Kapittel 8

Seksjon 8.2

Oppgave 8.2.15

La Π være en partisjon av [a,b], og la $m_i^{(f)}, M_i^{(f)}$ være infimum og supremum av f på intervallene i partisjonen. Hvis $m_i^{(f)}, M_i^{(f)}$ har samme fortegn, så er det klart at $M_i^{(f)} - m_i(f) = M_i^{(|f|)} - m_i^{(|f|)}$. Hvis de har motsatt fortegn så har vi at $M_i^{(|f|)} - m_i^{(|f|)} \leq M_i^{(f)} - m_i^{(f)}$. Den siste ulikhetene gjelder derfor i alle tilfeller. Siden f er integrerbar kan vi finne en partisjon Π slik at $\emptyset(\Pi)$ -N $(\Pi) < \epsilon$. Da har vi at

$$\sum_{i} (M_i^{(|f|)} - m_i(|f|))(x_i - x_{i-1}) \le \sum_{i} (M_i^{(f)} - m_i(f))(x_i - x_{i-1}) \le \epsilon$$

slik at $\emptyset(\Pi)$ -N (Π) < ϵ gjelder også hvis vi bytter ut f med |f|. Men da er også |f| integrerbar.

Siden $M_i^{(f)} \leq M_i^{(|f|)}$ vil enhver øvre trappesum for f være dominert av tilsvarende øvre trappesum for |f|, og ulikheten gitt i oppgaven følger direkte ved å ta grenseverdier.

Seksjon 8.3

Oppgave 8.3.7

 $\mathbf{a})$

Her er det klart at både teller og nevner går mot 0 når $x \to 0$, slik at vi ved å kombinere analysens fundamentalteorem og L'Hôpitals regel får

$$\lim_{x \to 0} \frac{\int_0^x e^{-t^2} dt}{x} = \lim_{x \to 0} \frac{e^{-x^2} dt}{1} = 1.$$

b)

Det er klart at nevneren går mot ∞ , og telleren gjør det samme siden eksponenten i integraden går mot 0, slik at integranden går mot 1 (og da vil jo integralet gå mot ∞). Vi kan derfor bruke L'Hôpitals regel, og får

$$\lim_{x \to \infty} \frac{\int_1^x e^{1/t} dt}{x^2} = \lim_{x \to \infty} \frac{e^{1/x}}{2x} = 0.$$

Oppgave 8.3.9

Sett $F(x)=\int_a^x f(x)dx$, der $a\leq x\leq b$. Bruker vi middelverdisetningen på F(x) ser vi at det finnes en $c\in [a,b]$ slik at $\frac{F(b)-F(a)}{b-a}=F'(c)$. Setter vi inn $F'(c)=f(c), F(a)=0, F(b)=\int_a^b f(x)dx$ får vi $\frac{\int_a^b f(x)dx}{b-a}=f(c)$. Resultatet følger nå ved å gange opp med (b-a) på begge sider.

Oppgave 8.3.12

a)

Funksjonene $g_1(x) = \phi(-x)$ og $\phi_2(x) = -\phi(x)$ (vi bruker kjerneregelen sammen med analysens fundamentalteorem for å derivere den førstnevnte) $g_1'(x) = \ln \cos(-x) = \ln \cos x$, $g_2'(x) = \ln \cos x$. Vi har derfor at $g_1(x) = g_2(x) + C$. Siden $g_1(0) = g_2(0)$ følger det at C = 0, og at $g_1(x) = g_2(x)$, og dermed at $\phi(-x) = -\phi(x)$.

b)

Fra fundamentalteoremet har vi at $\phi'(x) = -\ln \cos x$. Vi får også at $\phi''(x) = -\frac{\sin x}{\cos x} = \tan x$.

c)

Vi ser at $\phi'(x) > 0$ for alle $x \in (-\pi/2, \pi/2)$, slik at ϕ er voksende. Siden $\tan x < 0$ for $x \in (-\pi/2, 0)$, og $\tan x > 0$ for $x \in (0, \pi/2)$, så er ϕ konkav på $(-\pi/2, 0)$, konveks på $(0, \pi/2)$.

d)

Siden $\phi(x)=0$ kan vi kombinere L'Hôpitals regel og analysens fundamentalteorem, og vi får

$$\lim_{x \to 0} \frac{\phi(x)}{x^3} = \lim_{x \to 0} \frac{-\ln \cos x}{3x^2} = \lim_{x \to 0} \frac{\tan x}{6x} = \frac{1}{6}.$$

e)

