Week 10

Overview

- Decidability of synchronizability:
 - Preliminary results for 1-n and n-n
- MSO-definability $\exists k$ -bounded and $\forall k$ -bounded asynchronous MSC
- *RSC* communication model:
 - Definition
 - MSO-definability
 - STW-boundness (idea)

MSO - definability

MSO definability		Weakly sync	Weakly k-sync	$\exists k$ bounded	$\forall k$ bounded
Asynchronous	✓	✓	✓	✓	✓
FIFO 1-1 (p2p)	✓	✓	✓	✓	✓
Causally ordered	✓	✓	✓	✓	✓
FIFO n-1 (mailbox)	✓	✓	✓	✓	✓
FIFO 1-n	✓	✓	✓	✓	✓
FIFO n-n	✓	✓	✓	✓	✓
RSC	✓	✓	✓	✓	✓

STW - boundness

Bounded STW		Weakly sync	Weakly k-sync	∃ <i>k</i> bounded	$\forall k$ bounded
Asynchronous	*	×	✓	✓	✓
FIFO 1-1 (p2p)	×	×	✓	✓	✓
Causally ordered	×	×	✓	✓	✓
FIFO n-1 (mailbox)	×	✓	✓	✓	✓
FIFO 1-n	×	✓	✓	✓	✓
FIFO n-n	×	✓	✓	✓	✓
RSC	✓	✓	✓	✓	✓

1-n and n-n preliminary results

Preliminary results

An important component of the decidability proof is the following lemma, which shows that we can reduce synchronizability wrt. an STW-bounded class to bounded model-checking.

▶ **Lemma 9.** Let S be a communicating system, com $\in \{p2p, mb\}$, $k \in \mathbb{N}$, and $C \subseteq MSC^{k-stw}$. Then, $L_{com}(S) \subseteq C$ iff $L_{com}(S) \cap MSC^{(k+2)-stw} \subseteq C$.

The result follows from the following lemma. Note that a similar property was shown in [18, Proposition 5.4] for the specific class of existentially k-bounded MSCs.

▶ Lemma 10. Let $k \in \mathbb{N}$ and $\mathcal{C} \subseteq \mathsf{MSC}^{k\text{-stw}}$. For all $M \in \mathsf{MSC} \setminus \mathcal{C}$, we have $(Pref(M) \cap \mathsf{MSC}^{(k+2)\text{-stw}}) \setminus \mathcal{C} \neq \emptyset$.

We now have all ingredients to state a generic decidability result for synchronizability:

▶ **Theorem 11.** Fix finite sets \mathbb{P} and \mathbb{M} . Suppose com $\in \{p2p, mb\}$ and let $\mathcal{C} \subseteq \mathsf{MSC}$ be an MSO-definable and STW-bounded class (over \mathbb{P} and \mathbb{M}). The following problem is decidable: Given a communicating system \mathcal{S} , do we have $L_{\mathrm{com}}(\mathcal{S}) \subseteq \mathcal{C}$?

▶ Lemma 10. Let $k \in \mathbb{N}$ and $\mathcal{C} \subseteq \mathsf{MSC}^{k\text{-stw}}$. For all $M \in \mathsf{MSC} \setminus \mathcal{C}$, we have $(Pref(M) \cap \mathsf{MSC}^{(k+2)\text{-stw}}) \setminus \mathcal{C} \neq \emptyset$.

▶ Lemma 9. Let S be a communicating system, com $\in \{p2p, mb\}$, $k \in \mathbb{N}$, and $C \subseteq MSC^{k-stw}$. Then, $L_{com}(S) \subseteq C$ iff $L_{com}(S) \cap MSC^{(k+2)-stw} \subseteq C$.

Is this scenario possible?

▶ Lemma 9. Let S be a communicating system, com $\in \{p2p, mb\}$, $k \in \mathbb{N}$, and $C \subseteq MSC^{k-stw}$. Then, $L_{com}(S) \subseteq C$ iff $L_{com}(S) \cap MSC^{(k+2)-stw} \subseteq C$.

Is this scenario possible? NO, because of Lemma 10 and prefix-closure of $L_{com}(S)$

▶ Lemma 9. Let S be a communicating system, com $\in \{p2p, mb\}$, $k \in \mathbb{N}$, and $C \subseteq MSC^{k-stw}$. Then, $L_{com}(S) \subseteq C$ iff $L_{com}(S) \cap MSC^{(k+2)-stw} \subseteq C$.

