

Transportation Research Record Articles: A Case Study of Trend Mining

Subasish Das Anandi Dutta Marcus Brewer

Monday, January 13, 2020

Overview

Synopsis

Study Design and Analysis

Results and Tools

Synopsis

Synopsis

- Transportation research is multi-faceted. Perception of trends and patterns from unstructured text data is overwhelming.
- This study used natural language processing (NLP) to identify trends and patterns.
- This study collected data from the titles and abstracts of the papers published in Transportation Research Record: Journal of the Transportation Research Board, since 1978.
- Used two NLP Tools: Latent Dirichlet Allocation (LDA) and Structural Topic Modeling (STM).
- Developed several interactive tools.

Study Design and Analysis

TRR Articles

Year	Number of	Total Words in	Total Words in
	Articles	Titles	Abstracts
1974	368	3,002	52,494
1975	222	1,741	31,397
1976	623	5,256	96,121
2016	875	10,847	186,506
2017	866	10,812	182,574
2018	719	9,300	153,102
2019 (partial)	584	7,461	124,637
Grand Total	30,784	322,732	5,791,072

What is topic model?

Topics

Visibility =0.5 Reduced= 0.2

Crash =0.2 Increase= 0.13 Most of the information used by drivers is acquired visually in spite of its importance, visibility conditions at the time of a crash are often not documented at a high level of detail. A quantified investigation of the visibility level at the time of a crash was undertaken to investigate the increase in risk associated with driving during periods of reduced visibility. The study method blended data collected from the National Oceanic and Atmospheric Administration (NOAA) with reported crashes in Florida. From the thousands of logged weather events collected by NOAA, the researchers isolated time periods of normal visibility and comparable time periods of reduced visibility in a matched-pairs study. The crash data were contained in the Roadway Information Database (RID) compiled for the Strategic Highway Research Program 2 (SHRP2). The RID contains several geometric and traffic variables that allow for analyses to account for effects of factors other than visibility. The findings indicate that, as expected, the likelihood of a crash increases during periods of low visibility, despite the tendency for less traffic and lower speeds to prevail during these times.

LDA and STM

Prolific TRR Authors

Interactive Tool: https://rpubs.com/subasish/507543

Results and Tools

Top 20 Topics

Key Takeaways

- The transportation research scope has become more diverse with expanding and inter-disciplinary coverage of topics. Trends and patterns of research is rapidly changing.
- To explore more relevant patterns in the broad fields of transportation research, this study presents a unique replicable framework to probe present content and prevalence to develop a disaggregated level correlation.
- In addition, this study produced two topic model interactive tools developed separately for TRR paper abstracts and titles.

Questions?

Subasish Das

Security

Infrastructure

s-das@tti.tamu.edu

Economics

979-317-2153