

SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 71, NUMBER 1

SMITHSONIAN PHYSICAL TABLES

SEVENTH REVISED EDITION

PREPARED BY

FREDERICK E. FOWLE

AID, SMITHSONIAN ASTROPHYSICAL OBSERVATORY

(PUBLICATION 2539)

CITY OF WASHINGTON

PUBLISHED BY THE SMITHSONIAN INSTITUTION
1920

ADVERTISEMENT.

In connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and the first edition was published in 1852. Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by physicists that it seemed desirable to recast the work entirely. It was decided to publish three sets of tables, each representative of the latest knowledge in its field, and independent of one another, but forming a homogeneous series. The first of the new series, Meteorological Tables, was published in 1893, the second, Geographical Tables, in 1894, and the third, Physical Tables, in 1896. In 1909 yet another volume was added, so that the series now comprises: Smithsonian Meteorological Tables, Smithsonian Geographical Tables, Smithsonian Physical Tables, and Smithsonian Mathematical Tables.

The fourteen years which had elapsed in 1910 since the publication of the first edition of the Physical Tables, prepared by Professor Thomas Gray, had brought such changes in the material upon which the tables must be based that it became necessary to make a radical revision for the fifth and sixth revised editions published in 1910 and 1914. The latter edition was reprinted thrice. For the present seventh revision extended changes have been made with the inclusion of new data on old and new topics.

CHARLES D. WALCOTT,
Secretary of the Smithsonian Institution.

June, 1919.

PREFACE TO 7TH REVISED EDITION.

The present edition of the Smithsonian Physical Tables entails a considerable enlargement. Besides the insertion of new data in the older tables, about 170 new tables have been added. The scope of the tables has been broadened to include tables on astrophysics, meteorology, geochemistry, atomic and molecular data, colloids, photography, etc. In the earlier revisions the insertion of new matter in a way to avoid renumbering the pages resulted in a somewhat illogical sequence of tables. This we have tried to remedy in the present edition by radically rearranging the tables; the sequence is now, — mathematical, mechanical, acoustical, thermal, optical, electrical, etc.

Many suggestions and data have been received: from the Bureau of Standards, — including the revision of the magnetic, mechanical, and X-ray tables, — from the Coast and Geodetic Survey (magnetic data), the Naval Observatory, the Geophysical Laboratory, Department of Terrestrial Magnetism, etc.; from Messrs. Adams of the Mount Wilson Observatory, Adams of the Geophysical Laboratory (compressibility tables), Anderson (mechanical tables), Dellinger, Hackh, Humphreys, Mees and Lovejoy of the Eastman Kodak Co. (photographic data), Miller (acoustical data), Van Orstrand, Russell of Princeton (astronomical tables), Saunders, Wherry and Lassen (crystal indices of refraction), White, Worthing and Forsythe and others of the Nela Research Laboratory, Zahm (aeronautical tables). To all these and others we are indebted for valuable criticisms and data. We will ever be grateful for further criticisms, the notification of errors, and new data.

FREDERICK E. FOWLE.

ASTROPHYSICAL OBSERVATORY, SMITHSONIAN INSTITUTION, May, 1919.

TABLE OF CONTENTS.

Introduction: units of measurement, dimensional and conversion formulae, standards:
General discussion, xxiii; Fundamental units, xxiii; Derived units, xxiv; Conversion factors and dimensional formulae, xxv; Dimensional reasoning, xxv.
Dimensional formulae:
Fundamental standards:
Numerically different systems of units:
The standards of the International Electric Units:
Magnetic units, xlv: Table II. — The ordinary and ampere-turn units xlvi.
I. Spelling and abbreviations of common units of weight and measure
(2) Metric to customary

5.	Equivalents of metric and British imperial weights and measures:	
	(1) Metric to imperial	. 8
	(2) Multiples, metric to imperial	
	(3) Imperial to metric	. IC
	(4) Multiples, imperial to metric	. II
	MATHEMATICAL TABLES	
6	Derivatives and integrals	. 12
7· 8.	Mathematical constants	
0.	Reciprocals, squares, cubes and square roots of natural numbers	. 15
10.	Logarithms, 4-place, 1000–2000	
11.	Logarithms, 4-place.	
12.	Antilogarithms, 4-place	
13.	Antilogarithms, 4-place, 0.9000-1.0000	. 30
14.	Circular (trigonometric) functions, arguments (°, ′)	. 32
15.	" (radians)	. 37
16.		
17.	Hyperbolic functions	
18.	Factorials, 1 to 20	
19.	Exponential functions	
20.	Values of e^{x^2} and e^{-x^2} and their logarithms	
21.	$u = \frac{\pi}{x} u = \frac{\pi}{x} u = 0$. 55
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 55
22.	$e^{-\frac{x}{4}}$ $e^{-\frac{x}{4}}$	- 55
23.	" " e^x " e^{-x} " " , x fractional	
24.	Least squares: probability integral, argument hx	~
25.	.,,	
26.	values of $0.6745\sqrt{1/(n-1)}$	
27.	" o.6745 $\sqrt{1/n(n-1)}$. 58
28.	" $0.8453\sqrt{1/n(n-1)}$. 58
29.	" 0.8453 $\{1/n\sqrt{n-1}\}$. 58
30.	formulae	59
31.	Inverse probability integral, diffusion integral	. 60
32.	Logarithms of gamma function, n between 1 and 2	. 62
33.	Values for the first seven zonal harmonics, $\theta = 0^{\circ}$ to $\theta = 90^{\circ}$.	. 64
34.	Carlindwice harmonics 41 1 1 1	
35.	Cymidical narmonics, oth and 1st orders, $x = 0$ to 3.5, 6-place	. 68
	(a) 1st ten roots cylindrical harmonic of zeroth order = 0	. 68
	(b) "fifteen" " "first " = 0	. 68
	Notes, general formulae of Bessel's functions	. 68
25	Values for $\int_{-2}^{\pi} (z - \sin^2 0 - i \sin^2 0) dz$	
37.	Values for $\int_{0}^{\frac{\pi}{2}} (1 - \sin^2\theta \sin^2\Phi)^{\pm \frac{1}{2}} d\Phi$; argument θ ; also logs	. 69
38.		
39.	International atomic weights, valencies	. 70
		. 73

	CONTENTS.	vii
40.	Volume of glass vessel from weight of its volume of H ₂ O or Hg	72
41.		73
42.	Reductions of densities in air to vacuo	73
		13
	Mechanical Properties	
43.	Introduction and definitions	74
44.		75
45.		7 6
46.		76
47.	44 44 44 44 44 44	77
48.		78
49.		78
50.		78
51.		7 9
52.		
53·		79
53·		79 80
55·		80
22.	" (b) " specification values	
56.		81 81
57· 58.		82
	" wire, specification values, hard-drawn	82
59.	" " medium hard-drawn	82
60.	medium naru-drawn	83
61.	Soft of afficated	83
62.	, pares	83
63.	Copper alloys: nomenclature	83
64.	copper-zine anoys of brasses	84
	copper-tin bronzes	84
65.	three of more metals	85
66.		88
67.	" metals: tungsten; zinc; white metal	89
68.	Cement and concrete: (a) cement	90
	" (b) cement and cement mortars	90
	" " (c) concrete	91
59.	Stone and clay products: (a) American building stones	92
	" " (b) Bavarian building stones	92
	" " (c) American building bricks	93
	" " (d) brick piers, terra-cotta piers	93
	" " (e) various bricks	93
70.	(a) Sheet rubber	94
	(b) Leather belting	94
7I.	Manilla rope	95
72.	Woods: hardwoods, metric units	96
73.	" conifers, metric units	07

viii CONTENTS.

74.	Woods: hardwoods, English units	98								
75.	" conifers, English units	99								
	Rigidity Modulus	100								
77-	Variation of moduli of rigidity with the temperature									
78.	Interior friction, variation with the temperature									
79.	Hardness									
80.	Relative hardness of the elements	IOI								
81.	Poisson's ratio	IOI								
82.	Elastic moduli of crystals, formulae	102								
83.	" " " numerical results	103								
	Compressibility of Gases									
84.	Compressibility of O, air, N, H, different pressures and temperatures .	104								
85.	" " ethylene at " " " " " " .	104								
86.	Relative gas volumes at various pressures, H, N, air, O, CO ₂	104								
87.	Compressibility of carbon dioxide, pressure-temperature variation	105								
88.	" gases, values of	105								
89.	" air and oxygen between 18° and 22° C	105								
90.	Relation between pressure, temperature and volume of sulphur dioxide	106								
91.	" " ammonia	106								
92.	Compressibility of liquids	107								
93.	" solids	108								
	Densities									
94	Specific gravities corresponding to the Baumé scale	109								
	Densities of the solid and liquid elements	110								
96.		112								
97.		113								
98.		114								
99.		115								
100.		115								
101.	WWY I T . I	116								
102.		116								
103.		117								
104.		118								
105.	Relative volume of water between o° and 40° C	119								
106.	Density and volume of water, -10° to 250° C	120								
107.		121								
	Density of aqueous solutions of salts, bases and acids	122								
109.		124								
IIO.		126								
III.	" "	127								
II2.	WY 1	127								
	(a) for values of t between o° and 10° C by 0.1° steps	128								
	(b) " " " " -90° and +1990° C by 10° steps	120								

ix

	(c) logarithms for t between -49° and 399° C by 1° steps	130
		132
113.		133
114.	" " " $\log h/760$, h from 80 to 800	133
115.	" " o.378e in equation $h = B - 0.378e$	135
		135
117.	Pressure of mercury and water columns	136
	Dunasanara Tanana	
0	BAROMETRIC TABLES	
	Reduction of barometer to standard temperature	137
119.	gravity, in and inin, attitude term	138
I 20.	marade 45, 0 to 45, 11111	139
121.	45 to 90, 111111	140
122.	o to 45, inches	141
123.	45 to 90 , menes	142
		143
	· · · · · · · · · · · · · · · · · · ·	143
126.	Barometric pressure corresponding to the boiling point of water:	
		144
	· ·	144
127.	Determination of heights by the barometer	145
	Acoustics	
т 28.	Velocity of sound in solids	146
129.		147
		148
131.		148
132.		149
133.		149
134.		149
135.		149
- 00		.,
	AERODYNAMICS	
		150
		150
138.		151
139.	Correction factor for small square normal planes	151
140.		152
141.	Ratios of pressures on inclined and normal planes	152
142.		152
143.		153
144.	" " " " shape and size	E 53
145.	" " " " and speed	153
T/16.	Friction	54

CONTENTS.

A	CONTENTANT			
T47.	Lubricants			154
	Lubricants for cutting tools			154
1401				
	Viscosity			
149.	Viscosity of fluids and solids, general considerations			155
150.	" water in centipoises, temperature variation		,	155
151.	" ethyl-alcohol-water mixtures, temperature variation			155
152.	" and density of sucrose aqueous solutions, temp. variation	n		156
153.	" " " glycerol " " at 20° C			156
154.	" " castor oil, temperature variation			156
155.	" of miscellaneous liquids			157
156.	" organic liquids			158
157.	Specific viscosity of solutions, density and temperature variation			159
158.	" " atomic concentrations, 25° C			163
159.	Viscosity of gases and vapors			164
160.	" " " : temperature and pressure variation	n		165
161.	Diffusion of an aqueous solution into pure water			166
162.	" " vapors			167
163.	" gases and vapors			168
164.	" metals into metals			168
165.	Solubility of inorganic salts in water, temperature variation			169
166.	" a few organic salts in water, temperature variation			170
167.	" gases in water			170
168.	" change of, produced by uniform pressure			171
169.	Absorption of gases by liquids			172
170.	Capillarity and surface tension, water and alcohol in air			173
171.	" " " miscellaneous liquids in air			173
172.	" " aqueous solutions of salts			173
173.	" " liquids-air, -water, -mercury			174
174.	" " liquids at solidifying point			174
175.	" " thickness of soap films			174
, ,			·	-/4
	Vapor Pressures			
176.	Vapor pressures of elements			175
177.	" and rates of evaporation, Mo, W, Pt			175
178.	" organic liquids			176
179.	" of ethyl alcohol			178
180.	" " methyl alcohol			178
181.	" (a) carbon disulphide			179
	(b) chlorobenzene			179
	(c) bromobenzene			179
	$(d) \text{ aniline } \dots \dots \dots \dots$			
	(e) methyl salicylate			179 18c
	(f) bromonaphthalene			180
	(g) mercury			180
	(0/			TOC

хi

182.	Vapor pro	essure	of solut	ions o	f salts	in v	vater		181
183.	Pressure	of satı	irated w	ater v	apor	over	ice, lo	w temperatures	183
184.		66	66		66	66	water,	low temperatures	183
185.	"	66	α.	44	66	66	" 0	° to 374° C	183
1 86.	Weight in	n g pei	m³ of s	aturat	ed wa	iter v	apor.		185
187.								por	185
188.								ious altitudes	185
189.			66					a-level	186
190.	Relative	humid	ity, arg	ument	s, vap	or Di		and dry temperature .	187
191.	44	"	3 / 0	e e				hermometers	189
				T	HERM	OMET	RY		
192.	Stem corn	rection	for the	rmom	eters,	cent	igrade		190
193.	66	66	66	"			glass,	o° to 360° C	190
194.	cc	66	cc	66		"	"	o° " " "	191
195.	"	66	66	66		66	66	normal, o° to 100° C .	191
196.	Gas and	mercu	ry thern	nomete	ers, fo	rmul	ae .		192
197.	Comparis	on of	hydroge	n and	16 ^ш t	hern	nomete	ers, o° to 100° C	192
198.	-64	66	"	66	59 ¹¹¹		66	o° " 100° C	192
199.	46	66	66	"	16 ^m	and	59 ^{III}	thermometers, -5° to	
	-35°	С							192
200.								to 300° C	193
201.	- ((66		59 ^{mi}		66		o° to 200° C	193
202.	i,	"	hydroge	n and	vario	us m	ercury	thermometers	194
203.	"							mercury thermometer	194
204.	66							, pentane thermometers	194
205.	Platinum								195
206.								nt, Kelvin scale	195
207.								meters	195
208.									196
209.	66	. "							196
	26 2 2	1		C 1	,			/ A \	
210.	Mechanic							900 (Ames)	197
211.									197
212.								11,4,1	197
213.	English a	nd An	nerican l	norse j	oower	, aiti	tude a	nd latitude variation .	197
			Mei	TING .	and I	Вопл	ng Po	DINTS	
214.	Melting p	oints	of the cl	nemica	l elen	nents			198
215.	0 1								199
216.	0 1								200
217.									200
217.	~ ·				_				200
	0 1	,	_					nts, densities	201
9.		- VIII	- waren's I		7		0 L	, , , , , , , , , , , , , , , , , , , ,	

xii CONTENTS.

220.	Organic compounds, melting and boiling points, densities:	203									
	(a) Paraffin series										
	(b) Olefine series										
	(c) Acetylene series										
	(d) Monatomic alcohols										
	(e) Alcoholic ethers										
	(f) Ethyl ethers										
	(g) Miscellaneous	205									
221.	Melting points of various mixtures of metals	206									
222.	<i>u u u u u u</i>	206									
223.	Low-melting-point alloys	206									
224.	Transformation and melting points, minerals and eutectics	207									
225.	Lowering of freezing points by salts in solution	208									
226.	Raising of boiling points by salts in solution	210									
227.		211									
228.	Critical temperatures, pressures, volumes, densities of gases	212									
	THERMAL CONDUCTIVITY										
229.	Thermal conductivity of metals and alloys	213									
230.	" insulators, high temperatures	214									
231.	" various substances	214									
232.	" building materials	215									
233.	" various insulators	216									
234.	" water and salt solutions	216									
235.	" organic liquids	217									
236.	" gases	217									
237.	Diffusivities	217									
	Expansion Coefficients										
238.		218									
239.	" " miscellaneous substances	219									
240.	Cubical expansion of solids	220									
241.	" " liquids	221									
242.	" " gases	222									
	Specific Heats										
	Specific heats of elements.	223									
244.	Heat capacities, true and mean specific heats, and latent heats of										
	fusion of the metallic elements, 0° to 1600° C	225									
245.		226									
246.	Specific heats of various solids.	227									
247.	" " water and mercury	227									
248.	" " various liquids	228									
249.	"heat of saturated liquid ammonia, -50° to +50° C	228									
250.	Heat contents of saturated liquid ammonia, -50° to $+50^{\circ}$ C										

	CONTENTS.	XIII
251.	Specific heats of minerals and rocks	229
252.	" (true and mean) of silicates, 0° to 1400° C	229
253.	" of gases and vapors, also c_p/c_v	230
	LATENT HEATS	
254.	Latent heats of vaporization	231
255.	" " " formulae	232
256.	" " " " ammonia	232
257.	"Latent heat of pressure variation" of liquid ammonia	232
258.	Latent and total heats of vaporization of elements, — theoretical	233
259.	Properties of saturated steam	234
260.	Latent heats of fusion	240
	T O	
	HEATS OF COMBUSTION, FORMATION, ETC.	
	Heats of combustion of some carbon compounds	241
262.	" " miscellaneous compounds	241
263.	Heat values and analyses of various fuels: (a) coals and coke	242
	(b) peats and woods	242
	(c) liquid fuels	242
	(d) gases	242
	Chemical and physical properties of explosives	243
265.	•	244
266.		244
267.		244
268.	*	244
269.		245
270.	" " " of ions	246
271.	" " neutralization	246
272.	" " " dilution of sulphuric acid	246
	RADIATION	
0 111 0	Radiation formulae and constants for perfect (black-body) radiator .	247
273.	" in calories for perfect radiator, various temperatures	247
274.	" distribution in spectrum for various temperatures	247
275.	Black-body spectrum intensities, 50° to 20000° K	248
276.	Relative emissive powers of various bodies for total radiation	249
277.	Emissivities of metals and oxides	249
	" " " " " "	249
279.	Temperature scale for tungsten, — color, black-body and true tem-	249
280.		250
-0-	peratures	250
201.		250
	Cooling by Radiation, Conduction, and Convection	
282.	Cooling by radiation and convection: ordinary pressures	251
2 83.	" " different pressures	251

xiv CONTENTS.

284.	Cooling by radiation and convection: very small pressures	252
285.	" " temperature and pressure effect	252
286.	Conduction of heat across air spaces, ordinary temperatures	253
287.		253
288.	" and conduction of heat by gases at high temperatures: .	254
	(a) s as function of a/B	254
	(b) ϕ in watts per cm. as $f(T^{\circ}K)$	254
280.	Heat losses from incandescent filaments:	255
	(a) Wires of platinum sponge	255
	(b) " " bright platinum	255
	THE EYE AND RADIATION	
290.	Spectral variation of sensitiveness as function of intensity (Lumina-	a=6
	tion intensities under various circumstances)	256
	Threshold sensibility as related to field brightness	256
	Heterochromatic threshold sensibility	257
, ,	Contrast or photometric sensibility	257
294.		257
	Rate of adaptation of sensibility	257
	Apparent diameter of pupil and flux density at retina	258
	Relative visibility of radiation of different wave-lengths	258
290.	bility to small differences of color; flicker	2=0
	bility to small differences of color, mexer	258
	Photometric Tables	
299.	Photometric definitions and units	259
300.	" standards	260
	Intrinsic brightness of various light sources	260
	Visibility of white lights	260
303.	Brightness, Crova wave-length, mechanical equivalent of light	261
304.		
	black-body; minimum energy necessary for light sensation	261
	Color of light emitted by various sources	261
306.	Efficiency of various electric lights	252
	Photographic Data	
207	Numerical constants characteristic of a photographic plate	26.2
208	Relative speeds of various photographic materials	
300	Variation of resolving power with plate and developer	263
310	Photographic efficiencies of various lights	263
311.	Relative intensification of various intensifiers	264
3-1.	attended of various intensiners	264
	Spectrum Wave-lengths	
312.	Ways langths of the Frank f. 1	
	wave-lengths of the Fraunnofer lines	265
313.	Wave-lengths of the Fraunhofer lines Standards: Red cadmium line, 76 cm, 15° C, Angstroms	265 266

CONTENTS. XV

314.		ls: Interna	ational secondary Fe arc standards, Angstroms		266
315.	- 44	Intern	ational secondary Fe arc standards, Angstroms		266
316.	66	Neon v	wave-lengths		266
317.	"	Intern	ational tertiary Fe arc standards, Angstroms .		267
318.	Reductio	n of wave	e-lengths in air to standard conditions:		268
	(a)	$(d - d_0)/$	$d_0 \times 1000$; B, 60 to 78 cm, t, 9° to 35° C		268
	(b)	$\delta = \lambda_0(n)$	$(0 - n_0)(d - d_0)/d_0 \ldots \ldots \ldots \ldots \ldots$		268
319.	Spectra o	of the elen	nents		269
320.	Spectrun	n lines of	the elements (Kayser)		270
321.			ve-lengths (Rowland)		272
322.	Spectrun		eneral discussion		275
323.	66	" li	mits of some of the series		276
324.	"	" fin	rst terms and vibration differences		276
			Indices of Refraction		
325.			on of glass (American)		277
326.			ses of Table 325		277
327.			on of glasses made by Schott and Gen, Jena.		278
328.	Dispersio	on of Jena	glasses		278
329.			for τ° C change for some Jena glasses		278
330.	Index of	retraction	of rock-salt in air		279
331.	Change	of indices	for 1° C change for rock-salt		279
332.		refraction	of silvine (potassium chloride) in air		279
333.	,		"fluorite in air		280
334.			for 1° C change for fluorite		280
335-			of iceland spar (CaCO ₃) in air		280
336.	66 66	. 66	" nitroso-dimethyl-aniline		280
337.	" "		" quartz (SiO ₂)		281
338.			on for various alums		281
339.	66 6		on: Selected isotropic minerals		282
340.		c 66	Miscellaneous isotropic solids		283
341.	66 6		Selected uniaxial minerals (positive)		284
	66 6		" (negative)		284
342.	"		Miscellaneous uniaxial crystals		285
343.	66 61		Selected biaxial crystals (a) positive		286
	66 6		" " (b) negative		287
344.	66 61		Miscellaneous biaxial crystals		289
345.	66 61	"	Liquefied gases, oils, fats, waxes		289
346.	66 61		Liquids relative to air		290
347.			Solutions of salts and acids relative to air		291
348.	"		Gases and vapors		292
349.	66 66		Air, 15° C, 76 cm; also corrections for red	uc-	
			ths and frequencies in air to vacuo (see Table 318		293
350.	Media fo	or microso	copic determinations of refractive indices: liqu	ids	
	with	nn(0.580)	$u) = 1.74 \text{ to } 1.87 \dots$		204

rvi	CONTENTS.

351.	Media for microscopic determinations of refractive indices: resin-like substances, $n_D(0.589\mu) = 1.88$ to 2.10	294
252	Media for microscopic determinations of refractive indices: perma-	294
352.	nent standard resinous media, $n_D = 1.546$ to 1.682	294
	none standard results as areally the residence of the res	- 71
353.	Optical constants of metals	295
354.	" " " " " " " " " " " " " " " " " " "	296
001		
	Reflecting Power	
355.	Reflecting power of metals (see Table 359)	296
	Light reflected when incident light is normal to transparent medium .	297
357.	" " is near unity or equals $i + dn$, $i = 0^{\circ}$ to 90° .	297
358.	" $n = 1.55$, $i = 0^{\circ}$ to 90° , polarization percentages.	297
359.	Reflecting power of metals (see Table 355)	298
360.	Percentage diffuse reflection from various substances	298
361.	Reflecting power of pigments, $\lambda = 0.44\mu$ to 0.70μ	299
362.	Infra-red diffuse reflecting power of dry pigments	299
	Reflecting power of powders (white light)	300
	Variation of reflecting power of matt and silvered surfaces with angle	300
365.	Infra-red reflectivity of tungsten, temperature variation	300
	Transmissive Powers	
366.	Transmissibility of radiation by dyes, $\lambda = 0.44\mu$ to 0.70μ	301
367.	" " Jena glasses, 0.375 to 3.1 μ	302
368.	" " " " ο.28ο to ο.644μ	302
369.	"by Jena ultra-violet glasses, 0.280 to 0.397 μ	302
370.	" of radiation by glasses (American) 0.5 to 5.0μ	303
371.	" by same glasses for various lights	304
372.	of radiation by substances of Tables 330 to 338	305
373.	Color screens (Landolt)	306
374.	" (Wood)	306
375.	" (Jena glasses)	307
376.	Transmissibility of radiation by water, $\lambda = 0.186\mu$ to 0.945μ	307
377.	Transmission percentages of radiation by moist air, 0.75 μ to 20 μ	308
378.	Long-wave absorption by gases, 23μ to 314μ	309
379.	Properties with wave-lengths $108 \pm \mu$:	
	(a) Percentage reflection	309
	(b) Percentage transparency	309
-	(c) Transparency of black absorbers, 2μ to 108μ	309
	Rotation of plane of polarized light by solutions	310
381.	" " " sodium chlorate and quartz.	310
282	Electrical equivalents	
302.	Electrical equivalents	311

	**
CONTENTS.	XVII

	Electromotive Powers	
383.	Data for voltaic cells: (a) double-fluid cells	312
	(b) single-fluid cells	313
	(c) standard cells	313
	(d) secondary cells	313
384.	Contact potential differences, solids with liquids and liquids with	3-5
0 - 1	liquids in air	314
385.	Contact potential differences between metals in salt solutions	316
386.	Thermoelectric power of metals	317
387.	" " alloys	318
388.	" against platinum	319
389.	" " of platinum-rhodium alloys.	319
390.	" pressure effect	320
391.	Peltier and Thomson heats, pressure effects	320
392.	Peltier effect	321
	" Fe-constantan, Ni-Cu, o° to 560° C	321
393· 394·	" electromotive force in millivolts	322
395.	The tribo-electric series	322
393.	The thot electric series	322
	Electrical Resistance	
206	Auxiliary table for computing wire resistances	322
397.	Resistivity of metals and some alloys, temperature coefficients	323
397.	Resistance of metals under pressure, temperature coefficients	326
-	Resistance of mercury and manganin under pressure	326
399· 400.	Conductivity and resistivity of miscellaneous alloys	327
401.	Conducting power of alloys, temperature coefficients	328
401.	Allowable carrying capacity of rubber-covered copper wires	
403.	Resistivities at high and low temperatures	329
	Volume and surface resistivity of solid dielectrics	330
404.	Variation of resistance of glass and porcelain with temperature	331
405.	(a) Temperature coefficients for glass, porcelain and quartz.	332
	(a) Temperature coefficients for glass, porceiant and quartz.	332
	Wire Tables	
6	•	222
	Tabular comparison of wire gages	333
	Introduction; mass and volume resistivity of copper and aluminum.	334
	Temperature coefficients of copper	335
	Reduction to standard temperature, copper	335
	Annealed copper wire table, English units, B. & S. gage	336
411.	" " Metric units, B. & S. gage	339
412.	Hard-drawn aluminum wire table, English units, B. & S. gage	342
413.	" " " Metric units, B. & S. gage	343
414.	Ratio of alternating to direct current resistances for copper wire	344
415.	Maximum diameter of wires for high-frequency-alternating-to-direct-	
, 0	current ratio of 1.01	344

xviii

CONTENTS.

ELECTROLYSIS

416.	Electrochemical equivalents	345
417.	Conductivity of a few dilute solutions	346
418.	Electrochemical equivalents and densities of nearly normal solutions	346
419.	Specific molecular conductivity of solutions	347
420.	" " limiting values	348
421.	" " temperature coefficient .	348
422.	Equivalent conductivity of salts, acids, bases in solution	349
423.	" some additional salts in solution	351
424.	" conductance of separate ions	352
425.	Hydrolysis of ammonium acetate and ionization of water	352
	Dielectric Strength	
426.	Steady potential for spark in air, ball electrodes	353
427.	Alternating potential for spark in air, bail electrodes	353
428.		354
429.	Effect of pressure of the gas on the dielectric strength	354
430.		355
431.	Potential in volts for spark in kerosene	355
	Dielectric Constants	
400	Specific inductive capacity of gases, atmospheric pressure	276
432.	Variation of dielectric constant with the temperature (gases)	356
433.	" " " pressure (gases)	356
434· 435·	Dielectric constant of liquids	357
436.	" " liquids, temperature coefficients	357
437.	" " liquefied gases	359
437.	" " standard solutions for calibration	359
439.	" " solids	360 360
440.	" " crystals	361
44		301
	Wireless Telegraphy	
441.	Wave-lengths, frequencies and oscillation constants	362
442.	Antennae resistances for various wave-lengths and heights	364
4.40	Disloctric properties of non-conductors	
443.	Dielectric properties of non-conductors	364
	Magnetic Properties	
444.	Definitions and general discussion	365
445.		367
446.	Magnetic properties of iron and steel	368
447.		368
448.	Corrections for ring specimens	368
		0

CONTENTS.	xix
-----------	-----

449.	Magnetic 1	propertie	s of various types of iron and steel		360
450.	"		" a specimen of very pure iron (0.017 % C)	•	360
451.	"	66	" electrical sheets	•	369
452.	66 .	"	" American magnet steel	•	
453.	66	66	" a ferro-cobalt alloy	٠	379
454.	44	44	" a ring sample transformer steel, weak field		379
455.	66	66	" iron in very weak fields		379
456.	Permeabili	ty of sor	ne specimens of Table 445		379
457.	Magnetic	oropertie	s of soft iron at o° and 100° C		37
458.	"	"	" steel at o° and 100° C		371
459.	Magnetism	and ter	nperature, critical temperature		37
460.			tion for paramagnetic substances		37
461.	"		on susceptibility of diamagnetic elements		37
462.		"	" " paramagnetic elements	•	37
463.	Magnetic	nropertie	s of cobalt at 0° and 100° C	•	374
464.	Wagnetie j	ριορειτις "	"nickel" " " " "	٠	373
465.	66		" magnetite	•	373
466.	66	66	"Lowmoor wrought iron		373
467.	66	66	"Vicker's tool steel	٠	373
468.	66	66	"Hadfield's manganese steel	•	373
469.	66	66	"saturation values for steels	•	373
	Demagneti	izing fact	cors for rods		373
47°. 471.	Demagnet		(((((374
472.	Dissipation	of ener	gy in cyclic mangetization, Steinmetz constant		374 373
473.			ansformer steels		376
474.			ility		377
4/4.	Magnetic .	завсерств		•	311
			Magneto-optic Rotation		
			tion, general discussion		378
476.	66		' solids, Verdet's constant		379
477-	"		ilquius, veruet s constant		380
478.			Sait and acid water solutions		381
479.			gases, Verdet's constant		382
			t's constants		382
481.			nstant		383
482.	Dispersion	of Kerr	effect		383
483.					383
			Various Magnetic Effects		
484.			s, variation in transverse magnetic field (Bi)		384
485.	Increase of	resistan	ce in transverse magnetic field (Ni)		384
486.	Change of	resistanc	e of various metals in magnetic field		384
487.	Transverse	galvano	magnetic and thermomagnetic effects		385
		_			385

CATHODE	AND	CANAL	RAYS
---------	-----	-------	------

489.	Cathode and canal rays	•	•	•		•	380
490.	Speed of cathode rays	٠		٠	٠	٠	386
491.	Cathodic sputtering			•	٠		386
	Röntgen (X-rays) Rays						
492.	X-rays, general properties						387
493.	Röntgen secondary rays						387
494.	Corpuscular rays						388
495.	Intensity of X-rays; ionization						388
406.	Mass absorption coefficients, λ/d						389
407.	Absorption coefficients of characteristic radiations in gases						389
408.	X-ray spectra and atomic numbers						390
• /	(a) K-series						390
	(b) L-series						391
	(c) M-series						392
	(d) Tungsten X-ray spectrum						392
499.	X-ray absorption spectra and atomic numbers						393
	Radioactivity						
500.	Relative phosphorescence excited by radium						394
501.	The production of α particles (Helium)						394
502.	Heating effect of radium and its emanation						394
503.	Stopping powers of various substances for α rays						395
504.							395
505.	" γ rays by various substances						395
506.	Table of miscellaneous properties						396
507.	Total number of ions produced by the α , β , and γ rays .						398
	Amount of radium emanation						398
	Vapor pressure of the radium emanation in cm of Hg						398
510.	References to spectra of radioactive substances						398
	Molecular, Atomic and Ionic Data						
511.	Molecular velocities						399
512.	" free paths, collision frequencies and diameters.						399
513.	Cross sections and lengths of some organic molecules.						400
514.							400
515.	Electrons; Rutherford atom; Bohr atom; Magnetic field of	of	at	om			401
516.	Electron emission from hot metals						403
517.	Photo-electric effect						403
518.	Ionizing potentials, resonance potentials, single line spectra	1					403
519.	Contact (Volta) potentials						404
	(a) Electron affinity of the elements						404
	(b) Voltage of electrolytic cells				٠		404
520.	Ionic mobilities and diffusions, — ionic mobilities						405
521.							405

CONTENTS.	xxi
CONTENTS.	XXI

Colloids

522.	General properties of colloids	406
523.	Molecular weights of colloids	406
524.		406
525.		407
526.	Heats of adsorption	407
527.	Molecular heats of adsorption and liquefaction	407
528.	Miscellaneous constants, atomic, molecular, etc.	408
	Radiation wave-length limits	408
530.	Periodic system of the elements (Mendelejeff)	409
531.	Atomic numbers	409
532.	Periodic system of the elements and radioactive isotopes (Hackh)	410
	Astronomical Data	
533.	Stellar spectra and related characteristics	411
534.	The Harvard spectrum classification	411
535.	Apex and velocity of solar motion	411
536.	Motion of the stars	412
537-	Distances of the stars	412
538.	Brightness of the stars	413
539.	Masses and densities	413
540.	Miscellaneous astronomical data	414
541.	The first-magnitude stars	415
542.	Wolf's observed sun-spot numbers, 1750 to 1917	415
543·	Length of degrees on the earth's surface	416
544.	Equation of time	416
545.	Planetary data	416
546.	Numbers and equivalent light of the stars	417
547.	Albedos	417
548.	Duration of sunshine	417
549.	The solar constant.	418
550.	Solar spectrum energy and its transmission through the atmosphere .	418
551.	Intensity of solar energy in various sections of spectrum	418
552.	Distribution of brightness (radiation) over the solar disk	418
5 53·	Transmission of radiation through moist and dry air (see Table 376).	419
554.	Brightness of sky at altitudes of 1730 m and sea-level	419
555-	Relative distribution in normal spectrum of sun and sky light	419
556.	Air masses	419
557.	Relative intensity of solar radiation for various months	420
	Meteorological Data	
5 58	Mean monthly and yearly temperatures for representative stations .	420
559.	The earth's atmosphere, variation with latitude, miscellaneous	421

14	
XXII	CONTENTS
AAII	CONTENTE

560.	Variation of percentage composition with altitude, pressure	421
56I.	" temperature, pressure and density with altitude	421
	Temperature variation over the earth's surface	422
5 63.	" with depth, land and ocean	422
564.	Geochemical data. Meteorites	423
	Geodetical Data	
565.	Acceleration of gravity, sea-level and different latitudes and	
	altitudes	424
566.	Gravity as observed at various stations and reduced to sea-level	425
	" corrected to sea-level and for topography and compensation.	426
568.	Length of seconds pendulum, sea-level and various latitudes	427
569.	Miscellaneous geodetic data	427
	Terrestrial Magnetism	
570.	Secular change of declination, 1810 to 1920	428
571.	Dip or inclination, various longitudes and latitudes, 1915	430
572.	" " secular change, 1855 to 1915	430
573.	Horizontal intensity, various longitudes and latitudes, 1915	431
574.	" secular change, 1860 to 1915	431
575.	Total intensity, various longitudes and latitudes	432
576.	" secular change, 1855 to 1915	432
577.	Agonic line, 1800 to 1915	433
578.	Mean magnetic character by months and years, 1906 to 1917	433
579.	Recent values of the magnetic elements at magnetic observatories	434
	Appendix, definitions	435
	INDEX	439

Resistivity is the reciprocal of conductivity as just defined. The dimensional formula is $\lceil L^2T^{-1}\mu \rceil$.

Self-inductance is for any circuit the electromotive force produced in it by unit rate of variation of the current through it. The dimensional formula is the product of the formulae for electromotive force and time divided by that for current or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}} \times T \div M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$ or $[L\mu]$.

Mutual Inductance of two circuits is the electromotive force produced in one per unit rate of variation of the current in the other. The dimensional formula is the same as for self-inductance.

Electric Field Intensity is the ratio of electric potential or electromotive force and length. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-2}\mu^{\frac{1}{2}}]$.

Magnetic Reluctance is the ratio of magnetic potential difference to magnetic flux. The dimensional formula is $[L^{-1}\mu^{-1}]$.

Thermoelectric Power is measured by the ratio of electromotive force and temperature. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}\Theta^{-1}]$.

Coefficient of Peltier Effect is measured by the ratio of the quantity of heat and quantity of electricity. The dimensional formula is $[ML^2T^{-2}/M^{\frac{1}{2}}L^{\frac{1}{2}}\mu^{-\frac{1}{2}}]$ or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}]$, the same as for electromotive force.

Exs. — Find the factor required to convert intensity of magnetic field from ft.-grain-min. units to c.g.s. units. The formula is $[m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}\mu^{-\frac{1}{2}}]$; m = 0.0648, l = 30.48, t = 60, and $\mu = 1$; the factor is $0.0648^{\frac{1}{2}} \times 30.48^{-\frac{1}{2}}$, or 0.046108.

How many c.g.s. units of magnetic moment make one ft.-grain-sec. unit of the same quantity? The formula is $[m^{\frac{1}{2}}l^{\frac{1}{2}}l^{-1}\mu^{\frac{1}{2}}]$; m = 0.0648, l = 30.48, t = 1, and $\mu = 1$; the number is $0.0648^{\frac{1}{2}} \times 30.48^{\frac{1}{2}}$, or 1305.6.

If the intensity of magnetization of a steel bar is 700 in c.g.s. units, what will it be in mmmg-sec. units? The formula is $[m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}\mu^{\frac{1}{2}}]$; m = 1000, l = 10, t = 1, $\mu = 1$; the intensity is $700 \times 1000^{\frac{1}{2}} \times 10^{\frac{1}{2}}$, or 70000.

Find the factor required to convert current from c.g.s. units to earth-quadrant- 10^{-11} gramsec. units. The formula is $[m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}\mu^{-\frac{1}{2}}]; m = 10^{11}, l = 10^{-9}, \mu = 1;$ the factor is $10^{\frac{11}{2}} \times 10^{-\frac{9}{2}}, \mu = 10^{-1}$

Find the factor required to convert resistance expressed in c.g.s. units into the same expressed in earth-quadrant-10⁻¹¹ gram-sec. units. The formula is $[lt^{-1}\mu]$; $l = 10^{-9}$, t = 1, $\mu = 1$; the factor is 10^{-9} .

FUNDAMENTAL STANDARDS.

The choice of the nature of the fundamental quantities already made does not sufficiently define the system for measurements. Some definite unit or arbitrarily chosen standard must next be taken for each of the fundamental quantities. This fundamental standard should have the qualities of permanence, reproducibility and availability and be suitable for accurate measures. Once chosen and made it is called the primary standard and is generally kept at some central bureau, — for instance, the International Bureau of Weights and Measures at Sèvres, France. A primary standard may also be chosen and made for derived units (e.g., the international ohm standard), when it is simply a standard closely representing the unit and accepted for practical purposes, its value having been fixed by certain measuring processes. Secondary or refer-

possible of the complex relationships involving them. Further it seems desirable that the units should be extensive in nature. It has been found possible to express all measurable physical quantities in terms of five such units: 1st, geometrical considerations — length, surface, etc., — lead to the need of a length; 2nd, kinematical considerations — velocity, acceleration, etc., — introduce time; 3rd, mechanics — treating of masses instead of immaterial points — introduces matter with the need of a fundamental unit of mass; 4th, electrical, and 5th, thermal considerations require two more such quantities. The discovery of new classes of phenomena may require further additions.

As to the first three fundamental quantities, simplicity and good use sanction the choice of a length, L, a time interval, T, and a mass, M. For the measurement of electrical quantities, good use has sanctioned two fundamental quantities, — the dielectric constant, K, the basis of the "electrostatic" system and the magnetic permeability, μ , the basis of the "electromagnetic" system. Besides these two systems involving electrical considerations, there is in common use a third one called the "international" system which will be referred to later. For the fifth, or thermal fundamental unit, temperature is generally chosen.

Derived Units. — Having selected the fundamental or basic units, — namely, a measure of length, of time, of mass, of permeability or of the dielectric constant, and of temperature, - it remains to express all other units for physical quantities in terms of these. Units depending on powers greater than unity of the basic units are called "derived units." Thus, the unit volume is the volume of a cube having each edge a unit of length. Suppose that the capacity of some volume is expressed in terms of the foot as fundamental unit and the volume number is wished when the yard is taken as the unit. The yard is three times as long as the foot and therefore the volume of a cube whose edge is a yard is $3 \times 3 \times 3$ times as great as that whose edge is a foot. Thus the given volume will contain only 1/27 as many units of volume when the yard is the unit of length as it will contain when the foot is the unit. To transform from the foot as old unit to the yard as new unit, the old volume number must be multiplied by 1/27, or by the ratio of the magnitude of the old to that of the new unit of volume. This is the same rule as already given, but it is usually more convenient to express the transformations in terms of the fundamental units directly. In the present case, since, with the method of measurement here adopted, a volume number is the cube of a length-number, the ratio of two units of volume is the cube of the ratio of the intrinsic values of the two units of length. Hence, if l is the ratio of the magnitude of the old to that of the new unit of length, the ratio of the corresponding units of volume is l^3 . Similarly the ratio of two units of area would be l^2 , and so on for other quantities.

¹ Because of its greater psychological and physical simplicity, and the desirability that the unit chosen should have extensive magnitude, it has been proposed to choose as the fourth fundamental quantity, a quantity of electrical charge, c. The standard unit of electrical charge would then be the electronic charge. For thermal needs, entropy has been proposed. While not generally so psychologically easy to grasp as temperature, entropy is of fundamental importance in thermodynamics and has extensive magnitude. (R. C. Tolman, The Measurable Quantities of Physics, Physical Review, 9, p. 237, 1917.)

Conversion Factors and Dimensional Formulae. — For the ratios of length, mass, time, temperature, dielectric constant and permeability units the small bracketed letters, [l], [m], [t], $[\theta]$, [k], and $[\mu]$ will be adopted. These symbols will always represent simple numbers, but the magnitude of the number will depend on the relative magnitudes of the units the ratios of which they represent. When the values of the numbers represented by these small bracketed letters as well as the powers of them involved in any particular unit are known, the factor for the transformation is at once obtained. Thus, in the above example, the value of l was 1/3, and the power involved in the expression for volume was 3; hence the factor for transforming from cubic feet to cubic yards was l^3 or $1/3^3$ or 1/27. These factors will be called *conversion factors*.

To find the symbolic expression for the conversion factor for any physical quantity, it is sufficient to determine the degree to which the quantities length, mass, time, etc., are involved. Thus a velocity is expressed by the ratio of the number representing a length to that representing an interval of time, or $\lfloor L/T \rfloor$, and acceleration by a velocity number divided by an interval-of-time number, or $\lfloor L/T^2 \rfloor$, and so on, and the corresponding ratios of units must therefore enter in precisely the same degree. The factors would thus be for the just stated cases, $\lfloor l/t \rfloor$ and $\lfloor l/t^2 \rfloor$. Equations of the form above given for velocity and acceleration which show the dimensions of the quantity in terms of the fundamental units are called dimensional equations. Thus $\lfloor E \rfloor = \lfloor ML^2T^{-2} \rfloor$ will be found to be the dimensional equation for energy, and $\lfloor ML^2T^{-2} \rfloor$ the dimensional formula for it. These expressions will be distinguished from the conversion factors by the use of bracketed capital letters.

In general, if we have an equation for a physical quantity,

$$Q = CL^aM^bT^c,$$

where C is a constant and L, M, T represent length, mass, and time in terms of one set of units, and it is desired to transform to another set of units in terms of which the length, mass, and time are L_i , M_i , T_i , we have to find the value of L_i/L , M_i/M , T_i/T , which, in accordance with the convention adopted above, will be l, m, t, or the ratios of the magnitudes of the old to those of the new units.

Thus $L_i = Ll$, $M_i = Mm$, $T_i = Tt$, and if Q_i be the new quantity number,

$$\begin{aligned} Q_{\prime} &= CL_{\prime}{}^{a}M_{\prime}{}^{b}T_{\prime}{}^{c}, \\ &= CL^{a}l^{a}M^{b}m^{b}T^{c}t^{c} = Ql^{a}m^{b}t^{c}, \end{aligned}$$

or the conversion factor is $[l^a m^b t^c]$, a quantity precisely of the same form as the dimension formula $[L^a M^b T^c]$.

Dimensional equations are useful for checking the validity of physical equations. Since physical equations must be homogeneous, each term appearing in them must be dimensionally equivalent. For example, the distance moved by a uniformly accelerated body is $s = v_0 t + \frac{1}{2}at^2$. The corresponding dimensional equation is $[L] = [(L/T)T] + [(L/T^2)T^2]$, each term reducing to [L].

Dimensional considerations may often give insight into the laws regulating physical phenomena.¹ For instance Lord Rayleigh, in discussing the intensity

¹ See "On Physically Similar Systems; Illustrations of the Use of Dimensional Equations," E. Buckingham, Physical Review, (2) 4, p. 345, 1914.

of light scattered from small particles, in so far as it depends upon the wavelength, reasons as follows:1

"The object is to compare the intensities of the incident and scattered ray; for these will clearly be proportional. The number (i) expressing the ratio of the two amplitudes is a function of the following quantities: -T, the volume of the disturbing particle; r, the distance of the point under consideration from it; λ , the wave-length; b, the velocity of propagation of light; b and b', the original and altered densities: of which the first three depend only on space, the fourth on space and time, while the fifth and sixth introduce the consideration of mass. Other elements of the problem there are none, except mere numbers and angles, which do not depend upon the fundamental measurements of space, time, and mass. Since the ratio i, whose expression we seek, is of no dimensions in mass, it follows at once that b and b' occur only under the form b: b', which is a simple number and may therefore be omitted. It remains to find how b' varies with b', b', b'.

"Now, of these quantities, b is the only one depending on time; and therefore, as i is of no dimensions in time, b cannot occur in its expression. We are left, then, with T, r, and λ ; and from what we know of the dynamics of the question, we may be sure that i varies directly as T and inversely as r, and must therefore be proportional to $T + \lambda^2 r$, T being of three dimensions in space. In passing from one part of the spectrum to another λ is the only quantity which varies, and we have the important law:

"When light is scattered by particles which are very small compared with any of the wavelengths, the ratio of the amplitudes of the vibrations of the scattered and incident light varies inversely as the square of the wave-length, and the intensity of the lights themselves as the inverse fourth power."

The dimensional and conversion-factor formulae for the more commonly occurring derived units will now be developed.

Area is referred to a unit square whose side is the unit of length. The area of a surface is expressed as

$$S=CL^2,$$

where the constant C depends on the contour of the surface and L is a linear dimension. If the surface is a square and L the length of a side, C is unity; if a circle and L its diameter, C is $\pi/4$. The dimensional formula is therefore $\lfloor L^2 \rfloor$ and the conversion factor $\lfloor l^2 \rfloor$. (Since the conversion factors are always of the same dimensions as the dimensional formulae they will be omitted in the subsequent discussions. A table of them will be found on page 3.)

Volume is referred to a unit cube whose edge is the unit of length. The volume of a body is expressed as

$$V = CL^3$$
.

The constant C depends on the shape of the bounding surfaces. The dimensional formula is $[L^3]$.

Density is the quantity of matter per unit volume. The dimensional formula is [M/V] or $[ML^{-3}]$.

Ex. — The density of a body is 150 pd. per cu. ft.: required the density in grains per cu. in. Here m, the number of grains in a pd., = 7000; l, the number of in. in a ft., = 12; $ml^3 = 7000/12^3$ = 4.051. The density is $150 \times 4.051 = 607.6$ grains/cu. in.

The specific gravity of a body is the ratio of a density to the density of a standard substance. The dimensional formula and conversion factor are both unity.

¹ Philosophical Magazine, (4) 41, p. 107, 1871.

Velocity, v, of a body is dL/dt, or the ratio of a length to a time. The dimensional formula is $\lfloor LT^{-1} \rfloor$.

Angle is measured by the ratio of the length of an arc to its radius. The dimensional formula is unity.

Angular Velocity is the ratio of the angle described in a given time to that time. The dimensional formula is $[T^{-1}]$.

Linear Acceleration is the rate of change of velocity or a = dv/dt. The dimensional formula is $[VT^{-1}]$ or $[LT^{-2}]$.

Ex. — A body acquires velocity at a uniform rate and at the end of one minute moves at the rate of 20 kilometers per hour: what is the acceleration in centimeters per second per second? Since the velocity gained was 20 km per hour in one minute, the acceleration was 1200 km per hour per hour. l = 100000, t = 3600, $lt^{-2} = 100000/3600^2 = 0.00771$; the acceleration = .00771 × 1200 = 9.26 cm/sec.

Angular Acceleration is rate of change of angular velocity. The dimensional formula is [(angular velocity)/T] or $[T^{-2}]$.

Momentum, the quantity of motion in the Newtonian sense, is measured by the product of the mass and velocity of the body. The dimensional formula is [MV] or $[MLT^{-1}]$.

Moment of Momentum of a body with reference to a point is the product of its momentum by the distance of its line of motion from the point. The dimensional formula is $[ML^2T^{-1}]$.

Moment of Inertia of a body round an axis is expressed by the formula $\sum mr^2$, where m is the mass of any particle of the body and r its distance from the axis. The dimensional formula for the sum is the same as for each element and is $\lceil ML^2 \rceil$.

Angular Momentum of a body is the product of its moment of inertia and angular velocity. The dimensional formula is $[ML^2T^{-1}]$.

Force is measured by the rate of change of momentum it can produce. The dimensional formulae for force and "time rate of change of momentum" are therefore the same, the ratio of a momentum to a time $[MLT^{-2}]$.

Ex. — When mass is expressed in lbs., length in ft., and time in secs., the unit force is called the poundal. When grams, cms, and secs. are the corresponding units, the unit of force is called the dyne. Find the number of dynes in 25 poundals. Here m=453.59, l=30.48, t=1; $mll^{-2}=453.59\times30.48=13825$ nearly. The number of dynes is $13825\times25=345625$ approximately.

Moment of Couple, Torque, or Twisting Motive can be expressed as the product of a force and a length. The dimensional formula is [FL] or $[ML^2T^{-2}]$.

Intensity of Stress is the ratio of the total stress to the area over which the stress is distributed. The dimensional formula is $[FL^{-2}]$ or $[ML^{-1}T^{-2}]$.

Intensity of Attraction, or "Force at a Point," is the force of attraction per unit mass on a body placed at the point. The dimensional formula is $[FM^{-1}]$ or $[LT^{-2}]$, the same as acceleration.

Absolute Force of a Center of Attraction, or "Strength of a Center," is the intensity of force at unit distance from the center, and is the force per unit mass at any point multiplied by the square of the distance from the center. The dimensional formula is $[FL^2M^{-1}]$ or $[L^3T^{-2}]$.

Modulus of Elasticity is the ratio of stress intensity to percentage strain. The dimensional of percentage strain, a length divided by a length, is unity. Hence the dimensional formula of a modulus of elasticity is that of stress intensity $[ML^{-1}T^{-2}]$.

Work is done by a force when the point of application of the force, acting on a body, moves in the direction of the force. It is measured by the product of the force and the displacement. The dimensional formula is [FL] or $[ML^2T^{-2}]$.

Energy. — The work done by the force produces either a change in the velocity of the body or a change of its shape or configuration, or both. In the first case it produces a change of kinetic energy, in the second, of potential energy. The dimensional formulae of energy and work, representing quantities of the same kind, are identical $[ML^2T^{-2}]$.

Resilience is the work done per unit volume of a body in distorting it to the elastic limit or in producing rupture. The dimensional formula is $[ML^2T^{-2}L^{-3}]$ or $[ML^{-1}T^{-2}]$.

Power or Activity is the time rate of doing work, or if W represents work and P power, P = dw/dt. The dimensional formula is $[WT^{-1}]$ or $[ML^2T^{-3}]$, or for problems in gravitation units more conveniently $[FLT^{-1}]$, where F stands for the force factor.

Exs. — Find the number of gram-cms in one ft.-pd. Here the units of force are the attraction of the earth on the pound and the gram of matter. (In problems like this the terms "grams" and "pd." refer to force and not to mass.) The conversion factor is [f], where f is $453.59 \times 30.48 = 13825$.

Find the number of ft.-poundals in 1000000 cm-dynes. Here m = 1/453.59, l = 1/30.48, t = 1; $ml^2t^{-2} = 1/453.59 \times 30.48^2$, and $10^6ml^2t^{-2} = 10^6/453.59 \times 30.48^2 = 2.373$.

If gravity produces an acceleration of 32.2 ft./sec./sec., how many watts are required to make one horse-power? One horse-power is 550 ft.-pds. per sec., or $550 \times 32.2 = 17710$ ft.-poundals per second. One watt is 10^7 ergs per sec., that is, 10^7 dyne-cms per sec. The conversion factor is $[ml^2t^{-3}]$, where m is 453.59, l is 30.48, and t is 1, and the result has to be divided by 10^7 , the number of dyne-cms per sec. in the watt. $17710 \ ml^2t^{-3}/10^7 = 17710 \times 453.59 \times 30.48^2/10^7 = 746.3$.

HEAT UNITS.

Quantity of Heat, measured in dynamical units, has the same dimensions as energy $[ML^2T^{-2}]$. Ordinary measurements, however, are made in *thermal units*, that is, in terms of the amount of heat required to raise the temperature of a unit mass of water one degree of temperature at some stated temperature. This involves the unit of mass and some unit of temperature. If we denote temperature numbers by Θ , the dimensional formula for quantity of heat, H, will be $[M\Theta]$. Unit volume is sometimes used instead of unit mass in the measurement of heat, the units being called *thermometric units*. The dimensional formula now changed by the substitution of volume for mass is $[L^3\Theta]$.

Specific Heat is the relative amount of heat, compared with water as standard substance, required to raise unit mass of different substances one degree in temperature and is a simple number.

Coefficient of Thermal Expansion of a substance is the ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal), to the change of temperature. These ratios are simple numbers, and the change of temperature varies inversely as the magnitude of the unit of temperature. The dimensional formula is $[\Theta^{-1}]$.

Thermal Conductivity, or Specific Conductance, is the quantity of heat, H, transmitted per unit of time per unit of surface per unit of temperature gradient. The equation for conductivity is therefore $K = H/L^2T\Theta/L$, and the dimensional formula $[H/\Theta LT] = [ML^{-1}T^{-1}]$ in thermal units. In thermometric units the formula becomes $[L^2T^{-1}]$, which properly represents diffusivity, and in dynamical units $[MLT^{-3}\Theta^{-1}]$.

Thermal Capacity is mass times the specific heat. The dimensional formula is [M].

Latent Heat is the quantity of heat required to change the state of a body divided by the quantity of matter. The dimensional formula is $[M\Theta/M]$ or $[\Theta]$; in dynamical units it is $[L^2T^{-2}]$.

Note. — When Θ is given the dimensional formula $[L^2T^{-2}]$, the formulae in thermal and dynamical units are identical.

Joule's Equivalent, J, is connected with the quantity of heat by the equation $ML^2T^{-2} = JII$ or $JM\Theta$. The dimensional formula of J is $[L^2T^{-2}\Theta^{-1}]$. In dynamical units J is a simple number.

Entropy of a body is directly proportional to the quantity of heat it contains and inversely proportional to its temperature. The dimensional formula is $[M\Theta/\Theta]$ or [M]. In dynamical units the formula is $[ML^2T^{-2}\Theta^{-1}]$.

Exs. — Find the relation between the British thermal unit, the large or kilogram-calorie and the small or gram-calorie, sometimes called the "therm." Referring all the units to the same temperature of the standard substance, the British thermal unit is the amount of heat required to warm one pound of water 1° C, the large calorie, 1 kilogram of water, 1° C, the small calorie or therm, 1 gram, 1° C. (1) To find the number of kg-cals. in one British thermal unit. m = .45359, $\theta = .5/9$; $m\theta = .45359 \times 5/9 = .25199$. (2) To find the number therms in one kg-cal. m = 1000, and $\theta = 1$; $m\theta = 1000$. (3) Hence the number of small calories or therms in one British thermal unit is $1000 \times .25199 = 251.99$.

ELECTRIC AND MAGNETIC UNITS.

A system of units of electric and magnetic quantities requires four fundamental quantities. A system in which length, mass, and time constitute three of the fundamental quantities is known as an "absolute" system. There are two absolute systems of electric and magnetic units. One is called the electrostatic, in which the fourth fundamental quantity is the dielectric constant, and one is called the electromagnetic, in which the fourth fundamental quantity is magnetic permeability. Besides these two systems there will be described a third in common use called the "international" system.

In the electrostatic system, unit quantity of electricity, Q, is the quantity which exerts unit mechanical force upon an equal quantity a unit distance from it in a vacuum. From this definition the dimensions and the units of all the other electric and magnetic quantities follow through the equations of the mathematical theory of electromagnetism. The mechanical force between two quantities of electricity in any medium is

 $F = \frac{QQ'}{Kr^2},$

where K is the dielectric constant, characteristic of the medium, and r the distance between the two points at which the quantities Q and Q' are located. K is the fourth quantity entering into dimensional expressions in the electrostatic system. Since the dimensional formula for force is $[MLT^{-2}]$, that for Q is $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$.

The electromagnetic system is based upon the unit of the magnetic pole strength. The dimensions and the units of the other quantities are built up from this in the same manner as for the electrostatic system. The mechanical force between two magnetic poles in any medium is

$$F = \frac{mm'}{\mu r^2},$$

in which μ is the permeability of the medium and r is the distance between two poles having the strengths m and m'. μ is the fourth quantity entering into dimensional expressions in the electromagnetic system. It follows that the dimensional expression for magnetic pole strength is $\lfloor M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}} \rfloor$.

The symbols K and μ are sometimes omitted in the dimensional formulae so that only three fundamental quantities appear. There are a number of objections to this. Such formulae give no information as to the relative magnitudes of the units in the two systems. The omission is equivalent to assuming some relation between mechanical and electrical quantities, or to a mechanical explanation of electricity. Such a relation or explanation is not known.

The properties K and μ are connected by the equation $1/\sqrt{K\mu} = v$, where v is the velocity of an electromagnetic wave. For empty space or for air, K and μ being measured in the same units, $1/\sqrt{K\mu} = c$, where c is the velocity of light in vacuo, 3×10^{10} cm per sec. It is sometimes forgotten that the omission of the dimensions of K or μ is merely conventional. For instance, magnetic field intensity and magnetic induction apparently have the same dimensions when μ is omitted. This results in confusion and difficulty in understanding the theory of magnetism. The suppression of μ has also led to the use of the "centimeter" as a unit of capacity and of inductance; neither is physically the same as length.

ELECTROSTATIC SYSTEM.

Quantity of Electricity has the dimensional formula $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$, as shown above.

Electric Surface Density of an electrical distribution at any point on a surface is measured by the quantity per unit area. The dimensional formula is the ratio of the formulae for quantity of electricity and for area or $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{\frac{1}{2}}]$.

Electric Field Intensity is measured by the ratio of the force on a quantity of electricity at a point to the quantity of electricity. The dimensional formula is therefore the ratio of the formulae for force and electric quantity or $[MLT^{-2}/M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$ or $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}]$.

Electric Potential and Electromotive Force. — Change of potential is proportional to the work done per unit of electricity in producing the change. The dimensional formula is the ratio of the formulae for work and electrical quantity or $[ML^2T^{-2}/M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$ or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{-\frac{1}{2}}]$.

Capacity of an Insulated Conductor is proportional to the ratio of the quantity of electricity in a charge to the potential of the charge. The dimensional formula is the ratio of the two formulae for electric quantity and potential or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}/M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{-\frac{1}{2}}]$ or [LK].

Specific Inductive Capacity is the ratio of the inductive capacity of the substance to that of a standard substance and therefore is a number.

Electric Current is quantity of electricity flowing past a point per unit of time. The dimensional formula is the ratio of the formulae for electric quantity and for time or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}/T]$ or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}K^{\frac{1}{2}}]$.

Electrical Conductivity, like the corresponding term for heat, is quantity per unit area per unit potential gradient per unit of time. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{5}{2}}T^{-1}K^{\frac{1}{2}}/L^{\frac{5}{2}}T^{-1}K^{-\frac{1}{2}}/L)T]$ or $[T^{-1}K]$.

Resistivity is the reciprocal of conductivity. The dimensional formula is $\lceil TK^{-1} \rceil$.

Conductance of any part of an electric circuit, not containing a source of electromotive force, is the ratio of the current flowing through it to the difference of potential between its ends. The dimensional formula is the ratio of the formulae for current and potential or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}K^{\frac{1}{2}}/M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}]$ or $[LT^{-1}K]$.

Resistance is the reciprocal of conductance. The dimensional formula is $\lceil L^{-1}TK^{-1} \rceil$.

Exs. — Find the factor for converting quantity of electricity expressed in ft.-grain-sec. units to the same expressed in c.g.s. units. The formula is $[m^{\frac{1}{2}}l^{2}t^{-1}k^{\frac{1}{2}}]$, in which m=0.0648, l=30.48, t=1, k=1; the factor is $0.0648^{\frac{1}{2}} \times 30.48^{\frac{3}{2}}$, or 42.8.

Find the factor required to convert electric potential from mm-mg-sec. units to c.g.s. units. The formula is $[m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}k^{-\frac{1}{2}}]$, in which m = 0.001, l = 0.1, t = 1, k = 1; the factor is $0.001^{\frac{1}{2}} \times 0.1^{\frac{1}{2}}$, or 0.01.

Find the factor required to convert electrostatic capacity from ft.-grain-sec. and specific-inductive capacity 6 units to c.g.s. units. The formula is [lk] in which l = 30.48, k = 6; the factor is 30.48×6 , or 182.88.

ELECTROMAGNETIC SYSTEM.

Many of the magnetic quantities are analogues of certain electric quantities. The dimensions of such quantities in the electromagnetic system differ from those of the corresponding electrostatic quantities in the electrostatic system only in the substitution of permeability μ for K.

Magnetic Pole Strength or Quantity of Magnetism has already been shown to have the dimensional formula $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}]$.

Magnetic Flux characterizes the magnetized state of a magnetic circuit. Through a surface inclosing a magnetic pole it is proportional to the magnetic pole strength. The dimensional formula is that for magnetic pole strength.

Magnetic Field Intensity or Magnetizing Force is the ratio of the force on a magnetic pole placed at the point and the magnetic pole strength. The dimensional formula is therefore the ratio of the formulae for a force and magnetic quantity, or $[MLT^{-2}/M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}]$ or $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$.

Magnetic Potential or Magnetomotive Force at a point is measured by the work which is required to bring unit quantity of positive magnetism from zero potential to the point. The dimensional formula is the ratio of the formulae for work and magnetic quantity, $[ML^2T^{-2}/M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}]$ or $[M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$.

Magnetic Moment is the product of the pole strength by the length of the magnet. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{5}{2}}T^{-1}\mu^{\frac{1}{2}}]$.

Intensity of Magnetization of any portion of a magnetized body is the ratio of the magnetic moment of that portion and its volume. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{n}{2}}T^{-1}\mu^{\frac{1}{2}}/L^3]$ or $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}\mu^{\frac{1}{2}}]$.

Magnetic Induction is the magnetic flux per unit of area taken perpendicular to the direction of the magnetic flux. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{n}{2}}T^{-1}\mu^{\frac{1}{2}}/L^2]$ or $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}\mu^{\frac{1}{2}}]$.

Magnetic Susceptibility is the ratio of intensity of magnetization produced and the intensity of the magnetic field producing it. The dimensional formula is $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}\mu^{\frac{1}{2}}/M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$ or $[\mu]$.

Current, I, flowing in circle, radius r, creates magnetic field at its center, $2\pi I/r$. Dimensional formula is product of formulae for magnetic field intensity and length or $[M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$.

Quantity of Electricity is the product of the current and time. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{1}{2}}\mu^{-\frac{1}{2}}]$.

Electric Potential, or Electromotive Force, as in the electrostatic system, is the ratio of work to quantity of electricity. The dimensional formula is $[ML^2T^{-2}/M^{\frac{1}{2}}L^{\frac{1}{2}}\mu^{-\frac{1}{2}}]$ or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}]$.

Electrostatic Capacity is the ratio of quantity of electricity to difference of potential. The dimensional formula is $[L^{-1}T^2\mu^{-1}]$.

Resistance of a Conductor is the ratio of the difference of potential between its ends and the constant current flowing. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{\pi}{2}}T^{-2}\mu^{\frac{\pi}{2}}/M^{\frac{\pi}{2}}L^{\frac{\pi}{2}}T^{-1}\mu^{-\frac{\pi}{2}}]$ or $[LT^{-1}\mu]$.

Conductance is the reciprocal of resistance, and the dimensional formula is $[L^{-1}T\mu^{-1}]$.

Conductivity is the quantity of electricity transmitted per unit area per unit potential gradient per unit of time. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{1}{2}}\mu^{-\frac{1}{2}}/L^2(M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}/L)$ T] or $[L^{-2}T\mu^{-1}]$.

Resistivity is the reciprocal of conductivity as just defined. The dimensional formula is $\lfloor L^2T^{-1}\mu \rfloor$.

Self-inductance is for any circuit the electromotive force produced in it by unit rate of variation of the current through it. The dimensional formula is the product of the formulae for electromotive force and time divided by that for current or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}} \times T \div M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$ or $[L\mu]$.

Mutual Inductance of two circuits is the electromotive force produced in one per unit rate of variation of the current in the other. The dimensional formula is the same as for self-inductance.

Electric Field Intensity is the ratio of electric potential or electromotive force and length. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}]$.

Magnetic Reluctance is the ratio of magnetic potential difference to magnetic flux. The dimensional formula is $[L^{-1}\mu^{-1}]$.

Thermoelectric Power is measured by the ratio of electromotive force and temperature. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{4}}\Theta^{-1}]$.

Coefficient of Peltier Effect is measured by the ratio of the quantity of heat and quantity of electricity. The dimensional formula is $[ML^2T^{-2}/M^{\frac{1}{2}}L^{\frac{1}{2}}\mu^{-\frac{1}{2}}]$ or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}]$, the same as for electromotive force.

Exs. — Find the factor required to convert intensity of magnetic field from ft.-grain-min. units to c.g.s. units. The formula is $[m^{\frac{1}{2}l-\frac{1}{2}t^{-1}}\mu^{-\frac{1}{2}}]$; $m=0.0648,\ l=30.48,\ t=60$, and $\mu=1$; the factor is $0.0648^{\frac{1}{2}}\times 30.48^{-\frac{1}{2}}$, or 0.046108.

How many c.g.s. units of magnetic moment make one ft.-grain-sec. unit of the same quantity? The formula is $[m^{\frac{1}{2}}l^{\frac{1}{2}}l^{-1}\mu^{\frac{1}{2}}]$; m = 0.0648, l = 30.48, t = 1, and $\mu = 1$; the number is $0.0648^{\frac{1}{2}} \times 30.48^{\frac{5}{2}}$, or 1305.6.

If the intensity of magnetization of a steel bar is 700 in c.g.s. units, what will it be in mmmg-sec. units? The formula is $[m^{\frac{1}{2}l^{\frac{1}{2}}t^{-1}}\mu^{\frac{1}{2}}]; m = 1000, l = 10, t = 1, \mu = 1;$ the intensity is $700 \times 1000^{\frac{1}{2}} \times 10^{\frac{1}{2}}, \text{ or } 70000.$

Find the factor required to convert current from c.g.s. units to earth-quadrant-10⁻¹¹ gramsec. units. The formula is $[m^{\frac{1}{2}}l^{\frac{1}{2}}l^{-1}\mu^{-\frac{1}{2}}]; m = 10^{11}, l = 10^{-9}, \mu = 1;$ the factor is $10^{\frac{11}{2}} \times 10^{-\frac{9}{2}},$ or 10.

Find the factor required to convert resistance expressed in c.g.s. units into the same expressed in earth-quadrant-10⁻¹¹ gram-sec. units. The formula is $[lt^{-1}\mu]$; $l = 10^{-9}$, t = 1, $\mu = 1$; the factor is 10^{-9} .

FUNDAMENTAL STANDARDS.

The choice of the nature of the fundamental quantities already made does not sufficiently define the system for measurements. Some definite unit or arbitrarily chosen standard must next be taken for each of the fundamental quantities. This fundamental standard should have the qualities of permanence, reproducibility and availability and be suitable for accurate measures. Once chosen and made it is called the primary standard and is generally kept at some central bureau, — for instance, the International Bureau of Weights and Measures at Sèvres, France. A primary standard may also be chosen and made for derived units (e.g., the international ohm standard), when it is simply a standard closely representing the unit and accepted for practical purposes, its value having been fixed by certain measuring processes. Secondary or refer-

ence standards are accurately compared copies, not necessarily duplicates, of the primaries for use in the work of standardizing laboratories and the production of working standards for everyday use.

Standard of Length. — The primary standard of length which now almost universally serves as the basis for physical measurements is the meter. It is defined as the distance between two lines at o°C on a platinum-iridium bar deposited at the International Bureau of Weights and Measures. This bar is known as the International Prototype Meter, and its length was derived from the "métre des Archives," which was made by Borda. Borda, Delambre, Laplace, and others, acting as a committee of the French Academy, recommended that the standard unit of length should be the ten-millionth part of the length, from the equator to the pole, of the meridian passing through Paris. In 1795 the French Republic passed a decree making this the legal standard of length, and an arc of the meridian extending from Dunkirk to Barcelona was measured by Delambre and Mechain for the purpose of realizing the standard. From the results of that measurement the meter bar was made by Borda. The meter is now defined as above and not in terms of the meridian length; hence subsequent measures of the length of the meridian have not affected the length of the meter.

Standard of Mass. — The primary standard of mass now almost universally used as the basis for physical measurements is the kilogram. It is defined as the mass of a certain piece of platinum-iridium deposited at the International Bureau of Weights and Measures. This standard is known as the International Prototype Kilogram. Its mass is equal to that of the older standard, the "kilogram des Archives," made by Borda and intended to have the same mass as a cubic decimeter of distilled water at the temperature of 4° C.

Copies of the International Prototype Meter and Kilogram are possessed by the various governments and are called National Prototypes.

Standard of Time. — The unit of time universally used is the second. It is the mean solar second, or the 86400th part of the mean solar day. It is founded on the average time required for the earth to make one rotation on its axis relatively to the sun as a fixed point of reference.

Standard of Temperature. — The standard scale of temperature as adopted by the International Committee of Weights and Measures (1887) depends on the constant-volume hydrogen thermometer. The hydrogen is taken at an initial pressure at o° C of one meter of mercury, o° C, sea-level at latitude 45°. The scale is defined by designating the temperature of melting ice as o° and of condensing steam as 100° under standard atmospheric pressure. This is known as the Centigrade scale (abbreviated C).

A scale independent of the properties of any particular substance, and called the thermodynamic, or absolute scale, was proposed in 1848 by Lord Kelvin. In it the temperature is proportional to the average kinetic energy per molecule of a perfect gas. The temperature of melting ice is taken as 273.13°, that of the boiling point, 373.13°. The scale of the hydrogen thermometer varies from it only in the sense that the behavior of hydrogen departs from that of a perfect gas. It is customary to refer to this scale as the Kelvin scale (abbreviated K).

NUMERICALLY DIFFERENT SYSTEMS OF UNITS.

The fundamental physical quantities which form the basis of a system for measurements have been chosen and the fundamental standards selected and made. Custom has not however generally used these standards for the measurement of the magnitudes of quantities but rather multiples or submultiples of them. For instance, for very small quantities the micron (μ) or one-millionth of a meter is often used. The following table ¹ gives some of the systems proposed, all built upon the fundamental standards already described. The centimeter-gram-second (cm-g-sec. or c.g.s.) system proposed by Kelvin is the only one generally accepted.

TABLE I. PROPOSED SYSTEMS OF UNITS.

	Weber and Gauss	Kelvin c.g.s.	Moon 1891	Giorgi MKS (Prim. Stds.)	France 1914	B. A. Com., 1863	Practical (B. A. Com., 1873)	Strout 1891
Length	mm	cm	dm	m	m	m	10 ⁹ cm	10 ⁹ cm
Mass	mg	g	Kg	Kg	10 ⁶ g	g	10 ⁻¹¹ g	10 ⁻⁹ g
Time	sec.	sec.	sec.	sec.	sec.	sec.	sec.	sec.

Further the choice of a set of fundamental physical quantities to form the basis of a system does not necessarily determine how that system shall be used in measurements. In fact, upon any sufficient set of fundamental quantities, a great many different systems of units may be built. The electrostatic and electromagnetic systems are really systems of electric quantities rather than units. They were based upon the relationships $F = QQ'/Kr^2$ and $mm'/\mu r^2$, respectively. Systems of units built upon a chosen set of fundamental physical quantities may differ in two ways: (1) the units chosen for the fundamental quantities may be different; (2) the defining equations by which the system is built may be different.

The electrostatic system generally used is based on the centimeter, gram, second, and dielectric constant of a vacuum. Other systems have appeared, differing from this in the first way, — for instance using the foot, grain and second in place of the centimeter, gram and second. A system differing from it in the second way is that of Heaviside which introduces the factor 4π at different places than is usual in the equations. There are similarly several systems of electromagnetic units in use.

Gaussian Systems. — "The complexity of the interrelations of the units is increased by the fact that not one of the systems is used as a whole, consistently for all electromagnetic quantities. The 'systems' at present used are therefore combinations of certain of the systems of units.

¹ Circular 60 of the Bureau of Standards, Electric Units and Standards, 1916. The subsequent matter in this introduction is based upon this circular.

"Some writers ¹ on the theory of electricity prefer to use what is called a Gaussian system, a combination of electrostatic units for purely electrical quantities and electromagnetic units for magnetic quantities. There are two such Gaussian systems in vogue, — one a combination of c.g.s. electrostatic and c.g.s electromagnetic systems, and the other a combination of the two corresponding Heaviside systems.

"When a Gaussian system is used, caution is necessary when an equation contains both electric and magnetic quantities. A factor expressing the ratio between the electrostatic and electromagnetic units of one of the quantities has to be introduced. This factor is the first or second power of c, the number of electrostatic units of electric charge in one electromagnetic unit of the same. There is sometimes a question as to whether electric current is to be expressed in electrostatic or electromagnetic units, since it has both electric and magnetic attributes. It is usually expressed in electrostatic units in the Gaussian system."

It may be observed from the dimensions of K given in Table 1 that $\lceil 1/K\mu \rceil = \lceil L^2/T^2 \rceil$ which has the dimensions of a square of a velocity. This velocity was found experimentally to be equal to that of light, when K and μ were expressed in the same system of units. Maxwell proved theoretically that $1/\sqrt{K\mu}$ is the velocity of any electromagnetic wave. This was subsequently proved experimentally. When a Gaussian system is used, this equation becomes $c/\sqrt{K\mu} = v$. For the ether K = 1 in electrostatic units and $\mu = 1$ in electromagnetic units. Hence c = v for the ether, or the velocity of an electromagnetic wave in the ether is equal to the ratio of the c.g.s. electromagnetic to the c.g.s. electrostatic unit of electric charge. This constant c is of primary importance in electrical theory. Its most probable value is 2.9986 \times 1010 centimeters per second.

"Practical" Electromagnetic System. — This electromagnetic system is based upon the units of 10^9 cm, 10^{-11} gram, the sec. and μ of the ether. It is never used as a complete system of units but is of interest as the historical basis of the present International System. The principal quantities are the resistance unit, the ohm = 10^9 c.g.s. units; the current unit, the ampere = 10^{-1} c.g.s. units; and the electromotive force unit, the volt = 10^8 c.g.s. units.

The International Electric Units. — The units used in practical measurements, however, are the "International Units." They were derived from the "practical" system just described, or as the latter is sometimes called, the "absolute" system. These international units are based upon certain concrete standards presently to be defined and described. With such standards electrical comparisons can be more accurately and readily made than could absolute measurements in terms of the fundamental units. Two electric units, the international ohm and the international ampere, were chosen and made as nearly equal as possible to the ohm and ampere of the "practical" or "absolute" system.

¹ For example, A. G. Webster, "Theory of Electricity and Magnetism," 1897; J. H. Jeans, "Electricity and magnetism," 1911; H. A. Lorentz, "The Theory of Electrons," 1909; and O. W. Richardson, "The Electron Theory of Matter," 1914.

This system of units, sufficiently near to the "absolute" system for the purpose of electrical measurements and as a basis for legislation, was defined as follows:

- "I. The *International Ohm* is the resistance offered to an unvarying electric current by a column of mercury at the temperature of melting ice, 14.4521 grams in mass, of a constant cross-sectional area and of a length of 106.300 centimeters.
- "2. The *International Ampere* is the unvarying electric current which, when passed through a solution of nitrate of silver in water, in accordance with specification II attached to these Resolutions, deposits silver at the rate of 0.00111800 of a gram per second.
- "3. The *International Volt* is the electrical pressure which, when steadily applied to a conductor the resistance of which is one international ohm will produce a current of one international ampere.
- "4. The *International Watt* is the energy expended per second by an unvarying electric current of one international ampere under the pressure of one international volt."

In accordance with these definitions, a value was established for the electromotive force of the recognized standard of electromotive force, the Weston normal cell, as the result of international coöperative experiments in 1910. The value was 1.0183 international volts at 20° C.

The definitions by the 1908 International Conference supersede certain definitions adopted by the International Electrical Congress at Chicago in 1893. Certain of the units retain their Chicago definitions, however. They are as follows:

- "Coulomb. As a unit of quantity, the *International Coulomb*, which is the quantity of electricity transferred by a current of one international ampere in one second.
- "Farad. As a unit of capacity, the International Farad, which is the capacity of a condenser, charged to be a potential of one international volt by one international coulomb of electricity.
- "Joule. As a unit of work, the Joule, which is equal to 10⁷ units of work in the c.g.s. system, and which is represented sufficiently well for practical use by the energy expended in one second by an international ampere in an international ohm.
- "Henry. As the unit of induction, the Henry, which is the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second."
- "The choice of the ohm and ampere as fundamental was purely arbitrary. These are the two quantities directly measured in absolute electrical measurements. The ohm and volt have been urged as more suitable for definition in terms of arbitrary standards, because the primary standard of electromotive force (standard cell) has greater simplicity than the primary standard of current (silver voltameter). The standard cell is in fact used, together with resistance standards, for the actual maintenance of the units, rather than the silver voltameter and resistance standards. Again, the volt and ampere have some claim

for consideration for fundamental definition, both being units of quantities more fundamental in electrical theory than resistance."

For all practical purposes the "international" and the "practical" or "absolute" units are the same. Experimental determination of the ratios of the corresponding units in the two systems have been made and the mean results are given in Table 382. These ratios represent the accuracy with which it was possible to fix the values of the international ohm and ampere at the time they were defined (London Conference of 1908). It is unlikely that the definitions of the international units will be changed in the near future to make the agreement any closer. An act approved July 12, 1894, makes the International units as above defined the legal units in the United States of America.

THE STANDARDS OF THE INTERNATIONAL ELECTRICAL UNITS.

RESISTANCE

Resistance. — The definition of the international ohm adopted by the London Conference in 1908 is accepted practically everywhere.

Mercury Standards. — Mercury standards conforming to the definition were constructed in England, France, Germany, Japan, Russia and the United States. Their mean resistances agree to about two parts in 100,000. To attain this accuracy, elaborate and painstaking experiments were necessary. Tubes are never quite uniform in cross-section; the accurate measurement of the mass of mercury filling the tube is difficult, partly because of a surface film on the walls of the tube; the greatest refinements are necessary in determining the length of the tube. In the electrical comparison of the resistance with wire standards, the largest source of error is in the filling of the tube. These and other sources of error necessitated a certain uniformity in the setting up of mercury standards and at the London Conference the following specifications were drawn up:

SPECIFICATION RELATING TO MERCURY STANDARDS OF RESISTANCE.

The glass tubes used for mercury standards of resistance must be made of a glass such that the dimensions may remain as constant as possible. The tubes must be well annealed and straight. The bore must be as nearly as possible uniform and circular, and the area of cross-section of the bore must be approximately one square millimeter. The mercury must have a resistance of approximately one ohm.

Each of the tubes must be accurately calibrated. The correction to be applied to allow for the area of the cross-section of the bore not being exactly the same at all parts of the tube must not exceed 5 parts in 10,000.

The mercury filling the tube must be considered as bounded by plane surfaces placed in contact with the ends of the tube.

The length of the axis of the tube, the mass of mercury the tube contains, and the electrical resistance of the mercury are to be determined at a temperature as near to o° C as possible. The measurements are to be corrected to o° C.

For the purpose of the electrical measurements, end vessels carrying connections for the current and potential terminals are to be fitted on to the tube. These end vessels are to be spherical in shape (of a diameter of approximately four centimeters) and should have cylindrical pieces attached to make connections with the tubes. The outside edge of each end of the tube

is to be coincident with the inner surface of the corresponding end vessel. The leads which make contact with the mercury are to be of thin platinum wire fused into glass. The point of entry of the current lead and the end of the tube are to be at opposite ends of a diameter of the bulb; the potential lead is to be midway between these two points. All the leads must be so thin that no error in the resistance is introduced through conduction of heat to the mercury. The filling of the tube with mercury for the purpose of the resistance measurements must be carried out under the same conditions as the filling for the determination of the mass.

The resistance which has to be added to the resistance of the tube to allow for the effect of the end vessels is to be calculated by the formula

$$A = \frac{0.80}{1063\pi} \left(\frac{\mathbf{r}}{r_1} + \frac{\mathbf{r}}{r_2} \right) \text{ ohm,}$$

where r_1 and r_2 are the radii in millimeters of the end sections of the bore of the tube.

The mean of the calculated resistances of at least five tubes shall be taken to determine the value of the unit of resistance.

For the purpose of the comparison of resistances with a mercury tube the measurements shall be made with at least three separate fillings of the tube.

Secondary Standards. — Secondary standards, derived from the mercury standards and used to give values to working standards, are certain coils of manganin wire kept in the national laboratories. Their resistances are adjusted to correspond to the unit or its decimal multiples or submultiples. The values assigned to these coils are checked from time to time with the similar coils of the other countries. The value now in use is based on the comparison made at the U. S. Bureau of Standards in 1910 and may be called the "1910 ohm." Later measurements on various mercury standards checked the value then used within 2 parts in 100,000. Thus the basis of resistance measurement is maintained not by the mercury standards of a single laboratory, but by all the mercury standards of the various national laboratories; it is furthermore the same in all countries, except for very slight outstanding discrepancies due to the errors of measurement and variations of the standards with time.

Resistance Standards in Practice. — In ordinary measurements, working standards of resistance are usually coils of manganin wire (approximately 84 per cent Cu + 12 per cent Mn + 4 per cent Ni). They are generally used in oil which carries away the heat developed by the current and facilitates regulation and measurement of the temperature. The best type is inclosed in a sealed case for protection against atmospheric humidity. Varying humidity changes the resistance of open coils often to several parts in 10,000 higher in summer than in winter. While sealed 1 ohm and 0.1 ohm coils may remain constant to about 1 part in 100,000.

Absolute Ohm. — The absolute measurement of resistance involves the precise determination of a length and a time (usually an angular velocity) in a medium of unit permeability. Since the dimensional formula of resistance in the electromagnetic system is $\lfloor L\mu/T \rfloor$, such an absolute measurement gives R not in cm/sec. but in cm \times μ /sec. The definitions of the ohm, ampere and volt by the 1908 London conference tacitly assume a permeability equal to unity. The relation of the international ohm to the absolute ohm has been measured in different ways involving revolving coil, revolving disk, and alternate current methods. Probably the most accurate determination was made

in 1913 by F. E. Smith of the National Physical Laboratory of England, using a modification of the Lorentz revolving disk method. His result was

1 international ohm = 1.00052 ± 0.00004 absolute ohms,

or, in other words, while one international ohm is represented by a mercury column 106.300 cm long as specified above, one absolute ohm requires a similar column 106.245 cm long. Table 305 of the 6th revised edition of these tables contains data relative to the various determinations of the ohm.

CURRENT.

The Silver Voltameter. — The silver voltameter is a concrete means of measuring current in accordance with the definition of the international ampere. As used for the realization of the international ampere "it consists of a platinum cathode in the form of a cup holding the silver nitrate solution, a silver anode partly or wholly immersed in the solution, and some means to prevent anode slime and particles of silver mechanically detached from the anode from reaching the cathode. As a standard representing the international ampere, the silver voltameter includes also the chronometer used to measure time. The degree of purity and the mode of preparation of the various parts of the voltameter affect the mass of the deposit. There are numerous sources of error, and the suitability of the silver voltameter as a primary standard of current has been under investigation since 1893. Differences of as much as 0.1 per cent or more may be obtained by different procedures, the larger differences being mainly due to impurities produced in the electrolyte (by filter paper, for instance). Hence, in order that the definition of current be precise, it must be accompanied by specifications for using the voltameter."

The original specifications were recognized to be inadequate and an international committee on electrical units and standards was appointed to complete the specifications. It was also recognized that in practice standard cells would replace secondary current standards so that a value must be fixed for the electromotive force of the Weston normal cell. This was attempted in 1910 at the Bureau of Standards by representatives of that institution together with one delegate each from the Physikalische-Technische Reichanstalt, The National Physical Laboratory and the Laboratoire Central d'Electricité. Voltameters from all four institutions were put in series under a variety of experimental conditions. Standard Weston cells and resistance standards of the four laboratories were also intercompared. From the joint comparison of standard cells and silver voltameters particular values were assigned to the standard cells from each laboratory. The different countries thus have a common basis of measurement maintained by the aid of standard cells and resistance standards derived from the international voltameter investigation of 1910.

It was not found possible to draw up satisfactory and final specifications for the silver voltameter. Provisional specifications were submitted by the U. S. Bureau of Standards and more complete specifications have been proposed in correspondence between the national laboratories and members of the international committee since 1910, but no agreement upon final specifications has yet been reached.

Resistance Standards Used in Current Measurements. — Precise measurements of currents require a potentiometer, a standard cell and a resistance standard. The resistance must be so designed as to carry the maximum current without undue heating and consequent change of resistance. Accordingly the resistance metal must have a small temperature resistance coefficient and a sufficient area in contact with the air, oil, or other cooling fluid. It must have a small thermal electromotive force against copper. Manganin satisfies these conditions and is usually used. The terminals of the standard must have sufficient contact area so that there shall be no undue heating at contacts. It must be so designed that the current distribution does not depend upon the mode of connection to the circuit.

Absolute Ampere. — The absolute ampere (10^{-1} c.g.s. electromagnetic units) differs by a negligible amount from the international ampere. Since the dimensional formula of the current in the electromagnetic system is $[L^{\frac{1}{2}}M^{\frac{1}{2}}/T\mu^{\frac{1}{2}}]$ which is equivalent to $[F^{\frac{1}{2}}/\mu^{\frac{1}{2}}]$, the absolute measurement of current involves fundamentally the measurement of a force in a medium of unit permeability. In most measurements of high precision an electrodynamometer has been used of the form known as a current balance. A summary of the various determinations will be found in Table 293 of the 6th Revised Edition of these tables.

The best value is probably the mean of the determinations made at the U. S. Bureau of Standards, the National Physical Laboratory and at the University of Gröningen, which gives

1 international ampere = 0.99991 absolute ampere.

The separate values were 0.99992, 0.99988 and 0.99994, respectively. "The result may also be expressed in terms of the electrochemical equivalent of silver, which, based on the '1910 mean voltameter,' thus equals 0.00111810 g per absolute coulomb. By the definition of the international ampere, the value is 0.00111800 g per international coulomb."

ELECTROMOTIVE FORCE.

International Volt. — "The international volt is derived from the international ohm and ampere by Ohm's law. Its value is maintained by the aid of the Weston normal cell. The national standardizing laboratories have groups of such cells, to which values in terms of the international ohm and ampere have been assigned by international experiments, and thus form a basis of reference for the standardization of the standard cells used in practical measurements."

Weston Normal Cell. — The Weston normal cell is the standard used to maintain the international volt and, in conjunction with resistance standards, to maintain the international ampere. The cell is a simple voltaic combination

¹ See "Report to the International Committee on Electrical Units and Standards," 1912, p. 199. For the Bureau of Standards investigations see Bull. Bureau of Standards, 9, pp. 209, 493; 10, p. 475, 1912-14; 13, p. 147, 1915; 9, p. 151, 1912; 13, pp. 447, 479, 1916.

having its anode or negative electrode of cadmium amalgam, consisting of 10 per cent by weight of cadmium and 90 per cent mercury. The cathode, or positive electrode, is pure mercury covered with a paste consisting of mercurous sulphate, cadmium-sulphate crystals, and solution. The electrolyte is cadmium-sulphate solution in contact with an excess of cadmium-sulphate crystals. The containing vessel is of glass, usually in the H form. Connection is made to the electrodes by platinum wires sealed into the glass. The cells are sealed, preferably hermetically, and in use are submerged in a constant-temperature oil bath. The resistance of a cell is about 600 to 1000 ohms. The Weston cell used with potentiometers is not the Weston normal cell, but differs from it only slightly, the cadmium-sulphate solution not being saturated. It is described in the next section below.

One of the great advantages of the Weston normal cell is its small change of electromotive force with change of temperature. At any temperature, t (centigrade), between 0° and 40°, $E_t = E_{20} - 0.0000406 (t - 20) - 0.0000095 (t - 20)^2 + 0.0000001 (t - 20)^3$. This temperature formula was adopted by the London conference of 1908. That this formula may apply, the cell must be of a strictly uniform temperature throughout. One leg of the cell has a large positive and the other leg a large negative temperature coefficient. If the temperature of one leg changes faster than the other, the formula does not hold.

When the best of care is taken as to purity of materials and mode of procedure, Weston normal cells are reproducible within 1 part in 100,000. The source of the greatest variations has probably been in the mercurous sulphate. Cells using the best samples of this material have an electromotive force the constancy of which over a period of one year is about 1 part in 100,000. Only very meager specifications for the cell have as yet been agreed upon internationally, however, and the procedures in various laboratories differ in some respects.¹

The basis of measurements of electromotive force is the same in all countries as the result of the joint international experiments of 1910. As already stated, a large number of observations were made at that time with the silver voltameter, and a considerable number of Weston normal cells from the national laboratories of England, France, Germany and the United States were compared. From the results of these voltameter experiments and from resistance measurements, the value

1.0183 international volts at 20° C

was assigned to the Weston normal cell. A mean of the groups of cells from the four laboratories was taken as most accurately representing the Weston normal

¹ For the preliminary specifications which have been issued and the reports of the various investigations on the standard cells see the following references: Preliminary specifications, Wolff and Waters, Bull. B. of S. 3, p. 623, 1907; Clark and Weston Standard Cells, Wolff and Waters, ditto, 4, p. 1, 1907; Temperature formula of Weston Standard Cell, ditto, 5, p. 309, 1908; The materials, reproducibility, etc., of the Weston Cell, Helett, Phys. Rev. 22, p. 321, 1906; 23, p. 166, 1906; 27, pp. 33, 337, 1908; Mercurous sulphate, etc., Steinwehr, Zs. für Electroch. 12, p. 578, 1906; German value of cell, Jaeger and Steinwehr, ditto, 28, p. 367, 1908; National Physical Laboratory researches, Smith, Phil. Trans. 207, p. 393, 1908; On the Weston Cell, Haga and Boerema, Arch. Neerland, des Sci. Exactes, 3, p. 324, 1913.

cell. Each laboratory has means of preserving the unit. Any discrepancies between the bases of the different countries at the present time would be due only to possible variations in the reference cells of the national laboratories. Such discrepancies are probably less than 2 parts in 100,000.

The figure 1.0183 has been in use since January 1, 1911. The value used in the United States before 1911, 1.019126 at 20° C or 1.0189 at 25° C, was assigned to a certain group of cells maintained as the standard of electromotive force at the Bureau of Standards. The high value is partly due to the use of commercial mercurous sulphate in the cells. The old and the new values, 1.01926 and 1.0183, thus apply to different groups of cells. The group of cells to which the value 1.019126 was assigned before 1910 differed by 26 microvolts from the mean of the international group, such that the international group to which the value 1.0183 is now assigned had the value 1.019126 + 0.000026, or 1.019152, in terms of the old United States basis. The difference between 1.019152 and 1.0183 is 0.000852.

The electromotive force of any Weston cell as now given is therefore 0.000852 volt smaller than on the old United States basis, i.e., the present international volt is 84 parts in 100,000 larger than the old international volt of the United States.

Upon the new international basis the Clark cell set up according to the old United States legal specifications has an emf of 1.43280 international volts at 15° C. The Clark cell set up (with specially purified mercurous sulphate) according to improved specifications used at the Bureau of Standards has an emf of 1.43250 international volts at 15° C or 1.42637 at 20° C.

Portable Weston Cells. — The standard cell used in practice is the Weston portable cell. It is like the Weston normal cell except that the cadmium-sulphate solution at ordinary temperatures is unsaturated. As usually made, the cadmium-sulphate solution is saturated at about 4°C; at higher temperatures the crystals are dissolved. Plugs of asbestos or other material hold the chemicals in place. Its resistance is usually about 200 to 311 ohms. The change of emf, wholly negligible in most electrical measurements, is less than 0.00001 volt per degree C. The two legs of the cell have large and opposite temperature coefficients so that care must be taken that the temperature of the cell is kept uniform and the cell must be protected from draughts or large changes of temperature. The electromotive force of a portable cell ranges from 1.0181 to 1.0191 international volts and must be determined by comparison with standards. It decreases very slightly with time, usually less than 0.0001 volt per vear.

Absolute and Semi-absolute Volt. — Since the direct determination of the volt in absolute measure presents great difficulties, it is derived by Ohm's law from the absolute measures of the ohm and ampere. From the absolute values of these already given,

i international volt = 1.00043 absolute volts.

The electromotive force of the Weston normal cell at 20° C is 1.01830 international volts and 1.01874 absolute volts. A semi-absolute volt is that potential

difference which exists between the terminals of a resistance of one *international* ohm when the latter carries a current of one *absolute* ampere. The emf of the Weston normal cell may be taken as 1.01821 semi-absolute volts at 20° C.

QUANTITY OF ELECTRICITY.

The international unit of quantity of electricity is the coulomb. The faraday is the quantity of electricity necessary to liberate 1 gram equivalent in electrolysis. It is equivalent to 96,500 coulombs.

Standards. — There are no standards of electric quantity. The silver voltameter may be used for its measurement since under ideal conditions the mass of metal deposited is proportional to the amount of electricity which has flowed.

CAPACITY.

The unit generally used for capacity is the international microfarad or the one-millionth of the international farad. Capacities are commonly measured by comparison with standard capacities. The values of the standards are determined by measurement in terms of resistance and time. The standard is some form of condenser consisting of two sets of metal plates separated by a dielectric. The condenser should be surrounded by a metal shield connected to one set of plates rendering the capacity independent of the surroundings. An ideal condenser would have a constant capacity under all circumstances, with zero resistance in its leads and plates, and no absorption in the dielectric. Actual condensers vary with the temperature, atmospheric pressure, and the voltage, frequency, and time of charge and discharge. A well-constructed air condenser with heavy metal plates and suitable insulating supports is practically free from these effects and is used as a standard of capacity.

Practically air condenser plates must be separated by 1 mm or more and so cannot be of great capacity. The more the capacity is increased by approaching the plates, the less the mechanical stability and the less constant the capacity. Condensers of great capacity use solid dielectrics, preferably mica sheets with conducting plates of tinfoil. At constant temperature the best mica condensers are excellent standards. The dielectric absorption is small but not quite zero, so that the capacity of these standards with different methods of measurement must be carefully determined.

INDUCTANCE.

The henry, the unit of self-inductance, is also the unit of mutual inductance. The henry has been known as the "quadrant" and the "secohm." The length of a quadrant or quarter of the earth's circumference is approximately 10 9 cms. and a henry is 10 9 cms. of inductance. Secohm is a contraction of second and ohm; the dimensions of inductance are [TR] and this unit is based on the second and ohm.

Inductance Standards. — Inductance standards are measured in international units in terms of resistance and time or resistance and capacity by alternate-

current bridge methods. Inductances calculated from dimensions are in absolute electromagnetic units. The ratio of the international to the absolute henry is the same as the ratio of the corresponding ohms.

Since inductance is measured in terms of capacity and resistance by the bridge method about as simply and as conveniently as by comparison with standard inductances, it is not necessary to maintain standard inductances. They are however of value in magnetic, alternating-current, and absolute electrical measurements. A standard inductance is a circuit so wound that when used in a circuit it adds a definite amount of inductance. It must have either such a form or so great an inductance that the mutual inductance of the rest of the circuit upon it may be negligible. It usually is a wire coil wound all in the same direction to make self-induction a maximum. A standard, the inductance of which may be calculated from its dimensions, should be a single layer coil of very simple geometrical form. Standards of very small inductance, calculable from their dimensions, are of some simple device, such as a pair of parallel wires or a single turn of wire. With such standards great care must be used that the mutual inductance upon them of the leads and other parts of the circuit is negligible. Any inductance standard should be separated by long leads from the measuring bridge or other apparatus. It must be wound so that the distributed capacity between its turns is negligible; otherwise the apparent inductance will vary with the frequency.

POWER AND ENERGY.

Power and energy, although mechanical and not primarily electrical quantities, are measurable with greater precision by electrical methods than in any other way. The watt and the electric units were so chosen in terms of the c.g.s. units that the product of the current in amperes by the electromotive force in volts gives the power in watts (for continuous or instantaneous values). The international watt, defined as "the energy expended per second by an unvarying electric current of one international ampere under an electric pressure of one international volt," differs but little from the absolute watt.

Standards and Measurements. — No standard is maintained for power or energy. Measurements are always made in electrical practice in terms of some of the purely electrical quantities represented by standards.

MAGNETIC UNITS.

C.G.S. units are generally used for magnetic quantities. American practice is fairly uniform in names for these units: the c.g.s. unit of magnetomotive force is called the "gilbert," of reluctance, the "oersted," following the provisional definitions of the American Institute of Electrical Engineers (1894). The c.g.s. unit of flux is called the "maxwell" as defined by the 1900 Paris conference. The name "gauss" is used unfortunately both for the unit of induction (A.I.E.E. 1894) and for the unit of magnetic field intensity or magnetizing force. "This double usage, recently sanctioned by engineering societies, is based upon the mathematical convenience of defining both induction and magnetizing force

as the force on a unit magnetic pole in a narrow cavity in the material, the cavity being in one case perpendicular, in the other parallel, to the direction of the magnetization: this definition however applies only in the ordinary electromagnetic units. There are a number of reasons for considering induction and magnetizing force as two physically distinct quantities, just as electromotive force and current are physically different."

In the United States "gauss" has been used much more for the c.g.s. unit of induction than for the unit of magnetizing force. The longer name of "maxwell per cm²" is also sometimes used for this unit when it is desired to distinguish clearly between the two quantities. The c.g.s. unit of magnetizing force is usually called the "gilbert per cm."

A unit frequently used is the ampere-turn. It is a convenient unit since it eliminates 4π in certain calculations. It is derived from the "ampere turn per cm." The following table shows the relations between a system built on the ampere-turn and the ordinary magnetic units.¹

TABLE II.

THE ORDINARY AND THE AMPERE-TURN MAGNETIC UNITS.

Quantity ·		Ordinary magnetic units.	Ampere-turn units.	Ordinary units in 1 ampere- turn unit
Magnetomotive force	F	Gilbert .	Ampere-turn	4\pi/10
Magnetizing force	Н	Gilbert per	Ampere-turn per	$4\pi/10$
Magnetic flux	Φ	cm. Maxwell	Cm.	
		,	Maxwell	I
Magnetic induction	В	Maxwell per cm. ² Gauss	Maxwell per cm. ² Gauss	I
Permeability	μ	`	-	Т
Reluctance	R	Oersted	Ampere-turn per	$4\pi/10$
			Maxwell	
Magnetization intensity	J		Maxwell per cm. ²	$1/4\pi$
Magnetic susceptibility	K		1	$I/4\pi$
Magnetic pole strength	m		Maxwell	$I/4\pi$

Dellinger, International System of Electric and Magnetic Units, Bull. Bureau of Standards, 13, p. 599, 1916.

PHYSICAL TABLES

TABLE 1.

2

SPELLING AND ABBREVIATIONS OF THE COMMON UNITS OF WEIGHT AND MEASURE.

The spelling of the metric units is that adopted by the International Committee on Weights and Measures and given in the law legalizing the metric system in the United States (1866). The period is omitted after the metric abbreviations but not after those of the customary system. The exponents "2" and "3" are used to signify area and volume respectively in the metric units. The use of the same abbreviation for singular and plural is recommended. It is also suggested that only small letters be used for abbreviations except in the case of A. for acre, where the use of the capital letter is general. The following list is taken from circular 87 of the U. S. Bureau of Standards.

Unit.	Abbreviation.	Unit.	Abbreviation.
acre are avoirdupois barrel board foot bushel carat, metric centare centigram centiliter centimeter chain cubic decimeter cubic decimeter cubic foot cubic hectometer cubic meter cubic mile cubic mile cubic millimeter cubic yard decigram deciliter decimeter dekagram dekaliter dekameter dekastere dekagram deriliter derimeter derimeter derimeter derimeter derimeter decistere dekagram dekaliter dekameter dekastere dram dram, apothecaries' dram, fluid fathom foot firkin furlong gallon grain gram hectoliter hectometer hectogram hectoliter hectometer hogshead hundredweight inch	A a av. bbl. bd. ft. bu. c ca cg cl cm dch. cm³ dm³ dkm³ cu. ft. hm³ cu. in. km³ m³ cu. yd. dg dl dm ds dkg dkl dkm dks dr. dr. ap. or 3 dr. av. fl. dr. fath. ft. fir. fur. gal. gr. g ha hg hl hm hhd. cwt. in.	kilogram kiloliter kilometer link liquid liter meter metric ton micron mile milligram milliliter millimeter millimicron minim ounce ounce, apothecaries' ounce, fluid ounce, troy peck pennyweight pint pound pound, apothecaries' pound, avoirdupois pound, troy quart rod scruple, apothecaries' square chain square decimeter square chain square decimeter square foot square hectometer square inch square mile square mile square mile square yard stere ton ton, metric troy yard	kg kl km li. liq. l m t

FUNDAMENTAL AND DERIVED UNITS.

Conversion Factors.

To change a quantity from one system of units to another: substitute in the corresponding conversion factor from the following table the ratios of the magnitudes of the *old* units to the *new* and multiply the old quantity by the resulting number. For example: to reduce velocity in miles per hour to feet per second, the conversion factor is lt^{-1} ; l = 5280/1, t = 3600/1, and the factor is 5280/3600 or 1.467.

(a) Fundamental Units.

The fundamental units and conversion factors in the systems of units most commonly used are: Length $[\ell]$; Mass [m]; Time $[\ell]$; Temperature $[\ell]$; and for the electrostatic system, Dielectric Constant [k]; for the electromagnetic system, Permeability $[\mu]$. The formulae will also be given for the International System of electric and magnetic units based on the units length, resistance [r], current [i], and time.

(b) DERIVED UNITS.

Name of unit.	Conversion factor. [mzlytz]			Name of units. (Heat.)	Conversion factor. $[m^z l^u l^z \theta^v]$				
dynamical.)	x	у	z	(Heat.)	æ	у	z	v	
Area, surface Volume Angle. Solid angle. Curvature. Angular velocity. Linear velocity. Angular acceleration	0 0 0 0 0 0 0	2 3 0 -I 0	0 0 0 0 -I -I -2	Quantity of heat: thermal units thermometric units dynamical units Coefficient of thermal expansion Thermal conductivity: thermal units	1 0 1	0 3 2	0 0 -2	I I O	
Linear acceleration Density Moment of inertia Intensity of attraction.	0 I I	0 2 1	-2 -3 0 -2	thermometric units or diffusivity dynamical units Thermal capacity	0 1	2 I	-I -3	0 -1	
Momentum	. I	1 . 2 2	-I -I -I	Latent heat: thermal units dynamical units	0	0 2	0 -2	î o	
Force Moment of couple,	I	I	-2	Joule's equivalent	0	2	-2	I	
torque	I	2 2	-2 -2	Entropy: heat in thermal units heat in dynamical	I	0	0	0	
Power, activity Intensity of stress Modulus of elasticity	I	2 -I -I	$ \begin{array}{r} -3 \\ -2 \\ -2 \end{array} $	units	I	. 2	-2	ı	
Compressibility Resilience Viscosity	-I I I	-I -I	2 -2 -I						

FUNDAMENTAL AND DERIVED UNITS.

Conversion Factors.

(b) DERIVED UNITS.

	1					Co		2010	n Fac	OTOR				1
Name of Unit.	Sym- bol.*		Elect	rosta			ectro		netic	emu]		natio	
(Electric and magnetic.)			m^x	lvt²k	ı,		$m^{z}l$	ut²μ¹	,	esu †		r*	i vl²t²	
		x	у	z	v	æ	у	Z	v		x	У	5	v
Quantity of electricity Electric displacement Electric surface density	Q D D	1 2 1 2 1 2	- 1 - 1 - 1 - 1 2 - 1	-I	121212	1/2 1/2 1/2	$-\frac{1}{2}$ $-\frac{3}{2}$ $-\frac{3}{2}$	000	$ \begin{array}{r} -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{array} $	c c c	0 0 0	I I I	O -2 -2	I I I
Electric field intensity Electric potential Electromotive force	E V E	1 2 1 2 1 2	-121212 1212	-I -I	$-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$	121212	1 2 8 2 3 2 3	-2 -2 -2	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	I/C I/C	1	I I I	0 0	0 0 0
Electrostatic capacity Dielectric constant Specific inductive capacity	C K	0 0 0	0	0 0 0	I 0	0 0	-I -2 0	2	-I -I 0	C ²	-I -I	0 0 0	0 - I 0	0 1
Current. Electric conductivity. Resistivity.	$egin{array}{c} \mathrm{I} \\ \gamma \\ ho \end{array}$	1/2 O	8 Q O	-2 -1	1 I -I	1/2 O	$-\frac{1}{2}$ -2	-I -I	$-\frac{1}{2}$ $-I$ I	$\begin{bmatrix} c \\ c^2 \\ I/c^2 \end{bmatrix}$	0 -1	I 0 0	0 -1	0 0 0
Conductance	g R m	0 0 1 2	I -1.	-I O	$\begin{array}{c} \mathbf{I} \\ -\mathbf{I} \\ -\frac{1}{2} \end{array}$	0 0 1/2	-1 1 3 2	1 -1 -1	-1 1 1/2	C ² I/C ² I/C	-I	0 0 I	0	0 0 I
Quantity of magnetism	т Ф Н	1 2 1 2 1 2	121212	0 0 -2	$-\frac{1}{2}$ $-\frac{1}{2}$ $\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	- S 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-1 -1	$-\frac{1}{2}$	1/c 1/c c	I	I I O	0 0 -I	I
Magnetizing force	$\overset{H}{\Omega}$	121212	H[2135 5135]54	-2 -2 -2	121212	$\frac{\frac{1}{2}}{\frac{1}{2}}$	-121212 12212	-1 -1	$-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$	C C	0	0 1	-I 0 0	0 0 0
Magnetic moment	J B	1 2 1 2 1 2	S SVex. SVex. SV	0 0	$-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$-\frac{5}{2}$ $-\frac{1}{2}$	-I -I	121212	1/c 1/c 1/c	I	I I I	1 -2 -2	I
Magnetic susceptibility Magnetic permeability Current density	κ μ	0 0 1 2	-2 -2 $-\frac{1}{2}$	2 2 - 2	-I -I -1 2	O 0 1/2	0 0 - 3/2	0 0 -I	I I -12	1/C ² 1/C ² C	I	0 0 I	-1 -1 -2	I I O
Self-inductance	L N R	0 0 0	-I -I	2 2 -2		0 0 0	-1 1	0 0 0	I I —I	$\begin{array}{c c} I/C^2 \\ I/C^2 \\ C^2 \end{array}$	1 -1	0 0 0	0 0 0	1 1
Thermoelectric power‡	_	1/2 1/2	1/2	-I	-\frac{1}{2}\dagger^+	1/2 1/2	00 0N00 c1	-2 -2	1+ 2+ 1+ 2+	I/C	I	I	0	0‡ 0‡

^{*} As adopted by American Institute of Electrical Engineers, 1915. † c is the velocity of an electromagnetic wave in the ether = 3×10^{10} approximately. ‡ This conversion factor should include [θ^{-1}].

TABLE 3.

TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES.*

(1) CUSTOMARY TO METRIC.

		7 77							-
-		LINE	AR.		-	,	CAPAC	ITY,	
	Inches to millimeters.	Feet to meters.	Yards to meters.	Miles to kilometers.		Fluid drams to milliliters or cubic centimeters.	Fluid ounces to milliliters.	Liquid quarts to liters.	Gallons to liters.
3 4 5 6 7 8	50 8001 76.2002 101.6002 127.0003 152.4003 177.8004 203.2004	0.304801 0.609601 0.914402 1.219202 1.524003 1.828804 2.133604 2.438405 2.743205	0.914402 1.828804 2.743205 3.657607 4.572009 5.486411 6.400813 7.315215 8.229616	1.60935 3.21869 4.82804 6.43739 8.04674 9.65608 11.26543 12.87478 14.48412	1 2 3 4 5 6 7 8 9	3.70 7.39 11.09 14.79 18.48 22.18 25.88 29.57 33.27	29.57 59.15 88.72 118.29 147.87 177.44 207.01 236.58 266.16	0.94633 1.89267 2.83900 3.78533 4.73167 5.67800 6.62433 7.57066 8.51700	3.78533 7.57066 11.35600 15.14133 18.92666 22.71199 26.49733 30.28266 34.06799
		SQUA	RE.				WEIG	HT,	
	Square inches to square centimeters.	Square feet to square decimeters.	Square yards to square meters.	Acres to hectares.		Grains to milligrams.	Avoirdu- pois ounces to grams.	Avoirdu- pois pounds to kito- grams.	Troy ounces to grams.
1 2 3 4 5 6 7 8 9	6.452 12.903 19.355 25.807 32.258 38.710 45.161 51.613 58.065	9.290 18.581 27.871 37.161 46.452 55.742 65.032 74.323 83.613	0.836 1.672 2.508 3.345 4.181 5.017 5.853 6.689 7.525	0.4047 0.8094 1.2141 1.6187 2.0234 2.4281 2.8328 3.2375 3.6422	1 2 3 4 5 6 7 8 9	64.7989 129.5978 194.3968 259.1957 323.9946 388.7935 453.5924 518.3913 583.1903	28.3495 56.6991 85.0486 113.3981 141.7476 170.0972 198.4467 226.7962 255.1457	0.45359 0.90718 1.36078 1.81437 2.26796 2.72155 3.17515 3.62874, 4.08233	31.10348 62.20696 93.31044 124.41392 155.51740 186.62088 217.72437 248.82785 279.93133
		CUBI	C.						
	Cubic inches to cubic centimeters.	Cubic feet to cubic meters.	Cubic yards to cubic meters.	Bushels to hectoliters.		I Gunter's I sq. statu I fathom	te mile =	1.829	meters. hectares. meters.
1 2 3 4 5 6 7 8 9	16.387 32.774 49.161 65.549 81.936 98.323 114.710 131.097 147.484	0.02832 0.05663 0.08495 0.11327 0.14159 0.16990 0.19822 0.22654 0.25485	0.765 1.529 2.294 3.058 3.823 4.587 5.352 6.116 6.881	0.35239 0.70479 1.05718 1.40957 1.76196 2.11436 2.46675 2.81914 3.17154		r nautical r r foot r avoir. po r 5432.35639	und =	1853.2 5 0.304801 453.59242; 1.000 k	

According to an executive order dated April 15, 1893, the United States yard is defined as 3600/3937 meter, and the avoirdupois pound as 1/2.20462 kilogram.

I meter (international prototype) = 1553164.13 times the wave-length of the red Cd. line. Benoit, Fabry and Perot. C. R. 144, 1007 differs only in the decimal portion from the measure of Michelson and Benoit 14 years earlier. The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many years ago, is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1861).

* Quoted from sheets issued by the United States Bureau of Standards.

roid of 1866).

TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES.

(2) METRIC TO CUSTOMARY.

				METRIC I							
		LINEA	AR.		CAPACITY.						
	Meters to inches.	Meters to feet.	Meters to yards.	Kilometers to miles.		Millili- ters or cubic cen- timeters to fluid drams.		rs to to	rs	Deca- irers to allons.	Hecto- liters to bushels.
1 2 3 4 5 6 7 8 9	39.3700 78.7400 118.1100 157.4800 196.8500 236.2200 275.5900 314.9600 354.3300	3.28083 6.56167 9.84250 13.12333 16.40417 19.68500 22.96583 26.24667 29.52750	1.093611 2.187222 3.280833 4.374444 5.468056 6.561667 7.655278 8.748889 9.842500	0.62137 1.24274 1.86411 2.48548 3.10685 3.72822 4.34959 4.97996 5.59233	1 2 3 4 5 6 7 8	0.27 0.54 0.81 1.08 1.35 1.62 1.89 2.16		076 2.11 014 3.17 153 4.22 091 5.28 029 6.34 067 7.39 05 8.45	34 5 70 7 68 10 36 13 03 15 70 18 37 21	.6418 .2836 .9253 .5671 .2089 .8507 .4924 .1342 .7760	2.8378 5.6756 8.5135 11.3513 14.1891 17.0269 19.8647 22.7026 25.5404
		SQUA	RE.					WEIG	нт.	·	
	Square centimeters to square inches.	Square meters to square feet.	Square meters to square yards.	Hectares to acres.		Milli- grams to grains.		Kilo- grams to grains.	Hec gram oun avoird	s to	Kilo- grams to pounds avoirdupois.
1 2 3 4 5 6 7 8 9	0.1550 0.3100 0.4650 0.6200 0.7750 0.9300 1.0850 1.2400 1.3950	10.764 21.528 32.292 43.055 53.819 64.583 75.347 86.111 96.875	1.196 2.392 3.588 4.784 5.980 7.176 8.372. 9.568 10.764	2.471 4.942 7.413 9.884 12.355 14.826 17.297 19.768 22.239	1 2 3 4 5 6 7 8 9	0.01543 0.03086 0.04630 0.06173 0.07716 0.09259 0.10803 0.12346	3 I	15432.36 30864.71 46297.07 61729.43 77161.78 92594.14 08026.49 23458.85 38891.21	3.52 7.05 10.58 14.10 17.63 21.16 24.69 28.21 31.74	48 22 96 70 44 18	2.20462 4.40924 6.61387 8.81849 11.02311 13.22773 15.43236 17.63698 19.84160
		CUBI	C.		,			WEIG	HT.		
1	Cubic centimeters to cubic inches.	Cubic decimeters to cubic inches.	Cubic meters to cubic feet.	Cubic meters to cubic yards.		Quintal pounds		Millie tonnes to av	pounds	to	ilograms o ounces Troy.
1 2 3 4 5 6 7 8 9	0.0610 0.1220 0.1831 0.2441 0.3051 0.3661 0.4272 0.4882 0.5492	61.023 122.047 183.070 244.094 305.117 366.140 427.164 488.187 549.210	35.314 70.269 105.943 141.258 176.572 211.887 247.201 282.516 317.830	1.308 2.616 3.924 5.232 6.540 7.848 9.156 10.464 11.771	1 2 3 4 5 6 7 8 9	220. 440. 661. 881. 1102. 1322. 1543. 1763.	92 39 85 31 77 24	220 440 661 881 110 1322 1543 1766 1982	3.9 8.5 23.1 27.7 32.4 37.0	10	32.1507 64.3015 96.4522 28.6030 60.7537 92.9045 25.0552 57.2059 89.3567

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-iridium in the proportion of 9 parts of the former to 1 of the latter metal. From one of these a certain number of kilograms were prepared, from the other a definite number of meter bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International prototype standards. The others were distributed by lot, in September, 1889, to the different governments, and are called National prototype standards. Those apportioned to the United States were received in 1890, and are kept at the Bureau of Standards in Washington, D. C.

The metric system was legalized in the United States in 1866.

The International Standard Meter is derived from the Mètre des Archives, and its length is defined by the distance between two lines at o' Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weights and Measures.

Weights and Measures.

The International Standard Kilogram is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogram des Archives.

The liter is equal to the quantity of pure water at 4° C (760 mm. Hg. pressure) which weighs 1 kilogram and = 1.000027 cu. dm. (Trav. et Mem. Bureau Intern. des P. et M. 14, 1910, Benoit.)

(For other equivalents than those below, see Table 3.)

LINEAR MEASURES.

 $r \text{ mil } (.001 \text{ in.}) = 25.4001 \,\mu$ 1 in. = .000015783 mile

1 hand (4 in.) = 10.16002 cm

1 link (.66 ft.) = 20.11684 cm

1 span (9 in.) = 22.86005 cm1 fathom (6 ft.) = 1.828804 m

1 rod (25 links) = 5.029210 m

I chain (4 rods) = 20.11684 m I light year $(9.5 \times 10^{12} \text{ km}) = 5.0 \times 10^{12}$

1 par sec $(31 \times 10^{12} \text{ km}) = 10 \times 10^{12} \text{ miles}$ $\frac{1}{64}$ in. = .397 mm

 $\frac{1}{32}$ in. = .794 mm $\frac{1}{8}$ in. = 3.175 mm $\frac{1}{2}$ in. = 12.700 mm $\frac{1}{16}$ in. = 1.588 mm $\frac{1}{4}$ in. = 6.350 mm

I Angström unit = .0000000001 m I micron $(\mu) = .000001 \text{ m} = .00003937 \text{ in.}$

 $\mathbf{m} = \mathbf{m} = \mathbf{m} = \mathbf{m}$ 1 m = 4.070960 links = 1.093611 yds.

= .198838 rod = .0497096 chain

SQUARE MEASURES.

 $1 \text{ sq. link } (62.7264 \text{ sq. in.}) = 404.6873 \text{ cm}^2$

I sq. rod (625 sq. links) = 25.29295 m² $1 \text{ sq. chain } (16 \text{ sq. rods}) = 404.6873 \text{ m}^2$

I acre (10 sq. chains) = 4046.873 m² I sq. mile (640 acres) = 2.589998 km²

 $1 \text{ km}^2 = .3861006 \text{ sq. mile}$ $1 \text{ m}^2 = 24.7104 \text{ sq. links} = 10.76387 \text{ sq. ft.}$

= .039537 sq. rod. = .00247104 sq. chain

CUBIC MEASURES.

1 board foot (144 cu. in) = 2359.8 cm³ $1 \text{ cord } (128 \text{ cu. ft.}) = 3.625 \text{ m}^3$

CAPACITY MEASURES. .

I minim (M) = .0616102 ml

I fl. dram (60 M) = 3.69661 mlI fl. oz. (8 fl. dr.) = 1.80469 cu. in.= 29.5729 ml

ı gill (4 fl. oz.) = 7.21875 cu. in. = 118.292 ml

1 liq. pt. (28.875 cu. in.) = .473167 l I liq. qt. (57.75 cu. in.) = .946333 l

I gallon (4 qt., 231 cu. in.) = 3.785332 l

1 dry pt. (33.6003125 cu. in.) = .550599 l 1 dry qt. (67.200625 cu. in.) = 1.101198 l

1 pk. (8 dry qt., 537.605 cu. in.) = 8.80958 l

1 bu. (4 pk., 2150.42 cu. in.) = 35.2383 l I firkin (9 gallons) = 34.06799 l

I liter = .264178 gal. = 1.05671 liq. qt. = 33.8147 fl. oz. = 270.518 fl. dr.

1 ml = 16.2311 minims.

ı dkl = 18.620 dry pt. = 9.08102 dry qt. = 1.13513 pk. = .28378 bu.

MASS MEASURES.

Avoirdupois weights.

I grain = .064798918 g

1 dram av. (27.34375 gr.) = 1.771845 g 1 oz. av. (16 dr. av.) = 28.349527 g

1 pd. av. (16 oz. av. or 7000 gr.) = 14.583333 oz. ap. (3) or oz. t.

= 1.2152778 or 7000/5760 pd. ap or t.

= 453.5924277 g

1 kg = 2.204622341 pd. av.

I g = I5.432356 gr. = .5643833 av. dr.

= .03527396 av. oz.

I short hundred weight (100 pds.)

= 45.359243 kg

I long hundred weight (112 pds.)

= 50.802352 kg

I short ton (2000 pds.) = 907.18486 kg

I long ton (2240 pd.)

= 1016.04704 kg

I metric ton = 0.98420640 long ton = 1.1023112 short tons

Troy weights.

1 pennyweight (dwt., 24 gr.) = 1.555174 g; gr., oz., pd. are same as apothecary

A pothecaries' weights.

1 gr. = 64.798918 mg

I scruple (Đ, 20 gr.) = 1.2959784 g I dram (3, 3 Đ) = 3.8879351 g I oz. (5, 8 3) = 31.103481 g = 31.103481 g

1 pd (123, 5760 gr.) = 373.24177 g

ı g = 15.432356 gr. = 0.771618 3

= 0.2572059 3 = .03215074 5

1 kg = 32.150742 **3** = 2.6792285 pd.

i metric carat = 200 mg = 3.0864712 gr.

U. S. ½ dollar should weigh 12.5 g and the smaller silver coins in proportion.

* Taken from Circular 47 of the U.S. Bureau of Standards, 1915, which see for more complete tables.

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.*

(1) METRIC TO IMPERIAL.

(For U.S. Weights and Measures, see Table 3.)

LINEAR MEASURE. MEASURE OF CAPACITY.

```
I millimeter (mm.)
                               0.03937 in.
   (.ooi m.)
I centimeter (.o. m.)
                               0.39370
I decimeter (.I m)
                               3.93701
                              39.370113 "
3.280843 ft.
I METER (m.)
                                1.09361425 yds.
```

1 dekameter 10.93614 (10 m.) I hectometer .=109.361425(100 m.)

I kilometer 0.62137 mile. (1,000 m.) 1 myriameter 6.21372 miles. (10,000 m.)

I micron . goot mm.

SQUARE MEASURE.

r sq. centimeter . . . == 0.1550 sq. in. 1 sq. decimeter = 15.500 sq. in. (100 sq. centm.) I sq. meter or centi- $\left\{ = \right\}$ 10.7639 sq. ft. are (100 sq. dcm.) § 1.1960 sq. yds. I ARE (100 sq. m.) = 119.60 sq. yds. I hectare (100 ares 2.47II acres. or 10,000 sq. m.)

CUBIC MEASURE.

1 cub. centimeter (c.c.) (1,000 cubic \ = 0.0610 cub. in. millimeters) I cub. decimeter (c.d.) (1,000 cubic) = 61.024centimeters) I CUB. METER $\cdot = \begin{cases} 35.3148 \text{ cub. ft.} \\ 1.307954 \text{ cub.} \end{cases}$ or stere 1.307954 cub. yds. (1,000 c.d.)

ı milliliter (ml.) (.001 (= 0.0610 cub. in. = { 0.61024 " o.070 gill. I centiliter (.o. liter) 0.176 pint. I deciliter (.I liter) . I LITER (1,000 cub. centimeters or I **=** 1.75980 pints. cub. decimeter) I dekaliter (Io liters) 2.200 gallons. r hectoliter (100 ") = 2.75 bushels. 1 kiloliter (1,000 ") = 3.437 quarters.

APOTHECARIES' MEASURE.

ı cubic centi-meter (ı gram w't) = 0.03520 fluid ounce. 0.28157 fluid drachm. 15.43236 grains weight. 1 cub. millimeter = 0.01693 minim.

AVOIRDUPOIS WEIGHT.

1 milligram (mgr.) . . = 0.01543 grain.
1 centigram (.01 gram.) = 0.15432 " ") = 1.54324 grains. 1 decigram (.1 I GRAM . . . =15.432361 dekagram (10 gram.) = 5.64383 drams.I hectogram (100 ") = 3.52739 oz.I KILOGRAM (1,000") = $\begin{cases} 2.2046223 \text{ lb} \\ 15432.2664 \end{cases}$ grains. 1 myriagram (10 kilog.) =22.04622 lbs.) = 1.96841 cwt.(100 " I quintal I millier or tonne } (t,000 kilog.) (. . = 0.9842 ton.

TROY WEIGHT.

0.03215 oz. Troy. I GRAM 0.64301 pennyweight. (15.43236 grains.

APOTHECARIES' WEIGHT.

0.25721 drachm. I GRAM 0.77162 scruple. 15.43236 grains.

Note.—The Meter is the length, at the temperature of oo C., of the platinum-iridium bar deposited at the International Bureau of Weights and Measures at Sevres, near Paris, France.

The present legal equivalent of the meter is 30,370.13 inches, as above stated.

The Kilogram is the mass of a platinum-iridium weight deposited at the same place.

The Liter contains one kilogram weight of distilled water at its maximum density (4° C.), the barometer being at 760 millimeters.

*In accordance with the schedule adopted under the Weights and Measures (metric system) Act, 1897.

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.

(2) METRIC TO IMPERIAL.

(For U.S. Weights and Measures, see Table 3.)

	LII	NEAR MEA	SURE.			ME	ASURE OF	CAPACITY	
	Millimeters to inches.	Meters to feet.	Meters to yards.	Kilo- meters to miles.		Liters to pints.	Dekaliters to gallons	Hectoliters to bushels.	Kiloliters to quarters.
1 2 3 4 5	0.03937011 0.07874023 0.11811034 0.15748045 0.19685056	3.28084 6.56169 9.84253 13.12337 16.40421	1.09361 2.18723 3.28084 4.37446 5.46807	0.62137 1.24274 1.86412 2.48540 3.10686	1 2 3 4 5	1.75980 3.51961 5.27941 7.03921 8.79902	2.19975 4.39951 6.59926 8.79902 10.99877	2.74969 5.49938 8.24908 10.99877 13.74846	3.43712 6.87423 10.31135 13.74846 17.18558
6 7 8 9	0.23622068 0.27559079 0 31496090 0.35433102	19.68506 22.96590 26.24674 29.52758	6.56169 7.65530 8.74891 9.84253	3.72823 4.34960 4.97097 5.59235	6 7 8 9	10.55882 12.31862 14.07842 15.83823	13.19852 15.39828 17.59803 19.79778	16.49815 19.24785 21.99754 24.74723	20.62269 24.05981 27.49692 30.93404
	SQI	UARE MEA	SURE.			w	EIGHT (Avo	oirdupois).	
	Square centimeters to square inches.	Square meters to square feet.	Square meters to square yards.	Hectares to acres.		Milli- grams to grains.	Kilograms to grains.	Kilo- grams to pounds,	Quintals to hundred- weights.
1 2 3 4 5	0.15500 0.31000 0.46500 0.62000 0.77500	10.76393 21.52786 32.29179 43.05572 53.81965	1.19599 2.39198 3.58798 4.78397 5.97996	2.4711 4.9421 7.4132 9.8842 12.3553	1 2 3 4 5	0.01543 0.03086 0.04630 0.06173 0.07716	15432.356 30864.713 46297.069 61729.426 77161.782	2.20462 4.40924 6.61387 8.81849 11.02311	1.96841 3.93683 5.90524 7.87365 9.84206
6 7 8 9	0.93000 1.08500 1.24000 1.39501	64.58357 75.34750 86.11143 96.87536	7.17595 8.37194 9.56794 10.76393	14.8263 17.2974 19.7685 22.2395	6 7 8 9	0.09259 0.10803 0.12346 0.13889	92594.138 108026.495 123458.851 138891.208	13,22773 15,43236 17,63698 19,84160	11.81048 13.77889 15.74730 17.71572
	CUBIC	MEASURE	•	Apothe- caries' Measure.	A	COIRDUPOIS	Troy W	EIGHT.	Apothe- caries' Weight,
	Cubic decimeters to cubic inches.	Cubic meters to cubic feet.	Cubic meters to cubic yards.	Cub. centimeters to fluid drachms.		Milliers or tonnes to tons.	Grams to ounces Troy,	Grams to penny- weights.	Grams to scruples.
1 2 3 4 5	61.02390 122.04781 183.07171 244.09561 305.11952	35.31476 70.62952 105.94428 141.25904 176.57379	1.30795 2.61591 3.92386 5.23182 6.53977	0.28157 0.56314 0.84471 1.12627 1.40784	1 2 3 4 5	0.98421 1.96841 2.95262 3.93683 4.92103	0.03215 0.06430 0.09645 0.12860 0.16075	0.64301 1.28603 1.92904 2.57206 3.21507	0.77162 1.54324 2.31485 3.08647 3.85809
6 7 8 9	366.14342 427.16732 488.19123 549.21513	211.88855 247.20331 282.51807 317.83283	7.84772 9.15568 10.46363 11.77159	1.68941 1.97098 2.25255 2.53412	6 7 8 9	5.90524 6.88944 7.87365 8.85786	0.19290 0.22506 0.25721 0.28936	3.85809 4.50110 5.14412 5.78713	4.62971 5.40132 6.17294 6.94456

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES.

(3) IMPERIAL TO METRIC.

(For U.S. Weights and Measures, see Table 3.)

LINEAR MEASURE.

	(25,400 milli-
I inch =	122000-01
I foot (12 in.) =	= 0.30480 meter
I YARD (3 ft.) =	= 0.914399 "
I pole $(5\frac{1}{2} \text{ yd.})$ =	
I chain (22 yd. or) =	- 20.1168 "
100 links) (60 11
I furlong (220 yd.) =	= 201,100
, , , , , , , , , , , , , , , , , , ,	(r.6003 kilo-
1 mile (1,760 yd.) . =	= 1 meters.

SQUARE MEASURE.

1 square inch =	6.4516 sq. cen- timeters.
1 sq. ft. (144 sq. in.) =	9.2903 sq. deci- meters.
1 SQ. YARD (9 sq. ft.) =	o.836126 sq. meters.
$1 \text{ perch } (30\frac{1}{4} \text{ sq. yd.}) = \left\{$	25.293 sq. me- ters.
1 rood (40 perches) =	10.117 ares.
I ACRE (4840 sq. yd.) =	0.40468 hectare.
1 sq. mile (640 acres) =	259.00 hectares.

CUBIC MEASURE.

```
I cub. inch = 16.387 cub. centimeters.

I cub. foot (1728) = \begin{cases} 0.028317 \text{ cub. meter, or } 28.317 \text{ cub. decimeters,} \\ 1 \text{ CUB. YARD } (27) \\ \text{cub. ft.} \end{cases}
```

APOTHECARIES' MEASURE.

4.5459631 liter
28.4123 cubic
centimeters.
3.5515 cubic
centimeters.
0.05919 cubic
centimeters.

Note. — The Apothecaries' gallon is of the same capacity as the Imperial gallon.

MEASURE OF CAPACITY.

ı gill = 1.42 deciliters.
1 pint (4 gills) = 0.568 liter.
I quart (2 pints) . = I.136 liters.
I GALLON (4 quarts) = 4.5459631 "
1 peck (2 galls.) = 9.092 "
I bushel (8 galls.) $\cdot = 3.637$ dekaliters.
1 quarter (8 bushels) = 2.909 hectoliters.

AVOIRDUPOIS WEIGHT.

т grain = {	64.8 m illi- grams.
1 dram =	1.772 grams.
	28.350 "
1 POUND (16 oz. or } =	0.45359243 kilogr.
	6.350 "
	12.70 "
	50.80 "
$\left\{\begin{array}{c} \text{1 hundredweight} \\ \text{(112 lb.)} \end{array}\right\} = \left\{\begin{array}{c} \text{1 hundredweight} \\ \text{(112 lb.)} \end{array}\right\}$	0.5080 quintal.
1 ton (20 cwt.) . =	or 1016 kilo-

TROY WEIGHT.

I	Troy ounce (480 grains avoir.)		grams.
I	pennyweight (24 (= 1.5552	"

Note. - The Troy grain is of the same weight as the Avoirdupois grain.

APOTHECARIES' WEIGHT.

I ounce (8 drachms) = 31.1035 grams.
I drachm, 5i (3 scruples) = 3.888 "
I scruple, 9i (20) = 1.296 "

Note. — The Apothecaries' ounce is of the same weight as the Troy ounce. The Apothecaries' grain is also of the same weight as the Avoirdupois grain.

Note. — The Yard is the length at 62° Fahr., marked on a bronze bar deposited with the Board of Trade.

The Pound is the weight of a piece of platinum weighed in vacuo at the temperature of 0° C., and which is also deposited with the Board of Trade.

S.

The GALLON contains 10 lb. weight of distilled water at the temperature of 62° Fahr., the barometer being at 30 inches.

TABLE 5.

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES.

(4) IMPERIAL TO METRIC.

(For U.S. Weights and Measures, see Table 3.)

P~									
	LI	NEAR ME	ASURE.			MEA	ASURE OF	CAPACITY	
	Inches to centimeters.	Feet to meters.	Yards to meters.	Miles to kilo- meters.		Quarts to liters.	Gallons to liters.	Bushels to dekaliters.	Quarters to hectoliters.
1 2 3 4 5	2.539998 5.079996 7.619993 10.159991 12.699989	0.30480 0.60960 0.91440 1.21920 1.52400	0.91440 1.82880 2.74320 3.65760 4.57200	1.60934 3.21869 4.82803 6.43737 8.04671	1 2 3 4 5	1.13649 2.27298 3.40947 4.54596 5.68245	4.54596 9.09193 13.63789 18.18385 22.72982	3.63677 7.27354 10.91031 14.54708 18.18385	2.90942 5.81883 8.72825 11.63767 14.54708
6 7 8 9	15.239987 17.779984 20.319982 22.859980	1.82880 2.13360 2.43840 2.74320	5.48640 6.40080 7.31519 8.22959	9.65606 11.26540 12.87474 14.48408	6 7 8 9	6.81894 7.95544 9.09193 10.22842	27.27578 31.82174 36.36770 40.91367	21.82062 25.45739 29.09416 32.73093	17.45650 20.36591 23.27533 26.18475
	SQ	UARE ME	ASURE.			W	EIGHT (Avo	irdupois).	
	Square inches to square centimeters.	Square feet to square decimeters.	Square yards to square meters.	Acres to hectares.		Grains to milli- grams.	Ounces to grams.	Pounds to kilo- grams.	Hundred- weights to quintals.
1 2 3 4 5	6.45159 12.90318 19.35477 25.80636 32.25794	9.29029 18.58058 27.87086 37.16115 46.45144	0.83613 1.67225 2.50838 3.34450 4.18063	0.40468 0.80937 1.21405 1.61874 2.02342	1 2 3 4 5	64.79892 129.59784 194.39675 259.19567 323.99459	28.34953 56.69905 85.04858 113.39811 141.74763	0.45359 0.90718 1.36078 1.81437 2.26796	0.50802 1.01605 1.52407 2.03209 2.54012
6 7 8 9	38.70953 45.16112 51.61271 58.06430	55.74173 65.03201 74.32230 83.61259	5.01676 5.85288 6.68901 7.52513	2.42811 2.83279 3.23748 3.64216	6 7 8 9	388.79351 453.59243 518.39135 583.19026	170.09716 198.44669 226.79621 255,14574	2.72155 3.17515 3.62874 4.08233	3.04814 3.55616 4.06419 4.57221
	CUBIC	MEASURI	Ξ.	APOTHE- CARIES' MEASURE.	A	voirdupois (cont.).	Troy W	zight	APOTHE- CARIES' WEIGHT
	Cubic inches to cubic centimeters.	Cubic feet to cubic meters.	Cubic yards to cubic meters.	Fluid drachms to cubic centimeters.		Tons to milliers or tonnes.	Ounces to grams.	Penny- weights to grams.	Scruples to grams,
1 2 3 4 5	16.38702 32.77404 49.16106 65.54808 81.93511	0.02832 0.05663 0.08495 0.11327 0.14158	0.76455 1.52911 2.29366 3.05821 3.82276	3.55153 7.10307 10.65460 14.20613 17.75767	1 2 3 4 5	1.01605 2.03209 3.04814 4.06419 5.08024	31.10348 62.20696 93.31044 124.41392 155.51740	1.55517 3.11035 4.66552 6.22070 7.77587	1.29598 2.59196 3.88794 5.18391 6.47989
6 7 8 9	98.32213 114.70915 131.09517 147.48319	0.16990 0.19822 0.22653 0.25485	4.58732 5.35187 6.11642 6.88098	21.30920 24.86074 28.41227 31.96380	6 7 8 9	6.09628 7.11233 8.12838 9.14442	186.62088 217.72437 248.82785 279.93133	9.33104 10.88622 12.44139 13.99657	7.77587 9.07185 10.36783 11.66381

DERIVATIVES AND INTEGRALS.*

d ax	= a dx	$\int x^n dx$	$=\frac{x^{n+1}}{n+1}$, unless $n=-1$
7	(dv, du)	$\int \frac{dx}{x}$	$= \log x$
duv	$= \left(u \frac{dv}{dx} + v \frac{du}{dx}\right) dx$	$\int x$	$-\log x$
	$\int_{\mathcal{I}} \frac{du}{dv} dv$	1	
$d\frac{u}{d}$	$= \left(\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}\right) dx$	$\int e^x dx$	$=e^x$
$\int_{0}^{v} dx^{n}$	$= nx^{n-1} dx$	$\int e^{ax}dx$	$=\frac{1}{a}e^{ax}$
		J eax	a
d f (u)	$=d\frac{f(u)}{du}\cdot\frac{du}{dx}\cdot dx$	$\int x e^{ax} dx$	$=\frac{e^{ax}}{a^2}(ax-1)$
$d e^x$	$= e^x dx$	Clog u du	$= x \log x - x$
$\begin{vmatrix} a & c \\ d & e^{ax} \end{vmatrix}$	$= a e^{ax} dx$	$\int \log x dx$	
		∫u dv	$= u v - \int v du$
$d \log_e x$	$=\frac{1}{x}dx$	$\int (a+bx)^n dx$	$=\frac{(a+bx)^{n+1}}{(n+1)b}$
$\int d x^x$	$= x^x \left(1 + \log_e x \right)$		
$d \sin x$	$=\cos xdx$	$\int (a^2 + x^2)^{-1} dx$	$=\frac{1}{a} \tan^{-1} \frac{x}{a} =$
		7 (4 4 %) 4 %	a a
			$\frac{1}{a} \sin^{-1} \frac{x}{\sqrt{x^2 + a^2}}$
$d \cos x$	$=-\sin xdx$	C () () 1 1	
d cos x	— — 5111 % (v.)	$\int (a^2-x^2)^{-1}dx$	$= \frac{1}{2a} \log \frac{a+x}{a-x}$
$d \tan x$	$= \sec^2 x \ dx$	$\int (a^2-x^2)^{-\frac{1}{2}} dx$	$=\sin^{-1}\frac{x}{a}$, or $-\cos^{-1}\frac{x}{a}$
$d \cot x$	$= -\csc^2 x dx$	$\int x(a^2 \pm x^2)^{-\frac{1}{2}} dx$	$= \pm (a^2 \pm x^2)^{\frac{1}{2}}$
$d \sec x$	$= \tan x \sec x dx$	$\int \sin^2 x \ dx$	$= -\frac{1}{2}\cos x \sin x + \frac{1}{2}x$
$d \csc x$	$= -\cot x \cdot \sec x dx$	$\int \cos^2 x dx$	$= \frac{1}{2}\sin x \cos x + \frac{1}{2}x$
$d \sin^{-1} x$	$= (1-x^2)^{-\frac{1}{2}} dx$	$\int \sin x \cos x dx$	$= \frac{1}{2} \sin^2 x$
$d \cos^{-1} x$	$= -(1-x^2)^{-\frac{1}{2}} dx$ = $(1+x^2)^{-1} dx$	$\int (\sin x \cos x)^{-1}$	
$ \begin{array}{c} d \tan^{-1} x \\ d \cot^{-1} x \end{array} $	$= (1+x^2)^{-1} dx$ $= -(1+x^2)^{-1} dx$	$\int \tan x dx$ $\int \tan^2 x dx$	$= -\log \cos x$ $= \tan x - x$
$d \sec^{-1} x$	$= x^{-1} (x^2 - 1)^{-\frac{1}{2}} dx$	$\int \cot x dx$	$= \log \sin x$
$\int_{0}^{a} d \csc^{-1} x$	$= -x^{-1} (x^2 - 1)^{-\frac{1}{2}} dx$	$\int \cot x dx$	$= -\cot x - x$
$d \sinh x$	$= \cosh x dx$	$\int \csc x dx$	$= \log \tan \frac{1}{2} x$
$d \cosh x$	$= \sinh x dx$	$\int x \sin x dx$	$= \sin x - x \cos x$
$d \tanh x$	$= \operatorname{sech}^2 x dx$	$\int x \cos x dx$	$=\cos x + x \sin x$
$d \coth x$	$= -\operatorname{csch}^2 x dx$	$\int \tanh x dx$	$= \log \cosh x$
d sech x	= -sech x tanh dx	$\int \coth x dx$	$= \log \sinh x$
d csch x	$= -\operatorname{csch} x \cdot \operatorname{coth} x dx$	$\int \operatorname{sech} x dx$	$= 2 \tan^{-1} e^x = \operatorname{gd} u$
$d \sinh^{-1} x$	$=(x^2+1)^{-\frac{1}{2}}dx$	$\int \operatorname{csch} x dx$	$= \log \tanh \frac{x}{2}$
$d \cosh^{-1} x$	$=(x^2-1)^{-\frac{1}{2}} dx$	$\int x \sinh x dx$	$= x \cosh x - \sinh x$
$d \tanh^{-1} x$	$= (1-x^2)^{-1} dx$	$\int x \cosh x dx$	$= x \sinh x - \cosh x$
$d \coth^{-1} x$	$= (1-x^2)^{-1} dx$	$\int \sinh^2 x dx$	$=\frac{1}{2} \left(\sinh x \cosh x - x \right)$
$d \operatorname{sech}^{-1} x$	$= -x^{-1} (1-x^2)^{-\frac{1}{2}} dx$	$\int \cosh^2 x dx$	$= \frac{1}{2} \left(\sinh x \cosh x + x \right)$
$d \operatorname{csch}^{-1} x$	$=-x^{-1}(x^2+1)^{-\frac{1}{2}}$	$\int \sinh x \cosh x dx$	$x = \frac{1}{4} \cosh(2 x)$

^{*} See also accompanying table of derivatives. For example: $\int \cos x \, dx = \sin x + \text{constant}$.

$$(x+y)^{n} = x^{n} + \frac{n}{1} x^{n-1} y + \frac{n (n-1)}{2!} x^{n-2} y^{2} + \dots$$

$$\frac{n(n-1) \dots (n-m+1)}{m!} x^{n-m} y^{m} + \dots \qquad (y^{2} < x^{2})$$

$$(1 \pm x)^{n} = 1 \pm nx + \frac{n(n-1)x^{2}}{2!} \pm \frac{n(n-1)(n-2)x^{2}}{3!} + \dots + \frac{(\pm 1)^{k} n ! x^{k}}{(n-k)! k!} + \dots (x^{2} < 1)$$

$$(1 \pm x)^{-n} = 1 \mp nx + \frac{n (n+1)}{2!} x^{2} \mp \frac{n(n+1)(n+2) x^{3}}{3!} + \dots$$

$$(\mp 1)^{k} \frac{(n+k-1) x^{k}}{(n-1)! k!} + \dots (x^{2} < 1)$$

$$(1 \pm x)^{-1} = 1 \mp x + x^{2} \mp x^{3} + x^{4} \mp x^{5} + \dots$$

$$(x^{2} < 1)$$

$$(1 \pm x)^{-2} = 1 \mp 2x + 3x^{2} \mp 4x^{3} + 5x^{4} \mp 6x^{5} + \dots$$

$$f(x) = f(x) + h f'(x) + \frac{h^{2}}{2!} f''(x) + \dots + \frac{h^{n}}{n!} f^{(n)}(x) + \dots$$

$$f(x) = f(x) + \frac{x}{1} f'(x) + \frac{x^{2}}{2!} f''(x) + \dots + \frac{x^{n}}{n!} f^{(n)}(x) + \dots$$

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$

$$(x^{2} < \infty)$$

$$a^{x} = 1 + x \log a + \frac{(x \log a)^{2}}{2!} + \frac{(x \log a)^{3}}{2!} + \dots$$

$$(x^{2} < \infty)$$

$$\log x = \frac{x-1}{x} + \frac{1}{2} \left(\frac{x-1}{x}\right)^2 + \frac{1}{3} \left(\frac{x-1}{x}\right)^3 + \dots$$
 $(x>\frac{1}{2})$

$$= (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \dots$$
 (2>x>0)

$$= 2 \left[\frac{x-1}{x+1} + \frac{1}{3} \left(\frac{x-1}{x+1} \right)^3 + \frac{1}{5} \left(\frac{x-1}{x+1} \right)^5 + \dots \right]$$
 (x>0)

$$\log (1+x) = x - \frac{1}{2} x^2 + \frac{1}{3} x^3 - \frac{1}{4} x^4 + \dots$$
 (x²<1)

$$\sin x = \frac{\mathbf{I}}{2i} \left(e^{ix} - e^{-ix} \right) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$
 (x²<\infty)

$$\cos x = \frac{\mathbf{I}}{2} (e^{ix} + e^{-ix}) = \mathbf{I} - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \mathbf{I} - \text{versin } x$$
 (x²<\iii)

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62}{2835} x^9 + \dots \qquad \left(x^2 < \frac{\pi^2}{4}\right)$$

$$\sin^{-1} x = \frac{\pi}{2} - \cos^{-1} x = x + \frac{x^3}{6} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^5}{5} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{x^7}{7} + \dots$$
 (x2<1)

$$\tan^{-1} x = \frac{\pi}{2} - \cot^{-1} x = x - \frac{1}{3} x^3 + \frac{1}{5} x^5 - \frac{1}{7} x^7 + \dots$$
 (x²<1)

$$= \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \dots$$
 (x²>1)

$$\sinh x = \frac{1}{2} (e^x - e^{-x}) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$$
 (x²<\iii)

SERIES.

$$\cosh x = \frac{1}{2} (e^{x} + e^{-x}) = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{6}}{6!} + \dots \qquad (x^{2} < \infty)$$

$$\tanh x = x - \frac{1}{3} x^{3} + \frac{2}{15} x^{5} - \frac{17}{315} x^{7} + \dots \qquad (x^{2} < \frac{1}{4}\pi^{2})$$

$$\sinh^{-1} x = x - \frac{1}{2} \frac{x^{3}}{3} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^{5}}{5} - \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \frac{x^{7}}{7} + \dots \qquad (x^{2} < 1)$$

$$= \log 2x + \frac{1}{2} \frac{1}{2x^{2}} - \frac{1}{2} \frac{3}{4} \frac{1}{4x^{4}} + \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6x^{5}} - \dots \qquad (x^{2} > 1)$$

$$\cosh^{-1} x = \log 2x - \frac{1}{2} \frac{1}{2x^{2}} - \frac{1}{2} \frac{3}{4} \frac{1}{4x^{4}} - \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6x^{5}} - \dots \qquad (x^{2} > 1)$$

$$\tanh^{-1} x = x + \frac{1}{3} x^{3} + \frac{1}{5} x^{5} + \frac{1}{7} x^{7} + \dots \qquad (x^{2} < 1)$$

$$\gcd x = \phi = x - \frac{1}{6} x^{3} + \frac{1}{24} x^{5} - \frac{61}{5040} x^{7} + \dots \qquad (x \text{ small})$$

$$= \frac{\pi}{2} - \operatorname{sech} x - \frac{1}{2} \frac{\operatorname{sech}^{3} x}{3} - \frac{1}{2} \frac{3}{4} \frac{\operatorname{sech}^{5} x}{5} - \dots \qquad (x \text{ large})$$

$$x = \gcd^{-1} \phi = \phi + \frac{1}{6} \phi^{3} + \frac{1}{24} \phi^{5} + \frac{61}{5040} \phi^{7} + \dots \qquad (\phi < \frac{\pi}{2})$$

$$f(x) = \frac{1}{2} b_{o} + b_{1} \cos \frac{\pi x}{c} + b_{2} \cos \frac{2\pi x}{c} + \dots$$

$$+ a_{1} \sin \frac{\pi x}{c} + a_{2} \cos \frac{2\pi x}{c} + \dots (-c < x < c)$$

$$a_{m} = \frac{1}{c} \int_{-c}^{+c} f(x) \sin \frac{m \pi x}{c} dx$$

$$b_{m} = \frac{1}{c} \int_{-c}^{+c} f(x) \cos \frac{m \pi x}{c} dx$$

TABLE 8.-MATHEMATICAL CONSTANTS.

·		
$e = 2.71828 \ 18285$	Numbers. $\pi = 3.14159 \ 26536$	Logarithms. 0.49714 98727
$e^{-1} = 0.36787 \ 94412$	$\pi^2 = 9.86960 44011$	0.99429 97454
$M = \log_{10} e = 0.43429 44819$	$\frac{1}{\pi} = 0.31830 98862$	9.50285 01273
$(M)^{-1} = \log_e 10 = 2.30258 50930$	$\sqrt{\pi} = 1.77245 38509$	0.24857 49363
$\log_{10}\log_{10}e = 9.63778 \ 43113$	$\frac{\sqrt{\pi}}{2} = 0.88622 \ 69255$	9-94754 49407
$\log_{10}2 = 0.3010299957$	$\frac{1}{\sqrt{\pi}} = 0.56418 95835$	9.75142 50637
$\log_e 2 = 0.6931471806$	$\frac{2}{\sqrt{\pi}} = 1.12837 \ 91671$	0.05245 50593
$\log_{10} x = \text{M.log}_{e} x $	$\sqrt{\frac{\pi}{2}} = 1.25331 \ 41373$	0.09805 99385
$\log_{B} x = \log_{e} x. \log_{B} e$	$\sqrt{\frac{2}{\pi}} = 0.79788 \ 45608$	9.90194 00615
$= \log_e x \div \log_e B$	$\frac{\pi}{4} = 0.78539 \ 81634$	9.89508 98814
$\log_e \pi = 1.14472 \ 98858$	$\frac{\sqrt{\pi}}{4} = 0.44311 \ 34627$	9.64651 49450
$\rho = 0.47693 62762$	$\frac{4}{3}\pi = 4.18879 \ 02048$	0.62208 86093
$\log \rho = 9.67846 \ \text{o}3565$	$\frac{e}{\sqrt{2 \pi}} = 1.08443 75514$	0.03520 45477

12	1000.1	n^2	n ³	V 22	п	1000.1	n^2	n^3	V n			
10	100,000	100	1000	3.1623	65	15.3846	4225	274625	8.0623			
11	90,9091	121	1331	3.3166	66	15.1515	4356	287496	8.1240			
12	83,3333	144	1728	3.4641	67	14.9254	4489	300763	8.1854			
13	76,9231	169	2197	3.6056	68	14.7059	4624	314432	8.2462			
14	71,4286	196	2744	3.7417	69	14.4928	4761	328509	8.3066			
15	66.6667	225	3375	3.8730	70	14.2857	4900	343000	8.3666			
16	62.5000	256	4096	4.0000	.71	14.0845	5041	357911	8.4261			
17	58.8235	289	4913	4.1231	72	13.8889	5184	373248	8.4853			
18	55.5556	324	5832	4.2426	73	13.6986	5329	389017	8.5440			
19	52.6316	361	6859	4.3589	74	13.5135	5476	405224	8.6023			
20	50.0000	400	8000	4.4721	75	13.3333	5625	421875	8.6603			
21	47.6190	441	9261	4.5826	76	13.1579	5776	438976	8.7178			
22	45.4545	484	10648	4.6904	77	12.9870	5929	456533	8.7750			
23	43.4783	529	12167	4.7958	78	12.8205	6084	474552	8.8318			
24	41.6667	576	13824	4.8990	79	12.6582	6241	493°39	8.8882			
25	40.0000	625	15625	5.0000	80	12.5000	6400	512000	8.9443			
26	38.4615	676	17576	5.0990	81	12.3457	6561	531441	9.0000			
27	37.0370	729	19683	5.1962	82	12.1951	6724	551368	9.0554			
28	35.7143	784	21952	5.2915	83	12.0482	6889	571787	9.1104			
29	34.4828	841	24389	5.3852	84	11.9048	7 056	592704	9.1652			
30	33·3333	900	27000	5.4772	85	11.7647	7225	614125	9.2195			
31	32.2581	961	29 7 91	5.5678	86	11.6279	7396	636056	9.2736			
32	31.2500	1024	32768	5.6569	87	11.4943	7569	658503	9.3274			
33	30·3030	1089	35937	5.7446	88	11.3636	7744	681472	9.3808			
34	29.4118	1156	393°4	5.8310	89	11.2360	7921	704969	9.4340			
35	28.5714	1225	42875	5.9161	90	11.1111	8100	729000	9.4868			
36	27.7778	1296	46656	6.0000	91	10.9890	8281	753571	9.5394			
37	27.0270	1369	50653	6.0828	92	10.8696	8464	778688	9.5917			
38	26.3158	1444	54872	6.1644	93	10.7527	8649	804357	9.6437			
39	25.6410	1521	59 3 19	6.2450	94	10.6383	8836	830584	9.6954			
40	25.0000	1600	64000	6.3246	95	10.5263	9025	857375	9.7468			
41	24.3902	1681	68921	6.4031	96	10.4167	9216	884736	9.7980			
42	23.8095	1764	74088	6.4807	97	10.3093	9409	912673	9.8489			
43	23.2558	1849	79507	6.5574	98	10.2041	9604	941192	9.8995			
44	22.7273	1936	85184	6.6332	99	10.1010	9801	970299	9.9499			
45	22.2222	2025	91125	6.7082	100	10.0000	10000	1000000	10.0000			
46	21.7391	2116	97336	6.7823	101	9.90099	10201	1030301	10.0499			
47	21.2766	2209	103823	6.8557	102	9.80392	10404	1061208	10.0995			
48	20.8333	2304	110592	6.9282	103	9.70874	10609	1092727	10.1489			
49	20.4082	2401	117649	7.0000	104	9.61538	10816	1124864	10.1980			
50	20.0000	2500	125000	7.0711	105	9.52381	11025	115 7625 1191016 1225043 1259712 1295029	10.2470			
51	19.6078	2601	132651	7.1414	106	9.43396	11236		10.2956			
52	19.2308	2704	140608	7.2111	107	9.34579	11449		10.3441			
53	18.8679	2809	148877	7.2801	108	9.25926	11664		10.3923			
54	18.5185	2916	157464	7.3485	109	9.17431	11881		10.4403			
55	18.1818	3025	166375	7.4162	110	9.09091	12100	1331000	10.4881			
56	17.8571	3136	175616	7.4833	111	9.00901	12321	1367631	10.5357			
57	17.5439	3249	185193	7.5498	112	8.92857	12544	1404928	10.5830			
58	17.2414	3364	195112	7.6158	113	8.84956	12769	1442897	10.6301			
59	16.9492	3481	205379	7.6811	114	8.77193	12996	1481544	10.6771			
60	16.6667	3600	216000	7.7460	115	8.69565	13225	1520875	10.7238			
61	16.3934	3721	226981	7.8102	116	8.62069	13456	1560896	10.7703			
62	16.1290	3844	238328	7.8740	117	8.54701	13689	1601613	10.8167			
63	15.8730	3969	250047	7.9373	118	8.474 5 8	13924	1643032	10.8628			
64	15.6250	4096	262144	8.0000	119	8. 4 0336	14161	1685159	10.9087			

OF NATURAL NUMBERS.												
72	1000.1	n^2	n^8	\n	n	1000.1	n^2	n ³	V12			
120	8.33333	.14400	1728000	10.9545	175	5.71429	30625	5359375	13.2288			
121	8.26446	14641	1771561	11.0000	176	5.68182	30976	5451776 5545233	13.2665			
122	8.19672 8.13008	14884	1815848 1860867	11.0454	177 178	5.64972 5.61798	31329 31684	5639752	13.3417			
124	8.06452	15376	1906624	11.1355	179	5.58659	32041	5735339	13.3791			
125	8.00000	1 5625	1953125	11.1803	180	5.55556	32400	5832000	13.4164			
126 127	7.93651	15876 16129	2000376	11.2250	181	5.52486	32761	5929741 6028568	13.4536			
128	7.81250	16384	2097152	11.3137	183	5.46448	33489	61 28487	13.5277			
129	7.75194	16641	2146689	11.3578	184	5.43478	33856	6229504	13.5647			
130	7.69231	16900	2197000	11.4018	185	5.40541	34225	6331625 6434856	13.6382			
131 132	7.63359	17161 17424	2248091 2299968	11.4455	186 187	5.37634 5.34759	34596 34969	6539203	13.6748			
133	7.57576 7.51880	17689	2352637	11.5326	188	5.31915	35344	6644672	13.7113			
134	7.46269	17956	2406104	11.5758	189	5.29101	35721	6751269	13.7477			
135	7.40741	18 225 18496	2460375	11.6190	190	5.26316	36100 36481	6859000 6967871	13.7840			
136	7.35294 7.29927	18769	2515456 2571353	11.7047	191 192	5.23560 5.20833	36864	7077888	13.8564			
138	7.24638	19044	2628072	11.7473	193	5.18135	37249	7189057	13.8924			
139	7.19424	19321	2685619	11.7898	194	5.1 5464	37636	7301384	13.9284			
140	7.14286	19600	2744000	11.8322	195	5.12821	38025	7414875	13.9642			
141	7.09220	19881	2803221 2863288	11.8743	196 197	5.10204 5.07614	38416 38809	7529536 7645373	14.0006			
143	6.99301	20449	2924207	11.9583	198	5.05051	39204	7762392	14.0712			
144	6.94444	20736	2985984	12.0000	199	5.02513	39601	7880599	14.1067			
145	6.89655	21025	3048625	12.0416	200	5.00000	40000	8000000	14.1421			
146	6.849 3 2 6.80272	21316	3112136	12.0830	20I 202	4.97512	40401	8120601 8242408	14.1774			
148	6.75676	21904	3241792	12.1655	203	4.92611	41209	8365427	14.2478			
149	6.71141	22201	3307949	12.2066	204	4.90196	41616	8489664	14.2829			
150	6.66667	22500	337 5000	12.2474	205	4.87805	42025	8615125	14.3178			
151 152	6.62252 6.578 95	22801	3442951	12.2882	206	4.85437	42436 42849	8741816	14.3527			
153	6.53595	23409	3581577	12.3693	208	4.80769	43264	8998912	14.4222			
154	6.49351	23716	3652264	12.4097	209	4.78469	43681	9129329	14.4568			
155	6.45161	24025	3723875	12.4499	210	4.76190	44100	9261000	14.4914			
1 56 1 57	6.41026	24336	3796416	12.4900	211 212	4.73934 4.71698	44521	9393931 9528128	14.5258			
1 58	6.32911	24964	3944312	12.5698	213	4.69484	45369	9663597	14.5945			
1 59	6.28931	25281	4019679	12.6095	214	4.67290	45796	9800344	14.6287			
160	6.25000	25600	4096000	12.6491	215	4.65116	46225	9938375	14.6629			
161 162	6.21118	25921 26244	4173281	12.6886	216	4.62963	46656	10077696	14.6969			
163	6.13497	26569	4251528	12.7279	217 218	4.60829	47089 47524	10218313	14.7309			
164	6.09756	26896	4410944	12.8062	219	4.56621	47961	10503459	14.7986			
165	6.06061.	27225	4492125	12.8452	220	4.54545	48400	10648000	14.8324			
167	5.98802	27556	4574296	12.8841	22I 222	4.52489	48841	10793861	14.8661			
168	5.95238	28224	4741632	12.9615	223	4.48430	49204	11089567	14.0997			
169	5.91716	28561	4826809	13.0000	224	4.46429	50176	11239424	14.9666			
170	5.88235	28900	491 3000	13.0384	225	4.44444	50625	11390625	15.0000			
171	5.84795 5.81395	29241	5088448	13.0767	226	4.42478	51076	11543176	15.0333			
173	5.78035	29504	5177717	13.1149	228	4.40529	51529 51984.	11697083	15.0005			
174	5.74713	30276	5268024	13.1909	229	4.36681	52441	12008989	15.1327			
<u></u>	l				W		1					

72	$1000.\frac{1}{n}$	n^2	128	V m	n	1000.1	n^2	n ⁸	V 12
230	4.34783	52900	12167000	15.1658	285	3.50877	81225	23149125	16.8819
231	4.32900	53361	12326391	15.1987	286	3.49650	81796	23393656	16.9115
232	4.31034	53824	12487168	15.2315	287	3.48432	82369	23639903	16.9411
233	4.29185	54289	12649337	15.2643	288	3.47222	82944	23887872	16.9706
234	4.27350	54756	12812904	15.2971	289	3.46021	83521	24137569	17.0000
235	4.25532	55225	12977875	15.3297	290	3.44828	84100	24389000	17.0294
236	4.23729	55696	13144256	15.3623	291	3.43643	84681	24642171	17.0587
237	4.21941	56169	13312053	15.3948	292	3.42466	85264	24897088	17.0880
238	4.20168	56644	13481272	15.4272	293	3.41297	85849	25153757	17.1172
239	4.18410	57121	13651919	15.4596	294	3.40136	86436	25412184	17.1464
240	4.16667	57600	13824000	15.4919	295	3.38983	87025	256 72375	17.1756
241	4.14938	58081	13997521	15.5242	296	3.37838	87616	25934336	17.2047
242	4.13223	58564	14172488	15.5563	297	3.36700	88209	26198073	17.2337
243	4.11523	59049	14348907	15.5885	298	3.35570	88804	26463592	17.2627
244	4.09836	59536	14526784	15.6205	299	3.34448	89401	26730899	17.2916
245	4.08163	60025	14706125	15.6525	300	3·33333	90000	27000000	17.3205
246	4.06504	60516	14886936	15.6844	301	3·32226	90601	27270901	17.3494
247	4.04858	61009	15069223	15.7162	302	3·31126	91 2 04	27543608	17.3781
248	4.03226	61504	15252992	15.7480	303	3·30033	91809	27818127	17.4069
249	4.01606	62001	15438249	15.7797	304	3·28947	92416	28094464	17.4356
250	4.00000	62500	15625000	15.8114	305	3.27869	93025	28372625	17.4642
251	3.98406	63001	15813251	15.8430	306	3.26797	93636	28652616	17.4929
252	3.96825	63504	16003008	15.8745	307	3.25733	94249	28934443	17.5214
253	3.95257	64009	16194277	15.9060	308	3.24675	94864	29218112	17.5499
254	3.93701	64516	16387064	15.9374	309	3.23625	95481	29503629	17.5784
255	3.92157	65025	16581375	15.9687	310	3.22581	96100	29791000	17.6068
256	3.90625	65536	16777216	16.0000	311	3.21543	96721	30080231	17.63 5 2
257	3.89105	66049	16974593	16.0312	312	3.20513	97344	30371328	17.6635
258	3.87§97	66564	17173512	16.0624	313	3.19489	97969	30664297	17.6918
259	3.86100	67081	17373979	16.0935	314	3.18471	98 5 96	30959144	17.7200
260	3.84615	67600	17576000	16.1245	315	3.17460	99225	31255875	17.7482
261	3.83142	68121	17779581	16.1555	316	3.16456	99856	31554496	17.7764
262	3.81679	68644	17984728	16.1864	317	3.15457	100489	31855013	17.8045
263	3.80228	69169	18191447	16.2173	318	3.14465	101124	32157432	17.8326
264	3.78788	69696	18399744	16.2481	319	3.13480	101761	32461759	17.8606
265	3.77358	70225	18609625	16.2788	320	3.12500	102400	32768000	17.8885
266	3.75940	70756	18821096	16.3095	321	3.11526	103041	33076161	17.9165
267	3.74532	71289	19034163	16.3401	322	3.10559	103684	33386248	17.9444
268	3.73134	71824	19248832	16.3707	323	3.09598	104329	33698267	17.9722
269	3.71747	72361	19465109	16.4012	324	3.08642	104976	34012224	18.0000
270	3.70370	72900	19683000	16.4317	325	3.07692	105625	34328125	18.0278
271	3.69004	7344I	19902511	16.4621	326	3.06748	106276	34645976	18.0555
272	3.67647	73984	20123648	16.4924	327	3.05810	106929	34965783	18.0831
273	3.66300	74529	20346417	16.5227	328	3.04878	107584	35287552	18.1108
274	3.64964	75076	20570824	16.5529	329	3.03951	108241	35611289	18.1384
275	3.63636	75625	20796875	16.5831	330	3.03030	108900	35937000	18.1659
276	3.62319	76176	21024576	16.6132	331	3.02115	109561	36264691	18.1934
277	3.61011	76729	21253933	16.6433	332	3.01205	110224	36594368	18.2209
278	3.59712	77284	21484952	16.6733	333	3.00300	110889	36926037	18.2483
279	3.58423	77841	21717639	16.7033	334	2.99401	111556	37259704	18.2757
280	3.57143	78400	219 5 2000	16.7332	335	2.98507	112225	37595375	18.3030
281	3.55872	78961	22188041	16.7631	336	2.97619	112896	37933056	18.3303
282	3.54610	79524	22425768	16.7929	337	2.96736	113569	38272753	18.3576
283	3.53357	80089	22665187	16.8226	338	2.95858	114244	38614472	18.3848
284	3.52113	80656	22906304	16.8523	339	2.94985	114921	38958219	18.4120

n	1000.1	n^2	n ⁸	, Vn	72	1000.1	n^2	n ³	√n
340	2.94118	115600	39304000	18.4391	395	2.53165	156025	61629875	19.8746
341	2.93255	116281	39651821	18.4662	396	2.52525	156816	62099136	19.8997
342	2.92398	116964	40001688	18.4932	397	2.51889	157609	62570773	19.9249
343	2.91545	117649	40353607	18.5203	398	2.51256	158404	63044792	19.9499
344	2.90698	118336	40707584	18.5472	399	2.50627	159201	63521199	19.9750
345	2.89855	119025	41063625	18.5742	400	2.50000	160000	64000000	20.0000
346	2.89017	119716	41421736	18.6011	401	2.49377	160801	64481201	20.0250
347	2.88184	120409	41781923	18.6279	402	2.48756	161604	64964808	20.0499
348	2.87356	121104	42144192	18.6548	403	2.48139	162409	65450827	20.0749
349	2.86533	121801	42508549	18.6815	404	2.47525	163216	65939264	20.0998
350	2.85714	122500	4287 5 000	18.7083	405	2.46914	164025	66430125	20.1246
351	2.84900	123201	43243551	18.7350	406	2.46305	164836	66923416	20.1494
352	2.84091	123904	43614208	18.7617	407	2.45700	165649	67419143	20.1742
353	2.83286	124609	43986977	18.7883	408	2.45098	166464	67917312	20.1990
354	2.82486	125316	44361864	18.8149	409	2.44499	167281	68417929	20.2237
355	2.81690	126025	44738875	18.8414	410	2.43902	168100	68921000	20.2485
356	2.80899	126736	45118016	18.8680	411	2.43309	168921	69426531	20.2731
357	2.80112	127449	45499293	18.8944	412	2.42718	169744	69934528	20.2978
358	2.79330	128164	45882712	18.9209	413	2.42131	170569	70444997	20.3224
359	2.78552	128881	46268279	18.9473	414	2.41546	171396	70957944	20.3470
360	2.77778	129600	46656000	18.9737	415	2.40964	172225	71473375	20.3715
361	2.77008	130321	47045881	19.0000	416	2.40385	173056	71991296	20.3961
362	2.76243	131044	47437928	19.0263	417	2.39808	173889	72511713	20.42 0 6
363	2.75482	131769	47832147	19.0526	418	2.39234	174724	73034632	20.4450
364	2.74725	132496	48228544	19.0788	419	2.38663	175561	73560059	20.4695
365	2.73973	133225	48627125	19.1050	420	2.38095	176400	74088000	20.4939
366	2.73224	133956	49027896	19.1311	421	2.37 5 30	177241	74618461	20.5183
367	2.72480	134689	49430863	19.1572	422	2.369 6 7	178084	75151448	20.5426
368	2.71739	135424	49836032	19.1833	423	2.36407	178929	75686967	20.5670
369	2.71003	136161	50243409	19.2094	424	2.3 5 849	179776	7622 5 024	20.5913
370	2.70270	136900	50653000	19.2354	425 426 427 428 429	2.35294	180625	76765625	20.6155
371	2.69542	137641	51064811	19.2614		2.34742	181476	77308776	20.6398
372	2.68817	138384	51478848	19.2873		2.34192	182329	77854483	20.6640
373	2.68097	139129	51895117	19.3132		2.33645	183184	78402752	20.6882
374	2.67380	139876	52313624	19.3391		2.33100	184041	78953589	20.7123
375	2,66667	140625	52734375	19.3649	430	2.32558	184900	79507000	20.7364
376	2.65957	141376	53157376	19.3907	431	2.32019	185761	80062991	20.7605
377	2.65252	142129	53582633	19.4165	432	2.31481	186624	80621568	20.7846
378	2.64550	142884	54010152	19.4422	433	2.30947	187489	81182737	20.8087
379	2.638 5 2	143641	54439939	19.4679	434	2.30415	188356	81746504	20.8327
380	2.63158	144400	54872000	19.4936	435	2.29885	189225	82312875	20.8567
381	2.62467	145161	55306341	19.5192	436	2.29358	190096	82881856	20.8806
382	2.61780	145924	55742968	19.5448	437	2.28833	190969	83453453	20.9045
383	2.61097	146689	56181887	19.5704	438	2.28311	191844	84027672	20.9284
384	2.60417	147456	56623104	19.5959	439	2.27790	192721	84604519	20.9523
385	2.59740	148225	57066625	19.6214	440	2.27273	193600	85184000	20.9762
386	2.59067	1489 9 6	57512456	19.6469	441	2.26757	194481	85766121	21.0000
387	2.58398	149769	57960603	19.6723	442	2.26244	195364	86350888	21.0238
388	2.57732	150544	58411072	19.6977	443	2.25734	196249	86938307	21.0476
389	2.57069	151321	58863869	19.7231	444	2.25225	197136	87528384	21.0713
390	2.56410	152100	59319000	19.7484	445	2.24719	198025	88121125	21.0950
391	2.55754	152881	59776471	19.7737	446	2.24215	198916	88716536	21.1187
392	2.55102	153664	60236288	19.7990	447	2.23714	199809	89314623	21.1424
393	2.54453	154449	60698457	19.8242	448	2.23214	200704	89915392	21.1660
394	2.53807	155236	61162984	19.8494	449	2.22717	201601	90518849	21.1896

n	1000.1	n ²	n ⁸	Vn.	72	1000.1	n2	n ⁸	√n
450	2.22222	202500	91125000	21.2132	505	1 08020	255025	108080600	00 1500
451	2.21729	203401	91733851	21.2368	506	1.98020	255025	128787625	22.4722
452	2.21239	204304	92345408	21.2603	507	1.97239			22.4944
453	2.20751	205209	92959677	21.2838	508	1.96850	257049	130323843	22.5167
454	2.20264	206116	93576664	21.3073	509	1.96464	258064	131096512	22.5389
			955/0004	21.30/3	200	1.90404	2 39001	1310/2229	22.5610
455	2.19780	207025	94196375	21.3307	510	1.96078	260100	132651000	22.5832
456	2.19298	207936	94818816	21.3542	511	1.95695	261121	133432831	22.6053
457	2.18818	208849	95443993	21.3776	512	1.95312	262144	134217728	22.6274
458	2.18341	209764	96071912	21.4009	513	1.94932	263169	135005697	22.6495
459	2.17865	210681	96702579	21.4243	514	1.94553	264196	135796744	22.6716
460	2.17391	211600	97336000	21.4476	515	1.94175	265225	136590875	22 6026
461	2.16920	212521	97972181	21.4709	516	1.93798	266256	137388096	22 . 6936 22.7156
462	2.16450	213444	98611128	21.4942	517	1.93424	267289	138188413	22.7376
463	2.15983	214369	99252847	21.5174	518	1.93050	268324	138991832	22.7596
464	2.15517	215296	99897344	21.5407	519	1.92678	269361	139798359	22.7816
465	2.15054	216225	100544625	21.5639	520	1.92308	270400	140608000	22.8035
466	2.14592	217156	101194696	21.5870	521	1.91939	271441	141420761	22.8254
467	2.14133	218089	101847563	21.6102	522	1.91571	272484	142236648	22.8473
468	2.13675	219024	102503232	21.6333	523	1.91205	273529	143055667	22.8692
469	2.13220	219961	103161709	21.6564	524	1.90840	274576	143877824	22.8910
470	2.12766	220900	103823000	21.6795	525	1.90476	275625	144703125	22.9129
471	2.12314	221841	104487111	21.7025	526	1.90114	276676	145531576	22.9347
472	2.11864	222784	105154048	21.7256	527	1.89753	277729	146363183	22.9565
473	2.11416	223729	105823817	21.7486	528	1.89394	278784	147197952	22.9783
474	2.10970	224676	106496424	21.7715	529	1.89036	279841	148035889	23.0000
					H				3
475	2.10526	225625	107171875	21.7945	530	1.88679	280900	148877000	23.0217
476	2.10084	226576	107850176	21.8174	531	1.88324	281961	149721291	23.0434
477	2.09644	227529	108531333	21.8403	532	1.87970	283024	150568768	23.0651
478	2.09205	228484	109215352	21.8632	533	1.87617	284089	151419437	23.0868
479	2.08768	229441	109902239	21.8861	534	1.87266	285156	1 5227 3304	23.1084
480	2.08333	230400	110592000	21.9089	535	1.86916	286225	153130375	23,1301
481	2.07900	231361	111284641	21.9317	536	1.86567	287296	153990656	23.1517
482	2.07469	232324	111980168	21.9545	537	1.86220	288 369	154854153	23.1733
483	2.07039	233289	112678587	21.9773	538	1.85874	289444	155720872	23.1948
484	2.06612	234256	113379904	22.0000	539	1.85529	290521	156590819	23.2164
	. 0.					- 0 0			_
485	2.06186	235225	114084125	22.0227	540	1.85185	291600	157464000	23.2379
486	2.05761	236196	114791256	22.0454	541	1.84843	292681	158340421	23.2594
487	2.05339	237169	115501303	22.0681	542	1.84502	293764	159220088	23,2809
488	2.04918	238144	116214272	22.0907	543	1.84162	294849	160103007	23.3024
489	2.04499	239121	116930169	22.1133	544	1.03024	295936	100909104	23.3238
490	2.04082	240100	117649000	22.1359	545	1.83486	297025	161878625	23.3452
491	2.03666	241081	118370771	22.1585	546	1.83150	298116	162771336	23.3666
492	2.03252	242064	119095488	22.1811	547	1.82815	299209	163667323	23.3880
493	2.02840	243049	119823157	22.2036	548	1.82482	300304	164566592	23.4094
494	2.02429	244036	120553784	22.2261	549	1.82149	301401	165469149	23.4307
	2.022.1		10108-000	22 2486	550	1.81818	202500	166271000	22 4521
495	2.02020	245025	121287375	22.2486		1.81488	302500	166375000	23.4521
496	2.01613	246016	122023930	22.2711	551 552	1.81159	303601	167284151	23.4734 23.4947
497	2.01207	247009	122763473	22.2935	553	1.80832	305809	169112377	23.5160
498	2.00803	248004	123505992	22.3383	554	1.80505	306916	170031464	23.5372
499	2.00401	249001	124251499	22.5505				7-3-4-4	
500	2.00000	250000	125000000	22.3607	555	1.80180	308025	170953875	23.5584
501	1.99601	251001	125751501	22.3830	556	1.79856	309136	171879616	23.5797
502	1.99203	252004	126506008	22.4054	557	1.79533	310249	172808693	23.6008
503	1.98807	253009	127263527	22.4277	558	1.79211	311364	173741112	23.6220
504	1.98413	254016	128024064	22.4499	559	1.78891	312481	174676879	23.6432

OF NATURAL NUMBERS.											
n	1000. $\frac{1}{n}$	n^2	128	\n	n	1000.1	n^2	118	V 22		
560	1.78571	313600	175616000	23.6643	615	1.62602	378225	232608375	24.7992		
561	1.78253	314721	176558481	23.6854	616	1.62338	379456	233744890	24.8193		
562	1.77936	315844	177504328	23.7065	617	1.62075	380689	234885113	24.8395		
563	1.77620	316969	178453547	23.7276	618	1.61812	381924	236029032	24.8596		
564	1.77305	318096	179406144	23.7487	619	1.61551	383161	237176659	24.8797		
565 566 567 568 569	1.76991	319225	180362125	23.7697	620	1.61290	384400	238328000	24.8998		
	1.76678	320356	181321496	23.7908	621	1.61031	385641	239483061	24.9199		
	1.76367	321489	182284263	23.8118	622	1.60772	386884	240641848	24.9399		
	1.76056	322624	183250432	23.8328	623	1.60514	388129	241804367	24.9600		
	1.75747	323761	184220009	23.8537	624	1.60256	389376	242970624	24.9800		
570	1.75439	324900	185193000	23.8747	625	1.60000	390625	244140625	25.0000		
571	1.75131	326041	186169411	23.8956	626	1.59744	391876	245314376	25.0200		
572	1.74825	327184	187149248	23.9165	627	1.59490	393129	246491883	25.0400		
573	1.74520	328329	188132517	23.9374	628	1.59236	394384	247673152	25.0599		
574	1.74216	329476	189119224	23.9583	629	1.58983	395641	248858189	25.0799		
575	1.73913	330625	190109375	23.9792	630	1.58730	396900	250047000	25.0998		
576	1.73611	331776	191102976	24.0000	631	1.58479	398161	251239591	25.1197		
577	1.73310	332929	192100033	24.0208	632	1.58228	399424	252435968	25.1396		
578	1.73010	334084	193100552	24.0416	633	1.57978	400689	253636137	25.1595		
579	1.72712	335241	194104539	24.0624	634	1.57729	401956	254840104	25.1794		
580	1.72414	336400	195112000	24.0832	635	1.57480	403225	256047875	25.1992		
581	1.72117	337561	196122941	24.1039	636	1.57233	404496	257259456	25.2190		
582	1.71821	338724	197137368	24.1247	637	1.56986	405769	258474853	25.2389		
583	1.71527	339889	198155287	24.1454	638	1.56740	407044	259694072	25.2587		
584	1.71233	3410 5 6	199176704	24.1661	639	1.56495	408321	260917119	25.2784		
585	1.70940	342225	200201625	24.1868	640	1.56250	409600	262144000	25.2982		
586	1.70648	343396	201230056	24.2074	641	1.56006	410881	263374721	25.3180		
587	1.70358	344569	202262003	24.2281	642	1.55763	412164	264609288	25.3377		
588	1.70068	345744	203297472	24.2487	643	1.55521	413449	265847707	25.3574		
589	1.69779	346921	204336469	24.2693	644	1.55280	414736	267089984	25.3772		
590	1.69492	348100	205379000	24.2899	645	1.55039	416025	268336125	25.3969		
591	1.69205	349281	206425071	24.3105	646	1.54799	417316	269586136	25.4165		
592	1.68919	350464	207474688	24.3311	647	1.54560	418609	270840023	25.4362		
593	1.68634	351649	208527857	24.3516	648	1.54321	419904	272097792	25.4558		
594	1.68350	352836	209584584	24.3721	649	1.54083	421201	273359449	25.4755		
595 596 597 598 599	1.68067	354025	210644875	24.3926	650	1.53846	422500	274625000	25.4951		
	1.67785	355216	211708736	24.4131	651	1.53610	423801	275894451	25.5147		
	1.67504	356409	212776173	24.4336	652	1.53374	425104	277167808	25.5343		
	1.67224	357604	213847192	24.4540	653	1.53139	426409	278445077	25.5539		
	1.66945	358801	214921799	24.4745	654	1.52905	427716	279 7 26264	25.5734		
600	1.66667	360000	216000000	24.4949	655	1.52672	429025.	281011375	25.5930		
601	1.66389	361201	217081801	24.5153	656	1.52439	430336	282300416	25.6125		
602	1.66113	362404	218167208	24.5357	657	1.52207	431649	283593393	25.6320		
603	1.65837	363609	219256227	24.5561	658	1.51976	432964	284890312	25.6515		
604	1.65563	364816	220348864	24.5764	659	1.51745	434281	286191179	25.6710		
605	1.65289	366025	221445125	24.5967	660	1.51515	435600	287496000	25.6905		
606	1.65017	367236	222545016	24.6171	661	1.51286	436921	288804781	25.7099		
607	1.64745	368449	223648543	24.6374	662	1.51057	438244	290117528	25.7294		
608	1.64474	369664	224755712	24.6577	663	1.50830	439569	291434247	25.7488		
609	1.64204	370881	225866529	24.6779	664	1.50602	440896	292754944	25.7682		
610	1.63934	372100	226981000	24.6982	665	1.50376	442225		25.7876		
611	1.63666	373321	228099131	24.7184	666	1.50150	443556		25.8070		
612	1.63399	374544	229220928	24.7386	667	1.49925	444889		25.8263		
613	1.63132	375769	230346397	24.7588	668	1.49701	446224		25.8457		
614	1.62866	376996	231475544	24.7790	669	1.49477	447561		25.8650		
L	1				N			1 - 3 - 9			

	OF NATURAL NUMBERS.												
72	1000.1	n^2	n^3	√n	22	1000.1	n^2	n^3	√n				
670	1.49254	448900	300763000	25.8844	725	1.37931	525625	381078125	26.9258				
671	1.49031	450241	302111711	25.9037	726	1.37741	527076	382657176	26.9444				
672	1.48810	451584	303464448	25.9230	727	1.37552	528529	384240583	26.9629				
673	1.48588	452929	304821217	25.9422	728	1.37363	529984	385828352	26.9815				
674	1.48368	454276	306182024	25.9615	729	1.37174	531441	387420489	27.0000				
675	1.48148	455625	307546875	25.9808	730	1.36986	532900	389017000	27.0185				
676	1.47929	456976	308915776	26.0000	731	1.36799	534361	390617891	27.0370				
677	1.47710	458329	310288733	26.0192	732	1.36612	535824	392223168	27.0555				
678	1.47493	459684	311665752	26.0384	733	1.36426	537289	393832837	27.0740				
679	1.47275	461041	313046839	26.0576	734	1.36240	538756	395446904	27.0924				
680	1.47059	462400	314432000	26.0768	735	1.36054	540225	397065375	27.1109				
681	1.46843	463761	315821241	26.0960	736	1.35870	541696	398688256	27.1293				
682	1.46628	465124	317214568	26.1151	737	1.35685	543169	400315553	27.1477				
683	1.46413	466489	318611987	26.1343	738	1.35501	544644	401947272	27.1662				
684	1.46199	467856	320013504	26.1534	739	1.35318	546121	403583419	27.1846				
685	1.45985	469225	321419125	26.1725	740	1.35135	547600	405224000	27.2029				
686	1.45773	470 5 96	322828856	26.1916	741	1.34953	549081	406869021	27.2213				
687	1.45560	471969	324242703	26.2107	742	1.34771	550564	408518488	27.2397				
688	1.45349	473344	325660672	26.2298	743	1.34590	552049	410172407	27.2580				
689	1.45138	474721	327082769	26.2488	744	1.34409	553536	411830784	27.2 7 64				
690	1.44928	476100	328509000	26.2679	745	1.34228	555025	413493625	27.2947				
691	1.44718	477481	329939371	26.2869	746	1.34048	556516	415160936	27.3130				
692	1.44509	478864	331373888	26.3059	747	1.33869	558009	416832723	27.3313				
693	1.44300	480249	332812557	26.3249	748	1.33690	559504	418508992	27.3496				
694	1.44092	481636	334255384	26.3439	749	1.33511	561001	420189749	27.3679				
695	I.43885	483025	3357°2375	26.3629	750	1.33333	562500	421875000	27.3861				
696	I.43678	484416	337153536	26.3818	751	1.33156	564001	423564751	27.4044				
697	I.43472	485809	338608873	26.4008	752	1.32979	565504	425259008	27.4226				
698	I.43266	487204	340368392	26.4197	753	1.32802	567009	426957777	27.4408				
699	I.43062	488601	341532°099	26.4386	754	1.32626	568516	428661064	27.4591				
700	1.42857	490000	343000000	26.4575	755 756 757 758 759	1.32450	570025	430368875	27.4773				
701	1.42653	491401	344472101	26.4764		1.32275	571536	432081216	27.4955				
702	1.42450	492804	345948408	26.4953		1.32100	573049	433798093	27.5136				
703	1.42248	494209	347428927	26.5141		1.31926	574564	435519512	27.5318				
704	1.42045	495616	348913664	26.5330		1.31752	576081	437245479	27.5500				
705 706 707 708 709	1.41844 1.41643 1.41443 1.41243	497025 498436 499849 501264 502681	350402625 351895816 353393243 354894912 356400829	26.5518 26.5707 26.5895 26.6083 26.6271	760 761 762 763 764	1.31 5 79 1.31 4 06 1.31 2 34 1.31062 1.30890	577600 579121 580644 582169 583696	438976000 440711081 442450728 444194947 445943744	27.5681 27.5862 27.6043 27.6225 27.6405				
710	1.40845	504100	357911000	26.6458	765	1.30719	58522 5	447697125	27.6586				
711	1.40647	505521	359425431	26.6646	766	1.30548	586756	449455096	27.6767				
712	1.40449	506944	360944128	26.6833	767	1.30378	588289	451217663	27.6948				
713	1.40252	508369	362467097	26.7021	768	1.30208	589824	452984832	27.7128				
714	1.40056	509796	363994344	26.7208	769	1.30039	591361	454756609	27.7308				
715	1.39860	511225	365525875	26.7395	770	1.29870	592900	456533000	27.7489				
716	1.39665	512656	367061696	26.7582	771	1.29702	594441	458314011	27.7669				
717	1.39470	514089	368601813	26.7769	772	1.29534	595984	460099648	27.7849				
718	1.39276	515524	370146232	26.7955	773	1.29366	597529	461889917	27.8029				
719	1.39082	516961	371694959	26.8142	774	1.29199	599076	463684824	27.8209				
720	1.38889	518400	373248000	26.8328	775	1.29032	600625	465484375	27.8388				
721	1.38696	519841	374805361	26.8514	776	1.28866	602176	467288576	27.8568				
722	1.38504	521284	376367048	26.8701	777	1.28700	603729	469097433	27.8747				
723	1.38313	522729	377933067	26.8887	778	1.28535	605284	470910952	27.8927				
724	1.38122	524176	379503424	26.9072	779	1.28370	606841	472729139	27.9106				

n	1000.1	n^2	n ⁸	√n	n	1000.1	. 112	n³	√n
780	1.28205	608400	474552000	27.9285	835	1.19760	697225	582182875	28.8964
781	1.28041	609961	474552000	27.9464	836	1.19617	698896	584277056	28.9137
782	1.27877	611524	478211768	27.9643	837	1.19474	700569	586376253	28.9310
783	1.27714	613089	480048687	27.9821	838	1.19332	702244	588480472	28.9482
784	1.27551	614656	481890304	28.0000	839	1.19190	703921	590589719	28.9655
	112/331	014030	4010903-4					32.3-31.5	
785	1.27389	616225	483736625	28.0179	840	1.19048	705600	592704000	. 28.9828
786	I.27226	617796	485587656	28.0357	841	1.18906	707281	594823321	29.0000
787	1.27065	619369	487443403	28.0535	842	1.18765	708964	596947688	29.0172
788	1.26904	620944	489303872	28.0713	843 844	1.18624	710649	599077107	29.0345
789	1.26743	622521	491169069	20.0091	044	_	712336	001211304	29.0517
790	1.26582	624100	493039000	28.1069	845	1.18343	714025	603351125	29.0689
791	1.26422	625681	494913671	28.1247	846	1.18203	715716	605495736	29.0861
792	1.26263	627264	496793088	28.1425	847	1.18064	717409	607645423	29.1033
793	1.26103	628849	498677257	28.1603	848	1.17925	719104	609800192	29.1204
794	1.25945	630436	500566184	28.1780	849	1.17786	720801	611960049	29.1376
795	1.25786	632025	502459875	28.1957	850	1.17647	722500	614125000	29.1548
796	1.25628	633616	504358336	28.2135	851	1.17509	724201	616295051	29.1719
797	1.25471	635209	506261573	28.2312	852	1.17371	725904	618470208	29.1890
798	1.25313	636804	508169592	28.2489°	853	1.17233	727609	620650477	29.2062
799	1.25156	638401	510082399	28.2666	854	1.17096	729316	622835864	29.2233
800	1.25000	640000	512000000	28.2843	855	1.16959	731025	625026375	29.2404
Soi	1.24844	641601	513922401	28.3019	856	1.16822	732736	627222016	29.2575
802	1.24688	643204	515849608	28.3196	857	1.16686	734449	629422793	29.2746
803	1.24533	644809	517781627	28.3373	858	1.16550	736164	631628712	29.2916
804	1.24378	646416	519718464	28.3549	859	1.16414	737881	633839779	29.3087
805	1.24224	648025	521660125	28.3725	860	1.16279	739600	636056000	29.3258
806	1.24069	649636	523606616	28.3901	861	1.16144	741321	638277381	29.3428
807	1.23916	651249	525557943	28.4077	862	1.16000	743044	640503928	29.3598
808	1.23762	652864	527514112	28.4253	863	1.15875	744769	642735647	29.3769
809	1.23609	654481	529475129	28.4429	864	1.15741	746496	644972544	29.3939
810	1.23457	656100	531441000	28.4605	865	1.15607	748225	647214625	29.4109
811	1.23305	657721	533411731	28.4781	866	1.15473	749956	649461896	29.4279
812	I.23153	659344	535387328	28.4956	867	1.15340	751689	651714363	29.4449
813	1.23001	660969	537367797	28.5132	868	1.15207	753424	653972032	29.4618
814	1.22850	662596	539353144	28.5307	869	1.15075	755161	656234909	29.4788
815	1 22600	66,000	F47040000	08 5480	870	T T4042	7.6000	648 402000	20 10 50
816	1.22549	664225 665856	541343375	28.5482 28.5657	871	1.14943	756900 758641	658503000	29.4958
817	1.22399	667489	543338496	28.5832	872	1.14679	760384	663054848	29 51 27 29 5296
818	1.22249	669124	547343432	28.6007	873	1.14548	762129	665338617	29.5466
819	1.22100	670761	549353259	28.6182	874	1.14416	763876	667627624	29.5635
820	Latori	672100	'	08 60=6	875				
821	1.21951	672400 674041	551368000	28.6336		1.14286	765625	669921875	29.5804
822	1.21803	67 5684	553387661	28.6531 28.6705	876 877	1.14155	767376	672221376	29.5973
823	1.21507	677329	555412248,	28.6880	878	1.13895	770884	674526133	29.6311
824	1.21359	678976	559476224	28.7054	879	1.13766	772641	679151439	29.6479
1				_					
825	1.21212	680625	561515625	28.7228	880	1.13636	774400	681472000	29.6648
826	1.21065	682276 683929	563559976		881 882	1.13507	776161		29.6816
828	1.20773	685584	565609283	28.7576 28.7750	883	1.13379	777924	686128968 688465387	29.6985
829	1.20627	687241	569722789	28.7924	884	1.13250	779689 781456	690807104	29.7153 29.7321
830							_		
831	1.20482	688900	571787000	28.8097	885 886	1.12994	783225	693154125	29.7489
832	1.20337	690561	573856191	28.8271 28.8444	887	1.12867	784996	695506456	29.7658
833	1.20048	693889	575930368 578009537	28.8617	888	1.12740 1.12613	786769	697864103	29.7825
834	1.19904	695556	580093704	28.8791	889	1.12486	788544	700227072	29.7993 29.8161
34	7704	773330	J	20.0/91	009	2112400	190321	702595369	29.0101
0									

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

n	1000.1	n^2	n ³	√n	n	1000. _ñ	n^2	n^3	Vn.
890	1.12360	792100	704969000	29.8329	945	1.05820	893025	843908625	30.7409
891	1.12233	793881	707347971	29.8496	946	1.05708	894916	846590536	30.7571
892	1.12108	795664	709732288	29.8664	947	1.05597	896809	849278123	30.7734
893	1.11982	797449	712121957	29.8831	948	1.05485	898704	851971392	30.7896
894	1.11857	799236	714516984	29.8998	949	1.05374	900601	854670349	30.8058
895	1.11732	801025	716917375	29.9166	950	1.05263	902500	857375000	30.8221
896	1.11607	802816	719323136	29.9333	951	1.05152	904401	860085351	30.8383
897	1.11483	804609	721734273	29.9500	952	1.05042	906304	862801408	30.8545
898	1.11359	806404	724150792	29.9666	953	1.04932	908209	865523177	30.8707
899	1.11235	808201	726572699	29.9833	954	1.04822	910116	868250664	30.8869
900	1.11111	810000	729000000	30.0000	955	1.04712	912025	870983875	30.9031
901	1.10988	811801	731432701	30.0167	956	1.04603	913936	873722816	30.9192
902	1.10865	813604	733870808	30.0333	957	1.04493	915849	876467493	30.9354
903	1.10742	815409	736314327	30.0500	958	1.04384	917764	879217912	30.9516
904	1.10619	817216	738763264	30.0666	959	1.04275	919681	881974079	30.9677
905	1.10497	819 0 25	741217625	30.0832	960	1.04167	921600	884736000	30.9839
906	1.10375	820836	743677416	30.0998	961	1.04058	923521	887503681	31.0000
907	1.10254	822649	746142643	30.1164	962	1.03950	925444	890277128	31.0161
908	1.10132	824464	748613312	30.1330	963	1.03842	927369	893056347	31.0322
909	1.10011	826281	751089429	30.1496	964	1.03734	929296	895841344	31.0483
910	1.09890	828100	753571000	30.1662	965	1.03627	931225	898632125	31.0644
911	1.09769	829921	756058031	30.1828	966	1.03520	933156	901428696	31.0805
912	1.09649	831744	758550528	30.1993	967	1.03413	935089	904231063	31.0966
913	1.09529	833569	761048497	30.2159	968	1.03306	937024	907039232	31.1127
914	1.09409	835396	763551944	30.2324	969	1.03199	938961	909853209	31.1288
915	1.09290	837225	766060875	30.2490	970	1.03093	940900	912673000	31.1448
916	1.09170	839056	768575296	30.2655	971	1.02987	942841	915498611	31.1609
917	1.09051	840889	771095213	30.2820	972	1.02881	944784	918330048	31.1769
918	1.08932	842724	773620632	30.2985	973	1.02775	946729	921167317	31.1929
919	1.08814	844561	776151559	30.3150	974	1.02669	948676	924010424	31.2090
920	1.08696	846400	778688000	30.3315	975	1.02564	950625	926859375	31.2250
921	1.08578	848241	781229961	30.3480	976	1.02459	952576	929714176	31.2410
922	1.08460	850084	783777448	30.3645	977	1.02354	954529	932574833	31.2570
923	1.08342	851929	786330467	30.3809	978	1.02249	956484	935441352	31.2730
924	1.08225	853776	788889024	30.3974	979	1.02145	958441	938313739	31.2890
925	1.08108	855625	7914 5 3125	30.4138	980	1.02041	960400	941192000	31.3050
926	1.07991	857476	794022776	30.4302	981	1.01937	962361	944076141	31.3209
927	1.07875	859329	796597983	30.4467	982	1.01833	9643 24	946966168	31.3369
928	1.07759	861184	799178752	30.4631	983	1.01729	966289	949862087	31.3528
929	1.07643	863041	801 7 6 5 089	30.4795	984	1.01626	968 25 6	952763904	31.3688
930	1.07527	864900	804357000	30.4959	985	1.01523	970 2 25	955671625	31.3847
931	1.07411	866761	806954491	30.5123	986	1.01420	972196	958585256	31.4006
932	1.07296	868624	809557568	30.5287	987	1.01317	974169	961504803	31.4166
933	1.07181	870489	812166237	30.5450	988	1.01215	976144	964430272	31.4325
934	1.07066	872356	814780504	30.5614	989	1.01112	978121	967361669	31.4484
935	1.06952	87 42 25	817400375	30.57 7 8	990	1.01010	980100	970299000	31.4643
936	1.06838	876096	820025856	30.5941	991	1.00908	982081	973242271	31.4802
937	1.06724	877969	822656953	30.6105	992	1.00806	984064	976191488	31.4960
938	1.06610	879844	825293672	30.6268	993	1.00705	986049	979146657	31.5119
939	1.06496	881 72 1	827936019	30.6431	994	1.00604	988036	982107784	31.5278
940	1.06383	883600	830584000	30.6594	995	I.00503	990025	985074875	31.5436
941	1.06270	885481	833237621	30.6757	996	I.00402	992016	988047936	31.5595
942	1.06157	887364	835896888	30.6920	997	I.0030I	994009	991026973	31.5753
943	1.06045	889249	838561807	30.7083	998	I.00200	996004	994011992	31.5911
944	1.05932	891136	841232384	30.7246	999	I.00100	998001	997002999	31.6070

TABLE 10.

N.	0	1	2	3	4	5	6	7	8	9	10
100	0000	0004	0009	0013	0017	0022	0026	0030	0035	0039	0043
101	0043	0048	0052	0056	0060	0065	0069	0073	0077	0082	0086
102	0086	0090	0095	0099	0103	0107	0111	0116	0120	0124	0128
103	0128	0133	0137	0141	0145	0149	0154	0158	0162	0166	0170
104	0170	0175	0179	0183	0187	0191	0195	0199	0204	0208	0212
105	0212	0216	0220	02 2 4	0228	0233	0237	0241	0245	0249	0253
106	0253	0257	0261	0265	0269	0273	0278	0282	0286	0290	0294
107	0294	0298	0302	0306	0310	0314	0318	0322	0326	0330	0334
108	0334	0338	0342	0346	0350	0354	0358	0362	0366	0370	0374
109	0374	0378	0382	0386	0390	0394	0398	0402	0406	0410	0414
110	0414	0418	0422	0426	0430	0434	0438	0441	0445	0449	0453
111	0453	0457	0461	0465	0469	0473	0477	0481	0484	0488	0492
112	0492	0496	0500	0504	0508	0512	0515	0519	0523	0527	0531
113	0531	0535	0538	0542	0546	0550	0554	0558	0561	0565	0569
114	0569	0573	0 5 77	0580	0584	0588	0592	0596	0599	0603	0607
115 116 117 118 119	0607 0645 0682 0719	0611 0648 0686 0722 0759	0615 0652 0689 0726 0763	0618 0656 0693 0730 0766	0622 0660 0697 0734 0 7 70	0626 0663 0700 0737 0774	0630 0667 0704 0741 0777	0633 0671 0708 0745 0781	0637 0674 0711 0748 0785	0641 0678 0715 0752 0788	0645 0682 0719 0755 0792
120 121 122 123 124	0792 0828 0864 0899	0795 0831 0867 0903 0938	0799 0835 0871 0906 0941	0803 0839 0874 0910	0806 0842 0878 0913	0810 0846 0881 0917 0952	0813 0849 0885 0920	0817 0853 0888 0924 0959	0821 0856 0892 0927 0962	0824 0860 0896 0931 0966	0828 0864 0899 0934 0969
125	0969	0973	0976	0980	0983	0986	0990	0993	0997	1000	1004
126	1004	1007	1011	1014	1017	1021	1024	1028	1031	1035	1038
127	1038	1041	1045	1048	1052	1055	1059	1062	1065	1069	1072
128	1072	1075	1079	1082	1086	1089	1092	1096	1099	1103	1106
129	1106	1109	1113	1116	1119	1123	1126	1129	1133	1136	1139
130 131 132 133 134	1139 1173 1206 1239	1143 1176 1209 1242 1274	1146 1179 1212 1245 1278	1149 1183 1216 1248 1281	1153 1186 1219 1252 1284	1156 1189 1222 1255 1287	1159 1193 1225 1258 1290	1163 1196 1229 1261 1294	1166 1199 1232 1265 1297	1169 1202 1235 1268 1300	1173 1206 1239 1271 1303
135	1303	1307	1310	1313	1316	1319	1323	1326	1329	1332	1335
136	1335	1339	1342	1345	1348	1351	1355	1358	1361	1364	1367
137	1367	1370	1374	1377	1380	1383	1386	1389	1392	1396	1399
138	1399	1402	1405	1408	1411	1414	1418	1421	1424	1427	1430
139	1430	1433	1436	1440	1443	1446	1449	1452	1455	1458	1461
140	1461	1464	1467	1471	1474	1477	1480	1483	1486	1489	1492
141	1492	1495	1498	1501	1504	1508	1511	1514	1517	1520	1523
142	1523	1526	1529	1532	1535	1538	1541	1544	1547	1550	1553
143	1553	1556	1559	1562	1565	1569	1572	1575	1578	1581	1584
144	1584	1587	1590	1593	1596	1599	1602	1605	1608	1611	1614
145	1614	1617	1620	1623	1626	1629	1632	1635	1638	1641	1644
146	1644	1647	1649	1652	1655	1658	1661	1664	1667	1670	1673
147	1673	1676	1679	1682	1685	1688	1691	1694	1697	1700	1703
148	1703	1706	1708	1711	1714	1717	1720	1723	1726	1729	1732
149	1732	1735	1738	1741	1744	1746	1749	1752	1755	1758	1761

N.	0	1	2	3	4	5	6	7	8	9	10
150 151 152 153 154	1761 1790 1818 1847 1875	1764 1793 1821 1850 1878	1767 1796 1824 1853 1881	1770 1798 1827 1855 1884	1772 1801 1830 1858 1886	1775 1804 1833 1861 1889	1778 1807 1836 1864 1892	1781 1810 1838 1867	1784 1813 1841 1870 1898	1787 1816 1844 1872 1901	1790 1818 1847 1875 1903
155	1903	1906	1909	1912	1915	1917	1920	1923	1926	1928	1931
156	1931	1934	1937	1940	1942	1945	1948	1951	1953	1956	1959
157	1959	1962	1965	1967	1970	1973	1976	1978	1981	1984	1987
158	1987	1989	1992	1995	1998	2000	2003	2006	2009	2011	2014
159	2014	2017	2019	2022	2025	2028	2030	2033	2036	2038	2041
160	2041	2044	2047	2049	2052	2055	2057	2060	2063	2066	2068
161	2068	2071	2074	2076	2079	2082	2084	2087	2090	2092	2095
162	2095	2098	2101	2103	2106	2109	2111	2114	2117	2119	2122
163	2122	2125	2127	2130	2133	2135	2138	2140	2143	2146	2148
164	2148	2151	2154	2156	2159	2162	2164	2167	2170	2172	2175
165	2175	2177	2180	2183	2185	2188	2191	2193	2196	2198	2201
166	2201	2204	2206	2209	2212	2214	2217	2219	2222	2225	2227
167	2227	2230	2232	2235	2238	2240	2243	2245	2248	2251	2253
168	2253	2256	2258	2261	2263	2266	2269	2271	2274	2276	2279
169	2279	2281	2284	2287	2289	2292	2294	2297	2299	2302	2304
170	2304	2307	2310	2312	2315	2317	2320	2322	2325	2327	2330
171	2330	2333	2335	2338	2340	2343	2345	2348	2350	2353	2355
172	2355	2358	2360	2363	2365	2368	2370	2373	2375	2378	2380
173	2380	2383	2385	2388	2390	2393	2395	2398	2400	2403	2405
174	2405	2408	2410	2413	2415	2418	2420	2423	2425	2428	2430
175	2430	2433	2435	2438	2440	2443	2445	2448	2450	2453	2455
176	2455	2458	2460	2463	2465	2467	2470	2472	2475	2477	2480
177	2480	2482	2485	2487	2490	2492	2494	2497	2499	2502	2504
178	2504	2507	2509	2512	2514	2516	2519	2521	2524	2526	2529
179	2529	2531	2533	2536	2538	2541	2543	2545	2548	2550	2553
180	2553	2555	2558	2560	2562	2565	2567	2570	2572	2574	2577
181	2577	2579	2582	2584	2586	2589	2591	2594	2596	2598	2601
182	2601	2603	2605	2608	2610	2613	2615	2617	2620	2622	2625
183	2625	2627	2629	2632	2634	2636	2639	2641	2643	2646	2648
184	2648	2651	2653	2655	2658	2660	2662	2665	2667	2669	2672
185	2672	2674	2676	2679	2681	2683	2686	2688	2690	2693	2695
186	2695	2697	2700	2702	2704	2707	2709	2711	2714	2716	2718
187	2718	2721	2723	2725	2728	2730	2732	2735	2737	2739	2742
188	2742	2744	2746	2749	2751	2753	2755	2758	2760	2762	2765
189	2765	2767	2769	2772	2774	2776	2778	2781	2783	2785	2 7 88
190	2788	2790	2792	2794	2797	2799	2801	2804	2806	2808	2810
191	2810	2813	2815	2817	2819	2822	2824	2826	2828	2831	2833
192	2833	2835	2838	2840	2842	2844	2847	2849	2851	2853	2856
193	2856	2858	2860	2862	2865	2867	2869	2871	2874	2876	2878
194	2878	2860	2882	2885	2887	2889	2891	2894	2896	2898	2900
195	2900	2903	2905	2907	2909	2911	2914	2916	2918	2920	2923
196	2923	2925	2927	2929	29 3 1	2934	2936	2938	2940	2942	2945
197	2945	2947	2949	2951	2953	2956	2958	2960	2962	2964	2967
198	2967	2969	2971	2973	2975	2978	2980	2982	2984	2986	2989
199	2989	2991	2993	2995	2997	2999	3002	3004	3006	3008	3 010

TABLE 11.

						_				_]	P. F	٠.	
N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5
10 11 12 13 14	0000 0414 0792 1139 1461	0043 0453 0828 1173 1492	0086 0492 0864 1206 1523	0128 0531 0899 1239 1553	0170 0569 0934 1271 1584	0212 0607 0969 1303 1614	0253 0645 1004 1335 1644	0294 0682 1038 1367 1673	0334 0719 1072 1399 1703	0374 0755 1106 1430 1732	4 4 3 3 3 3	8 8 7 6 6	12 11 10 10	17 15 14 13	21 19 17 16
15 16 17 18 19	1761 2041 2304 2553 2788	1790 2068 2330 2577 2810	1818 2095 2355 2601 2833	1847 2122 2380 2625 2856	1875 2148 2405 2648 2878	1903 2175 2430 2672 2900	1931 2201 2455 2695 2923	1959 2227 2480 2718 2945	1987 2253 2504 2742 2967	2014 2279 2529 2765 2989	3 3 2 2 2 2	6 5 5 4	8 7 7 7	11 10 9 9	14 13 12 12 11
20 21 22 23 24	3010 3222 3424 3617 3802	3032 3243 3444 3636 3820	3°54 3263 3464 3655 3838	3°75 3284 3483 3674 3856	3096 3304 3502 3692 3874	3118 3324 3522 3711 3892	3139 3345 3541 3729 3909	3160 3365 3560 3747 3927	3181 3385 3579 3766 3945	3201 3404 3598 3784 3962	2 2 2 2	4 4 4 4 4	6 6 5 5	8 8 7 7	10 10 9
25 26 27 28 29	3979 4150 4314 4472 4624	3997 4166 4330 4487 4639	4014 4183 4346 4502 4654	4031 4200 4362 4518 4669	4048 4216 4378 4533 4683	4065 4232 4393 4548 4698	4082 4249 4409 4564 4713	4099 4265 4425 4579 4728	4116 4281 4440 4594 4742	4133 4298 4456 4609 4757	2 2 2 2 1	3 3 3 3 3	5 5 5 5 4	7 7 6 6 6	9 8 8 8 7
30 31 32 33 34	4771 4914 5051 5185 5315	4786 4928 5065 5198 5328	4800 4942 5079 5211 5340	4814 4955 5092 5224 5353	4829 4969 5105 5237 5366	4843 4983 5119 5250 5378	4857 4997 5132 5263 5391	4871 5011 5145 5276 5403	4886 5024 5159 5289 5416	4900 5038 5172 5302 5428	I I I I	3 3 3 3	4 4 4 4 4	6 5 5 5	7 7 7 6 6
35 36 37 38 39	5441 5563 5682 5798 5911	5453 5575 5694 5809 5922	5465 5587 5705 5821 5933	5478 5599 5717 5832 5944	5490 5611 5729 5843 5955	5502 5623 5740 5855 5966	5514 5635 5752 5866 5977 *	5527 5647 5763 5877 5988	5539 5658 5775 5888 5999	5551 5670 5786 5899 6010	I I I I	2 2 2 2	4 4 3 3 3	5 5 5 5 4	6 6 6 6
40 41 42 43 44	6021 6128 6232 6335 6435	6031 6138 6243 6345 6444	6042 6149 6253 6355 6454	6053 6160 6263 6365 6464	6064 6170 6274 6375 6474	6075 6180 6284 6385 6484	6085 6191 6294 6395 6493	6096 6201 6304 6405 6503	6107 6212 6314 6415 6513	6117 6222 6325 6425 6522	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	3 3 3 3 3	4 4 4 4 4	5 5 5 5
45 46 47 48 49	6532 6628 6721 6812 6902	6542 6637 6730 6821 6911	6551 6646 6739 6830 6920	6561 6656 6749 6839 6928	6571 6665 6758 6848 6937	6580 6675 6767 6857 6946	6590 6684 6776 6866 6955	6599 6693 6785 6875 6964	6609 6702 6794 6884 6972	6618 6712 6803 6893 6981	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	3 3 3 3	4 4 4 4 4	5 5 4 4
50 51 52 53 54	6990 7076 7160 7243 7324	6998 7084 7168 7251 7332	7007 7093 7177 7259 7340	7016 7101 7185 7 267 7348	7024 7110 7 193 7275 7356	7033 7118 7202 7284 7364	7042 7126 7210 7292 7372	7050 7135 7218 7300 7380	7059 7143 7226 7308 7388	7067 7152 7235 7316 7396	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	3 3 2 2 2	3 3 3 3	4 4 4 4 4

LOGARITHMS.

	N.	0	1	2	3	4	4							P. I		
ı						- *	5	6	7	8	9	1	2	3	4	5
	55 56 57 58 59	7404 7482 7559 7634 7709	7412 7490 7566 7642 7 716	7419 7497 7574 7649 7723	7427 7505 7582 7657 7731	7435 7513 7589 7664 7738	7443 7520 7597 7672 7745	7451 7528 7604 7679 7752	74 5 9 7536 7612 7686 7760	7466 7543 7619 7694 7767	7474 7551 7627 7701 7774	I I I I	2 2 2 I I	2 2 2 2 2	3 3 3 3	4 4 4 4 4
	60 61 62 63 64	7782 7853 7924 7993 8062	7789 7860 7931 8000 8069	7796 7868 7938 8007 8075	7803 7875 7945 8014 8082	7810 7882 7952 8021 8089	7818 7889 7959 8028 8096	7825 7896 7966 8035 8102	7832 7903 7973 8041 8109	7839 7910 7980 8048 8116	7846 7917 7987 8055 8122	I I I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	3 3 3 3 3	4. 4 3 3 3 3
	65 66 67 68 69	8129 8195 8261 8325 8388	8i 36 8202 8267 8331 8395	8142 8209 8274 8338 8401	8149 8215 8280 8344 8407	8156 8222 8287 8351 8414	8162 8228 8293 8357 8420	8169 8235 8299 8363 8426	8176 8241 8306 8370 8432	8182 8248 8312 8376 8439	8189 8254 8319 8382 8445	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I I I I	2 2 2 2	3 3 3 3	3 3 3 3 3
	70 71 72 73 74	8451 8513 8573 8633 8692	8457 8519 8579 8639 8698	8463 ·8525 8585 8645 8704	8470 8531 8591 8651 8710	8476 8537 8597 8657 8716	8482 8543 8603 8663 8722	8488 8549 8609 8669 8727	8494 8555 8615 8675 8733	8500 8561 8621 8681 8739	8506 8567 8627 8686 8745	I I I I	I I I I	2 2 2 2 2	2 2 2 2 2	3 3 3 3 3 3
	75 76 77 78 79	8751 8808 8865 8921 8976	8756 8814 8871 8927 8982	8762 8820 8876 8932 8987	8768 8825 8882 8938 8993	8774 8831 8887 8943 8998	8779 8837 8893 8949 9004	878 5 8842 8899 8954 9009	8791 8848 8904 8960 9015	879 7 8854 8910 8965 9020	8802 8859 8915 8971 9025	I I I I	I I I I	2 2 2 2 2	2 2 2 2	3 3 3 3 3
	80 81 82 83 84	9031 9085 9138 9191 9243	9036 9090 9143 9196 9248	9042 9096 9149 9201 9253	9047 9101 9154 9206 9258	90 5 3 9106 91 5 9 9212 9263	9058 9112 9165 9217 9269	9063 9117 9170 9222 9274	9069 9122 9175 9227 9279	9074 9128 9180 9232 9284	9079 9133 9186 9238 9289	I I I I	I I I I	2 2 2 2	2 2 2 2	3 3 3 3 3
	85 86 87 88 89	9294 934 5 9395 9445 9494	9299 9350 9400 9450 9499	9304 9355 9405 9455 9504	9309 9360 9410 9460 9509	9315 9365 9415 9465 9513	9320 9370 9420 9469 9518	93 ² 5 9375 94 ² 5 9474 95 ² 3	9330 9380 9430 9479 9528	9335 9385 9435 9484 9533	9340 9390 9440 9489 9538	I 0 0 0	I I I I	2 1 1 1	2 2 2 2 2	3 2 2 2 2
	90 91 92 93 94	954 2 9590 9638 9685 9731	9547 9595 9643 9689 9736	9552 9600 9647 9694 9741	9557 9605 9652 9699 9745	9 5 62 9609 9657 9703 9750	9566 9614 9661 9708 9754	9571 9619 9666 9713 9759	9576 9624 9671 9717 9763	9581 9628 9675 9722 9768	9586 9633 9680 9727 9773	0 0 0 0 0	I I I I	I I I I	2 2 2 2	2 2 2 2 2
	95 96 97 98 99	9777 98 23 9868 9912 99 5 6	9782 9827 9872 9917 9961	9786 9832 9877 9921 9965	9791 9836 9881 9926 9969	9795 9841 9886 9930 9974	9800 9845 9890 9934 9978	980 5 9850 9894 9939 998 3	9809 9854 9899 9943 9987	9814 9859 9903 \ 9948 9991	9818 9863 9908 9952 9996	0 0 0 0 0	I I I I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	2 2 2 2 2
	77	9930		99°3		77/7					777-					

TABLE 12.
ANTILOGARITHMS.

