Convex Controller Synthesis for Evolution Equations

Lauren Conger

California Institute of Technology Control and Dynamical Systems Computing and Mathematical Sciences

Convex Controller Synthesis for Evolution Equations

American Control Conference 2025

Franca Hoffmann
Caltech (co-advisor*)

Antoine Leeman ETH Zurich

Control and Analysis in Infinite Dimensions

Multi-particle system

Multi-cell system

Multi-agent system

Modeling at the continuous level captures global structure. Not always feasible to model at particle level.

⇒ Discretize PDEs, integral equations in function space.

- 1. Introduction
- 2. Discretize-then-optimize system level synthesis
- 3. Optimize-then-discretize controller synthesis
- 4. Implementation and numerical results

- 1. Introduction
- 2. Discretize-then-optimize system level synthesis
- 3. Optimize-then-discretize controller synthesis
- 4. Implementation and numerical results

Related Research

- Discretize-then-optimize does not commute [Liu and Wang, 2019]
- Continuous space and time with SLS proposed in [Jensen, 2020]
- Boundary control via Backstepping [Smyshlyaev and Krstic, 2010, Ascencio et al., 2018]
- System specifics [Tröltzsch, 2010], e.g., reaction-diffusion [Ayamou et al., 2024, Si et al., 2018, Vazquez and Krstic, 2019]
- Theoretical control in Hilbert space: adaptive control [Wen and Balas, 1989], robust control [Venkatesh et al., 2000], controllability [Slemrod, 1974], and stabilizing operators [Gibson, 1979]

Need practical and principled general-purpose tools for (uncertain) linear PDEs!

- 1. Introduction
- 2. Discretize-then-optimize system level synthesis
- 3. Optimize-then-discretize controller synthesis
- 4. Implementation and numerical results

Discretization Example

Consider the system¹ with full state measurements $x^t \in L^2(\Omega)$, $u^t \in \mathbb{R}^{n_u}$, parameterized by $a \in L^2(\Omega)$ and $b: \Omega \to \mathbb{R}^{n_u}$,

$$x^{t+1}(z) = \int a(z-z')x^t(z')dz' + \sum_{l=1}^{n_u} b(l,z)u_l^t.$$

$$Ax^t \qquad Bu^t$$

After discretization, it yields

$$\hat{x}^{t+1} = \hat{A}\hat{x}^t + \hat{B}\hat{u}^t, \qquad \hat{x}^t \in \mathbb{R}^{n_x}, \qquad \hat{u}^t \in \mathbb{R}^{n_u}.$$

Output feedback system level synthesis

We have a system

$$x^{t+1} = Ax^t + Bu^t + w^t$$
$$y^t = Cx^t + v^t$$

which we write compactly over the time horizon

$$x = Ax + Bu + w$$
$$y = Cx + v.$$

$$\boldsymbol{x} = \begin{bmatrix} x^0 \\ \vdots \\ x^T \end{bmatrix}, \boldsymbol{u} = \begin{bmatrix} u^0 \\ \vdots \\ u^T \end{bmatrix}, \boldsymbol{w} = \begin{bmatrix} x^0 \\ w^0 \\ \vdots \\ w^{T-1} \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} v^0 \\ \vdots \\ v^T \end{bmatrix},$$

$$A = \begin{bmatrix} 0 \\ A & \ddots \\ & & \ddots \\ & & A & 0 \end{bmatrix}$$
, etc.

We introduce an output feedback controller

$$u = Ky$$
.

Rearranging the dynamics,

$$x = (I - ZA - ZBKC)^{-1}w + (I - ZA - ZBKC)^{-1}ZBKv$$

$$u = KCx + Kv$$

Define closed-loop maps

$$\Phi_{xx} = (I - ZA - ZBKC)^{-1}$$

$$\Phi_{xy} = (I - ZA - ZBKC)^{-1}ZBK$$

$$\Phi_{ux} = KC\Phi_{xx}$$

$$\Phi_{uy} = K + KC\Phi_{xx}ZBK$$

Dynamics in terms of closed-loop maps:

$$x = \Phi_{xx} w + \Phi_{xy} v$$
$$u = \Phi_{ux} w + \Phi_{uy} v$$

Output feedback system level synthesis

We have a system

$$x^{t+1} = Ax^t + Bu^t + w^t$$
$$y^t = Cx^t + v^t$$

which we write compactly over the time horizon

$$x = Ax + Bu + w$$
$$y = Cx + v.$$

$$\mathbf{x} = \begin{bmatrix} x^0 \\ \vdots \\ x^T \end{bmatrix}, \mathbf{u} = \begin{bmatrix} u^0 \\ \vdots \\ u^T \end{bmatrix}, \mathbf{w} = \begin{bmatrix} x^0 \\ w^0 \\ \vdots \\ w^{T-1} \end{bmatrix}, \mathbf{v} = \begin{bmatrix} v^0 \\ \vdots \\ v^T \end{bmatrix},$$

$$A = \begin{bmatrix} 0 \\ A & \ddots \\ & & A & 0 \end{bmatrix}$$
, etc.

