Lecture 25: NAND gate

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Power consumption

- No static power dissipated!
 - Only the "dynamic" power dissipation is determined.
 - High → Low → High → …
 - It involves charging and discharging the load capacitance.
 - The energy stored in the load capacitance

$$\frac{1}{2}C_L V_{DD}^2$$

- The energy dissipated by the PMOS is also $\frac{1}{2}C_LV_{DD}^2$.
- Therefore, $C_L V_{DD}^2$ is dissipated during T_{in} .

$$P_{av} = f_{in} C_L V_{DD}^2$$

NAND gate (1/4)

Its truth table

A	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

Only when two inputs are 1, the output node is connected to GND.

NAND gate (2/4)

- It is easy to realize that the serially connected NMOSFETs can do it.
 - When one of V_A or V_B is low, no electric connection between V_{out} and GND.

NAND gate (3/4)

- Similarly, the output node is not connected to V_{DD} , when two inputs are 1.
- It is easy to realize that the parallel connected NMOSFETs can do it.

NAND gate (4/4)

Overall, the NAND gate looks like:

NOR gate

- Dual to the NAND gate
 - Serial PMOS
 - Parallel NMOS
- Which one is weaker?
 - Pull-up? Pull-down?