Setter vi inn x=0 ser vi rask at begge sidene blir like, siden $\phi(0)=0$. For å vise at venstre og høyre side er like trenger vi derfor bare sjekke at de deriverte er like. Den deriverte av venstresiden er $-\ln\cos x$. Bruker vi kjerneregelen for

å derivere høyresiden får vi

$$\begin{aligned} &-2\frac{1}{2}\ln\cos\left(\frac{\pi}{4}+\frac{x}{2}\right)-2\frac{1}{2}\ln\cos\left(\frac{\pi}{4}-\frac{x}{2}\right)-\ln 2\\ &=&-\ln\cos\left(\frac{\pi}{4}+\frac{x}{2}\right)-\ln\cos\left(\frac{\pi}{4}-\frac{x}{2}\right)-\ln 2\\ &=&-\ln\left(\cos\left(\frac{\pi}{4}+\frac{x}{2}\right)\cos\left(\frac{\pi}{4}-\frac{x}{2}\right)\right)-\ln 2\\ &=&-\ln\left(\frac{\sqrt{2}}{2}\left(\cos\left(\frac{x}{2}\right)-\sin\left(\frac{x}{2}\right)\right)\frac{\sqrt{2}}{2}\left(\cos\left(\frac{x}{2}\right)+\sin\left(\frac{x}{2}\right)\right)\right)-\ln 2\\ &=&-\ln\left(\frac{1}{2}\left(\cos^2\left(\frac{x}{2}\right)-\sin^2\left(\frac{x}{2}\right)\right)\right)-\ln 2\\ &=&-\ln\left(\frac{1}{2}\cos x\right)-\ln 2=\ln 2-\ln\cos x-\ln 2=-\ln\cos x, \end{aligned}$$

som var det vi skulle vise.

f)

Vi viser først at grenseverdien $I = \lim_{x \to (\pi/2)^-} \phi(x)$ eksisterer. Siden ϕ er voksende trenger vi bare motbevise at $\phi(x) \to \infty$ når $x \to \pi/2$ (funksjonsverdiene nær $\pi/2$ kan da sees på om som verdiene i en voksende og begrenset følge, og slike følger vet vi er konvergente). Vi kan skrive om likningen vi fant i e) til

$$2\phi\left(\frac{\pi}{4} + \frac{x}{2}\right) - \phi(x) = \phi\left(\frac{\pi}{4} + \frac{x}{2}\right) + \phi\left(\frac{\pi}{4} + \frac{x}{2}\right) - \phi(x) = 2\phi\left(\frac{\pi}{4} - \frac{x}{2}\right) + x\ln 2.$$
(1)

Når $x < \pi/2$ er det klart at $\frac{\pi}{4} + \frac{x}{2} > x$, og siden ϕ er voksende så er det klart at $\phi\left(\frac{\pi}{4} + \frac{x}{2}\right) - \phi(x) > 0$. Hvis $\phi(x) \to \infty$ når $x \to \pi/2$, så vil $\phi\left(\frac{\pi}{4} + \frac{x}{2}\right) \to \infty$, siden $\frac{\pi}{4} + \frac{x}{2} \to \pi/2$ også, men da vil også venstresiden i (1) gå mot ∞ , siden $\phi\left(\frac{\pi}{4} + \frac{x}{2}\right) - \phi(x) > 0$. Men siden $\phi(0) = 0$ så vil høyresiden i (1) gå mot 0 (siden $\frac{\pi}{4} - \frac{x}{2} \to 0$), noe som strider mot at venstresiden går mot ∞ . Derfor kan ikke $\phi(x) \to \infty$ når $x \to \pi/2$, slik at grenseverdien $I = \lim_{x \to (\pi/2)^{-}} \phi(x)$ eksisterer.

Vi lar så x gå mot $\pi/2$ nedenfra på venstre og høyre side i identiteten fra e). Venstresiden nærmer seg da I. På høyresiden vil argumentet $\frac{\pi}{4} + \frac{x}{2}$ nærme seg $\pi/2$ nedenfra, mens argumentet $\frac{\pi}{4} - \frac{x}{2}$ vil nærme seg 0. Siden $\phi(0) = 0$ vil høyresiden nærme seg $2I - \frac{\pi}{2} \ln 2$. Etter å ha tatt grenseverdier på identiteten fra e) ender vi altså opp med

$$I = 2I - \frac{\pi}{2} \ln 2,$$

slik at $I = \frac{\pi}{2} \ln 2$.

