

ICP Group Seminar

Robustness analysis of quantum algorithms against coherent control errors

January 30th, 2023

Daniel Fink

Background

- Collaboration with Julian Berberich
- Jointly working in SimTech PN8
- Paper under current development

Julian Berberich¹, Daniel Fink², and Christian Holm²

 1 University of Stuttgart, Institute for Systems Theory and Automatic Control, 70569 Stuttgart, Germany 2 University of Stuttgart, Institute for Computational Physics, 70569 Stuttgart, Germany

Noise poses a major obstacle in current quantum devices. Several recent studies have shown that coherent control errors, for which an ideal gate e^{-iH}

is perturbed by an additional error gate

1 Introduction

Quantum computing has emerged as a powerful tool to overcome limitations of classical computing and solve problems that were previously

3-GHZ State Circuit

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$$

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$$

Agenda

- Quantum Computing
- Handling Errors: QEC & QEM
- Our approach: Lipschitz bounds
- Experiments
- Conclusion & Outlook

Qubits

- General single qubit state: $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, $|\alpha|^2 + |\beta|^2 = 1$
- $\rightarrow |\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$, with $\theta, \phi \in \mathbb{R}$ (up to a global phase)

Bloch Sphere

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

Quantum Gates

- Unitary operator $U: H \to H$, $U|\psi_0\rangle = |\psi\rangle$
- Examples: q[0] q[0] Y q[0] Z Pauli Gates

Quantum Gates

Quantum Circuits

• Gates together form a circuit: $|\psi\rangle = U_N ... U_1 |0\rangle = U|0\rangle$

Example:

|0> -

RX (pi / 4)

0)

Quantum Circuits

• Gates together form a circuit: $|\psi\rangle = U_N ... U_1 |0\rangle = U|0\rangle$

Example:

 $|0\rangle$

→ Transpilation is necessary

0)

Transpilation

Comparing Quantum States

- Goal: compare two states $|\psi\rangle \leftrightarrow |\phi\rangle$
- Define the Fidelity $\mathcal{F}(|\psi\rangle, |\phi\rangle) = |\langle\psi|\phi\rangle| \in [0,1]$

Errors in Quantum Computing

Loss of information to the environment.

Information is preserved, but unintentional operations have been applied.

Errors in Quantum Computing

Coherent Errors

- Every Unitary can be written as $U = e^{-iG}$
- $G = G^{\dagger}$ is a Hermitian operator (generator)
- E.g.: $RZ(\theta) = e^{-i\frac{\theta}{2}Z}$

Coherent Errors

- Every Unitary can be written as $U = e^{-iG}$
- $G = G^{\dagger}$ is a Hermitian operator (generator)
- E.g.: $RZ(\theta) = e^{-i\frac{\theta}{2}Z}$
- Coherent error: $e^{-i\frac{\theta}{2}Z} \rightarrow e^{-i\frac{\theta}{2}Z}e^{-iG}$

any noise generator G

Coherent Errors

- Every Unitary can be written as $U = e^{-iG}$
- $G = G^{\dagger}$ is a Hermitian operator (generator)
- E.g.: $RZ(\theta) = e^{-i\frac{\theta}{2}Z}$
- Coherent error: $e^{-i\frac{\theta}{2}Z} \rightarrow e^{-i\frac{\theta}{2}Z}e^{-iG}$
- Coherent control error: $e^{-i\frac{\theta}{2}Z} \rightarrow e^{-i(1+x)\frac{\theta}{2}Z}$

any noise generator G

same generator

Coherent Control Errors

Handling Errors

Add additional gates to detect and compensate for errors.

Reduce noise effects via classical post-processing.

Quantum Error Correction

Takeda et al., "Quantum error correction with silicon spin qubits", Nature 608, 682–686 (2022)

Quantum Error Mitigation

Endo et al., "Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation", Journal of the Physical Society of Japan, 90, 032001 (2021)

Our Approach

Design robust circuits in the first place. Can be used together with QEC/QEM.

