Mantenimiento y Evolución del Software

M.I. Capel

ETS Ingenierías Informática y Telecommunicación Universidad de Granada Email: manuelcapel@ugr.es

Desarrollo de Software

Índice

- 1 Introducción
 - Tipos de sistemas y su mantenimiento
 - Mantenimiento de los sistemas software
 - Importancia de la gestión correcta en el tiempo
 - El Proceso de Cambio de un Sistema
 - Comportamiento evolutivo de los sistemas
 - Plan de Gestión de los cambios
 - Gerencia de los cambios
 - Actividades de Mantenimient
 - Mantenimiento y evolución
 - Tipos de mantenimiento
 - Planificación del mantenimiento
 - Predicción y evaluación del coste de mantenimiento
 - Evolución y calidad del software
 - Herramientas automáticas
 - Rejuvenecimiento del software
 - 4 Gestión de la Configuración
 - Conceptos fundamentales y estándares actuales

Índice

- 1 Introducción
 - Tipos de sistemas y su mantenimiento
 - Mantenimiento de los sistemas software
 - Importancia de la gestión correcta en el tiempo
- El Proceso de Cambio de un Sistema
 - Comportamiento evolutivo de los sistemas
 - Plan de Gestión de los cambios
 - Gerencia de los cambios
 - Actividades de Mantenimiento
 - Mantenimiento y evolución
 - Tipos de mantenimiento
 - Planificación del mantenimiento
 - Predicción y evaluación del coste de mantenimiento
 - Evolución y calidad del software
 - Herramientas automáticas
 - Rejuvenecimiento del software
 - Gestión de la Configuración
 - Conceptos fundamentales y estándares actua

Índice

- 1 Int
 - Introducción
 - Tipos de sistemas y su mantenimiento
 - Mantenimiento de los sistemas software
 - Importancia de la gestión correcta en el tiempo
- 2
 - El Proceso de Cambio de un Sistema
 - Comportamiento evolutivo de los sistemas
 - Plan de Gestión de los cambios
 - Gerencia de los cambios
- 3 Acti

Actividades de Mantenimiento

- Mantenimiento y evolución
- Tipos de mantenimiento
- Planificación del mantenimiento
- Predicción y evaluación del coste de mantenimiento
- Evolución y calidad del software
- Herramientas automáticas
- Rejuvenecimiento del software
- Gestión de la Configuración
- Concentos fundamentales

Índice

- 1 Introducción
 - Tipos de sistemas y su mantenimiento
 - Mantenimiento de los sistemas software
 - Importancia de la gestión correcta en el tiempo
- 2 El Proceso de Cambio de un Sistema
 - Comportamiento evolutivo de los sistemas
 - Plan de Gestión de los cambios
 - Gerencia de los cambios
- Actividades de Mantenimiento
 - Mantenimiento y evolución
 - Tipos de mantenimiento
 - Planificación del mantenimiento
 - Predicción y evaluación del coste de mantenimiento
 - Evolución y calidad del software
 - Herramientas automáticas
 - Rejuvenecimiento del software
 - Gestión de la Configuración
 - Conceptos fundamentales y estándares actuales

T<mark>ipos de sistemas y su mantenimiento</mark> Mantenimiento de los sistemas software Importancia de la gestión correcta en el tiempo

Mantenimiento

Definición

"Cualquier trabajo hecho para cambiar el sistema después de ponerlo en operación"

- El software no se degrada ni necesita de un mantenimiento "físico" periódico, como otras obras de ingeniería
- Sin embargo, el software está en continua evolución y el proceso de su mantenimiento puede ser muy difícil

T<mark>ipos de sistemas y su mantenimiento</mark> Mantenimiento de los sistemas software Importancia de la gestión correcta en el tiempo

Mantenimiento

Definición

"Cualquier trabajo hecho para cambiar el sistema después de ponerlo en operación"

- El software no se degrada ni necesita de un mantenimiento "físico" periódico, como otras obras de ingeniería
- Sin embargo, el software está en continua evolución y el proceso de su mantenimiento puede ser muy difícil

M.I.Capel Tema 5 3/83 3 /83

Evolución de un sistema software

Aspectos a tratar

- Las funciones diarias del sistema.
- Las modificaciones del sistema
- Perfeccionamiento de su funcionalidad
- Conservación de los niveles de desempeño del sistema

Fi<mark>pos de sistemas y su mantenimiento</mark> Mantenimiento de los sistemas software mportancia de la gestión correcta en el tiempo

Mantenimiento de sistemas hard y soft

Sistemas Software

Se diseñan e implementan para que se incorporen cambios a lo largo de todo su ciclo de vida, a diferencia de los sistemas hardware—exclusivos

Mutabilidad de los sistemas

- Alta si los requerimientos del sistema son muy dependientes del contexto de ejecución del sistema
- Dependencia con el tipo de sistema: S, P, o E

M.I.Capel Tema 5 5/83 5/83

T<mark>ipos de sistemas y su mantenimiento</mark> Mantenimiento de los sistemas software Importancia de la gestión correcta en el tiempo

