

Optimizing the Computation of a Possibilistic Heuristic to Test OWL SubClassOf Axioms Against RDF Data Evolutionary Axiom Discovery from Knowledge Graphs

Rémi FELIN; Olivier CORBY; Catherine FARON; Andrea G. B. TETTAMANZI

Université Côte d'Azur, Inria, CNRS, I3S WIMMICS Team

Introduction

- A research area focused on Ontology Enrichment of the Semantic Web.
- An evolutionary approach for OWL axiom extraction based or grammatical evolution combined with possibility theory.
- We use W3C standards such as RDF, OWL and SPARQL to extract meaningful axioms.

Introduction

- A research area focused on Ontology Enrichment of the Semantic Web.
- An evolutionary approach for OWL axiom extraction based on grammatical evolution combined with possibility theory.
- We use W3C standards such as RDF, OWL and SPARQL to extract meaningful axioms.

Introduction

- A research area focused on Ontology Enrichment of the Semantic Web.
- An evolutionary approach for OWL axiom extraction based on grammatical evolution combined with possibility theory.
- We use W3C standards such as RDF, OWL and SPARQL to extract meaningful axioms.

A set of W3C standards for linked data on the Web :

- RDF to represent knowledge graphs as a set of triples dbr:Queen_(band) dbo:genre dbr:Rock_music .
- **OWL** to represent an **ontology**: $\mathcal{O} = \langle \mathcal{C}, \mathcal{R}, \mathcal{T}, A \rangle$
- **SPARQL** to guery RDF data.

- A set of W3C standards for linked data on the Web :
 - RDF to represent knowledge graphs as a set of triples: dbr:Queen_(band) dbo:genre dbr:Rock_music .
 - **OWL** to represent an **ontology**: $\mathcal{O} = \langle \mathcal{C} | \mathcal{R} | \mathcal{T} | A \rangle$
 - **SPARQL** to guery RDF data.

- A set of W3C standards for linked data on the Web :
 - RDF to represent knowledge graphs as a set of triples: dbr:Queen_(band) dbo:genre dbr:Rock_music .
 - **OWL** to represent an **ontology**: $\mathcal{O} = \langle \mathcal{C}, \mathcal{R}, \mathcal{I}, \mathcal{A} \rangle$,
 - SPARQL to query RDF data.

- A set of W3C standards for linked data on the Web :
 - RDF to represent knowledge graphs as a set of triples: dbr:Queen_(band) dbo:genre dbr:Rock_music .
 - **OWL** to represent an **ontology**: $\mathcal{O} = \langle \mathcal{C}, \mathcal{R}, \mathcal{I}, \mathcal{A} \rangle$,
 - **SPARQL** to query RDF data.

Preliminaries 🌼 An example of a SPARQL Query

- "I would like to know the number of tracks on each of Queen's albums."
- Querying DBpedia SPARQL Endpoint: https://dbpedia.org/sparql

```
SELECT distinct ?album

(count(distinct ?title) as ?n_title) WHERE {
    ?album a dbo:Album .
    ?album dbp:artist dbr:Queen_(band) .
    ?album dbp:title ?title .
} GROUP BY ?album
```


Preliminaries > A look on our approach

■ We focus on 2 research questions:

- How to automatically discover new OWL axioms over a knowledge graph ?
- How to assess OWL axioms against a given RDF graph ?
- We focus on the assessment of OWL Subsumption axioms
 - SubClassOf(<C> <D>) where C and D are concepts from a given ontology.
 - $C \sqsubseteq D$ highlight the perfect inclusion of the instances of C within the instances of D, i.e. the instances of C are also instances of D
 - verify the compatibility of a given subsumption axiom with the known facts: a possibilistic heuristic to test it!

Preliminaries > A look on our approach

■ We focus on 2 research questions:

- How to automatically discover new OWL axioms over a knowledge graph?
- How to assess OWL axioms against a given RDF graph?
- We focus on the assessment of OWL Subsumption axioms
 - SubClassOf(<C> <D>) where C and D are concepts from a given ontology.
 - $C \sqsubseteq D$ highlight the perfect inclusion of the instances of C within the instances of D, i.e. the instances of C are also instances of D
 - verify the compatibility of a given subsumption axiom with the known facts: a possibilistic heuristic to test it!

