Neyman-Pearson theory

- Understand the optimality of Neyman Pearson test
- Simple illustrations

Neyman-Pearson Lemma: Maximize $1 - \beta$ for a given α .

Assume **x** has density $L(\mathbf{x}; \theta)$, $H_0: \theta = \theta_0$, $H_1: \theta = \theta_1$.

Then the optimal critical region is defined by: $W_{\alpha} = \{\mathbf{x} \in \mathbb{R}^n s.t. \frac{L(x;\theta_1)}{L(x;\theta_0)} > k_{\alpha}\}$

Illustration

Neyman-Pearson Lemma: Maximize $1 - \beta$ for a given α .

Assume **x** has density $L(\mathbf{x}; \theta)$, $H_0: \theta = \theta_0$, $H_1: \theta = \theta_1$.

Then the optimal critical region is defined by: $W_{\alpha} = \{\mathbf{x} \in \mathbb{R}^n s.t. \frac{L(x;\theta_1)}{L(x;\theta_0)} > k_{\alpha}\}$

Neyman-Pearson Lemma: Maximize $1 - \beta$ for a given α .

Assume **x** has density $L(\mathbf{x}; \theta)$, $H_0: \theta = \theta_0$, $H_1: \theta = \theta_1$.

Then the optimal critical region is defined by: $W_{\alpha} = \{ \mathbf{x} \in \mathbb{R}^n s.t. \frac{L(x;\theta_1)}{L(x;\theta_0)} > k_{\alpha} \}$

One can assume that $L(\mathbf{x}; \theta_1) > 0$ and $L(\mathbf{x}; \theta_0) > 0 \ \forall \mathbf{x} \in \mathbb{R}^n$

Neyman-Pearson Lemma: Maximize $1 - \beta$ for a given α .

Assume **x** has density $L(\mathbf{x}; \theta)$, $H_0: \theta = \theta_0$, $H_1: \theta = \theta_1$.

Then the optimal critical region is defined by: $W_{\alpha} = \{\mathbf{x} \in \mathbb{R}^n s.t. \frac{L(x;\theta_1)}{L(x;\theta_0)} > k_{\alpha}\}$

One can assume that $L(\mathbf{x}; \theta_1) > 0$ and $L(\mathbf{x}; \theta_0) > 0 \ \forall \mathbf{x} \in \mathbb{R}^n$ Note that $\mathbb{P}(W|H_0) = \int_W L(\mathbf{x}; \theta_0) d\mathbf{x}$

Neyman-Pearson Lemma: Maximize $1 - \beta$ for a given α .

Assume **x** has density $L(\mathbf{x}; \theta)$, $H_0: \theta = \theta_0$, $H_1: \theta = \theta_1$.

Then the optimal critical region is defined by: $W_{\alpha} = \{\mathbf{x} \in \mathbb{R}^n s.t. \frac{L(x;\theta_1)}{L(x;\theta_0)} > k_{\alpha}\}$

One can assume that $L(\mathbf{x}; \theta_1) > 0$ and $L(\mathbf{x}; \theta_0) > 0 \ \forall \mathbf{x} \in \mathbb{R}^n$ Note that $\mathbb{P}(W|H_0) = \int_W L(\mathbf{x}; \theta_0) d\mathbf{x}$

Unicity:
$$\forall \alpha \in]0,1[$$
, if $\exists k_{\alpha} \text{ s.t. } W_{\alpha} = \left\{ \mathbf{x} \in \mathbb{R}^{n} : \frac{L(\mathbf{x};\theta_{1})}{L(\mathbf{x};\theta_{0})} > k_{\alpha} \right\}$ realizes $\mathbb{P}(W_{\alpha}|H_{0}) = \alpha$

