

Einführung in LaTeX - Wissenschaftliche Texte einfach schreiben

Hendric Popma

Agenda

- 1. Was ist LaTeX?
- 2. Installation und Einrichtung von TexStudio
- 3. Inhalt der Main-Datei
- 4. Einbindung von Objekten
 - 1. Überschriften und Gliederung
 - 2. Grafiken und Bilder
 - 3. Aufzählungen
 - 4. Tabellen
 - 5. Formeln
- 5. Zitieren in LaTeX
- 6. Sonstige Tipps und Tricks
- 7. Versionierung mit GitHub

Lernen wir uns kennen!

- Name & Studiengang
 - Was studierst du und wo?
- Lieblingshobby
 - Erzähle uns, was du in deiner Freizeit gerne machst
- Ein Fun Fact über mich
 - Teile eine lustige oder unerwartete Tatsache über dich
- Erwartungen an heute
 - Was erhoffst du dir von dieser Runde
- Wer möchte den Bericht erstellen?

1. Was ist LaTeX?

Was ist LaTeX?

- LaTeX ist ein Textsatzsystem, das hauptsächlich für wissenschaftliche Arbeiten und technische Dokumentationen verwendet wird.
- LaTeX steht für "Lamport TeX". Der Name setzt sich zusammen aus:
 - La: Abkürzung für Leslie Lamport, den Entwickler von LaTeX
 - TeX: Bezieht sich auf TeX, das Textsatzsystem, das von Donald Knuth entwickelt wurde
- Besonders geeignet für Dokumente mit komplexer Struktur, wie mathematische Formeln, Tabellen und Zitate.
- Trennung von Inhalt (Text) und Layout (Formatierung) Benutzer konzentrieren sich auf den Text, LaTeX übernimmt die Gestaltung.

2. Installation und Einrichtung von TexStudio

Installation und Einrichtung von TexStudio

- Für LaTeX brauch man eine LaTeX-Distribution
 - Herunterladen und Installieren
 - Windows: https://miktex.org/download
 - Mac: https://tug.org/mactex/mactex-download.html
- Download TexStudio hier: https://www.texstudio.org
- Falls ein Fenster kommt in dem gefragt wird, ob Pakete installiert werden sollen, dem einfach zustimmen
- Dateien bei github downloaden:
 - https://github.com/hendric-popma/latex_kurs_hp

2. Installation und Einrichtung von TexStudio

Aktivierung der Rechtschreibhilfe und Wörter ins Wörterbuch aufnehmen

3. Inhalte der Main-Datei

Die MAIN Datei

- Dokumenthauptdatei: Hauptsteuerungsdatei des LaTeX-Projekts.
- Dokumentklasse: Legt den Typ des Dokuments fest (z. B. Artikel, Buch).
- Pakete einbinden: \usepackage, um zusätzliche Funktionen zu laden.
- Struktur des Dokuments: Enthält Präambel, Titel, Inhaltsverzeichnis, etc.
- Inhalte einfügen: Text, Kapitel, Absätze und Anhänge.
- Externe Dateien einbinden: Mit \input{} oder \include{}.
- Kompilierung: Wird als Hauptdatei zum Kompilieren des gesamten Dokuments verwendet.

3. Inhalte der Main-Datei

Aufbau des Dokumentes in der Main

- Die Main-Datei besteht immer aus einem gleichen strukturierten Aufbau.
 - Erstellung der Dokumentenklasse \documentclass[Einstellungen]{Typ}
 - Einbindung der Pakete mit \usepackage{paket}
 - Aufruf des Dokumentes \begin{document}
 - \frontmatter
 - \mainmatter
 - **■** \backmatter
 - Beenden des Dokumentes \end{document}

```
\documentclass[12pt,oneside,listof=totoc,paper=a4,headings=small]{scrbook}
      \usepackage{package}
      \begin{document}
        \frontmatter
        \include{Titel}
        \tableofcontents
        \clearpage
        \include{nomenclature}
        \printnomenclature
        \listoffiqures
13
        \clearpage
        \listoftables
        \clearpage
        \mainmatter
        \renewcommand{\arraystretch}{1.3}
        \include{kapitel1}
20
22
23
        \printbibliography
        \backmatter
24
        \appendix
25
        \include{anhang}
      \end{document}
```


