PCT/ ES 99/00279

10/048140

REC'D 13 MAR 2000

OFICINA ESPAÑOLA

de

PATENTES y MARCAS

2500/00299

4

CERTIFICADO OFICIAL

Por la presente certifico que los documentos adjuntos son copia exacta de la solicitud de PATENTE de INVENCION número 9901652, presentada en este Organismo, con fecha 22 de Julio de 1999.

Madrid, 3 de marzo de 2000

PROBLEM REPRESENTATION OF TO STATE OF THE PROBLEM PROB

El Director del Departamento de Patentes e Información Tecnológica.

M. MADRUGA

OFICINA ESPAÑOLADE PATENTES Y

NUMERO	DE SOLI	CITU	D			
P	99	0	1	6	5	2
- L		_=_				

MA	AL S		Py	9016	54
INSTANCIA DE	E SOLICITUD DE:		FECHA Y HORA [DE PRESENTACIO	N EN O.E.P.M.
PATENTE DE INVENCION	☐ MODELO DE				
	(2) EXPED. PRINCIPAL	ODE ORIGEN	199 J	H 22 PRESENTACION EN L	UGAR DISTINTO OEPM
(1) SOLICITUD DE ADICION SOLICITUD DIVISIONAL	MODALIDAD NUMERO SOLICITUD FECHA SOLICITUD		HOW TOWN ACT		
CAMBIO DE MODALIDAD	. ———		(3) LUGAR DE F	PRESENTACION	CODIGO
TRANSFORMACION SOLICITUD EUROPEA	MODALIDAD NUMERO SOLICITUD FECHA SOLICITUD		MADRID		28
APELLIDOS	S O DENOMINACION JU	RIDICA	NO	MBRE	DNI
(4) SOLICITATILE(C)					B-95-002630
DAVID SYSTEMS TECHNOLOGY, S		NA ESPAÑOLA DE NA ESPAÑOLA DE PACE Panamá, Panamá,		-CAS	
1			~ 1 N/V	,RO	
			TENTERAL		:. •
(5) DATOS DEL PRIMER SOLICITANTE		, DE	PAIGEN		• • • •
DOMICILIO Carbonero y Sol nº	2 30	PANOLA	(AR!A CELLA (AR!A ELA QOSSARIO 250TEL A Madrid 250TEL CO CO	_EFONO	· ·
LOCALIDAD MADRID	. (1)	NA EST SEULPE	1. Nigorio CO	DIGO POSTAL	28006
PROVINCIA MADRID	OFIC	" Op. "amá,	CO	DIGO PAIS	ES
PAIS RESIDENCIA ESPAÑA		Paris	CO	DIGO NACION	k s
NACIONALIDAD ESPAÑOLA	EO EL IND/EN		(8) MOD	O DE OBTENCION	DEL DERECHO
	OLICITANTE ES EL INVEN		TX INVENC. LA	ABORAL CONT	RATO SUCESION
	OLICITANTE NO EL INVENTO	ROUNICO INVENTOR	MBRE	NACIONAL	DAD COD. NACION
APELLIDOS					·:.
VER HOJAS INFORMACIONES		1			
COMPLEMENTARIAS		1			··
					::::
(9) TITULO DE LA INVENCION			72 CPC		
MEMBRANA DE POLIMERO PARA	LA SEPARACION DE	MEZCLAS DE	3ASES		••••
					- FZ NO
(10) INVENCION REFERENTE A PRO	CEDIMIENTO MICROB	IOLOGICO SEGUN	ART. 25.2 L.P.		SI X NQ
(11) EXPOSICIONES OFICIALES					
LUGAR			F	ECHA	
LUGAN					
	AD				••••
(12) DECLARACIONES DE PRIORIDA		D. PAIS	NUMERO		FECHA:
PAIS DE ORIGEN					
1			TOTA EN EL ART	162 I P	SI X NO
(13) EL SOLICITANTE SE ACOGE A	LA EXENCION DE PAG	O DE TASAS PRE	VISTA EN EL ART	OMBRE	CODIGO
(14) REPRESENTANTE APELLI	DOS		''-	RANCISCO	4030
DOMICILIO	INTERO LOPEZ	LOCALIDAD		ROVINCIA	COD.POSTAL 28014
c/ alcalá. 35	1	MADRID	M	ADRID FIRMA DEL FU	
(15) RELACION DE DOCUMENTOS	QUE SE ACOMPAÑAN			FIRMA DELT	
TENTESCRIPCION Nº DE PAGINAS	S 14 DOCU	MENTO DE REPRE	ESENTACION)
I PEIVINDICACIONES, Nº DE PA	GINAS.1	FICANTE DEL PAG	O DE TASAS		
DIBUJOS. Nº DE PAGINAS	¨ Γ Σ ΓΙΗΟJΑ	DE INFORMACION PLEMENTARIAS	NES	EDWARDE SOLICE	TANTE O REPRESENTANTE
DOCUMENTO DE PRIORIDAD TRADUCCION DEL DOCUMENT				FIRMA DEL SOLICI	Carpinter6
RESUMEN DOCUMENTO DE PRIORIDAD TRADUCCION DEL DOCUMENT PRIORIDAD				Francis	. Outroit
(16) NOTIFICACION DE PAGO DE	LA TASA DE CONCESIO	NC		۶۰	(2/.
(16) NOTIFICACION DE PAGO DE	ensiderará retirada si ne	o procede al pago	de la tasa dence-) 3CU

