Department of Mathematics

Indian Institute of Technology Bhilai

IC152: Linear Algebra-II Tutorial Sheet 4

- 1. Let V be a vector space over \mathbb{F} and $\langle \cdot, \cdot \rangle$ be an inner product on V then show that
 - (i) $< 0, \alpha > = 0$ for all $\alpha \in V$.
 - (ii) if $\langle \alpha, \beta \rangle = 0$ for all $\beta \in V$ then $\alpha = 0$.
 - (ii) if $\langle \alpha, \beta \rangle = \langle \gamma, \beta \rangle$ for all $\beta \in V$ then $\alpha = \gamma$.
 - (iv) $\langle \alpha, \beta \rangle = 0$ if and only if $\|\alpha\| \leq \|\alpha + c\beta\|$ for all $c \in \mathbb{F}$.
 - (i) Observe, by linearity, $<0,\alpha>=<0+0,\alpha>=<0,\alpha>+<0,\alpha>$ which implies $<0,\alpha>=0$
 - (ii) As $<\alpha,\beta>=0$ all $\beta\in V$ then it is true for $\beta=\alpha$, which implies $<\alpha,\alpha>=0$ or $\alpha=0$.
 - (iii) Take $\delta = \alpha \gamma$, we have $\langle \delta, \beta \rangle = 0$ all $\beta \in V$ which implies from part (ii), $\delta = 0$, equivalently $\alpha = \gamma$.
 - (iv) First let $<\alpha,\beta>=0$, then following the definition of inner product, we get $\|\alpha+c\beta\|^2=\|\alpha\|^2+2\mathrm{Re}(c<\beta,\alpha>)+\|c\beta\|^2=\|\alpha\|^2+\|c\beta\|^2\geq\|\alpha\|^2$. As length is always positive, we get $\|\alpha\|\leq\|\alpha+c\beta\|$ for arbitrary choice of $c\in\mathbb{F}$. Conversely, assume $\|\alpha\|\leq\|\alpha+c\beta\|$ for all $c\in\mathbb{F}$. If $\beta=0$ then $<\alpha,\beta>=0$. Assume $\beta\neq 0$. Using the above inequality, we have $2\mathrm{Re}(c<\beta,\alpha>)+\|c\beta\|^2\geq 0$. Now if we choose $c=-\frac{<\alpha,\beta>}{\|\beta\|^2}$ we get $-2\frac{|<\alpha,\beta>|^2}{\|\beta\|^2}+\frac{|<\alpha,\beta>|^2}{\|\beta\|^2}\geq 0$ which holds true only if $<\alpha,\beta>=0$ as $\beta\neq 0$.
- 2. Let $\langle \cdot, \cdot \rangle$ be the standard inner product on \mathbb{R}^2 . Find $\alpha \in \mathbb{R}^2$ if $\langle (1,2), \alpha \rangle = -1$ and $\langle (-1,1), \alpha \rangle = 3$. Let $\alpha = (\alpha_1, \alpha_2)$. Using the standard inner product definition we get a system of

Let $\alpha = (\alpha_1, \alpha_2)$. Using the standard inner product definition we get a system of equations as $\alpha_1 + 2\alpha_2 = -1$, $-\alpha_2 + \alpha_2 = 3$ which on solving gives $\alpha_1 = -\frac{7}{3}$ and $\alpha_2 = \frac{2}{3}$

- 3. Which of the following are inner product?
 - (i) For any $\alpha = (\alpha_1, \alpha_2)$, $\beta = (\beta_1, \beta_2) \in \mathbb{R}^2$, define $\langle \alpha, \beta \rangle = \alpha_2(\alpha_1 + 2\beta_1) + \beta_2(2\alpha_1 + 5\beta_2)$.
 - (ii) For any $A, B \in M_{n \times n}(\mathbb{C})$ define $\langle A, B \rangle = trace(A\bar{B})$.
 - (iii) For any $A, B \in M_{n \times n}(\mathbb{R})$ define $\langle A, B \rangle = trace(A + B)$.

(iv) For any
$$f, g \in P(\mathbb{R})$$
 define $\langle f, g \rangle = \int_0^1 f'(x)g(x)dx$.