Then $W = W_{\alpha}$ maximizes $1 - \beta = \mathbb{P}(W|H_1)$

Unicity:
$$\forall \alpha \in]0,1[$$
, if $\exists k_{\alpha} \text{ s.t. } W_{\alpha} = \left\{ \mathbf{x} \in \mathbb{R}^{n} : \frac{L(\mathbf{x};\theta_{1})}{L(\mathbf{x};\theta_{0})} > k_{\alpha} \right\}$ realizes $\mathbb{P}(W_{\alpha}|H_{0}) = \alpha$
Then $W = W_{\alpha}$ maximizes $1 - \beta = \mathbb{P}(W|H_{1})$

Unicity:
$$\forall \alpha \in]0,1[$$
, if $\exists k_{\alpha} \text{ s.t. } W_{\alpha} = \left\{ \mathbf{x} \in \mathbb{R}^{n} : \frac{L(\mathbf{x};\theta_{1})}{L(\mathbf{x};\theta_{0})} > k_{\alpha} \right\}$ realizes $\mathbb{P}(W_{\alpha}|H_{0}) = \alpha$
Then $W = W_{\alpha}$ maximizes $1 - \beta = \mathbb{P}(W|H_{1})$

Indeed let W' s.t. $\mathbb{P}(W'|H_0) = \alpha$

Unicity:
$$\forall \alpha \in]0,1[$$
, if $\exists k_{\alpha} \text{ s.t. } W_{\alpha} = \left\{ \mathbf{x} \in \mathbb{R}^{n} : \frac{L(\mathbf{x};\theta_{1})}{L(\mathbf{x};\theta_{0})} > k_{\alpha} \right\}$ realizes $\mathbb{P}(W_{\alpha}|H_{0}) = \alpha$
Then $W = W_{\alpha}$ maximizes $1 - \beta = \mathbb{P}(W|H_{1})$

Indeed let
$$W'$$
 s.t. $\mathbb{P}(W'|H_0) = \alpha$
 $\mathbb{P}(W - W'|H_0) = \mathbb{P}(W' - W|H_0)$

Unicity:
$$\forall \alpha \in]0,1[$$
, if $\exists k_{\alpha} \text{ s.t. } W_{\alpha} = \left\{ \mathbf{x} \in \mathbb{R}^{n} : \frac{L(\mathbf{x};\theta_{1})}{L(\mathbf{x};\theta_{0})} > k_{\alpha} \right\}$ realizes $\mathbb{P}(W_{\alpha}|H_{0}) = \alpha$
Then $W = W_{\alpha}$ maximizes $1 - \beta = \mathbb{P}(W|H_{1})$

Indeed let
$$W'$$
 s.t. $\mathbb{P}(W'|H_0) = \alpha$
 $\mathbb{P}(W - W'|H_0) = \mathbb{P}(W' - W|H_0)$
Then $\int_{W-W'} \frac{L(\mathbf{x};\theta_1)}{L(\mathbf{x};\theta_0)} L(\mathbf{x};\theta_0) d\mathbf{x} \geq \int_{W'-W} ...$

Unicity:
$$\forall \alpha \in]0,1[$$
, if $\exists k_{\alpha} \text{ s.t. } W_{\alpha} = \left\{ \mathbf{x} \in \mathbb{R}^{n} : \frac{L(\mathbf{x};\theta_{1})}{L(\mathbf{x};\theta_{0})} > k_{\alpha} \right\}$ realizes $\mathbb{P}(W_{\alpha}|H_{0}) = \alpha$

Then
$$W = W_{\alpha}$$
 maximizes $1 - \beta = \mathbb{P}(W|H_1)$

Indeed let W' s.t.
$$\mathbb{P}(W'|H_0) = \alpha$$

$$\mathbb{P}(W - W'|H_0) = \mathbb{P}(W' - W|H_0)$$

Then
$$\int_{W-W'} \frac{L(\mathbf{x};\theta_1)}{L(\mathbf{x};\theta_0)} L(\mathbf{x};\theta_0) d\mathbf{x} \ge \int_{W'-W} \dots$$

ie
$$\int_W \frac{L(\mathbf{x};\theta_1)}{L(\mathbf{x};\theta_0)} L(\mathbf{x};\theta_0) d\mathbf{x} \geq \int_{W'} \dots$$
 i.e. $\mathbb{P}(W|H_1) \geq \mathbb{P}(W'|H_1)$

Neyman-Pearson Lemma: Maximize $1 - \beta$ for a given α .

