

A Comparative Study on Diffusion Models for Tabular Data Synthesis in Healthcare

Neetu Kumari and Enayat Rajabi Shannon School of Business, CBU, Nova Scotia, Canada

INTRODUCTION

BACKGROUND:

Synthetic data generation helps overcome critical challenges in healthcare:

- · Data scarcity for rare events or arbitrary events
- · Cost and Time Efficiency
- Privacy and Confidentiality

Despite its growing use, there is a notable **lack of comparative** studies on the latest diffusion models for
tabular datasets in healthcare.

RESEARCH OBJECTIVE:

This study compares two advanced diffusion models, **TabDDPM** and **TabSyn**, on healthcare datasets. It assesses their performance based on:

- Data Similarity: Checks how closely synthetic data matches the original.
- Utility for Machine Learning: Tests effectiveness in ML applications.
- Privacy Preservation: Ensures the synthetic data maintains confidentiality.

DATASET

The Obesity and Diabetes datasets were selected from the UCI Machine Learning Repository for several reasons including **Variability**, **Sensitivity**, **Entry Volume Diversity**, **Feature Diversity**.

Statistics of datase			ed in the	study	# - Number		
Dataset	#Entries	#Num	#Cat	#Train	#Test	Task	
Obesity	2111	8	9	1899	212	MultiClass	
Diabetes	253680	7	15	228312	25368	BiClass	

METHODS

GENERAL APPROACH:

· Training, generating artificial data, and evaluation

Flowchart of the process of the study

The following are the Models used in the study:

1. TabSYN:

2. TabDDPM:

EVALUATION METRICES:

Data Similarity	Utility	Privacy Preservation
Variable Correlation Distribution Similarity Pair-wise Correlation	TSTR Method in MI Models	Distance to Closest Record (DCR) Alpha - Precision Beta Recall

RESULTS

This research assesses following key metrics to maintain privacy while optimizing data utility:

SIMILARITY EVALUATION:

- <u>Variable Correlation</u>: Statistical similarities for continuous (Mean & Median) and categorical (Ratio of categories)
- <u>Distribution and Pair-wise Correlation</u>: Kolmogorov-Smirnov(KS) Test, Chi-square test, and analyzes

[Left] CH2O Distribution: "Obesity" dataset via TabDDPM & TabSyn Models [Right] BMI Distribution: "Diabetes" dataset via TabDDPM & TabSyn Models

Comparative table of OQS, Column Shapes and Column pair Trends

	Obe	esity	Diabetes	
Metrices/Models	TabDDPM	TabSyn	TabDDPM	TabSyn
Overall Quality Score	95.36	94.68	62.25	97.94
Column Shapes	96.37	96.84	72.04	98.51
Column Pair Trends	94.35	92.52	52.46	97.36

Note:

- · Obesity: No notable difference.
- · Diabetes: TabSyn outperforms TabDDPM.

UTILITY EVALUATION:

· Machine learning usability:

TSTR (Training-Set Test-Set) approach.

AUC score by using XGB Classifier (Higher the Score, Better performance)

Dataset\Model	TabDDPM	TabSyn
Obesity	0.9981	0.9962
Diabetes	0.6773	0.8275

PRIVACY PRESERVATION:

- Alpha-Precision & Beta-Recall Metrics
- · Distance to Closest Record (DCR)

Comparing Alpha-Precision and Beta-Recall values for both models Alpha value : Fidelity & Beta value : Diversity

	Obesity		Diabetes	
Metrices/Models	TabDDPM	TabSyn	TabDDPM	TabSyn
Alpha-Precision	0.897	0.975	0.655	0.978
Beta-Recall	0.380	0.304	0.0003	0.566

DCR Scores: Datasets generated by using TabDDPM and TabSyn

Metrices/Models	Obesity	Diabetes
TabDDPM	0.93	0.89
TabSyn	0.92	0.87

DISCUSSION

- Smaller Dataset (Obesity): No significant differences between model's performance on all metrices.
- Larger Dataset (Diabetes): TabSyn outperforms
 TabDDPM significantly on all evaluation metrices.
- · TabSyn is well-suited for synthetic healthcare data,

FUTURE DIRECTION

- Enhance generative models to more effectively produce high-dimensional, small healthcare datasets.
- Differential Privacy Preservation:
- Re-identification Risk: Evaluating the traceability of synthetic data back to original data.
- 2. Membership Inference Attacks: Determine if an individual's data was used to create the synthetic dataset.