Class05 Data Visualization with ggplot2

Nicolò (PID: A18109114)

Using GGPLOT

The ggplot2 package needs to be intalled as it does not with R "out of the box".

We use the install.packages() function to do this.

```
head(cars)
```


To use ggplot I need to load it up before I can call any of the functions in the package. I do this with the library() function.

```
library(ggplot2)
ggplot()
```

All ggplot figures have at least 3 things: - data (the stuff we want to plot) - aesthetic mapping (aes values) - geoms

```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point()
```


ggplot is not the only graphing system in R there are lots of others. There is even "base R" graphics.

plot(cars)

In ggplot we can add a trend line

```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point() +
  geom_smooth()
```

 $\ensuremath{\mbox{`geom_smooth()`}}\ \mbox{using method} = \ensuremath{\mbox{'loess'}}\ \mbox{and formula} = \ensuremath{\mbox{'y}}\ \sim \ensuremath{\mbox{x'}}\ \mbox{'}$

We can also make it straight and remove the SE region

```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point() +
  geom_smooth(method="lm", se=FALSE)
```

[`]geom_smooth()` using formula = 'y ~ x'

And add informative descriptions

[`]geom_smooth()` using formula = 'y ~ x'

Speed and Stopping Distances of Cars

Speed and Stopping Distances of Cars appear to be positively correlated

Adding more plot aesthetics through aes()

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
1 A4GNT -3.6808610 -3.4401355 unchanging
2 AAAS 4.5479580 4.3864126 unchanging
3 AASDH 3.7190695 3.4787276 unchanging
4 AATF 5.0784720 5.0151916 unchanging
5 AATK 0.4711421 0.5598642 unchanging
6 AB015752.4 -3.6808610 -3.5921390 unchanging
```

Let's find out the number of rows

```
nrow(genes)
```

[1] 5196

```
What's the number of columns and their names?
```

```
ncol(genes)
[1] 4
  colnames(genes)
[1] "Gene"
                  "Condition1" "Condition2" "State"
How many genes are upregulated?
  table(genes$State)
      down unchanging
                               up
        72
                  4997
                               127
Fraction of the total genes that's upregulated:
  round( table(genes$State)/nrow(genes) * 100, 2 )
      down unchanging
                               up
      1.39
                 96.17
                              2.44
Let's plot this data
  ggplot(genes) +
    aes(x=Condition1, y=Condition2) +
```

geom_point()

With color

```
p <- ggplot(genes) +
    aes(x=Condition1, y=Condition2, col=State) +
    geom_point()
p</pre>
```


Other colors

```
p + scale_colour_manual( values=c("blue", "gray", "red") )
```


And annotation

```
p + scale_colour_manual( values=c("blue","gray","red") ) + labs(title = "Gene Expression Colour_manual")
```

Gene Expression Changes Upon Drug Treatment

Extra credit lab

We get the data

```
# File location online
url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.
gapminder <- read.delim(url)</pre>
```

And filter just data from 2007

```
library(dplyr)
```

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base': intersect, setdiff, setequal, union

```
gapminder_2007 <- gapminder %>% filter(year==2007)
```

Now do a basic plot

```
ggplot(gapminder_2007) +
aes(x=gdpPercap, y=lifeExp) +
geom_point()
```


Let's make overlapping dots more distinguishable

```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp) +
  geom_point(alpha=0.5)
```


And color!

```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp, color=continent, size=pop) +
  geom_point(alpha=0.5)
```


Or we could just color the dots by population

```
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, color = pop) +
  geom_point(alpha=0.8)
```


The dots' size is not to scale, let's fix that

We now do it again for year 1957

```
gapminder_1957 <- gapminder %>% filter(year==1957)

ggplot(gapminder_1957) +
  aes(x=gdpPercap, y=lifeExp, color=continent, size=pop) +
  geom_point(alpha=0.7) +
  scale_size_area(max_size = 15)
```


And compare it to 2007

Bar charts

```
gapminder_top5 <- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(pop)) %>%
  top_n(5, pop)

gapminder_top5
```

```
country continent year lifeExp
                                              pop gdpPercap
          China
                     Asia 2007 72.961 1318683096
                                                   4959.115
1
2
          India
                     Asia 2007
                                64.698 1110396331
                                                    2452.210
3 United States
                 Americas 2007
                                78.242
                                        301139947 42951.653
4
      Indonesia
                     Asia 2007
                                70.650
                                        223547000
                                                    3540.652
5
         Brazil
                Americas 2007
                                72.390
                                        190010647
                                                   9065.801
```

We can do a basic bar chart for population

```
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = pop))
```


...or for life expectancy

```
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = lifeExp))
```


We can also color the bars by continent

```
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = pop, fill = continent))
```


...or by life expectancy

```
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = pop, fill = lifeExp))
```


...or by gdpPercap

```
ggplot(gapminder_top5) +
  aes(x=country, y=pop, fill=gdpPercap) +
  geom_col()
```


Let's reorder the bars by population (from biggest to lowest)

```
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=gdpPercap) +
  geom_col()
```


Now we fill by country

```
ggplot(gapminder_top5) +
aes(x=reorder(country, -pop), y=pop, fill=country) +
geom_col(col="grey30") +
guides(fill="none")
```


Flipping bar charts

Let's visualize arrests in the USA with flipped bar charts

```
head(USArrests)
```

	${\tt Murder}$	${\tt Assault}$	UrbanPop	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

```
USArrests$State <- rownames(USArrests)
ggplot(USArrests) +
  aes(x=reorder(State,Murder), y=Murder) +
  geom_col() +
  coord_flip()</pre>
```


We can combine points and lines to make it more easily understandable

About this document

sessionInfo()

R version 4.3.1 (2023-06-16 ucrt)

Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 11 x64 (build 22621)

Matrix products: default

locale:

- [1] LC_COLLATE=Italian_Italy.utf8 LC_CTYPE=Italian_Italy.utf8
- [3] LC_MONETARY=Italian_Italy.utf8 LC_NUMERIC=C
- [5] LC_TIME=Italian_Italy.utf8

time zone: America/Los_Angeles

tzcode source: internal

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] dplyr_1.1.3 ggplot2_3.4.4

loaded via a namespace (and not attached):

[1]	vctrs_0.6.3	nlme_3.1-162	cli_3.6.1	knitr_1.44
[5]	rlang_1.1.1	xfun_0.40	generics_0.1.3	jsonlite_1.8.7
[9]	labeling_0.4.3	glue_1.6.2	colorspace_2.1-0	htmltools_0.5.6
[13]	scales_1.2.1	fansi_1.0.5	rmarkdown_2.25	grid_4.3.1
[17]	evaluate_0.21	munsell_0.5.0	tibble_3.2.1	fastmap_1.1.1
[21]	yaml_2.3.7	lifecycle_1.0.3	compiler_4.3.1	pkgconfig_2.0.3
[25]	mgcv_1.8-42	rstudioapi_0.15.0	lattice_0.21-8	farver_2.1.1
[29]	digest_0.6.33	R6_2.5.1	tidyselect_1.2.0	utf8_1.2.3
[33]	splines_4.3.1	pillar_1.9.0	magrittr_2.0.3	Matrix_1.5-4.1
[37]	withr_2.5.1	tools_4.3.1	gtable_0.3.4	