Metody obliczeniowe optymalizacji

2017

Prowadzący: Łukasz Chomątek

Środa, 12:15

Data oddania:	Ocena:

Radosław Pawlaczyk 214952 Mateusz Grabowski 214903

Zadanie 1: Optymalizacja jednowymiarowa, wariant 0 oraz 2

1. Teoria

Metoda bisekcji

Metoda polega na równym podziale przedziału. Aby można stosowac metądę muszą być spełnione następujące warunki:

- 1. Funkcja jest ciągła w przedziale domkniętym[a,b]
- 2. Funkcja przyjmuje różne znaki na końcach przedziału: f(a)F(b) < 0

Algorytm:

- 1. Dzielimy przedział [a;b] na cztery równe częścii oznaczamy punkty: środkowy $x_0, \, x_1$ oraz x_2
- 2. Obliczamy wartosc funkcji w punktach x_1, x_0, x_2
- 3. Jeżeli $f(x_2)>f(x_0)>f(x_1)$ oznaczamy $b=x_0, x_0=x_1$ i przechodzimy do punktu 5
- 4. W innym przypadku oznaczamy $a=x_0$ oraz $x_0=x_2$
- 5. Jeżeli (b-a) < dokłądność kończymy obliczenia w innym przypadku przechodzimy do

Metoda złotego podziału

Metoda polega na równym podziale przedziału na 3 częsci. W każdej iteracji stosunek długości eliminowanego przedziału do wielkości całego przedziału jest stały.

Algorytm:

- 1. W przedziale [a,b] wybieramy dwa punkty tak aby $x_1=(b-a)(-t)+b$ oraz $x_2=(b-a)t+a$ gdzie $t=(\sqrt{5}-1)/2$
- 2. Jeżeli $f(x_1) > f(x_2)$ to wybieramy przedział $[x_1,b]$. W przeciwnym wypadku wybieramy przedział $[a,x_2]$
- 3. Jeżeli b-a < dokładności kończymy algorytm w przeciwnym wypadku idziemy do punktu 1.

Szuukanie przedziału unimodalnego

Dzieli nasz przedział na n równych częsci. przeszukujemy koolejne trójki punktów i, i+1 oraz i+2 dla [i=0:i \leq n-2]. Jeżeli f(i) \leq f(i+1) oraz f(i+1) \leq f(i+2) to badany przedział jest unimodalny i na nim szukamy extremum.

2. Wyniki

PP - Przedział początkowy, PU - Przedział unimodalny, I - Iteracji, PK - przedział końcowy, Ś - środek, B - Błąd

	PP	PU	I	PK	Ś	В
Zaimplementowana	[-3:4]	[-1.25:0.5]	8	[0.0625; 0.069336]	0.065918	± 0.003418
Zaimplementowana	[-2:4]	[-0.5:1]	8	[-0.001953:0.003906]	0.000977	± 0.002930

Tabela 1. Metoda bisekcji dla x^2 .

	PP	PU	I	PK	Ś	Błąd
Zaimplementowana	[-3:4]	[-1.25:0.5]	11	[0.005208; 0.003585]	-0.000811	± 0.004397
Zaimplementowana	[-2:4]	[-0.5:1]	11	[-0.003106:0.004432]	0.000663	± 0.003769

Tabela 2. Metoda złotego podziału dla x^2 .

	PP	PU	I	PK	Ś	В
Zaimplementowana	[-0.5:1]	[0.4375:0.8125]	6	[0.578125 : 0.583984]	0.581055	± 0.002930
Zaimplementowana	[-1:1]	[0.25:0.75]	6	[0.578125:0.585938]	0.582031	± 0.003906

Tabela 3. Metoda bisekcji dla x^3 -x.

	PP	PU	I	PK	Ś	Błąd
Zaimplementowana	[-0.5:1]	[0.4375:0.8125]	8	[0.572755:0.580737]	0.576746	± 0.003991
Zaimplementowana	[-1:1]	[0.25:0.75]	9	[0.573725:0.580303]	0.577014	± 0.003289

Tabela 4. Metoda złotego podziału dla x^3 -x.

3. Wnioski

- 1. Im mniejsza dokłądność oraz mniejsza ilość iteracji tym otrzymujemy wynik mniej dokładny z większym błędem.
- 2. Możemy zaobserwować że metoda złotego podziału cechuje się większą ilością iteracji niż metoda bisekcji.
- 3. W porównaniu wyników zaimplementowanych metod oraz wyliczeniu ręcznym extremów można dojśc do wniosku że nasze implementacje są poprawne.

Literatura

 $https: //web.sgh.waw.pl/~mlewan1/Site/MO_files/mo_skrypt_21_12.pdf$

 $http://www.if.pw.edu.pl/~agatka/numeryczne/wyklad_02.pdf$