Überschriften, Label und Referenzieren

Unterteilung der Arbeit in Kapitel und Abschnitte

- 8 Kapitelüberschrift
- 8.1 Abschnittsüberschrift
- 8.1.1 Unterabschnitt

UnterUnterAbschnitt

- Die Nummerierung/Aufzählung kann in der Präambel geändert werden
- Mit dem Befehl **\label{}** können Objekte "intern" bezeichnet werden
- Mit dem Befehl \ref{} bezieht man sich wieder auf das Objekt
- Mit dem Befehl \href{}[label]{Text} kann man sich auf Unterkapitel beziehen

Übung – Laden eines neuen Dokumentes und Gliederung

- Laden sie die Datei main_uebungen.tex aus dem Ordner Übungen
- Erstellen sie in dem Ordner eine neue .tex Datei mit dem Name uebungen.tex
- Erstellen sie in der Datei folgende Gliederung
- Fügen sie auch zu jedem Kapitel ein Label hinzu
- Schreiben sie 2-3 Sätze im Abschnitt 1.1 und verweisen dabei auf andere Kapitel

- 1. Einführung in LaTeX
 - 1.1 Schreiben des ersten Textes
 - 1.2 Einbinden von Objekten/Paketen
 - 1.2.1 Die erste Grafik einfügen
 - 1.2.2 Aufzählungen füge ich hier ein
 - 1.2.3 Tabellen können kompliziert sein
 - 1.2.4 Formel kann ich auch gebrauchen
 - 1.3 Hier lerne ich zitieren
- 2. Tipps und Tricks

Einbinden von Objekten/Paketen in LaTeX

- Über den Befehl \begin{}[Positionierung] werden Pakete gestartet
- Mit dem Befehl **\end{}** wieder geschlossen
- In den Klammern kommt der Name des Paketes:
 - table/tabularx
 - itemize
 - enumerate
 - figure
 - minipage
- Diese Pakete werden dann von LaTeX positioniert.
- Diese Position kann über einen Buchstaben bestimmt werden.

Specifier	Permission
h	Place the float <i>here</i> , i.e., <i>approximately</i> at the same point it occurs in the source text (however, not <i>exactly</i> at the spot)
t	Position at the <i>top</i> of the page.
b	Position at the bottom of the page.
р	Put on a special page for floats only.
!	Override internal parameters LaTeX uses for determining "good" float positions.
Н	Places the float at precisely the location in the LaTeX code. Requires the float package, [1] i.e., \usepackage{float}.

Einbindung von Grafiken

- Grafiken werden mit dem Befehl \begin{figure} eingebunden
- \centering bindet die Grafik mittig ein
- \includegraphics[Größe einstellen]{Datei} bindet die Grafik ein
- \caption[Name in Verzeichnis]{Beschriftung}

Übung – Grafiken

- Erstellen sie sich eine Grafik und speichern diese einmal als .jpg und einmal als .pdf (ChatGPT)
- Fügen sie diese beiden Grafiken nun in den Ordner Abbildungen ein
- Binden sie beide Grafiken in das entsprechende Kapitel ein

Aufzählungen einfügen

- Aufzählungen werden auch über den Befehl \beginn{} und \end{} eingefügt
- Es gibt zwei Arten
 - Itemize → Bullet Points
 - Enumerate → Nummeriert, Fortlaufend
- Mit [\label=art] kann die Art geändert werden
- [noitemsep] reduziert den Platz zwischen den Aufzählungen (vertikal)
- \item [] mit eckigen Klammern f\u00fchrt dazu, dass keine Symobile angezeigt werden

```
\begin{itemize}[noitemsep]
        \item Wärmepumpe
17
        \item Gaskessel
        \item BHKW
        \item Gasturbine
20
      end{itemize}
21
     \begin{enumerate} [noitemsep]
45
46
       \item Wärmepumpe
       \item Gaskessel
47
48
       \item BHKW
       \item Gasturbine
49
     \end{enumerate}
50
```


Übung – Aufzählungen

- Erstellen sie eine Aufzählung mit + am Anfang und eine in der mit kleinen Buchstaben durch "numeriert" wird:
 - Wärmepumpe
 - Gaskessel
 - BHKW
 - Gasturbine

Erstellen von Tabellen

- Nach \begin{tabular}{||c|r} wird die Breite der Tabelle festegelegt
 - → 3 Spalten
 - 1. Links orientiert (I)
 - 2. Zentriert (c)
 - 3. Rechts orientiert (r)
- Zeile wird beendet durch \\
- Mit \hine werden horizontale Linien erstellt
- Mit den "|" in der Definition werden vertikale Linien erstellt
- https://www.tablesgenerator.com/

