GSERM - St. Gallen (2022) Analyzing Panel Data

June 8, 2022

Generalized Least Squares Models

For:

$$Y_{it} = \mathbf{X}_{it}\beta + u_{it}$$

i.i.d. *u_{it}*s require:

$$\mathbf{u}\mathbf{u}' \equiv \mathbf{\Omega} = \sigma^2 \mathbf{I}$$

$$= \begin{pmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma^2 \end{pmatrix}$$

GLS Models

That is, within units:

- $Var(u_{it}) = Var(u_{is}) \ \forall \ t \neq s$ (temporal homoscedasticity)
- $\mathsf{Cov}(u_{it}, u_{is}) = 0 \; \forall \; t \neq s \; (\mathsf{no} \; \mathsf{within}\text{-}\mathsf{unit} \; \mathsf{autocorrelation})$

and between units:

- $Var(u_{it}) = Var(u_{jt}) \ \forall \ i \neq j \ (cross-unit homoscedasticity)$
- Cov $(u_{it}, u_{jt}) = 0 \ \forall \ i \neq j$ (no between-unit / spatial correlation)

The Key: Ω

Estimator:

$$\hat{eta}_{\mathit{GLS}} = (\mathsf{X}'\Omega^{-1}\mathsf{X})^{-1}\mathsf{X}'\Omega^{-1}\mathsf{Y}$$

with:

$$\widehat{\mathsf{V}(\beta_{\mathit{GLS}})} = (\mathsf{X}'\Omega^{-1}\mathsf{X})^{-1}$$

Two approaches:

- Use OLS \hat{u}_{it} s to get $\hat{\Omega}$ ("feasible GLS")
- \bullet Use substantive knowledge about the data to structure Ω

Getting to Know WLS

The variance-covariance matrix is:

$$\begin{aligned} \mathsf{Var}(\hat{\beta}_{\mathit{WLS}}) &= & \sigma^2 (\mathbf{X}' \Omega^{-1} \mathbf{X})^{-1} \\ &\equiv & (\mathbf{X}' \mathbf{W}^{-1} \mathbf{X})^{-1} \end{aligned}$$

A common case is:

$$\mathsf{Var}(u_i) = \sigma^2 \frac{1}{N_i}$$

where N_i is the number of observations upon which (aggregate) observation i is based.

"Robust" Variance Estimators

Recall that, if $\sigma_i^2 \neq \sigma_i^2 \forall i \neq j$,

$$Var(\beta_{Het.}) = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{W}^{-1}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1}$$
$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{Q}(\mathbf{X}'\mathbf{X})^{-1}$$

where $\mathbf{Q} = (\mathbf{X}'\mathbf{W}^{-1}\mathbf{X})$ and $\mathbf{W} = \sigma^2 \mathbf{\Omega}$.

We can rewrite **Q** as

$$\mathbf{Q} = \sigma^{2}(\mathbf{X}'\Omega^{-1}\mathbf{X})$$
$$= \sum_{i=1}^{N} \sigma_{i}^{2}\mathbf{X}_{i}\mathbf{X}'_{i}$$

Huber's Insight

Estimate $\hat{\mathbf{Q}}$ as:

$$\widehat{\mathbf{Q}} = \sum_{i=1}^{N} \widehat{u}_i^2 \mathbf{X}_i \mathbf{X}_i'$$

Yields:

$$\widehat{\mathsf{Var}(\boldsymbol{\beta})}_{\mathsf{Robust}} = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\widehat{\mathbf{Q}}^{-1}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1} \\
= (\mathbf{X}'\mathbf{X})^{-1} \left[\mathbf{X}' \left(\sum_{i=1}^{N} \widehat{u}_{i}^{2}\mathbf{X}_{i}\mathbf{X}_{i}' \right)^{-1} \mathbf{X} \right] (\mathbf{X}'\mathbf{X})^{-1}$$

Practical Things

"Robust" VCV estimates:

- are heteroscedasticity-consistent, but
- are biased in small samples, and
- are less efficient than "naive" estimates when $Var(u) = \sigma^2 \mathbf{I}$.

"Clustering"

Huber / White

?????????

WLS / GLS

I know very little about my error variances... I know a great deal about my error variances...

"Clustering"

A common case:

$$Y_{ij} = \mathbf{X}_{ij}\boldsymbol{\beta} + u_{ij}$$

with

$$\sigma_{ij}^2 = \sigma_{ik}^2$$
.

