублировать максимальные идеалы, которых конечно по предложению 9.2), то есть кольцо нётерово, а все простые максимальны по предложению 9.1.

Предложение 14.6. Пусть M — конечнопорожденный модуль над артиновым кольцом. Тогда M имеет конечную длину.

П

 \Box

Доказательство. По теореме Акизуки – Хопкинса это кольцо нётерово, а любой простой максимален, тогда по предложению 14.5 получается композиционный ряд. □

Определение 14.1. Число $x \in R$ называется *делителем нуля для* M, если существует такое ненулевое $m \in M$, что xm = 0 (ну или отображение не регулярно).

Обозначение 14.1. Множество всех делитель нуля для M обозначается

$$ZD(M) = \{x \in R \mid x$$
 — делитель нуля $\}.$

Предложение 14.7. Если R или M нётеров, то

$$ZD(M) = \bigcup_{\mathfrak{p} \in Ass(M)} \mathfrak{p}.$$

Доказательство. Если $x \in ZD(M)$, то существует такой $m \in M$, что $x \in Ann(m)$. Тогда в обоих случаях существует максимальный среди аннуляторов элемент, содержащий Ann(m), который лежит в Ass(M) по лемме 14.2.

Определение 14.2. Число $x \in R$ называется M – perулярным, если отображение

$$\mu_x: M \to M,$$

 $\mu_x: m \mapsto mx$ — инъективно.

15 Примарное разложение

Соглашение. Все кольца нётеровы, все модули конечно порождены.

Определение 15.1. Подмодуль $N \subset M$ называется \mathfrak{p} – *примарным*, если $Ass(M/N) = \{\mathfrak{p}\}.$

Предложение 15.1. Пусть $N_1,N_2\subset M-\mathfrak{p}$ – примарные подмодули, тогда $N_1\cap N_2$ — тоже \mathfrak{p} – примарный.

Доказательство. Заметим, что $N_1\cap N_2=\ker(M\to M/N_1\oplus M/N_2)$, тогда

$$M/(N_1 \cap N_2) \hookrightarrow M/N_1 \oplus M/N_2$$
.

Следовательно,

$$Ass(M/(N_1 \cap N_2)) \subset Ass(M/N_1 \oplus M/N_2) = \{\mathfrak{p}\}.$$

По следствию 14.1
$$Ass(M/(N_1 \cap N_2)) = \{\mathfrak{p}\}.$$

Определение 15.2. Подмодуль $\mathfrak{N} \subset M$ называется *разложимым*, если он нетривиально представляется в виде пересечения подмодулей: $N = N_1 \cap N_2$. В противном случае подмодуль называется *перавзложимым*.

Предложение 15.2. Любой подмодуль $N \subset M$. Он представляется в виде конечного пересечения неразложимых.

Доказательство. Пусть \mathcal{F} — множество подмодулей, которые не имеют такого представления. В случае, когда $\mathcal{F} \neq \emptyset$, в \mathcal{F} существует масимальный элемент N_0 , он обязательно разложим: $N_0 = N_1 \cap N_2$. Модули N_1 и N_2 содержат максимальный элемент \mathcal{F} , а это значит, что сами они там не лежат. То есть для них искомые представления существуют, тогда такое представление существует и для N_0 , противоречие.

Тут нужно что-то дописать

16 Расширения колец

Определение 16.1. Пусть S-R – алгебра (обозначение S/R), $x \in S$ называется *целым над* R, если является корнем некоторого многочлена

$$x^n + a_1 x^{n-1} \dots + a_n = 0, a_i \in R.$$

Предложение 16.1. Следующие условия эквивалентны:

- (1) x целый над R степени n;
- (2) R[x] порожден $1, x, \ldots, x^{n-1}$;

- (3) x лежит в некоторой подалгебре R', порожденной как R модуль n элементами.
- (4) Существует точный R[x] модуль M (Ann(M) = 0), порожденный n элементами.

Доказательство. (1) \Rightarrow (2) любой одночлен x^k , где $k\geqslant n$ представляется как комбинация меньших.

- $(2) \Rightarrow (3)$ Достаточно положить R' = R[x].
- $(3) \Rightarrow (4)$ Достаточно положить M = R'.
- $(4)\Rightarrow (1)$ Пусть m_1,\ldots,m_n порождающие. Запишем матрицу A отображения $m\mapsto mx$. По теореме Гамильтона-Кэли характеристический многочлен этого оператора его зануляет, то есть $0=\chi_A(A)M=\chi_A(x)M$. Поскольку Ann(M)=0, $\chi_A(x)=0$.

Определение 16.2. $R \subset S$ — расширение колец. *Целым замыканием* R e S называется

$$\overline{R} = \{ x \in S \mid x \text{ целое над } R \}.$$

Замечание 16.1. Аналогично определяется *замыкание* \overline{I} *идеала* I e S, только теперь коэввициенты многочленов должны лежать в I.

Определение 16.3. Если $R = \overline{R}$, то расширение S/R называется *целым (или алгебраическим)*.

Определение 16.4. Если R — область целостности, то \overline{R} в его поле частных Q_R называется *нормализацией*, если $R=\overline{R}$ в своем поле частных, то кольцо R нормально.

Замечание 16.2. Если $\overline{R} \subset S$ — подкольцо.

Предложение 16.2. Пусть $R\subset S\subset T$ и расширения $S/R,\,T/S$ — целые, тогда T/R — тоже целое расширение.

Доказательство. Рассмотрим какой-то элемент $x \in T$, он целый над S:

$$x^{n} + a_{n-1}x^{n-1} + \ldots + a_{1}x + a_{0} = 0, \ a_{i} \in S.$$

Положим $R_m = R[a_0, \dots, a_m]$. Заметим, что по предложению 16.1 (2) R_0 конечно порожден над R и R_i конечно порожден над R_{i-1} . Таким образом, R_{n-1} конечно порожден над R и по предложению 16.1 (3) x — целый над R.

