

RESOLUÇÃO DE PROBLEMAS COM LÓGICA MATEMÁTICA

2023

A Dedução Natural permite, por meio de um pequeno número de **regras de inferência**, demonstrar a validade de uma infinidade de fórmulas e <u>argumentos</u> sem a necessidade de considerar os valores que cada fórmula ou subfórmula recebe.

• O que é um **argumento**?

Argumento é a sequência de <u>premissas</u> seguida por uma conclusão.

Um argumento é válido quando sua conclusão é uma consequência lógica de suas premissas.

• O que é uma **premissa**?

É uma proposição ou afirmação que é usada como base ou fundamento para uma argumentação ou inferência.

• Por exemplo, considere o seguinte argumento:

P1: Todos os seres humanos são mortais.

P2: Sócrates é um ser humano.

C: Portanto, Sócrates é mortal.

Um argumento de premissas $P_1, P_2, ..., P_n$ e de conclusão Q indica-se por

$$P_1, P_2, ..., P_n \vdash Q$$
.

Podemos dizer que:

- \bullet $P_1, P_2, ..., P_n$ acarretam Q;
- Q decorre de $P_1, P_2, ..., P_n$;
- Q se deduz de $P_1, P_2, ..., P_n$.

- Apresenta um conjunto de regras de inferências
 - Também chamadas de regras de dedução
 - Elas **modificam as fórmulas** de modo a preservar seu valor lógico
- Regras de inferências são passos que conduzem à uma conclusão a partir de premissas
- A sequência de fórmulas obtidas durante estes passos é chamada de sequência de demonstração ou demonstração formal da conclusão em função de suas premissas

• As **regras de inferência** são baseadas em implicações que já se tenha demonstrado (por tabela-verdade) serem tautológicas

Cuidado, não confundir!

- Regras de Equivalência
 - São reversíveis: pode-se substituir uma subfórmula de um argumento por outra equivalente sem alterar a validade lógica
- Regras de Inferência
 - Não são reversíveis
 - Se baseiam em implicações tautológicas, ou seja, implicações materiais provadamente tautológicas

Regras de Inferência

Adição:

$$\frac{A}{B\vee A} \quad \frac{A}{A\vee B}$$

Simplificação:

$$\frac{A \wedge B}{A} \quad \frac{A \wedge B}{B}$$

Conjunção:

$$\begin{array}{ccc} A & A \\ \frac{B}{A \wedge B} & \frac{B}{B \wedge A} \end{array}$$

Modus Ponens:

$$\begin{array}{c}
A \\
A \to B \\
B
\end{array}$$

Modus Tollens:

$$\frac{A \to B}{\neg B}$$

Silogismo Disjuntivo:

$$\begin{array}{cc} A \vee B & A \vee B \\ \hline \neg \ A & \hline B & A \end{array}$$

Silogismo Hipotético:

$$A \to B$$

$$B \to C$$

$$A \to C$$

Dilema Construtivo:

$$A \rightarrow B$$

$$C \rightarrow D$$

$$A \lor C$$

$$B \lor D$$

Dilema Destrutivo:

$$A \rightarrow B$$

$$C \rightarrow D$$

$$\frac{\neg B \lor \neg D}{\neg A \lor \neg C}$$

Adição

- Também conhecida como introdução da disjunção.
- Sejam A e B proposições, se A é verdade então podemos deduzir que A v B também é verdade

Sócrates é homem (A);

Portanto, Sócrates é homem ou gatos latem (A v B)

Adição

• Exemplos:

(1)	A	Prem
(2)	AvB	IAD

(1)	AvB	Prem
(2)	(A v B) v C	IAD

(1)	AvB	Prem
(2)	(A v B) v (C v D)	IAD

Conjunção

- Também chamada de introdução da conjunção
- Podemos inferir uma conjunção a partir de qualquer uma de suas premissas
 - Sejam A e B proposições, se A é verdade e B também é verdade, então A ^ B também é verdade

Sócrates era grego, Platão era grego.

Logo, Platão e Sócrates eram gregos (A, B ⊢ A ^ B)

Conjunção

• Exemplos:

(1)	AvB	Prem
(2)	~C	Prem
(3)	(A v B) ^ ~C	I,2 CONJ

(1)	AvB	Prem
(2)	BvC	Prem
(3)	(A v B) ^ (B v C)	1,2 CONJ

(1)	X < 5	Prem
(2)	X > I	Prem
(3)	(X > I) ^ (X < 5)	1,2 CONJ

Simplificação (eliminação da conj)

- De uma conjunção podemos inferir qualquer uma de suas premissas
 - Sejam A e B proposições, se A ^ B é verdade, então A e B (individualmente) também são verdades

Ex.:

Sócrates e Platão eram gregos.

