方差分析 ANOVA: ANalysis Of VAriance

什么是方差分析

t检验 vs 方差分析

· t检验

- 两组均值的比较
- H_0 : $\mu_1 = \mu_2$
- H_A: µ₁ ≠ µ₂

・方差分析

- 三组或以上均值的比较
- H_0 : $\mu_1 = \mu_2 = ... = \mu_k$
- H_A: μ₁, μ₂, ..., μ_k不全相等

数值变量: response/dependent variable (DV)

数值变量 (DV)

成绩	教学法	← 分类变量/因素(>2个水	〈平; IV)
90	А		
82	А	一 水平1/组1/条件1; µ ₁	
92	Α		One-wa
79	В		
88	B	一水平2/组2/条件2; µ2	• H ₀ : μ
95	В		• H _A : μ
97	410		7
100	C	► 水平3/组3/条件3; µ ₃	
88	FIC		

- One-way ANOVA
 H₀: μ₁ = μ₂ = μ₃
 H_A: μ₁, μ₂, μ₃
 不全相等

数值变量 (DV) 分类变量/因素(≥ 2个水平; IV) /

▼	*		146		
成绩	教学法	奖励	← 分类变量/因素(≥	≥ 2个水平; I\	/)
90	А	是	— 织1/冬件1· //		
82	А	是			
92	A	否,	ー 49.1冬件2· 11。	_	
79	A	否	一组2/末件2, μ_2		
88	B	是沙	一组2/久/42.7	ANOVA	
95	В	是	□ 组3/余件3, µ3		
97	B	否	一组//冬///		
100	В	否 .	山 组4/宋十4, <i>µ</i> 4		
	90 82 92 79 88 95 97	90 A 82 A 92 A 79 A 88 B 95 B 97 B	90 A 是 是 92 A 否 A 不	90 A 是	90 A 是

方差分析的核心

自变量引起的变化 (可以解释的变化) 总变化 其他因素引起的变化 (无法解释的变化) 自变量引起的变化 (可以解释的变化)

其他因素引起的变化 (无法解释的变化)

方差分析的核心

自变量引起的变化 (可以解释的变化)

其他因素引起的变化 (无法解释的变化)

One-way ANOVA

- 一个因变量和一个自变量(包含3个或更多个水平)
- H_0 : $\mu_1 = \mu_2 = ... = \mu_k$ (k = #groups or #levels or #conditions)
- H_A: μ₁, μ₂, ..., μ_k 不全相等

单因素方差分析的前提条件

- 独立性: (1) 组内独立(随机抽样/分配; 样本容量 < 10%总体容量);(2) 组间独立(非配对)
- 正态性: 各组总体服从正态分布
 - 样本容量较大(每组样本容量 ≥ 10)时, 如果一定程度上违反了 正态性, 仍可以使用ANOVA
 - 样本容量较小时, 如果违反了正态性, 则应使用非参数方法进行 分析

单因素方差分析的前提条件

- 方差齐性: 各组总体的方差相等
 - · 各组样本的样本容量相等时, 如果一定程度上违反了方差齐性, 仍可以使用ANOVA
 - · 各组样本的样本容量不相等时, 如果最大的样本标准差与最小的 样本标准差之比不超过2, 仍可以使用ANOVA

教学法			
Α	В	С	
77	74	93	
88	88	94	
77	77	95	
85	93	83	
81	91	94	
72	95	94	
80	85	85	
80	88	91	
76	93	90	
84	79	96	

- 因变量(DV): 数学成绩
- · 自变量(IV): 教学法
- H_0 : $\mu_1 = \mu_2 = \mu_3$ (k = 3)
- H_A: μ₁, μ₂, μ₃不全相等
- ·满足独立性,正态性,方差齐性
- 样本容量: n₁ = n₂ = n₃ = 10; n = 30

教学法			
Α	В	С	
77	74	93	
88	88	94	
77	77	95	
85	93	83	
81	91	94	
72	95	94	
80	85	85	
80	88	91	
76	93	90	
84	79	96	

