Universidad Técnica Federico Santa María Departamento de Química Química y Sociedad QUI-010 Hoja de Ejercicios Nº 4 (Capítulo Nº 4)

Objetivos específicos:

- 1. Visualizar la molécula de agua en términos de enlaces covalentes polares producidos por la diferencia de electronegatividad entre el oxígeno y el hidrógeno. Y a una interacción particularmente fuerte que recibirá el nombre de Enlace de Hidrógeno.
- 2. Generalizar el Enlace de Hidrógeno para situaciones similares en que participan otros átomos pequeños y muy electronegativos como el Nitrógeno y Flúor.
- 3. Entender y aplicar los diferentes procesos de disolución en agua que experimentan compuestos iónicos y covalentes.
- 4. Ser capaz de evaluar la dureza de agua a partir de datos experimentales y conocer métodos utilizados para ablandarla.
- 5. Ser capaz, conociendo las correspondientes temperaturas de fusión y ebullición, los calores específicos de cada fase, y los calores latentes, de calcular las curvas de calentamiento que experimente una determinada masa de sustancia

Ejercicios:

- **1.-** Ofrezca **una explicación** a escala molecular para los siguientes hechos:
 - a. Tanto CH₄ como H₂O están formados por un no-metal unido covalentemente al hidrógeno, sin embargo, el primero es gas y el segundo es líquido a temperatura ambiente y presión atmosférica.
 - **b.** Alcohol etílico (C_2H_5OH) se disuelve fácilmente en agua y no así el éter dimetílico (CH_3OCH_3), que contiene el mismo número de átomos de la misma clase.

R.: ver transparencias

- 2.- Identifique en la siguiente lista los compuestos que usted esperaría se disuelvan en agua. Para aquellos que se disuelvan indique si lo harán en forma iónica o molecular: a) NaOH b) CCl₄ c) NH₃ d) C₈H₁₈ e) CaCl₂ f) C₂H₅OH g) C₁₂H₂₂O₁₁
- 3.- Escriba una ecuación que represente la disolución de los siguientes compuestos en agua:

 a) KC₂H₃O₂
 b) Ca(OH)₂
 c) NaOCI
 d) NH₄OH
 e) Al₂(SO₄)₃
 f) Mg (NO₃)₂
 g) Na₂CO₃
 h) Ca₃(PO₄)₂
- **4.-** De las siguientes sustancias indique cuál de ellas se mantiene unida por puentes de hidrógeno. a) H₂; b) NH₃; c) C₃H₈; d) CaH₂; e) HBr R.: b) NH₃
- **5.** Indique cual de las siguientes afirmaciones es **incorrecta**:
 - a. Al disolver Na₂SO₄ en agua, sólo se rompen los enlaces iónicos presentes en esta molécula
 - b. Los líquidos anilina H₂N−C₆H₅ y n-octano H₃C−(CH₂)₆−CH₃ pueden mezclarse entre sí debido a la formación de puentes de hidrogeno entre ambas moléculas
 - **c.** El etanol (CH₃CH₂–O–H) puede establecer tres uniones tipo puente de hidrógeno con otras moléculas de etanol
 - **d.** La temperatura de ebullición del **NH**₃ es mayor que la correspondiente al **PH**₃ debido a los puentes de hidrógeno que sólo se establecen entre las moléculas de **NH**₃

R: b.

6. Indique la (las) afirmación (es) verdadera (s). Fundamente su respuesta.

I El compuesto KCI puede disolverse en agua y conduce la electricidad.

II El compuesto C₈H₁₈ puede formar enlaces de hidrógeno entre sí y es capaz de conducir la electricidad.

III El compuesto H_2O tiene un mayor punto de ebullición que H_2S

IV La molécula de etilénglicol HOCH₂CH₂OH puede disolverse en agua, pero no conduce la electricidad.

R: I, III y IV

- **7.** La acetona, $(CH_3)_2CO$, es soluble en hexano, $CH_3(CH_2)_4CH_3$. ¿Cuántos puentes de hidrógeno una molécula de acetona podría formar con moléculas de hexano? R.: 0
- 8. Dados los siguientes pares de moléculas:
 - (i) H_2O y H_3C-O-H
 - (ii) H_2O y NH_3
 - (iii) H_2O y H_2
 - (iv) CH_4 y H_3C-O-H

Indique en cuales de ellos se establecerán enlaces (o puentes) de hidrógeno y por qué.

Ř: (i) y (ii)

9. Indique cuál o cuáles de estas moléculas tendrá(n) en su estructura enlaces covalentes polares que permitan su disolución en agua:

i. CCl₄ ii. CHCl₃ iii. CH₃CH₂NH₂ R: solo (ii

10. Se estudian las sales NaCl, KNO₃, Na₂SO₄, Mg₃(PO₄)₂ y Al(ClO₄)₃. **Ordene** las sales de **mayor a menor número** de iones totales por cada molécula disuelta.

