Teoría de Lenguajes

Gianfranco Zambonni

31 de diciembre de 2022

Índice

1.	Intr	roducción	2
	1.1.	Relaciones	2
		1.1.1. Operaciones	2
	1.2.	Alfabetos	3
		1.2.1. Operaciones	4
	1.3.	Lenguajes	4
		1.3.1. Operaciones	4
	1.4.	Gramáticas	5
		1.4.1. Clasificación de grámaticas (Chomsky)	5
2.	Aut	ómatas finitos	7
	2.1.	Autómatas finitos deterministicos (AFD)	7
	2.2.	Autómatas finitos no deterministas (AFND)	7
		2.2.1. Equivalencia entre AFD y AFND	8
	2.3.	Autómatas finitos no deterministico con transiciones λ	9
		2.3.1. Equivalencia entre AFND y AFND- λ	11
3.	Exp	oresiones regulares	13
	3.1.	Expresiones regulares a AFND- λ	13
		3.1.1. Casos base	13
		3.1.2. Pasos inductivos	14
	3.2.	AFD a expresión regular	16
		3.2.1. Demostración	16
	3.3.	Gramática regular a AFND	18
		3.3.1. Demostración	18
	3.4.	AFD a gramática regular	19
		3.4.1. Demonstración	19
4.	Min	nimización de AFD	21
	4.1.	Indistinguibilidad	21

1. Introducción

1.1. Relaciones

Dados dos conjuntos A y B, se llama **relación** R de A en B a todo subconjutno de $A \times B$. Notamos $R: A \to B$.

- aRb denota el hecho $(a,b) \in R$.
- Si A = B se dice que R es una relación sobre A.

Una relación $R:A\to A$ es

- reflexiva cuando $\forall a \in A, aRa$.
- simétrica cuando $\forall a, b \in A, aRb \implies bRa$.
- transitiva cuando $a, b, c \in A$, $aRb \land bRc \implies aRc$.
- es de **equivalencia** cuando es reflexiva, simétrica y transitiva. Este tipo de relaciones particiona a A en clases de equivalencia.

1.1.1. Operaciones

Composición de relaciones: Si $R:A\to B$ y $S:B\to C$ son relaciones, entonces la composición de R y S es la relación $S\circ R:A\to C$ definida por:

$$S \circ R = \{(a,c) \mid a \in A, c \in C : \exists b \in B, aRb \land bSc\}$$

.

Relación de identidad: La relación de identidad sobre A es la relación $id_A: A \to A$ definida por:

$$I = \{(a, a) \mid a \in A\}$$

.

■ Es el elemento neutro de la composición de relaciones.

Relación de potencia: Dado $R: A \to A$ se define la relación de potencia $R^k: A \to A$ como la composición de k copias de R:

$$R^{n} = \begin{cases} id_{A} & \text{si } n = 0\\ R \circ R^{n-1} & \text{si } n > 0 \end{cases}$$

Clausura transitiva/positiva: Dada una relación $R: A \to A$ se define la clausura transitiva de R como la relación R^+ definida por:

$$R^+ = \bigcup_{n=1}^{\infty} R^n$$

- 1. $R \subseteq R^+$.
- 2. R^+ es transitiva
- 3. Para toda relación $G: A \to A$ tal que $R \subseteq G \land G$ es transitiva, entonces $R^+ \subseteq G$, es decir R^+ es la relación transitiva más pequeña que contiene a R.

DEMOSTRACIÓN

- 2) Si aR^+b entonces existe una secuencia de elementos $a=a_0,a_1,\ldots,a_n=b$ tales que a_iRa_{i+1} para todo $i \in [0,n-1]$.
 - Análogamente, como bR^+c existe una secuencia de elementos $b=b_0,b_1,\ldots,b_m=c$ tales que b_iRb_{i+1} para todo $i \in [0,m-1]$.
 - Por lo tanto, $aR^{n+m}c$, por lo que aR^+c .
- 3) Si aR^+b entonces existe una secuencia de elementos $a=a_0,a_1,\ldots,a_n=b$ tales que a_iRa_{i+1} para todo $i\in[0,n-1]$.

Como $R \subseteq G$ entonces a_iGa_{i+1} para todo $i \in [0, n-1]$. Como G es transitiva entonces la aplicación repetida de la transitividad nos lleva a que a_1Ga_n , por lo que aGb.

Clausura transitiva reflexiva:

$$R^* = R^+ \cup id_A = \bigcup_{n=0}^{\infty} R^n$$

- Si A es un conjunto finito, entonces todas las relaciones $R:A\to A$ son finitas.
- Si R es reflexiva, entonces $R^* = R^+$.

1.2. Alfabetos

Un alfabeto es un conjunto finito de símbolos.

Cadena: Una cadena sobre un alfabeto Σ es una secuencia finita de símbolos de Σ . Los símbolos son notados respetando el orden de la secuencia.

1.2.1. Operaciones

Concatenación: Es una operación entre un símbolo del alfabeto Σ y una cadena sobre dicho alfabeto:

$$\circ: \Sigma \times \{\text{cadenas sobre }\Sigma\} \to \{\text{cadenas de }\Sigma\}$$

 \blacksquare La cadena nula λ es el elemento neutro de la concatenación.

Clausura de Kleene de Σ : Σ^*

- $\quad \blacksquare \ \lambda \in \Sigma^*$
- $\quad \blacksquare \ a \in \Sigma \wedge^* \implies \forall \ \alpha \in \Sigma, \ a \circ \alpha \in \Sigma^*$

Clausura positiva de Σ : $\Sigma^+ = \Sigma^* \setminus \{\lambda\}$

1.3. Lenguajes

Un lenguaje es un conjunto de cadenas sobre un alfabeto Σ .

