Homework 4

M1522.000900 Data Structure (2019 Fall)

2013-12815 Dongjoo Lee

Question 1.

For a binary tree that has n leaves, the number of 2-degree nodes be n-1.

In the tree that has k nodes, let the number of leaves be L(k) and of 2-degree nodes be T(k). Let the proposition P for the binary tree that has k nodes, P(k): L(k) - T(k) = 1.

Proof. $\forall k P(k)$ At k = 1, L(k) = 1 and T(k) = 0. [Base case] L(k) - T(k) = 1, thus, P(k) holds for k = 1. [Inductive Steps] Assume that P(k) holds for k = n. When tree grows by 1 node, there are 3 cases by the degree. (Case 1) The new node cannot be attached to existing node if it is 2-degree node. (Case 2) The new node can be attached to existing node if it is 1-degree node. In this case, this node becomes 2-degree node by new node. T(n + 1) = T(n) + 1 and L(n + 1) = L(n) + 1L(n+1) - T(n+1) = L(n) - T(n) = 1(Case 3) The new node can be attached to existing node if it is leaf. In this case, there is no change in T(n+1) and L(n+1) from k=n. L(n+1) - T(n+1) = L(n) - T(n) = 1

In all cases, L(n+1) - T(n+1) = 1. $\therefore P(n+1)$ holds for k = (n+1).

QED.

Question 2.

Question 3.

(b) A. 15-12-5-7-25-18-16 B. 5-7-12-15-16-18-25 C. 7-5-12-16-18-25-15

Question 4.

(a)

(1) (c), (d)

Question 5.

(2)

Let S(h) be $(h-2)(2^h-1) + h$.

And let a perfect binary tree of height h be T_h .

Proof. The sum of depth of each node in T_h is S(h).

In T_1 , sum of depth of each node is 0. [Base case]

 $S(1) = -1 \cdot 0 + 1 = 1$

 \therefore S(h) holds for h = 1.

[Inductive Steps] Assume that S(h) holds for h = n, then, sum of depth of each node is S(n).

When T_n grows to T_{n+1} , new leaves are attached at existing leaves. This procedure is like below,

1) T_n has 2^{n-1} leaves from its definition.

2) Each leaves in T_n became T_{n+1} 's nodes that have 2 children. 3) T_{n+1} 's leaves are 2 times of T_n 's leaves.

From these, sum of depth of each node in T_{n+1} is

$$= S(n) + 2^{n}(n-1) \cdot 2 \cdot n$$

$$= S(n) + 2^{n} \cdot n$$

$$= (n-2) \cdot 2^{n} + 2 + 2^{n} \cdot n$$

$$= (2n-2) \cdot 2^{n} + 2$$

$$= (n-1) \cdot 2 \cdot 2^{n} - (n-1) + (n+1)$$

$$= (n-1) \cdot (2 \cdot 2^{n} - 1) + (n+1)$$

$$= (n-1) \cdot (2^{n}(n+1) - 1) + (n+1)$$

$$= S(n+1)$$

 \therefore S(h) also holds for h=(n+1). QED.