5

Beschreibung

Klebfolie zur Implantierung von elektrischen Modulen in einen Kartenkörper

10

Die Erfindung betrifft einen Blend aus zumindest einem Thermoplasten und einem Synthesekautschuk, wobei dieser mit einem Implantierstempel bei 150 °C aktiviert und zur Verklebung von elektrischen Modulen mit Kartenkörpem eingesetzt wird.

15

20

25

30

35

Zur Implantierung von elektrischen Modulen in Kartenkörpern sind im Stand der Technik bereits eine Vielzahl von Klebstofffolien oder Fügeverfahren bekannt. Ziel dieser Implantierungen ist die Herstellung von Telefonkarten, Kreditkarten, Parkautomatkarten, Versicherungskarten, etc.. Beispiele für die entsprechenden Verklebungsverfahren finden sich z.B. in den Patentschriften EP 0 842 995 A, EP 1 078 965 A und DE 199 48 560 A.

In diesem Bereich der Verklebung steigen aber kontinuierlich die Anforderungen an das Klebesystem. So muss der Kleber eine gute Haftung auf Polycarbonat, auf ABS, PVC und PET aufweisen, aber ebenso eine gute Haftung zum elektrischen Modul. Hier wird in der Regel auf Epoxy-Materialien, Polyestern oder Polyimid verklebt. Früher wurden Cyan-Acrylate als Flüssigkleber eingesetzt, die den Vorteil aufweisen, dass eine optimale Benetzung des Kartenkörpers sowie des elektrischen Chips erzielt wurde. Diese Technologie ist aber im Aussterben begriffen, da die Prozesse sehr langsam sind. Das Lösemittel verdampfte nur langsam aus der Kavität des Kartenkörpers, die Spritzen zur Dosierung verstopften beim Stillstand durch Austrocknen und waren zudem schlecht dosierbar und der Flüssigkleber benötigte ebenfalls eine gewisse Zeit zum Aushärten. Als

Hier zeigen sich die Schmelzhaftkleber den Flüssigklebern deutlich überlegen. Dennoch ist die Auswahl an geeigneten Verbindungen auch hier sehr eingeschränkt, da sehr hohe

Resultat war die Qualität der Verklebung recht schlecht.

Anforderungen an diese Fügetechnik gestellt werden. Eine Einschränkung sind die sehr unterschiedlichen Materialien, die verklebt werden müssen. Durch die sehr unterschiedlichen Polaritäten von PC, PVC, PET, ABS, Epoxy und Polyimid ist es unmöglich ein einzelnes Polymer zu finden, welches auf allen Materialien gleich gut haftet. Eine Möglichkeit zur Steigerung der Adhäsion auf verschiedenen Substraten ist die Mischung von verschiedenen Klebstoffen. Aber auch hier besteht das Problem, eine stabile Mischung zu erzielen, die z.B. auch als mikrophasensepariertes System über einen sehr langen Zeitraum stabil ist und die Adhäsion sich nicht verschlechtert. Dies gilt insbesondere auch für längere Lagerungen bei erhöhten Temperaturen.

10

15

35

5

Weiterhin steigen die Anforderungen der Endkunden immer weiter an. So ist z.B. die Ebenheit des elektrischen Moduls mit dem Kartenkörper ein wichtiges Kriterium, da ansonsten die Karten nicht mehr ausgelesen werden könnten. Dies bedingt, dass die Implantiertemperaturen nach oben begrenzt sind, da z.B. insbesondere PVC bei Implantiertemperaturen von oberhalb 170 °C zu Verformungen neigt.

Dies ist ein besonderes Problem für auf Nitrilkautschuk-basierenden Klebemassen, da diese selbst in Verbindung mit Phenolharzen sehr hohe Aktivierungstemperaturen benötigen und nur ein geringes Fließverhalten aufweisen.

20 Ein weiteres Kriterium ist die Anforderung aus dem Bankenbereich, dass sich die elektrischen Module nicht zerstörungsfrei entfernen lassen. Dementsprechend muss die innere Kohäsion des Klebers sehr hoch sein, so dass er nicht in der Mitte spaltet und die Haftung zu beiden Seiten (Kartenkörper + elektrisches Modul) extrem hoch ist. Gleichzeitig muss der Kleber auch eine sehr hohe Flexibilität aufweisen, da die Karten 25 nach der Implantierung Torsionstests und Biegetest durchlaufen. Bevorzugt sollte erst das Kartenmaterial brechen, bevor die Haftung zum Kartenkörper und zum elektrischen Modul aussetzt. In der Regel werden noch nicht einmal Abhebungen am Rand geduldet. Ein weiteres Kriterium sind Temperaturschwankungen und der Einfluss von Feuchtigkeit, da diese Karten in der späteren Benutzung sowohl hohe als auch tiefe Temperaturen 30 standhalten und zum Teil auch einmal einen Waschdurchgang überstehen müssen. Dementsprechend sollte der Kleber bei tiefen Temperaturen nicht verspröden, bei hohen Temperaturen nicht verflüssigen und eine geringe Tendenz zur Aufnahme von Wasser besitzen.

