МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Информационные технологии и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №3 по курсу «Программирование графических процессоров»

Классификация и кластеризация изображений на GPU.

Выполнил: Г.Н. Хренов

Группа: 8О-407Б

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

Условие

- 1. Цель работы: научиться использовать GPU для классификации и кластеризации изображений. Использование константной памяти.
- 2. Вариант 3. Метод минимального расстояния.

Программное и аппаратное обеспечение

GPU name: NVIDIA GeForce RTX 2060

compute capability 7:5

totalGlobalMem: 6442450944 sharedMemPerBlock: 49152

totalConstMem: 65536 regsPerBlock: 65536

maxThreadsDim: 1024 1024 64

maxGridSize: 2147483647 65535 65535

multiProcessorCount: 30

CPU name: AMD Ryzen 7 3750H with Radeon Vega Mobile Gfx

MaxClockSpeed: 2300 NumberOfCourse: 4

RAM: 8

SSD: 256, HDD: 1024

OS: Windows10 Compiler: nvcc

Метод решения

Посчитаем на CPU вектор средних и выделим для неё константную память на GPU. Далее для каждого пикселя изображения посчитаем принадлежность к классам параллельно на GPU по формуле:

$$jc = arg \ max_j \left[-(p - avg_j)^T * (p - avg_j) \right]$$

Описание программы

lab2.cu:

void avg(float3* out, int* np, coord** coords, uchar4* data, int w, int nc): выполняет вычисление вектора средних.

__global__ void kernel(uchar4 *data, int w, int h, int nc): вычисление принадлежности к классам.

Результаты

	<<<1, 32>>>	<<<32, 64>>>	<<<128, 256>>>	<<<1024, 1024>>>
256*256	965.35	18.88	6.45	23.361
420*280	1769.6	31.68	8.6	25.76
1054* 1919	40145	651.65	113.25	115.42
1442*1920	54667	889.67	154.59	149.12

(в таблице указано время работы ядер в us)

Примеры работы классификатора

Выводы

Константная память является достаточно быстрой, так как она кэшируется. Отличительной особенностью константной памяти является возможность записи данных с хоста, но при этом в пределах GPU возможно лишь чтение из этой памяти. Если необходимо использовать массив в константной памяти, то его размер необходимо указать заранее, так как динамическое выделение в отличие от глобальной памяти в константной не поддерживается.