

School of Advanced SciencesDEPARTMENT OF PHYSICS

Mid Term Test (MTT)

B.Tech – Fall Semester-2020-21, C1/TC1

Course: PHY1701- Engineering Physics

Time: 90 mins Max Marks: $60 (10 \times 6 = 60)$

Answer all Questions

Mass of proton = 1.67×10^{-27} kg, Mass of electron = 9.1×10^{-31} kg, Planck's constant = 6.62×10^{-34} J.s, Boltzmann constant = 1.38×10^{-23} J/K

- 1. What is ultraviolet catastrophe? Write the Planck's radiation formula and explain the frequency dependence of spectral energy density. Can you explain the ultraviolet catastrophe using the Planck's radiation formula?
- 2. Discuss the Heisenberg uncertainty principle. If the uncertainty in the position of a particle is on the order of its de Broglie's wavelength, then what will be the uncertainty in its momentum?
- 3. Find the de Broglie wavelength of (a) a 5-MeV proton; (b) a 50-GeV electron; (c) an electron moving with the velocity 1.00×10^6 m/s. ()
- 4. Using the quantum particle in a 1D infinite box model, find how the possible energies of the particle are related to the principal quantum number.
- 5. A particle is trapped in an infinite one-dimensional well of width L. If the particle is in its ground state, evaluate the probability to find the particle (a) between x = 0 and x = L/3; (b) between x = L/3 and x = 2L/3; (c) between x = 2L/3 and x = L.
- 6. Draw suitable diagrams to illustrate the following conditions in an optical fiber (also give a brief description):
 - (a) Actual angle of incidence is less than the specified critical angle of incidence
 - (b) Actual angle of incidence is equal to the specified critical angle of incidence
- 7. What is meant by pulse-width dispersion? How can you propagate the signal through optical fiber with least pulse dispersion?
- 8. A step-index optical fiber has an acceptable angle of 20° in air medium. It has a relative refractive index difference value of 3%. Determine the critical angle at the core-cladding interface and numerical aperture of the fiber.
- 9. Suppose you have a pn- photodiode which can detect the light with 10 % efficiency. If you want to increase the detection efficiency of pn-photodiode what kind of modification will you do and why? Explain it using the proper diagrams.
- 10. The energy bandgap of GaAs semiconductor is 1.42 eV. Determine the primary wavelength of photons generated due to electron—hole recombination. The emitted wavelength falls in which region of electromagnetic radiation?