Proof that Mixed State has Density Operator property

MohamadAli Khajeian*

Faculty of Engineering Sciences, University of Tehran, Iran

November 11, 2024

Abstract

This document presents the Proof that property of density operators holds for density operator of mixed state.

The Density Operator for a Mixed State

The density operator for the entire system is

$$\rho = \sum_{i=1}^{n} p_i \rho_i = \sum_{i=1}^{n} p_i |\psi_i\rangle\langle\psi_i| \tag{1}$$

Key Properties of a Density Operator

An operator ρ is a density operator if and only if it satisfies the following three requirements:

- The density operator is Hermitian, meaning $\rho = \rho^{\dagger}$.
- $\operatorname{Tr}(\rho) = 1$.
- ρ is a positive operator, meaning $\langle u|\rho|u\rangle \geq 0$ for any state vector $|u\rangle$.

We know that an operator is positive if and only if it is Hermitian and has nonnegative eigenvalues.

Proof

To show second property, we have

$$\operatorname{Tr}(\rho) = \operatorname{Tr}\left(\sum_{i=1}^{n} p_{i} |\psi_{i}\rangle\langle\psi_{i}|\right) = \sum_{i=1}^{n} p_{i}\operatorname{Tr}(|\psi_{i}\rangle\langle\psi_{i}|) = \sum_{i=1}^{n} p_{i}\langle\psi_{i}|\psi_{i}\rangle = \sum_{i=1}^{n} p_{i} = 1$$

^{*}khajeian@ut.ac.ir

to get this result, we made the reasonable assumption that the states are normalized so that $\langle \psi_i | \psi_i \rangle = 1$.

Now let's show that in the general case the density operator is a positive operator. We consider an arbitrary state vector $|\phi\rangle$ and consider $\langle\phi|\rho|\phi\rangle$. Using 1, we obtain

$$\langle \phi | \rho | \phi \rangle = \sum_{i=1}^{n} p_i \langle \phi | \psi_i \rangle \langle \psi_i | \phi \rangle = \sum_{i=1}^{n} p_i |\langle \phi | \psi_i \rangle|^2$$

Note that the numbers p_i are probabilities—so they all satisfy $0 \le p_i \le 1$. Recall that the inner product satisfies $|\langle \phi | \psi_i \rangle|^2 \ge 0$. Therefore we have found that $\langle \phi | \rho | \phi \rangle \ge 0$ for an arbitrary state vector $|\phi\rangle$. We conclude that ρ is a positive operator.

Since ρ is a positive operator, the first property we stated for density operators—that ρ is Hermitian—follows automatically.