Tabelle 8.1: Überschrift der Tabelle

Anlage	Wert	Einheit
Wärmepumpe	10	MW
Gaskessel	40	MW

Funktionen zur genaueren Erstellung von Tabellen

- Es gibt verschiedene andere Pakete und Funktionen, um Tabellen besser nutzbar zu machen
 - \multicolumn{Anzahl Spalten}{Ausrichtung}{Inhalt}
 - \multirow{Anzahl Zeilen}{*}{\shortstack[Ausrichtung]}{Inhalt}
 - \cline{X-Y} (Linie nur zwischen Zeile X und Y)
 - \rowcolor{Farbe}
 - \quad (R\u00fcckt Inhalt ein)
- Mit dem Paket **tabularx** wird die Tabelle automatisch auf eine Breite angepasst. Zusätzlich kann bestimmt werden welche Spalten dafür vergrößert werden sollen
 - Nach dem Aufruf muss die Breite angeben werden und dann die Tabelle definiert werden. Spalten mit X werden in der Breite angepasst
 - 195 🔻

\begin{tabularx}{\textwidth}{|X|X|c|c|c|c|c|}

Übung – Tabellen erstellen

■ Erstellen sie folgende Tabellen

Tabelle 1.1: Dies ist die erste Tabelle

Bezeichnung	Werte	Einheit
Gaskraftwerk	10	MW
Wärmepumpe	5	MW

Tabelle 1.2: Dies ist die zweite Tabelle

		Ausgangsszenario	Szenar	io 1.1
	Zinssatz	Invest. 100 %	Invest. 100%	Invest. 60%
LCoH	3%	80	90	100
15 Jahre	5 %	90	100	110
in €/MWh	8 %	100	110	120

AUFSTIEGSSTIPENDIUM

Formeln und der Mathemodus

- Tabellen werden mit **\begin{equation}** eingefügt
- Danach ist der Mathe-Modus von LaTeX aktiviert
- Dieser lässt sich im Text aufrufen \$mathemodus\$

240 🔻	\begin{equation}
241	\label{eq:investitionskosten}
242	$K^{Invest} = \dot{Q}^{Gas, max} \cdot k^{Invest, Gas} + \dot{Q}^{WP, max} \cdot k^{Invest, WP}$
243	\end{equation}

\cdot	multiplizieren
^(oben,unten)	Hoch/runter stellen
\dot()	Punkt über Symbol
=, +, -	Normale Zeichen

Symbole

In TexStudio gibt es eine Übersicht der Sonderzeichen

Mehrere Formeln zusammen erstellen

- Mit \begin{align} beindet man sich auch im Mathemodus, jedoch werden die Formeln aligned
- Dazu wird das & Symbol verwendet

$$\dot{Q}^{WP,min} \le \dot{Q}_t^{WP} \le \dot{Q}^{WP,max} \qquad \forall t \in T \tag{3.8}$$

$$\dot{Q}^{Gas,min} \le \dot{Q}_t^{Gas} \le \dot{Q}^{Gas,max} \qquad \forall t \in T \tag{3.9}$$

Übung -Formeln einfügen

Erzeugen sie folgende Gleichungen

$$min \sum_{t}^{8760} (K_t^{var.Gaskessel} + K_t^{var.W\ddot{a}rmepumpe})$$
 (1.1)

$$\dot{Q}^{Speicher,min} \le \dot{Q}^{laden} \le \dot{Q}^{Speicher,max} \qquad \forall t \in T$$
 (1.2)

$$\dot{Q}^{Speicher,min} \le \dot{Q}_t^{entladen} \le \dot{Q}^{Speicher,max} \qquad \forall t \in T$$
 (1.3)

$$Q_{t=0}^{Speicher} = Q^{init,sp} \cdot Q^{Kapzit\ddot{a}t} \tag{1.4}$$

$$Q_{t=8760}^{Speicher} \ge Q^{init,sp} \cdot Q^{Kapzit\ddot{a}t} \tag{1.5}$$

Zitate in LaTeX erstellen

- In LaTeX kann über den Befehl \cite{Name der Quelle} zitiert werden. Es können mehrere Quellen mit Komma getrennt eingefügt werden.
- Damit LaTeX die Quellen erkennt, muss eine .bib Datei eingebunden werden. Der Pfad dazu wird in der Main Datei hinterlegt.
- In dieser Datei liegen die Infos zur Quelle. Diese können wie folgt aussehen:

```
@misc{agfw_leitfaden_wp,
    editor = {{AGFW | Der Energieeffizienzverband f{\"u}r W{\"a}rme, K{\"a}lte und KWK e.V}},
    date = {2023-07},
    title = {Praxisleitfaden Gro{\ss}w{\"a}rmepumpen},
    file =
    {230712{\_}AGFW{\_}Praxisleitfaden{\_}Gro{\ss}wärmepumpen{\_}jahr2023:Attachments/230712{\_}AGFW{\_}Praxisleitfaden{\_}Gro{\ss}wärmepumpen{\_}jahr2023.pdf:application/pdf}
}
```

