Jegyzőkönyv

а

hangfrekvenciás mechanikai rezgések vizsgálatáról (3)

Készítette: Tüzes Dániel

Mérés ideje: 2008-11-19, szerda 14-18 óra

Jegyzőkönyv elkészülte: 2008-11-26

A mérés célja

A feladat két anyag Young modulusának és csillapítási tényezőjének meghatározása, melyet a minták sajátfrekvenciájából és rezonanciagörbéjéből számolunk ki. Feladat továbbá a rezgési modusok, a felharmonikusok vizsgálata.

Elvi alapok

A mérés során két mintát fogunk kényszerrezgésre késztetni, különböző rezgési modusok mellett. Ha ismerjük a minta geometriai adatait és ismerjük a tömegét, akkor az egyes rezgési modusokhoz tartozó frekvenciákból kiszámítható a Young modulus: $\omega_i = \frac{k_i^2}{I^2} \sqrt{\frac{E\ I}{\rho\ a}}$, ahol ω_i az egyes rezgési

modusokhoz tartozó sajátfrekvencia, I a minta szabadon rezgő hossza, E a Young modulus, I a másodrendű felületi nyomaték, q a minta keresztmetszetének felülete, k_i pedig egy szorzótényező, melynek értékeit elméleti levezetés útján kaphatjuk meg. Ennek segítségével nemcsak a különböző rezgési modusokhoz tartozó sajátfrekvenciák mérésével határozhatjuk meg a Young modulust, hanem adott rezgési modus mellett hossz változtatásával kimérhetjük a sajátfrekvenciákat is, melyből szintén megadható Eértéke.

A rezgési amplitúdó függ a gerjesztető kényszertől, annak nagyságától és frekvenciájától is. A rezonancia görbe mérésénél a minta amplitúdó függését mérjük ki a gerjesztő erő frekvenciájának függvényében, mikor a gerjesztő frekvenciája közel esik az egyik sajátfrekvenciához. A rezonanciagörbe félérték szélességéből meghatározhatjuk a csillapítási tényezőt: $\kappa = \pi \Delta f$, ahol Δf a félérték szélesség.

A mérési módszer ismertetése

A mérés során használt egyik minta egy téglatest, a másik egy olyan alapjában téglatest szerű test, melynek vége vastagított, hogy a befogást megkönnyítse, és ezáltal tisztábbak rezgések. A mérési elrendezés ismertetéséhez tekintsük a jobbra levő ábrát! A befogó fej egy jól illeszkedő satupofa, mely satu egy nagy fémtányérra van rögzítve, mely fémtányér alátámasztása gondosan kivitelezett, hogy az asztal rezgései ne terjedjenek tovább a mintára.

A minták fémből voltak, így adott a lehetőség egy elektromágneses elveken nyugvó gerjesztőre, mely rezgésbe hozza a mintánkat. Mérésünk során a mágneses teret fogjuk változtatni a minta szabad végénél. Megfontolandó, hogy a mintát akkor is rezgésre tudjuk késztetni ezzel a módszerrel, ha az nem kellőképp mágnesezhető. Ennek tárgyalását a melléklet műben találjuk. Ugyanígy tudhatjuk, hogy ezzel az elrendezéssel egy rezgési modust kétszer állíthatunk elő, egyik esetben, mikor a generátor frekvenciája megegyezik a rezgési modushoz tartozó sajátfrekvenciával, másik esetben mikor a generátor frekvenciája annak fele.

A kitérést a minta befogáshoz közeli részén vizsgáljuk, hogy a modustól függetlenül mindig tapasztaljunk kitérést. Ezt a szempontot a rezgő téglatest befogástól távolabbi vége is teljesíti,

azonban a befogáshoz közeli vég esetén a detektor kevésbé torzítja a rezgést, az általa kifejtett állandó erő kisebb mértékben módosítja a lemezre ható harmonikus gerjesztő erőt. A detektor egy bakelitlemez-lejátszóból kiszuperált olvasófej, melyben piezoelektromos kristály található. Ezt a mintára helyezve, a kristályon megjelenő feszültséget voltmérőre kötve mérhető a kitérések nagysága.

Első mérési feladatként állandó hossz mellett keressük meg a rezgési modusokhoz tartozó frekvenciáját a szélesített végű mintának. A generátor frekvenciáját változtatva keressünk lokális amplitúdó maximumokat. Minden talált gerjesztő frekvenciához – az elvi alapokban tárgyaltak szerint – tartozik egy másik is, melyek ugyanazt a rezgési modust állítják elő, és frekvenciáik aránya közel 2.

Második mérési feladatként az alap modus környezetében vizsgáljuk az amplitúdó frekvencia függését. Megkeresve az amplitúdó maximális értékét igyekszünk informatív amplitúdó-frekvencia párokat mérni, vagyis nagyjából azonos amplitúdó-változásonként jegyezzük le a frekvenciát.

Harmadik mérési feladatként a másik, nem bunkós végű minta esetében mértük az alap harmonikushoz tartozó frekvenciát változó hossz mellett. Azt, hogy valóban az alap harmonikust találtam meg azzal igazolom, hogy megmérem a következő rezgési modus frekvenciáját, és ha a két mért frekvencia aránya – az elvi alapokban található formulából következően – a releváns k szorzótényezők aránya, akkor valóban az alap modust mértem ki.

