A. Calculer le produit scalaire de deux vecteurs

Définition. Dans un repère <u>orthonormé</u>, si $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, alors on appelle **produit scalaire de** \vec{u} et \vec{v} et on note $\vec{u} \cdot \vec{v}$ le <u>nombre</u> défini par $\vec{u} \cdot \vec{v} = xx' + yy$

Exemple. Le produit scalaire de $\vec{u} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} -3 \\ -5 \end{pmatrix}$ est $\vec{u} \cdot \vec{v} = (2) \times (-3) + (3) \times (-5) = -21$

Attention le produit scalaire · n'est pas une multiplication. \vec{u} et \vec{v} sont des vecteurs et pas des nombres.

Exercice A1. Calculer les produits scalaires suivants :

a) Si
$$\vec{u}=\binom{3}{5}$$
 et $\vec{v}=\binom{2}{-5}$ alors $\vec{u}\cdot\vec{v}=$

b)
$$\binom{-2}{3} \cdot \binom{4}{-1} =$$

c)
$$\binom{0.5}{-4} \cdot \binom{-3}{-2.5} =$$

d)
$$\begin{pmatrix} -5 \\ -8 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 0 \end{pmatrix} =$$

e)
$$\binom{7}{0} \cdot \binom{0}{5} =$$

В. Développer un produit scalaire

Propriété. Le produit scalaire est commutatif.

$$\vec{u}\cdot\vec{v}=\vec{v}\cdot\vec{u}$$

Example
$$\binom{-4}{\cdot}$$
, $\binom{2,5}{\cdot}$ = $\binom{-4}{\cdot}$ (2.5) + $\binom{3}{\cdot}$ (-1) = -1

Exemple.
$$\binom{-4}{3} \cdot \binom{2,5}{-1} = (-4)(2,5) + (3)(-1) = -13$$
 $\binom{2,5}{-1} \cdot \binom{-4}{3} = (2,5)(-4) + (-1)(3) = -13$

Propriété. Le produit scalaire · est distributif sur +.

$$(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{b}$$

$$(\vec{a} + \vec{b}) \cdot (\vec{c} + \vec{d}) = \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{d} + \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{d}$$

Exemple.
$$\left(\binom{1}{0} + \binom{3}{-2} \right) \cdot \binom{2}{3} = \binom{1}{0} \cdot \binom{2}{3} + \binom{3}{-2} \cdot \binom{2}{3} = 2 + 0 + 6 - 6 = 2$$

Propriété. Dans un produit scalaire, les constantes peuvent être sorties devant

$$\vec{u} \cdot (k\vec{v}) = (k\vec{u}) \cdot \vec{v} = k(\vec{u} \cdot \vec{v})$$

Exemple.
$$\binom{5}{-1} \cdot 5 \binom{3}{-2} = 5 \left(\binom{5}{-1} \cdot \binom{3}{-2} \right) = 5 \times \left((5)(3) + (-1)(-2) \right) = 5(17) = 85$$

Développer les produits scalaires suivants :

1)
$$(\vec{u} + \vec{v}) \cdot 2\vec{w} =$$

$$2) \left(\vec{a} + 3\vec{b} \right) \cdot \left(\vec{c} + \vec{d} \right) =$$

3)
$$(\vec{e} - \vec{f}) \cdot (2\vec{e} + \vec{f}) =$$

4)
$$(\vec{u} + \vec{v} + \vec{w}) \cdot (-2\vec{v}) =$$

C. Calculer la norme d'un vecteur

Rappel. La **norme** (ou longueur) d'un vecteur $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$, est définie par $||\vec{u}|| = \sqrt{x^2 + y^2}$

Exemple. Soit $\vec{u} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$, alors $||\vec{u}|| = \sqrt{(3)^2 + (-4)^2} = 5$. \vec{u} est de longueur 5.

