My Project

Generated by Doxygen 1.8.9.1

Tue May 5 2015 15:51:30

Contents

1	1 Hierarchical Index			
	1.1	Class Hierarchy	1	
2	Class	s Index	3	
	2.1	Class List	3	
3	Class	s Documentation	5	
	3.1	ChainBinomial_Sim Class Reference	5	
	3.2	compTime Class Reference	6	
	3.3	Deterministic_Network_SIR_Sim Class Reference	6	
	3.4	DiffEq_Sim Class Reference	7	
	3.5	Edge Class Reference	7	
	3.6	Event Class Reference	8	
	3.7	Gillespie_MassAction_Sim Class Reference	9	
	3.8	Gillespie_Network_SEIRS_Sim Class Reference	9	
	3.9	Intervention Class Reference	10	
	3.10	MTRand Class Reference	10	
	3.11	Network Class Reference	11	
	3.12	Node Class Reference	13	
	3.13	Opinion_formation Class Reference	14	
	3.14	Percolation_Sim Class Reference	14	
	3.15	RPlot Class Reference	15	
	3.16	Simulator Class Reference	16	
	3.17	SIR Class Reference	16	
	3.18	Trigger Class Reference	17	
	3.19	Yseries Class Reference	17	
Inc	lex		19	

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

complime	6
DiffEq_Sim	7
Deterministic_Network_SIR_Sim	. 6
SIR	. 16
Edge	7
Event	8
Gillespie_MassAction_Sim	9
Gillespie_Network_SEIRS_Sim	9
Intervention	10
MTRand	10
Network	11
Node	13
RPlot	15
Simulator	16
ChainBinomial_Sim	. 5
Opinion_formation	. 14
Percolation_Sim	. 14
Trigger	17
Vseries	17

2 **Hierarchical Index**

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ChainBinomiai_Sim	5
compTime	6
Deterministic_Network_SIR_Sim	6
DiffEq_Sim	7
Edge	7
Event	8
Gillespie_MassAction_Sim	9
Gillespie_Network_SEIRS_Sim	9
Intervention	10
MTRand	10
Network	11
Node	13
Opinion_formation	14
Percolation_Sim	14
RPlot	15
Simulator	16
SIR	16
Trigger	17
Vseries	17

Class Index

Chapter 3

Class Documentation

3.1 ChainBinomial_Sim Class Reference

Inheritance diagram for ChainBinomial_Sim:

Public Member Functions

- ChainBinomial_Sim (Network *net, int infectious_period, double T)
- void set_network (Network *net)
- void set_infectious_period (int d)
- void set_transmissibility (double t)
- vector< double > define_time_dist ()
- int get_infectious_period ()
- double get_transmissibility ()
- vector < Node * > rand_infect (int n)
- void infect_node (Node *node)
- void step_simulation ()
- void run_simulation ()
- void add_event (Node *sink_node, int time, Node *source_node)
- int count_infected ()
- int epidemic_size ()
- vector< int > get_epi_curve ()
- vector< int > get_prevalence_curve ()
- vector< pair< int, Node * > > get_detailed_epi_curve ()
- · void reset ()
- void summary ()

Public Attributes

- double T
- int infectious_period

Protected Attributes

- list < Node * > infected
- vector < Node * > recovered
- vector< double > time_dist
- bool update_time_dist
- priority_queue < Event, vector < Event >, compTime > transmissionQ
- vector< int > epi_curve
- vector< pair< int, Node * > > detailed_epi_curve

The documentation for this class was generated from the following file:

· ChainBinomial Sim.h

3.2 compTime Class Reference

Public Member Functions

- bool operator() (const Event *lhs, const Event *rhs) const
- bool operator() (const Event &lhs, const Event &rhs) const
- bool operator() (const Event *lhs, const Event *rhs) const
- bool operator() (const Event &lhs, const Event &rhs) const
- bool operator() (const Event *lhs, const Event *rhs) const
- bool operator() (const Event &lhs, const Event &rhs) const

The documentation for this class was generated from the following files:

- · ChainBinomial Sim.h
- · Gillespie_MassAction_Sim.h
- Gillespie_Network_SEIRS_Sim.h

3.3 Deterministic_Network_SIR_Sim Class Reference

Inheritance diagram for Deterministic_Network_SIR_Sim:

- **Deterministic_Network_SIR_Sim** (double r_param, double mu_param, vector< double > deg_dist_param)
- void initialize (double theta, double pS, double pI, double I)
- double current_susceptible ()
- double current_infectious ()
- double current recovered ()
- double g (double theta)
- double dg (double theta)
- double ddg (double theta)
- void derivative (double const y[], double dydt[])

