Flirt Message Prediction Assignment (NLP) <u>Table Of Contents (TOC)</u>

S.No	Topics	Pg .no				
1.	Creating Flirt Message Prediction Model a) Identifying The Problem Statement	2				
	b) Research Methodology c) Final Model					
2.	Checking Flirt Message Prediction Model	3				
WhatsApp Data Analysis						
<i>3</i> .	Finding Talkative & Less Talkative	4				
4.	Finding Most Active Day & Most Active Time	5-6				
5.	Finding Media Count Sent by Each Person	7				
6.	<u> Finding Missed Call- All Count</u>	7				
<i>7</i> .	Word Cloud Visualization	8				

1. Creating Flirt Message Prediction Model

a. Identifying The Problem Statement:

<u>Stage 1</u>: Domain Selection- NLP, <u>Stage 2</u>: Learning Selection – Supervised, <u>Stage 3</u>: Supervised Type – Classification. This problem statement comes under <u>Supervised Learning - Classification(NLP)</u>

Approach:

Created a customized csv file with Message & Label as columns & labelled the messages manually whether it falls under flirt message or non-flirt message. Created a dataset with 105 flirt messages & 105 non flirt messages.

Customized csv file name: Flrt & n.flrt msg.csv

b) Research Methodology:

Created combinations of models using classification algorithms like Logistic, KNN, SVM ,DT , Multinomial NB, RF & Passive Aggressive Classifier with Counter Vector & IT-IDF & selected the best model out of all.

c) Fínal Model:

Best Model was selected based on F1 score & CM.

Decision Tree - Tfice Accuracy: 0.72058823				
Confusion Matrix:	752541170			
[[10 14]				
[5 39]]				
Classification Repor				
	precision	recall	f1-score	suppor
Flirt Message	0.67	0.42	0.51	24
Non Flirt Message	0.74	0.89	0.80	44
accuracy			0.72	68
macro avg	0.70	0.65	0.66	68
weighted ava	0.71	0.72	0.70	68

Passive Aggressive Classifier - TfidfVectorizer Accuracy: 0.6176470588235294 Confusion Matrix: [[19 5]					
[21 23]] Classification Report:					
	precision	recall	f1-score	support	
Flirt Message	0.47	0.79	0.59	24	
Non Flirt Message	0.82	0.52	0.64	44	
accuracy			0.62	68	
macro avg weighted avg	0.65 0.70	0.66 0.62	0.62 0.62	68 68	
weighted avg	0.70	0.02	0.02	00	

Both models seems to perform well. But am choose Decision Tree - CountVectorizer as the best model.

Saved best model file name: Finalized_Model_Random_Forest.sav

For more details on code employment refer IPYNB.

Ipython notebook name: Phase 1-Best Model(CV+TV+Models).ipynb

2. Checking Flirt Message Prediction Model:

Created Flirt Message Prediction Model was checked with WhatsApp chat's each row.

Tested WhatsApp txt file name: VV WhatsApp.txt

In [11]:	1	df				
Out[11]:		Date	Time	Name	Message	Flirt_Prediction
	1	11/08/2023	11:36am	Vasumathi Aug23 வசுமதி	Hi mam	Non Flirt Message
	2	11/08/2023	11:39am	Hope Artificial Intelligence	It is online course	Non Flirt Message
	3	11/08/2023	11:46am	Vasumathi Aug23 வசுமதி	Wil there be any scenario to visit your instit	Non Flirt Message
	4	11/08/2023	11:50am	Hope Artificial Intelligence	May I know your name please	Non Flirt Message
	5	11/08/2023	11:51 am	Vasumathi Aug23 வசுமதி	Vasumathi	Non Flirt Message
	283	20/11/2023	7:23 pm	Hope Artificial Intelligence	*Your form response has been received.	Non Flirt Message
	284	22/11/2023	9:55 pm	Vasumathi Aug23 வசுமதி	video lecture for word cloud is missing .	Flirt Message
	285	24/11/2023	10:19am	Hope Artificial Intelligence	Will check that Mam	Non Flirt Message
	286	25/11/2023	1:48 pm	Vasumathi Aug23 வசுமதி	<media omitted=""></media>	Non Flirt Message
	287	25/11/2023	1:53 pm	Vasumathi Aug23 வசுமதி	<media omitted=""></media>	Non Flirt Message
ı	287 ı	rows × 5 col	umns			

WhatsApp Data Analysis:

3) Finding Talkative & Less Talkative:

```
To find Talkative & Less Talkative Person:
                 excluded_name=['Vasu']
filtered_df= df[~df['Name'].isin(excluded_name)]
                 talkative_person=filtered_df['Name'].value_counts().idxmax()
less_talkative_person= filtered_df['Name'].value_counts().idxmin()
                 message_counts = filtered_df['Name'].value_counts().reset_index()
message_counts.columns=['Name','Message_Count']
            print(f'Talkative Person: {talkative_person}')
print(f'Less Talkative Person: {less_talkative_person}')
            14 message_counts
           Talkative Person: Vasumathi Aug23 வசுமதி
Less Talkative Person: Hope Artificial Intelligence
Out[13]:
                               Name Message Count
            o Vasumathi Aug23 வசுமதி
                                                 144
             1 Hope Artificial Intelligence
                                                 139
            Graph Visualization:
In [14]: 1
                # Rotating x-axis labels for better readability
fig.update_layout(xaxis_tickangle=-45)
            # Showing the figure fig.show()
                   Number of Messages Sent by Each Person
                    140
                    120
              Number of Messages
                    100
                     80
                     60
                     40
                     20
```

4) Finding Most Active Day & Most Active Time:

Most Active Time:

5. Finding Media Count Sent by Each Person:

Proof:

6) Finding Missed Call- All Count:

```
Finding Missed Call Count:

In [21]: 

| missedcall_count=df['Message'].str.contains('missed call', case=False).sum()
| print(f'Missed Call Count: {missedcall_count}')

Missed Call Count: 0
```

Word Cloud Visualization

For more details on code employment from 2 to 6 & wordcloud visualization refer IPYNB.

Ipython notebook name: Phase 2- Flirt Prediction Model Deployment & Analysis.ipynb