Следствие 16.1. Если $R \subset S$ — расширение, то \overline{R} — целозамкнуто в S. **Лемма 16.1.** Пусть $A \subset B$, где B — область целостности, целая над A. Тогда A — поле, тогда и только тогда, когда B — поле.

Доказательство. Предположим, A — поле, рассмотрим произвольный ненулевой $b \in B$. Запишем для него многочен (такой есть в силу того, что b — не делитель нуля):

$$b^{n} + a_{n-1}b^{n-1} + \ldots + a_0 = 0, \ a_i \in A, a_0 \neq 0.$$

Тогда $b^{-1}=-rac{1}{a_0}(b^{n-1}+a_{n-1}b^{n-2}+\ldots+a_1),$ то есть B — тоже поле.

Предположим, что B — поле. Нужно показать, что для любого ненулевого $a \in A$ его обратный элемент a^{-1} тоже лежит в A. Для начала заметим, что $\frac{1}{a} \in B$, то есть можно записать многочлен:

$$\left(\frac{1}{a}\right)^n + a_{n-1} \left(\frac{1}{a}\right)^{n-1} + \ldots + a_0 = 0, \ a_i \in A.$$

Домножим все на a^{n-1} и выразим $\frac{1}{a}$:

$$\frac{1}{a} = -(a_{n-1} + a_{n-2}a + \dots + a_0a^{n-1}) \in A.$$

Таким образом, A — поле.

Определение 16.5. Пусть $R \subset S$ — расширение, $\mathfrak{p} \subset R$, $\mathfrak{p}' \subset S$ — простые идеалы. Будем говорить, что \mathfrak{p}' лежит над \mathfrak{p} , если $R \cap \mathfrak{p}' = \mathfrak{p}$.

Замечание 16.3. Пусть S/R — целое расширение, $U\subset R$ — мультипликативное. Тогда $(U^{-1}S)/(U^{-1})R$ — тоже целое расширение.

Теорема 16.1. Пусть S/R — целое расширение колец, $\mathfrak{p}\subset R$ — простой идеал, $\mathfrak{p}'\subset\mathfrak{q}'\subset S$ — вложенные простые, а $\mathfrak{a}'\subset S$ — произвольный идеал.

- (1) Максимальность. Предположим, \mathfrak{p}' лежит над \mathfrak{p} . Идеал \mathfrak{p}' максимальный тогда и только тогда, когда \mathfrak{p} максимальный.
- (2) «Единственность». Предположим, оба идеала $\mathfrak{p}',\mathfrak{q}'$ лежат над \mathfrak{p} . Тогда $\mathfrak{p}'=\mathfrak{q}'$.
 - (3) Существование. Существует простой идеал $\mathfrak{r}'\subset S$, лежащий над $\mathfrak{p}.$
- (4) Поднятие. Предположим, что $\mathfrak{a}' \cap S \subset \mathfrak{p}$. Тогда можно в (3) выбрать \mathfrak{r}' так, чтобы $\mathfrak{a}' \subset \mathfrak{r}'$

Доказательство. (1) Поскольку расширение S/R — целое, то расширение $(S/\mathfrak{p}')/(R/\mathfrak{p})$ тоже. Тогда в силу леммы 16.1 (S/\mathfrak{p}') и (R/\mathfrak{p}) являются или не являются полями одновременно.

(2) Локализуем все по $R - \mathfrak{p}$:

$$\begin{array}{ccc}
S & \longrightarrow S_{\mathfrak{p}} & , \\
\downarrow^{i} & & \downarrow^{S^{-1}i} \\
R & \longrightarrow R_{\mathfrak{p}}
\end{array}$$

где $S^{-1}i$ — тоже инъекция по предложению о точности локализации, а $R_{\mathfrak{p}}$ — локальное по предложению 11.5. Идеалы $\mathfrak{p}'R_{\mathfrak{p}},\mathfrak{q}'R_{\mathfrak{p}}$ — вложенные простые по предложению 11.4 и все еще лежат над $\mathfrak{p}R_{\mathfrak{p}}$ (который максимальный по предложению 11.5), тогда по (1) идеалы $\mathfrak{p}'R_{\mathfrak{p}},\mathfrak{q}'R_{\mathfrak{p}}$ — максимальные, следовательно совпадают. Значит, они и раньше совпадали.

- (3) Опять локализуем точно так же. Выберем любой максимальный идеал $\mathfrak{r} \subset S_{\mathfrak{p}}$. Он лежит (по предложению 11.4) над некоторым максимальным (по (1)) идеалом в $R_{\mathfrak{p}}$, но такой только один $\mathfrak{p}R_{\mathfrak{p}}$ по предложению 11.5
- (4) В пункте (3) была свобода в выборе максимального \mathfrak{r} , выберем тот, который содержит $\mathfrak{a}'R_{\mathfrak{p}}$.

 \Box

Лемма 16.2. Пусть I — идеал, тогда

$$\overline{I} = \sqrt{I\overline{R}}.$$

Доказательство. Рассмотрим произвольный $x \in \overline{I} \subset \overline{R}$, тогда

$$x^n + a_{n-1}x^{n-1} + \ldots + a_0 = 0.$$

Заметим, что $x^n = -(a_{n-1}x^{n-1} + \ldots + a_0) \in I\overline{R}$, следовательно, $x \in \sqrt{I\overline{R}}$.

Обратно, рассмотрим произвольный $x \in \sqrt{IR}$ (то есть для некоторого $n \in \mathbb{N}$ $x^n \in IR$). Это означает, что

$$x^n = \sum_{i=1}^k b_i x_i, \ b_i \in I, x_i \in \overline{R}.$$

Рассмотрим конечнопорожденный модуль $M = R[x_1, \dots, x_k]$ (он конечнопорожден по предложению 16.1) и отображение

$$M \to IM$$
.

$$m \mapsto x^n m$$
.