]	P. F	·.	
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5
.00 .01 .02 .03	1000 1023 1047 1072 1096	1002 1026 1050 1074 1099	1005 1028 1052 1076 1102	1007 1030 1054 1079 1104	1009 1033 1057 1081 1107	1012 1035 1059 1084 1109	1014 1038 1062 1086 1112	1016 1040 1064 1089	1019 1042 1067 1091	1021 1045 1069 1094 1119	00000	0 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
.05 .06 .07 .08	1122 1148 1175 1202 1230	1125 1151 1178 1205 1233	1127 1153 1180 1208 1236	1130 1156 1183 1211 1239	1132 1159 1186 1213 1242	1135 1161 1189 1216 1245	1138 1164 1191 1219 1247	1140 1167 1194 1222 1250	1143 1169 1197 1225 1253	1146 1172 1199 1227 1256	00000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
.10 .11 .12 .13 .14	1259 1288 1318 1349 1380	1262 1291 1321 1352 1384	1265 1294 1324 1355 1387	1268 1297 1327 1358 1390	1271 1300 1330 1361 1393	1274 1303 1334 1365 1396	1276 1306 1337 1368 1400	1279 1309 1340 1371 1403	1282 1312 1343 1374 1406	1285 1315 1346 1377 1409	0 0 0 0	I I I I	I I I I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1 2 2 2 2
.15 .16 .17 .18	1413 1445 1479 1514 1549	1416 1449 1483 1517 1552	1419 1452 1486 1521 1556	1422 1455 1489 1524 1560	1426 1459 1493 1528 1563	1429 1462 1496 1531 1567	1432 1466 1500 1535 1570	1435 1469 1503 1538 1574	1439 1472 1507 1542 1578	1442 1476 1510 1545 1581	00000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2
.20 .21 .22 .23 .24	1585 1622 1660 1698 1738	1589 1626 1663 1702 1742	1 592 1 629 1 667 1 7 0 6 1 7 4 6	1596 1633 1671 1710 1750	1600 1637 1675 1714 1 754	1603 1641 1679 1718 1758	1607 1644 1683 1722 1762	1611 1648 1687 1726 1766	1614 1652 1690 1730 1770	1618 1656 1694 1734 1774	0 0 0 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I 2 2 2 2	2 2 2 2 2 2 2
.25 .26 .27 .28 .29	1778 1820 1862 1905 1950	1782 1824 1866 1910	1786 1828 1871 1914 1959	1791 1832 1875 1919 1963	1795 1837 1879 1923 1968	1799 1841 1884 1928 1972	1803 1845 1888 1932 1977	1807 1849 1892 1936 1982	1811 1854 1897 1941 1986	1816 1858 1901 1945 1991	0 0 0 0	I	I	2 2 2 2	2 2 2 2
.30 .31 .32 .33 .34	1995 2042 2089 2138 2188	2000 2046 2094 2143 2193	2004 2051 2099 2148 2198	2009 2056 2104 2153 2203	2014 2061 2109 2158 2208	2018 2065 2113 2163 2213	2023 2070 2118 2168 2218	2028 2075 2123 2173 2223	2032 2080 2128 2178 2228	2037 2084 2133 2183 2234	0 0 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I I I I 2	2 2 2 2	2 2 2 3
.35 .36 .37 .38 .39	2239 2291 2344 2399 2455	2244 2296 2350 2404 2460	2249 2301 2355 2410 2466	2254 2307 2360 2415 2472	2259 2312 2366 2421 2477	2265 2317 2371 2427 2483	2270 2323 2377 2432 2489	2275 2328 2382 2438 2495	2280 2333 2388 2443 2500	2286 2339 2393 2449 2506	I I I I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	2 2 2 2	3 3 3 3
.40 .41 .42 .43 .44	2512 2570 2630 2692 2754	2518 2576 2636 2698 2761	2523 2582 2642 2704 2767	2529 2588 2649 2710 2773	2535 2594 2655 2716 2780	2541 2600 2661 2723 2786	2547 2606 2667 2729 2793	2553 2612 2673 2735 2799	2559 2618 2679 2742 2805	2564 2624 2685 2748 2812	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	2 2 2 3 3	3 3 3 3
.45 .46 .47 .48 .49	2818 2884 2951 3020 3090	2825 2891 2958 3027 3097	2831 2897 2965 3034 3105	2838 2904 2972 3041 3112	2844 2911 2979 3048 3119	2851 2917 2985 3055 3126	2858 2924 2992 3062 3133	2864 2931 2999 3069 3141	2871 2938 3006 3076 3148	2877 2944 3013 3083 3155	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	3 3 3 3	3 3 4 4 4

ANTILOGARITHMS.

	0 1		2	3	4	5	6	7	8	9			P. I	٠.	
											1	2	3	4	5
.50 .51 .52 .53 .54	3162 3236 3311 3388 3467	3170 3243 3319 3396 3475	3177 3251 3327 3404 3483	3184 3258 3334 3412 3491	3192 3266 3342 3420 3499	3199 3273 3350 3428 3508	3206 3281 3357 3436 3516	3 ² 14 3 ² 89 33 ⁶ 5 3443 35 ² 4	3221 3296 3373 3451 3532	3228 3304 3381 3459 3540	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I 2 2 2 2 2	2 2 2 2	3 3 3 3	4 4 4 4 4
.55 .56 .57 .58 .59	3548 3631 3715 3802 3890	3556 3639 3724 3811 3899	3565 3648 3733 3819 3908	3573 3656 3741 3828 3917	3581 3664 3750 3837 3926	3589 3673 3758 3846 3936	3597 3681 376 7 3855 3945	3606 3690 3776 3864 3954	3614 3698 3784 3873 3963	3622 3707 3793 3882 3972	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	2 3 3 3 3	3 3 4 4	4 4 4 5
.60 .61 .62 .63 .64	3981 4074 4169 4266 4365	3990 4083 4178 4276 437 5	3999 4093 4188 4285 4385	4009 4102 4198 4295 4395	4018 4111 4207 4305 4406	4027 4121 4217 4315 4416	4036 4130 4227 4325 4426	4046 4140 4236 4335 4436	4055 4150 4246 4345 4446	4064 4159 4256 4355 4457	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	3 3 3 3 3	4 4 4 4 4	5 5 5 5
.65 .66 .67 .68 .69	4467 457 I 4677 4786 4898	4477 4581 4688 4797 4909	4487 4592 4699 4808 4920	4498 4603 4710 4819 4932	4508 4613 4721 4831 4943	4519 4624 4732 4842 4955	4529 4634 4742 4853 4966	4539 4645 4753 4864 4977	4550 4656 4764 4875 4989	4560 4667 4775 4887 5000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	3 3 3 3	4 4 4 4 5	5 5 5 6 6
.70 .71 .72 .73 .74	5012 5129 5248 5370 5495	5023 5140 5260 5383 5508	5035 5152 5272 5395 5521	5047 5164 5284 5408 5534	5058 5176 5297 5420 5546	5070 5188 5309 5433 5559	5082 5200 5321 5445 5572	5093 5212 5333 5458 5585	5105 5224 5346 5470 5598	5117 5236 5358 5483 5610	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 3 3	4 4 4 4 4	5 5 5 5 5	6 6 6
. 75 .76 .77 .78 .79	5623 . 5754 5888 6026 6166	5636 5768 5902 6039 6180	5649 5781 5916 6053 6194	5662 5794 5929 6067 6209	5675 5808 5943 6081 6223	5689 5821 5957 6095 6237	5702 5834 5970 6109 6252	5715 5848 5984 6124 6266	5728 5861 5998 6138 6281	5741 5875 6012 6152 6295	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	3 3 3 3	4 4 4 4	5 5 5 6 6	7 7 7 7 7 7 7
.80 .81 .82 .83 .84	6310 6457 6607 6761 6918	6324 6471 6622 6776 6934	6339 6486 663 7 6792 6950	6353 6501 6653 6808 6966	6368 6516 6668 6823 6982	6383 6531 6683 6839 6998	6397 6546 6699 6855 7015	6412 6561 6714 6871 7031	6427 6577 6730 6887 7047	6442 6592 6745 6902 7063	I 2 2 2 2 2	3 3 3 3	4 5 5 5 5	6 6 6 6	7 8 8 8 8
.85 .86 .87 .88 .89	7079 7244 7413 7586 7762	7096 7261 7430 7603 7780	7112 7278 7447 7621 7798	7129 7295 7464 7638 7816	7145 7311 7482 7656 7834	716 1 7328 7499 7674 7852	7178 7345 7516 7691 7870	7194 7362 7534 7709 7889	7211 7379 7551 7727 7907	7228 7396 7568 7745 7925	2 2 2 2	3 3 4 4	5 5 5 5	7 7 7 7 7	8 8 9 9
.90 .91 .92 .93 .94	7943 8128 8318 8511 8710	7962 8147 8337 8531 8730	7980 8166 8356 8551 8750	7998 8185 8375 8570 8770	8017 8204 8395 8590 8790	8035 8222 8414 8610 8810	8054 8241 8433 8630 8831	8072 8260 8453 8650 8851	8091 8279 8472 8670 8872	8110 8299 8492 8690 8892	2 2 2 2 2	4 4 4 4 4	6 6 6	7 8 8 8 8	9 9 10 10
.95 .96 .97 .98 .99	8913 9120 9333 9550 9772	8933 9141 9354 9572 9795	8954 9162 9376 9594 981 7	8974 9183 9397 9616 9840	8995 9204 9419 9638 9863	9016 9226 9441 9661 9886	9036 9247 9462 9683 9908	9057 9268 9484 9705 9931	9078 9290 9506 9727 9954	9099 9311 9528 9750 9977	2 2 2 2	4 4 4 5	6 7 7 7	8 8 9 9	11 11 11

Table 13.
ANTILOGARITHMS.

	0	1	2	3	4	5	6	7	8	9	10
.900	7943	7945	7947	7949	7951	795 ²	7954	7956	7958	7960	7962
.901	7962	7963	7965	7967	7969	797 ¹	7973	7974	7976	7978	7980
.902	7980	7982	7984	7985	7987	7989	7991	7993	7995	7997	7998
.903	7998	8000	8002	8004	8006	8008	8009	8011	8013	8015	8017
.904	8017	8019	8020	8022	8024	8026	8028	8030	8032	8033	8035
.905 .906 .907 .908	8035 8054 8072 8091 8110	8037 8056 8074 8093 8111	8039 8057 8076 8095 8113	8041 8059 8078 8097 8115	8043 8061 8080 8098 8117	8045 8063 8082 8100 8119	8046 8065 8084 8102 8121	8048 8067 8085 8104 8123	8050 8069 8087 8106 8125	8052 8070 8089 8108 8126	8054 8072 8091 8110 8128
.910	8128	8130	8132	8134	8136	8138	8140	8141	8143	8145	8147
.911	8147	8149	8151	8153	8155	8156	8158	8160	8162	8164	8166
.912	8166	8168	8170	8171	8173	8175	8177	8179	8181	8183	8185
.913	8185	8187	8188	8190	8192	8194	8196	8198	8200	8202	8204
.914	8204	8205	8207	8209	8211	8213	8215	8217	8219	8221	8222
.915 .916 .917 .918	8222 8241 8260 8279 8299	8224 8243 8262 8281 8300	8226 8245 8264 8283 8302	8228 8247 8266 8285 8304	8230 8249 8268 8287 8306	8232 8251 8270 8289 8308	8234 8253 8272 8291 8310	8236 8255 8274 8293 8312	8238 8257 8276 8295 8314	8239 8258 8278 8297 8316	8241 8260 8279 8299 8318
.920	8318	8320	8321	8323	8325	8327	8329	8331	8333	8335	8337
.921	8337	8339	8341	8343	8344	8346	8348	8350	8352	8354	8356
.922	8356	8358	8360	8362	8364	8366	8368	8370	8371	8373	8375
.923	8375	8377	8379	8381	8383	8385	8387	8389	8391	8393	8395
.924	8395	8397	8398	8400	8402	8404	8406	8408	8410	8412	8414
. 925	8414	8416	8418	8420	8422	8424	8426	8428	8429	8431	8433
.926	8433	8435	8437	8439	8441	8443	8445	8447	8449	8451	8453
.927	8453	8455	8457	8459	8461	8463	8464	8466	8468	8470	8472
.928	8472	8474	8476	8478	8480	8482	8484	8486	8488	8490	8492
.929	8492	8494	8496	8498	8500	8502	8504	8506	8507	8509	8511
.930 .931 .932 .933 .934	8511 8531 8551 8570 8590	8513 8533 8553 8572 8592	8515 8535 8555 8574 8594	8517 8537 8557 8576 8596	8519 8539 8559 8578 8598	8521 8541 8561 8580 8600	8523 8543 8562 8582 8602	8525 8545 8564 8584 8604	8527 8547 8566 8586 8606	8529 8549 8568 8588 8608	8531 8551 8570 8570 8590 8610
.935	8610	8612	8614	8616	8618	8620	8622	8624	8626	8628	8630
.936	8630	8632	8634	8636	8638	8640	8642	8644	8646	8648	8650
.937	8650	8652	8654	8656	8658	8660	8662	8664	8666	8668	8670
.938	8670	8672	8674	8676	8678	8680	8682	8684	8686	8688	8690
.939	8690	8692	8694	8696	8698	8700	8702	8704	8706	8708	8710
.940	8710	8712	8714	8716	8718	8720	8722	8724	8726	8728	8730
.941	8730	8732	8734	8736	8738	8740	8742	8744	8746	8748	8750
.942	8750	8752	8754	8756	8758	8760	8762	8764	8766	8768	8770
.943	8770	8772	8774	8776	8778	8780	8782	8784	8786	8788	8790
.944	8790	8792	8794	8796	8798	8800	8802	8804	8806	8808	8810
.945	8810	8813	8815	8817	8819	8821	8823	8825	8827	8829	8831
.946	8831	8833	8835	8837	8839	8841	8843	8845	8847	8849	8851
.947	8851	8853	8855	8857	8859	8861	8863	8865	8867	8870	8872
.948	8872	8874	8876	8878	8880	8882	8884	8886	8888	8890	8892
.949	8892	8894	8896	8898	8900	8902	8904	8906	8908	8910	8913

	0										
		1	2	3	4	5	6	7	8	9	10
.950	8913	8915	8917	8919	8921	8923	8925	8927	8929	8931	8933
.951	8933	8935	8937	8939	8941	8943	8945	8947	8950	8952	8954
.952	8954	8956	8958	8960	8962	8964	8966	8968	8970	8972	8974
.953	8974	8976	8978	8980	8983	8985	8987	8989	8991	8993	8995
.954	8995	8997	8999	9001	9003	9005	9007	9009	9012	9014	9016
.955	9016	9018	9020	9022	9024	9026	9028	9030	9032	9034	9036
.956	9036	9039	9041	9043	9045	9047	9049	9051	9053	9055	9057
.957	9057	9059	9061	9064	9066	9068	9070	9072	9074	9076	9078
.958	9078	9080	9082	9084	9087	9089	9091	9093	9095	9097	9099
.959	9099	9101	9103	9105	9108	9110	9112	9114	9116	9118	9120
.960	9120	9122	9124	9126	9129	9131	9133	9135	9137	9139	9141
.961	9141	9143	9145	9147	9150	9152	9154	9156	9158	9160	9162
.962	9162	9164	9166	9169	9171	9173	9175	9177	9179	9181	9183
.963	9183	9185	9188	9190	9192	9194	9196	9198	9200	9202	9204
.964	9204	9207	9209	9211	9213	9215	9217	9219	9221	9224	9226
.965	9226	9228	9230	9232	9234	9236	9238	9241	9243	9245	9247
.966	9247	9249	9251	9253	9256	9258	9260	9262	9264	9266	9268
.967	9268	9270	9273	9275	9277	9279	9281	9283	9285	9288	9290
.968	9290	9292	9294	9296	9298	9300	9303	9305	9307	9309	9311
.969	9311	9313	9315	9318	9320	9322	9324	9326	9328	9330	9333
.970	9333	9335	9337	9339	9341	9343	9345	9348	93 5 0	9352	9354
.971	9354	9356	9358	9361	9363	9365	9367	9369	9371	9373	9376
.972	9376	9378	9380	9382	9384	9386	9389	9391	9393	9395	9397
.973	9397	9399	9402	9404	9406	9408	9410	9412	9415	9417	9419
.974	9419	9421	9423	9425	9428	9430	9432	9434	9436	9438	9441
.975	9441	9443	9445	9447	9449	9451	9454	9456	9458	9460	9462
.976	9462	9465	9467	9469	9471	9473	9475	9478	9480	948 2	9484
.977	9484	9486	9489	9491	9493	9495	9497	9499	9502	9504	9506
.978	9506	9508	9510	9513	9515	9517	9519	9521	9524	9526	9528
.979	9528	9530	9532	9535	9537	9539	9541	9543	9546	9548	9550
980	9550	955 ²	9554	9557	9559	9561	9563	9565	9568	9570	9572
.981	9572	9574	9576	9579	9581	9583	9585	9587	9590	9592	9594
.982	9594	9596	9598	9601	9603	9605	9607	9609	9612	9614	9616
.983	9616	9618	9621	9623	9625	9627	9629	9632	9634	9636	9638
.984	9638	9641	9643	9645	9647	9649	9652	9654	9656	9658	9661
.985	9661	9663	9665	9667	9669	9672	9674	9676	9678	9681	9683
.986	9683	9685	9687	9689	9692	9694	9696	9698	9701	9703	9705
.987	9705	9707	9710	9712	9714	9716	9719	9721	9723	9725	9727
.988	9727	9730	9732	9734	9736	9739	9741	9743	9745	9748	9750
.989	9750	9752	9754	9757	9759	9761	9763	9766	9768	9770	9772
.990	9772	9775	9777	9779	9781	9784	9786	9788	9790	9793	9795
.991	9795	9797	9799	9802	9804	9806	9808	9811	9813	9815	9817
.992	9817	9820	9822	9824	9827	9829	9831	9833	9836	9838	9840
.993	9840	9842	9845	9847	9849	9851	9854	9856	9858	9861	9863
.994	9863	9865	9867	9870	9872	9874	9876	9879	9881	9883	9886
. 995	9886	9888	9890	9892	9895	9897	9899	9901	9904	9906	9908
.996	9908	9911	9913	9915	9917	9920	9922	9924	9927	9929	9931
.997	9931	9933	9936	9938	9940	9943	9945	9947	9949	9952	9954
.998	9954	9956	9959	9961	9963	9966	9968	9970	9972	9975	9977
.999	9977	9979	9982	9984	9986	9988	9991	9993	9995	9998	0000

(Taken from B. O. Peirce's "Short Table of Integrals," Ginn & Co.)

			1	1		1
RADI- ANS.	DE- GREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.	
R/A	GR	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.	
0.0000 0.0029 0.0058 0.0087 0.0116 0.0145	0°00′ 10 20 30 40 50	.0000	I.0000 0.0000 I.0000 .0000 I.0000 .0000 I.0000 .0000 .9999 .0000	.0000	∞	90°00′ 1.5708 50 1.5679 40 1.5650 30 1.5621 20 1.5592 10 1.5563
0.0175 0.0204 0.0233 0.0262 0.0291 0.0320	1°00′ 10 20 30 40 50	.0175 8.2419 .0204 .3088 .0233 .3668 .0262 .4179 .0291 .4637 .0320 .5050	.9998 9.9999 .9998 .9999 .9997 .9999 .9997 .9999 .9996 .9998 .9995 .9998	.0175 8.2419 .0204 .3089 .0233 .3669 .0262 .4181 .0291 .4638 .0320 .5053	57.290 1.7581 49.104 .6911 42.964 .6331 38.188 .5819 34.368 .5362 31.242 .4947	\$9°00' 1.5533 50 1.5504 40 1.5475 30 1.5446 20 1.5417 10 1.5388
0.0349 0.0378 0.0407 0.0436 0.0465 0.0495	2°00′ 10 20 30 40 50	.0349 8.5428 .0378 .5776 .0407 .6097 .0436 .6397 .0405 .6677 .0494 .6940	.9994 9.9997 .9993 .9997 .9992 .9996 .9990 .9996 .9989 .9995 .9988 .9995	.0349 8.5431 .0378 .5779 .0407 .6101 .0437 .6401 .0466 .6682 .0495 .6945	28.636 1.4569 26.432 .4221 24.542 .3899 22.904 .3599 21.470 .3318 20.206 .3055	88°00′ 1.5359 50 1.5330 40 1.5301 30 1.5272 20 1.5243 10 1.5213
0.0524 0.0553 0.0582 0.0611 0.0640 0.0669	3°00′ 10 20 30 40 50	.0523 8.7188 .0552 .7423 .0581 .7645 .0610 .7857 .0640 .8059 .0669 .8251	.9986 9.9994 .9985 .9993 .9983 .9993 .9981 .9992 .9980 .9991 .9978 .9990	.0524 8.7194 .0553 .7429 .0582 .7652 .0612 .7865 .0641 .8067 .0670 .8261	19.081 1.2806 18.075 .2571 17.169 .2348 16.350 .2135 15.605 .1933 14.924 .1739	\$7°00' 1.5184 50 1.5155 40
0.0698 0.0727 0.0756 0.0785 0.0814 0.0844	4°00′ 10 20 30 40 50	.0698 8.8436 .0727 .8613 .0756 .8783 .0785 .8946 .0814 .9104 .0843 .9256	.9976 9.9989 .9974 .9989 .9971 .9988 .9969 .9987 .9967 .9986 .9964 .9985	.0699 8.8446 .0729 .8624 .0758 .8795 .0787 .8960 .0816 .9118 .0846 .9272	14.301 1.1554 13.727 .1376 13.197 .1205 12.706 .1040 12.251 .0882 11.826 .0728	86°00′ 1.5010 50 1.4981 40 1.4952 30 1.4923 20 1.4893 10 1.4864
0.0873 0.0902 0.0931 0.0960 0.0989	5°00′ 10 20 30 40 50	-0872 8.9403 1 -0901 .9545 1 -0929 .9682 1 -0958 .9816 1 -0987 .9945 1 -1016 9.0070 1	.9962 9.9983 .9959 .9982 .9957 .9981 .9954 .9980 .9951 .9979 .9948 .9977	.0875 8.9420 .0904 .9563 .0934 .9701 .0963 .9836 .0992 .9966 .1022 9.0093	11.430 1.0580 11.059 .0437 10.712 .0299 10.385 .0164 10.078 .0034 9.7882 0.9907	\$5°00′ 1.4835 50 1.4806 40 1.4777 30 1.4748 20 1.4719 10 1.4690
0.1047 0.1076 0.1105 0.1134 0.1164 0.1193	6°00 10 20 30 40 50	.1045 9.0192 .1074 .0311 .1103 .0426 .1132 .0539 .1161 .0648 .1190 .0755	.9945 9.9976 .9942 .9975 .9939 .9973 .9936 .9972 .9932 .9971 .9929 .9969	.1051 9.0216 .1080 .0336 .1110 .0453 .1139 .0567 .116) .0678 .1198 .0786	9.5144 0.9784 9.2553 .9664 9.0008 .9547 8.7769 .9433 8.5555 .9322 8.3450 .9214	84°00′
0.1222 0.1251 0.1280 0.1309 0.1338 0.1367	7°00′ 10 20 30 40 50	.1219 9.0859 .1248 .0961 .1276 .1060 .1305 .1157 .1334 .1252 .1363 .1345	.9925 9.9968 .9922 .9966 .9918 .9964 .9914 .9963 .9911 .9961	,1228 9,0891 ,1257 .0995 ,1287 .1096 ,1317 .1194 ,1346 ,1291 ,1376 .1385	8.1443 0.9109 7.9530 .9005 7.7704 .8904 7.5958 .8806 7.4287 .8709 7.2687 .8615	50 I.4457 40 I.4428 30 I.4399 20 I.4370 IO I.4341
0.1396 0.1425 0.1454 0.1484 0.1513 0.1542	8°00′ 10 20 30 40 50	.1392 9.1436 .1421 .1525 .1449 .1612 .1478 .1697 .1507 .1781 .1536 .1863	.9899 .9956 .9894 .9954 .9890 .9952 .9886 .9950 .9881 .9948	.1524 .1831	7.1154 0.8522 6.9682 .8431 6.8269 .8342 6.6912 .8255 6.5606 .8169 6.4348 .8085	50 1.4283 40 1.4254 30 1.4224 20 1.4195 10 1.4166
0.1571	9°00′	.1564 9.1943	.9877 9.9946	.1584 9.1997	6.3138 0.8003	
		Nat. Log. COSINES.	Nat. Log.	Nat. Log. COTAN- GENTS.	Nat. Log. TANGENTS.	DE- GREES. RADI- ANS.

RADI- ANS.	DE- GREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
AZ A	GR	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.1571 0.1600 0.1629 0.1658 0.1687 0.1716	9°00′ 10 20 30 40 50	.1564 9.1943 .1593 .2022 .1622 .2100 .1650 .2176 .1679 .2251 .1708 .2324	.9877 9.9946 .9872	.1584 9.1997 .1614 .2078 .1644 .2158 .1673 .2236 .1703 .2313 .1733 .2389	6.3138 0.8003 6.1970 .7922 6.0844 .7842 5.9758 .7764 5.8708 .7687 5.7694 .7611	81°00′ 50 40 30 20	I.4137 I.4108 I.4079 I.4050 I.4021 I.3992
0.1745 0.1774 0.1804 0.1833 0.1862 0.1891	10°00′ 10 20 30 40 50	.1736	.9848 9.9934 .9843 .9931 .9838 .9929 .9833 .9927 .9827 .9924 .9822 .9922	.1763 9.2463 .1793 .2536 .1823 .2609 .1853 .2680 .1883 .2750 .1914 .2819	5.6713 0.7537 5.5764 .7464 5.4845 .7391 5.3955 .7320 5.3093 .7250 5.2257 .7181	80°00′ 50 40 30 20	1.3963 1.3934 1.3904 1.3875 1.3846 1.3817
0.1920 0.1949 0.1978 0.2007 0.2036 0.2065	11°00′ 10 20 30 40 50	.1908	.9816 9.9919 .9811 .9917 .9805 .9914 .9799 .9912 .9793 .9909 .9787 .9907	.1944 9.2887 .1974 .2953 .2004 .3020 .2035 .3085 .2065 .3149 .2095 .3212	5.1446 0.7113 5.0658 .7047 4.9894 .6980 4.9152 .6915 4.8430 .6851 4.7729 .6788	79°00′ 50 40 30 20	1.3788 1.3759 1.3730 1.3701 1.3672 1.3643
0.2094 0.2123 0.2153 0.2182 0.2211 0.2240	12°00′ 10 20 30 40 50	.2079	.9781 9.9904 .9775 .9901 .9769 .9899 .9763 .9896 .9757 .9893 .9750 .9890	.2126 9.3275 .2156 .3336 .2186 .3397 .2217 .3458 .2247 .3517 .2278 .3576	4.7046 0.6725 4.6382 .6664 4.5736 .6603 4.5107 .6542 4.4494 .6483 4.3897 .6424	78°00′ 50 40 30 20	1.3614 1.3584 1.3555 1.3526 1.3497 1.3468
0.2269 0.2298 0.2327 0.2356 0.2385 0.2414	13°00′ 10 20 30 40 50	.2250 9.3521 .2278 .3575 .2306 .3629 .2334 .3682 .2363 .3734 .2391 .3786	.9744 9.9887 .9737 .9884 .9730 .9881 .9724 .9878 .9717 .9875 .9710 .9872	.2309 9.3634 .2339 .3691 .2370 .3748 .2401 .3804 .2432 .3859 .2462 .3914	4.3315 0.6366 4.2747 .6309 4.2193 .6252 4.1653 .6196 4.1126 .6141 4.0611 .6086	77°00′ 50 40 30 20	I.3439 I.3410 I.3381 I.3352 I.3323 I.3294
0.2443 0.2473 0.2502 0.2531 0.2560 0.2589	14°00′ 10 20 30 40 50	.2419 9.3837 .2447 .3887 .2476 .3937 .2504 .3986 .2532 .4035 .2560 .4083	.9703	.2493 9.3968 .2524 .4021 .2555 .4074 .2586 .4127 .2617 .4178 .2648 .4230	4.0108 0.6032 3.9617 .5979 3.9136 .5926 3.8667 .5873 3.8208 .5822 3.7760 .5770	76°00′ 50 40 30 - 20	1.3265 1.3235 1.3206 1.3177 1.3148 1.3119
0.2618 0.2647 0.2676 0.2705 0.2734 0.2763	15°00′ 10 20 30 40 50	.2588 9.4130 .2616 .4177 .2644 .4223 .2672 .4269 .2700 .4314 .2728 .4359	.9659 9.9849 .9652 .9846 .9644 .9843 .9636 .9839 .9628 .9836 .9621 .9832	.2679 9.4281 .2711 .4331 .2742 .4381 .2773 .4430 .2805 .4479 .2836 .4527	3.7321 0.5719 3.6891 .5669 3.6470 .5619 3.6059 .5570 3.5656 .5521 3.5261 .5473	75°00′ 50 40 30 20	1.3090 1.3061 1.3032 1.3003 1.2974 1.2945
0.2793 0.2822 0.2851 0.2880 0.2909 0.2938	16°00′ 10 20 30 40 50	.2756 9.4403 .2784 .4147 .2812 .4491 .2840 .4533 .2868 .4576 .2896 .4618	.9613 9.9828 .9605 .9825 .9596 .9821 .9588 .9817 .9580 .9814 .9572 .9810	.2867 9.4575 .2899 .4622 .2931 .4669 .2962 .4716 .2994 .4762 .3026 .4808	3.4874 0.5425 3.4495 .5378 3.4124 .5331 3.3759 .5284 3.3402 .5238 3.3052 .5192	74°00′ 50 40 30 20	1.2915 1.2886 1.2857 1.2828 1.2799 1.2770
0.2967 0.2996 0.3025 0.3054 0.3083 0.3113	17°00′ 10 20 30 40 50	.2924 9.4659 .2952 .4700 .2979 .4741 .3007 .4781 .3035 .4821 .3662 .4861	.9563 9.9806 .9555 .9802 .9546 .9798 .9537 .9794 .9528 .9790 .9520 .9786	.3057 9.4853 .3089 .4898 .3121 .4943 .3153 .4987 .3185 .5031 .3217 .5075	3.2709 0.5147 3.2371 .5102 3.2041 .5057 3.1716 .5013 3.1397 .4969 3.1084 .4925	73°00/ 50 40 30 20	1.2741 1.2712 1.2683 1.2654 1.2625 1.2595
0.3142	18°00′	.3090 9.4900	.9511 9.9782	.3249 9.5118	3.0777 0.4882	72°00′	1.2566
		Nat. Log.	Nat. Log. SINES.	COTAN- GENTS.	Nat. Log.	DE- GREES.	RADI-

RADI- ANS.	DE- GREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
A R	GR	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.3142 0.3171 0.3200 0.3229 0.3258 0.3287	18°00′ 10 20 30 40 50	.3090 9.4900 .3118 .4939 .3145 .4977 .3173 .5015 .3201 .5052 .3228 .5090	.9511 9.9782 .9502 .9778 .9492 .9774 .9483 .9770 .9474 .9765 .9465 .9761	.3249 9.5118 .3281 .5161 .3314 .5203 .3346 .5245 .3378 .5287 .3411 .5329	3.0777 0.4882 3.0475 .4839 3.0178 .4797 2.9887 .4755 2.9600 .4713 2.9319 .4671	72°00′ 50 40 30 20	1.2566 1.2537 1.2508 1.2479 1.2450 1.2421
0.3316 0.3345 0.3374 0.3403 0.3432 0.3462	19°00′ 10 20 30 40 50	.3256 9.5126 .3283 .5163 .3311 .5199 .3338 .5235 .3365 .5270 .3393 .5306	.9455 9.9757 .9446 .9752 .9436 .9748 .9426 .9743 .9417 .9739 .9407 .9734	.3443 9.5370 .3476 .5411 .3508 .5451 .3541 .5491 .3574 .5531 .3607 .5571	2.9042 0.4630 2.8770 .4589 2.8502 .4549 2.8239 .4509 2.7980 .4469 2.7725 .4429	71°00′ 50 40 30 20	1.2392 1.2363 1.2334 1.2305 1.2275 1.2246
0.3491 0.3520 0.3549 0.3578 0.3607 0.3636	20°00′ 10 20 30 40 50	.3420 9.5341 .3448 .5375 .3475 .5409 .3502 .5443 .3529 .5477 .3557 .5510	.9397 9.9730 .9387 .9725 .9377 .9721 .9367 .9716 .9356 .9711 .9346 .9706	.3640 9.5611 .3673 -5650 .3706 .5689 .3739 -5727 .3772 .5766 .3805 .5804	2.7475 0.4389 2.7228 .4350 2.6985 .4311 2.6746 .4273 2.6511 .4234 2.6279 .4196	70°00′ 50 40 30 20	I.2217 I.2188 I.2159 I.2130 I.2101 I.2072
0.3665 0.3694 0.3723 0.3752 0.3782 0.3811	21°00′ 10 20 30 40 50	.3584 9.5543 .3611 .5576 .3638 .5609 .3665 .5641 .3692 .5673 .3719 .5704	.9336 9.9702 .9325 .9697 .9315 .9692 .9304 .9687 .9293 .9682 .9283 .9677	.3839 9.5842 .3872 .5879 .3906 .5917 .3939 .5954 .3973 .5991 .4006 .6028	2.6051 0.4158 2.5826 .4121 2.5605 .4083 2.5386 .4046 2.5172 .4009 2.4960 .3972	30 20	1.2043 1.2014 1.1985 1.1956 1.1926 1.1897
0.3840 0.3869 0.3898 0.3927 0.3956 0.3985	22°00′ 10 20 30 40 50	.3746 9.5736 .3773 .5767 .3800 .5798 .3827 .5828 .3854 .5859 .3881 .5889	.9272 9.9672 .9261 .9667 .9250 .9661 .9239 .9656 .9228 .9651 .9216 .9646	.4040 9.6064 .4074 .6100 .4108 .6136 .4142 .6172 .4176 .6208 .4210 .6243	2.4751 0.3936 2.4545 .3900 2.4342 .3864 2.4142 .3828 2.3945 .3792 2.3750 .3757	68°00′ 50 40 30 20	1.1868 1.1839 1.1810 1.1781 1.1752 1.1723
0.4014 0.4043 0.4072 0.4102 0.4131 0.4160	23°00′ 10 20 30 40 50	.3907 9.5919 .3934 .5948 .3961 .5978 .3987 .6007 .4014 .6036 .4041 .6065	.9205 9.9640 .9194 .9635 .9182 .9629 .9171 .9624 .9159 .9618 .9147 .9613	.4245 9.6279 .4279 .6314 .4314 .6348 .4348 .6383 .4383 .6417 .4417 .6452	2.3559 0.3721 2.3369 .3686 2.3183 .3652 2.2998 .3617 2.2817 .3583 2.2637 .3548	67°00′ 50 40 30 20	1.1694 1.1665 1.1636 1.1606 1.1577 1.1548
0.4189 0.4218 0.4247 0.4276 0.4305 0.4334	24°00′ 10 20 30 40 50	.4067 9.6093 .4094 .6121 .4120 .6149 .4147 .6177 .4173 .6205 .4200 .6232	.9135 9.9607 .9124 .9602 .9112 .9596 .9100 .9590 .9088 .9584 .9075 .9579	.4452 9.6486 .4487 .6520 .4522 .6553 .4557 .6587 .4592 .6620 .4628 .6654	2.2460 0.3514 2.2286 .3480 2.2113 .3447 2.1943 .3413 2.1775 .3380 2.1609 .3346	66°00′ 50 40 30 20	1.1519 1.1490 1.1461 1.1432 1.1403 1.1374
0.4363 0.4392 0.4422 0.4451 0.4480 0.4509	25°00′ 10 20 30 40 50	.4226 9.6259 .4253 .6286 .4279 .6313 .4305 .6340 .4331 .6366 .4358 .6392	.9063 9.9573 .9051 .9567 .9038 .9561 .9026 .9555 .9013 .9549 .9001 .9543	.4663 9.6687 .4699 .6720 .4734 .6752 .4770 .6785 .4806 .6817 .4841 .6850	2.1445 0.3313 2.1283 .3280 2.1123 .3248 2.0965 .3215 2.0809 .3183 2.0655 .3150	65°00′ 50 40 30 20	I.1345 I.1316 I.1286 I.1257 I.1228 I.1199
0.4538 0.4567 0.4596 0.4625 0.4654 0.4683	26°00′ 10 20 30 40 50	.4384 9.6418 .4410 .6444 .4436 .6470 .4462 .6495 .4488 .6521 .4514 .6546	.8988 9.9537 .8975 .9530 .8962 .9524 .8949 .9518 .8936 .9512 .8923 .9505	.4877 9.6882 .4913 .6914 .4950 .6046 .4986 .6077 .5022 .7009 .5059 .7040	2.0503 0.3118 2.0353 .3086 2.0204 .3054 2.0057 .3023 1.9912 .2991 1.9768 .2960	64°00′ 50 40 30 20 10	I.1170 I.1141 I.1112 I.1083 I.1054 I.1025
0.4712	27°00′	.4540. 9.6570	.8910 9.9499	.5095 9.7072	1.9626 0.2928	63°00′	1.0996
		Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log. TANGENTS.	DE- GREES.	RADI- ANS.
	IAN TARI			GENTS.		Ö	H4 .

RADI- ANS.	DE- GREES.	SI	NES.	cos	INES.	TAN	GENTS.	COTAN	GENTS.	1	
RA	GRI	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
0.4712 0.4741 0.4771 0.4800 0.4829 0.4858	27°00′ 10 20 30 40 50	.4540 .4566 .4592 .4617 .4643 .4669	9.6570 .6595 .6620 .6644 .6668 .6692	.8910 .8897 .8884 .8870 .8857 .8843	9.9499 •9492 •9486 •9479 •9473 •9466	.5095 .5132 .5169 .5206 .5243 .5280	9.7072 .7103 .7134 .7165 .7196 .7226	1.9626 1.9486 1.9347 1.9210 1.9074 1.8940	0.2928 .2897 .2866 .2835 .2804 .2774	63°00′ 50 40 30 20	1.0996 1.0966 1.0937 1.0908 1.0879 1.0850
0.4887 0.4916 0.4945 0.4974 0.5003 0.5032	28°00′ 10 20 30 40 50	.4695 .4720 .4746 .4772 .4797 .4823	9.6716 .6740 .6763 .6787 .6810	.8829 .8816 .8802 .8788 .8774 .8760	9.9459 .9453 .9446 .9439 .9432 .9425	.5317 .5354 .5392 .5430 .5467 .5505	9.7257 .7287 .7317 .7348 .7378 .7408	1.8807 1.8676 1.8546 1.8418 1.8291 1.8165	0.2743 .2713 .2683 .2652 .2622 .2592	62°00′ 50° 40 30 20	1.0821 1.0792 1.0763 1.0734 1.0705 1.0676
0.5061 0.5091 0.5120 0.5149 0.5178 0.5207	29°00′ 10 20 30 40 50	.4848 .4874 .4899 .4924 .4950 .4975	9.6856 .6878 .6901 .6923 .6946 .6968	.8746 .8732 .8718 .8704 .8689 .8675	9.9418 .9411 .9404 .9397 .9390 .9383	.5543 .5581 .5619 .5658 .5696	9.7438 .7467 .7497 .7526 .7556 .7585	1.8040 1.7917 1.7796 1.7675 1.7556 1.7437	0.2562 .2533 .2503 .2474 .2444	61°00′ 50 40 30 20	1.0647 1.0617 1.0588 1.0559 1.0530
0.5236 0.5265 0.5294 0.5323 0.5352 0.5381	30°00′ 10 20 30 40 50	.5000 .5025 .5050 .5075 .5100	9.6990 .7012 .7033 .7055 .7076 .7097	.8660 .8646 .8631 .8616 .8601 .8587	9.9375 .9368 .9361 .9353 .9346 .9338	·5774 ·5812 ·5851 ·5890 ·5930 ·5969	9.7614 .7644 .7673 .7701 .7730 .7759	1.7321 1.7205 1.7090 1.6977 1.6864 1.6753	0.2386 .2356 .2327 .2299 .2270 .2241	50°00′ 50 40 30 20	1.0472 1.0443 1.0414 1.0385 1.0356 1.0327
0.5411 0.5440 0.5469 0.5498 0.5527 0.5556	31°00′ 10 20 30 40 50	.5150 .5175 .5200 .5225 .5250 .5275	9.7118 .7139 .7160 .7181 .7201 .7222	.8572 .8557 .8542 .8526 .8511 .8496	9.9331 ·9323 ·9315 ·9308 ·9300 ·9292	.6009 .6048 .6088 .6128 .6168	9.7788 .7816 .7845 .7873 .7902 .7930	1.6643 1.6534 1.6426 1.6319 1.6212 1.6107	0.2212 .2184 .2155 .2127 .2098 .2070	59°00′ 50 40 30 20	1.0297 1.0268 1.0239 1.0210 1.0181 1.0152
0.5585 0.5614 0.5643 0.5672 0.5701 0.5730	32°00′ 10 20 30 40 50	.5299 .5324 .5348 .5373 .5398 .5422	9.7242 .7262 .7282 .7302 .7322 .7342	.8480 .8465 .8450 .8434 .8418	9.9284 .9276 .9268 .9260 .9252 .9244	.6249 .6289 .6330 .6371 .6412	9.7958 .7986 .8014 .8042 .8070 .8097	1.6003 1.5900 1.5798 1.5697 1.5597 1.5497	0.2042 .2014 .1986 .1958 .1930	58°00′ 50 40 30 20	I.0123 I.0094 I.0065 I.0036 I.0007 0.9977
0.5760 0.5789 0.5818 0.5847 0.5876 0.5905	33°00′ 10 20 30 40 50	.5446 .5471 .5495 .5519 .5544 .5568	9.7361 .7380 .7400 .7419 .7438 .7457	.8387 .8371 .8355 .8339 .8323 .8307	9.9236 .9228 .9219 .9211 .9203 .9194	.6494 .6536 .6577 .6619 .6661	9.8125 .8153 .8180 .8208 .8235 .8263	1.5399 1.5301 1.5204 1.5108 1.5013 1.4919	0.1875 .1847 .1820 .1792 .1765 .1737	57°00′ 50 40 30 20	0.9948 0.9919 0.9890 0.9861 0.9832 0.9803
0.5934 0.5963 0.5992 0.6021 0.6050 0.6080	34°00′ 10 20 30 40 50	.5592 .5616 .5640 .5664 .5688 .5712	9.7476 .7494 .7513 .7531 .7550 .7568	.8290 .8274 .8258 .8241 .8225 .8208	9.9186 .9177 .9169 .9160 .9151	.6745 .6787 .6830 .6873 .6916	9.8290 .8317 .8344 .8371 .8398 .8425	1.4826 1.4733 1.4641 1.4550 1.4460 1.4370	0.1710 .1683 .1656 .1629 .1602	56°00′ 50 40 30 20	0.9774 0.9745 0.9716 0.9687 0.9657 0.9628
0.6109 0.6138 0.6167 0.6196 0.6225 0.6254	35°00′ 10 20 30 40 50	.5760 .5783 .5807 .5831 .5854	9.7586 .7604 .7622 .7640 .7657 .7675	.8175 .8158 .8141 .8124 .8107	9.9134 .9125 .9116 .9107 .9098	.7002 .7046 .7089 .7133 .7177 .7221	9.8452 .8479 .8506 .8533 .8559 .8586	1.4281 1.4193 1.4106 1.4019 1.3934 1.3848	0.1548 .1521 .1494 .1467 .1441 .1414	55°00′ 50 40 30 20 10	0.9599 0.9570 0.9541 0.9512 0.9483 0.9454
0.6283	36°00′		9.7692		9.9080		9.8613 Log.	1.3764 Nat.	0.1387 Log.	54°00′	0.9425
		Nat.	Log. NES.	Nat.	Log. ES.	Nat. COT GEN		TANG!		DE- GREES.	RADI- ANS.

	-					1	
RADI- ANS.	DE- GREES.	SINES.	COSINES.	TANGENTS,	COTANGENTS.		
M M	GR	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.6283 0.6312 0.6341 0.6370 0.6400 0.6429	36°00′ 10 20 30 40 50	.5878 9.7692 .5901 .7710 .5925 .7727 .5948 .7744 .5972 .7761 .5995 .7778	.8090 9.9080 .8073 .9070 .8056 .9061 .8039 .9052 .8021 .9042 .8004 .9033	.7265 9.8613 .7310 .8639 .7355 .8666 .7400 .8692 .7445 .8718 .7490 .8745	1.3680 .1361 1.3597 .1334 1.3514 .1308 1.3432 .1282	54°00′ 50 40 30 20	0.9425 0.9396 0.9367 0.9338 0.9308 0.9279
0.6458 0.6487 0.6516 0.6545 0.6574 0.6603	37°00′ 10 20 30 40 50	.6018 9.7795 .6041 .7811 .6065 .7828 .6088 .7844 .6111 .7861 .6134 .7877	.7986 9.9023 .7969 .9014 .7951 .9004 .7934 .8995 .7916 .8985 .7898 .8975	.7536 9.8771 .7581 .8797 .7627 .8824 .7673 .8850 .7720 .8876 .7766 .8902	1.3190 .1203 1.3111 .1176 1.3032 .1150 1.2954 .1124	53°00′ 50 40 30 20	0.9250 0.9221 0.9192 0.9163 0.9134 0.9105
0.6632 0.6661 0.6690 0.6720 0.6749 0.6778	38°00′ 10 20 30 40 50	.6157 9.7893 .6180 .7910 .6202 .7926 .6225 .7941 .6248 .7957 .6271 .7973	.7880 9.8965 .7862 .8955 .7844 .8945 .7826 .8935 .7808 .8925 .7790 .8915	.7813 9.8928 .7860 .8954 .7907 .8980 .7954 .9006 .8002 .9032 .8050 .9058	1.2723 .1046 1.2647 .1020 1.2572 .0994 1.2497 .0968	52°00′ 50 40 30 20	0.9076 0.9047 0.9018 0.8988 0.8959 0.8930
0.6807 0.6836 0.6865 0.6894 0.6923 0.6952	39°00′ 10 20 30 40 50	.6293 9.7989 .6316 .8004 .6338 .8020 .6361 .8035 .6383 .8050 .6406 .8066	.7771 9.8905 .7753 .8895 .7735 .8884 .7716 .8874 .7698 .8864 .7679 .8853	.8098 9.9084 .8146 .9110 .8195 .9135 .8243 .9161 .8292 .9187 .8342 .9212	1.2349 0.0916 1.2276 .0890 1.2203 .0865 1.2131 .0839 1.2059 .0813 1.1988 .0788	20	0.8901 0.8872 0.8843 0.8814 0.8785 0.8756
0.6981 0.7010 0.7039 0.7069 0.7098 0.7127	40°00′ 10 20 30 40 50	.6428 9.8081 .6450 .8096 .6472 .8111 .6494 .8125 .6517 .8140 .6539 .8155	.7660 9.8843 .7642 .8832 .7623 .8821 .7604 .8810 .7585 .8800 .7566 .8789	.8391 9.9238 .8441 .9264 .8491 .9289 .8541 .9315 .8591 .9341 .8642 .9366	1.1918 0.0762 1.1847 .0736 1.1778 .0711 1.1708 .0685 1.1640 .0659 1.1571 .0634	50 40 30 20	o.8727 o.8698 o.8668 o.8639 o.8610 o.8581
0.7156 0.7185 0.7214 0.7243 0.7272 0.7301	41°00′ 10 20 30 40 50	.6561 9.8169 .6583 .8184 .6604 .8198 .6626 .8213 .6648 .8227 .6670 .8241	.7547 9.8778 .7528 .8767 .7509 .8756 .7490 .8745 .7470 .8733 .7451 .8722	.8693 9.9392 .8744 .9417 .8796 .9443 .8847 .9468 .8899 .9494 .8952 .9519	1.1504 0.0608 1.1436 .0583 1.1369 .0557 1.1303 .0532 1.1237 .0506 1.1171 .0481	50 40 30 20	0.8552 0.8523 0.8494 0.8465 0.8436 0.8407
0.7330 0.7359 0.7389 0.7418 0.7447 0. 7 476	42°00′ 10 20 30 40 50	.6691 9.8255 .6713 .8269 .6734 .8283 .6756 .8297 .6777 .8311 .6799 .8324	.7431 9.8711 .7412 .8699 .7392 .8688 .7373 .8676 .7353 .8665 .7333 .8653	.9004 9.9544 .9057 .9570 .9110 .9595 .9163 .9621 .9217 .9646 .9271 .9671	I.1106 0.0456 I.104I .0430 I.0977 .0405 I.0913 .0379 I.0850 .0354 I.0786 .0329	50 40 30 20	0.8378 0.8348 0.8319 0.8290 0.8261 0.8232
0.7505 0.7534 0.7503 0.7592 0.7621 0.7650	43°00′ 10 20 30 40 50	.6820 9.8338 .6841 .8351 .6862 .8365 .6884 .8378 .6905 .8391 .6926 .8405	.7314 9.8641 .7294 .8629 .7274 .8618 .7254 .8606 .7234 .8594 .7214 .8582	.9325 9.9697 .9380 .9722 .9435 .9747 .9490 .9772 .9545 .9798 .9601 .9823	I.0724 0.0303 I.0661 .0278 I.0599 .0253 I.0538 .0228 I.0477 .0202 I.0416 .0177	50 40 30 20	0.8203 0.8174 0.8145 0.8116 0.8087
0.7679 0.7709 0.7738 0.7767 0.7796 0.7825	44°00′ 10 20 30 40 50 45°00′	.6947 9.8418 .6967 .8431 .6988 .8444 .7009 .8457 .7030 .8469 .7050 .8482	.7193 9.8569 .7173 .8557 .7153 .8545 .7133 .8532 .7112 .8520 .7092 .8507	.9657 9.9848 .9713 .9874 .9770 .9899 .9827 .9924 .9884 .9949 .9942 .9975	1.0235 .0101 1.0176 .0076 1.0117 .0051 1.0058 .0025	50 40 30 20	0.8029 0.7999 0.7970 0.7941 0.7912 0.7883
0.7054	45 00	.7071 9.8495 Nat. Log.		1.0000 0.0000	1.0000 0.0000		0.7854
		COSINES	Nat Log. SINES.	Nat. Log COTAN- GENTS	TANGENTS.	DE- GREES.	RADI- ANS.
	AN TABL						

TABLE 15.
CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

Ú		7.57.0							S T
RADIANS	SIN	IES.	COSI	NES.	TANG	ENTS	COTAN	GENTS.	EGREES
RAI	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEG
0.00 .01 .02 .03	0.00000 .01000 .02000 .03000	— ∞ 7.99999 8.30100 .47706 .60194	1.00000 0.99995 .99980 .99955 .99920	0.00000 9.99998 .99991 .99980	\(\infty \) 0.01000 .02000 .03001 .04002	- ∞ 8.00001 .30109 .47725 .60229	∞ 99.997 49.993 33.3 ² 3 24.987	.69891 .52275 .39771	00°00′ 00 34 01 09 01 43 02 18
0.05 .06 .07 .08 .09	0.04998 .05996 .06994 .07991 .08988	8.69879 .77789 .84474 .90263 .95366	0.99875 .99820 -99755 .99680 -99595	9.99946 .99922 .99894 .99861	0.05004 .06007 .07011 .08017 .09024	8.69933 .77867 .84581 .90402 .95542	19.983 16.647 14.262 12.473 11.081	1.30067 .22133 .15419 .09598 .04458	02°52′ 03 26 04 01 04 35 05 09
0.10 .11 .12 .13	0.09983 .10978 .11971 .12963 .13954	8.99928 9.04052 .07814 .11272 .14471	0.99500 .99396 .99281 .99156 .99022	9.99782 .99737 .99687 .99632 .99573	0.10033 .11045 .12058 .13074 .14092	9.00145 .04315 .08127 .11640 .14898	9.9666 9.0542 8.2933 7.6489 7.0961	0.99855 .95685 .91873 .88360 .85102	05°44′ 06 18 06 53 07 27 08 01
0.15 .16 .17 .18	0.14944 .15932 .16918 .17903 .18886	9.17446 .20227 .22836 .25292 .27614	0.98877 .98723 .98558 .98384 .98200	9.99510 .99442 .99369 .99211	0.15114 .16138 .17166 .18197 .19232	9.17937 .20785 .23466 .26000 .28402	6.6166 6.1966 5.8256 5.4954 5.1997	0.82063 .79215 .76534 .74000 .71598	08°36 09 10 09 44 10 19 10 53
0.20 .21 .22 .23 .24	0.19867 20846 .21823 .22798 .23770	9.29813 .31902 .33891 .35789 .37603	0.98007 .97803 .97590 .97367 .97134	9.99126 .99035 .98940 .98841 .98737	0.20271 .21314 .22362 .23414 .24472	9.30688 .32867 .34951 .36948 .38866	4.9332 4.6917 4.4719 4.2709 4.0864	0.69312 .67133 .65049 .63052 .61134	11°28′ 12 02 12 36 13 11 13 45
0.25 .26 .27 .28 .29	0.24740 .25708 .26673 .27636 .28595	9.39341 .41007 .42607 .44147 .45629	0.96891 .96639 .96377 .96106 .95824	9.98628 .98515 .98397 .98275 .98148	0.25534 .26602 .27676 .28755 .29841	9.40712 .42491 .44210 .45872 .47482	3.9163 3.7592 3.6133 3.4776 3.3511	0.59288 ·57509 ·55790 ·54128 ·52518	14°19′ 14 54 15 28 16 03 16 37
0.30 ·31 ·32 ·33 ·34	0.29552 .30506 .31457 .32404 .33349	9.47059 .48438 .49771 .51060 .52308	0.95534 ·95 ² 33 ·949 ² 4 ·94604 ·94 ² 75	9.98016 .97879 .97737 .97591 .97440		9.49043 .50559 .52034 .53469 .54868	3.2327 3.1218 3.0176 2.9195 2.8270	0.50957 .49441 .47966 .46531 .45132	17°11' 17 46 18 20 18 54 19 29
0.35 .36 .37 .38 .39	0.34290 ·35227 ·36162 ·37092 ·38019	9.53516 .54688 .55 ⁸ 25 .56928 .58000	0.93937 .93590 .93233 .92866 .92491	9.97284 .97123 .96957 .96786 .96610	0.36503 ·37640 ·38786 ·39941 ·41105	9.56233 .57565 .58868 .60142 .61390	2.7395 2.6567 2.5782 2.5037 2.4328	0.43767 ·4 ² 435 ·4 ¹ 132 ·39858 ·38610	20°03′ 20 38 21 12 21 46 22 21
0.40 .41 .42 .43 .44	0.38942 .39861 .40776 .41687 .42594	9.59042 .60055 .61041 .62000 .62935	0.92106 .91712 .91309 .90897 .90475	9.96429 .96243 .96051 .95855 .95653	0.42279 .43463 .44657 .45862 .47078	9.62613 .63812 .64989 .66145 .67282	2:3652 2:3008 2:2393 2:1804 2:1241	0.37387 ,36188 ,35011 ,33855 ,32718	22°55′ 23 29 24 04 24 38 25 13
0.45 .46 .47 .48 .49	0.43497 ·44395 ·45289 ·46178 ·47063	9.63845 .64733 .65599 .66443 .67268	0.90045 .89605 .89157 .88699 .88233	9.95446 •95233 •95015 •94792 •94 5 63	0.48306 .49545 .50797 .52061 .53339	9.68400 .69500 .70583 .71651 .72704	2.0702 2.0184 1.9686 1.9208 1.8748	0.31600 .30500 .29417 .28349 .27296	25°47′ 26 21 26 56 27 30 28 04
0 50	0.47943	9.68072	0.87758	9.94329	0.54630	9.73743	1.8305	0.26257	28°39′

A NS.	SIN	IES.	COSI	NES.	TANG	ENTS	COTAN	GENTS.	EES.
RADIANS	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEGREES
0.50 .51 .52 .53 .54	0.47943 .48818 .49688 .50553 .51414	9.68072 .68858 .69625 .70375 .71108	0.87758 .87274 .86782 .86281 .85771	9.94329 .94089 .93843 .93591 .93334	0.54630 •55936 •57256 •58592 •59943	9.73743 .74769 .75782 .76784 .77774	1.8305 .7878 .7465 .7067 .6683	0.26257 .25231 .24218 .23216 .22226	28°39′ 29 13 29 48 30 22 30 56
0.55 .56 .57 .58 .59	0.52269 .53119 .53963 .54802 .55636	9.71824 .72525 .73210 .73880 .74536	0.85252 .84726 .84190 .83646 .83094	9.93071 .92801 .92526 .92245 .91957	0.61311 .62695 .64097 .65517 .66956	9.78754 .79723 .80684 .81635 .82579	1.6310 .5950 .5601 .5263 .4935	0.21246 .20277 .19316 .18365 .17421	31°31′ 32 0 5 32 40 33 14 33 48
0.60 .61 .62 .63 .64	0.56464 .57287 .58104 .58914 .59720	9.75177 .75805 .76420 .77022 .77612	0.82534 .81965 .81388 .80803 .80210	9.91663 .91363 .91056 .90743	0.68414 .69892 .71391 .72911	9.83514 .84443 .85364 .86280 .87189	1.4617 .4308 .4007 .3715 .3431	0.16486 .15557 .14636 .13720 .12811	34°23′ 34 57 35 31 36 66 36 40
0.65 .66 .67 .68	0.60519 .61312 .62099 .62879 .63654	9.78189 .78754 .79308 .79851 .80382	0.79608. .78999 .78382 .77757 .77125	9.90096 .89762 .89422 .89074 .88719	0.76020 .77610 .79225 .80866 .82534	9.88093 .88992 .89886 .90777 .91663	1.3154 .2885 .2622 .2366 .2116	0.11907 .11008 .10114 .09223 .08337	37°15′ 37 49 38 23 38 58 39 32
0.70 .71 .72 .73 .74	0.64422 .65183 .65938 .66687 .67429	9.80903 .81414 .81914 .82404 .82885	0.76484 .75836 .75181 .74517 .73847	9.88357 .87988 .87611 .87226 .86833	0.84229 .85953 .87707 .89492 .91309	9.92546 .93426 .94303 .95178 .96051	1.1872 .1634 .1402 .1174 .0952	0.07454 .06574 .05697 .04822 .03949	40°06′ 40 41 41 15 41 50 42 24
0.75 .76 .77 .78 .79	0.68164 .68892 .69614 .70328	9.83355 .83817 .84269 .84713 .85147	0.73169 .72484 .71791 .71091 .70385	9.86433 .86024 .85607 .85182 .84748	0.93160 .95045 .96967 .98926 1.0092	9.96923 •97793 .98662 9.99531 0.00400	1.0734 .0521 .0313 1.0109 0.99084	0.03077 .02207 .01338 .00469 9.99600	42°58′ 43 33 44 07 44 41 45 16
0.80 .81 .82 .83 .84	0.71736 .72429 .73115 .73793 .74464	9.85573 .85991 .86400 .86802	0.69671 .68950 .68222 .67488	9.84305 .83853 .83393 .82922 .82443	1.0296 .0505 .0717 .0934 .1156	0.01268 .02138 .03008 .03879 .04752	0.97121 .95197 .93309 .91455 .89635	9.98732 .97862 .96992 .96121 .95248	45°50′ 46 25 46 59 47 33 48 08
0.85 .86 .87 .88 .89	0.75128 .75784 .76433 .77074 .77707	9.87580 .87958 .88328 .88691 .89046	0.65998 .65244 .64483 .63715 .62941	9.81953 .81454 .80944 .80424 .79894	1.1383 1.1616 1.1853 1.2097 1.2346	0.05627 .06504 .07384 .08266 .09153	0.87848 .86091 .8436 5 .82668 .80998	9.94373 .93496 .92616 .91734 .90847	48°42′ 49 16 49 51 50 25 51 00
0.90 .91 .92 .93	0.78333 .78950 .79560 .80162 .80756	9.89394° .89735 .90070 .90397 .90747	0.62161 .61375 .60582 .59783 .58979	9.79352 •78799 •78234 •77658 •77070	1.2602 .2864 .3133 .3409 .3692	0.10043 .10937 .11835 .12739 .13648	0.79355 .77738 .76146 .74578 .73034	9.89957 .89063 .88165 .87261	51°34′ 52 08 52 43 53 17 53 51
0.95 .96 -97 .98 -99	0.81342 .81919 .82489 .83050 .83603	9.91031 •91339 •91639 •91934 •92222	0.58168 ·57352 ·56530 ·55702 ·54869	9.76469 •75855 •75228 •74587 •73933	1.3984 .4284 .4592 .4910 .5237	0.14563 .15484 .16412 .17347 .18289	0.71511 .70010 .68531 .67071 .65631	9.85437 .84516 .83588 .82653 .81711	54°26′ 55 00 55 35 56 09 56 43
1.00	0.84147	9.92504	0.54030	9.73264	1.5574	0.19240	0.64209	9.80760	57°18′

ADIANS.	SII	NES.	cos	INES.	TANG	ENTS.	COTAN	GENTS.	EES.
RADI	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEGREES
1.00 .01 .02 .03	0.84147 .84683 .85211 .85730 .86240	9.92504 .92780 .93049 .93313 .93571	0.54030 .53186 .52337 .51482 .50022	9.73264 .72 5 80 .71881 .711 6 5 .70434	1.5574 .5922 .6281 .6652 .7036	0.19240 .20200 .21169 .22148 .23137	0.64209 .62806 .61420 .60051 .58699	9.80760 .79800 .78831 .77852 .76863	57°18′ 57°52 58°27 59°01 59°35
1.05 .00 .07 .08 .09	0.86742 .87236 .87720 .88196 .88663	9.93823 .94069 .94310 .94545 .94774	0.49757 .48887 .48012 .47133 .46249	9.69686 .68920 .68135 .67332 .60510	1.7433 .7844 .8270 .8712 .9171	0.24138 .25150 .26175 .27212 .28264	0.57362 .56040 .54734 .53441 .52162	9.75862 .74850 .73825 .72788 .71736	60°10′ 60 44 61 18 61 53 62 27
1.10	0.89121 .89570 .90010 .90441 .90863	9.94998 .95216 .95429 .95637 .95839	0.45360 .44466 .43568 .42666 .41759	9. 6 5667 .64803 .63917 .63008 .62075	1.9648 2.0143 .0660 .1198 .1759	0.29331 .30413 .31512 .32628 .33763	0.50897 .49644 .48404 .47175 .45959	9.70669 .69587 .68488 .67372 .66237	63°02′ 63 36 64 10 64 45 65 19
1.15 .16 .17 .18	0.91276 .91680 .92075 .92461 .92837	9.96036 .96228 .96414 .96596	0.40849 •39934 •39015 •38092 •37166	9.61118 .60134 .59123 .58084 .57015	2.2345 .2958 .3600 .4273 .4979	0.34918 .36093 .37291 .38512 .39757	0.44753 .43558 .42373 .41199 .40034	9.65082 .63907 .62709 .61488 .60243	65°53′ 66 28 67 02 67 37 68 11
1.20 .21 .22 .23 .24	0.93204 .93562 .93910 .94249 .94578	9.96943 .97110 .97271 .97428 .97579	0.36236 ·35302 ·34365 ·33424 ·32480	9.55914 .54780 .53611 .52406 .51161	2.5722 .6503 .7328 .8198 .9119	0.41030 .42330 .43660 .45022 .46418	0.38878 ·37731 ·36593 ·35463 ·34341	9.58970 .57670 .56340 .54978 .53582	68°45′ 69 20 69 54 70 28 71 03
1.25 .26 .27 .28	0.94898 .95209 .95510 .95802 .96084	9.97726 .97868 .98005 .98137 .98265	0.31532 .30582 .29628 .28672 .27712	9.49875 .48546 .47170 .45745 .44267	3.0096 .1133 .2236 .3413 .4672	0.47850 .49322 .50835 .52392 .53998	0.33227 .32121 .31021 .29928 .28842	9.52150 .50678 .49165 .47608 .46002	71°37′ 72 12 72 46 73 20 73 55
1.30 .31 .32 .33 .34	0.96356 .96618 .96872 .97115 .97348	9.98388 .98506 .98620 .98729 .98833	0.26750 .25785 .24818 .23848 .22875	9.42732 .41137 .39476 .37744 .35937	3.6021 .7471 .9033 4.0723 .2556	0.55656 ·57369 ·59144 .60984 .62896	0.27762 .26687 .25619 .24556 .23498	9.44344 .42631 .40856 .39016 .37104	74°29′ 75 ° 03 75 38 76 12 76 47
1.35 -36 -37 -38 -38 -39	0.97572 .97786 .97991 .98185 .98370	9.98933 •99028 •99119 •99205 •99286	0.21901 .20924 .19945 .18964 .17981	9.34046 .32064 .29983 .27793 .25482	4.4552 .6734 .9131 5.1774 .4707	0.64887 .66964 .69135 .71411 .73804	0.22446 .21398 .20354 .19315 .18279	9.35113 -33036 -30865 -28589 -26196	77°21′ 77 55 78 30 79 04 79 38
1.40 .41 .42 .43 .44	0.98545 .98710 .98865 .99010	9.99363 .99436 .99504 .99568 .99627	0.16997 .16010 .15023 .14033 .13042	9.23036 .20440 .17674 .14716 .11536	5.7979 6.1654 6.5811 7.0555 7.6018	0.76327 .78996 .81830 .84853 ,88092	0.17248 .16220 .15195 .14173 .13155	9.23673 .21004 .18170 .15147	So°13' 80 47 81 22 81 56 82 30
1.45 .46 .47 .48 .49	0.99271 -99387 -99492 -99588 -99674	9,99682 -99733 -99779 -99821 -99858	0.12050 .11057 .10063 .09067 .08071	9.08100 .04364 .00271 8.95747 .90692	8.2381 8.9886 9.8874 10.983 12.350	0.91583 .95369 .99508 1.04074 .09166	0.12139 .11125 .10114 .09105 .08097	9.08417 .04631 .00492 8.95926	83°05′ 83 39 84 13 84 48 85 22
1.50	o.99749	9.99891	0.07074	8.84965	14.101	1.14926	0.07091	8.85074	85°57′

CIRCULAR FUNCTIONS AND FACTORIALS.

TABLE 15 (continued). — Circular (Trigonometric) Functions.

ANS.	° SIN	IES.	COSI	NES.	TANGI	ENTS.	COTAN	GENTS.	REES.
RADI	Nat.	Log	Nat.	Log	Nat.	Log.	Nat.	Log.	DEGREE
1.50 .51 .52 .53 .54	0.99749 .99815 .99871 .99917	9.99891 .99920 .99944 .99964 .99979	0.07074 .06076 .05077 .04079	8.84965 .78361 .70565 .61050 .48843	14.101 16.428 19.670 24.498 32.461	1.14926 .21559 .29379 .38914 .51136	0.07091 .06087 .05084 .04082 .03081	8.85074 .78441 .70621 .61086 .48864	85°57′ 86 31 87 05 87 40 88 14
1.55 .56 .57 .58 .59	0.99978 0.99994 1.00000 0.99996 0.99982	9.99991 9.99997 0.00000 9.99998 9.99992	0.02079 .01080 .00080 00920 01920	8.31796 8.03327 6.90109 7.96396n 8.28336n	48.078 92.621 1255.8 108.65 52.067	1.68195 1.96671 3.09891 2.03603 1.71656	.00080 00920 01921	8.31805 8.03 329 6.90 109 7.96397n 8.28344n	88°49′ 89 23 89 57 90 32 91 06
1.60	0.99957	9.99981	-0.02920	8.46538n	34.233	1.53444	-0.02921	8.46556n	91°40′

90°=1.570 7963 radians.

TABLE 16 .- Logarithmic Factorials.

Logarithms of the products 1.2.3., n, n from I to 100. See Table 18 for Factorials I to 20.

See Table 32 for log. Γ (n+1), values of n between 1 and 2.

n.	log (n!)	п.	log (n!)	72.	log (n!)	72.	log (n!)
1	0.000000	26	26.605619	51	66.190645 67.906648 69.630924 71.363318 73.103681	76	111.275425
2	0.301030	27	28.036983	52		77	113.161916
3	0.778151	28	29.484141	53		78	115.054011
4	1.380211	29	30.946539	54		79	116.951638
5	2.079181	30	32.423060	55		80	118.854728
6	2.857332	31	33.915022	56	74.851869	81	120.763213
7	3.702431	32	35.420172	57	76.607744	82	122.677027
8	4.605521	33	36.938686	58	78.371172	83	124.596105
9	5.559763	34	38.470165	59	80.142024	84	126.520384
10	6.559763	35	40.014233	60	81.920175	85	128.449803
11	7.601156	36	41.570535	61	83.705505	86	130.384301
12	8.680337	37	43.138737	62	85.497896	87	132.323821
13	9.794280	38	44.718520	63	87.297237	88	134.268303
14	10.940408	39	46.309585	64	89.103417	89	136.217693
15	12.116500	40	47.911645	65	90.916330	90	138.171936
16	13.320620	41	49.524429	66	92.735874	91	140.130977
17	14.551069	42	51.147678	67	94.561949	92	142.094765
18	15.806341	43	52.781147	68	96.394458	93	144.063248
19	17.085095	44	54.424599	69	98.233307	94	146.036376
20	18.386125	45	56.077812	70	100.078405	95	148.014099
21	19.708344	46	57.740570	71	101.929663	96	149.996371
22	21.050767	47	59.412668	72	103.786996	97	151.983142
23	22.412494	48	61.093909	73	105.650319	98	153.974368
24	23.792706	49	62.784105	74	107.519550	99	155.970004
25	25.190646	50	64.483075	75	109.394612	100	157.970004

TABLE 17.
HYPERBOLIC FUNCTIONS.

	sın	h. u	cos	h. u	tan	h. u	cot	h. u	
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd u
0.00 .01 .02 .03	0.00000 .01000 .02000 .03000 .04001	∞ 8.00001 .30106 .47719 .60218	1.00000 .00005 .00020 .00045	0.00000 .00002 .00009 .00020	0,00000 .01000 .02000 .02999 .03998	— ∞ 7.99999 8.30097 .47699 .60183	00.003 50.007 33·343 25.013	2.00001 1.69903 1.52301 1.39817	00°00′ 0 34 1 09 1 43 2 17
0.05 .06 .07 .08 .09	0.05002 .06004 .07006 .08009 .09012	8.69915 .77841 .84545 .90355 .95483	1.00125 .00180 .00245 .00320 .00405	0.00054 .00078 .00106 .00139 .00176	0.04996 .05993 .06989 .07983 .08976	8.69861 •77763 •84439 •90216 •95307	20.017 16.687 14.309 12.527 11.141	1.30139 .22237 .15561 .09784 .04693	2 52 3 26 4 00 4 35 5 09
0.10 .11 .12 .13	0.10017 .11022 .12029 .13037 .14046	9.00072 .04227 .08022 .11517 .14755	1.00500 .00606 .00721 .00846 .00982	0.00217 .00262 .00312 .00366 .00424	0.09967 .10956 .11943 .12927 .13909	8.99856 9.03965 .07710 .11151 .14330	10.0333 9.1275 8.3733 7.7356 7.1895	1,00144 0.96035 .92290 .88849 .85670	5 43 6 17 6 52 7 26 8 00
0.15 .16 .17 .18	0.15056 .16068 .17082 .18097 .19115	9.17772 .20597 .23254 .25762 .28136	1.01127 .01283 .01448 .01624 .01810	0.00487 .00554 .00625 .00700	0.14889 .15865 .16838 .17808 .18775	9.17285 .20044 .22629 .25062 .27357	6.7166 6.3032 5.9389 5.6154 5.3263	0.82715 .79956 .77371 .74938 .72643	8 34 9 08 9 42 10 15 10 49
0.20 .21 .22 .23 .24	0.20134 .21155 .22178 .23203 .24231	9.30392 .32541 .34592 .36555 .38437	1.02007 .02213 .02430 .02657 .02894	0.00863 .00951 .01043 .01139 .01239	0.19738 .20697 .21652 .22603 .23550	9.29529 .31590 .33549 .35416 .37198	5.0665 4.8317 4.6186 4.4242 4.2464	0.70471 .68410 .66451 .64584 .62802	11 23 11 57 12 30 13 04 13 37
0.25 .26 .27 .28	0.25261 .26294 .27329 .28367 .29408	9.40245 .41986 .43663 .45282 .46847	1.03141 .03399 .03667 .03946 .04235	0.01343 .01452 .01564 .01681 .01801	0.24492 .25430 .26362 .27291 .28213	9.38902 .40534 .42099 .43601 .45046	4.0830 3.9324 3.7933 3.6643 3.5444	o.61098 .59466 .57901 .56399 .54954	14 11 14 44 15 17 15 50 16 23
0.30 .31 .32 .33 .34	0.30452 .31499 .32549 .33602 .34659	9.48362 .49830 .51254 .52637 .53981	1.04534 .04844 .05164 .05495 .05836	0.01926 .02054 .02187 .02323 .02463	0.29131 .30044 .30951 .31852 .32748	9.46436 ·47775 ·49067 ·50314 ·51518	3.4327 .3285 .2309 .1395 .0536	0.53564 .52225 .50933 .49686 .48482	16 56 17 29 18 02 18 34 19 07
0.35 .36 .37 .38 .39	0.35719 .36783 .37850 .38921 .39996	9.55290 .56564 .57807 .59019 .60202	1.06188 .06550 .06923 .07307 .07702	0.02607 .02755 .02907 .03063 .03222	0.33638 .34521 .35399 .36271 .37136	9.52682 .53809 .54899 .55956 .56980	2.9729 .8968 .8249 .7570 .6928	0.47318 .46191 .45101 .44044 .43020	19 39 20 12 20 44 21 16 21 48
0.40 .41 .42 .43 .44	0.41075 .42158 .43246 .44337 .45434	9.61358 .62488 .63594 .64677 .65738	1.08107 .08523 .08950 .09388 .09837	0.03385 .03552 .03723 .03897 .04075	0.37995 .38847 .39693 .40532 .41364	9.57973 .58936 .59871 .60780 .61663	2.6319 .5742 .5193 .4672 4175	0.42027 .41064 .40129 .39220 .38337	22 20 22 52 23 23 23 55 24 26
0.45 .46 .47 .48 .49	0.46534 .47640 .48750 .49865 .50984	9.66777 .67797 .68797 .69779 .70744	1.102970 .10768 .11250 .11743 .12247	.04256 .04441 .04630 .04822 .05018	0.42190 .43008 .43820 .44624 .45422	9.62521 .63355 .64167 .64957 .65726	2.3702 .3251 .2821 .2409 .2016	0.37479 .36645 .35833 .35043 .34274	24 57 25 28 25 59 26 30 27 01
0.50	0.52110	9.71692	1.12763	0.05217	0.46212	9.66475	2.1640	0.33525	27 31

TABLE 17 (continued). HYBERBOLIC FUNCTIONS.

								not	h. u	
ı	u	sinl	1. u	cos	h. u 	tan	h. u 			gd u
		Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
6	0.50 •51 •52 •53 •54	0.52110 .53240 .54375 .55516 .56663	9.71692 .72624 .73540 .74442 .75330	1.12763 .13289 .13827 .14377 .14938	0.05217 .05419 .05625 .05834 .06046	0.46212 .46995 .47770 .48538 .49299	9.66475 .6720 5 .67916 .68608 .69284	2.1640 .1279 .0934 .0602 .0284	0.33525 ·32795 ·32084 ·31392 ·30716	27°31′ 28 02 28 32 29 02 29 32
	0.55 .56 .57 .58 .59	0.57815 .58973 .60137 .61307 .62483	9.76204 .77065 .77914 .78751 .79576	1.15510 .16094 .16690 .17297 .17916	0.06262 .06481 .06703 .06929	0.50052 .50798 .51536 .52267 .52990	9.69942 .70584 .71211 .71822 .72419	1.9979 .9686 .9404 .9133 .8872	0.30058 .29416 .28789 .28178 .27581	30 02 30 32 31 01 31 31 32 00
	0.60 .61 .62 63 .64	0.63665 .64854 .66049 .67251 .68459	9.80390 .81194 .81987 .82770 .83543	1.18547 .19189 .19844 .20510 .21189	0.07389 .07624 .07861 .08102 .08346	0.53705 ·544 ¹³ ·55 ¹¹³ ·55 ⁸ 05 ·56490	9.73001 .73570 .74125 .74667 .75197	1.8620 .8378 .8145 .7919 .7702	0.26999 .26430 .25875 .25333 .24803	32 29 32 58 33 27 33 55 34 24
	0.65 .66 .67 .68 .69	0.69675 .70897 .72126 .73363 .74607	9.84308 .85063 .85809 .86548 .87278	1.21879 .22582 .23297 .24025 .24765	0.08593 .08843 .09095 .09351 .09609	0.57167 .57836 .58498 .59152 .59798	9.75715 .76220 .76714 .77197 .77669	1.7493 .7290 .7095 .6906 .6723	0.24285 .23780 .23286 .22803 .22331	34 52 35 20 35 48 36 16 36 44
	0.70 .71 .72 .73 .74	0.75858 .77117 .78384 .79659 .80941	9.88000 .88715 .89423 .90123 .90817	1.25517 .26282 .27059 .27849 .28652	0.09870 .10134 :10401 .10670	0.60437 .61068 .61691 .62307 .62915	9.78130 .78581 .79022 .79453 .79875	1.6546 .6375 .6210 .6050 .5895	0.21870 .21419 .20978 .20547 .20125	37 11 37 38 38 05 38 32 38 59
	0.75 .76 .77 .78	0.82232 .83530 .84838 .86153 .87478	9.91504 .92185 .92859 .93527 .94190	1.29468 .30297 .31139 .31994 .32862	0.11216 .11493 .11773 .12055 .12340	0.63515 .64108 .64693 .65271 .65841	9.80288 ,80691 ,81086 ,81472 ,81850	1.5744 •5599 •5458 •5321 •5188	0.19712 .19309 .18914 .18528 .18150	39 26 , 39 52 , 40 19 , 40 45 , 41 11 ;
	0.80 .81 .82 .83 .84	0.88811 .901 5 2 .91503 .92863 .94233	9.94846 .95498 .96144 .96784 .97420	1.33743 .34638 .35547 .36468 .37404	0.12627 .12917 .13209 .13503 .13800	0.66404 ,66959 .67507 .68048 .68581	9.82219 .82581 .82935 .83281 .83620	1.5059 .4935 .4813 .4696 .4581	0.17781 .17419 .17065 .16719 .16380	41 37 42 02 42 28 42 53 43 18
	0.85 .86 .87 .88 .89	0.95612 .97000 .98398 .99806 1.01224	9.98051 .98677 .99299 .99916 0.00528	1.38353 .39316 .40293 .41284 .42289	0.14099 .14400 .14704 .15009 .15317	0.69107 .69626 .70137 .70642 .71139	9.83952 .84277 .84595 .84906 .85211	1.4470 .436 2 .4258 .4156 .4057	0.16048 .15723 .15405 .15094 .14789	43 43 44 08 44 32 1 44 57 45 21
	0.90 .91 .92 .93	1,02652 .04090 .05539 .06998 .08468	0.01137 .01741 .02341 .02937 .03530	1.43309 .44342 .45390 .46453 .47530	0.1 5627 .1 5939 .16254 .16570 .16888	0.71630 .72113 .72590 .73059 .73522	9.85509 .85801 .86088 .86368 .86642	1.3961 .3867 .3776 .3687 .3601	0.14491 .14199 .13912 .13632 .13358	45 45 46 09 46 33 46 56 47 20
	0.95 .96 .97 .98	1.09948 .11440 .12943 .14457 .15983	0.04119 · .04704 · .05286 · .05864 · .06439	1.48623 * .49729 .50851 .51988 .53141	0.17208 .17531 .17855 .18181 .18509	0.73978 .74428 .74870 .75307 .75736	9.86910 .87173 .87431 .87683 .87930	1.3517 .3436 .3356 .3279 .3204	0.13090 .12827 .12569 .12317 .12070	47 43 48 06 48 29 48 51 49 14
	1.00	1.17520	0.07.011	1.54308	0.18839	0.76159	9.88172	1.3130	0.11828	49 36

u	sin	h. u	cos	h, u	tan	h. u	co	th u	gd u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	ga u
1.00 .01 .02 .03	1.17520 .19069 .20630 .22203 .23788	0.07011 .07580 .08146 .08708 .09268	1.54308 .55491 .56689 .57904 .59134	0.18839 .19171 .19504 .19839 .20176	0.76159 .76576 .76987 .77391 .77789	9.88172 .88409 .88642 .88869 .89092	1.3130 .3059 .2989 .2921 .2855	0.11828 .11591 .11358 .11131 .10908	49°36′ 49 58 50 21 50 42 51 0 4
.05 .06 .07 .08	1.25386 .26996 .28619 .30254 .31903	0.09825 .10379 .10930 .11479 .12025	1.60379 .61641 .62919 .64214 .65525	0.20515 .20855 .21197 .21541 .21886	0.78181 .78566 .78946 .79320 .79688	9.89310 .89524 .89733 .89938 .90139	1.2791 .2728 .2667 .2607 .2549	0.10690 .10476 .10267 .10062 .09861	51 26 51 47 52 08 52 29 52 50
1.10 .11 .12 .13	1,33565 ,35240 ,36929 ,38631 ,40347	0.12569 .13111 .13649 .14186 .14720	1.66852 .68196 .69557 .70934 .72329	0.22233 .22582 .22931 .23283 .23636	0.80050 .80406 .80757 .81102	9.90336 .90529 .90718 .90903 .91085	1.2492 -2437 .2383 .2330 .2279	0.09664 .09471 .09282 .09097 .08915	53 11 53 31 53 52 54 12 54 32
1.15 .16 .17 .18	1.42078 .43822 .45581 .47355 .49143	0.15253 .15783 .16311 .16836 .17360	1.73741 .75171 .76618 .78083 .79565	0.23990 .24346 .24703 .25062 .25422	0.81775 .82104 .82427 .82745 .83058	9.91262 .91436 .91607 .91774 .91938	1.2229 .2180 .2132 .2085 .2040	0.08738 .08564 .08393 .08226 .08062	54 52 55 11 55 31 55 50 56 09
1.20 .21 .22 .23 .24	1.50946 .52764 .54598 .56447 .58311	0.17882 .18402 .18920 .19437 .19951	1.81066 .82584 .84121 .85676 .87250	0.25784 .26146 .26510 .26876 .27242	0.83365 .83668 .83965 .84258 .84546	9.92099 .92256 .92410 .92561 .92709	1.1995 .1952 .1910 .1868 .1828	0.07901 .07744 .07590 .07439 .07291	56 29 56 47 57 06 57 25 57 43
1.25 .26 .27 .28 .29	1.60192 .62088 .64001 .65930 .67876	0.20464 .20975 .21485 .21993 .22499	1.88842 .90454 .92084 .93734 .95403	0.27610 .27979 .28349 .28721 .29093	0,84828 .85106 .85380 .85648 .85913	9.92854 .92996 .93135 .93272 .93406	1.1789 .1750 .1712 .1676 .1640	0.07146 .07004 .06865 .06728 .06594	58 02 58 20 58 38 58 55 59 13
1.30 .31 .32 .33 .34	1.69838 .71818 .73814 .75828 .77860	0.23004 .23507 .24009 .24509 .25008	1.97091 .98800 2.00528 .02276	0.29467 .29842 .30217 .30594 .30972	0.86172 .86428 .86678 .86925 .87167	9.93537 .93665 .93791 .93914 .94035	1.1605 .1570 .1537 .1504 .1472	0.06463 .06335 .06209 .06086 .05965	59 31 59 48 60 05 60 22 60 39
1.35 .36 .37 .38 .39	1.79909 .81977 .84062 .86166 .88289	0.25505 .26002 .26496 .26990 .27482	2.05833 .07643 .09473 .11324 .13196	0.31352 .31732 .32113 .32495 .32878	0.87405 .87639 .87869 .88095 .88317	9.94154 .94270 .94384 .94495 .94604	1.1441 .1410 .1381 .1351 .1323	0.05846 .05730 .05616 .05505 .05396	60 56 61 13 61 29 61 45 62 02
1,40 .41 .42 .43 .44	1.90430 .92591 .94770 .96970 .99188	0.27974 .28464 .28952 .29440 .29926	2.15090 .17005 .18942 .20900 .22881	0.33262 .33647 .34033 .34420 .34807	0.88535 .88749 .88960 .89167 .89370	9.94712 •94817 •94919 •95020 •95119	1.1295 .1268 .1241 .1215 .1189	0.05288 .05183 .05081 .04980 .04881	62 18 62 34 62 49 63 05 63 20
1.45 .46 .47 .48	2.01427 .03686 .05965 .08265 .10586	0.30412 .30896 .31379 .31862 .32343	2.24884 .26910 .28958 -31029 .33123	0.35196 ·35585 ·35976 ·36367 ·36759	0.89569 .89765 .89958 .90147 .90332	9.95216 .95311 .95404 .95495 .95584	1.1165 .1140 .1116 .1093 .1070	0.04784 .04689 .04596 .04505 .04416	63 36 63 51 64 06 64 21 64 36
1.50	2.12928	0.32823	2.35241	0.37151	0.90515	9.95672	1.1048	0.04328	64 51

TABLE 17 (continued). HYPERBOLIC FUNCTIONS.

	sin	h. u	cos	h. u	tan	h. u	cot	th. u	~d	u
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	ga.	u
1.50 .51 .52 .53 .54	2.12928 .15291 .17676 .20082 .22510	0.32823 ·33303 ·33781 ·34258 ·34735	2.35241 .37382 .39547 .41736 .43949	o.37151 ·37545 ·37939 ·38334 ·38730	0.90515 .90694 .90870 .91042 .91212	9.95672 •95758 •95842 •95924 •96005	1.1048 .1026 .1005 .0984 .0963	0.04328 .04242 .04158 .04076 .03995	64° 65 65 65 65	51' 05 20 34 48
1.55 .56 .57 .58 .59	2.24961 .27434 .29930 .32449 .34991	0.35211 •35686 •36160 •36633 •37105	2.46186 .48448 .50735 .53047 .55384	0.39F26 •39524 •3992T •40320 •407T9	0.91379 .91542 .91703 .91860 .92015	9.96084 .96162 .96238 .96313 .96386	1.0943 .0924 .0905 .0886 .0868	0.03916 .03838 .03762 .03687 .03614	66 66 66 66 66	02 16 30 43 57
1.60 .61 .62 .63 .64	2.37557 40146 .42760 .45397 .48059	0.37577 .38048 .38518 .38987 .39456	2.57746 .60135 .62549 .64990 .67457	0.41119 .41520 .41921 .42323 .42725	0.92167 .92316 .92462 .92606 .92747	9.96457 .96528 .96597 .96664 .96730	1.0850 .0832 .0815 .0798 .0782	0.03543 •03472 •03403 •03336 •03270	67 67 67 67 68	10 24 37 50 03
1.65 .66 .67 .68 .69	2.50746 ·53459 .56196 ·58959 .61748	0.39923 .40391 .40857 .41323 .41788	2.699 5 1 .72472 .75021 .77596 .80200	0.43129 ·43532 ·43937 ·44341 ·44747	0.92886 .93022 .93155 .93286 .93415	9.96795 .96858 .96921 .96982 .97042	1.0766 .0750 .0735 .0720	0.03205 .03142 .03079 .03018 .02958	68 68 68 68 69	15 28 41 53 05
1.70 .71 .72 .73 .74	2.64563 .67405 .70273 .73168 .76091	0.42253 .42717 .43180 .43643 .44105	2.82832 .85491 .88180 .90897 .93643	0.45153 •45559 •45966 •46374 •46782	0.93541 .93665 .93786 .93906 .94023	9.97100 .97158 .97214 .97269 .97323	1.0691 .0676 .0663 .0649 .0636	0.02900 .02842 .02786 .02731 .0267 7	69 69 69 69 70	18 30 42 54 05
1.75 .76 .77 .78 .79	2.79041 .82020 .85026 .88061 .91125	0.44567 •45028 •45488 •45948 •46408	2.96419 .99224 3.02059 .04925 .07821	0.47191 .47600 .48009 .48419 .48830	0.94138 .94250 .94361 .94470 .94576	9.97376 .97428 .97479 .97529 .97578	1.0627 .0610 .0598 .0585	0.02624 .02572 .02521 .02471 .02422	70 70 70 70 71	17 29 40 51 03
1.80 .81 .82 .83	2.94217 .97340 3.00492 .03674 .06886	0.46867 .47325 .47783 .48241 .48698	3.10747 .1370 5 .16694 .19715 .22768	0.49241 .49652 .50064 .50476 .50889	0.94681 •94783 •94884 •94983 •95080	9.97626 .97673 .97719 .97764 .97809	1.0562 .0550 .0539 .0528 .0518	0.02374 .02327 .02281 .02236 .02191	71 71 71 71 71	14 25 36 46 57
1.85 .86 .87 .88	3.10129 .13403 .16709 .20046 .23415	0.49154 .49610 .50066 .50521 .50976	3.25853 .28970 .32121 .35305 .38522	0.51302 .51716 .52130 .52544 .52959	0.95175 .95268 ·95359 ·95449 ·95537	9.97852 •97895 •97936 •97977 •98017	0.0507 .0497 .0487 .0477 .0467	0.02148 .02105 .02064 .02023 .01983	72 72 72 72 72 72	oS 18 29 39 49
1.90 .91 .92 .93 .94	3.26816 .30250 .33718 .37218 .40752	0.51430 .51884 .52338 .52791 .53244	3.41 7 73 .45058 .4837 8 .51733 .55123	0.53374 .53789 .54205 .54621 .55038	0.95624 •95709 •95792 •95873 •95953	9.98057 .98095 .98133 .98170	1.0458 .0448 .0439 .0430 .0422	0.01943 .01905 .01867 .01830 .01794	72 73 73 73 73	59 09 19 29
1.95 .96 .97 .98	3.44321 .47923 .51561 .55234 .58942	0.53696 .54148 .54600 .55051 .55502	3.58548 .62009 .65507 .69041 .72611	0.55455 .55872 .56290 .56707 .57126	0.96032 .96109 .96185 .96259	9.98242 .98276 .98311 .98344 .98377	1.0413 .0405 .0397 .0389 .0381	0.01758 .01724 .01689 .01656 .01623	73 73 74 74 74	48 58 07 17 26
2.00	3.62686	0.55953	3.762 2 0	0.57544	0.96403	9.98409	1.0373	0.01591	74	35

HYPERBOLIC FUNCTIONS.

	sin	ıh. u	cos	h. u	tan	ih. u	co	th. u.	
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd. u
2.00 .01 .02 .03	3.62686 .66466 .70283 .74138 .78029	0.55953 .56403 .56853 .57303 .57753	3.76220 .79865 .83549 .87271 .91032	0.57544 .57963 .58382 .58802	0.96403 .96473 .96541 .96609	9.98409 .98440 .98471 .98502 .98531	1.0373 .0366 .0358 .0351	0.01591 .01560 .01529 .01498	74°35′ 74 44 74 53 75 02 75 11
2.05 .06 .07 .08	3.81958 .85926 .89932 .93977 .98061	0.58202 .58650 .59099 .59547 .59995	3.94832 .98671 4.02550 .06470 .10430	0.59641 .60061 .60482 .60903 .61324	0.96740 .96803 .96865 .96926 .96986	9.98560 .98589 .98617 .98644 .98671	1.0337 .0330 .0324 .0317 .0311	0.01440 .01411 .01383 .01356 .01329	75 20 75 28 75 37 75 45 75 54
2.10 .11 .12 .13	4.02186 .06350 .10555 .14801 .19089	0.60443 .60890 .61337 .61784 .62231	4.14431 .18474 .22558 .26685 .30855	0.61745 .62167 .62589 .63011 .63433	0.97045 .97103 .97159 .97215 .97269	9.98697 .98723 .98748 .98773 .98798	1.0304 .0298 .0292 .0286 .0281	0.01303 .01277 .01252 .01227	76 02 76 10 76 19 76 27 76 35
2.15 .16	4.23419 .27791 .32205 .36663 .41165	0.62677 .63123 .63569 .64015 .64460	4.35067 .39323 .43623 .47967 .52356	0.63856 .64278 .64701 .65125 .65548	0.97323 ·97375 ·97426 ·97477 ·97526	9.98821 .98845 .98868 .98890	1.0275 .0270 .0264 .0259 .0254	0.01179 .01155 .01132 .01110	76 43 76 51 76 58 77 06 77 14
2.20 .21 .22 .23 .24	4.45711 .50301 .54936 .59617 .64344	0.64905 .65350 .65795 .66240 .66684	4.56791 .61271 .65797 .70370 .74989	0.65972 .66396 .66820 .67244 .67668	0.97574 .97622 .97668 .97714 .97759	9.98934 .98955 .98975 .98996 .99016	.0249 .0244 .0239 .0234 .0229	0.01066 .01045 .01025 .01004 .00984	77 21 77 29 77 36 77 44 77 51
2.25 .26 .27 .28 .29	4.69117 -73937 -78804 -83720 -88684	0.67128 .67572 .68016 .68459 .68903	4.796 5 7 .84372 .89136 .93948 .98810	o.68093 .68518 .68943 .69368 .69794	0.97803 .97846 .97888 .97929 .97970	9.99035 .99054 .99073 .99091	.0225 .0220 .0216 .0211	0.00965 .00946 .00927 .00909 .00891	77 58 78 05 78 12 78 19 78 26
2.30 .31 .32 .33 .34	4.93696 .98758 5.03870 .09032 .14245	0.69346 .69789 .70232 .70675 .71117	5.03722 .08684 .13697 .18762 .23878	0.70219 .70645 .71071 .71497 .71923	0.98010 .98049 .98087 .98124 .98161	9.99127 .99144 .99161 .99178	1.0203 .0199 .0195 .0191	0.00873 .00856 .00839 .00822 .00806	78 33 78 40 78 46 78 53 79 00
2.35 .36 .37 .38 .39	5.19510 .24827 .30196 .35618 .41093	0.71559 .72002 .72444 .72885 .73327	5.29047 .34269 .39544 .44873 .50256	0.72349 .72776 .73203 .73630 .74056	0.98197 .98233 .98267 .98301 .98335	9•99210 .99226 .99241 .99256 .99271	1.0184 .0180 .0176 .0173	0.00790 .00774 .00759 .00744 .00729	79 06 79 13 79 19 79 25 79 32
2.40 .41 .42 .43 .44	5.46623 .52207 .57847 .63542 .69294	0.73769 .74210 .74652 .75093 .75534	5.55695 .61189 .66739 .72346 .78010	0.74484 .74911 .75338 .75766 .76194	0.98367 .98400 .98431 .98462 .98492	9.99285 .99299 .99313 .99327 .99340	1.0166 .0163 .0159 .0156 .0153	0.007 L5 .0070 I .00687 .00673 .00660	79 38 79 44 79 50 79 56 80 02
2.45 .46 .47 .48 .49	5.75103 .80969 .86893 .92876 .98918	0.75975 .76415 .76856 .77296 -77737	5.83732 .89512 .95352 6.01250 .07209	0.76621 .77049 .77477 .77906 .78334	0.98522 .98551 .98579 .98607 .98635	9.99353 .99366 .99379 .99391 .99403	1,0150 .0147 .0144 .0141 .0138	0.00647 .00634 .00621 .00609	80 08 80 14 80 20 80 26 80 31
2.50	6.05020	0.78177	6.13229	0.78762	0.98661	9.99415	1.0136	0.00585	80 37

TABLE 17 (continued).

HYPERBOLIC FUNCTIONS.

	sin	h. u	cos	h. u	tar	nh. u	cot	h. u	
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd. u
2.50 .51 .52 .53 .54	6.05020 .11183 .17407 .23692 .30040	0.78177 .78617 .79057 .79497 . 7 9937	6.13229 .19310 .25453 .31658 .37927	0.78762 .79191 .79619 .80048 .80477	0.98661 .98688 .98714 .98739 .98764	9.99415 .99426 .99438 .99449	1,0136 .0133 .0130 .0128	0.00585 .00574 .00562 .00551	80° 37′ 80° 42 80° 48 80° 53 80° 59
2.55 .56 .57 .58 .59	6.36451 .42926 .49464 .56068 .62738	0.80377 .80816 .81256 .81695 .82134	6.44259 .50656 .57118 .63646 .70240	0.80906 .81335 .81764 .82194 .82623	0.98788 .98812 .98835 .98858 .98881	9.99470 .99481 .99491 .99501	.0123 .0120 .0118 .0115	0.00530 .00519 .00509 .00499 .00489	81 04 81 10 81 15 81 20 81 25
2.60 .61 .62 .63 .64	6.69473 .76276 83146 .90085 .97092	0.82573 .83C12 .83451 .83890 .84329	-6.76901 .83629 .90426 .97292 7.04228	0.83052 .83482 .83912 .84341 .84771	0.98903 .98924 .98946 .98966 .98987	9.99521 •99530 •99540 •99549 •99558	1.0111 .0109 .0107 .0104 .0102	0.00479 .00470 .00460 .00451 .00442	81 30 81 35 81 40 81 45 81 50
2.65 .66 .67 .68 .69	7.04169 .11317 .18536 .25827 .33190	0.84768 .85206 .85645 .86083 .86522	7.11234 .18312 .25461 .32683 .39978	0.85201 .85631 .86061 .86492 .86922	0.99007 .99026 .99045 .99064 .99083	9.99566 ·99575 ·99583 ·99592 ·99600	1.0100 .0098 .0096 .0094	0.00434 .00425 .00417 .00408 .00400	81 55 82 00 82 05 82 09 82 14
2.70 .71 .72 .73 .74	7.40626 .48137 .55722 .63383 .71121	0.86960 .87398 .87836 .88274 .88712	7.47347 .54791 .62310 .69905 .77578	0.87352 .87783 .88213 .88644 .89074	0.99101 .99118 .99136 .99153 .99170	9.99608 .99615 .99623 .99631	1.0091 .0089 .0087 .0085 .0084	0.00392 .00385 .00377 .00369 .00362	82 19 82 23 82 28 82 32 82 37
2.75 .76 .77 .78 .79	7.78935 .86828 .94799 8.02849 .10980	0.89150 .89588 .90026 .90463 .90901	7.85328 .93157 8.01065 .09053 .17122	0.89505 .89936 .90367 .90798	0.99186 .99202 .99218 .99233 .99248	9.99645 .99652 .99659 .99666	1.0082 .0080 .0079 .0077 .0076	0.00355 .00348 .00341 .00334 .00328	82 41 82 45 82 50 82 54 82 58
2.80 .81 .82 .83 .84	8.19192 .27486 .35862 .44322 .52867	0.91339 .91776 .92213 .92651	8.25273 •33506 •41823 •50224 •58710	0.91660 .92091 .92522 .92953 .93385	0.99263 .99278 .99292 .99306 .99320	9.99679 .99685 .99691 .99698	1.0074 .0073 .0071 .0070	0.00321 .00315 .00309 .00302 .00296	83 02 83 07 83 11 83 15 83 19
2.85 .86 .87 .88 .89	8.61497 .70213 .79016 .87907 .96887	0.93525 .93963 .94400 .94837 .95274	8.67281 .75940 .84686 .93520 9.02444	0.93816 .94247 .94679 .95110 .95542	0.99333 .99346 .99359 .99372 .99384	9.99709 .99715 .99721 .99726	1.0067 .0066 .0065 .0063	0.00291 .00285 .00279 .00274 .00268	83 23 83 27 83 31 83 34 83 38
2.90 .91 .92 .93 .94	9.05956 .15116 .24368 .33712 .43149	0.95711 .96148 .96584 .97021 .97458	9.11458 .20564 .29761 .39051 .48436	0.95974 .96405 .96837 .97269	0.99396 .99408 .99420 .99531 .99443	9.99737 .99742 .99747 .99752 .99757	1.0061 .0060 .0058 .0057	0,00263 .00258 .00253 .00248	83 42 83 46 83 50 83 53 83 57
2.95 .96 .97 .98 .99	9.52681 .62308 .72031 .81851 .91770	0.97895 .98331 .98768 .99205 .99641	9.57915 .67490 .77161 .86930 .96798	0.98133 .98565 .98997 .99429 .99861	0.99454 .99464 .99475 .99485 .99496	9.99762 .99767 .99771 .99776 .99780	1.0055 .0054 .0053 .0052	0.00238 .00233 .00229 .00224 .00220	84 00 84 04 84 08 84 II 84 I5
3.00	10.01787	1.00078	10.06766	1.00293	0.99505	9.99785	1.0050	0.00215	84 18

HYPERBOLIC FUNCTIONS.

и	sin	h. u	cos	h. u	tan	h. u	cot	h. u	
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd. u
3.0 .1 .2 .3 .4	10.0179 11.0765 12.2459 13.5379 14.9654	1.00078 .04440 .08799 .13155 .17509	10.0677 11.1215 12.2866 13.5748 14.9987	1.00293 .04616 .08943 .13273 .17605	0.99505 •99595 •99668 •99728 •99777	9.99785 .99824 .99856 .99882	I.0050 .0041 .0033 .0027 .0022	0.00215 .00176 .00144 .00118	84°18′ 84 50 85 20 85 47 86 11
3.5 .6 .7 .8	16.5426 18.2855 20.2113 22.3394 24.6911	1.21860 .26211 .30559 .34907 .39254	16.5728 18.3128 20.2360 22.3618 24.7113	1.21940 .26275 .30612 .34951 .39290	0.99818 .99851 .99878 .99900	9.99921 ·99935 ·99947 ·99957 ·99964	1.0018 .0015 .0012 .0010	0.00079 .00065 .00053 .00043 .00036	86 32 86 52 87 10 87 26 87 41
4.0 .1 .2 .3 .4	27.2899 30.1619 33.3357 36.8431 40.7193	1.43600 .47946 .52291 .56636 .60980	27.3082 30.1784 33.3507 36.8567 40.7316	1.43629 .47970 .52310 .56652 .60993	0.99933 ·99945 ·99955 ·99963 ·99970	9.99971 .99976 .99980 .99984 .99987	1.0007 .0005 .0004 .0004	0.00029 .00024 .00020 .00016	87 54 88 06 88 17 88 27 88 36
4.5 .6 .7 .8	45.0030 49.7371 54.9690 60.7511 67.1412	1.65324 .69668 .74012 .78355 .82699	45.0141 49.7472 54.9781 60.7593 67.1486	1.65335 .69677 .74019 .78361 .82704	0.9997 5 .99980 .9998 3 .99986	9.99989 .99991 .99993 .99994 .99995	1,0002 .0002 .0002 .0001	0.00011 .00009 .00007 .00006	88 44 88 51 88 57 89 03 89 09
5.0	74.2032	1.87042	74.2099	1.87046	0.99991	9.99996	1.0001	0.00004	89 14

TABLE 18 .- Factorials.

See Table 16 for logarithms of the products 1.2.3...n from 1 to 100. See Table 32 for log. Γ (n+1) for values of n between 1.000 and 2.000.

n.	$\frac{I}{n:}$	n: = 1. 2. 3. 4 n	12
1 2 3 4 5	1. 0.5 .16666 66666 66666 66666 66667 .04166 66666 66666 66666 66667 .00833 33333 33333 33333 33333	1 2 6 24 120	1 2 3 4 5
6 7 8 9	0.00138 88888 88888 88888 88889 .00019 84126 98412 69841 26984 .00002 48015 87301 58730 15873 .00000 27557 31922 39858 90053 .00000 02755 73192 23985 89065	720 5040 40320 3 62880 36 28800	6 7 8 9
11 12 13 14 15	0.00000 00250 52108 38544 17188 .00000 00020 87675 69878 68099 .00000 00001 60590 43836 82161 .00000 00000 11470 74559 77297 .00000 00000 00764 71637 31820	399 16800 4790 01600 62270 20800 8 71782 91200 130 76743 68000	11 12 13 14
16 17 18 19 20	0.00000 00000 00047 79477 33239 .00000 00000 00002 81145 72543 .00000 00000 00000 15619 20697 .00000 00000 00000 00822 06352 .00000 00000 00000 00041 10318	2092 27898 88000 35568 74280 96000 6 40237 37057 28000 121 64510 04088 32000 2432 90200 81766 40000	16 17 18 19 20

TABLE 19. EXPONENTIAL FUNCTION.

Oct	x	$\log_{10}(ex)$	eх	e-x	x	$\log_{10}(ex)$	es	e-x
0.05	.0I .02 .03	.00434 .00869 .01303	.0101 .0202 .0305	0.990050 .980199 .970446	.51	.22149 .22583 .23018	.6653 .6820 .6989	.600496 .594521 .588605
0.10	0.05 .06 .07 .08	0.02171 .02606 .03040 .03474	1.0513 .0618 .0725 .0833	0.951229 .941765 .932394 .923116	0. 5 5 .56 .57 .58	0.23886 .24320 .24755 .25189	1.7333 .7507 .7683 .7860	0.576950 .571209 .565525 .559898
1.16	0.10 .11 .12 .13	0.04343 .04777 .05212 .05646	1.1052 .1163 .1275 .1388	0.904837 .895834 .886920 .878095	0.60 .61 .62 .63	0.26058 .26492 .26926 .27361	1.8221 .8404 .8589 .8776	0.548812 •543351 •537944 •532592
.21	.16 .17 .18	.06949 .07383 .07817	.1735 .1853 .1972	.852144 .843665 .835270	.66 .67 .68	.28663 .29098	.9348 .9542 .9739	.516851 .511709 .506617
.26 .11292 .2969 .771052 .76 .33006 .1383 .467666 .27 .11726 .3100 .763379 .77 .33441 .1508 .463013 .28 .12160 .3231 .755784 .78 .33875 .1815 .458406 .29 .12595 .3364 .748264 .79 .34309 .2034 .453845 0.30 0.13029 1.3499 0.740818 0.80 0.34744 2.2255 0.449329 .31 .13463 .3634 .733447 .81 .35178 .2479 .444858 .32 .13897 .3771 .7261449 .82 .35612 .2705 .440432 .33 .14332 .3910 .718924 .83 .36046 .2933 .436049 .34 .14766 .4049 .711770 .84 .36481 .3104 .431711 0.35 0.15200 1.4191 0.704688 0.85 0.36015 2.3396 0	.2I .22 .23	.09120 .09554 .09989	.2337 .2461 .2586	.810584 .802519 .794534	.71 .72 .73	.30835 .31269 .31703	.0340 .0544 .0751	.491644 .486752 .481909
.31	.26 .27 .28	.11292 .11726 .12160	.2969 .3100 .3231	.771052	.76 •77 •78	.33006 .33441 .33 ⁸ 75	.1383 .1598 .1815	.467666 .463013 .458406
.36	•31 •32 •33	.13463 .13897 .14332	.3634 .3771 .3910	.733447 .726149 .718924	.81 .82 .83	.35178 .35612 .36046	.2479 .2705 .2933	.444858 .440432 .436049
.41 .17866 .5068 .663650 .91 .30521 .4843 .402524 .42 .18240 .5220 .657047 .92 .30955 .5093 .398519 .43 .18675 .5373 .650509 .93 .40380 .5345 .394554 .44 .19109 .5527 .644036 .94 .40824 .5600 .390628 0.45 0.19543 1.5683 0.637628 0.95 0.41258 2.5857 0.386741 .46 .19978 .5841 .631284 .90 .41692 .6117 .382893 .47 .20412 .6000 .625002 .97 .42127 .6379 .379083 .48 .20846 .6161 .618783 .98 .42561 .6045 :371577	.36 .37 .38	.15635 .16069 .16503	•4333 •4477 •4623	.697676 .690734 .683861	.86 .87 .88	-37349 -37784 -38218	.3632 .3869 .4109	.423162 .418952 .
.46 .19978 .5841 .631284 .96 .41692 .6117 .382893 .47 .20412 .6000 .625002 .97 .42127 .6379 .379083 .48 .20846 .6161 .618783 .98 .42561 .6045 :375311 .49 .21280 .6323 .612026 .99 .42995 .6912 .371577	.41 .42 .43	.17806 .18240 .18675	.5068 .5220 .5373	.663650 .657047 .650509	.91	.39521 -39955 .40389	.4843 .5093 .5345	.402524 .398 5 19 .394554
0.50 0.21715 1.6487 0.606531 1.00 0.43429 2.7183 0.367879	.46 -47 .48	.19978 .20412 .20846	.5841 .6000 .6161	.631284 .625002 .618783	.96 .97 .98	.41692 .42127 .42561	.6117 .6379 .6645	.382893 .379083 :375311
	0.50	0.21715	1.6487	0.606531	1.00	0.43429	2.7183	0.367879

x	$\log_{10}\left(e^{x}\right)$	ex	e-x	x	$\log_{10}\left(e^{x}\right)$	ex	e- x
1,00 .01 .02 .03	0.43429 .43864 .44298 .44732 .45167	2.7183 .7456 .7732 .8011 .8292	0.367879 .364219 .360595 .357007 .353455	1.50 .51 .52 .53 .54	0.65144 .65578 .66013 .66447	4.4817 .5267 .5722 .6182 .6646	0.223130 .220910 .218712 .216536 .214381
1.05 .06 .07 .08	0.45601 .46035 .46470 .46904 .47338	2.8577 .8864 .9154 .9147 .9743	0.349938 .346456 .343009 .339596 .336216	1.55 .56 .57 .58	0.67316 .67750 .68184 .68619 .69053	4.7115 .7588 .8066 .8550	0.212248 .210136 .208045 .205975 .203926
1.10 .11 .12 .13	0.47772 .48207 .48641 .49075 .49510	3.0042 .0344 .0649 .0957 .1268	0.332871 •329559 •326280 •323033 •319819	1.60 .61 .62 .63 .64	0.69487 .69921 .70356 .70790	4.9530 5.0028 .0531 .1039 .1552	0.201897 .199888 .197899 .195930 .193980
1.15 .16 .17 .18	0.49944 .50378 .50812 .51247 .51681	3.1582 .1899 .2220 .2544 .2871	0.316637 .313486 .310367 .307279 .304221	1.65 .66 .67 .68 .69	0.71659 .72093 .72527 .72961 .73396	5.2070 .2593 .3122 .3656 .4195	0.192050 .190139 .188247 .186374 .184520
1,20 ,21 ,22 ,23 ,-24	0.52115 .52550 .52984 .53418 .53853	3.3201 ·3535 ·3872 ·4212 ·4556	0.301194 .298197 .295230 .292293 .289384	1.70 71 .72 .73 .74	0.73830 .74264 .74699 .75133 .75567	5.4739 .5290 .5845 .6407 .6973	0.182684 .180866 .179066 .177284 .175520
1.25 .26 .27 .28 .29	0.54287 .54721 .55155 .55590 .56024	3.4903 ·5254 ·5609 ·5966 .6328	0.286505 .283654 .280832 .278037 .275271	1.75 .76 .77 .78 .79	0.76002 .76436 . 7 6870 .77304 .77739	5.7546 .8124 .8709 .9299 .9895	0.173774 .172045 .170333 .168638 .166960
1.30 .31 .32 .33 .34	0.56458 .56893 .57327 .57761 .58195	3.6693 .7062 .7434 .7810 .8190	0.272532 .269820 .267135 .264477 .261846	1.80 .81 .82 .83 .84	0.78173 .78607 .79042 .79476 .79910	6.0496 .1104 .1719 .2339 .2965	0.165299 .163654 .162026 .160414 .158817
1.35 .36 .37 .38 .39	0.58630 .59064 .59498 .59933 .60367	3.8574 .8962 .9354 .9749 4.0149	0.259240 .256661 .254107 .251579 .249075	1.8 5 .86 .8 ₇ .88	0.80344 .80779 .81213 .81647 .82082	6.3598 .4237 .4883 .5535 .6194	0.157237 .155673 .154124 .152590 .151072
1.40 .41 .42 .43 .44	0.60801 .61236 .61670 .62104 .62538	4.0552 .0960 .1371 .1787 .2207	0.246597 .244143 .241714 .239309 .236928	1.90 .91 .92 .93 .94	0.82516 .82950 .83385 .83819 .84253	6.6859 .7531 .8210 .8895 .9588	0.149569 .148080 .146607 .145148 .143704
1.45 .46 .47 .48 .49	0.62973 .63407 .63841 .64276 .64710	4.2631 .3060 .3492 .3929 .4371	0.234570 .232236 .229925 .227638 .225373	1.95 .96 .97 .98	0.84687 .85122 .85556 .85990 .86425	7.0287 .0993 .1707 .2427 .3155	0.142274 .140858 .139457 .138069 .136695
1.50	0.65144	4.4817	0.223130	2.00	0.86859	7.3891	0.135335

TABLE 19 (continued).

EXPONENTIAL FUNCTION.

ж	$\log_{10}\left(e^{x}\right)$	ex	e-x	x	$\log_{10}(e^x)$	ex	e-x
2.00 ,01 .02 .03 .04	0.86859 .87293 .87727 .88162 .88596	7.3891 .4633 .5383 .6141 .6906	0.135335 .133989 .132655 .131336 .130029	2.50 .51 .52 .53	1.08574 .09008 .09442 .09877	12.182 .305 .429 .554 .680	0.082085 .081268 .080460 .079659 .078866
2.05 .06 .07 .08	0.89030 .89465 .89899 .90333 .90768	7.7679 .8460 .9248 8.0045 .0849	0.128735 .127454 .126186 .124930 .123687	2.55 •56 •57 •58 •59	1.10745 .11179 .11614 .12048 .12482	12.807 .936 13.066 .197 .330	0.078082 .077305 .076536 .075774 .075020
2.10 .11 .12 .13	0.91202 .91636 92070 .9250 5 .92939	8.1662 .2482 .3311 .4149 .4994	0.122456 .121238 .120032 .118837 .117655	2.60 .61 .62 .63 .64	1.12917 .1335 1 .13785 .14219 .146 5 4	13.464 .599 .736 .874 14.013	0.074274 .073535 .072803 .072078 .071361
2.15 .16 .17 .18	0.93373 .93808 .94242 .94676 .95110	8.5849 .6711 .7583 .8463 .9352	0.116484 .115325 .114178 .113042 .111917	2.65 .66 .67 .68 .69	1.15088 .15522 .15957 .16391 .16825	.296 .440 .585 .732	0.070651 .069948 .069252 .068563 .067881
2.20 ,21 ,22 ,23 ,24	0.95545 .95979 .96413 .96848 .97282	9.0250 .1157 .2073 .2999 ·3933	0.110803 .109701 .108609 .107528 .106459	2.70 .71 .72 .73 .74	1.17260 .17694 .18128 .18562 .18997	14.880 15.029 .180 •333 .487	0.067206 .066537 .065875 .065219 .064570
2.25 .26 .27 .28 .29	0.97716 .98151 .98585 .99019 -99453	9.4877 .5831 .6794 .7767 .8749	0.105399 .104350 .103312 .102284	2.75 .76 .77 .78 .79	1.19431 .19865 .20300 .20734 .21168	15.643 ,800 ,959 16.119 ,281	0.063928 .063292 .062662 .062039 .061421
2.30 .31 .32 .33 .34	0.99888 1.00322 00756 .01191 .01625	9.9742 10.074 .176 .278 .381	0.100259 1.099261 1.098274 1.097296 1.096328	2.80 .81 .82 .83 .84	1.21602 .22037 .22471 .22905 .23340	16.445 .610 .777 .945 17.116	0.060810 .060205 .059606 .059013 .058426
2.35 .36 .37 .38 .39	1.02059 .02493 .02928 .03362 .03796	10.486 .591 .697 .805 .913	0.095369 .094420 .093481 .092551 .091630	2.85 .86 .87 .88 .89	1.23774 .24208 .24643 .25077 .25511	17.288 .462 .637 .814 .993	0.057844 .057269 .056699 .056135
2.40 .41 .42 .43 .44	1.04231 .04665 .05099 .05534 .05968	11.023 .134 .246 ·359 ·473	0.090718 .089815 .088922 .088037 .087161	2.90 .91 .92 .93 .94	1.25945 .26380 .26814 .27248 .27683	18.174 · · · 357 · · 541 · · 728 · · 916	0.0550 2 3 .054476 .053934 .053397 .052866
2.45 .46 .47 .48 .49	1.06402 .06836 .07271 .07705 .08139	.705 .822 .941 12.061	0.086294 .085435 .084585 .083743 .082910	2.95 .96 .97 .98	1.28117 .28551 .28985 .29420 .29854	19.106 .298 .492 .688 .886	0.052340 .051819 .051303 .050793 .050287
2.50	1.08574	12.182	0.082085	3.00	1.30288	20.086	0.049787

EXPONENTIAL FUNCTION.

x	$\log_{10}(ex)$	ex	e-x	.v	$\log_{10}(ex)$	ex	e-x
3.00 .01 .02 .03	1.30288 .30723 .31157 .31591 .32026	20.086 .287 .491 .697	0.049787 .049292 .048801 .048316 .047835	3.50 .51 .52 .53	1.52003 ·52437 ·52872 ·53306 ·53740	33.115 .448 .784 34.124 .467	0.030197 .029897 .029599 .029305 .029013
3.05 .06 .07 .08 .09	1.32460 .32894 .33328 .33763 .34197	21.115 .328 .542 .758 .977	0.047359 .046888 .046421 .045959 .045502	3·55 .56 ·57 .58 ·59	1.54175 .54609 .55043 .55477 .55912	34.813 35.163 .517 .874 36.234	0.028725 .028439 .028156 .027876
3.10 .11 .12 .13	1.34631 .35066 .35500 .35934 .36368	22.198 .421 .646 .874 23.104	0.045049 .044601 .044157 .043718 .043283	3.60 .61 .62 .63 .64	1.56346 .56780 .57215 .57649 .58083	36.598 .966 37.338 .713 38.092	0.027324 .027052 .026783 .026516
3.15 .16 .17 .18	1.36803 ·37237 ·37671 ·38106 ·38540	23.336 .571 .807 24.047 .288	0.042852 .042426 .042004 .041586 .041172	3.65 .66 .67 .68 .69	1.5851 7 -58952 -59386 -59820 -60255	38.475 .861 39.252 .646 40.045	0.02599I .025733 .025476 .025223 .024972
3.20 .21 .22 .23 .24	1.38974 •39409 •39843 •40277 •40711	24.533 .779 25.028 .280 .534	0.040762 .040357 .039955 .039557 .039164	3.70 .71 .72 .73 .74	1.60689 .61123 .61558 .61992 .62426	40.447 .854 41.264 .679 42.098	0.024724 .024478 .024234 .023993 .023754
3.25 .26 .27 .28	1.41146 .41580 .42014 .42449 .42883	25.790 26.050 .311 .576 .843	0.038774 .038388 .038006 .037628 .0372 5 4	3.7 5 . 7 6 .77 .78 .79	1.62860 .63295 .63729 .64163 .64598	42.521 .948 43.380 .816 44.256	0.023518 .023284 .023052 .022823 .022596
3.30 .31 .32 .33 .34	1.43317 .43751 .44186 .44620 .45054	27.113 •385 •660 •938 28.219	o.o36883 .o36516 .o36153 .o35793	3.80 .81 .82 .83 .84	1.65032 .65466 .65900 .66335 .66769	44.701 45.150 .604 46.063 .525	0.022371 .022148 .021928 .021710 .021494
3·35 .36 ·37 .38 ·39	1.45489 .45923 .46357 .46792 .47226	28.503 .789 29.079 .371 .666	0.035084 .034735 .034390 .034047 .033709	3.85 .86 .87 .88 .89	1.67203 .67638 .68072 .68506 .68941	46.993 47.465 .942 48.424 .911	0.021280 .021068 .020858 .020651 .020445
3.40 .41 .42 .43 .44	1.47660 .48094 .48529 .48963 .49397	29.964 30.265 .569 .877 31.187	0.033373 .033041 .032712 .032387 .032065	3.90 .91 .92 .93 .94	1.69375 .69809 .70243 .70678	49.402 .899 50 400 .907 51.419	0.02024 2 ,02004I ,01984I ,019644 ,019448
3.45 .46 .47 .48 .49	1.49832 .50266 .50700 .51134 .51569	31.500 .817 32.137 .460 .786	0.031746 .031430 .031117 .030807 .030501	3.95 .96 .97 .98	1.71546 .71981 .72415 .72849 .73283	51.935 52.457 .985 53.517 54.055	0.019255 .019063 .018873 .018686 .018500
3.50	1.52003	33.115	0.030197	4.00	1.73718	54.598	0.018316

TABLE 19 (continued).

EXPONENTIAL FUNCTION.

x	$\log_{10}(e^x)$	ex	e-x	x	$\log_{10}(e^x)$	e ^z	e-x
4.00 .01 .02 .03	1.73718 .74152 .74586 .75021	54.598 55.147 .701 56.261 .826	0.018316 .018133 .017953 .017774 .017597	4.50 .51 .52 .53	1.9 5 433 .95867 .96301 .96735 .97170	90.017 .922 91.836 92.759 93.691	o.011109 .010998 .010889 .010781
4.05 .06 .07 .08 .09	1.75889 .76324 .76758 .77192 .77626	57·39 7 ·974 58·557 59·145 ·740	0.017422 .017249 .017077 .016907 .016739	4·55 .56 ·57 ·58 ·59	1.97604 .98038 .98473 .98907 .99341	94.632 95.583 96.544 97.514 98.494	0.010567 .010462 .010358 .010255
4.10 .11 .12 .13 .14	1.78061 .78495 .78929 .79364 .79798	60.340 .947 61.559 62.178 .803	0.016573 .016408 .016245 .016083 .015923	4.60 .61 .62 .63 .64	1.99775 2.00210 .00644 .01078 .01513	99.484 100.48 101.49 102.51 103.54	0.010052 .009952 .009853 .009755 .009658
4.15 .16 .17 .18	1,80232 .80667 .81101 .81535 .81969	63.434 64.072 .715 65.366 66.023	0.015764 .015608 .015452 .015299 .015146	4.65 .66 .67 .68 .69	2.01947 .02381 .02816 .03250 .03684	104.58 105.64 106.70 107.77 108.85	o.009562 .009466 .009372 .009279 .009187
4.20 .21 .22 .23 .24	1,82404 .82838 .83272 .83707 .84141	66.686 67.357 68.033 •717 69.408	0.014996 .014846 .014699 .014552 .014408	4.70 .71 .72 .73 .74	2.04118 .04553 .04987 .05421 .05856	109.95 111.05 112.17 113.30 114.43	0.009095 .009005 .008915 .008826 .008739
4.25 26 .27 .28 .29	1.84575 .85009 .85444 .85878 .86312	70.105 .810 71.522 72.240 .966	0.014264 .014122 .013982 .013843 .013705	4.7 5 .76 .77 .78 .79	2,06290 .06724 .07158 .07593 .08027	115.58 116.75 117.92 119.10	o.oo8652 .oo8566 .oo8480 .oo8396 .oo8312
4.30 .31 .32 .33	1.86747 .87181 .87615 .88050 .88484	73.700 74.440 75.189 .944 76.708	0.013569 .013434 .013300 .013168 .013037	4.80 .81 .82 .83 .84	2.08461 .08896 .09330 .09764 .10199	121.51 122.73 123.97 125.21 126.47	0.008230 .008148 .008067 .007987 .007907
4·35 .36 ·37 .38 ·39	1,88918 .89352 .89787 .90221 .90655	77.478 78.257 79.044 79.838 80.640	0.012907 .012778 .012651 .012525 .012401	4.85 .86 .87 .88 .89	2.10633 .11067 .11501 .11936 .12370	127.74 129.02 1 3 0.32 131.63 132.95	0.007828 .007750 .007673 .007597
4.40 .41 .42 .43 .44	1.91090 .91524 .91958 .92392 .92827	81.451 82.269 83.096 .931 84.775	0.012277 .012155 .012034 .011914 .011796	4.90 .91 .92 .93 .94	2.12804 .13239 .13673 .14107 .14541	134.29 135.64 137.00 138.38 139.77	0.007447 .007372 .007299 .007227
4.45 .46 .47 .48 .49	1.93261 .93695 .94130 .94564 .94998	85.627 86.488 87.357 88.235 89.121	0.011679 .011562 .011447 .011333 .011221	4.95 .96 .97 .98	2.14976 .15410 .15844 .16279 .16713	141.17 142.59 144.03 145.47 146.94	0.007083 .007013 .006943 .006874 .006806
4.50	1.95433	90.017	0.011109	5.00	2.17147	148.41	0.006738

EXPONENTIAL FUNCTION.

x	$\log_{10}(e^x)$	ex	ex	x	$\log_{10}(e^x)$	ex	e-x
5.00 .01 .02 .03	2.17147 .17582 .18016 .18450 .18884	148.41 149.90 151.41 152.93 154.47	0.006738 .006671 .006605 .006539 .006474	5.0 .1 .2 .3 .4	2.17147 .21490 .25833 .30176 .34519	148.41 164.02 181.27 200.34 221.41	0.006738 .006097 .005517 .004992 .004517
5.05 .06 .07 .08 .09	2.19319 .19753 .20187 .20622 .21056	156.02 157.59 159.17 160.77 162.39	0.006409 .006346 .006282 .006220 .006158	5.5 .6 .7 .8	2.38862 .43205 .47548 .51891 .56234	244.69 270.43 298.87 330.30 365.04	0.004087 .003698 .003346 .003028
5.10 .11 .12 .13 .14	2.21490 .21924 .22359 .22793 .23227	164.02 165.67 167.34 169.02 170.72	0.006097 .006036 .005976 .005917 .005858	6.0 .I .2 .3 .4	2.60577 .64920 .69263 .73606 .77948	403.43 445.86 492.75 544.57 601.85	0.002479 .002243 .002029 .001836 .001662
5.15 .16 .17 .18 .19	2.23662 .24096 .24530 .24965 .25399	172.43 174.16 175.91 177.68 179.47	0.005799 .005742 .005685 .005628 .005572	6.5 .6 .7 .8 .9	2.82291 .86634 .90977 .95320 .99663	665.14 735.10 812.41 897.85 992.27	0.001503 .001360 .001231 .001114 .001008
5.20 .21 .22 .23 .24	2.25833 .26267 .26702 .27136 .27570	181.27 183.09 184.93 186.79 188.67	0.005517 .005462 .005407 .005354 .005300	7.0 .1 .2 .3 .4	3.04 0 06 .08349 .12692 .1703 5 .21378	1096.6 1212.0 1339.4 1480.3 1636.0	0.000912 .000825 .000747 .000676
5.25 .26 .27 .28 .29	2,28005 ,28439 ,28873 ,29307 ,29742	190.57 192.48 194.42 196.37 198.34	0.005248 .005195 .005144 .005092 .005042	7·5 .6 ·7 .8	3.25721 .30064 .34407 .38750 .43093	1808.0 1998.2 2208.3 2440.6 2697.3	0.000553 .000500 .000453 .000410
5.30 .31 .32 .33 .34	2.30176 .30610 .31045 .31479 .31913	200.34 202.35 204.38 206.44 208.51	0.004992 .004942 .004893 .004844 .004796	8.0 .1 .2 .3 .4	3.47436 .51779 .56121 .60464 .64807	2981.0 3294.5 3641.0 4023.9 4447.1	0.000335 .000304 .000275 .000249
5·35 .36 ·37 .38 ·39	2.32348 .32782 .33216 .33650 .34085	210.61 212.72 214.86 217.02 219.20	0.004748 .004701 .004654 .004608 .004562	8.5 .6 .7 .8	3.69150 ·73493 ·77836 ·82179 ·86522	4914.8 5431.7 6002.9 6634.2 7332.0	0.000203 .000184 .000167 .000151
5.40 .41 .42 .43 .44	2.34519 ·34953 ·35388 ·35822 ·36256	221.41 223.63 225.88 228.15 230.44	0.004517 .004472 .004427 .004383 .004339	9.0 .1 .2 .3 .4	3.90865 .95208 .99551 4.03894 .08237	8103.1 8955.3 9897.1 10938.	0.000123 .000112 .000101 .000091 .000083
5.45 .46 .47 .48	2.36690 .37125 .37559 .37993 .38428	232.76 235.10 237.46 239.85 242.26	0.004296 .004254 .004211 .004169 .004128	9.5 .6 .7 .8	4.12580 .16923 .21266 .25609 .29952	13360. 14765. 16318. 18034. 19930.	0.00007 5 .000068 .000061 .000055
5.50	2.38862	244.69	0.004087	10.0	4.34294	22026.	0.000045

Table 20. EXPONENTIAL FUNCTIONS.

Value of e^{x^2} and e^{-x^2} and their logarithms.

x	e ^{x²}	$\log e^{x^2}$	e-x2	log e-x2
0.1	1.0101	0.00434	0.99005	ī.99566
2	1.0408	01737	96079	98263
3	1.0942	03909	91393	96091
4	1.1735	06949	85214	93051
5	1.2840	10857	77880	89143
0.6 7 8 9	1.4333 1.6323 1.8965 2.2479 2.7183	0.15635 21280, 27795 35178 43429	0.69768 61263 52729 44486 36788	7.84365 78720 72205 64822 56571
1.1	3·3535	0.52550	0.29820	ī.47450
2	4·2207	62538	23693	37462
3	5·419 5	73396	18452	26604
4	7·0993	85122	14086	14878
5	9·4 ⁸ 77	97716	10540	02284
1.6 7 8 9 2.0	1.2936 × 10 1.7993 " 2.5534 " 3.6966 " 5.4598 "	1.11179 25511 40711 56780 73718	0.77305 × 10 ⁻¹ 55576 " 39164 " 27052 " 18316 "	74489 59289 43220 26282
2.1	8.2269 "	1.91524	0.12155 " 79071 × 10 ⁻² 50418 " 31511 " 19305 "	2.08476
2	1.2647 × 10 ²	2.10199		3.89801
3	1.9834 "	29742		70258
4	3.1735 "	50154		49846
5	5.1801 "	71434		28566
2.6	8.6264 "	2.93583	0.11592 " 68233 × 10 ⁻⁸ 39367 " 22263 " 12341 "	3.06417
7	1.4656 × 10 ⁸	3.16601		4.83399
8	2.5402 "	40487		59513
9	4.4918 "	65242		34758
3.0	8.1031 "	90865		09135
3.1 2 3 4 5	1.4913×10^4 2.8001 " 5.3637 " 1.0482×10^5 2.0898 "	4.17357 44718 72947 5.02044 32011	0.67055×10^{-4} $357^{1}3$ " 18644 " 95402×10^{-6} 47851 "	5.82643 55282 27053 6.97956 67989
3.6	4.2507 "	5.62846	0.23526 "	6.37154
7	8.8205 "	94549	11337 "	05451
8	1.8673 × 10 ⁶	6.27121	53553 × 10 ⁻⁶	7.72879
9	4.0329 "	60562	24796 "	39438
4.0	8.8861 "	94871	11254 "	05129
4.1 2 3 4 5	1.9975 × 10 ⁷ 4.5809 " 1.0718 × 10 ⁸ 2.5582 " 6.2296 "	7.30049 66095 8.03010 40794 79446	0.50062×10^{-7} 21830 " 93303×10^{-8} 39089 " 16052 "	8.69951 33905 9.96990 59206 20554
4.6	1.5476×10^9 $3.9^{22}5$ " 1.0142×10^{10} 2.6755 " 7.2005 "	9.189 67	0.64614×10^{-9}	To.81033
7		59357	25494 "	40643
8		10.00614	98595×10^{-10}	T1.99386
9		42741	37376 "	57259
5.0		85736	13888 "	14264

TABLE 21.

EXPONENTIAL FUNCTIONS.

Values of $e^{\frac{\pi}{4}x}$ and $e^{-\frac{\pi}{4}x}$ and their logarithms.

æ	e ***	$\log e^{\frac{\pi}{4}\epsilon}$	e	$\log e^{-\frac{\pi}{4}x}$
1 2 3 4 5	2.1933 4.8105 1.0551 × 10 2.3141 " 5.0754 "	0.34109 .68219 1.02328 .36438	0.45594 ,20788 .94780 × 10 ⁻¹ ,43214 " .19703 "	7.65891 -31781 2.97672 .63562 -29453
6 7 8 9 10	1.1132 × 10 ² 2.4415 " 5.3549 " 1.1745 × 10 ⁸ 2.5760 "	2.04656 .38766 .72875 3.06985 .41094	0.89833 × 10 ⁻² .40958 " .18674 " .85144 × 10 ⁻⁸ .38820 "	3.95344 .61234 .27125 4.93015 .58906
11 12 13 14 15	5.6498 " 1.2392×10^{4} 2.7178 " 5.9610 " 1.3074×10^{5}	3.752 03 4.09313 .43422 .77532 5.11641	. 0.17700 " .80700 × 10 ⁻⁴ .36794 " .16776 " .76487 × 10 ⁻⁵	4·24797 5·90687 ·56578 ·22468 6·88359
16 17 18 19 20	2.8675 " 6.2893 " 1.3794 × 10 ⁶ 3.0254 " 6.6356 "	5.45751 .79860 6.13969 .48079 .82188	0.34873 " .15900 " .72495 × 10 ⁻⁶ .33°53 " .15070 "	6.54249 .20140 7.86031 .51921 .17812

TABLE 22. EXPONENTIAL FUNCTIONS.

Values of $e^{\frac{\sqrt{\pi}}{4}x}$ and $e^{-\frac{\sqrt{\pi}}{4}x}$ and their logarithms.

20	$e^{\frac{\sqrt{\pi}}{4}x}$	$\log e^{\frac{\sqrt{\pi}}{4}z}$	$e^{-\frac{\sqrt{\pi}}{4}z}$	$\log e^{-\sqrt{\frac{\pi}{x}}}$
1 2 3 4 5	1.5576 2.4260 3.7786 5.8853 9.1666	0.19244 .38488 .57733 .76977 .96221	0.64203 .41221 .26465 .16992 .10909	7.807 56 .61 51 2 .42267 .23023 .03779
6 7 8 9	14.277 22.238 34.636 53.948 84.027	1.15465 .34709 .53953 .73198 .92442	0.070041 .044968 .028871 .018536 .011901	2.84535 .65291 .46047 .26802 .07558
11 12 13 14 15	130.88 203.85 317.50 494.52 770.24	2.11686 .30930 .50174 .69418 .88663	0.0076408 .0049057 .0031496 .0020222 .0012983	3.88314 .69070 .49826 .30582
16 17 18 19 20	1199.7 1868.6 2910.4 4533.1 7060.5	3.07907 .27151 .46395 .65639 .84883	0.00083355 .00053517 .00034360 .00022060 .00014163	4.92093 .72849 .53605 .34361 .15117

EXPONENTIAL FUNCTIONS AND LEAST SQUARES.

TABLE 23 .- Exponential Functions.

Value of e^x and e^{-x} and their logarithms.

x	e ^z	log e	e-x	x	ex.	log e²	€-2
1/64 1/32 1/16 1/10 1/9 1/8 1/7 1/6 1/5	1.0157 .0317 .0645 .1052 .1175 1.1331 .1536 .1814 .2214	0.00679 .01357 .02714 .04343 .04825 0.05429 .06204 .07238 .08686 .10857	0.98450 -96923 -93941 -90484 -89484 0.88250 -86688 -84648 -81873 -77880	1/3 1/2 3/4 1 5/4 3/2 7/4 2 9/4 5/2	1.3956 .6487 2.1170 .7183 3.4903 4.4817 5.7546 7.3891 9.4877 12.1825	0.14476 .21715 .32572 .43429 .54287 0.65144 .76002 .86859 .97716 1.08574	0.71653 .60653 .47237 .36788 .28650 0.22313 .17377 .13534 .10540 .08208

TABLE 24.-Least Squares.

Values of
$$P = \frac{2}{\sqrt{\pi}} \int_0^{\infty} hx e^{-(hx)^2} d(hx)$$
.

This table gives the value of P, the probability of an observational error having a value positive or negative equal to or less than x when h is the measure of precision, $P = \frac{2}{\sqrt{\pi}} \int_{0}^{hx} e^{-(hx)^2} d(hx)$. For values of the inverse function see the table on Diffusion.

hx	0	1	2	3	4	5	6	7	8	9
0.0 .1 .2 .3 .4	.11246 .22270 .32863 .42839	.01128 .12362 .23352 .33891 .43797	.02256 .13476 .24430 .34913 .44747	.03384 .14587 .25502 .35928 .45689	.04511 .15695 .26570 .36936 .46623	.05637 .16800 .27633 37938 .47548	.06762 .17901 .28690 .38933 .48466	.07886 .18999 .29742 .39921 .49375	.09008 .20094 .30788 .40901 .50275	.10128 .21184 .31828 .41874 .51167
0.5 .6 .7 .8	.52050 .60386 .67780 .74210 .79691	.52924 .61168 .68467 .74800 .80188	.53790 .61941 .69143 .75381 .80677	.54646 .6270 5 .69810 .75952 .81156	·55494 ·63459 ·70468 ·76514 ·81627	.56332 .64203 .71116 .77067 .82089	.57162 .64938 .71754 .77610 .82542	.57982 .65663 .72382 .78144 .82987	.58792 .66378 .73001 .78669 .83423	.59594 .67084 .73610 .79184 .83851
1.0 .I .2 .3 .4	.84270 .88021 .91031 .93401 .95229	.84681 .88353 .91296 .93606 .95385	.85084 .88679 .91553 .93807 .95538	.85478 .88997 .91805 .94002 .95686	.85865 .89308 .92051 .94191 .95830	.86244 .89612 .92290 .94376 .95970	.86614 .89910 .92524 .94556	.86977 .90200 .92751 .94731 .96237	.87333 .90484 .92973 .94902 .96365	.87680 .90761 .93190 .95067 .96490
1.5 .6 .7 .8 .9	.96611 .97635 .98379 .98909 .99279	.96728 .97721 .98441 .98952 .99309	.96841 .97804 .98500 .98994 .99338	.96952 .97884 .98558 .99035 .99366	.97059 .97962 .98613 .99074 .99392	.97162 .98038 .98667 .99111 .99418	.97263 .98110 .98719 .99147 .99443	-97360 -98181 -98769 -99182 -99466	.97455 .98249 .98817 .99216 .99489	.97546 .98315 .98864 .99248
.I .2 .3 .4	.99532 .99702 .99814 .99886 .99931	.99552 .99715 .99822 .99891 .99935	.99 5 72 .99728 .99831 .99897 .99938	.99591 .99741 .99839 .99902 .99941	.99609 .99753 .99846 .99906	.99626 .99764 .99854 .99911	.99642 .99775 .99861 .99915	.99658 .99785 .99867 .99920 .99952	.99673 .99795 .99874 .99924 .99955	.99688 .99805 .99880 .99928
2.5 .6 .7 .8 .9	.99959 .99976 .99987 .99992 .99996	.99961 .99978 .99987 .99993 .99996	.99963 .99979 .99988 .99993 .99996	.99965 .99980 .99989 .99994 .99997	.99967 .99981 .99989 .99994	.99969 .99982 .99990 .99994 .99997	.99971 .99983 .99991 .99995	.99972 .99984 .99991 .99995 .99997	•99974 •99985 •99992 •99995 •99997	.99975 .99986 .99992 .99996
0.0	. 2223"									

Taken from a paper by Dr. James Burgess 'on the Definite Integral $\frac{2}{\sqrt{\pi}} \int_{0}^{t} e^{-t^{2}} dt$, with Ex. tended Tables of Values.' Trans. Roy. Soc. of Edinburgh, vol. xxxix, 1900, p. 257.

TABLE 25.

LEAST SQUARES.

This table gives the values of the probability P, as defined in last table, corresponding to different values of x/r where r is the "probable error." The probable error r is equal to 0.47694/h.

ac r	0	1	2	3	4	5	6	7	8	9
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6	.00000 .05378 .10731 .16035 .21268 .26407 .31430 .36317 .41052 .45618 .50000 .54188 .58171 .61942 .65498 .68833 .71949 .74847 .77528 .70999 .82266 .84335 .86216 .87918 .89450	.00538 .05914 .11264 .16562 .21787 .26915 .31925 .31925 .31925 .34938 .41517 .46064 .50428 .54595 .58558 .62308 .65841 .69155 .72249 .77785 .80235 .82481 .86394 .88678 .89595 .90954 .90954	.01076 .06451 .117068 .17088 .22304 .27421 .32419 .41979 .46509 .50853 .55001 .62671 .66182 .69474 .72546 .75400 .78039 .82695 .84726 .86570 .88237 .89738	.01614 .06987 .12328 .17614 .22821 .27927 .32911 .37755 .42440 .46952 .51277 .55494 .6932 .66521 .69791 .72841 .78291 .80700 .82907 .84919 .86745 .88395 .89879 .91208	.02152 .07523 .12860 .18138 .23336 .28431 .33402 .38231 .42899 .47393 .51699 .55806 .63391 .66858 .70106 .73134 .80930 .83117 .85109 .86917 .88550 .90019	.02690 .08059 13391 .18662 .23851 .28934 .33892 .38705 .43357 .47832 .52119 .56205 .60083 .63747 .67193 .70419 .73425 .76214 .78790 .81158 .83324 .85298 .87088 .88705 .90157 .91456	.03228 .08594 .13921 .19185 .24364 .29436 .34380 .39178 .43813 .48270 .52537 .56006 .60460 .604102 .67526 .70729 .73714 .76481 .79936 .81383 .83530 .83530 .87258 .88887 .90293	.03766 .09129 .14451 .19707 .24876 .29936 .34864 .34864 .44267 .48705 .52952 .56998 .60833 .64454 .67856 .71038 .71038 .71038 .74000 .76746 .79280 .81607 .83734 .85671 .87425 .89008 .90428 .90428	.04303 .09663 .14980 .20229 .25388 .30435 .35352 .40118 .44719 .49139 .53366 .57391 .61205 .64804 .68 184 .71344 .74285 .83936 .85854 .87591 .89157 .90562 .91817 .92934	.04840 .10197 .15508 .20749 .25898 .30933 .35835 .40586 .49570 .53778 .57782 .57782 .67552 .68510 .71648 .74567 .77270 .79761 .82048 .84137 .86036 .87755 .89304 .90694 .91935
2.6 2.7 2.8 2.9	.92051 .93141 .94105 .94954	.93243 .94195 .95033	.93344 .94284 .95111	·93443 ·94371 ·95187	.92503 .93541 .94458 .95263	.93638 .94543 .95338	.93734 .94627 .95412	.93828 .94711 .95484	.93922 ·94793 ·95557	.94014 .94874 .95628
3 4 5	0 .95698 .99302 .99926	.96346 .99431 .99943	.96910 .99539 .99956	3 .97397 99627 .99966	.97817 .99700 .99974	5 .98176 .99760 .99980	6 .98482 .99808 .99985	.98743 .99848 .99988	8 .98962 .99879 .99991	9 .99147 .99905 .99993

TABLE 26. LEAST SQUARES.

Values of the factor 0.6745 $\sqrt{\frac{1}{n-1}}$.

This factor occurs in the equation $r_s = 0.6745 \sqrt{\frac{\sum_{v} \bar{v}}{n-1}}$ for the probable error of a single observation, and other similar equations.

n	0	1	2	3	4	5	6	7	8	9
00 10 20 30 40 50 60 70 80 90	0.2248 .1547 .1252 .1080 0.0964 .0878 .0812 .0759	0.2133 .1508 .1231 .1066 0.0954 .0871 .0806 .0754	0.6745 .20 34 .1472 .1211 .1053 0.0944 .0864 .0800 .0749	0.4769 .1947 .1438 .1192 .1041 0.0935 .0857 .0795 .0745	0.3894 .1871 .1406 .1174 .1029 0.0926 .0850 .0789 .0740	0.3372 .1803 .1377 .1157 .1017 0.0918 .0843 .0784 .0736 .0696	0.3016 .1742 .1349 .1140 .1005 0.0909 .0837 .0779 .0772 .0692	0.27 54 .1686 .1323 .1124 .0994 0.0901 .0830 .0774 .0727 .0688	0.2549 .1636 .1298 .1109 .0984 0.0893 .0824 .0769 .0723 .0685	0.2385 .1590 .1275 .1094 .0974 0.0886 .0818 .0764 .0719 .0681

Values of the factor 0.6745 $\sqrt{\frac{1}{n(n-1)}}$.

This factor occurs in the equation $r_0 = 0.6745\sqrt{\frac{\Sigma v^2}{n(n-I)}}$ for the probable error of the arithmetic mean.

n	=	1	2	3	4	5	6	7	8 .	9
00 10 20 30 40	0.0711 .0346 .0229 .0171	0.0643 .0329 .0221	0.4769 .0587 .0314 .0214	0.2754 .0540 .0300 .0208 .0159	0.1947 .0500 .0287 .0201	0.1508 .0465 .0275 .0196	0.1231 .0435 .0265 .0190 .0148	0.1041 .0409 .0255 .0185	0.0901 .0386 .0245 .0180	0.0795 .0365 .0237 .0175 .0139
50 60 70 80 90	0.0136 .0113 .0097 .0085 .0075	0.0134 .0111 .0096 .0084	0.0131 .0110 .0094 .0083 .0074	0.0128 .0108 .0093 .0082 .0073	0.0126 .0106 .0092 .0081	0.0124 .0105 .0091 .0080	0.0122 .0103 .0089 .0079	0.0119 .0101 .0088 .0078	0.0117 .0100 .0087 .0077 .0069	0.0115 .0098 .0086 .0076 .0068

TABLE 28. - LEAST SQUARES.

Values of the factor $0.8453\sqrt{\frac{1}{n(n-1)}}$. This factor occurs in the approximate equation $r=0.8453\sqrt{\frac{2v^2}{n(n-1)}}$ for the probable error of a single observation.

n	=	1	2	3	4	5	6	7	8	9
00 10 20 30 40	.0434 .0287 .0214	0.0806 .0412 .0277 .0209	0.5978 .0736 .0393 .0268	0.3451 .0677 .0376 .0260 .0199	0.2440 .0627 .0360 .0252 .0194	0.1890 .0583 .0345 .0245	0.1543 .0546 .0332 .0238 .0186	0.1304 .0513 .0319 .0232 .0182	0.1130 .0483 .0307 .0225 .0178	0.0996 .0457 .0297 .0220
50 60 70 80 90	0.0171 .0142 .0122 .0106 .0094	0.0167 .0140 .0120 .0105 .0093	0.0164 .0137 .0118 .0104 .0092	0.0161 .0135 .0117 .0102 .0091	0.0158 .0133 .0115 .0101 .0090	0.0155 .0131 .0113 .0100 .0089	0.0152 .0129 .0112 .0099 .0089	0.0150 .0127 .0111 .0098 .0088	0.0147 .0125 .0109 .0097 .0087	0.0145 .0123 .0108 .0096 .0086

TABLE 29. - LEAST SQUARES.

Values of $0.8453 \frac{1}{n\sqrt{n-1}}$

This factor occurs in the approximate equation $r_0 = 0.8453 \frac{\Sigma \nu}{n \sqrt{n-1}}$ for the probable error of the arithmetical mean.

n	=	1	2	3	4	5	6	7	8	9
00 10 20 30 40	0.0282 .0097 .0052 .0034	0.0243 .0000 .0050 .0033	0.4227 .0212 .0084 .0047 .0031	0.1993 .0188 .0078 .0045 .0030	0.1220 .0167 .0073 .0043	0.0845 .0151 .0069 .0041 .0028	0.0630 .0136 .0065 .0040 .0027	0.0493 .0124 .0061 .0038	0.0399 .0114 .0058 .0037 .0026	0.0332 .0105 .0055 .0035 .0025
50 60 70 80 90	0.0024 .0018 .0015 .0012 .0010	0.0023 .0018 .0014 .0012	0.0023 .0017 .0014 .0011	0.0022 .0017 .0014 .0011	0.0022 .0017 .0013 .0011 .0009	0.0021	0.0020	0.0020 .0016 .0013 .0010	0.0019 .0015 .0012 .0010	0.0019

Observation equations:

Auxiliary equations:

Normal equations:

$$\begin{array}{l} [\operatorname{paa}]z_1 + [\operatorname{pab}]z_2 + \dots & [\operatorname{pal}]z_q = [\operatorname{paM}] \\ [\operatorname{pab}]z_1 + [\operatorname{pbb}]z_2 + \dots & [\operatorname{pbl}]z_q = [\operatorname{pbM}] \\ \vdots & \vdots & \vdots \\ [\operatorname{pla}]z_1 + [\operatorname{plb}]z_2 + \dots & [\operatorname{pll}]z_q = [\operatorname{plM}]. \end{array}$$

Solution of normal equations in the form,

$$\begin{split} z_1 &= A_1[\text{paM}] + B_1[\text{pbM}] + \dots \quad L_1[\text{plM}] \\ z_2 &= A_2[\text{paM}] + B_2[\text{pbM}] + \dots \quad L_2[\text{plM}] \\ z_q &= A_n[\text{paM}] + B_n[\text{pbM}] + \dots \quad L_n[\text{plM}], \end{split}$$

gives:

wherein

r = probable error of observation of weight unity
= 0.6745
$$\sqrt{\frac{3 pv^2}{n-q}}$$
. (q unknowns.)

Arithmetical mean, n observations

$$r = 0.6745 \sqrt{\frac{\sum v^2}{n-1}} = \frac{0.8453 \sum v}{\sqrt{n(n-1)}}$$
 (approx.) = probable error of observation of weight unity.

$$r_0 = 0.6745 \sqrt{\frac{\sum v^2}{n(n-1)}} = \frac{0.8453 \sum v}{n\sqrt{n-1}}$$
 (approx.) = probable error of mean.

Weighted mean, n observations

$$r = 0.6745 \sqrt{\frac{\sum p v^2}{n-1}}; r_0 = \frac{r}{\sqrt{\sum p}} = 0.6745 \sqrt{\frac{\sum p v^2}{(n-1) \sum p}}$$

Probable error (R) of a function (Z) of several observed quantities z₁, z₂, . . . whose probable errors are respectively, r_1 , r_2 , $Z = f(z_1, z_2, \ldots)$ $R^2 = \left(\frac{\partial Z}{\partial z_1}\right)^2 r_1^2 + \left(\frac{\partial Z}{\partial z_2}\right)^2 r_2^2 + \ldots$

$$R^{2} = \left(\frac{\partial Z}{\partial z_{1}}\right)^{2} r_{1}^{2} + \left(\frac{\partial Z}{\partial z_{2}}\right)^{2} r_{2}^{2} + \dots$$

Examples:

$$Z = z_1 \pm z_2 + \dots$$

$$Z = Az_1 \pm Az_2 \pm \dots$$

$$R^2 = r_1^2 + r_2^2 + \dots$$

$$R^2 = A^2 r_1^2 + B^2 r_2^2 + \dots$$

$$Z = z_1 z_2 \cdot \dots$$

$$R^2 = z_1^2 r_2^2 + z_2^2 r_1^2 \cdot \dots$$

Inverse * values of
$$v/c = 1 - \frac{2}{\sqrt{\pi}} \int_0^q e^{-q^2} dq$$
.

 $\log x = \log (2q) + \log \sqrt{kt}$. t expressed in seconds.

 $= \log \delta + \log \sqrt{kt}$. t expressed in days.

 $=\log \gamma + \log \sqrt{kt}$. " years.

 $k = \text{coefficient of diffusion.} \dagger$

c = initial concentration.

v =concentration at distance x, time t.

v /c	log 2q	29	log δ	δ	log y	γ
0.00 .01 .02 .03	+∞ 0.56143 .51719 .48699 .46306	+ \infty 3.6428 3.2900 3.0690 2.9044	+ \infty 3.02970 2.98545 -95525 .93132	+∞ 1070.78 967.04 902.90 853.73	∞ 4.31098 .26674 .23654 .21261	∞ 20463. 18481. 17240. 16316.
0.05 .06 .07 .08 .09	0.44276 .42486 .40865 .39372 .37979	2.7718 2.6598 2.5624 2.4758 2.3977	2.91102 .89311 .87691 .86198 .84804	814.74 781.83 753.20 727. 7 5 704.76	4.19231 .17440 .15820 .14327 .12933	15571. 14942. 14395. 13908.
0.10	0.36664	2.3262	2.83490	683.75	4.11619	13067.
.11	·35414	2.2602	.82240	664.36	.10369	12697.
.12	·34218	2.1988	.81044	646.31	.09173	12352.
.13	·33067	2.1413	.79893	629.40	.08022	12029.
.14	·31954	2.0871	.78780	613.47	.06909	11724.
0.15	0.30874	2.0358	2.77699	598.40	4.05828	
.16	.29821	1.9871	.76647	584.08	°.04776	
.17	.28793	1.9406	.75619	570.41	.03748	
.18	.27786	1.8961	.74612	557.34	.02741	
.19	.26798	1.8534	.73624	544.80	.01753	
0.20 .21 .22 .23 .24	0.25825 .24866 .23919 .22983	1.8124 1.7728 1.7346 1.6976 1.6617	2.72651 .71692 .70745 .69808 .68880	532.73 521.10 509.86 498.98 488.43	3.99821 .98874 .97937 .97010	9958.9 9744.1 9536.2 9334.6
0.25	0.21134	1.6268	2.67960	478.19	3.96089	9138.9
.26	.20220	1.5930	.67046	468.23	.95175	8948.5
.27	.19312	1.5600	.66137	458.53	.94266	8763.2
.28	.18407	1.5278	.65232	449.08	.93361	8582.5
.29	.17505	1.4964	.64331	439.85	.92460	8406.2
0.30	0.16606	1.4657	2.63431	430.84	3.91 560	\$233.9
.31	.15708	1.4357	.62533	422.02	.90662	\$065.4
.32	.14810	1.4064	.61636	413.39	.89765	7900.4
.33	.13912	1.3776	.60738	404.93	.88867	7738.8
.34	.13014	1.3494	.59840	396.64	.87969	7580.3
0.35	0.12114	1.3217	2.58939	388.50	3.87068	7424.8
.36	.11211	1.2945	.58037	380.51	.86166	7272.0
.37	.10305	1.2678	.57131	372.66	.85260	7122.0
.38	.09396	1.2415	.56222	364.93	.84351	6974.4
.39	.08482	1.2157	-55308	357.34	.83437	6829.2
0.40	0.07563	1.1902	2.54389	349.86	3.82518	6686.2
-41	.06639	1.1652	.53464	342.49	.81593	6545.4
-42	.05708	1.1405	.52533	335.22	.80662	6406.6
-43	.04770	1.1161	.51595	328.06	.79724	6269.7
-44	.03824	1.0920	.50650	320.99	.78779	6134.6
0.45	0.02870	1.0683	2.49696	314.02	3.77825	6001.3
.46	.01907	1.0449	-48733	307.13	.76862	5869.7
.47	.00934	1.0217	-47700	300.33	.75889	5739.7
.48	9.99951	0.99886	-46776	293.60	.74905	5611.2
.49	.98956	0.97624	-45782	286.96	.73911	5484.1
0.50	9.97949	0.95387	2.44775	280.38	3.72904	5358.4

† Kelvin, Mathematical and Physical Papers, vol. III. p. 428; Becker, Am. Jour. of Sci. vol. III. 1897, p. 280. *For direct values see table 24.

v/c	log 2q	29	log δ	δ	log y	γ
0.50	9.97949	0.95387	2.44775	280.38	3.72904	5358.4
·51	.96929	.93174	.43755	273.87	.71884	5234.1
·52	.95896	.90983	.42722	267.43	.70851	5111.0
·53	.94848	.88813	.41674	261.06	.69803	4989.1
·54	.93784	.86665	.40610	254.74	.68739	4868.4
0.55	9.92704	0.84536	2.39530	248.48	3.67659	4748.9
.56	.91607	.82426	.38432	242.28	.66561	4630.3
.57	.90490	.80335	.37316	236.13	.65445	4512.8
.58	.89354	.78260	.36180	230.04	.64309	4396.3
.59	.88197	.76203	.35023	223.99	.63152	4280.7
0.60	9.87018	0.74161	2.33843	217.99	3.61973	4166.1
.61	.85815	.72135	.32640	212.03	.60770	4052.2
.62	.84587	.70124	.31412	206.12	.59541	3939.2
.63	.83332	.68126	.30157	200.25	.58286	3827.0
.64	.82048	.66143	.28874	194.42	.57003	3715.6
0.65	9.80734	0.64172	2.27560	188.63	3.55689	3604.9
.66	.79388	.62213	.26214	182.87	·54343	3494.9
.67	.78008	.60266	.24833	177.15	·52962	3385.4
.68	.76590	.58331	.23416	171.46	·51545	3276.8
.69	.75133	.56407	.21959	165.80	·50088	3168.7
0.70	9.73634	0.54493	2.20459	160.17	3.48588	3061.1
.71	.72089	.52588	.18915	154.58	.47044	2954.2
.72	.70495	.50694	.17321	149.01	.45450	2847.7
.73	.68849	.48808	.15675	143.47	.43804	2741.8
.74	.67146	.46931	.13972	137.95	.42101	2636.4
0.75 .76 .77 .78 .79	9.65381 .63550 .61646 .59662 •57590	0.45062 .43202 .41348 .39502 .37662	2.12207 .10376 .08471 .06487	132.46 126.99 121.54 116.11	3.40336 .38505 .36600 .34616 .32545	2531.4 2426.9 2322.7 2219.0 2115.7
0.80	9.55423	0.35829	2.02249	105.31	3.30378	2012.7
.81	.53150	.34001	1.99975	99.943	.28104	1910.0
.82	.50758	.32180	.97584	94.589	.25713	1807.7
.83	.48235	.30363	.95061	89.250	.23190	1705.7
.84	.45564	.28552	.92389	83.926	.20518	1603.9
0.85	9.42725	0.26745	1.89551	78.615	3.17680	1 502.4
.86	•39695	.24943	.86521	73.317	.14650	1 401.2
.87	•36445	.23145	.83271	68.032	.11400	1 300.2
.88	•32940	.21350	.79766	62.757	.07895	1 1 9 9.4
.89	•29135	.19559	.75961	57.492	3.04090	1 0 9 8.7
0.90	9.24972	0.17771	1.71797	52.236	2.99926	998.31
.91	.20374	.15986	.67200	46.989	.95329	898.03
.92	.15239	.14203	.62065	41.750	.90194	797.89
.93	.09423	.12423	.56249	36.516	.84378	697.88
.94	9.02714	.10645	.49539	31.289	.77668	597.98
0.95 .96 .97 .98 .99	8.94783 .85082 .72580 .54965 .24859	0.08868 .07093 .05319 .03545	1.41609 .31907 .19406 .01791 0.71684	26.067 20.848 15.633 10.421 5.21007	2.69738 .60036 .47535 .29920 1.99813	498.17 398.44 298.78 199.16 99.571
1.00	∞	0.00000		0.00000	∞	0.000

TABLE 32. .

CAMMA FUNCTION.*

Value of $\log \int_0^\infty e^{-x} x^{n-1} dx + 10$.

Values of the logarithms + 10 of the "Second Eulerian Integral" (Gamma function) $\int_{0}^{\infty} e^{-x} x^{n-1} dx \approx \log \Gamma(n) + 10$ for values of n between 1 and 2. When n has values not lying between 1 and 2 the value of the function can be readily calculated from the equation $\Gamma(n+1) = n\Gamma(n) = n(n-1) \dots (n-r)\Gamma(n-r)$.

n	0	1	2	3	4	5	6	7	8	9
1.00	9.99—	97497	95001	92512	90030	87555	85087	82627	80173	77727
I.01	75287	72855	70430	68011	65600	63196	60798	58408	56025	53648
I.02	51279	48916	46561	44212	41870	39535	37207	34886	32572	30265
I.03	27964	25671	23384	21104	18831	16564	14305	12052	09806	07567
I.04	°5334	03108	00889	98677	96471	94273	92080	89895	87716	85544
1.05	9.9883379	81220	79068	76922	74783	72651	70525	68406	66294	64188
1.06	62089	59996	57910	55830	53757	51690	49630	47577	45530	43489
1.07	414 55	39428	37407	35392	33384	31382	29387	27398	25415	23439
1.08	21469	19506	17549	15599	13655	11717	09785	07860	05941	04029
1.09	02123	00223	98329	96442	94561	92686	90818	88956	87100	85250
1.10	9.9783407	81570	79738	77914	76095	74283	72476	70676	68882	67095
1.11	65313	63538	61768	60005	58248	56497	54753	53014	51281	49555
1.12	47834	46120	44411	42709	41013	39323	37638	35960	34288	32622
1.13	30962	29308	27659	26017	24381	22751	21126	19508	17896	16289
1.14	14689	13094	11505	09922	08345	06774	05209	03650	02096	00549
1.15	9.9699007	97471	95941	94417	92898	91 386	89879	88378	86883	85393
1.16	83910	82432	80960	79493	78033	76578	75129	73686	72248	70816
1.17	69390	67969	66554	65145	63742	62344	60952	59566	58185	56810
1.18	55440	54076	52718	51366	50019	48677	47341	45011	44687	43368
1.19	42054	40746	39444	38147	36856	35570	34290	33016	31747	30483
1.20	9.9629225	27973	26725	25484	24248	23017	21792	20573	19358	18150
1.21	16946	15748	14556	13369	12188	11011	09841	08675	07515	06361
1.22	05212	04068	02930	01796	00669	99546	98430	97318	96212	95111
1.23	594015	92925	91840	90760	89685	88616	87553	86494	85441	84393
1.24	83350	82313	81280	80253	79232	78215	77204	76198	75197	74201
1.25	9.9573211	72226	71246	70271	69301	68337	67377	66423	65474	64530
1.26	63592	62658	61730	60806	59888	58975	58067	57165	56267	55374
1.27	54487	53604	52727	51855	50988	50126	49268	48416	47570	46728
1.28	45891	45059	44232	43410	42593	41782	40975	40173	39376	38585
1.29	37798	37016	36239	35467	34700	33938	33181	32429	31682	30940
1.30	9.9530203	29470	28743	28021	27303	26590	25883	25180	24482	23789
1.31	23100	22417	21739	21065	20396	19732	19073	18419	17770	17125
1.32	16485	15850	15220	14595	13975	13359	12748	12142	11541	10944
1.33	10353	09766	09184	08606	08034	07466	06903	06344	05791	05242
1.34	04698	04158	03624	03094	02568	02048	01532	01021	00514	00012
1.35	9.9499515	99023	98535	98052	97573	97100	96630	96166	95706	95251
1.36	94800	94355	93913	93477	93044	92617	92194	91776	91362	90953
1.37	90549	90149	89754	89363	88977	88595	88218	87846	87478	87115
1.38	86756	86402	86052	85707	85366	85030	84698	84371	84049	83731
1.39	83417	83108	82803	82503	82208	81916	81630	81348	81070	80797
1.40	9.9480528	80263	80003	79748	79497	79250	79008	78770	78537	78308
1.41	78084	77864	77648	77437	77230	77027	76829	76636	76446	76261
1.42	76081	75905	75733	75565	75402	75243	75089	74939	74793	74652
1.43	74515	74382	74254	74130	74010	73894	73783	73676	73574	73476
1.44	73382	73292	73207	73125	73049	72976	72908	72844	72784	72728

^{*} Legendre's "Exercises de Calcul Intégral," tome ii.

TABLE 32 (continued).

CAMMA FUNCTION.

n	О.	1	2	. 3	4	5	6	7	8	9
1.45	9.9472677	72630	72587	72549	72514	72484	72459	72437	72419	72406
1.46	72397	72393	72392	72396	72404	72416	72432	72452	72477	72506
1.47	72539	72576	72617	72662	72712	72766	72824	72886	72952	73022
1.48	73097	73175	73258	73345	73436	73531	73630	73734	73841	73953
1.49	74068	74188	74312	74440	74572	74708	74848	74992	75141	75293
1.50	9-947 5449	75610	75774	75943	76116	76292	76473	76658	76847	77040
1.51	77237	77437	77642	77851	78064	78281	78502	78727	78956	79189
1.52	79426	79667	79912	80161	80414	80671	80932	81196	81465	81738
1.53	8201 5	82295	82580	82868	83161	83457	83758	84062	84370	84682
1.54	84998	85318	85642	85970	86302	86638	86977	87321	87668	88019
1.55	9.9488374	88733	89096	89463	89834	90208	90587	90969	91355	91745
1.56	92139	92537	92938	93344	93753	94166	94583	95004	95429	95857
1.57	96289	96725	97165	97609	98056	98508	98963	99422	99885	00351
1.58	500822	01296	01774	02255	02741	03230	03723	04220	04720	05225
1.59	95733	06245	06760	07280	07803	08330	08860	09395	09933	10475
1.60	9.9511020	11569	12122	12679	13240	13804	14372	14943	15519	16098
1.61	16680	17267	17857	18451	19048	19649	20254	20862	21475	22091
1.62	. 22710	23333	23960	24591	25225	25863	26504	27149	27798	28451
1.63	29107	29766	30430	31097	31767	32442	33120	33801	34486	35175
1.64	35867	36563	37263	3 7 966	38673	39383	40097	40815	41536	42260
1.65	9.9542989	43721	44456	45195	45938	46684	47434	48187	48944	49704
1.66	50468	51236	52007	52782	53560	54342	55127	55916	56708	57504
1.67	58303	59106	59913	60723	61536	62353	63174	63998	648 2 5	65656
1.68	66491	67329	68170	69015	69864	70716	71571	72430	73293	74159
1.69	75028	75901	76777	77657	78540	79427	80317	81211	82108	83008
1.70	9.9583912	84820	85731	86645	87563	88484	89409	90337	91268	92203
1.71	93141	94083	95028	95977	96929	97884	98843	99805	00771	01740
1.72	602712	03688	04667	05650	06636	07625	08618	09614	10613	11616
1.73	12622	13632	14645	15661	16681	17704	18730	19760	20793	21830
1.74	22869	23912	24959	26009	27062	28118	29178	30241	31308	32377
1.75	9.9633451	345 ² 7	35607	36690	37776	38866	39959	41055	42155	43258
1.76	44364	45473	46586	47702	48821	49944	51070	52199	53331	54467
1.77	55606	56749	57894	59043	60195	61350	62509	63671	64836	66004
1.78	67176	68351	69529	70710	71895	73082	74274	75468	76665	77866
1.79	79070	80277	81488	82701	83918	85138	86361	87588	88818	90051
1.80	9.9691287	92526	93768	95014	96263	97515	98770	00029	01291	02555
1.81	703823	05095	06369	07646	08927	10211	11498	12788	14082	15378
1.82	16678	17981	19287	20596	21908	23224	24542	25864	27189	28517
1.83	29848	31182	32520	33860	35204	36551	37900	39254	40610	41969
1.84	43331	44697	46065	47437	48812	50190	51571	52955	54342	55733
1.85	9.9757126	58522	59922	61325	62730	641 3 9	65551	66966	68384	69805
1.86	71230	72657	74087	75521	76957	78397	79839	81285	82734	84186
1.87	85640	87098	88559	90023	91490	92960	94433	959 0 9	97389	98871
1.88	800356	01844	03335	04830	06327	07827	09331	10837	12346	13859
1.89	15374	16893	18414	19939	21466	22996	24530	26066	27606	29148
1.90	9.9830693	32242	33793	35348	36905	38465	40028	41595	43164	44736
1.91	46311	47890	49471	51055	52642	54232	55825	57421	59020	60621
1.92	62226	63834	65445	67058	68675	70294	71917	73542	75170	76802
1.93	78436	80073	81713	83356	85002	86651	88302	89957	91614	93275
1.94	94938	96605	98274	99946	01621	03299	04980	06663	08350	10039
1.95	9.9911732	13427	15125	16826	18530	20237	21947	23659	25375	27093
1.96	28815	30539	32266	33995	35728	37464	39202	40943	42688	44435
1.97	46185	47937	49693	51451	53213	54977	56744	58513	60286	62062
1.98	63840	65621	67405	69192	70982	72774	74570	76368	78169	79972
1.99	81779	83588	85401	87216	89034	90854	92678	94504	96333	98165

Table 33.
ZONAL SPHERICAL HARMONICS.*

Degrees	P_1	P_2	P ₃	P_4	P_5	P ₆	P_7
0 1 2 3 4	+ 1.0000 .9998 .9994 .9986 .9976	+ 1.0000 .9995 .9982 .9959 .9927	+ 1.0000 .9991 .9963 .9918	+ 1.0000 .9985 .9939 .9863 .9758	+ 1.0000 .9977 .9909 .9795 .9638	+ 1.0000 .9968 .9872 .9714 .9495	+ 1.0000 .9957 .9830 .9620
56 78 9	+ 0.9962 .9945 .9925 .9903 .9877	+ 0.9886 .9836 .9777 .9709 .9633	+ 0.9773 .9674 .9557 .9423 .9273	+ 0.9623 .9459 .9267 .9048 .8803	+ 0.9437 .9194 .8911 .8589 .8232	+ 0.9216 .8881 .8492 .8054 .7570	+ 0.8962 .8522 .8016 .7449 .6830
10	+ 0.9848	+ 0.9548	+ 0.9106	+ 0.8532	+ 0.7840	+ 0.7045	+ 0.6164
11	.9816	•9454	.8923	.8238	.7417	.6483	.5462
12	.9781	•9352	.8724	.7920	.6966	.5891	.4731
13	.9744	•9241	.8511	.7582	.6489	.5273	.3980
14	.9703	•9122	.8283	.7224	.5990	.4635	.3218
15 16 17 18	+ 0.9659 .9613 .9563 .9511 .9455	+ 0.8995 .8860 .8718 .8568 .8410	+ 0.8042 .7787 .7519 .7240 .6950	+ 0.6847 .6454 .6046 .5624 .5192	+ 0.5471 -4937 -4391 -3836 -3276	+ 0.3983 -3323 -2661 -2002 -1353	+ 0.2455 + .1700 + .0961 + .0248 0433
20	+ 0.9397	+ 0.8245	+ 0.6649	+ 0.4750	+ 0.2715 .2156 .1602 .1057 .0525	+ 0.0719	0.1072
21	.9336	.8074	.6338	.4300		+ .0106	.1664
22	.9272	.7895	.6019	.3845		0481	.2202
23	.9205	.7710	.5692	.3386		1038	.2680
24	.9135	.7518	.5357	.2926		1558	.3094
25	+ 0.9063	+ 0.732 I .7117 .6908 .6694 .6474	+ 0.5016	+ 0.2465	+ 0.0009	0.2040	- 0.3441
26	.8988		.4670	.2007	0489	.2478	.3717
27	.8910		.4319	.1553	0964	.2869	.3922
28	.8829		.3964	.1105	1415	.3212	.4053
29	.8746		.3607	.0665	1839	.3502	.4113
30	+ 0.8660	+ 0.6250	+ 0.3248	+ 0.0234	- 0.2233	-0.3740	- 0.4102
31	.8572	.6021	.2887	0185	·2595	.3924	.4022
32	.8480	.5788	.2527	0591	·2923	.4053	.3877
33	.8387	.5551	.2167	0982	·3216	.4127	.3671
34	.8290	.5310	.1809	1357	·3473	.4147	.3409
35 36 37 38 39	+ 0.8192 .8090 .7986 .7880	+ 0.5065 .4818 .4567 .4314 .4059	+ 0.1454 .1102 .0755 .0413	0.1714 .2052 .2370 .2666 .2940	0.3691 .3871 .4011 .4112 .4174	-0.4114 .4031 .3898 .3719 .3497	0.3096 .2738 .2343 .1918 .1470
40	+ 0.7660	+ 0.3802	0.0252	- 0.3190	0.4107	- 0.3236	- 0.1006
41	.7547	·3544	.0574	· 3416	.4181	.2939	0535
42	.7431	·3284	.0887	· 3616	.4128	.2610	0064
43	.7314	·3023	.1191	· 3791	.4038	.2255	+ .0398
44	.7193	·2762	.1485	· 3940	.3914	.1878	+ .0846
45	+ 0.7071	+ 0.2500	- 0.1768	- 0.4063	- 0.3757	- 0.1484	+ 0.1271
46	.6947	.2238	.2040	.4158	.3568	1078	.1667
47	.6820	.1977	.2300	.4227	.3350	0665	.2028
48	.6691	.1716	.2547	.4270	.3105	0251	.2350
49	.6561	.1456	.2781	.4286	.2836	+ .0161	.2626
50	+ 0.6428	+0.1198	— 0.3002 ———	-0.4275	- 0.2545	+ 0.0564	+ 0.2854

* Calculated by Mr. C. E. Van Orstrand for this publication.

TABLE 33 (continued).

ZONAL SPHERICAL HARMONICS.

Degrees	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	P ₇
50	+ 0.6428	+ 0.1198	0.3002	0.4275	0.2545	+ 0.0564	+ 0.2854
51	.6293	.0941	.3209	.4239	.2235	.0954	-3031
52	.6157	.0686	.3401	.4178	.1910	.1326	-3154
53	.6018	.0433	.3578	.4093	.1571	.1677	-3221
54	.5878	.0182	.3740	.3984	.1223	.2002	-3234
55	+ 0·5736	- 0.0065	- 0.3886	- 0.3852	- 0.0868	+ 0.2297	+ 0.3191
56	·5592	.0310	.4016	.3698	0509	.2560	.3095
57	·5446	.0551	.4131	.3524	0150	.2787	.2947
58	·5299	.0788	.4229	.3331	+ .0206	.2976	.2752
59	·5150	.1021	.4310	.3119	+ .0557	.3125	.2512
60 61 62 63 64	+ 0.5000 .4848 .4695 .4540 .4384	0.1250 .1474 .1694 .1908	- 0.4375 .4423 .4455 .4471 .4470	0.2891 .2647 .2390 .2121 .1841	+ 0.0898 .1229 .1545 .1844 .2123	+ 0.3232 .3298 .3321 .3302 .3240	+ 0.2231 .1916 .1572 .1203 .0818
65 66 67 68 69	+ 0.4226 .4067 .3907 .3746 .3584	-0.2321 .2518 .2710 .2895 .3074	0.4452 .4419 .4370 .4305 .4225	0.1552 .1256 .0955 .0651	+ 0.2381 .2615 .2824 .3005 .3158	+ 0.3138 .2997 .2819 .2606 .2362	+ 0.0422 + .0022 0375 0763 1135
70	+ 0.3420	0.3245	0.4130	- 0.0038	+ 0.3281	+ 0.2089	0.1485
71	.3256	.3410	.4021	+ .0267	·3373	.1791	.1808
72	.3090	.3568	.3898	.0568	·3434	.1472	.2099
73	.2924	.3718	.3761	.0864	·3463	.1136	.2352
74	.2756 •	.3860	.3611	.1153	·3461	.0788	.2563
75	+ 0.2588	0.3995	- 0.3449	+ 0.1434	+ 0.3427	+ 0.0431	0.2730
76	.2419	.4122	•3275	.1705	.3362	+ .0070	.2850
77	.2250	.4241	•3090	.1964	.3267	0290	.2921
78	.2079	.4352	•2894	.2211	.3143	0644	.2942
79	.1908	.4454	•2688	.2443	.2990	0990	.2913
80	+ 0.1736	0.4548	- 0.2474	+ 0.2659	+ 0.2810	- 0.1321	0.283 5 .2708 .2536 .232 1 .2067
81	.1564	.4633	.2251	.2859	.2606	.1635	
82	.1392	.4709	.2020	.3040	.2378	.1927	
83	.1219	.4777	.1783	.3203	.2129	.2193	
84	.1045	.4836	.1539	.3345	.1861	.2431	
85	+ 0.0872	0.4886	0.1291	+ 0.3468	+ 0.1577	-0.2638	- 0.1778
86	.0698	.4927	.1038	.3569	.1278	.2810	.1460
87	.0523	.4959	.0781	.3648	.0969	.2947	.1117
88	.0349	.4982	.0522	.3704	.0651	.3045	.0755
89	.0175	.4995	.0262	.3739	.0327	.3105	.0381
, 90	+ 0.0000	0.5000	- 0.0000	+ 0.3750	+ 0.0000	0.3125	- 0.0000

TABLE 34.

CYLINDRICAL HARMONICS OF THE 0TH AND 1ST ORDERS

Values when n = 0 and 1 of the Bessel function $J_n(x)$ $= \frac{x^n}{2^n \Gamma(n+1)} \left\{ 1 - \frac{x^2}{2^2(n+1)} + \frac{x^4}{2^4 \cdot 2! \cdot (n+1) \cdot (n+2)} \dots \right\}. \qquad J_1(x) = -J_0'(x) = \frac{dJ_0(x)}{dx}.$

1.04 0.999600 0.199960 0.54 0.98418 2.200277 0.04 0.747339 0.452794 0.54 4.89403 0.563208 0.56 0.99170 0.29987 0.56 0.92173 0.24902 0.56 0.99170 0.29987 0.57 0.29410 2.73581 0.66 0.74875 0.88 0.98401 0.39068 0.58 0.917652 2.77975 0.88 0.98401 0.39068 0.58 0.917652 2.77975 0.88 0.98401 0.39068 0.58 0.917652 2.77975 0.878681 4.95503 0.57 4.72453 0.56883 0.90770 0.044594 0.59 0.91850 2.82349 0.90770 0.044594 0.59 0.91850 0.28349 0.90770 0.044594 0.20010 0.29058 0.290584 0.290584 0.290584 0.29058 0.290584 0.290584 0.29058 0.290584 0.29058 0.290584 0.29058 0.290584 0.29058 0.290584 0.29058 0.290584 0.29058 0.290584 0.29058 0.290584 0.29058 0.290584 0.290584 0.29058 0.290584 0.29058 0.290584 0.29058 0.290584 0.29058		2-1	'(n + 1) (2 (n+1):	2*.2!(ル十]						
1.0 0.99975 0.90900 0.10090 0.209096 0.2 0.3534 .25310 0.2 .75632 .446488 0.3 .75130 0.2 .75632 .446488 0.3 .75130 0.2 .75632 .446488 0.3 .75130 .452794 0.5 .909375 0.24992 .56 .923123 .269160 0.7 .909775 0.39965 .56 .923123 .269160 0.7 .909775 0.39965 .57 .920410 .273581 .40658 .57 .474733 .452794 .56 .47814 .56500 .799375 .039968 .57 .920410 .273581 .773510 .462001 .57 .474733 .56738 .574744 .56 .47814 .56500 .773510 .46908 .78941 .50 .747740 .57830 .773510 .467900 .773510 .467900 .773510 .467900 .774740 .779622 .7470902 .774740 .779622 .7470902 .779510 .779622 .779550 .779510 .779622 .779550 .779510 .779622 .779630 .779510 .779622 .779630 .779510 .779622 .779630 .779510 .779622 .779630 .779510 .779622 .779630 .779510 .779622 .779630 .779510 .779620 .779620	x	$J_0(x)$	$J_1(x)$	x	$J_{\hat{v}}(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$
0.1 0.99975 0.99000 0.10000 0.100000 0.100000 0.100000 0.100000 0.100000 0.1009000 0.1009000 0.100900 0.100900 0.100900 0.100900 0.100900 0.10				-	0	60	1 00	-6-1-09	440077	1 50	FTT808	557027
02 0.909000 0.10000 0.2 0.2 0.2 0.2 0.563.2 0.440488 0.52 0.5065.2 0.4 0.990775 0.14998 0.5 0.24488 0.20277 0.4 0.4 0.99075 0.24992 0.5 0.24928 0.5 0.24928 0.5 0.24928 0.5 0.24928 0.5 0.24928 0.5 0.24928 0.5 0.24928 0.5 0.24928 0.5 0.24928 0.273581 0.24928 0.249		-						760781	443286			
03 090775 014908 53 039098 25805 03 757855 549040 5449403 563208 564924 569050 090977 024972 024973 026973 026975 0269		1										
0.0		1 ////								_		
1.65					70710	2						
0.6 0.90100 0.29087 0.70 0.		1999	999-	1 34	' '							
1.0	.0	.999375	.024992	.55	.925793							
1.08 .094401 .039968 .58 .917652 .277975 .08 .728081 .465030 .58 .466780 .567836 .56883 .0917970 .044954 .59 .914850 .282349 .09 .724316 .467970 .59 .461096 .56883 .10 .997502 .049483 .03 .09209 .290381 .11 .714898 .473800 .61 .444968 .57868 .363 .09209 .290381 .14 .709556 .482284 .64 .432531 .573537 .15 .994383 .074789 .66 .894029 .312355 .16 .093610 .079744 .66 .894029 .312355 .17 .69505 .490449 .67 .415200 .575836 .18 .991016 .88636 .67 .80885 .316531 .18 .991016 .88636 .68 .887688 .326371 .18 .681047 .493008 .68 .490528 .577658 .18 .99303 .094572 .69 .884470 .324871 .19 .67613 .498528 .404376 .577163 .20 .20 .900025 .090951 .21 .89505 .104422 .71 .877800 .333096 .21 .989050 .104422 .71 .877800 .333096 .21 .28905 .21 .289031 .114411 .73 .871147 .341220 .22 .267133 .498280 .70 .397085 .577765 .22 .987937 .109336 .72 .8874539 .337170 .22 .2987937 .109336 .72 .8874539 .333170 .22 .2987937 .109336 .72 .8874539 .333170 .22 .2987937 .1383632 .74 .867715 .345245 .22 .2979085 .143481 .74 .867715 .345245 .22 .2970985 .134381 .74 .867715 .345245 .22 .2970985 .134381 .74 .867715 .345245 .29 .979085 .143481 .79 .884285 .33774 .88 .831228 .384029 .29 .25253 .191318 .88 .815257 .368242 .3686074 .553345 .39174 .583663 .3906233 .191316 .88 .81557 .386785 .387745 .353458 .331747 .581665 .39904 .331545 .39174 .39114 .39144 .39144 .39144 .39144 .39144 .39144 .39144 .39144 .39144 .39144 .39144 .3914	.01	.999100	.029987	.56	.923123		1			-		
10 997976 0.044954 59 0.14850 .282349 0.9 .724316 .467970 59 .461096 .568883 .10 997502 0.49938 .60 .912005 .286701 .11 .906977 0.54917 .01 .909116 .291032 .11 .714598 .473800 .51 .449068 .579886 .579886 .571798 .12 .910146 .475650 .62 .443985 .571798 .571798 .12 .995106 .069820 .64 .900192 .303893 .14 .700556 .482284 .432531 .573537 .15 .994383 .074789 .66 .897132 .308135 .15 .0994383 .077444 .66 .894029 .312355 .17 .085965 .487763 .66 .427045 .5758311 .7992788 .084093 .07 .896885 .316551 .17 .085965 .487763 .66 .421045 .5758311 .7992788 .084093 .07 .884470 .324871 .19 .076103 .495712 .69 .403760 .577163 .7999995 .094572 .69 .884470 .324871 .19 .076103 .495712 .69 .403760 .577836 .21 .086905 .104422 .71 .887890 .333996 .20 .671133 .498280 .170 .397285 .577832 .22 .987037 .109336 .72 .874539 .333170 .22 .066137 .5908334 .77 .397285 .77980 .333966 .20 .697861 .114241 .73 .871147 .341220 .23 .565071 .505801 .74 .367715 .345244 .256502 .114381 .79 .880370 .134852 .79 .853387 .3004976 .27 .68565 .1143481 .79 .849956 .364976 .27 .68565 .519200 .1243481 .79 .849956 .364976 .29 .22 .25203 .74 .374832 .579780 .29 .979985 .148310 .81 .842580 .37681 .29 .29 .25250 .510819 .79 .345861 .351149 .29 .29 .29 .25250 .598211 .39 .30 .20					- / /		1 61			- 0		
10 997502 0.49938 .60 .912005 .286701 .11 .714898 .473800 .61 .449698 .570868 .570868 .571708 .570868 .571708 .570868 .571708 .570868 .571708 .570868 .571708 .570868 .571708 .5	4			1 - 1						_		1000
11	.00	.997970	.044954	-59	.914850	.202349	.09	./24310	.40/9/0	.59	.401090	.50,0003
11 096697 054607 054607 054607 054607 054607 054607 05480	11	1 007502	040028	60	012005	286701	1 .10	710622	470002	1.60	155102	.560806
1.12		1 2210		1 - 1								
1.13 .095770 .064863 .64 .905120 .290628 .13 .705365 .479491 .66 .432531 .573537 .15 .904383 .074780 .66 .890732 .308833 .14 .700556 .482284 .64 .432531 .573537 .16 .9094383 .0097444 .66 .894020 .312355 .16 .609856 .487763 .66 .421045 .575111 .17 .992788 .084603 .67 .890885 .310551 .16 .609856 .487763 .66 .421045 .575111 .17 .992788 .084603 .67 .890885 .320723 .18 .681047 .493098 .68 .409528 .576220 .575836 .887698 .320723 .19 .907103 .495712 .69 .403760 .577103 .20 .990905 .094572 .69 .884470 .248471 .19 .076103 .495712 .69 .403760 .577103 .20 .990905 .094572 .70 .881201 .328996 .21 .606137 .500830 .71 .392204 .578324 .22 .9660137 .500830 .73 .386481 .73 .877147 .341220 .23 .656071 .5093334 .72 .386481 .73 .877147 .341220 .23 .656071 .5093334 .72 .386481 .73 .877147 .341220 .23 .656071 .509381 .73 .386481 .75 .758845 .24 .651000 .508231 .74 .374832 .579760 .25 .984496 .138632 .78 .85387 .361083 .29 .29079085 .1443481 .79 .849950 .364970 .29 .252205 .519810 .79 .363220 .580511 .73 .363220 .580511 .73 .363220 .580511 .73 .363220 .580511 .73 .363220 .580511 .73 .363220 .580511 .73 .363220 .580511 .73 .363220 .580511 .73 .365071 .70 .363220 .580511 .73 .365071 .20		1										.571798
1.1							.13	.705365		.63		.572688
1.6 .093616 .079744 .066 .894029 .312355 .17 .685965 .487763 .67 .415205 .575836 .17 .99278 .686596 .68 .887698 .326731 .17 .685965 .490449 .69536 .19 .990995 .094572 .69 .884470 .324871 .19 .676103 .495712 .69 .403760 .577163 .20 .990905 .094572 .71 .877800 .333096 .21 .666137 .50839 .72 .386481 .73 .871147 .341220 .22 .087937 .109336 .72 .874539 .337170 .22 .087937 .109336 .72 .874539 .337170 .24 .985652 .119138 .74 .867715 .345245 .24 .651000 .508231 .74 .374832 .579760 .25 .984436 .124026 .26 .983171 .128905 .76 .806730 .333216 .27 .98188 .133774 .77 .857178 .357163 .26 .645968 .515577 .355424 .28 .980406 .138632 .78 .853587 .36083 .29 .979085 .143481 .79 .849956 .364976 .364976 .29 .625295 .519819 .79 .345801 .581327 .397450 .162764 .83 .842580 .372681 .32 .974503 .157961 .82 .888834 .376402 .32 .974503 .157961 .82 .888834 .376402 .32 .974503 .157961 .82 .838834 .376402 .32 .974503 .157961 .82 .838834 .376402 .32 .609602 .526317 .33 .322535 .581840 .34 .971308 .167555 .84 .831228 .884029 .38 .394536 .394536 .394536 .394536 .394536 .394536 .394536 .394536 .394536 .394536 .394536 .394536 .394536 .394536 .394536 .395384 .394536 .394536 .394587 .394536 .394536 .394533 .394536 .394538 .394536 .394587 .394536 .405909 .44 .952183 .214719 .94 .79064 .419965 .44 .952183 .214719 .94 .79064 .419965 .44 .952183 .214719 .99 .769582 .405983 .426787 .426				.64	.900192	.303893	.14	.700556	.482284	.64	.432531	-573537
1.6 .993610 .979744 .66 .894029 .312355 .17 .685965 .487763 .67 .415200 .575836 .77 .897810 .89695 .684870 .324871 .19 .685965 .490449 .69 .6849528 .576520 .79 .990995 .094572 .69 .884470 .324871 .19 .676103 .495712 .69 .403760 .577163 .77 .877800 .333906 .21 .666137 .508390 .72 .386481 .73 .871147 .341220 .23 .665913 .588810 .74 .867715 .345245 .24 .651000 .508231 .74 .386248 .579323 .24 .985652 .119138 .74 .867715 .345245 .24 .651000 .508231 .74 .374832 .579760 .27 .98188 .133774 .77 .857178 .357163 .26 .644958 .575518 .77 .357422 .58824 .29 .979085 .143481 .79 .849956 .364976 .368424 .349444 .39 .970407 .153146 .81 .842580 .376491 .32 .974503 .157961 .82 .888834 .376492 .32 .696069 .772334 .84 .842580 .379600 .379600 .162764 .83 .842580 .380429 .34 .971308 .167555 .84 .831228 .884029 .37 .394580 .87 .394580 .87 .394580 .394580 .396009 .772334 .85 .871583 .871583 .394580 .379600 .79 .3345801 .581360 .379600 .379600 .8718852 .871800 .87180						0	4 45		0	1 05		İ
17						0 00						
1.8 .991916 .089636 .68 .887698 .320723 .18 .681047 .493098 .68 .409528 .576520 .69 .994572 .69 .884470 .324871 .19 .676103 .495712 .69 .403760 .577163 .21 .98905 .104422 .71 .877890 .333096 .21 .666137 .50830 .72 .874539 .337170 .22 .666117 .593334 .72 .386418 .578326 .73 .386628 .579323 .24 .985652 .119138 .74 .867715 .345245 .24 .051000 .508231 .74 .374832 .579760 .27 .981858 .133774 .75 .864242 .349244 .26 .649788 .512970 .76 .360333 .27 .635647 .515296 .76 .360333 .28 .636482 .517577 .78 .7		1 //										
1.19				11								
20 .990025 .099501 .70 .881201 .328996 .21 .666137 .500830 .71 .392204 .578326 .22 .987937 .109336 .72 .874539 .337170 .23 .968619 .114241 .73 .871147 .341220 .23 .656071 .503334 .73 .380688 .5798845 .24 .985652 .119138 .74 .867715 .345245 .24 .651000 .508231 .74 .376932 .579760 .27 .981858 .133774 .77 .857178 .357163 .26 .649788 .512979 .76 .363229 .58021 .78 .351633 .29 .979085 .143481 .79 .849956 .364976 .29 .062529 .519819 .37 .345841 .379423 .370492 .31 .976119 .153146 .81 .82 .838844 .376492 .32 .360602 .526317 .33 .32833 .388533 .334170 .33 .972960 .162764 .83 .835050 .380275 .34 .971308 .167555 .84 .831228 .384029 .38 .34128 .384128 .396622 .18852 .87 .811565 .402370 .39 .577058 .58444 .202023 .906067 .181852 .88 .815571 .3966067 .181852 .89 .811565 .402370 .39 .572260 .4100627 .9006067 .181852 .87 .811565 .402370 .39 .572260 .54031 .40 .96338 .193315 .964224 .186591 .88 .815571 .398760 .39 .963335 .213354 .904224 .2056383 .202377 .906067 .181852 .87 .815651 .398760 .39 .963335 .213606 .213606 .216607					00'		1					
1.21 .989005 .104422 .71 .877890 .333096 .22 .666137 .500830 .71 .392204 .578326 .22 .987937 .109336 .72 .874539 .337170 .22 .661116 .503334 .72 .386418 .579845 .73 .87147 .341220 .23 .656070 .508231 .74 .38628 .579320 .24 .051000 .508231 .74 .374832 .579760 .25 .984436 .124026 .76 .866730 .353216 .26 .983171 .128905 .76 .860730 .353216 .26 .040788 .512079 .76 .363229 .580511 .27 .981858 .133774 .77 .857178 .357163 .27 .635647 .515206 .77 .357422 .580824 .29 .979085 .143481 .79 .84956 .364976 .29 .979085 .143481 .79 .84956 .364976 .29 .979585 .14381 .79 .84956 .364976 .29 .974503 .157961 .82 .838834 .376492 .32 .974503 .157961 .82 .838834 .376492 .34 .971308 .167555 .84 .831228 .84029 .34 .599034 .530458 .84 .331278 .384029 .37 .966069 .172334 .86 .823473 .391453 .36 .967861 .177100 .86 .823473 .391453 .36 .583331 .360323 .3604224 .86591 .88 .815571 .398760 .39 .962335 .191316 .89 .811565 .402370 .39 .962335 .191316 .89 .811565 .402370 .41 .958414 .200723 .91 .803447 .409409 .44 .952183 .214719 .94 .791004 .419905 .44 .95538 .22370 .92 .799334 .413018 .42 .956384 .205403 .92 .799334 .413018 .42 .956384 .205403 .92 .799334 .413018 .42 .95538 .22370 .94 .791004 .419905 .44 .9552183 .214719 .94 .791004 .419905 .44 .54503 .555051 .940211 .94 .791004 .419905 .44 .95533 .228571 .97 .778251 .430751 .48 .943224 .233154 .98 .773333 .433483 .48 .852205 .5555051 .99 .222961 .577346 .577346 .940870 .237720 .99 .769582 .430783 .490409 .41 .5560427 .555051 .99 .225090 .579387 .99 .756538 .426787 .47 .945533 .228571 .99 .778251 .430751 .48 .940870 .237720 .99 .	1	1990993	.094372	.09	1004470	.3240/1	1 **9	.070103	1493712	.09	.403700	.3//103
1.22 .987937 .109336	.20	.990025	.099501	.70	.881201	.328996	1 .20	.671133	.498289	1.70	.397985	.577765
.23	.2			.71			.21				.392204	.578326
1.24				1	_ , , , , , ,	00, ,	1 1					
.25					0.0							
1.26	.2.	.985052	.119138	.74	.807715	.345245	.24	.051000	.508231	•74	.374832	.579700
1.26	.2	.084436	.124026	.75	.864242	.340244	1.25	.645006	.510623	1.75	.260022	.580T56
1.27	.20		.128905									
30 979085 143481 .79 .849956 .364976 .29 .625295 .519819 .79 .345801 .581327 30 977626 .148319 .80 .846287 .368842 .31 .976119 .153146 .81 .842580 .372681 .31 .614855 .524189 .81 .334170 .581666 .32 .974563 .157961 .82 .838834 .376492 .33 .60902 .526317 .33 .972960 .162764 .83 .835050 .380275 .33 .604329 .528407 .34 .599034 .530458 .84 .316717 .581865 35 .969609 .172334 .85 .827369 .387755 .86 .823473 .391453 .37 .593020 .532470 .37 .966067 .181852 .87 .819541 .395121 .37 .583031 .530379 .38 .964224 .186591 .88 .81557 .398760 .39 .962335 .191316 .89 .811565 .402370 .38 .577058 .538174 .89 .286631 .581377 .40 .960398 .196027 .90 .807524 .409499 .44 .952183 .214719 .94 .791004 .419965 .44 .952183 .214719 .94 .791004 .419965 .44 .952183 .214719 .94 .791004 .419965 .44 .545038 .58557 .99 .2264397 .578983 .40 .940870 .223970 .96 .778251 .430151 .48 .943224 .233154 .98 .779333 .433483 .49 .940870 .237720 .99 .769582 .430783 .49 .940870 .237720 .99 .769582 .430783 .49 .940870 .237720 .99 .769582 .430783 .49 .940870 .237720 .99 .769582 .430783 .49 .940870 .237720 .206661 .206684 .430783 .430783 .430783 .430783 .430783 .430783 .430783 .430783 .430783 .430783 .430783 .235438 .5779344 .49 .940870 .237720 .99 .769582 .430783 .49 .940870 .237720 .237720 .4008782 .430783 .4008783	.2	.981858	.133774	.77	.857178	.357163	.27	.635647		.77	1	.580824
30 .977626 .148319 .80 .846287 .368842 .372681 .30 .612685 .524189 .31 .34170 .581666 .32 .974563 .157961 .82 .838834 .376492 .32 .606062 .526317 .83 .322535 .581840 .34 .971308 .167555 .84 .831228 .384029 .34 .599034 .530458 .84 .316717 .581865 .359934 .530458 .84 .316717 .581865 .359934 .530458 .84 .316717 .581865 .3604329 .528407 .36 .967861 .177100 .37 .966067 .181852 .87 .819541 .395121 .38 .815571 .398760 .39 .962335 .191316 .89 .811565 .402370 .38 .577658 .538274 .89 .286031 .581377 .40 .960398 .196027 .90 .807524 .409490 .44 .958414 .200723 .91 .803447 .409490 .44 .952183 .214719 .94 .791004 .419965 .44 .5550518 .545404 .92 .270201 .580595 .42 .5550518 .54404 .495533 .228571 .96 .778253 .426787 .42 .947796 .223970 .97 .778251 .430151 .48 .943224 .233154 .98 .776958 .433483 .49 .940870 .237720 .99 .769582 .430783 .49 .940870 .237720 .99 .769582 .430783 .49 .940870 .237720 .99 .769582 .430783 .49 .940870 .237720 .99 .769582 .430783 .49 .940870 .237720 .99 .769582 .430783 .49 .940870 .237720 .99 .769582 .430783 .49 .940870 .237720 .99 .769582 .430783 .49 .940870 .237720 .236681 .40 .556518 .99 .229661 .577346 .577346 .40 .556518 .99 .229661 .577346 .577346 .90 .577346 .577346 .50 .556518 .99 .229661 .577346 .577346 .50 .577346 .50 .556518 .99 .229661 .577346 .577346 .50 .577346 .50 .577346 .577346 .50 .577346 .50 .577346 .50 .577346 .50 .50 .556518 .90 .229661 .577346 .577346 .50	.2			.78	.853587		.28			.78	.351613	.581096
31 976119 153146 .81 .842580 .372681 .31 .614855 .524189 .81 .334470 .581666 .32 .974563 .157961 .82 .838834 .376492 .32 .609602 .526317 .83 .322535 .581840 .34 .971308 .167555 .84 .831228 .384029 .34 .599034 .530458 .84 .316717 .581865 .35 .969609 .172334 .85 .827369 .387755 .38 .969609 .172334 .86 .823473 .391453 .37 .5836370 .37 .966067 .181852 .38 .815571 .398760 .39 .962335 .191316 .89 .811565 .402370 .39 .572266 .540131 .89 .286631 .581377 .40 .960398 .196027 .90 .807524 .405950 .41 .958414 .200723 .42 .956384 .205403 .92 .799334 .413018 .43 .951218 .214719 .94 .791004 .419965 .44 .556855 .545941 .455038 .228571 .94 .791004 .419965 .44 .545038 .558555 .579870 .47 .945533 .228571 .96 .778253 .426787 .48 .943224 .233154 .98 .7769882 .430783 .49 .940870 .237720 .99 .769882 .430783 .49 .940870 .237720 .29 .769882 .430783 .49 .940870 .237720 .40 .20668 .406887 .40 .576885 .5555550 .99 .229661 .577340 .577340 .40 .556518 .99 .229661 .577340 .577340 .556518 .99 .229661 .577340 .577340 .577340 .556518 .99 .229661 .577340 .557340 .	.20	.979085	.143481	.79	.849956	.364976	.29	.625295	.519819	•79	.345801	.581327
31 976119 153146 .81 .842580 .372681 .31 .614855 .524189 .81 .334470 .581666 .32 .974563 .157961 .82 .838834 .376492 .32 .609602 .526317 .83 .322535 .581840 .34 .971308 .167555 .84 .831228 .384029 .34 .599034 .530458 .84 .316717 .581865 .35 .969609 .172334 .85 .827369 .387755 .38 .969609 .172334 .86 .823473 .391453 .37 .5836370 .37 .966067 .181852 .38 .815571 .398760 .39 .962335 .191316 .89 .811565 .402370 .39 .572266 .540131 .89 .286631 .581377 .40 .960398 .196027 .90 .807524 .405950 .41 .958414 .200723 .42 .956384 .205403 .92 .799334 .413018 .43 .951218 .214719 .94 .791004 .419965 .44 .556855 .545941 .455038 .228571 .94 .791004 .419965 .44 .545038 .558555 .579870 .47 .945533 .228571 .96 .778253 .426787 .48 .943224 .233154 .98 .7769882 .430783 .49 .940870 .237720 .99 .769882 .430783 .49 .940870 .237720 .29 .769882 .430783 .49 .940870 .237720 .40 .20668 .406887 .40 .576885 .5555550 .99 .229661 .577340 .577340 .40 .556518 .99 .229661 .577340 .577340 .556518 .99 .229661 .577340 .577340 .577340 .556518 .99 .229661 .577340 .557340 .	30	077626	T482TO	80	846287	268842	1 30	620086	F00000	1 80	220086	-0
32 974563 157961 .82 .838834 .376492 .32 .609602 .526317 .83 .322535 .581840 .34 .971308 .167555 .84 .831228 .384029 .34 .599034 .530458 .84 .316717 .581865 .35 .969609 .172334 .85 .827369 .387755 .38 .964024 .181852 .37 .3966067 .181852 .38 .39541 .395121 .37 .583031 .530379 .38 .964224 .186591 .88 .81557 .398760 .39 .962335 .191316 .89 .811565 .402370 .39 .572206 .540131 .39 .286631 .581377 .40 .960398 .196027 .90 .807524 .409499 .41 .958414 .200723 .91 .803447 .409499 .44 .952183 .214719 .94 .791004 .419965 .44 .952183 .214719 .94 .791004 .419965 .44 .545038 .54821 .94 .2258591 .578081 .40 .940870 .223970 .96 .778251 .430151 .48 .943224 .233154 .98 .776958 .430783 .49 .940870 .237720 .99 .769582 .430783 .49 .940870 .237720 .2769582 .430783 .49 .940870 .237720 .2769582 .430783 .49 .940870 .237720 .99 .769582 .430783 .49 .940870 .237720 .2066681 .99 .769582 .430783 .49 .940870 .237720 .2066681 .99 .769582 .430783 .49 .940870 .237720 .2066681 .99 .769582 .430783 .49 .940870 .237720 .237720 .206681 .		711								1 - 1		
33 972960 162764 .83 .835550 .380275 .33 .604329 .528407 .83 .322535 .581840 .34 .971308 .167555 .84 .831228 .384029 .34 .599034 .530458 .84 .316717 .581865 .350 .969609 .172334 .85 .827369 .36 .588385 .533444 .36717 .581865 .37 .966067 .181852 .87 .819541 .395121 .36 .588385 .533444 .36 .305080 .581849 .37 .583031 .530379 .38 .597658 .538274 .39 .962335 .191316 .89 .811565 .402370 .39 .572260 .540131 .89 .286631 .581377 .40 .960398 .196027 .91 .803447 .409499 .41 .958414 .200723 .91 .803447 .409499 .42 .956384 .205403 .92 .799334 .413018 .43 .954306 .210069 .94 .791004 .419965 .44 .952183 .214719 .94 .791004 .419965 .46 .947796 .223970 .96 .786787 .423302 .47 .528501 .553559 .555518 .555518 .547162 .94 .258596 .579876 .48 .943224 .333154 .98 .778933 .433483 .430783 .430783 .49 .940870 .237720 .99 .769582 .430783 .45				1 - 1			-					
34 .971308 .167555 .84 .831228 .384029 .34 .599034 .530458 .84 .316717 .581865 .3581849 .36 .969609 .172334 .85 .827369 .387555 .36 .9696067 .181852 .87 .819541 .395121 .37 .583031 .530379 .532474 .39 .962335 .191316 .89 .811565 .402370 .38 .577658 .538274 .39 .572260 .540131 .89 .286631 .581577 .40 .960398 .196027 .91 .803447 .409490 .42 .955384 .205403 .92 .799334 .413018 .42 .955384 .205403 .92 .799334 .413018 .44 .952183 .214719 .94 .791004 .419965 .44 .952183 .223970 .96 .786787 .423392 .46 .947796 .223970 .96 .786787 .47 .945533 .228571 .97 .778251 .430151 .48 .943224 .233154 .98 .779333 .433483 .49 .940870 .237720 .99 .66528 .400783 .4				.83			1 - 1	- '			0 000	
36 .967861 .177100 .86 .823473 .391453 .36 .588385 .534444 .86 .305080 .581793 .37 .966067 .181852 .87 .819541 .395121 .37 .583031 .530370 .87 .299262 .581695 .38 .964224 .186591 .88 .815571 .398760 .38 .577658 .538274 .88 .293446 .581537 .39 .962335 .191316 .89 .811565 .402370 .39 .572260 .540131 .89 .286631 .581377 .40 .960398 .196027 .91 .803447 .409499 .41 .956384 .200723 .91 .803447 .409499 .42 .956384 .205403 .92 .799334 .413618 .42 .555981 .545164 .92 .270201 .580595 .44 .952183 .214719 .94 .791004 .419965 .44 .545038 .548821 .94 .258596 .579876 .46 .947796 .223970 .96 .786787 .423302 .47 .525501 .553559 .555509 .96 .247007 .578983 .48 .943224 .333154 .98 .773933 .433483 .48 .943224 .333154 .98 .773933 .433483 .49 .940870 .237720 .99 .769582 .430783 .450783	.34	.971308	.167555	.84	.831228	.384029	-34					.581865
36 .967861 .177100 .86 .823473 .391453 .36 .588385 .534444 .86 .305080 .581793 .37 .966067 .181852 .87 .819541 .395121 .37 .583031 .530370 .87 .299262 .581695 .38 .964224 .186591 .88 .815571 .398760 .38 .577658 .538274 .88 .293446 .581537 .39 .962335 .191316 .89 .811565 .402370 .39 .572260 .540131 .89 .286631 .581377 .40 .960398 .196027 .91 .803447 .409499 .41 .956384 .200723 .91 .803447 .409499 .42 .956384 .205403 .92 .799334 .413618 .42 .555981 .545164 .92 .270201 .580595 .44 .952183 .214719 .94 .791004 .419965 .44 .545038 .548821 .94 .258596 .579876 .46 .947796 .223970 .96 .786787 .423302 .47 .525501 .553559 .555509 .96 .247007 .578983 .48 .943224 .333154 .98 .773933 .433483 .48 .943224 .333154 .98 .773933 .433483 .49 .940870 .237720 .99 .769582 .430783 .450783				0.5	0	0	1 05			4 05		
37 .966667 .181852 .87 .819541 .395121 .37 .583031 .530370 .87 .296202 .581605 .581537 .39 .962335 .191316 .89 .811565 .402370 .38 .577658 .538274 .89 .286631 .581377 .40 .960398 .196027 .91 .803447 .409490 .41 .958414 .200723 .91 .803447 .409490 .42 .956384 .205403 .92 .799334 .413018 .43 .954306 .210069 .93 .795186 .416507 .419965 .44 .952183 .214719 .94 .791004 .419965 .44 .545038 .548821 .94 .258596 .579876 .46 .947796 .223970 .96 .786787 .423302 .47 .525501 .553559 .555508 .5550441 .95 .252799 .579446 .578938 .48 .943224 .333154 .98 .778933 .433483 .48 .943224 .333154 .98 .778933 .433483 .49 .940870 .237720 .99 .769582 .430783 .450			, ,,,				1 21					0 _ , /]
.38 .964224 .186591 .88 .815571 .398760 .38 .577658 .338274 .88 .293446 .581557 .581377 .39 .962335 .191316 .89 .811565 .402370 .40 .960398 .196027 .90 .807524 .405050 .42 .956384 .205403 .91 .79586 .410507 .41 .958414 .200723 .91 .803447 .409409 .42 .956384 .205403 .92 .799334 .413018 .42 .955386 .210069 .93 .795186 .416507 .44 .952183 .214719 .94 .791004 .419965 .44 .545038 .548821 .92 .270201 .580595 .59050 .44 .952183 .214719 .94 .791004 .419965 .44 .545038 .548821 .94 .258596 .579876 .47 .945533 .228571 .97 .778251 .426787 .47 .528501 .553559 .98 .235438 .577934 .49 .940870 .237720 .99 .769582 .430783 .49 .940870 .237720 .99 .769582 .430783 .450783 .450783 .550518 .99 .229661 .577346												
.39 .962335 .191316 .89 .811565 .402370 .39 .572266 .540131 .89 .286631 .581377 .40 .960398 .196027 .90 .807524 .405050 .41 .566855 .541948 .91 .276088 .580866 .42 .956384 .205403 .92 .799334 .413018 .42 .555981 .543726 .92 .270201 .580896 .43 .954306 .210060 .93 .795186 .416507 .44 .952183 .214719 .94 .791004 .419965 .44 .545038 .548821 .94 .258596 .579870 .45 .950012 .219353 .95 .786787 .423392 .46 .047796 .223970 .96 .782536 .426787 .423302 .47 .945533 .228571 .97 .778251 .430151 .48 .943224 .233154 .98 .773933 .433483 .483483 .48 .943224 .233154 .98 .773933 .433483 .48 .5550518 .550518 .99 .229661 .577346												- /0
.40 .960398 .196027 .90 .807524 .405950 .41 .566485 .541948 .958414 .200723 .91 .803447 .409499 .41 .561427 .543726 .92 .270201 .580896 .42 .956384 .205403 .92 .799334 .413018 .42 .555981 .545164 .952183 .214719 .94 .791004 .419965 .43 .5550518 .547162 .93 .264397 .580595 .44 .952183 .214719 .94 .791004 .419965 .44 .545038 .548821 .94 .258596 .579876 .47 .945533 .228571 .97 .782536 .426787 .40 .534029 .552020 .96 .223970 .47 .945533 .228571 .97 .778251 .430151 .48 .943224 .233154 .98 .773933 .433483 .48 .522958 .555059 .98 .235438 .577934 .49 .940870 .237720 .99 .76562 .426787 .49 .517400 .550518 .99 .229661 .577346			0 - 1				1 1					
-41 .958414 .200723 .91 .803447 .409499 .41 .561427 .543726 .92 .276008 .580896 .42 .956384 .205403 .92 .799334 .413018 .42 .555981 .545404 .92 .270201 .580595 .44 .952183 .214719 .94 .791004 .419965 .44 .545038 .548821 .94 .258596 .579876 .45 .547162 .94 .258596 .579876 .45 .46 .947796 .223970 .96 .782536 .426787 .42 .426787 .47 .5258501 .553559 .570841 .48 .943224 .333154 .98 .773933 .433483 .48 .943224 .333154 .98 .773933 .433483 .430783 .49 .940870 .237720 .99 .769582 .430783 .49 .940870 .237720 .99 .769582 .430783 .49 .40 .556518 .40 .556518 .40 .556518 .99 .229661 .577346 .577346 .40 .40		-000	9.020		3-3			372200	.540151	.09	.200031	.5013//
-41 .958414 .200723 .91 .803447 .409499 .41 .561427 .543726 .92 .276008 .580896 .42 .956384 .205403 .92 .799334 .413018 .42 .555981 .545404 .92 .270201 .580595 .44 .952183 .214719 .94 .791004 .419965 .44 .545038 .548821 .94 .258596 .579876 .45 .547162 .94 .258596 .579876 .45 .46 .947796 .223970 .96 .782536 .426787 .42 .426787 .47 .5258501 .553559 .570841 .48 .943224 .333154 .98 .773933 .433483 .48 .943224 .333154 .98 .773933 .433483 .430783 .49 .940870 .237720 .99 .769582 .430783 .49 .940870 .237720 .99 .769582 .430783 .49 .40 .556518 .40 .556518 .40 .556518 .99 .229661 .577346 .577346 .40 .40	.40	1 2 07		.90		.405950	1.40	.566855	.541948	1.90	.281810	.581157
.42 .956384 .205403 .92 .799334 .413018 .42 .555981 .545404 .93 .264397 .580595 .44 .952183 .214719 .94 .791004 .419965 .44 .545038 .548821 .94 .258596 .579876 .45 .9407796 .223970 .96 .782536 .426787 .423392 .47 .945533 .228571 .97 .778251 .430151 .48 .943224 .233154 .99 .769582 .430783 .49 .940870 .237720 .49 .796582 .430783 .49 .517400 .556518 .556518 .99 .229661 .577346				1 - 1			.41					0 0 1
.44 .952183 .214719 .94 .791004 .419965 .44 .545038 .548821 .94 .258596 .579870 .45 .950012 .219353 .95 .786787 .423392 .46 .947796 .223970 .96 .782536 .426787 .40 .534029 .552020 .96 .247007 .578053 .48 .943224 .233154 .98 .773933 .433483 .48 .522958 .555059 .98 .235438 .577934 .49 .940870 .237720 .99 .769582 .436783 .49 .517400 .556518 .99 .229661 .577340				1 - 1								.580595
.45								.550518	.547162	-93	.264397	.5.80252
.46 .947796 .223970 .96 .782536 .426787 .46 .5334029 .552020 .97 .241220 .578983 .430151 .48 .943224 .233154 .98 .773933 .433483 .48 .522958 .555559 .98 .235438 .577934 .49 .940870 .237720 .99 .769582 .436783 .49 .517400 .556518 .99 .229661 .577346	.44	1.952103	.214719	•94	./91004	.419905	-44	.545038	.548821	.94	.258596	.579870
.46 .947796 .223970 .96 .782536 .426787 .46 .534029 .552020 .96 .247097 .578983 .47 .945533 .228571 .97 .778251 .430151 .47 .528501 .553559 .97 .241220 .578478 .48 .943224 .233154 .98 .773933 .433483 .48 .522958 .555059 .98 .235438 .5779349 .49 .940870 .237720 .99 .769582 .436783 .49 .517400 .556518 .99 .229661 .577349	.4!	.950012	.219353	.95	.786787	.423302	1.45	.530541	.550441	1.95	.252700	570446
-47 .945533 .228571 .97 .778251 .430151 .47 .528501 .553559 .97 .241220 .578478 .48 .943224 .233154 .98 .773933 .433483 .48 .522958 .555059 .98 .235438 .577934 .49 .940870 .237720 .99 .769582 .430783 .49 .517400 .556518 .99 .229661 .577349	.40			1 .1	.782536	.426787	1 . 1					
.48 .943224 .233154 .98 .773933 .433483 .48 .522958 .555059 .98 .235438 .577934 .49 .940870 .237720 .99 .769582 .436783 .49 .517400 .556518 .99 .229661 .577346	.4	.945533	.228571	.97	.778251		-47	.528501			., .	
.49 .940870 .237720 .99 .769582 .436783 .49 .517400 .556518 .99 .229661 .577346			00 0 1	.98			.48					
50 008470 040068 1 00 664708 04471 50 0 0	.49	.940870	.237720	.99	.769582	.436783					00.0	
.576725	.50	.038470	.242268	1.00	765108	440057	1 50	FT 7 8 0 0		9 00	0	
		1930470	.242200	2 .00	.703190	.440051	1 .00	.511028	.557937	2 .00	.223891	.576725
	<u></u>						1					

TABLE 34 (continued). CYLINDRICAL HARMONICS OF THE 0TH AND 1ST ORDERS.

