VI Semester

DATA SCIENCE AND VISUALIZATION				
Course Code	21CS644	CIE Marks	50	
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50	
Total Hours of Pedagogy	40	Total Marks	100	
Credits	03	Exam Hours	03	

Course Learning Objectives

- CLO 1. To introduce data collection and pre-processing techniques for data science
- CLO 2. Explore analytical methods for solving real life problems through data exploration techniques
- CLO 3. Illustrate different types of data and its visualization
- CLO 4. Find different data visualization techniques and tools
- CLO 5. Design and map element of visualization well to perceive information

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) need not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem with different circuits/logic and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

Module-1

Introduction to Data Science

Introduction: What is Data Science? Big Data and Data Science hype – and getting past the hype, Why now? – Datafication, Current landscape of perspectives, Skill sets. Needed Statistical Inference: Populations and samples, Statistical modelling, probability distributions, fitting a model.

Textbook 1: Chapter 1

Teaching-Learning Process	1.	PPT – Recognizing different types of data, Data science
		process
	2.	Demonstration of different steps, learning definition and relation with data science

Module-2

Exploratory Data Analysis and the Data Science Process

Basic tools (plots, graphs and summary statistics) of EDA, Philosophy of EDA, The Data Science Process, Case Study: Real Direct (online realestate firm). Three Basic Machine Learning Algorithms: Linear Regression, k-Nearest Neighbours (k-NN), k-means.

Textbook 1: Chapter 2, Chapter 3

		_
Teaching-Learning Process	1. PPT –Plots, Graphs, Summary Statistics	
	2. Demonstration of Machine Learning Algorithms	

Module-3

Feature Generation and Feature Selection

Extracting Meaning from Data: Motivating application: user (customer) retention. Feature Generation (brainstorming, role of domain expertise, and place for imagination), Feature Selection algorithms. Filters; Wrappers; Decision Trees; Random Forests. Recommendation Systems: Building a User-Facing Data Product, Algorithmic ingredients of a Recommendation Engine, Dimensionality Reduction, Singular Value Decomposition, Principal Component Analysis, Exercise: build your own recommendation system.

Textbook 1: Chapter 6

Teaching-Learning Process	1. PPT – Feature generation, selection	
	2. Demonstration recommendation engine	
Module-4		

Data Visualization and Data Exploration

Introduction: Data Visualization, Importance of Data Visualization, Data Wrangling, Tools and Libraries for Visualization

Comparison Plots: Line Chart, Bar Chart and Radar Chart; **Relation Plots:** Scatter Plot, Bubble Plot, Correlogram and Heatmap; **Composition Plots:** Pie Chart, Stacked Bar Chart, Stacked Area Chart, Venn Diagram; **Distribution Plots:** Histogram, Density Plot, Box Plot, Violin Plot; **Geo Plots:** Dot Map, Choropleth Map, Connection Map; What Makes a Good Visualization?

Textbook 2: Chapter 1, Chapter 2

Teaching-Learning Process	1.	Demonstration of different data visualization tools.
		Module-5

A Deep Dive into Matplotlib

Introduction, Overview of Plots in Matplotlib, **Pyplot Basics**: Creating Figures, Closing Figures, Format Strings, Plotting, Plotting Using pandas DataFrames, Displaying Figures, Saving Figures; **Basic Text and Legend Functions**: Labels, Titles, Text, Annotations, Legends; **Basic Plots**:Bar Chart, Pie Chart, Stacked Bar Chart, Stacked Area Chart, Histogram, Box Plot, Scatter Plot, Bubble Plot; **Layouts**: Subplots, Tight Layout, Radar Charts, GridSpec; **Images**: Basic Image Operations, Writing Mathematical Expressions

Textbook 2: Chapter 3

Teaching-Learning Process	1. PPT – Comparison of plots	
	2. Demonstration charts	

Course Outcomes

At the end of the course the student will be able to:

- CO 1. Understand the data in different forms
- CO 2. Apply different techniques to Explore Data Analysis and the Data Science Process
- CO 3. Analyze feature selection algorithms & design a recommender system.
- CO 4. Evaluate data visualization tools and libraries and plot graphs.
- CO 5. Develop different charts and include mathematical expressions.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:

Three Unit Tests each of **20 Marks (duration 01 hour)**

- 1. First test at the end of 5th week of the semester
- 2. Second test at the end of the 10^{th} week of the semester
- 3. Third test at the end of the 15th week of the semester

Two assignments each of 10 Marks

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20 Marks** (duration **01** hours)

6. At the end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be **scaled down to 50 marks**

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper has to be designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- 1. The question paper will have ten questions. Each question is set for 20 marks. Marks scored shall be proportionally reduced to 50 marks
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module

Suggested Learning Resources:

Textbooks

- 1. Doing Data Science, Cathy O'Neil and Rachel Schutt, O'Reilly Media, Inc O'Reilly Media, Inc. 2013
- Data Visualization workshop, Tim Grobmann and Mario Dobler, Packt Publishing, ISBN 9781800568112

Reference:

- 1. Mining of Massive Datasets, Anand Rajaraman and Jeffrey D. Ullman, Cambridge University Press, 2010
- 2. Data Science from Scratch, Joel Grus, Shroff Publisher /O'Reilly Publisher Media
- 3. A handbook for data driven design by Andy krik

Weblinks and Video Lectures (e-Resources):

- 1. https://nptel.ac.in/courses/106/105/106105077/
- 2. https://www.oreilly.com/library/view/doing-data-science/9781449363871/toc01.html
- 3. http://book.visualisingdata.com/
- 4. https://matplotlib.org/
- 5. https://docs.python.org/3/tutorial/
- 6. https://www.tableau.com/

Activity Based Learning (Suggested Activities in Class)/ Practical Based learningDemonstration using projects