"Robust, clustered" estimator:

$$\widehat{\mathsf{Var}(\boldsymbol{\beta})}_{\mathsf{Clustered}} = (\mathbf{X}'\mathbf{X})^{-1} \left\{ \mathbf{X}' \left[\sum_{i=1}^{N} \left(\sum_{j=1}^{n_j} \hat{u}_{ij}^2 \mathbf{X}_{ij} \mathbf{X}_{ij}' \right) \right]^{-1} \mathbf{X} \right\} (\mathbf{X}'\mathbf{X})^{-1}$$

Robust / Clustered SEs: A Simulation

```
url robust <- "https://raw.githubusercontent.com/IsidoreBeautrelet/economictheoryblog/master/robust summary.R"
eval(parse(text = getURL(url_robust, ssl.verifypeer = FALSE)),
     envir=.GlobalEnv)
> set.seed(3844469)
> X <- rnorm(10)
> Y <- 1 + X + rnorm(10)
> df10 <- data.frame(ID=seg(1:10),X=X,Y=Y)</pre>
> fit10 <- lm(Y~X.data=df10)
> summary(fit10)
Call:
lm(formula = Y ~ X, data = df10)
Residuals:
   Min
           10 Median
                               Max
-1.318 -0.766 0.195 0.378 1.590
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
               0.954
                          0.311
                                  3.06
                                           0.016 *
X
               0.589
                          0.291
                                   2.03
                                        0.077 .
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.985 on 8 degrees of freedom
Multiple R-squared: 0.339, Adjusted R-squared: 0.257
F-statistic: 4.11 on 1 and 8 DF, p-value: 0.0772
> rob10 <- vcovHC(fit10,type="HC1")
> sqrt(diag(rob10))
```

(Intercept) 0.315

0.285

Robust / Clustered SEs: A Simulation (continued)

```
> # "Clone" each observation 100 times:
> df1K <- df10[rep(seq len(nrow(df10)).each=100).]</p>
> df1K <- pdata.frame(df1K, index="ID")
> fit1K <- lm(Y~X.data=df1K)
> summary(fit1K)
Call.
lm(formula = Y ~ X, data = df1K)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                        0.0279
                                  34.2 <2e-16 ***
(Intercept) 0.9536
             0.5893
                         0.0260
                                 22.6 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.882 on 998 degrees of freedom
Multiple R-squared: 0.339, Adjusted R-squared: 0.339
F-statistic: 513 on 1 and 998 DF, p-value: <2e-16
> summary(fit1K, cluster="ID")
Call:
lm(formula = Y ~ X, data = df1K)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
              0.954
                         0.297
                                  3.21
                                         0.0014 **
Y
              0.589
                         0.269
                                  2.19 0.0286 *
Signif, codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.882 on 998 degrees of freedom
Multiple R-squared: 0.339, Adjusted R-squared: 0.339
F-statistic: 4.8 on 1 and 9 DF, p-value: 0.0561
```

Serial Residual Correlation

Example:

$$Y_t = \beta_0 + \beta_1 X_t + u_t$$

$$u_t = \rho u_{t-1} + e_t$$

with $e_t \sim i.i.d. N(0, \sigma_u^2)$ and $\rho \in [-1, 1]$ (typically).

 \rightarrow "First-order autoregressive" ("AR(1)") errors.

Serially Correlated Errors and OLS

Detection

- Plot of residuals vs. lagged residuals
- Runs test (Geary test)
- Durbin-Watson d
 - · Calculated as:

$$d = \frac{\sum_{t=2}^{N} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=1}^{N} \hat{u}_t^2}$$

- · Non-standard distribution $(d \in [0, 4])$
- · Null: No autocorrelation
- · Only detects first-order autocorrelation

Serially Correlated Errors and OLS

What to do about it?

- GLS, incorporating ρ / $\hat{\rho}$ into the equation
- First-difference equations (regressing changes of Y on changes of X)
- Cochrane-Orcutt / Prais-Winsten:
 - 1. Estimate the basic equation via OLS, and obtain residuals
 - 2. Use the residuals to consistently estimate $\hat{\rho}$ (i.e. the empirical correlation between u_t and u_{t-1})
 - 3. Use this estimate of $\hat{\rho}$ to estimate the difference equation:

$$(Y_t - \rho Y_{t-1}) = \beta_0(1 - \rho) + \beta_1(X_t - \rho X_{t-1}) + (u_t - \rho u_{t-1})$$

- 4. Save the residuals, and use them to estimate $\hat{\rho}$ again
- 5. Repeat this process until successive estimates of $\hat{\rho}$ differ by a very small amount

Running Example Redux

The World Development Indicators:

- Cross-national country-level time series data
- N = 215 countries, T = 72 years (1960-2021) + missingness
- Full descriptions are listed in the Github repo here

Regression model:

```
WBLI<sub>it</sub> = \beta_0 + \beta_1Population Growth<sub>it</sub> + \beta_2Urban Population<sup>2</sup><sub>it</sub> + \beta_3Fertility Rate<sub>it</sub> + \beta_4In(GDP Per Capita)<sub>it</sub> + \beta_5Natural Resource Rents<sub>it</sub> + \beta_6Cold War<sub>t</sub> + u_{it}
```

Descriptive Statistics:

> describe(subset,fast=TRUE)

	vars	n	mean	sd	min	max	range	se
WomenBusLawIndex	1	7566	59.99	18.79	17.50	100.00	82.50	0.22
PopGrowth	2	7566	1.70	1.46	-6.77	17.51	24.28	0.02
UrbanPopulation	3	7566	51.19	23.90	2.85	100.00	97.16	0.27
FertilityRate	4	7566	3.67	1.91	0.90	8.61	7.70	0.02
${\tt NaturalResourceRents}$	5	7566	6.82	10.45	0.00	87.51	87.51	0.12
ColdWar	6	7566	0.32	0.47	0.00	1.00	1.00	0.01
lnGDPPerCap	7	7566	8.28	1.44	5.32	11.63	6.31	0.02

How Much Autocorrelation in X?

Note that:

$$d = 2(1 - \rho)$$

which means that we can calculate:

$$\rho = 1 - \frac{d}{2}.$$

Autocorrelation in the Predictors

	Variable	Rho
1	Population Growth	0.942
2	Urban Population	0.973
3	Fertility Rate	0.968
4	GDP Per Capita	0.976
5	Natural Resource Rents	0.917
6	Cold War	0.913

Baseline Model: OLS (+ D-W Test)

```
> OLS<-plm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+
         log(GDPPerCapita)+NaturalResourceRents+ColdWar,
         data=WDI, model="pooling")
> summary(OLS)
Pooling Model
Call:
plm(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
   FertilityRate + log(GDPPerCapita) + NaturalResourceRents +
    ColdWar, data = WDI, model = "pooling")
Unbalanced Panel: n = 186, T = 1-50, N = 7566
Coefficients:
                    Estimate Std. Error t-value
                                                   Pr(>|t,|)
(Intercept)
                     54.8395
                                 1.7261 31.77
                                                    < 2e-16 ***
PopGrowth
                     -3.1926
                                 0.1437 -22.21
                                                    < 2e-16 ***
                                 0.0109 -5.37 0.000000083 ***
UrbanPopulation
                     -0.0584
FertilityRate
                     -1.7928
                                 0.1652 -10.85
                                                    < 2e-16 ***
log(GDPPerCapita)
                      3.1544
                                 0.1993 15.83 < 2e-16 ***
NaturalResourceRents -0.3486
                                 0.0162 -21.54 < 2e-16 ***
ColdWar
                    -11 3437
                                 0.3716 -30.53
                                                 < 2e-16 ***
Signif, codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Total Sum of Squares:
                        2670000
Residual Sum of Squares: 1280000
R-Squared:
Adi. R-Squared: 0.519
F-statistic: 1361.01 on 6 and 7559 DF, p-value: <2e-16
> # Durbin-Watson test:
> pdwtest(OLS)
Durbin-Watson test for serial correlation in panel models
data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
DW = 0.14, p-value <2e-16
alternative hypothesis: serial correlation in idiosyncratic errors
```

Example: Prais-Winsten

```
> PraisWinsten<-panelAR(WomenBusLawIndex~PopGrowth+UrbanPopulation+
              FertilityRate+log(GDPPerCapita)+NaturalResourceRents+
              ColdWar, data=WDI.panelVar="ISO3",timeVar="YearNumeric",
              autoCorr="ar1",panelCorrMethod="none",
               rho.na.rm=TRUE)
> summary(PraisWinsten)
Panel Regression with AR(1) Prais-Winsten correction and homoskedastic variance
Unbalanced Panel Design:
Total obs.:
                 7566 Avg obs. per panel 40.677
Number of panels: 186 Max obs. per panel 50
Number of times: 50 Min obs. per panel 1
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                  71.81494
                              3.16208 22.71 < 2e-16 ***
                  -0.03691 0.08543 -0.43 0.6657
PopGrowth
UrbanPopulation -0.03721 0.02468 -1.51 0.1317
FertilityRate -5.64038
                              0.25230 -22.36 < 2e-16 ***
log(GDPPerCapita) 1.41254 0.36363 3.88 0.0001 ***
NaturalResourceRents -0.01931 0.00868 -2.23 0.0261 *
ColdWar
                   -0.90520
                              0.22070 -4.10 0.000041 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
R-squared: 0.3621
Wald statistic: 1075.5886, Pr(>Chisq(6)): 0
> PraisWinsten$panelStructure$rho
[1] 0.9523
```

Better in a Table

	OLS	Prais-Winsten
Intercept	54.84*	71.81*
	(1.73)	(3.16)
Population Growth	-3.19*	-0.04
	(0.14)	(80.0)
Urban Population	-0.06*	-0.04
	(0.01)	(0.02)
Fertility Rate	-1.79*	-5.64*
	(0.17)	(0.25)
In(GDP Per Capita)	3.15*	1.41*
	(0.20)	(0.36)
Natural Resource Rents	-0.35*	-0.02*
	(0.02)	(800.0)
Cold War	-11.34*	-0.91*
	(0.37)	(0.22)
$\hat{\rho}$		0.95
R^2	0.52	0.36
Adj. R ²	0.52	
NT	7566	7566
N panels		186
*		

 $^{^*}p < 0.05$

Some Panel Data Challenges

Consider the error terms in the model:

I.. \ \ / - ... I - .

