

Rail-to-rail 1.1 V dual and quad nanopower comparators

Datasheet - production data

Features

- Ultra-low current consumption: 220 nA typ./op.
- Propagation delay: 2 µs typ.
- · Rail-to-rail inputs
- Push-pull outputs
- Supply operation from 1.1 V to 5.5 V
- Wide temperature range: -40 to +125 °C
- ESD tolerance: 8 kV HBM / 300 V MM
- Dual version available in MiniSO8 and DFN8 (2 x 2 mm) package
- Quad version available in SO14, TSSOP14 and QFN16 3 x 3 mm package

Related product

 See the TS881 datasheet for single operator with smaller package.

Applications

- · Portable systems
- Signal conditioning
- Medical
- Automotive

Description

The TS882 is a dual and the TS884 device a quad comparator featuring ultra-low supply current (220 nA typical per operator with output high, $V_{\rm CC}$ = 1.2 V, no load) with rail-to-rail input and output capability. The performance of these comparators allows them to be used in a wide range of portable applications. The TS882 and TS884 devices minimize battery supply leakage and therefore enhance battery lifetime.

Operating from 1.1 to 5.5 V supply voltage, these comparators can be used over a wide temperature range (-40 to +125 °C) keeping the current consumption at an ultra-low level.

Table 1. Device summary

Order code	Temperature range	Package	Packaging	Marking
TS882IST		MiniSO8		K514
TS882IYST ⁽¹⁾	-40 to +125 °C	MiniSO8 (Automotive grade)	Tape and reel	K524
TS882IQ2T		DFN8 2 x 2 mm		K56
TS884IDT		SO14		S884I
TS884IPT	-40 to +125 °C	TSSOP14	Tape and reel	S884I
TS884IQ4T		QFN16 3 x 3 mm		K514

Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q002 or equivalent

July 2017 DocID024119 Rev 4 1/25

Contents TS882, TS884

Contents

1	Pin o	description 3
2	Abso	olute maximum ratings and operating conditions4
3	Elec	trical characteristics
4	Pack	rage information
	4.1	DFN8 2 x 2 mm package information
	4.2	MiniSO8 package information
	4.3	SO14 package information
	4.4	QFN16 3 x 3 package information
	4.5	TSSOP14 package information
5	Revi	sion history

TS882, TS884 Pin description

1 Pin description

Figure 1. Pin connections TS882 (top view)

Figure 2. Pin connections TS884 (top view)

2 Absolute maximum ratings and operating conditions

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage ⁽¹⁾	6	V
V _{ID}	Differential input voltage ⁽²⁾	±6	V
V _{IN}	Input voltage range	(V_{CC}^{-}) - 0.3 to (V_{CC}^{+}) + 0.3	V
	Thermal resistance junction to ambient (TS882) ⁽³⁾ MiniSO8 DFN8 2 x 2 mm	190 57	
R _{THJA}	Thermal resistance junction to ambient (TS884) ⁽³⁾ SO14 TSSOP14 QFN16 3 x 3 mm	105 100 45	°C/W
T _{STG}	Storage temperature	-65 to +150	°C
TJ	Junction temperature	150	°C
T _{LEAD}	Lead temperature (soldering 10 seconds)	260	°C
	Human body model (HBM) ⁽⁴⁾	8	kV
ESD	Machine model (MM) ⁽⁵⁾	300	\ /
	Charged device model (CDM) ⁽⁶⁾	1300	V
	Latch-up immunity	200	mA

^{1.} All voltage values, except differential voltages, are referenced to V_{CC} -. V_{CC} is defined as the difference between V_{CC} + and V_{CC} -.

Table 3. Operating conditions

Symbol	Parameter	Value	Unit
T _{oper}	Operating temperature range	-40 to +125	°C
V _{CC}	Supply voltage -40 °C < T _{amb} < +125 °C	1.1 to 5.5	V
V _{ICM}	Common mode input voltage range -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C	(V_{CC-}) - 0.2 to (V_{CC+}) + 0.2 (V_{CC-}) to (V_{CC+}) + 0.2	٧

^{2.} The magnitude of input and output voltages must never exceed the supply rail $\pm 0.3 \text{ V}$.

^{3.} Short-circuits can cause excessive heating. These values are typical.

^{4.} According to JEDEC standard JESD22-A114F.

^{5.} According to JEDEC standard JESD22-A115A.

