Naïve Bayes Classifier

Sample Dataset (Allectronic dataset)

RID	age	income	student	credit_rating	buys_computer(Class)
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Encoded Dataset

- 1. age
 - youth = 0
 - middle_aged = 1
 - senior = 2
- 2. income
 - low = 0
 - medium = 1
 - high = 2

- 3. student
 - no = 0
 - yes = 1
- 4. credit_rating
 - fair = 0
 - excellent = 1
- buys_computer(Class)
 - no = 0
 - yes = 1

age	income	student	credit_rating	buys_computer(Class)
n age		0	o credit_rating	buys_computer(class)
U	2	U	U	U
0	2	0	1	0
1	2	0	0	1
2	1	0	0	1
2	0	1	0	1
2	0	1	1	0
1	0	1	1	1
0	1	0	0	0
0	0	1	0	1
2	1	1	0	1
0	1	1	1	1
1	1	0	1	1
1	2	1	0	1
2	1	0	1	0

*Exclude RID column because it is not an important attribute to classify whether a person buys a computer.

Bayes' Theorem

$$p(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

In this case,

- There are two classes **no** and **yes** which is C_1 and C_2 respectively.
- There are four attributes and the result vector looks like $X = (x_1, x_2, x_3, x_4)$ which is known as $X = (age, income, student, credit_rating)$.

Step by Step Calculation

Step (1) Calculating prior probabilities – $P(C_i)$ for i = 1 and 2

$$P(C_1) = P(buys_computer = no) = \frac{5}{14} = 0.357$$

$$P(C_2) = P(buys_computer = yes) = \frac{9}{14} = 0.643$$

Step (2) Calculating conditional probabilities $P(x_i | C_i)$

1.
$$P(x_1|C_1) = P(age | buys_computer = no)$$

a.
$$P(\text{age} = \text{youth} \mid \text{buys_computer} = no) = \frac{3}{5}$$

b. P(age = middle_aged | buys_computer =
$$no$$
) = $\frac{0+1}{5}$

c. P(age = senior | buys_computer =
$$no$$
) = $\frac{2}{5}$

2. $P(x_1|C_2) = P(age \mid buys_computer = yes)$

a. P(age = youth | buys_computers =
$$yes$$
) = $\frac{2}{9}$

b. P(age = middle_aged | buys_computer =
$$yes$$
) = $\frac{4}{9}$

c. P(age = senior | buys_computer = yes) =
$$\frac{3}{9}$$

3.
$$P(x_2|C_1) = P(\text{income } | \text{buys_computer } = no)$$

a. P(income = low| buys_computers =
$$no$$
) = $\frac{1}{5}$

b. P(income = medium | buys_computer =
$$no$$
) = $\frac{2}{5}$

c. P(income = high | buys_computer =
$$no$$
) = $\frac{2}{5}$

4.
$$P(x_2|C_2) = P(\text{income } | \text{buys_computer } = yes)$$

a. P(income = low| buys_computers =
$$yes$$
) = $\frac{3}{9}$

Here, +1 is known as Laplace correction used to avoid probability value of zero.

```
b. P(income = medium | buys_computer = yes) = \frac{4}{9}
```

c. P(income = high | buys_computer = yes) =
$$\frac{2}{9}$$

5.
$$P(x_3|C_1) = P(\text{student} \mid \text{buys_computer} = no)$$

a. P(student = no | buys_computer =
$$no$$
) = $\frac{4}{5}$

b. P(student = yes | buys_computer =
$$no$$
) = $\frac{1}{5}$

6.
$$P(x_3|C_2) = P(\text{student} \mid \text{buys_computer} = yes)$$

a. P(student = no | buys_computer =
$$yes$$
) = $\frac{3}{9}$

b. P(student = yes | buys_computer = yes) =
$$\frac{6}{9}$$

7.
$$P(x_4|C_1) = P(\text{credit_rating} \mid \text{buys_computer} = no)$$

a. P(credit_rating = fair | buys_computer =
$$no$$
) = $\frac{2}{5}$

b. P(credit_rating = excellent | buys_computer =
$$no$$
) = $\frac{3}{5}$

8.
$$P(x_4|C_2) = P(\text{credit_rating} \mid \text{buys_computer} = yes)$$

a. P(credit_rating = fair | buys_computer =
$$yes$$
) = $\frac{6}{9}$

b. P(credit_rating = excellent | buys_computer =
$$yes$$
) = $\frac{3}{9}$

Step (3) Classification a test vector

X_test = (age=youth, income=medium, student=yes, credit_rating=fair)

=
$$P(age = youth | buys_computer = no) x$$

$$P(income = medium | buys_computer = no) x$$

$$P(\text{student} = \text{yes} \mid \text{buys_computer} = no) x$$

$$P(\text{credit_rating} = \text{fair} \mid \text{buys_computer} = no)$$

$$= \frac{3}{5} \times \frac{2}{5} \times \frac{1}{5} \times \frac{2}{5}$$

$$= 0.019$$

=
$$P(age = youth | buys computer = yes) x$$

$$P(income = medium | buys_computer = yes) x$$

$$P(\text{student} = \text{yes} \mid \text{buys computer} = \text{yes}) x$$

$$= \frac{2}{9} \times \frac{4}{9} \times \frac{6}{9} \times \frac{6}{9}$$

$$= 0.0439$$

Step(4) According to Bayes Theorem,

```
2. P(X_test | buys_computer = yes) x P(buys_computer = yes) = 0.0439 x 0.643 = 0.0282
```

Therefore, the prediction class for X_test = (age=youth, income=medium, student=yes, credit_rating=fair) is yes according to the naïve Bayesian classifier.