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + u_{it}$$

Issues:

<u>In VVords</u> :	<u>In a Formula</u> :
<u>Variances</u> :	
Unit-Wise Heteroscedasticity	$Var(u_{it}) eq Var(u_{jt})$
Temporal Heteroscedasticity	$Var(u_{it}) \neq Var(u_{is})$
Covariances:	
Contemporary Cross-Unit Correlation	$Cov(u_{it}, u_{jt}) \neq 0$
Within-Unit Serial Correlation	$Cov(u_{it}, u_{is}) \neq 0$
Non-Contemporaraneous Cross-Unit Correlation	$Cov(u_{it}, u_{js}) \neq 0$

Parks' (1967) Approach

Assume:

- $Var(u_{it}, u_{jt}) = \sigma^2$ or σ_i^2 (Common or unit-specific error variances)
- $Var(u_{it}) = Var(u_{is}) \ \forall \ t \neq s$ (Temporal homoscedasticity)
- $Cov(u_{it}, u_{it}) = \sigma_{ii} \ \forall \ i \neq j$ (Pairwise contemporaneous cross-unit correlation)
- $Cov(u_{it}, u_{is}) = \rho$ or ρ_i (Common or unit-specific temporal correlation)
- Cov $(u_{it}, u_{js}) = 0 \ \forall \ i \neq j, t \neq s$ (No non-contemporaneous cross-unit correlation)

(B&K: "panel error assumptions").

Then:

- 1. Use OLS to generate $\hat{u}s \rightarrow \hat{\rho} \ (\rightarrow \hat{\Omega})$,
- 2. Use $\hat{\rho}$ for Prais-Winsten.

This method was widely used prior to Beck & Katz (1995)

Parks' Problems

$$\boldsymbol{\Omega} = \begin{pmatrix} \boldsymbol{\Sigma} & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma} & \cdots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \cdots & \boldsymbol{\Sigma} \end{pmatrix} = \boldsymbol{\Sigma} \otimes \boldsymbol{I}_{\mathcal{T}}$$

where

$$\sum_{N\times N} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1N} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1N} & \sigma_{2N} & \cdots & \sigma_N^2 \end{pmatrix}$$

Means:

- $\frac{N(N-1)}{2}$ distinct contemporaneous covariances σ_{ij} ,
- NT observations,
- $\rightarrow 2T/(N+1)$ observations per $\hat{\sigma}$

More Parks Problems

From PROC PANEL in SAS:

Standard Corrections

For the PARKS option, the first-order autocorrelation coefficient must be estimated for each cross section. Let ρ be the $N \times 1$ vector of true parameters and $R = (r_1, \dots, r_N)'$ be the corresponding vector of estimates. Then, to ensure that only range-preserving estimates are used in PROC PANEL. the following modification for R is made:

$$r_i = \begin{cases} r_i & \text{if } |r_i| < 1\\ \max(.95, \text{rmax}) & \text{if } r_i \ge 1\\ \min(-.95, \text{rmin}) & \text{if } r_i \le -1 \end{cases}$$

where

$$\operatorname{rmax} = \begin{cases} 0 & \text{if} \quad r_i < 0 \quad \text{or} \quad r_i \ge 1 \quad \forall i \\ \max_{j} [r_j : 0 \le r_j < 1] & \text{otherwise} \end{cases}$$

and

$$\text{rmin} = \begin{cases} 0 & \text{if} \quad r_i > 0 \quad \text{or} \quad r_i \leq -1 \quad \forall i \\ \max_j [r_j : -1 < r_j \leq 0] & \text{otherwise} \end{cases}$$

Whenever this correction is made, a warning message is printed.

Panel-Corrected Standard Errors

Key to PCSEs:

$$\hat{\sigma}_{ij} = \frac{\sum_{t=1}^{T} \hat{u}_{it} \hat{u}_{jt}}{T}$$

Define:

$$\mathbf{U}_{T \times N} = \begin{pmatrix} \hat{u}_{11} & \hat{u}_{21} & \cdots & \hat{u}_{N1} \\ \hat{u}_{12} & \hat{u}_{22} & \cdots & \hat{u}_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{u}_{1T} & \hat{u}_{2T} & \cdots & \hat{u}_{NT} \end{pmatrix}$$

$$\boldsymbol{\hat{\Sigma}} = \frac{(\boldsymbol{U}'\boldsymbol{U})}{T}$$

$$\hat{\Omega}_{\textit{PCSE}} = \frac{(\textbf{U}'\textbf{U})}{\textit{T}} \otimes \textbf{I}_{\textit{T}}$$

