PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 2013 m. birželio18 d. įsak. Nr. (6.1)-S1-14

2013 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA

Pagrindinė sesija

I dalis

1–12 uždavinių atsakymai

Užd. Nr.	1	2	3	4	5	6	7	8	9	10	11	12
Ats.	A	В	D	В	В	C	D	D	E	A	D	C

II dalis

13	4
14	40 960 m ³ (arba 40 960)
15	20
16	2
17	$(-2; 1,5) (arba \ x = -2, \ y = 1,5)$
18	$\boxed{\frac{169\sqrt{3}}{4} + 30 \left(arba \frac{169\sqrt{3} + 120}{4}, \ arba 42,25\sqrt{3} + 30 \right)}$
19	0,865
20	$2,5 \left(arba \frac{5}{2}\right)$
21	2
22	$\frac{\sqrt{2}}{2} \left(arba \ \frac{1}{\sqrt{2}} \right)$
23	6
24	3

III dalis

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
25		5	
25.1		1	
	Ats.: $a = 3$.	• 1	Už teisingą atsakymą.
25.2		2	
	$f'(x) = \cos x.$	• 1	Už teisingai apskaičiuotą išvestinę.
	$tg\alpha = f'(x_0)$; čia α – ieškomo kampo didumas; $tg\alpha = \cos \pi$; $tg\alpha = -1$. $\alpha = 135^{\circ} \left(arba \ \frac{3}{4} \pi \right)$. Ats.: 135°.	• 1	Už gautą teisingą atsakymą.
25.3		2	
20.0	1 būdas	_	
	$S = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin x + a) dx = (-\cos x + ax) \begin{vmatrix} \frac{\pi}{2} \\ -\frac{\pi}{2} \end{vmatrix} = -\frac{\pi}{2}$	• 1	Už teisingai apskaičiuotą pirmykštę funkciją.
	$=-\cos\frac{\pi}{2} + \frac{a\pi}{2} - \left(-\cos\frac{\pi}{2} - \frac{a\pi}{2}\right) = a\pi.$ Ats.: $a\pi$.	• 1	Už gautą teisingą atsakymą.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• 1	Už ieškomo ploto pakeitimą stačiakampio plotu.
	$S_x = S_{ ext{stačiakampio}} = a\pi.$ $Ats.: a\pi.$	• 1	Už gautą teisingą atsakymą.

Pastaba. Jei sprendžiant 25.3 dalį, vietoje a įrašytas skaičius 3 ar kita 25.1 dalyje nurodyta a reikšmė, tai už 25.3 dalį skiriami 2 taškai.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
26		3	
	$\sqrt{x^2 - 4x + 12} = 3;$ $x^2 - 4x + 12 = 9;$	• 1	Už teisingai pasirinktą lygties sprendimo būdą.
	$x^{2} - 4x + 3 = 0;$ $x_{1} = 1, x_{2} = 3.$	• 1	Už teisingai išspręstą kvadratinę lygtį.
	Ats.: 3.	• 1	Už gautą teisingą atsakymą.

TIXA	Enwardimes in etselermes	Tožke:	Voutinimas
Užd. 27	Sprendimas ir atsakymas	Taškai 3	Vertinimas
21	$ \begin{array}{c} I b \bar{u} das \\ 8 = \frac{1}{3} \cdot S_{ABC} \cdot 2\sqrt{3}, \end{array} $	• 1	Už teisingai pritaikytą piramidės tūrio formulę.
	$S_{ABC} = \frac{a^2 \sqrt{3}}{4} \left(arba S_{ABC} = \frac{1}{2} a^2 \sin 60^\circ \right).$ $a = 4.$	• 1	Už teisingai apskaičiuotą piramidės pagrindo kraštinės ilgį.
	$\frac{a^2\sqrt{3}}{4} = \frac{1}{2}ah \left(arba \frac{1}{2}a^2 \cdot \frac{\sqrt{3}}{2} = \frac{1}{2}ah\right),$ $h = 2\sqrt{3}.$	• 1	Už teisingai apskaičiuotą pagrindo aukštinės ilgį.
	Ats.: $2\sqrt{3}$. II būdas $8 = \frac{1}{3} \cdot S_{ABC} \cdot 2\sqrt{3},$	• 1	Už teisingai pritaikytą piramidės tūrio formulę.
	$S_{ABC} = \frac{a^2 \sqrt{3}}{4}, \ \left(arba \ S_{ABC} = \frac{1}{2} a^2 \sin 60^\circ \right),$ $\frac{a^2 \sqrt{3}}{4} = \frac{ah}{2},$ $a = \frac{2h}{\sqrt{3}};$	• 1	Už teisingą pagrindo kraštinės ilgio išraišką pagrindo aukštinės ilgiu.
	$8 = \frac{1}{3} \cdot \frac{\left(\frac{2h}{\sqrt{3}}\right)^2 \cdot \sqrt{3}}{4} \cdot 2\sqrt{3},$ $h = 2\sqrt{3}.$ $Ats.: 2\sqrt{3}.$	• 1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
28		3	
28.1		1	
	Ats.: 18.	• 1	Už teisingą atsakymą.
28.2		2	
	Įvykis A – "Iš sudarytųjų skaičių atsitiktinai paimtas skaičius yra dalus iš 3." Yra 5 skaičiai, kurie dalūs iš 3: 300, 303, 330, 333, 555.	• 1	Už teisingai nustatytą įvykiui palankių baigčių skaičių.
	$P(A) = \frac{5}{18}.$ $Ats.: \frac{5}{18}.$	• 1	Už gautą teisingą atsakymą.