Assume **x** has density $L(\mathbf{x}; \theta)$, $H_0: \theta = \theta_0$, $H_1: \theta = \theta_1$.

Then the optimal critical region is defined by: $W_{\alpha} = \{\mathbf{x} \in \mathbb{R}^n s.t. \frac{L(x;\theta_1)}{L(x;\theta_0)} > k_{\alpha}\}$

Neyman-Pearson Lemma: Maximize $1 - \beta$ for a given α .

Assume **x** has density $L(\mathbf{x}; \theta)$, $H_0: \theta = \theta_0$, $H_1: \theta = \theta_1$.

Then the optimal critical region is defined by: $W_{\alpha} = \{\mathbf{x} \in \mathbb{R}^n s.t. \frac{L(x;\theta_1)}{L(x;\theta_0)} > k_{\alpha}\}$

Existence: Let $W(k) = \{ \mathbf{x} \in \mathbb{R}^n : L(\mathbf{x}; \theta_1) > kL(\mathbf{x}; \theta_0) \}$

Neyman-Pearson Lemma: Maximize $1 - \beta$ for a given α .

Assume **x** has density $L(\mathbf{x}; \theta)$, $H_0: \theta = \theta_0$, $H_1: \theta = \theta_1$.

Then the optimal critical region is defined by: $W_{\alpha} = \{\mathbf{x} \in \mathbb{R}^n s.t. \frac{L(x;\theta_1)}{L(x;\theta_0)} > k_{\alpha}\}$

Existence: Let $W(k) = \{ \mathbf{x} \in \mathbb{R}^n : L(\mathbf{x}; \theta_1) > kL(\mathbf{x}; \theta_0) \}$ Then $\mathbb{P}(W(k)|H_0) \setminus k$ and is continuous

Neyman-Pearson Lemma: Maximize $1 - \beta$ for a given α .

Assume **x** has density $L(\mathbf{x}; \theta)$, $H_0: \theta = \theta_0$, $H_1: \theta = \theta_1$.

Then the optimal critical region is defined by: $W_{\alpha} = \{ \mathbf{x} \in \mathbb{R}^n s.t. \frac{L(x;\theta_1)}{L(x;\theta_0)} > k_{\alpha} \}$

Existence: Let
$$W(k) = \{\mathbf{x} \in \mathbb{R}^n : L(\mathbf{x}; \theta_1) > kL(\mathbf{x}; \theta_0)\}$$

Then $\mathbb{P}(W(k)|H_0) \searrow k$ and is continuous $\mathbb{P}(W(0)|H_0) = 1$ as $L(\mathbf{x}; \theta_1) > 0$

Neyman-Pearson Lemma: Maximize $1 - \beta$ for a given α .

Assume **x** has density $L(\mathbf{x}; \theta)$, $H_0: \theta = \theta_0$, $H_1: \theta = \theta_1$.

Then the optimal critical region is defined by: $W_{\alpha} = \{\mathbf{x} \in \mathbb{R}^n s.t. \frac{L(x;\theta_1)}{L(x;\theta_0)} > k_{\alpha}\}$

Existence: Let
$$W(k) = \{\mathbf{x} \in \mathbb{R}^n : L(\mathbf{x}; \theta_1) > kL(\mathbf{x}; \theta_0)\}$$

Then $\mathbb{P}(W(k)|H_0) \searrow k$ and is continuous $\mathbb{P}(W(0)|H_0) = 1$ as $L(\mathbf{x}; \theta_1) > 0$
 $\lim_{k \to \infty} \mathbb{P}(W(k)|H_0) = 0$

proposition: $1 - \beta \ge \alpha$, ie $\mathbb{P}(W|H_1) \ge \mathbb{P}(W|H_0)$

If $k_{\alpha} > 1$, this results from the definition of W

proposition: $1 - \beta \ge \alpha$, ie $\mathbb{P}(W|H_1) \ge \mathbb{P}(W|H_0)$