Тогда по теореме Гамильтона – Кэли x — целый над I.

Замечание 16.4. Отметим, что в случае, когда I прост, коэффициенты минимального члена $x \in \overline{I}$ будут лежать в I.

Лемма 16.3. Пусть A — нормальное кольцо с полем частных Q_A и B — произвольная Q_A — алгебра. Если элемент $b \in B$ цел над A, то его минимальный многочлен $\mu(x)$ над Q_A принадлежит A[x].

Доказательство. Пусть $f(x) \in A[x]$ — минимальный приведенный многочлен b. Тогда $f(x) = \mu(x)q(x)$ и по лемме Гаусса $\mu \in A[x]$.

Теорема 16.2. Предположим, $R \subset S$ — целое расширение областей целостности, причем R — нормально. Идеалы $\mathfrak{q} \subset \mathfrak{p} \subset R$ — простые, $\mathfrak{p}' \subset S$ — простой идеал, лежащий над \mathfrak{p} , тогда существует простой $\mathfrak{q}' \subset \mathfrak{p}'$, лежащий над \mathfrak{q} .

Доказательство. Достаточно показать, что $\mathfrak{q}S_{\mathfrak{p}'}\cap R=\mathfrak{q}$ (тут R нужно воспринимать как образ при локализации $\frac{x}{1}$, где $x\in R$), тогда по теореме 16.1 (4) получаем требуемое. Включение $\mathfrak{p}\subset\mathfrak{q}S_{\mathfrak{p}'}\cap R$ очевидно, докажем в другую сторону.

Рассмотрим произвольное $x \in \mathfrak{q}S_{\mathfrak{p}'} \cap R$. Положим $x = \frac{y}{s}$, где $y \in \mathfrak{q}S$, $s \in S - \mathfrak{p}'$. По лемме 16.2 имеем $y \in \overline{\mathfrak{q}}$:

$$y^n + u_{n-1}y^{n-1} + \ldots + u_0 = 0, \ u_i \in \mathfrak{q}.$$

Выразим $s=\frac{y}{x}$, разделим предыдущее равенство на x^n :

$$s^{n} + \frac{u_{n-1}}{x}s^{n-1} + \ldots + \frac{u_{0}}{x^{n}} = 0, \ \frac{u_{i}}{x^{n-i}} \in Q_{R}.$$

Заметим, что в силу замечания 16.4 минимальному многочлену для y соответствует минимальный многочлен для s. Тогда по лемме 16.3 коэффициенты $\frac{u_i}{x^{n-i}} \in R$.

Если так получилось, что $x \notin \mathfrak{q}$, то $\frac{u_i}{x^{n-i}} \in \mathfrak{q}$, но тогда $s \in \mathfrak{p}$, противоречие. \square

17 Конечные целые сепарабельные расширения

Определение 17.1. Многочлен называется *сепарабельным*, если он имеет ровно столько различных корней, какова его степень.

Определение 17.2. Конечное расширение L/K — cenapa b e n b n o, если для любого $x \in L$ его минимальный многочлен сепара b ельный.

Лемма 17.1. Конечное расширение L/K — сепарабельно тогда и только тогда, когда форма (x,y)=tr(xy) — невырождена (tr(x) — след оператора $\ell\mapsto \ell x$ в базисе над K).

Доказательство. Надо написать

Теорема 17.1. Пусть R — нётерова нормальная область целостности. Пусть K/Q_R — конечное сепарабельное расширение полей, $S=\overline{R}$ в поле K. Тогда S — конечнопорожденный модуль над R.

Доказательство. Предположим, v_1, \ldots, v_n — базис K над Q_R . Без ограничения общности можно считать, что $v_i \in S$ (достаточно домножить на НОД знаменателей коэффициентов минимального многочлена). Пусть v_1', \ldots, v_n' — двойственный базис относительно билинейной формы (x, y) = tr(xy).

Рассмотрим $s \in S$

$$s = \sum_{i=1}^{n} a_i v_i' \ a_i \in Q_R,$$

$$a_i = (s, v_i) \in R.$$

Таким образом, S — подмодуль R^n , который нётеров по следствию следствию 8.2.

18 Алгебры конечного типа

Определение 18.1. Пусть $K \subset L$ — расширение полей. Набор алгебраически независимых над K элементов $l_1, \ldots, l_k \in L$ называется *трансцендентным базисом*, если $K(l_1, \ldots, l_k) \subset L$ — алгебраическое. *Трансцендентной размерностью tr.deg*_kR целостного кольца R называется количество элементов трансцендентного базиса Frac(R) над k.

Замечание 18.1. Для трансцендентного базиса верно многое, что верно для обычного: любую алгебраически независимую систему можно дополнить до базиса, все базисы равномощны. Этого я доказывать не буду. Хотя, возможно, и стоило бы.

Лемма Эмми Нётер о нормализации. Пусть B — конечнопоржденная \Bbbk — алгебра. Пусть $tr.deg_{\Bbbk}B=s$. Тогда существуют такие алгебраически независимые элементы b_1,\ldots,b_s , что B — целое над $\Bbbk[b_1,\ldots,b_s]$.

Доказательство. (1) Пусть char $\mathbb{k} = 0$. Начнем с системы породающих x_1, \ldots, x_l . Если они алгебрически зависимы, то для некоторого $F \in \mathbb{k}[y_1, \ldots, y_l]$ выполнено $F(x_1, \ldots, x_l) = 0$. Сделаем линейную замену

$$\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_l \end{pmatrix} \mapsto \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_l \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 - \alpha_2 x_1 \\ \dots \\ x_l - \alpha_l x_1 \end{pmatrix}$$

Можно подобрать такие $\alpha_i \in \mathbb{k}$, что коэффициент при старшем x_1^k будет в точности 1. Тогда y_1 зависит от y_2, \ldots, y_l . Так можно делать, пока порождающие алгебраически зависимы.

