Progressive Hedging Aplicado ao Problema de Planejamento da Expansão de Equipamentos de Suporte de Potência Reativa

30 de Janeiro de 2017

Aluno: Igor Henrique Felix de Carvalho

Orientador: Prof. Karen Caino de Oliveira Salim

Co-orientador: Ricardo Cunha Perez

Conteúdo da Apresentação

- Introdução do Problema
- Formulação Matemática
- Progressive Hedging
- Análise dos Resultados
- Considerações Finais

Conteúdo da Apresentação

- Introdução do Problema
- Formulação Matemática
- Progressive Hedging
- Análise dos Resultados
- Considerações Finais

Origem:

Necessidade de novos investimentos com crescimento de demanda por energia...

Fornecimento adequado de Potência Reativa

Alocação adequada de Equipamentos Shunt

Trata-se de um Problema Não Linear e Não Convexo...

Aplicação de um Método de Decomposição Horizontal

Problema Estocástico

Aplicação de um Método de Decomposição Horizontal

X → Referência

Aplicação de um Método de Decomposição Horizontal

X → Referência

Objetivo:

Redução de Custo do Plano Final de Investimento (Respeitando os Limites Operativos da Rede)

Variável em análise

Candidatos

Cenários
$$\begin{bmatrix} inv_1^1(1) & inv_1^1(2) \\ inv_1^2(1) & inv_1^2(2) \end{bmatrix}$$

Problema Pré-PH:

Min
$$c_0^1 x_0^1$$

$$Min c_0^2 x_0^2$$

$$s. a A_0^1 x_0^1 \ge b_0^1$$

$$s. a A_0^2 x_0^2 \ge b_0^2$$

Soluções Ótimas: x_0^{1*} e x_0^{2*}

$$\overline{x}_0 = \frac{x_0^{1*} + x_0^{2*}}{2}$$

Aplicação do PH:

Min
$$c_1^1 x_1^1 + \rho_0 (x_1^1 - \overline{x}_0)^2$$

$$s. a A_1^1 x_1^1 \ge b_1^1$$

Min
$$c_1^2 x_1^2 + \rho_0 (x_1^2 - \overline{x}_0)^2$$

$$s. a A_1^2 x_1^2 \ge b_1^2$$

Novas Soluções Ótimas: x_1^{1*} e x_1^{2*}

$$\overline{x}_1 = \frac{x_1^{1*} + x_1^{2*}}{2}$$

e

Resumo do Processo Iterativo:

$$1^{\circ}$$
) $i = 0$

- 2º) Minimização do investimento (sem PH)
- 3º) Cálculo das médias e penalizações

$$4^{\circ}$$
) $i = i + 1$

- 5°) Minimização do investimento (com PH)
- 6º) Cálculo das médias e penalizações
- 7º) Analise de Convergência (se não convergir, volta para o passo 4)

Conteúdo da Apresentação

- > Introdução do Problema
- Formulação Matemática
- Progressive Hedging
- Análise dos Resultados
- Considerações Finais

Custo Mínimo de Investimento (Pré-PH):

$$Min \sum_{k \in \Gamma} (ci_{rk}qi_{rk} + ci_{ck}qi_{ck})$$

$$s. \ a \quad 0 \leq qi_{rk} \leq \overline{qi}_{rk} \qquad k \in \Gamma \qquad \begin{array}{c} \Gamma \qquad \text{Conjunto de Barras Candidatas} \\ ci_{rk}/ci_{ck} \qquad \text{Custo de Investimento} \\ 0 \leq qs_{rk} \leq qi_{rk} \qquad k \in \Gamma \qquad \\ qi_{rk}/qi_{ck} \qquad \text{Variável de Investimento} \\ 0 \leq qi_{ck} \leq \overline{qi}_{ck} \qquad k \in \Gamma \qquad qs_{rk}/qs_{ck} \qquad \text{Variável de Operação} \\ 0 \leq qs_{ck} \leq qi_{ck} \qquad k \in \Gamma \qquad \overline{qi_{rk}}/\overline{qi_{ck}} \qquad \text{Investimento Máximo} \\ \end{array}$$

Custo Mínimo de Investimento (PH):

 qi_{rk}^0/qi_{ck}^0

Investimento de Referência

Balanço de Potência Ativa:

$$P_{gk} - P_{lk} - \sum_{j \in \Omega_k} P_{kj} \left(v_k, v_j, \theta_k, \theta_j, t_{kj}, \varphi_{kj} \right) = 0$$

 $k \in N$

N Conjunto de barras

 Ω_k Conjunto de circuitos conectados a barra k

 P_{gk} Geração de potencia ativa na barra k

 P_{lk} Carga ativa na barra k

 P_{kj} Fluxo de potencia ativa no circuito (k,j)

Balanço de Potência Reativa:

$$Q_{gk} - Q_{lk} - \sum_{j \in \Omega_k} Q_{kj} (v_k, v_j, \theta_k, \theta_j, t_{kj}, \varphi_{kj}) + qs_{ck} - qs_{rk} = 0$$

