Enistation Table of all the FF are nothing but inputs required to make a harritton from present state to next state

Shift Registers

1 Register can store information temporary.

) Registe with capability to shift a called shift register

left shift -> x2
right shift -> 1/2

MSB & LSB is left shift is lightshift

data SISO [serial In Serial Out]

data is 1 for 1 clock syches at CLR 1, $Q_0 = 1$ at CLR 2, Q_0 is shifted to D_1 & so on at 4th pulse $Q_3 = 1$

de SIPO 0 D2 Q2 04 a 00 Qı BJPO 0,

with SJSO

-> Nigra wunt / swing worth

Shift ug und in multiplication | division

CISK > complex instruction Set

A Synchworous Counter

The 3 bit up wunter is converted to 4 bit binary up counter by adding 4th flipplop Is K3.

Properties:-

(i) Period of the is 10ms
$$F = \frac{1}{10 \times 10^{-3}} = 100 \text{ Mz} = 100 \text{ Mz}$$

(ii) Flequency Divida citait

Down Counter

The same clet can be converted to down wurtes initially all off will be 1,1,1. The clock y connected from \$\overline{q}_0\$ to \$T_1 to \$0\$ of \$\overline{q}_1\$ in \$12 Kz. This becomes a 3 bit Pown County.

All outputs are held to a one of it counts down to

o preg divider Ukt

What diff bhu Synchronous / Asynchronous:

Preset and clear are Asynchinous input they are preset of clear. without if J&K and clk, the output or has been set to 1 by connecting preset to 0.

Reset Synchdonization

Truncate

Modulo Courtes [Unit-5]

It count from 0 to n-1

i) If n=8, 3' bit Binary would up wanted wanting

n=6 It wont por 05 & next stake wills

Asynshonous Counter

-) 3 bit up worth of down county
- > nodulo courte
- 2 4bit down/up wunter

The same 3 bit counter can start from any other state, with 1 clock pulse $q_0 = 1$ $q_0 = 1$ $q_2 = 0$ then countrous ch is field counts from 0 to 7.

Porable Loading | Present

Jo=1, Ko=0, I can pulse 9s feed go becomes 1

I'm at some time $T_1=0$, $T_2=0$, $q_3=1$, $q_5=0$ Then the continuous the its fed & initial State is from 2-7 and rusels at all zeros.

-> state assignment

Synchronous

Design & modulate synchonogy RF. Draw ckt, Himby diagram, design, proction table

	Previo	w stah		nent	State	_E	neitation	Table	
Q2	Q,	Qo	Q_{2+1}			1	rea real sec	1000-	
D	0	D		_	Q0+1	J ₂ K ₂	J ₁ K ₁	Jo Kz	
0			0	೦	1	K O	8 ×	N /	
	0	(0	1		OX	\ ×	×	
0)			1	1	OX			
D	61	(a)		10	(XO	1 8	
	O	6		0	0	1 N	×	×I	
V			1	0	1	× O	ON	k t	
1	0	1	1	1	0	OK	lα) (
ĺ	, I	0	1 @	1 😂		W O	м О	1 ×	
1	T	1	V	i Z		w 1	x U	XI	
ı	· ·		S	D	0	N	N (^1	

WKT Out Detri J "K O O O N U I N I N O

Unit -5

Sequential unwit

1) Moore cirwits [Basic Steps]

The ofp will depend on state . If the ip and the output is changed in next state.

A/z=0 W=0 W=0 C/z=1 W=1State Diagrom

Sequen il

eg

0/P Z 0 0 0 0 1 1 0 0 1 0

Stak diagram Table

Preset state PS	Nesut	- state NS	output Z
	w=0	W=1	
A	A	В	0
3	A	C	70
L	A	C	1

stak assignment

3 states, 2 digits (unique)

A=00 B=01 C=10

	.1	PS		NS			0/8	
	22	Q,)=0	W=1		Z	
			Pet+1	Qt+1	Q2++1	Qtes		
A	0	0	0	0	0	1	0	
В	0	١	0	O	I	0	O	
/	,	D	10	0	1	0	1	
C	1	1	×	×	X	×	×	

State assignment (different form) PS W Q_2 Q_1 Q_{2t+1}	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-e1
O 1 X X X X	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

Q2 & Q, au O/P et 2 flip flops we will choose D-flip flop

enicitation Table

Q t	Q'ta,	0
0	0	6
0	1	1
1	0	0
1	1	1

1919	ALC: NO.	To all the second			the state of	M. San		230
and the same	U2	0,	Qz+1	Ott 1	75	K2	$\mathcal{I}_{\mathfrak{t}}$	K,
W	0	0	0	O	0	M	0	×
0	0	1	0		1	×	×	1
0	1	0	0	0	×	(0	×
0	(0	×	×	Я	V	×	M
1	0	D	0	1	0	\forall	1	×
1	0	1	1	D	t	×	×	1
ı		0	1	0	×	0	0	×
1	4 1	1	×	\sim	Ŋ	*	×	×
L.			*					

T2	,			
w/a	200	01	-11	10
6	0	O	×	X
١	0	1	1 x	1 × 1

	en	citation	Table
Qt	Qtti	I	K
0	0	D	×
0	1	1	×
į	0	×	1
	1	×	0

$$J_{L} = \omega Q_{1}$$

$$K_{L} = \overline{\omega} Q_{2}$$

$$J_{1} = \omega \overline{Q}_{2}$$

$$K_{1} = 1$$

I the depends on present value of \$ 3/P and also on present state i/P of also on present state.

ip/op = W/z = % a 1/1 a 1/0

It reduces rumber of states

State Table

PS NS 0/P

w=0 w=1 w=0 w=1

O A B O O

1 B A B O T

State Assignment [2 states I digit A=0 , B=1) PS NS OP WZO WZI W=0 a att Qt+1 A 0 8 0 B 0 🖟 0

only I plip plop

State diagram 1 case: Cin=0 · (ast 2; Cin=1 (50) ab/som 00/0 11/0 ab/som 50 0,0/0 10/1 00/1 01/1 FSM + finite state machiene remains in so when ab= 01,10,01 FSM $S_0 \rightarrow S_1$ when ab = 11FSM FSM genein in SI when as = 01, 10, 11 Fm 5,->50 when 00 State Table -> only (50151) OP - Sum NS PS ab 11 01 00) \ 10 01 00 0 1 51 0 So 50 S. O 50 1 0 0 1 51 SI Si 50 S, 1 Statossignment Table - only values 0 0 0

carry look ahead adder / Eary save odds RIPPLE carry adder propergates carry from one stage to another stage. Delay so to overcome we need part adder NC-no carry (P) cary propagate Full adder Cow Sum Cin B A NC 0 \bigcirc 0 0 NC 10 0 NL 0 1 1 0 EP 1 0 1 1) NZ O 0 1 0 0 CRAMY general 7 0 carry generate J w her ABB=1 Fregu to jigure in book P-> pwgagals Cr - generate Pi = Ai & Bi Gi = Ai Bi Carry generated when A=11827

Sum = Pi + Ci

> jest odder egration