Additional Inherited Members

The documentation for this class was generated from the following file:

• Deterministic_Network_SIR_Sim.h

3.4 DiffEq_Sim Class Reference

Inheritance diagram for DiffEq Sim:

Public Member Functions

- void printY ()
- vector< double > **get_state** ()
- double get_time ()
- virtual void initialize ()
- virtual void derivative (const double y[], double dydt[])
- int run_simulation ()
- int step_simulation (double stepsize)

Static Public Member Functions

• static int function (double t, double const y[], double dydt[], void *params)

Public Attributes

- int nbins
- double * y

The documentation for this class was generated from the following file:

• DiffEq_Sim.h

3.5 Edge Class Reference

- void delete_edge ()
- void disconnect_nodes ()
- int **get_id** ()
- double get cost ()
- Node * get_start ()
- Node * get_end ()
- Network * get_network ()

- void set_cost (double c)
- Edge * get_complement ()
- void swap_ends (Edge *other_edge)
- · void break end ()
- void define_end (Node *end_node)
- · bool is stub ()
- bool operator== (const Edge &e2)
- · void dumper ()

Friends

- · class Network
- · class Node
- ostream & operator << (ostream &out, Edge *edge)

The documentation for this class was generated from the following files:

- · Network.h
- · Network.cpp

3.6 Event Class Reference

Public Member Functions

- Event (const Event &o)
- Event (Node *sink, int t, Node *source)
- Event & operator= (const Event &o)
- Event (const Event &o)
- Event (double t, char e)
- Event & operator= (const Event &o)
- Event (const Event &o)
- Event (double t, char e, Node *n)
- Event & operator= (const Event &o)

Public Attributes

- Node * sink_node
- int time
- Node * source_node
- · double time
- · char type
- Node * node

The documentation for this class was generated from the following files:

- · ChainBinomial_Sim.h
- · Gillespie_MassAction_Sim.h
- Gillespie_Network_SEIRS_Sim.h

3.7 Gillespie_MassAction_Sim Class Reference

Public Member Functions

- Gillespie MassAction Sim (int n, double gamma, double beta)
- void run_simulation ()
- int epidemic_size ()
- int reset ()
- void rand_infect (int k)
- void infect ()
- bool is_susceptible (int x)
- int next event ()
- void add_event (double time, char type)

Public Attributes

- int **N**
- · double GAMMA
- double BETA
- priority_queue < Event, vector < Event >, compTime > EventQ
- vector< int > Compartments
- · double Now
- MTRand mtrand

The documentation for this class was generated from the following file:

· Gillespie_MassAction_Sim.h

3.8 Gillespie_Network_SEIRS_Sim Class Reference

Public Types

```
    enum stateType {
    SUSCEPTIBLE, EXPOSED, INFECTIOUS, RESISTANT,
    STATE SIZE }
```

- Gillespie_Network_SEIRS_Sim (Network *net, double m, double b, double g, double im_dur)
- void run_simulation (double duration)
- int current_epidemic_size ()
- int reset ()
- vector < Node * > rand_choose_nodes (int n)
- void rand_infect (int n)
- void infect (Node *node)
- int next_event ()
- void add_event (double time, char type, Node *node)

Public Attributes

- Network * network
- double **mu**
- · double beta
- · double gamma
- double immunity_duration
- priority_queue < Event, vector < Event >, compTime > EventQ
- vector< int > state_counts
- · double Now
- MTRand mtrand

The documentation for this class was generated from the following file:

• Gillespie_Network_SEIRS_Sim.h

3.9 Intervention Class Reference

The documentation for this class was generated from the following file:

· Intervention.h

3.10 MTRand Class Reference

Public Types

- enum { **N** = 624 }
- enum { **SAVE** = N + 1 }
- typedef unsigned long uint32

- MTRand (const uint32 &oneSeed)
- MTRand (uint32 *const bigSeed, uint32 const seedLength=N)
- double rand ()
- double rand (const double &n)
- double randExc ()
- double randExc (const double &n)
- double randDblExc ()
- double randDblExc (const double &n)
- uint32 randInt ()
- uint32 randInt (const uint32 &n)
- double operator() ()
- double rand53 ()
- double randNorm (const double &mean=0.0, const double &std_dev=1.0)
- void **seed** (const uint32 oneSeed)
- void seed (uint32 *const bigSeed, const uint32 seedLength=N)
- void seed ()
- void save (uint32 *saveArray) const
- void load (uint32 *const loadArray)