Exercice C1. Calculer la norme de chacun des vecteurs suivants :

$$\vec{a} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

$$\vec{b} = \begin{pmatrix} 8 \\ -6 \end{pmatrix}$$

$$\vec{c} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\vec{d} = \begin{pmatrix} -3 \\ -2 \end{pmatrix}$$

Exercice C2. Calculer:

$$A = \left\| {8 \choose 6} \right\| =$$

$$B = \left\| {8 \choose 6} \right\|^2 =$$

$$C = \binom{8}{6} + \binom{8}{6} =$$

$$D = \binom{8}{6} \cdot \binom{8}{6} =$$

$$E = 6 \binom{8}{6} =$$

$$F = \sqrt{\binom{8}{6} \cdot \binom{8}{6}} =$$

D. Développer un carré scalaire ou le carré d'une norme

Propriété. Le carré scalaire est égal au carré de la norme.

$$\vec{u}^2 = \vec{u} \cdot \vec{u} = x^2 + y^2 = ||\vec{u}||^2$$

Exemple. $\binom{4}{-3} \cdot \binom{4}{-3} = (4)(4) + (-3)(-3) = 25$. Aussi $\left\| \binom{4}{-3} \right\|^2 = \sqrt{(4)^2 + (-3)^2}^2 = (4)^2 + (-3)^2 = 25$

Attention: $\|\vec{u}\|$ est un nombre donc $\|\vec{u}\|^2 = \|\vec{u}\| \times \|\vec{u}\|$. Mais dans $\vec{u} \cdot \vec{u}$ il s'agit du produit scalaire et pas de \times .

Corollaire. La norme d'un vecteur est la racine de son carré scalaire.

$$\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{x^2 + y^2}$$

Exercice D1. Soit $\vec{u} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$. Calculer $\vec{u} + \vec{v} =$

$$\|\vec{u}\|^2 =$$

$$\|\vec{v}\|^2 =$$

$$\vec{u} \cdot \vec{v} =$$

$$\|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\vec{u} \cdot \vec{v} =$$

$$\|\vec{u} + \vec{v}\|^2 =$$

Propriétés.

- 1^{ère} identité remarquable vectorielle. $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\vec{u} \cdot \vec{v}$
- 2ème identité remarquable vectorielle. $\|\vec{u} \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 2\vec{u} \cdot \vec{v}$
- 3^{ème} identité remarquable vectorielle. $(\vec{u} + \vec{v}) \cdot (\vec{u} \vec{v}) = ||\vec{u}||^2 ||\vec{v}||^2$

Démonstration

$$\|\vec{u} + \vec{v}\|^2 = \|\binom{x}{y} + \binom{x'}{y'}\|^2 = \|\binom{x + x'}{y + y'}\|^2 =$$

$$\|\vec{u} - \vec{v}\|^2 = \|\binom{x}{y} - \binom{x'}{y'}\|^2 = \|\binom{x - x'}{y - y'}\|^2 =$$

$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) =$$

E. Déterminer l'ensemble des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = k$

Méthode. On note I le milieu du segment [AB].

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = (\overrightarrow{MI} + \overrightarrow{IA}) \cdot (\overrightarrow{MI} + \overrightarrow{IB}) = (\overrightarrow{MI} + \overrightarrow{IA}) \cdot (\overrightarrow{MI} - \overrightarrow{IA}) = \overrightarrow{MI}^2 - \overrightarrow{IA}^2 = MI^2 - IA^2$$

Donc
$$\overrightarrow{MA} \cdot \overrightarrow{MB} = k \Leftrightarrow MI^2 - IA^2 = k \Leftrightarrow MI^2 = k + IA^2$$

- Si $k + IA^2 > 0$ alors $\overrightarrow{MA} \cdot \overrightarrow{MB} = k \Leftrightarrow MI = \sqrt{k + IA^2}$. E est le cercle de centre I de rayon $\sqrt{k + IA^2}$
- Si $k + IA^2 = 0$ alors $\overrightarrow{MA} \cdot \overrightarrow{MB} = k \Leftrightarrow MI^2 = 0 \Leftrightarrow MI = 0$. E est l'ensemble constitué uniquement du point I.
- Si $k + IA^2 < 0$ alors $\overrightarrow{MA} \cdot \overrightarrow{MB} = k$ n'a pas de solutions. L'ensemble E est vide.