^{6.} According to ANSI/ESD STM5.3.1.

3 Electrical characteristics

Table 4. V_{CC} = +1.2 V, T_{amb} = +25 °C, V_{ICM} = $V_{CC}/2$ (unless otherwise specified)⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IO}	Input offset voltage ⁽²⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C	-6	1	6	mV
ΔV_{IO}	Input offset voltage drift	-40 °C < T _{amb} < +125 °C		3		μV/°C
V _{HYST}	Input hysteresis voltage ⁽³⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C	1.5	2.4	4.2	mV
I _{IO}	Input offset current ⁽⁴⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C			10 100	pA
I _{IB}	Input bias current ⁽⁴⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C		1	10 100	pA
I _{CC}	Supply current per operator	No load, output low, V_{ID} = -0.1 V -40 °C < T_{amb} < +125 °C		300	450	nA
		No load, output high, V_{ID} = +0.1 V -40 °C < T_{amb} < +125 °C		220	350	
I _{SC}	Short-circuit current	Source Sink		1.0 1.7		mA
V _{OH}	Output voltage high	I _{source} = 0.2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C	1.13 1.10 1.00	1.15		\ \
V _{OL}	Output voltage low	I _{sink} = 0.2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C		35	50 60 70	mV
CMRR	Common mode rejection ratio	0 < V _{ICM} < V _{CC} -40 °C < T _{amb} < +125 °C	50	68		dB
T _{PLH}	Propagation delay (low to high)	f = 1 kHz, C_L = 30 pF, R_L = 1 MΩ Overdrive = 10 mV -40 °C < T_{amb} < +125 °C		5.5	11 13	μѕ
	, , , , , , , , , , , , , , , , , , ,	Overdrive = 100 mV -40 °C < T _{amb} < +125 °C		2.1	3.1 3.4	
T _{PHL}	Propagation delay (high to low)	f = 1 kHz, C_L = 30 pF, R_L = 1 MΩ Overdrive = 10 mV -40 °C < T_{amb} < +125 °C		5.1	8 10	μs
	(····g·· to to ···)	Overdrive = 100 mV -40 °C < T _{amb} < +125 °C		1.9	2.6 3.1	
T _R	Rise time (10% to 90%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		100		ns

Table 4. V_{CC} = +1.2 V, T_{amb} = +25 °C, V_{ICM} = $V_{CC}/2$ (unless otherwise specified)⁽¹⁾ (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _F	Fall time (90% to 10%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		110		ns
T _{ON}	Power-up time			1.1	1.7	ms

All values over the temperature range are guaranteed through correlation and simulation. No production test is performed
at the temperature range limits.

Table 5. V_{CC} = +2.7 V, T_{amb} = +25 °C, V_{ICM} = $V_{CC}/2$ (unless otherwise specified)⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IO}	Input offset voltage ⁽²⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C	-6	1	6	mV
ΔV_{IO}	Input offset voltage drift	-40 °C < T _{amb} < +125 °C		3		μV/°C
V _{HYST}	Input hysteresis voltage ⁽³⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C	1.6	2.7	4.2	mV
I _{IO}	Input offset current ⁽⁴⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C			10 100	pA
I _{IB}	Input bias current ⁽⁴⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C		1	10 100	pA
I _{CC}	Supply current per operator	No load, output low, V_{ID} = -0.1 V -40 °C < T_{amb} < +125 °C No load, output high, V_{ID} = +0.1 V -40 °C < T_{amb} < +125 °C		310 220	450 350	nA
I _{SC}	Short-circuit current	Source Sink		10 13		mA
V _{OH}	Output voltage high	I _{source} = 2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C	2.48 2.40 2.10	2.51		V
V _{OL}	Output voltage low	I _{sink} = 2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C		130	210 230 310	mV
CMRR	Common mode rejection ratio	0 < V _{ICM} < V _{CC} -40 °C < T _{amb} < +125 °C	55	74		dB
T _{PLH}	Propagation delay (low to high)	$f = 1 \text{ kHz}$, $C_L = 30 \text{ pF}$, $R_L = 1 \text{ M}\Omega$ Overdrive = 10 mV -40 °C < T_{amb} < +125 °C		6.4	12 14	μs
		Overdrive = 100 mV -40 °C < T _{amb} < +125 °C		2.3	3.0 3.7	

^{2.} The offset is defined as the average value of positive and negative trip points (input voltage differences requested to change the output state in each direction).

