Association des conducteurs ohmiques

Introduction: Dans la plupart des circuits électriques, on rencontre des conducteurs ohmiques associés de différentes manières. Plutôt que d'étudier leur comportement individuel, il peut être intéressant de les remplacer par un élément unique pour lequel les calculs seront plus rapides. Inversement, si, pour réaliser un circuit, on ne dispose pas d'un élément ayant la valeur voulue, on peut être amené à associer des éléments pour remplacer l'élément manquant.

I. Etude d'un dipôle passif : le conducteur ohmique :

I. 1- Définition d'un conducteur ohmique:

Lorsque ces matériaux résistent au passage du courant, on parle de conducteur ohmique . Si celui-ci est composé de 2 bornes on parlera de dipôle ohmique.

a) Définition d'une caractéristique :

On appelle caractéristique d'un dipôle

- la représentation graphique de la variation de la tension U à ses bornes en fonction de l'intensité du courant qui le traverse: U=f(I).
- la représentation graphique de la variation l'intensité du courant qui le traverse en fonction de la tension U à ses bornes: I=f(U).
 - b) Activité expérimentale 1: Soit le montage représenté dans la figure suivante :
 - c) Exploitations:

En faisant varier la tension du générateur, on obtient une série de mesures qu'il est préférable de représenter dans un tableau

	—(A)—	$\overline{}$	
(Z)		R	(A)

U (V)	0	1	2	3	4	5	6	7	8	9
I (A)	0	0,039	0,079	0,118	0,160	0,198	0,238	0,277	0,316	0,355

Tracé du graphique:

La trajectoire de la variation de la tension aux borne du resisor est une droite qui passe par l'origine

$$(U=0V, I=0A)$$
.

 \Rightarrow L'équation est de la forme y = ax

c'est à dire
$$U = a I$$
.

Avec $\mathbf{a} = \frac{\Delta U}{\Delta I}$ est le coefficient directeur de la Courbe.

AN:
$$a = \frac{2,5-0}{0,1-0} V/_A = 25,3\Omega$$

Le coefficient directeur (a=25,3) de la droite représente la résistance R du dipôle

l'unité de résistance R est l'ohm dont le symbole est Ω (oméga)

I. 3- Enoncé de la loi d'Ohm:

La tension U aux bornes d'un conducteur ohmique de résistance R est égale au produit de la résistance R parl'intensité I du courant qui le traverse.

I. 4- Conductance:

on définit la conductance G par l'inverse de la résistance: G = I/U

En (SI) l'unité de conductance est le siemens (S) telle que :1 $s = \Omega^{-1}$

I. 5-Resistance métallique :

La résistance d'un fil métallique est donnée par la relation suivante:

Soit R (Ω) la résistance d'un fil de section S (m²) et de longueur l (m), fabriqué dans un matériau de résistivité ρ (Ω m) est donnée par la relation suivante: $R = \rho \frac{l}{s}$

I. Association de conducteurs ohmiques:

 $\underline{http://ressources.univlemans.fr/AccesLibre/UM/Pedago/physique/02/electri/resistance.html}$

II. 1- La résistance équivalente :

La résistance équivalente est une notion d'électronique. C'est la valeur d'un <u>résistor</u> unique qui peut remplacer un groupe de résistors montés en série ou en parallèle sans modifier l'intensité du <u>courant</u> <u>électrique</u> aux limites de la source.

II. 2- Association en série:

- **a- Définition**: Deux dipôles sont en série quand ils appartiennent à la même branche (ils sont alors traversés par la même intensité).
- **b- Activité 2:** Mesure à l'Ohmmètre :

c- Conclusion : Deux conducteurs ohmiques de résistances R_1 et R_2 associés en série sont équivalents à un conducteur ohmique de résistance $R=R_1+R_2$.

d- Cas général:

<u>Règle</u>: la résistance équivalente à un groupement série de résistors est égale à la somme des résistances partielle: Re = $\sum R = R_1 + R_2 + \dots R_n$

Remarque : En série, la résistance équivalente est plus grande que la plus grande des résistance II. 2- Association en dérivation:

a- Activité 3:

b- Conclusion : Deux conducteurs ohmiques de résistances R₁ et R₂ associés en dérivation sont équivalents à un conducteur ohmique de résistance telle que:

$$R_{eq} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

c- Cas général:

<u>Règle</u> : l'inverse de la résistance équivalente à un groupement en dérivation de résistors est éhal à la somme des inverses des résistances de chaque résistor.

