Computer Science Track Core Course Linear programming — recitation 1

Martin Dvorak ISTA Kolmogorov group

2023-05-11

Linear program

Definitions

We are given an input $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$ and we search for $\mathbf{x} \in \mathbb{Q}^n$ that optimizes...

minimize
$$c'\mathbf{x}$$
 s.t. $A\mathbf{x} \ge b$

minimize
$$c'x$$

s.t. $Ax = b$
where $x > 0$

maximize
$$c' \mathbf{x}$$
 s.t. $A\mathbf{x} \leq b$

maximize
$$c'\mathbf{x}$$
 s.t. $A\mathbf{x} = b$ where $\mathbf{x} \ge \mathbf{0}$

Separating points

We are searching for a line y = ax + b that separates "disks" (top) from "squares" (bottom).

Separating points

We are searching for a line y = ax + b that separates "disks" (top)

from "squares" (bottom).

Variables:

Separating points

We are searching for a line y = ax + b that separates "disks" (top)

from "squares" (bottom).

Variables: $a \leq 0$, $b \leq 0$

Separating points

We are searching for a line y = ax + b that separates "disks" (top)

from "squares" (bottom).

Variables: $a \le 0$, $b \le 0$ Point (x_1, y_1) above the line:

Separating points

We are searching for a line y = ax + b that separates "disks" (top)

from "squares" (bottom).

Variables: $a \leq 0$, $b \leq 0$

Point (x_1, y_1) above the line: $x_1 \cdot a + b \le y_1$ "disk"

Separating points

We are searching for a line y = ax + b that separates "disks" (top)

from "squares" (bottom).

Variables: $a \leq 0$, $b \leq 0$

Point (x_1, y_1) above the line: $x_1 \cdot a + b \le y_1$ "disk"

Point (x_2, y_2) below the line:

Separating points

We are searching for a line y = ax + b that separates "disks" (top)

from "squares" (bottom).

Variables: $a \leq 0$, $b \leq 0$

Point (x_1, y_1) above the line: $x_1 \cdot a + b \le y_1$ Point (x_2, y_2) below the line: $x_2 \cdot a + b \ge y_2$ "disk"
"square"

Separating points

We are searching for a line y = ax + b that separates "disks" (top)

from "squares" (bottom).

Variables: $a \leq 0$, $b \leq 0$

Point (x_1, y_1) above the line: $x_1 \cdot a + b \le y_1$ Point (x_2, y_2) below the line: $x_2 \cdot a + b \ge y_2$ "disk"
"square"

Objective:

Separating points

We are searching for a line y = ax + b that separates "disks" (top)

from "squares" (bottom).

Variables: $a \leq 0$, $b \leq 0$

Point (x_1, y_1) above the line: $x_1 \cdot a + b \le y_1$ Point (x_2, y_2) below the line: $x_2 \cdot a + b \ge y_2$ "disk"
"square"

Objective: minimize 0

Separating points strictly

Now, we are searching for a line y = ax + b that separates them strictly.

Separating points strictly

Now, we are searching for a line y = ax + b that separates them strictly.

Variables: $a \leq 0$, $b \leq 0$, $d \geq 0$

Point (x_1, y_1) above the line: $x_1 \cdot a + b + d \le y_1$

Point (x_2, y_2) below the line: $x_2 \cdot a + b - d \ge y_2$

Objective: maximize d

Integer linear program

Definitions

We are given an input $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$ and we search for $\mathbf{x} \in \mathbb{Z}^n$ that optimizes...

minimize
$$c'\mathbf{x}$$
 s.t. $A\mathbf{x} \ge b$

minimize
$$c'\mathbf{x}$$

s.t. $A\mathbf{x} = b$
where $\mathbf{x} > \mathbf{0}$

maximize
$$c' \mathbf{x}$$
 s.t. $A\mathbf{x} \leq b$

maximize
$$c'x$$

s.t. $Ax = b$
where $x \ge 0$

Separating points partially

We are searching for a line y = ax + b that separates given points — "disks" (top) from "squares" (bottom) — with as few exceptions as possible.

Let us ignore all vertical and nearly-vertical solutions.

M is a very large integer.

Variables:

Separating points partially

We are searching for a line y = ax + b that separates given points — "disks" (top) from "squares" (bottom) — with as few exceptions as possible.

