

CS60010: Deep Learning Spring 2023

Sudeshna Sarkar

Module 1 Part A Introduction

Sudeshna Sarkar 4 Jan 2023

Instructors

• Teacher: Sudeshna Sarkar

• Email: sudeshna@cse.iitkgp.ac.in

• TAs:

- 1. Alapan Kuila
- 2. Vasudha Joshi
- 3. Somnath Jena
- 4. Debajyoti Dasgupta
- 5. Sayan Mahapatra
- 6. Upasana Mandal

Class Timetable


```
Room: NR222
```

Theory in Slot: G3

WED (11:00-11:55)

THURS (12:00-12:55)

FRI (08:00-08:55)

Hands-on Session with our TAs online on MS Teams

Thursday 7 pm

MS Teams for the class: DL23 CS60010

Slides and other resources will be uploaded in MS Teams

Course Information

Prerequisites:

- Machine Learning
- Knowledge of calculus and linear algebra
- Probability and Statistics
- Python Proficiency: A few links to get started.

https://docs.python.org/3/tutorial/

http://cs231n.github.io/python-numpy-tutorial/

Books and References:

1. Deep Learning (Adaptive Computation and Machine Learning series) by Ian Goodfellow, Yoshua Bengio, Aaron Courville

https://www.deeplearningbook.org/

2. Dive into Deep Learning

https://d2l.ai/

3. Deep Learning for Coders with fastai and PyTorch by Jeremy Howard, Sylvain Gugger

https://github.com/fastai/fastbook

Evaluation

- 1. Tests: 60% (25 + 35)
- 2. Quiz + Assignments: 30%
- 3. Research Paper reading
 Slide and Presentation: 10%
- 4. Quiz 1 on 13th Jan 2023

Different types of learning problems

Supervised learning

Given:
$$\mathcal{D} = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$$

learn
$$f_{\theta}(x) \approx y$$

Questions to answer:

how do we represent $f_{\theta}(x)$?

$$f_{\theta}(x) = \theta_1 x_1 + \theta_2 x_2 + \theta_3$$

 $f_{\theta}(x) = \theta_1 x + \theta_2 x^2 + \theta_3 x^3$

how do we measure difference between $f_{\theta}(x_i)$ and y_i ?

$$||f_{\theta}(x_i) - y_i||^2 \quad \text{probability?}$$

$$\delta(f_{\theta}(x_i) \neq y_i)$$

how do we find the best setting of θ ?

gradient descent

random search

least squares

Unsupervised learning

representation

Generative Modelling

GANs VAEs pixel RNN, etc.

Reinforcement learning

choose $f_{\theta}(s_t) = a_t$ to maximize $\sum_{t=1}^{H} r(s_t, a_t)$

actually subsumes (generalizes) supervised learning!

supervised learning: get $f_{\theta}(x_i)$ to match y_i

reinforcement learning: get $f_{\theta}(s_t)$ to maximize reward (could be anything)

Actions: muscle contractions Observations: sight, smell

Rewards: food

Actions: motor current or torque Observations: camera images Rewards: task success measure (e.g.,

running speed)

Actions: what to purchase Observations: inventory levels

Rewards: profit

Phases of Neural Network Research

1940s-1960s: Cybernetics: Brain like electronic systems, morphed into modern control theory and signal processing.

1960s-1980s: Digital computers, automata theory, computational complexity theory: simple shallow circuits are very limited...

1980s-1990s: Connectionism: complex, non-linear networks, back-propagation.

1990s-2010s: Computational learning theory, graphical models: Learning is computationally hard, simple shallow circuits are very limited...

2006 -> Deep learning: End-to-end training, large datasets, explosion in applications.