PO DE SOLICITUD 6 5 2

FECHA DE PRESENTACION

HOJA INFORMACIONES COMPLEMENTARIAS

X PATENTE DE INVENCION		
☐ MODELO DE UTILIDAD		
(4) SOLICITANTES APELLIDOS O RAZON SOCIAL	NOMBRE	DNI
	·	<u>.</u>
		::
. (6) INVENTORES APELLIDOS	NOMBRE	NAC.
BLACH VIZOSO KOTENKO	RICARDO	ES
AMIRKHANOV	ALEXANDER	. Ru
TULSKY	DIMITRI MIKHAIL	RU
FATEEV	WLADIMIR	RU
(11) EXPOSICIONES OFICIALES		
LUGAR:		
	FECHA:	
(12) DECLARACIONES DE PRIORIDAD		
PAIS DE ORIGEN CODIGO NUMERO	FECHA	
UNE A-4 MOD. 3102i		

PATENTE RESUMEN Y GRAFICO

PEGO 1652

FECHA DE PRESENTACION

RESUMEN (Máx. 150 palabras)

MEMBRANA DE POLIMERO PARA LA SEPARACION DE MEZCLAS DE GASES

Esta membrana comprende fibra hueca asimétrica, a partir de polietersulfuro con fines de pervaporación, tratada con mezclas de líquidos (C2H50H+X) en la que X=tolueno, acetona, dimetalformanida con un contenido entre un 7 - 12% en volumen de la mezcla, tratando posteriormente con una disolución al 2,5% en volumen de uretanosiloxano en alcohol isopropilico.

GRAFICO

VER INFORMACIONES

ESPAÑOLA	DE	PATENTES
-----------------	----	-----------------

OFICINA

DATOS DE PRIORIDAD

(32) FECHA

33 PAIS

FECHA DE PRESENTACION 22 JUL 1999

ON SOLICITANTE (S) DAVID SYSTEMS TECHNOLOGY, S.L.		NACIONALIDAD ESPAÑOLA
DOMICILIO Carbonero v Sol nº 30	28006 MADRII	
(12) INVENTOR (ES) VER HOJAS INFORMACIONES COMPLEMENTARIAS	BLACH VIZOSO KOTENKO	RICARDO ALEXANDER
13) TITULAR (ES)		· · ·
11) N.º DE PUBLICACION 45) FECHA DE PUBLICACION	62) PATENTE DE LA QUE ES DIVISIONARIA	GRAFICO (SOLO PARA INTERPRETAR RESUMEN)
(51) Int. CI.		·
(S) TITULO		::.
MEMBRANA DE POLIMERO PARA LA SEPAR DE GASES	ACION DE MEZCLAS	
57) RESUMEN (APORTACION VOLUNTARIA SIN VALOR ILIBIDICA		:: ::

MEMBRANA DE POLIMERO PARA LA SEPARACION DE MEZCLAS DE GASES

Esta membrana comprende fibra hueca asimétrica, a partir de polietersulfuro con fines de pervaporación, tratada con mezclas de líquidos (C2H50H+X) en la que X=tolueno, acetona, dimetalformanida con un contenido entre un 7 - 12% en volumen de la mezcla, tratando posteriormente con una disolución al 2,5% en volumen de uretanosiloxano en alcohol isopropilico.