教学法				
Α	В	С		
77	74	93		
88	88	94		
77	77	95		
85	93	83		
81	91	94		
72	95	94		
80	85	85		
80	88	91		
76	93	90		
84	79	96		

自变量引起的变化 (可以解释的变化)

其他因素引起的变化 (无法解释的变化)

教学法			
Α	В	С	
77	74	93	
88	88	94	
77	77	95	
85	93	83	
81	91	94	
72	95	94	
80	85	85	
80	88	91	
76	93	90	
84	79	96	

• A组, B组, C组数学成绩的平均

$$\bar{y}_j = \frac{1}{n_j} \sum_{i=1}^{n_j} y_{ij}$$
 $\overline{y}_1 = 80$ $\bar{y}_2 = 86.3$ $\bar{y}_3 = 91.5$

• 数学成绩的总平均

$$\bar{y} = \frac{1}{n} \sum_{j=1}^{k} \sum_{i=1}^{n_j} y_{ij} = \frac{1}{n} \sum_{j=1}^{k} n_j \times \bar{y}_j \qquad n = \sum_{j=1}^{k} n_j$$

教学法			
Α	В	С	
77	74	93	
88	88	94	
77	77	95	
85	93	83	
81	91	94	
72	95	94	
80	85	85	
80	88	91	
76	93	90	
84	79	96	

• 数学成绩的总变化(总偏差平方和/总变差)

$$SST = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (y_{ij} - \bar{y})^2$$

Sum of Squares Total SS_{Total}

$$SST = (77 - 85.9)^2 + ... + (96 - 85.9)^2 = 1523.9$$

教学法			
Α	В	С	
77	74	93	
88	88	94	
77	77	95	
85	93	83	
81	91	94	
72	95	94	
80	85	85	
80	88	91	
76	93	90	
84	79	96	

• 自变量引起的变化(组间变化/效应平方和)

$$SSG = \sum_{j=1}^{k} n_j (\bar{y}_j - \bar{y})^2$$

Sum of Squares Group

 $SS_{Between-groups}$ SS_{Effect}

$$SSG = 10 \times (80 - 85.9)^{2} + 10 \times (86.3 - 85.9)^{2} + 10 \times (91.5 - 85.9)^{2}$$
$$= 663.3$$

教学法			
Α	В	С	
77	74	93	
88	88	94	
77	77	95	
85	93	83	
81	91	94	
72	95	94	
80	85	85	
80	88	91	
76	93	90	
84	79	96	

• 其他因素引起的变化(组内变化/误差平方和)

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_j)^2$$

Sum of Squares Error

 $SS_{Within-groups}$ SS_{Error}

$$SSE = 860.6$$

教学法			
Α	В	С	
77	74	93	
88	88	94	
77	77	95	
85	93	83	
81	91	94	
72	95	94	
80	85	85	
80	88	91	
76	93	90	
84	79	96	

其他因素引起的变化 (无法解释的变化)

$$SST = SSG + SSE$$
 $SSE = 860.6$

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_j} (y_{ij} - \bar{y})^2 = \sum_{j=1}^{k} \sum_{i=1}^{n_j} [(y_{ij} - \bar{y}_j) + (\bar{y}_j - \bar{y})]^2$$

教学法			
Α	В	С	
77	74	93	
88	88	94	
77	77	95	
85	93	83	
81	91	94	
72	95	94	
80	85	85	
80	88	91	
76	93	90	
84	79	96	

自变量引起的变化 (可以解释的变化)

其他因素引起的变化 (无法解释的变化)

样本方差 =
$$\frac{\sum_{i=1}^{n}(X_i - \bar{X})^2}{n-1}$$

$$\frac{SSG}{SSE}$$

教学法			
Α	В	С	
77	74	93	
88	88	94	
77	77	95	
85	93	83	
81	91	94	
72	95	94	
80	85	85	
80	88	91	
76	93	90	
84	79	96	

