

LEGv8 Reference Data

(10) If neither is operand a NaN and Value1 == Value2, FLAGS = 4'b0110; If neither is operand a NaN and Value1 < Value2, FLAGS = 4'b1000; If neither is operand a NaN and Value1 > Value2, FLAGS = 4'b0010; If an operand is a Nan, operands are unordered

LLGV	O	Refe	rence l	Data	
CORE INSTRUCT	TION SET	in Alpha	abetical Ord	er by Mnemonic	
			OPCODE (9		
NAME, MNE	MONIC	MAT	(Hex)	OPERATION (in Verilog)	Notes
ADD	ADD	R	458	R[Rd] = R[Rn] + R[Rm]	
ADD Immediate	ADDT	I	488-489	R[Rd] = R[Rn] + ALUImm	(2,9)
	ADDI	1	400-409		(2,9)
ADD Immediate & Set flags	ADDIS	I	588-589	R[Rd], FLAGS = R[Rn] + ALUImm	(1,2,9)
ADD & Set flags	ADDS	R	558	R[Rd], $FLAGS = R[Rn] + R[Rm]$	(1)
AND	AND	R	450	R[Rd] = R[Rn] & R[Rm]	
AND Immediate	ANDI	I	490-491	R[Rd] = R[Rn] & ALUImm	(2,9)
AND Immediate &				R[Rd], $FLAGS = R[Rn]$ &	(2,7)
Set flags	ANDIS	I	790-791	ALUImm	(1,2,9)
AND & Set flags	ANDS	R	750	R[Rd], $FLAGS = R[Rn] & R[Rm]$	(1)
Branch	В	В	0A0-0BF	PC = PC + BranchAddr	(3,9)
Branch conditionally	B.cond	СВ	2A0-2A7	if(FLAGS==cond) PC = PC + CondBranchAddr	(4,9)
Branch with Link	BL	В	4A0-4BF	R[30] = PC + 4;	(3,9)
Branch to Register	BR	R	6B0	PC = PC + BranchAddr PC = R[Rt]	(-,-,
Compare & Branch				if(R[Rt]!=0)	
if Not Zero	CBNZ	CB	5A8-5AF	PC = PC + CondBranchAddr	(4,9)
Compare & Branch	CBZ	СВ	5A0-5A7	if(R[Rt]==0)	(4,9)
if Zero		D.		PC = PC + CondBranchAddr	
Exclusive OR	EOR	R	650	$R[Rd] = R[Rn] ^ R[Rm]$	
Exclusive OR Immediate	EORI	I	690-691	$R[Rd] = R[Rn] ^ ALUImm$	(2,9)
LoaD Register Unscaled offset	LDUR	D	7C2	R[Rt] = M[R[Rn] + DTAddr]	(5)
LoaD Byte Unscaled offset	LDURB	D	1C2	R[Rt]={56'b0, M[R[Rn] + DTAddr](7:0)}	(5)
LoaD Half Unscaled offset	LDURH	D	3C2	R[Rt]={48'b0, M[R[Rn] + DTAddr] (15:0)}	(5)
LoaD Signed Word Unscaled offset	LDURSW	D	5C4	R[Rt] = { 32{ M[R[Rn] + DTAddr] [31]}, M[R[Rn] + DTAddr] (31:0)}	(5)
LoaD eXclusive Register	LDXR	D	642	R[Rd] = M[R[Rn] + DTAddr]	(5,7)
Logical Shift Left	LSL	R	69B	$R[Rd] = R[Rn] \ll shamt$	
Logical Shift Right	LSR	R	69A	R[Rd] = R[Rn] >>> shamt	
MOVe wide with Keep	MOVK	IM	794-797	R[Rd] (Instruction[22:21]*16: Instruction[22:21]*16-15) = MOVImm	(6,9)
MOVe wide with	MOVZ	IM	694-697	$R[Rd] = \{ MOVImm <<$	(6,9)
Zero Inclusive OR	ORR	R	550	(Instruction[22:21]*16) } R[Rd] = R[Rn] R[Rm]	
Inclusive OR	ORRI				(2.0)
Immediate	ORRI	I	590-591	$R[Rd] = R[Rn] \mid ALUImm$	(2,9)
STore Register Unscaled offset	STUR	D	7C0	M[R[Rn] + DTAddr] = R[Rt]	(5)
STore Byte Unscaled offset	STURB	D	1C0	M[R[Rn] + DTAddr](7:0) = $R[Rt](7:0)$	(5)
STore Half Unscaled offset	STURH	D	3C0	M[R[Rn] + DTAddr](15:0) = R[Rt](15:0)	(5)
STore Word Unscaled offset	STURW	D	5C0	M[R[Rn] + DTAddr](31:0) = R[Rt](31:0)	(5)
STore eXclusive Register	STXR	D	640	M[R[Rn] + DTAddr] = R[Rt];	(5,7)
SUBtract	SUB	R	658	R[Rm] = (atomic) ? 0 : 1 R[Rd] = R[Rn] - R[Rm]	
	JUD	K	038	R[Rd] = R[Rn] - R[Rm]	
SUBtract Immediate	SUBI	I	688-689	R[Rd] = R[Rn] - ALUImm	(2,9)
SUBtract Immediate & Set flags	SUBIS	I	788-789	R[Rd], $FLAGS = R[Rn] - ALUImm$	(1,2,9)
SUBtract & Set flags	SUBS	R	758	R[Rd], $FLAGS = R[Rn] - R[Rm]$	(1)
	4 conditie	n codec e	et by the AT	Loneration: Negative Zero oVerflow	Carry

