$Assignment \ 5 \\ CS \ 734: \ Introduction \ to \ Information \ Retrieval$ Fall 2017 Grant Atkins Finished on December 16, 2017

1

Question

10.5. Find a community-based question answering site on the Web and ask two questions, one that is low-quality and one that is high-quality. Describe the answer quality of each question.

Answer

I first took to Quora to ask a question from a midterm I had previously taken in physics 111N at ODU. I considered the following a high quality question:

A current of 1.6 A flows through a wire. The charge carriers are electrons - roughly how many pass through a cross-section of the wire every second?

Since this question was a very specific looking for a single answer it wasn't a surprise that there were a lot overlap in answers. The feedback is shown in Figures 1 and 3. Almost all the answers provided walk through and understanding of the problem and gave the resulting answers. There were some answers that resulted with a single result, but the top answers were generally well prepared and well developed.

Figure 1: Quora feedback high level 1

Figure 2: Quora feedback high level 2

My second question was a low level question posted yahoo that asks about star wars and asked for feedback:

Is the new star wars come back a good thing or not?

There were 2 answers which were all opinionated not giving reasoning why the new star wars were worthwhile. The second answer was a simple "Yes" so it pretty much moved me to go see the new Star Wars movie.

Figure 3: Yahoo feedback low level question

I think quora generally outperforms yahoo as far quality. Quora tries to reduce duplicate answers while Yahoo is post anything to ask anything. This also improves quality of answers on single question in terms of amount of time it has been posted, viewed, and responded to.

Question

10.6. Find two examples of document filtering systems on the Web. How do they build a profile for your information need? Is the system static or adaptive?

Answer

Two examples of document filtering systems on the web are Amazon and Medium. When buying tech accessories such as HDMI cables, keyboards, or mouses I usually go to Amazon. Amazon keeps track of the things I browse as well as what I previously bought and attempts to make recommendations as shown in Figure 4. This kind of filtering is an adaptive system. If I start looking at a specific book frequently, Amazon will eventually start recommending the same book if I haven't bought it, or books that are similar to the one I viewed.

Figure 4: Amazon recommended buys

Another example of a document filtering system is Medium, a popular article sharing website much like blogspot. I often enjoy reading tech related articles for machine learning, javascript, and much more on Medium. Medium keeps track of users viewing history and then when a user visits the home page of the website it offers them lists of articles to read. It has a "You might like" section where for each article it even says "Based on your interests." This shows that it has filtering in place that is adaptive to my viewing history and tries to find the best trending/matching documents for my reading. My results are shown in Figure 5. If I decide to start reading other topics a majority of the time then this filtering system will be updated over time on its own.

Figure 5: Medium recommended reads

3

Question

10.11. Suggest how the maximum and minimum resource ranking scores, Rmax and Rmin, could be estimated for a given query

Answer

A relatively simple way to find the maximum and minimum resource ranking scores is by sorting results. Once query results are returned and we have the resource scores for each estimate it should be relatively to see the worst ranked document and the highest rank document. This is also dependent on the window of results. Since resource selection in a general distributed search application involves first ranking the nodes using their representations, and then selecting the top k ranked nodes, or all nodes that score above some threshold value. If I searched something in a search engine we would be given their top k results, normally 10, and then we can determine that the Rmax is the first result return. Since k is 10 here then Rmin would be 10, but if k increased it would still be considered the max k.

The book also mentions using query likelihood of query term frequency. A query's likelihood could be compared to the terms returned in SERP results and then Rmin and Rmax can computed based on comparison of these values. Either way, the resources would be ranked showed that there is a max and min value in the results.

4

Question

11.5. How many papers dealing with term dependency can you find in the SIGIR proceedings since 2000? List their citations

Answer

To solve this problem I decided to use google scholar to find the citations. I searched on the terms "term dependency," "term dependencies," and "term dependent" with ACM SIGIR as the source and all publication later than 2000. For this query I got 129 results as shown in Figure 6. Whats interesting is when I went back later this result changed going up to 155 related articles, but regardless I kept what I originally had.