If $k_{\alpha} > 1$, this results from the definition of W

If $k_{\alpha} \leq 1$, then we show that $\beta < 1 - \alpha$, ie $\mathbb{P}(W^c|H_1) \leq \mathbb{P}(W^c|H_0)$

proposition: $1 - \beta \ge \alpha$, ie $\mathbb{P}(W|H_1) \ge \mathbb{P}(W|H_0)$

If $k_{\alpha} > 1$, this results from the definition of W

If $k_{\alpha} \leq 1$, then we show that $\beta < 1 - \alpha$, ie $\mathbb{P}(W^c|H_1) \leq \mathbb{P}(W^c|H_0)$

Indeed, by definition W^c is such that $\forall \mathbf{x} \in W^c, L(\mathbf{x}; \theta_1) \leq k_{\alpha}L(\mathbf{x}; \theta_0)$

proposition: $1 - \beta \ge \alpha$, ie $\mathbb{P}(W|H_1) \ge \mathbb{P}(W|H_0)$

If $k_{\alpha} > 1$, this results from the definition of W

If $k_{\alpha} \leq 1$, then we show that $\beta < 1 - \alpha$, ie $\mathbb{P}(W^c|H_1) \leq \mathbb{P}(W^c|H_0)$

Indeed, by definition W^c is such that $\forall \mathbf{x} \in W^c, L(\mathbf{x}; \theta_1) \leq k_{\alpha}L(\mathbf{x}; \theta_0)$

Then $\int_{W^c} L(\mathbf{x}; \theta_1) d\mathbf{x} \leq \int_{W^c} L(\mathbf{x}; \theta_0) d\mathbf{x}$

proposition: $1 - \beta \ge \alpha$, ie $\mathbb{P}(W|H_1) \ge \mathbb{P}(W|H_0)$

If $k_{\alpha} > 1$, this results from the definition of W

If $k_{\alpha} \leq 1$, then we show that $\beta < 1 - \alpha$, ie $\mathbb{P}(W^c|H_1) \leq \mathbb{P}(W^c|H_0)$

Indeed, by definition W^c is such that $\forall \mathbf{x} \in W^c, L(\mathbf{x}; \theta_1) \leq k_{\alpha}L(\mathbf{x}; \theta_0)$

Then $\int_{W^c} L(\mathbf{x}; \theta_1) d\mathbf{x} \leq \int_{W^c} L(\mathbf{x}; \theta_0) d\mathbf{x}$

Other basic properties: $\mathbb{P}(W(k)) \searrow k, k_{\alpha} \searrow \alpha, 1-\beta \nearrow \alpha$

Exhaustive statistic: $L(\mathbf{x}; \theta) = g(t, \theta)h(\mathbf{x})$

Exhaustive statistic: $L(\mathbf{x}; \theta) = g(t, \theta)h(\mathbf{x})$

Then the critical regions becomes $\frac{g(t,\theta_1)}{g(t,\theta_0)} > k_{\alpha}$

Exhaustive statistic: $L(\mathbf{x}; \theta) = g(t, \theta)h(\mathbf{x})$

Then the critical regions becomes $\frac{g(t,\theta_1)}{g(t,\theta_0)} > k_{\alpha}$

typical cases: Student, Fisher

Exhaustive statistic: $L(\mathbf{x}; \theta) = g(t, \theta)h(\mathbf{x})$

Then the critical regions becomes $\frac{g(t,\theta_1)}{g(t,\theta_0)} > k_{\alpha}$

typical cases: Student, Fisher

Example: Gaussian law with known σ , $H_0: \mathcal{N}(m_0, \sigma^2), H_1: \mathcal{N}(m_1, \sigma^2)$

