Xarxes de computadors II

Tema 2 – Administración de ISP

- a) Arquitectura y direccionamiento en Internet
- b) Encaminamiento intra-dominio
- c) Encaminamiento inter-dominio
- d) Temas de investigación
- e) Conceptos avanzados

Tema 2 – Administración de ISP

- a) Arquitectura y direccionamiento en Internet
 - I) Entender la arquitectura general de Internet
 - 2) Identificar los actores principales de Internet
 - > 3) Identificar las organizaciones principales de Internet
 - 4) Agotamiento de IPv4 y alguna noción sobre IPv6
- b) Encaminamiento intra-dominio
- c) Encaminamiento inter-dominio
- d) Temas de investigación
- e) Conceptos avanzados

Situación en los '90

Dos soluciones

- Direcciones privadas y NAT
- Nuevo espacio de direccionamiento más amplio

Direcciones privadas y NAT

Idea

ightarrow Si hay equipos en redes privadas ightarrow no necesitan una @IP publica única cada uno

Solución

- Se crean 3 grupos de @IP privadas (uno por clase)
- Se pueden usar libremente en redes privadas
- Se usa NAT para ir a Internet (red publica) para mantener la unicidad de las @IP
- Se permite que varios equipos puedan compartir pocas (incluido una sola) @IP publica
- Se reduce la necesidad de @IP publicas

Problemas

 Se necesitan tablas de traducción en los routers (la comunicación ya no es extremo-extremo ya que el router interviene los datagramas e incluido las cabeceras de transporte si implementa PAT)

Direcciones privadas y NAT

Problemas

- Se necesitan tablas de traducción en los routers
- La comunicación ya no es extremo-extremo ya que el router interviene los datagramas, incluida las cabeceras de transporte TCP/UDP si implementa PAT (ya no es un equipo puramente de nivel 3)
- Multicast con NAT difícil de configurar
- VPN con IPsec (autentificación y encriptación)
 - Si el router debe modificar las @IP o los puertos, debe saber como desencriptar → posible punto vulnerable
- Algunas aplicaciones no funcionan si hay NAT en el medio (como VoIP)
- Finalmente, es una solución a corto plazo como se ve en la grafica

Diferentes propuestas

- 64 bits para las direcciones
- Longitud variable entre 64 y 160 bits
- Finalmente se fija a 128 bits
 - ightarrow $2^{128}\cong 10^{28}$ direcciones IPv6 por persona en el mundo
 - → posibilidad de conectar a Internet cualquier dispositivo electronico
 - → Interney of Things (IoT) e Internet of Everything (IoE)

IPv6

- No compatible con IPv4
 - Por eso la transición es complicada IPv4 → IPv6
 - Durante este tiempo Internet funciona con ambos formato
 - La mayoría de los OS ya soportan IPv6
 - Los equipos hardware se van actualizando y/o substituyendo poco a poco
 - Los servicios se van actualizando

- Comprobar si tenemos IPv6 y estamos conectados a una red IPv6
 - http://test-ipv6.com

IPv6

- ▶ El 8 de Junio de 2011, Internet Society (ISOC) celebró el World IPv6 day
 - Los sitios web mas importantes (~1000)
 google, youtube, facebook, yahoo, microsoft, cnn, bbc, etc.
 hicieron sus paginas accesibles vía IPv6 (e IPv4 claro) durante 24 horas
 - Muchos de ellos siguen funcionando con IPv6
 - http://www.internetsociety.org/ipv6/archive-2011-world-ipv6-day/
- El 6 de Junio de 2012, Internet Society (ISOC) abre el World IPv6 launch
 - Una plataforma para fomentar el despliegue de IPv6 en el mundo
 - Más operadoras, servicios y fabricantes se apuntan al IPv6
 - Mantiene medidas en tiempo real sobre el despliegue
 - http://www.worldipv6launch.org

Version

Version of IP Protocol. 4 and 6 are valid. This diagram represents version 4 structure only.

Header Length

Number of 32-bit words in TCP header, minimum value of 5. Multiply by 4 to get byte count.

Protocol

IP Protocol ID. Including (but not limited to):

1 ICMP 17 UDP 57 SKIP 2 IGMP 47 GRE 88 EIGRP 6 TCP 50 ESP 89 OSPF 9 IGRP 51 AH 115 L2TP

Total Length

Total length of IP datagram, or IP fragment if fragmented. Measured in Bytes.

