

IEC 61850 - Communication Networks and Systems in Substations: An Overview of Computer Science

Jianqing Zhang and Carl A. Gunter

University of Illinois at Urbana-Champaign

Agenda

- Overview
- Data modeling approach
- Communication model
- Communication service mapping
- Sampled measured values
- Configuration description language
- Conclusion
- Reference

Background I: Power Substation

Intelligent Electronic Device

- Microprocessor-based controllers of power system equipment
 - e.g. circuit breaker, protective relay...

- Issue control commands in case of anomalies to maintain the desired status of power grid
 - e.g. tripping circuit breakers

Why Standards Are Needed

- Interoperability and Integration
 - No standard for data representation or how devices should look and behave to network applications
- Intuitive device and data modeling and naming
 - Hierarchical and structured, rather than plain formatted
- Fast and convenient communication
- Lower cost for installation, configuration and maintenance
 - Wire connected legacy devices

History of IEC 61850

Comprehensive EPRI-Project UCA 2.0 **UCA:** Utility Communication Architecture

- Protocols
- Data models
- Abstract service definitions

GOAL: One International Standard

IEC 61850

IEC 60870-5-101, -103, -104 European experience

IEC 60870-5

- A communication profile for sending basic telecontrol messages between two systems
- Based on permanent directly connected data circuits

IEC 61850 Substation Architecture

- IEC61850-enabled IEDs get digitalized power grid condition data via process bus and merge units
- IEDs communicate with each other using substation buses
- Legacy devices use IEC61850 wrapper

Core Components of IEC 61850

- An object model describing the information available from the different primary equipment and from the substation automation functions
 - Abstract definitions of services, data and Common Data Class, independent of underlying protocols
- A specification of the communication between the IEDs of the substation automation system.
 - Maps the services to actual protocols
- A configuration language
 - Exchange configuration information

IEC 61850 Standards

IEC 61850 Primary Parts

- Part 6-1: Substation Configuration Language (SCL)
- Part 7-2: Abstract Communications Service Interface (ACSI) and base types
- Part 7-3: Common Data Classes (CDC)
- Part 7-4: Logical Nodes
- Part 8-1: Specific Communications Service Mappings (SCSM) - MMS & Ethernet
- Part 9-2: SCSM Sampled Values over Ethernet
- Part 10-1: Conformance Testing

IEC 61850 Is Unique

- Not a recast serial RTU protocol
- Designed specifically for LANs to lower life cycle cost to use a device:
 - Cost to install, configure, and maintain
- Real object-oriented approach for SA:
 - Supports standardized device models using names instead of object/register numbers and indexes.
 - Standardized configuration language (SCL).
 - Feature rich with support for functions difficult to implement otherwise.

Benefits of IEC 61850

- Supports a comprehensive set of substation functions
- Easy for design, specification, configuration, setup, and maintenance.
 - High-level services enable self-describing devices & automatic object discovery
 - Standardized naming conventions with power system context
 - Configuration file formats eliminate device dependencies and tag mapping and enables exchange of device configuration.
- Strong functional support for substation communication
 - Higher performance multi-cast messaging for inter-relay communications
- Extensible enough to support system evolution

Agenda

- Overview
- Data modeling approach
- Communication model
- Communication service mapping
- Sampled measured values
- Configuration description language
- Conclusion
- Reference

IEC 61850 Modeling Approach

IEC 61850 Class Model

Logical Node

 A named grouping of data and associated services that is logically related to some power system function.

Data Example of Logical Node

Attr. Name	ctrVal	stVal		
Attr. Type	BOOLEAN	CODED ENUM		
Functional Constraint	СО	ST		
TrgOp		dchg		
Value/Value Range	OFF (False) ON (True)	off on bad- state		
M/O/C	0	М		

Common Data Class: Double Points Control

Logical Nodes Information Categories

Common logical node information

 Information independent from the dedicated function represented by the LN, e.g., mode, health, name plate, ...