Noise-free circuit

$$|\hat{\psi}\rangle = \widehat{\mathbf{U}}_N \widehat{\mathbf{U}}_{N-1} \dots \widehat{\mathbf{U}}_1 |\psi_0\rangle$$

Noisy circuit

$$|\psi(x)\rangle = \widehat{\mathrm{U}}_N(x_N)\widehat{\mathrm{U}}_{N-1}(x_{N-1}) \dots \widehat{\mathrm{U}}_1(x_1)|\psi_0\rangle$$

with noise $x \in \mathbb{R}^N$

$$|\psi(0)\rangle = |\hat{\psi}\rangle$$

Noise level

$$\epsilon \in \mathbb{R}^+$$
 such that $||x||_2 < \epsilon$

Definition

A scalar L > 0 is a Lipschitz bound of $x \mapsto |\psi(x)\rangle$ if

$$\||\psi(x)\rangle - |\psi(x')\rangle\|_2 \le L\|x - x'\|_2$$

for all $x, x' \in \mathbb{R}^N$.

Definition

A scalar L > 0 is a Lipschitz bound of $x \mapsto |\psi(x)\rangle$ if

$$\||\psi(x)\rangle - |\psi(x')\rangle\|_2 \le L\|x - x'\|_2$$

for all $x, x' \in \mathbb{R}^N$.

- The minimal *L* is called the Lipschitz constant.
- L bounds the worst-case amplification of a perturbation x:

$$\||\psi(x)\rangle - |\hat{\psi}\rangle\|_2 \le L\|x\|_2$$

Theorem

For any $x \in \mathbb{R}^N$ with $||x||_2 < \epsilon$, and any initial state $|\psi_0\rangle$, we have

$$\left|\left\langle \psi(x)\right|\hat{\psi}\right\rangle\right| \geq 1 - \frac{L^2 \epsilon^2}{2},$$

with L > 0 being a Lipschitz bound of $x \mapsto |\psi(x)\rangle$.

Theorem

For any $x \in \mathbb{R}^N$ with $||x||_2 < \epsilon$, and any initial state $|\psi_0\rangle$, we have

$$\left|\left\langle \psi(x)\right|\hat{\psi}\right\rangle\right| \geq 1 - \frac{L^2\epsilon^2}{2},$$

with L > 0 being a Lipschitz bound of $x \mapsto |\psi(x)\rangle$.

- The Lipschitz constant can be hard to compute.
- We show a way how to calculate Lipschitz bounds.

Lipschitz Bounds

Theorem: Norm-based bounds

The following is a Lipschitz bound of $x \mapsto |\psi(x)\rangle$:

$$L = \sum_{i=1}^{N} \|\mathbf{G}_i\|_2$$

Lipschitz Bounds

Theorem: Norm-based bounds

The following is a Lipschitz bound of $x \mapsto |\psi(x)\rangle$:

$$L = \sum_{i=1}^{N} \|\mathbf{G}_i\|_2$$

$$L = ||G_1||_2 + ||G_2||_2 + ||G_3||_2 + ||G_4||_2 + ||G_5||_2 + ||G_6||_2$$

Lipschitz Bounds

Theorem: Interaction-based bounds

The following are Lipschitz bounds of $x \mapsto |\psi(x)\rangle$:

$$\sum_{i=1}^{\frac{N}{2}} \| [G_{2i-1} \quad G_{2i}] \|_{2}$$

If N is odd:
$$||G_N||_2 + \sum_{i=1}^{\frac{N-1}{2}} ||[G_{2i-1} \quad G_{2i}]||_2$$

■ [A B] is a block matrix:

Lipschitz Bounds

$$L = ||G_1||_2 + ||G_2||_2 + ||[G_3 \quad G_4]||_2 + ||[G_5 \quad G_6]||$$

Which bounds are better?

$$||[G_1 \quad G_2]||_2 \le ||G_1||_2 + ||G_2||_2$$

$$||[G_1 \quad G_2]||_2 < ||G_1||_2 + ||G_2||_2$$

How big is the gap?

→ Current investigation

Design Guidelines

Design Guidelines

Input: human designed circuit

Design Guidelines

Output: transpiled resilient circuit

Experiments

- Target: compare circuits with different Lipschitz bounds
- Goal: show lower Lipschitz bounds imply robustness

Experiments

- Target: compare circuits with different Lipschitz bounds
- Goal: show lower Lipschitz bounds imply robustness
- Procedure:
 - 1. Choose a set of noise levels $\{\epsilon\} \subseteq \mathbb{R}^+$
 - 2. For each ϵ , draw several $x \in B_{\epsilon}(0) \subseteq \mathbb{R}^N$ uniformly
 - 3. Insert CCE gates: $e^{-i\frac{\theta}{2}Z} \rightarrow e^{-i(1+x_i)\frac{\theta}{2}Z}$
 - 4. Calculate $\mathcal{F} = \left| \left\langle \psi_{\epsilon}(x) | \hat{\psi} \right\rangle \right|$