Preliminaries $\, \, \triangleright \,\,$ A look on our approach

- We focus on 2 research questions:
 - How to automatically discover new OWL axioms over a knowledge graph?
 - How to assess OWL axioms against a given RDF graph?
- We focus on the assessment of OWL Subsumption axioms.
 - SubClassOf (<C> <D>) where C and D are concepts from a given ontology.
 - $C \sqsubseteq D$ highlight the perfect inclusion of the instances of C within the instances of D, i.e. the instances of C are also instances of D
 - verify the compatibility of a given subsumption axiom with the known facts: a possibilistic heuristic to test it!

Background > Possibility theory

Possibility theory

Possibility theory is a mathematical theory of epistemic uncertainty which considers events denoted ω of a universe of discourse Ω ($\omega \in \Omega$) where each ω has a degree of possibility $\pi(\omega) \in [0,1]$. The theory includes a measure of possibility denoted by Π and a measure of necessity denoted by N such that:

$$\Pi(A) = \max_{\omega \in A} \pi(\omega), \ N(A) = 1 - \Pi(\bar{A}) = \min_{\omega \in \bar{A}} \{1 - \pi(\omega)\},$$

where $A \sqsubseteq \Omega$ or $A = \{\omega : \omega \models \phi\}$.

Related work > Possibility and Necessity

Possibility theory applied on subsumption axioms evaluation ¹

Let us consider v_{ϕ}^{+} the *confirmations* and v_{ϕ}^{-} the *exceptions* observed among the elements of v_{ϕ} , the **support** for an axiom ϕ . We define the **possibility** $\Pi(\phi)$ and **necessity** $N(\phi)$ of an axiom as follows:

$$\Pi(\phi) = 1 - \sqrt{1 - \left(rac{\upsilon_\phi - \upsilon_\phi^-}{\upsilon_\phi}
ight)^2}, N(\phi) = \left\{egin{array}{c} \sqrt{1 - \left(rac{\upsilon_\phi - \upsilon_\phi^+}{\upsilon_\phi}
ight)^2}, & \textit{if} \, \Pi(\phi) = 1 \ 0 & \textit{otherwise} \end{array}
ight.$$

Tettamanzi, A., Faron Zucker, C., and Gandon, F. - International Journal of Approximate Reasoning (2017).

Related work > ARI

ARI (Acceptance/Rejection Index) ²

In order to decide about a given axiom ϕ , we define an ARI value using $\Pi(\phi)$ and $N(\phi)$:

$$ARI(\phi) = N(\phi) + \Pi(\phi) - 1 \in [-1,1].$$

²Tettamanzi, A., Faron Zucker, C., and Gandon, F. - International Journal of Approximate Reasoning (2017).

Related work > SPARQL Queries

SPARQL queries are built to extract the **number of instances** implied by a given axiom (v_{ϕ}) , the **number of confirmations** (v_{ϕ}^+) and the **number of exceptions** (v_{ϕ}^-) .

Let's consider the given axiom: SubClassOf(<C> <D>)

<code>SPARQL</code> Query to extract v_{ϵ}

Related work > SPARQL Queries

SPARQL queries are built to extract the number of instances implied by a given axiom (v_{ϕ}) , the number of confirmations (v_{ϕ}^+) and the number of exceptions (v_{ϕ}^-) .

Let's consider the given axiom: SubClassOf(<C> <D>)

SPARQL Query to extract v_{ϕ}

```
SELECT (count(distinct ?x) as ?u_phi) WHERE {
     ?x a <C> .
}
```


Related work > SPARQL Queries

```
SPARQL Query to extract v_{\phi}^{+}
```

```
SELECT (count(distinct ?x) as ?conf) WHERE {
    ?x a <C> , <D> .
}
```

SPARQL Query to extract v_{ϕ}^- : a first heuristic

```
SELECT (count(distinct ?x) AS ?exc) WHERE {
    ?x a <C> , ?T .
    FILTER NOT EXISTS {
         ?y a ?T , <D> .
    }
}
```


Related work > Time-capping the computation of exceptions

- lacksquare a second heuristic: adding a **time cap** for the computation of v_{ϕ}^- : 3
 - if the limit is reached, a quick but approximate computation of exceptions is adopted.