(2) Пусть char k = p. Хотим сделать похожую замену:

$$\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_l \end{pmatrix} \mapsto \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_l \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 - x_1^{k_2} \\ \dots \\ x_l - x_1^{k_l} \end{pmatrix}$$

Подберем l_i так, чтобы все одночлены имели разную степень по x_1 (Тода автоматически при старшем x^k коэффициент из поля \Bbbk). Пусть в записи F был одночлен $a_J x_1^{j_1} x_2^{j_2} \dots x_l^{j_n}$ (J пробегает все одночлены F). При такой замене он перейдет в

$$a_J x_1^{j_1} (x_2 + x_1^{k_2})^{j_2} \dots (x_l + x_1^{k_l})^{j_n}.$$

Таким образом, при раскрытии скобок вынесется самый старший по x_1 одночлен со степенью $d_J = j_1 + k_2 j_2 + \ldots + k_l j_n$. Пусть $l > \max_{J,k} (j_k)$. Тогда установим $k_i = l^i$.

Обозначение 18.1. Если $\mathfrak a$ — идеал в кольце многочленов $\Bbbk[y_1,\dots,y_n],$ определим V

$$V(\mathfrak{a}) = \{ y \in \mathbb{A}^n \mid f(y) = 0 \text{ для любого } f \in \mathfrak{a} \}$$

Другими словами, $V(\mathfrak{a})$ — множество нулей всех многочленов \mathfrak{a} . Соответственно, если \mathfrak{a} — конечно порожденный, то это множество решений конечной системы уравнений.

Обозначение 18.2. Если X — подмножество \mathbb{A}^n , определим I

$$I(X):=ig\{f\in \Bbbk[y_1,\ldots,y_n]\ ig|\ I(x)=0$$
 для любого $x\in Xig\}.$

Другими словами, I(X) — множество всех многочленов, зануляющихся на X.

Теорема Гильберта о нулях Пусть \Bbbk — алгебраически замкнутое поле. Тогда

- (1) для каждого максимального идеала \mathfrak{m} справедливо $V(\mathfrak{m}) = P$ для некоторой точки $P = (a_1, \dots, a_n) \in \mathbb{A}^n$;
 - (2)если \mathfrak{a} идеал, отличный от $\Bbbk[Y_1,\ldots,Y_n]$, то $V(\mathfrak{a})\neq\varnothing;$
- (3) Пусть $I = (f_1, ..., f_k)$. Предположим, что f(x) = 0 для любого $x \in V(I)$. Тогда $f^n \in I$ $(f \in \sqrt{I})$.

Доказательство. (1) Достаточно показать, что $\mathfrak{m} = ((x_1 - a_1), \dots, (x_n - a_n))$ для некоторых a_i . А для этого достаточно показать, что $k = \mathbb{k}[x_1, \dots, x_n]/\mathfrak{m} \simeq \mathbb{k}$. Тогда $x_i \equiv_{\mathfrak{m}} a_i$.

k — поле. Тогда по теореме Нётер о нормализации существуют такие алгебраически независимые $y_1,\ldots,y_s\in k$, что расширение $A=\Bbbk[y_1,\ldots,y_s]\subset k=B$ — алгебраическое. По лемме 16.1 $A=\Bbbk[y_1,\ldots,y_s]$ — поле. Но тогда s=0. Что и требовалось.

- (2) Очевидно следует из (1), поскольку любой идеал содержится в некотором максимальном.
- (3) Заметим, что $(f_1, \ldots, f_n, tf-1) = (1)$ по условию (это называется Rabinovich trick). Тогда существуют такие $g_i(x_1, \ldots, x_n, t)$, что $\sum_i g_i f_i + g_0(f-1) = 1$. Под-

ставим $t=\frac{1}{f}$ и домножим на очень большую степень f. Получим то, что нужно. \Box

19 Градуированные и фильтрованные кольца и модули

Определение 19.1. Кольцо R называется $\it градуированным,$ если оно представимо в виде

$$R = \bigoplus_{k \ge 0} R_k,$$

где R_n — абелева подгруппа и $R_n R_m \subset R_{n+m}$.

Аналогичное определение для модуля.

Определение 19.2. Модуль M над градуированным кольцом R называется градуированным, если он представимо в виде

$$M = \bigoplus_{k \in \mathbb{Z}} M_k,$$

где M_n — абелева подгруппа и $R_n M_m \subset M_{n+m}$.

Определение 19.3. Элементы групп R_i, M_j называются *однородными* между собой.

Определение 19.4. Гомоморфизм градуированных модулей $f:M\to N$ называется *градуированным*, если для всех $i\in\mathbb{Z}$

$$f(N_i) \subset M_i$$
.

Предложение 19.1. Пусть $R = \bigoplus_{k \geqslant 0} R_k$ — градуированное кольцо. Следующие условия эквивалентны:

- (1) R нётерово кольцо.
- (2) R_0 нетерово и R алгебра конечного типа над R_0 .

Доказательство. (1) \Rightarrow (2) Заметим, что $R_0 = R/R_+$ — нётерово, выберем образующие идеала $R_+ = (v_1, \ldots, v_n)$, $\deg v_i = k_i$. Покажем, что $R' := R_0[v_1, \ldots, v_n] = R$. Проверим по индукции, что $R_i \subset R'$. Для i = 0 утверждение очевидно. Рассмотрим $x \in R_i$. Выразим через образующие:

$$x = \sum_{j=1}^{n} a_j v_j$$
, deg $a_j = i - k_j$.

По предположению индукции $a_i \in R'$, что и требовалось.

(2) ⇒ (1) Это верно по теореме Гильберта о базисе.

Определение 19.5. Подмодуль N градуированного модуля M называется градуированным, если $N = \bigoplus N_k$ и $N_k = M_k \cap N$.