样本方差 =
$$\frac{\sum_{i=1}^{n}(X_i - \bar{X})^2}{n-1}$$

$$MSG = \frac{SSG}{df_G} = \frac{\sum_{j=1}^{k} n_j (\bar{y}_j - \bar{y})^2}{k - 1} = \frac{663.3}{3 - 1} = 331.7$$

$$MSE = \frac{SSE}{df_E} = \frac{\sum_{j=1}^{k} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_j)^2}{n - k} = \frac{860.6}{30 - 3} = 31.9$$

自变量引起的变化 (可以解释的变化)

其他因素引起的变化 (无法解释的变化)

$$= \frac{MSG}{MSE} = \frac{331.7}{31.9} = 10.4 \qquad \frac{MSG}{MSE} \sim F(df_G, df_E)$$

$$\frac{{S_1}^2/{S_2}^2}{{\sigma_1}^2/{\sigma_2}^2} \sim F(n_1 - 1, n_2 - 1)$$

$$\frac{MSG}{MSE} \sim F(2, 27)$$

$$\frac{MSG}{MSE} = \frac{331.7}{31.9} = 10.4$$

方差分析表

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Group	2	663.3	331.7	10.4	0.0004
Residuals	27	860.6	31.9	_	
***	+ MX FF				

多重比较 Multiple Comparisons

教学法					
Α	В	С			
77	74	93			
88	88	94			
77	77	95			
85	93	83			
81	91	94			
72	95	94			
80	85	85			
80	88	91			
76	93	90			
84	79	96			

拒绝 $H_0 \longrightarrow \mu_1, \mu_2, \mu_3$ 不全相等

多重比较

k*(k-1)/2 = 3次t检验

- H_0 : $\mu_1 = \mu_2$
- H_A : $\mu_1 \neq \mu_2$

P(拒绝 H₀ I H₀ 为真)

$$= \alpha = 0.05$$

- H_0 : $\mu_1 = \mu_3$
- H_A : $\mu_1 \neq \mu_3$

P(拒绝 H₀ I H₀ 为真)

$$= \alpha = 0.05$$

- H_0 : $\mu_2 = \mu_3$
- H_A : $\mu_2 \neq \mu_3$

P(拒绝 H₀ I H₀ 为真)

$$= \alpha = 0.05$$

P(type 1 error) ≈ a x t检验次数 = 0.15

post-hoc comparisons

多重比较

k*(k-1)/2 = 3次t检验

- H_0 : $\mu_1 = \mu_2$
- H_A : $\mu_1 \neq \mu_2$
 - 1

P(拒绝 H₀ I H₀ 为真)

$$= \alpha^* = 0.05/3 = 0.017$$

- H_0 : $\mu_1 = \mu_3$
- H_A : $\mu_1 \neq \mu_3$

P(拒绝 Ho I Ho 为真)

$$= \alpha^* = 0.05/3 = 0.017$$

- H_0 : $\mu_2 = \mu_3$
- H_A : $\mu_2 \neq \mu_3$

P(拒绝 Ho I Ho 为真)

$$= \alpha^* = 0.05/3 = 0.017$$

Bonferroni correction: a* = a/比较次数 = a/(k*(k-1)/2)

post-hoc t检验

· 方差未知且相等的情况下,对两个总体均值差的检验

post-hoc t检验

- 方差未知且相等的情况下, 对两个总体均值差的检验
 - H_0 : $\mu_1 = \mu_2$ H_A : $\mu_1 \neq \mu_2$

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{MSE}{n_1} + \frac{MSE}{n_2}}} \sim t(df_E) = t(27)$$

post-hoc t检验

•
$$H_0$$
: $\mu_1 = \mu_3$ • H_A : $\mu_1 \neq \mu_3$

$$\frac{(80-91.5)-0}{\sqrt{\frac{31.9}{10}+\frac{31.9}{10}}} = -4.55 \quad \longrightarrow \quad p = 2 \times 5.1e-5 = 0.0001 < \alpha^* \text{ } 12.46 +$$