 $J_1(x)=-J_0{}'(x).$ Other orders may be obtained from the relation, $J_{n+1}(x)=\frac{2n}{x}J_n(x)-J_{n-1}(x).$ $J_{-n}(x)=(-1)^nJ_n(x).$

					$f_{-n}(x) =$	(1)	σ π (ω).				
x	$J_{0}(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$	x	$J_{0}(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$
2.00	222801	.576725	2 50	048384	407004	3 00	260050	220050	2 50	282728	707078
.01	~ ~	.576060		053342			263424			380128 381481	.137378
.02	.212370			058276			266758			382791	.128989
.03	.206620			063184			270055		.53	384060	.124795
.04		.573827		068066			273314			385287	.120601
					. , , ,						
2.05		.573003		072923			276535			386472	.116408
.06		572139		077753			279718			387615	.112216
.07		.571236		082557		.07	282862	.312529		388717	.108025
.08		.570294	1 -	087333	0_,	.08	285968	.308075		389776	
.00	11/2295	.569313	•59	092083	-4/3502	.09	289036	.304005	•59	390793	.099650
2.10	.166607	.568292	2.60	096805	.470818	3.10	292064	,300021	3.60	391769	.095466
.II		.567233		101400			295054			392703	.091284
.12		.566134		106165			298005			393595	.087106
.13	.149607	.564997	.63	110803	.462350	.13	300916	.289184	.63	394445	.082931
.14	.143963	.563821	.64	115412	.459470	.14	303788	.285244	.64	395253	.078760
0 15	7000	=6.06	0 65		17676	2 15	2266	.0	2 05	206222	07450
2.15		.562607		119992 124543			306621	· · · · · ·		396020 396745	.074593
.17		.560063		124543 129065			309414 312168			390745	.070431
.18		.558735		133557			314881			397429	.062122
.10		.557368		138018			317555			398671	.057975
	377	3070									0,5,0
2.20	.110362	.555963	2.70	142449	.441601		320188			399230	.053834
.21		.554521		146850			322781			399748	.049699
.22		.553041	11 *	151220	,,,,		325335			-,400224	.045571
.23		.551524		155559			327847			400659	.041450
.24	.088242	.549970	•74	159866	.429150	1 .24	330319	.245104	-74	401053	.037336
2.25	082750	.548378	2.75	164141	125072	3.25	332751	.241120	3.75	401406	.033229
.26		.546750		168385			335142			401718	.029131
.27		.545085		172597			337492			401989	.025040
.28		.543384	.78	176776	.416288	.28	339801	.228871	.78	402219	.020958
.29	.060947	.541646	.79	180922	.413011	.29	342069	.224771	-79	-,402408	.016885
0.00			0.00	0. (2 20	6		2 00		.012821
2.30		.539873		185036			344296 346482			402556 402664	.008766
.31		.538063		189117 193164			348627			402732	.004722
.32		.536217		193104			350731			402759	.000687
.34		.532419		201157			352793			402746	
.54	7-34-92	33-419	1	37	,						
2.35	.028778	.530467		205102			354814			402692	
.36	.023483	.528480		209014			356793			402599	
-37		.526458		-,212890			358731			402465	
.38		.524402		216733			360628			402292	
.39	.007720	.522311	.89	220540	.370955	•39	362482	.103394	.09	402079	023209
2.40	002508	.520185	2.90	224312	.375427	3.40	364296	.170226	3.90	401826	027244
.41	9			228048			366067			401534	
.42	0 -			231749	- 60		367797		.92	401202	035115
	013000		.93	235414	.364722	-43	369485	.1666699	.93	400832	039031
	018125			239043		.44	371131	.162516	•94	400422	042933
0.45			0.05			2 45	0.77.07.0	T # 0	2 OF	20007	04680-
	023227			242636			372735			399973 399485	
	028306			246193			374297 375818			399405	
	033361		1 / 1	249713 253196			377296			398394	
	038393 043401			253190 256643			378733			397791	
											,
2.50	048384	.407004	3.00	260052	.339059	3.50	380128	.137378	4.00	397150	.066043
	1-4-00-4	191-94									

CYLINDRICAL HARMONICS OF OTH AND 1ST ORDERS.

TABLE 35. — 4-place Values for x = 4.0 to 15.0.

x	$J_{0}(x)$	$J_1(x)$	x	$J_0(x)$	J'(x)
4.0 .1 .2 .3 .4 4.5 .6 .7 .8 .9 5.0	3972 3887 3766 3610 3423 3205 2961 2693 2404 2097 1776	066010331386171920282311256627912985314732763371	9.5 .6 .7 .8 .9 10.0 .1 .2 .3 .4 10.5	1939 2990 2218 2323 2493 2459 2496 2477 2434 2366 2276	+.1613 .1395 .1166 .0928 .0684 .0435 +.0184 0066 0313 05555 0789 1012
5·5 .6 ·7 .8 ·9 6.0 .1 ·2 ·3 ·4	.1220 .1506 .1773 .2017 .2238 .2433	3414 3343 3241 3110 2951 2767 2559 2329 2081 1816	.8	17121528133011210902067704460213 +.0020 .0250	1603 1768 1913 2039 2143 2225 2284 2320 2333 2323 2290
6.5 .6 .7 .8 .9 7.0 .1 .2 .3 .4 7.5 .6 .7 .8	. 2851 . 2931 . 2981 . 3001 . 2991 . 2951 . 2882 . 2786 . 2663 . 2516 . 2346 . 2154	1538 1250 0953 0652 0349 0047 +.0252 .0543 .0826 .1096 .1352 .1813 .2014	12.0 .1 .2 .3 .4 12.5 .6 .7 .8 .9 13.0	.1108 .1296 .1469 .1626 .1766 .1887 .1988 .2069 .2129 .2167	0271
.1 .2 .3 .4	.1944 .1717; .1475 .1222 .0960 .0692 .0419 .0146 0125 0653 0653 1142 1367 1577 1708	. 2192 . 2346 . 2476 . 2580 . 2657 . 2708 . 2731 . 2728 . 2697 . 2641 . 2559 . 2453 . 2324 . 2174 . 2004 . 1816	.4 13.5 .6 .7 .8 .9 14.0 .1 .2 .3 .4 14.5 .6 .7 .8	.2150 .2101 .2032 .1043 .1836 .1711 .1570 .1414 .1245 .1065 .0679 .0476	.0380 .0590 .0701 .0984 .1165 .1334 .1488 .1626 .1747 .1850 .1934 .1999 .2043 .2066
9.5	1939	.1613	15.0	0142	. 2051

TABLE 36. - Roots.

(a) 1st 10 roots of $J_0(x) = 0$

Higher roots may be calculated to better than 1 part in 10,000 by the approximate formula.

$$R_m = R_{m-1} + \pi$$

$$R_1 = 2.404826$$

$$R_2 = 5.520078$$

$$R_3 = 8.653728$$

$$R_4 = 11.791534$$

$$R_5 = 14.930918$$

$$R_6 = 18.071064$$

$$R_7 = 21.211637$$

$$R_8 = 24.352472$$

$$R_9 = 27.493479$$

$$R_{10} = 30.634606$$

(b) 1st 15 roots of $J_1(x) = \frac{dJ_0(x)}{dx} = 0$

with corresponding values of maximum or or minimum values of $J_c(x)$.

No. of root (n)	Root = x_n .	$J_0(x_n)$.
1	3.831706	402759
2	7.015587	+.300116
3	10.173468	249705
4	13.323692	+.218359
5	16.470630	196465
6	19.615859	+.180063
7	22.760084	167185
8	25.903672	+.156725
9	29.046829	148011
10	32.189680	+.140606
11	35.332308	134211
12	38.474766	+.128617
13	41.617094	123668
14	44.759319	+.119250
15	47.901461	115274

Higher roots may be obtained as under (a). Notes. $y = J_n(x)$ is a particular solution of Bessel's equation,

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - n^{2})y = 0.$$

The general formula for $J_n(x)$ is

or
$$J_n(x) = \sum_{0}^{\infty} \frac{(-1)^s x^{n+2s}}{2^{n+2s} \pi s} \frac{\pi (n+s)}{\pi (n+s)},$$

$$= \sum_{0}^{\infty} \frac{(-1)^s x^{n+2s}}{2^{n+2s} s! (n+s)!}$$

when n is an integer and

and
$$J_{n+1}(x) = \frac{2n}{x} J_n(x) - J_{n-1}(x),$$
$$J_1(x) = \frac{dJ_0(x)}{dx},$$
$$J_{-n}(x) = (-1)^n J_n(x).$$

Tables 35 to 36 are based upon Gray and Matthews' reprints from Dr. Meissel's tables. See also Reports of British Association, 1907–1916.

ELLIPTIC INTEGRALS.

Values of $\int_0^{\frac{\pi}{2}} (1-\sin^2\theta\sin^2\phi)^{\frac{1}{2}} d\phi$.

This table gives the values of the integrals between 0 and $\pi/2$ of the function $(i-\sin^2\theta\sin^2\phi)^{\frac{1}{2}}d\phi$ for different values of the modulus corresponding to each degree of θ between 0 and 90.

			modurus c	orresponding t	o each de	egree or o	etween o and	. 90,	
θ	$\int_0^{\pi} \frac{1}{(1-s)^{n-1}}$	$\frac{\mathrm{d}\phi}{\sin^2\theta\sin^2\phi^{\frac{1}{2}}}$	$\int_0^{\frac{\pi}{2}} (1-s)$	$\sin^2\theta\sin^2\phi)^{\frac{1}{2}}d\phi$	θ	$\int_0^{\pi} (1-s)^{n-1} ds$	$\frac{d\phi}{\sin^2\theta\sin^2\phi)^{\frac{1}{2}}}$	$\int_0^{\frac{\pi}{2}} (1 - \frac{\pi}{2})^{\frac{\pi}{2}}$	$\sin^2\theta \sin^2\phi)^{\frac{1}{2}}d\phi$
	Number.	Log.	Number.	Log.		Number.	Log.	Number.	Log.
0 °	1.5708	0.196120	1.5708	0.196120	45°	1.8541	0.268127	1.3506	0.130541
I	5709	196153	5707	196087	6	8691	271644	3418	127690
2	5713 5719	196252 196418	5703	195988	7 8	8848	275267	3329	124788
3 4	5727	196649	5697 5689	195822	9	9011	279001 282848	3238 3147	121836 118836
5°	1.5738	0.196947	1.5678		50°				
6	5751	197312	5665	0.195293	1 I	1.9356 9539	290895	1.3055	0.115790
	5767	197743	5649	194500	2	9539	295101	2870	109563
7 8	5785	198241	5632	194004	3	9927	299435	2776	106386
9	5805	198806	5611	193442	4	2.0133	303901	2681	103169
10°	1.5828	0.199438	1.5589	0.192815	55°	2.0347	0.308504	1.2587	0.099915
I	5854	200137	5564	192121	6	0571	31 3247	2492	096626
2	5882	200904	5537	191362	7 8	0804	318138	2397	093303
3 4	5913 5946	201740	5507 5476	190537	9	1047 1300	323182 328384	2301 2206	089950
15°	1.5981	0.203615		0.188690	60°				
6	6020	204657	1.5442 5405	187668	I	2.1 565	0.333753	2015	0.083164
	6061	205768	5367	186581	2	2132	345020	1920	076293
7 8	6105	206948	5326	185428	3	2435	350936	1826	072834
9	6151	208200	5283	184210	4	2754	357053	1732	069364
20°	1.6200	0.209522	1.5238	0.182928	65°	2.3088	0.363384	1.1638	0.065889
I	6252	210916	5191	181580	6	3439	369940	1545	062412
2	6307	212382	5141	180168	7 8	3809 4198	376736	1453	058937
3 4	6365 6426	213921	5090	177150	9	4610	383787 391112	1362 1272	055472
25°	1.6490	0.217219	1.4981	0.175545	70°	2.5046	0.398730	1.1184	0.048589
6	6557	218981	4924	173876	I	5507	406665	1096	045183
7 8	6627	220818	4864	172144	2	5998	414943	1011	041812
8	6701	222732	4803	170348	3	6521	423596	0927	038481
9	6777	224723	4740	168489	4	7081	432660	0844	035200
30°	1.6858	0.226793	1.4675	0.166567	75°	2.7681	0.442176	1.0764	0.031976
I	6941	228943	4608	164583	6	8327	452196	0686	028819
2	7028	231173	4539	162537	7 8	9026	462782	0611	025740
3 4	7119 72 1 4	233485	44 ⁶ 9 4397	160429	9	9786 3.0617	474008 485967	0538 0468	022749
35°		0.238359		0.156031	80°	3.1534	0.498777	1.0401	0.017081
6	1.7312 7415	240923	1.4323 4248	153742	I	2553	512591	0338	014432
	7522	243575	4171	151393	2	3699	527613	0278	011927
7 8	7633	246315	4092	148985	3	5004	544120	0223	009584
9	7748	249146	4013	146519	4	6519	562514	0172	007422
40°	1.7868	0.252068	1.3931	0.143995	B5 °	3.8317	0.583396	1.0127	0.005465
I	7992 812 2	255085	3849	141414	6	4.0528	607751	0086	003740
2		258197	3765	138778	7 8	3387 7427	637355	0053	002278
. 3	8256 8396	261406 264716	3680 3594	136086	9	5.4349	735192	0020	000326
45°	1.8541	0.268127	1.3506	0.130541	90°	00	∞	1.0000	
ļ					1		,	I	'

MOMENTS OF INERTIA, RADII OF GYRATION, AND WEIGHTS.

In each case the axis is supposed to traverse the centre of gravity of the body. The axis is one of symmetry. The mass of a unit of volume is w.

Body.	Axis.	Weight.	Moment of Inertia Io.	Square of Radius of Gyration ρ_0^2 .
Sphere of radius r	Diameter	$\frac{4\pi wr^3}{3}$	<u>8πωr⁵</u>	$\frac{2r^2}{5}$
Spheroid of revolution, polar axis 2a, equatorial diameter 2r	Polar axis	4\pi war2 3	8 nwar4	$\frac{2r^2}{5}$
Ellipsoid, axes 2a, 2b, 2c	Axis 2a	$\frac{4\pi wabc}{3}$	$\frac{4\pi wabc(b^2+c^2)}{15}$	$\frac{b^2+c^2}{5}$
Spherical shell, external radius r, internal r'	Diameter	$\frac{4\pi\pi\nu(r^3-r'^3)}{3}$	$\frac{8\pi w(r^5-r'^5)}{15}$	$\frac{2(r^5-r'^5)}{5(r^8-r'^3)}$
Ditto, insensibly thin, radius r, thickness dr	Diameter	4 π w r ² dr	$\frac{8\pi w r^4 dr}{3}$	$\frac{2r^2}{3}$
Circular cylinder, length 2a, radius r	Longitudinal axis 2a	$2\pi war^2$	πwar^4	$\frac{r^2}{2}$
Elliptic cylinder, length 2a, transverse axes 2b, 2c	Longitudinal axis 2a	2πwabc	$\frac{\pi wabc(b^2+c^2)}{2}$	$\frac{b^2+c^2}{4}$
Hollow circular cylinder, length 2a, external radius r, internal r'	Longitudinal axis 2a	2#wa(r ² r' ²)	$\pi wa(r^4-r'^4)$	$\frac{r^2+r'^2}{2}$
Ditto, insensibly thin, thickness dr	Longitudinal axis 2a	4#wardr	4#war³dr	r^2
Circular cylinder, length 2a, radius r	Transverse diameter	$2\pi war^2$	$\frac{\pi v a r^2 (3r^2 + 4a^2)}{6}$	$\frac{r^2}{4} + \frac{a^2}{3}$
Elliptic cylinder, length 2a, transverse axes 2a, 2b	Transverse axis 2b	2 π wabc	$\frac{\pi wabc(3c^2+4a^2)}{6}$	$\frac{c^2}{4} + \frac{a^2}{3}$
Hollow circular cylinder, length 2a, external radius r, internal r'	Transverse diameter	$2\pi wa(r^2-r'^2)$	$ \frac{\pi va}{6} \left\{ \begin{array}{l} 3(r^4 - r'^4) \\ +4a^2(r^2 - r'^2) \end{array} \right\} $	$r^2 + r'^2 + \frac{a^2}{3}$
Ditto, insensibly thin, thickness dr	Transverse diameter	4πwardr	$\pi wa(2r^3 + \frac{4}{3}a^2r)dr$	$r^2 + \frac{a^2}{3}$
Rectangular prism, dimensions 2a, 2b, 2c	Axis 2a	Swabe	$\frac{8wabc(b^2+c^2)}{3}$	$\frac{b^2+c^2}{3}$
Rhombic prism, length 2a, diagonals 2b, 2c	Axis 2a	4wabc	$\frac{2vabc(b^2+c^2)}{3}$	$\frac{b^2+c^2}{6}$
Ditto	Diagonal 2b	4wabc	$\frac{2wabc(c^2+2a^2)}{3}$	$-\frac{c^2}{6} + \frac{a^2}{3}$

(Taken from Rankine.)

For further mathematical data see Smithsonian Mathematical Tables, Becker and Van Orstrand (Hyperbolic, Circular and Exponential Functions); Functionentafeln, Jahnke und Emde (xtgx, x-1tgx, Roots of Transcendental Equations, a + bi and re⁹ⁱ, Exponentials, Hyperbolic Functions, $\int_{0}^{x} \frac{\sin u}{u} du, \int_{0}^{\infty} \frac{\cos u}{u} du, \int_{0}^{-x} \frac{e^{-u}}{u} du, \text{ Fresnel Integral, Gamma Function, Gauss Integral}$ $\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x^{2}} dx, \text{ Pearson Function } e^{-\frac{1}{2}\pi\nu} \int_{0}^{\pi} \sin r \ e^{\nu x} dx. \text{ Elliptic Integrals and Functions, Spherical}$ and Cylindrical Functions, etc.). For further references see under Tables, Mathematical, in the 11th ed. Encyclopædia Britannica. See also Carr's Synopsis of Pure Mathematics and Mellor's Higher Mathematics for Students of Chemistry and Physics.

INTERNATIONAL ATOMIC WEIGHTS. VALENCIES.

The International Atomic Weights are quoted from the report of the International Committee on Atomic Weights (Journal American Chemical Society, 39, p. 2517, 1917).

		- D. 1 . 1					
Substance.	Symbol.	Relative atomic wt. Oxygen = 16,	Valency.	Substance.	Symbol.	Relative atomic wt. Oxygen=16.	Valency.
Aluminum Antimony	Al Sb	27.1 120.2	3. 3, 5.	Mercury Molybdenum	Hg Mo	200.6 96.0	1, 2. 4, 6.
Argon Arsenic Barium	A As Ba	39.88 74.96 137.37	o. 3, 5. 2.	Neodymium Neon Nickel	Nd Ne Ni	144.3 20.2 58.68	3. o. 2, 3.
Bismuth Boron Bromine	Bi B Br	208.0 11.0 79.92	3, 5, 3,	Niton (Ra eman- Nitrogen Osmium		222.4 14.01 190.9	3, 5. 6, 8.
Cadmium Cæsium	Cd Cs	112.40	2. I.	Oxygen Palladium	O Pd	16.00 106.7	2, 2, 4.
Calcium Carbon Cerium Chlorine Chromium	Ca C Ce Cl Cr	40.07 12.005 140.25 35.46 52.0	2. 4. 3, 4. 1. 2, 3, 6.	Phosphorus Platinum Potassium Praseodymium Radium	P Pt K Pr Ra	31.04 195.2 39.10 140.9 226,0	3, 5. 2, 4. 1. 3. 2.
Cobalt Columbium Copper Dysprosium Erbium	Co Cb Cu Dy Er	58.97 93. I 63.57 162.5 167.7	2, 3. 5. 1, 2. 3. 3.	Rhodium Rubidium Ruthenium Samarium Scandium	Rh Rb Ru Sa Sc	102.9 85.45 101.7 150.4 44.1	3. 1. 6, 8. 3. 3.
Europium Fluorine Gadolinium Gallium Germanium	Eu F Gd Ga Ge	152.0 19.0 157.3 69.9 72.5	3· 1. 3· 3· 4·	Selenium Silicon Silver Sodium Strontium	Se Si Ag Na Sr	79.2 28.3 107.88 23.00 87.63	2, 4, 6. 4. 1. 2.
Glucinum Gold Helium Holmium Hydrogen	Gl Au He Ho H	9.1 197.2 4.00 163.5 1.008	2. I, 3. o. 3. I.	Sulphur Tantalum Tellurium Terbium Thallium Thorium	S Ta Te Tb Tl Th	32.06 181.5 127.5 159.2 204.0 232.4	2. 4, 6. 5. 2, 4, 6. 3. 1, 3.
Indium Lodine Iridium Iron Krypton	In I Ir Fe Kr	114.8 126.92 193.1 55.84 82.92	3· I. 4· 2, 3.	Thulium Tin Titanium Tungsten Uranium	Tm Sn Ti W U	168.5 118.7 48.1 184.0 238.2	3. 2, 4. 4. 6. 4, 6.
Lanthanum Lead Lithium Lutecium Magnesium Manganese	La Pb Li Lu Mg Mn	139.0 207.20 6.94 175.0 24.32 54.93	3· 2, 4· 1. 3· 2. 2, 3, 7·	Vanadium Xenon Ytterbium Yttrium Zinc Zirconium	V Xe Yb Yt Zn Zr	51.0 130.2 173.5 88.7 65.37 90.6	3, 5. o. 3. 3. 2. 4.

VOLUME OF A CLASS VESSEL FROM THE WEICHT OF ITS EQUIVALENT VOLUME OF MERCURY OR WATER.

If a glass vessel contains at ℓ° C, P grammes of mercury, weighed with brass weights in air at 760 mm. pressure, then its volume in c. cm.

at the same temperature,
$$t_1$$
: $V = PR = P \frac{P}{d}$, at another temperature, t_1 : $V = PR_1 = P p/d \{1 + \gamma (t_1 - t)\}$

p = the weight, reduced to vacuum, of the mass of mercury or water which, weighed with brass weights, equals 1 gram;

d = the density of mercury or water at $t^{\circ}C$,

and $\gamma = 0.000$ 025, is the cubical expansion coefficient of glass.

Temper-		WATER.			MERCURY.	
ature t	R.	$R_1, t_1 = 10^{\circ}.$	$R_1, t_1 = 20^{\circ}.$	R.	$R_1, t_1 = 10^\circ.$	$R_1, t_1 = 20^{\circ}.$
0° 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.001192 1133 1092 1068 1060 1068 1.001092 1131 1184 1252 1333 1.001428 1536 1657 1790 1935 1.002092 2261 2441 2633 2835	1.001443 1.358 1.292 1.243 1.210 1.193 1.001192 1.206 1.234 1.277 1.333 1.001403 1.486 1.582 1.690 1.810 1.001942 2086 2241 2407 2 407	1.001693 1609 1542 1493 1460 1443 1.001442 1456 1485 1527 1584 1.001653 1736 1832 1940 2060 1.002193 2337 2491 2058 2835	0.0735499 5633 5766 5900 6033 6167 0.0736301 6434 6568 6702 6835 0.0736969 7103 7236 7370 7504 0.0737637 7771 7905 8039 8172	0.0735683 5798 5914 6029 6144 6259 0.0736374 6490 6605 6720 6835 0.0736951 7066 7181 7297 7412 0.0737527 7642 7757 7872 7988	0.0735867 5982 6098 6213 6328 6443 0.0736558 6674 6789 6904 7020 0.0737135 7250 7365 7481 7596 0.0737711 7826 7941 8057 8172
21 22 23 24 25 26 27 28 29 30	1.003048 3271 3504 3748 4001 1.004264 4537 4818 5110 5410	1.002772 2970 3178 3396 3624 1.003862 4110 4366 4632 4908	1.003023 3220 3429 3647 3875 1.004113 4361 4616 4884 5159	0.0738306 8440 8573 8707 8841 0.0738974 9108 9242 9376 9510	0.0738103 8218 8333 8449 8564 0.0738679 8794 8910 902 5 9140	0.0738288 8403 8518 8633 8748 0.0738864 89 7 9 9094 9210 9325

Taken from Landolt, Börnstein, and Meyerhoffer's Physikalisch-Chemische Tabellen.

REDUCTIONS OF WEIGHINGS IN AIR TO VACUO.

TABLE 41.

When the weight M in grams of a body is determined in air, a correction is necessary for the buoyancy of the air equal to M δ (1/d-1/d₁) where δ = the density (wt. of 1 ccm in grams =0.0012) of the air during the weighing, d the density of the body, d₁ that of the weights. δ for various barometric values and humidities may be determined from Tables 153 to 155. The following table is computed for δ = 0.0012. The corrected weight = M + kM/1000.

Density	Co	orrection factor	, k.	Density	Co	rrection factor	, k.
of body weighed d.	hed Pt. Ir. Brass Quartz or	of body weighed d.	Pt. Ir. weights d ₁ =21.5.	Brass weights 8.4.	Quartz or Al. weights 2.65.		
.5 .6 .7 .75 .80 .85 .90 .95 I.00 I.1 I.2 I.3	+ 2.34 + 1.91 + 1.65 + 1.55 + 1.44 + 1.36 + 1.28 + 1.21 + 1.14 + 1.04 + 0.94 + .87 + .80 + .75	+ 2.26 + 1.86 + 1.57 + 1.46. + 1.36 + 1.27 + 1.19 + 1.12 + 1.06 + 0.95 + .86 + .78 + .71 + .66	+ 1.95 + 1.55 + 1.26 + 1.15 + 1.05 + 0.96 + .88 + .81 + .75 + .64 + .55 + .47 + .40 + .35	1.6 1.7 1.8 1.9 2.0 2.5 3.0 4.0 6.0 8.0 10.0 15.0 20.0	+ 0.69 + .65 + .62 + .58 + .54 + .43 + .34 + .24 + .14 + .09 + .06 + .03 + .004	+ 0.61 + .56 + .52 + .49 + .46 + .34 + .26 + .16 06 06 08 09	+ 0.30 + .25 + .21 + .18 + .15 + .03 05 15 30 33 37 39 40

TABLE 42 .- Reductions of Densities in Air to Vacuo.

(This correction may be accomplished through the use of the above table for each separate weighing.)

If s is the density of the substance as calculated from the uncorrected weights, S its true density, and L the true density of the liquid used, then the vacuum correction to be applied to the uncorrected density, s, is 0.0012 (1-s/L).

Let W_s = uncorrected weight of substance, W_l = uncorrected weight of the liquid displaced by the substance, then by definition, $s = LW_s/W_l$. Assuming D to be the density of the balance of weights, $W_s \{1 + 0.0012 (1/S - 1/D)\}$ and $W_l \{1 + 0.0012 (1/L - 1/D)\}$ are the true weights of the substance and liquid respectively (assuming that the weighings are made under normal atmospheric corrections, so that the weight of 1 cc. of air is 0.0012 gram).

Then the true density
$$S \!=\! \frac{W_{s}\!\left\{\! i + \text{0.0012}\left(i/\!S - i/\!D\right)\right\}}{W_{1}\!\left\{\! i + \text{0.0012}\left(i/\!L - i/\!D\right)\right\}} L$$

But from above $W_s/W_l = s/L$, and since L is always large compared with 0.0012, S - s = 0.0012 (I - s/L).

The values of 0.0012 (I — s/L) for densities up to 20 and for liquids of density I (water), 0.852 (xylene) and 13.55 (mercury) follow:

(See reference below for discussion of density determinations).

Density of		Corrections.		Density of	Corre	ctions.
substance s.	L= 1 Water.	L=0.852 Xylene.	L= 13.55 Mercury.	substance s	L= 1 Water.	I.= 13.55 Mercury.
0.8 0.9 1. 2. 3. 4. 5. 6. 7. 8. 9.	+ 0.00024 + .00012 0.0000 0012 0024 0036 0048 0060 0072 0084 0096 0108			11. 12. 13. 14. 15. 16. 17. 18. 19.	- 0.0120 0132 0144 0156 0180 0180 0192 0204 0216 0228	+ 0.0002 + .0001 0.0000 0.0000 0001 0002 0003 0004 0005 0006

MECHANICAL PROPERTIES.*

* Compiled from various sources by Harvey A. Anderson, C.E., Assistant Engineer Physicist, U. S. Bureau of Standards.

The mechanical properties of most materials vary between wide limits; the following figures are given as being representative rather, than what may be expected from an individual sample. Figures denoting such properties are commonly given either as specification or experimental values. Unless otherwise shown, the values below are experimental. Credit for information included is due the U. S. Bureau of Standards; the Am. Soc. for Testing Materials; the Soc. of Automotive Eng.; the Motor Transport Corps, U. S. War Dept.; the Inst. of Mech. Eng.; the Inst. of Metals; Forest Products Lab.; Dept. of Agriculture (Bull. 556); Moore's Materials of Engineering; Hatfield's Cast Iron; and various other American, English and French authorities.

The specified properties shown are indicated minimums as prescribed by the Am. Soc. for Testing Materials, U. S. Navy Dept., Panama Canal, Soc. of Automotive Eng., or Intern. Aircraft Standards Board. In the majority of cases, specifications show a range for chemical constituents and the average value only of this range is quoted. Corresponding average values are in general given for mechanical properties. In general, tensile test specimens were 12.8 mm (0.505 in.) diameter and 50.8 mm (2 in.) gage length. Sizes of compressive and transverse specimens are generally shown accompanying the data.

All data shown in these tables are as determined at ordinary room temperature, averaging 20° C (68° F.). The properties of most metals and alloys vary considerably from the values shown when the tests are conducted at higher or lower temperatures.

The following definitions govern the more commonly confused terms shown in the tables. In all cases the stress referred to in the definitions is equal to the total load at that stage of the test divided by the original cross-sectional area of the specimen (or the corresponding stress in the extreme fiber as computed from the flexure formula for transverse tests).

Proportional Limit (abbreviated P-limit). — Stress at which the deformation (or deflection) ceases to be proportional to the load (determined with extensometer for tension, compressometer for compression and deflectometer for transverse tests).

Elastic Limit. — Stress which produces a permanent elongation (or shortening) of o.oor per cent of the gage length, as shown by an instrument capable of this degree of precision (determined from set readings with extensometer or compressometer). In transverse tests the extreme fiber stress at an appreciable permanent deflection.

Yield Point. — Stress at which marked increase in deformation (or deflection) of specimen occurs without increase in load (determined usually by drop of beam or with dividers for tension, compression or transverse tests).

Ultimate Strength in Tension or Compression. — Maximum stress developed in the material during test.

Modulus of Rupture. — Maximum stress in the extreme fiber of a beam tested to rupture, as computed by the empirical application of the flexure formula to stresses above the transverse proportional limit.

Modulus of Elasticity (Young's Modulus). — Ratio of stress within the proportional limit to the corresponding strain, — as determined with an extensometer. Note: All moduli shown are obtained from tensile tests of materials, unless otherwise stated.

Brinell Hardness Numeral (abbreviated B. h. n.). — Ratio of pressure on a sphere used to indent the material to be tested to the area of the spherical indentation produced. The standard sphere used is a romm diameter hardened steel ball. The pressures used are 3000 kg for steel and 500 kg for softer metals, and the time of application of pressure is 30 seconds. Values shown in the tables are based on spherical areas computed in the main from measurements of the diameters of the spherical indentations, by the following formula:

B. h. n. =
$$P \div \pi t D = P \div \pi D (D/2 - \sqrt{D^2/4 - d^2/4})$$
.

 $P = {
m pressure \ in \ kg}, \ t = {
m depth} \ {
m of \ indentation}, \ D = {
m diameter \ of \ ball}, \ {
m and} \ d = {
m diameter \ of \ indentation}, \ --- \ {
m all} \ {
m lengths} \ {
m being \ expressed \ in \ mm}. \ {
m Brinell \ hardness \ values \ have a \ direct \ relation \ to \ tensile \ strength, \ and \ hardness \ determinations \ may \ be used to define tensile strengths \ by \ employing \ the \ proper \ conversion \ factor \ for \ the \ material \ under \ consideration.$

Shore Scleroscope Hardness. — Height of rebound of diamond pointed hammer falling by its own weight on the object. The hardness is measured on an empirical scale on which the average hardness of martensitic high carbon steel equals roo. On very soft metals a "magnifier" hammer is used in place of the commonly used "universal" hammer and values may be converted to the corresponding "universal" value by multiplying the reading by \$. The scleroscope hardness, when accurately determined, is an index of the tensile elastic limit of the metal tested.

Erichsen Value. — Index of forming quality of sheet metal. The test is conducted by supporting the sheet on a circular ring and deforming it at the center of the ring by a spherical pointed tool. The depth of impression (or cup) in mm required to obtain fracture is the Erichsen value for the metal. Erichsen standard values for trade qualities of soft metal sheets are furnished by the manufacturer of the machine corresponding to various sheet thicknesses. (See Proc. A. S. T. M. 17, part 2, p. 200, 1917.)

Alloy steels are commonly used in the heat treated condition, as strength increases are not commensurate with increases in production costs for annealed alloy steels. Corresponding strength values are accordingly shown for annealed alloy steels and for such steels after having been given certain recommended heat treatments of the Society of Automotive Engineers. The heat treatments followed in obtaining the properties shown are outlined on the pages immediately following the tables on steel. It will be noted that considerable latitude is allowed in the indicated drawing temperatures and corresponding wide variations in physical properties may be obtained with each heat treatment. The properties vary also with the size of the specimens heat treated. The drawing temperature is shown with the letter denoting the heat treatment, wherever the information is available.

TABLE 44. MECHANICAL PROPERTIES.

TABLE 44. - Ferrous Metals and Alloys - Iron and Iron Alloys.

,									_
Me	tal. Grade.	Yield point.	Ultimate strength.	Yield point.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. in area.	Hard Brinell	ness.
			sion mm²	Tension lb/in²		Per cent.		at 3000 kg	scope.
	n:					i			
E	lectrolytic* (remelt): as forged	34.0	38.5	48,500	55,000	33.0	83.0	95 T	18
	annealed 900° C.	12.5	27.0						_
G	ray cast‡(19 mm diam. bars)	indet.	117.5		(25,000		gible	(100	124
			26.5		138,000			150	140
I	Ialleable cast, American (after	(14.0	- U	(20,000	(35,000	(15.0	(15.0	_	
	Hatfield)	31.5	140.0	145,000	157,000	1 4.5		_	
	European (after Am. Malleable	(10.0	(29.5	(27,000	(42,000	6.0			
	Castings Ass.)	28.0	45.5	40,000	65,000	2.0	2.0		
	(run of 24 successive heats, 1919)§	·	40.8	SERVICE STATE OF THE SERVICE S	58,000	21.6	·		_
C	ommercial wrought	119.5	134.0	\$ 28,000	148,000	140.0	145.0	_	125
_		122.5	137.0	132,000	153,000	130.0	135.0		130
S	ilicon alloys Si 0.01: as forged	29.5	31.5	41,800	45,200	35.0	78.0		-
	(Melted in vacuo) ann. 970° C	11.0	24.5	16,000	34,900	53.0	81.5	—	- 1
	(Note: C max. o.or per cent)		`						
	Si 1.71: as forged	48.0	53.5	68,100	1 /0	37.0	82.0		
	annealed 970° C	25.0	38.0	35,800	54,200	50.0	90.6	. —	- 1
	Si 4.40: as forged	66.0	74.0	94,000	07.	6.0	7.5	-	
	annealed 970° C	51.0	64.5	72,900	91,600	24.0			- 1
A	luminum alloys Al 0.00: asforged	35-5	38.5	50,700		26.0	84.3		- 1
	(Melted in vacuo) ann. 1000° C	12.5	24.5	17,600	34,900	60.0	93.5	-	
	(Note: C max. o.o. per cent)	0							
	Al 3.08: as forged	48.0	54.5	68,200	7 7 7 0	21.0	76.4	-	- 1
	annealed 1000° C	22.5	37.5	31,800		51.0	85.3		- 11
	Al 6.24: as forged	54.5	60.5	77,700	86,000	28.0	74.7		
	annealed 1000° C	37-5	49.0	53,400	69,800	27.0	55.5		
L			Į.						

approximate:

Composition, approximate:
Electrolytic, C o.0125 per cent; other impurities less than 0.05 per cent.
Cast, gray: Graphitic, C 3.0, Si 1.3 to 2.0, Mn 0.6 to 0.9, S max. 0.1, P max. 1.2.
A. S. T. M. Spec. A₃8 to 18 allows S max. 0.10, except S max. 0.12 for heavy castings.
Malleable: American "Black Heart," C 2.8 to 3.5, Si 0.6 to 0.8, Mn max. 0.4, S max. 0.07, P max. 0.2.
European "Steely Fracture," C 2.8 to 3.5, Si 0.6 to 0.8, Mn o.15, S max. 0.35, P max. 0.2.
Compressive Strengths [Specimens tested: 25.4 mm (1 in.) diam. cylinders 76.2 mm (3 in.) long].
Electrolytic iron 56.5 kg/mm² or 80,000 lb/in².
Gray and malleable cast iron 56.5 to 84.5 kg/mm² or 80,000 to 120,000 lb/in².
Wrought iron, approximately equal to tensile yield point (slightly above P-limit).

Thickness, soft annealed.	Dep	th.
	mm .	in.
Sheet metal hoop iron, polished		0.374
Charcoal iron tinned sheet		0.295
Second quality tinned sheet	6.7	0.264

Modulus of elasticity in tension and compression:

Electrolytic iron... 17,500 kg/mm² or 25,000,000 lb/in² Cast iron... 10,500 kg/mm² or 15,000,000 lb/in² Malleable iron... 17,500 kg/mm² or 25,000,000 lb/in² Wrought iron... 17,500 kg/mm² or 25,000,000 lb/in² Modulus of elasticity in shear:

Gray cast iron

Modulus of rupture, 33.0 kg/mm² or 47,000 lb/in²
"Arbitration Bar," 31.8 mm (1½ in.) diameter, or 304.8 mm (12 in.) span; minimum central load at rupture 1130 to 1500 kg (2500 to 3300 lb.); minimum central deflection at rupture 2.5 mm (0.1 in.), (A. S. T.

P-limit.....Ultimate strength..

21.1 kg/mm² or 30,000 lb/in² 35.0 kg/mm2 or 50,000 lb/in2

* Properties of Swedish iron (impurities less than 1 per cent) approximate those of electrolytic iron.

* Properties of Swedish iron (impurities less than 1 per cent) approximate those of electrolytic iron.

† These two values of B. h. n. only are as determined at 500 kg pressure.

‡ U. S. Navy specifies minimum tensile strength of 14 1 kg/mm² or 20,000 lb/in².

§ Averages for a U. S. foundry.

| From T. D. Yensen, University of Illinois, Engr. Exp. Station, Bulletin No. 83, 1915 (shows Si 4.40 as alloy of maximum strength)

¶ From T. D. Yensen, University of Illinois, Engr. Exp. Station, Bulletin No. 95, 1917.

TABLES 45-46.

MECHANICAL PROPERTIES OF MATERIALS.

TABLE 45. — Carbon Steels — Commercial Experimental Values. S. A. E. (Soc. of Automotive Eng., U. S. A.) classification scheme used as basis for steel groupings. First two digits S. A. E. Spec. No. show steel group number, and last two (or three in case of five figures) show carbon content in hundredths of one per cent.

carbon content in hundredths of one per cent.

The first lines of properties for each steel show values for the rolled or forged metal in the annealed or normalized condition. Comparative heat-treated values show properties after receiving modified S. A. E. heat treatment as shown below (Table 46). The P-limit and ductility of cast steel average slightly lower and the ultimate strength 10 to 15 per cent higher than the values shown for the same composition steel in the annealed condition. The properties of rolled steel (raw) are approximately equal to those shown for the annealed condition, which represents the normalized condition of the metal rather than the soft annealed state.

The data for heat-treated strengths are average values for specimens for heat treatment ranging in size from \(\frac{1}{2}\) to \(\frac{1}{2}\) in diameter. The final drawing or quenching temperature for the properties shown is indicated in degrees C with the heat treatment letter, wherever the information is available. In general, specimens were drawn near the lower limit of the indicated temperature range.

Metal.	S.A.E. spec.	pec. contents		P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. in area.	Кр.	lness.
	110.		ment.	Tension kg/mm²			ision 'in²	Per	cent	Brinel (@ 3000	Sclero- scope.
Steel, carbon	1045	See Spec. No. (Mn 0.45) (Mn 0.65) (Mn 0.35)	Ann. H 260° C	24.0 27.0 28.0 35.0 40.0 62.0 42.0 84.0	32.0 42.0 38.0 56.0 50.0 86.0 56.0	34,500 39,000 39,500 49,500 57,500 88,000 59,500 120,000	46,000 60,000 54,400 79,500 71,300 123,000 79,000 175,000	37.0 30.0 32.0 20.0 23.0 13.5 21.0 6.0	72.0 62.0 68.0 59.0 54.0 36.0 51.0 18.0	120 100 176 168 290 187 551	18 24 17 35 27 45 29 75

Specification values: Steel, castings, Ann. A.S.T.M. A27-16, Class B; * P max. 0.06; S max. 0.05.

	371.11	Ultimate te	nsile strength	Per cent	Per cent
Grade.	Yield point.	kg/mm2	lb/in2	50.8 mm or 2 in.	reduct. area.
Hard Medium. Soft.	0.45 ultimate 0.45 " 0.45 "	56.2 49.2 42.2	80,000 70,000 60,000	15 18 22	20 25 30

Structural Steel: Rolled: S max. 0.05; P-Bess. max. 0.10; -O-H. max. 0.06.
Tension: Yield Point min. = 0.5 ultimate; ultimate = 38.7 to 45.7 kg/mm² or 55,000 to 65,000 lb/in² with 22% min. elongation in 50.8 mm (2 in.).

* Average carbon contents: steel castings, C 0.30 to 0.40; structural steel, C 0.15 to 0.30 (mild carbon or medium

hard steel).

TABLE 46. - Explanation of Heat Treatment Letters used in Table of Steel Data.

Motor Transport Corps Modified S. A. E. Heat Treatments for Steels. (S. A. E. Handbook, Vol. 1, pp. 9d and 9e, 1915, q. v. for alternative treatments.)

Heat Treatment A. — After forging or machining (1) carbonize at a temperature between 870 and 930° C. (1600 and 1700° F.); (2) cool slowly; (3) reheat to 760 to 820° C. (1400 to 1500° F.) and quench in oil.

Heat Treatment D. — After forging or machining: (1) heat to 820 to 840° C. (1500 to 1550° F.); (2) quench;
(3) reheat to 790 to 820° C. (1450 to 1500° F.); (4) quench; (5) reheat to 320 to 650° C. (600 to 1200° F.) and cool slowly.

Heat Treatment F. — After shaping or coiling: (1) heat to 775 to 800° C. (1425 to 1475° F.); (2) quench; (3) reheat to 200 to 480° C. (400 to 900° F.) in accordance with degree of temper required and cool slowly. Heat Treatment H. — After forging or machining: (1) heat to 820 to 840° C. (1500 to 1550° F.); (2) quench; (3) reheat to 230 to 650° C. (450 to 1200° F.) and cool slowly.

Heat Treatment L. — After forging or machining: (1) carbonize at a temperature between 870 and 950° C. (1600 and 1750° F.), preferably between 900 and 930° C. (1650 and 1700° F.); (2) cool slowly in carbonizing material; (3) reheat to 790 to 820° C. (1450 to 1500° F.); (4) quench; (5) reheat to 700 to 760° C. (1300 to 1400° F.); (6) quench; (7) reheat to 120 to 260° C. (250 to 500° F.) and cool slowly.

Heat Treatment M. — After forging or machining: (1) heat to 790 to 820° C. (1450 to 1500° F.); (2) quench; (3) reheat to between 260 and 680° C. (500 and 1250° F.) and cool slowly.

Heat Treatment P. — After forging or machining: (1) heat to 790 to 820° C. (1450 to 1500° F.); (2) quench; (3) reheat to 750 to 770° C. (1375 to 1425° F.); (4) quench; (5) reheat to 260 to 650° C. (500 to 1200° F.) and cool slowly.

Heat Treatment T. — After forging or machining: (1) heat to 750 to 820° C. (1450 to 1500° F.); (2)

r200° F.) and cool slowly.

Heat Treatment T. — After forging or machining: (1) heat to 900 to 950° C. (1650 to 1750° F.); (2) quench; (3) reheat to 260 to 700° C. (500 to 1300° F.) and cool slowly.

Heat Treatment U. — After forging: (1) heat to 830 to 870° C. (1525 to 1600° F.), hold half an hour; (2) cool slowly; (3) reheat to 900 to 930° C. (1650 to 1700° F.); (4) quench; (5) reheat to 180 to 290° C. (350 to 550° F.) and cool slowly.

Heat Treatment V. — After forging or machining. (1) heat to 900 to 950° C. (1650 to 1750° F.); (2) quench; (3) reheat to between 200 and 650° C. (400 and 1200° F.) and cool slowly.

EDITOR'S NOTE: Oil quenching is recommended wherever the instructions specify "quench," inasmuch as the data in the table are taken from tests of automobile parts which must resist considerable vibration and which are usually small in section. The quenching medium must always be carefully considered. SMITHSONIAN TABLES.

TABLE 47. MECHANICAL PROPERTIES.

TABLE 47. - Alloy Steels - Commercial Experimental Values.

									_		_
Metal.	S. A. E. spec.	Nominal contents, per cent.	S. A. E. heat treat-	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct.	ne	ard- ess.
			ment.		Tension kg/mm²		Tension lb/in²		cent.	Brir @300	Sclero- scope.
Steel, nickel	2315		Α								
Dicci, meker.	2315		Ann. H	30.0					60.0		
	2335		Ann.	53.0	76.0	1 00/	107,500		55.0		
	2335	Ni 3.50	H	1		007	68,000		53.0		
	2345	/3.F	Ann.	44.0			- 78,000		51.0		02
	2345	(Mn 0.65)	H				212,000		45.0		76
	Invar	Ni 36.0		-3	- 19.0	-93,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12.0	43.0	370	
		C.0.40	Ann.	50.0	77-5	71,000	110,000	30.0	50.0	_	_
nickel				"		1 ′	, ′	0	3-10		
chrome	3120	∫ Ni 1.25	Ann.	34.0	44.0	49,000	62,000	23.0	53.0	155	22
	3120	\ Cr 0.60	H 450° C		82.0		116,000	23.0	48.0	270	36
	3135	(35 6)	Ann.		50.0			20.0	46.0	182	30
	3135	(Mn 0.65)	H or D				172,000	18.0	43.0	330	44
	3220	(NT:	Ann.		49.0				50.0		
	3220	Ni 1.75	H or D Ann.				151,000	0	48.0		50
	3250	(Mn 0.45)	M		55.0		1 '. /	2 '	42.0		<u> </u>
	3320	(3111 0.45)	Ann.		42.0		260,000 59,500		32.0		04
	3320	∫ Ni 3.50	· L				150,000		50.0 48.0		
	3340	Cr 1.50	Ann.				74,000		45.0	3/5	50
	3340	(Mn 0.45)	P				232,000	_	42.0	470	64
chromium.	51120	Cr 1.00	Ann.				82,000	16.0			
	51120	(Mn 0.35)	M or P			205,000		7.0	26.0	. 1	66
	52120	Cr 1.20	Ann.	44.0	58.0	62,000	82,000	13.0	24.0	_	
	52120 }	(Mn 0.35)	M or P	141.0	178.0	200,000	253,000	7.0	25.0	524	70
chrome	6130	/2.5									
vanadium	6130	(Mn 0.65)	Ann.	43.0		61,500			51.0		- 1
	5-)	Cr 0.05	T	84.0	115.0	120,000	163,000	16.0	43.0	432	59
·	6-0-1	V 0.18	Ann.	.0 .	6	68,200		-6 -	-0		
	6195	(Mn 0.35)	U	48.0			90,000 330,000	16.0 8.c	38.0	-60	
silico-	0195)			170.0	232.0	250,000	330,000	0.0	24.0	502	75
manganese	0250	Si 1.95	Ann.	12.0	54.0	60,000	77,000	16.0	28.0		
manganese	9250	Mn 0.70	V				174,000	14.0	24.0	AAT	59
	9×30	Si 0.85	Ann.			68,000		13.0	22.0		_
	9×30	Mn 1.75	V				211,000	12.0	21.0	470	63
tungsten	(C-73)	W 2.4	Ann.	34.0	59.0	48,100	84,200	20.5	31.5		<u> </u>
	(C-70)	W 9.7	Ann.	63.0	89.0	90,000	126,000	14.0	22.1		
	(C-47)	W 15.6	Quench	_	-					1	
			1065°	158.5	175.0	225,000	248,000	6.0	43.0	520	64
			Draw								
			205° C								
									1		

GENERAL NOTE. - Table on steels after Motor Transport Corps, Metallurgical Branch of Engineering Division, Table No. 88.

Maximum allowable P 0.045 or less, maximum allowable S 0.05 or less.

Silicon contents were not determined by Motor Transport Corps in preparing table, except for silico-manganese steels.

Compressive strengths:
For all steels approx. equal to yield point in tension (slightly above P-limit).

Density: Steel weighs about 7.85 g/cm3 or 490 lb/ft3

Ductility, Erichsen values:

o.75 mm (0.029 in.) thick, low carbon soft annealed sheet (B. S.), depth of indentation 12.0 mm or 0.472 in.

1.30 mm (0.050 in.) thick, low carbon soft annealed sheet (B. S.), depth of indentation 12.5 mm or 0.492 in.

Modulus of elasticity in tension and compression:

For all steels approx. 21,000 kg/mm² = 30,000,000 lb/in². Modulus of elasticity in shear:

For all steels approx. 8400 kg/mm² = 12,000,000 lb/in². Scleroscope hardness values shown are as determined with the Shore Universal hammer.

Strength in shear:
P-limit and ultimate strength each about 70 per cent corresponding tensile values.

TABLES 48-50. MECHANICAL PROPERTIES.

TABLE 48. - Steel Wire - Specification Values.

(After I. A. S. B. Specification 3S12, Sept., 1917, for High-strength Steel Wire.)
S. A. E. Carbon Steel, No. 1950 or higher number specified (see Carbon steels above). Steel used to be manufactured by acid open-hearth process, to be rolled, drawn, and then uniformly coated with pure tin to solder readily.

American	Diar	neter.	Req'd twists in	Weig	ght.	Req'd	Spec.	minimur	n tensile	strength.
B. and S. wire gage.	mm	in.	203.2 mm or 8 in.	kg/100 m	lb/100 ft.	bends thru 90'	kg	lb.	kg/mm²	lb/in²
6 7 8 9 10 11 12 13 14 15	4.115 3.665 3.264 2.906 2.588 2.305 2.053 1.828 1.628 1.450	0.162 .144 .129 .114 .102 .091 .081 .072 .064	16 19 21 23 26 30 33 37 42 47	10.44 8.28 6.55 5.21 4.12 3.28 2.60 2.06 1.64 1.30	7.01 5.56 4.40 3.50 2.77 2.20 1.74 1.38 1.10 0.87	5 6 8 9 11 14 17 21 25 29	2040 1680 1360 1135 910 735 590 470 375 300	4500 3700 3000 2500 2000 1620 1300 1040 830 660	154 161 164 172 172 179 177 179 181 182	219,000 229,000 235,000 244,000 254,000 252,000 255,000 258,000 259,000
16 17 18 19 20	I. 29I I. 150 I. 024 0. 912 0. 812 0. 723	.051 .045 .040 .036 .032	53 60 67 75 85	0.81 0.65 0.51 0.41	0.69 0.55 0.43 0.34 0.27 0.22	34 42 52 70 85	245 195 155 125 100 80	540 425 340 280 225 175	186 188 190 193 197	264,000 267,000 270,000 275,000 280,000 284,000

- Number of 90° bends specified above to be obtained by bending sample about 4.76 mm (0.188 in.) radius,

alternately, in opposite directions.

(Above specification corresponds to U. S. Navy Department Specification 22W6, Nov. 1, 1916, for tinned, galvanized or bright aeroplane wire.)

TABLE 49. - Steel Wire - Experimental Values.

(Data from tests at General Electric Company laboratories.) "Commercial Steel Music Wire (Hardened)."

Diame	eter.	Ultimate	e strength.
mm	in.	kg/mm² t	ension lb/in²
12.95	0.051	226.0	321,500
11.70	.046	249.0	354,000
9.15	.036	253.0	360,000
7.60	030	260.0	370,000
6.35	.025	262.0	372,500
4.55	.018	265.5	378,000
2.55*	.010	386.5	550,000
1.65*	.0065	527.0	750,000
4.55	.018	49.2	70,000

^{*} For 4.55 mm wire drawn cold to indicated sizes. † For 4.55 mm (0.018 in.) wire annealed in H2 at 850° C.

TABLE 50. — Semi-steel.

Test results at Bureau of Standards on 155-mm shell, Jan. 1919.

Microstructure — matrix resembling pearlitic steel, embedded in which are flakes of graphite.

Composition-Comb. C 0.60 to 0.76, Mn 0.88, P 0.42 to 0.43, S 0.077 to 0.088, Si 1.22 to 1.23, graphitic C 2.84 to 2.94.

		Ultimate strength.	limit.			P-limit. Ultimate strength.		Ultimate strength.	Hard	lness.
Metal.	Te	nsion mm²	Ten lb/		Comp	ression mm²	Comp Limit-	ression /in²	Brinell @3000 kg	Sclero- scope.
Semi-steel: Graph. C 2.85 Comb. C 0.76	7.9	19.8	11,200	28,200	24.3	72.6	34,500	103,000	176	
Graph. C 2.92 Comb. C 0.60	4.2	14.9	6,000	21,200	18.3	61.4	26,000	87,300	170	-

Tension specimens 12.7 mm (0.5 in.) diameter, 50.8 mm (2 in.) gage length; elongation and reduction of Tension specificus 127 mm (c.8 in.) diameter, 61.0 mm (2.4 in.) long; failure occurring in shear.

Compression specimens 20.3 mm (0.8 in.) diameter, 61.0 mm (2.4 in.) long; failure occurring in shear.

Tension set readings with extensometer showed elastic limit of 2.1 kg/mm² or 3000 lb/in².

Modulus of elasticity in tension — 9560 kg/mm² or 13,600,000 lb/in².

Cast steel wire to be of hard crucible steel with minimum tensile strength of 155 kg/mm2 or 220,000 lb/in2

Cast steel wire to be of hard crucible steel with minimum tensile strength of 155 kg/mm² or 220,000 lb/in² and minimum elongation of 2 per cent in 254 mm (10 in.).

Plow steel wire to be of hard crucible steel with minimum tensile strength of 183 kg/mm² or 260,000 lb/in² and minimum elongation of 2 per cent in 254 mm (10 in.).

Annealed steel wire to be of crucible cast steel, annealed, with minimum tensile strength of 77 kg/mm² or 10,000 lb/in² and minimum elongation of 7 per cent in 254 mm (10 in.).

Type A: 6 strands with hemp core and 19 wires to a strand (= 6 × 19), or 6 strands with hemp core and 12 wires to a strand with hemp core.

Type B: 6 strands with hemp core, and 12 wires to a strand with hemp center.

Type C: 6 strands with hemp core, and 13 wires to a strand with hemp or jute center.

Type AA: 6 strands with hemp core, and 37 wires to a strand (= 6 × 37) or 6 strands with hemp core and 36 wires to a strand with jute, cotton or hemp center.

36 wires to a strand with jute, cotton or hemp center.

Description.	Diam	eter.	Approx.	weight.	Minimum	strength.
Description.	mm	in.	kg/m	lb/ft	. kg	lb.
Galv. cast steel, Type A """""""""""""""""""""""""""""""	9.5 12.7 25.4 38.1 9.5 12.7 25.4 38.1 9.5 12.7 25.4 41.3 9.5 12.7 25.4 41.3		0.31 0.55 2.23 5.06 0.35 0.58 2.23 5.28 0.25 0.42 1.68 3.94 1.59 4.35 0.31 0.55 2.23 4.66 0.33 0.58	0.21 0.37 1.50 3.40 0.22 0.39 1.50 3.55 0.17 0.28 1.13 2.65 1.07 2.92 0.21 0.37 1.50 3.13 0.22 0.39 1.50	3,965 6,910 27,650 63,485 3,840 7,410 27,650 59,735 2,995 5,210 20,890 47,965 18,825 51,575 4,690 8,165 32,675 69,140 4,540 8,750	8,740 15,230 60,960 139,960 8,460 16,330 60,960 131,600 105,740 41,500 113,700 10,340 18,000 72,040 152,430 10,000 19,300 71,100
66 66 66 66	41.3	15/8	6.18	4.15	83,010	183,000

TABLE 52. - Plow Steel Hoisting Rope (Bright).

(After Panama Canal Specification No. 302, 1912.)

Wire rope to be of best plow steel grade, and to be composed of 6 strands, 19 wires to the strand, with hemp center.

Wires entering into construction of rope to have an elongation in 203.2 mm or 8 in. of about 2½ per cent.

Diame	ter.	er. Spec. minimum strength. Diameter.			eter.	Spec. minimum strength.		
mm	in.	kg	lb.	mm	in.	kg	lb.	
9·5 12·7 19·0 25·4	38 12 314 I	5,215 9,070 20,860 34,470	* 11,500 20,000 46,000 76,000	38.1 50.8 63.5 69.9	$ \begin{array}{c} 1\frac{1}{2} \\ 2 \\ 2\frac{1}{2} \\ 2\frac{3}{4} \end{array} $	74,390 127,000 207,740 249,350	164,000 280,000 458,000 550,000	

TABLE 53. - Steel-wire Rope - Experimental Values.

(Wire rope purchased under Panama Canal Spec. 302 and tested by U. S. Bureau of Standards, Washington, D. C.)

	(Whe tope purchased under Lanama Canal opec. 302 and tested by C. C. Buttest of Canada as, Washington, D. C.)										
	Description and analysis.	Diam	eter.	Ultimate	strength.	Ultimate strength (net area).					
	2 coorpora and analysis	mm	in.	kg	lb.	kg/mm²	lb/in ²				
The state of the s	Plow Steel, 6 strands × 19 wires C 0.90, S 0.034, P 0.024, Mn 0.48, Si 0.172 Plow Steel, 6 strands × 25 wires C 0.77, S 0.036, P 0.027, Mn 0.46, Si 0.152 Plow Steel, 6 × 37 plus 6 × 19 C 0.58, S 0.032, P 0.033, Mn 0.41, Si 0.160 Monitor Plow Steel, 6 × 61 plus	50.8 69.9 82.6	$\frac{2}{2^{\frac{3}{4}}}$	137,900 314,800 392,800	304,000 694,000 866,000	129.5 151 2 132.2	184,200 214,900 187,900				
	6 × 19, C o.82, S o.025, P o.019, Mn o.23, Si o.169	82.6	34	425,000	937,000	142.5	.202,400				

TABLE 54. - Aluminum.

Metal, approx.	Condition.		nsity reight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. of area.	6 2	dness.
per cent.		gm per cm³	lb.per	Ten: kg/r	sion, nm²		sion, /in²	Per	cent.	Brinell (500 kg	Sclero- scope.
ALUMINUM: Av. Al 99.3 Imp., Fe and Si	Cast, sand at 700° C	2.57 2.69 2.70 2.70		7.0 — 6.0 6.0 14.0	8.0 to 9.8 8.9 to 9.6 9.0 9.0 21.0 23.0 28.0	10,000		15 28 to 18 20.0 23.0 4 0	22	26	5

Compressive strength: cast, yield point 13.0 kg/mm² or 18,000 lb/in²; ultimate strength 47.0 kg/mm² or 67,000 lb/in².

Modulus of elasticity: cast, 6900 kg/mm² or 9,810,000 lb/in² at 17° C.

* TABLE 55. — Aluminum Sheet.

(a) Grade A (Al min. 99.0) Experimental Erichsen and Scleroscope Hardness Values.

[From tests on No. 18 B. & S. Gage sheet rolled from 6.3 mm (0.25 in.) slab. Iron Age v. 101, page 950].

Heat treatment annealed.	Thickness,	Indentation,	Scieroscope
	mm	mm	hardness.
None (as rolled)	1.08	6.83	14.0
	1.09	8.86	8.0
	1.07	10.17	4.5
@ 400° C, 2 hours @ 200° C, 30 min. @ 400° C, 30 min.	1.07 1.08 1.07 1.08	9.40 7.97 9.80	4·5 4·5 11.8 4.5

(b) Specification Values.— (1) Cast: U. S. Navy 49 Al, July 1, 1915; Al min. 94, Cu max. 6, Fe max. 0.5, Si max. 0.5, Mn max. 3.

Minimum tensile strength 12.5 kg/mm² or 18,000 lb/in² with minimum elongation of 8 per cent in 50.8 mm (2 in.).

(2) Sheet, Grade A: A. S. T. M. 25 to 18T; Al min. 99.0; minimum strengths and elongations.

Gage, sheet thicknesse	Temper, No.			Elong. in 50.8 mm or 2 in.	
(B. & S.) mm in 12 to 16 incl. 1.293 .05 17 to 1.152 to .04 22 incl. 0.643 .02 23 to 0.574 to .02 26 incl. 0.404 .01	to 2 Half-hard 3 Hard 1 Soft, Ann. 2 Half-hard 3 Hard to 1 Soft, Ann.	12.5 15.5 8 8 12.5 17.5 8.8 12.5	12,500 18,000 22,000 12,500 18,000 25,000 12,500 18,000 30,000	30 7 7 4 20 5 2	Sheets of temper No. I to withstand being bent double in any direction and hammered flat; temper No. 2 to bend 180° about radius equal to thickness without cracking.

NOTE. — Tension test specimen to be taken parallel to the direction of cold rolling of the sheet. Smithsonian Tables.

ALUMINUM ALLOY.

				_				_		_	_
Alloy, approx.	Condition,		nsity eight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. of area.		Iness.
composition per cent.	per cent reduction.	gm/ cm³	lb/ ft³		sion, mm ²	Ten lb/	sion,		cent.	Brinell @	Sclero- scope.
Al 98 Cu 1 Imp. max. 1 Al 96 Cu 3 Imp. max. 1	Cast, chill Rolled, 70% Cast, chill Rolled, 70% Cast, chill			5.3 19.0 8.1 25.0	10.5 21.0 13.7 28.8 15.0	7,500 27,000 11,500 35,000 14,500	15,000 30,000 19,500 41,000 21,500	24.0 4.0 12.0 5.5 7.0	34.0		
Al 94 Cu 5 Imp. max. 1 Al 92 Cu 8: Alloy No. 12	Rolled, 70% Cast, sand	_	180	23.0	27.0	33,000 11,000 to 15,000	38,000	6.0	i —	_	- 13 to 18
Copper, Magnesium Al 9.52 Cu 4.2 Mg 0.6	Cast at 700° C. Ann. 500° C	_	 181	3.2 to 4.6 4.6	13.3 17.3	6,500	18,000 13,600 to 18,900 24,900	3.0	0.0	 74 to 74 80	 17 to 18 21
Duralumin or 17S Alloy Al 94 Cu 4 Mg 0.5	Rolled heat	2.8	174	25.0 53.0 23.4	42.0 56.0 39.0	35,100 75,400 33,400	59,500 79,600 55,300	21.1 4.0 25.5	29.5		=
Al 96 Cu 2 Mn 2 Al 96 Cu 3 Mn 1 Naval Gun Factory Al 97 Cu 1.5 Mn 1			175	10.0 19.0 11.3 —	14.0 27.0 19.0 14.0	14,300 27,100 16,200 — 19,500	20,300 38,200 27,000 20,000 27,800	5.0 16.0 14.0 12.0	28.0		
Al 94 Cu max. 6 Mn max. 3. Copper, Nickel, Mg Mn.	Minimum ‡ Cast at 700° C.	_	 -	_	12.7 17.9 to		18,000 25,500 to	8.0	8.5 to		- o to
Al 93.5 Cu 3.5 Ni 1.5 Mg 1 Mn 0.5 Copper, Nickel Mn Al 94.2 Cu 3 Ni 2 Mn	Cast at 700° C.	_	=	9.8	23.2 14.5 to	14,000	33,000 20,600 t 0	1.5	1.0 11.0 to	86	25
o.8	Cast, sand Cast, chill	2.4 to	156 150 to	5.6	21.4 15.5 29.5 to	8,000	30,500 22,000 42,000 to	7.0	2.0 8.5	— —	27 —
Nickel Al 97 Ni 2	Cast, chill Drawn, cold Rolled, hot Cast, chill	2.57	160	4.0 14.0 8.0 6.0	45.0 11.0 16.0 13.0	5,800 19,700 11,900	64,000 14,900 22,700 18,200 21,700	21.0 13.0 28.0 0.0	36.0 37.0 52.0		=
Al 95 Ni 5 Nickel Copper:	Rolled, hot	_	_	16.0	20.0	22,900	27,900	8.0	24.0 36.0	=	
Al 93.5 Ni 5.5 Cu 1 Al 91.5 Ni 4.5 Cu 4 Al 92 Ni 5.5 Cu 2	Cast, chill Cast, chill Drawn, cold Rolled, hot	=	=	7.0 7.0 22.0 13.0	17.0 18.0 27.0 22.0	10,700 9,900 31,700 18,200	24,800 25,200 37,800 31,500	6.0 4.0 8.0 16.0	8.0 5.0 15.0 24.0	=	
Zinc, Copper: Al 88.6 Cu 3 Zn 8.4 Al 81.1 Cu 3 Zn 15.9.	Cast at 700° C. Ann. 500° C. Cast at 700° C. Ann. 500° C	3.1	193	4.7 4.4 9.8 9.8	18.5 20.2 24.7 29.0	6,700 6,200 14,000	26,300 28,800 35,100 41,200	8.0 8.0 2.0 4.0	7.5 7.5 2.0 4.0	50 50 74 70	10 10 15
			!			1	1		1	1	

^{*}Specification Values: Alloy "No. 12": A. S. T. M. B26-18T, tentative specified minimums for aluminum, copper.
† Quenched in water from 475° C. after heating in a salt bath. Modulus of elasticity for Duralumin averages
7000 kg/mm² or 10,000,000 lb/in².
† Specification values: Aluminum castings; U. S. Navy 49 Al, July 1, 1915 (Impurities: Fe max. 0.5, Si max. 0.5).

TABLES 57-59 MECHANICAL PROPERTIES. TABLE 57. - Copper.

Metal and		Den		-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.)	Reduct. in area.	Hard	ness.
approx. composition.	Condition.	or we	eignt.	F-	Ult	P-1	Ult	Elon 50.8 (2	Rei	ell @ kg	ro-
Per cent.		gm/ cm³	lb/ ft³	Ten kg/	sion, mm²	Tension	n, lb/in²	Per	ent.	Brinell 500 kg	Sclero- scope.
Copper: 99.9: electrolytic Cu 99.6 Rolled Cu 99.6 Cu 99.9* Cu 99.9†	Ann. 20¢° C Cast	8.89 8.85 8.89 8.90	555 552 555 556 —	6.0 7.0 14.0 indet. 26.0	27.0 18.0 35.0 25.0 35.0 47.3 21.9	8,500 10,000 20,000 indet. 37,000	38,000 25,000 50,000 35,000 50,000 67,400 31,200 46,800	50.0 20.0 5.0 50.0 9.0 0.8 24.5 4.3	50.0 60.0 8.0 60.0 64.5 76.0		7 8 - 6 18 -

*Wire drawn cold from 3,18 mm (0.125 in.) to 0.64 mm (0.025 in.) Bull. Am. Inst. Min. Eng., Feb., 1919. † Wire drawn at 150°C from 0.79 mm (0.031 in.) to 0.64 mm (0.025 in.) (Jeffries, loc. cit.). Compression, cast copper, Ann. 15.9 mm (0.625 in.) diam. by 50.8 mm (2 in.) long cylinders. Shortened 5 per cent at 22.0 kg/mm² or 31,300 b/jn² load.

""" "" 29.0 kg/mm² "" 41,200 b/jn² ""

Shearing strength, cast copper 21.0 kg/mm² or 30,000 b/jn² ""

Modulus of elasticity, electrolytic 12,200 kg/mm² or 17,400,000 b/jn²

""" cast 7,700 kg/mm² or 17,000,000 b/jn²

""" drawn, hard 12,400 kg/mm² or 17,600,000 b/jn²

TABLE 58. - Rolled Copper - Specification Value.

Specification values: U. S. Navy Dept., 47C2, minimums for rolled copper, - Cu min. 99.5

	Tensi	ile strength.	Elong. in 50.8
Description, temper and thickness.	kg/mm²	lb/in²	or 2 in. — per cent.
Rods, bars, and shapes:	21.0	30,000	25
Hard: to 9.5 mm (\frac{2}{8} in.) incl	35.0 31.5 28.0	50,000 45,000 40,000	10 12 15
Hard: over 50.8 mm (2 in.)	24.5	35,000	20
Soft. Hard	21.0 to 28.0 24.5	30,000 to 40,000	25 to 25 18

TABLE 59. - Copper Wire - Specification Values.

Specific Gravity 8.89 at 20° C (68° F).

Copper wire: Hard Drawn (and Hard-rolled flat copper of thicknesses corresponding to diameters of wire)

Specification values. (A. S. T. M. Br-15, and U. S. Navy Dept., 22W3, Mar. r, 1915.)

Diame	ter.	Minimum te	nsile strength.	Maximum elongation,
mm	in.	kg/mm²	lb/in²	per cent in 254 mm (10 in.).
11.68	.460	34.5	49,000	2.75
10.41	.410	35.9	51,000	3.25
9.27	.365	37.1	52,800	2.80
8.25	325	38.3	54,500	2.40
7.34	. 289	39.4	56,100	2.17
6.55	.258	40.5	57,600	1.98
5.82	.229	41.5	59,000	1.79
				in 1524 mm (60 in.)
5.18	. 204	42.2	60,100	I.24
4.62	.182	43.0	61,200	1.18
4.12	.162	43-7	62,100	1.14
3.66	.144	44.3	63,000	1.00
3.25	.128	44.8	63,700	1.06
2.90	.114	45.2	64,300	I.02
2.59	.102	45.7	64,900	I.00
2.31	.001	46.0	65,400	0.97
2.06	.081	46.2	65,700	0.95
1.83	.072	46.3	65,900	0.92
I.63	.064	46.5	66,200	0.90
I.45	.057	46.7	66,400	0.89
1.30	.051	46.8	66,600	0.87
1.14	.045	47.0	66,800	0.86
I.02	.040	47.I	67,000	0.85

P-limit of hard-drawn copper wire must average 55 per cent of ultimate tensile strength for four largest sized wires in table, and 60 per cent of tensile strength for smaller sizes.

TABLES 80-63. MECHANICAL PROPERTIES.

TABLE 60. - Copper Wire - Medium Hard-drawn.

(A. S. T. M. B2-15) Minimum and Maximum Strengths.

Dian	neter.		Tensile s	trength.		T21		
		Min	imum.	Max	imum.	Elongation, minimum per cent		
mm	in	kg/mm²	lb/in²	kg/mm²	lb/in²	in 254 mm (10 in.).		
6.55	0.460	29.5 33.0	42,000 47,000	34·5 38.0	49,000 54,000	3.75 2.50 in 1524 mm (60 in.)		
4.12	.162	34.5	49,000	39.5	56,000	1.15		
2.59 1.02	. 102	35·5 37·0	50,330 53,000	40.5 42.0	57,330 60,000	0.88		

Representative values only from table in specifications are shown above. P-limit of medium hard-drawn copper averages 50 per cent of ultimate strength.

TABLE 61. - Copper Wire - Soft or Annealed.

(A. S. T. M. B3-15) Minimum Values.

	rength.	Elongation in 254 mm
kg/mm²	lb/in²	(10 in.), per cent.
0 25.5	36,000	35
3 26.0	37,000	30
27.0	38,500	.25
3 28.0	40,000	20
	0 25.5 3 26.0 1 27.0	25.5 36,000 3 26.0 37,000 . 1 27.0 38,500

Note. — Experimental results show tensile strength of concentric-lay copper cable to approximate 90 per cent of combined strengths of wires forming the cable.

TABLE 62. — Copper Plates.

(A. S. T. M. BII-18) for Locomotive Fire Boxes. Specification Values.

Minimum requirements.	Tensile	strength.	Elong. in 203.2 mm
AZIMAMA ZOGAR OMOSEOV	kg/mm²	lb/in²	(8 in.), per cent.
Copper, Arsenical, As 0.25-0.50 Impurities, max. 0.12	22.0	31,000	35
Copper, Non-arsenical: Impurities, max. 0.12	21.0	30,000	30

Note. — Copper to be fire-refined or electrolytic, hot-rolled from suitable cakes.

TABLE 63. - Copper Alloys.

The general system of nomenclature employed has been to denominate all simple copperzinc alloys as **brasses**, copper-tin alloys as **bronzes**, and three or more metals alloys composed primarily of either of these two combinations as alloy brasses or bronzes, e.g., "Zinc bronze" for U.S. Government composition "G" Cu 88 per cent, Sn 10 per cent, Zn 2 per cent. Alloys of the third type noted above, together with other alloys composed mainly of copper, have been called **copper alloys**, with the alloying clements other than minor impurities listed as modifying copper in the order of their relative percentages.

In some instances, the scientific name used to denote an alloy is based upon the deoxidizer used in its preparation, which may appear either as a minor element of its composition or

not at all, e.g., phosphor bronze.

Commercial names are shown below the scientific names. Care should be taken to specify the chemical composition of a commercial alloy, as the same name frequently applies to widely varying compositions.

TABLE 64.

MECHANICAL PROPERTIES OF MATERIALS.

TABLE 64. - Copper-zinc Alloys or Brasses; Tin Alloys or Bronzes.

Metal and approx. composition,	approx.		sity ight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 59.8 mm (2 in.).	Reduct.		ness.
per cent.		$\frac{gm}{cm^3}$ $\frac{lb}{ft^3}$			Tension, kg/mm ²		nsion, /in²	Per cent.		Brinell (@ 500 kg	Sclero- scope.
Brass: Cu 90 Zn 10†	Sand cast Cold rolled, hard Cold rolled, soft.		<u> </u>	=	20.0 30.0 26.0 25.0	=	29,000 55,000 * 37,000 * 35,000	22 5* 40*	70	60 47	
Cu 80, Zn 20 ‡. Cu 70, Zn 30 Cu 66Zn 34 Std. sheet	Cold rolled, soft.	8.6 8.4	537 521 530 524		23.0 53.0 29.0 28.0 42.0 34.0	_ _ _	75,000 * 42,000 * 40,000 60,000 48,000 *	5* 50* 35 5* 50*	8 ₅ 8 ₅ 8 ₅	75 46 37 75§ 45	28 12 — 26 12
Cu 60, Zn 40 Muntz metal	Sand cast Cold rolled, hard	8.4	522	15.5 31.5	32.2 49.0	21,800 45,000	45,800 70,000	15 30	22 50	=	=
Bronze: Cu 97.7, Sn 2.3.	{ Cast	=	=	6.0 7.6	19.5	8,500	28,000 48,000	20 55		_	=
Cu 90, Sn 10	Cast or gun bronze or bell metal	8.78	548	7.2	23.0	10,300	33,000	10	_	-	23
Cu 80, Sn 20 Cu 70, Sn 30	Cast	8.81 8.84	550 552	7.1	22.5 5.0	2,000	32,000	0.5	_	-	

Compressive Strengths, Brasses:

Cu 90, Zn 10, cast 21.0 kg/mm² or 30,000 lb/in² Cu 80, Zn 20, cast 27.4 kg/mm² or 30,000 lb/in² Cu 70, Zn 30, cast 42.0 kg/mm² or 60,000 lb/in² Cu 60, Zn 40, cast 52.5 kg/mm² or 75,000 lb/in² Cu 50, Zn 50, cast 77.0 kg/mm² or 110,000 lb/in²

Modulus of elasticity, — cast brass, — average 9100 kg/mm² or 13,000,000 lb/in² Erichsen values: Soft slab, 1.3 mm (0.05 in.) thick, no rolling, depth of impression 13.8 mm (0.29 in.). Hard sheet, 1.3 mm, rolled 38% reduction, depth of impression 7.3 mm (0.29 in.). Hard sheet, 0.5 mm, rolled 60% reduction, depth of impression 3.7 mm (0.15 in.).

Compressive Ultimate Strengths, Cast Bronzes:

Cu 97.7, Sn 2.3 to 24.0 kg/mm² or 34,000 lb/in² Cu 90, Sn 10 to 39.0 kg/mm² or 56,000 lb/in² Cu 80, Sn 20 to 83.0 kg/mm² or 118,000 lb/in² Cu 70, Sn 30 to 105.0 kg/mm2 or 150,000 lb/in2

Specification value, A. S. T. M., B 22-18 T, for specimen = cylinder 645 sq. mm (1 sq. in.) area, 25.4 mm (1 in.)

long.
Cu 80, Sn 20: minimum compressive elastic limit = 17.0 kg/mm² or 24,000 lb/in²
Modulus of elasticity for bronzes varies from 7000 kg/mm² or 10,000,000 lb/in² to 10,000 kg/mm² or 15,500,000

* Values marked thus are S. A. E. Spec. values. (See S. A. E. Handbook, Vol. I, p. 13a, rev. December, 1913. † Red metal. Red metal.

\$ A. S. T. M. Spec. B19-18T requires B.h.n. of 51-65 kg/mm² @ 5000 kg pressure for 70: 30 annealed sheet brass.

FOOT NOTES TO TABLE 65, PAGE 85.

*Tensilite, Cu 67, Zn 24, Al 4.4, Mn 3.8, P 0.01 compressive P-limit: 42.2 kg/mm² or 60,000 lb/in² and 1.33 per cent set for 70.3 kg/mm² or 100,000 lb/in² load.
† Compressive P-limit 20.0 to 28.2 kg/mm² or 28,500 to 40,000 lb/in²
‡ Compressive P-limit 20.0 to 28.2 kg/mm² or 77,500 lb/in²
§ Compressive P-limit 4.2 kg/mm² or 6000 lb/in² and 40 per cent set for 70.3 kg/mm² or 100,000 lb/in²
¶ Modulus of elasticity 9840 kg/mm² or 14,000,000 lb/in²
l Values are for yield point.
** Minimum values for ingots.
†† Rolled manganese bronze (U. S. N.) Cu 57 to 60, Zn 40 to 37, Fe max. 2.0, Sn 0.5 to 1.5; 2.9 per cent increase for thickness 25.4 mm (r in.) and under.
‡‡ Ni 0 per cent, B.h.n. = 130 as rolled; B.h.n. = 50 as annealed at 930° C.
U. S. Navy Dept. Spec. 468 3a, June 1, 1917: German silver Cu 60 to 67, Zn 18 to 22, Ni min. 15, no mechanical requirements.

- requirements.
 For list of 30 German silver alloys, see Braunt, "Metallic Alloys," p. 314, "best" (Hiorns), "hard Sheffield,"
 Cu 46, Zn 20, Ni 34.
 §§ Platinoid Cu 60, Zn 24, Ni 14, W 1 to 2; high electric resistance alloy with mechanical properties as nickel brass.
 III Specification Values, Naval Brass Castings, U. S. Navy, 46B 10b, Dec. 1, 1017 for normal proportions Cu 62, Zn 37, Sn 1, min. tensile strength 17.5 kg/mm² or 25,000 lb/in² with 15 per cent elongation in 50.8 mm (2 in.).

TABLE 65. MECHANICAL PROPERTIES. TABLE 65.— Copper Alloys— Three (or more) Components.

TABLE 65. — Copper Alloys — Three (or more) Components.											
Alloy and approx.	Condition.	Density	or weight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct.		lness.
per cent.		gm per cm	per	. 16	ension, / mm²		nsion, o/in²	Per	cent.	Brinell @ 500 kg	Sclero- scope.
Brass, Aluminum Cu 57, Zu 42, Al 1 Cu 55, Zn 41, Al 4 Cu 62.9, Zn 33.3, Al Cu 70.5, Zn 26.4, Al	Cast 3.8.]		-		40.0 60.0 56.2		57,000 85,400 80,000	50.0	=	=	
Alum., Manganese Cu 64, Zn 29, Al 3.1, Mn 2.5, Fe 1.2 Alum., Vanadium	Cast, tensilite*	-	-	21.1	68.8	30,000	98,000	16.0	17.0	130	
Cu 58.5, Zn 38.5, Al 1.5, V 0.03 Iron:	Cold drawn		-	35.6	57.0	50,600	81,400	12.0	14.0	_	-
Cu 56, Zn 41.5, Fe 1. Aich's Metal Cu 60,Zn 38.2, Fe 1.8	Cast	8.12	526	_	50.7 to 59.2		72,000 to 84,000 57,300	35.0 to	35.0 to	109 to	
Delta Metal Cu 57, Zn 42, Fe 1 Cu 65, Zn 30, Fe 5	(C+)	_		_	31.7 42.2	=	45,000 60,000	10.0	_	_	
Iron, Tin: Cu56.5,Zn 40,Fe1.5, Sn 1.0† Sterro metal:	Cast	_	=	23.2 to	45.5 49.2 to 52.8	33,000 to 37.000	70,000 to	35.0 to	35.0 to	104 to	
Cu 55, Zn 42.4 Fe 1.8, Sn 0.8 Lead or Yellow brass	Cast Forged Hard drawn Cast		525		42-5 53.6 58.5 23.2 to	=	60,500 76,200 83,100 33,000 to	- - 30.0 to	 35.0 to		
Cu 60 to 63.5, Zn 35 to 33.5, Pb 5 to 3. Lead, Tin or	Sheet ann		_	_	27.5 25.5 42.9	_	39,000 42,000 61,000	26.0 50.0 30.0	30.0		=
Red brass Cu83,Zn7,Pb6,Sn4 Cu78,Zn9.5,Pb10, Sn 2	‡	8.6 8.8 ₇		8.4	18.6	16,000	30,000	17.0	19.0	_	7.0
Yellow brass: Cu 70, Zn 27, Pb 2, Sn 1	Cast §		524	7.4	20.7	10,500	29,500	25.0	28.5	53.0	
ganese bronze Cu 58, Zn 39, Mn o.o5	Cast, sand ¶	8.3	520	21.1 to 24.6	52.7	30,000 to	75,000	22.0	25.0	IIO	19
(Sn, Fe, Al, Pb.) Cu 60, Zn 39 Mn, tr	Cast, chill	8.3	520	22.5 to 26.0 31.5	52.7 to 56 3 52.5	32,000 to 37,000 45,000		25.0 25.0	28.0 28.0	130	18 to 22 30
Specification values: U. S. Navy, 46 B 16a ** U. S. N., 46 B 15a	Rolled††	_	_	24.6	49.2 49.2	 35,000	70,000 70,000	20.0 30.0	_	_	=
Manganese Vanadium: Cu 58.6, Zn 38.5, Al 1.5 Mn 0.5, V 0.03. Nickel: Nickel sil-	Cold drawn	_	_	35.6	57.0	50,600	81,400	12.0	14.0	_	-
ver, Cu 60.4, Zn 31.8, Ni 7.7 German silver,	Cast	8.5	530	10.8	25.3	15,400	36,000	40.5	42.0	46	-
Cu 61.6, Zn 17.2, Ni 21.1 Cu 60.6, Zn 11.8, Ni 27.3		8. ₇ 8. ₈]	13.2	28.8	18,800			25.I 3I.4	80 67	_
Fine wire: Cu 58, Zn 24, Ni 18 Nickel silver ‡‡ Nickel Tungsten: §§	Drawn hard	8.5	530	_	105.5	_	150,000		-	-	-
Tin: Cu 61, Zn 38, Sn 1 Naval brass, as above	Cast, sand Ann. after roll- ing	_ _	-	26.0	30.0	15,700 37,000	62,000		32.0	_	_
Tobin bronze: as below	Cast			38.0	42.2 56.0	25,000 54,000			40.0		_
Sn 2.3 Cu 55, Zn 43, Sn 2.	Cast	_	-		4Š.4				70.0	-	

TABLE 65 (continued). MECHANICAL PROPERTIES.

TABLE 65. - Copper Alloys - Three (or more) Components.

										_	
Alloy and approx. composition	Condition	on.	Density or weight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. of area.	Har ness	s.
per cent.		p	gm lb per pe cm³ ft³	ka/s	sion, mm²		sion,	Per	cent.	Brinell (a. 500 kg.	scope
Brass, Tin — (continued): Rods:* o to 12.7 mm (\frac{1}{2} in.) 12.7 to 25.4 mm (1 in.)		-		19.0	42.2	27,000° 26,000	60,000 58,000	35.0 40.0	cold	nd 120 abou us equa	t
over 25.4 mm (in.) diam Shapes, all		-		-3.1	38.0 39.4 38.7 39.4	25,000 22,400 27,500 25,000	54,000 56,000 55,000 56,000	40.0 30.0 32.0 35.0		iameter	
Tubing (wall thickness) o to 3.2 mm ($\frac{1}{8}$ in.) 3.2 to 6.4 mm ($\frac{1}{4}$ in.) over 6.4 mm ($\frac{1}{4}$ in.) Vanadium:			_ - - -	19.7	42.2 38.7 35.1	30,000 28,000 26,000	60,000 55,000 50,000	28.0 32.0 35.0	=	_	
Victor bronze, Vo.03, Cu 58.6, Zn 38.5, Al 1.5, Fe 1.0	Cold dı	rawn -	_ -	56.5	64.5	80,000	92,000	11.5	29.0	-	-
U. S. Navy † 49 B 1b Bronze, Aluminum. Lead:	See Cu.	Al	- -	15.8	38.7	22,500	55,000	25.0	-		
Cu 89, Sn 10, Pb 1	Cast ‡. Cast §.	-	= =	13.4 to	15.5 21.1 to 24.6	19,000 to	22,000 30,000 to	20.0 to	18.0	70	
Cu 80, Sn 10, Pb 10 Lead, Phosphor:	{ Cast, sa Cast, cl		54	12.8	22.I 24.7	15,500	31,400 35,200	13.5 4.5	3.5	85	
Cu 80, Sn 10, Pb 10, P trace Lead Zinc, Red brass: Cu 81, Sn 7, Pb 9, Zn 3	Cast Cast _I . Cast ¶.	-	_	5 13.4 to		16,000 19,600 19,000 to			3.5 11.5 24.0 to	50 to	8.0 —
Cu 88, Sn 8, Pb 2, Zn 2	Cast		- -	- 14.1	24.6 21.8 to 26.0	20,000	35,000 31,000 to 37,000	15.0 20.0 to 16.0		55 57 to	
Lead, Zinc Phosphor: Cu 73.2, Sn 11.3, Pb 12.0, Zn 2.5, P 1 Manganese:	Cast ***	-	_ _	10.5	21.4	15,000	30,400	4.0	3.3	-	11
Cu 88, Sn 10, Mn 2	Cast		-	9.0	19.1	12,800	27,200	25.0	-		-
Cu 88, Sn 5, Ni 5, Zn 2 (1) Cu 89, Sn 4, Ni 4, Zn 3 (2) Phosphor:	Cast#†	-		9.2 8.1	28.6 27.9	13,100	40,700 39,700	32.0	28.0 31.0	_	
Cu 95, Sn 4.9, P 0.1 Cu 89, Sn 10.5, P 0.5 Cu 80, Sn 20, P max. 1 Rods and bars §§ up to 12.7	Rolled. Cast Cast ‡‡] -	53	5 28.0 11.2 to 14.1	46.0 21.8 to 24.6	40,000 16,000 to 20,000	65,000 31,000 to 35,000	30.0 6.0 to 10.0	=	72 to	37
mm (½ in.)		-	_ -	- 28.1	12.2	40,000		12.0	thro	l cold	l o°
over 25.4 mm (1 in.) Sheets and plates §§ spring temper Medium temper		-		17.6	63.2		90,000	25.0	us e	it radi- qual to kness.	
Bronze, Phosphor: spring wir	e, hard-dr	awn o	or hard	l-rolled (U. S. 1	Vavy Spe	c. 22 W5.	Dec. 1	, 1915). Cu	94.
Sn min. 4.5, Žn max 0.3, Fe n		7	Min. te strens	ensile	0.50; m	Diame (group li	ter	1	Min. te streng	ensile	t.
Diameter (group limits).	kg/m	-	lb/in²	r	nm	in.	kg/n	-	lb/in	2

135,000

to 6.35

to 0.52

to 0.250

to 0.375

110,000

105,000

95.0 88.0

* Specification Values, Rolled Brass, Cu 62, Zn 37, Sn 1, min. properties after U. S. Navy Spec., 1918.
† Specification Values: Jan. 3, 1916, Vanadium Bronze Castings, Cu 61, Zn 38, Sn max. 1 (incl. V). Mimima.
‡ Compressive P-limit 1.5, 5 kg/mm² or 22,000 lb/in² and 28 per cent set for 70 kg/mm² or 100,000 lb/in²
§ Compressive P-limit 1.5, 5 kg/mm² or 15,000 lb/in² and 28 per cent set for 70 kg/mm² or 100,000 lb/in²
Ultimate compressive strength, 54.2 kg/mm² or 77,100 lb/in², and 34 to 35 per cent set for 70 kg/mm²
**Compressive P-limit 8.8 to 9.1 kg/mm² or 12,500 to 13,000 lb/in², and 34 to 35 per cent set for 70 kg/mm²
**Compressive P-limit 8.8 to 9.1 kg/mm² or 17,500,000 lb/in², (2) 10,500 kg/mm² or 14,900,000 lb/in²
†† Compressive P-limit 17.6 to 28.1 kg/mm² or 25,000 to 40,000 lb/in² and 6 to 10 per cent set for 70 kg/mm²
or 100,000 lb/in² load.

Specification Values: U. S. Nayy 46 Rec. Max. 1 May Cu 8.1 to 100 Sp. 6 to 14, 72 max. 44 Cord. A. Targer Card.

Specification Values: U. S. Navy 46 B 5c, Mar. 1, 1917, Cu 85 to 90, Sn 6 to 11, Zn max. 4: Cast, Grade 1.—Impurities max. 0.8; min. tensile strength 31.6 kg/mm² or 45,000 lb/in² with 20 per cent elong. in 50.8 mm (2 in.).

¶ Grade 2.—Impurities max. 1.6; min. tensile strength 21.1 kg/mm² or 30,000 lb/in² with 15 per cent elong. in 50.8 mm (2 in.)

§§ Specification Values: U. S. Navy 46B 14b, Mar. 1, 1916, Cu min. 94, Sn min. 3.5, P 0.50, rolled or drawn.

Up to 1.59 mm or 0.0625 in . . .

Over 1.59 mm to 3.17 mm (0.125 in.)..

MECHANICAL PROPERTIES.

TABLE 65. - Copper Alloys - Three (or more) Components.

									_	-	
Alloy and approx.	Condition.	Density	or weight.	P-limit.	Ultimate stfength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.)	Reduct. in area.		ness.
per cent.	Condition	gm per cm³	lb. per in³		sion, mm²		nsion, /in²		cent.	Brinell @ 500 kg.	Sclero- scope.
Bronze: Silicon. Cu 70, Zn 29,5, Si 0.5. Zinc * Comp. 'G''. Admiralty gun metal. Comm 'c' range. Spec. values. Cu 88, Sn 8, Zn 4.	Drawn, hard Cast Cast†	_	535	8.4	46.0 74.0 27.4 22.5 to 26.7 21.1	12,200 8,000 to 12,000	38,000	10.0	21.0 25.0 to 12.0	75	20
Cu 85, Sn 8, Zn 4. Cu 85, Sn 13, Zn 2. Zinc, Lead Cu 90, Sn 6.5, Zn 2, Pb 1.5 Rods and bars up to 12.7 mm (½ in.)	Cast	_	530	7.7 8.4 to 11.2 28.1	27.5 26.7 23.9 to 28.1 56.2	12,000 to 16,000 40,000		30.5 2.5 33.0 to 25.0 30.0	24.0 2.5 34.0 to 26.0 Require	50 to	
over 12.7 mm to 25.4 mm (1 in.) over 25.4 mm (1 in.) Shapes, all thicknesses Sheets and plates, o to		=	=	26.4 24.6 26.4	52.7 50.7 52.7	37,500 35,000 37,500	75,000 72,000 75,000	30.0 30.0 30.0	cold 120° dius	about equa equa	rough t ra-
12.7 mm (½ in.) over 12.7 mm (½ in.) Aluminum Tin: Cu 88.5, Al 10.4, Sn 1.2 Aluminum Titanium:		=	_	27.4 26.4 26.0	54.8 52.7 48.0	39,000¶ 37,500 36,700	68,000	30.0 30.0 4-5		189	32
Cu 90, Al 10	Cast ** Quench, 800° C Cast ††	7-58	— 473	13.9 29.0 14.1 to 17.6	52.0 74.0 45.7 t 0 56.2	19,800 40,500 20,000 to 25,000	74,000 105,200 65,000 to 80,000	1.0 30.0 to 20.0		262. 93 to	25 — 25 to 26
Cu 71.9, Pb 27.5, Sn 0.5 Nickel, Aluminum: Cu 82.1, Ni 14.6, Al 2.5,	Cast		_	_	4.2 to 4.6		6,000 to 6,600	3.0 to 3.2	4.2 to 6.7		-
Cu 85, Sn 5, Zn 5, Pb 5. Cu 83, Sn 14, Zn 2, Pb 1		=		13.4	90.0 19.0 to 23.2 16.2 to	63,300 15,000 to 19,000 15,000 to	27,000 to	10.0 20.0 to 16.0 4.0 to	15.0		20
Zinc, Phosphor ("Non Gran") Cu 86, Sn 11, Zn 3, Ptr. Vanadium, See Brass,			_	13.4	25.0	19,000	35,000	9.0	0.5		24
Vanadium. Copper, Aluminum or Aluminum Bronze: Cu 90, Al ro		7.45	468- 465	13.9 to 23.3	60.0	33,200	72,700 to 85,500	21.7	22.4	106	25 to
Cu 92.5, Al 7.2	ann. Wrought Cast Cast, sand	1 1		7.0 9.8 8.1 14.0	37.5 59.3 55.5 54.0	9,600 14,000 11,500 20,000	53,500 84,400 78,850 77,000	91.0 11.5 14.5 24.5	72.9	81	
Cu 88.5, Al 10.5, Fe 1.0.	Quenched 850° C. drawn 700° C	_		28.0	65.0	40,000	92,000	14.0	18.5	140	

* Gov't. Bronze: Cu 88, Sn 10, Zn 2 (values shown are averages for 30 specimens from five foundries tested at the Bureau of Standards).

† Compressive P-limit 10.5 kg/mm² or 15,000 lb/in² with 29 per cent set for 70 kg/mm² or 100,000 lb/in² load. † Values from same series of tests as first values for "88-10-2," averages for 26 specimens from five foundries tested at Bureau of Standards.

at Bureau of Standards.

§ Compressive P-limit 9.1 kg/mm² or 13,000 lb/in² with 34 per cent set for 70 kg/mm² or 100,000 lb/in² load.

[Specification minimums: U. S. Navy 46B17, Dec. 2, 1918, for hot-rolled aluminum bronze, Cu 85 to 87, Al 7 to 0, Fe 2.5 to 4.5. Specification values under P-limit are for yield point.

¶ Two and six tenths per cent increase in strength up to 762 mm (30 in.) width.

**Compressive P-limit: cast, 14.1 kg/mm² or 20,000 lb/in² with 11.4 per cent set at 70 kg/mm² or 100,000 lb/in²

load.

†† Compressive P-limit: cast, 12.7 to 14.1 kg/mm² or 18,000 to 20,000 lb/in² with 13 to 15 per cent set at 700 kg/mm²

The Compressive P-limit cast, 12.7 to 14.1 kg/mm² of 10,000 to 20,000 lb/in² bload.

11 Modulus of elasticity 14,800 kg/mm² or 12,000 lb/in² with 36 per cent set for 70.3 kg/mm², or 100,000 lb/in² with 36 per cent set for 70.3 kg/mm², or 100,000 lb/in² load.

| | | | High values are after Jean Escard "L'Aluminum dans L'Industrie," Paris, 1918. Compressive P-limit 13.5 kg/mm² or 19,200 lb/in² with 13.5 per cent set for 70.3 kg/mm² or 100,000 lb/in² load.

TABLE 66.

MECHANICAL PROPERTIES.

TABLE 66. - Miscellaneous Metals and Alloys.

								1			
Metal or alloy. Approx. composition,	Condition.	Density	or weight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.)	Reduct.	ne	ard-
per cent.		gm per cm³	lb. per ft.3	Tension, kg/mm²		Tens lb/i		Per c	ent.	Brinell (a) 500 kg.	Sclero- scope.
* Cobalt, Co 99.7 } Gold, Au 100	Cast	8.9	550 556 1203 —	11111	23.1 26.0 18.0 26.0 45.8		33,000 37,000 25,000 37,000 65,100	25.0	_ _ _ _	48 —	20
30 Ag 12	Drawn hard Cast	11.40	711 — 655	2.8	102.0 1.3 2.3 1.7 2.2 4.5		145,000 1,780 3,300 2,420 3,130 6,400			-8	3 -
Magnesium, Mg. Nickel, Ni 98.5. Ni 99.95. Ni 98.5. Ni . Ni . Ni .	Cast	1.7 1.74 8.3 8.7 —	100 100 518 543	16.7 ** 12.6	21.0 23.2 26.7 29.9 46.0 64.7 53.4	23,800 ** 17,900	30,000 33,000 38,000 42,500 65,000 92,000 76,000	5.7 11.0	6.1 —	76 83	35
Copper, iron, manganese or Monel metal:	1.65 mm or 0.065 in	_		_	109.0	- .	155,000			-	-
Ni 67, Cu 28, Fe 3, Mn 2. Ni 66, Cu 28, Fe 3.5, Mn	Cast	8.9	555 —	21.2 55.1 28.3	73.8	30,100 78,400 40,300	70,000 104,900 92,200	31.3 46.3	20.0 61.7 70.2	_	2I 27
Ni 71, Cu 27, Fe 2 \$ 46 M 1a 46 M 7b	and bars		=	22.8 **		32,500 ** 40,000 **	160,000 65,000 80,000	25.0	_	_	_
Palladium, PdPlatinum, Pt	Rolled, mini- mum, sheets and plates Drawn hard Drawn hard Drawn ann	-	755 1342	21.1	27.0 37.3 24.6	30,000	65,000 39,000 53,000 35,000	18.0		_	
Copper, Ag 75, Cu 25 Tantalum, Ta Tin, Sn 99.8††	Drawn hard Drawn hard Cast Rolled		655 660 1035 450		28.1 36.0 77.0 91.0 2.8 3.7		40,000 51,200 109,500 130,000 4,000 5,300	35.0		59	32
Antimony, Copper, Zinc (Britannia Metal): Sn 81, Sb 16, Cu 2, Zn 1. Zinc, Aluminum, etc. (aluminum solder): Sn 63, Zn 18, Al 13, Cu	Drawn hard			_	7.0	The state of the s	10,000	_	-		
3, Sb 2, Pb 1 Sn 62, Zn 15, Al 11, Pb 8, Cu 3, Sb 1 Zinc, aluminum: Sn 86, Zn 9, Al 5 Aluminum, zinc, cad-	Cast	_ _ _	— — —		9.1 8.6		14,500 13,000 12,200	1.6	1.5	-	_
mium: Sn 78, Al 9, Zn 8, Cd 5.	Cast, chill	_	_	_	10.1	_	14,300	18.0	41.0		

Antimony: Modulus of Elasticity 7960 kg/mm² or 11,320,000 lb/in² (Bridgman).

* Compressive strength: cast and annealed, 86.0 kg/mm² or 122,000 lb/in².

Comm'c'l. comp., Co.o6, cast, tensile, ultimate, 42.8 kg/mm² or 61,000 lb/in², with 20 per cent elongation in 50.8 or 2 in. Compression, ultimate 123.0 kg/mm² or 175,000 lb/in²

Stellite, Co 59.5, Mo 22.5, Cr 10.8, Fe 3.1, Mn 2.0, Co.9, Si 0.8. Brinell hardness 512 at 3000 kg.

† Modulus of elasticity, cast or rolled, 492 kg/mm² or 700,000 lb/in²; drawn hard 703 kg/mm² or 1,000,000 lb/in²

For compressive test data on lead-base babbitt metal, see table following zinc.

§ Modulus of elasticity 15,800 kg/mm² or 22,500,000 lb/in².

[Specification values, U. S. Navy, Monel metal, Ni min. 60, Cu min. 23, Fe max. 3.5, Mn max. 3.5, C + Si max. 0.8.

| Specinication values, 0.5, 1423, 15.

8, Al max. 0.5.

9 Values shown are subject to slight modifications dependent on shapes and thicknesses.

** Values are for yield point.

†† Compressive strength: cast, 4.5 kg/mm² or 6,400 lb/in²

Modulus of elasticity: cast av. 2,810 kg/mm² or 4,000,000 lb/in²; rolled av. 401.0 kg/mm² or 5,700,000 lb/in²

TABLE 67. MECHANICAL PROPERTIES

TABLE 67. — Miscellaneous Metals and Alloys.

(a) Tungsten and Zinc.

Metal or alloy approx.	alloy		Density or weight.		Ultimate	P-limit.	Ultimate strength.	Flong. in 50.8 mm (2 in.)	Reduct. of area.	Brinell @ Soo kg.	
per cent.		gm lb. per per cm ³ ft ³			Tension, lb/in ²		Per	Per cent		Sclero- scope.	
	Ingot sintered, D = 5.7 mm or 0.22 in. Swaged rod,	18.0	1124		12.7	_	18,000	0.0	0.0		-
Tungsten, W 99.2 *	D = 0.7 mm or 0.03 in. Drawn hard, D = 0.029 mm or 0.00114 in		_	_	415.0		215,000	4.0	28.0 65.0	_	
	Swaged and drawn hot 97.5% reduction† Same as above and equiaxed at 2000°C	_	_	-	164.0	_	233,500	3.2	14.0	_	-
	('in H ₂ ‡	-	_	-	118.0	-	168,000	0.0	0.0	-	-
	Cast	7.0	437	(1	mpurities				<u>-</u>	_	_
	Coarse crystalline	_	_	_	2.8 to 8.4	_	4,000 to		_	42 to	S to
Zinc, §Zn:	Rolled (with grain or direction of rolling).			2.0	19.0	2,900	27,000	_		_	-
	Rolled (across grain or direction of rolling). Drawn hard		443	4.1	25.3 7.0	5,800	36,000 10,000	_	_	_	_

*Commercial composition for incandescent electric lamp filaments containing thoria (ThO2) approx. 0.75 per cent after Z Jeffries Am. Inst. Min. Eng. Bulletin 138, June, 1918.

† After Z. Jeffries Am. Inst. Min. Eng. Bulletin 149, May, 1919.
† Ordinary annealing treatment makes W brittle, and severe working, below recrystallization or equiaxing temperature, produces ductility W rods which have been worked and recrystallized are stronger than sintered rods. The equiaxing temperature of worked tungsten, with a 5-min. exposure, varies from 2200° C for a work rod with 24 per cent reduction, to 1350° C for a fine wire with roo per cent reduction. Tungsten wire, D = 0.635 mm or 0.025 in.

§ Compression on cylinder 25.4 mm (1 in.) by 65.1 mm (2.6 in.), at 20 per cent deformation:
For spelter (cast zinc) free from Cd, av. 17.2 kg/mm² or 24,500 lb/in².
For spelter with Cd 0.26, av. 27.4 kg/mm² or 39,000 lb/in². (See Proc. A. S. T. M., Vol. 13, pl. 19.)
Modulus of rupture averages twice the corresponding tensile strength.
Shearing strength: rolled, averages 13.6 kg/mm² or 14,000 lb/in².
Modulus of elasticity: cast, 7,750 kg/mm² or 11,025,000 lb/in². (Moore, Bulletin 52, Eng. Exp. Sta. Univ. of Ill.)

(b) WHITE METAL BEARING ALLOYS (BABBITT METAL).
A. S. T. M. vol. xviii, I, p. 491.

Experimental permanent deformation values from compression tests on cylinders 31.8 mm (11 in.) diam. by 63.5 mm (21 in.) long, tested at 21°C (70°F.) (Set readings after removing loads.)

				Per	rmanen	t defor	mation (@ 21°	C	Hard	lness.
Al- loy No	Formula, per cent.	Pouring temp.	Weight.	@ 454 l = 1000	kg lb.		68 kg oo lb.	@ 453 = 10,0	36 kg 000 lb.	inell 21° C	500 kg 100° C
	Sn Sb Cu Pb	C F.	g/cm³ lb./ft	mm	in.	mm	in.	mm	in.	© Pi	@@
1 2* 3 4 5	Tin Base. 91 0		7.34 458 7.39 461 7.46 465 7.52 469 7.75 484	.000 .025	0.0000	0.025 .038 .114 .064 .076	0.0010 .0015 .0045 .0025	0.380 .305 .180 .230	0.0150 .0120 .0070 .0090	28.6 28.3 34.4 29.6 29.6	12.8 12.7 15.7 12.8 11.8
6 7 8 9 10 11	15.0 1.5 63.5	329 625	9.33 582 9.73 607 10.04 640 10.07 629 10.28 642 10.67 666	.025 .051 .102 .025	.0015 .0010 .0020 .0040 .0010	.127 .127 .229 .305 .254 .254 0.432	.0050 .0050 .0090 .0120 .0100 .0100	.457 .583 1.575 2.130 3.910 3.020 7.240	.0180 .0230 .0620 .0840 .1540 .1190 0.2850	24.3 24.1 20.9 19.5 17.0 17.0	II.I II.7 IO.3 8.6 8.9 0.9 6.4

*U S. Navy Spec. 46M2b (Cu 3 to 4.5, Sn 88 to 89.5, Sb 7.0 to 8.0) covers manufacture of anti-friction-metal castings. (Composition W.)
NOTE. — See also Brass, Lead (yellow brass), Brass, Lead-Tin (Red Brass); Bronze, Phosphor, etc., under Copper

alloys

TABLE 68.

MECHANICAL PROPERTIES.

TABLE 68. - Cement and Concrete.

(a) CEMENT.

CEMENT: Specification Values (A. S. T. M. C9 to 17, C10 to 09, and C9 to 16T).

Minimum strengths based on tests of 645 mm² (1 in²) cross section briquettes for tension, and cylinders 50.8 mm (2 in.) diameter by 101.6 mm (4 in.) length for compression. Mortar composed of 1 part cement to 3 parts Ottawa sand by volume; specimens kept in damp closet for first 24 hours and in water from then on until tested.

Cement	Specific	Age,	Tens	sion.	Compression.		
(1: 3 mortar tested).	gravity.		kg/mm²	lb/in²	kg/mm²	lb/in²	
Std. Portland	3.10	7	0.16	200	0.85	1,200	
White Portland	3.07	28	. 24	300	1.60	2,000	
Natural Av Natural	2.85	7 28	. 03	50 125		_	

(b) CEMENT AND CEMENT MORTARS.

CEMENT AND CEMENT MORTARS. — Bureau of Standards Experimental Values. Compressive Strengths of Portland cement mortars of uniform plastic consistency. Data from tests on 50.8 mm (2 in.) cubes stored in water. Sand: Potomac River, representative concrete sand.

Cement.	· Sand.	Water,	Age,	Compressiv	e strength.
Proportion	Proportions by volume.		days.	kg/mm²	lb/in²
I	0	30.0	7 28	4 · 20 6 · 40	5,970 9,120
I	I 2	16.0	7 28 7	3.10 4.75 2.05	4,440 6,750 2,900
ı	3	13.9	28 7 28	3.10 1.25 2.05	4,440 1,780 2,890
I	9	15.1	7 28	0.10	120
	1				

Note. — (From Bureau of Standards Tech. Paper 58.) Neat cement briquettes mixed at plastic consistency (water 21 per cent) show 0.52 kg/mm² or 740 lb/in² tensile strength at 28 days' age;

r Cement: 3 Ottawa sand-mortar briquettes, mixed at plastic consistency (water 9 per cent) show 0.28 kg/mm² or 400 lb/in² tensile strength at 28 days' age.

TABLE 68 (continued). MECHANICAL PROPERTIES.

(c) Concrete.

Concrete: Compressive strengths. Experimental values for various mixtures. Results compiled by Joint Committee on Concrete and Reinforced Concrete. Final Report adopted by the Committee July 1, 1916. Data are based on tests of cylinders 203.2 mm (8 in.) diameter and 406.4 mm (16 in.) long at 28 days age.

American Stand	ard Concrete	Compressive	Strengths.
----------------	--------------	-------------	------------

Aggregate.	Units.			Mix.		
	O Macon	1:3	I: 4½	1:6	I: 7½	1:9
Granite, trap rock	kg/mm² lb/in²	2.3	2.0 2800	1.5	1.3	1.0
Gravel, hard limestone and hard sandstone Soft limestone and soft	$ m kg/mm^2$ $ m lb/in^2$	2.I 3000	1.8	I.4 2000	1.1 1600	0.9
sandstone	kg/mm^2	1.5	1.3	1.1	0.8	0.7
	lb/in²	2200	1800	1500	1200	1000
Cinders	kg/mm^2	0.6	0.5	0.4 .	0.4	0.3
	lb/in²	800	700	600	500	400

NOTE. - Mix shows ratio of cement (Portland) to combined volume of fine and coarse aggregate (latter as shown).

Committee recommends certain fractions of tabular values as safe working stresses in reinforced concrete design, which may be summarized as follows:

Bearing, 35 per cent of compressive strength;
Compression, extreme fiber, 32.5 per cent of compressive strength;
Vertical shearing stress 2 to 6 per cent of compressive strength, depending on reinforcing;
Bond stress, 4 and 5 per cent of compressive strength, for plain and deformed bars, respectively.

Modulus of Elasticity to be assumed as follows:

For concrete wit	th strength.	Assume modulus of elasticity.				
kg/mm²	lb/in²	kg/mm²	lb/in²			
up to 0.6 0.6 to 1.5 1.5 to 2.0 over 2.0	up to 800 800 to 2200 2200 to 2900 over 2900	530 1400 1750 2100	750,000 2,000,000 2,500,000 3,000,000			

(See Joint Committee Report, Proc. A. S. T. M. v. XVII, 1917, p. 201.)

EDITOR'S NOTE. — The values shown in the table above are probably fair values for the compressive strengths of concretes made with average commercial material, although higher results are usually obtained in laboratory of concretes made with average commercial material, although higher results are usually obtained in laboratory tests of specimens with high grade aggregates. Observed values on 1:2:4 gravel concrete show moduli of elasticity up to 3:60 kg/mm² or 4,500,000 lb/in² and compressive strengths to 4.2 kg/mm² or 6:000 lb/in² Tensile strengths average 10 per cent of values shown from compressive strengths. Shearing strengths average from 7; to 1:25 per cent of the compressive strengths; the larger percentage representing the shear of the leaner mixtures (for direct shear, Hatt gives 60 to 80 per cent of crushing strength). Compressive strengths of natural cement concrete average from 30 to 40 per cent of that of Portland cement concrete of the same proportioned mix.

Transverse strength: modulus of rupture of 1:2½:5 concrete at 1 and 2 months equal to one sixth crushing strength at same age (Hatt).

strength at same age (Hatt).
Weight of granite, gravel and limestone, 1:2:4 concretes averages about 2.33 g/cm² or 145 lb/ft³; that of cinder concrete of same mix is about 1.85 g/cm3 or 115 lb/ft3

Concrete, 1:2:4 Mix, Compressive Strengths at Various Ages.

Experimental Values: one part cement, two parts Ohio River sand and four parts of coarse aggregate as shown. Compressive tests made on 203.2 mm (3 in.) diameter cylinders, 406.4 mm (16 in.) long. (After Pittsburgh Testing Laboratory Results. See Rwy Age, vol. 64, Jan. 18, 1918, pp. 165–166.)

	Unit.	Age.							
Coarse aggregate.	Ont.	14 days.	30 days.	60 days.	180 days.				
Gravel	kg/mm²	1.35	1.61	2.06	2.67				
	lb/in^2	1921	2294	2925	. 3798				
Limestone	kg/mm^2	1.24	1.53	2.35	3.11				
	lb/in ²	1758	2174	3343	4426				
Trap rock	kg/mm^2	1.45	1.67	2.36	3.39				
1	lb/in^2	2063	2386	3360	4819				
Granite	kg/mm²	1.49	1.61	2.14	2.92				
	lb/in ²	2122	2292	3043	4151				
Slag No. 1	kg/mm^2	1.75	2.16	2.37	3.38				
	lb/in²	2484	3075	3365	4803				
Slag No. 2.	kg/mm ²	1.37	1.78	2.06	2.64				
	lb/in²	1941	2525	2930	3753				

NOTE. - Maximum and minimum test results varied about 5 per cent above or below average values shown above. SMITHSONIAN TABLES.

TABLE 69.

MECHANICAL PROPERTIES.

TABLE 69. - Stone and Clay Products.

SERICAN RIHIDING STONES *

Weight,		Compression. Ultimate strength.			Flexure, Modulus of rupture.			Shear. Ultimate strength.			Flexure, modulus of elasticity.			
Stone.	H V CI	age.	Ave	rage.	e it.	Ave	rage.	lt.	Ave	erage.	it e	A	verage.	e nt.
g/cm³	kg/mm²	lb/in²	Range per cent,	kg/mm²	lb/in ²	Range per cent.	kg/mm ²	lb./in²	Range per cent.	kg/mm²	lb/in²	Range per cent		
Granite Marble Limestone Sandstone.	2.6 2.7 2.6 2.2	165 170 160 135	8.8 ₅ 6.30	20,200 12,600 9,000 12,500	25 95	0.85	1600 1500 1200 1500	50	0.90	2300 1300 1400 1700	20 25 45 45	5750 5900	7,500,000 8,200,000 8,400,000 3,300,000	25 50 65 100

* Values based on tests of American building stones from upwards of twenty-five localities, made at Watertown (Mass.) Arsenal (Moore, p. 184). Each value shown under "Range" is one half the difference between maximum and minimum locality averages expressed as a percentage of the average for the stone.

(b) STRENGTH AND STIFFNESS OF BAVARIAN BUILDING STONE.*

Weight, average.		Compression. Ultimate strength.			Flexure. Modulus of rupture.			Shear. Ultimate Strength.†			Flexure. Modulus of elasticity.			
Stone.		.0 -	Ave	rage.	e nt.	Aver	age.	1;	Ava	rage.	it e	А	verage.	: :
	g 'cm³	lb/ft³	kg/mm²	lb/in²	Range per cent.	kg/mm²	lly/in²	Range per cent	kg/mm²	lb/in²	Range per cent.	kg/mm ²	lb/in²	Range per cent.
Granite Marble ‡. Limestone Sandstone		165 135 155 145	5.60 8.10	19,500 8,000 11,500 11,500	15 5	0.90 0.30 1.10 0.45	1300 450 1550 650	5 45 55	1.00 0.45 0.60 0.50	1420 620 870 680	o 50 20 35	3450 2350	2,300,000 4,900,000 3,350,000 3,550,000	30 90 35

^{*} Values based on careful tests by Bauschinger, "Communications," Vol. 10. † Shearing strength determined perpendicular to bed of stone.

General Notes.— i. Later transverse strength (flexure) tests on Wisconsin building stones (Johnson's "Materials of Construction," 1918 ed., p. 255) show moduli of rupture as follows: Granite, 1.00 to 2.75 kg/mm² or 2710 to 3010 lb/in²; limestone, 0.80 to 3.30 kg/mm² or 1160 to 4660 lb/in²; sandstone, 0.25 to 0.95 kg/mm² or 360 to 1320 lb/in².

2. Good slate has a modulus of rupture of 4.90 kg/mm² or 7000 lb/in² (loc. cit., p. 257).

Values are for Jurassic limestone.

TABLE 69 (continued). MECHANICAL PROPERTIES. TABLE 69.—Stone and Clay Products.

(c) STRENGTHS OF AMERICAN BUILDING BRICKS.* Compression. Absorption Min. ult. strength. Min. modulus rupture. Brick — description. average per cent. kg/mm² lb/in2 kg/mm² lb/in2 Class A (Vitrified).... 5 5000 0.65 900 3.50 Class B (Hard burned)..... 12 2.45 3500 0.40 600 Class C (Common firsts)..... 18 I.40 0.30 400 Class D (Common).... 1.05 1500 0.20 300

(d) STRENGTH IN COMPRESSION OF BRICK PIERS AND OF TERRA-COTTA BLOCK PIERS.

Tabular values are based on test data from Watertown Arsenal, Cornell University,
U. S. Bureau of Standards, and University of Ill. (Moore, p. 185).

Brick or block used.	Mortar.	Compression.* Av. ult. strength.		
		kg/mm²	lb/in²	
Vitrified brick. Pressed (face) brick. Pressed (face) brick. Common brick. Common brick. Terra-cotta brick.	part lime: 3 parts sand	1.95 1.40 1.00 0.70 0.50 2.10	2800 2000 1400 1000 700 3000	

^{*}Building ordinances of American cities specify allowable working stresses in compression over bearing area of 12.5 per cent (vitrified brick) to 17.5 per cent (common brick) of corresponding ultimate compressive strength shown in table.

† P. denotes Portland.

(e) STRENGTH OF COMPRESSION OF VARIOUS BRICKS.

Reasonable minimum average compressive strengths for other types of brick than building brick are noted by Johnson, "Materials of Construction," pp. 289 ff., as follows:

Brick.	kg/mm²	lb/in²
sand-lime	1.53 5.60 0.70	3000 2180 (av. 255 tests) 8000 1000 2000

The specific gravity of brick ranges from 1.9 to 2.6 (corresponding to 120 to 160 lb/ft³). Building tile; hollow clay blocks of good quality, — minimum compressive strength: 0.70 kg/mm² or 1000 lb/in². Tests made for A. S. T. M. Committee C-10 (A. S. T. M. Proc. XVII, I, p. 334) show compressive strengths ranging from 0.45 to 8.70 kg/mm² or 640 to 12,360 lb/in² of net section, corresponding to 0.05 to 4.20 kg/mm² or 95 to 6000 lb/in² of gross section. Recommended safe loads (Marks, "Mechanical Engineers' Handbook," p. 625) for effective bearing parts of hollow tile: hard fire-clay tiles 0.06 kg/mm² or 80 lb./in²; ordinary clay tiles 0.04 kg/mm² or 60 lb/in²; porous terracotta tiles 0.03 kg/mm² or 40 lb/in.² The specific gravity of tile ranges from 1.9 to 2.5 corresponding to a weight of 120 to 155 lb/ft³.

^{*} After A. S. T. M. Committee C-3, Report 1913, and University laboratories' tests for Committee C-3 (Johnson, p. 281).

MECHANICAL PROPERTIES.

TABLE 70. - Rubber and Leather.

(a) Rubber, — Sheet.*

		Ultimat	e strength.	Ult. elo	ngation.	Set.‡		
Grade.	Longitu	Longitudinal.†		Transverse.			Longit.	Transv.
	kg/mm²	lb/in²	kg/mm²	lb/in²	per cent.		per cent.	
I	1.92	2730	1.81	2575	630	640	11.2	7.3
2	1.45	2070	1.43	2030	640	670	6.0	5.0
3	0.84	1200	0.89	1260	480	555	22.I	16.3
4	1.30	1850	1.20	1700	410	460	34.0	24.0
5	0.48	690	0.36	510	320	280	27.5	25.0
6	0.62	880	0.48	690	315	315	34.3	25.9

^{*} Data from Bureau of Standards Circular 38.

The specific gravity of rubber averages from 0.95 to 1.25, corresponding to an average weight of 60 to 80 lb/ft³.

Four-ply rubber belts show an average ultimate tensile strength of 0.63 to 0.65 kg/mm² or 890 to 930 lb./in² (Benjamin), and a working tensile stress of 0.07 to 0.11 kg/mm² or 100 to 150 lb./in² is recommended (Bach).

(b) LEATHER, - BELTING.

Oak tanned leather from the center or back of the hide:

Minimum tensile strengths of belts | single 2.8 kg/mm² or 4000 lb./in² (Marks, p. 622) double 2.5 kg/mm² or 3600 lb./in²

Maximum elongation for one hour application of single 13.5 per cent 1.6 kg/mm² or 2250 lb./in² stress double 12.5 per cent.

Modulus of elasticity of leather varies from an average value of 12.5 kg/mm² or 17,800 lb/in² (new) to 22.5 kg/mm² or 32,000 lb./in² (old).

Chrome leather has a tensile strength of 6.0 to 9.1 kg/mm² or 8500 to 12,900 lb/in².

The specific gravity of leather varies from 0.86 to 1.02, corresponding to a weight of 53.6 to 63.6 lb./ft³.

[†] Longitudinal indicates direction of rolling through the calendar.

[‡] Set measured after 300 per cent elongation for 1 minute with 1 minute rest.

MECHANICAL PROPERTIES.

TABLE 71. - Manila Rope.

Manila Rope, Weight and Strength — Specification Values. From U. S. Government Standard Specifications adopted April 4, 1918.

Rope to be made of manila or Abaca fiber with no fiber of grade lower than U. S. Government Grade I, to be three-strand,* medium-laid, with maximum weights and minimum strengths shown in the table below, lubricant content to be not less than 8 nor more than 12 per cent of the weight of the rope as sold.

Approximation diamet	mate er.	Circumf	erence.	Maximum	net weight.		breaking
mm	in.	mm	in.	kg/m	lb/ft.	kg	lb.
6.3	1/4	10.1	3	0.020	0.0196	320	700
7.9	<u>5</u>	25.4	ī	0.044	0.0286	540	1,200
9.5	3/8	28.6	1 1/8	0.061	0.0408	660	1,450
11.1	7 16	31.8	$1\frac{1}{4}$	0.080	0.0530	790	1,750
11.0	15	34.9	13/8	0.005	0.0637	950	2,100
12.7	1/2	38.1	$I^{\frac{1}{3}}$	0.100	0.0735	1,110	2,450
14.3	9 1 6	44.5	$1\frac{3}{4}$	0.153	0.1029	1,430	3,150
15.9	<u>5</u> 8	50.8	2	0.195	0.1307	1,810	4,000
19.1	3 4	57.2	24	0.241	0.1617	2,220	4,900
20.6	13 16	63.5	$2\frac{1}{2}$	0.284	0.1911	2,680	5,900
22.2	7 8	69.9	$2\frac{3}{4}$	0.328	0.2205	3,170	7,000
25.4	I	76.2	3	0.394	0.2645	3,720	8,200
27.0	I 1/6	82.6	$3\frac{1}{4}$	0.459	0.3087	4,310	9,500
28.6	I 1/8	88.9	$3\frac{1}{2}$	0.525	0.3528	4,990	11,000
31.8	$1\frac{1}{4}$	95.2	3 ³ / ₄	0.612	0.4115	5,670	12,500
33.3	I 16	101.6	4	0.700	0.4703	6,440	14,200
34.9	I 8	108.0	$4\frac{1}{4}$	0.787	0.5290	7,260	16,000
38.1	I ½	114.3	$4\frac{1}{2}$	0.875	0.5879	7,940	17,500
39.4	I 1 8	120.7	$4\frac{3}{4}$	0.984	0.6615	8,840	19,500
41.2	I 5/8	127.0	5	1.094	0.7348	9,750	21,500
44.5	$1\frac{3}{4}$	140.0	5 ½	1.312	0.8818	11,550	25,500
50.8	2	152.4	6	1.576	1.059	13,610	30,000
52.4	216	165.1	61/2	1.823	1.225	15,420	34,000
57.2	$2\frac{1}{4}$	177.8	7	2.144	1.441	17,460	38,500
63.5	$2\frac{1}{3}$.	190.5	$7\frac{1}{2}$	2.450	1.646	19,730	43,500
66.7	$2\frac{5}{8}$	203.2	8	2.799	1.881	22,220	49,000
73.0	$2\frac{7}{8}$	215.9	81/2	3.136	2.107	24,940	55,000
		0.0			0-	27 6	67.5
76.2	3	228.6	9,	3 · 543	2.381	27,670	61,000
79 · 4	31/8	241.3	91/2	3.936	2.645	30,390	67,000
82.5	$3\frac{1}{4}$	254.0	10	4 · 375	2.940	33,110	73,000
		l		!			1

^{*} Four-strand, medium-laid rope when ordered may run up to 7% heavier than three-strand rope of the same size, and must show 95% of the strength required for three-strand rope of the same size.

90 MECHANICAL	_ PRO	PROPERTIES. TABLE 72.		- Hardwoods Grown in U. S. ((Metric Uni		ts).						
		cific	Stat	tic bend	ing.		t bend-	Со	mpressi	on.	Shear.	Ten-	Hard	iness.
Common and botanical name.	oven	vity, -dry, d on	kg/mm²	ilus of kg. mm²	lus of kg/mm²	kg/mm²	kg hammer or failure—m.		rain.	icular to limit, nm²	to grain kg/mm²	icular to alt. st. nm²	1 in	d to nbed mm ball
	vol. when green.	vol. oven- dry.	P-limit,	Modulus rupture, kg.	Modulus o	P-limit, 1	22.7 kg l fall for fail	P- limit	Ulti- mate.	Perpendicular tagrain P-limit, kg/mm ²	Parallel ult. st. 1	Perpendicular t grain ult. st. kg/mm²	end kg	side kg
1	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Alder, red	0.37	0.43	2.65	4.55	830	5.60	0.56	1.85	2.10	0.22	0.54	0.27	250	200
(Alnus oregona) Ash, black	0.46	0.53	1.85	4.20	720	5.10	0.81	1.15	1.60	0.31	0.61	0.35	270	250
(Fraxinus nigra) Ash, white (forest grown)	0.52	0.60	3.45	6.40	950	8.25	0.91	2.30	2.70	0.57	0.89	0.44	455	401
(Fraxinus americana) Ash, white (second growth)	0.58	0.71	4.30	7.60	1150	9.70	1.19	2.70	2.00	0.56	1.13	0.56	515	490
(Fraxinus americana) Aspen	0.36	0.42	2.05	3.75	590	4.85	0.71	1.10	1.50	0.14	0.44	0.13	120	145
(Populus tremuloides) Basswood	0.33	0.40	1.90	3.50	725	4.35	0.43	1.20	1.55	0.15	0.43	0.20	125	115
(Tilia americana) Beech	0.54	0.66	3.15	5.80	875	7.30	1.02	1.80	2.30	0.43	0.85	0.56	430	370
(Fagus atropunicea) Birch, paper	0.47	0.60	2.05	4,10	710	5.50	1.14	1.20	1.55	0.21	0.56	0.27	185	220
Birch, yellow	0.54	0.66	3.25	6.05	1080	8.25	1.02	1.90	2.40	0.32	0.78	0.34	370	340
(Betula lutea) Butternut	0.36	0.40	2.05	3.80	680	5.15	0.61	1.40	1.70	0.19	0.53	0.30	185	175
Cherry, black	0.47	0.53	2.95	5.65	920	7.20	0.84	2.10	2.50	0.31	0.85	0.40	340	300
(Prunus serotina) Chestnut	0.40	0.46	2.20	3.95	655	5.55	0.61	1.45	1.75	0.27	0.56	0.30	240	190
(Castanea dentata) Cottonwood	0.37	0.43	2.05	3.75	710	5.03	0.53	1.25	1.60	0.17	0.48	0.29	175	155
(Populus deltoides) Cucumber tree	0.44	0.52	2.95	5.20	1100	6.55	0.76	1.95	2.20	0:29	0.70	0.31	270	235
(Magnolia acuminata) Dogwood (flowering)	0.64	0.80	3.40	6.20	830	5.00	1.47		2.55	0.73	1.07	_	640	640
(Cornus florida) Elm, cork	0.58	0.66	3.25	6.70	840	7.75	1.27	2.00	2.70	0.53	0.89	0.47	445	450
(Ulmus racemosa) Elm, white	0.44	0.54	2.55	4.85	725	5.70	0.85	1.65	2.00	0.28	0.65	0.39	275	250
Gum, blue	0.62	ი.80	54 35	7.85	1430	10.00	1.02	3.40	3.70	0.72	1.09	0.45	595	610
(Eucalyptus globulus) Gum, cotton	0.46	0.52	2.95	5.15	740	6.30	0.76	1.95	2.40	0.42	0.84	0.42	365	320
(Nyssa aquatica) Gum, red	0.44	0.53	2.60	4.80	810	7.05	0.84	1.70	1.95	0.32	0.75	0.36	285	235
(Liquidambar styraciflua) Hickory pecan	0.60	0.69	3.65	6.90	960	8.65	1.35	2.15	2.80	0.63	1.04	0.48	575	595
(Hickory, shagbark	0.64		4.15	7.75	1105	10.10	1.88	2.40	3.20	0.70	0.93	-	_	-
(Hicoria ovata) Holly, American (Ilex opaca)	0.50	0.61	2.40	4-55	630	6.25	1.30	1.40	1.85	0.43	0.80	0.43	390	360
Laurel, mountain (Kalmia latifolia)	0.62	0.74	4.10	5.90	650	7.20	0.81	_	3.00	0.78	1.18	-	635	590
Locust, black	0.66	0.71	6,20	9.70	1300	12.90	1.12	4.40	4.85	1.01	1.24	0.54	740	715
Locust, honey	0.65	0.67	3.95	7.20	910	8.30	1.20	2.35	3.10	1.00	1.17	0.66	655	630
Magnolia (evergreen) (Magnolia foetida)	0.46	0.53	2.55	4.80	780	6.20	1.37	1.55	1.90	0.40	0.73	0.43	355	335
Maple, silver	0.44	0.51	2.20	4.10	660	4.80	0.74	1.35	1.75	0,32	0.74	0.39	305	270
Maple, sugar	0.56	0.66	3.50	6.40	1040	8.50	0.91	2.20	2.85	.0.53	0.97	0.54	455	415
Oak, canyon live	0.70	0.84	4.45	7.45	945	7.90	1.20	2.85	3.30	1.04	I,20	0.68	720	715
Oak, red	0.56	0.65	2.60	5.40	910	7.30	1.04	1.65	2.25	0.51	0.79	0.52	465	430
Oak, white	0.60	0.71	3.30	5.85	880	7.55	1.07	2.10	2.50	0.59	0.88	0.54	510	480
Persimmon	0.64	0.78	3-95	7.05	965	8.50	1.04	2.15	2.95	0.73	1.03	0.54	565	580
Poplar, yellow(Liriodendron tulipifera)	0.37	0.42	2.25	3.95	850	5.65	0.43	1,40	1.80	0.22	0.56	0.32	190	155
Sycamore(Platanus occidentalis)	0.46	0.54	2.30	4.65	745	6,20	0.84	1.70	2.00	0.32	0.71	0.44	320	275
Walnut, black	0.51	0.55	3.80	6.70	1000	8.40	0.94	2.55	3.05	0.42	0.86	0.43	435	410
Willow, black	0.34	0.41	1.25	2.75	395	3.60	0.91	0.70	1.05	0.15	0.44	0.30	160	165
(0000000870)														

Note. — Results of tests on sixty-eight species; test specimens, small clear pieces, 50.8 by 50.8 mm in section, 762 mm long for bending; others, shorter. Data taken from Bulletin \$56, Forest Service, U. S. Dept. of Agriculture, containing data on 130,000 tests. See pages 87 and 99 for explanation of columns.

						LT	. 1 1	1			1	Lm	1	
		ecific °	Sta	atic ben	ding.		t bend- ng.	Co	mpressi	ion.	Shear	Ten- sion.	Har	dness.
Common and botanical	over	dry,	kg/mm²	of mm ²	of mm ²	nm²	hammer ilure — m.		allel	r to	grain mm²	r. to		ad to
name,				ulus kg/	lus kg/	kg/mm²	2.7 kg hamr for failure -		1	Perpendicular t grain P-limit, kg/mm²	l to g kg/m	Perpendicular t grain ult. st. kg/mm²	11.3	ball
	vol. when	vol.	P-limit,	Modulus rupture, kg/	Modulus elasticity, kg,	P-limit,	7 kg or fa	P- limit.	Ulti- mate.	pend ain I kg/	Parallel ult. st, k	pend rain kg/	end	side
<u> </u>	green.	dry.	F.	din	elasi	P-Ii	22. fall fo	kg/	mm²	Per	Pa	Per	kg	kg
1	4	5	.6	7	8	9	10	11	12	13	14	15	16	17
Cedar, incense	0.35	0.36	2.75	4.35	590	5.15	0.43	2.00	2.20	0.32	0.58	0.20	260	175
Cedar, Port Orford,	0.41	0.47	2.75	4.80	1055	6.55	0.64	2.10	2.30	0.27	0.62	0.17	255	220
(Chamaecyparis lawsoniana) Cedar, western red: (Thuja plicata)	0.31	0.34	2.30	3.65	670	5.05	0.43	1.75	2,00	0.22	0.51	0.15	195	118
Cedar, white (Thuja occidentalis)	0.29	0.32	1.85	2.95	450	3.75	0.38	1.00	1.40	0,20	0.44	0.17	145	104
Cypress, bald(Taxodium distichum)	0.41	0.47	2,80	4.80	835 -	5.60	0.61	2.20	2.45	0.33	0.58	0,20	215	175
Fir, amabilis	0.37	0.42	2.75	4.45	915	5.50	0.53	1.70	2.00	0.22	0.47	0.17	165	140
Fir, balsam	0.34	0.41	2.10	3.45	675	4.85	0.41	1.55	1.70	.0.15	0.43	0.23	135	135
Fir, Douglas (1)	0.45	0.52	3.50	5.50	1110	6.60	0.63	2.40	2.80	0.37	0.64	0,14	230	215
Fir, Douglas (2)	0.40	0.44	2.55	4.50	830	6.40	0.51	1.80	2.10	0.32	0.62	0.25	205	180
Fir, grand. (Abies grandis) Fir, noble.	0.37	0.41	2.55	4.30	900	5.70	0.56	1.90	2.10	0.24	0.53	0.16	135	165
(Abies nobilis) Fir, white.	0.35	0.44	2.75	4.20	795	5.05	0.46	1.85	1.95	0.31	0.51	0.13	175	150
(Abies concolor) Hemlock, eastern	0.38	0.44	2.95	4.70	790	5.55	0.51	1.90	2.30	0.35	0.62	0.18	230	185
(Tsuga canadensis) Hemlock, western	0.38	0.43	2.40	4.30	835	5.50	0.51	1.60	2.05	0.25	0.57	0.18	245	195
(Tsuga heterophylla) Larch, western	0.48	0.59	3.25	5-25	950	6.60	0.61	2.30	2.70	0.39	0.65	0.16	215	205
(Larix occidentalis) Pine, Cuban	0.58	0.68	3.95	6.20	1150	7.95	0.94	2,80	3.15	0.41	0.72	0.20	260	283
(Pinus heteropkylla) Pine, loblolly	0.50	0.59	3.10	5.30	970	6.70	0.81	2.00	2.50	0.39	0.63	0.20	185	205
(Pinus taeda) Pine, lodgepole	0.38	0.44	2.10	3.85	760	5.05	0.51	1.50	1.85	0.22	0.49	0.15	145	150
(Pinus contorta) Pine, longleaf	0.55	0.64	3.80	6.10	1150	7.60	0.86	2.70	3.10	0.42	0.75	0.20	250	270
(Pinus palustris) Pine, Norway	0.33	0.51	2.60	4.50	970	5.35	0.71	I.75	2.20	0.25	0.55	0.13	165	155
(Pinus resinosa) Pine, pitch	0.47	0.54	2.60	4.70	790	6.40	0.74	1.50	2.15	0.36	0.67	0.25	210	220
(Pinus rigida) Pine, shortleaf	0.50	0.58	3.15	5.65	1020	7.90	0.99	2.50	2.70	0.34	0.63	0.23	220	255
(Pinus echinata) Pine, sugar	0.36	0.39	2.30	3-75	685	4.70	0.43	1.65	1.85	0.25	0.50	0.19	150	145
(Pinus lambertiana) Pine, western white	0.39	0.45	2.45	4.00	935	5.35	0.58	1.95	2.15	0.21	0.50	0.18	150	150
(Pinus monticola) Pine, western yellow	0.38	0.42	3.20	3.65	710	4.70	0.48	1.45	1.75	0.24	0.48	0.20	140	145
(Pinus ponderosa)														1
Pine, white(Pinus strobus)	0.36	0.39	2.40	3.75	750	4.55	0.46	1.65	1.90	0.22	0.45	0.18	135	135
Spruce, red(Picea rubens)	0.48	0.41	2.40	4.00	830	5.05	0.46	1.65	1.95	0.25	0.54	0.15	190	160
Spruce, Sitka	0.34	0.37	2,10	3.85	830	5.05	0.74	1.60	1.85	0.23	0.55	0.15	195	170
Tamarack	0.49	0.56	2.95	5.05	875	5.50	0.71	2.20	2.45	0.34	0.65	0.18	185	170
Yew, western	0.60	0.67	4.55	7. 10	695	9.20	0.97	2.40	3.25	0.73	1.14	0.32	610	520

Note. — The data above are extracted from tests on one hundred and twenty-six species of wood made at the Forest Products Laboratory, Madison, Wisconsin. Bulletin 556 records results of tests on air-dry timber also, but only data on green timber are shown, as the latter are based on a larger number of tests and on tests which are not influenced by variations in moisture content. The strength of dry material usually exceeds that of green material, but allowable working stresses in design should be based on strengths of green timber, inasmuch as the increase of strength due to drying is a variable, uncertain factor and likely to be offset by defects. All test specimens were two inches square, by lengths as shown.

Column Notes. —2, Locality where grown, — see Tables 74 and 75; 3, Moisture includes all matter volatile at 100° C expressed as per cent of ordinary weight; 5, Weight, air dry is for wood with 12 per cent moisture; for density, see metric unit tables 72 and 73; 6-10, 762 mm (30 in.) long specimen on 711.2 mm (28 in.) span, with load at center.

		. ıt	Wei	ight.	Sta	itic bend	ing.	Impact bending.	Compr	ession.	Shear.	Ten- sion.
Common and botanical name.	Locality where grown.	Moisture content green, per cent.	Green.	Air-dry.	P-limit, lb/in²	Modulus of rupture, lb/in²	Modulus of elasticity 1000 X lb/in²	P-limit, lb/in²	Parallel to grain. P- limit. lb/in²	Perpendicular to grain, P-limit lb/in?	Parallel to grain, ult. st. lb/in²	Perpendicular to grain, ult. st. lb/in ²
1	2	3	4	5	6	7	8	. 9	11	13	14	15
	Wash.	98	46	28	3800	6500	1170	8000	2650	310	770	390
	Mich. and	83	53	34	2600	6000	1020	7200	1620	430	870	490
(Fraxinus nigra) Ash, white (forest grown).	Wis. Ark. and W.	43	46	40	4900	9100	1350	11700	3230	800	1260	620
(Fraxinus americana) Ash, white (2d growth)	Va. N. Y.	40	51	46	6100	10800	1640	13800	3820	790	1600	790
(Fraxinus americana) Aspen	Wis.	107	47	27	2900	5300	840	6900	1620	200	620	180
(Populus tremuloides) Basswood	Wis. and Pa.	103	41	26	2700	5000	1030	6200	1710	210	610	280
(Tilia americana) Beech	Ind. and Pa.	62	55	44	4500	8200	1240	10400	2550	610	1210	760
(Fagus atropunicea) Birch, paper	Wis. and Pa.	72	51	38	2900	5800	1010	7800	1650	300	790	380
(Betula papyrifera) Birch, yellow	Wis.	68	58	45	4600	8600	1540	11700	2760	450	IIIO	480
(Betula lutea) Butternut	Tenn. and	104	46	27	2900	5400	970	7300	1960	270	760	430
(Juglans cinerea) Cherry, black	Wis. Pa.	55	- 46	36	4200	8000	1310	10200	2940	440	1130	570
(Prunus serotina) Chestnut	Md. and Tenn.	122	55	30	3100	5600	930	7900	2010	380	800	430
(Castanea dentata) Cottonwood	Mo.	III	49	29	2900	5300	1010	7200	1770	240	680	410
(Populus deltoides) Cucumber tree	Tenn.	80	. 50	33	4200	7400	1560	9300	2760	410	990	440
(Magnolia acuminata) Dogwood (flowering)	Tenn.	62	65	54	4800	8800	1180	7100	_	1030	1520	
(Cornus florida) Elm, cork	Wis.	50	54	45	4600	9500	1190	11000	2870	750	1270	660
(Ulmus racemosa) Elm, white	Wis. and Pa.	88	52	35	3600	6900	1030	8100	2290	390	920	560
Gum, blue	Cal.	79	70	54	7600	11200	2010	14200	4870	1020	1550	640
(Eucalyptus globulus) Gum, cotton	La.	97	56	34	4200	7300	1050	9000	2760	590	1190	600
(Nyssa aquatica) Gum, red	Mo.	81	50	36	3700	6800	1150	10000	2360	460	1070	510
(Liquidambar styraciflua) Hickory, pecan	Mo.	63	61	46	5200	9800	1370	12300	3040	960	1480	680
(Hicoria pecan) Hickory, shagbark	O., Miss., Pa.	60	64	51	5900	11000	1570	14400	3430	1000	1320	
(Hicoria ovata) Holly, American	and W. Va. Tenn.	82	57	40	3400	6500	000	8900	1970	610	1130	610
(Ilex opaca) Laurel, mountain	Tenn.	62	62	49	5800	8400	020	10200		IIIO	1670	_1
(Kalmia latifolia) Locust, black	Tenn.	40	58	49	8800	13800	1850	18300	6280	1430	1760	770
(Robinia pseudacacia) Locust, honey	Mo. and Ind.	63	DI	47	5600	10200	1200	11800	3320	1420	1660	930
(Gleditsia triacanthos) Magnolia (evergreen)	La.	117	62	35	3600	6800	1110	8800	2200			610
(Magnolia foetida) Maple, silver	Wis.	66	46	34	3100	5800	940	6850		570	1040	
(Acer saccharinum) Maple, sugar	Ind., Pa. and	60	56	44	5000	9100	1480	12100	1950	460	1050	560
(Acer saccharum) Oak, canyon live	Wis. Cal.	62	71	56	6300	10600	1340	11200	3120	750	1380	770
(Quercus chrysolepsis) Oak, red	Ark., La., Ind.	84	64	45	3700	7700	1340		4050	1480	1700	970
(Quereus rubra) Oak, white	and Tenn. Ark., La. and	,	62	47	4700	8300	1250	10100	2330	730	1120	740
(Quercus alba) Persimmon	Ind. Mo.	58	63	53	5600	10000		10,00	2990	830	1250	770
(Diospyros virginiana) Poplar, yellow	Tenn.	64	38	28	3200	5600	1370	12100	3030	ITTO	1470	770
(Liriodendron tulipifera) Sycamore.	Ind. and Tenn.		52	35		6500	1210	8000	2000	310	790	460
(Platanus occidentalis)	- Laurence Leith.	03	32	33	3300	0500	тобо	8800	2390	450	1000	630
Walnut, black	Kv	81	58	39	5400	9500	1420	COQII	3600	600	1220	1

Note. — Results of tests on sixty-eight species; test specimens, small clear pieces. 2 by 2 inches in section, 30 inches long tor bending; others, shorter. Tested in a green condition. Data taken from Bulletin 550, Forest Service, U. S. Dept. of Agriculture, containing data on 130,000 tests. See pages 97 and 99 for explanation of columns.

												23
		nt, t	W	eigh t.	S	tatic bene	ding.	Impact bending.	Comp	ression.	Shear.	Ten- sion.
Common and botanical name.	Locality where grown.	re content, per cent.		Air-	b/in²	s of lb/in²	of elas- × lb/in²	b/in²	Parallel to grain	lar to	grain, /in²	Perpendicular to grain, ult. st. lb/in ³
		Moisture green, pe	Green	dry.	P-limit, lb/in	Modulus of rupture, lb/in²	Modulus o	P-limit, lb/in²	P- limit.	Perpendicular to grain, P-limit lb/in²	Parallel to grain, ult. st. lb/in²	pendicu
			lb	/ft³	- F	Tan I	Mod	P-	lb/in²	Perp	Para	Peri grain,
1	2	3	4	5	6	7	8	9	11	13	14	15
Cedar, incense	Cal. and Ore.	108	45	24	3900	6200	840	7300	2870	460	830	280
Cedar, Port Orford (Chamaecyparis law- soniana)	Ore.	52	39	31	3900	6800	1500	9300	3970	380	880	240
Cedar, western red (Thuja plicata)	Wash. and Mont. Wis.	39	27	- 23	3300	5200	950	7100	2500	310	720	210
Cedar, white		55	28	21	2600	4200	640	5300	1420	290	620	240
(Taxodium distichum)	La. and Mo.	87	48	30	4000	6800	1190	8000	3100	470	820	280
ir, amabilis	Ore. and Wash.	102	47	27	3900	6300	1300	7800	2380	320	670	240
ir, balsam	Wis.	117	45	25	3000	4900	960	6900	2220	210	610	180
ir, Douglas (1)	Wash. and Ore.	36	38	34	5000	7800	1580	9400	3400	530	910	200
(Pseudotsuga taxifolia)	Mont. and Wyo.	38	34	32	3600	6400	1180	9100	2520	450	880	350
(Abies grandis)	Mont. and Ore.	94	44	27	3600	6100	. 1300	8100	2680	340	700	230
ir, noble	Ore.	41	31	26	3400	5700	1280	7900	2370	310	. 700	180
ir, white	Cal.	156	56	26	3900	6000	1130	7200	2610	440	730	260
[emlock (eastern)	Tenn. and Wis.	105	48	29	4200	6700	1120	7900	2710	500	880	260
[emlock (western)	Wash.	71	41	29	3400	6100	1190	7800	2290	350	810	260
(Larix occidentalis)	Mont. and Wash.	58	48	37	4600	7500	1350	9400	3250	560	920	230
ine, Cuban	Fla.	47	53	45	5600	′ 8800	1630	11300	3950	590	1030	290
ine, loblolly	Fla., N. and S. Car.	70	54	39	4400	7500	1380	9500	2870	550	900	280
ine, lodgepole I (Pinus contorta)	Col., Mont. and Wyo.	65	39	28	3000	5500	1080	7200	2100	310	690	220
ine, longleaf	Fla., La. and Miss.	47	50	43	5400	8700	1630	10800	3840	600	1070	290
ine, Norway	Wis.	54	42	34	3700	6400	1380	7500	2470	360	780	190
tine, pitch	Tenn.	85	54	35	3700	6700	1120	9100	2100	510	950	350
ene, shortleaf	Ark. and La.	64	50	37	4500	8000	1450	11200	3650	480	890	330
ene, sugar	Cal.	123	50	26	3300	5300	970	6700	2340	350	710	270
ene, western white I (Pinus monticola)	Mont.	58	39	30	3500	5700	1330	7600	2770	300	710	250
ene, western yellow (Pinus ponderosa)	Col., Mont., Ariz., Wash. and Cal.	95	46	28	3100	5200	1010	6700	2080	340	68o	280
ene, white **F(Pinus strobus)	Wis.	74	39	27	3400	5300	1070	6500	2370	310	640	260
F(Picea rubens)	N. H. and Tenn.	43	34	28	3400	5700	1180	7200	2360	350	770	220
F(Picea sitchensis)	Wash.	53	33	26	3000	5500	1180	7900	2280	330	780	230
nimarack	Wis.	52	47	38	4200	7200	1240	7800	3010	480	860	260
Yew, western	Wash.	44	54	45	6500	10100	990	13100	3400	1040	1620	450

Column Notes (continued).—(7) recommended allowable working stress (interior construction): \(\frac{1}{2}\) tabular value; experital results on tests of air-dry timber in small lear pieces average 50 per cent higher; kiln-dry, double tabular value; (10) uted falls of 50-lb. hammer from increasing heights; 11-12, 203.2-nm (8 in.) long specimen loaded on ends with deformations outed in a 152-4-mm (6 in.) gage length; (12) allowable working stress \(\frac{1}{2}\) tabular crushing strength; (13) 152-4-mm (6 in.) long cloaded on its side with a central bearing area of 258-6-mm² (4 in²) allowable working stress, \(\frac{1}{2}\) tabular value; (14) 50.8-mm o.8-mm (2 in.) projecting lip sheared from block; allowable working stress, \(\frac{1}{2}\) tabular value; (15) 63.5-mm (2\frac{1}{2}\) in.) specimen with mm (r in.) free loaded length; allowable working stress, \(\frac{1}{2}\) tabular value. (16-17) for values in lbs. multiply values of metric lip by 2.2.

THEONIAN TABLES.

TABLES 76-77. ELASTIC MODULI.

TABLE 76 .- Rigidity Modulus.

If to the four consecutive faces of a cube a tangential stress is applied, opposite in direction on adjacent sides, the modulus of rigidity is obtained by dividing the numerical value of the tangential stress per unit area (kg. per sq. mm.) by the number representing the change of angles on the non-stressed faces, measured in radians.

Substance.	Rigidity Modulus.	Refer- ence.	. Substance.	Rigidity Modulus.	Reference.
Aluminum " cast Brass " cast, 60 Cu + 12 Sn Bismuth, slowly cooled Bronze, cast, 88 Cu + 12 Sn Cadmium, cast Copper, cast " " " " " " " " " " " " " " " " " "	3350 2580 3550 3715 3700 1240 4060 2450 4780 4213 4450 4664 2850 3950 5210 6706 7975 6940 8108 7505 1710 7820 4359	14 5 10 11 5 5 5 5 18 10 19 5 14 5 16 14 5 16 14	Quartz fibre "" "" "" "" hard-drawn Steel "" cast "" cast, coarse gr. "" silver- Tin, cast "" Zinc "" Platinum "" Glass "" Clay rock Granite Marble Slate	2888 2380 2960 2650 2566 2816 8290 7458 8070 7872 1730 1543 3880 3820 6630 6220 2350 2730 1770 1280 1190 2290	20 21 5 10 16 11 16 15 5 11 5 19 16 22 - 23 23 23

- References I-16, see Table 48. 17 Grätz, Wied. Ann. 28, 1886. 18 Savart, Pogg. Ann. 16, 1829. 19 Kiewiet, Diss. Göttingen, 1886.

- 20 Threlfall, Philos. Mag. (5) 30, 1890.
- 21 Boys, Philos. Mag. (5) 30, 1890. 22 Thomson, Lord Kelvin. 23 Gray and Milne.

- 24 Adams-Coker, Carnegie Publ. No. 46,

TABLE 77. - Variation of the Rigidity Modulus with the Temperature. $n_t = n_o$ (I - at - $\beta t^2 - \gamma t^3$), where t = temperature Centigrade.

Substance.	no	α10 ⁶ β10 ⁵	γ1010	Authority,				
Brass "Copper Iron Platinum Silver Steel	3200 3972 3900 8108 6940 6632	455 2716 572 206 483 111 387	6 - 3 47 6 - 7 - 8 - 9 - 11 - 9 - 8 -	Pisati, Nuovo Cimen Kohlrausch-Loomis, Pisati, loc. cit. K and L. loc. cit. Pisati, loc. cit. K and L. loc. cit. Pisati, loc. cit. """" """"	to, 5, 34, 1879. Pogg. Ann. 141.			
Copper 4.37* a	ı=.00039	Platinum Gold	6.46*	hilos. Trans. 204 A, 19α α = .00012 Tin .00031 Lead	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
mercial) 3.80		Silver Aluminur		.00048 Cadmium .00148 Quartz	2.31 .0058 3.00 .00012			

^{*} Modulus of rigidity in 1011 dynes per sq. cm.

TABLE 78 .- Interior Friction at Low Temperatures.

C is the damping coefficient for infinitely small oscillations; T, the period of oscillation in seconds; N, the second modulus of elasticity. Guye and Schapper, C. R. 150, p. 963, 1910.

Substance	Cu	Ni	Au	Pd	Pt	Ag	Quartz
Length of wire in cm.	22.5	22.2	22.3	22.2	23.0	17.2	17.3
Diameter in mm	.643	.411	.609	.553	.812	.601	.612
100° C C N×10 ⁻¹¹ N×10 ⁻¹¹ N×10 ⁻¹¹ N×10 ⁻¹¹	2.381s 3.32 5.88 2.336s 3.45 3.64 2.274s	7·54 ·417 3·7548 7·85 ·556	2.55 4.82 2.969s 2.62 6.36	1.67 2.579 5.08 1.25 2.5718 5.12 .744 2.552s 5.19	2.98 1.143s 5.77 4.60 1.133s 	2.71 7.19 1.759s 2.87 1.64	4.69 1.408s 2.26 1.02

TABLE 79 .- Hardness.

Agate 7. Alabaster 1.7 Alum 2-2.5 Aluminum 2-2.5 Andalusite 7.5 Antimony 3.3 Apatite 5. Arsenic 3.5 Asbestos 5. Asphalt 1-2. Augite 6. Barite 3.3 Beryl 7.8 Bell-metal 4. Bismuth 2.5 Boric acid 3.	Brass 3-4. Calimine 5. Calcite 3. Copper 2.5-3. Corundum 9. Diamond 10. Dolomite 3.5-4. Feldspar 6. Flint 7. Fluorite 4. Galena 2.5 Garnet 7. Glass 4.5-6.5 Gold 2.5-3. Graphite 0.5-1. Gypsum 1.6-2. Hematite 6. Hornblende 5.5 Iridium 5.	Iridosmium 7. Iron 4-5. Kaolin I. Loess (o°) 0.3 Magnetite 6. Marble 3-4. Meerschaum 2-3. Mica 2.8 Opal 4-6. Orthoclase Palladium 4.8 Phosphorbronze Platinum 4.3 Plat-iridium 6.3 Quartz 7. Rock-salt 2. Ross' metal 2.5-3.0 Silver chloride 1.3	Sulphur 1.5-2.5 Stibnite 2. Serpentine 3-4. Silver 2.5-3. Steel 5-8.5 Talc 1. Tin 1.5 Topaz 8. Tourmaline 7.3 Wax (0°) 0.2 Wood's metal 3.
---	---	---	--

From Landolt-Börnstein-Meyerhoffer Tables: Auerbachs, Winklemann. Handb. der Phys. 1891.

TABLE 80 .- Relative Hardness of the Elements.

C 10.0 Ru 6.5 Cu 3.8 Sb 3.5 Cr 9.0 Pd 4.8 Al 2.5 Ag 2.5 Si 7.0 Pt 4.3 Bi 2.5 Ir 6.5 As 3.5 Zn 2.5	Te 2.3 Sr 1.8 P 0.5 Cd 2.0 Ca 1.5 K 0.5 S 2.0 Ga 1.5 Na 0.4 S Se 2.0 Pb 1.5 Rb 0.3 Mg 2.0 In 1.2 Cs 0.2
---	---

Rydberg, Zeitschr. Phys Chem 33, 1900

TABLE 81.—Ratio, ρ , of Transverse Contraction to Longitudinal Extension under Tensile Stress. (Poisson's Ratio.)

Metal	Pb	Au	Pd	Pt	Ag	Cu	Al	Bi	Sn	Ni	Cd	Fe
						_				-	· ;	
ρ	0.45	0.42	0.39	0.39	0.38	0.35	0.34	0.33	0.33	0.31	0.30	0.28

From data from Physikalisch-Technischen Reichsanstalt, 1907.

ρ for: marbles, 0.27; granites, 0.24; basic-intrusives, 0.26; glass, 0.23. Adams-Coker, 1906.

ELASTICITY OF CRYSTALS.*

The formulæ were deduced from experiments made on rectangular prismatic bars cut from the crystal. These bars were subjected to cross bending and twisting and the corresponding Elastic Moduli deduced. The symbols $\alpha \beta \gamma$, $\alpha_1 \beta_1 \gamma_1$ and $\alpha_2 \beta_2 \gamma_2$ represent the direction cosines of the length, the greater and the less transverse dimensions of the prism with reference to the principal axis of the crystal. E is the modulus for extension or compression, and T is the modulus for torsional rigidity. The moduli are in grams per square centimeter.

Barite.
$$\frac{10^{10}}{E} = 16.13\alpha^{4} + 18.51\beta^{4} + 10.42\gamma^{4} + 2(38.79\beta^{3}\gamma^{2} + 15.21\gamma^{2}\alpha^{2} + 8.88\alpha^{2}\beta^{2})$$

$$\frac{10^{10}}{T} = 69.52\alpha^{4} + 117.66\beta^{4} + 116.46\gamma^{4} + 2(20.16\beta^{2}\gamma^{2} + 85.29\gamma^{2}\alpha^{2} + 127.35\alpha^{2}\beta^{2})$$
Beryl (Emerald).
$$\frac{10^{10}}{E} = 4.325 \sin^{4}\phi + 4.619 \cos^{4}\phi + 13.328 \sin^{2}\phi \cos^{2}\phi$$

$$\frac{10^{10}}{T} = 15.00 - 3.675 \cos^{4}\phi_{2} - 17.536 \cos^{2}\phi \cos^{2}\phi = 16 \log^{1}\phi_{2}$$
where $\phi \phi_{1} \phi_{2}$ are the angles which the length, breadth, and thickness $\frac{10^{10}}{T} = 15.00 - 3.675 \cos^{4}\phi_{2} - 17.536 \cos^{2}\phi \cos^{2}\phi = 16 \log^{1}\phi_{2}$
Fluorspar.
$$\frac{10^{10}}{E} = 13.05 - 6.26 (\alpha^{4} + \beta^{1} + \gamma^{4})$$

$$\frac{10^{10}}{T} = 58.04 - 50.08 (\beta^{3}\gamma^{2} + \gamma^{2}\alpha^{2} + \alpha^{2}\beta^{2})$$
Pyrite.
$$\frac{10^{10}}{T} = 18.60 - 17.95 (\beta^{3}\gamma^{2} + \gamma^{2}\alpha^{2} + \alpha^{2}\beta^{2})$$
Rock salt.
$$\frac{10^{10}}{E} = 33.48 - 9.66 (\alpha^{4} + \beta^{4} + \gamma^{4})$$

$$\frac{10^{10}}{E} = 33.48 - 9.66 (\alpha^{4} + \beta^{4} + \gamma^{4})$$

$$\frac{10^{10}}{E} = 75.1 - 48.2 (\alpha^{4} + \beta^{4} + \gamma^{4})$$

$$\frac{10^{10}}{E} = 75.1 - 48.2 (\alpha^{4} + \beta^{4} + \gamma^{4})$$

$$\frac{10^{10}}{T} = 306.0 - 192.8 (\beta^{2}\gamma^{2} + \gamma^{2}\alpha^{2} + \alpha^{2}\beta^{2})$$
Topaz.
$$\frac{10^{10}}{E} = 4.341\alpha^{4} + 3.460\beta^{4} + 3.771\gamma^{4} + 2 (3.879\beta^{2}\gamma^{2} + 2.856\gamma^{2}\alpha^{2} + 2.39\alpha^{2}\beta^{2})$$

$$\frac{10^{10}}{T} = 14.88\alpha^{4} + 16.54\beta^{4} + 16.45\gamma^{4} + 30.89\beta^{2}\gamma^{2} + 40.89\gamma^{2}\alpha^{2} + 43.51\alpha^{2}\beta^{2}$$
Quartz.
$$\frac{10^{11}}{E} = 12.734 (1 - \gamma^{2})^{2} + 16.693 (1 - \gamma^{2})\gamma^{2} + 9.705\gamma^{4} - 8.460\beta\gamma (3\alpha^{2} - \beta^{2})$$

$$\frac{10^{10}}{T} = 19.665 + 9.066\gamma^{2} + 22.084\gamma^{2}\gamma^{1} - 16.920 [(\gamma\beta_{1} + \beta\gamma_{1}) (3\alpha\alpha_{1} - \beta\beta_{1}) - \beta_{3}\gamma_{2})]$$

^{*} These formulæ are taken from Voigt's papers (Wied. Ann. vols. 31, 34, and 35).

ELASTICITY OF CRYSTALS.

Some particular values of the Elastic Moduli are here given. Under E are given moduli for extension or compression in the directions indicated by the subscripts and explained in the notes, and under T the moduli for torsional rigidities round the axes similarly indicated. Moduli in grams per sq. cm.

(a) Isometric System.**											
Substance.	Ea	\mathbf{E}_{b}	. E _c	. T _a	Authority.						
Fluorspar Pyrite	1473 × 10 ⁶ 3530 × 10 ⁶ 419 × 10 ⁶ 403 × 10 ⁶ 401 × 10 ⁶ 372 × 10 ⁶ 405 × 10 ⁶ 181 × 10 ⁶ 161 × 10 ⁶ 186 × 10 ⁶	1008 × 10 ⁶ 2530 × 10 ⁶ 349 × 10 ⁶ 339 × 10 ⁶ 209 × 10 ⁶ 196 × 10 ⁶ 319 × 10 ⁶ 199 × 10 ⁶ 177 × 10 ⁶	910 × 10 ⁶ 2310 × 10 ⁶ 303 × 10 ⁶	345 × 10 ⁶ 1075 × 10 ⁶ 129 × 10 ⁶ — 655 × 10 ⁶ — —	Voigt.† "Koch.‡ Voigt. Koch. Beckenkamp.§						

(b) ORTHORHOMBIC SYSTEM.

Substance.	E ₁	\mathbf{E}_2	\mathbf{E}_{3}	E_4	${ m E}_5$. E ₆	Authority.
Barite . Topaz .	620 × 10 ⁶ 2304 × 10 ⁶	540 × I 2890 × I	$ \begin{array}{c c} 0^6 & 959 \times 10^6 \\ 0^6 & 2652 \times 10^6 \end{array} $	376×10^{6} 2670×10^{6}	702×10^{6} 2893×10^{6}	740 × 3180 ×	10 ⁶ Voigt.
	Substance.		T ₁₂ = T ₂₁	$T_{13} = T_3$	T ₂₃ =	= T _{3 2}	Authority.
Barite .			283 × 10 ⁶	293 × 10	06 121	× 106	Voigt.

 1353×10^{6}

 1104×10^{6}

In the Monoclinic System, Coromilas (Zeit. für Kryst. vol. 1) gives

 1336×10^{6}

$$\begin{aligned} & \text{Gypsum} \left\{ \begin{array}{l} E_{\text{max}} = 887 \times \text{ro}^6 \text{ at 21.9}^\circ \text{ to the principal axis.} \\ E_{\text{min}} = 313 \times \text{ro}^6 \text{ at 75.4}^\circ & \text{``} & \text{``} & \text{``} \\ \\ \text{Mica} & \left\{ \begin{array}{l} E_{\text{max}} = 2213 \times \text{ro}^6 \text{ in the principal axis.} \\ E_{\text{min}} = 1554 \times \text{ro}^6 \text{ at 45}^\circ \text{ to the principal axis.} \end{array} \right. \end{aligned}$$

In the HEXAGONAL SYSTEM, Voigt gives measurements on a beryl crystal (emerald). The subscripts indicate inclination in degrees of the axis of stress to the principal axis of the crystal.

$$E_0 = 2165 \times 10^6, \quad E_{45} = 1796 \times 10^6, \quad E_{90} = 2312 \times 10^6,$$

prism experimented on (see Table 82), was in the principal axis for this last case.

In the RHOMBOHEDRAL SYSTEM, Voigt has measured quartz. The subscripts have the same meaning as in the hexagonal system.

$$E_0 = 1030 \times 10^6$$
, $E_{-45} = 1305 \times 10^6$, $E_{+45} = 850 \times 10^6$, $E_{90} = 785 \times 10^6$, $T_0 = 508 \times 10^6$, $T_{90} = 348 \times 10^6$.

Baumgarten ¶ gives for calcite

$$E_0 = 501 \times 10^6, \quad E_{-45} = 441 \times 10^6, \quad E_{+45} = 772 \times 10^6, \quad E_{90} = 790 \times 10^6.$$

Topaz

^{*} In this system the subscripts \$a\$ indicates that compression or extension takes place along the crystalline axis, and distortion round the axis. The subscripts \$b\$ and \$c\$ correspond to directions equally inclined to two and normal to the third and equally inclined to all three axes respectively.

1 Voigt, "Wied. Ann." 31, p. 474, p. 701, 1887; 34, p. 981, 1888; 36, p. 642, 1888.

2 Koch, "Wied. Ann." 18, p. 325, 1882.

3 Beckenkamp, "Zeit, für Kryst." vol. 10.

11 The subscripts 1, 2, 3 indicate that the three principal axes are the axes of stress; 4, 5, 6 that the axes of stress are in the three principal planes at angles of 45° to the corresponding axes.

3 Baumgarten, "Pogg. Ann." 152, p. 369, 1879.

COMPRESSIBILITY OF GASES.

TABLE 84.—Relative Volumes at Various Pressures and Temperatures, the volumes at 0°C and at 1 atmosphere being taken as 1 000 000.

		Oxygen.			Air.			Nitrogen.			Hydrogen.		
Atm.	00	99 ⁰ ·5	1990.5	00	99 ⁰ -4	200 ⁰ .4	oo	99 ⁰ -5	199°.6	00	99°•3	2000.5	
100 200 300 400 500 600 700 800 900 1000	9265 4570 3208 2629 2312 2115 1979 1879 1800	7000 4843 3830 3244 2867 2610 2417 2268 2151	9095 6283 4900 4100 3570 3202 2929 2718	9730 5050 3658 3036 2680 2450 2288 2168 2070 1992	7360 5170 4170 3565 3180 2904 2699 2544 2415	9430 6622 5240 4422 3883 3502 3219 3000 2828	9910 5195 3786 3142 2780 2543 2374 2240 2149 2068	7445 5301 4265 3655 3258 2980 2775 2616	9532 6715 5331 4515 3973 3589 3300 3085	5690 4030 3207 2713 2387 2149 1972 1832 1720	7 567 5286 4147 3462 3006 2680 2444 2244 2093	9420 6520 5975 4210 3627 3212 2900 2657	

Amagat: C. R. 111, p. 871, 1890; Ann. chim. phys. (6) 29, pp. 68 and 505, 1893.

TABLE 85.-Ethylene.

Atm.	00	100	200	30°	40°	60°	800	1000	13 7 °-5	198°.5
46 48 50 52	0.176	0.562 0.508 0.420 0.240	0.684 - 0.629 0.598	0.731	0.814	0.954	1.077	1.192	1.374	1.652
54 56	_ _	0.229	0.561	_ _	-	-	-	-	-	-
100 150 200	0.310 0.441 0.565	0.331-7 0.459 0.585	0.360 0.485 0.610	0.403 0.515 0.638	0.471 0.551 0.669	0.668 0.649 0.744	0.847 0.776 0.838	0.924 0.946	1.247 1.178 1.174	1.580 1.540 1.537
300 500 1000	0.806 1.256 2.289	0.827 1.280 2.321	0.852 1.308 2.354	0.878 1.337 2.387	0.908 1.367 2.422	0.972 1.431 2.493	1.048 1.500 2.566	1.133 1.578 2.643	1.310	1.628

Amagat, C. R. 111, p. 871, 1890; 116, p. 946, 1893.

TABLE 86.-Relative Gas Volumes at Various Pressures.

The following table, deduced by Mr. C. Cochrane, from the PV curves of Amagat and other observers, gives the relative volumes occupied by various gases when the pressure is reduced from the value given at the head of the column to 1 atmosphere:

Gas. (Temp. = 16°C.).	Relative volume which the gas will occupy when the pressure is reduced to atmospheric from									
((D) (1) (1)	ı atm.	50 atm.	100 atm.	120 atm.	150 atm.	200 atm.				
"Perfect" gas	I	50	100	120	150	200				
Hydrogen	I	48.5	93.6	111.3	136.3	176.4				
Nitrogen	I	50.5	100.6	120.0	147.6	190.8				
Air	I	50.9	101.8	121.9	150.3	194.8				
Oxygen	I	parents.	105.2			212.6				
Oxygen (at o° C.)	I	52.3	107.9	128.6.	161.9	218.8				
Carbon dioxide	I	69.0	477*	485*	498*	515*				

^{*} Carbon dioxide is liquid at pressures greater than 90 atmospheres.

COMPRESSIBILITY OF GASES.

TABLE 87 .- Carbon Dioxide.

Pressure in					Relativ	e values o	of pv at —	· ·			
metres of mercury.	180.2	35°·	1 4	00.2	50 ⁰ .0	60°.0	700.0	80	P.0	900.0	0.0001
30 50 80 110 140 170 200 230 260 290 320	liquid	236 172 75 93 112 131 150 169 187 206	5 I I O O I I I O I I I O I I	460 900 825 980 175 360 550 7730 920 100 280	2590 2145 1200 1090 1250 1430 1615 1800 1985 2170 2360	2730 2330 1650 1275 1360 1520 1705 1890 2070 2260 2440	2870 2521 1971 1550 1521 1641 1810 1990 2160 2340 2521	26 22 28 18 17 17 19 20 20 22 24	85 25 45 15 80 30 90 65	31 20 2845 2440 2105 1950 1975 22075 2210 2375 2550 2725	3225 2980 2035 2325 2160 2135 2215 2340 2490 2655 2830
			R	elative va	lues of pa	<i>ι; pυ</i> at ο	°C. and	ı atm. =	Ι,		
Atm	00	100	20 ⁰	30°	400	600	800	1000	137 ⁰	1980.	2580
50 100 150 300 500 1000	0.202 0.295 0.559 0.891	0.114 0.213 0.309 0.578 0.913 1.685	0.680 0.229 0.326 0.599 0.938 1.716	0.775 0.255 0.346 0.623 0.963 1.748	0.750 0.309 0.377 0.649 0.990 1.780	0.984 0.661 0.485 0.710 1.054 1.848	1.096 0.873 0.681 0.790 1.124 1.921	1.206 1.030 0.878 0.890 1.201 1.999	1.380 1.259 1.159 1.108 1.362	- 1.582 1.530 1.493 1.678	- 1.847 1.818 1.820

Amagat, C. R. 111, p. 871, 1890; Ann. chim. phys. (5) 22, p. 353, 1881; (6) 29, pp. 68 and 405, 1893.

TABLE 88. — Compressibility of Gases.

Gas.	p.v. (½ atm.)	$ \begin{vmatrix} \frac{1}{p.v.} & \frac{d(p.v.)}{dp} \\ = a. \end{vmatrix} $	t	t = 0	Density. O = 32, 0°C P = 76°m	Density. Very small pressure.
$\begin{array}{c} O_2\\ H_2\\ N_2\\ CO\\ CO_2\\ N_2O\\ Air\\ NH_3 \end{array}$	1,00038 0.99974 1.00015 1,00026 1.00279 1.00327 1,00026 1.00632	00076 + .00052 00030 00052 00558 00654 00046	11.2° 10.7 14.9 13.8 15.0 11.0	00094 +.00053 00056 00081 00668 00747	2.015 (16°) 28.005 28.000 44.268 44.285	32. 2.0173 28.016 28.003 44.014 43.996

Rayleigh, Zeitschr. Phys. Chem. 52, p. 705, 1905.

TABLE 89. — Compressibility of Air and Oxygen between 18° and 22° C.

Pressures in metres of mercury, pv, relative.

Ai	t pu	24.07 26968	34.90 26908	45.24 26791	55.30 26789	64.00 26778	72.16 26792	84.22 26840	101.47 27041	214.54	304.04 32488
O ₅	p pv	24.07 26843	34.89 26614		55.50 26185	64.07 26050	72.15 25858	84.19 25745	101.0 6 25639	214.52 26536	303.03 28750

Amagat, C. R. 1879.

RELATION BETWEEN PRESSURE, TEMPERATURE AND VOLUME OF SULPHUR DIOXIDE AND AMMONIA.*

TABLE 90.-Sulphur Dioxide.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

ure in		ding Volunts at Tempe		Volume.		e in Atmosp ents at Temp	
Pressure Atmos.	58°.0	99°.6	183°.2	v Orume.	58°.0	99°.6	1830.2
10 12 14 16 18 20 24 28 32 36 40 50 60 70 80 90 100 120	8560 6360 4040 	9440 7800 6420 5310 4405 4030 3345 2780 2305 1935 1450	- - - 3180 2640 2260 2040 1640 1375 1130 930 790 680 545 430 325	10000 9000 8000 7000 6000 5000 4000 3500 3500 2500 2000 1500 1000	9.60 10.40 11.55 12.30 13.15 14.00 14.40	9.60 10.35 11.85 13.05 14.70 16.70 20.15 23.00 26.40 30.15 35.20 39.60	29.10 33.25 40.95 55.20 76.00

TABLE 91. - Ammonia.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

ure in nos.		nding Volun ts at Tempe		Volume.	Pressure	in Atmosph at Tempe	eres for Experature —	eriments
Pressure Atmos.	46°.6	99°.6	183°.6		300.2	46°.6	99°.6	183°.0
10 12.5 15	9500 7245 5880	7635 6305	. –	9000	8.85 9.60	9.50 10.45		-
20 25 30	- - -	4645 3560 2875	4875 3835 3185	8000 7000 6000	10.40 11.05 11.80	13.00	12.00 13.60 15.55	- - -
35 40 45	- - -	2440 2080 1795	2680 2345 2035	5000 4000 3500	12.00	16.60 18.35 18.30	18.60 22.70 25.40	19.50
50 55 60 70	-	1490 1250 975	1775 1590 1450 1245	3000	-	-	29.20	27.20 31.50 37.35
80	-		1125	2000 I 500 I 000	-	-	41.45 49.70 59.65	45.50 58.00
			75-				39.03	93.60

^{*} From the experiments of Roth, "Wied. Ann." vol. 11, 1880.

COMPRESSIBILITY OF LIQUIDS.

At the constant temperature t, the compressibility $\beta = (1/V_0)(dV/dP)$. In general as P increases, β decreases rapidly at first and then slowly; the change of β with t is large at low pressures but very small at pressures above 1000 to 2000 megabars. In megabar = 0.987 atmosphere = 106 dyne/cm².

Substance.	Temp. °C	Pressure, megabars.	Compressibility per megabars.	Reference.	Substance.	Temp. °C	Pressure, megabars.	Compressibility per megabars. $\beta \times 10^6$.	Reference.
Acetone	14 20 20 20 40 17 20 20 20 20 16 20 20 20 20 20 20 20 20 20 20 20 20 20	23 500 1,000 12,000 1,000 12,000 12,000 12,000 400 200 400 200 400 200 1,000 12,000 21 500 1,000 12,000 21 500 1,000 12,000 21 500 1,000 12,000 21 500 1,000 12,000 21 500 1,000	61 52 9 88 84 70 61 46 8	9 1 1 1 10 16 16 16 16 16 16 16 16 16 16 16 16 16	Ethyl ether, ct'd Ethyl iodide """ Gallium. Glycerine. Hexane Kerosene "" Methyl alcohol "" "" "" Nitric acid. Oils: Almond. Castor. Linseed. Olive. Rape-seed. Phosph. trichloride "" "" "" Propyl alcohol, n "" "" "" Propyl alcohol, n "" "" Turpentine. Water "" "" "" Xylene, meta "" "" "" "" Xylene, meta "" "" "" "" "" "" "" "" ""	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1,000 12,000 200 400 500 1,000 12,000 300 500 1,000 12,000	61 10 81 69 64 50 8 3.97 22 117 91 55 45 8 8 3.95 3.97 3.91 2.37 103 95 80 65 54 8 32 53 46 51 55 59 71 63 47 7 7 67 67 665 47 7 7 74 69 43 41 39 38 33 9 69 60	1 1 1 6 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1

For references, see page 108.

COMPRESSIBILITY OF SOLIDS.

If V is the volume of the material under a pressure P megabars and V_0 is the volume at atmospheric pressure, then the compressibility $\beta = -(1/V_0) (dV/dP)$. Its unit is cm²/megadynes (reciprocal megabars). 10⁶/ β is the bulk modulus in absolute units (dynes/cn²). The following values of β , arranged in order of increasing compressibility, are for P = 0 and room temperature. I megabar = 10⁶ dynes = 1.013 kg/cm² = 0.98% atmosphere.

Substance.	Compression per unit vol. per megabar × 106	Bulk modulus. dynes/cm² × 10 ¹²	Reference.	Substance.	Compression per unit vol. per megabar × 106	Bulk modulus. dynes/cm² × 1012	Reference.
Tungsten Boron Silicon Platinum Nickel Molybdenum Tantalum Palladium Iron Gold Pyrite Copper Manganese Brass Chromium Silver Mg. silicate, crys. Aluminum Calcite Zinc Tin Gallium Cadmium	0.3° 0.38 0.43 0.46 0.53 0.54 0.60 0.7 0.75 0.84 0.89 0.99 1.33 1.39 1.74 1.89	3.7 3.0 3.1 2.6 2.3 2.2 1.9 1.67 1.4 1.33 1.19 1.12 1.10 0.97 0.75 0.75 0.75 0.57 0.53 0.48 0.46	2 2 2 2 2 2 2 2 2 2 4 1,2 4 1 1 2,1 1 1,2 4 1,2 4 1,2 1,4 1,4 1,5 1,5 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7	Plate glass Lead Thallium Antimony Quartz Magnesium Bismuth Graphite Silica glass Sodium chloride Arsenic Calcium Potassium chloride Lithium Phosphorus (red) Selenium Sulphur Iodine Sodium Phosphorus (white) Potassium Rubidium Calcium	5.7 7.4 9.0 9.2 12.0 12.9 13.0 15.6	0.45 0.44 0.43 0.42 0.37 0.34 0.33 0.33 0.22 0.24 0.22 0.175 0.135 0.111 0.109 0.083 0.077 0.049 0.032 0.025 0.016	4 1, 2 2 2 1 2 1 1 2 1 1 2 2 1 2 2 1 2 2 2 2

Note. — Winklemann, Schott, and Straulel (Wied Ann. 61, 63, 1897, 68, 1899) give the following coefficients (among others) for various Jena glasses in terms of the volume decrease divided by the increase of pressure expressed in kilograms per square millimeter:

	No.	Glass.	Compressibility.	No.	Glass.	Compressibility.
The state of the s	665 1299 16 278	Barytborosilicat Natronkalkzinksilicat	7520 5300 4530 3790	S 208	Kalibleisilicat Heaviest Bleisilicat Very Heavy Bleisilicat Tonerdborat with sodium, baryte	3550

The following values in cm²/kg of 10⁶ × Compressibility are given for the corresponding temperatures by Grüneisen, Ann. der Phys. 33, p. 65, 1910.

 $\begin{array}{l} Al \longrightarrow {\tt 191^\circ,\,1.32;\,\,17^\circ,\,1.46;\,\,125^\circ,\,1.70.} \\ Cu \longrightarrow {\tt 191^\circ,\,0.72;\,\,17^\circ,\,0.77;\,\,165^\circ,\,0.83.} \\ Pt \longrightarrow {\tt 189^\circ,\,0.37;\,\,17^\circ,\,0.39;\,\,164^\circ,\,0.40.} \end{array}$

Fe — 190°, 0.61; 18°, 0.63; 165°, 0.67. Ag — 191°, 0.71; 16°, 0.76; 166°, 0.86. Pb — 191°, (2.5); 14°, (3.2).

References to Table 92, p. 107:

- (1) Bridgman, Pr. Am. Acad. 49, 1, 1913; (2) Roentgen, Ann. Phys. 44, 1, 1891; (3) Pagliani-Palazzo, Mem. Acad. Lin. 3, 18, 1883; (4) Bridgman, Pr. Am. Acad. 48, 341, 1912; (5) Adams, Williamson, J. Wash. Acad. Sc. 9, Jan. 19,
- (6) Richards, Boyer, Pr. Nat. Acad. Sc. 4, 389, 1918; (7) Richards, J. Am. Ch. Soc. 37, 1646, 1915; (8) Bridgman, Pr. Am. Acad. 47, 381, 1911;

- (o) Amagat, C. R. 73, 143, 1872; (ro) Amagat, C. R. 68, 1170, 1860; (r) Amagat, Ann. chim. phys. 29, 68, 505, 1893; (r2) de Metz, Ann. Phys. 41, 663, 1890; (r3) Adams, Williamson, Johnston, J. Am. Chem. Soc.

- 41, 27, 1010; (14) Colladon, Sturm, Ann. Phys. 12, 39, 1828; (15) Quincke, Ann. Phys. 19, 401, 1883; (10) Richards et al. J. Am. Ch. Soc. 34, 988, 1912.

References to Table 93, p. 108:

- (1) Adams, Williamson, Johnston, J. Am. Ch. Soc. 41, 39,
- 1919; (2) Richards, *ibid*. 37, 1646, 1915; (3) Bridgman, Pr. Am. Acad. 44, 279, 1909; 47, 366, 1911;
- (4) Adams, Williamson, unpublished;
 (5) Richards, Boyer, Pr. Nat. Acad. Sc. 4, 388, 1918;
 (6) Voigt, Ann. Phys. 31, 1887; 36, 1888.

SPECIFIC GRAVITIES CORRESPONDING TO THE BAUMÉ SCALE.

The specific gravities are for 15.56°C (60°F) referred to water at the same temperature as unity. For specific gravities less than unity the values are calculated from the formula:

Degrees Baumé =
$$\frac{140}{\text{Specific Gravity}} - 130$$
.

For specific gravities greater than unity from:

Degrees Baumé =
$$145 - \frac{145}{\text{Specific Gravity}}$$

	Specific Gravities less than 1.									
Specific	0.00	100	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
Gravity.	Degrees Baumé.									
0.60 .70 .80 .90	103.33 70.00 45.00 25.56 10.00	99.51 67.18 42.84 23.85	95.81 64.44 40.73 22.17	92.22 61.78 38.68 20.54	88.75 59.19 36.67 18.94	85.38 56.67 34.71 17.37	82.12 54.21 32.79 15.83	78.95 51.82 30.92 14.33	75.88 49.49 29.09 12.86	72.90 47.22 27.30 11.41
Specific Gravities greater than 1.										
Specific	0.00	0.01	0.02	0.03	0.04	0.05	0:06	0.07	0.08	0.09
Gravity.										
I.00 I.10 I.20 I.30 I.40 I.50 I.60 I.70 I.80	0.00 13.18 24.17 33.46 41.43 48.33 54.38 59.71 64.44	1.44 14.37 25.16 34.31 42.16 48.97 54.94 60.20 64.89	2.84 15.54 26.15 35.15 42.89 49.60 55.49 60.70 65.33	4.22 16.68 27.11 35.98 43.60 50.23 56.04 61.18 65.76	5.58 17.81 28.06 36.79 44.31 50.84 56.58 61.67 66.20	6.91 18.91 29.00 37.59 45.00 51.45 57.12 62.14 66.62	8.21 20.00 29.92 38.38 45.68 52.05 57.65 62.61	9.49 21.07 30.83 39.16 46.36 52.64 58.17 63.08	10.74 22.12 31.72 39.93 47.03 53.23 58.69 03.54	11.97 23.15 32.60 40.68 47.68 53.80 59.20 63.99

DENSITY IN GRAMS PER CUBIC CENTIMETER OF THE ELEMENTS, LIQUID OR SOLID.

N. B. The density of a specimen may depend considerably on its state and previous treatment.

Element.	Physical State.	Grams per	Tempera- ture °C.†	Authority.
Aluminum	commercial h'd d'n	2.70	20°	Wolf, Dellinger, 1910
66	wrought	2.65-2.80		
Antimony	vacuo-distilled	6.618	20	Kahlbaum, 1902.
66	ditto-compressed amorphous	6.691 6.22	20	Hérard.
Argon	liquid	1.3845	- 183	Baly-Donnan.
	- 66	. 1.4233	189	66 66
Arsenic	crystallized	5.73	14	
1 66	amorph. brblack	3.70		Geuther. Linck.
Barium	yellow	3.88 3.78		Guntz.
Bismuth	solid	9.70-9.90		
66	electrolytic	9.747		Classen, 1890.
	vacuo-distilled	9.781	20	Kahlbaum, 1902.
	liquid solid	10.00	27 I	Vincentini-Omodei.
Boron	crystal	9.67 2.535	27 I	Wigand.
16	amorph. pure	2.45		Moissan.
Bromine	liquid	3.12		Richards-Stull.
Cadmium	cast	8.54-8.57		
"	wrought vacuo-distilled	8.6 ₇ 8.6 ₄ 8	20	Kahlbaum, 1902.
66	solid	8.37	318	Vincentini-Omodei.
66	liquid	7.99	318	66 66
Cæsium	•	1.873	20	Richards-Brink.
Calcium	7.0	1.54		Brink.
Carbon	diamond graphite	3.52		Wigand.
Cerium	electrolytic	6.79		Muthmann-Weiss.
" ·	· pure	7.02		44 64
Chlorine	Îiquid	1.507	- 33.6	Drugman-Ramsay.
Chromium		6.52-6.73		34-1
Cobalt	pure	6.92 8.71	20 21	Moissan. Tilden, Ch. C. 1898.
Columbium		8.4	15	Muthmann-Weiss.
Copper	cast	8.30-8.95	-3	
*6Ĉ	annealed	8.89	20	Dellinger, 1911
66	wrought hard drawn	8.85-8.95		46 46
66	vacuo-distilled	8.89 8.9326	20	Kahlbaum, 1902.
66	ditto-compressed	8.9376	20	66 66
- "	liquid	8.217		Roberts-Wrightson.
Erbium	11 13	4.77		St. Meyer, Z. Ph. Ch. 37.
Fluorine Gallium	liquid	1.14	— 200	Moissan-Dewar. de Boisbaudran.
Germanium		5.93 5.46	23	Winkler.
Glucinum		1.85		Humpidge.
Gold	cast	19.3		
46	wrought	19.33 18.88		TZ -1-11
66	vacuo-distilled ditto-compressed	18.88	20 20	Kahlbaum, 1902.
Helium	liquid •	0.15	— 26g	Onnes, 1908.
Hydrogen	liquid	0.070	252	Dewar, Ch. News, 1904.
Indium		7.28	J	Richards.
			1	

Compiled from Clarke's Constants of Nature, Landolt-Börnstein-Meyerhoffer's Tables, and other sources. Where no authority is stated, the values are mostly means from various sources.

^{*}To reduce to pounds per cu. ft. multiply by 62.4.
† Where the temperature is not given, ordinary atmospheric temperature is understood.

DENSITY IN GRAMS PER CUBIC CENTIMETER OF THE ELEMENTS, LIQUID OR SOLID.

		T		
Element.	Physical State	Grams per cu. cm.*	Tempera- ture °C.†	Authority.
Iridium		22.42	17	Deville-Debray
Iodine		4.940	20	Richards-Stull
Iron	pure	7.85-7.88		Zeronardo Stan
46	gray cast			
"	white cast	7.03-7.13		
64	wrought	7.80-7.90		D
"	liquid steel	6 88		Roberts-Austen
Krypton	liquid	7.60-7.80	—1 46	Ramsay-Travers
Lanthanum	, aqua	6.15	140	Muthmann-Weiss
Lead	vacuo-distilled	11.342	20	Kahlbaum, 1902
"	ditto-compressed	11.347	20	**
"	solid	11.005	325	Vincentini-Omodei
46	liquid	10.645	325	Des Comes Heatettes
66	66	10.597	400° 850°	Day, Sosman, Hostetter,
Lithium		0.534	20	Richards-Brink, '07
Magnesium		1.741		Voigt
Manganese		7.42		Prelinger
Mercury	liquid	13.596	0	Regnault, Volkmann
		13.546	-38.8	Vincentini-Omodei
66	solid	14.193	-38.8	Mallet
"	44	14.383	— 188	Dewar, 1902
Molybdenum		9.01		Moissan
Neodymium		6.96		Muthmann-Weiss
Nickel Nitrogen	liquid	8.60-8.90	-195	Baly Donnan 1002
""	""	0.854	—195 —205	Baly-Donnan, 1902
Osmium		22.5		Deville-Debray
Oxygen	liquid	1.14	-184	1
Palladium	white	12.16		Richards-Stull
Phosphorus	red	1.83		
- 46	metallic	2.34	15	Hittorf
Platinum		21.37	20	Richards-Stull
Potassium		0.870	20	Richards-Brink, '07
44	solid	0.851	62.1	Vincentini-Omodei
Præsodymium	liquid	0.830 6.475	62.1	Muthmann-Weiss
Rhodium		12.44		Holborn Henning
Rubidium		1.532	20	Richards-Brink, '07
Ruthenium		12.06	0	Toby
Samarium		7.7-7.8		Muthmann-Weiss
Selenium Silicon	cryst.	4.3-4 S 2.42	20	Richards-Stull-Brink
Silicon	amorph.	2.35	15	Vigoroux
Silver	cast	10.42-10.53	- 3	8
46	wrought	10.6		** ***
66	vacuo-distilled	10.492	20	Kahlbaum, 1902
46	ditto-compressed liquid	9.51	20	Wrightson
Sodium	Aquiu	0.9712	20	Richards-Brink, '07
66	solid	0.9519	97.6	Vincentini-Omodei
46	liquid	0.9287	97.6	16 66
City of the same		1.0066	—1Š8	Dewar Matthiassan
Strontium		2.50-2.58 2.0-2.1		Matthiessen
Sulphur	liquid	1.811	113	Vincentini-Omodei

^{*}To reduce to pounds per cubic ft. multiply by 62.4. † Where the temperature is not given, ordinary atmosphere temperature is understood.

II2 TABLES 95 (continued) AND 96. DENSITY OF VARIOUS SUBSTANCES.

TABLE 95 (continued). — Density in grams per cubic centimeter and pounds per cubic foot of the elements, liquid or solid.

Element.	Physical State.	Grams per	Tempera- ture °C.	Authority.
Tantalum Tellurium Thallium Thorium Tin " " " " " " "	crystallized amorphous white, cast " wrought " crystallized " solid liquid gray	16.6 6.25 6.02 11.86 12.16 7.29 7.30 6.97-7.18 7.184 6.99 5.8	20 17 226 226	Beljankin. Richards-Stull. Bolton. Matthiessen. Vincentini-Omodei " See Table 65
Titanium Tungsten Uranium Vanadium Xenon Yttrium Zinc " " "	liquid cast wrought vacuo-distilled ditto-compressed	4.5 18.6–19.1 18.7 5.69 3.52 3.80 7.04–7.16 7.19 6.92	18 13 109	Zimmermann. Ruff-Martin. Ramsay-Travers. St. Meyer. Kahlbaum, 1902.
"Zirconium	liquid	7.13 · 6.48 6.44	20	Roberts-Wrightson,

 ${\tt TABLE~96.-Density~in~grams~per~cubic~centimeter~and~in~pounds~per~cubic~foot~of~different~kinds~of~wood.}$

The wood is supposed to be seasoned and of average dryness.

Wood.	per cubic pe	Pounds Wood, foot.	Grams Pounds per cubic centimeter. foot.
Alder Apple Ash Bamboo Basswood. See Linden. Beech Blue gum Birch Box Bullet-tree Butternut Cedar Cherry Cork Dogwood Ebony Elm Fir or Pine, American White "Larch "Pitch "Red "Scotch "Spruce "Yellow Greenheart	0.66-0.84 4 0.65-0.85 4 0.31-0.40 1 0.70-0.90 4 1.00 0.51-0.77 0.95-1.16 1 1.05 0.38 2 0.49-0.57 0.70-0.90 0.22-0.26 1 1.11-1.33 0.54-0.60 0.35-0.56 0.33-0.85 0.48-0.70 0.43-0.53 0.48-0.70 0.37-0.60	Hazel Hickory Holly Holl	0.67-0.71 42-44 1.91 57 0.66 41

^{*} Where the temperature is not given, ordinary atmospheric temperature is understood.

DENSITY IN GRAMS PER CUBIC CENTIMETER AND POUNDS PER CUBIC FOOT OF VARIOUS SOLIDS.

N. B. The density of a specimen depends considerably on its state and previous treatment; especially is this the case with porous materials.

Material.	Grams per cu. cm.	Pounds per cu. foot.	Material.	Grams per cu. cm.	Pounds per cu. foot.
Agate Alabaster: Carbonate Sulphate Albite Amber Amphiboles Anorthite Anthracite Asbestos Asphalt Basalt Beeswax Beryl	2.5-2.7 2.69-2.78 2.26-2.32 2.62-2.65 1.06-1.11 2.9-3.2 2.74-2.76 1.4-1.8 2.0-2.8 1.1-1.5 2.4-3.1 0.96-0.97 2.69-2.7	156-168 168-173 141-145 163-165 66-69 180-200 171-172 87-112 125-175 69-94 150-190 60-61 168-168	Gum arabic Gypsum Hematite Hornblende Ice Ilmenite Ivory Labradorite Lava: basaltic trachytic Leather: dry greased Lime: mortar slaked	1.3-1.4 2.31-2.33 4.9-5.3 3.0 0.917 4.5-5. 1.83-1.92 2.7-2.72 2.8-3.0 2.0-2.7 0.86 1.02 1.65-1.78 1.3-1.4	80- 85 144-145 306-330 187 57.2 280-310 114-120 168-170 175-185 125-168 54 64 103-111 81- 87
Biotite Bone Brick Butter Calamine Caoutchouc Celluloid Cement, set Chalk Charcoal: oak pine Chrome yellow Chromite Cinnabar	2.7-3.I 1.7-2.0 1.4-2.2 0.86-0.87 4.1-4.5 0.92-0.99 1.4 2.7-3.0 1.9-2.8 0.57 0.28-0.44 6.00 4.32-4.57 8.12	170-190 106-125 87-137 53-54 255-280 57-62 87 170-190 118-175 35 18-28 374 270-285	Limestone Litharge: Artificial Natural Magnetite Malachite Marble Meerschaum Mica Muscovite Ochre Oligoclase Olivine Opal	2.68-2.76 9.3-9.4 7.8-8.0 4.9-5.2 3.7-4.1 2.6-2.84 0.99-1.28 2.6-3.2 2.76-3.00 3.5 2.65-2.67 3.27-3.37 2.2	167-171 580-585 490-500 306-324 231-256 160-177 62-80 165-200 172-225 218 165-167 204-210 137
Clay Coal, soft Cocoa butter Coke Copal Corundum Diamond: Anthracitic Carbonado Diorite Dolomite Ebonite Emery Epidote	1.8-2.6 1.2-1.5 0.89-0.91 1.0-1.7 1.04-1.14 3.9-4.0 1.66 3.01-3.25 2.52 2.84 1.15 4.0 3.25-3.5	122-162 75-94 56-57 62-105 65-71 245-250 104 188-203 157 177 72 250 203-218	Orthoclase Paper Paraffin Peat Pitch Porcelain Porphyry Pyrite Quartz Quartzite Resin Rock salt Rutile Sandstone	2.58–2.61 0.7–1.15 0.87–0.91 0.84 1.07 2.3–2.5 2.6–2.9 4.95–5.1 2.65 2.73 1.07 2.18 6.00–6.5 2.14–2.36	161-163 44- 72 54- 57 52- 67 143-156 162-181 309-318 165 170 67 136 374-406 134-147
Feldspar Flint Fluorite Gamboge Garnet Gas carbon Gelatine Glass: common flint Glue Granite Graphite	2.55-2.75 2.63 3.18 1.2 3.15-4.3 1.88 1.27 2.4-2.8 2.9-5.9 1.27 2.64-2.76 2.30-2.72	159-172 164 198 75 197-268 117 180 150-175 180-370 80 165-172 144-170	Serpentine Slag, furnace Slate Soapstone Starch Sugar Talc Tallow Topaz Tourmaline Zircon	2.50-2.65 2.0-3.9 2.6-3.3 2.6-2.8 1.53 1.61 2.7-2.8 0.91-0.97 3.5-3.6 3.0-3.2 4.68-4.70	156-165 125-240 162-205 162-175 95 100 168-174 57- 60 219-223 190-200 292-293

DENSITY IN GRAMS PER CUBIC CENTIMETER AND POUNDS PER CUBIC FOOT OF VARIOUS ALLOYS.

TABLE 99.—DENSITIES OF VARIOUS NATURAL AND ARTIFICIAL MINERALS.

(See also Table 97.)

Pure compounds, all at 25°C Magnesia, MgO Lime, CaO 3.306 3.306 3.305 2.775 I art. Albite glass, NaAlSi $_3O_{81}$ art. Albite cryst., NaAlSi $_3O_{81}$ art. Albite cryst., NaAlSi $_3O_{81}$ art. Albite cryst., NaAlSi $_3O_{82}$ art. Soda anorthite cryst., NaAlSi $_3O_{82}$ art. Soda anorthite	Name and Formula.	Density grams per cc.	Sp. Vol.	Reference.	Name and Formula.	Density grams per cc.	Sp. Vol. cc. per gram.	Reference.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25°C Magnesia, MgO Lime, CaO Forms of SiO ₂ : Quartz, natural "artificial Cristobalite, artificial Silica glass Forms of Al ₂ SiO ₅ : Sillimanite glass Sillimanite cryst. Forms of MgSiO ₃ : β Monoclinic pyroxene α' Orthorhombic pyroxene β' Monoclinic amphibole γ' Orthorhombic amphibole γ' Orthorhombic amphibole Glass Forms of CaSiO ₃ : α (Pseudo-wollastonite) β (Wollastonite) Glass Forms of Ca ₂ SiO ₄ : α — calcium-orthosilicate β — " γ — " Lime-alumina compounds: 3CaO·Al ₂ O ₃ 5CaO·3Al ₂ O ₃ 3CaO·5Al ₂ O ₃ 3CaO·SAl ₂ O ₃ Diopside, natural, cryst. "artificial, "	3.306 2.646 2.642 2.319 2.206 2.53 3.022 3.183 3.166 2.849 2.735 2.904 2.906 2.895 3.26 3.27 2.965 3.029 2.820 2.972 3.04 3.258 3.265	.3025 .3779 .3785 .4312 .4533 .395 .3309 .3142 .3159 .3510 .3656 .3444 .3454 .307 .306 .337 .3301 .3546 .3365 .329 .3069 .3069	3 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Albite glass, NaAlSi ₃ O ₈ , art. Albite cryst., NaAlSi ₃ O ₈ , art. Anorthite glass, CaAl ₂ Si ₂ O ₈ , art. Anorthite cryst., CaAl ₂ Si ₂ O ₈ , art. Soda anorthite, NaAlSiO ₄ , art. Borax, glass, Na ₂ B ₄ O ₇ " cryst." Fluorite, natural, CaF ₂ (20°) (NH ₄) ₂ SO ₄ (30°) K ₂ SO ₄ (30°) K ₂ SO ₄ (30°) K ₂ SO ₄ (30°) Forms of ZnS: Sphalerite, natural* Wurtzite, artificial† Greenockite, artificial Forms of HgS: Cinnabar, artificial Metacinnabar, artificial Minerals: Gehlenite, from Velardena, 2Ca ₂ SiO ₄ CaCO ₃ Hillebrandite, from Velardena, CaSiO ₃ Ca(OH) ₂ Pyrite, natural, FeS ₂ Marcasite, natural, FeS ₂ *Only 0.15% Fe total impurity. Same composition as Sphaler-	2.597 2.692 2.757 2.563 2.36 2.27 3.180 1.765 2.657 1.984 4.090 4.087 4.820 8.176 7.58 3.03 3.005	.3851 .3715 .3627 .3902 .423 .440 .3145 .5666 .3764 .5040 .2444 .2075 .1223 .132	766" 889" " 10" " " " " 111" " 110"

References: 1, Larsen 1909; 2, Day and Shepherd; 3, Shepherd and Rankin, 1909; 4, Allen and White, 1909; 5, Allen, Wright and Clement, 1906; 6, Day and Allen, 1905; 7, Washington and Wright, 1910; 8, Merwin, 1911; 9, Johnston and Adams, 1911; 10, Allen and Crenshaw, 1912; 11, Wright, 1908.

All the data of this table are from the Geophysical Laboratory, Washington.

TABLE 100. - DENSITIES OF MOLTEN TIN AND TIN-LEAD EUTECTIC.

Temperature Molten tin 37 pts. Pb, 63, Sn.*	250°C. 300° 6.982 6.943 8.011 7.965	1 0'	500° 6.814 7.800	600° 6.755 7.731	900° 6.578	1200° 6.399	1400° 6.280	1600° 6.162
			1	L				

* Melts at 181. Day and Sosman, Geophysical Laboratory, unpublished.

For further densities inorganic substances see table 219. organic " 220.

TABLES 101-102. WEIGHT OF SHEET METAL.

TABLE 101.- Weight of Sheet Metal. (Metric Measure.)

This table gives the weight in grams of a plate one meter square and of the thickness stated in the first column.

Thickness in thousandths of a cm.	Iron.	Copper.	Brass.	Aluminum.	Platinum.	Gold.	Silver.
2 3. 4 5	78.0 156.0 234.0 312.0 390.0	89.0 178.0 267.0 356.0 44 5 .0	85.6 171.2 256.8 342.4 428.0	26.7 53.4 80.1 106.8 133.5	215.0 430.0 645.0 860.0	193.0 386.0 579.0 772.0 965.0	105.0 210.0 315.0 420.0 . 525.0
6 7 8 9 10	468.0 546.0 624.0 702.0 780.0	534.0 623.0 712.0 801.0 890.0	513.6 599.2 684.8 770.4 856.0	160.2 186.9 213.6 240.3 267.0	1290.0 1505.0 1720.0 1935.0 2150.0	1158.0 1351.0 1544.0 1737.0 1930.0	630.0 735.0 840.0 945.0 1050.0

TABLE 102. — Weight of Sheet Metal. (British Measure.)

Thickness	Iron.	Copper.	Brass.	Alum	inum.	Plati	num.
in Mils.	Pounds per Sq. Foot.	Pounds per Sq. Foot.	Pounds per Sq. Foot.	Pounds per Sq. Foot.	Ounces per Sq. Foot.	Pounds per Sq. Foot.	Ounces per Sq. Foot.
1 2 3 4 5	.04058 .08116 .12173 .16231	.04630 .09260 .13890 .18520 .23150	.04454 .08908 .13363 .17817 .22271	.01389 .02778 .04167 .05556	.2222 .4445 .6667 .8890	.1119 .2237 .3356 .4474 .5593	1.790 3.579 5.369 7.158 8.948
6 7 8 9	.24347 .28405 .32463 .36520 .40578	.27780 .32411 .37041 .41671 .46301	.26725 .31179 .35634 .40088 .44542	.08334 .09723 .11112 .12501 .13890	I.3335 I.5557 I.7780 2.0002 2.2224	.6711 .7830 .8948 1.0067	10.738 12.527 14.317 16.106 17.896

	Go	old.	Silver.		
Thickness in Mils.	Troy Ounces per Sq. Foot.	Grains per Sq. Foot.	Troy Ounces per Sq. Foot.	Grains per Sq. Foot.	
1 2 3 4 5 6 7 8 9	1.4642 2.9285 4.3927 5.8570 7.3212 8.7854 10.2497 11.7139 13.1782 14.6424	702.8 1405.7 2108.5 2811.3 3514.2 4217.0 4919.8 5622.7 6325.5 7028.3	0.7967 1.5933 2.3900 3.1867 3.9833 4.7800 5.5767 6.3734 7.1700 7.9667	382.4 764.8 1147.2 1529.6 1912.0 2294.4 2676.8 3059.2 3441.6 3824.0	

DENSITY OF LIQUIDS.

Density or mass in grams per cubic centimeter and in pounds per cubic foot of various liquids.

Liquid.	Grams per cubic centimeter.	Pounds per cubic foot.	Temp. C.
Acetone	0.792	49.4	20°
Alcohol, ethyl	0.807	50.4	0
" methyl	0.810	50.5	0
Anilin	1.035	64.5	0
Benzol	0.890	56.1	0
Bromine	3.187		0
Carbolic acid (crude)		199.0	_
Carbon disulphide	0.950-0.965	59.2-60.2	. 15
	1.293	80.6	0
Chloroform	1.480	92.3	18
Cocoa-butter	0.857	53.5	100
Ether	0.736	45.9	0
Gasoline	0.66-0.69	41.0-43.0	_
Glycerine	1.260	78.6	0
Japan wax	0.875	54.6	100
Milk	1.028-1.035	64.2-64.6	_
Naphtha (wood)	0.848-0.810	52.9-50.5	0
Naphtha (petroleum ether).	0.665	41.5	15
Oils: Amber	0.800		15
Anise-seed.		49.9 62.1	16
	0.996		1
Camphor	0.910	56.8	-
Castor	0.969	60.5	15
Clove	1.04-1.06	6566.	25
Cocoanut	0.925	57 - 7	15
Cotton Seed	0.926	57.8	16
Creosote . ·	I.040-I.100	64.9-68.6	15
Lard	0.920	57 · 4	15
Lavender	0.877	54.7	16
Lemon	0.844	52.7	16
Linseed (boiled).	0.942	58.8	15
Neat's foot.	0.913917	57.0-57.2	-3
Olive			. 15
Palm	0.918	57.3	
	0.905	56.5	15
Pentane	0.650	40.6	0
	0.623	38.9	25
Peppermint	0.9092	56-57	25
Petroleum	0.878	54.8	0
'' (light)	0.795-0.805	49.6-50.2	15
Pine	0.850-0.860	53.0-54.0	15
Рорру	0.924	57.7	-
Rapeseed (crude)	0.915	57.1	15
" (refined)	0.913	57.0	15
Resin .	0.955	59.6	15
Sperm	0.88	~ -	25
	0.010	55:	30
Soya-bean		57.3	
The target 3371 - 1-	0.906	56.5	90
Train or Whale	0.918-0.925	57.3-57.7	15
Turpentine	0.873	54.2	16
Valerian	0.965	60.2	16
Wintergreen	1.18	74.	25
Pyroligneous acid	0.800	49.9	0
Water	1.000	62.4	4
		·	

118

DENSITY OF PURE WATER FREE FROM AIR. 0° TO 41° C.

[Under standard pressure (76 cm), at every tenth part of a degree of the international hydrogen scale from 0° to 4t° C, in grams per milliliter 1]

De- grees				Te	nths of D	egrees.					Mean Differ-
Centi- grade.	0	1	2	3	4	5	6	7	8	9	ences.
0	0.999 8681	8747	8812	8875	8936	8996	9053	9109	9163	9216	+ 59
1	9267	9315	9363	9408	9452	9494	9534	9573	9610	9645	+ 41
2	9679	9711	9741	9769	9796	9821	9844	9866	9887	9905	+ 24
3	9922	9937	9951	9962	9973	9981	9988	9994	9998	*0000	+ 8
4	1.000 0000	*9999	*9996	*9992	*9986	*9979	*9970	*9960	*9947	*9934	- 8
5	0.999 9919	9902	9884	9864	9842	9819	9795	9769	9742	9713	- 24
6	9682	9650	9617	9582	9545	9507	9468	9427	9385	9341	- 39
7	9296	9249	9201	9151	9100	9048	8994	8938	8881	8823	- 53
8	8764	8703	8641	8577	8512	8445	8377	8308	8237	8165	- 67
9	8091	8017	7940	7863	7784	7704	7622	7539	7455	7369	- 81
10	7282	7194	7105	7014	6921	6826.	6729	6632	6533	6432	- 95
11	6331	6228	6124	6020	5913	5805	5696	5586	5474	5362	-108
12	5248	5132	5016	4898	4780	4660	4538	4415	4291	4166	-121
13	4040	3912	3784	3654	3523	3391	3257	3122	2986	2850	-133
14	2712	2572	2431	2289	2147	2003	1858	1711	1564	1416	-145
15 16 17 18	1266 0.998 9705 8029 6244 4347	9542 7856 6058 4152	0962 9378 7681 5873 3955	0809 9214 7505 5686 3757	0655 9048 7328 5498 3558	0499 8881 7150 5309 3358	0343 8713 6971 5119 3158	0185 8544 6791 4927 2955	0026 8373 6610 4735 2752	*9865 8202 6427 4541 2549	-156 -168 -178 -190 -200
20 21 22 23 24	2343 0233 0.997 8019 5702 3286	21 37 0016 7792 5466 3039	1930 *9799 7564 5227 2790	1722 *9580 7335 4988 2541	*9359 7104 4747 2291	1301 *9139 6873 4506 2040	1090 *8917 6641 4264 1788	0878 *8694 6408 4021	0663 *8470 6173 3777 1280	0449 *8245 5938 3531 1026	-211 -221 -232 -242 -252
25	0770	0513	0255	*9997	*9736	*9476	*9214	*8951	*8688	*8423	-261
26	0.996 8158	7892	7624	7356	7087	6817	6545	6273	6000	5726	-271
27	5451	5176	4898	4620	4342	4062	3782	3500	3218	2935	-280
28	2652	2366	2080	1793	1505	1217	0928	0637	0346	0053	-289
29	0.995 9761	9466	9171	8876	8579	8282	7983	7684	7383	7083	-298
30	6780	6478	6174	5869	5564	5258	4950	4642	4334	4024	-307
31	3714	3401	3089	2776	2462	2147	1832	1515	1198	0880	-315
32	0561	0241	*9920	*9599	*9276	*8954	*8630	*8304	*7979	*7653	-324
33	0.994 7325	6997	6668.	6338	6007	5676	5345	5011	4678	4343	-332
34	4007	3671	3335	2997	2659	2318	1978	1638	1296	0953	-340
35	0610	0267	*9922	*9576	*9230	*8883	*8534	*8186	*7837	*7486	-347
36	0.993 7136	6784	6432	6078	5725	5369	5014	4658	4301	3943	-355
37	3585	3226	2866	2505	2144	1782	1419	1055	0691	0326	-362
38	0.992 9960	9593	9227	8859	8490	8120	7751	7380	7008	6636	-370
39	6263	5890	5516	5140	4765	4389	4011	3634	3255	2876	-377
40 41	0.991 8661	2116	1734	1352	0971	0587	0203	*9818	*9433	*9047	-384

¹ According to P. Chappuis, Bureau international des Poids et Mesures, Travaux et Mémoires, 13; 1907. SMITHSONIAN TABLES.

VOLUME IN CUBIC CENTIMETERS AT VARIOUS TEMPERATURES OF A CUBIC CENTIMETER OF WATER FREE FROM AIR AT THE TEMPERATURE OF MAXIMUM DENSITY. 0° TO 40° C.

Hydrogen Thermometer Scale.

Temp.	.0	. 1	.2	•3	.4	.5	.6	.7	.8	.9 :
0 1 2 3 4	1.000132 973 932 908 900	125 069 029 006 000	118 064 026 005 000	059 023 004 001	106 055 020 003 001	100 051 018 002 002	095 047 016 001	089 043 013 001 004	084 039 011 000 005	079 035 009 000 007
5 6 7 8 9	008 032 070 124 191	010 035 075 130 198	012 039 080 137 206	014 042 085 142 214	016 046 090 149 222	018 050 095 156 230	021 054 101 162 238	023 058 106 169 246	026 062 112 176 254	029 066 118 184 263
10 11 12 13	272 367 476 596 729	281 377 487 609 743	290 388 499 623 757	299 398 511 636 772	308 409 522 649 786	317 420 534 661 800	327 430 547 675 815	337 441 559 688 830	347 453 571 702 844	357 464 584 715 859
15 16 17 18	873 1.001031 198 378 568	890 047 216 396 588	905 063 233 415 606	920 680 252 433 626	935 097 269 452 646	951 113 287 471 667	967 130 305 490 687	983 147 323 510 707	998 164 341 529 728	015* 182 358 548 748
20 21 22 23 24	769 981 1.002203 436 679	790 002* 226 459 704	811 024* 249 483 729	832 046* 271 507 754	853 068* 2 95 532 779	874 091* 319 556 804	895 113* 342 581 829	916 135* 364 605 854	938 158* 389 629 879	960 181* 412 654 905
25 26 27 28 29	932 1.003195 467 749 1.004041	958 221 495 776 069	983 · 248 523 806 100	010* 275 550 836 129	036* 302 579 865	061* 330 607 893 189	. o88* 35.7 635 922 220	384 663 951 250	141* 412 692 981 280	168* 439 720 011* 310
30 31 32 33 34	341 651 968 1.005296 631	371 682 001* 328 665	403 713 033* 361 698	43 ² 744 066* 395 73 ²	464 777 098* 427 768	494 808 132* 461 802	526 840 163* 496 836	557 872 197* 530 871	588 904 229* 562 904	619 936 263* 597 940
35	975	009*	044*	078*	115*	150*	185*	219*	255*	290*

Reciprocals of the preceding table.

