Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

VİTMO

ЛАБОРАТОРНАЯ РАБОТА №3 ПРЕДМЕТ «ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ» ТЕМА «РЕГУЛЯТОРЫ С ЗАДАННОЙ СТЕПЕНЬЮ УСТОЙЧИВОСТИ»

Вариант №2

Преподаватель: Пашенко А. В.

Выполнил: Румянцев А. А.

Факультет: СУиР Группа: R3341

Поток: ТАУ R22 бак 1.1.1

Содержание

1	Зад	ание 1. Синтез регулятора с заданной степенью устойчивости	2
	1.1	Управляемость и стабилизируемость	2
	1.2	Степень устойчивости	2
	1.3	Схема моделирования системы, замкнутой регулятором	3
	1.4	Значения желаемой степени устойчивости	3
	1.5	Синтез регулятора через матричное неравенство типа Ляпунова	3
	1.6	Компьютерное моделирование	4
	1.7	Сопоставление результатов	9
	1.8	Синтез регулятора через матричное уравнение типа Риккати	9
	1.9	Компьютерное моделирование для дополнительного пункта	9
	1.10	Сопоставление результатов для дополнительного пункта	13
	1.11	Вывод	13
2	Зад	Задание 2. Управление по выходу с заданной степенью устойчивости	
	2.1	Управляемость, стабилизируемость, наблюдаемость и обнаруживаемость	13
	2.2	Степень устойчивости	14
	2.3	Степень сходимости	14
	2.4	Схема моделирования системы, замкнутой регулятором, состоящим из	
		наблюдателя состояния и закона управления	14
	2.5	Желаемые значения степени устойчивости и сходимости	14
	2.6	Наборы значений желаемой степени устойчивости и сходимости	15
	2.7	Синтез регулятора	15
	2.8	Синтез наблюдателя	15
	2.9	Компьютерное моделирование	16
3	Оби	ций вывод по работе	17
4	При	ложения	17
	$4.\overline{1}$	Приложение 1	17
	4.2	Приложение 2	19

Задание 1. Синтез регулятора с заданной степенью устойчивости

Рассмотрим систему

$$\dot{x} = Ax + Bu, \ A = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix}, \ B = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix};$$

Управляемость и стабилизируемость

Найдем собственные числа матрицы A и определим управляемость каждого из них. Программа для вычислений в MATLAB представлена на листинге 1 в приложении 1

$$\sigma\left(A\right) = \left\{-2, 2 \pm i\right\}$$

Число $\lambda_1 = -2$ асимптотически устойчивое, может быть неуправляемым. Комплексная пара $\lambda_{2,3}$ имеет положительную действительную часть – эти собственные числа неустойчивые, нужна управляемость. Разложим A в вещественную жорданову форму, найдем вектор B в базисе собственных векторов матрицы A

$$A = P_{re}J_{re}P_{re}^{-1} = \begin{bmatrix} -1 & 0.5 & -1.5 \\ 0 & 0 & -1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 2 & -1 & 2 \\ 0 & -1 & 0 \end{bmatrix},$$

$$B_{Jre} = P_{re}^{-1}B = \begin{bmatrix} 0 & 1 & 1 \\ 2 & -1 & 2 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix};$$

Итого имеем

$$J_{re} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix}, \ B_{Jre} = \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix};$$

Все жордановы клетки относятся к различным собственным числам. Только число $\lambda_1 = -2$ неуправляемое, так как первый элемент B_{Jre} равен нулю. Остальные собственные числа управляемые. Таким образом, система не полностью управляема, стабилизируема.

Степень устойчивости

Любой степени устойчивости при помощи регулятора u=Kx добиться не получится, так как система не полностью управляема. Степень устойчивости системы α – самое близкое к правой комплексной полуплоскости собственное число матрицы A, находящееся в левой комплексной полуплоскости. Проверка на близость осуществляется через действительную часть собственного числа. Имеем

$$\operatorname{Re}\left\{\lambda_{1}=-2\right\}=-2,$$

Re
$$\{\lambda_{2,3} = 2 \pm i\} = 2;$$

Таким образом, степень устойчивости системы $\alpha = 2$. Это максимум. Устойчивость в данном случае подразумевается экспоненциальная.

