Dr. D. Sinden

CTMS-MAT-13: Numerical Methods

Summary from 7 October 2025

Notes for numerical methods course 2026. This can be downloaded from: https://djps.github.io/docs/numericalmethods/notes

Contents

1	Taylor Series						
	·	$\frac{3}{4}$					
2	2 Errors						
3	Number Representations						
4	Linear Systems	7					
	4.1 Direct Methods	9					
	4.2 Indirect Methods	12					
	4.3 Fundamental Theorem of Numerical Analysis	15					
5	Nonlinear Solvers	16					
	5.1 Bisection Method	16					
	5.2 Newton's Method	16					
	5.3 Secant Method	18					
	5.4 Systems of Nonlinear Equation	19					
6	Interpolation 20						
	6.1 Piecewise Polynomial Interpolation	22					
	6.2 Least-Squares Approximation	24					
7	Numerical Differentiation 26						
8	Numerical Integration						
	8.1 Gauss Quadrature	32					
9	Differential Equations 34						
	9.1 Finite Difference Methods for Differential Equations	34					
	9.2 Analysis of One-Step Methods	35					
	9.3 Partial Differential Equations	39					

Recommended Reading

- J. F. Epperson "An Introduction to Numerical Methods and Analysis", Wiley $2^{\rm nd}$ Edition (2013).

1 Taylor Series

The Taylor series, or the Taylor expansion of a function, is defined as

Definition 1.1 (Taylor Series)

For a function $f: \mathbb{R} \to \mathbb{R}$ which is infinitely differentiable at a point c, the Taylor series of f(x) is given by the power series

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x - c)^k$$

where $f^{(k)} = \frac{\mathrm{d}^k f}{\mathrm{d} x^k}$ is the k^{th} derivative.

The idea behind a Taylor series is that a function f(x) can be approximated around some central point c by a polynomial (or, if the function is infinitely-differentiable, a power series).

This is a power series, which is convergent for some radius. The series can be truncated upto n terms.

Theorem 1 (Taylor's Theorem).

For a function $f(x) \in C^{n+1}([a,b])$, i.e. f is (n+1)-times continuously differentiable in the interval [a,b], then for some expansion point c in the interval, the function can be written as

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - c)^{n+1}$$

for some value ξ which depends on x, and exist on $\xi(x) \in [c,x]$. The remainder term

$$\lim_{x \to c} \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-c)^{n+1} = 0.$$

2 Errors

Definition 2.1 (Absolute and Relative Errors)

Let \tilde{a} be an approximation to a, then the **absolute error** is given by

$$|\tilde{a} - a|$$

If $|a| \neq 0$, the **relative error** may be given by

$$\left|\frac{\tilde{a}-a}{a}\right|$$
.

The error bound is the magnitude of the admissible error.

Theorem 2.

- For both addition and subtraction the bounds for the *absolute errors* are added.
- $\bullet\,$ In division and multiplication the bounds for the $relative\ errors$ are added.

Definition 2.2 (Linear Sensitivity to Uncertainties)

If y(x) is a smooth function, i.e. is differentiable, then |y'| can be interpreted as the **linear sensitivity** of y(x) to uncertainties in x.

For functions of several variables, i.e. $f: \mathbb{R}^n \to \mathbb{R}$, then

$$|\Delta y| \le \sum_{i=1}^{n} \left| \frac{\partial y}{\partial x_i} \right| |\Delta x_i|$$

where $|\Delta x_i| = |\tilde{x}_i - x_i|$ for an approximation \tilde{x}_i .

3 Number Representations

Definition 3.1 (Base Representation)

Every number $x \in \mathbb{N}_0$ can be written as a unique expansion with respect to base $b \in \mathbb{N} \setminus \{1\}$ as

$$(x)_b = a_0 b^0 + a_1 b^1 + \dots + a_n b^n = \sum_{i=0}^n a_i b^i.$$

A number can be written in a nested form:

$$(x)_b = a_0 b^0 + a_1 b^1 + \dots + a_n b^n$$

= $a_0 + b (a_1 + b (a_2 + b (a_3 + \dots + b a_n) \dots)$

with $a_i \in \mathbb{N}_0$ and $a_i < b$, i.e. $a_i \in \{0, \dots, b-1\}$.

For a real number, $x \in \mathbb{R}$, write

$$x = \sum_{i=0}^{n} a_i b^i + \sum_{i=1}^{\infty} \alpha_i b^{-i}$$
$$= a_n \dots a_0 \cdot \alpha_1 \alpha_2 \dots$$

Algorithm (Fuclid)

Euclid's algorithm can convert an integer x in base 10, i.e. $(x)_{10}$ into another base, b, i.e. $(x)_b$.

- 1. Input $(x)_{10}$
- 2. Determine the smallest integer n such that $x < b^{n+1}$
- 3. Let y = x. Then for $i = n, \dots, 0$

$$\begin{array}{rcl}
a_i & = & y \operatorname{div} b^i \\
y & = & y \operatorname{mod} b^i
\end{array}$$

which at each steps provides an a_i and updates y.

4. Output as $(x)_b = a_n a_{n-1} \cdots a_0$

where div is integer division, and mod is the remainder operator.

There are two issues: finding n maybe difficult and for large values of b^i division maybe computationally costly. Horner's algorithm seeks to overcome these issues.

Algorithm (Horner)

Horner's algorithm is:

- 1. Input $(x)_{10}$
- 2. Set i = 0
- 3. Let y = x. Then while y > 0

$$a_i = y \mod b$$

$$y = y \operatorname{div} b$$

$$i = i + 1$$

which at each steps provides an a_i and updates y.

4. Output as $(x)_b = a_n a_{n-1} \cdots a_0$

Definition 3.2 (Normalized Floating Point Representations)

Normalized floating point representations with respect to some base b, store a number x as

$$x = (0 \cdot a_1 \dots a_k)_b \times b^n$$

where the $a_i \in \{0, 1, ..., b-1\}$ are called the **digits**, k is the **precision** and n is the **exponent**. The set $a_1, ..., a_k$ is called the **mantissa**.

Imposing that $a_1 \neq 0$, it makes the representation unique, otherwise b^n can take multiple possible values.

Theorem 3.

Let x and y be two normalized floating point numbers with x > y > 0 and base b = 2. If there exists integers p and $q \in \mathbb{N}_0$ such that

$$2^{-p} \le 1 - \frac{y}{x} \le 2^{-q}$$

then, at most p and at least q significant bits (i.e. significant figures written in base 2) are lost during subtraction.

4 Linear Systems

Definition 4.1 (Systems of Linear Equations)

A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same variables. If there are m equations with n unknown variables to solve for, i.e.

