군, 환, 체, 유한체, 다항식

목차

- ♣ 대수적 구조
- ♣ 군, 환, 체
- ዹ 유한체
- ↓ 갈루아체
- ዹ 다항식
 - 다항식 계수 표현
 - 다항식 덧셈
 - 다항식 곱셈
 - 기약다항식
 - 다항식 역원

도입: 한 개 연산(덧셈)이 가능한 집합

정수집합 Z와 덧셈 연산 +

Z의 임의의 두 원소 a,b에 대해 덧셈 연산을 수행한 결과 a+b는 Z에 속함 (**덧셈에 대해 닫혀 있음**)

$$x + 2 + 1 = 5$$

 $(x + 2) + 1 = 5$
 $x + (2 + 1) = 5$
 $x + 3 = 5$ (덧셈 결합법칙)

$$2 + x + 1 = 5$$

$$2 + 1 + x = 5$$

$$(2 + 1) + x = 5$$

$$3 + x = 5$$

(덧셈 교환법칙)

군(group)

연산이 정의된 집합이 다음 성질들을 만족하면 군이라 함

- ① 닫혀 있음
- ② 항등원 존재
- ③ 집합 내 모든 원소에 대해 역원 존재
- ④ 결합법칙 성립

가환군(아벨군)

┆ 연산이 정의된 집합이 다음 성질들을 만족하면 가환군이라 함

- . [① 닫혀 있음
- ② 항등원 존재
- ③ 집합 내 모든 원소에 대해 역원 존재
- ④ 결합법칙 성립
- ⑤ **교환법칙** 성립

도입: 두 개 연산(덧셈, 곱셈)이 가능한 집합

실수집합 R과 덧셈 연산 +. 곱셈 연산 ×

R의 임의의 두 원소 a,b에 대해 덧셈 연산을 수행한 결과 a+b는 R에 속함 (**덧셈에 대해 닫혀 있음**) R의 임의의 두 원소 a,b에 대해 곱셈 연산을 수행한 결과 $a \times b$ 는 R에 속함 (곱셈에 대해 닫혀 있음)

(덧셈 항등원 0)

$$(5 \times (2 + x) + 1) \times 2 = 42$$

 $(5 \times 2 + 5 \times x + 1) \times 2 = 42$
 $(10 + 5 \times x + 1) \times 2 = 42$
 $(5 \times x + 10 + 1) \times 2 = 42$
 $(5 \times x + (10 + 1)) \times 2 = 42$
 $(5 \times x + 11) \times 2 = 42$
 $(5 \times x + 11) \times 2 = 42$
 $(5 \times x \times 2 + 11 \times 2 = 42$
 $(5 \times (x \times 2) + 11 \times 2 = 42$
 $(24 - 26 + 24)$
 $(34 - 26 + 24)$
 $(34 - 26 + 24)$
 $(34 - 26 + 24)$
 $(34 - 26 + 24)$
 $(34 - 26 + 24)$
 $(34 - 26 + 24)$
 $(34 - 26 + 24)$
 $(34 - 26 + 24)$
 $(34 - 26 + 24)$

$10 \times x = 20$ $\frac{1}{10} \times 10 \times x = \frac{1}{10} \times 20$ (곱셈 역원)

 $10 \times x + 22 + (-22) = 42 + (-22)$ (덧셈 역원)

 $10 \times x + 0 = 20$

$$1 \times x = \frac{1}{10} \times 20$$
 (곱셈 항등원 1) $x = 2$

체 (field)

2개 연산이 정의된 집합이 다음 성질들을 만족하면 체라 함

- ① 첫번째 연산에 대해 닫혀 있음
- ② 첫번째 연산에 대해 항등원 존재
- ③ 첫번째 연산에 대해 집합 내 모든 원소의 역원 존재
- ④ 첫번째 연산에 대해 결합법칙 성립
- ⑤ 첫번째 연산에 대해 교환법칙 성립
- ⑥ 두번째 연산에 대해 닫혀 있음
- ⑦ 두번째 연산에 대해 항등원 존재
- ⑧ 두번째 연산에 대해 첫번째 연산의 항등원을 제외한 집합 내 모든 원소의 역원 존재
- ⑨ 두번째 연산에 대해 결합법칙 성립
- ⑪ 두번째 연산에 대해 교환법칙 성립
- ① 2개 연산에 대해 분배법칙 성립

