Working Title

November 1, 2024

Contents

1	Toy	model: 0d GLSM	1
	1.1	Setup	1
		Manifold Deformation	
	1.3	Action along the Deformed Manifold	:

1 Toy model: 0d GLSM

1.1 Setup

We start with a 0d GLSM toy model, i.e. we consider the source manifold $\Sigma = \{pt\}$ to be an abstract point and the target manifold to be $X = \mathbb{CP}^1$. The space of fields is then simply given by points on the target manifold X, namely

$$\mathcal{F} = \mathbb{CP}^1 \tag{1}$$

As the action of the model we consider

$$S(z_0, z_1) = \beta \left(|z_0|^2 - |z_1|^2 \right)$$
 (2) {eq:toy_S}

where $[z_0:z_1] \in \mathbb{CP}^1$. As written, the partition function explicitly shows the U(1) gauge freedom (which here is simply a global U(1) symmetry, acting as

$$e^{i\theta} \colon (z_0, z_1) \mapsto (e^{i\theta} z_0, e^{i\theta} z_1) \tag{3}$$

and defines indeed a function on \mathbb{CP}^1 if we implicitly assume the constraint

$$|z_0|^2 + |z_1| = 1$$
 (4) {eq:toy_constr}

The path integral of the model is thus defined by

$$Z = \int dz_0 dz_1 \delta(|z_0|^2 + |z_1 - 1)e^{-S(z_0, z_1)}$$
 (5) {eq:toy_Z}

In order to evaluate (5), we want to embed \mathbb{CP}^1 into a higher dimensional complex space such that

- 1. the new action \tilde{S} is holomorphic in the new variables (fields)
- 2. when we restrict to \mathbb{CP}^1 , \tilde{S} reduces to S

We think of this embedding as an analytic continuation of the space of fields in an appropriate sense.

Going to real fields, $z_k = x_k + iy_k$ for k = 0, 1, the action (2) becomes

$$S = \beta \left(x_0^2 + y_0^2 - x_1^2 - y_1^2 \right)$$
 (6) {eq:toy_S_real}

while the constraint becomes

$$x_0^2 + y_0^2 + x_1^2 + y_1^2 = 1$$
 (7) {eq:toy_constr_real}

1.2 Manifold Deformation

Suppose that we now complexify in the sense that we consider $x_k, y_k \in \mathbb{C}$. For simplicity, let us rename the variables according to

$$x_0 = u_0$$
 , $x_1 = u_1$, $y_0 = u_2$, $y_1 = u_3$ (8)

where now $u_i \in \mathbb{C}$. This slightly unusual renaming is done for later convenience.

The constraint (7) now becomes

$$\sum_{i=0}^{3} u_i^2 = 1 \tag{9}$$

which can be seen as a complex hypersurface inside \mathbb{CP}^4 , as follows: Let us introduce the complex variable $t \in \mathbb{C}$ and consider the equation

$$\sum_{i=0}^{3} u_i^2 = t^2 \tag{10}$$

This equation describes the zero set of a homogeneous quadratic polynomial

$$P(t, u_i) = t^2 - \sum_{i=0}^{3} u_i^2$$
(11)

Notice that for any $\lambda \in \mathbb{C}^* = \mathbb{C} - \{0\},\$

$$P(\lambda t, \lambda u_i) = \lambda^2 P(t, u_i) \tag{12}$$

Therefore, the solution space of

$$P(u_i, t) = 0 (13)$$

is invariant under the action of \mathbb{C}^* (by multiplication) and hence descends to an equation on \mathbb{CP}^4 whose coordinates are $[t:u_0:u_1:u_2:u_3]$

The important observation is that the constraint surface (7) coincides with $P(t, u_i) = 0$ for t = 1. But t = 1 simply defines the $U_{t\neq 0} \subset \mathbb{CP}^4$ whose coordinates are given by $\left[1 : \frac{u_0}{t} : \frac{u_1}{t} : \frac{u_2}{t}\right]$. Hence, the constraint surface can be embedded into \mathbb{CP}^4 :

$$[u_0:u_1:u_2:u_3]\mapsto [t(u_i):u_0:u_1:u_2:u_3]\quad,\quad t(u_i)=\sqrt{\sum_{i=0}^3 u_i^2}\qquad (14)\quad \{\texttt{eq:toy_emb}\}$$

Notice that $[t(u_i): u_0: u_1: u_2: u_3]$ simply describes a point in $P(t, u_i) = 0$ and the original surface is reproduced in the chart $t(u_i) = 1$.

This embedding comes with a natural family of holomorphic deformations parametrised by a vector $\omega \in \mathbb{C}^4 - \{0\}$. Namely, instead of considering zeros of $P(t, u_i)$, one could consider zeros of a general homogeneous quadratic polynomial

$$P_{\omega}(t, u_i) = t^2 - \sum_{i=0}^{3} \omega_i u_i^2$$
 (15)

which for $\omega = (1, 1, 1, 1) \in \mathbb{C}^4$ coincides with P.

Remark 1. Note that the hypersurface C_{ω} defined by $P_{\omega}(t, u_i) = 0$ defines a $\mathbb{CP}^3 \subset \mathbb{CP}^4$. Indeed, zeros of $P_{\omega}(t, u_i)$ are given by points

$$[t(u_i): u_0: u_1: u_2: u_3]$$
 , $t(u_i) = \sqrt{\sum_i u_i^2}$ (16)

and hence parametrised by $(u_0, \ldots, u_3) \in \mathbb{C}^4 - \{0\}$. However, we may freely scale the u_i by the same $\lambda \in \mathbb{C}^*$ simultaneously, since $t(\lambda u_i) = \lambda t(u_i)$. Hence, the hypersurface C_{ω} is parametrised by $(u_0, \ldots, u_3) \in \mathbb{C}^4 - \{0\}$ only up to the action of \mathbb{C}^* , that is by a \mathbb{CP}^3 with coordinates $[u_0 : u_1 : u_2 : u_3]$.

1.3 Action along the Deformed Manifold

In the chart t = 1, the action (6) becomes

$$S(u) = \beta \left(u_0^2 + u_1^2 - u_2^2 - u_3^2 \right) \tag{17}$$

If we were to reinstate t, we would have to do it in a way that ensures that S(u) is a function on \mathbb{CP}^4 , i.e. invariant under the \mathbb{C}^* action $\lambda \colon (t, u_i) \mapsto (\lambda t, \lambda u_i)$. An obvious candidate is

$$S(t,u) = \frac{\beta \left(u_0^2 + u_1^2 - u_2^2 - u_3^2\right)}{t^2}$$
 (18)

On the constraint surface (inside \mathbb{CP}^4) we now replace t^2 by $\sum_i \omega_i u_i^2$ for some non-zero $\omega \in \mathbb{C}^4$. We obtain

$$S(t,u)|_{\mathcal{C}_{\omega}} = \frac{\beta \left(u_0^2 + u_1^2 - u_2^2 - u_3^2\right)}{\sum_i \omega_i u_i^2} \tag{19} \qquad \text{(19)} \quad \{\texttt{eq:toy_S_deformed}\}$$

where we recall that we denote the (generalised) constraint surface by

$$C_{\omega} = \{ P_{\omega}(t, u) = 0 \} \tag{20}$$

Note that (19) is invariant under simultaneous scaling $u_i \mapsto \lambda u_i$ for any $\lambda \in \mathbb{C}^*$ and thus is indeed a function on $\mathbb{CP}^3 \cong \mathcal{C}_{\omega}$