Лекции по введению в топологию

Лектор: Миллионщиков Д.В. Автор конспекта: Ваня Коренев*

2курс, 2 поток. Осенний семестр 2024 г. 10ноября 2024 г.

^{*}tg: @gallehus

Содержание

1	Лекция 1 1.1 Основные понятия топологии.	3
2	Лекция 2	4
3	Лекция 3 3.1 Связность и линейная связность.	7 7
4	Лекция 4	8
5	Лекция 5	10
6	Лекция 6 6.1 Функциональная отделимость	11 11 11
7	Лекция 7 7.1 Разбиение единицы	12 12
8	Лекция 8 8.1 Кривые Пеано	13 13
9	Лекция 9 9.1 Теорема Титца о продолжении непрерывной функции	14 14

1.1 Основные понятия топологии.

Читателю рекомендуется повторить определения окрестности точки, открытого множества, замкнутого множества, непрерывной функции, компакта, связности.

Определение 1.1. Метрическое пространство — это пара (X, ρ) , где X — множество, а $\rho : X \times X \to \mathbb{R}$ — функция, удовлетворяющая следующим аксиомам:

- 1. $\forall x, y \in X : \rho(x, y) = 0 \Leftrightarrow x = y;$
- 2. $\forall x, y \in X : \rho(x, y) \ge 0;$
- 3. $\forall x, y \in X : \rho(x, y) = \rho(y, x);$
- 4. $\forall x, y, z \in X : \rho(x, z) \le \rho(x, y) + \rho(y, z)$.

 Φ ункция ρ называется метрикой (функцией расстояния). Часто метрическим пространством называют само множество X, если функция ρ очевидно подразумевается.

Утверждение 1.1. $(\mathbb{R}^1, \rho = |x - y|)$ является метрическим пространством.

Определение 1.2. Топологическое пространство — это пара (X, \mathcal{T}) , где X — множество, а $\mathcal{T} \subseteq 2^X$ — набор подмножеств X, удовлетворяющий следующим аксиомам:

- 1. $\varnothing, X \in \mathcal{T}$;
- 2. $\bigcap_{i=1}^{n} U_i \in \mathcal{T}$, $\varepsilon \partial e U_i \in \mathcal{T} \quad \forall i = 1, \ldots, n$;
- 3. $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}$, где $U_{\alpha} \in \mathcal{T} \ \forall \alpha \in A \ (A произвольное индексирующее множество);$

Множество $\mathcal T$ называется топологией на X, а элементы $\mathcal T$ — открытыми подмножествами X.

Пример 1.1. 1. Антидискретная (тривиальная) топология на любом множестве $X: \mathcal{T} = \{\emptyset, X\}.$

- 2. Дискретная топология на любом множестве X: $\mathcal{T} = 2^X$.
- 3. На $X = \{1,2\}$, можно задать 4 топологии: антидискретную (в таком случае пространство X называется слипиимся двоеточием), дискретную (в таком случае пространство X называется простым двоеточием) и две другие: $\mathcal{T}_1 = \{X,\varnothing,\{1\}\}$, $\mathcal{T}_2 = \{X,\varnothing,\{2\}\}$. Простраство X с топологиями \mathcal{T}_1 и \mathcal{T}_2 называется связным двоеточием.

Определение 1.3. Пусть (X, ρ) — метрическое пространство. Открытый шар в X с центром x_0 и радиусом r — это множество $O_r(x_0) = \{x \in X \mid \rho(x, x_0) < r\}$. Открытые шары также называют открытыми окрестностями точек, которые они содержат, в метрическом пространстве.

Определение 1.4. Пусть X - метрическое пространство. Подмножество $U \subset X$ называется открытым, если $\forall x \in U$ существует открытый шар (= открытая окрестность точки x), содержащий x и лежащий x U.

Замечание 1.1. Любое метрическое пространство является топологическим, если определить топологию на нём через открытые шары (т.е. считать открытые шары открытыми множествами). Доказательство этого факта см. в теореме (T. 2.1) на стр. (5).

Определение 1.5. Пусть X - топологическое пространство. Подмножество $U \subseteq X$ называется замкнутым, если $X \setminus U$ открыто.

Задача 1.1. Доказать, что топология может быть определена через понятие замкнутых множеств.

Пример 1.2. Топология Зарисского: Рассмотрим множество \mathbb{C}^1 и назовём в нём замкнутыми подмножествами любые конечные наборы точек: $\{z_1,\ldots,z_n\}$ (пустой набор точек также считается конечным). Топологию Зарисского можно обобщить на произвольное множество X: будем считать замкнутыми любые конечные подмножества $U\subseteq X$.

Задача 1.2. Доказать, что топология Зарисского действительно является топологией.

Определение 1.6. База $\mathfrak B$ топологии $\mathcal T$ на X — это подмножество $\mathfrak B\subseteq \mathcal T$ такое, что $\forall U\in \mathcal T$ можно выразить в виде объединения элементов базы $\mathfrak B$, т.е. $U=\bigcup_{\alpha\in A}B_{\alpha}$, где $B_{\alpha}\in \mathfrak B$.

База топологии позволяет уменьшить количество изначально задаваемых открытых множеств, определяющих топологию.

Лемма 1.2 (Достаточное условие на базу топологии). Пусть $\mathfrak{B} \subseteq 2^X$ - набор подмножеств X. Тогда если выполняются следующие условия:

1. $\forall x \in X \ \exists B_x \in \mathfrak{B}: \ x \in B_x$,

2.
$$\forall B_1, B_2 \in \mathfrak{B}$$
: $(x \in B_1 \cap B_2 \Rightarrow \exists B_3 \in \mathfrak{B} : x \in B_3 \subset B_1 \cap B_2)$,

то $\mathfrak B$ является базой некоторой топологии.

Доказательство. Рассмотрим всевозможные $U_{\alpha} = \bigcup_{\gamma} B_{\gamma}^{(\alpha)}$. Проверим все свойства из определения топологии.

Легко проверить, что выполняются первые 2-а свойства из определения топологии. В качество \varnothing можно взять объединение пустого числа множеств, а в качестве X - объединение всех элементов базы, оно будет равно X, т.к. для каждого $x \in X$ существует элемент базы, содержащий его.

Докажем выполнение 3-его свойства. Благодаря принципу математической индукции достаточно доказать, что k=2.

$$U_1 \cap U_2 = \bigcup_{\alpha \in A_1} B_{\alpha}^{(1)} \cap \bigcup_{\alpha \in A_2} B_{\alpha}^{(2)} = \bigcup_{\alpha_1 \in A_1, \alpha_2 \in A_2} B_{\alpha_1}^{(1)} \cap B_{\alpha_2}^{(2)} = \bigcup_{\alpha_1 \in A_1, \alpha_2 \in A_2} \bigcup_{x \in B_{\alpha_1}^{(1)} \cap B_{\alpha_2}^{(2)}} B_{3,x}^{(\alpha_1, \alpha_2)}$$

Тут $B_{3,x}^{(\alpha_1,\alpha_2)}$ существует из-за пункта 2. В итоге мы получили, что $U_1 \cap U_2$ можно выразить в виде объединения элементов базы.

Докажем выполнение 4-го свойства.

$$\bigcup_{\alpha \in A} U_{\alpha} = \bigcup_{\alpha \in A} \bigcap_{i \in I} B_i^{(\alpha)} = \bigcup_{(\alpha, i) \in A \times I} B_i^{\alpha}$$

Опять получили объединения элементов базы.

Итого всевозможные объединение элементов базы задают топологию на X.

Задача 1.3. Повторить доказательство для базы метрического пространства.