대수적 구조

- ♣ 대수적 구조(algebraic structures)
 - 연산(operation)이 정의된 집합(set)
 - 군(group), 환(ring), 체(field)
- ♣ 군 (Group)
 - 다음 성질을 만족하는 하나의 연산(예: 덧셈)이 정의된 집합
 - ◆ 닫혀 있음, 결합법칙 성립, 항등원 존재, 모든 원소의 역원 존재
 - 아벨군
 - ◆ 교환법칙까지 성립하는 군
 - **●** 예) $(Z, +), (Z_n, +), (Z_n^*, \times)$
- ♣ 환 (Ring)
 - 다음 성질을 만족하는 두 개 연산이 정의된 집합
 - ◆ 첫 번째 연산(예: 덧셈)에 대해 닫혀 있음, 결합법칙 성립, 항등원 존재, 모든 원소의 역원 존재, 교환법칙 성립
 - ◆ 두 번째 연산(예: 곱셈)에 대해 닫혀 있음, 결합법칙 성립
 - ◆ 두 연산에 대해 분배법칙 성립
 - $(Z, +, \times), (Z_n, +, \times)$
- ♣ 체 (Field)
 - 다음 성질을 만족하는 두 개 연산이 정의된 집합
 - ◆ 첫 번째 연산(예: 덧셈)에 대해 닫혀 있음, 결합법칙 성립, 항등원 존재, 모든 원소의 역원 존재, 교환법칙 성립
 - ◆ 두 번째 연산(예: 곱셈)에 대해 닫혀 있음, 결합법칙 성립, 항등원 존재, 첫 번째 연산의 항등원을 제외한 모든 원소의 역원 존재, 교환법칙 성립
 - ◆ 두 연산에 대해 분배법칙 성립
 - 예) $(Q, +, \times), (R, +, \times), (Z_p, +, \times)$

군 (Group)

군 (Group)

- 다음 4개 성질을 만족하는 이항연산 •이 정의된 집합을 군(Group)이라고 함
- ① 닫혀 있음(Closure) $\rightarrow \forall a, b \in G$ 에 대해 $a \cdot b \in G$
- ② 결합법칙(Associativity) 성립 $\rightarrow \forall a, b, c \in G$ 에 대해 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- ③ 항등원(Identity) 존재 $\rightarrow \forall a \in G$ 에 대해 $a \cdot e = e \cdot a$ 인 $e \in G$ 가 존재
- ④ 모든 원소의 역원(Inverse) 존재 $\rightarrow \forall a \in G$ 에 대해 $a \cdot x = x \cdot a = e \cup x \in G$ 가 존재
- → 연산이 덧셈인 군의 경우 덧셈, 뺄셈이 가능 (뺄셈은 덧셈의 역원과의 덧셈으로 해석)
- → 연산이 곱셈인 군의 경우 뺄셈, 나눗셈이 가능 (나눗셈은 곱셈의 역원과의 곱셈으로 해석)

가환군 (Commutative group, abelian group)

- 위 4개 성질 뿐 아니라 아래 교환법칙까지 성립하는 군을 가환군 혹은 아벨군이라고 함
- ⑤ 교환법칙(Commutativity) 성립 $\rightarrow \forall a, b \in G$ 에 대해 $a \cdot b = b \cdot a$

유한군 (finite group) vs. 무한군 (infinite group)

• 원소의 개수가 유한한 군을 유한군이라 하며, 무한한 경우 무한군이라 함

덧셈군 (additive group) vs. 곱셈군 (multiplicative group)