Ein weiteres Anforderungskriterium ist durch die wachsende Anzahl des Kartenbedarfs die Verarbeitungsgeschwindigkeit. Der Kleber sollte sehr schnell erweichen oder Aufschmelzen, damit der Implantierprozess innerhalb einer Sekunde abgeschlossen werden kann.

5

Der Erfindung liegt in Anbetracht dieses Standes der Technik die Aufgabe zu Grunde, eine Klebstofffolie zum Implantieren von elektrischen Modulen in einen Kartenkörper anzugeben, welche die oben genannten Kriterien erfüllt und insbesondere bei Implantiertemperaturen von 150 °C im Stempel zu den unterschiedlichen Kartenkörpern und elektrischen Modulen eine sehr hohe Haftung ausbildet.

Erfindungsgemäß wird die Aufgabe gelöst durch eine Klebstofffolie, bestehend aus einem Blend aus einem synthetischen Kautschuk S1 und einem Thermoplasten T2, wobei der Blend

15

30

10

- a) mikrophasensepariert ist
- b) mindestens zwei Erweichungstemperaturen besitzt, wobei zumindest eine Erweichungstemperatur größer als 65 °C und kleiner als 125 °C ist,
- c) einen nach Testmethode A gemessenen Speichermodul G' bei 23 °C von größer 10⁷ Pas besitzt
- 20 d) einen nach Testmethode A gemessenen Verlustmodul G" bei 23 °C von größer 10⁶ Pas besitzt
 - e) und einen nach Testmethode A gemessenen crossover (gleicher Wert von Speichermodul und Verlustmodul) von kleiner 125 °C aufweist.
- 25 Mikrophasenseparation im Sinne der Erfindung bedeutet, dass thermodynamisch unverträgliche Komponenten in räumlich separate Bereiche segregieren, ohne dass jedoch eine makroskopische Phasentrennung auftritt. Es resultieren je nach Zusammensetzung Phasen unterschiedlicher Struktur.

Typische Verfahren zur Ermittlung einer vorliegenden Mikrophasenseparation beinhalten beispielsweise

- die Transmissionselektronenmikroskopie (TEM) bei Materialien, die unterschiedliche Wechselwirkung mit Staining-Agentien aufweisen;
- die Atomkraftmikroskopie (AFM) über die Oberflächentopologie, einen Härte- oder Adhäsionskontrast;

- Streumethoden (Neutronenstreuung, Röntgenkleinwinkelstreuung) bei Materialien mit Phasen, die einen Unterschied im Material/Strahlungs-Wirkungsquerschnitt zeigen;
- kalorimetrische Verfahren, wie die Differentialthermocalorimetrie (DSC) oder die Differentialthermoanalyse (DTA) und auch rheologische Messungen für Materialien mit Phasen unterschiedlicher Erweichungspunkte;
- NMR Spindiffusion f
 ür Materialien mit Phasen unterschiedlicher Dynamik.

Für die Erfindung ist es nicht erforderlich, dass die entsprechend zu beobachtende oder zu vermessende Mikrophasenseparation "ideale" Strukturen ergibt. Tatsächlich liefert die an erfindungsgemäßen Haftklebemassen zu beobachtende Mikrophasenseparation nur im Grenzfall solche idealen Strukturen, was aber der erfinderischen Lehre in keiner Weise entgegensteht.

Vielmehr kann durch die Steuerung der Qualität der Mikrophasenseparation vorteilhaft Einfluss auf die klebtechnischen Eigenschaften der Haftklebemassen genommen werden.

- 15 Weiterhin muss die crossover Temperatur unterhalb 125 °C liegen, da ansonsten der Kleber nicht fließfähig werden und somit nicht die Kartenoberfläche sowie das elektrische Modul optimal benetzen würde. Am crossover-Punkt schneiden sich die Kurven von Speichermodul G' und Verlustmodul G"; physikalisch ist dies als Übergang von elastischem zu viskosem Verhalten zu interpretieren.
- Weiterhin muss der elastische Anteil, also der Speichermodul G' bei größer 10⁷ Pas und der viskose Anteil, also der Verlustmodul G' bei größer 10⁶ Pas liegen, da ansonsten keine optimale Flexibilität des Klebers gewährleistet wird. Der Kleber muss die auftretenden Belastungen zwischen Kartenkörper und elektrischem Modul auch unter starken Verbiegungen gewährleisten. Daher ist ein rheologisch optimiertes viskoelastisches Verhalten erforderlich.