Panel-Corrected Standard Errors

Correct formula:

$$\mathsf{Cov}(\hat{eta}_{PCSE}) = (\mathbf{X}'\mathbf{X})^{-1}[\mathbf{X}'\mathbf{\Omega}\mathbf{X}](\mathbf{X}'\mathbf{X})^{-1}$$

General Issues:

- PCSEs do not fix unit-level heterogeneity (a la "fixed" / "random" effects)
- They also do not deal with dynamics
- They depend critically on the "panel data assumptions" of Park / Beck & Katz

Panel Assumptions and Numbers of Parameters

Panel Assumptions	No AR(1)	Common $\hat{ ho}$	Separate $\hat{ ho}_i$ s
$\sigma_i^2 = \sigma^2$, $Cov(\sigma_{it}, \sigma_{jt}) = 0$	k+1	k + 2	k + N + 1
$\sigma_i^2 \neq \sigma^2$, $Cov(\sigma_{it}, \sigma_{jt}) = 0$	k + N	k + N + 1	k + 2N
$\sigma_i^2 \neq \sigma^2$, $Cov(\sigma_{it}, \sigma_{jt}) \neq 0$	$\frac{N(N-1)}{2} + k + N$	$\frac{N(N-1)}{2} + k + N + 1$	$\frac{N(N-1)}{2} + k + 2N$

Example: GLS with Homoscedastic AR(1) Errors

```
> GLS<-gls(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+
           log(GDPPerCapita)+NaturalResourceRents+ColdWar,
           data=WDI,correlation=corAR1(form=~1|ISO3),
           na.action="na.omit")
> summarv(GLS)
Generalized least squares fit by REML
  Model: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate +
                                                                               log(GDPPerCapita) + NaturalResourceRents + Cold
  Data: WDI
    AIC BIC logLik
  35750 35813 -17866
Correlation Structure: AR(1)
Formula: ~1 | ISO3
Parameter estimate(s):
   Phi
0.9888
Coefficients:
                     Value Std.Error t-value p-value
```

(Intercept)

UrbanPopulation

log(GDPPerCapita)

FertilityRate

PopGrowth

ColdWar

53.93

0.04

NaturalResourceRents 0.01 0.008 1.080 0.2804 -0.40

4.195 12.855 0.0000

0.079 0.469 0.6393

0.207 -1.929 0.0538

0.18 0.041 4.318 0.0000

-4.22 0.319 -13.222 0.0000

1.66 0.446 3.720 0.0002

Example: PCSEs

```
> PCSE<-panelAR(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+
            log(GDPPerCapita) + Natural Resource Rents + ColdWar,
            data=WDI.panelVar="ISO3".timeVar="YearNumeric".
            autoCorr="ar1",panelCorrMethod="pcse",
            rho.na.rm=TRUE)
> summary(PCSE)
Panel Regression with AR(1) Prais-Winsten correction and panel-corrected standard errors
Unbalanced Panel Design:
Total obs.:
                 7566 Avg obs. per panel 40.677
Number of panels: 186 Max obs. per panel 50
Number of times: 50 Min obs. per panel 1
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                               4.6453 15.46 <2e-16 ***
                  71.8149
PopGrowth
                   -0.0369 0.0978 -0.38 0.706
UrbanPopulation
                  -0.0372 0.0250 -1.49 0.136
FertilityRate
                -5.6404 0.3983 -14.16 <2e-16 ***
log(GDPPerCapita)
                    1.4125 0.4559 3.10 0.002 **
NaturalResourceRents -0.0193 0.0129 -1.49 0.135
ColdWar
                    -0.9052
                               0.5804 -1.56 0.119
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
R-squared: 0.3621
Wald statistic: 394.4807, Pr(>Chisq(6)): 0
> PCSE$panelStructure$rho
[1] 0.9523
```

Model Comparisons

Dynamics!

Time Series: Stationarity

Stationarity: A constant d.g.p. over time.¹

Mean stationarity:

$$E(Y_t) = \mu \ \forall \ t$$

Variance stationarity:

$$Var(Y_t) = E[(Y_t - \mu)^2] \equiv \sigma_Y^2 \ \forall \ t$$

Covariance stationarity:

$$Cov(Y_t, Y_{t-s}) = E[(Y_t - \mu)(Y_{t-s} - \mu)] = \gamma_s \ \forall \ s$$

 $^{^1\}text{A}$ stricter form of stationarity requires that the joint probability distribution (in other words, all the moments) of series of observations $\{Y_1,\,Y_2,...Y_t\}$ is the same as that for $\{Y_{1+s},\,Y_{2+s},...Y_{t+s}\}$ for all t and s.

The "ARIMA" Approach

"ARIMA" = Autoregressive Integrated Moving Average...

