

Project Management and Software Development for Medical Applications

Salivary Glands Segmentation from PET/CT Images for Dosimetry Applications in Nuclear Medicine

Final Presentation – Monday 03.08.2022

Project Supervisors: Francesca De Benetti and Thomas Wendler

Presented by: Natalia Avendaño-Prieto

I. Project Description and Motivation

Review

1.1 Introduction

Background and Motivation

Radionuclide Therapy:

- Treatment for cancer through radiopharmaceuticals components. [1]
- Deliver high radiation to cancer cells.[1]
- Possible side effect:
 - Deliver radiation to healthy cells, like salivary glands. [2]
 - Disfunction in salivary glands. [2]

Problem Statement and Solution:

 Patients avoid and refuse to do radiotherapy treatment.

"Salivary gland", https://en.wikipedia.org/wiki/Salivary gland

^[1] International Atomic Energy Agency. "Radionuclide Therapy" https://www.iaea.org/topics/radionuclide-therapy

^[2] Cancer Research UK. "Side effects of radiotherapy" https://www.cancerresearchuk.org/about-cancer/mouth-cancer/treatment/radiotherapy/side-effects

1.1 Tasks and Goal

Tasks:

- Generate and annotate dataset for salivary glands.
 - Bounding Boxes
 - Pixel Wise annotation
- Train network for the segmentation of salivary glands

Fig 2. Salivary gland use case diagram

II. Progress and Results

Dataset and Model Architecture

2.1 Dataset

- Public Dataset: MICCAI Challenge
 2015 dataset [1]
 - Submandibular and Parotid salivary glands
 - 28 CT scans for training
 - 10 CT scans for validation
 - 10 CT scans for testing
- IFL Dataset:
 - +100 CT/PET scans

Fig 3. MICCAI dataset sample in ImFusion

[1] https://www.imagenglab.com/newsite/pddca/

2.1 Dataset

Data preprocessing:

- SimpleITK library
- Change image format (nrrd -> NIFTI)
- Isotropic Image: Resampling
 - 3x3x3 mm
 - 1x1x1 mm
- Generate bounding boxes

Fig 4. Bounding box in MICCAI dataset sample

2.2 Architecture

Fig 5. Unet for segmentation the ROI [2]

Fig 6. Face and neck region crop

Fig 7. Model Architecture

2.2 Architecture

Fig 8. Model Architecture

Fig 9. Network 1 – ROI Localization

Fig 10. Network 2 – Pixel Wise Segmentation

2.2 Architecture

Table 1. Hyperparameters

Hyporparameters	Net 1	Net 2
Hyperparameters	Value	
Optimization	Adam	
Learning Rate	0.002	
Loss Function	Dice Loss	
Metric	Dice Score	
Epochs	Early Stopping	
Batch Size	100	65

2.3 Results – Network 1 - Left Side

Fig 11. Network 1 results in test sample – Left Side

Table 2. Network 2 scoring – Left Side

	Data Aug.	Training	Validation	Test
Dice Scare (9/)	Yes	86.85 ± 2.7	78.18 ± 1.8	74.97 ± 1.3
Dice Score (%)	No	90.67 ± 3.0	79.84 ± 3.2	76.25 ± 3.6

2.3 Results - Network 1 - Left Side

Fig 12. Network 1 - Training Dice Score Curve with DA - Left Side

Fig 14. Network 1 Training Dice Score Curve without DA – Left Side

Fig 13. Network 1 Validation Dice Score Curve with DA – Left Side

Fig 15. Network 1 Validation Dice Score Curve without DA – Left Side

2.3 Results – Network 1 - Right Side

Fig 16. Network 1 results in test sample – Right Side

Table 3. Network 1 scoring – Right Side

	Data Aug.	Training	Validation	Test
Disc Scare (9/)	Yes	87.51 ± 2.3	74.37 ± 2.0	75.63 ± 2.7
Dice Score (%)	No	90.01 ± 2.9	72.71 ± 3.9	76.71 ± 3.3

2.3 Results – Network 1 – Right Side

Fig 17. Network 1 Training Dice Score Curve with DA – Right Side

Fig 19. Network 1 Training Dice Score Curve without DA – Right Side

Fig 18. Network 1 Validation Dice Score Curve with DA – Right Side

Fig 20. Network 1 Validation Dice Score Curve without DA – Right Side

2.3 Results - Network 2 - Left Side

Fig 21. Network 2 results in test sample – Left Side

Table 4. Network 2 scoring – Left Side

	Training	Validation	Test
Dice Score (%)	86.40 ± 1.8	75.19 ± 1.7	74.64 ± 1.1

2.3 Results - Network 2 - Left Side

Fig 22. Network 2 Dice Score Curve Loss – Left Side

Fig 23. Network 2 Validation Dice Score Curve – Left Side

2.3 Results – Network 2 – Right Side

Fig 24. Network 2 results in test sample – Right Side

Table 5. Network 2 scoring – Right Side

	Training	Validation	Test
Dice Score (%)	87.25 ± 2.4	75.44 ± 1.7	75.05 ± 1.2

2.3 Results – Network 2 – Right Side

Fig 25. Network 2 Training Dice Score Curve – Right Side

Fig 26. Network 2 Validation Dice Score Curve – Right Side

2.3 Results – Comparison with paper

Table 6. Comparison with paper scores

	Parotid Gland Left		Parotid G	land Right
	Paper	Network	Paper	Network
Dice Score (%)	80.7 ± 2.2	74.64 ± 1.1	81.1 ± 2.6	75.05 ± 1.2

Table 7. Spatial Resolution Differences

Spatial Resolution		
Paper	Network	
1x1x3 mm	3x3x3 mm	

III. Discussion and Conclusions

Sum-up

3.1 Tasks

- Literature Research
- Public Dataset of Salivary Glands with annotations
- Bounding Boxes Algorithm
- Development of segmentation architecture
 - Bounding Boxes
 - Pixel-Wise Segmentation
- Annotate IFL Dataset
- Apply model architecture in IFL Dataset

3.2 Future Work

- Run the model in Polyaxon
 - Apply Data augmentation
 - Translation and Rotation
 - Resample of 1x1x1mm
 - Change the windowing
 - Apply the architecture in submandibular glands
- Make the annotation in the IFL Dataset
 - Apply bounding box algorithm
 - Apply the model architecture
- Run both networks sequentially

b. Axial View

a. Coronal View

Fig 27. IFL sample data

3.2 Lessons Learned

- Public annotated dataset
 - Challenging to found
 - Crucial for the project development
- IFL dataset annotation
 - Challenging
 - Time consuming
- Polyaxon
 - Good to run data with better spatial resolution
 - There is a Learning curve
- Clean and efficient code
- Weekly meetings
 - Helpful to solve doubts and problems

https://www.flaticon.com/de/kostenloses-icon/brainstorming_4341881