DENSITY AND VOLUME OF WATER. -10° TO +250° C.

The mass of one cubic centimeter at 4° C. is taken as unity.

			B		
Temp. C.	Density.	Volume.	Temp. C.	Density.	Volume.
-10° -9 -8 -7 -6	0.99815 843 869 892 912	1.00186 157 131 108 088	+35° 36° 37° 38° 39	0.99406 371 336 300 263	1.00598 633 669 706 743
-5 -4 -3 -2 -1	0.99930 945 958 970 979	055 042 031 021	40 41 42 43 44	0.99 225 187 147 107 066	1.00782 821 861 901 943
+ 0 1 2 3 4	0.99987 993 997 999 1.00000	1.00013 007 003 001 1.00000	45 46 47 48 49	0.99025 0.98982 940 896 852	1.00985 1.01028 072 116 162
5 6 7 8 9	0.99999 997 993 988 981	1.00001 - 003 - 007 - 012 - 019	50 51 52 53 54	0.98807 762 715 669 621	1.01207 254 301 349 398
10 11 12 13 14	0.99973 963 952 940 927	037 048 060 073	55 60 65 70 75	0.98573 324 059 0.97781 489	1.01448 705 979 1.02270 576
15 16 17 18 19	0.99913 897 880 862 843	1.00087 103 120 138 157	80 85 90 95 100	0.97183 0.96865 534 192 0.95838	1.02899 1.03237 590 959 1.04343
20 21 22 23 24	0.99823 802 780 757 733	1.00177 198 220 244 268	110 120 130 140 150	0.9510 ·9434 ·9352 ·9264 ·9173	1.0515 1.0601 1.0693 1.0794 1.0902
25 26 27 28 29	0.99708 682 655 627 598	320 347 375 404	160 170 180 190 200	0.9075 .8973 .8866 .8750 .8628	1.1019 1.1145 1.1279 1.1429 1.1590
30 31 32 33 34	0.99568 537 506 473 440	1.00434 465 497 530 563	210 220 230 240 250	0.850 .837 .823 .809	1.177 1.195 1.215 1.236 1.259

^{*} From — 10° to 0° the values are due to means from Pierre, Weidner, and Rosetti; from 0° to 41°, to Chappuis, 42° to 100°, to Thiesen; 110° to 250°, to means from the works of Ramsey, Young, Waterston, and Hirn.

DENSITY OF MERCURY

Density or mass in grams per cubic centimeter, and the volume in cubic centimeters of one gram of mercury.

Temp. C.	Mass in grams per cu. cm.	Volume of 1 gram in cu. cms.	Temp. C	Massin grams per cu. cm.	Volume of 1 gram in cu. cms.
-10° -9 -8 -7 -6	13.6198	0.0734225	30°	13.5213	0.0739572
	6173	4358	31	5189	9705
	6148	4492	32	5164	9839
	6124	4626	.33	5140	9973
	6099	4759	34	5116	40107
-5	13.6074	0.0734893	35	13.5091	0.0740241
-4	6050	5026	36	5066	0374
-3	6025	5160	37	5042	0508
-2	6000	5293	38	5018	0642
-1	5976	5427	39	4994	0776
O	13.5951	0.0735560	40	13.4969	0.0740910
I	5926	5694	50	4725	2250
2	5901	5828	60	4482	3592
3	5877	5961	70	4240	4936
4	5852	6095	80	3998	6282
5 6 7 8 9	13.5827	0.0736228	90	13.3723	0.0747631
	5803	6362	100	3515	8981
	5778	6496	110	3279	50305
	5754	6629	120	3040	1653
	5729	6763	130	2801	3002
10	13.5704	0.0736893	140	13.2563	0.0754°54
11	5680	7030	150	2326	5708
12	5655	7164	160	2090	7064
13	5630	7298	170	1853	8422
14	5606	7431	180	1617	9784
15	13.5581	0.0737565	190	13.1381	0.0761149
16	5557	7699	200	1145	2516
17	5532	7832	210	0910	3886
18	5507	7966	220	0677	5260
19	5483	8100	230	0440	6637
20	13.5458	0.0738233	240	13.0206	0.0768017
21	5434	8367	250	12.9972	9402
22	5409	8501	260	9738	. 7090
23	5385	8635	270	9504	2182
24	5360	8768	280	9270	3579
25 26 27 28 29	13.5336 5311 5287 5262 5238	0.0738902 9036 9170 9304 9437	300 310 320 330	12.9036 8803 8569 8336 8102	0.0774979 6385 7795 9210 80630
30	13.5213	0.0739571	340 350 360	12.7869 7635 7402	0.0782054 3485 4921

Based upon Thiesen und Scheel, Tätigkeitber. Phys.-Techn. Reichsanstalt, 1897-1898; Chappuis, Trav. Bur. Int. 13, 1903. Thiesen, Scheel, Sell; Wiss. Abh. Phys.-Techn. Reichsanstalt 2, p. 184, 1895, and 1 liter=1.000027 cu. dm.

DENSITY OF AQUEOUS SOLUTIONS.*

The following table gives the density of solutions of various salts in water. The numbers give the weight in grams per cubic centimeter. For brevity the substance is indicated by formula only.

Substance.	W	eight of	the diss	olved s	ubstance e solution	e in 100	parts by	weight	of	p. C.	Authority.
3.33.0	5	10	15	20	25	30	40	50	60	Temp.	
K ₂ O KOH	1.047 1.040 1.073 1.058 0.978	I.144 I.114	1.153 1.127 1.218 1.169 0.940	1.214 1.176 1.284 1.224 0.924	1.284 1.229 1.354 1.279 0.909	1.354 1.286 1.421 1.331 0.896	1.503 1.410 1.557 1.436	1.659 1.538 1.689 1.539	1.809 1.666 1.829 1.642	15. 15. 15. 16.	Schiff. " Carius.
NH ₄ Cl KCl	1.015 1.031 1.035 1.029 1.041		1.044 1.099 1.110 1.085 1.132	1.058 1.135 1.150 1.116 1.181	1.072 - 1.191 1.147 1.232	- - 1.181 1.286	- - 1.255 1.402			15. 15. 15. 15.	Gerlach. " " "
CaCl ₂ + 6H ₂ O AlCl ₈ MgCl ₂ MgCl ₂ +6H ₂ O ZnCl ₂	1.019 1.030 1.041 1.014 1.043	1.072 1.085 1.032	1.061 1.111 1.130 1.049 1.135	1.083 1.153 1.177 1.067 1.184	1.196	1.128 1.241 1.278 1.103 1.289	1.340 - 1.141	1.225 - - 1.183 1.563	1.276 - 1.222 1.737	18. 15. 15. 24.	Schiff. Gerlach. Schiff. Kremers.
$\begin{array}{c} CdCl_2 & \dots \\ SrCl_2 & \dots \\ SrCl_2 + 6H_2O \\ BaCl_2 & \dots \\ BaCl_2 + 2H_2O \end{array}$	1.043 1.044 1.027 1.045 1.035	1.092 1.053 1.094	1.138 1.143 1.082 1.147	1.193 1.198 1.111 1.205 1.166	1.254 1.257 1.042 1.269 1.217	1.319 1.321 1.174 - 1.273		1.653	1.887	19.5 15. 15. 15.	Gerlach. " Schiff.
$\begin{array}{cccc} CuCl_2 & . & . & .\\ NiCl_2 & . & . & .\\ HgCl_2 & . & . & .\\ Fe_2Cl_6 & . & . & .\\ PtCl_4 & . & . & .\\ \end{array}$	1.044 1.048 1.041 1.041 1.046	1.098 1.092 1.086	1.155 1.157 - 1.130 1.153	1.221 1.223 - 1.179 1.214	1.291 1.299 - 1.232 1.285	1.360 - - 1.290 1.362	- -	- - 1.545 1.785	- - 1.668	17.5 17.5 20. 17.5	Franz Mendelejeff. Hager. Precht.
$\begin{array}{c} SnCl_2 + 2H_2O \\ SnCl_4 + 5H_2O \\ LiBr \\ KBr \\ NaBr \\ \end{array}$	1.032 1.029 1.033 1.035 1.038	1.058 1.070 1.073	1.104 1.089 1.111 1.114 1.123	1.143 1.122 1.154 1.157 1.172	1.185 1.157 1.202 1.205 1.224	1.193	1.274	-	1.580 1.467 - -	15. 15. 19.5 19.5	Gerlach. Kremers.
$\begin{array}{cccc} MgBr_2 & . & . & .\\ ZnBr_2 & . & . & .\\ CdBr_2 & . & . & .\\ CaBr_2 & . & . & .\\ BaBr_2 & . & . & .\\ \end{array}$	1.041 1.043 1.041 1.042 1.043	1.091	1.135 1.144 1.139 1.137 1.142	1.189 1.202 1.197 1.192 1.199	1.263	1.308 1.328 1.324 1.313 1.327	1.449 1.473 1.479 1.450 1.483	1.623 1.648 1.678 1.639 1.683	1.873	19.5 19.5 19.5 19.5	"
SrBr2 KI LiI NaI ZnI2	1.043 1.036 1.036 1.038 1.043	1.076	1.140 1.118 1.122 1.126 1.138	1.198 1.164 1.170 1.177 1.194			1.489 1.394 1.412 1.430 1.467	1.544 1.573 1.598	1.732	19.5 19.5 19.5 19.5	14 14 14
$\begin{array}{cccc} CdI_2 & . & . & . \\ MgI_2 & . & . & . \\ CaI_2 & . & . & . \\ SrI_2 & . & . & . \\ BaI_2 & . & . & . \end{array}$	1.042 1.041 1.042 1.043 1.043	1.086 1.088 1.089	1.138	1.192 1.196 1.198	1.252	1.319	1.472 1.475 1.489	1.663	1.908	19.5	46 46 46 46
NaClO ₃	1.035 1.039 1.031 1.031		1.106 1.127 1.009 1.101 1.140	1.176 1.135 1.140		1.222	1.329 - 1.313 1.479			19.5 19.5 15. 20.2 15.	" Gerlach. Schiff. Kohlrausch.

^{*} Compiled from two papers on the subject by Gerlach in the "Zeit. für Anal. Chim.," vols. 8 and 27. SMITHSONIAN TABLES.

DENSITY OF AQUEOUS SOLUTIONS.

	w	eight of	the dis	solved s	ubstanc e soluti	ce in 100	parts b	y weigh	t of	Ü	
Substance.	5	10	15	20	25	30	40	50	60	Temp.	Authority.
NH ₄ NO ₃ Zn(NO ₃) ₂ Zn(NO ₃) ₂ +6H ₂ O	1.020	1.095	-	1.201	1.263	1.325	1.456	1.597	-	17.5	Gerlach. Franz. Oudemans.
$Ca(NO_3)_2 \dots Cu(NO_3)_2 \dots$	1.037	1.075		1.162		1.328		1.482	1.604	17.5	Gerlach. Franz.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.039 1.043 1.052 1.045	1.083 1.091 1.097 1.090	1.129 1.143 1.150 1.137 1.137	I.179 I.199 I.212 I.192 I.192		1.355	I.536 I.465 I.465	1.759	-	19.5 17.5 17.5 17.5	Kremers. Gerlach. Franz.
$\begin{array}{c} Fe_2(NO_3)_6 \dots \\ Mg(NO_3)_2 + 6H_2O \\ Mn(NO_3)_2 + 6H_2O \\ K_2CO_3 \dots \\ K_2CO_3 + 2H_2O \end{array}$	I.039 I.018 I.025 I.044 I.037	1.076 1.038 1.052 1.092 1.072	1.117 1.060 1.079 1.141 1.110	1.160 1.082 1.108 1.192 1.150	1.210 1.105 1.138 1.245 1.191	1.129	1.179	1.496 1.232 1.307 1.543 1.415	1.657 - 1.386 - 1.511	17.5 21 8 15	Schiff. Oudemans. Gerlach.
$\begin{array}{c} {\rm Na_2CO_3IoH_2O} \\ {\rm (NH_4)_2SO_4} \\ {\rm Fe_2(SO_4)_3} \\ {\rm FeSO_4} + {\rm _7H_2O} \\ {\rm MgSO_4} \\ {\rm .} \end{array} .$	_	1.038 1.055 1.096 1.053 1.104	1.057 1.084 1.150 1.081 1.161	I.077 I.113 I.207 I.111 I.221	1.098 1.142 1.270 1.141 1.284	1.118 1.170 1.336	1.226 1.489 1.238	-		15. 19. 18. 17.2	Schiff. Hager. Schiff. Gerlach.
$\begin{array}{c} MgSO + 7H_2O \ . \\ Na_2So_4 + 10H_2O \ . \\ CuSO_4 + 5H_2O \ . \\ MnSO_4 + 4H_2O \ . \\ ZnSO_4 + 7H_2O \ . \end{array}$	1.025 1.019 1.031 1.031 1.027	1.050 1.039 1.064 1.064 1.057	1.075 1.059 1.098 1.099 1.089	I.10I I.08I I.134 I.135 I.122	I.129 I.102 I.173 I.174 I.156		I.215 - - I.303 I.269	1.278 - - 1.398 1.351	- - - I.443	15. 15. 18. 15. 20.5	" Schiff. Gerlach. Schiff.
$Fe_2(SO)_3+K_2SO_4 +24H_2O$ $Cr_2(SO)_3+K_2SO_4$	1.026	1.045	1.066	1.088	1.112	1.141	-	-	-	17.5	Franz.
$+24H_2O$ MgSO ₄ + K ₂ SO ₄	1.016	1.033	1.051	1.073	1.099	1.126	1.188	1.287	1-454	17.5	46
$+6\hat{H}_2O$ (NH ₄) ₂ SO ₄ +	1.032	1.066	1.101	1.138	-	-	-	-	-	15.	Schiff.
$\begin{array}{c} \text{FeSO}_4 + 6\text{H}_2\text{O} \\ \text{K}_2\text{CrO}_4 & \cdot & \cdot & \cdot \end{array}$	1.028	1.058	1.090	I.I22 I.I74	I.I 54 I.225	1.191	1.397	_	-	19.5	66
$K_2Cr_2O_7$ Fe(Cy) ₆ K ₄ Fe(Cy) ₆ K ₃ Pb(C ₂ H ₃ O ₂) ₂ +	1.035 1.028 1.025	1.071 1.059 1.053	1.108 1.092 1.070	- 1.126 1.113	- -	-	-			19.5 15. 13	Kremers. Schiff.
$_{3\text{H}_{2}\text{O}}^{3\text{H}_{2}\text{O}}$ $_{2\text{NaOH}}^{3\text{H}_{2}\text{O}}$	1.031	1.064	1.100	1.137	1.177	1.220	1.315	1.426	-	1 5.	Gerlach.
+ 24H ₂ O	1.020	1.042	1.066	1.089	1.114	1.140	1.194			14.	Schiff.
	5	10	15	20	30	40	60	80	100		
SO_8 SO_2 N_2O_5	1.013		1.045	1.179 1.063 1.141	1.277	1.389 - 1.294 1.207	1.564 - 1.422	1.840		15. 4. 15.	Brineau. Schiff. Kolb. Gerlach.
$C_4H_6O_6 \dots C_6H_8O_7 \dots$	1.018	1.038	1.058	- 1	1.123	1.170	1.273	-	-	15.	"
Cane sugar HCl HBr	1.025 1.035 1.037	1.050 1.073 1.077	1.075 1.114 1.118	1.082 1.101 1.158 1.165	1.151 1.257 1.271	1.200 1.376 1.400	1.289			17.5 15. 14. 13.	Kolb. Topsöe. Kolb.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.032 1.040 1.035 1.027 1.028	1.082 1.077 1.057	1.106 1.127 1.119 1.086 1.088	1.174 1.167 1.119 1.119	1.184	1.307 - 1.385 1.264 1.250	1.501 - 1.676 1.438 1.373	1.732 - - - 1.459	1.838	15. 17.5 17.5 15.	Stolba. Hager. Schiff. Kolb.
$C_2H_4O_2$	1.007	1.014	1.021	1.028	1.041	1.052	1.068	1.075	1.055	15.	Oudemans.

DENSITIES OF MIXTURES OF ETHYL ALCOHOL AND WATER IN CRAMS PER MILLILITER.

The densities in this table are numerically the same as specific gravities at the various temperatures in terms of water at 4° C. as unity. Based upon work done at U. S. Bureau of Standards. See Bulletin Bur. Stds. vol. 9, no. 3; contains extensive bibliography; also Circular 19, 1913.

tains extensiv	ve bibliograph	y; also Circul	ar 19, 1913.				
Per cent				Temperatures.			
C ₂ H ₅ OH by weight	10° C.	15° C.	20° C.	25° C.	30° C.	35° C.	40° C.
0	0.99973	0.99913	0.99823	0.99708	0.99568	0.99406	0.99 225
1	785	725	. 636	520	379	217	034
2	602	542	453	336	194	031	.98846
3	426	365	275	157	014	.98849	663
4	258	195	103	.98984	•98839	672	485
5	098	032	.98938	817	670	501	311
6	.98946	.98877	780	656	507	335	142
7	801	729	627	500	347	172	-97975
8	660	584	478	346	189	009	808
9	524	442	331	193	031	.97846	641
10	393	304	187	043	.97875	685	475
11	267	171	047	.97897	723	527	312
12	145	041	•97910	753	573	371	150
13	026	.97914	775	611	424	216	.96989
14	.97911	790	643	472	278	063	829
15 16 17 18	800 692 583 473 363	669 552 433 313 191	514 387 259 129 .96997	334 199 062 .96923 782	133 .96990 844 697 547	.96911 760 607 452 294	670 512 352 189 023
20	252	068	864	639	395	134	.95856
21	139	.96944	729	495	242	•95973	687
22	024	818	592	348	087	809	516
23	.96907	689	453	199	.95929	643	343
24	787	558	312	048	769	476	168
25	665	424	168	.95895	607	306	.94991
26	539	287	020	738	442	133	810
27	406	144	.95867	576	272	•94955	625
28	268	.95996	710	. 410	098	774	438
29	125	844	548	241	•94922	590	248
30	·95977	686	382	067	741	403	055
31	823	524	212	.94890	557	214	.93860
32	665	357	038	709	370	021	662
33	502	186	.94860	525	180	.93825	461
34	334	011	679	337	•93986	626	257
35	162	.94832	494	146	790	425	051
36	.94986	650	306	•93952	591	221	.92843
37	805	464	114	756	390	016	634
38	620	273	-93919	556	186	.92808	422
39	431	079	720	353	.92979	597	208
40	238	.93882	518	148	770	385	.91992
41	042	682	314	.92940	558	170	774
42	.93842	478	107	729	344	.91952	554
43	639	271	.92897	516	128	733	33 ²
44	433	062	685	301	.91910	513	108
45	226	.92852	472	085	692	291	.90884
46	017	640	257	.91868	472	069	660
47	.92806	426	041	649	250	.90845	434
48	593	211	.91823	429	028	621	207
49	379	.91995	604	208	.90805	396	.89979
50	162	776	384	.90985	580	168	750

DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER IN CRAMS PER MILLILITER.

Per cent				Temperature.		122	
C ₂ H ₅ OH by weight	10° C.	15° C.	20° C.	25° C.	30° C.	3,5° C.	40° C.
50	0.92162	0.91776	0.91384	0.90985	0.90580	0.90168	0.89750
51	.91943	555	160	760	353	.89940	519
52	723	333	.90936	534	125	710	288
53	502	110	711	307	.89896	479	056
54	279	.90885	485	079	667	248	.88823
55	055	659	258	.89850	437	016	589
56	.90831	433	031	621	206	.88784	356
57	607	207	.89803	392	.88975	552	122
58	381	.89980	574	162	744	319	.87888
59	154	752	344	.88931	512	085	653
60 61 62 63 64	.89927 698 468 237 006	523 293 062 .88830 597	.88882 .650 417 183	699 466 233 .87998 763	278 044 .87809 574 337	.87851 615 379 142 .86905	417 180 .86943 705 466
65 66 67 68 69	.88774 541 308 074 .87839	364 130 .87895 660 424	.87948 713 477 241 004	527 291 054 .86817 579	.86863 625 387 148	667 429 190 .85950 710	227 .85987 747 507 266
70	602	187	.86766	340	.85908	470	025
71	365	.86949	527	100	667	228	.84783
72	127	710	287	.85859	426	.84986	540
73	.86888	470	047	618	184	743	297
74	648	229	.85806	376	.84941	500	053
75	408	.85988	564	134	698	257	.83809
76	168	747	322	.84891	455	013	564
77	.85927	505	079	647	211	.83768	319
78	685	262	.84835	403	.83966	523	074
79	442	018	590	158	720	277	.82827
80	197	.84772	344	.83911	473	.82780	578
81	.84950	525	096	664	224	.82780	329
82	702	277	.83848	'415	.82974	530	079
83	453	028	599	164	724	279	.81828
84	203	.83777	348	.82913	473	027	576
85	.83951	525	095	660	220	.81774	322
86	697	271	,82840	405	.81965	519	067
87	441	014	583	148	708	262	.80811
88	181	.82754	323	.81888	448	003	552
89	.82919	492	062	626	186	.80742	291
90	654	227	.81797	362	.80922	478	028
91	. 386	.81959	529	094	655	211	.79761
92	.114	688	257	.80823	384	.79941	491
93	.81839	413	.80983	549	• 111	669	220
94	561	134	705	272	•79835	393	.78947
95 96 97 98 99	278 .80991 698 399 094	.80852 566 274 •79975 670	424 138 •79846 547 243	.79991 706 415 117 .78814	555 271 78981 684 382	78831 542 247 77946	670 388 100 .77806 507
100	.79784	360	.78934	506	075	641	203

TABLE 110.

DENSITIES OF AQUEOUS MIXTURES OF METHYL ALCOHOL, CANE SUGAR, OR SULPHURIC ACID.

Per cent	Methyl Alcohol	Cane	Sulphuric Acid.	Per cent by weight	Methyl Alcohol.	Cane	Sulphuric Acid.
by weight of substance.	$D \frac{15^{\circ}}{4^{\circ}} C$	Sugar,	$D \frac{20^{\circ}}{4^{\circ}} C$.	of substance.	$D \frac{r_5^{\circ}}{4^{\circ}} C.$	Sugar.	$D \frac{20^{\circ}}{4^{\circ}} C.$
0 I	0.99913	0.998234	0.99823	50 51	0.91852 .91653	1.229567	1.39505
2 3 4	•99543 •99370 •99198	1.006015 1.009934 1.013881	1.01178 1.01839 1.02500	52 53 54	.91451 .91248 .91044	1.240641 1.246234 1.251866	1.41481 1.42487 1.43503
5	.99029 .98864	1.017854	1.03168 1.03843	55 56 ·	.90839 .90631	1.257535	1.44530
7 8 9	.98701 .98547 .98394	1.025885 1.029942 1.034029	1.04527 1.05216 ° 1.05909	57 58 59	.90421 .90210 .89996	1.268989 1.274774 1.280595	1.46615 1.47673 1.48740
10	.98241 .98093	1.038143 1.042288 1.046462	1.06609 1.07314 1.08026	60 61 62	.89781 .89563	1.286456 1.292354 1.298291	1.49818
12 13 , 14	.97945 .97802 .97660	1.050665	1.08744 1.09468	63 64	.89341 .89117 .88890	1.304267	1.51999 1.53102 1.54213
15 16	.97518 ·97377	1.059165 1.063460 1.067789	1.10199 1.10936 1.11679	65 66	.88662 .88433 .88203	1.316334 1.322425 1.328554	1.55333 1.56460
17 18 19	.97237 .97096 .96955	1.072147	1.12428	67 68 69	.87971	1.334722	1.57595 1.58739 1.59890
20 2 I 2 2	.96814 .96673 .96533	1.080959 1.085414 1.089900	1.13943 1.14709 1.15480	70 71 72	.87507 .87271 .87033	1.347174 1.353456 1.359778	1.61048 1.62213 1.63384
23 24	.96392 .96251	1.094420	1.16258 1.17041	73 74	.86792 .86546	1.366139 1.372536	1.64560
25 26 27	.96108 .95963 .95817	1.103557 1.108175 1.112828	1.17830 1.18624 1.19423	75 76	.86300 .86051 .85801	1.378971 1.385446 1.391956	1.66917 1.68095 1.69268
27 28 29	.95668 .95518	1.117512	1.20227 1.21036	77 78 79	.855 51 .85300	1.398505	1.70433
30 31 32	.95366 .95213 .95056	1.126984 1.131773 1.136596	1.21850 1.22669 1.23492	80 81 82	.85048 .84794 .84536	1.411715 1.418374 1.425072	1.72717 1.73827 1.74904
33 34	.94896 •94734	1.141453 1.146345	1.24320 1.25154	83 84	.84274	1.431807 1.438579	1.75943 1.76932
35 36 37	.94570 .94404 .94237	1.151275 1.156238 1.161236	1.25992 1.26836 1.27685	85 86 - 87	.83742 .83475 .83207	1.445388 1.452232 1.459114	1.77860 1.78721 1.79509
37 38 39	.94067 .93894	1.166269	1.28543 1.29407	88 89	.82937 .82667	1.466032 1.472986	1.80223 1.80864
40 41 42	.93720 .93543 .93365	1.176447 1.181592 1.186773	1.30278 1.31157 1.32043	90 91 92	.82396 .82124 .81849	1.479976 1.487002 1.494063	1.81438 1.81950 1.82401
43 44	.93185	1.191993	1.32938	93 94	.81568 .81285	1.501158	1.82790
45 46 47 48	.92815 .92627 .9 2 436	1.202540 1.207870 1.213238	1.34759 1.35686 1.36625	95 96 97	.80999 .80713 .80428	1.515455 1.522656 1.529891	1.83368 1.83548 1.83637
49	.92242	1.218643	1.37574 1.38533	97 98 99	.80143 .79859	1.537161 1.544462	1.83605
50	.91852	1.229567	1.39505	100	•79577	1.551800	

Calculated from the specific gravity determinations of Doroschevski and Rozhdestvenski at 15°/15° C.; J. Russ., Phys. Chem. Soc., 41, p. 977, 1900 According to Dr. F. Plato; Wiss. Abh. der K. Normal-Eichungs-Kommission, 2, p. 153, 1900. Calculated from Dr. Domke's table; Wiss. Abh. der K. Normal-Eichungs-Kommission, (I)

(2) (3) 5, p. 131, 1900.

All reprinted from Circular 19, U.S. Bureau of Standards, 1913.

DENSITY OF GASES

The following table gives the density as the weight in grams of a liter (normal liter) of the gas at 0° C, 76 cm pressure and standard gravity (sea-level, 45° latitude), the specific gravity referred to dry, carbon-dioxide-free air and to pure oxygen, and the weight in pounds per cubic foot. Dry, carbon-dioxide-free air is of remarkably uniform density; Guye, Kovacs and Wourtzel found maximum variations in the density of only 7 to 8 parts in 10,000. For highest accuracy pure oxygen should be used as the standard gas for specific gravities. Observed densities are closely proportional to the molecular weights.

Gas.	Formula.	Weight of normal	Specific	gravity.	Pounds per	Refer.
	2 22114411	liter in grams.	Air = 1	O ₂ = 1	cubic foot.	10.01.
Air	_	1.2930	1.0000	0.9048	0.08072	ı
Acetylene	C_2H_2	1.1791	0.0110	0.8251	0.07361	2
Ammonia	NH_3	0.7708	0.5061	0.5394	0.04812	3
Argon	A	1.7800	1.3773	1.2462	0.11118	3
Bromine	Br_2	7.14	5.52	5.00	0.446	4
Butane	C_4H_{10}	2.594	2.006	1.815	0.1619	4
Carbon dioxide	CO_2	1.9768	1.5289	1.3833	0.12341	3
Carbon monoxide	CO	1.2504	0.9671	0.8750	0.07806	3
Chlorine	Cl_2	3.221	2.491	2.254	0.2011	3
Coal gas		∫ 0.41 to	∫ 0.32 to	∫ 0.29 to	∫ 0.026 to	
		(0.96	₹0.74	(0.67	(0.060	-
Cyanogen	C_2N_2	2.323	1.797	1.626	0.1450	4
Ethane	C_2H_6	1.3562	1.0489	0.9490	0.08467	5
Ethylene	C_2H_4	1.2609	0.9752	0.8823	0.07872	2
Fluorine	F_2	1.70	1.31	1.19	0.106	6
Helium	He	0.1785	0.1381	0.1249	0.01115	14
Hydrobromic acid	HBr	3.616	2.797	2.530	0.2257	4
Hydrochloric acid	HCl HF	1.6398	1.2682	1.1475	0.10237	3 8
Hydrofluoric acid	H ₂	0.922	0.713	0.645	0.0576	
Hydrogen	H_2S	0.08987	0.06950	0.06289	0.005610	9
Hydrogen sulphide Krypton	Kr	1.538	2.868	1.076	0.09602	3
Methane	CH	3.708		2.595	0.2315	7
Methyl chloride	CH ₃ Cl	2.304	0.5544 1.782	0.5016 1.612	0.04475	5
Methyl ether	C ₂ H ₆ O	2.304	1.702	1.012	0.1436	10
Neon	Ne	0.0002	0.6062	0.6200	0.05620	7
Nitrogen	N ₂	1.2507	0.0902	0.8752	0.05020	3
Nitric oxide	NO.	1.3402	1.0365	0.9378	0.08367	3
Nitrous oxide	N_2O	1.9777	1.5296	1.3839	0.12347	3
Oxygen	O_2	1.42005	1.1052	1.0000	0.089214	11
Propane	C_3H_8	2.0106	1.5620	1.4132	0.12608	12
Steam at 100° C	H_2O	0.508	0.462	0.418	0.0373	13
Sulphur dioxide	SO_2	2.9266	2.2634	2.0470	0.18270	3
Xenon	X	5.851	4.525	4.004	0.3653	7
		33-	1-3-3	1 5.1	3.0.00	'

References: (1) Guye, Kovacs, Wourtzel, Jour. chim. phys., 10, p. 332, 1912; (2) Stahrfoss, Arch. Sc. phys. et nat., IV, 28, p. 384, 1909; (3) Guye, Jour. chim. phys., 5, p. 203, 1907 (contains review of best determinations and indicates most probable values); (4) Computed; (5) Baume and Perrot, Jour. chim. phys., 7, p. 369, 1909; (6) Moissan, C. R., 138, 1904; (7) Watson, Jour. Chem. Soc., 97, p. 833, 1910; (8) Thorpe, Hambley, Jour. Chem. Soc., 53, p. 765, 1888; (9) Morley, Smithsonian Contributions to Knowledge, 1895; (10) Baume, Jour. chim. phys., 6, p. 1, 1908; (11) Germann, Jour. of Phys. Chem., 19, p. 437, 1915; (12) Timmermans, C. R., 158, p. 789, 1914; (13) Peabody's Steam Tables, 1909; (14) Taylor, Phys. Rev., 10, p. 653, 1917.

TABLE 112.

VOLUME OF CASES.

Values of 1 + .00367 t.

The quantity $\mathbf{i} + .00367 \, t$ gives for a gas the volume at t^0 when the pressure is kept constant, or the pressure at t^0 when the volume is kept constant, in terms of the volume or the pressure at 0° .

- (a) This part of the table gives the values of r + .oo367t for values of t between oo and 10° C. by tenths of a degree.
- (b) This part gives the values of 1 + .00367t for values of t between -90° and $+1990^{\circ}$ C. by 10° steps.

These two parts serve to give any intermediate value to one tenth of a degree by a simple computation as follows: — In the (δ) table find the number corresponding to the nearest lower temperature, and to this number add the decimal part of the number in the (a) table which corresponds to the difference between the nearest temperature in the (δ) table and the actual temperature. For example, let the temperature be $632^\circ.2:$

- (c) This part gives the logarithms of x + .00367 t for values of t between -49° and $+399^{\circ}$ C. by degrees.
- (d) This part gives the logarithms of t + .00367 t for values of t between 400° and 1990° C. by 10° steps.

(a) Values of $1+.00367\,t$ for Values of t between 0° and 10° C. by Tenths of a Degree.

t	0.0	0.1	0.2	0.3	0.4
0 1 2 3 4	1.00000 .00367 .00734 .01101	1.00037 .00404 .00771 .01138	1.00073 .00440 .00807 .01174	1.00110 .00477 .00844 .01211	1.00147 .00514 .00881 .01248 .01615
5 6 7 8 9	1.01835 .02202 .02569 .02936 .03303	1.01872 .02239 .02606 .02973 .03340	1.01908 .02275 .02642 .03009 .03376	1.01945 .02312 .02679 .03046 .03413	1.01982 .02349 .02716 .03083 .03450
t	0.5	0.6	0.7	0.8	0.9
0 1 2 3 4 5 6 7 8 9	1.00184 .00550 .00918 .01284 .01652 1.02018 .02386 .02752 .03120	1.00220 .00587 .00954 .01321 .01688 1.02055 .02422 .02789 .03156	1.00257 .00624 .00991 .01358 .01725 1.02092 .02459 .02826 .03193 .03560	1.00294 .00661 .01028 .01395 .01762 1.02129 .02496 .02863 .03290	1.00330 .00697 .01064 .01431 .01798 1.02165 .02532 .02899 .03266 .03633

(b) Values of $1+.00367\,t$ for Values of t between -90° and $+1990^\circ$ C. by 10° Steps.

1					
t	00	10	. 20	30	40
-000	00000.1	0.96330	0.92660	0.88990	0.85320
+000	1.00000	1.03670	1.07340	1.11010	1.14680
001	1.36700	1.40370	1.44040	1.47710	1.51380
200	1.73400	1.77070	1.80740	1.84410	1.88080
300 400	2.10100 2.46800	2.13770	2.17440	2.21110	2.24780
400	2.40000	2.50470	2.54140	2.57810	2.61480
500	2.83500	2.87170	2.90840	2.94510	2.98180
600	3.20200	3.23870	3.27 540	3.31210	3. 34880
700	3.56900	3.60570	3.64240	3.67910	3.71580
800	3.93600	3.97270	4.00940	4.04610	4.08280
900	4.30300	4-33970	4.37640	4.41310	4.44980
1000	4.67000	4.70670	70670 4.74340 4.780		4.81680
1100	5.03700	5.07370	5.11040	5.14710	5.18380
1200	5.40400	5.44070	5.47740	5.51410	5.55080
1 300	5.77100	5.80770	5.84440	5.88110	5.91780
1400	6.13800	6.17470	6.21140	6.24810	6.28480
1500	6.50500	6.54170	6.57840	6.61510	6.65180
1600	6.87200	6.90870	6.94540	6.98210	7.01880
1700	7.23900	7.27570	7.31240	7.34910	7.38580
1800	7.60600	7.64270	7.67940	7.71610	7.75280 8.11980
1900	7.97300	8.00970	8.04640	8.08310	8.11980
2000	8.34000	8.37670	8.41340	8.45010	8.48680
t	50	60	70	80	90
	50	60 0.77980	0.74310	80	90 0.66970
-000	0.81650	0.77980	0.74310	0.70640	0.66970
-000 +000	0.81650 1.18350	0.77980	0.74310	0.70640	0.66970
-000 +000	0.81650 1.18350 1.55050	0.77980 1.22020 1.58720	0.74310 1.25690 1.62390	0.70640 1.29360 1.66060	0.66970 1.33030 1.69730
-000 +000	0.81650 1.18350	0.77980 1.22020 1.58720 1.95420 2.32120	0.74310	0.70640 1.29360 1.66060 2.02760 2.39460	0.66970 1.33030 1.69730 2.06430 2.43130
-000 +000 100 200	0.81650 1.18350 1.55050 1.91750	0.77980 1.22020 1.58720 1.95420	0.74310 1.25690 1.62390 1.99090	0.70640 1.29360 1.66060	0.66970 1.33030 1.69730 2.06430
-000 +000 100 200 300 400	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830
-000 +000 100 200 300 400	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830
-000 +000 100 200 300 400 500 600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930
-000 +000 100 200 300 400	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630
-000 +000 100 200 300 400 500 600 700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.80260	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930
-000 +000 100 200 300 400 500 600 700 800 900	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330
-000 +000 100 200 300 400 500 600 700 800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030
-000 100 200 300 400 500 600 700 800 900	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.15290 4.92690 5.223390 5.66690	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.2960 4.59660 4.96360 5.33060 5.60760	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430
-000 +000 100 200 300 400 500 600 700 800 900 1000 1100	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15020 4.52320 4.89020 5.25720 5.62420 5.99120	0.74310 1.25690 1.62390 1.99990 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690 5.29390 5.666990 6.02790	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.40560 3.86260 4.2960 4.59660 4.96360 5.33060 5.69760 6.06460	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130
-000 +000 100 200 300 400 500 600 700 800 900 1000 1100 1200	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.15290 4.92690 5.223390 5.66690	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.2960 4.59660 4.96360 5.33060 5.60760	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430
-000 +000 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.29390 5.66090 6.02790 6.39490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.2960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 4.26630 4.66330 5.00030 5.36730 5.73430 6.10130 6.46830
-000 +000 100 200 300 400 500 600 700 800 900 1100 1100 1200 1300	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150 6.68850	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15020 4.52320 4.89020 5.25720 5.62420 5.99120	0.74310 1.25690 1.62390 1.99990 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690 5.29390 5.666990 6.02790	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.40560 3.86260 4.2960 4.59660 4.96360 5.33060 5.69760 6.06460	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150 6.68850 7.055550 7.42250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.20390 5.66090 6.62790 6.39490 6.76190 7.12890 7.49590	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.2960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16560 7.53260	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.95450 6.32150 6.68850 7.05550 7.422250 7.78950	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.45920 7.45920 7.82620	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.20390 6.02790 6.39490 6.76190 7.4890 7.49590 7.86290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16560 7.53260 7.89960	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930 7.93630
-000 +000 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150 6.68850 7.055550 7.42250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.78920 4.1 5620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220 7.45920	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.20390 5.66090 6.62790 6.39490 6.76190 7.12890 7.49590	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.2960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16560 7.53260	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700 1800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.95450 6.32150 6.68850 7.05550 7.422250 7.78950	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.45920 7.45920 7.82620	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.20390 6.02790 6.39490 6.76190 7.4890 7.49590 7.86290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16560 7.53260 7.89960	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930 7.93630

VOLUME OF

(c) Logarithms of $1+.00367\,t$ for Values

t	. 0	1	. 2	3	4 :	Mean diff. per degree.		
-40 -30 -20 -10	ī 931051 .949341 .966892 .983762 0.000000	7.929179 .947546 .965169 .982104 .998403	ī.927299 ·945744 ·963438 ·980440 ·996801	7.925410 •943934 •961701 •978769 •995192	ī.923513 .942117 .959957 .977092 .993577	1884 1805 1733 1667 1605		
+0	0.000000	0.001591	0.003176	.020241	0.006329	1582		
10	.015653	.017188	.018717	.020241	.021760	1526		
20	.030762	.032244	.033721	.035193	.036661	1474		
30	.045362	.046796	.048224	.049648	.051068	1426		
40	.059488	.060875	.062259	.063637	.065012	1381		
50	0.073168	0.074513	0.07 58 53	0.077190	0.078522	1335		
60	.086431	.087735	.089036	.090332	.091624	1299		
70	.099301	.100567	.101829	.103088	.104344	1259		
80	.111800	.113030	.114257	.115481	.116701	1226		
90	.123950	.125146	.126339	.127529	.128716	1191		
100	0.135768	0.136933	0.138094	0.139252	0.140408	1158		
110	.147274	.248408	.149539	1.150667	.151793	1129		
120	.158483	.159588	.160691	1.161790	.162887	1101		
130	.169410	.170488	.171563	1.172635	.173705	1074		
140	.180068	.181120	.182169	1.183216	.184260	1048		
150 160 170 180 190	0.190472 .200632 .210559 .220265	0.191498 .201635 .211540 .221224 .230697	0.192523 .202635 .212518 .222180 .231633	0.193545 .203634 .213494 .223135 .232567	0.194564 .204630 .214468 .224087	1023 1000 976 956 935		
200	0.239049	0.239967	0.240884	0.241798	0.242710	916		
210	•248145	.249044	.249942	.250837	.251731	897		
220	•257054	.257935	.258814	.259692	.260567	878		
230	•265784	.266648	.267510	.268370	.269228	861		
240	•274343	.275189	.276034	.276877	.277719	844		
250	0.282735	0.283566	0.284395	0.285222	0.286048	828		
260	.290969	.291784	.292597	.293409	.294219	813		
270	.299049	.299849	.300648	.301445	.302240	798		
280	.306982	.307768	.308552	.309334	.310115	784		
290	.314773	.315544	.316314	.317083	.317850	769		
300	0.322426	0.323184	0.323941	0.324696	0.325450	756		
310	•329947	•330692	•331435	•332178	.332919	743		
320	•337339	•338072	•338803	•339533	.340262	730		
330	•344608	•345329	•346048	•346766	.347482	719		
340	•351758	•352466	•353174	•353880	.354585	707		
350	0.358791	0.359488	0.360184	0.360879	0.361 573	696		
360	.365713	.366399	.367084	.367768	.368451	684		
370	.372525	.373201	.373875	.374549	.37 5221	674		
380	.379233	.379898	.380562	.381225	.381887	664		
390	.385439	.386494	.387148	.387801	.388453	654		

GASES.

of t between -49° and $+399^{\circ}$ C. by Degrees.

t	5	6	7	8	9	Mean diff.
-40	- 00x60V	=(_	- 0		
	1.921608	1.919695	1.917773	1.915843	1.913904	1926
— 30 — 20	.940292	.938460	.936619 .954681	.934771	.932915	1845
- 10	.975409	.973719	.972022	.952909	.951129	1771
-0	.991957	.990330	.988697	.987058	.985413	1636
+0	0.007897	0.009459	0.011016	0.012567	0.014113	1554
IO	.023273	.024781	.026284	.027782	.029274	1 500
20	.038123	.039581	.041034	.042481	.043924	1450
30	.052482	.053893	.055298	.056699	.058096	1402
40	.066382	.067748	.069109	.070466	.071819	1359
50	0.079847	0.081174	0.082495	0.083811	0.085123	1315
60	.092914	.094198	.095486	.0967 6 5	.098031	1281
70 80	.105595	.106843	.108088	.109329	.110566	1243
90	.117917	.119130	.120340	.121547	.122750	1210
	1129099	.1310/9	.132250	.133430	.134601	1175
100	0.141559	0.142708	0.143854	0.144997	0.146137	1144
110	.152915	.1 54034	.155151	.156264	.157375	1115
120	.163981	.164072	.166161	.167246	.168330	1087
130	.174772 .185301	.175836	.176898	.177958	.179014	1060 1035
	.105501	.100340	.10/3//	.100411	1109443	1035
150	0.195581	0.196596	0.197608	0.198619	0.199626	IOII
160	.205624	.206615	.207605	.208592	.209577	988
170	.215439	.216409	.217376	.218341	.219304	966
190	.225038	.225986	.226932	.227876	.238129	946 925
		1233337				
200	0.243621	0.244529	0.245436	0.246341	0.247244	906
210	.252623	.253512	.254400	.255287	.256172	887
220	.261441 .270085	.262313	.263184	.264052 .272644	.264919	870 853
240	.278559	.279398	.280234	.281070	.281903	836
250	0.286872	0.287694	0.288515	0.289326	0.290153	820
260	.295028	.295835	.296640	.297445	.298248	805
270	.303034	303827	.304618	.305407	.306196	790
280	.310895	.311673	.312450	.313226	.314000	776
290	.318616	.319381	.320144	.320906	.321667	763
300	0.326203	0.326954	0.327704	0.328453	0.329201	750
310	.333659	-334397	-335135	.335871	.336606	7.37
320	.340989	-341715	-342441	.343164	.343887	724
330	.348198	.348912	.349624	.350337	.351048	713
340	.355289	.355991	.356693	.357394	.358093	701
350	0.362266	0.362957	0.363648	0.364337	0.365025	690
360	.369132	.369813	.370493	.371171	.371849	678
370	.375892	.376562	.377232	.377900	.378567	668
380	.382548	.383208	.383868	.384525	.385183	658 648
390	.389104	.389754	.390403	.391052	.391699	040

VOLUME OF GASES.

(d) Logarithms of $1+.00367\,t$ for Values of t between 400° and 1990° C. by 10° Steps.

t	00	10	20	30	40						
400	0.392345	0.398756	0.405073	0.411300	0.417439						
500 600 700 800 900	0.452553 .505421 .552547 .595055 .633771	0.458139 .510371 .556990 .599086 .637460	0.463654 .515264 .561388 .603079 .641117	0.469100 .520103 .565742 .607037 .644744	0.474479 .524889 .570052 .610958 .648341						
1000 1100 1200 1300 1400	0.669317 .702172 .732715 .761251 .788027	0.672717 .705325 .735055 .764004 .790616	0.676090 .708455 .738575 .766740 .793190	0.679437 .711563 .741475 .769459 .795748	0.682759 .714648 .744356 .772160 .798292						
1600 1700 1800 1900	0.813247 .837083 .859679 .881156 .901622	0.815691 .839396 .861875 .883247 .903616	.841697 .864060 .885327 .905602	0.820536 .843986 .866234 .887398	8.822939 .846263 .868398 .889459 .909545						
t	50	60	70	80	90						
400	0.423492	0.429462	0.435351	0.441161	0.446894						
500 600 700 800 900	0.479791 .529623 .574321 .614845 .651908	0.485040 •534305 •578548 •618696 •655446	0.490225 .538938 .582734 .622515 .658955	0.495350 .543522 .586880 .626299 .662437	0.500415 -548058 -590987 .630051 .665890						
1000 1100 1200 1300	0.686055 .717712 .747218 .774845	0.689327 .720755 .750061 .777514	0.692574 .723776 .752886 .780166	0.695797 .726776 .755692 .782802	0.698996 .729756 .758480 .785422						
1400	.800820	.803334	.805834	.808319	.810790						

RELATIVE DENSITY OF MOIST AIR FOR DIFFERENT PRESSURES

TABLE 113.—Values of $\frac{h}{760}$, from h=1 to h=9, for the Computation of Different Values of the Ratio of Actual to Normal Barometric Pressure,

This gives the density of moist air at pressure h in terms of the same air at normal atmosphere pressure. When air contains moisture, as is usually the case with the atmosphere, we have the following equation for pressure term: h=B-0.378e, where e is the vapor pressure, and B the corrected barometric pressure. When the necessary psychrometric observations are made the value of e may be taken from Table 189 and then 0.378e from Table 115, or the dew-point may be found and the value of 0.378e taken from Table 115.

h	<i>h</i> 760
1	0.00131 5 8
2	.0026316
3	.0039474
4 5	0.0052632 .0065789 .0078947
7	0.0092105
8	.0105263
9	.0118421

Examples of Use of the Table. To find the value of $\frac{h}{760}$ when h=7543

To find the value of $\frac{\hbar}{760}$ when $\hbar = 5.73$

$$h = 5 \quad \text{gives} \quad .0065789$$

$$\begin{array}{cccc} .7 & " & .0009210 \\ .03 & " & .0000395 \\ \hline 5.73 & .0075394 \end{array}$$

TABLE 114. — Values of the logarithms of $\frac{h}{760}$ for values of h between 80 and 340.

Values from 8 to 80 may be got by subtracting 1 from the characteristic, and from 0.8 to 8 by subtracting 2 from the characteristic, and so on.

					Values of	f $\log \frac{h}{760}$.				
h	0	1	2	3	4	5	6	7	8	9
80 90	T.02228	ī.02767 .07823	ī.03300 .08297	ī.03826 .08767	ī.04347 .09231	ī.04861 .09691	ī.05368 .10146	ī.05871 .10596	ī.06367	1.06858 .11482
100 110 120 130 140	ī.11919 .16 0 58 .19837 .23313	1.12351 .16451 .20197 .23646 .26841	1.12779 .16840 .20555 .23976	1.13202 .17226 .20909 .24304 .27452	T.13622 .17609 .21261 .24629	ī.14038 .17988 .21611 .24952 .28055	7.14449 .18364 .21956 .25273 .28354	1.14857 .18737 .22299 .25591 .28650	7.15261 .19107 .22640 .25907 .28945	7.15661 .19473 .22978 .26220
150 160 170 180 190	ī.29528 .32331 .34964 .37446	7.29816 .32601 .35218 .37686 .40022	ī.30103 .32870 .35471 .37926 .40249	ī.30388 ·33137 ·35723 ·38164 ·40474	1.30671 .33403 .35974 .38400 .40699	1.30952 .33667 .36222 .38636 .40922	1.31231 .33929 .36470 .38870 .41144	7.31509 .34190 .36716 .39128 .41365	7.31784 .34450 .36961 .39334 .41585	ī.32058 ·34707 ·37204 ·39565 ·41804
200 210 220 230 240	1.42022 .44141 .46161 .48091 .49940	1.42238 ·44347 ·46358 ·48280 ·50120	1.42454 .44552 .46554 .48467 .50300	7.42668 ·44757 ·46749 ·48654 ·50479	1.42882 .44960 .46943 .48840 .50658	1.43094 .45162 .47137 .49025 .50835	1.43305 .45364 .47329 .49210 .51012	7.43516 .45565 .47521 .49393 .51188	T.43725 -45764 -47712 -49576 -51364	1.43933 -45963 -47902 -49758 -51539
250 260 270 280 290	i.51713 .53416 .55055 .56634 .58158	ī.51886 ·53583 ·55216 ·56789 ·58308	ī.52059 ·53749 ·55376 ·56944 ·58457	7.52231 ·53914 ·55535 ·57097 ·58605	1.52402 .54079 .55694 .57250 .58753	ī.52573 ·54243 ·55852 ·57403 ·58901	1.52743 .54407 .56010 .57555 .59048	7.52912 ·54570 ·56167 ·57707 ·59194	1.53081 -54732 -56323 -57858 -59340	7.53249 .54894 .56479 .58008 .59486
300 310 320 330 340	ī.59631 .61055 .62434 .63770 .65067	7.59775 .61195 .62569 .63901 .65194	ī.59919 .61334 .62704 .64032 .65321	ī.60063 .61473 .62839 .64163 .65448	ī.60206 .61611 .62973 .64293 .65574	ī.60349 .61750 .63107 .64423 .65701	7.60491 .61887 .63240 .64553 .65826	1.60632 .62025 .63373 .64682 .65952	1.60774 .62161 .63506 .64810 .66077	7.60914 .62298 .63638 .64939 .66201

DENSITY OF AIR.

Values of logarithms of $\frac{\hbar}{760}$ for values of \hbar between 350 and 800.

					Values o	$f \log \frac{h}{760}$.				
h	0	1	2	3	4	5	6	7	8	9
350 360 370 380 390	T.66325 .67549 .68739 .69897 .71025	ī.66449 .67669 .68856 .70011	ī.66573 .67790 .68973 .70125 .71247	ī.66696 .67909 .69090 .70239 .71358	7.66819 .68029 .69206 .70352 .71468	7.66941 .68148 .69322 .70465 .71578	1.67064 .68267 .69437 .70577 .71688	7.67185 .68385 .69553 .70690 .71798	ī.67307 .68503 .69668 .70802 .71907	ī.67428 .68621 .69783 .70914 .72016
400	ī.72125	ī.72233	7,72341	7.72449	7.72557	7.72664	7.72771	ī.72878	ī.72985	7.73091
410	.73197	·73303	.73408	.73514	.73619	.73723	.73828	·73932	.74036	.74140
420	.74244	·74347	.74450	.74553	.74655	.74758	.74860	·74961	.75063	.75164
430	.75265	·75366	.75467	.75567	.75668	.75768	.75867	·75967	.76066	.76165
440	.76264	·76362	.76461	.76559	.76657	.76755	.76852	·76949	.77046	.77143
450	7.77240	ī.77336	ī.77432	7.77528	7.77624	7.77720	7.77815	7.77910	ī.78005	7.78100
460	.78194	.78289	78383	-78477	.78570	.78664	.78757	.78850	.78943	.79036
470	.79128	.79221	.79313	-79405	.79496	.79588	.79679	.79770	.79861	.79952
480	.80043	.80133	.80223	-80313	.80403	.80493	.80582	.80672	.80761	.80850
490	.80938	.81027	.81115	-81203	.81291	.81379	.81467	.81554	.81642	.81729
500 510 520 530 540	7.81816 .82676 .83519 .84346 .85158	7.81902 .82761 .83602 .84428 .85238	7.81989 .82846 .83686 .84510 .85319	7.82075 .82930 .83769 .84591 .85399	7.82162 .83015 .83852 .84673	T.82248 .83099 .83935 .84754 .85558	7.82334 .83184 .84017 .84835 .85638	7.82419 .83268 .84100 .84916 .85717	7.82505 .83352 .84182 .84997 .85797	1.82590 .83435 .84264 .85076 .85876
550	7.85955	7.86034	ī.86113	7.86191	7.86270	ī.86348	7.86426	7.86504	7.86582	ī.86660
560	.86737	.86815	.86892	.86969	.87047	.87123	.87200	.87277	.87353	.87430
570	.87506	.87582	.87658	.87734	.87810	.87885	.87961	.88036	.88111	.88186
580	.88261	.88336	.88411	.88486	.88560	.88634	.88708	.88782	.88856	.88930
590	.89004	.89077	.89151	.89224	.89297	.89370	.89443	.89 5 16	.89589	.89661
600	1.89734	7.89806	ī.89878	7.89950	ī.90022	1.90094	1.90166	ī.90238	1.90309	1.90380
610	.90452	.90523	.90594	.90665	.90735	.90806	.90877	.90947	.91017	.91088
620	.91158	.91228	.91298	.91367	.91437	.91507	.91576	.91645	.91715	.91784
630	.91853	.91922	.91990	.92059	.92128	.92196	.92264	.92333	.92401	.92469
640	.92537	.92604	.92672	.92740	.92807	.92875	.92942	.93009	.93076	.93143
650	7.93210	7.93277	1.93343	7.93410	1.93476	7.93543	ī.936 09	ī.93675	1.93741	7.93807
660	.93873	·93939	.94004	.94070	.94135	.94201	.94266	.94331	.94396	.94461
670	.94526	·94591	.94656	.94720	.94785	.94849	.94913	.94978	.95042	.95106
680	.95170	·95233	.95297	.95361	.95424	.95488	.95551	.95614	.95677	.95741
690	.95804	·95866	.95929	.95992	.96055	.96117	.96180	.96242	.96304	.96366
700	7.96428	ī.96490	7.96552	7.96614	7.96676	7.96738	1.96799	1.96861	1.96922	7.96983
710	.97044	.97106	.97167	.97228	.97288	•97349	.97410	.97471	.97531	.97592
720	.97652	.97712	.97772	.97832	.97892	•97951	.98012	.98072	.98132	.98191
730	.98251	.98310	.98370	.98429	.98488	•98547	.98606	.98665	.98724	.98783
740	.98842	.98900	.98959	.99018	.99076	•99134	.99193	.99251	.99309	.99367
750 760 770 780 790	ī.99425 0.00000 .00568 .01128 .01681	ī.99483 0.00057 .00624 .01184 .01736	1.99540 0.00114 .00680 .01239 .01791	7.99598 0.00171 .00737 .01295 .01846	ī.99656 0.00228 .00793 .01350 .01901	7.99713 0.00285 .00849 .01406 .01955	1.99771 0.00342 .00905 .01461 .02010	7.99828 0.00398 .00961 .01516 .02064	1.99886 0.00455 .01017 .01571 .02119	1.99942 0.00511 .01072 .01626

TABLE 115. - Values of 0.378e.*

This table gives the humidity term 0.378e, which occurs in the equation $\delta = \delta_0 \frac{h}{760} = \delta_0 \frac{B - 0.378e}{760}$ for the calculation of the density of air containing aqueous vapor at pressure ϵ , δ , is the density of dry air at normal temperature and barometric pressure, B the observed barometric pressure, and h = B = 0.378e, the pressure corrected for humidity. For values of $\frac{760}{h}$, see Table 113. Temperatures are in degrees Centigrade, and pressures in millimeters of mercury.

Dev	Vapor pressure (ice).	0.378e	Dew point.	Vapor pressure (water).	0.378e	Dew point.	Vapor pressure (water).	o 378e
- 50° 45, 46 - 35, 32° 25 - 24 - 23, 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12	(ice). mm G 929 G 254 G 996 G 169 G 288 G 480 G 530 G 585 G 646 G 712 G 783 G 862 G 947 G 941 G 1442 G 252 G 947 G 941 G 1442 G 943 G 944	mm 0 01 0 02 0 04 0 06 0 11 0 18 0 20 0 24 0 27 0 36 0 36 0 36 0 36 0 37 0 72 0 57 0 62 0 68	C 0° 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	(water). mm 4.58 4.92 5.08 6.10 6.54 7.51 8.04 8.61 9.21 9.85 16.52 11.24 11.99 12.79 13.64 14.54	mm 1 73 1 86 2 00 2 15 2 31 2 47 2 66 2 84 3 94 3 25 3 48 3 72 3 98 4 25 4 53 4 64 5 16 5 50 5 85	30° 31 32 33 34 35 39 40 41 42 43 44 45 46 47 48		mm 12.0 12.8 13.5 14.3 15.1 16.0 16.9 17.8 18.8 19.8 20.9 22.1 23.3 24.5 25.8 27.2 28.6 30.1 31.7
110 9 % 6 - 5 4 % 2 1	1 796 1 904 2 144 2 040 2 576 2 776 3 025 3 291 3 576 4 220 4 360	0 06 0 74 0 81 0 86 0 96 1 05 1 14 1 24 1 35 1 47 1 60	20 21 22 23 24 25 26 27 28 29	16 . 49 17 . 55 18 . 66 19 . 84 21 . 69 22 . 40 23 . 78 25 . 24 26 . 77 28 . 38 30 . 68 31 . 86	6. 23 6. 63 7. 50 7. 50 7. 97 8. 47 8. 99 9. 54 10. 12 10. 73 11. 37	50 51 52 53 54 55 56 57 58 60	88.14 92.6 97.3 102.2 107.3 112.7 118.2 124.0 130.0 136.3 142.8	33.3 35.0 36.8 38.6 40.6 42.6 44.7 46.9 49.1 51.5 54.0 56.5

^{*} Table quoted from Smithsonian Meteorological Tables.

TABLE 116. - Maintenance of Air at Definite Humidities.

Taken from Stevens, Phytopathology, 6, 425, 1916; see also Curtis, Bul. Bur. Standards, 11, 359, 1914; Dieterici, Ann. d. Phys. c. Chem., 50, 47, 1893. The relative humidity and vapor pressure of aqueous vapor of moist air in equilibrium conditions above aqueous solutions of sulphuric acid are given below.

Den Ay of	Relative	18948	pressire	Density of	Relative	Vapor pressure.		
acid sol.	humidity.	20° C	30° C	acid sol.	humidity.	20° C	30° C	
***************************************		mm	l mm	11		mm	mm	
1 %	100 0	17.4	31.6	1.30	58.3	IO. I	18.4	
1.05	97 5	17.0	30.7	1.35	47.2	8.3	15.0	
01.1	919	16.3	29.6	1.40	37.I	6.5	11.9	
1.15	66.8	15.4	28.0	I.50	18.8	3.3	6.0	
1 20	80.5	14.0	25.4	1.60	8.5	1.5	2.7	
1 25	70.4	12.2	22.2	I.70	3.2	0.6	I.O	

PRESSURE OF COLUMNS OF MERCURY AND WATER.

British and metric measures. Correct at o° C. for mercury and at 4° C. for water.

	METRIC MEAS	SURE.		BRITISH MEA	SURE.
Cms. of Hg.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.	Inches of Hg.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.
1	13.5956	0.193376	1	34.533	0.491174
2	27.1912	0.386752	2	69.066	0.982348
3	40.7868	0.580128	3	103.598	1.473522
4	54.3824	0.773504	4	138.131	1.964696
5	67.9780	0.966880	5	172.664	2.455870
6	81.5736	1.160256	6	207.197	2.947044
7	95.1692	1.353632	7	241.730	3.438218
8	108.7648	1.547008	8	276.262	3.929392
9	122.3604	1.740384	9	310.795	4.420566
10	135.9560	1.933760	10	345.328	4.911740
Cms. of H ₂ O.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.	Inches of H ₂ O.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.
1	I	0.0142234	1	2.54	0.036127
2	2	0.0284468	2	5.08	0.072255
3	3	0.0426702	3	7.62	0.108382
4	4	0.0568936	4	10.16	0.144510
5	5	0.0711170	5	12.70	0.180637
6	6	0.0853404	6	15.24	0.216764
7	7	0.0995638	7	17.78	0.252892
8	8	0.1137872	8	20.32	0.289019
9	9	0.1280106	9	22.86	0.325147
10	10	0.1422340	10	25.40	0.361274

REDUCTION OF BAROMETRIC HEIGHT TO STANDARD TEMPERATURE.

	or brass scale and		r brass scale and		r glass scale and measure.
Langital	i measure,	metric	measure.	metric	measure.
Height of barometer in inches.	in inches for temp. F.	Height of barometer in mm.	a in mm. for temp, C.	Height of barometer in mm.	a in mm. for temp. C.
15.0	0.00135	400	0.0651	50	0.0086
16.0	.00145	410	.0668	100	,0172
17.0	.00154	420	.0684	150	.0258
17.5	.00158	430	.0700	200	.0345
18.0	.00163	440	.0716	250	.0431
18.5	.00167	450	.0732	300	.0517
19.0	.00172	460 '	.0749	350	.0603
19.5	.00176	470 .	.0765		
20.0		480	.0781	400	0.0689
	0.00181	490	.0797	450	.0775
20.5	.00105	500	0.0813	500 520	.0861
21.5	.00190	510	.0830	540	.0093
22.0	.00194	520	.0846	560	.0965
22.5	.00203	530	.0862	580	.0999
23.0	.00208	540	.0878	5	1-777
23.5	.00212	550	.0894	600	0.1034
		560	.0911	610	1051
24.0	0.00217	570	.0927	620	.1068
24.5	.00221	580	.0943	630	.1085
25.0	.00226	590	.0959	640	.1103
25.5	.00231	600	0.00	650	.II20
26.0 26.5	.00236 .00240	610	0.0975	660	.1137
27.0	.00245	620	.1008	670	0.1154
27.5	.00249	630	.1024	680	.1172
-/-5		640	.1040	690	.1189
28.0	0.00254	650	.1056	700	.1206
28.5	.00258	660	.1073	710	.1223
29.0	.00263	670	.1089	720	1240
29.2	.00265	680	.1105	730	.1258
29.4	.00267	690	.1121	740	
29.6	.00268	700	0.1127	740	0.1275
29.8 30.0	.00270	710	0.1137	750 760	.1292
30.0	.002/2	720	.1170	770	.1309 .1327
30.2	0.00274	730	.1186	780	.1344
30.4	.00276	740	.1202	790	.1361
30.6	.00277	750	.1218	800	.1378
30.8	.00279	760	.1235		0,
31.0	.00281	770	.1251	850	0.1464
31.2	.00283	780	.1267	900	.1551
31.4	.00285	790	.1283	950	.1639
31.6	.00287	800	.1299	1000	.1723

^{*}The height of the barometer is affected by the relative thermal expansion of the mercury and the glass, in the case of instruments graduated on the glass tube, and by the relative expansion of the mercury and the metallic inclosing case, usually of brass, in the case of instruments graduated the mercury and the metallic inclosing case, usually of brass, in the case of instruments graduated on the brass case. This relative expansion is practically proportional to the first power of the temperature. The above tables of values of the coefficient of relative expansion will be found to give corrections almost identical with those given in the International Meteorological Tables. The numbers tabulated under a are the values of a in the equation $H_t = H_t' - \alpha(t' - t)$ where H_t is the height at the standard temperature, H_t' the observed height at the temperature', and $\alpha(t' - t)$ the correction for temperature. The standard temperature is o° C. for the metric system and 28° , 5 F, for the English system. The English barometer is correct for the temperature of melting ice at a temperature of approximately 28° , 5 F, because of the fact that the brass scale is graduated so as to be standard at 62° F, while mercury has the standard density at 32° F.

Example.—A barometer having a brass scale gave H = 765 mm. at 25° C.; required, the corresponding reading at 0° C. Here the value of α is the mean of .1235 and .1251, or .1243; . . . $\alpha(t' - t)$ = .1243 \times 25 = 3.11. Hence $H_0 = 765 - 3.11 = 761.89$,

N. B.—Although α is here given to three and sometimes to four significant figures, it is seldom worth while to use more than the nearest two-figure number. In fact, all barometers have not the same values for α , and when great accuracy is wanted the proper coefficients have to be determined by experiment.

mined by experiment.

Free-air Altitude Term. Correction to be subtracted.

The correction to reduce the barometer to sea-level is $(g_1-g)/g \times B$ where B is the barometer reading and g and g_1 the value of gravity at sea-level and the place of observation respectively. The following values were computed for free-air values of gravity g_1 (Table 565). It has been customary to assume for mountain stations that the value of $g_1 = \sup$ about $\frac{2}{3}$ the free-air value, but a comparison of modern determinations of g_1 in this country shows that little reliance can be placed on such an assumption. Where g_1 is known its value should be used in the above correction term. (See Tables 566 and 567. Similarly for the latitude term, see succeeding tables, the true value of g should be used if known; the succeeding tables are based on the theoretical values, Table 565.)

Height				Obse	rved he	ight of l	aromet	er in mi	llimeter	s.		
above sea-level.	g1 - g	400	450	500	550	600	650	700	750	800		
meters.					1							
100	0.031	Cor	rection	in mm	to be	subtract st colum	ed for	.02	.02	.02	_	
300	0.093			ding in			III WIIG	.07	.07	.07	=	
500	0.154	-		-	.—	-	-	.II	. I 2	.13	=	_
600 700	0.185	= 1	_		_	=	.12	.13	.14	_	=	-
800 900	0.247	_	_	_		_	.16	.18	.19			
1000	0.309	_	_		.18	.19	. 20	. 22	. 24		=	
1200 1300	0.370	_		_	.21	. 23	. 24	. 26	_	_	=	_
1400	0.432			. 24	.24	.26	. 28	.31		_	=	_
1600	0.494	_		.25	. 28	.30	.32	- 33	_	_	_	_
1800	0.525	_	_	.27	.30	.32	.34	=	_	.020	.0463	15000
1900 2000	0.586	_	. 28	.30	·33	.36 .38	.39	_	.021	.019	.0447	14500
2100	0.648 0.679		.30	-33 -35	.36	.40 .4I	_	_	.021	.018	.0416	13500
2300	0.710		.32	.36	.40	· 43 · 45	_	.02I	.019	.017	.0386	12500
2500	0.771	.31	.35	.39	•43	• 47	.021	.020	.018	.015	.0355	11500
2700	0.833	.34	.38	.42	_	_	.020	.018	.016	.014	.0324	10500
2900	0.895	.35	.41	.44	_	.020	.018	.016	.015	.013	.0308	9500
3000	0.926 0.957	.38	-42 -44	• 47		.019	.017	.016	.014	.012	.0278	9000 8500
3200	0.988	.40	.46	_	.017	.017	.015	.014	.012	_	.0247	8000 7500
3400 3500	1.049	•43 •44	.48		.016	.015	.013	.012 .011	_		.0216	7000
3600	I, III I, I42	·45	_	_	.014	.013	.011	_	_		.0185	5500
3800	I.173 I.204	.48	_	.012	110,	.010	.010	_	_	_	.0154	5000
4000	1.235	.50	_	.010	.009	.000		—		_	.OI 23	4000
=	=	.006	800.	,008	.007	.007	Cor	rections	in in.	to be	.0092	3000
-	_	.003	.003	.003	_		sea-lev	el in la	st colum	in and	.0031	1000
		barometer reading in bottom line.										
												feet.
		30 .	28	26	2.4	2 2	20	18	16	14		TT-1-1
			(Observe	d height	of how	meter i	n inches	,		g1 — g	Height above sea-level.
					a neight	or ball	meter 1	ii iiiciie				

METRIC MEASURES.

From Latitude o° to 45°, the Correction is to be Subtracted.

Lati- tude.	520	540	560	580	600	620	640	660	680	700	720	740	760	780
0	mm.	mm.	mm. —I.50	mm. —1.55	mm.	mm. —1.66	mm.	mm.	mm. —1.82	mm. —1.87	mm. —I.93	mm.	mm.	mm.
5													1	
6	—1.37 1.36		—1.48 1.47	-1.53 1.52	1.57	—1.64 1.63	-1.69 1.68	—I.74 I.73	—1.79 1.78	—1.85 1.83	-1.90 1.89	1.95 1.94	-2.00 1.99	-2.06 2.04
7 8	I.35 I.34	1.40 1.39	I.46 I.44	1.51	1.56	1.60	1.66 1.65	I.72 I.70	I.77	1.82 1.80	1.87	I.92 I.91	1.98	2.03
9	1.33	1.38	1.43	1.48	1.53	1.58	1.63	1.68	1.73	1.78	1.84	1.89	1.94	1.99
10	-1.31 1.20	1.36 1.34	-1.41 1.39	—1.46 1.44	—I.51 I.49	—1.56 1.54	1.61 1.59	1.66 1.64		—1.76 1.74	—1.81 1.79	-1.86 1.84	-1.92 1.89	-1.97 1.94
I2 I3	I.27 I.25	1.32	1.37 1.35	I.42 I.40	I.47 I.45	I.52 I.50	1.57	1.62	1.67	1.72 1.60	1.76 1.74	1.81 1.78	1.86 1.83	1.91
14	I.23	1.28	1.33	1.38	I.42	1.47	1.52	1.56	'	1.66	1.71	1.75	1.80	1.85
15	-I.2I	-1.26	-1.30	—I.35	—I.40	—I.44	I.49	—I.54	1.58		-1.67	-1.72	—I.77	-1.81
16	I.19 I.16	I.23 I.20	1.28 1.25	I.32 I.29	I.37 I.34	1.41	I.46 I.43	I.50 I.47	I.52	1.60	1.60	1.69	1.73	1.78
18	I.13 I.10	1.18	I.22 I.19	I.26 I.23	I.31 ·I.27	I.35 I.32	1.39 1.36	I.44 I.40	1.48 1.44	1.52 1.48	I.57 I.53	1.61	1.65	1.70
20	—I.07	-1.11	—I.16	—I.20	—I.24	—1.28	I.32	—1.36	—ı.40	— 1.44	— I.49	_I.53	—I.57	— 1.61
2I 22	I.04 I.01	1.08	I.I2 I.09	1.16	I.20 I.16	I.24 I.20	I.28 I.24	I.32 I.28	I.36 I.32	I.40 I.36	I.44 I.40	1.48 1.44	I.52 I.48	1.56
23 24	0.98	0.98	I.05	I.09 I.05	1.13	1.16	I.20 I.16	I.24 I.19	I.28 I.23	I.31 I.27	I.35 I.30	I.39 I.34	I.43 I.37	1.46 1.41
25	-0.90		-0.97	-1.01	—I.04	—1.08	-1.11	—I.15			—I.25	—I.29	-1.32	—ı.36
26 27	0.87	0.90	0.93	0.97	I.00 0.96	0.99	I.07 I.02	I.10 I.05	1.13	I.17 I.12	I.20 I.15	I.23 I.18	I.27 I.21	I.30 I.24
28	0.79	0.82	0.85	0.88	0.91	0.94	0.97	1.00	1.03	1.06	1.09	1.12	1.15	1.18
29	0.75	0.78	0.81		0.86	0.89	0.92	0.95	0.98	1.01	1.04	1.07	1.10	1.12
30 31	-0.71 0.67	-0.74 0.69	0.76	-0.79 0.74	-0.82 0.77	0.85 0.80	-0.87 0.82	-0.90 0.85	-0.93 0.87	-0.95 0.90	-0.98 -0.92	0.95	0.98	-1.06 1.00
32	0.62	0.65	0.67	0.70	0.72	9·74 0.69	0.77	0.79 0.74	0.82	0.84	0.86	0.89	0.91	0.94
34	0.54	0.56	0.58	0.60	0.62	0.64	0.66	0.68	0.70	0.72	0.74	0.76	0.79	0.81
35 36	-0.49 0.45	-0.51 0.46	-0.53 0.48	-0.55 0.50	-0.57 0.52	-0.59 0.53	-0.61 0.55	0.63 0.57	0.64 0.58	-0.66 0.60	-0.68 0.62	-0.70 0.64	-0.72 0.65	-0.74 0.67
37 38	0.40	0.42	0.43	0.45	0.46	0.48	0.49	0.51	0.52	0.54	0.56	0.57	0.59	0.60
39	0.31	0.32	0.33	0.34	0.41	0.42	0.44	0.45	0.40	0.42	0.43	0.44	0.45	0.53 0.46
40	-0.26	-0.27	-0.28	-0.29	-0.30	-0.31	-0.32	-0.33	-0.34	-0.35	-0.36	-0.37	-o.38	-0.39
4I 42	0.21	0.22	0.23	0.24	0.25	0.26	0.26	0.27	0.28	0.29	0.30	0.30	0.31	0.32
43	0.12	0.12	0.13	0.13	0.14	0.14	0.15	0.15	0.16	0.10	0.16	0.17	0.17	0.18
45		-0.02	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	- 0.03	-0.03	-0.03	-0.04

* " Smithsonian Meteorological Tables."

METRIC MEASURES.

From Latitude 46° to 90°, the Correction is to be Added.

Lati-	520	540	560	580	600	620	640	660	680	700	720	740	760	780
45	mm. —0,02	mm. -0.02	mm. —0.03	mm.	mm.	mm.	mm. —0.03	mm.	mm.	mm. —0.03	mm. —0.03	mm.	mm. -0.03	mm. -0.04
46 47 48 49 50		+0.03 0.08 0.12 0.17	+0.03 0.08 0.13 0.18	+0.03 0.08 0.13 0.19		+0.03 0.09 0.14 0.20	+0.03 0.09 0.15 0.21	+0.03 0.09 0.15 0.21	+0.03 0.09 0.16 0.22	+0.03 0.10 0.16 0.23		+0.03 0.10 0.17 0.24	+0.04 0.10 0.18 0.25 0.31	
51 52 53 54 55	+0.26 0.31 0.36 0.40 0.45	0.32 0.37 0.42 0.46	0.33 0.38 0.43 0.48	0.40 0.45 0.50	0.36 0.41 0.46 0.52	0.37 0.42 0.48 0.53	0.38 0.44 0.49 0.55	0.39 0.45 0.51 0.57	0.40 0.46 0.52 0.58	0.42 0.48 0.54 0.60	0.43 0.49 0.56 0.62	0.44 0.51 .057 0.64	0.52 0.59 0.65	0.46 0.53 0.60 0.67
56 57 58 59 60	0.54 0.58 0.62 0.66	0.56 0.60 0.65 0.69	0.58 0.62 0.67 0.72	0.60 0.65 0.69 0.74	0.62 0.67 0.72 0.77	0.64 0.69 0.74 0.79	0.66 0.71 0.77 0.82	0.68 0.74 0.79 0.84	0.70 0.76 0.81 0.87	0.72 0.78 0.84 0.89	0.74 0.80 0.86 0.92	0.76 0.82 0.89 0.94	0.85	0.80 0.87 0.93 1.00
61 62 63 64 65	+0.71 0.74 0.78 0.82 0.86	0.77 0.81 0.85	0.80 0.85 0.89	0.83 0.88 0.92	0.85 0.91 0.95	0.88 0.94 0.98	0.91 0.97 1.01	0.94 1.00 1.04	0.97 1.03 1.08	1.00 1.06	I.02 I.09 I.14	I.05 I.12 I.17	I.15 I.20	I.11 I.18 I.23
66 67 68 69 70	+0.90 0.93 0.97 1.00 1.03	0.97 I.00	I.00 I.04 I.08	I.04 I.08	1.08	I.II I.I5 I.I9	I.15 I.19 I.23	1.18 1.23 1.27	I.22 I.26 I.31	I.25 I.30 I.34	I.29 I.34 I.38	I.33 I.37 I.42	I.41 I.46	I.40 I.45
71 72 73 74 75	+1.06 1.09 1.12 1.14 1.17	I.13 I.16 I.19	I.17 I.20 I.23	I.22 I.25 I.28	I · 26 I · 29 I · 32	I.30 I.33 I.36	I · 34 I · 37 I · 41	1.38 1.42 1.45	1.46	I · 47 I · 50 I · 54	I.51 I.55 I.58	1.55 1.59 1.63	I · 59 I · 63 I · 67	1.67
76 77 78 79 80	+1.19 1.21 1.23 1.25 1.27	I.26 I.28 I.30	I.33 I.33 I.35	1.38	I.40 I.42 I.45	I.45 I.47 I.49	I.49 I.52	I.54 I.57 I.59	1.59	1.63 1.66	1.68 1.71 1.73	I.73 I.76	1.77 1.80	1.88
81 82 83 84 85	+1.29 1.30 1.31 1.32 1.33	1.35 1.36 1.37	I.40 I.41 I.42	1.48	1.50 1.51 1.53	1.55	1.60	1.65	1.70 1.72 1.73	1.75 1.77 1.78	1.80	1.85	I.90 I.92 I.93	1.97
90	+1.35	+1.41	+1.46	+1.51	+1.56	+1.61	+1.67	+1.72	+1.77	+1.81	+1.87	+1.93	+1.98	+2.03

^{* &}quot; Smithsonian Meteorological Tables."

ENGLISH MEASURES.

From Latitude o° to 45°, the Correction is to be Subtracted.

Lati-	19	20	21	22	23	24	25	26	27	28	29	30
	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.
0	-0.051	-0.054	-0.056	-0.059	-0.062	-0.064	-0.067	-0.070	-0.072	-0.075	-0.078	-0.080
5	-0.050	—0 053	-0.055	-0.058	0 061	-0.063	0.066	0.060	- 0 0 ===	0.054		
6	0.050	0.052		0.058			0.066			-0.074 0.073	-0.077 0.076	,
7 8	0.049	0.052	0.055	0.057	0.060	0.062	0.065		0.070	0.073	0.075	0.079
	0.049	0.02	0.054	0.057	0.059	0.062	0.064		0.070	0.072	0.075	0.077
9	0.048	0.051	0.054	0.056	0.059	0.061	0.064	0.066	0.069	0.071	0.074	0.076
10	-0.048	-0.050	-0.053	-o.o55	-0.058	-0.060	-0.063	-0.066	-o.o68	-0.071	-0.073	-0.076
II	0.047	0.050		0.055	0.057	0.060	0.062		0.067	0.070	0.072	0.075
12	0.047	0.049		0.054	0.056	0,059	0.061	- "	0.066	0.069	0.071	0.074
13	0.046			0.053	0.055	0.058	0.060		0.065	0.068	0.070	0.072
14	0.045	0.047	0.050	0.052	0.055	0.057	0.059	0.062	0.064	0,066	0.069	0.071
15		0.047	-0.049	-0.05I	-0.053	-0.056	-0.058	-0.060	-0.063	0.065	-0.067	-0.070
16	0.043	0.046	5 1	0.050	0.052	0.055	0.057	0.059	0.062	0.064	0.066	0.068
17	0.042	0.045	0.047	0.049	0.051	0.053	0.056		0.060	, 0.062	0.065	0.067
18	0.041	0.044	0.046 0.045	0.048	0.050	0.052	0.054	0.057	0.059	0.061	0.063	0.065
19	0.040	0.042	0.045	0.04/	0.049	0.051	0.053	0.055	0.057	0.059	0.002	0.064
20	-0.039·	-0.041	-0.043	-0.045	-0.047	-0.050	-0.052	-0.054	-0. 056	-0.058	-0.060	-0.062
21	0.038	0.040		0.044	0.046	0.048	0.050	0.052	0.054	0.056	0.058	0.060
22	0.037	0.039	0.041	0.043	0.045	0.047	0.049	0.050	0.052	0.054	0.056	0.058
23 24	0.036	0,0 3 8 0,036		0.041	0.043	0.045	0.047	0.049	0.051	0.053	0.054	0.056
	0.034	5		0.040	0.042	0,043	, 043	0.047	0.049	0.051	0.052	0.054
25	001	-0.035		-0.038	-0.040	-0.042	-0.043	-0.045		-0.049	-0.050	-0.052
26	0.032	0.033	0.035	0.037	0.038	0.040	0.042	0.043	0.045	0.047	0.048	0.050
27 28	0.030	0.032	0.033	0.035	0.037	0.038	0.040		0.043	0.045	0.046	0.048
29	0.029	0.029	0.030	0.032	0.035	0.036	0.038		0.041	0.043	0.044	0.046
ì	7				- 1 - 00		0.000	0.037	0.009	0.040	0.042	0.043
30	-0.026		-0.029	-0.030	-0.031	-0.033	-0.034	-o.o35	-0.037	-0.038	-0.040	0.04!
31	0.024	0.026	0.027	0.028	0.030	0.031	0.032	0.033	0.035	0.036	0.037	0.038
$\begin{bmatrix} 3^2 \\ 33 \end{bmatrix}$	0.023	0.024	0.025	0.026	0.028	0.029	0.030	0.031	0.032	0.034	0.035	0.036
34	0.020	0.021	0.022	0.023	0.024	0.025	0.026		0.028	0.029	0.030	0.031
								· ·			3-	
35			-0.020			0.023	-0.024	-0.025		-0.027	-0.027	-0.028
36	0.016	0.017	0.018	0.019	0.020	0.021	0.022	0.022	0.023	0.024	0.025	0.026
38	0.013	0.015	0.014	0.015	0.016	0.016	0.017	0.020	0.021	0.019	0.022	0.023
39	0.011	0.012	0.012	0.013	0.014	0.014	0.015	0.015	0.016	0.017	0.017	0.018
40	0.000	0.008	0.009	0.009			0.013	Ο,	-0.014	-0.014	-	-0.015
4I 42	0.006	0.006	0.007	0.007	0.009	0.008	0.008	0.001	0.001	0.012	0.012	0.012
43	0.004	0.005	0.005	0.005	0.005	0.005	0.006	0.006	0.006	0.006	0.007	0.007
44	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.004
45		0.001	0.007	0.007	0.007	0.007	0.00*	0.007	0.00-	0.00	0.00=	0.00
_45 ⊦	-0.001:-	-0.001	-0.001	-0.001	-0.001	-0.001	0.001	-0.001	-0.001	0.001	0.001	-0.001

^{* &}quot; Smithsonian Meteorological Tables."

ENGLISH MEASURES.

From Latitude 46° to 90° the Correction is to be Added.

Lati- tude.	19	20	21	22	23	24	25	26	27	28	29	30
	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.
45	-0.001	0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
46	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001
47	0.003	0.003	0.003	0.003	0.003							
48	0.004	0.005		0.005	0.005		0.006	0.006		0.006	0.007	0.007
49	0.006	0.006		0.007	0.007		0.008			0.009	0.009	0.010
50	0.008	0.008	0.009	0.009	0.010	0.010	0.010	0.011	0.011	0.012	0.012	0.012
51	+0.010	+0.010	+0.011	+0.011	+0.012	+0.012	+0.013	+0.013	+0.014			+0.015
52	0.011	0.012		0.013			_				- 1	0.018
53	0.013	0.014		-				0.018		-		0.020
54	0.015	0.015	0	,	0.018	-	0.019			0.022	0.022	0.023
55	0.016	0.017	0.018	0.019	0.020	0.021	0.021	0.022	0.023	0.024	0.025	0.026
56	+0.018	+0.010	+0.020	+0.021	+0.022	+0.023	+0.021	+0.024	+0.026	+0.026	+0.027	+0.028
57	0.020			0.023	0.024		0.026					0.031
58	0.021	0.022	0.023	0.025	0.026	0.027	0.028	0.029	0.030	0.031	0.032	0.033
59	0.023	0.024				1 -	_			0.033	0.035	0.036
60	0.024	0.026	0.027	0.028	0.029	0.031	0.032	0.033	0.034	0.036	0.037	0.038
61	+0.026	+0.027	+0.028	+0.030	+0.031	+0.033	+0.034	+0.035	+0.037	+0.038	+0.030	+0.041
62	0.027	0.029		0.032	0.033		0.036		0.039		0.042	0.043
63	0.029			-	0.035							10
64	0.030	0.032	0.033	0.035	0.036	0.038	0.040	0.041	0.043	0.044	0.046	0.047
65	0.031	0.033	0.035	0.036	0.038	0.040	0.041	0.043	0.045	0.046	0.048	0.050
66	+0.033	+0.034	+0.036	+0.038	+0.040	+0.041	+0.013	+0.015	+0.017	+0.018	+0.050	+0.052
67	0.034						0.045					
68	0.035	0.037	_	0.041	0.043		0.046				-	
69	0.036				10	0.046	0.048	0.050			0.056	~1
70	0.038	0.040	0.042	0.044	0.046	0.048	0.050	0.052	0.053	0.055	0.057	0.059
71	+0.030	+0.041	+0.043	d-0.015	+0.047	+0.040	+0.051	+0.053	+0.055	+0.057	+0.050	+0.061
72	0.040									0.050		
73	0.041	9.043			0.049			0.056		0.060	-	0.064
74	0.042	0.044	0.046	0.048	0.051	0.053		0.057	0.059	0.062	0.064	0.066
75	0.043	0.045	0.047	0.049	0.052	0.054	0.056	0.058	0.061	0.063	0.065	0.067
76	+0.044	+0.046	- 0.048	+0.050	+0.053	+0.055	+0.057	+0.060	+0.062	+0.061	0.066	0.060
77	0.044										0.068	
78	0.045			_			0.059	_			_	0.071
79	0.046	100		0.053		-					0.070	0.072
80	0.046	0.049	0.051	0.054			0.061	0.063	0.066	0.068	0.071	0.073
81	+0.047	±0.040	+0.053	+0.054	+0.055	+0.050	+0.062	+0.064	10 067	10 060	+0.053	+0.074
82	0.047	0.050										
83	0.048				-		0.063	67		0.071	0.072	0.075
84	0.048					1 -					0.074	
85	0.049	-			1	_	_ '	_				
90	+0.049	+0.052	+0.055	+0.057	+0.060	+0.062	+0.065	+0.068	+0.070	+0.073	+0.075	+0.078

^{* &}quot;Smithsonian Meteorological Tables."

TABLE 124. — Correction of the Barometer for Capillarity.*

			ı. Me	TRIC MEA	SURE.						
			Неіднт	of Menis	CUS IN MIL	LIMETERS.					
Diameter of tube in mm.	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8			
			Correc	ction to be a	dded in milli	meters.					
4 5 6 7 8 9 10 11 12 13	0.83 I.22 I.54 I.98 2.37 -										
			2. Bri	TISH MEA	ASURE.						
			. Нег	GHT OF Мв	ENISCUS IN I	NCHES.					
Diameter of tube in inches.	.01	.02	.03	.04	.05	.06	.07	.08			
			Cor	rection to be	e added in in	ches.					
.15 .20 .25 .30 .35 .40 .45 .50	0.024 .011 .006 .004 - -	0.047 .022 .012 .008 .005 .004	0.069 .033 .019 .013 .008 .006 .003 .002	0.092 .045 .028 .018 .012 .008 .005 .004	0.116 .059 .037 .023 .015 .010 .007 .005	0.078 .047 .029 .018 .012 .008 .006	0.059 .035 .022 .014 .010 .006	0.042 .026 .016 .012 .007			

^{*} The first table is from Kohlrausch (Experimental Physics), and is based on the experiments of Mendelejeff and Gutkowski (Jour. de Phys. Chem. Geo. Petersburg, 1877, or Wied. Beib. 1877). The second table has been calculated from the same data by conversion into inches and graphic interpolation.

TABLE 125. - Volume of Mercury Meniscus in Cu. Mm.

Height of		Diameter of tube in mm												
mm. 1.6 1.8 2.0 2.2 2.4 2.6	1 57	185	214	245	280	318	356	398	444	492	541			
	181	211	244	281	320	362	407	455	507	560	616			
	206	240	278	319	362	409	460	513	571	631	694			
	233	271	313	358	406	459	515	574	637	704	776			
	262	303	350	400	454	511	573	639	708	781	859			
	291	338	388	444	503	565	633	706	782	862	948			

Scheel und Heuse, Annalen der Physik, 33, p. 291, 1910.

BAROMETRIC PRESSURES CORRESPONDING TO THE TEMPERATURE OF THE BOILING POINT OF WATER.

Useful when a boiling-point apparatus is used in the determination of heights. Copied from the Smithsonian Meteorological Tables, 4th revised edition.

(A) METRIC UNITS.

Tem- perature.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
C 80° 81 82 83 84	mm. 355.40 370.03 385.16 400.81 416.99	mm. 356.84 371.52 386.70 402.40 418.64	404.00	mm. 359·73 374·51 389.80 405.61 421.95	mm. 361.19 376.02 391.36 407.22 423.61	mm. 362.65 377.53 392.92 408.83 425.28	mm. 364.11 379.05 394.49 410.45 426.95	mm. 365.58 380.57 396.06 412.08 428.64	mm. 367.06 382.09 397.64 413.71 430.32	mm. 368.54 383.62 399.22 415.35 432.01
85 86 87 88 89	433.71 450.99 468.84 487.28 506.32	435.41 452.75 470.66 489.16 508.26		438.83 456.28 474.31 492.93 512.15	440.55 458.06 476.14 494.82 514.11	442.28 459.84 477.99 496.72 516.07	461.63 479.83 498.63	445.75 463.42 481.68 500.54 520.01	447 · 49 465 · 22 483 · 54 502 · 46 521 · 99	449.24 467.03 485.41 504.39 523.98
90 91 92 93 94	525.97 546.26 567.20 588.80 611.08	527.97 548.33 569.33 591.00 613.35	529.98 550.40 571.47 593.20 615.62	531.99 552.48 573.61 595.41 617.90	534.01 554.56 575.76 597.63 620.19	536.04 556.65 577.92 599.86 622.48	580.08	540.11 560.85 582.25 604.33 627.09	542.15 562.96 584.43 606.57 629.41	544.21 565.08 586.61 608.82 631.73
95 96 97 98 99	634.06 657.75 682.18 707.35 733.28	684.66 709.90 635.92	662.58 687.15 712.47 738.56	665.00 689.65 715.04 741.21	667.43 692.15 717.63 743.87	669.87	648.19 672.32 697.19 722.81 749.22	674.77 699.71 725.42 751.90	652.96 677.23 702.25 728.03 754.59	655.35 679.70 704.79 730.65 757.29
100	760.00	762.72	765.44	768.17	770.91	773.66	776.42	779.18	781.95	784.73

(B) ENGLISH UNITS.

					GLIBIL					
Tem- perature-	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
F. 185° 186 187 188 189	Inches. 17.075 17.450 17.832 18.221 18.618	Inches. 17.112 17.488 17.871 18.261 18.658	Inches. 17.150 17.526 17.910 18.300 18.698	Inches. 17.187 17.564 17.948 18.340 18.738	Inches. 17.224 17.602 17.987 18.379 18.778		Inches. 17.300 17.679 18.065 18.458 18.859	Inches. 17.337 17.717 18.104 18.498 18.899	Inches. 17.375 17.756 18.143 18.538 18.940	Inches. 17.413 17.794 18.182 18.578 18.980
190 191 192 193 194	19.021 19.431 19.849 20.275 20.707	19.062 19.473 19.892 20.318 20.751	19.102 19.514 19.934 20.361 20.795	19.143 19.556 19.976 20.404 20.839	19.598 20.019 20.447	19.225 19.639 20.061 20.490 20.927	19.266 19.681 20.104 20.533 20.971	19.308 19.723 20.146 20.577 21.015	19.349 19.765 20.189 20.620 21.059	19.390 19.807 20.232 20.664 21.103
195 196 197 198 199	21.597	21.192 21.642 22.099 22.564 23.038	21.687 22.145 122.611	21.282 21.733 22.192 22.658 23.133	21.778 22.238 22.706	21.824 22.284 22.752	21.870 22.331 22.800	21.461 21.915 22.377 22.847 23.325	21.506 21.961 22.424 22.895 23.374	21.551 22.007 22.471 22.942 23.422
200 201 202 203 204	23.470 23.959 24.457 24.963 25.478		24.058 24.557 25.065	23.616 24.108 24.608 25.116 25.634	24.157	23.714 24.207 24.709 25.210 25.738	24.257 24.759	23.812 24.307 24.810 25.322 25.843	23.861 24.357 24.861 25.374 25.896	23.910 24.407 24.912 25.426 25.948
205 206 207 208 209	26.001 26.534 27.075 27.626 28.185	28.242	26.107 26.641 27.184 27.737 28.298	26.160 26.695 27.239 27.793 28.355	26.213 26.749 27.204 27.848 28.412	26.266 26.803 27.349 27.904 28.469	26.319 26.857 27.404 27.960 28.526	26.373 26.912 27.460 28.016 28.583	26.426 26.966 27.515 28.073 28.640	26.480 27.021 27.570 28.129 28.697
210 211 212 213 214	28.754 29.333 29.921 30.519 31.127	29.391 29.981	28.869 29.450 30.040 30.640 31.250	28.927 29.508 30.100 30.701 31.311	28.985 29.567 30.159 30.761 31.373	29.042 29.626 30.219 30.822 31.435	29.100 29.685 30.279 30.883 31.497	29.158 29.744 30.339 30.944 31.559	29.216 29.803 30.399 31.005 31.621	29.275 29.862 30.459 31.066 31.683

DETERMINATION OF HEIGHTS BY THE BAROMETER.

Formula of Babinet:
$$Z = C \frac{B_0 - B}{B_0 + B}$$
.
 C (in feet) = 52494 $\left[x + \frac{t_0 + t - 64}{900} \right]$ English measures.
 C (in meters) = 16000 $\left[x + \frac{2(t_0 + t)}{1000} \right]$ metric measures.

In which Z= difference of height of two stations in feet or meters. B_0 , B= barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.

 t_0 , t = air temperatures at the lower and upper stations respectively.

Values of C.

Eng	LISH MEAS	URES.	ME	TRIC MEAS	URES.
$\frac{1}{2}(t_0+t).$	C	Log C	$\frac{1}{2}(t_0+t).$	С	Log C
Fahr. 10°, 15 20 25	Feet. 49928 50511 51094 51677	4.69834 ·7°339 4.7°837 ·7133°	Cent10° -8 -6 -4 -2	Meters. 15360 15488 15616 15744 15872	4.18639 .19000 .19357 .19712 .20063
30 35 40 45	52261 52844 53428 54011	4.71818 .72300 4.72777 .73248	+ 2 + 4 6 8	16000 16128 16256 16384 16512	4.20412 .20758 .21101 .21442 .21780
50 55 60 65	54595 55178 55761 56344	4.73715 .74177 4.74633 .75085	10 12 14 16 18	16640 16768 16896 17024 17152	4.22115 .22448 .22778 .23106 .23431
70 75 . 80 85	56927 57511 58094 58677	4.7553 ² .75975 4.76413 .76847	20 22 24 26 28	17280 17408 17536 17664 17792	4.23754 .24075 .24393 .24709 .25022
90 95 100	59260 59844 60427	4.77276 .77702 4.78123	30 32 34 36	17920 18048 18176 18304	4-25334 -25043 -25950 -26255

Values only approximate. Not good for great altitudes. A more accurate formula with corresponding tables may be found in Smithsonian Meteorological Tables.

TABLE 128.

VELOCITY OF SOUND IN SOLIDS.

The velocity of sounds in solids varies as $\sqrt{E/\rho}$, where E is Young's Modulus of elasticity and ρ the density. These constants for most of the materials given in this table vary through a somewhat wide range, and hence the numbers can only be taken as rough approximations to the velocity which may be obtained in any particular case. When temperatures are not marked, between ro and 20° is to be understood.

Substance.				
	Temp. C.	Velocity in meters per second.	Velocity in feet per second.	Authority.
Matala Aluminum	0	5104	16740	Masson.
Metals: Aluminum	_	5104 3500	11480	Various.
Cadmium	_	2307	7570	Masson.
Cobalt	-	4724	15500	
Copper	20	3560	11670	Wertheim.
	100	3290	10800 9690	"
Gold (soft)	200	2950 1743	5717	"
" (hard)	_	2100	6890	Various.
Iron and soft steel	-	5000	16410	"
Iron	20	5130	16820	Wertheim.
	100	5300	17390 15480	
" cast steel	200	4720 4990	16360	46
u. u u	200	4790	15710	44
Lead	20	1227	4026	66
Magnesium	-	4602	15100	Melde.
Nickel	_	4973	16320	Masson. Various.
Palladium	20	3150 2690	10340 8815	Wertheim.
Tituliitiii	100	2570	8437	66
44	200	2460	8079	46
Silver	20	2610	8553 8658	44
· · · · · · · · · · · · · · · · · · ·	100	2640		1
Tin	_	2500 3700	8200	Various.
Various: Brick	_	3652	11980	Chladni.
Clay rock	_	3480	11420	Gray & Milne.
Cork	-	500	1640	Stefan.
Granite	_	3950	12960	Gray & Milne.
Marble	ł .	3810	12500 4280	Warhura
Slate	15	1304 4510	14800	Warburg. Gray & Milne.
Tallow	16	390	1280	Warburg.
Tuff	-	2850	9350	Gray & Milne.
Glass \ from	-	5000	16410	Various.
Ivory	_	6000	19690	Cinna R. C. 11
Vulcanized rubber	2	3013 54	9886	Ciccone & Campanile, Exner.
(black)	50	31	102	ti
" (red) .	0	69	226	
737	70	34	III	
Wax	17 28	880	2890	Stefan.
Woods: Ash, along the fibre.	-	441 4670	1450	Wertheim.
" across the rings .	_	1 300	4570	Weithern.
" along the rings .	-	1260	4140	44
Beech, along the fibre .	-	3340	10960	66
" across the rings .	_	1840	6030	44
" along the rings . Elm, along the fibre .		1415	4640 13516	. 44
" across the rings	-	1420	4665	44
" along the rings .	-	1013	3324	44
Fir, along the fibre.	-	4640	15220	4.6
Maple "	-	4110	13470	1
Dina "		3850	12620	46
Poplar "		3320 4280	10900	16
Sycamore "	-	4460	14640	61
	1		,	

VELOCITY OF SOUND IN LIQUIDS AND GASES.

For gases, the velocity of sound= $\sqrt{\gamma P/\rho}$, where P is the pressure, ρ the density, and γ the ratio of specific heat at constant pressure to that at constant volume (see Table 253). For moderate temperature changes $V_t = V_0(1+at)$ where a = 0.00367. The velocity of sound in tubes increases with the diameter up to the free-air value as a limit. The values from ammonia to methane inclusive are for closed tubes.

Substance,	Temp. C.	Velocity in meters per second.	Velocity in feet per second.	Authority.
Liquids: Alcohol, 95%	12.5 20.5 16. 17.	1241. 1213. 1663. 1166. 1161.	4072. 3980. 5456. 3826. 3809.	Dorsing, 1908.
Ether	15. 15. 15. 15. 15.	1032. 1470. 1530. 1650. 1326. 1441.	3386. 4823. 5020. 5414. 4351. 4728.	66 66 66 66 66
Lake Geneva Seine river " " " " " " " " " " " " " " " " " "	31. 9. 15. 30. 60.	1505. 1435. 1437. 1528. 1724.	4938. 4708. 4714. 5013. 5657.	Colladon-Sturm. Wertheim.
Guncotton, 9 ounces	0. 0. 0.	1732. 1775. 1942. 2013. 331.78 331.36 331.92	5680. 5820. 6372. 6600. 1088.5 1087.1 1089.0	Threlfall, Adair, 1889, see Barton's Sound, p. 518. Rowland. Violle, 1900. Thiesen, 1908.
" I atmosphere . " 25 " . " 50 " . " 100 "	0. 0. 0. 0. 20.	331.7 332.0 334.7 350.6 344. 386.	1088. 1089. 1098. 1150. 1129. 1266.	Mean. " (Witkowski). " " " " " " " " "
Explosive waves in air: Charge of powder, 0.24 gms. " " 3.80 " " " 17.40 " " " 45.60 "	500. 1000.	553. 700. 336. 500. 931.	1814. 2297. 1102. 1640. 3060. 4160.	Violle, Cong. Intern. Phys. 1, 243, 1900.
Ammonia	0. 0. 0. 0.	415. 337.1 337.4 258.0 189. 206.4	1361. 1106. 1107. 846. 620.	Masson. Wullner. Dulong. Brockendahl, 1906. Masson. Martini.
Ethylene	0, 0, 0, 0,	205.3 314. 1269.5 1286.4 490.4 432.	674. 1030. 4165. 4221. 1609. 1417.	Strecker. Dulong. Zock. Masson.
Nitric oxide Nitrous oxide Oxygen Vapors: Alcohol Ether Water ""	0, 0, 0, 0, 0,	325. 261.8 317.2 230.6 179.2 401. 404.8	1066. 859. 1041. 756. 588. 1315.	Dulong. Masson. "Treitz, 1903.
66	130.	424.4	1392.	"

MUSICAL SCALES.

The pitch relations between two notes may be expressed precisely (1) by the ratio of their vibration frequencies; (2) by the number of equally-tempered semitones between them (E. S.); also, less conveniently, (3) by the common logarithm of the ratio in (1); (4) by the lengths of the two portions of the tense string which will furnish the notes; and (5) in terms of the octave as unity. The ratio in (4) is the reciprocal of that in (1); the number for (5) is 1/12 of that for (2); the number for (2) is nearly 40 times that for (3).

Table 130 gives data for the middle octave, including vibration frequencies for three standards of pitch; As=435 double vibrations per second, is the international standard and was adopted by the American Piano Manufacturers' Association. The "just-diatonic scale" of C-major is usually deduced, following Chladni, from the ratios of the three perfect major triads reduced to one octave, thus:

octave, thus:

: 5 4 5 B 20 24 30 36 45 54 24 27 30 32 36 40 45 48

Other equivalent ratios and their values in E. S. are given in Table 131. By transferring D to the left and using the ratio 10: 12:15 the scale of Aminor is obtained, which agrees with that of C-major except that D=26 2/3. Nearly the same ratios are obtained from a series of harmonics beginning with the eighth; also by taking 12 successive perfect or Pythagorean fifths or fourths and reducing to one octave. Such calculations are most easily made by adding and subtracting intervals expressed in E. S. The notes needed to furnish a just major scale in other keys may be found by successive transpositions by fifths or fourths as shown in Table 131. Disregarding the usually negligible difference of 0.02 E. S., the table gives the 24 notes to the octave required in the simplest enharmonic organ; the notes fall into pairs that differ by a comma, 0.22 E. S. The line "mean tone" is based on Dom Bedos' rule for tuning the organ (1746). The tables have been checked by the data in Ellis' Helmholtz's "Sensations of Tone."

TABLE 130.

:		rval.	Ra	tios.	Logar	ithms.	Number of double Vibrations per second.						
Note.	Just.	Tem- pered.	Just.	Tem- pered.	Just.	Tem- pered.	Just.	Just.	Just.	Tem- pered-	Tem- pered.	Tem- pered	
C ₈	E. S.	E. S.	1.00	1.00000	.0000	.00000	256	264	258.7	258.7	261.6 277.2	271.1 287.3	
D_3	2.04	2 3	1.125	1.12246	-05115	.05017	288	297	291.0	290.3	293.7 311.1	304.3	
E ₃	3.86 4.98	4 5	I.25 I.33	1.25992 1.33484	.09691 .12494	.10034	320 341-3	330 352	323 · 4 344 · 9	32 5 ·9 345·3	329.6 349.2	341.6 361.9	
, G ₈	7.02	7 8	1.50	1.41421 1.49831 1.58740	.17609	.15051 .17560 20060	384	396	388	365.8 387.5	370.0	383.4 406.2	
A ₃	8.840	9	1.67	1.68179	.22185	.22577	426.7	440	431.1	410.6 435.0 460.9	415.3 440.0 446.2	430.4 456.0 483.1	
R ₃ C ₄	10.88	11	1.875	2.00000	.27300 .30103	·27594 ·30103	480 512	495 528	485.0 517.3	488.3 517.3	493.9	511.8	

TABLE 131.

Ke	y of	С		D		E	F		G		.A		В	С
7 #s 6 " 4 " 3 " 2 " 1 # 1 b 2 bs 3 " 4 " 7 "	C# F# B E A D G C F B D D P G C C P	0.00 0.00 0.00 0.00 22 22	1.14 0.92 1.14 0.92 1.14 0.92 0.70 0.92 0.70 0.92 0.70 0.92	2.04 1 82 2.04 2.04 2.04 1.82 1.82	3.18 2.96 2.96 2.74 2.96 2.74 2.96 2.74 2.94 2.94 2.94 2.94 2.72 2.72	4.08 3.86 4.08 3.86 4.08 3.86 4.08 3.86 3.86 3.86 3.86 3.86	5.00 4.78 5.00 4.78 4.98 4.98 4.98 4.76 4.76	6.12 5.90 6.12 5.90 6.12 5.90 5.90 5.90 5.90 5.90 5.90 5.90 5.90	7.02 7.02 7.02 7.02 6.80 6.80 6.80	8.16 7.94 7.94 7.72 7.94 7.72 7.94 7.72 7.92 7.92 7.92 7.92 7.92 7.92	9.06 8.84 9.06 8.84 9.06 9.06 8.84 8.84	9.98 9.76 9.98 9.76 9.98 9.76 9.96 9.96 9.96 9.96 9.74 9.74	11.10 10.88 11.10 10.88 11.10 10.88 11.10 10.88 10.88 10.88 10.88	12.00 12.00 12.00 12.00 12.00 11.78 11.78
Harmon Cycle of Cycle of Mean to Equal 7	fifths fourths ne	8 0.0 0.0 0.0 0.0 0.0	(17 1.05) 1.14 0.90 0.76	9 2.04 2.04 1.80 1.93 1.71	(19) (2.98) 3.18 2.94 3.11 3.43	3.86 4.08 3.84 3.86	(21 (4.70) 5.22 4.98 5.03 5.14	5.51 6.12 5.88 5.79	7.02 7.02 6.78 6.97 6.86	(25 7.73) 8.16 7.92 7.72	9.06 8.82 8.90 8.57	14 9.69 10.20 9.96 10.07 10.29	15 10.88 11.10 10.86 10.83	16 12.00 12.24 11.76 12.00 12.00

MISCELLANEOUS SOUND DATA.

TABLE 132.—A Fundamental Tone, Its Harmonics (Overtones) and the Nearest Tone of the Equal-tempered Scale.

No. of partial. Frequency Nearest tempered note. Corresponding frequency	1	2	3	4	5	6	7	8	9	10
	129	259	388	517	647	776	905	1035	1164	1293
	C	C	G	C	E	G	B)	C	D	E
	129	259	388	517	652	775	922	1035	1164	1293
No. of partial. Frequency Nearest tempered note. Corresponding frequency	11	12	13	14	15	16	17	18	19	20
	1423	1552	1681	1811	1940	2069	2199	2328	2457	2586
	Gb	G	G#	Bb	B	C	C#	D	I)#	E
	1463	1550	1642	1843	1953	2069	2192	2323	2461	2607

Note. — Overtones of frequencies not exact multiples of the fundamental are sometimes called inharmonic partials.

TABLE 133. - Relative Strength of the Partials in Various Musical Instruments.

The values given are for tones of medium loudness. Individual tones vary greatly in quality and, therefore, in

Instrument.		Strength of partials in per cent of total tone strength.										
Instrument.	I	2	3	4	5	6	7	8	9	10	ıı	12
Tuning fork on box Flute Violin, A string Oboe Clarinet Horn Trombone	100 66 26 2 12 36 6	24 25 2 0 26 11	4 9 4 10 17 35	6 10 29 3 7 12	27 35 5 4 8	- I 14 0	0 48 2 6		3 15 1 3	- - 18 1 2		- 0 6 1 1

TABLE 134. — Characteristics of the Vowels.

The larynx generates a fundamental tone of a *chosen* pitch with some 20 partials, usually of low intensity. The particular partial, or partials, most nearly in unison with the mouth cavity is greatly strengthened by resonance. Each vowel, for a given mouth, is characterized by a particular *fixed* pitch, or pitches, of resonance corresponding to that vowel's definite form of mouth cavity. These pitches may be judged by whispering the vowels. It is difficult to sing vowels true above the corresponding pitches. The greater part of the energy or loudness of a vowel of a *chosen* pitch is in those partials reinforced by resonance. The vowels may be divided into two classes,—the first having one characteristic resonance region, the second, two. The representative pitches of maximum resonance of a mouth cavity for selected vowels in each group are given in the following table.

Vowel indicated by italics in the words.	Pitch of maximum resonance.	Vowel indicated by italics in the words.	Pitch of maximum resonance.
father, far, guardraw, fall, haulno, rode, goalgloom, move, group	910 732 461 326	mat, add, cat	800 and 1840 691 and 1953 488 and 2461 308 and 3100

TABLE 135. - Miscellaneous Sound Data.

Koenig's temperature coefficient for the frequency (n) of forks is nearly the same for all pitches. $n_t = n_0(1 - 0.000110^6 \text{ C})$, Ann. d. Phys. 9, p. 408, 1880. Vibration frequencies for continuous sound sensations are practically the same as for continuous light sensation, to or more per second. Helmholtz' value of 32 per sec. may be taken as the flicker value for the ear. Moving pictures use 16 or more per sec. For light the number varies with the intensity.

Pitch limits of voice: 60 to 1200 vibrations per second.

Pitan pitch limits: 27.2 to 4138.4 v. per sec. (over 7 octaves).

Organ pitch limits: 16 (32 ft. pipe), sometimes 8 (64 ft.) to 4138 (1½ in.) (9 octaves).

Ear can detect frequencies of 20,000 to 30,000 v. per sec. Koenig, by means of dust figures, measured sounds from

steel forks with frequencies up to 00,000.

The quality of a musical tone depends solely on the number and relative strength of its partials (simple tones) and probably not at all on their phases.

The wave-lengths of sound issuing from a closed pipe of length L are 4L, 4L/3, 4L/5, etc., and from an open pipe, 2L, 2L/3, 2L/3, etc. The end correction for a pipe with a flange is such that the antinode is $0.82 \times \text{radius}$ of pipe beyond the end; with no flange the correction is $0.57 \times \text{radius}$ of pipe.

Theorems of a pure sine wave is proportional to n^2A^2 ; the energy per cm³ is on the average $2\rho\pi^2U^2A^2/\lambda^2$; the energy

passing per sec. through 1 cm² perpendicular to direction of propagation is $2\rho\pi^2U^3A^2/\lambda^2$; the pressure is $\frac{1}{2}(\gamma+1)$ (average energy per cm³); where n is the vibration number per sec., λ the wave-length, A the amplitude, V the velocity of sound, ρ the density of the medium, γ the specific heat ratio. Altherg (Ann. d. Phys. 11, p. 405, 1903) measured sound-wave pressures of the order of 0.24 dynes/cm² = 0.00018 mm Hg.

TABLE 136. - Aerodynamics.

KINETICS OF BODIES IN RESISTING MEDIUM.

The differential equation of a body falling in a resisting medium is $du/dt = g - ku^2$. The velocity tends asymptotically to a certain terminal velocity, $V = \sqrt{g/k}$. Integration gives $u = \sqrt{g/k}$.

When body is projected upwards, $du/dt = -g - ku^2$, and if u_0 is velocity of projection, then $\tan^{-1} u/v = \tan^{-1} (u_0/V) - gt/V$, $x = (V^2/2g) \log (V^2 + u_0^2) (V^2 + u^2)$. The particle comes to rest when $t = (V/g) \tan^{-1} (u_0/V)$ and $x = (V^2/2g) \log (1 - u_0^2/V^2)$. For small velocities the resistance is more nearly proportional to the velocity.

Stokes' Law for the rate of fall of a spherical drop of radius a under gravity g gives for the velocity, v,

$$v = \frac{2ga^2}{9\eta}(\sigma - \rho),$$

where σ and ρ are the densities of the drop and the medium, η the viscosity of the medium. This depends on five assumptions: (1) that the sphere is large compared to the inhomogeneities of the medium; (2) that it falls as in a medium of unlimited extent; (3) that it is smooth and rigid; (4) that there is no slipping of the medium over its surface; (5) that its velocity is so small that the resistance is all due to the viscosity of the medium and not to the inertia of the latter. Because of 5, the law does not hold unless the radius of the sphere is small compared with $\eta/v\rho$ (critical radius). Arnold showed that a must be less than 0.6 this radius.

If the medium is contained in a circular cylinder of radius R and length L, Ladenburg showed

that the following formula is applicable (Ann. d. Phys. 22, 287, 1907, 23, 447, 1908):

$$V = \frac{2}{9} \frac{ga^{2}(\sigma - \rho)}{\eta(1 + 2.4a/R) (1 + 3.1a/L)}.$$

As the spheres diminish in size the medium behaves as if inhomogeneous because of its molecular structure, and the velocity becomes a function of l/a, where l is the mean free path of the molecules. Stokes' formula should then be modified by the addition of a factor, viz.:

$$v_1 = \frac{2}{Q} \frac{ga^2}{\eta} (\sigma - \rho) \left(\mathbf{I} + A \frac{l}{a} \right),$$

where A is 0.874; the last factor may be replaced by 1 + b/pa, where b is 0.000625, a in cm and p the barometric pressure in cm of Hg at 25° C. (See chapter V, Millikan, The Electron, 1917.)

TABLE 137. - Flow of Gases through Tubes.

 $S(\text{cm}^3/\text{sec}) = 12,200D^3/L$, where S = max. speed at which gas (at pressure of gas in vessel being exhausted) may be exhausted through tube D cm in diameter and L cm in length. (Knudsen,

Ann. d. Phys. 28, 76, 1909.)

When the velocity of flow of a gas is below a critical value, depending on the density and viscosity and on the diameter of the tube, the gas moves in stream lines parallel to the axis of the tube. Above this critical velocity the stream lines disappear and the flow becomes turbulent. The critical velocity $V_c = k\eta/\rho r$ for small pipes up to, say, 5 cm diameter, where K is a constant, ρ the gas density, η the gas viscosity and r the tube radius. When these are in cgs units, k is 103 in round numbers. Below the critical velocity the pressure drop along the tube is proportional to the velocity of gas flow. Above the critical velocity the pressure drop is practically proportional to the square of the velocity. (Munitions Research Lab., University College, London, 1018.)

AERODYNAMICS.

TABLE 138. -- Air Pressures upon Large Square Normal Planes at Different Speeds through the Air.

The resistance F of a body of fixed shape and presentation moving through a fluid may be written

$$F = \rho L^2 V^2 f(LV/\nu)$$

in which ρ denotes the fluid density, ν the kinematic viscosity, L a linear dimension of the body, V the speed of translation. In general f is not constant, even for constant conditions of the fluid, but is practically so for normal impact on a plane of fixed size. In the following, ρ is taken as 1,230 g/ ℓ (.0768 lbs./ ℓt^2). The mean pressure on thin square plates of 1.1 m² (12 ℓt^2), or over, moving normally through air of standard density at ordinary transportation speeds may be written $P = .00502^2$ for P in lbs. per ℓt^2 and ν in miles per hour. The following values are computed from this formula. For smaller areas the correction factors as given in the succeeding table (Table 139) derived from experiments made at the British National Physical Laborators, may be applied

Physical Laboratory, may be applied.

Units: the first of each group of three columns gives the velocity; the second, the corresponding pressure in kg/m² when the first column is taken as km per hour; the third in pds/ft² when in miles per hour.

Veloc-	Pres	sure.	Veloc-			Pres	sure.	Veloc-	Pressure.		
ity.	Metric.	English.	ity.	Metric.	English.	ity.	Metric.	English.	ity.	Metric.	English.
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	0.60 0.73 0.86 1.01 1.18 1.35 1.54 1.73 1.94 2.17 2.40 2.65 2.90 3.17 3.46 3.75 4.06 4.37 5.05 5.40 6.54	0.32 0.39 0.46 0.54 0.63 0.72 0.82 0.92 1.04 1.15 1.41 1.55 1.41 1.55 1.69 2.16 2.33 2.51 2.69 2.88 3.08 3.72 3.88 3.70 3.72 4.87	40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 61 62 63 64 65 66 67 68 69	9.60 10.99 10.5\$ 11.09 11.6 12.1 12.7 13.3 13.8 14.4 15.0 16.2 16.9 17.5 18.1 18.8 19.5 20.2 20.9 21.6 22.3 23.0 23.0 23.8 24.6 22.3 23.8 24.6 26.9 27.7 28.6	5.12 5.38 5.64 5.92 6.20 6.48 6.77 7.37 7.68 8.32 8.65 8.99 9.33 9.68 10.04 10.40 11.14 11.12 11.27 13.1 12.7 13.1 13.5 13.9 14.8 15.2	70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 97 98 99	29.4 30.2 31.1 32.0 32.8 33.7 35.5 37.4 38.4 40.3 41.3 42.3 44.4 47.5 49.7 50.8 51.9 53.0	15.7 16.1 16.6 17.0 17.5 18.0 19.5 20.0 20.5 21.0 21.0 22.6 22.6 23.1 23.7 24.8 25.4 25.4 25.4 25.7 24.8 27.1 27.7 28.3 29.5 30.1	100 101 102 103 104 105 106 107 107 118 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128	60. 0 61. 2 62. 4 63. 7 64. 9 66. 1 77. 0 71. 3 72. 6 78. 0 71. 3 72. 6 78. 0 79. 3 82. 1 83. 5 84. 9 85. 8 89. 3 90. 8 92. 2 93. 7 95. 3 96. 8	32.0 32.6 33.3 33.9 34.6 35.3 36.0 36.0 36.7 38.0 38.7 38.7 40.1 40.1 40.1 42.3 43.1 43.1 43.1 44.6 45.3 46.1 46.8 47.6 48.4 49.2 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8

TABLE 139. - Correction Factor for Small Square Normal Planes.

The values of Table 138 are to be multiplied by the following factors when the area of the surface is less than about \mathbf{r} m² (12 ft²).

	Met	ric.		English.						
Area. m ² 0.03 0.10 0.50 0.75 1.00 2.00 3.00 4.00	0.845 0.859 0.884 0.890 0.898 0.919 0.933 0.950	5.0 6.0 7.0 8.0 9.0 10.0 11.0	0.969 0.975 0.979 0.984 0.989 0.993 0.999 1.000	0.03 0.10 0.50 0.75 1.00 2.00 3.00 4.00	0.842 0.857 0.884 0.889 0.896 0.917 0.930 0.943	5.0 6.0 7.0 8.0 9.0 10.0 11.0	0.968 0.973 0.977 0.981 0.986 0.990 0.994			

TABLES 140-142. AFRODYNAMICS.

TABLE 140. - Effect of Aspect Ratio upon Normal Plane Pressure (Eiffel).

The mean pressure on a rectangular plane varies with the "aspect ratio," a name introduced by Langley to denote the ratio of the length of the leading edge to the chord length. The effect of aspect ratio on normally moving rectangular plates is given in the following table, derived from Eiffel's experiments.

|--|

TABLE 141. - Ratio of Pressures on Inclined and Normal Planes.

The pressure on a slightly inclined plane is proportional to the angle of incidence a, and is given by the formula $P_a = c \cdot P_{90} \cdot a$. The value of c, which is constant for incidences up to about 12°, is given for various aspect ratios. The angle of incidence is taken in degrees.

Value of c

TABLE 142. - Skin Friction.

The skin friction on an even rectangular plate moving edgewise through ordinary air is given by Zahm's equation,

 $F(\text{kg/m}^2) = 0.00030\{A(\text{m}^2)\}^{0.93}\{V(\text{km/hr.})\}^{1.86} \text{ in metric units}$ or $F(\text{pds./ft.}^2) = 0.0000082\{A(\text{ft.}^2)\}^{0.93}\{V(\text{ft./sec.})\}^{1.86},$

where A is the surface area and V the speed of the plane. The following table gives the friction per unit area on one side of a plate.

Speed.	Kg per	riction. r sq. m. ane.	Sp	eed.	Skin friction. Lbs. per sq. ft. Plane.			
km/hr.	ı m long.	32 m long.	miles/hr.	ft./sec.	ı ft. long.	32 ft. long.		
5	ò.0059	0.0047	5	7-3	0.00033	0.00026		
10	0.0217	0.0171	10	14.7	0.00121	0.00095		
15	0.0464	0.0364	15	22.0	0.00258	0.00202		
20	0.079	0.062	20	29.3	0.00439	0.00345		
25	0.122	0.095	25	30.7	0.0008	0.00530		
30	0.169	0.133	30	44.0	0.0004	0.0074		
40	0.288	0.225	40	58.7	0.0160	0.0125		
50	0.439	0.346	50	73 · 3	0.0244	0.0102		
60	0.616	0.482	60	88.0	0.0342	0.0268		
70	0.82	0.64	70	102.7	0.0455	0.0357		
80	1.06	0.83	80	117.3	0.0587	0.0461		
90	1.31	1.03	90	132.0	0.073	0.0572		
100	1.58	I.24	100	146.7	0.088	0.060		
110	1.89	1.40	110	161.2	0.105	0.083		
I 20	2.20	1.73	I 20	175.8	0.122	0.096		
125	2.39	1.87	125	183.4	0.133	0.104		
130	2.56	2.01	130	190.5	0.142	0.112		
135	2.68	2.10	135	197.8	0.140	0.117		
140	2.94	2.31	140	205.4	0.164	0.128		
145	3.15	2.47	145	212.5	0.175	0.137		
150	3.37	2.65	150	220.0	0.188	0.147		

The following tables, based on Eiffel, show the variation of the resistance coefficient K, with the angle of impact i, the aspect (ratio of leading edge to chord length), shape and velocity V in the formula

$$R(kg/m^2) = KS(m^2) \{V(m/sec.)\}^2$$

The value of K for km/hour would be 0.77 times greater.

TABLE 143. - Variation of Air Resistance with Aspect and Angle.

					Va	lues of i.				Max. r	atio.
Size of plane.	Aspect.	()°	10°	20°	30°	10°	45°	60°	75°	Value.	i.
		Values of Ki /K ₃₀ .								value.	
15 x 90 cm	1 2 3 6 9	.07 .11 .20 .26 .31 .37	.13 .21 .36 .43 .50 .58 .62	.40 .51 .80 .91 .77 .70 .73	0.67 0.89 1.24 0.72 0.77 0.78 0.80	0.92 1.20 1.17 0.79 0.84 0.84	1.08 1.22 1.08 0.82 0.88 0.88	1.07 1.06 1.03 0.90 0.94 0.93	I.03 I.02 I.02 0.97 0.99 0.98	1.07 1.22 1.46 0.91 0.77 0.69	60 45 38 20 20 15

TABLE 144. - Variation of Air Resistance with Shape and Size.

Cylinder, base \perp to wind: Length. o cm $_1R^*$ $_2R^*$ $_4R$	* 6R*	8 R *	14R*
Diameter of base, 30 cm $K = .0675 .068 .055 .05$		_	_
Diameter of base, 15 cm $K = .066$.055 .05			.059
Cylinder, base to wind: diameter base, 15 cm, length, 60 cr			
Cylinder, base to wind: diameter base, 3 cm, length, 100 cr	nK = .06	0	
Cone, angle 60°, diam. base, 40 cm, point to wind, solid	K = .03	32	
Cone, angle 30°, diam. base, 40 cm, point to wind, solid	K = .02	21	
Sphere, 25 cm diam.	K = .01	I	
Hemisphere, same diam., convex to wind	K = .0	21	
Hemisphere, same diam., concave to wind	K = .08	33	
Sphero-conic body, diam., 20 cm, cone 20°, point forward	K = .01	[0	
Sphero-conic body, diam., 20 cm, cone 20°, point to rear	K = .00	255	
Cylinder, 120 cm long, spherical ends to wind	K = .01	[2	

The wind velocity for the values of this table was 10 m/sec.

Tables 143 and 144 were taken from "The Resistance of the Air and Aviation," Eiffel, translated by Hunsaker, 1913.

* In the case of these cylinders the percentages due to skin friction are 2, 3, 6, 8, 11 and 16 per cent respectively, excluding the disk.

TABLE 145. - Variation of Air Resistance with Shape, Size and Speed.

This table shows the peculiar drop in air resistance for speeds greater than 4 to 12 meters per second. Another change occurs when the velocity approaches that of sound.

Chana	Values of K.										
Shape.	Speed	d, m/sec.	4	6	8	10	12	14	16	20	32
Sphere, 16.2 cm diameter									.0095		
Sphere, 24.4 cm diameter			.025	.025	.021	.013	.010	.010	.010	.010	.010
Sphere, 33 cm diameter									.011	.012	.012
Concave cup, 25 cm diam	eter								. 089		. 100
Convex cup, 25 cm diame	ter								.020	/	.018
Disk, 25 cm diameter			.071	.070	.070	.070	.070	.070	.070	.070	.068
Cylinder		cm									
element \perp to wind, $d =$: 15 cm, i									.022	.022
element \(\perp\) to wind,	30								.025	-	.023
element \perp to wind,	15								.030	.030	.030
element \(\perp\) to wind,	15								.027	-	.025
element ⊥ to wind,	15	22.5	.042	.041	.038	.034	.031	.028	.025	.022	.020
element to wind,	15	105.0	.069	.061	.057	.055	.053	.052	.051	.051	.050
Spherical ends,	15	120.0	.024	.022	.019	.018	.018	.018	.017	.016	.015

Taken from "Nouvelles Recherches sur la résistance de l'air et l'aviation," Eiffel, 1914.

TABLE 146. - Friction.

The required force F necessary to just move an object along a horizontal plane =fN where N is the normal pressure on the plane and f the "coefficient of friction." The angle of repose Φ (tan $\Phi = F/N$) is the angle at which the plane must be tilted before the object will move from its own weight. The following table of coefficients was compiled by Rankine from the results of General Morin and other authorities and is sufficient for ordinary purposes.

^{*} Quoted from a paper by Jenkin and Ewing, "Phil. Trans. R. S." vol. 167. In this paper it is shown that in cases where "static friction" exceeds "kinetic friction" there is a gradual increase of the coefficient of friction as the speed is reduced towards zero.

TABLE 147. - Lubricants.

The best lubricants are in general the following: Low temperatures, light mineral lubricating oils. Very great pressures, slow speeds, graphite, soapstone and other solid lubricants. Heavy pressures, slow speeds, ditto and lard, tallow and other greases. Heavy pressures and high speeds, sperm oil, castor oil, heavy mineral oils. Light pressures, high speeds, sperm, refined petroleum olive, rape, cottonseed. Ordinary machinery, lard oil, tallow oil, heavy mineral oils and the heavier vegetable oils. Steam cylinders, heavy mineral oils, lard, tallow. Watches and delicate mechanisms, clarified sperm, neat's-foot, porpoise, olive and light mineral lubricating oils.

TABLE 148. - Lubricants For Cutting Tools.

Material.	Turning.	Chucking.	Drilling.	Tapping Milling.	Reaming.
Tool Steel, Soft Steel, Wrought iron Cast iron, brass Copper Glass	dry or oil dry or soda water dry or soda water dry dry turpentine or kerosene	oil or s. w. soda water soda water dry dry	oil or s. w. oil or s. w. dry dry	oil oil oil dry dry	lard oil lard oil lard oil dry mixture

Mixture = 1/3 crude petroleum, 3/3 lard oil. Oil = sperm or lard.

Tables 147 and 148 quoted from "Friction and Lost Work in Machinery and Mill Work," Thurston, Wiley and Sons. SMITHSONIAN TABLES.

VISCOSITY.

TABLE 149. - Viscosity of Fluids and Solids.

The coefficient of viscosity of a substance is the tangential force required to move a unit area of a plane surface with unit speed relative to another parallel plane surface from which it is separated by a layer a unit thick of the substance. Viscosity measures the temporary rigidity it gives to the substance. The viscosity of fluids is generally measured by the rate of flow of the fluid through a capillary tube the length of which is great in comparison with its diameter. The equation generally used is

$$\mu$$
, the viscosity, $=\frac{\gamma \pi g d^4 t}{128 Q(l+\lambda)} \left(h - \frac{mv^2}{g}\right)$,

where γ is the density (g/cm^3) , d and l are the diameter and length in cm of the tube, Q the volume in cm³ discharged in t sec., λ the Couette correction which corrects the measured to the effective length of the tube, h the average head in cm, m the coefficient of kinetic energy correction, mv^3/g , necessary for the loss of energy due to turbulent in distinction from viscous flow, g being the acceleration of gravity (cm/sec/sec), v the mean velocity in cm per sec. (See Technologic Paper of the Bureau of Standards, 100 and 112, Herschel, 1917–1918, for discussion of this correction and λ .)

The fluidity is the reciprocal of the absolute viscosity. The kinetic viscosity is the absolute viscosity divided by the density. Specific viscosity is the viscosity relative to that of some standard substance, generally water, at some definite temperature. The dimensions of viscosity are $ML^{-1}T^{-1}$. It is generally expressed in cgs units as dyne-seconds per cm² or poises.

definite temperature. The dimensions of viscosity are $ML = 1^{-1}$. It is generally of the oscillations of suspended wires per cm² or poises.

The viscosity of solids may be measured in relative terms by the damping of the oscillations of suspended wires (see Table 78). Ladenburg (1906) gives the viscosity of Venice turpentine at 18.3° as 1300 poises; Trouton and Andrews (1904) of pitch at 0°, 51 × 10°, at 15°, 1.3 × 10°; of shoemakers' wax at 8°, 4.7 × 10°; of soda glass at 575°, 11 × 10°; Deeley (1908) of glacier ice as 12 × 10°.

TABLE 150. - Viscosity of Water in Centipoises. Temperature Variation.

Bingham and Jackson, Bulletin Bureau of Standards, 14, 75, 1917.

° C.	Vis- cosity.	°C.	Vis- cosity.	°C.	Vis- cosity.	°C.	Vis- cosity.	°C.	Vis- cosity.	°C.	Vis- cosity.	°C.	Vis- cosity.
0	1.7921	10	1.3077	20	1.0050	30	0.8007	40	0.6560	50	0.5494	60	0.4688
1	1.7313	11	1.2713	21	0.9810	31	0.7840	41	0.6439	51	0.5404	65	0.4355
2	1.6728	12	1.2363	22	0.9579	32	0.7679	42	0.6321	52	0.5315	70	0.4061
3	1.6191	13	1.2028	23	0.9358	33	0.7523	43	0.6207	53	0.5229	75	0.3799
4	1.5674	14	1.1709	24	0.9142	34	0.7371	44	0.6097	54	0.5146	80	0.3 5 65
5	1.5188	15	1.1404	25	0.8937	35	0.7225	45	0.5988	55	0.5064	85	0.3355
6	1.4728	16	1.1111	26	0.8737	36	0.7085	46	0.5883	56	0.4985	90	0.3165
7	1.4284	17	1.0828	27	0.8545	37	0.6947	47	0.5782	57	0.4907	95	0.2994
8	1.3860	18	1.0559	28	0.8360	38	0.6814	48	0.5683	58	0.4832	100	0.2838
9	1.3462	19	1.0299	29	0.8180	39	0.6685	49	0.5588	59	0.4759	153	0.181 *
* (* de Haas, 1894. Undercooled water: -2.10°, 1.33 cp; -4.70°, 2.12 cp; -6.20°, 2.25 cp; -8.48°, 2.46 cp; -9.30°, 2.55 cp; White, Twining, J. Amer. Ch. Soc., 50, 380, 1913.												

TABLE 151. - Viscosity of Alcohol-water Mixtures in Centipoises. Temperature Variation.

					Percen	tage by	weight o	f ethyl a	lcohol.				
° C.	0	10	20	30	39	40	45	50	60	70	80	90	100
0 5 10 15 20	1.792 1.519 1.308 1.140 1.005	3.311 2.577 2.179 1.792 1.538	5.319 4.065 3.165 2.618 2.183	6.94 5.29 4.05 3.26 2.71	7.25 5.62 4.39 3.52 2.88	7.14 5.59 4.39 3.53 2.91	6.94 5.50 4.35 3.51 2.88	6.58 5.26 4.18 3.44 2.87	5.75 4.63 3.77 3.14 2.67	4.762 3.906 3.268 2.770 2.370	3.690 3.125 2.710 2.309 2.008	2.732 2.309 2.101 1.802 1.610	1.773 1.623 1.466 1.332 1.200
25 30 35 40 45 50	0.894 0.801 0.722 0.656 0.599 0.549	1.323 1.160 1.006 0.907 0.812 0.734	1.815 1.553 1.332 1.160 1.015 0.907	2.18 1.87 1.58 1.368 1.189 1.050	2.35 2.00 1.71 1.473 1.284 1.124	2.35 2.02 1.72 1.482 1.280	2.39 2.02 1.73 1.495 1.307 1.148	2.40 2.02 1.72 1.499 1.294 1.155	2.24 1.93 1.66 1.447 1.271 1.127	2.037 1.767 1.529 1.344 1.189	1.748 1.531 1.355 1.203 1.081 0.968	1.424 1.279 1.147 1.035 0.939 0.848	1.096 1.003 0.914 0.834 0.764 0.702
60 70 80	0.469 0.406 0.356	0.609 0.514 0.430	0.736 0.608 0.505	0.834 0.683 0.567	0.885 0.725 0.598	0.893 0.727 0.601	0.907 0.740 0.609	0.913 0.740 0.612	0.902 0.729 0.604	0.856	0.789 0.650 —	0.704	0.592

TABLE 152. - Viscosity and Density of Sucrose in Aqueous Solution.

See Scientific Paper 298, Bingham and Jackson, Bureau of Standards, 1917, and Technologic Paper 100, Herschel, Bureau of Standards, 1917.

	,	Viscosity in	centipoises			Densit	y d ₄ ^t .			
Tempera- ture.	Pe	er cent suci	ose by weig	ht.		Per cent sucr	ose by weight			
	0	20	40	60	0	20	40	65		
o° C 5 10 15 20 30 40 50 60 70	1.7921 1.5188 1.3077 1.1404 1.0050 0.8007 0.6560 0.5494 0.4688 0.4061	3.804 3.154 2.652 2.267 1.960 1.504 1.193 0.970 0.808 0.685	14.77 11.56 9.794 7.468 6.200 4.382 3.249 2.497 1.982 1.608	238. 156. 109.8 74.6 56.5 33.78 21.28 14.01 9.83 7.15	o.99987 o.99999 o.99973 o.99913 o.99823 o.99568 o.99225 o.98807 o.98330	1.08546 1.08460 1.08353 1.08233 1.08094 1.07767 1.07366 1.06898 1.06358	1.18349 1.18192 1.18020 1.17837 1.17648 1.17214 1.16759 1.16248 1.15093	1.29560 1.29341 1.29117 1.28884 1.28644 1.28144 1.27615 1.27058 1.26468		
80	0.3565	0.590	1.334	5.40	Densities due to Plato.					

TABLE 153. — Viscosity and Density of Glycerol in Aqueous Solution (20° C).

% Glycerol.	Den- sity. g/cm ³	Viscos- ity in centi- poises.	Kine- matic viscos- ity.	Glyc- erol.	Den- sity. g/cm³	Viscos- ity in centi- poises.	100 X Kine- matic viscos- ity.	Glyc- erol.	Den- sity. g/cm³	Viscos- ity in centi- poises.	Kine- matic viscos- ity.
5	1.0098			35				65	1.1662	14.51	12.44
10	1.0217	1.364	1.335	40	1.0989	3.791	3.450	70	1.1797	21.49	18.22
15	1.0337	1.580	1.529	45	1.1124	4.692	4.218	7.5	1.1932	33.71	28.25
20	1.0461	1.846	1.765	50	1.1258	5.908	5.248	80	1.2066	55.34	45.86
25	1.0590			55	1.1393	7.664	6.727	85	1.2201	102.5	84.01
30	1.0720	2.585	2.411	60	1.1528	10.31	8.943	90	1.2335	207.6	168.3
				<u> </u>							

The kinematic viscosity is the ordinary viscosity in cgs units (poises) divided by the density.

TABLE 154. - Viscosity and Density of Castor Oil (Temperature Variation).

Density,	Viscosity in poises. Kinematic viscosity.	° C	Density, g/cm³ Viscosity in poises.	Kinematic viscosity.	Density,	Viscosity in poises.	viscosity.	Density, g/cm³	in poises. Kinematic viscosity.
8 .9680	31.6 32.6 28.9 29.8 26.4 27.3 24.2 25.0 22.1 22.8 20.1 20.8	15 .0 16 .0 17 .0 18 .0 19 .0 20 .0	9638 15.14 9631 13.80 9624 12.65 9617 11.62	14.33 25 13.14 26 12.09 27 11.15 28 10.27 29 9.44 30	.9569 .9562 .9555 .9548 .9541	7.06 7.3 6.51 6.8 0.04 6.3 5.61 5.8 5.21 5.2 4.85 5.6	30 34 32 35 37 36 46 37 58 38 39	.9520 3. .9513 3. .9506 3. .9499 3. .9492 2. .9485 2. .9478 2. .9471 2.	65 3.84 40 3.58 10 3.33 94 3.10 74 2.89 58 2.72 44 2.58

Tables 153 and 154, taken from Technologic Paper 112, Bureau of Standards, 1918. Glycerol data due to Archbutt, Deeley and Gerlach; Castor Oil to Kahlbaum and Räber. See preceding table for definition of kinematic viscosity. Archbutt and Deeley give for the density and viscosity of castor oil at 65.6° C, 0.9284 and 0.605, respectively; at 100° C, 0.9050 and 0.169. SMITHSONIAN TABLES.

VISCOSITY OF LIQUIDS.

Viscosities are given in cgs units, dyne-seconds per cm2, or poises.

·			n .			1	ln .
Liquid.	° C	Viscosity.	Refer- ence.	Liquid.	° C	X7::4	Refer-
Diquid.	C	v iscosity.	ецсе.	Liquid.		Viscosity.	ence
Acataldobarda				* Deals and to be			
Acetaldehyde	0.	0.00275	I	* Dark cylinder	37.8	7.324	10
	20.	0.00252	I	* "Extra L. L."	100.0	0.341	10
Air	-192.3	0.00231	2	Timed	37.8	11.156	10
Aniline	20.	0.04467	3	Linseed .925 ‡	30.	0.451	10
**	60.	0.0156	3	. 022	50.	0.331	9
Bismuth	285.	0.0161	4	" .914	90.	0.071	0
46	365.	0.0146	4	Olive .9195	10.	1.38	11
Copal lac	22.	4.80	5	"	15.	1.075	II
Glycerine	2.8	42.2	6	" .9130	20.	0.840	II
"	14.3	13.87	6	.9005	30.	0.540	II
	20.3	8.30	6	. 9000	40.	0.363	II
" 82 07 H O	26.5	4.94	6	.8935	50.	0.258	11
64 05 7 H.O.	8.5	I.02I	6	. 3800	70.	0.124	II
" 40.70% H2O	8.5	0.222	6	† Rape	15.6	1.118	10
" 80.31% H ₂ O " 64.05% H ₂ O " 49.79% H ₂ O Hydrogen, liquid	8.5	0.002	6	"	37.8	0.422	IO
Menthol, solid		2 X 10 ¹²	_	" (another)	100.0	0.080	IO IO
" liquid	14.9 34.9	0.069	7	(another)	15.6	0.085	10
Mercury	-20.	0.0184	7 8	Soya bean .919 ‡	30.0	0.406	9
16	0.	0.01661	4		50.0	0.206	9
"	20.	0.01547	4	" " .906	90.0	0.078	9
	34.	0.01476	4	† Sperm	15.6	0.420	10
	98.	0.01263	4		37.8	0.185	10
	193.	0.01079	4	_ "	100.0	0.046	10
0.1	299.	0.00975	4	Paraffins:			
Oils: Dogfish-liver . 923 ‡				Pentane	21.0	0.0026	12
	30.	0.414	9	Hexane	23.7	0.0033	I 2
" " .908	50.	0.211	9	HeptaneOctane	24.0	0.0045	12
Linseed .925	90. 30.	0.331	9	Nonane	22.2	0.0053	I 2
11113000 1923	50.	0.176	9	Decane	22.3	0.0002	12
.014	90.	0.071	9	Undecane	22.7	0.0005	12
* Spindle oil .885	15.6	0.453	IO	Dodecane	23.3	0.0126	12
46 44	37.8	0.162	IQ	Tridecane	23.3	0.0155	12
	100.0	0.033	10	Tetradecane	21.9	0.0213	I 2
* Light machinery				Pentadecane	22.0	0.0281	I 2
.907 ‡	15.6	1.138	10	Hexadecane	22.2	0.0359	I 2
* Light machinery	37.8	0.342	10	Phenol	18.3	0.1274	13
* "Solar red" engine	100.0	0.049	10	Sulphur.	90.0	0.0126	13
Solar red engine.	15.6 37.8	1.915 0.496	10	Sulphur	170. 180.	320.0 550.0	14
	100.0	0.490	IO		187.	550.0	14
* " Bayonne" engine.	15.6	2.172	10	61	200.	500.0	14
41	37.8	0.572	10	"	250.	104.0	14
* "	100.0	0.063	IO	**	300.	24.0	17
* " Queen's red" engine	15.6	2.995	10	61	340.	6.2	14
65 66 66	37.8	0.711	10		380.	2.5	14
	100.0	0.070	10		420.	1.13	14
* "Galena" axle oil	15.6	4.366	10		448.	0.80	14
* Treeses machine	37.8	0.909	10	† Tallow	66.	0.176	10
* Heavy machinery	15.6	6.606	10	7ing	100.	0,078	10
* Filtered cylinder	37.8 37.8	1.274 2.406	IO	Zinc	357.	0.0168	4
" Filtered Cyllider	100.0	0.187	IO	6	357.	0.0142	4 4
* Dark cylinder	37.8	4.224	10		309.	0.0131	4
Bark Cylinder	100.0	0.240	IO				

^{*}American mineral oils; based on water as .01028 at 20° C. † Based on water as per 1st footnote. ‡ Densities. References: (1) Thorpe and Rodger, 1894-7; (2) Verschaffelt, Sc. Ab. 1917; (3) Wijkander, 1879; (4) Plüss. Z. An. Ch. 03, 1915; (5) Metz, C. R. 1903; (6) Schöttner, Wien. Ber. 77, 1878, 79, 1879; (7) Heydweiller, W. Ann. 63, 1897; (8) Koch, W. Ann. 14, 1881; (9) White, Bul. Bur. Fish. 32, 1912; (10) Archbutt-Deeley, Lubrication and Lubricants, 1912; (11) Higgins, Nat. Phys. Lab. 11, 1914; (12) Bartolli, Stracciati, 1885-6; (13) Scarpa, 1903-4; (14) Rotinganz, Z. Ph. Ch. 62, 1908.

VISCOSITY OF LIQUIDS.

Compiled from Landolt and Börnstein, 1912. Based principally on work of Thorpe and Rogers, 1894-97. Viscosity given in centipoises. One centipoise = 0.01 dyne-second per cm².

Y			Vis	cosity in	centipo	ises.			
Liquid.	Formula.	o° C	10° C	20° C	30° C	40° C	50° C	70° C	100° C
Acids: Formic	CH_2O_2	solid	2.247	1.784	1.460	1.210	1.036	. 780	. 549
Acetic	$C_2H_4O_2$	solid	solid	I.222	1.040	0.905	0.796	.631	.465
Propionic	$C_3H_6O_2$		1.289						
Butyric	$C_4H_8O_2$		1.851						
i-Butyric	$C_4H_8O_2$		1.568						.501
Alcohols: Methyl	CH ₄ O	0.817	0.690	0.596	0.520	0.450	0.403		
Ethyl *	C ₂ H ₆ O	1.772	1.466	1.200	1.003	0.834	0.702	.510	
Allyl	C_3H_6O C_3H_8O	2.145	1.705	1.303	I. 100	0.914	1 120	760	
Propyli-Propyl	C_3H_8O	1 5.003	3.246	2 270	T 757	1.221	1.020	. 646	_
Butyric	$C_4H_{10}O$	5. 186	3.873	2.048	2.267	1.782	1.411	. 030	. 540
i-Butyric	$C_4H_{10}O$	8.038	5 - 548	3.007	2.864	2.122	1.611	_	.527
Amyl, op. act	$C_5H_{12}O$	11.129							.610
Amyl, op. inact	$C_5H_{12}O$		6.000						.632
Aromatics: Benzol	C_6H_6	0.906	0.763	0.654	0.567	0.498	0.444	.359	_
Toluene	C_7H_8	0.772	0.671	0.590	0.525	0.471	0.426	.354	
Ethylbenzol	C_8H_{10}		0.761						.310
Orthoxylene	C_8H_{10}		0.937						352
Metaxylene	$C_8H_{10} \\ C_8H_{10}$		0.702						
Bromides: Ethyl	C_8H_{10} C_2H_5Br		0.441					-503	
Propyl	C_3H_7Br		0.582				0.307	-338	
i-Propyl	C ₃ H ₇ Br		0.545						_
Allyl	C ₃ H ₅ Br	0.626	0.560	0.504	0.458	0.419	0.384	.328	
Ethylene	C_2H_4Br	2.438	2.039	1.721	1.475	1.286	1.131	.903	.678
Bromine	Br		1.120					-	
Chlorides: Propyl	C ₃ H ₇ Cl		0.396					-	
Allyl Ethylene	C ₃ H ₅ Cl C ₂ H ₄ Cl		0.372					470	
Chloroform	CHCl ₃		0.966						
Carbon-tetra	CCL		1.138						
Ethers: Diethyl	$C_4H_{10}O$		0.268				_		
Methyl-propyl	$C_4H_{10}O$	0.314	0.285	0.260	0.237	_			_
Ethyl-propyl	$C_5H_{12}O$	0.402	0.360	0.324	0.204	0.268	0.245	-	
Dipropyl	$C_6H_{14}O$	0.544	0.479	0.425	0.381	0.344	0.311	_	—
Esters: Methylformate		0.436	0.391	0.355	0.325	-	_	-	_
Ethylformate	C_3H_6O $C_3H_6O_2$	0.510	0.454	0.408	0.309	0.330	0.308		
Ethylacetate	$C_3H_6O_2$ $C_4H_8O_2$		0.431						
Iodides: Methyl	CH ₃ I		0.548					-2/9	-
Ethyl	C_2H_5I		0.654					- 301	_
Propyl	C_3H_7I		0.833						.371
Allyl	C_3H_5I	0.936	0.826	0.734	0.660	0.597			
Paraffines: Pentane	C_5H_{12}		0.262			_	_	_	-
i-Pentane	C_5H_{12}		0.250			_		-	-
Hexanei-Hexane	C_6H_{14} C_6H_{14}		0.360						_
Heptane	$C_{6}H_{14}$ $C_{7}H_{16}$		0.338						
i-Heptane	C_7H_{16}		0.465						
Octane	C_8H_{18}	0.706	0.616	0.542	0.482	0.433	0.301	. 324	. 252
Sulphides: Carbon di	CS ₂	0.438	0.405	0.376	0.352	0.330	- 391	-	
Ethyl	$C_4H_{10}S$		0.501					. 287	_
Turpentine†			1.783						

^{*} Bureau of Standards, see special table. † Glaser.

This table is intended to show the effect of change of concentration and change of temperature on the viscosity of solutions of salts in water. The specific viscosity × 100 is given for two or more densities and for several temperatures in the case of each solution. μ stands for specific viscosity, and t for temperature Centigrade.

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
BaCl ₂	7.60 15.40 24.34	-	77.9 86.4 100.7	10	44.0 56.0 66.2	30	35.2 39.6 47.7	50	-	1 1 1	Sprung.
Ba(NO₃)₂	2.98 5.24	1.027	62.0	15	51.1 54.2	25	42.4 44.1	3,5	34.8 36.9	45	Wagner.
CaCl ₂	15.17 31.60 39.75 44.09	-	110.9 272.5 670.0	10 " "	71.3 177.0 379.0 593.1	.30	50.3 124.0 245.5 363.2	50	-		Sprung.
Ca(NO ₃) ₂	17.55 30.10 40.13	1.171 1.274 1.386	93.8 144.1 242.6	1.5 "	74.6 112.7 217.1	25 "	60.0 90.7 156.5	3,5	49.9 75.1 128.1	45	Wagner.
CdCl ₂	11.09 16.30 24.79	1.109 1.181 1.320	77·5 88.9 104.0	15	60.5 70.5 80.4	25 "	49.1 57.5 64.6	35	40.7 47.2 53.6	45	66
Cd(NO ₃) ₂	7.81 15.71 22.36	1.074 1.159 1.241	61.9 71.8 85.1	15 "	50.1 58.7 69.0	25	41.1 48.8 57.3	3.5	34.0 41.3 47.5	45	66 66
CdSO ₄	7.14 14.66 22.01	1.068 1.159 1.268	78.9 96.2 120.8	15	61,8 72.4 91.8	25 "	49.9 58.1 73.5	35 "	41.3 48.8 60.1	45	66 66 66
CoCl ₂	7.97 14.86 22.27	1.081 1.161 1.264	83.0 111.6 161.6	15	65.1 85.1 126.6	25 "	53.6 73.7 101.6	35	44.9 58.8 85.6	45	66 66
Co(NO ₃) ₂	8.28 1 5.96 24.53	1.073 1.144 1.229	74·7 87.0 110.4	15 "	57·9 69.2 88.0	25 "	48.7 55.4 71.5	3,5 "	39.8 44.9 59.1	45	66
CoSO ₄	7.24 14.16 21.17	1.086 1.159 1.240	86.7 117.8 193.6	15 "	68.7 95.5 146.2	25 "	55.0 76.0 113.0	3,5	45.1 61.7 89.9	45	66 66
CuCl ₂	12.01 21.35 33.03	1.104 1.215 1.331	87.2 121.5 178.4	15 "	67.8 95.8 137.2	25 "	55.1 77.0 107.6	3.5	45.6 63.2 87.1	45	66 66
Cu(NO ₈) ₂	18.99 26.68 46.71	1.177 1.264 1.536	97·3 126.2 382.9	15 "	76.0 98,8 283.8	25	61.5 80.9 215.3	3,5	51.3 68.6 172.2	45	66 66 46
CuSO ₄	6.79 12.57 17.49	1.055 1.115 1.163	79.6 98.2 124.5	15 "	61.8 74.0 96.8	25 "	49.8 59.7 75.9	35	41.4 52.0 61.8	4.5	66
HCl "	8.14 16.12 23.04	1.037 1.084 1.114	71.0 80.0 91.8	1.5 "	57.9 66.5 79.9	25	48.3 56.4 65.9	3.5	40.1 48.1 56.4	45	66 66
HgCl ₂	o.23 3·55	1.002	- 76.75	10	58.5 59.2	20	46.8 46.6	30	38.3 38.3	40	66

Salt.	Percentage by weight of salt in solution.	Density.	μ.	t	μ	t	μ	t	μ	ŧ	Authority.
HNO ₈	8.37 12.20 28.31	1.067 1.116 1.178	66.4 69.5 80.3	15	54.8 57.3 65.5	25	45·4 47·9 54·9	35	37.6 40.7 46.2	45	Wagner.
H ₂ SO ₄	7.87 15.50 23.43	1.065 1.130 1.200	77.8 95.1 122.7	15	61.0 75.0 95.5	25	50.0 60 5 77·5	3.5	41.7 49.8 64.3	45	66 66
KCl "	10.23 22.21	-	70.0 70.0	10	46.1 48.6	30	33.1 36.4	50	_	-	Sprung.
KBr "	14.02 23.16 34.64		67.6 66.2 66.6	10	44.8 44.7 47.0	30	32.I 33.2 35.7	50	- - -	- - -	66 66 66 .
KI "	8.42 17.01 33.03 45.98 54.00	-	69.5 65.3 61.8 63.0 68.8	10 " " "	44.0 42.9 42.9 45.2 48.5	30 "	31.3 31.4 32.4 35.3 37.6	50		1111	ee ee ee
KClO ₃	3.51 5.69		71.7	10	44·7 45.0	30	31.5 31.4	50	_	- -	£;
KNO ₈	6.32 12.19 17.60	1-	70.8 68.7 68.8	10 "	44.6 44.8 46.0	30 "	31.8 32.3 33.4	50	-		66 6. - 66
K ₂ SO ₄	5.17 9.77	_	77·4 81.0	10	48.6	30	34·3 36.9	50	-	_	46
K ₂ CrO ₄ "	11.93 19.61 24.26 32.78	- - 1.233 -	75.8 85.3 97.8 109.5	10 ((62.5 68.7 74.5 88.9	30 "	41.0 47.9 54.5 62.6	40		1 1 1 1	".". Slotte. Sprung.
K ₂ Cr ₂ O ₇	4.71 6.97	1.032 1.049	72.6 73.1	10	55.9 56.4	20	45·3 45·5	30	37·5 37·7	40	Slotte.
LiCl "	7.76 13.91 26.93		96.1 121.3 229.4	10	59.7 75.9 142.1	30	41.2 52.6 98.0	50	- - -		Sprung.
Mg(NO ₃) ₂	18.62 34.19 39.77	I,102 I.200 I.430	99.8 : 213.3 317.0	15	81.3 164.4 250.0	25 "	66.5 132.4 191.4	35	56.2 109.9 158.1	45	Wagner.
MgSO ₄	4.98 9.50 19.32	-	96.2 1 30.9 302.2	10	59.0 77.7 166.4	30 44	40.9 53.0 106.0	50 "	- - -		Sprung.
MgCrO ₄	12.31 21.86 27.71	1.089 1.164 1.217	111.3 167.1 232.2	10 "	84.8 125.3 172.6	20 "	67.4 99.0 133.9	30 "	55.0 79.4 106.6	40	Slotte.
MnCl ₂	8.01 15.65 30.33 40.13	1.096 1.196 1.337 1.453	92.8 130.9 256.3 537.3	15	71.1 104.2 193.2 393.4	25 " " " "	57·5 84.0 155.0 300.4	35	48.1 68.7 123.7 246.5	45	Wagner.

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	ŧ.	μ	t	Authority.
$\operatorname{Mn}(\operatorname{NO}_3)_2$	18.31 29.60 49.31	1.148 1.323 1.506	96.0 167.5 3968	15	76.4 126.0 301.1	25 "	64.5 104.6 221.0	3.5	5 5.6 88.6 188.8	45	Wagner.
MnSO ₄	11.45 18.80 22.08	1.147 1.251 1.306	129.4 228.6 661.8	15	98.6 172.2 474·3	25	78.3 137.1 347.9	3.5	63.4 107.4 266.8	4.5	66 66 66
NaCl "	7.95 14.31 23.22		82.4 94.8 128.3	10	52.0 60.1 79.4	30 "	31.8 36.9 47.4	50	- - -		Sprung.
NaBr 	9.77 18.58 27.27		75.6 82.6 95.9	10 "	48.7 53.5 61.7	30	34·4 38·2 43·8	50	-		66 66
NaI " " "	8.83 17.15 35.69 55.47	- - -	73.1 73.8 86.0 157.2	10 " "	46.0 47.4 55.7 96.4	30 "	32.4 33.7 40.6 66.9	50 " "	-	1 1 1 1	66 66
NaClO ₃	20.59 33.54	- - ~	78.7 88.9 121.0	10 "	50.0 56.8 75.7	30 "	35·3 40·4 53·0	50	- - -	1 1 1	66 66
NaNO ₃ " "	7.25 12.35 18.20 31.55	- - - -	75.6 81.2 87.0 121.2	"	47.9 51.0 55.9 76.2	30 "	33.8 36.1 39.3 53.4	50 "	-	1111	66 66 66
Na ₂ SO ₄	4.98 9.50 14.03 19.32	-	96.2 130.9 187.9 302.2	10 "	59.0 77.7 107.4 166.4	30 "	40.9 53.0 71.1 106.0	50 "	-	1 1 1	66 66 66
Na ₂ CrO ₄	5.76 10.62 14.81	1.058 1.112 1.164	85.8 103.3 127.5	10 "	66.6 79.3 97.1	20	53·4 63·5 77·3	30	43.8 52.3 63.0	40	Slotte.
NH ₄ Cl	3.67 8.67 15.68 23.37	- - -	71.5 69.1 67.3 67.4	"	45.0 45.3 46.2 47.7	30 "	31.9 32.6 34.0 36.1	50			Sprung. " "
NH ₄ Br "	15.97 25.33 36.88	- - -	65.2 62.6 62.4	10 "	43.2 43.3 44.6	30	31.5 32.2 34.3	50	_ _ _		66 66
NH ₄ NO ₃ "" "	5.97 12.19 27.08 37.22 49.83		69.6 66.8 67.0 71.7 81.1	10	44·3 44·3 47·7 51·2 63·3	30	31.6 31.9 34.9 38.8 48.9	50	-	1 1 1 1	66 66 66
(NH ₄) ₂ SO ₄	8.10 15.94 25.51	_ _ _	107.9 120.2 148.4	10	52.3 60.4 74.8	30 "	37.0 43.2 54.1	50	- - -	- - -	«« ««

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	ŧ	Authority.
(NH ₄) ₂ CrO ₄	10.52 19.75 28.04	1.063 1.120 1.173	79.3 88.2 101.1	10 "	62.4 70.0 80.7	20 "	- 57.8 60.8	30	42.4 48.4 56.4	40 - -	Slotte.
(NH ₄) ₂ Cr ₂ O ₇	6.85 13.00 19.93	1.039 1.078 1.126	72.5 72.6 77.6	10 "	56.3 57.2 58.8	20 "	45.8 46.8 48.7	30 "	38.0 39.1 40.9	40	44 44
NiCl ₂	11.45 22.69 30.40	1.109 1.226 1.337	90.4 140.2 229.5	15 "	70.0 109.7 171.8	25 "	57·5 87.8 139.2	3.5	48.2 72.7 111.9	45	Wagner.
Ni(NO ₈) ₂	16.49 30.01 40.95	1.136 1.278 1.388	90.7 135.6 222.6	"	70.1 105.9 169.7	25	57.4 85.5 128.2	35 "	48.9 70.7 152.4	45	66
NiSO ₄	10.62 18.19 25.35	1.092 1.198 1.314	94.6 154.9 298.5	15 "	73·5 119.9 224.9	25	60.1 99.5 173.0	3.5	49.8 75.7 152.4	45	66
Pb(NO ₃) ₂	17.93 32.22	1.179 1.362	74.0 91.8	15	59.1 72.5	25	48.5 59.6	3,5	40.3 50.6	45	66
Sr(NO ₈) ₂	10.29 21.19 32.61	1.088 1.124 1.307	69.3 87-3 116.9	15	56.0 69.2 93.3	25 "	45.9 57.8 76.7	35	39.1 48.1 62.3	45 "	66
ZnCl ₂	15.33 23.49 33.78	1.146 1.229 1.343	93.6 111.5 151.7	15	72.7 86.6 117.9	25	57.8 69.8 90.0	35	48.2 57.5 72.6	45	66
Zn(NO ₃) ₂	15.95 30.23 44.50	1.115 1.229 1.437	80.7 104.7 167.9	15	64.3 85.7 130.6	25 "	52.6 69.5 105.4	35	43.8 57.7 87.9	45 "	66
ZnSO ₄	7.12 16.64 23.09	1.106 1.195 1.281	97.1 156.0 232.8	15	79.3 118.6 177.4	25	62.7 . 94.2 135.2	35 "	51.5 73.5 108.1	45	66

TABLE 158.

SPECIFIC VISCOSITY.*

	Normal s	solution.	1/2 nor	mal.	l nor	mal.	l nor	mal.	
Dissolved salt.	Density.	Specific viscosity.	Density.	Specific viscosity.	Density.	Specifie viscosity.	Density.	Specific viscosity.	Authority.
$\begin{array}{c} \text{Acids}: \text{Cl}_2\text{O}_3 & . & . \\ \text{HCl} & . & . \\ \text{HClO}_3 & . & . \\ \text{HNO}_3 & . & . \\ \text{H}_2\text{SO}_4 & . & . \end{array}$	1.0562 1.0177 1.0485 1.0332 1.0303	1.012 1.067 1.052 1.027 1.090	1.0283 1.0092 1.0244 1.0168 1.0154	1.003 1.034 1.025 1.011 1.043	1.0143 1.0045 1.0126 1.0086 1.0074	1.000 1.017 1.014 1.005 1.022	1.0074 1.0025 1.0064 1.0044 1.0035	0.999 1.009 1.006 1.003 1.008	Reyher. " " Wagner.
Aluminium sulphate Barium chloride " nitrate Calcium chloride . " nitrate	1.0550 1.0884 - 1.0446 1.0596	1.406 1.123 - 1.156 1.117	1.0278 1.0441 1.0518 1.0218 1.0300	1.178 1.057 1.044 1.076 1.053	1.0138 1.0226 1.0259 1.0105	1.082 1.026 1.021 1.036 1.022	1.0068 1.0114 1.0130 1.0050 1.0076	1.038 1.013 1.008 1.017 1.008	66 66 66
Cadmium chloride . " nitrate . " sulphate . Cobalt chloride " nitrate " sulphate	1.0779 1.0954 1.0973 1.0571 1.0728 1.0750	1.134 1.165 1.348 1.204 1.166 1.354	1.0394 1.0479 1.0487 1.0286 1.0369 1.0383	1.063 1.074 1.157 1.097 1.075 1.160	1.0197 1.0249 1.0244 1.0144 1.0184 1.0193	1.031 1.038 1.078 1.048 1.032	1.0098 1.0119 1.0120 1.0058 1.0094 1.0110	1.020 1.018 1.033 1.023 1.018 1.040	66 66 66 66
Copper chloride " nitrate " sulphate Lead nitrate Lithium chloride . " sulphate	1.0624 1.0755 1.0790 1.1380 1.0243 1.0453	1.205 1.179 1.358 1.101 1.142 1.290	1.0313 1.0372 1.0402 0.0699 1.0129 1.0234	1.098 1.080 1.160 1.042 1.066 1.137	1.0158 1.0185 1.0205 1.0351 1.0062	I.047 I.040 I.080 I.017 I.031 I.065	1.0077 1.0092 1.0103 1.0175 1.0030 1.0057	I.027 I.018 I.038 I.007 I.012 I.032	66 66 66 66
Magnesium chloride " nitrate . " sulphate Manganese chloride " nitrate . " sulphate	1.1375 1.0512 1.0584 1.0513 1.0690 1.0728	1.201 1.171 1.367 1.209 1.183 1.364	1.0188 1.0259 1.0297 1.0259 1.0349 1.0365	1.094 1.082 1.164 1.098 1.087	1.0091 1.0130 1.0152 1.0125 1.0174 1.0179	I.044 I.040 I.078 I.048 I.043 I.076	1.0043 1.0066 1.0076 1.0063 1.0093	I.021 I.020 I.032 I.023 I.023 I.037	66 66 66 66
Nickel chloride	1.0591 1.0755 1.0773 1.0466 1.0935 1.0605 1.0664	1.205 1.180 1.361 0.987 1.113 0.975 1.105	1.0308 1.0381 1.0391 1.0235 1.0475 1.0305 1.0338	1.097 1.084 1.161 0.987 1.053 0.982 1.049	1.0144 1.0192 1.0198 1.0117 1.0241 1.0161 1.0170	I.044 I.042 I.075 0.990 I.022 0.987 I.021	1.0067 1.0096 1.0017 1.0059 1.0121 1.0075	1.021 1.019 1.032 0.993 1.012 0.992 1.008	66 66 66 66 66
Sodium chloride "bromide "chlorate "nitrate Silver nitrate	1.0401 1.0786 1.0710 1.0554 1.1386	1.097 1.064 1.090 1.065	1.0208 1.0396 1.0359 1.0281 1.0692	1.047 1.030 1.042 1.026 1.020	1.0107 1.0190 1.0180 1.0141 1.0348	1.024 1.015 1.022 1.012 1.006	1.0056 1.0100 1.0092 1.0071 1.0173	I.013 I.008 I.012 I.007 I.000	Reyher. " " Wagner.
Strontium chloride . " nitrate . Zinc chloride " nitrate " sulphate "	1.0676 1.0822 1.0590 1.0758 1.0792	1.141 1.115 1.189 1.164 1.367	1.0336 1.0419 1.0302 1.0404 1.0402	1.067 1.049 1.096 1.086 1.173	1.0171 1.0208 1.0152 1.0191 1.0198	1.034 1.024 1.053 1.039 1.082	1.0084 1.0104 1.0077 1.0096 1.0094	1.014 1.011 1.024 1.019 1.036	66 66 64

^{*} In the case of solutions of salts it has been found (vide Arrhennius, Zeits. für Phys. Chem. vol. 1, p. 285) that the specific viscosity can, in many cases, be nearly expressed by the equation $\mu = \mu_1 n$, where μ_1 is the specific viscosity for a normal solution referred to the solvent at the same temperature, and n the number of gramme molecules in the solution under consideration. The same rule may of course be applied to solutions stated in percentages instead of gramme molecules. The table here given has been compiled from the results of Reyher (Zeits. für Phys. Chem. vol. 2, p. 749) and of Wagner (Zeits. für Phys. Chem. vol. 5, p. 31) and illustrates this rule. The numbers are all for 25° C

VISCOSITY OF GASES AND VAPORS.

The values of μ given in the table are 10⁶ times the coefficients of viscosity in C. G. S. units.

Substance.	Temp.	μ	Refer- ence.	Substance.	Temp.		Refer- ence.
A-tono	18.0	78.	ı	Ether	16.1	73.2	, I
Acetone	1		2	''	36.5	79.3	I
Air *	-21.4	163.9	2 2	Ethyl chloride	0.	93.5	4
44	0.0	173.3	2 2	Ethyl iodide	72.3	216.0	3
"	15.0	180.7	2 2	Ethylene.	0.0	96.1	3 2
	99.1	220.3	- (Helium	0.0	180.1	
"	182.4	255.9	2	rienum		196.9	5
Alashal Mathyl	302.0	299.3	2	44	15.3	234.8	5
Alcohol, Methyl	66.8	135.	3		184.6		5
Alcohol, Ethyl	78.4	142.	3	Hydrogen		269.9	5
Alcohol, Propyl,				Hydrogen	-20.6	81.9	10
norm	97.4	142.	3			88.9	
Alcohol, Isopropyl.	82.8	162.	3		15.		2
Alcohol, Butyl, norm.		143.	3		99.2	105.9	2
Alcohol, Isobutyl	108.4	144.	3		,	121.5	2
Alcohol, Tert. butyl.		160.	3		302.0	139.2	2
Ammonia	0.0	96.	4	Krypton	15.0	246.	II
	20.0	108.	4	Mercury	270.0	489.†	8
Argon	0.0	210.4	5		300.0	532. 1	8
"	14.7	220.8	5		330.0	582.†	8
	17.9	224.I	5		360.0	627.	8
	99.7	273.3	5			671.†	8
	183.7	322.1	5	Methane		I20.I	4
Benzole	0.	70.	10	Methyl chloride	0.0	98.8	2
"	19.0	79 -	6		15.0	105.2	2
	100.0	118.	6	• • •		213.9	2
Carbon bisulphide	16.9	92.4	I	Methyl iodide		232.	3
Carbon dioxide	-20.7	129.4	2	Nitrogen		156.3	7
" " …	0.	142.	10		0.	166.	10
	15.0	145.7	2		10.9	170.7	7
4 4	99.1	186.1	2		000	189.4	7
		222.I	2	Nitric oxide	0.	179.	10
*****		268.2	2	Nitrous oxide		138.	10
Carbon monoxide		163.0	10	Oxygen	1	189.	10
***		184.0	4	4.	0 1	195.7	7
Chlorine		128.7	4	XX7 . XX	53 - 5	215.9	7
61		147.0	4	Water Vapor	1	90.4	I
Chloroform	0.0	95.9	I	66 16	1 '	96.7	I
"	17.4	102.9	I			132.0	9
	61.2	189.0	3	Xenon	15.	222.	II
Ether	0.0	68.9	I				
r Puluj, Wien. Be	er. 69 (2)	, 1874.		9 Meyer-Schumar	nn, Wied	l. Ann. r	3. 1881.

- 2 Breitenbach, Ann. Phys. 5, 1901.
- 3 Steudel, Wied. Ann. 16, 1882. 4 Graham, Philos. Trans. Lond. 1846, III. 5 Schultze, Ann. Phys. (4), 5, 6, 1901.
- 6 Schumann, Wied. Ann. 23, 1884.
- 7 Obermayer, Wien. Ber. 71 (2a), 1875. 8 Koch, Wied. Ann. 14, 1881, 19, 1883.

- 10 Jeans, assumed mean, 1916.
- 11 Rankine, 1910.
- 12 Vogel (Eucken, Phys. Z. 14, 1913). For
 - summaries see: Fisher, Phys. Rev. 24,

 - 1904; Chapman, Phil. Tr. A. 211, 1911; Gilchrist, Phys. Rev. 1, 1913. Schmidt, Ann. d. Phys. 30, 1909.

† The values here given were calculated from Koch's table (Wied. Ann. 19, p. 869, 1883) by the formula $\mu = 489 [1 + 746(t - 270)]$.

^{*} Gilchrist's value of the viscosity of air may be taken as the most accurate at present available. His value at 20.2° C is 1.812×10^{-4} . The temperature variation given by Holman (Phil. Mag. 1886) gives $\mu = 1715.50 \times 10^{-7} (1 + .00275t - .0000034t^2)$. See Phys. Rev. 1, 1913. Millikan (Ann. Phys. 41, 750, 1013) gives for the most accurate value $\mu_t = 0.00018240 - 0.00000493(23 - t)$ when (23 > t > 12) whence $\mu_{20} = 0.0001809 \pm 0.1\%$. For μ_0 he gives 0.0001711.

VISCOSITY OF GASES.

Variation of Viscosity with Pressure and Temperature.

According to the kinetic theory of gases the coefficient of viscosity $\mu = \frac{1}{2}(\rho \bar{c}l)$, ρ being the density, \bar{c} the average velocity of the molecules, l the average path. Since l varies inversely as the number of molecules per unit volume, ρl is a constant and μ should be independent of the density and pressure of a gas (Maxwell's law). This has been found true for ordinary pressures; below \bar{c}_0 atmosphere it may fail, and for certain gases it has been proved untrue for high pressures, e.g., CO₂ at 33° and above 50 atm. See Jeans, "Dynamical Theory of Gases."

 \bar{c} depends only on the temperature and the molecular weight; viscosity should, therefore, increase with the pressures for gases. \bar{c} varies as the \sqrt{T} , but μ has been found to increase much more rapidly. Meyer's formula, $\mu_t = \mu_0(\mathbf{1} + at)$, where a is a constant and μ_0 the viscosity at \mathbf{c} ° C, is a convenient approximate relation. Sutherland's formula (Phil. Mag. 31, 1893).

$$\mu_t = \mu_o \, \frac{273 + C}{T + C} \left(\frac{T}{273} \right)^{\frac{3}{2}},$$

is the most accurate formula in use, taking in account the effect of molecular forces. It holds for temperatures above the critical and for pressures following approximately Boyle's law. It may be thrown into the form $T=KT^{\frac{3}{2}}/\mu-C$ which is linear in terms of T and $T^{\frac{3}{2}}/\mu$, with a slope equal to K and the ordinate intercept equal to -C. See Fisher, Phys. Rev. 24, 1907, from which most of the following table is taken. Onnes (see Jeans) shows that this formula does not represent Helium at low temperatures with anything like the accuracy of the simpler formula $\mu=\mu_0(T/273.1)^n$.

The following table contains the constants for the above three formulac, T being always the absolute temperature, Centigrade scale.

Gas.	С	× 107	а	n *	Gas.	С	X 107	а	n*
Air	172 102 240 454 226 80	150 206 135 158 159 106 148	.00269	·754 .819 ·74 .98 — — .683	Hydrogen Krypton Neon Nitrogen Nitrous oxide, N ₂ O Oxygen Xenon	158 252 110 313 131	66 — 143 172 176	.00269	.69

^{*}The authorities for n are: Air, Rayleigh; Ar, Mean, Rayleigh, Schultze; CO, CO₂, N₂, N₂O, von Obermayer; Helium, Mean, Rayleigh, Schultze; 2d value, low temperature work of Onnes; H₂, O₂, Mean, Rayleigh, von Obermayer.

DIFFUSION OF AN AQUEOUS SOLUTION INTO PURE WATER.

If k is the coefficient of diffusion, dS the amount of the substance which passes in the time dt, at the place x, through q sq. cm. of a diffusion cylinder under the influence of a drop of concentration dc/dx, then

 $dS = -kq \frac{dc}{dx} dt.$

k depends on the temperature and the concentration. c gives the gram-molecules per liter. The unit of time is a day.

Substance.	С	t°	k	Refer- ence	Substance.	С	t°	k	Refer- ence.
Bromine	0.1	12.	0.8	I	Calcium chloride .	0.864	8.5	0.70	4
Chlorine		I 2.	1.22	64	.6 .6	1.22	9.	0.72	66
Copper sulphate .	66	17.	0.39	2		0.060	9.	0.64	
Glycerine	6.6	10.14	0.357	3	" "	0.047	9.	0.68	
Hydrochloric acid .	66	19.2	2.21	2	Copper sulphate .	1.95	17.	0.23	2
Iodine	66	I 2.	(0.5)	I	" "	0.95	17.	0.26	
Nitric acid	44	19.5	2.07	2		0.30	17.	0.33	46
Potassium chloride .	66	17.5	1.38	2	66	0.005	17.	0.47	
" hydrate .	66	13.5	1.72	2	Glycerine	2/8	10.14	0.354	3
Silver nitrate	66	I 2.	0.985	2		6/8		0.345	66
Sodium chloride .	66	15.0	0.94	2	64	10/8		0.329	
Urea	66	14.8	0.97	3		14/8	10.14	0.300	
Acetic acid	0.2	13.5	0.77	4	Hydrochloric acid .	4.52	11.5	2.93	4
Barium chloride .	66	8.	0.66	4		3.16	II.	2.67	4.
Glycerine	66	10.1	3.55	3	66 66 ,	0.945	II.	2.12	
Sodium actetate .	46	12.	0.67	3 5	"	0.387	II.	2.02	
" chloride .	4.6	15.0	0.94	2		0.250	II.	1.84	
Urea	46	14.8	0.969	3 6	Magnesium sulphate	2.18	5.5	0.28	4
Acetic acid	1.0	I 2.	0.74	6	.6 .6	0.541	5.5	0.32	
Ammonia	6.6	15.23	1.54	7		3.23	10.	0.27	"
Formic acid	66	I 2.	0.97	7	46 46	0.402	10.	0.34	
Glycerine	66	10.14	0.339	3	Potassium hydrate.	0.75	I 2.	1.72	6
Hydrochloric acid .	"	I 2.	2.09	6	66 66	0.49	12.	1.70	
Magnesium sulphate	66	7.	0.30	4		0.375	I 2.	1.70	4.
Potassium bromide.	٤,	10.	1.13	8	" nitrate .	3.9	17.6	0.89	2
hydrate.	6.6	12.	1.72	6	46	1.4	17.6	1.10	
Sodium chloride .	46	150	0.94	2		0.3	17.6	1.26	6.
	46	14.3	0.964	3	"	0.02	17.6	1.28	
ilyulate .	66	12.	1.11	2	Sulphate	0.95	19.6	0.79	**
louide .	66	10.	0.80	8		0.28	19.6	0.86	1
Sugar	66	12.	0.254	6	4. 4.	0.05	19.6	0.97	66
Sulphuric acid .	66	I 2.	1.12	6		0.02	19.6	1.01	61
Zinc sulphate	6.6	14.8	0.236	9	Silver nitrate	3.9	12.	0.535	6.
Acetic acid	2.0	12.	0.69	6	66 66	0.9	12.	0.88	6.
Calcium chloride .	44	10.	0.68	8		0.02	12.	1.035	
Cadmium sulphate .	66	19.04		9	Sodium chloride .	2/8	14.33	1.013	3
Hydrochloric acid .		12.	2.21	6	" "	4/8	14.33	0.996	
Sodium iodide .	44	10.	0.90	8		6/8	14.33	0.980	2
Sulphuric acid .	66	12.	1.16	6	6 . 66	10/8	14.33	0.948	1 66
Zinc acetate	66	18.05	0.210	9		14/8	14.33	0.917	
Acaticacid		0.04		9	Sulphuric acid .	9.85	18,	2.36	2
Acetic acid	3.0	12.	0.68	-	66 66 66	4.85	18.	1.90	66
Potassium carbonate	6.	10.	0.60	8	46 66	2.85	18.	1.60	6.
" hydrate .		I 2.	1.89	6	66 66	0.85	18.	1.34	46
Acetic acid	4.0	12.	0.66	6		0.35	18.	1.32	1
Potassium chloride.	66	10.	1.27	8	66 61	0.005	18.	1.30	6.6

Euler, Wied. Ann. 63, 1897.
 Thovert, C. R. 133, 1901; 134, 1902.
 Heimbrodt, Diss. Leipzig, 1903.
 Scheffer, Chem. Ber. 15, 1882; 16, 1883; Zeitschr. Phys. Chem. 2, 1888.

⁵ Kawalki, Wied. Ann. 52, 1894; 59, 1896. 6 Arrhenius, Zeitschr. Phys. Chem. 10, 1892. 7 Abegg, Zeitschr. Phys. Chem. 11, 1893. 8 Schuhmeister, Wien. Ber. 79 (2), 1879. 9 Seitz, Wied. Ann. 64, 1898.

DIFFUSION OF VAPORS.

Coefficients of diffusion of vapors in C. G. S. units. The coefficients are for the temperatures given in the table and a pressure of 76 centimeters of mercury.*

Vapor.		Temp. C.	k _t for vapor diffusing into hydrogen.	k_t for vapor diffusing into air.	k_t for vapor diffusing into carbon dioxide.
Acids: Formic .		0.0	0.5131	0.1315	۵.0879
46	 ·	65.4	0.7873	0.2035	0.1343
16		84.9	0.8830	0.2244	0.1519
Acetic .		0.0	0.4040	0.1061	0.0713
46		65.5	0.6211	0.1578	0.1048
66		98.5	0.7481	0.1965	0.1321
Isovaleric .		0.0	0.2118	0.0555	0.0375
. **	 •	98.0	0.3934	0.1031	0.0696
Alcohols: Methyl .		0.0	0.5001	0.1325	0.0880
46		25.6	. 0.6015	0.1620	0.1046
		49.6	0.6738	0.1809	0.1234
Ethyl .		0.0	0.3806	0.0994	0.0693
" .		40.4	0.5030	0.1372	0.0898
		66.9	0.5430	0.1475	0.1026
Propyl .		0.0	0.3153	0.0803	0.0577
	 •	66.9	0.4832	0.1237	0.0901
	 •	83.5	0.5434	0.1379	0.0976
Butyl .	•	0.0	0.2716	0.0681	0.0476
Amyl :	 •	99.0	0.5045	0.1265	0.0884
Alliyi .	 •	0.0	0.2351	0.0589	0.0422
Hexyl .	 •	99.1	0.4362	0.1094	0.0784
ilexyl .	 •		0.1998	0.0499	0.0351
•	 •	99.0	0.3712	0.0927	0.0051
Benzene		0.0	0.2940	0.0751	0.0527
66		19.9	0.3409	0.0877	0.0609
"		45.0	0.3993	0.1011	0.0715
Carbon disulphide .		0.0	0.3690	0.0883	0.0629
		19.9	0.4255	0.1015	0.0726
66 66		32.8	0.4626	0.1120	0.0789
Esters: Methyl acetate		0.0	0.3277	0.0840	0.0557
et 11		20.3	0.3928	0.1013	0.0679
Ethyl "		0.0	0.2373	0.0630	0.0450
		46.1	0.3729	0.0970	0.0666
Methyl butyrate		0.0	0.2422	0.0640	0.0438
66 66		92.1	0.4308	0.1139	0.0809
Ethyl "		0.0	0.2238	0.0573	0.0406
" "	.*	96.5	0.4112	0.1064	0.0756
" valerate "		0.0	0.2050	0.0505	0.0366
65 68 4	٠	97.6	0.3784	0.0932	0.0676
Ether		0.0	0.2960	0.0775	0.0552
"		19.9	0.3410	0.0893	0.0636
Water		0.0	0.6870	0.1980	0.1310
"	,	49.5	1.0000	0.2827	0.1811
		92.4	1.1794	0.3451	0.2384
				0.5	

^{*} Taken from Winkelmann's papers (Wied. Ann. vols. 22, 23, and 26). The coefficients for o° were calculated by Winkelmann on the assumption that the rate of diffusion is proportional to the absolute temperature. According to the investigations of Loschmidt and of Obermeyer the coefficient of diffusion of a gas, or vapor, at o° C. and a pressure of 76 centimetres of mercury may be calculated from the observed coefficient at another temperature and pressure by the formula $k_0 = k_T \left(\frac{T_0}{T}\right)^n \frac{76}{p}$, where T is temperature absolute and p the pressure of the gas. The exponent n is found to be about 1.75 for the permanent gases and about 2 for condensible gases. The following are examples: Air $-CO_2$, n = 1.968; $CO_2 - N_2O$, n = 2.05; $CO_2 - H$, n = 1.742; CO - O, n = 1.785; H - O, n = 1.792. Winkelmann's results, as given in the above table, seem to give about 2 for vapors diffusing into air, hydrogen or carbon dioxide.

diffusing into air, hydrogen or carbon dioxide.

DIFFUSION OF GASES, VAPORS, AND METALS.

TABLE 163. - Coefficients of Diffusion for Various Gases and Vapors.*

Gas or Vapor diffusing.	Gas or Vapor diffused into.	Temp.	Coefficient of Diffusion.	Authority.
Air "Carbon dioxide """ """ """ """ """ """ """ """ """ "	Hydrogen Oxygen Air "Carbon monoxide "" Hydrogen Methane Nitrous oxide Oxygen Air Carbon dioxide Ethylene Hydrogen Oxygen Air Air Carbon dioxide Ethylogen Oxygen Air Hydrogen Oxygen Air Ethylene Hydrogen Oxygen Air Nitrous oxide Oxygen	o C.	of Diffusion.	Schulze. Obermayer. Loschmidt. Waitz. Loschmidt. Obermayer. " Loschmidt. Stefan. Obermayer. Loschmidt. Obermayer. " Obermayer. " Obermayer. " " " " " " " " " " " " "
Oxygen	Carbon dioxide Hydrogen Nitrogen Hydrogen Air Hydrogen	0 0 8 18 18	0.1757 0.1357 0.7217 0.1710 0.4828 0.2390 0.2475 0.8710	Loschmidt, Obermayer, Loschmidt, Guglilemo,

^{*} Compiled for the most part from a similar table in Landolt & Börnstein's Phys, Chem. Tab.

TABLE 164,- Diffusion of Metals into Metals.

 $\frac{dv}{dt} = k \frac{d^2v}{dx^2}; \text{ where } x \text{ is the distance in direction of diffusion; } v, \text{ the degree of concentration of the diffusing metal; } t, \text{ the time; } k, \text{ the diffusion constant} = \text{the quantity of metal in grams diffusing through a sq. cm. in a day when unit difference of concentration (gr. per cu. cm.) is maintained between two sides of a layer one cm. thick.}$

Diffusing Metal.	Dissolving Metal.	Tempera- ture ° C.	k	Diffusing Metal.	Dissolving Metal.	Tempera- ture ° C.	k.
Gold	Lead . " " " Bismuth Tin	555 492 251 200 165 100 555 555 555	3.19 3.00 0.03 0.008 0.004 0.00002 4.52 4.65 4.14	Platinum . Lead Rhodium . Tin Lead Zinc Sodium . Potassium Gold	Lead . Tin . Lead . Mercury	492 555 550 15 15 15 15 15	1.69 3.18 3.04 1.22* 1.0* 1.0* 0.45* 0.40* 0.72*

From Roberts-Austen, Philosophical Transactions, 187A, p. 383, 1896.

* These values are from Guthrie.

SOLUBILITY OF INORCANIC SALTS IN WATER; VARIATION WITH THE TEMPERATURE.

The numbers give the number of grams of the anhydrous salt soluble in 1000 grams of water at the given temperatures.

Salt.						Tempe	rature C	entigrade				
Sait.		o	100	20°	300	40 ⁰	50 ⁰	60°	700	80°	900	1000
AgNO ₃		1150	1600	2150	2700	3350	4000	4700	5 500	6500	7600	9100
$Al_2(SO_4)_8$.		313	335	, 362	404	457	521	591	662	731	808	891
$Al_2K_2(SO_4)_4 \\ Al_2(NH_4)_2(S)_4 \\$		30 26	-	66	84	- I24	T. 50	248	-	- 250	_	1540
B_2O_3		1 I	45	22	- 91	40	159	62	270	35 ² 95	_	157
BaCl ₂		316	333	357	382	408	436	464	494	524	556	1 57 588
$Ba(NO_3)_2$.		50	70	92	116	142	171	203	236	270	306	342
$CaCl_2$ $CoCl_2$		595	650	745	1010	1153	-	1368	1417	1470	1527	1 590
CsCl		405 1614	450 1747	500 1865	1973	2080	935	940 2290	950 2395	960	2601	2705
CsNO ₃		93	149	230	339	472	644	838	1070	1340	1630	1970
Cs_2SO_4		1671	1731	1787	1841	1899	1949	1999	2050	2103	2149	2203
$Cu(NO_3)_2$,		818	-	1250		1 598	-	1791	-	2078	-	-
$ CuSO_4$ $ FeCl_2$		149	_	685	255	295	336 820	390	457	535	627	735
Fe ₂ Cl ₆		744	819	918		_	3151	_	_	5258	-	5357
FeSO ₄		156	208	264	330 84	402	486	550	560	506	430	-
HgCl ₂		43	66	74	84	96	113.	139	173	243	37 I	540
$KBr K_2CO_8$		540	_	650	1140	760	1210	860	T 220	955	1470	1050
KCl		1050	312	343	373	401	429	455	1330	510	538	566
KClO ₃		33	50	71	101	145	197	260	325	396	475	560
K_2CrO_4		589	609	629	650	670	690	710	730	751	77 I	791
$K_2Cr_2O_7$		50	85	131	-	292	-	505 600	_	730	~	1020
KHCO ₈		225 1279	277 1361	332 1442	390 1523	453	522 1680	1760	1840	1920	2010	2090
KNO ₈		133	209	316	458	639	855	1099	1380	1690	2040	2460
KOH		970	1030	1120.	1260	1360	1400	1460	1510	1590	1680	1780
K ₂ PtCl ₆ .		7	9	II	14	18	22	26	32	38	45	52
K ₂ SO ₄ LiOH		74 127	92 1 2 7	111	130	148	165	182 138	198	153	228	24I 175
MgCl ₂		528	535	545	-	57.5	133	610	-	660		730
MgSO4	(7aq)	260	309	356	409	456	-	-	_	-	-	- 1
	(6aq)	408	422	439	453	-	504	550	596	642	689	738
NH ₄ Cl NH ₄ HCO ₃ .		297 119	333	372	414 270	458	504	552	602	656	713	773
NH ₄ NO ₈		1183	159	-	2418	2970	3540?	4300?	5130?	5800	7400	8710
(NH ₄) ₂ SO ₄ .		706	730	754	780	810	844	880	916	953	992	1033
NaBr		795	845	903	-	1058	1160	1170	-	1185	- 0	1205
Na ₂ B ₄ O ₇ .	(1000)	-	16	-	39	_	105	200	244	314	408	523
Na ₂ CO ₃	(10aq) (7aq)	7 I 204	126 263	335	409	(1aq)	475	464	458	452	452	452
NaCl		356	357	358	360	363	367	37 I	375	380	385	391
NaClO ₃		820	890	990	_	1235	-	1470	_	1750	-	2040
Na ₂ CrO ₄ .		317	502	900	1070	960	1050	1150	- 2220	1240 3860	_	1260
Na ₂ Cr ₂ O ₇ . NaHCO ₃ .		1630 69	1700	1800	1970	127	145	2830 164	3230	3000	_	4330
Na ₂ HPO ₄		25	39	93	241	639	-	-	949	-	-	988
NaI		1590	1690	1790	1900	2050	2280	2570	-	2950	-	3020
NaNO ₃		730	805	880	962	1049	1140	1246	1360	1480	1610	1755

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

SOLUBILITY OF SALTS AND CASES IN WATER.

TABLE 165 (concluded) - Solubility of Inorganic Salts in Water; Variation with the Temperature.

The numbers give the number of grams of the anhydrous salt soluble in 1000 grams of water at the given temperatures.

					Γempera	iture Ce	ntigrade	÷.			
Salt.	o°	100	200	30°	40°	500	. 60°	700	80°	900	1000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	420 32 141 50 196 525 - 272 5 365 365 770 195 395 7 - 2 395 7 - 2 395 442 948 -	515 39 90 305 610 600 6444 844 330 426 483 - 549 10 - 2 62 37 -	1090 62 287 194 447 700 640 - 8 523 911 533 482 539 10 708 14 - 3 96 49 -	1190 99 - 400 - 847 680 425 12 607 976 813 535 600 12 876 20 - 5 143 62	1290 135 495 482 1026 720 15 694 1035 1167 585 667 14 913 30 40 6 209 76 76 76	1450 174 - 468 1697 760 502 20 787 1093 1556 631 744 17 926 51 25 8 304 92 - 768	1740 220 455 2067 810 548 24 880 1155 2000 674 831 21 940 16 10 462 109 104	-255 -445 -445 -594 -2897 1214 2510 714 2550 -11 13 695 127 72 -890	16 1110 146 69		- 330 427 2660 - 776 48 1270 1389 4520 818 1019 40 1011 - 4140 - 785

TABLE 166. - Solubility of a Few Organic Salts in Water; Variation with the Temperature.

Salt.	00	100	20 ⁽⁻⁾	30°	40 ⁰	50°	60°	70°	So°	90°	1000
$\begin{array}{cccc} H_2(CO_2)_2 & . & . & . \\ H_2(CH_2,CO_2)_2 & . & . \\ Tartaric acid & . & . \\ Racemic & . & . \\ K(HCO_2) & . & . \\ KH(C_4H_4O_4) & . & . \end{array}$	36 28 1150 92 2900	53 45 1260 140 -	102 69 1390 206 3350 6	159 106 1560 291	228 162 1760 433 3810	321 244 1950 595 18	445 358 2180 783 4550 24	635 511 2440 999 - 32	978 708 2730 1250 5750 45	1200 3070 1530 - 57	1209 3430 1850 7900 69

TABLE 167,-Solubility of Gases in Water; Variation with the Temperature.

The table gives the weight in grams of the gas which will be absorbed in 1000 grams of water when the partial pressure of the gas plus the vapor pressure of the liquid at the given temperature equals 760 mm.

Gas.	00	100	200	30°	40 ⁰	50°	60°	70°	80°
$\begin{array}{c} O_2 \\ H_2 \\ N_2 \\ Br_2 \\ Cl_2 \\ CO_2 \\ H_2S \\ NH_3 \\ SO_2 \end{array}$	~	.0230	.0443 .00160 .0189 148. 7.29 1.69 3.98 535- 113.	.0368 .00147 .0161 94- 5.72 1.26 422. 78.		.0263 .00129 .0121 40. 3.93 0.76	.0221 .00118 .0105 28. 3.30 0.58		.0135 .00079 .0069 11. 2.23

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

CHANGE OF SOLUBILITY PRODUCED BY UNIFORM PRESSURE.*

	CdSO ₄ 8/ ₃	H ₂ O at 25°	ZnSO ₄₋₇	H ₂ O at 25°	Mannite	at 24.05°	NaCl :	at 24.05 ⁰
Pressure in atmos- pheres.	Conc. of satd. soln. gs. CdSO4 per 100 gs. H ₂ O	Percentage change.	Conc. of satd. solu. gs. ZnSO ₄ per 100 gs. H ₂ O.	Percentage change.	Conc. of satd. soln. gs. monnite per 100 gs. H ₂ O.	Percentage change.	Conc. of satd. soln. gs. NaCl. per too gs. H ₂ O.	Percentage change.
I	76.80	_	57.95	_	20.66	_	35.90	
500	78.01	+ 1.57	57.87	-0.14	21.14	+ 2.32	36.55	+ 1.81
1000	78.84	+ 2.68	57.65	- 0.52	21.40	+ 3.57	37.02	+ 3.12
1500	_	_	_	_	21.64	+ 4.72	37.36	+ 4.07

^{*} E. Cohen and L. R. Sinnige, Z. physik. Chem. 67, p. 432, 1909; 69, p. 102, 1909. E. Cohen, K. Inouye and C. Euwen, ibid. 75, p. 257, 1911. These authors give a critical resume of earlier work along this line.

ABSORPTION OF CASES BY LIQUIDS.*

Temperature			Absor	RPTION COEFF	ICIENTS, α _t ,	FOR GASE	s in Wati	3R.	
Centigrade.	Carl diox C(ide.	Carbon monoxide. CO	Hydrogen. H	Nitrogen. N	Nitr oxio N	ie. o	trous xide. N ₂ O	Oxygen.
0 5 10 15 20 25 30 40 50	1.7 1.4 1.1 1.0 0.9 0.7	50 85 02 01 72 -	0.0354 .0315 .0282 .0282 .0254 .0232 .0214 .0200 .0177 .0161	0.02110 .02022 .01944 .01875 .01809 .01745 .01690 .01644 .01608	0.02399 .02134 .01918 .01742 .01599 .01481 .01370 .01195	0.07; .06, .05; .05; .04; .04; .04; .03; .03	46 0. 71 0. 15 0. 71 0. 32 00	048 8778 7377 6294 5443 - - -	0.04925 .04335 .03852 .03456 .03137 .02874 .02646 .02316 .02080 .01690
Temperature Centigrade.	Ai	r.	Ammonia. NH3	Chlorine. Cl	Ethylene. C ₂ H ₄	Meth: CH	ane. sul	lrogen bhide. H ₂ S	Sulphur dioxide. SO ₂
0 5 10 15 20 25	0.022 .021 .019 .017	953 795	1174.6 971.5 840.2 756.0 683.1 610.8	3.036 2.808 2.585 2.388 2.156 1.950	0.2563 .2153 .1837 .1615 .1488	0.054 · .048 .043 .039 .034	89 3 67 3 63 3	.371 .965 .586 .233 .905	79·79 67.48 56.65 47·28 39·37 32·79
T		A	BSORPTION (Coefficients,	a_t , for GA	SES IN A	соно г, С	H ₅ OH.	
Temperature Centigrade.	Carbon dioxide. CO ₂	Ethyle C ₂ F			Nitrogen. N	Nitric oxide. NO	Nitrous oxide. N ₂ O	Hydrog sulphid H ₂ S	
0 5 10 15 20 25	4.329 3.891 3.514 3.199 2.946 2.756	3.59 3.32 3.08 2.88 2.71 2.57	.508 .508 .495 .482 .471	6 .0685 3 .0679 8 .0673 0 .0667	0.1263 .1241 .1228 .1214 .1204 .1196	0.3161 .2998 .2861 .2748 .2659	4.190 3.838 3.525 3.215 3.015 2.819	17.89 14.78 11.99 9.52 7.41 5.62	251.7 190.3 144.5 114.5

^{*} This table contains the volumes of different gases, supposed measured at o° C. and 76 centimeters' pressure, which unit volume of the liquid named will absorb at atmospheric pressure and the temperature stated in the first column. The numbers tabulated are commonly called the absorption coefficients for the gases in water, or in alcohol, at the temperature t and under one atmosphere of pressure. The table has been compiled from data published by Bohr & Bock, Bunsen, Carius, Dittmar, Hamberg, Henrick, Pagliano & Emo, Raoult, Schönfeld, Setschenow, and Winkler. The numbers are in many cases averages from several of these authorities.

Note. — The effect of increase of pressure is generally to increase the absorption coefficient. The following is approximately the magnitude of the effect in the case of ammonia in alcohol at a temperature of 23° C.:

$$\begin{cases} P = 45 \text{ cms.} & 50 \text{ cms.} & 55 \text{ cms.} & 60 \text{ cms.} & 65 \text{ cms.} \\ \alpha_{23} = 69 & 74 & 79 & 84 & 88 \end{cases}$$

According to Setschenow the effect of varying the pressure from 45 to 85 centimeters in the case of carbonic acid in water is very small.

CAPILLARITY. - SURFACE TENSION OF LIQUIDS.*

TABLE 170. - Water and Alcohol in Contact with Air.

TABLE 172. - Solutions of Salts in Water. †

Temp.	in dy	e tension nes per neter.	Temp.	in dy	e tension mes per meter.	Temp.	Surface tension in dynes per cen- timeter.
С.	Water.	Ethyl alcohol.	С.	Water.	Ethyl alcohol.	С.	Water.
0° 5 10 15 20 25 30 35	75.6 74.9 74.2 73.5 72.8 72.1 71.4 70.7	23.5 23.1 22.6 22.2 21.7 21.3 20.8 20.4	40° 45 50 55 60 65 70 75	70.0 69.3 68.6 67.8 67.1 66.4 65.7 65.0	20.0 19.5 19.1 18.6 18.2 17.8 17.3 16.9	80° 85 90 95 100 - -	64.3 63.6 62.9 62.2 61.5

Salt in solution.	Density.	Temp.	Tension in dynes per cm.
BaCl ₂ "CaCl ₂ "HCl " KCl " MgCl ₂ " NaCl " NH ₄ Cl	1.2820 1.0497 1.3511 1.2773 1.1190 1.0887 1.0242 1.1699 1.1011 1.0463 1.2338 1.1694 1.0362 1.1932 1.1074 1.0365		81.8 77.5 95.0 90.2 73.6 74.5 75.3 82.8 80.1 78.2 90.1 85.2 78.6 85.8 80.5 77.6 84.3 81.7
" SrCl2 " K2CO3 " Na2CO3 " KNO3 NANO3 CUSO4 H2SO4 " K2SO4 " MgSO4 Mn2SO4 " ZnSO4 " "	1.0281 1.3114 1.1204 1.0567 1.3575 1.1576 1.0400 1.1329 1.0283 1.1263 1.0466 1.3022 1.1311 1.1775 1.8278 1.4453 1.2636 1.0744 1.0360 1.2744 1.0680 1.1119 1.0329 1.3981 1.2830 1.2830 1.12830	16 15-16 15-16 15-16 15-16 15-16 14-15 14-15 14-15 14 12 12 15-16	78.8 85.6 79.4 77.8 90.9 81.8 77.5 77.6 83.5 80.0 78.6 77.0 63.0? 79.7 79.7 79.7 77.4 83.2 77.8 77.4 83.3 80.7

TABLE 171. - Miscellaneous Liquids in Contact with Air.

Liquid.	Temp.	Surface tension in dynes per cen- timeter.	Authority.
Aceton	15.0 15.0 15.0 20.0 20.0 20.0 17.0 0.0 68.0 18.0 15.0	23·3 30·2 24·8 28·8 28·7 30·5 28·3 18·4 63·14 21·2 14·2 520·0 24·7 34·7 25·9 18·0 29·1 18·9 28·5	Ramsay-Shields. Average of various. " Quincke. Average of various. Hall. Schiff. " Average of various. " Magie. Schiff. " " Average of various.

^{*} This determination of the capillary constants of liquids has been the subject of many careful experiments, but the results of the different experimenters, and even of the same observer when the method of measurement is changed, do not agree well together. The values here quoted can only be taken as approximations to the actual values for the liquids in a state of purity in contact with pure air. In the case of water the values given by Lord Rayleigh from the wave length of ripples (Phil. Mag. 1890) and by Hall from direct measurement of the tension of a flat film (Phil. Mag. 1893) have been preferred, and the temperature correction has been taken as 0.141 dyne per degree centigrade. The values for alcohol were derived from the experiments of Hall above referred to and the experiments on the effect of temperature made by Timberg (Wied. Ann. vol. 30).

The authority for a few of the other values given is quoted, but they are for the most part average values derived from a large number of results published by different experimenters.

† From Volkmann (Wied. Ann. vol. 17, p. 353).

TENSION OF LIQUIDS.

TABLE 173. - Surface Tension of Liquids.*

Ţ	quid.					Specific	Surface ter timeter of l	sion in dyn	es per cen- tact with —
Lit	quiu.					gravity.	Air.	Water.	Mercury.
Water				•		1.0	75.0	0.0	(392)
Mercury						13.543	513.0	392.0	0
Bisulphide of carbon						1.2687	30.5	41.7	(387)
Chloroform					-	1.4878	(31.8)	26.8	(415)
Ethyl alcohol .			4.1			0.7906	(24.1)	_	364
Olive oil			14			0.9136	34.6	18.6	317
Turpentine						0.8867	28.8	11.5	241
The state of the s			4			-7977	29.7	(28.9)	271
Hydrochloric acid						1.10	(72.9)	-	(392)
Hyposulphite of soda s	oluti	on				1.1248	69.9	-	429

TABLE 174. - Surface Tension of Liquids at Solidifying Point.

Subst	ance.			Temperature of solidification.	Surface tension in dynes per centimeter.	Substance.	Temperature of solidification.	Surface tension in dynes per centimeter.
Platinum Gold . Zinc .				2000 1200 360	1691 1003 877	Antimony	432 1000 1000	249 216 210
Tin . Mercury				230 —40	599 588	Chloride of sodium . Water	0	116 87.9‡
Lead . Silver .				330	457 427	Selenium	217	71.8 42.1
Bismuth Potassium	Bismuth			265 58 90	37 I 258	Phosphorus	43 68	42.0 34.I

TABLE 175. - Tension of Soap Films.

Elaborate measurements of the thickness of soap films have been made by Reinold and Rucker. They find that a film of oleate of soda solution containing I of soap to 70 of water, and having 3 per cent of KNO3 added to increase electrical conductivity, breaks at a thickness varying between 7.2 and 14.5 micro-millimeters, the average being 12.1 micromillimeters. The film becomes black and apparently of nearly uniform thickness round the point where fracture begins. Outside the black patch there is the usual display of colors, and the thickness at these parts may be estimated from the colors of thin plates and the refractive index of the solution.

When the percentage of KNO₃ is diminished, the thickness of the black patch increases. For example, KNO_8 I 0.5 0.0 = 3

Thickness = $12.4 \ 13.5 \ 14.5 \ 22.1 \ micro-mm$.

A similar variation was found in the other soaps.

It was also found that diminishing the proportion of soap in the solution, there being no KNO3 dissolved, increased the thickness of the film.

- I part soap to 30 of water gave thickness 21.6 micro-mm.
- I part soap to 40 of water gave thickness 22.1 micro-mm.
- I part soap to 60 of water gave thickness 27.7 micro-mm.
- I part soap to 80 of water gave thickness 29.3 micro-mm.

† Quincke, "Pogg. Ann." vol. 135, p. 661. ‡ It will be observed that the value here given on the authority of Quincke is much higher than his subsequent

measurements, as quoted above, give.

"'Proc. Roy. Soc." 1877, and "Phil. Trans. Roy. Soc." 1881, 1883, and 1893.

Note. - Quincke points out that substances may be divided into groups in each of which the ratio of the surface ension to the density is nearly constant. Thus, if this ratio for mercury be taken as unit, the ratio for the bromides and iodides is about a half; that of the nitrates, chlorides, sugars, and fats, as well as the metals, lead, bismuth, and antimony, about 1; that of water, the carbonates, sulphates, and probably phosphates, and the metals platinum, gold, silver, cadmium, tin, and copper, 2; that of zinc, iron, and palladium, 3; and that of sodium. 6.

^{*} This table of tensions at the surface separating the liquid named in the first column and air, water or mercury Anis table of tensions at the surface separating the liquid named in the first column and air, water or mercury as stated at the head of the last three columns, is from Quincke's experiments (Pogg. Ann. vol. 130, and Phil. Mag. 1871). The numbers given are the equivalent in dynes per centimeter of those obtained by Worthington from Quincke's results (Phil. Mag. vol. 20, 1885) with the exception of those in brackets, which were not corrected by Worthington; they are probably somewhat too high, for the reason stated by Worthington. The temperature was about 20 C.

Krypton.

VAPOR PRESSURE. TABLE 176. — Vapor Pressure of Elements.

Argon.

Xenon.

Nitrogen.

									,		
H scale.	mm	H scale.	mm	T .	mm	° K	mm	° K	mm	° K	mm
20.41° K 20.22 19.93 19.41 18.82 18.15 17.36 16.37 14.93 Travers, Jarod, 190			760 700 600 500 400 300 200	77.33° K 76.83 76.65 75.44 74.03 72.39 70.42 67.80 63.65	700. 600. 500. 400. 300. 200. 100.	139.0 137.8 136.8 123.1 87.8 86.5 85.5 83.8 82.6 81.7 77.3	21334. 20700. 10313. 821.2 704.5	273.3 255.6 254.0 252.6 248.7 244.2 239.7 237.4 231.4 183.2	31501 21967 21512 19984 18153 15868 13971 13505 11134	84.2	37006 34693 31621 30837 28808 11970 387 17.4 9.
Ch	lorine.	.	Bro	omine.	Iod	line.	C	opper.		Silv	er.
· °C	Pr	essure.	°C	mm	° C	mm	° C	Atm	ie.	°C	Atme.
+146. +100. +50.	4I. 14.	50 atm. 70 atm. 70 atm. 62 atm.	+58.7 56.3 51.0 46.8	700	+55 50 45 40	3.084 2.154 1.498 1.025	2310 2180 1980	1.0 0.33 0.13	8 :		1.0 0.346 0.1355
+20.		66 atm.	40.2	10	35	0.699	° C	Atm	-	°C	Atme.
-20. -33.6 -40. -50. -60.		mm	33.0 23.4 16.0 8.4	15 200 05 150 20 100	30 25 15 0	0.469 0.305 0.131 0.030	2100 1870 1525	11.7 6.3 1.0	1 1	2060 1950 1740	16.5 11.7 6.3
-70. -80. -85.	118.		-7.0 -8.4 -12.0	45		Hick- Hofmes m. Ch	,	0.3	38 1	310	0.338 0.134
-88.		5 mm	-16.6		Soc.			inc.	_	Ti	n.
Knietsch, V Cu to Sn, C Roy. So Zs. ph. C	Greenv c. 83.	vood, Pr. A, 1910;		Ch. Soc.			°C 1510 1280 1230 1120	53.0 21.1 11.6	0 2 5 2 7 I	100	Atme. 1.0 0.345 0.133
-	7	TABLE 17	717 37	D		1.7	(P				

TABLE 177. - Vapor Pressure and Rate of Evaporization.

• K	Мо	W		ation rate.		Platinum.	
	mm	mm	Мо	W	° K	mm	g/cm ² /sec.
1800 2000 2200 2400 2600 2800 3000 3200 3500	0.08643 0.06789 0.04396 0.021027 0.0160 0.1679 3890° 760 mm	0.0 ₁₁ 645 0.0 ₉ 849 0.0 ₇ 492 0.0 ₆ 151 0.0 ₄ 286 0.0 ₃ 362 0.0 ₂ 333 0.0572	0.0 ₁₀ 863 0.0 ₇ 100 0.0 ₆ 480 0.0 ₄ 120 0.0 ₃ 179 0.0 ₂ 181	0.012II4 0.010I44 0.09798 0.07236 0.06429 0.05523 0.04467 0.03769	Rev.	0.0 ₁₇₃₂₄ 0.0 ₁₂ 111 0.0 ₉ 188 0.0 ₇₄ 84 0.0 ₅₃ 50 0.0 ₃ 107 760 mm muir, MacK 2, 1913; 4, of vacuum,	1914.

Hydrogen.

Oxygen.

VAPOR PRESSURES.

The vapor pressures here tabulated have been taken, with one exception, from Regnault's results The vapor pressure of Pictet's fluid is given on his own authority. The pressures are in centimeters of mercury.

Temperature Cent.	Acetone, C ₃ H ₆ O	Benzol. C ₆ H ₆	Carbon bisul- phide. CS ₂	Carbon tetra- chloride, CCl ₄	Chloro- form. CHCl ₈	Ethyl alcohol. C ₂ H ₆ O	Ethyl ether. C ₄ H ₁₀ O	Ethyl bromide. C ₂ H ₅ Br	Methyl alcohol. CH ₄ O	Turpen- tine. C ₁₀ H ₆
-25° -20 -15 -10 -5	-	.58 .88 1.29 1.83	4.73 6.16 7.94 10.13	- .98 1.35 1.85 2.48	- - - -	- .33 .51 .65	6.89 8.93 11.47 14.61	4.41 5.92 7.81 10.15 13.06	.41 .63 .93 1.35	- - -
0 5 10 15 20	- - - - 17.96	2.53 3.42 4.52 5.89 7.56	12.79 16.00 19.85 24.41 29.80	3.29 4.32 5.60 7.17 9.10	5.97 10.05 - 16.05	1.27 1.76 2.42 3.30 4.45	18.44 23.09 28.68 35.36 43.28	16.56 20.72 25.74 31.69 38.70	2.68 3.69 5.01 6.71 8.87	.29
25 30 35 40 45	22.63 28.10 34.52 42.01 50.75	9.59 12.02 14.93 18.36 22.41	36.11 43.46 51.97 61.75 72.95	11.43 14.23 17.55 21.48 26.08	20.02 24.75 30.35 36.93 44.60	5.94 7.85 10.29 13.37 17.22	52.59 63.48 76.12 90.70 107.42	46.91 56.45 67.49 80.19 94.73	11.60 15.00 19.20 24.35 30.61	.69 - 1.08
50 55 60 65 70	62.29 72.59 86.05 101.43 118.94	27.14 32.64 39.01 46.34 54.74	85.71 100.16 116.45 134.75 155.21	31.44 37.63 44.74 52.87 62.11	53.50 63.77 75.54 88.97 104.21	21.99 27.86 35.02 43.69 54.11	126.48 148.11 172.50 199.89 230.49	111.28 130.03 151.19 174.95 201.51	38.17 47.22 57.99 70.73 85.71	2.65
75 80 85 90 95	138.76 161.10 186.18 214.17 245.28	64.32 75.19 87.46 101.27 116.75	177.99 203.25 231.17 261.91 296.63	72.57 84.33 97.51 112.23 128.69	121.42 140.76 162.41 186.52 213.28	66.55 81.29 98.64 118.93 142.51	264.54 302.28 343.95 389.83 440.18	231.07 263.86 300.06 339.89 383.55	103.21 123.85 147.09 174.17 205.17	6.13 9.06
100 105 110 115 120	279.73 317.70 359.40 405.00 454.69	134.01 153.18 174.44 197.82 223.54	332.51 372.72 416.41 463.74 514.88	146.71 166.72 188.74 212.91 239.37	242.85 275.40 311.10 350.10 392.57	169.75 201.04 236.76 277.34 323.17	495·33 555.62 621.46 693.33 771.92	431.23 483.12 539.40 600.24 665.80	240.51 280.63 325.96 376.98 434.18	13.11 - 18.60 - 25.70
125 130 135 140 145	508.62 566.97 629.87 697.44	251.71 282.43 315.85 352.07 391.21	569.97 629.16 692.59 760.40 832.69	268.24 299.69 333.86 370.90 411.00	438.66 488.51 542.25 600.02 661.92	374.69 432.30 496.42 567.46 645.80	- - - -	736.22 811.65 892.19 977.96	498.05 569.13 647.93 733.71 830.89	34.90 - 46.40
150 155 160 165 170		433.37 478.65 527.14 568.30 634.07	909.59 - - - -	454.31 501.02 551.31 605.38 663.44	728.06 798.53 873.42 952.78	731.84 825.92 - -	- - - -	-	936.13	60.50 68.60 77.50

VAPOR PRESSURES.

Tem- pera- ture, Centi- grade.	Ammonia. NH ₃	Carbon dioxide. CO ₂	Ethyl chloride. C_2H_5Cl	Ethyl iodide. C_2H_5I	Methyl chloride. CH ₃ Cl	Methylic ether. C ₂ H ₆ O	Nitrous oxide. N ₂ O	Pictet's fluid. 64SO ₂ + 44CO ₂ by weight	Sulphur dioxide. SO ₂	Hvdrogen sulphide. H ₂ S
-30°	86.61	_	11.02	_	57.90	57.65		58.52	28.75	_
-25 -20 -15 -10 -5	110.43 139.21 173.65 214.46 264.42	1300.70 1514.24 1758.25 2034.02 2344.13	14.50 18.75 23.96 30.21 37.67	- - - -	71.78 88.32 107.92 130.96 157.87	71.61 88.20 107.77 130.66 157.25	1569.49 1758.66 1968.43 2200.80 2457.92	67.64 74.48 89.68 101.84 121.60	37.38 47.95 60.79 76.25 94.69	374-93 443.85 519.65 608.46 706.60
5 10 15 20	318.33 383.03 457.40 543.34 638.78	2690.66 3075.38 3499.86 3964.69 4471.66	46.52 56.93 69.11 83.26 99.62	4.19 5.41 6.92 8.76 11.00	189.10 225.11 266.38 313.41 366.69	187.90 222.90 262.90 307.98 358.60	2742.10 3055.86 3401.91 3783.17 4202.79	139.08 167.20 193.80 226.48 258.40	116.51 142.11 171.95 206.49 246.20	820.63 949.08 1089.63 1244.79 1415.15
25 30 35 40 45	747.70 870.10 1007.02 1159.53 1328.73	5020.73 5611.90 6244.73 6918.44 7631.46	118.42 139.90 164.32 191.96 223.07	13.69 16.91 20.71 25.17 30.38	426.74 494.05 569.11 -	415.10 477.80 - - -	4664·14 5170.85 6335.98	297.92 338.20 383.80 434.72 478.80	291.60 343.18 401.48 467.02 540.35	1601.24 1803.53 2002.43 2258.25 2495.43
50 55 60 65 70	1515.83 1721.98 1948.21 2196.51 2467.55	- - - -	257.94 266.84 340.05 387.85 440.50	36.40 43.32 51.22	- - - -	- - - -	-	521.36 - - - -	622.00 712.50 812.38 922.14	2781.48 3069.07 3374.02 3696.15 4035.32
75 80 85 90 95	27.63.00 3084.31 3433.09 3810.92 4219.57	- - - -	498.27 561.41 630.16 704.75 785.39	-	- - - -		- - - -	- - -	- - -	- - - -
100	4660.82	-	872.28	-	-	-	-		-	_

VAPOR PRESSURE.

