Project Report Verilog Assignment 6

Bannuru Rohit Kumar Reddy: 21CS30011

Dumpala Hashmitha: 21CS10023

Diagram:

We have to design and implement an interface between an 8x4 register bank and a 16x4 memory system, enabling data transfer through specified read and write control signals

First ,create a 16x4 memory system in Vivado, by setting the number of bits required to 4 to address 16 memory blocks. The generated blk_mem_gen_0 has its inputs as input wire .clka(clock), input wire .ena which is read control signal, input wire [0 : 0] wea which is the write control signal, input wire [3 : 0] address, input wire [3 : 0] data_in which is the 4-bit data input, and an output data_out

Implementation:

Design.sv

Top Level module(opcode,reg_num,dina,clka,addra) declares a Verilog module with inputs as input opcode which refers to a 2 bit number to select the operation to be performed, a 3 bit input reg_num,a 4-bit data input, clock clk, and a 4-bit address register.We also define reg[3:0] regbank[0:7] which has 8 four bit registers.

When the opcode is set to :->

2'b00: it triggers the first operation which reads a 4-bit data and stores it into a specified memory location with a 4-bit address.

Therefore, read signal ena and write signal wea are set to 1, and dina is set to the 4 bit data input

2'b01: It triggers the second operation which states, given a register number and a memory address, transfer data from register to memory.

Therefore, read signal ena write signal wea are set to 1, and inp=regbank[reg_num];

2'b10: It triggers the third operation which states, given a register number and a memory address, transfer the data from memory to register.

Therefore, only the read signal is set to 1 and regbank[reg_num]=douta is done.

2'b11: It triggers the fourth operation which states, given a memory address, display the contents of the memory location.

Therefore we set read input to 1, and display the data output from dout as \$display(\$time," dout is %d",douta)

TestBench.sv

Test Case 1:

func=0, address =1, data_in=4 (data_in stored in memory address)

 In this step we are storing the value of data_in i.e 4 in the specified memory i.e address 1

Test Case 2:

func=3.

• In this step we are displaying the content of the memory location, and since the address is still one, the contents we have just put in data in will be displayed

Test Case 3:

func=2, reg_num=1 (transfer data from memory to register)

• In this step we transfer the memory form the memory address which is 1 to the specified register number which is 1

Test Case 4:

func=1, address=5, reg_num=1 (transfer data from register to memory)

• In this step we transfer the memory form the reg_num to the corresponding memory location address which is 5

Test Case 5:

func=3, address=5

• In this step we are going to display the contents in the memory location address which is 5, since we have transferred the register memory into the memory address 5 in the previous step, that will be displayed.