

# UNIVERSIDAD NACIONAL DE LA MATANZA INTELIGENCIA DE NEGOCIOS

Modelo Físico Técnicas de Modelado - Parte 1

Profesor: Mg. Diego Basso

**Curso 2017** 



# CICLO DE VIDA DE UN PROYECTO DE BI



# Modelo físico



- A partir del modelo dimensional lógico debemos armar el modelo físico.
- Son las tablas en las que se van a guardar los datos en el Data Warehouse.
  - Soporte a las dimensiones y grupo de hechos del modelo dimensional.
  - Se compone de tablas, registros y columnas.
- o Diferentes técnicas de modelado, según la realidad del negocio.

# ESTRUCTURA DE LAS TABLAS





# ESTRUCTURA DE TABLAS



### Tablas Look Up

- o Son las tablas maestras donde se almacenan los elementos de un atributo descriptivo.
  - De tipo textual y discreto
  - Para seleccionar
  - Para agrupar
  - Para mostrar
- Se puede crear una tabla Look Up por cada **atributo** o una tabla por **dimensión**.
- o No contiene valores que intervengan en cálculos.
- Valores numéricos categorizados.
- Tienen una columna por *attribute form* mas una columna por cada *padre* del atributo.

# EJEMPLO TABLA LOOK UP



- Provincia

  - Provincia\_ID
     Desc\_Provincia
     Attribute form
     2, Córdoba
     3, La Pampa

- 1, Buenos Aires

– Elementos

#### LK\_PROVINCIA

| <del></del>  |                  |                                             |
|--------------|------------------|---------------------------------------------|
| Provincia_ID | Desc_Provincia   |                                             |
| 1            | Buenos Aires     | Una fila nan alama                          |
| 2            | Córdoba 🗲        | Una fila por <b>eleme</b> i<br>del atributo |
| 3            | La Pampa         | der atributo                                |
| •••          | •••              |                                             |
| <b>1</b>     | <b>↑</b>         |                                             |
| Una columna  | nor attribute fo | rm                                          |

Ona columna por **attribute form** 

# EJEMPLO TABLA LOOK UP



- Ciudad
  - Ciudad\_ID
  - Desc\_Ciudad



#### LK\_CIUDAD

| Ciudad_ID | Desc_Ciudad | Provincia_ID   |  |  |
|-----------|-------------|----------------|--|--|
| 11        | Junín       | 1              |  |  |
| 12        | Lobos       | 1              |  |  |
| 23        | La Falda    | 2              |  |  |
| 35        | Cosquín     | 2              |  |  |
| 38        | Santa Rosa  | 3              |  |  |
|           |             |                |  |  |
|           | umna por U  | na columna poi |  |  |

auribute form

cada **padre** 

# ESTRUCTURA DE TABLAS



### Tablas Relación

• Se utilizan cuando hay una relación *muchos* a *muchos* entre dos atributos.

### Tabla de hechos (Fact table)

- Almacena los **valores** de las medidas de los hechos.
- Contiene una fila por cada acontecimiento que debe reflejar.
- Es la tabla de mayor cantidad de filas.
  - Ocupan más del 90% del Data Warehouse
- o Tiene una columna por cada *medida* mas una columna por cada *referencia a las dimensiones* al cual se conocen los hechos.

# ESTRUCTURA DE TABLAS



### Tabla de hechos Base

- Almacena los **valores** de las medidas de los hechos al *máximo nivel de detalle*.
  - Esta tabla es imprescindible
- Sus filas se llenan a partir de los datos que provienen de los sistemas OLTP.



# EJEMPLO DE TABLA DE HECHOS BASE



### **BT\_VENTAS**

| Fecha_ID   | Empleado_ID | Producto_ID | Unid_Vend | \$ Ventas |
|------------|-------------|-------------|-----------|-----------|
| 01/04/2016 | 111         | 17          | 20        | \$ 400    |
| 01/04/2016 | 112         | 17          | 45        | \$ 900    |
| 01/04/2016 | 113         | 18          | 30        | \$ 450    |
| •••        | •••         | •••         | •••       | •••       |

Dimensiones

Medidas

# ESTRUCTURA DE TABLAS



# Tabla de hechos Agregadas

- Se generan exclusivamente para reducir el tiempo de respuesta de las consultas.
- Su contenido se calcula a partir de la tabla de hechos base.
- o Son prescindibles en términos de información.
  - No dicen nada que no sea dicho en la tabla de hechos base, pero lo dicen más rápido.
- En general, tienen pocas filas (respecto a la tabla de hechos base).