Google creates a query string that I could reuse to perform these queries, for example:

https://scholar.google.com/scholar?start=0&q=%22term+dependency% 22+%7C+%22term+dependencies%22+%7C+%22term+dependent%22+source: %22ACM+SIGIR%22&hl=en&as_sdt=0,47&as_ylo=2000

One of the keys is "start" indicating an offset position for pagination. Since there were 10 results per page I created two scripts to download each page and then parse the results. The first script I wrote was done in nodejs using headless chrome, puppeteer.js, as shown in Listing 1. The pages downloaded pages are found in my assignment 5 github repository [1]. The other script was used to parse the document for titles, citation counts, and author names as shown in Listing 2. For this question I left out author names as it was difficult to parse utf-8 for latex.

The results are as follows:

Title	Citations
A Markov random	776
field model for term	
dependencies	
Incorporating term	56
dependency in the	
DFR framework	

Modeling higher-	54
order term depen-	
dencies in informa-	
tion retrieval using	
query hypergraphs	
Incorporating query	19
term dependencies in	
language models for	
document retrieval	
Modeling term de-	21
pendencies with	
quantum language	
models for IR	
Refining term	9
weights of docu-	
ments using term	
dependencies	
Score-safe term-	10
dependency pro-	
cessing with hybrid	
indexes	
Utilizing phrase	0
based semantic in-	
formation for term	
dependency	
Automatic P hrase	169
Indexing for Doc-	
ument Retrieval:	
An Examination of	
Syntactic and Non-	
Syntactic Methods	
Improving Search us-	1
ing Proximity-Based	
Statistics	
Two-stage query seg-	49
mentation for infor-	
mation retrieval	

Dependence lan-	294
guage model for	
information retrieval	
Random walk term	35
weighting for infor-	
mation retrieval	
A comparison of	16
various approaches	
for using probabilis-	
tic dependencies in	
language modeling	
Latent concept	226
expansion using	
markov random	
fields	
Word embedding	49
based generalized	
language model for	
information retrieval	
Blog track research	56
at TREC	
Improving weak	103
ad-hoc queries using	
wikipedia asexternal	
corpus	
Modelling term de-	8
pendence with copu-	
las	
A study of Pois-	52
son query generation	
model for informa-	
tion retrieval	
A Markov random	776
field model for term	
dependencies	
Incorporating term	56
dependency in the	
DFR framework	

Modeling higher-	54
order term depen-	
dencies in informa-	
tion retrieval using	
query hypergraphs	
Incorporating query	19
term dependencies in	
language models for	
document retrieval	
Modeling term de-	21
pendencies with	
quantum language	
models for IR	
Refining term	9
weights of docu-	
ments using term	
dependencies	
Score-safe term-	10
dependency pro-	
cessing with hybrid	
indexes	
Utilizing phrase	0
based semantic in-	
formation for term	
dependency	
Automatic P hrase	169
Indexing for Doc-	
ument Retrieval:	
An Examination of	
Syntactic and Non-	
Syntactic Methods	
Improving Search us-	1
ing Proximity-Based	
Statistics	
Robust ranking	41
models via risk-	
sensitive optimiza-	
tion	

An unsupervised	28
topic segmentation	
model incorporating	
word order	
Extending BM25	14
with multiple query	
operators	
Taily: shard selec-	31
tion using the tail of	
score distributions	
Sentiment diversifi-	19
cation with different	
biases	
An IR-based eval-	15
uation framework	
for web search query	
segmentation	
To index or not to	17
index: time-space	
trade-offs in search	
engines with posi-	
tional ranking func-	
tions	
Leveraging user in-	5
teraction signals for	
web image search	
Query represen-	5
tation for cross-	
temporal informa-	
tion retrieval	
User variability and	27
IR system evaluation	
Ranking docu-	13
ment clusters using	
markov random	
fields	

Timestamp-based	27
result cache invalida-	
tion for web search	
engines	
Pseudo test collec-	17
tions for training	
and tuning mi-	
croblog rankers	
Terms over LOAD:	9
Leveraging Named	
Entities for Cross-	
Document Extrac-	
tion and Summa-	
rization of Events	
Query-performance	6
prediction: setting	
the expectations	
straight	
A context-aware	18
time model for web	
search	
Optimizing posi-	9
tional index struc-	
tures for versioned	
document collections	
Learning for Ef-	2
ficient Supervised	
Query Expansion via	
Two-stage Feature	
Selection	
[PDF][PDF] Intro-	4
duction to Prob-	
abilistic Models	
for Information	
Retrieval	
Finding topic words	219
for hierarchical sum-	
marization	

