Competitive Programming Algorithms

Contents

1	\mathbf{Intr}	oduction and Miscellaneous	3
	1.1	Template	3
	1.2	.bashrc	3
	1.3	Generate Files	3
	1.4	Binary Search	3
	1.5	Base 10 to Base m	3
	1.6	Coordinate Compression	4
2	Dat	a Structures	4
	2.1	Order Statistic Tree (Set)	4
	2.2		4
	2.3	· - /	4
	2.4	Sparse Table	5
	2.5	Segment Tree	5
	2.6	Segment Tree on Trees	5
3	Dyn	namic Programming	6
	3.1		6
	3.2	•	6
	3.3	Travelling Sales Person	6
4	Gra	ph Algorithms	7
	4.1		7
	4.2		7
	4.3		8
	4.4	Directed Cycle Detection	8
	4.5	Tree Representation	8
	4.6	Binary Lifting	9
	4.7	SCC's	9
	4.8	Topological Sort	9
	4.9	Compute SCC DAG	0
	4.10		0
			1
			2
		Shortest Path Algorithms	2
		4.13.1 Dijkstra's Algorithm	2
			3
			.3
			4
5	Flov	w Networks 1	.5
	5.1		.5
	5.2		5

6	Mat	chematics	16
	6.1	Fast Exponentiation	16
	6.2	Mod Multiplication	16
	6.3	Miller Rabin - Primality Testing	16
	6.4	Prime Factorisation	17
	6.5	Sieve of Eratosthenes	17
	6.6	GCD	17
	6.7	LCM	18
	6.8	Extended Euclidean Algorithm	18
	6.9	Chinese Remainder Theorem	18
	6.10	Euler's Totient Function	18
	6.11	Matrices	18
	6.12	Combinations	19
7	Con	nputational Geometry	19
	7.1	Cross Product	19
	7.2	Three Points Collinear	20
	7.3	Segment-Segment Intersection	20
	7.4	Polygon Area (Trapezoidal Rule)	20
	7.5	Polygon Area (Cross Product)	20
	7.6	Convex Hull	21
	7.7	Half Plane Intersection	21

\overline{n}	Worst AC Algorithm	Comment
\leq [1011]	$O(n!), O(n^6)$	e.g., Enumerating permutations (Section 3.2)
$\leq [1719]$	$O(2^n \times n^2)$	e.g., DP TSP (Section 3.5.2)
$\leq [1822]$	$O(2^n \times n)$	e.g., DP with bitmask technique (Book 2)
$\leq [2426]$	$O(2^n)$	e.g., try 2^n possibilities with $O(1)$ check each
≤ 100	$O(n^4)$	e.g., DP with 3 dimensions + $O(n)$ loop, ${}_{n}C_{k=4}$
≤ 450	$O(n^3)$	e.g., Floyd-Warshall (Section 4.5)
$\leq 1.5K$	$O(n^{2.5})$	e.g., Hopcroft-Karp (Book 2)
$\leq 2.5K$	$O(n^2 \log n)$	e.g., 2 -nested loops $+$ a tree-related DS (Section 2.3)
$\leq 10K$	$O(n^2)$	e.g., Bubble/Selection/Insertion Sort (Section 2.2)
$\leq 200K$	$O(n^{1.5})$	e.g., Square Root Decomposition (Book 2)
$\leq 4.5M$	$O(n \log n)$	e.g., Merge Sort (Section 2.2)
$\leq 10M$	$O(n \log \log n)$	e.g., Sieve of Eratosthenes (Book 2)
$\leq 100M$	$O(n), O(\log n), O(1)$	Most contest problem have $n \leq 1M$ (I/O bottleneck)

n	1 2 3	4	5 6	7	8	}	9	10
$\overline{n!}$	1 2 6	24 1	20 72	0 504	0 403	362	2880 3	628800
n	11	12	13	1	4	15	16	17
$\overline{n!}$	4.0e7	′ 4.8e	8 6.26	e9.8.7	e10 1	.3e12	2.1e13	3.6e14
n	20	25	30	40	50	100	150	171
n!	2e18	2e25	3e32	8e47	3e64	9e157	6e262	>DBL_MAX

1 Introduction and Miscellaneous

1.1 Template

```
#include <bits/stdc++.h>
using namespace std;

typedef long long ll;

int main() {
    cin.tie(0)->sync_with_stdio(0);

int n;
    cin >> n;
}
```

1.2 .bashrc

```
alias c='g++ -Wall -Wconversion -Wfatal-errors -g -std=c++17 \
-fsanitize=undefined,address'
xmodmap -e 'clear lock' -e 'keycode 66=less greater' #caps = <>
```

1.3 Generate Files

```
for i in {B..L}.cpp; do cp "A.cpp" "$i"; done
```

1.4 Binary Search

```
int binarysearch(function < bool(int) > f) {
      int lo = 0, hi = 100000, bestSoFar = -1;
      while (lo <= hi) {</pre>
3
           int mid = lo + (hi - lo) / 2;
4
           if (f(mid)) {
5
               bestSoFar = mid;
6
               hi = mid - 1;
           } else lo = mid + 1;
9
      }
      return bestSoFar;
10
11 }
```