Status information

 Information representing either the status of the process or of the function allocated to the LN, e.g., switch type, switch operating capability

Settings

 Information needed for the function of a logical node, e.g., first, second, and third reclose time

Measured values

- Analogue data measured from the process or calculated in the functions like currents, voltages, power, etc., e.g., total active
- power, total reactive power, frequency

Controls

- Data, which are changed by commands like switchgear state (ON/OFF), resetable counters, e.g., position, block opening
- 88 pre-defined logical nodes and extensible

Logical Node Class Example - XCBR ILLING SECURITY

XCBR class						
Attribute Name	Attr. Type	Explanation	T	M/O		
LNName	55	Shall be inherited from Logical-Node Class (see IEC 61850-7-2)	315 315			
Data	*					
Common Logical	Node Inform	ation	8 8			
3* G		LN shall inherit all Mandatory Data from Common Logical Node Class	I	M		
Loc	SPS	Local operation (local means without substation automation communication, hardwired direct control)	ſ	М		
EEHealth	INS	External equipment health	(0		
EEName	DPL	External equipment name plate	(0		
OpCnt	INS	Operation counter	1	M		
Controls	ş	· · · · · · · · · · · · · · · · · · ·				
Pos	DPC	Switch position	ı	М		
BlkOpn	SPC	Block opening	1	М		
BlkCls	SPC	Block closing	1	М		
ChaMotEna	SPC	Charger motor enabled		0		
Metered Values						
SumSwARs	BCR	Sum of Switched Amperes, resetable	(0		
Status Information	n					
СВОрСар	INS	Circuit breaker operating capability		М		
POWCap	INS	Point On Wave switching capability	(0		
MaxOpCap	INS	Circuit breaker operating capability when fully charged O				

Single Point Status (SPS) CDC

(e.g. Loc)

SPS class					
Attribute Name	Attribute Type	FC	TrgOp	Value/Value Range	M/O/C
DataName	Inherited from Data Cl	€			
DataAttribut	e				
	=			status	
stVal	BOOLEAN	ST	dchg	TRUE FALSE	М
q	Quality	ST	qchg		M
t	TimeStamp	ST	5000 (475 F		М
	68 08		SUL	bstitution	
subEna	BOOLEAN	SV			PICS_SUBST
subVal	BOOLEAN	SV		TRUE FALSE	PICS_SUBST
subQ	Quality	SV			PICS_SUBST
subID	VISIBLE STRING64	SV			PICS_SUBST
	že.	configur	ation, de	scription and extension	
d	VISIBLE STRING255	DC	5V V	Text	0
dU	UNICODE STRING255	DC	36		0
cdcNs	VISIBLE STRING255	EX	36 S		AC_DLNDA_M
cdcName	VISIBLE STRING255	EX	36 3		AC_DLNDA_M
dataNs	VISIBLE STRING255	EX	55		AC_DLN_M
1	1	1		1	<u> </u>
Attribute Name	1 \(\) \(\)	ا Functiona Constrai		l Range of Values	Mandatory/ Optional

Object Name Structure

Agenda

- Overview
- Data modeling approach
- Communication model
- Communication service mapping
- Sampled measured values
- Configuration description language
- Conclusion
- Reference

IEC 61850 Communication Scope

- Protection-data exchange between bay and station level
- Protection-data exchange between bay level and remote protection
- 3. Data exchange within bay level
- CT and VT instantaneous data exchange between process and bay levels
- 5. Control-data exchange between process and bay level
- 6. Control-data exchange between bay and station level
- 7. Data exchange between substation and remote engineer's workplace
- 8. Direct data exchange between the bays especially for fast functions like interlocking
- Data exchange within station level
- Control-data exchange between substation (devices) and a remote control center

ACSI: Abstract Communications Service Interface

- None timing critical message transmitting
- Used for configuration, maintenance, log...
- Three basic components
 - A set of objects
 - A set of services to manipulate and access those objects
 - A base set of data types for describing objects

ACSI Server Building Block

Basic Information Models

SERVER

- Represents the external visible behavior of a (physical) device
- Communicate with a client
- Send information to peer devices

LOGICAL-DEVICE (LD)

 Contains the information produced and consumed by a group of domain-specific application functions, which are defined as LOGICAL-NODEs

LOGICAL-NODE (LN)

Contains the information produced and consumed by a domain specific application function

DATA

- Status and meta-information of object it presents in substation
- Provide means to specify typed information

Services Operating on Data

- DATA-SET
 - The grouping of data and data attributes
 - A view of DATA
- SETTING-GROUP
 - How to switch from one set of setting values to another one
 - How to edit setting groups
- REPORT and LOG
 - Describe the conditions for generating reports and logs based on parameters set by the client
 - Reports may be sent immediately or deferred
 - Logs can be queried for later retrieval
- Generic Substation Event (GSE) control block (GSSE/GOOSE)
 - Supports a fast and reliable system-wide distribution of input and output data values
- Sampled Values Transmission control block
 - Fast and cyclic transfer of samples

Services Operating on Data (cont.)