Proof based on Lemma 10 and prefix-closure of $L_{com}(S)$

Problem: $L_{1-n}(S)$ is not prefix-closed \otimes

1 - n prefixes

Let $M = (\mathcal{E}, \to, \lhd, \lambda) \in \mathsf{MSC}$ and consider $E \subseteq \mathcal{E}$ such that E is \leq_M -downward-closed, i.e, for all $(e, f) \in \leq_M$ such that $f \in E$, we also have $e \in E$. Then, the MSC $(E, \to \cap (E \times E), \lhd \cap (E \times E), \lambda')$, where λ' is the restriction of \mathcal{E} to E, is called a *prefix* of M. In particular, the empty MSC is a prefix of M. We denote the set of prefixes of M by Pref(M). This is extended to sets $L \subseteq \mathsf{MSC}$ as expected, letting $Pref(L) = \bigcup_{M \in L} Pref(M)$.

Let $M = (\mathcal{E}, \to, \lhd, \lambda) \in \mathsf{MSC}_{1-n}$ and consider $E \subseteq \mathcal{E}$ such that E is \lessdot_M -downward-closed, i.e, for all $(e, f) \in \lessdot_M$ such that $f \in E$, we also have $e \in E$. Then, the MSC $(E, \to \cap (E \times E), \lhd \cap (E \times E), \lambda')$, where λ' is the restriction of \mathcal{E} to E, is called a 1-n prefix of M. We denote the set of 1-n prefixes of M by $Pref_{1-n}(M)$.

1-n preliminary results

Lemma 2.3. Every 1-n prefix of a 1-n MSC is a 1-n MSC.

Proof. Let $M = (\mathcal{E}, \to, \lhd, \lambda) \in \mathsf{MSC}_{1-n}$ and let $M_0 = (\mathcal{E}_0, \to_0, \lhd_0, \lambda_0)$ be a 1-n prefix of M, where $\mathcal{E}_0 \subseteq \mathcal{E}$. Firstly, the \lessdot_M -downward-closeness of \mathcal{E}_0 guarantees that M_0 is still an MSC. We need to prove that it is a 1-n MSC. By contradiction, suppose that M_0 is not a 1-n MSC. Then, there are distinct $e, f \in \mathcal{E}_0$ such that $e \lessdot_{M_0} f \lessdot_{M_0} e$, where $\lessdot_{M_0} = (\to_0 \cup \lhd_0 \cup \blacktriangleleft_{M_0})^*$. As $\mathcal{E}_0 \subseteq \mathcal{E}$, we have that $\to_0 \subseteq \to$, $\lhd_0 \subseteq \lhd$, $\blacktriangleleft_{M_0} \subseteq \blacktriangleleft_M$. Clearly, $\lessdot_{M_0} \subseteq \lessdot_M$, so $e \lessdot_M f \lessdot_M e$. This implies that M is not a 1-n MSC, because \lessdot_M is cyclic, which is a contradiction. Hence M_0 is a 1-n MSC.

Note that every 1-n prefix is also a prefix.

1 - n prefix closure

Lemma 2.6. $L_{1-n}(S)$ is 1-n prefix-closed: $Pref_{1-n}(L_{1-n}(S)) \subseteq L_{1-n}(S)$.

Proof. Given a system S, we have that $L_{1-n}(S) = L_{\mathsf{p2p}}(S) \cap \mathsf{MSC}_{1-n}$. Note that, because of how we defined a 1-n prefix, we have that $Pref_{1-n}(L_{1-n}(S)) = Pref(L_{1-n}(S)) \cap \mathsf{MSC}_{1-n}$. Moreover, $Pref(L_{1-n}(S)) \subseteq Pref(L_{\mathsf{p2p}}(S))$, and $Pref(L_{1-n}(S)) \subseteq L_{\mathsf{p2p}}(S)$ for Lemma 1.2. Putting everything together, $Pref_{1-n}(L_{1-n}(S)) \subseteq L_{\mathsf{p2p}}(S) \cap \mathsf{MSC}_{1-n} = L_{1-n}(S)$.

1-n preliminary results

Lemma 2.12. Let $k \in \mathbb{N}$ and $C \subseteq \mathsf{MSC}^{k\text{-stw}}$. For all $M \in \mathsf{MSC}_{1-n} \setminus C$, we have $(Pref_{1-n}(M) \cap \mathsf{MSC}^{(k+2)\text{-stw}}) \setminus C \neq \emptyset$.

