

بهینهسازی ترکیبیاتی

محمدهادی فروغمنداعرابی بهار ۱۳۹۶

تكميل اثبات مساله ى جريان با كمترين هزينه

جلسه بیست و یکم

نگارنده: زهرا کریمی، فاطمه فتحی

۱ مروری بر مباحث گذشته

در جلسه ی پیش مسئله ی جریان با کمترین هزینه را مطرح کردیم. فرض کنید D=(r,A,s,t,i,k) یک شبکه باشد؛ هدف، پیدا کردن جریان بیشینه ای است که کمترین هزینه را داشته باشد:

$$\min \sum_{a \in A} f(a) k(a)$$

$$f: maxflow$$

در الگوريتم، L را تعريف كرديم:

$$L:A\cup A^{-1}\to \mathbb{R}$$

$$L(a)=\left\{\begin{array}{ll}k(a) & a\in A\\-k(a^{-1}) & a^{-1}\in A\end{array}\right.$$

در هر مرحله ، در گراف D_f مسیری از t به t پیدا میکنیم که طول آن بر حسب D_f مسیری

۲ تکمیل اثبات

گزاره: فرض کنید جریان extreme ، f باشد؛ در این صورت جریان f' که با یک مرحله اجرای الگوریتم به دست می آید extreme است. اثبات: (شرط لازم و کافی برای extreme بودن جریان f آن است که D_f دور منفی (بر حسب D_f نداشته باشد.)

فرض خلف: فرض کنید در D_f دور منفی C وجود دارد. مسیری که در مرحلهی قبلی الگوریتم در D_f پیدا شده است را D_f بنامید ، D_f و D_f در نظر بگیرید.داریم:

$$A(C)\subseteq A_{f'}\subseteq A_f\cup A(p)^{-1}$$

بنابراین برای $A(P) \cap A(P) = A$ ، مجموعه ی $A(C) \cap B = A(C) \cap A(P)$ نیر مجموعه ی A_f است. A_f مسیر $A(P) \cap A(P) \cap A(P)$ بنابراین برای $A(C_i) \geqslant \circ$ ، $A(C_i) \geqslant \circ$ ،

$$L(Q) \leqslant L(Q) + \sum_{i=1}^m L(C_i) = L(H) = L(P) - L(B^{-1}) + L(C) - L(B) = L(P) + L(C) < L(P)$$
 $\Rightarrow L(Q) < L(P)$

 \square . است. \square در در D_f تناقض است. \square