Diferencias entre mantenimiento y desarrollo de software

Control de los Cambios

- Los cambios afectan a etapas del ciclo anteriores y posteriores a la actual
- Modularización de componentes de código
- Trazabilidad de los requerimientos hacia/desde las pruebas
- Aplicación de los principios de la IS
- El costo del ciclo de vida de un sistema se incrementa con el paso del tiempo
- Comportamiento evolutivo de los sistemas software

Tipos de sistemas y su mantenimiento Mantenimiento de los sistemas software Importancia de la gestión correcta en el tiempo

Características del mantenimiento del software

Dificultades

- Un difícil mantenimiento tiene un impacto importante en los costes reales del software
- Novedad del software
- Plazo de vida del sistema
- Dependencia de entornos de ejecución cambiantes
- Calidad del diseño y del código

El esfuerzo de mantenimiento de un sistema software se puede modelar empíricamente

M.I.Capel Tema 5 7/83 7/83

Tipos de sistemas y su mantenimiento Mantenimiento de los sistemas software Importancia de la gestión correcta en el tiempo

Características del mantenimiento del software

Dificultades

- Un difícil mantenimiento tiene un impacto importante en los costes reales del software
- Novedad del software
- Plazo de vida del sistema
- Dependencia de entornos de ejecución cambiantes
- Calidad del diseño y del código

El esfuerzo de mantenimiento de un sistema software se puede modelar empíricamente

Fipos de sistemas y su mantenimiento Mantenimiento de los sistemas software mportancia de la gestión correcta en el tiempo

Medida y estimación del esfuerzo de mantenimiento

Facilidad de mantenimiento del software

- Se trata de un atributo externo del software
- Resultado de varios factores: calidad del código, especificación, diseño, documentación y plan de pruebas

Medidas

- Predicen la probabilidad de que un sistema sea fácil de mantener
- Se deberían proporcionar al cliente junto con el software

Tipos de sistemas y su mantenimiento Mantenimiento de los sistemas software Importancia de la gestión correcta en el tiempo

Medida y estimación del esfuerzo de mantenimiento

Facilidad de mantenimiento del software

- Se trata de un atributo externo del software
- Resultado de varios factores: calidad del código, especificación, diseño, documentación y plan de pruebas

Medidas

- Predicen la probabilidad de que un sistema sea fácil de mantener
- Se deberían proporcionar al cliente junto con el software

M.I.Capel Tema 5 8/83 8 /83

Tipos de sistemas y su mantenimiento Mantenimiento de los sistemas software Importancia de la gestión correcta en el tiempo

Gestión de Configuración del Sistema

Seguimiento de los cambios

- Cuanto más complejo es un sistema, los cambios producen mayor impacto en más componentes
- La gestión de la configuración (GC) de un sistema se convierte en una actividad crítica del mantenimiento del software

M.I.Capel Tema 5 9/83 9/83

Tipos de sistemas y su mantenimiento Mantenimiento de los sistemas software Importancia de la gestión correcta en el tiempo

Técnicas y herramientas de mantenimiento software

- Técnicas específicas:
 - Control de versiones
 - Análisis de impacto
 - Uso de herramientas-software

Introducción

El Proceso de Cambio de un Sistema Actividades de Mantenimiento Gestión de la Configuración Fipos de sistemas y su mantenimiento Mantenimiento de los sistemas software mportancia de la gestión correcta en el tiempo

Costes del Mantenimiento de Sistemas Software

Periodo	Desarrollo	Mantenimiento
años setenta	60%	40%
años ochenta	40%	60%
actualidad	20%	80%

Tipos de Sistemas I

Tipos de Sistemas II

Predisposición a los cambios de los sistemas

- Sistemas-S:
 - Improbabilidad de cambios en todas las fases del ciclo
 -Manipulación de matrices
- Sistemas-P:
 - Solución aproximada al problema que pretende resolver el sistema
 - -Programa para jugar al ajedrez
- Sistemas-E:
 - Naturaleza altamente mutable, que cambia con rapidez
 - Se han de incluir las mutaciones en el propio sistema para acomodar los frecuentes cambios
 - -Software que predice cómo funciona la Economía

Cambio en las actividades del proceso de desarrollo

Actividad que inicia cambios	Artefactos a cambiar
Análisis de requerimientos	Especificación de requerimientos
Diseño de sistemas	Especificación de diseño arquitectónico
	Especificación de diseño técnico
Diseño de programas	Especificación del diseño de programa
Implementación de programas	Código de programas
	Documentación de programas
Pruebas unitarias	Planificación de las pruebas
	Scripts con las pruebas(casos,suites,etc.)
Entrega del sistema	Documentación del usuario
	Documentación del operador
	Guía del usuario
	Guía del programador
	Clases de entrenamiento

Tabla: Actividades y artefactos que cambian

Control de costos asociados a los cambios

- Costos del ciclo de vida:
 - Tamaño del sistema
 - Recursos que gestiona el sistema
 - Complejidad del sistema
 - Comprensión del código
- Fácil instrumentación de los cambios si se siguen los principios de la IS

