1. Определите истинность заданных утверждений. Считайте, что a и b — урэлементы, $a \neq b$.

- (a) $a \in \{\{a\}, b\}$
- (i) $\{a, a\} \cup \{a, a, a\} = \{a\}$
- (r) $\{\emptyset,\emptyset\}\subset\{\emptyset\}$

- (b) $a \in \{a, \{b\}\}$
- (j) $\{a, a\} \cap \{a, a, a\} = \{a\}$
- (s) $\{\{\emptyset\}\}\subset\{\{\emptyset\},\{\emptyset\}\}\}$

- (c) $\{a\} \in \{a, \{a\}\}$
- (k) $\{a, a\} \cap \{a, a, a\} = \{a, a\}$
- (t) $a \in 2^{\{a\}}$

- (d) $\{a\} \subset \{a, b\}$
- (1) $\{a, a, a\} \setminus \{a, a\} = \{a\}$
- (u) $2^{\{a,\emptyset\}} \subset 2^{\{a,b,\emptyset\}}$

- (e) $\{a\} \subseteq \{\{a\}, \{b\}\}$
- $(m)\emptyset \in \emptyset$

(v) $\{a, b\} \subseteq 2^{\{a, b\}}$

- (f) $\{\{a\}\}\subset\{\{a\},\{a,b\}\}$
- (n) $\emptyset \subseteq \emptyset$

- (g) $\{\{a\},b\}\subseteq\{a,\{a,b\},\{b\}\}$
- (o) $\emptyset \subset \emptyset$

(w) $\{a, a\} \in 2^{\{a, a\}}$

 $(x) \{\{a\},\emptyset\} \subseteq 2^{\{a,a\}}$

- (h) $\{a, a\} \cup \{a, a, a\} =$
- (p) $\emptyset \in \{\emptyset\}$

(y) $\{a, \{a\}\} \subset 2^{\{a, 2^{\{a\}}\}}$

- ${a, a, a, a, a}$
- (q) $\emptyset \subseteq \{\{\emptyset\}\}$
- (z) $\{\{a, \{\emptyset\}\}\}\}\subseteq 2^{\{a,2^{\emptyset}\}}$
- 2. Дано множество-универсум $\mathfrak{U} = \{1, 2, ..., 10\}$ и его подмножества: $A = \{x \mid x$ чётное $\}$, $B = \{x \mid x - \text{простое}^2\}, C = \{2, 4, 7, 9\}.$ Нарисуйте диаграмму Венна для заданных множеств, отметьте на ней все элементы, а затем найдите:
 - (a) $B \setminus \overline{C}$

- (c) $\mathfrak{U} \setminus (\overline{C} \cup A)$
- (e) $|2^{A\setminus C}|$

- (b) $B \triangle (A \cap C)$
- (d) $|\{A \cup B \cup 2^{\varnothing} \cup 2^{\mathfrak{U}}\}|$ (f) $(2^A \cap 2^C) \setminus 2^B$
- 3. Даны следующие множества³: $A = \{1, 2, 4\}, B = \{\Box, A\} \cup \emptyset, C = 2^{\emptyset} \setminus \{\emptyset\}, D = \{4, |2^{\{\emptyset, C\}}|\}.$ Внезапно требуется найти:
 - (a) $A \triangle D$

(c) $B \cap \overline{A}$

(e) $D^{|C|}$

(b) $C \times B$

(d) $B \times 2^{\{C\}}$

- (f) $\{D \cap \{A\}\} \times (D \cup \{|D|\})$
- 4. Мера Жаккара $\mathcal{J}(A,B)$ для двух конечных множеств A и B определяет степень их похожести и задаётся следующим образом:

$$\mathcal{J}(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

При этом $\mathcal{J}(\emptyset,\emptyset)=1$. Расстояние Жаккара $d_{\mathcal{J}}(A,B)$ между двумя множествами A и Bопределяет степень их различия и задаётся как $d_I(A, B) = 1 - \mathcal{J}(A, B)$. Докажите следующие утверждения для произвольных конечных множеств А и В.