Let us ignore all vertical and nearly-vertical solutions.

M is a very large integer.

Variables: $a \leq 0$, $b \leq 0$; $\forall i : p_i \in \{0, 1\}$

Separating points partially

We are searching for a line y = ax + b that separates given points — "disks" (top) from "squares" (bottom) — with as few exceptions as possible.

Let us ignore all vertical and nearly-vertical solutions.

M is a very large integer.

Variables: $a \le 0$, $b \le 0$; $\forall i : p_i \in \{0, 1\}$ Point (x_1, y_1) above the line:

Separating points partially

We are searching for a line y = ax + b that separates given points — "disks" (top) from "squares" (bottom) — with as few exceptions as possible.

Let us ignore all vertical and nearly-vertical solutions.

M is a very large integer.

Variables: $a \leq 0$, $b \leq 0$; $\forall i : p_i \in \{0, 1\}$

Point (x_1, y_1) above the line: $x_1 \cdot a + b - M \cdot p_i \leq y_1$

"disk"

Separating points partially

We are searching for a line y = ax + b that separates given points — "disks" (top) from "squares" (bottom) — with as few exceptions as possible.

Let us ignore all vertical and nearly-vertical solutions.

M is a very large integer.

Variables: $a \le 0$, $b \le 0$; $\forall i : p_i \in \{0, 1\}$ Point (x_1, y_1) above the line: $x_1 \cdot a + b - M \cdot p_i \le y_1$ "disk" Point (x_2, y_2) below the line:

Separating points partially

We are searching for a line y = ax + b that separates given points — "disks" (top) from "squares" (bottom) — with as few exceptions as possible.

Let us ignore all vertical and nearly-vertical solutions.

M is a very large integer.

Variables: $a \le 0$, $b \le 0$; $\forall i : p_i \in \{0, 1\}$

Point (x_1, y_1) above the line: $x_1 \cdot a + b - M \cdot p_i \le y_1$

Point (x_2, y_2) below the line: $x_2 \cdot a + b + M \cdot p_i \ge y_2$

"disk"
"square"

Separating points partially

We are searching for a line y = ax + b that separates given points — "disks" (top) from "squares" (bottom) — with as few exceptions as possible.

Let us ignore all vertical and nearly-vertical solutions.

M is a very large integer.

Variables: $a \le 0$, $b \le 0$; $\forall i : p_i \in \{0,1\}$ Point (x_1, y_1) above the line: $x_1 \cdot a + b - M \cdot p_i \le y_1$ "disk" Point (x_2, y_2) below the line: $x_2 \cdot a + b + M \cdot p_i \ge y_2$ "square" Objective:

Separating points partially

We are searching for a line y = ax + b that separates given points — "disks" (top) from "squares" (bottom) — with as few exceptions as possible.

Let us ignore all vertical and nearly-vertical solutions.

M is a very large integer.

Variables: $a \le 0$, $b \le 0$; $\forall i : p_i \in \{0,1\}$ Point (x_1, y_1) above the line: $x_1 \cdot a + b - M \cdot p_i \le y_1$ "disk" Point (x_2, y_2) below the line: $x_2 \cdot a + b + M \cdot p_i \ge y_2$ "square" Objective: minimize $\sum_i p_i$

Separating points partially

Variables: $a \le 0$, $b \le 0$; $\forall i : p_i \in \{0,1\}$ Point (x_1, y_1) above the line: $x_1 \cdot a + b - M \cdot p_i \le y_1$ "disk" Point (x_2, y_2) below the line: $x_2 \cdot a + b + M \cdot p_i \ge y_2$ "square" Objective: minimize $\sum_i p_i$

Separating points partially

Variables: $a \le 0$, $b \le 0$; $\forall i : p_i \in \{0,1\}$ Point (x_1, y_1) above the line: $x_1 \cdot a + b - M \cdot p_i \le y_1$ "disk" Point (x_2, y_2) below the line: $x_2 \cdot a + b + M \cdot p_i \ge y_2$ "square" Objective: minimize $\sum_i p_i$

Unfortunately, there is no general algorithm for solving ILP in polynomial time

Separating points partially

```
Variables: a \le 0, b \le 0; \forall i : p_i \in \{0,1\}
Point (x_1, y_1) above the line: x_1 \cdot a + b - M \cdot p_i \le y_1 "disk"
Point (x_2, y_2) below the line: x_2 \cdot a + b + M \cdot p_i \ge y_2 "square"
Objective: minimize \sum_i p_i
```


Unfortunately, there is no general algorithm for solving ILP in polynomial time (we don't know any such algorithm — but most importantly, it cannot exist unless P = NP).