TABLE 179. - Vapor Pressure of Ethyl Alcohol.*

C.	0 °	1°	2 °	3 3	4 °	5°	6 °	7,	8 °	9°
Temp.			Va	por pressur	e in millim	eters of me	ercury at o	° C.		
0° 10 20 30	12.24 23.78 44.00 78.06	13.18 25.31 46.66 82.50	14.15 27.94 49.47 8 7. 17	15.16 28.67 52.44 92.07	16.21 30.50 55.56 97.21	17.31 32.44 58.86 102.60	18.46 34.49 62.33 108.24	19.68 36.67 65.97 114.15	20.98 38.97 69.80 120.35	22.34 41.40 73.83 126.86
40 50 60 70	133.70 220.00 350.30 541.20	140.75 230.80 366.40 564.35	148.10 242.50 383.10 588.35	155.80 253.80 400.40 613.20	163.80 265.90 418.35 638.95	172.20 278.60 437.00 665.55	181.00 291.85 456.35 693.10	190.10 305.65 476.45 721.55	199.65 319.95 497.25 751.00	209.60 334.85 518.85 781.45
From	the form	nula log į	$\phi = a + \epsilon$	$Aa^t + c\beta^t$	Ramsay	and You	ng obtai	n the foll	owing nu	mbers.†
. C.	0 °	10° .	2 0°	30 °	40°	. 50 °	60°	70 °	80°	90°
Temp.			Va	por pressur	e in millim	eters of me	rcury at o),C.		
0° 100 200	12.24 1692.3 22182.	2359.8	43.97 3223.0 32196.	78:11 4318.7 38389.	133.42 5686.6 45519.		3 50.21 9409.9	540.91 1 1858.	811.81 14764.	1186.5 18185.

TABLE 180. - Vapor Pressure of Methyl Alcohol.;

. C.	0 °	1°	2 °	3 °	4 °	5 °	6 °	7 °	83	9 3
Тетр.			Va	por pressur	e in millim	eters of me	ercury at o	° C.		
0° 10 20	29.97 53.8 94.0	31.6 57.0 99.2	33.6 60.3 104.7	35.6 63.8 110.4	37.8 67.5 116.5	40.2 71.4 122.7	42.6 75.5 129.3	45.2 79.8 136.2	47.9 84.3 143.4	50.8 89.0 151.0
30 40 50 60	1 58.9 259.4 409.4 624.3	167.1 271.9 427.7 650.0	175.7 285.0 446.6 676.5	184.7 298.5 466.3 703.8	194.1 312.6 486.6 732.0	203.9 327.3 507.7 761.1	214.1 342.5 529.5 791.1	224.7 358.3 552.0 822.0	235.8 374·7 575·3	247-4 391-7 599-4

^{*} This table has been compiled from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47, and Phil. Trans. Roy. Soc., 1886).

[†] In this formula a = 5.0720301; $\log b = \overline{2}.6406131$; $\log c = 0.6050854$; $\log \alpha = 0.003377538$; $\log \beta = \overline{1.99682424}$ (c is negative).

[‡] Taken from a paper by Dittmar and Fawsitt (Trans. Roy. Soc. Edin. vol. 33).

TABLE 181.

VAPOR PRESSURE.*

Carbon Disulphide, Chlorobenzene, Bromobenzene, and Aniline.

Temp.	0°	10	2 °	3°	4°	5 °	. 6 °	7 °	8 °	9,
				(a) CAR	BON DIS	SULPHID	E.			
0° 10 20 30 40	127.90 198.45 298.05 434.60 617.50	133.85 207.00 309.90 450.65 638.70	140.05 215.80 322.10 467.15 660.50	146.45 224.95 334.70 484.15 682.90	153.10 234.40 347.70 501.65 705.90	160.00 244.15 361.10 519.65 729.50	167.15 254.25 374.95 538.15 753.75	174.60 264.65 389.20 557.15 778.60	182.25 275.40 403.90 576.75 804.10	190.20 286.55 419.00 596.85 830.25
			·	(b) C	HLOROBI	ENZENE.	·			
20 ° 3° 4°	8.65 14.95 25.10	9.14 15.77 26.38	9.66 16.63 27.72	10.21 17.53 29.12	10.79 18.47 30.58	11.40 19.45 32.10	12.04 20.48 33.69	12.71 21.56 35.35	13.42 22.69 37.08	14.17 23.87 38.88
50 60 70 80 90	40.75 64.20 97.90 144.80 208.35	42.69 67.06 101.95 150.30 215.80	44.72 70.03 106.10 156.05 223.45	46.84 73.11 110.41 161.95 231.30	49.05 76.30 114.85 168.00 239.35	51.35 79.60 119.45 174.25 247.70	53.74 83.02 124.20 181.70 256.20	56.22 86.56 129.10 187.30 265.00	58.79 90.22 134.15 194.10 274.00	61.45 94.00 139.40 201.15 283.25
100 110 120 130	292.75 402.55 542.80 718.95	302.50 415.10 558.70 738.65	312.50 427.95 575.05 758.80	322.80 441.15 591.70	333·35 454·65 608·75	344.15 468.50 626.15	355.25 482.65 643.95	366.65 497.20 662.15	378.30 512.05 680.75	390.25 527.25 699.65
				(c)]	Вкомовн	ENZENE.	,			
40°	, –	_			-	12.40	13.06	13.75	14.47	15.22
50 60 70 80 90	16.00 26.10 41.40 63.90 96.00	16.82 27.36 43.28 66.64 99.84	17.68 28.68 45.24 69.48 103.80	18.58 30.06 47.28 72.42 107.88	19.52 31.50 49.40 75.46 112.08	20.50 33.00 51.60 78.60 116.40	21.52 34.56 53.88 81.84 120.86	22.59 36.18 56.25 85.20 125.46	23.71 37.86 58.71 88.68 130.20	24.88 39.60 61.26 92.28 135.08
100 110 120 130 140	140.10 198.70 274.90 372.65 495.80	145.26 205.48 283.65 383.75 509.70	150.57 212.44 292.60 395.10 523.90	156.03 219 58 301.75 406.70 538.40	161.64 226.90 311.15 418.60 553.20	167.40 234.40 320.80 430.75 568.35	173.32 242.10 330.70 443.20 583.85	179.41 250.00 340.80 455.90 599.65	185.67 258.10 351.15 468.90 615.75	192.10 266.40 361.80 482.20 632.25
150	649.05	666.25	683.80	701.65	719.95	738.55	757-55	776.95	796.70	816.90
				(0	A) ANIL	INE.	1			
80 ° 90	18.80	19.78 31.44	20.79 32.83	21.83 34.27	22.90 35.76	24.00 37.30	25.14 38.90	26.32 40.56	27.54 42.28	28.80 44.06
100 110 120 130 140	45.90 68.50 100.40 144.70 204.60	47.80 71.22 104.22 149.94 211.58	49.78 74.04 108.17 155.34 218.76	51.84 76.96 112.25 160.90 226.14	53.98 79.98 116.46 166.62 233.72	56.20 83.10 120.80 172.50 241.50	58.50 86.32 125.28 178.56 249.50	60.88 89.66 129.91 184.80 257.72	63.34 93.12 134.69 191.22 266.16	65.88 96.70 139.62 197.82 274.82
150 160 170 180	283,70 386.00 515.60 677.15	292.80 397.65 530.20 695.30	302.15 409.60 545.20 713.75	311.75 421.80 560.45 732.65	321.60 434.30 576.10 751.90	331.70 447.10 592.05 771.50	342.05 460.20 608.35	352.65 473.60 625.05	363.50 487.25 642.05	374.60 •501.25 659.45

^{*} These tables of vapor pressures are quoted from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47). The tables are intended to give a series suitable for hot-jacket purposes.

TABLE 181 (continued).

VAPOR PRESSURE.

Methyl Salicylate, Bromonaphthaline, and Mercury.

Temp.	0 °	1°	2°	3°	4°	5°	6°	7°	8°	9°
C.							1			
				(e) ME	THYL SA	LICYLAT	E.			
70°	2.40	2.58	2.77	2.97	3.18	3.40	3.62	3.85	4.09	4·34
80	4.60	4.87	5.15	5.44	5.74	6.05	6.37	6.70	7.05	7·4 ²
90	7.80	8.20	8.62	9.06	9.52	9.95	10.44	10.95	11.48	12.03
100	12.60	13.20	13.82	14.47	15.15	15.85	16.58	17.34	18.13	18.95
110	19.80	20.68	21.60	22.55	23.53	24.55	25.61	26.71	27.85	29.03
120	30.25	31.52	32.84	34.21	35.63	37.10	38.67	40.24	41.84	43.54
130	45.30	47.12	49.01	50.96	52.97	55.05	57.20	59.43	61.73	64.10
140	66.55	69.08	71.69	74.38	77.15	80.00	82.94	85.97	89.09	92.30
150	95.60	99.00	102.50	106.10	109.80	113.60	117.51	121.53	125.66	129.90
160	134.25	138.72	143.31	148.03	152.88	157.85	162.95	168.19	173.56	179.06
170	184.70	190.48	196.41	202.49	208.72	215.10	221.65	228.30	235.15	242.15
180	249.35	256.70	264.20	271.90	279.75	287.80	296.00	304.48	313.05	321.85
190	330.85	340.05	349.45	359.05	368.85	378.90	389.15	399.60	410.30	421.20
200 210 220	432.35 557.50 710.10	443.75 571.45 727.05	455·35 585.70 744·35	467.25 600.25 761.90	479.35 615.05 779.85	491.70 630.15 798.10	504.35 645.55	517.25 661.25	530.40 677.25	543.80 693.60
			-	(f) Bro	MONAPH	THALINE	E.			
110°	3.60	3.74	3.89	4.05	4.22	4.40	4.59	4.79	5.00	5.22
120	5.45	5.70	5.96	6.23	6.51	6.80	7.10	7.42	7.76	8.12
130	8.50	8.89	9.29	9.71	10.15	10.60	11.07	11.56	12.07	12.60
140	13.15	13.72	14.31	14.92	15.55	16.20	16.87	17.56	18.28	19.03
150	19.80	20.59	21.41	22.25	23.11	24.00	24.92	25.86	26.83	27.83
160	28.85	29.90	30.98	32.09	33.23	34.40	35.60	36.83	38.10	39.41
170	40.75	42.12	43.53	44.99	46.50	48.05	49.64	51.28	52.96	54.68
180	56.45	58.27	60.14	62.04	64.06	66.10	68.19	70.34	72.55	74.82
190	77.15	79.54	81.99	84. 5 I	87.10	89.75	92.47	95.26	98.12	101.05
200	104.05	107.12	110.27	113.50	116.81	120.20	123.67	127.22	130.86	134.59
210	138.40	142.30	146.29	150.38	154.57	158.85	163.25	167.70	172.30	176.95
220	181.75	186.65	191.65	196.75	202.00	207.35	212.80	218.40	224.15	230.00
230	235.95	242.05	248.30	254.65	261.20	267.85	274.65	281.60	288.70	295.95
240	303.35	310.90	318.65	326.50	334.55	342.75	351.10	359.65	368.40	377.30
250	386.35	395.60	405.05	414.65	424.45	434·45	444.65	455.00	465.60	476.35
260	487.35	498.55	509.90	521.50	533.35	545·35	557.60	570.05	582.70	595.60
270	608.75	622.10	635.70	649.50	663.55	677.85	692.40	707.15	722.15	737.45
				(g) Merci	JRY.				
270°	123.92	126.97	130.08	133.26	136.50	139.81	143.18	146.61	1 50.1 2	153.70
280	157.35	161.07	164.86	168.73	172.67	176.79	180.88	185.05	189.30	193.63
290	198.04	202.53	207.10	211.76	216.50	221.33	226.25	231.25	236.34	241.53
300	246.81	252.18	257.65	263.21	268.87	274.63	280.48	286.43	292.49	298.66
310	3°4.93	311.30	317.78	324.37	331.08	337.80	344.81	351.85	359.00	366.28
320	373.67	381.18	388.81	396.56	404.43	412.44	420.58	428.83	437.22	445.75
330	454.41	463.20	472.12	481.19	490.40	499.74	509.22	518.85	528.63	538.56
340	548.64	558.87	569.25	579.78	590.48	601.33	612.34	623.51	634.85	646.36
350 360	658.03 784.31	669.86	681.86	694.04	706.40	718.94	731.65	744-54	757.61	770.87

TABLE 182.

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER,*

The first column gives the chemical formula of the salt. The headings of the other columns give the number of gram-molecules of the salt in a liter of water. The numbers in these columns give the lowering of the vapor pressure produced by the salt at the temperature of boiling water under 76 centimeters barometric pressure.

	_							1				
Sub	stance			0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
$\begin{array}{c} Al_2(SO_4)_3 \\ AlCl_3 \\ Ba(SO_3)_2 \\ Ba(OH)_2 \\ Ba(NO_3)_2 \end{array}$	•	•	•	12.8 22.5 6.6 12.3 13.5	36.5 61.0 15.4 22.5 27.0	179.0 34.4 39.0	318.0					
$\begin{array}{c} Ba(ClO_3)_2\\BaCl_2\\BaBr_2\\CaS_2O_3\\Ca(NO_3)_2 \end{array}$		•	•	15.8 16.4 16.8 9.9 16.4	33·3 36·7 38·8 23·0 34·8	70.5 77.6 91.4 56.0 74.6	150.0 106.0 139.3	204.7	205.4			
$\begin{array}{c} CaCl_2 \ . \\ CaBr_2 \ . \\ CdSO_4 \\ CdI_2 \ . \\ CdBr_2 \ . \end{array}$	•	•	*	17.0 17.7 4.1 7.6 8.6	39.8 44.2 8.9 14.8	95.3 105.8 18.1 33.5 36.7	166.6 191.0 52.7 55.7	241.5 283.3	319.5 368.5			
$\begin{array}{c} CdCl_2 \cdot \\ Cd(NO_3)_2 \\ Cd(ClO_3)_2 \\ CoSO_4 \\ CoCl_2 \cdot \end{array}$	•	•		9.6 15.9 17.5 5.5 15.0	18.8 36.1 10.7 34.8	36.7 78.0 22.9 83.0	57.0 122.2 45.5 136.0	77.3	99.0			
Co(NO ₃) ₂ FeSO ₄ H ₃ BO ₃ H ₃ PO ₄ H ₃ AsO ₄	•	•		17.3 5.8 6.0 6.6 7.3	39.2 10.7 12.3 14.0	89.0 24.0 25.1 28.6 30.2	152.0 42.4 38.0 45.2 46.4	218.7 51.0 62.0 64.9	282.0 81.5	332.0	146.9	189:5
H ₂ SQ ₄ KH ₂ PO ₄ KNO ₃ . KClO ₈ KBrO ₈	•	•		12.9 10.2 10.3 10.6	26.5 19.5 21.1 21.6 22.4	62.8 33·3 40.1 42.8 45.0	104.0 47.8 57.6 62.1	148.0 60.5 74.5 80.0	198.4 73.1 88.2	247.0 85.2 102.1	343.2	148.0
KHSO ₄ KNO ₂ KClO ₄ KCl	•	•		10.9 11.1 11.5	21.9 22.8 22.3 24.4	43·3 44.8 48.8	65.3 67.0	85.5 90.0	107.8	129.2 130.7	170.0 167.0	198.8
KHCO ₂	•			11.6	23.6	59.0	77.6	104.2	132.0	160.0	210.0	255.0
$\begin{array}{c} \text{KI} & . \\ \text{K}_2\text{C}_2\text{O}_4 \\ \text{K}_2\text{WO}_4 \\ \text{K}_2\text{CO}_8 \\ \text{KOH} & . \end{array}$	•	•		12.5 13.9 13.9 14.4 15.0	25.3 28.3 33.0 31.0 29.5	52.2 59.8 75.0 68.3 64.0	82.6 94.2 123.8 105.5 99.2	112.2 131.0 175.4 152.0 140.0	226.4 209.0 181.8	258.5 223.0	350.0 309.5	387.8
K ₂ CrO ₄ LiNO ₈ LiCl . LiBr . Li ₂ SO ₄	•	•	•	16.2 12.2 12.1 12.2 13.3	29.5 25.9 25.5 26.2 28.1	60.0 55.7 57.1 60.0 56.8	88.9 95.0 97.0 89.0	122.2 132.5 140.0	155.1 175.5 186.3	188.0 219.5 241.5	253.4 311.5 341.5	30 9. 2 393.5 438.0
LiHSO ₄ LiI Li ₂ SiFl ₆ LiOH Li ₂ CrO ₄		•		12.8 13.6 15.4 15.9 16.4	27.0 28.6 34.0 37.4 32.6	57.0 64.7 70.0 78.1 74.0	93.0 105.2 106.0	130.0 154.5	168.0 206.0	264.0	357.0	445.0

^{*} Compiled from a table by Tammann, "Mém. Ac. St. Petersb." 35, No. 9, 1887. See also Referate, "Zeit. f. Phys." ch. 2, 42, 1886.

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.

Substance.	0.5 1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.5 12.0 16.8 39.0 17.6 42.0 17.9 44.0 18.3 46.0	24.5 100.5 101.0 115.8 116.0	47.5 183.3 174.8 205.3	277.0	377.0			
MnSO ₄	6.0 10.5 15.0 34.0 10.5 20.0 10.9 22.1 10.6 22.5	21.0 76.0 36.5 47.3 46.2	122.3 51.7 75.0 68.1	167.0 66.8 100.2 90.3	209.0 82.0 126.1 111.5	96.5 148.5 131.7	126.7 189.7 167.8	157.1 231.4 198.8
$NaClO_3$ $(NaPO_3)_6$	10.5 23.0	48.4	73-5	98.5	123.3	147.5	196.5	223.5
NaOH	11.8 22.8 11.6 24.4 12.1 23.5	48.2 50.0 43.0	77·3 75·0 60.0	107.5 98.2 78.7	139.1 122.5 99.8	172.5 146.5 122.1	243.3 189.0	314.0 226.2
NaHCO ₃	12.9 24.1 12.6 25.0	48.2 48.9	77.6	102.2	127.8	152.0	198.0	239.4
NaCl	12.3 25.2 12.1 25.0 12.6 25.9	52.1 54.1 57.0	74.2 80.0 81.3 89.2	111.0 108.8 124.2	143.0 136.0 159.5	176.5	268.0	
NaI	12.1 25.6	60.2	99-5	1 36.7	177.5	221.0	301.5	370.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13.2 14.3 14.5 14.8 22.0 27.3 30.0 14.8 33.6	53.5 65.8 71.6	80.2 105.8 115.7	111.0 146.0 162.6				
Na ₃ PO ₄	16.5 30.0 17.1 36.5 12.8 22.0 11.5 25.0 12.0 23.7	52.5 42.1 44.5 45.1	62.7	82.9	103.8	121.0	152.2	180.0
NH ₄ HSO ₄ (NH ₄) ₂ SO ₄	11.5 22.0 11.0 24.0 11.9 23.9 12.9 25.1 5.0 10.2	46.8 46.5 48.8 49.8 21.5	71.0 69.5 74.1 78.5	94·5 93·0 99·4 104·5	118. 117.0 121.5 132.3	139.0 141.8 145.5 156.0	190.2	218.0 228.5 243.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.1 37.0 16.1 37.3 12.3 23.5 7.2 20.3 15.8 31.0	86.7 91.3 45.0 47.0 64.0	147.0 156.2 63.0	212.8 235.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.8 38.8 17.8 42.0 4.9 10.4 9.2 18.7 16.6 39.0	91.4 101.1 21.5 46.2 93.5	156.8 179.0 42.1 75.0 157.5	223.3 267.0 66.2 107.0 223.8	281.5	195.0		

TABLES 183-185.

PRESSURE OF SATURATED AQUEOUS VAPOR.

The following tables for the pressure of saturated aqueous vapor are taken principally from the Fourth Revised Edition (1918) of the Smithsonian Meteorological Tables.

TABLE 183. — At Low Temperatures, -69° to 0° C over Ice.

Temp.	0	1	2	3	4	5	6	7	8	9
	mm									
-60	0.008	0.007	0.006	0.005	0.004	0.004	0.003	0.003	0.003	0.002
-50	0.029	0.026	0.023	0.020	0.017	0.015	0.013	0.012	0.010	0.009
-40	0.096	0.086	0.076	0.068	0.060	0.054	0.048	0.042	0.037	0.033
-30	0.288	0.259	0.233	0.209	0.188	0.169	0.151	0.135	0.121	0.108
-20	0.783	0.712	0.646	0.585	0.530	0.480	0.434	0.392	0.354	0.319
-10	1.964	1.798	1.644	1.503	1.373	I.252	I.142	1.041	0.947	0.861
- 0	4.580	4.220	3.887	3.578	3.291	3.025	2.778	2.550	2.340	2.144
]										

TABLE 184. — At Low Temperatures, -16° to 0° C over Water.

Temp.	0	I	2	3	4	5	6	7	8	9
- o°	mm 2.144 4.579	mm 1.979 4.255	mm 1.826 3.952	mm 1.684 3.669	mm 1.551 3.404	mm 1.429 3.158	mm 1.315 2.928	mm 	mm — 2.509	mm

TABLE 185. — For Temperatures 0° to 374° C over Water.

	1	t			1		1		1	
Temp.	.0	. 1	. 2	.3	· 4	- 5	.6	- 7	.8	.9
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
o°	4.580	4.614	4.647	4.681	4.715	4.750	4.784	4.810	4.854	4.880
I	4.924	4.960	4.996	5.032	5.068	5.105	5.142	5.179	5.216	5.254
2	5.291	5.329	5.368	5.406	5 · 445	5.484	5.523	5.562	5.602	5.642
3	5.682	5.723	5.763	5.804	5.846	5.887	5.929	5.971	6.013	6.056
4	6.098	6.141	6.185	6.228	6.272	6.316	6.361	6.406	6.450	6.496
5	6.541	6.587	6.633	6.680	6.726	6.773	6.820	6.868	6.916	6.964
5 6	7.012	7.061	7.110	7.159	7.209	7.259	7.309	7.360	7.410	7.462
7	7.513	7.565	7.617	7.669	7.722	7.775	7.828	7.882	7.936	7.991
8	8.045	8.100	8.156	8.211	8.267	8.324	8.380	8.437	8.494	8.552
9	8.610	8.669	8.727	8.786	8.846	8.906	8.966	9.026	9.087	9.148
10	9.21	9.27	9.33	9.40	9.46	9.52	9.59	9.65	9.72	9.78
II	9.85	9.91	9.98	10.04	IO.II	10.18	10.25	10.31	10.38	10.45
12	10.52	10.59	10.66	10.73	10.80	10.87	10.94	11.02	11.09	11.16
13	II.24	11.31	11.38	11.46	11.53	11.61	11.68	11.76	11.84	11.92
14	11.99	12.07	12.15	12.23	12.31	12.39	12.47	12.55	12.63	12.71
15	12.79	12.88	12.96	13.04	13.13	13.21	13.30	13.38	13.47	13.56
16	13.64	13.73	13.82	13.91	14.00	14.08	14.17	14.26	14.36	14.45
17	14.54	14.63	14.73	14.82	14.91	15.01	15.10	15.20	15.29	15.39
18	15.49	15.58	15.68	15.78	15.88	15.98	16.08	16.18	16.28	16.39
19	16.49	16.59	16.70	16.80	16.91	17.01	17.12	17.22	17.33	17.44
20	17.55	17.66	17.77	17.88	17.99	18.10	18.21	18.32	18.44	18.55
21	18.66	18.78	18.90	19.01	19.13	19.25	19.36	19.48	19.60	19.72
22	19.84	19.96	20.09	20.21	20.33	20.46	20.58	20.71	20.83	20.96
23	21.09	21.22	21.34	21.47	21.60	21.73	21.87	22.00	22.13	22.26
24	22.40	22.53	22.67	22.80	22.94	23.08	23.22	23.36	23.50	23.64
25	23.78	23.92	24.06	24.21	24.35	24.50	24.64	24.79	24.94	25.09

PRESSURE OF SATURATED AQUEOUS VAPOR.

TABLE 185. — For Temperatures 0° to 374° C over Water.

Tempera- ture.	.0	,ı	. 2	-3	·4 ·	-5	.6	-7	.8	-9
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
25°	23.78	23.92	24.06	24.21	24.35	24.50	24.64	24.79	24.94	25.09
26	25.24	25.38	25.54	25.69	25.84	25.99	26.14	26.30	26.46	26.61
27	26.77	26.92	27.08	27.24	27.40	27.56	27.72	27.89	28.05	28.22
28	28.38	28.55	28.71	28.88	29.05	29.22	29.39	29.56	29.73	29.90
29	30.08	30.25	30.43	30.60	30.78	30.96	31.14	31.32	31.50	31.68
30	31.86	32.04	32.23	32.41	32.60	32.79	32-97	33.16	33.35	33.54
31	33.74	33.93	34.12	34.32	34.51	34.71	34.91	35.10	35.30	35.50
32	35.70	35.91	36.11	36.32	36.52	36.73	36.94	37.14	37.35	37.56
33	37.78	37.99	38.20	38.42	38.63	38.85	39.06	39.28	39.50	39.72
34	39.95	40.17	40.39	40.62	40.85	41.07	41.30	41.53	41.76	41.99
35	42.23	42.46	42.70	42.93	43.17	43.41	43.65	43.89	44.13	44.37
36	44.62	44.86	45.11	45.36	45.61	45.86	46.11	46.36	46.62	46.87
37	47.13	47.38	47.64	47.90	48.16	48.43	48.69	48.95	49.22	49.49
38	49.76	50.02	50.30	50.57	50.84	51.12	51.39	51.67	51.95	52.23
39	52.51	52.79	53.08	53.36	53.65	53.94	54.23	54.52	54.81	55.10
40	55.40	55.69	55.99	56.29	56.59	56.89	57.19	57.50	57.80	58.11
41	58.42	58.73	59.04	59.35	59.66	59.98	60.30	60.62	60.94	61.26
42	61.58	61.90	62.23	62.56	62.89	63.22	63.55	63.88	64.22	64.55
43	64.89	65.23	65.57	65.91	66.26	66.60	66.95	67.30	67.64	68.00
44	68.35	68.70	69.06	69.42	69.78	70.14	70.50	70.87	71.23	71.60
45	71.97	72.34	72.71	73.09	73.46	73.84	74.22	74.60	74.98	75.36
46	75.75	76.14	76.53	76.92	77.31	77.70	78.10	78.50	78.90	79.30
47	79.70	80.11	80.51	80.92	81.33	81.74	82.16	82.57	82.99	83.41
48	83.83	84.25	84.68	85.10	85.53	85.96	86.39	86.83	87.26	87.70
49	88.14	88.58	89.02	89.47	89.92	90.36	90.82	91.27	91.72	92.18
	0.		2.	3.	4.	5-	6.	7-	8.	9.
50	92.6	97.3	102.2	107.3	112.7	118.2	124.0	130.0	136.3	142.8
60	149.6	156.6	164.0	171.6	179.5	187.8	196.3	205.2	214.4	224.0
70	233.9	244.2	254.9	266.0	277.4	289.3	301.6	314.4	327.6	341.2
80	355.4	370.0	385.2	400.8	417.0	433.7	451.0	468.8	487.3	506.3
90	526.0	546.3	567.2	588.8	611.1	634.1	657.8	682.2	707.4	733.3
100	760.0	787.5	815.9	845.0	875.1	906.0	937.8	970.5	1004.2	1038.8
110	1074	1111	1149	1187	1227	1268	1310	1353	1397	1442
120	1489	1536	1585	1636	1687	1740	1794	1850	1907	1965
130	2025	2086	2149	2214	2280	2347	2416	2487	2559	2633
140	2709	2786	2866	2947	3030	3115	3201	3290	3381	3473
150 160 170 180 190	3568 4632 5936 7513 9404	3665 4751 6080 7688 9612	3763 4873 6228 7865 9823	3864 4997 6378 8046 10040	3967 5123 6532 8230 10260	4072 5252 6688 8417 10480	4180 5383 6847 8608	4290 5518 7009 8802 10940	4402 5654 7174 8999 11170	4516 5794 7342 9200 11410
200	11650	11890	12140	12400	12650	12920	13180	13450	13730	14010
210	14290	14580	14870	15160	15470	15770	16080	16400	16720	17040
220	17370	17710	18050	18390	18740	19100	19450	19820	20190	20560
230	20950	21330	21720	22120	22520	22930	23350	23770	24190	24620
240	25060	25500	25950	26410	26870	27340	27810	28290	28780	29270
250	29770	30280	30790	31310	31830	323,60	32900	33450	34000	34560
260	35130	35700	36280	36870	37470	38070	38680	39300	39920	40560
270	41200	41840	42500	43160	43840	44520	45200	45900	46600	47320
280	48040	48760	49500	50250	51000	51770	52540	53320	54110	54910
290	55710	56530	57360	58190	59040	59890	60750	61620	62510	63400
300 310 320 330 340	64300 73870 84500 96290 109300	65210 74880 85630 97530 110700	66130 75910 86760 98790 112100	67060 76940 87910 100060 113500	68000 77990 89070 101350 114900	68960 79050 90250 102640 116300	69920 80120 91430 103950 117800	70890 81200 92630 105280 119200	71870 82290 93840 106600 120700	72860 83390 95060 108000
350 360 370	123700 139600 157000	125200 141200 158800	126800 142900 160700	128300 144600 162600	129900 146300 164400	131400	133000	134600	136300 153400	137900 155200

TABLE 186. - Weight in Grams of a Cubic Meter of Saturated Aqueous Vapor.

Temp.	o°	ı°	20	3°	4°	5°	6°	7°	8°	9°
-½0°	0.894	0.816	0.743	0.677	0.615	0.559	0,508	0.461	0.418	0.378
-10	2.158	1.983	1.820	1.671	1.531	1.403	1,284	1.174	1.073	0.980
- 0	4.847	4.482	4.144	3.828	3.534	3.261	3,006	2.770	2.551	2.347
+ 0°	4.847	5.192	5.559	5.947	6.36c	6.797	7.261	7.751	8.271	8.821
+10	9.401	10.015	10.664	11.348	12.070	12.832	13.635	14.482	15.373	16.311
+20	17.300	18.338	19.430	20.578	21.783	23.049	24.378	25.771	27.234	28.765
+30	30.371	32.052	33.812	35.656	37.583	39.599	41.706	43.908	46.208	48.609
			For h	igher tem	peratures,	see Table	259.	<u> </u>		

TABLE 187. - Weight in Grains of a Cubic Foot of Saturated Aqueous Vapor.

Temp.	o°	I,o	2°	3"	4°	5°	6°	7°	8°	9°
-20°	0.167	0.158	0.150	0.141	0.134	0. 126	0.110	0.112	0.106	0.100
-10	0.286	0.272	0.258	0.244	0.232	0. 220	0.208	0.197	0.187	0.176
- 0	0.479	0.455	0.433	0.411	0.391	0. 371	0.353	0.335	0.318	0.302
+ 0°	0.479	0.503	0.529	0.556	0.584	0.613	0.644	0.676	0.709	0.744
+ 10	0.780	0.818	0.858	0.900	0.943	0.988	1.035	1.084	1.135	1.189
+ 20	1.244	1.301	1.362	1.425	1.490	1.558	1.629	1.703	1.779	1.859
+ 30	1.942	2.028	2.118	2.200	2.286	2.375	2.466	2.560	2.658	2.759
+ 40	2.863	2.970	3.082	3.196	3.315	3.436	3.563	3.693	3.828	3.965
+ 50	4.108	4.255	4.407	4.564	4.725	4.891	5.062	5.238	5.420	5.607
+ 60	5.800	5.999	6.203	6.413	6.630	6.852	7.082	7.317	7.560	7.800
+70	8.066	8.329	8.600	8.879	9.165	9.460	9.761	10.072	10.392	10.720
+80	11.056	11.401	11.756	12.121	12.494	12.878	13.272	13.676	14.090	14.515
+90	14.951	15.400	15.858	16.328	16.810	17.305	17.812	18.330	18.863	19.407
110	19.966 26.343	20.538 27.066	21.123 27.807	21.723 28.563	22.337 29.338	22.966 30.130	23.611 30.940	24.271 31.768	24.946 32.616	25.636 33.482

Tables are abridged from Smithsonian Meteorological Tables, fourth revised edition.

TABLE 188. - Pressure of Aqueous Vapor in the Atmosphere.

For various altitudes (barometric readings).

The first column gives the depression of the wet-bulb temperature t_1 below the air temperature t_2 . The value corresponding to the barometric height at the altitude of observation is to be subtracted from the vapor pressure corresponding to the wet-bulb temperature taken from Table 185. The temperature corresponding to this vapor pressure taken from Table 185 is the dew point. The wet bulb should be ventilated about 3 meters per second. For sea-level use Table 189, Example: $t = 35^\circ$, $t_1 = 30^\circ$, barometer 74 cm. Then 31.83 - 2.46 = 29.37 mm = aqueous vapor pressure; the dew point is 28.6° C.

Abridged from Smithsonian Meteorological Tables, 1907.

$t-t_1$					Ва	rometri	c pressu	ire in ce	entimete	ers.				
° c'	74	72	70	68	66	64	62	60	58	56	54	52	50	48
1° 2 3 4 5 6 7 8	mm 0.50 0.98 1.47 1.97 2.46 2.95 3.45 3.95	mm 0.48 0.96 1.43 1.91 2.39 2.87 3.36 3.84	mm 0.47 0.93 1.39 1.86 2.32 2.79 3.26 3.73	mm 0.46 0.90 1.35 1.81 2.26 2.71 3.17 3.63	mm 0 44 0.88 1.32 1.75 2.10 2.63 3.08 3.53	mm 0.43 0.85 1.28 1.70 2.13 2.55 2.99 3.42	mm 0.42 0.82 1.24 1.65 2.06 2.47 2.89 3.31	mm 0.40 0.80 1.20 1.60 1.90 2.30 2.80 3.20	mm 0.39 0.77 1.15 1.54 1.93 2.32 2.71 3.10	mm 0 38 0.75 1.12 1.49 1.86 2.24 2.61 2.99	mm 0.36 0.72 1.08 1.44 1.80 2.16 2.52 2.88	mm 0.35 0.60 1.04 1.38 1.73 2.08 2.43 2.78	mm 0.34 0.67 1.00 1.33 1.66 2.00 2.33 2.67	mm 0.32 0.64 0.96 1.28 1.60 1.92 2.24 2.56
9 10 11 12 13 14 15 16 17	4.44 4.94 5.44 5.94 6.45 6.95 7.46 7.96 8.47	4.81 5.30 5.78 6.27 6.76 7.26 7.75 8.24	4.21 4.68 5.15 5.62 6.10 6.58 7.06 7.54 8.02	4.09 4.54 5.00 5.46 5.92 6.39 6.85 7.32 7.79	3.97 4.41 4.86 5.30 5.75 6.20 6.65 7.11 7.56	3.85 4.28 4.71 5 14 5 57 6.01 6.45 6.80 7.33	3.73 4.14 4.56 4.98 5.40 5.83 6.25 6.68 7.10	3.61 4.01 4.42 4.82 5.23 5.04 6 05 6 46 6.87	3.49 3.88 4.27 4.66 5.05 5.45 5.85 6.24 6.64	3.37 3.74 4.12 4.50 4.88 5.20 5.64 6.03 6.41	3.25 3.61 3.97 4.34 4.70 5.07 5.44 5.81 6.18	3.13 3.48 3.83 4.18 4.53 4.88 5.24 5.60 5.95	3.00 3.34 3.68 4.02 4.36 4.70 5.04 5.38 5.72	2.88 3.21 3.53 3.85 4.18 4.51 4.84 5.17 5.50

PRESSURE OF AQUEOUS VAPOR IN THE ATMOSPHERE.

This table gives the vapor pressure corresponding to various values of the difference $t-t_1$ between the readings of dry and wet bulb thermometers and the temperature t_1 of the wet bulb thermometer. The difference $t-t_1$ is given by two-degree steps in the top line, and t_1 by degrees in the first column. Temperatures in Centigrade degrees, vapor pressures in millimeters of mercury are used throughout the table. The table was calculated for barometric pressure B equal to 76 centimeters. A correction is given for each centimeter at the top of the columns. Ventilating velocity of wet thermometer about 3 meters per second.

t ₁	$t - t_1$ $= 0^{\circ}$	2°	4°	6°	8°	100	I2°	14°	16°	18°	20°	Differ- ence for
Correct for B p		.013	.026	.040	.053	.066	.079	.092	.106	.119	.132	0.1° in t -t ₁
-10 -9 -8 -7 -6 -5	1.96 2.14 2.34 2.55 2.78	0.97 1.15 1.35 1.56 1.78	0.16 0.35 0.66 0.79	0.03		From For	$-t_1 = 7$	= 10.0; .2 6.17 —	mple. $B = 74.$ 12×0.0		7	0.050 0.050 0.050 0.050 0.050
- 4 - 3 - 2 - 1	3.29 3.58 3.89 4.22	2.29 2.58 2.89 3.22	1.20 1.58 1.89 2.22	0.20 0.58 0.88 1.21	0.21	_	_	_	=	=	=	0.050 0.050 0.050 0.050
0 1 2 3 4	4.58 4.92 5.29 5.68 6.10	3.58 3.92 4.29 4.68 5.09	2.57 2.92 3.28 3.67 4.08	1.57 1.91 2.27 2.66 3.07	0.57 0.91 1.27 1.66 2.07	0.26 0.65 1.06	0.05	= =	_	= = =		0.050 0.050 0.050 0.050 0.050
5 6 7 8 9	6.54 7.01 7.51 8.04 8.61	5.53 6.00 6.50 7.03 7.60	4.52 4.99 5.49 6.02 6.58	3.51 3.98 4.48 5.01 5.57	2.51 2.97 3.47 4.00 4.56	1.50 1.96 2.46 2.98 3.54	0.49 0.95 1.45 1.97 2.53	0.43 0.96 1.52	0.50			0.050 0.050 0.050 0.050
10 11 12 13 14	9.21 9.85 10.52 11.24 11.99	8.20 8.83 9.50 10.22 10.97	7.18 7.81 8.49 9.20 9.95	6.17 6.80 7.47 8.18 8.93	5.15 5.78 6.45 7.16 7.91	4.14 4.77 5.44 6.14 6.90	3.12 3.75 4.42 5.13 5.88	2.11 2.73 3.40 4.11 4.86	1.09 1.72 2.38 3.09 3.84	0.08 0.70 1.37 2.07 2.82	0.35 1.05 1.80	0.050 0.051 0.051 0.051
15 16 17 18	12.79 13.64 14.54 15.49 16.49	11.77 12.62 13.52 14.46 15.46	10.75 11.60 12.49 .13.44 14.44	9.73 10.58 11.47 12.42 13.41	8.71 9.96 10.45 11.39 12.39	7.69 8.53 9.42 10.37 11.36	6.67 7.51 8.40 9.34 10.34	5.65 6.49 7.38 8.32 9.31	4.63 5.47 6.36 7.30 8.29	3.61 4.45 5.33 6.27 7.26	2.59 3.43 4.31 5.25 6.24	0.051 0.051 0.051 0.051 0.051
20 21 22 23 24	17.55 18.66 19.84 21.09 22.40	16.52 17.64 18.82 20.06 21.37	15.50 16.61 17.79 19.03 20.34	14.47 15.58 16.76 18.00 19.31	13.44 14.56 15.73 16.97 18.27	12.42 13.53 14.70 15.94 17.24	11.39 12.50 .13.67 14.91 16.21	10.36 11.47 12.64 13.88 15.18	9.34 10.45 11.62 12.85 14.15	8.31 9.42 10.59 11.82 13.12	7.29 8.39 10.57 10.79 12.09	0.051 0.051 0.051 0.051
25 26 27 28 29	23.78 25.24 26.77 28.38 30.08	22.75 24.20 25.73 27.34 29.04	21.71 23.17 24.70 26.31 28.00	20.68 22.14 23.66 25.27 26.97	19.65 21.10 22.63 24.24 25.93	18.62 20.07 21.60 23.20 24.89	17.59 19.04 20.56 22.17 23.86	16.56 18.00 19.53 21.13 22.82	15.52 16.97 18.49 20.10 21.78	14.49 15.94 17.46 19.06 20.75	13.46 14.90 16.42 18.02 19.71	0.052 0.052 0.052 0.052 0.052
30 31 32 33 34	31.86 33.74 35.70 37.78 39.95	30.82 32.70 34.66 36.73 38.90	29.78 31.66 33.62 35.69 37.86	28.75 30.62 32.58 34.65 36.82	27.71 29.58 31.54 33.61 35.78	26.67 28.54 30.50 32.57 34.73	25.63 27.50 29.46 31.53 33.69	24.60 26.46 28.42 30.49 32.65	23.56 25.42 27.38 29.44 31.61	22.52 24.38 26.34 28.40 30.57	21.48 23.34 25.30 27.36 29.52	0.052 0.052 0.052 0.052 0.052
35 36 37 38 39	42.23 44.62 47.13 49.76 52.51	41.18 43.57 46.08 48.71 51.46	40.14 42.53 45.04 47.66 50.41	39.10 41.48 43.99 46.61 49.37	38.05 40.44 42.94 45.57 48.32	37.01 39.40 41.90 44.52 47.27	35.97 38.35 40.85 43.47 46.22	34.92 37.31 39.81 42.43 45.17	33.88 36.26 38.76 41.38 44.12	32.83 35.22 37.71 40.33 43.08	31.79 34.17 36.67 39.29 42.03	0.052 0.052 0.052 0.052 0.052
40	55.40	54-35	53.30	52.25	51.20	50.15	49.10	48.05	47.00	45.95	44.00	0.052

TABLE 190.

RELATIVE HUMIDITY.

Vertical argument is the observed vapor pressure which may be computed from the wet and drybulb readings through Table 188 or 189. The horizontal argument is the observed air temperature (dry-bulb reading). Based upon Table 43, p. 142, Smithsonian Meteorological Tables, 3d Revised Edition, 1907.

Vapor			-				Air	Tem	perat	ures,	dry b	ulb, c	Cen	tigra	de.			-			
Pressure.	0	° –	-10	-2°	-3°	-40	> -1	50 -	- 6 °	_7°	-8°	99	1	.0° –	-110 -	-12°	-139	-14	° -1	5° –	-200
0.25 0.50 0.75	11	1	6 2 8	6 13 19	7 14 21	8 15 23	17	7	9 18 27	10 20 30	11 21 32	12 23 35	13 25 38	2	8	15 30 46	17 34 50	18 37 55	20 40 60	è	32 54 96
1.00 1.25 1.50 1.75	22 27 33 38	3	6	26 32 39 45	28 35 42 49	30 38 46 53	30 42 50 50	2 2	36 45 54	49 59 69	42 54 64 75	47 58 70 82	51 64 76 89	7 8	0	61 76 92	67 84 100	74 92	80		
2.00 2.25 2.50 2.75 3.00 3.25 3.50	44 49 55 60 60 71 77	5 5 6 7 7 7	8 3 9 5 1 7	52 58 65 71 78 84 90	56 63 70 77 84 91 98	61 69 76 84 92 99	66 71 81 9	5 8 3 9 1 1	72	79 89 99 - -	86 96 - - -	93			3.5 3.5 4.0 4.2 4.5	50 75 00 25	77 82 88 93 99	-1° 83 89 95	90 97 - -) '(98 - - -
Vapor Pressure.							Air	Ten	ipera	tures,	dry b	ulb, ^c	O Cer	ntigra	ıde.						
mm.	0°	10	2°	3°	4 °	5°	6°	7°	80	9°	100	110	120	13°	14°	15°	16°	17°	18°	19°	20^
0.5 1.0 1.5 2.0 2.5	11 22 33 44 55	10 20 31 41 51	9 19 28 38 47	9 18 27 35 44	8 16 25 33 41	8 15 23 31 38	7 14 22 29 36	7 13 20 27 33	6 13 19 25 31	6 12 18 23 29	5 11 16 22 27	5 10 15 20 26	5 10 14 19 24	4 9 13 18 22	4 8 13 17 21	4 8 12 16 20	4 7 11 15 18	3 7 10 14 17	3 7 10 13 16	3 6 9 12 15	3 6 9 12 14
3.0 3.5 4.0 4.5 5.0	66 77 88 99	61 71 81 92	57 66 76 85 95	53 62 71 80 88	49 58 66 74 83	46 54 61 69 77	43 50 57 65 7 ²	40 47 54 60 67	38 44 50 56 63	35 41 47 53 58	33 38 44 49 55	31 36 41 46 51	29 34 38 43 48	27 31 36 40 45	25 29 34 38 42	24 28 32 36 39	22 26 30 33 37	21 24 28 31 35	20 23 26 29 33	18 21 25 28 31	17 20 23 26 29
5.5 6.0 6.5 7.0 7.5	1 1 1 1 1			97 - - -	91 99 - -	85 92 100 -	79 86 93	74 80 87 94	69 75 81 85 94	64 70 76 82 88	60 66 71 77 82	56 61 67 72 77	53 58 62 67 72	49 54 58 63 67	46 51 55 59 63	43 47 51 55 59	41 44 48 52 55	38 42 45 49 52	36 39 42 46 49	34 37 40 43 46	32 34 37 40 43
8.0 8.5 9.0 9.5 10.0									100	94 99 - -	88 93 98 - -	82 87 92 97	77 82 86 91 96	72 76 81 85 90	67 72 76 80 84	63 67 71 75 79	59 63 67 70 74	56 59 62 66 69	52 55 59 62 65	49 52 55 58 61	46 49 52 55 57
11.0 12.0 13.0 14.0 15.0			-		-	-								94 - - -	93	87 94 - -	81 89 96 -	76 83 90 97	72 78 85 91	67 74 80 86 92	63 69 75 80 86
16.0 17.0	_	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	98	92 98

TABLE 190 (continued). RELATIVE HUMIDITY.

1					_	_		LA		~ .		וסו			_		_	-		_	
Vapor Pressure							Air	Ten	npera	itures,	dry l	bulb,	° Ce	ntigr	ade.						
mm.	20°	21	220	23	240	25°	260	27°	280	29°	30°	31	32	33	34	35	36	37	38	399	400
1 2 3 4	6 12 17 23	5 11 16 22	5 10 15 20	5 10 14 19	5 9 14 18	4 8 13 17	4 8 12 16	4 8 11 15	4 7 11 14	3 7 10 13	3 6 10 13	3 6 9 12	3 6 9	3 5 8	3 5 8	3 5 7	2 5 7 9	2 4 6 9	2 4 6 8	2 4 6 8	2 4 5 7
5 6 7 8 9	29 34 40 46 52	27 32 38 43 49	25 31 36 41 46	24 29 34 38 43	23 27 32 36 41	21 26 30 34 38	20 24 28 32 36	19 23 26 30 34	18 21 25 29 32	17 20 24 27 30	16 19 22 25 29	15 18 21 24 27	14 17 20 23 25	13 16 19 21 24	13 15 18 20 23	12 14 17 19 22	11 14 16 18	11 13 15 17	10 12 14 16 18	10 12 13 15	9 11 13 15 16
10 11 12 13 14	57 63 69 75 80	54 60 65 70 76	51 56 61 66 71	48 53 58 62 67	45 50 54 59 63	43 47 51 55 60	40 44 48 52 56	38 42 45 49 53	36 39 43 46 50	34 37 40 44 47	32 35 38 41 44	30 33 36 39 42	28 31 34 37 40	27 29 32 35 37	25 28 30 33 35	24 26 29 31 33	23 25 27 29 32	21 24 26 28 30	20 22 24 26 28	19 21 23 25 27	18 20 22 24 26
15 16 17 18 19	86 92 98 -	81 87 92 97	76 82 87 92 97	72 77 81 86 91	68 72 77 81 86	64 68. 72 77 81	60 64 68 72 76	57 60 64 68 72	53 57 61 64 68	50 54 57 60 64	48 51 54 57 60	45 48 51 54 57	42 45 48 51 54	40 43 45 48 51	38 41 43 46 48	36 38 41 43 45	34 36 38 41 43	3 ² 34 36 39 41	30 32 34 37 39	29 31 33 35 36	27 29 31 33 35
20 21 22 23 24			- - - -	96 - - -	90 95 100 -	85 89 94 98	80 84 88 92 96	76 79 83 87 91	71 75 78 82 85	67 71 74 77 81	63 67 70 73 76	60 63 66 69 72	57 59 62 65 68	53 56 59 62 64	51 53 56 58 61	48 50 53 55 57	45 48 50 52 54	43 45 47 49 51	41 43 45 47 49	38 40 42 44 46	36 38 40 42
25 26 27 28 29				- - - -			- - - 100	94 98 - -	89 93 96	84 87 91 94 97	79 83 86 89 92	75 78 81 84 87	71 74 76 79 82	67 70 72 75 78	63 66 68 71 73	60 62 65 67 69	56 59 61 63 65	54 56 58 60 62	51 53 55 57 59	48 50 52 54 56	46 47 49 51 53
30 31 32 33 34	-						-		_ _ _ _		95 98 - -	90 93 96 99	85 88 91 93 96	80 83 86 88 91	76 78 81 84 86	72 74 77 79 81	68 70 72 75 77	64 66 69 71 73	61 63 65 67	58 60 62 63 65	55 56 58 60 62
35 36 37 38 39							- - - -			-			99 -	94 96 99 -	89 91 94 96 99	84 86 89 91	79 81 84 86	75 77 79 81 83	71 73 75 77 79	67 69 71 73 75	64 66 67 69 71
40 41 42 43 44	1 1 1 1 1		<u>-</u> - - -	(1	_ _ _ _			-	_ _ _ _ _		1111	11111			-	96 98 100	90 93 95 97	86 88 90 92	81 83 85 87 89	77 79 81 83 84	73 75 77 78 80
45 46 47 48 49	-																_	96 99 -	91 93 95 97 99	\$6 88 90	S ₂ S ₄ S ₆ S ₇ S ₉
50 51 52 53 54	-					1 - 1 - 1			- - -	-								1 1 1 1		96 98	91 93 95 97 98
55	~	-	-	-	-	-	-	-	-	-		-	-	_	-	_	~	_	-		100
		_				_	_	_	_	_	-				-						

TABLES 190 (concluded), 191. TABLE 190 (concluded).—Relative Humidity. (Data from 20° to 60° C. based upon Table 185).

Vapor Pressure.							Air	Ten	ipera	tures,	, dry	bulb,	° Ce	ntigr	ade.						
mm.	40 °	410	42°	43°	440	45 °	46 °	470	480	490	50 °	51 °	520	53 °	54 °	55>	560	57°	580	59°	600
5 10 15 20 25	9 18 27 36 45	9 17 26 34 43	8 16 24 33 41	8 15 23 31 39	7 15 22 29 37	7 14 21 28 35	7 13 20 26 33	6 13 19 25 31	6 12 18 24 30	6 11 17 23 28	5 11 16 22 27	5 10 15 21 26	5 10 15 20 24	5 9 14 19 23	4 9 13 18 22	4 8 13 17 21	4 8 12 16 20	4 8 12 15	4 7 11 15 18	4 7 10 14 18	3 7 10 13
30 35 40 45 50	54 63 72 81 90	51 60 68 77 86	49 57 65 73 81	46 54 62 69 77	44 51 59 66 73	42 49 56 63 70	40 46 53 59 66	38 44 50 57 63	36 42 48 54 60	34 40 45 51 57	32 38 43 49 54	31 36 41 46 51	29 34 39 44 49	28 33 37 42 47	27 31 36 40 44	25 30 34 38 42	24 28 32 36 40	23 27 31 35 38	22 26 29 33 37	21 25 28 32 35	20 23 27 30 33
55 60 65 70 75	99 - - -	94	89 98 - -	85 93 100 -	81 88 95 -	76 83 90 97	73 79 86 92 99	69 75 82 88 94	66 72 78 84 90	62 68 74 80 85	59 65 70 76 81	57 62 67 72 77	54 60 64 68 74	51 56 61 65 70	49 53 58 62 67	46 51 55 59 64	44 48 52 56 60	42 46 50 54 58	40 44 48 51 55	39 42 46 49 53	37 40 43 47 50
80 85 90 95 100			- nm.	- - 57° 96	- 58° 92	59 , 88	- - 60° 84	100	96 - - -	91 97 - -	86 92 97 -	82 87 93 98	78 84 88 94 98	75 79 84 89 93	71 75 80 84 89	68 72 76 80 85	64 69 73 77 81	62 65 69 73 77	59 62 66 70 73	56 60 63 67 70	54 57 60 64 67
105 110 115 120 125	- - -	1	30 35 40 45 50	100	95 99 - - -	91 95 98 -	87 90 94 97 100	- - - -	- - - -		- - - -	- - - -	- - - -	98 - - - -	93 98 - - -	89 93 97 -	85 89 93 97 -	81 85 88 92 96	77 81 84 88 92	74 77 81 84 88	70 74 77 80 84

TABLE 191. - Relative Humidity.

This table gives the relative humidity direct from the difference between the reading of the dry (t° C.) and the wet (t_1 ° C.) thermometer. It is computed for a barometer reading of 76 cm. The wet thermometer should be ventilated about 3 meters per second. From manuscript tables computed at the U.S. Weather Bureau.

t°						Depre	ssion	of wet	-bulb	thermo	meter,	t ⁰ -t ₁ ⁰ .					
τ~	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.0°	2.50	3.0°	3.5°	4.00	4.50	5.00	5.5
-15 -12 -9 -6 -3 0 +3	90 92 94 95 96 96 97	91 85 88 89 91 92 94	72 77 81 85 87 89	62 69 75 80 82 85 87	53 62 70 74 78 81 84	44 54 62 69 74 78 81	35 47 56 64 69 74 78	25 39 50 59 66 71 75	16 3 ² 44 54 61 67 7 ²	7 25 39 49 57 64 69	7 23 36 46 55 62	9 25 36 46 54	- - 13 26 38 46	- - 2 17 29 40	- - - 7 21 32	- - - - 13 25	- - - 6 18
	0.50	1,00	1.50	2.00	2.5°	3.00	3.5°	4.0°	4.5°	5.00	6.0°	7.00	8.00	9.00	10.0	11.0	12.9
+3 +6 +9 +12	92 94 94 94	84 87 88 89	76 80 82 84	69 73 76 78	62 66 79 73	54 60 65 68	46 54 59 63	40 47 53 58	32 41 48 53	25 35 42 48	12 23 32 38	- 11 22 30	- 12 21	- 3 12	- - 4	- - -	-
+15 +18 +21 +24	95 95 96 96	90 90 91 92	85 86 87 88	80 82 83 85	76 78 79 81	71 73 75 77	66 69 71 74	62 65 67 70	58 61 64 66	53 57 60 63	44 49 53 56	36 42 46 49	28 35 39 43	20 27 32 37	13 20 26 31	4 13 19 26	- 6 13 21
+27 +30 +33 +36 +39	96 96 96 97	93 93 93 93 94	90 90 90	86 86 86 87 88	82 82 83 84 85	79 79 80 81 82	76 76 77 78 79	72 73 74 75 76	68 70 71 72 74	65 67 68 70 71	59 61 63 64 66	53 55 57 57 61	47 50 52 54 56	41 44 47 -50 52	36 39 42 45 47	31 35 37 41 43	26 30 33 36 39

CORRECTION FOR TEMPERATURE OF EMERGENT MERCURIAL THERMOMETER THREAD.

When the temperature of a portion of a thermometer stem with its mercury thread differs much from that of the bulb, a correction is necessary to the observed temperature unless the instrument has been calibrated for the experimental conditions. This stem correction is proportional to $n\beta(T-t)$, where n is the number of degrees in the exposed stem, β the apparent coefficient of expansion of mercury in the glass, T the measured temperature, and t the mean temperature of the exposed stem. For temperatures up to 100° C, the value of β is for Jena 16¹¹¹ or Greiner and Friedrich resistance glass, 0.000159, for Jena 50¹¹¹, 0.000164, and when of unknown composition it is best to use a value of about 0.000155. The formula requires a knowledge of the temperature of the emergent stem. This may be approximated in one of three ways: (1) by a "fadenthermometer" (see Buckingham, Bulletin Bureau of Standards, 8, p. 239, 1912); (2) by exploring the temperature distribution of the stem and calculating its mean temperature; and (3) by suspending along the side of, or attaching to the stem, a single thermometer. Table 192 is taken from the Smithsonian Meteorological Tables, Tables 193–195 from Rimbach, Z. f. Instrumentenkunde, 10, p. 153, 1890, and apply to thermometers of Jena or resistance glass.

TABLE 192. — Stem Correction for Centigrade Thermometers.

Values of 0.000155n(T-t).

		(T-t).										
n	10°	20°	30°	40°	50°	60°	70°	80°				
10° C	0.02	0.03	0.05	0.06	0.08	0.09	0.11	0.12				
20	0.03	0.06	0.09	0.12	0.16	0.19	0.22	0.25				
30	0.05	0.09	0.14	0.19	0.23	0.28	0.33	0.37				
40	0.06	0.12	0.19	0.25	0.31	0.37	0.43	0.50				
50	0.08	0.16	0.23	0.31	0.39	0.46	0.54	0.62				
60	0.09	0.19	0.28	0.37	0.46	0.56	0.65	0.74				
70	0.11	0.22	0.33	0.43	0.54	0.65	0.76	0.87				
80	0.12	0.25	0.37	0.50	0.62	0.74	0.87	0.99				
90	0.14	0.28	0.42	0.56	0.70	0.84	0.98	1.12				
100	0.16	0.31	0.46	0.62	0.78	0.93	1.08	1.24				

TABLE 193. - Stem Correction for Thermometer of Jena Glass (0° to 360° C).

Degree length 0.9 to 1.1 mm; t =the observed temperature; t' =that of the surrounding air 1 dm. away; n =the length of the exposed thread.

Correction to be added to the reading t . $t-t'$												
12					t	- t'						
	70°	80°	90°	100°	120°	140°	160"	180°	200°	220		
10	0.01	0.01	0.03	0.04	0.07	0.10	0.13	0.17	0.19	0.21		
20	0.08	0.12	0.14	0.10	0.25	0.28	0.32	0.40	0.49	0.54		
30	0.25	0.28	0.32	0.36	0.42	0.48	0.54	0.66	0.78	0.87		
40	0.30	0.35	0.41	0.48	0.60	0.67	0.77	0.92	1.08	1.20		
50	0.41	0.46	0.52	0.59	0.79	0.89	0.98	1.16	1.38	1.53		
60	0.52	0.60	0.68	0.79	0.99	I.II	I.23	1.46	1.70	1.87		
70	0.63	0.74	0.85	0.98	I.20	1.32	1.45	I.70	1.99	2.21		
80	0.75	0.87	1.01	1.15	1.38	1.53	1.70	1.98	2.29	2.54		
90	0.87	0.99	1.13	1.28	I.62	1.82	I.94	2.25	2.60	2.80		
100	0.98	I.12	I.29	1.47	1.82	2.03	2.20	2.55	2.92	3.24		
I 20				1.88	2.28	2.49	2.68	3.13	3.59	3.96		
140					2.75	2.97	3.22	3.75	4.24	4.69		
180						3.35	3.80	4.35	4.92	5 · 45		
200					_	_	4.37	4.99	5.63	6.22		
					_	_	-	5.68	6.34	6.98		
220			_		_		_	_	7.05	7.82		

CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM (continued).

TABLE 194. - Stem Correction for Thermometer of Jena Glass (0°-360° 0).

Degree length I to I.6 mm.; t = the observed temperature; t' = that of the surrounding air one dm. away; u = the length of the exposed thread.

		Co	ORRECTIO	N TO BE	ADDED T	о Тнекм	OMETER	Reading	.*		
					t-	- t'					
n	70 °	80 °	90°	100°	120°	140°	160°	180°	200°	220°	n
10° 20 30 40 50 60 70 80	0.02 0.13 0.24 0.35 0.47 0.57 0.69	0.03 0.15 0.28 0.41 0.53 0.60 0.79	0.05 0.18 0.33 0.48 0.62 0.77 0.92	0.07 0.22 0.39 0.56 0.72 0.89 1.06	0.11 0.29 0.48 0.68 0.88 1.09 1.30	0.17 0.38 0.59 0.82 1.03 1.25 1.47	0.21 0.46 0.70 0.94 1.17 1.42 1.67	0.27 0.53 0.78 1.04 1.31 1.58 1.86	0.33 0.61 0.88 1.16 1.44 1.74 2.04	0.38 0.67 0.97 1.28 1.59 1.90 2.23	10° 20 30 40 50 60 70
90 100 110 120	0.80 0.91 1.02 -	1.04 1.18 - -	1.05	1.21 1.38 1.56 1.78 1.98	1.52 1.73 1.97 2.19 2.43	1.71 1.96 2.18 2.43 2.69	2.20 2.45 2.70 2.95	2.15 2.42 2.70 2.98 3.26	2.33 2.64 2.94 3.26 3.58	2.55 2.89 3.23 3.57 3.92	90 100 110 120
130 140 150 160	- - -	- - -	- - - -	- - - -	2.68 2.92 -	2.94 3.22 - -	3.20 3.47 3.74 4.00	3.56 3.86 4.15 4.46	3.89 4.22 4.56 4.90	4.28 4.64 5.01 5.39	130 140 150 160
170 180 190 200	- - -	- - -	- - - -	-	-	-	4.27 4.54 -	4.76 5.07 5.38 5.70	5.24 5.59 5.95 6.30	5.77 6.15 6.54 6.94	170 180 190 200
210 220	_	_	-	-	-	-	_	-	6.68 7.04	7·35 7·75	210 220

^{*} See Hovestadt's "Jena Glass" (translated by J. D. and A. Everett) for data on changes of thermometer zeros,

TABLE 195. — Stem Correction for a so-called Normal Thermometer of Jena Glass (0°-100° C).

Divided into tenth degrees; degree length about 4 mm.

	Correction to be added to the Reading $m{t}$.													
		t-t'												
n	30°	35°	40 °	45 °	50 °	55°	60°	65°	70 °	75 °	80°	85 °		
10	0.04	0.04	0.05	0.05	0.05	0.06	0.06	0.07	0.08	0.09	0.10	0.10		
20	0.12	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.22	0.23		
30	0.21	0.22	0.23	0.24	0.25	0.25	0.27	0.29	0.31	0.33	0.35	0.37		
40	0.28	0.29	0.31	0.33	0.35	0.37	0.39	0.41	0.43	0.45	0.48	0.51		
50 60	0.36	0.38	0.40	0.42	0.44	0.57	0.60	0.50	0.53	0.57	0.73	0.65		
	0.45	0.40	0.51	0.53	0.55	0.66	0.69	0.71	0.75	0.81	0.87	0.92		
70 80	_		_	_	_	-	0.76	0.81	0.87	0.93	1.00	1.06		
90	_	_	_	~	_	_	_	0.92	0.99	1.06	1.13	1.20		
100	_	-	-	-			-	_	1.10	1.18	1.26	1.34		

THERMOMETERS.

TABLE 196. - Gas and Mercury Thermometers.

If $t_{\rm fi}$, $t_{\rm N}$, $t_{\rm co2}$, $t_{\rm 16}$, $t_{\rm 59}$, $t_{\rm r}$, are temperatures measured with the hydrogen, nitrogen, carbonic acid, 16^{III}, 59^{III}, and "verre dur" (Tonnelot), respectively, then

verre dur" (Tonnelot), respectively, then
$$t_{\rm H} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[-0.61859 + 0.0047351.t - 0.000011577.t^2 \right] *$$

$$t_{\rm N} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[-0.55541 + 0.0048240.t - 0.000024807.t^2 \right] *$$

$$t_{002} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[-0.33386 + 0.0039910.t - 0.000016678.t^2 \right] *$$

$$t_{\rm H} - t_{16} = \frac{(100 - t)t}{100^2} \left[-0.67039 + 0.0047351.t - 0.000011577.t^2 \right] †$$

$$t_{\rm H} - t_{59} = \frac{(100 - t)t}{100^2} \left[-0.31089 + 0.0047351.t - 0.000011577.t^2 \right] †$$

* Chappuis; Trav. et Mém. du Bur. internat. des Poids et Mes. 6, 1888. † Thiesen, Scheel, Sell; Wiss. Abh. d. Phys. Techn. Reichanstalt, 2, 1895; Scheel; Wied. Ann. 58, 1896; D. Mech. Ztg. 1897.

TABLE 197. $t_H - t_{16}$ (Hydrogen - 16111).

	00	10	20	3°	4°	5°	6°	7°	80	9°
o°	.000°	007°	o13°	019°	025°	031°	036°	0420	047°	051°
10	056	061	065	069	073	077	—.oŠo	084	087	090
20	093	096	098	101	103	105	107	109	110	112
30	113	114	115	116	117	118	119	119	119	120
40	120	120		-,120	- .119	119	118	118	117	116
50	116	115	114	113		110		107		
60	103		099		096	094	092	090	087	085
70	- .083	081			074			066	064	061
80	058	056	053	050	048	045	042	039	036	033
90	030	027	024	021	018	015	012	009	006	003
100	.000									
						j				

TABLE 198. tH - t59 (Hydrogen - 59111).

	00	10	2 ^O	3°	4°	50	60	70	s° '	90
20 30 40 50 60 80	.000°024035038034026016008001 +.002	co3°o25o36o37o33o25o15o07o01 +.o02	006°027036037032024015006 .000 +.002	009°028037037032023014005000	030 037 037 031 022 013	014°031037036030021001 +.001 +.002	016° 032 038 036 029 020 011 003 +.001 +.001	018°033038035028019010003 +.002 +.001	020°034038035028018009002 +.002	022°035038027007008001 +.002

TABLE 199. (Hydrogen - 16111), (Hydrogen - 59111).

	-5°	-100	— ₁₅ °	— ₂₀ 0	-25°	-30°	-35°
$t_{\rm H} - t_{16} \\ t_{\rm H} - t_{59}$	+0.04°	+0.08°	+0.13°	+0.19°	+0.25°	+0.32°	+0.40°
	+0.02°	+0.04°	+0.07°	+0.10°	+0.14°	+0.18°	+0.23°

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

AIR AND MERCURY THERMOMETERS.

TABLE 200. $t_{AIR} - t_{16}$. (Air - 16¹¹¹.)

°C.	00	10	20	3°	4°	5°	6°	7°	80	90
0 10 20 30 40 50 60 70 80	.000049083103110107096078054028	006 053 086 104 110 107 095 076 052 025	012 057 089 105 111 106 093 074 049 023	017 061 091 106 111 105 092 072 047 020	022 065 093 107 110 104 090 070 044 017	027 068 095 108 110 103 088 067 041	032 071 097 109 110 102 086 065 039	037 074 099 110 101 084 062 036 009	04I 077 101 110 109 100 082 060 034 006	045 080 102 110 108 098 057 031 003
100 110 120 130 140 150 160 170 180	.000 +.028 +.053 +.074 +.090 +.098 +.097 +.084 +.059 +.019	+.003 +.030 +.055 +.076 +.091 +.098 +.096 +.055 +.014	+.006 +.033 +.057 +.078 +.092 +.095 +.080 +.052 +.009	+.008 +.035 +.060 +.080 +.093 +.094 +.078 +.048 +.004	+.011 +.038 +.062 +.081 +.094 +.099 +.093 +.076 +.045 001	+.014 +.041 +.064 +.083 +.095 +.099 +.092 +.073 +.041 007	+.017 +.043 +.066 +.084 +.096 +.098 +.090 +.071 +.037 013	+.019 +.046 +.068 +.086 +.096 +.098 +.068 +.068 +.033 019	+.022 +.048 +.070 +.087 +.097 +.098 +.088 +.065 +.028	+.025 +.050 +.072 +.089 +.097 +.097 +.086 +.062 +.023 031
200 210 220 230 240 250 260 270 280 290 300	038 113 208 325 466 632 825 -1.048 -1.301 -1.588 -1.908	045 122 219 338 481 650 846 -1.072 -1.328 -1.618	051130230351497668867 -1.096 -1.356 -1.649	058139241365513687889 -1.121 -1.384 -1.680	066148252378529706911 -1.146 -1.412 -1.711	073 158 264 392 546 725 933 1.171 1.440 1.743	080 168 275 407 562 745 955 -1.196 -1.469 -1.776	088177287287765765978 -1.2221.4981.808	096187300436597785 -1.001 -1.248 -1.528 -1.841	105 198 312 450 614 805 -1.025 -1.274 -1.558 -1.874

Note: See Circular 8, Bureau of Standards relative to use of thermometers and the various precautions and corrections.

TABLE 201. tAIR - t59. (Air - 59111.)

°C.	00	10	20	30	4°	5°	60	7°	80	9°
100 110 120 130 140 150 160 170 180 190	.000 .000 002 004 008 013 019 028 039 052	.000 .000 002 004 008 013 020 029 040	.000 .000 002 005 009 014 021 030 041 055	.000 001 002 005 009 015 021 031 043 056	.000 001 002 006 010 016 022 032 044 057	.000 001 003 006 016 023 033 045 059	.000 001 003 006 011 016 024 034 046 060	.000 001 003 007 011 017 025 035 048 062	.000 002 004 007 012 018 026 037 049 064	.000 002 004 008 012 019 027 038 051 066

GAS, MERCURY, ALCOHOL, TOLUOL, PETROLETHER, PENTANE, THERMOMETERS.

TABLE 202. — t^{H} — t_{M} (Hydrogen-Mercury).

Temper- ature, C.	Thuringer Glass.*	Verre dur. Tonnelot.†	Resistance Glass.*	English Crystal Glass:*	Choisy-le- Roi.*	122 ^{III} .*	Nitrogen Thermometer. T _H —T _N .†	CO ₂ Thermometer. T _H —T _{CO₂} .†
0	0	0	0	0	0	С	0	0
0	.000	.000	.000	.000	.000	.000	.000	.000
10	075	052	066	008	007	005	006	—.025
20	125	—.oŠ5	108	001	004	006	010	043
30	156	102	131	十.017	+.004	002	—.01 I	054
40	— .168	107	140	+.037	十.014	+.001	110.—	059
50	— .166	103	135	十.057	+.025	+.004	009	059
60	150	090	119	+.073	+.033	+.008	005	053
70	 .124	072	095	十.079	+.037	+.009	100.—	044
80	088	050	068	+.070	+.032	+.007	+.002	031
90	047	026	034	+.046	+.022	+.006	+.003	016
100	.000	.000	,000	.000	.000	.000	.000	.000

^{*} Schlösser, Zt. Instrkde. 21, 1901.

TABLE 203. - Comparison of Air and High Temperature Mercury Thermometers,

Comparison of the air thermometer with the high temperature mercury thermometer, filled under pressure and made of $59^{\rm HI}$ glass.

Air.	59 ^{III} .	Air.	59 ^{III} .
0	,	0	0
0	0.	375	385.4
100	100.	400	412.3
200	200.4	425	440.7
300	304.1	450	469.1
325	330.9	47.5	498.0
350	358.1	500	527.8

Mahlke, Wied. Ann. 1894.

TABLE 204. - Comparison of Hydrogen and Other Thermometers.

Comparison of the hydrogen thermometer with the toluol, alcohol, petrolether, and pentane thermometers (verre dur).

Hydrogen.	Toluol.*	Alcohol I.*	Alcohol II.*	Petrolether.†	Pentane.‡
0 -10 -20 -30 -40 -50 -60 -70 -100 -150 -200	0.00 -8.54 -16.90 -25.10 -33.15 -41.08 -48.90 -56.63	0.00 -9.31 -18.45 -27.44 -36.30 -45.05 -53.71 -62.31	0.00 -9.44 -18.71 -27.84 -36.84 -45.74 -54.55 -63.31		0.00 -9.03 -17.87 -26.55 -35.04 -43.36 -51.50 -59.46 -82.28 -116.87 -146.84

^{*} Chappuis, Arch. sc. phys. (3) 18, 1892. † Holborn, Ann. d. Phys. (4) 6, 1901. ‡ Rothe, unpublished.

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemisohe Tabellen.

[†] Chappuis, Trav. et mém. du Bur. Intern. des Poids et Mes. 6, 1888.

TABLE 205 .- Platinum Resistance Thermometers.

Callendar has shown that if we define the platinum temperature, pt, by pt = 100 { $(R-R_0)/(R_{100}-R_0)$ }, where R is the observed resistance at t° C., R_0 that at O°, R_{100} at 100°, then the relation between the platinum temperature and the temperature t on the scale of the gas thermometer is represented by t - pt = δ { t/100-t }/t/100 where δ is a constant for any given sample of platinum and about 1.50 for pure platinum (impure platinum having higher values). This holds good between -23° and 450° when δ has been determined by the boiling point of sulphur (445°.) See Waidner and Burgess, Bul. Bureau Standards, 6, p. 149, 1909. Also Bureau reprints 124. 143 and 149.

TABLE 206.—Thermodynamic Temperature of the Ice Point, and Reduction to Thermodynamic Scale.

Mean = 273.13° C. (ice point).

For a discussion of the various values and for the corrections of the various gas thermometers to the thermodynamic scale see Buckingham, Bull. Bureau Standards, 3, p. 237, 1907.

Scale Corrections for Gas Thermometers,

Temp.	Constan	t pressure =	= 76 cm.	Constant vol	ume ⊕o:	= 273.10 C.
C.	He	н	N	He	Н	N
-250° -200 -100 - 50 + 25 + 50 + 75 +150 +200 +450 +1500	+0.10 + .03 + .009 002 002 005 + .01 + .07	+0.26 +0.03 +0.004 002 003 002 + .003 + .01 + .04 + .01	+0.33 + .09 013 017 012 + .04 + .10 + .50 + 1.7 + 3.0	.000 -	.004	

See Burgess, The Present Status of the Temperature Scale, Chemical News, 107, p. 169, 1913.

TABLE 207 .- Standard Points for the Calibration of Thermometers.

Substance.	Point.	Atmos-	Crucible.	Temper	ratures.
Substance.	roint.	phere.	Crucioie.	Nitrogen Scale.	Thermodynamic.
Water Naphthalene Benzophenone Cadmium Zinc Sulphur Antimony Aluminum Silver Gold Copper Li ₂ SiO ₈ Diopside, pure Nickel Cobalt Palladium Anorthite, pure Platinum	boiling, 760 mm. """" melting or solidify. boiling, 760 mm. melting or solidify. solidification melting or solidify. """ melting melting melting melting melting melting melting melting melting """ """ """ """ """ """ """ """ """ "	ec ec air	graphite graphite graphite " " platinum magnesia and Mg. aluminate magnesia platinum	°C. 100.00 218.0 305.85 ± 0.1 320.8 ± 0.2 419.3 ± 0.3 444.45 ± 0.1 629.8 ± 0.5 658.5 ± 0.6 960.0 ± 0.7 1062.4 ± 0.8 1201.0 ± 1.0 1391.2 ± 1.5 1452.3 ± 2.0 1489.8 ± 2.0 1549.2 ± 2.0 1549.5 ± 5.* 1755. ± 5.†	°C. 100.00 218.0 305.9 320.9 419.4 444.55 630.0 658.7

* Thermoelectric extrapolation. † Optical extrapolation.

(Day and Sosman, Journal de Physique, 1912. Mesure des témperatures élevées.) A few additional points are: H, boils — 252,7°; O, boils — 182,9°; CO, sublimes — 78.5°; Hg. freezes — 37.7°; Alumina melts 2000°; Tungsten melts 3400°.

TABLE 208. - Standard Calibration Curve for Pt. - Pt. Rh. (10% Rh.) Thermo-Element.

Giving the temperature for every 100 microvolts. For use in conjunction with a deviation curve determined by calibration of the particular element at some of the following fixed points:

Water	boiling-pt.	100.0	643my.	Silver	melting-pt.	960.2	9111mv.
Napthalene	44 66	217.95	1585	Gold	66 66	1062.6	10296
Tin	melting-pt.	231.9	1706	Copper	-66 - 66	1082.8	10534
Benzophenone	boiling-pt.			Li.SiO.	- 66 66	1201.	11941
		305.9	2365		46 66		14230
Cadmium	melting-pt.	320.9	2503	Diopside	46 66	1391.5	
Zinc	.66 66	419.4	3430	Nickel	46 **	1452.6	14973
Sulphur	boiling-pt.	444.55	.3672				
Antimony	melting-pt.	600.0		Palladium	66 66	1549.5	16144
	mercing-pe.	630.0	5530		66 66		18608
Aluminum		658.7	5827	Platinum		1755-	10000

E micro- volts.	0	1000.	2000.	3000.	4000. Cemperat	5000. URES, °	6000. C.	7000.	8000.	9000.	E micro- volts.
0. 100. 200. 300. 400. 500. 600. 700. 800. 900.	0.0 17.8 34.5 50.3 65.4 80.0 94.1 107.8 121.2 134.3	147.1 159.7 172.1 184.3 196.3 208.1 219.7 231.2 242.7 254.1 265.4	265.4 276.6 287.7 298.7 309.7 320.6 331.5 342.3 353.0 363.7 374.3	374-3 384-9 395-4 405-9 416-3 426-7 437-1 447-4 457-7 467-9 478-1	478.1 488.3 498.4 508.5 518.6 528.6 538.6 558.6 558.5 568.4 578.3	578.3 588.1 597.9 607.7 617.4 627.1 636.8 646.5 656.1 665.7 675.3	675.3 684.8 694.3 703.8 713.3 722.7 732.1 741.5 750.9 760.2 769.5	769.5 778.8 788.0 797.2 806.4 815.6 824.7 833.8 842.9 852.0 861.1	861.1 870.1 879.1 888.1 897.1 906.1 915.0 923.9 932.8 941.6	950.4 959.2 968.0 976.7 985.4 994.1 1002.8 1011.5 1020.1 1028.7	0. 100. 200. 300. 400. 500. 600. 700. 800. 900.
E micro- volts.	10000,	11000.	12000	1 -0	TEMPERA	1	15000. C.	16000.	17000.	18000.	E micro- volts.
0. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.	1037.3 1045.9 1054.4 1062.9 1071.4 1079.9 1088.4 1096.9 1105.4 1113.8	1122.2 1130.6 1139.0 1147.4 1155.8 1164.2 1172.5 1180.9 1189.2 1197.6	1214. 1222. 1230. 1239. 1247. 1255. 1264. 1272.	2 129 6 130 9 131 3 132 6 133 9 133 3 134 6 135 0 136	7.7 13 6.0 13 4.3 13 2.6 14 0.9 14 9.2 14 7.5 14 5.8 14 4.1 14	80.7 89.0 97.3 05.6 13.8 22,0 30.2 38.4 46.6	1454.8 1463.0 1471.2 1479.4 1487.7 1496.0 1504.3 1512.6 1520.9 1529.2 1537.5	1537.5 1545.8 1554.1 1502.4 1570.8 1579.1 1587.5 1595.8 1604.2 1612.5 1620.9	1620.9 1629.2 1637.6 1645.9 1654.3 1662.6 1670.9 1679.3 1687.6 1696.0 1704.3	1704.3 1712.6 1721.0 1729.3 1737.7 1746.0 1754.3	0. 100. 200. 300. 400. 500. 600. 700. 800. 900.

TABLE 209 .- Standard Calibration Curve for Copper -- Constantan Thermo-Element.

For use in conjunction with a deviation curve determined by the calibration of the particular element at some of the

Water, boiling-point, 100°, 4276 microvolts; Napthalene, boiling-point, 217.95, 10248 mv.; Tin, melting-point, 231.9, 11009 mv.; Benzophenone, boiling-point, 305.9, 15203 mv.; Cadmium, melting-point, 320.9, 16083 mv.

E. micro-volts.	0	1000.	2000.	3000.	4000	ERATURES,	6000.	7000.	8000.	9000.	E micro-volts.
0. 100. 200. 300. 400. 500. 600. 700. 800. 900.	0.00 2.60 5.17 7.73 10.28 12.81 15.33 17.83 20.32 22.80 25.27	25.27 27.72 30.15 32.57 34.98 37.38 39.77 42.15 44.51 46.86 49.20	49.20 51.53 53.85 56.16 58.46 60.76 63.04 65.31 67.58 69.83 72.08	72.08 74.31 76.54 78.76 80.97 83.17 85.37 87.56 89.74 91.91	94.0° 96.2° 98.3° 100.5° 102.6° 104.7° 106.9° 109.0° 111.1 113.2 115.3	3 117.40 3 119.48 2 121.56 5 123.63 1 125.69 1 127.75 2 129.80 2 131.84 2 133.88	135.91 137.94 139.96 141.98 143.99 146.00 148.00 150.00 151.99 153.97 155.95	155.95 157.92 159.89 161.86 163.82 165.78 167.73 169.68 171.62 173.56 175.50	175.50 177.43 179.36 181.28 183.20 185.11 187.02 188.93 190.83 192.73 194.62	194.62 196.51 198.40 200.28 202.16 204.04 205.91 207.78 209.64 211.50 213.36	0. 100. 200. 300. 400. 500. 000. 700. 800. 900.
E micro- volts.	10000.	11000	. 120	000.	13000. Темі	14000. PERATURES,	15000.	16000.	17000.	18000.	E micro- volts.
0. 100. 200. 300. 400. 500. 600. 700. 800. 900.	213.36 215.21 217.06 218.91 220.75 222.59 224.43 226.26 228.09 229.92 231.74	242.6 244.4 246.2 248.0	16 25 88 25 20 25 21 25 22 25 23 26 23 26 23 26 23 26	1.61 3.40 5.18 6.96 8.74 0.52 2.29 4.06	267.60 269.36 271.12 272.88 274.64 276.40 278.15 270.00 281.05 283.30 285.13	285.13 286.87 288.61 290.35 292.08 293.81 295.54 297.26 298.98 300.70 302.42	302.42 304.14 305.85 307.56 309.27 310.98 312.69 314.39 316.09 317.79 319.49	319.49 321.19 322.88 324.57 326.26 327.95 329.64 331.32 333.00 334.68 336.36	336.36 338.04 339.72 341.40 343.07 344.74 346.41 348.08 349.75 351.42 353.09	353.09	0. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000

MECHANICAL EQUIVALENT OF HEAT.

TABLE 210 .- Summary of Older Work,

Taken from J. S. Ames, L'équivalent mécanique de la chaleur, Rapports présentés au congrès international du physique, Paris, 1900. ... Reduced to Gram-calorie at 20° C. (Nitrogen thermometer).

Joule	4.169 × 10 ⁷ ergs. 4.181 " " 4.192 " " 4.189 " " 4.186 " "	* 4.169 × 10 ⁷ ergs, 4.181 "" 4.184 "" 4.181 "" 4.178 ""
-------	---	---

* Admitting an error of 1 part per 1000 in the electrical scale. The mean of the last four then gives

1 gram (20° C) calorie = 4.181×10^7 ergs. See next table.

1 gram (15° C.) calorie = 4.185 × 107 ergs assuming sp. ht. of water at 20° = 0.9990.

TABLE 211.—(1915.) Best Value, Electrical and Mechanical Equivalents of Heat.

Since the preparation of Dr. Ames' Paris report, considerable work has been done on the mechanical equivalent of heat, including recomputations from the older measurements using better values for some of the electrical relations, etc. Taking all the available material into account the U.S. Bureau of Standards has adopted, provisionally, the relation

1 (20° C.) gram-calorie = 4.183 international electric joules.

No exact comparison between the results of electrical equivalent and mechanical equivalent of heat measurements can be made without exact knowledge of the relations between the international and absolute electrical units. A recent absolute measurement of absolute resistance by F. E. Smith of the National Physical Laboratory of England indicates a difference of one part in 2000 between the international and absolute ohms. Pending the general acceptance of some definite figure for this relation it is useless to fix upon a single value to use for "J" better than about one part in a thousand. The value

4.183 international joules = probably 4.184 mechanical joules.

This value is made the basis of the following table.

TABLE 212 .- Conversion Factors for Units of Work.

	Joules.	Foot-pounds.	Kilogram- meters.	20 ⁰ Calories.	British ther- mal units.	Kilowatt-hours.
I Joule = I Foot-pound . = I Kilogram-meter = I 20° Calorie = I British thermal unit = I Kilowatt-hour . =		0.7376† I 7.233 3.086† 778.3† 2 655 000.†		252.2	0.001285*	0.2778×10 ⁻⁶ 0.3766×10 ⁻⁶ * 2.724×10 ⁻⁶ * 1.162×10 ⁻⁶ 0.0002931

The value used for g is the standard value, 980.665 cm. per sec. per sec. = 32.174 feet per sec. per sec. *The values thus marked vary directly with "g." +The values thus marked vary inversely with "g." For values of "g" see Tables 565-567.

TABLE 213.—Value of the English and American Horsepower (746 watts) in Local Foot-pounds and Kilogram-meters per Second at Various Altitudes and Latitudes.

	K	ilogram-	meters p	er second		Foot-pounds per second. Latitude.				
Altitude,			Latitude.							
	o°	30°	45°	60°	90°	o°	30°	45°	60°.	90°
o km.	76.275 76.297 76.320	76.175 76.197 76.220	76.074 76.095 76.119	75.973 75.995 76.018	75.873 75.895 75.918	551.70 551.86 552.03	550.97 551.13 551.30	550.24 550.41 550.57	549.52 549.68 549.85	548.79 548.95 549.12

TABLE 214. MELTING POINTS OF THE CHEMICAL ELEMENTS.

The metals in heavier type are often used as standards.

The metals in neavier type are often used as standards.

The melting points are reduced as far as possible to a common (thermodynamic) temperature scale. This scale is defined in terms of Wien's law, with C₂ taken as 14,350, and on which the melting point of platinum is 1755° C (Nernst and Wartenburg, 1751; Waidner and Burgess, 1753; Day and Sosman, 1755; Holborn and Valentiner, 1770; see C. R. 148, p. 1177, 1909). Above 1100° C, the temperatures are expressed to the nearest 5° C. Temperatures above the platinum point may be uncertain by over 50° C.

		icertain by over 50			
Element.	Melting point.	Remarks.	Element.	Melting point.	Remarks.
Aluminum.	658.7	Most samples	Manganese	1230	Burgess-Waltenberg.
	-37	give 657 or less	Mercury	-38.87	
		(Burgess).	Molybdenum		Mendenhall-Forsythe
Antimony .	630.0		Neodymium.	840?	(Muthmann-Weiss.)
A	-00	D	Neon	-253?	Don Common Dun
Argon Arsenic	-188 850	Ramsay-Travers.	Nickel	1452	Day, Sosman, Burgess, Waltenberg.
Barium	850	(Guntz.)	Niobium	1700?	gess, waitenberg.
Beryllium	1280	(- 41141)	Nitrogen	-211	(Fischer-Alt.)
Bismuth	271	Adjusted.	Osmium	About 2700	(Waidner-Burgess,
n					unpublished.)
Boron Bromine			Palladium	-218 1549 ± 5	(Waidner-Burgess,
Cadmium.		Range: 320.7-	Fanadium.	1549 = 5	Nernst-Wartenburg,
	34419	320.0			Day and Sosman.)
Cæsium	26	Range: 26.37-			
Calainn	0	25.3	Phosphorus	44.2	Con Note
Calcium Carbon	810 (>3500)	Adjusted. Sublimes.	Platinum Potassium	1755 ± 5 62.3	See Note.
Cerium	640	Sublines.	Præsodymium		(Muthmann-Weiss.)
Chlorine		(Olszewski.)	Radium	700	
			Rhodium	1950	(Mendenhall-Inger-
Chromium.	1615	Burgess-Walten-	D. 1: 1:	- 0	soll.)
Cobalt	1480	berg. Burgess-Walten-	Rubidium Ruthenium	38 2450?	
Cobaic	1400	berg.	Samarium	1300-1400	(Muthmann-Weiss.)
			Scandium	?	
Copper	1083 ± 3	Mean, Holborn-	Selenium	217-220	4 10 . 1
		Day, Day-	Silicon	1420	Adjusted. Adjusted.
Erbium		Clement.	Silver Sodium	960.5 97.5	Aujusteu.
Fluorine	-223	(Moissan-Dew-	Strontium	97.5	Between Ca and Ba?
		ar.)			Various Forms. See
			Sulphur	Sii 119.2	Landolt-Börnstein.
Gallium	30.1			S_{iii} 106.8	
Germanium			Tantalum	2000	Adjusted from Waid-
Gold	1063.0	Adjusted.			ner-Burgess = 2910.
Helium	<-271		(T) 11 ·		A 11 1
Hydrogen	-259	(Thiel.)	Tellurium	452	Adjusted.
Iodine	155	Range: 112-115.	Thorium	302 >1700	v. Wartenburg.
	0.0			<mo< td=""><td></td></mo<>	
Iridium	2350?		Tin		
Iron	THOS	Daymanaa XX7-14	Titanium	1795	Burgess-Waltenberg.
Iron	1530	Burgess-Walten-berg.	Tungsten	3400	Adjusted.
Krypton	-169	(Ramsay.)			
Lanthanum		(Muthmann-	Uranium	<1850	Moissan.
Load		Weiss.)	Vanadium	1720	Burgess-Waltenberg.
Lead	327 ± 0.5		Xenon Ytterbium	-140	Ramsay.
			Yttrium	1400	
Lithium	186	(Kahlbaum.)	Zinc	419.4	
Magnesium	651	(Grube) in clay	Zirconium	1700?	Troost.
		crucibles, 635.			

BOILING-POINTS OF THE CHEMICAL ELEMENTS.

		Boiling-	
Element.	Range.	point.	Observer; Remarks.
		°C	
	0	1	
	Ů		
Aluminum	-	1800.	Greenwood, Ch. News, 100, 1909.
Antimony		1440.	1, 11 11 11
Argon	-	—186. I	Ramsay-Travers, Z. Phys. Ch. 38, 1901.
Arsenic	449-450	-	Gray, sublimes, Conechy.
		>360.	Black, sublimes, Engel, C. R. 96. 1883.
	280-310	-	Yellow, sublimes.
Barium			Boils in vacuo, Guntz, 1903.
Bismuth	1420-1435	1430.	Barus, 1894; Greenwood, I. c.
Boron		_	Volatilizes without melting in electric arc.
Bromine	59-63	61.1	Thorpe, 1880; van der Plaats, 1886.
Cadmium	_	778.	Berthelot, 1902.
Cæsium	••	670.	Ruff-Johannsen.
Carbon		3600.	Conputed, Violle, C. R. 120, 1895.
,	_	_	Volatilizes without melting in electric oven.
Chlorine		- 22 6	Moisson.
Chromium		-33.6	Regnault, 1863.
Copper .	2700-2270	2200.	Greenwood, Ch. News, 100, 1909.
Fluorine	2100-2310	2310. —187.	
Helium		—267.	Moisson-Dewar, C. R. 136, 1903. Computed, Tracers Ch. News, 86, 1902.
Hydrogen	-252.5-252.8		Mean.
lodine	-252.5 252.0	$>_{200}$.	wiedii.
Iron	_	2450.	Greenwood, 1, c.
Krypton	_	·—I5I.7	Ramsay, Ch. News, 87, 1903.
Lead	-	1525.	Greenwood, 1. c.
Lithium	_	1400.	Ruff-Johannsen, Ch. Ber. 38, 1905.
Magnesium		1120.	Greenwood, 1 c.
Manganese	_	1900.	66 66
Mercury	_	357 -	Crafts; Regnault.
Molybdenum		3620.	Langmuir, Mackay, Phys. Rev. 1914.
Neon	- 1	-239 .	Dewar, 1901.
Nitrogen	-195. 7 -194.4	— 1 95.	Mean.
Oxygen	-182.5 - 182.9	-182.7	66
Ozone	-	-119.	Troost. C. R. 126, 1898.
Phosphorus	287-290	288.	- 125 1 5
Platinum	-	3910.	Langmuir, Mackay, Phys. Rev. 1914.
Potassium	667-757	712.	Perman; Ruff-Johannsen.
Rubidium		696.	Ruff-Johannsen.
Selenium	664-694	690.	6 11
Silver	-	1955.	Greenwood, I. c,
Sodium	742-757	750.	Perman; Ruff-Johannsen.
Sulphur	444.7-445	444.7	Mean.
Tellurium	_	1390.	Deville-Troost, C. R. 91, 1880.
Thallium		1280.	v. Wartenberg, 25 Anorg. Ch. 56, 1908.
Tin	page .	2270.	Greenwood, l. c. Langmuir. Phys. Rev. 1913
Tungsten	. —	5830.	Ramsay, Z. Phys, Ch. 44, 1903.
Xenon	016.040	-109.1	Kamsay, Z. 1 mys, Ch. 44, 1903.
Zinc	916-942	930.	

TABLES 216-218. TABLE 216. - Effect of Pressure on Melting Point.

Substance.	Melting point at 1 kg/sq. cm	Highest experimental pressure: kg/sq. cm	$\frac{dt/dp}{\text{at i kg/sq. cm.}}$	Δt (observed) for rooo kg/sq. cm	Reference
Hg. K. Na. Bi. Sn. Bi. Cd. Pb.	-38.85 59.7 97.62 271.0 231.9 270.9 320.9 327.4	12,000 2,800 12,000 12,000 2,000 2,000 2,000 2,000	0.00511 0.0136 0.00860 -0.00342 0.00317 -0.00344 0.00609 0.00777	5.1* 13.8 +12.3† -3.5† 3.17 -3.44 6.09 7.77	1 2 4 4 3 3 3 3 3 3 3 3

* Δt (observed) for 10,000 kg/sq. cm is 50.8°. † Na melts at 177.5° at 12,000 kg/cm²; K at 179.6°; Bi at 218.3°; Pb at 644°. Luckey obtains melting point for tungsten as follows: 1 atme, 3623° K; 8, 3594; 18, 3572; 28, 3564. Phys. Rev. 1017.

Phys. Rev. 1917.
References: (1) P. W. Bridgman, Proc. Am. Acad. 47, pp. 391–96, 416–19, 1911; (2) G. Tammann, Kristallisieren und Schmelzen, Leipzig, 1903, pp. 98–99; (3) J. Johnston and L. H. Adams, Am. J. Sci. 31, p. 516, 1911; (4) P. W. Bridgman, Phys. Rev. 6, 1, 1915.
A large number of organic substances, selected on account of their low melting points, have also been investigated: by Tammann, loc. cit.; G. A. Hulett, Z. physik. Chem. 28, p. 629, 1899; F. Körber, ibid., 82, p. 45, 1913; E. A. Block, ibid., 82, p. 403, 1913; Bridgman, Phys. Rev. 3, 126, 1914; Pr. Am. Acad. 51, 55, 1915; 51, 581, 1916; 52, 57, 1916; 52, 91, 1916. The results for water are given in the following table.

TABLE 217. — Effect of Pressure on the Freezing Point of Water (Bridgman*).

Pressure: † kg/sq. cm	Freezing point.	Phases in Equilibrium.
1	0.0	Ice I — liquid.
1,000	-8.8	Ice I — liquid.
2,000	-20.15	Ice I — liquid.
2,115	-22.0	Ice I — ice III — liquid (triple point).
3,000	-18.40	Ice III — liquid.
3,530	→17.0	Ice III — ice V — liquid (triple point).
4,000	-13.7	Ice V — liquid.
6,000	- 1.6	Ice V — liquid.
6,380	+ 0.16	Ice V — ice VI — liquid (triple point).
8,000	12.8	Ice VI — liquid.
12,000	37.9	Ice VI — liquid.
16,000	57.2	Ice VI — liquid.
20,000	73.6	Ice VI — liquid.

* P. W. Bridgman, Proc. Am. Acad. 47, pp. 441-558, 1912. \dagger 1 atm. = 1.033 kg/sq. cm.

TABLE 218. - Effect of Pressure on Boiling Point.*

Metal.	Pressure.	° C	Metal.	Pressure.	° C	Metal.	Pressure.	° C
Bi	10.2 cm Hg.	1200	Ag	26.3 cm Hg.	1780	Pb	20.6 cm Hg.	1410
Bi	25.7 cm Hg.	1310	Cu	10.0 cm Hg.	1980	Pb	6.3 atme.	1870
Bi	6.3 atme.	1740	Cu	25.7 cm Hg.	2180	Pb	11.7 atme.	2100
Bi	11.7 atme.	1950	Sn	10.1 cm Hg.	1970	Zn	11.7 atme.	1230
Bi	16.5 atme.	2060	Sn	26.2 cm Hg.	2100	Zn	21.5 atme.	1280
Ag	10.3 cm Hg.	1660	Pb	10.5 cm Hg.	1315	Zn	53.0 atme.	1510

* Greenwood, Pr. Roy. Soc., p. 483, 1910.

Substance.	Chemical formula.	Density, about 20° C	Melting point C	Authority.	Boiling point C	Pres- sure mm	Authority.
Aluminum chloride	$\frac{\text{AlCl}_3}{\text{Al(NO}_3)_3 + 9\text{H}_2\text{O}}$		190. 72.8	I 2	183.° 134.*	752	I
" oxide	Al_2O_3	4.00	2050.	28			
Ammonia	$ m NH_3$	<u> </u>	-75.	3	-33.5	760	7
Ammonium nitrate sulphate	$NH_4NO_3 \ (NH_4)_2SO_4$	1.72	165.	_	210.*	_	-
" phosphite	$NH_4H_2PO_3$	I.77	140. 123.	4 5	150.*		
Antimony trichloride	SbCl₃	3.06	73.		223.	760	
pentachloride		2.35	3.	II	102.	68	14
Arsenic trichloride Arseniuretted hydrogen	$AsCl_3 \ AsH_3$	2,20	-18.	8	130.2	760	23
Barium chloride	BaCl ₂	3.86	-113.5 960.	II	-54.8	760	6
" nitrate	$Ba(NO_3)_2$	3.24	575-	24		_	
" perchlorate	Ba(ClO ₄) ₂	-	505.	10	-		
Bismuth trichloride Boric acid	BiCl ₃ H ₃ BO ₃	4.56	232.5	_	440.	760	_
" anhydride	B_2O_3	1.46	185.		_	_	
Borax (sodium borate)	$Na_2B_4O_7$	2.36	741.	27			
Cadmium chloride	CdCl ₂	4.05	560.	25	900 ±		9
" nitrate Calcium chloride	$\begin{bmatrix} \operatorname{Cd}(\operatorname{NO_3})_2 + 4\operatorname{H}_2\operatorname{O} \\ \operatorname{CaCl_2} \end{bmatrix}$	2.45	59.5	2	132.	760	4
" chloride	$CaCl_2 + 6H_2O$	2.26 1.68	774.0	_			
" nitrate	$Ca(NO_3)_2$	2.36	499.	24	_		_
" nitrate	$Ca(NO_3)_2 + 4H_2O$	1.82	42.3	26	132.*	—	
oxide	CaO	3.3	2570.	28			
Carbon tetrachloride	CCl ₄ C ₂ Cl ₆	1.59	-24. 184.	22	76.7	760	23
" monoxide	CO		-207.	6	-100.	760	6
" dioxide	CO ₂	1.56	-57.	3	-8o.	subl.	
" disulphide	CS ₂	1.26	-110.	13	46.2	760	
Chloric acid	$\mathrm{HClO_4} + \mathrm{H_2O} $ $\mathrm{ClO_2}$	1.81	50. - 76.	3	9.9	73 I	21
Chrome alum	$KCr(SO_4)_2 + 12H_2O$	1.83	89.	16		751	_
" nitrate	$Cr_2(NO_3)_6 + 18H_2O$	_	37.	2	170.	760	2
Chromium oxide	Cr_2O_3 $CoSO_4$	5.04	1990.	28	*	_	- 1
Cobalt sulphate Cupric chloride	CuCl ₂	3.53	97. 498.	16	880.*		
Cuprous chloride	Cu_2Cl_2	3.7	421.		1000 ±	760	9
Cupric nitrate		2.05	114.5	2	170.*	760	2
Hydrobromic acid	HBr	_	-86.7	3	-68.7	760	
Hydrochloric acid Hydrofluoric acid	HCl HFl	0.99	-III.3 -92.3	17	-83.1 -36.7	755 755	17
Hydriodic acid		_	-51.3	17	-35.7	760	
Hydrogen peroxide	$\mathrm{H_{2}O_{2}}$	1.5	-2.	18	80.2	47	20
" phosphide	PH ₃		-132.5	6	60		
sulphide	$egin{array}{c} H_2S \ FeCl_3 \end{array}$	2.80	-86. 301.	3	-62.		
" nitrate	$Fe(NO_3)_3 + 9H_2O$	1.68	47.2	2			
" sulphate	$FeSO_4 + 7H_2O$	1.90	64.	16	_	_	
Lead chloride	PbCl ₂	5.8	500.	9	900 ±	760	
" metaphosphate Magnesium chloride	$egin{array}{c} \operatorname{Pb}(\mathrm{PO_3})_2 \ \operatorname{MgCl_2} \end{array}$	2.18	800. 708.	9	_		
" oxide	MgO	3.4	2800.	28		_	_
" nitrate	$Mg(NO_3)_2 + 6H_2O$	1.46	90.	2	143.	760	2
" sulphate	$MgSO_4 + 5H_2O$	1.68	150.	16			
Manganese chloride	$MnCl_2 + 4H_2O$ $Mn(NO_3)_2 + 6H_2O$	1.82	87.5 26.	19	106. 129.	760 760	19
" sulphate	$MnSO_4 + 5H_2O$	2.09	54.	16			
Mercurous chloride	$\mathrm{Hg_2Cl_2}$	7.10	450 ±		_		-
Mercuric chloride	$HgCl_2$	5.42	282.		305.	—	

⁽¹⁾ Friedel and Crafts; (2) Ordway; (3) Faraday; (4) Marchand; (5) Amat; (6) Olszweski; (7) Gibbs; (8) Baskerville; (9) Carnelly; (10) Carnelly and O'Shea; (11) Ruff; (13) Wroblewski and Olszewski; (14) Anschütz; (15) Roscoe; (16) Tilden; (17) Ladenburg; (18) Staedel; (19) Clarke, Const. of Nature; (20) Bruhl; (21) Schacherl; (22) Tammann; (23) Thorpe; (24) Ramsay; (25) Lorenz; (26) Morgan; (27) Day; (28) Kanolt.

Nickel carbonyl	DENSITIES AND MEL	THE ARD BOILING	101111	0 07 1170	-			
" nitrate	Substance.	Chemical formula.	Density, about 20° C	point	Authority.	point	sure	Authority.
" nitrate	Niekel carbonyl	NiC O	T 22	-25	т	12 0	760	
" oxide NiO NiO 1.98 99. 3 —								2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				50.7	2	130./	700	
Nitric acid HNO3	Oxide				2			
" anhydride N₂06 1.64 30. 5 48. 760 9 " oxide* N₂04 1.49 −9.6 8 21.6 760 − Nitrous anhydride N₂04 1.49 −9.6 8 21.6 760 − " oxide N₂04 1.45 −111. 7 3.5 760 − " hyposphorus acid H₂PO4 1.88 40 ± −<	suipnate					86		16
" oxide* NO 1.27 −167. −153. 760 6 Nitrous anhydride NyO3 1.49 −102.4 8 21.6 760 6 Phosphoric acid (ortho). H₃PO3 1.45 −111. 7 3.5 760 8 Phosphorous acid. H₃PO3 1.65 72. −								
Oxfordic N2O4 1.49 -9.6 8 21.6 700 - Nitrous anhydride N2O3 1.45 -1111 7 3.5 700 - Nitrous anhydride N2O3 1.45 -1111 7 3.5 700 8 700 8 700 7								
Nitrous annyldride: "oxide: "NgO	oxide "		,					0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	peroxide			-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					7			_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	oxide				8	-89.8	700	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Phosphoric acid (ortho).	H_3PO_4				_		
	Phosphorous acid					_		
					10			
## pentasulphide #Ps5s			1.68					
Sesquisulphide	disdipinde			297.	I 2			
Sesquisiphide	pentasuipnide				13			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	sesquisuipnide		2.00	168.	—	400.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	trisuipinde		_	290 ±	14	490.	760	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.29	909.		_		
	chiorate	KClO ₃	2.34	357.	15	_	_	
	chromate	K_2CrO_4	2.72		17	_	_	- 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	" cvanide	KCN		red h't		_	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	" perchlorate			610.	15	410.†	760	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	" chloride	KCl		772.			760	
"acid phosphate KH ₂ PÔ ₄ 2.34 96. 3 dec. — — Silver chloride. AgCl 5.56 451. 15 — — — "nitrate. AgNO ₃ 4.35 218. — dec. — — "phosphate. AgPO ₃ — 486. 18 — — — "metaphosphate. AgPO ₃ — 482. 15 — — — "sulphate. Ag2SO ₄ 5.45 655 ± 1085.† — — — "sulphate. NaClO ₃ 2.48 28 1 — — — "ohlorate. NaNO ₃ 2.26 315. — — — — "carbonate. NaClO ₃ 2.48 248. 28 † — — "carbonate. Na ₂ CO ₃ + 10H ₂ O 1.46 34. 3 — — "pytophosphate. Na ₂ PO ₃ + 10H ₂ O 1.54 38. — — — "sulphate. Na ₂ So ₄ + 11 <td< td=""><td>" nitrate</td><td>KNO_3</td><td></td><td></td><td>_</td><td></td><td></td><td>- !</td></td<>	" nitrate	KNO_3			_			- !
"acid sulphate. KHSO4 2.35 205. dec. — — "intrate. AgCO 5.56 451. 15 — — — "perchlorate. AgCO4 — 486. 18 — — — "phosphate. AgPO3 — 482. 15 — — — "metaphosphate. AgPO3 — 482. 15 — — — "sulphate. Ag2SO4 5.45 655 ± — 1085. — — Sodium chloride. NaCI 2.17 800. 11 1490. 700 — "hydroxide. NaCI 2.17 800. 11 1490. 700 — "hydroxide. NaCI 2.17 800. 11 1490. 700 — "hydroxide. NaCIO3 2.48 248. 28 † — — — — — — — — —<	" acid phosphate				3		-	- 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	" acid sulphate					dec.	I —	
	Silver chloride					`—	-	_
" perchlorate AgClO4 — 486 18 — <td>" nitrate</td> <td></td> <td></td> <td></td> <td></td> <td>dec.</td> <td></td> <td>-</td>	" nitrate					dec.		-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	" perchlorate		_		18			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			6.37					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5.45			1085. †		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1		760	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	" hydroxide.				1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	" nitrate			_		280 t	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 -					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.40			1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2 48			÷	. —	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					2			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Na ₂ HPO ₄ + r ₂ H O						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	" phoenhite	(H.N.2PO.) H O						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	" sulphate	No.50	1 .					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	suipilate	No S O "HO				+		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nyposuipinte		1.73				m/-	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 0 -					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sulphuric acid	11 ₂ SU ₄	1.83			338.	700	22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	acid	$12H_25U_4 + H_2U$			2.2			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_			,	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	acid (pyro)		1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
			-	1	24			
" nitrate			1			710.	760	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	chloride	$ZnCl_2 + 3H_2O$	[6.5	26	_		
	mtrate	$Zn(NO_3)_2 + 6H_2O$		36.4	3	131.	700	2
	" sulphate	$ZnSO_4 + 7H_2O$	2.02			-	-	-
			1		1	1	1	1

References: (1) Mond, Langer, Quincke; (2) Ordway; (3) Tilden; (4) Erdmann; (5) R. Weber; (6) Olszewski; (7) Birhaus; (8) Ramsay; (9) Deville; (10) Wroblewski; (11) Day, Sosman, White; (12) Ramme; (13) Meyer; (14) Lemoine; (15) Carnelly; (16) Mitscherlich; (17) LeChatelier; (18) Carnelly, O'Shea; (10) Thorpe; (20) Amat; (21) Mendelejeff; (22) Marijnac; (23) Besson; (24) Clarke, Const. of Nature; (25) Isambert; (26) Mylius; (27) Hevesy; (28) Retgers; (29) Grünauer; (30) Richards and others.

* Under pressure 138 mm mercury. † Decomposes.

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

N.B. — The data in this table refer only to normal compounds.

Substance.	Formula	Temp. ○ C.	Den- sity.	Melting- point	Boiling-point.	Authority.
		(a	.) Para	ffin Series	$S: C_nH_{2n+2}$	
Methane* Ethane† Propane Butane Pentane Hexane Heptane Octane Nonane Dodecane Tridecane Tetradecane Hexadecane Hexadecane Hexadecane Heptadecane Tetradecane Tetradocane Tetradocane Tetradocane Tetradocane Heptadecane Tetradocane Heptadecane Tetracosane Tetracosane Tetracosane Tetracosane Tetracosane Tetracosane Tetracosane Heptacosane Tetracosane	$\begin{array}{c c} C_{14}H_{30} \\ C_{15}H_{32} \\ C_{16}H_{34} \\ C_{17}H_{36} \\ C_{18}H_{38} \\ C_{19}H_{40} \\ C_{20}H_{42} \end{array}$	-164. 0 0 0 17. 0 0 0 0 4. 10. 18. 22. 28. 32. 37. 40. 44. 48. 51. 60.	0.415 .446 .536 .60 .647 .663 .701 .719 .733 .745 .765 .775 .776 .777 .777 .777 .777 .77	-184171.4 -195135131949756.6 -5126126. 5. 10. 18. 22. 28. 32. 37. 40. 44. 48. 51. 60.		Olszewski, Young. Ladenburg, " Young, Hainlen. Butlerow, Young. Thorpe, Young. Schorlemmer. Thorpe, Young. " " " " " " " " " " " " " " " " " " "
Pentriacontane Dicetyl Penta-tria-contane	C ₃₁ H ₆₄ C ₃₂ H ₆₆	68. 70. 75.	.781 .781 .782	68 70. 75.	199.\$ 205.\$ 331.‡	66 66
	(b)	Olefines.	, or the	Ethylene	e Series: C _n F	H _{2n} .
Ethylene Propylene Butylene Amylene Hexylene Heptylene Octylene Decylene Undecylene Tridecylene Tridecylene Tetradecylene Hexadecylene Hexadecylene Eicosylene Cerotene Melene	$\begin{array}{c} C_2H_4\\ C_3H_6\\ C_4H_8\\ C_5H_{10}\\ C_6H_{12}\\ C_7H_{14}\\ C_8H_{16}\\ C_9H_{18}\\ C_{10}H_{20}\\ C_{11}H_{22}\\ C_{12}H_{24}\\ C_{13}H_{26}\\ C_{14}H_{28}\\ C_{15}H_{30}\\ C_{16}H_{30}\\ C_{16}H_{30}\\ C_{20}H_{40}\\ C_{27}H_{54}\\ C_{30}H_{60}\\ \end{array}$		0.610 -635 -76 -703 -722 -767 -773 -795 -774 -794 -814 -792 -791 -871	—169. —180. — — — — — — — — — — — — — — — — — — —	-10350.2 1. 36. 69. 9699. 122123. 140142. 175. 196197. 212214. 233. 127.‡ 247. 155.‡ 179.‡ 390400.	Wroblewski or Olszewski. Ladenburg, Krügel. Sieben. Wagner or Saytzeff. Wreden or Znatowicz. Morgan or Schorlemmer. Möslinger. Beilstein, "Org. Chem." """" Bernthsen. Krafft. Bernthsen. Krafft, Mendelejeff, etc. Krafft. Reilstein, "Org. Chem." Bernthsen.

^{*} Liquid at —rr.° C. and r80 atmospheres' pressure (Cailletet).
† til " + 4.0" " 46
‡ Boiling-point under r5 mm. pressure.
§ In vacuo.

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

	Chemical	Temp.	Specific	Melting-	Boiling-	
Substance.	formula.	C°.	gravity.	point.	point.	Authority.
	(c) A	cetylene	Series:	C_nH_{2n}	-2.	
Acetylene	C_2H_2	 80.	.613	-81. -110.	—85.	Villard.
Allylene Ethylacetylene	C_3H_4 C_4H_6	_	_	-130.	-23.5 +8.	Bruylants, Kutsche-
					18 -50	roff, and others. Bruylants, Taworski.
Propylacetylene Butylacetylene	C_5H_8 C_6H_{10}	_		-	4850. 6870.	Taworski.
Oenanthylidene	C_7H_{12}	_	-	-	100101.	Beilstein, and others.
Caprylidene	C ₈ H ₁₄	0.	0.771	-	133134.	Behal.
Undecylidene	$C_{11}H_{20} \\ C_{12}H_{22}$	9.	.810	<u>-</u> 9.	210215.	Bruylants. Krafft.
Tetradecylidene	$C_{14}H_{26}$	+6.5	.806	+ 6.5	134.*	66
Hexadecylidene Octadecylidene	$C_{16}H_{30} \\ C_{18}H_{34}$	20. 30.	.804	20. 30.	160.* 184.*	66
	(d) Mona	tomic al				1
Methyl alcohol Ethyl alcohol	CH ₃ OH C ₂ H ₅ OH	0.	0.812	—97. —114.	66. 78.	
Propyl alcohol	C ₈ H ₇ OH	0.	.817	—I27.	97.	From Zander, "Lieb.
Butyl alcohol	O II OII	0.	.823	_	117.	Ann." vol. 224, p. 85, and Krafft, "Ber."
Hexyl alcohol	$C_{6}H_{18}OH$	0.	.833	-	157.	vol. 16, 1714,
Heptyl alcohol Octyl alcohol	O TT OTT	0.	.836	—36. —18.	176.	" 19, 2221,
Nonyl alcohol	$C_{8}H_{17}OH$ $C_{9}H_{19}OH$	0.	.839	— 5·	195.	" 23, 2360, and also Wroblew-
Decyl alcohol	C ₁₀ H ₂₁ OH	十 7.	.839	十 7.	231.	ski and Olszewski,
Dodecyl alcohol Tetradecyl alcohol		38.	.831	24. 38.	143.*	"Monatshefte," vol. 4, p. 338.
Hexadecyl alcohol	$C_{16}H_{33}OH$	50.	.818	50.	190.*	4, Fr 33st
Octadecyl alcohol	C ₁₈ H ₃₇ OH	59-	.813	59-	211.*	
	(e) Ale	coholic e	thers:	C_nH_{2n+1}	₂ O.	
Dimethyl ether	C ₂ H ₆ O	-	-	-	- 23.6	Erlenmeyer, Kreich- baumer.
Diethyl ether	$C_4H_{10}O$	4.	0.731	117	+ 34.6	Regnault, Olszewski.
Dipropyl ether Di-iso-propyl ether	O TT O	0.	763	_	90.7	Zander and others.
Di-n-butyl ether	$C_8H_{18}O$	0.	.784	_	141.	Lieben, Rossi, and others.
Di-sec-butyl ether	O II O	21.	.756	-	121.	Kessel.
Di-iso-butyl " Di-iso-amyl "	$\begin{array}{c c} C_8H_{18}O \\ C_{10}H_{22}O \end{array}$	15.	.762	_	122.	Reboul. Wurtz.
Di-sec-hexyl "	$C_{12}H_{26}O$	-	-/99	_	203208.	Erlenmeyer and
Di-norm-octyl "	C ₁₆ H ₃₄ O	17.	.805	-	280282.	Wanklyn. Moslinger.
	(f) E	thyl eth	ers: C _n	$H_{2n+2}()$).	
Ethyl-methyl ether	C ₃ H ₈ O	0.	0.725	-	11.	Wurtz, Williamson.
" propyl "	$C_5H_{12}O \\ C_5H_{12}O$	20.	0.739		63.–64.	Chancel, Brühl.
" norm-butyl ether	$C_{6}H_{14}O$	0.	·745	_	54· 92.	Markownikow. Lieben, Rossi.
" iso-butyl ether .	$C_6H_{14}O$	-	.751	_	78.–80.	Wurtz.
" iso-amyl ether .	$C_7H_{16}O$	18.	.764	-	112.	Williamson and others.
" norm-hexyl ether	$C_8H_{18}O$	-	-	-	134137.	Lieben, Janeczek.
" norm-heptyl ether " norm-octyl ether	$C_9H_{20}O \\ C_{10}H_{22}O$	16.	.790	_	165. 182.–184.	Cross. Moslinger.
	10.22	,	7 77		104.	1 00/11/5011

^{*} Boiling-point under 15 mm. pressure. \dagger Liquid at $-11.^{\circ}$ C. and 180 atmospheres' pressure (Cailletet).

DENSITIES AND MELTING AND BOILING POINTS OF SOME ORGANIC COMPOUNDS.

(g) MISCELLANEOUS.

Substance	Chemical formula.	Density and temperature.	Melting point C	Boiling point C	Authority.
Acetic acid	CH₃COOH CH₃COCH₃ C₂H₄O	1.115 o° 0.812 o 0.806 o	16.7 -94.6 -120.	118.5 56.1 +20.8	Young, '09
Aniline	$egin{array}{c} \mathrm{C_6H_5NH_2} \\ \mathrm{C_7H_6O_2} \end{array}$	1.038 0 0.96 ± 1.293 4	-8. 62. 121.	183.9	
Benzol Benzophenone	$C_6H_6 \ (C_6H_5)_2CO$	0.879 20 1.090 50	5.48	80.2 305.9	Richards Holborn- Henning
Butter Camphor Carbolic acid Carbon bisulphide "tetrachlor-	$C_{10}\mathrm{H}_{16}\mathrm{O} \ C_{6}\mathrm{H}_{5}\mathrm{OH} \ \mathrm{CS}_{2}$	0.86-7 0.99 I0 1.060 21 1.292 0	30 ± 176. 43. -110.	209. 182. 46.2	
ide Chlorbenzene Chloroform	CCl_4 C_6H_5Cl $CHCl_3$	1.582 21 1.111 15 1.257 0	-30. -40. -65.	76.7 132. 61.2	Young
Cyanogen Ethyl bromide " chloride " ether	$egin{array}{c} C_2N_2 \ C_2H_5Br \ C_2H_5Cl \ C_4H_{10}O \end{array}$	1.45 15 0.918 8 0.736 0	-35. -117. -141.6 -118.	-21. 38.4 14. 34.6	
" iodide Formic acid Gasolene	C ₂ H ₅ I HCOOH	1.944 14 1.242 0 0.68 ±	8.6	72. 100.8 70–90	
Glucose	CHO(HCOH) ₄ CH ₂ OH C ₃ H ₈ O ₃ CHI ₃	1.56 1.269 0 4.01 25	146. 20. 119. 20 =	290. —	
Methyl chloride Methyl iodide Napthalene	CH_3CI CH_3I $C_6H_4\cdot C_4H_4$	0.992 -24 2.285 15 1.152 15	-103.6 -64. 80.	-24.I 42.3 218.	Holborn- Henning
Nitrobenzol Nitroglycerine Olive oil	$\begin{array}{c} C_{6}H_{5}O_{2}N \\ C_{3}H_{5}N_{3}O_{9} \end{array}$	I.2I2 7.5 I.60	5. — 20 ±	211.	Hemming
Oxalic acid Paraffin wax, soft. " hard	C ₂ H ₂ O ₄ · ₂ H ₂ O	0.92	190. 38-52 52-56	300 ± — 350-390 390-430	
Pyrogallol Spermaceti Starch	$C_6H_3(OH)_3$ $C_6H_{10}O_5$	1.46 40 0.95 15 1.56	133. 45 = none	293.	
Sugar, cane Stearine	$C_{12}H_{22}O_{11} \ (C_{18}H_{35}O_2)_3C_3H_5$	1.588 20 0.925 65	160. 71.	_	
Tallow, beef "mutton Tartaric acid	$C_4H_6O_6$	0.94 I5 0.94 I5 I.754	27-38 32-41 170.	_	Dichards
Toluene Xylene (o) " (m)	$\begin{array}{c} {\rm C_6H_6CH_3} \\ {\rm C_6H_4(CH_3)_2} \\ {\rm C_6H_4(CH_3)_2} \end{array}$	0.863 20 0.864 20	-92. -28. 54.	110.31 142. 140.	Richards
(p)	$C_6H_4(CH_3)_2$	0.861 20	15.	138.	

TABLE 221. - Melting-point of Mixtures.

					Meltin	ng-point	s, C°.					nce,
Metals.				Percent	age of n	netal in	second o	column.				Reference,
	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100 %	Re
Pb. Sn.	326	295	276	262	240	220	190	185	200	216	232 268	I
Bi.	322	290	-	-	179	145	126	168	205			7 8
Te.	322	710	790	880	917	760	600	480	410	425	446	
Ag.	328	460	545	590	620	650	705	775	840	905	959 96	9
Na.	- /	360	420	400	370	330	290	250	200	130	1084	2
Cu.	326	870	920	925	945	950	955	985	1005	600	632	16
Sb.	326	250	275	330	395	440	490	525 1000	1040	1010	632	
Al. Sb.	650	750	840	925	945	950 5 80	610			1055	1084	17
Cu.	650	630	600	560 800	540			755	930	675	1062	01
Au.	655 650	675	740 615	600	855	915 58a	970 575	1025 570	650	750	954	17
Ag. Zn.	654	625 640	620	600	590 580	560	575	510	475	425	410	II
Fe.	653	860	1015	1110	1145	1145	1220	1315	1425	1500	1515	3
Sn.	650	645	635	625	620	605	590	570	560	540	232	17
Sb. Bi.	632	610	590	575	555	540	\$20	470	405	330	268	16
Ag.	630	595	570	545	520	500	505	545	680	850	959	9
Sn.	622	600	570	545 525	4So	430	395	350	310	255	232	10
Zn.	632	555	510	540	570	565	540	525	510	470	419	17
Ni. Sn.	1455	1380	1290	1200	1235	1290	1305	1230	1000	800	232	17
Na. Bi.	96	425	520	590	645	690	720	730	715	570	268	13
Cd.	96	125	185	245	285	325	330	340	360	390	322	13
Cd. Ag.	322	420	520	610	700	760	805	850	895	940	954	17
Ti.	321	300	285	270	262	258	245	230	210	235	302	14
Zn.	322	280	270	295	313	327	340	355	370	390	419	II
Au. Cu.	1063	910	890	895	905	925	975	1000	1025	1060	1084	4
Ag.	1064	1062	1061	1058	1054	1049	1039	1025	1006	982	963	5
Pt.	1075	1125	1190	1250	1320	1380	1455	1530	1610	1685	1775	20
K. Na.	62	17.5	-10	-3.5	5	11	26	41	58	77	97.5	15
Hg.	-	-	-	-	-	90	110	135	162	265	-	13
Tl.	62.5	133	165	188	205	215	220	240	280	305	301	14
Cu. Ni.	1080	1180	1240	1290	1320	1335	1380	1410	1430	1440	1455	17
Ag.	1082	1035	990	945	910	870	830	788	814	875	960	9
Sn.	1084	1005	890	755	725	680	630	580	530	440	232	12
Zn.	1084	1040	995	930	900	880	820	780	700	580	419	6
Ag. Zn.	959	850	755	705	690	660	630	610	570	505	419	11
Sn.	959	870	750	630	550	495	450	420	375	300	232	9
Na. Hg.	96.5	90	80	70	60	45	22	55	95	215	-	13

- 1 Means, Landolt-Börnstein-Roth Tabellen.
 2 Friedrich-Leroux, Metal. 4, 1907.
 3 Gwyer, Zs. Anorg. Ch. 57, 1908.
 4 Means, L.-B.-R. Tabellen.
 5 Roberts-Austen Chem. News, 87, 2, 1903.
 6 Shepherd J. ph. ch. 8, 1904.
 7 Kapp, Diss., Königsberg, 1901.
 8 Fay and Gilson, Trans. Am. Inst. Min. Eng. Nov. 1901.
- 9 Heycock and Neville, Phil. Trans. 189A, 1897.
- 11 Heycock and Neville, J. Chem. Soc. 71, 1897.
 12 " Phil. Trans. 202A, 1, 1903.

- 12 Lurakow, Z. Anorg. Chem. 23, 439, 1900.
 14 " " " " " 30, 86, 1902.
 15 Roland-Gosselin, Bul. Soc. d'Encour. (5) 1, 1896.
 17 Gautier, " " " (5) 1, "
 18 Le Chatelier, " " (4) 10, 573,
- 1895.
 19 Reinders, Z. Anorg. Chem. 25, 113, 1896.
 20 Erhard and Schertel, Jahrb. Berg-u. Hüttenw-Sachsen. 1879, 17.

TABLE 222. - Alloy of Lead, Tin, and Bismuth.

		Per cent.								
Lead Tin Bismuth	32.0 15.5 52.5	25.8 19.8 54.4	25.0 15.0 60.0	43.0 14.0 43.0	33·3 33·3 33·3	10.7 23.1 66.2	50.0 33.0 17.0	35.8 52.1 12.1	20.0 60.0 20.0	70.9 9.1 20.0
Solidification at	960	1010	1250	1280	1450	1480	1610	1810	1820	234°

Charpy, Soc. d'Encours, Paris, 1901.

TABLE 223. - Low Melting-point Alloy.

			F	er cent			
Cadmium	10.8	10.2	14.8	13.1	6.2	7·1	6.7
	14.2	14.3	7.0	13.8	9.4	-	-
	24.9	25.1	26.0	24.3	34.4	30·7	43.4
	50.1	50.4	52.2	48.8	50.0	53·2	49.9

Drewitz, Diss. Rostock, 1902.

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TRANSFORMATION AND MELTING TEMPERATURES OF LIME-ALUMINA-SILICA COMPOUNDS AND EUTECTIC MIXTURES.

The majority of these determinations are by G. A. Rankin. (Part unpublished.)

Substance.	% Ca	O Al	O ₃ S	SiO ₂		Transforma	tion.		· T	emp.
$\begin{array}{c} CaSiO_3 & . & . \\ CaSiO_3 & . & . \\ CaSiO_4 & . & . \\ & . & . \\ & . & . \\ Ca_2SiO_4 & . & . \\ & . & . \\ & . & . \\ Ca_3Si_2O_7 & . & . \\ & . & . \\ Ca_3Si_2O_6 & . & . \\ Ca_5Al_6O_{14} & . & . \\ CaAl_2O_4 & . & . \\ CaA_3Al_{10}O_{18} & . & . \\ Al_2SiO_5 & . & . \\ CaAl_2SiO_5 & . & . \\ CaAl_2SiO_7 & . & . \\ Ca_3Al_2SiO_7 & . & . \\ Ca_8Al_2SiO_8 & . & . \\ \end{array}$	47.8 35.4 24.8 20.1	37. 52. 64. 75. 75. 76. 36.	5 3 3 3 3 4 4 2 2 2 2 5 6 4 2 2 2 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	1.8 1.8 5. 5. 5. 1.8 6.4	A M M M M M M M M M M M M M M M M M M M	Melting	120 213 67 142 147 190 153 145 160 172 181 155 159	0° ±2° 0° ±2° 0° ±10 0° ±5 0° ±5 0° ±5 0° ±5 0° ±5 0° ±5 0° ±5 0° ±5 0° ±2 0° ±2 0° ±2		
	UTECTI	CS.								
Crystalline Phases.	% CaO	$\mathrm{Al_2O_3}$	SiO ₂	Melting Temp.		Crystalline Phases.	% CaC	Al ₂ O ₃	SiO ₂	Melting Temp.
CaSiO ₃ , SiO ₂ Ca,SiO ₃ 3CaO,2SiO ₂ Ca,SiO ₄ CaO, SiO ₄ CaO, SiO ₅ , SiO ₂ Al ₂ SiO ₅ , Al ₂ O ₃ CaAl ₂ SiO ₅ CaSiO ₃ CaSiO ₃ CaSiO ₃ CaSiO ₃ CaN ₂ Si ₂ O ₈ CaN ₂ Si ₂ O ₈	37. 54.5 67.5 — 34.1	 13. 64. 18.6	63. 45·5 32·5 87. 36. 47·3	1436° 1455± 2065± 1610 1810 1299	Ŧ	$ \begin{array}{c} CaAl_2Si_2O_8 \\ Ca_2Al_2SiO_7 \\ CaSiO_3 \\ CaAl_2Si_2O_8 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \\ Ca_2SiO_4 \\ CaAl_2O_4 \\ Ca_5Al_6O_{14} \end{array} \right\} $	38. 29.2 49.5	20. 39. 43.7	42. 31.8 6.8	1265°
SiO_2 { $CaAl_2Si_2O_8$ }	23.2	19.5	70. 62.	1359		QUIN	TUPLE	POINTS	S.	
$SiO_{2},CaSiO_{3}$ { $Ca_{2}Al_{2}SiO_{7}$ } $Ca_{2}SiO_{4}$ } $Al_{2}O_{3}$ } $Al_{2}O_{3}$ } $CaAl_{2}Si_{2}O_{8}$ }	49.6	23.7 39.3	26.7 41.4	1545 1547		Ca ₂ Al ₂ SiO ₇	48.2	11.9	39.9	1335
$CaAl_2Si_2O_8$ { Al_2SiO_5,SiO_2 } $Ca_2Al_2SiO_7$ }	9.8	19.8	70.4	1345		$ \begin{bmatrix} Ca_2Al_2SiO_7\\Ca_2SiO_4\\CaAl_2O_4 \end{bmatrix} $	48.3	.42.	9.7	1380
$Ca_3Al_{10}O_{18}$ { $Ca_2Al_2SiO_7$ {	35· 37.8	50.8	9.3	1552		$CaAl_2Si_2O_8$ Al_2O_3	15.6	36.5	47.9	1512
$ \begin{array}{c} CaAl_{2}O_{4} \\ Ca_{2}Al_{2}SiO_{7} \\ CaAl_{2}O_{4} \\ Ca_{3}Al_{10}O_{18} \end{array} $	37.5	53.2	9.3	1505		$Al_2SiO_5 \ Ca_3Al_{10}O_{18} \ Ca_2Al_2SiO_7 \ Al_2O_8$	31.2	44.5	24.3	1475
$CaAl_2Si_2O_8$ { $Ca_2Al_2SiO_7$ { $Ca_2Al_2SiO_7$ } $Ca_3Si_2O_7$ }	30.2 47.2	36.8	33· 41.	1385		QUAL	RUPLE	POINTS	5.	
$ \begin{array}{c} Ca_3Si_2O_7\\ CaSiO_3 \end{array} $ $ \begin{array}{c} Ca_2Al_2SiO_7\\ CaSiO_3 \end{array} $	45.7	13.2	41.1	1316		3CaO.2SiO ₂ }	55.5	— .	44.5	1475

The accuracy of the melting-points is 5 to 10 units. Geophysical Laboratory. See also Day and Sosman, Am. J. of Sc. xxxi, p. 341, 1911.

LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION.

In the first column is given the number of gram-molecules (anhydrous) dissolved in 1000 grams of water; the second contains the molecular lowering of the freezing-point; the freezing-point is therefore the product of these two columns. After the chemical formula is given the molecular weight, then a reference number.

Molecular Powering.	g. mol.	Molecular	g. mol.	Molecular	g, mol.	Molecular
	1000 g. H ₂ O	Lowering.	1000 g. H ₂ O	Lowering,	1000 g. H ₂ O	Lowering.
Box Color Color	g. mol.	3.47° 3.42° 3.326 3.14 3.4° 3.35 3.35 3.49 10. 5.6° 4.9 4.5 4.03 3.83 1.80 1.76 1.80 1.76 1.80 1.76 4.60 4.76 4.60 4.32 4.97 3.87		2.02° 2.01 2.28 7.13 5.5° 5.2° 5.0° 4.80 4.69 4.69 4.66 4.82 5.03 5.21 7.5° 4.8 4.64 4.11 3.93 3.03 2.71 2.75 4.9° 4.81 4.92 5.32 5.0° 4.9 5.03 5.30 5.55		14. 5.1° 4.98 4.96 5.186 5.69 19. 3.54° 3.41 3.37 3.286 3.25 12, 16. 3.7° 3.55 3.51 3.48 3.43 15. 6° 3.50 3.43 15. 6° 3.50 3.43 3.393 3.393 3.41
.0250 3.46 .0500 3.44 .2000 3.345 .500 3.24 .5015 3.30 1.000 3.15	.1051 .2074 .4043 .8898 MgSO ₄ , 120.4: 1, 4	2.28 1.95 1.84 1.76 4, 11. 3.29	.5077 .946 2.432 3.469 3.829 0.0478	5·33 5·3 8·2 11.5 14.4 5.2	BaBr ₂ , 297.3: :4 0.100 .150 .200 .500 AlBr ₃ , 267.0: 9.	5.1° 4.9 5.00 5.18
1.0030 3.03	.002381	3.10	.153	4.91	0.0078	1.4°
NH ₄ NO ₃ , 80.11: 6, 8.	.01263	2.72	.331	5.15	.0559	1.2
0.0100 3.6°	.0580	2.65	.612	5.47	.1971	1.07
.0250 3.50	.2104	2.23	.998	6.34	.4355	1.07

¹ Hausrath, Ann. Phys. 9, 1902.
2 Leblanc-Noyes, Z. Phys. Ch. 6, 1890.
3 Jones, Z. Phys. Ch. 11, 1893.
4 Raoult, Z. Phys. Ch. 2, 1888.
5 Arfhenius, Z. Phys. Ch. 2, 1888.
5 Arfhenius, Z. Phys. Ch. 2, 1888.
6 Loomis, Wied. Ann. 57, 1896.
7 Jones, Am. Chem. J. 27, 1902.
8 Jones-Caldwell, Am. Chem. J. 25, 1901.
9 Biltz, Z. Phys. Ch. 40, 1902.
10 Jones-Mackay, Am. Chem. J. 19, 1897.
Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION (continued).

	Molecular Lowering.		Molecular Lowering.		Molecular Lowering.		lar 1g.
g. mol.	erin	g. mol.	ecti	g. mol	erin	g. mol.	Molecular Lowering.
1000 g. H ₂ O	Foldow	1000 g. H ₂ O	[0]	1000 g. H ₂ O	Fole	1000 g, H ₂ Õ	Cole
	21		27		ZI		ZH
CdBr2, 272.3: 3, 1	4.	KOH, 56.16: 1, 1	5, 23.	Na2SiO3, 122.5: 1	5.	0.472	2.20°
0.00324	5.10	0.00352	3.60°	0.01052	6.4°	•944	2.27
.007 18	4.6	.00770	3.59	.05239	5.86	1.620	2.60
.03627	3.84	.02002	3.44	.1048	5.28	(COOH) ₂ , go.o2: 0.01002	4, 15.
.0719	3.39	.05006	3.43	.2099	4.66	0.01002	3.3
.1122	3.18 2.96	.1001	3.42	•5233	3.99	.02005	3.19
.440	2.76	230	3.424 3.50	HCl, 36.46 : 1-3, 6, 13,	18. 22	.05019	3.03
.800	2.59	.465	3.57	0.00305	3.68°	.1006	2.83
CuBr ₂ , 223.5: 9.	39	CH.OH. 32.03: 2	4. 25.	.00695	3:66	.366	2.56
0.0242	5.1°	CH ₃ OH, 32.03: 2	7.80	.0100	3.6	.648	2.3
.0817	5.1	.0301	1.82	.01703	3-59		
.2255	5.27	.2018	1.811	.0500	3.59	C ₃ H ₅ (OH) ₃ , 92.06 0.0200	I.86°
.6003	5.89	1.046	· 1.86	.1025	3.56	.1008	1.86
CaBr ₂ , 200.0: 14.		3.41	1.88	.2000	3.57	.2031	1.85
0.0871	5.1°	6.200	1.944	.3000 .464	3.612 3.68	-535	1.91
.1742	5.18	C ₂ H ₅ OH, 46.04:		.516	3.79	2.40	1.98
.3484	5.30	1, 12, 17 0.000402	1.670	1,003	3.95	5.24	2.13
.5226	5.64	.004993	1.67	1.032	4.10	$(C_2H_5)_2O$, 74.08:	24
MgBr ₂ , 184.28: 1.	4-	.0100	1.81	1.500	4.42	0.0100	1.60
0.0517	5.4°	.02892	1.707	2.000	4.97	.0201	1.67
.103	5.16	.0705	1.85	2.115	4.52	11011	1.72
.207	5.26 5.85	.1292	1.829	3.000	6.03	.2038	1.702
.517		.2024	1.832	3.053	4.90	Dextrose, 180.1:	24, 30.
KBr, 119.1: 9, 21. 0.0305	3.61°	-5252	1.834	4.065	5.67	0.0198 .0470	1.84° 1.85
.1850	3.49	1.0891	1.826	4.057	6.19	.1326	1.87
.6801	3.30	1.760	1.83	HNO ₃ , 63.05: 3, 1	13, 15.	.4076	1.894
.250	3.78	3.901	2.02	0.02004 .05015	3·55° 3·50	1.102	1.921
.500	3.56	7.9I II.II	2.12	.0510	3.71	Levulose, 180.1:	- 1
CdI ₂ , 366.1: 3, 5,	22.	18.76	1.81	.1004	3.48	0.0201	1.87°
0.00210	4.5°		1.80	.1059	3.53	.2050	1.871
.00626	4.0	0.0173	1.79	.2015	3.45	∙554	2,01
.02062	3.52	K ₂ CO ₃ , 138.30: 6		.250	3.50	1.384	2.32
.04857	2.70	0.0100	5.1°	. 500	3.62	2.77	3.04
.1360	2.35	,0200 ·	4.93	I.000	3.80	CHO, 342.2: 1, 2.	4, 26.
·333 .684	2.13	.0500	4.71	2.000	4.17	0.000332	1.900
.888	2.51	.100	4.54	3.000	4.64	.001410	1.87
KI, 166.0: 9, 2.	,5-	.200	4.39	H ₃ PO ₂ , 66.0: 29.	2.90°	.009978	1.88
0.0651	3.5°	Na ₂ CO ₃ , 106.10:	5.1°	.2542	2.75	.1305	1.88
.2782	3.50	.0200	4.93	.5171	2.59		2,50
.6030	3.42	,0500	4.64	1.071	2.45	H ₂ SO ₄ , 98.08:	31-33
1.003	3.37	.1000	4.42	HPO, 82 0: 4, 5.		0.00461	4.80
SrI ₂ , 341.3: 22.		.2000	4.17	0.0745	3.0°	.0100	4.49
0.054	5.1°	Na ₂ SO ₃ , 126.2: 28		.1241	2.8	.0200	4.32
.108	5.2	0.1044	4.51°	.2482	2.6	.0461	4.10
.216	5.35	·3397	3.74	1.00	2.39	.100	3.96
.327	5.52	.7080	3.38	H ₃ PO ₄ , 98.0: 6, 2	2.80	.200	3.85
NaOH, 40.06: 15.	- 4 HO	Na ₂ HPO ₄ , 142.1:		0.0100	2.68	.400 1.000	3.98
0.02002	3.45°	0.01001	5.0° 4.84	.0200	2.49	1.500	4.19
.05005	3.45 3.41	.02003	4.60	.1000	2.36	2.000	5.65
.2000	3.407	.1002	4.34	.2000	2.25	2.500	6.53
.2000	3.40/		7.57			3	

¹⁻²⁰ See page 217. 21 Sherrill, Z. Phys. Ch. 43, 1903. 22 Chambers-Frazer, Am. Ch. J. 23, 1900. 23 Noyes-Whitney, Z. Phys. Ch. 15, 1894. 24 Loomis, Z. Phys. Ch. 32, 1900. 25 Abegg, Z. Phys. Ch. 15, 1894. 26 Nernst-Abegg, Z. Phys. Ch. 15, 1894.

²⁷ Pictet-Altschul, Z. Phys. Ch. 16, 1895. 28 Barth, Z. Phys. Ch. 9, 1892. 29 Petersen, Z. Phys. Ch. 11, 1893. 30 Roth, Z. Phys. Ch. 43, 1903. 31 Wildermann, Z. Phys. Ch. 15, 1894. 32 Jones-Carroll, Am. Ch. J. 28, 1902. 33 Jones-Murray, Am. Ch. J. 30, 1903.

RISE OF BOILING-POINT PRODUCED BY SALTS DISSOLVED IN WATER.*

This table gives the number of grams of the salt which, when dissolved in 100 grams of water, will raise the boiling-point by the amount stated in the headings of the different columns. The pressure is supposed to be 76 centimeters.

Salt.	1° C. 2°	3° 4	4 ° 5 °	7 °	10°	15°	20 °	25
BaCl ₂ + 2H ₂ O CaCl ₂	15.0 31.1 6.0 11.5 12.0 25.5 4.7 9.3 6.0 12.0	16.5 2 39.5 5 13.6 1	71.6 g 25.0 3.5 68.5 7.4 20.5 44.5 31.0	32.0	5 rise o 41.5 152.5 34.5 63.5	f temp. 55.5 240 0 47.0 98.0	69.0 331.5 57.5 134.0	84.5 443.5 67.3 171.5
KCl	9.2 16.7 11.5 22.5 13.2 27.8 15.0 30.0 15.2 31.0	32.0 4 44.6 6 45.0 6	36.2 47.5 60.0 74.0 64.5 82.0	48.4 60.5 99.5 120.5	(57.4 gi 78.5 134. 188.5	103.5	rise of 8 127.5 (220 give	°.5) 152.5 es 18°.5)
$\begin{array}{c} K_2C_4H_4O_6+\frac{1}{2}H_2O \\ KNaC_4H_4O_6 \\ KNaC_4H_4O_6+4H_2O \\ LiCl \\ LiCl \\ LiCl + 2H_2O \\ \end{array}.$	18.0 36.0 17.3 34.5 25.0 53.5 3.5 7.0 6.5 13.0	51.3 6 84.0 11 10.0 1	2.0 90.0 8.1 84.8 8.0 157.0 2.5 15.0 6.0 32.0	126.5 119.0 266.0 20.0 44.0	182.0 171.0 554.0 26.0 62.0	284.0 272.5 510.0 35.0 92.0	390.0 42.5 123.0	5100 50.0 160.5
MgCl ₂ +6H ₂ O MgSO ₄ +7H ₂ O	11.0 22.0 41.5 87.5 4.3 8.0 6.6 12.4 9.0 18.5	138.0 19 11.3 1 17.2 2	4.0 55.0 262.0 4.3 17.0 1.5 25.5 8.0 48.0	77.0 22.4 33.5 68.0	30.0 (40.7 gi	170.0 41.0 ves 8°.	241.0 51.0 8 rise) 222.0	334·5 60.1
$\begin{array}{c} NaC_2H_3O_2 + _3H_2O \\ Na_2S_2O_3 \\ Na_2HPO_4 \\ Na_2C_4H_4O_6 + _2H_2O \\ Na_2S_2O_3 + _5H_2O \end{array}.$	14.9 30.0 14.0 27.0 17.2 34.4 21.4 44.4 23.8 50.0	39.0 4 51.4 6 68.2 9	2.5 79.7 9.5 59.0 8.4 85.3 3.9 121.3 8.1 139.3	77.0		152.0 gives 8°	6250.0 214.5 2.4 rise)	311.0
$\begin{array}{c} \text{Na}_2\text{CO}_3 + \text{IoH}_2\text{O} & . \\ \text{Na}_2\text{B}_4\text{O}_7 + \text{IoH}_2\text{O} & . \\ \text{NH}_4\text{Cl} & . & . \\ \text{NH}_4\text{NO}_3 & . & . \\ \text{NH}_4\text{SO}_4 & . & . \\ \end{array}$	34.1 86.7 39. 93.2 6.5 12.8 10.0 20.0 15.4 30.1	254.2 89 19.0 2. 30.0 4	9.4 1052.9 8.5 (5555.5 4.7 29.7 1.0 52.0 8.0 71.8	39.6	4°.5 rise 56.2 108.0 (115.3	SS.5 172.0	248.0 108.2)	337.0
$\begin{array}{c} SrCl_2 + 6H_2O & . & . \\ Sr(NO_3)_2 & . & . \\ C_4H_6O_6 & . & . \\ C_2H_2O_4 + 2H_2O & . \\ C_6H_8O_7 + H_2O & . \end{array}$	20.0 40.0 24.0 45.0 17.0 34.4 19.0 40.0 29.0 58.0	63.6 8 52.0 76 62.0 8	1.0 103.0 97.6 0.0 87.0 6.0 112.0 6.0 145.0	123.0 169.0	234.0 177.0 262.0 320.0	524.0 272.0 540.0 553.0	374.0 1316.0 952.0	484.0 50000.0
Salt. 40 °	60°	80 3 1	00° 120°	140°	160°	180°	200°	240°
CaCl ₂ 137. KOH	5 121.7 5 150.8 0 1370.0			800.0				

^{*} Compiled from a paper by Gerlach, "Zeit. f. Anal. Chem." vol. 26.

FREEZING MIXTURES.*

Column 1 gives the name of the principal refrigerating substance, A the proportion of that substance, B the proportion of a second substance named in the column, C the proportion of a third substance, D the temperature of the substances before mixture, E the temperature of the mixture, F the lowering of temperature, G the temperature when all snow is melted, when snow is used, and F the amount of heat absorbed in heat units (small calories when A is grams). Temperatures are in Centigrade degrees.

Substance.	A	В	С	D	E	F	G	Н
NaC ₂ H ₃ O ₂ (cryst.) N1I ₄ C1 NaNO ₃ Na ₂ S ₂ O ₃ (cryst.) KI CaCl ₂ (cryst.) NH ₄ NO ₃ (NH ₄) ₂ SO ₄ NA ₂ CO ₃ (cryst.) KNO ₃ CaCl ₂ NH ₄ C1	85 30 75 110 250 60 25 25 25 25 25 25 25 25 25 25	H ₂ O-100 """ """ """ """ """ """ """	NH ₄ NO ₃ -25 """ NH ₄ Cl-25 """ "" "" "" "" "" "" "" "" "" "" "" "	10.7 13.3 13.2 10.7 10.8 13.6	- 4-7 - 5-1 - 5-3 - 8-0 - 11.7 - 12-4 - 13.6	15.4 18.4 18.5 18.7 22.5 23.2 27.2 26.0 20.0 17.0 0.9 1.0 15.7 36.0 35.0 34.0 19.0 15.0 19.0 15.0		#

^{*} Compiled from the results of Cailletet and Colardeau, Hammerl, Hanamann, Moritz, Pfanndler, Rudorf, and Tollinger.

† Lowest temperature obtained.

CRITICAL TEMPERATURES, PRESSURES, VOLUMES, AND DENSITIES OF GASES.*

 θ = Critical temperature.

P = Critical pressure in atmospheres.

 ϕ = Critical volume referred to volume at 0° and 76 centimeters pressure.

d = Critical density in grams per cubic centimeter.

a, b, Van der Waals constants in
$$\left(p + \frac{a}{v^2}\right) \left(v - b\right) = r + at$$
.

Substance.	θ	P	φ	ď	a × 10 ⁵	b×106	Observer
Air Alcohol (C ₂ H ₆ O) " (CH ₄ O) Ammonia Argon Benzol Bromine Carbon dioxide " monoxide " disulphide Chloroform Chlorine " Ether " Ethane Ethylene Helium Hydrogen " chloride " " sulphide Krypton Methane "	—140.0 243.6 239.95 130.0 —117.4 288 5 302.2 31.2 —141.1 273. 260.0 141.0 197.0 194.4 32.1 9.9 <—268.0 —240.8 51.25 52.3 100.0 —62.5 —81.8 —95.5	39.0 62:76 78.5 115.0 52.9 47.9 - 73. 35.9 72.9 54.9 93.5 35.77 35.61 49.0 51.1 2.3 14. 86.0 88.7 54.3 54.9 50.0	ο.00713 0.00605 0.0044 - 0.0090 - 0.01584 0.01344	d	257 2407 1898 798 259 3726 1434 717 275 2316 2930 1157 1063 3496 3464 1074 886 5 42 692 692 692 693 888 462 376 357	b × 10 ⁶ 1560 3769 2992 1606 1348 5370 2020 1908 1683 3430 4450 2259 2050 6016 6002 2848 2533 700 880 1726 1731 1926 1776 1557 1625	1 2 3 4 5 5 3 6 - 7 8 9 4 10 11 3 12 - 13 14 15 5 1 4 1 5 1 4 1 5 1 4 1 5 1 4 1 5 1 4 1 5 1 1 4 1 5 1 1 4 1 5 1 1 4 1 5 1 1 4 1 1 5 1 1 4 1 1 5 1 1 4 1 1 5 1 1 4 1 1 5 1 1 4 1 1 5 1 1 1 1
Neon	<-205.0 -93.5 -146.0	29. 71.2 35.0	-	- 0.44		_	5,13
$\begin{array}{c} \text{`` monoxide} \\ \text{(N}_2\text{O}) \\ \text{Oxygen} \\ \text{Sulphur dioxide} \\ \text{Water} \\ \text{``} \\ \end{array}$	35.4 —118.0 155.4 358.1 374.	75.0 50.0 78.9 - 217.5	0.0048 - 0.00587 0.001874	0.41 0.6044 0.49 0.429	720 273 1316 - 1089	1888 1420 2486 1362	4,17 1 9,17 6 16

- (1) Olszewski, C. R. 98, 1884; 99, 1884; 100, 1885; Beibl. 14, 1890; Z. Phys. Ch. 16, 1893.
- (2) Ramsay-Young, Tr. Roy. Soc. 177, 1886.

- (3) Young, Phil. Mag. 1900. (4) Dewar, Phil. Mag. 18, 1884; Ch. News, 84, 1901.
- (5) Ramsay, Travers, Phil. Trans. 16, 17, 1901.

- (6) Nadejdine, Beibl. 9, 1885.(7) Wroblewski, Wied. Ann. 20, 1883; Stz. Wien. Ak. 91, 1885.
- (8) Batelli, 1890.

- (9) Sajotschewsky, Beibl. 3, 1879.
- (10) Knietsch, Lieb. Ann. 259, 1890.
- (11) Batelli, Mem. Torino (2), 41, 1890.
- (11) Datchi, Mchi. 10 Inio (2), 41, 1690.
 (12) Cardozo, Arch. sc. phys. 30, 1910.
 (13) Kamerlingh-Onnes, Comno. Phys. tab.
 Leiden, 1908, 1909, Proc. Amst. 11, 1908, C. R. 147, 1908.
 (14) Olszewski, Ann. Phys. 17, 1905.

- (15) Ansdell, Chem. News, 41, 1880. (16) Holborn, Baumann Ann. Phys. 31, 1910. (17) Cailletet, C. R. 102, 1886; 104, 1887.

*Abridged for the most part from Landolt and Börnstein's "Phys. Chem. Tab."

CONDUCTIVITY FOR HEAT, METALS AND ALLOYS.

The coefficient k is the quantity of heat in small calories which is transmitted per second through a plate one centimeter thick per square centimeter of its surface when the difference of temperature between the two faces of the plate is one degree Centigrade. The coefficient k is found to vary with the absolute temperature of the plate, and is expressed approximately by the equation $k_t = k_0 [\tau + \alpha(t-t_0)]$. k_0 is the conductivity at t_0 , the lower temperature of the bracketed pairs in the table, k_t that at temperature t, and α is a constant. k_t in g-cal. per degree C per sec. across cm cube = $0.239 \times k_t$ in watts per degree C per sec. across cm cube.

Substance	t°C	k t	α	Kefer- ence.	Substance.	t°C	k t	а	Refer- ence.
Aluminum		0.514		I	Mercury		0.0148}	+.0055	7
		0.480	+.0030	2	Molybdenum		0.0189 S 0.346	0001	6
		0.492			Nickel		0.120	0001	ı
"		0.760	+ 0020	3	"		0.1420	_	2
	500	0.885	+.0014	3	"	0	0.1425	00032	3
	1	1.01	, .0014	3			0.1380 {	.00032	3
Antimony		0.0442	00104	4			0.1325	00095	3
Bismuth	-186	0.0390		5			0.069 }		
65		0.0104					0.058	00047	3
	IOC	0.0161	0021	2	Palladium	18	0.1683	+.0010	2
Brass	1	0.181		I	DI- (*		0.182	,,0010	
", yellow		0.260		I	Platinum		0.1664	+.00051	2
", red		0.246	+.0024	4	Pt 10% Ir		0.1733 S 0.074	+.0002	6
Cadmium, pure		0.230	-	1	Pt 10% Rh.		0.072	+.0002	6
66 12.66		0.222	00038	2	Platinoid		0.060		I
"		0.215	00030	4	Potassium		0.232	0013	8
Constantan (60 Cu+40 Ni)		0.0540	+.00227	2	Dhadium		0.216	Ŭ	6
Copper,* pure.		0.0640		ı	Rhodium Silver, pure		0.210	0010	I
16 1 1 1 .		0.018		_	46		1.006		
" "	100	0.908	00013	2	"	100	0.992	00017	2
German silver.		0.070	+.0027	4	Sodium		0.321	0012	8
Gold		0.705	00007	6			0.288 }		6
Graphite Iridium		0.037	+.0003	6 8	Tantalum		0.130 0.174	1000	0
Iron,† pure		0.141		- 1			0.174		
" "		0.151	0008	2	66		0.198}	+.00032	9
Iron, wrought.		0.152	_	I	Tin		0.155	00060	4
		0.144	00008	2	"		0.145		
" steel, 1%		0.143			", pure	-100	0.192		I
C	1	0.103	1000.	2	Tungsten	17	0.476	0001	6
Lead, pure		0.092	_	ı		- /	7/*		
		0.083	000I	2	Tungsten		0.249	+.00023	IO
		0.081	, 0001	2			0.272	, , , , , ,	10
Magnesium	otol	0.376		4			0.294	+.00016	10
Manganin		0.035	_	I	Wood's alloy		0.313)	_	7
" (84 CU+4		0.0519	1		Zinc, pure		0.278	_	ī
Ni 12 Mn)		0.0630	+.0026	2	" "	1	0.2653		
							0.2610	00016	2

References: (1) Lees, Phil. Trans. 1908; (2) Jaeger and Diesselhorst, Wiss. Abh. Phys. Tech. Reich. 3, 1900; (3) Angell, Phys. Rev. 1911; (4) Lorenz; (5) Macchia, 1907; (6) Barratt, Pr. Phys. Soc. 1914; (7) H. F. Weber, 1879; (8) Hornbeck, Phys. Rev. 1913; (9) Worthing, Phys. Rev. 1914; (10) Worthing, Phys. Rev. 1917.

^{*} Copper: 100–197° C, k_t = 1.043; 100–268°, 0.969; 100–370°, 0.931; 100–541°, 0.902 (Hering; for reference see next page). † Iron: 100-727° C, $k_t = 0.202$; 100-912°, 0.184; 100-1245°, 0.191 (Hering).

CONDUCTIVITY FOR HEAT.

TABLE 230. - Thermal Conductivity at High Temperatures.

(See also Table 229 for metals; k in gram-calories per degree centigrade per second across a centimeter cube.)

Reference
3
3 3 3
3 3 4
4 4 4
4 4
3

References: (1) Hansen, Tr. Am. Electrochem. Soc. 16, 329, 1909; (2) Hering, Tr. Am. Inst. Elect. Eng. 1910; (3) Bul. Soc. Encouragement, 111, 879, 1909; Electroch. and Met. Ind. 7, 383, 433, 1909; (4) Poole, Phil. Mag. 24, 45, 1912; see also Clement, Egy, Eng. Exp. Univers. Ill. Bull. 36, 1909; Dewey, Progressive Age, 27, 772, 1909; Woolson, Eng. News, 58, 166, 1907, heat transmission by concretes; Richards, Met. and Chem. Eng. 11, 575, 1913. The ranges in values under 1 do not depend on variability in material but on possible errors in method; reduced from values expressed in other units.

TABLE 231 .- Thermal Conductivity of Various Substances.

Substance, temperature.	k t	Refer- ence.	Substance, temperature.	k t	Refer- ence.
Aniline BP 183° C., -160		I	Naphthaline MP 79° C., -160	.0013	I
Carbon, gas	.010	-	Naphthaline MP 79° C., ο	.00031	I
Carbon, graphite		-	Naphthol — β, MP 122° C., —160.	.00068	I
Carborundum		2	Naphthol, o	.00062	I
Concrete, cinder		- 1	Nitrophenol, MP 114° C., -160	.00106	I
stone	.0022	3	Nitrophenol, o	.00065	I
Diatomic earth		4	Paraffin MP 54° C., -160	.00062	I
Earth's crust		-	Paraffin, o	.00059	I
Fire-brick	.00028	4	Porcelain	.0025	-
Fluorite, -190		5	Quartz \(\perp \) to axis, -190	.0580	5
Fluorite, o	.025	5	,0,	.0173	5
Glass: window	.0025	-	, 100	.0133	5
crown, 03572, -190	.00118	5	Quartz to axis, o	.0325	5
Crown, O3572, O	.00280	5	Rock salt, o	.0167	5
crown, 03572, 100	.00324	5	Rock salt, 30	.0150	5
h'vy flint 0165, -190	.00081	5	Rubber, vulcanized, -160	.00033	5
h'vy flint 0165, 0	.00170	5	Rubber, o	.00037	5
h'vy flint 0165, 100	.00181	5	Rubber, para	.00045	ma.
Glycerine, -160		Y :	Sand, white, dry	. 00093	6
Granite		6	Sandstone, dry	.0055	6
Ice, -160		I	Sawdust	.00012	-
Ice, o		I	Slate to cleavage		6
Iceland spar, -190		5	Slate to cleavage	.0000	6
Iceland spar, o		5	Snow, fresh, dens. = o.rr	.00026	7
Lime	.00029	4	Snow, old.		7 '
Limestones, calcite \		6	Soil, average, sl't moist		-
Marbles, dolomite]	.0056	6	Soil, very dry		-
Mica.	.0018	-	Sulphur, rhombic, o	.00070	5
Flagstone to cleavage		6	Vaseline, 20	.00022	8
Micaceous to cleavage	.0044	6	Vulcanite	.00087	9
		}	1		1

References: (1) Lees, Tr. R. S. 1905; (2) Lorenz; (3) Norton; (4) Hutton, Blard; (5) Eucken, Ann. d. Phys., 1911; (6) Herschel, Lebour, Dunn, B. A. Committee, 1879; (7) Jansson, 1904; (8) Melmer, 1911; (9) Stefan.

THERMAL CONDUCTIVITIES OF BUILDING MATERIALS.

Conductivity in g-cal. flowing in 1 sec. through plate 1 cm thick per cm² for 1° C difference of temperature.

Material.	Conduc- tivity.	Density, g/cm³	Remarks.
Air Calorox Hair felt Keystone hair Pure wool. """ """ Cotton wool Insulite Linofelt Corkboard (pure) Eel grass Flaxlinum Fibrofelt Rock cork Balsa wood Waterproof lith Pulp board Air cell ½ in. thick Air cell ½ in. thick Air cell 1 in. thick Fire-felt, sheet Sire-felt, sheet Fire-felt, sheet Woods, kiln dried: Cypress White pine Mahogany			Remarks. Horizontal layer, heated from above. Fluffy, finely divided mineral matter. Felt between layers of bldg. paper. Firmly packed. Loosely packed. Very loosely packed. Firmly packed. Pressed wood-pulp—rigid, fairly strong. Vegetable fibers between layers of paper—soft and flexible. Inclosed in burlap. Vegetable fibers—firm and flexible. Rock wool pressed with binder, rigid. Very light and soft. Rock wool, vegetable fiber and binder, not flexible. Stiff pasteboard. Corr. asbestos paper with air space. """ Fairly firm, but easily broken. Asbestos sheet coated with cement, rigid. Soft, flexible asbestos. Flexible tar roofing. Pressed asbestos, firm, easily broken.
Virginia pine	o.00033 o.00035 o.00038 o.00093	0.55 0.61 0.71 1.97	Asbestos and cement, very hard, rigid.

Dickinson and van Dusen, Am. Soc. Refrigerating Eng. J. 3, Sept. 1916.

TABLES 233-234.

CONDUCTIVITY FOR HEAT.

TABLE 233. - Various Substances.

 k_t is the heat in gram-calories flowing in 1 sec. through a plate 1 cm. thick per sq. cm. for 1°C drop in temperature.

Substance.	Density.	°C.	k _t	Substance,	k _t	Authority.
Asbestos fiber 85% magnesia asbestos Cotton Gradiente Control Con	.201 .216 .021 .101 .0021	\$00 \$00 \$00 \$00 \$00 \$100 \$150 \$150	.00019 .00016 .00017 .000111 .000071 .00015	Blotting paper Portland cement Cork, t, o°C Chalk Ebonite, t, 49° Glass, mean	0.00043 .00015 .00071 .0007? .0020 .00037	Lees-Chorl- ton. Forbes. H, L, D, see p. 205. Various.
Lampblack, Cabot number 5 Quartz, mesh 200 Poplox, popped Na ₂ SiO ₃ . Wool fibers	.193 1.05 0.093 .015 .054	100 500 500 200 500 100	.000074 .000107 .00024 .000091 .000160 .00018 .000085	Leather, cow-hide "chamois. Linen. Silk Caen stone, limestone Free stone, sandstone	.0057 .00042 .00015 .00021 .00095 .0043	Neumann. Lees-Chorlton. H, L, D.

Left-hand half of table from Randolph, Tr. Am. Electroch. Soc. XXI., p. 550, 1912; k_b (Randolph's values) is mean conductivity between given temperature and about 10°C. Note effect of compression (density). The following are from Barratt Proc. Phys. Soc., London, 27, 81, 1914.

Substance.	Density.	1	C _k	Substance.	Density.	k,		
		at 20°C.	at 100°C.			at 20°C.	at 100°C.	
Brick, fire Carbon, gas Ebonite Fiber, red Glass, soda Silica, fused	1.73 1.42 1.19 1.29 2.59 2.17	.00110 .0085 .00014 .00112 .00172	.00109 .0095 .00013 .00119 .00182	Boxwood Greenheart Lignumvitæ Mahogany Oak Whitewood	0.90 1.08 1.16 0.55 0.65 0.58	.00036 .00112 .00060 .00051 .00058	.00041 .00110 .00072 .00060 .00061	

The following values are from unpublished data furnished by C. E. Skinner of the Westinghouse Co., Pittsburgh, Penn. They give the mean conductivity in gram-calories per sec. per cm. cube per °C. when the mean temperature of the cube is that stated in the table. Resistance in thermal ohms (watts/inch²/inch/°C.) = $\frac{1}{10.6}$ conductivity.

Substance.	Grams.		Conductivity.							
	per cm ³ .	100° C.	200° C.	300° C.	400° C.	500° C.	temp.			
Air-cell asbestos	0.232 .168 .326 .506 .321 .450 .362	0.00034 .00015 .00028 .00034 .00030 .00023	0.00043 .00019 .00032 .00032 .00029 .00025	.00037 .00040 .00033 .00025 .00079		0.00046	320 180 600 400 300 600			

TABLE 234.- Water and Salt Solutions.

Substance.	°C.	, k _t	Authority.	Solution in water.	Density.	°C.	k	Authority.
Water {	0 11 25 20	0.00150 .00147 .00136 .00143	Goldschmidt, 'rr. { Lees, '98. Milner, Chattock, '98	CuSO ₄ KCl NaCl "" H ₂ SO ₄ ZnSO ₄	1.160 1.026 1.178 1.054 1.180 1.134 1.136	4.4 13. 4.4 26.3 20.5 21. 4.5	0.00118 .00116 .00115 .00135 .00126 .00130	H. F. Weber. Graetz. H. F. Weber. Chree. H. F. Weber.

TABLE 235. - Thermal Conductivity of Organic Liquids.

Substance,	°C	k t	Refer.	Substance.	°C	k:	Refer.	Substance.	°C	k t	Refer.
Acetic acid	11 0	.0352 .0346 .03345	2 2 3 —		9~15 9~15 25 13	.03288 .03303 .0368	1 2 5	Oils: olive. " castor. Toluol. Vaseline. Xylene.	 o 25	.03395 .03425 .03349 .0344 .03343	4 3 2
Reference	es: (1) H. F.	We	ber; (2) Lees; (3) G	oldsc	hmidt;	(4)	Wachsmuth; (5) Gr	aetz.		

TABLE 236. - Thermal Conductivity of Gases.

The conductivity of gases, $k_t = \frac{1}{4}(9\gamma - 5)\mu C_v$, where γ is the ratio of the specific heats, C_p/C_v , and μ is the viscosity coefficient (Jeans, Dynamical Theory of Gases, 1916). Theoretically k_t should be independent of the density and has been found to be so by Kundt and Warburg and others within a wide range of pressure below one atm. It increases with the temperature.

Gas.	t° C	kt	Ref.	Gas.	t° C	kt	Ref.	Gas.	t° C	k _t	Ref.
Air Ar CO CO ₂	-191 100 -183 0 100 -78 0	0.000180 0.000566 0.000719 0.000142 0.000380 0.000599 0.000542 0.000219 0.000332	1 1 1 1 1 1	CO ₂ C ₂ H ₄ He "" H ₂ "" CH ₄	100 0 -193 0 100 -192 0 100	0.0000496 0.000395 0.000146 0.000344 0.000398 0.000133 0.000416 0.000499 0.0000720	1 2 1 4 1 1 4 1 4	Hg N ₂	203 -191 0 100 -191 0 100 8	0.0000185 0.0000183 0.0000568 0.0000172 0.0000570 0.0000570 0.000046 0.0000353	3 1 1 1 1 1 2 4

References: (1) Eucken, Phys. Z. 12, 1911; (2) Winkelmann, 1875; (3) Schwarze, 1903; (4) Weber, 1917.

TABLE 237. - Diffusivities.

The diffusivity of a substance $=k^2=k/c\rho$, where k is the conductivity for heat, c the specific heat and ρ the density (Kelvin). The values are mostly for room temperatures, about 18° C.

Material.	Diffusivity.	Material.	Diffusivity
Aluminum Antimony Bismuth Brass (yellow) Cadmium Copper Gold Iron (wrought, also mild steel) Iron (cast, also 1% carbon steel) Lead. Magnesium Mercury Nickel Palladium Platinum Silver Tin Zinc Air. Asbestos (loose) Brick (average fire) Brick (average fire) Brick (average building)	0.237 0.883 0.0327 0.152 0.240 0.243 1.737 0.407 0.402 0.179	Coal. Concrete (cinder). Concrete (stone). Concrete (light slag). Cork (ground). Ebonite. Glass (ordinary). Granite. I.ce Limestone. Marble (white). Paraffin. Rock material (earth aver.). Rock material (crustal rocks). Sandstone. Snow (fresh). Soil (clay or sand, slightly damp). Soil (very dry). Water. Wood (pine, cross grain).	0.002 0.0032 0.0058 0.006 0.0017 0.0010 0.0057 0.0152 0.0092 0.0090 0.0118 0.0064 0.0133 0.005 0.0031 0.0050 0.0031 0.0004

Taken from An Introduction to the Mathematical Theory of Heat Conduction, Ingersoll and Zobel, 1913.

LINEAR EXPANSION OF THE ELEMENTS.

In the heading of the columns t is the temperature or range of temperature; C is the coefficient of linear expansion; A_1 is the authority for C; M is the mean coefficient of expansion between \circ and 100° C; α and β are the coefficients in the equation $l_t = l_0(1 + \alpha_t + \beta_t^2)$, where l_0 is the length at \circ C and l_t the length at t C; A_2 is the authority for α , β , and M.

Aluminum	Substance.	t	$C \times 10^4$	A1	M imes 104	a × 104	β× 10 ⁶	A_2
"	Aluminum	40	0 2313	T	0.2220	_	_	2
Mantimony: to axis.	44						_	_
		-191 to +16			_	. 23536	.00707	5
Mean		40		I	_			_
Arsenic.					— <u> </u>			6
Bismuth: to axis.					0.1050	.0923	.0132	0
	Arsenic	40	0.0559	1				
Mean	Bismuth: to axis				_	-	-	_
Cadmium. 40 0.3069 I 0.3159 .2693 .0466 Carbon: Diamond. 40 0.0118 I —								6
Carbon: Diamond. 40 0.0118 I — — — Gas carbon. 40 0.0540 I — — — Anthracite. 40 0.0786 I — — — Cobalt. 40 0.1236 I — — — Copper. 40 0.1678 I 0.1666 1.481 .0185 Copper. 40 0.1678 I 0.1666 1.481 .0185 Gold. 40 0.1431 I 0.1470 .1358 .0112 " —170 0.117 I — — — Indium. 18 0.088 16 0.090 — — Iridium. 18 0.088 16 0.090 — — Iridium. 18 0.088 16 0.090 — — Iridium. 18 0.089 1 — — —	Mean							6
Gas carbon 40 0.0540 1	_admium	40	0.3009	1	0.3159	. 2093	.0400	
Graphite. 40 0.0786 I I — .0055 .0016 Anthracite. 40 0.2786 I I —					_	_	_	-
Cobalt							0016	T 2
Cobalt							.0010	13
Copper								
Gold.					0.1666	.1481	.0185	6
Gold.								5 6
Indium					0.1470	.1358	.OII2	6
Iridium					_	_	_	_
Iron: Soft	ndium				_			
Cast. 40 0.1061 I — <t< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>16</td></t<>						_		16
Cast. −191 to +16 0.085e 4 — — — — — — — — 0.05254 — — 11705 .005254 — — .005254 — — .005254 — — .005254 — .005254 — .005254 — .005254 — .005254 — .005336 .0052 I — .00793 .008336 .0052 .0052 .0052 .0052 .0052 .0052 .0052 .0074								
Wrought −18 to 100 0.1140 7 — .11705 .005254 Steel 40 0.1322 I — .0973 .08336 Steel annealed 40 0.1095 I 0.1089 .1038 .0052 Lead 40 0.2024 I 0.2709 .273 .0074 Lead (cast) −170 0.24 I — — — Mickel 40 0.2694 I 0.261 — — — Nickel 40 0.1279 I — 1.3460 .003315 — <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td>_</td>						_	_	_
Steel. 40 0.1322 I — .00173 .008336 Steel annealed 40 0.1095 I 0.1089 1038 .0052 Lead 40 0.2024 I 0.2709 .273 .0074 Lead (cast) -170 0.24 15 — — — Magnessium 40 0.2694 I 0.261 — — — Nickel 40 0.1070 I — .15460 .003315 6 -191 to +16 0.1012 4 0.102 — — — Osmium 40 0.0557 I — I.11670 .002187 Plasidium 40 0.0890 I — .002187 Platinum 40 0.0890 I — .08868 .001324 Potassium 0-50 0.8300 II — — — Rhodium 40 0.0650 I —					_	.11705	.005254	8
Lead (ast)	Steel	40	0.1322		_			8
Lead (cast). -170 0.24 15 -								9
Magnesium	ead				0.2709	. 273	.0074	6
Nickel								16
" -191 to +16 0.1012 4 0.102 — — Osmium 40 0.0657 I — — — Palladium 40 0.1176 I — .11670 .002187 Phosphorus 0-40 1.2530 10 — — .002187 Platinum 40 0.0890 I — .08868 .001324 Potassium 0-50 0.8300 II — — — Ruthenium 40 0.0963 I — — — Selenium 40 0.3680 I 0.6604 — — Silicon 40 0.0763 I — .0270 .004793 " -191 to +16 0.1704 4 0.189 — .004793					0.201	T2 60	002215	8
Osmium 40 0.0657 I — <t< td=""><td></td><td></td><td></td><td></td><td>0.102</td><td>- 13400</td><td></td><td>16</td></t<>					0.102	- 13400		16
Palladium						_	_	_
Platinum	Palladium				-	.11670	.002187	8
Potassium 0-50 0.8300 II	Phosphorus					-0060	_	_
Rhodium						. 08868	.001324	8
Ruthenium. 40 0.0063 I — — — — — — — — — — — — — — — — — —								
Selenium	Ruthenium			-				
Silicon	Selenium				0.660.1	_		12
Silver						_		
	Silver	40		I		.18270	.004793	8
Sodum								16
50thant	Sodium	o to 90	2.26	14			_	_
Sulphur: Cryst. mean 40								I 2
Tellurium					0.3007			12
Tin. 40 0.3224 I 0.2296 .2033 .0263	Cin.				0.2206	. 2033	.0263	6
Zinc. 40 0.2018 I 0.2070 274I 0.234								6
Zinc (cast)				15				-
					l			

References: (1) Fizeau; (2) Calvert, Johnson and Lowe; (3) Chatelier; (4) Henning; (5) Dittenberger; (6) Matthiessen; (7) Andrews; (8) Holborn-Day; (9) Benoit; (10) Pisati and De Franchis; (11) Hagen; (12) Spring; (13) Day and Sosman; (14) Griffiths; (15) Dorsey; (16) Grüneisen.

Tungsten: $(L-L_0)/L_0 = 4.44 \times 10^{-6} (T-300) + 45 \times 10^{-11} (T-300)^2 + 2.20 \times 10^{-13} (T-300)^3$. $L_0 = \text{length at } 300^{\circ} \text{ K}$. Coefficient at $300^{\circ} \text{ K} = 4.44 \times 10^{-6}$; $1300^{\circ} \text{ K}, 5.19 \times 10^{-6}$; $2300^{\circ} \text{ K}, 7.26 \times 10^{-6}$. Worthing, Phys. Rev.

Molybdenum: $Lt = L_0(\mathbf{1} + 5.\mathbf{1}; t \times \mathbf{10}^{-6} + 0.00570f^2 \times \mathbf{10}^{-6})$, for 19° to -142° C; $= L_0(\mathbf{1} + 5.01t \times \mathbf{10}^{-6} + 0.00138f^2 \times \mathbf{10}^{-6})$, for 19° to $+305^\circ$ C; Schad and Hidnert, Phys. Rev. 1919. The Holborn-Day and Sosman data are for temperatures from 20° to 1000° C. The Dittenberger, 0° to 600° C.

LINEAR EXPANSION OF MISCELLANEOUS SUBSTANCES.

The coefficient of cubical expansion may be taken as three times the linear coefficient. t is the temperature or range of temperature, C the coefficient of expansion, and A, the authority.

Substance.	ŧ	C × 104	A.	Substance.	ı	C × 104	Α.					
Brass:												
Cast	0-100	0.1875	I	Platinum -silver:								
Wire	4.6	0 1930	I	1 Pt + 2Ag	0-100	0.1523	4					
	*4	. 1783 193	2	Porcelain	20-790	0.0413	19					
71.5 Cu + 27.7 Zn +				" Bayeux	1000-1400	0.0553	20					
0.3 Sn + 0.5 Pb	40	0.1859	3	Quartz:								
71 Ču + 29 Zn Bronze:	0-100	0.1906	4	Parallel to axis	0-80	0.0797	6					
3 Cu + 1 Sn	16.6-100	0.1844	5	Perpend. to axis	-190 to + 16 0-80	0.0521	6					
3 04 2 04 11111	Quartz glass —190 to +16 —0.0026 I.											
				£ 46			26					
14 66 66 66 66	Rock salt 40 0.4040											
	Rock salt											
00 00 1 0 00 1	16.6-957	Rupper, nard	_160	0.691	27							
86 2 Cu + 0.7 Sp.+	1 80.3 (.11 ± 0.7 50 ± 1) Specialism metal											
4 Zn	40	0.1782	Topaz:	0-100	0.1933	I						
4 Zn	0-80	0.1713	3 6	Parallel to lesser								
2.2 Sn + fard	"	0.0832	8									
0.2 P		0.1708	6	horizontal axis Parallel to greater			8					
Caoutchouc												
Constantan	4-29	0.770	7	axis	66		8					
Ebonite		C.0472	0									
Ebonite												
German silver " o. 1836 8 tudinal axis " o. 09 Gold-platinum: Parallel to horizon-												
	4.6			Parallel to horizon-	64							
2 Au + 1 Pt	**	0.1523	4	tal axis		0.0773	8					
Gold-copper: 2 Au + I Cu	23	0.7550	,	Type metal Vulcanite	16.6-254 0-18	0.1952	5					
Glass:		0.1552	4	Wedgwood ware	0-100	o.6360 o.0800	5					
Tube	66	0.0833	I	Wood:	0 100	0.0090	3					
	44	0.0828	9	Parallel to fiber:								
Plate	44	0.0891	IO	Ash	44	0.0951	23					
Crown (mean)		0.0897	IO	Beech	2.34	0.0257	24					
Elint	50-60	0.0954	II	Chestnut	46	0.0649	24					
Flint				Mahogany	44	0.0361	24					
mometer normal	0-100	0.081	12	Maple	44	0.0638	24					
" 50 ^{III}	4.6			Oak	46	0.0492	24					
		0.058	12	Pine	46	0.0541	24					
Cuttoh- " · · · · ·	- 191 to + 16	0.424	13	Walnut		0.0658	24					
Gutta percha	20 - 20 to - I	0.51	14	Beech	44	0.614	24					
Ice	20 10 1	0.32	13	Chestnut	6.6	0.325	24					
Parallel to axis	0-80	0.2631	6	Elm	44	0.443	24					
Perpendicular to axis	44	0.0544	6	Mahogany	46	0.404	24					
Lead-tin (solder)		0.000		Maple	44	0.484	24					
2 Pb + 1 Sn Magnalium	0-100 12-39	0.2508	16	Oak	4.6	0.544	24					
Manganin	±2 39	0.181		Pine Walnut	4.6	0.341	24					
Marble	15-100	0.117	17	Way White	10-26	2.300	25					
Paraffin	0-16	1.0662	18	44 44	26-31	3.120	25					
4	16-38	1.3030	18		31-43	4.860	25					
Platinum inidian	38-49	4.7707	18		43-57	15.227	25					
Platinum-iridium	40	0.0884	3			}						
1010 111	40	0.0004	- 3			1						
References:	References:											
(I) Smeaton.	(1) Smeaton. (8) Pfaff. (15) Mean. (22) Mayer.											
(a) Various (b) Deluc (16) Stadthagen. (23) Glatzel												
(17) Fizeau (18) Lavoisier and Laplace. (17) Fröhlich. (24) Villari.												
(4) Matthiessen.	(11) Pulfri	ch.		(18) Rodwell.		(25) Kopp.						
(5) Daniell.	(12) Schot (13) Henni	ng .		(19) Braun. (20) Deville and	Troost	(26) Randa (27) Dorse						
(6) Benoit. (7) Kohlrausch.	(13) Henni (14) Russn	er.		(21) Scheel.	110050	(2/) Dorse	у.					
(/) Komtauscu.	(14) 10050			(22) Donoon								
]					

CUBICAL EXPANSION OF SOLIDS.

If v_2 and v_1 are the volumes at t_2 and t_1 respectively, then $v_2 = v_1$ $(\mathbf{1} + C\Delta t)$, C being the coefficient of cubical expansion and Δt the temperature interval. Where only a single temperature is stated C represents the true coefficient of cubical expansion at that temperature.*

Substance.	t or Δt	C × 104	Authority.
Antimony Beryl Beryl Sismuth Copper Diamond Emerald Galena Glass, common tube hard Jena, borosilicate 59 III pure silica Gold Ice Iron Lead Paraffin Platinum Porcelain, Berlin Potassium chloride nitrate sulphate Quartz Rock salt Rubber Silver Sodium Stearic acid Sulphur, native Tin Zinc	0-100 0-100 0-100 0-100 0-100 40 40 40 0-100 0-100 0-100 0-100 20-100 20 0-100 20 0-100 20 0-100 20 0-100 20 0-100 20 0-100 20 0-100 20 33.8-45.5 13.2-50.3 0-100	0.3167 0.0105 0.3948 0.4998 0.0354 0.0168 0.558 0.276 0.214 0.156 0.0129 0.4411 1.1250 0.3550 0.8399 5.88 0.265 0.0814 1.094 1.967 1.0754 0.3840 1.2120 4.87 0.5831 2.1364 8.1 2.23 0.6889 0.8928	Matthiessen Pfaff Matthiessen Fizeau Fizeau Pfaff Regnault Scheel Chappuis Matthiessen Brunner Dulong and Petit Matthiessen Russner Dulong and Petit Chappuis and Harker Playfair and Joule "" Tutton Pfaff Pulfrich Russner Matthiessen E. Hazen Kopp " Matthiessen "" Matthiessen

^{*} For tables of cubical expansion complete to 1876, see Clark's Constants of Nature, Smithsonian Collections, 289.

SMITHSONIAN TABLES.

CUBICAL EXPANSION OF LIQUIDS.

If V_o is the volume at 0° then at t° the expansion formula is $V_t = V_o (1 + \alpha t + \beta t^2 + \gamma t^3)$. The table gives values of α , β and γ and of C, the true coefficient of cubical expansion, at 20° for some liquids and solutions. Δt is the temperature range of the observation and A the authority.

Lìquid.	Δŧ	a 10 ⁸	β 106	γ 108	C 10 ⁸ at 20 ⁰	A
Acetic acid	16–107	1.0630	0.12636	1.0876	1.071	3
Acetone Alcohol:	0-54	1.3240	3.8090	-0.87983	1.487	3
Amyl Ethyl, 30% by vol	-15-80 18-39	0.9 001 0.2928	0.6573	1.18458 —11.87	0.902	4a
" 50% "	0-39	0.2920	10.790	0.730	_	6
" 99.3% "	27-46	1.012	2.20		1.12	6
" 500 atmo. press " 3000 " " .	0-40 0-40	0.866 0.524	_	_	_	I
Methyl	0-61	1.1342	1.3635	0.8741	1.199	5a
Benzol	11-81 0-59	1,17626	1.27776 1.87714	-0.80648 -0.30854	I.237 I.132	5a
Calcium chloride:				1.51154		
5.8% solution	18-25 17-24	0.07878	4.2742 0.8571	_	0.250	7 7
Carbon disulphide	34-60	1.13980	1.37065	1.91225	1.218	4a
500 atmos, pressure .	0-50 0-50	0.940	_		_	I
Carbon tetrachloride	0-76	1.18384	0.89881	1.35135	1.236	4b
Chloroform	o-63 15-38	1.10715	4.66473	-1.74328 4.00512	1.273	4b
Glycerine	-5-5-	0.4853	0.4895	-	0.505	4a 8
Hydrochloric acid: 33.2% solution	0-33	0.4460	0.215	-	0.455	9
Mercury	0-100	0.18182	0.0078	_	0.18186	13
Olive oil	0-33	0.6821	3.09319	-0.539 1.6084	0.721	10
Potassium chloride:						
24.3% solution	16-25 36-157	0.269 5 0.8340	2.080	0.4446	0.353	7
Petroleum:				5.1775		
Density 0.8467 Sodium chloride:	24-120	0.8994	1.396	_	0.955	12
20.6% solution	0-29	0.3640	1.237	-	0.414	9
Sodium sulphate: 24% solution	11-40	0.3599	1.258	_	0.410	9
Sulphuric acid:	·				1	
10.9% solution	0-30 0-30	0.2835	2.580 —0.432	_	0.387	9
Turpentine	 9-106	0.9003	1.9595	-0.44998	0.973	5b
Water	0-33	-0.06427	8.5053	-6.7900	0.207	13

AUTHORITIES.

- Amagat: C. R. 105, p. 1120; 1887.
 Thorpe: Proc. Roy. Soc. 24, p. 283; 1876.
 Zander: Lieb. Ann. 225, p. 109; 1884.
- 4. Pierre: a. Lieb. Ann. 56, p. 139; 1845. b. Lieb. Ann. 80, p. 125; 1851.
- 5. Kopp: a. Lieb. Ann. 94, p. 257; 1855.
- b. Lieb. Ann. 93, p. 129; 1855. 6. Recknagel: Sitzber. bayr. Ak. p. 327, 2
- Abt.; 1866. Drecker: Wied. Ann. 34, p. 952; 1888.
- 8. Emo: Ber. Chem. Ges. 16, 1857; 1883.

- 9. Marignac: Lieb. Ann., Supp. VIII, p. 335; 1872.
- 10. Spring: Bull. Brux. (3) 3, p. 331; 1882.
- 11. Pinette: Lieb. Ann. 243, p. 32; 1888.12. Frankenheim: Pogg. Ann. 72, p. 422;
- 1847.

 13. Scheel: Wiss. Abh. Reichsanstalt, 4, p. 1;
- 14. Thorpe and Jones: J. Chem. Soc. 63,
- p. 273; 1893.

TABLE 242.

COEFFICIENTS OF THERMAL EXPANSION.

Coefficients of Expansion of Gases.

Pressures are given in centimeters of mercury.

Coefficient a	t Constant Volu	ıme.		Coefficient a	t Constant Pres	ssure.	
Substance.	Pressure cm.	Coefficient X	Reference.	Substance.	Pressure cm.	Coefficient X	Reference.
Air " " " " " " " " " " " " " " " " " "	.6 1.3 10.0 25.4 75.2 100.1 76.0 200.0 2000. 10000. 51.7 76.0 1.8 5.6 74.9 51.8 51.8 51.8 99.8 100.0 76. 56.7 .0077 .025 .47 .93 11.2 76.4 100.0 .53 100.2 76007 .25 .19 18.5 75.9 76. 76.	37666 37172 36630 36580 36580 36650 36903 38866 36868 36856 36753 36641 37264 36985 37262 36981 37328 3665 37262 36981 37248 3665 37262 36981 37264 3665 37262 37248 3665 37262 36548 36504 36626 37002 36754 36754 3683 36690 36681 3845	1	Oxygen, $E =$ Nitrogen, $E =$	he calculation of and 100° (e change of the	on of the C. Expansion of	e ex- nsion under),),)),)),)), of the

- 1 Meleander, Wied. Beibl. 14, 1890; Wied.
- Ann. 47, 1892. 2 Chappuis, Trav. Mem. Bur. Intern. Wts.
- Meas. 13, 1903. 3 Regnault, Ann. chim. phys. (3) 5, 1842. 4 «Keunen-Randall, Proc. R. Soc. 59, 1896.
- 5 Chappuis, Arch. sc. phys. (3), 18, 1892. 6 Baly-Ramsay, Phil. Mag. (5), 38, 1894. 7 Andrews, Proc. Roy. Soc. 24, 1876. 8 Meleander, Acta Soc. Fenn. 19, 1891. 9 Amagat, C. R. 111, 1890. 10 Hirn, Théorie méc. chaleur, 1862.

SPECIFIC HEAT OF THE CHEMICAL ELEMENTS.

	Range * of				Range * of		
Element.	temperature,	Specific	Refer-	Element.		Specific	Refer-
	° C	heat.	ence.		temperature,	heat.	ence.
Aluminum	-240.6	.0002	45	Cobalt	500	.1452	18
	-190.0	. 0889	45		1000	, 204	18
"	-73.0 -100 to -82	.1466	46		-182 to +15	.0822	19 10
	-76 to -1	.1062	47	Copper †	-249.5	.0035	45
44	+16 to +100	.2122	47 48	£4."	-223	,0208	46
"	+16 to +304	. 2250	48	"	-185	.0532	45
	-250	.1428	I		-63	.0865	46
,,	0	. 2089	I		+25	.0917	44
"	100	.2226	I	44	76 84	.0937	51
"	250 500	. 2382	I	"	100	.0042	51
"	16-100	.2122	43	α	362	.0997	51
Antimony	15	.0489	2	"	900	.1259	20
	100	.0503	2	<i>"</i>	15-238	.0051	43
	200	.0520	2	"	-181 to 13	.0868	21
Arsenic, gray	0-100	.0822	3	Gallium, liquid	23-100 12 to 113	.0940	2 I 2 2
Barium	-185 to +20	.068	3 4	solid	12-23	.070	22
Bismuth	-186	.0284		Germanium	0-100	.0737	23
44	0	.0301	5 6	Gold	-185 to +20	.033	4
"	75	0300	6		0-100	.0316	24
" fluid	20-100	.0302	8	Indium	0-100	.0570	13
	280-380	.0363		Iodine	-90 to +17	.0485	49
Boron	0-100 -101 to -78	. 307	47	44	9-98	.0454	49
(4	-76 to -0	.1677	47	Iridium	-186 to +18	.0282	26
Bromine, solid	-78 to -20	.0843	10	"	18-100	.0323	26
" solid	-192 to -80	.0702	49	Iron	-223	.0176	46
" fluid	13-45	.107	11		-163	.0622	46
Cadmium	-223	.0308	46 46		−63 + 37	.1002	46 46
"	-173 -73	.0478	46	" cast	20-100	.1180	27
44	21	.0551	2	" wrought	15-100	.1152	28
46	100	.0570	2	" wrought	1000-1200	.1989	28
44	200	.0594	2	" wrought	500	.176	28
*******	300	.0617	2	nard-drawn	0–18 20–100	.0986	29
Cæsium	0-26 -185 to +20	.0482	12	" hard-drawn	-185 to +20	.1146	29
Calcium	0-181	.170	13	66	o to +200	.1175	53
Carbon, graphite	-191 to -79	.0573	47	44	o to +300	.1233	53
" " "	-76 to -0	.1255	47		o to +400	.1282	53
1	-50	.114	14		o to +500 o to +600	.1338	53
	+11	. 160	14		0 to +700	.1396	53 53
" "	977 1730	. 50	52	"	o to +700 o to +800	.1507	53
	-244	.005	50	66	o to +900	.1644	53
Acheson	1 -186	.027	50	46	o to +1000	.1557	53
Carbon, diamond	-50	.0635	47		o to +1100	.1534	53
66 66	+11	.113	47	Lanthanum	0-100 -250	.0448	46
	985 0-100	. 459	47	Lead	-250 -236	.0143	46
Cerium	0-100	. 2262	16	4.6	-103	.0276	46
Chromium	- 200	.0666	17	61	-73	.0295	46
44	0	.1039	17	16	15	.0299	2
"	100	.1121	17		100	,0311	2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	600	. 1872	17	" fluid	300	.0338	2
*********	-185 to +20	,080	4	пии	310	.0356	30
l			!			-	

^{*}When one temperature is given, the "true" specific heat is indicated, otherwise the "mean" specific heat. $\dagger 0.3834 + 0.00020(t-25)$ intern. j per g degree = 0.0917 + 0.000048(t-25) cals per g degree. (Griffith, 1913.)

SPECIFIC HEAT OF THE CHEMICAL ELEMENTS.

		1	1		H		1
	Dongs # of				Range * of		
201	Range* of	Specific	Refer-	T21		Specific	Refer-
Element.	temperature,	heat.	ence.	Element.	temperature,	heat.	ence.
	° C	mcat.	CHCC.		° C	Hour.	Chec.
Lead	90	0.0312	51	Potassium	-101 to -80	0.1568	47
	210	0.0334	51	46	-78 to o	0.1666	47
46							
	18-100	0.0310	43	n,	-185 to $+20$	0.170	4
*********	16-256	0.0319	43	Rhodium	10-97	0.0580	25
Lithium	-101 to -80	0.521	47	Rubidium	0	0.0802	
**	- 78 to o	0.595	47	Ruthenium	0-100	0.0611	13
	-75 to +19	0.629		Selenium	-188 to +18	0.068	36
			47				
	-100	0.5997	31	Silicon	-185 to +20	0.123	4
	0	0.7951	31		-39 8	0.1360	14
4	50	0.0063	31		+57.I	0.1833	14
	100	1.0407		44	232	0.2020	14
			31	Cilven			
	190	1.3745	31	Silver	-238	0.0146	46
Magnesium	-185 to +20	0.222	4		-213	0.0307	46
- "	60	0.2492	7	44	-173	0.0447	46
"	325	0.3235	7	44	-73	0.0540	16
6.6					+27	0.0560	46
44	625	0.4352	7	**			
	20-100	0.2492	7		0-100	0.0559	13
Manganese	-188 to -79	0.0820	49		23	0.05498	2
**	-79 to +15	0.1001	49	44	100	0.05663	2
	. 60	0.1211	49	44	500	0.0581	34
						0.05087	
	325	0.1783	49		17-507		43 18
	20-100	0.1211	49	" fluid	800	0.076	
**	100	0.0979	31	" fluid	907-1100	0.0748	18
44	0	0.1072	31	Sodium	-185 to +20	0.253	4
66	100	0.1143	31	4.6	-101 to -83	0.243	47
				44		0.276	
Mercury, sol	-77 to -42	0.0329	47		-77 to o		47
i liq	-36 to -3	0.0334	47		-223	0.152	46
"	-185 to $+20$	0.032	4		-183	0.219	46
4.6	0	0.03346	32	Sulphur	-188 to +18	0.137	36
"	85	0.0328	32	' rhombic.	0-54	0.1728	33
1.1				" monoclin.		0.1728	
	100	0.03284	2		0-52		33
	250	0.03212	2	nquiu	119-147	0.235	2
Molybdenum	-185 to $+20$	0.062	4	Tantalum	-185 to $+20$	0.033	4
	60	0.0647	7	44	1400	0.043	_
44	475	0.0750	7	Tellurium	-188 to +18	0.017	36
	20 to 100			" crys		0.0483	
		0.0647	7	The Himm	15-100	0.0103	37
Nickel	-185 to +20	0.092	4	Thallium	-185 to $+20$	0.038	4
	100	0.1128	18		20-100	0.0326	27
	300	0.1403	18	Thorium	0-100	0.0276	38
"	500	O. I 200	18	Tin	-196 to -79	0 0186	26
LI.	1000	0.1608	18	66	-76 to +18	0.0518	26
"							
	18-100	0.109	26	" cast	21-109	0 0551	30
Osmium	19-98	0.0311	10	nuid	250	0.05799	18
Palladium	-186 to +18	0.0528	26	" fluid	1100	0.0758	18
44	0-100	0.0502	24	Titanium	-185 to +20	0 082	4
44	0-1265	0.0714	24	44	0-100	0.1125	
Phoenherman							39
Phosphorus, red	0-51	0.1829	33	Tungsten	-185 to +20	0 036	4
" yellow.	13-36	0.202	33		0-100	0 0336	40
" yellow.	-186 to $+20$	0.178	4	1	1000	0 0337	52
Platinum	-186 to +18	0.0203	26	44	2000	0.042	52
	100	0.0275	34	44	2400	0.045	52
				Umanium			
	200	0.0330	35	Uranium	0-98	0.028	41
	500	0.0349	35	Vanadium	0 -100	0.1153	40
46	750	0.0365	35	Zinc	-243	0.0144	46
46	1000	0.0381	35	44	-103	0.0025	46
6.6	1300	0.0100		44			
44			35		-153	0.0788	46
	20-100	0.0319	35		20-100	0.0931	27
	20-500	0.0333	35	"	100	0.0951	2
**	20-1000	0.0346	35	44	300	0.1010	2
**	20-1300	0.0350	35	Zirconium	0-100	0.0660	
	20 2300	0.0339	33	Zateomani	0 100	0.0000	42
						l .	

^{*}When one temperature is given, the "true" specific heat is indicated, otherwise the "mean" specific heat. See page 226 for references.

HEAT CAPACITIES. TRUE AND MEAN SPECIFIC HEATS, AND

LATENT HEATS AT FUSION.

The following data are taken from a research and discussion entitled "Die Temperatur-Wärmeinhaltskurven der technisch wichtigen Metalle," Wüst, Meuthen und Durrer, Forschungsarbeiten herausgegeben vom Verein Deutscher Ingenieure, Springer, Heft 204, 1918.

(a) There follow the constants of the equation for the heat capacity: $W = a + bt + ct^2$; for the mean specific heat: $s = at^{-1} + b + ct$; and for the true specific heat: s' = b + 2ct; also the

latent heats at fusion.

Ele- ment.	Tempera- ture range.	a	ь	c × 108	La- tent heat. cal./g	Ele- ment.	Tempera- ture range	a	b	c×106	La- tent heat cal./g.
Cr Mo W Pt Sn Bi Cd Pb Zn Sb	0-1500 0-1500 0-232 232-1000 0-270 270-1000 0-321 321-1000 0-419 419-1000 0-630 630-1000 0-657	14.33 10.31 6.30 6.07 14.34 39.42	0.03141 0.03107 0.05550 0.06952 0.03591 0.02920 0.08777 0.13340 0.05179 0.05090	10.99 1.07 3.54 -18.30 5.22 5.41 6.28 6.37 -11.47 3.30 43.48 -16.10 3.00 2.96 38.57	1.64 2.13 1.22 1.13 1.50 4.67	Au Cu Mn Ni Co	1100-1478 1478-1600 0-725 785-919	53.17 26.35 130.74 -7.41 3.83 0.41 50.21 22.00 57.72 -1.63	0.03171 0.01420 0.10079 04150 0.12037 0.17700 0.1950 0.12931 0.13380 0.09119 0.11043 0.14720 0.10545 0.1545	28.30 1.30 8.52 3.05 65.6 25.41 	3.13 2.60 2.01 24.14* 3.29 1.33* 3.43 14.70* 2.76 6.56*
	657-1000	102.39	0.21070	24.00			919-1404 1405-1528 1528-1600	-77.18	0.14472 0.21416 0.15012		6.67*

^{*}Allotropic heat of transformation: Mn, 1070–1130°; Ni, 320–330°; Co, 950–1100°; Fe, 725–785°; 919° = 1; 1404.5° = 0.5.

(b) True Specific Heats.

° C	Pb Zr	n Al	Ag	Au	Cu	Ni	Fe	Со	Quartz.
0° C 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500	0.0359 0.08 0.0336 0.00 0.0313 0.10 0.0290 0.11 0.0259 0.11 0.0259 0.11 0.0239 0.10 0.0233 0.10 0.0236 0.16	965 0.2297 0.2374 139 0.2451 226 0.2529 173 0.2606 141 0.2683 109 0.2523 0.2571 0.2619	0.0583 0.0594 0.0605 0.0616 0.0627 0.0638 0.0649 0.0650 0.0671 0.0637 0.0694	0.0320 0.0322 0.0325 0.0328 0.0330 0.0333 0.0335 0.0338	0. 1014 0. 1020 0. 1032 0. 1038 0. 1045 0. 1051 0. 1057 0. 1063 0. 1069 0. 1028 0. 1159 0. 1291	0.1200 0.1305 0.1409 0.1294 0.1294 0.1295 0.1295 0.1295 0.1295 0.1296 0.1296 0.1296	0.1168 0.1282 0.1396 0.1509 0.1623 0.1737 0.1850 0.1592 0.1592 0.1448 0.1448 0.1444	0.0993 0.1073 0.1154 0.1235 0.1310 0.1396 0.1477 0.1558 0.1639	0.2372 0.2416 0.2400 0.2504 0.2548 0.2592 0.2036 0.2680 0.2724 0.2768 0.2812 0.2856 0.2900

For more elaborate tables and for all the elements in upper table, see original reference. SMITHSONIAN TABLES.

ATOMIC HEATS (50° K), SPECIFIC HEATS (50° K), ATOMIC VOLUMES OF THE ELEMENTS.

The atomic and specific heats are due to Dewar, Pr. Roy. Soc. 89A, 168, 1913.

Li 0.1924 1.35 13.0 Cr 0.0142 0.70 7.6 Sn 0.0286 3.41 20.3 Gl 0.0137 0.125 4.9 Mn 0.0229 1.26 7.4 Sb 0.0240 2.89 18.2 B 0.0212 0.24 4.5 Fe 0.0175 0.98 7.1 I 0.0361 4.59 25.7 C* 0.0137 0.16 5.1 Ni 0.0208 1.22 6.7 Te 0.0288 3.68 21.2 C† 0.0028 0.03 3.4 C0 0.0207 1.22 6.8 Cs 0.0513 6.82 71.0 Na 0.1519 3.50 23.6 Cu 0.0245 1.56 7.1 Ba¶ 0.0350 4.80 36.6 Mg 0.0713 1.74 14.1 Zn 0.0384 2.52 0.2 La 0.0322 4.60 22.6 Al 0.0413 1.12 10.0 As 0.0258 1.94 15.9 Ce 0.0330 4.64 20.3 Si \$ 0.0303 0.86 14.2 Se 0.0361 2.86 18.5 W 0.0095 1.75 9.8 Si \$ 0.0303 0.77 11.4 Br 0.0453 3.62 24.9 Os 0.0074 2.40 17.0 P Rb 0.0711 6.05 55.8 Ir 0.0099 1.92 8.6 Sf 0.0550 4.82 34.5 Pt 0.0303 0.26 I.75 16. Ru 0.0141 1.36 9.3 Hg 0.0232 4.65 14.8 S 0.0564 I.75 16. Ru 0.0109 1.11 9.0 Tl 0.0235 4.80 17.2 Ca 0.0714 2.86 25.9 Ag 0.0242 2.62 10.2 Th 0.0174 4.58 21.3 Ti 0.0205 0.09 10.7 Cd 0.0308 3.46 13.0 U 0.0138 3.30 12.8	Ele- ment.	Specific heat —223° C.	Atomic heat -223°C.	Atomic volume.	Ele- ment.	Specific heat -223° C.	Atomic heat -223°C.	Atomic volume.	Ele- ment.	Specific heat - 223° C.	Atomic heat -223°C.	Atomic volume.
	Gl B C * C † Na Mg Al Si ‡ Si § P yel. P red S Cl K	0.1924 0.0137 0.0212 0.0137 0.0028 0.1519 0.0713 0.0413 0.0303 0.0774 0.0431 0.0546 0.0967 0.1280	1.35 0.125 0.24 0.16 0.03 3.50 1.74 1.12 0.86 0.77 2.40 1.34 1.75 3.43 5.01 2.86	4.9 4.5 5.1 3.4 23.6 14.1 10.0 14.2 11.4 17.0 13.5 16. 24.6 44.7 25.9	Mn Fe Ni Co Cu Zn As Se Br Rb Sr¶ Zr Mo Ru Rh Pd Ag	0.0142 0.0229 0.0175 0.0208 0.0207 0.0245 0.0384 0.0258 0.0361 0.0453 0.0711 0.0550 0.0262 0.0141 0.0109 0.0134 0.0190	0.70 1.26 0.98 1.22 1.22 1.56 2.52 1.94 2.86 3.62 6.05 4.82 2.38 1.36 1.11 1.38 2.03 2.62	7.4 7.1 6.7 6.8 7.1 9.2 15.9 18.5 24.9 55.8 34.5 21.8 9.3 9.0 8.5 9.2	Sb I Te Cs Ba¶ La Ce W Os Ir Pt Au Hg Tl Pb Bi Th	o. o286 o. o240 o. o361 o. o288 o. o513 o. o350 o. o322 o. o330 o. o095 o. o078 o. o099 o. o135 o. o160 o. o232 o. o235 o. o240 o. o218 o. o218	3.4I 2.89 4.59 3.68 6.82 4.80 4.60 4.60 4.75 I.49 I.92 2.63 3.16 4.80 4.94 4.54	18.2 25.7 21.2 71.0 36.6 22.6 20.3 9.8 8.5 8.6 9.2 10.2 14.8 17.2 18.3 21.3 21.1

§ Crystallized. * Graphite. † Diamond. ‡ Fused. ¶ Impure.

References to Table 243:

(1) Bontschew.

(2) Naccari, Atti Torino, 23, 1887–88. (3) Wigand, Ann. d. Phys. (4) 22, 1907. (4) Nordmeyer-Bernouli, Verh. d. phys.

Ges. 9, 1907; 10, 1908. (5) Giebe, Verh. d. phys. Ges. 5, 1903.

(6) Lorenz, Wied. Ann. 13, 1881.

(7) Stücker, Wien. Ber. 114, 1905.(8) Person, C. R. 23, 1846; Ann. d. chim. (3) 21, 1847; 24, 1848.

(9) Moisson-Gautier, Ann. chim. phys. (7) 17, 1896.

(10) Regnault, Ann. d. chim. (3) 26, 1849; 63, 1861. (11) Andrews, Pog. Ann. 75, 1848.

(12) Eckardt-Graefe, Z. Anorg. Ch. 23, 1900. (13) Bunsen, Pogg. Ann. 141, 1870; Wied. Ann. 31, 1887.

(14) Weber, Phil. Mag. (4) 49, 1875.

(15) Hillebrand, Pog. Ann. 158, 1876.

(16) Knietsch.

(17) Adler, Beibl. 27, 1903. (18) Pionchon, C. R. 102–103, 1886. (19) Tilden, Phil. Trans. (A) 201, 1903.

(20) Richards, Ch. News, 68, 1893. (21) Trowbridge, Science, 8, 1898.

(22) Berthelot, Ann. d. chim. (5) 15, 1878.

(23) Pettersson-Hedellius, J. Pract. Ch. 24,

(24) Violle, C. R. 85, 1877; 87, 1878.

(25) Regnault, Ann. d. chim (2) 73, 1840; (3) 63, 1861.

(26) Behn, Wied. Ann. 66, 1898; Ann. d. Phys. (4) 1, 1900.

(27) Schmitz, Pr. Roy. Soc. 72, 1903. (28) Nichol, Phil. Mag. (5) 12, 1881. (29) Hill, Verh. d. phys. Ges. 3, 1901. (30) Spring, Bull. de Belg. (3) 11, 1886; 29,

1895.

(31) Laemmel, Ann. d. Phys. (4) 16, 1905. (32) Barnes-Cooke, Phys. Rev. 16, 1903.

(33) Wiegand, Fort. d. Phys. 1906. (34) Tilden, Pr. Roy. Soc. 66, 1900; 71, 1903;

Phil. Trans. (A) 194, 1900; 201, 1903, (35) White, Phys. Rev. 12, 436, 1918. (36) Dewar, Ch. News, 92, 1905. (37) Kopp, Phil. Trans. London, 155, 1865.

(38) Nilson, C. R. 96, 1883. (39) Nilson-Pettersson, Zt. phys. Ch. 1, 1887.

(40) Mache, Wien, Ber. 106, 1807

(41) Blümcke, Wied. Ann. 24, 1885.

(42) Mixter-Dana, Lieb Ann. 169, 1873. (43) Magnus, Ann. d. Phys. 31, 1910. (44) Harper, Bull. Bureau of Stds. 11, p.

259, 1914.

(45) Nernst, Lindemann, 1910, 1911. (46) Nernst, Dewar. (47) Kosef, Ann. d. Phys. 36, 1911.

(48) Magnus, Ann. d. Phys. 31, 1910. (49) Estreicher, Straniewski, 1912.

(50) Nernst, Ann. d. Phys. 36, 395, 1911. (51) King, Phys. Rev. 11, 1918.

(52) Worthing, Phys. Rev. 12, 1918.
 (53) Harker, Pr. Phys. Soc. London, 19,

703, 1905; Fe .01; C .02; Si .03; S .04; P, Mn trace.

TABLE 246 .- Specific Heat of Various Solids.

Solia.	Temperature °C.	Specific heat.	Au- thority.
			thority.
· A 11			
Alloys: Bell metal		0.0040	ъ
Brass, red	15-98	0.0858 .08991	R L
" vellow	0	.08831	"
80 Cu + 20 Sn	14-08	.0862	R
88.7 Cu + 11.3 Al	20-100	.10432	Ln
German silver	0-100	.09464	T
Lipowitz alloy: 24.97 Pb + 10.13 Cd + 50.66 Bi		1-94-4	
+ 14.24 Sn	5-50	.0345	M
, , , , , , , , ,	100-150	.0426	66
Rose's alloy: 27.5 Pb + 48.9 Bi + 23.6 Sn .		.0356	S
	20-89	.0552	"
Wood's alloy: 25.85 Pb + 6.99 Cd + 52.43 Bi			3.6
+14.73 Sn	5-50	.0352	M
" " (fluid)	100-150	.0426	
Miscellaneous alloys:		22622	R
17.5 Sb + 29.9 Bi + 18.7 Zn + 33.9 Sn	20-99	.05657	.,
39.9 Pb +60.1 Bi	10-98	.03880	Р
" (fluid)	16-99 144-358	.03165	4,
· 63.7 Pb + 36.3 Sn · · · · · · · · · ·	12-99	.03500	R
46.7 Pb + 53.3 Sn	10-00	.04507	11
63.8 Bi + 36.2 Sn	20-99	.04001	46
46.9 Bi + 53.1 Sn	20-00	.04504	44
Gas coal	20-1040	.3145	
Glass, normal thermometer 16111	19-100	. 1988	W
" French hard thermometer		. 1869	Z
" crown	10-50	.161	H M
" flint	10-50	.117	46
Ice	-188252	.146	D
66			"
		.463	- 1
India rubber (Para)	9-100	.481	GT
Mica	20	.10	RW
Paramn	-20- +3	.3768	K W
	-19- +20 0-20	.5251	44
	35-40	.6939 .622	В
" fluid	60-63	.712	,
Vulcanite	20-100	.3312	A M
Woods	20-100	.327	
	1	-3-/	

TABLE 247 .- Specific Heat of Water and of Mercury.

		Specif	ic Heat of	Water.			Specific Heat of Mercury.				
Temper- ature, °C.	Barnes.	Rowland.	Barnes- Regnault.	Temper- ature, °C.	Barnes.	Barnes- Regnault.	Temper- ature, °C.	Specific Heat,	Temper- ature, °C.	Specific Heat.	
-5	1.0155	_	-	60	0.9988	0.9994	0	0.03346	90	0.03277	
0	1.0001	1.0070	1.0094	65	.9994	1.0004	5	.03340	100	.03269	
+5	1.0050	1.0039	1.0053	70	1.0001	1.0015	10	.03335	IIO	.03262	
10	1.0020	1.0016	1.0023	80	1.0014	1.0042	15	.03330	120	.03255	
15						1.0070	20	.03325	130	.03248	
20	0.9987	•999I	0.9990	100	1.0043	I.OIOI	25	.03320	140	.03241	
25	.9978	.9989	.9981	120	- 1	1.0162	30	.03316	150	.0324	
30	.9973	•9990	.9976	140	_	1.0223	35	.03312	170	.0322	
35	.9971	-9997	•9974	160	-	1.0285	40	.03308	190	.0320	
40	.9971	1.0006	•9974	180		1.0348	50	.03300	210	.0319	
45	.9973	1.0018	.9976	- 200	-	1.0410	60	.03294	-	-	
50	.9977	1.0031	.9980	220		1.0476	70	.03289	- 1	-	
55	.9982	1.0045	.9985	-	-	-	80	.03284	-	-	

Barnes's results: Phil. Trans. (A) 199, 1902; Phys. Rev. 15, 1902; 16, 1903. (H thermometer.)

Bousfield, Phil. Trans. A 211, p. 199, 1911. Barnes-Regnault's as revised by Peabody; Steam Tables.

The mercury data from 0° C to 80, Barnes-Cooke (H thermometer); from 90° to 140, mean of Winklemann, Naccari and Milthaler (air thermometer); above 140°, mean of Naccari and Milthaler.

TABLE 248. - Specific Heat of Various Liquids.

Liquid.	Temp.	Spec. heat.	Au- thority.	Liquid.	Temp.	Spec. heat.	Au- thority.
Alcohol, ethyl. "" Alcohol, methyl. Anilin. "Cohlo. CaCl2, sp. gr. 1.14. "" "" "" "" "" "" "" "" ""	0 40 5-10 15-20 15 30 50 10 65 -15 0 +20 -20 0 +20 -20 12-15 12-14 13-17	0.5053 0.548 0.648 0.590 0.514 0.520 0.320 0.423 0.482 0.764 0.775 0.787 0.795 0.663 0.663 0.6651 0.6651 0.663 0.676 0.848 0.951 0.975		Ethyl ether Glycerine KOH + 30H ₂ O " + 100" NaOH + 50H ₂ O " + 100" NaCl + 10H ₂ O " + 200" Naphthalene, C ₁₀ H ₈ Nitrobenzole. Oils: castor citron olive sesame turpentine. Petroleum. Sea water, sp. gr. 1.0043 " " " " " 1.0235 Toluol, C ₆ H ₈ " ZnSO ₄ + 50 H ₂ O " + 200"	15-50 18 18 18 18 18 18 90-95 14 28 5.4 6.6 0 21-58 17.5 17.5 17.5 17.5 20-52	o.876 o.975 o.945 o.978 o.3791 o.978 o.362 o.434 o.438 o.471 o.581 o.938 o.903 o.364 o.438	E TH "" "" "" "" "" "" "" "" "" "" ""

References: (A) Abbot; (B) Batelli; (E) Emo; (G) Griffiths; (DMG) Dickinson, Mueller, and George; (H–D) de Heen and Deruyts; (Ma) Marignac; (Pa) Pagliani; (R) Regnault; (Th) Thomsen; (W) Wachsmuth; (Z) Zouloff; (HW) H. F. Weber.

TABLE 249. — Specific Heat of Liquid Ammonia under Saturation Conditions. Expressed in Calories₂₀ per Gram per Degree C. Osborne and van Dusen, Bul. Bureau of Standards, 1918.

Temp.	0	I	2	3	4	5	6	7	8	9
-40 -30 -20 -10 - 0 + 10 +20 +30 +40	I.062 I.070 I.078 I.088 I.099 I.099 I.112 I.126 I.142 I.162	1.061 1.069 1.077 1.087 1.098 1.100 1.113 1.128 1.144	1.060 1.068 1.076 1.086 1.097 1.101 1.114 1.129 1.146 1.160	1.059 1.067 1.075 1.085 1.096 1.103 1.116 1.131 1.148 1.169	1.058 1.066 1.074 1.084 1.104 1.117 1.132 1.150	1.058 1.065 1.074 1.083 1.093 1.105 1.118 1.134 1.152 1.173	1.057 1.064 1.073 1.082 1.092 1.106 1.120 1.136 1.154 1.170	1.056 1.064 1.072 1.081 1.091 1.108 1.122 1.137 1.156 1.178	1.055 1.003 1.071 1.080 1.090 1.109 1.123 1.139 1.158 1.181	1.055 1.062 1.070 1.079 1.189 1.110 1.125 1.141 1.160

TABLE 250. - Heat Content of Saturated Liquid Ammonia.

Heat content = $H = \epsilon + pv$, where ϵ is the internal or intrinsic energy. Osborne and van Dusen, Bul. Bureau of Standards, 1918,

Temperature -50	$\begin{vmatrix} -40^{\circ} \\ -43 \cdot 3 \end{vmatrix} = -30^{\circ}$	-20° -10°	0° +10° +20	+30° +40°	+50°
$H = \epsilon + pv$ -53 .		-21.8 -11.0	0.0 +11.1 +22	-43.9 -45.5	-57.4

SPECIFIC HEATS OF MINERALS AND ROCKS.

TABLE 251.—Specific Heat of Minerals and Rocks.