Схема моделирования системы, замкнутой регулятором

Построим схему моделирования системы $\dot{x}=Ax+Bu$, замкнутой регулятором u=Kx, используя SIMULINK

Рис. 1: Схема моделирования системы, замкнутой регулятором

Значения желаемой степени устойчивости

Возьмем достаточно отличающиеся достижимые степени устойчивости в диапазоне $0<\alpha\leq 2$

$$\alpha_1 = 2,$$

$$\alpha_2 = 0.1;$$

Синтез регулятора через матричное неравенство типа Ляпунова

Для каждого из выбранных значений α синтезируем регулятор, обеспечивающий заданную степень устойчивости, при помощи матричного неравенства типа Ляпунова

$$PA^T + AP + 2\alpha P + Y^TB^T + BY \preceq 0, \ K = YP^{-1};$$

Найдем для $\alpha_{1,2}$ соответствующие матрицы регулятора $K_{1\alpha_i}$ без ограничений на управление. Пользуемся пакетом сvx для MATLAB. Получаем

$$K_{1\alpha_1} = \begin{bmatrix} 2.5267 & -18.8652 & 1.7294 \end{bmatrix},$$

 $K_{1\alpha_2} = \begin{bmatrix} -2.0955 & -5.8106 & -2.6863 \end{bmatrix};$

Найдем для $\alpha_{1,2}$ соответствующие матрицы регулятора $K_{2\alpha_i}$ совместно с решением задачи минимизации управления. Нам нужно найти минимальное μ , для которого при начальных условиях $x(0)=x_0$ выполняется $||u(t)||\leq \mu$. Для этого нужно решить задачу выпуклой минимизации:

минимизировать
$$\gamma = \mu^2$$
 при ограничениях $P \succ 0, \ PA^T + AP + 2\alpha P + Y^TB^T + BY \prec 0,$
$$\begin{bmatrix} P & x_0 \\ x_0^T & 1 \end{bmatrix} \succ 0, \ \begin{bmatrix} P & Y^T \\ Y & \gamma I \end{bmatrix};$$

Зададим начальные условия

$$x(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Реализация представлена в MATLAB, для решения используется cvx. Получаем

$$K_{2\alpha_1} = \begin{bmatrix} 1.6000 & -11.2000 & 1.6000 \end{bmatrix}, \ \mu_1 = 8.0090,$$

 $K_{2\alpha_2} = \begin{bmatrix} -0.7565 & -2.6884 & -0.7552 \end{bmatrix}, \ \mu_2 = 4.2015;$

Определим собственные числа матриц замкнутых систем $(A+BK_{j\,\alpha_i})$ и сравним с желаемой степенью устойчивости

$$\begin{split} &\sigma\left(A+BK_{1\,\alpha_{1}}\right)=\left\{-2,-4.5072\pm3.2145i\right\},\\ &\sigma\left(A+BK_{1\,\alpha_{2}}\right)=\left\{-2,-4.5455,-0.8653\right\},\\ &\sigma\left(A+BK_{2\,\alpha_{1}}\right)=\left\{-2,-2.0000\pm4.1231i\right\},\\ &\sigma\left(A+BK_{2\,\alpha_{2}}\right)=\left\{-2,-0.1013\pm2.3259i\right\}; \end{split}$$

Для $\alpha_1=2$ собственные числа при регуляторе $K_{2\alpha_1}$ получились более точными, чем при регуляторе $K_{1\alpha_1}$. То есть управление будет именно таким, каким мы его хотели (Re $\{\lambda_i\}=-\alpha_1$). На графике увидим плавное поведение системы, стабилизирующееся к нулю. Для $\alpha_2=0.1$ ситуация аналогичная — при $K_{2\alpha_2}$ действительная часть комплексной пары почти достигла желаемого ограничения на степень устойчивости. При $K_{2\alpha_2}$ результат более хаотичный. Также в каждом спектре наблюдаем неуправляемое число -2, что подтверждает корректность расчетов.