^{3.} The hysteresis is a built-in feature of the TS882 device. It is defined as the voltage difference between the trip points.

^{4.} Maximum values include unavoidable inaccuracies of the industrial tests.

Table 5. V_{CC} = +2.7 V, T_{amb} = +25 °C, V_{ICM} = $V_{CC}/2$ (unless otherwise specified)⁽¹⁾ (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _{PHL}	Propagation delay (high to low)	f = 1 kHz, C_L = 30 pF, R_L = 1 MΩ Overdrive = 10 mV -40 °C < T_{amb} < +125 °C Overdrive = 100 mV		6.4	12 14 3.0	μs
		-40 °C < T _{amb} < +125 °C			3.7	
T _R	Rise time (10% to 90%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		120		ns
T _F	Fall time (90% to 10%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		130		ns
T _{ON}	Power-up time			1.1	1.7	ms

^{1.} All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits.

Table 6. V_{CC} = +5 V, T_{amb} = +25 °C, V_{ICM} = $V_{CC}/2$ (unless otherwise specified)⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IO}	Input offset voltage ⁽²⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C	-6	1	6	mV
ΔV_{IO}	Input offset voltage drift	-40 °C < T _{amb} < +125 °C		3		μV/°C
V _{HYST}	Input hysteresis voltage ⁽³⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C	1.6	3.1	4.2	mV
I _{IO}	Input offset current ⁽⁴⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C			10 100	pA
I _{IB}	Input bias current ⁽⁴⁾	T _{amb} = +25 °C -40 °C < T _{amb} < +125 °C		1	10 100	pA
Icc	Supply current per operator	No load, output low, V_{ID} = -0.1 V -40 °C < T_{amb} < +125 °C		350	500	nA
100	eapply current per operator	No load, output high, V_{ID} = +0.1 V -40 °C < T_{amb} < +125 °C		250	400	
I _{SC}	Short-circuit current	Source Sink		32 32		mA
V _{OH}	Output voltage high	I _{source} = 2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C	4.86 4.75 4.60	4.88		V
V _{OL}	Output voltage low	I _{sink} = 2 mA -40 °C < T _{amb} < +85 °C -40 °C < T _{amb} < +125 °C		90	130 170 280	mV
CMRR	Common mode rejection ratio	0 < V _{ICM} < V _{CC} -40 °C < T _{amb} < +125 °C	55	78		dB

The offset is defined as the average value of positive and negative trip points (input voltage differences requested to change the output state in each direction).

^{3.} The hysteresis is a built-in feature of the TS882. It is defined as the voltage difference between the trip points.

^{4.} Maximum values include unavoidable inaccuracies of the industrial tests.

Table 6. V_{CC} = +5 V, T_{amb} = +25 °C, V_{ICM} = $V_{CC}/2$ (unless otherwise specified)⁽¹⁾ (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
SVR	Supply voltage rejection	ΔV_{CC} = 1.2 V to 5 V -40 °C < T _{amb} < +125 °C	65	80		dB
T _{PLH}	Propagation delay (low to high)	f = 1 kHz, C_L = 30 pF, R_L = 1 MΩ Overdrive = 10 mV -40 °C < T_{amb} < +125 °C Overdrive = 100 mV		8.3 2.5	13 22 3.4	μs
		-40 °C < T _{amb} < +125 °C			4.1	
T _{PHL}	Propagation delay (high to low)	f = 1 kHz, C_L = 30 pF, R_L = 1 M Ω Overdrive = 10 mV -40 °C < T_{amb} < +125 °C		9.0	16 19	μs
	(tilight to low)	Overdrive = 100 mV -40 °C < T _{amb} < +125 °C		2.6	3.5 4.2	
T _R	Rise time (10% to 90%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		160		ns
T _F	Fall time (90% to 10%)	$C_L = 30 \text{ pF}, R_L = 1 \text{ M}\Omega$		150		ns
T _{ON}	Power-up time			1.1	1.7	ms

^{1.} All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits.

^{2.} The offset is defined as the average value of positive and negative trip points (input voltage differences requested to change the output state in each direction).

^{3.} The hysteresis is a built-in feature of the TS882 device. It is defined as the voltage difference between the trip points.

^{4.} Maximum values include unavoidable inaccuracies of the industrial tests.