Mérési eredmények, hibaszámítás

• a minták geometriai adatai

A mérés során a 14-es réz és *A* jelzésű – feltehetően – alumínium mintákat vizsgáltam. A mérés során az alábbi eredményeket kaptam:

es	vastagság (<i>mm</i>)	3,01	3,02	3,05	3,05	3,06
14-es minta	szélesség (<i>mm</i>)	15,11	15,06	15,00	14,93	14,87
1 11	hosszúság (<i>mm</i>)	100,1	100,05	-	-	-
ā	vastagság (<i>mm</i>)	2,02	2,04	2,03	2,02	2,00
A	szélesség (<i>mm</i>)	15,05	15,06	15,05	15,05	15,06
l m	hosszúság (<i>mm</i>)	80,25	80,10	80,05	80,10	80,10

A tömegmérés során azt kaptam, hogy $m_{14}=40,1771g$ illetve $m_A=14,6436g$, valamint az A minta további adataiból $V_A=5,572cm^3$. Ezekből meghatározható a minták sűrűségei: $\rho_A=(2628\pm3)\,kg$ / m^3 és $\rho_{14}=(8822\pm9)\,kg$ / m^3 . A mérés hibáját a hossz mérés hibájából és az elméletileg fellépő tömegmérés hibájából számolhatjuk. A 14-es minta hosszúságmérésén kívül az adatokat a táblázatban csavarmikrométerrel mértem, ezáltal pontosságuk $\pm 0,005mm$, a 14-es minta hosszúságának hibája $\pm 0,025mm$.

adott hossz mellett különböző rezgési modusok frekvenciái

A szélesített végű *A* mintát rögzítve a pofák közé az alábbi gerjesztéseket kaptam:

rezgési módus	feles gerjesztés (<i>Hz</i>)	egészes gerjesztés (<i>Hz</i>)	várt érték* (<i>Hz</i>)	eltérés
alap modus	127,36	254,52	•	•
1. felharmonikus	798,92	1633,8	1595	2,4%
2. felharmonikus	2255,3	4521,5	4466	1,2%
3. felharmonikus	4394,7	8806,0	8836	0,3%

^{*:} az elvi alapokban tárgyaltak szerint, ha ismerjük az alap modushoz tartozó frekvenciát, akkor annak ismeretében az elméleti levezésből következő *k* értékek alapján kiszámolhatjuk a következő rezgési modus várt frekvenciáját.

Az eredményeket grafikonon is ábrázolom, vízszintes tengelyen a rezgési modust a *k* számmal jellemző mennyiség negyedik hatványát, a függőleges tengelyen a frekvencia második hatványát tüntetve fel.

A mért eredményekből kiszámolható a minta Young modulusa. A kiszámolásához szükséges továbbá tudni a minta keresztmetszetét, ami $q=30,4mm^2$, $I=\frac{ab^3}{12}=10,4mm^4$, így a Young modulus értéke $E=(6,66\pm0,23)\cdot10^{10}\,N\,/\,m^2$. A hiba nagyságát az egyenes illesztés hibájából, valamint a $\frac{\Delta E}{E_o}=2\frac{\Delta f}{f_o}+\frac{\Delta \rho}{\rho}+4\frac{\Delta I}{I}+2\frac{\Delta b}{b}$ felhasználásával kaphatjuk.

• rezonanciagörbe

Az *A* jelzésű minta amplitúdó(feszültség)- frekvenciafüggéseit az alábbi táblázat mutatja:

feszültség (<i>mV</i>)	frekvencia (<i>Hz</i>)	feszültség (<i>mV</i>)	frekvencia (<i>Hz</i>)
67	254,23	67	254,25
61	254,16	64	254,29
56	254,13	58	254,32
51	254,10	53	254,35
45	254,06	40	254,44
40	254,02	47	254,40
35	253,98	36	254,48
33	253,96	31	254,53
31	253,92	25	254,61
27	253,87	21	254,7
23	253,80	15	245,89
19	253,72	11	255,12
15	253,56	7	255,51
12	253,37	4	256,17
9	253,11	_	_
4	252,19		

A mért eredményeket a méréshez mellékelt programmal kiértékeltem, azonban használati útmutató nélkül nem tudtam rávenni azt a helyes iterációra, így a mellékelt ábrára illesztett elméleti görbe szemmel illesztett. Továbbá nem tudtam tizedes tört értékeket megadni a frekvenciánál, így a mértek $100\times$ -osát adtam meg. Az ábráról leolvasva kiszámolható a helyes görbe fél érték szélessége: $\Delta f = 0.29 Hz$, ebből $\kappa = 0.91 \pm 0.07 Hz$.

Változó hossz mellett az alap modus frekvenciái

Ebben a részben a 14-es mintát vizsgáltam, különböző helyeken befogva mértem az alap modus frekvenciáját, mely eredményeket az alábbi táblázatban foglalom össze, és ábrázolom grafikusan:

hossz (<i>cm</i>):	8	7	6	5	4
frekvencia (<i>Hz</i>):	253,4	319,29	444,77	655,11	1026,0

 $7\,cm$ értéknél megmértem a következő rezgési modus frekvenciáját, mely $1900,4\,Hz$ -nek adódott, így a frekvenciák aránya közel 0,160, mely igen közel esik az elméletileg várt 0,168-hoz, továbbá az összes többi modus k-jainak négyzetaránya ennél nagyobb, vagyis valóban az alap modust mértük ki. A mérés alapján a Young modulus meghatározható, melynek értéke: $E = (10,33\pm0,4)\cdot 10^{10}\,N\,/\,m^2$. A hiba nagyságát az előzővel analóg módon kaphatjuk.

Melléklet

Havancsák Károly: Mérések a klasszikus fizika laboratóriumban, ELTE

Eötvös Kiadó, Budapest, 2003.

Érdekes videó: lemez sajátfrekvenciáinak szemléltetésére liszttel:

http://www.indavideo.hu/video/Erdekes_kiserlet