Определение 1.7. Предбаза Π топологии \mathcal{T} на X — это множество $\Pi \subset \mathfrak{B} \subset \mathcal{T}$, где \mathfrak{B} — база \mathcal{T} , такое, что: $\forall U \in \mathfrak{B}$: U есть конечное пересечение элементов предбазы, т.е. $\forall U \in \mathfrak{B}$: $U = \bigcap_{i=1}^k P_i$, где $P_i \in \Pi, k \in \mathbb{N}$. Иначе говоря: предбаза Π топологии \mathcal{T} на X — это множество $\Pi \subset \mathfrak{B} \subset \mathcal{T}$, где \mathfrak{B} — база \mathcal{T} , такое, что: $\forall U \in \mathcal{T}$: U есть объединение конечных пересечений элементов предбазы, т.е.

$$\forall U \in \mathcal{T}: \ U = \bigcup \bigcap_{i=1}^k P_i, \ \partial e \ P_i \in \Pi, k \in \mathbb{N}.$$

Предбаза топологии позволяет ещё уменьшить количество изначально задаваемых открытых множеств, определяющих топологию.

Замечание 1.2. Любое множество задает предбазу некоторой топологии.

Пример 1.3. Пусть $X = \{1, 2, 3, 4, 5\}$. Пусть $\Pi = \{\{1, 2, 3\}, \{2, 3, 4\}, \{3, 4, 5\}\}$ — предбаза. Тогда $\mathfrak{B} = \{\underbrace{\{1, 2, 3\}, \{2, 3, 4\}, \{3, 4, 5\},}_{\text{Элементы Π}}$ Все конечные пересечения элементов Π $\mathcal{T} = \{\underbrace{\{1, 2, 3\}, \{2, 3, 4\}, \{3, 4, 5\}, \{2, 3\}, \{3, 4\}, \{3\}, \varnothing, \{1, 2, 3, 4\}, \{2, 3, 4, 5\}, \{1, 2, 3, 4, 5\}\}}_{\text{Элементы \mathfrak{B}}}$ — топология на X. Все объединения элементов \mathfrak{B}

2 Лекция 2

Литература:

- 1. Федорчук В.В., Филиппов В.В. Общая топология. Основные конструкции.
- 2. Виро О.Я., Иванов О.А., Нецветаев Н.Ю., Харламов В.М. Элементарная топология.

Определение 2.1. Пусть (X, \mathcal{T}) — топологическое пространство. Если топология \mathcal{T} на X может быть порождена некоторой метрикой ρ на X, то пространство (X, \mathcal{T}) называется метризуемым.

Замечание 2.1. Существует ряд критериев метризуемости топологических пространств: см. Критерий метризуемости Нагаты — Ю.М.Смирнова, 1950-1951.

Определение 2.2. Пусть (X, ρ) — метрическое пространство. Открытый шар радиуса $\varepsilon > 0$ с центром в точке x_0 — это множество $O_{\varepsilon}(x_0) = \{x \in X : \rho(x, x_0) < \varepsilon\}.$

Теорема 2.1. Пусть (X, ρ) — метрическое пространство. Тогда шары $O_{\varepsilon}(x)$ образуют базу топологии, порождённой на X метрикой ρ .

Доказательство. Рассмотрим множество $\mathfrak B$ всех открытых шаров в пространстве X: $\mathfrak B = \{O_{\varepsilon}(x) \mid x \in X, \ \varepsilon > 0\}$. Проверим для $\mathfrak B$ оба пункта достаточного условия на базу:

- 1. Очевидно, $\forall x \in X \; \exists O_{\varepsilon}(x) : x \in O_{\varepsilon}(x)$
- 2. Обозначим: $B_1 = O_{\varepsilon_1}(x_1), \ B_2 = O_{\varepsilon_2}(x_2)$ и покажем, что $\forall x \in B_1 \cap B_2 \ \exists B_3 = O_{\varepsilon}(x) \in \mathfrak{B}: B_3 \subset B_1 \cap B_2$. По определению открытых шаров B_1 и B_2 : $\rho(x,x_1) < \varepsilon_1, \ \rho(x,x_2) < \varepsilon_2$. Положим $\varepsilon = \min\left\{\frac{\varepsilon_1}{2} \rho(x_1,x), \frac{\varepsilon_2}{2} \rho(x_2,x)\right\}$. Тогда: $\forall y \in O_{\varepsilon}(x)$:

$$\rho(y,x_1) \le \rho(y,x) + \rho(x,x_1) = \varepsilon + \rho(x,x_1) \le \frac{\varepsilon_1}{2} - \rho(x,x_1) + \rho(x,x_1) = \frac{\varepsilon_1}{2} < \varepsilon_1.$$

Значит, $y \in O_{\varepsilon_1}(x_1)$. Аналогично: $\rho(y,x_2) < \varepsilon_2 \Rightarrow y \in O_{\varepsilon_2}(x_2)$. Т.к. это верно $\forall y \in O_{\varepsilon}(x)$, то: $O_{\varepsilon}(x) \subset B_1 \cap B_2$, т.е. $B_3 \subset B_1 \cap B_2$. Т.о. по достаточному условию на базу топологии: открытые шары в метрическом пространстве образуют базу топологии, порождённой метрикой этого пространства.

Определение 2.3. Пусть на множестве X заданы две топологии \mathcal{T}_1 и \mathcal{T}_2 . Говорят, что \mathcal{T}_2 сильнее \mathcal{T}_1 (\mathcal{T}_1 слабее \mathcal{T}_2) и пишут $\mathcal{T}_1 \leq \mathcal{T}_2$, если $\mathcal{T}_1 \subseteq \mathcal{T}_2$, т.е. если любое открытое в \mathcal{T}_1 множество будет открытым в \mathcal{T}_2 .

Такой способ сравнения топологий на множестве X относительно прост. Введённое отношение сравнения является отношением частичного порядка и образует на множестве всех топологий на X структуру частично упорядоченного множества (ЧУМа).

Пример 2.1. Рассмотрим антидискретную и дискретную топологии на множестве Х:

$$\mathcal{T}_1 = \{\varnothing, X\} \subset \mathcal{T}_2 = 2^X.$$

В некотором смысле это два полюса сравнения: антидискретная топология на X является слабейшей, а дискретная — сильнейшей, т.е. для любой топологии \mathcal{T} на $X\colon \mathcal{T}_1\leq \mathcal{T}\leq \mathcal{T}_2$. Тем не менее введённый порядок на X является частичным, и нетривиальные топологии могут быть несравнимы.

Задача 2.1. Метризумы ли тривиальные топологии (= антидискретная и дискретная)? Ответ:

- 1. Рассмотрим дискретную метрику: $\rho_D(x,y) = \begin{cases} 1, & ecnu \ x \neq y, \\ 0, & ecnu \ x = y. \end{cases}$ Дискретная метрика порождает дискретную топологию.
- 2. Антидискретная топология неметризуема.

Определение 2.4 (Индуцированной топологии подространства). Пусть (X, \mathcal{T}) - топологическое пространство, $Y \subset X$. Тогда Y образует топологическое пространство c топологией, называемой индуцированной $(c \ X)$ топологией (топологией ограничения) $\mathcal{T}|_Y = \{U \cap Y \mid U \in \mathcal{T}\}.$

Задача 2.2. Проверить, что индуцированная топология действительно является топологией на множестве Y, т.е. удовлетворяет аксиомам из определения топологии.

Пример 2.2. $X = \mathbb{R}^2$ - метрическое пространство с евклидовой метрикой, $Y \subset X$. Базой топологии, порождённой метрикой на пространстве X, являются открытые шары, а базой индуцированной топологии на Y являются всевозможные пересечения открытых шаров в X с Y.

Определение 2.5. Окрестность точки x в топологическом пространстве — это любое открытое множество этого пространства (т.е. элемент топологии), содержащее x.

Замечание 2.2. Из определений топологии и окрестности точки очевидно следует, что:

- 1. $\bigcap_{i=1}^n Окрестностей точки <math>x Окрестность точки x$,
- 2. $\bigcup_{\alpha \in A} O$ крестностей точки x Oкрестность точки x.