A (first-order) integrated series ("random walk") is:

$$Y_t = Y_{t-1} + u_t, \ u_t \sim i.i.d.(0, \sigma_u^2)$$

...a/k/a a "random walk":

$$Y_t = Y_{t-2} + u_{t-1} + u_t$$

$$= Y_{t-3} + u_{t-2} + u_{t-1} + u_t$$

$$= \sum_{t=0}^{T} u_t$$

I(1) Series Properties

I(1) series are not stationary.

Variance:

$$Var(Y_t) \equiv E(Y_t)^2 = t\sigma^2$$

Autocovariance:

$$Cov(Y_t, Y_{t-s}) = |t - s|\sigma^2.$$

Both depend on t...

I(1) series (continued)

More generally:

- $|\rho| > 1$
 - Series is nonstationary / explosive
 - Past shocks have a greater impact than current ones
 - Uncommon
- $|\rho| < 1$
 - Stationary series
 - ullet Effects of shocks die out exponentially according to ho
 - Is mean-reverting
- \bullet $|\rho|=1$
 - Nonstationary series
 - Shocks persist at full force
 - Not mean-reverting; variance increases with t

Time Series Types, Illustrated

I(1) Series: Differencing

For an I(1) series:

$$Y_t - Y_{t-1} = u_t$$

which we often write in terms of the difference operator Δ (or sometimes ∇):

$$\Delta Y_t = u_t$$

The differenced series is just the (stationary, ergoditic) white-noise process u_t .

Unit Root Tests Review: Dickey-Fuller

Two steps:

- Estimate $Y_t = \rho Y_{t-1} + u_t$,
- test the hypothesis that $\hat{\rho} = 0$, but
- this requires that the us are uncorrelated.

But suppose:

$$\Delta Y_t = \sum_{i=1}^p d_i \Delta Y_{t-i} + u_t$$

which yields

$$Y_t = Y_{t-1} + \sum_{i=1}^{p} d_i \Delta Y_{t-i} + u_t.$$

D.F. tests will be incorrect.

Unit Root Alternatives

Augmented Dickey-Fuller Tests:

• Estimate

$$\Delta Y_t = Y_{t-1} + \sum_{i=1}^{p} d_i \Delta Y_{t-i} + u_t$$

• Test $\hat{\rho} = 0$

Phillips-Perron Tests:

• Estimate:

$$\Delta Y_t = \alpha + \rho Y_{t-1} + u_t$$

- Calculate modified test statistics (Z_{ρ} and Z_{t})
- Test $\hat{\rho} = 0$

Issues with Unit Roots in Panel Data

- Short series + Asymptotic tests → "borrow strength"
- Requires uniform unit roots across cross-sectional units
- Many tests require balanced panels...
- Various alternatives:
 - Maddala and Wu (1999)
 - Hadri (2000)
 - Levin, Lin and Chu (2002)
 - Im, Pesaran, and Shin (2003)
- What to do?
 - Difference the data...
 - · Error-correction models

Panel Unit Root Tests: R

```
[data wrangling...]
> purtest(WBLI.W,exo="trend",test="levinlin",pmax=2)
Levin-Lin-Chu Unit-Root Test (ex. var.: Individual Intercepts and
Trend)
data: WBLT.W
z = -2.7, p-value = 0.003
alternative hypothesis: stationarity
> purtest(WBLI.W,exo="trend",test="hadri",pmax=2)
Hadri Test (ex. var.: Individual Intercepts and Trend)
(Heterosked, Consistent)
data: WBLT.W
z = 189, p-value <2e-16
alternative hypothesis: at least one series has a unit root
> purtest(WBLI.W,exo="trend",test="madwu",pmax=2)
Maddala-Wu Unit-Root Test (ex. var.: Individual Intercepts and
Trend)
data: WBLI.W
chisq = 332, df = 376, p-value = 0.9
alternative hypothesis: stationarity
> purtest(WBLI.W,exo="trend",test="ips",pmax=2)
Im-Pesaran-Shin Unit-Root Test (ex. var.: Individual Intercepts
and Trend)
data: WBLI.W
Wtbar = 3.6, p-value = 1
alternative hypothesis: stationarity
```

A Nice Table

Table: Panel Unit Root Tests: WBRI

	Test	Alternative	Stat
1	Levin-Lin-Chu Unit-Root Test (ex. var.: Individual Intercepts and Trend)	stationarity	Z
2	Hadri Test (ex. var.: Individual Intercepts and Trend) (Heterosked. Consistent)	at least one series has a unit root	z
3	Maddala-Wu Unit-Root Test (ex. var.: Individual Intercepts and Trend)	stationarity	chi
4	Im-Pesaran-Shin Unit-Root Test (ex. var.: Individual Intercepts and Trend)	stationarity	Wtl

Lagged: *Y*?

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta}_{LDV} + \epsilon_{it}$$

If ϵ_{it} is perfect...