• 덧셈 연산이 정의된 군을 덧셈군이라 하며, 곱셈 연산이 정의된 군을 곱셈군이라 함

 $(Z_4, +)$ 는 가환군이다 $Z_4 = \{0,1,2,3\}$

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

 (Z_4, \times) 는 군이 아니다 $Z_4 = \{0,1,2,3\}$

X	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

 $\lfloor (Z_4, +) \vdash$ 덧셈군이다. $Z_4 = \{0, 1, 2, 3\}$

- 항등원 0, 닫혀 있으며 결합법칙 성립
- · 역원 존재: 0의 역원은 0, 1의 역원은 3, 2의 역원은 2, 3의 역원은 1

 (Z_4, \times) 는 군이 아니다. $Z_4 = \{0,1,2,3\}$

- 항등원 1
- └ 0과 2(4의 약수)의 역원 존재하지 않음

 (Z_4^*, \times) 는 곱셈군이다. $Z_4^* = \{1, 3\}$

- ∳ 항등원 1, 닫혀 있으며 결합법칙 성립 ¦
- 역원 존재: 1의 역원은 1, 3의 역원은 3
- \bullet 정수 집합 Z와, 유리수 집합 Q, 실수 집합 R은 모두 덧셈 연산 +에 대해 군이다
- Z,Q,R은 모두 곱셈 연산 ×에 대해 군이 아니다 → 0의 역원이 존재하지 않음
- $(Z_n,+)$ 는 가환군이다

환 (Ring)

환 (Ring)

- 다음 성질들을 만족하는 서로 다른 두 연산 +, × 이 정의된 집합을 환이라 함
- ① 첫번째 연산 +에 대해 가환군이다
- ② 두번째 연산 x에 대해 닫혀 있으며, 결합법칙 성립
- ③ 두 연산에 대해 분배법칙 성립 $\rightarrow \forall a,b,c \in G$ 에 대해 $a \times (b+c) = a \times b + a \times c$, $(a+b) \times c = a \times c + b \times c$
- → 첫번째, 두번째 연산이 각각 덧셈, 곱셈인 환의 경우 덧셈, 뺄셈, 곱셈은 가능하나 나눗셈은 불가

가환환 (Commutative group)

- 환의 두번째 연산에 대해 아래 교환법칙까지 성립하는 환을 가환환이라고 함
- 교환법칙(Commutativity) 성립 $\rightarrow \forall a, b \in G$ 에 대해 $a \times b = b \times a$

- Z, Q, R은 모두 덧셈, 곱셈 연산에 대해 가환환이다
- (Z_n, +, ×)는 가환환이다

체 (Field)

체 (Field)

- 다음 성질들을 만족하는 서로 다른 두 연산이 정의된 집합을 체라 함
- ① 첫번째 연산에 대해 가환군이다(닫혀 있음, 결합법칙 성립, 항등원 존재, 모든 원소의 역원 존재, 교환법칙 성립)
- ② 두번째 연산에 대해 닫혀 있음, 결합법칙 성립, 항등원 존재, 첫번째 연산의 항등원을 제외한 모든 원소의 역원 존재, 교환법칙 성립
- ③ 두 연산에 대해 분배법칙 성립
- → 첫번째, 두번째 연산이 각각 덧셈, 곱셈인 체의 경우 덧셈, 뺄셈, 곱셈, 나눗셈(0으로 나누기는 제외) 가능

유한체 (Finite field)

• 원소의 개수가 유한한 체를 유한체라 함

갈루아체 (Galois field)

• 소수 p, 양의 정수 n에 대해 원소의 개수가 p^n 인 체가 존재하며 이 유한체를 갈루아체(Galois field)라고 부르며 $GF(p^n)$ 으로 표기

- (Q, +, ×)는 체이다
- └ (R, +, ×)는 체이다
- $[\cdot \quad \Delta + p \cap \Pi] (Z_p, +, \times)$ 는 체이다

갈루아체 GF(p), $GF(p^n)$

GF(p)