Компьютерное моделирование

Выполним компьютерное моделирование для всех замкнутых систем, используя схему SIMULINK, представленную на рис. 1. Построим графики u(t), x(t) при начальных условиях

$$x(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Результаты представлены на рис. 2–9 со следующей страницы

Рис. 2: График u(t) для $\alpha_1=2$ при $K_{1\,\alpha_1}$

Рис. 3: График x(t) для $\alpha_1=2$ при $K_{1\,\alpha_1}$

Рис. 4: График u(t) для $\alpha_1=2$ при $K_{2\,\alpha_1},\ \mu_1=8.0090$

Рис. 5: График x(t) для $\alpha_1=2$ при $K_{2\,\alpha_1},\ \mu_1=8.0090$

Рис. 6: График u(t) для $\alpha_2=0.1$ при $K_{1\,\alpha_2}$

Рис. 7: График x(t) для $\alpha_2=0.1$ при $K_{1\,\alpha_2}$

Рис. 8: График u(t) для $\alpha_2=0.1$ при $K_{2\,\alpha_2},\ \mu_2=4.2015$

Рис. 9: График x(t) для $\alpha_2=0.1$ при $K_{2\,\alpha_2},\ \mu_2=4.2015$

Сопоставление результатов

На рис. 4, 8 видим, что систему удается стабилизировать при помощи минимального управления, однако на это уходит больше времени, что наблюдается при сравнении поведения систем на рис. 9, 7. В случае с рис. 5, 3 это менее заметно. В общем результаты без ограничения на управление более гладкие и спокойные, но требуют больше управления.

Синтез регулятора через матричное уравнение типа Риккати

Для каждого α синтезируем регулятор при помощи матричного уравнения типа Риккати при $\nu=2$ и R=1

$$A^{T}P + PA + Q - \nu PBR^{-1}B^{T}P + 2\alpha P = 0, K = -R^{-1}B^{T}P;$$

Пользуемся MATLAB. Найдем матрицы регулятора $K_{3\,\alpha_i}$ при Q=I

$$K_{3\alpha_1} = \begin{bmatrix} 2.1164 & -13.4942 & 1.6777 \end{bmatrix},$$

 $K_{3\alpha_2} = \begin{bmatrix} -0.8455 & -3.3716 & -0.5697 \end{bmatrix};$

Найдем матрицы регулятора $K_{4\alpha_i}$ при Q=0

$$K_{4\alpha_1} = \begin{bmatrix} 1.6000 & -11.2000 & 1.6000 \end{bmatrix},$$

 $K_{4\alpha_2} = \begin{bmatrix} -0.7560 & -2.6880 & -0.7560 \end{bmatrix};$

Определим собственные числа замкнутых систем $(A+BK_{i\,\alpha_i})$

$$\sigma (A + BK_{3\alpha_1}) = \{-2, -2.4114 \pm 4.3116i\},$$

$$\sigma (A + BK_{3\alpha_2}) = \{-2, -0.6692 \pm 2.3797i\},$$

$$\sigma (A + BK_{4\alpha_1}) = \{-2, -2.0000 \pm 4.1231i\},$$

$$\sigma (A + BK_{4\alpha_2}) = \{-2, -0.1000 \pm 2.3259i\};$$

В каждом спектре наблюдаем неуправляемое собственное число -2 – это верно. При Q=0 желаемая степень устойчивости была достигнута – действительные части собственных чисел совпадают с соответствующими α_i . При Q=I результат менее точный, чем при Q=0, однако собственные числа ближе к желаемой степени устойчивости в сравнении с результатами для регуляторов $K_{1\alpha_i}$. Спектр $A+BK_{4\alpha_1}$ полностью совпадает с результатом для $K_{2\alpha_1}$, а в случае с α_2 – почти полностью. В общем решение через матричное уравнение типа Риккати дает более точные результаты.