MEMBRANA DE POLIMERO PARA LA SEPARACION DE MEZCLAS DE GASES

OBJETO DE LA INVENCION

5

La invención está destinada a la tecnología de membranas de separación de mezclas de gases y se puede aplicar en un producto químico, refinerías de petróleo, industrias del gas natural, así como en otras ramas de la industria petroquímica, y se puede usar para la separación de mezclas gaseosas tecnológicas, incluyendo hidrógeno y/o componentes de gas natural con amplio contenido de sulfuro de hidrógeno e hidrocarburos pesados.

15

20

25

30

10

ANTECEDENTES DE LA INVENCION

En la actualidad el progreso en las tecnologías de productos químicos está conectado con las nuevas tecnologías de ahorro de energía. Uno de tales procedimientos en perspectiva es la separación por membranas de mezclas de gases.

Los procedimientos de membranas atraen a los técnicos por sus reducidos gastos de comportamiento en el campo, simplicidad de equipo y servicio, y ausencia de equipo completo de intercambio de frío y calor.

Desde mediados de los años 80 la separación por membranas ha desplazado los métodos tradicionales de división de gases, tales como el método criogénico de división y adsorción de funcionamiento a presión. En

este momento, la tecnología de membranas se ha convertido en la más extendida en las siguientes ramas de la industria:

 separación de hidrógeno en procedimientos de química del petróleo y refinería del petróleo;

eliminación de dióxido de carbono del gas natural;

separación de aire obteniendo nitrógeno altamente enriquecido, y enriquecido antes del 40% de caudal de oxígeno en pleno aire.

Una de las aplicaciones más importantes de las membranas de polímeros es la separación y refinado de hidrógeno a partir de los gases de combustible de las refinerías de petróleo. Esto se explica por el coste principal muy elevado de la producción de hidrógeno en instalaciones de un solo propósito, y la posibilidad de usar cualquier otra fuente para obtener hidrógeno presenta un gran interés para los especialistas.

Las fuentes principales de gases residuales que contienen hidrógeno de la química del petróleo son:

20 · el purgado de gas de la síntesis de amoníaco;

el purgado de gases en la producción de metanol, estireno y otros;

el gas residual del craking por vapor;

· el gas residual de la hidrodesalquilación de 25 tolueno.

Las fuentes de gases residuales en los procesos de la refinería del petróleo son:

gas residual del reformado catalítico;

gas residual del craking catalítico;

30 · gas de escape de la hidra-desulfuración;

gas de escape del hidrocraking.

10

15

20

25

30

Sin embargo, es necesario observar que el uso de membranas de polímeros se realizó habitualmente por los medios con contenidos de hidrocarburos pesados menores que en 3-4% en volumen, cuando los contenidos eran más elevados se observó un efecto plastificantes reversible con pérdida de características selectivas, pero sin la las demostrado han mecánica. Según destrucción investigaciones de los inventores, cuando se reducen las concentraciones de hidrocarburos pesados por debajo del la restaura gradualmente se volumen 2-3% en característica selectiva (pero no más del 808 del inicio).

mayoría ha acogido el método de membranas para eliminar dióxido de carbono a partir del gas natural. La tecnología de membrana permite, en un procedimiento similar a una sola etapa, reducir una concentración de CO_2 desde 5-7% en volumen a 1,0-1,5% en volumen. realizaron primero con una membrana a base de acetato de celulosa de "Separex Corporation" [Schell W. J. y otros, J. Chem. Eng. Progress. 1982, v. 78, no. 10, pp. 33-37], la compañía "Monsanto" también polisulfona de [Monsanto Company], Prism Separators por Monsanto. Para una variedad diferentes fuentes de gas natural (Rusia, Canadá, SAR), estas membranas necesitan una significativa modernización en cuanto a que en el gas natural de estos países se observa un elevado contenido de hasta un 40% de sulfuro de hidrógeno. Como han demostrado las investigaciones de los inventores bajo las condiciones de laboratorio y la industria, la membrana polimérica de

acetato de celulosa, en los medios con contenidos de sulfuro de hidrógeno de 5-7% en volumen, plastifican rápidamente y pierden las características básicas.

