suite de lecture 4...

nb: d(H) is the maximum degree of any node d(h) E O(log(n))

decrease-key:

ightarrow if we don't violate the heap property done!

condition: no node is marked more than one if we mark a node twice cut it out \rightarrow move to the root list

repeat this as much as neccesary \rightarrow until you read the root list \rightarrow full ammortization potential function $\phi(H) = t(H) + 2m(h)$ i.e 2 marked nodes (not shown!) amortized cost of decrease key: O(1)

Delete:

→ decrease key and to smth smaller than min } O(log n) amortized
→ delete min }

ор	Binary Heap	Fip heap(Amortized)
make-heap	θ(1)	θ(1)
insert	θ(log n)	θ(1)
find-min	θ(1)	θ(1)
delete-min	θ(log n)	θ(log n)
union	θ(n)	θ(1)
decrease-key	θ(log n)	θ(1)
delete	θ(log n)	θ(log n)

nb: asymptotically Fib heap wins in pratice it depends Fib is more complex and constant is larger

B-Trees

→ Familiar with a binary search tree.

Fully balanced O(log n)

Binary tree property

→ easy to search

find $7 \rightarrow$ compare at each node

- \rightarrow found it
- → go down left/right branch

 \rightarrow if we construct one naively! : 1,2,3,4,5,6 unbalanced

 $\rightarrow O(N)$

self balancing binary search trees B-Trees

Guaranteed O(log n) cost for operation

insert

search

delete

→ basic idea we use

tableau + tree

keys are ordered $n_i < n_{i+1}$

to search: binary search to find the key inside a node

 \rightarrow find it

 \rightarrow don't \rightarrow recursive search the child where it would be

insert → hard operation!

B tree: choose a $t \ge 2$

each node will have at least there exist t-1 key

keys and at most

keys

ATT.

internal node have

- $\circ \geq t$ children,
- ≤ 2t children

(on example: root can have fewer but always has at least 1)

most have at least t as a branching function $O(\log t \ n)$ height

→ all lines have the same depth

notice: t = 2, # of keys: 1, 2 or 3 keys in a node

eg:

2-4 trees, 2-3-4 tree } same (nb: "2-3" tree → different)

Insert

Insert c

i.e if there is some room, just insert it while maintaining the key order What if the node is full?

split it now we have room to insert c

trick: ensure there is room in each node as we descend

- → recursively descend, making room, assuming that there's room in the parent node
- \rightarrow if a leaf:

insert it

 \rightarrow if not a leaf:

→ find which child it should go in suppose it is B

if root B is full → split it recursively descend

• insert: 1,2,3,4,5,6

• insert 4:

• insert 5:

• insert 6

exercise: $2,4,3,1,5,6 \rightarrow \text{similar tree} \rightarrow \text{same height}$

->nb: originally designed to help with efficient data I/O

Delete:

naïve delete → violate our B-tree properties idea: restructure the tree as we move down to the node being deleted ensure as we descend that we have at least 1 more key than the minimum re... (i.e ≥+keys)

Delete(k, x)

- 1. If k is in x, and x is a leaf node
 - i. delete k from x

2. If k is in x and x is an node

• If $|y| \ge t$, recursively delete k in x

- If $|z| \ge t$, symmetric if we do [?] child
- If neither y nor z has at least t keys I.e they both have t-1 keys