M.I.Capel

ema 5

15/8

Leyes de comportamiento evolutivo

Observación

Los sistemas software no evolucionan caóticamente, sino que siguen un comportamiento *previsible*

Leyes de Lehman de evolución del software

- Comportamiento evolutivo de los sistemas software
- Ley de Continuidad del Cambio
- Ley de Complejidad Creciente
- Ley Fundamental de la Evolución de un Programa
- Ley de Conservación de la Estabilidad Orgánica
- Ley de Conservación de la Familiaridad

्र 16/83

Procedimiento para decidir los cambios

Para decidir llevar a cambio un cambio en el sistema se ha de seguir un procedimiento sistemático de toma de decisiones

Figura: Determinación de la oportunidad de las cambios y cómo afectan a los requerimientos

El Plan de Control de Cambios

- Clase de elementos que componen el plan de control
- Quién toma la responsabilidad de los procedimientos y la creación de la Línea Base
- Políticas de control de cambios y versiones
- Almacenamiento de la información relevante
- Las herramientas que deberían ser usadas
- Proceso de uso de la herramienta.
- Base de datos de gestión de los cambios
- Información adicional

Línea Base I

Antecedentes

- Es un concepto que nos ayuda a controlar modificaciones en el sistema sin impedir que se lleven a cabo ningún cambio justificado
- El estándar IEEE 610.12-1990 define una línea base como:
 - Especificación o producto que se ha revisado formalmente
 - Existe acuerdo sobre el producto
 - Soporte para un desarrollo posterior de otro sistema
 - Puede cambiarse solamente a través de procedimientos establecidos

Gestión de la Configuración

Comportamiento evolutivo de los sistema Plan de Gestión de los cambios Gerencia de los cambios

Línea Base II

La Base de Datos de Configuración

- Mantiene toda la información relevante para gestionar la configuración de un sistema software
- Debería permitir consultas sobre las configuraciones:
 - ¿Quién tiene una versión particular del sistema?
 - ¿Qué plataforma es requerida para una versión particular?
 - ¿Qué versiones se ven afectadas por un cambio en el componente X?
 - ¿Cuántas fallas fueron informadas desde la distribución de la versión T?
- Debería estar unida indisociablemente al software que está siendo gestionado

Gerencia de los cambios en una organización

Tareas de mantenimiento

- La aceptación de nuevos requisitos para el software implica a varios niveles de la organización
- El equipo de mantenimiento finalmente decide si el cambio puede ser asumido a un coste razonable

Figura: Movimiento de los requisitos de mantentimiento a través de la organización

22/83

Comité de Gestión de Cambios

- Registra los síntomas en un formulario de solicitud de cambio.
- El cambio propuesto se informa al comité.
- 3 Discutir el problema y determinar el motivo del cambio
- Cuando se trata de un fallo del sistema, discute el origen probable del problema
- 5 El CCG asigna una prioridad o nivel de severidad a la solicitud
- El analista o programador designado localiza el origen del problema o los componentes involucrados
- El responsable de los cambios trabaja en colaboración con el administrador del sistema
- 8 El programador o analista archiva un informe de cambio

Formulario de Solicitud de Cambios

Proyecto	Número
Solicitante	Fecha
Cambio Solicitado	Urgencia, motivación
Analizador del cambio	Fecha de análisis
Componentes asociados	
Evaluación del cambio	Costos
Prioridad del cambio	
Implementación del cambio	
Esfuerzo estimado	
Fecha entrega	Fecha de decisión
al comité	del comité
Decisión del comité	
Implementador del cambio	Fecha del cambio
Fecha envío al QA	Decisión del QA
Fecha de envío a CM	
Comentarios	

Tabla: Formato de Solicitud de Cambio

antenimiento y evolución

Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas

Evolución del Ciclo de Mantenimiento

Figura: Primera versión de un sistema de software

antenimiento y evolución

Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas

Impacto del mantenimiento en la evolución de los sistemas software

Características mantenimiento vs. desarrollo de software

A diferencia de la actividad de *desarrollo*, en el mantenimiento de hay tener en cuenta etapas anteriores, actual y futura del ciclo del software

Actividades para controlar

- Funciones diarias
- Modificaciones
- Perfeccionar la funcionalidad
- Impedir la degradación en el desempeño

1) Q (3

M.I.Capel

Tema 5

26/83

antenimiento y evolución

Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas

Actividades del mantenimiento

Características

- Tiene relación con todas las fases del ciclo de vida:
 - Productos anteriores de desarrollo (anteriores)
 - Relación activa con usuarios, programadores y operadores (presente)
 - Anticiparse a fallos (futuro)
- Valoración del importante papel que juegan los programadores en el mantenimiento del sistema

M.I.Capel Tema 5 27/83 27/83

intenimiento y evolución

Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas

Evolución del Ciclo de Mantenimiento II

Figura: Extensión simple de un sistema de software

Condiciones

- Ninguno de los nuevos requerimientos afecta a la arquitectura software
- Fase de Elaboración reducida