Утверждение 2.2. Пусть (X, \mathcal{T}) — топологическое пространство. Тогда $A \subseteq X$ - открыто \Leftrightarrow для каждой точки $x \in A$ существует её окрестность, лежащая в A.

 \mathcal{A} оказательство. (\Leftarrow): По условию: $\forall x \in A \ \exists \ O(x) \in \mathcal{T}: x \in O(x), \ O(x) \subseteq A$. Рассмотрим $C = \bigcup_{x \in A} O(x)$: $C \in \mathcal{T}$. Очевидно, что $A \subseteq C$, а т.к. для каждого $x \in A$ верно $O(x) \subseteq A$, то $C \subseteq A$. Получаем, что A = C, значит, $A \in \mathcal{T}$. (\Rightarrow): Раз A открыто, то A является окрестностью любой своей точки.

Определение 2.6. Пусть $x \in X$. Если $\{x\} \in \mathcal{T}$, то x называется изолированной точкой пространства X.

Замечание 2.3. В дискретной топологии на любом пространстве все точки являются изолированными.

Определение 2.7. Пусть $x \in X$, $A \subset X$. Тогда x называется точкой прикосновения множества A, если для любой её окрестности O(x) выполняется $O(x) \cap A \neq \emptyset$.

Определение 2.8. Пусть $x \in X$, $A \subset X$. Тогда x называется внутренней точкой множества A, если существует $e\ddot{e}$ окрестность O(x): $O(x) \subset A$.

Определение 2.9 (A1). Замыкание множества A — это множество всех точек прикосновения A. Обозначение: \overline{A} .

Определение 2.10 (B1). Внутренность множества A — это множество всех внутренних точек A. Обозначение: Int(A).

Задача 2.3. Показать, что: $\operatorname{Int}(A) \subset A \subset \overline{A}$.

Определение 2.11 (A2). Замыкание \overline{A} множества A — это пересечение всех замкнутых множеств, содержащих A. Иными словами, \overline{A} — это наименьшее по включению замкнутое множество, содержащее A.

Определение 2.12 (B2). Внутренность Int(A) множества A — это объединение всех открытых множеств, лежащих в A. Иными словами, Int(A) — это наибольшее по включению открытое множество, лежащее в A.

Теорема 2.3. Определение A1 эквивалентно определению A2; Определение B1 эквивалентно определению B2.

Доказательство. Доказательство эквивалентности определений A1 и A2 остаётся в качестве упражнения читателю. Докажем эквивалентность определений B1 и B2.

Пусть $Int_1(A)$ - множество внутренних точек A в смысле определения B1, а $Int_2(A)$ — в смысле определения B2. Покажем, что эти множества равны:

- (⊆): Если $x \in \text{Int}_1(A)$, то существует его окрестность $O(x) \subset A$. Но O(x) открыто, а значит, $O(x) \subset \text{Int}_2(A)$, и $x \in \text{Int}_2(A)$. Получаем, что $\text{Int}_1(A) \subseteq \text{Int}_2(A)$.
- (⊇): Если $x \in \text{Int}_2(A)$, то x принадлежит какому-то открытому $V \subset A$. Но тогда мы можем взять V в качестве окрестности точки x. Получаем, что $x \in \text{Int}_1(A)$, а значит, $\text{Int}_1(A) \supseteq \text{Int}_2(A)$. Итак, $\text{Int}_1(A) = \text{Int}_2(A)$, а значит, определения В1 и В2 эквивалентны.

Определение 2.13. Пусть $x \in X$, $A \subset X$. Тогда x называется граничной точкой множества A, если x является точкой прикосновения A, но не является внутренней точкой A, т.е. если $x \in \overline{A}$, $x \notin \operatorname{Int}(A)$.

Определение 2.14. Граница множества A — это множество всех граничных точек A. Обозначение: Bd(A) или ∂A . По определению: $Bd(A) = \overline{A} \setminus Int(A)$.

Определение 2.15 (Понятия непрерывного отображения). Пусть (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) — топологические пространства, $f: X \to Y$. Отображение f называется непрерывным в точке $x_0 \in X$, если для любой окрестности $O(f(x_0)) \in \mathcal{T}_Y$ существует такая окрестность $U(x_0) \in \mathcal{T}_X$, что $f(U(x_0)) \subset O(f(x_0))$.

Отображение f называется непрерывным (непрерывным отображением топологических пространств), если оно непрерывно во всех $x \in X$.

Утверждение 2.4. Следующие условия эквивалентны:

- 1. Отображение топологических пространств $f: X \to Y$ непрерывно.
- 2. Прообраз любого открытого множества под действием f является открытым, т.е. $U \in \mathcal{T}_Y \Rightarrow f^{-1}(U) \in \mathcal{T}_X$.
- 3. Прообраз любого замкнутого множества под действием f является замкнутым.
- 4. Для любого $A \subseteq X$: $f(\overline{A}) \subseteq \overline{f(A)}$ (На лекции утверждалось не включение, а равенство, но это неверно).

Доказательство. Доказательство эквивалентности условий 1, 3 и 4 остаётся в качестве упражнения читателю. Докажем $(1) \Leftrightarrow (2)$:

(⇒): Пусть $V \subset Y$ открыто. Рассмотрим $\forall x \in f^{-1}(V)$: Т.к. $V \in \mathcal{T}_Y$ и $f(x) \in V$, то $\exists O(f(x)) \subset V$ — окрестность f(x). Т.к. f непрерывно, то для найденной $O(f(x)) \exists U(x) \in \mathcal{T}_X$ — окрестность $x: f(U(x)) \subset O(f(x)) \subset V$. Значит, $U(x) \subset f^{-1}(V)$. Получаем, что любая точка из $f^{-1}(V)$ входит в это множество вместе с некоторой своей окрестностью, а значит, $f^{-1}(V)$ открыто. Итак, прообраз любого открытого множества под действием f открыт.

 (\Leftarrow) : Пусть $x \in X$. Рассмотрим $\forall O(f(x)) \in \mathcal{T}_Y$ — окрестность f(x). Т.к. O(f(x)) открыто, то $f^{-1}(O(f(x)))$ открыто в X — выберем это множество в качестве окрестности x. Получаем, что $\forall x \in X \ \forall O(f(x)) \in \mathcal{T}_Y \ \exists U(x) \in \mathcal{T}_X : f(U(x)) \subset O(f(x))$, т.е. f непрерывно.

Замечание 3.1. Проверять непрерывность отображения топологических пространств удобно на уровне базы или предбазы: Пусть $\mathfrak{B} \subset \mathcal{T}_Y$ — база топологии на Y. Тогда отображение $f: X \to Y$ непрерывно \Leftrightarrow прообраз базы (предбазы) открыт: $f^{-1}(\mathfrak{B}) \subset \mathcal{T}_X$

Пример 3.1. 1. $f: \mathbb{R} \to \mathbb{R}$ — непрерывные функции одной переменной ("функции из математического анализа").