- 소수 p에 대해 GF(p)는 덧셈과 곱셈의 두 연산이 정의된 집합 $Z_p = \{0,1,\dots,p-1\}$ 일 수 있음
- 이 집합은 체이므로 덧셈의 역원이 존재하며, 0이 아닌 원소에 대해 곱셈의 역원이 존재함

- **GF(2)**의 예 ({0,1},+, ×)
 집합은 0과 1의 두 개 원소만 가짐
- 덧셈, 뺄셈은 동일하며 0과 1에 대한 XOR 연산임
- 곱셈, 나눗셈은 동일하며 0과 1에 대한 AND 연산임

+	0	1
0	0	1
1	1	0

×	0	1
0	0	0
1	0	1

а	0	1
- <i>а</i>	0	1

а	0	1
a^{-1}		1

GF(5)의 예 ({0,1,2,3,4},+, ×)

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

а	0	1	2	3	4
-а	0	4	3	2	1

а	0	1	2	3	4
a^{-1}		1	3	2	4

암호학에서의 수의 집합과 연산

암호학에서의 수의 집합과 연산

- 암호학에서는 덧셈, 뺄셈, 곱셈, 나눗셈의 네 가지 연산 사용이 필요한 경우가 있음(즉 field 필요)
- 컴퓨터에서 양의 정수들은 n 비트 워드 단위로 처리됨(대부분의 경우 n의 값은 8, 16, 32, 64이며 정수 범위는 $0 \sim 2^n 1$)
- 두 가지 가능한 field 사용법
- ① n 비트 워드의 경우, 2^n 보다 작은 가장 큰 소수 p를 이용하여 Z_p 에서 정의된 GF(p)를 사용 $\rightarrow n=8$ 인 경우 Z_{251} 에서 정의된 GF(251)을 사용할 수 있으나 (251은 256(= 2^8)보다 적은 가장 큰 소수임), $251\sim255$ 범위 정수를 사용하지 못하는 단점 존재
- ② 원소의 개수가 2^n 인 $GF(2^n)$ 를 사용 $\rightarrow n=8$ 인 경우, 모든 가능한 8 비트 비트열들의 집합 $\{00000000,00000001,...,11111111\}$ 을 사용할 수 있으나 이 집합의 원소를 정수로 생각하여 $Z_{256}=\{0,1,...,255\}$ 와 같은 집합으로 다룰 수는 없음. 즉 집합 $\{00000000,00000001,...,11111111\}$ 에 대해 체(field)의 성질을 만족하도록 두 개의 연산(덧셈, 곱셈)을 새롭게 정의해야 함 \rightarrow 뒤에 설명되겠지만 $\{000000000,00000001,...,111111111\}$ 내 각 원소를 7차 다항식(표현)으로 해석하여 다항식들 간 덧셈, 곱셈을 정의함

 $1x^7 + 0x^6 + 0x^5 + 1x^4 + 0x^3 + 0x^2 + 1x^1 + 1x^0$

다항식

다항식 (polynomials)

- n 비트로 표현 가능한 모든 2^n 개 비트열들에 대해 덧셈, 뺄셈, 곱셈, 나눗셈을 자유롭게 수행하는 방법 필요 n 비트 비트열에 대응하는 n-1 차 다항식 표현을 정의하고 n-1 차 다항식들 간 덧셈, 곱셈 방법을 새롭게 정의
- n-1 차 다항식 f(x) 에서 x^i 은 n 비트 비트열 내 비트의 위치를 정의하며, x^i 항(term)의 계수(coefficient)는 비트의 값을 정의