- FLAGS are 4 condition codes set by the ALU operation: Negative, Zero, oVerflow, Carry ALUImm = {52*b0, ALU_immediate} BranchAddr = {36*{IBR_address [25]}, BR_address, 2*b0} CondBranchAddr = {43*{COND_BR_address [25]}, COND_BR_address, 2*b0} DTAddr = {55*{IDT_address [8]}, DT_address [8]}, DT_address [8]}, MOVImm = {48*b0, MOV_immediate} Atomic test&set pair, R[Rm] = 0 if pair atomic, 1 if not atomic Operands considered unsigned numbers (vs. 2*s complement) Since I, B, and CB instruction formats have opcodes narrower than 11 bits, they occupy a reange of 11-bit oncodes range of 11-bit opcodes

ARITHMETIC CORE	INSTR	UCTIO	N SET		2
NAME, MNEMON	IC.	FOR-	OPCODE/ SHAMT (Hex)	OPERATION (in Verilog)	Notes
Floating-point ADD Single	FADDS	R	0F1 / 0A	S[Rd] = S[Rn] + S[Rm]	110105
Floating-point ADD Double	FADDD	R	0F3 / 0A	D[Rd] = D[Rn] + D[Rm]	
Floating-point CoMPare Single	FCMPS	R	0F1 / 08	FLAGS = (S[Rn] vs S[Rm])	(1,10)
Floating-point CoMPare Double	FCMPD	R	0F3 / 08	FLAGS = (D[Rn] vs D[Rm])	(1,10)
Floating-point DIVide Single	FDIVS	R	0F1 / 06	S[Rd] = S[Rn] / S[Rm]	
Floating-point DIVide Double	FDIVD	R	0F3 / 06	D[Rd] = D[Rn] / D[Rm]	
Floating-point MULtiply Single	FMULS	R	0F1 / 02	S[Rd] = S[Rn] * S[Rm]	
Floating-point MULtiply Double	FMULD	R	0F3 / 02	D[Rd] = D[Rn] * D[Rm]	
Floating-point SUBtract Single	FSUBS	R	0F1 / 0E	S[Rd] = S[Rn] - S[Rm]	
Floating-point SUBtract Double	FSUBD	R	0F3 / 0E	D[Rd] = D[Rn] - D[Rm]	
LoaD Single floating-point	LDURS	R	7C2	S[Rt] = M[R[Rn] + DTAddr]	(5)
LoaD Double floating-point	LDURD	R	7C0	D[Rt] = M[R[Rn] + DTAddr]	(5)
MULtiply	MUL	R	4D8 / 1F	R[Rd] = (R[Rn] * R[Rm]) (63:0)	
Signed DIVide	SDIV	R	4D6 / 02	R[Rd] = R[Rn] / R[Rm]	
Signed MULtiply High	SMULH	R	4DA	R[Rd] = (R[Rn] * R[Rm]) (127:64)	
STore Single floating-point	STURS	R	7E2	M[R[Rn] + DTAddr] = S[Rt]	(5)
STore Double floating-point	STURD	R	7E0	M[R[Rn] + DTAddr] = D[Rt]	(5)
Unsigned DIVide	UDIV	R	4D6 / 03	R[Rd] = R[Rn] / R[Rm]	(8)
Unsigned MULtiply High	UMULH	R	4DE	R[Rd] = (R[Rn] * R[Rm]) (127:64)	(8)

