

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Autothermal recirculating reactor (ARR) with Cu-BN composite as a stable reactor material for sustainable hydrogen release from ammonia

Arash Badakhsh ^{a,b}, Junyoung Cha ^a, Yongha Park ^a, Yu-Jin Lee ^a, Hyangsoo Jeong ^{a,c}, Yongmin Kim ^a, Hyuntae Sohn ^{a,c}, Suk Woo Nam ^a, Chang Won Yoon ^{a,c,d}, Chan Woo Park ^{b,e,**}, Young Suk Jo ^{a,*}

- ^a Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- ^b School of Mechanical Design Engineering, Jeonbuk National University, Jeonju-si, 54896, South Korea
- ^c Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, South Korea
- ^d KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, South Korea
- e Department of Energy Storage/Conversion Engineering of Graduate School, Jeonbuk National University, Jeonju-si, 54896, South Korea

HIGHLIGHTS

- Combustion of reformate H₂ was used as a heat source for NH₃ decomposition.
- Reforming efficiency of 70.95% was achieved with a lab-scale autothermal reformer.
- Fuel cell equivalent power of 84 W was obtained with CO_X-free operation.
- Cu-BN was proposed as a viable reactor material for temperature-sensitive reactions.
- Autothermal NH₃ decomposition can be envisaged for onboard power generation.

G R A P H I C A L A B S T R A C T

ARTICLE INFO

Keywords:
Ammonia decomposition
Hydrogen combustion
Copper
Boron nitride
Autothermal reactor design
Fuel cell

ABSTRACT

Ammonia (NH₃) has been proposed as a viable hydrogen (H₂) carrier, but high reaction temperature and endothermic nature of NH₃ decomposition require an efficient reaction system to maximize useable energy from NH₃. Adoption of carbon-free heat sources and efficient heat transfer to the reaction bed are crucial for sustainable H₂ release. Herein, the autothermal recirculating reactor (ARR) concept with the fractional utilization of the reformate H₂ as a clean combustion fuel is proposed and experimentally investigated. Additionally, BN-coated Cu as a composite reactor material is developed for heat transfer enhancement of high-temperature H₂ release reaction in a thermally-coupled NH₃ decomposition and H₂ combustion system. Coating performance against chemical degradation of Cu has been tested and confirmed. High NH₃ conversion of >99.6% and reforming efficiency of 70.95%, even with high fraction of heat loss owing to small scale validation, show feasibility of the as-proposed reformer. Operation of the suggested system is envisaged with self-sustained heat

^{*} Corresponding author.

^{**} Corresponding author. School of Mechanical Design Engineering, Jeonbuk National University, Jeonju-si, 54896, South Korea. E-mail addresses: cw-park@jbnu.ac.kr (C.W. Park), youngsukjo@gmail.com (Y.S. Jo).