Protected Types

• enum { **M** = 397 }

Protected Member Functions

- void initialize (const uint32 oneSeed)
- void reload ()
- · uint32 hiBit (const uint32 &u) const
- uint32 loBit (const uint32 &u) const
- · uint32 loBits (const uint32 &u) const
- uint32 mixBits (const uint32 &u, const uint32 &v) const
- uint32 twist (const uint32 &m, const uint32 &s0, const uint32 &s1) const

Static Protected Member Functions

• static uint32 hash (time_t t, clock_t c)

Protected Attributes

- uint32 state [N]
- uint32 * pNext
- int left

Friends

- std::ostream & operator<< (std::ostream &os, const MTRand &mtrand)
- std::istream & operator>> (std::istream &is, MTRand &mtrand)

The documentation for this class was generated from the following file:

· MersenneTwister.h

3.11 Network Class Reference

Public Types

- enum netType { Undirected =0, Directed =1 }
- enum outputType { NodeNames =0, NodelDs =1 }

- Network (string name, netType directed)
- Network (const Network &net)
- Network * duplicate ()
- bool operator== (const Network &n2)
- int **get_id** ()
- string get_name ()
- int **size** ()
- bool has_unit_edges ()
- bool is_directed ()

```
• MTRand * get_rng ()
vector< Node * > get_nodes ()

    Node * get_node (int node_id)

• Node * get_node_by_name (string node_name)

    Node * get rand node ()

    vector< Edge * > get_edges ()

• Edge * get_edge (int id)

    vector< stateType > get_node_states ()

    void get_bad_edges (vector< Edge * > &self_loops, vector< Edge * > &multiedges)

    vector < Node * > get_component (Node *node)

    vector< vector< Node * > > get_components ()

    vector < Node * > get_biggest_component ()

    bool topology_altered ()

    Node * add new node ()

• void populate (int n)

    void add node (Node *node)

    void delete node (Node *node)

• bool all to all coupling ()

    bool erdos_renyi (double lambda)

    bool sparse_random_graph (double lambda)

    bool fast_random_graph (double lambda)

• bool ring lattice (int N, int K)
• bool square lattice (int R, int C, bool diag)

    bool small_world (int N, int K, double beta)

    bool rand connect poisson (double lambda)

    bool rand_connect_powerlaw (double alpha, double kappa)

• bool rand_connect_exponential (double lambda)

    bool rand_connect_user (vector< double > dist)

    bool rand_connect_explicit (vector< int > deg_series)

    bool rand_connect_stubs (vector< Edge * > stubs)

    bool lose_loops ()

• void clear nodes ()
• void clear_edges ()

    void disconnect edges ()

    bool shuffle_edges (double frac)

    void set_node_states (vector< stateType > &states)

• void initialize (double mean coupling, double var coupling, double mean preference, double var ~
 preference, double mean_initial_state)

    void set_topology_altered (bool flag)

    void read_edgelist (string filename, char sep= ',')

    void write_edgelist (string filename, outputType names or ids, char sep= ',')

    void graphviz (string filename)

• void dumper ()

    bool gen_deg_series (vector < int > &deg_series)

    vector< stateType > get_states ()

    vector< vector< stateType > > get_states_by_degree ()

• double get coarse state ()

    bool validate ()

- vector< int > get_deg_series ()
vector< int > get_deg_dist ()

    vector< double > get_gen_deg_dist ()

• double mean deg ()

    map < Node *, int > k shell decomposition ()

• double transitivity ()

    double transitivity (vector < Node * > node_set)
```

3.12 Node Class Reference 13

- bool is_weighted ()
- double mean_dist (vector < Node * > node_set)
- void calculate_distances (vector < Node * > &destinations, vector < vector < double > > &distances)
- void print_distances (vector < Node * > &full_node_set)
- void stop_processing ()
- void reset_processing_flag ()

Friends

- · class Node
- · class Edge

The documentation for this class was generated from the following files:

- · Network.h
- · Network.cpp

3.12 Node Class Reference

- bool is_stopped ()
- void delete_node()
- void set_network (Network *network)
- int **get_id** ()
- string get_name ()
- Network * get_network ()
- vector< Edge * > get_edges_in ()
- vector< Edge * > get_edges_out ()
- vector< double > get_loc ()
- stateType get_state ()
- double **get_coupling** ()
- double **get_preference** ()
- double get_utility ()
- void set_loc (const vector< double > &newloc)
- void **set_state** (stateType s)
- void set_coupling (double c)
- void **set_preference** (double p)
- double mean_min_path ()
- vector< double > min_paths (vector< Node * > &node_set)
- void add_stubs (int deg)
- Edge * get_rand_edge ()
- vector < Node * > get_neighbors ()
- double get neighbors state ()
- void update_utility_function ()
- bool is_neighbor (Node *node2)
- void connect_to (Node *end)
- bool change_neighbors (Node *old_neighbor, Node *new_neighbor)
- bool operator== (const Node &n2)
- void dumper ()
- double min_path (Node *dest)
- Edge * add_stub_out ()
- string get_name_or_id ()
- int **deg** ()