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots$$

$$a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n = b_m$$

then the system of linear equations can be written in matrix form Ax = b, where

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}, \quad \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \text{and} \quad \boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix},$$

with $A \in \mathbb{R}^{m \times n}$, $\boldsymbol{x} \in \mathbb{R}^n$ and $\boldsymbol{b} \in \mathbb{R}^m$.

Definition 4.2 (Banded Systems)

A **banded** matrix is a matrix whose non-zero entries are confined to a diagonal band, comprising the main diagonal and zero or more diagonals on either side.

Definition 4.3 (Symmetric & Hermitian Systems)

A square matrix A is **symmetric** if $A = A^T$, that is, $a_{i,j} = a_{j,i}$ for all indices i and j.

A square matrix is said to be **Hermitian** if the matrix is equal to its conjugate transpose, i.e. $a_{i,j} = \overline{a_{j,i}}$ for all indices i and j. A Hermitian matrix is written as A^H .

Definition 4.4 (Positive Definite Matrices)

A matrix, M, is said to be **positive definite** if it is symmetric (or Hermitian) and all its eigenvalues are real and positive.

An equivalent definition is that for any non-zero real column vector z, then $z^T M z$ is always positive.

Definition 4.5 (Nonsingular Matrices)

A matrix is **non-singular** or **invertible** if there exists a matrix A^{-1} such that $A^{-1}A = AA^{-1} = I$, where I is the identity matrix.

Remarks (Properties of Nonsingular Matrices)

For a nonsingular matrix, the following all hold:

- Nonsingular matrix has full rank
- A square matrix is nonsingular if and only if the determinant of the matrix is non-zero.
- If a matrix is singular, both versions of Gaussian elimination (i.e. with and without pivoting) will fail due to division by zero, yielding a floating exception error.

Definition 4.6 (The Residual)

If \tilde{x} is an approximate solution to the linear problem Ax = b, then the **residual vector** is defined as $r = A\tilde{x} - b$.

The residual is |r|, formed by taking the norm of the residual vectors, and is a scalar quantity.

4.1 Direct Methods

Algorithm (Gaussian Elimination)

Gaussian elimination is a method to solve systems of linear equations based on forward elimination (a series of row-wise operations) to convert the matrix, A, to upper triangular form (echelon form), and then back-substitution to solve the system. The row operations are:

- · row swapping
- row scaling, i.e. multiplying by a non-zero scalar
- row addition, i.e. adding a multiple of one row to another

```
1: procedure Forward Elimination
        for k = 1 to n - 1 do
 2:
             for i = k + 1 to n do
 3:
                 for j = k to n do
a_{i,j} = a_{i,j} - \frac{a_{i,k}}{a_{k,k}} a_{k,j}
 4:
 5:
                end for b_i = b_i - \frac{a_{i,k}}{a_{k,k}} b_k
 6:
 7:
             end for
 8:
         end for
 9:
10: end procedure
11: procedure Back Substitution
12:
                a_{n,n}
        for i = n - 1 to 1 do
13:
             y = b_i
14:
15:
             for j = n to i + 1 do
                 y = y - a_{i,j} x_j
16:
            end for x_i = \frac{y}{a_{i,i}}
17:
18:
                   a_{i,i}
        end for
19:
20: end procedure
```

Algorithm (Gaussian Elimination with Scaled Partial Pivoting)

A pivot element is the element of a matrix which is selected first to do certain calculations. Pivoting helps reduce errors due to rounding during forward elimination.

To use partial pivoting to produce a matrix in row-echelon form

1: Find maximal absolute values vector \vec{s} with entries

$$s_i = \max_{j=1,\dots,n} |a_{i,j}|$$

```
2: for k = 1 to n - 1 do
```

3: **for**
$$i = k$$
 to n **do**

4: Compute relative pivot elements
$$\left| \frac{a_{i,k}}{s_i} \right|$$

5: end for

6: Find row with largest relative pivot element, denote this as row j

7: Swap rows k and j in the matrix A

8: Swap entries k and j in the vector \vec{s}

9: Do forward elimination on row k

10: end for

It is important to remember that while the elements of the augmented matrix are rescaled during forward elimination, the elements of the vector \vec{s} are reordered.

Definition 4.7 (Upper and Lower Triangular Matrices)

A square matrix is said to be a **lower triangular matrix** if all the elements above the main diagonal are zero and an **upper triangular** if all the entries below the main diagonal are zero.

If all of the entries on the main diagonal of a lower triangular matrix are also zero, the matrix is called **strictly lower triangular**, and similarly, if all of the entries on the main diagonal of a upper triangular matrix are zero, the matrix is called **strictly upper triangular**.

Note that

- The product of two upper triangular matrices is also upper triangular.
- The inverse of an upper triangular matrix is also upper triangular.

Theorem 4 (LU-Decomposition).

Let $A \in \mathbb{R}^{n \times n}$ be invertible. Then there exists a decomposition of A such that A = LU, where L is a lower triangular matrix and U is an upper triangular matrix.

A single pass of Gaussian forward elimination can be written as a matrix operation, where the elementary row operations are expressed as a Gaussian transformation matrix, M. This is a lower triangular matrix. It can be shown that

$$L = M_1^{-1} M_2^{-1} \cdots M_{n-1}^{-1}$$

where each matrix M_i is a matrix which describes the i^{th} pass of forward elimination part of Gaussian elimination. Equivalently, the upper triangular matrix U is given by

$$U = M_{n-1} \cdots M_2 M_1 A.$$

Definition 4.8 (Cholesky-Decomposition)

A symmetric, positive definite matrix can be decomposed as $A = \tilde{L}\tilde{L}^T$, where $\tilde{L} = LD^{1/2}$, where D is a diagonal matrix whose elements d_i are all positive, so that $D^{1/2}$ has elements $\sqrt{d_i}$.

Algorithm (Cholesky-Decomposition)

Given a matrix A, the lower triangular matrix \tilde{L} can be constructed via

```
1: for i=1 to n do
        for j = 1 to i - 1 do
 3:
            y = a_{i,j}
            for k = 1 to j-1 do
               y = y - l_{i,k} l_{j,k}
            end for
 6:
           l_{i,j} = y/l_{j,j}
 7:
 8:
        end for
        y = a_{i,i}
 9:
        for k=1 to i-1 do
10:
            y = y - l_{i,k} l_{i,k}
11:
12:
        end for
        if y \leq 0 then
13:
            A is not positive definite, so factorisation fails
14:
        \mathbf{else}
15:
            l_{i,i} = \sqrt{y}
16:
        end if
17:
18: end for
```

4.2 Indirect Methods

For a non-singular matrix A, consider an iterative scheme of the form

$$Q\vec{x}_{k+1} = (Q - A)\vec{x}_k + \vec{b}.$$

This is equivalent to

$$\vec{x}_{k+1} = (I - Q^{-1}A)\vec{x}_k + Q^{-1}\vec{b}.$$

Definition 4.9 (Convergent Methods)

A numerical method is said to be **convergent** if $x_k \to x^*$ as $k \to \infty$ where x^* is the exact solution.