Durch die erfindungsgemäße Mischung des Blends wird eine Verbesserung der Adhäsion zum Kartenkörper erreicht, die mit einem Blend optimal zu erreichen ist.

In einer weiteren bevorzugten Ausführung der Erfindung wird eine Klebstofffolie zur Implantierung von elektrischen Modulen mit Kartenkörpern eingesetzt, wobei die Klebstofffolie aus einem Blend aus einem Nitrilkautschuk und einem Thermoplasten T2 besteht.

und

30

5

10

a) der Blend mikrophasensepariert ist

- b) der Blend zumindest zwei Erweichungstemperaturen besitzt, wobei zumindest eine Erweichungstemperatur größer als 65 °C und kleiner als 125 °C ist
- c) einen nach Testmethode A gemessenen Speichermodul G' bei 23 °C von größer 10⁷ Pas besitzt
- d) einen nach Testmethode A gemessenen Verlustmodul G" bei 23 °C von größer 10⁶ Pas besitzt
- e) und einen nach Testmethode A gemessenen crossover von kleiner 125 °C aufweist.
- 10 In einer weiteren sehr bevorzugten Auslegung der Erfindung werden mikrophasenseparierte Blends aus Nitrilkautschuk und Thermoplast eingesetzt, wobei
 - a) der Nitrilkautschuk eine Erweichungstemperatur von -80 °C bis 0 °C besitzt
 - b) der Thermoplast eine Erweichungstemperatur von 65°C bis 125 °C besitzt
 - c) der Nitrilkautschuk in dem Thermoplasten unlöslich ist.

15

20

5

Unter Erweichungstemperatur soll hier eine Glasübergangstemperatur für amorphe Systeme und eine Schmelztemperatur bei semikristallinen Polymeren verstanden werden. Die hier angegebenen Temperaturen entsprechen solchen, die aus quasistationären Experimenten, wie z.B. DSC (Differential Scanning Calometry) erhalten werden.

Der Gewichtsanteil des Nitrilkautschuks im Thermoplasten beträgt bevorzugt zwischen 2 und 60 Gew.-%, besonders bevorzugt zwischen 5 und 50 %.

Die Verklebung des elektrischen Moduls 2 mit einem Kartenkörper 3 zur Herstellung einer sogenannten Chipkarte ist in Fig. 1 schematisch dargestellt. Der erfinderische Temperatur-aktivierbare Kleber 1 besitzt in einer bevorzugten Auslegung eine Schichtdicke zwischen 10 und 100 μm, in einer besonders bevorzugten Auslegung eine Schichtdicke von 30 bis 80 μm.

30

Durch die Mischung mit dem Synthesekautschuk S1 wird eine Reduktion der Viskosität unter Implantierbedingungen erreicht. Die Masse fließt somit nicht – selbst bei Erhöhung der Implantiertemperatur – aus der Kavität der Karte und trägt somit vollständig zur Verklebung bei.

Synthesekautschuke S1

5

25

30

35

Der erfinderische Hitze-aktivierbare Kleber besteht aus einem Blend von zumindest einem Synthesekautschuk S1 und zumindest einem thermoplastischen Polymer T2.

In einer sehr bevorzugten Auslegung werden als Synthesekautschuke S1 Polyvinylbutyral, Polyvinylformal, Nitrilkautschuke, Nitrilbutadienkautschuke, Hydrierte Nitril-Butadien Kautschuke, Polyacrylat-Kautschuke, Chloropren-Kautschuke, Ethylen-Propylen-Dien Kautschuke, Methyl-Vinyl-Silikon Kautschuke, Fluorsilikon Kautschuke, Tetrafluorethylen-Propylen-Copolymer Kautschuke, Butylkautschuke, Styrol-Butadien Kautschuke eingesetzt.