•
$$H_0$$
: $\mu_2 = \mu_3$ • H_A : $\mu_2 \neq \mu_3$

$$\frac{(86.3 - 91.5) - 0}{\sqrt{\frac{31.9}{10} + \frac{31.9}{10}}}$$
 = -2.06 → p = 2 x 0.025 = 0.05 > α* 接受H₀

编程实现单因素方差分析

一型素方差分的。 Two-way ANOVA

双因素方差分析

- 包含两个因素,每个因素包含2个或更多个水平
- 三组假设
 - H₀₁: 第一个因素各水平的效应都为0
 - HA1: 第一个因素各水平的效应不全为0
 - H₀₂: 第二个因素各水平的效应都为0
 - HA2: 第二个因素各水平的效应不全为0
 - · H₀₃: 二个因素交互效应都为0
 - HA3: 二个因素交互效应不全为0

双因素方差分析的前提条件

- 独立性: (1) 组内独立(随机抽样/分配; 样本容量 < 10%总体容量);(2) 组间独立(非配对)
- 正态性: 各组总体服从正态分布
 - 样本容量较大(每组样本容量 ≥ 10)时, 如果一定程度上违反了 正态性, 仍可以使用ANOVA
 - 样本容量较小时,如果违反了正态性,则应使用非参数方法进行 分析

双因素方差分析的前提条件

- 方差齐性: 各组总体的方差相等
 - · 各组样本的样本容量相等时, 如果一定程度上违反了方差齐性, 仍可以使用ANOVA
 - · 各组样本的样本容量不相等时,如果最大的样本标准差与最小的样本标准差之比不超过2,仍可以使用ANOVA

Α		В	}
N	Υ	N	Υ
77	96	93	74
88	87	94	88
77	94	95	77
85	90	83	93
81	80	94	91
72	99	94	95
80	100	85	85
80	87	91	88
76	96	90	93
84	95	96	79

- 因变量(DV): 数学成绩
- 自变量(IV): 教学法(r = 2); 奖励(s = 2)
- •满足独立性,正态性,方差齐性
- 样本容量: n_{AN} = n_{AY} = n_{BN} = n_{BY} =10; n = 40

Α		В	}
N	Υ	N	Υ
77	96	93	74
88	87	94	88
77	94	95	77
85	90	83	93
81	80	94	91
72	99	94	95
80	100	85	85
80	87	91	88
76	96	90	93
84	95	96	79

$$y_{ijk}; i = 1,2,...,r; j = 1,2,...,s; k = 1,2,...,n_{ij}$$

• AN, AY, BN, BY数学成绩的平均

$$\bar{y}_{AN} = \bar{y}_{11} = 80.0$$

$$\bar{y}_{AY} = \bar{y}_{12} = 92.4$$

$$\bar{y}_{BN} = \bar{y}_{21} = 91.5$$

$$\bar{y}_{BY} = \bar{y}_{22} = 86.3$$

Α		В	}
N	Υ	N	Υ
77	96	93	74
88	87	94	88
77	94	95	77
85	90	83	93
81	80	94	91
72	99	94	95
80	100	85	85
80	87	91	88
76	96	90	93
84	95	96	79

• 数学成绩的总平均

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{s} n_{ij} \times \bar{y}_{ij} \qquad n = \sum_{i=1}^{r} \sum_{j=1}^{s} n_{ij}$$

$$\bar{y} = \frac{10 * 80 + 10 * 92.4 + 10 * 91.5 + 10 * 86.3}{10 + 10 + 10 + 10}$$
$$= 87.55$$

Α		В	}
N	Υ	N	Υ
77	96	93	74
88	87	94	88
77	94	95	77
85	90	83	93
81	80	94	91
72	99	94	95
80	100	85	85
80	87	91	88
76	96	90	93
84	95	96	79

• A, B的平均

$$\bar{y}_{i.} = \frac{1}{\sum_{j=1}^{s} n_{ij}} \sum_{j=1}^{s} n_{ij} \times \bar{y}_{ij}$$

$$\bar{y}_{A.} = \bar{y}_{1.} = \frac{10 * 80 + 10 * 92.4}{10 + 10} = 86.2$$

$$\bar{y}_{B.} = \bar{y}_{2.} = \frac{10 * 91.5 + 10 * 86.3}{10 + 10} = 88.9$$

Α		В	
N	Υ	N	Υ
77	96	93	74
88	87	94	88
77	94	95	77
85	90	83	93
81	80	94	91
72	99	94	95
80	100	85	85
80	87	91	88
76	96	90	93
84	95	96	79

