1 Programming Code

```
1 #from numpy import sin,pi,linspace as np
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import pandas as pd
6 def res_var():
      data = pd.read_csv('var_res.csv')
      A_x = data['Ax(in V)']
8
      A_y = data['Ay(in V)']
9
      delta = data['delta( in rad)']
10
      t = linspace(-pi,pi,300)
11
12
      for i in range(0,5):
13
14
           x = A_x[i]*sin(100* t)
           y = A_y[i]*sin(100* t + delta[i])
15
          fig = plt.figure()
16
          ax = plt.axes(projection='3d')
17
           ax.set_xlabel("x($V$)")
18
          ax.set_ylabel("y($V$)")
19
           plt.tight_layout()
20
21
           ax.grid(True)
           plt.plot(x,y)
22
23
           plt.show()
24
def freq_var():
      data = pd.read_csv('var_freq.csv')
      A_x = data['Ax(in V)']
27
      A_y = data['Ay(in V)']
28
      delta = data['delta( in rad)']
29
      t = linspace(-pi,pi,300)
30
31
      for i in range(0,3):
32
33
           x = A_x[i]*sin(100* t)
           y = A_y[i]*sin(100* t + delta[i])
34
35
          fig = plt.figure()
           ax = plt.axes(projection='3d')
36
           ax.set_xlabel("x($V$)")
ax.set_ylabel("y($V$)")
37
38
           plt.tight_layout()
39
           ax.grid(True)
           plt.plot(x,y)
41
          plt.show()
42
```

```
def delta_vs_freq():
      data = pd.read_csv('var_freq.csv')
delta = data['delta( in rad)']
3
      freq = data['v(Hz)']
4
5
6
      plt.xscale('log')
      plt.tight_layout()
7
      plt.grid(True)
8
      plt.xlabel("$v$ $(Hz)$")
      plt.ylabel("$\Theta$ (rad)")
10
      plt.title("$\Theta$ vs $v$")
11
      plt.plot(freq,delta)
12
      plt.show()
13
14
def freq_not():
      data = pd.read_csv('var_freq.csv')
16
       Ax = data['Ax(in V)']
17
      Ay = data['Ay(in V )']
18
19
      fig, ax = plt.subplots()
      ax.plot(Ax,Ay)
20
21
      ax.set_xlabel("$A_x(V)$")
      ax.set_ylabel("$A_y(V)$")
22
23
      plt.xticks(np.arange(12, 21, 1.0))
      plt.yticks(np.arange(0, 18, 2.5))
24
      #ax.annotate("(17,17)", (17,17),xytext=(17,17))
25
      plt.title("$A_x$ vs $A_y$")
26
      plt.grid(True)
27
      plt.show()
28
29
30
31
32 if __name__ == "__main__":
33
     res_var()
      freq_var()
34
      delta_vs_freq()
35
36 freq_not()
```

$R(\Omega)$	$A_{\mathbf{x}}$ (V)	$A_{\mathbf{y}}(V)$	$T_{\rm d}({ m ms})$	$T_{\rm p}({\rm ms})$	$\theta(\mathrm{rad})$	Lissajous Figures
0.1	19.97	1.093	9.6875	10	6.08375	-20_15_10_5 10_15_2010
10	19.97	0.1093	2.5	10	1.57	-20-15-10-5 10 15 20 -0.10
1K	19.97	9.56	1.875	10	1.1775	-20-15-10-5 10 15 20 -100
100K	17.005	16.865	0.625	10	0.3925	-15 -10 -5 -15 -15 -15
1M	13.54	13.555	0.3125 3	10	0.19625	-10 -5 KB 5 10 -10

Table 1: Table for Lissajous Figures

ν (Hz)	$A_{\mathbf{x}}$ (V)	$A_{\mathbf{y}}(V)$	$T_{\rm d}({\rm ms})$	$T_{\rm p}({\rm ms})$	$\theta(\mathrm{rad})$	Lissajous Figures
10	19.97	9.33	15.625	100	0.98125	0 04 0 02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1K	19.97	0.1093	0.25	1	1.57	-20 -10 0 00 000 0.00 0.00 0.00 0.00 0.00
100K	19.97	0.0010925	0.0025	0.01	1.57	0.04 0.02 0.00 0.00 0.001 0.0010 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005

Table 2: Frequency Variable Lissajous Figures

2 v vs θ

3 Ax vs Ay