1.5 Base 10 to Base m

```
1 char a[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};
3 string tenToM(int n, int m) {
      int temp = n;
4
      string result = "";
5
      while (temp != 0) {
6
          result = a[temp % m] + result;
          temp /= m;
8
9
10
      return result;
11
12 }
```

1.6 Coordinate Compression

```
// coordinates -> (compressed coordinates).
map<int, int> coordMap;

void compress(vector<int>& values) {
   for (int v : values) coordMap[v] = 0;
   int cId = 0;
   for (auto it = coordMap.begin(); it != coordMap.end(); ++it) it->second = cId++;
   for (int& v : values) v = coordMap[v];
}
```

2 Data Structures

2.1 Order Statistic Tree (Set)

```
#include <ext/pb_ds/assoc_container.hpp>
2 #include <ext/pb_ds/tree_policy.hpp>
4 using namespace __gnu_pbds;
5 using namespace std;
7 template < class T>
8 using OST = tree<T, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update>
      ordered_set;
10 int main() {
      OST < int > t, t2;
11
      t.insert(8);
12
      auto it = t.insert(10).first;
13
      assert(it == t.lower_bound(9));
14
      assert(t.order_of_key(10) == 1);
15
      assert(t.order_of_key(11) == 2);
      assert(*t.find_by_order(0) == 8);
17
      t.join(t2); // assuming T < T2 or T > T2, merge t2 into t
18
19 }
```

2.2 Order Statistic Tree (Map)

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace __gnu_pbds;
using namespace std;

template <class T, class E>
using OST = tree<T, E, less<int>, rb_tree_tag, tree_order_statistics_node_update> ordered_set;
```

2.3 Union Find

```
1 struct UF {
2     vector < int > e;
3     UF (int n) : e(n, -1) {}
4     bool sameSet(int a, int b) { return find(a) == find(b); }
5     int size(int x) { return -e[find(x)]; }
6     int find(int x) { return e[x] < 0 ? x : e[x] = find(e[x]); }
7     bool join(int a, int b) {
8         a = find(a), b = find(b);
</pre>
```

2.4 Sparse Table

```
const int N = 100000;
2 const int LOGN = 18;
4 int a[N];
5 // sparseTable[1][i] = max a[i..i+2^1)
6 int sparseTable[LOGN][N];
  void precomp(int n) {
      // level 0 is the array itself
10
      for (int i = 0; i < n; i++) sparseTable[0][i] = a[i];</pre>
11
      for (int l = 1; l < LOGN; l++) { // inner loop does nothing if 2^1 > n
12
                                          // 2^(1-1)
          int w = 1 << (1 - 1);
          // a[i,i+2w) is made up of a[i,i+w) and a[i+w,i+2w)
          for (int i = 0; i + 2 * w \le n; i++)
16
               sparseTable[1][i] = max(sparseTable[1 - 1][i], sparseTable[1 - 1][i + w]);
17
      }
18
19 }
```

2.5 Segment Tree

```
struct Tree {
      typedef int T;
3
      static constexpr T unit = INT_MIN;
      T f(T a, T b) { return max(a, b); } // any associative function
4
      vector <T> s;
6
      int n;
      Tree(int n = 0, T def = unit) : s(2 * n, def), n(n) {}
10
      void update(int pos, T val) {
11
          for (s[pos += n] = val; pos /= 2;) s[pos] = f(s[pos * 2], s[pos * 2 + 1]);
12
13
14
      T query(int b, int e) { // query [b, e)
15
16
          T ra = unit, rb = unit;
           for (b += n, e += n; b < e; b /= 2, e /= 2) {
17
               if (b % 2) ra = f(ra, s[b++]);
18
               if (e % 2) rb = f(s[--e], rb);
19
          }
20
21
          return f(ra, rb);
      }
22
23 };
```

2.6 Segment Tree on Trees

```
vector < int > children[N];

int indexInRangeTree[N], startRange[N], endRange[N];

int totId;

void compute_tree_ranges(int v) {
   indexInRangeTree[v] = startRange[v] = totId++;
   for (int w : children[v]) compute_tree_ranges(w);
   endRange[v] = totId;

void update_node(Tree &t, int id, int v) { t.update(indexInRangeTree[id], v); }

long long query_subtree(Tree &t, int id) { return t.query(startRange[id], endRange[id]); }
```

3 Dynamic Programming

3.1 Knapsack

```
int dp[N + 2][S + 1];

for (int i = N; i >= 1; --i) {
    for (int r = 0; r <= S; ++r) {
        int m = dp[i + 1][r];
        if (r - s[i] >= 0) m = max(m, dp[i + 1][r - s[i]] + v[i]);
        dp[i][r] = m;
}
```

3.2 Bitsets

