ЛАБОРАТОРНАЯ РАБОТА №3

Курс «Основы программирования»

Тема: Массивы. Пользовательские функции.

Цель: Научиться работать с массивами в С#; научиться создавать и обращаться к собственным функциям.

Темы для предварительной проработки [УСТНО]:

- Одномерные массивы в языке С#.
- Оператор foreach.
- Двумерные массивы.
- Функции. Параметры функций.
- Рекурсия.

Общие задания [код]:

- 1. Написать программу, которая запрашивает число элементов массива, после чего создает массив, заполняет его случайными целыми числами в диапазоне от -30 до 45 и выводит на экран строками по 10 элементов. Программа должна после этого вывести элементы массива в обратном направлении, начиная с последнего, игнорируя отрицательные элементы.
- 2. Написать программу поворота двумерного массива размерности 7х7 на 90 градусов вправо (без использования дополнительных массивов).
- 3. Написать программу циклического сдвига массива на k позиций влево.
- 4. Написать функции для поэлементного сложения и вычитания двумерных массивов 3х3. Функции должны принимать массивы в качестве параметров и выдавать результирующий массив в качестве возвращаемого значения. В *третьем параметре* функции необходимо вернуть среднее значение всех элементов входных массивов.
- 5. Написать программу перемножения двух матриц 5х5.
- 6. Написать и продемонстрировать работу следующих функций:
 - sumIterative итерационно вычисляет сумму элементов массива;
 - sumRecursive рекурсивно вычисляет сумму элементов массива;
 - minIterative итерационно вычисляет минимальный элемент в массиве;
 - minRecursive рекурсивно вычисляет минимальный элемент в массиве.
- 7. Написать рекурсивную функцию для нахождения *n*-ого члена ряда Фибоначчи по формулам, приведенным в лабораторной работе №2.
- 8. Написать программу, позволяющую рекурсивно вычислить определитель матрицы NxN по формуле:

$$\det A = \sum_{k=1}^{N} a_{1k} A_{1k} , \qquad A_{ij} = (-1)^{i+j} \cdot M_{ij} ,$$

где M_{ij} — это дополнительный минор (определитель матрицы, получаемой из исходной вычеркиванием i-й строки и j-го столбца).

Индивидуальные задания [КОД]:

- 1. Написать программу, заполняющую и отображающую на экране двумерный массив 9x9, в соответствии с вариантом (*приложение A*).
- 2. Написать программу, работающую с одномерным массивом, в соответствии с вариантом.

Контрольные вопросы [ОТЧЕТ]:

- 1. Какими способами можно на языке С# объявить и проинициализировать одномерный массив?
- 2. Можно ли в С# узнать размер (количество элементов) массива?
- 3. Как работает оператор foreach?
- 4. Какими способами можно на языке С# объявить и проинициализировать двумерный массив? Какие есть типы двумерных массивов?
- 5. Синтаксис пользовательской функции. Параметры по умолчанию.
- 6. Передача параметров в функцию. Ключевые слова params, ref и out.
- 7. Что такое рекурсия? Особенности написания рекурсивных функций.

Рекомендуемые источники:

- [1] Шилдт Г. С# 4.0. Полное руководство. М.: Издательский дом «Вильямс», 2011.-1056c.
- [2] Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: Построение и анализ. М.: МЦНМО, 1999. 960с.
- [3] Ахо А., Хопкрофт Д., Ульман Д. Структуры данных и алгоритмы. М.: Издательский дом «Вильямс», 2001. 384с.
- [4] Кнут Д. Искусство программирования, том 1. Основные алгоритмы. М.: Издательский дом «Вильямс», 2000. 720с.
- [5] Златопольский Д.М. Сборник задач по программированию. СПб.: БХВ-Петербург, 2007. 240с.

Приложение А. Варианты индивидуальных заданий.

Задание 1*.

