A formal constraint among attributes that is the main tool for formally measuring the appropriateness of attribute groupings into relation schemas

- Constraint between two sets of attributes from the database
- Suppose that relational database schema has n attributes $A_1,A_2,...A_n$
- Single universal relation schema $R=\{A_1,A_2,...A_n\}$

Definition-Functional Dependency

• A functional dependency, denoted by **x**→**y**, between two sets of attributes x and y that are subsets of R specifies a *constraint* on the possible tuples that can form a relation state r of R.

• The *constraint* is that, for any two tuples t1 and t2 in r that have t1[x]=t2[x], they must also have t1[y]=t2[y]

- an attribute A is functionally dependent on a set of attributes X if and only if
 - value of A is determined solely by the values of X
 - values of X uniquely determine a value of A

 $X \rightarrow A$ child \rightarrow mother mother $\not\rightarrow$ child

The value of child implies the value of mother
 Value of mother does NOT imply value of child
 Child is the determinant
 Mother is the dependent/determined

- The values of the x component of a tuple uniquely determine the values of the y component
- y is functionally dependent on x
- $x \rightarrow y$ (y depends upon x)

Consider the example of Employee Relation

EID	NAME	SALARY
1	Aditya	15000
2	Manoj	16000
3	Sandeep	9000
4	Vikas	10000
5	Manoj	9000

Consider the example of Employee Relation

EID	NAME	SALARY
1	Aditya	15000
2	Manoj	16000
3	Sandeep	9000
4	Vikas	10000
5	Manoj	9000

- • $x \rightarrow y$ (y depends upon x)
- •EID → Name, salary
- if x (EID) has value 5 then y (Name, salary) has value Manoj,

EID→Name

EID→Salary

EID→Name, Salary

Types of Functional Dependencies

- Partial Dependency & Fully Functional Dependency
- Transitive Dependency & Non Transitive Dependency
- Single valued Dependency & Multivalued Dependency
- Trival Dependency & Non -Trival Dependency

Keys

Superkey

A superkey of a relation schema R, is a set of attributes
 S (subset or equal to) R with the property that no two
 tuples t1 & t2 in any legal relation state r of R will have
 t1[S]=t2[S].

Key

A minimal superkey

Candidate key

- If the relation schema has more than one key, each is called a candidate key
- One of the candidate key is arbitrarily designated to be the **primary key**

Prime & Nonprime Attribute

 An attribute of relation schema R is called a prime attribute of R if it is a member of some candidate key of R

A attribute is called non prime if it is not a prime attribute

Partial Dependency

- Suppose we have more than one attributes in primary key
- Let A be the non prime key attribute
- If A is not dependent upon all prime key attributes then partial dependency exists
- Consider schema
 Student(Rollno,Name,Game,Fee,Grade)

Partial Dependency

- Suppose we have more than one attributes in primary key
- Let A be the non prime key attribute

If A is not dependent upon all prime key attributes then partial

dependency exists

Partial Dependency

- Suppose we have more than one attributes in primary key
- Let A be the non prime key attribute

If A is not dependent upon all prime key attributes then partial dependency exists

Partial dependency is due to more than one prime key attribute

Fully Functional Dependency

- Let A be the non prime key attribute
- Value of A is dependent upon all prime key attributes
- Then A is said to be fully functional dependent

Fully Functional Dependency

- Let A be the non prime key attribute
- Value of A is dependent upon all prime key attributes
- Then A is said to be fully functional dependent

Fully Functional Dependency

 Grade is fully functionally dependent because we can find the grade of any student in a particular game if we know RollNo and Game of that student

- Transitive dependency is due to dependency between non prime key attributes
- Suppose in a relation R

$$x \rightarrow y$$

$$y \rightarrow z$$

$$x \rightarrow z$$

then

z is said to be transitively dependent upon x

- Consider a relation student having prime key attribute (RollNo) and non-prime key attributes (Name, Semester, Hostel)
- For each semester there is different hostel

$$x \rightarrow y$$
 RollNo \rightarrow Name, Semester, Hostel

$$y \rightarrow z$$
 Semester \rightarrow Hostel

$$x \rightarrow z$$
 RollNo \rightarrow Hostel

 Consider a relation student having prime key attribute (RollNo) and non-prime key attributes (Name, Semester, Hostel)

- Consider a relation student having prime key attribute (RollNo) and non-prime key attributes (Name, Semester, Hostel)
- Hostel is transitively dependent upon RollNo

- Any functional dependency which is not transitive
- Exists if there is no dependency between non-prime key attributes