Proof. Let k and \mathcal{C} be fixed, and let $M \in \mathsf{MSC}_{1-n} \setminus \mathcal{C}$ be fixed. If the empty MSC is not in \mathcal{C} , then we are done, since it is a valid 1-n prefix of M and it is in $\mathsf{MSC}^{(k+2)\text{-stw}} \setminus \mathcal{C}$. Otherwise, let $M' \in \mathit{Pref}_{1-n}(M) \setminus \mathcal{C}$ such that, for all \leq_M -maximal events e of M', removing e (along with its adjacent edges) gives an MSC in \mathcal{C} . In other words, M' is the "shortest" prefix of M that is not in \mathcal{C} . We obtain such an MSC by successively removing \leq_M -maximal events. Let e be $\leq_{M'}$ -maximal and let $M'' = M' \setminus \{e\}$. Since M' was taken minimal in terms of number of events, $M'' \in \mathcal{C}$. The proof proceeds exactly as the proof of Lemma 2.11.

1-n preliminary results

Lemma 2.15. Let S be a communicating system, $k \in \mathbb{N}$, and $C \subseteq \mathsf{MSC}^{k\text{-stw}}$. Then, $L_{1-n}(S) \subseteq C$ iff $L_{1-n}(S) \cap \mathsf{MSC}^{(k+2)\text{-stw}} \subseteq C$.

Proof. Follows from Lemma 2.6 and Lemma 2.12.

n-n prefixes

Let $M = (\mathcal{E}, \to, \lhd, \lambda) \in \mathsf{MSC}$ and consider $E \subseteq \mathcal{E}$ such that E is \leq_M -downward-closed, i.e, for all $(e, f) \in \leq_M$ such that $f \in E$, we also have $e \in E$. Then, the MSC $(E, \to \cap (E \times E), \lhd \cap (E \times E), \lambda')$, where λ' is the restriction of \mathcal{E} to E, is called a *prefix* of M. In particular, the empty MSC is a prefix of M. We denote the set of prefixes of M by Pref(M). This is extended to sets $L \subseteq \mathsf{MSC}$ as expected, letting $Pref(L) = \bigcup_{M \in L} Pref(M)$.

Let $M = (\mathcal{E}, \to, \lhd, \lambda) \in \mathsf{MSC}_{n-n}$ and consider $E \subseteq \mathcal{E}$ such that E is \bowtie_M -downward-closed, i.e, for all $(e, f) \in \bowtie_M$ such that $f \in E$, we also have $e \in E$. Then, the MSC $(E, \to \cap (E \times E), \lhd \cap (E \times E), \lambda')$, where λ' is the restriction of \mathcal{E} to E, is called a n-n prefix of M. We denote the set of n-n prefixes of M by $Pref_{n-n}(M)$.

n-n preliminary results

Lemma 2.4. Every n-n prefix of a n-n MSC is a n-n MSC.

Proof. Let $M = (\mathcal{E}, \to, \lhd, \lambda) \in \mathsf{MSC}_{n-n}$ and let $M_0 = (\mathcal{E}_0, \to_0, \lhd_0, \lambda_0)$ be a n-n prefix of M, where $\mathcal{E}_0 \subseteq \mathcal{E}$. Firstly, the \bowtie_M -downward-closeness of \mathcal{E}_0 guarantees that M_0 is still an MSC. We need to prove that it is a n-n MSC. By contradiction, suppose that M_0 is not a n-n MSC. Then, there are distinct $e, f \in \mathcal{E}_0$ such that $e \bowtie_{M_0} f \bowtie_{M_0} e$. As $\mathcal{E}_0 \subseteq \mathcal{E}$, we have that $\to_0 \subseteq \to$, $\lhd_0 \subseteq \lhd$, $\bowtie_0 \subseteq \bowtie$. Clearly, $\bowtie_{M_0} \subseteq \bowtie_M$, so $e \bowtie_M f \bowtie_M e$. This implies that M is not a n-n MSC, because \bowtie_M is cyclic, which is a contradiction. Hence M_0 is a n-n MSC.

Note that every n-n prefix is also a prefix.

n-n prefix closure

Lemma 2.7. $L_{n-n}(S)$ is n-n prefix-closed: $Pref_{n-n}(L_{n-n}(S)) \subseteq L_{n-n}(S)$.