M.I.Capel Tema 5 28/83 28/83

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas

Clasificación de los tipos de mantenimiento

Clasificación para sistemas software

- Mantenimiento correctivo
- Mantenimiento adaptativo
- Mantenimiento perfectivo
- Mantenimiento preventivo

M.I.Capel Tema 5 29/83 29/83

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas

Mantenimiento Correctivo

Características

- Objetivos
- Frecuencia
- Afectan a los requerimientos, diseño, código, pruebas y documentación
- Durabilidad de los cambios y reparaciones

M.I.Capel Tema 5 30/83 30 / 83

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas

Mantenimiento Adaptativo

Características

- Objetivos
- Frecuencia
- Durabilidad de los cambios y reparaciones

31/83

M.I.Capel Tema 5 31/83

Mantenimiento y evolución Tipos de mantenimiento Planificación del mantenimiento Predicción y evaluación del coste de mantenimiento Evolución y calidad del software Herramientas automáticas

Mantenimiento Perfectivo

Características

- Se buscan oportunidades de mejora del sistema
- No tiene por qué estar dirigido por la detección de fallos
- Puede afectar a la documentación del sistema, a las pruebas, al diseño y a la codificación

M.I.Capel Tema 5 32/83 32/83

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas

Evolución del Ciclo de Mantenimiento III

Figura: Mantenimiento perfectivo con cambios mínimos entre iteraciones

Mantenimiento Preventivo

Características

- Similar al preventivo, ha de involucrar también la modificación para prevenir fallos
- Frecuencia
- Anticipación

M.I.Capel

Mantenimiento y evolución ipos de mantenimiento Planificación del mantenimiento Predicción y evaluación del coste de mantenimiento Evolución y calidad del software derramientas automáticas

Evolución del Ciclo de Mantenimiento IV

Figura: Versión del mantenimiento con ciclos concurrentes

Condiciones

- Componentes altamente cohesivos y sin acoplamiento
- Reduce los tiempos de puesta en servicio

M.I.Capel Tema 5 35/83 35/83

Mantenimiento y evolución
ipos de mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y evaluación del coste de mantenimiento
Evolución y calidad del software
derramientas automáticas

Temporización de los tipos de mantenimiento

Antecedentes

- Varía mucho dependiendo del tipo de sistema y equipos implicados
- Lienz y Swanson (1981) realizaron un estudio de 487 organizaciones de proceso de datos

Tipo	Porcentaje	
Correctivo	21 %	
Adaptativo	25%	
Perfectivo	50%	
Preventivo	4%	

Tabla: Distribución del esfuerzo de mantenimiento

1 U P 1 UP P 1 E P 1 E P 2 V 1 C P

M.I.Capel

ema 5

Mantenimiento y evolución
Tipos de mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Pariumposimiento del coftware

Mantenimiento de Sistemas Muy Grandes

Estándar ISO/IEC-IEEE 12207

- Obtención de los requerimientos de mantenimiento
- Análisis del problema y de la modificación necesaria
- Transformación de los requisitos detectados en cambios
- Diseño de los cambios
- Implementación de los cambios
- Revisión y aceptación del mantenimiento
- Migración

M.I.Capel Tema 5 37/83 37/83

Ciclo de Mantenimiento de RUP

Rational Unified Process

- Implementación
- Pruebas
- O Despliegue del Sistema
- Configuración y Gerencia de Cambios (CGC)
- Gestión del Proyecto
- Entorno de ejecución

Mantenimiento y evolución
Tipos de mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Parius positivos de la coffuero

RUP (Rational Unified Process)

- Marco de trabajo para el proceso iterativo de desarrollo de software creado por "Rational Software Corporation" (IBM, 2003)
- Se trata de un marco de trabajo adaptable, por organizaciones que se dedican al desarrollo de software, según sus necesidades
- RUP es una implementación del Proceso Unificado (1251_bestpractices_TP026B)

M.I.Capel Tema 5 39/83 39/83

Mantenimiento y evolución
ipos de mantenimiento
l'Italificación del mantenimiento
redicción y evaluación del coste de mantenimiento
ivolución y calidad del software
lerramientas automáticas

Ciclo de Mantenimiento de RUP II

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Beijivenecimiento del software

Factores determinantes del costo del mantenimiento

- Impactan en el coste del mantenimiento:
 - Tipo de aplicación
 - Novedad del sistema
 - Plazo de vida del Sistema
 - Dependencia de un ambiente cambiante y del tipo de sistema
 - Características del hardware
 - Calidad del Diseño
 - Calidad del Código
 - Calidad de la Documentación
 - Calidad de las Pruebas
- Los costes de mantenimiento pueden haberse incrementado actualmente hasta el 80% del ciclo de vida

41/83

M.I.Capel

Tema 5

Mantenimiento y evolución
ripos de mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
derramientas automáticas
Rediuspencimiento del software

Predicción del coste de mantenimiento

El esfuerzo de mantenimiento se puede modelar para predecir su magnitud y el coste de llevarlo a cabo completamente