Exhaustive statistic: $L(\mathbf{x}; \theta) = g(t, \theta)h(\mathbf{x})$

Then the critical regions becomes $\frac{g(t,\theta_1)}{g(t,\theta_0)} > k_{\alpha}$

typical cases: Student, Fisher

Example: Gaussian law with known σ , $H_0: \mathcal{N}(m_0, \sigma^2), H_1: \mathcal{N}(m_1, \sigma^2)$

$$g(\bar{x}, m) = \frac{1}{\sigma \sqrt{\frac{2\pi}{n}}} \exp\left(-\frac{1}{2} \left(\frac{\bar{x} - m}{\sigma \sqrt{n}}\right)^2\right)$$

Exhaustive statistic: $L(\mathbf{x}; \theta) = g(t, \theta)h(\mathbf{x})$

Then the critical regions becomes $\frac{g(t,\theta_1)}{g(t,\theta_0)} > k_{\alpha}$

typical cases: Student, Fisher

Example: Gaussian law with known σ , $H_0: \mathcal{N}(m_0, \sigma^2), H_1: \mathcal{N}(m_1, \sigma^2)$

$$g(\bar{x}, m) = \frac{1}{\sigma\sqrt{\frac{2\pi}{n}}} \exp\left(-\frac{1}{2}\left(\frac{\bar{x}-m}{\sigma\sqrt{n}}\right)^2\right)$$

 $\log \frac{g(\bar{x}, m_1)}{g(\bar{x}, m_0)} = -\frac{n}{2\sigma^2} \left((\bar{x} - m_1)^2 - (\bar{x} - m_0)^2 \right)$

Exhaustive statistic: $L(\mathbf{x}; \theta) = g(t, \theta)h(\mathbf{x})$

Then the critical regions becomes $\frac{g(t,\theta_1)}{g(t,\theta_0)} > k_{\alpha}$

typical cases: Student, Fisher

Example: Gaussian law with known
$$\sigma$$
, $H_0: \mathcal{N}(m_0, \sigma^2)$, $H_1: \mathcal{N}(m_1, \sigma^2)$

$$g(\bar{x}, m) = \frac{1}{\sigma \sqrt{\frac{2\pi}{n}}} \exp\left(-\frac{1}{2} \left(\frac{\bar{x} - m}{\sigma \sqrt{n}}\right)^2\right)$$
$$\log \frac{g(\bar{x}, m_1)}{g(\bar{x}, m_0)} = -\frac{n}{2\sigma^2} \left((\bar{x} - m_1)^2 - (\bar{x} - m_0)^2\right)$$

... ratio > cst iff $(m_1 - m_0)(\bar{x} - \frac{m_0 + m_1}{2}) > \kappa_{\alpha}$, ie $(m_1 > m_0) \bar{x} > x_{\alpha}$ solutions are half lines

Composite Hypothesis. e.g. $H_0: \theta = \theta_0; H_1: \theta > \theta_0 \text{ or } \theta \neq \theta_0$

Composite Hypothesis. e.g. $H_0: \theta = \theta_0; H_1: \theta > \theta_0 \text{ or } \theta \neq \theta_0$

Power function $1 - \beta(\theta)$

Uniformly Most Powerful test if $\forall \theta, 1 - \beta(\theta)$ greater than for any other test.

Composite Hypothesis. e.g. $H_0: \theta = \theta_0; H_1: \theta > \theta_0 \text{ or } \theta \neq \theta_0$

Power function $1 - \beta(\theta)$

Uniformly Most Powerful test if $\forall \theta, 1 - \beta(\theta)$ greater than for any other test.

E.g. in Gaussian case, exists for $H_1: \theta > \theta_0$, not for $H_1: \theta \neq \theta_0$

Composite Hypothesis. e.g. $H_0: \theta = \theta_0; H_1: \theta > \theta_0 \text{ or } \theta \neq \theta_0$

Power function $1 - \beta(\theta)$

Uniformly Most Powerful test if $\forall \theta, 1 - \beta(\theta)$ greater than for any other test.

