Практическая работа № 2.7

Алгоритмические стратегии. Разработка и программная реализация задач с применением метода сокращения числа переборов

Задание

- 1. Разработать алгоритм решения задачи с применением метода, указанного в варианте и реализовать программу.
- 2. Оценить количество переборов при решении задачи стратегией «в лоб» грубой силы. Сравнить с числом переборов при применении метода.
- 3. Оформить отчет в соответствии с требованиями документирования разработки ПО: Постановка задачи, Описание алгоритмов и подхода к решению, Код, результаты тестирования, Вывод.

№	Задача	Метод
1	Посчитать число последовательностей нулей и единиц длины n , в которых не встречаются две идущие подряд единицы.	Динамическое программирование
2	Дана последовательность целых чисел. Необходимо найти ее самую длинную строго возрастающую подпоследовательность.	Динамическое программирование
3	Дана строка из заглавных букв латинского алфавита. Найти длину наибольшего палиндрома, который можно получить вычеркиванием некоторых букв из данной строки.	Динамическое программирование
4	Имеется рюкзак с ограниченной вместимостью по массе; также имеется набор вещей с определенным весом и ценностью. Необходимо подобрать такой набор вещей, чтобы он помещался в рюкзаке и имел максимальную ценность (стоимость).	Динамическое программирова- ние
5	Дано прямоугольное поле размером n^*m клеток. Можно совершать шаги длиной в одну клетку вправо или вниз. Посчитать, сколькими способами можно попасть из левой верхней клетки в правую нижнюю.	Динамическое программирование

6	Дано прямоугольное поле размером $n*m$ клеток. Можно совершать шаги длиной в одну клетку вправо, вниз или по диагонали вправо-вниз. В каждой клетке записано некоторое натуральное число. Необходимо попасть из верхней левой клетки в правую нижнюю. Вес маршрута — это сумма чисел всех посещенных клеток. Найти маршрут с минимальным весом.	Динамическое программирование
7	Вычисление значения определенного интеграла с применением численных методов. «Вычислить значение определенного интеграла с заданной точностью определенным методом трапеции. Реализовать следующие подзадачи в виде функций: - вычисление значения подинтегральной функции в заданной точке х; - вычисление значения интеграла установленным методом на заданном отрезке интегрирования при п разбиениях; - вычисление интеграла установленным методом с заданной точностью.	Динамическое программирование
8	Черепашке нужно попасть из пункта А в пункт В. Поле движения разбито на квадраты. Известно время движения вверх и вправо в каждой клетке (улицы). На каждом углу она может поворачивать только на север или только на восток. Найти минимальное время, за которое черепашка может попасть из А в В.	Динамическое программирование
9	Треугольник имеет вид, представленный на рисунке. Напишите программу, которая вычисляет наибольшую сумму чисел, расположенных на пути от верхней точки треугольника до его основания.	Динамическое программирование
10	Из листа клетчатой бумаги вырезали фигуру точно по границам клеток. Разработать программу вычисления площади вырезанной фигуры.	метод ветвей и границ

11	Разработать программу расстановки на 64-клеточной шахматной доске 8 ферзей так, чтобы ни одиниз них не находился под боем другого».	метод ветвей и границ
12	Разработать программу поиска и вывода всех гамильтоновых циклов в произвольном графе.	метод ветвей и границ
13	Пронумеровать позиции в матрице размером 5*5 следующим образом: если номер і (1 ≤ і ≤ 25) соответствует позиции (x,y), то номер і+1 может соответствовать позиции с координатами (z,w), вычисляемыми по одному из следующих правил: 1) (z,w)=(x±3,y) 2) (z,w)=(x,y±3) 3) (z,w)=(x±2,y±2) 1) Написать программу, которая последовательно нумерует позиции матрицы при заданных координатах позиции, в которой содержится номер 1. 2) Вычислить число всех возможных расстановок номеров для всех начальных позиций, расположенных под главной диагональю.	метод ветвей и границ
14	Замок имеет прямоугольную форму и разделен на М*N клеток (М<=50; N>=50). Каждая клетка может иметь от 0 до 4 стен, отделяющих комнаты. Определить: - количество комнат в замке; - площадь наибольшей комнаты; - какую стену следует удалить, чтобы получить комнату наибольшей площади. Пример плана замка: 1 2 3 4 5 6 7 1 2 3 4 5 6 7	метод ветвей и границ

15	Автозаправка. Вдоль кольцевой дороги располо-	метод ветвей
	жено М городов. В каждом городе есть автоза-	и границ
	правка. Известна стоимость Z[i] заправки горючим	
	в городе с номером і b стоимость C[i] проезда по до-	
	роге, соединяющей і-ый и (i+1)-й города и стои-	
	мость проезда между первым и М-ым городами. Го-	
	рода пронумерованы по часовой стрелке. Опреде-	
	лить для жителей каждого города тот город в кото-	
	ром им выгодно заправляться, и направление «по	
	часовой стрелке» или «против часовой стрелки»	
16	В массиве размером М*N, заполненном нулями и	метод ветвей
	единицами найти квадратный блок, состоящий из	и границ
	одних нулей.	
17	Монетная система некоторого государства	Жадный алго-
	состоит из монет достоинством	ритм
	$a_1 = 1 < a_2 < < a_n$. Требуется выдать сумму	
	наименьшим возможным количеством монет.	
18	Разработать процедуру оптимального способа рас-	Жадный алго-
	становки скобок в произведении последовательно-	ритм
	сти матриц, размеры которых равны	
	(5,10,3,12,5,50,6), чтобы количество скалярных	
	умножений стало минимальным (максимальным).	
19	Решить задачу о раскраске вершин графа. Приме-	Жадный алго-
	нить к задаче управления светофорами на сложном	ритм
	перекрестке. (См. Ахо А., Хопкрофт Д., Ульман	
	Дж. Структуры данных и алгоритмы).	
20	Задача о коммивояжере	метод ветвей
		и границ