Modelo Predictivo de Belady-Lehman

- Deterioro de un sistema con el tiempo por las reparaciones y perfeccionamiento de su arquitectura y código
- Cuando se corrige, el sistema se vuelve más complejo:

$$M = p + K \times c - d \tag{0}$$

 Si un sistema se desarrolla sin los principios de la IS (alta complejidad) y el código es difícil de comprender (baja "'d"), los costes de mantenimiento aumentarán exponencialmente

M.I.Capel Tema 5 42/83 42/83

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Rejuvenecimiento del software

Predicción del coste de mantenimiento II

COCOMO II

Tamano = ASLOC(AA+SU+0.4DM+0.3CM+0.3IM)/100

- ASLOC: número de líneas de código fuente que han de adaptarse
- AA: esfuerzo de valoración y asimilación
- SU: cantidad de código que ha ser comprendido necesariamente
- DM: porcentaje del diseño que ha de ser modificado
- CM: porcentaje de código que ha de ser modificado
- IM: porcentaje de código externo que ha de ser integrado

M.I.Capel Tema 5 43/83 43/83

Esfuerzo de comprensión del software (COCOMO)

	Muy bajo	Bajo	Normal	Alto	Muy Alto
Estructura	Cohesión muy baja	Cohesión moderada	Bien estructurado	Alta cohesión	Alta modularidad
	Alto acoplamiento	Alto acoplamiento	Con áreas débiles	Bajo acoplamiento	ocultación inform.
Claridad	Falta correlación	Alguna	Moderada	Buena	Coinciden
aplicación-	programa y	correlación	correlación	correlación	aplicación
-programa	aplicación	con programa	con programa	con programa	-programa
Autocontenido	Código poco	Algún comentario	Moderada	Buena,	Código
	claro, sin	y cabeceras	calidad	útil docum.	y razón del
	documentación		documentación	áreas débiles	diseño
Incremento SU	50	40	30	20	10

Tabla: Valoración de la comprensión del código

M.I.Capel

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Reiuvenecimiento del software

Esfuerzo de evaluación y asimilación (COCOMO)

Incremento de	Nivel del esfuerzo	
Evaluación y	de Evaluación y	
Asimilación (AA)	Asimilación (AA)	
0	Ninguno	
2	Búsqueda componentes	
	y evaluación documentación	
6	Bastante prueba de componentes y	
	y evaluación de documentación	
8	Prueba extendida de componentes y	
	y evaluación de documentación	

Tabla: Valoración del esfuerzo de asimilación de un software

←□ → ←□ → ←필 → ←필 → ●

M.I.Capel Tema 5 45/83 45/83

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Reinvenacimiento del software

Medida de la facilidad de mantenimiento

Facilidad de mantenimiento

- Definición: "Tiempo medio para realizar la reparación de un software"
- Factores necesarios externos a evaluar:
 - Momento en que se dá parte del problema
 - Retrasos administrativos
 - Tiempo de análisis del problema
 - Tiempo para especificar los cambios
 - Tiempo necesario para hacer los cambios
 - Tiempo para probar los cambios
 - Tiempo para documentar los cambios
- Visión externa, deja cosas fuera

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Reinvenecimiento del software

Medida de la facilidad de mantenimiento II

Medidas aconsejadas después de los cambios

- Relación entre el tiempo total de implementación del cambio y la cantidad total de cambios realizados
- Número de problemas no resueltos
- Tiempo gastado en problemas no resueltos
- El porcentaje de cambios que introducen nuevos defectos
- El número de componentes modificados para implementar un cambio

Son dependientes del entorno

M.I.Capel Tema 5 47/83 47/83

Mantenimiento y evolución
Fipos de mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Rejuvenecimiento del software

Medida del Mantenimiento III

Figura: Tiempo medio para reparar varios subsistemas de un software

M.I.Capel Tema 5 48/83 48/83

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Parivences importe del coftware

Medidas dependientes de la complejidad del software

Número de McCabe o Número ciclomático

 Se trata fe un atributo interno, muy importante para determinar la facilidad de mantenimiento del software:

$$\mathsf{E}-\mathsf{N}+\mathsf{2} \tag{1}$$

- Captura la complejidad estructural de un código fuente midiendo el número de caminos linealmente independientes del flujo de control
 - E: Número de arcos (edges) del grafo
 - N: Número de nodos del grafo

M.I.Capel Tema 5 49/83 49/83

4日 > 4周 > 4 至 > 4 至 >

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Rejuvenecimiento del software

Ejemplo medida número ciclomático

```
Scoreboard::drawscore(int n)
{ while(numdigits-- > 0} {
                score[numdigits]->erase();}
        // build new score in loop, each time update
            position
        numdigits = 0;
        // if score is 0, just display ''0''
        if (n == 0) { delete score[numdigits];
                score[numdigits] = new Displayable(
                    digits[0]);
                score[numdigits]->move(Point((700-
                    numdigits *18),40));
                score[numdigits]->draw();
                numdigits++; }
while (n) { int rem = n \% 10;
                delete score[numdigits];
                       M.I.Capel
```