Fragment Offset

Fragment offset from start of IP datagram. Measured in 8 byte (2 words, 64 bits) increments. If IP datagram is fragmented, fragment size (Total Length) must be a multiple of 8 bytes.

Header Checksum

Checksum of entire IP header

IP Flags

x D M

x 0x80 reserved (evil bit) D 0x40 Do Not Fragment M 0x20 More Fragments follow

RFC 791

Please refer to RFC 791 for the complete Internet Protocol (IP) Specification.

▶ Longitud cabecera fija → fuera Header Length y Option

- Fragmentación se evita siempre que se pueda
 - → fuera Identification, Flags y Fragmen Offset

- Ya se hace un control de error en Transporte e Interfaz de Red
 - → fuera Header Checksum

- Versión: ahora 6
- Longitud cabecera: en IPv6 la cabecera se fija a 40 bytes
- Tipo de servicio: ahora clase de servicio en IPv6 (8 bits)
 - Como en IPv4, este campo depende si los routers están configurados para soportar este servicio
 - 6 bits → Differentiated Service (DiffServ) RFC 2474 → paquetes con prioridades diferentes según unos Code Point (DSCP)
 - 2 bits → Explicit Congestion Notification (ECN) RFC 3168
 - un router puede marcar un paquete cuando está en congestión
 - cuando el destino recibe este paquete y tiene que contestar al origen, crea un eco de este nivel de congestión y lo incluye en su paquete para el origen
 - Al recibir este paquete, el origen baja su tasa de envío (funciona conjuntamente con TCP bajando el tamaño de la ventana de transmisión)

- Etiqueta de flujo: nuevo en IPv6
 - Para facilitar el reconocimiento de paquetes que pertenecen a un mismo flujo
 - > Secuencia de paquetes relacionados entre sí (por ejemplo de una misma aplicación o de un mismo servicio)
 - Paquetes de una misma sesión TCP
 - Todos los paquetes de un mismo flujo se marcan con el mismo valor
 - Un valor 0 significa que no se está usando este campo
 - → Permite aplicar un control/filtrado basado en flujo y no por paquete (en principio más rápido)
- Longitud total: en IPv6 no se consideran los 40 bytes de la cabecera ya que son fijos y solo cuentan los bytes del payload

ldentificación, flags, fragmentos: se usan para fragmentar IPv4

- En IPv6 se usa un método distinto y se eliminan de la cabecera
- Ya que se intenta evitar al máximo la fragmentación y solo puntualmente se necesita fragmentar, es ineficiente tener siempre estos campos en la cabecera

Tiempo de vida: ahora se llama Limite de Saltos

- Mismo funcionamiento que en IPv4
- El origen pone un valor que indica el número máximo de routers por donde puede pasar el datagrama
- Cada router disminuye este valor de I
- > Si al hacer esta operación este campo vale 0, el datagrama se descarta

Protocolo

- En IPv4 indica el protocolo del payload (lo que viene de la capa superior y se encapsula en IP)
 - Por ejemplo: $6 \rightarrow TCP \quad 17 \rightarrow UDP \quad 1 \rightarrow ICMP$
- ▶ En IPv6 se substituye con el campo Siguiente Cabecera
- Esta campo hace las funciones de Protocolo y Opciones de IPv4
- Veremos luego

Checksum

- En IPv4, sirve como control de error de lectura de los bits de la cabecera
- En IPv6 no se usa ya que hay controles similares en otros niveles (CRC en Ethernet y WiFi, checksum en TCP/UDP) → se considera entonces un control redundante y se elimina también para descargar el router de la tarea de comprobar el checksum

IP origen y destino

Pasa de 32 a 128 bits

Opciones

- No se incluyen en la cabecera IPv6
- Si se quieren añadir opciones, se usa un método diferente (luego veremos)

Funcionamiento "normal"

▶ Añadir opciones en cascada

 Cada opción tendrá su propio formato, con sus campos, pero siempre hay un campo Siguiente Cabecera que indica que cabecera hay a continuación

- Opciones estandarizadas y más usadas
 - Opciones hop-by-hop
 - Encaminamiento
 - Fragmentación
 - Autentificación
 - Encapsulamiento seguro
 - Opciones del destino

Longitud mínima de un IPv6

Longitud mínima de un IPv6

- Y su MTU de nivel enlace de una tecnología XYZ es menor de 1280 bytes?
- Hay que crear un estándar IPv6overXYZ que separe y junte los IPv6 a nivel enlace (nivel 2, menor que IPv6) para la transmisión con esta tecnología
- De manera que el nivel 3 (IPv6) no se entera y este nivel siempre trate datagramas superiores a 1280 bytes