A comparison of sen-	30
tence retrieval tech-	
niques	
Beyond bags of	4
words: Effectively	
modeling depen-	
dence and features	
in information	
retrieval	
MRF based ap-	6
proach for sentence	
retrieval	
Integrating word re-	184
lationships into lan-	
guage models	
Social annotation in	39
query expansion: a	
machine learning ap-	
proach	
The seventeenth	0
australasian doc-	
ument computing	
symposium	
An exploration of	245
proximity measures	
in information re-	
trieval	
A proximity lan-	69
guage model for	
information retrieval	
Structured retrieval	106
for question answer-	
ing	
Exploiting term	21
dependence while	
handling negation in	
medical search	

Positional language	198
models for information retrieval	
Parameterized con-	100
cept weighting in	
verbose queries	
The role of knowl-	73
edge in conceptual	
retrieval: a study in	
the domain of clini-	
cal medicine	
Fielded sequential	33
dependence model	
for ad-hoc entity	
retrieval in the web	
of data	
Looking inside	16
the box: Context-	
sensitive translation	
for cross-language	
information retrieval	
Embedding-based	0
Query Expansion	
for Weighted Se-	
quential Dependence	
Retrieval Model	
Integrating phrase	10
inseparability in	
phrase-based model	
A support vector	591
method for op-	
timizing average	
precision	
Modeling multi-	4
query retrieval tasks	
using density matrix	
transformation	

Empirical devel-	25
opment of an	
exponential prob-	
abilistic model for	
text retrieval: using	
textual analysis to	
build a better model	
Building a web test	3
collection using so-	
cial media	
Improving the esti-	191
mation of relevance	
models using large	
external corpora	
Discovering key	262
concepts in verbose	
queries	
Building and apply-	80
ing a concept hierar-	
chy representation of	
a user profile	
An improved markov	56
random field model	
for supporting ver-	
bose queries	
CRTER: using	32
cross terms to en-	
hance probabilistic	
information retrieval	
Parameterized	10
fielded term de-	
pendence models	
for ad-hoc entity	
retrieval from knowl-	
edge graph	

Query term ranking	28
based on dependency	
parsing of verbose	
queries	
The score-	69
distributional	
threshold optimiza-	
tion for adaptive	
binary classification	
tasks	
Learning to reweight	35
terms with dis-	
tributed representa-	
tions	
Building simulated	97
queries for known-	
item topics: an	
analysis using six	
european languages	
Unsupervised query	46
segmentation using	
clickthrough for in-	
formation retrieval	
Compact query term	38
selection using topi-	
cally related text	
A frequency-based	39
and a poisson-based	
definition of the	
probability of being	
informative	
Positional relevance	161
model for pseudo-	
relevance feedback	
Learning for search	42
result diversification	
Exploring reductions	74
for long web queries	

Using statistical	25
decision theory and	
relevance models for	
query-performance	
prediction	
Exploiting semantics	21
for improving clinical	
information retrieval	
Modeling subset dis-	11
tributions for ver-	
bose queries	
Axiomatic analysis	8
for improving the	
log-logistic feedback	
model	
Topic-centric classi-	12
fication of twitter	
user's political orien-	
tation	
Sigir 2014 workshop	4
on semantic match-	
ing in information re-	
trieval	
Discriminative mod-	314
els for information	
retrieval	
Retrieval and feed-	150
back models for blog	
feed search	
A ranking approach	9
to target detection	
for automatic link	
generation	
Flat vs. hierarchi-	3
cal phrase-based	
translation models	
for cross-language	
information retrieval	

Non-compositional	7
term dependence for	
information retrieval	
Query performance	169
prediction in web	
search environments	
Building enriched	62
document repre-	
sentations using	
aggregated anchor	
text	
How good is a span	47
of terms?: exploiting	
proximity to improve	
web retrieval	
Query expansion us-	25
ing path-constrained	
random walks	
An adaptive ev-	14
idence weighting	
method for medical	
record search	
Learning to effi-	74
ciently rank	
Exploiting proximity	6
feature in bigram	
language model for	
information retrieval	
Efficient cost-aware	3
cascade ranking in	
multi-stage retrieval	
Set-based model: A	38
new approach for in-	
formation retrieval	
Modeling click-	3
through based	
word-pairs for web	
search	