Experiment I

Experiment I

Experiment II

Experiment II

Conclusion & Outlook

Conclusion

- Framework for robustness analysis for C(C)E
- Derived worst-case error bounds
- Defined guidelines for quantum algorithm design
- Performed numerical validation

Outlook

- Extend the framework to account for decoherent errors $|\psi\rangle \rightarrow \rho$
- Connect worst-case Lipschitz bounds with QEC/QEM
- Integrate the framework into QML
 - → Lipschitz bounds give rise to the use of regularization in QML

$$\begin{aligned} \| [H_1 \quad H_2] \|_2 &= \sqrt{\lambda_{\max}(H_1^{\dagger} H_1 + H_2^{\dagger} H_2)} \\ &\leq \sqrt{\lambda_{\max}(H_1^{\dagger} H_1) + \lambda_{\max}(H_2^{\dagger} H_2)} \\ &\leq \sqrt{\lambda_{\max}(H_1^{\dagger} H_1) + \sqrt{\lambda_{\max}(H_2^{\dagger} H_2)}} \\ &= \| H_1 \|_2 + \| H_2 \|_2. \end{aligned}$$

$$\lambda_{\max}(H_1^{\dagger}H_1 + H_2^{\dagger}H_2)$$

$$\leq \lambda_{\max}(H_1^{\dagger}H_1) + \lambda_{\max}(H_2^{\dagger}H_2)$$

This inequality is strict if and only if the eigenvectors corresponding to the maximum eigenvalues of $H_1^{\dagger}H_1$ and $H_2^{\dagger}H_2$ do not align, i.e.,

$$\underset{\|v\|_2=1}{\operatorname{argmax}} v^{\dagger} H_1^{\dagger} H_1 v \cap \underset{\|v\|_2=1}{\operatorname{argmax}} v^{\dagger} H_2^{\dagger} H_2 v$$
$$= \emptyset.$$

Theorem Reversed

If we want to guarantee a worst-case fidelity of no less than \mathcal{F} for any $x \in \mathbb{R}^n$ with $||x||_2 < \epsilon$ and any initial state $|\psi_0\rangle$, then the noise level must be bounded by

$$\epsilon \leq \frac{\sqrt{2}}{L} \sqrt{1 - \mathcal{F}}$$
.

Theorem Reversed

If we want to guarantee a worst-case fidelity of no less than \mathcal{F} for any $x \in \mathbb{R}^n$ with $||x||_2 < \epsilon$ and any initial state $|\psi_0\rangle$, then the noise level must be bounded by

$$\epsilon \leq \frac{\sqrt{2}}{L} \sqrt{1 - \mathcal{F}}$$
.

- ullet may be determined via calibration results.
- Can be used to determine if QEC is possible.

Norm-based bounds

Considering $||G||_2$ of each gate e^{-iG}

Interaction-based bounds

Considering subsequent gates $e^{-iG}e^{-iH}$

Problem

Find L such that, for any $x \in \mathbb{R}^N$ with $||x||_2 < \epsilon$, and any initial state $|\psi_0\rangle$, it holds that

$$\left|\left\langle \psi(x)\right|\hat{\psi}\right\rangle\right| \geq 1 - g(\epsilon, L),$$

where L > 0 depends only on the circuit components.

Problem

Find L such that, for any $x \in \mathbb{R}^N$ with $||x||_2 < \epsilon$, and any initial state $|\psi_0\rangle$, it holds that

$$\left|\left\langle \psi(x)\right|\hat{\psi}\right\rangle\right| \geq 1 - g(\epsilon, L),$$

where L > 0 depends only on the circuit components.

- This is a worst-case bound w.r.t. CCEs and the initial states.
- We show: L can be a Lipschitz bound of $x \mapsto |\psi(x)\rangle$.

Design Guidelines

Experiment II

VS.

$$U_D$$
: $|0\rangle$

Experiment II

VS.

 U_D : $|0\rangle$

Qubits

Qubits

Qubits

- Computational basis: $|0 \dots 0\rangle, \dots, |1 \dots 1\rangle \in H$
- General single qubit state: $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, $|\alpha|^2 + |\beta|^2 = 1$

 $\blacksquare \text{ Measurement: } |\psi\rangle \to \begin{cases} 0 \text{ with } P(0) = |\alpha|^2 \\ \\ 1 \text{ with } P(1) = |\beta|^2 \end{cases}$

Quantum Gates

Quantum Gates