OBJETO DE LA INVENCION

15

20

25

30

Las características principales, que definen la capacidad de llevar a la práctica comercial la membrana, son las siguientes:

selectividad de la membrana para la separación 10 componentes principales. Para un uso comercial eficaz para la separación de gas natural y/o que contiene hidrógeno, una membrana debe poseer una selectividad en el par $\rm H_2\text{-}CH_4$ no menor que 50, y en el par CO_2 - CH_4 no menor que 30. Valores inferiores de selectividad provocan el uso de esquemas de separación multietapa del componente objetivo que requiere una compresión adicional que eleva los gastos de energía y prolonga vastamente pérdidas inútiles de gas.

> productividad específica. La productividad específica de una membrana se define por su tipo y estructura, así como por el diseño del separador de membrana (como equipo). En tanto en cuanto los procedimientos de separación de membrana se basan en las diferentes solubilidad de los gases en el polímero y la difusión de las moléculas de gas a su través, los gastos de capital de la instalación de la membrana se definen con el espesor de una barrera selectiva de membrana. Por otro lado, la

5

10

15

25

30

membrana debe soportar una fuerza significativa de presión sobre su pared (por debajo de 5-7 MPa). De forma que los tipos más ampliamente extendidos de membranas de polímeros, que tienen un uso comercial, son de tipo asimétrica y de material compuesto.

geometría de la membrana. Este parámetro se define en la etapa de creación del separador de membrana. Se conocen tres tipos principales de diseños de elementos de membrana (manojo): a) fibra de hoja plana, b) de espiral y c) hueca. Para las dos se usa la membrana plana situada en primeras, forma de láminas pegadas o con volutas en espiral, según sea el caso. El tercer tipo de diseño comprende fijar una fibra de membrana en un haz, dispositivo de posteriormente en un fijado el de mayor membrana. El tipo de fibra es perspectiva.

<u>estabilidad química a componentes de la</u> 20 <u>mezcla que se separa</u>.

Teniendo en cuenta los requisitos enunciados más arriba, los polímeros de mayor perspectiva para la creación de membranas son polisulfona, polietersulfona, polímeros que contienen flúor, poliamidoimida.

La membrana isotrópica de fibra hueca, a partir de poli-4-metilpenteno-1, es bien conocida (nombre comercial en Rusia "Graviton"), que se usa en Rusia en instalaciones de membrana para la separación de mezclas gaseosas, incluyendo componentes de gas natural [Kostrov Yu. A. y otros, Revista de ciencia "Chemical Fibers",

1986, No. 6, pp. 49-51].

Las desventajas de la membrana mencionada, se pueden atribuir a las siguientes características:

estructuras isotrópicas, y como resultado, baja productividad específica;

baja selectividad;

25

bajas propiedades selectivas después de trabajar con mezclas en las que la concentración de hidrocarburos pesados (C₃ y pesados) es mayor que el 8% en volumen.

Es bien conocida la membrana de fibra hueca de material compuesto a partir de polipropileno, con capa selectiva a partir de polietersulfona [EP MC14 B 01D 13/04, B 01D 53/22, No. 0 174 918, 1985].

Las desventajas de la membrana de material 15 compuesto, se pueden atribuir las siguientes características:

complicidad tecnológica para aplicar una capa selectiva homogénea sobre el soporte de polipropileno;

posibilidad de distracción de la capa selectiva,
 incluyendo su extracción.

La solución técnica inmediata de este problema es una membrana asimétrica de fibra hueca de polietersulfona, producida a partir de una membrana de fibra hueca de separación de gas inicial con una selectividad inicial sobre el par $\rm H_2/CH_4$ < 5 por medio de modificación en disolución 0,02 M de $\rm HBr/n-C_5$ con un tratamiento posterior de vacío hasta 24 horas [Patente de EE.UU., NC1 55/16, No. 4 472 175, 1984].