П

Определение 19.6. Предположим, $I \subset R$ — идеал. Модуль M называется фильтрованным, если существует последовательность подмодулей

$$M = M_0 \supseteq M_1 \supseteq \ldots \supseteq M_n \supseteq \ldots$$

Фильтрация называется

- I фильтрацией, если $IM_n \subseteq M_{n+1}$ для всех n.
- I –адической фильтрацией, если $IM_n=M_{n+1}$ для всех n.
- cmaбильной I фильтрацией, если $IM_n = M_{n+1}$ для всех достаточно больших n.

Положим $A=\bigoplus_{k\geqslant 0}I^k,\ I^0=R\ R^*=\bigoplus_{k>0}I^K.$ Предположим, есть I – фильтрованный модуль M. Заметим, что $M^*=\bigoplus_{k>0}M_n-R^*$ – модуль.

Предложение 19.2. Пусть R — нётерово кольцо, M — конечнопорожденный модуль с I — фильтрацией. Тогда следующие утверждения эквивалентны:

- **(1)** M^* конечнопорожденный над R^* :
- (2) фильтрация стабильна.

Доказательство. (1) \Rightarrow (2) R — нётеров, следовательно, $I=(v_1,\ldots,v_s)$. По теореме Гильберта о базисе $R[v_1,\ldots,v_s]$ — нётеоров, тогда его подмодуль R^* — тоже нётеров. По следствию 8.2 M^* — нётеоров. Полседовательность модулей

$$L_k = M_0 \oplus \ldots \oplus M_k \oplus IM_k \oplus I^2M_k \oplus \ldots$$

— возрастающая по условию фильтрации, то есть должна стабилизироваться с некоторого момента N, это означает, что $M_k = I^{N-k} M_N$ для всех $k \geqslant N.$

$$(2)\Rightarrow (1)$$
 Если $M_k=I^{N-k}M_N$ для всех $k\geqslant N,$ то M^* порождается $\bigoplus_{k=0}^N M_k,$ а каждая из компонент конечно порождается над $R.$

Замечание 19.1. Во всех утверждениях, которые будут следовать из этого утверждения, R — нётеров, а M — конечнопорожден.

Теорема Артина — **Риса.** Пусть R — нётерово, M — конечнопорожденный R — модуль со стабильной I — фильтрацией, $L \subset M$ — произвольный подмодуль. Тогда $L_k = M_k \cap L$, — тоже стабильная I — фильтрация.

Доказательство. Для начала заметим, что получилась I – фильтрация:

$$IL_k \subset IM_k \cap IL \subset M_{k+1} \cap L \subset L_{k+1}$$
.

Чтобы доказать, что фильтрация стабильна, нужно проверить, что модуль L^* конечно порожден над L^* (тогда побеждаем по предложению 19.2), а это так, потому что он является подмодулем M^* .

Следствие 19.1. Существует такое s > 0, что для любого d выполнено

$$I^d(L\cap I^sM)=L\cap I^{d+s}M.$$

Доказательство. Положим $M_n = I^n M$. Тогда равенство превращается в $I^d L_s = L_{d+s}$, а это так по определению стабильной фильтрации.

Теорема Крулля о пересечении. Положим $M' = \bigcap I^n M$, тогда IM' = M'.

Доказательство. Заметим, что $I^nM \cap M' = M'$. По следствию 19.1 при d=1

$$IM' = I(M' \cap I^s M) = M' \cap I^{s+1} M = M'.$$

Следствие 19.2. Если $I \subset J(R)$ или модуль M — точный, то $\bigcap I^n M = \{0\}$.

П

Доказательство. По теореме Крулля о пересечении IM'=M'. Поскольку $J(R)\subset rad(M)$, в случае, когда $I\subset J(R)$, по лемме Накаямы M'=IM'. Во втором случае по следствию 4.1 найдется такое $a\in I$, что (1+a)M=0, что противоречит точности.

Определение 19.7. Пусть $I \subset R$ — идеал, M — модуль с I — фильтрацией, тогда хорошо определено градуированное кольцо:

$$gr_I(R) = \bigoplus_{n \geqslant 0} I^n / I^{n+1},$$

$$gr_I(M) = \bigoplus_{n \geqslant 0} M_n / M_{n+1}$$

Замечание 19.2. Если R нётерово, то $gr_I(R)$ — тоже.

Замечание 19.3. Если M — конечно порожденный модуль и фильтрация стабильна, то $gr_I(M)$ конечно порожден над $gr_I(R)$.

20 Многочлены Гильберта

Пусть $A = \bigoplus_{n \geqslant 0} A_n$ — нётерова градуированная алгебра, M — конечнопорожденный градуированный A — модуль, λ — аддитивная функция на A_0 — модулях со значениями в \mathbb{Z} , для которой для любой точной последовательности

$$0 \to M' \to M \to M'' \to 0$$

выполнено тождество

$$\lambda(M') - \lambda(M) + \lambda(M'') = 0.$$

Пример 20.1. В случае, когда A_0 – артиново (по теореме о точности длины), подойдет $\lambda(M) = \ell(M)$.

Определение 20.1. Серией Гильберта – Пуанкаре называется

$$P(M,t) = \sum_{n \geqslant 0} \lambda(M_n) t^n \in \mathbb{Z}[[t]].$$

Теорема Гильберта — **Серра.** Пусть A порождается $x_1, \ldots, x_s, \deg x_i = k_i$. Тогда существует такая функция $f(t) \in \mathbb{Z}[t]$, что

$$P(M,t) = \frac{f(t)}{\prod_{i=1}^{s} (1 - t^{k_i})}.$$

Доказательство. Будем доказывать индукцией по s. При s=0 модуль M конечно порожден над $A=A_0$, пусть m_1,\ldots,m_k — порождающие. Тогда начиная с какого-то момента M_N не содержит ни одной из порождающих, с этого момента $M_N=0$. Тогда $P(M,t)\in\mathbb{Z}[t]$ и можно положить $f(t)=P(M,t)\cdot\prod\limits_{i=1}^s(1-t^{k_i})$. Таким образом, база доказана.