```
1 // for all sets
2 for (int set = 0; set < (1 << n); ++set) {</pre>
      // for all subsets of that set
      for (int subset = set; subset; subset = (subset - 1) & set) {
           // do something with the subset
6
7 }
9 // Alternatively - also can replace (1 << n) with pow(2, n)
10 for (int i = 0; i < (1 << n); ++i) {
      for (int j = 0; j < n; ++j) {
           if ((i >> j) & 1) {
               // do something with A[j]
13
          }
14
      }
15
16 }
```

3.3 Travelling Sales Person

```
const int N = 20;
const int INF = 1e9;
int n, adj[N][N];  // assume this is given.
int dp[1 << N][N];  // dp[x][i] is the shortest 0->i path visiting set bits of x

int tsp(void) {
  for (int mask = 0; mask < (1 << n); mask++)
  for (int city = 0; city < n; city++) dp[mask][city] = INF;</pre>
```

```
dp[1][0] = 0; // 1 represents seen set {0}
9
10
      int ans = INF;
11
      for (int mask = 1; mask < (1 << n); mask++) // for every subset of cities seen so far</pre>
           for (int cur = 0; cur < n; cur++)</pre>
               if (mask & (1 << cur)) {</pre>
                                                 // cur must be one of the cities seen so far
14
                                                // distance travelled so far
                    int cdp = dp[mask][cur];
15
                   if (mask == (1 << n) - 1) // seen all cities, return to 0
16
                        // unlike the traditional TSP, we don't have to add adj[cur][0]
17
                        // to account for an edge back to vertex 0
18
                        ans = min(ans, cdp);
19
                   for (int nxt = 0; nxt < n; nxt++)</pre>
20
                        if (!(mask & (1 << nxt))) // try going to a new city</pre>
21
                            // new seen set is mask union {nxt}, and we will be at nxt
                            // distance incurred to get to this state is now no worse than
                            // cdp (current distance incurred) + edge from cur to nxt
24
                            dp[mask | (1 << nxt)][nxt] =</pre>
25
                                min(dp[mask | (1 << nxt)][nxt], cdp + adj[cur][nxt]);</pre>
26
               }
27
28
       return ans;
29 }
```

4 Graph Algorithms

4.1 Breath First Search

```
vector < int > edges [N];
2 int dist[N];
3 int prev[N];
  void bfs(int start) {
      fill(dist, dist + N, -1);
6
       dist[start] = 0;
       prev[start] = -1;
       queue < int > q;
10
       q.push(start);
11
       while (!q.empty()) {
           int c = q.front();
           q.pop();
14
           for (int nxt : edges[c]) {
               if (dist[nxt] == -1) {
                    dist[nxt] = dist[c] + 1;
17
                    prev[nxt] = c;
18
                    q.push(nxt);
19
               }
20
           }
21
      }
22
23 }
```

4.2 Depth First Search

```
bool seen[N];

void dfs(int u) {
   if (seen[u]) return;
   seen[u] = true;
   for (int v : edges[u]) dfs(v);
}
```

4.3 Bridge Finding

```
vector < int > edges [N];
2 int preorder[N]; // initialise to -1
3 int T = 0;
4 int reach[N];
5 vector<pair<int, int>> bridges;
  void dfs(int u, int from = -1) {
      preorder[u] = T++;
      reach[u] = preorder[u];
9
10
11
      for (int v : edges[u])
12
           if (v != from) {
               if (preorder[v] == -1) {
14
                   dfs(v, u);
                   if (reach[v] == preorder[v]) bridges.emplace_back(u, v);
16
17
               reach[u] = min(reach[u], reach[v]);
          }
18
19 }
```

4.4 Directed Cycle Detection

```
vector < int > edges [N];
1 int seen[N];
3 int active[N];
  bool has_cycle(int u) {
6
      if (seen[u]) return false;
      seen[u] = true;
      active[u] = true;
      for (int v : edges[u]) {
9
           if (active[v] || has_cycle(v)) return true;
10
11
      active[u] = false;
12
      return false;
13
14 }
```

4.5 Tree Representation

```
const int N = 1e6 + 5;
3 vector<int> edges[N];
5 int par[N];
                             // Parent. -1 for the root.
6 vector<int> children[N];
                            // Your children in the tree.
                             // As an example: size of each subtree.
  int size[N];
9 void constructTree(int c, int cPar = -1) {
      par[c] = cPar;
10
      size[c] = 1;
      for (int nxt : edges[c]) {
          if (nxt == par[c]) continue;
13
          constructTree(nxt, c);
14
          children[c].push_back(nxt);
15
          size[c] += size[nxt];
16
      }
17
18 }
```

4.6 Binary Lifting

```
const int N = 200010;
const int D = 30; // ceil(log2(10^9))
3 int parent[N][D];
5 void precomp() {
      for (int i = 1; i <= n; ++i) cin >> parent[i][0];
      for (int j = 1; j < D; ++j) {
          for (int i = 1; i <= n; ++i) parent[i][j] = parent[parent[i][j - 1]][j - 1];</pre>
9
10
11 }
12
int kth_parent(int x, int k) {
      for (int j = 0; j < D; ++j) {
14
          if (k & (1 << j)) x = parent[x][j];</pre>
15
16
17 }
```

4.7 SCC's