10 Nitrilbutadienkautschuke sind unter Europrene™ von Eni Chem, oder unter Krynac™ von Bayer, oder unter Breon™ und Nipol N™ von Zeon erhältlich. Polyvinylbutyrale sind unter Butvar™ von Solucia, unter Pioloform™ von Wacker und unter Mowital™ von Kuraray erhältlich. Hydrierte Nitril-Butadien Kautschuke sind unter Therban™ von Bayer und unter Zetpol™ von Zeon erhältlich. Polyacrylat Kautschuke sind unter Nipol AR™ von Zeon erhältlich. Chloropren Kautschuke sind unter Baypren™ von Bayer erhältlich. Ethylen-15 Propylen-Dien Kautschuke sind unter Keltan™ von DSM, unter Vistalon™ von Exxon Mobile und unter Buna EP™ von Bayer erhältlich. Methyl-Vinyl-Silikon Kautschuke sind unter Silastic™ von Dow Corning und unter Silopren™ von GE Silicones erhältlich. Fluorsilikon Kautschuke sind unter Silastic™ von GE Silicones erhältlich. Butyl Kautschuke sind unter Esso Butyl™ von Exxon Mobile erhältlich. Styrol-Butadien 20 Kautschuke sind unter Buna S™ von Bayer, und Europrene™ von Eni Chem und unter Polysar S™ von Bayer erhältlich.

Polyvinylformale sind unter Formvar[™] von Ladd Research erhältlich.

Die Synthesekautschuke S1 besitzen in einer bevorzugten Auslegung eine Erweichungstemperatur zwischen -80 °C und 0 °C.

Thermoplasten T2:

Die thermoplastischen Materialien werden bevorzugt aus der Gruppe der folgenden Polymere gewählt: Polyurethane, Polystyrol, Acrylnitril-Butadien-Styrol-Terpolymere, Weich-Polyvinylchloride, Polyoxymethylene, Polvester. Hart-Polyvinylchloride, Polybutylenterephthalate, Polycarbonate, fluorierte Polymer, wie Z. Polytetrafluorethylen, Polyamide, Ethylenvinylacetate, Polyvinylacetate, Polyimide, Polyether, Copolyamide, Copolyester, Polyolefine, wie z.B. Polyethylen, Polypropylen, und Poly(meth)acrylate. Die Aufzählung besitzt keinen Polybuten, Polyisobuten. Anspruch auf Vollständigkeit.

Die Thermoplasten besitzen in einer bevorzugten Auslegung eine Erweichungstemperatur zwischen 60 °C und 125 °C.

Zur Optimierung der klebtechnischen Eigenschaften und des Aktivierungsbereiches lassen sich optional Klebkraft-steigernde Harze oder Reaktivharze hinzusetzen. Der Anteil der Harze beträgt vorzugsweise zwischen 2 und 50 Gew.-% bezogen auf den Blend.

5

10

15

20

25

35

Als zuzusetzende klebrigmachende Harze sind die vorbekannten und in der Literatur beschriebenen Klebharze einsetzbar. Genannt seien stellvertretend die Pinen-, Indenund Kolophoniumharze, deren disproportionierte, hydrierte, polymerisierte, veresterte Derivate und Salze, die aliphatischen und aromatischen Kohlenwasserstoffharze, C9sowie Terpenharze und Terpenphenolharze sowie C5-, andere Kohlenwasserstoffharze. Beliebige Kombinationen dieser und weiterer Harze können eingesetzt werden, um die Eigenschaften der resultierenden Klebmasse wunschgemäß einzustellen. Im allgemeinen lassen sich alle mit dem entsprechenden Thermoplasten T2 und Kautschuken S1 kompatiblen (löslichen) Harze einsetzen, insbesondere sei aliphatischen. aromatischen. alkvlaromatischen verwiesen auf alle Kohlenwasserstoffharze, Kohlenwasserstoffharze auf Basis reiner Monomere, hydrierte Kohlenwasserstoffharze, funktionelle Kohlenwasserstoffharze sowie Naturharze. Auf die Darstellung des Wissensstandes im "Handbook of Pressure Sensitive Adhesive Technology" von Donatas Satas (van Nostrand, 1989) sei ausdrücklich hingewiesen.

In einer weiteren Ausführung werden dem Blend Reaktivharze hinzugegeben. Eine sehr bevorzugte Gruppe umfasst Epoxy-Harze. Das Molekulargewicht M_w (Gewichtsmittel) der Epoxy-Harze variiert von 100 g/mol bis zu maximal 10000 g/mol für polymere Epoxy-Harze.

Die Epoxy-Harze umfassen zum Beispiel das Reaktionsprodukt aus Bisphenol A und Epichlorhydrin, das Reaktionsprodukt aus Phenol und Formaldehyd (Novolak Harze) und Epichlorhydrin, Glycidyl Ester, das Reaktionsprodukt aus Epichlorhydrin und p-Amino Phenol.