³Tettamanzi, A., Faron Zucker, C., and Gandon, F. - K-CAP (2015)

Contributions > Computational problem

Contributions > An idea of the possible impact

dbo concept	# instances
dbo:Agent	1,472,369
dbo:Person	1,124,388
dbo:Place	754,415
dbo:CareerStation	577,196
dbo:PopulatedPlace	531,228
dbo:Settlement	466,791
dbo:Work	409,594
dbo:Organisation	329,500
dbo:Athlete	313,730

Contributions ▷ A. Multi-threading

A **multi-threading system** for the assessment of OWL axioms has been implemented.

Contributions > B. Avoiding redundant computation of types

■ Aim: avoid the computation of types t already involved.

Contributions ▷ B. Avoiding redundant computation of types

Recovering distinct types (i.e., classes) being evaluated as potentially containing exceptions.

Step 1: Recovering distinct types

Contributions ▷ B. Avoiding redundant computation of types

Retrieving the instances that belong to <C> and at least one of the types <t> just retrieved, which will count as exceptions.

Step 2: Retrieving the instances

```
SELECT distinct ?x WHERE {
    ?x a <C> .
    ?x a ?t values (?t) {
        (<t1>) (<t2>) ... (<tn>)
    }
} LIMIT $limit OFFSET $offset
```


Contributions ▷ C. Extending SPARQL 1.1 Federated Query

- Adding a new operator as a URI parameter in federated query services.⁴
- Allows you to automatically iterate a service call.
- Implemented in the Corese semantic web factory.

⁴Corby, O., Faron, C., Gandon, F., Graux, D., and Michel, F - WEBIST (2021) □ → 《 □ → 《 ≧ → 《 ≧ → ② ○ ○

Contributions ▷ C. Extending SPARQL 1.1 Federated Query

■ Sub-processing of the pagination: more efficient and less code writing.

Experiments

- 1 Benchmarking our approach with previous results.⁵
 - a set of 722 subsumption axioms to assess.
 - checking the equality of the ARIs between both approaches.
 - comparison of the computation times (CPU) for each axiom.
- 2 Assessing the usage of the loop operator.
 - what benefit do we get from using this operator ?
 - comparison of the computation times (CPU) for each axiom assessed in Experiment 1.

Tettamanzi, A., Faron Zucker, C., and Gandon, F. - K-CAP (2015)

Results > Comparison of ARIs

- The integrity of the ARI values is respected
 - $mean(ARI) \simeq -0.1936$ in both settings.
- A significant reduction of the elapsed time
 - mean time spent to assess axioms ...
 - with the original heuristic: 577.9 minutes
 - with contributions A+B: **30.14** minutes
 - maximum computation time goes down from 71,699 to 489 minutes.

(b) Results obtained with contributions A+B

Results > Comparison of computation times (CPU)

- 593 axioms (82%, in green) are faster to assess with contrib. A+B
 - lacktriangle average computation time saved: \sim 679 minutes.
- 129 axioms (18%, in red) are slower to assess with contrib. A+B
 - average computation time increase: 57 minutes.
 - maximum loss: 244 minutes.

Results > Comparison of computation times (CPU)

- lacksquare a reduction of ~ 12 minutes of the average computation time.
- 683 axioms (95%, in green) are faster to assess with contrib. A+B+C.
- 39 axioms (5%, in red) are slower to assess with contrib. A+B+C.

- A significant reduction of computation time (CPU) without any side effects.
- Makes it possible to lead huge experiments on OWL subsumption axioms mining in a reasonable time, without a time cap.
- Opens up new perspectives for the processing of the largest knowledge graphs in the Linked Open Data.

- A significant reduction of computation time (CPU) without any side effects.
- Makes it possible to lead huge experiments on OWL subsumption axioms mining in a reasonable time, without a time cap.
- Opens up new perspectives for the processing of the largest knowledge graphs in the Linked Open Data.

- A significant reduction of computation time (CPU) without any side effects.
- Makes it possible to lead huge experiments on OWL subsumption axioms mining in a reasonable time, without a time cap.
- Opens up new perspectives for the processing of the largest knowledge graphs in the Linked Open Data.

Thank you!