```
1 template <class G, class F>
2 int dfs(int j, G& g, F& f) {
       int low = val[j] = ++Time, x;
       , z.push_pack(j);
4
       for (auto e : g[j])
           if (comp[e] < 0) low = min(low, val[e] ?: dfs(e, g, f));</pre>
       if (low == val[j]) {
8
9
           do {
               x = z.back();
10
               z.pop_back();
11
               comp[x] = ncomps;
12
           } while (x != j);
13
           f(cont);
14
           cont.clear();
15
           ++ncomps;
16
       }
17
       return val[j] = low;
18
19 }
20
21 template <class G, class F>
void scc(G& g, F f) {
      int n = g.size();
23
      val.assign(n, 0);
24
       comp.assign(n, -1);
25
26
       Time = ncomps = 0;
       for (int i = 0; i < n; ++i)</pre>
27
           if (comp[i] < 0) dfs(i, g, f);</pre>
28
29 }
```

4.8 Topological Sort

```
vector<int> topSort(const vector<vector<int>>& g) {
   vector<int> indeg(g.size()), q;

for (auto& li : g) {
   for (int x : li) ++indeg[x];
}
```

```
for (int i = 0; i < g.size(); ++i) {
    if (indeg[i] == 0) q.push_back(i);
}

for (int j = 0; j < q.size(); ++j) {
    for (int x : g[q[j]]) {
        if (--indeg[x] == 0) q.push_back(x);
    }
}

return q;
}</pre>
```

4.9 Compute SCC DAG

```
int main() {
       cin >> n >> m;
3
       for (int i = 0; i < m; ++i) {</pre>
4
5
           int a, b;
           cin >> a >> b;
6
           edges[a].push_back(b);
           edges_r[b].push_back(a);
9
10
      int nsccs = compute_sccs();
11
      for (int i = 1; i <= n; ++i) {</pre>
12
           for (int j : edges[i]) {
               if (scc[i] != scc[j]) dag[scc[i]].insert(scc[j]);
14
16
17
       vector<int> topo = topsort();
18
19 }
```

4.10 2-SAT

```
struct TwoSatSolver {
      int n_vars;
       int n_vertices;
      vector < vector < int >> adj, adj_t;
4
      vector < bool > used;
      vector < int > order, comp;
6
      vector < bool > assignment;
9
      TwoSatSolver(int _n_vars)
10
           : n_vars(_n_vars),
             n_vertices(2 * n_vars),
11
             adj(n_vertices),
12
             adj_t(n_vertices),
             used(n_vertices),
14
             order(),
             comp(n_vertices, -1),
16
             assignment(n_vars) {
17
           order.reserve(n_vertices);
18
      }
19
       void dfs1(int v) {
20
           used[v] = true;
21
           for (int u : adj[v]) {
```

```
if (!used[u]) dfs1(u);
23
24
           order.push_back(v);
25
      }
26
27
       void dfs2(int v, int cl) {
28
           comp[v] = cl;
29
           for (int u : adj_t[v]) {
30
               if (comp[u] == -1) dfs2(u, cl);
31
32
      }
33
34
      bool solve_2SAT() {
35
           order.clear();
37
           used.assign(n_vertices, false);
           for (int i = 0; i < n_vertices; ++i) {</pre>
38
               if (!used[i]) dfs1(i);
39
40
41
           comp.assign(n_vertices, -1);
42
           for (int i = 0, j = 0; i < n_vertices; ++i) {</pre>
43
               int v = order[n_vertices - i - 1];
44
               if (comp[v] == -1) dfs2(v, j++);
45
           }
46
47
           assignment.assign(n_vars, false);
48
           for (int i = 0; i < n_vertices; i += 2) {</pre>
49
50
               if (comp[i] == comp[i + 1]) return false;
               assignment[i / 2] = comp[i] > comp[i + 1];
51
           }
53
           return true;
      }
54
55
       void add_disjunction(int a, bool na, int b, bool nb) {
56
           // na and nb signify whether a and b are to be negated
57
           a = 2 * a ^na;
58
           b = 2 * b ^nb;
           int neg_a = a ^ 1;
60
           int neg_b = b ^ 1;
61
           adj[neg_a].push_back(b);
62
63
           adj[neg_b].push_back(a);
64
           adj_t[b].push_back(neg_a);
           adj_t[a].push_back(neg_b);
65
      }
66
67
       static void example_usage() {
68
           TwoSatSolver solver(3);
                                                            // a, b, c
69
           solver.add_disjunction(0, false, 1, true);
70
                                                            //
                                                                   a
                                                                      v
                                                                         not b
           solver.add_disjunction(0, true, 1, true);
                                                            // not a
                                                                          not b
71
                                                                      V
           solver.add_disjunction(1, false, 2, false);
                                                           //
                                                                   b
72
           solver.add_disjunction(0, false, 0, false); //
73
           assert(solver.solve_2SAT() == true);
74
           auto expected = vector < bool > (True, False, True);
76
           assert(solver.assignment == expected);
77
78 };
```

4.11 Kruskal's Algorithm

