Maximin Shares

- Suppose we ask some agent i to partition all the items into n bundles (one for each agent), and then all other agent will choose their favorite bundle before i (i.e., i will choose the last remaining bundle)
 - \square How will *i* partition?

Example:

max min
$$V_i(Ak)$$
.
 $P \in \mathbb{P}$ Ak
 $P = \{(A_1, \dots, A_n) | UA_i = M\}$.

Maximin Shares

- The maximum value, agent I can guarantee in such a process is called i's maximin share (MMS) value
 - \square Let us denote *i*'s MMS value by μ_i
- MMS allocation: We say that an allocation $A = (A_1, ..., A_n)$ is MMS if $v_i(A_i) \ge \mu_i, \forall i$
- Example: \(\alpha_1 \) \(\beta_2 \) \(\beta_3 \) \(\beta_4 \) \(\beta_1 \) \(\beta_2 \) \(\beta_3 \) \(\beta_4 \) \(

$$M_1 = 8$$
 $M_2 = 5$
 g_1
 g_2
 g_4

MS allocation.

Maximin Shares

- The maximum value, agent I can guarantee in such a process is called *i*'s maximin share (MMS) value
 - \square Let us denote i's MMS value by μ_i
- MMS allocation: We say that an allocation $A = (A_1, ..., A_n)$ is MMS if $v_i(A_i) \ge \mu_i, \forall i$
- Assume that agents have additive valuations
- Existence? MMS allocation doesn's always exist.

Maximin Share Allocation

■ α -MMS allocation: We say that an allocation $A = (A_1, ..., A_n)$ is α -MMS, for some $\alpha \in (0, 1)$, if $v_i(A_i) \ge \alpha \mu_i$, $\forall i$

■ 1/2-MMS Allocation? Yes!

Open question: existence and non-existence o.99.

Assume addictive valuation

Properties: (addictive) 9, --- 9i --- 9m. Scale Invariant Nij4 agent i's value for good j. ai Vij & TVij. Vij. [T>0] an MMS value is given by {Vij}s. Mit MMS value is given by [Vij], Mi=7Mi

Proof: (DMi > TMi (2) Mi < TMi. (1) for (Vij), agent i, allocation P = (A,..., An) S.t. P & argmax min \(\sum_{P \in P} \) Vij Set Ax is the minimum allocation in P. > Vij = Mi then if we use the same allocation for [Vij]s. $\sum_{j \in A_k} V_{ij} = \sum_{j \in A_k} V_{ij} = V_{ii}$ Ax is still the minimum allocation in P. however, there might exists better P Hence Mi > 7/Ui.

(2). Similarly for $\{V_{ij}\}_{s}$ agent i allocation p' $\sum_{j \in A_{k}} V_{ij} = M_{i} \qquad \sum_{j \in A_{k}} V_{ij} = \sum_{j \in A_{k}} \frac{1}{\sqrt{2}} V_{ij} = \frac{1}{\sqrt{2}} M_{i}^{2}$ $= \sum_{j \in A_{k}} M_{i} \qquad = \sum_{j \in A_{k}} M_{i}^{2} \leq M_{i}^{2}$

1/2-MMS Allocation

- Properties:
 - ☐ Scale Invariant

given P Mi must be the smallest one in P.

$$Mi = \sum_{j \in Ax} V_{ij} = NMi \leq V_{i}(M)$$

$$Mi \leq \frac{V_{i}(M)}{N}$$

1/2-MMS Allocation.

- Properties:
 - Scale Invariant
 - Average is upper bound: $\mu_i \leq \frac{v_i(M)}{n}$ Allocating one higher item to an agent does not harm

give 94 to a; and let them go.

[a,a,a,x,] × [9,9,9,9,9,]

[a.,a.] x[g.,g.,gs]

Mi > Mi 1=1.2 does't harm agent i.

Mathematical set of N agents and M items.
Mi(M) = MMS value of agent i if i need
to divide M into n bundles.
Suppose we remove one agent i^* and one item j^* .
$\mathcal{N}' = \mathcal{N} \setminus \{i^*\}$ $\mathcal{M}' = \mathcal{M} \setminus \{j^*\}$
$C(\alpha im : \mu i (M') \ge \mu i (M).$
之要分類CM, 系统自动将 item j*自动分面C给i*
①如果j*小→为约约1M′的下限大于M. 另一agut.
$V_i(j^*) \leq \mathcal{U}_i(M)$ 因为 i 不必被迫选择最小项引
g如果j*大──分配M的下限与M相同
$V_i(\{j^*\}) > M_i^*(M)$ 因为它是最后拿的。即使在M中扩出轮不到他
allocating one item to another agent and removing.
doesn't harm agent i.
$\mathcal{M}_{i}^{n-1}(\mathcal{M}') \geq \mathcal{M}_{i}^{n}(\mathcal{M}).$

1/2-MMS Allocation

- Properties:
 - ☐ Scale Invariant
 - \square Average is upper bound: $\mu_i \leq \frac{v_i(M)}{n}$
 - ☐ Allocating one high-value item to an agent does not harm
 - We scale the valuations such that $v_i(M) = \mathbf{\Lambda}$

$$\longrightarrow \mathcal{M}_i \leq \frac{\mathcal{V}_i(M)}{n} = 1. \ \forall i \in \mathcal{N}$$


```
Algorithm = 2-MMS Allocation.
Stepl: Scale valuation s.t. Vi(M) = n, Vi EN.
        => Mi ≤ 1. \ \ i ∈ N.
Allocation: A = (A_1, ..., A_n) s.t. V_i(A_i) \ge \frac{1}{2}, \forall i.
             V_i(A_i) \geqslant \frac{1}{2} \geqslant \frac{1}{2}M_i \Rightarrow A_{is} \stackrel{1}{=} -MMS Allocation.
Step 2: If there is a agent i^* and item j^* s.t. V_{i^*j^*} \geqslant \frac{1}{2}
        then we can remove i* with j*.
      need scale again
Step3: Suppose we have some agents N'and some
      item M' left. Vij < \frac{1}{2}, \forall i, j.
      for agent i. bag B
             keep adding item to B until Vill3) 1/2
                                              Vi(B) ∈[-1.1)
  pay filling then assign B to i.
                                    可能最后剩余的 Bn < 立?
```

Vi (M \B, \B,) > n-2. --- Vi (M \B, \- \B, \- \B, +-) > ()

Bag Filling

