一 选择题 (共39分)

1. (本题 3分)(4387)

光电效应中发射的光电子最大初动能随入射光频率 v 的 变化关系如图所示. 由图中的

- (A) OQ
- (B) *OP*
- (C) OP/OQ
- (D) QS/QS

可以直接求出普朗克常量.

2. (本题 3分)(4503)

在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子 获得的能量是其静止能量的

Γ

- (A) 2倍.
- (B) 1.5 倍.
- (C) 0.5 倍.
- (D) 0.25 倍.

Γ ٦

3. (本题 3分)(4739)

光子能量为 0.5 MeV 的 X 射线,入射到某种物质上而发生康普顿散射. 若反 冲电子的能量为 0.1 MeV,则散射光波长的改变量Δλ与入射光波长λ。之比值为

- (A) 0.20. (B) 0.25. (C) 0.30. (D) 0.35.

4. (本题 3分)(4185)

已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV,而钠的 红限波长是 5400 Å , 那么入射光的波长是

- (A) 5350 Å.
- (B) 5000 Å.
- (C) 4350 Å.
- (D) 3550 Å.

5. (本题 3分)(4206)

静止质量不为零的微观粒子作高速运动,这时粒子物质波的波长 λ 与速度 v有如下关系:

- (A) $\lambda \propto V$.
- (B) $\lambda \propto 1/V$.
- (C) $\lambda \propto \sqrt{\frac{1}{v^2} \frac{1}{c^2}}$. (D) $\lambda \propto \sqrt{c^2 v^2}$.

6. (本题 3分)(4242)

电子显微镜中的电子从静止开始通过电势差为 U 的静电场加速后,其德布 罗意波长是 $0.4 \, \text{Å}$,则 U 约为

- (A) 150 V.
- (B) 330 V.
- (C) 630 V.
- (D) 940 V.

Γ 1

(普朗克常量 $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$)

7. (本题 3分)(4628)

如图所示,一束动量为p的电子,通过 缝宽为 a 的狭缝. 在距离狭缝为 R 处放置一 荧光屏, 屏上衍射图样中央最大的宽度 d 等 干

- (A) $2a^2/R$.
- (B) 2ha/p.
- (C) 2ha/(Rp).
- (D) 2Rh/(ap). Γ

8. (本题 3分)(4770)

如果两种不同质量的粒子, 其德布罗意波长相同, 则这两种粒子的

- (A) 动量相同.
- (B) 能量相同.
- (C) 速度相同.
- (D) 动能相同.

9. (本题 3分)(4211)

不确定关系式 $\Delta x \cdot \Delta p_x \geq \hbar$ 表示在 x 方向上

- (A) 粒子位置不能准确确定.
- (B) 粒子动量不能准确确定.
- (C) 粒子位置和动量都不能准确确定.
- (D) 粒子位置和动量不能同时准确确定.

[]

10. (本题 3分)(4428)

已知粒子在一维矩形无限深势阱中运动,其波函数为:

$$\psi(x) = \frac{1}{\sqrt{a}} \cdot \cos \frac{3\pi x}{2a}, \quad (-a \le x \le a)$$

那么粒子在 x = 5a/6 处出现的概率密度为

- (A) 1/(2a).
- (B) 1/a.
- (C) $1/\sqrt{2a}$.
- (D) $1/\sqrt{a}$

Γ

٦

11. (本题 3分)(4778)

设粒子运动的波函数图线分别如图 (A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图?

12. (本题 3分)(5234)

关于不确定关系 $\Delta p_x \Delta x \geq h \ (h = h/(2\pi)$,有以下几种理解:

- (1) 粒子的动量不可能确定.
- (2) 粒子的坐标不可能确定.
- (3) 粒子的动量和坐标不可能同时准确地确定.

Γ

(4) 不确定关系不仅适用于电子和光子,也适用于其它粒子.

其中正确的是:

- (A) (1), (2).
- (B) (2), (4).
- (C) (3), (4).
- (D) (4), (1).

13. (本题 3分)(5619)

波长 λ =5000 Å 的光沿 x 轴正向传播,若光的波长的不确定量 $\Delta\lambda$ =10⁻³ Å,则利用不确定关系式 $\Delta p_x \Delta x \ge h$ 可得光子的 x 坐标的不确定量至少为

- (A) 25 cm.
- (B) 50 cm.
- (C) 250 cm.
- (D) 500 cm.