Компьютерное моделирование для дополнительного пункта

Для замкнутых систем $A+BK_{j\,\alpha_i}$ выполним компьютерное моделирование – построим графики u(t),x(t) при начальных условиях

$$x(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Для $A + BK_{4\alpha_1}$ графики строить избыточно – результаты полностью совпали с результатом для $A + BK_{2\alpha_1}$. Достаточно посмотреть на рис. 4, 5.

Далее расположены графики u(t), x(t), смоделированные по схеме, представленной на рис. 1

Рис. 10: График u(t) для $\alpha_1=2$ при $K_{3\,\alpha_1}$

Рис. 11: График x(t) для $\alpha_1=2$ при $K_{3\,\alpha_1}$

Рис. 12: График u(t) для $\alpha_2=0.1$ при $K_{3\,\alpha_2}$

Рис. 13: График x(t) для $\alpha_1=0.1$ при $K_{3\,\alpha_2}$

Рис. 14: График u(t) для $\alpha_2=0.1$ при $K_{4\,\alpha_2}$

Рис. 15: График x(t) для $\alpha_1=0.1$ при $K_{4\,\alpha_2}$

Сопоставление результатов для дополнительного пункта

Видим, что в случаях с K_4 система приобретает больше осцилляций, чем с K_3 (сравн. рис. 5, 11 и 15, 13). Время схождения системы к нулю быстрее с K_3 , однако с K_4 требуется меньше управления. В общем графики почти совпадают с результатами для $K_{1,2}$ (в случае $K_{4\alpha_1}$ результаты полностью совпали с $K_{2\alpha_1}$). Таким образом, можно предположить, что синтез регулятора через матричное уравнение Риккати почти решает задачу минимизации управления.

Вывод

В данном задании был исследован синтез регулятора через матричное неравенство типа Ляпунова и матричное уравнение типа Риккати. Были получены графики, подтверждающие корректность расчетов и рассуждений. Удалось получить желаемую степень устойчивости с помощью неограниченного и минимального управлений. Результат решения через Риккати напоминает результат решения задачи минимизации управления.

Задание 2. Управление по выходу с заданной степенью устойчивости

Рассмотрим систему

$$\begin{cases} \dot{x} = Ax + Bu, \\ y = Cx, \end{cases} A = \begin{bmatrix} 2 & 0 & -4 & 2 \\ 0 & 2 & -2 & 4 \\ -4 & -2 & 2 & 0 \\ 2 & 4 & 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 \\ 4 \\ 6 \\ 8 \end{bmatrix}, C = \begin{bmatrix} -2 & 2 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{bmatrix};$$

Управляемость, стабилизируемость, наблюдаемость и обнаруживаемость

Найдем собственные числа матрицы A. Программа для вычислений в MATLAB представлена на листинге 2 в приложении 2

$$\sigma(A) = \{0, -4, 4, 8\}$$

Собственное число $\lambda_2=-4$ асимптотически устойчивое, может быть неуправляемым и/или ненаблюдаемым. $\lambda_1=0$ устойчиво, но не асимптотически. Числа $\lambda_{3,4}>0$ неустойчивые, нужна управляемость и наблюдаемость. Аналогично первому заданию найдем жорданово разложение матрицы A и матрицы B,C в базисе ее собственных векторов

$$B_J = \begin{bmatrix} 3 \\ -1 \\ 2 \\ 4 \end{bmatrix}, \ C_J = \begin{bmatrix} 0 & 0 & 0 & 8 \\ 4 & 0 & 4 & 0 \end{bmatrix};$$

Все жордановы клетки относятся к различным собственным числам. В матрице B_J отсутствуют нулевые элементы – все собственные числа управляемые. Следовательно, система полностью управляема и стабилизируема. В матрице C_J второй столбец нулевой – асимптотически устойчивое число -4 является ненаблюдаемым. Система не полностью наблюдаема, но обнаруживаема.

Степень устойчивости

Так как система полностью управляема, то с помощью регулятора вида u=Kx можно добиться любой желаемой степени устойчивости.

Степень сходимости

Так как система не полностью наблюдаема, то от наблюдателя полной размерности не получится добиться любой желаемой степени сходимости. Максимально возможная $\alpha_L = 4$, так как ненаблюдаемое собственно число $\lambda_2 = -4$.