éhal à la somme des inverses des résistances de chaque résistor.
Résistances en parallèles :
$$\frac{1}{R_e} = \sum_{i=1}^n \frac{1}{R_i} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots \frac{1}{R_n}$$

 $\Rightarrow G_e = \frac{1}{R_e} = \sum_{i=1}^n G_i = G_1 + G_2 \dots G_n$

Remarque : En parallèle la conductance équivalente est plus grande que la plus grande des conductances et, par conséquent, la résistance équivalente est plus petite que la plus petite des résistance

III. Utilisation des conducteurs ohmiques :

III. 1- Le rhéostat dans un circuit :

Symbole:

Il peut s'utiliser comme résistance variable ou comme potentiomètre.

En déplaçant le curseur sur le conducteur résistif, on fait varier la valeur de la résistance entre les bornes A et C ou entre B et C.

III. 2-Diviseur de tension : http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/electro/divisetens.html

BUT : Obtenir une tension de sortie variable à l'aide d'un pont diviseur de tension équipé d'une résistance variable montée en potentiomètre en fonction de la tension d'entrée

 U_{AB}

 \mathbf{B}

В

Association des conducteurs ohmiques

- Dans le montage potentiomètrique, les extrémités de la résistance variable sont branchées aux bornes de la source de tension.
- ➤ Pour obtenir un générateur de tension variable à partir d'un générateur de tension continue on réalise un montage expérimental appelé diviseur de tension.

Schéma de principe :

On peut remplacer le potentiomètre par 2 résistances fixes reprenant les mêmes caractéristiques. Le potentiomètre est donc un pont diviseur de tension à point milieu réglable. D'après la loi d'ohm,

$$\begin{array}{ccc} on \; a: U_{AB} = (R_{AC} + R_{CB}) \; x \; I \\ Or & : & R_{eq} = R_{AC} + R_{CB} \\ Donc : & U_{AB} = R_{eq} x \; I \\ soit & : & I = U_{AB} \, / \, R_{eq} \end{array}$$

Sur le schéma équivalent au potentiomètre, on trouve à la sortie : $U_{CB} = R_{CB} \ x \ I$

Donc on remplace I par
$$U_{CB} / R_{CB}$$
: $V_{CB} = \frac{R_2}{R_{eq}} U_{AB}$ avec $R_{eq} = R_{AC} + R_{CB}$

On réalise le circuit ci-contre ou R_1 =47 Ω , R_2 =33 Ω et R_3 =82 Ω . On applique entre les bornes A et B une tension U_{AB} =12V.

1. Quelle est l'intensité I₁ du courant traversant R₁?

2. Quelle est l'intensité I₂ du courant traversant R₂?
En déduire la tension aux bornes de la résistance R₃.

3. Calculer la valeur de l'intensité I du courant dans la branche principale. En déduire la valeur de la résistance équivalente R du circuit.

4. Retrouver la valeur de R en utilisant les lois d'association des conducteurs ohmiques.

Exercice 2:

On réalise le circuit ci-contre ou R_1 =56 Ω , R_2 =68 Ω et R_3 =82 Ω . On applique entre les bornes A et B une tension U_{AB} =6V.

1. Calculer la résistance équivalente R du dipôle AB.

2. Déterminer l'intensité du courant I₁ traversant R₁.

3. Calculer la tension U_{AC} .

4. Calculer la tension U_{CB} .

5. Calculer les intensités I_2 et I_3 des courants traversant R_2 et R_3 . En appliquant la loi des nœuds, vérifier la valeur de I_1 trouvée précédemment.

