Lab 8: PCA Mini Project

Marriane Allahwerdi (A16902759)

It is important to consider scalling your data before analysis such as PCA. For example:

head(mtcars)

```
mpg cyl disp hp drat
                                          wt qsec vs am gear carb
Mazda RX4
                 21.0
                           160 110 3.90 2.620 16.46
                                                    0
Mazda RX4 Wag
                 21.0
                           160 110 3.90 2.875 17.02
                                                    0
Datsun 710
                 22.8
                        4 108 93 3.85 2.320 18.61
                                                                 1
Hornet 4 Drive
                 21.4
                        6
                           258 110 3.08 3.215 19.44 1 0
                                                                 1
                                                                 2
                           360 175 3.15 3.440 17.02 0 0
                                                            3
Hornet Sportabout 18.7
                        8
Valiant
                 18.1
                           225 105 2.76 3.460 20.22 1 0
                                                            3
```

colMeans(mtcars)

```
mpg
                  cyl
                            disp
                                          hp
                                                   drat
                                                                 wt
                                                                           qsec
20.090625
            6.187500 230.721875 146.687500
                                               3.596563
                                                           3.217250 17.848750
                                        carb
       ٧s
                            gear
                   am
 0.437500
                        3.687500
            0.406250
                                    2.812500
```

apply(mtcars, 2, sd)

```
cyl
                              disp
                                             hp
                                                       drat
                                                                      wt
      mpg
            1.7859216 123.9386938
6.0269481
                                    68.5628685
                                                  0.5346787
                                                               0.9784574
                                                       carb
     qsec
                   ٧s
                                           gear
1.7869432
            0.5040161
                         0.4989909
                                     0.7378041
                                                  1.6152000
```

x <- scale(mtcars) head(x)</pre>

```
mpg
                                  cyl
                                            disp
                                                                 drat
Mazda RX4
                  0.1508848 -0.1049878 -0.57061982 -0.5350928 0.5675137
Mazda RX4 Wag
                  0.1508848 - 0.1049878 - 0.57061982 - 0.5350928 0.5675137
Datsun 710
                  0.4495434 - 1.2248578 - 0.99018209 - 0.7830405 0.4739996
Hornet 4 Drive
                 0.2172534 -0.1049878 0.22009369 -0.5350928 -0.9661175
Hornet Sportabout -0.2307345 1.0148821 1.04308123 0.4129422 -0.8351978
Valiant
                 -0.3302874 -0.1049878 -0.04616698 -0.6080186 -1.5646078
                          wt
                                   qsec
                                               ٧s
Mazda RX4
                 -0.610399567 -0.7771651 -0.8680278 1.1899014 0.4235542
Mazda RX4 Wag
                 -0.349785269 -0.4637808 -0.8680278 1.1899014 0.4235542
Datsun 710
                 -0.917004624   0.4260068   1.1160357   1.1899014   0.4235542
Hornet 4 Drive
                Hornet Sportabout 0.227654255 -0.4637808 -0.8680278 -0.8141431 -0.9318192
Valiant
                  0.248094592 1.3269868 1.1160357 -0.8141431 -0.9318192
                      carb
Mazda RX4
                 0.7352031
Mazda RX4 Wag
                 0.7352031
Datsun 710
                 -1.1221521
Hornet 4 Drive
                 -1.1221521
Hornet Sportabout -0.5030337
Valiant
                 -1.1221521
```

round(colMeans(x), 2)

Unsupervised Learning Analysis of Human Breast Cancer Cells

	diagnosis	radius_mean	texture_mean	<pre>perimeter_mean</pre>	$area_mean$
842302	M	17.99	10.38	122.80	1001.0
842517	М	20.57	17.77	132.90	1326.0