다항식 연산

다항식 연산

- 다항식 연산 → 계수에 대한 연산과 다항식에 대한 연산으로 구분
- 다항식의 계수는 비트 값 0, 1을 가지므로 GF(2)를 사용하여 계수 연산 수행
- 두 다항식에 대한 연산을 위해 $GF(2^n)$ 을 사용. $GF(2^n)$ 의 원소는 n 비트 비트열에 대응하는 2^n 개 다항식들에 해당
- 두 다항식 덧셈은 동일 차수 항들의 계수 덧셈 수행. 덧셈 결과는 $GF(2^n)$ 에서 정의되는 집합의 범위를 벗어나지 않음
- 두 다항식 곱셈에서 n 차 이상 다항식이 생성되는 경우 소수다항식(prime polynomial)로 나눈 나머지를 그 결과로 취함
- n 차 prime polynomial은 n 보다 작은 차수의 다항식들로 나누어지지 않는 다항식으로 기약다항식(irreducible polynomial)이라고도 함
- n 차 prime polynomial은 하나 이상일 수 있으며 8차의 경우 prime polynomial의 한 예는 $x^8 + x^4 + x^3 + x + 1$
- 8비트 다항식 덧셈의 항등원 00000000, 8비트 다항식 곱셈의 항등원 00000001

다항식 덧셈 (동일 차수 항들의 계수 덧셈)

$$0x^{7} + 0x^{6} + 1x^{5} + 0x^{4} + 0x^{3} + 1x^{2} + 1x^{1} + 0x^{0}$$

$$0x^{7} + 0x^{6} + 0x^{5} + 0x^{4} + 1x^{3} + 1x^{2} + 0x^{1} + 1x^{0}$$

$$0x^{7} + 0x^{6} + 1x^{5} + 0x^{4} + 1x^{3} + 0x^{2} + 1x^{1} + 1x^{0}$$

$$\begin{array}{r}
 x^{8} + x^{4} + x^{3} + x + 1 \\
 x^{12} + x^{7} + x^{2} \\
 x^{12} + x^{8} + x^{7} + x^{5} + x^{4} \\
 x^{8} + x^{5} + x^{4} + x^{2} \\
 x^{8} + x^{4} + x^{3} + x + 1 \\
 \hline
 x^{5} + x^{3} + x^{2} + x + 1
 \end{array}$$

다항식 곱셈 (irreducible polynomial:
$$x^8 + x^4 + x^3 + x + 1$$
)

$$(x^5 + x^2 + x) \otimes (x^7 + x^4 + x^3 + x^2 + x)$$

$$= x^5(x^7 + x^4 + x^3 + x^2 + x) + x^2(x^7 + x^4 + x^3 + x^2 + x) + x(x^7 + x^4 + x^3 + x^2 + x)$$

$$= (x^{12} + x^9 + x^8 + x^7 + x^6) + (x^9 + x^6 + x^5 + x^4 + x^3) + (x^8 + x^5 + x^4 + x^3 + x^2)$$

$$= x^{12} + x^7 + x^2$$

$$(x^5 + x^2 + x) \otimes (x^7 + x^4 + x^3 + x^2 + x) \mod (x^8 + x^4 + x^3 + x + 1) = x^5 + x^3 + x^2 + x + 1$$

기계산결과가 7차를 국초과하므로 prime polynomial로 모듈로 연산 수행

다항식 연산: 역원

다항식 연산: 역원

- 덧셈의 역원 \rightarrow 한 다항식의 덧셈의 역원은 그 다항식 자신과 동일 (다항식 f(x)에 대해 f(x) + f(x) = 0) 곱셈의 역원 \rightarrow Irreducible polynomial P(x)에 대해, 다항식 f(x)의 곱셈의 역원은 다음 식을 만족하는 $f(x)^{-1}$ 이며 확장 유클리드 알고리즘을 통해 곱셈의 역원 계산 가능

$$f(x)^{-1} \cdot f(x) \equiv 1 \pmod{P(x)}$$

GF(2⁸)에서 irreducible polynomial
$$P(x) = x^8 + x^4 + x^3 + x + 1$$
에 대해, x^5 의 곱셈의 역원은 $x^5 + x^4 + x^3 + x$ 즉 $(x^5) \otimes (x^5 + x^4 + x^3 + x) \mod (x^8 + x^4 + x^3 + x + 1) = 1$