```
struct edge {
   int u, v, w;
};
```

```
4 bool operator < (const edge & a, const edge & b) { return a.w < b.w; }
6 edge edges[N];
7 int root(int u);
                              // union-find root with path compression
8 void join(int u, int v); // union-find join with size heuristic
  int mst() {
10
      sort(edges, edges + m); // sort by increasing weight
11
      int total_weight = 0;
      for (int i = 0; i < m; i++) {</pre>
13
           edge& e = edges[i];
14
           if (root(e.u) != root(e.v)) {
15
               total_weight += e.w;
16
               join(e.u, e.v);
17
18
           }
      }
19
      return total_weight;
20
21 }
```

4.12 Prim's Algorithm

```
typedef pair<int, int> ii;
3 vector<ii> edges[N]; // pairs of (weight, v)
4 bool in_tree[N];
5 priority_queue<ii, vector<ii>, greater<ii>> pq;
7 int mst() {
      int total_weight = 0;
9
      in_tree[0] = true;
      for (auto edge : edges[0]) pq.emplace(edge.first, edge.second);
10
      while (!pq.empty()) {
11
          auto edge = pq.top();
          pq.pop();
13
          if (in_tree[edge.second]) continue;
14
          in_tree[edge.second] = true;
          total_weight += edge.first;
16
          for (auto edge : edges[edge.second]) pq.emplace(edge.first, edge.second);
17
18
      return total_weight;
19
20 }
```

4.13 Shortest Path Algorithms

4.13.1 Dijkstra's Algorithm

```
#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef pair<ll, int> edge; // (distance, vertex)
const int N = 100100;

vector<edge> edges[N];
ld dist[N];
bool seen[N];
priority_queue<edge, vector<edge>, greater<edge>> pq;

void dijkstra(int s) {
fill(seen, seen + N, false);
```

```
pq.push(edge(0, s));
15
16
       while (!pq.empty()) {
           edge cur = pq.top();
17
           pq.pop();
18
           int v = cur.second;
19
           11 d = cur.first;
20
           if (seen[v]) continue;
21
22
           dist[v] = d;
23
           seen[v] = true;
24
25
           for (edge nxt : edges[v]) {
26
27
               int u = nxt.second;
               ll weight = nxt.first;
               if (!seen[u]) pq.push(edge(d + weight, u));
           }
30
      }
31
32 }
```

4.13.2 Bellman Ford

```
const ll INF = LLONG_MAX;
2 struct Edge {
      int a, b, w;
      int s() { return a < b ? a : -a; }</pre>
5 };
6
7 struct Node {
      11 dist = INF;
      int prev = -1;
9
10 };
12 void bellmanFord(vector < Node > & nodes, vector < Edge > & edges, int s) {
      nodes[s].dist = 0;
       sort(edges.begin(), edges.end(), [](Edge a, Edge b) { return a.s() < b.s(); });
14
15
       int lim = nodes.size() / 2 + 2;
16
       for (int i = 0; i < lim; ++i) {</pre>
           for (Edge e : edges) {
18
                Node cur = nodes[e.a], &dest = nodes[e.b];
19
               if (abs(cur.dist) == INF) continue;
20
               11 d = cur.dist + e.w;
21
                if (d < dest.dist) {</pre>
22
23
                    dest.prev = e.a;
24
                    dest.dist = (i < lim - 1 ? d : -INF);</pre>
               }
25
           }
26
27
28
       for (int i = 0; i < lim; ++i) {</pre>
29
30
           for (Edge e : edges) {
                if (nodes[e.a].dist == -INF) nodes[e.b].dist = -INF;
31
32
      }
33
34 }
```

4.13.3 Finding Negative Cycles

```
int main() {
cin >> n >> m;
```

```
for (int i = 0; i < m; ++i) {</pre>
3
4
            int a, b, c;
            cin >> a >> b >> c;
5
            edges.push_back({a, b, c});
6
       dist.resize(n);
9
       parent.resize(n);
10
       bool res = false;
12
       for (int i = 0; i < n; ++i) {</pre>
13
            if (visited.find(i) == visited.end() && bellman_ford((i))) {
14
15
                res = true;
                break;
16
17
           }
18
19
       if (!res) cout << "NO\n";</pre>
20
       else {
21
            cout << "YES\n";</pre>
22
23
           for (int i = 0; i < n; ++i) cycleStart = parent[cycleStart];</pre>
24
25
           vector < int > cycle;
26
            for (int v = cycleStart;; v = parent[v]) {
27
28
                cycle.push_back(v);
                if (v == cycleStart && cycle.size() > 1) break;
29
30
           }
31
           reverse(cycle.begin(), cycle.end());
32
            for (int v : cycle) cout << v << ', ';</pre>
33
       }
34
35
```

4.13.4 Floyd Warshall