Las desventajas de esta solución se pueden 30 mencionar las siguientes:

pérdida de una selectividad alcanzada después de la modificación en el período de explotación (la selectividad del par hidrógeno/metano se reduce constantemente: después de 1 día de explotación la

selectividad es 147, después de 6 días 35 y así sucesivamente);

 tiempo de uso muy corto de modificación de la disolución líquida;

mantener necesariamente la membrana tratada en
 vacío a fin de alcanzar las propiedades selectivas requeridas hasta 24 horas.

DESCRIPCION DE LA INVENCION

- Los resultados técnicos de la solución técnica, creada por los autores de la presente invención, para la producción de membrana de fibra hueca asimétrica a partir de polietersulfona son los siguientes:
- altas propiedades selectivas, estables durante el
 tiempo del uso;
 - selectividad requerida para los procedimientos de separación de hidrógeno y/o componentes de gas natural con amplio contenido en H_2S (hasta 40% en volumen) e hidrocarburos pesados (hasta 15% en volumen).
- 25 El resultado técnico se logra debido al hecho de que la membrana de separación de gas de polímero para dividir los componentes del gas natural tiene una construcción especial:
- primeramente, se trata la membrana de fibra hueca
 30 asimétrica a partir de polietersulfona para la

pervaporación con mezclas de líquidos tales como C_2H_5OH + X, en la que X = tolueno, acetona, dimetilformamida, con actitud de X = 7-12% en volumen;

· luego la membrana se trata con una disolución al 2,5% en volumen de uretanosiloxano en alcohol isoamílico;

· luego se trata con una mezcla gaseosa de F_2 - HF - gas inerte; el contenido de gas inerte varía de 0 a 90%, y la actitud de HF en la corriente de F_2 es igual a 4-6% en volumen.

10

15

La membrana de polímero produce se por el siguiente procedimiento: se trata una fibra inicial a partir de polietersulfona con las mezclas de líguidos orgánicos (C₂H₅OH-tolueno, C₂H₅OH-acetona C₂H₅OH-dimetilforamida con contenido de disolventes orgánicos a C₂H₅OH igual a 7-12% en volumen en período de 60-90 minutos con un próximo bombeo de vacío a la temperatura T=293 K durante 15 minutos.

La fibra hueca seca se trata con disolución al 20 2,5% en volumen de uretanosiloxano (por ejemplo, siloctano) en isopropanol.

Luego las fibras huecas se modifican en fase gaseosa con una mezcla de $F_2\colon HF\colon N_2$ (He).

El contenido de componentes inertes varía de 0 a 25 90% en volumen, el contenido de HF en F₂ es 4-6% en volumen. En la tabla No. I se muestran los factores de separación reales para pares H₂/CH₄ y CO₂/CH₄ para la membrana de fibra hueca, producida en el procedimiento arriba mencionado.

