Raport 5 statystyka

Erwin Jasic

28.01.2021

Cel raportu:

Chcemy poddać analizie zachowania funkcji mocy czterech wybranych testów; Wilcoxona, Ansari-Bradley'a, Lepage'a oraz Kołmogorowa-Smirnowa. Porównamy zachowanie tych testów w zależności od rozkładów i parametrów (przesunięcia, skali).

Zadanie 1

Na podstawie m=n=20 obserwacji z rozkładu N(0,1) obliczamy wartość statystyk W, AB, L i KS. Następnie powtarzamy doświadczenie 10000 razy i wyznaczamy wartości krytyczne odpowiadających statystykom testów prawostronnych.

statystyka	przykładowa wartość	wartość krytyczna
W	0.0007500	3.996750
AB	0.3630000	3.888000
L	0.3637500	6.075150
KS	0.3162278	1.264911

Przykładowe wartości raczej nie są większe niż wartość krytyczna, gdyż wartość krytyczna dla testu na poziomie ufności 0.05 oznacza, że do przedziału za nią wartość statystyki wpadnie około 5% razy.

Taki sposób wyznaczania wartości krytycznych jest wskazany. Widząc, że statystyki W i AB mają rozkłady asymptotycznie normalne, moglibyśmy chcieć wziąć kwantyle teoretyczne, jednakże mamy tutaj do czynienia z mała ilościa obserwacji, także lepiej powtórzyć taki test 10000 razy i wyciagnać średnia.

Zadanie 2

Generujemy n=m=20 obserwacji z poniższych rozkładów 10000 razy, obliczamy statystyki W, AB, L, KS i na ich podstawie szacujemy wartość funkcji mocy analizowanych testów. Następnie analizujemy jej wartość zależnie od parametru przesunięcia.

a)

Rozkład normalny z parametrem przesunięcia $\mu_1 = 0$, parametrem skali $\sigma_1 = \sigma_2 = 1$ oraz z parametrem przesunięcia μ_2 o wartościach $\{0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4\}$. Poniżej w tabeli widać zależność wartości mocy testu od parametru μ_2

wartość mi2	moc W	moc AB	moc L	moc KS
0.2	0.0913	0.0419	0.0771	0.0631
0.4	0.2161	0.0428	0.1668	0.1476
0.6	0.4269	0.0363	0.3351	0.3003
0.8	0.6585	0.0265	0.5508	0.5030
1.0	0.8440	0.0200	0.7596	0.7106
1.2	0.9432	0.0129	0.8968	0.8644
1.4	0.9874	0.0097	0.9689	0.9500

Zobaczmy jak to się prezentuje na wykresach.

b) Rozkład logistyczny o wartościach parametrów jak wyżej.

c) Rozkład Cauchy'ego z parametrem przesunięcia $\mu_1=0$, parametrem skali $\sigma_1=\sigma_2=1$ oraz z parametrem przesunięcia μ_2 o wartościach $\{0,0.5,1,1.5,2,2.5,3\}$.

Im większa różnica między parametrami, tym moc testu powinna być większa. Dla rozkładów normalnego i logistycznego widać, że największe wartości mocy testu ma statystyka W, potem L, następnie KS, a AB radzi sobie najgorzej. Natomiast dla rozkładu Cauchy'ego na prowadzenie wysuwa się KS, AB nadal najgorzej. W przypadku rozkładów normalnego i logistycznego widać, że wszystkie trzy statystyki W, L i KS odpowiednio sobie radzą - im większe μ_2 tzn. im większa różnica między rozkładami - tym większa moc testu. Natomiast statystyka AB ma coraz mniejsze wartości - dzieje się tak ponieważ test A-B jest niewrażliwy na przesunięcia. W przypadku Cauchy'ego nie widać już takiej różnicy w statystyce AB, w tym przypadku również ona wzrasta.