Separating points partially

Variables: $a \le 0$, $b \le 0$; $\forall i : p_i \in \{0,1\}$ Point (x_1, y_1) above the line: $x_1 \cdot a + b - M \cdot p_i \le y_1$ "disk" Point (x_2, y_2) below the line: $x_2 \cdot a + b + M \cdot p_i \ge y_2$ "square" Objective: minimize $\sum_i p_i$

Unfortunately, there is no general algorithm for solving ILP in polynomial time (we don't know any such algorithm — but most importantly, it cannot exist unless P = NP).

This particular problem, however, can be solved in quadratic time. Consider all pairs of points.

From minimization to maximization

Primal problem:

From minimization to maximization

Primal problem:

From maximization to minimization

From maximization to minimization

Dual problem:

maximize
$$4y_1 + 5y_2$$

s.t. $2y_1 + y_2 \le 6$
 $y_1 + 2y_2 \le 6$
where $y_1, y_2 \ge 0$

Dual of the dual problem:

minimize
$$6z_1 + 6z_2$$

s.t. $2z_1 + z_2 \ge 4$
 $z_1 + 2z_2 \ge 5$
where $z_1, z_2 \ge 0$

Comparison

Primal problem:

Dual of the dual problem:

minimize
$$6z_1 + 6z_2$$

s.t. $2z_1 + z_2 \ge 4$
 $z_1 + 2z_2 \ge 5$
where $z_1, z_2 \ge 0$

LP duality

In general (I)

We are given $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$ on the input. We search for either $\mathbf{x} \in \mathbb{Q}^n$ or $\mathbf{y} \in \mathbb{Q}^m$.

Primal problem:

minimize
$$c'\mathbf{x}$$

s.t. $A\mathbf{x} \ge b$
where $\mathbf{x} \le \mathbf{0}$

maximize
$$b' \mathbf{y}$$

s.t. $A^{\top} \mathbf{y} = c$
where $\mathbf{y} > \mathbf{0}$

LP duality

In general (II)

We are given $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$ on the input. We search for either $\mathbf{x} \in \mathbb{Q}^n$ or $\mathbf{y} \in \mathbb{Q}^m$.

Primal problem:

minimize
$$c'\mathbf{x}$$

s.t. $A\mathbf{x} = b$
where $\mathbf{x} \ge \mathbf{0}$

$$\begin{array}{ll} \text{maximize} & & b' \mathbf{y} \\ \text{s.t.} & & A^{\top} \mathbf{y} \leq c \\ \text{where} & & \mathbf{y} \leqslant \mathbf{0} \end{array}$$

LP duality

In general (III)

We are given $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$ on the input. We search for either $\mathbf{x} \in \mathbb{Q}^n$ or $\mathbf{y} \in \mathbb{Q}^m$.

Primal problem:

minimize
$$c'\mathbf{x}$$

s.t. $A\mathbf{x} \ge b$
where $\mathbf{x} \ge \mathbf{0}$

maximize
$$b' y$$

s.t. $A^{\top} y \leq c$
where $y > 0$

Definition

Let V be a vector space over F. Consider vectors $\mathbf{x_1}, \dots, \mathbf{x_n} \in V$.

Definition

Let V be a vector space over F. Consider vectors $\mathbf{x_1}, \dots, \mathbf{x_n} \in V$.

• We say that $y \in V$ is a linear combination of x_1, \ldots, x_n if:

$$\exists \alpha_1, \ldots, \alpha_n \in F : \sum_{i=1}^n \alpha_i \mathbf{x_i} = \mathbf{y}$$

Definition

Let V be a vector space over F. Consider vectors $\mathbf{x_1}, \dots, \mathbf{x_n} \in V$.