84300903	M	19.69	21.25	130.00	1203.0	
84348301	М	11.42	20.38	77.58	386.1	
84358402	M	20.29	14.34	135.10	1297.0	
843786	M	12.45	15.70	82.57	477.1	
	smoothness_mean	compac	tness_mean con	cavity_mean co	oncave.poi	nts_mean
842302	0.11840)	0.27760	0.3001		0.14710
842517	0.08474	:	0.07864	0.0869		0.07017
84300903	0.10960)	0.15990	0.1974		0.12790
84348301	0.14250)	0.28390	0.2414		0.10520
84358402	0.10030)	0.13280	0.1980		0.10430
843786	0.12780)	0.17000	0.1578		0.08089
	symmetry_mean f	ractal_	dimension_mean	radius_se te	kture_se p	erimeter_se
842302	0.2419		0.07871	1.0950	0.9053	8.589
842517	0.1812		0.05667	0.5435	0.7339	3.398
84300903	0.2069		0.05999	0.7456	0.7869	4.585
84348301	0.2597		0.09744	0.4956	1.1560	3.445
84358402	0.1809		0.05883	0.7572	0.7813	5.438
843786	0.2087		0.07613	0.3345	0.8902	2.217
	area_se smoothr	.ess_se	compactness_se	concavity_se	concave.p	oints_se
842302		006399	0.04904	•	•	0.01587
842517	74.08 0.	005225	0.01308	0.01860		0.01340
84300903	94.03 0.	006150	0.04006	0.03832		0.02058
84348301		009110	0.07458			0.01867
84358402		011490	0.02461			0.01885
843786	27.19 0.	007510	0.03345	0.03672		0.01137
	symmetry_se fra	ctal di	mension se rad		ture worst	
842302	0.03003	-	0.006193	- 25.38	17.33	
842517	0.01389		0.003532	24.99	23.41	
84300903	0.02250		0.004571	23.57	25.53	
84348301	0.05963		0.009208	14.91	26.50	
84358402	0.01756		0.005115	22.54	16.67	
843786	0.02165		0.005082	15.47	23.75	
	perimeter_worst	area w			ctness wor	st
842302	184.60		19.0	0.1622	0.66	
842517	158.80		56.0	0.1238	0.18	
84300903	152.50		09.0	0.1444	0.42	
84348301	98.87		67.7	0.2098	0.86	
84358402	152.20		75.0	0.1374	0.20	
843786	103.40		41.6	0.1791	0.52	
	concavity_worst					
842302	0.7119		0.2654	0.460		
842517	0.2416		0.1860	0.275		
84300903	0.4504		0.2430	0.36		
84300903	0.4504	:	0.2430	0.36	13	

```
0.6869
                                        0.2575
                                                       0.6638
84348301
84358402
                  0.4000
                                        0.1625
                                                       0.2364
843786
                  0.5355
                                        0.1741
                                                       0.3985
         fractal_dimension_worst
                         0.11890
842302
842517
                         0.08902
84300903
                         0.08758
84348301
                         0.17300
84358402
                         0.07678
843786
                         0.12440
```

```
diagnosis <- wisc.df[,1]
table(diagnosis)</pre>
```

diagnosis
B M
357 212

Remove the first column diagnosis bc it is essentially the "answer" to the question which cell samples are malignant or benign.

```
# We can use -1 here to remove the first column
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>
```