Exercice E1. Soit A et B deux points du plan distants de 10 cm.

- 1) Déterminer l'ensemble \mathcal{E} des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 5$
- 2) Déterminer l'ensemble \mathcal{F} des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = -25$
- 3) Déterminer l'ensemble G des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = -60$

F. Déterminer si deux vecteurs sont colinéaires par calcul

Propriété. Dans un repère quelconque,

deux vecteurs sont colinéaires si et seulement si leur déterminant est nul.

$$\vec{u} \parallel \vec{v} \iff \det(\vec{u}; \vec{v}) = 0$$

Exercice F1. Déterminer si les vecteurs sont colinéaires ou non :

1)
$$\vec{u} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

2)
$$\vec{a} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$$
 et $\vec{b} = \begin{pmatrix} -2 \\ 10 \end{pmatrix}$

3)
$$\vec{c} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$
 et $\vec{d} = \begin{pmatrix} -6 \\ -10 \end{pmatrix}$

G. Déterminer si deux vecteurs sont orthogonaux par calcul

Propriété. Dans un repère orthonormé,

deux vecteurs sont orthogonaux si et seulement si leur produit scalaire est nul.

$$\vec{u} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = 0$$

 \vec{u} et \vec{v} orthogonaux $\Leftrightarrow \|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 \Leftrightarrow \vec{u} \cdot \vec{v} = 0 \Leftrightarrow xx' + yy' = 0$.

Exemple. Montrer que $\vec{u} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} -3 \\ -2 \end{pmatrix}$ sont orthogonaux.

 $\vec{u} \cdot \vec{v} = (2) \times (-3) + (-3) \times (-2) = -6 + 6 = 0$ donc les vecteurs \vec{u} et \vec{v} sont orthogonaux.

1)
$$\vec{u} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} -10 \\ -6 \end{pmatrix}$

2)
$$\vec{a} = \begin{pmatrix} 4 \\ 10 \end{pmatrix}$$
 et $\vec{b} = \begin{pmatrix} -5 \\ 2 \end{pmatrix}$

3)
$$\vec{c} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$
 et $\vec{d} = \begin{pmatrix} -6 \\ -10 \end{pmatrix}$

H. Déterminer un vecteur directeur d'une droite

Définition. Un vecteur directeur d'une droite est un vecteur aligné avec la droite dans un sens ou l'autre.

Remarque. \vec{u} est un **vecteur directeur de la droite** (AB) si \vec{u} est colinéaire à AB.

Propriété. Un vecteur directeur d'une droite d'équation cartésienne
$$ax + by + c = 0$$
 est $\vec{u} = \begin{pmatrix} -b \\ a \end{pmatrix}$.

Exemple. Donner un vecteur directeur de la droite $3\nu - 6x - 12 = 0$.

Propriété. Un vecteur directeur d'une droite passant par deux points
$$A$$
 et B est $\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$

Propriété. Un vecteur directeur d'une droite passant par deux points \overrightarrow{A} et \overrightarrow{B} est $\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$ Exemple. Donner un vecteur directeur de la droite passant par les points $S = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ et $T = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$

I. Déterminer un vecteur normal à une droite

Définition. Un vecteur normal à une droite est un vecteur de direction perpendiculaire à la droite.

Remarque. \vec{n} est un **vecteur normal à la droite** (AB) si \vec{n} est orthogonal à \overrightarrow{AB} .

Propriété. <u>Un</u> vecteur normal à une droite d'équation cartésienne ax + by + c = 0 est $\vec{n} = \binom{a}{b}$.

Exemple. Donner un vecteur normal à la droite 3y - 6x - 12 = 0.

