

T5 - Band Pass Filter using OPAMP

Integrated Master in Physics Engineering

João Lehodey (96538), Jorge Silva (96545), Pedro Monteiro (93156)

June 6th, 2021

Contents

1	Introduction	1
2	Presential Lab	2
3	Theoretical Analysis	2
4	Simulation Analysis	3
5	Conclusion	7

1 Introduction

In this laboratory assignment we seek to build a bandpass filter using an OP-AMP. Particularly we seek to maximize our **merit figure**, M, given by:

$$M = \frac{1}{Cost(VoltageGainDeviation + CentralFreqDeviation + 10^{-6})}$$

where the voltage gain deviation is the absolute value of the difference between the gain at 1000 Hz and 40 dB; and the central frequency deviation is the absolute value of the difference between the central frequency and 1000 Hz. The central frequency, f_c , is given by the geometric mean of the low cut-off frequency and the high cut-off frequency:

$$f_c = \sqrt{f_H f_L}$$

The circuit used was the following:

Figure 1: Circuito utilizado

2 Presential Lab

In this lab assignment we were also able to implement this circuit in real life, where we able to measured the gain and the cut-off frequencies. For the circuit configuration, we chose the following components:

With these components we were able to get a voltage gain of approximately Gain=40 dbs, and cut-off frequencies of $330\,Hz$ and $2.23\,KHz$, corresponding f_L and f_H , respectively. Using ngpsice, we simulated the same circuit, were we obtained the following results:

3 Theoretical Analysis

The transfer function is defined as the ration between the output and the input. In our case, the output is v0 and the input vs:

$$T(s) = \frac{v0}{vs}$$

after a little algebra, we get to the following expression:

$$T(s) = \frac{R_1 C_1 s}{1 + R_1 C_1 s} (1 + \frac{R_3}{R_4}) (\frac{1}{1 + R_2 C_2 s})$$
 (1)

where, as usual

$$s = j\omega$$

The theoretical cut-off frequencies, f_L and f_H , can be calculated by the Short Circuit Time Constants Method. They are given by¹:

$$f_L = \frac{1}{R_1 C_1} \tag{2}$$

$$f_H = \frac{1}{R_2 C_2} \tag{3}$$

where f_H is the hight cut-off frequency and f_L is the low cut-off frequency. Experimentally, the cut off frequencies will be calculated through the following expression:

$$f = \frac{V_{max}}{\sqrt{2}}$$

where f can be either f_H or f_L .

4 Simulation Analysis

The Operating point analysis is the following:

The graphs are the following:

 $^{^1} If$ you want to see the deduction in detail, you may visit the following link: $https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-012-microelectronic-devices-and-circuits-fall-2009/lecture-notes/MIT6_012F09_lec23.pdf? \\ fbclid=IwAR3ezE0iIWVJOLyNLNp49EwgcpWSC-_IQF06wASvf9cKXiGx2_0zBplPnb8$

Figure 2: Time analysis

Figure 3: Frequency analysis

Figure 4: —-

Figure 5: v(out)/v(in)

5 Conclusion