Pastaba. Antrasis taškas 28.2 dalyje skiriamas ir tuo atveju, jei teisingai apskaičiuotas 28.2 pirmoje dalyje ir 28.1 dalyje rastų skaičių santykis ir jis yra mažesnis už 1.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
29		3	
	Įvykis A – "2 bilietai pirmoje eilėje ir 1 bilietas ne pirmoje eilėje". $n = C_6^3 = 20$;	• 1	Už teisingai nustatytą įvykiui A galimų baigčių skaičių.
	$m = C_4^2 \cdot C_2^1 = 12;$	• 1	Už teisingai nustatytą įvykiui A palankių baigčių skaičių.
	$P(A) = \frac{12}{20} = 0,6.$ Ats.: 0,6.	• 1	Už teisingai apskaičiuotą tikimybę.

Pastabos.

1. Už sprendimą: $\frac{4}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot 3 = \frac{3}{5}$ skiriami visi *3 taškai*.

2. Už sprendimą: $\frac{4}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} = \frac{1}{5}$ skiriamas *1 taškas*.

3. Sprendimas: $n = A_6^3 = 120$, $m = A_4^2 \cdot A_2^1 \cdot 3 = 72$, $P(A) = \frac{72}{120} = 0.6$ vertinamas 3 taškais.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
30		3	
	I sprendimo būdas	• 1	Už teisingai pritaikytą
	$S_{BCD} = \frac{1}{2} \cdot CB \cdot CD \cdot \sin \widehat{BCD} =$		formulę trikampio plotui apskaičiuoti.
	$= \frac{1}{2} \cdot CB \cdot CD \cdot \sin(180^{\circ} - \widehat{BAD}) = .$	• 1	Už teisingo ryšio tarp kampų <i>BAD</i> ir <i>BCD</i> panaudojimą.
	$= \frac{1}{2} \cdot CB \cdot CD \cdot \sin \widehat{BAD} =$ $= \frac{1}{2} AB \cdot AD \cdot \sin \widehat{BAD} = 20.$	• 1	Už gautą teisingą atsakymą.
	$= \frac{1}{2}AB \cdot AD \cdot \sin \widehat{BAD} = 20.$		
	Ats.: 20.		
	II sprendimo būdas	• 1	Už teisingai pritaikytą
	$S_{ABD} = \frac{AB \cdot AD \cdot BD}{4R} = 20$		formulę trikampio plotui apskaičiuoti.
	$R = \frac{AB \cdot AD \cdot BD}{80}$	• 1	Už spindulio išraišką.
	$S_{BCD} = \frac{BC \cdot CD \cdot BD}{4R} = \frac{BC \cdot CD \cdot BD}{4\frac{AB \cdot AD \cdot BD}{80}} = 20.$	• 1	Už gautą teisingą atsakymą.

Pastaba. Jei pasirenkama konkreti kampo *BCD* reikšmė ir gaunamas teisingas atsakymas, tai skiriamas *I taškas*.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
31		4	
	I būdas.		
	x km/h – trečiojo dviratininko greitis;		
	t – laikas (h), po kurio trečiasis dviratininkaspasivijo antrąjį;		
	t + 2 – laikas (h), po kurio trečiasis dviratininkas pasivijo pirmąjį.	• 2	Po tašką už kiekvieną
	$\begin{cases} xt - 10t = 10, \\ x(t+2) - 12 \cdot (t+2) = 24; \end{cases}$		teisingai sudarytą lygtį.
	$[x(t+2)-12\cdot(t+2)=24;$		
	$\begin{cases} x = \frac{10 + 10t}{t}, \\ 10 & (t + 1)(t + 2) \end{cases}$		
	$\begin{cases} \frac{10 \cdot (t+1)(t+2)}{t} - 12(t+2) = 24; \\ t^2 + 9t - 10 = 0; \end{cases}$	• 1	Už teisingai sudarytą lygtį su vienu nežinomuoju.
	$t_1 = -10$ (netinka), $t_2 = 1$; $x = 20$.		
	Ats.: 20 km/h.	• 1	Už gautą teisingą atsakymą.
	II būdas x km/h – trečiojo dviratininko greitis;		
	$\frac{10}{x-10}$ – laikas (h), po kurio trečiasis dviratininkas	• 1	Už teisingai sudarytą laiko, po kurio trečiasis
	pasivijo antrąjį;		dviratininkas pasivijo antrąjį, išraišką.
	$\frac{24}{x-12}$ – laikas (h), po kurio trečiasis dviratininkas	• 1	Už teisingai sudarytą laiko,
	pasivijo pirmąjį;		po kurio trečiasis dviratininkas pasivijo pirmąjį, išraišką.
	$\frac{24}{x-12} - \frac{10}{x-10} = 2;$	• 1	Už teisingai sudarytą lygtį su vienu nežinomuoju.
	$x^2 - 29x + 180 = 0;$		
	$x_1 = 9$ netinka, nes $x > 12$,		
	$x_2 = 20.$		
	Ats.: 20 km/h.	• 1	Už gautą teisingą atsakymą.

Pastaba. Jei mokinys be pagrindimo pasirenka konkrečią laiko arba kelio reikšmę ir gauna teisingą atsakymą, tai skiriamas *1 taškas*.