Oppgave 8.3.14

Siden g(c) > 0 og g er kontinuerlig, så finnes det en ϵ og et intervall I som inneholder c, med $g(x) > \epsilon$ for alle $x \in I$. La Π være en partisjon som inneholder I som et av sine intervaller. Da har vi at

$$\int_{a}^{b} g(x)dx \ge \sum_{i} m_{i}(x_{i} - x_{i-1}) \ge \epsilon |I| > 0,$$

der |I| er lengden på intervallet I, og der vi har brukt at alle $m_i \geq 0$ (siden $g(x) \geq 0$ for alle x), og at integralet er supremum av alle nedre trappesummer.

Seksjon 8.4

Oppgave 8.4.5

a)

Setter vi inn y = 1 i (*) får vi at f(x) = f(x) + f(1), og det følger umiddelbart at f(1) = 0.

b)

Vi vet fra (*) at $f(x+h) = f\left(x\left(1+\frac{h}{x}\right)\right) = f(x) + f\left(1+\frac{h}{x}\right)$. Dette kan også skrives om til

$$\frac{f(x+h) - f(x)}{h} = \frac{f\left(1 + \frac{h}{x}\right)}{h}.$$

Hvis x=1 vet vi at grenseverdien her er k (siden f'(1)=k, slik at $\lim_{h\to 0} \frac{f(1+h)}{h}=k$. Men med substitusjonen $u=\frac{h}{x}$ kan vi også skrive

$$\lim_{h \to 0} \frac{f\left(1 + \frac{h}{x}\right)}{h} = \lim_{u \to 0} \frac{f(1+u)}{ux} = \frac{k}{x},$$

slik at f er deriverbar i x også, og $f'(x) = \frac{k}{x}$.

c)

Vi vet at f har formen $f(x) = k \ln x + C$. Siden f(1) = 0 følger det umiddelbart at C = 0, slik at $f(x) = k \ln x$.

Seksjon 8.5

Oppgave 8.5.3

Middelverdisetningen sier at det finnes en $c_i \in [x_i, x_{i-1}]$ slik at $\frac{F(x_i) - F(x_{i-1})}{x_i - x_{i-1}} = F'(c_i) = f(c_i)$, der vi har brukt at F er en antiderivert til f. Dette kan skrives om til $F(x_i) - F(x_{i-1}) = f(c_i)(x_i - x_{i-1})$. Kombinerer vi hintet fra oppgaven og dette finner vi at

$$\int_{a}^{b} F(x)dx = \sum_{i=1}^{n} (F(x_i) - F(x_{i-1})) = \sum_{i=1}^{n} f(c_i)(x_i - x_{i-1}).$$

Men dette er ogå lik $R(\Pi, U)$, der $\Pi = \{x_0, x_1, \dots, x_n\}$, og U er utvalget $\{c_1, c_2, \dots, c_n\}$.

Seksjon 8.6

Oppgave 8.6.11

 \mathbf{c}

Vi har at $y'(x) = x - \frac{1}{4x}$, slik at buelengden blir

$$\int_{1}^{e} \sqrt{1 + (y'(x))^{2}} dx = \int_{1}^{e} \sqrt{1 + (x - \frac{1}{4x})^{2}} dx = \int_{1}^{e} \sqrt{1 + x^{2} - \frac{1}{2} + \frac{1}{16x^{2}}} dx$$

$$= \int_{1}^{e} \sqrt{x^{2} + \frac{1}{2} + \frac{1}{16x^{2}}} dx = \int_{1}^{e} \sqrt{(x + \frac{1}{4x})^{2}} dx$$

$$= \int_{1}^{e} (x + \frac{1}{4x}) dx = \left[\frac{1}{2}x^{2} + \frac{1}{4}/\ln x\right]_{1}^{e}$$

$$= \frac{1}{2}(e^{2} - 1) + \frac{1}{4} = \frac{1}{2}e^{2} - \frac{1}{4}.$$

Oppgave 8.6.23

a)

 $0 \le y \le h$ swarer til at $0 \le x \le \sqrt{h}$. Volumet blir derfor

$$\int_{0}^{\sqrt{h}} 2\pi x f(x) dx = \int_{0}^{\sqrt{h}} 2\pi x^{3} dx = \left[\frac{1}{2} \pi x^{4} \right]_{0}^{\sqrt{h}} = \frac{1}{2} \pi h^{2}.$$

b)

Opplysningen i oppgaven sier at $V'(h)=\pi h$, slik at $V'(1)=\pi$. Dermed gir kjerneregelen at

$$2 = V'(t) = V'(h(t))h'(t) = \pi h'(t),$$

slik at $h'(t) = \frac{2}{\pi}$ (her har vi egentlig betraktet volumfunksjonen som to funksjoner: en der den er en funksjon av høyde, en der den er en funksjon av tid).