Figure 3. Current consumption per operator vs. Figure 4. Current consumption per operator vs. supply voltage - output low supply voltage - output high

Figure 5. Current consumption per operator vs. Figure 6. Current consumption per operator vs. input common mode voltage at $V_{CC} = 1.2 \text{ V}$ input common mode voltage at $V_{CC} = 5 \text{ V}$

Figure 7. Current consumption per operator vs. Figure 8. Current consumption per operator vs. temperature toggle frequency

Figure 9. Input offset voltage vs. input common mode voltage at $V_{CC} = 1.2 \text{ V}$

Figure 10. Input hysteresis voltage vs. input common mode voltage at $V_{CC} = 1.2 \text{ V}$

Figure 11. Input offset voltage vs. input common mode voltage at V_{CC} = 5 V

Figure 12. Input hysteresis voltage vs. input common mode voltage at $V_{CC} = 5 \text{ V}$

Figure 13. Input offset voltage vs. temperature

Figure 14. Input hysteresis voltage vs. temperature

Figure 15. Output voltage drop vs. sink current at $V_{CC} = 1.2 \text{ V}$

Figure 16. Output voltage drop vs. source current at $V_{CC} = 1.2 \text{ V}$

Figure 17. Output voltage drop vs. sink current at $V_{CC} = 2.7 \text{ V}$

Figure 18. Output voltage drop vs. source current at $V_{CC} = 2.7 \text{ V}$

Figure 19. Output voltage drop vs. sink current at $V_{CC} = 5 \text{ V}$

Figure 20. Output voltage drop vs. source current at V_{CC} = 5 V

Figure 21. Propagation delay T_{PLH} vs. input common mode voltage at $V_{CC} = 1.2 \text{ V}$

Figure 22. Propagation delay T_{PLH} vs. input common mode voltage at $V_{CC} = 1.2 \text{ V}$

Figure 23. Propagation delay T_{PLH} vs. input common mode voltage at $V_{CC} = 5 \text{ V}$

Figure 24. Propagation delay T_{PHL} vs. input common mode voltage at V_{CC} = 5 V

Figure 25. Propagation delay T_{PLH} vs. input signal overdrive at $V_{CC} = 1.2 \text{ V}$

Figure 26. Propagation delay T_{PHL} vs. input signal overdrive at $V_{CC} = 1.2 \text{ V}$

57

Figure 27. Propagation delay T_{PLH} vs. input signal overdrive at $V_{CC} = 5 \text{ V}$

Figure 28. Propagation delay T_{PHL} vs. input signal overdrive at $V_{CC} = 5 \text{ V}$

12 10 T = 125 °C V_{ICM} = 2.5 V V_{ICM} = 2.5 V V_{ICM} = 2.5 V T = 25 °C T = -40 °C V_{OV} (mV)

Figure 29. Propagation delay T_{PLH} vs. supply voltage for signal overdrive 10 mV

Figure 30. Propagation delay T_{PHL} vs. supply voltage for signal overdrive 10 mV

Figure 31. Propagation delay T_{PLH} vs. supply voltage for signal overdrive 100 mV

Figure 32. Propagation delay T_{PHL} vs. supply voltage for signal overdrive 100 mV

Figure 33. Propagation delay vs. temperature for signal overdrive 10 mV

Figure 34. Propagation delay vs. temperature for signal overdrive 100 mV

TS882, TS884 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 DFN8 2 x 2 mm package information

Figure 35. DFN8 2 x 2 mm package outline

Table 7. DFN8 2 x 2 mm package mechanical data (pitch 0.5 mm)

	Dimensions								
Symbol	Millimeters			Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А	0.51	0.55	0.60	0.020	0.022	0.024			
A1			0.05			0.002			
A3		0.15			0.006				
b	0.18	0.25	0.30	0.007	0.010	0.012			
D	1.85	2.00	2.15	0.073	0.079	0.085			
D2	1.45	1.60	1.70	0.057	0.063	0.067			
E	1.85	2.00	2.15	0.073	0.079	0.085			
E2	0.75	0.90	1.00	0.030	0.035	0.039			
е		0.50			0.020				
L			0.50			0.020			
ddd			0.08			0.003			