Definition 4.10 (Spectral Radius of a Matrix)

The **spectral radius** of a square $n \times n$ matrix A is defined as

$$\rho(A) = \max\{|\lambda_1|, |\lambda_2|, \dots |\lambda_n|\}$$

where the λ_i are the eigenvalues of the matrix.

Theorem 5 (Convergence).

The iterative scheme converges if and only if the <u>spectral radius</u> of the matrix $I - Q^{-1}A$ is less than one, i.e.

$$\rho\left(I - Q^{-1}A\right) < 1.$$

Corollary 4.11

A sequence of vectors $\vec{e}_k = M^k \vec{e}_0$ converges to the zero vector if and only if the **spectral radius** of the matrix M is less than one.

Definition 4.12 (Order of Convergence)

If a sequence x_n converges to r as $n \to \infty$, then it is said to **converge** linearly if there exists a $\mu \in (0,1)$ such that

$$\lim_{n \to \infty} \frac{|x_{n+1} - r|}{|x_n - r|} = \mu.$$

The sequences converges **super-linearly** if

$$\lim_{n \to \infty} \frac{|x_{n+1} - r|}{|x_n - r|} = 0$$

and sub-linearly if

$$\lim_{n \to \infty} \frac{|x_{n+1} - r|}{|x_n - r|} = 1.$$

More generally, a sequence converges with order q if there exists a $\mu>0$ such that

$$\lim_{n \to \infty} \frac{|x_{n+1} - r|}{|x_n - r|^q} = \mu.$$

Thus a sequence is said to converge quadratically when q=2 and exhibit cubic convergence when q=3.

Definition 4.13 (Richardson Iteration)

Let Q=I. Then **Richardson iteration** computes the sequence of vectors

$$\vec{x}_{k+1} = (I - A)\vec{x}_k + \vec{b}.$$

This may converge, depending on A.

The modified Richardson iteration scales $Q = \omega I$, so that

$$\vec{x}_{k+1} = \vec{x}_k + \omega \left(\vec{b} - A \vec{x}_k \right).$$

Definition 4.14 (Jacobi Iteration)

The **Jacobi iteration** has Q = D, where D is the diagonal matrix of A, so

$$\vec{x}_{k+1} = (I - D^{-1}A)\vec{x}_k + D^{-1}\vec{b}.$$

Definition 4.15 (Diagonally Dominant Matrices)

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be **diagonally dominant** if, for every row, the absolute value of the diagonal element is greater or equal to the sum of the magnitudes of all other elements, i.e.

$$|a_{i,i}| \ge \sum_{j=1, j \ne i}^{n} |a_{i,j}|$$
 for all $i \in (1, n)$.

If the absolute value of the diagonal element is greater than the sum of the magnitudes of all other elements, then the matrix is said to be **strictly diagonally dominant**

Theorem 6 (Convergence of Jacobi Scheme).

If a matrix A is strictly diagonally dominant, then the Jacobi scheme converges for any initial guess \vec{x}_0 .

Definition 4.16 (Gauss-Seidel Scheme)

Let Q = L + D, where L is the lower triangular matrix of A and D is the diagonal matrix of A, then the **Gauss-Seidel** scheme is given by

$$(D+L)\vec{x}_{k+1} = -U\vec{x}_k + \vec{b}.$$

Theorem 7 (Convergence of Gauss-Seidel).

If a matrix A is strictly diagonally dominant, then the Gauss-Seidel scheme converges for any initial guess \vec{x}_0 .

Definition 4.17 (Successive Over Relaxation)

The scheme uses $Q = L + \frac{1}{\omega}D$, where L is the lower triangular matrix of A and D is the diagonal matrix of A, thus

$$(D + \omega L)\vec{x}_{k+1} = -((\omega - 1)D + \omega U)\vec{x}_k + \omega \vec{b}.$$

Theorem 8 (Convergence of Successive Over Relaxation).

Let A be a symmetric matrix with positive entries on the diagonal and let $\omega \in (0,2)$. Then, if and only if A is positive definite will the method of successive over relaxation converge.

4.3 Fundamental Theorem of Numerical Analysis

Definition 4.18 (Stability)

A numerical method is said to be **stable** if and only if any initial error \vec{e}_0 is damped during the iterations, i.e. $\|\vec{e}_k\| < \|\vec{e}_0\|$.

Remark

Note that $\|\vec{x}\|$ is a *norm* of a vector $\vec{x} \in \mathbb{R}^n$, for example one such norm is the L^2 (or Euclidean) norm, given by $\|\vec{x}\|_2 = \sqrt{x_0^2 + x_1^2 + \dots x_n^2}$.

Definition 4.19 (Consistency)

A numerical method is said to be **consistent** if any fixed point x^* of the iteration is a solution to the problem being solved.

That is the consistency error $\tau_k = \|Ax^k - b\|$ tends to zero as $k \to \infty$ and $x^k \to x^*$

For a linear system, a fixed point, x^* , fulfils

$$\boldsymbol{x}^* = (I - Q^{-1}A) \, \boldsymbol{x}^* + Q^{-1}\boldsymbol{b} \Leftrightarrow A\boldsymbol{x}^* = \boldsymbol{b}.$$

Thus, a fixed point of the iterative scheme is a solution of the linear system. If the method is stable then

$$\vec{e}_k = \left(I - Q^{-1}A\right)^k \vec{e}_0,$$

so then $||I - Q^{-1}A|| < 1$ for $||\vec{e}_k|| < ||\vec{e}_0||$. Note that $||I - Q^{-1}A||$ is the norm of a matrix, which is induced by a vector norm.

Theorem 9 (Fundamental Theorem of Numerical Analysis).

A numerical method is convergent if and only if it is consistent and stable.

5 Nonlinear Solvers

5.1 Bisection Method

Definition 5.1 (Bisection Method)

The bisection method, when applied in the interval [a,b] to a function $f \in C^0([a,b])$ with f(a)f(b)<0

Bisect the interval into two subintervals [a,c] and [c,b] such that a < c < b.

- If f(c) = 0 or is sufficiently close, then c is a root,
- else, if f(c)f(a) < 0 continue in the interval [a, c],
- else, if f(c)f(b) < 0 continue in the interval [c, b].

Theorem 10.

The bisection method, when applied in the interval [a, b] to a function $f \in C^0([a, b])$ with f(a)f(b) < 0 will compute, after n steps, an approximation c_n of the root r with error

$$|r - c_n| < \frac{|b - a|}{2^n}.$$

5.2 Newton's Method

Definition 5.2 (Newton's Method)

Let a function $f \in C^1([a,b])$, then for an initial guess x_0 , Newton's method is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Theorem 11.

When Newton's method converges, it converges to a root, r, of f(x), i.e. f(r) = 0.