1.3.1. Operaciones

Concatenación de lenguajes: Si L_1 y L_2 son lenguajes definidos sobre los alfabetos Σ_1 y Σ_2 respectivamente, entonces la concatenación de L_1 y L_2 es el lenguaje L_1L_2 definido por:

$$L_1L_2 = \{\alpha\beta \mid \alpha \in L_1, \ \beta \in L_2\}$$

definido sobre el alfabeto $\Sigma_1 \cup \Sigma_2$.

Clausura de Kleene L^* : Se define por:

$$L^{0} = \{\lambda\}$$

$$L^{n} = LL^{n-1} \text{ para } n >= 1$$

$$L^{*} = \bigcup_{n=0}^{\infty} L^{n}$$

Clausura positiva L^+ : $L^+ = \bigcup_{n=1}^{\infty} L^n$

- $\quad \blacksquare \ L^+ = LL^*$
- $L^* = L^+ \cup \{\lambda\}$
- \blacksquare Si L es un lenguaje definido sobre Σ entonces $L\subseteq \Sigma^*$

1.4 Gramáticas

1.4. Gramáticas

Una gramática es una 4-tupla (V_N, V_T, P, S) donde:

- V_N es un conjunto finito de símbolos no terminales.
- V_T es un conjunto finito de símbolos terminales.
- P es un conjunto finito de reglas de producción: Son pares ordenados α, β donde $\alpha \in (V_N \cup V_T)^*V_N(V_N \cup V_T)^*$ y $\beta \in (V_N \cup V_T)^*$.

Las notamos como $\alpha \to \beta$.

• $S \in V_N$ es el símbolo inicial.

Forma setencial de una grámatica: Se llama forma sentencial a una derivación de la misma (es decir, una cadena formada por símbolos de $V_N \cup V_T$ que sea el resultado de una derivación a partir de símbolos iniciales):

- lacksquare S es una forma setencial de G
- Si $\alpha\beta\gamma$ es una forma setencial de G y $\beta\to\delta\in P$ entonces $\alpha\delta\gamma$ es una forma setencial de G

Derivación directa en G: Si $\alpha\beta\lambda \in (V_N \cup V_T)^*$ y $\beta \to \delta \in P$ entonces $\alpha\delta\lambda$ es una derivación directa de G de $\alpha\beta\lambda$ y se denota como $\alpha\beta\lambda \Longrightarrow_G \alpha\delta\lambda$.

Denotaremos con $\stackrel{+}{\Longrightarrow}$ y $\stackrel{*}{\Longrightarrow}$ a la clausura positiva y la clausura transitiva y reflexiva de $\stackrel{\longrightarrow}{\Longrightarrow}$, respectivamente.

Además, \Longrightarrow_G será la potencia k-ésima de \Longrightarrow_G .

Lenguaje de una grámatica $\mathcal{L}(G)$: Es el conjunto de todas las cadenas de símbolos terminales que son formas setenciales de G.

$$\mathcal{L}(G) = \{ \alpha \in V_T^* : S \stackrel{+}{\Longrightarrow} \alpha \}$$

1.4.1. Clasificación de grámaticas (Chomsky)

Gramáticas regulares (tipo 3): Son aquellas gramáticas que cumplen alguna de las siguientes condiciones:

- Todas sus producciones son de la forma $A \to aB$ ó $A \to a$ ó $A \to \lambda$ donde $A, B \in V_N$ y $a \in V_T$. En este caso se dice que es una gramática lineal a derecha.
- Todas sus producciones son de la forma $A \to Ba$ ó $A \to a$ ó $A \to \lambda$ donde $A, B \in V_N$ y $a \in V_T$. En este caso se dice que es una gramática lineal a izquierda.

Gramáticas libres de contexto (tipo 2): Son aquellas gramáticas en las que cada producción es de la forma $A \to \alpha$ donde $A \in V_N$ y $\alpha \in (V_N \cup V_T)^*$.

De la definición anterior puede inferirse que toda grámatica regular es libre de contexto.

Gramáticas sensibles al contexto (tipo 1): Son aquellas gramáticas en las que cada producción es de la forma $\alpha \to \beta$ donde $\alpha, \beta \in (V_N \cup V_T)^*$ y $|\alpha| \le |\beta|$.

Se puede inferir que toda gramática independiente del contexto que no posea regla borradoraas (es decir, que no posea producciones de la forma $A \to \lambda$) es sensible al contexto.

Gramáticas sin restricciones (tipo 0): Son aquellas gramáticas que no poseen ninguna restricción como las anteriores.

El conjunto de las grámaticas tipo 0 es el conjunto de todas las grámaticas.

Definición: Un lenguaje generado por una grámatica tipo t es llamado lenguaje tipo t.

2. Autómatas finitos

2.1. Autómatas finitos deterministicos (AFD)

Un autómata finito determinista es una 5-tupla $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ donde:

- \blacksquare Q es un conjunto finito de estados.
- \blacksquare Σ es un conjunto finito de símbolos de entrada.
- \bullet $\delta:Q\times\Sigma\to Q$ es una función de transición.
- $q_0 \in Q$ es el estado inicial.
- $F \subseteq Q$ es el conjunto de estados finales.

Función de transición generalizada $\hat{\delta}$: La función de transición δ está definida para que tome como parámetro un único símbolo de Sigma. Se puede extender para que tomé como parámetro una cadena de símbolos de Sigma:

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

se define de manera recursica como:

- $\hat{\delta}(q,\lambda) = q$
- $\hat{\delta}(q, \beta a) = \delta(\hat{\delta}(q, \beta), a) \text{ con } \beta \in \Sigma^* \text{ y } a \in \Sigma$

Cadena aceptada por un AFD: Una cadena $\beta \in \Sigma^*$ es aceptada por un AFD $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ si y solo si $\hat{\delta}(q_0, \beta) \in F$.