- (a) $\mathcal{J}(A, A) = 1$ и $d_{\mathcal{J}}(A, A) = 0$.
- (b) $\mathcal{J}(A, B) = \mathcal{J}(B, A)$ u $d_{\mathcal{J}}(A, B) = d_{\mathcal{J}}(B, A)$.
- (c) $\mathcal{J}(A, B) = 1$ и $d_{\mathcal{J}}(A, B) = 0$ тогда и только тогда, когда A = B.
- (d) $0 \le \mathcal{J}(A, B) \le 1 \text{ if } 0 \le d_{\mathcal{J}}(A, B) \le 1$.
- (e) Для произвольных (необязательно конечных) множеств A, B и C выполняется так называемое неравенство треугольника⁵:

$$d_{\mathcal{J}}(A,C) \leq d_{\mathcal{J}}(A,B) + d_{\mathcal{J}}(B,C)$$

- 5. Изобразите на графиках \mathbb{R}^2 следующие множества точек:
 - (a) $\{1, 2, 3\} \times (1, 3]$

(d) $\{\langle x, y \rangle \mid y \in \{1, ..., 5\}, x \in [1; 6 - y)\}$

(b) $[1;5) \times (1;4] \setminus \{\langle 2,3 \rangle\}$

- (e) $\{\langle x, y \rangle \in [1, 5] \times [1, 4) \mid (y \ge x) \lor (x > 4)\}$
- (c) $[1;7] \times (1;5] \setminus (1;4] \times (1;3)$
- (f) $\{\langle x, y \rangle \in (1, 5]^2 \mid 4(x-2)^2 + 9(y-3)^2 \le 36\}$

 $^{^1}$ Здесь под универсумом имеется в виду множество доступных урэлементов. Считайте, что $\overline{A}=\mathfrak{U}\setminus A$.

² Считайте, что 1 не является простым числом.

³ □ — самый обыкновенный квадрат, і— самый обыкновенный кот.

⁴ Jaccard index

 $^{^5}$ Из (a)-(c) и (e) следует, что $d_{\mathcal{T}}$ является метрикой, что крайне интересно и полезно... ∂ ля некоторых.

6. Найдите все множества A, B и C, которые удовлетворяют следующим условиям:

$$A = \{1, |B|, |C|\}$$
$$B = \{2, |A|, |C|\}$$
$$C = \{1, 2, |A|, |B|\}$$

- 7. Нечёткие множества обобщение множеств для случаев, когда необходимо описать вероятностный или частичный характер нахождения элементов во множестве. Каждому элементу $x \in X$ заданного универсума X сопоставляется степень принадлежности $\mu(x) \in [0;1] \subseteq \mathbb{R}$, задаваемая в виде действительного числа от 0 до 1. Нечёткие множества задаются с помощью перечисления элементов вместе со степенями принадлежности, например, $F = \{a: 0.4, b: 0.8, c: 0.2, d: 0.9, e: 0.7\}$ и $R = \{a: 0.6, b: 0.9, c: 0.4, d: 0.1, e: 0.5\}$.
 - (a) Дополнение нечёткого множества S обозначается \overline{S} и задаётся как множество, в котором степень принадлежности каждого элемента равна $\mu_{\overline{S}}(x) = 1 \mu_S(x)$. Найдите \overline{F} и \overline{R} .
 - (b) Объединение нечётких множеств S и T обозначается $S \cup T$ и задаётся как множество, в котором степень принадлежности каждого элемента есть максимум из степеней принадлежности данного элемента в двух исходных множествах S и T. Найдите $F \cup R$.
 - (c) Пересечение нечётких множеств $S \cap T$ задаётся аналогично объединению: $\mu_{S \cap T}(x) = \min\{\mu_S(x), \mu_T(x)\}$. Найдите $F \cap R$.
 - (d) Самостоятельно придумайте определение для разности нечётких множеств $S \setminus T$. Найдите $F \setminus R$ и $R \setminus F$.
- 8. Определите счётность или несчётность следующих множеств:
 - (a) Множество рациональных 7 чисел \mathbb{Q} .
 - (b) Булеан множества натуральных чисел $\mathcal{P}(\mathbb{N})$.
 - (c) Множество всех функций вида $f: \mathbb{N} \to \mathbb{N}$.
 - (d) Объединение счётного числа счётных множеств.
 - (e) Множество действительных корней всех уравнений вида $ax^2 + bx + c = 0$ с целочисленными коэффициентами a, b и c.
- 9. Докажите или опровергните следующие утверждения:
 - (a) Если $A \subseteq B$ и $B \subseteq C$, то $A \subseteq C$.
 - (b) $|\mathcal{P}(A)| = 2^{|A|}$.
 - (c) $|\mathbb{C}| = |\mathbb{R}|$, то есть множества комплексных и действительных чисел равномощны.
 - (d) $\langle a,b\rangle=\langle c,d\rangle \leftrightarrow (a=c) \land (b=d)$ при использовании определения упорядоченной пары по Куратовскому: $\langle x,y\rangle_K=\{\{x\},\{x,y\}\}.$

⁶ Fuzzy sets

⁷ Рациональное число можно представить в виде дроби m/n, где $m \in \mathbb{Z}-$ целое, а $n \in \mathbb{N}-$ натуральное.