Γ

二 填空题 (共61分)
14. (本题 3分)(0475)
某光电管阴极, 对于λ=4910 Å的入射光,其发射光电子的遏止电压为
0.71 V. 当入射光的波长为
$(e = 1.60 \times 10^{-19} \text{ C}, h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s})$
15. (本题 5分)(4179)
光子波长为λ,则其 <mark>能量</mark> =; 动量的大小 =; <mark>质</mark>
3. 光子质量 \circ 根据相对论能量:动量关系 $E^2=p^2c^2+m^2c^4$ 。
γ 对于光子, $E=pc$ (因为光子静质量 $m_0=0$),所以光子的相对论质量 $m=rac{E}{c^2}=rac{h}{\lambda c}$ 。
16. (本题 4分)(4187)
康普顿散射中,当散射光子与入射光子方向成夹角 ϕ =时,
散射光子的频率小得最多; 当 ϕ = 时,散射光子的频率与入射光子相同.
17. (本题 3分)(4250)
波长为λ=1 Å 的 X 光光子的质量为kg.
$(h = 6.63 \times 10^{-34} \text{J} \cdot \text{s})$
18. (本题 3分)(4546)
若一无线电接收机接收到频率为 10 ⁸ Hz 的电磁波的功率为 1 微瓦,则每秒
接收到的光子数为
(普朗克常量 <i>h</i> =6.63×10 ⁻³⁴ J⋅s)
19. (本题 3分)(4608)
钨的红限波长是 $230 \text{ nm} (1 \text{ nm} = 10^9 \text{ m})$,用波长为 180 nm 的紫外光照射时,
从表面逸出的电子的最大动能为eV.
(普朗克常量 $h = 6.63 \times 10^{-34} \text{ J·s}$,基本电荷 $e = 1.60 \times 10^{-19} \text{ C}$)
20. (本题 3分)(4742)
某金属产生光电效应的红限为 ν_0 ,当用频率为 $\nu(\nu > \nu_0)$ 的单色光照射该金
属时,从金属中逸出的光电子(质量为 m)的德布罗意波长为
21. (本题 3分)(4740)
在 X 射线散射实验中,散射角为 ϕ_1 = 45° 和 ϕ_2 =60° 的散射光波长改变量
$2 \text{H}_{\lambda \lambda_1}$: $\lambda \lambda_2 =$

22. (本题 3分)(4611)

某一波长的 X 光经物质散射后,其散射光中包含波长和波长	
的两种成分,其中的散射成分称为康普顿散射.	
23. (本题 3分)(4207) 令 $\lambda_c = h/(m_e c)$ (称为电子的康普顿波长,其中 m_e 为电子静止质量, c 为真空中光速, h 为普朗克常量). 当电子的动能等于它的静止能量时,它的德布罗意	Z
波长是 λ = λ_c .	
24. (本题 3分)(4429) 在戴维孙——革末电子衍射实验装置中,自热 阴极 K 发射出的电子束经 $U = 500$ V 的电势差加速 后投射到晶体上. 这电子束的德布罗意波长)
$\lambda =$ nm	3
25. (本题 3分)(4524) 静止质量为 m_e 的电子,经电势差为 U_{12} 的静电场加速后,若不考虑相对论	
效应,电子的德布罗意波长λ=	
26. (本题 4分)(4629) 氢原子的运动速率等于它在 300 K 时的方均根速率时,它的德布罗意波长是	
质量为 $M=1$ g,以速度 $v=1$ cm·s ⁻¹ 运动的小球的德布罗意波长	
是 (普朗克常量为 $h=6.63\times10^{-34}$ J·s,玻尔兹曼常量 $k=1.38\times10^{-23}$ J·K ⁻¹ ,氢几子质量 $m_{\rm H}=1.67\times10^{-27}$ kg)	泵
27. (本题 3分)(4771)	
为使电子的德布罗意波长为 1 Å,需要的加速电压为 (普朗克常量 h =6.63×10 ⁻³⁴ J·s,基本电荷 e =1.60×10 ⁻¹⁹ C,电子质量 m_e =9.11×10 ⁻³¹ kg)	
28. (本题 4分)(4773) 低速运动的质子和α粒子,若它们的德布罗意波长相同,则它们的动量之比	
p_{p} : $p_{\alpha} =$; 动能之比 E_{p} : $E_{\alpha} =$	

