Lembre-se:

- 1) Fazer análise em CC.
- 2) Substituir o BJT pelo seu modelo equivalente
- 3) Fazer análise em CA.

- a) V_{CE}

- b) R_e c) Z_i d) Z_o e) $\Delta_v = \frac{V_o}{V_i}$ f) $\Delta_i = \frac{I_o}{I_i}$

Lembre-se:

- 1) Fazer análise em CC.
- 2) Substituir o BJT pelo seu modelo equivalente
- 3) Fazer análise em CA.

Determinar:

- a) V_{CE}

- b) I_E c) R_e d) Z_i e) Z_o f) $\Delta_v = \frac{V_o}{V_i}$ g) $\Delta_i = \frac{I_o}{I_i}$

E se não existisse o capacitor Ce, determinar:

- h) Z_i i) Z_o j) $\Delta_v = \frac{V_o}{V_i}$

Lembre-se:

- 1) Fazer análise em CC.
- 2) Substituir o BJT pelo seu modelo equivalente
- 3) Fazer análise em CA.

- a) I_E

- b) R_e c) Z_i d) Z_o e) $\Delta_v = \frac{V_o}{V_i}$ f) $\Delta_i = \frac{I_o}{I_i}$

Lembre-se:

- 1) Fazer análise em CC.
- 2) Substituir o BJT pelo seu modelo equivalente
- 3) Fazer análise em CA.

- a) I_{B_i} I_{C_i} I_E

- b) R_e c) Z_i d) Z_o e) $\Delta_v = \frac{V_o}{V_i}$ f) $\Delta_i = \frac{I_o}{I_i}$

Lembre-se:

- 1) Fazer análise em CC.
- 2) Substituir o BJT pelo seu modelo equivalente
- 3) Fazer análise em CA.

- a) I_{B_i} I_{C_i} I_{E}

- b) R_e c) Z_i d) Z_o e) $\Delta_v = \frac{V_o}{V_i}$ f) $\Delta_i = \frac{I_o}{I_i}$