CS653: Functional Programming 2017-18 *II*nd Semester

Type Checking and Type Inferencing

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs653
Department of CSE, IIT Kanpur

- Performance*
 - Quiz 1: Min: 0, Mean: 51, Max: 80 (full!!)
 - ► Midsem: Min: 3, Mean: 42, Max: 100 (full!!)

*Before regrading.

Agenda

▶ Type Inferencing

Acknowledgements

► The slides are based on Amitabha Sanyal's notes on types.

The Hindley-Milner Algorithm

By case analysis on the term *t* in the following diagram:

Hindley-Milner - Type checking variables

- β_1, \ldots, β_n are fresh variables.
- ▶ Reason for monomorphising the type of *x*: We try to find the type of a variable only in the context of an application, and our application is monomorphic.

Hindley-Milner - Type checking abstractions

t is a lambda abstraction $\lambda x.e$

- ► Typecheck *e* in an environment Γ augmented with an assumed type α for *x*. Assume that result is a type τ and a substitution θ .
- Let the (possibly refined) type of α in θ be τ_1 .
- ▶ The type of $\lambda x.e$ is $\tau_1 \to \tau$. The final substitution is also θ .

Hindley-Milner - Type checking abstractions

t is a pattern matching lambda abstraction $\lambda(x:xs).e$

- ► Typecheck *e* in an environment Γ augmented with assumed types α and $[\alpha]$ for *x* and *xs*. Let result type be τ and the substitution be θ .
- ▶ Let the (possibly) refined type of α in θ be τ_1 .
- ▶ The type of $\lambda x.e$ is $[\tau_1] \to \tau$ and the final substitution is θ .

Hindley-Milner - Type checking abstractions

t is a pattern matching lambda abstraction $\lambda[\].e$

What will you do in this case?

Hindley-Milner - Type checking applications

t is an application $(e_1 e_2)$

$$\theta = \text{unify}(\theta_2 \ \tau_1, \tau_2 \to \alpha) \text{ and } \theta \alpha = \tau_3$$

Hindley-Milner - Type checking applications

- ▶ Typecheck e_1 with the initial environment Γ. Result is τ_1 and θ_1 .
- ▶ Typecheck e_2 with the environment $\theta_1\Gamma$. Result is τ_2 and θ_2 .
- ▶ Unify $\theta_2 \tau_1$ and $\tau_2 \to \alpha$. Assume that unifier is θ . And the unified term $(\theta \alpha)$ is τ_3 .
- ▶ Type of the application is τ_3 and the final substitution is $\theta \cdot \theta_2 \cdot \theta_1$.

Hindley-Milner - Type checking lets

t is a let expression let $x = e_1$ in e

Hindley-Milner - Type checking lets

- ► Typecheck e_1 in the environment Γ, resulting in a type τ_1 and a substitution θ_1
- ▶ Let σ be a polymorphic form of τ_1 and let $\Gamma_2 = \theta_1 \Gamma_1 \cup \{x :: \sigma\}.$
- ▶ Typecheck *e* in environment Γ_2 . Assume result is τ_2 and θ_2 .
- ▶ Type of let is τ_2 , and the final substitution is $\theta_2 \cdot \theta_1$.

Hindley-Milner - Type checking letrecs

t is letrec $x = e_1$ in e

$$\Gamma' = \Gamma \uplus \{x :: \alpha\}$$

$$\tau_2 = \theta_1 \alpha, \theta = \mathsf{unify}(\tau_1, \tau_2), \tau' = \theta \tau_1$$

$$\sigma = \forall \alpha_1 \dots \alpha_n. \tau', \ \alpha_1 \dots \alpha_n \in \tau',$$

$$\alpha_1 \dots \alpha_n \notin FV(\Gamma), \ \Gamma_2 = \theta_1 \Gamma \uplus \{x :: \sigma\}$$

Hindley-Milner - Type checking letrecs

- ▶ Typecheck e_1 in environment Γ augmented with a type assumption α for the variable x. Assume the the result is a type τ_1 and a changed environment Γ₁.
- Let τ_2 be the refined type of x in Γ_1 . Unify this with the type τ_1 of e_1 . Let the unifier be θ and the unified type be τ' .
- Let σ be an appropriate polymorphic form of τ' . Also let Γ_2 be Γ_1 modified taking the unification process into account and further augmented with the type of x as σ .
- Typecheck e in the environment Γ₂ resulting in a type τ₃ and a modified environment Γ₃.
- ▶ The type of the let expression is τ_3 , and the modified environment is Γ_3 with the type of x deleted.