• N, Y的平均

$$\bar{y}_{.j} = \frac{1}{\sum_{i=1}^{r} n_{ij}} \sum_{i=1}^{r} n_{ij} \times \bar{y}_{ij}$$

$$\bar{y}_{.N} = \bar{y}_{.1} = \frac{10 * 80 + 10 * 91.5}{10 + 10} = 85.75$$

$$\bar{y}_{.Y} = \bar{y}_{.2} = \frac{10 * 92.4 + 10 * 86.3}{10 + 10} = 89.35$$

Α		В	}
N	Y	N	Υ
77	96	93	74
88	87	94	88
77	94	95	77
85	90	83	93
81	80	94	91
72	99	94	95
80	100	85	85
80	87	91	88
76	96	90	93
84	95	96	79

• 教学法各水平的效应 \bar{y}_{i} . \bar{y}

Α		В	}
N	Υ	N	Υ
77	96	93	74
88	87	94	88
77	94	95	77
85	90	83	93
81	80	94	91
72	99	94	95
80	100	85	85
80	87	91	88
76	96	90	93
84	95	96	79

• 教学法的假设

• H_0 : $\mu_A = \mu_B$ • H_A : $\mu_A \neq \mu_B$

等价于

- H_0 : μ_A $\mu = \mu_B$ $\mu = 0$ 当且仅当 $\mu_A = \mu_B = \mu$ 时, 总平均为 μ
 - H_A: μ_A μ, μ_B μ不全为0

Δ.	\	В	}
N	Y	N	Υ
77	96	93	74
88	87	94	88
77	94	95	77
85	90	83	93
81	80	94	91
72	99	94	95
80	100	85	85
80	87	91	88
76	96	90	93
84	95	96	79

• 奖励各水平的效应 $\bar{y}_{.j}$ - \bar{y}

Α		В	}
N	Υ	N	Υ
77	96	93	74
88	87	94	88
77	94	95	77
85	90	83	93
81	80	94	91
72	99	94	95
80	100	85	85
80	87	91	88
76	96	90	93
84	95	96	79

• 奖励的假设

• H_0 : $\mu_N = \mu_Y$ • H_A : $\mu_N \neq \mu_Y$

等价于

- H_0 : μ_N $\mu = \mu_Y$ $\mu = 0$ 当且仅当 $\mu_N = \mu_Y = \mu$ 时, 总平均为 μ
 - H_A: μ_N μ, μ_Y μ不全为0

Α		В	}
N	Υ	N	Υ
77	96	93	74
88	87	94	88
77	94	95	77
85	90	83	93
81	80	94	91
72	99	94	95
80	100	85	85
80	87	91	88
76	96	90	93
84	95	96	79

·教学法水平i与奖励水平j的交互效应

$$\bar{y}_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}$$

$$= (\bar{y}_{ij} - \bar{y}) - (\bar{y}_{i.} - \bar{y}) - (\bar{y}_{.j} - \bar{y})$$

- 教学法与奖励的交互作用的假设
 - H_0 : μ_{ij} μ_i μ_j + μ 对所有i,j的组合都为0
 - H_A: μ_{ij} μ_i μ_j + μ 对某些i,j的组合不为0

Α		В	}
N	Υ	N	Υ
77	96	93	74
88	87	94	88
77	94	95	77
85	90	83	93
81	80	94	91
72	99	94	95
80	100	85	85
80	87	91	88
76	96	90	93
84	95	96	79

Α		В	}
N	Y	N	Υ
77	96	93	74
88	87	94	88
77	94	95	77
85	90	83	93
81	80	94	91
72	99	94	95
80	100	85	85
80	87	91	88
76	96	90	93
84	95	96	79