Proof. Given a system S, we have that $L_{n-n}(S) = L_{p2p}(S) \cap \mathsf{MSC}_{n-n}$. Note that, because of how we defined a n-n prefix, we have that $Pref_{n-n}(L_{n-n}(S)) = Pref(L_{n-n}(S)) \cap \mathsf{MSC}_{n-n}$. Moreover, $Pref(L_{n-n}(S)) \subseteq Pref(L_{p2p}(S))$, and $Pref(L_{n-n}(S)) \subseteq L_{p2p}(S)$ for Lemma 1.2. Putting everything together, $Pref_{n-n}(L_{n-n}(S)) \subseteq L_{p2p}(S) \cap \mathsf{MSC}_{n-n} = L_{n-n}(S)$.

n-n preliminary results

Lemma 2.13. Let $k \in \mathbb{N}$ and $C \subseteq \mathsf{MSC}^{k\text{-stw}}$. For all $M \in \mathsf{MSC}_{n-n} \setminus C$, we have $(Pref_{n-n}(M) \cap \mathsf{MSC}^{(k+2)\text{-stw}}) \setminus C \neq \emptyset$.

Proof. Let k and \mathcal{C} be fixed, and let $M \in \mathsf{MSC}_{n-n} \setminus \mathcal{C}$ be fixed. If the empty MSC is not in \mathcal{C} , then we are done, since it is a valid n-n prefix of M and it is in $\mathsf{MSC}^{(k+2)\text{-stw}} \setminus \mathcal{C}$. Otherwise, let $M' \in \mathit{Pref}_{n-n}(M) \setminus \mathcal{C}$ such that, for all \bowtie_M -maximal events e of M', removing e (along with its adjacent edges) gives an MSC in \mathcal{C} . In other words, M' is the "shortest" prefix of M that is not in \mathcal{C} . We obtain such an MSC by successively removing \bowtie_M -maximal events. Let e be $\bowtie_{M'}$ -maximal and let $M'' = M' \setminus \{e\}$. Since M' was taken minimal in terms of number of events, $M'' \in \mathcal{C}$. The proof proceeds exactly as the proof of Lemma 2.11.

n-n preliminary results

Lemma 2.16. Let S be a communicating system, $k \in \mathbb{N}$, and $C \subseteq \mathsf{MSC}^{k\text{-stw}}$. Then, $L_{n-n}(S) \subseteq C$ iff $L_{n-n}(S) \cap \mathsf{MSC}^{(k+2)\text{-stw}} \subseteq C$.

Proof. Follows from Lemma 2.7 and Lemma 2.13.

MSO-definability of $\exists k$ and $\forall k$ -bounded asynchronous MSCs

$\exists k$ and $\forall k$ -bounded

Following the approach taken in Lohrey and Muscholl 2002, we introduce a binary relation $\longmapsto_k (\leadsto_b \text{ in their work})$ associated with a given bound k and an MSC M. Let $k \ge 1$ and M be a fixed MSC: we have $r \longmapsto_k s$ if, for some $i \ge 1$ and some channel $(p,q)^9$:

- 1. r is the i-th receive event (executed by q).
- 2. s is the (i + k)-th send event (executed by p).

Note that, for any two events s and r such that $r \mapsto_k s$, every linearization of M in which r is executed after s cannot k-bounded. Intuitively, we can read $r \mapsto_k s$ as "r has to be executed before s in a k-bounded linearization". A linearization \rightsquigarrow that respects \longmapsto_k (i.e. $\longmapsto_k \subseteq \rightsquigarrow$) is k-bounded.

$\exists k$ and $\forall k$ -bounded

In Lohrey and Muscholl 2002 it was shown that an MSC is $\exists k$ -bounded if and only if the relation $\leq_M \cup \longmapsto_k$ is acyclic¹⁰. Since \leq_M and acyclicity are both MSO-definable, it suffices to find an MSO formula that defines the \longmapsto_k relation to claim the MSO-definability of $\exists k$ -bounded MSCs. Unfortunately, this relation is not MSO-definable for asynchronous MSCs, because MSO logic cannot be used to "count" for an arbitrary i. For this reason, we introduce another similar MSO-definable binary relation \hookrightarrow_k , and we show that with this new relation we still have that an MSC M is $\exists k$ -bounded MSC iff $\leq_M \cup \hookrightarrow_k$ is acyclic and another condition holds. Let $k \geq 1$ and M be a fixed MSC: we have $r \hookrightarrow_k s$ if, for some $i \geq 1$ and some channel (p,q):

- 1. There are k+1 send events (s_1, \ldots, s_k, s) , where at least one is matched, such that $s_1 \to^+$ $\ldots \to^+ s_k \to^+ s$.
- 2. r is the first receive event among the receive events for the matched sends among s_1, \ldots, s_k, s .

