CIS260-201/204-Spring 2008

LATEX Symbol Set #4

Friday, February 15

1 Symbols

There are not many symbols this week, but typesetting tricks will be given in Examples.

Symbol	I₄T _E X Code
$\binom{n}{k}$	<pre>{n \choose k}</pre>
${\mathcal P}$	\mathcal P
∞	\infty
$\sqrt{2}$	\sqrt{2}

2 Examples

Expression	IAT _E X Code
$\binom{n}{k} = \frac{n!}{k!(n-k)!}$	{n\choose k}=\frac{n!}{k!(n-k)!}
$ \mathbb{N} = \infty$	\mathbb N =\infty
x R y	x _R_y
$x \not R y$	x\not\!\!R_y
$[(x+y)^2+50]>0$	\left[(x+y)^2+50\right]>0
$(2^2)^2 = 2^4 = 16$	\left(2^2\right)^2=2^4=16
$\left(\left(2^2 \right)^2 \right)^2 = 2^8 = 256$ $\sqrt[3]{2} \sqrt[n]{4}$	\left(\left(2^2\right)^2\right)^2=2^8=256
$\sqrt[3]{2}\sqrt[n]{4}$	\sqrt[3]{2}\sqrt[n]{4}

Remark: _ denotes a space.

3 Exercises

Try typesetting these statements.

1.
$$(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

2.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

3.
$$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

4.
$$2^{\frac{4}{3}} = \sqrt[3]{16} = 2\sqrt[3]{2}$$

5.
$$\left| \left\{ x^2 \left[x^3 \left(x^4 \right)^5 \right]^6 \right\}^7 \right| = \left| x^{980} \right|$$