ORE	INSTRUCTIO	ON FORM	IATS						
R	opcode		Rm	shamt		Rn		Rd	
	31	21	20 16	15	10	9	5 4		0
I	opcode		ALU_ir	nmediate		Rn		Rd	
	31	22 21			10	9	5 4		0
D	opcode		DT_ac	dress	op	Rn		Rt	
	31	21	20	12	11 10	9	5 4		0
В	opcode			BR_ad	dress				
	31 26 2	5							0
CB	Opcode		COND	_BR_addre	SS			Rt	
	31 24 2	3					5 4		0
IW	opcode			MOV_imn	nediat	e		Rd	
	31	21	20				5 4		0

PSEUDOINSTRUCTION SET		
NAME	MNEMONIC	OPERATION
CoMPare	CMP	FLAGS = R[Rn] - R[Rm]
CoMPare Immediate	CMPI	FLAGS = R[Rn] - ALUImm
LoaD Address	LDA	R[Rd] = R[Rn] + DTAddr
MOVe	VOM	R[Rd] = R[Rn]

${\bf RE} \underline{{\bf GISTER} \ {\bf NAME, NUMBER, USE, CALL \ CONVENTION}$

NAME NUMBER		USE	PRESERVED ACROSS A CALL	
X0 - X7	0-7	Arguments / Results	No	
X8	8	Indirect result location register	No	
X9 – X15	9-15	Temporaries	No	
X16 (IP0)	16	May be used by linker as a scratch register; other times used as temporary register	No	
X17 (IP1)	17	May be used by linker as a scratch register; other times used as temporary register	No	
X18	18	Platform register for platform independent code; otherwise a temporary register	No	
X19-X27	19-27	Saved	Yes	
X28 (SP)	28	Stack Pointer	Yes	
X29 (FP)	29	Frame Pointer	Yes	
X30 (LR)	30	Return Address	Yes	
XZR	31	The Constant Value 0	N.A.	

4

OPCODES IN NUMERICAL ORDER BY OPCODE

OPCODES	IN NUMI	ERICAL OR	DER BY OPCO	DE		<u> </u>
					11-bit O	
Instruc			pcode	Shamt	Range	
Mnemonic	Format	Width (bits)		Binary	Start (Hex)	
В	В	6	000101		0A0	0BF
FMULS	R	11	00011110001	000010	0F1	
FDIVS	R	11	00011110001	000110	0F1	
FCMPS	R	11	00011110001	001000	0F1	
FADDS	R	11	00011110001	001010	0F1	
FSUBS	R	11	00011110001	001110	0F1	
FMULD	R	11	00011110011	000010	0F3	
FDIVD	R	11	00011110011	000110	0F3	3
FCMPD	R	11	00011110011	001000	0F3	3
FADDD	R	11	00011110011	001010	0F3	3
FSUBD	R	11	00011110011	001110	0F3	3
STURB	D	11	00111000000		1C0)
LDURB	D	11	00111000010		1C2	2
B.cond	CB	8	01010100		2A0	2A7
STURH	D	11	01111000000		3C()
LDURH	D	11	01111000010		3C2	2
AND	R	11	10001010000		450)
ADD	R	11	10001011000		458	3
ADDI	I	10	1001000100		488	489
ANDI	I	10	1001001000		490	491
BL	В	6	100101		4A0	4BF
SDIV	R	11	10011010110	000010	4D6	5
UDIV	R	11	10011010110	000011	4D6	5
MUL	R	11	10011011000	011111	4D8	
SMULH	R	11	10011011010		4D/	A .
UMULH	R	11	10011011110		4DI	
ORR	R	11	10101010000		550	
ADDS	R	11	10101011000		558	
ADDIS	I	10	1011000100		588	589
ORRI	I	10	1011001000		590	591
CBZ	СВ	8	10110100		5A0	5A7
CBNZ	CB	8	10110101		5A8	5AF
STURW	D	11	10111000000		5C0	
LDURSW	D	11	10111000100		5C4	
STURS	R	11	10111100000		5E0	
LDURS	R	11	10111100000		5E2	
STXR	D	11	11001000000		640	
LDXR	D	11	11001000000		642	
EOR	R	11	11001000010		650	
SUB	R	11	11001010000		658	
SUBI	I	10	110100101000		688	689
EORI	I	10	1101000100		690	691
	IM	9	1101001000		694	697
MOVZ	R	11	110100101		694 69A	
LSR	R	11	11010011010		69F	
LSL	R	11	11010011011			
BR					6B0	
ANDS	R	11	11101010000		750	
SUBS	R	11	11101011000		758	
SUBIS	I	10	1111000100		788	789
ANDIS	I	10	1111001000		790	791
MOVK	IM	9	111100101		794	797
STUR	D	11	11111000000		7C(
LDUR	D	11	11111000010		7C2	
STURD	R	11	11111100000		7E0	
LDURD	R	11	11111100010		7E2	2