29. (本题 5分)(4203) 设描述微观粒子运动的波函数为 \(\mathbb{V}(\bar{r},t)\),则\(\mathbb{V}\mathbb{V}^*\)表示;
$\Psi(\bar{r},t)$ 须满足的条件是
件是
30. (本题 3分)(4632) 如果电子被限制在边界 x 与 x + Δx 之间, Δx =0.5 Å,则电子动量 x 分量的不
确定量近似地为kg·m/s. (不确定关系式 $\Delta x\cdot \Delta p \geq h$,普朗克常量 $h=6.63\times 10^{-34}$ J·s)
31. (本题 3分)(5372) 在电子单缝衍射实验中,若缝宽为 $a=0.1$ nm $(1 \text{ nm}=10^9 \text{ m})$,电子束垂直
射在单缝面上,则衍射的电子横向动量的最小不确定量 $\Delta p_y =N \cdot s$. (普朗克常量 $h = 6.63 \times 10^{-34} J \cdot s$)

三 计算题 (共65分)

32. (本题 8分)(4505)

用波长 $\lambda_0 = 1$ Å 的光子做康普顿实验.

- (1) 散射角 *ϕ*=90°的康普顿散射波长是多少?
- (2) 反冲电子获得的动能有多大?

(普朗克常量 $h = 6.63 \times 10^{-34} \,\text{J·s}$, 电子静止质量 $m_e = 9.11 \times 10^{-31} \,\text{kg}$)

33. (本题10分)(4431)

 α 粒子在磁感应强度为 B=0.025 T 的均匀磁场中沿半径为 R=0.83 cm 的圆 元轨道运动.

- (1) 试计算其德布罗意波长.
- (2) 若使质量 m = 0.1 g的小球以与 α 粒子相同的速率运动.则其波长为多少? (α 粒子的质量 $m_{\alpha} = 6.64 \times 10^{-27}$ kg,普朗克常量 $h = 6.63 \times 10^{-34}$ J·s,基本电荷 $e = 1.60 \times 10^{-19}$ C)

34. (本题 5分)(4522)

考虑到相对论效应,试求实物粒子的德布罗意波长的表达式,设 E_{K} 为粒子的动能, m_{0} 为粒子的静止质量.

35. (本题 5分)(4535)

若不考虑相对论效应,则波长为 5500 Å 的电子的动能是多少 eV? (普朗克常量 $h = 6.63 \times 10^{-34}$ J·s, 电子静止质量 $m_e = 9.11 \times 10^{-31}$ kg)

36. (本题12分)(4542)

求出实物粒子德布罗意波长与粒子动能 E_{κ} 和静止质量 m_0 的关系,并得出:

 $E_K << m_0 c^2$ 时,

 $\lambda \approx h/\sqrt{2m_0 E_K}$;

 $E_{\kappa} >> m_0 c^2$ 时,

 $\lambda \approx hc/E_{\kappa}$.

37. (本题 5分)(4631)

假如电子运动速度与光速可以比拟,则当电子的动能等于它静止能量的 2 倍时,其德布罗意波长为多少?

(普朗克常量 $h = 6.63 \times 10^{-34} \,\text{J·s}$, 电子静止质量 $m_e = 9.11 \times 10^{-31} \,\text{kg}$)

38. (本题10分)(1813)

若光子的波长和电子的德布罗意波长λ相等,试求光子的质量与电子的质量之比.

39. (本题 5分)(4435)

同时测量能量为 1 keV 作一维运动的电子的位置与动量时,若位置的不确定值在 $0.1 \text{ nm} (1 \text{ nm} = 10^{-9} \text{ m})$ 内,则动量的不确定值的百分比 $\Delta p / p$ 至少为何值?

(电子质量 m_e =9.11×10⁻³¹ kg,1 eV =1.60×10⁻¹⁹ J,普朗克常量 h =6.63×10⁻³⁴ J·s)

40. (本题 5分)(4442)

光子的波长为 $\lambda = 3000$ Å,如果确定此波长的精确度 $\Delta \lambda / \lambda = 10^{-6}$,试求此光子位置的不确定量.

四 回答问题 (共23分)

41. (本题10分)(4402)

处于静止状态的自由电子是否能吸收光子,并把全部能量用来增加自己的动能?为什么?

42. (本题 8分)(5241)

已知某电子的德布罗意波长和光子的波长相同.

- (1) 它们的动量大小是否相同? 为什么?
- (2) 它们的(总)能量是否相同? 为什么?

43. (本题 5分)(4780)

用经典力学的物理量(例如坐标、动量等)描述微观粒子的运动时,存在什么问题?原因何在?