Substance.	Tempera- ture ° C.	Specific Heat	Refer- ence.	Substance,	Tempera-	Specific Heat.	Refer- ence.
Andalusite Anhydrite, CaSO4 Apatite Asbestos Augite Barite, BaSO4 Beryl Borax, Na ₂ B ₄ O ₇ fused Calcspar, CaCO ₃ " " Casiderite, SnO ₃ Corundum Cryolite, Al ₂ Fl ₆ .6NaF Fluorite, CaF ₂ Galena, PbS Garnet Hematite, Fe ₂ O ₃ Hornblende Hypersthene Labradorite Magnetite Malachite, Cu ₂ CO ₄ .H ₂ O Mica (Mg) " (K) Oligoclase Orthoclase Pyrites, copper Pyrolusite, MnO ₂	Temperature ° C. 0-100 0-100 15-99 20-98 20-98 15-99 16-98 0-100 0-300 16-98 9-98 16-99 15-99 0-100 15-99 20-98 20-98 20-98 20-98 18-45 15-99 20-98 20-98 15-99 15-99 15-99 15-99 15-99 15-99 15-99 15-99 15-99 15-99 15-99		3 3 4 2 4 1 1 1 4 4 5 2 2 2 3	Rock-salt Serpentine Siderite Spinel Talc Topaz Wollastonite Zinc blende, ZnS Zircon Rocks: Basalt, fine, black """ """ Dolomite Gneiss """ Granite Kaolin Lava, Aetna """ Kilauea Limestone Marble Quartz sand Sandstone .	ture o C. 13-45 16-98 9-98 15-47 20-98 0-100 19-51 0-100 21-51 12-100 20-470 470-750 750-880 880-1190 20-98 17-99 17-213 12-100 20-98 23-100 31-776 25-100 15-100 0-100 20-98	Heat. 0.219 .2586 .1934 .194 .2092 .2097 .178 .1146 .132 .1996 .323 .222 .196 .214 .201 .259 .197 .216 .21 .191 .22	6 2 4 6 3 1 6 1 6 9 9 9 3 10 10 7 3 11 11 11 12 - 3 -
Quarts, SiO ₂	17-40 12-100 0 350 400-1200	.188 .1737 .2786	7 8 8 8	2 Oeberg. 7 Jo 3 Ulrich. 8 Pi 4 Regnault. 9 Re		1 Barto 2 Morai ten, Rüc	no.

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 252.—Specific Heats of Silicates.

Silicate.	Mean specific heats, o° C to					True specific heats.			
	100°	500°	900°	1400°	o°C	100°	500°	10000	1300°
Andesine "glass Anorthite "glass Cristobolite Diopside "glass Microcline "glass Pyroxene Quartz Silica glass Wollastonite "glass "	. 1977 . 2033 . 2040 . 1925 . 1934 . 1901 . 1883 . 1824 . 1939 . 1871 . 1919 . 2039 . 1868 . 1845	.2363 .2410 .2461 .2474 .2330 - .2296 .2305 .2426 .2314 .2332 .2262 .2321 .2484 .2379 .2302 - .2206 .2170	.2640 .2661 - .2525 .2615 02481 - .2568 .2500 - .2450 .2514	.2731* - .2674 .2680 .2604† - .2598* - .2640*	.174	.211219205207201 .206204 .202107	.26)279265260262258264294266	.294 -304 -286 -286 -2279 .299 -285 .29	.318

*o°-1100°; †o°-1250°;

Taken from White, Am. J. Sc. 47, 1, 1919.

TABLE 253.

SPECIFIC HEATS OF GASES AND VAPORS.

		Sp. ht.		Range	Mean ratio of	
Substance.	Range of temp. ° C	constant	Authority.	of	specific	Authority.
Catorinice.	temp. °C	pres- sure.	Attendancy.	temp.	heats.	
		Suic.			Cp/Cv.	
Acetone, C ₃ H ₆ O	20-110	0.3468	Wiedemann.			
Air	-30-+10	0.2377	Regnault.	20	1.4011	Moody.
"	0-200	0.2375	1.1	-79.3	I.405	Koch, 1907.
**	50-440	0.2366	Holborn and	-79.3		200 atm
"	20-030	0.2429	Austin.	0	1.828	_
** . , . ,	20-800	0.2430	**	500	I.399	Fürstenau.
Alcohol, C ₂ H ₅ OH	108-220	0.4534	Regnault.	53	I.133	Jaeger.
"		_		100	I.134	Stevens.
" СН₃ОН	101-223	0.4580	Regnault.	100	1.250	*******
Ammonia	23-100	0.5202	Wiedemann.	0	1.3172	Wüllner.
	27-200	0.5356	**	100	I. 2770	1
Argon	20-90	0.1233	Dittenberger.	0	1.667	Niemeyer.
Benzol, CoHe.	34-115	0.2000	Wiedemann.	20	1.403	Pagliani.
44 14	35-180	0.3325	70	60	1.403	C
	116-218	0.3754	Regnault.	99.7	1.105	Stevens.
Bromine	83-228	0.0555	54	20-388		Strecker.
Carbon dioxide, CO ₂	-28-+7	0.1843	66	4-11	I.2995	Lummer and
66 66 66	15-100	0.2025				Pringsheim.
1.11	11-214	0.2169		0	1.3003	Moody, 1912.
" monoxide, CO	23-99	0.2425	Wiedemann.	0	1.403	Wüllner.
	20-198	0.2426		100	1.395	
distribute, Cog.	80-190	0.1596	Regnault.	3-07	1.205	Beyme.
Chlorine	16-343	0.1125	Strecker.	0	I.330	Martini.
Chloroform, CHCl ₃	27-118	0.1441	Wiedemann.	22-78	1.102	Beyme.
	28-189	0.1489	D 14	99.8	1.150	Stevens.
Ether, C ₄ H ₁₀ O	69-224	0.4797	Regnault.	42-45	1.020	Müller.
Halium	25-111	0.4280	Wiedemann.	12-20	1.024	Low, 1894.
Helium			Canadan	0	1.64	Mean, Jeans.
Trydrocmone acid, fict.	13-100	0.1040	Strecker. Regnault.	20	1.380	Strecker.
Hydrogen	22-214	0.1807	Regnauit.	100	I.400	T
iiydiogen	-28-+0 12-108	3.3000	66	4-10	1.4080	Lummer and
	21-100	3.4000	Wiedemann.			Pringsheim. Hartmann.
" sulphide, H ₂ S	20-206	3.4100	Regnault.		1.410	Capstick.
Krypton	20 200	-451	—	10	1.324	Ramsay, '12.
Mercury			_	310	1.000	Kundt and
I Litereday 1				310	1.000	Warburg.
Methane, CH4	18-208	0.5020	Regnault.	11-30	1.310	Müller.
Neon	_			10	1.042	Ramsay, '12
Nitrogen	0-200	0.2438	Regnault.		1.41	Cazin.
11	20-440	0.2410	Holborn and	_	1.405	Masson.
	20-030	0.2464	Austin.		1.400	I.KHOOOII.
**	20-800	0.2497	6.6			
Nitric oxide, NO	13-172	0.2317	Regnault.	_	1.304	6.6
Nitrogen tetroxide, NO2.	27-07	1.625	Berthelot and		1.31	Natanson.
	27-150	1.115	Olger.			
	27-280	0.65	ii			
Nitrous oxide, N2O	10 -207	0.2262	Regnault.	0	1.311	Wüllner.
	20-103	0.2126	Wiedemann.	100	1.272	**
11 16 15	27-200	0.2241		_	1.324	Leduc, 'o8.
Oxygen	13-207	0.2175	Regnault.	5-14	1.3077	Lummer and
1	20-440	0.2240	Holborn and		0.77	Pringsheim.
	20-030	0.2300	Austin.			G
Sulphur dioxide, SO ₂	10-202	0.1544	Regnault.	10 34	1.256	Müller.
Water vapor, H ₂ O	0	0 4655	Thiesen.	78	1.274	Beyme.
**	100	0 421		0.4	1.33	Jaeger.
	180	0.51		100	1.305	Makower.
Xenon	_		_	10	1.606	Ramsay,' 12.
<u> </u>						
				_		

LATENT HEAT OF VAPORIZATION.

The temperature of vaporization in degrees Centigrade is indicated by t, the latent heat in large calories per kilogram or in small calories or therms per gram by r; the total heat from \circ ° C, in the same units by H. The pressure is that due to the vapor at the temperature t.

Substance.	Formula.	t° C	r	H	Authority.
Acetic acid Air. Alcohol: Amyl Ethyl "" Methyl "" Aniline Benzene Bromine Carbon dioxide, solid "" ilquid "" "" "" "" "" "" "" "" "" "" "" "" ""	C ₂ H ₄ O ₂ C ₅ H ₁₂ O C ₂ H ₆ O "" "" "" "" "" "" "" "" "" "" "" "" "	# C II8° — I31 78. I 0 50 100 150 200 238. 5 184 80. I 61 — -25 0 12. 35 22. 04 29. 85 30. 82 46. I 0 100 140 60. 9 34. 5 34. 9 0 120 38. 2 12. 5 71 90 70 — 357. — 195. 6 130 — 182. 9 30 316 0 330 65 III 159. 3	84.9 50.97 120 205 236 — 267 289 — 110 92.9 45.6 72.23 57.48 44.97 31.8 14.4 3.72 83.8 90 — 60.4 47 77.8 79.2 23.95 65.97 85.8 362.0 91.2 80.5 68.4 86.0 74.04	# 2555 236 264 267 285 307 289 274 246 206 152 44.2 127.9 138.7 94.8 90 100.5 102.4 72.8 107 94 115.1 140 98 ———————————————————————————————————	Authority. Ogier. Fenner-Richtmyer. Schall. Wirtz. Regnault. """""""""""""""""""""""""""""""""""

LATENT HEAT OF VAPORIZATION.

TABLE 255. - Formulae for Latent and Total Heats of Vapors.

 τ = latent heat of vaporization at t° C; H = total heat from fluid at o° to vapor at t° C. T° refers to Kelvin scale. Same units as preceding table.

1		1	
Acetone, C ₃ H ₆ O	$H = 140.5 + 0.36644l - 0.000516l^2$	-3° to 147°	R
Trectone, Carros	$= 139.9 + 0.23356t + 0.00055358t^2$	-3 147	W.
	$r = 139.9 - 0.27287t + 0.0001571t^2$	-3 I47	W
Benzol, C ₆ H ₆	$H = 100.0 + 0.24429t - 0.0001315t^2$	7 215	R
Carbon dioxide	$r^2 = 118.485(31-t) - 0.4707(31-t)^2$	-25 31	C
Carbon bisulphide, CS2	$H = 90.0 + 0.14601t - 0.0004123t^2$	-6 I43	R
	$H = 89.5 + 0.16993t - 0.0010161t^2 + 0.05342t^3$	<u>-6</u> 143	W
	$r = 89.5 - 0.06530t - 0.0010976t^2 + 0.05342t^3$	-6 I43	W
Carbon tetrachloride, CCl ₄ .	$H = 52.0 + 0.14625t - 0.000172t^2$	8 163	R
	$H = 51.9 + 0.17867t - 0.0009599t^2 + 0.053733t^3$	8 163	W
	$r = 51.9 - 0.01931t - 0.0010505l^2 + 0.063733l^3$	8 163	W
Chloroform, CHCl3	H = 67.0 + 0.1375t	-5 159	R
	$H = 67.0 + 0.14716t - 0.0000937t^2$	-5 159	W.
	$r = 67.0 - 0.08519t - 0.0001444l^2$	-5 159	R
Ether, C ₄ H ₁₀ O	$H = 94.0 + 0.45000l - 0.0005556l^2$	-4 121	R
M-1-1-1-1	$r = 94.0 - 0.07900l - 0.0008514l^2$	-4 I2I	L
Molybdenum	r = 177000 - 2.5T(cal/g-atom)		Ä
Nitrogen, N2	r = 68.85 - 0.2736T	-20 36	Č
Nitrous oxide, N ₂ O Oxygen, O ₂	$r^2 = 131.75(36.4 - t) - 0.928(36.4 - t)^2$ r = 69.67 - 0.2080T	20 30	A
Platinum	r = 128000 - 2.5T (cal/g-atom)		A L
Sulphur dioxide	$r = 01.87 - 0.3842t - 0.000340t^2$	0 20	M
Tungsten	r = 217800 - 1.8T(cal/g-atom)		L
Water, H ₂ O.	$H = 638.9 + 0.3745(t - 100) - 0.00099(t - 100)^{2}$	1	D
110001, 2220	$r = 94.210(365 - t)^{0.31249}$ (See Table 250)	0 100	H
	. 54(0-0 -) (000 1 0010 209)		
D D 2. 347 347. 1 1	C.C. W		
R, Kegnauit; W, Winkelma	nn; C, Cailletet and Mathias; A, Alt.; D, Davis; H, He	enning; L, Lan	gmuir.

TABLE 256.—Latent Heat of Vaporization of Ammonia.

CALORIES PER GRAM.

° C	0	I	2	3	4	5	6	7	8	9
-40	331.7	332·3	333.0	333.6	334·3	334.9	335.5	336.2	336.8	337.5
-30	324.8	325·5	326.2	326.9	327.6	328.3	329.0	329.7	330.3	331.0
-20	317.6	318.3	319.1	319.8	320.6	321.3	322.0	322.7	323.4	324.1
-10	309.9	310.7	311.5	312.2	313.0	313.8	314.6	315.3	310.1	316.8
-0	301.8	302.6	303.4	304.3	305.1	305.9	306.7	307.5	308.3	309.1
+ 0	301.8	300.9	300.1	299.2	298.4	297.5	296.6	295.7	294.9	294.0
+10	203.1	292.2	201.3	290.4	289.5	288.6	287.6	286.7	285.7	284.8
+20	283.8	282.8	281.8	280.9	279.9	278.9	277.9	276.9	275.9	274.9
+30	273.9	272.8	271.8	270.7	269.7	268.0	267.5	206.4	205.3	204.2
+40	263.1	262.0	260.8	259.7	258.5	257.4	256.2	255.0	253.8	252.6

Osborne and van Dusen, Bul. Bureau Standards, 14, p. 439, 1918.

TABLE 257. - "Latent Heat of Pressure Variation" of Liquid Ammonia.

When a fluid undergoes a change of pressure, there occurs a transformation of energy into heat or vice versa, which results in a change of temperature of the substance unless a like amount of heat is abstracted or added. This change expressed as the heat so transformed per unit change of pressure is the "latent heat of pressure variation." It is expressed below as Joules per gram per kg/cm². Osborne and van Dusen, loc. cit., p. 433, 1918.

١									
ı	Temperature ° C	-44.1	-39.0	-24.2	-0.2	+16.5	+26.5	+35.4	+40.3
ı	Latent heat	055	057	068	088	107	123	140	150
L						l .		<u> </u>	

LATENT AND TOTAL HEATS OF VAPORIZATION OF THE ELEMENTS.

The following table of theoretical values is taken from J. W. Richards, Tr. Amer. Electr ch. Soc. 13, p. 447, 1908. They are computed as follows: $8T_m$ (8 = mean value atomic specific heat, Dulong-Petit constant, o° to T° K, T_m = melting point, Kelvin scale) plus $2T_m$ (latent heat of fusion is approximately $2T_m$, J. Franklin Inst. 1897) plus $10(T_b - T_m)$ (specific heat of liquid metals is nearly constant and equal to that of the solid at T_m , T_b = boiling point, Kelvin scale) plus $23T_b$ (23 = Trouton constant; latent heat of vaporization of molecular weight in grams is approximately 23 times T_b) = $33T_b$. Total heat of vapor when raised from 273° K (o° C) equals $33T_b - 1700$ (mean value of Dulong-Petit constant between o° and 273° K is 1700). Heats given in small calories per gram.

Ele- ment.	<i>T_b</i> ° K	$23T_b$	Latent heat of vapori- zation.	33 <i>Tb</i> — 1700	Total heat vapor from 273° K	Ele- ment.	$^{T_b}_{ m \circ K}$	23Tb	Latent heat of vapori- zation.	33Tb —	Total heat of vapor from 273° K
Hg K	630	14,500	72 590	19,100	96 800	Rh Ru	2773 2790	63,800		90,000	870 880
Cd	1050	24,200	230	33,000	310	Au	2800	64,500	330	91,000	460
Na	1170	27,000	1170	37,000	1610	Pd	2810	64,600	610	01,000	850
Zn	1200	27,700	430	38,000	580	Ir	2820	64,800		91,300	470
In	1270	29,300	-	40,300		Os	2870	66,000	350	93,000	490
Mg	1370	31,600	1320	43,600	1820	U	3170	73,000	305	103,000	430
Te	1660	38,200	300	54,900	430	Mo	3470	80,000	830	113,000	1180
Bi	1710	39,300	190	56,400	270	W	3970	91,400	500	129,000	700
Sb	1870	43,100	360	60,000	510	H_2	20	460	230	_	-
Tl	1970	45,400	220	63,400	310	N_2	77	1,770	63	_	
Pb	2070	47,700	230	66,700	320	$ O_2 $	85	1,960	61	-	-
Ag	2310	53,000	490	74,600	690	Cl ₂	251	5,780		_	-
Cu	2370	54,500	860	76,600	1210	Br ₂	331	7,600			_
Sn	2440	56,100	480	78,800	670	I_3	447	10,300	27		-
Mn	2470	56,500	1030	79,500	1440	P ₃	560	13,000	1		-
Ni	2690	59,800	1010	84,000	1420	As ₃	723	16,600	74	_	_
Cr	2640	60,700	1170	85,400	1640	Se ₃	963	22,100	1		
Fe	2690	62,000	1110	87,200	1560	$\mathbf{B_2}$	3970	91,000			
Pt	2720	62,600	320	88,000	450	C ₂	3970	91,000	3800	_	_
Ti	2750	63,200	1320	89,000	1850						
<u> </u>	!	1	1	<u> </u>	<u> </u>	11	ş		1		

PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

Reprinted by permission of the author and publishers from "Tables of the Properties of Steam," Cecil H. Peabody, 8th edition, rewritten in 1909. Calorie used is heat required to raise 1 Kg, water from 15° to 16° C. B. T. U. is heat required to raise 1 pd. water from 62° to 63° F. Mechanical Equiv. of heat used, 778 ft. pds. or 427 m. Kg. Specific heats, see Barnes-Regnault-Peabody results, p. 227. Heat of Liquid, q. heat required to raise 1 Kg. (1 lb.) to corresponding temperature from 6° C. Heat of vaporization, r. heat required to vaporize 1 Kg. (1 lb.) at corresponding temperature to dry saturated vapor against corresponding pressure; see Henning, Ann. der Phys., 21, p. 849, 1906. Total Heat, H=r+q, see Davis, Tr. Am. Soc. Mech. Eng., 1908.

	Heat, H=r+q, see Davis, Tr. Am. Soc. Mech. Eng., 1908.										
Temperature Degrees Centigrade.		Pressure.		Heat o Liqu	of the		at of rization.		quivalent of al Work.	Temperature Degrees Fahrenheit.	
Tem Tem	Mm. of Mercury. p.	Kg. per sq. cm. p.	Pds. per sq. in. p.	Calories,	B. T. U.	Calories.	B. T. U.	Calories.	Β. Τ. U. ρ.	Ten D Fa	
0 5 10 15 20	4.579 6.541 9.205 12.779 17.51	0.00623 .00889 .01252 .01737 .02381	0.0886 .1265 .1780 .2471 .3386	0.00 5.04 10.06 15.06 20.06	0.0 9.1 18.1 27.1 36.1	595.4 592.8 590.2 587.6 584.9	1071.7 1067.1 1062.3 1057.6 1052.8	565.3 562.2 559.0 555.9 552.7	1017.5 1011.9 1006.2 1000.5	32.0 41.0 50.0 59.0 68.0	
25 30 35 40 45	23.69 31.71 42.02 55.13 71.66	.03221 .04311 .05713 .07495 .09743	.4581 .6132 .8126 1.0661 1.3858	25.05 30.04 35.03 40.02 45.00	45.I 54.I 63.I 72.0 81.0	5 82.3 579.6 576.9 574.2 571.3	1048.1 1043.3 1038.5 1033.5 1028.4	549.5 546.3 543.1 539.9 536.5	98 9. 1 983.4 977.6 971.7 965.7	77.0 86.0 95.0 104.0	
50	92.30	.12549	1.7849	49.99	90.0	568.4	1023.2	533.0	959.6	122.0	
55	117.85	.16023	2.279	54.98	99.0	565.6	1018.1	529.7	953.5	131.0	
60	149.19	.20284	2.885	59.97	108.0	562.8	1013.1	526.4	947.5	140.0	
65	187.36	.2547	3.623	64.98	117.0	559.9	1007.8	523.0	941.3	149.0	
70	233.53	.3175	4.516	69.98	126.0	556.9	1002.5	519.5	935.0	158.0	
75	289.0	.3929	5.589	74.99	135.0	554.0	997·3	516.0	928.8	167.0	
80	355.1	.4828	6.867	80.01	144.0	551.1	991.9	512.6	922.6	176.0	
85	433.5	.5894	8.383	85.04	153.1	548.1	986.5	509.1	916.3	185.0	
90	525.8	.7149	10.167	90.07	162.1	544.9	980.9	505.4	909.9	194.0	
91	546.1	.7425	10.560	91.08	163.9	544.3	979.8	504.7	908.5	195.8	
92	567.1	.7710	10.966	92.08	165.7•	543.7	978.7	504.0	907.2	197.6	
93	588.7	.8004	11.384	93.09	167.5	543.1	977.6	503.3	906.0	199.4	
94	611.0	.8307	11.815	94.10	169.3	542.5	976.5	502.6	904.7	201.2	
95	634.0	.8620	12.260	95.11	171.2	541.9	975.4	501.9	903.4	203.0	
96	657.7	.8942	12.718	96.12	173.0	541.2	974.2	501.1	902.1	204.8	
97	682.1	.9274	13.190	97.12	174.8	540.6	.973.1	500.4	900.8	200.0	
98	707.3	.9616	13.678	98.13	176.6	539.9	971.9	499.6	899.4	208.4	
99	733.3	.9970	14.180	99.14	178.5	539.3	970.8	498.9	898.2	210.2	
100	760.0	1.0333	14.697	100.2	180.3	538.7	969.7	498.2	896.9	212.0	
101	787.5	1.0707	15.229	101.2	182.1	538.1	968.5	497.5	895.5	213.8	
102	815.9	1.1093	15.778	102.2	183.9	537.4	967.3	496.8	894.1	215.6	
103	845.1	1.1490	16.342	103.2	185.7	536.8	966.2	496.1	892.9	217.4	
104	875.1	1.1898	16.923	104.2	187.6	536.2	965.1	495.4	891.6	219.2	
105	906.1	1.2319	17.522	105.2	189.4	535.6	964.0	494.7	890.3	221.0	
106	937.9	1.2752	18.137	106.2	191.2	534.9	962.8	493.9	889.0	222.8	
107	970.6	1.3196	18.769	107.2	193.0	534.2	961.6	493.1	887.6	224.6	
108	1004.3	1.3653	19.420	108.2	194.8	533.6	960.5	492.4	886.3	226.4	
109	1038.8	1.4123	20.089	109.3	196.7	532.9	959.3	491.6	885.0	228.2	
110	1074.5	1.4608	20.777	110.3	198.5	532.3	958.1	490.9	883.6	230.0	
111	1111.1	1.5106	21.486	111.3	200.3	531.6	956.9	490.2	882.3	231.8	
112	1148.7	1.5617	22.214	112.3	202.1	530.9	955.7	489.4	880.9	233.6	
113	1187.4	1.6144	22.962	113.3	203.9	530.3	954.5	488.7	879.5	235.4	
114	1227.1	1.6684	23.729	114.3	205.8	529.6	953.3	487.9	878.2	237.2	
115 116 117 118	1267.9 1309.8 1352.8 1397.0 1442.4	1.7238 1.7808 1.8393 1.8993	24.518 25.328 26.160 27.015 27.893	115.3 116.4 117.4 118.4 119.4	207.6 209.4 211.2 213.0 214.9	528.9 528.2 527.5 526.9 526.2	952.1 950.8 949.5 948.4 947.2	487.1 486.3 485.5 484.8 484.0	876.8 875.4 873.9 872.6 871.3	239.0 240.8 242.6 244.4 246.2	

PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

If a is the reciprocal of the Mechanical Equivalent of Heat, p the pressure, s and σ the specific volumes of the liquid and the saturated vapor, $s = -\sigma$, the change of volume, then the heat equivalent of the external work is $Apu = Ap(s = \sigma)$. Heat equivalent of internal work, $\rho = r - Apu$. For experimental sp. vols. see Knoblauch, Linde and Klebe, Mitt. über Forschungarbeiten, 21, p. 33, 1905. Entropy = S dQ/T, where dQ = amount of heat added at absolute temperature T. For pressures of saturated steam see Holborn and Henning, Ann. der Phys. 26, p. 833, 1908; for temperatures above 205° C. corrected from Regnault.

			7070 205	C. correcte	a from reeg					
perature	Degrees Centigrade.	of Ex	uivalent ternal ork.	Entropy of the	Entropy of Evapo-	Specific \	Volume.	Der	nsity.	Temperature Degrees Fahrenheit.
Tem	Cent	Calories.	B.T.U.	Liquid.	ration.	Cubic Meters per Kilo- gram.	Cubic Feet per Pound.	Kilograms per Cubic Meter.	Pounds per Cubic Foot.	Temp De Fahr
	t	Apu.	Apu.	θ	T	S	S	1 8	1 8	t
	0 5 10 15 20	30.1 30.6 31.2 31.7 32.2	54.2 55.2 56.1 57.1 58.0	0.0000 .0183 .0361 .0537 .0709	2.1804 2.1320 2.0850 2.0396 1.9959	206.3 147.1 106.3 77.9 57.8	3304. 2356. 1703. 1248.	0.00485 .00680 .00941 .01283 .01730	0.000303 .000424 .000587 .000801 .001080	32.0 41.0 50.0 59.0 68.0
	25 30 35 40 45	32.8 33.3 33.8 34.3 34.8	59.0 59.9 60.9 61.8 62.7	.0878 .1044 .1207 .1368 .1526	1.9536 1.9126 1.8728 1.8341 1.7963	43.40 32.95 25.25 19.57 15.25	695. 528. 404.7 313.5 244.4	.02304 .03035 .03960 .0511 .0656	.001439 .001894 .002471 .003190 .004092	77.0 86.0 95.0 104.0
	50 55 60 65 70	35.4 35.9 36.4 36.9 37.4	63.6 64.6 65.6 66.5 67.4	.1682 .1835 .1986 .2135 .2282	1.7597 1.7242 1.6899 1.6563 1.6235	12.02 9.56 7.66 6.19 5.04	192.6 153.2 122.8 99.2 80.7	.0832 .1046 .1305 .1615	.00519 .00653 .00814 .01008 .01239	122.0 131.0 140.0 149.0 158.0
	75 80 85 90	38.0 38.5 39.0 39.5	68.5 69.3 70.2 71.0	.2427 .2570 .2711 .2851	1.5918 1.5609 1.5307 1.5010	4.130 3.404 2.824 2.358	66.2 54.5 45.23 37.77	.2421 .2938 .3541 .4241	.01510 .01835 .02211 .02648	167.0 176.0 185.0 194.0
	91 92 93 94	39.6 39.7 39.8 39.9	71.3 71.5 71.6 71.8	.2879 .2906 .2934 .2961	1.4952 1.4894 1.4836 1.4779	2.275 2.197 2.122 2.050	36.45 35.19 34.00 32.86	.4395 .4552 .4713 .4878	.02743 .02842 .02941 .03043	195.8 197.6 199.4 201.2
-	95 96 97 98 99	40.0 40.1 40.2 40.3 40.4	72.0 72.1 72.3 72.5 72.6	.2989 .3016 .3043 .3070 .3097	1.4723 1.4666 1.4609 1.4552 1.4496	1.980 1.913 1.849 1.787 1.728	31.75 30.67 29.63 28.64 27.69	.505 .523 .541 .560 .579	.03149 .03260 .03375 .03492	203.0 204.8 206.6 208.4 210.2
	100 101 102 103 104	40.5 40.6 40.6 40.7 40.8	72.8 73.0 73.2 73.3 73.5	.3125 .3152 .3179 .3205 .3232	I.444I I.4386 I.4330 I.4275 I.4220	1.671 1.617 1.564 1.514 1.465	26.78 25.90 25.06 24.25 23.47	.598 .618 .639 .661 .683	.03734 .03861 .03990 .04124 .04261	212.0 213.8 215.6 217.4 219.2
	105 106 107 108 109	40.9 41.0 41.1 41.2 41.3	73.7 73.8 74.0 74.2 74.3	.3259 .3286 .3312 .3339 .3365	1.4165 1.4111 1.4057 1.4003 1.3949	1.419 1.374 1.331 1.289 1.248	22.73 22.01 21.31 20.64 19.99	.705 .728 .751 .776 .801	.04400 .04543 .04692 .04845	221.0 222.8 224.6 226.4 228.2
	110 111 112 113 114	41.4 41.4 41.5 41.6 41.7	74.5 74.6 74.8 75.0 75.1	.3392 .3418 .3445 .3471 .3498	1.3895 1.3842 1.3789 1.3736 1.3683	1.209 1.172 1.136 1.101 1.068	19.37 18.77 18.20 17.64 17.10	.827 .853 .880 .908 .936	.0516 .0533 .0550 .0567 .0585	230.0 231.8 233.6 235.4 237.2
	115 116 117 118	41.8 41.9 42.0 42.1 42.2	75.3 75.4 75.6 75.8 75.9	.3524 .3550 .3576 .3602 .3628	1.3631 1.3579 1.3527 1.3475 1.3423	1.036 1.005 0.9746 0.9460 0.9183	16.59 16.09 15.61 15.16 14.72	.965 .995 1.026 1.057 1.089	.0603 .0622 .0641 .0659	239.0 240.8 242.6 244.4 246.2

TABLE 259 (continued).

PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

				2,201210 1	na comm					
ature ees rade.	Pressure.		Heat of the Liquid.		Heat of Vaporization.		Heat Equivalent of Internal Work.		rature rees nheit.	
Temperature Degrees Centigrade.	Mm. of Mercury.	Kg. per sq. cm.	Pds. per sq. in.	Calories.	B. T. U.	Calories.	B. T. U.	Calories	B. T. U.	Temperature Degrees Fahrenheit.
t.	p.	p.	p.	q.	q	r	r.	ρ	ρ.	t.
120	1489	2.024	28.79	120.4	216.7	525.6	946.0	483.4	870.0	248.0
121	1537	2.089	29.72	121.4	218.5	524.9	944.8	482.6	868.6	249.8
122	1586	2.156	30.66	122.5	220.4	524.2	943.5	481.8	867.1	251.6
123	1636	2.224	31.64	123.5	222.2	523.5	942.3	481.0	865.8	253.4
124	1688	2.294	32.64	124.5	224.1	522.8	941.0	480.2	864.3	255.2
125	1740	2.366	33.66	125.5	225.9	522.1	939.9	479.4	863.0	257.0
126	1795	2.440	34.71	126.5	227.7	521.4	938.6	478.6	861.6	258.8
127	1850	2.516	35.78	127.5	229.5	520.7	937.3	477.8	860.2	260.6
128	1907	2.593	36.88	128.6	231.4	520.0	936.1	477.0	858.8	262.4
129	1966	2.673	38.01	129.6	233.3	519.3	934.8	476.3	857.4	264.2
130	2026	2.754	39.17	130.6	235.1	518.6	933.6	475.5	856.0	266.0 1
131	2087	2.837	40.36	131.6	236.9	517.9	932.3	474.7	854.6	267.8
132	2150	2.923	41.57	132.6	238.7	517.3	931.1	474.0	853.2	269.6
133	2214	3.010	42.81	133.7	240.6	516.6	929.8	473.3	851.8	271.4
134	2280	3.100	44.09	134.7	242.4	515.9	928.5	472.5	850.4	273.2
135	2348	3.192	45.39	135.7	244.2	515.1	927.2	471.6	848.9	275.0
136	2416	3.285	46.73	136.7	246.0	514.4	925.9	470.8	847.5	276.8
137	2487	3.382	48.10	137.7	247.9	513.7	924.6	470.1	846.1	278.6
138	2560	3.480	49.50	138.8	249.7	513.0	923.3	469.3	844.6	280.4
139	2634	3.581	50.93	139.8	251.6	512.3	922.1	468.5	843.3	282.2
140	2710	3.684	52.39	140.8	253.4	511.5	920. 7	467.6	841.8	284.0
141	2787	3.789	53.89	141.8	255.3	510.7	919.3	466.8	840.2	285.8
142	2866	3.897	55.43	142.8	257.1	510.1	918.1	466.1	838.9	287.6
143	2948	4.008	57.00	143.9	259.0	509.3	916.7	465.3	837.4	289.4
144	3030	4.121	58.60	144.9	260.8	508.6	915.4	464.4	835.9	291.2
145 146 147 148	3115 3202 3291 3381 3474	4.236 4.354 4.474 4.597 4.723	60.24 61.92 63.64 65.39 67.18	145.9 146.9 148.0 149.0 150.0	262.7 264.5 266.4 268.2 270.1	507.8 507.1 506.4 505.6 504.9	914.1 912.8 911.5 910.1 908.8	463.6 462.8 462.0 461.2 460.4	834.5 833.1 831.6 830.1 828.7	293.0 294.8 296.6 298.4 300.2
150	3569	4.852	69.01	151.0	271.9	504.1	907.4	459.5	827.2	302.0
151	3665	4.984	70.88	152.1	273.8	503.4	906.1	458.7	825.7	303.8
152	3764	5.118	72.79	153.1	275.6	502.6	904.7	457.9	824.2	305.6
153	3865	5.255	74.74	154.1	277.4	501.9	903.3	457.1	822.7	307.4
154	3968	5.395	76.73	155.1	279.2	501.1	901.9	456.3	821.2	309.2
155	4073	5.538	78.76	156.2	281.1	500.3	900.5	455.4	819.6	311.0
156	4181	5.684	80.84	157.2	283.0	499.6	899.2	454.6	818.2	312.8
157	4290	5.833	82.96	158.2	284.8	498.8	897.8	453.8	816.7	314.6
158	4402	5.985	85.12	159.3	286.7	498.1	896.5	453.0	815.3	316.4
159	4517	6.141	87.33	160.3	288.5	497.3	895.1	452.1	813.7	318.2
160	4633	6.300	89.59	161.3	290.4	496.5	893.7	451.2	\$12.2	320.0
161	4752	6.462	91.89	162.3	292.2	495.7	892.3	450.4	\$10.7	321.8
162	4874	6.628	94.25	163.4	294.1	494.9	890.9	449.5	\$09.2	323.6
163	4998	6.796	96.65	164.4	295.9	494.2	889.5	448.7	\$07.7	325.4
164	5124	6.967	99.09	1 65.4	297.7	493.4	888.1	447.9	\$06.2	327.2
165	5253	7.142	101.6	166.5	299.6	492.6	886.7	447.0	804.7	329.0
166	5384	7.320	104.1	167.5	301.5	491.9	885.4	446.3	803.3	330.8
167	5518	7.502	106.7	168.5	303.3	491.1	883.9	445.4	801.7	332.6
168	5655	7.688	109.4	169.5	305.1	490.3	882.5	444.6	800.1	334.4
169	5794	7.877	112.0	170.6	307.0	489.5	881.0	443.7	798.5	336.2

PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

						COMMON ON				
ature ces ade.		Heat Equivalent of External Work.		Entropy	Entropy	Specific	Volume.	Density.		ature tes neit.
	Temperature Degrees Centigrade.	Calories.	B. T. U.	of the Liquid.	of Evapo- ration.	Cubic Meters per Kilogram.	Cubic Feet per Pound.	Kilograms per Cubic Meter.	Pounds per Cubic Foot.	Temperature Degrees Fahrenheit.
l	t.	Apu.	Apu.	θ.	ŗ.	8.	S.	1.	1.	t.
	120 121 122 123 124	42.2 42.3 42.4 42.5 42.6	76.0 76.2 76.4 76.5 76.7	0.3654 .3680 .3795 .3731 .3756	1.3372 1.3321 1.3269 1.3218 1.3167	0.8914 .8653 .8401 .8158 •7924	14.28 13.86 13.46 13.07 12.69	1.122 1.156 1.190 1.226 1.262	0.0700 .0721 .0743 .0765 .0788	248.0 249.8 251.6 253.4 255.2
	125 126 127 128 129	42.7 42.8 42.9 43.0 43.0	76.8 77.0 77.1 77.3 77.4	.3 7 82 .3807 .3833 .3858	1.3117 1.3067 1.3017 1.2967 1.2917	.7698 .7479 .7267 .7063 .6867	12.33 11.98 11.64 11.32 11.00	1.299 1.337 1.376 1.416 1.456	.0811 .0835 .0859 .0883 .0909	257.0 258.8 260.6 262.4 264.2
	130 131 132 133 134	43.1 43.2 43.3 43.3 43.4	77.6 77.7 77.9 78.0 78.1	.3909 ·3934 ·3959 ·3985 .4010	1.2868 1.2818 1.2769 1.2720 1.2672	.6677 .6493 .6315 .6142 ·5974	10.70 10.40 10.12 9.839 9.569	1.498 1.540 1.583 1.628 1.674	.0935 .0961 .0988 .1016 .1045	266.0 267.8 269.6 2 71.4 2 73.2
	135 136 137 138 139	43.5 43.6 43.6 43.7 43.8	78.3 78.4 78.5 78.7 78.8	.4035 .4060 .4085 .4110 .4135	1.2623 1.2574 1.2526 1.2479 1.2431	.5812 .5656 .5506 .5361 .5219	9.309 9.060 8.820 8.587 8.360	1.721 1.768 1.816 1.865 1.916	.1074 .1104 .1134 .1165 .1196	275.0 276.8 278.6 280.4 282.2
	140 141 142 143 144	43·9 43·9 44·0 44·2	78.9 79.1 79.2 79.3 79.5	.4160 .4185 .4209 .4234 .4259	1.2383 1.2335 1.2288 1.2241 1.2194	.5081 .4948 .4819 .4694 .4574	8.140 7.926 7.719 7.519 7.326	1.968 2.021 2.075 2.130 2.186	.1229 .1262 .1296 .1330	284.0 285.8 287.6 289.4 291.2
	145 146 147 148 149	44.2 44.3 44.4 44.4 44.5	79.6 79.7 79.9 80.0 80.1	.4283 .4307 .4332 .4356 .4380	1.2147 1.2100 1.2054 1.2008 1.1962	.4457 .4343 .4232 .4125 .402 2	7.139 6.957 6.780 6.609 6.443	2.244 2.303 2.363 2.424 2.486	.1401 .1437 .1475 .1513	293.0 294.8 296.6 298.4 300.2
	150 151 152 153 154	44.6 44.6 44.7 44.8 44.8	80.2 80.4 80.5 80.6 80.7	.4405 .4429 .4453 .4477 .4501	1.1916 1.1870 1.1824 1.1778 1.1733	.3921 .3824 .3729 .3637 .3548	6.282 6.126 5.974 5.826 5.683	2.550 2.615 2.682 2.750 2.818	.1592 .1632 .1674 .1716	302.0 303.8 305.6 307.4 309.2
	155 156 157 158 159	44.9 45.0 45.0 45.1 45.2	80.9 81.0 81.1 81.2 81.4	.4525 .4549 .4573 .4596 .4620	1.1688 1.1644 1.1599 1.1554 1.1509	.3463 .3380 .3298 .3218 .3140	5.546 5.413 5.282 5.154 5.029	2.888 2.959 3.032 3.108 3.185	.1803 .1847 .1893 .1940 .1988	311.0 312.8 314.6 316.4 318.2
	160 161 162 163 164	45·3 45·3 45·4 45·5 45·5	81.5 81.6 81.7 81.8 81.9	.4644 .4668 .4692 .4715 .4739	1.1465 1.1421 1.1377 1.1333 1.1289	.3063 .2989 .2920 .2855 .2792	4.906 4.789 4.677 4.571 4.469	3.265 3.345 3.425 3.503 3.582	.2038 .2088 .2138 .2188 .2238	320.0 321.8 323.6 325.4 327.2
	165 166 167 168 169	45.6 45.6 45.7 45.7 45.8	82.0 82.1 82.2 82.4 82.5	.4763 .4786 .4810 .4833 .4857	1.1245 1.1202 1.1159 1.1115 1.1072	.2729 .2666 .2603 .2540 .2480	4.368 4.268 4.168 4.070 3.975	3.664 3.751 3.842 3.937 4.032	.2289 .2343 .2399 .2457 .2516	329.0 330.8 332.6 334.4 336.2

PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

metric and common ones.										
rature rees rade.	Pressure.				at of liquid.		Heat of Heat Equivalen of Internal Worl		quivalent al Work.	Temperature Degrees Fahrenheit.
Temperature Degrees Centigrade.	Mm. of Mercury.	Kg. per sq. cm.	Pds. per sq. in.	Calories.	B. T. U.	Calories.	B. T. U.	Calories.	B. T. U.	Temp Deg Fahre
t.	p	p.	p	q.	q.	r.	r.	ρ.	ρ.	t.
170	5937	8.071	114.8	171.6	308.9	488.7	879.6	442.8	797.0	338.0
171	6081	8.268	117.6	172.6	310.7	487.9	878.3	441.9	795.6	339.8
172	6229	8.469	120.4	173.7	312.6	487.1	876.9	441.1	794.1	341.6
173	6379	8.673	123.4	174.7	314.5	486.3	875.4	440.2	792.5	343.4
174	6533	8.882	126.3	175.7	316.3	485.5	873.9	439.4	790.9	345.2
175	6689	9.094	129.4	176.8	318.2	484.7	872.4	438.5	789.3	347.0
176	6848	9.310	132.4	177.8	320.0	483.9	871.0	437.7	787.8	348.8
177	7010	9.531	135.6	178.8	321.8	483.1	869.5	436.8	786.2	350.6
178	7175	9.755	138.8	179.9	323.7	482.3	868.1	436.0	784.7	352.4
179	7343	9.983	142.0	180.9	325.6	481.4	866.6	435.0	783.1	354.2
180	7514	10.216	145.3	181.9	327.5	480.6	865.1	434.2	781.5	356.0
181	7688	10.453	148.7	183.0	329.3	479.8	863.6	433.3	779.9	357.8
182	7866	10.695	152.1	184.0	331.2	479.0	862.2	432.5	778.4	359.6
183	8046	10.940	155.6	185.0	333.0	478.2	860.7	431.6	776.9	361.4
184	8230	11.189	159.2	186.1	334.9	477.4	859.2	430.8	775.3	363.2
185	8417	11.44	162.8	187.1	336.8	476.6	857.7	429.9	773.7	365.0
186	8608	11.70	. 166.5	188.1	338.6	475.7	856.3	429.0	772.2	366.8
187	8802	11.97	. 170.2	189.2	340.5	474.8	854.7	428.0	770.5	368.6
188	8999	12.24	. 174.0	190.2	342.4	474.0	853.2	427.2	768.9	370.4
189	9200	12.51	. 177.9	191.2	344.2	473.2	851.7	426.3	767.4	372.2
190	94 04	12.79	181.8	192.3	346.1	472.3	850.2	425.4	765.8	374.0
191	9612	13.07	185.9	193.3	347.9	471.5	848.7	424.5	764.2	375.8
192	9823	13.36	190.0	194.4	349.8	470.6	847.1	423.6	762.5	377.6
193	10038	13.65	194.1	195.4	351.7	469.8	845.6	422.8	761.0	379.4
194	10256	13.94	198.3	196.4	353.5	468.9	844.1	421.9	759.4	381.2
195 196 197 198	10480 10700 10930 11170 11410	14.25 14.55 14.87 15.18 15.51	202.6 207.0 211.4 216.0 220.6	197.5 198.5 199.5 200.6 201.6	355.4 357.3 359.2 361.1 362.9	468.1 467.2 466.4 465.6 464.7	842.5 841.0 839.5 838.0 836.4	421.0 420.1 419.2 418.4 417.4	757.7 756.1 754.6 753.0 751.3	383.0 384.8 386.6 388.4 390.2
200	11650	15.84	225.2	202.7	364.8	463.8	834.8	416.5	749.7	392.0
201	11890	16.17	223.0	203.7	366.7	462.9	833.3	415.6	748.1	393.8
202	12140	16.51	234.8	204.7	368.5	462.1	831.8	414.8	746.6	395.6
203	12400	16.85	239.7	205.8	370.4	461.2	830.2	413.8	744.9	397.4
204	12650	17.20	244.7	206.8	372.3	460.3	828.6	412.9	743.3	399.2
205	12920	17.56	249.8	207.9	374.I	459.4	827.0	412.0	741.6	401.0
206	13180	17.92	254.9	208.9	376.0	458.6	825.4	411.1	740.0	402.8
207	13450	18.29	260.1	210.0	377.9	457.7	823.8	410.2	738.3	404.6
208	13730	18.66	265.4	211.0	379.8	456.8	822.2	409.3	736.7	406.4
209	14010	19.04	270.8	212.0	381.6	455.9	820.6	408.4	735.1	408.2
210 211 212 213 214	14290 14580 14870 15170 15470	19.43 19.82 20.22 20.62 21.03	276.3 281.9 287.6 293.3 299.2	213.1 214.1 215.2 216.2 217.3	383.5 385.4 387.3 389.2 391.1	455.0 454.1 453.2 452.4 451.5	819.1 817.4 815.8 814.3 812.7	407.5 406.6 405.7 404.0	733.6 731.9 730.2 728.7 727.1	410.0 411.8 413.6 415.4 417.2
215	15780	21.45	305.1	218.3	392.9	450.6	811.0	403. I	725.4	419.0
216	16090	21.88	311.1	219.3	394.8	449.6	809.3	402.I	723.7	420.8
217	16410	22.31	317.3	220.4	396.7	448.7	807.7	401.2	722.1	422.6
218	16730	22.74	323.5	221.4	398.5	447.8	806.1	400.3	720.5	424.4
219	17060	23.19	329.8	222.5	400.4	446.9	804.5	399.4	718.9	426 2
220	17390	23.64	336.2	223.5	402.3	446.0	802.9	398.5	717.3	428.0

PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

ature	Heat Eq		Entropy	Entropy	Specific V	Volume.	Den	sity.	tture ses
Temperature Degrees Centigrade.	Calories.	B. T. U.	of the Liquid.	of Evapo- ration.	Cubic Meters per Kilogram.	Cubic Feet per Pound.	Kilograms per Cubic Meter.	Pounds per Cubic Foot.	Temperature Degrees Fahrenheit.
t.	Apu.	Apu.	θ.	T.	s.	s.	$\frac{1}{B}$.	<u>1</u> .	t.
170 171 172 173 174	45.9 46.0 46.0 46.1 46.1	82.6 82.7 82.8 82.9 83.0	0.4880 .4903 .4926 .4949 .4972	1.1029 1.0987 1.0944 1.0901 1.0859	0.2423 .2368 .2314 .2262 .2212	3.883 3.794 3.709 3.626 3.545	4.127 4.223 4.322 4.421 4.521	0.2575 .2636 .2696 .2758 .2821	338.0 339.8 341.6 343.4 345.2
175 176 177 178 179	46.2 46.3 46.3 46.4	83.1 83.2 83.3 83.4 83.5	.4995 .5018 .5041 .5064 .5087	1.0817 1.0775 1.0733 1.0691 1.0649	.2164 .2117 .2072 .2027 .1983	3.467 3.391 3.318 3.247 3.177	4.621 4.724 4.826 4.933 5.04	.2884 .2949 .3014 .3080 .3148	347.0 348.8 350.6 352.4 354.2
180 181 182 183 184	46.4 46.5 46.5 46.6 46.6	83.6 83.7 83.8 83.8 83.9	.5110 .5133 .5156 .5178 .5201	1.0608 1.0567 1.0525 1.0484 1.0443	.1941 .1899 .1857 .1817	3.109 3.041 2.974 2.911 2.849	5.15 5.27 5.38 5.50 5.62	.3217 .3288 .3362 .3435 .3510	356.0 357.8 359.6 361.4 363.2
185 186 187 188 189	46.7 46.7 46.8 46.8 46.9	84.0 84.1 84.2 84.3 84.3	.5224 .5246 .5269 .5291 .5314	1.0403 1.0362 1.0321 1.0280 1.0240	.1740 .1702 .1666 .1632 .1598	2.787 2.727 2.669 2.614 2.560	5.75 5.88 6.00 6.13 6.26	.3588 .3667 .3746 .3826 .3906	365.0 366.8 368.6 370.4 372.2
190 191 192 193 194	46.9 47.0 47.0 47.0 47.0	84.4 84.5 84.6 84.6 84.7	.5336 .5358 .5381 .5403 .5426	1.0200 1.0160 1.0120 1.0080 1.0040	.1565 .1533 .1501 .1470	2.507 2.456 2.405 2.355 2.306	6.39 6.52 6.66 6.80 6.94	.3989 .4072 .4158 .4246 .4336	374 ° 375.8 377.6 379.4 381.2
195 196 197 198 199	47.I 47.I 47.2 47.2 47.3	84.8 84.9 84.9 85.0 85.1	.5448 .5470 .5492 .5514 .5536	1.0000 0.9961 .9922 .9882 .9843	.1411 .1382 .1354 .1327 .1300	2.259 2.214 2.169 2.126 2.083	7.09 7.23 7.38 7.53 7.69	.4426 .4516 .4610 .4704 .4801	383.0 384.8 386.6 388.4 390.2
200 201 202 203 204	47 3 47·3 47·3 47·4 47·4	85.1 85.2 85.2 85.3 85.3	•5558 •5580 •5602 •5624 •5646	.9804 .9765 .9727 .9688 .9650	.1274 .1249 .1225 .1201 .1177	2.041 2.001 1.962 1.923 1.885	7.84 8.00 8.16 8.33 8.50	.4900 .4998 .510 .520	392.0 393.8 395.6 397.4 399.2
205 206 207 208 209	47.4 47.5 47.5 47.5 47.5	85.4 85.4 85.5 85.5 85.5	.5668 .5690 .5712 .5733 .5755	.9611 .9572 .9534 .9496 .9458	.4153 .1130 .1108 .1086 .1065	1.847 1.810 1.774 1.739 1.705	8.67 8.85 9.03 9.21 9.39	.541 .552 .564 .575 .587	401.0 402.8 404.6 406.4 408.2
210 211 212 213 214	47·5 47·5 47·5 47·5 47·5	85.5 85.5 85.6 85.6 85.6	·5777 ·5799 ·5820 ·5842 ·5863	.9420 .9382 .9344 .9307 .9269	.1044 .1024 .1004 .0984 .0965	1.673 1.640 1.608 1.577 1.546	9.58 9.77 9.96 10.16 10.36	.598 .610 .622 .634 .647	410.0 411.8 413.6 415.4 417.2
215 216 217 218 219	47·5 47·5 47·5 47·5 47·5	85.6 85.6 85.6 85.6 85.6	.5885 .5906 .5927 .5948 .5969	.9232 .9195 .9157 .9120 .9084	.0947 .0928 .0910 .0893 .0876	1.516 1.486 1.458 1.430 1.403	10.56 10.78 10.99 11.20	.660 .673 .686 .699	419.0 420.8 422.6 424.4 426.2
220	47.5	85.6	.5991	.9047	.0860	1.376	11.62	.727	428.0

LATENT HEAT OF FUSION.

This table contains the latent heat of fusion of a number of solid substances in large calories per kilogram or small calories or therms per gram. It has been compiled principally from Landolt and Börnstein's tables. C indicates the composition, $\mathcal T$ the temperature Centigrade, and $\mathcal H$ the latent heat.

Substance.	С	T	Н.	Authority.
Alloys: 30.5Pb + 69.5Sn 36.9Pb + 63.1Sn 63.7Pb + 36.3Sn 77.8Pb + 22.2Sn Britannia metal, 9Sn + 1Pb .	PbSn ₄ PbSn ₃ PbSn Pb ₂ Sn	183 179 177.5 176.5	17. 15.5 11.6 9.54 28.0*	Spring. " " Ledebur.
Rose's alloy, 24 Pb + 27.3 Sn + 48.7 Bi	·	98.8	6.85	Mazzotto.
Wood's alloy $\left\{ \begin{array}{l} 25.8 \text{Pb} + 14.7 \text{Sn} \\ + 52.4 \text{Bi} + 7 \text{Cd} \end{array} \right\}$	-	75-5	8.40	66
Aluminum	$_{ m NH_3}^{ m Al}$	658. 75.	76.8 108.	Glaser. Massol.
Benzole	C ₆ H ₆ Br	5·4 -7·3	30.6	Mean. Regnault.
Bismuth	$\begin{array}{c} \text{Bi} \\ \text{Cd} \\ \text{CaCl}_2 + 6\text{H}_2\text{O} \end{array}$	268 320.7 28.5	12.64	Person.
Copper	Cu	1083	40.7	Mean. Gruner,
"White".	-	-	33· 50.	66
Ice	H,O	-	11.71	Favre and Silbermann. Dickinson, Harper,
"	66	0	79.63	Smith.
" (from sea-water)	$\left\{ \begin{array}{l} H_2O + 3.535 \\ \text{of solids} \end{array} \right\}$	-8.7	54.0	Petterson.
Lead	Pb Hg	$\frac{3^27}{-39}$	5.36	Mean. Person.
Naphthalene	$C_{10}H_8$ Ni	79.8 ₇	35.62 4.64	Pickering. Pionchon.
Palladium	Pd P Pt	1 545 44·2	36.3 4.97	Violle. Petterson.
Potassium	K KNO ₈	1755 62	15.7	Violle. Joannis. Person.
Phenol	C_6H_6O	333.5 25.37 52.40	48.9 24.93 35.10	Petterson. Batelli.
Silver	Ag Na	961	21.07	Person. Joannis.
" nitrate	NaNO ₃ (Na ₂ HPO ₄)	305.8	64.87	southins.
" phosphate	$+12H_2O$	36.1	36.98	Batelli.
Sulphur	S Sn	115	9.37	Person. Mean.
Wax (bees)	– Zn	61.8 419	42.3 28.13	46
20.5				

^{*} Total heat from o° C.
† U. S. Bureau of Standards, 1913, in terms of 15° calorie.
‡ 1903, based on electrical measurements, assuming mechanical equivalent = 4.187, and in terms of the value of the international volt in use after 1911.

TABLE 261. — Heat of Combustion of Some Carbon Compounds.

Compound.	Formula.	Kg. cal. per g- mol.	Kg. cal.	Compound.	Formula.	Kg. cal. per g- mol.	Kg. cal. per g
Paraffins: Methane, g Ethane, g Propane, g i-Butane, g n-Hexane, l n-Heptane, l n-Octane l Dekane, l Olefines: Ethylene, g Propylene, g i-Butylene, g Amylene, l Acetylene, g Benzol, l Benzol, g Naphthalene, l Toluene, l Chloroform, v Carbon disulphide, l Methyl-chloride, g Ethyl-chloride, g	CH4 C2H6 C3H8 C4H10 C4H10 C4H14 C5H15 C5H15 C4H6 C4H6 C4H6 C4H6 C4H6 C4H6 C4H6 C4H6	214p 371p 528p 687p 905p 1133p 1315p 1026p 343p 400p 651p 804p 962p 313p 788p 1335p 788p 1335p 769 761p 761p 761p 761p 761p 761p 761p 761p	13.3v 12.4v 12.0p 11.8p 11.6v 11.5v 11.4v 12.2p 11.5v 11.5v 11.6v 11.5v 11.0p 11.5v 11.0p 11.5v 11.2v 11	Alcohols: Methyl, I Ethyl, I n-propyl, I n-butyl, I Amyl, I Ethers: Dimethyl, g Diethyl, v Ethyl-methyl, v Acids: Formic, I Acetic, I Propionic, I n-butyric, I Lactic, I Cellulose, s Dextrine, s Glycerine, i Phenol, I Sugar, cane, s Starch, s Thymol, I Urea, I	C ₂ H ₄ O ₂ C ₃ H ₆ O ₂	170p 327p 483p 644p 788p 346p 660p 506p 210p 368p 525p 680 414 330p 680 414 315 3153 1353 152	5.31¢ 7.10¢ 8.00¢ 8.06¢ 7.60¢ 8.92¢ 8.43¢ 1.357° 3.49° 4.96° 5.95° 3.66° 4.48° 4.32 7.8r 3.9.02¢ 2.53

v, p, following the heats of combustion, signify at constant volume and pressure respectively. When referred to constant pressure, the values are 0.58 Kg-cal. greater (at about 18° C) for each condensed gaseous molecule. The values are means from various observers. The combustion products are gaseous CO₂, liquid water, etc.

TABLE 262. - Heat of Combustion - Miscellaneous.

Substance.	Small calories per g substance.	Reference.	Substance.	Small calories per g substance.	Reference.
Asphalt Butter Carbon: amorphous charcoal diamond graphite Copper (to CuO) Dynamite, 75% Egg, white of Egg, yolk of Fats, animal Hemoglobin Hydrogen Iron (to FegO ₃) Magnesium (to MgO) Oils: cotton-seed lard lard olive	9530 9200 8080 8100 7860 7900 5900 1290 5700 8100 9500 9500 1582 6080 9500 9300 9300 9400	1 - 2 2 3 3 5 5 4 2 2 2 2	Oils: petroleum: crude light heavy rape sperm. Paraffin (to CO ₂ , H ₂ O l) Paraffin (to CO ₂ , H ₂ O g) Pitch. Sulphur, rhombic. Sulphur, rhombic. Sulphur, monoclinic. Tallow Woods: beech, 13% H ₂ O birch, 12% H ₃ O oak, 13% H ₂ O. pine, 12% H ₂ O.	11500 10000 10200 9500 10000 11140 10340 8400 2200 2240 9500 4170 4210 3990 44420	2 2 2 6 7 6 6 - 2 5 6 8 8 8 8

References: (1) Slossen, Colburn; (2) Mean; (3) Berthellot; (4) Roux, Sarran; (5) Thomsen; (6) Stohmann; (7) Gibson; (8) Gottlieb.

HEAT VALUES AND ANALYSES OF VARIOUS TYPES OF FUEL.

HEAT VALUES AND ANALYSES OF VARIOUS TYPES OF FOLL.												
				(a) Co	ALS.						
Coal.	Moisture.	Volatile matter.	Fixed Carbon,	Ach		Sulphur.	Hydrogen.	Carbon.	Nitrogen.	Oxygen.	Calories per gram.	B. T. U.'s per pound.
Lignite Low grade. High grade Sub-bitu- Low grade. minous High grade Low grade. minous High grade Low grade. minous Low grade. minous Low grade. Low grade. cite High grade Low grade. coke Low grade. L	38.81 33.38 22.71 15.54 11.44 3.42 2.7 3.26 2.07 2.76 3.33 1.92 1.14	25.48 27.44 33.93 33.93 34.36 14.5 14.57 9.81 2.48 3.27 1.58 0.04	4 29.6 3 36.6 3 46.0 5 58.8 7 5.5 7 78.2 7 78.8 8 4.2 8 4.2 8 88.8	9. 9. 5. 6. 5. 10. 3 - 7. 0 3. 2 9. 7 12. 8 9. 7 8.	56 0 91 0 37 0 71 4 39 0 3 0 97 0 169 0 12 0	9.97 9.94 9.29 9.58 9.99 9.54 -74 9.60 1.18 9.69	7.09 6.77 6.14 5.89 5.39 5.25 4.76 3.62 2.23 3.08	37.45 41.31 52.54 60.08 60.06 77.98 80.65 84.62 80.28 79.22 81.35	0.50 0.67 1.03 1.05 1.02 1.29 1.82 1.02 1.47 0.68	45.57 40.75 34.09 27.03 17.88 11.51 4.66 5.09 3.59 4.64 5.06	3526 3994 5115 5865 6088 7852 7845 8166 7612 6987 7417 7946 8006	6347 7189 9207 10557 10958 14134 14121 14699 13702 12577 13351 14300 14410
		(7	b) Pea	TS AN	D W	00 D	(air d	dried).				
	Vo hydr carb	ro-	Fixed arbon.	Ash.	Sul- phur.		raro- en.	Carbon.	Nitro- gen.	xygen.	Calories I per gram.	B.T.U.'s per pound.
Woods: Oak, dry Birch, dry	Franklin Co., N. Y 67.10 28.99 Sawyer Co., Wis 56.54 27.92			3.91 15.54 0.37 0.29 0.37	0.15	- 6.02 - 6.06		48.88	0.09	31.36 26.54 43.36 44.67 43.08	5726 4867 4620 4771 5085	10307 8761 8316 8588 9153
				(c) L1	QUID	Fue	IS.					
Fu	ıel.			Spe	cific gr	avity	C	Calories p	er gram		sh therm per pour	
Petroleum ether Gasoline. Kerosene. Fuel oils, heavy petro Alcohol, fuel or den: cent water and de	leum or r	th 7 1	to o per		6846 7107 7908 9609	30 800 970	-	12210- 11100- 11000- 10200-	11400 11200 10500	1	21978-21 9980-20 9800-20 8360-18	520 160 900
				(d)	Gasi	ES.						
Gas.]	H ₂	CH ₄	C ₂ H ₂	''lur ı an		CO ₂	СО	O ₂	N_2	Cal. per m³	B.T.U. per cu. ft.
Natural gas, Cal Natural gas, Pa Natural gas, France. Coal gas, low grade. Coal gas, high grade. Water gas, low grade Water gas, high grade.	34 57 52		88.0 53.3 98.81 28.80 18.8 2.16 23.2	45.8* 9.50	I. 0. 8	70	0.58	10.40 3.20 36.8 19.1	0.1 0.40 - 1.15	0.90 0.90 0.48 14.20 18.0 4.69 3.08	8339 12635 9364 6151 3736 2642 6140	937 1420 1052 657 399 283 657

^{*} C₂H₈. Data from the Geological Survey, Poole's The Calorific Power of Fuels, and for natural gas from Snelling (Van Nostrand's Chemical Annual).

CHEMICAL AND PHYSICAL PROPERTIES OF FIVE DIFFERENT CLASSES OF EXPLOSIVES.

Explosive.	Specific gravity.	Number of large calories developed by 1 kilogram of the explosive.	Pressure developed in own volume after elimination of surface influence.	Unit disruptive charge by ballistic pendulum.	Rate of detonation. Cartridges 14 in. diam.	Duration of flame from roo grams of explosive.	Length of flame from 100 grams.	Cartridge 14 in, transmitted explosion at a distance of	Products of combustion from 200 grams; gaseous, solid, and liquid, respectively.	Ignition occurred in 4% fire damp & coal dust mixture with
			Kg. per sq. cm.	Grams.	Meters per second.	Millisec- onds.	Inches.	Inches.	Grams.	Grams.
(A) Forty-per-cent nitro- glycerin dynamite	1.22	1221.4	8235	227*	4688	.358	24.63	12	88.4 79.7 14.5	25
(B) FFF black blasting powder	1.25	789.4	4817	374 [†] 458*	469.4‡	925.	54.32	-	154.4 126.9 4.1	25
(C) Permissible explosive; nitroglycerin class	1.10	760.5	5912	301*	3008	.471	27.79	4	103.9 65.1 15.4	1000
(D) Permissible explosive; ammonium	0.97	992.8	7300	279*	3438§	.483	25.68	I	89.8 27.5 75.5	800
(E) Permissible explosive; hydrated class	1.54	610.6	6597	434*	2 479	.338	17.49	. 3	86.1 56.0 33.0	Over 1000
	<u></u>	(Chemical	Analyse	S.					
(A) Moisture Nitroglycerin Sodium nitrate Wood pulp Calcium carbonate (B) Moisture Sodium nitrate Charcoal Sulphur (C) Moisture Nitroglycerin Sodium nitrate Charcoal Sulphur (C) Moisture Nitroglycerin Sodium nitrate Calcium carbonate Magnesium "			0.91 39.68 42.46 13.58 3.37 0.80 70.57 17.74 10.89 24.02 36.25 9.20 21.31 0.97 0.36	(E)	Moisture Ammon Sulphur Starch Wood p Poisono Mangan Sand Moisture Nitrogly Ammon Sand. Coal. Clay. Ammon Zinc suli Potassiu	ium n ulp us ma ese pe cerin ium n	tter . croxide itrate			0.23 83.10 0.46 2.61 1.89 2.54 2.64 6.53 2.34 30.85 9.94 1.75 11.98 7.64 8.06 6.89 19.65

^{*} One pound of clay tamping used. § Cartridges 13 in. diam.

^{*} One pound of clay tamping used. † Two pounds of clay tamping used. ‡ Rate of burning. \$ Cartridges 1\frac{3}{2} in. diam. | For 300 grammes.

Compiled from U. S. Geological Survey Results, — "Investigation of Explosives for use in Coal Mines, 1909."

TABLE 265. — Additional Data on Explosives.

Explosive. (Ref. Young, Nature, 102, 216, 1918.)	Vol. gas per g in cc = V	Calories per g = Q	Coefficient = QV ÷ 1000	Coefficient GP = 1	Calculated Temperature Q/C C, sp. ht. gases = 0.24
Gunpowder. Nitroglycerine. Nitrocellulose, 13% N2. Cordite, Mk. I. (NG, 57; NC, 38; Vaseline, 5) Cordite, MD (NG, 30; NC, 65; Vaseline, 5). Ballistite (NG, 50; NC, 50; Stabilizer, 5). Picric acid (Lyddite).	cc 280 741 923 871 888 817 877	738 1652 931 1242 1031 1349 810	207 1224 859 1082 915 1102 710	1 6 4·3 5·2 4·4 5·3 3·4	2240° C 6880 3876 5175 4225 5621 3375

Shattering power of explosive = vol. gas per g \times cals./g \times $V_d \times$ density where V_d is the velocity of detonation. Trinitrotoluene: $V_d = 7000$ m/sec. Shattering effect = .87 picric acid.

Amatol (Ammonium nitrate + trinitrotoluene, TNT): $V_d = 4500$ m/sec.

Ammonal (Ammonium nitrate, TNT, Al): 1578 cal/g; 682 cc gas; $V_d = 4000$ m/sec.

Sabulite (Ammonium nitrate, 78, TNT 8, Ca silicide 14): about same as ammonal.

TABLE 266. - Ignition Temperatures Gaseous Mixtures.

Ignition temperature taken as temperature necessary for hot body immersed in gas to cause ignition; slow combination may take place at lower temperatures. McDavid, J. Ch. Soc. Trans. 111, 1003, 1917. Gases were mixed with air. Practically same temperatures as with O₂ (Dixon, Conrad, loc. cit. 95, 1909).

Benzole and air to62° C Coal gas and air. 878 CO and air. 931	Ether and air 1033° C Ethylene and air 1000 Hydrogen and air 747
---	--

TABLE 267. - Time of Heating for Explosive Decomposition.

Temperature ° C.	170	180	190	200	220	Ignition tem	perature.
Time.	sec.	sec.	sec.	sec.	sec.	°C† °C‡	
Black powder Smokeless powder A Smokeless powder B Celluloid Pyroxylin Collodion cotton Celluloid * Safety matches Parlor matches Cotton wool	n 600 190 170 870 160 n	n 195 130 60 165 100 340 n	n 130 — 67 60 240 n	n 45 90 21 56 50 150 590	n 23 25 9 18 30 60 480	440 { 300 	450

n, failure to explode in twenty minutes. * The decomposition of nitrocellulose in celluloid commences at about 100°C; above that the heat of decomposition may raise the mass to the ignition point if loss of heat is prevented. Above 170°, decomposition occurs with explosive violence as with nitrocellulose. Rate of combustion is 5 to 10 times that of poplar, pine, or paper of the same size and conditions.

† Measured by contact with porcelain tube of given temperature. Average.

‡ Measured by contact with molten lead. Average.

Taken from Technologic Paper of Bureau of Standards, No. 98, 1917.

TABLE 268. - Flame Temperatures.

Measures made with optical pyrometer by Féry, J. de Phys. (4) 6, 1907.

Alcohol, with NaCl. 1705° C Bunsen flame, no air 1712 Bunsen flame, ½ air. 1812 Bunsen flame, iull air. 1871 Illuminating gas-oxygen 2200	Hydrogen flame Hydrogen-oxygen Acetylene burner Acetylene-oxygen Cooper-Hewlit Hg	1900° C 2420 2458 3000 3500
---	---	---

THERMO-CHEMISTRY, CHEMICAL ENERGY DATA.

The total heat generated in a chemical reaction is independent of the steps from initial to final state. Heats of formation may therefore be calculated from steps chemically impracticable. Chemical symbols now represent the chemical energy in a gram-molecule or $\text{mol}(\epsilon)$; treat reaction equations like algebraic equations: $\text{CO} + \text{O} = \text{CO}_2 + 68 \text{ Kg-cal}$; subtract $\text{C} + 2 \text{ O} = \text{CO}_2 + 97 \text{ Kg-cal}$, then C + O = CO + 29 Kg-cal. We may substitute the negative values of the formation heats in an energy equation and solve $\text{MgCl}_2 + 2 \text{ Na} = 2 \text{ NaCl} + \text{Mg} + x \text{ Kg-cal}$; -151 = -196 + x; x = 45 Kg-cal. Heats of formation of organic compounds can be found from the heats of combustion since burned to H_2O and CO_2 . When changes are at constant volume, energy of external work is negligible; also generally for solid or liquid changes in volume. When a gas forms a solid or liquid at constant pressure, or vice versa, it must be allowed for. For N mols of gas formed (disappearing) at T_K° the energy of the substance is decreased (increased) by 0.002 · N · T_K Kg-cal. $\text{H}_2 + \text{O} = \text{H}_2\text{O} + 67.5 \text{ Kg-cal}$. at 18°C. at constant volume; $\frac{1}{2}(2 \text{ H}_2 + \text{O}_2 - 2 \text{ H}_2\text{O} = 135.0 + 0.002 \times 3 \times 291 = 136.7) = 68.4 \text{ Kg-cal}$.

The heat of solution is the heat, + or -, liberated by the solution of 1 mol of substance in so much water that the addition of more water will produce no additional heat effects. Aq. signifies

this amount of water; H_2O , one mol.; $NH_3 + Aq = NH_4OH \cdot Aq. + 8$ Kg-cal.

TABLE 269. (a). Heats of Formation from Elements in Kilogram Galories.

At ordinary temperatures.

	1		1				
Compound.	Heat of Forma- tion.	Compound.	Heat of Forma- tion,	Compound.	Heat of Forma- tion.	Compound.	Heat of Forma- tion.
Al ₂ O ₃ Ag ₂ O BaO BaO BaO ₂ Bi ₂ O ₃ CÓ am CO di CO ₂ am CO ₂ gr CO ₂ di CaO CeO ₂ Cl ₂ O g CoO am CoO cr Co ₃ O ₄ CrO ₃ Cs ₂ O Cu ₂ O Cu ₂ O Cu ₀ O Fe ₂ O ₃ Fe ₃ O ₄ H ₂ O ₂ ggl N ₂ O Cu ₃ O Cu ₂ O Cu ₂ O Cu ₂ O Cu ₃ O Cu ₂ O Cu ₃ O Cu ₂ O Cu ₂ O Cu ₂ O Cu ₂ O Cu ₃ O Cu ₂ O Cu ₂ O Cu ₂ O Cu ₃ O Cu ₂ O Cu ₂ O Cu ₃ O Cu ₂ O Cu ₃ O Cu ₂ O Cu ₂ O Cu ₂ O Cu ₂ O Cu ₃ O Cu ₃ O Cu ₂ O Cu ₃ O Cu ₄ O Cu ₃ O Cu ₄ O Cu	380. 6.5 126. 142. 138. 29.0 26.1 97.0 94.8 94.3 152. 225. -10.5 50.5 57.5 193.4 140. 91.3 42.3 37.2 65.7 196.5 270.8 68.4 46.8 22.2 21.4 91. 447. 141.6 143.6 90.8 123. 325. 144. 144.6 143.6 143.6 144.6 143.6 144.6 143.6 144.6 143.6 144.6 143.6 144.6 143.6 144.6 144.6 143.6 144.6 145.6 145.6 146.8 147.6 147.6 147.6 148.2 -21.6 -8.1 -8.1 -8.2 -	HgO Na ₂ O Na ₂ O Nd ₂ O ₃ NiO P ₂ O ₅ sgs PbO PbO ₂ Pr ₂ O ₃ Rb ₂ O Solog rh sgg SiO ₂ SnO SnO ₂ cr SrO ₂ ThO ₂ TiO ₂ am TiO ₂ cr TiO ₂ am TiO ₂ cr SrO ₂ Cr SrO ₂ Cr SrO ₂ ThO ₂ TiO ₃ TiO ₄ TiO	21.4 100. 435. 57.9 370. 50.3 62.4 412. 89.2 70. 191.0 66.9 137.5 135. 326. 215.6 218.4 42.2 131. 194. 29.2 29.5 161.4 5.81 22.8 197. 90.6 21.0 187. 90.0 187. 187. 187. 187. 187. 187. 187. 187.	KCI LiCI MgCl ₂ MnCl ₂ NaCl NaCl NdCl ₃ NH ₄ Cl NiCl ₂ PbCl ₂ PbCl ₂ PtCl ₄ SnCl ₂ SnCl ₄ SrCl ₂ ThCl ₄ TICI RbCl ZnCl ₂ HBr glg NH ₄ Br HI gsg HF ggg Ag ₂ S CS ₂ sgg CaS (NH ₄) ₂ S Cu ₂ S H ₂ S gsg K ₂ S MgS Na ₂ S PbS CaSO ₄ CuSO ₄ H ₂ SO ₄ H ₂ SO ₄ Hg ₂ SO ₄ Hg ₂ SO ₄ Hg ₂ SO ₄ K ₂ SO ₄ K ₂ SO ₄	105.7 93.8 151.0 112.3 97.8 250. 76.3 74.5 83.4 40.5 60.4 80.8 128. 185. 300. 48.6 61. 105.9 97.3 8.6 62. 18.3 11.6 2.73 11.6 2.73 103.4 79.4 89.3 19.3 262. 111.5 193. 21.3 175. 165. 344.3	Li ₂ SO ₄ (NH ₄) ₂ SO ₄ Na ₂ SO ₄ MgSO ₄ PbSO ₄ Th ₂ SO ₄ CaCO ₃ CuCO ₃ FeCO ₃ K ₂ CO ₃ MgCO ₃ Na ₂ CO ₃ ZnCO ₃ AgNO ₃ Ca(NO ₃) ₂ Cu(NO ₃) ₂ 6 H ₂ O H ₂ NO ₃ gsgl KNO ₃ LiNO ₃ NH ₄ NO ₃ NaNO ₃ TINO ₃ CH ₄ sgg C ₂ H ₆ sgg C ₄ (OH) ₂ NH ₄ OH NaOH NaOH NaOH NaOH NaOH K H ₂ O · Aq-H ½(2 Na · O · H ₂ O) ½(Na ₂ O · H ₂ O · Aq) KOH	334.2 283.3 301.6 216.2 221.0 229.6 270. 143. 179. 280. 267. 272. 194. 28.7 209. 92.9 41.6 119.2 112. 88.3 111.0 58.2 20. 255330.5 88.8 102. 44.* 68.* 30.* 103.5 45.* 45.* 45.* 45.*

am = amorphous; di = diamond; gr = graphite; cr = crystal; g = gas; l = liquid; s = solid; y = yellow (gold); rh = rhombic (sulphur). * Heats of formation not from elements but as indicated.

HEATS OF FORMATION OF IONS IN KILOCRAM-CALORIES.

+ and - signs indicate signs of ions and the number of these signs the valency. For the ionisation of each gram-molecule of an element divide the numbers in the table by the valency, e. g., 9.03 gr. Al = 9.03 gr. Al + + 40.3 Kg. cal. When a solution is of such dilution that further dilution does not increase its conductivity, then the heats of formation of substances in such solutions may be found as follows: FeCl₂Aq = + 22.2 + 2 \times 39.1 = 100.4 Kg. cal. CuSO₄Aq = - 19.8 + 2 \times 39.1 = 198. Kg. cal.

TABLE 271 .- Heats of Neutralization in Kilogram-Calories.

The heat generated by the neutralization of an acid by a base is equal, for each gram-molecule of water formed, to 13.7 Kg. cal. plus the heat produced by the amount of un-ionized salt formed, plus the sum of the heats produced in the completion of the ionizations of the acid and the base. (See also p. 209).

Base.	HCl-aq	HNO3-aq	H ₂ SO ₄ ·aq	HCN·aq	CH ₃ COOH·aq	H ₂ ·CO ₃ ·aq
KOH · aq NaOH · aq NH ₄ OH · aq ½ Ca(OH) ₂ · aq ½ Zn(OH) ₂ · aq ½ Cu(OH) ₂ · aq	13.7 13.7 12.4 14.0 9.9 7.5	13.8 13.7 12.5 13.9 9.9 7.5	15.7 15.7 14.5 15.6 11.7	2.9 2.9 1.3 3.2 8.1	13.3 13.3 12.0 13.4 8.9 6.2	10.1 10.2 8. 9.5 5.5

TABLE 272 .- Heat of Dilution, H.SO.

In Kilogram-calories by the dilution of one gram-molecule of sulphuric acid by m gram-molecules of water.

M. Cal 6.38 9.42 11.14 13.11 16.26 16.68 16.86 17.06 17.31													
	1599	399 17.31	199	99 16.86	49 16.68	19, 16.26	5 13.11	3	2 9.42	1 6.38	•	Cal.	m K

RADIATION CONSTANTS.

TABLE 273 .- Radiation Formulæ and Constants for Perfect Radiator.

The radiation per sq. cm. from a "black body" (exclusive of convection losses) at the temperature T° (absolute, C) to one at t° is equal to

$$f = \sigma (T^4 - t^4)$$
 (Stefan-Boltzmann);
Where $\sigma = 1.374 \times 10^{-12}$ gram-calories per second per sq. centimeter.
 $= 8.26 \times 10^{-11}$ "" minute "" " = 5.75 $\times 10^{-12}$ watts per sq. centimeter.

The distribution of this energy in the spectrum is represented by Planck's formula:

$$J_{\lambda} = C_1 \lambda^{-5} \left[e^{\frac{C_2}{\lambda T}} - 1 \right]^{-1}$$

where I_{λ} is the intensity of the energy at the wave-length λ (λ expressed in microns, μ) and e is the base of the Napierian logarithms.

$$C_1 = 9.226 \times 10^3 \text{ for } J \text{ in } \frac{gram. \ cal.}{sec. \ cm.^3} = 3.86 \times 10^4 \text{ for } J \text{ in } \frac{watts}{cm.^3}$$

$$J_{\text{max}} = 3.11 \times 10^{-16} \ T^{5} \text{ for } J \text{ in } \frac{gram. \ cal.}{see. \ cm.^{2}} = 1.30 \times 10^{-16} \ T^{5} \text{ for } J \text{ in } \frac{watts}{cm.^{2}}$$

 $\lambda_{\text{max}} T = 2010 \text{ for } \lambda \text{ in } \mu$

h=Planck's unit=elementary "Wirkungs quantum"=6.83 × 10-27 ergs. sec.

k=constant of entropy equation=1.42 × 10-16 ergs./degrees.

TABLE 274. — Radiation in Gram-Calories per 24 Hours per sq. cm. from a Perfect Radiator at t° C to an absolutely Cold Space (-273° C).

Computed from the Stefan-Boltzmann formula.

-220	71	+34 1059 +36 1087 +38 1115 +40 1145 +42 1174 +44 1204 +46 1234 +48 1265 +50 1298 +52 1330 +54 1363	+56 1400 +58 1430 +60 1470 +70 1650 +80 1850 +90 2070 +100 2310 +200 5960 +100 313×108 +2000 318×104 +5000 921×10 ⁵
------	----	--	--

TABLE 275. — Values of J_{λ} for Various Temperatures Centigrade.

Ekholm, Met. Z. 1902, used $C_1 = 8346$ and $C_2 = 14349$, and for the unit of time the day. For 1000, the values for JA have been multiplied by 10, for the other temperatures by 100.

λ	T= 100° C	30° C	15° C	∘° C	—30° C	—80° C	λ	100° C	30° C	15° C	0° C	-30° C	80° C
μ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1 80 469 1047 1526 1768 1810 1724 1573 1398 1225 1063 918 792 683 590	0 41 508 1777 3464 4954 4954 5928 6382 6386 6127 5712 5222 4713 4220 3759 3340	0 18 272 1085 2296 3481 4352 4834 4979 4833 4633 4633 4300 3930 3556 3198 2862	0 7 138 628 1454 2353 3088 3646 3781 3798 3676 3215 2944 2417	0 1 27 172 493 931 1372 1730 1971 2098 2114 2090 2004 1889 1760 1626	0 0 1 8 39 105 203 316 426 520 592 640 666 673 663 649	# 18 19 20 21 22 23 24 25 26 28 30 40 50 6c 80 100	511 443 386 337 295 259 228 202 179 142 114 44 20 10 4 2	2961 2626 2329 2068 1840 1639 1462 1307 1170 947 771 311 146 77 27 12	2557 2281 2034 1816 1622 1448 1165 1047 850 696 285 135 72 25 11	2175 1954 1754 1754 1413 1270 1141 1028 926 757 623 259 124 66 24	1491 1363 1242 1129 1026 931 846 768 698 579 482 209 102 555 20	623 594 561 527 494 460 428 398 369 317 272 130 67 38 14 7

BLACK-BODY SPECTRUM INTENSITIES (JA).

Values of J_{λ} using for C_1 , 9.23 \times 10³, C_2 , 14350., λ in μ . If the figures given for J_{λ} are plotted in cms as ordinates to a scale of abscissae of 1 cm to 1 μ , then the area in cm² between the smooth curve through the resulting points and the axis of abscissae is equivalent to the radiation in calories per sec. from 1 cm² of a black body at the corresponding temperature, radiating to absolute zero. The intensities when radiating to a body at a lower temperature may be obtained by subtracting the intensities corresponding to the lower temperature from those of the higher. The nature of the black-body formula is such that when λT is small, a small change in C_2 produces a great change in J_{λ} ; e.g., when $C_2/\lambda T$ is 100 or 10, the change is 100 and 10 fold respectively; as λT increases, the change becomes proportional; e.g., when $C_2/\lambda T$ is less than 0.05, the change in J_{λ} is proportional to the change in C_2 .

λ	50° K.	100° K.	150° K.	200° K.	250° K.	273° K.	300° K.	373° K.	400° K.	500° K.	600° K.
μ 1.0 1.5 2.0 2.5	.O59I	. O583 . O383 . O282 . O221	. O ₃ 72 . O ₂ 42 . O ₁ 85 . O ₁ 42	. 0276 . 0172 . 0137 . 0103	.020I 0133 .09I .07IO	.018I .0127 .09II .077	.016I .0102 .07I2 .0646	.0122 .088 .0513	.01124 .0749 .0546	.0831 .0558 .03168	.0638 .03143 .00184 .0066
3.0 3.5	. O409 . O344	. 0196 . 0163	. O125 . O102	.082	.0618	.069	.0545	.03102	.03242 .03620	.00265	.0131
4.0 5.0 6.0 7.0 8.0 9.0	.0306 .0243 .02019 .01883 .01672 .01422	.0142 .0111 .0105 .096 .085	.094 .0714 .0614 .066 .0518	.0614 .0617 .058 .0419 .0436	. 0552 . 0430 . 048 . 0315 . 0322 . 0327	.0418 .048 .0318 .0330 .0339	.0457 .0321 .0341 .0359 .0371	.0360 .00134 .00195 .00225 .00232	.00115 .00226 .00301 .00328 .00321	.00690 .00952 .01001 .00925 .00801	.0229 .0249 .0224 .0186 .0149
10.0 12.0 14.0 16.0 18.0 20.0	.01331 .01115 .01021 .0914 .0957 .0816	.0754 .0624 .0661 .0511 .0517	.0565 .0413 .0418 .0422 .0424	.047I .0494 .04I02 .04I00 .0492 .0482	.0330 .0331 .0329 .0325 .0321 .0317	. 0348 . 0347 . 0341 . 0334 . 0328	.0378 .0370 .0358 .046 .03368 .03290	.00201 .00157 .00117 .0387 .03653 .03493	.00262 .00196 .00144 .00105 .03760	.00554 .00374 .00254 .00176 .00124 .03902	.00929 .00585 .00380 .00254 .00176 .00125
25.0 30.0 40.0 50.0 75.0 100.0	. 0897 . 0726 . 0769 . 0795 . 0787 . 0755	. 0530 . 0532 . 0526 . 0618 . 0667 . 0629	.0421 .0416 .059 .0551 .0515	.0457 .0438 .0418 .0592 .0524 .0688	.03122 .0466 .04282 .04150 .05338 .05119	.03131 .0479 .0433 .04158 .05383 .05134	.03164 .0497 .04301 .04184 .03436 .05150	.03258 .03146 .04558 .04255 .05580 .03197	.03295 .03164 .04620 .04281 .05634 .05214	.03439 .03237 .04858 .04381 .03834 .03277	.03589 .03311 .03110 .04482 .04103 .05342

λ	800° K.	1000° K.	1500° K.	2000° K.	3000° K.	4000° K.	5000° K.	6000° K.	8000° K.	10000° K.	20000° K.
μ 0.1 0.2 0.3 0.4 0.5 0.6				0.0226 0.087 0.0315 0.0145 0.172	0.01115 0.0012 0.44 5.75 20.6 40.8	0.0624 0.46 24.2 115. 226.	0.0331 15.4 263. 690. 952.	0.038 184. 1310. 2280. 2490.	15. 3660. 9640. 10300. 8400. 6290.	5.40. 22100. 31000. 25600. 17800.	710000. \$20000. \$20000. 180000. 92300. 51460.
0.7 0.8 0.9	10640 .0651 .0434		0.064	1.93 3.58 5.35	59.2 71.5 77.3	328. 321. 295.	925. 800. 671.	1860. 1490. 1177.	4590. 3350. 2470.	8110. 5620. 3980.	30700. 19100. 12820.
1.0 1.5 2.0 2.5 3.0	.00015 .0775 .0367 .0719 .0964 .1050	.00538 .0848 .221 .305 .320 .296	0.645 · 2.07 2.43 2.10 1.64 1.22	7.06 10.25 8.19 5.68 3.82 2.60	77.8 52.2 29.0 16.4 9.66 6.02	262. 122. 57.6 29.5 16.4 9.84	554. 210. 90.2 43.9 23.7 13.8	928. 309. 125. 58.9 31.1 17.9	1842. 527. 198. 90.1 46.4 26.3	2880. 758. 275. 121.9 61.9 34.7	8800. 1980. 668. 284. 140.7 77.3
4.0 5.0 6.0 7.0 8.0 9.0	.1027 .0839 .0629 .0459 .0335	. 256 . 178 . 119 . 0811 . 0562 . 0398	0.907 0.511 0.302 0.188 0.122 0.0824	1.80 0.923 0.514 0.307 0.194 0.128	3.90 1.84 0.973 0.560 0.344 0.223	6.20 2.81 1.45 0.820 0.498 0.319	8.59 3.81 1.935 1.165 0.653 0.416	11.0 4.81 2.42 1.348 0.808 0.513	15.0 6.84 3.40 1.88 1.20 0.709	20.9 8.89 4.39 2.41 1.43 0.90	45.9 19.15 9.34 5.09 3.00 1.87
10.0 12.0 14.0 16.0 18.0 20.0	.0184 .01072 .00660 .00425 .00285	.00400	0.0575 0.0304 0.0175 0.0108 0.00697 0.00470	0.0880 0.0553 0.0256 0.0155 0.00997 0.00668	0.151 0.0757 0.0421 0.0253 0.0100 0.01008	0.214 0.107 0.0587 0.0350 0.0221 0.0147	0.278 0.1373 0.0754 0.0448 0.0282 0.01868	0.342 0.168 0.0921 0.0546 0.0344 0.0227	0.470 0.230 0.125 0.0742 0.0466 0.0307	0.598 0.292 0.159 0.0938 0.0585 0.0388	1.24 0.602 0.326 0.192 0.120 0.0789
25.0 30.0 40.0 50.0 75.0 100.0	.00090 .03464 .03159 .04684 .04144	.03619 .03209 .04888 .04184	0.00203 0.00101 0.03334 0.03140 0.04286 0.04910	0.00284 0.00141 0.03459 0.03191 0.04387 0.04124	0.00448 0.00220 0.03710 0.03204 0.04501 0.04188		0.00777 0.00378 0.00121 0.03500 0.04997 0.04317	0.00941 0.00455 0.00140 0.03603 0.03120 0.04381	0.0127 0.00016 0.00197 0.03808 0.03161 0.04510	0.0160 0.00775 0.00247 0.00101 0.03201 0.04639	0.0325 0.0157 0.02019 0.02201 0.03128

RADIATION EMISSIVITIES

TABLE 277. - Relative Emissive Powers for Total Radiation.

Emissive power of black body = 1. Receiving surface platinum black at 25°C; oxidized surfaces oxidized at 0+°C. Randolph and Overholzer, Phys. Review, 2, p. 144, 1913.

	Temperature, Deg. C.					
-	200	400	600			
Silver	0.020	0.030	0,038			
Platinum (r)	0.060	0.086	0.110			
Oxidized zinc	_	0.110	-			
Oxidized aluminum	0.113	0.153	0.192			
Calorized copper, oxidized	0.180	0.185	0.190			
Cast iron	0.210	I —	_			
Oxidized nickel	0.369	0.424	0.478			
Oxidized monel	0.411	0.439	0.463			
Calorized steel, oxidized	0.521	0.547	0.570			
Oxidized copper	0.568	0.568	0.568			
Oxidized brass	0.610	0.600	0.589			
Oxidized lead	0.631	_	-			
Oxidized cast iron	0.643	0.710	0.777			
Oxidized steel	0.790	0.788	0.787			
Black body	I.00	I.00	1.00			

Remark: For radiation properties of bodies at temperatures so low that the radiations of wave-length greater than 20 μ or thereabouts are important, doubt must exist because of the possible and perhaps probable lack of blackness of the receiving body to radiations of those wave-lengths or greater. For instance, see Table 379 for the transparency of soot.

TABLE 278. - Emissivities of Metals and Oxides.

Emissivities for radiation of wave-length 0.55 and 0.65 \(\mu\). Burgess and Waltenberg, Bul. Bureau of Standards,

Emissivities for radiation of wave-length 0.55 and 0.05 μ . Burgess and wattenberg, Bull. Bureau of Standards, II, 501, 1914.

In the solid state practically all the metals examined appear to have a negligible or very small temperature coefficient of emission for $\lambda = 0.55$ and 0.65 μ within the temperature range 20° C to melting point. Nickel oxide has a well-defined negative coefficient, at least to the melting point. There is a discontinuity in emissivity, for $\lambda = 0.65$ μ at the melting point for some but not all the metals and oxides. This effect is most marked for gold, copper, and silver, and is appreciable for platinum and palladium. Palladium, in addition, possesses for radiation a property analogous to suffusion, in that the value of emissivity ($\lambda = 0.65$ μ) natural to the liquid state may persist for a time after solidification of the metal. The Violle unit of light does not appear to define a constant standard. Article contains hibitography. tains bibliography.

Metals.	Cu	Ag	Au	Pd	Pt	Ir	Rh	Ni	Со	Fe	Mn	Ti
eλ, 0.55 μ solid 0.55 μ liquid	0.38	0.35	0.38	0.38	0.38	_	0.29	0.44	_	_	_	0.75 0.75
o.65 μ solid liquid	0.10	0.04	O.14 O.22	0.33	0.33	0.30	0.29	0.36 0.37	0.36	0.37 0.37	0.59	0.63
Metals	Zr	Th	Y	Er	Ee	Cb	V	Cr	Мо	W	U	
eλ, 0.55 μ solid liquid		0.36	_	0.30	0.61	0.61	0.29	0.53	=	=	0.77	
0.65 μ solid liquid	0.32	0.36	0.35	0.55	0.61	0.49	0.35	0.39	0.43	0.39	0.54	
Oxides: 0.65 μ	NiO	Co ₃ O ₄	Fe ₃ O ₄	Mn ₃ O ₄	TiO ₂	ThO ₂	Y ₂ O ₃	БеО	CbOx	V ₂ O ₃	Cr ₂ O ₃	U ₃ C ₈
ea, solidliquid	0.89	0.77	0.63	0.47	0.52	0.57	0.61	0.37	0.71	0.69	0.60	0.30

RADIATION EMISSIVITIES.

TABLE 279. - Relative Emissivities of Metals and Oxides.

Emissivity of black body taken as 100.

True temperature C.	500°	600°	700°	800°	900	o°	1000°	1100°	I 2	00°	Ref.
60 FeO.40 Fe ₂ O ₃ Total = Fe heated in air	_	85	86	8 ₇ 98	8 ₇		88 95	88		39	ı
NiO	Ξ	54	62 98	68 96	72		75 92	81 88		36	2 2
App.* temp. C —		300	- -	<u>- </u>	_	1000 486 12.4	630	780	1600 930 16.9	1700 1005 17.5	3
Tungsten: True temp. K (abs.)	200 51.8 48.2	600 50.8 47.2	1000 49.8 46.3	48.9	7.9	2200 47.0 43.3	46.0	45.0	3400 44. I 40. 4	3800	4

^{*} As observed with total radiation pyrometer sighted on the platinum.

References: (1) Burgess and Foote, Bul. Bureau of Standards, 12, 83, 1915; (2) Burgess and Foote, loc. cit.

11, 41, 1914; (3) Foote, loc. cit. 11, 607, 1914; (4) Worthing, Phys. Rev. 10, 377, 1917.

TABLE 280. - Temperature Scale for Tungsten.

Hyde, Cady, Forsythe, J. Franklin Inst. 181, 418, 1916. See also Phys. Rev. 10, 395, 1917. The color temperature = temperature of black body at which its color matches the given radiation.

Lumens/watt	Color temperature.	Black-body temperature.	True temperature.	True temperature.	True - color.	True — brightness.
1 2 3 4 5 6 7 8 9	1763° K. 1917 2025 2109 2179 2237 2290 2338 2383 2425	1627° K. 1753 1840 1909 1907 2017 2062 2102 2140 2174	1720° K. 1875 1976 2056 2125 2184 2238 2286 2332 2373	1700° 1800 1900 2000 2100 2200 2300 2400	12° 20 26 31 36 39 41 43	100° 115 128 142 158 175 191 208

TABLE 281. — Color minus Brightness Temperatures for Carbon.

Hyde, Cady, Forsythe, Phys. Rev. 10, 395, 1917.

Brightness temp. ° K Color — brightness	1000°	1700° 7	1800° 12	1900°	2000° 22	2100° 28	2200° 33

COOLING BY RADIATION AND CONVECTION.

TABLE 282. - At Ordinary Pressures.

According to McFarlane * the rate of loss of heat by a sphere placed in the centre of a spherical enclosure which has a blackened surface, and is kept at a constant temperature of about 140 C, can be expressed by the equations

$$e = .000238 + 3.06 \times 10^{-6}t - 2.6 \times 10^{-8}t^2$$

when the surface of the sphere is blackened, or

$$e = .000168 + 1.98 \times 10^{-6}t - 1.7 \times 10^{-8}t^{2}$$

when the surface is that of polished copper. In these equations, e is the amount of heat lost in c. g. s. units, that is, the quantity of heat, small calories, radiated per second per square centimeter of surface of the sphere, per degree difference of temperature t, and t is the difference of temperature between the sphere and the enclosure. The medium through which the heat passed was moist air. The following table gives the results.

Differ- ence of	Valu	e of e.	Ratio.
tempera- ture t	Polished surface.	Blackened surface.	Katio.
5	.000178	.000252	.707
10	.000186	.000266	.699
15	.000193	.000279	.692
20	.000201	.000289	.695
25	.000207	.000298	.694
30	.000212	.000306	.693
35	.000217	.000313	.693
40	,000220	.000319	.693
45	.000223	.000323	.690
50	.000225	.000326	.690
55	.000226	.000328	.690
60	.000226	.000328	.690

TABLE 283. - At Different Pressures.

Experiments made by J. P. Nicol in Tait's Laboratory show the effect of pressure of the enclosed air on the rate of loss of heat. In this case the air was dry and the enclosure kept at about 80 C.

Polishe	ed surface.	Blacken	ed surface.
ŧ	et	t	et
Pri	essure 76 cm	s. of Mer	CURY.
63.8 57.1 50.5 44.8 40.5 34.2 29.6 23.3 18.6	.00987 .00862 .00736 .00628 .00562 .00438 .00378 .00278	61.2 50.2 41.6 34.4 27.3 20.5	.01746 .01360 .01078 .00860 .00640 .00455
Pres	SSURE 10.2 CM	s. of Me	RCURY.
67.8 61.1 55 49.7 44.9 40.8	.00492 .00433 .00383 .00340 .00302 .00268	62.5 57.5 53.2 47.5 43.0 28.5	.01298 .01158 .01048 .00898 .00791
PR	ESSURE I CM	. of Merc	CURY.
65 46.60 50 40 30 23.5	.00388 .00355 .00286 .00219 .00157 .00124	62.5 57.5 54.2 41.7 37.5 34.0 27.5 24.2	.01182 .01074 .01003 .00726 .00639 .00569 .00446

* "Proc. Roy. Soc." 1872. † "Proc. Roy. Şoc." Edinb. 1869. See also Compan, Annal. de chi. et phys. 26, p. 526.

COOLING BY RADIATION AND CONVECTION.

. TABLE 284. - Cooling of Platinum Wire in Copper Envelope.

Bottomley gives for the radiation of a bright platinum wire to a copper envelope when the space between is at the highest vacuum attainable the following numbers:—

$$t=408^{\circ}$$
 C., $et=378.8 \times 10^{-4}$, temperature of enclosure 16° C. $t=505^{\circ}$ C., $et=726.1 \times 10^{-4}$, " 17° C.

It was found at this degree of exhaustion that considerable relative change of the vacuum produced very small change of the radiating power. The curve of relation between degree of vacuum and radiation becomes asymptotic for high exhaustions. The following table illustrates the variation of radiation with pressure of air in enclosure.

Temp. of enclosur	re 16°.C., t=408° C.	Temp. of enclosure $t7^{\circ}$ C., $t = 505^{\circ}$ C.					
Pressure in mm.	'et	Pressure in mm.	et				
740. 440. 140. 42. 4. 0.444 .070 .034 .012 .0051 .00007	8137.0 × 10 ⁻⁴ 7971.0 " 7875.0 " 7591.0 " 6036.0 " 2683.0 " 1045.0 " 727.3 " 539.2 " 436.4 " 378.8 "	0.094 .053 .034 .073 .0046 .00052 .00019 Lowest reached but not measured }	1688.0 × 10 ⁻⁴ 1255.0 " 1126.0 " 920.4 " 831.4 " 767.4 " 746.4 " 726.1 "				

TABLE 285.-Effect of Pressure on Loss of Heat at Different Temperatures.

The temperature of the enclosure was about 15° C. The numbers give the total radiation in therms per square centimeter per second.

Temp. of		1	Pressure in m	n.	
wire in C ³ .	10.0	1.0 0.25		0.025	About o. 1 M.
100° 200 300 400 500 600 700 800	0.14 .31 .50 .75 - -	0.11 .24 .38 .53 .69 .85	0.05 .11 .18 .25 .33 .45	0.01 .02 .04 .07 .13 .23 .37 .56	0.005 .0055 .0105 .025 .055 .13 .24

Note. — An interesting example (because of its practical importance in electric lighting) of the effect of difference of surface condition on the radiation of heat is given on the authority of Mr. Evans and himself in Bottomley's paper. The energy required to keep up a certain degree of incandescence in a lamp when the filament is dull black and when it is "flashed" with coating of hard bright carbon, was found to be as follows:—

Dull black filament, 57.9 watts. Bright " " 39.8 watts.

TABLE 286. - Conduction of Heat across Air Spaces (Ordinary Temperatures).

Loss of heat by air from surfaces takes place by radiation (dependent upon radiating power of surface; for small temperature differences proportional to temperature difference; follows Stefan-Boltzmann formula, see p. 247), conduction, and convection. The two latter are generally inextricably mixed. For horizontal air spaces, upper surface warm, the loss is all radiation and conduction; with warm lower surface the loss is greater than for similar vertical space.

Vertical spaces: The following table shows that for spaces of less than r cm width the loss is nearly proportional to the space width, when the radiation is allowed for; for greater widths the increase is less rapid, then reaches a maximum, and for yet greater widths is slightly less. The following table is from Dickinson and van Dusen, A. S. Refrigerating Engineers J. 3, 1916.

HEAT CONDUCTION AND THERMAL RESISTANCES, RADIATION ELIMINATED, AIR SPACE 20 CM HIGH.

Air			nduction. ar/cm²/° C.	Thermal resistance. Same units.						
space, cm.		Temperatur	e difference.	ce. Temperature difference.						
	10°	15°	. 20°	25°	10°	15°	20°	25°		
0.5 1.0 1.5 2.0 3.0	0.46 0.24 0.160 0.161 0.172	0.46 0.24 0.172 0.178 0.196	0.46 0.24 0.182 0.200 0.208	0.46 0.24 0.192 0.217 0.217	2. T7 4. 25 6. 25 6. 20 5. 80	2.17 4.20 5.80 5.60 5.10	2.17 4.15 5.50 5.00 4.80	2.17 4.10 5.20 4.60 4.60		

Variation with height of air.space: Max. thermal resistance = 4.0 at 1.4 cm air space, 10 cm high; 6.0 at 1.6 cm, 20 cm high; 8.9 at 2.5 cm, 60 cm high.

TABLE 287. - Heat Convection in Air at Ordinary Temperatures.

In very narrow layers of air between vertical surfaces at different temperatures the convection currents, in the main, flow up one side and down the other, with eddyless (stream-line) motion. It follows that these currents transport heat to or from the surfaces only when they turn and flow horizontally, from which fact it follows, in turn, that the convective heat transfer is independent of the height of the surface. It is, according to the laws of eddyless flow, proportional to the square of the temperature difference, and to the cube of the distance between the surfaces. As the flow becomes more rapid (e.g., for a 20° difference and a distance of 1.2 cm) turbulence enters, and the above retained in the convention of the convention of the dimensions tested, convection in horizontal layers was a little over twice that in vertical.

Taken from White, Physical Review, 10, 743, 1917.

Heat Transfer, in the Usual C.G.S. Unit, i.e., Calories per Second per Degree of Thermal Head per Square Cm of Flat Surface, at 22.8° Mean Temperature.

Where two values are given, they show the range among determinations with different methods of getting the temperature of the outer plate. It will be seen that the value of the convection is practically unaffected by this difference of method.

Thermal	8 mm	gap.	12 mn	n gap.	24 mm gap.		
head.	Total. Convection.		Total. Convection. Total. Conv		Total.	Convection.	
0.99°	_	_	.000 083 0 \ .000 084 8 }	-	.000 065	-	
1.980	001 000.	_	.000 084 0	.000 000 I 000 4	_	_	
4.95°	.000 111	.000 001	{ .000 086 6 88 I	.000 002 8	.000 090	over .000 025	
9.89°	{ .000 II2 II3	.000 003	.000 093 7	010 000.	.000 106	over .000 040	
19.76°	.000 116	,000 007	{ .000 I07 7 I09 4	026	.000 126	over .000 060	

CONVECTION AND CONDUCTION OF HEAT BY GASES AT HIGH TEMPERATURES.*

The loss of heat from wires at high temperatures occurs as if by conduction across a thin film of stationary gas adhering to the wire (vertical and horizontal losses very similar). Thickness of film is apparently independent of temperature of wire, but probably increases with the temperature of the gas and varies with the diameter of the wire according to the formula $b \cdot \log b/a = 2B$, where $B = \mathrm{constant}$ for any gas, $b = \mathrm{diameter}$ of film, a, of wire. The rate of convection (conduction) of heat is the product of two factors, one the shape factor, s, involving only a and B, the other a function ϕ of the heat conductivity of the gas. If $W = \mathrm{the}$ energy loss in watts/cm, then $W = s(\phi_2 - \phi_1)$. s may be found from the relation

$$\frac{s}{\pi}e^{-\frac{2\pi}{s}} = \frac{a}{B}; \quad \phi = 4.19 \int_0^{\tau} k dt.$$

where k is the heat conductivity of the gas at temperature T in calories/cm $^{\circ}$ C. ϕ_2 is taken at the temperature T_2 of the wire, ϕ_1 at that of the atmosphere. The following may be taken as the conductivities of the corresponding gases at high temperatures:

To obtain the heat loss: B may be assumed proportional to the viscosity of the gas and inversely proportional to the density. For air (see Table 289(b)) B may be taken as 0.43 cm; for H₂, 3.05 cm; for Hg vapor as 0.078. Obtain a/B; then from section (b) obtain a/B and a/B; then from section (b) obtain a/B and a/B; the loss will be a/B and a/B?

(a) s AS FUNCTION OF a/B.

S	a/B	<i>s</i>	a/B	s	a/B	s	a/B
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5	0.0 0.735 × 10 ⁻⁸ 0.594 × 10 ⁻⁸ 0.725 × 10 ⁻² 0.725 × 10 ⁻² 2.75 × 10 ⁻² 0.0644 0.1176 0.185 0.265 0.354 0.453	5.0 5.5 6.0 6.5 7.5 8.0 8.5 9.0 9.5	0.453 0.558 0.671 0.788 0.908 1.032 1.160 1.291 1.424 1.561 1.696	10 12 14 16 18 20 22 24 26 28 30	1.696 2.263 2.844 3.438 4.040 4.645 5.263 5.877 6.505 7.122 7.738	30 32 34 36 38 40 42 44 46 48 50	7.738 8.370 8.995 9.622 10.25 10.87 11.50 12.14 12.77 13.14

(b) Table of ϕ in Watts per CM as Function of Absolute Temp. (°K.).

<i>T</i> ° K.	H_2	Air	Hg	T° K.	H_2	Air	Hg
0° 100 200 300 400	0.0000 0.0329 0.1294 0.278 0.470	0.0000 0.0041 0.0168 0.0387 0.0669	= =	1500° 1700 1900 2100 2300	4.787 5.945 7.255 8.655 10.18	0.744 0.931 1.138 1.363 1.608	0.1783 0.228 0.284 0.345 0.411
500 700 900 1100 1300	0.700 1.261 1.961 2.787 3.726	0.1017 0.189 0.297 0.426 0.576	0.0165 0.0356 0.0621 0.0941 0.1333	2500 2700 2900 3100 3300	11.82 13.56 15.54 17.42 19.50	1.871 — — —	0.481 0.556 0.636 0.719 0.807
1500	4.787	0.744	0.1783	3500	21.79	_	0.898

^{*} Langmuir Physical Review, 34, p. 401, 1912.

HEAT LOSSES FROM INCANDESCENT FILAMENTS

(a) Wires of Platinum Sponge Served as Radiators (to Room-temperature Surroundings). Hartman, Physical Review, 7, p. 431, 1916.

				(A)	Obser	ved heat	losses	in watts	per cm.			
Diameter wire,					Α	bsolute	temper	atures.				
cm.	900°	1000°	1100°	1200°	1300°	1400°	1500°	1600°	1700°	1800°	1900°	2000°
l ————									1/00			2000
0.0690	1.70	2,26	3.01	3.88	4.92	6.18	7.70	9.63	12.15	15.33	19.25	23.75
0.0420	1.35	I.75	2.26 1.76	2.84	3 . 53	4.29	5.33	6.60	8.25	IO.20	12.45	14.75
0.02/5	0.02	1.15	1.39	1.74	2.73	3.23 2.54	3.91	4.67 3.64	5.72 4.32	7.00 5.10	8.64	7.35
1	<u> </u>				<u>'</u>					3, 20	1 0110	1 7.33
		(B) H	eat loss	es corre	cted for	radiatio	n, watt	s per cn	n (A-C).			
0.0690	0.91	1.05	1.23	1.36	1.45	1.51	1.54	1.66	2.00	2.56	3.40	4.30
0.0420	0.87	I.02	1.17	1.31	I.42	i.45	1.57	1.76	2.08	2.43	2.80	3.26
0.0275	0.80	0.02	0.80	I.22 I.03	1.35	I.37 I.23	1.46	I.50 I.40	I.67	1.91	2.32 1.64	2.70 1.88
	1 0.70	0.01	0.09	1.03	1.15	1.23	1.31	1.40	1.47	1.51	1.04	1.00
		(C) C	ompute	d radia	tion, wa	tts per	cm, σ =	= 5.61	X 10 ⁻¹² .*			
0.0690	0.79	1.21	1.78	2.52	3.47	4.67	6.16	7.97	10.15	12.77	15.85	19.45
0.0420	0.48	0.73	1.00	1.53	2.11	2.84	3.74	4.84	6.17	7-77	9.65	11.85
0.0275	0.32	0.48	0.71	0.71	0.97	1.86	2.45	3.17	4.05	5.00	6.32	7.75
0.0195	1 0.22	0.34	0.30	0.71	0.97	1.31	1.73	2,24	2.05	3 · 59	4.40	5 · 47
		()	D) Con	duction	loss by	silver le	eads, wa	tts per	cm.			
0.0420	0.42	0.46	0.49	0.61	0.75	0.88	1.00	1.07	1.13	I.22	_	_
0.0275	0.18	0.21	0.28	0.35	0.43	0.48	0.55	0.57	0.60	0.67	_	_
0.0195	0.06	0.08	80.0	0.09	0.11	0.12	0.14	0.15	0.22	0.23	_	
		-	(E)	Convect	tion loss	by air,	watts p	er cm.				
0.0420	0.45	0.56	0.68	0.70	0.67	0.57	0.59	0.60	0.95	1,21		
0.0275	0.62	0.71	0.77	0.87	0.92	0.89	0.91	0.93	1.07	I.24		_
0.0195	0.64	0.73	0.81	0.94	1.04	I.II	1.17	1.25	1.29	1.30	-	_
	* T	his valu	e is low	er than	the pre	sently (гото) ас	cented	value of	5.72.		
<u></u>			22 2011	or oracon			-9-97 00			J-1		

(b) Wires of Bright Platinum 40-50 Cm Long Served as Radiators to Surroundings
At 300° K. Langmuir, Physical Review, 34, p. 401, 1912.

			Observe	ed energy los	sses in watts	per cm.						
Diameter wire,		Absolute temperatures.										
cm.	500°	700°	900° ·	1100°	1300°	1500°	1700°	1900				
0.0510	0.22 0.17	0.52	0.90	I.42 I.02	2.03 1.45	2.89	4.10	5.65				
0.01262 0.00691	0.13	0.31	0.53	0.79	0.99	1.46 1.33	I.95 I.79	2.71				
0.00404	0.11	0,24	0.41	0.61	0.84	1.14	1.54	2.13				
		E	nergy radiat	ted in watts	per cm.*							
0.0510	0.002 0.001	0.013	0.049 0.024	0.137	0.323	0.67	I.25 0.62	2.15 1.06				
0.01262 0.00691 0.00404	0.000	0.003 0.002 0.00I	0.012 0.007 0.004	0.034	0.080 0.044 0.026	0.17 0.09 0.05	0.31 0.17 0.10	0.53 0.29 0.17				
0.00404	0.000	1		1	1 1	0.03		0.17				
		"C	onvection"	losses in wat	tts per cm.							
0.0510	0.22	0.51	0.85	1.28	1.71	1.67	2.85	3.50				
0.01262 0.00691 0.00404	0.13 0.12 0.11	0.3I 0.29 0.24	0.52 0.47 0.41	0.75 0.70 0.60	0.95 0.81	I.29 I.24 I.09	1.64 1.62 1.44	2.18 2.19 1.96				
				1	cting air film							
1	1	IIICE	less of theor	elicai condu	Ctilig an Ium	1	1	Means.				
0.0510 0.02508 0.01262	0.30	0.30 · 0.3 0.37 0.3 0.42 0.4	37 0.4	0.45	0.45	0.35 0.51 0.69	0.36 0.56 . 0.47	0.34 0.43 0.54				
0.00691 0.00404 Means.	0.27	0.32 0.3 0.43 0.4 0.37 0.3	43 0.4	7 0.56	0.47	0.38 0.40 0.47	0.26 0.25 0.38	0.37 0.41 †0.43				
* Comput	ted with $\sigma = 3$ 0.060; 795°, next page.	5.32, black-bo	ody efficiency	y of platinum	n as follows (1	Lummer and	f Kurlbaum)): 492° K.				

THE EYE AND RADIATION.

Definitions: A meter-candle is the intensity of illumination due to a standard candle at a meter distance. The milliambert (0.001 lambert) measures the brightness of a perfectly diffusing (according to Lambert's cosine law) surface diffusing 1 lumen per cm². A brightness of 10 meter-candles equals 1 milliambert. 0.001 ml corresponds roughly to night exteriors, 0.1, to night interiors, 10 ml to daylight interiors and 1000, to daylight exteriors. A brightness of 100,000 meter-candles is about that of a horizontal plane for summer day with sun in zenith, 500, on a cloudy day, 4, 1st magnitude stars just visible, 0.2, full moon in zenith, .001, by starlight; in winter the intensity at noon may drop about \(\frac{1}{2}\).

TABLE 290. - Spectral Variation of Sensitiveness as a Function of Intensity.

Radiation is easily visible to most eyes from 0.330 μ (violet) to 0.770 μ (red). At low intensities near threshold values (gray, rod vision) the maximum of spectral sensibility lies near 0.503 μ (green) for 90% of all persons. At higher intensities, after the establishment of cone vision, the max. shifts as far as 0.560 μ . See Table 297 for more accurate values of sensitiveness after this shift has been accomplished. The ratio of optical sensation to the intensity of energy increases with increasing energy more rapidly for the red than for the shorter wave-lengths (Purkinje phenomenon); i.e., a red light of equal intensity to the eye with a green one will appear darker as the intensities are equally lowered. This phenomenon disappears above a certain intensity (above ro millilamberts). Table due to Nutting, Bulletin Bureau of Standards.

The intensity is given for the spectrum at 0.535μ (green).

Intensity (meter-candles) = Ratio to preceding step =	.00024	9.38	.0360	· 575 16	2.30	9.22	36.9 4	147.6	590.4 4
Wave-length, λ.			-	Se	ensitivene	5S.			
0. 430 μ 0. 450 0. 470 0. 490 0. 505 0. 520 0. 535 0. 575 0. 590 0. 605 0. 625 0. 650 0. 670 λ, maximum sensitiveness	0.081 0.33 0.63 0.96 1.00 0.88 0.61 0.26 0.074 0.025 0.008 0.000 0.000	0.003 0.30 0.50 (0.89) 1.00 0.86 0.62 0.30 0.102 0.034 0.012 0.001 0.000 0.504	0.127 0.29 0.54 (0.76) 1.00 0.86 0.63 0.34 0.122 0.054 0.024 0.011 0.003 0.001	0.128 0.31 0.58 (0.89) 1.00 0.94 0.72 0.41 0.168 0.091 0.056 0.027 0.002 0.508	0.114 0.23 0.51 (0.83) 0.99 0.91 0.62 (0.39) 0.27 0.173 0.098 0.025 0.007	0.114 0.175 0.29 0.50 (0.76) (0.885) (0.08) 0.84 (0.63) 0.49 0.35 0.20 0.060 0.017	0.16 0.26 0.45 0.66 0.85 0.98 0.03 (0.76) 0.61 (0.45) 0.27 0.085 0.025	0.23 0.38 0.61 0.85 0.99 0.97 (0.82) 0.68 0.54 0.35 0.122 0.030	0.35 0.54 0.82 0.98 (0.84) 0.69 0.55 0.35 0.133 0.030

TABLE 291. - Threshold Sensibility as Related to Field Brightness.

The eye perceives with ease and comfort a billion-fold range of intensities. The following data were obtained with the eye fully adapted to the sensitizing field, B, the field flashed off, and immediately the intensity, T, of a test spot (angular size at eye about 5°) adjusted to be just visible. This table gives a measure of the brightness, T, necessary to just pick up objects when the eye is adapted to a brightness, B. Intensities are indicated log intensities in milliamberts. Blanchard, Physical Review, 11, p. 81, 1918.

Log B	-7.0	-6.0	-5.0	-4.0	-3.0	-2.0	-1.0	0.0	+1.0	+2.0	+3.0
$\left\{ \begin{array}{l} \text{Log } T \text{, white} \\ T/B \end{array} \right.$											+0.28 .0019
Log T, blue	-6.70	-6.38	-5.82	-5.12	-4.23	-3.46	-2.70	-2.18	-1.62		
Log T, green											_
Log T, yellow		-5.47	-5.17	-4 01	-4.03	-3.33	-2.57	-1.97	-1.62	_	_
Log T, red	_	_	-4.27	-1 00	-3.47	- 2.96	-2.43	-1.02	-I 37	-0.90	_

THE EYE AND RADIATION.

TABLE 292. - Heterochromatic Threshold Sensibility.

The following table shows the decrease in sensitiveness of the eye for comparing intensities of different colors. The numbers in the body of the table correspond to the line marked T/B of Table 291. The intensity of the field was probably between 10 and 100 millilamberts (25 photons).

Comparison color.		ο.693 μ	0.640 μ	ο. 575 μ	0.505 μ	ο.475 μ	ο. 430 μ
Standard color: red	0.505 μ.	0.044 0.174 0.211 0.168	0.088 0.160 0.180 0.180	0.165 0.032 0.138 0.130	0.180 0.166 0.030 0.130	0.197 0.174 0.116 0.068	0.150 0.134 0.126 0.142

TABLE 293. - Contrast or Photometric Sensibility.

For the following table the eye was adapted to a field of o.r millilambert and the sensitizing field flashed off. A neutral gray test spot (angular size at eye, $5 \times 2.5^\circ$) the two halves of which had the contrast indicated (\frac{1}{2}\) transparent, a covered with neutral screen of transparency = contrast indicated) was then observed and the brightness of the transparent part measured necessary to just perceive the contrast after the lapse of the various times. One eye only used, natural pupil. Blanchard, Physical Review, 11, p. 88, 1918. Values are log brightness of brighter field in millilamberts.

Time in seconds.	0	ı	2	5	10	20	40	60
0.39	-2.63 -2.40 -2.10	-3.47 -3.36 -3.00 -2.46 -1.57	-3.58 -3.13 -2.49	-3.74 -3.22 -2.48	-3.85 -3.21 -2.55	-3.33 -2.54	-3.40	-3.48 -2.73

TABLE 294. - Glare Sensibility.

When an eye is adapted to a certain brightness and is then exposed suddenly to a much greater brightness, the latter may be called glaring if uncomfortable and instinctively avoided. Observers naturally differ widely. The data are the means of three observers, and are log brightnesses in millilamberts. The glare intensity may be taken as roughly 1700 times the cube root of the field intensity in millilamberts. Angle of glare spot, 4°. Blanchard, Physical Review, loc. cit.

	Log. field Log. glare	-6.0 1.35	-4.0 1.90	-2.0 2.60	-1.0 2.90	0.0	+1.0 3.60	2.0 3.90	3.0 4 18	4.0
н										

TABLE 295. — Rate of Adaptation of Sensibility.

This table furnishes a measure of the rate of increase of sensibility after going from light into darkness, and the values were obtained immediately from the instant of turning off the sensitizing field. Both eyes were used, natural pupil, angular size of test spot, 4.0°, viewed at 35 cm. Blanchard, loc. cit. Retinal light persists only 10 to 20 m when one has been recently in darkness, then in a dimly lighted room; it persists fully an hour when a subject has been in bright sunlight for some time. A person who has worked much in the dark "gets his eyes" quicker than one who has not, but his final sensitiveness may be no greater.

Sensitizing	Logarithmic thresholds in millilamberts after										
field.	o sec.	ı sec.	2 sec.	5 sec.	IO Sec.	20 sec.	40 sec.	60 sec.	5 min.	30min.	60 min.
IOO.O ml. Blue O.I ml. Green O.I ml. Yellow O.I ml.	-2.79 -2.20 -1.60 -0.90 -2.82 -2.69 -2.61 -2.32	-2.99 -2.30 -1.66 -3.92 -4.08 -3.84	-3.27 -2.53 -2.00 -4.36 -4.39 -4.17	-3.79 -3.08 -2.46 -4.91 -4.82 -4.41	-4.15 -3.54 -2.64 -5.27 -5.11 -4.65	-4.51 -3.94 -2.88 -5.53 -5.26 -4.78	-4.82 -3.20 -5.68 -5.43 -5.02	-5.06 -4.61 -3.84 -5.81 -5.56 -5.09	-5.52 -5.22 -4.76 -6.23 -5.80 -5.39	-5.86 -5.83 -5.77 -	-6.04 -6.01

THE EYE AND RADIATION.

TABLE 296. - Apparent Diameter of Pupil and Flux Density at Retina.

Flashlight measures of the pupil (both eyes open) viewed through the eye lens and adapted to various field intensities. For eye accommodated to 25 cm, ratio apparent to true pupil, 1.02, for the unaccommodated eye, 1.14. The pupil size varies considerably with the individual. It is greater with one eye closed; e.g., it was found to be for o.or millilambert, 6.7 and 7.2 mm; for 0.6 ml, 5.3 and 6.5; for 6.3 ml, 4.1 and 5.7; for 7.2.6 ml, 4.1 and 5.7 mm for both and one eye open respectively for a certain individual. At the extreme intensities the two values approach each other. The ratio of the extreme pupil openings is about 18, whereas the light intensities investigated vary over 1,000,000-fold. (Blanchard and Reeves, partly unpublished data.)

Field	Diamet	er, mm	Effective	Flux at retina.
millilamberts.	Observed.	(1.14/1.02) X Obs.	area, mm²	lumens per mm²
0.0000I 0.00I 0.1 I0	8 7.6 6.5 4.0 2.07	8.96 8.51 7.28 4.48 2.35	64 57 42 16 4·3	8.4 × 10 ⁻¹² 7.6 × 10 ⁻¹⁰ 5.6 × 10 ⁻⁸ 2.1 × 10 ⁻⁶ 5.8 × 10 ⁻⁵

TABLE 297. - Relative Visibility of Radiation.

This table gives the relation between luminous sensation (light) and radiant energy. The results of two methods are given: one from measures of the direct equality of brightness, which some consider the true method, as more direct, but criticized because of the difficulty of judging heterochromatic light (Hyde, Forsythe, Cady, A. J. 48, 87, 1918, 29 observers); the other (Coblentz, Emerson, Bul. Bureau of Standards, 14, 219, 1917, 130 observers) depends on the disappearance of flicker when two lights of different color and intensity are alternated rapidly. Color has a lower critical frequency than brightness and disappears first. Data determined for intensities above Purkinje effect. See Table 290. Ratio of light unit (lumen) to energy unit (watt) at 0.55 μ , 0.00162 (Ives, Coblentz, Kingsbury).

λ	Visib	Visibility.		Visil	Visibility.		Visit	Visibility.		Visit	oility.	λ	Visil	oility.
μ	HFC	CE	μ	HFC	CE	μ	HFC	CE	μ	HFC	CE	μ	HFC	CE
.40 .41 .42 .43 .44 .45 .46	.049 .0362 .0041 .0115 .022 .036 .055	.010 .017 .024 .029 .033 .041 .056	. 48 . 49 . 50 . 51 . 52 . 53 . 54 . 55	.138 .216 .328 .515 .698 .847 .968	.125 .194 .316 .503 .710 .862 .954	.56 .57 .58 .59 .60 .61 .62	.995 .944 .855 -735 .600 .464 .341 .238	.998 .968 .898 .800 .687 .557 .427 .302	.64 .65 .66 .67 .68 .69 .70	.154 .094 .051 .026 .0125 .0062 .0031	.194 .115 .0645 .0338 .0178 .0085 .0040	.72 .73 .74 .75 .76	. 0274 . 0336 . 0318 . 049 . 045 	.0397 .0348 .0328 .0320

TABLE 298. - Miscellaneous Eye Data.

TABLE 298. — Miscellaneous Eye Data.

Light passing to the retina traverses in succession (a) front surface of the cornea (curvature, 7.9 mm); (b) cornea (equivalent water path for energy absorption, ofe cm); (c.) back surface corneaf(curv., 7.9 mm); (d) aqueous humour (equiv. H₂O, .34 cm, n = 1.337); (e) front surface lens (c, 10 mm); (f) lens (equiv. H₂O, .42 cm, n = 1.445); (g) back surface lens (c., 6 mm); (h) vitreous humour (equiv. H₂O, 1.46 cm, n = 1.337). An equivalent simple lens has its principal point 2.34 mm behind (a), nodal point 0.48 mm in front of (g), posterior principal focus 22.73 mm behind (a), anterior principal focus 12.83 mm. in front of (a), curvature, 5.125 mm. At the rear surface of the retina (15 mm thick) are the rods (30 × 2μ) and cones (το (6 outside fovea) μ long). Rods are more numerous, 2 to 3 between 2 cones, over 3.000,000 cones in eye. Macula lutea, yellow spot, on temporal side, 4 mm from center of retina, long axis 2 mm. Central depression, fovea centralis, 3 mm diameter, 7000 cones alone present, 6 × 2 or 3μ. In region of distinct vision (fovea centralis) smallest angle at which two objects are seen separate is 50° to 70° = 3.05 to 5.14μ at retina; 50 cones in 100μ here; 4μ between centers, 3μ to cone, 1μ to interval. Distance apart for separation greater as depart from fovea. No vision in blind spot, nasal side, 2.5 mm from center of eye, 15 mm in diam.

Persistence of vision as related to color (Allen, Phys. Rev. 11, 257, 1000) and intensity (Porter, Pr. Roy. Soc. 70, 131, 1012) is measured by increasing speed of rotating sector until flicker disappears: for color, 4μ, .031 sec.; .45μ, .020 sec.; 5 mc, .014 sec.; .57μ, .012 sec.; .68μ, .014 sec.; .76μ, .018 sec.; for intensity, .06 meter-candle, .028 sec.; i mc, .020 sec.; 6 mc, .014 sec.; 100 mc, .010 sec; 142 mc, .007 sec.

Sensibility to small differences in color has two pronounced maxima (in yellow and green) and two slight ones (extreme blue, extreme red). The sensibility to small differences in intensity is

I/I_0	1,000,000	100,000	10,000	1000	100	50	10	5	I	0.1	Io in mc
dI/I, white .6ο μ .5ο μ .43 μ	.036	.019 .024 —	,018 ,016 ,018	.018 .020 .018	.030 .028 .024 .025	.032	.048 .061 .036	.059 .103 .049	.123 .212 .080	·377 ·133 ·137	.00072 .0056 .00017

PHOTOMETRIC DEFINITIONS AND UNITS.

Luminous flux, F = radiant power according to visibility, i.e., capacity to produce sensation of light. Unit, the lumen = flux emitted in a unit solid angle (steradian) by point source of one candle power.

Visibility, K_{λ} , of radiation of wave-length λ = ratio luminous flux to radiant power (energy) producing it. Mean visibility, K_m , over any range of λ or for whole visible spectrum of any source = ratio total flux (lumens) to total radiant power (erg/sec. or watts).

Luminous intensity, I, of (approximate) point source = solid angle density of luminous flux in direction considered = $dF/d\omega$ or F/ω if intensity is uniform. ω is the solid angle. Unit, the candle.

Illumination on surface is the flux density on the surface = dF/dS or F/S when uniform. S is the area of the surface. Units, meter-candle, foot-candle, phot, lux.

(Lux = one lumen per m²; phot = one lumen per cm².)

Brightness, b, of element of surface from a given point $= dI/dS \cos \theta$, where θ is the angle between normal to surface and line of sight. Unit, candles per cm². Normal brightness, $b_0 = dI/dS$ = brightness in direction normal to surface. Unit, the lambert.

Specific luminous radiation, E' = luminous flux density emitted by a surface, or the flux emitted per unit of emissive area, expressed in lumens per cm². For surfaces obeying Lambert's cosine law, $E' = \pi b_0$.

The lambert, the cgs unit of brightness, is the brightness of a perfectly diffusing surface radiating or reflecting one lumen per cm². Equivalent to a perfectly diffusing surface with illumination of one phot. A perfectly diffusing surface emitting one lumen per ft^2 has a brightness of 1.076 millilamberts. Brightness in candles per cm² is reduced to lamberts by multiplying by π .

A uniform point source of one candle emits 4π lumens.

One lumen is emitted by .07958 spherical candle power.

One lumen emitted per $ft^2 = 1.076$ millilamberts (perfect diffusion).

One spherical candle power emits 12.57 lumens.

One lux = 1 lumen incident per m² = .0001 phot = .1 milliphot.

One phot'= I lumen incident per cm² = 10,000 lux = 1000 milliphots.

One milliphot = .oor phot = .g2g foot-candle.

One foot-candle = 1 lumen incident per ft² = 1.076 milliphots = 10.76 lux.

One lambert = 1 lumen emitted per cm² of a perfectly diffusing surface.

One millilambert = .929 lumen emitted per ft² (perfect diffusion).

One lambert = .3183 candle per cm² = 2.054 candles per in².

One candle per $cm^2 = 3.1416$ lamberts.

One candle per $in^2 = .4968$ lambert = 486.8 millilamberts.

Adapted from 1916 Report of Committee on Nomenclature and Standards of Illuminating Engineering Society. See Tr., Vol. 11, 1916.

TABLE 300. - Photometric Standards.

No primary photometric standard has been generally adopted by the various governments. In Germany the Hemer lamp is most used; in England the Pentane lamp and sperm candles are used: in France the Carcel lamp is preferred; in America the Pentane and Hefner lamps are used to some extent, but candles are more largely employed in gas photometry. For the photometry of electric lamps, and generally in accurate photometric work, electric lamps, standardized at a national standardizing institution, are commonly employed.

The "International candle" is the name recently employed to designate the value of the candle as maintained by cooperative effort between the national laboratories of England, France, and America; and the value of various photometric units in terms of this international candle is given in the following table (taken from Circular No. 15 of the Bureau of Standards).

- I International Candle = I Pentane Candle.
- I International Candle = I Bougie Decimale.
- I International Candle = I American Candle.
- I International Candle = 1.11 Hefner Unit.
- I International Candle = 0.104 Carcel Unit.

Therefore I Hefner Unit = 0.90 International Candle.

The values of the flame standards most commonly used are as follows:

- I. Standard Pentane Lamp, burning pentane 10.0 candles.
- 2. Standard Hefner Lamp, burning amyl acetate
- 3. Standard Carcel Lamp, burning colza oil 0.6 candles.
- 4. Standard English Sperm Candle, approximately

TABLE 301. - Intrinsic Brightness of Various Light Sources.

	Barrows.	Ives & Luckies	h.	National Electric Lamp Association.
	C. P. per Sq. In. of surface of light.	C. P. per Sq. In. of surface of light.	C. P. per Sq. Mm. of sur- face of light.	C. P. per Sq. In. of surface of light.
Sun at Zenith	600,000	_		600,000
Crater, carbon arc	200,000	84,000	130.	200,000
Open carbon arc	10,000-50,000		230,	10,000-50,000
Flaming arc	5,000		_	5,000
Magnetite arc	_	4,000	6,2	3,000
Nernst Glower	800-1,000	(115v.6 amp. d.c.) 3,010	4.7	(1.5 w.p.c.) 2,200
Tungsten incandescent, 1.15 w. p. c.			T'/	1,000
Tungsten incandescent, 1.25 w. p. c.	1,000	1,000	1.64	875
Tantalum incandescent, 2.0 w. p. c.	750	580	0.0	750
Graphitized carbon filament, 2.5		3		750
w. p. c	625	750	1.2	625
Carbon incandescent, 3.1 w. p. c.	480	485	0.75	480
Carbon incandescent, 3.5 w. p. c.	37.5	400	0.63	375
Carbon incandescent, 4.0 w. p. c.	300	325	0.50	
Inclosed carbon arc (d. c.)	100-500		-	100-500
Inclosed carbon arc (a. c.)	-	-	_	75-200
Acetylene flame (1 ft. burner) .	75-100	53.0	0.082	75-100
Acetylene flame (1/4 ft. burner)	~	33.0	0.057	
Welsbach mantle	20-25	31.9	0.048	20-50
Welsbach (mesh)	Ana	56.0	0.067	_`
Cooper Hewitt mercury vapor lamp	16.7	τ4 9	0.023	17
Kerosene flame	4-8	9.0	0.014	3-8
Candle flame	3-4	_	-	3-4
Gas flame (fish tail)	3-8	2.7	0.004	3-8
Frosted incandescent lamp	4-8	2	-	2-5
Moore carbon-dioxide tube lamp .	0.6	-	-	0.3-1.75

Taken from Data, 1911.

TARLE 302 - Visibility of White Liebte

Range.	Candle Power.
	1 2
ı sea-mile == 1855 meters	0.47 0.41
2 " "	1.6
5 " "	11.8

¹ Paterson and Dudding.

² Deutsche Seewarte.

r micro-calorie through 1 cm. at 1 m. 20.034 sperm candle = 0.0385 Hefner unit (no diaphragm) = 0.043 Hefner unit (diap. 14 × 50 mm.). Coblentz Eul. B. of S., 11, p. 87, 1914

BRIGHTNESS OF BLACK BODY, CROVA WAVE-LENGTH, MECHANICAL EQUIVALENT OF LIGHT, LUMINOUS INTENSITY AND EFFICIENCY OF BLACK BODY.

The values of L, the luminous intensity, are given in light watts/steroradian/cm2 of radiating surface = $(1/\pi)$ $\int_{0}^{\infty} V_{\lambda} E_{\lambda} d\lambda$, where V_{λ} is the visibility of radiation function.

Mechanical equivalent. The unit of power is the watt; of lumininous flux, the lumen. The ratio of these two quantities for light of maximum visibility, $\lambda=0.556~\mu$, is the stimulus coefficient V_m ; its reciprocal is the (least) mechanical equivalent of light, i.e., least since applicable to radiation of maximum visibility. A better term is "luminous equivalent of radiation of maximum visibility" One lumen =0.001496 watts (Hyde, Forsythe, Cady); or 1 watt of radiation of maximum visibility ($\lambda=0.556~\mu$) = 668 lumens. White light has sometimes bee 1 defined as that emitted by a black body at 6000° K. The Crova wave-length for a black body is that wave-length, λ , at which the luminous intensity varies by the same fractional part that the total luminous intensity varies for the same change in temperature.

TABLE 303. - Brightness, Crova Wavelength of Black Body, Mechanical Equivalent of Light.*

Temp.	Bright- ness, candles per cm ²	Crova wave- length, µ	Mech. equiv. watts per l.
1700° 1750 1800 1850 1900 1950 2000 2050 2150 2200 2250 2300 2350 2400 2450 2550 2500	5.1 7.6 11.3 16.3 23.1 32.2 44.3 60.0 80.1 105.7 137.6 177. 226. 284. 354. 438. 537. 651. 785.	0.584 0.583 0.583 0.582 0.587 0.578 0.577 0.577 0.576 0.575 0.574 0.574 0.573 0.573 0.573 0.571 0.570	0.001478 0.001491 0.001498 0.001497 0.001497 0.001502 0.001511
2650 2650 Mean.	939.	0.570	0.001511

TABLE 304. - Luminous, Total Intensity and Radiant Luminous Efficiency of Black Body.*

T, degrees absolute.	Luminous intensity L watt/cm²	Total intensity σ_0 T^4 watt/cm ²	Radiant luminous efficiency.
1,200 1,600 1,700 1,800 1,900 2,000 2,100 2,200 2,300 2,400 2,500 3,000 4,000 5,000 6,000 7,000 8,000	$\begin{array}{c} 2.34 \times 10^{-5} \\ 3.45 \times 10^{-3} \\ 8.46 \times 10^{-3} \\ 8.46 \times 10^{-3} \\ 1.88 \times 10^{-2} \\ 3.85 \times 10^{-2} \\ 7.34 \times 10^{-2} \\ 1.32 \times 10^{-1} \\ 2.26 \times 10^{-1} \\ 3.69 \times 10^{-1} \\ 5.70 \times 10^{-1} \\ 8.77 \times 10^{-1} \\ 1.20 \\ 4.06 \\ 3.85 \times 10^{2} \\ 3.26 \times 10^{2} \\ 3.26 \times 10^{2} \\ 3.26 \times 10^{2} \\ 1.29 \times 10^{2}$	3.762 1.180 1.515 × TO 1.905 × TO 2.903 × TO 2.903 × TO 2.903 × TO 4.250 × TO 6.020 × TO 7.087 × TO 6.020 × TO	.000006 .000200 .00058 .00058 .00087 .00163 .00253 .00374 .00532 .00727 .00962 .0124 .0156 .0317 .0829 .1201 .1386 .1385 .1290 .1014

^{*} Hyde, Forsythe, Cady, Phys. Rev. 13, p. 45, 1919.

Note. — Minimum energy necessary to produce the sensation of light: Ives, 38×10^{-10} ; Russell, 7.7×10^{-10} ; Reeves, 19.5×10^{-10} ; Buisson, 12.6×10^{-10} erg. sec. (Buisson, J. de Phys. 7, 68, 1917.)

TABLE 305. — Color of Light Emitted by Various Sources.*

Source.	Color, per cent white.	Hue.	Source.	Color, per cent white.	Hue.
Sunlight Average clear sky Standard candle. Hefner lamp Pentane lamp Tungsten glow lamp, 1.25 wpc Carbon Llow lamp, 3.8 wpc Nernst glower, 1.50 wpc N-filled tungsten, 1.00 wpc	15 35 25	472 593 593 592 588 592 587 586	N-filled tungsten, o. 50 wpc	45 53 79 32 6 59 62 67 36	584 584 490 598 605 585 585 585 586

^{*} Jones, L. A., Trans. Ill. Eng. Soc., Vol. 9 (1914).

^{*} Coblentz, Emerson, Bul. Bureau of Standards, 14, p. 255,

EFFICIENCY OF VARIOUS ELECTRIC LIGHTS.

Regenerative dc., series arc Regenerative dc., series arc Regenerative dc., multiple arc S.5 605 11,670 5.18 0.527 0.527 0.66 528 7,370 7.16 0.729 0.837 0.837 0.837 0.836 0.837 0.836 0.988			
Regenerative dc., multiple arc Magnetite dc., series arc Flame arc, dc., inclined electrodes Mercury arc, dc., multiple Flame arc, dc., inclined electrodes Mercury arc, dc., inclined electrodes Mercury arc, dc., inclined electrodes Flame arc, dc., inclined electrodes Flame arc, dc., inclined electrodes Flame arc, dc., vertical electrodes Elame arc, dc., welfiel Open arc, dc., series Magnetite a	Lumens.	Lumen-	Lumen-hours at 10 cts.
	Regenerative dc., multiple arc S.5 605 11,670 Magnetite dc., series arc 6.6 528 7,370 Flame arc, dc., inclined electrodes 10.0 550 8,640 Mercury arc, dc., multiple 3.5 385 4,400 Flame arc, dc., inclined electrodes 8.0 440 6,140 Elame arc, dc., vertical electrodes 8.0 440 6,140 Elame arc, dc., series 9.6 480 5,025 Magnetite arc, dc., series 9.6 480 5,025 Magnetite arc, dc., series 4.0 320 2,870 Flame arc, ac., inclined electrodes 10.0 467 5,340 10.0 467	5.18 7.16 6.37 15.92 7.16 7.16 7.16 7.15 8.75 11.15 8.75 11.15 12.0 9.55 14.32 15.32 12.6 19.2 19.2 19.9 21.3 21.1 21.1 29.9 33.6 33.7 35.8 37.4 30.3	0.527 0.729 0.837 0.89 0.966 0.966 0.988 1.079 1.13 1.275 1.305 1.384 1.405 1.459 1.547 1.55 1.88 1.90 2.05 2.193 2.31 2.504 3.24 3.24 3.24 3.24 3.47 3.50 3.66 3.84 3.94

Ives, Phys. Rev., V, p. 390, 1915 (see also VI, p. 332, 1915); computed assuming 1 lumen = 0.00159 watt.	Commercial Rating	Lumens per Watt.	Luminous Watts Flux Watts Input or True Efficiency.
Open flame gas burner Petroleum lamp Acetylene Incandescent gas (low pressure) Incandescent gas (high pressure) Nernst lamp Moore nitrogen vacuum tube Carbon incandescent (treated filament) Tungsten incandescent (vacuum) Carbon arc, open arc Mazda, type C Mazda, type C Magnetite arc, series Glass mercury arc Quartz mercury arc Enclosed white flame carbon arc """ Open arc """ inclined """ Enclosed yellow flame carbon arc """ Open arc, """, inclined	Bray 6' high pressure 1.0 liters per hour .350 lumens per B. t. u. per hr578 lumens per B. t. u. per hr. 220-v. 60-cycle, 113 ft. 4-watts per mean hor. C. P. 1.25 watts per hor. C. P. 9.6 amp. clear globe 500-watt multiple .7 w. p. c. 600 C. P20 amp. :5 w. p. c. 600 amp. direct current 40-70 volt; 3.5 amperes 174-197 volt; 4.2 amperes 10 ampere, A. C.	0.22 .26 .67 1.2 2.0 4.8 5.21 2.6 8. 11.8 15. 19.6 21.6 23. 42. 26.7 35.5 29. 27.7 31.4 34.2 41.5	0.00035 .0004 .0011 .0019 .0031 .0076 .0083 .0041 .013 .019 .024 .031 .034 .036 .067 .042 .057 .046 .044 .050 .059

PHOTOGRAPHIC DATA.

TABLE 307. - Numerical Constants Characteristic of Photographic Plates.

Abscissae of figure are $\log E = \log It$ (metercandles-seconds);

Ordinates are densities, D = I/T; $E = \exp o = I$ (illumination in meter-can-

dles) $\times t$ seconds; D, the density of deposit = I/T, where T is the ratio of the transmitted to incident intensity on de-

veloped plate. i= inertia = intercept straight line portion of curve on log E axis. S= speed = (some constant)/i; $\gamma=$ gamma=

tangent of angle a.

L = latitude = projected straight line portion ofcharacteristic curve on log E axis, expressed in exposure units = Anti log (b-a).

The curve illustrates the characteristic curve of a

photographic plate.

TYPICAL CHARACTERISTIC CURVE OF PHOTOGRAPHIC PLATE.

TABLE 308. - Relative Speeds of Photographic Materials.

The approximate exposure may be obtained when the intensity of the image on the plate is known. Let L be the intensity in meter-candles; E, the exposure in seconds; P, the speed number from the following table; then $E = 1,350,000/(L \times P)$ approximately.

Plate.	Relative speed.	. Paper.	Relative speed.
Extremely high speed. High speed Medium speed Rapid high contrast Medium speed high contrast Process, slow contrast Lantern plate	50,000 50,000 25,000	Fast bromide Slow enlarging Rapid gas-light, soft grade Rapid gas-light, medium contrasty Rapid gas-light, contrasty Professiona	6.5

TABLE 309. - Variation of Resolving Power with Plate and Developer.

The resolving power is expressed as the number of lines per millimeter which is just resolvable, the lines being opaque and separated by spaces of the same width. The developer used for the comparison of plates was Pyro-soda; the plate for the comparison of developers, Seed Lantern. The numbers are all in the same units. Huse, J. Opt. Soc. America, July, 1917.

Plate.	Albumen.	Resolution.	Process.	Lantern.	Medium speed.	High speed.
Resolving power	125	81	67	62	35	27

Pyro-caustic Glycin Hydroquinone Pyro MQ2s Metol	64 64 63	Developer. Pyrocatechin Pyro-metol Eikon-hydroquinone Ferrous oxalate Caustic hydroquinone Eikonogen	Resolving power. 62 62 61 61 57 57	Developer, Amidol	Resolving power. 51 50 49 49 49 47
Nepera	62	Kachin	54	Editor	47

TABLES 310-311.

PHOTOGRAPHIC DATA.

TABLE 310. — Photographic Efficiencies of Various Lights.

]	Photographi	ic efficiency	·.	
Comme	Visual efficiency.		(a)			(b)	
Source.	per watt.	Ordinary plate.	Ortho- chromatic plate.	Pan- chromatic plate.	Ordinary plate.	Ortho- chromatic plate.	Pan- chromatic plate.
Sun.	150	100	100	100	100	100	100
Sky		181	155	130	_	_	_
Acetylene	0.7	30	44	52	0.14	0.21	0.24
" (screened)	0.07	81	85	89	0 037	0.010	0.042
Pentane	0.045	18	28	42	0.053	0.086	0.13
Mercury arc, quartz	40	600	500	367	158	132	99
" "Nultra" glass	35	218	195	165	50	46	39
" " crown glass	37	324	275	249	79	68	62
Carbon arc, ordinary	I 2	126	II2	104	10	10	8.5
" " white flame	29	257	234	215	52	45	2.0
" " enclosed	9	175	177	165	II	II	10
Carbon arc, "Artisto"		796	1070	744	62	86	60
Magnetite arc		106	115	82	I 2	14	10
Carbon glow-lamp		23	32	42	0.37	0.52	0.68
Carbon glow-lamp	3.16	25	. 35	45	0.51	0.74	0.95
Tungsten vacuum lamp	8	33	41	50	I.74	2.2	2.7
vacuum lamp		37	45	53	2.41	3.0 6.8	3.5
nitrogen lamp		56	62	70	6. I		7 . 7
nitrogen lamp	21.6	64	68	76	8.9	9.8	11.0
Diue Duid	8.9				5·5 7.8	5.2	5.6
blue bulb	II	108	99	106		7.3	7.9
Mercury arc (Cooper Hewitt)	23	316	354	273	47	54-2	42

(a) Relative efficiencies based on equal illumination.
(b) Relative efficiencies based on equal energy density.
Taken from Jones, Hodgson, Huse, Tr. Ill. Eng. Soc. 10, p. 963, 1915.

TABLE 311. - Relative Intensification of Various Intensifiers.

Bleaching solution.	Blackening solution.	Reference	Intensi- fication.
Mercuric bromide	Amidol developer	HgBr ₂ solution (Monckhoven sol, A).*	
Mercuric chloride	Ammonia	Bleach according to Ben-	1.15
Potassium bichromate + hydro-		nett; blackener.*	1.15
chloric acid	Amidol developer	Piper.*	1.45
Mercuric iodide	Schlippe's salt Sodium sulphide	Debenham, B. J., † p. 186, '17. B. J. Almanac.*	2.50
Uranium formula		B. J. Almanac.*	3.50
Potassium permanganate + hydro- chloric acid	Sodium stannate		2 05
Cupric chloride	Sodium stannate	Desalme, B. J., p. 215, '12.	1.93
bromide	Sodium sulphide	Ordinary sepia developer.	1.33
Mercuric iodide	Paraminophenol developer	HgI2 according to Bennett.	I.23

See Nietz and Huse, J. Franklin Inst. March 3, 1018.

* B. J. Almanac, see annual Almanac of British Journal of Photography.

† B. J. refers to British Journal of Photography.

WAVE-LENGTHS OF FRAUNHOFER LINES.

For convenience of reference the values of the wave-lengths corresponding to the Fraunhofer lines usually designated by the letters in the column headed "index letters," are here tabulated separately. The values are in ten millionths of a millimeter, on the supposition that the D line value is 5896.155. The table is for the most part taken from Rowland's table of standard wavelengths.

Index Letter.	Line due to —	Wave-length in	Index Letter.	Line due to—	Wave-length in
		centimeters × 108.			centimeters × 109.
A	50	7621.28*	G	∫ Fe	4308.081
	(0)	7594.06*		(Ca	4 307.90 7
a	-	7164.725	g	Ca	4226.904
В	0	6870.182†	h or H _δ	H	4102.000
C or H _a	H	6563.045	Н	. Ca	3968.625
α	О	6278.303 ‡	K	Ca	3933.825
D_1	Na	5896.155	L	Fe	3820.586
D_2	Na	5890.186	M	Fe	3727.778
D_3	He	587 5.985	N	Fe	3581.349
$\mathbf{E_1}$	(Fe	5270.558	0	Fe	3441.155
L1	(Ca	5270.438	P	Fe	3361.327
E_2	Fe	5269.723	Q	Fe	3286.898
b ₁	Mg	5183.791	R	, (Ca	3181.387
b ₂	Mg	5172.856	IX.	() Ca	3179.453
b ₃	(Fe	5169.220	S ₁)	ſ Fe	3100.787
D ₃	(Fe	5169.069	S_1 S_2	₹ Fe	3100.430
b ₄	(Fe	5167.678	52)	Fe	3100.046
D4	Mg	5167.497	s ·	Fe	3047.725
F or H _β	Н	4861.527	Т	Fe	3020.76
d	Fe	4383.721	t	Fe	2994.53
G' or H _γ	H	4340.634	U	Fe	2947.99
f	Fe	4325.939			

^{*}The two lines here given for A are stated by Rowland to be: the first, a line "beginning at the head of A, outside edge"; the second, a "single line beginning at the tail of A."
† The principal line in the head of B.
‡ Chief line in the a group.
See Table 321, Rowland's Solar Wave-lengths (foot of page) for correction to reduce these values to standard system of wave-lengths, Table 314.

STANDARD WAVE-LENGTHS.

TABLE 313 .- Absolute Wave-length * of Red Cadmium Line in Air, 760 mm. Pressure, 15° C.

6438.4722 Michelson, Travaux et Mém. du Bur. intern. des Poids et Mesures, 11, 1895. 6438.4700 Michelson, corrected by Benoit, Fabry, Perot, C. R. 144, 1082, 1907. 6438.4696 (accepted primary standard) Benoit, Fabry, Perot, C. R. 144, 1082, 1907.

* In Ångströms. 10 Ångströms = 1 $\mu\mu$ = 10-6 mm.

TABLE 314.—International Secondary Standards. Iron Arc Lines in Angströms.

Adopted as secondary standards at the International Union for Coöperation in Solar Research (transactions, 1910). Means of measures of Fabry-Buisson (1), Pfund (2), and Eversheim (3). Referred to primary standard = Cd. line, $\lambda = 6438.4696$ Ångströms (serving to define an Ångström). 760 mm., 15° C. Iron rods, 7 mm. diam. length of arc, 6 mm.; 6 amp. for λ greater than 4000 Ångströms, 4 amp. for lesser wave-lengths; continuous current, + pole above the -, 220 volts; source of light, 2 mm. at arc's center. Lines adopted in 1910.

Wave-length.	Wave-length.		Wave-length.	Wave-length.	Wave-length.	Wave-length.		
4282.408	4547.853	4789.657	5083.344	5405.780	5615.661	6230.734		
4315.089	4592.658	4878.225	5110.415	5434-527	5658.836	6265.145		
4375.934	4602.947	4903.325	5167.492	5455.614	5763.013	6318.028		
4427.314	4647.439	4919.007	5192.363	5497.522	6027.059	6335.341		
4466.556	4691.417	5001.881	5232.957	5506.784	6065.492	6393.612		
4494.572	4707.288	5012.073	5266.569	5569.633	6137.701	6430.859		
4531.155	4736.786	5049.827	5371.495	5586.772	6191.568	6494.993		

TABLE 315.—International Secondary Standards. Iron Arc Lines in Angströms. Adopted in 1913. (4) Means of measures of Fabry-Buisson, Pfund, Burns and Eversheim.

Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.
3370.789 3399.337 3485.345 3513.821 3556.881	3606.682 3640.392 3676.313 3677.629 3724.380	37 53.61 5 3805.346 3843.261 3850.820 3865.527	3906.482 3907.937 3935.818 3977.746 4021.872	4076.642 4118.552 4134.685 4147.676 4191.443	4233.615 5709.396 6546.250 6592.928 6678.004	67 50.250 5857.759 Ni 5892.882 Ni

⁽¹⁾ Astrophysical Journal, 28, p. 169, 1908; (2) Ditto, 28, p. 197, 1908; (3) Annalen der Physik, 30, p. 815, 1909. See also Eversheim, *ibid.* 36, p. 1071, 1911; Buisson et Fabry, *ibid.* 38, p. 245, 1912; (4) Astrophysical Journal, 39, p. 93, 1914.

TABLE 316 .- Neon Wave-Lengths.

In- tensity.	Wave length.	In- tensity.	Wave length.	In- tensity.	Wave length.	In- tensity.	Wave length.	In- tensity.	Wave length.
5 6 6 5	3369.904 3417.906 3447.705 3454.197 3460.526	5 8 4 4 5	3515.192 3520.474 3593.526 3593.634 3600.170	2 10 6 8 4	5820.155 5852.488 5881.895 5944.834 5975.534	4 7 4 8 8	6217.280 6266.495 6304.789 6334.428 6382.991		6717.043 6929.468 7024.049 7032.413 7059.111
4 5 6 4 4	3464.340 3466.581 3472.578 3498.067 3501.218	5 % 8 7 6 4	36 3 3.664 5330.779 5341.096 5400.562 5764.419	4 7 8 9 5	6529.997 6574.338 6696.163 6143.062 6163.594	10 9 4 5 8	6402.245 6506.528 6532.883 6598.953 6678.276		7173.939 7245.167 7438.902 7488.885 7535.784

International Units (Angströms). Burns, Meggers, Merrill, Bull. Bur. Stds. 14, 765, 1918.

TERTIARY STANDARD WAVE-LENGTHS. IRON ARC LINES.

For arc conditions see Table 314, p. 266. For lines of group c class 5 for best results the slit should be at right angles to the arc at its middle point and the current should be reversed several times during the exposure.

Wave-lengths.	Class.	Inten-	Wave-lengths.	Class.	Inten- sity.	Wave-lengths.	Class.	Inten- sity.
*2781.840 *2806.985 *2831.559 *2858.341 *2901.382 *2926.584 *2926.584 *2926.460 *3000.453 *3003.070 *3100.838 *3154.202 *3217.389 *3257.603 *3307.238 *3347.932 *3380.748 *3476.705 *3566.502 *3553.741 *3617.789 *3659.521 *3779.567 *3749.487 *3820.430 *3859.913 *3922.917 *3956.682 *4009.718 *4062.451 †4132.063 †4175.639 †420.031	bī b bī b2	4 7 3 3 4 4 5 5 6 6 8 8 7 8 6 6 7 7 4 7	4337.052 4369.777 4415.128 4443.198 44461.658 4489.746 4528.620 4619.297 4786.811 4890.769 4924.773 4939.685 4973.113 5041.076 5041.760 5051.641 5079.227 5079.743 5098.702 5123.729 5123.729 5123.729 5123.729 5123.729 5123.729 5127.366 5150.846 5151.917 5194.950 5202.341 5216.279 5227.191 5242.495 5270.356 5328.643 5328.537	b3 b3 b1 b3 a3 a3 c4 c4 c4 c5 a a a a a a a a a a a a a a a a a a	5 3 8 3 4 3 7 4 3 8 7 3 3 2 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 4 3 4 4 4 4 4 4 5 5 5 5	5332.909 5341.032 5365.404 5405.780 5434.528 5473.913 5497.521 5501.471 5506.784 ‡5535.419 5563.612 5975.352 6027.059 6065.495 6136.624 6157.734 6165.370 6173.345 6200.323 6213.441 6219.290 6252.567 6254.269 6265.145 6297.802 6335.342 6430.859 6494.992	a4 a4 a1 a a a a a b b b b b b b b b b b b b	2 5 2 6 6 4 4 4 3 2 3 2 3 4 4 5 5 6 6 4 5 4 6 5 6

* Measures of Burns. † Means of St. John and Burns.

For class and pressure shifts see Gale and Adams, Astrophysical Journal, 35, p. 10, 1912. Class a: "This involves the well-known flame lines (de Watteville, Phil. Trans. A 204, p. 139. 1904), i.e. the lines relatively strengthened in low-temperature sources, such as the flame of the arc, the low-current arc, and the electric furnace. (Astrophysical Journal, 24, p. 185, 1906, 30, p. 86, 1909, 34, p. 37, 1911, 35, p. 185, 1912.) The lines of this group in the yellow-green show small but definite pressure displacements, the mean being 0.0036 Angström per atmosphere in the arc." Class b: "To this group many lines belong; in fact all the lines of moderate displacement under pressure are assigned to it for the present. These are bright and symmetrically widened under pressure, and show mean pressure displacements of 0.009 Angström per atmosphere for the lines in the region λ 5975-6678 according to Gale and Adams. Group c contains lines showing much larger displacements. The numbers in the class column have the following meaning: 1, symmetrically reversed; 2, unsymmetrically reversed; 3, remain bright and fairly narrow under pressure; 4, remain bright and symmetrically toward the red under pressure."

bright and are widened very unsymmetrically toward the red under pressure."

For further measures in International units see Kayser, Bericht über den gegenwärtigen Stand der Wellenlängenmessungen, International Union for Coöperation in Solar Research, 1913.

For further spectroscopic data see Kayser's Handbuch der Spectroscopie.

^{*} Measures of Burns. "Neans of St. John and Burns.

† Means of St. John and Goos. Others are means of measures by all three. References: St. John and Ware, Astrophysical Journal, 36, 1912; 38, 1913; Burns, Z. f. wissen. Photog. 12, p. 207, 1913, J. de Phys. 1913, and unpublished data; Goos, Astrophysical Journal, 35, 1912; 37, 1913. The lines in the table have been selected from the many given in these references with a view to equal distribution and where possible of classes a and b.

REDUCTION OF WAVE-LENGTH MEASURES TO STANDARD CONDITIONS.

The international wave-length standards are measured in dry air at 15° C, 76 cm pressure. Density variations of the air appreciably affect the absolute wave-lengths when obtained at other temperatures and pressures. The following tables give the corrections for reducing measures to standard conditions, viz.: $\delta = \lambda_0 (n_0 - n_0^4) (d - d_0)/d_0$ in ten-thousandths of an Angstrom, when the temperature t^o C, the pressure B in cm of Hg, and the wave-length λ in Angstroms are given; n and d are the indices of refraction and densities, respectively; the subscript r refers to standard conditions, none, to the observed; the prime r to the standard wave-length, none, to the new wave-length. The tables were constructed for the correction of wave-length measures in terms of the fundamental standard 643.8496 A of the cadmium red radiation in dry air, r_15^o C, r0 cm pressure. The density factor is, therefore, zero for r5° C and r6 cm, and the correction always zero for $\lambda = 6438$ A. As an example, find the correction required for λ when measured as 3000.0000 A in air at r5° C and r7° cm. Section (a) of table gives (r4° do)/r6° r8° and for this value of the density factor section (b) gives the correction to λ 6° r8° and r8° and r8° as r8° as r9° as r9° as r9° as r9° as r9° as r9° and r9° as r9° and r9° as r9° a

TABLE 318 (a). - 1000 $\times (d - d_0)/d_0$.

B cm	60.0	62.5	65.0	67.5	70	71	72	73	74	75	76	77	78
9° C	-192	-160	-126	-92	-59	-46	-32	-19	-5	+8	+22	+35	+48
11	-200	-167	-133	-100	-67	-53	-40	-27	-13	0	+13	+27	+40
13	-206	-172	-139	-106	-73	-60	-46	-33	-20	-7	+6	+20	+33
15	-211	-178	-145	-112	-79	-66	-53	-39	-26	-13	0	+13	+26
17	-216	-184	-151	-118	-86	-73	-60	-47	-34	-21	-8	+5	+19
19	-222	-189	-156	-124	-92	-79	-66	-53	-40	-27	-14	-1	+12
21	-227	-195	-163	-130	-98	-85	-72	-59	-46	-33	-21	-8	+5
23	-232	-200	-168	-136	-104	-91	-78	-65	-52	-40	-27	-14	-1
25	-238	-206	-174	-143	-111	-98	-85	-72	-60	-47	-34	-22	-9
27	-243	-211	-179	-148	-116	-104	-91	-78	-66	-53	-40	-28	-15
29	-248	-216	-185	-154	-122	-109	-97	-84	-72	-59	-46	-34	-21
31	-253	-222	-190	-159	-128	-116	-103	-01	-78	-66	-54	-41	-29
33	-258	-227	-196	-165	-134	-121	-109	-97	-81	-72	-59	-47	-34
35	-262	-231	-200	-170	-139	-127	-114	-102	-90	-77	-65	-53	-41

TABLE 318 (b). — $\delta = \lambda_0 (n_0 - n_0') (d - d_0) / d_0$, in Ten-thousandth Angstroms.

		Wave-lengths in Angstroms.													
$\frac{d - d_0}{d_0}$	2000	2300	3000	3500	4000	4500	5000	5500	6000	6500	7000	7500	8000	9000	10000
	Corrections in ten-thousandth Angstroms.														
-260 -240 -220 -200	-259 -239 -219 -199	-166 -154 -141 -128	-10	7 -78 8 -71	-57 -52	-4I -37	-28 -26		-8 -7 -7 -6	+1 +1 +1	+9 +9 +8 +7	+17 +16 +14 +13	+24 +22 +20 +19	+37 +35 +32 +29	+50 +46 +42 +38
-180 -160 -140 -120 -100	-179 -159 -139 -119 -100	-115 -102 -90 -77 -64	-7 -6 -5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{-38}{5}$ $\frac{-38}{-28}$	-27 -24 -20	-19 -16 -14	-s	-6 -5 -4 -1 -3	+1 +1 +0 +0	+6 +6 +5 +4 +4	+12 +10 +9 +8 +7	+17 +15 +13 +11 +9	+26 +23 +20 +17 +14	+34 +31 +27 +23 +19
-80 -60 -40 -20	-80 -60 -40 -20	-51 -38 -26 -13	-2 -1	$ \begin{array}{ccccccccccccccccccccccccccccccccc$) -1.i ; -9 : -5	-10	-7	-4 -3 -1	_	+0 +0 +0 0 -0	+3 +2 +1 +1	+5 +4 +3 +1	+7 +6 +4 +2 0	+12 +9 +6 +3	+15 +11 +8 +4
+20 +40	+20 +40	+13 +26	+18			+3 +7	+2 +5	+1 +3	+1	-o -o	-1 -1	-2 -3	- 2 - 4	-3 -6	-4 -8

SPECTRA OF THE ELEMENTS.

The following figure gives graphically the positions of some of the more prominent lines in the spectra of some of the elements. Flame spectra are indicated by lines in the lower parts of the panels, are spectra in the upper parts, and spark spectra by dotted lines.

The following wave-lengths are in Angstroms.

Na	5880.065	Rb	4202	·Cu	4023	Mg	5168
	5895.932	1	4216	"	4063		5173
K	4044		5648		5105.543*		5184
	4047		5724		5153.251*		5529
	5802		6207		5218.202*	Sn	4525
	7668	Tl	6299 5351		5700 5782.000*		5563 558 9
Li	4132	In	4102		5782.159*		5799
	4602		4511	Ag	4055		6453
	6104	Hg	4046.8		4212	H	3970
0	6707.846*		4078.I		4669		4102
Cs	4555		4358.3		5209.081*		4340
	4593 5664		4916.4		5465.489* 5472		4861 6563
	5945		4959·7 5460.742*		5623	He	3187.743†
	6011		5769.598*	Zn	4680.138*	110	3888.646†
	6213		5790.659*		4722.164*		4026.180
	6724		6152		4810.535*		4471.477
	6974		6232		4912		4713.143
	<u> </u>				4925 6103		4921.929†
For	other elements.	see Kay	ser's Handbuck	det	6362.345*		5015.675† 5875.618†
pectros		Sec Itay	DOL D ZIGHODOCI	1 401	0302.343		6678.149†
	bry and Perot.	† Mei	rrill.				7065.1881

SPECTRUM LINES OF THE ELEMENTS.

Table of brighter lines only abridged from more extensive table compiled from Kayser and containing 10,000 lines (Kayser's Handbuch der Spectroscopie, Vol. 6, 1912).

(Kayser's Handbuch der Spectroscopie, Vol. 6, 1912).													
Wave- lengths, inter- Ele	-	Intensities.		Wave- lengths, inter-	Ele-	In	ntensitie	es.	Wave- lengths, inter-	Ele-	1	ntensit	ies
national ment Ang- stroms.	Arc.	Spark.	Tube.	Ang- stroms.	ment.	Arc.	Spark.	Tube.	national Ang- stroms.	ment.	Arc.	Spark.	Tube.
3802.98 NI 10.73 NI 14.45 Ex 19.65 Ex 22.15 Rh 28.47 Rh 32.30 M 36.83 Zr 38.29 M 36.83 Zr 38.29 M 45.45 Cc 47.98 Tr 51.02 Rh 88.20 Ni 60.86 Cl 64.11 M 71.65 La 73.07 Co 74.16 TL 76.66 LL 73.07 Co 74.16 TL 76.66 Ni 39.05 Ni 094.22 Pd 96.36 Ex 10.94 Ni 094.22 Ni 094.22 Ni 094.22 Ni 094.23 Ni 094.24 Ni 094.25 Ni 094.25 Ni 094.26 Ni 094.27 Ni 094.28 Ni 094.29 Ni 094.29 Ni 094.29 Ni 094.20 Ni 094.20 Ni 094.20 Ni 094.21 Ni 094.22 Ni 094.22 Ni 094.22 Ni 094.23 Ni 094.09 Co 1088.64 Ni 1094.09 Ni 10	1	4 20 20 20 20 15 10 8 10 15 15 10 15 15 10 20 15 15 10 15 15 10 15 15 15 10 15 15 15 15 15 15 15 15 15 15 15 15 15	10	3968.48 72.01 74.71 76.85 80.43 81.68 81.80 82.60 88.52 91.13 98.96 4000.47 05.50 05.73 08.73 19.62 22.70 23.35 23.71 25.1 30.80 31.70 33.03 33.06 31.70 33.03 33.06 31.44 33.56 22.27 41.43 42.02 44.45 45.92 46.6 47.21 48.73 57.85 62.83 63.47 77.37 77.75 77.77 77.77 77.77 77.77 77.77 77.77 77.77 77.77 77.77 77.77 78.79 77.78 80.62 86.70 92.68 990.74 00.97 01.82 02.44 00.41	Ca Eur The Br The Br The Cu V Pr Cu V Se F Mn La Gamn Mn La Knh Fe Dy Cu V Pr Gda V V V V V V V V V V V V V V V V V V V	30 20 — 15 12 12 15 12 12 12 12 12 13 15 15 15 16 17 18 8 8 8 10 10 10 10 10 10 10 10 10 10	40 20 5 5 10 10 12 20 8 15 10 20 8 8 8 8 8 8 8 8 8 15 10 10 10 10 10 10 10 10 10 10	10 IS	4116.50 18.48 23.24 22.33 28.70 28.97 29.75 30.42 35.29 35.80 43.14 45.12 52.63 53.11 58.62 61.83 62.70 63.61 64.60 64.83 68.14 69.0 72.05 77.53 77.63 79.04 79.43 80.04 79.43 80.04 79.43 80.05 71.53	V Pr La Y I Rh Eudd Rh S NN V Pr S Zrr NN S A Ar S NN DEM NN Se GY Ger NN Lu Pr NA Rb MEEu NPr Zr Rh Dyb NS RN I Pr Pr G Ca X Pr Rb DY N S R Rb L Pr Rb DY N S R RB DY N S R RB	15 15 15 15 15 15 15 15 15 15 15 15 15 1	5 10 5 10 10 10 15 4 4 4 8 8 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10 10 10 10 10 10 1

SPECTRUM LINES OF THE ELEMENTS.

Wave- lengths, inter- national	Ele- ment.			Wave- lengths, inter- national	Ele-	In	tensity		Wave- lengths, inter- national	Ele- ment.	Intensity.			
Ang- stroms.		Arc.	Spark.	Tube.	Ang- stroms.	Arc	Spark.	Tube.	Ang- stroms.		Arc.	Spark.	Tube.	
4253.61 54.34 54.42 59.69 60.84 73.96 74.80 86.97 4301.11 02.12 02.28 03.61 05.49 05.78 07.92 08.1 19.60 25.77 25.78 20.36 30.47 33.77 40.67 43.60 48.01 49.65 55.47 74.94 79.76 82.8 83.55 84.73 88.9 89.98 93.17 95.24 95.74 98.93 401.54 04.55 08.83 10.09 11.711 20.46 24.36	S Crhh Bi OSK Cr La Mbi OSK Cr	12 15 15 12 10 112 20 10 115 6 112 11 15 6 112 11 15 15 15 15 15 15 15 15 15 15 15 15	12 20 10 15 15 15 10 10 10 11 15 15 15 15 15 10 10 10 11 15 15 15 15 15 15 15 15 15 15 15 15	10	4477.77 81.17 96.43 98.76 4510.15 22.50 22.74 54.97 55.52 72.74 73.00 74.26 85.47 80.35 94.00 463.03 06.77 07.34 00.22 24.28 24.38 25.40 27.20 27.98 33.86 34.02 27.98 33.86 61.42 27.53 80.73 82.18 87.80 67.41 82.18 87.80 67.41 82.18 87.80 67.41 82.18 87.80 67.41 82.18 87.80 67.41 88.03 67.41	Br Mg Prt Land Charles Br Mg Prt Land Charles Br Mg Prt Land Charles Br Mg Ex Land Charles Br Mg La	15 12 12 10 15 15 15 15 15 15 15	10 10 10 10 10 10 10 10	10	4904. I3 5035.36 533.30 5135.08 72.68 72.68 83.60 64.51 5206.05 62.20 0.08 83.60 64.51 5206.05 62.21 0.08 83.60 64.51 5206.05 62.23 95.62 5330.65 532.81 32.81 32.81 35.14 50.40 60.59 60.85 74.08 95.26 60.59 60.85 74.10 10 64.5 65.40 76.91 80.95 66.60 76.91 14.71 21.80 33.01 42.78 5504. 26 60.51 14.71 21.80 33.01 42.78 55.44 56.49 76.91 56.89 70.46 58.27 70.46 58.27 70.46 58.27 70.46 58.27 70.46 58.27 70.46 58.27 70.46 58.28 70.48 58.33 70.05 98.54 7551.40 90.4 58.36 77.56 80.20 90.4 58.36 77.56 80.20 90.4 58.36 80.20 90.4 58.36 80.20 90.4 58.36 80.20 90.4 58.36 80.20 90.4 58.36 80.20 90.4 58.36 80.20 90.4 88.33 80.90 90.4 88.33 80.90 90.4 88.33 80.90 90.4 88.33 80.90 90.4 88.33 80.90 90.4 88.33 80.90 90.4 88.33 80.90 90.4 88.33 80.90 90.4 88.33 80.90 90.4 88.33 80.90 90.4 88.33 80.90 90.4 88.33 80.90 90.4 88.33 80.90 90.4 88.33 80.90 90.4 88.33	Lui W Lu Sr I Pdd Mgg Cr Cr Cr AW Sr Pd O Br NyT Ny Mos Se Pd Lui Sr I Sr MW Sr Mos As Pd Se Pd Lui Sr I Sr MW Sr Mos As Pds As Pds Ni Mo V H Mos Mos As As Pds Ni Mo V H	12 15 15 15 15 15 15 15	10 12	

Note. — This table, somewhat unsatisfactory in its abridged form, is included with the hope to occupy its space later with a better table; e.g., no mercury lines appear since the scale of intensity used in the original table results in the intensity of all mercury lines falling below the critical value used in this table.

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-lengths are in Angström units (10-7 mm.), in air at 20° C and 76 cm. of mercury pressure. The intensities run from 1, just clearly visible on the map, to 1000 for the H and K lines; below I in order of faintness to 0000 as the lines are more and more difficult to see. This table contains only the lines above 5.

N indicates a line not clearly defined, probably an undissolved multiple line; s, a faded appearing line; d, a double. In the "substance" column, where two or more elements are given, the line is compound; the order in which they are given indicates the portion of the line due to each element; when the solar line is too strong to be due wholly to the element given, it is represented, -Fe, for example; when commas separate the elements instead of a dash, the metallic lines coin-

cide with the same part of the solar line, Fe, Cr, for example.

Capital letters next the wave-length numbers are the ordinary designations of the lines. A indi-

cates atmospheric lines, (wv), due to water vapor, (O), due to Oxygen.												
Wave- length.	Substance.	Inten- sity.	Wave-length.	Substance.	Inten- sity.	Wave- length.	Sub- stance.	Inten- sity.				
3037.5108 3047.7258 3053.5308 3054.429 3057.5528 3059.2128 3067.3698 3078.7698 3078.7698 3088.1458 3134.2308 3188.656 3236.7038 32242.125 3243.189 3247.6888 3225.021 3267.8348 3271.129 3271.791 3274.0968 3277.482 3286.898 3295.9518 3302.5108 3315.807 3318.1608 3320.331 3336.820 3349.597 3365.908 3366.311 3369.713	Fe Fe Fe Ti, Fe Ti, Ti Ni, Fe Ti Ti, Ti Ti Ti, Ti Ti Ti Ti, Ti T	10 N 20 N 7 d? 10 20 8 6Nd? 8 dd? 7 d? 8 6d? 7 N 6 6 d? 7 N 6 7 d? 8 7 N 6 6 7 d? 6 7 d? 6 7 d? 6 7 d? 7 8 6 6 6 6 6 6 7 d? 6 6 d.	3372-947 3380-722 3414-911 3423-848 3433-715 3440-7628 } 3441.1558 } 3442.118 3444.0208 3446.406 3449.583 3453-039 3458.601 3461.801 3462.950 3466.0158 3475.5948 3476.8498 3483-923 3483-923 3483-923 3483-923 3490-7338 3490-7338 3490-7338 3493-114 3497-9828 3500-9968 3510-466 3512-785 3513-9658 3515-206 3519-904 3521.4108 3524.677 3526.183 3526.988 3529.964 3533.156	Ti-Pd Ni Ni Ni Ni Cr Fe Fe Mn Fe Mn Co Ni Co Fe Fe Ni Co Fe Fe Ni Fe Ni Fe Ni Fe Ni Fe Ni Fe Fe Fe Ni Fe	10 d? 6 N 15 7 8 d? 20 15 6 d? 6 d? 6 d? 8 8 6 d? 8 6 d? 8 6 d? 8 6 d? 8 6 d? 8 6 d? 8 6 d?	3533·345 3536·709 3541·237 3542·232 3555·079 3558·6728 3565·5358 3566·522 3570·2738 3572·014 3572·712 3578·832 3581·3498 3581·3498 3581·3498 3585·105 3585·479 3585·859 3587·370 3587·3	Fe F	6 7 7 6 9 8 20 10 20 6 6 10 36 6 7 6 8 8 7 6 9 6 d ? 6 6 7 6 8 6 6 6 7 6 7 6 8 7 6 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7				

Corrections to reduce Rowland's wave-lengths to standards of Table 314 (the accepted standards, 1913). Temperature

Wave-length 3000. 3100. 3200. 3300. 3400. -.106 -.115 -.124 -.137 -.148 3500. 3600. 3700 -.154 -.155 -.140

^{15°} C, pressure 760 mm.

The differences "(Fabry-Buisson-arc-iron) — (Rowland-solar-iron)" lines were plotted, a smooth curve drawn, and the following values obtained:

H. A. Rowland, "A preliminary table of solar-spectrum wave-lengths," Astrophysical Journal, 1-6, 1895-1897. SMITHSONIAN TABLES.

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Corrections to reduce Rowland's wave-lengths to standards of Table 314 (the accepted standards, 1913). Temperature 15° C, pressure 760 mm.:

Wave-length 3600, 3700, 3800, 3900, 4000, 4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, Correction -.155 - .140 - .141 - .144 - .148 - .152 - .156 - .161 - .167 - .172 - .176 - .179 - .179,

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Corrections to reduce Rowland's wave-lengths to standards of Table 314 (the accepted standards, 1913). Temperature 15 $^{\circ}$ C, pressure 760 mm.:

Wave-length Correction	4800. — ,179	4900. — ,176	5000. 173	5100.	5200. — •166	5300. — .17 2		5600. — .218		5800. — .209
Wave-length Correction	5800.	5900.	6000.		6200,		6400.	6600.	6700.	6800.

SPECTRUM SERIES

In the spectra of many elements and compounds certain lines or groups of lines (doublets, triplets, etc.) occur in orderly sequence, each series with definite order of intensity (generally decreasing with decreasing wave-length), pressure effect, Zeeman effect, etc. Such series generally obey approximately a law of the form

$$\nu = \frac{\mathrm{I}}{\lambda} = L - \frac{N}{(m+R)^2},$$

where ν is the wave-number in vacuo (reciprocal of the wave-length λ) generally expressed in waves per c.n; m is a variable integer, each integer giving a line of the series; L is the wave number of the limit of the series ($m=\infty$); N, the "Universal Series Constant"; and R is a function of m, or a constant in some simple cases. Balmer's formula (1885) results if $L=N/n^2$, where n is another variable integer and R=0. Rydberg's formula (1889) makes R a constant, and L is not known to be connected with N. Other formulae have been used with more success. Mogendorff (1906) requires R= constant/m, while Ritz (1903) has R= constant/ m^2 . Often no simple formula fits the case; either R must be a more complex function of m, or the shape of the formula is incorrect. Bohr's theory (see also Table 515) gives for Hydrogen

$$N = \{2\pi^2 m e^4 (M+m)\}/Mh^3,$$

where e and m are the charge and mass of an electron, M the atomic weight, and h, Planck's constant. The best value for N is 109678.7 international units (Curtis, Birge, Astrophys. J. 32, 1910). The theory has been elaborated by Sommerfeld (Ann. der Phys. 1916), and the present indications are that N is a complex function varying somewhat from element to element.

element to element.

Among the series (of singles, doublets, etc.), there is apt to be one more prominent, its lines easily reversible, called the principal series, P(m). With certain relationships to this there may be two subordinate series, the first generally diffuse, D(m), and another, S(m). Related to these there is at times another, the Bergmann series B(m). m is the variable integer first used above and indicates the order of the line.

The following laws are in general true among these series: (1) In the P(m) the components of the lines, if double, triple, etc., are closer with increasing order; in the subordinate series the distance of the components (in vibration number) remains constant. (2) Further, in two related D(m) and S(m), $\Delta \nu$ (vibration number difference) remains the same. (3) The limits (L) of the subordinate series, D(m) and S(m), are the same. (4) $\Delta \nu$ of the subordinate series is the same $\Delta \nu$ as for the first pair of the corresponding P(m). (5) The limits (L) of the components of the doublets (triplets, etc.) of the P(m) are the same. (6) The difference between the vibration numbers of the end of the P(m) and of the two corresponding subordinate series gives the vibration number of the first term of the P(m). The first line of the P(m) consides with the first line of the P(m) (Rydberg-Schuster law).

In the spectrum of an element several of these families of series P(m), D(m), D(m), D(m) may be found. For further information see Baly's Spectroscopy and Konen's Das Leuchten der Gasen, D(m), D(m), D(m), any be found. For further information see Baly's Spectroscopy and Konen's Das Leuchten der Gasen, D(m), D

it becomes a constant term, viz. VS(1).

Then a single line system is represented as follows:

$$\begin{array}{ll} P'(m) = VS'(\mathtt{x}) - VP'(m); & D'(m) = VP'(\mathtt{x}) - VD'(m); \\ S'(m) = VP'(\mathtt{x}) - VS'(m); & \left\{B'(m) = VD'(\mathtt{x}) - VB'(m)\right\}. \end{array}$$

A system of double lines would be represented as follows:

$$\begin{array}{lll} P_1''(m) = V.S''(1) - VP_1''(m); & D_1''(m) = VP''(1) - VD''(m); \\ P_2''(m) = VS''(1) - VP_2''(m); & D_2''(m) = VP''(1) - VD''(m); \\ S_1''(m) = VP_1''(1) - VS''(m); & \{B_1''(m) = VD''(1) - VB''(m)\}; \\ S_2''(m) = VP_2''(1) - VS''(m); & \{B_2''(m) = VD'''(1) - VB''(m)\}. \end{array}$$

And similarly for a series of triplets, etc.

Series Spectra of the Elements. — The ordinary spectrum of H contains 3 series of the same kind: one in the; Schumann region, $\nu = N(1/\tau^2 - 1/n^2), n, 2, 3, \ldots$; one in the visible, $\nu = N(1/\tau^2 - 1/n^2), n, 3, 4, 5, \ldots$; and one in the infrared, $\nu = N(1/\tau^2 - 1/n^2), n, 4, 5, 6, \ldots$. He has three systems of series, one "enhanced," including the Pickering series formerly supposed to be due to H. The next two tables give some of the data for other elements.

SERIES SYSTEM OF POTASSIUM.

TABLES 323-324. SPECTRUM SERIES.

TABLE 323. - Limits of Some of the Series.

For the series of Zn, Cd, Hg, Al, Sn, Tl, O, S, Sn, see original reference. *48 lines have been measured in this series from 16,056 to 41,417.

TABLE 324. — First Terms of Some of the Series. Vibration Number Differences of Pairs $\Delta \nu$, and Triplets $\Delta \nu_1$, $\Delta \nu_2$.

For the P(m) and the S(m) is given only the first or second term, since the term with index 0 may be omitted as coinciding with the first term of the S(m) or P(m) respectively. Consequently the numbers always proceed from greater to smaller wave-lengths. Which is the common line can always be recognized from the vibration numbers. See figure on the preceding page. The vibration differences can be obtained from Table 323.

	P(1)	D(1)	S(I)	B(1)		P(I)	D(r)	S(I)	B(1)		$\Delta \nu$	$\Delta \nu_1$	$\Delta \nu_2$
H He Li Na K Rb Cs Cu Ag	21,334 4,857 9,231 14,903 16,956 13,043 12,085 12,817 12,579 111,733 30,783 30,783 30,535 30,472 30,551 35,760 35,668	15,233 13,970 17,114 17,114 17,118 16,379 12,215 12,108 8,552 8,493 6,776 6,538 3,321 2,767 10,158 19,151 19,191 11,352 35,831 35,739	9,871 13,729 14,149 14,148 12,331 7,782 7,766 8,040 7,983 7,552 7,315 7,357 6,803 12,061 12,352 13,003 12,083 34,135 34,043	5332 5348 5351 5347 5416 6592 7437 9072 9875 5495	Ca	\$5036 \$5020 \$5012	26, 106 26, 045 26, 045 20, 495 11, 763 5, 125 5, 177 19, 390 9, 159 9, 159 3, 842 3, 655 3, 260 012, 176 10, 493	19,346 19,326 19,328 19,828 25,410 16,381 16,223 23,715 23,518 14,721 14,533 14,139 22,0,261	6,720 22,153 21,834 21,820 21,799 20,591 20,533 20,435 13,804 13,523 12,045	He Na K Rb Cs Cu Ag Mg Ca Sr Ba Zn Cd Hgl In Tl O S Se	1 17 58 237 552 249 921 91 1690 87 223 801 1690 87 22484? 112 2213 7793	41 106 394 878 389 1171 4632	

TABLE 325. - Index of Refraction of Glass.

Indices of refraction of optical glass made at the Bureau of Standards. Correct probably to 0.00001. The composition given refers to the raw material which went into the melts and does not therefore refer to the composition of the finished glass.

Melt.	123	241	135	116	188	151	163	76
Wave-length.	Ordinary crown.	Borosili- cate crown.	Barium flint.	Light barium crown.	Light flint.	Dense barium crown.	Medium flint.	Dense flint.
Hg 4046.8 Hg 4078.1 H 4340.7	1.53189 1.53147 1.52818	1.53817 1.53775 1.53468	1.58851 1.58791 1.58327	1.59137 1.59084 1.58698	1.60507 1.60430 1.59860	1.63675 1.63619 1.63189	1.65788 1.65692 1.64973	1.69005 1.68894 1.68079
Hg 4358.6 H 4861.5 Hg 4916.4	I.52798 I.52326 I.52283	1.53450 1.53008 1.52967	1.58299 1.57646 1.57587	1.58674 1.58121 1.58071	I.59826 I.59029 I.58958	1.63163 1.62548 1.62492	1.64931 1.63941 1.63854	1.68030 1.66911 1.66814
Hg 5461.0 Hg 5769.6 Hg 5790.5	1.51929 1.51771 1.51760	1.52633 1.52484 1.52475	1.57105 1.56894 1.56881	1.57657 1.57473 1.57460	1.58380 1.58128 1.58112	1.62033 1.61829 1.61817	1.63143 1.62834 1.62815	1.66016 1.65671 1.65650
Na 5893.2 Hg 6234.6 H 6563.0	1.51714 1.51573 1.51458	I.52430 I.52297 I.52188	1.56819 1.56634 1.56482	1.574 0 6 1.57242 1.57107	1.58038 1.57818 1.57638	1.61756 1.61576 1.61427	1.62725 1.62458 1.62241	1.65548 1.65250 1.65007
Li 6708.2 K 7682.0	1.51412 1.51160	1.52145	1.56423	1.57054 1.56762	1.57567	1.61369	1.62157	1.64913
			(Percenta	ige composit	ion)			
SiO ₂ Na ₂ O K ₂ O B ₂ O ₃ BaO ZnO As ₂ O ₃ CaO PbO Sb ₂ O ₃	67.0 12.0 5.0 3.5 10.6 1.5 0.4	64.2 9.4 8.3 11.0 6.1 	53.7 1.7 8.3 2.7 14.3 2.5 ———————————————————————————————————	48.0 2.0 6.1 4.0 29.5 10.0 1.4	53-9 1.0 7.6 — — 0.3 2.0 35.2	37.0 2.7 5.0 47.0 7.7 —	45.6 3.4 4.1 — — 3.0 44.0	39.0 3.0 4.0 —————————————————————————————————

TABLE 326. — Dispersion of Glasses of Table 325.

Melt.	123	2.11	135	116	188	151	163	76
$n_D \ n_F - n_C$	0.00868	0.00820	1.56819 0.01164	1.57406 0.01014	1.58038	1.61756	1.62725	1.65548
$\frac{n_D - 1}{n_F - n_C} = v$	59.6	63.9	48.8	56.6	41.7	55.1	36.9	34-4
$n_D - n_F$ $n_F - n_{G'}$	0.00612	0.00578	0.00827	0.00715	0.00991	0.00792	0.01216	0.01363
$n_D - n_C$	0.00256	0.00242	0.00337	0.00299	0.00400	0.00329	0.00484	0.00541

TABLE 327. - Glasses Made by Schott and Gen, Jena.

The following constants are for glasses made by Schott and Gen, Jena: n_A , n_C , n_D , n_F , n_G , are the indices of refraction in air for $A = 0.7682\mu$, $C = 0.6563\mu$, D = 0.5893, F = 0.4861, G' = 0.4341. $v = (n_D - 1)/(n_F - n_C)$. Ultra-violet indices: Simon, Wied. Ann. 53, 1894. Infra-red: Rubens, Wied. Ann. 45, 1892. Table is revised from Landolt, Börnstein and Meyerhoffer, Kayser, Handbuch der Spectroscopie, and Schott and Gen's list No. 751, 1909. See also Hovestadt's "Jena Glass."

Catalogue Type = Designation = Melting Number = v =	O 546 Zinc-Crown. 1092 60.7	O 381 Higher Dis- persion Crown.	O 184 Light Silicate Flint. 451 41.1	O.102 Heavy Silicate Flint. 469 33.7	O 165 Heavy Silicate Flint: 500 27.6	S 57 Heaviest Silicate Flint. 163 22.2
Cd 0.2763µ Cd 2.2837 Cd 2.2837 Cd 2.2980 Cd .3403 Cd .3610 M H .4861 Na .5803 H .6503 K .7682 8.800µ 1.200 2.000 2.400	1.56759 1.56372 1.55723 1.54369 1.53897 1.52788 1.52299 1.51698 1.51446 1.51143 1.5008 1.5008	1.57093 1.55262 1.54664 1.53312 1.52715 1.52002 1.51712 1.51368 1.5069 1.5069 1.5024 1.4973	1.65397 1.63320 1.61388 1.59355 1.58515 1.57524 1.57119 1.56669 1.5585 1.5535 1.5535 1.5487	1.71968 1.70536 1.67561 1.66367 1.64985 1.64440 1.63820 1.6373 1.6217 1.6217 1.6131	1.85487 1.83263 1.78800 1.77091 1.75130 1.74368 1.73530 1.7339 1.7215 1.7151	1.94493 1.91890 1.88995 1.87893 1.86702 1.8650 1.8481 1.8396 1.8316 1.8326

Percentage composition of the above glasses:

- O 546, SiO₂, 65.4; K₂O, 15.0; Na₂O, 5.0; BaO, 9.6; ZnO, 2.0; Mn₂O₃, 0.1; As₂O₃, 0.4; O 540, $S1O_2$, 65.4; K_2O , 15.0; Na_2O , 5.0; BaO, 9.6; ZnO, 2.0; Mn_2O_3 , 0.1; As_2O_5 , 0.2; O 381, SiO_2 , 68.7; PbO, 13.3; Na_2O , 15.7; ZnO, 2.0; MnO_2 , 0.1; As_2O_5 , 0.2. O 184, SiO_2 , 53.7; PbO, 36.0; K_2O , 8.3; Na_2O , 1.0; Mn_2O_3 , 0.06; As_2O_3 , 0.3; O 102, SiO_2 , 40.0; PbO, 52.6; K_2O , 6.5; Na_2O , 0.5; Mn_2O_3 , 0.09; As_2O_5 , 0.3. O 165, SiO_2 , 29.26; PbO, 67.5; K_2O , 3.0; Mn_2O_3 , 0.04; As_2O_3 , 0.2. S 57, SiO_2 , 21.9; PbO, 78.0; As_2O_5 , 0.1.

TABLE 328 .- Jena Glasses.

No. and Type of Jena Glass.	n _D for D	$n_{\rm F}-n_{\rm C}$	$v = \frac{n_{\rm D} - 1}{n_{\rm F} - n_{\rm C}}$	$n_{\rm D}-n_{\rm A}$	$n_{\rm F}-n_{\rm D}$	$n_{\rm G}$, — $n_{\rm F}$	Specific Weight.
O 225 Light phosphate crown	1.5159	.00737	70.0	.00485	.00515	.00407	2.58
O 802 Boro-silicate crown	1.4967	0765	64.9	0504 .	0534	0423	2.38
UV 3199 Ultra-violet crown	1.5035	078r	64.4	0514	0546	. 0432	2.41
O 227 Barium-silicate crown	1.5399	0909	59-4	0582	0639	0514	2.73
O 114 Soft-silicate crown	1.5151	0910	56.6	0577	0642	0521	2.55
O 608 High-dispersion crown	1.5149	0943	54.6	0595	0666	0543	2.00
UV 3248 Ultra-violet flint	1.5332	0964	55.4	0611	0680	0553	2.75
O 381 High-dispersion crown	1.5262	1026	51-3	0644	0727	0500	2.70
O 602 Baryt light flint	1.5676	1072	53.0	0675	0759	ohis	3.12
S 389 Borate flint	1.5686	1102	51.6	0712	0775	0629	2.83
O 726 Extra light flint	1.5398	1142	47-3	0711	0810	0669	2.87
O 154 Ordinary light flint	1.5710	1327	43.0	0819	0943	1070	3.16
0 (84 " " " "	1.5900	1438	41.1	0882	1022	0801	, 3.28
O 748 Baryt flint	1,6235	1599	39.1	9965	1142	oghs	3.67
O 102 Heavy flint	1,6489	1919	33.8	1152	1372	1180	3.87
0 41 " "	1.7174	2434	29.5	1439	1749	1521	4.49
0 165 " "	4.7541	2743	27.5	1007	1974	1730	4.78
S 386 Heavy flint	1.0170	4289	21.4	2451	3109	2808	6.01
S 57 Heaviest flint	1.9626	4882	19.7	2767	3547	3252	6.33

TABLE 329. - Change of Indices of Refraction for 1° C in Units of the Fifth Decimal Place.

No. and Designation.	Mean Temp.	С	D	F	G/	$\frac{-\Delta n}{n}$ 100
S 57 Heavy silicate flint O 154 Light silicate flint O 327 Baryt flint light O 225 Light phosphate crown	58.8° 58.4 58.3 58.1	1.204 0 225 0.008 0.202	0.261 0.014 -0.190	2.090 0.334 0.080 0.168	2.810 0.407 0.137 -0.142	0.0166 0.0078 0.0079 0.0049

Pulfrich, Wied. Ann. 45, p. 609, 1892.

TABLE 330. - Index of Refraction of Rock Salt in Air.

λ(μ).	74.	Obser- ver.	λ(μ).	72.	Obser- ver.	λ(μ).	n.	Obser- ver.
0.185409 .204470 .291368 .358702 .441587 .486149 " " .58902 .58932 .656304 .706548 .766529 .76824 .78576 .88396	1.89348 1.76964 1.61325 1.57932 1.55962 1.55338 1.553496 1.554399 1.544340 1.544313 1.540702 1.538633 1.53666 1.536138 1.536138	M " " L P L P L P P L P	0.88396 .972298 .98220 1.036758 1.1786 1.555137 1.7680 2.073516 2.35728 2.9466 3.5359 4.1252 5.0092	1.534011 1.532532 1.532435 1.531762 1.530372 1.530374 1.528211 1.527440 1.527441 1.526554 1.525863 1.525849 1.524534 1.523173 1.521648 1.521648	L P L P L P L P L P L P L P L P P L P	5.8932 6.4825 7.0718 7.0611 7.9558 8.8398 10.0184 11.7864 12.9650 14.1436 14.7330 15.3223 15.9116 20.57 22.3	I.516014 I.515553 I.513628 I.513667 I.511062 I.508318 I.506804 I.502035 I.494722 I.481816 I.471720 I.460547 I.454404 I.447494 I.447494 I.447494 I.44733 I.3735 I.340	P L P L P

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - k\lambda^{2} - h\lambda^{4} \text{ or} = b^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - \frac{M_{3}}{\lambda_{3}^{2} - \lambda^{2}}$$
where $a^{2} = 2.330165$ $\lambda_{2}^{2} = 0.02547414$ $b^{2} = 5.680137$ $M_{1} = 0.01278685$ $k = 0.0009285837$ $M_{3} = 12059.95$ $\lambda_{1}^{2} = 0.0148500$ $h = 0.000000286086$ $\lambda_{3}^{2} = 3600$. (P) $M_{2} = 0.005343924$

TABLE 331. - Change of Index of Refraction for 1º C in Units of the 5th Decimal Place.

- L Annals of the Astrophysical Observatory of the Smithsonian Institution, Vol. I, 1900.

 M Martens, Ann. d. Phys. 6, 1901, 8, 1902.

 P Paschen, Wied. Ann. 26, 1908.
 Pulfrich, Wied. Ann. 45, 1892.
 RN Rubens and Nichols, Wied. Ann. 60, 1897.
- Mi Micheli, Ann. d. Phys. 7, 1902.

TABLE 332. - Index of Refraction of Silvine (Potassium Chloride) in Air.

λ(μ).	n	Obser- ver.	λ(μ).	n.	Obser- ver.	λ(μ).	n.	Obser- ver.
0.185409 .200090 .21946 .257317 .281640 .308227 .358702 .394415 .467832 .508606 .58933 .67082 .78576 .88398 .98220	1.82710 1.71870 1.64745 1.58125 1.55836 1.52115 1.51219 1.50044 1.49620 1.4964 1.48669 1.483282 1.481422 1.48084	M " " " " " " " " " " " " " " " " " " "	1.1786 1.7680 2.35728 2.9466 3.5359 4.7146 5.3039 5.8932	I.478311 I.47824 I.475890 I.47589 I.474751 I.473834 I.473049 I.47304 I.471122 I.47001 I.47001 I.468804 I.46880	P W P W P W P W P W	8.2505 8.8398 10.0184 11.786 12.965 14.144 15.912 17.680 20.60 22.5	1.462726 1.46276 1.460858 1.46092 1.45672 1.45673 1.44941 1.44346 1.44385 1.43722 1.42617 1.41493 1.3882	P W P W P W P W P W R N "

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - k\lambda^{2} - h\lambda^{4} \text{ or } = b^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} + \frac{M_{3}}{\lambda_{3}^{2} - \lambda^{2}}$$

$$a^{2} = 2.174967 \qquad \lambda_{2}^{2} = 0.0255550 \qquad b^{2} = 3.866619$$

$$M_{1} = 0.08344206 \qquad k = 0.000513495 \qquad M_{3} = 5569.715$$

$$\lambda_{1}^{2} = 0.0119082 \qquad h = 0.00000167587 \qquad \lambda_{3}^{2} = 3292.47 \quad \text{(P)}$$

$$M_{2} = 0.06698382$$

W Weller, see Paschen's article. Other references as under Table 331, above.

TABLES 333-336.

INDEX OF REFRACTION.

TABLE 333. - Index of Refraction of Fluorite in Air.

λ (μ)	n	Obser- ver	λ (μ)	72	Obser- ver	λ (μ)	n	Obser- ver.
0.1856 .19881 .21441 .22645 .25713 .32525 .34555 .39681 .48607 .58930 .65618 .68671 .71836 .76040 .8840 1.1786 1.3756 1.4733	1.50940 1.49629 1.48462 1.47762 1.46476 1.44987 1.44697 1.44214 1.43713 1.43393 1.43257 1.43200 1.43157 1.42690 1.42641	S	1.4733 1.5715 1.6206 1.7680 1.9153 1.9644 2.0626 2.1608 2.2100 2.3573 2.5537 2.6519 2.7502 2.9466 3.1430 3.2413 3.5359 3.8306	1.42641 1.42596 1.42582 1.42507 1.42437 1.42433 1.42359 1.42308 1.42288 1.42199 1.42086 1.41071 1.41826 1.41707 1.41612 1.41379 1.41120	P 66 66 66 66 66 66 66 66 66 66 66 66 66	4.1252 4.4199 4.7146 5.0092 5.3036 5.5985 5.8932 6.4825 7.0718 7.6612 8.2505 8.8398 9.4291 51.2 61.1	1.40855 1.40559 1.40559 1.40559 1.40559 1.30898 1.39529 1.38719 1.36805 1.35680 1.34444 1.33079 1.31612 3.47 2.66 2.63	P

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} - \epsilon \lambda^{2} - f \lambda^{4} \text{ or } = b^{2} + \frac{M_{2}}{\lambda^{2} - \lambda^{2}} + \frac{M_{3}}{\lambda^{2} - \lambda_{r}^{2}}$$
where $a^{2} = 2.03882$ $f = 0.00002916$ $M_{3} = 5114.65$ $M_{1} = 0.0062183$ $b^{2} = 6.09651$ $\lambda_{r}^{2} = 1260.56$ $\lambda_{1}^{2} = 0.007706$ $M_{2} = 0.0061386$ $\lambda_{\nu} = 0.0940\mu$ $\epsilon = 0.0031999$ $\lambda_{\nu}^{2} = 0.00884$ $\lambda_{r} = 35.5\mu$ (P)

TABLE 334. - Change of Index of Refraction for 1°C in Units of the 5th Decimal Place. C line, -1.220; D, -1.206; F, -1.170; G, -1.142. (Pl)

TABLE 335, - Index of Refraction of Iceland Spar (CaCO.) in Air.

λ (μ)	no	n_e	Observer.	λ (μ)	no	n_{e}	Obser ver	λ (μ)	n ₀	72 ₆	Obser- ver
0.198 .200 .208 .226 .298 .340 .361 .410 .434 .486	1.9028 1.8673 1.8130 1.7230 1.7008 1.6932 1.6932 1.6755 1.6678	1.5780 1.5765 1.5664 1.5492 1.5151 1.5056 1.5022 1.4964 1.4943	M " C M C - M "	0.508 ·533 ·589 .643 .656 .670 .760 .768 .801 .905	1.6653 1.6628 1.6584 1.6550 1.6544 1.6537 1.6500 1.6497 1.6487	1.4896 1.4884 1.4864 1.4849 1.4846 1.4826 1.4826 1.4826 1.4822	M	0.991 1.229 1.307 1.497 1.682 1.749 1.849 1.908 2.172 2.324	1.6438 1.6393 1.6379 1.6346 1.6313 1.6280	1.4802 1.4787 1.4783 1.4774 1.4764 1.4757 1.4739	C

C Carvallo, J. de Phys. (3), 9, 1900. M Martens, Ann. der Phys. (4) 6, 1901, 8, 1902. P Paschen, Wied. Ann. 56, 1895.

Pl Pulfrich, Wied. Ann. 45, 1892. RA Rubens-Aschkinass, Wied. Ann. 67, 1899. Starke, Wied. Ann. 60, 1897.

TABLE 336. - Index of Refraction of Nitroso-dimethyl-aniline. (Wood.)

λ	72	λ	71	λ	72	λ	n	λ	n
0.497 .500 .506 .508 .516	2.140 2.114 2.074 2.025 1.985	•.525 •.536 •.546 •.557 •.569	1.945 1.909 1.879 1.857 1.834	0.584 .602 .611 .620 .627	1.815 1.796 1.783 1.778 1.769	o .636 .647 .659 .669	1.647 1.758 1.750 1.743 1.723	0.713 .730 .749 .763	1.718 1.713 1.709 1.697

Nitroso-dimethyl-aniline has enormous dispersion in yellow and green, metallic absorption in violet. See Wood. Phil. Mag 1903.

TABLES 337-338. INDEX OF REFRACTION.

TABLE 337. — Index of Refraction of Quartz (SiO₂).

Wave- length.	Index Ordinary Ray.	Index Extraordinary Ray.	Tempera-	Wave- length.	Index Ordinary Ray.	Index Extraordinary Ray.	Temperature ° C.
μ	- (0 -	- (0	0	μ			-0
0.185	1.67582	1.68999	18	0.656	1.54189	1.55091	18
.193	.65997	.67343	1	.686	.54099	.54998	
.198	.65090	.66397	66	.760	.53917	.54811	"
.206	.64038	.65300	66	1.160	.5329		-
.214	.63041	.64264	46	.969	.5216		-
.219	.62494	.63698	66	2.327	.5156		-
.231	.61399	.62560	66	2.327	.5039		-
.257	.59622	.60712	66	3.18	•4944		- I
.274	.58752	.59811	46	.63	-4799	Rubens.	
.340	.56748	.57738	66	.96	.4679		-
.396	.55815	.56771	46	4.20	.4569		-
.410	.55650	.56600	66	5.0	.417		_
.486	.54968	.55896	44	6.45	.274		-
0.589	1.54424	1.55334	"	7.0	1.167		-
1	1	1 2233	1			<u> </u>	

Except Rubens' values, - means from various authorities.

TABLE 338. — Indices of Refraction for various Alums.*

	ty.	, C.º		I	ndex of ref	raction for	the Fraun	hofer lines	•	
R	Density.	Temp.	a	В	С	D	E	ъ	F	G
			Alu	minium Alı	ums. RAl	(SO ₄) ₂ +12	H ₂ O.†			
Na NH ₃ (CH ₃) K Rb Cs NH ₄ Tl	1.667 1.568 1.735 1.852 1.961 1.631 2.329	17-28 7-17 14-15 7-21 15-25 15-20 10-23	1.43492 .45013 .45226 .45232 .45437 .45509 .49226	1.43563 .45062 .453°3 .45328 .45517 .45599 .49317	1.43653 .45177 .45398 .45417 .45618 .45693 .49443	1.43884 .45410 .45645 .45660 .45856 .45939 .49748	1.44185 .45691 .45934 .45955 .46141 .46234 .50128	1.44231 .45749 .45996 .45999 .46203 .46288	1.44412 .45941 .46181 .46192 .46386 .46481	1.44804 .46363 .46609 .46618 .46821 .46923
			Ch	rome Alun	ns. RCr(S	SO ₄) ₂ +12H	I ₂ O.†			
Cs K Rb NH ₄ Tl	2.043 1.817 1.946 1.719 2.386	6-12 6-17 12-17 7-18 9-25	1.47627 .47642 .47660 .47911 .51692	1.47732 .47738 .47756 .48014 .51798	1.47836 .47865 .47868 .48125 .51923	1.48100 .48137 .48151 .48418 .52280	1.48434 .48459 .48486 .48744 .52704	1.48491 .48513 .48522 .48794 .52787	1.48723 -48753 -48775 -49040 -53082	1.49280 .49309 .49323 .49594 .53808
	. Iron Alums. R Fe(SO ₄) $_2$ + $_1$ 2 H_2 O. \dagger									
K Rb Cs NH ₄ Tl	1.806 1.916 2.061 1.713 2.385	7-11 7-20 20-24 7-20 15-17	1.47639 .47700 .47825 .47927 .51674	1.47706 .47770 .47921 .48029 .51790	1.47837 .47894 .48042 .48150 .51943	1.48169 .48234 .48378 .48482 .52365	1.48580 .48654 .48797 .48921 .52859	1.48670 .48712 .48867 .48993 .52946	1.48939 .49003 .49136 .49286 .53284	1.49605 .49700 .49838 .49980 .54112

^{*} According to the experiments of Soret (Arch. d. Sc. Phys. Nat. Genève, 1884, 1888, and Comptes Rendus, 1885). ϵ † R stands for the different bases given in the first column.

For other alums see reference on Landolt-Börnstein-Roth Tabellen.

INDEX OF REFRACTION.

Selected Monorefringent or Isotropic Minerals.

The values are for the sodium D line unless otherwise stated and are arranged in the order of increasing indices. Selected by Dr. Edgar T. Wherry from a private compilation of Dr. E. S. Larsen of the U. S. Geological Survey.

Mineral. Formula. Index of refraction, λ = 0.589μ.			
Cryolithionite	Mineral.	Formula.	refraction,
Perovskite	Villiaumite Cryolithionite Opal Fluorite Alum Sodalite Cristobalite Analcite Sylvite Noselite Hauynite Leucite Pollucite Hallite Bauxite Periclasite Grossularite Helvite Periclasite Grossularite Helvite Pyrope Arsenolite Hessonite Hessonite Hessonite Hessonite Uvarovite Gahnite Spessartite Lime Uvarovite Andradite Microlite Nantokite Pyrochlore Schorlomite Percylite Cerargyrite Mosessite Chromite Senarmonite Eulylite Cerargyrite Mosessite Chromite Senarmonite Eulylite Cerargyrite Mosessite Chromite Senarmonite Eunbolite Manganosite Bunsenite Lewisite Microlite Morganite Senarmonite Enbolite Mosessite Chromite Senarmonite Bunsenite Lewisite Mirrisite Bromyrite Dysanalite Marshite Franklinite Sphalerite	NaF 3NaF, 3LiF, 2AlF3 SiO2,nH2O CaF2 K2O,Al2O3,4SO3,24H2O 3Na2O,3Al2O3,6SiO2,2NaCl SiO2 Na2O,Al2O3,4SiO2,2H2O KCl SNa2O,3Al2O3,6SiO2,2SO2 Like preceding + CaO 4Na2O,3Al2O3,6SiO2,2SO2 Like preceding + CaO 4Na2O,3Al2O3,6SiO2,Na2S K2O,Al2O3,4SiO2 C2S2O,2Al2O3,OSiO2,H2O NaCl Al2O3,nH2O 3Fe2O3,2As2O5,3K2O,5H2O MgO,Al2O3 3(Ca, Mg, Mn)O,As2O5 MgO 3CaO,Al2O3,3SiO2 3CaO,Al2O3,3SiO2 3CaO,Al2O3,3SiO2 As2O3 3CaO,(Al, Fe)2O3,3SiO2 CaO 3CaO,Al2O3,3SiO2 SeO,Al2O3,3SiO2 CaO 3CaO,Fe2O3,3SiO2 CaO 3CaO,Fe2O3,3SiO2 CaO 3CaO,Cro2,3SiO2 CaO 3CaO,Fe2O3,3SiO2 CaO 3CaO,Fe2O	refraction, \[\lambda = 0.589\mu. \] I.328 I.339 I.406-I.440 I.454 I.456 I.483 I.486 I.487 I.490 I.500 I.500 I.500 I.525 I.544 I.570 \(\pi \) I.727 I.736 I.723 \(\pi \) I.727 I.736 I.736 I.733 I.775 I.755 I.763 I.775 I.800 \(\pi \) I.800 \(\pi \) I.81 I.830 I.838 I.857 I.925 I.930 I.838 I.857 I.925 I.930 I.960-2.000 I.980 2.050 2.050 2.050 2.050 2.050 2.050 2.051 2.065 2.070 2.150 \(\pi \) 2.150 \(\pi \) 2.200 2.200 2.253 2.346 2.346 (Li light)
Alabandite Mins 2.700 (Li light)	Diamond Egglestonite Hauerite	C HgO.2HgCl MnS ₂	2.419 2.490 (Li light) 2.690 (Li light)
			2.700 (Li light)

INDEX OF REFRACTION.

Miscellaneous Monorefringent or Isotropic Solids.

Substance.	Spectrum line.	Index of refraction.	Authority.
Albite glass. Amber Ammonium chloride Anorthite glass Asphalt Bell metal Boric Acid, melted " " " Borax, melted. " " " Camphor Canada balsam Ebonite Fuchsin " " " Gelatin, Nelson no. 1 " various. Gum Arabic Obsidian Phosphorus. Pitch Potassium bromide chlorstannate iodide Resins: Aloes. Canada balsam Colophony Copal. Mastic. Peru balsam Selenium " " Sodium chlorate. Strontium nitrate.	D D D D D D D D D D D D D D D D D D D	1.4890 1.546 1.6422 1.5755 1.035 1.021 1.0052 1.4623 1.4637 1.4694 1.4630 1.4702 1.532 1.5462 1.530 1.66 2.03 2.19 2.33 1.97 1.32 1.530 1.510 1.514 1.482-1.496 2.1442 1.531 1.5593 1.6574 1.6666 1.610 1.528 1.535 1.593 1.6574 1.6666 1.610 1.528 1.535 1.593 1.5585 1.5585 1.535	Larsen, 1909 Mühlheim Grailich Larsen, 1909 E. L. Nichols "" "" "" "" "" "" "" "" Kohlrausch Mühlheim Mean Ayrton, Perry Mean "" "" "" Jones, 1911 "" "" Jamin Wollaston Various Gladstone, Dale Wollaston Topsöe, Christiansen "" "" Jamin Wollaston Various Gladstone, Dale Wollaston Topsöe, Christiansen "" "" Jamin Wollaston Topsöe, Christiansen "" "" Jamin Wollaston Topsöe, Christiansen "" "" Jamin Wollaston Topsöe, Christiansen "" Jamin Wollaston Jamin Wollaston Jamin Wollaston Dawin Wollaston Baden Powell Wood "" "" "" Dussaud Fock

TABLE 341.

INDEX OF REFRACTION.

Selected Uniaxial Minerals.

The values are arranged in the order of increasing indices for the ordinary ray and are for the sodium D line unless otherwise indicated. Selected by Dr. Edgar T. Wherry from a private compilation of Dr. Edgar S. Larsen of the U. S. Geological Survey.

		Index	of refraction.					
Mineral.	Formula.	Ordinary ray.	Extraordinary ray.					
(a) Uniaxial Positive Minerals.								
Ice. Sellaite Chrysocolla Laubanite Chabazite Douglasite Hydronephelite Apophyllite Quartz Coquimbite Brucite. Alunite. Penninnit Cacoxenite. Eudialite Dioptasite Prhenacite Parisite. Willemite Vesuvianite Xanotime Connellite Benitoite. Ganomalite Scheelite. Zircon Powellite Cassiterite Zincite Phosgenite Penfieldite Iodyrite Caloyrite Caloyrite Caloyrite Chosgenite Penfieldite Lodyrite Tapiolite Wurtzite. Derbylite Greenockite Ruttle Moissanite Cinnabarite	H ₂ O MgF ₂ b CuO.SiO _{2.2} H ₂ O 2CaO.Al ₂ O _{3.5} SiO _{2.6} H ₂ O (Ca, Na ₂ O.Al ₂ O _{3.4} SiO _{2.6} H ₂ O 2KCl.FeCl _{2.2} H ₂ O 2Na ₂ O.3l ₂ O _{3.4} SiO _{2.6} H ₂ O 2KCl.FeCl _{2.2} H ₂ O 2Na ₂ O.3l ₂ O _{3.6} SiO _{2.7} H ₂ O K ₂ O.3CaO6SiO _{2.1} OH ₂ O SiO ₂ Fe ₂ O _{3.3} SO _{3.9} H ₂ O MgO.H ₂ O K ₂ O.3CaO ₃ SO _{3.9} H ₂ O SiO ₂ SiO ₂ E ₂ O _{3.2} P ₂ O _{3.12} H ₂ O 2Fe ₂ O _{3.2} P ₂ O _{3.12} H ₂ O 2Fe ₂ O _{3.2} P ₂ O _{3.12} H ₂ O 2Fe ₂ O _{3.2} P ₂ O _{3.12} H ₂ O 2BeO.SiO ₂ 2CeOF.CaO.3CO ₂ 2ZnO.SiO ₂ 2CeOF.CaO.3CO ₂ 2ZnO.SiO ₂ 2C ₂ CaO.Mn, Fe)O.(Al, Fe)(OH, F)O.2SiO ₂ Y ₂ O _{3.} P ₂ O _{3.2} CuCl _{2.2} oH ₂ O BaO.TiO _{2.3} SiO ₂ 6PbO.4(Ca, Mn)O.6SiO _{2.} H ₂ O CaO.WO ₃ ZrO _{2.2} SiO ₂ CaO.MO ₃ O HgCl SnO ₂ ZnO PbO.PbCl _{2.} CO ₂ PbO.2PbCl ₂ AgI FeO.(Ta, Cb) ₂ O ₃ CfS SiO ₂ CCSi HgS	1.309 1.378 1.460 ± 1.475 1.480 ± 1.475 1.480 ± 1.490 1.535 ± 1.544 1.550 1.570 1.570 1.570 1.570 1.570 1.600 1.654 1.654 1.670 1.716 ± 1.721 1.724 1.757 1.910 1.918 1.923 ± 1.967 1.973	1.313 1.390 1.570 ± 1.486 1.482 ± 1.500 1.502 1.533 ± 1.553 1.556 1.580 1.592 1.579 1.645 1.707 1.070 1.070 1.777 1.773 1.713 ± 1.816 1.746 1.804 1.945 1.931 1.068 ± 1.978 2.650 2.003 2.020 2.110 2.210					
	(b) UNIAXIAL NEGATIVE MINERALS.							
Chiolite Hanksite Thaumasite Hydrotalcite Cancrinite Milarite Kaliophilite Mellite Marialite Nephelite	2NaF.AlF ₃ 11Na ₂ O. ₂ O ₅ O ₅ . ₂ CO ₂ .KCl 3CaO. CO ₂ .SiO ₂ .SO _{3.1} SH ₂ O 6MgO. Al ₂ O ₅ CO ₂ .15H ₂ O 4Na ₃ O. CO ₂ .15H ₂ O 4Na ₃ O. CaO. 4Al ₂ O _{3.2} CO _{2.0} SiO _{2.3} H ₂ O K ₂ O. 4CaO. 2Al ₂ O _{3.2} 4SiO ₂ .H ₂ O K ₂ O. Al ₂ O _{3.2} SiO ₂ Al ₂ O _{3.} Ci ₂ O _{9.1} 8H ₂ O "Ma" = 3Na ₂ O. ₃ Al ₂ O _{3.1} SSiO _{2.2} NaCl Na ₂ O. Al ₂ O _{3.2} SiO ₂	1.349 1.481 1.507 1.512 1.524 1.532 1.537 1.539 1.539	1.312 1.401 1.408 1.408 1.406 1.529 1.533 1.511 1.537 1.538					

INDEX OF REFRACTION.