We introduce an output feedback controller u = Kv.

Rearranging the dynamics,

$$x = (I - ZA - ZBKC)^{-1}w + (I - ZA - ZBKC)^{-1}ZBKv$$

$$u = KCx + Kv$$

Define closed-loop maps

$$\Phi_{xx} = (I - ZA - ZBKC)^{-1}$$

$$\Phi_{xy} = (I - ZA - ZBKC)^{-1}ZBK$$

$$\Phi_{ux} = KC\Phi_{xx}$$

$$\Phi_{uy} = K + KC\Phi_{xx}ZBK$$

Dynamics in terms of closed-loop maps:

$$x = \Phi_{xx} w + \Phi_{xy} v$$
$$u = \Phi_{ux} w + \Phi_{uy} v$$

Output feedback system level synthesis

We have a system

$$x^{t+1} = Ax^t + Bu^t + w^t$$
$$y^t = Cx^t + v^t$$

We introduce an output feedback controller u = Kv.

Dynamics in terms of closed-loop maps:

$$x = \Phi_{xx} w + \Phi_{xy} v$$
$$u = \Phi_{ux} w + \Phi_{uy} v$$

Theorem (informal) [Anderson et al, 2019]

The trajectory (x, u) of the system in closed loop with u = Ky can be expressed as above, if and only if Φ_{xx} , Φ_{xy} , Φ_{ux} , Φ_{uy} lie on the affine subspace

$$\begin{bmatrix} \mathbf{I} - \mathbf{Z}\mathbf{A} & -\mathbf{Z}\mathbf{B} \end{bmatrix} \begin{bmatrix} \Phi_{xx} & \Phi_{xy} \\ \Phi_{ux} & \Phi_{uy} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix},$$
$$\begin{bmatrix} \Phi_{xx} & \Phi_{xy} \\ \Phi_{ux} & \Phi_{uy} \end{bmatrix} \begin{bmatrix} \mathbf{I} - \mathbf{Z}\mathbf{A} \\ -\mathbf{C} \end{bmatrix} = \begin{bmatrix} \mathbf{I} \\ \mathbf{0} \end{bmatrix}.$$

The controller can be computed as $\mathbf{u} = (\Phi_{uy} - \Phi_{ux}\Phi_{xx}^{-1}\Phi_{xy})\mathbf{y}$; implementation does not require inversion of Φ_{xx} .

Constraints

Dynamics in terms of closed-loop maps:

$$x = \Phi_{xx} w + \Phi_{xy} v$$
$$u = \Phi_{ux} w + \Phi_{uy} v$$

Let the adjacency matrix G be defined such that G[i,j] = 1 if $A[i,j] \neq 0$.

```
(locality r) \sup \Phi_x(\cdot,\cdot) = \sup G^r, \sup \Phi_u = \sup(|B^T| \sup \Phi_x) (communication speed v) \sup \Phi_x(t,\cdot) = \sup G^{\lfloor vt \rfloor}, \sup \Phi_u = \sup(|B^T| \sup \Phi_x) (actuation delay \tau) \Phi_u(t,\cdot) = 0 \ \forall \ t < \tau.
```

⇒ Convex constraints!

- 1. Introduction
- 2. Discretize-then-optimize system level synthesis
- 3. Optimize-then-discretize controller synthesis
- 4. Implementation and numerical results

Natural Extension: strong form of dynamics

For Hilbert spaces *X*, *U*, *Y*, at time *t* let

- state $x^t \in X$
- input $u^t \in U$
- output $y^t \in Y$,
- disturbance $w_x^t \in X$
- observation noise $w_y^t \in Y$.

Consider the discrete-time dynamics

$$x^{t+1} = A^*x^t + B^*u^t + w_x^t$$
$$y^t = C^*x^t + w_y^t,$$

dynamics $A^*: D(A^*) \to X$, $D(A^*) \subseteq X$, control $B^*: D(B^*) \to X$, $D(B^*) \subseteq U$, observation $C^*: D(C^*) \to Y$, $D(C^*) \subseteq X$.