Notación IPv6

Se usan números hexadecimales separados por dos puntos

2031:0000:130f:0000:0000:09c0:876a:130b

Se simplifica quitando los 0 no significativos

2031:0:130f:0:0:9c0:876a:130b

Se simplifica quitando en un único lugar bloques de 0 seguidos y sustituyéndolo por ::

2031:0:130f::9c0:876a:130b

Notación IPv6

- Solo se puede hacer esta sustitución en un único lugar ya que de lo contrario, la notación sería ambigua
- Esta @IPv6

2031 :: 130f :: 09c0 : 876a : 130b

Podría ser cualquiera de estas dos

2031:0000:130f:0000:0000:09c0:876a:130b

2031:0000:0000:130f:0000:09c0:876a:130b

- Aunque simplificado, una @IPv6 es difícil de recordar
- → El DNS se hace aún mas fundamental

Tipo de datagrama según el destino

- Unicast, un datagrama con un único destino
- Multicast, un datagrama que se replica en la red y alcanza un grupo bien definido de destinos
- Anycast, un datagrama que hay que entregar a un cualquier único destino de un grupo bien definido
 - Generalmente el que está más cerca

Tipo de datagrama según el destino

- Unicast, un datagrama con un único destino
- Multicast, un datagrama que se replica en la red y alcanza un grupo bien definido de destinos
- Anycast, un datagrama que hay que entregar a un cualquier único destino de un grupo bien definido
 - Generalmente el que está más cerca

Tipo de datagrama según el destino

- Unicast, un datagrama con un único destino
- Multicast, un datagrama que se replica en la red y alcanza un grupo bien definido de destinos
- Anycast, un datagrama que hay que entregar a un cualquier único destino de un grupo bien definido
 - Generalmente el que está más cerca

Tipos de @IPv6

- Inicialmente se crearon 3 tipos que se pueden asignar a cada interfaz
- Link-local
- Site-local
- **▶** Global

Link-local

- Para transmisión a destinos de la misma red del origen
- Origen y destino usan un routing-prefix del rango
- fe80::/10
- completado con otros 54 bits y luego el InterfaceID de 64 bits

Site-local

Para transmisión entre un origen y un destino dentro de un mismo "sitio"

Son direcciones privadas no enrutables en Internet

Site-local

Para transmisión entre un origen y un destino dentro de un mismo "sitio"

- ▶ En septiembre 2004 (RFC 3879), esta @IPv6 ya no se soporta porque ambigua
 - ¿Qué es un site y cual es su limite?
- Y porque no facilita una administración de red simple con poca intervención en caso de cambios en la infraestructura
 - por ejemplo, al juntar dos sistemas, hay que reconfigurar todo el site otra vez

Unique Local Address (ULA)

- Unique Local Address (ULA)
 - ▶ En octubre 2005 (RFC 4193), se crea la ULA como sustituida de site-local
 - Pensada como dirección privada (equivalente a las de IPv4) pero que además sean únicas
 - Facilita la administración de red ya que eventuales cambios no afectan todo el sistema porque se garantiza que no haya redes duplicadas
- ▶ Rango fc00::/7
- Se crearon 2 grupos con 2 soluciones diferentes
 - Rango fc00::/8
 - Rango fd00::/8

ULA

- ▶ Rango fc00::/8
 - Los 40 bits únicos los proporciona una entidad centralizada que controla esta unicidad
 - Esta entidad actualmente aún no está disponible
- ▶ Rango fd00::/8
 - Los 40 bits únicos se generan con un algoritmo definido en el RFC 4193
 - Método usado actualmente

Tipos de @IPv6

- Otras direcciones reservadas (principales)
- \rightarrow ::/128 \rightarrow Dirección no especificada, valor inicial de las tarjetas
- \rightarrow ::1/128 \rightarrow Loopback
- ▶ $ff00::/8 \rightarrow Multicast$
- Y muchísimas más
 - ::ffff:0:0/96 reserved for IPv4-mapped Address
 - ▶ 64:ff9b::/96 is used in an algorithmic mapping between IPv4 to IPv6 addresses
 - 2001:0000::/32 reserved for TEREDO
 - 2001:0002::/48 reserved for Benchmarking
 - ▶ 2001:5::/32 reserved for EID Space for LISP
 - ▶ 2001:db8::/32 reserved for Documentation
 - 2002::/16 reserved for 6to4
 - etc.