	radius_mean	texture_mean	perimete	er_mean	area_mean	smoothness_mean
842302	17.99	10.38		122.80	1001.0	0.11840
842517	20.57	17.77		132.90	1326.0	0.08474
84300903	19.69	21.25		130.00	1203.0	0.10960
84348301	11.42	20.38		77.58	386.1	0.14250
84358402	20.29	14.34		135.10	1297.0	0.10030
843786	12.45	15.70		82.57	477.1	0.12780
	compactness_	mean concavit	ty_mean o	concave.	points_mea	n symmetry_mean
842302	0.2	7760	0.3001		0.1471	0 0.2419
842517	0.0	7864	0.0869		0.0701	7 0.1812
84300903	0.1	5990	0.1974		0.1279	0 0.2069
84348301	0.2	8390	0.2414		0.1052	0 0.2597
84358402	0.1	3280	0.1980		0.1043	0 0.1809
843786	0.1	7000	0.1578		0.0808	9 0.2087
	fractal_dime	nsion_mean ra	adius_se	texture	_se perime	ter_se area_se
842302		0.07871	1.0950	0.9	9053	8.589 153.40

```
842517
                        0.05667
                                   0.5435
                                               0.7339
                                                             3.398
                                                                      74.08
84300903
                        0.05999
                                   0.7456
                                               0.7869
                                                             4.585
                                                                     94.03
84348301
                        0.09744
                                   0.4956
                                               1.1560
                                                             3.445
                                                                      27.23
84358402
                        0.05883
                                   0.7572
                                               0.7813
                                                             5.438
                                                                      94.44
843786
                        0.07613
                                   0.3345
                                               0.8902
                                                             2.217
                                                                     27.19
         smoothness_se compactness_se concavity_se concave.points_se
842302
              0.006399
                              0.04904
                                            0.05373
                                                              0.01587
842517
              0.005225
                              0.01308
                                            0.01860
                                                              0.01340
84300903
              0.006150
                              0.04006
                                            0.03832
                                                              0.02058
84348301
              0.009110
                              0.07458
                                            0.05661
                                                              0.01867
                              0.02461
                                            0.05688
84358402
              0.011490
                                                              0.01885
843786
              0.007510
                              0.03345
                                            0.03672
                                                              0.01137
         symmetry_se fractal_dimension_se radius_worst texture_worst
842302
             0.03003
                                 0.006193
                                                  25.38
                                                                 17.33
                                                  24.99
842517
             0.01389
                                 0.003532
                                                                23.41
84300903
             0.02250
                                 0.004571
                                                  23.57
                                                                25.53
84348301
             0.05963
                                 0.009208
                                                  14.91
                                                                26.50
84358402
             0.01756
                                 0.005115
                                                  22.54
                                                                16.67
843786
             0.02165
                                 0.005082
                                                  15.47
                                                                23.75
         perimeter worst area worst smoothness worst compactness worst
                  184.60
842302
                             2019.0
                                               0.1622
                                                                  0.6656
842517
                                               0.1238
                  158.80
                             1956.0
                                                                  0.1866
84300903
                  152.50
                             1709.0
                                               0.1444
                                                                 0.4245
84348301
                   98.87
                              567.7
                                               0.2098
                                                                 0.8663
84358402
                  152.20
                             1575.0
                                               0.1374
                                                                 0.2050
843786
                              741.6
                                               0.1791
                                                                 0.5249
                  103.40
         concavity_worst concave.points_worst symmetry_worst
842302
                  0.7119
                                        0.2654
                                                       0.4601
842517
                  0.2416
                                        0.1860
                                                       0.2750
84300903
                  0.4504
                                        0.2430
                                                       0.3613
84348301
                  0.6869
                                        0.2575
                                                       0.6638
84358402
                  0.4000
                                        0.1625
                                                       0.2364
843786
                  0.5355
                                        0.1741
                                                       0.3985
         fractal_dimension_worst
842302
                         0.11890
842517
                         0.08902
84300903
                         0.08758
84348301
                         0.17300
84358402
                         0.07678
843786
                         0.12440
```

```
dim(wisc.df)
[1] 569 31
     Q1. How many observations are in this dataset?
There are 569 observations in this dataset.
nrow(wisc.df)
[1] 569
     Q2. How many of the observations have a malignant diagnosis?
212 observations have a malignant diagnosis.
table(diagnosis)
diagnosis
  В
      Μ
357 212
     Q3. How many variables/features in the data are suffixed with _mean?
10 features are suffixed with _mean.
length(grep("_mean", colnames(wisc.data)))
[1] 10
PCA
```

```
# Check column means and standard deviations
colMeans(wisc.data)
```