- 2. $f(x) = e^{2\pi i x} = \cos(2\pi x) + i\sin(2\pi x)$ (Эта функция представляет собой пример накрытия $f: \mathbb{R}^1 \to S^1$. Определение накрытия смотри (возможно) дальше в курсе).
- 3. Тривиальный пример: постоянное отображение $f(x) \equiv y_0$, где $f: X \to Y$ и $y_0 \in Y$.
- 4. Композиция непрерывных отображений является непрерывным отображением: Пусть $X \xrightarrow{f} Y \xrightarrow{g} Z$; f, g непрерывные отображения. Тогда $g \circ f$ непрерывное отображение.
- 5. Пусть (X, \mathcal{T}) топологическое пространство, $Z \subset X$, на Z индуцирована топология $\mathcal{T}_Z = \mathcal{T}|_Z$. Рассмотрим отображение включения: $i: Z \to X$, i(x) = x. Тогда i непрерывно в индуцированной топологии \mathcal{T}_Z .
- 6. Пусть в дополнение к предыдущему пункту: существует $f: X \to Y$ непрерывное отображение. Рассмотрим отображение ограничения: $f|_Z: Z \to Y$. Оно непрерывно, т.к. является композицией непрерывных отображений: $f|_Z = f \circ i$.
- 7. Непрерывность в метрических пространствах:

Определение 3.1 (Непрерывности отображения метрических пространств по Коши). Пусть (X, ρ_X) , (Y, ρ_Y) — метрические пространства, $f: X \to Y$. Тогда отображение f называется непрерывным в точке $x_0 \in X$, если $\forall \varepsilon > 0 \ \exists \delta > 0 : f(O_{\delta}(x_0)) \subset O_{\varepsilon}(f(x_0))$, где O_{δ} и O_{ε} — открытые шары в пространствах X и Y соответственно.

Отображение f называется непрерывным (непрерывным отображением метрических пространств), если оно непрерывно во всех $x \in X$.

Определение 3.2 (Непрерывности отображения метрических пространств по Гейне). Пусть (X, ρ_X) , (Y, ρ_Y) — метрические пространства, $f: X \to Y$. Тогда отображение f называется непрерывным в точке $x_0 \in X$, если для любой последовательности $\{x_n\}_{n=1}^{\infty}$ элементов X, сходящейся κ x_0 , последовательность $\{f(x_n)\}_{n=1}^{\infty}$ сходится κ $f(x_0)$.

Отображение f называется непрерывным (непрерывным отображением метрических пространств), если оно непрерывно во всех $x \in X$.

Задача 3.1. Доказать эквивалентность определений непрерывности отображения метрических пространств по Коши и по Гейне.

Теорема 3.1 (Кривая Пеано). Существует непрерывное отображение $f:[0,1] \to [0,1] \times [0,1]$

Доказательство этой теоремы смотри дальше в курсе

Определение 3.3. Пусть X, Y- топологические пространства, $f: X \to Y$. Тогда отображение f называется гомеоморфизмом, если: 1) f- биекция, 2) f непрерывно, 3) f^{-1} непрерывно.

Eсли между пространствами X и Y существует гомеоморфизм, то эти пространства называются гомеоморф-ными.

Замечание 3.2. Свойство "быть гомеоморфными" очевидно является отношением эквивалентности на множестве топологических пространств, а значит, разбивает это множество на классы эквивалентности.

Чтобы доказать, что пространства не являются гомеоморфными, можно найти топологические свойства этих пространств, которые должны сохраняться при любом гомеоморфизме, но у этих пространств отличаются.

Пример 3.2. $f(x) = tg(x) : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \xrightarrow{f} (-\infty, +\infty) = \mathbb{R}$ — гомеоморфизм.

3.1 Связность и линейная связность.

Определение 3.4. Топологическое пространство X называется несвязным, если его можно представить в виде объединения двух непустых непересекающихся открытых подмножеств.

Eсли же пространство X так разбить нельзя, то оно называется связным.

Пример 3.3. 1. Любое пространство с дискретной топологией несвязно, если содержит более одного элемента.

2. Любое пространство с антидискретной топологией связно.

Теорема 3.2. Отрезок I = [0,1] с топологией, индуцированной естественной топологией вещественной прямой (т.е. топологией, порождённой на \mathbb{R} евклидовой метрикой), связен.

Доказательство. Заметим, что в условиях теоремы открытыми подмножествами отрезка I считаются интервалы вида (a,b), где 0 < a < b < 1; полуинтервалы вида [0,a), где $0 < a \leq 1$; полуинтервалы вида (b,1], где $0 \leq b < 1$; сам отрезок I и \varnothing ; а также их всевозможные объединения и конечные пересечения.

Докажем теперь теорему от противного: пусть отрезок I связен, т.е. $I=A\cup B$, где: 1) $A,B\neq\varnothing$; 2) $A\cap B=\varnothing$; 3) A,B — открыты. Без ограничения общности можем считать, что $0\in A$. Т.к. A открыто, то 0 лежит в A вместе с некоторой своей окрестностью. Тогда или эта окрестность нуля совпадает со всем отрезком: $I\subseteq A\Rightarrow I=A\Rightarrow B=\varnothing$ — получаем противоречие, или эта окрестность нуля представляет собой полуинтервал, т.е. $\exists\, \varepsilon,\, 0<\varepsilon\le 1:\, [0,\varepsilon)\subseteq A$. Множество таких ε ограниченно $(0<\varepsilon\le 1)$, следовательно, существует его супремум. Обозначим это множество Ω ($\Omega\subseteq A$), а его супремум — ε_0 :

$$\sup_{\varepsilon \in (0,1]} \Omega = \sup_{\varepsilon \in (0,1]} \big\{ \, \varepsilon \, \mid \, [0,\varepsilon) \, \subseteq A \, \big\} = \varepsilon_0.$$

Докажем теперь, что тогда $[0, \varepsilon_0] \subseteq A$. Т.к. ε_0 — супремум множества Ω , то по одному из свойств супремума: $\forall \delta > 0 \; \exists \, \varepsilon > 0 : \; \varepsilon_0 - \delta < \varepsilon < \varepsilon_0 \; \Rightarrow \; \varepsilon \in \Omega, \; \text{ т.е. } [0, \varepsilon) \subset \Omega \subset A$. Значит, ε_0 является точкой прикосновения множества Ω , а значит, и точкой прикосновения множества A.

Т.к. A и B являются открытыми и дополняют друг друга до I, то в индуцированной топологии на I они являются одновременно открытыми и замкнутыми. Значит, $A=\overline{A}$, т.е. A содержит все свои точки прикосновения. Значит, $\varepsilon_0\in A$. Но т.к. A открыто, то $\exists\,U(\varepsilon_0)$ — окрестность $\varepsilon_0\colon\,U(\varepsilon_0)\subset A$. Но тогда или $\varepsilon_0=1$, а значит, $A=I\Rightarrow B=\varnothing$ — противоречие, или $\varepsilon_0\neq 1\Rightarrow \exists\,\delta>0:\,[0,\varepsilon_0+\delta)=[0,\varepsilon_0]\cup[\varepsilon_0,\varepsilon_0+\delta)\subset A\Rightarrow \varepsilon_0+\delta\in\Omega$ — противоречие с тем, что $\varepsilon_0=\sup_{\varepsilon\in(0,1]}\Omega$.

Во всех случаях получаем противоречия, значит, исходное предположение неверно, а значит, отрезок I в индуцированной топологии связен.

Утверждение 3.3. Непрерывный образ связного пространства связен, т.е. если X связно, $f: X \to Y$ — непрерывное отображение, то f(X) связно.

Доказательство. От противного: пусть $f(X) = A \cup B$, где 1) $A, B \neq \varnothing$; 2) $A \cap B = \varnothing$; 3) A, B — открыты в индуцированной с Y на f(X) топологии. Но тогда $X = f^{-1}(A) \cup f^{-1}(B)$, причём 1) $f^{-1}(A), f^{-1}(B) \neq \varnothing$, т.к. $A, B \neq \varnothing$; 2) $f^{-1}(A) \cap f^{-1}(B) = \varnothing$, т.к. $A \cap B = \varnothing$; 3) $f^{-1}(A), f^{-1}(B)$ — открыты в X, т.к. A, B — открыты в индуцированной с Y на f(X) топологии, а f — непрерывное отображение. Значит, X несвязно — противоречие. \square

Определение 3.5. Путь γ в топологическом пространстве X, соединяющий точки $x_0, y_0 \in X$ — это непрерывное отображение $\gamma: [0,1] \to X$ такое, что $\gamma(0) = x_0$, $\gamma(1) = y_0$. Точка x_0 называется началом пути γ , а точка y_0 — концом пути γ .

