Exercise 02

NAME: - ARNAY SINGHAL UNI-ID - b0303

1. Hand-Crafted Network

· logical OR map a binary input vector z \ {0,1} to

OR map a binary input vector
$$Z = \{0, 1\}$$
 and $Z = \{0, 1\}$ and $Z = \{0, 1\}$

the substant despited a

Weights: w = [1,1]

Activation function: step function (Threshold at 0)

Dutput

f(z) = Step (z*w+b) = Step (2[0] * W[0] + 2 [1] "W[1] +6)

= 8tep (2[0] + 2[1] -0.5)

· Masked logical DR: for an arbitrary but fixed binary vector c { {0,1} map the imput vector ZE (0,1) to Z > g(z; c) = { 1 = j such that cj = land z = 1 = 1 Zi=1 occusionly at mdices whom cj=0

weights: w = [1,1]

Bias : b = -0.5

Activation function: step function (Threshold ato)

8 (z:c) = Step ((z*w+b)*(1-c))

= Step ((2[0] *W[0] +2[1] * W[1] +b) *(1-4))

= Step ((2L0] + 2[1] - 0.5) *(1-4))

· Perfect Match for an arbitrary but fixed binary
vector $c \in \{0,1\}^0$ map the input vector $z \Rightarrow h(z;c) = \begin{cases} 1 & z = c \\ 0 & \text{otherwise} \end{cases}$

Weights: W = [1,1] Bias: b = -1.5

The state of the state of the state of

The same of the sa

Activation function: Step function (Thresholder)

Output $h(z;c) = step(z^*w + b - ||c||^2)$ $= step(z[0]^*w[0] + z[1]^*w[1] + b - ||c||^2)$ $= step(z[0] + z[1] - |.s - ||c||^2)$

> 11c112 squared Enciliation of Vectors.

2. Lineau Activation Function

To prove that if the activation function of is the identity function for all layers I, then any network with depth L>1 is eque equivalent to a 1- layer neural network, we need to Show that the output of the network com be expressed as a linear tronsformation. Let's Louriden, a network with L layers. the output of the first layer can be calculated as !-

Z1 = \$1(2"1) = \$1(x.B1+b1) = x.B1 +b1

since of is the identity function, 21 is a linear transformation of the inputs.

Assuming that the output of the (1-1)th layer is also a lineau transformation.

21-1= x. B1-1+ b1-1

2"= 21-1. BI+b1 = (x. B+1+b1-1). BI+b1

Z1= \$1(2")= (x.B1-1 +b1-1). B1+b1 = X. (B1-1.B1) + (b1-1.B1+b1)

21 can be expressed as linear transformation of imputx, with new weights and bias by (BI-I.BI) and (b1-1.B1+b1) suspectively.

8 tenating process for all langers (1...L)

ZL = X.(B1.B2.... BL-1.BL) + (b1.B2...BL-1.BL+b2.B3
....+b1-1.BL+b1)

Thus, we have demonstrated that if the activation function is the identity function activation function is the identity function for all layers, any network with depth L>1 is for all layers, any network with depth L>1 is equal to a 1-layer newral network.

13 + 19 · X = 6 + 1/4 · X) 14 + (3) 14 · 3 15

X 10 for use for mail among supoh sugar

propharocopeurate union is ash in

1-101 2-10 x E 15