Lenguaje aceptado por un AFD: El lenguaje aceptado por un AFD $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ es el conjunto de todas las cadenas $\beta \in \Sigma^*$ que son aceptadas por \mathcal{M} :

$$L(\mathcal{M}) = \{ \beta \in \Sigma^* : \ \hat{\delta}(q_0, \beta) \in F \}$$

2.2. Autómatas finitos no deterministas (AFND)

Un autómata finito no determinista es una 5-tupla $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ donde:

- \blacksquare Q es un conjunto finito de estados.
- ullet Σ es un conjunto finito de símbolos de entrada.
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ es una función de transición.

A diferencia de los AFD, la función δ devuelve un conjunto de estados en lugar de un solo estado.

- $q_0 \in Q$ es el estado inicial.
- $F \subseteq Q$ es el conjunto de estados finales.

Función de transición generalizada $\hat{\delta}$: Primero vamos a definir $\delta_P : \mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q)$ de la siguiente manera:

$$\delta_P(P, a) = \bigcup_{p \in P} \delta(p, a)$$

La función $\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$ se define de manera recursiva como:

- $\hat{\delta}(q,\lambda) = \{q\}$
- $\hat{\delta}(q, \beta a) = \{p : \exists r \in \hat{\delta}(q, \beta) \text{ tal que } p \in \delta(r, a)\} = \delta_P(\hat{\delta}(q, \beta), a) \text{ con } \beta \in \Sigma^* \text{ y } a \in \Sigma^* \}$

Para generalizar a un más podemos definir $\hat{\delta}_P : \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$ de la siguiente manera:

$$\hat{\delta}_P(P,\beta) = \bigcup_{q \in P} \hat{\delta}(q,\beta)$$

Cadena aceptada por un AFND: Una cadena $\beta \in \Sigma^*$ es aceptada por un AFND $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ si y solo si $\hat{\delta}(q_0, \beta) \cap F \neq \emptyset$. Es decir, si alguno de los estados alcanzados por $\hat{\delta}(q_0, \beta)$ es un estado final.

Lenguaje aceptado por un AFND: El lenguaje aceptado por un AFND $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ es el conjunto de todas las cadenas $\beta \in \Sigma^*$ que son aceptadas por \mathcal{M} :

$$L(\mathcal{M}) = \{ \beta \in \Sigma^* : \ \hat{\delta}(q_0, \beta) \cap F \neq \emptyset \}$$

2.2.1. Equivalencia entre AFD y AFND

Es trivial ver que para todo AFD existe un AFND que acepte el mismo lenguaje.

Teorema 2.1. Dado una AFND $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$, existe un AFD $\mathcal{M}' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que $L(\mathcal{M}) = L(\mathcal{M}')$.

Vamos a demostrar este teorema construyendo una AFD \mathcal{M}' a partir de \mathcal{M} . Una vez constuido deberemos demostrar que \mathcal{M}' acepta el mismo lenguaje que \mathcal{M} .

Construcción de \mathcal{M}' :

• Q' será el conjunto de partes $\mathcal{P}(Q)$ que contenga a todos los posibles conjuntos de estados de \mathcal{M} . Vamos a denotar cada estado $s \in Q'$ con etiquetas del estilo $[q_1, \ldots, q_k]$ donde $q_1, \ldots, q_k \in Q$. Entonces:

$$Q' = \mathcal{P}(Q)$$

- $\delta'([q_1, \dots, q_k], a) = [p_1, \dots, p_m] \iff \delta_P(\{q_1, \dots, q_k\}, a) = \{p_1, \dots, p_m\}$
- $q_0' = [q_0]$
- $F' = \{ [q_1, \dots, q_n] \in Q' : \{q_1, \dots, q_n\} \cap F \neq \emptyset \}$

Equivalencia de funciónes de transición generalizadas: Antes de demostrar que ambos automátas aceptan el mismo lenguaje, vamos a demostrar que las funciones de transición generalizadas de ambos automátas son equivalentes cuando las llamamos con el estado inicial como primer parámetro. Es decir, queremos ver que $\hat{\delta}'(q'_0, \beta) = [p_1, \dots, p_k] \iff \hat{\delta}(q_0, \beta) = \{p_1, \dots, p_k\}.$

Lo vamos a hacer por inducción. Recordemos que $q'_0 = [q_0]$:

- Caso base: $\beta = \lambda$:
 - $\hat{\delta}'([q_0], \lambda) = [q_0]$ por definición de $\hat{\delta}'$.
 - $\hat{\delta}(q_0, \lambda) = \{q_0\}$ por definición de $\hat{\delta}$.

Luego
$$\hat{\delta}'([q_0], \lambda) = [q_0] \iff \hat{\delta}(q_0, \lambda) = \{q_0\}.$$

• Caso inductivo: $\beta \implies \beta a$: Por hipotesis inductiva tenemos que

 $\underset{\text{def}}{\Longleftrightarrow} \delta_P(\hat{\delta}(q_0,\beta),a) = \{p_1,\ldots,p_k\} \underset{\text{def}}{\Longleftrightarrow} \hat{\delta}(q_0,\beta a) = \{p_1,\ldots,p_k\}$

$$\hat{\delta}'(q'_0,\beta) = [r_1,\ldots,r_m] \iff \hat{\delta}(q_0,\beta) = \{r_1,\ldots,r_m\}$$
Queremos ver que $\hat{\delta}'(q'_0,\beta a) = [p_1,\ldots,p_m] \iff \hat{\delta}(q_0,\beta a) = \{p_1,\ldots,p_m\}$

$$\hat{\delta}'(q'_0,\beta a) = [p_1,\ldots,p_k] \iff \hat{\delta}'(\hat{\delta}'(q'_0,\beta),a) = [p_1,\ldots,p_k]$$

$$\iff \exists [r_1,\ldots,r_m] \in Q' \text{ tal que } \delta'(q'_0,\beta) = [r_1,\ldots,r_m] \land \delta'([r_1,\ldots,r_m],a) = [p_1,\ldots,p_k]$$

$$\iff \exists \{r_1,\ldots,r_m\} \in Q \text{ tal que } \hat{\delta}(q_0,\beta) = \{r_1,\ldots,r_m\} \land \delta_P(\{r_1,\ldots,r_m\},a) = \{p_1,\ldots,p_k\}$$