E.g. in Gaussian case, exists for $H_1: \theta > \theta_0$, not for $H_1: \theta \neq \theta_0$

Maximal likelihood ratio test for $H_0: \theta = \theta_0; H_1: \theta \neq \theta_0$

$$\lambda = \frac{L(\mathbf{x}; \theta_0)}{\sup_{\theta} L(\mathbf{x}; \theta)} = \frac{L(\mathbf{x}; \theta_0)}{L(\mathbf{x}; \hat{\theta})}$$

$$\lambda = \frac{L(\mathbf{x}; \theta_0)}{L(\mathbf{x}; \hat{\theta})}$$
 Theorem: Under H_0 , $-2 \log \lambda \underset{n \to \infty}{\longrightarrow} \chi_p^2$, where $p = dim(\theta)$

$$\lambda = \frac{L(\mathbf{x}; \theta_0)}{L(\mathbf{x}; \hat{\theta})}$$
 Theorem: Under H_0 , $-2 \log \lambda \underset{n \to \infty}{\longrightarrow} \chi_p^2$, where $p = dim(\theta)$

Proof (scalar case to simplify notations): $\log L(\mathbf{x}; \theta_0) - \log L(\mathbf{x}; \hat{\theta}) = (\theta_0 - \hat{\theta}) \frac{\partial}{\partial \theta} \log L(\mathbf{x}; \hat{\theta}) + \frac{1}{2} (\theta_0 - \hat{\theta})^2 \frac{\partial^2}{\partial \theta^2} \log L(\mathbf{x}; \theta^*),$ where $\theta^* \in [\theta_0, \hat{\theta}]$

$$\lambda = \frac{L(\mathbf{x}; \theta_0)}{L(\mathbf{x}; \hat{\theta})}$$
 Theorem: Under H_0 , $-2 \log \lambda \underset{n \to \infty}{\longrightarrow} \chi_p^2$, where $p = dim(\theta)$

Proof (scalar case to simplify notations): $\log L(\mathbf{x}; \theta_0) - \log L(\mathbf{x}; \hat{\theta}) = (\theta_0 - \hat{\theta}) \frac{\partial}{\partial \theta} \log L(\mathbf{x}; \hat{\theta}) + \frac{1}{2} (\theta_0 - \hat{\theta})^2 \frac{\partial^2}{\partial \theta^2} \log L(\mathbf{x}; \theta^*),$ where $\theta^* \in [\theta_0, \hat{\theta}]$

but $\frac{\partial}{\partial \theta} \log L(\mathbf{x}; \hat{\theta}) = 0$

$$\lambda = \frac{L(\mathbf{x}; \theta_0)}{L(\mathbf{x}; \hat{\theta})}$$
 Theorem: Under H_0 , $-2 \log \lambda \underset{n \to \infty}{\longrightarrow} \chi_p^2$, where $p = dim(\theta)$

Proof (scalar case to simplify notations): $\log L(\mathbf{x}; \theta_0) - \log L(\mathbf{x}; \hat{\theta}) = (\theta_0 - \hat{\theta}) \frac{\partial}{\partial \theta} \log L(\mathbf{x}; \hat{\theta}) + \frac{1}{2} (\theta_0 - \hat{\theta})^2 \frac{\partial^2}{\partial \theta^2} \log L(\mathbf{x}; \theta^*),$ where $\theta^* \in [\theta_0, \hat{\theta}]$

but $\frac{\partial}{\partial \theta} \log L(\mathbf{x}; \hat{\theta}) = 0$

$$-2\log\lambda = -(\theta_0 - \hat{\theta})^2 \frac{\partial^2}{\partial \theta^2} \log(\mathbf{x}; \theta^*)$$

$$\lambda = \frac{L(\mathbf{x}; \theta_0)}{L(\mathbf{x}; \hat{\theta})}$$
 Theorem: Under H_0 , $-2 \log \lambda \underset{n \to \infty}{\longrightarrow} \chi_p^2$, where $p = dim(\theta)$

$$-2\log\lambda = -(\theta_0 - \hat{\theta})^2 \frac{\partial^2}{\partial \theta^2} \log(\mathbf{x}; \theta^*)$$

$$\lambda = \frac{L(\mathbf{x}; \theta_0)}{L(\mathbf{x}; \hat{\theta})}$$
 Theorem: Under H_0 , $-2 \log \lambda \underset{n \to \infty}{\longrightarrow} \chi_p^2$, where $p = dim(\theta)$

$$-2\log\lambda = -(\theta_0 - \hat{\theta})^2 \frac{\partial^2}{\partial \theta^2} \log(\mathbf{x}; \theta^*)$$