Замечание 3.3. Из доказанных теоремы и утверждения следует, что $\gamma([0,1])$ — связно в топологии, индуцированной с области значений.

Определение 3.6. Пространство X называется линейно связным, если для любых двух точек $x, y \in X$ существует путь γ , соединяющий их и лежащий в пространстве X, т.е. $\gamma([0,1]) \subset X$.

Теорема 3.4. Пусть X линейно связно. Тогда X связно.

Доказательство. От противного: Пусть $X = A \cup B$, где 1) $A, B \neq \varnothing$; 2) $A \cap B = \varnothing$; 3) A, B — открыты в топологии на X. Т.к. X линейно связно, то $\forall x_0 \in A$ и $\forall y_0 \in B$ можно соединить путём: существует непрерывное отображением $\gamma: [0,1] = I \to X$ такое, что $\gamma(0) = x_0, \gamma(1) = y_0, \gamma(I) \subset X$. Тогда получаем, что $\gamma(I) = (\gamma(I) \cap A) \cup (\gamma(I) \cap B)$, причём $(\gamma(I) \cap A)$ и $(\gamma(I) \cap B)$ непусты, не пересекаются и открыты в топологии, индуцированной с X на $\gamma(I)$. Значит, $\gamma(I)$ несвязно — противоречие.

Замечание 3.4. Обратное неверно. Пример: объединение графика функции $f(x) = \sin \frac{1}{x}, \ x > 0 \ c$ отрезком $\{ (0,y) \mid -1 \le y \le 1 \}$. Это подмножество плоскости \mathbb{R}^2 связно, но не является линейно связным. Доказательство этого факта остаётся читателю в качестве упражнения.

4 Лекция 4

Компактность

Пусть X - топологическое пространство.

Определение 4.1. X - компактно, если из любого покрытия можно выделить конечное подпокрытие. Раньше это называлось бикомпактностью, а под в компакте требовалось счетность изначального покрытия.

Пример 4.1. [a,b] - компактен, для доказательстве нужно использовать факт существования точной верхней грани у ограниченности подмножества \mathbb{R}^1 .

oОказательство.

Лемма 4.1 (О вложенных отрезках). Пусть есть система вложенных отрезков $\{[a_n,b_n]\}$, где $[a_n,b_n] \subset [a_{n-1},b_{n-1}]$. Тогда их пересечение не пусто. Дополнительно, если $|b_n-a_n| \to 0$, тогда их пересечние состоит из одной точки.

Определение 4.2. Центрировання система множеств $\{X_{\alpha} \subset X\}$, если пересечение любого конечного числа множеств X_{α} не пустно.

Лемма 4.2 (Обобщение леммы для топологических пространств). Пусть X - топологическое пространство, тогда существует последовательность замкнутых не пустых подмножеств $X \supset F_1 \supset F_2 \ldots u \cap F_i \neq \emptyset$.

Доказательство: игра в понятия(определения). Мы знаем, что

$$F_i$$
 – замкнуто $\Leftrightarrow U_i = X \setminus F_i$ - открыто

Лемма вышея является следствием леммы ниже.

Пемма 4.3. Топологическое пространство компактно $X \Leftrightarrow$ любая центрируемая система замкнутых подмножест имеет непустые пересечение

Доказательство. (\Rightarrow) : Пусть $\bigcup_i F_i = \emptyset$, тогда что можно сказать про $\{U_i\}$? Рассмотрим $\bigcup_i (X \setminus F_i) = X \setminus \bigcap_i F_i$

 $\bigcup_i U_i \supset X \Rightarrow$ существует конечное подпокрытие в силу компактностиX

$$U_{\alpha_1} \cup \dots U_{\alpha_k} \supset X$$

Следовательно $\{F_i\}$ удовлетворяют условию.

Задача 4.1. Доказать утверждение в обратную сторону.

Определение 4.3. X называется локально компактным, если $\forall x \in X$ существует O(x), для которой существует V(x) такая, что 1) $Cl(V(x)) \subset O(x)$; 2) Cl(V(x)) - компактно.

Определение 4.4. Семейство подмножеств $X_{\alpha} \subset X$ называется локально конечным, если существует O(x), которая пересекаяется с конечным числом множеств из системы $\{X_{\alpha}\}$.

Определение 4.5. Топологичесоке пространство X называется паракомпактном, если в любое его открытое покрытие множ вписать локально конечное подпокрытие.

Пример 4.2. \mathbb{R}^1 и \mathbb{R}^n является паракомпактном

Лемма 4.4 (наследование компактностей). Пусть $X\supset A$, если A - замкнутно, то A сохраняет следующие свойтсва топологического протсрантсва X

- 1. компактно
- 2. локально компактно
- 3. паракомпактно

Задача 4.2. Доказать лемму выше.

Утверждение 4.5. Пусть $f: X \to Y$ - непрерывное отображение топологических пространств. Тогда, если X компактно, тогда $f(X) \subset Y$ тоже компактно.

Доказательство. Очевидно.

Задача 4.3. Рассмотреть похожие утверждения для локальной компактности и паракомпактности.

Определение 4.6 (Аксиомы отделимости).

- 1. T_0 (аксиома Колмогорова): X удовлетворяет T_0 тогда и только тогда, когда выполнятеся следующиее или существует O(x) такая, что $y \notin O(x)$, или существует O(y) такая, что $x \notin O(y)$ для кажедых двух различных элементов $x, y \in X$.
- 2. T_1 : для двух ралзичных точек найдутся окрестности, удовлетворяющие следующим свойствам $x \notin O(y)$ и $y \notin O(x)$.
- 3. Т₂ (аксиомы Хаусдорфа): для двух различных точек существуют непересекающиеся окрестности.
- 4. T_3 : для любой точки x из X и для любого замкнутого подмножества $F \subset X$, не содержащего x, существуют непересекающиеся окрестности O(x) и O(F).
- 5. T_4 : пусть F_1, F_2 замкнутые множества, причем $F_1 \cap F_2 = \varnothing$. Существуют $O(F_1), O(F_2) : O(F_1) \cap O(F_2) = \varnothing$.

Задача 4.4. Пространство, удовлетворяющие T_1 , но не удовлетворяющие T_0 .

Рассмотрим полезную характеристику T_1 -пространства:

Утверждение 5.1. X является T_1 -пространством тогда и только тогда, когда для любых x множество $\{x\}$ замкнуто.

Доказательство. (\Rightarrow): Пусть T_1 . Если возьмем $y \neq x$, тогда существует O(x) и O(y), т.ч. $y \notin O(x)$ и $x \notin O(y) \Longrightarrow y$ не является точкой прикосновения множества X. Значит $X \setminus \{x\}$ множество не содержащее предельную точку. Таким образом x единственная предельная (прикосновенная) точка множества X.

 (\Leftarrow) : Пусть различные точки $\{x\}$ и $\{y\}$ замкнуты, тогда $X\backslash\{x\}$ и $Y\backslash\{y\}$ открыты. Данные множества открыты, возьмем их в качестве окрестностей: $y\in X\backslash\{x\},\,x\backslash\{y\}$

Утверждение 5.2. Вообще говоря из T_3 не следует T_0 .

Доказательство. Приведем контрпример: пусть $X = \{x,y\}$ и $\tau = \{\varnothing,X\}$. Возмем точку x, тогда замкнутое подмножечство $F \subset X$, не содержащее x, только пустое; $x \in X$, $\varnothing \in \varnothing$

Определение 5.1. Пространство X регулярно, если оно T_3 и T_1

Утверждение 5.3. $T_3 \ u \ T_1 \Rightarrow T_2$

Доказательство. Возьмем x и y, такие что $x \neq y$. Пусть существует O(x): $y \notin O(x)$. Рассмотрим $X \setminus O(x) =: F$, оно замкнуто и $y \in F$. По аксиоме T_3 существуют окрестности O(x) и O(F): $O(x) \cap O(F) = \emptyset$. Найдем окрестность точки y. Существует $O(y) \subset O(F)$, так как $y \in O(F)$ и O(F) открыто. Таким образом $O(x) \cap O(y) = \emptyset$.