Demostración de la equivalencia: Ahora que hemos demostrado que las funciones de transición generalizadas de ambos automátas son equivalentes, vamos a demostrar que ambos automátas aceptan el mismo lenguaje:

$$\beta \in \mathcal{L}(\mathcal{M}) \iff \hat{\delta}(q_0, \beta) = \{q_1, \dots, q_n\} \land \{q_1, \dots, q_n\} \cap F \neq \emptyset$$

$$\iff \underbrace{\hat{\delta}(q'_0, \beta) = [q_1, \dots, q_n]}_{\text{por equivalencia de generalizaciones}} \land \underbrace{[q_1, \dots, q_n] \in F'}_{\text{def.}F'}$$

$$\iff x \in \mathcal{L}(M')$$

2.3. Autómatas finitos no deterministico con transiciones λ

Un autómata finito no determinista con transiciones λ es un autómata finito no determinista que tiene transiciones λ . Estas transacciones nos permiten ir de un estado a otro sin consumir ningún símbolo de entrada.

Los definimos con una 5-upla $(Q, \Sigma, \delta, q_0, F)$ donde:

 \blacksquare Q es un conjunto finito de estados.

- ullet Σ es un conjunto finito de símbolos de entrada.
- $\delta: Q \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(Q)$ es una función de transición.
- $q_0 \in Q$ es el estado inicial.
- $F \subseteq Q$ es el conjunto de estados finales.

Clausura λ de un estado q: Se denota $Cl_{\lambda}(q)$ es el conjunto de estados que se pueden alcanzar desde q siguiendo solo transiciones λ . Es decir,

$$Cl_{\lambda}(q) = \delta(q, \lambda)$$

Además $q \in Cl_{\lambda}(q)$.

Clausura λ de un conjunto de estados P:

$$Cl_{P\lambda}(P) = \bigcup_{p \in P} Cl_{\lambda}(p)$$

Generalización de la función de transición: Podemos extender δ a conjunto de estados:

$$\delta_P : \mathcal{P}(Q) \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(Q)$$

 $\delta_P(P, a) = \bigcup_{p \in P} \delta(p, a)$

Entonces podemos definir:

$$\begin{split} \hat{\delta}: Q \times \Sigma^* &\to \mathcal{P}(Q) \\ \hat{\delta}(q_0, \lambda) &= Cl_{\lambda}(q_0) \\ \hat{\delta}(q_0, \beta a) &= Cl_{P\lambda} \left(\delta_P(\hat{\delta}(q_0, \beta), a) \right) = Cl_{P\lambda} \left(\left\{ p : \exists q \in \hat{\delta}(q_0, \beta) \text{ tal que } p \in \delta(q, a) \right\} \right) \end{split}$$

Tambien extendemos $\hat{\delta}$ a conjuntos de estados:

$$\hat{\delta}_P : \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$$
$$\hat{\delta}_P(P, \beta a) = \bigcup_{p \in P} \hat{\delta}(p, \beta a)$$

Cadena aceptada por un AFND- λ : Una cadena β es aceptada por un AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ si y solo si $\hat{\delta}(q_0, \beta) \cap F \neq \emptyset$.

Lenguaje aceptado por un AFND- λ : El lenguaje aceptado por un AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ es el conjunto de todas las cadenas aceptadas por M:

$$\mathcal{L}(M) = \{ \beta \in \Sigma^* : \hat{\delta}(q_0, \beta) \cap F \neq \emptyset \}$$

2.3.1. Equivalencia entre AFND y AFND- λ

Dado un AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ podemos construir un AFND $M' = \langle Q, \Sigma, \delta', q_0, F' \rangle$ tal que M acepte el mismo lenguaje que M'.

Construcción de M': Notemos que ambos autómatas tiene el mismo conjunto de estados Q, el mismo conjunto de símbolos de entrada Σ y el mismo estado inicial q_0 . Por lo que solo debemos definir δ' y F'.

$$\bullet \delta'(q, a) = \hat{\delta}(q, a) = Cl_{P\lambda} \left(\delta_P(\hat{\delta}(q, \lambda), a) \right)$$

•
$$F' = \begin{cases} F \cup \{q_0\} & \text{si } Cl_{P\lambda}(q_0) \cap F \neq \emptyset \\ F & \text{si no} \end{cases}$$

Equivalencia de funciones de transición generalizada: Vamos a demostrar por inducción que $\hat{\delta}'(q_0, \beta) = \hat{\delta}(q_0, \beta)$ para todo $|\beta| \ge 1$:

- Caso base: $|\beta| = 1$. Sea $\beta = a$, entonces $\hat{\delta}'(q_0, \beta) = \hat{\delta}'(q_0, a) = \hat{\delta}(q_0, a)$ por como definimos δ' .
- Caso inductivo: Supongamos que $\hat{\delta}'(q_0, \beta) = \hat{\delta}(q_0, \beta)$ para todo $|\beta| \leq n$. Sea $\omega = \beta a$. Entonces:

$$\hat{\delta}'(q_0, \omega) = \hat{\delta}'(q_0, \beta a) \underset{\text{def.}}{=} \delta_P'(\hat{\delta}'(q_0, \beta), a) \underset{\text{H.I}}{=} \delta_P'(\hat{\delta}(q_0, \beta), a) \tag{1}$$

Por otro lado, dado $P \subseteq Q$ tenemos que:

$$\delta_P'(P,a) \underset{\text{def.}}{=} \bigcup_{p \in P} \delta'(p,a) \underset{\text{construcción de }M'}{=} \bigcup_{p \in P} \hat{\delta}(p,a) \underset{\text{def}}{=} \hat{\delta}_P(P,a)$$