Theorem 12.

Let $f \in C^1([a, b])$, with

- 1. f(a)f(b) < 0,
- 2. $f'(x) \neq 0$ for all $x \in (a, b)$,
- 3. f''(x) exists, is continuous and either f''(x) > 0 or f''(x) < 0 for all $x \in (a,b)$.

Then f(x) = 0 has exactly one root, r, in the interval (a,b) and the sequence generated by Newton iterations converges to the root when the initial guess is chosen according to

• if f(a) < 0 and f''(a) < 0 or f(a) > 0 and f''(a) > 0 then $x \in [a, r]$

or

• if f(a) < 0 and f''(a) > 0 or f(a) > 0 and f''(a) < 0 then $x \in [r, b]$.

The iterates in the sequence will satisfy

$$|x_n - r| < \frac{f(x_n)}{\min_{x \in [a,b]} |f'(x)|}.$$

Theorem 13.

Let $f \in C^1([a,b])$, with

- 1. f(a)f(b) < 0, 2. $f'(x) \neq 0$ for all $x \in (a,b)$, 3. f''(x) exists and is continuous, i.e. $f(x) \in C^2([a,b])$.

If x_0 is close enough to the root r, then Newton's method converges quadratically:

$$|r - x_{n+1}| \le \frac{M}{2m} |r - x_n|^2$$

where $M = \left| \max_{\xi_n} f''(\xi_n) \right|$ and $m = \left| \min x_n f'(x_n) \right|$

Secant Method

Definition 5.3 (Secant Method)

The secant method is defined as

$$x_{n+1} = x_n - f(x_n) \frac{x_{n-1} - x_n}{f(x_{n-1}) - f(x_n)}$$

where the derivative of f is approximated via a Taylor expansion.

Theorem 14.

Let $f \in C^2([a,b])$, and $r \in (a,b)$ such that f(r) = 0 and $f'(r) \neq 0$. Furthermore, let

$$x_{n+1} = x_n - f(x_n) \frac{x_{n-1} - x_n}{f(x_{n-1}) - f(x_n)}$$

then there exists a $\delta > 0$ such that when $|r - x_0| < \delta$ and $|r - x_1| < \delta$, then the following holds:

1.
$$\lim_{n \to \infty} |r - x_n| = 0 \Leftrightarrow \lim_{n \to \infty} x_n = r$$
,

2.
$$|r - x_{n+1}| \le \mu |r - x_n|^{\alpha}$$
 with $\alpha = \frac{1 + \sqrt{5}}{2}$.

The properties of the three nonlinear solvers can be summarised as follows:

Method	Regularity	Proximity to r	Init. points	Func. calls	Convergence
Bisection	\mathcal{C}^0	No	2	1	Linear
Newton	\mathcal{C}^2	Yes	1	2	Quadratic
Secant	\mathcal{C}^2	Yes	2	1	Superlinear

5.4 Systems of Nonlinear Equation

Definition 5.4 (Multi-Dimensional Newton Method)

For a vector-valued function $\boldsymbol{f}:\mathbb{R}^n\to\mathbb{R}^m,$ which takes as an argument the vector

$$\boldsymbol{x} = (x_1, x_2 \dots x_n) \in \mathbb{R}^n,$$

and returns a vector in $f(x) \in \mathbb{R}^m$, the **Jacobian** matrix is defined as

$$J = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & & & \vdots \\ \vdots & & & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

where f_1 is the first component of the vector-valued function f.

If the derivatives are evaluated at the vector \boldsymbol{x} , the Jacobian matrix can be parameterised as $J(\boldsymbol{x})$.

If m = n, so that the matrix is square, then Newton's method can then be written as a vector equation,

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - J^{-1}\left(\boldsymbol{x}_k\right) \boldsymbol{f}\left(\boldsymbol{x}_k\right)$$

where $J^{-1}(\boldsymbol{x}_k)$ is the inverse of the Jacobian matrix evaluated at the k-iterate of the approximation vector which is denoted by \boldsymbol{x}_k .

In practice, as matrix inversion can be computationally expensive, the system

$$J\left(\boldsymbol{x}_{k}\right)\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right)=-\boldsymbol{f}\left(\boldsymbol{x}_{k}\right)$$

is solved for the unknown vector $\boldsymbol{x}_{k+1} - \boldsymbol{x}_k$, and then \boldsymbol{x}_{k+1} is found.

6 Interpolation

Definition 6.1 (Interpolating Functions)

Given a set of points p_0, \ldots, p_n and corresponding nodes u_0, \ldots, u_n , a function $f: \mathbb{R} \to \mathbb{R}$ with $f(u_i) = p_i$, i.e. maps the nodes to the points, is called an **interpolating function**.

Definition 6.2 (Collocation)

If the interpolating function is a polynomial, it can be written as

$$p(u) = \sum_{i=0}^{n} \alpha_i \varphi_i(u)$$

where $\varphi_{i}\left(u\right)$ are polynomials. Thus for every nodal value j, the polynomial exactly satisfies

$$p(u_j) = \sum_{i=0}^{n} \alpha_i \varphi_i(u_j),$$

for the weights α_i . Thus, solving for all the values of α which fit the interpolating function to the data leads to a linear system of the form

$$\Phi \alpha = p$$

where p is the vector defined the polynomial evaluated at the node points, i.e. $p = p(u_j)$ and Φ is the **collocation matrix**. If there are n + 1 data points, the collocation matrix is given by

$$\Phi = \begin{pmatrix} \varphi_0(u_0) & \varphi_1(u_0) & \cdots & \varphi_n(u_0) \\ \vdots & & & \vdots \\ \varphi_0(u_n) & \cdots & \cdots & \varphi_n(u_n) \end{pmatrix}$$

i.e. elements of the matrix are given by $\Phi_{i,j} = \varphi_j(u_i)$.

Thus the weights which define the interpolating polynomial are found as $\alpha = \Phi^{-1}p$, if the matrix is square.

Furthermore, the collocation matrix is invertible if and only if the set of functions φ are linearly independent.

When the polynomials are given by $\varphi_i(u) = u^i$, so that the collocation matrix has elements $\Phi_{i,j} = u_i^j$ then Φ is called the **Vandermonde matrix**.

