

Exit Presentation

Stefan Madansingh

University of Houston

Dr. Jacob Bloomberg

Neuroscience

SPACE LIFE SCIENCES SUMMER INSTITUTE

Introduction

- ☐ B.Eng Aerospace 2010
- M.S. Space Life Sciences 2012 (dnf)
- PhD. Kinesiology/Space Life Sciences (ongoing)
 - Gravitational neurophysiology
 - Artificial gravity
 - Space flight countermeasures
 - Motor control
 - Fall risk

Objectives of Internship

Project 1: Head-trunk coordination

Project 2: Visual flow

A Normal position

B Head and trunk together (vestibular stimulation)

C Trunk alone (cervical stimulation)

 D Head alone (vestibular–neck stimulation)

Understanding the effects of spaceflight on head-trunk coordination during walking and obstacle avoidance

VISUAL SYSTEM

ACCELERATION

(Semicircular Canals)

ACCELERATION AND GRAVITY

(Otoliths)

CENTRAL REINTERPRETATION **OF SENSORY INPUT**

PROPRIOCEPTIVE SYSTEM

TACTILE SYSTEM

Control of movement in **1-***g*

How do changes in these sensorimotor systems impact astronaut functional performance?

Seat Egress and Walk Test

Subject unbuckled a harness, stood up from a seat and then completed an obstacle course.

Testing occurred with:

- Seat upright (Upright Seat Egress)
- Seat positioned with its back to the floor (Supine Seat Egress)

Testing Schedule

Measurements and population

Z-axis

- Kinematic measures (Xsens 6DOF IMU)
- Yaw rotation about Z axis
- 26 bed rest participants
 - 10 BR Controls
 - 16 BR Exercisers
- 13 6-month ISS participants
- Comparison between
 - BR-1 and BR+0
 - L-30 and R+1

Movement Strategies Head and Trunk Coordination

- Decreased latency (locking) related to vestibular pathology
 - BVL
 - Head-pitch locking post-flight
- Trajectory planning
 - Head leading
 - 'En Bloc'
- Hypothesis
 - Neuro-vestibular adaptation will exhibit head-to-trunk locking during turning, exhibited by a decrease in the latency between head and trunk movements
- Latency
 - Time difference between head and trunk movement

Data analysis

Pre-Flight (L-30)

Post-Flight (R+1)

Head-Trunk Locking

Observations and conclusions

Mission	Responders	Non-responders
ISS	7	6
Bed Rest - Control	8	2
Bed Rest – Exercise	13	3

- Divided response in ISS participants
 - Rate and strategy of adaptation sensorimotor integration
- Head-trunk coordination changes after bed rest
 - Unexpected response convergence theory
- No obvious difference between bed rest control and exercise population in this measure (80% vs. 87% responders)

Somatosensory input modulates central vestibular processing

- Convergence of somatosensory inputs from the limbs onto vestibular nucleus neurons. (*Jian et al, Exp Brain Res* 2002).
- Subjects with diabetic peripheral neuropathy showed increased sensitivity to galvanic vestibular stimulation, leading to impaired postural capability. (Horak and Hlavacka J Neurophys 2001).
- Unloaded treadmill locomotion produces adaptive changes in vestibularly mediated head movement control. (Mulavara et al JVR 2012).

Development and testing of a visual flow perturbation system using virtual reality and head mounted displays

Visual flow as an adaptation paradigm

- Training countermeasure
- Batson et al. 2011
 - Stride frequency
 - Reaction time
 - Anxiety
- Brady et al. 2012
 - Adaptation to changes in visual flow
 - Differences among individuals –
 Fast v. slow adaptors

Learning to learn through adaptation

- Microgravity adaptation
 - Space motion sickness (to μg)
 - Balance and postural instability (from µg)
- Adaptive generalizability as microgravity countermeasure
 - Ability to adapt to a novel environment transfers to other environments
- Is it possible to train and improve one's adaptive generalizability?
 - Less susceptible to changes in environment

Individualized training for adaptability

- Current system requires large, intrusive hardware
- Novel training paradigms
 - Inflight treadmill training
 - Balance training during bed rest
 - 'Gravity bed'
- Goal: Solve technical problems to develop training protocols
 - Size and weight of present technology

Exit Presentation

Developing a virtual reality environment

Oculus Rift

- Development Kit 2
- COTS hardware
- Improved position tracking
- WorldViz Vizard
 - Development environment for virtual reality
 - Direct integration with Oculus SDK
- SketchUp
 - Building 3D environments

Exit Presentation

Next steps

- Integrate WorldViz software with incoming hardware
- ☐ Complete pilot study IRB
- Compare pilot data with previous studies
- Investigate augmented reality
 - Visual flow in everyday life
 - Spaceflight countermeasure
 - Clinical populations

Acknowledgements

Neurosciences Laboratory

Jacob Bloomberg

Chris Miller

Ajit Mulavara

Brian Peters

Millard Reschke

- Summer interns
 Raul Rodriguez
- SLSSI

Lauren Merkle

Judy Hayes