- $\hat{\beta}_{LDV}$ is biased (but consistent),
- O(bias) = $\frac{-1+3\beta_{LDV}}{T}$

If ϵ_{it} is autocorrelated...

- $\hat{\beta}_{LDV}$ is biased and inconsistent
- IV is one (bad) option...

Lagged Ys and GLS-ARMA

Can rewrite:

$$Y_{it} = \mathbf{X}_{it} \boldsymbol{\beta}_{AR} + u_{it}$$

 $u_{it} = \phi u_{it-1} + \eta_{it}$

as

$$Y_{it} = \mathbf{X}_{it}\beta_{AR} + \phi u_{it-1} + \eta_{it}$$

$$= \mathbf{X}_{it}\beta_{AR} + \phi(\mathbf{Y}_{it-1} - \mathbf{X}_{it-1}\beta_{AR}) + \eta_{it}$$

$$= \phi \mathbf{Y}_{it-1} + \mathbf{X}_{it}\beta_{AR} + \mathbf{X}_{it-1}\psi + \eta_{it}$$

where $\psi = \phi \beta_{AR}$ and $\psi = 0$ (by assumption).

Lagged Ys and World Domination

In:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \beta_{LDV} + \epsilon_{it}$$

Achen: Bias "deflates" $\hat{\beta}_{LDV}$ relative to $\hat{\phi}$, "suppress" the effects of **X**...

Keele & Kelly (2006):

- ullet Contingent on ϵ s having autocorrelation
- Key: In LDV, long-run impact of a unit change in X is:

$$\hat{\beta}_{LR} = \frac{\hat{\beta}_{LDV}}{1 - \hat{\phi}}$$

Long-Run Impact for $\hat{eta}=1$

Lagged Ys and Unit Effects

Consider:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta} + \alpha_i + u_{it}.$$

If we omit the unit effects, we have:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta} + u_{it}^*$$

with

$$u_{it}^* = \alpha_i + u_{it}$$

Lagging yields:

$$Y_{it-1} = \phi Y_{it-2} + \mathbf{X}_{it-1} \boldsymbol{\beta} + \alpha_i + u_{it-1}$$

which means

$$Cov(Y_{it-1}, u_{it}^*) \neq 0. \rightarrow bias in \hat{\phi}, \hat{\beta}$$

"Nickell" Bias

Bias in $\hat{\phi}$ is

- toward zero when $\phi > 0$,
- increasing in ϕ .

Including unit effects still yields bias in $\hat{\phi}$ of $O(\frac{1}{T})$, and bias in $\hat{\beta}$.

Solutions:

- Difference/GMM estimation
- Bias correction approaches

First Difference Estimation

$$Y_{it} - Y_{it-1} = \phi(Y_{it-1} - Y_{it-2}) + (\mathbf{X}_{it} - \mathbf{X}_{it-1})\beta + (\alpha_i - \alpha_i) + (u_{it} - u_{it-1})$$

$$\Delta Y_{it} = \phi\Delta Y_{it-1} + \Delta \mathbf{X}_{it}\beta + \Delta u_{it}$$

Anderson/Hsiao: If \nexists autocorrelation, then use ΔY_{it-2} or Y_{it-2} as instruments for ΔY_{it-1} ...

- Consistent in theory,
- ullet in practice, the former is preferred, and both have issues if ϕ is high;
- both are inefficient.

Arellano & Bond (also Wawro): Use all lags of Y_{it} and \mathbf{X}_{it} from t-2 and before.

- "Good" estimates, better as $T \to \infty$,
- Easy to handle higher-order lags of Y,
- Easy software (plm in R , xtabond in Stata).
- Model is fixed effects...
- \mathbf{Z}_i has T p 1 rows, $\sum_{i=p}^{T-2} i$ columns \rightarrow difficulty of estimation declines in p, grows in T.

Bias-Correction Models

Kiviet (1995, 1999; Bun and Kiviet 2003; Bruno 2005a,b): Derive the bias in $\hat{\phi}$ and $\hat{\beta}$, then correct it...

- \bullet More accurate than the instrumental-variables/GMM estimators of A&H/A&B...
- ...especially when T is small; but not as T gets reasonably large $(T \approx 20)$

Some Dynamic Models

	Lagged Y	First Difference	FE	$Lagged\;Y+FE$
Intercept	2.260*	0.641*		
	(0.335)	(0.040)		
Lagged WBLI	0.986*			0.948*
	(0.002)			(0.004)
Population Growth	-0.051	0.035	0.073	0.011
	(0.027)	(0.077)	(0.119)	(0.037)
Urban Population	0.002	-0.040	0.248*	0.009
	(0.002)	(0.062)	(0.021)	(0.007)
Fertility Rate	-0.085*	-1.023^{*}	-2.066*	-0.292*
	(0.030)	(0.373)	(0.166)	(0.052)
In(GDP Per Capita)	-0.036	0.780	9.161*	0.276*
	(0.037)	(0.476)	(0.310)	(0.102)
Natural Resource Rents	-0.010*	0.020*	0.035	-0.003
	(0.003)	(0.008)	(0.018)	(0.006)
Cold War	-0.298*	-0.021	-7.192*	-0.445^{*}
	(0.072)	(0.204)	(0.295)	(0.094)
R^2	0.984	0.003	0.535	0.956
Adj. R ²	0.984	0.002	0.523	0.954
Num. obs.	7463	7380	7566	7463
* : 2.25				

p < 0.05

Trends!