Friends

- · class Network
- · class Edge
- ostream & operator<< (ostream &out, Node *node)

The documentation for this class was generated from the following files:

- · Network.h
- · Network.cpp

3.13 Opinion_formation Class Reference

Inheritance diagram for Opinion_formation:

Public Member Functions

- Opinion_formation (Network *net, string &filename)
- Opinion_formation (vector< Network * > net_list, string &filename)
- void time_step ()
- void run_simulation (int max_time)
- void reset ()
- void summary ()

Public Attributes

ofstream outfile

Protected Attributes

• double beta =10

The documentation for this class was generated from the following file:

· Opinion_formation.h

3.14 Percolation_Sim Class Reference

Inheritance diagram for Percolation_Sim:

3.15 RPlot Class Reference 15

Public Types

enum stateType { S =0, I =1, R =-1 }

Public Member Functions

- Percolation_Sim (Network *net)
- · void set_transmissibility (double t)
- double expected_R0 ()
- vector < Node * > rand_infect (int n)
- void step_simulation ()
- void run_simulation ()
- int count_infected ()
- int epidemic_size ()
- void reset ()
- void summary ()

Public Attributes

· float T

Protected Attributes

```
    vector < Node * > infected
```

vector < Node * > recovered

The documentation for this class was generated from the following file:

· Percolation Sim.h

3.15 RPlot Class Reference

Public Member Functions

- void define_header (string h)
- void **define_footer** (string f)
- void define (string par, double val)
- void **define** (string par, string val)
- void $\mathbf{set}_{\mathbf{x}}$ (vector< double > x)
- void set_y (vector< double > y, string color="1", string pch="1", string type="p")
- void add_y (vector< double > y, string color="1", string pch="1", string type="p")
- int **pdf** (string filename, double width=10, double height=7.5)
- int png (string filename, double width=1000, double height=750)
- int _plotter (string plot_type, string filename, double width, double height)
- void write_datafile (string filename)
- string xlim (vector< double > X, vector< Yseries * > Y)
- string ylim (vector< double > X, vector< Yseries * > Y)
- vector< double > $determine_limits$ (vector< Yseries * > Y)

The documentation for this class was generated from the following file:

RPlot.h

3.16 Simulator Class Reference

Inheritance diagram for Simulator:

Public Member Functions

- Simulator (Network *net, string fname)
- Simulator (vector< Network * > net_list, string fname)
- void set_network (Network *net)
- Network * network ()
- int get_time ()
- void reset_time ()
- void **set_all_nodes_to_state** (stateType s)
- void set_these_nodes_to_state (vector < Node * > nodes, stateType s)
- vector < Node * > rand_choose_nodes (int n)
- vector < Node * > rand_set_nodes_to_state (int n, stateType state)
- virtual void time_step ()
- virtual void run_simulation ()
- virtual int count_infected ()
- · virtual void reset ()

Public Attributes

- int time
- Network * net
- MTRand * mtrand
- vector< Network * > net_list
- · string fname

Protected Attributes

• time_t starttime

The documentation for this class was generated from the following file:

· Simulator.h

3.17 SIR Class Reference

Inheritance diagram for SIR:

Public Member Functions

- **SIR** (double b, double g)
- void initialize (double S, double I, double R)
- void derivative (double const y[], double dydt[])

Additional Inherited Members

The documentation for this class was generated from the following file:

• SIR_Sim.h

3.18 Trigger Class Reference

The documentation for this class was generated from the following file:

· Intervention.h

3.19 Yseries Class Reference

Public Member Functions

- Yseries (vector< double > d, string c, string p, string t)
- int size ()
- vector< double > data ()
- double data (int i)
- string col ()
- string pch ()
- string type ()

Public Attributes

- vector< double > **D**
- string C
- string P
- string T

The documentation for this class was generated from the following file:

• RPlot.h

Index

```
ChainBinomial_Sim, 5
compTime, 6
Deterministic_Network_SIR_Sim, 6
DiffEq_Sim, 7
Edge, 7
Event, 8
Gillespie_MassAction_Sim, 9
Gillespie_Network_SEIRS_Sim, 9
Intervention, 10
MTRand, 10
Network, 11
Node, 13
Opinion\_formation,\, \color{red} \textbf{14}
Percolation_Sim, 14
RPlot, 15
SIR, 16
Simulator, 16
Trigger, 17
Yseries, 17
```