```
const 11 INF = 1LL << 62;</pre>
  void floydWarshall(vector<vector<ll>>& m) {
       int n = m.size();
4
       for (int i = 0; i < n; ++i) m[i][i] = min(m[i][i], OLL);</pre>
5
       for (int k = 0; k < n; ++k) {
6
           for (int i = 0; i < n; ++i) {</pre>
                for (int j = 0; j < n; ++j) {</pre>
                    if (m[i][k] != INF && m[k][j] != INF) {
9
                         auto newDist = max(m[i][k] + m[k][j], -INF);
10
                         m[i][j] = min(m[i][j], newDist);
                    }
                }
           }
14
       }
16
       for (int k = 0; k < n; ++k) {
17
           if (m[k][k] < 0) {
18
                for (int i = 0; i < n; ++i) {</pre>
19
                    for (int j = 0; j < n; ++j) {
20
21
                         if (m[i][k] != INF && m[k][j] != INF) m[i][j] = -INF;
                    }
22
               }
23
           }
24
       }
25
26 }
```

5 Flow Networks

5.1 Dinic's Algorithm

```
struct Dinic {
      struct Edge {
2
           int to, rev;
3
4
           11 c, oc;
           Edge(int to, int rev, 11 c, 11 oc) : to(to), rev(rev), c(c), oc(oc) {}
5
           11 flow() { return max(oc - c, OLL); } // if you need flows
6
      };
      vector<int> lvl, ptr, q;
8
      vector < vector < Edge >> adj;
9
      Dinic(int n) : lvl(n), ptr(n), q(n), adj(n) {}
11
      void addEdge(int a, int b, ll c, ll rcap = 0) {
           adj[a].push_back({b, adj[b].size(), c, c});
14
           adj[b].push_back({a, adj[a].size() - 1, rcap, rcap});
15
16
17
      11 dfs(int v, int t, ll f) {
18
           if (v == t || !f) return f;
19
           for (int& i = ptr[v]; i < adj[v].size(); i++) {</pre>
20
               Edge& e = adj[v][i];
2.1
               if (lvl[e.to] == lvl[v] + 1)
22
                   if (11 p = dfs(e.to, t, min(f, e.c))) {
                        e.c -= p, adj[e.to][e.rev].c += p;
24
25
                        return p;
                   }
26
           }
27
           return 0;
28
29
30
      11 calc(int s, int t) {
31
           11 \text{ flow = 0};
32
           q[0] = s;
33
           for (int L = 0; L < 31; ++L) do \{ // 'int L=30' maybe faster for random data
34
                   lvl = ptr = vector<int>(q.size());
35
                   int qi = 0, qe = lvl[s] = 1;
36
                   while (qi < qe && !lvl[t]) {</pre>
37
                        int v = q[qi++];
38
                        for (Edge e : adj[v])
39
                            if (!lvl[e.to] && e.c >> (30 - L)) q[qe++] = e.to, lvl[e.to] = lvl[v] +
40
       1;
41
42
                   while (ll p = dfs(s, t, LLONG_MAX)) flow += p;
43
               } while (lvl[t]);
           return flow;
44
45
46
      bool leftOfMinCut(int a) { return lvl[a] != 0; }
47
48 };
```

5.2 Min-cut

```
void check_reach(int u, vector < bool > & seen) {
   if (seen[u]) return;
   seen[u] = true;
   for (int v : adjList[u])
        if (adjMat[u][v] > 0) check_reach(v, seen);
}
```

```
vector<pair<int, int>> min_cut(int s, int t) {
     ll value = dinic(s, t);
9
     vector < bool > seen(n, false);
11
     check_reach(s, seen);
12
     vector<pair<int, int>> ans;
14
     for (int u = 0; u < n; u++) {</pre>
15
         if (!seen[u]) continue;
16
         for (int v : adjList[u])
17
            18
19
                ans.emplace_back(u, v);
20
21
     return ans;
22 }
```

6 Mathematics

6.1 Fast Exponentiation

```
const ll mod = 1000000007;

ll modpow(ll b, ll e) {
    ll ans = 1;
    for (; e; b = b * b % MOD, e /= 2)
        if (e & 1) ans = ans * b % mod;
    return ans;
}
```

6.2 Mod Multiplication

```
typedef unsigned long long ull;

ull modmul(ull a, ull b, ull M) {
    ll ret = a * b - M * ull(1.L / M * a * b);
    return ret + M * (ret < 0) - M * (ret >= (11)M);

ull modpow(ull b, ull e, ull mod) {
    ull ans = 1;
    for (; e; b = modmul(b, b, mod), e /= 2)
        if (e & 1) ans = modmul(ans, b, mod);
    return ans;
}
```

6.3 Miller Rabin - Primality Testing

```
bool isPrime(ull n) {
    if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
    ull A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}, s = __builtin_ctzll(n - 1),
        d = n >> s;
    for (ull a : A) { // ^ count trailing zeroes
        ull p = modpow(a % n, d, n), i = s;
        while (p != 1 && p != n - 1 && a % n && i--) p = modmul(p, p, n);
        if (p != n - 1 && i != s) return 0;
    }
    return 1;
```

1 }

6.4 Prime Factorisation