- (i) It is not as for $\alpha = \beta = (1,0)$, we have $\langle \alpha, \alpha \rangle = 0$ but $\alpha \neq 0$.
- (ii) It is not as for n=2, choose $A=B=\begin{bmatrix}2&-1\\4&-2\end{bmatrix}$ then $A\bar{A}=A^2=0$ and hence $<A,A>=trace(A\bar{A})=trace(0)=0$ but $A\neq 0$.
- (iii) It is not. For example if we choose $A = B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, then $\langle A, A \rangle = trace(A+A) = 0$ but $A \neq 0$.
- (iv) It is not as for f = g = 1, we get $\langle f, f \rangle = 0$ but $f \neq 0$.
- 4. Compute $<\alpha, \beta>$, $\|\alpha\|$, $\|\beta\|$, $\|\alpha+\beta\|$ for the following vectors in the specified inner product spaces and verify the triangle and Cauchy Schwartz inequality.
 - (i) $V = \mathbb{C}^3$ with standard inner product and $\alpha = (2, 1+i, i), \beta = (2-i, 2, 1+2i)$
 - (ii) $V = C([0,1]; \mathbb{R})$ with $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$ and $\alpha = x, \beta = e^x$
 - (iii) $V = M_{2\times 2}(\mathbb{C})$ with standard inner product and $\alpha = \begin{bmatrix} 1 & 2+i \\ 3 & i \end{bmatrix}, \beta = \begin{bmatrix} 1+i & 0 \\ i & -i \end{bmatrix}$
- 5. Suppose $u, v \in V$ are such that ||u|| = 3, ||u + v|| = 4, ||u v|| = 6. Then what will be ||v||?

Using parallelogram law, we get $2\|v\|^2 = \|u+v\|^2 + \|u-v\|^2 - 2\|u\|^2 = 34$ which implies $\|v\| = \sqrt{17}$.

6. Find the matrix of standard inner product $\langle \cdot, \cdot \rangle$ on \mathbb{R}^3 relative to an ordered basis $\mathcal{B} = \{\alpha_1 = (1, -1, 2), \alpha_2 = (2, 0, 1), \alpha_3 = (-1, 2, -1)\}.$

The matrix of inner product relative to \mathcal{B} (say M) is given by

$$M = \begin{bmatrix} <\alpha_1, \alpha_1 > & <\alpha_2, \alpha_1 > & <\alpha_3, \alpha_1 > \\ <\alpha_1, \alpha_2 > & <\alpha_2, \alpha_2 > & <\alpha_3, \alpha_2 > \\ <\alpha_1, \alpha_3 > & <\alpha_2, \alpha_2 > & <\alpha_3, \alpha_3 > \end{bmatrix} = \begin{bmatrix} 6 & 4 & -5 \\ 4 & 5 & -3 \\ -5 & -3 & 6 \end{bmatrix}$$

7. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then prove that, for any orthogonal vectors $\alpha, \beta \in V$

$$\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2.$$

Using the definition of inner product, we get $\|\alpha + \beta\|^2 = \|\alpha\|^2 + 2\text{Re} < \alpha, \beta > + \|\beta\|^2$. As α, β are orthogonal, we have $<\alpha, \beta>=0$, which gives $\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2$ 8. Use standard inner product on \mathbb{R}^2 over \mathbb{R} to prove the following statement: "A parallelogram is a rhombus if and only if its diagonals are perpendicular to each other." Let adjacent sides of the parallelogram be represented by vectors α and β , then the diagonals will be $\alpha + \beta$ and $\alpha - \beta$. Now if diagonals are perpendicular, we have $0 = \langle \alpha + \beta, \alpha - \beta \rangle = \|\alpha\|^2 - \|\beta\|^2$ which implies $\|\alpha\| = \|\beta\|$ and hence parallegram is a rhombus. Conversely, if parallegram is a rhombus, then $\langle \alpha + \beta, \alpha - \beta \rangle = \|\alpha\|^2 - \|\beta\|^2 = 0$ and hence diagonals are perpendicular.