

Model Optimization and Tuning Phase

Date	2 July 2024
Team ID	740147
Project Title	Power Consumption Analysis for Households
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Linear Regression	-	-
Random Forest Regressor	-	-
Decision Tree Regressor	-	-
XGBoost Regressor	-	-

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric
Linear Regression	<pre>#checking the metrics from sklearn import metrics MSE = metrics.mean_squared_error(y_test, pred) print('The MSE value:', MSE) RMSE = np.sqrt(metrics.mean_squared_error(y_test, pred)) print('The RMSE value:', RMSE) MAE = metrics.mean_absolute_error(y_test, pred) print('The MAE value:', MAE) R2 = metrics.r2_score(y_test, pred)*100 print('The R2 Value:', R2)</pre>
	The MSE value: 0.0018226463072696967 The RMSE value: 0.042692461949033776 The MAE value: 0.027455608456450082 The R2 Value: 99.83631695586827
Random Forest Regressor	<pre>#checking the metrics mse1 = metrics.mean_squared_error(y_test, prediction) print("The MSE value:",mse1) rmse1 = np.sqrt(metrics.mean_squared_error(y_test, prediction)) print("The RMSE value:",rmse1) mae1 = metrics.mean_absolute_error(y_test, prediction) print("The MAE value:",mae1) r2 = metrics.r2_score(y_test, prediction)*100 print("The R2:",r2)</pre>
	The MSE value: 0.0012603120293811943 The RMSE value: 0.03550087364250624 The MAE value: 0.021363940431370586 The R2: 99.88681747594026


```
Decision Tree
                      mse2 = metrics.mean_squared_error(y_test, y_pred)
Regressor
                      print("The MSE value:",mse1)
                      rmse2 = np.sqrt(metrics.mean_squared_error(y_test, y_pred))
                      print("The RMSE value",rmse1)
                      mae2 = metrics.mean_absolute_error(y_test, y_pred)
                      print("The MAE value:",mae2)
                      r2score = metrics.r2_score(y_test,y_pred)*100
                      print("The R2 value:",r2score)
                      The MSE value: 0.0012603120293811943
                      The RMSE value 0.03550087364250624
                      The MAE value: 0.02275384562302618
                      The R2 value: 99.85924226739422
XGBoost
                      mse3= metrics.mean_squared_error(y_test, y_pred)
Regressor
                      print("The MSE value:",mse3)
                      rmse3 = np.sqrt(metrics.mean_squared_error(y_test, ypred))
                      print("The RMSE values:",rmse3)
                      mae3 = metrics.mean_absolute_error(y_test, ypred)
                      print("The MAE value:",mae3)
                      r2 Score = metrics.r2 score(y test, ypred)*100
                      print("The R2: value", r2_Score)
                      The MSE value: 0.001567367975800379
                      The RMSE values: 0.033831248936509274
                      The MAE value: 0.020863928648037145
                      The R2: value 99.89721319781589
```

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The Extreme Gradient Boost Regression is the final model chosen
	because of its best overall performance compared to the other models.
	It captures the variance in the data very well with minimal prediction
XGBoost Regressor	error. XGBoost can capture complex non-linear relationships.