Схема моделирования системы, замкнутой регулятором, состоящим из наблюдателя состояния и закона управления

Построим схему моделирования системы, замкнутой регулятором, состоящим из наблюдателя состояния. $\dot{\hat{x}} = A\hat{x} + Bu + L\left(C\hat{x} - y\right)$ и закона управления $u = K\hat{x}$, используя SIMULINK. Данная схема позволяет построить графики $u(t), e(t), x(t), \hat{x}(t)$

Рис. 16: Схема моделирования системы, замкнутой регулятором, состоящим из наблюдателя состояния и закона управления

Желаемые значения степени устойчивости и сходимости

Зададимся парой значений $\alpha>0$, которые будут сильно отличаться, при этом одна из них будет максимально возможной, другая достижимой

$$\alpha_1 = 4$$
,

$$\alpha_2 = 1;$$

Наборы значений желаемой степени устойчивости и сходимости

Составим 3 набора значений желаемых степеней устойчивости α_K и сходимости α_L

$$\alpha_K = \alpha_L = 4$$
 $\alpha_K > \alpha_L \Leftrightarrow 4 > 1$
 $\alpha_K < \alpha_L \Leftrightarrow 1 < 4$

Синтез регулятора

Процесс вычислений аналогичен первому заданию. Используем метод уравнений Риккати и MATLAB. Будем подбирать матрицу Q, при которой отклонения собственных чисел спектра замкнутой системы от желаемой степени устойчивости будут минимизированы.

Вычислим
$$K_{\alpha_1}$$
 для $\alpha_K = 4$ при $Q = 0, \nu = 2, R = 1$

$$K_{\alpha_1} = \begin{bmatrix} -92.4000 & 32.4000 & 87.6000 & 27.6000 \end{bmatrix}$$

Проверим собственные числа замкнутой системы $A+BK_{\alpha_1}$

$$\sigma(A + BK_{\alpha_1}) = \{-4, -4, -4.0000 \pm 13.2665i\}$$

Действительные части всех собственных чисел совпадают с желаемой степенью устойчивости $\alpha_K=4$. Регулятор синтезирован корректно.

Вычислим K_{α_2} для $\alpha_K=1$ при $Q=0.000001\cdot I,\ \nu=2,\ R=1$:

$$K_{\alpha_2} = \begin{bmatrix} -23.1563 & 3.4688 & 22.7813 & 3.0938 \end{bmatrix}$$

Выполним аналогичную проверку замкнутой системы

$$\sigma(A + BK_{\alpha_2}) = \{-4, -1, -1.0000 \pm 7.6812i\}$$

Действительные части трех собственных чисел совпадают с желаемой степенью устойчивости $\alpha_K = 1$. Одно из чисел всегда остается равным -4. Можем сделать вывод, что регулятор синтезирован корректно.

Синтез наблюдателя

Матрицы наблюдателя L будем искать с помощью матричных неравенств

$$Q \succ 0, \ A^TQ + QA + 2\alpha Q + C^TY^T + YC \prec 0, \ L = Q^{-1}Y;$$

Алгоритм минимизации аналогичен первому заданию, разве что γ уже будет не скаляр, а матрица размера 2×2 . Минимизировать будем ее норму. Решаем через cvx. Так как размерность выхода C другая, то и Y станет другой размерности – 4×2 . Для вычисления также понадобятся начальные условия для системы и наблюдателя

$$x(0) = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \ \hat{x}(0) = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix};$$

Вычислим L_{α_1} для $\alpha_L=4$

$$L_{\alpha_1} = \begin{bmatrix} -12.4989 & -4.2737 \\ -2.5002 & 1.1365 \\ 12.4990 & 3.1367 \\ -2.5001 & -0.0043 \end{bmatrix}$$

Проверим собственные числа замкнутой системы $A + BL_{\alpha_1}$

$$\sigma\left(A + BL_{\alpha_1}\right) = \{-4.0625, -4.4856, -4.0003 \pm 9.7970i\}$$

Действительные части собственных чисел близки к желаемой степени сходимости $\alpha_L=4$. Наблюдатель синтезирован корректно.