∃3-bounded ∄ 2-bounded

$$!1,!2,!3,!4 \Rightarrow ?3 \hookrightarrow_{3} !4$$
 $!1,!2,!3,!5 \Rightarrow ?3 \hookrightarrow_{3} !5$
 $!1,!2,!4,!5 \Rightarrow ?1 \hookrightarrow_{3} !5$

$$\leq U \hookrightarrow_3$$
 is acyclic

$$!1,!2,!3 \Rightarrow ?3 \hookrightarrow_2 !3$$

$$\leq$$
 U \hookrightarrow_2 is cyclic

$\exists k$ and $\forall k$ -bounded

∃3-bounded ∄2-bounded

 $\leq U \hookrightarrow_3$ is acyclic

 $\leq U \hookrightarrow_2$ is cyclic

∄3-bounded

$$!1,!2,!3,!4 \Rightarrow ?3 \hookrightarrow_{3} !4$$

 $!1,!2,!3,!5 \Rightarrow ?3 \hookrightarrow_{3} !5$
 $!1,!2,!3,!4 \Rightarrow ?3 \hookrightarrow_{3} !6$

 \leq U \hookrightarrow_2 is acyclic, but the MSC is not $\exists 3$ -bounded

Proposition 3.9. An MSC M is $\exists k$ -bounded if and only if $\leq_M \cup \hookrightarrow_k$ is acyclic and, for each channel (p,q), there are at most k unmatched send events.

Proof. (\Rightarrow) Suppose M is $\exists k$ -bounded, which by definition means there is at least one $\exists k$ -bounded linearization \leadsto . Firstly, notice that every MSC that has more than k unmatched send events in any channel cannot be an $\exists k$ -bounded MSC. We already know that $\leq_M \subseteq \leadsto$, and we will show show that also $\hookrightarrow_k \subseteq \leadsto$. This implies that $\leq_M \cup \hookrightarrow_k$ is acyclic, otherwise we would not be able to find a linearization \leadsto that respects both \leq_M and \hookrightarrow_k . Suppose, by contradiction, that $\hookrightarrow_k \not\subseteq \leadsto$, i.e. there are two events r and s such that $r \hookrightarrow_k s$ and $s \leadsto r$. By definition of \hookrightarrow_k , there are k send events in a channel (p,q) that are executed before s, and whose respective receive events happens after r. If s is executed before r in the linearization, there will be k+1 messages in channel (i.e. \leadsto is not a $\exists k$ -bounded linearization). We reached a contradiction, hence $\hookrightarrow_k \subseteq \leadsto$ and $\leq_M \cup \hookrightarrow_k$ is acyclic.

 (\Leftarrow) Suppose $\leq_M \cup \hookrightarrow_k$ is acyclic and, for each channel (p,q), there are at most k unmatched send events. If $\leq_M \cup \hookrightarrow_k$ is acyclic, we are able to find at least one linearization \leadsto for the partial order $(\leq_M \cup \hookrightarrow_k)^*$. We want to show that this linearization is $\exists k$ -bounded. By contradiction, suppose \leadsto is not $\exists k$ -bounded, i.e. we are able to find k+1 send events $s_1 \to^+ \ldots \to^+ s_k \to^+ s$ on a channel (p,q), such that s is executed before any of the respective receive events takes place. There are two possible scenarios:

- Suppose all the k+1 send events are unmatched. This is impossible, since we supposed that there are at most k unmatched send events for any channel.
- Suppose there is at least one matched send event between the k+1 sends. Let the first matched send event be s_i and let r be the receive event that is executed first among the receive events for these k+1 sends. By hypothesis, $s \rightsquigarrow r$. However, according to the definition of \hookrightarrow_k , we must have $r \hookrightarrow_k s$. We reached a contradiction, since we cannot have that s happens before r in a linearization for the partial order $(\leq_M \cup \hookrightarrow_k)^*$, if $r \hookrightarrow_k s$.

