Question Paper

Exam Date & Time: 07-May-2024 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

DEPRATMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY COMPUTER AND COMMUNICATION ENGINEERING END SEMESTER EXAMINATION, APRIL 2024

DATABASE MANAGEMENT SYSTEMS [ICT 2225]

Marks: 50 Duration: 180 mins.

Α

Answer all the questions.

All questions are mandatory. Assume missing data

- Verify if the following schedule S can be converted to a serializable schedule. Provide the same if one exists. S: r1 (X); r2 (Z); r3 (X); r1 (Z); r2 (Y); r3 (Y); w1 (X); w2 (Z); w3 (Y); w2 (Y);
- 1B) Consider the log in Figure Q1b. Suppose there is a crash just before the (3)
 - < T0 abort> log record is written out. Explain what would happen during

Step				
1	T0 start			
2	T0, B, 2000, 2050			
3	T1 start			
4	Checkpoint{T0, T1}			
5	T1, C, 700, 600			
6	T1 commit			
7	T2 start			
8	T2, A, 500, 400			
9	T0, B, 2000			
10	T0 abort			
11	T2, A, 500			
12	T2, abort			

Figure Q1b

recovery.

- 1C) Illustrate how different levels of abstraction in a database system can be linked to navigating through a library with varying levels of access to information for other users.
- 2A) Consider the following database schema for managing student participation in cultural programs: (5)

Students (student_id: varchar(20), name: varchar(50), department: varchar(20), dob: date)

Programs (program id: int, program name: varchar(50), organizer: varchar(50))

Participation (student_id: varchar(20), program_id: int, year: int)

Performances (program_id: int, performance_id: int, performance_name: varchar(50))

Solve the following by writing **nested subquery concepts**:

- i.List the programs where more than one performance is scheduled.
- ii. List the departments whose students have participated in all programs organized by a 'specific organizer'.
- iii. Find the students who have participated in programs from more than one organizer.
- iv. Produce a list of students who have not participated in any program.
- v. List the organizers who have organized programs in all departments.
- 2B) Consider you were to set up a display in a science museum showcasing experiments conducted by (3) notable scientists in the year 2023, specifically those performed in the Laboratory Wing, how would you implement a query to select these experiments and create a view for this special exhibit in the museum

scientist_id		scientist_name			
101		Isaac Newton			
102		Marie Curie			
103		Albert Einstein			
104		Rosalind Franklin			
Experiments					
experiment_id	scientist_id		year	lab_room	
1	101		2023	Laboratory A	
2	102		2023	Laboratory B	
3	103		2023	Laboratory Wing	
4	104		2023	Laboratory Win	

- 2C) Consider a group of employees joined in TCS company and you want to find all the employees who (2) started their jobs between January 1, 2024, and April 30, 2024, develop a query without using BETWEEN comparator in sql.
- 3A) What is a canonical cover. Consider the following set of functional dependencies, $F = (A \rightarrow BCD; BC \rightarrow DE; B \rightarrow D; D \rightarrow A)$, on the relation schema R(A, B, C, D, E, F)
 - i. Find the candidate key for the relation R.
 - ii. Compute a canonical cover for the above set of functional dependencies F. Give each step of your derivation with a suitable justification.
- 3B) Illustrate the difference between INNER JOIN and OUTER JOIN.