# EJEMPLO DE TABLA DE HECHOS AGREGADA

### **BT\_VENTAS**

| Fecha_ID   | Empleado_ID | Producto_ID | Unid_Vend | \$ Ventas |
|------------|-------------|-------------|-----------|-----------|
| 01/04/2016 | 111         | 17          | 20        | \$ 400    |
| 08/04/2016 | 112         | 17          | 45        | \$ 900    |
| 15/04/2016 | 112         | 17          | 30        | \$ 450    |
| 19/04/2016 | 111         | 18          | 15        | \$ 300    |

### AGG\_VENTAS\_EMP\_MES

| Mes_ID | Empleado_ID | Unid_Vend | \$ Ventas |
|--------|-------------|-----------|-----------|
| 201604 | 111         | 35        | \$ 700    |
| 201604 | 112         | 75        | \$ 1350   |
| •••    | •••         | •••       | •••       |

Contiene un atributo de alguna dimensión, por ejemplo TIEMPO

# ESQUEMA ESTRELLA (STAR)



- Una tabla por cada dimensión.
- Menor cantidad de tablas involucradas.
- o La tabla de hechos está en 3FN.
  - No tiene filas repetidas.
- Las tablas de dimensión están en 2FN.
  - Todos los productos de una misma familia llevan como atributo el nombre de la familia.
- Mayor espacio de almacenamiento.
- o Las consultas son más fáciles de construir.
  - Joins entre tabla de hechos con cada tabla de dimensiones.
- o Mejor rendimiento en consultas.
  - Se necesita acceder a menos tablas.

# ESQUEMA ESTRELLA (STAR)



- Producto
  - Producto\_ID
  - Desc\_producto
- Familia
  - Familia\_ID
  - Desc\_familia

- Tipo
  - Tipo\_ID
  - Desc\_tipo

#### **DIM\_PRODUCTO**



#### LK\_Producto

#### **Producto ID**

Desc\_producto

Familia\_ID

Desc\_familia

Tipo\_ID

Desc\_tipo

#### BT\_Ventas

Fecha\_ID

Sucursal\_ID

Empleado\_ID

Producto\_ID

Unid\_Vend

Importe\_Vta

# EJEMPLO ESQUEMA ESTRELLA



LK\_Sucursal

Sucursal\_ID

Desc\_sucursal

Provincia\_ID

Desc\_provincia

LK\_Producto

Producto\_ID

Desc\_producto

Familia ID

Desc\_familia

Tipo\_ID

Desc\_tipo

BT\_Ventas

Fecha\_ID

Sucursal\_ID

Producto\_ID

Unid\_vend

Importe\_vta

LK\_Tiempo

Fecha\_ID

Desc\_fecha

 $Mes_{ID}$ 

Desc\_mes

Trimestre\_ID

Desc\_trimestre

Año\_ID

Desc\_año

# CONSULTA SQL A UN MODELO ESTRELLA



- <u>Ejemplo</u>: Para cada producto de tipo bazar calcular el importe vendido en las sucursales de CABA en el mes de febrero de 2017
- Dimensiones para:
  - Mostrar, filtrar, agrupar
- Hechos para:
  - Calcular
- o Join: Sólo entre tabla de hechos y tabla de dimensión

# CONSULTA SQL A UN MODELO ESTRELLA

```
SELECT p.Desc_producto, sum(v.Importe_vta) AS suma
FROM
  BT_Ventas v,
  LK_Sucursal s,
  LK_Producto p,
  LK Tiempo t
WHERE
  v.Fecha ID = t. Fecha ID and
  v.Sucursal_ID = s. Sucursal_ID
  v.Producto_ID = p. Producto_ID and
  s.Desc_provincia = 'CABA' and
  t.Mes ID = '022017' and
  p.Desc_tipo = 'Bazar'
GROUP BY p.Desc_producto
```

# ESQUEMA COPO DE NIEVE (SNOWFLAKE)



- Una tabla por atributo.
- o Todas las tablas (dimensiones y hechos) están en 3FN.
  - No tiene filas repetidas.
- o Menor espacio de almacenamiento.
- o Más fácil de entender para el usuario final.
- Más fáciles de llenar las tablas.
- Menor rendimiento de las consultas por los join.
- Aplicable para tablas de dimensiones con una gran cantidad de filas.
- Ampliamente usado en implementaciones ROLAP.

# ESQUEMA COPO DE NIEVE (SNOWFLAKE)

- Producto
  - Producto\_ID
  - Desc\_producto
- Familia
  - Familia\_ID
  - Desc\_familia

- Tipo
  - Tipo\_ID
  - Desc\_tipo



# **NORMALIZACIÓN**



- Completamente Normalizado
  - Las tablas Look Up tienen el ID propio, la descripción y el ID del padre.
  - Minimiza la redundancia.
  - Muchos joins para acceder a las tablas de más alto nivel.