perimeter_mean	texture_mean	radius_mean
9.196903e+01	1.928965e+01	1.412729e+01
${\tt compactness_mean}$	${\tt smoothness_mean}$	area_mean
1.043410e-01	9.636028e-02	6.548891e+02
symmetry_mean	concave.points_mean	concavity_mean
1.811619e-01	4.891915e-02	8.879932e-02
texture_se	radius_se	${\tt fractal_dimension_mean}$
1.216853e+00	4.051721e-01	6.279761e-02
smoothness_se	area_se	perimeter_se
7.040979e-03	4.033708e+01	2.866059e+00
concave.points_se	concavity_se	compactness_se
1.179614e-02	3.189372e-02	2.547814e-02
radius_worst	${\tt fractal_dimension_se}$	symmetry_se
1.626919e+01	3.794904e-03	2.054230e-02
area_worst	perimeter_worst	texture_worst
8.805831e+02	1.072612e+02	2.567722e+01
${\tt concavity_worst}$	${\tt compactness_worst}$	${\tt smoothness_worst}$
2.721885e-01	2.542650e-01	1.323686e-01
${\tt fractal_dimension_worst}$	symmetry_worst	concave.points_worst
8.394582e-02	2.900756e-01	1.146062e-01

apply(wisc.data,2,sd)

perimeter_mean	texture_mean	radius_mean
2.429898e+01	4.301036e+00	3.524049e+00
compactness_mean	${\tt smoothness_mean}$	area_mean
5.281276e-02	1.406413e-02	3.519141e+02
symmetry_mean	concave.points_mean	concavity_mean
2.741428e-02	3.880284e-02	7.971981e-02
texture_se	radius_se	fractal_dimension_mean
5.516484e-01	2.773127e-01	7.060363e-03
smoothness_se	area_se	perimeter_se
3.002518e-03	4.549101e+01	2.021855e+00
concave.points_se	concavity_se	compactness_se
6.170285e-03	3.018606e-02	1.790818e-02
radius_worst	fractal_dimension_se	symmetry_se
4.833242e+00	2.646071e-03	8.266372e-03
area_worst	perimeter_worst	texture_worst
5.693570e+02	3.360254e+01	6.146258e+00
concavity_worst	compactness_worst	smoothness_worst
2.086243e-01	1.573365e-01	2.283243e-02
${\tt fractal_dimension_worst}$	symmetry_worst	concave.points_worst

6.573234e-02 6.186747e-02 1.806127e-02

```
# Perform PCA on wisc.data by completing the following code
wisc.pr <- prcomp(wisc.data, scale=T)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC2
                                                 PC4
                                                          PC5
                                                                  PC6
                          PC1
                                         PC3
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                   PC18
                                                           PC19
                                                                   PC20
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

- Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?
- 44.27% of the original variance is captured by PC1.
 - Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

The first three PCs are required to describe at least 70% of the original variance (cumulative proportion=72%).

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

The first seven PCs are required to describe at least 90% of the original variance (cumulative proportion=91%).

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

This plot is very messy and hard to understand. Not much can be intrepreted from this plot alone.

biplot(wisc.pr)

Main "PC score Plot", "PC1 vs PC2 plot"

attributes(wisc.pr)

\$names

[1] "sdev" "rotation" "center" "scale" "x

\$class

[1] "prcomp"

head(wisc.pr\$x)

PC1 PC2 PC3 PC4 PC5 PC6 842302 -9.184755 -1.946870 -1.1221788 3.6305364 1.1940595 1.41018364