Вычислим L_{α_2} для $\alpha_L=1$

$$L_{\alpha_2} = \begin{bmatrix} -6.1252 & -2.5639 \\ -1.7500 & 0.2869 \\ 6.1251 & 2.2774 \\ -1.7499 & -0.0027 \end{bmatrix}$$

Выполним аналогичную проверку замкнутой системы

$$\sigma\left(A + BL_{\alpha_2}\right) = \{-1.1548, -3.9907, -1.0000 \pm 6.7087i\}$$

Действительные части комплексной пары совпали с желаемой степенью сходимости $\alpha_L = 1$. Собственное число $\lambda_1 = -1.1548$ близко к желаемой степени устойчивости. Число $\lambda_2 = -3.9907$ близко к ненаблюдаемому собственному числу -4 матрицы A. Можем сделать вывод, что наблюдатель синтезирован корректно.

Компьютерное моделирование

Выполним компьютерное моделирование с начальными условиями системы

$$x(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

и наблюдателя

$$\hat{x}(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Построим графики формируемого управления u(t), сравнительные графики x(t) и $\hat{x}(t)$ (покомпонентно), а также график ошибки наблюдателя $e(t) = x(t) - \hat{x}(t)$. Для построения пользуемся схемой, представленной на рис. 16.

Далее со следующей страницы расположены перечисленные графики на рис.

Общий вывод по работе

. . .

Приложения

Приложение 1

```
% plant parameters
A = [5 \ 2 \ 7; \ 2 \ 1 \ 2; \ -2 \ -3 \ -4];
B = [3; 1; -1];
% A matrix eigenvalues
A_e = eig(A)
% Jordan matrix
[P, J] = jordan(A);
Pre(:,1) = P(:,1);
Pre(:,2) = imag(P(:,2));
Pre(:,3) = real(P(:,3))
Pre_inv = Pre^-1
J_re = Pre_inv * A * Pre
B_{jre} = Pre_{inv} * B
% Desired decay rate
a1 = 2;
a2 = 0.1;
\% solving LMI no restrictions on control
cvx_begin sdp
% a1
variable P1(3,3) symmetric
variable Y1(1,3)
P1 > 0.0001*eye(3);
P1*A' + A*P1 + 2*a1*P1 + Y1'*B'+ B*Y1 <= 0;
cvx_end
cvx_begin sdp
% a2
variable P2(3,3) symmetric
variable Y2(1,3)
P2 > 0.0001*eye(3);
P2*A' + A*P2 + 2*a2*P2 + Y2'*B'+ B*Y2 <= 0;
cvx_end
K1_a1 = Y1*inv(P1)
K1_a2 = Y2*inv(P2)
% A+BK1_ai eigenvalues
ABK1_a1 = A+B*K1_a1;
ABK1_a2 = A+B*K1_a2;
eig(ABK1_a1)
eig(ABK1_a2)
```

```
% solving LMI with control constraint
x0 = [1; 1; 1];
% a1
cvx_begin sdp
variable P12(3,3) symmetric
variable Y12(1,3)
variable mumu_a1
minimize mumu_a1
P12 > 0.0001*eye(3);
P12*A' + A*P12 + 2*a1*P12 + Y12'*B'+ B*Y12 <= 0;
[P12 x0;
x0, 1] > 0;
[P12 Y12';
Y12 mumu_a1] > 0;
cvx_end
cvx_begin sdp
% a2
variable P22(3,3) symmetric
variable Y22(1,3)
variable mumu_a2
minimize mumu_a2
P22 > 0.0001*eye(3);
P22*A' + A*P22 + 2*a2*P22 + Y22'*B' + B*Y22 <= 0;
[P22 x0;
x0, 1] > 0;
[P22 Y22';
Y22 mumu_a2] > 0;
cvx_end
mu_a1 = sqrt(mumu_a1)
mu_a2 = sqrt(mumu_a2)
K2_a1 = Y12*inv(P12)
K2_a2 = Y22*inv(P22)
% A+BK2_ai eigenvalues
ABK2_a1 = A+B*K2_a1;
ABK2_a2 = A+B*K2_a2;
eig(ABK2_a1)
eig(ABK2_a2)
% solving Riccati
Q1 = eye(3);
v = 2;
R = 1;
% a1
Aa1 = A + eye(3) * (a1-0.0000000001);
[P,K,e]=icare(Aa1,sqrt(2)*B,Q1,R);
K3_a1 = -inv(R)*B*P
e = eig(A+B*K3_a1)
% a2
Aa2 = A + eye(3) * a2;
[P,K,e]=icare(Aa2, sqrt(2)*B,Q1,R);
```

```
K3_a2=-inv(R)*B'*P
e=eig(A+B*K3_a2)

Q2 = 0;
% a1
Aa12 = A + eye(3) * (a1-0.0000000001);
[P,K,e]=icare(Aa12,sqrt(2)*B,Q2,R);
K4_a1=-inv(R)*B'*P
e=eig(A+B*K4_a1)

% a2
Aa22 = A + eye(3) * a2;
[P,K,e]=icare(Aa22,sqrt(2)*B,Q2,R);
K4_a2=-inv(R)*B'*P
e=eig(A+B*K4_a2)
```

