

Universidade do Minho Escola de Ciências

Mestrado Integrado em Engenharia Informática

2019/2020 Departamento de Matemática

Exercício 2.1 Determine o interior, a aderência, a fronteira e o derivado de cada um dos seguintes conjuntos e indique quais são abertos e quais são fechados:

e) 0:

i) $\mathbb{Q} \cap [-2, 0[$;

b) \mathbb{R} ;

f) [0, 2[;

j) $(\mathbb{R}\setminus\mathbb{Q})\cap[0,2];$

c) \mathbb{Z} ;

g) [0,2];

k) $]0,3[\setminus\{1\}\cup\{4,5\};$

d) $\mathbb{R} \setminus \mathbb{Q}$;

h)]0,2[;

1) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.

Exercício 2.2 Diga, justificando, se cada uma das seguintes afirmações é verdadeira ou falsa:

- a) se $A \subseteq \mathbb{R}$ é aberto então A não é limitado;
- b) se $A \subseteq \mathbb{R}$ é aberto e $B \subseteq \mathbb{R}$ é fechado então $A \cup B$ não é aberto nem fechado;
- c) se $A,B\subseteq\mathbb{R}$ não são abertos nem fechados então $A\cap B$ não é aberto nem fechado;
- d) o conjunto $A = [0, 4] \cap \mathbb{Q}$ é aberto;
- e) o conjunto $A = [0, 7] \cap \mathbb{Q}$ é fechado;
- f) o conjunto $A = \{x \in \mathbb{R} : 6 x^2 < 1\}$ é limitado superiormente;
- g) o conjunto $A = \{x \in \mathbb{R} : |x| \le 7\}$ é fechado e limitado.

Exercício 2.3 Para cada um dos seguintes conjuntos determine o interior, a aderência, a fronteira, o derivado, o conjunto dos majorantes, o conjunto dos minorantes, o supremo, o ínfimo, o máximo e o mínimo (caso existam).

a) $\mathbb{R}^+\setminus\mathbb{Q}$;

- $f) \quad \left\{ x \in \mathbb{R} : \frac{x-1}{x+2} > 2 \right\};$
- b) $\{x \in \mathbb{R} : x^2 < 2\};$
- g) $\{x \in \mathbb{R} : 1 < |x 1| \le 4\};$

- c) $\{x \in \mathbb{R} \setminus \mathbb{Q} : x^2 < 50\}$; h) $\{x \in \mathbb{Q} : |x| < 2\} \cup \{x \in \mathbb{R} \setminus \mathbb{Q} : 1 \le x \le \pi\}$; d) $\{x \in \mathbb{R} : x < |x|\}$; i) $\{x \in \mathbb{Q} : |x + 4| < 3\} \cup \{x \in \mathbb{R} \setminus \mathbb{Q} : x^2 3 < 0\}$; e) $\{x \in \mathbb{R} : x^5 > x^3\}$; j) $[0,1] \setminus \{\frac{1}{n} : n \in \mathbb{N}\}$.

Exercício 2.4 Quando possível, apresente um subconjunto A de \mathbb{R} que:

- a) não seja aberto nem fechado;
- b) seja simultaneamente aberto e fechado;
- c) seja aberto e limitado;
- d) seja fechado e não limitado;
- e) tenha o interior vazio e seja não limi-
- f) seja limitado mas não seja aberto nem fechado;
- g) não contenha o seu derivado;

- h) coincida com o seu derivado:
- i) tenha um único ponto de acumulação;
- j) seja limitado e cujo ínfimo pertença ao seu interior;
- k) tenha apenas dois pontos de acumulação;
- 1) seja fechado e tal que $\mathring{A} \neq A$;
- m) seja aberto e tal que $\overline{A} \neq A$;
- n) coincida com a sua fronteira;
- o) a sua fronteira seja o conjunto vazio.