

Sorting

• Comparison-based Sorting:

- Comparison-based algorithms can be used to sort any array of comparable items.
- Is there a faster (maybe O(n) time) sorting algorithm (for general elements)?

- All branching in the comparison-based algorithms is based on the results of comparisons of the form a[i] < a[j]
- Every comparison-based sorting algorithm takes $\Omega(n \log n)$ time for some input.

Comparison-based Sorting $\Omega(n \log n)$

Comparison based sorting algorithm uses comparison operators to find the order between two numbers.

Input: a_1, a_2, a_3

Output:

reordering a'_1, a'_2, a'_3 of the input such that $a'_1 \le a'_2 \le a'_3$

Comparison-based Sorting $\Omega(n \log n)$

Comparison-based Sorting $\Omega(n \log n)$

Every comparison tree that sorts any input of length $\,n\,$ has ${\sf height}$ at least

$$\frac{n}{2}\log_2\frac{n}{2}$$

- The height of a binary tree with m leaves is at least $\log_2 m$
- The height of a binary tree with n! leaves is at least $\log_2(n!)$

$$\begin{array}{lll} \log_2 n! & = & \log_2(n) + \log_2(n-1) + \dots + \log_2(1) \\ & \geq & \log_2(n) + \dots + \log_2(n/2) \\ & \geq & \log_2(n/2) + \dots + \log_2(n/2) \\ & = & (n/2) \log_2(n/2) \end{array}$$

• Lower bound can be improved to $n \ln n - O(n)$.

 $\log(n!) \ge cn \log n, c > 0$

Theorems 11.5 and 11.6

For every deterministic comparison-based sorting algorithm A and any integer $n \geq 1$, there exists an input array a of length n such that A requires $\Omega(n \log n)$ comparisons to sort a.

For every comparison-based sorting algorithm A, the expected number of comparisons done by A when sorting a random permutation of $\{1, ..., n\}$ is $\Omega(n \log n)$.

Summary

- MergeSort $n \log n$ comparisons
- QuickSort $1.38n \log n$ comparisons
- HeapSort $-2n\log n$ comparisons

- Any comparison-based sorting algorithm requires $\Omega(n \log n)$ time.
- MergeSort, QuickSort, and HeapSort are optimal comparison-based sorting algorithms.

NOT comparison-based sorting

NOT comparison-based sorting

CountingSort

stable

Suppose we have an input array a consisting of n integers, each in the range $\{0, ..., k-1\}$.

not much less

RadixSort

Specialized for sorting "small" integers.

They use (parts of) the elements in a as indices into an array.

They can sort faster than comparison-based algorithms – faster than $\Omega(n \log n)$.

CountingSort is very efficient for sorting an array of integers when n = k - 1

RadixSort uses several passes of CountingSort to allow for a much greater range of maximum values.

length of the array

maximum value in the array

CountingSort

```
int[] countingSort(int[] a, int k) {
  int c[] = new int[k];
  for (int i = 0; i < a.length; i++)
    c[a[i]]++;
  for (int i = 1; i < k; i++)</pre>
    c[i] += c[i-1];
  int b[] = new int[a.length];
  for (int i = a.length-1; i >= 0; i--)
    b[--c[a[i]]] = a[i];
  return b;
```

 a:
 3
 1
 3
 1
 0
 3
 1
 3
 1
 0
 3

 c:
 2
 4
 0
 5

- Suppose we have an input array a consisting of n integers, each in the range $\{0, ..., k-1\}$.
- For each $i \in \{0, ..., k-1\}$, count the number of occurrences of i in a and store this in c[i].
- Compute a running-sum of the counters so that c[i] becomes the number of elements in a that are less than or equal to i.
- Scan a backwards to place its elements, in order, into an output array b. When scanning, the element a[i] is placed at location b[c[a[i]] 1] and the value c[a[i]] is decremented.


```
for (int i = a.length - 1; i >= 0; i--){
    b[--c'[a[i]]] = a[i];
b:
                 3
                         5
                                     8
                                          9
                                             10
                                b[--c'[a[15]]] = a[15]
                                    b[--c'[1]] = 1
                                          b[6] = 1
```

```
for (int i = a.length - 1; i >= 0; i--){
    b[--c'[a[i]]] = a[i];
b:
                 3
                         5
                                     8
                                          9
                                             10
                                b[--c'[a[14]]] = a[14]
                                    b[--c'[3]] = 3
                                         b[12] = 3
```

```
for (int i = a.length - 1; i >= 0; i--){
    b[--c'[a[i]]] = a[i];
b:
                         5
                                     8
                                         9
                                             10
                               b[--c'[a[13]]] = a[13]
                                    b[--c'[5]] = 5
                                         b[15] = 5
```

```
for (int i = a.length - 1; i >= 0; i--){
    b[--c'[a[i]]] = a[i];
b:
                                     8
                                         9
                           b[--c'[a[12]]] = a[12]
                               b[--c'[1]] = 1
                                      b[5] = 1
```


CountingSort

int[] countingSort(int[] a, int k) {

O(n+k)

Theorem 11.7

The **countingSort**(a, k) method can sort an array a containing n integers in the set $\{0, ..., k-1\}$ in O(n+k) time.

The **CountingSort** algorithm is **stable**; it preserves the relative order of equal elements: If two elements a[i] and a[j] have the same value, and i < j then a[i] will appear before a[j] in b.

RadixSort

egers when n = k - 1

CountingSort is very efficient for sorting an array of integers when n = 0, k-1

length of the array

RadixSort uses several passes of CountingSort to allow for a much greater range of maximum values.

RadixSort sorts integers one digit at a time:

- integers have **w** bits
- **digit** has **d** bits
- uses w/d passes of CountingSort

We assume that d divides w, otherwise we can always increase w.

value in the

array

RadixSort starts by sorting the integers by their least-significant digit (d bits), then their next significant digit, and so on until, in the last pass, the integers are sorted by their most significant digit (d bits).

RadixSort

The algorithm sorts correctly because CountingSort is a **stable** sorting algorithm

RadixSort

Theorem 11.8

RadixSort performs w/d passes of CountingSort. Each pass requires $O(n+2^d)$ time.

For any integer d>0, the RadixSort algorithm can sort an array a containing n w-bit integers in $O\left(\left(\frac{w}{d}\right)(n+2^d)\right)$ time.

Take
$$d = \lceil \log_2 n \rceil$$

The RadixSort algorithm can sort an array a containing n integers in the range $\{0, ..., n^c - 1\}$ in O(cn) time.

Summary

MergeSort

QuickSort

HeapSort

- can each sort an array of length n in $O(n \log n)$ time.
- they work for any comparable data type.
- QuickSort and HeapSort are in-place but do more comparisons.
- MergeSort requires an auxiliary array.

RadixSort

• can sort an array a of n integers in the range $\{0, ..., n^c - 1\}$ in O(cn) time (and does no comparisons).