Листинг 1: Программа для задания 1

Приложение 2

```
% plant parameters
A = [2 \ 0 \ -4 \ 2;
   0 2 -2 4;
   -4 -2 2 0;
   2 4 0 2];
B=[2; 4; 6; 8];
C = [-2 \ 2 \ 2 \ 2;
2 0 0 2];
% A matrix eigenvalues
A_e = eig(A)
% Jordan decomposition
[P, J] = jordan(A)
P_{inv} = inv(P)
B = P_{inv} * B
C = C * P
% Desired decay rate
a1 = 4;
a2 = 1;
% case 1: ak == al
ak = a1;
al = a1;
% solving Riccati
Q = 0;
v = 2;
R = 1;
% find K
Aak = A + eye(4) * (ak-0.000000001);
[P,K,e]=icare(Aak,sqrt(2)*B,Q,R);
K_case1 = -inv(R)*B*P
eK_case1=eig(A+B*K_case1)
```

```
% find L
x0 = [1;1;1;1];
x0_est = [0;0;0;0];
e0=x0-x0_est;
% solving LMI with control constraint
% mumu 2x2, not scalar anymore
\% minimizing matrix by its norm
cvx_begin sdp
variable Q(4,4)
variable Y(4,2)
variable mumu(2,2)
minimize norm(mumu, inf)
Q > 0.0001 * eye (4);
A'*Q + Q*A+ 2*al*Q + C'*Y' + Y*C <= 0;
[Q e0;
e0, 1]>0;
[Q Y;
Y' mumu] > 0;
cvx_end
L_case1=inv(Q)*Y
eL_case1=eig(A+L_case1*C)
% case 2: ak > al
ak = a1;
al = a2;
% K found case 1
K_case2 = K_case1
eK_case2 = eK_case1
% find L
cvx_begin sdp
variable Q(4,4)
variable Y(4,2)
variable mumu(2,2)
minimize norm(mumu, inf)
Q > 0.0001 * eye (4);
A'*Q + Q*A+ 2*al*Q + C'*Y' + Y*C <= 0;
[Q e0;
e0, 1]>0;
[Q Y;
Y ' mumu] >0;
cvx_end
L_case2=inv(Q)*Y
eL_case2=eig(A+L_case2*C)
% case 3: ak < al
ak = a2;
al = a1;
% find K
Q = eye(4)*0.000001;
Aak = A + eye(4) * ak;
[P,K,e]=icare(Aak,sqrt(2)*B,Q,R);
K_case3 = -inv(R)*B*P
eK_case3 = eig(A+B*K_case3)
```

```
% L found case 1
L_case3 = L_case1
eL_case3 = eL_case1
```

Листинг 2: Программа для задания 2