VECTOR

Question: P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that, $ar\left(\triangle APB\right) = ar\left(\triangle BQC\right)$. **Figure:**

Figure 1

Solution:

From figure 1 , considering $\triangle BQC$ and parallelogram ABCD, having same base BC and, AD is parallel to BC.

$$\implies \triangle BQC = \frac{1}{2} \times arABCD. \tag{1}$$

Considering $\triangle APB$ and parallelogram ABCD, having same base AB and DC is parallel to AB.

$$\implies \triangle APB = \frac{1}{2} \times arABCD. \tag{2}$$

By comparing equation (1) and equation (2) we obtain that,

$$ar\left(\triangle APB\right) = ar\left(\triangle BQC\right).$$
 (3)

Hence proved.

Proof by the help of diagram: $(figure\ 1, table\ 1, table\ 2)$ Let the points \boldsymbol{Q} and \boldsymbol{P} divide AD and CD by $k_1:1$ and $k_2:1$ ratio respectively.

Input Parameters	Description	Value
A	Vertex(at origin)	0
a	Side of the parallelogram	AB (= DC = 6unit)
b	Side of the parallelogram	$AD \left(=BC = \sqrt{29}unit\right)$
θ	Angle of parallelogram	$\angle BAD \left(=\sin^{-1}\left(\frac{5}{\sqrt{29}}\right)\right)$
$k_1 : 1$	Ratio by which \boldsymbol{Q} divides AD	AQ:QD
$k_2:1$	Ratio by which \boldsymbol{P} divides DC	DP:PC

Table 1: Table of input parameters

Output Parameters	Description	Value
В	Vertex of parallelogram	$a\begin{pmatrix}1\\0\end{pmatrix}$
D	Vertex of parallelogram	$b \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$
C	Vertex of parallelogram	B+D
Q	Vertex of $\triangle BQC$	$\frac{k_1.\boldsymbol{D}+\boldsymbol{A}}{k_1+1}$
P	Vertex of $\triangle APB$	$\frac{k_2.C+D}{k_2+1}$

Table 2: Table of output parameters

For the
$$\triangle BQC$$
, the vertices of the triangle are $\boldsymbol{B} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$, $\boldsymbol{Q} = \begin{pmatrix} \frac{2k_1}{k_1+1} \\ \frac{5k_1}{k_1+1} \end{pmatrix}$, $\boldsymbol{C} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$

$$\binom{8}{5}$$

 $= \bar{1}5$ square units.

For the
$$\triangle APB$$
, the vertices of the triangle are $\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{8k_2+2}{k_2+1} \\ 5 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$

$$\implies \triangle APB = \begin{vmatrix} 1 & 1 & 1 \\ 0 & \frac{8k_2+2}{k_2+1} & 6 \\ 0 & 5 & 0 \end{vmatrix}$$

$$= \frac{1}{2} \times \left| 1 \left(\frac{8k_2+2}{k_2+1} . 0 - 6.5 \right) + 0 + 0 \right|$$

$$= \frac{1}{2} \times \left| -30 \right|$$
$$= \frac{1}{2} \times 30$$

$$=\frac{1}{2}\times 30$$

= 15 square units.

For parallelogram ABCD, the vertices are

For parallelogram
$$ABCD$$
, the vertices are
$$A = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, B = \begin{pmatrix} 6 \\ 0 \end{pmatrix}, C = \begin{pmatrix} 8 \\ 5 \end{pmatrix}, D = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$\implies arABCD = ab\sin\theta$$

$$=6\sqrt{29}\sin\left(\sin^{-1}\frac{5}{\sqrt{29}}\right)$$

$$=6\sqrt{29} \cdot \frac{5}{\sqrt{29}}$$

 $=6\sqrt{29} \frac{5}{\sqrt{29}}$ =30 square units.

Therefore, $arABCD = 2 \times ar\triangle APB = 2 \times ar\triangle BQC(proved)$.