Bevorzugte kommerzielle Beispiele sind z.B. Araldite™ 6010, CY-281™, ECN™ 1273, ECN™ 1280, MY 720, RD-2 von Ciba Geigy, DER™ 331, DER™ 732, DER™ 736, DEN™

432, DEN™ 438, DEN™ 485 von Dow Chemical, Epon™ 812, 825, 826, 828, 830, 834, 836, 871, 872,1001, 1004, 1031 etc. von Shell Chemical und HPT™ 1071, HPT™ 1079 ebenfalls von Shell Chemical.

- Beispiele für kommerzielle aliphatische Epoxy-Harze sind z.B. Vinylcyclohexandioxide, wie ERL-4206, ERL-4221, ERL 4201, ERL-4289 oder ERL-0400 von Union Carbide Corp.
- Als Novolak-Harze können z.B. eingesetzt werden, Epi-Rez™ 5132 von Celanese, 10 ESCN-001 von Sumitomo Chemical, CY-281 von Ciba Geigy, DEN™ 431, DEN™ 438, Quatrex 5010 von Dow Chemical, RE 305S von Nippon Kayaku, Epiclon™ N673 von DaiNipon Ink Chemistry oder Epicote™ 152 von Shell Chemical.
- Weiterhin lassen sich als Reaktivharze auch Melamin-Harze einsetzen, wie z.B. Cymel[™] 327 und 323 von Cytec.
 - Weiterhin lassen sich als Reaktivharze auch Terpenphenolharze, wie z.B. NIREZ™ 2019 von Arizona Chemical einsetzen.
- Weiterhin lassen sich als Reaktivharze auch Phenolharze, wie z.B. YP 50 von Toto Kasei, PKHC von Union Carbide Corp. und BKR 2620 von Showa Union Gosei Corp. einsetzen.
- Weiterhin lassen sich als Reaktivharze auch Polyisocyanate, wie z.B. Coronate™ Ľ von Nippon Polyurethan Ind., Desmodur™ N3300 oder Mondur™ 489 von Bayer einsetzen.
 - Um die Reaktion zwischen den beiden Komponenten zu beschleunigen, lassen sich auch optional Vernetzer und Beschleuniger in die Mischung zu additivieren.
- Als Beschleuniger eignen sich z.B. Imidazole, kommerziell erhältlich unter 2M7, 2E4MN, 2PZ-CN, 2PZ-CNS, P0505, L07N von Shikoku Chem. Corp. oder Curezol 2MZ von Air Products.
- Weiterhin lassen sich auch Amine, insbesondere tert.-Amine zur Beschleunigung 35 einsetzen.

Neben Reaktivharzen lassen sich auch Weichmacher einsetzen. Hier können in einer bevorzugten Ausführung der Erfindung Weichmacher auf Basis, Polyglykolethern, Polyethylenoxiden, Phosphatestern, aliphatische Carbonsäureester und Benzoesäureester eingesetzt werden. Weiterhin lassen sich auch aromatische Carbonsäureester, höhermolekulare Diole, Sulfonamide und Adipinsäureester einsetzen.

Weiterhin können optional Füllstoffe (z.B. Fasern, Ruß, Zinkoxid, Titandioxid, Kreide, Voll- oder Hohlglaskugeln, Mikrokugeln aus anderen Materialien, Kieselsäure, Silikate), Keimbildner, Blähmittel, Compoundierungsmittel und/oder Alterungsschutzmittel, z.B. in Form von primären und sekundären Antioxidantien oder in Form von Lichtschutzmitteln zugesetzt sein.

In einer weiteren bevorzugten Ausführungsform werden dem Blend Polyolefine, insbesondere Poly- α -olefine, zugesetzt. Von der Firma Degussa sind unter dem Handelsnamen VestoplastTM unterschiedliche Hitze-aktivierbare Poly- α -olefine kommerziell erhältlich.

Die Blends weisen in einer bevorzugten Ausführungsform statische 20 Erweichungstemperaturen T_{E,A} oder Schmelzpunkte T_{S,A} von 65 °C bis 125 °C auf. Die Klebkraft dieser Polymere kann durch gezielte Additivierung gesteigert werden. So lassen sich z.B. Polyimin- oder Polyvinylacetat-Copolymere als klebkraftfördernde Zusätze verwenden.

25 Der Hitze-aktivierbare Kleber dient insbesondere als Klebstofffolie zur Verklebung von elektrischen Chipmodulen in Kartenkörpern, wobei die jeweilige Klebschicht eine sehr gute Haftung zum Kartenkörper und zum elektrischen Chipmodul nach der Temperaturaktivierung ausbildet.

