Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики

Лабораторна робота №1

Чисельні методи в інформатиці "Розв'язок нелінійних рівнянь" Варіант №8

> Виконав студент групи IПС-31 Тесленко Назар Олександрович

Постановка задачі:

Знайти розв'язок рівняння з точністю $\epsilon = 10^{-3}$ наступними методами: Варіант №8

- Модифікований метод Ньютона: $x^3 7x^2 + 7x + 15 = 0$
- Метод простої ітерації: $x^3 5x^2 4x + 20 = 0$

Додати можливість зміни точності

Теоретичний опис та обгрунтування:

Метод простої ітерації:

Ітераційний процес:

$$x_{n+1} = \phi(x_n)$$

де
$$\phi(x) = x + \psi(x)f(x)$$

Достатня умова:

 $\phi(x)$ задовольняє умовам:

1)
$$\max_{x \in S} |\phi'(x)| \le q < 1$$

2)
$$|\phi(x_0) - x_0| \le (1 - q)\delta$$

Апріорна оцінка:

$$n \ge \left[\frac{\ln(|\phi(x_0) - x_0|/(1 - q)\epsilon)}{\ln(1/q)}\right] + 1$$

Умова припинення залежить від q:

$$|x_n-x_{n-1}^{}|\leq rac{1-q}{q}$$
 ε, якщо $q<rac{1}{2}$

$$|x_n - x_{n-1}| \le \varepsilon$$
, в інших випадках

Модифікований метод Ньютона

Ітераційний процес:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}$$

Достатня умова:

Якщо функція $f(x) \in C^2_{[a;b]}, f'(x), f''(x)$ — знакосталі на [a;b],

 $f'(x) \neq 0$ на [a; b] то ітераційни процес збігається

Умова припинення ітераційного процесу: $|x_n - x_{n-1}| \le \varepsilon$

Хід роботи

Мова реалізації: Python

Модифікований метод Ньютона

$$f(x) = x^{3} - 7x^{2} + 7x + 15 = 0$$

$$f'(x) = 3x^{2} - 14x + 7$$

$$f''(x) = 6x - 14$$

Функція для модифікованого методу Ньютона:

```
def modif_newtons_method(f, df, d2f, a, b, eps)-> tuple[bool,
float, int]:...
```

Рівняння має 3 корені. Обираємо інтервал що містить корінь: [2.5;7]. Якщо на вибраному інтервалі існує кілька розв'язків, програма автоматично звужує інтервал і вибирає той відрізок, який містить єдиний корінь для подальшої роботи алгоритму.

Перевіряємо достатні умови:

- f'(x), f''(x) знакосталі на [a;b]
- $f'(x) \neq 0$ на [a; b]

За невдалих перевірок програма повертає False значення з відповідними логами помилки

```
# Sufficient conditions:
# 1. f'(x), f''(x) - constant sign on the interval [a;b]
# 2. f'(x) != 0 on the [a;b]
x_interval = np.linspace(a, b, 1000)
dfx_values = np.array([df(x) for x in x_interval])
dfx_values[np.abs(dfx_values) < 1e-10] = 0

d2fx_values = np.array([d2f(x) for x in x_interval])
d2fx_values[np.abs(d2fx_values) < 1e-10] = 0

# Check if some of df(x) == 0
if np.any(dfx_values == 0):
    print("f'(x) = 0 at some point - first condition not satisfied!")
    return False, None, None</pre>
```

```
# f'(x), f''(x) has to be constant sign on the interval [a;
b]
if not (np.all(dfx_values >= 0) or np.all(dfx_values <= 0)):
    print(f"f'(x) doesn't have constant sign on [{a:.2f},
        {b:.2f}]")
    return False, None, None

if not (np.all(d2fx_values >= 0) or np.all(d2fx_values <= 0)):
    print(f"f''(x) doesn't have constant sign on [{a:.2f},
        {b:.2f}]")
    return False, None, None</pre>
```

Обираємо початкове наближення

$$x_0 = \frac{a+b}{2} = 5.875$$
, на інтервалі [4.75; 7]

Та перевіряємо на умову: $f'(x_0)f''(x_0) > 0$

Починаємо ітераційни процес:

Iteration process

Iter	x_n	f(x_n)	x_n+1	f(x_n+1)
1	5.8750	17.2949	5.2638	3.7408
2	5.2638	3.7408	5.1316	1.7201
3	5.1316	1.7201	5.0708	0.8903
4	5.0708	0.8903	5.0394	0.4847
5	5.0394	0.4847	5.0222	0.2707
6	5.0222	0.2707	5.0127	0.1532
7	5.0127	0.1532	5.0072	0.0874
8	5.0072	0.0874	5.0042	0.0500
9	5.0042	0.0500	5.0024	0.0287
10	5.0024	0.0287	5.0014	0.0165

11	5.0014	0.0165	5.0008	0.0095

Final approximation: $x^* = 5.00046$

FINAL RESULTS

Root found: $x^* = 5.00045554$

Verification: $f(x^*) = 0.00546810$

Iterations: 12

Отже, отримані результати демонструють, що реалізований алгоритм модифікованого методу Ньютона коректно знайшов розв'язок рівняння з заданою точністю є

Метод простої ітерації

$$f(x) = x^3 - 5x^2 - 4x + 20 = 0$$

$$\varphi(x) = \sqrt[3]{5x^2 + 4x - 20}$$

$$\varphi'(x) = \frac{10x+4}{3\sqrt[3]{(5x^2+4x-20)^2}}$$

Функція для методу простої ітерації:

```
def method_of_simple_iteration(f, phi, dphi, a, b, eps)->
tuple[bool, float, float, int]:
```

Рівняння має 3 дійсних корені. Обираємо інтервал що містить корінь: [1;6]. Якщо на вибраному інтервалі існує кілька розв'язків, програма автоматично звужує інтервал і вибирає той відрізок, який містить єдиний корінь для подальшої роботи алгоритму.

Як бачимо, функція скоротила інтервал до [3.5;6]

Обираємо функцію $\varphi(x)$

Знаходимо
$$x_0 = \frac{a+b}{2} = 4.75$$

Знаходимо δ : delta = max(|x0-a|, |b-x0|) = 1.250

Перевіримо достатні умови збіжності:

- $\bullet \max_{x \in S} |\phi'(x)| \le q < 1$
- $\bullet |\phi(x_0) x_0| \le (1 q)\delta$

```
Checking convergence conditions

First condition satisfied: q = max|phi'(x)| = 0.896 < 1

Second condition: |phi(x0)) - x0| <= (1-q)*delta
|4.82 - 4.75| ≤ (1-0.896)·1.250
0.068 ≤ 0.130

Second condition satisfied!
```

Достатні умови виконуються, отже виконуємо ітераційний процес:

Iteration process

3 4.8674 4 9039 5 4.9304 6 4.9497 7 4.9637 8 4.9738 9 4.9811 10 4.9864 11 4.9902 12 4.9929 13 4.9949		f(x_n+1)
3 4.8674 4 9039 5 4.9304 6 4.9497 7 4.9637 8 4.9738 9 4.9811 10 4.9864 11 4.9902 12 4.9929 13 4.9949	4.8176	-3.5039
4 4.9039 5 4.9304 6 4.9497 7 4.9637 8 4.9738 9 4.9811 10 4.9864 11 4.9902 12 4.9929 13 4.9949	4.8674	-2.6111
 5 4.9304 6 4.9497 7 4.9637 8 4.9738 9 4.9811 10 4.9864 11 4.9902 12 4.9929 13 4.9949 	4.9039	-1.9273
6 4.9497 7 4.9637 8 4.9738 9 4.9811 10 4.9864 11 4.9902 12 4.9929 13 4.9949	4.9304	-1.4128
7 4.9637 8 4.9738 9 4.9811 10 4.9864 11 4.9902 12 4.9929 13 4.9949	4.9497	-1.0305
8 4.9738 9 4.9811 10 4.9864 11 4.9902 12 4.9929 13 4.9949	4.9637	-0.7489
9 4.9811 10 4.9864 11 4.9902 12 4.9929 13 4.9949	4.9738	-0.5429
10 4.9864 11 4.9902 12 4.9929 13 4.9949	4.9811	-0.3928
11 4.9902 12 4.9929 13 4.9949	4.9864	-0.2838
12 4.9929 13 4.9949	4.9902	-0.2048
13 4.9949	4.9929	-0.1477
	4.9949	-0.1065
	4.9963	-0.0768
14 4.9963	4.9974	-0.0553
15 4.9974	4.9981	-0.0398

FINAL RESULTS

Root found: $x^* = 4.99810108$

Prior estimate: 60.0

Posteriori estimate: 15

Отримані результати показують, що реалізований алгоритм методу простої ітерації забезпечив збіжність до розв'язку з заданою точністю є

Реалізований код: GitHub