• We say that $y \in V$ is a linear combination of x_1, \ldots, x_n if:

$$\exists \alpha_1, \ldots, \alpha_n \in F : \sum_{i=1}^n \alpha_i \mathbf{x_i} = \mathbf{y}$$

• We say that $y \in V$ is an affine combination of x_1, \ldots, x_n if:

$$\exists \alpha_1, \ldots, \alpha_n \in F : \sum_{i=1}^n \alpha_i = 1 \land \sum_{i=1}^n \alpha_i \mathbf{x_i} = \mathbf{y}$$

Definition

Let V be a vector space over F. Consider vectors $\mathbf{x_1}, \dots, \mathbf{x_n} \in V$.

• We say that $y \in V$ is a linear combination of x_1, \ldots, x_n if:

$$\exists \alpha_1, \ldots, \alpha_n \in F : \sum_{i=1}^n \alpha_i \mathbf{x_i} = \mathbf{y}$$

• We say that $y \in V$ is an affine combination of x_1, \ldots, x_n if:

$$\exists \alpha_1, \ldots, \alpha_n \in F : \sum_{i=1}^n \alpha_i = 1 \land \sum_{i=1}^n \alpha_i \mathbf{x_i} = \mathbf{y}$$

• Suppose now that F is a totally ordered field. Denote the set of $\varphi \in F$ such that $\varphi \geq 0$ by the symbol F_0^+ . We say that $\mathbf{y} \in V$ is a convex combination of $\mathbf{x}_1, \ldots, \mathbf{x}_n$ if:

$$\exists \alpha_1, \dots, \alpha_n \in F_0^+: \sum_{i=1}^n \alpha_i = 1 \land \sum_{i=1}^n \alpha_i \mathbf{x_i} = \mathbf{y}$$

Let $d \in \mathbb{Z}$ such that $d \geq 2$.

- Linearly independent vectors in \mathbb{Z}_2^d over \mathbb{Z}_2 ?
- Affinely independent vectors in \mathbb{C}^d over \mathbb{C} ?
- Convexly independent vectors in \mathbb{Q}^d over \mathbb{Q} ?

Let $d \in \mathbb{Z}$ such that d > 2.

- Linearly independent vectors in \mathbb{Z}_2^d over \mathbb{Z}_2 ?
- Affinely independent vectors in \mathbb{C}^d over \mathbb{C} ?
- Convexly independent vectors in \mathbb{Q}^d over \mathbb{Q} ?

Let $d \in \mathbb{Z}$ such that d > 2.

- Linearly independent vectors in \mathbb{Z}_2^d over \mathbb{Z}_2 ?
- Affinely independent vectors in \mathbb{C}^d over \mathbb{C} ? d+1
- Convexly independent vectors in \mathbb{Q}^d over \mathbb{Q} ?

Let $d \in \mathbb{Z}$ such that $d \geq 2$.

- Linearly independent vectors in \mathbb{Z}_2^d over \mathbb{Z}_2 ?
- Affinely independent vectors in \mathbb{C}^d over \mathbb{C} ? d+1
- Convexly independent vectors in \mathbb{Q}^d over \mathbb{Q} ? ∞

Basic properties

 $\{\mathsf{convex}\;\mathsf{combin.}\}\;\subseteq\;\{\mathsf{affine}\;\mathsf{combin.}\}\;\subseteq\;\{\mathsf{linear}\;\mathsf{combin.}\}$

Basic properties

```
\{\mathsf{convex}\;\mathsf{combin.}\}\;\subseteq\;\{\mathsf{affine}\;\mathsf{combin.}\}\;\subseteq\;\{\mathsf{linear}\;\mathsf{combin.}\}
```

Let V be a vector space and $X \subseteq V$.

- X is convexly dependent. $\implies X$ is affinely dependent. $\implies X$ is linearly dependent.
- X is linearly independent. $\implies X$ is affinely independent. $\implies X$ is convexly independent.

Basic properties

```
\{convex\ combin.\}\subseteq \{affine\ combin.\}\subseteq \{linear\ combin.\}
```

Let V be a vector space and $X \subseteq V$.

- X is convexly dependent. $\implies X$ is affinely dependent. $\implies X$ is linearly dependent.
- X is linearly independent. ⇒ X is affinely independent.
 ⇒ X is convexly independent.

Let us have a matrix $A \in F^{m \times n}$ and a vector $b \in F^m$. We search for a solution $x \in F^n$.

- Ax = 0: Any linear combination of solutions is a solution.
- Ax = b: Any affine combination of solutions is a solution.
- $Ax \le b$: Any convex combination of solutions is a solution. In this example, F must be a totally ordered field.