50/83

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Reiuvenecimiento del software

Ejemplo de cálculo del número ciclomático II

M.I.Capel

Tema 5

51/83

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Rejluvenecimiento del software

Otros factores internos que dificultan el mantenimiento

- Jerarquía de herencia entre entidades sintácticas de los lenguajes de programación
- ligadura dinámica entre referencias y código actual de los métodos que se ejecutan
- relaciones de uso, delegación
- inclusión de clases y paquetes

M.I.Capel Tema 5 52/83 52/83

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas

Análisis de Impacto

Antecedentes

- El mantenimiento de software comienza con la definición de los requerimientos del software
- Definición: "Evaluación de los riesgos asociados con el cambio de un sistema software: estimación de efectos, esfuerzo de desarrollo y cronograma"
- Ayuda a mantener bajo control el costo del mantenimiento del software
- Para el mantenimiento se han de aplicar los mismos principios de IS que para desarrollar buen software

4 D > 4 B > 4 B > 4 B > 9 Q O

M.I.Capel Tema 5 53/83 53/83

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Pariusposicipiants del software

Modelo de mantenimiento del software

- Debido a Pfleeger y Bohner, permite medir el impacto de un cambio y determinar los riesgos de llevarlo a cabo:
 - Incluye *realimentación* de subactividades
 - Medidas que proporcionan información a los gerentes
 - Determina: cuándo y cómo realizar un cambio
- Flechas etiquetadas en la parte inferior del diagrama proporcionan medidas del impacto de los cambios
- Los requerimientos, componentes de diseño, código, casos de prueba y documentación son subproductos del proceso de desarrollo del software

M.I.Capel Tema 5 54/83 54/83

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Polywopocimiento del coffware

Modelo de Pfleeger del Mantenimiento

M.I.Capel Tema 5 55/83 55/83

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas

Análisis de Impacto II

Calidad del software

- Las calidad de los productos software (requerimientos, código, pruebas, documentación) pueda afectar a la calidad de los otros
- Se necesitan facilidades de rastreo (tracing) para comprender el juego completo de relaciones que se evalúan entre productos software durante el análisis
- Ambos tipos de rastreos son necesarios para comprender el juego completo de relaciones que se evalúan durante el análisis de impacto de los cambios

M.I.Capel Tema 5 56/83 56/83

Mantenimiento y evolución
Tipos de mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Perivopositicate de activos

Tipos de rastreos entre subproductos

- Subproducto (workproduct): cualquier artefacto de desarrollo cuyo cambio sea significativo
- Trazabilidad horizontal: relaciones de componentes a través de colecciones de subproductos
- Trazabilidad vertical: relaciones entre partes de un subproducto

M.I.Capel Tema 5 57/83 57/83

R1

R2 R2.2

R3

Mantenimiento y evolución Tipos de mantenimiento Planificación del mantenimiento Predicción y evaluación del coste de mantenimiento Evolución y calidad del software Herramientas automáticas

Gráfica de los rastreos entre subproductos

Figura: Trazabilidad Horizontal

M.I.Capel Tema 5 58/83 58/83

Mantenimiento y evolución
ripos de mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
derramientas automáticas

Gráfica de los rastreos en subproductos

Figura: Trazabilidad Vertical

M.I.Capel Tema 5 59/83 59 / 83

Mantenimiento y evolución
Fipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas

Herramientas de mantenimiento de software

Clasificación de los tipos más comunes

- Editores de texto
- Comparadores de archivos
- Compiladores y encuadernadores (linkers)
- Herramientas de depuración
- Generadores de referencias cruzadas
- Analizadores de código estático
- Repositorios de gestión de la configuración

M.I.Capel Tema 5 60/83 60/83

Herramienta "tipo"

Características

- Incorpora el código fuente, código objeto, lenguaje de control, y archivos de datos necesarios para hacer funcionar un sistema
- Controla más de una versión de un sistema:
 Se designa una única versión como la de producción y no se permite que ninguna la altere
- Sitúa el número de versión y la fecha del último cámbio en el listado del compilador y en el objeto producido en la compilación
- Posee facilidades de reporting, backup y recuperación, además de tres niveles de seguridad de accesos

61/83

Rejuvenecimiento del software

Tipos:

- Redocumentación: el análisis estático añade más información
- Restructuración: transformar para mejorar la estructura del código
- Ingeniería Reversa: recrear el diseño y la información de la especificación desde el código
- Re-ingeniería: Ingeniería Reversa+ cambios en la especificación y el diseño para completar el modelo lógico; después generar un nuevo sistema a partir de la especificación revisada y del diseño

fantenimiento y evolución ipos de mantenimiento l'aulficación del mantenimiento redicción y evaluación del coste de mantenimiento volución y calidad del software lerramientas automáticas

Taxonomía del rejuvenecimiento del software

Figura: Relación gráfica entre los 4 tipos de rejuvenecimiento del software

M.I.Capel Tema 5 63/83 63/83

(日) (日) (日) (日)