Пример 5.1. Если X метрическое пространство, то X хаусдорфово.

Рассмотрим полезную характеристику пространства T_2 .

Утверждение 5.4. X пространство $T_2 \Leftrightarrow \forall x \in X \cap \overline{O}(x) = \{x\}$, где пересечение по всем окрестностям, содержащим x.

 \mathcal{A} оказательство. $\Rightarrow x \in \bigcap \overline{O}(x)$, пересечение по всем окрестностям точки x. Докажем методом от противного: пусть существует $y \in \bigcap \overline{O}(x)$, где пересечение по всем окрестностям точки x. Тогда $\forall \overline{O}(x) \ y \in \overline{O}(x) \Leftrightarrow \forall V(y) \ V(y) \cap O(x) \neq \varnothing$. Так как X пространство T_2 , то существует U(x) и U(y): $U(x) \cap U(y) = \varnothing$. Противоречие с тем, что y принадлежит хотя бы одному $\overline{O}(x)$.

⇐ упражнение.

Утверждение 5.5. Из T_4 следует T_0 .

Доказательство. Рассмотрим связное двоеточие: $X = \{x, y\}$ и $\tau = \{\varnothing, X\}$. Замкнутых множеств всего два $\{\varnothing, X\}$. Можем взять $F_1 = \varnothing$, $F_2 = X$. Или можем взять $F_1 = \varnothing$, $F_2 = \varnothing$.

Утверждение 5.6. *Из* T_4 *не следует* T_3 .

Доказательство. Приведем контрпример: пусть $X = \mathbb{R}$, $\tau = \{\{(a, +\infty), a \in \mathbb{R}\}, \varnothing, \mathbb{R}\}$. Замкнутые множества имеют вид $F = (-\infty, a]$. Так как нет двух пересекающихся множеств, то пространство является T_4 . Возьмем закнутое множество $(-\infty, a] =: F$ и точку b, причем $b \notin F$. Единственной окрестностью F является вся \mathbb{R} , так как это единственное открытое множество удовлетворяющее топологии и содержащее F. Тогда любая окрестность точки b будет нетривиально пересекаться с \mathbb{R} . Значит X не является T_3 .

Утверждение 5.7. $T_4 + T_1 \Rightarrow T_3$.

Доказательство. Из утверждения 5.1 следует, что $\{x\}$ замкнуто. Пусть $F_1=\{x\},\,F=F_2$, применяем аксиому T_4 . \square

Определение 5.2. X – нормально, если оно $T_4 + T_1$.

Лемма 5.8. Пусть в метрическом пространстве (X, ρ) F_1, F_2 - замкнуты. Тогда $\forall x \in F_1, \exists \varepsilon > 0: O_{\varepsilon}(x) \cap F_2 = \varnothing$.

 \mathcal{A} оказательство. Предположим противное: пусть нельзя найти такую $O_{\varepsilon}(x)$, то есть $\forall \varepsilon > 0$ $O_{\varepsilon}(x) \cap F_2 \neq \emptyset$. Тогда $x \in \overline{F_2}$, но $\overline{F_2} = F_2 \Longrightarrow x \in F_1 \cap F_2 \neq \emptyset$.

Теорема 5.9. Метрическое пространство нормально.

Доказательство. Метрическое пространство хаусдорфово, то есть выполняется аксиома T_2 , из которой следует аксиома T_1 . Докажем T_4 . Пусть F_1, F_2 — замкнутые непересекающиеся множества. Возьмем точку $x_1 \in F_1$ и рассмотрим $O_{\varepsilon_1}(x_1)$. Можно построить окрестность $V(F_1) = \bigcup_{x_1 \in F_1} O_{\frac{\varepsilon}{2}}(x_1)$ и $W(F_2) = \bigcup_{x_2 \in F_2} O_{\frac{\varepsilon}{2}}(x_2)$. Докажем, что $V(F_1) \cap W(F_2) = \varnothing$. Предположим противное: $\exists w \in V(F_1) \cap W(F_2)$. Тогда $\exists x_1 \in F_1 : w \in O_{\frac{\varepsilon}{2}}(x_1)$ и

Докажем, что $V(F_1) \cap W(F_2) = \emptyset$. Предположим противное: $\exists w \in V(F_1) \cap W(F_2)$. Тогда $\exists x_1 \in F_1 : w \in O_{\frac{\varepsilon}{2}}(x_1)$ и $\exists x_2 \in F_2 : w \in O_{\frac{\varepsilon}{2}}(x_2)$. Заметим, что $\rho(x_1,w) < \frac{\varepsilon}{2}$ и $\rho(x_2,w) < \frac{\varepsilon}{2}$, тогда по неравенству треугольника $\rho(x_1,x_2) < \varepsilon \Rightarrow x_1 \in O_{\varepsilon}(x_2)$, также $x_1 \in F_1$, но $O_{\varepsilon}(x_2)$ построена так, что она не пересекается с F_1 .

На прошлой лекции была доказано теорема

Теорема 6.1. Метрическое пространство является нормальным, то есть удовлетворяет аксиомам T4 + T1.

Вопрос: что нужно добавить для нормального пространства, чтобы оно стало метризуемым?

6.1 Функциональная отделимость

Определение 6.1. $A \subset X$ - всюду плотно в X, если $\overline{A} = X$.

Теорема 6.2 (Лемма Урысона). Пусть X - нормальное пространство. A, B - два замкнутых непересекающихся nodмножества X. Тогда существует непрерывная функция $F:X \to [0,1] \subset \mathbb{R}$, такая, что $F(A)=\{0\}$ и $F(B)=\{1\}$

Доказательство. Для доказательства этой леммы будет использовать двоично-рациональные числа, это

$$S = \left\{q = \frac{m}{2^n}, m \in \mathbb{Z}, n \in \mathbb{N}\right\}$$

Стандартное доказательство:

Будем строить по индукции семейство открытых множеств $\{U\}$, которые мы заиндексируем двоично-рациональными числа из [0,1].

- 1. $U_1 = X \subset B$
- $2.\ U_0$ должно быть следующим $A\subset U_0\subset \overline{U}_0$ (используем нормальность) $\subset U_1$ $3.\ U_{\frac{1}{2}}$ должно выполняться $\overline{U}_0\subset U_{\frac{1}{2}}\subset \overline{U}_{\frac{1}{2}}\subset U_1$, существование такого множества следует из нормальности, примененной к дополнениям U_0 и U_1 .
 - $4.\ U_{\frac{1}{4}}:\overline{U}_{0}\subset U_{\frac{1}{4}}\subset \overline{U}_{\frac{1}{4}}\subset U_{\frac{1}{2}}\ \text{if}\ U_{\frac{3}{4}}:\overline{U}_{\frac{1}{2}}\subset U_{\frac{3}{4}}\subset \overline{U}_{\frac{3}{4}}\subset U_{1}$
 - 5. индуктивный переход. Берем $q=\frac{2k+1}{2^n}$. Рассмотрим соседние с q столбики они будут иметь вид $\frac{k}{2^{n-1}}$ и $\frac{k+1}{2^{n-1}}$.

$$\overline{U}_{\frac{k}{2^{n-1}}} \subset U_q \subset \overline{U}_q \subset U_{\frac{k+1}{2^{n-1}}}$$

Пострили системс открытых множеств. Это система множеств $\{U_q\}$ обладает свойством упорядоченности, т.е. если $q < r \in S$, то $\overline{U}_q \subset U_r$. Теперь определим функцию F.

$$F(x) = \begin{cases} \inf \{q : x \in U_q\}, & x \notin B \\ 1, & x \in B \end{cases}$$

Очевидно выполнение требований для множеств А и В. Проверим непрерывность. Достаточно проверить, что $F^{-1}(O_lpha)$ - открыт, где O_lpha - элемент базы топологии отрезка. Можно это доказать только для [0,a),(b,0], т.к. остальные элементы топологии можно получить из этих двух.