Entonces, remplazando en (1) el último término con este resultado, nos queda:

$$\delta'_P(\hat{\delta}(q_0,\beta),a) = \hat{\delta}_P(\hat{\delta}(q_0,\beta),a) = \hat{\delta}(q_0,\beta) = \hat{\delta}(q_0,\beta) = \hat{\delta}(q_0,\omega)$$

Demostración de equivalencia: Veamos ahora que M acepta el mismo lenguaje que M', vamos a separar la demostración en dos casos: $\beta = \lambda$ y $\beta \neq \lambda$.

$$= \beta = \lambda$$

•
$$\lambda \in \mathcal{L}(M) \implies \lambda \in \mathcal{L}(M')$$

$$\lambda \in \mathcal{L}(M) \underset{def}{\Longrightarrow} \hat{\delta}(q_0, \lambda) \cap F \neq \emptyset \underset{def}{\Longrightarrow} Cl_{\lambda}(q_0) \cap F \neq \emptyset$$

$$\underset{\text{por construcción } M'}{\Longrightarrow} q_0 \in F' \underset{def}{\Longrightarrow} \lambda \in \mathcal{L}(M')$$

•
$$\lambda \in \mathcal{L}(M') \implies \lambda \in \mathcal{L}(M)$$
.

$$\lambda \in \mathcal{L}(M') \implies_{\text{def.}} q_0 \in F' \implies_{\text{construcción } M'} q_0 \in F \vee Cl_{\lambda}(q_0) \cap F \neq \emptyset$$

Como
$$q_0 \in F \implies Cl_{\lambda}(q_0) \cap F \neq \emptyset$$
, entonces:

$$q_0 \in F \vee Cl_{\lambda}(q_0) \cap F \neq \emptyset \implies Cl_{\lambda}(q_0) \cap F \neq \emptyset \underset{\text{def.}}{\Longrightarrow} \lambda \in \mathcal{L}(M)$$

 $\beta \neq \lambda$

•
$$\beta \in \mathcal{L}(M) \implies \beta \in \mathcal{L}(M')$$

$$\beta \in \mathcal{L}(M) \implies \hat{\delta}(q_0, \beta) \cap F \neq \emptyset \implies_{\text{por equivalencia transiciones}} \delta'(q_0, \beta) \cap F$$

$$\implies_{\text{construcción } M'} \delta'(q_0, \beta) \cap F' \neq \emptyset \implies_{\text{def.}} \beta \in \mathcal{L}(M')$$

•
$$\beta \in \mathcal{L}(M') \implies \beta \in \mathcal{L}(M)$$

$$\beta \in \mathcal{L}(M') \implies_{\text{def.}} \delta'(q_0, \beta) \cap F' \neq \emptyset \underset{\text{equiv. transiciones}}{\Longrightarrow} \hat{\delta}(q_0, \beta) \cap F' \neq \emptyset$$

$$\implies_{\text{constr.}M'} \hat{\delta}(q_0, \beta) \cap F \neq \emptyset \lor \hat{\delta}(q_0, \beta) \cap (F \cup \{q_0\}) \neq \emptyset$$

Si vale la primera parte de la última expresión $\delta(q_0, \beta) \cap F \neq \emptyset$ entonces $\beta \in \mathcal{L}(M)$ por definición.

Veamos que pasa si vale $\hat{\delta}(q_0, \beta) \cap (F \cup \{q_0\}) \neq \emptyset$:

$$\hat{\delta}(q_0,\beta)\cap (F\cup\{q_0\})\neq\emptyset\implies \hat{\delta}(q_0,\beta)\cap F\neq\emptyset\vee \hat{\delta}(q_0,\beta)\cap \{q_0\}\neq\emptyset$$

La primer parte es lo mismo que arriba, analizemos la segunda:

$$\hat{\delta}(q_0, \beta) \cap \{q_0\} \neq \emptyset \implies Cl_{\lambda}(q_0) \cap F \neq \emptyset \implies \lambda \in \mathcal{L}(M)$$

Queda demostrada la equivalencia de lenguajes.

3. Expresiones regulares

Una expresión regular es una expresión que describe un lenguaje de forma compacta y sencilla:

- ullet \varnothing es una expresión regular que describe el lenguaje vacío \emptyset .
- λ es una expresión regular que describe el lenguaje unitario $\{\lambda\}$.
- Para cada $a \in \sigma$, a es una expresión regular que describe el lenguaje $\{a\}$.
- \blacksquare Si r y s son dos expresiones que denotan los lenguajes R y S entonces:
 - r|s ó r+s es una expresión regular que describe el lenguaje $R \cup S$.
 - rs es una expresión regular que describe el lenguaje RS.
 - r^* es una expresión regular que describe el lenguaje R^* .
 - r^+ es una expresión regular que describe el lenguaje R^+ .

Expresiones regulares recursivas: Si $r = \alpha r + \beta$, entonces $r = \alpha^* \beta$. Además, si $\alpha^* = \alpha^+$, entonces $r = \alpha^* (\beta + \gamma)$ para culquier expresión regular γ .

3.1. Expresiones regulares a AFND- λ

Dada una expresión regular r, existe una AFND- λ M con un solo estado final y sin trancisiones a partir del mismo tal que $\mathcal{L}(M) = \mathcal{L}(r)$.

Vamosa a demostrar por inducción sobre los operadores de las expresiones regulares.

3.1.1. Casos base

3.1.2. Pasos inductivos

Sean r_1 y r_2 dos expresiones regulares. Supongamos que existen AFND- λ $M_1 = \langle Q_1, \Sigma_1, \delta_1, q_1, \{f_1\} \rangle$ y $M_2 = \langle Q_2, \Sigma_2, \delta_2, q_2, \{f_\} \rangle$ tal que $\mathcal{L}(M_1) = \mathcal{L}(r_1)$ y $\mathcal{L}(M_2) = \mathcal{L}(r_2)$. Vamos a armar a partir de estos autómata uno nuevo que acepte los lenguajes generados por las expresiones $r_1|r_2$, r_1r_2 , r_1^* y r^+ .