q	r1	r2	r	t1	t2	t
x^3	$x^8 + x^4 + x^3 + x + 1$	<i>x</i> ⁵	$x^4 + x^3 + x + 1$	0	1	x^3
x + 1	<i>x</i> ⁵	$x^4 + x^3 + x + 1$	$x^3 + x^2 + 1$	1	x^3	$x^4 + x^3 + 1$
x	$x^4 + x^3 + x + 1$	$x^3 + x^2 + 1$	1	<i>x</i> ³	$x^4 + x^3 + 1$	$x^5 + x^4 + x^3 + x$
$x^3 + x^2 + 1$	$x^3 + x^2 + 1$	1	0	$x^4 + x^3 + 1$	$x^5 + x^4 + x^3 + x$	0
	1	0		$x^5 + x^4 + x^3 + x$	0	

다항식 연산: 효율적 곱셈

다항식 곱셈 계산
$$(x^5 + x^2 + x) \otimes (x^7 + x^4 + x^3 + x^2 + x)$$

$$x \otimes (x^7 + x^4 + x^3 + x^2 + x) = (x^8 + x^5 + x^4 + x^3 + x^2)$$

$00000010 \otimes 10011110 = 100111100$

- 다항식 P에 다항식 x를 곱하는 것은 다항식 P의 비트열을 왼쪽으로 한 비트 쉬프트하는 것과 동일
- 다항식 P의 최상위 비트가 0인 경우 쉬프트만 수행
- 다항식 P의 최상위 비트가 1인 경우(즉 7차 다항식), 쉬프 트 결과는 8차 다항식이 되므로 모듈러 연산 적용 필요

	<u> </u>		
			나눗셈
$x^0 \otimes (x^7 + x^4 + x^3 + x^2 + x)$		$x^7 + x^4 + x^3 + x^2 + x$	Х
$x^1 \otimes (x^7 + x^4 + x^3 + x^2 + x)$	$x \otimes (x^7 + x^4 + x^3 + x^2 + x)$	$x^5 + x^2 + x + 1$	0
$x^2 \otimes (x^7 + x^4 + x^3 + x^2 + x)$	$x \otimes (x^5 + x^2 + x + 1)$	$x^6 + x^3 + x^2 + x$	Χ
$x^3 \otimes (x^7 + x^4 + x^3 + x^2 + x)$	$x \otimes (x^6 + x^3 + x^2 + x)$	$x^7 + x^4 + x^3 + x^2$	Χ
$x^4 \otimes (x^7 + x^4 + x^3 + x^2 + x)$	$x \otimes (x^7 + x^4 + x^3 + x^2)$	$x^5 + x + 1$	0
$x^5 \otimes (x^7 + x^4 + x^3 + x^2 + x)$	$x \otimes (x^5 + x + 1)$	$x^6 + x^2 + x$	Χ

$$(x^5 + x^2 + x) \otimes (x^7 + x^4 + x^3 + x^2 + x)$$

$$= (x^6 + x^2 + x) \oplus (x^6 + x^3 + x^2 + x) \oplus (x^5 + x^2 + x + 1)$$

$$= x^5 + x^3 + x^2 + x + 1$$

$$\begin{array}{c|c}
1 \\
x^8 + x^4 + x^3 + x + 1 \\
\hline
x^8 + x^5 + x^4 + x^3 + x^2 \\
x^8 + x^4 + x^3 + x + 1 \\
\hline
x^5 + x^2 + x + 1
\end{array}$$

• 8차 다항식 P를 8차 prime polynomial로 나눈 나머지은 8차 다항식 P와 prime polynomial 각각의 비트열을 XOR한 결과와 동일하며 XOR 결과 비트열에서 (8차 항의 계수에 해당하는)최상위 비트는 0임. 즉 8차 다항식 P와 8차 prime polynomial을 둘 다 7차까지만 표현하여 XOR 수행하면 됨

