

Measuring Differences To Compare Sets Of Models And Improve Diversity In MDE

Adel Ferdjoukh Florian Galinier, Eric Bourreau, Annie Chateau and Clémentine Nebut

ICSEA, Αθήνα, Ελλάδα, october 10th 2017

Synopsis

- Context & Introduction
- Measuring model differences
- 3 Handling sets of models
- 4 Application: improve diversity
- 6 Conclusion

Model Driven Engineering

- Intensive use of models during software development process.
- A model is defined by a modelling language (meta-model).
- Models are manipulated by programs called model transformations.

Models play the key role

- Validate concepts (meta-model).
- test model transformations.

Solution to get sets of models

Automated generation is preferred

Models play the key role

- Validate concepts (meta-model).
- test model transformations.

Solution to get sets of models

Automated generation is preferred.

Many generators exist

- $\mathcal{G}_{\text{RIMM}}$.
- emftocsp.
- Pramana, etc.

Generated sets of models suffer from

- Close to each other in structure.
- Element naming is poor.
- Solutions' space is not covered.

Many generators exist

- $\mathcal{G}_{\text{RIMM}}$.
- emftocsp.
- Pramana, etc.

Generated sets of models suffer from

- Close to each other in structure.
- Element naming is poor.
- Solutions' space is not covered.

Our objectives

- 1 Measure the quality of a set of models.
- ② Improve the quality of a set of models.

Solutions we propose

- Compare two models.
- Mandle a whole set of models
- Increase the diversity of generated sets.

Our objectives

- 1 Measure the quality of a set of models.
- ② Improve the quality of a set of models.

Solutions we propose

- Compare two models.
- Mandle a whole set of models.
- 3 Increase the diversity of generated sets.

Measuring model differences

Comparing two models with 4 distance measures.

Inspired from well-known distances.

- Mathematics.
- Natural language processing.
- Graph theory.

Adapted to models in MDE.

- structure of models.
- semantics of models.

Hamming distance

Original Hamming Distance

- Introduced in 1952 by Richard Hamming.
- Compares vectors.
- Used for fault detection and code correction.

Hamming distance

Original Hamming Distance

- Introduced in 1952 by Richard Hamming.
- Compares vectors.
- Used for fault detection and code correction.

Our version for models

Vectorial representation for models

$$a = (\underbrace{5, 4, 0, 2,}_{links \ attributes} \underbrace{4, 3, 6, 1}_{links \ attributes})$$

model a

Hamming distance

Counting differences

a =
$$(5, 4, 0, 2, 4, 3, 6, 1)$$

= $(4, 5, 3, 3, 4, 7, 0, 1)$
b = $(6, 5, 3, 3, 4, 7, 0, 1)$
d(a,b)= $(6/8)$

Optimisations: permutation sensitive.

Levenshtein distance

Original Levenshtein Distance

- Introduced in 1965 by Vladimir Levenshtein.
- Compares string.
- Used for orthographic corrections.

Levenshtein distance

Original Levenshtein Distance

- Introduced in 1965 by Vladimir Levenshtein.
- Compares string.
- Used for orthographic corrections.

Our version for models

Vectorial representation for models

Model for vectorial representation

- Computing distance
 - Classical Levenshtein algorithm
 - Based on addition, suppression and substitution costs.

Centrality distance

Centrality measure

- In graphs, a function associating a value to each node.
- Many well-known centrality functions: degree, betweenness, closeness, etc.

Centrality distance

Centrality measure

- In graphs, a function associating a value to each node.
- Many well-known centrality functions: degree, betweenness, closeness, etc.

Custom centrality measure

 Based on eigenvector centrality (used by Google in Pagerank algo.)

Centrality distance

Computation

- Transforming models into graphs
- Example of centrality vector

Comparing two models using (euclidean) norm(s).

Handle sets of models

Objectives

- Compare the models of a set.
- Select the most representative ones.
- Bring a graphical view of the inter-model diversity.

Usefulness

- Reduce the amount of models for testing.
- Achieve a good coverage of meta-models.

Compare the models of a set

Context & Introduction

- Use distance metrics.
- Compute distances for each pair of models.
- Produce a distance matrix

	m_1	m ₂	m ₃	m ₄	m_5	m ₆	m ₇	m ₈	m ₉	m ₁₀
m_1	0	12	27	27	27	26	46	44	45	39
m ₂	12	0	27	26	27	27	45	45	43	40
m ₃	27	27	0	18	17	16	46	45	46	39
m ₄	27	26	18	0	18	18	45	44	45	40
m ₅	27	27	17	18	0	18	45	43	44	38
	26	27	16	18	18	0	45	44	46	40
	46	45	46	45	45	45	0	36	36	41
	44	45	45	44	43	44	36	0	34	37
	45	43	46	45	44	46	36	34	0	39
m ₁₀	39	40	39	40	38	40	41	37	39	0

Select representative models

Hierarchical clustering of matrix

- Construct the clustering tree.
- Derive the clusters using a proximity threshold.
- Pick the representative models.

Select representative models

Hierarchical clustering of matrix

- Construct the clustering tree
- Derive the clusters using a proximity threshold.
- Pick the representative models.

Select representative models

Hierarchical clustering of matrix

- Construct the clustering tree
- Derive the clusters using a proximity threshold.
- Pick the representative models.

Graphical view of diversity

Voronoi Diagram

- 2D representation of models and distance between them.
- Manual selection of representative models.
- Manual comparison of model sets.

Graphical view of diversity

Voronoi Diagram

- 2D representation of models and distance between them.
- Manual selection of representative models.
- Manual comparison of model sets.

Application: improve diversity

Case study for application

- Scaffolding process in Bioinformatcis.
- Particular graphs.
- Lack of data.

Context & Introduction

With our approach

- Improve diversity of a set of generated models.
- Diverse sizes, structures, element naming.

Conclusion

Application: improve diversity

Case study for application

- Scaffolding process in Bioinformatcis.
- Particular graphs.
- Lack of data.

Context & Introduction

With our approach

- Improve diversity of a set of generated models.
- Diverse sizes, structures, element naming.

Generate a first set of 100 models.

Genetic algorithm (NSGAII)

• Model the problem as a genetic algorithm.

Running the GA (500 times)

- At each round, compute model distances and select representative models (S).
- Use S to produce the next population.

Experimental results

Round 0

Round 500

20

Conclusion & future work

Generated models suffer from

- Close to each other in structure.
- Element naming is poor.
- Solutions' space is not covered.

Contributions

- Four different measures for comparing models
- A method for comparing sets of models
- Select representative models (matrix clustering)
- Graphical viewing of covering (Voronoi diagrams)

Application

- Generate scaffold graphs in bio-informatics
- Improve diversity of generated models