Term Proximity	0
Constraints for	
Pseudo-Relevance	
Feedback	
Improving language	15
estimation with the	
paragraph vector	
model for ad-hoc	
retrieval	
Learning to re-	31
spond with deep	
neural networks	
for retrieval-based	
human-computer	
conversation system	
Find-similar: simi-	55
larity browsing as a	
search tool	
Linear discriminant	118
model for informa-	
tion retrieval	
Quote Recommenda-	2
tion in Dialogue us-	
ing Deep Neural Net-	
work	
Query term ranking	1
based on search re-	
sults overlap	
Document retrieval	15
using entity-based	
language models	
Modeling Document	10
Novelty with Neural	
Tensor Network for	
Search Result Diver-	
sification	

An enhanced	6
context-sensitive	
proximity model	
for probabilistic	
information retrieval	
Efficient & Effective	0
Selective Query	
Rewriting with Effi-	
ciency Predictions	
A Probabilistic	3
Model for Informa-	
tion Retrieval Based	
on Maximum Value	
Distribution	
Using key concepts	8
in a translation	
model for retrieval	
Evaluating non-	3
deterministic re-	
trieval systems	
A simple enhance-	4
ment for ad-hoc	
information retrieval	
via topic modelling	
Retrieval sensitivity	14
under training using	
different measures	
Copulas for informa-	19
tion retrieval	
DBpedia-Entity v2:	1
A Test Collection for	
Entity Search	
On the cost of	1
phrase-based rank-	
ing	
SPOT: Selecting oc-	0
cuPations frOm Tra-	
jectories	

Entity query feature	84
expansion using	
knowledge base links	

```
// v0.12.0 puppeteer
1
   const puppeteer = require('puppeteer');
   const fs = require('fs');
   const crypto = require('crypto');
5
   var outputDir = './data/html/';
6
7
   async\ function\ headless (url,\ offset)\ \{
8
9
10
        var sleep\_time = Math.floor(Math.random() * 15) + 1;
11
        await delay(sleep_time * 1000);
12
13
        const browser = await puppeteer.launch({
14
            ignoreHTTPSErrors: true,
15
            // headless: false,
16
        });
        const page = await browser.newPage();
17
18
        page.emulate({
19
20
            viewport: {
21
                 width: 1024,
22
                 height: 768,
23
24
            // macbook pro
25
            userAgent: "Mozilla/5.0 (Macintosh; Intel Mac OS X 10
                _12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome
                /62.0.3202.94 Safari/537.36",
26
        });
27
28
        try {
29
            // timeout at 5 minutes (5 * 60 * 1000 \text{ms}), network idle
30
                at 3 seconds
            await page.goto(url, {
    waitUntil: 'load',
31
32
33
                 timeout: 300000,
34
            });
35
36
            // Get page content (html, xml, etc)
37
            const cont = await page.content();
```

```
await fs.writeFile(outputDir + offset +".html", cont,
38
               function (err) {
39
                if (err) {
                    return console.log(err);
40
41
42
                console.log("The file was saved!");
43
            });
44
       } catch (e) {
45
            console.log("Failed with error:", e);
46
47
            process.exit(1);
48
49
       browser.close();
50
51
52
53
   function delay(time) {
      return new Promise(function(resolve) {
54
55
           setTimeout(resolve, time)
56
      });
   }
57
58
   // iterate through and save html
59
60
   for (var i = 0; i < 13; i++){
61
        var temp = i;
62
        if (i != 0) {
63
            temp = i * 10;
64
       var url = "https://scholar.google.com/scholar?start=" + temp
65
            \%22 + \%7C + \%22 term + dependent\%22 + source:\%22 ACM + SIGIR\%22 \& hl = en
           \&as_sdt = 0.47\&as_ylo = 2000";
66
       headless(url, temp).then(v \Rightarrow \{
            // Once all the async parts finish this prints.
67
68
            console.log("Finished Headless");
69
            console.log(url);
70
       })
71
```