- \printbibliography muss in der main Datei ausgeführt werden um das Literaturverzeichnis zu erstellen
- Es ist zu empfehlen diese Datei über Citavi zu erstellen.

Auswahl Standard Bibliographieprogramm

- Einstellungen → Erzeugen →Standard Bibliographiprogramm
 - Auswahl: Biber

Aktivierung des LaTex Support in Citavi

Aufruf der Exportfunktionen bei Citavi

Schritte zum Export bei Citavi

6. Tipps und Tricks

Wichtige sonstige Befehle

Funktionen	Bedeutung
\textbf{Das wird Fett}	Fett schreiben (STRG + B)
\textit{Das ist kursiv}	Kursiv schreiben (STRG + I)
\enquote{Text}	Anführungszeichen einfügen
\$\$	Mathemodus
Groß\-wärme\-pumpen	Wörtertrennstellen
\euro	€
\pagebreak	
\\	Zeilenumbruch
~ (Tilde)	Wert und Einheit werden nicht getrennt 200~kW
%	Kommentar einfügen (STRG +T)
\mbox{Ich will das nicht trennen}	Text in mbox wird nicht getrennt
\href{link}{Text}	Link einbinden
\footnote{Text}	Erstellt Fußnote
\left(\right)	Große Klammern

6. Tipps und Tricks

Erstellung einer Nomenklatur

- Um eine Nomenklatur bzw. ein Abkürzungsverzeichnis zu erstellen, wird einfach eine neue .tex Datei dafür erstellt.
- Dort können die Abkürzung dann eingetragen werden
- Um die Nomenklatur zu erstellen muss folgender Befehl im Terminal ausgeführt werden.
 - makeindex {dateiname_main}.nlo -s nomencl.ist -o {dateiname_main}.nls
 - In den Klammern muss der Name der Main-Datei eingetragen sein

Versionierung mit GitHub

- Wichtige Funktionen von GitHub
 - Versionskontrolle: Änderungen werden nachvollziehbar gespeichert und frühere Versionen können wiederhergestellt werden.
 - Zusammenarbeit: Mehrere Personen können gleichzeitig am LaTeX-Dokument arbeiten
 - Backup & Zugriff: Dokumente sind sicher in der Cloud und überall abrufbar
- Vorteile speziell für LaTeX-Projekte
 - Bessere Zusammenarbeit: Kein Chaos mehr durch "Dokument_final_final_v2.tex"
 - Nachvollziehbarkeit: Wer hat wann was geändert? Perfekt für wissenschaftliche Arbeiten
- Technische Grundlage: Git
 - GitHub basiert auf Git, einem verteilten Versionskontrollsystem
 - Lokales Arbeiten → Commit & Push → Remote Repository (GitHub)
 - Git speichert nur Unterschiede (Diffs), nicht komplette Dateien spart Platz

Befehle für Git

- Installation UI für Git GitHub Desktop
 - https://git-scm.com/downloads
 - Wer git auch zum programmieren nutzten will, sollte sich auch noch git installieren
 - https://desktop.github.com/download/
- Wichtige Git-Befehle für LaTeX-Projekte
- Projekt starten
 - git commit Synchronisieren mit GitHub
 - git push: Änderungen hochladen
 - git pull: Neueste Änderungen herunterladen

Verknüpfung LaTeX und GitHub

Neues Repository erstellen

Git Ignore:
bestimmt
welche Dateien
nicht
hochgeladen
werden

Übung – Repository erstellen

- Erstelle ein neues Repository
- Kopiere die LaTeX Dateien von heute in das Repository
- Commit die Änderungen
- Push die Änderungen

Vielen Dank für die Aufmerksamkeit!

Ich stehe für Fragen auch später noch zur Verfügung.

Connect via LinkedIn

hendric.popma@googlemail.com