TABLE 341 (Continued). - Selected Uniaxial Minerals.

		Index of refraction.						
Mineral.	Formula.	Ordinary ray.	Extraordinary ray.					
((i) Uniaxial Negative Minerals (continued).							
Wernerite. Beryl. Torbernite Meionite. Meililite. Apatite. Calcite Gehlenite Tourmaline Dolomite. Magnesite Pyrochroite Corundum Smithsonite Rhodochrosite. Javosite. Siderite. Byromorphite Barysilite Mimetite Mathockite. Stolzite. Geikielite Vanadinite. Wulfenite Octahedrite Massicotite Proustite Pyrargyrite Hematite	Me ₁ Ma ₁ ± 3BeO.Al ₂ O ₃ .6SiO ₂ CuO.2UO ₃ .P2 ₀ b.8H ₂ O "Me" = 4CaO.3Al ₂ O ₃ .6SiO ₂ Contains Na ₂ O, CaO, Al ₂ O ₃ , SiO ₂ , etc. OCaO.3PO ₅ Co.(F, Cl) ₂ CaO.CO ₂ CaO.Al ₂ O ₃ .SiO ₂ Contains Na ₂ O, FeO, Al ₂ O ₃ , B ₂ O ₃ , SiO ₂ , etc. CaO.MgO.CO ₂ MnO.H ₂ O ₃ MnO.H ₂ O MnO.H ₂ O MnO.CO ₂ MnO.CO ₂ MnO.CO ₂ MnO.CO ₂ MnO.CO ₂ MnO.CO ₃ PbO.3P ₂ O ₃ .PbCl ₂ 3PbO.3Po ₃ .PbCl ₂ 3PbO.3Po ₃ .PbCl ₂ PbO.WO ₃ (Mg, Fe)O.TiO ₂ OPbO.3V ₃ O ₃ .PbCl ₂ PbO.MoO ₃ TiO ₂ PbO.MoO ₃ TiO ₂ PbO.MoO ₃ TiO ₂ PbO.3As ₂ S ₃	1.578 ± 1.581 ± 1.592 1.597 1.634 1.658 1.669 ± 1.682 1.700 1.723 1.768 1.818 1.818 1.818 1.820 1.875 2.070 2.135 2.150 2.260 2.354 2.402 2.554 2.665 2.979 3.084 3.220	1.551 1.575 ± 1.582 1.582 1.580 1.629 1.631 1.486 1.658 1.503 1.509 1.681 1.765 1.618 1.595 1.715 1.635 2.042 2.050 2.118 2.040 2.182 1.950 2.299 2.304 (Li light) 2.493 2.535 (Li light) 2.711 2.881 "" 2.881 ""					

TABLE 342. - Miscellaneous Uniaxial Crystals.

	Spectrum	Index of		
Crystal.	line.	Ordinary ray.	Extraordinary ray.	Authority.
Ammonium arseniate NH ₄ H ₂ AsO ₄ . Benzil (C ₆ H ₈ CO) ₂ . Corundum, Al ₂ O ₃ , sapphire, ruby. Ice at -8° C. Ivory. Potassium arseniate KH ₂ S ₂ O ₆ . " Sodium arseniate Na ₂ AsO ₄ .1 ₂ H ₂ O " nitrate NaNO ₃ . " phosphate Na ₃ PO ₄ .1 ₂ H ₂ O Nickel sulphate NiSO ₄ .6H ₂ O. " " " " " " " " " " " " " " " " " "	D D D D Li D F D C D D F D C	1.5766 1.0588 1.760 1.308 1.297 1.5762 1.5074 1.5632 1.457 1.586 1.447 1.5173 1.5100 1.5078	I. 5217 I. 6784 I. 760 I. 313 I. 304 I. 541 I. 5252 I. 5170 I. 5146 I. 466 I. 453 I. 4930 I. 4873 I. 4844 I. 599	T. and C.* Mean Osann Meyer Kohlrausch T. and C. "" Mean " T. and C. "" "" Mean "" T. and C. "" "" Martin

^{*} Topsöe and Christiansen.

TABLE 343.

INDEX OF REFRACTION.

Selected Biaxial Crystals.

The values are arranged in the order of increasing β index of refraction and are for the sodium D line except where noted. Selected by Dr. Edgar T. Wherry from private compilation of Dr. Edgar S. Larsen of the U. S. Geological Survey.

	77 1	Inde	x of refracti	on.				
Mineral.	Formula.	n _a	$n\beta$	n_{γ}				
(a) BIAXIAL POSITIVE MINERALS.								
Stercorite Aluminite Tridymite Tridymite Thenardite Carnallite Alunogenite Melanterite Natrolite Arcanite Struvite Heulandite Thomsonite Harmotomite Petalite Monetite Newberyite Gypsum Mascagnite	Na ₂ O. (NH ₄) ₂ O. P ₂ O ₅ .9H ₂ O Al ₂ O ₈ .SO ₃ .9H ₂ O SiO ₂ Na ₂ O. SO ₃ K.Cl. MgCl ₂ .6H ₂ O Al ₂ O ₈ .3SO ₈ .16H ₂ O FeO. SO ₈ .7H ₂ O Na ₂ O. Al ₂ O ₈ .3SiO ₂ .2H ₂ O K ₂ O. SO ₃ (NH ₄) ₂ O. 2MgO. P ₂ O ₅ .12H ₂ O (Na ₂ , Ca)O. Al ₂ O ₈ .2SiO ₈ .3H ₂ O (Na ₂ , Ca)O. Al ₂ O ₈ .5SiO ₂ .5H ₂ O Li ₂ O. Al ₂ O ₈ .8SiO ₂ 2 CaO. P ₂ O ₅ .H ₂ O 2 MgO. P ₂ O ₅ .H ₂ O 2 MgO. P ₂ O ₅ .7H ₂ O CaO. SO ₈ .2H ₂ O (NH ₄) ₂ O. SO ₈	1.439 1.459 1.469 1.464 1.466 1.474 1.471 1.480 1.495 1.495 1.495 1.503 1.504 1.515 1.514 1.520	1.441 1.464 1.470 1.474 1.475 1.475 1.476 1.478 1.482 1.495 1.490 1.503 1.505 1.510 1.518 1.519	1.469 1.470 1.473 1.485 1.494 1.483 1.486 1.493 1.505 1.505 1.505 1.513 1.530 1.530				
Albite Hydromagnesite Wavellite Kieserite Copiapite Whewellite Variscite Labradorite Gibbsite Wagnerite Anhydrite Colemanite Fremontite Vivianite	"Ab ³ " = Na ₂ O, Al ₂ O ₃ , 6SiO ₂ 4MgO, 3CO ₃ , 4H ₂ O 3Al ₂ O ₃ , 2P ₂ O ₅ , 12 (H ₂ O, 2HF) MgO, SO ₃ , H ₂ O CaO, C ₂ O ₃ , H ₂ O CaO, C ₂ O ₃ , H ₂ O Al ₂ O ₃ , P ₂ O ₅ , 4H ₂ O Al ₂ O ₃ , P ₂ O ₅ , 4H ₂ O Al ₂ O ₃ , P ₂ O ₅ , 4H ₂ O Na ₂ O, P ₂ O ₅ , MgF ₂ CaO, SO ₃ CaO, 3B ₂ O ₃ , 5H ₂ O Na ₂ O, Al ₂ O ₃ , SH ₂ O Na ₂ O, Al ₂ O ₃ , SH ₂ O Na ₂ O, Al ₂ O ₃ , SH ₂ O	1.525 1.527 1.527 1.528 1.523 1.530 1.491 1.551 1.550 1.566 1.560 1.571 1.586	1.529 1.539 1.534 1.535 1.543 1.558 1.558 1.563 1.560 1.570 1.570 1.570 1.502	1.536 1.540 1.552 1.586 1.595 1.650 1.582 1.568 1.587 1.582 1.614 1.615 1.633				
Pectolite. Calamine Chondrodite. Turquois. Topaz. Celestite. Prehnite. Barite. Anthophyllite Sillimanite Forsterite Euclasite Triplite. Spodumenite Diopside. Olivine	Na ₂ O. ₄ CaO.6SiO ₂ .H ₂ O 2ZnO.SiO ₂ .H ₂ O 4MgO.2SiO ₂ .Mg(F, OH) ₂ CuO. ₃ Al ₂ O _{3.2} P ₂ O _{5.9} H ₂ O 2AlOF.SiO ₂ SrO.SO ₃ 2CaO.Al ₂ O _{3.3} SiO ₂ .H ₂ O BaO.SO ₃ MgO.SiO ₂ 2MgO.SiO ₂ 2MgO.SiO ₂ 2MgO.SiO ₂ 2BcO.Al ₂ O _{3.2} SiO ₂ .H ₂ O 3MnO.P ₂ O _{5.} MnF ₂ LiaO.Al ₂ O _{3.4} SiO ₂ CaO.MgO.2SiO ₂ 2MgO.SiO ₂ 2BcO.Al ₂ O _{3.2} SiO ₂ .H ₂ O 3MnO.P ₂ O _{5.} MnF ₂ LiaO.Al ₂ O _{3.4} SiO ₂ CaO.MgO.2SiO ₂ 2(Mg, Fe)O.SiO ₂ Li ₂ O.2(Fe, Mn)O.P ₂ O ₅	1.505 1.614 1.609 1.610 1.610 1.622 1.616 1.636 1.638 1.638 1.650 1.650 1.650 1.650 1.660 1.660 1.660	1.606 1.617 1.619 1.620 1.620 1.624 1.626 1.637 1.642 1.642 1.651 1.653 1.655 1.060 1.666 1.071	1.634 1.636 1.639 1.659 1.649 1.649 1.649 1.657 1.653 1.670 1.658 1.670 1.670 1.670				

UNDEX OF REFRACTION. Selected Biaxial Crystals.

		Iı	ndex of refr	action.						
Mineral.	Formula.	n _a	n_{β}	n_{γ}						
(a) B	(a) BIAXIAL POSITIVE MINERALS (continued).									
Zoisite. Strengite. Diasporite Staurolite. Chrysoberyl. Azurite Scorodite. Olivenite. Anglesite Titanite. Claudetite Sulfur Cotunnite. Huebnerite. Manganite Raspite. Mendipite. Tantalite Wolframite Crocoite Pseudobrookite Stibiotantalite Montroydite Brookite Lithargite.	4CaO. ₃ Al ₂ O ₃ .6SiO ₂ .H ₂ O Fe ₃ O ₃ .P ₂ O ₃ . ₄ H ₂ O Al ₂ O ₃ .H ₃ O BeO. ₄ Al ₂ O ₃ . ₄ SiO ₃ .H ₂ O BeO. ₄ Al ₂ O ₃ 3CuO. ₂ CO ₂ .H ₂ O Fe ₂ O ₃ .As ₂ O ₃ .H ₂ O Fe ₂ O ₃ .As ₂ O ₃ .H ₂ O PbO.SO CaO. TiO ₂ .SiO ₂ As ₂ O ₃ S PbCl ₂ MnO.WO ₃ Mn ₂ O ₃ .H ₂ O PbO.WO ₃ 2PbO.PbCl ₂ (Fe, Mn)O.Ta ₂ O ₃ (Fe, Mn)O.WO ₃ PbO.CrO ₃ 2Fe ₂ O ₃ . ₃ TiO ₂ Sb ₂ O ₃ .Ta ₂ O ₅ H ₂ O TiO ₂	1.700 1.710 1.702 1.736 1.747 1.730 1.775 1.772 1.877 1.900 1.871 1.950 2.200 2.240 2.240 2.240 2.240 2.240 2.250 2.310 2.310 2.374 2.370 2.583 2.510	I.702 I.710 I.722 I.741 I.748 I.758 I.774 I.810 I.882 I.907 I.882 I.907 I.920	1.706 1.745 1.745 1.750 1.746 1.757 1.838 1.707 1.863 1.707 2.240 2.240 2.240 2.240 2.250 2.320 2.320 2.330 2.330 2.330 2.430 (Li) 2.466 (Li) 2.466 (Li) 2.457 2.457 2.650 (Li) 2.741 2.710						
Mirabilite. Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite. Pickeringite Bloedite Trona. Thermonatrite Stilbite Niter. Kainite. Gaylussite Scolecite Laumontite Orthoclase Microcline Anorthoclase Glauberite Cordierite. Condierite. Chalcanthite Oligoclase.	(b) BIAXIAL NEGATIVE MINERALS. Na ₂ O. SO ₃ . 10H ₂ O Na ₄ F. CaF ₃ . AlF ₃ , H ₂ O Na ₂ O. CO ₂ . 10H ₂ O K ₂ O. Al ₂ O ₃ . 25O ₃ . 24H ₂ O M ₂ O. SO ₃ . 7H ₂ O B ₂ O ₃ . H ₂ O Na ₂ O. 2BcO ₃ . 10H ₂ O ZnO. SO ₃ . 7H ₂ O Na ₂ O. 2BcO ₃ . 10H ₂ O Na ₂ O. M ₂ O ₃ . 3SO ₃ . 22H ₂ O Na ₂ O. M ₂ O ₃ O ₄ O ₄ O ₅ SSO ₃ . 22H ₂ O Na ₂ O. CO ₂ H ₂ O (Ca, Na ₂ O. CO ₂ H ₂ O (Ca, Na ₂ O. CO ₂ H ₂ O Na ₂ O. CO ₂ H ₂ O Na ₂ O. CO ₃ SH ₂ O Na ₂ O. CO ₃ SH ₂ O Na ₂ O. CO ₃ SH ₂ O Na ₂ O. Co ₃ O ₃ SSO ₃ . 3H ₂ O CaO. Al ₂ O ₃ . 3SiO ₂ . 3H ₂ O CaO. Al ₂ O ₃ . 4SiO ₂ . 4H ₂ O CaO. Al ₂ O ₃ . 4SiO ₂ . 4H ₂ O Same as preceding (Na ₂ K.)O. Al ₂ O ₃ . 6SiO ₂ Na ₂ O. CaO. 2SO ₃ 4(M ₂ , Fe)O. 4Al ₂ O ₃ . 10SiO ₂ . H ₂ O CuO. SO ₃ . 5H ₂ O Ab ₄ An	1.394 1.407 1.405 1.430 1.433 1.340 1.447 1.457 1.476 1.486 1.410 1.420 1.494 1.334 1.512 1.513 1.518 1.522 1.523 1.515 1.534 1.516 1.539	1.396 1.414 1.425 1.452 1.455 1.450 1.480 1.488 1.492 1.498 1.505 1.505 1.516 1.524 1.524 1.522 1.532 1.538 1.539 1.543	1.308 1.415 1.440 1.448 1.440 1.448 1.472 1.484 1.483 1.480 1.542 1.518 1.500 1.506 1.516 1.523 1.510 1.525 1.526 1.530 1.531 1.536 1.536 1.540 1.546						

INDEX OF REFRACTION.

Selected Biaxial Crystals.

		Ir	ndex of refra	ction.					
Mineral.	Formula.	na	n_{β}	n_{γ}					
	(b) Biaxial Negative Crystals (continued).								
Beryllonite Kaolinite Biotite Autumite Autunite Anorthite Lanthanite Pyrophyllite Tale Hopeite Muscovite Amblygonite Lepidolite Phlogopite Tremolite Actinolite Wollastonite Lazulite Danburite Glaucophanite Andalusite Hornbende Datolite Erythrite Monticellite Strontianite Witherite Aragonite Aragonite Aragonite Aragonite Lazulite Erythrite Lepidolite Erythrite Monticellite Strontianite Witherite Lazulite Cvanite Cvanite Leydanite Lazulite Dumortierite Cvanite Lumortierite Cvanite Lumortierite Cvanite Lanarkite Lanarkite Lanarkite Laurionite Malcokite Baddeleyite Leimonite Coethite Valentinite Turgite Realgar Terlinguaite Hutchinsonite Stibnite.	Na ₂ O. ₂ BeO.P ₂ O ₅ Al ₂ O ₃ .2SiO ₂ .2H ₂ O K ₂ O.4(Mg, Fe)O. 2Al ₂ O ₃ .6SiO ₂ .H ₂ O CaO. ₂ UO ₃ .P ₂ O ₅ .8H ₂ O "An" = CaO.Al ₂ O ₃ .2SiO ₂ La ₂ O ₃ .3CO ₂ .9H ₂ O Al ₂ O ₃ .4SiO ₂ .H ₂ O 3MgO.4SiO ₂ .H ₂ O 3MgO.4SiO ₂ .H ₂ O 3MgO.4SiO ₂ .H ₂ O Al ₂ O ₃ .3EiO ₂ .CK, Li)F Al ₂ O ₃ .3SiO ₂ .2(K, Li)F K ₂ O.6MgO.Al ₂ O ₃ .6SiO ₂ .2H ₂ O CaO.3(Mg, Fe)O.4SiO ₂ CaO.3(Mg, Fe)O.4SiO ₂ CaO.3(Mg, Fe)O.4SiO ₂ CaO.3iO ₂ (Fe, Mg)O.Al ₂ O ₃ .P ₂ O ₅ .H ₂ O CaO.3SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₂ SiO ₃ Sh ₂ O ₃ .H ₂ O CaO.MgO.SiO ₂ SiO ₃ Sh ₂ O ₃ .H ₂ O CaO.MgO.SiO ₂ CaO.MgO.SiO ₂ CaO.CO ₂ CaO.CO ₂ CaO.CO ₂ CaO.CO ₂ CaO.3(Al, Fe) ₂ O ₃ .6SiO ₂ .H ₂ O 3CuO.As ₂ O ₃ .Sh ₂ O ₃ .Sh ₂ O ₃ .SsiO ₂ .H ₂ O 3CuO.As ₂ O ₃ Sh ₂ O ₃ .Sh ₂ O ₃ .SsiO ₂ .H ₂ O 3CuO.SiO ₂ SiO ₂ CaO.SiO ₂ CaO ₃ CaO.As ₂ O ₃ Da ₂ O ₃ .SsiO ₂ .H ₂ O 3CuO.CoO ₂ Al ₂ O ₃ SiO ₂ P ₂ O ₃ O ₃ O ₄ O ₃ O ₃ O ₄ O ₃ O ₃ O ₄ O ₃ O ₅ O ₄ O ₅	1. 552 1. 561 1. 541 1. 553 1. 576 1. 553 1. 576 1. 552 1. 560 1. 560 1. 560 1. 560 1. 662 1. 603 1. 804 2. 904 2. 130 2. 1400 2. 150 2. 1400 2. 150 2. 1400 2. 150 2. 1400 2. 150 2. 1400 2. 150 2. 1400 2. 150 3. 104 2. 170 2. 180 2. 180	1.558 1.363 1.574 1.574 1.575 1.584 1.587 1.588 1.589 1.590 1.590 1.590 1.593 1.627 1.622 1.632 1.632 1.632 1.638 1.638 1.638 1.638 1.638 1.642 1.653 1.667 1.665 1.685 1.686 1.720 1.754 1.861 1.865 1.720 1.754 1.875	1.561 1.565 1.574 1.577 1.588 1.577 1.588 1.613 1.600 1.589 1.590 1.590 1.597 1.605 1.605 1.635 1.635 1.636 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.668 1.668 1.668 1.728 1.874 1.900					

INDEX OF REFRACTION.

TABLE 344. - Miscellaneous Biaxial Crystals.

Crystal.	Spectrum	Ind	ex of refract	ion.	Authority.
	line.	n _a	$n\beta$	n_{γ}	- Authority:
Ammonium oxalate, (NH ₄) ₂ C ₂ O ₄ .H ₂ O. Ammonium acid tartrate, (NH ₄)H(C ₄ H ₄ O ₆). Ammonium tartrate, (NH ₄) ₂ C ₄ H ₄ O ₆ . Antipyrin, C ₁ H ₁₂ NO ₂ . Citric acid, C ₆ H ₅ O ₇ .H ₂ O. Codein, C ₁ SH ₂ INO ₃ .H ₂ O. Magnesium carbonate, MgCO ₃ .3H ₂ O. """ Potassium bichromate, K ₂ Cr ₂ O ₇ . """ """ Potassium bichromate, K ₂ Cr ₂ O ₇ . """ """ """ Racemic acid, C ₄ H ₅ O ₆ .H ₂ O. Resorcin, C ₄ H ₅ O ₂ . Sodium bichromate, Na ₂ Cr ₂ O ₇₋₂ H ₂ O. """ """ """ """ """ """ """ "	D Cd, 0. 226µ H, 0. 656µ D D red D F D C yellow D D red T D Li	1.4381 1.5188 1.5188 1.5697 1.4932 1.5390 1.495 1.432 1.4990 1.4307 1.7202 1.6873 1.3346 1.4976 1.4932 1.4911 1.6610 1.5422 1.5397 1.5379 1.4953 1.4052	1. 5475 1. 5614 1. 581 1. 6935 1. 4977 1. 5435 1. 5266 1. 4532 1. 7380 1. 7254 1. 722 1. 7254 1. 722 1. 5056 1. 4992 1. 506 1. 4928 1. 526 1. 4928 1. 526 1. 4932 1. 5332 1. 5685 1. 5667 1. 5639 1. 5553 1. 5639 1. 5553 1. 5639 1. 5553 1. 4860	1.5950 1.5910 1.7324 1.5089 1.526 1.461 1.5326 1.4584 1.8197 1.7305 1.5064 1.5029 1.4980 1.4959 1.7510 1.5734 1.5716 1.5693 1.6046 1.4847	Brio T. and C.* Cloisaux Liweh Schrauf Grailich Genth Means Borel Dufet T. and C. Mallard Schrauf T. and C. """ Groth """ Groth "" Weans T. and C.
u u	D C	1.4568 1.4544	1.4801 1.4776	1.4836	46 66 66
*	Topsöe and Chri	stiansen.		1	

TABLE 345. — Miscellaneous Liquids (see also Table 346), Liquefied Gases, Oils, Fats and Waxes.

Substance.	Temp.	Index for D o. 589µ.	Refer- ence.	Substance.	Temp.	Index for D o. 589 μ .	Refer- ence.
Liquefied gases: Br2 Cl2 Cl2 CO2, C2N2- C2H4 H2S N2- NH3 NO N2O O2- SO2- HCI HBr HI Oils: Almond Castor- Citronella Clove Cocanut Cod liver. Cotton seed Croton Eucalyptus Lard	15 14 15 18 6 18.5 100 15.5 16.5 10.5	1.659 1.367 1.195 1.325 1.384 1.205 1.338 1.325 1.330 1.330 1.350 1.252 1.325 1.466 1.4728–1.4753 1.4771-4803 1.477-1.483 1.4753 1.4753 1.4753 1.4753 1.4753 1.4753 1.4753 1.4753 1.4753 1.4753 1.4753 1.4753 1.4753 1.4753	a b b b b c c b c c b b b b d e e e d e d e e d	Oils: Lavendar. Linseed. Maize. Mustard seed. Neat's foot. Olive. Palm. Peanut. Peppermint. Poppy. Porpoise. Rape (Colza). Seal. Sesame. Soja bean. Sperm. Sunflower. Tung. Whale Fats and Waxes: Beef tallow. Beeswax. Carnauba wax. Cocoa butter. Lard. Mutton tallow.	15.5 15.5 60 15.5 20 15.5 25 15.5 25 15.5	1.464-1.466 1.4820-1.4852 1.4757-1.4708 1.4753-1.4708 1.4703-1.4708 1.4703-1.4708 1.4703-1.4708 1.4723-1.4708 1.4741 1.4741 1.4742 1.4760-1.4752 1.4741 1.4742 1.4760-1.4752 1.4741 1.4742 1.4760-1.4752 1.4741 1.4742 1.4760-1.4752 1.4741 1.4742 1.4760-1.4752 1.4741 1.4741 1.4760-1.4752 1.4741 1.4741 1.4752-1.4561 1.4520-1.4587 1.4586-1.4581 1.4580-1.4581 1.4580-1.4581	e e dddeeddeeddee e e e e e e e e e e e

References: (a) Martens; (b) Bleekrode, Pr. Roy. Soc. 37, 339, 1884; (c) Liveing, Dewar, Phil. Mag., 1892–3; (d) Tolman, Munson, Bul. 77, B. of C., Dept. Agriculture, 1905; (e) Seeker, Van Nostrand's Chemical Annual. For the oils of reference d, the average temperature coefficient is 0.000365 per ° C.

TABLE 346. INDEX OF REFRACTION.

Indices of Refraction of Liquids Relative to Air.

				Indi	ces of refrac	ction.		Author-
Substance.	Den- sity.	Temp.	ο. 397μ Η	0.434µ G'	0.486μ F	ο. 589μ D	0.656µ C	ity.
Acetaldehyde, CH ₃ CHO. Acetone, CH ₅ COCH ₅ . Aniline, C ₅ H ₅ NH ₂ . Alcohol, methyl, CH ₅ OH. "ethyl C ₂ H ₅ OH. "ethyl C ₂ H ₅ OH. "n-propyl C ₃ H ₇ OH. "c ₄ H ₅ OH. Benzol, C ₅ H ₆ . "C ₄ H ₆ dn/dt. Bromnaphthaline, C ₁ OH ₇ Br. Carbon disulphide, CS ₂ . "tetrachloride, CCl ₄ . Chinolin, C ₃ H ₅ N. Chloral, CCl ₅ CHO. Chloroform, CHCl ₅ Decane, C ₁ OH ₂ . Ether, ethyl, C ₂ H ₅ . OL ₂ H ₆ . "dn/dt. Ethyl nitrate, C ₃ H ₅ O.NO ₃ . Formic acid, H.CO ₂ H. Glycerine, C ₃ H ₆ O ₃ . Hexane, CH ₅ (CH ₂) ₄ CH ₅ . Hexyle.ne, CH ₅ (CH ₂) ₄ CH.CH ₂ Methyl iodide, CH ₃ I. "dn/dt. Naphthalene, C ₁ OH ₃ N. Naphthalene, C ₁ OH ₃ N. Octane, CH ₅ (CH ₂) ₆ CH ₃ Oil, almond. aniseed. "bitter almond cassia. "cinnamon.	0.780 0.791 1.022 0.794 0.808 0.800 0.804 0.880 1.203 1.203 1.203 1.501 1.000 1.512 1.480 0.728 0.715 0.660 0.679 3.318 0.962 1.012 0.792 0.99 0.09 1.06	20 20 20 20 20 20 20 20 20 20 20 20 20 2	I.3399 I.3399 I.7289 I.7175 I.6994 I.4/3 I.8027 I.6084 I.7030 I.6985	1.3394 1.3678 1.6204 1.33678 1.6204 1.3362 1.3773 1.37000004 1.3938 1.5236 1.6570 1.7041 1.6920 1.6670 1.458 1.4200 1.36070006 1.3905 1.3804 1.4200 1.5473 1.4579	1.3359 1.3639 1.3639 1.3730 1.3730 1.3730 1.3730 1.3730 1.5132	1.3316 1.3593 1.5863 1.3290 1.3695 1.36180004 1.3854 1.50120006 1.6582 1.6433 1.6276 1.4007 1.6245 1.4108 1.35380006 1.3853 1.3714 1.4703 1.3754 1.4707 1.4407 1.4408 1.3538 1.3714 1.4730 1.3754 1.4707 1.4408 1.35538 1.3714 1.4730 1.3754 1.4758 1.5575 1.4108 1.5577 1.4108 1.5577 1.4782 1.5577 1.4782 1.5577 1.5873 1.5175 1	C 1,3298 1,3573 1,5793 1,3677 1,3605 -,0004 1,3834 1,4905 1,6336 1,6161 1,4143 1,4088 1,3515 -,0036 1,3734 1,3920 1,3200 -,0036 1,3734 1,3920 1,7320 -,0066 1,5108 1,3987 1,4758 1,5508 1,3510 1,5508 1,3510 1,5508 1,3510 1,5508 1,3510 1,5508 1,3610 1,5746 1,5108 1,3987 1,4755 1,5508 1,3987 1,4755 1,5508 1,3987 1,4755 1,5508 1,3987 1,4757 1,4755 1,5508 1,5010	Ia Means "Ib Means 2 I Means 3 4 "Id Ic Ic Means Ic Ic Means "It Means "It Means "It Means "It Means "It Ic Ic Ic Ic Ic Means "It Ic
rock turpentine Pentane, CH ₃ (CH ₂) ₈ CH ₃ Phenol, C ₈ H ₆ OH	0.87 0.87 0.625 1.060	10.6 20.7 15.7 40.6	1.4939 1.4913	I.3645 I.5684	I.4644 I.4817 I.4793 I.3610 I.5558	I.4573 I.4744 I.4721 I.3581 I.5425	I.4545 I.4715 I.4692 I.3570 I.5369	6 9 8 1e
Styrene, C ₈ H ₈ CH, CH ₂ Thymol, C ₂₀ H ₁₄ O Toluene, CH ₈ C ₈ H ₅ Water, H ₂ O	1.021 0.910 0.982 0.86	82.7 16.6 ——————————————————————————————————	I.3435 I.3444 I.3411	1.5816 1.5170 1.3404 1.3413 1.3380	I.5356 I.5659 I.5386 I.5070 I.3372 I.3380	1.5485 1.4955 1.3330 1.3338 1.3307	1.5174 1.5419 1.5228 1.4911 1.3312 1.3319	ih ii ih io Means
"		80	1.3332	1.3302	1.3270	1.3230	1 3313	"

References: 1, Landolt and Börnstein (a, Landolt; b, Korten; c, Brühl; d, Haagen; e, Landolt, Jahn; f, Nasini, Bernheimer; g, Eisenlohr; h, Eykman; i, Auwers, Eisenlohr); 2, Korten; 3, Walter; 4, Ketteler; 5, Landolt; 6, Olds; 7, Baden Powell; 8, Willigen; 9, Fraunhofer; 10, Brühl.

SMITHSONIAN TABLES.

TABLE 347.

INDEX OF REFRACTION.

Indices of Refraction relative to Air for Solutions of Salts and Acids.

				Indi	ces of refr	action for	spectrum l	lines.	
Substa	ince.	Density.	Temp. C.	О	D	F	Η _γ	. н	Authority.
			(a) S	SOLUTIONS	IN WAT	ER.			
Ammonium	66	1.067 .025 .398 .215	27°.05 29.75 25.65 22.9 25.8	1.37703 .34850 .44000 .39411 .37152	.35050 .44279 .39652	.44938 .40206		1.39336 .36243 .46001 .41078 .38666	Willigen.
Hydrochlo Nitric acid Potash (ca: Potassium "	astic)	double	20.75 18.75 11.0 solution normal normal	1.40817 .39893 .40052 .34087 .34982 .35831	.40181	.40857 .40808 .34719 35645	- - 1.35049 ·35994 ·36890	1.42816 .41961 .41637	Fraunhofer. Bender.
Soda (caus Sodium chi "		1.376 .189 .109	21.6 18.07 18.07 18.07	1.41071 •37562 •35751 •34000	·37789 ·35959	.38322 1.3874 .36442 .3682		1.42872 - - -	Willigen. Schutt.
	**		22.8 18.3 18.3 18.3 18.3	1.38283 .43444 .42227 .36793 .33663	1.38535 .43669 .42466 .37009 .33862	.42967 .37468		1.40121 .44883 .43694 .38158 .34938	Willigen.
Zinc chloric	de	1.359	26.6 26.4	1.39977 .372 9 2	1.40222 -37515	1.40797 .38026	-	1.41738 .38845	46
			(b) Solur	rions in	ETHYL A	LCOHOL.			
Ethyl alcoh		0.789 .932	25.5 27.6	1.3 5 791 ·35372	.35556	1.36395 .3 5 986	-	1.37094 .36662	Willigen.
urated) Cyanin (sat	urated) .	<u> </u>	16.0 16.0	.3918 .3831	.398	.361 .3705	-	·3759 ·3821	Kundt.
a 4.5 per	cent. solut	ion $\mu_A =$	1.4593, µ	$a_B = 1.46$	$95, \mu_F(g)$	green) ==	1.4514,	ug (blue	n gives for) = 1.4554.) = 1.4597.
	(с) Solutio	NS OF POT	ASSIUM I	PERMANG!	NATE IN	WATER.*		
Wave- length in cms. × 106.	n for	Index for 2 % sol.	Index for 3 % sol.	for	in case 1	rum f	or f	or f	dex Index for 5 sol. 4 % sol.
68.7 B 65.6 C 61.7 - 59.4 - 58.9 D 56.8 - 55.3 - 52.7 E 52.2 -	8.7 B I.3328 I.334 5.6 C .3335 .334 1.73343 .336 9.43354 .337 8.9 D .3353 .337 6.83366 .339 2.7 E .3363 -2		1.3365 .3381 .3393 -3412 .3417 -3388	1.3382 .3391 .3410 .3426 .3426 .3445 .3438	51.6 50.0 48.6 48.0 46.4 44.7 43.4 42.3	F 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	374 377 381 397 3 407 3 417	395 402 421 -	386 1.3404 3408 398 .3413 414 .3423 426 .3439 -3452 457 .3468

TABLE 348.

INDEX OF REFRACTION.

Indices of Refraction of Gases and Vapors.

A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is $n_t - i = \frac{n_0 - i}{i + at} \frac{\rho}{760}$, where n_t is the index of refraction for temperature t, n_0 for temperature zero, a the coefficient of expansion of the gas with temperature, and ρ the pressure of the gas in millimeters of mercury. For air see Table 349.

			(a) Indice	es of refraction	on.			
Spectrum	103 (n-1)	Spectrum	103 (n-1)	Wave-		(n-1) 103.	
line.	Air.	line.	Air.	length.	Air.	0.	N.	Н.
A B C D E F G H K L	.2905 .2911 .2914 .2922 .2933 .2943 .2962 .2978 .2980	M N O P Q R S T U	.2993 .3003 .3015 3023 .3031 .3043 .3053 .3064 .3075	4861 .5461 .5790 .6563 .4360 .5462 .6709 6.709 8.678	.2951 .2936 .2930 .2919 .2971 .2937 .2918 .2881 .2888	.2734 .2717 .2710 .2698 .2743 .2704 .2683 .2643 .2650	.3012 .2998 	.1406 .1397 .1393 .1387 .1418 .1397 .1385 .1361 .1361

(b) The following are compiled mostly from a table published by Brühl (Zeits. für Phys. Chem. vol. 7, pp. 25-27). The numbers are from the results of experiments by Biot and Arago, Dulong, Jamin, Ketteler, Lorenz, Mascart, Chappius, Rayleigh, and Rivière and Prytz. When the number given rests on the authority of one observer the name of that observer is given. The values are for 0° Centigrade and 760 mm. pressure.

			1		
Substance.	Kind of light.	Indices of refraction and authority.	Substance.	Kind of light.	Indices of refraction and authority.
Acetone Ammonia	D white D D D	1.001079-1.001100 1.000381-1.000385 1.000373-1.000379 1.000281 Rayleigh.	Hydrogen	white D D White	1.000138-1.000143 1.000132 Burton. 1.000644 Dulong. 1.000623 Mascart. 1.000443 Dulong.
Bromine Carbon dioxide "Carbon disul- phide }	D white D white D	1.001132 Mascart. 1.000449–1.000450 1.000448–1.000454 1.001500 Dulong. 1.001478–1.001485	Methyl alcohol. Methyl ether Nitric oxide.	D D D white D	1.000444 Mascart. 1.000549-1.000623 1.000891 Mascart. 1.000303 Dulong. 1.000297 Mascart.
Carbon mon- { oxide } Chlorine	white white white D D	1.000340 Dulong. 1.000335 Mascart. 1.000772 Dulong. 1.000773 Mascart. 1.001436–1.001464	Nitrogen Nitrous oxide	white D white white	1.000295-1.000300 1.000296-1.000298 1.000503-1.000507 1.000516 Mascart. 1.000272-1.000280
Cyanogen Ethyl alcohol . Ethyl ether Helium	white D D D D	1.000834 Dulong. 1.000784-1.000825 1.000871-1.000885 1.001521-1.001544 1.000036 Ramsay.	Pentane Sulphur dioxide		1.000271-1.000272 1.001711 Mascart, 1.000665 Dulong, 1.000686 Ketteler, 1.000261 Jamin,
Hydrochloric { acid }	white D	1.000449 Mascart. 1.000447 "		D	1.000249-1.000259

INDEX OF REFRACTION.

TABLE 349. — Index of Refraction of Air (15°C, 76 cm).

Corrections for reducing wave-lengths and frequencies in air (15° C, 76 cm) to vacuo.

Dry air (n - 1) × 10 ⁷ 15° C 76 cm	for \ in air	cm	Vacuo correction for $\frac{1}{\lambda}$ in air $\left(\frac{1}{n\lambda} - \frac{1}{\lambda}\right)$. Subtract.	Wave- length, \(\lambda\) Ang- stroms.	Dry air (n - 1) × 10 ⁷ 15° C 76 cm	for λ in air	cm	Vacuo correction for $\frac{\mathbf{I}}{\lambda}$ in air $\left(\frac{\mathbf{I}}{n\lambda} - \frac{\mathbf{I}}{\lambda}\right)$. Subtract.
3256	0.651	50,000	16.27	5500	2771	1.524	18,181	5.04
3188	0.670	47,619	15.18	5600	2769	1.551	17,857	4.94
3132	0.689	45,454	14.23	5700	2768	1.578	17,543	4.85
3086	0.710	43,478	13.41	5800	2766	1.604	17,241	4.77
3047	0.731	41,666	12.69	5900	2765	1.631	16,949	4.68
3014	0.754	40,000	12.05	6000	2763	1.658	16,666	4.60
2986	0.776	38,461	11.48	6100	2762	1.685	16,393	4.53
2962	0.800	37,037	10.97	6200	2761	1.712	16,129	4.45
2941	0.824	35,714	10.50	6300	2760	1.739	15,873	4.38
2923	0.848	34,482	10.08	6400	2759	1.766	15,625	4.31
2907	0.872	33,333	9.69	6500	2758	1.792	15,384	4.24
2893	0.897	32,258	9.33	6600	2757	1.819	15,151	4.18
2880	0.922	31,250	9.00	6700	2756	1.846	14,925	4.11
2869	0.947	30,303	8.69	6800	2755	1.873	14,705	4.05
2859	0.972	29,411	8.41	6900	2754	1.900	14,492	3.99
2850	0.998	28,571	8.14	7000	2753	1.927	14,285	3.93
2842	1.023	27,777	7.89	7100	2752	1.954	14,084	3.88
2835	1.049	27,027	7.66	7200	2751	1.981	13,888	3.82
2829	1.075	26,315	7.44	7300	2751	2.008	13,698	3.77
2823	1.101	25,641	7.24	7400	2750	2.035	13,513	3.72
2817 2812 2808 2803 2799	I.127 I.153 I.179 I.205 I.232	25,000 24,390 23,809 23,255 22,727	6.86 6.68 6.52 6.36	7500 7600 7700 7800 7900	2749 2749 2748 2748 2747	2.062 2.089 2.116 2.143 2.170	13,333 13,157 12,987 12,820 12,658	3.66 3.62 3.57 3.52 3.48
2796 2792 2789 2786 2784	1.258 1.284 1.311 1.338 1.364	22,222 21,739 21,276 20,833 20,406	6.21 6.07 5.93 5.80 5.68	8250 8500 8750	2746 2745 2744 2743	2.197 2.224 2.265 2.332 2.400	12,500 12,345 12,121 11,764 11,428	3 · 43 3 · 39 3 · 33 3 · 23 3 · 13
2781	I.39I	20,000	5.56	9000	2742	2.468	11,111	3.05
2779	I.417	19,607	5.45	9250	2741	2.536	10,810	2.96
2777	I.444	19,230	5.34	9500	2740	2.604	10,526	2.88
2775	I.47I	18,867	5.23	9750	2740	2.671	10,256	2.81
2773	I.497	18,518	5.13	10000	2739	2.739	10,000	2.74
	(n-1) X 10° C 76 cm 3256 3188 3183 3086 3047 3014 2986 29941 2923 2803 2850 2859 2850 2859 2852 2832 2817 2812 2833 2823 2817 2812 2823 2726 2786 2786 2786 2786 2786 2786 2786 2787 2777 2777 2777 2777 2777	(n-1) correction for λ in air 15°C / 76 cm 3256 3188 0.670 33182 3.686 0.710 3047 0.731 3014 0.754 2986 0.776 2962 0.800 2941 0.824 2923 0.848 2907 2803 0.848 2907 0.872 2830 0.922 2860 0.947 2859 0.972 2850 0.941 2859 1.023 2835 1.049 2823 1.025 2823 1.101 2817 1.153 2808 1.175 2812 1.153 2808 1.170 2812 1.258 2799 1.232 2796 1.258 2702 1.2417 2777 1.4444 2775 1.4417 2777 1.4444 2775 1.441	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

MEDIA FOR DETERMINATIONS OF REFRACTIVE INDICES WITH THE MICROSCOPE.

TABLE 350, —Liquids, n_D (0.589 μ) = 1.74 to 1.87.

In 100 parts of methylene iodide at 20° C. the number of parts of the various substances indicated in the following table can be dissolved, forming saturated solutions having the permanent refractive indices specified. When ready for use the liquids can be mixed by means of a dropper to give intermediate refractions. Commercial iodoform (CHI₃) powder is not suitable, but crystals from a solution of the powder in ether may be used, or the crystalized product may be bought. A fragment of tin in the liquids containing the SnI₄ will prevent discoloration.

CHI ₃ .	SnI ₄ .	AsI ₃ .	SbI ₃ .	S.	n _{na} at 20°.
40 35	25 25 30 27 27 31 31	13 16 14 16	12 12 7 8 8	10	1.764 1.783 1.806 1.820 1.826 1.842 1.853 1.868

TABLE 351. —Resin-like Substances, n_D (0.589 μ) =1.68 to 2.10.

Piperine, one of the least expensive of the alkaloids, can be obtained very pure in straw-colored crystals. When melted it dissolves the tri-iodides of arsenic and antimony very freely. The solutions are fluid at slightly above 100° and when cold, resin-like. A solution containing 3 parts antimony iodide to one part of arsenic iodide with varying proportions of piperine is easier to manipulate than one containing either iodide alone. The following table gives the necessary data concerning the composition and refractive indices for sodium light. In preparing, the constituents, in powder of about 1 mm. grain, should be weighed out and then fused over, not in, a low flame. Three-inch test tubes are suitable.

Per cent Iodides.	00.	10,	20,	30.	40.	50.	úo.	70.	So.
Index of refraction	1.683	1.700	1.725	1.756	1.794	1.840	1.897	1.968	2.050

TABLE 352. — Permanent Standard Resinous Media, n_D (0.589 μ) = 1.546 to 1.682.

Any proportions of piperine and rosin form a homogeneous fusion which cools to a transparent resinous mass. The following table shows the refractive indices of various mixtures. On account of the strong dispersion of piperine the refractive indices of minerals apparently matched with those of mixtures rich in this constituent are 0.005 to 0.01 too low. To correct this error a screen made of a thin film of 7 per cent antimony iodide and 93 per cent piperine should be used over the eye-piece. Any amber-colored rosin in lumps is suitable.

Per cent Rosin.	00.	10	20.	30.	40.	50.	60.	70.	80.	90.	100.
Index of refraction	1.683	1.670	1.657	1.643	1.631	1.618	1.604	1.590	1.575	1.560	1.544

All taken from Merwin, Jour. Wash. Acad. of Sc. 3, p. 35, 1913.

Table 353. OPTICAL CONSTANTS OF METALS.

TABLE 353.

Two constants are required to characterize a metal optically, the refractive index, n, and the absorption index, k, the latter of which has the following significance: the amplitude of a wave after travelling one wave-length, λ^1 measured in the metal, is reduced in the ratio $1:e^{-2\pi k}$ or for any distance d, $1:e^{-\frac{2\pi d n k}{\lambda^1}}$; for the same wave-length measured in air this ratio becomes $1:e^{-\frac{2\pi d n k}{\lambda^1}}$ which is sometimes called the extinction coefficient. Plane polarized light reflected from a polished metal surface is in general elliptically polarized because of the relative change in phase between the two rectangular components vibrating in and perpendicular to the plane of incidence. For a certain angle, $\bar{\phi}$ (principal incidence) the change is 90° and if the plane polarized incident beam has a certain azimuth $\bar{\psi}$ (Principal azimuth) circularly polarized light results. Approximately, (Drude, Annalen der Physik, 36, p. 546, 1889),

$$k = \tan 2\overline{\psi} \; (1 - \cot^2\overline{\phi}) \text{ and } n = \frac{\sin \overline{\phi} \; \tan \overline{\phi}}{(1 + k^2)^{\frac{1}{2}}} \; (1 + \frac{1}{2} \cot^2\overline{\phi}).$$

For rougher approximations the factor in parentheses may be omitted. R = computed percentage reflection.

(The points have been so selected that a smooth curve drawn through them very closely indicates the characteristics of the metal.)

Г						Compu	ıted.		
	Metal.	λ	φ	$\overline{\psi}$	n	k	nk	R	Authority.
		μ						1%	
٠.	Cobalt	0.231	64031/	29°39	1.10	1.30	1.43	32.	Minor.
		.275	70 22	29 59	1.41	1.52	2.14	46.	66
		.500	77 5	31 53 31 25	2.35	1.93	3.72 4.40	66.	Ingersoll.
		1.00	81 45	29 6	3.63	1.58	5.73	73.	- "
		1.50	83 21	26 18	5.22	1.29	6.73	75.	"
и.	Copper	2.25	83 48 65 57	26 5 26 14	5.65	1.27	7.18	76,	Minor.
	Copper	.231	65 6	28 16	1.19	1.05	1.45	32.	66
		.500	70 44	33 46	1.10	2.13	2.34	56.	"
		.650	74 16	41 30	0.44	7.4	3,26	86.	Ingersoll.
		.870	78 40 84 4	42 30 42 30	0.35	11.0	3.85 9.46	91.	"
		2.25	85 13	42 30	1.03	11.4	11.7	97.	66
		4.00	87 20	42 30	1.87	11.4	21.3		FörstFréed.
١.	Gold	5.50	88 00	41 50	3.16	9.0 28.0	28.4 6.7		" "
,	Gora	2.00	81 45 85 30	44 00 43 56	0.24	26.7	12.5		66 66
		3.00	87 05	43 50	0.80	24.5	19.6		60 66
١.	*	5.00	88 15	43 25	1.81	18.1	33.		60 66
. 1	Iridium	2.00	82 10 83 10	29 15	3.85	1.60	6.2 7.1		
1		3.00	81 40	30 40	3.33	1.79	6.0		
		5.00	79 00	32 20	2 27	2.03	4.6		
1 1	Nickel	0.420	72 20	*31 42	1.41	1.79	2.53	54. 62.	Tool. Drude.
1		0.589	76 I 78 45	31 41 32 6	2.19	1.86	3.33 4.36	70.	Ingersoll.
1		1.00	80 33	32 2	2.63	2.00	5.26	7.4.	4.6
₭.	701	2.25	84 21	33 30	3.95	2.33	9.20	85.	11 Tay
	Platinum	2.00	75 30 74 30	37 00 39 50	0.70	3.25 5.06	3-7		FörstFréed.
		3.00	73 50	41 00	0.52	0.52	3·5 3·4		44 44
		5.00	72 00	42 10	0.34	9.01	3.1		" "
1 5	Silver	0.226	62 41	22 16	1.41	0.75	1.11	18.	Minor.
		.293	63 14 52 28	18 56 15 38	1.57	o 62 o.38	0.97	17.	66
		.332	52 I	37 2	0.41	1.61	0.65	32.	14
		•395	66 36	43 6	0.16	12.32	1.91	€ 87.	66
		.500	72 31	43 29	0.17	20.6	2.94 3.64	93.	6.6
		·750	75 35 79 26	43 47 44 6	0.10	30.7	5.16	95.	Ingersoll.
		1.00	82 0	44 2	0.24	29.0	6.96	98.	(,
		1.50	84 42	43 48	0.45	23.7	10 7	98.	"
		3.00	86 ±8 87 ±0	43 34 42 40	1.65	19.9	20.1	94.	FörstFréed.
		4.50	88 20	41 10	4.49	7.42	33.3	. :	44 66
5	Steel	0.226	66 51	28 17	1.30	1.26	1.64	35.	Minor.
		.257	68 35	28 45	1.38	1.35	1.86 2.00	40.	40
		.325	69 57 75 47	30 9	2.09	1.53	3.14	45· 57·	44
		.650		27 9	2.70	1.33	3.5)	59.	Ingersoll.
		1.50	77 48 81 48	28 51	3.71	1.55	5.75	73 · 80.	44
		2.25	83 22	30 36	4.14	1.79	7.41	80.	

Drude, Annalen der Physik und Chemie, 39, p. 481, 1890; 42, p. 186, 1891; 64, p. 159, 1898. Minor, Annalen der Physik, 10, p. 581, 1903. Tool, Physical Review, 31, p. 1, 1910. Ingersoll, Astrophysical Journal, 32, p. 265, 1910; Försterling and Fréedericksz, Annalen der Physik, 40, p. 201, 1913.

OPTICAL CONSTANTS OF METALS.

TABLE 354.

Metal.	λ,	n.	k.	R.	Ref.	Metal.	λ.	n.	k.	R.	Ref.
Al.* Sb.* Bi.†; Cd.* Cr.* Cb.* Au.† I. crys. Ir.* Fe.§ Pb.* Mg.* Mn.* Hg. (liq.)	μ 0.589 -589 white -589 -579 -257 -441 -589 -589 -589 -589 -589 -589 -589 -589 -589 -589 -589	1.44 3.04 2.26 1.13 2.97 1.80 0.92 1.18 0.47 3.34 2.13 1.01 1.28 1.51 2.01 0.37 2.49 0.68	5.32 4.94 - 5.01 4.85 2.11 1.14 1.85 2.83 0.57 4.87 1.63 3.48 4.42 3.89 2.26	83 70 85 70 41 28 42 82 30 75 16 28 33 62 93 64 66	1 1 2 1 3 3 4 4 4 4 4 4 1 1 3 4 4 4 1 1 3 4 4	Rh.* Se.‡ Si.* Na. (liq.) Ta.* Sn.* W.* V.* Zn.*	μ 0.579 .400 .490 .589 .760 .589 1.25 2.25 .589 .579 .579 .579 .579 .579 .579 .589 .688	1.54 2.94 3.12 2.93 2.60 4.18 3.67 3.53 .004 2.05 1.48 2.76 3.03 0.55 0.93 1.93 2.62	4.67 2.31 1.49 0.45 0.06 0.09 0.08 2.61 2.31 5.25 2.71 3.51 0.61 3.19 4.66 5.08	78 44 35 25 20 38 33 31 99 44 82 49 58 20 73 74 73	3 5 5 5 5 6 6 6 1 3 1 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Fd.* Pt.† Ni.*	.441 .589 .668 .579 .257 .441 .589 .668 .275 .441 .589	1.01 1.62 1.72 1.62 1.17 1.94 2.63 2.91 1.09 1.16 1.30	3.42 4.41 4.70 3.41 1.65 3.16 3.54 3.66 1.16 1.23 1.97	74 75 77 65 37 58 59 59 24 25 43	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	λ = wave k = abso (1) Drude used, Ann. 36, p. 824, deutsch. Pl Meier, Ann (5) Wood, Ingersoll, se * solid, † as film in va	rption ir e, see Ta der Phys 1889; (nysik. G ales der Phil. M & Table electrol	idex, R ble 205 sik und 3) v. V res. 12, Physi ag. (6) 205.	= refl; (2) K Chemi Warten p. 10 k, 10, p	ection. Lundt, p. e, 34, p. berg, V 5, 1910 o. 581, 1 7, 1902	orism 477, Verh. ; (4) 1903; ; (6)

TABLE 355.—Reflecting Power of Metals. (See page 298.)

Wave- length	Al.	Sb.	Cd.	Co.	Graph- ite.	lr.	Mg.	Mo.	Pd.	Rh.	Si.	Ta.	Te.	Sn.	W	Va.	Zn.
μ								P	er cen	ts.							
.5 .6 .8 1.0 2.0 4.0 7.0 10.0	- - 71 82 92 96 98 98	53 54 55 60 68 71 72	72 87. 96 98 98 99	67 72 81 93 97 97	22 24 25 27 35 48 54 59	78 87 94 95 96 96	72 73 74 74 77 84 91	46 48 52 58 82 90 93 94 95	72 81 88 94 97 97	76 77 81 84 91 92 94 95	34 32 29 28 28 28 28 28	38 45 64 78 90 93 94 -	- 49 48 50 52 57 68 -	54 61 72 81 84 85	49 51 56 62 85 93 95 96 96	57 58 60 61 69 79 88	80 92 97 98 98 99

Coblentz, Bulletin Bureau of Standards, 2, p. 457, 1906, 7, p. 197, 1911. The surfaces of some of the samples were not perfect so that the corresponding values have less weight. The methods for polishing the various metals are described in the original articles. The following more recent values are given by Coblentz and Emerson, Bul, Bur, Stds. 14, p. 207, 1917; Stellite, an exceedingly hard and untarnishable alloy of Co, Cr, Mo, Mn, and Fe (C, St, S, P) was obtained from the Haynes Stellite Co, Kokomo, Indiana.

Wave-length, μ, Tungsten, Stellite, Smithsonian Tables,	Plane	·20 -42	_	.50 .50 .64	•75 •52 •67	1.00 .576 .689	•900	•943	.948	5.00 ·953 ·848	9.00 .8%o
--	-------	------------	---	-------------------	-------------------	----------------------	------	------	------	----------------------	------------------

According to Fresnel the amount of light reflected by the surface of a transparent medium $= \frac{1}{2} (A + B) = \frac{1}{2} \left\{ \frac{\sin^2(i - r)}{\sin^2(i + r)} + \frac{\tan^2(i - r)}{\tan^2(i + r)} \right\}; A \text{ is the amount polarized in the plane of incidence}; B \text{ is that polarized perpendicular to this}; i \text{ and } r \text{ are the angles of incidence and refraction.}$

TABLE 356. —Light reflected when $i=0^\circ$ or Incident Light is Normal to Surface.

$n.$ $\frac{1}{2}(A+B)$	$n. _{\frac{1}{2}(A+B)}.$	$n. \frac{1}{2}(A+B),$	n.	$\frac{1}{2}(A+B)$.
1.00 0.00 1.02 0.01 1.05 0.06 1.1 0.23 1.2 0.83 1.3 1.70	1.4 2.78 1.5 4.00 1.6 5.33 1.7 6.72 1.8 8.16 1.9 9.63	2.0 11.11 2.25 14.06 2.5 18.37 2.75 22.89 3. 25.00 4. 36.00	5.83 10. 100.	44·44 50.00 66.67 96.08 100.00

TABLE 357.—Light reflected when n is near Unity or equals 1+dn.

i.	A.	В.	$\frac{\frac{1}{2}(A+B)}{-}$	$\frac{A-B}{A+B}$ *
0° 510 115 20 25 30 35 40 45 50 555 60 65 70 75 80 85 90	1.000 1.015 1.063 1.149 1.282 1.482 1.778 2.221 2.904 4.000 5.857 9.239 16.000 31.346 73.079 222.85 1099.85	1.000 .985 .939 .862 .752 .612 .444 .260 .088 .000 .176 1.081 4.000 12.952 42.884 167.16 971.21 16808.08	1.000 1.000 1.001 1.005 1.017 1.047 1.111 1.240 1.496 2.000 3.016 5.160 10.000 22.149 57.981 195.00 1035.53	0.0 1.5 6.2 14.3 26.0 41.5 60.0 79.1 94.5 100.0 94.5 79.1 60.0 41.5 26.0 14.3 6.2 1.5 0.0

WARTE SEC ... Light reflected when 2 - 1 55

i. r. A. B. dA.1 dB.1 ½ (A + B). A+ 0 0 0.0 4.65 4.65 0.130 0.130 4.65 0.6 5 3 13.4 4.70 4.61 .131 .129 4.65 1.6 10 6 25.9 4.84 4.47 .135 .126 4.66 4.6 15 9 36.7 5.09 4.24 .141 .121 4.68 16. 20 12 44.8 5.45 3.92 .150 .114 4.68 16. 25 15 49.3 5.95 3.50 .161 .105 4.73 25. 35 21 43.1 7.55 2.40 .191 .081 4.98 51. 40 24 30.0 8.77 1.75 .210 .066 5.26 66. 45 27 8.5 10.38 1.08 .233 .049 5.73 81. 50 29 3.71 12.54 <			ABLE 333	- Hight for	200104 112	ien n = 1.55		
O O O O 4.65 4.65 O.130 0.130 4.65 O.4 5 3 13.4 4.70 4.61 1.31 1.120 4.05 1.4 10 6 25.9 4.84 4.47 1.35 1.120 4.06 4.05 15 9 36.7 5.09 4.24 1.41 1.121 4.06 9. 20 12 44.8 5.45 3.92 1.50 1.14 4.68 16. 25 15 49.3 5.95 3.50 1.61 1.05 4.73 25. 30 18 49.1 6.64 3.00 1.75 0.094 4.82 37.1 40 24 30.0 8.77 1.75 .210 .066 5.26 66. 45 27 8.5 10.38 1.08 233 .049 5.73 81; 50 29.7.1 12.54 0.46 .263	i,	r.	А.	В.	dA.†	dB.†	$\frac{1}{2}(A+B).$	$\frac{A-B}{A+B}$.*
5 3 13.4 4.70 4.61 1.31 .120 4.65 1.40 10 6 25.9 4.84 4.47 .135 .126 4.66 4.65 15 9 36.7 5.09 4.24 .141 .121 4.66 9. 20 12 44.8 5.45 3.92 .150 .114 4.68 16. 25 15 49.3 5.95 3.50 .161 .105 4.73 25. 30 18 49.1 6.64 3.00 .175 .004 4.82 37. 40 24 30.0 8.77 1.75 .210 .066 5.26 66. 45 27 8.5 10.38 1.08 .233 .049 5.73 81. 50 29 37.1 12.54 0.46 .263 .027 6.50 92. 55 31 54.2 15.43 0.05 .303 .007 7.74 99. 55 31 54.2 15.43 0.05 </th <th>3 /</th> <th>0 /</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	3 /	0 /						
5 3 13.4 4.70 4.61 131 1.120 4.65 1.1 10 6 25.0 4.84 4.47 1.135 1.126 4.66 4.65 15 9 30.7 5.09 4.24 1.141 1.121 4.66 9. 20 12 44.8 5.45 3.92 1.50 1.114 4.68 10. 25 15 49.3 5.95 3.50 1.161 1.05 4.73 25. 30 18 49.1 6.64 3.00 1.75 0.094 4.82 37. 40 24 30.0 8.77 1.75 .210 .066 5.26 66. 45 27 8.5 10.38 1.08 2.233 .049 5.73 81. 50 23.71 12.54 0.46 .263 .027 6.50 92. 55 31 54.2 15.43 0.05 303 .	0	0 0,0	4.65	4.65	0.130	0.130	4.65	0.0
10		3 13.4			.131	.129		1.0
15					.135	.126		4.0
20	15			4.24	-141	.121	4.66	9.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			5-45	3.92	.150	.114	4.68	16.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25			3.50	.161	.105	4.73	25.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			6.64	3.00	.175			37.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			7.55	2.40	.191			51.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		24 30.0	8.77	1.75	.210	.066	5.26	66.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		27 8.5	10.38	1.08	.233	.049		81.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		29 37.1		0.46	.263	.027	6.50	92.9
60 33 58.1 19.35 0.12 3.42 -0.13 9.73 95.3 65.3 547.0 24.60 1.13 3.75 -0.32 12.91 91.0 70 37 19.1 31.99 4.00 4.00 -0.950 18.00 77.75 38 32.9 42.00 10.3\$ 4.10 -0.060 26.19 61.7 80 30 26.8 55.74 23.34 370 -0.060 39.54 41.0 82 30 39.45.9 64.41 34.04 320 -0.067 49.22 30.3 85 0 39.59.6 74.52 49.03 2.50 -0.061 61.77 20.1 86 0 40 3.6 79.02 56.62 200 -0.055 67.82 16. 87 0 40 6.7 83.80 65.32 163 -0.040 74.56 12. 88 0 40 8.9 88.88 75.31 .11\$ -0.040 74.56 12. 89 0 40 10.2 94.28 86.79 .063 -0.022 90.54 4.		31 54.2	15.43	0.05	.303		7.74	99.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		33 58.1	19.35	0.12	.342		9.73	98.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	65	35 47.0	24.69	1.13	-375			91.2
Ro 39 26.8 55.74 23.34 .370 069 39 54 41.4 82 30 39 45.9 64.41 34.04 .320 067 40.22 33.4 85 0 39 59.6 74.52 49.03 .250 061 61.77 20. 86 0 40 3.6 79.02 56.62 .200 055 67.82 16. 87 0 40 6.7 83.80 65.32 .163 046 74.56 12. 88 0 40 8.9 88.88 75.31 .118 046 82.10 8. 89 0 40 10.2 94.28 86.79 .063 022 90.54 4.			31.99		.400			77.7
Ro 39 26.8 55.74 23.34 370 069 39 54 41.4 82 30 39 45.9 64.41 34.04 .320 067 49.22 39.5 85 0 39 59.6 74.52 49.03 .250 061 61.77 20.1 86 0 40 3.6 79.02 56.62 .200 055 67.82 16. 87 0 40 6.7 83.80 65.32 .163 046 74.56 12. 88 0 40 8.9 88.88 75.31 .118 046 74.56 18. 89 0 40 10.2 94.28 86.79 .063 022 90.54 4.	75	38 32.9	42.00	10.38	.410		26.19	61,8
85 0 39 59.6 74.52 49.03 .250 —.061 61.77 20.1 86 0 40 3.6 79.02 56.62 .200 —.055 67.82 16. 87 0 40 6.7 83.80 65.32 .163 —.046 74.56 12. 88 0 40 8.9 88.88 75.31 .118 —.036 82.10 8. 89 0 40 10.2 94.28 86.79 .063 —.022 90.54 4.		39 26.8	55.74	23.34				41.0
85 0 30 59.6 74.52 49.03 .250 061 0.1.77 20.1 86 0 40 3.6 79.02 56.62 .200 055 67.82 16. 87 0 40 6.7 83.80 05.32 .163 040 74.56 12. 88 0 40 8.9 88.88 75.31 .115 036 82.10 8. 89 0 10.2 94.28 86.79 .063 022 90.54 4.	82 30	39 45.9	64.41	34.04				30.8
86 o 40 3.6 79.02 56.62 .200 055 67.82 16. 87 o 40 6.7 83.80 65.32 .163 046 74.56 12. 88 o 40 8.9 88.88 75.31 .118 036 82.10 8. 89 o 40 10.2 94.28 86.79 .063 022 90.54 4.		39 59.6	74.52					20.6
88 0 40 8.9 88.88 75.31 .118036 82.10 8. 89 0 40 10.2 94.28 86.79 .063022 90.54 4.	86 o							16.5
89 0 40 10.2 94.28 86.79 .063022 90.54 4.		40 6.7		65.32				12.4
	88 0	40 8.9						8.3
	89 0	40 10.2	94.28					4.1
90 0 40 10.7 100.00 100.00000 100.00 0.0	90 0	40 10.7	00.001	100.00	•000	-,000	100.00	0.0

Angle of total polarization = 57° 10'.3, A = 16.99.

^{*} This column gives the degree of polarization.

† Columns 5 and 6 furnish a means of determining A and B for other values of n. They represent the change in these quantities for a change of n of o.or.

Taken from E. C. Pickering's "Applications of Fresnel's Formula for the Reflection of Light."

SMITHSONIAN TABLES.

Tables 359-360. REFLECTING POWER OF METALS.

TABLE 359. - Perpendicular Incidence and Reflection. (See also Tables 352-355.)

The numbers give the per cents of the incident radiation reflected.

Wave-length, μ .	Silver-backed Glass,	Mercury-backed Glass.	Mach's Magnalium.	Brandes-Schünemann Alloy. $3zCu + 34Sn + 29Ni + 5Fe$.	Ross' Speculum Metal, 68.2Cu+31.3Sn.	Nickel, Electrolytically Deposited.	Copper. Electrolytically Deposited.	Steel. Undempered.	Commercially Pure,	Platinum, Electrolytically Deposited,	Gold. Electrolytically Deposited.	Brass, (Troubridge),	Silver, Chemically Deposited,
.251 .288 .305 .316 .326 .338 .357 .385	-		67.0 70.6 72.2 - 75.5 81.2 83.9	35.8 37.1 37.2 39.3 43.3 44.3	29.9 37.7 41.7 - 51.0 53.1	37.8 42.7 44.2 45.2 46.5 48.8 49.6	-	32.9 35.0 37.2 40.3 45.0 47.8	25.9 24.3 25.3 24.9 27.3 28.6	33.8 38.8 39.8 - 41.4 43.4 45.4	38.8 34.0 31.8 28.6 27.9 27.1	-	34.I 21.2 9.I 4.2 14.6 55.5 74.5 81.4
.420 .450 .500 .550 .600 .650	85.7 86.6 88.2 88.1 89.1	72.8 70.9 71.2 69.9 71.5 72.8	83.3 83.4 83.3 82.7 83.0 82.7 83.3	47.2 49.2 49.3 48.3 47.5 51.5 54.9	56.4 60.0 63.2 64.0 64.3 65.4 66.8	56.6 59.4 60.8 62.6 64.9 66.6 68.8	48.8 53.3 59.5 83.5 89.0 90.7	51.9 54.4 54.8 54.9 55.4 56.4 57.6	32.7 37.0 43.7 47.7 71.8 80.0 83.1	51.8 54.7 58.4 61.1 64.2 66.5 69.0	29.3 33.1 47.0 74.0 84.4 88.9 92.3	-	86.6 90.5 91.3 92.7 92.6 94.7 95.4
.800 1.5 2.0 3.0 4.0 5.0 7.0 9.0 11.0	-	-	\$4.3 84.1 \$5.1 86.7 87.4 83.7 89.0 90.0 90.6 90.7 92.2	63.1 69.8 79.1 82.3 85.4 87.1 87.3 88.6 90.3 90.2 90.3	70.5 75.0 80.4 86.2 88.5 89.1 90.1 92.2 92.9 93.6	69.6 72.0 78.6 83.5 88.7 91.1 94.4 94.3 95.6 95.9 97.2		58.0 63.1 70.8 76.7 83.0 87.8 89.0 92.9 92.9 94.0 96.0	88.6 90.1 93.8 95.5 97.1 97.3 97.9 98.3 98.4 98.4	70.3 72.9 77.7 80.6 88.8 91.5 93.5 95.5 95.4 95.6 96.4	94.9 	91.0 93.7 95.7 95.9 97.0 97.8 96.6	96.8 97.0 98.2 97.8 98.1 98.5 98.1 98.5 98.7 98.8 98.3

Based upon the work of Hagen and Rubens, Ann. der Phys. (1) 352, 1900; (8) 1, 1902; (11) 873, 1903 Taken partly from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 360. - Percentage Diffuse Reflection from Miscellaneous Substances.

,			mp-bla	cks.			res.	نه			er.			et.		
Wave- length	Paint.	Rosin.	Sperm candle.	Acetylens	Camphor,	Pt. black electrol.	Green leaves.	Lead oxide.	Al. oxide.	Zinc oxide.	White Paper	Lead	Asphalt.	Black velvet.	Black felt.	Red brick.
*.60 *.95 4.4 8.8	3.2 3.4 3.2 3.8 4.4	1.3 1.3	1.1 .9 1.3 4.0	0.6 .8 1.2 2.1	1.3 1.2 1.6 5.7	I.I I.4 2.1 4.2	25.	52. 51. 26.	84. 88. 21. 2. 6.	82. 86. 8. 3. 5.	75. 18 5.	89. 93. 29.	15.	3.7 2.7	14.	30.

*Not monochromatic (max.) means from Coblentz, J. Franklin Inst. 1912. Bulletin Bureau of Standards, 9, p. 283, 1912, contains many other materials.

REFLECTING POWER OF PIGMENTS.

TABLE 361. - Percentage Reflecting Power of Dry Powdered Pigments.

Taken from "The Physical Basis of Color Technology," Luckiesh, J. Franklin Inst., 1917. The total reflecting power depends on the distribution of energy in the illuminant and is given in the last three columns for noon sun, blue sky, and for a 7.9 lumens/watt tungsten filament.

Spectrum color.	Vio- let.	Bl	ue.		Green	١.	Yell	low.	(Orang	e.		Red.		sun.	light.	ungsten. lamp.
Wave-length in μ	0.44	0.46	0.48	0.50	0.52	0.54	0.56	0.58	0.60	0.62	0.64	0.66	0.68	0.70	Noon	Sky	Tung
American vermilion Venetian red Tuscan red Indian red Burnt sienna Raw sienna Golden ochre Chrome yellow ochre Yellow medium.	8 5 7 8 4 12 22 8 20	6 5 7 7 4 13 22 9 20 5	5 5 7 7 4 13 23 7 21 6	5 5 8 7 4 13 27 7 24 8	6 5 8 7 5 18 40 10 32 18	6 6 8 7 6 26 53 19 42 48	9 7 8 7 9 35 63 30 53 66	11 12 12 11 14 43 71 46 63	24 19 16 15 18 46 75 60 64 78	39 24 18 18 20 46 74 62 61	53 28 20 20 21 45 73 66 60 81	61 30 22 22 23 44 73 82 59 81	66 32 23 23 24 45 73 81 59 81	65 32 24 24 25 43 72 80 59 81	14 11 10 11 33 58 33 49 54	12 10 10 9 9 30 55 29 46 50	12 13 12 11 13 37 63 40 53 63
Chrome yellow light Chrome green light Chrome green medium Cobalt blue Ultramarine blue	13 10 7 59 67	13 10 7 58 54	18 14 10 49 38	30 23 21 35 21	56 26 21 23 10	82 23 17 15 6	88 20 13 11 4	89 17 11 10 3	90 14 9 10 3	89 11 7 10 4	88 9 6 11 5	87 8 6 15 7	85 7 6 20 10	84 6 5 25 17	76 19 14 16 7	70 19 14 18	82 18 12 13 6

TABLE 362. — Infra-red Diffuse Percentage Reflecting Powers of Dry Pigments.

Wave- length in μ	. Co2O3	CnO	Cr2O3	PbO	Fe ₂ O ₃	$ m Y_2O_3$	PbCrO4	Al ₂ O ₃	ThO_2	OuZ	MgO	CaO	ZrO2	PbCO3	MgCO ₃	White lead paint.	Zn oxide paint.
0.60* 0.95* 4.4 8.8 24.0	3 4 14 13 6	- 24 15 - 4	27 45 33 5 8	52 51 26 10	26 41 30 4 9	74 34 11 10	70 41 5 7	84 88 21 20 6	86 	82 86 8 3 5	86 16 2 9	85 	86 84 23 5 5	88 93 29 10 7	85 89 11 4 9	76 79 —	68 72 —

*Non-monochromatic means from Coblentz, Bul. Bureau Standards 9, p. 283, 1912.

For the Reflecting (and transmissive) power of ROUGHENED SURFACES at various angles of incidence, see Gorton, Physical Review, 7, p. 66, 1916. A surface of plate glass, ground uniformly with the finest emery and then silvered, used at an angle of 75°, reflected op per cent at 4\mu, approached 100 for longer waves, only 10 at 1\mu, less than 5 in the visible red and approached o for shorter waves. Similar results were obtained with a plate of rock salt for transmitted energy when roughened merely by breathing on it. In both cases the finer the surface, the more suddenly it cuts off the short waves.

REFLECTING POWER.

TABLE 363. - Reflecting Power of Powders (White Light).

Various pure chemicals, very finely powdered and surface formed by pressing down with glass plate. White (noon sunlight) light. Reflection in per cent. Nutting, Jones, Elliott, Tr. Ill. Eng. Soc. 9, 593, 1914.

Aluminum oxide		Magnesium carbonate		Sodium chloride	
Barium sulphate	81.6	Magnesium oxide	85.7	Starch	80.3
Boric acid	83.8	Rochelle salt	81.1	SugarTartaric acid	79. I

TABLE 364. - Variation of Reflecting Power of Surfaces with Angle.

Illumination at normal incidence, 1½ watt tungsten lamp, reflection at angles indicated with normal. Ill. Eng. Soc., Glare Committee, Tr. Ill. Eng. Soc. 11, p. 92, 1916.

					15°	30°	45°	60°
Magnesium carbonate block 0.88 Magnesium oxide 0.80 Matt photographic paper 0.78 White blotter 0.76 Pot opal, ground 11.3 Glass, fine ground 0.29 Glass, fine ground 0.23 Matt varnish on foil 0.83 Mirror with ground face 4.9	0.69 II.3 0.29 0.22	0.69 11.3 0.29 0.21 0.78	0.88 0.80 0.78 0.76 0.69 0.31 0.29 0.20 0.72 4.55	0.88 0.80 0.78 0.76 0.69 0.22 0.27 0.10 0.62 3.86	0.87 0.80 0.78 0.76 0.69 0.21 0.20 0.16 0.49 3.03	0.83 0.77 0.78 0.73 0.68 0.20 0.14 0.11 0.28 0.78	0.72 0.75 0.76 0.70 0.66 0.20 0.13 0.11 0.21	0.68 0.66 0.72 0.67 0.64 0.18 0.12 0.12 0.16

The following figures, taken from Fowle, Smithsonian Misc. Col. 58, No. 8, indicate the amount of energy scattered on each side of the directly reflected beam from a silvered mirror; the energy at the center of the reflected beam was taken as 100,000, and the angle of incidence was about 3°.

Angle of reflection, 3° ± Energy		8' 600	10' 244		20' 107	30' 66	45' 33	60''	100'	
-------------------------------------	--	-----------	------------	--	------------	-----------	-----------	------	------	--

Wave-length of max. energy of Nernst lamp used as source about 24.

TABLE 365. - Infra-red Reflectivity of Tungsten (Temperature Variation).

Three tungsten mirrors were used, — a polished Coolidge X-ray target and two polished flattened wires mounted in evacuated soft-glass bulbs with terminals for heating electrically. Weniger and Pfund, J. Franklin Inst.

Wave- length	Absolute reflectivity at room temperature			e in reflectiv	
in μ.	in per cent.	1377° K	1628° K	1853° K	2050° K
0 67 0.80 1.27 1.90 2.00 2.00 4.00	51 55 70 83 85 02 93	+6.0 -0.0 -0.6 -7.5 -7.7	+7 + 0.0 -8.2 -0.3 -0.4	+8 7 -0.0 -0.6 -10.0 -11.1	+0.8 +8.2 0.0 -11 0 -12 3 -12 5 -12 5

See also Weniger and Pfund, Phys. Rev. 15, p. 427, 1919.

TRANSMISSIBILITY OF RADIATION BY DYES.

Percentage transmissions of aqueous solutions taken from The Physical Basis of Color-Technology, Luckiesh, J. Franklin Inst. 184, 1917.

Spectrum color →	Violet.	Blu	e.		Freen.		Yell	ow.	C	range	e.		Red.	
Wave-length in μo	•44	. 46	. 48	. 50	. 52	- 54	. 56	. 58	.60	. 62	. 64	. 66	. 68	. 70
Carmen ruby opt. Amido naphthol red Coccinine Erythrosine. Hematoxyline Alizarinered. Acid rosolic (pure). Rapid filter red. Aniline red fast extra A Pinatype red fast. Eosine Rose bengal. Cobalt nitrate.	6 1 1 4 — 80 69	3 1 3 - - 70 51	7 2 I — — 34 40	I3 3 6 3I	14 4 ——————————————————————————————————			4 53 25 22 38 47 34 54 82 82	4 56 90 44 39 78 86 55 11 87 96 87	4 38 96 95 54 54 88 95 72 35 93 97	18 75 98 96 63 65 90 96 84 55 98 90	37 92 98 96 73 72 91 96 88 65 92 98	49 96 98 96 78 77 92 96 90 68 92 98	60 96 98 96 82 79 92 96 92 69 92 98
Tartrazine. Chrysoidin. Aurantia Aniline yellow phosphine. Fluorescein. Aniline yellow fast S Methyl orange indicator. Uranine. Uranine aphthaline Orange B naphthol Safranine Martius gelb. Naphthol yellow. Potassium bichromate, sat. Cobalt chromate.	15	I I I I I I I I I I I I I I I I I I I	I	7 	7 	52 3 20 91 84 	75 23 43 97 96 1 97 82 43 91 96 60 92	86 53 60 98 96 31 97 83 88 — 94 97 84 93	91 2 82 67 98 96 70 97 84 95 3 95 98 88	95 23 92 75 98 96 79 97 85 96 27 98 89 96	96 50 96 81 98 96 80 97 86 97 64 95 98 89	97 71 96 85 98 96 81 97 86 97 85 98 98 98 99	98 79 96 86 98 96 81 97 87 97 93 95 98 89	98 79 96 87 98 96 81 97 87 97 93 95 98 88
Naphthol green Brilliant green Filter blue green. Malachite green Saurgrün Methylengrün Aniline green naphthol B Neptune green Cupric chloride.	2 4 35 3 28 2 77	4 39 49 12 29 31 6 40 84	7 69 64 20 57 32 14 63 89	21 52 70 8 57 26 24 41 92	30 23 60 1 39 17 34 13 92	36 4 37 19 7 40 1 89	13 13 4 2 32 80	16 	7 4 52	2 1 36	I		23 12 4 3 —	64 50 30 28
Turnbull's blue. Victoria blau. Prussian blue (soluble). Wasser blau. Resorcine blue. Toluidin blau. Patent blue. Dianil blue. Filter blue. Aniline blue, methyl.	58 52 66 89 25 66 83 77 84 92	60 23 71 75 18 31 91 69 79 88	56 9 76 51 6 13 84 59 66 78	51 69 26 2 3 76 48 44 52	38 60 7 1 65 35 27 27	28 46 1 46 24 17 9	18 	9 20 - 8 9 19 2	5 12 1 1 - 2 5 36 2	3 r 7 2 2 2 — 5 5 6 4	1 4 5 6 14 1 7 74 8	21 3 18 41 4 6 14 81 16	49 3 37 64 16 42 29 88 25	73 60 72 40 78 53 92 45
Magenta Gentjana violet. Rosazeine. Iodiné (dense) Rhodamine B Acid violet. Cyonine in alcohol. Xylene red Methyl violet B	21 89 50 81 84 7 39 25	8 83 28 71 76 1 23 4	64 2 - 45 68 - I	1 44 — 13 50 —	26 2 33 	19 - - 26 - -	1 15 — 27 —	22 10 6 	73 13 55 83 49 27	93 42 90 	97 75 98 1 96 84 	97 92 98 93 96 96 1 97 26	97 93 98 11 95 96 13 97 63	97 94 98 23 94 96 23 96 89

For the infra-red transmission (to 12μ) and reflection powers of a number of aniline dyes, see Johnson and Spence, Phys. Rev. 5, p. 349, 1915.

TRANSMISSIBILITY OF RADIATION BY JENA GLASSES.

TABLE 367.

Coefficients, a, in the formula $I_t = I_0 a^t$, where I_0 is the Intensity before. and I_t after, transmission through the thickness t. Deduced from observations by Müller, Vogel, and Rubens as quoted in Hovestadt's Jena Glass (English translation).

				Соє	efficient	of trans	smission	ι, α.			
Unit t=1 dm.	.375 µ	390 µ	.400 /	u •434	μ .43	6 μ .4.	55 µ .4	77 μ	503 μ	.58ο μ	.677 μ
O 340, Ord. light flint O 102, H'vy silicate flint O 93, Ord. " " O 203, " " crown O 598, (Crown)	.388	.456 .025 .583	.463	.59	52 .50 7 57 .80	66 .6 14 .8 06 .8	663 . 307 . 322 .	700 . 899 . 860 j .	880 782 871 872 776	.878 .828 .903 .872 .818	.939 .794 .943 .903 .860
Unit $t=1$ cm.	0.7 μ	0.95 µ	ι. ι μ	1.4 μ	1.7 μ	2.0 μ	2.3 μ	2.5 μ	2.7 μ	2.9 μ	3.1 μ
S 204, Borate crown S 179, Med. phosp. cr. () 1143, Dense, bor. sil. cr. O 1092, Crown O 1151, " O 451, Light flint O 469, Heavy " O 500, " " S 163, " "	1.00 - .98 .99 .98 1.00 1.00	.99	.94 .95 .97 .95 .99 .98 I.00	.90	.85 .84 .95 .99 .98 .98 .99	.81 .67 .93 .91 .94 .95 .98	.69 .90 .82 .90 .92 .98 I.00	.43 .87 .84 .71 .79 .84 .97	.29 .18 .71 60 .75 .78 .90 .92	.18 - .47 .48 .45 .54 .66 .74 .78	-27 -29 -32 -34 -50 -53 .60

TABLE 368. *

Note: With the following data, t must be expressed in millimeters; i. e. the figures as given give the transmissions for thickness of 1 mm.

						Wave	-length	in μ.					•
No. and Type of Glass.			Visibl	e Spec	trum				Ultr	a-viole	Spect	rum.	
	.644 µ	.578 μ	.546 д	.509 µ	.480 µ	.436 μ	.405 µ	.384 µ	.361 µ	.340 µ	.332 µ	.309 µ	.28ο μ
F 3815 Dark neutral F 4512 Red filter	.35	-35	-37	-35	-34	.30	.15	.06					
F 2745 Copper ruby F 4313 Dark yellow	.72	·39 ·97	·47 ·93	.47	.45	.43	.43						
F 4351 Yellow F 4937 Bright yellow F 4930 Green filter	.98 1.0	.97 1.0	.96 1,0 .64	.93 .99	•44 •74 •44	.15	.31	.28	.22	.18	.14	.06	
F 3873 Blue filter F 3654 Cobalt glass, transparent for outer	-	-	_	81.	.50	•73	.69	-59	.36	.10			
red F 3653 Blue, ultraviolet	-	-	_	.15	·44	.8 ₅	I.O I.O	0.1	1.0	1.0	0.1	. 58 .81	.18
F 3728 Didymium, str'g bands	.99	.72	•99	.96	-95	.96	•99	.99	.89	.89	-77	•54	

This and the following table are taken from Jenaer Glas für die Optik, Liste 751, 1909

TABLE 369. - Transmissibility by Jena Ultra-violet Glasses.

No. and Type of Glass,	Thickness.	0.397 µ	ο.383 μ	0.361 μ	0.346 µ	0.325 μ	0.309 µ	0.280 μ
UV 3199 Ultra-violet """ UV 3248 """ """"	1 mm. 2 mm. 1 dm. 1 mm. 2 mm. 1 dm.	1,00 0.99 0.95 1.00 0.98 0.96	1.00 0.99 0.95 1.00 0.98 0.87	1.00 0.99 0.89 1.00 0.98 0.79	1.00 0.97 0.70 1.00 0.92 0.45	1.00 0.90 0.36 0.98 0.78 0.08	0.95 0.57 0.91 0.38	o.56 o.35

TRANSMISSIBILITY OF RADIATION BY GLASSES.

The following data giving the percentage transmission of radiation of various substances, mostly glasses, are selected from Spectroradiometric Investigation of the Transmission of Various substances, Coblentz, Emerson and Long, Bul. Bureau Standards, 14, p. 653, 1918.

					Trans	missio	n per c	ents.			- !
Class as substantial for	Thick-				***	,	.1 .			-	
Glass or substance, manufacturer.	ness, mm				Wa	ve-len	gths in	μ .			
	*****	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
							ļ —	-	·		I
Purple fluorite	4.08				47	48	48	57	60	62	62
Gold film on Crooke's glass	<u>'</u>	22	3	2	ľ	r	ī	0	0	0	0
" " crown glass		34	8	3	2	ı	I	0	0	0	0
Molybdenite	.007	0	41	43	44	46	46	47	48	48	48
Cr ₂ (SO ₄) _{3.18} H ₂ O	. 24	0	83	63	37	II	0	0	0	0	0
Chrome alum, 10 g to 100 g H ₂ O			73	0	0	_		_	_	-	
CoCl ₂ , 10 g to 100 g H ₂ O	10 .		50	0	0						- 1
Copper ruby, flashed	T 05		50	64	70	76	10	22	26		
G24, Corning, red	5.90		60	70	72	65	40	33	36	7	0
Schott's red, No. 2745	3.18	_	83	80	80	75	10	10	0	0	0
G34, Corning, orange	3.55		50	62	67	68	15	3	I	0	0
Pyrex, Corning	1.55	90	90	90	91	87	35	13	7	2	0
Noviol, B, Corning, yellow	2.88	80	75	60	82	75	23	4	4	0	0
Novieweld3, Corning, dk-yellow	2.2	12	I	2	6	13	6	7	7	I	0
Schott's 43111, green	3.43	50	4	53	79	83	25	9	0	0	0
Gi7ioN, green, Corning	5.11		I	23	53	68	20	9	8	0	0
G174J, Corning, heat abs'b'g G124JA, Corning	2.6		2	4	12	19	II	4	6	0	0
Cobalt blue	2.43	52	74	43	63	79	36	5 27	28	0	0
Schott's F3086, blue	2.58		0	43 I	2	31	11	5	4	0	0 !
G4013, Corning, blue	6.36		0	15	50	61	II	• 1	2	0	0
G584, Corning, blue	3.70	_	0	24	60	7.5	45	20	20	I	0
G1711Z, Corning, blue	3.23		23	60	74	78	45	13	12	1	0
Amethyst, C, Corning	2.II	55	91	.91	91	88	42	20	25	7	0
G172BW5, Corning, red-purple	4.43		0	0	2	_5	6	8	12	2	0
Crooke's A, A. O. Co	1.96	90	92	91	90	83	38	23	27	5	0
sage green 30, A. O. Co	1 - 1	50	0	0	4	II	8	8	II	3	0
Lab. 58, A. O. Co	2.04	72	86 76	91 80	91 82	89 81	51	35	38	7 2	0.0
Akopos green, J. K. O. Co	2.04 1.58	59 76	70	00	01	00	30 70	52	5 I	10	0
Theopos green, J. II. O. Co	1.30	70	91	91	91	90	70	34	31	10	- U

Manufacturers: Corning Glass Works, Corning, N. Y.; A. O. Co., American Optical Co., Southbridge, Mass.; J. K. O. Co., Julius King Optical Co., New York City. For other glasses see original reference. See also succeeding table, which contains data for many of the same glasses.

TABLE 371. — Transmission of the Radiations from a Gas-filled Tungsten Lamp, the Sun, a Magnetite Arc, and from a Quartz Mercury Vapor Lamp (no Globe) through Various Substances, especially Colored Glasses.

			Thick-	Т	ransmissio.	n, per cen	t.
Color.	Trade name.	Source.*	ness in mm	Gas- filled tung- sten.†	Quartz mercury vapor.†	Mag- netite arc.	Solar radia- tion.
Greenish-yellow. """ """ """ """ Smoky green Yellow-green. """ Amber. Orange Yellow "" Sage green Yellow-green Blue-green	Fieuzal, B Fieuzal, 63 Fieuzal, 64 Euphos Euphos, B Akopos green Hallauer, 65 Hallauer, 65 Hallauer, 64 Noviweld, 30% Noviweld, shade 3 Noviweld, shade 6 Noviweld, shade 6 Noviweld, shade 6 Noviweld, shade 6 Noviweld, shade 7 Saniweld, dark 63 A Noviol, shade C Ferrous No. 30 No. 67 Lab. No. 50 G 124 JA Smoke, C Smoke, D Crookes, A Crookes, A Crookes, B Pfund Lab. No. 58 Lab. No. 57 Shade C Electric smoke G 53 A 62 Shade D G 53 G 171-IZ G 584 G 172 BW 5 G 585 Selenium Flashed Window Crown Mica Mica Water	A. O. C. F. H. E. B. S. B. S. F. H. E. C. G. W. Schotts B. S.	2. 04 1.80 1.65 3.12 1.58 2.36 1.35 2.81 2.14 2.20 2.17 2.17 2.17 2.17 2.17 2.10 2.80 2.80 1.93 2.00 2.88 2.00 2.18 2.00 2.18 2.00 2.19 2.10 1.53 2.00 2.10 1.53 2.00 2.10 1.53 2.00 2.10 1.53 2.10 1.53 2.00 2.15 1.58 2.00 2.15 1.58 2.00 2.15 1.58 2.00 2.15 1.58 2.00 2.15 1.58 2.00 2.15 1.58 2.00 2.15 1.58 2.00 2.15 1.58 2.00 2.51 3.75 4.93 3.13 3.00	71.6 75.5 75.5 77.88.8 84.6 70.3 88.7 0.8 51.6 0.9 0.8 51.6 78.1 50.9 74.1 74.1 75.3 65.3 75.7 2.6 82.3 75.7 2.6 82.3 75.7 2.6 82.3 72.4 83.6 84.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85	26.9 34.3 22.0 25.0 24.7 29.5 17.7 25.9 0.2 1.2 0.4 0.2 15.2 10.6 17.0 28.6 17.3 21.5 28.6 17.3 21.5 28.6 17.3 21.5 28.6 28.6 29.7 32.2 20.7 32.2 20.7 32.2 20.7 32.2 20.7 3.0 44.3 2.2 20.7 3.0 44.3 2.2 20.7 3.0 44.3 2.2 20.7 3.0 44.3 2.2 20.7 3.0 44.3 2.2 20.7 3.0 44.3 2.2 20.7 3.0 44.3 2.2 26.5 34.0 20.7 25.2 26.5 34.0 35.4 43.11	46.0 55.0 53.0 59.0 	63 72 — 64 74 — 55 — 0.9 — 0.9 47 81 75 72 17 72 17 19 60 43 83 69 69 69 11 16 — — 41 48 46 46 82 92 — — — — — — — — — — — — — — — — — —

^{*}A. O. C., Amer. Optical Co., Southbridge, Mass.; C. G. W., Corning Glass Works, Corning, N. Y.; B. & L., Bausch & Lomb, Rochester, N. Y.; J. K., Julius King Optical Co., New York City; F. H. E., F. H. Edmonds, optician, Washington, D. C.; B. S., Bureau of Standards; scrap material, source unknown.
† Infra-red radiation absorbed by quartz cell containing 1 cm layer of water. Taken from Coblentz-Emerson & Long, Bul. Bureau Standards, 14, 653, 1918.
† Transmission of 1 cm cell having glass windows.

TRANSMISSIBILITY OF RADIATION.

Transmissibility of the Various Substances of Tables 330 to 338.

Alum: Ordinary alum (crystal) absorbs the infra-red.

Metallic reflection at 9.05 \mu and 30 to 40 \mu.

Rock-salt: Rubens and Trowbridge (Wied. Ann. 65, 1898) give the following transparencies for a I cm. thick plate in %:

				, -									
	λ	9	10	12	13	1.4	15	16	17	18	19	20.7	23.7μ
ı	%	99.5	99.5	99.3	97.6	93.1	84.6	66.1	51.6	27.5	- 9.6	0,6	0.

Pflüger (Phys. Zt. 5, 1904) gives the following for the ultra-violet, same thickness: $280\mu\mu$, 95.5%; 231, 86%; 210, 77%; 186, 70%.

Metallic reflection at 0.110 μ , 0.156, 51.2, and 87 μ .

Sylvine: Transparency of a 1 cm. thick plate (Trowbridge, Wied. Ann. 60, 1897).

λ	. 9	10	II	12	13	14	15	16	17	18	19	20.7	23.7µ
%	100.	98.8	99.0	99.5	99.5	97.5	95-4	93.6	92.	86.	76.	58.	15.

Metallic reflection at 0.114µ, 0.161, 61.1, 100.

Fluorite: Very transparent for the ultra-violet nearly to 0.1 \mu.

Rubens and Trowbridge give the following for a 1 cm. plate (Wied. Ann. 60, 1897):

λ	8μ	9	10	11	12μ
%	84.4	54.3	16.4	0.1	0

Metallic reflection at 24 µ, 31.6, 40 µ.

Iceland Spar: Merritt (Wied. Ann. 55, 1895) gives the following values of k in the formula $i = i_0 e^{-kd}$ (d in cm.):

For the ordinary ray:

λ	1.02	1.45	1.72	2.07	2.11	2.30	2.44	2.53	2,60	2.65	2.74μ
k	0.0	0.0	0.03	0.13	0.74	1.92	3.00	1.92	1.21	1.74	2.36

λ	2.83	2.90	2.95	3.04	3.30	3-47	3.62	3.80	3.98	4.35	4.52	4.83µ
k	1.32	0.70	1.80	4.71	22.7	19.4	9.6	18.6	∞	6.6	14.3	6.1

For the extraordinary ray:

λ	2.49	2.87	3.00	3.28	3.38	3.59	3.76	3.90	4.02	4.41	4.67 µ
k	0.14	0.08	0.43	1.32	0.89	1.79	2.04	1.17	0.89	1.07	2.40

λ	4.91	5.04	5-34	5.50µ
k	1.25	2.13	4.41	12.8

Quartz: Very transparent to the ultra-violet; Pflüger gets the following transmission values for a plate 1 cm. thick: at 0.222μ , 94.2%; 0.214, 92; 0.203, 83.6; 0.186, 67.2%. Merritt (Wied. Ann. 55, 1895) gives the following values for k (see formula under Iceland Spar):

For the ordinary ray:

λ	2.72	2.83	2.95	3.07	3.17	3-38	3.67	3.82	3.96	4.12	4.50µ
k	0.20	0.47	0.57	0.31	0.20	0.15	1.26	1.61	2.04	3.41	7.30

For the extraordinary ray:

λ	2.74	2.89	3.00	3.08	3.26	3-43	3.52	3.59	3.64	3.74	3.91	4.19	4.36μ
k	0.0	0.11	0.33	0.26	0.11	0.51	0.76	1.88	1.83	1.62	2.22	3.35	8.0

For $\lambda > 7 \mu$, becomes opaque, metallic reflection at 8.50 μ , 9.02, 20.75-24.4 μ , then transparent again.

The above are taken from Kayser's "Handbuch der Spectroscopie," vol. iii.

TABLES 373-374.

TRANSMISSIBILITY OF RADIATION.

TABLE 373. - Color Screens.

The following light-filters are quoted from Landolt's "Das optische Drehungsvermögen, etc." 1898. Although only the potassium salt does not keep well it is perhaps safer to use freshly prepared solutions.

Color.	Thick- ness. mm.	Water solutions of	Grammes of substance in 100 c.cm.	Optical centre of band.	Transmission.
Red "Yellow " Green "Bright { blue } Dark { blue }	20 20 20 15 15 20 20 20 20 20 20	Crystal-violet, 5BO Potassium monochromate Nickel-sulphate, NiSO ₄ .7aq. Potassium monochromate Potassium permanganate Copper chloride, CuCl ₂ .2aq. Potassium monochromate Double-green, SF Copper-sulphate, CuSO ₄ .5aq. Crystal-violet, 5BO Copper sulphate, CuSO ₄ .5aq.	0.005 10. 30. 10. 0.025 60. 10. 0.02 15. 0.005	0.6659 0.5919 0.5330 0.4885 0.4482	begins about 0.718μ. ends sharp at 0.639μ. 0.614-0.574μ, 0.540-0.505μ 0.526-0.494 and 0.494-0.458μ 0.478-0.410μ

TABLE 374. - Color Screens.

The following list is condensed from Wood's Physical Optics:

Methyl violet, 4R (Berlin Anilin Fabrik) very dilute, and nitroso-dimethyl-aniline transmits 0.36ςμ. Methyl violet + chinin-sulphate (separate solutions), the violet solution made strong enough to blot out 0.4359 µ, transmits 0.4047 and 0.4048, also faintly 0.3984.

Cobalt glass + aesculin solution transmits 0.4359 µ.

Guinea green B extra (Berlin) + chinin sulphate transmits 0.4916 μ . Neptune green (Bayer, Elberfeld) + chrysoidine. Dilute the latter enough to just transmit 0.5790 and 0.5461; then add the Neptune green until the yellow lines disappear.

Chrysoidine + eosine transmits 0.5790µ. The former should be dilute and the eosine added until

the green line disappears.

Silver chemically deposited on a quartz plate is practically opaque except to the ultra-violet region 0.3160-0.3260 where 90% of the energy passes through. The film should be of such thickness that a window backed by a brilliantly lighted sky is barely visible.

In the following those marked with a * are transparent to a more of less degree to the ultra-violet: *Cobalt chloride: solution in water, — absorbs 0.50-.53\mu; addition of CaCl2 widens the band to 0.47-.50. It is exceedingly transparent to the ultra-violet down to 0.20. If dissolved in methyl alcohol + water, absorbs 0.50-.53 and everything below 0.35. In methyl alcohol alone 0.485-0.555 and below 0.40 u.

Copper chloride: in ethyl alcohol absorbs above 0.585 and below 0.535; in alcohol + 50% water,

above 0.595 and below 0.37 \mu.

Neodymium salts are useful combined with other media, sharpening the edges of the absorption bands. In solution with bichromate of potash, transmits 0.535-.565 and above 0.60μ, the bands very sharp (a useful screen for photographing with a visually corrected objective)

Praesodymium salts: three strong bands at 0.482, .468, .444. In strong solutions they fuse into a sharp band at 0.435-.485µ. Absorption below 0.34.

Picric acid absorbs 0.36-.42 μ , depending on the concentration.

Potassium chromate absorbs 0.40-.35, 0.30-.24, transmits 0.23\mu.

* Potassium permanganate: absorbs 0.555-.50, transmits all the ultra-violet.

Chromium chloride: absorbs above 0.57, between 0.50 and .39, and below 0.33\mu.

These limits vary with the concentration.

Aesculin: absorbs below 0.363 μ , very useful for removing the ultra-violet.

* Nitroso-dimethyl-aniline: very dilute aqueous solution absorbs 0.49-.37 and transmits all the Very dense cobalt glass + dense ruby glass or a strong potassium bichromate solution cuts off

everything below 0.70 and transmits freely the red. Iodine: saturated solution in CS2 is opaque to the visible and transparent to the infra-red.

TRANSMISSIBILITY OF RADIATION.

TABLE 375. - Color Screens. Jena Glasses.

	Kind of Glass.	Maker's No	Color.	Region Transmitted.	Thick- ness, mm.
I Ia 2	Copper-ruby Gold-ruby Uranium) Bright yellow, fluo-	Only red to 0.6 μ	1.7
3 4 4a 4b 5 6 7 8	Blue-violet	440 ^{III} 414 ^{III} 433 ^{III} 432 ^{III} 436 ^{III} 437 ^{III} 438 ^{III} 2742 447 ^{III} "	Bright yellow-brown Yellow-green Greenish-yellow Green Yellow-green Grass-green Dark green Blue, as CuSO ₄ Blue, as cobalt glass " " Blue, as cobalt glass " " Blue Dark violet "	Red, yellow, green (weakened), } blue (very weakened) Yellowish-green	2.5 5. 5. 5-12 5. 2-5 4-5 6. 7.

See "Über Farbgläser für wissenschaftliche und technische Zwecke," by Zsigmondy, Z. für Instrumentenkunde, 21, 1901 (from which the above table is taken), and "Uber Jenenser Lichtfilter," by Grebe, same volume.

(The following notes are quoted from Everett's translation of the above in the English edition of Hovestadt's "Jena Glass.")

Division of the spectrum into complementary colors:

Ist by 2728 (deep red) and 2742 (blue, like copper sulphate).

2nd by 454^{III} (bright yellow) and 447^{III} (blue, like cobalt glass).

3rd by 433^{III} (greenish-yellow) and 424^{III} (blue).

Thicknesses necessary in above: 2728, 1.6–1.7 mm.; 2742, 5; 454^{III}, 16; 447^{III}, 1.5–2.0; 433^{III}, 2.5-3.5; 424^{III}, 3 mm.

Three-fold division into red, green and blue (with violet): 2728, 1.7 mm.; 414^{III}, 10 mm.; 447^{III}, 1.5 mm., or by 2728, 1.7 mm.; 436^{III}, 2.6 mm.; 447^{III}, 1.8 mm.

Grebe found the three following glasses specially suited for the additive methods of three-color projection:

2745, red; 438^{III}, green; 447^{III}, blue violet;

corresponding closely to Young's three elementary color sensations. Most of the Jena glasses can be supplied to order, but the absorption bands vary somewhat in different meltings.

See also "Atlas of Absorption Spectra," Uhler and Wood, Carnegie Institution Publications, 1907.

TABLE 376 .- Water.

Values of a in $1 = I_0 e^{ad}$, d in c. m. I_0 ; I, intensity before and after transmission.

Wave-length μ,	.186	.193	.200	.210	.220	.230	.240	.260	.300	.415
а	.0688	.0165	.009	.0061	.0057	.0034	.0032	.0025	.0015	.00035
Wave-length μ,	.430	.450	.487	.500	.550	.600	.650	.779	.865	-945
а	.00023	.0002	1000.	.0002	.0003	.0016	.0025	.272	.296	.538

First 9; Kreusler, Drud. Ann. 6, 1901; next Ewan, Proc. R. Soc. 57, 1894, Aschkinass, Wied Ann. 55, 1895; last 3, Nichols. Phys. Rev. 1, 1.
See Rubens, Ladenburg, Verh. D. Phys. Ges., p. 19, 1909, for extinction coefs., reflective power and

index of refraction, 1 4 to 18 4.

TRANSMISSION PERCENTAGES OF RADIATION THROUGH MOIST AIR.

(For bodies at laboratory temperatures: for transmission of shorter-wave energy, see Table 553.)

The values of this table will be of use for finding the transmission of energy through air containing a known amount of water vapor. An approximate value for the transmission may be had if the amount of energy from the source between the wave-lengths of the first column is multiplied by the corresponding transmission coefficients of the subsequent columns. The values for the wave-lengths greater than 18µ are tentaive and doubtful. Fowle, Water-vapor Transparency, Smithsonian Misc. Collections, 68, No. 8, 1917; Fowle, The Transparency of Aqueous Vapor, Astrophysical J. 42, p. 394, 1915.

Range of wave-lengths.				Precip	oitable v	vater in	centim	eters.				
μ μ	.001 .00	3 .006	.oı	.03	.06	.10	. 25	. 50	1.0	2.0	6.0	10.0
0.75 to 1.0 1.0 1.25 1.25 1.5 1.5 2.0 *2 3 3 4 *4 5 5 6 6 7 7 8 8 9 9 † 9 10 † 10 11 11 12 12 13 *14 15 *15 16 16 17 17 18 18 ∞	96 95 88 95 85 95 85 100 100 100 100 100 100 100 100 100 10	87 84 84 76 4 50 100 100 100 100 100 100 100 100 100	100 99 96 98 84 71 68 99 100 100 100 100 100	99 99 92 97 77 72 65 56 24 57 98 100 100 99 97 80 70 —	99 98 84 94 70 66 60 51 8 46 96 100 100 99 94 75 55 50 25	98 97 80 88 64 63 53 47 4 35 94 100 100 98 97 90 50 40 0	97 95 66 79 	95 92 57 73 —————————————————————————————————	93 89 51 70 	90 85 44 66 	83 74 31 60 	78 600 28 57

^{*}These places require multiplication by the following factors to allow for losses in CO2 gas. Under average sea-level outdoor conditions the CO₂ (partial pressure = 0.0003 atmos.) amounts to about 0.6 gram per cu. m. Paschen gives 3 times as much for indoor conditions.

2µ to 3µ, for 2 grams in m² path (95); for r40 grams in m² path (93);
4 " 5 " " " " (70);

4 "5 "14, slight allowance to be made; (70); more CO2 no further effect;

14 "15, 80 grams in m² path reduces energy to zero;

In the above table italicized figures indicate extrapolated values. F. Paschen gives (Annalen d. Physik u. Chemie, 51, p. 14, 1894) the absorption of the radiation from a blackened strip at 500° C by a layer 33 centimeters thick of water vapor at 100° C and atmospheric pressure as follows:

	2.20-3.10µ	5-33-7.67µ	7.67-10(?)µ
Percentage absorption	80	 . 94	Q4-I3

The following table, due to Rubens and Aschkinass (Annalen d. Physik u. Chemie, 64, p. 508, 1808), gives the absorption of radiation from a zircon burner by a layer 75 centimeters thick of water vapor saturated at 100° C. This amount of vapor is about equivalent to a layer of water 0.45 millimeter thick or to 1.5% of the water in a total vertical atmospheric column whose dew point at sea-level is 10° C. The region of spectrum examined includes most of the region of terrestrial radiation.

Wave-length Percentage absorption		8.0µ 40	9.0-12.0µ .	12.4µ 20	12.8µ	13.4µ 28	14.0µ
Wave-length Percentage absorption	14.3µ 43	15.ομ 35	15.7µ 65	16.ομ 52	17.5 µ 88	18.3µ 80	20.CH

REFLECTION AND ABSORPTION OF LONG-WAVE RADIATIONS.

TABLE 378. - Long-wave Absorption by Gases.

Unless otherwise noted, gases were contained in a 20 cm long tube. Rubens, Wartenberg, Verh. d. Phys. Ges. 13, p. 796, 1911.

	cm		Percen	tage abs	orption.			u	Percentage absorption.				
Con					Long λ , Hg lamp.		ure, cm						g λ, lamp.
Gas.	Pressure	23μ	52µ	IIομ		Fil- tered, 314µ	Gas.	Pressure,	23μ	52μ	110μ		Fil- tered, 314 μ
H ₂ Cl ₂ Br ₂ SO ₂ CO ₂ CO ₂ N ₂ O N ₂ O NO (CN) ₂	20 76 76 76 76 76 76 76	100 100 100 22.6 100 100 90.6 100	100 99.6 100 76.9 100 11.6 96.8 94 97.8	100 99.5 100 12.7 100 94.1 5.4 98.4 99	100 98.5 100 6 100 92.1 10.3 93.3 87.3 99.3	100 4.8 100 91.6 21.4 90.8 85.5	NH ₃ CH ₄ C ₂ H ₂ C ₂ H ₄ CS ₂ C ₂ H ₆ O. C ₄ H ₁₀ O. C ₅ H ₁₂ CH ₃ Cl H ₂ O *	76 76 76 76 26 6 51 46 14 76	83.1 91 99.5 99 97.8 85.4 26.8 66† 98 39.6	0.5 94.3 87.4 96.4 100 5.4 46 44.5	99.2 99.2 97.3 92.8 100 58 34 88.8 100 19.6	43.3 100 97.9 100 99.5 52.4 21.8 87 95.4 33.6	66.7 100 100 100 100 49.9 10.7 84.2 94.7 49.2

^{*} Tube 40 cm long.

TABLE 379. — Properties with Wave-lengths $108 \pm \mu$.

Rubens and Woods, Verh. d. Phys. Ges. 13, p. 88, 1911.

With quartz, 1.7 cm thick: 60 to 80μ , absorption very great; 63μ , 99%; 82μ , 97.5; 97μ , 83.

				(a) P	ERCENT.	age Ref	LECTION.						
Wave-length.	Iceland spar.	Marble.	Roc		ilvine.	KBr	KI	Flu	uo-	Glass	. v	Water.	Alcohol.
$\lambda = 82\mu *$ $\lambda = 108\mu \dagger$	47.I	43.8	25. 20.			82.6 31.1	29.6 35.5	I9.7 20.2		19.2		9.6 11.6	1.6
	* Restrahl	ung from	KBr.				† Isolated	with	quar	tz lens.	'		
(b) Percentage Transparency, Uncorrected for reflections.													
Solid. Thickness. Transparency. Liquid. Thickness. Transparency. Transparency. Transparency.													
Mica Hard rubber Quartz axi Quartz, amon Rock salt Fluorite Diamond. Quartz \(\perp \) ax " " " "	" " 11.74				57.0 Benzol				0. 0. 0. 0.	00 158 158 029 044	0.3	023 350 063 221	56.8 7.9 37.1 25.8 13.6 88 33.5 100 19.6
			(c) T	RANSPA	RENCY	of Blac	k Absorb	ERS.					
Method and wave-length.						k silk per, m thick.	Opaque pape o.11 mm	Γ,	-	Black ca board, mm tl		10 CI	lle lamp- lack, n ² = 1.8 mg
Spectrometer 2μ 4 6 12				0.9		0 0 0 1.4			0 0 0			0.5 8.6 16.0	
Fluorite "restrahlung" 26 Rock salt "restrahlung" 52 Quartz lens isolation 108					41	1.2 5.0 1.5	3 · 2 15 · 1 33 · 5		0			76.7 91.3 91.5	

[†] Pentane vapor, pressure 36 cm.

310 TABLES 380, 381 .- ROTATION OF PLANE OF POLARIZED LIGHT.

TABLE 380.—Tartaric Acid; Camphor; Santonin; Santonic Acid; Cane Sugar.

A few examples are here given showing the effect of wave-length on the rotation of the plane of polarization. The rotations are for a thickness of one decimeter of the solution. The examples are quoted from Landolt & Börnstein's "Phys. Chem. Tab." The following symbols are used:—

Right-handed rotation is marked +, left-handed -..

Line of spectrum.	Wave-length according to Angström in cms. X 10 ⁶ ,	Tartaric acid,* $C_4H_6O_6$, dissolved in water. q = 50 to 95, temp. = 24° C.	Camphor,** dissolved in q = 50 temp. = :	n alcohol. to 95,	Santonin,† (dissolved in constant) = 75 to temp. =	hloroform.					
$\begin{array}{c} \mathbf{B} \\ \mathbf{C} \\ \mathbf{D} \\ \mathbf{E} \\ \mathbf{b_1} \\ \mathbf{b_2} \\ \mathbf{F} \\ \mathbf{e} \end{array}$	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83	$\begin{array}{c} + 2^{\circ}.748 + 0.09446 \ q \\ + 1.950 + 0.13030 \ q \\ + 0.153 + 0.17514 \ q \\ - 0.832 + 0.19147 \ q \\ - 3.598 + 0.23977 \ q \\ - 9.657 + 0.31437 \ q \end{array}$	38°.549 — 51.945 — 74.331 — 79.348 — 99.601 — 149.696 —	0.0964 q 0.1343 q - 0.1451 q 0.1912 q	- 149°.1 + - 149.3 + - 202.7 + - 285.6 + - 302.38 + - 534.98 +	0.1555 q 0.3086 q 0.5820 q 0.6557 q					
		Santonin,† $C_{16}H_{18}O_3$, * dissolved in alcohol. $c=1.782$. temp. = 20° C.	Santonin,† dissolved in alcohol. c = 4.046. temp. = 20° C.	$C_{15}H_{18}O_3$, dissolved in chloroform c=3.1-30.5, temp. = 20° C.	Santonic acid,† $C_{15}H_{20}O_{41}$ dissolved in chloroform. $c=27.192.$ temp. = 20° C.	Cane sugar,‡ C ₁₂ H ₂₂ O ₁₁ , dissolved in water. p = 10 to 30.					
B C D E b ₁ b ₂ F e G g	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83 43.97 42.26	— 110.4° — 118.8 — 161.0 — 222.6 — 237.1 — 261.7 — 380.0	442° 504 693 991 1053 1323 2011 2381	484° 549 754 1088 1148 - 1444 2201 - 2610	- 49° - 57 - 74 - 105 - 112 - 137 - 197 - 230	47°.56 52.70 60.41 84.56 - 87.88 101.18					
	* Arndtsen, "Ann. Chim. Phys." (3) 54, 1858. † Narini, "R. Acc. dei Lincei," (3) 13, 1882. ‡ Stefan, "Sitzb. d. Wien. Akad." 52, 1865.										

TABLE 381. - Sodium Chlorate; Quartz.

Sodium	chlorate (G	uye, C. R.	108, 1889).	Quartz (Soret & Sarasin, Arch. de Gen. 1882, or C. R. 95, 1882).*					
Spec- trum line.	Wave- length.	Temp. C.	Rotation per mm.	Spec- trum line.	Wave- length.	Rotation per mm.	Spec- trum line.	Wave- length.	Rotation per mm.
B C D E F G G H L M	71.769 67.889 65.073 59.085 53.233 48.912 45.532 42.834 40.714 38.412 37.352	15°.0 17.4 20.6 18.3 16.0 11.9 10.1 14.5 13.3 14.0	2°.068 2.318 2.599 3.104 3.841 4.587 5.331 6.005 6.754 7.654 8.100	A a B C D ₁ D ₂ E F G	76.04 71.836 68.671 65.621 58.951 58.891 52.691 48.607 43.072	12°.668 14.3°04 15.746 17.318 21.684 21.727 27.543 32.773 42.6°04	$ \begin{array}{c c} Cd_0 \\ N \\ Cd_{10} \\ O \\ \end{array} $ $ \begin{array}{c c} Cd_{11} \\ P \\ Q \\ Cd_{12} \\ \end{array} $ $ \begin{array}{c c} R \\ \end{array} $	36.090 35.818 34.655 34.400 34.015 33.600 32.858 32.470 31.798	63°.628 64.459 69.454 70.587 72.448 74.571 78.579 80.459
N P Q R T Cd ₁₇ Cd ₁₈	35.818 33.931 32.341 30.645 29.918 28.270 25.038	12.9 12.1 11.9 13.1 12.8 12.2 11.6	8.861 9.801 10.787 11.921 12.424 13.426 14.965	h H K L M	41.012 39.681 39.333 38.196 37.262	47.481 51.193 52.155 55.625 58.894	Cd ₁₇ Cd ₁₈ Cd ₂₃ Cd ₂₄ Cd ₂₅ Cd ₂₆	27.467 25.713 23.125 22.645 21.935 21.431	121.052 143.266 190.426 201.824 220.731 235.972

^{*} The paper is quoted from a paper by Ketteler in "Wied. Ann." vol. 21, p. 444. The wave-lengths are for the Fraunhofer lines, Angström's values for the ultra violet sun, and Cornu's values for the cadmium lines.

Abbreviations: int'n'l, international; emu, electromagnetic units; esu, electrostatic units; cgs, centimeter-gram-second units. (Taken from Circular 60 of U. S. Bureau of Standards, 1916, Electric Units and Standards.)

RESISTANCE:

- international ohm =
 - 1.00052 absolute ohms
 - 1.0001 int'n'l ohms (France, before 1911)
 - 1.00016 Board of Trade units (England, 1903)
 - 1.01358 B. A. units
 - 1.00283 "legal ohms" of 1884
 - 1.06300 Siemens units
- r absolute ohm =
 - o. 99948 int'n'l ohms
 - practical" emu
 - 109 cgs emu
 - $1.1124 \times 10^{-12} \text{ cgs esu}$

CURRENT:

- international ampere =
 - o. 99991 absolute ampere
 - 1.00084 int'n'l amperes (U.S. before 1911)
 - 1.00130 int'n'l amperes (England, before 1006)
 - 1.00106 int'n'l amperes (England, 1906-
 - 1.00010 int'n'l amperes (England, 1909-
 - 1.00032 int'n'l amperes (Germany, before IQII)
 - 1.0002int'n'lamperes (France, before 1911)
- I absolute ampere =
 - 1 00009 int'n'l amperes
 - 1 "practical" emu
- o. I cgs emu
 - $2.0082 \times 10^{9} \text{ cgs esu}$

Electromotive Force:

- i international volt =
 - 1.00043 absolute volts
 - 1.00084 int'n'l volts (U. S. before 1911)
 - 1.00130 int'n'l volts (England, before
 - 1.00106 int'n'l volts (England, 1906-08)
 - 1.00010 int'n'l volts (England, 1909-10)
 - 1.00032 int'n'l volts (Germany, before IOII)
 - 1.00032 int'n'l volts (France, before 1911)
- I absolute volt =
 - 0.99957 int'n'l volt
 - practical" emu
 - 108 cgs emu
 - o. 0033353 cgs esu

QUANTITY OF ELECTRICITY:

(Same as current equivalents.)

- 1 international coulomb =
- 1/3600 ampere-hour
- 1/96500 faraday

CAPACITY:

- i international farad = 0. 99948 absolute farad
- 1 absolute farad =
 - 1.00052 int'n'l farads
 - i "practical" emu 10⁻⁹ cgs emu

 - $8.9892 \times 10^{11} \text{ cgs esu}$

INDUCTANCE:

- I international henry = 1.00052 absolute henries
- 1 absolute henry =
- o. 99948 int'n'l henry
- practical" emu
- 109 emu
- $1.1124 \times 10^{-12} \text{ cgs esu}$

Energy and Power:

(standard gravity = 980.665 cm/sec/sec.)

- I international joule =
 - 1.00034 absolute joules
- 1 absolute joule =
- o. 99966 int'n'l joule
- 107 ergs
- o. 737560 standard foot-pound o. 101972 standard kilogram-meter
- o. 277778×10^{-6} kilowatt-hour

RESISTIVITY:

- $r \circ hm cm = 0.393700 \circ hm inch$
 - = 10,000 ohm (meter, mm²)
 - = 12,732.4 ohm (meter, mm)
 - = 393,700 microhm-inch
 - = 1,000,000 microhm-cm
 - = 6,015,290 ohm (mil, foot)
- 1 ohm (meter, gram) = 5710.0 ohm (mile, pound)

MAGNETIC QUANTITIES:

- ı int'n'l gilbert = 0.99991 absolute gilbert
- I absolute gilbert = I. 00009 int'n'l gilberts
- I int'n'l maxwell = I. 00043 absolute maxwells
- ı absolute maxwell = 0.99957 int'n'l maxwell
 - = 0.7958 ampere-turn
 - ı gilbert per cm = 0.7958 ampere-turn per cm
 - = 2.021 ampere-turns per inch
 - I maxwell = I line
 - = ro⁻⁸ volt-second
 - 1 maxwell per cm² = 6.452 maxwells per in²

312 TABLE 383.

COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.

The electromotive forces given in this table approximately represent what may be expected from a cell in good working order, but with the exception of the standard cells all of them are subject to considerable variation.

		(a) Double Fluid Ca	ILLS.		
Name of cell.	Negative pole.	Solution.	Positive pole.	Solution.	E.M.F. in volts.
Bunsen	Amalgamated zinc	$\{$ 1 part H_2SO_4 to $\}$ 12 parts H_2O . $\}$	Carbon	Fuming H ₂ NO ₃ .	1.94
"	"	66 -	, 66	HNO ₃ , density 1.38	1.86
Chromate.	66 65	$ \left\{ \begin{array}{l} \text{12 parts } K_2 C r_2 O_7 \\ \text{to 25 parts of} \\ H_2 S O_4 \text{ and 100} \\ \text{parts } H_2 O \end{array} \right \right\} $	- 66	$ \left\{ \begin{array}{c} \text{1 part } H_2SO_4 \text{ to} \\ \text{12 parts } H_2O \end{array} \right. \right\} $	2.00
"	66 66	$\{$ 1 part H_2SO_4 to $\}$ 12 parts H_2O . $\}$	66	{ 12 parts K ₂ Cr ₂ O ₇ } to 100 parts H ₂ O }	2.03
Daniell* .	66 66	$ \left\{ \begin{array}{l} \text{1 part } H_2SO_4 \text{ to } \\ \text{4 parts } H_2O \end{array} \right. $	Copper	Saturated solution (of CuSO ₄ +5H ₂ O)	1.06
"		$ \left\{ \begin{array}{c} \text{1 part } H_2\mathrm{SO_4} \text{ to } \\ \text{12 parts } H_2\mathrm{O.} \end{array} \right\} $	46	66	1.09
46	66 66	$\begin{cases} 5\% \text{ solution of } \\ ZnSO_4 + 6H_2O \end{cases}$	66	46	1.08
	66 66	$ \left\{ \begin{array}{ll} \text{1 part NaCl to} \\ \text{4 parts } H_2O \end{array} \right. $	66	6.	1.05
Grove	66 66	$ \left\{ \begin{array}{l} \text{1 part } H_2SO_4 \text{ to } \\ \text{12 parts } H_2O \text{ .} \end{array} \right\} $	Platinum	Fuming HNO3	1.93
	66 66	Solution of ZnSO ₄	66	HNO ₃ , density 1.33	1.66
	66 66	$\{H_2SO_4 \text{ solution, }\}$ density 1.136.	66	Concentrated HNO ₈	1.93
"		{ H ₂ SO ₄ solution, } density 1.136 . }	66	HNO ₃ , density 1.33	1.79
	46 46	{ H ₂ SO ₄ solution, } density 1.06 . }	44	66	1.71
	44 46	{ H ₂ SO ₄ solution, { density 1.14 . }	44	HNO ₃ , density 1.19	1.66
	66 66	$\left\{ \begin{array}{ll} H_2 \mathrm{SO_4} \ \ \text{solution,} \\ \text{density 1.06} \end{array} \right\}$	66	et se se	1.61
٠٠		NaCl solution	46	" density 1.33	1.88
Marié Davy	66 66	$\left\{\begin{array}{cc} \text{1 part } H_2SO_4 \text{ to } \\ \text{12 parts } H_2O \end{array}\right\}$	Carbon	Paste of protosul- phate of mercury and water	1.50
Partz	. 66 66	Solution of MgSO ₄	46	Solution of K ₂ Cr ₂ O ₇	2.06

^{*} The Minotto or Sawdust, the Meidinger, the Callaud, and the Lockwood cells are modifications of the Daniell, and hence have about the same electromotive force.

COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.

Name of cell.	Negative pole.	Solution.	Positive pole.	E. M. F. in volts.
		(b) Single Fluid Cells.		
Leclanche	Amal.zinc	Solution of sal-ammo-	Carbon. Depolari- zer: manganese peroxide with powdered carbon	1.46
Chaperon	.66 66	Solution of caustic { potash }	Copper, Depolar-	0.98
Edison-Lelande . Chloride of silver	## ##	123 % solution of sal-1	(Silver. Depolari-)	0.70
Law	Zinc	ammoniac	{ zer: silver chl'ride } Carbon	1.02
		[1 pt. ZnO, 1 pt. NH ₄ Cl,] 3 pts. plaster of paris,		1.3/
Dry cell (Gassner)	* *	2 pts. ZnCl2, and water		1.3
Poggendorff	Amal.zinc	to make a paste	«····	1.08
66	66 66	$ \begin{cases} 25 \text{ parts } H_2SO_4 + \\ 100 \text{ parts } H_2O . \end{cases} $		2.01
J. Regnault	46 46	$ \begin{cases} 1 \text{ part } H_2SO_4 + \\ 12 \text{ parts } H_2O + \\ 1 \text{ part } CaSO_4 \end{cases} $	Cadmium	0.34
Volta couple	Zinc	H_2O	Copper	0.98
		(c) STANDARD CELLS.		
Weston normal .	{Cadmi'm} { am'lgam}	{ Saturated solution of } CdSO ₄	$ \begin{cases} & \text{Mercury.} \\ & \text{Depolarizer: paste} \\ & \text{of} & \text{Hg}_2\text{SO}_4 & \text{and} \\ & \text{CdSO}_4 & . & . & . \end{cases} $	1.0183* at 20° C
Clark standard .	Zinc a am'lgam	$\left\{ \begin{array}{c} {\rm Saturated\ solution\ of\ } \\ {\rm ZnSO_4} \end{array} \right\}$	$\begin{cases} & \text{Mercury.} \\ & \text{Depolarizer: paste} \\ & \text{of } & \text{Hg}_2 \text{SO}_4 \text{and} \\ & \text{ZnSO}_4 . . . \end{cases}$	1.434 [‡] at 15°C
		(d) Secondary Cells.		
Lead accumulator	Lead	{ H ₂ SO ₄ solution of density 1.1 }	PbO ₂	2.2† (1.68 to
Regnier (1)	Copper .	$CuSO_4 + H_2SO_4$	66	o.85, av-
" (2)	Amal. zinc Amal. zinc	ZnSO ₄ solution H ₂ SO ₄ density ab't 1.1	" in H ₂ SO ₄ .	(erage 1.3. 2.36 2.50 (1.1, mean
Edison	Iron	KOH 20 % solution .	A nickel oxide .	of full discharge.

^{*} The temperature formula is $E_t = E_{20} - 0.0000406 (t - 20) - 0.00000095 (t - 20)^2 + 0.000000001 (t - 20)^3$.

[‡] The value given for the Clark cell is the old one adopted by the Chicago International Electrical Congress in 1893. The temperature formula is $E_t = E_{15} - 0.00119$ (t - 15) - 0.000007 (t - 15)2.

[†] F. Streintz gives the following value of the temperature variation $\frac{dE}{dt}$ at different stages of charge:

CONTACT DIFFERENCE OF

Solids with Liquids and

Temperature of substances

	Carbon.	Copper	Iron.	Lead.	Platinum.	Tin.	Zinc.
Distilled water	(.01 to (.17	.269 to	.148	.171	(.285) to (.345)	.177	{105 to +.156
Alum solution: saturated \at 16°.5 C	_	127	— .653	139	.246	225	536
Copper sulphate solution: { sp. gr. 1.087 at 16°.6 C. }	_	.103	-	-	_	-	-
Copper sulphate solution: (saturated at 15° C)	_	.070	~	-	_	-	-
Sea salt solution: sp. gr. (_	- .475	605	-	856	334	565
Sal-ammoniac solution:) saturated at 15°.5 C.	_	— .396	652	189	.059	364	637
Zinc sulphate solution: sp. 1 gr. 1.125 at 16°.9 C	_	_	-	<u>-</u>	_	_	238
Zinc sulphate solution: \\ saturated at 15°.3 C.	_	_	_	_	_	_	430
One part distilled water + 3 parts saturated zinc	_	_	_	_		_	444
sulphate solution) Strong sulphuric acid in distilled water:							
I to 20 by weight	about	-	-	-	-	-	344
I to 10 by volume I to 5 by weight	about }	_	_		-		-
	(10.)		_	_	_	_	-
5 to 1 by weight	$\begin{cases} to \\ 3.0 \end{cases}$	-	-	120	-	25	-
Concentrated sulphuric acid	(·55) to (.85)	1.113	-	(.72 to (1.252	1.3 to 1.6	-	-
Concentrated nitric acid . Mercurous sulphate paste .		-	-	-	.672	-	-
Distilled water containing trace of sulphuric acid	-	-	_	-	_	-	241
					1		

^{*} Everett's " Units and Physical Constants: " Table of

POTENTIAL IN VOLTS.

Liquids with Liquids in Air.*

during experiment about 16° C.

<u></u>										
	Amalgamated zinc.	Brass.	Mercury.	Distilled water.	Alum solution: saturated at 16°.5 C.	Copper sulphate solution: saturated at 15° C.	Zinc sulphate solution: sp. gr. 1.25 at 16°.9 C.	Zinc sulphate solution: saturated at 15°.3 C.	One part distilled water + 3 pts. zinc sulphate.	Strong nitric acid.
Distilled water	100	.231	_	_	-	043	-	.164	-	
Alum solution: saturated \ at 16°.5 C \	_	014	_	_	_	_	_	_	_	_
Copper sulphate solution: \\ sp. gr. 1.087 at 16°.6 C.	-	-	_	_	-	-	.090	-	-	-
Copper sulphate solution: (saturated at 15° C)	-	-	-	043		-	-	.095	.102	-
Sea salt solution: sp. gr. (-	435	-	-	-	-	-	-	-	-
Sal-ammoniac solution: (saturated at 15°.5 C.)	-	348	-	-	-	-	-	-	-	-
Zinc sulphate solution: { sp. gr. 1.125 at 16°.9 C. }	_	_	-	-	-	-	-	-	-	-
Zinc sulphate solution: { saturated at 15°.3 C.	284	-	-	200	-	095	-	-	-	-
One part distilled water + 3 parts . saturated zinc sulphate solution Strong sulphuric acid in distilled water :	-	-	-	-	-	102	-	-	1	-
I to 20 by weight	-	_	-	-	_	~	-	-	-	-
I to 10 by volume	358	-	_	-		-	-	-		-
I to 5 by weight	.429	-	-	-	-	-	-	-	-	-
5 to 1 by weight	-	016	-	-	-	-	-	-	-	-
Concentrated sulphuric acid	.848	-	_	1.298	1.456	1.269	-	1.699	-	-
Concentrated nitric acid . Mercurous sulphate paste .	_	_	- •475	_	-	_	-	_	_	_
Distilled water containing trace of sulphuric acid.	-	-	-		-	-	-	-	-	.078

Ayrton and Perry's results, prepared by Ayrton.

DIFFERENCE OF POTENTIAL BETWEEN METALS IN SOLUTIONS OF SALTS.

The following numbers are given by G. Magnanini* for the difference of potential in hundredths of a volt between zinc in a normal solution of sulphuric acid and the metals named at the head of the different columns when placed in the solution named in the first column. The solutions were contained in a U-tube, and the sign of the difference of potential is such that the current will flow from the more positive to the less positive through the external circuit.

	n of the solution in n molecules per liter.	Zinc.†	Cadmium.†	Lead.	Tin.	Copper.	Silver.
No. of molecules.	Salt.		Differe	ence of poten	tial in centiv	olts.	
0.5 1.0 1.0 0.5 1.0	H ₂ SO ₄ NaOH KOH Na ₂ SO ₄ Na ₂ S ₂ O ₃ KNO ₃ NaNO ₃	0.0 -32.1 -42.5 1.4 -5.9 11.8‡	36.6 19.5 15.5 35.6 24.1 31.9	51.3 31.8 32.0 50.8 45.3 42.6	51.3 0.2 —1.2 51.4 45.7 31.1 40.9	100.7 80.2 77.0 101.3 38.8 81.2	121.3 9\$.8 104.0 120.9 64.8
0.5 0.5 0.5	K_2CrO_4 $K_2Cr_2O_7$ K_2SO_4	23.9‡ 72.8 1.8	42.8 61.1 34.7	78.4 51.0	40.9 68.1 40.9	94.6 123.6 95.7	121.0 132.4 114.8
0.5 0.25 0.167 1.0	$(\mathrm{NH_4})_2\mathrm{SO_4}$ $\mathrm{K_4FeC_6N_6}$ $\mathrm{K_6Fe_2}(\mathrm{CN})_2$ KCNS $\mathrm{NaNO_3}$	-0.5 -6.1 41.0§ -1.2 4.5	37.1 33.6 80.8 32.5 35.2	53.2 50.7 81.2 52.8 50.2	57.6‡ 41.2 130.9 52.7 49.0	101.5 ‡ 110.7 52.5 103.6	125.7 87.8 124.9 72.5 104.6?
0.5 0.125 1.0 0.2 0.167	SrNO ₃ Ba(NO ₃) ₂ KNO ₃ KClO ₄ KBrO ₃	14.8 21.9 — ‡ 15-10‡ 13-20‡	38.3 39.3 35.6 39.9 40.7	50.6 51.7 47.5 53.8 51.3	48.7 52.8 49.9 57.7 50.9	103.0 109.6 104.8 105.3 111.3	119.3 121.5 115.0 120.9 120.8
I.0 I.0 I.0 I.0	NH ₄ Cl KF NaCl KBr KCl	2.9 2.8 — 2.3	32.4 22.5 31.9 31.7 32.1	51.3 41.1 51.2 47.2 51.6	50.9 50.8 50.3 52.5 52-6	81.2 61.3 80.9 73.6 81.6	101.7 61.5 101.3 82.4 107.6
0.5 - 1.0 0.5 0.5	$egin{array}{ll} Na_2SO_3 & \\ NaOBr & \\ C_4H_6O_6 & \\ C_4H_6O_6 & \\ C_4H_4KNaO_6 & \\ \end{array}$	-8.2 18.4 5.5 4.1 -7.9	28.7 41.6 39.7 41.3 31.5	41.0 73.1 61.3 61.6 51.5	31.0 70.6 ‡ 54.4\$ 57.6 42-47	68.7 89.9 104.6 110.9 100.8	103.7 99.7 123.4 125.7 119.7

^{* &}quot;Rend. della R. Acc. di Roma," 1890.

[†] Amalgamated.

¹ Not constant.

[§] After some time.

^{||} A quantity of bromine was used corresponding to NaOH = 1.

THERMOELECTRIC POWER.

The thermoelectric power of a circuit of two metals is the electromotive force produced by one degree C difference of temperature between the junctions. The thermoelectric power varies with the temperature, thus: thermoelectric power Q = dE/dt = A + Bt, where A is the thermoelectric power at o C, B is a constant, and t is the mean temperature of the junctions. The neutral point is the temperature at which dE/dt = o, and its value is -A/B. When product of the junctions. The neutral point is the temperature at which dE/dt = 0, and its value is -A/B. When a current is caused to flow in a circuit of two metals originally at a uniform temperature, heat is liberated at one of the junctions and absorbed at the other. The rate of production or liberation or heat at each junction, or Peltier effect, is given in calories per second, by multiplying the current by the coefficient of the Peltier effect. This coefficient in calories per coulomb = QT/\mathcal{F} , in which Q is in volts per degree C, T is the absolute temperature of the junction, and $\mathcal{F} = 4.10$. Heat is also liberated or absorbed in each of the metals as the current flows through portions of varying temperature. The rate of production or liberation of heat in each metal, or the Thomson effect, is given in calories per second by multiplying the current by the coefficient of the Thomson effect. This coefficient, in calories per second by multiplying the current by the coefficient of the Thomson effect. This coefficient, in calories per second by multiplying the current by the Coefficient of the Thomson effect. The coefficient, in calories per second by multiplying the current by the Coefficient of the Thomson effect. The coefficient, in calories per second by multiplying the current by the Coefficient of the Thomson effect. The coefficient in calories per second by multiplying the current by the Coefficient of the Thomson effect. The coefficient in calories per coulomb = $BT\theta/\mathcal{F}$, in which B is notly per degree C, T is the mean absolute temperature of the junctions, and θ is the difference of temperature of the junctions, and θ is the difference of temperature of the junctions, and θ is the difference of temperature of the junction to the cold. When B is positive, θ increases (algebraically) with the temperature. The values of A, B, and thermoelectric power in the following table are with respect to lead as the other metal of the thermoelectric circuit. The thermoelectri

are given by Becquerel in the reference given below.

Substance.	A Microvolts.	B Microvolts.	Thermoelec at mean junctions (n	temp. of	Neutral point $-\frac{A}{B}$	Author-
Aluminum Antimony, comm'i pressed wire " axial " equatorial Argentan Arsenic Bismuth, comm'i pressed wire " pure " " " crystal, axial " equatorial Cadmium " fused. Calcium. Cobalt Constantan. Copper. " commercial. " galvanoplastic. Gallium Gold. Iron " pianoforte wire. " commercial. " tead. " Lead. Magnesium Molybdenum Mercury. Nickel	-0.76 -11.94 -2.63 -1.34	+0.0039 -0.0506 -0.0506 -0.0424 -0.0094 -0.0482 -0.0000 -0.0094 -0.0000	20° C -0.68 +6.0 +20.4 -12.05 -30.56 -97.0 -65.0 -45.0 +3.48 -22 +1.52 +0.10 +3.8 -0.2 +3.0 +16.2 +17.5 -0.00 +2.03 +5.9 -0.413	50° C -0.56 -14.47 -12.7 -19.3 +1.81 -19.3 +1.81 -19.3 +1.2.10 +12.10 -10.00 -1.75 -15.50	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T M " T B M " " T B S' M T T M B " T T M B B T T T M B B M B B B B B B B B
" (-18° to 175°) " (250°-300°). " (above 340°).	-21.8 -83.57 -3.04	-0.0506 +0.2384 -0.0506	-22.8 - -	-24.33 - -	[-431]	T

TABLE 386.—Thermoelectric Power (continued).

Substance.	A Microvolts.	B Microvolts.			Neutral point $-\frac{A}{B}$.	Au- thority.
Palladium Phosphorous (red) Platinum " (hardened) " (malleable) " wire " another specimen Platinum-iridium alloys: 85% Pt + 15% Ir 90% Pt + 10% Ir 95% Pt + 5% Ir Selenium Silver " (pure hard) " wire Steel Tantalum Tellurium β Tellurium β Thallium Tin (commercial) " Tungsten Zinc " pure pressed	+2.57 -0.60 -1 +7.90 +5.90 +6.15 -2.12 -1 +11.27	-0.0355 -0.0074 -0.0109 -0.0133 +0.0055 +0.0147 -0.0325 -1.00055 +0.0055 +0.00238	+8.03 +5.63	+0.94 -2.14 +8.21 +5.23 +6.42 -2.86 -2.18	347 -55 	T M " B " T M B T H H M T T T M

B Ed. Becquerel, "Ann. de Chim. et de Phys." [4] vol. 8. S. Bureau of Standards.

M Matthiesen, "Pogg. Ann." vol. 103, reduced by Fleming Jenkin.
T Tait, "Trans. R. S. E." vol. 27, reduced by Mascart.
H Haken, Ann. der Phys. 32, p. 291, 1910. (Electrical conductivity of Teβ=0.04, Tea 1.7 e. m. units.) Swisher, 1917.

TABLE 387 .- Thermoelectric Power of Alloys.

The thermoelectric powers of a number of alloys are given in this table, the authority being Ed. Becquerel. They are relative to lead, and for a mean temperature of 50° C. In reducing the results from copper as, a reference metal, the thermoelectric power of lead to copper was taken as—1.9.

Substance.	Relative quantity.	Thermoelectric power in microvolts.	Substance.	Relative quantity.	Thermoelectric power in microvolts.	Substance.	Relative quantity.	Thermoelec- tric power in microvolts.
Antimony Cadmium Antimony Cadmium Zinc Antimony Cadmium Bismuth Antimony Zinc Antimony Zinc Bismuth Antimony Zinc Bismuth Antimony Cadmium Lead Zinc Antimony Cadmium Lead Zinc Tin	806 } 696 } 4 } 2	227 146 137 95 8.1	Antimony Zinc Tin Antimony Cadmium Zinc Antimony Tellurium Antimony Bismuth Antimony Iron Antimony Magnesium Antimony Lead Bismuth Bismuth Antimony	2 1 1 1 1 2 1 1 3 1 1 3 1 1 1 1 1 1 1 1	43 35 10.2 8.8 2.5 1.4 -0.4 -43.8	Bismuth Antimony Bismuth Antimony Bismuth Antimony Bismuth Antimony Bismuth Tin Bismuth Selenium Bismuth Zinc Bismuth Arsenic Bismuth Bismuth Bismuth	4 } 1 8	-51.4 -63.2 -68.2 -66.9 60 -24.5 -31.1 -46.0 68.1

TABLE 388. - Thermoelectric Power against Platinum.

One junction is supposed to be at o°C; + indicates that the current flows from the o° junction into the platinum. The rhodium and iridium were rolled, the other metals drawn.*

Temperature, ° C.	Au.	Ag.	90%Pt+ 10%Pd.	10%Pt+ 90%Pd.	Pd.	90%Pt+ 10%Rh.	90%Pt+ 10%Ru.	Ir.	Rh.
-185 -80 +100 +200 +300 +400 +500 +600 +700 +800 +900 +1100 +(1300) +(1500)	-0.15 -0.31 +0.74 +1.8 +3.0 +4.5 +6.1 +7.9 +12.0 +14.3 +16.8	-0.16 -0.30 +0.72 +1.7 +3.0 +4.5 +6.2 +10.6 +13.2 +16.0	-0.11 -0.09 +0.26 +0.62 +1.0 +1.5 +1.9 +2.4 +2.9 +3.4 +3.8 +4.3 +4.8	+0.24 +0.15 -0.19 -0.31 -0.37 -0.18 +0.12 +0.61 +1.2 +2.11 +4.2	+0.77 +0.39 -0.56 -1.20 -2.0 -2.8 -3.8 -4.9 -6.3 -7.9 -9.6 -11.5	+2.3 +3.2 +4.1 +5.1 +6.2 +7.2 +8.3 +9.5 +10.6 +13.1 +15.6	-0.53 -0.39 +0.73 +1.6 +2.6 +3.6 +4.6 +5.7 +6.9 +8.0 +9.2 +10.4 +11.6 +14.2 +16.9	-0.28 -0.32 +0.05 +1.5 +2.5 +3.6 +4.8 +6.1 +7.6 +9.1 +10.8 +12.6 +14.5 +18.6 +23.1	-0.24 -0.31 +0.65 +1.5 +2.6 +3.7 +5.1 +6.5 +8.1 +9.9 +11.7 +13.7 +15.8 +20.4 +25.6

^{*} Holborn and Day.

TABLE 389. - Thermal E. M. F. of Platinum-Rhodium Alleys Against Pure Platinum, in Millivolts.*

				10 p. ct.						1
	1 p. ct.	5 p. ct.	Low.	High.	Stan- dard.	15 p. ct.	20 p. ct.	30 p. ct.†	40 p. ct.†	100 p. ct.‡
100° 200 300 400 500 600 700 800 900 1000 1100 1200	0.42 0.63 0.84 1.05 1.25 1.45 1.65 1.85 2.05 2.25 2.45	0.55 1.18 1.85 2.53 3.22 3.92 4.62 5.33 6.05 6.05 7.53 8.29 9.06	0.63 1.41 2.28 3.21 4.17 5.16 6.19 7.25 8.35 9.47 10.64 11.82	0.64 1.43 2.32 3.26 4.23 5.24 6.28 7.35 8.46 9.60 10.77 11.97	0.64 1.43 2.32 3.25 4.23 5.23 6.27 7.33 8.43 9.57 10.74 11.93 13.13	0.65 1.50 2.41 3.45 4.55 5.71 6.94 8.23 9.57 10.96 12.40 13.87	3.50 4.60 5.83 7.18 8.60 10.09 11.65 13.29 14.96	2.34 3.50 4.74 6.06 7.49 9.01 10.67 12.42 14.33 16.39 18.51	2.45 3.64 4.93 6.31 7.80 9.37 11.09 12.94 14.99 17.13	0.65 1.51 2.57 3.76 5.08 6.55 8.14 9.87 11.74 13.74 13.87 18.10 20.46
1400 1500 1600 1700 1755	2.86 3.06 3.26 3.46 3.56	9.82 10.56 11.31 12.05 12.44	14.22 15.43 16.63 17.83 18.49	14.39 15.61 16.82 18.03 18.70	14.34 15.55 16.75 17.95 18.61	16.98 18.41 19.94 21.47 22.31	18.39 20.15 21.90 23.65 24.55	20.67	21.73	

^{*} Carnegie Institution, Pub. 157, 1911.

† Holborn and Wien, 1892.

[‡] Holborn and Day, mean value, 1899.

THERMOELECTRIC PROPERTIES: PRESSURE EFFECTS. TABLE 390. — Thermoelectric Power; Pressure Effects.

The following values of the thermoelectric powers under various pressures are taken from Bridgman, Pr. Am. Acad. The following values of the thermoelectric powers under various pressures are taken from Integratar, 1. This relations A to and S c, S_3 , P coop, P coops and P and P coops are the compressed metal. The cold junction is always at P c. The last two columns give the constants in the equation E is thermoelectric force against lead (o° to P to P coops are P coops and P coops are positive emf meaning that the current flows from lead to the metal under consideration at the hot junction.

			The	ermo-ele	ctric for	ce, volts	× 109						
				Pre	essure, k	g/cm ²				Formula			
Metal.	20	00	40	00	80	00		12,000		coefficients.			
				Te	mperatu	re, º C							
	50°	100°	50°	100°	50°	100°	20°	50°	100°	A	В		
Bi † Zn † Tl † Cd † Constantan† Pd * Pt * W † Ni * Ag * § Fe † Pb † Au * Cu † § Al † § Mo † Manganin † Mg † Co †	6,200	14,100 10,870 7,120 5,950 4,380 3,600 2,530 1,670 1,670 1,050 1,050 1,054 101 140 +87 -232 -167	13,000	28,500 20,290 14,380 11,810 8,800 7,310 4,990 3,720 3,250 2,120 20,51 1,216 294 278 +165;	26,100 17,170 10,960	58,100 37,630 28,740 23,790 17,690 14,350	14,400 8,780 6,680	452,000 23,750 19,180 17,200 11,200 11,030 7,050 5,140 4,950 28h 2,627 1,616 312 562 +10 -710 -648 -937	87,400 52,460 45,560 35,470 26,520 21,570 11,440 10,560 7,680 6,330 5,760 3,546 1,962 833 +390 -1,314	+3.047 +1.659 +12.002 -34.76 -5.496 -17.61 +2.556 +16.18 -2.899 +2.777 -0.416 +5.892 +0.230 +1.366	0397 01760 01334 +.01705 0178		

TABLE 391. - Peltier and Thomson Heats; Pressure Effects.

The following data indicate the magnitude of the effect of pressure on the Peltier and Thomson heats. They refer to the same samples as for the last table. The Peltier heat is considered positive if heat is absorbed by the positive current from the surroundings on flowing from uncompressed to compressed metal. A positive d^2E/d^2 means a larger Thomson heat in the compressed metal, and the Thomson heat is itself considered positive if heat is absorbed by the positive current in flowing from cold to hot metal. Same reference and notes as for preceding table.

	Peltier heat, 106 × Joules/coulomb,						Thomson heat, 108 × Joules/coulomb/° C					;	
Metal.		P	ressure	kg/cm	2			Pressure kg/cm ²					
Alin to book a		6000 Tempera			6000 12,000				5000		12,000		
					2			Te	mpera	ture °	C		
	00				50°	100°	o°	50°	100°	o°	50°	100°	
\$ Bi †	+1070 +08 +066 +109 +406 +355 +233 +177 +111 +131 -111 +77 +0 +0 +4 -2 +1 -2 -10 -23		+190 +124 +118 +70 +52 +35 +32 +23 +23 +15	+2580 +1590 +112 +81 +08 +45 +36 +25 -38 +14 +13 +13 +13 -35 -40	+278 +171 +148 +114 +86 +76 +49 +37 +34	+412 +220 +221 +140 +103 +65	+1150 +1150 +151 +100 +15 +40 +100 +14 +70 +14 +14 +16 +11 +10 +11 +10 +11	+650 +48 +288 +74 +6 +74 +6 +77 +58 +6 +4 +11 +9 -5 +0 -11		+79	-405 +133; +03; +04; +14; +14; +15; +8; +16; +3; +16; -11; +2; +11; 0	+220 +50 +53 +17 +8 +59 +20 +10 -104 +20 +7 +8 +20 -20 +10 -704 +20 -7 +8 +20 -7 +8 +20 -7 +8 +20 -7 +8 +20 -7 +8 +10 +10 +10 +10 +10 +10 +10 +10 +10 +10	

* † ‡ § Same significance as in preceding table.

^{*} Identical wire of Table 308. † Another wire of same sample. ‡ Different sample. \$ Results too irregular for interpolation for values at other temperature and pressures; see original article. -.0556/3; (2) -.0486/3, annealed ingot iron; (3) -.05166/3; (4) -.041/3; (5) -.0425/3; (6) -.04112/3.

TABLE 392. - Peltier Effect.

The coefficient of Peltier effect may be calculated from the constants A and B of Table 386, as there shown. With Q (see Table 386) in microvolts per $^{\circ}$ C. and T= absolute temperature (K), the coefficient of Peltier effect= $\frac{QT}{4Z}$ cal. per coulomb=0.00086 QT cal. per ampere-hour=QT/1000millivolts (=millijoules per coulomb). Experimental results, expressed in slightly different units, are here given. The figures are for the heat production at a junction of copper and the metal named, in calories per ampere-hour. The current flowing from copper to the metal named, a positive sign indicates a warming of the junction. The temperature not being stated by either author, and Le Roux not giving the algebraic signs, these results are not of great value.

				Calorie	s per amp	ere-hour	r.				
	Sb. #	Sb. com- mercial.	Bi. pure.	Bi. §	Cd.	German Silver.	F. P.	z.	Pt.	As:	Zn.
Jahn*	946	-	-	-	62	-	-3.61	4.36	0.32	41	58
Le Rouxt.	13.02	4.8	19.1	25.8	0.46	2.47	2.5	-	-	-	-39

* "Wied. Ann." vol. 34, p. 767. \dagger "Ann. de Chim. et de Phys." (4) vol. 10, p. 201. \dagger Becquerel's antimony is 806 parts Sb + 406 parts Zn + 121 parts Bi. \S Becquerel's bismuth is 10 parts Bi + 1 part Sb.

TABLE 393. - Peltier Effect, Fe-Constantan, Ni-Cu, 0 - 560° C.

Temperature.	00	200	130 ⁰	240 ⁰	3200	560°	
Fe-Constantan	3.1	3.6	4-5	6.2	8.2	12.5	in Gram. Cal. X-108
Ni-Cu	1.92	2.15	2.45	2.06	1.91	2.38	per coulomb.

TABLE 394. - Peltier Electromotive Force in Millivolts.

Metal against Copper.	Sb.	Fe.	Cd.	Zn.	Ag.	An.	Pb.	Sn.	A1.	Pt.	Pd.	z.	Bi.
Le Roux .	— ₅ .6 ₄	-2.93	53	45	-	_	-	-	-	-	-	-	+22.3
Jahn	-	-3.68	72	68	48	_	_	_	-	+.37	-	+5.07	-
Edlund	-	-2.96	16	-,01	+.03	+.33	+.50	+.56	+.70	+1.02	+2.17	ants	+17.7
Caswell	,-	-		_	+.03	-	-	_	+.70	+.85	-	+6.0	+16.1

Le Roux, 1867; Jahn, 1888; Edlund, 1870-71; Caswell, Phys. Rev. 33, p. 381, 1911.

TABLE 395.

THE TRIBO-ELECTRIC SERIES.

In the following table it is so arranged that any material in the list becomes positively electrified when rubbed by one lower in the list. The phenomenon depends upon surface conditions and circumstances may alter the relative positions in the list.

I Asbestos (sheet). 2 Rabbit's fur, hair, (IIg). 3 Glass (combn. tubing). 4 Vitreous silica, opossum's fur. 5 Glass (fusn.). 6 Mica. 7 Wool. 8 Glass (pol.), quartz (pol.), glazed porcelain. 9 Glass (broken edge), ivory. 10 Calcite. 11 Cat's fur. 12 Ca, Mg, Pb, fluor spar, borax.	13 Silk. 14 Al, Mn, Zn, Cd, Cr, felt, hand, wash-leather. 15 Filter paper. 16 Vulcanized fiber. 17 Cotton. 18 Magnalium. 19 K-alum, rock-salt, satin spar. 20 Woods, Fe. 21 Unglazed porcelain, salammoniae. 22 K-bichromate, paraffin, tinned-Fe. 23 Cork, ebony.	24 Amber. 25 Slate, chrome-alum. 26 Shellac, resim, sealing-wax. 27 Ebonite. 28 Co, Ni, Sn, Cu, As, Bi, Sb, Ag, Pd, C, Te, Eureka, straw, copper sulphate, brass. 29 Para rubber, iron alum. 30 Guttapercha. 31 Sulphur. 32 Pt, Ag, Au. 33 Celluloid. 34 Indiarubber.
--	--	---

Shaw, Pr. Roy. Soc. 94, p. 16, 1917; the original article shows the alterations in the series sequence due to varied conditions.

TABLE 396,

AUXILIARY TABLE FOR COMPUTING WIRE RESISTANCES.

For computing resistance in ohms per meter from resistivity, ρ , in michroms per cm. cube (see Table 397, etc.). ϵ . g. to compute for No. 23 copper wire when $\rho = 1.724$: I meter = 0.0387 + 0.0271 + 0.0008 + 0.0002 = 0.0668 ohms; for No. 11 lead wire when $\rho = 20.4$; I meter = 0.0479 + 0.010 = 0.0489 ohms. The following relation allows computation for wires of other gage numbers: resistance in ohms per meter of No. N = 2(n-3) within 1%: ϵ . g. resistance of meter of No. 18 = $2 \times$ No. 15.

Dian in mm 11.7 0000 11.7 00 9.27 1 7.35 3 5.83 5 4.62 7 3.666 9 2.91 11 2.30 12 1.83 15 1.45 17 1.15	107.2 67.43 42.41 26.67 10.55 6.634 4.172 2.624	1. .04933 .03148 .03236 .03596 .03948 .02151 .02240 .02381	.03187 .03297 .03472 .03750 .02119 .02190 .02301 .02479 .02762	.0 ₃ 280 .0 ₃ 445 .0 ₃ 707 .0 ₂ 112 .0 ₂ 179 .0 ₂ 284 .0 ₂ 452 .0 ₂ 719	4. Resistan .03373 .03593 .03943 .02150 .02239 .02379 .02603 .02959	.03466 .03742 .02187 .02298 .02474 .02754	.0 ₈ 560 .0 ₈ 890 .0 ₂ 141 .0 ₂ 225 .0 ₂ 358 .0 ₂ 569	.0 ₃ 653 .0 ₂ 104 .0 ₂ 165 .0 ₂ 262 .0 ₂ 417 .0 ₂ 664 .0106	.0 ₃ 746 .0 ₂ 119 .0 ₂ 189 .0 ₂ 300 .0 ₂ 477 .0 ₂ 758	0, .0 ₃ 840 .0 ₂ 133 .0 ₂ 212 .0 ₂ 337 .0 ₂ 537	.0 ₃ 93; .0 ₂ 148; .0 ₂ 236; .0 ₂ 596;
00 9.27 1 7.35 3 5.83 5 4.62 7 3.66 9 2.91 11 2.30 13 1.83 15 1.45 17 1.15	67.43 42.41 26.67 16.77 10.55 6.634 4.172 2.624	.03148 .03236 .03375 .03596 .03948 .02151	.0 ₃ 297 .0 ₃ 472 .0 ₃ 750 .0 ₂ 119 .0 ₂ 190 .0 ₂ 301 .0 ₂ 479	.0 ₃ 280 .0 ₃ 445 .0 ₃ 707 .0 ₂ 112 .0 ₂ 179 .0 ₂ 284 .0 ₂ 452 .0 ₂ 719	.0 ₃ 373 .0 ₃ 593 .0 ₃ 943 .0 ₂ 150 .0 ₂ 239 .0 ₂ 379 .0 ₂ 603	.0 ₃ 466 .0 ₃ 742 .0 ₂ 118 .0 ₂ 187 .0 ₂ 298 .0 ₂ 474	.0 ₈ 560 .0 ₈ 890 .0 ₂ 141 .0 ₂ 225 .0 ₂ 358 .0 ₂ 569	.0 ₃ 653 .0 ₂ 104 .0 ₂ 165 .0 ₂ 262 .0 ₂ 417 .0 ₂ 664 .0106	.0 ₃ 746 .0 ₂ 119 .0 ₂ 189 .0 ₂ 300 .0 ₂ 477 .0 ₂ 758	.02133 .02212 .02337 .02537 .02537	.02145 .02236 .02375
00 9.27 1 7.35 3 5.83 5 4.62 7 3.66 9 2.91 11 2.30 13 1.83 15 1.45 17 1.15	67.43 42.41 26.67 16.77 10.55 6.634 4.172 2.624	.03148 .03236 .03375 .03596 .03948 .02151	.0 ₃ 297 .0 ₃ 472 .0 ₃ 750 .0 ₂ 119 .0 ₂ 190 .0 ₂ 301 .0 ₂ 479	.03445 .03707 .02112 .02179 .02284 .02452 .02719	.0 ₃ 593 .0 ₃ 943 .0 ₂ 150 .0 ₂ 239 .0 ₂ 379 .0 ₂ 603	.0 ₃ 742 .0 ₂ 118 .0 ₂ 187 .0 ₂ 298 .0 ₂ 474	.0 ₈ 890 .0 ₂ 141 .0 ₂ 225 .0 ₂ 358 .0 ₂ 569	.02104 .02165 .02262 .02417 .02664	.0 ₂ 119 .0 ₂ 189 .0 ₂ 300 .0 ₂ 477 .0 ₂ 758	.02133 .02212 .02337 .02537 .02537	.02145 .02236 .02375
1 7.35 3 5.83 5 4.62 7 3.66 9 2.91 11 2.30 13 1.83 15 1.45 17 1.15	42.41 26.67 16.77 10.55 6.634 4.172 2.624	.0 ₃ 236 .0 ₃ 375 .0 ₃ 596 .0 ₃ 948 .0 ₂ 151 .0 ₂ 240	.0 ₃ 472 .0 ₃ 750 .0 ₂ 119 .0 ₂ 190 .0 ₂ 301 .0 ₂ 479	.0 ₃ 707 .0 ₂ 112 .0 ₂ 179 .0 ₂ 284 .0 ₂ 452 .0 ₂ 719	.0 ₃ 943 .0 ₂ 150 .0 ₂ 239 .0 ₂ 379 .0 ₂ 603	.02118 .02187 .02298 .02474 .02754	.02141 .02225 .02358 .02569 .02904	.0 ₂ 165 .0 ₂ 262 .0 ₂ 417 .0 ₂ 664 .0106	.0 ₂ 189 .0 ₂ 300 .0 ₂ 477 .0 ₂ 758	.0 ₂ 212 .0 ₂ 337 .0 ₂ 537 .0 ₂ 853	.02145 .02236 .02375
3 5.83 5 4.62 7 3.66 9 2.91 11 2.30 13 1.83 15 1.45 17 1.15	26.67 16.77 10.55 6.634 4.172 2.624	.0 ₃ 375 .0 ₃ 596 .0 ₃ 948 .0 ₂ 151 .0 ₂ 240	.0 ₃ 750 .0 ₂ 119 .0 ₂ 190 .0 ₂ 301 .0 ₂ 479	.02112 .02179 .02284 .02452 .02719	.0 ₂ 150 .0 ₂ 239 .0 ₂ 379 .0 ₂ 603	.0 ₂ 187 .0 ₂ 298 .0 ₂ 474 .0 ₂ 754	.0 ₂ 225 .0 ₂ 358 .0 ₂ 569 .0 ₂ 904	.0 ₂ 262 .0 ₂ 417 .0 ₂ 664 .0106	.0 ₂ 300 .0 ₂ 477 .0 ₂ 758	•02337 •02537 •02853	.0 ₂ 37
5 4.62 7 3.66 9 2.91 11 2.30 13 1.83 15 1.45 17 1.15	16.77 10.55 6.634 4.172 2.624	.0 ₃ 596 .0 ₃ 948 .0 ₂ 151 .0 ₂ 240	.0 ₂ 119 .0 ₂ 190 .0 ₂ 301 .0 ₂ 479	.02179 .02284 .02452 .02719	.0 ₂ 239 .0 ₂ 379 .0 ₂ 603	.0 ₂ 298 .0 ₂ 474 .0 ₂ 754	.02358 .02569	.0 ₂ 417 .0 ₂ 664 .0106	.0 ₂ 477	.0 ₂ 537 .0 ₂ 853	.0259
5 4.62 7 3.66 9 2.91 11 2.30 13 1.83 15 1.45 17 1.15	10.55 6.634 4.172 2.624	.0 ₃ 948 .0 ₂ 151 .0 ₂ 240	.0 ₂ 190 .0 ₂ 301 .0 ₂ 479	.0 ₂ 284 .0 ₂ 452 .0 ₂ 719	.0 ₂ 379	.0 ₂ 474	.02569	.0 ₂ 664	.02758	.02853	
9 2.91 11 2.30 13 1.83 15 1.45 17 1.15	6.634 4.172 2.624	.02151	.02301	.02452 .02719	.02603	.02754	.02904	.0106			.0294
11 2.30 13 1.83 15 1.45 17 1.15	4.172 2.624	.02240	.02479	.02719					.0121		
13 1.83 15 1.45 17 1.15	2.624				.0.959	0120				.0136	.0151
15 1.45		.0038I					.0144	.0168	.0192	.0216	.0240
17 1.15				•0114	.0152	10101	.0229	.0207	.0305	.0343	.0381
	1.650	.02606	.0121	.0182	•0242	.0303	∙0364	.0424	.0485	.0545	.oúo6
	1.038	.02963	10103	.0289	•0385	.0482	•0578	.0674	.0771	.0867	.0963
19 .91		.0153	.0306	.046o	.0613	•0766	.0919	.1072	.1226	.1379	.1532
21 .72		.0244	.0487	.0731	.0974	.1218	.1462	-1705	.1049	.2192	.2436
23 -57		.0387	.0775	.1162	.1549	.1936	.2324	.2711	.3008	.3486	.3873
25 .43		.0616	.1232	.1847	•2463	.3079	.3695	.4310	.4926	-5542	.6158
27 .36		•0979	.1959	.2938	.3918	·4 ⁸ 07	·5877	.6856	-7.835	.8815	•9794
- 7 (•1557	.3114	.4671	6228	.7786	-9343	1.090	1.246	1.401	1.557
31 .22		.2476	.4952 .7874	1.181	.9904	1.238	1.486	1.733	1.981	2.228	2.476
U.)		.6262	1.252	1.879	2.505	3.131	2.362	2.756	3.150	3.543	3.937
		,9950	1.252	2.085	3.980		3.757	4.383	5.009	5.636	6.262
37 .00		1.583	3.166	4.748	6.331	4.975 7.014	5.070	6.965	7.960	8.955	9.950
40 .08		1,996	3.492	5.988	7.984	9.980	9.497	13.97	15.97	14.25	15.83

RESISTIVITY OF METALS AND SOME ALLOYS.

The resistivities are the values of ρ in the equation $R=\rho l/s$, where R is the resistance in microbms of a length l cm of uniform cross section s cm². The temperature coefficient is a_s in the formula $R_l=R_s[1+a_s(l-l_s)]$. The information of column 2 does not necessarily apply to the temperature coefficient. See also next table for temperature coefficients 0° to 100°C.

		Tempera-	Microhm-	Refer-		ire coefficient	
Substance.	Remarks.	ture, °C	cm	ence.	t_s	a_8	Refer- ence.
Advance	see constantan see p. 334	20.	2.828		18° —	+.0030	2
46	c. p.	-189. -100.	0.64 1.53	3	25 100	+.0034 +.0040	4 4
	"	0.	2.62	3	500	+.0050	4
	"	+100. 400.	3.86 8.0	3	=		
Antimony	_	20. —100.	41.7	5 6	20 —	+.0036	5
Arsenic	liquid	+860.	120. 35.	7 8		_	
Bismuth	_	18.	119.0	9	20	+.004	5
Brass		20.	7.	9 5	20	+.002	5
Cadmium	drawn	-160. 18.	2.72 7.54	10 9	20 —	+.0038	5
46	liquid	100. 318.	9.82 34.1	9 11	_	_	=
Caesium		-187.	5.25	12 11			=
66	solid liquid	27. 30.	22.2 · 36.6	13 13	=	_	_
Calcium	99.57 pure see constantan	20.	4.6	14	_	+.0036	14
Calido	see constantan	0.	2.6	15	_	_ =	
Climax	99.8 pure	20. 20.	8 ₇ .	5 16	20 —	+.0007	5
Constantan	60% Cu, 40% Ni	20.	49.	5	12 25	+.000008 +.000002	4 4
"	=	_]	}	_	100	000033 000020	4 4
Copper	annealed .	20.		_	500 20 see col. 2	+.000027 +.00393	4 5
"	hard-drawn	20.	1.77	I.	45 65 65 66	+.00382	5
"	electrolytic	−206. +205.	2.92	17	100 400	+.0038 +.0042	4 4
	pure very pure, ann'ld	400. 20.	4.10 1.692	18	1000 —	+.0062	4
Eureka	see constantan	20.	— 02.		20	+.00016	5
Gallium	 18% Ni	O. 2O.	53 · 33 ·	12	20	+.0004	5
Gold	99.9 pure	-183.	0.68	17	20 100 ann'ld	+.0034	5
"	pure, drawn	20.	2.44	9	500 ''	+.0035	4
Ia Ia	99.9 pure see constantan	194.5 —	3.77	17	1000 "	+.0049	4
Ideal Indium		o.	8.37	19		_	_
Iridium	_	-186.	6.10	20	_	_	_
66	_	+100.	8.3	20	_	_	-

RESISTIVITY OF METALS AND SOME ALLOYS.

		Tempera-	Microhm-	Pofor		re coefficient.	
Substance.	Remarks.	ture,	cm cm	ence.	t_s	e_s	Refer- ence.
Iron. "" "" "" "" Lead. "" "" "" Lead. "" "" Magnesium "" Manganese. Manganin "" Mercury. "" "" Mercury. "" "" Molybdenum. "" "" Monlybdenum. "" "" "" "" Monlybdenum. "" "" "" Monlybdenum. "" "" "" "" "" Monlybdenum. "" "" "" "" Monlybdenum. "" "" "" "" "" "" Monlybdenum. "" "" "" "" "" "" "" "" "" "" "" "" ""	99.08% pure pure, soft """ """ """ E.B.B. B.B. B.B. Siemens-Martin manganese 35% Ni, "invar." piano wire temp. glass, hard ", yellow ", blue ", soft cold pressed """ """ """ """ """ """ """ """ """ "	20205.3 -78.4 0. +98.5 196.1 400. 20. 20. 20. 20. 20. 0. 0. 0. 0. 0. 2018378. 0. +98.5 400. 20183.5 -78. 098.5 4001010.9 -1	10. 0.652 5.32 8.85 17.8 21.5 43.3 10.4 11.9 18. 70. 81. 11.8 45.7 20.5 15.9 22. 6.02 14.1 20.4 28.0 36.9 94. 1.34 6.1 28.0 36.9 94. 1.34 5.28 6.02 14.1 20.4 1.35 5.9 21.7 45.2 4.6 1.00 2.97 4.35 5.99 4.35 5.99 5.0± 44. ——————————————————————————————————	5 17 17 17 17 17 17 17 17 17 17 17 17 17	20 0 25 100 500 1000 20 see col. 2 11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	+.0050 +.0050 +.0052 +.0052 +.0058 +.0147 +.00500031 +.0031 +.0032 +.0016 +.0033 +.0044 +.0038 +.0050 +.0045 +.0036 +.0050 +.00000000011 +.00080 +.000800000880000000000120000880000000000000000000000000000	51 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

RESISTIVITY OF METALS AND SOME ALLOYS.

Substance	P	Tempera-	Michrom-	Refer-	Temp	perature coeff	icient.
Substance	Remarks.	ature, °C	cm	ence.	t ₃	a _s	Refer- ence.
Osmium. Palladium. Platinum. Platinum. Potassium. "" Rhodium. "" Silicium. Silver. "" Sodium. "" Strontium. Tantalum. Tantalum. Tellurium. Thallium. "" Therlo. Tin. "" "" Titanium. Tungsten. "" "" Zinc. "" "" "" "" "" "" "" "" "" "" "" "" ""	very pure """ """ """ """ solid """ liquid 99.98 pure electrolytic "" "" "" solid "" "" "" "" "" "" "" "" ""	20. 20. 20. 20. 20. 20. 20. 20. 20. 20.	60.2 11. 2.78 7.17 10.21 13.79 10. 2.444 6.87 10.96 14.85 26. 4.0 6.1 8.4 0.70 3.09 4.69 6.60 2.5 11.6 13.4 19.6 58. ± 1.629 0.390 1.021 1.468 2.062 2.608 3.77 1.0 2.8 4.3 5.4 10.2 2.4 8 17.60 2.4 17 47. 11.5 3.40 8.8 17.60 24.7 47. 11.5 3.40 8.8 17.60 24.7 47. 11.5 3.40 8.8 17.60 24.7 47. 11.5 3.40 8.8 17.60 24.7 47. 11.5 3.40 8.8 17.60 24.7 47. 11.5 3.40 8.8 17.60 24.7 47. 11.5 3.40 8.8 17.60 24.7 47. 11.5 3.40 8.8 17.60 24.7 47. 11.5 3.40 8.8 17.60 24.7 47. 11.5 3.40 8.8 17.60 24.7 47. 11.5 3.40 8.8 17.60 24.7 47. 11.5 3.40 8.8 17.60 24.7 47. 11.5 3.40 8.8 17.60 24.7 47. 11.5 3.40 8.8 17.60 24.7 47. 11.5 3.40 8.8 17.60 24.7 47. 11.5 3.40 8.8 17.60 24.7 47. 11.5 3.40 8.8 8 17.60 3.75 8.00	3 5 17 17 17 17 17 17 17 17 17 13 13 13 13 20 20 20 20 13 13 13 13 13 13 13 13 13 13 13 13 13	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+.0031 +.0031 +.0031 +.0038 +.0030 +.0036 +.0031 +.0001 +.0001 +.0042 +.0057 +.0089 	5 21

References to Table 397: (1) See page 334; (2) Jäger, Diesselhorst, Wiss. Abh. D. Phys. Tech. Reich. 3, p. 269, 1900; (3) Nicolai, 1907; (4) Somerville, Phys. Rev. 31, p. 261, 1910; 33, p. 77, 1911; (5) Circular 74 of Bureau of Standards, 1918; (6) Eucken, Gelhoff; (7) de la Rive; (8) Matthiessen; (9) Jäger, Diesselhorst; (10) Lees, 1908; (11) Mean; (12) Guntz, Broniewski; (13) Hackspill; (14) Swisher, 1917; (15) Shukow; (16) Reichardt, 1901; (17) Dewar, Fleming, Dickson, 1808; (18) Wolff, Dellinger, 1910; (19) Erhardt, 1881; (20) Broniewski, Hackspill, 1911; (21) Dewar, Fleming, 1893; 1896; (22) Circular 58, Bureau of Standards, 1916; (23) Strouhal, Barus, 1883; (24) Vincentini, Omodei, 1800; (25) Bernini, 1905; (26) Glazebrook, Phil. Mag. 20, p. 343, 1885; (27) Grimaldi, 1888; (28) Fleming, 1900; (29) Langmuir, Gen. Elec. Rev. 19, 1916.

TABLE 398. - Resistance of Metals under Pressure.

The average temperature coefficients are per °C between o° and roo°C. The instantaneous pressure coefficients are the values of the derivative $(1/r)\{dr/dp\}_{l}$, where r is the observed resistance at the pressure p and temperature l. The average coefficient is the total change of resistance between o and $12,000 \, \text{kg/cm}^2$ divided by $12,000 \, \text{and}$ the resistance at atmospheric pressure and the temperature in question. Table taken from Proc. Nat. Acad. 3, p. 11, 1917. For coefficients at intermediate temperatures and pressures, see more detailed account in Proc. Amer. Acad. 52, p. 573, 1917. Sn, Cd, Zn, Kahlbaum's "K" grade; Tl, Bi, electrolytic, high purity; Pb, Ag, Au, Cu, Fe, Pt, of exceptional purity. Al better than ordinary, others only of high grade commercial purity.

					Pressure	coefficients.		
	Average ter	cient	I	nstantaneo	us coefficien	t.	Average coefficien	
	0 10 1	00 C	At	o° C	At 1	00° C	o to 12,0	ooo kg/cm²
	At o kg	At 12,000 kg	o kg	12,000 kg	o kg	12,000 kg	At o°	At 100°
In	+.00406 .00447 .00517	+.00383	041226 .041044 .041310		041510‡ .041062	04I072‡ .040973 .04I200	041021 .040920 .041151	04II3I ‡ .04095I .04I226
Cd	.00424 .00421 .00416	.00418 .00412 .00420	.041063 .041442 .040540 .040416	.041220	.041106 .041483 .040524 .040397	.040887 .041237 .040407 .040373	.040894 .041212 .040470	.040927 .041253 .040454 .040377
Ag	.004074	.004069	.040358	.040321 .040286 .040179	.040355 .040304 .040184 .040163	.040331 .040292 .040175	.040333 .040287 .040183	.040336 .040292 .040177 .040158
CoFePdPt.	.003657	.003676 .006184 .003185	.040094	.040081	.040076 .040247 .040189	.040070 .040230 .040187	.040087	.040073 .040235 .040186 .040184
Mo. Ta. W. Mg.	.004336	.004340	.040133	.040126	.040130 .040153 .040130	.040125 .040147 .040123	.040129 040143 .040123	.040126
Sb. Bi. Te.	.00473 +.00438 0063 †	.00403 +.00395		+.041064	+.040768 +.04152 §	+.040723 +.041895§	+.041220	+.040768 +.041980 §

^{* 0°} to 20°.

TABLE 399. - Resistance of Mercury and Manganin under Pressure.

Mercury, pure and free from air and with proper precautions, makes a reliable secondary electric-resistance pressure gage. For construction and manipulation see "The Measurement of High Hydrostatic Pressure; a Secondary Mercury Resistance Gauge," Pr. Am. Acad. 44, p. 221, 1919.

Pressure, kg/cm ²	_	500	1000	1500	2000	2500	3000	4000	5000	6000	6500
$ \begin{array}{c} R(p, -75^{\circ}) \dots \\ R(p, 25^{\circ}) \dots \\ * \dots \end{array} $	I.0000	0.0836	0.0682	0.0535	0.0304	0.0258	0.0128	0.8882	0 8652	0 8428	0 8225
R(p, 125°)	1.0970	1.0770	1.0580	1.0400	1.0230	1.0070	0.9908	0.9614	0.9342	0.9086	0.8966

^{† 0°} to 24°.

[‡] Extrapolated from 50°.

[§] Extrapolated from 75°.

^{*}This line gives the Specific Mass Resistance at 25°, the other lines the specific volume resistance. The use of mercury as above has the advantage of being perfectly reproducible so that at any time a pressure can be measured without recourse to a fundamental standard. However, at o° C mercury freezes at 7500 kg/cm². Manganin is suitable over a much wider range. Over a temperature range o to 50° C the pressure resistance relation is linear within 1/10 per cent of the change of resistance up to 13,000 kg. cm². The coefficient varies slightly with the sample. Bridgman's samples (German) had values of $(\Delta R/pR_0) \times 10^6$ from 2205 to 2325. These are + instead of -, as with most of the above metals. See "The Measurement of Hydrostatic Pressure up to 20,000 Kilograms per Square Centimeter," Bridgman, Pr. Am. Acad. 47, p. 321, 1911.

CONDUCTIVITY AND RESISTIVITY OF MISCELLANEOUS ALLOYS.

TEMPERATURE COEFFICIENTS.

Conductivity in mhos or $\frac{1}{\text{ohms per cm.}^3} = \gamma_t = \gamma_0 (1 - at + bt^2)$ and resistivity in microhms-cm $=\rho_t=\rho_0(1+at-bt^2).$

					_
Metals and alloys	Composition by weight.		a×106	ρ ₀	Authority.
Gold-copper-silver.	58.3 Au + 26.5 Cu + 15.2 Ag 66.5 Au + 15.4 Cu + 18.1 Ag 7.4 Au + 78.3 Cu + 14.3 Ag	7.58 6.83 28.06	574* 529† 1830‡	13.2 14.6 3.6	I
Nickel-copper-zinc.	12.84 Ni + 30.59 Cu + 6.57 Zn by volume	 4.92 	444§	20.3	I
Brass	Various	12.2-15.6 12.16 14.35	1-2×10 ³	6.4-8.4 8.2 7.0	3 3
German silver	Various	3-5	_	2033.	2
	$ \begin{cases} 60.16 \text{ Cu} + 25.37 \text{ Zn} + \\ 14.03 \text{ Ni} + .30 \text{ Fe with trace} \\ \text{of cobalt and manganese} \end{cases} $	3.33	360	30.	4
Aluminum bronze .		7.5-8.5	5-7×10 ²	12-13	2
Phosphor bronze .		10-20	_	5-10	2
Silicium bronze		41		2.4	5
Manganese-copper.	30 Mn + 70 Cu	1.00	40	100.	4
Nickel-manganese- copper	3 Ni + 24 Mn + 73 Cu	2.10	— 30	48.	4
Nickelin	{18.46 Ni + 61.63 Cu + 19.67 Zn + 0.24 Fe + 0.19 Co + 0.18 Mn	3 <u>m</u> 01	300	33•	4
Patent nickel	$ \left\{ \begin{array}{l} 0.42 \text{ Fe} + 0.23 \text{ Zn} + \\ 0.13 \text{ Mn} + \text{trace of cobalt} \end{array} \right\} $	2.92	190	34.	4
Rheotan	\begin{cases} 53.28 \text{ Cu} + 25.31 \text{ Ni} + \\ 16.89 \text{ Zn} + 4.46 \text{ Fe} + \\ 0.37 \text{ Mn} \tag{ \end{cases} \end{cases}	1.90	410	53 ·	4
Copper-manganese-	91 Cu + 7.1 Mn + 1.9 Fe .	4.98	120	20.	5
Copper-manganese-	70.6 Cu + 23.2 Mn + 6.2 Fe.	1.30	22	77 .	6
Copper-manganese-	69.7 Cu + 29.9 Ni + 0.3 Fe.	2.60	120	38.	7
Manganin	84 Cu + 12 Mn + 4 Ni 60 Cu + 40 Ni	2.3	6 8	44 · 49 ·	8
7.75	G: 537 4	37 71	7		

¹ Matthiessen. ³ W. Siemens. ⁵ Van der Ven. ⁷ Feussner. ² Various. ⁴ Feussner and Lindeck. ⁶ Blood. ⁸ Jaeger-Diesselhorst. *, †, ‡, \S , b × 10°=924, 93, 7280, 51, respectively.

TABLE 401.

CONDUCTING POWER OF ALLOYS.

This table shows the conducting power of alloys and the variation of the conducting power with temperature.* The values of C_0 were obtained from the original results by assuming silver $=\frac{t \cdot \delta}{1.585}$ mhos. The conductivity is taken as $C_t = C_0 (1 - at + b\ell^2)$, and the range of temperature was from 0° to 100° C.

The table is arranged in three groups to show (1) that certain metals when melted together produce a solution which has a conductivity equal to the mean of the conductivities of the components, (2) the behavior of those metals alloyed with others, and (3) the behavior of the other metals alloyed together.

It is pointed out that, with a few exceptions, the percentage variation between of and 100° can be calculated from the

It is pointed out that, with a few exceptions, the percentage variation between 0° and 100° can be calculated from the formula $P = P_{\circ} \frac{1}{l^{\prime}}$, where l is the observed and l^{\prime} the calculated conducting power of the mixture at 100° C., and P_{\circ} is the calculated mean variation of the metals mixed.

	Weight %	Vo lume %	Co			Variation	per 100° C.
Alloys.	of first	named.	104	a × 10 ⁶	<i>b</i> × 10 ⁹	Observed.	Calculated.
		Gı	ROUP I.				
Sn ₆ Pb	77.04	83.96	7.57	3890	8670	30.18	29.67
	82.41	83.10	9.18	4080	11870	28.89	30.03
	78.06	77.71	10.56	3880	8720	30.12	30.16
	64.13	53.41	6.40	3780	8420	29.41	29.10
	24.76	26.06	16.16	3780	8000	29.86	29.67
	23.05	23.50	13.67	3850	9410	29.08	30.25
	7.37	10.57	5.78	3500	7270	27.74	27.60
,		G	ROUP 2.				
Lead-silver (Pb ₂₀ Ag) .	95.05	94.64	5.60	3630	7960	28.24	19.96
Lead-silver (PbAg) .	48.97	46.90	8.03	1960	3100	16.53	7.73
Lead-silver (PbAg ₂) .	32.44	30.64	13.80	1990	2600	17.36	10.42
Tin-gold $(\operatorname{Sn}_{12}\operatorname{Au})$ $(\operatorname{Sn}_5\operatorname{Au})$	77·94	90.32	5.20	3080	6642	24.20	14.83
	59·54	79·54	3.03	2920	6300	22.90	5.95
Tin-copper	92.24 80.58 12.49 10.30 9.67 4.96	93.57 83.60 14.91 12.35 11.61 6.02 1.41	7.59 8.05 5.57 6.41 7.64 12.44 39.41	3680 3330 547 666 691 995 2670	\$130 6840 294 1185 304 705 5070	28.71 26.24 5.18 5.48 6.60 9.25 21.74	19.76 14.57 3.99 4.46 5.22 7.83 20.53
Tin-silver	91.30	96. 5 2	7.81	3820	8190	30.00	23.31
	53.85	75.51	8.65	3770	8550	29.18	11.89
Zinc-copper †	36.70	42.06	13.75	1370	1340	12.40	11.29
	25.00	29.45	13.70	1270	1240	11.49	10.08
	16.53	23.61	13.44	1880	1800	12.80	12.30
	8.89	10.88	29.61	2040	3030	17.41	17.42
	4.06	5.03	38.09	2470	4100	20.61	20.62

Note. — Barus, in the "Am. Jour. of Sci." vol. 36, has pointed out that the temperature variation of platinum alloys containing less than 10% of the other metal can be nearly expressed by an equation $y = \frac{n}{x} - m$, where y is the temperature coefficient and x the specific resistance, m and n being constants. If a be the temperature coefficient at o° C. and s the corresponding specific resistance, s(a + m) = n.

For platinum alloys Barus's experiments gave m = -.000194 and n = .0378. For steel m = -.000303 and n = .0620.

Matthiessen's experiments reduced by Barus gave for

Gold alloys m = -.000045, n = .00721. Silver " m = -.000112, n = .00538. Copper " m = -.000386, n = .00055.

^{*} From the experiments of Matthiessen and Vogt, "Phil. Trans. R. S." v. 154. † Hard-drawn.

TABLE 401. - Conducting Power of Alloys.

		Gr	OUP 3.				
Alloys.		Volume %	C ₀	a×10 ⁶	δ × 10 ⁹	Variation	per 100° C.
	of first named.					Variation per 100° C. Observed. Calculated 21.87	Calculated.
Gold-copper †	99.23 90.55	98.36 81.66	35.42 10.16	2650 749	4650 81		
Gold-silver †	87.95 87.95 64.80 64.80 31.33	79.86 79.86 52.08 52.08 19.86	13.46 13.61 9.48 9.51 13.69	1090 1140 673 721 885 908	793 1160 246 495 531 641	10.21 6.49 6.71 8.23	9.59 6.58 6.42 8.62
Gold-copper †	34.83 1.52	19.17	12.94 53.02	864 3320	. 570 7300		
Platinum-silver †	33·33 9.81 5.00	19.65 5.05 2.51	4.22 11.38 19.96	330 774 1240	208 656 1150	7.08	7.25
Palladium-silver †	25.00	23.28	5.38	324	154	3.40	4.21
Copper-silver†	98.08 94.40 76.74 42.75 7.14 1.31	98.35 95.17 77.64 46.67 8.25 1.53	56.49 51.93 44.06 47.29 50.65 50.30	3450 3250 3030 2870 2750 4120	7990 6940 6070 5280 4360 8740	25.57 24.29 22.75 23.17	25.41 21.92 24.00 25.57
Iron-gold †	13.59 9.80 4.76	27.93 21.18 10.96	1.73 1.26 1.46	3490 2970 487	7010 1220 103	17.55	11.20
Iron-copper †	0.40	0.46	24.51	1550	2090	13.44	14.03
Phosphorus-copper † .	2.50 0.95	-	4.62 14.91	476 1320	145 1640	_	-
Arsenic-copper †	5.40 2.80 trace	- - -	3.97 8.12 38.52	516 736 2640	989 446 4830		-

* Annealed.

† Hard-drawn.

TABLE 402. - Allowable Carrying Capacity of Rubber-covered Copper Wires.

(For inside wiring - Nat. Board Fire Underwriters' Rules.)

		-													
. B+S Gage	18	16	14	12	10	8	6	5	,4	3	2	I	0	00	0000
							-								
Amperes	. 3	6	12	17	24	33	46	54	65	76	90	107	127	150	210

500,000 circ. mills, 390 amp.; 1,000,000 c. m., 650 amp.; 2,000,000 c. m., 1,050 amp. For insulated al. wire, capacity = 84% of cu. Preece gives as formula for fusion of bare wires $I = ad^{\frac{3}{2}}$, where d = diam. in inches, a for cu. is 10,244; al., 7585; pt., 5172; German silver, 5230; platinoid, 4750; Fe, 3148; Pb., 1379; alloy 2 pts. Pb., 1 of Sn., 1318.

TABLE 403.

RESISTIVITIES AT HICH AND LOW TEMPERATURES.

The electrical resistivity (ρ , ohms per cm. cube) of good conductors depends greatly on chemical purity. Slight contamination even with metals of lower ρ may greatly increase ρ . Solid solutions of good conductors generally have higher ρ than components. Reverse is true of bad conductors. In solid state allotropic and crystalline forms greatly modify ρ . For liquid metals this last cause of variability disappears. The + temperature coefficients of pure metals is of the same order as the coefficients of, expansion of gases. For temperature resistance (t, ρ) plot at low temperatures the graph is convex towards the axis of t and probably approaches tangency to it. However for extremely low temperatures Onnes finds very sudden and great drops in ρ . e.g. for Mercury, $\rho_{3.6}$ K <4x1 σ^{-10} ρ_0 and for Sn., $\rho_{3.8}$ K <1 σ^{-1} ρ_0 . The t, ρ graph for an alloy may be nearly parallel to the t axis, cf. constant; (or poor conductors ρ may decrease with increasing t. At the melting-points there are three types of behavior of good conductors: those about doubling ρ and then possessing nearly linear t, ρ graphs (Al., Cu., Sn., Au., Ag., Pb.); those where ρ suddenly increases and then the temperoefficient is only approximately constant; (Hg., Na., K.); those about doubling ρ then having a γ , slowly changing to a γ 1 temperature resistance of different samples of metals. The Shimank values from different authorities do not necessarily fit because of different samples of metals. The Shimank values are originally given as ratios to ρ_0 . (Ann. d. Phys. 45, p. 706, 1914, 46, p. 176, 1915.) Resistivities are in ohms per cm. cube unless stated. Italicized figures indicate liquid state.

	Gold.			Copper.			Silver.			Zinc.	
°C.	$ ho_{ m t}$	$\frac{\rho_t}{\rho_0}$	° C.	Ρt	$\frac{\rho_t}{\rho_o}$	° C.	ρt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	° C.	Ρt	$\frac{\rho_t}{\rho_0}$
-252.8 -200. -102.5 -150. -100. -77.6 -50. -200. 500. 1000. 1063. 1200. 1400. 1500.	0.018 .601 .520 .997 1.400 1.564 1.813 2.247 2.97 3.83 6.62 9.35 12.54 13.50 30.82 32.8 35.6 37.0	.0081 .267 .231 .444 .623 .696 .806 1.00 1.32 1.70 2.94 4.16 5.58 6.01 1.3.7 14.6 15.8	-258.6 -252.8 -251.1 -206.6 -192.9 -15010050. 0. 100. 200. 550. 100. 100. 100. 1400. 1500.	0.014 .016 .028 .163 .249 .567 .904 1.240 1.578 2.28 5.08 7.03 9.42 10.20 22.30 23.86 24.62	.0091 .0103 .0178 .1035 .1580 .359 .573 .786 1.00 1.44 1.88 3.22 4.46 5.97 13.5 14.1 13.5 14.1 15.1 15.0	-258.6 -252.8 -189.5 -200. -150. -160. -76.8 -50. 0. 200. 400. 750. 060. 1000. 1200. 1400. 1500.	0.009 .014 .334 .357 .638 .916 1.040 1.212 1.506 2.15 2.80 6.65 8.4 16.0 17.01 10.30 21.72 23.0	.0057 .0000 .2222 .2337 .424 .6050 .805 1.00 1.43 1.86 2.30 4.42 5.58 17.0 17.3 17.9 17.9 17.9 17.9 17.9	-252.9 -200191.1 -150100100. 300. 415. 427. 450. 500. 600. 700. 800.	.0511 1.39 1.23 2.00 2.90 3.97 4.04 5.75 13.25 117.00 37.05 37.05 37.05 35.00 35.00 35.00 35.74	.0089 .242 .214 .348 .504 .501 .703 1.00 1.38 2.30 6.49 0.40 0.30 6.25 0.10
	Mercury	,	Potassium.			Sodium.			Iron.		
°C.	$ ho_{ m t}$	$\frac{\rho_{t}}{\rho_{o}}$	°C	ρ _t	$\frac{\rho_t}{\rho_o}$	°C.	$ ho_{ m t}$	$\frac{\rho_{t}}{\rho_{o}}$	°C.	ρt	$\frac{\rho_t}{\rho_0}$
-200. -150. -100. -50. -30. 0. 50. 100. 200. 300.	5.38 10.30 15.42 21.4 91.7 94.1 98.3 103.1 114.0 127.0	.057 .109 .164 .227 .975 I.000 I.045 I.096 I.212 I.350	-200. -150. -100. -50. 0. 20. 60. 65. 100.	1.720 2.654 3.724 5.124 7.000 7.116 8.790 13.40 15.31 10.70	.246 .379 .532 .732 1.00 1.016 1.256 1.914 2.187 2.386	-200. -150. -100. -50. 0. 20. 93.5 100. 120.	0.605 1.455 2.380 3.365 4.40 4.873 6.290 9.220 9.724 10.34	.137 .330 .541 .764 1.000 1.107 1.429 2.005 2.200 2.349	-252.7 -200, -192.5 -100, - 75.1 - 50, - 0, 100, 200, 400,	0.011 2.27 .844 5.92 6.43 8.15 10.68 16.61 24.50 43.29	.0010 .212 .079 .554 .602 .763 1.00 1.554 2.293 4.052
	Manganir	1.	G	erman Sil	ver.		Constanta	n.	90 %	Pt. 10	% Rh.
°C.	ρt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	°C.	$ ho_{ m t}$	$\frac{\rho_{t}}{\rho_{0}}$	°C.	ρt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	°C.	Ρt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$
-200. -150. -100. -50. 0. 100. 400.	37.8 38.2 38.5 38.7 38.8 38.9 38.9	.974 .985 .992 .997 1.000 1.003	-200. -150. -100. -50. 0.	27.9 28.7 29.3 29.7 30.0 33.1	.930 .957 .977 .900 1.000	-200. -150. -100. -50. 0. 100. 400.	42.4 43.0 43.5 43.9 44.1 44.6 44.8	.961 .975 .986 .995 1.000 1.012 1.016	-200. -150. -100. - 50. 0. 100.	14.49 16.29 18.05 19.66 21.14 24.20	.685 .770 .854 .930 1.000

Au. below co, Niccolai, Lincei Rend. (5), 16, p. 757, 906, 1907; above, Northrup, Jour. Franklin Inst. 177, p. 85, 1914. Cu. below, Niccolai, l. c. above, Northrup, ditto, 178, p. 85, 1914. Ag. below, Niccolai, l. c. above Northrup, ditto, 178, p. 85, 1914. Zn. below, Dewar, Fleming, Phil. Mag. 36, p. 271, 1893; above, Northrup, 175, p. 153, 1913. Hg. below Dewar, Fleming, Proc. Roy. Soc. 66, p. 76, 1900; above, Northrup, see Cd. K. below Guntz, Broniewski, C. R. 147, p. 1474, 1908, 148, p. 204, 1909. Above, Northrup, Tr. Am. Electroch. Soc. p. 185, 1911. Na, below, means, above, See K. Fee, Manganin, Constantan. Niccolai, l.c. German Silver, 90% Pt. 90% Rh., Dewar and Fleming — Phil. Mag. 36, p. 271, 1893.

TABLE 403 (continued).

RESISTIVITIES AT HIGH AND LOW TEMPERATURES.

(Ohms per cm. cube unless stated otherwise.)

	Platinun	1.		Lead,				Bismuth.			(Cadmiun	1,
°C.	Ρt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	°C,	$\rho_{\rm t}$	Pt Po		°C.	Ρt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$		°C.	$ ho_{\mathbf{t}}$	Po
-265, -253, -233, -153, - 73,	0.10 .15 .54 4.18 7.82 11.05 14.1 17.9 25 4 40.3 47.0 52.7 58.0 63.0	.000/2 .014 .049 .378 .708 1.00 1.28 1.62 2.30 3.65 4.25 4.77 5.25 5.70	-252.9 -203. -192.8 -103. - 75.8 - 53. 0. 100. 200. 319. 333. 400. 600. 800.	0.59 4.42 5.22 11.8 13.95 15.7 19.8 27.8 38.0 50.0 95.0 98.3 107.2 116.2	.0298 -223 -264 -598 -705 -792 1.00 1.403 1.919 2.52 4.80 4.96 5.41 5.86	-	-200, -150, -100, - 50, 0, 17, 100, 200, 259, 263, 300, 500, 700.	34.8 55.3 75.6 94.3 110.7 120.0 156.5 214.5 267.0 127.5 128.9 139.9 150.8	.314 .499 .683 .852 1.00 1.083 1.413 1.937 2.411 1.150 1.263 1.361 1.386	-2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	252.9 200. 190.2 183.1 139.2 100. 0, 300. 325.° 150. 400.	0.17 1.66 2.00 2.22 3.60 4.80 7.75 16.50 33.70 33.70 33.70 35.12 35.78	.0218 .214 .258 .286 .464 .619 1.00 2.13 4.35 4.33 4.35 4.35 4.40 4.62
	Tin.		Ca	rbon, Grap	hite.*			Fused s	silica.		Al	undum (ement.
°C.	ρt	$\frac{\rho_t}{\rho_0}$	°C.	ρ in ohms	, cm. cube		°C.	ρ=n	negohms c	m.	٥(in ohms m. cube.
-200. -100. 0, 200. 225. 235. 750.	2.60 7·57 13.05 20.30 22.00 47.60 61.22	.199 .580 1.00 1.55 1 69 3.65 4.69	0. 500. 1000. 1500. 2000.	Carbon 0.0035 .0027 .0021 .0015 .b011 .0009	Graphite 0.00080 .00083 .00087 .00090 .00100		15, 230, 300, 350, 450, 700, 850,	4	200,000,000 200,000 30,000 800 30 about 20		2 80 90 100 110 120 160	o. o. o.	>9×10 ⁶ 30800. 13600. 7600. 6500. 2300. 190.

Pt. low, Nernst, l. c. high, Pirrani, Ber. Deutsch. Phys. Ges. 12, p. 305, Pb. low, Schimank, Nernst, l. c. high. Northrup, see Zn. Bi. low, means, high, Northrup, see Zn. Cd. low, Euchen, Gehloff, Verh. Deutsch. Phys. Ges. 14, p. 169, 1912, high, Northrup, see Zn. Carbon, graphite, Metallurg, Ch. Eng. 13, p. 23, 1915. Silica, Campbell, Nat. Phys. Lab. 11, p. 207, 1914. Alundum, Metallurg. Ch. Eng. 12, p. 125, 1914. * Diamond 1030° C, ρ >107; 1380°, 7.5 × 105, v. Wartenberg, 1912.

TABLE 404.—Volume and Surface Resistivity of Solid Dielectrics.

The resistance between two conductors insulated by a solid dielectric depends both upon the surface resistance and the volume resistance of the insulator. The volume resistivity, ρ , is the resistance between two opposite faces of a centimeter cube. The surface resistivity, σ , is the resistance between two opposite edges of a centimeter square of the surface. The surface resistivity usually varies through a wide range with the humidity. (Curtis, Bul. Bur. Standards, 11, 359, 1915, which see for discussion and data for many additional materials.)

Material.	σ; megohms 50% humidity.	σ; megohms 70% humidity.	σ; megohms 90% humidity.	Megohms-cms.
Amber Beeswax, yellow Celluloid Fiber, red Glass, plate "Kavalier Hard rubber, new Ivory Khotinsky cement Marble, Italian Mica, colorless Paraffin (parowax) Porcelain, unglazed Quartz, fused Rosin Sealing wax Shellac Slate Sulphur Wood, parafined mahogany	6 × 108 6 × 108 5 × 104 2 × 104 5 × 106 3 × 109 5 × 103 7 × 108 3 × 107 9 × 109 6 × 105 3 × 106 6 × 105 2 × 107 9 × 109 6 × 105 9 × 109 6 × 107 9 × 109 6 × 107 9 × 109 4 × 105	2 × 10 ⁸ 6 × 10 ⁸ 2 × 10 ⁴ 3 × 10 ³ 6 × 10 4 × 10 ⁸ 1 × 10 ⁸ 1 × 10 ⁸ 2 × 10 ² 4 × 10 ⁵ 7 × 10 ⁹ 7 × 10 ⁹ 2 × 10 ³ 3 × 10 ⁸ 6 × 10 ⁸ 3 × 10 ⁸ 6 × 10 ⁸ 3 × 10 ⁶ 3 × 10 ⁶ 5 × 10 ⁵ 7 × 10 ⁹ 5 × 10 ⁵	1 × 10 ⁵ 5 × 10 ⁸ 2 × 10 ³ 2 × 10 ² 2 × 10 1 × 10 ⁸ 2 × 10 ³ 3 × 10 5 × 10 ⁵ 2 × 10 8 × 10 ³ 6 × 10 ⁹ 5 × 10 2 × 10 ² 2 × 10 ⁸ 9 × 10 ⁷ 7 × 10 ³ 1 × 10 1 × 10 ⁸ 7 × 10 ³	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE 405 .- Variation of Electrical Resistance of Glass and Porcelain with Temperature.

The following table gives the values of a, b, and c in the equation

 $\log R = a + bt + ct^2,$

where R is the specific resistance expressed in ohms, that is, the resistance in ohms per centimeter of a rod one square centimeter in cross section.*

No.		К	ind o	of glas	S.		Density.		а	ě			c	Range of temp. Centigrade
I	Test-tube	glas	s				-	13	.86	0	44	.00	0065	00-250
2	66 66	46					2.458	14	.24.	0	55	.00	01	37-131
3	3 Bohemian glass						2.43	16	.2Ì	0	43	.00	00394	60-174
4 Lime glass (Japanese manufacture)						ufacture).	2.55	13.	.14	0	31	00	0021	10-85
5 " " " " "							2.499	14.	.002	0	25	00	006	35-95
6 Soda-lime glass (French flask)						ask) .	2.533	14.	.58	0	49	.00	0075	45-120
7 Potash-soda lime glass							2.58	16.	34	0	125	.00	00364	66-193
8 Arsenic enamel flint glass .							3.07.	18,	17	055 .000088		0088	088 105-135	
9	9 Flint glass (Thomson's electromete						3.172	18.	021	0	36	000	10000	100-200
10	Porcelain	(whi	ite e	vapo	rati	ng dish) .	- .	15.	65	02	12	.00	005	68-290
			Con	d POSI	TION	OF SOME OF	THE ABOV	E S	PFCIM	ENS O	f Gi	ASS.		
	Number of	speci	imen	=		3	4			5		7	8	9
Sil	ica .					61.3	57.2		70	0.05	7	5.65	54.2	55.18
Ро	tash					22.9	21.1		I	-44	!	7.92	10.5	13.28
So	da					Lime, etc.	Lime, e	etc.	14	32		6.92	7.0	-
Le	ad oxide .					by diff.	by dif	f.	2	70			23.9	31.01
Lit	me					1 5.8	16.7		10	0.33		3.48	0.3	0.35
Ma	ignesia .			٠		-	_			_		5.36	0.2	0.06
Ars	senic oxide					_	-			_			3.5	-
4.7														

^{*} T. Gray, "Phil. Mag." 1880, and "Proc. Roy. Soc." 1882.

1.45

0.70

TABLE 405a. - Temperature Resistance Coefficients of Glass, Porcelain and Quartz dr/dt.

Temperature.	450 ⁰	5000	575 ²	6060	700°	7500	8000	9000	10000
Glass Porcelain Quartz	—32. —	—6. -	-1.5 -16.	8 -9.8	-0.17 -2.8	-0.1 -1.6 -10.	-0.06 70 -6.40	-0.30 -2.60	- -0.12 -1.00

Somerville, Physical Review, 31, p. 261, 1910.

Alumina, iron oxide, etc.

TABULAR COMPARISON OF WIRE GAGES.

Gage No.	American wire gage (B. & S.) mils.†	American wire gage (B. & S.) mm.†	Steel wire gage * mils.	Steel wire gage* mm.	Stubs' steel wire gage mils.	(British) standard wire gage mils.	Birming- ham wire gage (Stubs') mils-	Gage No.
7-0 6-0 5-0			490.0 461.5 430.5	12.4 11.7 10.9		500. 464. 432.		7-0 6-0 5-0
4-0 3-0 2-0	460. 410. 3 65.	11.7 10.4 9.3	393.8 362.5 331.0	10.0 9.2 8.4		400. 372. 348.	454. 425. 380.	4-0 3-0 2-0
0 I 2	325. 289. 258.	8.3 7.3 6.5	306.5 283.0 262.5	7.8 7.2 6.7	227. 219.	324. 300. 276.	340. 300. 284.	· 0 · I · 2
3 4 5	229. 204. 182.	5.8 5.2 4.6	243.7 225.3 207.0	6.2 5.7 5.3	212. 207. 204.	252. 232. 212.	259. 238. 220.	3 4 5
6 7 8	162. 144. 128.	4.1 3.7 3.3	192.0 177.0 162.0	4.9 4.5 4.1	201. 199. 197.	192. 176. 160.	203. 180. 165.	, 6 , 7 , 8
10 11	114. 102. 91. 81.	2.91 2.59 2.30	148.3 135.0 120.5	3.77 3.43 3.06	194. 191. 188.	144. 128. 116.	148. 134. 120.	9 10
12 13 14 15	72. 64.	2.05 1.83 1.63	105.5 91.5 80.0 72.0	2.68 2.32 2.03 1.83	185. 182. 180.	104. 92. 80. 72.	95. 83.	13
15 16 17 18	57· 51. 45·	1.45 1.29 1.15	62.5 54.0 47.5	1.59 1.37 1.21	175. 172. 168.	64. 56. 48.	72. 65. 58.	15 16 17 18
19 20 21	36. 32. 28.5	0.91 .81	41.0 34.8 31.7	1.04 0.88	164. 161.	40. 36. 32.	42. 35. 32.	19 20 21
22 23 24	25.3 22.6 20.1	.62 •57	28.6 25.8 23.0	.73 .66	153.	28. 24. 22.	28. 25.	23 23 24
25 26 27	17.9 15.9 14.2	.45 .40	20.4 18.1 17.3	.52 .46 .439	148. 146. 143.	20. 18. 16.4	20. 18. 16.	25 26 27
28 29 30	12.6 11.3 10.0	.32 .29 .25	16.2 15.0 14.0	.411 .381 .356	139. 134. 127.	14.8 13.6 12.4	14. 13. 12.	28 29 30
31 32 36	8.9 8.0 7.1	.227 .202	13.2 12.8 11.8	•335 •325 •300	120. 115. 112.	11.6 10.8 10.0	9. 8.	31 32 33
34 35 36	5.6 5.0	.160 .143 .127 .113	9.5 9.0 8.5	.264 .241 .229 .216	110. 108. 106.	9.2 8.4 7.6 6.8	7- 5- 4-	34 35 36
37 38 39	4.5 4.0 3.5 3.1	.090	8.o 7.5	.191	99.	6,0 5.2 4.8		37 38 39
40 41 42 43	3.1	.000	7.0 6.6 6.2 6.0	.168	95. 92. 88.	4.0 4.0 3.6		40 41 42 43 4
45 44 45 46			5.8 5.5 5.2	.147 .140 .132	85. 81. • 79•	3.2 2.8 2.4		45 45 46
47 48 49	-		5.0 4.8 4.6	.127 .122 .117	77. 75. 72.	2.0 1.6 1.2		47 48 49
50			4:4	.112	-69.	1.0		50

* The Steel Wire Gage is the same gage which has been known by the various names: "Washburn and Moen," "Roebling," "American Steel and Wire Co.'s." Its abbreviation should be written "St. W. G.," to distinguish it from "S. W. G.," the usual abbreviation for the (British) Standard Wire Gage.
† The American Wire Gage sizes have been rounded off to the usual limits of commercial accuracy. They are given to four significant figures in Tables 410 to 413. They can be calculated with any desired accuracy, being based upon a simple mathematical law. The diameter of No. 0000 is defined as 0.4000 inch and of No. 36 as 0.0050 inch. The

=1.1229322. ratio of any diameter to the diameter of the next greater number 3.4600

Taken from Circular No. 31. Copper Wire Tables, U.S. Bureau of Standards which contains more complete tables.

TABLES 407-413. WIRE TABLES.

TABLE 407. - Introduction. Mass and Volume Resistivity of Copper and Aluminum.

The following wire tables are abridged from those prepared by the Bureau of Standards at the request and with the coöperation of the Standards Committee of the American Institute of Electrical Engineers (Circular No. 31 of the Bureau of Standards). The standard of copper resistance used is "The International Annealed Copper Standard" as adopted Sept. 5, 1913, by the International Electrotechnical Commission and represents the average commercial high-conductivity copper for the purpose of electric conductors. This standard corresponds to a conductivity of 58. ×10⁻⁵ cgs. units, and a density of 8.89, at 20° C.

In the various units of mass resistivity and volume resistivity this may be stated as

o.15328 ohm (meter, gram) at 20° C. 875.20 ohms (mile, pound) at 20° C. 1.7241 microhm-cm. at 20° C. 0.67879 microhm-inch at 20° C. 10.371 ohms (mil, foot) at 20° C.

The temperature coefficient for this particular resistivity is $\alpha_{20} = 0.00393$ or $\alpha_0 = 0.00427$. The temperature coefficient of copper is proportional to the conductivity, so that where the conductivity is known the temperature coefficient may be calculated, and vice-versa. Thus the next table shows the temperature coefficients of copper having various percentages of the standard conductivity. A consequence of this relation is that the change of resistivity per degree is constant, independent of the sample of copper and independent of the temperature of reference. This resistivity-temperature constant, for volume resistivity and Centigrade degrees, is 0.00681 michrom-cm., and for mass resistivity is 0.000597 ohm (meter, gram).

The density of 8.89 grams per cubic centimeter at 20° C., is equivalent to 0.32117 pounds per

cubic inch.

The values in the following tables are for annealed copper of standard resistivity. The user of the tables must apply the proper correction for copper of other resistivity. Hard-drawn copper may be taken as about 2.7 per cent higher resistivity than annealed copper.

The following is a fair average of the chemical content of commercial high conductivity copper:

Copper	99.91%	Sulphur	0.002%
Silver	.03	Iron	.002
Oxygen	.052	Nickel	Trace
Arsenic	.002	Lead	66
Antimony	.002	Zinc	66

The following values are consistent with the data above:

Conductivity at oo C., in c.g.s. electromagnetic units	62.969 × 10 ⁻⁵
Resistivity at o° C., in michroms-cms.	1.5881
Density at o° C	8.00
Coefficient of linear expansion per degree C	0.000017
"Constant mass" temperature coefficient of resistance at oo C	0.00427

The aluminum tables are based on a figure for the conductivity published by the U.S. Bureau of Standards, which is the result of many thousands of determinations by the Aluminum Company of America. A volume resistivity of 2.828 michrom-cm., and a density of 2.70 may be considered to be good average values for commercial hard-drawn aluminum. These values give:

Mass resistivity, in ohms (meter, gram) at 20° C	0.0764 436. 200.7 0
(mile, pound) at 20° C	436.
Mass per cent conductivity	200.7
Volume resistivity, in michrom-cm, at 20° C	2.828
" in microhm-inch at 20° C	1.113
Volume per cent conductivity	61.0%
Density, in grams per cubic centimeter	2.70
Density, in pounds per cubic inch	0.0975
he average chemical content of commercial aluminum wire is	
Aluminum	99.57%
Silicon	0.29
Iron	0.14

SMITHSONIAN TABLES.

T

COPPER WIRE TABLES.

TABLE 408. - Temperature Coefficients of Copper for Different Initial Temperatures (Centigrade) and Different Conductivities.

Ohms (meter, gram) at 20° C.	Per cent conductivity.	αo	a 15	a ₂₀	a ₂₅	a 30	α ₅₀
0.161 34 .159 66	95% 96%	0.004 03	0.003 80	0.003 73	0.003 67 .003 70	0.003 60	0.003 36
.158 02 .157 53	97 % 97 · 3 %	.004 I3 .004 I4	.003 89	.003 81	.003 74	.003 67	.003 42 .003 43
.156 40 .154 82	98% 99%	.004 I7 .004 22	.003 93	.003 85	.003 78	.003 71 .003 74	.003 45
. 153 28 .151 76	100%	.004 27 .004 31	.004 0 1 .004 05	.003 93	.003 85	.003 78	.003 52

Note. — The fundamental relation between resistance and temperature is the following:

$$R_t \! = \! R_{t_1}(\mathbf{I} + \! \alpha_{t_1}[t - t_1]),$$

where a_{t_1} is the "temperature coefficient," and t_1 is the "initial temperature" or "temperature of reference."

The values of α in the above table exhibit the fact that the temperature coefficient of copper is proportional to the conductivity. The table was calculated by means of the following formula, which holds for any per cent conductivity, n, within commercial ranges, and for centigrade temperatures. (n is considered to be expressed decimally: e.g., if per cent conductivity = 99 per cent, n = 0.99.)

$$a_{t_1} = \frac{1}{n(0.00393) + (t_1 - 20)}.$$

TABLE 409. - Reduction of Observations to Standard Temperature. (Copper.)

	Correcti	ons to reduce	Resistivity t	o 20° C.	Factors to re	educe Resista	nce to 20° C.	i
Temper- ature C.	Ohm (meter, gram).	Microhm—	Ohm (mile, pound).	Microhm—inch.	For 96 per cent con- ductivity.	For 98 per cent con- ductivity.	For 100 per cent con- ductivity.	Temper- ature C.
0	+0.011 94	+0.1361	+ 68.20	+0.053 58	1.0816	1.0834	1.0853	0
5	+ .008 96	+ .1021	+ 51.15	+ .040 18	1.0600	1.0613	1.0626	5
10	+ .005 97	+ .0681	+ 34.10	+ .026 79	1.0392	1.0401	1.0409	10
11	+ .005 37	+ .0612	+ 30.66	+ .024 11	1.0352	1.0359	1.0367	11
12	+ .004 78	+ .0544	+ 27.28	+ .021 43	1.0311	1.0318	1.0325	12
13	+ .004 18	+ .0476	+ 23.87	+ .018 75	1.0271	1.0277	1.0283	13
14	+ .003 58	+ .0408	+ 20.46	+ .016 c7	1.0232	1.0237	1.0242	14
15	+ .002 99	+ .0340	+ 17.05	+ .013 40	1.0192	1.0196	1.0200	15
16	+ .002 39	+ .0272	+ 13.64	+ .010 72	1.0153	1.0156	1.0160	16
17 18 19	+ .001 79 + .001 19 + .000 60	+ .0204 + .0136 + .0068	+ 10.23 + 6.82 + 3.41	+ .008 04 + .005 36 + .002 68	1.0114 1.0076 1.0038	1.0078 1.0039	1.0119 1.0079 1.0039	17 18 19
20 21 22	000 60 001 19	0068 0136	- 3.41 - 6.82	002 68 005 36	0.9962 0.9925	1.0000 0.9962 .9924	1.0000 0.9961 .9922	20 2I 22
23	001 79	0204	- 10.23	008 04	.9888	.9886	.9883	23
24	002 39	0272	- 13.64	010 72	.9851	.9848	.9845	24
25	002 99	0340	- 17.05	013 40	.9815	.9811	.9807	25
26	003 58	0408	- 20.46	016 07 ₀	.9779	.9774	.9770	26
27	004 18	0476	- 23.87	018 75	.9743	.9737	.9732	27
28	004 78	0544	- 27.28	021 43	.9707	.9701	.9695	28
30 35	005 37 005 97 008 96	0612 0681 1021	- 30.69 - 34.10 - 51.15	024 II 026 79 040 I8	.9672 .9636 .9464	.9665 .9629 .9454	.9658 .9622 .9443	29 30 35
40	011 94	1361	- 68.20	053 58	.9298	.9285	.9271	40
45	014 93	1701	- 85.25	066 98	.9138	.9122	.9105	45
50	017 92	2042	- 102.30	080 37	.8983	.8964	.8945	50
55 60 65	020 90 023 89 026 87	2382 2722 3062	-119.35 -136.40 -153.45	093 76 107 16 120 56	.8833 .8689 .8549	.8665 .8523	.8791 .8642 .8497	55 60 65
70	029 86	3403	-170.50	133 95	.8413	.8385	.8358	70
75	032 85	3743	-187.55	147 34	.8281		.8223	75

WIRE TABLE, STANDARD ANNEALED COPPER.

American Wire Gage (B. & S.). English Units.

