Practice 3: Euclidean Spaces

1. Scalar Product

1.1. Definition

 $V : V \times V \rightarrow \mathbb{R}$ $(\vec{v}, \vec{u}) \rightarrow \vec{v} \cdot \vec{u}$ is a scalar product if:

$$1. \ \left\{ \begin{array}{l} (\alpha \vec{v}_1 + \beta \vec{v}_2) \cdot \vec{u} = \alpha \left(\vec{v}_1 \cdot \vec{u} \right) + \beta \left(\vec{v}_2 \cdot \vec{u} \right) \\ \vec{u} \cdot (\alpha \vec{v}_1 + \beta \vec{v}_2) = \alpha \left(\vec{u} \cdot \vec{v}_1 \right) + \beta \left(\vec{u} \cdot \vec{v}_2 \right) \end{array} \right. \ \, \forall \vec{v}_1, \vec{v}_2, \vec{u} \in V, \ \forall \alpha, \beta \in \mathbb{R},$$

- 2. Symmetric: $\vec{v} \cdot \vec{u} = \vec{u} \cdot \vec{v}$, $\forall \vec{v}, \vec{u} \in V$.
- 3. Positive definite: $\vec{v} \cdot \vec{v} \ge 0$, $\forall \vec{v} \in V$, besides $\vec{v} \cdot \vec{v} = 0 \Rightarrow \vec{v} = \vec{0}$

 (V, \cdot) is an **Euclidean Space**.

Example 1 The following application is a scalar product in \mathbb{R}^2 :

$$(x_1,x_2)\cdot(y_1,y_2) = 2x_1y_1 + x_2y_1 + x_1y_2 + x_2y_2$$

1.2. Matrix Representation

Let $B = {\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n}$ be a basis set of V, and $\vec{u}, \vec{v} \in V$

$$\vec{u} = (x_1, \dots, x_n)_B = x_1 \vec{v}_1 + x_2 \vec{v}_2 + \dots + x_n \vec{v}_n \\ \vec{w} = (y_1, \dots, y_n)_B = y_1 \vec{v}_1 + y_2 \vec{v}_2 + \dots + y_n \vec{v}_n$$
 $\Longrightarrow \vec{u} \cdot \vec{w} = X^t G Y$

where

$$G = \begin{pmatrix} \vec{v}_{1}^{2} & \vec{v}_{1}.\vec{v}_{2} & \dots & \vec{v}_{1}.\vec{v}_{n} \\ \vec{v}_{1}.\vec{v}_{2} & \vec{v}_{2}^{2} & \dots & \vec{v}_{2}.\vec{v}_{n} \\ \vdots & \vdots & & \vdots \\ \vec{v}_{1}.\vec{v}_{n} & \vec{v}_{2}.\vec{v}_{n} & \dots & \vec{v}_{n}^{2} \end{pmatrix}, \quad X = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}, \quad Y = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix}$$

G is the associated matrix, named Gram Matrix.

Example 2 We know that the Gram matrix of a scalar product in \mathbb{R}^4 , in the standard basis is

$$A = \left(\begin{array}{rrrr} 2 & 1 & 0 & -2 \\ 1 & 2 & -1 & -2 \\ 0 & -1 & 3 & -2 \\ -2 & -2 & -2 & 6 \end{array}\right)$$

compute the scalar product of the vectors $\vec{u} = (3,5,2,-9)$ and $\vec{v} = (4,2,6,-1)$

Example 3 Nevertheless, in this practice we will work with the dot product in \mathbb{R}^n :

$$\vec{v} = (x_1, x_2, \dots, x_n) \vec{w} = (y_1, y_2, \dots, y_n)$$
 \Longrightarrow $\vec{v} \cdot \vec{w} = \sum_{k=1}^{n} x_k y_k$

Let us compute the dot product of two vectors in $\mathcal{M}_3(\mathbb{R})$, for instance, matrices A and B:

$$A = \begin{pmatrix} 1 & 0 & -3 \\ 0 & 2 & 5 \\ 1 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} -2 & 2 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

- \rightarrow A=[1 0 -3;0 2 5;1 0 1]; % Matrix A
- $B = [-2 \ 2 \ -3; 0 \ 1 \ 1; \ 0 \ 0 \ 1]; \% Matrix B$
- » A=A(:) %First, we pass the matrices to column vectors
- » B=B(:)
- » prod=dot(A,B) % the dot product of A and B

1.3. Norm, Angle, Distance

The **norm** of a vector (length) $\vec{v} \in V$ is:

$$\|\vec{v}\| = \sqrt{\cdot \vec{v}} = \sqrt{\vec{v}^2}$$

Function	OutPut
dot(u,v)	the scalar product of vectors \vec{u} and \vec{v} when the Gram matrix
	is the identity. For column vectors it is the same as u' *v
abs(v)	the absolute value of the elements of the vector \vec{v} .
norm(v,p)	the p^{th} root of the sum of p powers of the coordinates of vector \vec{v} . That means, $\sqrt[p]{\sum_{k=1}^n v_k^p}$, in Matlab: norm $(v, p) = \text{sum}(\text{abs}(v) . \land (p) \land (1/p)$
norm(v)	the Euclidean norm of \vec{v} , that mens,
	norm(v) = norm(v, 2)

Example 4 Compute the norm of $\vec{u} = (2, 5, -3, 8)$ de \mathbb{R}^4 .

We can compute the **angle** between two vectors \vec{u} and \vec{v} by calculating its cosine:

$$\cos(\alpha) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

Example 5 *Use the cosine to compare vectors in* \mathbb{R}^3 *:*

$$\vec{v}_1 = (-1,0,1), \quad \vec{v}_2 = (1,-5,0), \quad \vec{v}_3 = (2,3,-1), \quad \vec{w} = (1,2,3)$$

Find out which of the vectors \vec{v}_1 , \vec{v}_2 , \vec{v}_3 is closer to \vec{w} .

Example 6 We will apply the cosine of the angle of two vectors to the Face Recognition problem:

• Compute the cosine of the angle between a new image (that we want to classify) and all the face images in the database.

» cosk=dot(I,Ik)/(norm(I)*norm(Ik)); % cos angle between image I and im

- Descending sort the cosines
- *Select the image with the greatest cosine (and the smallest angle).*

Now apply the distance between two vectors to the face recognition problem.

The **distance** between two vectors: Let $\vec{u}, \vec{v} \in \mathbb{R}^n$. Then the **Distance** between \vec{u} and \vec{v} is:

$$d(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}|| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$

» dist_uv=norm(u-v); % distance between vector u and v

