Computational Neuroscience Course

Dmitriy B., Georgy G., Vladislav M., Sofia K.

September 2020

1 Syllabus

Course contains 13 lectures, 1 seminar, 12 lecture quizes, 4 homeworks and a final exam.

- 1. LECTURE 1. (Georgy G.) Intro
 - What is neuroscience and what to compute here
 - Scope of interest
 - What will be in this course
- 2. LECTURE 2. (Sofia K.) Biological perspective
 - Functions that NS performs, what is different about NS as compared to other organismal systems
 - Which properties of a neuron allow it to perform its functions
 - Glial cells and their functions
 - Interaction between neural cells and between neural and glial cells
 - Basic principles of neural tissue functioning and development
 - Integration with other systems of an organism
 - How NS evolved (evolutionary perspective)
 - Curious cases from other (non-model) organisms, self-awareness and emotions in non-human animals, potential implications
 - What we still don't know (questions like: what makes consciousness? what was its evolutionary benefit?(or is it some by-product?), some others)
- 3. LECTURE 3. (Dmitriy B.) Neuron physiology and biophysics
 - Neuron morphological and functional structure
 - How does neuron transmit signals
 - Currents and potentials
 - Nernst equation
 - Osmotic effects
 - Ion gradients
- 4. LECTURE 4. (Dmitriy B.) Neuron models
 - Single-Compartment models
 - Integrate-and-Fire models
 - Voltage-Dependent conductances
 - The Hodgkin-Huxley model
 - Modeling channels
 - Synaptic conductances
 - Synapses on Integrate-and-Fire neurons

HOMEWORK 1: Hodgkin-Huxley model

- 5. LECTURE 5. (Vladislav M.) EEG: how to work with it
 - What is LFP and EEG in particular
 - Imaging data from bottom to top (Spikes LFP ECoG EEG/MEG)

- The origin of LFP and EEG
- What can we get from this data
- Pros and cons of different imaging techniques
- Methods to work with EEG
- Applications (Neuralink, large scale models)

HOMEWORK 2: EEG practice

- 6. LECTURE 6. (Dmitriy B.) Conductances and morphology models
 - Levels of neuron modeling
 - Conductance-based models
 - The cable equation
 - Multi-compartment models
- 7. LECTURE 7. (Georgy G.). Neurotransmitters and receptors
 - Ionotropic receptors
 - Vesicles and neurotransmitter release
 - Role of Ca²⁺ ions in neurotransmission
 - Synaptic space
 - Extrasynaptic signaling/volume transmission
 - MAO and its role
 - Reuptake
 - Retrograde signaling

HOMEWORK 3: Chemical synapse model

- 8. SEMINAR 1. HW1-3
- 9. LECTURE 8. (Dmitriy B.) Neural encoding
 - Stimulus, response, spike train
 - Spike train statistics
 - The neural code
- 10. LECTURE 9. (Dmitriy B.) Plastisity and learning
 - Hebbian theory
 - Biological mechanisms
 - Spike-timing dependent plasticity
 - Synaptic homeostasis
 - Learning
- 11. LECTURE 10. (Vladislav M.) Spiking networks: biology and application
 - Networks
 - Biological structures
 - Firing-rate network models
 - Spiking network (SNN) models
 - SNN applications

HOMEWORK 4: Spiking network models

- 12. LECTURE 11. (Georgy G.) Regulation of neuron functioning
 - Metabotropic receptor in detail
 - Biochemical cascade "from membrane to nucleus"
 - Neuroplasticity and its role in higher neural functions
 - Overview of monoamine systems

- Endogenous and exogenous ligands
- 13. LECTURE 12. (Sofia K.) Neural tissue development
 - Fundamental aspects of developmental biology
 - Embryogenesis
 - Neurogenesis
 - Axon guidance and synaptogenesis
- 14. LECTURE 13. (Vladislav M.) ML and computational neuroscience
 - ML, AI and neuroscience.
 - NS inspirations for ML
 - ML applications in neuroscience
- 15. Final exam/Final Q&A

2 Assessment criteria

In this course students can get a maximum of 10 points in total. Each task is graded based on a scale from 1 to 10, where 1-3 is unsatisfactory, 4-5 is satisfactory, 6-7 is good, 8-10 is excellent.

Lecture quizzes, home works and the final quiz do not block each other. That means a student can complete some quizzes, some home works and the final exam to get a passing grade (how many of each exactly - calculate yourself)

Task	Coefficient	Quantity	Total
Lecture quiz	0.01	12	0.12
Homework 1: Hodgkin-Huxley Model	0.1	1	0.1
Homework 2: EEG practice	0.1	1	0.1
Homework 3: Chemical synapse model	0.1	1	0.1
Homework 4: Spiking network model	0.2	1	0.2
Final quiz (mandatory)	0.38	1	0.38
			1.0