Definition 6.3 (Lagrange Polynomials)

The Lagrange form of an interpolating polynomial is given by

$$p(x) = \sum_{i=0}^{n} \alpha_i l_i(x)$$

where $l_i \in \mathbb{P}_n$ are such that $l_i(x_j) = \delta_{ij}$. The polynomials $l_i(x) \in \mathbb{P}_n$ for $i = 0, \ldots, n$, are called **characteristic polynomials** and are given by

$$l_i(x) = \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}.$$

Definition 6.4 (Newton Interpolation)

Newton interpolation interpolates a set of points (x_i, y_i) as

$$p(x) = \sum_{i=0}^{n} \alpha_i n_i(x)$$

using a linear combination of Newton basis polynomials, which are defined as

$$n_0(x) = 1,$$
 $n_i(x) = (x - x_0)(x - x_1) \cdots (x - x_{i-1})$
= $\prod_{j=0}^{j-1} (x - x_j).$

By construction, $\alpha_0 = y_0$, and subsequent terms must be solved by evaluating the interpolating polynomial at increasing orders, leading to the formula

$$\alpha_{i+1} = \frac{y_{i+1} - p_i(x_{i+1})}{n_i(x_{i+1})}.$$

Algorithm (Aitken's Algorithm)

Aitken's algorithm is an iterative process for evaluating Lagrange interpolation polynomials at an arbitrary point, u^* , without explicitly constructing them. If the interpolating polynomial is given by p, and is derived from n data points (u_i, y_i) for $i = 0, \ldots, n$

$$p(u) = \sum_{i=0}^{n} p_i^n l_i^n(u).$$

The interpolation is achieved by constructing a series of polynomials, evaluated at the $u = u^*$, where $p_i^k(u)$ is given by

$$p_i^{k+1}(u) = p_i^k(u) \left(\frac{u - u_{n-k}}{u_i - u_{n-k}}\right) + p_{n-k}^k(u) \left(1 - \frac{u - u_{n-k}}{u_i - u_{n-k}}\right)$$

with initial values $p_i^0 = y_i$, i.e.

where the coefficients are evaluated from left to right, until p_0^n is evaluated.

6.1 Piecewise Polynomial Interpolation

Definition 6.5 (Spline Functions)

A function s(u) is called a **spline** of degree k on the domain [a,b] if $s \in C^{k-1}([a,b])$ and there exists nodes $a = u_0 < u_1 < \ldots < u_m = b$ such that s is a polynomial of degree k for $i = 0, \ldots m-1$.

Definition 6.6 (B-Splines)

A spline is said to be a **b-spline** if it is of the form

$$s\left(u\right) = \sum_{i=0}^{m} \alpha_{i} \mathcal{N}_{i}^{n}\left(u\right)$$

where \mathcal{N}^n are the basis spline functions of degree n with minimal support. (That is they are positive in the domain and zero outside). The functions are defined recursively. Let u_i be the set of nodes u_0, u_1, \ldots, u_m ,

$$\mathcal{N}_{i}^{0}(u) = \begin{cases} 1 & \text{for } u_{i} \leq u \leq u_{i+1} \\ 0 & \text{else.} \end{cases}$$

$$\mathcal{N}_{i}^{n}(u) = \alpha_{i}^{n-1}(u)\mathcal{N}_{i}^{n-1}(u) + (1 - \alpha_{i+1}^{n-1}(u))\mathcal{N}_{i+1}^{n-1}(u)$$

$$\alpha_{i}^{n-1}(u) = \frac{u - u_{i}}{u}$$

$$\alpha_i^{n-1}(u) = \frac{u - u_i}{u_{i+n} - u_i}$$

Given data with nodes u_i and values p_i , to interpolate with splines, of order n, requires solving

Find
$$s = \sum_{i=0}^{m} \alpha_i \mathcal{N}_i^n(u)$$
 such that $s(u_i) = p_i$ for $i = 0, \dots, m$

which is matrix form is $\Phi \alpha = p$, where the collocation matrix, $\Phi \in \mathbb{R}^{(m+1)\times (m+1)}$ is given by

$$\Phi = \begin{pmatrix} \mathcal{N}_0^n(u_0) & \cdots & \mathcal{N}_m^n(u_0) \\ \vdots & & \vdots \\ \mathcal{N}_0^n(u_m) & \cdots & \mathcal{N}_m^n(u_m) \end{pmatrix}.$$

6.2 Least-Squares Approximation

Definition 6.7 (Least-Squares Approximation)

Given a set of points $y = (y_0, y_1, \dots y_n)$ at nodes x_i , seek a continuous function of x, with a given form characterized by m parameters $\beta = (\beta_0, \beta_1, \dots, \beta_m)$, i.e. $f(x, \beta)$, which approximates the points while minimizing the error, defined by the sum of the squares

$$E = \sum_{i=0}^{n} (y - f(x_i, \beta))^{2}.$$

The minimum is found when

$$\frac{\partial E}{\partial \beta_j} = 0 \quad \text{for all} \quad j = 1, \dots m$$

i.e.

$$-2\sum_{i=0}^{n} (y_i - f(x_i, \beta_j)) \frac{\partial f(x_i, \beta)}{\partial \beta_j} = 0 \quad \text{for all} \quad j = 1, \dots m.$$

Definition 6.8 (Linear Least-Squares Approximation)

If the function y(x) is a function of the form

$$y = \sum_{j=0}^{m} \beta_j \varphi_j (x)$$

where φ_j are linearly independent, i.e. there are no non-zero constants c_1 and c_2 such that $c_1\varphi_i+c_2\varphi_j=0$ for all x. Then, for n+1 data points, the least squares problem can be expressed as

$$E(\beta) = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{m} \beta_j \varphi_j(x_i) \right)^2.$$

This has a minimum when

$$\frac{\partial E}{\partial \beta_{j}} = \sum_{i=0}^{n} \left(y_{i} - \sum_{k=0}^{m} \beta_{k} \varphi_{k} \left(x_{i} \right) \right) \varphi_{j} \left(x_{i} \right) = 0.$$

Thus, the weights β_j , for j = 0, ..., m, can be determined by solving the **normal equations**, that is, from the linear equation

$$\vec{y} = \Phi \vec{\beta}$$
,

where $\vec{\beta} \in \mathbb{R}^{m+1}$, $\vec{y} \in \mathbb{R}^{n+1}$ where $\Phi \in \mathbb{R}^{(n+1)\times(m+1)}$ is the collocation matrix. Equivalently,

$$\Phi^T \Phi \vec{\beta} = \Phi^T \vec{y},$$

i.e. it is now possible to solve the linear equation through finding the inverse of a matrix

$$\vec{\beta} = (\Phi^T \Phi)^{-1} \Phi^T \vec{y},$$

7 Numerical Differentiation

Definition 7.1 (Finite-Difference Quotients)

Consider the approximations to the first-order derivative:

1. Forward Difference Quotient:

$$D_j^+ u = \frac{u_{j+1} - u_j}{h}$$

2. Backwards Difference Quotient:

$$D_j^- u = \frac{u_j - u_{j-1}}{h}$$

3. Central Difference Quotient:

$$D_j^0 u = \frac{u_{j+1} - u_{j-1}}{2h}$$

The forward and backwards difference schemes are first order approximations to the derivative, i.e. $D^+u = f(x) + \mathcal{O}(h)$. The central difference scheme is a second order accurate approximation.

