第四章 原根和指数

<u>计算证明</u>

- 1. 求212对模37的次数。
- 2. 求模61的最小非负完系中所有次数为4的整数。
- 3. 设 $ab \equiv 1 \pmod{m}$, 求证: $ord_m(a) = ord_m(b)$.
- 4. 设a、b、m是正整数,如果a、b分别与m互素,且满足 $(ord_m(a), ord_m(b)) = 1$,证明: $ord_m(ab) = ord_m(a) * ord_m(b)$ 。
- 5. 判断55、103的原根是否存在? 若存在则求出其最小原根。
- 6. 求出47的所有原根。
- 7. 已知2是19的原根,构造19的指数表并求解:
 - (1) $8x^4 \equiv 3 \pmod{19}$
 - (2) $5x^3 \equiv 2 \pmod{19}$
 - (3) $x^7 \equiv 1 \pmod{19}$
- 8. (1) 若 q^k 是m的原根,求证: g是m的原根。
 - (2) 若p是一个以g为原根的奇素数,求证: $ind_g(p-1)=rac{p-1}{2}$
- 9. 设p是费马数 $F_n = 2^{2^n} + 1$ 的一个素因子,求证:
 - (1) $ord_p(2) = 2^{n+1}$;
 - (2) p一定形如 $2^{n+1}k+1$ 。
 - (3) *当n>1时,p一定形如 $2^{n+2}t+1$
- 10. 求以下整数的最小原根
 - $(1) 5^2$ (2) 6

编程练习(基于C/C++)

编程实现求解最小原根并基于最小原根构造指数表,效果如下图所示。

```
Please input n(n>0): 103
The min primitive root of 103: g=5
The ind_table of 103 based on g=5 is:
         0
               1
                   2
                         3
                               4
                                          6
                                                    8
               0
    0
                   44
                         39
                              88
                                                          78
                                    1
                                         83
                                               4
                                                    30
        45
              61
                   25
                         72
                                    40
                              48
                                         74
                                               70
                                                    20
                                                          80
                   3
                         24
        89
              43
                              69
                                         14
                                               15
                                                    92
                                                          86
    3
        84
              57
                   16
                       100
                              12
                                    5
                                         64
                                               93
                                                    22
                                                          9
    4
        31
              50
                   87
                        77
                              47
                                    79
                                         68
                                               85
                                                    11
                                                          8
    5
                   58
                        97
                              59
                                    62
                                         34
                                               17
                                                    28
                                                          98
        46
    6
        26
                  101
                        82
                              60
                                         42
                                                    56
              36
                                    73
                                               13
                                                          63
                   6
        49
              67
                         33
                              35
                                         66
                                                    53
                                                          18
                                    41
                                               65
    8
              54
                   94
                              29
        75
                         38
                                    71
                                         19
                                               23
                                                    91
                                                          99
    9
        21
              76
                   10
                         96
                              27
                                    81
                                         55
                                               32
                                                    52
                                                          37
       90
             95
                   51
```

Please input n(n>0): 169 The min primitive root of 169: g=2											
The ind_table of 169 based on g=2 is:											
1110 111	0	1	2	3	4	5	6	7	8	9	
0	_	ō	$\bar{1}$	124	$\bar{2}$	9	125	107	3	92	
1	10	103	126	_	108		4	146	93	65	
$\overline{2}$	11	75	104	130	127	18	_	60	109		
3	134	21	5	71	147	116	94	151	66	_	
4	12	85	76	122	105	101	131	63	128	58	
5	19	114	_	120	61	112	110	33	41	35	
6	135	140	22	43	6	_	72	37	148	98	
7	117	137	95	51	152	142	67	54	_	24	
8	13	28	86	45	77	155	123	8	106	91	
9	102	_	132	145	64	74	129	17	59	39	
10	20	70	115	150	_	84	121	100	62	57	
11	113	119	111	32	34	139	42	_	36	97	
12	136	50	141	53	23	27	44	154	7	90	
13	_	144	73	16	38	69	149	83	99	56	
14	118	31	138	_	96	49	52	26	153	89	
15	143	15	68	82	55	30	_	48	25	88	
16	14	81	29	47	87	80	46	79	78	_	