Example

Consider the advection operator

$$A^*x = I + \Delta t \left(v \cdot \nabla_z x(z) \right).$$

- Initial condition: $x^0(z) = \text{sign}(z)$
- Desired solution: translation
- Bad news: step function not differentiable; physically relevant solutions not captured by this strong framework. Need another approach!

Generalization: weak form of dynamics

Consider the dynamics

$$\langle x^{t+1}, f \rangle_X = \langle x^t, Af \rangle_X + \langle u^t, Bf \rangle_U + \langle w_x^t, f \rangle_X$$
$$\langle y^t, g \rangle_Y = \langle x^t, Cg \rangle_X + \langle w_y^t, g \rangle_Y$$

for all text functions $f \in D(A) \cap D(B) \subseteq X$ and $g \in D(C) \subseteq Y$.

Test functions

- Applying differential operators to test functions instead of solution itself allows for less regular solutions
- $(x^t, u^t)_{t=0}^T$ solves weakly if all test functions fulfilled.

Compare with strong form

$$x^{t+1} = A^* x^t + B^* u^t + w_x^t$$
$$y^t = C^* x^t + w_y^t,$$

Finite-Dimensional Hilbert Space: Example

- For $X = \mathbb{R}^{n_x}$, $U = \mathbb{R}^{n_u}$ and $Y = \mathbb{R}^{n_y}$, the weak form reduces to the standard strong form.
- *X*, *U*, *Y* are Hilbert spaces when equipped with the 2-norm.

Linear Feedback in Hilbert Spaces

We define in the weak sense, for $t, \tau \in [0, ..., T]$

$$\langle u^t, h \rangle_U = \sum_{\tau=0}^t \langle x^\tau, K_x^{t,t-\tau} h \rangle_X$$
 for state feedback $\langle u^t, h \rangle_U = \sum_{\tau=0}^t \langle y^\tau, K_y^{t,t-\tau} h \rangle_Y$ for output feedback

for all test functions $h \in \cap_{\tau=0}^t D(K_{x,y}^{t,t-\tau}) \subseteq U$, with family of operators

- $K_{\chi}^{t,\tau}:D(K_{\chi}^{t,\tau})\to X$,
- $K_y^{t,\tau}:D(K_y^{t,\tau})\to Y.$

Compare with strong form,

$$u^{t} = \sum_{\tau=0}^{t} (K_{x}^{t,t-\tau})^{*} x^{\tau} \text{ for state feedback}$$

$$u^{t} = \sum_{\tau=0}^{t} (K_{y}^{t,t-\tau})^{*} y^{\tau} \text{ for output feedback.}$$

System Level Parameterization

Infinite Dimension

The maps θ_x and θ_u parameterize the trajectories $x \in \mathcal{X}$ and $u \in \mathcal{U}$ via

$$\langle x, f \rangle_{\mathcal{X}} = \langle w_{x}, \theta_{x} f \rangle_{\mathcal{X}} \quad \forall f \in D(\theta_{x}) \subseteq \mathcal{X}$$

$$\langle u, f \rangle_{\mathcal{U}} = \langle w_{x}, \theta_{u} h \rangle_{\mathcal{X}} \quad \forall h \in D(\theta_{u}) \subseteq \mathcal{U},$$

with the controller K_x given by

$$\langle f, \theta_{\chi}^{-1} \theta_{u} h \rangle_{\chi} = \langle f, K_{\chi} h \rangle_{\chi}$$

for appropriate test functions f, h.

Finite Dimension

The maps Φ_{xx} and Φ_{ux} parameterize the trajectories x and u via

$$x = \Phi_{xx} w$$
$$u = \Phi_{ux} w$$

with the controller K_x given by

$$K_{x} = \Phi_{xx}^{-1} \Phi_{ux}.$$

Theorem 1: State Feedback

Consider the trajectories

$$\langle x, f \rangle_{\mathcal{X}} = \langle w_x, \theta_x f \rangle_{\mathcal{X}} \quad \forall f \in D(\theta_x) \subseteq \mathcal{X}$$

$$\langle u, f \rangle_{\mathcal{U}} = \langle w_x, \theta_u h \rangle_{\mathcal{X}} \quad \forall h \in D(\theta_u) \subseteq \mathcal{U}.$$
(*)

Theorem (SLP-SF)