№ варианта	Содержание задания	Иллюстрация
1	Заполнить матрицу случайными числами. Отобразить главную и побочную диагонали симметрично относительно вертикальной оси.	
2	Заполнить матрицу случайными числами. Отобразить матрицу симметрично относительно главной диагонали	
3	Заполнить матрицу линейной последовательностью чисел, от левого верхнего угла по спирали: вправо - вниз - влево - вверх.	1 2 3 4 5 6 7 8 9 323334353637383910 315557585960614011 305572737475624112 295471808176634213 285370797877644314 275269686766654415 265150494847464516 252423222120191817
4	Заполнить матрицу линейной последовательностью чисел, от центра по спирали: влево - вниз - вправо - вверх.	818079787776757473 504948474645444372 512625242322214271 522710 9 8 7204170 532811 2 1 6194069 542912 3 4 5183968 553013141516173867 563132333435363766 575859606162636465
5	Заполнить матрицу случайными числами. На главной диагонали разместить суммы элементов, которые лежат на той же строке и том же столбце.	

6	Заполнить матрицу линейной последовательностью чисел, от левого верхнего угла по диагонали: вправо - вверх.	1 3 6101521283645 2 5 9142027354453 4 813192634435260 74218253342515966 111724324150586571 162331404957647075 223039485663697478 293847556268737780 374654616772767981
7	Заполнить секторы матрицы, которые лежат влево и вправо от главной и побочной диагоналей, линейной последовательностью чисел, от левого верхнего угла вниз вправо. Остаток матрицы заполнить нулями.	0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
8	Заполнить матрицу случайными числами. Отобразить симметрично относительно вертикальной оси секторы матрицы, которые лежат влево и вправо от главной и побочной диагоналей.	
9	Заполнить матрицу линейной последовательностью чисел, от левого нижнего угла по диагонали: влево - вверх.	455360667175788081 364452596570747779 283543515864697376 212734425057636872 152026334149566267 101419253240485561 6 913182431394754 3 5 8121723303846 1 2 4 7 116222937
10	Заполнить секторы матрицы, которые лежат выше и ниже главной и побочной диагоналей, линейной последовательностью чисел от левого верхнего угла вниз - вправо. Остаток матрицы заполнить нулями.	0 1 3 713212731 0 0 0 4 8142228 0 0 0 0 0 91523 0 0 0 0 0 0 016 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 017 0 0 0 0 0 0 0 101824 0 0 0 0 0 511192529 0 0 0 2 61220263032 0

Задание 2.

Примечание. Для всех вариантов программа сначала должна запрашивать у пользователя N – некоторое четное (!) число элементов массива, а затем и сами элементы массива.

Вариант 1.

Написать программу, которая выводит на экран TRUE, если элементы массива представляют собой возрастающую последовательность, иначе – FALSE.

Вариант 2.

Написать программу, которая выводит на экран результат вычитания суммы элементов левой половины массива из суммы элементов правой половины массива.

Вариант 3.

Написать программу, выводящую на экран количество пар элементов массива, которые по модулю отличаются друг от друга не более, чем на 5.

Вариант 4.

Написать программу, выводящую на экран количество случаев в массиве, когда знак элемента отличается от предыдущего.

Вариант 5.

Написать программу, которая выводит на экран максимальный элемент среди нечетных элементов массива, находящихся на четных позициях.

Вариант 6.

Написать программу, которая проверяет, представляют ли элементы массива арифметическую прогрессию. Если да, то вывести на экран шаг прогрессии, иначе – вывести FALSE.

Вариант 7.

Написать программу, которая выводит на экран TRUE, если все суммы симметричных элементов массива равны, иначе – FALSE.

Вариант 8.

Написать программу, которая выводит на экран «1», если в первой половине массива отрицательных чисел больше, чем во второй, «2», если в первой половине массива отрицательных чисел меньше, и «0», если в первой половине массива столько же отрицательных чисел, сколько и во второй.

Вариант 9.

Написать программу, которая выводит на экран TRUE, если положительные и отрицательные элементы в массиве чередуются строго друг за другом, по одному, иначе – FALSE.

Вариант 10.

Написать программу, которая выводит на экран количество элементов массива, превышающих среднее арифметическое всех элементов.