https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml

Multicast IPv6

- Bloque asignado a Multicast: ff00::/8
 - Es decir, los primeros 8 bits son todos I en binario
- Existen grupos multicast ya definidos
 - Al enviar un datagrama con destino estas @IPv6, el datagrama alcanza todos estos destinos
 - $ff02::1 \rightarrow todos los nodos de una LAN$
 - $ff02::2 \rightarrow todos los routers de una LAN$
 - ▶ $ff02::9 \rightarrow todos los routers RIP de una LAN$
 - $ff02::1:2 \rightarrow todos los servidores DHCP de una LAN$
 - Y muchos más

https://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml

Anycast IPv6

- Se usan @IPv6 unicast y globales
- Las direcciones anycast son sintácticamente indistinguibles de las direcciones unicast.
- Cuando una dirección unicast se asigna a más de una interfaz, se convirtié en una dirección anycast y los nodos a los que se asigna la dirección deben configurarse explícitamente para saber que es una dirección anycast

IPv6 global unicast

- Todo lo que queda disponible
- Actualmente IANA solo está asignado @IPv6 de este rango

2000::/3

No existen las direcciones de red y broadcast como en IPv4

- 2002:4c0::74:1:27/52
 - Routing prefix: ?
 - InterfaceID: ?

No existen las direcciones de red y broadcast como en IPv4

2002:4c0::74:1:27/52

52 bits de routing-prefix \rightarrow 64 – 52 = 12 bits de subnetting

No existen las direcciones de red y broadcast como en IPv4


```
16 bits 16 ? 16 16 16 2002:4c0::74:1:27/52
```

52 bits de routing-prefix \rightarrow 64 – 52 = 12 bits de subnetting

No existen las direcciones de red y broadcast como en IPv4


```
16 bits 16 \stackrel{\circ}{\times} 16 16 16 2002:4c0::74:1:27/52
```

52 bits de routing-prefix \rightarrow 64 – 52 = 12 bits de subnetting 64 bits de interfaceID \rightarrow 4 grupos de 16 bits

No existen las direcciones de red y broadcast como en IPv4

Como se asignan @IPv6: 2 formas

Stateful

- Conocimiento completo de los "estados"
- Una entidad mantiene todas las IP de los hosts y evita que se dupliquen
- Por ejemplo servidores DHCP o manualmente

Stateless

- Sin conocer todos los "estados"
- Cada host se autoconfigura correctamente sin duplicar @IP

¿Qué es lo que hay que asignar?

		Routing-prefix	interfaceID
(opciona	Link-local	10 bits 54 bits fe80::	
	l) ULA	8 bits 40 bits 16 bits fd00: random	
	Global		

¿Qué es lo que hay que asignar?

	Routing-prefix 64 bits	interfaceID 64 bits
Link-local	10 bits 54 bits fe80:: ::	
ULA	8 bits 40 bits 16 bits fd00: random	
Global		

Como el alcance está limitado a la misma red y si no hay alguna razón especifica para que sea diferente, estos 54 bits suelen ser todos 0

ICMPv6

► ICMPv4 + ARP + nuevas funciones

ICMPv6: ICMPv4

- ▶ ICMPv4: protocolo de control de IPv4
 - Envío de mensajes de supervisión (echo request/reply) y de error
- ICMPv6: supervisión

ICMPv6: ICMPv4

- ▶ ICMPv4: protocolo de control de IPv4
 - Envío de mensajes de supervisión (echo request/reply) y de error
- ▶ ICMPv6: nuevos errores
 - Tipo 4: Problema con los parámetros
 - ▶ Código I: campo Siguiente Cabecera no reconocido
 - Código 2: opción IPv6 no reconocida

ICMPv6: ARP

- ▶ ARP: protocolo de resolución de dirección MAC
 - Conocida una @IP, se quiere descubrir su dirección MAC

ICMPv6: ARP

Incluidos los ARP gratuitos ahora llamado DAD

En un ARP gratuito

Se envía un ARP request indicando que se busca la MAC de la @IP del que envía el mensaje

ICMPv6: ARP

- Incluidos los ARP gratuitos ahora llamado DAD
- ▶ En un ARP gratuito
 - Se envía un ARP request indicando que se busca la MAC de la @IP del que envía el mensaje
 - Si alguien contesta, es que este tiene la misma @IP del que ha enviado el request
 → @IP duplicada
- DAD: Duplicate Address Discovery

Configuración stateless

- Proceso
- I) Se genera una @IPv6
- 2) Se verifica que la @IPv6 es única en la red (se envía un DAD)
- 3) Si es única se asigna a la interfaz Si no es única se vuelve al punto I)

¿Qué es lo que hay que asignar?