Tabla I

Características de separación de la membrana

de polímero de fibra hueca producida

No.	Tratamiento de disoluciones	Modificación de fase gas	Factor de separación	
	orgánicas		H,/CH,	CO,/CH,
1		sin modificación	1,8	7
2	disolución 8% de tolueno en	sin modificación	71 -	42
	C,H,OH			
3	disolución 8% de tolueno en	(F ₂ +HF):N ₂ =20:80% vol	84	47
	C2H2OH			
4	disolución 8% de tolueno en C,H,OH	(F ₂ +HF):N ₂ =40:60% vol	79	-
5	disolución 10% de tolueno en	sin modificación	69	35
5	C.H.OH	2202222000011		
6	disolución 10% de tolueno en	(F ₂ +HF):N ₂ =20:80% vol	79	41
	C'H'OH			1
7	disolución 12% de tolueno en	sin modificación	67	35
	C2H3OH			l
8	disolución 12% de tolueno en	(F ₂ +HF):N ₂ =20:80% vol	79	40
	C³H²OH			
9	disolución 12% de tolueno en	(F ₂ +HF):N ₂ =40:60% vol	73	37
	C'H'OH			ļ _
10	disolución 11% de acetona en	sin modificación	92	45
	С,н,он			}
11 _	disolución 11% de acetona en	(F ₂ +HF):N ₂ =20:80% vol	97	53
	C,H,OH			l
12	disolución 11% de acetona en	(F ₂ +HF):N ₂ =10:90% vol	103	56
	C'H'OH			
13	disolución 11% de acetona en	(F ₂ +HF):N ₂ =40:60% vol	96	-
_	C,H,OH			1
14	disolución 11% de acetona en	F ₂ +HF=100% vol	94	50
	C'H'OH			<u> </u>
15	disolución 7% de acetona en	sin modificación	84	43
	C'H'OH			l ·
16	disolución 7% de acetona en	(F ₂ +HF):N ₂ =20:80% vol	93	4.7
	C'H'OH			1
17	disolución 7% de acetona en	(F ₂ +HF):N ₂ =10:90% vol	97	50
	C,H,OH			1
18	disolución 7% de acetona en	F ₂ +HF=100% vol	88	44
	C,H,OH			1
19	disolución 9% de dimetilforamida	sin tratamiento	58	34
	en C,H,OH			1
20	disolución 9% de dimetilforamida	(F2+HF):N2=20:80% vol	71	44
	en C,H,OH		İ	
21	disolución 9% de dimetilforamida	(F ₂ +HF):N ₂ =10:90% vol	67	41
	en C,H,OH	1	1	1

Los resultados obtenidos muestran que las muestras la membrana tratada con mezclas de líquidos de luego tratadas con uretanosiloxano orgánicos, modificadas con mezclas gaseosas, que contienen flúor, permiten unas características selectivas, mejores que propiedades selectivas de la polietersulfona inicial.

5

10

La modificación en fase de gas se puede llevar a cabo en el amplio intervalo de concentración de flúor y

tiempo de tratamiento. Los resultados logrados estables durante largo tiempo.

muestras de membrana, tratadas con flúor, Las conservan las propiedades selectivas en un medio con 5 elevada concentración de H2S e hidrocarburos pesados. Las propiedades asumidas de la membrana producida dependen de las propiedades de separación de la membrana inicial, contenido de la mezcla de líquidos condiciones de modificación (concentración de flúor, presión de la mezcla de gas modificada, tiempo de tratamiento).

EJEMPLOS DE REALIZACION PREFERENTE DE LA INVENCION

15 Eiemplo 1

10

20

30

Se trata una membrana de fibra hueca asimétrica a partir de polietersulfona por pervaporación en una disolución al 8% (vol.) de tolueno en C2H5OH durante 65 minutos, se seca bajo vacío 15 minutos, entonces trata en disolución al 2,5% (vol.) de uretanosiloxano con isopropanol durante 60 segundos. La fibra hueca se seca en el aire durante 12 horas a fin de alcanzar el factor de separación estable para el par $H_2/CH_4 = 71$, $CO_2/CH_4 = 41.$

25 Eiemplo 2

Se trata una membrana de fibra hueca asimétrica a partir de polietersulfona por pervaporación en una disolución al 11% (vol.) de acetona en C_2H_5OH durante 75 minutos, se seca bajo vacío 15 minutos, entonces se trata durante 60 segundos en disolución al 2,5% (vol.)

de uretanosiloxano con isopropanol. La fibra hueca se seca en el aire durante 12 horas. Después de secar, la membrana de fibra hueca se modifica con una mezcla gaseosa (F₂+HF):N₂=10:90 (vol.) durante 60 minutos; eso da por resultado un crecimiento adicional del factor de separación de 92 a 103 para el par H₂/CH₄, y para el par CO₂/CH₄ de 45 a 56. La membrana producida en tal procedimiento mantuvo sus propiedades bajo la utilización en el medio H₂S:CH₄=40:60 (presión 0,3 MPa) durante 240 horas.