Рассмотрим $x \in F^{-1}([0,a)) \Leftrightarrow F(x) < a \Leftrightarrow \inf \{q : x \in U_q\} < a \Leftrightarrow \exists \widetilde{q} < a, \text{ тогда } F^{-1}([0,a)) = \bigcup_{\widetilde{q} < a} U_{\widetilde{q}} \text{ - открыто.}$ Рассмотрим F, заданную другим образом

$$F(x) = \begin{cases} \sup \{r : x \notin U_r\}, & x \notin B\\ 1, & x \in B \end{cases}$$

 $\sup\{r:x\notin U_r\}=\sup\{r:x\notin \overline{U}_r\}=\sup\{r:x\in X\setminus \overline{U}_r$ это множество открыто $\}$ Далее аналогично первому случаю.

Иллюстрация:

Пример 6.1 (Нормального, но не метризуемого пространства).

6.2 Взаимоотношение компактности и нормальности

Замечание 6.1 (характеризация хаусдорфово пространства). Пусть X - хаусдорфово \Leftrightarrow для каждых $x \neq y$ сущеcmeyem $O(x): y \notin O(x)$

Доказательство. (\Leftarrow) : $y \notin \overline{O}(x) \Leftrightarrow y \in X \setminus \overline{O}(x)$ - открыто, тогда существует окрестность O(y): $O(y) \cap \overline{O}(x) = \emptyset$, тогда $O(y) \cap \overline{O}(x) = \emptyset.$

(⇒): от противного

Утверждение 6.3. Замкнутое подмножество компакта - компактно

Доказательство. Очевидно.

Лемма 6.4. В хаусдорфовом топологическом пространстве X компактное подмножество F является замкнутым.

Доказательство. Очевидно. Задача 6.1. $\overline{A \cup B} = \overline{A} \cup \overline{B}$

Повторение из прошлой лекции.

Лемма 7.1 (Лемма Урысона). X - нормальное пространство, A, B - замкнутные непересекающиеся подмножества X. Тогда существует непрерывная функция $f: X \to [0,1]$: $f(A) = \{0\}$, $f(B) = \{1\}$.

7.1 Разбиение единицы

Лемма 7.2 (об ужатии). X - нормальное пространство с конечным покрытием, то есть $X \subset \bigcup_{i=1}^N U_i$, где U_i - открытое множество. Тогда существует набор открытых $V_i, i=1,\ldots,N$, таких что $\overline{V}_i \subset U_i, i=1,\ldots,N$ и $X \subset \bigcup V_i$.

Доказательство (последовательное). Основание k=1, имеем U_1 . Рассмотрим

$$X \setminus (U_2 \cup \dots U_N) = A$$

Видно, что B - замкнуто. Очевидно, что $A \subset U_1$.

Аналогично доказательству лемме Урысона, будет существовать O(A) причем $\overline{O}(A) \subset U_1$, обозначим $V_1 = O(A)$. Докажем, что $V_1 \cup U_2 \cup \ldots U_N$ - покрытие X. Если x лежит в объед U_i , $i \geq 2$, то он лежит в $V_1 \cup U_2 \cup \ldots U_N$. Если x лежит в $X \setminus (U_2 \cup \ldots U_N) = A \subset V_1$, тогда выполеняется тоже самое.

Рассмотрим $1 \ge k < N$. Пусть построены $V_1, ..., V_k, U_{k+1}, ... U_N$.

$$A' = X \setminus V_1 \cup \dots V_k \cup U_{k+1} \cup \dots U_N$$

Слоедовательно мы можем продолжить k до N.

Задача 7.1. Подробно расписать доказательство выше.

Определение 7.1. Пусть $f: X \to \mathbb{R}$. Носитель функции f (обозн suppf) = $\{x \in X: f(x) \neq 0\}$.

Определение 7.2. Пусть X - топологическое пространство, U_1, \ldots, U_N - конечное покрытие, тогда набор непрерывных функций $f_i: X \to \mathbb{R}, \ i=1,\ldots,N$ называется разбиением единицы подчиненное покрытию U_1,\ldots,U_N , если выполненые два условия:

- 1. $supp f_i = \overline{V}_i \subset U_i$
- 2. $\sum_{i=1}^{N} f_i = 1$ на X

Теорема 7.3 (о разбиении единицы). Пусть X - нормальное пространство, U_1, \ldots, U_N - конечное покрытие, тогда сущесьтует разбиение единицы, подчиненное покрытию U_1, \ldots, U_N .

Доказательство.

По лемме об ужатии, в U_i можно вписать V_i такое, что $\overline{V}_i \subset U_i$. По лемме Урысона для $A = \overline{V}_i, B = X \setminus U_i$, будет существовать непрерывная функция $\varphi_i : [0,1] \to \mathbb{R}$ такая, что $\varphi_i(A) = \{1\}$ и $\varphi_i(B) = \{0\}$, то есть $\varphi_i = 1$ на A и $\varphi_i = 0$ вне A. Рассмотрим функцию f_i определенную следующим образом

$$f_i = \frac{\varphi_i}{\sum_{i=1}^N \varphi_i}$$

Причем $supp f_i$ зависит от φ_i , то есть $supp f_i = supp \varphi_i = \overline{V}_i$

Задача 7.2. Если f - непрерывное отображение, то suppf - замкнутое.

Определение 7.3. А назвается всюду плотным в топологическом пространстве X, если $\overline{A} = X$.

Определение 7.4. А называется нигде не плотным, если ($int\overline{A}=\emptyset$ - другое определение) для каждого непустого открытого U существует открытое $V\subset U$ такое, что $V\cap U=\emptyset$.

Определение 7.5. X - сепарабельно, если в нем существует счетное всюду плотное множество в нем.

Пример 7.1 (Канторово множество). Если $x = \sum_{i=1}^{\infty} \frac{a_i}{3^i}$, где $a_i = 0, 2$, то это элемент Канторово множества. Можно рассмотреть $f(\sum_{i=1}^{\infty} \frac{a_i}{3^i}) = \sum_{i=1}^{\infty} \frac{\widetilde{a}_i}{3^i}$, $\widetilde{a}_i = 1$, если $a_i = 2$, u $\widetilde{a}_i = 0$, если $a_i = 0$.

Задача 7.3. Доказать, что Канторово множество совершенно и доказать непрерывность функции выше.

Определение 7.6. X - совершенное, если не содержить изолированных точек.

Теорема 7.4 (Кривая Пеано). Существует непрерывная кривая из отрезка в произведение двух отрезков, т.е. функция $f: I \to I \times I$, где I = [0,1]

8.1 Кривые Пеано

Определение 8.1. Кривая $\gamma:[0,1] \to X$ - кривая, если γ - непрерывное отображение. Кривая Пеано - непрерывное отображение отрезка [0,1] на $[0,1]^2$.

Замечание 8.1. Гильберт разделил квадрат на 4 части, потом каждую часть также делил на 4. Пеано на 9.

На картинке можно посмотреть в Федорчуке.

Доказательство. Докажем простроив заполнение кривой равнобедренного треугольника.

Пусть Δ - прямоугольний равнобедренный треугольник и I = [0,1]. На каждом шаге будем разбивать треугольник и отрезок. На n-ом шаге будет будем иметь 2^n треугольников и отрезок, разбитый на столько же частей. Будем занумеровывать треугольники и части отрезка двоичным кодом.