	Routing-prefix 64 bits	interfaceID 64 bits
Link-local	10 bits 54 bits fe80:: ::	
ULA	8 bits 40 bits 16 bits fd00: random	
Global		

Como el alcance está limitado a la misma red y si no hay alguna razón especifica para que sea diferente, estos 54 bits suelen ser todos 0

Routing-prefix Global + ULA

- Al arrancar un host tiene la @IPv6 ::/128
- Envía un ICMPv6 (nueva función) de tipo Router Solicitation (RS, tipo 133) en multicast en su red pidiendo la configuración global y ULA
- Un router envía periódicamente un ICMP de tipo Router Advertisement (RA, tipo 134) o como respuesta a un ICMP RS en multicast en la red informando de la configuración del routing-prefix Global y si se usa y cual es el routing-prefix ULA

¿Qué es lo que hay que asignar?

Como el alcance está limitado a la misma red y si no hay alguna razón especifica para que sea diferente, estos 54 bits suelen ser todos 0

Dos métodos para InterfaceID

- Usando la MAC
- Aleatorio

- La dirección MAC en principio es un número de 48 bits único asignado a cada interfaz de hosts y routers
- Se transforma este número en otro de 64 bits
- Proceso

- La dirección MAC en principio es un número de 48 bits único asignado a cada interfaz de hosts y routers
- Se transforma este número en otro de 64 bits
- Proceso

→ En notación IPv6

290:27ff:fe17:fc0f

- Problemas
- I) Los fabricantes han admitido vender tarjetas con la misma MAC

 De manera que con este proceso, dos tarjetas lleguen a tener la misma @IPv6

 Se ejecuta DAD para descubrir si está duplicada

2) ?

- Problemas
- I) Los fabricantes han admitido vender tarjetas con la misma MAC

 De manera que con este proceso, dos tarjetas lleguen a tener la misma @IPv6

 Se ejecuta DAD para descubrir si está duplicada
- 2) Privacidad?

- Problemas
- I) Los fabricantes han admitido vender tarjetas con la misma MAC

 De manera que con este proceso, dos tarjetas lleguen a tener la misma @IPv6

 Se ejecuta DAD para descubrir si está duplicada
- 2) Como la InterfaceID ahora sería siempre la misma independiente del lugar donde se conecta un host móvil (solo cambiaría el routing-prefix), ahora sería posible conocer su localización y sus movimientos

InterfaceID aleatoria

- > Se puede activar la opción de generar un interfaceID aleatorio
- Luego DAD descubre si es única

Método usado generalmente

- MAC como InterfaceID para conexiones a redes internas (por razones de seguridad y permisos a sistemas y servicios internos)
- InterfaceID aleatoria para conexiones a redes externas

Configuración stateful

- Manual
 - Se asigna de forma manual y se usa DAD para reconocer @IPv6 duplicadas
- ▶ DHCPv6

DHCPv6

Este host al principio no tienen ninguna @IP global Pero puede tener una link-local

DHCPv6

Compatibilidad IPv4 – IPv6

- Diferentes métodos según el escenario
 - Dual stack
 - ▶ IPv4-mapped
 - Tunneling
 - NAT64
 - etc.

Dual stack

 Generalmente un host funciona con dual stack y se adapta según la red y el destino

IPv4-mapped

- Si una aplicación solo funciona con @IPv6, se usa IPv4-mapped
- Rango reservado ::ffff:0:0/96

Tunneling

Cuando dos aplicaciones pueden usar IPv6 pero en el camino hay IPv4

- ▶ 6to4 tunnel → creación del túnel automático con 2002::/16
 RFC 3056
- ▶ Teredo tunnel → si hay un NAT IPv4 RFC 4380
- ► Tunnel bróker → configuración a través de un server (bróker)

NAT64

- Cuando una aplicación IPv6 comunica con una IPv4
- Rango reservado: 64:ff9b::/96

NAT64

- Cuando una aplicación IPv6 comunica con una IPv4
- Rango reservado: 64:ff9b::/96

NAT64

- Cuando una aplicación IPv6 comunica con una IPv4
- Rango reservado: 64:ff9b::/96

Otros cambios

▶ RIP → RIPng RFC 2080

OSPF → OSPFv6 RFC 5340

▶ BGP → BGP4+ RFC 2545

▶ DNS → nuevos RR para asociar IPv6 y nombres

Xarxes de computadors II