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Reinvenecimiento del software

Redocumentación de software

- Comienza enviando el código a una herramienta de análisis
- No está basada en métodos software
- La salida puede incluir:
 - relaciones de llamadas entre componentes
 - tablas de interfaces de datos
 - información del diccionario de datos
 - tablas de flujo de datos o diagramas
 - tablas de control de datos o diagramas
 - pseudocódigo
 - caminos de prueba
 - referencias cruzadas entre componentes y variables

M.I.Capel Tema 5 64/83 64/83

Mantenimiento y evolución
Tipos de mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Saliusprecimiento del software

Redocumentación de software II

Figura: Proceso de redocumentación

65/83

M.I.Capel Tema 5 65/83

Mantenimiento y evolución
Fipos de mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas

Restructuración de código

- Interpretación del código fuente y representación interna del mismo
- Simplificación de la representación interna
- Regeneración del código estructurado

66/83

M.I.Capel Tema 5 66/83

Introducción El Proceso de Cambio de un Sistema Actividades de Mantenimiento Gestión de la Configuración Mantenimiento y evolución
ipos de mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y evaluación del coste de mantenimiento
Evolución y calidad del software
derramientas automáticas

Actividades de restructuración

Figura: Proceso de restructuración: (1) análisis estático, (2) simplificación de la representación, (3) refinamiento para generar una versión estructurada

M.I.Capel Tema 5 67/83 67/83

4 D > 4 P > 4 E > 4 E >

Mantenimiento y evolución
Tipos de mantenimiento
Planificación del mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Polymersenimiente del software

Ingeniería Reversa

- Se basa en métodos software aceptados
- Gestiona la representación
- Intentar recuperar información de ingeniería basándose en métodos de especificación y diseño de software
- Persisten obstáculos por superar antes de que la ingeniería se pueda utilizar en cualquier caso
 - Problema del Sistema de Tiempo Real
 - Sistema extremadamente complejo

M.I.Capel Tema 5 68/83 68/83

Mantenimiento y evolución
Fipos de mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas
Zeitwosperimento del coftware

Ingeniería Reversa II

Figura: Proceso de ingeniería reversa

M.I.Capel

ema 5

69/83

El Proceso de Cambio de un Sistema Actividades de Mantenimiento Gestión de la Configuración

Reingeniería

- Se trata de una extensión de la ingeniería reversa
 - produce nuevo código-software sin cambiar la función del sistema completo
 - completa y modifica la representación
- Pasos de Reingeniería:
 - Al sistema se le aplica ingeniería reversa
 - El sistema software es corregido o completado
 - Se genera el nuevo sistema

M.I.Capel

70/83

Introducción El Proceso de Cambio de un Sistema Actividades de Mantenimiento Gestión de la Configuración Mantenimiento y evolución
Tipos de mantenimiento
Predicción y evaluación del coste de mantenimiento
Evolución y evaluación del coste de mantenimiento
Evolución y calidad del software
Herramientas automáticas

Reingeniería II

Figura: Proceso de reingeniería

Gerencia de la Configuración de Software

Definición de IEEE (2004)

Es un soporte al proceso del ciclo de vida del software que beneficia a la gestión del proyecto, el desarrollo del producto y las actividades de mantenimiento, además de estar íntimamente ligado a las actividades de aseguramiento de la calidad del software.

IEEE (Institute of Electrical and Electronic Engineers) han desarrollado varios estándares para seguir en el proceso de desarrollo, prueba y evolución del software

M.I.Capel Tema 5 72/83 72/83

Gerencia de la Configuración de Software

Definición de IEEE (2004)

Es un soporte al proceso del ciclo de vida del software que beneficia a la gestión del proyecto, el desarrollo del producto y las actividades de mantenimiento, además de estar íntimamente ligado a las actividades de aseguramiento de la calidad del software.

IEEE (Institute of Electrical and Electronic Engineers) han desarrollado varios estándares para seguir en el proceso de desarrollo, prueba y evolución del software

M.I.Capel Tema 5 72/83 72/83

Gerencia de Configuración II

Basada en estándares

- La GC siempre debería estar basada en un conjunto de estándares que son aplicados dentro de la organización
- Los citados estándares deberían definir:
 - Cómo se identifican los elementos.
 - Cómo se controlan los cambios y
 - Cómo se manejan las nuevas versiones del sistema

Estándares relacionados con la GC

Estándar	Descripción
1042–1987	Guía IEEE para Gestión de Configuración de Software
828–2005	Planes de Gestión de Configuración de Software
1008–1987	Unidad de Prueba de Software
1012–2004	Planes para Validación y Verificación de Software
1028–2008	Revisión y Auditoría de Software
1004-1993	Clasificación de Anomalías de Software
1059-1993	Guía de Planes de Verificación y Validación de Software
829–1998	Documentación de Pruebas de Software

