Let's Choose Dimensions:

. /	- 1	C.		
et's	\sim	O+I	\mathbf{n}	0

- $k = 3 \rightarrow 3$ memory slots
- $d = 4 \rightarrow hidden size = 4$
- So:
 - $M \in \mathbb{R}^{3\times4}$ (memory matrix)
 - $h_z \in \mathbb{R}^{1\times4}$ (hidden vector from encoder)
 - $W \in \mathbb{R}^{3}$, $b \in \mathbb{R}^{3}$

1 Example Matrices

• h z: Hidden vector from encoder

plaintext \bigcirc Copy \bigcirc Edit \bigcirc Logical Copy \bigcirc Edit \bigcirc Copy \bigcirc Edit \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Edit \bigcirc Copy \bigcirc Copy \bigcirc Edit \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Edit \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Edit \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Edit \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Edit \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Edit \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Edit \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Edit \bigcirc Copy \bigcirc Copy \bigcirc Edit \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Edit \bigcirc Copy \bigcirc Copy \bigcirc Edit \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Edit \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Edit \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Copy \bigcirc Edit \bigcirc Copy \bigcirc

• w: Linear projection layer

plaintext

W = [[0.1, 0.0, 0.2, 0.3], # shape: 3x4 [-0.2, 0.5, -0.1, 0.4], [0.3, 0.2, 0.0, 0.1]]

• b : Bias vector

plaintext Copy Copy Edit

b = [0.1, 0.0, -0.2] # shape: 3

• M: Memory matrix (latent factors)

plaintext Copy Dedit

M = [[0.5, 0.1, 0.0, 0.3], # shape: 3x4 [0.2, 0.4, 0.1, 0.0], [0.3, 0.3, 0.3, 0.3]]

2 Step-by-Step Computation

Compute attention logits:

$$logits = Wh_z^T + b$$

Let's compute each:

plaintext

✓ Apply softmax:

$$\alpha = \text{softmax}([0.48, 0.42, 0.02]) \approx [0.375, 0.353, 0.272]$$

Compute weighted sum over memory:

$$z = \sum_{i=1}^{3} \alpha_i \cdot M_i$$

$$z = 0.375 * [0.5, 0.1, 0.0, 0.3] + 0.353 * [0.2, 0.4, 0.1, 0.0] + 0.272 * [0.3, 0.3, 0.3, 0.3]$$

Break it down:

plaintext

$$= [0.1875, 0.0375, 0.000, 0.1125] + [0.0706, 0.1412, 0.0353, 0.0000] + [0.0816, 0.0816, 0.0816] = [0.3397, 0.2603, 0.1169, 0.1941]$$

✓ Final Result:

$$z = [0.3397, 0.2603, 0.1169, 0.1941] \in \mathbb{R}^{1 \times 4}$$

This is your latent entailment memory representation from memory M , selected using attention from h_z .