Definition 7.2 (Richardson Extrapolation)

This is a method for deriving higher order approximations for derivatives from lower order approximations. Consider a first-order approximation to the derivative, $\varphi(h)$, such as backwards or forwards differencing, then

$$f'(x) = \varphi(h) + a_2h^2 + a_3h^3 + \dots$$

Now evaluate the derivative at h = h/2, so that

$$f'(x) = \varphi\left(\frac{h}{2}\right) + a_2\left(\frac{h}{2}\right)^2 + a_3\left(\frac{h}{2}\right)^3 + \dots$$

Combining the two terms so that the low order term cancel, i.e. via f'(x) - 4f'(x), then a better approximation can be found as

$$f'(x) = \frac{4\varphi(h/2) - \varphi(h)}{3} + \mathcal{O}(h^4).$$

The process can also be applied to second order accurate schemes, such as central differencing, to produce more accurate approximations, as well as to higher order derivatives.

7 Numerical Differentiation

Definition 7.3 (Higher Order Derivatives)

From the Taylor expansion of f(x+h) and f(x-h), the second order derivative can be expressed as

$$f''(x) = \frac{f(x-h) - 2f(x) + f(x+h)}{h^2} + \mathcal{O}\left(h^2\right).$$

8 Numerical Integration

Definition 8.1 (Riemann Sum)

Create a partition, p, of the domain of integration: define n+1 nodes $a = x_0 < x_1 < \ldots < x_n = b$, so that there are n sub-intervals $[x_i, x_{i+1}]$. Then approximate the area under the curve by summing the areas in each subinterval defined as

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n-1} (x_{i+1} - x_i) f(x^*), \quad x^* \in [x_i, x_{i+1}].$$

If f is continuous, the value of x_i^* may be chosen arbitrarily in the interval $[x_i, x_{i+1}]$. Then the **lower** and **upper Riemann sums** are given by

$$L(f, p) = \sum_{i=0}^{n-1} (x_{i+1} - x_i) m_i$$
 where $m_i = \min_{x \in [x_i, x_{i+1}]} f(x)$

$$U(f, p) = \sum_{i=0}^{n-1} (x_{i+1} - x_i) M_i \text{ where } M_i = \max_{x \in [x_i, x_{i+1}]} f(x)$$

so that bounds for the value of the quadrature can be made

$$L(f,p) \le \int_{a}^{b} f(x) dx \le U(f,p).$$

Additionally, the left and right Riemann sums are given by

$$\sum_{i=0}^{n-1} (x_{i+1} - x_i) f(x_{i-1}),$$

$$\sum_{i=0}^{n-1} (x_{i+1} - x_i) f(x_i).$$

Definition 8.2 (Trapezoidal Rule)

Rather than rectangles, use trapezoids to approximate the integral in a sub domain

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n-1} (x_{i+1} - x_i) \frac{f(x_i) + f(x_{i+1})}{2}.$$

If the nodes of the partition are equally spaced, so that $h = x_{i+1} - x_i$, then the formula can be given by

$$T(f,p) = \frac{h}{2} (f(x_0) + f(x_n)) + h \sum_{i=1}^{n-1} f(x_i).$$

(a) Lower Riemann Sum

(b) Upper Riemann Sum

Theorem 15 (Error for Trapezoidal Rule).

Let $f \in C^2([a,b])$ and p be equidistant partition of [a,b], with $h = x_{i+1} - x_i$. The error can be shown to have the form:

$$\left| \int_{a}^{b} f(x) \, dx - T(f, p) \right| = a_{2}h^{2} + a_{4}h^{4} + \dots$$

that is, the error terms are even powers of the discretization. The error for the trapezium rule is

$$\left| \int_{a}^{b} f(x) dx - T(f, p) \right| = \frac{1}{12} \left| (b - a) h^{2} f''(\xi) \right|$$

for a $\xi \in (a, b)$.

Definition 8.3 (Simpson's Rule)

The integral is approximated as

$$\int_{0}^{b} f(x) dx \approx \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right).$$

Simpson's rule uses interpolation with <u>quadratic polynomials</u>. It can be applied in a composite manner, i.e. on many subdomains. It has an asymptotic error of $\mathcal{O}\left(h^4\right)$.

Algorithm (Romberg Algorithm)

Romberg's method uses the <u>Trapezoidal Rule</u> and then <u>Richardson Extrapolation</u> to estimate integrals.

First consider a sequence of partitions, p_i , of equal spacing given by $h_i = \frac{b-a}{2^i}$ for $i=0,\ldots,n$, which yield a sequence of integrals $R_i^0 = T_i(f,p_i)$. Refinements of the integrals can then be produced by Richardson Extrapolation.

Thus, consider the two integrals

$$\int_{a}^{b} f(x) dx = R_{i-1}^{0} + a_{2}h^{2} + a_{4}h^{4} + \dots$$

$$\int_{a}^{b} f(x) dx = R_{i}^{0} + a_{2}\left(\frac{h}{2}\right)^{2} + a_{4}\left(\frac{h}{2}\right)^{4} + \dots$$

Note that there no odd terms in the error. Then, define the next set of refinements as

$$R_i^1 = \frac{1}{3} \left(4R_i^0 - R_{i-1}^0 \right).$$

which has an error $\mathcal{O}\left(h^4\right)$. The extrapolated values are equivalent to integrals approximated by Simpson's rule. The recurrence formula can be derived

$$R_i^m = \frac{1}{4^m - 1} \left(4^m R_i^{m-1} - R_{i-1}^{m-1} \right).$$

8.1 Gauss Quadrature

Generalise the quadrature formula so that an integral is approximated as

$$I_n[f] = \sum_{i=0}^{n} \alpha_i f(x_i)$$

The above equation is a weighted sum of the values of f at the points x_i , for $i=0,\ldots,n$. These points are said to be the *nodes* of the quadrature formula, while the $\alpha_i \in \mathbb{R}$ are its *coefficients* or *weights*. Both weights and nodes depend in general on n.

- Can the weights be chosen such that the error in an integral is minimized?
- Furthermore, can the nodes be chosen such that the integral can be improved?

Definition 8.4 (Orthogonal functions)

Two real-valued functions f(x) and g(x) are said to be **orthogonal** if

$$\langle f, g \rangle = \int_a^b f(x)g(x) \, \mathrm{d}x = 0.$$

Theorem 16 (Gaussian Quadrature).

Let q(x) be a non-trivial polynomial of degree n+1 such that

- 1. it has n+1 distinct roots, denoted as x_i , in [a,b],
- 2. the polynomial satisfies

$$\int_{a}^{b} x^{k} q(x) dx = 0 \quad \text{for} \quad k = 0, \dots, n.$$

i.e. is orthogonal to x^k so that $\langle x^k, q \rangle = 0$.