Переход. Рассмотрим гомоморфизм, получающийся домножением на x_s :

$$x_s: M_n \to M_{n+k_s}$$
.

Построим точную последовательность для этого гомоморфизма (K_n — ядро, L_{n+k_s} — коядро):

$$0 \to K_n \to M_n \xrightarrow{x_s} M_{n+k_s} \to L_{n+k_s} \to 0.$$

Положим $K=\bigoplus_{n\geqslant 0}K_n,\ L=\bigoplus_{n\geqslant 0}L_n,$ заметим, что x_s аннулирует K и L. Таким образом, K и L — модули над $A_0[x_1,\dots,x_{x-1}]$ и для них верно индукционное

предположение (обозначим искомые для них многочлены как a(t) и b(t) соответственно). Из точности последовательностей имеем равенство:

$$\lambda(K_n) - \lambda(M_n) + \lambda(M_{n+k_s}) - \lambda(L_{n+k_s}) = 0.$$

Домножим каждое из равенств на t^{n+k_s} и сложим:

$$t^{k_s}(P(K,t) - P(M,t)) + (P(M,t) - P(L,t) - g(t))$$

где $g(t) \in \mathbb{Z}[t]$ — разность «хвостов» двух последних членов (потому что там суммирование ведется не с нуля). Выразим P(M,t) (тут пользуемся предположением индукции):

$$P(M,t) = \frac{b(t) + g(t) \cdot \prod_{i=1}^{s} (1 - t^{k_i}) - a(t)t^{k_s}}{\prod_{i=1}^{s} (1 - t^{k_i})}.$$

Обозначение 20.1. Обозначим $d(M) = -ord_{(1-t)}P(M,t)$ — степень вхождения (1-t) в знаменатель P(M,t).

П

Предложение 20.1. Если $k_i = 1$ при всех i, то $\lambda(M_n)$ — многочлен от n степени d(M) - 1 = d - 1 (при больших n).

Доказательство. По теореме Гильберта – Серра можем считать, что

$$\sum_{n\geqslant 0} \lambda(M_n)t^n = P(M,t) = \frac{f(t)}{(1-t)^d} = f(t)\sum_{k\geqslant 0} t^k \binom{d+k-1}{d-1},$$

причем $f(1) \neq 0$. Если явно посчитать коэффициент при t^n (тут $n \geqslant \deg f$), получится полином степени не больше d-1 (из такой цэшки в принципе больше ничего вылезти не сможет). Если посчитать коэффициент при d-1 степени явно,

то получится
$$\frac{f(1)}{(d-1)!} \neq 0$$
.

21 Функция Гильберта – Самуэля

Соглашение. Все модули в этой главе будут конечнопорожденными, (R,\mathfrak{m}) — нётерово локальное кольцо.

Предложение 21.1. Пусть $\mathfrak{q} \subset R$ — идеал. Следующие утверждения эквивалентны:

- (1) R/\mathfrak{q} артиново;
- (2) существует n > 0, для которого $\mathfrak{m}^n \subset \mathfrak{q}$;
- $(3) \mathfrak{q} \mathfrak{m}$ примарный.

Доказательство. Пусть $f: R \to R/\mathfrak{q}$ — каноническая проекция. Заметим, что $f(\mathfrak{m})$ — единственный простой идеал в R/\mathfrak{q} .

- $(1) \Rightarrow (2)$ В артиновом кольце нильрадикал $nil(R/\mathfrak{q}) = \mathfrak{m}$ нильпотентен по следствию 9.1.
- $(2)\Rightarrow (3)$ Рассмотрим такое первое N, что $(f(\mathfrak{m}))^N=0$, тогда для любого ненулевого $x\in (f(\mathfrak{m}))^{N-1}$ идеал $\mathfrak{m}=Ann(x)$. Покажем, что других ассоциированных простых нет. Предположим, нашелся другой ассоциированный простой \mathfrak{p} , тогда обязательно $\mathfrak{q}\subset\mathfrak{p}\subsetneq\mathfrak{m}$. Рассмотрим $x\in\mathfrak{m}-\mathfrak{p},\ x^N\in R-\mathfrak{p}\subset R-\mathfrak{q},$ противоречие.
- $(3)\Rightarrow (1)$ Заметим, что $\mathfrak{m}=nil(R/\mathfrak{q})$. В нётеровом кольце нильрадикал нильпотентен (по следствию 8.1), тогда по лемме 10.4 нётеровость кольца равносильна его артиновости.

Определение 21.1. Такой идеал q называется *параметрическим*.

Соглашение. Далее в этой главе $\mathfrak{q}=(x_1,\ldots,x_s)$ будет обозначать параметрический идеал.

Предложение 21.2. Предположим, M_n — стабильная \mathfrak{q} — фильтрация модуля M. Тогда для всех $n\geqslant 0$ выполнено $\ell(M/M_n)<\infty$.

Доказательство. Модуль M_n/M_{n+1} — нётеров и зануляется q, поэтому он конечнопорожден над R/\mathfrak{q} . По предложению 21.1 кольцо R/\mathfrak{q} — артиново, тогда по теореме Акизуки — Хопкинса $\ell(M_n/M_{n+1})<\infty$. Тогда

$$\ell_n = \ell(M/M_n) = \sum_{i=1}^{n-1} M_i/M_{i+1} < \infty.$$

Предложение 21.3. Для достаточно больших n число $\ell_n = \ell(M/M_n)$ — это значения фиксированного многочлена, степень которого не больше s.