```
1 ull pollard(ull n) {
      ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
      auto f = [k](ull x) \{ return modmul(x, x, n) + i; \};
      while (t++ \% 40 \mid | gcd(prd, n) == 1) {
           if (x == y) x = ++i, y = f(x);
           if ((q = modmul(prd, max(x, y) - min(x, y), n))) prd = q;
           x = f(x), y = f(f(y));
8
9
      return gcd(prd, n);
10 }
12 vector<ull> factor(ull n) {
13
      if (n == 1) return {};
      if (isPrime(n)) return {n};
14
      ull x = pollard(n);
15
      auto l = factor(x), r = factor(n / x);
16
      1.insert(l.end(), all(r));
17
18
      return 1;
19 }
```

6.5 Sieve of Eratosthenes

```
const int LIM = 1e6;
2 bitset < LIM > isPrime;
4 vector<int> sieve() {
      const int S = (int)round(sqrt(LIM)), R = LIM / 2;
      vector < int > pr = \{2\}, sieve(S + 1);
6
      pr.reserve(int(LIM / log(LIM) * 1.1));
      vector<pair<int, int>> cp;
       for (int i = 3; i <= S; i += 2)</pre>
10
           if (!sieve[i]) {
11
                cp.push_back({i, i * i / 2});
12
                for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1;
13
           }
       for (int L = 1; L <= R; L += S) {</pre>
16
           array<bool, S> block{};
17
           for (auto &[p, idx] : cp)
18
               for (int i = indx; i < S + L; idx = (i += p)) block[i - L] = 1;</pre>
19
           for (int i = 0; i < min(S, R - L); ++i)</pre>
20
               if (!block[i]) pr.push_back((L + i) * 2 + 1);
21
22
23
       for (int i : pr) isPrime[i] = 1;
24
25
       return pr;
26
```

6.6 GCD

```
int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
```

6.7 LCM

```
int lcm(int a, int b) { return a * b / gcd(a, b); }
```

6.8 Extended Euclidean Algorithm

```
1 ll euclid(ll a, ll b, ll &x, ll &y) {
2     if (!b) return x = 1, y = 0, a;
3     ll d = euclid(b, a % b, y, x);
4     return y -= a / b * x, d;
5 }
```

6.9 Chinese Remainder Theorem

```
1 ll crt(ll a, ll m, ll b, ll n) {
2    if (n > m) swap(a, b), swap(m, n);
3    ll x, y, g = euclid(m, n, x, y);
4    assert((a - b) % g == 0); // else no solution
5    x = (b - a) % n * x % n / g * m + a;
6    return x < 0 ? x + m * n / g : x;
7 }</pre>
```

6.10 Euler's Totient Function

```
const int LIM = 5000000;
int phi[LIM];

void calculatePhi() {
    for (int i = 0; i < LIM; ++i) phi[i] = i & 1 ? i : i / 2;
    for (int i = 3; i < LIM; i += 2) {
        if (phi[i] == i) {
            for (int j = i; j < LIM; j += i) phi[j] -= phi[j] / i;
        }
}
}
}
</pre>
```

6.11 Matrices

```
struct Matrix {
       int n;
3
       vector < vector < long long >> v;
       Matrix(int _n) : n(_n) {
5
           v.resize(n);
6
           for (int i = 0; i < n; i++)</pre>
                for (int j = 0; j < n; j++) v[i].push_back(0);</pre>
       }
10
       Matrix operator*(const Matrix &o) const {
11
           Matrix res(n);
           for (int i = 0; i < n; i++)</pre>
14
                for (int j = 0; j < n; j++)
15
                    for (int k = 0; k < n; k++) res.v[i][j] += v[i][k] * o.v[k][j];</pre>
16
           return res;
       }
17
18
```

```
static Matrix getIdentity(int n) {
19
20
           Matrix res(n);
           for (int i = 0; i < n; i++) res.v[i][i] = 1;</pre>
21
           return res;
22
23
24
       Matrix operator^(long long k) const {
25
           Matrix res = Matrix::getIdentity(n);
26
           Matrix a = *this;
27
           while (k) {
28
               if (k & 1) res = res * a;
29
               a = a * a;
30
31
               k /= 2;
           }
           return res;
34
      }
35 };
```

6.12 Combinations

```
1 typedef long long ll;
3 const int N = 1001001;
4 const int MOD = 1e9 + 7;
5 ll f[N + 1];
6 ll inv[N + 1];
7 ll modpow(ll a, ll b, int c); // as earlier
9 ll choose(ll n, ll r) { return ((f[n] * inv[r]) % MOD * inv[n - r]) % MOD; }
10
11 int main() {
      f[0] = 1;
12
      for (int i = 1; i < N; i++) f[i] = (i * f[i - 1]) % MOD;</pre>
13
14
      inv[N] = modpow(f[N], MOD - 2, MOD);
      for (int i = N; i >= 1; --i) inv[i - 1] = (inv[i] * i) % MOD;
16
17 }
```

7 Computational Geometry

7.1 Cross Product

```
const double EPS = 1e-8;
typedef pair < double, double > pt;