Figure 36. DFN8 2 x 2 mm footprint recommendation

4.2 MiniSO8 package information

Figure 37. MiniSO8 package outline

Table 8. MiniSO8 package mechanical data

		Dimensions							
Symbol		Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А			1.10			0.043			
A1	0		0.15	0		0.006			
A2	0.75	0.85	0.95	0.030	0.033	0.037			
b	0.22		0.40	0.009		0.016			
С	0.08		0.23	0.003		0.009			
D	2.80	3.00	3.20	0.11	0.118	0.126			
E	4.65	4.90	5.15	0.183	0.193	0.203			
E1	2.80	3.00	3.10	0.11	0.118	0.122			
е		0.65			0.026				
L	0.40	0.60	0.80	0.016	0.024	0.031			
L1		0.95			0.037				
L2		0.25			0.010				
k	0°		8°	0°		8°			
ccc			0.10			0.004			

4.3 SO14 package information

Figure 38. SO14 package outline

Table 9. SO14 package mechanical data

Dimensions ⁽¹⁾							
Symbol	Millimeters			Inches			Note
	Min.	Тур.	Max.	Min.	Тур.	Max.	Note
Α	1.35		1.75	0.05		0.068	
A1	0.10		0.25	0.004		0.009	
A2	1.10		1.65	0.04		0.06	
В	0.33		0.51	0.01		0.02	
С	0.19		0.25	0.007		0.009	
D	8.55		8.75	0.33		0.34	(2)
E	3.80		4.0	0.15		0.15	
е		1.27			0.05		
Н	5.80		6.20	0.22		0.24	
L	0.40		1.27	0.015		0.05	
k	0°		8°	0°		8°	
ddd			0.10			0.004	

^{1.} Drawing dimensions include "Single" and "Matrix" versions.

Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm per side.

4.4 QFN16 3 x 3 package information

Figure 39. QFN16 3 x 3 mm (pitch 0.5 mm) package outline

57

TS882, TS884 Package information

Table 10. QFN16 3 x 3 mm (pitch 0.5 mm) package mechanical data

	Dimensions							
Symbol		Millimeters		Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А	0.80	0.90	1.00	0.031	0.035	0.039		
A1		0.02	0.05		0.001	0.002		
А3		0.20			0.008			
b	0.18	0.25	0.30	0.007	0.010	0.012		
D	2.85	3.00	3.15	0.112	0.118	0.124		
D1		1.50			0.059			
D2	See exposed pad variation			See exposed pad variation				
Е	2.85	3.00	3.15	0.112	0.118	0.124		
E1		1.50			0.059			
E2	See exposed pad variation			See exposed pad variation				
е	0.45	0.50	0.55	0.018	0.020	0.022		
L	0.30	0.40	0.50	0.012	0.016	0.020		
ddd			0.08			0.003		

Figure 40. QFN16 3 x 3 mm (pitch 0.5 mm) footprint recommendation

4.5 TSSOP14 package information

PIN 1 IDENTIFICATION

PIN 1 IDENTIFICATION

TSSOP14

Figure 41. TSSOP14 package outline

Table 11. TSSOP14 package mechanical data

	Dimensions							
Symbol		Millimeters		Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α			1.20			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.80	1.00	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.0089		
D	4.90	5.00	5.10	0.193	0.197	0.201		
Е	6.20	6.40	6.60	0.244	0.252	0.260		
E1	4.30	4.40	4.50	0.169	0.173	0.176		
е		0.65			0.0256			
L	0.45	0.60	0.75	0.018	0.024	0.030		
L1		1.00			0.039			
k	0°		8°	0°		8°		
aaa			0.10			0.004		

Revision history TS882, TS884

5 Revision history

Table 12. Document revision history

Date	Revision	Changes	
18-Jan-2013	1	Initial release.	
02-May-2013	2	Added TS884 device to header, Description, and Table 1: Device summary. Updated title (added "quad" comparator). Updated Features and Table 2 (ESD tolerance: "6 kV" HBM replaced by "8 kV" HBM). Updated Description in accordance with added TS884 device. Added SO14, TSSOP14 and QFN16 3 x 3 mm package to Features, figure on page 1, Section 4: Package information. and Table 1: Device summary. Moved Figure 1: Pin connections TS882 (top view) to page 3. Added Figure 2: Pin connections TS884 (top view). Updated Table 2: Absolute maximum ratings (added TS884 device RTHJA values). Minor corrections throughout document.	
14-Jul-2014	3	Updated Table 1: Device summary on page 1.	
06-Jul-2017	4	Added order code TS882IYST in <i>Table 1: Device summary</i> and "Automotive" in <i>Applications</i> .	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

