Pràctica 2: Codis Cíclics

- 1. Primer repassarem com treballar amb paraules-codi i polinomis sobre GF(2). Executeu les següents instruccions i observeu el resultat obtingut.
 - (a) Necessitem definir un cos base: F2=GF(2); F2.
 - (b) Es pot definir una paraula-codi com un vector: v=vector(GF(2),[1,0,1,1]); v
 - (c) I convertir un vector a una llista: v.list().
 - (d) Podem definir una matriu, G = matrix(F2, [(0,1,0,1,0),(0,1,1,1,0),(0,0,1,0,1),(0,1,0,0,1)]); G
 - (e) I el codi lineal amb aquesta matriu generadora: C=LinearCode(G); C
 - (f) Construcció de l'anell de polinomis sobre GF(2): Z2X.<x>=PolynomialRing(F2); Z2X.
 - (g) Definir un polinomi amb coeficients a GF(2): pX=Z2X(1+x^2+x^3), pX.
 - (h) Alternativament: pX=Z2X([1,0,1,1]).
 - (i) Desplaçament dels coeficients d'un polinomi (multiplicar per x^2): pX.shift(2).
 - (j) També en l'altre sentit (dividir per x), pX.shift(-1).
 - (k) Operar amb polinomis: qX=pX*(x+1); qX.
 - (l) Comprovar si un polinomi és irreductible: pX.is_irreducible(), qX.is_irreducible().
 - (m) I si no ho és, descomposar-lo en factors: qX.factor().
 - (n) Construir un codi cíclic de longitud 3 i polinomi generador x+1: C=CyclicCode(x+1,3); C.
 - (o) Veure el conjunt de paraules d'un codi: S = set(C.list()); S.
- 2. a) Considereu la paraula-codi determinada per la llista de bits: [1,0,1,1]. Definiu la funció UAB_right_shift(n,L) que permeti obtenir un cíclic shift de n ($n \ge 0$) posicions de la llista L. Per exemple, UAB_right_shift(1,[1,0,1,1])=[1,1,0,1]. (1 punt)
 - b) A partir d'aquesta funció construiu el codi lineal generat pels desplaçaments cíclics del vector v=(0,0,1,1,0,1,0) i comproveu que el conjunt amb les paraules generades per aquest codi lineal és equivalent al conjunt amb les paraules generades pel codi cíclic de longitud 7 generat pel polinomi 1+x+x^3. Calculeu també la longitud, la dimensió i la distància mínima d'aquest codi. (1 punt)
- 3. Existeix un codi binari cíclic de longitud 15 amb polinomi generador $g(x)=1+x+x^4$? i amb polinomi generador $g(x)=1+x^2+x^3$? Justifiqueu la resposta. (1 punt)
- 4. Quants codis cíclics binaris de longitud 15 hi ha? Feu en Sage el càlculs necessaris per trobar aquest nombre. (1 punt)
- 5. Quin és el menor codi cíclic de longitud 15 que conté la paraula codi v=(1,1,0,1,1,0,0,0,0,0,0,0,0,0,0)? (1 punt)

- 6. Considereu el codi binari cíclic de longitud 15 generat pel polinomi g(x)=1+x+x^4. Calculeu el polinomi de control de g(x), h(x), i el polinomi recíproc de h(x), h*(x). (1 punt)
- 7. a) Dissenyeu una funció UAB_gen_matrix(g,n) que, a partir del polinomi generador g d'un codi cíclic i la seva longitud n, calculi la seva matriu generadora. (1 punt)
 - b) Doneu la matriu generadora dels codis cíclics de longitud 15 i polinomis generadors $g_1(x) = 1 + x + x^4$ i $g_2(x) = x^6 + x^5 + x^4 + x^3 + 1$. (1 punt)
- 8. a) Dissenyeu una funció UAB_con_matrix(g,n) que, a partir del polinomi generador g d'un codi cíclic i la seva longitud n, calculi la seva matriu de control. (1 punt)
 - b) Trobeu la matriu de control dels codis cíclics de longitud 15 de l'exercici anterior. (1 punt)