What if *Y* is *trending* over time?

- First Question: Why?
 - · Organic growth (e.g., populations)
 - · Temporary / short-term factors
 - · Covariates...
- Second question: Should we care?
 (A: Yes, usually... → "spurious regressions")
- Third question: What to do?
 - · Ignore it...
 - · Include a counter / trend term...

In general, adding a trend term will decrease the magnitudes of $\hat{\beta}$...

Trends Matter, Illustrated

Data generating processes:

$$Y_{1t} = 10 + (1 \times X_t) + u_t$$

$$Y_{2t} = 5 + (1 \times X_t) + (0.5 \times T) + u_t$$

Note:

	Y_1	Y ₂		
		No Trend	Trend	
X	0.921***	-0.382	0.874***	
	(0.245)	(0.786)	(0.255)	
т			0.482***	
			(0.026)	
Constant	10.300***	20.200***	5.860***	
	(0.917)	(2.950)	(1.200)	
Observations	40	40	40	
R ²	0.272	0.006	0.905	
Adjusted R ²	0.253	-0.020	0.900	
Residual Std. Error	1.800 (df = 38)	5.790 (df = 38)	1.810 (df = 37)	

Trends Matter, Part II

Table: FE Models of WBLI

	FE	FE.trend	FE.intx
Population Growth	0.073	-0.287***	-0.242**
•	(0.119)	(0.100)	(0.100)
Urban Population	0.248***	-0.024	-0.003
	(0.021)	(0.018)	(0.018)
Fertility Rate	-2.066***	1.080***	1.018***
	(0.166)	(0.150)	(0.149)
In(GDP Per Capita)	9.161***	2.867***	2.585***
, , ,	(0.310)	(0.283)	(0.283)
Natural Resource Rents	0.035*	0.009	0.008
	(0.018)	(0.015)	(0.015)
Cold War	-7.192***	1.660***	9.300***
	(0.295)	(0.293)	(0.944)
Trend (1950=0)		0.749***	0.783***
, ,		(0.013)	(0.014)
Cold War x Trend			-0.220***
			(0.026)
Observations	7,566	7,566	7,566
R ²	0.535	0.674	0.678
Adjusted R ²	0.523	0.666	0.669
F Statistic	1,414.000*** (df = 6; 7374)	2,182.000*** (df = 7; 7373)	1,937.000*** (df = 8; 7372)

*p<0.1; **p<0.05; ***p<0.01

Another Approach: Orthogonalization

Note: We're rarely substantively interested in the fixed effects $\hat{\alpha}$...

- \rightarrow reparameterize the α s so that they are *information-orthogonal* to the other parameters in the model (including the β s and ϕ)
- Key idea: Transform the α s so that (for example):

$$\mathsf{E}\left(\frac{\partial^2 L_i}{\partial \alpha \partial \beta}\right) = 0$$

- Can do this via imposition of priors, in a Bayesian framework...
- In general, this approach is less assumption-laden and more efficient than the IV/GMM-based approaches discussed above.

References:

- Lancaster, T. 2002. "Orthogonal Parameters and Panel Data." Review of Economic Studies 69:647-666.
- Pickup et al. (2017) [the "orthogonalized panel model" ("OPM")]

FE + Dynamics Using Orthogonalization

- > library(OrthoPanels)
- > set.seed(7222009)

OPM Results: Short- and Long-Run Effects

For $\hat{\phi} \approx$ 0.98:

Parameter	Short-Run	Long-Run
Population Growth	0.0122	0.9148
Urban Population	-0.0016	-0.1420
Fertility Rate	-0.2247	-19.0090
In(GDP Per Capita)	-0.1155	-9.9996
Natural Resource Rents	-0.0037	-0.3086
Cold War	-0.1691	-14.3630

Dynamic Models: Software

R:

- the plm package (purtest for unit roots; plm for first-difference models)
- the panelAR package (GLS-ARMA models)
- the gls package (GLS)
- the pgmm package (A&B)
- the dynpanel package (A&H, A&B)

Stata:

- xtgls (GLS)
- xtpcse (PCSEs)
- xtabond / xtdpd (A&H A&B dynamic models)

Final Thoughts: Dynamic Panel Models

- N vs. T...
- Are dynamics nuisance or substance?
- What problem(s) do you really care about?