(1) Since I, B, and CB instruction formats have opcodes narrower than 11 bits, they occupy a range of 11-bit opcodes, e.g., the 6-bit B format occupies 32 (2⁵) 11-bit opcodes.

IEEE 754 FLOATING-POINT STANDARD

3

IEEE 754 Symbols Object Exponent Fraction $(-1)^s \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ 0 ± 0 where Single Precision Bias = 127, $\neq 0$ ± Denorm Double Precision Bias = 1023 1 to MAX - 1 ± F1. Pt. Num. anything MAX 0 IEEE Single Precision and MAX ≠ 0 NaN

DATA ALIGNMENT

	Double Word									
	Word					Word				
I	Halfword			Halfword		Halfword		word		
Byt	te	Byte	Byte	Byte	Byte	Byte	Byte	Byte		
0		1	2	3	4	5	6	7		
,	Value of three least significant bits of byte address (Big Endian)									

CONTROL OVER DECLOSED (ECD.)

EXCEPTION S	YNDROME I	ŒGI	STER (ESR)		
Exception	Instruction		Instruction Specific Syndrome field (ISS)		
Class (EC)	Length (IL)		mstruction specific syndrome field (133)		
31 26	25	24		-0	

EXCEPTION CLASS

Εž	CEPT	TON CLAS	S			
	EC	Class	Cause of Exception	Number	Name	Cause of Exception
	0	Unknown	Unknown	34	PC	Misaligned PC exception
	7	SIMD	SIMD/FP registers disabled	36	Data	Data Abort
	14	FPE	Illegal Execution State	40	FPE	Floating-point exception
	17	Sys	Supervisor Call Exception	52	WPT	Data Breakpoint exception
	32	Instr	Instruction Abort	56	BKPT	SW Breakpoint Exception

SIZE PREFIXES AND SYMBOLS

ZE PREF	IXES AND S	YMBOLS			
SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL
10^{3}	Kilo-	K	210	Kibi-	Ki
10 ⁶	Mega-	M	2 ²⁰	Mebi-	Mi
10 ⁹	Giga-	G	230	Gibi-	Gi
10 ¹²	Tera-	T	2 ⁴⁰	Tebi-	Ti
10 ¹⁵	Peta-	P	2 ⁵⁰	Pebi-	Pi
10 ¹⁸	Exa-	Е	260	Exbi-	Ei
10^{21}	Zetta-	Z	270	Zebi-	Zi
10 ²⁴	Yotta-	Y	2 ⁸⁰	Yobi-	Yi
10-3	milli-	m	10-15	femto-	f
10 ⁻⁶	micro-	μ	10-18	atto-	a
10-9	nano-	n	10-21	zepto-	z
10-12	pico-	р	10-24	vocto-	v