First appearance (roughly)

Perceptions, Posenblatt

Adainer Widness and Hold

95° 296° 296°)

Perceptrons

 Rosenblatt proposed perceptrons for binary classifications and a learning algorithm for perceptrons

Limitations of Perceptrons

• The original perceptron has trouble with simple non-linear tasks

Minsky and Papert, "Perceptrons", 1969

Multi-layer perceptrons

- Multi-layer perceptrons (MLP) can solve XOR
 - One layer's output is input to the next layer
 - Add nonlinearities between layers, e.g., sigmoids
- Problem: how to train a multi-layer perceptron?
- Learning depends on "ground truth" for updating weights
- For the intermediate neurons there is no "ground truth"

Al Winter despite successes

The first Al Winter

What everybody thought

"If a perceptron cannot even solve XOR, why bother?"

- Results not as promised (too much hype!)
 - → no further funding
 - → Al Winter
- Still, significant discoveries were made in this period
 - Backpropagation → Learning algorithm for MLPs
 - Recurrent networks → Neural Networks for infinite sequences

The 2nd "Al Winter"

- Concurrently with Backprop and Recurrent Nets, new and promising Machine Learning models were proposed
- Kernel Machines & Graphical Models
 - Similar accuracies with better math and proofs and fewer heuristics
 - Neural networks could not improve beyond a few layers

The thaw of the "Al Winter"

Neural Networks: A decade ago

- Lack of processing power
- Lack of data
- Overfitting
- Vanishing gradients
- Experimentally, training multi-layer perceptrons was not that useful

"Are 1-2 hidden layers the best neural networks can do?"

Deep Learning arrives

- Easier to train one layer at a time → Layer-by-layer training
- Training multi-layered neural networks became easier
- After, keep training with contrastive divergence

Training layer 1

Input

Deep Learning Renaissance

Deep Learning is Data Hungry

- In 2009 the Imagenet dataset was published [Deng et al., 2009]
 - Collected images for all 100K terms in Wordnet (16M images in total)
 - Terms organized hierarchically: "Vehicle" → "Ambulance"
- Imagenet Large Scale Visual Recognition Challenge (ILSVRC)
 - 1 million images, 1,000 classes, top-5 and top-1 error measured

The Deep Learning Revolution

• Speech recognition: 2010

• Image recognition: 2013

Natural language processing: 2015

The success of NN

- 1. More data
- 2. More computational power
- 3. Improved techniques (though they're not brand-new)

But, Driven primarily by intuition and empirical success

- Good research and progress based on solid intuition
- Practice leads the way
- Theory lags dramatically
 - no guarantees
 - little understanding of limitations
 - limited interpretability
- More interestingly, classic theory suggests currently successful DL practices, wouldn't be likely to succeed.

Datasets of everything (captions, question-answering, ...), reinforcement learning, ???

- Egyptian cat: 0.23635
 hamster: 0.20282

			Dreit-I mily
۵	۵	۵	True
0	0	1	False
٥	1	0	False
۵	1	1	True
1	0	0	False
1	0	1	True
1	1	0	True
1	1	1	False

Deep Learning Golden Era

What is so impressive?

- Vision is ultra challenging!
 - For 256x256 resolution \rightarrow 2^{524,288} of possible i
 - Large semantic & visual object variations
- Robotics is typically considered in controlled environments
- o Game AI involves extreme number of possible games states ($10^{10^{48}}$ possible GO games)
- NLP is extremely high dimensional and vague (just for English: 150K words)
- Deep learning seems to casually solve many (supervised) problems thought to be extremely hard

Inter-class variation

Representation Learning

- Use machine learning to discover not only the mapping from representation to output but also the representation itself.
- Representation Learning
- Learned representations often result in much better performance than can be obtained with hand-designed representations.
- They also enable AI systems to rapidly adapt to new tasks, with minimal human intervention.

Representation learning

- Handling complex inputs requires representations
- The power of deep learning lies in its ability to learn such representations automatically from data

3€

Cartesian coordinates

Polar coordinates

X

Depth

Deep learning ⇔ Learning Hierarchical Representations

- A pipeline of successive, differentiable modules (transformations)
 - Each module's output is the input for the next module
- Each subsequent module produce higher abstraction features

Inspiration for Deep Learning: The Brain!