#define x first

#define y second

pt operator - (pt a, pt b) { return pt(a.x - b.x, a.y - b.y); }

bool zero(double x) { return fabs(x) <= EPS; }

double cross(pt a, pt b) { return a.x * b.y - a.y * b.x; }

// true if left or straight
// sometimes useful to instead return an int
// -1, 0 or 1: the sign of the cross product
bool ccw(pt a, pt b, pt c) { return cross(b - a, c - a) >= -EPS; }
```

7.2 Three Points Collinear

7.3 Segment-Segment Intersection

```
typedef pair<pt, pt> seg;
3 bool collinear(seg ab, seg cd) { // all four points collinear
      pt a = ab.first, b = ab.second, c = cd.first, d = cd.second;
      return zero(cross(b - a, c - a)) && zero(cross(b - a, d - a));
6 }
8 double sq(double t) { return t * t; }
10 double dist(pt p, pt q) { return sqrt(sq(p.x - q.x) + sq(p.y - q.y)); }
12 bool intersect(seg ab, seg cd) {
      pt a = ab.first, b = ab.second, c = cd.first, d = cd.second;
13
14
      if (collinear(ab, cd)) {
          double maxDist =
16
              max({dist(a, b), dist(a, c), dist(a, d), dist(b, c), dist(b, d), dist(c, d)});
          return maxDist < dist(a, b) + dist(c, d) + EPS;</pre>
18
19
20
21
      return ccw(a, b, c) != ccw(a, b, d) && ccw(c, d, a) != ccw(c, d, b);
22 }
```

7.4 Polygon Area (Trapezoidal Rule)

```
double area(vector<pt> pts) {
    double res = 0;
    int n = pts.size();
    for (int i = 0; i < n; i++) {
        res += (pts[i].y + pts[(i + 1) % n].y) * (pts[(i + 1) % n].x - pts[i].x);
    }
    return res / 2.0;
}</pre>
```

7.5 Polygon Area (Cross Product)

```
double area(vector < pt > pts) {
    double res = 0;
    int n = pts.size();
    for (int i = 1; i < n - 1; i++) {
        // i = 0 and i = n-1 are degenerate triangles, OK to omit
        // e.g. if i = 1 is ABC, and i = 2 is ACD, then i = 0 is AAB
        res += cross(pts[i] - pts[0], pts[i + 1] - pts[0]);
    }
    return res / 2.0;
}</pre>
```

7.6 Convex Hull

```
vector<pt> half_hull(vector<pt> pts) {
      vector <pt> res;
2
3
      for (int i = 0; i < pts.size(); i++) {</pre>
           // ccw means we have a left turn; we don't want that
5
           while (res.size() >= 2 && ccw(pts[i], res[res.size() - 1], res[res.size() - 2])) {
6
               res.pop_back();
           }
          res.push_back(pts[i]);
8
      }
9
10
      return res;
11
  }
12
  vector<pt> convex_hull(vector<pt> pts) {
13
      sort(pts.begin(), pts.end());
14
      vector < pt > top = half_hull(pts);
16
17
      reverse(pts.begin(), pts.end());
      vector <pt> bottom = half_hull(pts);
18
19
      top.pop_back();
20
      bottom.pop_back();
21
      vector<pt> res(top.begin(), top.end());
22
23
      res.insert(res.end(), bottom.begin(), bottom.end());
24
      return res;
25 }
```

7.7 Half Plane Intersection

```
1 typedef pair < double , double > pt;
3 struct line {
      double a, b, c;
4
5 };
7 struct half_plane {
      line 1;
      bool neg; // is the inequality <= or >=
9
10 };
11
12 const double EPS = 1e-8;
14 pt intersect(line f, line g) {
      double d = f.a * g.b - f.b * g.a;
15
      double y = (f.a * g.c - f.c * g.a) / (f.b * g.a - f.a * g.b);
16
      double x = (f.c * g.b - f.b * g.c) / (f.b * g.a - f.a * g.b);
17
18
      return pt(x, y);
19 }
20
21 bool in_half_plane(half_plane hp, pt q) {
      if (hp.neg) return hp.l.a * q.x + hp.l.b * q.y + hp.l.c <= EPS;</pre>
22
      else return hp.l.a * q.x + hp.l.b * q.y + hp.l.c >= -EPS;
23
24 }
25
26
  vector<pt> intersect_half_planes(vector<half_plane> half_planes) {
      int n = half_planes.size();
27
      vector <pt> pts;
28
      for (int i = 0; i < n; i++) {</pre>
29
           for (int j = i + 1; j < n; j++) {
30
               pt p = intersect(half_planes[i].1, half_planes[j].1);
31
               bool fail = false;
```

```
for (int k = 0; k < n; k++)</pre>
33
                      if (!in_half_plane(half_planes[k], p)) fail = true;
34
                 if (!fail) pts.push_back(p);
35
           }
36
       }
37
38
       vector < pt > res = pts;
if (pts.size() > 2) pts = convex_hull(res);
39
40
       return pts;
41
42 }
```