Homework 3:

Tautological Form and Symplectomorphisms

This set of problems is from [53].

1. Let (M,ω) be a symplectic manifold, and let α be a 1-form such that

$$\omega = -d\alpha$$
.

Show that there exists a unique vector field v such that its interior product with ω is α , i.e., $\imath_v\omega=-\alpha$.

Prove that, if g is a symplectomorphism which preserves α (that is, $g^*\alpha = \alpha$), then g commutes with the one-parameter group of diffeomorphisms generated by v, i.e.,

$$(\exp tv) \circ g = g \circ (\exp tv) .$$

Hint: Recall that, for $p \in M$, $(\exp tv)(p)$ is the *unique* curve in M solving the ordinary differential equation

$$\begin{cases} \frac{d}{dt}(\exp tv(p)) = v(\exp tv(p)) \\ (\exp tv)(p)|_{t=0} = p \end{cases}$$

for t in some neighborhood of 0. Show that $g\circ(\exp tv)\circ g^{-1}$ is the one-parameter group of diffeomorphisms generated by g_*v . (The push-forward of v by g is defined by $(g_*v)_{g(p)}=dg_p(v_p)$.) Finally check that g preserves v (that is, $g_*v=v$).

2. Let X be an arbitrary n-dimensional manifold, and let $M=T^*X$. Let $(\mathcal{U},x_1,\ldots,x_n)$ be a coordinate system on X, and let $x_1,\ldots,x_n,\xi_1,\ldots,\xi_n$ be the corresponding coordinates on $T^*\mathcal{U}$.

Show that, when α is the tautological 1-form on M (which, in these coordinates, is $\sum_{i} \xi_i \, dx_i$), the vector field v in the previous exercise is just the vector field $\sum_{i} \xi_i \, \frac{\partial}{\partial E_i}$.

Let $\exp tv$, $-\infty < t < \infty$, be the one-parameter group of diffeomorphisms generated by v.

Show that, for every point $p = (x, \xi)$ in M,

$$(\exp tv)(p) = p_t$$
 where $p_t = (x, e^t \xi)$.

HOMEWORK 3 21

3. Let M be as in exercise 2.

Show that, if g is a symplectomorphism of M which preserves α , then

$$g(x,\xi) = (y,\eta) \implies g(x,\lambda\xi) = (y,\lambda\eta)$$

for all $(x, \xi) \in M$ and $\lambda \in \mathbb{R}$.

Conclude that g has to preserve the cotangent fibration, i.e., show that there exists a diffeomorphism $f:X\to X$ such that $\pi\circ g=f\circ\pi$, where $\pi:M\to X$ is the projection map $\pi(x,\xi)=x$.

Finally prove that $g=f_{\#}$, the map $f_{\#}$ being the symplectomorphism of M lifting f.

Hint: Suppose that g(p)=q where $p=(x,\xi)$ and $q=(y,\eta)$. Combine the identity

$$(dg_p)^*\alpha_q = \alpha_p$$

with the identity

$$d\pi_q \circ dg_p = df_x \circ d\pi_p .$$

(The first identity expresses the fact that $g^*\alpha=\alpha$, and the second identity is obtained by differentiating both sides of the equation $\pi\circ g=f\circ\pi$ at p.)

4. Let M be as in exercise 2, and let h be a smooth function on X. Define $\tau_h:M\to M$ by setting

$$\tau_h(x,\xi) = (x,\xi + dh_x) .$$

Prove that

$$\tau_h^* \alpha = \alpha + \pi^* dh$$

where π is the projection map

$$\begin{array}{ccc}
M & & (x,\xi) \\
\downarrow^{\pi} & & \downarrow \\
X & & x
\end{array}$$

Deduce that

$$\tau_h^* \omega = \omega ,$$

i.e., that τ_h is a symplectomorphism.