Verfahren zur Herstellung

5

10

15

30

35

Die erfinderischen Blends können aus Lösung oder in der Schmelze hergestellt werden. Für die Herstellung des Blends in Lösung werden bevorzugt Lösemittel eingesetzt, in denen mindestens einer der Komponenten eine gute Löslichkeit aufweist. Zur Herstellung der Mischung werden die bekannten Rühraggregate eingesetzt. Hierfür kann auch der

Eintrag von Wärme erforderlich sein. Anschließend werden die Blends aus Lösung oder mehr bevorzugt aus der Schmelze beschichtet. Für die Beschichtung aus der Schmelze wird dem Blend zuvor das Lösungsmittel entzogen. In einer bevorzugten Ausführung wird das Lösemittel in einem Aufkonzentrationsextruder unter vermindertem Druck abgezogen, wozu beispielsweise Ein- oder Doppelschneckenextruder eingesetzt werden können, die bevorzugt das Lösemittel in verschiedenen oder gleichen Vakuumstufen abdestillieren und über eine Feedvorwärmung verfügen. Dann wird über eine Schmelzdüse oder eine Extrusionsdüse beschichtet, wobei gegebenenfalls der Klebefilm gereckt wird, um die optimale Beschichtungsdicke zu erreichen.

10

15

20

5

In einer weiteren Ausführung der Erfindung wird der Blend in der Schmelze hergestellt. Für die Vermischung der Harze kann ein Kneter oder ein Doppelschneckenextruder, oder ein Planetwalzenextruder eingesetzt werden.

Die Beschichtung erfolgt dann wiederum aus der Schmelze. Es wird über eine Schmelzdüse oder eine Extrusionsdüse beschichtet, wobei gegebenenfalls der Klebefilm gereckt wird, um die optimale Beschichtungsdicke zu erreichen.

Als Trägermaterialien für den Blend werden die dem Fachmann geläufigen und üblichen Materialien, wie Folien (Polyester, PET, PE, PP, BOPP, PVC, Polyimid), Vliese, Schäume, Gewebe und Gewebefolien sowie Trennpapier (Glassine, HDPE, LDPE) verwendet. Die Trägermaterialien sollten mit einer Trennschicht ausgerüstet sein. Die Trennschicht besteht in einer sehr bevorzugten Auslegung der Erfindung aus einem Silikontrennlack oder einem fluorierten Trennlack.

25

Beispiele

Testmethoden:

30 Rheologie A)

Die Messung wurde mit einem Rheometer der Fa. Rheometrics Dynamic Systems (RDA II) durchgeführt.

Der "Rheomatics Dynamical Analyser" (RDA II) misst das auftretende Drehmoment bei Aufbringung einer oszillierenden Scherung auf eine Streifenprobe (Deformationssteuerung). Der Probendurchmesser betrug 8 mm, die Probendicke betrug

zwischen 1 und 2 mm. Es wurde mit der Platte-auf-Platte-Konfiguration (parallele Platten) gemessen. Es wurde der Temperatur-Sweep von 0 bis 150 °C mit einer Frequenz von 10 rad/s aufgenommen.

5

Iso-Bending B)

Der Iso-Bending Test wird analog der Iso/IEC-Norm 10373 : 1993 (E) – section 6.1 durchgeführt. Der Test gilt als bestanden, wenn insgesamt mehr als 4000 Biegungen erreicht werden.

10

15

20

25

Extrem-Biegetest C)

Im Extrembiegetest wird ein 3 cm breiter Ausschnitt mit dem elektrischen Modul in der Mitte liegend aus der Chipkarte ausgeschnitten und dann 10 x von 3 cm Breite auf 2.5 cm Breite zusammengedrückt. Der Test gilt als bestanden, wenn das elektrische Modul sich nicht herauslöst.

Handtest D)

Im Handtest wird die Chipkarte mit der Hand über eine der beiden Ecken, die näher zum elektrischen Modul liegen, so weit gebogen, bis dass die Karte bricht oder das Modul bricht. Dann gilt der Test als bestanden. Falls das elektrische Modul sich löst oder herausspringt, gilt der Test als nicht bestanden.

Übrige Testmethoden

Die Bestimmung der Erweichungstemperaturen erfolgt bevorzugt über die Differential Scanning Calorimetry (DSC).