Будем иметь следующую нумерацию: $\Delta_{i_1...i_n}$ и $I_{i_1...i_n}$. Определим соседние элементы как элементы, у которых есть общая сторона(для разбиения треугольников), общая точка(для разбиения отрезка). Так же мы имеем цепочку вложенных отрезков(треугльников).

$$I_{i_1} \supset I_{i_1 i_2} \supset I_{i_1 i_2 i_3} \supset \dots$$

 $\Delta_{i_1} \supset \Delta_{i_1 i_2} \supset \Delta_{i_1 i_2 i_3} \supset \dots$

Эти цепочки имеют строго убывающий размер.

Из элементарных геометрических соображений можно получить значение диаметров этих множеств.

$$diam(I_{i_1 i_2 \dots i_n}) = \left(\frac{1}{2}\right)^n$$

$$diam(\Delta_{i_1...i_n}) = \frac{1}{(\sqrt{2})^{n-1}}$$

Очевидно, что все эти подмножества компакты(т.к. замкнутые и ограниченные подмножества полного метрического пространства).

Замечание 8.2. Рассказ про игру.

Определим отображение $f: I \to I \times I$.

1) Рассмотрим $t \in I = [0, 1]$. Для t будет существовать последовательность убывающий отрезков

$$t \in I_{i_1} \supset I_{i_1 i_2} \supset I_{i_1 i_2 i_3} \supset \dots$$

T.к. t может лежать на границе отрезков, то последовательность определенна неоднозначно. Возьмем последовательность треугольников с теми же индексами. Это будет последовательность вложенные компактов, причем дивметр этого множества стремится к 0. T.о. пересечение этих треугольников будет состоять из одной точки, эту единственную точку обозначим за f(t).

У этого рассуждения есть недостаток, t может принадлежать двум множествам $I_{i_1...i_n}$ и $I_{j_1...j_n}$. но в этом случае может объядинить эти два множества и получить $J_{i_1...i_n}$, также определим множество $P_n(t) = \{\}$. (если t - хорошее, то $P_n(t) = \Delta_{i_1...i_n}$, если t - плохое, то $P_n(t) =$ объединению двух соседних треугольников).

Получим еще одну последовательность компактов:

$$P_1(t) \supset P_2(t) \supset \dots$$

Утверждение 8.1.

$$diam P_n \le \frac{1}{(\sqrt{2}^{n-2})}$$

Опять получили последовательность вложенных компактов..

Докажем, что f - сюръективно. Рассмотрим точку x_0 из треугольника. Точка будет лежать в определнном последовательность "разрезанных" треугольников. Рассмотрим последовательность подотрезков с теми же индексами, у этой последовательности будет одной общая точка. Остается доказать, что это точка - прообраз точки x_0 . Это верно, т.к. иначе бы образы этих точек лежали бы в разных треугольниках.

Докажем, что f - непрерывно. - Очевидно.

Определение 8.2. $f_n: X \to \mathbb{R}$ - последовательность функций.

 $f_n \rightrightarrows 1$, если для каждого $\varepsilon > 0$ сущесьтует $N \in \mathbb{N}$ такое что для каждого $m \geq N$ для каждого $x \in X$ выполняется $|f_n(x) - f(x)| < \varepsilon$

Теорема 8.2. Предел равномерно сходящийся функций непрерывен.

9 Лекция 9

Задача 9.1. Непрерывное отображение (гомеоморфизм) треугольника на квадрат. $f: \Delta \to I \times I$

$$f(x,y) = \begin{cases} (x+y, x+y), & x > y \\ (2x, 2x), & x = y = (x + \min(x, y), x + \min(x, y)) \\ (x+y, x+y), & x < y \end{cases}$$

9.1 Теорема Титца о продолжении непрерывной функции

Теорема 9.1 (Титца о продолжении непрерывной функции). Пусть X - нормальное топологическое пространство. $F \subset X$ - замкнутое подмножество. $\varphi : F \to \mathbb{R}$ - непрерывная ограниченная (т.е. $\|\varphi\| = \sup_{x \in F} |\varphi(x)| < \infty$) функция. Тогда существует $\Phi : X \to \mathbb{R}$ - непрерывное продолжение функции φ , которое сохраняет норму $\|\Phi\| = \sup_{y \in X} |\Phi(y)| = \|\varphi\|$

Доказательство. Будем строить две последовательности функций.

- 1. $\Phi_n: X \to \mathbb{R}$
- 2. $\varphi_n: F \to \mathbb{R}$

Замечание 9.1. Пусть $f_n(x): Y \to \mathbb{R}$ - фундаментальная последовательность, тогда существует $f(y) = \lim_{n \to \infty} f_n(y)$ **Задача 9.2.** Доказать, что фундаментальная последовательность равномерно сходится.

Алгоритм построения последовательностей.

1. $\varphi_0 = \varphi$, так как φ - ограниченная функция, то выполняется $\|\varphi\| = \|\varphi_0\| = M_0 < +\infty$ Определим два замкнутых множества в X

$$A_0 = \left\{ x \in F : \varphi(x) = \varphi_0(x) \le -\frac{M_0}{3} \right\}$$

$$B_0 = \left\{ x \in F : \varphi(x) = \varphi_0(x) \ge \frac{M_0}{3} \right\}$$

Очевидно, что эти множества являются замкнутыми и непересек.

Применим лемму Урысона к отрезку $\left[-\frac{M_0}{3}, \frac{M_0}{3}\right]$, получим функцию $\Phi_0(x)$, которая на A_0 тождественна $-\frac{M_0}{3}$, на B_0 тождественна $\frac{M_0}{3}$.

Рассмотрим "номру" функции Φ_0 : $\|\Phi_0\| \leq \frac{M_0}{3}$.

- 2. определим функции $\varphi_1 = \varphi_0 \Phi_0$ на множестве F. Эта функция непрерывна. Рассмотрим норму введеной функции на 3-ех участках.
 - (a) $\varphi_0 \geq \frac{M_0}{3}$; $\Phi_0 = \frac{M_0}{3}$
 - (b) $-\frac{M_0}{3} \le \varphi_0 \le \frac{M_0}{3}; -\frac{M_0}{3} \le \Phi_0 \le \frac{M_0}{3}$
 - (c) $\varphi_0 \le -\frac{M_0}{3}$; $\Phi_0 = -\frac{M_0}{3}$

Из этих неравенств видно, что

$$\|\varphi_1\| \le \frac{2M_0}{3}$$

3. Примени тоже построение, что и в предыдущем пункте, счетное число раз и получим две последовательности функций.

Таким образом получили, что

 $\varphi_{n+1} = \varphi_n - \Phi_n$ на множестве F

И

$$\|\Phi_{n+1}\| \le \frac{M_0}{3}$$
 $\|\varphi_{n+1}\| \le \frac{2M_0}{3}$ (1)

Следовательно

$$\|\Phi_{n+1}\| \le \frac{1}{3} \left(\frac{2}{3}\right)^{n-1} M_0$$
 $\|\varphi_{n+1}\| \le \left(\frac{2}{3}\right)^n M_0$ (2)

Рассмотрим ряд $\sum_{i=0}^{\infty} \Phi_i$. Докажем, что последовательность частичных сумм $S_n = \sum_{i=0}^n \Phi_i$ будет фундаментольной.

$$||S_n - S_m|| = ||S_{m+1} + \ldots + S_n|| \le \sum_{i=0}^{\infty} |\Phi_i| \le \frac{M_0}{3} \left(\frac{2}{3}\right)^{n+1} \sum_{l=0}^{\infty} \left(\frac{2}{3}\right)^l = M_0 \left(\frac{2}{3}\right)^{n+1} < \varepsilon$$

Таким образом она сходится и $S_n \rightrightarrows \Phi$

Докажем, что Φ совпадает с φ на F.

$$\left\| \varphi - \sum_{i=0}^{n} \Phi_i \right\| = \left\| \varphi_{n+1} \right\| \le \left(\frac{2}{3} \right)^n M_0$$

Припредельном переходе получим $\varphi = \Phi$ на множестве F.