• 数学成绩的总变化

$$SS_{Total} = \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y})^2 = 2191.9$$

Α		В		
N	Υ	N	Υ	
77	96	93	74	
88	87	94	88	
77	94 95		77	
85	90	83	93	
81	80	94	91	
72	99	94	95	
80	100	85	85	
80	87	91	88	
76	96	90	93	
84	95	96	79	

• 教学法引起的变化

$$SS_{Method} = \sum_{i=1}^{r} n_{i.} (\bar{y}_{i.} - \bar{y})^2$$

 $= 20 * (86.2 - 87.55)^{2} + 20 * (88.9 - 87.55)^{2} = 72.9$

• 奖励引起的变化

$$SS_{Reward} = \sum_{j=1}^{3} n_{.j} (\bar{y}_{.j} - \bar{y})^{2}$$

= 20 * (85.75 - 87.55)² + 20 * (89.35 - 87.55)² = 129.6

Α		В		
N	Y	N	Υ	
77	96 93		74	
88	87 94		88	
77	94	94 95		
85	90	83	93	
81	80	94	91	
72	99	94	95	
80	100	85	85	
80	87	91	88	
76	96	96 90		
84	95	96 79		

• 教学法和奖励的交互引起的变化

$$SS_{M\times R} = \sum_{i=1}^{r} \sum_{j=1}^{s} n_{ij} (\bar{y}_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y})^{2}$$

$$= 10 * (80 - 86.2 - 85.75 + 87.55)^{2}$$

$$+10 * (92.4 - 86.2 - 89.35 + 87.55)^{2}$$

$$+10 * (91.5 - 88.9 - 85.75 + 87.55)^{2}$$

$$+10 * (86.3 - 88.9 - 89.35 + 87.55)^{2}$$

$$= 193.6 * 4 = 774.4$$

Α		В		
N	Υ	N	Υ	
77	96 93		74	
88	87 94		88	
77	94	94 95		
85	90	83	93	
81	80	94	91	
72	99	94	95	
80	100	85	85	
80	87	91	88	
76	96	90	93	
84	95	96 79		

• 其他因素引起的变化

$$SS_{Error} = \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{ij})^2 = 1215.0$$

 $SS_{Total} = 1291.9$ 因变量的总变 自变量引起的变化 其他因素引起的变化 $SS_{Error} = 1215.0$ 第一个因素 第二个因素 两个因素的交 引起的变化 引起的变化 互引起的变化 $SS_{Method} = 72.9 \ SS_{Reward} = 129.6 \ SS_{M \times R} = 774.4$ $SS_{Total} = SS_{Method} + SS_{Reward} + SS_{M \times R} + SS_{Error}$

$$MS_{Method} = \frac{SS_{Method}}{r - 1} = 72.9 \longrightarrow F = \frac{72.9}{33.8} = 2.16 \sim F(1, 36)$$

$$MS_{Reward} = \frac{SS_{Reward}}{s - 1} = 129.6 \longrightarrow F = \frac{129.6}{33.8} = 3.83 \sim F(1, 36)$$

$$MS_{M\times R} = \frac{SS_{M\times R}}{(r - 1)\times(s - 1)} = 774.4 \longrightarrow F = \frac{774.4}{33.8} = 22.91 \sim F(1, 36)$$

$$MS_{Reward} = \frac{SS_{Error}}{s} = \frac{1215.0}{33.8} = 33.8$$

方差分析表

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Method	1	72.9	72.9	2.16	0.15
Reward	1 岩	129.6	129.6	3.83	0.06
Method:Reward	1 /	774.4	7774.4	22.91	2.9E-05
Residuals	36	1215.0	33.8		

- 结果
 - 教学法: 接受零假设; 说明数学成绩不受教学法的调节
 - 奖励: 接受零假设; 说明数学成绩不受奖励与否的调节
 - 教学法与奖励的交互作用: 拒绝零假设

教学法与奖励的交互作用

教学法对成绩的影响是否受奖励的调节

奖励对成绩的影响是否受教学法的调节