Tabla: Estándares de IEEE

Estándares relacionados con la GC II

Estándar	Descripción
10007–2003	Gestión de calidad de sistemas (Guías de GC)
15846–1998	Tecnología de la Información– Proceso de Ciclo de Vida (GC)

Tabla: Estándares ISO Software Engineering

Estandarización de las prácticas para gestión de servicios en IT

ITIL

- "Information Technology Infrastructure Library", conjunto de prácticas estandarizadas que alinean servicios—IT con la necesidades de un negocio
- Publicaciones ITIL (2011)(ver http://www.itil-officialsite.com), cada una cubre una etapa del ciclo de vida de gestión de servicios
- Conforme con estándar ISO/IEC 20000, internacional de referencia para servicios–IT

Estandarización de las prácticas para gestión de servicios en IT (2)

CMM

- "Capability Maturity Model", modelo de desarrollo de software creado a partir de datos de organizaciones que mantienen contratos con el DoD (USA)
- El modelo es la base de la actividades desarrolladas por Software Engineering Institute (SEI), creado por Carnegie—Mellon University
- Madurez es el grado de formalización y optimización de procesos implicados en el desarrollo de software
- Métricas de gestión de los resultados para conseguir la optimización de los procesos aludidos

/ ୨.୧.୯ 77/83

Marcos de trabajo I

áreas de proceso	Actividades	ITIL	RUP	CMM	IEEE
Gerencia y	1.1.Entender el contexto organizacional	Х	Х	Х	Х
Planificación	1.2.Preparar el plan de GCS	Х	X	X	X
	1.2.1.Definir restricciones Guías y organizacional	X	X	X	X
	1.2.2.Establecer procedimientos y políticas	X	X	X	X
	1.2.3.Establecer roles y responsabilidades	X	X	X	X
	1.2.4.Establecer tiempos y cronogramas	Х	X	Х	X
	1.2.5.Selección de herramientas	Х	X	X	X
	1.2.6.Control de proveedores	Х	X	—	Х
	1.3.Revisar resultados de auditorias	Х	X	X	X
	1.4.Realizar mediciones para mejorar	Х	X	X	X

Marcos de trabajo II

áreas de proceso	Actividades	ITIL	RUP	CMM	IEEE
Identificación y	2.1.Seleccionar elementos	Х	Х	Х	Х
	a ser controlados				
Almacenamiento	2.2.Identificar versiones	X	X	X	X
	2.3.Establ. líneas base	X	X	X	X
	2.4.Definir Almacenamiento	X	X	X	X
Control de	3.1.Requisitos de cambios	Х	Х	Х	Х
Cambios, versiones	3.2.Aprobar cambios	X	Х	Х	X
,	3.3.Implementar cambios	X	X	X	l —
Estados	4.1.Informe del estado	Х	Х	Х	Х
Estados	4.2 Reportes diversos	X	X	_	X
Auditoría	5.1. Verificar si se cumplen procedimientos y políticas	Х	Х	Х	Х
	5.2.Verificar el	X	X	X	_
	Almacenamiento				
	5.3. Verificación	X	X	X	X
	líneas base				
	5.4.Revisión	X	X	X	X
	funcionamiento herramientas				

Gestión de Versiones

Antecedentes

- El administrador del sistema ha de poder identificar siempre la versión operativa actual del sistema y el número de revisión de cada componente en uso
- Garantizar que todos los procedimientos que afectan a los cambios se aplican adecuadamente:
 - Se asigna un número a cada versión activa del sistema
 - Se asigna un número de revisión a cada componente que resulte cambiado
 - Se guardan registros de cada versión, estado de componente e histórico de cambios en el sistema

M.I.Capel Tema 5 80/83 80/83

Herramientas CASE para control de cambios I

Gestión de Cambios:

- Editores de formularios para soportar los formatos de solicitud de cambio.
- Sistemas basados en flujo de trabajos (WF) para definir quién hace qué y automatizar la transferencia de información.
- Base de Datos de cambio que gestionan las propuestas de cambio y está enlazadas con un sistema de gerencia de versiones.

M.I.Capel Tema 5 81/83 81/83

Herramientas CASE para control de cambios II

Identificación de versiones y distribuciones

- Los sistemas asignan identificadores automáticamente cuando se libera una nueva versión del sistema.
- Gestión del Almacenamiento. Los sistemas almacenan las diferencias entre las versiones más que todo el código de la nueva versión.
- Registro de la Historia de Cambios. Registra las razones para la creación de una nueva versión.
- Desarrollo Independiente. Sólo se puede permitir una versión a la vez para el cambio, por lo que se realiza un trabajo paralelo en diferentes versiones.

Para ampliar

Black (2007).

Pragmatic Software Testing.

Everett and Raymond (2007).

Software Testing.

Wiley.

Wiley.

Lewis (2004).

Software Testing and Continuous Quality Improvement.

Auerbach. Perry (2005).

Effective Methods for Software Testing.

Wiley.

Pressman, R. (2010).

Software engineering: a practitioners approach.

McGraw-Hill.

Spiller (2007).

Softwre Testing Process: Test Management.

Rocky Nook.