Zadanie 3

Generujemy n=m=20 obserwacji z poniższych rozkładów 10000 razy, obliczamy statystyki W, AB, L, KS i na ich podstawie szacujemy wartość funkcji mocy analizowanych testów. Następnie analizujemy jej wartość zależnie od parametru skali.

a)

Rozkład normalny z parametrem przesunięcia $\mu_1 = \mu_2 = 0$, parametrem skali $\sigma_1 = 1$ oraz z parametrem skali σ_2 o wartościach $\{1, 1.5, 2, 2.5, 3, 3.5, 4\}$.

b) Rozkład logistyczny o parametrach jak wyżej.

c) Rozkład Cauchy'ego z parametrem przesunięcia $\mu_1=\mu_2=0$, parametrem skali $\sigma_1=1$ oraz z parametrem skali σ_2 o wartościach $\{1,2,3,4,5,6,7\}$.

Test W jest nieczuły na skalowanie i widzimy, że nie rośnie on wraz ze zwiększeniem różnicy między rozkładami. KS radzi sobie trochę lepiej, najlepiej jednak radzi sobie czuły na skalowanie test AB - widać na wykresach, że rośnie on wzraz ze wzrostem parametru skali.

Zadanie 4

Generujemy n=m=20 obserwacji z poniższych rozkładów 10000 razy, obliczamy statystyki W, AB, L, KS i na ich podstawie szacujemy wartość funkcji mocy analizowanych testów. Następnie analizujemy jej wartość zależnie od parametrów przesunięcia i skali.

a)

Rozkład normalny z parametrem przesunięcia $\mu_1=0$, parametrem skali $\sigma_1=1$ oraz z parametrem przesunięcia μ_2 o wartościach $\{0.2,0.4,0.6,0.8,1,1.2,1.4\}$ i odpowiednio parametrem skali σ_2 o wartościach $\{1,1.5,2,2.5,3,3.5,4\}$.

b)Rozkład logistyczny z parametrami jak wyżej.

c) Rozkład normalny z parametrem przesunięcia $\mu_1=0$, parametrem skali $\sigma_1=1$ oraz z parametrem przesunięcia μ_2 o wartościach $\{0,0.5,1,1.5,2,2.5,3\}$ i odpowiednio parametrem skali σ_2 o wartościach $\{1,2,3,4,5,6,7\}$.

Gdy zmienia się zarówno skala jak i przesunięcie najlepsze wyniki daje test L - połączenie testu W (czułego na przesunięcia) oraz AB (czułego na skalowanie). Prawie tak samo dobrze radzi sobie test AB, ale niezancznie gorzej, średnio radzi sobie KS i najgorzej W. Pamiętając rezultaty z zadania 2 i 3 możemy zaobserwować, że skala ma większy wpływ na zróżnicowanie wykresów mocy.

Zadanie 5

statystyka	przykładowa wartość	wartość krytyczna
W	0.634800	3.871488
AB	0.069312	3.981312
L	0.704112	5.964269
KS	1.000000	1.300000

Wyniki są bardzo podobne do zadania 2 - różnica między 20 a 50 obserwacjami nie jest wystarczająco duża, żeby miała jakiś istotny wpływ na rezultaty.

Zadanie 6

W tym zadaniu dobieramy parametry tak, aby mieć moce w pełnym zakresie tzn. od jedynki, ale omijamy przypadki gdy nasze rozkłady są sobie równe i nie mamy podstaw do odrzucenia hipotezy zerowej.

Rozkład normalny zmiana przesunięcia

Rozkład logistyczny zmiana przesunięcia

Rozkład Cauchy'ego

Podsumowanie:

Po zrealizowaniu poleceń możemy stwierdzić, który test jest najlepszy w zależności od sytuacji z jaką mamy do czynienia. Testy Wilcoxona i Kołmogorowa-Smirnowa działają najlepiej, gdy mamy do czynienia z przesunięciem. Test Ansari-Bradley'a, gdy występuje zmiana skali, a test Lepage'a radzi sobie dobrze w obu tych przypadkach. Nie jest to zaskoczenie, ponieważ test Lepage'a jest sumą testów Wilcoxona i Ansari-Bradley'a.