 $k \in \Gamma$

Γ Conjunto de barras candidatas

 Ω_k Conjunto de circuitos conectados a barra k

 Q_{gk} Geração de potencia reativa na barra k

 Q_{lk} Carga reativa na barra k

 Q_{ki} Fluxo de potencia reativa no circuito (k,j)

 qs_{rk} / qs_{ck} Complemento de potência reativa na barra k

Fluxo de Potência Ativa:

$$P_{kj}\left(v_k, v_j, \theta_k, \theta_j, t_{kj}, \varphi_{kj}\right) = \left(\frac{v_k}{t_{kj}}\right)^2 g_{kj} - \left(\frac{v_k}{t_{kj}}\right) v_j \left[g_{kj} \cos(\theta_k - \theta_j + \varphi_{kj}) + b_{kj} \sin(\theta_k - \theta_j + \varphi_{kj})\right]$$

Fluxo de Potência Reativa:

$$Q_{kj}\left(v_k, v_j, \theta_k, \theta_j, t_{kj}, \varphi_{kj}\right) = \left(\frac{v_k}{t_{kj}}\right)^2 \left(b_{kj} + bs_{kj}\right) + \left(\frac{v_k}{t_{kj}}\right) v_j \left[b_{kj} \cos\left(\theta_k - \theta_j + \varphi_{kj}\right) - g_{kj} \sin\left(\theta_k - \theta_j + \varphi_{kj}\right)\right]$$

$v_{k/j}$	Módulo de tensão na barra <i>k/j</i>	

$\theta_{k/j}$ Ángulo de tensão na barra k/j
--

$$\varphi_{kj}$$
 Ángulo de desfasamento no circuito (k,j)

$$t_{kj}$$
 Tap do transformador do circuito (k,j)

$$b_{ki}$$
 Susceptancia serie do circuito (k,j)

$$g_{ki}$$
 Conductancia serie do circuito (k,j)

$$bs_{ki}$$
 Susceptancia shunt do circuito (k,j)

Fluxo de Potência Ativa:

$$P_{kj}(v_k, v_j, \theta_k, \theta_j) = v_k^2 g_{kj} - v_k v_j [g_{kj} \cos(\theta_k - \theta_j) + b_{kj} \sin(\theta_k - \theta_j)]$$

Fluxo de Potência Reativa:

$$Q_{kj}(v_k, v_j, \theta_k, \theta_j) = (v_k)^2 (b_{kj} + bs_{kj}) + v_k v_j [b_{kj} \cos(\theta_k - \theta_j) - g_{kj} \sin(\theta_k - \theta_j)]$$

$v_{k/j}$	Módulo de tensão na barra k/j	
$ heta_{k/j}$	Ángulo de tensão na barra <i>k/j</i>	
$arphi_{kj}$	Ángulo de desfasamento no circuito (k,j)	
t_{kj}	Tap do transformador do circuito (k,j)	
b_{kj}	Susceptancia serie do circuito (k,j)	
g_{kj}	Conductancia serie do circuito (k,j)	
bs_{ki}	Susceptancia shunt do circuito (k,j)	

Conteúdo da Apresentação

- > Introdução do Problema
- Formulação Matemática
- Progressive Hedging
- Análise dos Resultados
- Considerações Finais

Atualização da Penalização:

$$\operatorname{Min} c_{i}^{s} x_{i}^{s} + \rho_{i} (x_{i}^{s} - \overline{x}_{i-1})^{2}$$

Qualidade de Solução vs. Esforço Computacional

Penalização Fixa vs. Penalização Variável

Qualidade de Solução vs. Esforço Computacional:

Qualidade de Solução vs. Esforço Computacional:

Fixa:

Penalização 1:
$$\rho(k) = c(k)$$

Penalização 2:
$$\rho(k)$$

$$= c(k)^2$$

Penalização 3:
$$\rho(k)$$

$$= c(k)^3$$

Variável:

Penalização 4:
$$\rho(k) = \frac{c(k)}{max((\sum_{s \in S} \Pr(s)|x_s - \bar{x}|), 1)}$$

Penalização 5:
$$\rho(k) = \frac{c(k)^2}{\max((\sum_{s \in S} \Pr(s)|x_s - \bar{x}|), 1)}$$

Penalização 6:
$$\rho(k) = \frac{c(k)^3}{\max((\sum_{s \in S} \Pr(s)|x_s - \bar{x}|), 1)}$$

Pr(s): Vetor de Probabilidade de Ocorrência de Cada Cenário de Despacho

Critérios de Parada:

Desvio médio normalizado (td):

$$td(k) = \frac{\left(\sum_{k,S:\overline{x}(k)>0} \frac{|x_S(k)-\overline{x}(k)|}{\overline{x}(k)}\right)}{|S|}$$

- Aumento ou Repetição do Montante Total Investido
- Não Convergência do Modelo Matemático
- Número Máximo de Iterações Excedido

Heurísticas de Fixação de Decisões:

- Introdução do Lag Parameter (μ)
- Qualidade de Solução vs. Esforço Computacional

Variável em análise

Heurísticas Elaboradas Neste Trabalho (1/3):

Desvio médio normalizado (td) referente a uma decisão "x" ser menor que um gap previamente definido:

$$td_i(K) \leq Gap_{td}$$
 [%]

$$[td_i(1) \ td_i(2) \ td_i(3) \dots \ td_i(K-2) \ td_i(K-1) \ td_i(K)]$$

Heurísticas Elaboradas Neste Trabalho (2/3):

 $(\overline{x}_i - \overline{x}_{i-1}) \le Gap_{medias} [MVAr]$ & Média das Diferenças $\le Gap_{mediadif_cenario} [MVAr]$

$$|[\overline{x}_i(1) \quad \dots \quad \overline{x}_i(K)] - [\overline{x}_{i-1}(1) \quad \dots \quad \overline{x}_{i-1}(K)]|$$

$$\left| \begin{bmatrix} inv_1^1(1) & inv_1^1(2) \\ inv_1^2(1) & inv_1^2(2) \end{bmatrix} - \begin{bmatrix} inv_0^1(1) & inv_0^1(2) \\ inv_0^2(1) & inv_0^2(2) \end{bmatrix} \right| = \begin{bmatrix} dif^1(1) & dif^1(2) \\ dif^2(1) & dif^2(2) \end{bmatrix}$$

$$\begin{bmatrix} dif^{1}(1) & dif^{1}(2) \\ dif^{2}(1) & dif^{2}(2) \end{bmatrix} \rightarrow \begin{bmatrix} med_dif(1) & med_dif(2) \end{bmatrix}$$

Heurísticas Elaboradas Neste Trabalho (3/3):

Diferença dentre iterações do investimento no candidato k em cada cenário

$$\leq Gap_{dif_em_cada_cenario}$$
 [%]

$$\begin{bmatrix} \frac{inv_1^1(1) - inv_0^1(1)}{inv_0^1(1)} & \frac{inv_1^1(2) - inv_0^1(2)}{inv_0^1(2)} \\ \frac{inv_1^2(1) - inv_0^2(1)}{inv_0^2(1)} & \frac{inv_1^2(2) - inv_0^2(2)}{inv_0^2(2)} \end{bmatrix}$$

Obs: heurísticas de fixação só podem ser aplicadas para um determinado candidato, caso hajam investimentos maiores que zero em p% dos s cenários.

Conteúdo da Apresentação

- > Introdução do Problema
- Formulação Matemática
- Progressive Hedging
- Análise dos Resultados
- Considerações Finais

Parâmetros Adotados:

- $Gap_{td} = 5\%$
- $Gap_{medias} = 0.5 MVAr$
- $Gap_{mediadif_cenario} = 0.5 \text{ MVAr}$
- $Gap_{dif_em_cada_cenario} = 5\%$
- $Gap_{montante} \ge 0\%$
- p = 50%

	Iteração 0	Iteração 1	Iteração 50
Barra 01	0	0	0
Barra 02	0	0	0
Barra 03	368.98	363.40	341.45
Barra 04	0	0	1.28
Barra 05	0	0	0.86
Barra 06	0	0.38	2.91
Barra 07	9.66	10.29	3.65
Barra 08	0.00	0.59	2.78
Barra 09	430.84	423.04	397.65
Barra 10	170.51	111.39	91.60
Barra 11	345.59	220.40	168.43
Barra 12	0	0.21	2.14
Barra 13	0	0.60	2.15
Barra 14	68.92	78.15	116.01
Barra 15	0	1.64	3.15
Barra 16	0	1.72	2.65
Barra 17	0	1.59	2.86
Barra 18	0	1.58	2.94
Barra 19	0	0.79	1.51
Barra 20	0	0	0
Barra 21	0	1.48	2.86
Barra 22	0	0	0
Barra 23	0	0	0
Barra 24	235.48	223.80	217.62
TOTAL	1630	1441	1365

	Iteração 0	Iteração 1	Iteração 50
Montante [MVAR]	1,629.98	1,441.05	1,364.48
Redução [%]	-	11.59%	16.29%
Barras Investidas	6	17	19
Barras Investidas [%]	25.00%	70.83%	79.17%

Conteúdo da Apresentação

- > Introdução do Problema
- Formulação Matemática
- Progressive Hedging
- Análise dos Resultados
- Considerações Finais

Considerações Finais

Metodologia Proposta Reduziu o Montante Total de Investimento em aproximadamente 16%.

Penalização Variável se demonstrou melhor que a Penalização Fixa.

Heurísticas de Fixação de Decisões se mostrou uma ferramenta útil para redução de esforço computacional.

Considerações Finais

TRABALHOS FUTUROS:

Aplicação do método em um sistema de grande porte.

 Novas heurísticas para tornar as decisões de investimento mais aderentes à realidade.

Aplicação do método em um problema multi-estágio.

OBRIGADO!