CSE 12 — Basic Data Structures and Object-Oriented Design Lecture 18

Greg Miranda & Paul Cao, Winter 2021

Announcements

- Quiz 18 due Monday @ 8am
- Survey 7 due tonight @ 11:59pm
- PA7 due Tuesday, March 2nd @ 11:59pm
- Exam 2 Week 8
 - Released Friday 2/26 @ 8am
 - Due Saturday 2/27 @ 10am
 - Topics:
 - Cumulative
 - Big topics
 - Big O, Big Theta run-time analysis
 - Sorting algorithms
 - Hash tables/maps

9 > 17

up to / including Lecture 17

7 NO Make-ups

Topics

- Binary Search Trees
- Questions on Lecture 18?

```
class Node<K,V> {
                                                                  class BST<K, V> {
 K key;
                                                                   Node<K, V> root;
 V value;
                                                                   BST() (this.root = null);
                                                                   BST(Node<K, V> root) { this.root = root; }
 Node<K,V> left;
 Node<K,V> right;
 public Node(K key, V value,
                                                                   V get(Node<K, V> node, K key) {
              Node<K,V> left,
                                                                    if (node == null) { //throw error }
              Node<K,V> right) {
                                                                    if (node.key.equals(key)) {
  this.key = key;
                                                                     return node.value;
  this.value = value;
  this.left = left;
                                                                    if (node.key > key) {
                                                                     return get(node.left, key);
  this.right = right;
                                                                    else {
                                                                     return get(node.right, key);
                                                                   V get(Key key) {
                                                                    return this.get(root, key);
```

Binary Search Tree

- Assume the key and value are identical for this example
- Trace the path for get(4)
 - How many nodes does it touch?
- Trace the path for get(2)
 - How many nodes does it touch?
 - What happens when the nodes isn't found?

Binary Search Tree

- Assume the key and value are identical for this example
- Trace the path for get(40)
 - How many nodes does it touch?
- Trace the path for get(4)
 - How many nodes does it touch?

Questions on Lecture 18?