00111100

⊕ 00011011 00100111

다항식 연산: 효율적 곱셈

			나눗셈
$x^0 \otimes (x^7 + x^4 + x^3 + x^2 + x)$		$x^7 + x^4 + x^3 + x^2 + x$	Х
$x^1 \otimes (x^7 + x^4 + x^3 + x^2 + x)$	$x \otimes (x^7 + x^4 + x^3 + x^2 + x)$	$x^5 + x^2 + x + 1$	0
$x^2 \otimes (x^7 + x^4 + x^3 + x^2 + x)$	$x \otimes (x^5 + x^2 + x + 1)$	$x^6 + x^3 + x^2 + x$	Х
$x^3 \otimes (x^7 + x^4 + x^3 + x^2 + x)$	$x \otimes (x^6 + x^3 + x^2 + x)$	$x^7 + x^4 + x^3 + x^2$	Χ
$x^4 \otimes (x^7 + x^4 + x^3 + x^2 + x)$	$x \otimes (x^7 + x^4 + x^3 + x^2)$	$x^5 + x + 1$	0
$x^5 \otimes (x^7 + x^4 + x^3 + x^2 + x)$	$x \otimes (x^5 + x + 1)$	$x^6 + x^2 + x$	Х

		계산결과		
$x^0 \otimes (x^7 + x^4 + x^3 + x^2 + x)$		10011110		
$x^{1} \otimes (x^{7} + x^{4} + x^{3} + x^{2} + x)$	00111100	00100111	$ \begin{array}{c} (00111100) \\ \oplus (00011011) \\ (00100111) \end{array} $	직전 계산결과의 MSB=1 → Shift, XOR
$x^2 \otimes (x^7 + x^4 + x^3 + x^2 + x)$	01001110	01001110		직전 계산결과의 MSB=0 → Shift
$x^3 \otimes (x^7 + x^4 + x^3 + x^2 + x)$	10011100	10011100		직전 계산결과의 MSB=0 → Shift
$x^4 \otimes (x^7 + x^4 + x^3 + x^2 + x)$	00111000	00100011	$ \begin{array}{c} (00111000) \\ \oplus (00011011) \\ (00100011) \end{array} $	직전 계산결과의 MSB=1 → Shift, XOR
$x^5 \otimes (x^7 + x^4 + x^3 + x^2 + x)$	01000110	01000110		직전 계산결과의 MSB=0 → Shift

$$(x^5 + x^2 + x) \otimes (x^7 + x^4 + x^3 + x^2 + x)$$

$$= (x^6 + x^2 + x) \oplus (x^6 + x^3 + x^2 + x) \oplus (x^5 + x^2 + x + 1)$$

$$= (00100111) \oplus (01001110) \oplus (01000110) = 00101111$$

$$= x^5 + x^3 + x^2 + x + 1$$

효율적 다항식 곱셈 알고리즘

- 직전 계산결과의 최상위비트가 0인 경우 → 직전 계산결과를 1
 비트 왼쪽 쉬프트하여 현재 계산결과를 생성
- 직전 계산결과의 최상위비트가 1인 경우 → 직전 계산결과를 1 비트 왼쪽 쉬프트한 후 prime polynomial과 XOR한 결과를 현재 계산결과로 생성 (XOR의 두 피연산자 모두 8차 항의 계수가 1이 므로 8차 항 무시하고 0~7차까지의 항들(즉 8비트 비트열)에 대 해 XOR 수행하면 됨)

References

- Behrouz A. Forouzan, Cryptography and Network Security, McGraw-Hill, 2008
- William Stallings, Cryptography and Network Security: Principles and Practice, Sixth Edition, Prentice Hall, 2014
- Christof Paar, Jan Pelzl, Understanding Cryptography: A Textbook for Students and Practitioners, Springer, 2010
- ♣ 김명환, 수리암호학개론, 2019
- 🔱 정민석, 암호수학, 경문사, 2017
- ♣ 최은미, 정수와 암호론, 북스힐, 2019
- ♣ 이민섭, 정수론과 암호론, 교우사, 2008