

Conceitos Introdutórios

- Tabela ASCII
- Unidades de Informação
- Local Area Network
- Wide Area Network
- Dispositivos de Redes
- Meio Físico
- Modelo OSI
- OSI vs TCP/IP
- Protocolo TCP/IP
- Redes Locais (LANs)

Tabela ASCII

							0	1	0	1	1	0	0	1
							0	О	1	1	1	1	0	0
1	2	3	4	5	6	7	1	1	1	1	0	0	0	0
0	0	0	0				@	Р	•	р	0	sp	NUL	DLE
1	0	0	0				Α	Q	а	q	1	!	SOH	DC1
0	1	0	0				В	R	b	r	2		STX	DC2
1	1	0	0				С	s	С	s	3	#	ETX	DC3
0	0	1	0				D	Т	d	t	4	\$	EOT	DC4
1	0	1	0				Ε	U	е	u	5	%	ENQ	NAK
0	1	1	0				F	V	f	V	6	&	ACK	SYN
1	1	1	0				G	W	g	w	7	•	BEL	ETB
0	0	0	1				Н	X	h	×	8	(BS	CAN
1	0	0	1					Υ	i	У	9)	HT	EM
0	1	0	1				J	Z	j	Z	:	*	LF	SUB
1	1	0	1				K	[k	{	,	+	VT	ESC
0	0	1	1				L	\	- 1		<	,	FF	FS
1	0	1	1				М]	m	}	=	-	CR	GS
0	1	1	1				Ν	^	n	~	>		so	RS
1	1	1	1				0	_	О	?	?	/	SI	US

Tabela ASCII (8 Bits)

- 928 = 256
- Permite a representação de 256 caracteres
- Sistema de representação universal

Unidades de Informação

Unit	Definition	Bytes*	Bits*	Examples
Bit (b)	Binary digit, a 1 or 0	1 bit	1 bit	On/Off; Open/Closed +5 Volts or 0 Volts
Byte (B)	Usually 8 bits	1 byte	8 bits	Represent the letter "X" as ASCII code
Kilobyte (KB)	1 kilobyte = 1024 bytes	1000 bytes	8,000 bits	Typical Email = 2 KB 10-page report = 10 KB Early PCs = 64 KB of RAM
Megabyte (MB)	1 megabyte = 1024 kilobytes = 1,048,576 bytes	1 million bytes	8 million bits	Floppy disks = 1.44 MB Typical RAM = 32 MB CDROM = 650 MB
Gigabyte (GB)	1 gigabyte = 1024 megabytes = 1,073,741,824 bytes	1 billion bytes	8 billion bits	Typical Hard Drive = 4 GB
Terabyte (TB)	1 terabyte = 1024 gigabytes = 1,099,511,627,778 bytes	1 trillion bytes	8 trillion bits	Amount of data theoreti- cally transmittable in optical fiber in one second

Exemplos de Networks

Distance Between CPUs	Location of CPUs	Name
0.1 m	Printed circuit board Personal data asst.	Motherboard Personal Area Network (PAN)
1.0 m	Millimeter Mainframe	Computer Systems Network
10 m	Room	Local Area Network (LAN) Your classroom
100 m	Building	Local Area Network (LAN) Your school
1000 m = 1 km	Campus	Local Area Network (LAN) Stanford University
100,000 m = 100 km	Country	Wide Area Network (WAN) Cisco Systems, Inc.
1,000,000 m = 1,000 km	Continent	Wide Area Network (WAN) Africa
10,000,000 m = 10,000 km	Planet	Wide Area Network (WAN) The Internet
100,000,000 m = 100,000 km	Earth-moon system	Wide Area Network (WAN) Earth and artificial satellites

Local Area Networks (LAN's)

- Têm uma área geográfica limitada
- Permitem o acesso de vários utilizadores
- Fornecem o acesso a serviço locais
- Ligam fisicamente dispositivos adjacentes

Dispositivos para LANs

Router

Bridge

Ethernet Switch

ATM Switch

Hub

Wide Area Networks

- Abrangem áreas geograficamente dispersas
- Permitem o acesso por parte de interfaces série que funcionam a velocidades mais baixas
- Estabelece a ligação entre dispositivos dispersos.

Dispositivos para WANs

Router

Modem CSU/DSU TA/NT1

Comm. Server

WAN Bandwidth Switch

Tipos de Largura de Banda (bandwidth)

Unit of Bandwidth	Abbrev.	Equivalence
Bits per second	bps	1 bps = fundamental unit of bandwidth
Kilobits per second	kbps	1 kbps = 1,000 bps = 10 ³ bps
Megabits per second	Mbps	1 Mbps = 1,000,000 bps = 10 ⁶ bps
Gigabits per second	Gbps	1 Gbps = 1,000,000,000 bps = 10 ⁹ bps

Tipos de Media

Some Typical Media	Bandwidth	Max. Physical Distance
50-Ohm Coaxial Cable (Ethernet 10BASE2, ThinNet)	10-100 Mbps	185m
50-Ohm Coaxial Cable (Ethernet 10BASE5, ThickNet)	10-100 Mbps	500m
Category 5 Unshielded Twisted Pair (UTP) (Ethernet 10BASE-T)	10 Mbps	100m
Category 5 Unshielded Twisted Pair (UTP) (Ethernet 100BASE-TX)(Fast Ethernet)	100 Mbps	100m
Multimode (62.5/125μm) Optical Fiber 100BASE-FX	100 Mbps	2000m
Singlemode (9/125µm core) Optical Fiber 1000BASE-LX	1000 Mbps (1.000 Gbps)	3000m
Wireless	11 Mbps	a few 100meters

Cabo Coaxial 10Base2 50 Ohm

Cabo de fibra óptica

Cabo UTP

Comunicação em Rede

Modelo OSI

- Open Systems Interconnection
- Desenvolvido por International Organization for Standardization (ISO)
- Sete Camadas
- Definido para resolver os problemas encontrados na heterogeneidade das redes existentes.
- Lançado em 1984
- Um modelo teórico desenvolvido muito tarde
- TCP/IP é o "verdadeiro standard"

Vantagens do OSI

- Decompõe as comunicações de rede em partes menores e mais simples.
- Padroniza os componentes de rede, permitindo o desenvolvimento e o suporte por parte de vários fabricantes.
- Possibilita a comunicação entre tipos diferentes de hardware e de software de rede.
- Evita que as modificações em uma camada afectem as outras, possibilitando maior rapidez no seu desenvolvimento.
- Decompõe as comunicações de rede em partes menores, facilitando sua aprendizagem e compreensão.

Camadas OSI

- Aplicação funções específicas para o utilizador como email, ftp,...
- Apresentação Formatação dos dados para apresentação
- Sessão Estabelece a comunicação entre estações na rede
- Transporte Assegura o transporte fiável dos dados end to end
- Rede Routeamento de pacotes na rede
- Ligação de dados Empacotamento e transferência de pacotes de informação e detecção e correcção de erros
- Física Transmissão de sequências de dados no meio físico

TCP/IP vs OSI

