Lecture 2 homework 4-5

ID: 122431910061

Name: Liu Zhaohong

homework 4

For a set of vectors $S = \{v_1, v_2, \dots v_n\}$. Prove that span $\{S\}$ is the intersection of all subspaces that contain S.

Hint: for $M=\cap_{S\subseteq V}V$, V is any subspace contains S, prove that span $\{S\}\subseteq M$ and $M\subseteq$ span $\{S\}$

Situation 1: if S is nonempty

According to the definition of span,

span
$$\{S\} = \{a_1v_1 + a_2v_2 + \ldots + a_kv_k | v_1, v_2 \ldots v_k \in S, a_1, a_2 \ldots a_k \in F, \text{ and } k = 1, 2, \ldots \}$$

S is a subset of a vector space V over a field ${\bf F}$.

to prove span $(S) = \bigcap \{M, \text{a subspace of } V | S \subseteq M\};$

- ullet span(S) is a vector space that contains all of S, so it's one of spaces M in the intersection
- $\operatorname{span}(S)$ only has linear combinations of vectors in S, so every vector in $\operatorname{span}(S)$ has to be in every vector $\operatorname{space} M$ that contains all of S
- ullet therefore $\operatorname{span}(S)$ is a subset of all the spaces M in the intersection

Situation 2: if S is empty

- if S is empty, it is contained in every subspace of V
- the intersection of every subspace of V is the subspace $\{0\}$
- so the definition ensures that span $\{S\}=0$

In conclusion, span $\{S\}$ is the intersection of all subspaces that contain S.

homework 5

For any $A=[a_{ij}]\in M_{m,n}(C)$, show that $\operatorname{tr} A^*A=0$ if and only if A=0 .

noticed that
$$A=[a_{ij}]\in M_{m,n}(C)$$
 , so $A^*=A^T$

if $\operatorname{tr} A^T A = \sum_{i=1,j=1}^{m,n} a_{ij}^2 = 0$, then every a_{ij} should equal to 0, which means A = 0