LES SUITES NUMÉRIQUES E03C

EXERCICE N°3 Suite arithmétique et formule explicite : départ à 1

- (u_n) est la suite arithmétique de premier terme $u_1 = -80$ et de raison r = 10.
- 1) Pour tout entier nature $n \neq 0$, exprimer u_{n+1} en fonction de u_n .

Pour $n \in \mathbb{N}^*$, $u_{n+1} = u_n + 10$

« * » pour enlever 0.

- 2) Calculer les termes u_2 , u_3 et u_4 .
- $u_2 = u_1 + r = -80 + 10$, ainsi $u_2 = -70$
- $u_3 = u_2 + r = -70 + 10$, ainsi $u_3 = -60$
- $u_4 = u_3 + r = -60 + 10$ ainsi $u_4 = -50$
- 3) Pour tout entier $n \neq 0$, exprimer u_n en fonction de n.

Pour $n \in \mathbb{N}^*$, $u_n = u_1 + 10(n-1)$

On commence à 1 donc on enlève 1

$$u_n = -80 + 10(n-1)$$

- 4) Donner alors les valeurs de u_7 , u_{10} et u_{14} .
- $u_7 = -80 + 10 \times (7 1)$, ainsi $u_7 = -20$
- $u_{10} = -80 + 10 \times (10 1)$, ainsi $u_{10} = 10$
- $u_{14} = -80 + 10 \times (14 1)$, ainsi $u_{14} = 50$
- 5) Quel est le rang du terme égal à 80 ? Justifier.

Notons *n* le rang cherché,

$$u_n = 80 \Leftrightarrow -80 + 10(n-1) = 80 \Leftrightarrow 10(n-1) = 160 \Leftrightarrow n = 17$$

Ainsi $u_{17} = 80$ donc le rang cherché est 17.