Under H_0 $\theta^* \underset{n \to \infty}{\longrightarrow} \theta_0$ thus $\frac{\partial^2}{\partial \theta^2} \log L(\mathbf{x}; \theta^*) \to nI(\theta_0)$, where $I(\theta) = \mathbb{E} \frac{\partial^2 \log L}{\partial \theta^2}$

$$\lambda = \frac{L(\mathbf{x}; \theta_0)}{L(\mathbf{x}; \hat{\theta})}$$
 Theorem: Under H_0 , $-2 \log \lambda \underset{n \to \infty}{\longrightarrow} \chi_p^2$, where $p = dim(\theta)$

$$-2\log\lambda = -(\theta_0 - \hat{\theta})^2 \frac{\partial^2}{\partial \theta^2} \log(\mathbf{x}; \theta^*)$$

Under
$$H_0$$
 $\theta^* \underset{n \to \infty}{\longrightarrow} \theta_0$ thus $\frac{\partial^2}{\partial \theta^2} \log L(\mathbf{x}; \theta^*) \to nI(\theta_0)$, where $I(\theta) = \mathbb{E} \frac{\partial^2 \log L}{\partial \theta^2}$

But
$$\frac{\theta_0 - \hat{\theta}}{\sqrt{1/I(\theta_0)}} \to \mathcal{N}(0,1)$$

$$\lambda = \frac{L(\mathbf{x}; \theta_0)}{L(\mathbf{x}; \hat{\theta})}$$
 Theorem: Under H_0 , $-2 \log \lambda \underset{n \to \infty}{\longrightarrow} \chi_p^2$, where $p = dim(\theta)$

$$-2\log\lambda = -(\theta_0 - \hat{\theta})^2 \frac{\partial^2}{\partial \theta^2} \log(\mathbf{x}; \theta^*)$$
In law H , θ^* ,

Under H_0 $\theta^* \underset{n \to \infty}{\longrightarrow} \theta_0$ thus $\frac{\partial^2}{\partial \theta^2} \log L(\mathbf{x}; \theta^*) \to nI(\theta_0)$, where $I(\theta) = \mathbb{E} \frac{\partial^2 \log L}{\partial \theta^2}$ But $\frac{\theta_0 - \hat{\theta}}{\sqrt{1/I(\theta_0)}} \to \mathcal{N}(0, 1)$

Thus
$$-2 \log \lambda \sim (\theta_0 - \hat{\theta})^2 I(\theta_0) \rightarrow \chi_1^2$$

$$\lambda = \frac{L(\mathbf{x}; \theta_0)}{L(\mathbf{x}; \hat{\theta})}$$
 Theorem: Under H_0 , $-2 \log \lambda \underset{n \to \infty}{\longrightarrow} \chi_p^2$, where $p = dim(\theta)$

$$-2\log\lambda = -(\theta_0 - \hat{\theta})^2 \frac{\partial^2}{\partial \theta^2} \log(\mathbf{x}; \theta^*)$$

Under
$$H_0$$
 $\theta^* \underset{n \to \infty}{\longrightarrow} \theta_0$ thus $\frac{\partial^2}{\partial \theta^2} \log L(\mathbf{x}; \theta^*) \to nI(\theta_0)$, where $I(\theta) = \mathbb{E} \frac{\partial^2 \log L}{\partial \theta^2}$
But $\frac{\theta_0 - \hat{\theta}}{\sqrt{1/I(\theta_0)}} \to \mathcal{N}(0, 1)$

Thus
$$-2 \log \lambda \sim (\theta_0 - \hat{\theta})^2 I(\theta_0) \rightarrow \chi_1^2$$

Note that when $n \to \infty, 1 - \beta \to 1$