Then, denote the integral as

$$I[f] = \int_{a}^{b} f(x) dx = \sum_{i=0}^{n} A_{i} f(x_{i})$$

with $A_i = \int_a^b L_i(x) dx$ for all polynomials f(x) of degree less than or equal to 2n + 1. The integral I[f] integrates all polynomials of degree 2n + 1 exactly. Thus, the degree of exactness of I[f] is 2n + 1.

Definition 8.5 (Gauss-Legendre Quadrature)

The Legendre polynomials are a set of orthogonal polynomials where

$$\int_{-1}^{1} P_m(x) P_n(x) dx = 0 \quad \text{for} \quad n \neq m.$$

where m and n are the order of the polynomials, and $P_0=1$. Thus, $P_1=x,\,P_2=\left(3x^2-1\right)/2$ etc. The Legendre polynomials obey a recursive formula:

$$P_n = \frac{2n-1}{n}xP_{n-1}(x) - \frac{n-1}{n}P_{n-2}(x), \text{ for } n \ge 2.$$

Gauss-Legendre quadrature uses the roots of the Legendre polynomials as the nodes for integration, and weights found by equating the quadrature expressions with the exact integrals for $f(x) = 1, x, x^2, ..., n$.

The domain of integration can be scaled via the invertible transformation $x=\frac{b-a}{2}t+\frac{a+b}{2},$ so that

$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b-a}{2}t + \frac{a+b}{2}\right) dt.$$

9 Differential Equations

9.1 Finite Difference Methods for Differential Equations

Solutions to differential equations are functions.

Definition 9.1 (Ordinary Differential Equations)

An **ordinary differential equation** (ODE) is an equation that involves one or more derivatives of a function of a single variable.

For example, with only the first derivative y'(t) = f(y(t), t).

Definition 9.2 (Initial Value Problems)

An **initial value problem** (IVP) is given by an ordinary differential equation of the form y'(t) = f(y(t), t) and initial value $y(a) = y_a$ for the unknown function y(t), with $t \ge a$.

Often a = 0, and the initial condition is denoted by $y(0) = y_0$.

Definition 9.3 (One-step methods)

A numerical method for approximating the solution to a differential equation is called a **one-step method** if the solution at time step t_{n+1} , denoted by u_{n+1} , depends only on the previous one, t_n , where $t_{n+1} = t_n + h$, for some small increment $h = \Delta t$.

Definition 9.4 (Forward Euler)

This approximates the derivative through a first-order forward difference approximation of the first-order derivative, i.e. for u_n , the solution u at t_n , the computed solution to a differential equation $\dot{u} = f(u)$, evolves according to

$$u_{n+1} = u_n + hf_n$$

where $f_n = f(u_n, t_n)$ and $h = t_{n+1} - t_n$. The <u>local truncation error</u> is $\mathcal{O}(h^2)$.

Definition 9.5 (Backward Euler Method)

This method uses the <u>backward finite difference</u> approximation of the first-order derivative, so that the solution is computed via

$$u_{n+1} = u_n + h f_{n+1}$$

where $f_{n+1} = f(u_{n+1}, t_{n+1})$.

Definition 9.6 (Crank-Nicolson Method)

This method is given by

$$u_{n+1} = u_n + \frac{h}{2} (f_n + f_{n+1}).$$

Definition 9.7 (Heun's Method)

This method is given by

$$u_{n+1} = u_n + \frac{h}{2} (f_n + f (u_n + h f_n, t_{n+1})).$$

Alternatively, one-step methods can be considered to be integrators

$$y(t+h) = y(t) + \int_{t}^{t+h} f(y(\tau), \tau) d\tau.$$

Thus, the forward Euler method is equivalent to the <u>left Riemann sum</u>, backward Euler is equivalent to the <u>right Riemann sum</u> and the Crank-Nicolson is the <u>trapezoidal rule</u>.

Definition 9.8 (Implicit and Explicit Schemes)

A numerical method is said to be **explicit** if an approximation u_{n+1} can be calculated directly from already computed values u_i , i < n. Otherwise, the method is said to be **implicit**.

Often, implicit methods require, at each step, the solution of a nonlinear equation for computing u_{n+1} .

Both the Forward Euler and Heun's method are explicit, whereas the Backward Euler and Crank-Nicolson methods are implicit.

Heun's method can be interpreted as the Crank-Nicolson method with the approximation $u_{n+1} \approx u_n + hf_n$ replacing the explicit f_{n+1} term, which depends on u_{n+1} .

9.2 Analysis of One-Step Methods

Any explicit one-step method has the form

$$u_{n+1} = u_n + h\Phi\left(t_n, u_n, f_n, h\right)$$

with Φ the increment function.

Definition 9.9 (Hölder & Lipschitz Continuity)

A function f is **Hölder continuous** if there exists real constants C>0 and $\alpha\geq 0$ such that

$$|f(x) - f(y)| \le C||x - y||^{\alpha}$$

for all x and y. If $\alpha = 1$ the function is said to be **Lipschitz continuous**.

Definition 9.10 (Consistent Schemes)

For the exact solution to the differential equation, $y(t_n) = y_n$, the solution can be written as

$$y_{n+1} = y_n + h\Phi(t_n, y(t_n), f_n, h) + \varepsilon_n$$

so that

$$\tau_n = \frac{y_{n+1} - y_n}{h} - \Phi(t_n, y(t_n), f_n, h)$$

where $\varepsilon_n = h\tau_n$ for a $\tau_n = \tau_n\left(h\right)$ is defined as the **local truncation** error at step n.

The **consistency error** is given by $\tau = \max_n |\tau_n|$.

A method is said to be **consistent** if

$$\lim_{h\to 0}\Phi=f.$$

This means the increment function is a good approximation to the differential equation as the step size tends to zero.

Definition 9.11 (Order of One Step Methods)

A one-step method is of order $p \in \mathbb{N}$, if for all $t \in [0, T]$, the solution satisfies the condition that $\tau(h) = \mathcal{O}(h^p)$ as $h \to 0$.

9 Differential Equations

Definition 9.12 (Zero Stable Methods)

A method of the form

$$u_{n+1} = u_n + h\Phi(t_n, u_n, f_n, h)$$

is called **zero-stable** if there exists both a maximal step size, h_{\max} and a constant, C, such that for all $h \in [0, h_{\max}]$ and for $\varepsilon > 0$, then if, for all time-steps $0 \le n \le N$, there exists a $\delta_n \le \varepsilon$ and

$$z_{n+1} = z_n + h\Phi(t_n, z_n, f_n(z_n, t_n), h) + \delta_{n+1}$$

and $z_0 = y_0 + \delta_0$, then

$$|z_n - u_n| \le C\varepsilon$$
 for $0 \le n \le N$.

Zero stability means that small perturbations in the computations lead to small perturbations in the approximations.

Theorem 17.

If the increment function is Lipschitz continuous for y_n for any h and t_n , then the one-step method is zero-stable.