```
842517
                  3.764859 -0.5288274 1.1172808 -0.6212284 0.02863116
        -2.385703
84300903 -5.728855 1.074229 -0.5512625 0.9112808 0.1769302 0.54097615
84348301 -7.116691 -10.266556 -3.2299475 0.1524129 2.9582754 3.05073750
84358402 -3.931842
                   1.946359 1.3885450 2.9380542 -0.5462667 -1.22541641
        -2.378155 -3.946456 -2.9322967 0.9402096 1.0551135 -0.45064213
843786
                                      PC9
                                                PC10
                PC7
                           PC8
                                                          PC11
                                                                     PC12
842302
         2.15747152  0.39805698  -0.15698023  -0.8766305  -0.2627243  -0.8582593
842517
         0.01334635 -0.24077660 -0.71127897 1.1060218 -0.8124048 0.1577838
84300903 -0.66757908 -0.09728813 0.02404449 0.4538760 0.6050715 0.1242777
84348301 1.42865363 -1.05863376 -1.40420412 -1.1159933 1.1505012 1.0104267
84358402 -0.93538950 -0.63581661 -0.26357355 0.3773724 -0.6507870 -0.1104183
         0.49001396 0.16529843 -0.13335576 -0.5299649 -0.1096698 0.0813699
843786
               PC13
                           PC14
                                       PC15
                                                   PC16
                                                              PC17
         0.10329677 -0.690196797 0.601264078 0.74446075 -0.26523740
842302
842517
        -0.94269981 -0.652900844 -0.008966977 -0.64823831 -0.01719707
84300903 -0.41026561 0.016665095 -0.482994760 0.32482472 0.19075064
84348301 -0.93245070 -0.486988399 0.168699395 0.05132509 0.48220960
84358402 0.38760691 -0.538706543 -0.310046684 -0.15247165 0.13302526
843786
       PC18
                         PC19
                                    PC20
                                                 PC21
                                                            PC22
842302
        -0.54907956 0.1336499 0.34526111 0.096430045 -0.06878939
         0.31801756 -0.2473470 -0.11403274 -0.077259494 0.09449530
842517
84300903 -0.08789759 -0.3922812 -0.20435242 0.310793246 0.06025601
84348301 -0.03584323 -0.0267241 -0.46432511 0.433811661
                                                      0.20308706
84358402 -0.01869779 0.4610302 0.06543782 -0.116442469
                                                      0.01763433
        -0.29727706 -0.1297265 -0.07117453 -0.002400178 0.10108043
843786
                                       PC25
               PC23
                           PC24
                                                    PC26
                                                               PC27
842302
         0.08444429 0.175102213 0.150887294 -0.201326305 -0.25236294
        -0.21752666 -0.011280193 0.170360355 -0.041092627
842517
                                                        0.18111081
84300903 -0.07422581 -0.102671419 -0.171007656 0.004731249
                                                        0.04952586
84348301 -0.12399554 -0.153294780 -0.077427574 -0.274982822
                                                         0.18330078
84358402 0.13933105 0.005327110 -0.003059371 0.039219780 0.03213957
843786
         0.03344819 -0.002837749 -0.122282765 -0.030272333 -0.08438081
                 PC28
                             PC29
                                          PC30
        842302
842517
         0.0325955021 -0.005682424 0.0018662342
84300903 0.0469844833 0.003143131 -0.0007498749
84348301 0.0424469831 -0.069233868 0.0199198881
84358402 -0.0347556386 0.005033481 -0.0211951203
843786
         0.0007296587 -0.019703996 -0.0034564331
```


Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

These plots have a distinguishable separation between the malignant and benign observations seen in red and black. These points are slightly closer together than the ones in the previous plot.


```
# Create a data.frame for ggplot
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis
ggplot(df) +
   aes(PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```


Blue = malignant, Red = benign

```
# Calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

The concave.points_mean for the first PC loading vector is -0.26. This loading vector explains how much this variable affects that position in the first PC.

```
concave.points_mean <- wisc.pr$rotation[,1]
concave.points_mean</pre>
```

perimeter_mean	texture_mean	radius_mean
-0.22753729	-0.10372458	-0.21890244
compactness_mean	${\tt smoothness_mean}$	area_mean
-0.23928535	-0.14258969	-0.22099499
symmetry_mean	concave.points_mean	concavity_mean
-0.13816696	-0.26085376	-0.25840048
texture_se	radius_se	fractal_dimension_mean
-0.01742803	-0.20597878	-0.06436335
smoothness_se	area_se	perimeter_se
-0.01453145	-0.20286964	-0.21132592
concave.points_se	concavity_se	compactness_se
-0.18341740	-0.15358979	-0.17039345
radius_worst	fractal_dimension_se	symmetry_se
-0.22799663	-0.10256832	-0.04249842

```
texture_worst
                             perimeter_worst
                                                           area_worst
         -0.10446933
                                  -0.23663968
                                                          -0.22487053
    smoothness_worst
                           compactness_worst
                                                      concavity_worst
         -0.12795256
                                  -0.21009588
                                                          -0.22876753
concave.points_worst
                              symmetry_worst fractal_dimension_worst
         -0.25088597
                                  -0.12290456
                                                          -0.13178394
```

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

The minimum number of PCs required to explain 80% os variance is 5 as seen from the data table we generated previously (cumulative variance=84% at PC5).