Molmassenbestimmungen erfolgten über GPC-Messungen (Gelpermeationschromatografie). (Herstellung einer Lösung der Probe in Tetrahydrofuran mit einer Konzentration von 3g/l; Lösungsvorgang 12 Stunden bei Raumtemperatur; danach Filtration der Lösung durch einen 1µm Einmalfilter, Zusatz von ca. 200 ppm

30 Toluol als interner Standard.

Mittels eines Autosamplers werden 20 µl der Lösung wie folgt chromatografiert: Nach einer 10³ Å Säule von 50 mm Länge folgen eine 10⁶ Å, eine 10⁴ Å und eine 10³ Å Säule mit jeweils einer Länge von 300 mm. Als Eluent dient Tetrahydrofuran, das mit einer Flussrate von 1,0 ml/min gepumpt wird. Die Kalibrierung der Säulen erfolgt mit

WO 2005/063909

Polystyrolstandards, die Detektion erfolgt über die Messung der Änderung des Brechungsindex mit Hilfe eines Shodex Differentialrefraktometers RI 71).

5 Untersuchungen

Referenz 1)

Polyamidfolie XAF 34.408 der Fa. Collano-Xiro

10 Referenz 2)

PU-Folie XAF 36.304 der Fa. Collano Xiro

Beispiel 1)

30 Gew.-% Breon N41 H80 (Nitrilkautschuk) der Fa. Zeon und 70 Gew.-% Platamid 2395 (Copolyamid) der Fa. Atofina wurden in einem Meßkneter der Fa. Haake bei ca. 130 °C und 15 Minuten bei 25 U/min. abgemischt. Die Hitze-aktivierbare Klebemasse wurde anschließend zwischen zwei Lagen silikonisiertem Glassine-Trennpapier auf 60 μm ausgepresst bei 140 °C.

20

25

35

Beispiel 2)

30 Gew.-% Breon N41 H80 (Nitrilkautschuk) der Fa. Zeon und 70 Gew.-% Grilltex 1365 (Copolyester) der Fa. EMS-Griltech wurden in einem Meßkneter der Fa. Haake bei ca. 130 °C und 15 Minuten bei 25 U/min. abgemischt. Die Hitze-aktivierbare Klebemasse wurde anschließend zwischen zwei Lagen silikonisiertem Glassine-Trennpapier auf 60 µm ausgepresst bei 140 °C.

30 Beispiel 3)

40 Gew.-% Breon N41 H80 (Nitrilkautschuk) der Fa. Zeon und 60 Gew.-% Grilltex 1365 (Copolyester) der Fa. EMS-Griltech wurden in einem Meßkneter der Fa. Haake bei ca. 130 °C und 15 Minuten bei 25 U/min. abgemischt. Die Hitze-aktivierbare Klebemasse wurde anschließend zwischen zwei Lagen silikonisiertem Glassine-Trennpapier auf 60 μm ausgepresst bei 140 °C.

5 Implantierung der elektrischen Module

Die Implantierung der elektrischen Module in den Kartenkörper erfolgte mit einem Implanter der Fa. Ruhlamat.

Es wurden folgende Materialien eingesetzt:

10 Elektrische Module: Nedcard Dummy N4C-25C, Tape-Type: 0232-10

PVC-Karten: Fa. CCD
ABS-Karte: Fa. ORGA

In einem ersten Schritt werden über eine Zweiwalzenkaschieranlage der Fa. Storck

GmbH die Beispiele 1 bis 3 mit 2 bar auf den Modulgurt der Fa. Nedcard kaschiert.

Dann werden die elektrischen Module in die passende Kavität des Kartenkörpers implantiert.

Es wurden folgende Parameter für alle Beispiele angewendet:

20 Heizschritte: 1

Stempeltemperatur: 150°C

Zeit: 1 x 2 s

Kühlschritt: 1x 800 ms, 25°C

Druck: 70 N pro Modul

25

Ergebnisse:

Die mit den erfinderischen Klebemassen hergestellten Chipkarten wurden nach den 30 Testmethoden B, C und D ausgetestet. Die Ergebnisse sind in der Tabelle 1 dargestellt.

Beispiele	Testmethode B	Testmethode C	Testmethode D
1	bestanden	bestanden	Bestanden
2	bestanden	bestanden	Bestanden
3	bestanden	bestanden	Bestanden

Tabelle 1 kann entnommen werden, dass alle erfinderischen Beispiele die wichtigsten Kriterien für eine Chipkarte bestanden haben und somit sehr gut zur Verklebung von elektrischen Modulen auf Kartenkörpern geeignet sind.

