Megha CHAKRABORTY

PERSONAL DATA

PLACE AND DATE OF BIRTH: Kolkata, INDIA | 27 December 1996

PHONE: +49 69 798 47693

EMAIL: chakraborty@fias.uni-frankfurt.de

EDUCATION

2018-	Scientific Resercher in Frankfurt Institute for Advanced Studies in the	
Present	project Seismology and Artificial Intelligence	
2018-2020	M.Sc. in Applied Geophysics, Indian Institute of Technology Bombay	CPI: 9.9/10
2015-2018	B.Sc. in Physics, St. Stephen's College, University of Delhi	CGPA: 9.216/10
2015	Indian School Certificate (ISC) Examination, St. Stephen's School, Kolkata	PERCENTAGE: 95.33
2013	Indian Certificate of Secondary Education, St. Stephen's School, Kolkata	PERCENTAGE: 96.5

SCHOLASTIC ACHIEVEMENTS

2020	Received of Institute Silver Medal for scoring highest CPI in M.Sc. Applied Geophysics batch of 2018-20
2019	Awarded AP (distinction) grades in Statistical Methods in Geosciences, Exploration Seismology,
	STRUCTURAL GEOLOGY AND STRUCTURAL GEOLOGY LAB COURSES
2018	Secured All India Rank 75 in IIT-JAM (PHYSICS), taken by a total of 13,759 candidates

PUBLICATIONS

Ост 2022	Chakraborty, M. , Li, W., Faber, J., Rümpker, G., Stoecker, H. and Srivastava, N., 2022. A study on the effect of input data length on deep learning-based magnitude classifier, EGUSphere. [in Press]
SEP 2022	Chakraborty, M., Cartaya, C.Q., Li, W., Faber J., Rümpker, G., Stoecker, H., Srivastava, N., 2022. A
	study on the effect of input data length on deep learning-based magnitude classifier PolarCAP - A deep learning approach for first motion polarity classification of earthquake waveforms,
	Artificial Intelligence in Geosciences, Volume 3. DOI: https://doi.org/10.1016/j.aiig.2022.08.001
JUL 2022	Chakraborty, M. , Fenner, D., Li, W., Faber, J., Zhou, K., Rümpker, G., Stoecker, H. and Srivastava, N., 2022. CREIME— A Convolutional Recurrent model for Earthquake Identification and Magnitude
	Estimation. Journal of Geophysical Research: Solid Earth, Volume 127, e2022JB024595. DOI: https://doi.org/10.1029/2022JB024595
MAR 2022	Fenner D., Rümpker G., Li W., Chakraborty M. , Faber J., Köhler J., Stöcker H. and Srivastava N., 2022.
	Automated Seismo-Volcanic Event Detection Applied to Stromboli (Italy), Volume 16, Frontiers in Earth SciencesDol: https://doi.org/10.3389/feart.2022.809037
14	
MAY 2020	Chakraborty M. and Mukherjee S., 2020. Structural geological interpretations from unrolled
	images of drill cores, Marine and Petroleum Geology, Volume 115, 104241.DOI: http://doi.org/10.1016/j.marpetgeo.2020.104241
FEB 2020	Mukherjee S. and Chakraborty M., 2020. 3-D slip analyses of listric faults with ideal geometries,
	Marine and Petroleum Geology, Volume 112, 104092.DOI: https://doi.org/10.1016/j.marpetgeo.2019.

CONFERENCE PRESENTATIONS

	Presented poster at Jahrestagung der Deutschen Geophysikalischen Gesellschaft (Annual Conference of German Geophysical Society), 2022, on the basis of abstract submitted on the topic
APR 2021	Automated P-wave First Motion Polarity Detection using Deep Learning Presented poster at EGU Assembly, 2021 , on the basis of abstract submitted on the topic Real Time Magnitude Classification of Earthquake Waveforms using Deep Learning

INTERNSHIP

20thMAY-5th JUL 2019 INTERNSHIP AT SCHLUMBERGER

Topic: Prestack Event picking using Prestack Seismic Interpretation (PSI) plugin on Petrel

- Performed detailed testing on the algorithm and improvised the existing test cases by increasing the overall coverage
- **Reported enhancements** based on observations and experience with the software after consulting the **developers**
- · Created training material for internal and external clients to make the tool more user friendly

ACADEMIC PROJECT

15thJUN-15th JUL 2019

Topic: Modelling of Dynamic Systems using Computational Physics Guide: Dr. Shibaji Banerjee, Assistant Professor, St. Xavier's College, Kolkata

- Modelled the motion of systems like golf ball, baseball, by varying different physical parameters like temperature and air drag, and solving corresponding differential equations using Euler method on Python
- Plotted and digitised data points and fitted them to various functions, using Plot Digitizer and GNUPlot
- Used **Tracker** to model real life motion by recording the trajectory of the system in the form of a video, calibrating the frames and marking the origin, and then selecting the frames from which the data points are obtained