Theorem 18.

If the increment function Φ is

(i) Lipschitz continuous for u_n for any h and t_{n+1}

and

(ii) the method is consistent

then

$$\lim_{h \to 0} |y_n - u_n| = 0.$$

Also, if the method is of order p and if $|y_0 - u_0| = \mathcal{O}(h^p)$ as $h \to 0$, the convergence is of order p.

Definition 9.13 (Absolute Stability)

A numerical scheme for approximating the solution to the linear differential equation $y'(t) = \lambda y(t)$ with $\lambda \in \mathbb{C}$ and initial condition $y_0 = 1$ is said to be **absolutely stable** if $|u_n| \to 0$ as $n \to \infty$, when $\operatorname{Re}(\lambda) < 0$, for a fixed value of h.

Definition 9.14 (Well-posed)

A differential equation is said to be well-posed if

- a unique solution exists for any initial conditions and
- the solution's behaviour changes continuously with the initial conditions.

A differential equation which does not have these properties is said to be ill-posed.

Theorem 19 (Lax Equivalence Theorem).

The Lax Equivalence theorem or Lax–Richtmyer theorem is the equivalent form of the Fundamental Theorem of Numerical Analysis for differential equations, which states that for a consistent finite difference method for a well-posed linear initial value problem, the method is convergent if and only if it is stable.

Runge-Kutta Schemes And Multi-Step Schemes

Definition 9.15 (Runge-Kutta Methods)

If an ordinary differential equation is given by $\dot{y}=f\left(y,t\right)$, then a Runge-Kutta scheme takes the form

$$u_{n+1} = u_n + hF(t_n, u_n, h; f)$$

where F is an increment function given by

$$F(t_n, u_n, h; f) = \sum_{i=1}^{s} b_i k_i,$$

with k_i defined as

$$k_i = f\left(u_n + h\sum_{j=1}^s a_{i,j}k_j, t_n + c_i h\right)$$
 for $i = 1, \dots, s$

where s is referred to as the number of stages of the method.

Thus, an s-stage scheme is characterised by coefficients b_i , c_i and $a_{i,j}$. If the matrix defined by the elements $a_{i,j}$ is lower triangular, i.e. $a_{i,j} = 0$ for all $i \leq j$, then each k_i can be computed explicitly in terms of the previous coefficients k_1, \ldots, k_{i-1} . Thus, such schemes are called **explicit**, otherwise they are said to be **implicit**.

The local truncation error is defined as

$$h\tau_{n+1}(h) = u(t_{n+1}) - u(t_n) - hF(t_n, u_n, h; f).$$

It can be shown that $\tau(h) = \max |\tau_{n+1}(h)| \to 0$ as $h \to 0$ if and only if $\sum_{i=1}^{s} b_i = 1$.

A Runge-Kutta method is of order $p \ge 1$ if $\tau(h) = \mathcal{O}(h^p)$ as $h \to 0$.

The components of a Runge-Kutta scheme are expressed in a **Butcher array**

$$\begin{array}{c|ccccc} c_1 & a_{1,1} & \dots & a_{1,s} \\ \vdots & \vdots & \ddots & \vdots \\ c_s & a_{s,1} & \dots & a_{s,s} \\ \hline & b_1 & \dots & b_s \end{array}$$

The order of an s-stage explicit Runge-Kutta method cannot be greater than s. Additionally, there does not exist a s-stage explicit Runge-Kutta method with order s if $s \geq 5$.

The order of an s-stage implicit Runge-Kutta method cannot be greater than 2s.

The most common form of the Runge-Kutta method is the fourth order Runge-Kutta method (RK4). It takes the form:

$$u_{n+1} = u_n + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

where

$$\begin{aligned} k_1 &= f\left(u_n, t_n\right), \\ k_2 &= f\left(u_n + \frac{h}{2}k_1, t_n + \frac{h}{2}\right), \\ k_3 &= f\left(u_n + \frac{h}{2}k_2, t_n + \frac{h}{2}\right), \\ k_4 &= f\left(u_n + hk_3, t_n + h\right). \end{aligned}$$

9.3 Partial Differential Equations

Definition 9.16 (Partial Differential Equations)

A partial differential equation is a relation involving an unknown function of several free variables and partial derivatives with respect to these variables.

A partial differential equation is said to be linear if it only contains linear terms of the unknown and its derivatives. For example, a second-order linear partial differential equation for an unknown function u(x,t) has the form

$$a_1u_{xx} + a_2u_{xt} + a_3u_{tt} + a_4u_x + a_5u_t + a_6u = f(x,t).$$

where $u_{xx}=\frac{\partial^2 u}{\partial x^2}$ is the second-order partial derivative with respect to the variable x and, assuming u is \mathcal{C}^2 continuous

$$u_{xt} = \frac{\partial}{\partial t} \frac{\partial u}{\partial x} = \frac{\partial}{\partial x} \frac{\partial u}{\partial t} = u_{tx}$$

For finite-difference schemes, all partial derivatives must be approximated by discretized operators.

Index

Implicit Methods, 35

LU-Decomposition, 11 Jacobian Matrix, 19 Lagrange Polynomials, 21 Absolute error, 4 Lax Equivalence Theory, 38, see Aitken's Algorithm, 22 Fundamental Theorem of B-Splines, 23 Numerical Analysis Backward Euler, 34 Least Squares Approximation, 25 Backwards Difference, 26 Linear Sensitivity, 4 Banded Matrices, 7 Lipschitz Continuity, 36 Lower Triangular Matrix, 10 Base representations, 5 Bisection Method, 16 Newton Interpolation, 21 Central Difference, 26 Newton-Raphson Method, 16 Nonsingular Matrices, 8 Cholesky Decomposition, 11 Collocation Matrices, 20 Orthogonal Functions, 32 Crank-Nicolson Method, 35 Positive-Definite Matrices, 7 Error Absolute, 4 Relative error, 4 Relative, 4 Residuals, 8 Euclid's Algorithm, 5 Richardson Extrapolation, 26 Explicit Methods, 35 Riemann Sum, 28 Romberg Algorithm, 31 Floating point representations, 6 Runge-Kutta Methods, 38 Forward Difference, 26 Forward Euler, 34 Secant Method, 18 Fundamental Theorem of Simpson's Rule, 30 Numerical Analysis, 15 Spline Interpolants, 22 Stability Gaussian Elimination, 9 Absolute Stability, 37 Gaussian Elimination with Scaled Zero Stable Methods, 37 Partial Pivoting, 10 Symmetric Matrices, 7 Gaussian Quadrature, 33 Trapezoidal Rule, 29 Hölder Continuity, 36 Hermitian Matrices, 7 Upper Triangular Matrix, 10 Heun's Method, 35 Higher Order Derivatives, 27 Vector norm, 15 Horner's Algorithm, 6 Well-posed differential equations,

38