```
# Scale the wisc.data data using the "scale()" function
data.scaled <- scale(wisc.data)</pre>
```

```
wisc.hclust <- hclust(data.dist, method = "complete")</pre>
```

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

The height at which the clustering model has 4 clusters is at h=19.

data.dist <- dist(data.scaled)</pre>

```
plot(wisc.hclust)
abline(h=19, col="red", lty=2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

```
d <- dist(wisc.pr$x[,1:3])
hc <- hclust(d, method="ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

```
grps <- cutree(hc, k=5)</pre>
```

plot(wisc.pr\$x, col=grps)

table(grps)

grps 1 2 3 4 5 33 78 92 216 150

table(diagnosis, grps)

grps diagnosis 1 2 3 4 5 B 0 0 24 184 149 M 33 78 68 32 1

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

I changed k into 5 and got what appears to be a better clustering of the data on the graph.

```
wisc.hclust.clusters <- cutree(wisc.hclust, k=4)
wisc.hclust.clusters</pre>
```

842302	842517	84300903	84348301	84358402	843786	844359	84458202
1	1	1	2	1	_	1	1
844981	84501001	845636	84610002	846226	846381	84667401	84799002
1	2	3	1	1	3	1	1
848406	84862001	849014	8510426	8510653	8510824	8511133	851509
3	1	1	3	3	3	1	1
852552	852631	852763	852781	852973	853201	853401	853612
1	1	1	1	1	3	1	1
85382601	854002	854039	854253	854268	854941	855133	855138
1	1	1	1	1	3	3	1
855167	855563	855625	856106	85638502	857010	85713702	85715
3	1	1	1	1	1	3	1
857155	857156	857343	857373	857374	857392	857438	85759902
3	3	3	3	3	1	3	3
857637	857793	857810	858477	858970	858981	858986	859196
1	1	3	3	3	3	1	3
85922302	859283	859464	859465	859471	859487	859575	859711
1	1	3	3	2	3	1	3
859717	859983	8610175	8610404	8610629	8610637	8610862	8610908
1	1	3	3	3	1	2	3
861103	8611161	8611555	8611792	8612080	8612399	86135501	86135502
3	1	1	1	3	1	3	1
861597	861598	861648	861799	861853	862009	862028	86208
3	1	3	3	3	3	1	1
86211	862261	862485	862548	862717	862722	862965	862980
3	3	3	3	3	3	3	•
862989	863030	863031	863270	86355	864018	864033	86408
3	1	1	3	1	3	3	3
86409	864292	864496	864685	864726	864729	864877	865128
3	3	3	3	3	1	1	3
865137	86517	865423	865432	865468	86561	866083	866203
3	1	2	3	3	3	1	3
866458	866674	866714	8670	86730502	867387	867739	868202
1	1	3	1	1	3	1	3
868223	868682	868826	868871	868999	869104	869218	869224
3	3	1	3	3	3	3	3
869254	869476	869691	86973701	86973702	869931	871001501	871001502

3	3	1	3	3	3	3	3
8710441	87106	8711002	8711003	8711202	8711216	871122	871149
2	3	3	3	1	3	3	3
8711561	8711803	871201	8712064	8712289	8712291	87127	8712729
3	1	1	3	1	3	3	3
8712766	8712853	87139402	87163	87164	871641	871642	872113
1	3	_	_		_	_	3
872608	87281702	873357	873586	873592			873843
3	1		3	1			3
873885		874217					
1	3		3		3		3
875099		87556202					
3	1		_		_		1
877501		878796					
3	3	_					3
		881046502					
1	3	_	3	_	3		1
8811523		8811842					8812877
3	3		1		3		1
8813129		88147101					
3	3	_					3
88203002		882488					
3	1			1			1
		883852					
3	3						3
		884948					
3	3			1			3
88649001		887181					889403
1	1	_		_	_		3
889719		8910251 3		3910506			3
1	2010006	8911163				•	_
0910900	3		3				3
9012040		89122					
0912049							0913
		89143602					
3		3			3		
		892214					
3	3					09203202	
		89344					
	3				3		
		894047					