 $r_1|r_2$: Podemos construir un automata $M_0 = \langle Q_0, \Sigma_0, \delta_0, q_0, \{f_0\} \rangle$ tal que $\mathcal{L}(M_0) = \mathcal{L}(r_1|r_2)$ de la siguiente forma:

- $Q_0 = Q_1 \cup Q_2 \cup \{q_0, f_0\}$
- $\bullet \ \Sigma_0 = \Sigma_1 \cup \Sigma_2$
- $\bullet \ \delta_0: Q_0 \times \Sigma_0 \to \mathcal{P}(Q_0)$

$$\delta(q_0, \lambda) = \{q_1, q_2\}$$

$$\delta(q, a) = \delta_1(q, a)$$
 para $q \in Q_1 - \{f_1\}$ y $a \in \Sigma_1 \cup \{\lambda\}$

$$\delta(q, a) = \delta_2(q, a)$$
 para $q \in Q_2 - \{f_2\}$ y $a \in \Sigma_2 \cup \{\lambda\}$

$$d(f_1, \lambda) = d(f_2, \lambda) = \{f_0\}$$

 r_1r_2 : $M_0 = \langle Q_0, \Sigma_0, \delta_0, q_1, \{f_2\} \rangle$:

$$Q_0 = Q_1 \cup Q_2$$

$$\Sigma_0 = \Sigma_1 \cup \Sigma_2$$

$$\delta_0: Q_0 \times \Sigma_0 \to \mathcal{P}(Q_0)$$

$$\delta(q, a) = \delta_1(q, a) \text{ para } q \in Q_1 - \{f_1\} \text{ y } a \in \Sigma_1 \cup \{\lambda\}$$

$$\delta(q, a) = \delta_2(q, a) \text{ para } q \in Q_2 - \{f_2\} \text{ y } a \in \Sigma_2 \cup \{\lambda\}$$

$$d(f_1, \lambda) = \{q_2\}$$

 $r_1^*: M_0 = \langle Q_0, \Sigma_1, \delta_0, q_0, \{f_0\} \rangle$:

$$Q_0 = Q_1 \cup \{f_0, q_0\}$$

•
$$\delta_1: Q_0 \times \Sigma_1 \to \mathcal{P}(Q_0)$$

$$\delta(q_0, \lambda) = \delta(f_1, \lambda) = \{q_1, f_0\}$$

$$\delta(q, a) = \delta_1(q, a) \text{ para } q \in Q_1 - \{f_1\} \text{ y } a \in \Sigma_1 \cup \{\lambda\}$$

Para el caso r_1^+ es el mismo autómata que para este caso sin la transición $q_0 \stackrel{\lambda}{\to} f_0$.

3.2. AFD a expresión regular

Dado un AFD $M = \langle \{q_1, \ldots, q_n\}, \Sigma, \delta, q_1, F \rangle$, que acepta el lenguaje \mathcal{L} , existe una expresión regular que denota el mismo lenguaje.

3.2.1. Demostración

Nombremos $R_{i,j}^k$ a la expresión regular cuyo lenguaje $\omega \subseteq \Sigma^*$ son las cadenas que llevan al autómata M desde el estado q_i al estado q_j pasando solo por estados q_l con $l \le k$. En particular $R_{i,j}^n$ es la expresión regular que representa todas las cadenas que permiten ir del estado i al estado j.

Vamos a buscar como construir $R_{i,j}^k$ para cada $k \in \{0,\ldots,n\}$ de manera inductiva. Suponiendo que demostramos la existencia de esta expresión regular, podemos concluir que la unión $R_{1,f_1}^n|R_{1,f_2}^n|\ldots|R_{1,f_m}^n$ (con $f_1\ldots f_m\in F$) es la expresión regular que representa el lenguaje \mathcal{L} :

Caso base (k = 0): Como todos los estados están enumerados del 1 para arriba, k = 0 significa que no debe haber estados intermedios en el camino entre q_i y q_j , por lo que pueden ser de dos formas:

- Una arco del estado i al estado j.
- \blacksquare Un camino de longitud cero que solo contiene el estado i.

Si $i \neq j$, entonces solo es posible la primera opción. Debemos examinar el AFD y encontrar aquellos simbolos que nos permitan ir del estado i al estado j.

- 1. Si no existe tal símbolo, entonces $R_{i,j}^0 = \emptyset$.
- 2. Si existe exactamente un símbolo a, entonces $R_{i,j}^0 = a$.
- 3. Si existen más de un símbolo, entonces $R_{i,j}^0 = a_1|a_2|...|a_n$.

Ahora, si i = j entonces los caminos de longitud cero también son posibles, por lo que habría que agregar a cada una de las expresiones recién mencionadas el simbolo λ :

- 1. $R_{i,j}^0 = \lambda$.
- 2. $R_{i,j}^0 = a | \lambda$.
- 3. $R_{i,j}^0 = a_1 |a_2| ... |a_n| \lambda$.

