WNUT-2020 Task 2 Text Classification

This project implements text classification for the WNUT-2020 Task 2 dataset (binary classification: INFORMATIVE vs UNINFORMATIVE) using ALBERT models with data augmentation and self-supervised learning techniques.

Features

- Base model: ALBERT-base-v2
- Synonym augmentation using WordNet
- Multiple self-supervised learning strategies
- Weighted loss function for class imbalance
- Confidence-based pseudo-labeling

Environment Setup

This project is designed to run in the NCSA OpenCE 1.5.1 environment:

```
# Activate the environment
conda activate opence-v1.5.1
# Install additional requirements
pip install transformers nlpaug
```

Data Preparation

1. Create the dataset directory:

```
bash
mkdir WNUT-2020-Task-2-Dataset
```

- 2. Download and place the WNUT-2020 Task 2 dataset files:
 - (train.tsv) (6,936 samples)
 - (valid.tsv) (999 samples)
 - (test.tsv) (2,000 samples)
 - unlabeled_test_with_noise.tsv (for self-supervised learning)

Running the Code

Approach 1: Basic Data Augmentation Training

Train the model using only labeled data with synonym augmentation.

Steps:

```
2. Model saves to ./results/
```

1. Run Cell 1 or Cell 6

```
# Cell 1: Complete augmented training with weighted loss
# OR
# Cell 6: Simplified augmented training
```

Approach 2: Data Augmentation + High-Confidence Pseudo-labels

Train with augmented data, then add high-confidence (≥0.7) pseudo-labels for further training.

Steps:

- 1. First complete Approach 1 (run Cell 1 or Cell 6)
- 2. Run Cell 3
- 3. Final model saves to (./final_model/)

```
python
```

```
# Step 1: Run Cell 1 or Cell 6
# Step 2: Run Cell 3
```

Approach 3: Data Augmentation + Top 50% Pseudo-labels

Train with augmented data, then use the top 50% highest-confidence predictions as pseudo-labels.

Steps:

- 1. First complete Approach 1 (run Cell 1 or Cell 6)
- 2. Run Cell 9
- 3. Final model saves to ./final_model/

```
python
```

```
# Step 1: Run Cell 1 or Cell 6
# Step 2: Run Cell 9
```

Model Evaluation

After training, evaluate model performance on the test set:

```
python
# Run Cell 2 or Cell 10
evaluate_on_test()
```

Outputs:

- Overall accuracy
- Precision, recall, F1-score per class
- Detailed classification report

Code Structure

Notebook Cells

Cell	Description		
Cell 1	Complete augmented training with weighted loss		
Cell 2	Test set evaluation function		
Cell 3	Self-supervised learning (confidence threshold 0.7)		
Cell 6	Simplified augmented training		
Cell 9	Self-supervised learning (top 50% pseudo-labels)		
Cell 10	Test set evaluation function (duplicate)		

Key Components

- Data Augmentation: WordNet-based synonym replacement doubles training data
- **Custom Dataset**: ALBERT tokenization with max length 128
- Weighted Loss: Class weights of 0.7 (UNINFORMATIVE) and 1.7 (INFORMATIVE)
- Pseudo-labeling: Two strategies for utilizing unlabeled data

Expected Performance

Approach	F1 Score	Training Time	Description
Approach 1	~0.888	10-15 min	Baseline with data augmentation
Approach 2	~0.888+	15-25 min	High-quality pseudo-labels
Approach 3	Best	30-40 min	Maximum data utilization
4	•	•	•

Troubleshooting

Common Issues

1. NLTK Download Errors:

```
python
import nltk
nltk.download('wordnet')
nltk.download('averaged_perceptron_tagger')
```

2. **GPU Memory Issues**:

- Reduce batch size in training arguments
- Monitor CUDA memory usage

3. Training Interruption:

- Model checkpoints are saved in (./results/checkpoint-*)
- Training can resume from last checkpoint

Directory Structure

Quick Start

To run the best-performing approach (Approach 3):

bash

```
# 1. Prepare the environment
conda activate opence-v1.5.1

# 2. Run basic training
# Execute Cell 6 in the notebook

# 3. Run self-supervised learning with top 50% pseudo-labels
# Execute Cell 9 in the notebook

# 4. Evaluate the model
# Execute Cell 10 in the notebook
```

License

This project is for academic research purposes only.