# **NORMALIZACIÓN**



- Moderadamente Normalizado
  - Las tablas Look Up tienen el ID propio, la descripción y todos los ID de sus ancestros.
  - Algo de redundancia.
  - Reduce significativamente los joins para consultar datos dentro de la jerarquía.



# **NORMALIZACIÓN**



- Completamente Desnormalizado
  - Las tablas Look Up tienen el ID propio, la descripción y todos los ID y descripción de sus ancestros.
  - Mucha redundancia y espacio de almacenamiento.
  - Elimina los joins para consultar datos dentro de la jerarquía.



# TIPOS DE MEDIDAS O HECHOS



### Aditivas

• Se pueden sumar (SUM) por todas las dimensiones.

### Ejemplos

- Importe de venta
  - Tiene sentido sumar el importe por producto, por sucursal, por fecha, por empleado.
- Costo de venta
- Ganancia o beneficio
- Cantidad de ventas (en el día)
- Cantidad de expedientes procesados (en una semana)
- Cantidad de nacimientos (por mes)

# TIPOS DE MEDIDAS O HECHOS



### Semiaditivas

- Se pueden sumar en algunas dimensiones y en otras no.
- Carece de sentido sumarla en otras dimensiones.

### Ejemplos

- Unidades Vendidas
  - Tiene sentido sumar sólo si está la dimensión *Producto*.
- Unidades en Stock (o inventarios de cualquier tipo)
  - o Sólo se pueden sumar si son del mismo día, mes, año, etc.
  - $\circ$  No se puede sumar por producto  $\Rightarrow$  semánticamente incorrecto.

#### Saldo de Cuentas

- o Sólo se puede sumar si son del mismo día. Se obtiene el saldo x día.
- o Normalmente se obtiene a nivel del último día del mes.

#### Número de clientes

• No se puede sumar por  $producto \Rightarrow$  semánticamente incorrecto.

# TIPOS DE MEDIDAS O HECHOS



### No aditivas

- No tiene sentido sumarlas por ninguna dimensión.
- Usan otras formas de consolidación o agregación.

### Ejemplos

- Precio Unitario
  - No tiene sentido si lo sumo por día, producto o sucursal.
- Margen o porcentaje de ganancia
  - o No se puede sumarizar por ninguna dimensión.
  - Es una medida calculada obtenida con la herramienta OLAP.
- Temperatura
- Edad
- Notas de exámenes
- Tipo de cambio de moneda

# FORMAS DE CONSOLIDACIÓN DE MEDIDAS

- Suma
- Promedio
- Máximo
- Mínimo
- o Cantidad de casos
- o Cantidad de casos distintos

# ¿Cómo se conecta la tabla de hechosa las de dimensión?

- Verificar integridad referencial entre la tabla de hechos y las tablas de dimensión.
- o En la tabla de dimensión:
  - La clave tiene que ser una clave primaria (PK)
- En la tabla de hechos:
  - Cada dimensión tiene su clave foránea (FK) que apunta a la fila que corresponde en la tabla de dimensión.
  - Todas las FK de las dimensiones forman la PK de la tabla de hechos.

### Problemas con las claves

- Los sistemas fuentes utilizan sus propias claves (código de artículo, código de cliente, etc.), con un determinado formato y sentido para el negocio.
- Podrían cambiarse los formatos de las claves de los sistemas fuentes.
- o Los datos de un DW vienen de fuentes heterogéneas.
- Las SK generan dentro del ámbito del DW una clave numérica única sin significado para el negocio.
  - Número entero asignado en forma secuencial.
- Aconsejable no usar como claves los códigos de los sistemas fuentes.

### Se necesita crear una SK en un DW

- Los sistemas fuentes pueden cambiar la descripción de un producto o cliente, sin cambiar el código del DW que lo representa.
- o Si se cambian los formatos de las claves en los sistemas fuentes, la clave SK no se altera.
- Los sistemas fuentes pueden reutilizar códigos que se habían depurado y aún existen en el DW.
- Rendimiento
  - o Las claves de las tablas ocuparán menos espacio.
- o Más fáciles de mantener.



# Ventajas

- El DW se independiza de cambios en el manejo de claves de los sistemas fuente.
- Permite manejar dimensiones de cambio lento.

### Desventajas

• Hay que manejar y administrar estas claves en el proceso de ETL.