П

Доказательство. В силу замечания 19.3 модуль $gr_{\mathfrak{q}}(M)$ конечнопорожден над $gr_{\mathfrak{q}}(M)$, тогда по предложению 20.1 $\ell_n = \sum\limits_{i=1}^{n-1} g_i$, где $g_i = \ell(M_i/M_{i+1})$ — значения многочлена степени степени не больше s-1. Нетрудно заметить, что сумма таких многочленов — многочлен на 1 большей степени.

Предложение 21.4. Степень и старший коэффициент многочлена $\alpha(n) = \ell(M/M_n)$ (при больших n) не зависят от выбора фильтрации.

Доказательство. Достаточно доказать, что эти многочлены $\alpha(n)$ для произвольной стабильной фильтрации M_n и $\beta(n)$ для \mathfrak{q} – адической $\mathfrak{q}^n M$ устроены так, что

$$\lim_{n \to \infty} \frac{\alpha(n)}{\beta(n)} = 1.$$

Заметим, что $\alpha(n) = \ell(M/M_n) \leqslant \ell(M/\mathfrak{q}^n M) = \beta(n)$ (потому что $\mathfrak{q}^n M \subset M_n$ по определению фильтрации), поэтому

$$\lim_{n \to \infty} \frac{\alpha(n)}{\beta(n)} \leqslant 1.$$

В силу стабильности фильтрации $\mathfrak{q}^n M_{n_0} = M_{n+n_0}$. Поэтому $M_{n+n_0} \subset \mathfrak{q}^n M$ и

$$\lim_{n \to \infty} \frac{\alpha(n)}{\beta(n)} = \lim_{n \to \infty} \frac{\alpha(n+n_0)}{\beta(n)} \geqslant 1.$$

Определение 21.2. Многочлен $\ell(M/M_n)$ называется *многочленом Гильбер-* ma-Camyэля и обозачается

 \Box

П

$$\chi^M_{\mathfrak{q}}(n) = \ell(M/\mathfrak{q}^n M).$$

Обозначение 21.1. Наименьшее количество образующих \mathfrak{m} – примарного идеала обозначается $\delta(R)$.

Замечание 21.1. В силу предложения 20.1 $\delta(R) \geqslant d(R)$.

Предложение 21.5. Пусть $x \in R$ — не делитель нуля для M. Положим M' = M/xM, тогда

$$\deg \chi_{\mathfrak{q}^{M'}} \leqslant \deg \chi_{\mathfrak{q}}^M - 1.$$

Доказательство. Пусть N=xM, поскольку x — не делитель нуля, $M\simeq N$. По теореме Артина — Рисса $N_k=N\cap\mathfrak{q}^nM$ — стабильная фильтрация и по предложению 21.4 многочлен $\chi^N_\mathfrak{q}$ имеет тот же старший коэффициент и степень, что и $\chi^M_\mathfrak{q}$. Рассмотрим точную последовательность

$$0 \to N/N_k \to M/\mathfrak{q}^n M \to M'/\mathfrak{q}^n M' \to 0.$$

По теореме о точности длины

$$\ell(N/N_k) - \ell(M/\mathfrak{q}^n M) + \ell(M'/\mathfrak{q}^n M') = \chi_{\mathfrak{q}}^N(k) - \chi_{\mathfrak{q}}^M(k) + \chi_{\mathfrak{q}}^{M'}(k) = 0.$$

42

22 Размерность Крулля

Теперь R — произвольное коммутативное кольцо. Выберем $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_n$ — последовательность вложенных простых идеалов.

Определение 22.1. *Размерностью Крулля* $\dim(R)$ называется

 $\dim(R) = \sup\{n \mid \text{ существует цепочка вложенных простых длины } n\}.$

Определение 22.2. Высотой простого идеала $\mathfrak p$ называется $ht(\mathfrak p)=\dim(R_{\mathfrak p})$. Ковысотой называется $coht(\mathfrak p)=\dim(R/\mathfrak p)$.

Замечание 22.1. $coht(\mathfrak{p}) + ht(\mathfrak{p}) < \dim(R)$.

Пример 22.1. В случае, когда R = F - поле, dim F = 0, dim F[x] = 1

Пример 22.2. Если $R = \mathbb{Z}$, то dim $\mathbb{Z} = 1$.

Пример 22.3. Условие, что dim R=0, равносильно тому, что ножество максимальных идеалов совпадает с множеством простых. Следовательно (по теореме Акизуки-Хопкинса), R — артиново тогда и только тогда, когда R — нётерово и dim R=0.

Предложение 22.1. В случае, когда R — локальное нётерово, $d(R) \geqslant \dim(R)$.

Доказательство. Будем доказывать по индукции по d=d(R). Если d=0, то $\ell(A/\mathfrak{m}^n)=const$ при больших n, следовательно, $\mathfrak{m}^{n+1}=\mathfrak{m}^n$ и по лемме Накаямы $\mathfrak{m}^n=0$. Рассмотрим произвольный простой $\mathfrak{p}\subset\mathfrak{m}\subset R$. Поскольку $0=\mathfrak{m}^n\subset\mathfrak{p}$, в силу простоты \mathfrak{p} имеем:

$$\mathfrak{m}\subset\mathfrak{p}\subset\mathfrak{m}.$$

Таким образом, $\mathfrak{m} = \mathfrak{p}$ и dim R = 0.

Пусть теперь d>0. Рассмотрим цепочку вложенных простых:

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_n.$$

Рассмотрим ненулевой $x \in \mathfrak{p}_1/\mathfrak{p}_0$, пусть $x' \in R' = R/\mathfrak{p}_0$ — его образ при вложении, заметим, что x' — не делитель нуля и по предложению 21.5

$$d(R'/(x')) \leqslant d(R') - 1.$$

Пусть \mathfrak{m}' — максимальный идеал в R'. Тогда R'/\mathfrak{m}'^n — образ R/\mathfrak{m}^n и $\ell(R/\mathfrak{m}^n) \geqslant \ell(R'/\mathfrak{m}'^n)$. Следовательно, $d(R) \geqslant d(R')$ и

$$d(R'/(x')) \leqslant d(R) - 1.$$

Таким образом, для R'/(x') выполнено предположение индукции и $d(R'/(x')) \ge \dim(R'/(x'))$. Образ простых идеалов $\mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_n$ в R'/(x') образует цепочку длины n-1. Таким образом,

$$n-1 \leqslant d-1$$
,

что и требовалось.

