Příklad 1. *O* notace.

- a) Dokažte, že platí $(n+1)^2 \in O(n^2)$
- b) Dokažte, že pro každé a a b > 0 platí $(n+a)^b \in O(n^b)$
- c) Dokažte, zda platí $\sqrt{\log(n)} \in O(\log(\sqrt{n}))$.
- d) Dokažte, zda platí $2^{n+1} \in O(2^n)$.
- e) Dokažte, zda platí $2^{2n} \in O(2^n)$.
- f) Seřadte: n^3 , $4^{\log_2 n}$, $n \log n$, $n^{1/\log n}$, $\log n$
- g) Seřadte: n!, $2^{\log(n+1)}$, $\sqrt{\log n}$, n^n , $\log \sqrt{n}$
- h) Seřaďte: 2^{2^n} , $2^{\log_8 n}$, \sqrt{n} , 2^{2n} , $n \cdot 2^n$

Použijte:

- $\bullet \ 2^{\log_2 n} = n$
- $a^{\log_b c} = c^{\log_b a}$
- $\log_b x = \log_c x / \log_c b$
- $n \log n n < \log(n!) < n \log n$

Příklad 2. O, Θ , Ω notace. Dokažte, že pro libovolné f(n) a g(n) platí $f(n) \in \Theta(g(n))$ právě když $f(n) \in O(g(n))$ a zároveň $f(n) \in \Omega(g(n))$.

Příklad 3. Posloupnosti.

- a) Na vstupu je dána posloupnost čísel, zjistěte, jestli jsou všechna navzájem různá.
- b) Na vstupu je dána posloupnost čísel, najděte dvojici s co nejmenším rozdílem.
- c) Na vstupu je dána posloupnost čísel, vypište všechna opakující se čísla (ale každé jen jednou).
- d) Umíte předchozí úkoly vyřešit efektivněji, pokud víte, ze všechna zadaná čísla leží od 1 do 100?

Příklad 4. Volby. V galaxii se pořádají prezidentské volby s velikým množstvím kandidátů. Dostanete obrovskou řadu obrovských čísel, každé číslo znamená jeden hlas pro jednoho (očíslovaného) kandidáta. Hlasů a kandidátů je bohužel tolik, že čísel postačujících pro identifikaci kandidáta nebo počtu hlasů se vám do paměti vejde jen konstantní (malý) počet; navíc každý hlas můžete zpracovat jen jednou. Naštěstí ale víte, že jeden kandidát má určitě ostrou nadpoloviční většinu hlasů. Úkol je zjistit číslo tohoto kandidáta.