Paso inductivo: Supongamos que hay un camino desde el estado i al estado j que no pasa por estados mas grandes k. Entonces podemos considerar las siguientes dos opciones:

1. El camino no pasa por el estado k, por lo que el lenguaje de $R_{i,j}^{k-1}$ contiene a ese camino.

2. El camino pasa por el estado k por lo menos una vez. Entonces podemos partir el camino en varias partes:

La primer parte, va desde el estado i al estado k sin pasar por k, la última parte es desde el estado k al estado j sin pasar por k, y todas las partes intermedia s van desde el estado k al estado k sin pasar por k. Cada una de estas partes ya tiene una expresión regular asociada: $R_{i,k}^{k-1}$, $R_{k,j}^{k-1}$, por lo que podemos unirlas para obtener la expresión regular que representa el camino completo de la siguiente forma:

$$R_{i,k}^{k-1} \left(R_{k,k}^{k-1} \right)^* R_{k,j}^{k-1}$$

Entonces $R_{i,j}^k$ es la unión de las expresiones de los dos tipos de caminos que acabamos de describir:

$$R_{i,j}^{k} = R_{i,j}^{k-1} \cup R_{i,k}^{k-1} \left(R_{k,k}^{k-1} \right)^{*} R_{k,j}^{k-1}$$

Finalmente, si construimos en orden todas estas expresiones regulares desde $R_{i,j}^0$, eventualmente llegaremos hasta $R_{i,j}^n$.

Y como dijimos, más arriba si calculamos $R_{1,j}^0$ para cada $q_j \in F$ y unimos todas las expresiones, obtendremos la expresión regular que representa el lenguaje \mathcal{L} .

3.3. Gramática regular a AFND

Dada una grámatica regular $G = \langle V_N, V_T, P, S \rangle$, podemos construir un AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ que reconozca el lenguaje generado por G

3.3.1. Demostración

Vamos a constuir el autómata finito no determinista M y demostrar que reconoce el lenguaje generado por G.

Construcción de M: Construyamos M de la siguiente manera:

- $Q = V_N \cup \{q_f\}$
- $\Sigma = V_T$
- $q_0 = q_S$
- Si $A, B \in V_N$ y $a \in \Sigma$, entonces:
 - $q_B \in \delta(q_A, a) \iff A \to aB \in P$
 - $q_f \in \delta(q_A, a) \iff A \to a \in P$
 - $q_A \in F \iff A \to \lambda \in P$
 - $q_f \in F$

Equivalencia clausura transitiva de producciones y δ : Vamos a probar por inducción que

$$A \stackrel{*}{\Rightarrow} \alpha B \iff q_B \in \hat{\delta}(q_A, \alpha)$$

- Caso base $\alpha = \lambda$:
 - $A \stackrel{*}{\Rightarrow} \alpha B$, pero las gramáticas regulares no acentan producciones que vayan de un no terminal a otro sin pasar por un terminal, por lo que B = A. Osea $A \stackrel{*}{\Rightarrow} \alpha A$.
 - Además, como es un AFND, no tiene transiciones lambda, osea que $\delta(q_A, \lambda) = \{q_A\}$, por lo que $q_A \in \hat{\delta}(q_A, \alpha)$.
- Caso inductivo $\alpha = \beta a$:

$$A \stackrel{*}{\Rightarrow} \alpha B \iff A \stackrel{*}{\Rightarrow} \beta a B \underset{\text{def.}}{\Longleftrightarrow} \exists C \in V_N : A \stackrel{*}{\Rightarrow} \beta C \wedge C \to a B$$

$$\stackrel{\longleftrightarrow}{\Longrightarrow} \exists q_C \in Q, q_c \in \hat{\delta}(q_A, \alpha) \wedge q_B \in \delta(q_C, a) \iff q_B \in \delta(\hat{\delta}(q_A, \alpha), a)$$

$$\iff q_B \in \hat{\delta}(q_A, \beta a) \iff q_B \in \hat{\delta}(q_A, \alpha)$$

Demostración de la equivalencia: Vamos a demostrar que el lenguaje generado por G y Mson iguales, osea que $\alpha a \in \mathcal{L}(M) \iff S \stackrel{*}{\Rightarrow} \alpha a$ Como G es una grámatica regular, hay solo dos formas de llegar desde S hasta αa :

1.
$$\exists A \in V_N : S \stackrel{*}{\Rightarrow} \alpha A \land A \rightarrow a \in P$$

2.
$$\exists B \in V_N : S \stackrel{*}{\Rightarrow} \alpha a B \land B \rightarrow \lambda \in P$$

Entonces:

$$S \stackrel{*}{\Rightarrow} \alpha a$$

$$S \Rightarrow \alpha a$$

$$\iff (\exists A \in V_N : S \stackrel{*}{\Rightarrow} \alpha A \land A \rightarrow a \in P) \lor (\exists B \in V_N : S \stackrel{*}{\Rightarrow} \alpha a B \land B \rightarrow \lambda \in P)$$
def. gramatica regular

def. gramatica regular
$$\bigoplus_{\text{Equiv. anterior}} (\exists q_A \in Q, q_A \in \hat{\delta}(q_0, \alpha) \land q_f \in \delta(q_A, a)) \lor (\exists q_B \in Q, q_B \in \hat{\delta}(q_0, \alpha a) \land q_B \in F)$$

$$\underset{\text{def. } \delta}{\longleftrightarrow} q_f \in \delta(q_S, \alpha a) \vee (\exists q_B \in Q, q_B \in \hat{\delta}(q_0, \alpha a) \wedge q_B \in F)$$

$$\iff \alpha a \in \mathcal{L}(M)$$

Falta ver que pasa si $\lambda \in \mathcal{L}(G)$:

$$\lambda \in \mathcal{L}(G) \iff S \stackrel{*}{\Rightarrow} \lambda \iff S \to \lambda \in P \iff g_S \in F \iff \lambda \in \mathcal{L}(M)$$

AFD a gramática regular

Dado un AFD $M = \langle Q, \Sigma, \delta, q_0, F \rangle$, existe una gramática regular $G = \langle V_N, V_T, P, S \rangle$ equivalente

3.4.1. Demonstración

Contrucción de G: Vamos a construir G de la siguiente forma:

- \bullet $V_N=Q,$ para mayor claridad llamamos A_p al no terminal correspondiente al estado $p\in Q$
- $V_T = \Sigma$
- $S = q_0$
- Si $q \in Q \land q \notin F$ entonces $A_p \to aA_q \in P \iff \delta(p,a) = q$
- Si $q \in F$ entonces $A_p \to a \in P \iff \delta(p, a) = q$
- $S \to \lambda \in P \iff q_0 \in F$