$\exists k$ -bounded – MSO definability

According to Proposition 3.9, we can write the MSO formula the defines $\exists k$ -bounded MSCs as

$$\Psi_{\exists k} = acyclic(\leq_M \cup \hookrightarrow_k) \land \neg (\exists s_1 \dots s_{k+1}.s_1 \to^+ \dots \to^+ s_{k+1} \land allSends_p_q \land allUnm)$$

$$allSends_p_q = \bigvee_{p \in \mathbb{P}, q \in \mathbb{P}} \bigwedge_{s \in s_1, \dots, s_{k+1}} \bigvee_{a \in Send(p, q, \underline{\ })} (\lambda(s) = a)$$

$$allUnm = \bigwedge_{s \in s_1, \dots, s_{k+1}} (\neg matched(s))$$

where $acyclic(\leq_M \cup \hookrightarrow_k)$ is an MSO formula that checks the acyclicity of the $\leq_M \cup \hookrightarrow_k$ relation, and the \hookrightarrow_k relation can be defined as

$$r \hookrightarrow_k s = \exists s_1 \dots s_{k+1}. \left(\begin{array}{c} s_1 \to^+ \dots \to^+ s_{k+1} \wedge allSends_p_q \wedge \\ \exists r. (\bigvee_{s \in s_1, \dots, s_{k+1}} s \lhd r) \wedge \bigwedge_{e \in s_1, \dots, s_{k+1}} (\exists f.e \lhd f \implies r \to^* f) \end{array} \right)$$

RSC communication model

RSC MSC - definition

Definition 3.9 (RSC MSC). An MSC $M = (\mathcal{E}, \rightarrow, \triangleleft, \lambda)$ is a RSC MSC if it has no unmatched send events and there is a linearization \rightsquigarrow where any matched send event is immediately followed by its respective receive event.

In order to characterize S-computations more precisely, we shall now look at a definition given by Bougé [10]: "A system has synchronous communications if no message of a given type can be sent along a channel before the receiver is ready to receive (that is, in a state where the next action may be a reception of) a message of this type on the channel. For an external observer, the transmission then looks instantaneous and atomic. Sending and receiving a message correspond in fact to the same event."

RSC MSC – alternative definition

Following the characterization given in Charron-Bost, Mattern, and Tel 1996, Theorem 4.4, we give an alternative but equivalent definition of RSC MSC, which is based on a property of the conflict graph.

Definition 3.10 (RSC alternative). An MSC $M = (\mathcal{E}, \rightarrow, \triangleleft, \lambda)$ is a RSC MSC if and only if it has no unmatched send events and if in CG(M) there is no cycle, of length ≥ 2 , whose edges are all SR.

Theorem 4.4 (Crown criterion). A computation C is RSC if and only if C contains no crown.

Definition 4.1 (Crown). Let C be a computation. A crown (of size k) in C is a sequence $\langle (s_i, r_i), i \in \{1, ..., k\} \rangle$ of pairs of corresponding send and receive events such that

$$s_1 \prec r_2, s_2 \prec r_3, \ldots, s_{k-1} \prec r_k, s_k \prec r_1.$$

RSC MSC – MSO definability

Definition 3.10 (RSC alternative). An MSC $M = (\mathcal{E}, \rightarrow, \triangleleft, \lambda)$ is a RSC MSC if and only if it has no unmatched send events and if in CG(M) there is no cycle, of length ≥ 2 , whose edges are all SR.

RSC MSCs Following Definition 3.10, an MSC M is a RSC MSC if and only if it satisfies the LCPDL formula

$$\Phi_{\mathsf{RSC}} = \neg \mathsf{Loop} \langle \xrightarrow{SR} \cdot (\xrightarrow{SR})^* \rangle$$

Recall that every LCPDL-definable property is also MSO-definable. In particular, this is one way to write the same property using MSO:

$$\Phi_{\mathsf{RSC}} = \neg \exists s_1 . \exists s_2 . s_1 \to_{SR} s_2 \land s_2 \to_{SR}^* s_1$$

where \rightarrow_{SR} is defined as

$$s_1 \to_{SR} s_2 = \bigvee_{einSend(_,_,_)(\lambda(s_1)=e)} \land \exists s_2. \exists r_2. (s_1 \to^+ r_2 \land s_2 \lhd r_2)$$

RSC MSC – STW boundess

Idea: The class of RSC MSC is k bounded, where k is the number of processes

Proof: color the first event of each process and then remove messages one by one