11. Al tratar de disolver la molécula H₂NCH₂CH₂NH₂ en CH₃CH₂OH se pueden establecer n puentes de hidrógeno. Determine el valor de n.
R: 6

elemento	Н	N	С	0
electronegatividad	2,1	3,0	2,5	3,5

12. La regla de Dulong y Petit establece que para la mayoría de los sólidos se necesitan aproximadamente 6,2 [cal] para elevar la temperatura de 1 [mol] del sólido en 1 [°C]. En un experimento se necesitaron 21 [cal] para elevar la temperatura de un elemento metálico en 4,0 [°C]. Determine cuántos [moles] del metal se usaron en el experimento.

R.: 0,85 moles

- 13. 10 [L] de agua contienen 10 [ppm] de $CaCO_3$, 15 [ppm] de $MgCl_2$ y 12 [ppm] de $Mg(NO_3)_2$. Calcule la dureza total expresada en []mg/L]. R: 33,9 [mg/L]
- **14.** De los siguientes procedimientos propuestos, indique cual (cuales) es (son) el (los) correcto(s), para obtener agua pura desde una salmuera (solución agua con sal disuelta).
 - (i) Usar un proceso de destilación
 - (ii) Usar una resina de intercambio iónico
 - (iii) Usar un proceso de osmosis reversa
 - (iv) Agregar un aditivo que precipite la sal y luego filtrar

R: (i), (iii) y (iv)

15. Considere los siguientes datos:

Metal Al Cu Masa [g] 10 30 Calor específico [J/g⋅°C] 0.900 0.385 Temperatura [°C] 40 60

Los dos metales se ponen en contacto. ¿Cuál de las siguientes aseveraciones es correcta?

- a) El calor fluye desde el Al al Cu porque el Al tiene un calor específico más grande
- b) El calor fluye desde el Cu al Al porque el Cu tiene mayor masa
- c) El calor fluye desde el Cu al Al porque el Cu tiene una capacidad calorífica más grande
- d) El calor fluye desde el Cu al Al porque el Cu está a una temperatura más alta
- e) No hay flujo de calor entre los metales

R.: d

- **16.** Se agregan 100,0 [g] de trocitos de cobre caliente a un vaso de vidrio de 200,0 [g] que contiene 100,0 [g] de agua a 15,0 [°C]. (Capacidades caloríficas: C_{cobre} = 0,09 [cal/g°C]; C_{agua(l)} = 1,00 [cal/g°C]; C_{vidrio} = 0,15 [cal/g°C]). Una vez que se establece el equilibrio térmico se aprecia que la temperatura del sistema (agua, vaso de vidrio y trocitos de cobre) es de 33,0 [°C]. Si se considera que no hay pérdidas de calor al medio, calcule la temperatura inicial del cobre.
- **17.** Se mezclan 100,0 [g] de un líquido **A** con calor específico $C_A = 0.80$ [cal/g $^{\circ}C$] que se encuentra a una temperatura inicial de 88,0 [$^{\circ}C$] con m_B [g] de otro líquido **B** con calor específico $C_B = 0.60$ [cal/g $^{\circ}C$] que se encuentra a una temperatura inicial de 20,0 [$^{\circ}C$]. Se mide una temperatura final de la mezcla de 42,0 [$^{\circ}C$]. Determine el valor de la masa m_B
- **18. Calcule** la cantidad de calor absorbido o producido durante cada una de las siguientes transformaciones. (Datos: calor específico del agua líquida. 1,0 [cal/(g·°C)], calor de fusión del agua: 80 [cal/g] y calor de vaporización del agua: 540 [cal/g], densidad del agua líquida: 1,0 [g/mL], peso molecular del agua: 18 [g/mol])
 - a. Enfriamiento de 1,0 [mol] de agua líquida de 80 [°C] a 0 [°C].
 - **b.** Calentamiento de 1,8 [g] de agua líquida de 20 [°C] a agua líquida a 100 [°C].
 - c. Calentamiento de 18 [mL] de agua líquida de 20 [°C] a agua vapor a 100 [°C].
 - d. Calentamiento de 18 [g] de agua líquida de 100 [°C] a agua vapor a 100 [°C].
 - e. Enfriamiento de 1,0 [mol] de agua líquida de 0 [°C] a hielo a 0 [°C].

R: a. -1,44[Kcal], b.144[cal], c.11,16[Kcal], d. 9,72[Kcal], e. -1,44[Kcal]

19. En un recipiente térmicamente aislado del entorno se colocan 300,0 [g] de un metal **M** que tiene un calor específico $C_M = 0.12$ [cal/g °C] que se encuentra a una temperatura inicial de 280,0 [°C] con 100,0 [g] de hielo que se encuentra a una temperatura inicial de -10,0 [°C]. Calcule la temperatura final al interior del recipiente.

Datos:

Cp(H ₂ O)I	Cp(H ₂ O)s	Cp(H ₂ O)g
[cal/g °C]	[cal/g °C]	[cal/g °C]
1,00	0,55	0,50

T _{fusión} H ₂ O	T _{evaporación} H ₂ O [°C]	Calor _{fusión}	Calor _{evaporación}
[°C]		H ₂ O [cal/g]	H₂O [cal/g]
0,0	100,0	80	540