例 1. 某厂用单程列管式换热器每小时冷凝 2000 kg 的甲苯蒸汽,冷凝温度为 110° C,潜热为 360 kJ/kg,甲苯蒸汽冷凝传热系数 α_1 为 10000 W/(m^2 ·K)。冷却 水以 4500 kg/h 的流量于 15° C进入管内作湍流流动,其对流传热系数 α_2 为 1500 W/(m^2 ·K)。按平壁计算且管壁热阻和污垢热阻忽略不计,水的比热为 4.18 kJ/(kg·K)。试求: (1) 冷却水出口温度 t_2 ; (2) 传热面积 A; (3) 若将原换热器改为双管程,总传热系数 K 变为多少?

解: (1)
$$Q = q_{m1}r = q_{m2}c_{n2}(t_2 - t_1)$$

$$t_2 = t_1 + \frac{q_{m1}r}{q_{m2}c_{p2}} = 15 + \frac{2000 \times 360 \times 10^3}{4500 \times 4.18 \times 10^3} = 53.28^{\circ}C$$

(2)
$$Q = q_{m1}r = \frac{2000}{3600} \times 360 \times 10^3 = 2 \times 10^5 W$$

$$\Delta t_{\rm m} = \frac{(T - t_1) - (T - t_2)}{\ln \frac{T - t_1}{T - t_2}} = \frac{(110 - 15) - (110 - 53.28)}{\ln \frac{110 - 15}{110 - 53.28}} = 74.22^{\circ} \text{C}$$

$$K = \frac{1}{\frac{1}{\alpha_1} + \frac{1}{\alpha_2}} = \frac{1}{\frac{1}{10000} + \frac{1}{1500}} = 1304 \text{W/m}^2 \cdot \text{K}$$

$$Q = KA\Delta t_{\rm m}$$

$$A = \frac{Q}{K\Delta t_{m}} = \frac{2 \times 10^{5}}{1304 \times 74.22} = 2.07m^{2}$$

(3)
$$\alpha_2' = 2^{0.8} \alpha_2 = 2^{0.8} \times 1500 = 2612 \text{W/(m}^2 \cdot \text{K)}$$

$$K' = \frac{1}{\frac{1}{\alpha_1} + \frac{1}{\alpha_2}'} = \frac{1}{\frac{1}{10000} + \frac{1}{2612}} = 2071 \text{W/m}^2 \cdot \text{K}$$

例 2. 冷流体在传热面积为 $5m^2$ 的换热器中逆流换热。热流体进、出口温度分别为 100° C和 50° C,比热 1.86kJ/(kg·K),冷流体进、出口温度分别为 20° C和 40° C,比热 4.18kJ/(kg·K),流量为 0.4kg/s。热流体侧给热系数 α 为 400 W/(m2·K)。按平壁计算且不计管壁热阻及污垢热阻。试求:(1)热流体流率(2)冷流体侧给热系数(3)该换热器的传热效率(仅化工专业做第三问)。

解:

(1)

$$q_{m1}cp_1(T_1 - T_2) = q_{m2}cp_2(t_2 - t_1)$$
$$q_{m1} = \frac{0.4 \times 4.18 \times 20}{1.86 \times 50} = 0.36kg/s$$

(2)

 $Q = 0.4 \times 4.18 \times 20 = 33.44 \text{kJ/s}$

$$\Delta t_m = rac{60-30}{lnrac{60}{30}} = 43.2~{}^{\circ}{
m C}$$

$$K = \frac{Q}{A\Delta t_m} = \frac{33.44}{5 \times 43.2} = 155 \ W/(m^2 \text{°C})$$

$$\frac{1}{K} = \frac{1}{\alpha_1} + \frac{1}{\alpha_2}$$

$$\frac{1}{\alpha_2} = \frac{1}{K} - \frac{1}{\alpha_1} = 0.00395$$

$$\alpha_2 = 253 \ W/(m^2 ^{\circ} \text{C})$$

(3)

$$\frac{q_{m1}cp_1}{q_{m2}cp_2} = \frac{T_2 - t_1}{T_1 - T_2} = \frac{40 - 20}{100 - 50} = \mathbf{0}.\,\mathbf{4}$$

$$\varepsilon_1 = \frac{T_1 - T_2}{T_1 - t_1} = \frac{50}{80} = 0.625$$

例 3. 在传热面积 5 ㎡的套管换热器内,热流体的比热 1860J/(kg.K),流量 0.62kg/s,从 80°C冷却到 40°C。冷却水从 20°C升到 35°C,比热 $4180\,J/(kg.K)$,逆流操作。热流体的对流传热系数 α $2=400W/(m^2~K)$,按平壁计算,不计热损,不计管壁及污垢热阻。试求:冷却水用量;总传热系数;水的对流传热系数 α 1=? $W/(m^2~K)$ 。

解: (1) $Q = G_{th}C_{th}(T_1 - T_2) = 0.62 \times 1860 \times (80 - 40) = 46130 \text{ J/s}$

$$G_{\pm} = \frac{Q}{C_{\pm}(t_2 - t_1)} = \frac{46130}{4180 \times (35 - 20)} = 0.736 \text{ kg/s}$$

(2) 逆流 热流体
$$80^{\circ}$$
 \longrightarrow 40° 水 35° \longleftarrow 20° \longrightarrow $\Delta t_1 = 45^{\circ}$ $\Delta t_2 = 20^{\circ}$

$$\Delta t_m = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{45 - 20}{\ln \frac{45}{20}} = 30.8 \, \text{C}$$

$$K = \frac{Q}{A\Delta t_m}$$

$$= \frac{46130}{5 \times 30.8} = 300 \qquad W / m^2 K$$

$$(3) \qquad \frac{1}{K} = \frac{1}{\alpha_1} + \frac{1}{\alpha_2}$$

$$\alpha_1 = \frac{1}{\frac{1}{K} - \frac{1}{\alpha_2}} = \frac{\alpha_2 K}{\alpha_2 - K} = 1200 \text{ W/m}^2 \cdot \text{K}$$

小	题:											
1,	若对	流传热	热系数 α	₂ <<α ₁ ,	提高	i,	才能	有效	的提高。	总传热系	系数 K 化	直。
2,	多层	圆筒星	達在稳定	导热时	 ,各	层的热	·流量_		,	热通量_	通量	
	A	相同	,相同	В	相同,	不同	C	不	同,相同	i) D	不同,	不同
3、	用冷	却水料	8一定量	的热流	体由	100℃	冷却3	₹ 40	℃,冷却	水初温	. 10°C,	设计列
管	式换热	热器时	采用两种	中方案	: I 涔	却水约	冬温 30)°C;	II 冷却	水终温	35℃。	两种方
案	比,月	用水量	W1		W2,	所需作	专热面	积 A	.1	A2	,	
A	大于	· , 大	于 B	大于,	小于	- (八小子	÷, ,	大于	D 小	F,小=	F
4、	在一	双管和	呈列管换	热器中	,壳	程 110)℃的作	包和	水蒸气料	冷凝成 同	温度的	J水,将
空	气由?	20℃加	1热到 80	℃。则	抄热	器第一	一管程!	出口	温度为_		°	
		A.	60°C		B. 3	58℃		C.	55℃	Ι). 50°	C
		Α.	20℃		В.	58℃		C.	70℃	Ι). 80°	C
1,	α_2											
2、	В											

3, B

4, B