Single valued Dependency

In any relation R, if for a particular value of x, y
has single value then it is known as single valued
dependency

$$x \rightarrow y$$

Multivalued Dependency

 In any relation R, if for a particular value of x, y has more than one value

$$x \rightarrow \rightarrow y$$

Multivalued Dependency

Consider the relation Teacher

ID	Teacher	Class	Days
L1	Sam	Computer	1
L2	John	Computer	6
L1	Sam	Electronics	3
L2	John	Mechanical	5
L3	Nick	Mechanical	2

Multivalued Dependency

ID	Teacher	Class	Days
L1	Sam	Computer	1
L2	John	Computer	6
L1	Sam	Electronics	3
L2	John	Mechanical	5
L3	Nick	Mechanical	2

- •Teacher $\rightarrow \rightarrow$ Class
- •Class $\rightarrow \rightarrow$ Days
- •ID → Teacher

Trival Dependency

• In any relation R, $x \rightarrow y$ is trival if y is the subset of x

RollNo, Game → RollNo

Non - Trival Dependency

• In any relation R, $x \rightarrow y$ is non-trival if y is not the subset of x

RollNo, Game → Grade

Anomalies in Relational Database

 Anomalies refer to the undesirable results because of modification of data

- Insertion Anomaly
- Deletion Anomaly
- Updation Anomaly

Insertion Anomaly

Consider the relation Employee

EID	Name	Salary	Dept.No	Dept.Name
1	Goyal	10000	2	Accounts
2	Amit	9000	2	Accounts
3	Deepak	11000	1	Sales
4	Sandeep	8500	5	Marketing
5	Vikas	7000	5	Marketing
6	Jain	15000	2	Accounts
7	Lalit	14000	5	Marketing
8	vishal	10000	2	Accounts

Insertion Anomaly

•add new information in any relation but cannot enter that data because of some constraints known as Insertion anomaly

•In relation Employee, we cannot add new department Finance unless there is an employee in Finance department

•It violates Entity Integrity Rule (Primary key cannot be NULL)

Insertion Anomaly

Employee

EID	Name	Salary	Dept.No	Dept.Name
1	Goyal	10000	2	Accounts
2	Amit	9000	2	Accounts
3	Deepak	11000	1	Sales
4	Sandeep	8500	5	Marketing
5	Vikas	7000	5	Marketing
6	Jain	15000	2	Accounts
7	Lalit	14000	5	Marketing
8	vishal	10000	2	Accounts
			10	Finance

Deletion Anomaly

- •Occurs when we try to delete any existing information from any relation
- •This causes deletion of any other undesirable information
- •In relation Employee, if we try to delete tuple containing Deepak this leads to the deletion of department 'Sales'

Deletion Anomaly

Employee

EID	Name	Salary	Dept.No	Dept.Name
1	Goyal	10000	2	Accounts
2	Amit	9000	2	Accounts
3	Deepak	11000	1	Sales
4	Sandeep	8500	5	Marketing
5	Vikas	7000	5	Marketing
6	Jain	15000	2	Accounts
7	Lalit	14000	5	Marketing
8	vishal	10000	2	Accounts

Updation Anomaly

•Occurs when we try to update any existing information in any relation

•This causes inconsistency of data

•In relation Employee, if we try to change Dept.No of department **Accounts** for a tuple

Updation Anomaly

Employee

EID	Name	Salary	Dept.No	Dept.Name
1	Goyal	10000	2	Accounts
2	Amit	9000	2	Accounts
3	Deepak	11000	1	Sales
4	Sandeep	8500	5	Marketing
5	Vikas	7000	5	Marketing
6	Jain	15000	2	Accounts
7	Lalit	14000	5	Marketing
8	vishal	10000	2	Accounts

Updation Anomaly

This causes inconsistency of data

•Search all employees working in Accounts department and update them individually

NORMALIZATION

- •First Normal Form
- Second Normal Form
- Third Normal Form
- Boyce-Codd Normal Form

•It states that the domain of an attribute must include only **atomic** values

•The value of any attribute in a tuple must be a **single value** from the domain of that attribute

Consider the relation Employee

EID	Name	Salary	Dept.No	Dept.Name
1	Shivi Goyal	10000	2	Accounts
2	Amit Chopra	9000	2	Accounts
3	Deepak Gupta	11000	1	Sales
4	Sandeep Sharma	8500	5	Marketing
5	Vikas Malik	7000	5	Marketing
6	Gaurav Jain	15000	2	Accounts
7	Lalit Parmar	14000	5	Marketing
8	Vishal Bamel	10000	2	Accounts