Propriété. Un vecteur normal à une droite passant par deux points A et B est $\vec{n} = \begin{pmatrix} -(y_B - y_A) \\ x_B - x_A \end{pmatrix}$

Plus généralement un vecteur normal à un vecteur $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ est $\vec{n} = \begin{pmatrix} -y \\ x \end{pmatrix}$

Exemple. Donner un vecteur normal à la droite passant par les points $S = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ et $T = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$

J. Déterminer si deux droites sont parallèles par calcul

Méthodes. On peut utiliser au choix l'une des méthodes suivantes :

- On détermine un vecteur directeur de chaque droite et on compare leur déterminant à 0.
- On détermine un vecteur normal à chaque droite et on compare leur déterminant à 0.
- On détermine un vecteur directeur de l'une, un vecteur normal à l'autre, et on compare leur produit scalaire à 0.

Déterminer si les droites sont parallèles :

Soit
$$A = (-2, 1), B = (3, 4), C = (2, 2), D = (5, 4)$$
. Les droites (AB) et (CD) sont-elles parallèles ?

Soit E = (0, 3), F = (2, 2), G = (1, -2), H = (-10, 3, 5). Les droites (EF) et (GH) sont-elles parallèles?

K. <u>Déterminer si deux droites sont perpendiculaires par calcul</u>

Méthodes. On peut utiliser au choix l'une des méthodes suivantes :

- On détermine un vecteur directeur de chaque droite et on compare leur produit scalaire à 0.
- On détermine un vecteur normal à chaque droite et on compare leur produit scalaire à 0.
- On détermine un vecteur directeur de l'une, un vecteur normal à l'autre, et on compare leur déterminant à 0.

Exercice K1. Déterminer si les droites sont perpendiculaires :

Soit A = (-3; 3), B = (3; 0), C = (-3; -2), D = (1; 6). Les droites (AB) et (CD) sont-elles perpendiculaires?

Soit E = (1; 5), F = (-2; 0), G = (3; -10), H = (-1; 5). Les droites (EF) et (GH) sont-elles perpendiculaires?

L. <u>Calculer le projeté orthogonal d'un point sur une droite</u>

Définition. Le projeté orthogonal d'un point M sur une droite d est le point $H \in d$ tel que $(MH) \perp d$.

Si on connait deux points A et B de la droite d, c'est le point H tel que $\begin{cases} \det(\overrightarrow{AH}; \overrightarrow{AB}) = 0 \\ \overrightarrow{MH} \cdot \overrightarrow{AB} = 0 \end{cases}$

Si on connait l'équation ax + by + c = 0 de d, c'est le point H t.q. $\begin{cases} ax_H + by_H + c = 0 \\ \overrightarrow{MH} \cdot {by_H + c = 0 \end{cases}$ $\left(\text{ou } \det \left(\overrightarrow{MH}; {a \choose b} \right) = 0 \right)$

Exemple. Déterminer le projeté orthogonal H du point M=(7;-1) sur la droite (AB) où A=(1;1) et B=(3;2).

$$\overrightarrow{AB} = \begin{pmatrix} (3) - (1) \\ (2) - (1) \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\
\det(\overrightarrow{AH}; \overrightarrow{AB}) = \begin{vmatrix} x_H - 1 & 2 \\ y_H - 1 & 1 \end{vmatrix} = (x_H - 1)(1) - (y_H - 1)(2) \\
\det(\overrightarrow{AH}; \overrightarrow{AB}) = x_H - 1 - 2y_H + 2 = x_H - 2y_H + 1 \\
\overrightarrow{MH} \cdot \overrightarrow{AB} = \begin{pmatrix} x_H - (7) \\ y_H - (-1) \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} = (x_H - 7)(2) + (y_H + 1)(1) \\
\overrightarrow{MH} \cdot \overrightarrow{AB} = 2x_H - 14 + y_H + 1 = 2x_H + y_H - 13 \\
\text{On résout} \begin{cases} x - 2y + 1 = 0 \\ 2x + y - 13 = 0 \end{cases} \Leftrightarrow \cdots \Leftrightarrow \begin{cases} x = 5 \\ y = 3 \end{cases}$$

Exercice L1. Calculer les projetés orthogonaux suivants :

1) Soit A = (-2, -1), B = (6, 3), et C = (2, 6). Déterminer le projeté orthogonal B du point C sur la droite B