Oppgave 8.6.27

a)

Vi får at

$$\begin{split} I_p &= \int_0^{32} (32 - u)^2 u^p du = \int_0^{32} (32^2 u^p - 64 u^{p+1} + u^{p+2}) du \\ &= \left[\frac{32^2}{p+1} u^{p+1} - \frac{64}{p+2} u^{p+2} + \frac{1}{p+3} u^{p+3} \right]_0^{32} \\ &= \frac{32^2}{p+1} 32^{p+1} - \frac{64}{p+2} 32^{p+2} + \frac{1}{p+3} 32^{p+3} \\ &= 32^{p+3} \frac{(p+2)(p+3) - 2(p+1)(p+3) + (p+1)(p+2)}{(p+1)(p+2)(p+3)} \\ &= 32^{p+3} \frac{p^2 + 5p + 6 - 2p^2 - 8p - 6 + p^2 + 3p + 2}{(p+1)(p+2)(p+3)} \\ &= \frac{2 \times 32^{p+3}}{(p+1)(p+2)(p+3)}. \end{split}$$

b)

Vi har at

$$f'(x) = cm(x-16)^{m-1}(48-x)^n - cn(x-16)^m(48-x)^{n-1}$$

for $16 \le x \le 48$. Skal dette være 0 må $cm(x-16)^{m-1}(48-x)^n = cn(x-16)^m(48-x)^{n-1}$, som gir at m(48-x)=n(x-16). Setter vi inn x=28 får vi 20m=12n, eller $m=\frac{3}{5}n$.

c)

Vi gjør først substitusjonen u = 48 - x og får

$$\int_{16}^{48} (x-16)^2 (48-x)^{10/3} dx = -\int_{32}^{0} (32-u)^2 u^{10/3} du = \int_{0}^{32} (32-u)^2 u^{10/3} du$$

$$= \frac{2 \times 32^{10/3+3}}{(10/3+1)(10/3+2)(10/3+3)} = \frac{2 \times 32^{13/3}}{\frac{13}{3} \cdot \frac{16}{3} \cdot \frac{19}{3}}$$

$$= \frac{54 \times 32^{13/3}}{13 \times 16 \times 19} \approx 4.66 \times 10^7.$$

Siden det gjennomsnittlige antall barn en kvinne føder fra hun er 16 til hun er 48 er gitt ved dette integralet ganget med c, så må vi ha $c\frac{54\times32^{19/3}}{13\times16\times19}=1.86$ (for at en kvinne i gjennomsnitt skal føde 1.86 barn), eller

$$c = \frac{1.86}{\frac{54 \times 32^{19/3}}{13 \times 16 \times 19}} \approx 4 \times 10^{-8}$$

d)

For å løse denne deloppgaven trenger vi et begrep vi egentlig ikke har lært enda: En sannsynlighetstetthetsfunksjon er en funksjon p(x) som er slik at $\int p(x)dx = 1$. Sannsynlighetstetthetsfunksjonen for antall fødsler er altså gitt ved

$$p(x) = \frac{c(x-16)^2(48-x)^{10/3}}{\int_{16}^{48} c(x-16)^2(48-x)^{10/3} dx} = \frac{(x-16)^2(48-x)^{10/3}}{I_{10/3}}.$$

Gitt sannsynlighetstetthetsfunksjonen p(x), så blir gjennomsnittsalderen for en fødende kvinne $\int_{16}^{48} xp(x)dx$ (denne formelen har dere ikke lært, så det er ikke så lett for dere å løse denne oppgaven!), som blir

$$\begin{split} &\frac{1}{I_{10/3}} \int_{16}^{48} x(x-16)^2 (48-x)^{10/3} dx \\ &= \frac{1}{I_{10/3}} \int_{0}^{32} c(48-u)(32-u)^2 u^{10/3} du \\ &= \frac{1}{I_{10/3}} \left(48 \int_{0}^{32} (32-u)^2 u^{10/3} du - \int_{0}^{32} (32-u)^2 u^{13/3} du \right) \\ &= \frac{1}{I_{10/3}} \left(48 I_{10/3} - I_{13/3} \right) = 48 - \frac{I_{13/3}}{I_{10/3}} \\ &= 48 - \frac{\frac{54 \times 32^{22/3}}{16 \times 19 \times 22}}{\frac{54 \times 32^{19/3}}{13 \times 16 \times 19}} = 48 - \frac{32 \times 13}{22} \approx 29.1. \end{split}$$