Employee

EID	Name	Salary	Dept.No	Dept.Name
1	Shivi Goyal	10000	2	Accounts
2	Amit Chopra	9000	2	Accounts
3	Deepak Gupta	11000	1	Sales
4	Sandeep Sharma	8500	5	Marketing
5	Vikas Malik	7000	5	Marketing
6	Gaurav Jain	15000	2	Accounts
7	Lalit Parmar	14000	5	Marketing
8	Vishal Bamel	10000	2	Accounts

Name is not atomic

Relation Employee is in 1NF

EID	First-Name	Last-Name	Salary	Dept.No	Dept.Name
1	Shivi	Goyal	10000	2	Accounts
2	Amit	Chopra	9000	2	Accounts
3	Deepak	Gupta	11000	1	Sales
4	Sandeep	Sharma	8500	5	Marketing
5	Vikas	Malik	7000	5	Marketing
6	Gaurav	Jain	15000	2	Accounts
7	Lalit	Parmar	14000	5	Marketing
8	Vishal	Bamel	10000	2	Accounts

•Anomalies described earlier are also applicable here

•A relation schema R is in 2NF if every nonprime attribute A in R is *fully functionally dependent* on the primary key of R

Consider the relation Student

RollNo	<u>Game</u>	Name	Fee	Grade
CSU1	Cricket	Amit	200	A
CSU2	Badminton	Deepak	150	В
CSU3	Cricket	Sandeep	200	A
CSU4	Badminton	Vikas	150	С
CSU5	Hockey	Jack	100	A
CSU6	Cricket	John	200	С

Consider the relation **Student**

RollNo	<u>Game</u>	Name	Fee	Grade
CSU1	Cricket	Amit	200	A
CSU2	Badminton	Deepak	150	В
CSU3	Cricket	Sandeep	200	A
CSU4	Badminton	Vikas	150	С
CSU5	Hockey	Jack	100	A
CSU6	Cricket	John	200	С

RollNo→Name Game→Fee RollNo,Game→Grade

RollNo	<u>Game</u>	Name	Fee	Grade
CSU1	Cricket	Amit	200	A
CSU2	Badminton	Deepak	150	В
CSU3	Cricket	Sandeep	200	A
CSU4	Badminton	Vikas	150	С
CSU5	Hockey	Jack	100	A
CSU6	Cricket	John	200	С

•Relation Student is in 1NF but still contains anomalies

•Insertion Anomaly: Want to add a new game

Deletion Anomaly: Delete student Jack;

loose information about Hockey

Updation Anomaly: Change Fee of Cricket

RollNo	<u>Game</u>	Name	Fee	Grade
CSU1	Cricket	Amit	200	A
CSU2	Badminton	Deepak	150	В
CSU3	Cricket	Sandeep	200	A
CSU4	Badminton	Vikas	150	С
CSU5	Hockey	Jack	100	A
CSU6	Cricket	John	200	С

•Solution?????

RollNo	<u>Game</u>	Name	Fee	Grade
CSU1	Cricket	Amit	200	A
CSU2	Badminton	Deepak	150	В
CSU3	Cricket	Sandeep	200	A
CSU4	Badminton	Vikas	150	С
CSU5	Hockey	Jack	100	A
CSU6	Cricket	John	200	С

Solution

•Separate Partial dependencies and Fully functional dependencies

Consider the relation **Student**

RollNo	<u>Game</u>	Name	Fee	Grade
CSU1	Cricket	Amit	200	A
CSU2	Badminton	Deepak	150	В
CSU3	Cricket	Sandeep	200	A
CSU4	Badminton	Vikas	150	С
CSU5	Hockey	Jack	100	A
CSU6	Cricket	John	200	С

RollNo→Name
Game→Fee
RollNo,Game→Grade

RollNo
RollNo
RollNo
Fee
Fee

Student (RollNo,Game,Name,Fee,Grade)

RollNo→Name

Game→Fee

RollNo,Game → Grade

Into three relations

Student (RollNo,Name)

Games (Game, Fee)

Performance (RollNo,Game,Grade)
RollNo
Name
Grade
Fee

Student

RollNo	Name
CSU1	Amit
CSU2	Deepak
CSU3	Sandeep
CSU4	Vikas
CSU5	Jack
CSU6	John

Games

<u>Game</u>	Fee
Cricket	200
Badminton	150
Hockey	100

Performance

RollNo	<u>Game</u>	Grade
CSU1	Cricket	A
CSU2	Badminton	В
CSU3	Cricket	A
CSU4	Badminton	С
CSU5	Hockey	A
CSU6	Cricket	С

•A relation schema R is in 3NF if it satisfies 2NF and no nonprime attribute of R is transitively dependent on the primary key