Ejemplo 3

10

15

20

25

Se trata durante 85 minutos una membrana de fibra hueca asimétrica partir de polietersulfona a por pervaporación en una disolución al 98 (vol.) dimetilforamida en C2H5OH, se seca bajo vacío 15 minutos, entonces se trata durante 60 segundos en disolución al 2,5% (vol.) de uretanosiloxano isopropanol. La fibra hueca se seca en el aire durante 12 horas. Después de secar, la membrana de fibra hueca se modifica con una mezcla gaseosa $(F_2+HF):N_2 = 20:80$ (vol.) durante 120 minutos; eso da por resultado un crecimiento adicional del factor de separación de 58 a 71 para el par $\rm H_2/CH_4$, y para el par $\rm CO_2/CH_4$ de 34 a 44. La membrana producida en tal procedimiento mantuvo sus propiedades bajo la utilización en el medio $CH_4:(C_3H_8\ +$ $C_4H_{10} + C_5H_{12}$) = 85:15 (presión 0,1 MPa) durante 240 horas.

Ejemplo 4

Se trata durante 60 minutos una membrana de fibra 30 hueca asimétrica a partir de polietersulfona por

pervaporación en una disolución al 12% (vol.) de tolueno en C_2H_5OH , se seca bajo vacío 15 minutos, entonces se trata durante 60 segundos en disolución al 2,5% (vol.) de uretanosiloxano con isopropanol. La fibra hueca se seca en el aire durante 12 horas. Después de secar, la membrana de fibra hueca se modifica con una mezcla qaseosa $(F_2+HF):N_2 = 20:80$ (vol.) durante 45 minutos; eso da por resultado un crecimiento adicional del factor de separación de 67 a 79 para el par H₂/CH₄, y para el par CO₂/CH₄ de 35 a 40. La membrana producida en tal procedimiento mantuvo propiedades sus bajo utilización en el medio H₂S:CH₄=40:60 (presión 0,3 MPa) durante 240 horas.

Ejemplo 5

10

15

20

25

Se trata durante 90 minutos una membrana de fibra asimétrica a partir de polietersulfona pervaporación en una disolución al 7% (vol.) de acetona en C_2H_5OH , se seca bajo vacío 15 minutos, entonces se trata durante 60 segundos en disolución al 2,5% (vol.) de uretanosiloxano con isopropanol. La fibra hueca se seca en el aire durante 12 horas. Después de secar, la membrana de fibra hueca se modifica con una mezcla gaseosa $(F_2+HF):N_2 = 10:90$ (vol.) durante 60 minutos; eso da por resultado un crecimiento adicional del factor de separación de 84 a 97 para el par H₂/CH₄, y para el par CO₂/CH₄ de 43 a 50. La membrana producida en tal procedimiento mantuvo sus propiedades bajo utilización en el medio $CH_4: (C_3H_8 + C_4H_{10} + C_5H_{12}) = 85:15$ (presión 0,1 MPa) durante 240 horas.

20

El empleo de la invención permite:

- * realizar el proceso de separación para mezclas gaseosas, que contienen H₂ o componentes de gas natural, con mayor eficacia que las membranas producidas hasta ahora;
- * separar mezclas con alto contenido de H_2S (hasta 40% en vol.) e hidrocarburos pesados (hasta 15% en vol.);
- 10 * cambiar condiciones de modificación y/o tratamiento para producir membranas con diferentes propiedades requeridas sobre la base de un solo tipo de membrana inicial membrana de fibra hueca a partir de polietersulfona para pervaporación;
- 15 * aumentar la esfera de uso para la membrana de pervaporación;
 - •* usar una modificación de flúor en fase gas en todas las etapas de la creación del separador de membrana: como una membrana, como un manojo (elemento de membrana) o separador de membrana preparado.

REIVINDICACIONES

- Membrana de polímero para la separación de componentes de gas natural, que comprende fibra hueca simétrica, a partir de polietersulfona con fines de pervaporación, tratada con mezclas de líquidos (C2H5OH + X), en la que X = tolueno, acetona, dimetilformamida, con un contenido de X=7-12% (vol.) en la mezcla, tratados posteriormente con una disolución al 2,5%
 (vol.) de uretanosiloxano en alcohol isopropílico.
- Membrana de polímero, según la reivindicación
 taracterizada porque se usa membrana de fibra hueca a partir de polietersulfona, modificada con mezcla gaseosa
 [(F₂ HF) : gas inerte] con contenido de (F₂ HF) en el intervalo de 0-90% (vol.), y concentración de HF en flúor de 4-6% (vol.).