

EE 604 Digital Image Processing

Lecture outline

- Course overview
- Guidelines and course policies
- Introduction to Image Processing

EE604 Team

Instructor:

Tanaya Guha
Assistant Professor
Electrical Engineering
Indian Institute of Technology Kanpur

tanaya[at]iitk.ac.in | voice: 512 259 6823 | office: ACES 305D

TAs:

Atanu Samanta | samanta@iitk | ACES 412

Zeeshan Akhtar | zeeshan@iitk | ACES 412

Prateek Srivastava | pratiks@iitk | ACES 407

Saurabh Budholiya | srbh@iitk | ACES 407

Sachin Singh | sachinbr@iitk | ACES 407

Logistics

- **Lectures:** Wed, Fri, 3:30 4:45pm at L13
- Instructor office hour: by appointment
- Course webpage: http://home.iitk.ac.in/~tanaya/ee604

1 home.iitk.ac.in/~tanaya/Teaching.html

	Home Research Publication Teaching Blog
Monsoon 2017	EE 604 Digital image processing
Winter 2017	EE 698K Modeling and representation techniques for images
Monsoon 2016	EE 604 Digital image processing

Course objective

- Learn the basics of image formation, processing and analysis
- Understand the wide applicability of image processing methods
- **Develop** an insight towards which method to use when
- Apply learned techniques to build a real-world system

Content

- Image fundamentals: perception, sampling, quantization
- Image enhancement: time and frequency domain filtering
- Image restoration: noise models, denoising algorithms
- Image compression: DCT, Huffman coding, JPEG compression
- Morphological image processing: set-theoretic filters
- Image segmentation: thresholding, watershed, graph-based segmentation
- Image representations & descriptions

Prerequisites

Hard prerequisites

Programming

Signals and systems

Linear algebra, Probability.

Soft prerequisites

Digital Signal Processing

Mathematical methods for signal processing

Primary reference

See this image

Digital Image Processing Paperback – 2013

by Rafael C. Gonzalez (Author)

See all formats and editions

Paperback ₹ 629.00

31 New from ₹ 550.00

Delivery to pincode 208016 - Kanpur nagar ‡ within 7 - 10 business days. Details

The order quantity for this product is limited to 2 units per customer

Please note that orders which exceed the quantity limit will be auto-canceled. This is applicable across sellers.

Completely self-contained-and heavily illustrated-this introduction to basic concepts and methodologies for digital image processing is written at a level that truly is suitable for seniors and first-year graduate students in almost any technical discipline. The leading textbook in its field for more than twenty years, it continues its cutting-edge focus on contemporary developments inall mainstream areas of image processing-e.g., image fundamentals, image enhancement in the spatial and frequency domains,

Read more

Other references

- Jain, Fundamentals of Digital Image Processing, Prentice Hall
- **Research papers** (a few)
- Class notes

Evaluation

- 3 quizzes (3 x10%)
 - no midterm.
- 2 assignments (20% + 10%)
 - no course project.
- Final term (40%)

About the large assignment

- Build a photo editing software
 - with only 2 functionalities (out of a list of given functionalities)
 - E.g. auto-enhancement, auto-cropping, remove/add motion blur, etc.
 - should have a GUI

Lecture outline

- Course overview
- General guidelines & course policies
- Introduction to Image Processing

Guidelines and course policies

- The easiest way to reach the instructor is <u>via email</u>.
- Email regarding the course should start with [EE604] in the subject line.
- Assignments/reports (only PDFs please) should be submitted to ee604a@gmail.com. Hardcopies are neither needed nor accepted.
- Attending classes is not mandatory, but recommended.
- You'll be tested on your understanding. No need to memorize equations.

Guidelines and course policies

- It is expected that you will maintain academic honesty in every form.
- Please familiarize yourself with the general rules and laws of plagiarism.
- If plagiarism is detected, you'll be given zero mark for that piece of the work.

Lecture outline

- Course overview
- General guidelines & course policies
- Introduction to Image Processing

Why study images?

- Images and videos are EVERYWHERE!
- Widespread applications in robotics, security, healthcare, entertainment, and many other fields.
- It's fun (think of Photoshop, Instagram)!

How it all started ...

Robert Nathan (photo from nasa.gov)

- 1920s Bartlane cable picture system
- 1959-69 NASA Jet Propulsion Lab
 - JPL's spacecraft was sending 'dark, noisy, distorted' images.
 - Nathan wrote first computer programs for image enhancement

Image processing (IP) =? Computer vision (CV)

- Loosely speaking
 - IP: Image -> Image
 - CV: Image -> high level information
 - IP: Wide range of image modalities
 - CV: mostly natural images
- In practice, we need both and do not differentiate!

Image processing system

Image Modalities

Image Enhancement

source: mathworks

Image Compression

file size = 5MB

file size < 1MB

Image Inpainting

source: cs.utoronto.edu

source: code.google.com