

Department of Computer Science and Engineering, BUET

COURSE OUTLINE

Course Code: CSE 208

Course Title: Data Structures and Algorithms II Sessional

Level/Term: L2T2 Section: A, B

Academic Session: January 2020

Course Teacher(s):

Name:	Office/Room:	E-mail
Dr. Muhammad Masroor Ali	ECE 219	mmasroorali@cse.buet.ac.bd
Dr. Md. Abul Kashem Mia	ECE 315	kashem@cse.buet.ac.bd
Dr. Md. Shamsuzzoha Bayzid	ECE 522	shams_bayzid@cse.buet.ac.bd
Dr. Atif Hasan Rahman	ECE 520	atif@cse.buet.ac.bd
Shadman Saqib Eusuf	ECE 415	ssaqib@cse.buet.ac.bd
Preetom Saha Arko	ECE 508	arko@cse.buet.ac.bd
Md. Masum Mushfiq	ECE 418	mushfiq@teacher.cse.buet.ac.bd
Syed Md. Mukit Rashid	ECE 214	mukit@teacher.cse.buet.ac.bd
Tahmid Hasan	ECE 409	tahmid@teacher.cse.buet.ac.bd

Course Outline:

Graph algorithms; MST algorithms, Shortest path algorithms, Maximum flow and maximum bipartite matching; Lower bound theory; Advanced data structures: Balanced binary search trees (AVL trees, red-black trees, splay trees etc.), Advanced heaps (Fibonacci heaps, binomial heaps); Hashing; NP-completeness; NP-hard and NP-complete problems; Coping with hardness: Backtracking, branch and bound, Approximation algorithms; String matching algorithms; FFT and its applications.

Learning Outcomes/Objectives:

After undergoing this course, students should be able to:

- i. understand and analyze performance of algorithms in terms of time and space, and prove the correctness of algorithms,
- ii. formulate various algorithmic problems and design efficient algorithms to solve those problems,
- iii. solve real world problems using algorithms,
- iv. utilize advanced data structures for efficient implementations of algorithms,
- v. understand various complexity classes of algorithmic problems, and
- vi. design backtracking, branch and bound and efficient approximation algorithms to cope with hard combinatorial problems.

Department of Computer Science and Engineering, BUET

Assessment (tentative):

Offline: 30-40% Online: 30-40% Quiz: 30-40%

Text and Reference Books:

- a. Algorithm Design, by Michael T. Goodrich and Roberto Tamassia, John Wiley & Sons, Inc.
- b. Algorithms, by Sanjoy Dasgupta, Christos Papadimitriou and Umesh Vazirani.
- c. Introduction to Algorithms, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, MIT Press.
- d. Algorithm Design, by Jon Kleinberg and Eva Tardos, Pearsons Publishers.
- e. Introduction to the Design & Analysis of Algorithms, by Anany Levitin.
- f. Algorithm Design Manual, by Steven S. Skiena.

Weekly schedule:

Week	Topics	Teacher's Initial
Week 1	Introduction	All
Week 2	Basic Graph Algorithms (Offline and Online)	All
Week 3	Single Source Shortest Path Problem (Offline and Online)	All
Week 4	All-Pair Shortest Path Problem (Offline and Online)	All
Week 5	Minimum Spanning Tree (Offline and Online)	All
Week 6	Maximum Flow and Maximum Bipartite Matching (Offline and Online)	All
Week 7	Reserved	All
Week 8	Advanced Data Structure-I (Offline and Online)	All
Week 9	Advanced Data Structure-II (Offline and Online)	All
Week 10	Hashing (Offline and Online)	All
Week 11	NP & NP-Completeness (Practice)	All
Week 12	Approximation Algorithms, Branch and Bound (Offline and Online)	All
Week 13	Reserved	All
Week 14	Quiz	All

* Please DO NOT COPY solutions from anywhere (your friends, seniors, internet etc.). Any form of plagiarism (irrespective of source or destination), will result in getting -100% marks in the online/offline.

Prepared by:	
Signature:	
Date:	
Date.	