Control

 Provide client mechanisms to control the DATA related to external devices, control outputs, or other internal functions

Substitution

 Support replacement of a process value (measurands of analogue values or status values) by another value

Get/Set

Retrieve or write particular DataAttribute Values

Dir/Definition

 Retrieve ObjectReferences and definitions of all subobjects.

Other Services

- Association
 - How the communication between the various types of devices is achieved
 - Two-party and Multicast
 - Access Control
- Time Synchronization
 - Provide the UTC synchronized time to devices and system
- File Transfer
 - Defines the exchange of large data blocks such as programs

Communication Model

- Two-Party-Application-Association (TPAA)
 - A bi-directional connection-oriented information exchange
 - Reliable and end-to-end flow control
- MultiCast-Application-Association (MCAA)
 - A unidirectional information exchange
 - Between one source (publisher) and one or many destinations (subscriber)
 - The subscriber shall be able to detect loss and duplication of information received
 - The receiver shall notify the loss of information to its user and shall discard duplicated information

Principle of TPAA and MCAA

Two-Party-Application-Association

MultiCast-Application-Association

ACSI Communication Model

Generic Substation Event (GSE) Model

- A fast and reliable system-wide distribution of input and output data values
- Based on a publisher/subscriber mechanism
- Simultaneous delivery of the same generic substation event information to more than one physical device through the use of multicast/broadcast services
- GSSE/GOOSE

GOOSE: Generic Object Oriented Substation Event

- Used for fast transmission of substation events, such as commands, alarms, indications, as messages
- A single GOOSE message sent by an IED can be received several receivers
- Take advantage of Ethernet and supports real-time behavior
- Examples:
 - Tripping of switchgear
 - Providing position status of interlocking

Generic Object Oriented Substation Event (GOOSE)

 Exchange of a wide range of possible common data organized by a DATA-SET

GSSE: Generic Substation Status Event

 Provide backward compatibility with the UCA GOOSE

 Just support a fixed structure of the data to be published

Based on multicast

Generic Substation State Event (GSSE)

Convey state change information (a simple list of status information)

Application Of GSE Model

Application of GSE Model (cont.)

- 1. PDIS (distance protection) detects a fault
- 2. PTRC issues a <Trip> command to XCBR0 (circuit break); the switchgear opens the circuit breaker;
- 3. The new status information is immediately sent; the reporting model may report the change;
- RREC (auto-reclosing) issues <Reclose> to XCBR0 according to the configured behavior;
- XCBR0 receives the GOOSE message with the value <Reclose>;
 the switchgear closes the circuit breaker. XCBR0 issues another
 GOOSE message with the new position value

Agenda

- Overview
- Data modeling approach
- Communication model
- Communication service mapping
- Sampled measured values
- Configuration description language
- Conclusion
- Reference

Mapping To Real Communication Systems

- IEC 61850 is just a high level description of substation automation
- Use MMS to implement IEC61850
- Map each IEC 61850 object to a MMS object
- Map each IEC 61850 service to a MMS operation
- All but GOOSE messages and transmission of sampled values are mapped to MMS protocol stack

MMS: Manufacturing Message Specification

- ISO 9506 standard used in Control Networks
- A reduced OSI stack with the TCP/IP protocol in the transport/network layer
- Ethernet and/or RS-232C as physical media
- Defines communication messages transferred between controllers as well as between the engineering station and the controller (e.g. downloading an application or reading/writing variables)

ACSI Objects Mapping

ACSI Object Class (7-2)	MMS Object (8-1)
SERVER class	Virtual Manufacturing Device (VMD)
LOGICAL DEVICE class	Domain
LOGICAL NODE class	Named Variable
DATA class	Named Variable
DATA-SET class	Named Variable List
SETTING-GROUP-CONTROL-BLOCK class	Named Variable
REPORT-CONTROL-BLOCK class	Named Variable
LOG class	Journal
LOG-CONTROL-BLOCK class	Named Variable
GOOSE-CONTROL-BLOCK class	Named Variable
GSSE-CONTROL-BLOCK class	Named Variable
CONTROL class	Named Variable
Files	Files