Fix disturbance function realization $w_x \in \mathcal{X}$ and operators \mathcal{A}, \mathcal{B} .

i. If K_x is given, then any trajectory $(x, u) \in \mathcal{X} \times \mathcal{U}$ satisfying the closed-loop dynamics also satisfies (*) with some causal closed-loop maps satisfying

$$\langle f, \theta_{\chi} \hat{f} \rangle_{\chi} = \langle f, \theta_{\chi} \mathcal{A} \hat{f} \rangle_{\chi} + \langle f, \theta_{u} \mathcal{B} \hat{f} \rangle_{\chi} + \langle f, \hat{f} \rangle_{\chi} \text{ for all } f \in \mathcal{X}, \hat{f} \in D(\mathcal{A}) \cap D(\mathcal{B}).$$
 (SLP-SF)

- ii. Let θ_x , θ_u be arbitrary causal maps satisfying (SLP-SF). The trajectory $(x, u) \in \mathcal{X} \times \mathcal{U}$ computed with (*) also satisfies the closed-loop dynamics with the controller K_x defined by $K_x := \theta_x^{-1} \theta_u$ and $D(K_x) := D(\theta_u)$.
- \Rightarrow Space of controllers parameterized by K_x is equivalent to space parameterized by (θ_x, θ_u) .

- 1. Introduction
- 2. Discretize-then-optimize system level synthesis
- 3. Optimize-then-discretize controller synthesis
- 4. Implementation and numerical results

Implementation

Structural Constraints

As in finite-dimensional SLS, when restricting to a constraint set *S*, the optimization problem is

$$\min_{\theta \in S} J(\theta)$$
 such that (SLS – SF) holds,

e.g. locality constraints, delayed measurements, communication delay.

Integral Operators via kernels

Express operators via kernels $f \in L^2(\Omega)$ and $z \in \Omega$

$$\left(\theta_{\chi}^{t,\tau}\right)^{*} f = \int_{\Omega} \vartheta_{\chi}^{t,\tau}(\tilde{z},\cdot) f(\tilde{z}) d\tilde{z}$$

$$\left(\theta_u^{t,\tau}\right)^* f = \int_{\Omega} \vartheta_u^{t,\tau}(\tilde{z},\cdot) f(\tilde{z}) d\tilde{z}.$$

Implementation of Integral Operators via Kernels

- Optimizing over θ_x , θ_u is equivalent to optimizing over kernels $\vartheta \in M$.
- We use a real Fourier basis for ϑ .
- Apply constraints to basis functions.

Numerical Example

Consider the dynamics

$$x^{t+1}(z) = \int a(z-z')x^{t}(z')dz' + \sum_{l=1}^{n_u} b(l,z)u_l^{t}.$$

Define the cost function

$$J(\vartheta) \coloneqq \sum_{t,\tau} Q \iint \left| \vartheta_x^{t,\tau}(\tilde{z},z) \right|^2 d\tilde{z} dz + R \iint \left\| \vartheta_u^{t,\tau}(\tilde{z},\cdot) \right\|_2^2 d\tilde{z} ,$$

For scalars Q > 0 and $R \ge 0$, analogous to LQR for finite-dimensional SLS.

- Time horizon T=5
- Disturbance position (-0.26,0.56)
- Basis functions k = 12

Simulation Results

1) Relative error, performance gain (relative to no control):

time step	error (%)	perf. gain (%)
1	0.16	42.23
2	0.11	61.23
3	0.17	70.93
4	0.21	77.39
5	0.23	82.16

- ⇒ small relative error
- ⇒ faster convergence to zeros relative to no control
- 2) Performance comparison with finite-dimensional SLS:

discretization step	avg perf. gain (%)	state dimension n_x
continuous (our approach)	42.79	/
dx = 0.1	32.26	1600
dx = 0.2	30.54	400
dx = 0.25	31.91	256
dx = 0.5	37.36	64

- ⇒ scalability independent of discretization
- ⇒ higher performance compared to (finite-dimensional) SLS

Parallel Computation and Constraints

Example: **Constrain** to allow only local controllers to respond to disturbances, compute responses in **parallel**.

Contributions, Future Work

- ✓ Extension of SLS to infinite-dimensional Hilbert space
- ✓ Convex structural constraints (locality, sensor and communication delays)
- ✓ Improved performance compared to finite-dimensional SLS
- **□** Controllability and observability
- ☐ Time-varying operators, continuous time
- Robustness guarantees

paper

code