3	093900			3			
3	3	3	3	3	1	3	3

895299	89524	89511502	89511501	895100	894855	894618	894604
3	3	3	3	1	3	3	3
89742801	897374	897137	897132	896864	896839	895633	8953902
1	3	3	3	1	1	1	1
898431	89827	898143	89813	89812	897880	897630	897604
1	3	3	3	1	3	1	3
899667	899187	899147	898690	89869	898678	898677	89864002
1	3	3	3	3	3	3	3
901034301	9010333	901028	9010259	9010258	901011	9010018	899987
3	3	3	3	3	3	1	1
9011495	9011494	901088	9010877	9010872	9010598	901041	901034302
3	1	1	3	3	3	3	3
901303	9013005	901288	9012795	9012568	9012315	9012000	9011971
3	3	1	1	3	1	1	1
90251	90250	901836	901549	9013838	9013594	9013579	901315
3	3	3	3	1	3	3	3
903483	90317302	90312	903011	902976	902975	90291	902727
3	3	1	3	3	3	3	3
904357	904302	90401602	90401601	903811	903554	903516	903507
3	3	3	3	3	3	1	1
905190	905189	904971	904969	9047	904689	904647	90439701
3	3	3	3	3	3	3	1
905686	905680	905557	905539	905520	905502	905501	90524101
3	3	3	3	3	3	3	1
906878	906616	906564	906539	906290	906024	90602302	905978
3	3	1	3	3	3	1	3
907915	907914	90769602	90769601	90745	907409	907367	907145
3	1	3	3	3	3	3	3
909410	909231	909220	908916	908489	908469	908445	908194
3	3	3	3	1	3	1	1
9110944	9110732	9110720	9110127	909777	90944601	909445	909411
3	1	3	3	3	3	3	3
9112085	911202	911201	9111843	9111805	9111596	911157302	911150
3	3	3	3	1	3	1	3
911320501	9113156	911296202	911296201	9112712	9112594	9112367	9112366
3	3	4	1	3	3	3	3
9113816	9113778	911366			9113455	9113239	911320502
3	3	1	1	3	3	3	3
911916	911685	911673	911654	911408	911391	9113846	911384
					3		3
913505	913102	913063	912600	912558	912519	91227	912193
1		3					3
914333	914102	914101	914062	91376702	91376701	913535	913512

3	3	3	3	1	3	3	3
914366	914580	914769	91485	914862	91504	91505	915143
1	3	1	1	3	1	3	1
915186	915276	91544001	91544002	915452	915460	91550	915664
3	3	3	3	3	1	3	3
915691	915940	91594602	916221	916799	916838	917062	917080
1	3	3	3	1	1	3	3
917092	91762702	91789	917896	917897	91805	91813701	91813702
3	1	3	3	3	3	1	3
918192	918465	91858	91903901	91903902	91930402	919537	919555
3	3	3	3	3	1	3	1
91979701	919812	921092	921362	921385	921386	921644	922296
3	1	3	3	3	1	3	3
922297	922576	922577	922840	923169	923465	923748	923780
3	3	3	3	3	3	3	3
924084	924342	924632	924934	924964	925236	925277	925291
3	3	3	3	3	3	3	3
925292	925311	925622	926125	926424	926682	926954	927241
3	3	1	1	1	1	3	1
92751							
3							

table(wisc.hclust.clusters, diagnosis)

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

I prefer using the "complete" method as it shows the similarity between all observations in the cluster using the largest of similarities, it provides a comprehensive view of the greatest values throughout the entire data.

```
hc.complete <- hclust(data.dist, method="complete")
plot(hc.complete)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "complete")

```
wisc.km <- kmeans(wisc.data, centers= 2, nstart= 20)</pre>
```

table(wisc.km\$cluster, diagnosis)

diagnosis

B M

1 356 82

2 1 130

Q14. How well does k-means separate the two diagnoses? How does it compare to your hclust results?

The kmeans separates the 2 diagnoses very simply into 2 groups as seen above. It provides a much easier way to interpret the data of the sample than the hclust data tables.