ACSI Services Mapping

ACSI Services (7-2)	MMS Services (8-1)
LogicalDeviceDirectory	GetNameList
GetAllDataValues	Read
GetDataValues	Read
SetDataValues	Write
GetDataDirectory	GetNameList
GetDataDefinition	GetVariableAccess Attributes
GetDataSetValues	Read
SetDataSetValues	Write
CreateDataSet	CreateNamedVariableList
DeleteDataSet	DeleteNamedVariableList
GetDataSetDirectory	GetNameList
Report (Buffered and Unbuffered)	InformationReport
GetBRCBValues/GetURCBValues	Read
SetBRCBValues/SetURCBValues	Write
GetLCBValues	Read
SetLCBValues	Write
QueryLogByTime	ReadJournal
QueryLogAfter	ReadJournal
GetLogStatus Values	GetJournalStatus
Select	Read/Write
SelectWithValue	Read/Write
Cancel	Write
Operate	Write
Command-Termination	Write

Protocol Mapping Profile

IEC61850 Protocol Stack

	ACSI Core Services	SMV		GOOSE		OSE	
Application	MMS (ISO/IEC 9506)						-
Presentation	ISO Presentation (ISO 9576) ASN.1 (ISO/IEC 8824/8825)						
Session	ISO Session (ISO 8327)						
Transport	ISO Transport (ISO/IEC 8073) Transport Class 0						
	RFC 1006						
Network	TCP (RFC 793)						
	IP (RFC 791) ARP (RFC 826)						
Data Link	Logical Link Control (ISO 8802 Media Access Control (ISO 880		hertype				

Agenda

- Overview
- Data modeling approach
- Communication model
- Communication service mapping
- Sampled measured values
- Configuration description language
- Conclusion
- Reference

Sampled Measured Values

 A method for transmitting sampled measurements from transducers such as CTs, VTs, and digital I/O.

Enables sharing of I/O signals among IEDs

- Supports 2 transmission methods:
 - Multicast service (MSVC) over Ethernet
 - Unicast (point-to-point) service (USVC) over serial links.

SMV Application

Agenda

- Overview
- Data modeling approach
- Communication model
- Communication service mapping
- Sampled measured values
- Configuration description language
- Conclusion
- Reference

SCL: Substation Configuration Language

 Description language for communication in electrical substations related to the IEDs

- XML based language that allows a formal description of
 - Substation automation system and the switchyard and the relation between them
 - IED configuration

SCL File Types

- SSD: System Specification Description
 - XML description of the entire system.
- SCD: Substation Configuration Description
 - XML description of a single substation.
- ICD: IED Capability Description
 - XML description of items supported by an IED.
- CID: Configured IED Description
 - XML configuration for a specific IED.

IEC61850 View of Devices

- Only network addressing requires configuration in the remote client.
- Point names portray the meaning and hierarchy of the data.
- Point names can be retrieved from the device automatically without manual intervention.
- All devices share a common naming convention.
- Device configurations can be exchanged using (SCL) files

Conclusion

- IEC 61850 is a migration from the analog world to the digital world for substation
 - Standardization of data names
 - Creation of a comprehensive set of services
 - Implementation over standard protocols and hardware
 - Definition of a process bus.
- Multi-vendor interoperability has been demonstrated
- Discussions are underway to utilize IEC 61850 as the substation to control center communication protocol
- IEC 61850 will become the protocol of choice as utilities migrate to network solutions for the substations and beyond.

Reference

- IEC 61850 Communication Networks and Systems In Substations, Technical Committee 57, International Electrotechnical Commission,
- Secure Intelligent Electronic Devices (SIEDs). C. A. Gunter, S. T. King, J. Zhang. PSERC 2007
- Overview of IEC 61850 and Benefits, R. E. Mackiewicz. PES TD 2005/2006
- IEC 61850 Communication Networks and Systems In Substations: An Overview for Users. D. Baigent, M. Adamiak and R. Mackiewicz. SIPSEP 2004

ILLINOIS SECURITY LAB

4309 Siebel Center for Computer Science 201 N Goodwin Ave Urbana, IL 61801

Phone: (217)265-6758 Fax: (217)265-6738 http://seclab.uiuc.edu

Jianqing Zhang: jzhang24@cs.uiuc.edu

Carl A. Gunter: cgunter@cs.uiuc.edu