Следствие 22.1. Для локального нётерового кольца $\dim(R) < \infty$. Следствие 22.2. Пусть R — нётерово, $\mathfrak{p} \subset R$ — простой, тогда $ht(\mathfrak{p}) < \infty$.

23 Теорема о размерности

Предложение 23.1. Кольцо (R,\mathfrak{m}) — локально и нётерово, тогда $\dim(R)\geqslant \delta(R).$

Доказательство. Будем строить по индукции такое подмножество $\{x_1, \ldots, x_r\} \subset R$, чтобы высота любого простого идеала, содержащего (x_1, \ldots, x_i) , была хотя бы i. Этот процесс должен закончится при $r = ht(\mathfrak{m})$ (иначе будет видно, что его можно продолжать), в этом случае мы победим.

Предположим, мы уже построили множество $\{x_1,\ldots,x_{i-1}\}$, для которого условие выполнено. Пусть $\mathfrak{p}_1,\ldots,\mathfrak{p}_s$ — все простые идеалы высоты ровно i-1. Заметим, что все они минимальны по предположению индукции, тогда по предложению 14.5 их действительно конечно. Положим $d_1=ht(\mathfrak{m})$, предположим, что $i-1< d_1$. Тогда по Prime Avoidance найдется такое $x_i\in\mathfrak{m}-\bigcup\limits_{j=1}^s\mathfrak{p}_j$ (иначе $\mathfrak{m}=\mathfrak{p}_j$ для некоторого j). Этим элементом и дополним текущее множество.

Теорема о размерности. Для локальных нётеровых колец выполнено неравенство:

$$\delta(R) \geqslant d(R) \geqslant \dim(R) \geqslant \delta(R),$$

следовательно, неравенства можно заменить на равенства.

Доказательство. Первое неравенство было в замечании 21.1, второе неравенство доказано в предложении 22.1, а третье — в предложении 23.1. □

Следствие 23.1. Пусть $\mathbb{k} = R/\mathfrak{m}$, тогда $\dim(R) \leqslant \dim_{\mathbb{k}}(\mathfrak{m}/\mathfrak{m}^2)$.

Доказательство. Достаточно доказать, что прообразы базиса $\mathfrak{m}/\mathfrak{m}^2$ в \mathfrak{m} будут образующими. Для этого нужно рассмотреть $\mathfrak{n}\mathfrak{m}$ — идеал, который порождают эти прообразы, и из того, что $\mathfrak{n}+\mathfrak{m}\cdot\mathfrak{m}=\mathfrak{m}$ с помощью леммы Накаямы вывести $\mathfrak{m}/\mathfrak{n}=0$.

Определение 23.1. Размерность $\dim_{\mathbb{K}}(\mathfrak{m}/\mathfrak{m}^2)$ называется *вложенной размерностью* кольца $(R,\mathfrak{m}).$

Определение 23.2. В случае, когда $\dim(R) = \dim_{\mathbb{K}}(\mathfrak{m}/\mathfrak{m}^2)$, кольцо (R,\mathfrak{m}) называется регулярным.

Следствие 23.2. Пусть R — нётерово, x_1, \ldots, x_r — произвольные элементы кольца. Рассмотрим минимальный простой $\mathfrak{p} \supset (x_1, \ldots, x_r)$. Тогда $ht(\mathfrak{p}) \leqslant r$.

Доказательство. По условию имеем $(x_1, \ldots, x_s)R_{\mathfrak{p}} \subset \mathfrak{p}R_{\mathfrak{p}}$. Заметим, что $\mathfrak{p}R_{\mathfrak{p}}$ — максимальный и единственный простой, содержащий $(x_1, \ldots, x_r)R_{\mathfrak{p}}$, тогда по теореме $2.2 \sqrt{(x_1, \ldots, x_r)R_{\mathfrak{p}}} = \mathfrak{p}R_{\mathfrak{p}}$. По только что доказанной теореме, получаем:

$$ht(\mathfrak{p}) = \dim(R_{\mathfrak{p}}) = \delta(R_{\mathfrak{p}}) \leqslant r.$$

Теорема Крулля о главных идеалах. Пусть R —нётерово, $x \in R$ — необратим и не является делителем нуля, \mathfrak{p} — минимальный простой, содержащий (x). Тогда ht(p)=1.

Доказательство. По следствию 23.2 мы знаем, что $ht(\mathfrak{p}) \leqslant 1$. Предположим, что $ht(\mathfrak{p}) = 0$. Тогда \mathfrak{p} — минимальный простой в Supp(R), а по предложению 14.5 $\mathfrak{p} \in Ass(R)$. По предложению 14.7 $x \in \mathfrak{p} \subset ZD(R)$ — противоречие.

Предложение 23.2. Пусть (R, \mathfrak{m}) — локальное нётерово, $x \in \mathfrak{m}$ — не делитель нуля. Тогда $\dim(R/(x)) = \dim(R) - 1$.

Доказательство. По теореме о размерности и предложению 21.5 имеем:

$$d = \dim(R/(x)) = d(R/(x)) \le d(R) - 1 = \dim(R) - 1.$$

Пусть $\overline{x}_1,\dots,\overline{x}_d$ — минимальная система образующих $\mathfrak{m}/(x)$. Тогда $(x_1,\dots,x_d,x)=\mathfrak{m}$ и

$$\dim(R) = \delta(R) \leqslant d + 1.$$