Logo, Sócrates era grego (A $^{\land}$ B \vdash A)

Simplificação (SIMP)

Simplificação (eliminação da conj)

• Exemplos:

(I)	(A v B) ^ C	Prem
(2)	AvB	SIMP

(1)	P ^ ~Q	Prem
(2)	~Q	SIMP

(1)	X > 0 ^ X ≠ I	Prem
(2)	X≠I	SIMP

Modus Ponens

- Também chamada de *eliminação da implicação* ou eliminação da condicional
- Se o antecedente de um condicional for verdadeiro, o seu consequente necessariamente é verdadeiro

Se Deus existe, a vida é sagrada; (A → B)

Deus existe. (A)

Logo, a vida é sagrada (⊢ B)

Modus Tollens

• Se uma proposição condicional é verdadeira e sua consequência é falsa, então sua antecedente também é falsa

```
Se eu sair na chuva, vou me molhar; (A \rightarrow B)
Eu não me molhei. (\sim B)
Logo, eu não sai na chuva (\vdash \sim A)
```

A → B

Modus Tollens
(MT)

~A

```
1) { p \rightarrow q, \sim p \rightarrow r, \sim q } \vdash r
```

Como deduzir que { $p \rightarrow q, \sim p \rightarrow r, \sim q$ } é igual a r ?

1) { $p \rightarrow q, \sim p \rightarrow r, \sim q$ } $\vdash r$

(1)	p o q	Prem
(2)	\sim p → r	Prem
(3)	~q	Prem

1) {
$$p \rightarrow q, \sim p \rightarrow r, \sim q$$
 } $\vdash r$

(1)	p o q	Prem
(2)	$\sim p \rightarrow r$	Prem
(3)	~q	Prem
(4)	~p	MT (1, 3)
(5)	r	MP (2, 4)

Modus Tollens: $A \rightarrow B$ -B -A

Modus Ponens:

A
$$A \rightarrow B$$
B

Silogismo Disjuntivo

- Também chamado de *eliminação da disjunção* OU modus tollendo ponens
- Afirma que pelo menos uma das suas alternativas é verdadeira.

```
A realidade existe OU é tudo um sonho. (A v B)

Não é tudo um sonho. (~A)

Logo, a realidade existe. (B)
```


Silogismo Hipotético

 Aplicada quando temos duas proposições condicionais e queremos deduzir uma conclusão a partir delas.

Se eu estudar para a prova, eu vou passar.

 $(A \rightarrow B)$

Se eu passar na prova, eu vou comemorar.

 $(\mathbf{B} \to \mathbf{C})$

Logo, se eu estudar para a prova, eu vou comemorar. $(A \rightarrow C)$

Silogismo Hipotético (SH) $A \rightarrow B$ $B \rightarrow C$ $A \rightarrow C$

Dilema Construtivo

Se eu estudar para a prova, eu vou passar. $(A \rightarrow B)$

Se eu fizer um bom trabalho, meu chefe vai me elogiar. $(C \rightarrow D)$

Eu vou estudar para a prova OU vou fazer um bom trabalho. (A v C)

Logo, eu vou passar na prova ou meu chefe vai me elogiar. (B v D)

Dilema Construtivo (DC) $\begin{array}{c} A \to B \\ C \to D \\ A \lor C \\ \hline B \lor D \end{array}$

Dilema Destrutivo

Se eu estudar para a prova, eu vou passar.

 $(A \rightarrow B)$

Se eu fizer um bom trabalho, meu chefe vai me elogiar.

 $(C \rightarrow D)$

Eu não vou passar na prova ou meu chefe não vai me elogiar.

 $(\sim B \ v \sim D)$

Logo, eu não vou estudar para a prova ou não vou fazer um bom trabalho. (~A v ~C)

Dilema Destrutivo (DD)

 $A \rightarrow B$ $C \rightarrow D$ $\sim B \vee \sim D$ $\sim A \vee \sim C$

$$P \rightarrow Q, P \wedge R \vdash Q$$

$$P \rightarrow Q, P \wedge R \vdash Q$$

(1)	$P \rightarrow Q$	Prem
(2)	P^R	Prem
(3)	Р	SIMP (2)
(4)	Q	MP (1, 3)

Simplificação: A∧B A∧B A B Modus Ponens:

A $\underline{A \to B}$ B

$$P \wedge Q, P \vee Q \rightarrow S \vdash P \wedge S$$

$$P \wedge Q, P \vee Q \rightarrow S \vdash P \wedge S$$

(1)	P ^ Q	Prem
(2)	P v Q → S	Prem
(3)	P	SIMP (1)
(4)	PvQ	ADIÇÃO (3)
(5)	S	MP (2, 4)
(6)	P^S	CONJ (3, 5)

Simplificação: A∧B A∧B A B

 $\begin{array}{cc} \textit{Adição}: \\ \frac{A}{B \vee A} & \frac{A}{A \vee B} \end{array}$

Modus Ponens:

A $\underline{A \to B}$ B

 $\begin{array}{ccc} \textit{Conjunção:} \\ & \text{A} & \text{A} \\ & \text{B} & \text{B} \\ & \text{A} \wedge \text{B} & \text{B} \wedge \text{A} \end{array}$