Consider the relation Student

RollNo	Name	Semester	Hostel
CSU1	Amit	1	H1
CSU2	Deepak	2	H2
CSU3	Sandeep	1	H1
CSU4	Vikas	4	H4
CSU5	Jack	3	НЗ

Consider the relation Student

RollNo	Name	Semester	Hostel
CSU1	Amit	1	H1
CSU2	Deepak	2	H2
CSU3	Sandeep	1	H1
CSU4	Vikas	4	H4
CSU5	Jack	3	НЗ

- Primary key: RollNo
- •Different hostel is allotted for different semester
- •Student relation is in 2NF but still contains anomalies

RollNo	Name	Semester	Hostel
CSU1	Amit	1	H1
CSU2	Deepak	2	H2
CSU3	Sandeep	1	H1
CSU4	Vikas	4	H4
CSU5	Jack	3	НЗ

- •Insertion anomaly: Cannot add a new hostel not allotted to any student
- •Deletion anomaly: Cannot delete student Deepak loose information about hostel H2
- •Updation anomaly: Change hostel of first semester

RollNo	Name	Semester	Hostel
CSU1	Amit	1	H1
CSU2	Deepak	2	H2
CSU3	Sandeep	1	H1
CSU4	Vikas	4	H4
CSU5	Jack	3	НЗ

Student (RollNo, Name, Semester, Hostel)

RollNo	Name	Semester	Hostel
CSU1	Amit	1	H1
CSU2	Deepak	2	H2
CSU3	Sandeep	1	H1
CSU4	Vikas	4	H4
CSU5	Jack	3	НЗ

•Solution?????

Student (RollNo, Name, Semester) Hostels (Semester, Hostel)

Student

RollNo	Name	Semester
CSU1	Amit	1
CSU2	Deepak	2
CSU3	Sandeep	1
CSU4	Vikas	4
CSU5	Jack	3

Hostels

Semester	Hostel
1	H1
2	H2
3	НЗ
4	H4

•A relation schema R is in BCNF if whenever a nontrivial functional dependency $x \rightarrow A$ holds in R, then x is a superkey of R

- •BCNF is a strict format of 3NF
- •A relation schema R is in BCNF if and only if all determinants are super keys
- •BCNF deals with multiple candidate keys

Consider the relation Student

RollNo	Subject	Teacher
1	С	T1
2	C++	T2
3	С	T1
4	Java	Т3
5	Java	Т3
1	Oracle	T5
6	Oracle	T5
3	C++	T2
7	VB	T4
8	Oracle	Т6

Assumptions:

- •Student can have more than 1 subject
- •A Teacher can teach only 1 subject
- •A subject can be taught by more than 1 teacher

Student

RollNo	Subject	Teacher
1	С	T1
2	C++	T2
3	С	T1
4	Java	Т3
5	Java	T3
1	Oracle	T5
6	Oracle	T5
3	C++	T2
7	VB	T4
8	Oracle	Т6

Student

RollNo	Subject	Teacher
1	С	T1
2	C++	T2
3	С	T1
4	Java	Т3
5	Java	Т3
1	Oracle	T5
6	Oracle	T5
3	C++	T2
7	VB	T4
8	Oracle	Т6

- •Deletion Anomaly if we delete student with RollNo.7; loose information about Teacher T4
- •Insertion Anomaly If we want to add new subject VC++
- •Updation Anomaly want to change Teacher for subject C.

Student

RollNo	Subject	Teacher
1	С	T1
2	C++	T2
3	С	T1
4	Java	Т3
5	Java	Т3
1	Oracle	T5
6	Oracle	T5
3	C++	T2
7	VB	T4
8	Oracle	Т6

Two candidate keys

- •(RollNo, Subject)
- •(RollNo, Teacher)

Student

RollNo	Subject	Teacher
1	С	T1
2	C++	T2
3	С	T1
4	Java	Т3
5	Java	Т3
1	Oracle	T5
6	Oracle	T5
3	C++	T2
7	VB	T4
8	Oracle	Т6

Student

RollNo	Subject	Teacher
1	С	T1
2	C++	T2
3	С	T1
4	Java	Т3
5	Java	Т3
1	Oracle	T5
6	Oracle	T5
3	C++	T2
7	VB	T4
8	Oracle	Т6

- Solution
- Student-Teacher (RollNo, Teacher)
- Teacher-subject (Teacher, subject)

Student-Teacher

Dtudelli	<u> </u>
RollNo	Teacher
1	T1
2	T2
3	T1
4	Т3
5	Т3
1	T5
6	T5
3	T2
7	T4
8	Т6

Teacher-subject

Teacher	Subject
T1	С
T2	C++
Т3	Java
T4	VB
T5	Oracle
Т6	Oracle

THANK YOU