Paso intermedio: Vamos a demostrar por inducción:

$$\hat{\delta}(p,\alpha) = q \iff A_p \stackrel{*}{\Rightarrow} \alpha A_q$$

■ Caso base: $\alpha = \lambda$ es trivial:

$$\hat{\delta}(p,\lambda) = q \iff A_p \stackrel{*}{\Rightarrow} A_p$$

■ Caso inductivo $\alpha = \beta a$: Queremos probar que $\hat{\delta}(p, \alpha) = q \iff A_p \stackrel{*}{\Rightarrow} \alpha A_q$. Nuestra hipotesis inductiva: $\hat{\delta}(p, \beta) = q \iff A_p \stackrel{*}{\Rightarrow} \beta A_q$ para todo $|\beta| \le n$

$$\begin{split} \hat{\delta}(p,\alpha) &= \hat{\delta}(p,\beta a) = q \iff \exists r \in Q: \ \hat{\delta}(p,\beta) = r \land \delta(r,a) = q \\ &\iff \underbrace{\exists A_r, A_p \overset{*}{\Rightarrow} \beta A_r}_{\text{H.I}} \land \underbrace{A_r \rightarrow a A_q \in P}_{\text{constr. } G} \iff A_p \overset{*}{\Rightarrow} \beta a A_q \end{split}$$

Demostración de equivalencia de lenguajes:

$$\alpha a \in \mathcal{L}(M) \underset{\longleftrightarrow}{\text{def.}} \hat{\delta}(q_0, \alpha a) \in F \underset{\longleftrightarrow}{\text{def.}} \exists q \in Q : \hat{\delta}(q_0, \alpha) = q \wedge \delta(q, a) \in F$$

$$\underset{\text{paso intermedio}}{\Longleftrightarrow} \exists A_p, A_{q0} \overset{*}{\Rightarrow} \alpha A_p \wedge A_p \rightarrow a \in P \iff A_{q0} \overset{*}{\Rightarrow} \alpha a$$

$$\underset{\text{def.}}{\Longleftrightarrow} \alpha a \in \mathcal{L}(G)$$

4. Minimización de AFD

4.1. Indistinguibilidad

Sea $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ un AFD, decimos que $p, q \in Q$, son indistinguibles $(p \equiv q)$ si para toda cadena $\alpha \in \Sigma^*$ tal que $\hat{\delta}(p, \alpha) \in F$ entonces pasa que $\hat{\delta}(q, \alpha) \in F$ y viceversa. Si $p, q \in Q$ son indistinguibles, entonces decimos que $p \neq q$ son equivalentes.

$$p \equiv q \iff \forall \alpha \in \Sigma^* : (\hat{\delta}(p, \alpha) \in F \iff \hat{\delta}(q, \alpha) \in F)$$

Teorema: Si $p \ y \ q$ son indistinguibles, sea $\alpha \in \Sigma^*$ entonces $\hat{\delta}(p,\alpha) \equiv \hat{\delta}(q,\alpha)$

$$p \equiv q \implies \forall \alpha \in \Sigma^* : \ \hat{\delta}(p, \alpha) \equiv \hat{\delta}(q, \alpha)$$

DEMOSTRACIÓN

Sean $p, q \in Q$, $p \equiv q$.

Supogamos que existe $\alpha \in \Sigma^*$ tal que $\hat{\delta}(p,\alpha) \not\equiv \hat{\delta}(q,\alpha)$ entonces existe una cadena $\gamma \in \Sigma^*$ que distingue a $\hat{\delta}(p,\alpha)$ de $\hat{\delta}(q,\alpha)$. Osea que $\hat{\delta}(\hat{\delta}(p,\alpha),\gamma) \in F$ y $\hat{\delta}(\hat{\delta}(q,\alpha),\gamma) \not\in F$ (o viceversa).

Por def: $\hat{\delta}(\hat{\delta}(p,\alpha),\gamma) = \hat{\delta}(p,\alpha\gamma)$ y $\hat{\delta}(\hat{\delta}(q,\alpha),\gamma) = \hat{\delta}(p,\alpha\gamma)$. Entonces, como $\alpha\gamma$ es una cadena que nos permite distinguir p de q, es decir $p \not\equiv q$. Absurdo.

Teorema: \equiv es una relación de equivalencia.

DEMOSTRACIÓN

• Reflexividad: $p \equiv p$:

$$\forall \alpha \in \Sigma^* : (\hat{\delta}(p, \alpha) \in F \iff \hat{\delta}(p, \alpha) \in F) \iff p \equiv p$$

• Simetría: $p \equiv q \implies q \equiv p$:

$$\begin{split} p &\equiv q \implies \forall \alpha \in \Sigma^* : \ (\hat{\delta}(p,\alpha) \in F \iff \hat{\delta}(q,\alpha) \in F) \\ &\iff \forall \alpha \in \Sigma^* : \ (\hat{\delta}(q,\alpha) \in F \iff \hat{\delta}(p,\alpha) \in F) \iff q \equiv p \end{split}$$

■ Transitividad: $p \equiv q \land q \equiv r \implies p \equiv r$:

$$p \equiv q \implies \forall \alpha \in \Sigma^* : \ (\hat{\delta}(p,\alpha) \in F \iff \hat{\delta}(q,\alpha) \in F)$$
$$q \equiv r \implies \forall \alpha \in \Sigma^* : \ (\hat{\delta}(q,\alpha) \in F \iff \hat{\delta}(r,\alpha) \in F)$$

Entonces

$$\forall \alpha \in \Sigma^* : (\hat{\delta}(p, \alpha) \in F \iff \hat{\delta}(r, \alpha) \in F) \iff p \equiv r$$