5 Tab. 2

10

Referenz	Testmethode B	Testmethode C	Testmethode D
1	Bestanden/nicht	Bestanden/nicht	Nicht Bestanden
	bestanden auf ABS	bestanden auf ABS	
2	Nicht bestanden	Nicht bestanden	Nicht Bestanden

Die Referenzmuster in Tabelle 2 sind dagegen bedeutend schlechter und bestehen insbesondere auf ABS Kartenmaterialien nicht die Testmethoden.

5

15

20

Patentansprüche

- 1. Klebstofffolie, bestehend aus einem Blend aus einem Kautschuk S1 und einem Thermoplasten 2. wobei
 - a) der Blend mikrophasensepariert ist
 - b) der Blend mindestens zwei Erweichungstemperaturen besitzt, wobei mindestens eine Erweichungstemperatur größer 65 °C und kleiner 125 °C ist
 - c) einen nach Testmethode A gemessenen G' bei 23 °C von größer 10⁷ Pas besitzt
 - d) einen nach Testmethode A gemessenen G" bei 23 °C von größer 106 Pas besitzt
- 10 e) und einen nach Testmethode A gemessenen crossover von kleiner 125 °C aufweist.
 - 2. Klebstofffolie nach Anspruch 1, dadurch gekennzeichnet, dass der Kautschuk ein synthetischer Kautschuk ist.
 - 3. Klebstofffolie nach Anspruch 2, dadurch gekennzeichnet, dass als Synthesekautschuke S1 Polyvinylbutyral, Polyvinylformal, Nitrilkautschuke, Hydrierte Nitril-Butadien Nitrilbutadienkautschuke, Kautschuke, Polyacrylat-Kautschuke, Chloropren-Kautschuke, Ethylen-Propylen-Dien Kautschuke, Methyl-Vinyl-Silikon Kautschuke, Fluorsilikon Kautschuke, Tetrafluorethylen-Propylen-Copolymer Kautschuke, Butylkautschuke, Styrol-Butadien Kautschuke eingesetzt werden.
- Klebstofffolie nach Anspruch 3, dadurch gekennzeichnet, dass der Kautschuk ein
 Nitrilkautschuk ist.
 - 5. Klebstofffolie nach Anspruch 4, dadurch gekennzeichnet, dass
 - a) der Nitrilkautschuk eine Erweichungstemperatur von -80 °C bis 0 °C besitzt
 - b) der Thermoplast eine Erweichungstemperatur von 65 °C bis 125 °C besitzt
- 30 c) der Nitrilkautschuk in dem Thermoplasten unlöslich ist.
 - Klebstofffolie nach zumindest einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Schichtdicke zwischen 10 und 100 μm, besonders bevorzugt zwischen 30 und 80 μm beträgt.

7. Klebstofffolie nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Thermoplasten T2 besonders bevorzugt aus den Gruppen der Copolyamide, Polyethylvinylacetate, Polyvinylacetate, Polyolefine, Polyurethane und Copolyester gewählt werden

5

10

- 8. Klebstofffolie nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass als Synthesekautschuke S1 Polyvinylbutyral, Polyvinylformal, Nitrilkautschuke, Nitrilbutadienkautschuke, Hydrierte Nitril-Butadien Kautschuke, Polyacrylat-Kautschuke, Chloropren-Kautschuke, Ethylen-Propylen-Dien Kautschuke, Methyl-Vinyl-Silikon Kautschuke, Fluorsilikon Kautschuke, Tetrafluorethylen-Propylen-Copolymer Kautschuke, Butylkautschuke, Styrol-Butadien Kautschuke eingesetzt werden.
- Klebstofffolie nach mindestens einem der vorangegangenen Ansprüche, dadurch
 gekennzeichnet, dass zusätzlich als Reaktivharze Epoxid-, und/oder Phenolund/oder Novolak-Harze eingesetzt werden.
 - 10. Verwendung einer Klebstofffolie nach zumindest einem der vorangehenden Ansprüche zur Verklebung auf Polyimid-, Polyester oder Epoxy-basierenden Chipmodulen und auf PVC, ABS, PET, PC, PP oder PE Kartenkörpern.
 - 11. Verfahren zur Herstellung eines Hitze-aktivierbaren Klebebandes, dadurch gekennzeichnet, dass die Klebstofffolie nach den Ansprüchen 1 bis 9 auf ein Releasepapier oder einen Releasefilm beschichtet wird.

25

20

- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das Hitze-aktivierbare Klebeband gestanzt wird.
- 13. Verfahren nach mindestens einem der Ansprüche 11 oder 12, dadurch 30 gekennzeichnet, dass das Hitze-aktivierbare Klebeband mit einer Implantierstempeltemperatur von 150 °C verarbeitet wird.

Fig. 1