Listing 1: Headless chrome script to download rendered pages

```
from bs4 import BeautifulSoup
import os
import json

def parse_scholar():
    directory = "./data/html/"
    titles = []
```

```
9
        for filename in os.listdir(directory):
10
            with open(directory + filename) as f:
                print(filename)
11
                text = f.read()
12
                soup = BeautifulSoup(text, 'html.parser')
13
14
                # citations
                sections = soup.select("div.gs_ri")
15
16
                for s in sections:
                    temp = {"title": "", "citations": "", "authors":
17
                         ""}
18
                     title = s.select_one("h3.gs_rt")
19
                    # titles.append(title.text.strip())
20
                    authors = s.select_one("div.gs_a")
21
                    temp[" title"] = title.text.strip()
                    temp["authors"] = authors.text.strip()
22
23
24
                    cite_count = s.select("div.gs_fl a")[2].text
25
                    if not cite_count.startswith("Cited by"):
26
                         cite\_count = "Cited by 0"
27
                    cite_count = cite_count.split()[2]
                    temp["citations"] = cite_count
28
29
                    titles.append(temp)
30
31
        with open("./data/articles.json", 'w') as out:
32
            json.dump(titles, out, indent=4)
33
34
        format_latex(titles)
35
36
37
   def format_latex(titles):
38
        for t in titles:
            print(t["title"].replace("\&", "\setminus\&") + " \& " +
39
40
                  t["citations"] + " \\\ \\hline")
41
42
   if __name__ == "__main__":
43
        parse_scholar()
44
```

Listing 2: Script to parse google scholar HTML pages

Figure 6: Google scholar results for term dependency articles later than 2000 for ACM SIGIR

Question

11.11. Look at a sample of images or videos that have been tagged by users and separate the tags into three groups: those you think could eventually be done automatically by image processing and object recognition, those you think would not be possible to derive by image processing, and spam. Also decide which of the tags should be most useful for queries related to those images. Summarize your findings.

Answer

To answer this question I decided to use Instagram to find images tagged by users. Instagram, much like Twitter, allows for users to tag photos and posts using a # symbol. Its apparent that many posts on these sites bring in spam tags to get higher views or for other reasons.

For this problem I first started with a base hashtag "#lamborghini" and got a lot of unexpected results as shown in Figure 7. Just from the top six results, only half of the results were lamborghini model cars. You can tell just from these results that the non lamborghini tags were probably just spam tags.

When choosing one of the images from result page, such as Figure 8, its seen that the result is actually lamborghini was a spam tag for this image. The tags used were:

- Ferrari
- $\bullet \ {\it PaganiHuaryaBC}$
- pagani
- supercars
- fast
- speed
- london
- omg
- khk

- harrods
- city
- nightlife
- lamborghini
- astonmartin
- bugatti
- like4like
- likeforfollow
- followforfollow
- follow4follow
- rich
- wealth
- earth
- lifestyle

A majority of these tags would end up in spam. There are, however, a few of the tags that could be derived from image processing such as: supercars, bugatti, and city. If a image processing is done, assuming it is accurate, then the tags that address other types of cars, such as Ferrari, PaganiHuaryaBC, lamborghini, astonmartin, and paganic, should not be grouped together with the actual descriptors of this image. Tags that could not be taken from image processing, or rather should not, are things like wealth and earth since the first one is opinionated and earth is too broad of a topic. Tags such as likeforlike, follow4follow, omg, speed, wealth, and a few others, are more of spam tags for this image. The lamborghini tag itself is also considered spam for Figure 8, as the car isn't even a lamborghini.

The tags that would be most useful for queries would be the objects actually located inside the image. For example, bugatti is a good descriptor of the car in the image as its exactly whats in the image and it is also considered a supercar. However, if we search for supercar then we'll get much broader search results. So if I had to choose tags from this image, I

would probably only choose bugatti if I wanted concise results. Of course there are many tags that could be used for recommendations based off of this tag, such as rich, city, or supercar that could be recommended to users.

Figure 7: Results page from Instagram

Figure 8: Selected result from Instagram for #lamborghini tag

References

[1] Atkins, Grant. "CS734 Assignment 5 Repository" Github. N.p., 15 December 2017. Web. 15 December 2017.https://github.com/grantat/cs834-f17/tree/master/assignments/A5.