		Cross-Šect	tion at 20° C.		Ohms per	rooo Feet.*	
Gage No.	Diameter in Mils. at 20° C.	Circular Mils.	Square Inches.	°° C (=32° F)	20° C (=68° F)	50° C (=122° F)	75° C (= 167° F)
0000	460.0	211 600.	0.1662	0.045 16	0.049 01	0.054 79	0.059 61
	409.6	167 800.	.1318	.056 95	.061 80	.069 09	.075 16
	364.8	133 100.	.1045	.071 81	.077 93	.087 12	.094 78
0	324.9	105 500.	.082 89	.090 55	.098 27	.1099	.1195
I	289.3	83 690.	.065 73	.1142	.1239	.1385	.1507
2	257.6	66 370.	.052 13	.1440	.1563	.1747	.1900
3	229.4	52 640.	.041 34	.1816	.1970	.2203	.2396
4	204.3	41 740.	.032*78	.2289	.2485	.2778	.3022
5	181.9	33 100.	.026 00	.2887	·3133	.3502	.3810
6 7 8	162.0 144.3 128.5	26 250. 20 820. 16 510.	.020 62 .016 35 .012 97	.3640 .4590 .5788	.4982 .6282	.4416 .5569 .7023	.4805 .6059 .7640
10	114.4	13 090.	.010 28	.7299	.7921	.8855	.9633
	101.9	10 380.	.008 155	.9203	.9989	1.117	1.215
	90.74	8234.	.006 467	1.161	1.260	1.408	1.532
12	80.81	6530.	.005 129	1.463	1.588	1.775	1.931
13	71.96	5178.	.004 067	1.845	2.003	2.239	2.436
14	64.08	4107.	.003 225	2.327	2.525	2.823	3.071
15	57.07	3 ² 57-	.002 558	2.934	3.184	3.560	3.873
16	50.82	2583.	.002 028	3.700	4.016	4.489	4.884
17	45.26	2048.	.001 609	4.666	5.064	5.660	6.158
18	40.30	1624.	.001 276	,5.883	6.385	7.138	7.765
19	35.89	1288.	.001 012	7.418	8.051	9.001	9.792
20	31.96	1022.	.000 802 3	9.355	10.15	11.35	12.35
21	28.4 5	810.1	.000 636 3	11.80	12.80	14.31	15.57
22	25.35	642.4	.000 504 6	14.87	16.14	18.05	19.63
23	22.57	509.5	.000 400 2	18.76	20.36	22.76	24.76
24	20.10	404.0	.000 317 3	23.65	25.67	28.70	31.22
25	17.90	320.4	.000 251 7	29.82	32.37	36.18	39.36
26	15.94	254.1	.000 199 6	37.61	40.81	45.63	49.64
27	14.20	201.5	.000 158 3	47-42	51.47	57·53	62.59
28	12.64	159.8		59.80	64.90	72·55	78.93
29	11.26	126.7		75.40	S1 83	91.48	99.52
30	10.03	100.5	.000 078 94	95.08	103.2	115.4	125.5
31	8.928	79.70	.000 062 60	119.9	130.1	145.5	158.2
32	7.950	63.21	.000 049 64	151.2	164.1	183.4	199.5
33	7.080	50.13	.000 039 37	190.6	206.9	231.3	251.6
34	6.305	39.75		240.4	260.9	291.7	317.3
35	5.615	31.52		303.1	329.0	367.8	400.1
36	5.000	25.00	.000 019 64	382.2	414.8	463.7	504.5
37	4.453	19.83		482.0	523.1	584.8	636.2
38	3.965	15.72		607.8	659.6	737.4	802.2
39 40	3.531 3.145	12.47 9.888	.000 009 793 .000 007 766	766.4 966.5	831.8	929.8	1012. 1276.

^{*} Resistance at the stated temperatures of a wire whose length is 1000 feet at 20° C.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). English Units (continued).

						01	
Gage.	Diameter	Pounds	Feet		Feet per	Ohm.*	
No.	in Mils. at 20° C.	per 1000 Feet.	per Pound.	0° C (=32° F) ·	20° C (=68° F)	50° C (=122° F)	(=167° F)
0000	460.0	. 640 .5	1.561	22 140.	20 400.	18 250.	16 780.
	409.6	507.9	1.968	17 560.	16 180.	14 470.	13 300.
	364.8	402.8	2.482	13 930.	12 830.	11 480.	10 550.
0	324.9	319.5	3.130	11 040.	10 180.	9103.	8367.
I	289.3	253.3	3.947	87 58.	8070.	7219.	6636.
2	257.6	200.9	4.977	6946.	6400.	5725.	5262.
3 4 5	229.4	159.3	6.276	5508.	5075.	4540.	4173.
	204.3	126.4	7.914	4368.	4025.	3600.	3309.
	181.9	100.2	9.980	3464.	3192.	2855.	262 5 .
6	162.0	79.46	12.58	2747.	2531.	2264.	2081.
7	144.3	63.02	15.87	2179.	2007.	1796.	1651.
8	128.5	49.98	20.01	1728.	1592.	1424.	1309.
9 10 11	114.4 101.9 90.74	39.63 31.43 24.92	25.23 31.82 40.12	1370. 1087. 861.7	1262. 1001. 794.0	895.6 710.2	1038. 823.2 652.8
12	80.81	19.77	50.59	- 683.3	629.6	563.2	517.7
13	71.96	15.68	63.80	541.9	499.3	446.7	410.6
14	64.08	12.43	80.44	429.8	396.0	354.2	325.6
15	57.07	9.858	101.4	340.8	314.0	280.9	258.2
16	50.82	7.818	127.9	270.3	249.0	222.8	204.8
17	45.26	6.200	161.3	214.3	197.5	176.7	162.4
18	40,30	4.917	203.4	170.0	156.6	140.1	128.8
19	35.89	3.899	256.5	134.8	124.2	111.1	102.1
20	31.96	3.092	323.4	106.9	98.50	88.11	80.99
2I	28.46	2.4 52	407.8	84.78	78.11	69.87	64.23
22	25.35	1.945	514.2	67.23	61.95	55.41	50.94
23	22.57	1.542	648.4	53.32	49.13	43.94	40.39
24	20.10	1.223	817.7	42.28	38.96	34.85	32.03
25	17.90	0.9699	1031.	33.53	30.90	27.64	25.40
26	15.94	.7692	1300.	26.59	24.50	21.92	20.15
27	14.20	.6100	1639.	21.09	19.43	17.38	15.98
28	12.64	.4837	2067.	16.72	15.41	13.78	12.67
29	11.26	.38 3 6	2607.	13.26	12.22	10.93	10.05
30 31 32	10.03 8.928 7.950	.3042 .2413 .1913	3287. 4145. 5227.	8.341 6.614	9.691 7.685 6.095	8.669 6.875 5.452	7.968 6.319 5.011
33	7.080	.1517	6591.	5.245	4.833	4.323	3.974
34	6.305	.1203	8310.	4.160	3.833	3.429	3.152
35	5.615	.095 42	10 480.	3.299	3.040	2.719	2.499
36	5.000	.075 68	13 210.	2.616	2.411	2.156	1.982
37	4.453	.060 01	16 660.	2.075	1.912	1.710	1.572
38	3.965	.047 59	21 010.	1.645	1.516	1.356	1.247
39 40	3.531 3.145	.037 74	26 500. 33 410.	1.305	1.202 0.9534	1.075 0.8 5 29	0.9886 .7840

^{*} Length at 20° C. of a wire whose resistance is 1 ohm at the stated temperatures.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). English Units (continued).

	701		Ohms per Pound.		Pounds per Ohm.
Gage No.	Diameter in Mils at 20° C.	°° C. (=32° F.)	20° C. (= 68° F.)	50° C. (=122° F.)	20° C. (=68° F.)
0000	460.0 409.6 364.8	0.000 070 51 .000 1121 .000 1783	0.000 076 52 .000 1217 .000 1935	.000 085 54	13 070. 8219. 5169.
0	324.9	.000 2835	.000 3076	.000 3439	3251.
I	289.3	.000 4507	.000 4891	.000 5468	2044.
2	257.6	.000 7166	.000 7778	.000 8695	1286.
3	229.4	.001 140	.001 237	.001 383	808.6
4	204. 3	.001 812	.001 966	.002 198	508.5
5	181.9	.002 881	.003 127	.003 495	319.8
6	162.0	.004 581	.004 972	.005 558	201.1
7	144.3	.007 284	.007 905	.008 838	126.5
8	128.5	.011 58	.012 57	.014 05	79·55
9	114.4	.018 42	.019 99	.022 34	50.03
10	101.9	.029 28	.031 78	.035 53	3 ¹ ·47
11	90.74	046 56	.050 53	.056 49	19.79
12	80.81	.074 04	.080 35	.089 83	12.4 5
13	71.96	.1177	.1278	.1428	7.827
14	64.08	.1872	.2032	.2271	4.922
15	57.07	.2976	.3230	.3611	3.096
16	50.82	•4733	.5136	·5742	1.947
17	4 5 .26	•7525	.816 7	·9130	1.224
18	40.30	1.197	1.299	1.452	0.7700
19	35.89	1.903	2.065	2.308	.4843
20	31.96	3.025	3.283	3.670	.3046
2I	28.46	4.810	5,221	5.836	.1915
22	25.35	7.649	8,301	9.280	.1205
23	22.57	12.16	13,20	14.76	.075 76
24	20.10	19.34	20.99	23.46	.047 65
25	17.90	30.75	33·37	37.31	.029 97
26	15.94	48.89	53·06	59.32	.018 85
27	14.20	77.74	84.37	94.32	.011 85
28	12.64	123.6	134.2	1500	.007 454
29	11.26	196.6	213.3	238.5	.004 688
30	10.03	312.5	339.2	379.2	.002 948
31	8.928	497.0	539.3	602.9	.c01 854
32	7.950	790.2	857.6	958.7	.001 166
33	7.080	1256.	1364.	1 524.	.000 7333
34	6.305	1998.	2168.	2424.	.000 4612
35	5.615	3177.	3448.	3854.	.000 2901
36	5.000	5051.	5482.	6128,	.000 1824
37	4.453	8032.	8717.	9744.	.000 1147
38	3.965	12 770.	13 860.	15 490.	.000 072 15
39	3.531	20 310.	22 040.	24 640.	.000 045 38
40	3.145	32 290.	35 040.	39 170.	

WIRE TABLE, STANDARD ANNEALED COPPER.

American Wire Gage (B. & S.) Metric Units.

				Ohms per	Kilometer.*	
Gage No.	Diameter in mm. at 20° C.	Cross Section in mm. ² at 20° C.	0.0			
			о° С.	20° C.	50° C.	75° C.
0000	11.68	107.2	0.1482	0.1608	0.1798	0.1956
000	10.40 9.266	85.03 67.43	.1868 .2356	.2028	.2267 .2858	.2466 .3110
0	8.252	53.48	.297 [.3224	.3604	.3921
1 2	7.348 6.544	42.41 33.63	.3746 .4724	.4066 .5127	•4545 •5731	.4944 .6235
3	5.827	26.67 21.15	.5956	6465	.7227	.7862
5	5.189 4.621	16.77	.7511 .9471	.8152 1.028	.9113 1.149	.9914 1.250
6	4.115 3.665	13.30	1.194 1.506	1.296 1.634	1.449 1.827	1.576 1.988
7 8	3.264	8.366	1.899	2.061	2.304	2.506
9	2.906 · 2.588	6.634 5.261	2.395 3.020	2.599 3.277	2.905 3.663	3.161 3.985
11	2.305	4.172	3.807	4.132	4.619	5.025
12	2.053 1.828	3.309 2.624	4.801 6.054	5.211 6.571 8.285	5.825 7-345	6.337
14	1.628	2.081	7.634	8.285	9.262	10.08
16	1.450 1.291	1.65c 1.309	9.627 12.14	10.45	11.68	12.71 16.02
17	1.150	1.038	15.31	16.61	18.57	20.20
18	0.9116	0.8231 .6527	19.30 24.34	20.95 26.42	23.42 29.53	25.48 32.12
20	.8118	.5176	30.69	33.31	37.24	40.51
2I 22	.7230 .6438	.4105 .3255 .2582	38.70 48.80	42.00 52.96	46.95 59.21	51.08 64.41
23	•5733		61.54	66.79	74.66	81,22
24 25 26	.5106 •4547	.2047 .1624 .1288	. 77.60 97.85	84.21	94.14	102.4 129.1 162.9
	.4049 .3606	.1021	123.4	133.9	149.7	205.4
27 28 29	.3211	.080 98	196.2	212.9	238.0 300.1	258.9 326.5
	.2546	.050 93	311.9	338.6	378.5	411.7
30 31 32	.2268	.040 39	393.4 496.0	426.9 538.3	477.2 601.8	519.2 654.7
33	.1798	.025 40	625.5	678.8	7 58.8	825.5
34 35	.1601	.020 14	788.7 994.5	856.0 1079.	956.9	1041.
36	.1270	.012 67	1254.	1361.	1522.	1655.
37 38	.1131	.010 05	1581. 1994.	1716. 2164.	191 9. 2419.	2087. 2632.
39	.089 69	.006 318	2514.	2729.	3051.	3319.
40	.079 87	.005 010	3171.	3441.	3847.	4185.

^{*}Resistance at the stated temperatures of a wire whose length is 1 kilometer at 20° C.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.) Metric Units (continued).

	Diameter	Kilograms	Meters		Meters p	er Ohm.*	
Gage No.	in mm. at 20° C.	per Kilometer.	per Gram.	∘° C.	20° C.	50° C.	75° C.
0000	11.68	953.2	0.001 049	6749.	6219.	5563.	5113.
	10.40	755.9	.001 323	5352.	4932.	4412.	4055.
	9.266	599.5	.001 668	4245.	3911.	3499.	3216.
0	8.252	475.4	.002 103	3366.	3102.	2774·	2550.
I	7.348	377.0	.002 652	2669.	2460.	2200.	2022.
2	6.544	299.0	.003 34 5	2117.	1951.	1745.	1604.
3	5.827	237.1	.004 217	1679.	1547.	1384.	1272.
4	5.189	188.0	.005 318	1331.	1227.	1097.	1009.
5	4.621	149.1	.006 706	1056.	972.9	870.2	799·9
6 7 8	4.115 3.665 3.264	93.78 74.37	.008 457 .010 66 .013 45	837.3 664.0 526.6	771.5 611.8 485.2	690.1 547.3 434.0	634.4 503.1 399.0
10	2.906	58.98	.016 96	417.6	384.8	344.2	316.4
	2.588	46. 7 7	.021 38	331.2	305.1	273.0	250.9
	2.305	37.09	.026 96	262.6	242.0	216.5	199.0
12	2.053	29.42	.034 00	208.3	191.9	171.7	157.8
13	1.828	23.33	.042 87	165.2	152.2	136.1	125.1
14	1.628	18.50	.054 06	131.0	120.7	108.0	99.24
15	1.450	14.67	.068 16	103.9	95. 7 1	85.62	78.70
16	1.291	11.63	.085 95	82.38	75.90	67.90	62.41
17	1.150	9.226	.1084	65.33	60.20	53.85	49.50
18	1.024	7.317	.1367	51.81	47.74	42.70	39.25
19	0.9116	5.803	.1723	41.09,	37.86	33.86	31.13
20	.8118 -	4.602	.2173	32.58	30.02	26.86	24.69
2 I	.7230	3.649	.2740	25.84	23.81	21.30	19.58
2 2	.6438	2.894	·3455	20.49	18.88	16.89	15.53
2 3	·5733	2.295	·4357	16.25	14.97	13.39	12.31
24	.5106	1.820	.5494	12.89	11.87	10.62	9.764
25	·4547	1.443	.6928	10.22	9.417	8.424	7.743
26	·4049	1.145	.8736	8.105	7.468	6.680	6.141
27	.3606	0.9078	1.102	6.428	5.922	5.298	4.870
28	.3211	.7199	1.389	5.097	4.697	4.201	3.862
29	.2859	.5709	1.752	4.042	3.725	3.332	3.063
30	.2546	.4527	2.209	3.206	2.954	2.642	. 2.429
31	.2268	.3590	2.785	2.542	2.342	2.095	1.926
32	.2019	.2847	3.512	2.016	1.858	1.662	1.527
33 34 35	.1798 .1601 .1426	.2258 .1791 .1420	4.429 5.584 7.042	1.599 1.268 1.006	1.473 1.168 0.9265	1.318 1.045 0.8288	0.9606 .7618
36	.1270	.1126	8.879	0.7974	.7347	.6572	.6041
37	.1131	.089 31	11.20	.6324	.5827	.5212	•4791
38	.1007	.070 83	14.12	.5015	.4621	.4133	•3799
39 40	.089 69 .079 87	.056 17 .044 54	17.80	·3977 ·3154	.3664 .2906	.3278 .2600	.3013

^{*} Length at 20° C. of a wire whose resistance is 1 ohm at the stated temperatures. SMITHSONIAN TABLES.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). Metric Units (continued).

Gage	Diameter		Ohms per Kilogram.		Grams per Ohm.
No.	at 20° C.	о° С.	20° C.	50° C.	20° C.
0000	11.68	0.000 155 4	0.000 168 7	0.000 188 6	5 928 000.
	10.40	.000 247 2	.000 268 2	.000 299 9	3 728 000.
	9.266	.000 393 0	.000 426 5	.000 476 8	2 344 000.
	8.252	.000 624 9	.000 678 2	.000 758 2	1 474 000.
	7.348	.000 993 6	.001 078	.001 206	927 300.
	6.544	.001 580	.001 715	.001 917	583 200.
3 4 5	5.827	.002 512	.002 726	.003 048	366 800.
	5.189	.003 995	.004 335	.004 846	230 700.
	4.621	.006 352	.006 893	.007 706	145 100.
6	4.115	.010 10	.010 96	.012 25	91 230.
7	3.665	.016 06	.017 43	.019 48	57 380.
8	3.264	.025 53	.027 71	.030 98	36 080.
10	2.906	.040 60	.044 06	.049 26	22 690.
	2.588	.064 56	.070 07	.078 33	14 270.
	2.305	.1026	.1114	.1245	8976.
12	2.053	.1632	.1771	.1980	56.45
13	1.828	.2595	• .2817	.3149	3550.
14	1.628	.4127	•4479	.5007	2233.
15	1.450	.6562	.7122	.7961	140 4.
16	1.291	1.043	1.132	1.266	883.1
17	1.150	1.659	1.801	2.013	555.4
18	1.024	2.638	2.863	3.201	349.3
19	0.9116	4.194	4.552	5.089	219.7
20	.8118	6.670	7.238	8.092	138.2
21	.7230	10,60	11.51	12.87	86.88
22	.6438	16,86	18.30	20.46	54.64
23	·5733	26.81	29.10	32.53	34.36
24	.5106	42. 6 3	46.27	51.73	21.61
25	•4547	67.79	73.57	82.25	13.59
26	•4049	107.8	117.0	130.8	8.548
27	.3606	171.4	186.0	207.9	5.376
28	.3211	272.5	295.8	330.6	3.381
29	.2859	433.3	470.3	525.7	2.126
30	.2546	689.0	747.8	836.0	1.337
31	.2268	1096.	1189.	1329.	0.8410
32	.2019	1742.	1891.	2114.	.5289
33	.1798	2770.	3006.	3361.	.3326
34	.1601	4404.	4780.	5344.	.2092
35	.1426	7003.	7601.	8497.	.1316
36	.1270	11140.	12090.	13510.	.082 74
37	.1131	17710.	19220.	21480.	.052 04
38	.1007	28150.	30560.	34160.	.032 73
39	.089 69	44770•	48590.	54310.	.020 58
40	.079 87	, 71180•	77260.	86360.	.012 94

Hard-Drawn Aluminum Wire at 20° C. (or, 68° F.).

American Wire Gage (B. & S.). English Units.

		Cross	Section.	01	Pounds		
Gage No.	Diameter in Mils.	Circular Mils.	Square Inches.	Ohms per 1000 Feet.	per 1000 Feet.	Pounds per Ohm.	Feet per Ohm.
0000	460.	212 000.	0.166	0.0804	195.	2420.	12 400.
	410.	168 000.	.132	.101	154.	1520.	9860.
	365.	133 000.	.105	.128	122.	957·	7820.
0	325.	106 000.	.0829	.161	97.0	60 2.	6200.
I	289.	83 700.	.0657	.203	76.9	379.	4920.
2	258.	66 400.	.0521	.256	61.0	238.	3900.
3 4 5	229. ·	52 600.	.0413	.323	48.4	1 50.	3090.
	204.	41 700.	.0328	.408	38.4	94. 2	2450.
	182.	33 100.	.0260	.514	30.4	59.2	1950.
6	162.	26 300.	.0206	.648	24.I	37.2	1540.
7	144.	20 800.	.0164	.817	19.I	23.4	1220.
8	128.	16 500.	.0130	1.03	15.2	14.7	970.
10	114.	13 100.	.0103	1.30	12.0	9.26	770.
	102.	10 400.	.008 15	1.64	9.35	5.83	610.
	91.	8230.	.006 47	2.07	7.57	3.66	484.
12	81.	6530.	.005 13	2.61	6.00	2.30	384.
13	72.	5180.	.004 07	3.29	4.76	1.45	304.
14	64.	4110.	.003 23	4.14	3.78	0.911	241.
15	57·	3260.	.002 56	5.22	2.99	·573	191.
16	51·	2580.	.002 03	6.59	2.37	.360	152.
17	45·	2050.	.001 61	8.31	1.88	.227	120.
18	40.	1620.	.001 28	10.5	1.49	.143	95·5
19	36.	1290.	.001 01	13.2	1.18	.0897	75·7
20	32.	1020.	.000 802	16.7	0.939	.0564	60.0
21	28.5	810.	.000 636	21.0	·745	.0355	47.6
22	25.3	642.	.000 505	26.5	·591	.0223	37.8
23	22.6	509.	.000 400	33.4	·468	.0140	29.9
24	20.1	404.	.000 317	42.I	.371	.008 82	23.7
25	17.9	320.	.000 252	53.I	.295	.005 55	18.8
26	15.9	254.	.000 200	67.0	.234	.003 49	14.9
27 28 29	14.2 12.6 11.3	202. 160. 127.	.000 158 .000 126 .000 099 5	84.4 106. 134.	. 185 .147 .117	.002 19 .001 38 .000 868	9.39 7.45
30	10.0	101.	.000 078 9	169.	.0924	.000 546	5.91
31	8.9	79.7	.000 062 6	213.	.0733	.000 343	4.68
32	8.0	63.2	.000 049 6	269.	.0581	.000 216	3.72
33	7.1	50.1	.000 039 4	339.	.0461	.000 136	2.95
34	6.3	39.8	.000 031 2	428.	.0365	.000 085 4	2.34
35	5.6	31.5	.000 024 8	540.	.0290	.000 053 7	1.85
36	5.0	25.0	.000 019 6	681.	.0230	.000 033 8	1.47
37	4·5	19.8		858.	.0182	.000 021 2	1.17
38	4.0	15.7		1080.	.0145	.000 013 4	0.924
39 40	3.5 3.1	12.5 9.9	.000 009 79	1360. 1720.	.0115	.000 008 40	.733 .581

"Hard-Drawn Aluminum Wire at 20° C.

American Wire Gage (B. & S.) Metric Units.

Gage	Diameter	Cross Section in mm. ²	Ohms per	Kilograms per	Grams per	Meters per
No.	in mm.		Kilometer.	Kilometer.	Ohm.	Ohm.
0000	11.7	107.	0.264	289	1 100 000.	3790.
	10.4	85.0	·333	230.	690 000.	3010.
	9.3	67.4	·419	182.	434 000.	2380.
0	8.3	53·5	.529	144.	273 000.	1890.
I	7.3	42·4	.667	114.	172 000.	1500.
2	6.5	33.6	.841	90.8	108 000.	1190.
3	5.8	26.7	1.06	72.0	67 900.	943.
4	5.2	21.2	1.34	57.1	42 700.	748.
5	4.6	16.8	1.69	45.3	2 6 900.	5 93.
6	4.I	13.3	2.13	35.9	16 900.	470.
7	3.7	10.5	2.68	28.5	10 600.	· 373.
8	3.3	8.37	3.38	22.6	δ680.	296.
9	2.91	6.63	4.26	17.9	4200.	235.
10	2.59	5.26	5.38	14.2	2640.	186.
11	2.30	4.17	6.78	11.3	1660.	148.
12	2.05	3.31	8.55	8.93	1050.	117.
13	1.83	2.62	10.8	7.08	657.	92.8
14	1.63	2.08	13.6	5.62	413.	73.6
15	1.45	1.65	17.1	4.46	260.	58.4
16	1.29	1.31	21.6	3.53	164.	46.3
17	1.15	1.04	27.3	2.80	103.	36.7
18	1.02	· 0.823	34·4	2.22	64.7	29.1
19	· 0.91	.653	43·3	1.76	40.7	23.1
20	.81	.518	54.6	1.40	25.6	18.3
21 22 23	.72 .64 •57	.411 .326 .258	68.9 86.9 110.	0.879 .697	16.1 10.1 6.36	14.5 11.5 9.13
24 25 26	.51 .45 .40	.205 .162 .129	138. 174. 220.	.553 .438 .348	4.00 2.52 1.58	5·74 4·55
27	.36	.102	277•	.276	0.995	3.61
28	.32	.0810	349•	.219	.626	2.86
2 9	.29	.0642	440.	.173	.∙394	2.27
30	.25	.0509	555.	.138	.248	1.80
31	.227	.0404	700.	.109	.156	1.43
32	.202	.0320	883.	.0865	.0979	1.13
33	.180	.0254	1110.	.0686	.0616	0.899
34	.160	.0201	1400.	.0544	.0387	.712
35	.143	.0160	1770.	.0431	.0244	.565
36	.127	.0127	2230.	.0342	.01 53	.448
37	.113	.0100	2820.	.0271	.009 63	•355
38	.101	.0080	3550.	.0215	.006 06	.282
39 40	.090	.0063	4480. 5640.	.0171	.003 81 .002 40	.177

TABLE 414. - Ratio of Alternating to Direct Current Resistances for Copper Wires.

This table gives the ratio of the resistance of straight copper wires with alternating currents of different frequencies to the value of the resistance with direct currents.

Diameter of	$\operatorname{Frequency} f =$									
wire in millimeters.	60	100	1000	10,000	100,000	1,000,000				
0.05 0.1 0.25 0.5 1.0 2.0 3. 4. 5. 7.5 10. 15. 20. 25. 40.	I.001 I.003 I.016 I.044 I.105 I.474 3.31	*I.00I I.002 I.003 I.038 I.120 I.247 I.842 4.19	I.001 I.006 I.021 I.047 I.210 I.503 2.136 2.756 3.38 5.24	*I.001 I.008 I.120 I.437 I.842 2.240 3.22 4.19 6 I4 8.10 IO.I I7.4	*I.ooI I.oo3 I.o47 I.503 2.756 4.00 5.24 6.49 7.50 I2.7 I8.8 25.2 28.3	*I.00I I.008 I.217 2.240 4.19 8.10 I2.0 I7.4 I9.7 29.7 39.1				

Values between 1.000 and 1.001 are indicated by *1.001. The values are for wires having an assumed conductivity of 1.60 microhm-cms; for copper wires at room temperatures the values are slightly less than as given in table.

The change of resistance of wire other than copper (iron wires excepted) may be calculated from the above table

If a given wire be wound into a solenoid, its resistance, at a given frequency, will be greater than the values in the table, which apply to straight wires only. The resistance, at a given frequency, will be greater than the values in the table, which apply to straight wires only. The resistance in this case is a complicated function of the pitch and radius of the winding, the frequency, and the diameter of the wire, and is found by experiment to be sometimes as much as twice the value for a straight wire.

TABLE 415. — Maximum Diameter of Wires for High-frequency Alternating-to-direct-current Resistance Ratio of 1.01.

Frequency ÷ 106	0.1	0.2	0.4	0.6	0.8	1.0	1.2	1.5	2.0	3.0
Wave-length, meters	3000	1500	750	500	375	300	250	200	150	100
Material.				Di	ameter i	n centim	eters.			
Copper Silver Gold. Platinum Mercury Manganin Constantan German silver Graphite. Carbon Iron μ = 1000 μ = 500. μ = 100.	0.0345 0.0420 0.1120 0.264 0.1784 0.1892 0.1942 0.765 1.60 0.00263 0.00373	0.0244 0.0297 0.0793 0.187 0.1261 0.1337 0.541 1.13	0.00187	0.0141 0.0172 0.0457 0.1080 0.0729 0.0772 0.0792 0.312 0.654	0.0692 0.271 0.566 0.00094 0.00132	0.0133 0.0354 0.0836 0.0564 0.0598 0.0614 0.242 0.506	0.00108	0.0089 0.0108 0.0290 0.0683 0.0461 0.0488 0.0500 0.197 0.414	0.00084	0.00068

Bureau of Standards Circular 74, Radio Instruments and Measurements, 1018.

ELECTROCHEMICAL EQUIVALENTS.

Every gram-ion involved in an electrolytic change requires the same number of coulombs or ampere-hours of electricity per unit change of valency. This constant is 96.494 coulombs or 26.804 ampere-hours per gram-hour (a Faraday) corresponding to an electrochemical equivalent for silver of 0.00111800 gram sec⁻¹ amp⁻¹. It is to be noted that the change of valence of the element from its state before to that after the electrolytic action should be considered. The valence of a free, uncombined element is to be considered as 0. The same current will electrolyze "chemically equivalent" quantities per unit time. The valence is then included in the "chemically equivalent" quantity. The following table is based on the atomic weights of 1917.

Element.	Change of valency.	Mg per coulomb.	Coulombs per mg	Grams per amp hour.	Element.	Change of valency.	Mg per coulomb.	Coulombs per mg	Grams per amp hour.
Aluminum Chlorine Copper Gold Hydrogen. Lead	3 1 3 5 7 1 2 1 3 1 1 2 4 1	0.0036 0.3675 0.1225 0.0735 0.0525 0.6588 0.3294 2.044 0.6812 0.010459 2.1473 1.0736 0.5368 2.0789 1.0394	10.682 2.721 8.164 13.606 19.05 1.518 3.036 0.4893 1.468 5.728 0.4657 0.9314 1.8628 0.4810 0.9620	0.3370 1.3229 0.4410 0.2646 0.1890 2.3717 1.1858 7.357 2.452 0.037607 7.7302 3.8651 1.0326 7.484 3.742	Nickel "" Oxygen Platinum "" Potassium Silver Sodium Tin. Zinc	1 2 3 2 4 2 4 6 1 1 1 2 4 2	0.6081 0.3041 0.2027 0.08291 0.04145 1.0115 0.5057 0.3372 0.4052 1.1180 0.2384 0.6151 0.3075 0.3387	1.6444 3.289 4.933 12.062 24.123 0.9887 1.9773 2.966 2.468 0.89445 4.195 1.626 3.252 2.952	2.1892 1.0946 0.7298 0.2985 0.1492 3.641 1.821 1.214 1.450 4.0248 0.8581 2.214 1.107

The electrochemical equivalent for silver is 0.00111800 g sec⁻¹ amp⁻¹. (See p. xxxvii.)

For other elements the electrochemical equivalent = (atomic weight divided by change of valency) times 1/06494
g/sec/amp. or g/coulomb. The equivalent for iodine has been determined at the Bureau of Standards as 0.0013150 (1913).

For a unit change of valency for the diatomic gases Br₂, Cl₂, F₂, H₂, N₂ and O₂ there are required

8.619 coulombs/cm³ o° C, 76 cm (0.1160 cm³/coulomb) 2.394 ampere-hours/l, o° C, 76 cm (0.4177 l/ampere-hour).

Note. — The change of valency for O2 is usually 2, etc.

CONDUCTIVITY OF ELECTROLYTIC SOLUTIONS.

This subject has occupied the attention of a considerable number of eminent workers in molecular physics, and a few results are here tabulated. It has seemed better to confine the examples to the work of one experimenter, and the tables are quoted from a paper by F. Kohlrausch.* who has been one of the most reliable and successful workers in this field.

The study of electrolytic conductivity, especially in the case of very dilute solutions, has furnished material for generalizations, which may to some extent help in the formation of a sound theory of the mechanism of such conduction. If the solutions are made such that per unit volume of the solvent medium there are contained amounts of the salt proportional to its electrochemical equivalent, some simple relations become apparent. The solutions used by Kohlrausch were therefore made by taking numbers of grams of the pure salts proportional to their electrochemical equivalent, and using a liter of water as the standard of quantity of the solvent. Taking the electrochemical equivalent number as the chemical equivalent or atomic weight divided by the valence, and using this number of grams to the liter of water, we get what is called the normal or gram molecule per liter solution. In the table, m is used to represent the number of gram molecules to the liter of water in the solution for which the conductivities are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with the solution by means of a Wheatstone bridge alternating current and telephone arrangement. The results are for 18° C., and relative to mercury at 0° C., the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within one per cent of the true value.

The tabular numbers were obtained from the measurements in the following manner:—
Let $K_{18} = \text{conductivity}$ of the solution at 18° C. relative to mercury at 0° C. $K_{18}^w = \text{conductivity}$ of the solvent water at 18° C. relative to mercury at 0° C. $K_{18}^{w} = \text{conductivity of the solvent water at 18}^{\circ}$ C. relative to mercury at 0° C. Then $K_{18} = K_{18} = \text{conductivity of the electrolyte in the solution measured.}$

 $\frac{k_{18}}{k_{18}} = \mu = \text{conductivity of the electrolyte in the solution per molecule, or the "specific$ molecular conductivity."

TABLE 417. — Value of k_{18} for a few Electrolytes.

This short table illustrates the apparent law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved.

m	KCl	·NaCl	AgNO ₃	KC ₂ H ₃ O ₂	K ₂ SO ₄	MgSO ₄	
0.0000I	1.216	1.024	1.080	0.939	1.275	1.056	
0.00002	2.434	2.056	2.146	1.886	2.532	2.104	
0.00006	7.272	6.162	6.462	5.610	7.524	6.216	
0.000I	12.09	10.29	10.78	9.34	12.49	10.34	

TABLE 418. - Electro-Chemical Equivalents and Normal Solutions.

The following table of the electro-chemical equivalent numbers and the densities of approximately normal solutions of the salts quoted in Table 419 may be convenient. They represent grams per cubic centimeter of the solution at the temperature given.

Salt dissolved.	Grams per liter.	112	Temp.	Density.	Salt dissolved.	Grams per liter.	992	Temp. C.	Density.
KCl	74-59 53-55 58-50 42-48 104-0 68.0 165.9 101-17 85.08 169-9 65.28 61.29 98.18	I.0 I.0009 I.0 I.0 I.0 I.0 I.0 I.0 I.0 I.0 I.0 I.0	15.2 18.6 18.4 18.4 18.6 15.0 18.6 18.7	I.0457 I.0152 I.0391 I.0227 I.0888 I.0592 I.1183 I.0601 I.0542	$\begin{array}{c} \frac{1}{2}K_2SO_4\\ \frac{1}{2}Na_2SO_4\\ \frac{1}{2}Na_2SO_4\\ \frac{1}{2}MgSO_4\\ \frac{1}{2}ZnSO_4\\ \frac{1}{2}CuSO_4\\ \frac{1}{2}CuSO_4\\ \frac{1}{2}K_2CO_3\\ \frac{1}{2}Na_2CO_3\\ \frac{1}{2}Na_2CO_3\\ \frac{1}{2}H_2SO_4\\ \end{array}.$	87.16 71.09 55.09 60.17 80.58 79.9 69.17 53.04 56.27 36.51 63.13 49.06	1.0 1.0003 1.0007 1.0023 1.0 1.001 1.0006 1.0 1.0025 1.0041 1.0014	18.9 18.6 18.6 18.6 5.3 18.2 18.3 17.9 18.8 18.6 18.6 18.6	1.0658 1.0602 1.0445 1.0573 1.0794 1.0776 1.0576 1.0517 1.0477 1.0161 1.0318 1.0300

SPECIFIC MOLECULAR CONDUCTIVITY μ : MERCURY=10°.

	1	1					1	1	
Salt dissolved.	m=10	5	3	1	0.5	0.1	.05	.03	.01
¼K ₂ SO ₄	-	770 752	827 900 825 572	919 968 907 752	672 958 997 948 839	736 1047 1069 1035 983	897 1083 1102 1078 1037	959 1107 1123 1101 1067	1098 1147 1161 1142 1122
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- - - 351	487 - - 150 448	658 - - 241 635	725 799 531 288 728	861 927 755 424 886	904 (976) 828 479 936	939 1006 (870) 537 (966)	1006 1053 951 675 1017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- - - 60	82 82 - 180 398	146 151 - 280 528	249 270 475 514 695	302 330 559 601 757	431 474 734 768 865	500 53 ² 784 817 897	556 587 828 851 (920)	685 715 906 915 962
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 - 660 0.5	240 - 1270 2.6	430 381 254 1560 5.2	617 594 427 1820	694 671 510 1899	817 784 682 2084 43	855 820 751 2343 62	877 841 799 2515 79	907 879 899 2855 132
HC1	600 610 148 423 0.5	1420 1470 160 990 2.4	2010 2070 170 1314 3.3	2780 2770 200 1718 8.4	3017 2991 250 1841	3244 3225 430 1986 31	3330 3289 540 2045 43	3369 3328 620 2078 50	3416 3395 790 2124 92
Salt dissolved.	.006	.002	.001	.0006	.0002	10001	.00006	,00002	100001
½K ₂ SO ₄	1130 1162 1176 1157 1140	1181 1185 1197 1180	1207 1193 1203 1190 1180	1220 1199 1209 1197 1190	1241 1209 1214 1204 1199	1249 1209 1216 1209 1207	1254 1212 1216 1215 1220	1266 1217 1216 1209 1198	1275 1216 1207 1205 1215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1031 1068 982 740 1033	1074 1091 1033 873 1057	1092 1101 1054' 950 1068	1102 1109 1066 987 1069	1118 1119 1084 1039 1077	1126 1122 1096 1062 1078	1133 1126 1100 1074 1077	1144 1135 1114 1084 1073	1142 1141 1114 1086 1080
12nSO ₄	744 773 933 939 976	861 881 980 979 998	91 9 935 998 994 1008	953 967 1009 1004 1014	1001 1015 1026 1020 1018	1023 1034 1034 1029 1029	1032 1036 1038 1031 1027	1047 1052 1056 1035 1028	1060 1056 1054 1036 1024
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	921 891 956 3001 170	942 913 1010 3240 283	952 919 1037 3316 380	956 923 1046 3342 470	966 933 988 3280 796	975 934 874 3118 995	970 935 790 2927 1133	972 943 715 2077 1328	975 939 697* 1413* 1304*
HCl	3438 3421 858 2141 116	3455 3448 945 2140 190	3455 3427 968 2110 260	3440 3408 977 2074 330	3340 3285 920 1892 500	3170 3088 837 1689 610	2968 2863 746 1474 690	2057 1904 497 845 700	1254* 1144* 402* 747* 560*

^{*} Acids and alkaline salts show peculiar irregularities.

LIMITING VALUES OF $\mu.$ TEMPERATURE COEFFICIENTS.

TABLE 420,- Limiting Values of µ.

This table shows limiting values of $\mu = \frac{k}{m}$. 108 for infinite dilution for neutral salts, calculated from Table 271.

Salt.	μ	Salt.	μ	Salt.	μ	Salt.	μ
$\frac{1}{2}$ K ₂ SO ₄ .	1280	$\frac{1}{2}$ BaCl ₂ .	1150	½MgSO ₄ .	1080	$\frac{1}{2}$ H ₂ SO ₄ .	3700
KCl	1220	₹KClO₃ .	1150	$\frac{1}{2}$ Na ₂ SO ₄ .	1060	HCl	3500
KI	I 220	$\frac{1}{2}\mathrm{BaN}_2\mathrm{O}_6$.	1120	½ZnCl	1040	HNO3	3500
NH ₄ Cl	1210	½CuSO4 .	1100	NaCl	1030	½H₃PO₄ .	1100
KNO3	1210	AgNO ₃ .	1090	NaNO ₃ .	980	кон	2200
-	-	$\frac{1}{2}$ ZnSO ₄ .	1080	K ₂ C ₂ H ₃ O ₂	940	$\frac{1}{2}$ Na ₂ CO ₃ .	1400

If the quantities in Table 420 be represented by curves, it appears that the values of the specific molecular conductivities tend toward a limiting value as the solution is made more and more dilute. Although these values are of the same order of magnitude, they are not equal, but depend on the nature of both the ions forming the electrolyte.

When the numbers in Table 421 are multiplied by Hittorf's constant, or 0.00011, quantities ranging between 0.14 and 0.10 are obtained which represent the velocities in millimetres per second of the ions when the electromotive force gradient is one volt per millimetre.

Specific molecular conductivities in general become less as the concentration is increased, which may be due to mutual interference. The decrease is not the same for different salts, but becomes much more rapid in salts of high valence.

different salts, but becomes much more rapid in salts of high valence. Salts having acid or alkaline reactions show marked differences. They have small specific molecular conductivity in very dilute solutions, but as the concentration is increased the conductivity rises, reaches a maximum and again falls off. Kohlrausch does not believe that this can be explained by impurities. H_3PO_4 in dilute solution seems to approach a monobasic acid, while H_2SO_4 shows two maxima, and like H_3PO_4 approaches in very weak solution to a monobasic acid.

Kohlrausch concludes that the law of independent migration of the ions in media like water is sustained.

TABLE 421. - Temperature Coefficients.

The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approach a common value. The following table gives the temperature coefficient for solutions containing o.o1 gram molecule of the salt.

Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.
KCl	0.0221	кі	0.0219	½K ₂ S() ₄ .	0.0223	½K ₂ CO ₃	0.0249
NH ₄ Cl	0.0226	KNO ₈	0.0216	$\frac{1}{2}$ Na ₂ SO ₄ .	0.0240	₹Na ₂ CO ₃	0.0265
NaCl	0.0238	NaNO ₃	0.0226	½Li ₂ SO ₄ .	0.0242		
LiCl	0.0232	AgNO ₃	0.0221	½MgSO₄ .	0.0236	КОН НС1	0.0194
½BaCl₂	0.0234	½Ba(NO₃)₂	0.0224	½ZnSO₃ .	0.0234	$\frac{\text{IINO}_3}{\frac{1}{2}\text{H}_2\text{SO}_4}$	0.0162
$\frac{1}{2}$ ZnCl ₂	0.0239	KClO ₈	0.0219	½CuSO ₄ .	0.0220		
½MgCl₂ .	0.0241	$\mathrm{KC_2H_3O_2}$.	0.0229	- '	-	$ \begin{cases} \frac{1}{2}H_2SO_4 \\ \text{for } m = .001 \end{cases} $	0.01 59

THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

In the following table the equivalent conductance is expressed in reciprocal ohms. The concentration is expressed in milli-equivalents of solute per litre of solution at the temperature to which the conductance refers. (In the cases of potassium hydrogen sulphate and phosphoric acid the concentration is expressed in milli-formula-weights of solute, KHSO₄ or H₃PO₄, per liter of solution, and the values are correspondingly the modal, or "formal," conductances.) Except in the cases of the strong acids the conductance of the water was subtracted, and for sodium acetate, ammonium acetate and ammonium chloride the values have been corrected for the hydrolysis of the salts. The atomic weights used were those of the International Commission for 1905, referred to oxygen as 16.00. Temperatures are on the hydrogen gas scale.

Concentration in gram equivalents.

Equivalent conductance in reciprocal ohms per centimeter cube gram equivalents per cubic centimeter

Substance.	Concentration.		Equiv	alent co	nductane	e at the	follow	ing ° C	tempera	tures.	
Substance.	Con	180	25°	500	75°	100 ₀	1280	1560	2180	2810	306°
Potassium chloride.	0	130.1		(232.5)	(321.5)		(519)	625	825	1005	1120
"	2	126.3	146.4	-	-	393	-	588	779	930	1008
"	10	122.4	141.5	215.2	295.2	377	470	560	74I	874	910
" "	80	113.5	-	-		342	-	498	638	723	720
	100	112.0	129.0	194.5	264.6	336	415	490	_		
Sodium chloride	0	109.0	-	-	-	362	-	555	760	970	1080
66 66	2	105.6	-	_	-	349		534	722	895	955 860
• •	10	102.0	_	-	-	336	-	511	685	820	
" "	80	93 5	-	_	-	301	-	450	500	674	680
	100	92.0	-	_	-	296	-	442	. 0 -	-6-	
Silver nitrate	0	115.8	-	_	-	367	-	570	780	965	1065
	2	112.2	-	-	-	353	-	539	727	877	935
	10	108.0	-	_	-	337	_	507 488	673	790	019
	20	105.1	_	_	_	326	_		639	680	680
	40 80	101.3	-	_		312	_	462	599	614	604
		96.5	_	_	_	294 289	-	432	552	014	004
	100	94.6	_	_	_	285	_	4.50	660	_	
Sodium acetate	0	78.1	_	_	_	268	_	450	578	_	924 801
	2	74.5	_	_			_	421 396	542		702
" "	10 80	71.2			_	253 221	_	340		_	702
Magnesium sulphate	00	63.4	_			426	_	690	452 1080		
Magnesium surphate	2	94.3			_	302	_	377	260		
	10	76.1			_	234	_	241	143		
" "	20	67.5	_			190	_	195	110		
	40	59.3	_	rent	_	160		158	88		
" "	80	52.0	-	_		136	_	133	7.5		
66 66	100	49.8	_	_	_	130	_	126	13		
	200	43.1	_	_	-	110	-	100			
Ammonium chloride	0	131.1	152.0	_	_	(415)	-	(628)	(841)	_	(1176)
	2	126.5	146.5	_		399	_	601	Soi	-	1031
	10	122.5	141.7	_		382	-	573	758	_	
" "	30	118.1	-	-			-	-	-	-	925 828
Ammonium acetate.	0	(99.8)	_	-	_	(338)	-	(523)			
" "	10	91.7	_	-	-	300	-	456			
	25	88.2	-	-	-	286	-	426			

From the investigations of Noyes, Melcher, Cooper, Eastman and Kato; Journal of the American Chemical Society, 30, p. 335, 1908.

THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

	h · 1			alent con	1 .		- 6-11		tomper	atures	
Substance.	Concen- tration.		Equiv	raient coi	nductano						
	tt C	180	25°	50°	75°	1000	1280	1560	2180	2810	3060
Barium nitrate	0	116.9	_	_	_	385	_	600	840	1120	1300
6 (6	2	109.7	_	-	-	352	-	536	715	828	824
	10	101.0	-	-	-	322	-	481	618	658	615
	40	88.7	_	-	-	280	-	412	507	503	448
" "	100	81.6	_	-	_	258 249	-	372	449	430	
Potassium sulphate .	100	79.1 132.8		_	_	455	_	715	1065	1460	1725
	2	124.8	_	-	-	402	-	605	806	893	867
" "	IO	115.7	-	-	-	365	-	537	672	687	637
" "	40	104.2	-	-	-	320	-	455	545 482	519	466
	80	97.2		_	_	294	_	415	402	448	396
Hydrochloric acid .	100	95.0 379.0	_	_	_	850	-	1085	1265	1380	1424
	2	373.6	_	-	-	826	-	1048	1217	1332	1337
66 66	10	368.1	-	-	-	807	-	1016	1168	1226	1162
" "	80	353.0	_	-	_	762	_	946	1044	1046	862
Nitric acid	100	350.6 377.0	421.0	570	706	754 826	945	1047	(1230)	_	(1380)
" "	2	371.2	413.7	559	690	806	919	1012	1166	-	1156
	10	365.0	406.0	548	676	786	893	978			
66 66	50	353.7	393.3	528	649	750	845	917			
Sulphuric acid	100	346.4	385.0	516	632 (746)	728	817	880	1505		454* (2030)
Sulphune acid	2	383.0 353.9	390.8	501	561	571	551	536	563	_	637
" "	10	309.0	337.0	406	435	446	460	481	533		-37
" "	50	253.5	273.0	323	356	384	417	448	502		
" . "	100	233.3	251.2	300	336	369	404	435	483	-	474*
Potassium hydrogen	50	455.3	506.0 318.3	661.0 374.4	7 5 4 40 3	784	773	754			
sulphate	100	263.7	283.1	329.I	354	375	402	435			
Phosphoric acid	0	338.3	376	510	631	730	839	930			
" "	2	283.1	311.9	401	464	498	508	489			
	10	203.0	222.0	273	300	308	298	274			
"	100	96.5	132.6	157.8	129.9	128	158	142			
Acetic acid	0	(347.0)	-	- :	-	(773)			(1165)	_	(1268)
" "	10	14.50	-	-	-	25.1	. –	22.2	14.7		1
" "	30	8.50	-	-	, –	14.7	-	13.0	8.65		
	80	5.22 4.67	_	_	_	9.05	_	8.00	5.34		7.55
Sodium hydroxide .	100	216.5	_	-	_	594	_	835	1060	-	1.57
" "	2	212.1	_	_	_	582		814			
" "	20	205.8	-	_		559		77 I	930	1	
Barium hydroxide .	50	200.6	256	280	(520)	540	(260)	738 847	873	1	
" "	2	215	256	389	(520)	591	(760)	047		1	
" "	10	207	235	342	449	548	. 664	722			
66 66	50	191.1	215.1	308	399	478	549	593			
" "	100	180.1	204.2	291	373	443	503	531	,		
Ammonium hydrox-	10	9.66	(271)	(404)	(526)	(647)	(764)	(908)	(1141)		(1406)
ide	30	5.66		_	_	13.6	_	13.0	15.6	1	
	100	3.10	3.62	5-35	6.70	17.47	_	7.17	4.82	-	1.33
								<u> </u>			55

^{*} These values are at the concentration 80.0.

THE EQUIVALENT CONDUCTIVITY OF SOME ADDITIONAL SALTS IN AQUEOUS SOLUTION.

Conditions similar to those of the preceding table except that the atomic weights for 1908 were used.

Substance.	Concen-	F	Equivalen	conduct	ance at t	he follow	ring ° C	temperatu	ire.
Substance.	tration.	00	180	25°	500	75°	1000	1280	1560
Potassium nitrate	0	80.8	126.3	145.1	219	299	384	485	580
66 66 4 4 4	2	78.6	122.5	140.7	212.7	289.9	370.3	460.7	551
46 46 4 4	12.5	75.3	117.2	134.9	202.9	276.4	351.5	435.4	520.4
" "	50	70.7	109.7	126.3	189.5	257.4	326.1	402.9	476.1
" "	100	67.2	104.5	120.3	180.2	244.I	308.5	379.5	447-3
Potassium oxalate	0	79.4	127.6	147.5	230	322	419	538	653
66 . 66	2	74.9	119.9	139.2	215.9	300.2	389.3	489.1	587
	12.5	69.3	III.I	129.2	199.1	275.1	354.1	438.8	524.3
" "	50	63	IOI	116.5	1,78.6	244.9	312.2	383.8	449.5
" "	100	59.3	94.6	109.5	167	227.5	288.9	353.2	409.7
	200	55.8	88.4	102.3	155	210.9	265.1	321.9	372.I
Calcium nitrate	0	70.4	112.7	130.6	202	282	369	474	575
66 66	2 .	66.5	107.1	123.7	191.9	266.7	346.5	. 438.4	529.8
66 66	12.5	61.6	98.6	114.5	176.2	244 .	314.6	394.5	473.7
	50	55.6	88.6	102.6	157.2	216.2	276.8	343	405.I
" "	100	51.9	82.6	95.8	146.1	199.9	255.5	315.1	369.1
	200	48.3	76.7	88.8	135.4	184.7	234.4	288	334.7
Potassium ferrocyanide.	0	98.4	159.6	185.5	200	403	527		
	0.5	91.6	-	171.1	2120	227.2	100 6		
	2,	84.8	137	158.9	243.8	335.2	427.6		
"	12.5	7 I	113.4	131.6	200.3	271	340		ĺ
	50	58,2	93.7	108.6	163.3	219.5	272.4		
66 66	100	53 48.8	84.9	98.4	148.1	198.1	245		
46 46	200		77.8	90.1	135.7	180.6	222.3		
Parium farraquanida	400	45.4	72.1	83.3	124.8	165.7	203.I 52I		
Barium ferrocyanide	2	91 46.9	150	86.2	277 127.5	393 166.2	202.3		
" "	1	1 /	75 48.8	56.5	83.1	100.2	129.8		
Calcium ferrocyanide .	12.5	30.4 88	146	171	271	386	512		
" " "	2	47.I	75.5	86.2	130	300	312		
66 66	12.5	31.2	49.9	57.4	130				
66 66	50	24.I	38.5	5/·4 44·4	64.6	81.9			
66 66	100	21.0	35.I	40.2	58.4		84.3		
46 46	200	20.6	32.9	37.8	55	73.7 68.7	77.5		
46 46	400	20.2	32.2	37.1	54	67.5	76.2		
Potassium citrate	0	76.4	124.6	144.5	228	320	420		
"	0.5	-	I 20. I	139.4		,	, i		
44	2	7 I	115.4	134.5	210.1	293.8	381.2		
"	5	67.6	109.9	128.2	198.7	276. 5	357.2		
"	12.5	62.9	101.8	118.7	183.6	254.2	326		
" "	50	54.4	87.8	102.1	157.5	215.5	273		
	100	50.2	80.8	93.9	143.7	196.5	247.5		
46 46	300	43-5	69.8	8ī	123.5	167	209.5		
Lanthanum nitrate	. 0		122.7	142.6	223	313	413	534	651
66 66	2	75·4 68.9	110.8	128.9	200.5	279.8	363.5	457.5	549
66 66 4 4 4	12.5	61.4	98.5	114.4	176.7	243.4	311.2	383.4	447.8
	50	54	86.1	99.7	152.5	207.6	261.4	315.8	357.7
66 66	100	49.9	79.4	91.8	139.5	189.1	236.7	282.5	316.3
	200	46	72.1	83.5	126.4	170.2	210.8	249.6	276.2

From the investigations of Noyes and Johnston, Journal of the American Chemical Society, 31, p. 287, 1909.

SMITHSONIAN TABLES.

CONDUCTANCE OF IONS. - HYDROLYSIS OF AMMONIUM ACETATE.

TABLE 424. - The Equivalent Conductance of the Separate Ions.

Ion.	00	180	25°	50°	75°	1000	1280	1560
K Na	40.4 26 40.2 32.9 33 30 35	64.6 43.5 64.5 54.3 55 ² 51 ² 61	74·5 50·9 74·5 63·5 65 60	115 82 115 101 104 98	159 116 159 143 149 142 173	206 155 207 188 200 191 235	263 203 264 245 262 252 312	317 249 319 299 322 312 388
$\begin{array}{c} Cl \\ NO_3 \\ C_2H_8O_2 \\ \frac{1}{2}SO_4 \\ \frac{1}{3}C_6H_5O_7 \\ \frac{1}{4}Fe(CN)_6 \end{array}$	41.1 40.4 20.3 41 39 36 58	65.5 61.7 34.6 · 68 ² 63 ² 60 95	75·5 70·6 40·8 79 73 70	116 104 67 125 115 113	160 140 96 177 163 161	207 178 130 234 213 214 321	264 222 171 303 275	318 263 211 370 336
Н	240 105	314 172	350 192	465 284	565 360	644 439	7 ² 2 5 ² 5	777 592

From Johnson, Journ. Amer. Chem. Soc., 31, p. 1010, 1909.

TABLE 425. - Hydrolysis of Ammonium Acetate and Ionization of Water.

Temperature.	Percentage hydrolysis.	Ionization constant of water.	Hydrogen-ion concen- tration in pure water. Equivalents per liter.
ť	100h	K _W ×1014	C _H ×10 ⁷
0	-	0.089	0.30
18	(0.35)	0.46	0.68
25	-	0.82	0.91
100	4.8	48.	6.9
1 56	18.6	223.	14.9
218	52.7	461.	21.5
306	91.5	168.	13.0

Noyes, Kato, Kanolt, Sosman, No. 63 Publ. Carnegie Inst., Washington.

TABLES 426, 427. DIELECTRIC STRENGTH.

TABLE 426. — Steady Potential Difference in Volts required to produce a Spark in Air with Ball Electrodes.

Spark length. cm.	R = o. Points.	R = 0.25 cm.	R = 0.5 cm.	R = 1 cm.	R = 2 cm.	R=3 cm.	$R = \infty$. Plates.
0,02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.5 2.0 3.0 4.0 5.0		5010 8610 11140 14040 15990 17130 18960 20670 22770 24570 28380 29580	1560 2460 3300 4050 4740 8490 11460 14310 16950 19740 23790 26190 29970 33060	1530 2430 3240 3990 4560 8490 11340 14340 17220 20070 24780 27810 37260 45480	2340 3060 3810 4560 8370 11190 14250 16050 20070 25830 29850	4500 7770 10560 13140 16470 10380 26220 32760	4350 7590 10050 13560 16320 19110 24960 30840

Based on the results of Baille, Bichat-Blondot, Freyburg, Liebig, Macfarlane, Orgler, Paschen, Quincke, de la Rue, Wolff. For spark lengths from 1 to 200 wave-lengths of sodium light, see Earhart, Phys. Rev. 15, p. 163; Hobbs, Phil. Mag. 10, p. 607, 1905.

TABLE 427. — Alternating Current Potentials required to produce a Spark in Air with various Ball Electrodes.

The potentials given are the maxima of the alternating waves used. Frequency, 33 cycles per second.

Spark length, cm.	R=1 cm.	R=1.92	R=5	R = 7.5	R = 10	R=15
0.08 .10 .15 .20	3770 4400 5990 7510 9045	4380 5940 7440 8970	4330 5830 7340 8850	4290 5790 7250 8710	4245 5800 7320 8760	4230 5780 7330 8760
0.30 ·35 ·40 ·45 ·50	10480 11980 13360 14770 16140	10400 11890 13300 14700 16070	10270 11670 13100 14400 15890	10130 11570 12930 14290 15640	10180 11610 12980 14330 15690	10150 11590 12970 14320 15690
0.6 .7 .8 0.9	18700 21350 23820 26190 28380	18730 21380 24070 26640 29170	18550 21140 23740 26400 28950	18300 20980 23490 26130 28770	18350 20990 23540 26110 28680	18400 21000 23550 26090 2 8610
1.2 1.4 1.6 1.8 2.0	32400 35850 38750 40900 42950	34100 38850 43400	33790 38850 43570 48300	33660 38580 43250 47900 52400	33640 38620 43520	33620 38580

Based upon the results of Kawalski, Phil. Mag. 18, p. 699, 1909.

TABLES 428, 429. DIELECTRIC STRENGTH.

TABLE 428. — Potential Necessary to produce a Spark in Air between more widely Separated Electrodes.

cm.	Alter- nt.		Steady po	tentials.		сш.	Alter-	Steady p	Steady potentials.	
Spark length, cm.	Dull points. Alta	Ball elec	ctrodes.	Cup ele	ctrodes.	Spark length,	9	Ball ele	ctrodes.	
Spark	oull poi nating	R=1 cm.	R=2.5 cm.		ction.	Spark	Dull points, nating curi	R=1 cm.	R=2.5 cm.	
0.3 0.5 0.7 1.0 1.2	- - - 12000	17610 - 30240 33800 37930	- 17620 23050 31390 36810 44310	4.5 mm. - - 31400	11280 17420 22950 31260 36700 44510	6.0 7.0 8.0 10.0 12.0 14.0	61000 - 67000 73000 82600 92000	52000 52400 74300	86830 90200 91930 93300 94400	
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5	29200 - 40000 - 48500 - 56500	42320 45000 46710 - 49100 - 50310	56000 65180 71200 75300 78600 81540 83800	56500 - 80400 - 101700 - - -	56530 68720 81140 92400 103800 114600 126500 135700	15.0 16.0 20.0 25.0 30.0 35.0	101000 119000 140600 165700 190900	-	94700	

This table for longer spark lengths contains the results of Voege, Ann. der Phys. 14, 1904, using alternating current and "dull point" electrodes, and the results with steady potential found in the recent very careful work of C. Müller, Ann. d. Phys. 28, p. 585, 1909.

The specially constructed elec-The specialty constructed elec-trodes for the columns headed "cup electrodes" had the form of a projecting knob 3 cm. in diame-ter and having a height of 4.5 mm. and 1.5 mm. respectively, attached to the plane face of the electrodes. These electrodes give a very satis-fectory lives, relative between the factory linear relation between the spark lengths and the voltage throughout the range studied.

TABLE 429. - Effect of the Pressure of the Gas on the Dielectric Strength.

Voltages are given for different spark lengths I.

Pressure. cm. Hg.	/=o.o4	l=0.06	l=0.08	<i>l</i> =0.10	l=0.20	<i>l</i> =0 30	l=0.40	l=0.50
2 4 6 10	- - - -	483 582 771	567 690 933	- 648 795 1090	744 1015 1290 1840	939 1350 1740 2450	1110 1645 2140 3015	1266 1915 2505 3580
15 25 35 45	1110 1375 1640	1060 1420 1820 2150	1280 1725 2220 2660	1490 2040 2615 3120	2460 3500 4505 5475	3300 4800 6270 7650	4080 6000 7870 9620	4850 7120 9340 11420
55 65 75	1820 2040 2255	2420 2720 3035	3025 3400 3805	3610 4060 4565	6375 7245 8200	8950 10210 11570	11290 12950 14650	13455 15470 17450

This table is based upon the results of Orgler, 1899. See this paper for work on other gases (or Landolt-Börnstein-

Meyerhoffer).

For long spark lengths in various gases see Voege, Electrotechn. Z. 28, 1907. For dielectric strength of air and CO₂ in cylindrical air condensers, see Wien, Ann. d. Phys. 29, p. 679, 1909.

WIRE TABLE, STANDARD ANNEALED COPPER.

American Wire Gage (B. & S.) Metric Units.

Gage	Diameter	Cross Section		Ohms per	Kilometer.*	
No.	in mm. at 20° C.	in mm. ² at 20° C.	о° С.	20° C.	50° C.	75° C.
0000	11.68	107.2	0.1482	0.1608	0.1798	0.1956
000	10.40	85.03	.1868	.2028	.2267	.2466
00	9.266	67.43	.2356	.2557	.2858	.3110
0	8.252	53.48	.2971	.3224	•3604	.3921
I	7.348	42.41	.3746	.4066	•4545	.4944
2	6.544	33.63	.4724	.5127	•5731	.6235
3	5.827	26.67	.5956	.6465	.7227	.7862
4	5.189	21.15	.7511	.8152	.9113	.9914
5	4.621	16.77	.9471	1.028	1.149	1.250
6	4.115	13.30	1.194	1.296	1.449	1.576
7	3.665	10.55	1.506	1.634	1.827	1.988
8	3.264	8.366	1.899	. 2.061	2.304	2.506
9	2.906	6.634	2.395	2.599	2.905	3.161
10	2.588	5.261	3.020	3.277	3.663	3.985
11	2.305	4.172	3.807	4.132	4.619	5.025
12	2.053	3.309	4,801	5,211	5.825	6.337
13	1.828	2.624	6.054	6,571	7·345	7.991
14	1.628	2.081	7.634	8,285	9.262	10.08
15	1.450	1.65c	9.627	10.45	11.68	12.71
16	1.291	1.309	12.14	13.17	14.73	16.02
17	1.150	1,038	15.31	16.61	18.57	20.20
18	1.024	0.8231	19.30	20.95	23.42	25.48
19-	0.9116	.6527	24.34	26.42	29.53	32.12
20	.8118	.5176	30.69	33.31	37.24	40.51
21	•7230	.4105	38.70	42.00	46.95	51.08
22	•6438	•3255	48.80	52.96	59.21	64.41
23	•5733	.2582	61.54	66.79	74.66	81.22
24	.5106	.2047	77.60	84.21	94.14	102.4
25	•4547	.1624	97.85	106.2	118.7	129.1
26	•4049	.1288	123.4	133.9	149.7	162.9
27	.3606	.1021	155.6	168.9	188.8	205.4
28	.3211	.080 98	196.2	212.9	238.0	258.9
29	.2859	.064 22	247.4	268.5	300.1	326.5
30	.2546	.050 93	311.9	338.6	378.5	411.7
31	.2268	.040 39	393.4	426.9	477.2	519.2
32	.2019	.032 03	496.0	538.3	601.8	654.7
33	.1798	.025 40	625. 5	678.8	758.8	825.5
34	.1601	.020 14	788.7	856.0	956.9	.1041.
35	.1426	.015 97	994.5	1079.	1207.	1313.
36	.1270	.012 67	1254.	1361.	1522.	1655.
37	.1131	.010 05	1581	1716.	1919.	2087.
38	.1007	.007 967	1994.	2164.	2419.	2632.
39	.089 69	.005 010	2514.	2729.	3051.	3319.
40	.079 87		3171.	3441.	3847.	4185.

^{*}Resistance at the stated temperatures of a wire whose length is 1 kilometer at 20° C.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.) Metric Units (continued).

		Y2.11		1	Meters p	er Ohm.*	
Gage No.	Diameter in mm. at 20° C.	Kilograms per Kilometer.	Meters per Gram.	о° С.	20° C.	50° C.	75° C.
0000	11.68 10.40 9.266	953.2 755.9 599.5	0 001 049	6749. 5352. 4245.	6219. 4932. 3911.	5563. 4412. 3499.	5113. 4055. 3216.
0	8.252	475·4	.002 103	3366.	3102.	277 4.	2550.
I	7.348	377·0	.002 652	2669.	2460.	2200.	2022.
2	6.544	299·0	.003 345	2117.	1951.	1745.	1604.
3	5.827	237.1	.004 217	1679.	1547.	1384.	1272.
4	5.189	188.0	.005 318	1331.	1227.	1097.	1009.
5	4.621	149.1	.006 706	1056.	972.9	870.2	799.9
6	4. 115	118.2	.008 457	837.3	771.5	690.1	634.4
7	3.665	93.78	.010 66	664.0	611.8	547·3	503.1
8	3.264	74.37	.013 45	526.6	485.2	434.0	399.0
10	2.906	58.98	.016 96	417.6	384.8	344-2	316.4
	2.588	46.77	.021 38	331.2	305.1	273.0	250.9
	2.305	37.09	.026 96	262.6	242.0	216.5	199.0
12	2.053	29.42	.034 00	208.3	191.9	171.7	157.8
13	1.828	23.33	.042 87	165.2	152.2	136.1	125.1
14	1.628	18.50	.054 06	131.0	120.7	108.0	99.24
15	1.450	14.67	.068 16	103.9	95. 7 1	85.62	78.70
16	1.291	11.63	.085 95	82.38	75.90	67.90	62.41
17	1.150	9.226	.1084	65.33	60.20	53.85	49.50
18	1.024	7.317	.1367	51.81	47.74	42.70	39.25
19	0.9116	5.803	.1723	41.09	37.86	33.86	31.13
20	.8118	4.602	.2173	32.58	30.02	26.86	24.69
21	.7230	3.649	.2740	25.84	23.81	21.30	19.58
22	.6438	2.894	.3455	20.49	18.88	16.89	15.53
23	• 5 733	2.295	.4357	16.25	14.97	13.39	12.31
24	.5106	1.820	.5494	12.89	11.87	10.62	9.764
25	.4547	1.443	.6928	10.22	9.417	8.424	7.743
26	.4049	1.145	.8736	8.105	7.468	6.680	6.141
27	.3606	0.9078	1.102	6.428	5.922	5.298	4.870
28	.3211	.7199	1.389	5.097	4.697	4.201	3.862
29	.2859	•5709	1.752	4.042	3.725	3.332	3.063
30	.2546	.4527	2.209	3.206	2.954	2.642	2.429
31	.2268	.3590	2.785	2.542	2.342	2.095	1.926
32	.2019	.2847	3.512	2.016	1.858	1.662	1.527
33	.1798	.2258	4.429	1.599	1.473	1.318	1.211
34	.1601	.1791	5.584	1.208	1.168	1.045	0.9606
35	.1426	.1420	7.042	1.006	0.9265	0.8288	.7618
36	.1270	.1126	8.879	0.7974	.7347	.6572	.6041
37	.1131	.089 31	11.20	.6324	.5827	.5212	•4791
38	.1007	.070 83	14.12	.5015	.4621	.4133	•3799
39 40	.089 69 .079 87	.056 17 .044 54	17.80	·3977 ·3154	.3664 .2906	.3278	.3013

^{*}Length at 20° C. of a wire whose resistance is 1 ohm at the stated temperatures.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). Metric Units (continued).

			go (B. & S.). Metric		
Gage	Diameter in mm.		Ohms per Kilogram.		Grams per Ohm.
No.	at 20° C.	₀° C.	20° C.	50° C.	20° C.
0000	11.68	0.000 I 55 4	0.000 168 7	0.000 188 6	5 928 000.
	10.40	.000 247 2	.000 268 2	.000 299 9	3 728 000.
	9.266	.000 393 0	.000 426 5	.000 476 8	2 344 000.
0	8.252	.000 624 9	.000 678 2	.000 758 2	1 474 000.
I	7.348	.000 993 6	.001 078	.001 206	927 300.
2	6.544	.001 580	.001 715	.001 917	583 200.
3	5.827	.002 512	.002 726	.003 048	366 800.
4	5.189	.003 995	.004 335	.004 846	230 700.
5	4.621	.006 352	.006 893	.007 706	145 100.
6	4.115	.010 10	.010 96	.012 25	91 230.
7	3.665	.016 06	.017 43	.019 48	57 380.
8	3.264	.025 53	.027 71	.030 98	36 080.
11 9	2.906	.040 60	.044 06	.049 26	22 690.
	2.588	.064 56	.070 07	.078 33	14 270.
	2.305	.1026	.1114	.1245	8976.
12	2.053	.1632	.1771	.1980	56.45
13	1.828	.2595	.2817	.3149	3550.
14	1.628	.4127	.4479	.5007	2233.
15	1.450	.6562	.7122	.7961	140 4.
16	1.291	1.043	1.132	1.266	883.1
17	1.150	1.659	1.801	2.013	555.4
18	1.024	2.638	2.863	3.201	349.3
19	0.9116	4.194	4.552	5.089	219.7
20	.8118	6.670	7.238	8.092	138.2
21	.7230	10.60	11.51	12.87	86.88
22	.6438	16.86	18.30	20.46	54.64
23	·5733	26.81	29.10	32.53	34.36
24	.5106	42.63	46.27	51.73	21.61
25	·4547	67.79	73-57	82.25	13.59
26	·4049	107.8	117.0	130.8	8.548
27	.3606	171.4	186.0	207.9	5.376
28	.3211	272.5	295.8	330.6	3.381
29	.2859	433.3	470.3	525.7	2.126
30	.2546	689.0	747.8	836.0	1.337
31	.2268	1096.	1189.	1329.	0.8410
32	.2019	1742.	1891.	2114.	.5289
33	.1798	2770.	3006.	3361.	.3326
34	.1601	4404.	4780.	5344.	.2092
35	.1426	7003.	7601.	8497.	.1316
36	.1270	11140.	12090.	13510.	.082 74
37	.1131	17710.	19220.	21480.	.052 04
38	.1007	28150.	30560.	34160.	.032 73
39	.089 69	44770.	48590.	54310.	.020 58
40	.079 87	71180.	77260.	86360.	.012 94

Hard-Drawn Aluminum Wire at 20° C. (or, 68° F.).

American Wire Gage (B. & S.). English Units.

			erican wire trag				
		Cross	Section.	Ohms	Pounds		Feet
Gage No.	Diameter in Mils.	Circular Mils.	Square Inches.	per 1000 Feet.	per 1000 Feet.	Pounds per Ohm.	per Ohm.
0000	460.	212 000.	0.166	0.0804	195.	2420.	12 400.
	410.	168 000.	.132	,101	154.	1520.	9860.
	365.	133 000.	.105	.128	122.	957·	7820.
0	325.	106 000.	.0829	.161	97.0	60 2.	6200.
I	289.	83 700.	.0657	.203	76.9	379.	4920.
2	258.	66 400.	.0521	.256	61.0	238.	3900.
3 4 5	229.	52 600.	.0413	.323	48.4	150.	3090.
	204.	41 700.	.0328	.408	38.4	94. 2	2450.
	182.	33 100.	.0260	.514	30.4	59.2	1950.
6	162.	26 300.	.0206	.648	24.1	37.2	1 540.
7	144.	20 800.	.0164	.817	19.1	23.4	1 220.
8	128.	16 500.	.0130	1.03	15.2	14.7	970.
9 10	114. 102. 91.	13 100. 10 400. 8230.	.0103 .008 15 .006 47	1.30 1.64 2.07	9·55 7·57	9.26 5.83 3.66	770. 610. 484.
12	81.	6530.	.005 13	2.61	6.00	2.30	384.
13	72.	5180.		3.29	4.76	1.45	304.
14	64.	4110.		4.14	3.78	0.911	241.
15	57·	3260.	.002 56	5.22	2.99	·573	191.
16	51.	2580.	.002 03	6.59	2.37	.360	152.
17	45·	2050.	.001 61	8.31	1.88	.227	120.
18	40.	1620.	.001 28	10.5	1.49	.143	95·5
19	36.	1290.	.001 01	13.2	1.18	.0897	75·7
20	32.	1020.	.000 802	16.7	0.939	.0564	60.0
21	28.5	810.	.000 636	21.0	·745	.0355	47.6
22	25.3	642.	.000 505	26.5	·591	.0223	37.8
23	22.6	509.	.000 400	33.4	·468	.0140	29.9
24	20.1	404.	.000 317	42.1	.371	.008 82	23.7
25	17.9	320.	.000 252	53.1	.295	.005 55	18.8
26	15.9	254.	.000 200	67.0	.234	.003 49	14.9
27	14.2	202.	.000 158	84.4	.185	.002 19	11.8
28	12.6	160.	.000 126	106.		.001 38	9.39
29	11.3	127.	.000 099 5	134.		.000 868	7.45
30	10.0	101.	.000 078 9	169.	.0924	.000 546	5.91
31	8.9	79.7	.000 062 6	213.	.0733	.000 343	4.68
32	8.0	63.2	.000 049 6	269.	.0581	.000 216	3.72
33	7.1	50.1	.000 039 4	339.	.0461	.000 136	2.95
34	6.3	39.8		428.	.0365	.000 085 4	2.34
35	5.6	31.5		540.	.0290	.000 053 7	1.85
36	5.0	25.0	.000 019 6	681.	.0230	.000 033 8	1.47
37	4.5	19.8		858.	.0182	:000 021 2	1.17
38	4.0	15.7		1080.	.0145	.000 013 4	0.924
39	3.5 3.1	12. 5 9.9	.000 009 79	1360. 1720.	.0091	.000 008 40	·733 .581

Hard-Drawn Aluminum Wire at 20° C.

American Wire Gage (B. & S.) Metric Units.

Gage	Diameter	Cross Section	Ohms per	Kilograms per	Grams per	Meters per
No.	in mm.	in mm. ²	Kilometer.	Kilometer.	Ohm.	Ohm.
0000	11.7 10.4 9.3	107. 85.0 67.4	0.264 	289. 230. 182.	1 100 000. 690 000. 434 000.	3790. 3010. 2380.
0	8.3	53.5	.529	144.	273 000.	1890.
I	7.3	42.4	.667	114.	172 000.	1500.
2	6.5	33.6	.841	90.8	108 000.	1190.
3	5.8	26.7	1.06	72.0	67 900.	943.
4	5.2	21.2	1.34	57.1	42 700.	748.
5	4.6	16.8	1.69	45.3.	2 6 900.	5 93.
6	4.1	13.3	2.13	35.9	16 900.	470.
7	3.7	10.5 .	2.68	28.5	10 600.	373.
8	3.3	8.37	3.38	22.6	δ680.	296.
10	2.91	6.63	4.26	17.9	4200.	235.
	2.59	5.26	5.38	14.2	2640.	186.
	2.30	4.17	6.78	11.3	1660.	148.
12 13 14	2.05 1.83 1.63	3.31 2.62 2.08	8.55 10.8 13.6	8.93 7.08 5.62	1050. 657. 413.	92.8 73.6
15	I.45	1.65	17.1	4.46	260.	58.4
16	I.29	1.31	21.6	3.53	164.	46.3
17	I.15	1.04	27.3	2.80	103.	36.7
18 19 20	0.91 .81	0.823 .653 .518	34·4 43·3 54.6	2.22 1.76 1.40	64.7 40.7 25.6	29.1 23.1 18.3
21 22 23	.72 .64 •57	,411 ,326 ,258	68.9 86.9 110.	0.879 .697	16.1 10.1 6.36	14.5 11.5 9.13
24	•51	.205	138.	·553	4.00	7-24
25	•45	.162	174.	·438	2.52	5-74
26	•40	.129	220.	·348	1.58	4-55
27	.36	.102	277.	.276	0.995	3.61
28	.32	.0810	349.	.219	.626	2.86
29	.29	.0642	440.	.173	·394	2.27
30	.25	.0509	555·	.138	.248	1.80
31	.227	.0404	700.	.109	.156	1.43
32	.202	.0320	883.	.0865	.0979	1.13
33	.180	.0254	1110.	.0686	.0616	0.899
34	.160	.0201	1400.	.0544	.0387	.712
35	.143	.0160	1770.	.0431	.0244	.565
36	.127	.0127	°2230.	.0342	.01 53	•448
37	.113	.0100	2820.	.0271	.009 63	•355
38	.101	.0080	3550.	.0215	.006 06	• 2 82
39 40	.090 .080	.0063	4480. 5640.	.0171	.003 81 .002 40	.223

TABLE 414. - Ratio of Alternating to Direct Current Resistances for Copper Wires.

This table gives the ratio of the resistance of straight copper wires with alternating currents of different frequencies to the value of the resistance with direct currents.

Diameter of wire in			Freque	ency f =		
millimeters.	60	100	1000	10,000	100,000	1,000,000
0.05 0.1 0.25 0.5 1.0 2.0 3. 4. 5. 7.5 10. 15. 20. 25. 40.	I.001 I.003 I.016 I.044 I.105 I.474 3.31	*I.00I I.002 I.008 I.038 I.120 I.247 I.842 4.19		*I.001 1.008 I.120 1.437 1.842 2.240 3.22 4.19 6.14 8.10 10.1 17.4 39.1	*I.00I I.003 I.047 I.503 2.756 4.00 5.24 0.49 7.50 I2.7 I8.8 25.2 28.3	*I.00I I.008 I.247 2.240 4.19 8.10 I2.0 I7.4 I9.7 29.7 39.1

Values between 1.000 and 1.001 are indicated by *1.001.
The values are for wires having an assumed conductivity of 1.60 microhm-cms; for copper wires at room temperatures the values are slightly less than as given in table.
The change of resistance of wire other than copper (from wires excepted) may be calculated from the above table

by taking it as proportional to $d\sqrt{f/\rho}$ where d= diameter, f the frequency and ρ the resistivity.

If a given wire be wound into a solenoid, its resistance, at a given frequency, will be greater than the values in the table, which apply to straight wires only. The resistance in this case is a complicated function of the pitch and radius of the winding, the frequency, and the diameter of the wire, and is found by experiment to be sometimes as much as twice the value for a straight wire.

TABLE 415. — Maximum Diameter of Wires for High-frequency Alternating-to-direct-current Resistance Ratio of 1.01.

Frequency ÷ 106	0. I	0.2	0.4	0.6	0.8	1.0	1.2	1.5	2.0	3.0
Wave-length, meters	3000	1500	750	500	375	300	250	200	150	100
Material.				Di	ameter i	n centim	eters.			
Manganin. Constantan. German silver. Graphite. Carbon. Iron $\mu = 1000$. $\mu = 500$.	0.0345 0.0420 0.1120 0.264 0.1784 0.1892 0.765 1.60 0.00263 0.00373	0.0244 0.0297 0.0793 0.187 0.1261 0.1337 0.541 1.13 0.00186	0.132 0.0892 0.0946 0.0970 0.383 0.801	0.0141 0.0172 0.0457 0.1080 0.0729 0.0772 0.0702 0.312 0.0554	0.0936 0.0631 0.0604 0.0692 0.271 0.566	0.00118	0.00108	0.00068	0.00081	0.0065 0.0063 0.0077 0.0205 0.0483 0.0325 0.0345 0.140 0.292 0.00048 0.00068

Bureau of Standards Circular 74, Radio Instruments and Measurements, 1918.

ELECTROCHEMICAL EQUIVALENTS.

Every gram-ion involved in an electrolytic change requires the same number of coulombs or ampere-hours of elecbetry grain-for involved in an electrorytic change requires the same number of coulombs of ampere-hours of each tricity per unit change of valence. This constant is 96.494 coulombs or 26.894 ampere-hours per gram-hour (a Faraday) corresponding to an electrochemical equivalent for silver of 0.00111800 gram sec⁻¹ amp⁻¹. It is to be noted that the change of valence of the element from its state before to that after the electrolytic action should be considered. The valence of a free, uncombined element is to be considered as 0. The same current will electrolyze "chemically equivalent" quantities per unit time. The valence is then included in the "chemically equivalent" quantity. The following table is based on the atomic weights of 1917.

Element.	Change of valency.	Mg per coulomb.	Coulombs per mg	Grams per amp hour.	Element.	Change of valency.	Mg per coulomb.	Coulombs per mg	Grams per amp hour.
Aluminum Chlorine Copper Gold Hydrogen Lead Mercury	3 1 3 5 7 1 2 1 2 4 1 2	0.0936 0.3075 0.1225 0.0735 0.0525 0.6588 0.3294 2.044 0.6812 0.010459 2.1473 1.0736 0.5368 2.0789 1.0394	10.682 2.721 8.164 13.606 19.05 1.518 3.036 0.4893 1.468 0.4657 0.9314 1.8628 0.4810 0.9620	0.3370 1.3229 0.4410 0.2646 0.1890 2.3717 1.1858 7.357 2.452 0.037607 7.7302 3.8651 1.9326 7.484 3.742	Nickel "" Oxygen Platinum "" Potassium Silver Sodium Tin "" Zinc	1 2 3 2 4 2 4 6 1 1 1 2 4 2	0.6081 0.3041 0.2027 0.08291 0.04145 1.0115 0.5057 0.3372 0.4052 1.1180 0.2084 0.6151 0.3075 0.3387	1.6444 3.289 4.933 12.062 24.123 0.9887 1.9773 2.966 2.468 0.89445 4.195 1.626 3.252 2.952	2.1892 1.0946 0.7298 0.2985 0.1492 3.641 1.821 1.214 1.459 4.0248 0.8581 2.214 1.107

The electrochemical equivalent for silver is 0.00111800 g sec⁻¹ amp⁻¹. (See p. xxxvii.)

For other elements the electrochemical equivalent = (atomic weight divided by change of valency) times 1/96494
g/sec/amp. or g/coulomb. The equivalent for iodine has been determined at the Bureau of Standards as 0.0013150

(1913).

For a unit change of valency for the diatomic gases Br₂, Cl₂, F₂, H₂, N₂ and O₂ there are required

8.619 coulombs/cm³ o° C, 76 cm (0.1160 cm³/coulomb) 2.394 ampere-hours/l, o° C, 76 cm (0.4177 l/ampere-hour).

NOTE. - The change of valency for O2 is usually 2, etc.

CONDUCTIVITY OF ELECTROLYTIC SOLUTIONS.

This subject has occupied the attention of a considerable number of eminent workers in molecular physics, and a few results are here tabulated. It has seemed better to confine the examples to the work of one experimenter, and the tables are quoted from a paper by F. Kohlrausch,* who has been one of the most reliable and successful workers in this field.

The study of electrolytic conductivity, especially in the case of very dilute solutions, has furnished material for generalizations, which may to some extent help in the formation of a sound theory of the mechanism of such conduction. If the solutions are made such that per unit volume of the solvent medium there are contained amounts of the salt proportional to its electrochemical equivalent, some simple relations become apparent. The solutions used by Kohlrausch were therefore made by taking numbers of grams of the pure salts proportional to their electrochemical equivalent, and using a liter of water as the standard of quantity of the solvent. Taking the electrochemical equivalent number as the chemical equivalent or atomic weight divided by the valence, and using this number of grams to the liter of water, we get what is called the normal or gram molecule per liter solution. In the table, m is used to represent the number of gram molecules to the liter of water in the solution for which the conductivities are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with the solution by means of a Wheatstone bridge alternating current and telephone arrangement. The results are for 18° C., and relative to mercury at 0° C., the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within one per cent of the true value.

The tabular numbers were obtained from the measurements in the following manner:— Let $K_{1.8}$ = conductivity of the solution at 18° C. relative to mercury at 0° C.

 $K_{18}^{w} = \text{conductivity of the solution water at 18}^{\circ}$ C. relative to mercury at 0° C. Then $K_{18}^{w} = k_{18} = \text{conductivity of the electrolyte in the solution measured.}$

 $\frac{k_{18}}{m} = \mu =$ conductivity of the electrolyte in the solution per molecule, or the "specific molecular conductivity."

TABLE 417. — Value of k_{18} for a few Electrolytes.

This short table illustrates the apparent law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved.

m	KC1	NaCl	AgNO ₃	KC ₂ H ₃ O ₂	K ₂ SO ₄	MgSO ₄
0.0000I	1.216	1.024	1.080	0.939	1.275	1.056
0.00002	2.434	2.056	2.146	1.886	2.532	2.104
0.00006	7.272	6.162	6.462	5.610	7.524	6.216
0.0001	12.09	10.29	10.78	9.34	12.49	10.34

TABLE 418. - Electro-Chemical Equivalents and Normal Solutions.

The following table of the electro-chemical equivalent numbers and the densities of approximately normal solutions of the salts quoted in Table 419 may be convenient. They represent grams per cubic centimeter of the solution at the temperature given.

Salt dissolved.	Grams per liter.	m	Temp. C.	Density.	Salt dissolved.	Grams per liter.	371	Temp.	Density.
KCl	74-59 53-55 58-50 42-48 104-0 68-0 105-9 101-17 85-08 169-9 65-28 61-29 98.18	I.0 I.0009 I.0 I.0 I.0 I.0 I.0 I.0 I.0 I.0 I.0 I.0	15.2 18.6 18.4 18.4 18.6 15.0 18.6 18.7	I.0457 I.0152 I.0391 I.0227 I.0888 I.0592 I.1183 I.0601 I.0542	$\begin{array}{c} \frac{1}{2}K_2SO_4\\ \frac{1}{2}Na_2SO_4\\ \frac{1}{2}Li_2SO_4\\ \frac{1}{2}MgSO_4\\ \frac{1}{2}ZnSO_4\\ \frac{1}{2}CuSO_4\\ \frac{1}{2}K_2CO_3\\ \frac{1}{2}Na_2CO_3\\ \frac{1}{2}Na_2CO_3\\ \frac{1}{2}H_2SO_4\\ \end{array}$	87.16 71.09 55.09 60.17 80.58 79.9 69.17 53.04 56.27 36.51 63.13 49.06	1.0 1.0003 1.0007 1.0023 1.0 1.001 1.0006 1.0 1.0025 1.0041 1.0014	18.9 18.6 18.6 18.6 5.3 18.2 17.9 18.8 18.6 18.6	1.0658 1.0602 1.0445 1.0573 1.0794 1.0776 1.0576 1.0517 1.0477 1.0161 1.0318 1.0300

TABLE 419.

SPECIFIC MOLECULAR CONDUCTIVITY μ : MERCURY=10°.

Salt dissolved.	m=10	5	3	I	0.5	0.1	.05	.03	.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	- 770 752	827 900 825 572	919 968 907 752	672 958 997 948 839	736 1047 1069 1035 983	897 1083 1102 1078 1037	959 1107 1123 1101 1067	1098 1147 1161 1142 1122
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	- - - 351	487 - - 150 448	658 - - 241 635	725 799 531 288 728	861 927 755 424 886	904 (976) 828 479 936	939 1006 (870) 537 (966)	1006 1053 951 675 1017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- - 60 -	82 82 - 180 398	146 151 280 528	249 270 475 514 695	302 330 559 601 757	431 474 734 768 865	500 532 784 817 897	556 587 828 851 (920)	685 715 906 915 962
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 30 - 660 0.5	- 240 - 1270 2.6	430 381 254 1560 5.2	617 594 427 1820	694 671 510 1899	817 784 682 2084 43	855 820 751 2343 62	877 841 799 2515 79	907 879 899 2855 132
HCl	600	1420	2010	2780	3017	3 ² 44	3330	3369	3416
	610	1470	2070	2770	2991	3 ² 25	3289	3328	3395
	148	160	170	200	250	430	540	620	790
	423	990	1314	1718	1841	1986	2045	2078	2124
	0.5	2.4	3.3	8.4	12	31	43	50	92
Salt dissolved.	.006	.002	100.	.0006	,0002	.0001	.00006	.00002	100001
1K ₂ SO ₄	1130	1181	1207	1220	1241	1249	1254	1266	1275
KCl	1162	1185	1193	1199	1209	1209	1212	1217	1216
KI	1176	1197	1203	1209	1214	1216	1216	1216	1207
NH ₄ Cl	1157	1180	1190	1197	1204	1209	1215	1209	1205
KNO ₃	1140	1173	1180	1190	1199	1207	1220	1198	1215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1031	1074	1092	1102	1118	1126	1133	1144	1142
	1068	1091	1101	1109	1119	1122	1126	1135	1141
	982	1033	1054	1066	1084	1096	1100	1114	1114
	740	873	950	987	1039	1062	1074	1084	1086
	1033	1057	1068	1069	1077	1078	1077	1073	1080
½ZnSO ₄	744	861	91 9	953	1001	1023	1032	1047	1060
	773	881	935	967	1015	1034	1036	1052	1056
	933	980	998	1009	1026	1034	1038	1056	1054
	939	979	994	1004	1020	1029	1031	1 035	1036
	976	998	1008	1014	1018	1029	1027	1028	1024
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	921	942	952	956	966	975	970	972	975
	891	913	919	923	933	934	935	943	939
	956	1010	1037	1046	988	874	790	715	697*
	3001	3240	3316	3342	3280	3118	2927	2077	1413*
	170	283	380	470	796	995	1133	1328	1304*
HCI	3438	3455	3455	3440	3340	3170	2968	2057	1254*
	3421	3448	3427	3408	3285	3088	2863	1904	1144*
	858	945	968	977	920	837	746	497	402*
	2141	2140	2110	2074	1892	1689	1474	845	747*
	116	190	260	330	500	610	690	700	560*

^{*} Acids and alkaline salts show peculiar irregularities.

LIMITING VALUES OF μ . TEMPERATURE COEFFICIENTS.

TABLE 420.- Limiting Values of μ.

This table shows limiting values of $\mu = \frac{k}{m}$. 108 for infinite dilution for neutral salts, calculated from Table 271.

Salt.	μ	Salt.	μ	Salt.	μ	Salt.	μ
½K ₂ SO ₄ .	1280	$\frac{1}{2}$ BaCl $_2$.	1150	½MgSO ₄ .	1080	$\frac{1}{2}$ H ₂ SO ₄ .	3700
KCl	1220	₹KClO₃ .	1150	½Na₂SO₄ .	1060	HCl	3500
KI	I 220	$rac{1}{2}\mathrm{BaN}_2\mathrm{O}_6$.	1120	½ZnCl	1040	HNO3.	3500
NH ₄ Cl	1210	½CuSO₄ .	1100	NaCl	1030	¹ / ₃ H ₃ PO ₄ .	1100
KNO3	1210	AgNO ₃ .	1090	NaNO ₈ .	980	кон	2200
-	-	½ZnSO ₄ .	1080	K ₂ C ₂ H ₃ O ₂	940	½Na₂CO₃.	1400

If the quantities in Table 420 be represented by curves, it appears that the values of the specific molecular conductivities tend toward a limiting value as the solution is made more and more dilute. Although these values are of the same order of magnitude, they are not equal, but depend on the nature of both the ions forming the electrolyte.

When the numbers in Table 421 are multiplied by Hittorf's constant, or 0.00011, quantities ranging between 0.14 and 0.10 are obtained which represent the velocities in millimetres per second of the ions when the electromotive force gradient is one volt per millimetre.

Specific molecular conductivities in general become less as the concentration is increased, which may be due to mutual interference. The decrease is not the same for different salts, but becomes much more rapid in salts of high valence.

different salts, but becomes much more rapid in salts of high valence. Salts having acid or alkaline reactions show marked differences. They have small specific molecular conductivity in very dilute solutions, but as the concentration is increased the conductivity rises, reaches a maximum and again falls off. Kohlrausch does not believe that this can be explained by impurities. H_3PO_4 in dilute solution seems to approach a monobasic acid, while H_2SO_4 shows two maxima, and like H_3PO_4 approaches in very weak solution to a monobasic acid.

Kohlrausch concludes that the law of independent migration of the ions in media like water is sustained.

TABLE 421. - Temperature Coefficients.

The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approach a common value. The following table gives the temperature coefficient for solutions containing o.or gram molecule of the salt.

Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.
KCl	0.0221	кі	0.0219	½K ₂ SO ₄ .	0.0223	½K₂CO₃	0.0249
NH ₄ Cl	0.0226	KNO ₃	0.0216	½Na₂SO₄ .	0.0240	$\frac{1}{2}$ Na ₂ CO ₃	0.0265
NaCl	0.0238	NaNO ₃	0.0226	½Li₂SO₄ .	0.0242		
LiCl	0.0232	AgNO ₃	0.0221	½MgSO₄ .	0.0236	KOH	0.0194
½BaCl₂	0.0234	$\frac{1}{2}\mathrm{Ba}(\mathrm{NO}_3)_2$	0.0224	½ZnSO₃ .	0.0234	HNO_3 $\frac{1}{2}H_2SO_4$	0.0162
$\frac{1}{2}$ ZnCl ₂	0.0239	KClO ₃	0.0219	½CuS()₄ .	0.0229		
½MgCl₂ .	0.0241	$KC_2H_3O_2$.	0.0229	-	-	$\frac{1}{2}$ H ₂ SO ₄ for $m = .001$	0.0159

THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

In the following table the equivalent conductance is expressed in reciprocal ohms. The concentration is expressed in milli-equivalents of solute per litre of solution at the temperature to which the conductance refers. (In the cases of potassium hydrogen sulphate and phosphoric acid the concentration is expressed in milli-formula-weights of solute, KHSO₄ or H₃PO₄, per liter of solution, and the values are correspondingly the modal, or "formal," conductances.) Except in the cases of the strong acids the conductance of the water was subtracted, and for sodium acetate, ammonium acetate and ammonium chloride the values have been corrected for the hydrolysis of the salts. The atomic weights used were those of the International Commission for 1905, referred to oxygen as 16.00. Temperatures are on the hydrogen gas scale.

Concentration in gram equivalents

Equivalent conductance in reciprocal ohms per centimeter cube gram equivalents per cubic centimeter

Substance.	Concentration.		Equiv	alent cor	nductanc	e at the	followi	ng ° C	tempera	tures.	
Substance.	Con	180	25°	50°	75°	1000	1280	1,56°	218 ⁰	281°	306°
Potassium chloride .	0	130.1	(152.1)	(232.5)	(321.5)	414	(519)	625	825	1005	1120
66 66	2	126.3	146.4	-		393	-	588	779	930	1008
	10	122.4	141.5	215.2	295.2	377	470	560	741	874	910
.6	80	113.5	-	_		342		498	638	723	720
	100	112.0	129.0	194.5	264.6	336	415	490			
Sodium chloride	0	109.0	-	-	-	362	-	555	760	970	1080
" "	2	105.6	-	-	-	349	-	534	722	895	955 860
44 44	10	102.0		-		336	-	511	685	820	
" "	,80	93 5	_	-	_	30r	- 1	450	500	674	680
	100	92.0	_	-	-	296		442			
Silver nitrate	0	115.8	-	-	-	367	-	570	780	965	1065
66 66	2	112.2	-	-	-	353		539	727	877	935
" "	10	108.0		'-		337	-	507	673	790	818
" "	20	105.1	-		-	326	-	488	639		
" "	40	101.3	-	_	_	312	-	462	599	680	680
" "	80	96.5	_	-	_	294		432	552	614	604
	100	94.6	_	-	-	289					
Sodium acetate	0	78.1	_		-	285	-	450	660	-	924
66 66	2	74.5	-	-		268	-	421	578	_	801
66 66	10	71.2	-	-	-	253	-	396	542	-	702
	80	63.4		-	-	22I	-	340	452		
Magnesium sulphate	0	114.1		-	-	426	-	690	1080		
	2	94-3		-	-	302	-	377	260		
66 .	10	76.1	-	-	-	234	-	241	143		
26 66	20	67.5	-	-	-	190	-	195	110		
66 66	40	59.3	_	-	-	100	-	158	88		ļ
	Śo	52.0	-	-	_	136	-	133	7.5		
	001	49.8	-	-	-	130	-	126			
46 46	200	43.1	-	-	-	110	-	109			
Ammonium chloride	0	131.1	152.0	-	-	(415)	-	(628)	(841)	-	(1176)
66 4	2	126.5	146.5	-	-	399	-	601	801	-	1031
	IO	122.5	141.7	-	-	382	-	573	7 58	-	925
66 66	30	118.1	-	-	_	-	-	-	-	-	828
Ammonium acetate.	~o	(99.8)	_	-	-	(338)	-	(523)			
" "	IO	91.7	-	-		300	-	456			
"	25	88.2		-	-	286		426			
	,		1								

From the investigations of Noyes, Melcher, Cooper, Eastman and Kato; Journal of the American Chemical Society, 30, p. 335, 1908.

THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

Barium nitrate.		on.		Equiv	alent co	nductano	ce at th	e follov	ving ° C	temper	atures.	
" "	Substance.	Concentration.	18°	25°	50°	75°	100 ^O	1280	156°	2180	2810	306°
" " 10 101.0 - - 322 - 481 618 658 615 " " 100 791 - - 249 - 2412 507 503 448				-	-	-		-				1300
" "	66 66					_		_	481	618		615
" " 80	66 66			4	_	_		-				448
Potassium sulphate 0 79.1				-	_	_ í		_				
" " 100 36,0 - - - - - - - - -		100		-		-						*.
" " " 10				-	-	-	455	-			1460	1725
" " "				-	-	-					893	
" " 30 104.2 - - - 294 - 415 482 448 336 Hydrochloric acid 0 379.0 - - - 286 - 1048 1217 1332 1337 " " 10 388.1 - - 826 - 1048 1217 1332 1337 " " 10 385.0 - - - 762 - 946 1044 1046 862 Nitric acid 0 377.0 421.0 570 706 826 445 1047 (1230) - (1380) " " 10 355.0 - - 754 - 929 1066 Nitric acid 0 377.0 421.0 570 706 826 445 1047 (1230) - (1380) " " 10 355.0 406.0 548 676 786 893 978 " " 10 346.4 385.0 516 632 728 817 880 - 454* Sulphuric acid 0 383.0 (429) (591) (746) 891 (1044) 1176 1505 - (2030) " " 10 333.3 373 333.5 384 466 460 481 533 " " 10 233.3 251.2 300 335 369 404 435 448 502 " " 10 233.3 251.2 300 336 369 404 435 448 502 " " 10 233.3 251.2 300 336 369 404 435 448 502 " " 10 233.3 251.2 300 336 369 404 435 483 - 474* Potassium hydrogen 2 255.5 273.0 361 373 389 390 " " 10 203.0 222.0 273 300 38 508 489 " " 10 203.0 222.0 273 300 308 298 274 " " 10 203.0 222.0 273 300 308 298 274 " " 10 407.0 222.7 132.6 157.8 168.6 168 158 142 " " 10 4.67 - - - 582 - 814 " " 2 283.1 311.9 401 404 498 508 489 " " 10 4.67 - - - 582 - 814 " " 10 4.67 - - - 582 - 814 " " 10 4.67 - - - 582 - 814 " " 10 4.67 - - - 582 - 814 " " 2 212.1 - - - 582 - 814 " " 3 5 6 6 - - - 582 - 814 " " 3 5 6 6 - - - 582 - 873 " " 3 5 6 6 - -				- 1	_	000						
Hydrochloric acid						_						
Hydrochloric acid	66 . 66				_				4-3	403	440	390
" "	Hydrochloric acid .			-	_	_		-	1085	1265	1380	1424
" " . 80 353.0 762 - 946 1044 1046 862 Nitric acid 0 377.0 421.0 570 706 826 945 1047 (1230) - (1380) " " 2 371.2 413.7 559 690 806 919 1012 1166 - 1156 " " 100 365.0 406.0 548 676 786 893 978 " " 100 346.4 385.0 516 632 728 817 880 Sulphuric acid 0 383.0 (429) (591) (746) 881 (1041) 1176 155 - (2030) " " 2 353.9 390.8 501 561 571 551 536 563 - 637 " " 100 39.0 337.0 406 435 446 406 481 533 " " " 100 253.3 521.2 300 336 369 404 435 533 " " " 100 233.3 521.2 300 336 369 404 435 483 - 474* Potassium hydrogen sulphate (100 263.7 283.1 329.1 354 375 402 435 403 - 474* Phosphoric acid . 0 383.3 376 510 631 730 839 930 " " " 100 263.7 283.1 329.1 354 375 402 435 403 - 474* Phosphoric acid . 0 338.3 376 510 631 730 839 930 " " " 100 96.5 104.0 122.7 129.9 128 120 108 Acetic acid 0 (347.0) (773) - (980) (1165) - (1268) " " " 30 8.50 144.7 - 13.0 8.65 " " " 100 4.67 559 - 731 8.51 " " " 80 5522 9.05 - 8.00 5.34 " " 80 5522 9.05 - 8.00 5.34 " " 80 5522 9.05 - 8.00 5.34 " " 80 5522 9.05 - 8.00 5.34 " " 80 5522 9.05 - 8.00 5.34 " " 80 5522 9.05 - 8.00 5.34 " "	" "		373.6	-	-	-	826	_		1217		
	1 1			-	-	-		-				
Nitric acid				-	-	-		-			1046	862
" "				407.0	-	706	754	0.45				(1280)
" " 10 365.0 406.0 548 676 786 803 978 " " 100 334.4 385.0 516 632 728 817 880 728 817 880 Sulphuric acid 0 346.4 385.0 516 632 728 817 880 7 728 817 880 Sulphuric acid 0 346.4 385.0 516 632 728 817 880 7 7 7 8 7 " " 100 346.4 385.0 516 632 728 817 880 7 7 7 8 7 " " 100 337.0 406 435 446 460 481 533 533 533 337.0 406 435 446 446 446 447 448 502 " " 100 233.3 251.2 300 336 369 404 435 502 " " " 100 233.3 251.2 300 336 369 404 435 483 7 474* Potassium hydrogen 100 263.7 283.1 329.1 354 375 402 435 Sulphate 100 263.7 283.1 329.1 354 375 402 435 " " " 2 283.1 311.9 401 464 498 508 489 " " " 100 263.7 132.6 157.8 168.6 168 158 142 " " " 100 96.5 104.0 122.7 129.9 128 120 108 Acetic acid 0 ((347.0) 7 7 7 7 7 7 7 7 7 Sodium hydroxide . 0 216.5 7 7 7 7 7 7 8 80 " " " 30 8.50 7 7 7 7 7 8 80 " " " 20 205.8 7 7 7 7 7 8 80 " " "		_				* .						(1300)
" "	" "				548					1100		1130
Sulphuric acid	46 46				528		, ,					
Sulphuric acid .								817	880	-	-	454*
" " 2 353-9 390.8 501 501 501 503 504 505 505		0	383.0		(591)			(1041)			-	(2030)
" " 50 253.5 273.0 323 356 384 417 448 502 " " 100 233.3 251.2 300 336 369 404 435 483 - 474* Potassium hydrogen sulphate 100 265.7 283.1 374.4 403 422 446 477 Phosphoric acid 0 263.7 283.1 329.1 354 375 402 435 " " " 10 203.0 222.0 273 300 308 298 274 " " " 10 203.0 222.0 273 300 308 298 274 " " 100 96.5 104.0 122.7 129.9 128 120 108 Acetic acid 0 (347.0) - - (773) - (980) (1165) - (1268) " " 10 4.50 - - 25.1 - 22.2 14.7 " " 30 8.50 - - 14.7 - 13.0 8.65 " " 100 4.67 - - 594 - 8.00 5.34 " " 20 205.8 - - 594 - 835 1060 Barium hydroxide . 0 221.5 - 359 4 591 " " 20 205.8 - - 559 - 771 930 Barium hydroxide . 0 222 256 389 (520) 645 (760) 847 " " 50 191.1 215.1 308 399 478 549 593 " " " 50 191.1 215.1 308 399 478 549 593 Ammonium hydrox-lide . 0 2.66 - - - - 23.2 - 22.3 15.6 Ammonium hydrox-lide . 0 2.66 - - - - 23.2 - 22.3 15.6 Ammonium hydrox-lide . 0 2.66 - - - - 23.2 - 22.3 15.6 Ammonium hydrox-lide . 0 2.66 - - - - 23.2 - 22.3 15.6 Ammonium hydrox-lide . 0 2.66 - - - - 23.2 - 22.3 15.6 Ammonium hydrox-lide . 0 2.66 - - - - 23.2 - 22.3 15.6 Ammonium hydrox-lide . 0 2.66 - - - - - 13.6 - 13.0 Ammonium hydrox-lide . 0 2.66 - - - - - - 23.2 - 22.3 15.6 Ammonium hydrox-lide . 0 2.66 - - - - - - - - -									536		-	637
" "							446					
Potassium hydrogen sulphate												479.4
Sulphate										403		474*
Phosphoric acid (100 263.7 283.1 329.1 354 37.5 402 43.5 43.5 402 43.5 40.2 40.2												
Phosphoric acid	sulphate		263.7									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Phosphoric acid	0	338.3	376	510		730	839				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	66 66						498					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					273		308					
Acetic acid O (347.0) - - - (773) - (980) (1165) - (1268) " " 10 14.50 - - - 25.1 - 22.2 14.7 " " 30 8.50 - - - 13.0 8.65 " " 80 5.22 - - 9.05 - 8.00 5.34 " " 100 4.67 - - 8.10 - - 4.82 - Sodium hydroxide . O 216.5 - - 582 - 814 " " 20 205.8 - - 582 - 814 " " 20 205.8 - - 582 - 771 " " 20 205.8 - - 582 - 771 Barium hydroxide . O 222 256 389 (520) 645 (760) 847 " " 10 207 235 342 449 548 664 722 " " " 50 191.1 215.1 308 399 478 549 593 " " " 50 (238) (271) (404) (526) (647) (764) (908) Ammonium hydrox- ide 10 2.66 - - - 23.2 - 22.3 15.6 30 5.66 - - - - 23.2 - 22.3 15.6 30 5.66 - - - - 23.2 - 22.3 15.6 30 5.66 - - - - 13.6 - 13.0 1406)	0 1											
	Acetic acid			104.0	122./	129.9				(1160)		(1268)
" "	" "			_	-					14.7		(1200)
					-	-				8.65		
Sodium hydroxide . o 216.5 594 - 835 1060 1.57 1			5.22	-	-	· . —	9.05	-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-	-	-		-	-	4.82	_	1.57
" "					-				835	1060		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1				_		-	-		0.00		
Barium hydroxide . O 222 256 389 (520) 645 (760) 847	1 1					_						
$\begin{bmatrix} " & " & . & . & . & . & . & . & . & . &$	Barium hydroxide				380	(520)		(760)	847	0/3		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	" "	2	215	-				(700)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		IO	207	235				664	722			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						399	478	549	593			
Ammonium hydrox- ide 10 9.66 - - 23.2 - 22.3 15.6 13.6 - 13.6 - 13.6												
ide 30 5.66 - -	A mmonium hydrox			(271)	(404)	(526)		(764)		1 2	-	(1406)
100 210 262 525 650 535				_	_	-		_		15.6		
333 375 747 747 4.62 2 1.33				3.62	5.35	6,70				4.82		T 00
				1	3 33		7-47		1.1/	4.02		1.33

^{*} These values are at the concentration 80.0.

THE EQUIVALENT CONDUCTIVITY OF SOME ADDITIONAL SALTS IN AQUEOUS SOLUTION.

Conditions similar to those of the preceding table except that the atomic weights for 1908 were used.

Substance.	Concen-	E	Equivalent	conduct	ance at t	he follow	ing ° C	temperatu	ire.
Sabstauce.	tration.	00	180	25°	500	75°	1000	1280	1560
Potassium nitrate	0 2	80.8	126.3	145.1	219	299	384	485	580
	12.5	78.6 75.3	122.5	140.7 134.9	212.7	289.9 276.4	370.3	460.7	551 520.4
" "	50	70.7	109.7	126.3	189.5	257.4	326.1	402.9	476.1
Detections avalete	100	67.2	104.5	120.3	180.2	244.I	308.5	379.5	447.3
Potassium oxalate	0 2	79·4 74·9	127.6	I47.5 I39.2	230	322	389.3	538 489.1	587
" "	12.5	69.3	III.I	129.2	199.1	275.1	354.I	438.8	524.3
"	50	63	IOI	116.5	178.6	244.9	312.2	383.8	449.5
66 66	100	59.3	94.6	109.5	167	227.5	288.9	353.2	409.7
Calcium nitrate	200	55.8	88.4	102.3	202	282	265.1 369	321.9 474	372.1
" " "	2	70.4 66.5	107.1	130.0	191.9	266.7	346.5	474	575 529.8
66 46 0 0	12.5	61.6	98.6	114.5	176.2	244	314.6	394.5	473.7
66 66	50	55.6	88.6	102.6	157.2	216.2	276.8	343	405.I
	100	51.9	82.6	95.8 88.8	146.1	199.9	255.5	315.1 288	369.1
Potassium ferrocyanide	200	48.3 98.4	76.7 159.6	185.5	135.4 288	184.7 403	234.4 527	200	334.7
ee • ie .	0.5	91.6	- 35.5	171.1		4-3	3-7		
66 66	2.	84.8	137	158.9	-243.8	335.2	427.6		
46 46	12.5	71	113.4	131.6	200.3	271	340		ŀ
"	50 100	58.2	93·7 84.9	108.6 98.4	163.3 148.1	219.5 198.1	272.4 245		
66 66	200	53 48.8	77.8	90.1	135.7	180.6	222.3		
46 46	400	45.4	72.1	83.3	124.8	165.7	203.1		
Barium ferrocyanide	0	91	1 50	176	277	393	521		
	2 12,5	30.4	75 48.8	86.2 56.5	127.5 83.1	166.2	202.3		
Calcium ferrocyanide .	0	88	146	171	27 I	386	512		
	2	47.1	75-5	86.2	130	3	,		
" "	12.5	31.2	49.9	57-4	6.6	0			
	50	24.1	38.5	44·4 40.2	64.6 58.4	81.9	812		
"	200	20.6	35.1 32.9	37.8	55.4	73.7 68.7	84.3		
	400	20.2	32.2	37.1	54	67.5	76.2		
Potassium citrate	0	76.4	124.6	144.5	228	320	420		
" " "	0.5	7 I	120.1	139.4	210.1	293.8	381.2		
	5	67.6	109.9	134.5	198.7	293.6 276. 5	357.2		
" "	12.5	62.9	101.8	118.7	183.6	254.2	326		
" "	50	54.4	87.8	102.1	157.5	215.5	273		
66 66	100	50.2	80.8	93.9	143.7	196.5	247.5		
Lanthanum nitrate	300	43.5	69.8 122.7	81 142.6	123.5	167 313	209.5	534	651
Gaittialium intrace	2	75.4 68.9	110.8	128.9	200.5	279.8	363.5	457.5	549
66 (6	12.5	61.4	98.5	114.4	176.7	243.4	311.2	383.4	447.8
66 66	50	54	86.1	99.7	152.5	207.6	261.4	315.8	357.7
66 66	200	49.9 46	79.4 72.1	91.8	139.5 126.4	189.1 170.2	236.7	282.5 249.6	316.3 276.2
	200	40	/2.1	03.5	120.4	1/0.2	210.0	249.0	2/0.2
						-			

From the investigations of Noyes and Johnston, Journal of the American Chemical Society, 31, p. 287, 1909.

SMITHSONIAN TABLES.

CONDUCTANCE OF IONS. - HYDROLYSIS OF AMMONIUM ACETATE.

TABLE 424. — The Equivalent Conductance of the Separate Ions.

Ion.	00	18°	25°	500	75°	1000	1280	156°
K Na NH ₄ Ag \frac{1}{2}Ba \frac{1}{3}Ca \frac{1}{3}La	40.4 26 40.2 32.9 33 30 35	64.6 43.5 64.5 54.3 55 ² 51 ² 61	74·5 50·9 74·5 63·5 65 60 7 ²	115 82 115 101 104 98	159 116 159 143 149 142 173	206 155 207 188 200 191 235	263 203 264 245 262 252 312	317 249 319 299 322 312 388
$\begin{array}{c} \text{Cl} & \dots & \dots \\ \text{NO}_3 & \dots & \dots \\ \text{C}_2 \text{H}_3 \text{O}_2 & \dots & \dots \\ \frac{1}{2} \text{SO}_4 & \dots & \dots \\ \frac{1}{3} \text{C}_6 \text{H}_5 \text{O}_7 & \dots & \dots \\ \frac{1}{4} \text{Fe}(\text{CN})_6 & \dots & \dots \end{array}$	41.1 40.4 20.3 41 39 36 58	65.5 61.7 34.6 68 ² 63 ² 60 95	75.5 70.6 40.8 79 73 70	116 104 67 125 115 113	160 140 96 177 163 161	207 178 130 234 213 214 321	264 222 171 303 275	318 263 211 370 336
Н	240 105	314 172	350 192	465 284	565 360	644 439	722 525	777 592

From Johnson, Journ. Amer. Chem. Soc., 31, p. 1010, 1909.

TABLE 425. - Hydrolysis of Ammonium Acetate and Ionization of Water.

Temperature.	Percentage hydrolysis.	Ionization constant of water.	Hydrogen-ion concentration in pure water. Equivalents per liter.
ŧ	100h	K _W ×10 ¹⁴	C _H ×10 ⁷
0	-	0.089	0.30
18	(0.35)	0.46	0.68
25	-	0.82	0.91
100	4.8	48.	6.9
156	18.6	223.	14.9
218	52.7	461.	21.5
306	91.5	168.	13.0

Noyes, Kato, Kanolt, Sosman, No. 63 Publ. Carnegie Inst., Washington.

TABLES 426, 427.

DIELECTRIC STRENGTH.

TABLE 426. — Steady Potential Difference in Volts required to produce a Spark in Air with Ball Electrodes.

Spark length.	R = 0. Points.	R = 0.25 cm.	R = 0.5 cm.	R=1 cm.	R = 2 cm.	R = 3 cm.	$R=\infty$. Plates.
0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.5 2.0 3.0 4.0		5010 8610 11140 14040 15990 17130 18960 20670 22770 24570 28380 29580	1560 2460 3300 4050 4740 8490 11460 14310 16950 19740 23790 26190 29970 33060	1530 2430 3240 3990 4560 8490 11340 14340 17220 20070 24780 27810 37260 45480	2340 3600 3810 4560 8370 11190 14250 16050 20070 25830 29850	4500 7770 10560 13140 10470 10380 26220 32760	4350 7590 10650 13560 16320 19110 24960 30840

Based on the results of Baille, Bichat-Blondot, Freyburg, Liebig, Macfarlane, Orgler, Paschen, Quincke, de la Rue, Wolff. For spark lengths from 1 to 200 wave-lengths of sodium light, see Earhart, Phys. Rev. 15, p. 163; Hobbs, Phil. Mag. 10, p. 607, 1905.

TABLE 427. — Alternating Current Potentials required to produce a Spark in Air with various Ball Electrodes.

The potentials given are the maxima of the alternating waves used. Frequency, 33 cycles per second.

Spark length.	R = r cm.	R=1.92	R=5	R = 7.5	R=10	R=15
0.08 .10 .15 .20	3770 4400 5990 7510 9045	4380 5940 7440 8970	4330 5830 7340 8850	4290 5790 7250 8710	4245 5800 7320 8760	4230 5780 7330 8760
0.30 .35 .40 .45	10480 11980 13360 14770 16140	10400 11890 13300 14700 16070	10270 11670 13100 14400 15890	10130 11570 12930 14290 15640	10180 11610 12980 14330 15690	10150 11590 12970 14320 15690
0.6 .7 .8 0.9	18700 21350 23820 26190 28380	18730 21380 24070 26640 29170	18550 21140 23740 26400 28950	18300 20980 23490 26130 28770	18350 20990 23540 26110 28680	18400 21000 23550 26090 28610
1.2 1.4 1.6 1.8 2.0	32400 35850 38750 40900 42950	34100 38850 43400	33790 38850 43570 48300	33 6 60 38580 43250 47900 52400	33640 38620 43520	33620 38580

Based upon the results of Kawalski, Phil. Mag. 18, p. 699, 1909.

DIELECTRIC STRENGTH.

TABLE 428. — Potential Necessary to produce a Spark in Air between more widely Separated Electrodes.

CB.	Alter- nt.		Steady por	tentials.	1	ë.	nts. Alter-	Steady potentials.		
Spark length,	its.	Ball ele	ctrodes.	Cup ele	ctrodes.	Spark length,	Dull points.	Ball ele	ctrodes.	
park	Dull poin	R=1 cm.	R=2.5 cm.		ction.	park	ull po natin	R=1 cm.	R=2.5 cm.	
S	ĕ.	K=1 cm.	1C-2.5 Cm.	4.5 mm.	1.5 mm.		Ā			
0.3	_	_		_	11280	6.0	61000	_	86830	
0.5	_	17610	17620	~-	17420	7.0		52000	-	
0.7		-	23050	-	22950	8.0	67000	52400	90200	
1.0	I 2000	30240	31390	31400	31260	10.0	73000	74300	91930	
1.2	_	33800	36810	-	36700	12.0	82600	_	93300	
1.5	_	37930	44310	-	44510	14.0	92000	-	94400	
2.0	29200	42320	56000	56500	56530 68720	15.0 16.0	101000		94700	
2.5	-	45000		80400	81140	20.0	119000	_	101000	
3.0	40000	46710	71200	00400	92400	25.0	140600			
3.5 4.0	48500	49100	75300 78600	101700	103800	30.0	165700			
4.5	40300	49100	81 540	-	114600	35.0	190900			
5.0	56500	50310	83800	_	126500	. 55.4	7.9			
5.5	-		-	-	135700					

This table for longer spark lengths contains the results of Voege, Ann. der Phys. 14, 1904, using alternating current and "dull point" electrodes, and the results with steady potential found in the recent very careful work of C. Müller, Ann. d. Phys. 28, p. 585, 1909.

The specially constructed electrodes for the columns headed "cup electrodes" had the form of a projecting knob 3 cm. in diameter and having a height of 4.5 mm. and 1.5 mm. respectively, attached to the plane face of the electrodes. These electrodes give a very satisfactory linear relation between the spark lengths and the voltage throughout the range studied.

TABLE 429, - Effect of the Pressure of the Gas on the Dielectric Strength.

Voltages are given for different spark lengths l.

Pressure. cm. Hg.	l=0.04	l=0.06	l=0.08	<i>l</i> =0.10	l=0.20	l=0 30	l=0.40	l=0.50
2	-	-	-	-	744	939	1110	1266
4	-	483	567	648	1015	1350	1645	1915
6	-	582	690	795	1290	1740	2140	2505
10	-	771	933	1090	1840	2450	3015	3580
15 25 35 45	1110 1375 1640	1060 1420 1820 2150	1280 1725 2220 2660	1490 2040 2615 3120	2460 3500 4505 5475	3300 4800 6270 7650	4080 6000 7870 9620	4850 7120 9340 11420
55	1820	2420	3025	3610	6375	8950	11290	13455
65	2040	2720	3400	4060	7245	10210	12950	15470
75	2255	3035	3805	4565	8200	11570	14650	17450

This table is based upon the results of Orgler, 1899. See this paper for work on other gases (or Landolt-Börnstein-

Meyerhoffer).

For long spark lengths in various gases see Voege, Electrotechn. Z. 28, 1907. For dielectric strength of air and CO₂ in cylindrical air condensers, see Wien, Ann. d. Phys. 29, p. 679, 1909.

PERMEABILITY OF SOME OF THE SPECIMENS IN TABLE 445

TABLE 456.

This table gives the induction and the permeability for different values of the magnetizing force of some of the specimens in Table 445. The specimen numbers refer to the same table. The numbers in this table have been taken from the curves given by Dr. Hopkinson, and may therefore be slightly in error; they are the mean values for rising and falling magnetizations.

Magnetiz-	Specimen	ı (iron).	Specim (annealed	en 8 steel).	Specimen 9 8 tempe		Specimen 3 (cast iron).		
H	В	μ	В	μ	В	μ	В	μ	
I 2	200	- 100	_	_	_	_	265 700	265 350	
3	-	-	=	_	_	_	1625	542	
5	10050 12550	2010 1255	1 52 5 9000	300 900	750 1650	150 165	3000 5000	600 500	
20 30	14550 15200	727 507	11500 12650	575 422	5 ⁸ 75 9 ⁸ 75	294 329	6500	300	
40 50	1 5800 16000	395 320	13300	332 276	11600	290 240	7100 7350	177 149	
70	16360	234	14350	205	1 3400	191	7900	113	
100	16800 17400	168 116	14900 15700	149	14500 15800	145	8500 9500	85 63	
200	17950	90	16100	80	16100	80	10190	51	

Tables.467-8, 463-6 give the results of some experiments by Du Bois,* on the magnetic properties of iron, nickel, and cobalt under strong magnetizing forces. The experiments were made on ovoids of the metals 18 centimeters long and 0.6 centimeters diameter. The specimens were as follows: (1) Soft Swedish iron carefully annealed and having a density 782. (2) Hard English cast steel yellow tempered at 230° C.; density 7.78. (3) Hard drawn best nickel containing 99 % Ni with some SiO₂ and traces of Fe and Cu; density 8.82. (4) Cast cobalt giving the following composition on analysis: Co = 93.1, Ni = 5.8, Fe = 0.8, Cu = 0.2, Si = 0.1, and C = 0.3. The specimen was very brittle and broke in the lathé, and hence contained a surfaced joint held together by clamps during the experiment. Referring to the columns, H, B, and μ have the same meaning as in the other tables, S is the magnetic moment per gram, and I the magnetic moment per cubic centimeter. H and S are taken from the curves published by Du Bois; the others have been calculated using the densities given.

MAGNETIC PROPERTIES OF SOFT IRON AT 0° AND 100° C. TABLE 457.

	· S	oft iron at	° C.		Soft iron at 100° C.					
Н	S	I	В	μ	Н	S	I	В	μ	
100	180.0	1408	17790	177.9 96.5	100 200	180.0 194.0	1402	17720 19190	177.2	
400	208.0	1627	20830	52.1	400	207.0	1613	20660	51.6	
700	215.5	1685	21870	31.2	700	213.4	1663	21590	29.8	
1000	218.0	1705	22420	22.4	1000	215.0	1674	22040	21.0	
I 200	218.5	1709	22670	18.9	I 200	215.5	1679	22300	18.6	

MAGNETIC PROPERTIES OF STEEL AT 0° AND 100° C. TABLE 458.

Steel at o ^o C.				Steel at 100° C.					
Н	S	I	В	μ	H	S	I	В	μ
100 200 400 700 1000 1200 3750†	165.0 181.0 193.0 199.5 203.5 205.0 212.0	1283 1408 1500 1552 1583 1595 1650	16240 17900 19250 20210 20900 21240 24470	162.4 89.5 48.1 28.9 20.9 17.7 6.5	100 200 400 700 1000 1500 3000 5000	165.0 180.0 191.0 197.0 199.0 203.0 205.5 208.0	1278 1395 1480 1527 1543 1573 1593 1612	16170 17730 19000 19890 20380 21270 23020 25260	161.7 88.6 47.5 28.4 20.4 14.2 7.7 5.1

^{* &}quot;Phil. Mag." 5 series, vol. xxix.
† The results in this and the other tables for forces above 1200 were not obtained from the ovoids above referred to, but from a small piece of the metal provided with a polished mirror surface and placed, with its polished face normal to the lines of force, between the poles of a powerful electromagnet. The induction was then inferred from the rotation of the plane of a polarized ray of red light reflected normally from the surface. (See Kerr's "Constants,"

MAGNETISM AND TEMPERATURE.

TABLE 459. - Magnetism and Temperature, Critical Temperature.

The magnetic moment of a magnet diminishes with increasing temperature. Different specimens vary widely. In the formula $Mt/M_0 = (\mathbf{r} - at)$ the value of a may range from .003 to .001 (see Tables 457-458). The effect on the permeability with weak fields may at first be an increase. There is a critical temperature (Curie point) above which the permeability is very small (paramagnetic?). Diamagnetic susceptibility does not change with the temperature. Paramagnetic susceptibility decreases with increase in temperature. This and the succeeding two tables are taken from Dushman, "Theories of Magnetism," General Electric Review, 1916.

Substance.	Critical temperature, Curie point.	Refer- ence.	Substance.	Critical temperature, Curie point.	Refer- ence.
Iron, a form	756° C 920 1280 536 589 555 520	I I I I 2 3 3	MnBi. MnSb. MnAs. MnP. Heusler alloy Nickel	360 to 380° C 310 " 320 45 " 50 18 " 25 310 340 376 1075	4 4 4 4 5 1 6 6

References: (1) P. Curie; (2) see Williams, Electron Theory of Magnetism, quoted from Weiss; (3) du Bois, Tr. Far. Soc. 8, 211, 1912; (4) Hilpert, Tr. Far. Soc. 8, 207, 1912; (5) Gumaer; (6) Stifler, Phys. Rev. 33, 268, 1911.

TABLE 460. - Temperature Variation for Paramagnetic Substances.

The relation deduced by Curie that $\chi = C/T$, where C is a constant and T the absolute temperature, holds for some paramagnetic substances over the ranges given in the following table. Many paramagnetic substances do not obey the law (Honda and Owen, Ann. d. Phys. 32, 1027, 1910; 37, 657, 1912). See the following table.

Substance.	C × 106	· Range ° C	Refer- ence.	Substance.	C × 106	Range ° C	Refer- ence.
Oxygen Air Palladium Magnetite Cast iron	7,830 1,520 28,000	20° to 450° C 20 to 1370 850 " 1360 850 " 1267	I I I I		17,000	-259° to 17 -259 " 17 -208 " 17 -258 " 17	2 2 3 3 3

References: (1) P. Curie, London Electrician, 66, 500, 1912; see also Du Bois, Rap. du Cong. 2, 460, 1900; (2) Perrier, Onnes, Tables annuelles, 3, 288, 1914; (3) Oosterhuis, Onnes, L.c. 2, 389, 1913.

TABLE 461. - Temperature Effect on Susceptibility of Diamagnetic Elements.

No effect:

B Cryst. 400 to 1200°
C Diamond, +i70 to 200°
S Cryst.; ppt.
C "Sugar" carbon
Si Cryst.

As — Cd — 170 to 300°
Sb — 170 to 50°
Cs and Au
Hg — 39 to +350°
Pb 327 to 600°

Increase with rise in Temperature:

te with rise in Temperature:

Be — C Diamond, 200 to 1200°

B Cryst. +170 to 400°

Ag — Hg -170 to -30°

Decrease with rise in Temperature:

TABLE 462. - Temperature Effects on Susceptibility of Paramagnetic Elements.

No effect:

Increase with rise in Temperature:

Decrease with rise in Temperature:

(O) — Ti —180 to -40° Ni 350 to 800° Pd and Ta
As —170 to 657° Mn 250 to 1015° Co above 1150° Pt and U
Mg — (Fe) — Cb —170 to 400° Rare earth metals

Tables 461 and 462 are due to Honda and Owen; for reference, see preceding table. SMITHSONIAN TABLES.

MACNETIC PROPERTIES OF METALS.

TABLE 463. - Cobalt at 100° C.

Н	·S	I	В	μ
200	106	848	10850	54.2
300	116	928	11960	39.9
500	127	1016	13260	26.5
700	131	1048	13870	19.8
1000	134	1076	14520	14.5
1 500	138	1104	15380	10.3
2500	143	1144	16870	6.7
4000	145	1164	18630	4.7
6000	147	1176	20780	3.5
9000	149	1192	23980	2.6
At o°	C. this	specime	n gave th	e fol-
	lov	wing resu		

1232 | 23380

7900

154

TABLE 464, - Nickel at 100° C.

Н	S	I	В	μ
100	35.0	309	3980	39.8
200	43.0	380	4966	24.8
300	46.0	406	5399	18.0
500	50.0	441	6043	12.1
700	51.5	454	6409	9.1
1000	53.0	468	6875	6.9
1 500	56.0	494	7707	5.1
2500	58.4	515	8973	3.6
4000	59.0	520	10540	2.6
6000	59.2	522	12561	2.I
9000	59-4	524	15585	1.7
12000	59.6	526	18606	1.5
At oo C		pecimer		e fol-
		ng resu		
12300	67.5	595	19782	1.6

TABLE 465, - Magnetite.

3.0

The following results are given by Du Bois * for a specimen of magnetite.

Н	I	В	μ
500 1000 2000	325 345 350	8361 9041 10084	16.7 9.0 5.0
I 2000	350	20084	1.7

Professor Ewing has investigated the effects of very intense fields on the induction in iron and other metals.† The results show that the intensity of magnetization does not increase much in iron after the field has reached an intensity of rooc c.g. s. units, the increase of induction above this being almost the same as if the iron were not there, that is to say, dB/dH is practically unity. For hard steels, and particularly manganese steels, much higher forces are required to produce saturation. Hadfield's manganese steel seems to have nearly constant susceptibility up to a magnetizing force of ro,000. The following tables, taken from Eugig's papers, illustrate the effects of strong fields on iron and steel. The results for nickel and cobalt do not differ greatly from those given above.

TABLE 466. — Lowmoor Wrought Iron.

Н	I	В	μ _
3080	1680	24130	7.83
6450	1740	28300	4.39
10450	1730	32250	3.09
13600	1720	35200	2.59
16390	1630	36810	2.25
18760	1680	39900	2.13
18980	1730	40730	2.15

TABLE 467. — Vicker's Tool Steel.

Н	I	В	μ
6210	1530	25480	4.10
9970	1570	29650	2.97
12120	1550	31620	2.60
14660	1580	34550	2.36
15530	1610	35820	2.31

TABLE 468. — Hadfield's Manganese Steel.

Н	I	В	μ
1930	55 84	2620	1.36
3350	84	3430	1.44
5920	187	7310 8970	1.24
7890	191 263	10290	1.30
9810	396	14790	1.51

TABLE 469. - Saturation Values for Steels of Different Kinds.

Ī		Н	I	В	μ
	Bessemer steel containing about 0.4 per cent carbon Siemens-Marten steel containing about 0.5 per cent carbon	17600			2.27
	3 Crucible steel for making chisels, containing about 0.6 per				
	cent carbon	18330	1580	38010	2.08
ш	5 Crucible steel containing 1 per cent carbon	19620 18700			

^{* &}quot; Phil. Mag." 5 series, vol. xxix, 1890.

DEMAGNETIZING FACTORS FOR RODS.

TABLE 470.

H= true intensity of magnetizing field, H'= intensity of applied field, I= in-

tensity of magnetization, H = H' - NI.

Shuddemagen says: The demagnetizing factor is not a constant, falling for Sindidemagen says: The demagnetizing factor is not a constant, faining for highest values of I to about I/7 the value when unsaturated; for values of E (= $H+4\pi I$) less than 10000, N is approximately constant; using a solenoid wound on an insulating tube, or a tube of split brass, the reversal method gives values for N which are considerably lower than those given by the step-by-step method; if the solenoid is wound on a thick brass tube, the two methods practically agree.

			Values	of N× 104.				
		Cylinder,						
Ratio				1	Ballistic Step	Method.		
Length to Diameter.	Ellipsoid,	Uniform Magneti-	Magneto- metric Method	Dubois.	Shuddemagen for Range o Practical Constancy.			
		zation.	(Mann).		Diamet	ter.		
				o.158 cm.	0.3175 cm.	mar ch.	1.905 cm.	
5 10 15 20 30 40 50 60 70 80 90 100 150 200 300 400	7015 2549 1350 848 432 266 181 132 101 80 65 54 26 16	630 280 160 70 39 25 18 13 9.8 7.8 6.3 2.8 1.57 0.70 0.39	6800 2550 1400 898 460 274 182 131 99 78 63 51.8 25.1 15.2 7.5	2160 1206 775 393 238 162 118 89 69 55 45 20 11 5.0 2.8	388 234 160 116 88 69 56 46 23 12.5	350 212 145 106 66	1960 1075 671 343 209 149 106 63	

TABLE 471.

Shuddemagen also gives the following, where B is determined by the step method and H = H' - KB.

Ratio of	Values of K×104.			
Length to Diameter.	Diameter 0.3175 cm.	Diameter		
15 20 25 30 40 50 60 80 100	30.9 18.6 12.7 9.25 5.5 3.66 1.83	85.2 53.3 36.6 27.3 16.6 11.6 8.45 5.05 3.26 1.67		

C. R. Mann, Physical Review, 3, p. 359; 1896. H. DuBois, Wied. Ann. 7, p. 942; 1902. C. L. B. Shuddemagen, Proc. Am. Acad. Arts and Sci. 43, p. 185, 1907 (Bibliography).

DISSIPATION OF ENERGY IN THE CYCLIC MAGNETIZATION OF VARIOUS SUBSTANCES.

C. P. Steinmetz concludes from his experiments * that the dissipation of energy due to hysteresis in magnetic metals can be expressed by the formula $c=aB^{1.6}$, where e is the energy dissipated and a a constant. He also concludes that the dissipation is the same for the same range of induction, no matter what the absolute value of the terminal inductions may be. His experiments show this to be nearly true when the induction does not exceed \pm 15000 c. g. s. units per sq. cm. It is possible that, if metallic induction only be taken, this may be true up to saturation; but if is not likely to be found to hold for total inductions much above the saturation value of the metal. The law of variation of dissipation with induction range in the cycle, stated in the above formula, is also subject to verification.†

Values of Constant a.

The following table gives the values of the constant a as found by Steinmetz for a number of different specimens.

The data are taken from his second paper.

Iron	Number of specimen.	Kind of material.	Description of specimen.	Value of a.
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	" " " " " " " " " " " " " " " " " " "	Wrought bar Commercial ferrotype plate Annealed "" Thin tin plate Medium thickness tin plate Soft galvanized wire Annealed cast steel Soft annealed cast steel Soft annealed cast steel Same as 8 tempered in cold water Tool steel glass hard tempered in water " tempered in oil " annealed Same as 12, 13, and 14, after having been subjected to an alternating m. m. f. of from 4000 to 6000 ampere turns for demagnetization Gray cast iron " " containing # aluminium " " " " containing # aluminium " " " " containing # shaluminium " " " " containing # shewsters, Putnam (County, New York, stated to be a very pure sample Soft wire Annealed wire, calculated by Steinmetz from Ewing's experiments Hardened, also from Ewing's experiments Hardened, also from Ewing's experiments Consisted of thin needle-like chips obtained by milling grooves about 8 mm. wide across a pile of thin sheets clamped together. About 30 % by volume of the specimen was iron.	.00326 .00548 .00548 .00458 .00286 .00425 .00349 .00848 .00457 .00318 .02792 .07476 .01899 .06130 .02700 .01445 .01300 .01365 .01459 .02348 .0122 .0156 .0385 .0120

^{* &}quot;Trans. Am. Inst. Elect. Eng." January and September, 1892. † See T. Gray, "Proc. Roy. Soc." vol. lvi.

ENERGY LOSSES IN TRANSFORMER STEELS.

Determined by the wattmeter method.

Loss per cycle per $cc = AB^{x} + bnB^{y}$, where B = flux density in gausses and n = frequency in cycles per second. x shows the variation of hysteresis with B between 5000 and 10000 gausses, and y the same for eddy currents.

		Ergs p	er Gran	nme per (Cycle.				Watts per Pound at 60 Cycles and 10000 Gausses.		
Designation.	Thick- ness.	10000 G		5000 Gausses.		x	y	a	Gage	,	
	cm.	Hyste- resis.	Eddy Currents at	Hyste- resis.	Eddy Currents at				Eddy Current Loss for Gage No. 29. ‡	Hyste- resis.	Total.
Unannealed A B C D	0.0399 .0326 .0422 .0381	1599 1156 1032 1009	186 134 242 184	562 384 356 353	46 36 70 48	1.51 1.59 1.51 1.52	2.02 1.89 1.79 1.94	0.00490 .00358 .00319	0.41 0.44 0.47 0.44	4·35 3·14 2·81 2·74	4.76 3.58 3.28 3.18
Annealed F F G H* I K* L B M N P	.0476 .0280 .0394 .0307 .0318 .0282 .0346 .0338 .0335 .0340	735 666 563 412 341 394 381 354 372 321 334	236 100 210 146 202 124 184 200 178 210 184	246 220 193 138.5 111.5 130 125 116 127 105	58 27 54 39 55 32 50 57 46 56 50	1.58 1.60 1.54 1.58 1.62 1.61 1.61 1.55 1.62	2.02 1.83 1.96 1.90 1.88 1.90 1.88 1.81 1.95 1.90 1.88	.00227 .00206 .00174 .00127 .00105 .00102 .00118 .00110 .00115 .00099 .00103	0.36 0.44 0.47 0.54 0.70 0.535 0.61 0.555 0.63 0.34	2.00 1.81 1.53 1.12 0.93 1.07 1.035 0.96 1.01 0.87 0.91	2.36 2.25 2.00 1.66 1.63 1.61 1.57 1.57 1.56 1.50 1.25
Silicon steels Q† R S T U V* W* X	.0361 .0315 .0452 .0338 .0346 .0310 .0305	303 288 278 250 270 251.5 197 200	54 42 72 60 42 47 43 65	98 93 90 78 86 79 62.3 64.2	15 11 18 18 12 13 12.4 16.6	1.63 1.64 1.63 1.68 1.66 1.68 1.67		.00094 .00089 .00086 .00077 .00084 .00078 .00061	0.14 0.15 0.12 0.18 0.12 0.17 0.16 0.12	0.825 0.78 0.755 0.68 0.735 0.685 0.535 0.545	0.965 0.93 0.875 0.86 0.855 0.855 0.695 0.665

Lloyd and Fisher, Bull. Bur. Standards, 5, p. 453; 1909.

Note. - For formulæ and tables for the calculation of mutual and self inductance see Bulletin Bureau of Standards, vol. 8, p. 1-237, 1912.

[†] English.
‡ In order to make a fair comparison, the eddy current loss has been computed for a thickness of 0.0357 cm. (Gage No. 29), assuming the loss proportional to the thickness.

MAGNETIC SUSCEPTIBILITY.

If $\mathfrak A$ is the intensity of magnetization produced in a substance by a field strength $\mathfrak A$, then the magnetic susceptibility $H=\mathfrak A/\mathfrak A$. This is generally referred to the unit mass; italicized figures refer to the unit volume. The susceptibility depends greatly upon the purity of the substance, especially its freedom from iron. The mass susceptibility of a solution containing p per cent by weight of a water-free substance is, if H_0 is the susceptibility of water, (p/100) $H+(\mathfrak I-\mathfrak p/100)$ H_0 .

Substance.	H×108	Temp.	Remarks	Substance.	H × 108	Temp. C.	Remarks
Ag	0.19 0.28	18°		K ₂ CO ₈	-0.50 +0.38	20°	Sol'n
Air, 1 Atm	+0.024 +0.65	15		Mb	+0.04 +0.55	18 18	
$Al_2K_2(SO_4)_424H_2O$ A, I Atm	-1.0 -0.10	0	Crys.	MgSO ₄	-0.40 +11.	18	
As	-0.3 -0.15	18		MnCl ₂	+122. +100.	18 18	Sol'n
В	-0.71	18		N_2 , I Atm	0.001	16	
BaCl ₂	-0.36 +0.79	20 15 18	Powd.	Na	-1.1 +0.51	18	
Bi	-1.4 -0.38	18		NaCl	-0.50 -0.19	20 17	Powd.
C, arc-carbon C, diamond	-2.0 -0.49	18		NaCO ₃ . 10 H ₂ O .	-0.46 +1.3	17	
CH_4 , I Atm CO_2 , I Atm	+0.001 +0.002	16		$NiCl_2$ $NiSO_4$	+40. +30.	18	Sol'n
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.77 -0.27	18	Powd.	O_2 , 1 Atm	+0.120 +0.04	20	
CaCl ₂ CaCO ₈ , marble	0.40 0.7	19	66	P, white P, red	-0.90 -0.50	20	
Cd	-0.17 + 6.3	18		Pb	-0.12 -0.25	20	Powd.
Cl ₂ , I Atm	-0.59 +90.	16	Sol'n	Pd	+5.8 +13.	15 18	Sol'n
$CoBr_2$	+47.	18	"	Pt	+1.1	18	Sol'n
CoI_2	+33. +57.	19	46	Rh	+1.1	18	Sorn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+57· +3·7	18		SO ₂ , 1 Atm	-0.48 -0.30	16	
CsCl	-0.28 0.09	τ8	Powd.	Sb	-0.94 0.32	18	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+12. +10.	20	Sol'n Sol'n	Si	-0.12 -0.44	18	Crys.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.16 +90.	17	Powd. Sol'n	—Glass	0.5± +0.03	20	
$FeCl_2 \dots FeSO_4 \dots$	+90. +82.	18	"	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.42 +0.93	20 18	Sol'n
$Fe_2(NO_3)_6$ $FeCn_6K_4$	+50. -0.44	18	Powd.	Te	-0.32 +0.18	20 18	
$FeCn_6K_3$	+9.1 -0.002	0	46	Ti	+3.1 +1.5	18	
H ₂ , 1 Atm	0.000	16		Wo	+0.33	20	
H_2O	-0.79 -0.80	20		$ZnSO_4$ Zr	0.40 0.45	18	
HCl	+0.78	20		СН ₃ ОН	-0.43 0.73 0.80	10	
$HNO_3 \dots Hg \dots$	-0.70 -0.19	20		C ₃ H ₇ OH	-0.80 -0.60	20	
I	-0.4 0.1 <u>+</u>	18		$C_2H_5OC_2H_5$	0.58	20	
Ir	+0.15 +0.40	18		C ₆ H ₆ Ebonite	0.78 +1.1		
KCl KBr	0.50 0.40	20		Glycerine	0.64 0.57 0.58	22	
KI	-0.38 -0.35	20 22	Sol'n	Paraffin	0.91		
$K_2SO_4 \cdot \cdot \cdot \cdot \cdot KMnO_4 \cdot \cdot \cdot \cdot \cdot$	-0.42 +2.0	20		Toluene	-0.77 -0.2-5		
KNO ₃	-0.33	20		Xylene	<u>-0.81</u>		

Values are mostly means taken of values given in Landolt-Börnstein's Physikalisch-chemische Tabellen. See especially Honda, Annalen der Physik (4), 32, 1910.

MACNETO-OPTIC ROTATION.

Faraday discovered that, when a piece of heavy glass is placed in magnetic field and a beam of plane polarized light passed through it in a direction parallel to the lines of magnetic force, the plane of polarization of the beam is rotated. This was subsequently found to be the case with a large number of substances, but the amount of the rotation was found to depend on the kind of matter and its physical condition, and on the strength of the magnetic field and the wave-length of the polarized light. Verdet's experiments agree fairly well with the formula—

$$\theta = clH\left(r - \lambda \frac{dr}{d\lambda}\right) \frac{r^2}{\lambda^2},$$

where c is a constant depending on the substance used, i the length of the path through the substance, H the intensity of the component of the magnetic field in the direction of the path of the beam, r the index of refraction, and λ the wave-length of the light in air. If H be different, at different parts of the path, lH is to be taken as the integral of the variation of magnetic potential between the two ends of the medium. Calling this difference of potential v, we may write $\theta = Av$, where A is constant for the same substance, kept under the same physical conditions, when the one kind of light is used. The constant A has been called "Verdet's constant." stant," * and a number of values of it are given in Tables 476-480. For variation with temperature the following formula is given by Bichat: -

$$R = R_0 (I - 0.00104t - 0.000014t^2),$$

which has been used to reduce some of the results given in the table to the temperature corresponding to a given measured density. For change of wave-length the following approximate formula, given by Verdet and Becquerel, may be used :-

$$\frac{\theta_1}{\theta_2} = \frac{\mu_1^2(\mu_1^2 - 1)\lambda_2^2}{\mu_2^2(\mu_2^2 - 1)\lambda_1^2},$$

where μ is index of refraction and λ wave-length of light.

A large number of measurements of what has been called molecular rotation have been made, particularly for organic substances. These numbers are not given in the table, but numbers proportional to molecular rotation may be derived from Verdet's constant by multiplying in the ratio of the molecular weight to the density. The densities and chemical formulæ are given in the table. In the case of solutions, it has been usual to assume that the total rotation is simply the algebraic sum of the rotations which would be given by the solvent and dissolved substance, or substances, separately; and hence that determinations of the rotary power of the solvent medium and of the solution enable the rotary power of the dissolved substance to be calculated. Experiments by Quincke and others do not support this view, as very different results are obtained from different degrees of saturation and from different solvent media. No results thus calculated have been given in the table, but the qualitative result, as to the sign of the rotation produced by a salt, may be inferred from the table. For example, if a solution of a salt in water gives Verdet's constant less than 0.0130 at 20° C., Verdet's constant for the salt is negative.

The table has been for the most part compiled from the experiments of Verdet, II. Becquerel, Quincke, Koepsel, Arons, Kundt, Jahn, Schönrock, Gordon, Rayleigh and Sidgewick, Perkin, Rayleigh and Sidgewick, Perkin, Rayleigh and Sidgewick, Rayle

As a basis for calculation, Verdet's constant for carbon disulphide and the sodium line D has been taken as 0.0420 and for water as 0.0130 at 20° C.

* The constancy of this quantity has been verified through a wide range of variation of magnetic field by H. E. J. G. Du Bois (Wied. Ann. vol. 35), p. 137, 1888.

† "Ann. de Chim. et de Phys." [3] vol. 52, p. 129, 1858.

‡ "Ann. de Chim. et de Phys." [5] vol. 12; "C. R.?" vols. 90, p. 1407, 1880, and 100, p. 1374, 1885,

§ "Wied. Ann." vol. 24, p. 666, 1885.

¶ "Wied. Ann." vol. 26, p. 456, 1885.

¶ "Wied. Ann." vol. 27, p. 161, 1885.

** "Wied. Ann." vol. 23, p. 228, 1884, and 27, p. 191, 1886.

†† "Wied. Ann." vol. 33, p. 280, 1891.

‡ "Zeits. für Phys. Chem." vol. 11, p. 753, 1893.

§ "Proc. Roy. Soc." 36, p. 4, 1883.

¶ "Jour. Chem. Soc."

"Jour. Chem. Soc."

** "Jour. Chem. Soc."

TABLE 476. MAGNETO-OPTIC ROTATION.

Solids,

Substance.	Formula.	Wave- length,	Verdet's Constant. Minutes.	Temp. C.	Authority.
Amber	ZnS C PbB_2O_4 Se $Na_2B_4O_7$ Cu_2O	μ 0.589 " " 0.687 0.589 0.687	0.0095 0.2234 0.0127 0.0600 0.4625 0.0170 0.5908	18-20° 15 15 15 15 15 15	Quincke. 'Becquerel. " " " " " " " " "
Fluorite , , ,	CaFl ₂	0.2534 .3655 .4358 .4916 .589 1.00 2.50 3.00	0.05989 .02526 .01717 .01329 .00897 .00300 .00049	20	Meyer, Ann. der Physik, 30, 1909.
Glass, Jena: Medium ph Heavy crow Light flint, Heavy flint "	n, O1143 O451	0.589	0.0161 0.0220 0.0317 0.0608 0.0888	18 " "	DuBois, Wied. Ann. 51, 1894.
Zeiss, Ultraviolet		0.313 0.405 0.436	0.0674 .0369 .0311	16 "	Landau, Phys. ZS. 9, 1908.
Quartz, along axis, i.e., plate cut I to axis	${ m SiO}_2$	0.2194 .2573 .3609 .4800 .5892	0.1587 .1079 .04617 .02574 .01664	20 " " "	Borel, Arch. sc. phys. 16, 1903.
Rock salt	NaCl	.6439 0.2599 .3100 .4046 .4916 .6708 1.00 2.00	.01368 0.2708 .1561 .0775 .0483 .0245 .01050	20 	Meyer, as above.
Sugar, cane: along axis IIA axis IIA ¹	C ₁₂ H ₂₂ O ₁₁	4.00 0.451 .540 .626 0.451	.00069 .0122 .0076 .0066 0.0129	20 44 44 44	Voigt, Phys. ZS. 9, 1908.
Sylvine	'KC1	.626 0.4358 .5461 .6708 .90 1.20 2.00 4.00	.0075 0.0534 .0316 .02012 .01051 .00608 .00207 .00054	" 20 " " " "	Meyer, as above.

TABLE 477.

MACNETO-OPTIC ROTATION.

Liquids : Verdet's Constant for $\lambda = 0.589\mu$.

Substance.	Chemical formula.	Density in grams per c. c.	Verdet's constant in minutes.	Temp. C.	Authority.
Acetone Acids: Acetic "Butyric "Formic "Hydrochloric "Hydrobromic "Hydroiodic "Nitric "Sulphuric Alcohols: Amyl "Ethyl "Ethyl "Methyl "Propyl Benzol Bromides: Bromoform "Ethyl "Methylene "Methyl "Methylene Carbon bisulphide "Carbon "Chlorides: Amyl "Arsenic "Carbon "Chloroform "Ethyl "Methylene Carbon bisulphide "" "Tin tetra "Carbon "Chloroform "Ethyl "Methyl "Methylene "Methyl "Methylene "Methyl "Methylene "Methyl "Methylene "Methyl "Hetylene "Methyl "Methylene "Sulphur bi- "Tin tetra "Zinc bi- Iodides: Ethyl "Methyl "Propyl Nitrates: Ethyl "Methyl "Propyl Nitrates: Ethyl "Methyl "Propyl Paraffins: Heptane "Hexane "Pentane Phosphorus, melted Sulphur, melted Toluene Water, \(\lambda = 0.2496 \mu\) 0.275 0.3609 0.4046 0.500 0.500 0.589 0.700 I.000 I.300	C ₈ H ₆ O C ₂ H ₄ O ₂ C ₄ H ₈ O ₁ C ₅ H ₁₁ OH C ₄ H ₉ OH C ₂ H ₅ OH C ₄ H ₉ OH C ₄ H ₈ OH C ₄ H ₈ C C ₄ H ₈ Br C ₂ H ₄ Br ₂ C ₄ H ₈ Br C ₄ H ₈ Br C ₄ H ₈ Br C ₄ H ₅ C C ₄ C CHCl AsCl ₃ CCl ₄ CHCl ₈ CCl ₄ CHCl ₈ C ₂ H ₄ Cl ₂ CH ₃ Cl CH ₂ Cl CH ₃ Cl CH ₂ Cl CH ₃ Cl C ₂ H ₄ Cl C ₂ CH ₄ Cl C ₃ Cl C ₄	0.7947 1.0561 0.9663 1.2273 1.2072 1.7859 1.9473 1.5190 0.8107 0.8021 0.7900 0.7920 0.8042 0.8786 2.9021 1.4486 2.1871 1.7331 2.4971 1.4823 0.9169 1.2589 1.3361 1.9417 2.22832 1.7658 1.1149 1.2157 1.0622 0.6880 0.6743 0.6332 0.8581	0.0113 .0105 .0116 .0105 .0224 .0343 .0515 .0070 .0121 .0128 .0124 .0112 .0093 .0120 .0297 .0317 .0183 .0268 .0268 .0276 .0433 .0420 .0140 .0422 .0321 .0164 .0170 .0162 .0393 .0151 .0437 .0296 .0317 .0162 .0321 .0164 .0170 .0162 .0393 .0151 .0437 .0296 .0317 .0317 .0317 .0317 .0317 .0321 .0321 .0321 .0321 .0321 .0336 .0331 .0437 .0336	20° 21 15 " " " " " " " " " " " " " " " " " "	Jahn. Perkin. " " " " " " " " " " " " " " " " " "
Xylene	C ₈ H ₁₀	0.8746	.0263	27	Schönrock.

MACNETO-OPTIC ROTATION.

Solutions of acids and salts in water. Verdet's constant for $\lambda = 0.589 \mu$.

	,								_
Chemical	Density,	Verdet's	Т		Ch. t. 1	Density,	Verdet's		ŀ
formula.	grams	constant	Temp.	*	Chemical formula,	grams	constant	Temp.	*
2017	per c. c.	in minutes.			2011Mara,	per c. c.	in minutes.	C.	
L					· ——				
CIIO			0		T : C1				
C ₃ H ₆ O	0.9715	0.0129	20°	J P	LiCl	1.0619	0.0145	20°	J.
HBr "	1.3775	0.0244	66	F	M (1)	1.0316	0.0143		1
	1.1163	0.0168	66	46	MnCl ₂	1.1966	0.0167	15	B
HC1	1.1573	0.0204	. 66	66	TI. Cl	1.0876	0.0150	}	
**	1.0762	0.0168	66		HgCl ₂	1.0381	0.0137	16	S
HI	1.0158	0.0140	66	J	NT: C1	1.0349	0.0137		
111	1.9057	0.0499	66	66	NiCl ₂	1.4685	0.0270	15	В
66	1.4495	0.0323	66	66	-66	1.2432	0.0196	66	66
HNO ₈	1.1760	0.0205	66	66	KC1	1.1233	0.0162	"	66
NH ₃	0.8918	0.0103		66	KCI "		0.0163		Ţ
NH ₄ Br	1.2805	0.0153	15	766	NaCl	1.0732	0.0148	20	B
"	1.1576	0.0220	66	66	14401	1.2051	0.0100	15	B "
BaBr ₂	1.5399	0.0215	20	J	66	1.0540	0.0144	66	J
66	1.2855	0.0213	66	166	SrCl ₂	1.1921	0.0144	66	J.,
CdBr ₂	1.3291	0.0170	66	46	66	1.0877	0.0102	66	66
+6	1.1608	0.0162	66	66	SnCl ₂	1.3280	0.0266	15	v
CaBr ₂	1.2491	0.0189	66	66	66	1.1112	0.0175	1,5	
4.	1.1337	0.0164	66	66	ZnCl ₂	1.2851	0.0196	66	66
KBr	1.1424	0.0163	66	66	66	1.1595	0.0161'	66	66
66	1.0876	0.0151	66	66	K ₂ CrO ₄	1.3598	0.0098	66	66
NaBr	1.1351	0.0165	66	66	K ₂ Cr ₂ O ₇	1.0786	0.0126	44	66
6	1.0824	0.0152	44	66	Hg(CN) ₂	1.0638	0.0136	16	S
SrBr,	1.2901	0.0186	64	66	66 /**	1.0605	0.0135	66	66
"	1.1416	0.0159	66	66	NH ₄ I	1.5948	0.0396	15	P
K ₂ CO ₃	1.1906	0.0140	20	- 66	66	1.5109	0.0358	"	
Na ₂ CO ₃	1.1006	0.0140	66	66	66	1.2341	0.0235	66	4.6
42	1.0564	. 0.0137	66	66	CdI	1.5156	0.0291	20	J
NH ₄ Cl	1.0718	0.0178	15	V	66	1.1521	0.0177	66	66
BaCl ₂	1.2897	0,0168	20	J	KI	1.6743	0.0338	15	В
44	1.1338	0.0149	66	66	66	1.3398	0.0237	66	46
CdCl ₂	1.3179	0.0185	66	66	46	1.1705	0.0182	66	66
4.6	1.2755	0.0179	66	"	NaI	1.1939	0.0200	66	J "
46	1.1732	0.0160	66	"	2777 270	1.1191	0.0175	66	
"	1.1531	0.0157	66	66	NH ₄ NO ₈	1.2803	0.0121	15	P
CaCl ₂	1.1504	0.0165	46_	66	KNO ₃	1.0634	0.0130	20	J _.
0 01	1.0832	0.0152		1	NaNO ₈	1.1112	0.0131		В
CuCl ₂	1.5158	0.0221	15	B	$U_2O_3N_2O_5$	2.0267	0.0053	66	,,
F. C1	1.1330	0.0156		"	(NH ₄) ₂ SO ₄	1.1963	0.0115		P
FeCl ₂	1.4331	0.0025	15	66	NH ₄ .HSO ₄	1	0.0140	15	"
66	1.2141	0.0099	- 66	66	BaSO ₄	1.4417		20	I
	1.1093	0.0118	66	66	16 Daso4	1.0938	0.0134	44	J.,
Fe ₂ Cl ₆	1.6933	-0.2026 -0.1140	46	66	CdSO ₄	1.1762	0.0133	66	66
46	1.5315	-0.1140 -0.0348	66	"	"	1.0890	0.0136	66	66
66	1.3230	-0.0340	66	66	Li ₂ SO ₄	1.1762	0.0137	66	66
66	1.0864	0.0081	46	66	MnSO ₄	1.2441	0.0138	66	44
66	1.0304	0.0113	66	66	K ₂ SO ₄	1.0475	0.0133	"	"
"	1.0232	0.0122	46	66	NaSO ₄	1.0661	0.0135	66	66
	2,0232	0.0102					33		
					l		1		

^{*} J. Jahn, P. Perkin, V. Verdet, B. Becquerel, S. Schönrock; see p. 378 for references.

TABLE 479. - Magneto-Optic Rotation.

Gases.

Substa	nce.		Pressure.	Temp.	Verdet's constant in minutes.	Authority.
Atmospheric air Carbon dioxide Carbon disulphide Ethylene Nitrogen Nitrous oxide Oxygen Sulphur dioxide	* * * * * * * * * * * * * * * * * * * *	-	 Atmospheric 74 cms. Atmospheric " " " 246 cms.	Ordinary 70° C. Ordinary " " " 20° C.	6.83 × 10-6 13.00 " 23.49 " 34.48 " 6.92 " 16.90 " 6.28 " 31.39 " 38.40	Becquerel. Bichat. Becquerel. " " " Bichat.

See also Siertsema, Ziting. Kon. Akad. Watt., Amsterdam, 7, 1899; 8, 1900.

Du Bois shows that in the case of substances like iron, nickel, and cobalt which have a variable magnetic susceptibility the expression in Verdet's equation, which is constant for substances of constant susceptibility, requires to be divided by the susceptibility to obtain a constant. For this expression he proposes the name "Kundt's constant." These experiments of Kundt and Du Bois show that it is not the difference of magnetic potential between the two ends of the medium, but the product of the length of the medium and the induction per unit area, which controls the amount of rotation of the beam.

TABLE 480. - Verdet's and Kundt's Constants.

The following short table is quoted from Du Bois' paper. The quantities are stated in c. g. s. measure, circular measure (radians) being used in the expression of "Verdet's constant" and "Kundt's constant."

Name of substance.	Magnetic	Verdet's co	nstant.	Wave-length	Kundt's	
Name of substance.	susceptibility.	Number.	Authority.	of light in cms.	constant.	
Cobalt	+ 0.0126 × 10 ⁻⁵ - 0.0751 " - 0.0694 " - 0.0566 " - 0.0541 " - 0.0876 " - 0.0716 " - 0.0982 "		Becquerel. Arons Becquerel. De la Rive. Becquerel. Rayleigh. Becquerel,	6.44×10 ⁻⁵ 6.56 ' 5.89 " " " " "	3.99 3.15 2.63 0.014 -4.00 -5.4 -5.6 -5.8 -5.8 -14.9 -17.1 -17.7	

TABLE 481. - Values of Kerr's Constant.*

Du Bois has shown that the rotation of the major axis of vibration of radiations normally reflected from a magnet is algebraically equal to the normal component of magnetization multiplied into a constant K. He calls this constant K, Kerr's constant for the magnetized substance forming the magnet.

Color of light.	Spectrum	Wave- length								
Color of fight.	line.	in cms.	Cobalt.	Nickel.	Iron.	Magnetite.				
Red	Li a	67.7	—0. 0208	0.0173	0.0154	+0.0096				
Red	_	62.0	-0.0198	-0.0160	0.0138	+0.0120				
Yellow	D	58.9	-0.0193	-0.0154	-0.0130	+0.0133				
Green ·	В	51.7	-0.0179	-0.0159	-0.0111	+0.0072				
Blue	F	48.6	-0.0180	-0.0163	-0.0101	+0.0026				
Violet	G	43.1	0.0182	-0.0175	-0.0089	-				

^{*} H. E. J. G. Du Bois, " Phil. Mag." vol. 29.

TABLE 482. - Dispersion of Kerr Effect.

Wave-length.	0.5μ	1.0μ	1.5μ	2.0μ	2.5µ
Steel	—11'.	<u>—16'.</u>	· —14'.	—II'.	<u>9'.0</u>
Cobalt	— 9.5	—11.5	- 9.5	—II.	— 6.5
Nickel	— 5.5	- 4.0	0	+1.75	+3.0

Field Intensity = 10,000 °C. G. S. units. (Intensity of Magnetization = about 800 in steel, 700 to 800 in cobalt, about 400 in nickel). Ingersoll, Phil. Mag. 11, p. 41, 1906.

TABLE 483. — Dispersion of Kerr Effect.

Mirror.	Field (C. G. S.)	.4Tµ	.44μ	.48µ	.52µ	.56µ	.60μ	.6 ₄ µ	.66µ
Iron	21,500	25	 26	—.28	31	36	42	44	45
Cobalt	20,000	36	35	34	35	− .35	- ⋅35	- .35	36
Nickel	19,000	- .16	15	13	13	14	14	14	14
Steel	19,200	. —.27	28	—.31	35	38	40	44	45
Invar	19,800	22	23	24	23	23	22	23	23
Magnetite	16,400	07	02	+.04	+.06	+.08	+.06	+.04	+.03

Foote, Phys. Rev. 34, p. 96, 1912.

See also Ingersoll, Phys. Rev. 35, p. 312, 1912, for "The Kerr Rotation for Transverse Magnetic Fields," and Snow, l. c. 2, p. 29, 1913, "Magneto-optical Parameters of Iron and Nickel."

RESISTANCE OF METALS. MAGNETIC EFFECTS.

TABLE 484.—Variation of Resistance of Bismuth, with Temperature, in a Transverse Magnetic Field.

		Proportional Values of Resistance.											
Н	-192°	-135°	-100°	-37°	o°	+18°	+600	+1000	+1835				
0 2000 4000 6000 8000 10000 12000 14000 15000 20000 25000 30000 35000	0.40 1.16 2.32 4.00 5.90 8.60 10.8 12.9 15.2 17.5 19.8 25.5 30.7 35.5	0.60 0.87 1.35 2.06 2.88 3.80 4.76 5.82 6.95 8.15 9.50 13.3 18.2 20.35	0.70 0.86 1.20 1.60 2.00 2.43 2.93 3.50 4.11 4.76 5.40 7.30 9.8 12.2	0.88 0.96 1.10 1.29 1.50 1.72 1.94 2.16 2.38 2.60 2.81 3.50 4.20 4.95	1.00 1.08 1.18 1.30 1.43 1.57 1.71 1.87 2.02 2.18 2.33 2.73 3.17 3.62	1.08 1.11 1.21 1.32 1.42 1.54 1.67 1.80 1.93 2.06 2.20 2.52 2.86 3.25	1.25 1.26 1.31 1.39 1.46 1.54 1.62 1.70 1.88 1.97 2.22 2.46 2.69	1.42 1.43 1.46 1.51 1.57 1.62 1.67 1.73 1.80 1.87 1.95 2.10 2.28 2.45	1.79 1.80 1.82 1.85 1.87 1.89 1.92 1.94 1.99 2.03 2.09 2.17 2.25				

TABLE 485. — Increase of Resistance of Nickel due to a Transverse Magnetic Field, expressed as % of Resistance at 0° and H=0.

Н	-1909	-75°	00	+180	+1000	+1820
0 1000 2000 3000 4000 6000 8000 12000 14000 16000 18000 20000 25000 35000	+0 +0.20 +0.17 -0.00 -0.17 -0.19 -0.18 -0.18 -0.17 -0.17 -0.16 -0.14 -0.12 -0.12	0 +0.23 +0.16 -0.05 -0.15 -0.20 -0.23 -0.27 -0.30 -0.32 -0.35 -0.38 -0.41 -0.40 -0.56 -0.63	0 +0.07 +0.03 -0.34 -0.60 -0.70 -0.82 -0.87 -0.91 -0.94 -1.03 -1.12 -1.22 -1.32	0 +0.07 +0.03 -0.36 -0.72 -0.83 -0.90 -0.95 -1.00 -1.04 -1.13 -1.17 -1.29 -1.40 -1.50	0 +0.96 +0.72 -0.14 -0.70 -1.02 -1.15 -1.23 -1.37 -1.44 -1.51 -1.50 -1.70 -1.95 -2.13	0 +0.04 -0.07 -0.07 -1.15 -1.53 -1.66 -1.76 -1.85 -2.05 -2.05 -2.25 -2.73 -2.98

F. C. Blake, Ann. der Physik, 28, p. 449; 1909.

TABLE 486.—Change of Resistance of Various Metals in a Transverse Magnetic Field.

Room Temperature.

Metal.	Field Strength in Gausses.	Per cent Increase.	Authority.
Nickel "Cobalt Cadmium Zinc Copper Silver Gold Tin Palladium Platinum Lead Tantalum Magnesium Manganin Tellurium Antimony Iron Nickel steel	diverse results, crease in weak i in strong.	-1.2 -1.4 -1.0 -1.4 -0.53 +0.03 +0.004 +0.004 +0.003 +0.001 +0.0003 +0.001 +0.0003 +0.001 +0.0	Williams, Phil. Mag. 9, 1905. Barlow, Pr. Roy. Soc. 71, 1903. Dagostino, Atti Ac. Linc. 17, 1908. Grummach, Ann. der Phys. 22, 1906. "" "" "" "" "" "" "" "" "" "" "" "" "

TABLE 487. - Transverse Galvanomagnetic and Thermomagnetic Effects.

Effects are considered positive when, the magnetic field being directed away from the observer, and the primary current of heat or electricity directed from left to right, the upper edge of the specimen has the higher potential or higher temperature. E = difference of potential produced; T = difference of temperature produced; I = primary

current; $\frac{dt}{dx}$ = primary temperature gradient; B = breadth, and D = thickness, of specimen H=intensity of field. C. G. S. units.

Hall effect (Galvanomagnetic difference of Potential), $E = R \frac{HI}{D}$ " **Temperature**), $T = P \frac{HI}{D}$ Ettingshausen effect (" " Potential), $E = QHB \frac{dt}{dx}$ Nernst effect (Thermomagnetic " Temperature), $T = SHB \frac{dt}{dx}$

Leduc effect (

Substance.	Values of R.	P×106.	Q×106.	S× 10 ⁸ .
Tellurium	+400 to 800	+200	+360000	+400
Antimony	+ 0.9 " 0.22	+2	+9000 to 18000	+200
Steel	+.012 " 0.033	0.07	 700 " 1700	+69
Heusler alloy	+.010 " 0.026	-	+1600 " 7000	
Iron	+.007 " 0.011	-0.06	—1000 " I500	+39
Cobalt	+.0016 " 0.0046	+0.01	+1800 " 2240	+13
Zinc	. –		—54 " 240	+13
Cadmium	+.00055			
Iridium	+.00040	*	up to —5.0	+5
Lead	+.00009	-	—5.0 (?)	
Tin	00003	_	 4.0 (?)	
	0002		- 00 to 070	$\frac{-2}{-18}$
Copper	—.00052 —.00054		—90 to 270	-10
Gold	00057 to .00071			
Constantine	0003/ 10 .000/1			
Manganese	00093			
Palladium	- 0007 to .0012	_	+50 to 130	-3
Silver	0008 " .0015	_	-46 " 430	-4 I
Sodium	0023		131	1
Magnesium	00094 to .0035			
Aluminum	00036 " .0037			
Nickel	0045 " .024	+0.04 to 0.19	+2000 " 9000	-45
Carbon	017	+5.	+100	
Bismuth	— up to 16.	+3 to 40	+ up to 132000	-200

TABLE 488. - Variation of Hall Constant with the Temperature.

		Bis	muth.1			Antimony. ²						
Н	-1820	-90°	23°	+11.50	+1000	Н	-186	50 -79	° +21.5°	+580		
1000 2000 3000 4000 5000	62.2 55.0 49.7 45.8 42.6 40.1	28.0 25.0 22.9 21.5 20.2 18.9	17.0 16.0 15.1 14.3 13.6 12.9	13.3 12.7 12.1 11.5 11.0 10.6	7.28 7.17 7.06 6.95 6.84 6.72	1750 3960 6160	0.25	0.24	3 0.211	1		
					Bismut	h.3						
Н	+14.5°	+104	0 12	53	1890	2120	239 ⁰	259 ⁰	2690	2700		
890	5.28	2.57	2.	2.12 1.42		1.24	1.11	0.97	0.83	0.77*		

¹ Barlow, Ann. der Phys. 12, 1903.
2 Everdingen, Comm. Phys. Lab. Leiden, 50,
3 Traubenberg, Ann. der Phys. 17, 1905.
8 Melting-point.
Both tables taken from Jahn, Jahrbuch der Radioactivität und Electronik, 5, p. 166; 1908, who has collected data of all observers and gives extensive bibliography.

RÖNTGEN (X-RAYS) RAYS.

TABLE 489. - Cathode and Canal Rays.

Cathode (negative) rays consist of negatively charged particles (charge 4.77×10^{-10} esu, 1.591×10^{-20} emu, mass, 9×10^{-28} g or 1/1800 H atom, diam. 4×10^{-13} cm) emitted at low pressures in an electric discharge tube perpendicularly to the cathode (\therefore can be focused) with velocities (10^9 to 10^{10} cm/sec.) depending on the acting potential difference. When stopped by suitable body they produce heat, ionization (inversely proportional to velocity squared), photographic action, X-rays, phosphorescence, pressure. The bulk of energy is transformed into heat (Pt, Ta, W may be fused). In an ordinary X-ray tube carrying 10^{-3} ampere the energy given up may be of the order of 100 cal/m. Maximum thickness of glass or Al for appreciable transmission of high speed particles is .0015 cm. Maximum velocity V_d with which a cathode ray of velocity V_0 may pass through a material of thickness d is given by $V_0^4 - V_d^4 = ad \times 10^{40}$; a = 2 for air, 732 for Al and 2540 for Au, cm-sec. units (Whiddington, 1912). Cathode rays have a range of only a few millimeters in air.

Canal (positive) rays move from the anode with velocities about 108 cm/sec. in opposite direction to the cathode rays, carry a positive charge, a mass of the order of magnitude of the H molecule, cause strong ionization, fluorescence (LiCl fluoresces blue under cathode, red under canal ray bombardment), photographic action, strong pulverizing or disintegrating power and

by bombardment of the cathode liberate the cathode rays.

TABLE 490. - Speed of Cathode Rays.

The speed of the cathode particles in cm/sec. as dependent upon the drop of potential to which they owe the speed, is given by the formula $v = 5.95 \sqrt{E} \cdot 10^7$. The following table gives values of $5.95 \sqrt{E}$.

Voltage Velocity × 10 ⁻⁷	10 18.8	20 26.6		40 37.6	50 42.1	60 46.1	70 49.8	80 53·3	90 56.5	100 59·5
Voltage Velocity × 10 ⁻⁷	100 59·5	200 84.2	300 103.1	400 119.1	500 133.1	600	700 157 - 5	800 168.3	900 178.6	1000

For voltages 1000 to 10,000 multiply 2d line by 10, etc.

TABLE 491. - Cathodic Sputtering.

The disintegration of the cathode in an electric discharge tube is not a simple phenomenon. The particles taking part in the sputtering must be either large or of high speed or both (2000+gauss field required for their deviation). It depends upon the nature of the residual gas. H, N, CO₂ are not generally favorable; Ar is especially favorable, also He, Ne, Kr and Xe. Raised temperature favors it. The relative sputtering from various metals is shown in the following table (Crookes, Pr. R. S. 1891); the residual gas was air, pressure about .05 mm Hg.

Metal Sputtering	Au 92	Ag 76	Pb 69	Sn 52	Pt 40	Cu 37	Cd 31	Ni 10	Ir	Fe 5	Al o	Mg	Brass 47
	 '		-						<u></u>	1			

For further data on cathode, canal and X-rays, see X-rays by G. W. C. Kaye, Longmans, 1917, upon which much of the above and the following data for X-rays is based. See also J. J. Thomson, Positive Rays, Longmans, 1913.

TABLES 492-493. RÖNTGEN (X-RAYS) RAYS. TABLE 492. - X-rays, General Properties.

X-rays are produced whenever and wherever a cathode ray hits matter. They are invisible, of the same nature as, and travel with the velocity of light, affect photographic plates, excite phosphorescence, ionize gases and suffer deviation neither by magnetic nor electric fields as do cathode rays. In an ordinary X-ray tube (vacuum order 0.001 to 0.01 mm Hg) the cathode (concave for focusing, generally of aluminum) rays are focused on an anticathode of high atomic weight (W, Pt, high atomic weight, high melting point, low vapor pressure, to avoid sputtering, high thermal conductivity to avoid heating). Depth to which cathode rays penetrate, order of 0.2 × 10⁻⁵ cm in Ph, 90,000 volts (Ham, 1910), 24 × 10⁻⁵ cm in Al, 22,000 volts (Warburg, 1915). Note: High speed H and He molecules (2 × 108 cm/sec.) can penetrate 0.001 to 0.006 mm mica; He a particles $(2 \times 10^9 \text{ cm/sec.})$, 0.04 mm glass.

The X-rays from an ordinary bulb consist of two main classes:
Heterogeneous ("general," "independent") radiation, which depends solely on the speed of
the parent cathode rays. It is always present and its range of hardness (wave-lengths) depends on the range of speeds of the cathode rays. Its energy is proportional to the 4th power of these

Homogeneous ("characteristic," "monochromatic") radiation (K, L, M, etc. radiations, see Table 498 for wave-lengths), characteristic of the metal of the anticathode. Generated only when cathode rays are sufficiently fast. There is a critical velocity for each characteristic radiation from each material, proportional to the atomic weight of the anticathode. The critical velocity for the K radiation is $V_K - A \times ro^s$, when A is the atomic weight of the radiator (e.g. anticathode); $V_L = 1/2(A - 48)10^8$.

The following relation has been found to hold experimentally between the voltage V through which the cathode particles fall and the maximum frequency ν of the X-rays produced: $eV = h\nu$, where e is the electronic charge and h, Planck's constant. Blake and Duane (Phys. Rev.

10, 624, 1917) found for h, 6.555 \times 10⁻²⁷ erg second.

As the speed of the cathode rays is increased, shorter and shorter wave-lengthed "independent" X-rays are produced until the critical speed is reached for the "characteristic" rays; with faster speeds, the cathode rays become at first increasingly effective for the characteristic radiation,

then less so as the independent radiation again predominates.

When cathode rays hit the anticathode some 75 per cent are reflected, the more the heavier its atomic weight. The chances of the remainder hitting an atom so as to generate an X-ray are slight; only 1/1000 or 1/2000 of the original energy goes into X-rays. If E_x and E_c are the energies of the X and the parent cathode rays, A the atomic weight of the anticathode, β the velocity of the cathode rays as fraction of the light value (3×10^{10} cm/sec.), Beatty showed (Pr. R. S. 1913) that $E_x = E_c$ (.51 × 10⁴ $A\beta^2$); this refers only to the independent radiations; when characteristic radiations are excited their energy must be added and the tube becomes considerably more efficient. No-quantitative expression for the latter has been developed.

When an X-ray strikes a substance three types of radiation result: scattered (sometimes called secondary) X-rays, characteristic X-rays and corpuscular rays (negatively charged particles). The proportions of the rays depend on the substance and the quality of the primary rays. When the substance is of low atomic weight, by far the greater portion of the X-rays, if of a penetrating type, are scattered. With elements of the Cr-Zn group most of the resulting radiation is "characteristic." With the Cu group the scattered radiation (1/200) is negligible. Heavier elements, both scattered and characteristic X-rays. Corpuscular radiation greater, mass for mass, for elements of high atomic weight and may mask and swamp the characteristic radiation. Hence an X-ray tube beam, heterogeneous in quality, allowed to fall on different metals, — Cu, Ag, Fe, Pt, etc., — excites characteristic X-rays of wide range of qualities. Exciting ray must be harder than the characteristic radiation wished. The higher the atomic weight of the material struck (radiator), the more penetrating the quality of the resulting radiation as shown by the following table, which gives λ , the reciprocal of the distance in cm in Al, through which the rays must pass in order that their intensity will be reduced to 1/2.7 of their original intensity.

TABLE 493. - Röntgen Secondary Rays.

۲										_		
ı	Radiator.	Cr	Fe	Со	Ni	Cu	Zn	As	Se	Sr	Ag	Sn
	Atomic weight	52. 367.	55.8	59.0	58.7 160.	63.6	65.4	75.0 61.	79.2 51.	87.6 35.2	108. 6.75	119. ·4·33

With the radiator at 45° to the primary X-rays at most only about 50 per cent of the energy goes to characteristic rays and only about 1/10 of the latter escape the surface of the radiator. The β radiations of radioactive elements may possibly be regarded (Rutherford) as a characteristic radiation produced by the expulsion of the a particles. The hardness of some corresponds to the K and L radiations.

For more complete data on X-rays, see X-rays, G. W. C. Kaye, Longmans, 1917, upon which

these X-ray tables are greatly based.

RÖNTGEN (X-RAYS) RAYS.

TABLE 494. - Corpuscular Rays.

Metal emitting		Exciting characteristic radiation from											
corpuscles.	Ni	Cu	Zn	As	Se	Sr	Мо	Rh	Ag	Sn			
Al Fe Cu	38.9	37.0	35.8 36.2	29.6 30.2 30.4	26.4	20.0 21.5 20.8	15.2 15.5 15.2	10.9	8.90 8.84 8.81	6.54 6.41 6.67			

TABLE 495. - Intensity of X-Rays. Ionization.

The intensity of the radiation from an X-ray bulb is proportional to the current. Except at low voltages it equals $Ki(v^3-v^5)$ where i is the current, v the applied voltage, v_0 the break-down voltage and K a constant for the tube (Krönke). The intensity of X-rays is most accurately measured by the ionization they produce. This may be referred to the International Radium Standard (see Table 508). It is proportional to the 4th power of the speed of the parent cathode rays (Thomson), (true only of independent rays, Beatty, 1913). The saturation current due to X-ray ionization is usually of the order of 10^{-10} ampere. When X-rays pass through a substance, only once in a while is an atom struck, only perhaps v in a billion, and ionized. The ionization is probably an indirect process through the mediation of corpuscular rays. In the absence of secondary radiations the ionization is proportional to the mass of the gas (that is, its pressure at constant temperature). It depends on the nature of the gas, but is little affected by the quality of the rays. The following results are due to Crowther, 1908.

	Ioniz	ation relative to	o air = 1.
Gas or vapor.	Density, air = 1.	Soft X-rays 6 mm spark.	Hard X-rays 27 mm spark.
Hydrogen H ₂ . Carbon dioxide CO ₂ . Ethyl chloride C ₂ H ₆ CI. Carbon tetrachloride CCl ₄ . Ethyl bromide C ₂ H ₆ Br Methyl iodide CH ₃ I Mercury methyl Hg(CH ₃) ₂ .	0.07 1.53 2.24 5.35 3.78 4.96 7.93	0.01 1.57 18.0 67. 72. 145. 425.	0.18 1.49 17.3 71. 118.

RÖNTGEN (X-RAYS) RAYS.

TABLE 496. — Mass Absorption Coefficients, λ/d .

The quality by which X-rays have been generally classified is their "hardness" or penetrating power. It is greater the greater the exhaustion of the tube, but for a given tube depends solely upon the potential difference of the electrodes. With extreme exhaustion the X-rays have an appreciable effect after passing through several millimeters of brass or Al. The penetrability of the characteristic radiation is in general proportional to the 5th power of the atomic weight of the radiator. The absorption of any substance is equal to the sum of the absorptions of the individual atoms and is independent of the chemical combination, its physical state and probably of the temperature. Most of the following table is from the work of Barkla and Sadler, Phil. Mag. 17, 730, 1909. For starred radiators, L radiations used; for others the K.

used; for others the K. If I_0 be the intensity of a parallel beam of homogeneous radiation incident normally on a plate of absorbing material of thickness t, then $I = I_0 e^{-\lambda x}$ gives the intensity I at the depth x. Because of the greater homogeneity of the secondary X-rays they were used in the determination of the following coefficients. The coefficients λ have been divided by the

ensity d

	Absorber.										
Radiator.	С	Mg	Al	Fe	Ni	Cu	Zn	Ag	Sn	Pt	Au
Cr. Fe. Co. Ni. Cu. Zn. As. Se. Ag. Sn. Sb. I I. Ba. W* Pt* Pb* Bi* Th* U* U*	15.3 10.1 8.0 6.6 5.2 4.3 2.5 2.0 .46 -35 .31 .29 .26	126. 80. 64. 52. 41. 35. 19. 16. 2.2	136. 88. 72. 59. 48. 39. 22. 19. 2.5 1.6 1.2 2.8 30. 22. 17. 16. 8.	104. 66. 67. 314. 268. 221. 134. 116.	129. 84. 67. 56. 63. 265. 166. 141. 23.	143. 95. 75. 62. 53. 56. 176. 150. 24. — — — — — — — — — — — — — — — — — — —	170. 112. 92. 74. 61. 50. 204. 175. 27.	580. 381. 314. 262. 214. 175. 105. 83. 13. 16. 56. 35. 140. 78. 73. 42.	714. 472. 392. 328. 272. 225. 132. 116.	(517.) 340. 281. 281. 236. 104. 162. 106. 93. 50. 47. — 133. 113. 128. 125. 134.	(507. 367. 306. 253. 210. 178. 106. 100. 61. 52.

TABLE 497. -- Absorption Coefficients of Characteristic Radiations in Gases.

The penetrating power of X-rays ranges in normal air from 1 to 10,000 cm or more. The absorptive power of 1 cm air = 1/820 that of water. λ (see preceding table for definition) for air for soft bulb (1.5 to 5 cm spark gap, 4 to 10 m air) ranges from .0010 to .0018; for hard bulb (30 cm spark gap, 4 to 10 m air), .00020. (Eve and Day, Phil. Mag. 1912.) The absorption coefficient for gases for characteristic or monochromatic radiations varies directly with the pressure. For different characteristic radiations it is proportional to the coefficients in air. It varies with the 5th power of the atomic weight of the radiator. The following table is taken from Kaye's X-rays and is based on the work of Barkla and Collier (Phil. Mag. 1912) and Owen. All are for the gas at 0° C and 76 cm Hg.

	Air		CO ₂		SO ₂		C ₂ H ₅ Br		CH₃I	
	λ	λ/d	λ	λ/d	λ	λ/d	λ	λ/d	λ	λ/d
Fe. Co. Ni. Cu. Zn. As. Se. Br. Sr. Mo. Ag.	.0202 .0165 .0136 .0109 .0090 .0053 .0044 .0039 .0023 .00127	15.6 12.7 10.5 8.43 6.96 4.10 3.40 3.02 1.78 0.98 0.59	.0456 .0319 .0227 .0184 .00988 .00782 .00420 .00281	23.I 16.I 11.5 9.3I 5.00 3.96 2.12 1.42	.24 .20 .166 .134 .112 .066 .0546 .050 .0281 .0160	83.3 69.4 57.6 46.5 38.9 22.9 19.1 17.4 9.76 5.56 2.75	.512 .407 .325 .260 .215 .128 .110 .096 .325 .210 .108	105. 83.2 66.3 53.1 43.9 26.1 22.4 19.6 66.3 42.9 22.0	2.16 1.80 1.54 1.27 .743 .619 .552 .338 .197 .113	339. 282. 241. 198. 116. 97. 86.5 53.0 30.9 17.7

X-RAY SPECTRA AND ATOMIC NUMBERS.

Kaye has shown that an element excited by sufficiently rapid cathode rays emits Röntgen rays characteristic of that substance. These were analyzed and the wave-lengths determined by Moseley (Phil. Mag. 27, 703, 1914), using a crystal of potassium ferrocyanide as a grating. He noted the K series, showing two lines, and the L series with several. He found that every element from Al to Au was characterized by integer N, which determines its X-ray spectrum; N is identified with the number of positive units associated with its atomic nucleus. The order of these atomic numbers (N) is that of the atomic weights, except where the latter disagrees with the order of the chemical properties. Known elements now correspond with all the numbers between 1 and 92 except 6. There are here six possible elements still to be discovered (atomic nos. 43, 61, 72, 75, 85).

The frequency of any line in an X-ray spectrum is approximately proportional to $A(N-b)^2$, where A and B are constants. All X-ray spectra of each series are similar in structure, differing only in wave-lengths. $Q_X = (n/\frac{3}{2} o_0)^2$, $Q_X = (n/\frac{3}{2} o_0)^2$, where A is the frequency of the atomic number.

 $Q_L = (v/\sqrt[4]{a}v_0)$ where v is the frequency of the a line and v_0 the fundamental Rydberg frequency. The atomic number

for the K series = $Q_K + 1$ and for the L series, $Q_L + 7.4$ approximately. $v_0 = 3.29 \times 10^{15}$

Moseley's work has been extended, and the following tables indicate the present (1919) knowledge of the X-ray spectra.

(a) K Series (Wave-lengths, $\lambda \times 10^8$ cm).

Element, atomic number.	eta_2	β_1	a 4	a3a4 (not separable)	α ₃	a 1	a ₁ a ₂ (not separable)		a ₂
11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar 19 K 20 Ca 21 Sc 22 Ti 23 Va	3.074	9.477 7.986 6.759 5.808 5.018 4.394 3.449 3.086 2.778 2.509 2.281	9.845 8.300 7.080 6.122 5.314	4.692 3.724 3.328 3.011 2.729	9.856 8.310 7.088 6.129 5.317	3.735 3.355 3.028 2.742 2.498	11.951 9.915 8.360 7.131 6.168 5.360 4.712		3.738 3.359 3.359 2.746 2.502
Element, atomic number.	eta_2	eta_1	α1	a_2	Element, atomic number.	eta_2	$eta_{\scriptscriptstyle 1}$	a_1	a ₂ ;
24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 37 Rb 38 Sr 40 Zr 41 Nb 42 Mo	2.069 1.892 1.736 1.602 1.488 1.379 1.281 	2.079 1.902 1.748 1.613 1.497 1.391 1.294 1.204 1.131 1.052 0.993 -229 -770 -746 -705 .669 .633	2.284 2.093 1.928 1.781 1.653 1.338 1.338 1.257 1.170 1.035 	2. 288 2. 097 1. 032 1. 785 1. 657 1. 543 1. 437 1. 342 1. 251 1. 174 1. 1040 0. 926 876 840 -793 -754 -714	43 Ru 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 X 55 Cs 56 Ba 57 La 58 Ce 59 Pr 60 Nd 74 W		0.574 .547 .501 .501 .470 .453 .432 .416 .404 .388 .352 .343 .329 .314 .301 .202 .177	0.645 .615 .562 .562 .538 .510 .487 .448 .456 .437 .308 .372 .388 .372 .335 .342 .330 .203	0.610 567 5507 543 515 490 472

X-RAY SPECTRA AND ATOMIC NUMBERS.

(b) L Series (Wave-lengths, $\lambda \times 10^8$ cm).

								_	
Element, atomic number.	2	α ₂	α1	a 3	Element atomic number.	ı	a_2	a_1	η
30 Zn 33 As 35 Br 37 Rb 38 Sr 39 Yr 40 Zr 41 Nb 42 Mo 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 55 Cs 56 Ba 57 La 58 Ce 59 Pr		5.731 5.410 4.853 	12. 346 9. 701 8. 391 7. 3335 6. 879 6. 164 4. 545 4. 545 5. 545 6. 545	8.360 7.305 6.440 6.057 5.709 5.381 4.823 4.572 4.333	60 Nd 62 Sa 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 70 Ag 74 W 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 88 Ra 90 Th 92 U	I.892 1.834 1.672 I.840 I.490 I.457	2.379 2.210 2.131 2.054 1.983 1.916 1.854 1.704 1.681 1.528 1.481 1.308 1.360 1.323 1.251 1.215 1.186 1.153 0.969 0.922	2.369 2.200 2.121 2.043 1.973 1.973 1.679 1.619 1.518 1.471 1.388 1.350 1.210 1.240 1.205 1.144 1.100 0.957 0.911	1.935 1.725 1.618 1.435 1.242 1.197 1.124 1.091 1.059
Element, atomic number.	β,	eta_1	eta_2	eta_3	eta_5	γi.	γ_2	γ 3	γ4
33 As 35 Br 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 44 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 55 Ba 57 Ce 59 Pr 60 Nd 62 Sa 63 Eu 64 Gd 65 Tb	4.071 3.861 3.361 3.184 3.044 2.011 2.668 2.558 2.453 2.357 2.167	9. 449 8. 141 7. 091 6. 639 6. 227 5. 851 5. 493 5. 175 4. 630 4. 372 4. 144 4. 144 3. 228 3. 733 3. 351 3. 352 3. 074 2. 584 2. 584 2. 684 2. 599 2. 167 2. 008 1. 018 1. 844 1. 775		4.030 3.823 3.039 3.149 3.072 2.873 2.629 2.520 2.520 2.414 2.307 2.178 1.888 1.811 1.745	1.659	5.386 	2.903 2.78 2.903 2.78 2.23 1.803 1.599 (1.562)	2.889 82 	2.831

X-RAY SPECTRA AND ATOMIC NUMBERS,

		(b)	L SERIES	(WAVE-LEN	igtes, λ×	(10 ⁸ CM).			
Element, atomic number.	eta_4	eta_1	$oldsymbol{eta}_2$	β_3	β _δ	γι	γ_2	73	74
66 Dy 67 Ho 68 Er 70 Ad 71 Cp 73 Ta 74 W 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 88 Ra 90 Th 92 U	I. 721 I. 657 I. 599 I. 490 I. 437 I. 343 I. 296 I. 214 I. 176 I. 142 I. 102 I. 036 I. 008 O. 077	1.700 1.646 1.586 1.474 1.421 1.323 1.278 1.104 1.120 1.080 1.012 0.983 0.950 0.920	1.622 1.568 1.514 1.414 1.368 1.280 1.241 1.107 1.101 1.065 1.006 0.983 0.954	1.683 1.620 1.560 1.451 1.399 1.393 1.228 1.176 1.138 1.059 0.998 0.968 0.968 0.937	1.422 	1.470 1.415 1.367 1.267 1.224 1.135 1.005 1.021 0.958 0.922 0.896 0.864 0.842 0.810 0.654 0.615		1.365 1.316 1.223 1.183 1.097 1.058 0.956 0.929 0.894 0.840	0.017 0.900 0.869 0.868 0.702 0.762
		(c)	M Series	(WAVE-LE	ngths, λ >	< 108 CM).			
Element, atomic number.		а	β	γ_1	γ_2	δ	1	δ_2	é
79 A 81 T 82 P 83 B 90 T 92 U	l 5- b 5- i 5- h 4-	838 479 303 117 139 905	5.623 5.256 5.955 4.993 3.941 3.715	5.348 4 910 4.726 3.812	5.284 — 3.678 3.480	4.5	61	5.102 4 826 4.695 4.532 3.324	4.735 4.456

Reference: Jahrbuch der Radioaktivität und Elektronik, 13, 296, 1916.

(d) Tungsten X-ray Spectrum (Wave-lengths, $\lambda \times 10^8$ cm).

The wave-lengths of the tungsten X-ray spectrum have been measured more frequently than those of any other element. The following values are perhaps the most accurate that have hitherto been published. Compton, Physical Review, 7, 646, 1916 (errata, 8, 753, 1916).

Line.	λ	Line.	λ	Line.	λ
a b c' c" d	1.0249 1.0399 1.0582 1.0652 1.0959	e f g h	1.2185 1.2420 1.2601 1.2787 1.2985	j k l	1.3363 1.4735 1.4844

Other references on the X-ray spectrum of tungsten: Gorton, Physical Review, 7, 203, 1916; Hull, Proc. Nat. Acad. Sci. 2, 265, 1916; Dershem, Physical Review, 11, 461, 1918; Overn, Physical Review, 14, 137, 1919.

SMITHSONIAN TABLES.

X-RAY ABSORPTION SPECTRA AND ATOMIC NUMBERS.

A marked increase in the absorption of X-rays by a chemical element occurs at frequencies close to those of the X-rays characteristic of that element. The absorption coefficient is much greater on the short wave-length side. In the K series the a lines are much stronger than the corresponding β and γ lines, but the wave-lengths of the α lines are greater. There is a marked increase in the absorption at wave-lengths considerably shorter than the α lines and near the β lines. Bragg came to the conclusion that the critical absorption frequency lay at or above the γ of the K series. The γ line has a frequency about 1 per cent higher than the corresponding β line. For the L series there are 3 characteristic marked absorption changes (de Broglie).

The critical absorption wave-lengths of the following table are due to Blake and Duane, Phys. Rev. 10, 697, 1917. The equation $\nu = \nu_0(N-3.5)^2$ where ν is Rydberg's fundamental frequency (109,675 × the velocity of light) and N the atomic number, represents the data with considerable accuracy. The nuclear charge is obtained by Q = 2e(N-3.5).

Element.	Atomic number.	ÅU	Element.	Atomic number.	ÅU	Element.	Atomic number.	ÅU
Bromine Krypton Rubidium Strontium Yttrium Zirconium Niobium Molybdenum.	35 36 37 38 39 40 41 42	.9179 	Ruthenium Rhodium. Palladium. Silver Cadmium. Indium Tin Antimony.	44 45 46 47 48 49 50 51	.5584 .5324 .5075 .4850 .4632 .4434 .4242 .4065	Tellurium Iodine Xenon Caesium Barium Lanthanum Cerium	52 53 54 55 56 57 58	. 3896 . 3727 . 3444 . 3307 . 3188 . 3073

Radioactivity is a property of certain elements of high atomic weight. It is an additive property of the atom, dependent only on it and not on the chemical compound formed nor affected by physical conditions controlling ordinary reactions, viz: temperature, whether solid or

liquid or gaseous, etc.

With the exception of actinium, radioactive bodies emit α , β , or γ rays. α rays are easily absorbed by thin metal foil or a few cms. of air and are positively charged atoms of helium emitted with about 1/15 the velocity of light. They are deflected but very slightly by intense electric or magnetic fields. The β rays are on the average more penetrating, are negatively charged particles projected with nearly the velocity of light, easily deflected by electric or magnetic fields and identical in type with the cathode rays of a vacuum tube. The γ rays are extremely penetrating and non-deviable, analogous in many respects to the very penetrating Röntgen rays. These rays produce ionization of gases, act on the photographic plate, excite phosphorescence, produce certain chemical reactions such as the formation of ozone or the decomposition of water. All radioactive compounds are luminous even at the temperature of liquid air.

Table 506 is based very greatly on Rutherford's Radioactive Substances and their radiations (Oct. 1912). To this and to Landolt-Börnstein Physikalisch-chemische Tabellen the reader is referred for references. In the three radioactive series each successive product (except Ur. Y, and Ra, C₂) results from the transformation of the preceding product and in turn produces the following. When the change is accompanied by the ejection of an α particle (helium, atomic weight = 4.0) the atomic weight decreases by 4. The italicized atomic weights are thus computed. Each product with its radiation decays by an exponential law; the product and its radiation consequently depend on the same law. $I = I_{0}e^{-\lambda t}$ where $I_{0} =$ radioactivity when t = 0, I that at the time t, and λ the transformation constant. Radioactive equilibrium of a body with its products exists when that body is of such long period that its radiation may be considered constant and the

decay and growth of its products are balanced. International radium standard: As many radioactivity measures depend upon the purity of the radium used, in 1912 a committee appointed by the Congress of Radioactivity and Electricity, Brussels, 1910, compared a standard of 21.99 mg. of pure Ra. chloride sealed in a thin glass tube and prepared by Mme. Curie with similar standards by Hönigschmid and belonging to The Academy of Sciences of Vienna. The comparison showed an agreement of 1 in 300. Mme. Curie's standard was accepted and is preserved in the Bureau international des poids et mesures at Sevres, near Paris. Arrangements have been made for the preparation of duplicate standards

for governments requiring them.

TABLE 500. - Relative Phosphorescence Excited by Radium.

(Becquerel, C. R. 129, p. 912, 1899.)

Without screen, Hexagonal zinc blende 13.36 """ Pt. cyanide of barium 1.99 """ Diamond 1.14 """ Double sulphate Ur and K 1.00 """ Calcium fluoride .30	With screen
--	-------------

The screen of black paper absorbed most of the α rays to which the phosphorescence was greatly due. For the last column the intensity without screen was taken as unity. The γ rays have very little effect.

TABLE 501. - The Production of α Particles (Helium). (Geiger and Rutherford, Philosophical Magazine, 20, p. 691, 1910.)

Radioactive substance (1 gram.)	a particles per sec.	Helium per year.
Uranium Uranium in equilibrium with products Thorium " " " " Radium Radium in equilibrium with products	2.37 × 10 ⁴ 9.7 × 10 ⁴ 2.7 × 10 ⁴ 3.4 × 10 ¹⁰ 13.6 × 10 ¹⁰	2.75 × 10 ⁻⁵ cu. mm. 11.0 × 10 ⁻⁵ ··· ·· 3.1 × 10 ⁻⁵ ··· ·· 30 ··· ·· 158 ··· ··

TABLE 502. - Heating Effect of Radium and its Emanation. (Rutherford and Robinson, Philosophical Magazine, 25, p. 312, 1913.)

H	Heating effect in gram-calories per hour per gram radium.										
	a rays.	β rays.	γ rays.	Total,							
Radium	25.1 28.6		_	25.1							
Radium A	30.5 39.4	- 4·7	6.4	28.6 30.5 50.5							
Totals	123.6	4.7	6.4	134.7							

Other determinations: Hess, Wien. Ber. 121, p. 1, 1912, Radium (alone) 25.2 cal. per hour per gram. Meyer and Hess, Wien. Ber. 121, p. 603, 1912, Radium in equilibrium, 132.3 gram. cal. per hour per gram. See also, Callendar, Phys. Soc. Proceed. 23, p. 1, 1910; Schweidler and Hess, Ion. 1, p. 161, 1909; Angström, Phys. ZS. 6, 685, 1905, etc.

TABLES 503-505. RADIOACTIVITY.

TABLE 503. - Stopping Powers of Various Substances for a Rays.

s, the stopping power of a substance for the α rays is approximately proportional to the square root of the atomic weight, w.

Substance s	H ₂ .24 .26	Air 1.0 1.0	O ₂ 1.05 1.05	C ₂ H ₂ 1.11 1.17	C ₂ H ₄ 1.35 1.44	Al 1.45 1.37	N ₂ O 1.46 1.52	CO ₂ 1.47 1.51	CH ₃ Br 2.09 2.03	CS ₂ 2.18 1.95	Fe 2.26 1.97
Substance	Cu	Ni	Ag	Sn	C ₆ H ₆	C ₅ H ₁₂	C ₂ H ₅ I	CCl ₄	Pt	Au	Pb
s	2.43	2.46	3.17	3.37	3·37	3.59	3.13	4.02	4.16	4.45	4.27
v w	2.10	2.20	2.74	2.88	3·53	3.86	3.06	3.59	3.68	3.70	3.78

Bragg, Philosophical Magazine, 11, p. 617, 1906.

TABLE 504.—Absorption of β Rays by Various Substances.

 μ , the coefficient of absorption for β rays is approximately proportional to the density, D. See Table 506 for μ for Al.

Substance	B 4.65	C 4.4 12	Na 4.95 23	Mg 5.1 24.4	Al 5.26 27	Si 5.5 28	P 6.1 31	S 6.6 32	K 6.53 39	Ca 6.47 40
Substance	Ti 6.2 48	Cr 6.25 52	Fe 6.4 56	Co 6.48 59	Cu 6.8 63.3	Zn 6.95 65.5	Ar 8.2 75	Se 8.65 79	Sr 8.5 87.5	Zr 8.3 90.7
Substance	0	Ag 8.3 108	Sn 9.46 118	Sb ⁻ 9.8 120	I 10.8 126	Ba 8.8 137	Pt 9.4 195	Au 9.5 197	Pb 10.8 207	U 10.1 240

For the above data the β rays from Uranium were used. Crowther, Philosophical Magazine, 12, p. 379, 1906.

TABLE 505.—Absorption of γ Rays by Various Substances.

	D	Radiu	m rays.	Uraniu	ım rays.	Th. D.	Meso, Th2	Range of	
Substance.	Density.	μ (cm)-1	100µ/D	μ(cm)-1	100µ/D	μ(cm)-1	μ(cm)-1	thickness cm.	
Hg Pb	13.59	.642 •495	4.72 4.34	.832 .725	6.12 6.36	.462	.620	.3 to 3.5 .0 " 7.9	
Cu Brass Fe Sn Slate Al	8.81 8.35 7.62 7.24 7.07 2.85 2.77	.351 .325 .304 .281 .228 .118	3.98 3.89 3.99 3.88 3.93 4.14 4.06	.416 .392 .360 .341 .329 .134	4.72 4.70 4.72 4.70 4.65 4.69 4.69	.294 .271 .250 .236 .233 .096	·373 ·355 ·316 ·305 ·300 -	.o " 7.6 .o " 5.86 .o " 7.6 .o " 5.5 .o " 6.0 .o " 9.4 .o " 11.2	
Glass . S Paraffin .	2.52 1.79 .86	.105 .078 .042	4.16 4.38 4.64	.122 .092 .043	4.84 5.16 5.02	.089 .066 .031	.083 .050	.0 " 11.3 .0 " 11.6 .0 " 11.4	

In determining the above values the rays were first passed through one cm. of lead.

Russell and Soddy, Philosophical Magazine, 21, p. 130, 1911.

RADIOACTIVITY.

 $P={\rm I}/2$ period = time when body is one half transformed. A = transformation constant (see previous page). The initial velocity of the α particle is deduced from the formula of Geiger $V^3=aR$, where R= range and assuming the velocity for RaC of range 7.06 cm. at 20° is 2.06 \times 109 cm per sec., i.e., $v=1.077R^{\frac{1}{3}}$.

			Uranium-	radium Gr	OUP.			
		1/2 períod,	Transforma- tion constants.	Rays.	Range.	Initial velocity.	Kinetic energy.	Whole mo. of ions produced.
	weights.	P -	$\lambda = \frac{.6931}{P}$		cm	cm per s	Ergs.	By an a particle.
Uranium 1 Uranium X1 Uranium X2 Uranium 2 Uranium 2 Uranium Y Ionium Radium. Radium Ra Emanation. Radium G Radium C	234.2 234.2 234.2 230.2? 230.2 226 222 218 214 214 210?	5 × 10 ⁹ y. 24.6 d. 1.15 m. 10 ⁶ yr. 1.5 d. 10 ⁵ yr. 1730 y. 3.85 d. 3.0 m. 26.8 m. 19.5 m. 1.4 m. 10 ⁶ s.? 15.8 y. 4.85 d. 136 d.	1.4 × 10 ⁻¹⁰ y. .0282 d. .01 sec. 7 × 10 ⁻⁷ y. .46 d. 7.0 × 10 ⁶ y. .00040 y. .180 d. .231 m. .0258 m. .0355 m. .495 m. 700000 s. .044 y. .143 d.	$\beta + \beta \\ \beta \\ \alpha \\ \beta \\ \alpha \\ \alpha \\ \alpha \\ \beta \\ \alpha \\ \beta \\ \beta$	2.50 — 2.90 3.11 3.30 4.16 4.75 — 6.94 — 3.84	2.06 × 109	.72 × 10 ⁻⁵ .75 × 10 ⁻⁵	=
			ACTINI	UM GROUP.				
Actinium X Actinium X Actinium X Actinium A Actinium A Actinium B Actinium B Actinium C	A A - 4 A - 8 A - 12 A - 16 A - 16	? 19.5 d. 10.2 d. 3.9 s. .002 s. 36 m. 2.1 m. 4.7 m.	.0355 d. .068 d. .178 s. .350 s. .0103 m. .33 m.	$ \begin{array}{c} \alpha + \beta \\ \alpha + \beta \\ \alpha \\ \alpha \\ \beta + \gamma \end{array} $ slow β	4.2 4.26 5.57	1.98 "	.82 × 10 ⁻⁵ .9 " .94 " 1.12 " 1.21 " 1.05 × 10 ⁻⁵ 1.23 "	1.8 " 1.79 " 2.04 " 2.20 "
			Thoriu	M GROUP.				
Thorium Mesothorium I Mesothorium I Mesothorium I Radiothorium. Thorium X Th. Emanation. Thorium A Thorium B. Thorium B. Thorium D. Thorium C.	228 228 224 220 216 212	1.3 × 10 ¹⁰ y. 5.5 y. 6.2 hr. 2 yr. 3.65 d. 54 sec. 0.14 sec. 10.6 h. 60 m. 3.1 m. 10 ⁻¹¹ sec.	5.3 × 10 ⁻¹¹ .126 yr112 h, .347 y190 d0128 s. 4.95 s0054 h0118 m224 m. 7 × 10 ¹⁰ sec.	$ \begin{array}{c} a \\ \text{none} \\ \beta + \gamma \\ a \\ a \\ \beta + \gamma \\ a + \beta \\ \beta + \gamma \\ a \end{array} $	3.87 4.30 5.00 5.70 4.80	1.70 × 109 1.75 " 1.85 " 1.94 " 1.76 × 109	1.04 "	1.66 × 108 1.8 " 1.9 " 1.9 " 1.8 × 105
Potassium Rubidium	39. I 85. 5	5	5	$\beta \beta$		=		

See The Constants of Radioactivity, Wendt, Phys. Rev. 7, p. 389, 1916.

$\mu=$ coefficient of absorption for β rays in terms of cms. of aluminum; μ_1 , of the γ rays in cms of Al, so that if J_0 is the incident intensity, J that after passage through d cms, $J=J_{0}e^{-d}\mu$.

		Uran	IUM-RADIUM GROU	P.
	βι	rays,	γ rays.	
	Absorption coefficient $= \mu$	Velocity light = 1	Absorption coefficient = μ_1	Remarks.
Ur 1	510 14 4 300	Wide range	24, .70, .140 ————————————————————————————————————	 r gram U emits 2.37 × 10⁴ α particles per sec. β rays show no groups of definite velocities. Chemically allied to Th. Not separable from Ur 1. Probably branch product. Exists in small
Io	-		_	quantity. Chemical properties of and non-separable from Thorium.
Ra Ra Em	200	.52, .65	354, 16, .27	Chemical properties of Ba. r gr emits per sec. in equilib. r ₃ .6 × r ₀ ¹⁰ α particles. Inert gas, density III H, boils -65° C,
Ra A	_	_	_	Inert gas, density III H, boils -65°C, density solid 5-6, cendenses low pressure -150°C. Like solid, has + charge, volatile in H, 400°, in O about 550°. Volatile about 400°C in H. Separated pure by recoil from Ra A. Volatile in H about 430°, in O about 1000°. Probably branch product. Separated by recoil from Ra C. Separated with Pb. not vet separable from
Ra B Ra C ₁ Ra C ₂	13, 80, 890	.36 to .74 .80 to .98	.115	Volatile about 400° C in H. Separated pure by recoil from Ra A. Volatile in H about 430°, in O about 1000°. Probably branch product. Separated by
Ra D Ra E	130 43	— Wide range	45, .99 Like Ra D	recoil from Ra C. Separated with Pb, not yet separable from it. Volatile below 1000°,
Ra F			585	Separated with Bi. Probably changes to Pb. Volatile about 1000°.
			ACTINIUM GROUP.	
Rad. Act Act X Act Em			25, . 190 —	Probably branch product Ur series. Chemically allied to Lanthanum. Chemical properties analogous to Ra. Inert gas, condenses between -120° and
Act A Act B Act C ₁ Act D	Very soft	, <u> </u>	120, <u>3</u> 1, .45 	-150°.' Analogous to Ra A. Volatile above 400°. " " Ra B. " " 700°. (Obtained by recoil.)
			THORIUM GROUP.	
Th	20 to 38.5 About 330 110 15.6 24.8	.37 to .66 .4751 .63	26, .116	Volatile in electric arc. Colorless salts not spontaneously phosphorescent. Chemical properties analogous to Ra from which non-separable. Chemically allied to Th, non-separable from it. Chemically analogous to Ra. Inert gas, condenses at low pressure between -120° and -150°. + charged, collected on - electrode. Chemically analogous to Ra B. Volatile above 630° C. Chemically analogous to Ra C. Volatile above 730°. Th. C¹ and Th. D are probably respectively \$\beta\$ and \$a\$ ray products from Th. Cı. Got by recoil from Th. C. Probably transforms to Bi.
K	38, 102 380, 1020	=		Activity = 1/1000 of Ur. " = 1/500 of Ur.

RADIOACTIVITY.

TABLE 507. — Total Number of Ions produced by the a, β , and γ Rays.

The total number of ions per second due to the complete absorption in air of the β rays due to 1 gram of radium is 9×10^{14} , to the γ rays, 13×10^{14} .

The total number of ions due to the α rays from 1 gram of radium in equilibrium is 2.56×10¹⁶. It is be assumed that the ionization is proportional to the energy of the radiation, then the total energy emitted by radium in equilibrium is divided as follows: 92.1 parts to the α , 3.2 to the β , 47 to the γ rays. (Rutherford, Moselev, Robinson.)

TABLE 508, - Amount of Radium Emanation. Curie.

At the Radiology Congress in Brussels in 1910, it was decided to call the amount of emanation in equilibrium with 1 gram of pure radium one Curie. [More convenient units are the millicurie (10⁻⁵Curie)], and the microcurie (10⁻⁶Curie)]. The rate of production of this emanation is 1.24×10⁻⁹ cu. cm. per second. The volume in equilibrium is 0.59 cu. mm. (760 cm., 0⁹C.) assuming the emanation mon-atomic.

The Mache unit is the quantity of Radium emanation without disintegration products which produces a saturation current of 10^{-8} unit in a chamber of large dimensions. I curie = 2.5×10^{9} Mache units.

The amount of the radium emanation in the air varies from place to place: the amount per cubic centimeter of air expressed in terms of the number of grams of radium with which it would be in equilibrium varies from 24×10^{-12} to 350×10^{-12} .

TABLE 509. - Vapor Pressure of the Radium Emanation in cms. of Mercury.

(Rutherford and Ramsay, Phil. Mag. 17, p. 723, 1909, Gray and Ramsay, Trans. Chem. Soc. 95, p. 1073, 1909.)

Temperature C°. -127° -101° -65° -56° -10° $+17^{\circ}$ $+49^{\circ}$ $+73^{\circ}$ $+100^{\circ}$ $+104^{\circ}$ (crit) Vapor Pressure. 0.9 5 76 100 500 1000 2000 3000 4500 4745

TABLE 510. - References to Spectra of Radioactive Substances

Radium spectrum: Demarçay, C. R. 131, p. 258, 1900.

Radium emanation spectrum: Rutherford and Royds, Phil. Mag. 16, p. 313, 1908; Watson, Proc.

Roy. Soc. A 83, p. 50, 1909.

Polonium spectrum: Curie and Debierne, Rad. 7, p. 38, 1910, C. R. 150, p. 386, 1910

TABLE 511. - Molecular Velocities.

The probability of a molecular velocity x is $(4/\sqrt{\pi})x^2e^{-x^2}$, the most probable velocity being taken as unity. The number of molecules at any instant of speed greater than c is $2N(hm/\pi)^{\frac{1}{2}} \left\{ \int_{c}^{\infty} e^{-hmc^2} dc + ce^{-hmc^2} \right\}$ (see table), where N is the total number of molecules. The mean velocity G (sq. rt. of mean sq.) is proportional to the mean kinetic energy and the pressure which the molecules exert on the walls of the vessel and is equal to $x_5,800\sqrt{T/m}$ cm/sec, where T is the absolute temperature and m the molecular weight. The most probable velocity is denoted by W, the average arithmetical velocity by Ω .

$$G = W \sqrt{3/2} = 1.225W;$$
 $\Omega = W \sqrt{4/\pi} = 1.128W;$ $G = \Omega \sqrt{3\pi/8} = 1.086\Omega.$

The number of molecules striking unit area of inclosing wall is $(1/4)N\Omega$ (Meyer's equation), where N is the number of molecules per unit volume; the mass of gas striking is $(1/4)N\Omega$ where ρ is the density of the gas. For air at normal pressure and room temperature (20°C) this is about $14 \text{ g/cm}^2/\text{sec}$. See Langmuir, Phys. Rev. 2, 1013 (vapor pressure of W) and J. Amer. Ch. Soc. 37, 1915 (Chemical Reactions at Low Pressures), for fertile applications of these latter equations. The following table is based on Kinetic Theory of Gases, Dushman, Gen. Elec. Rev. 18, 1915, and Jeans, Dynamical Theory of Gases, 1916.

Gas.	Molec-	Sq. Yt. mean sq. $G \times 10^{-2}$ cm/sec.			Arithmetical average velocity, $\Omega imes ext{ro}^{-2} ext{ cm/sec}.$							
	weight.	273°	293°	373°	223°	273°	293"	373°	1000°	1500°	2000°	6000°
Air Ammonia. Argon. Carlson monoxide. Carlson dioxide. Helium. Hydrogen. Krypton. Mercury. Molybdenum. Neon. Nitrogen. Oxygen. Tungsten. Water vapor.	28 96 17.02 39 88 28 00 41.00 4 00 2.01 182.92 200 6 96.0 20.2 28.02 32.00 184.0 18.02 130.2	485 633 413 493 393 1311 1838 286 184 ———————————————————————————————————	502 655 428 511 408 1358 1904 296 191 — 605 511 478	567 740 483 576 459 1533 2149 335 215 683 577 539 720 267	404 527 344 410 327 1092 1534 238 154 486 410 384 512 190	447 583 381 454 362 1208 1696 263 170 — 538 454 425 566 210	463 604 395 471 376 1252 1755 272 176 — 557 471 440 — 587 218	522 681 445 531 434 1412 1980 308 199 629 531 497 662 246	855 1115 729 870 694 2300 3241 502 325 469 1030 869 813 339 1084	1047 1367 892 1065 850 2840 3970 618 575 1260 1064 996 416 1317 493	1209 1577 1030 981 3270 4583 712 664 1460 1229 1150 480 1533 570	2094 - 2734 1784 2130 1700 5680 7940 1236 796 1150 2520 2128 1992 832 2634 986

Free electron, molecular weight = 1/1835 when H= 1; G= 1.114 \times 10 7 at 0 $^\circ$ C and $\Omega=$ 1.026 \times 10 7 at 0 $^\circ$ C.

TABLE 512. - Molecular Free Paths, Collision Frequencies and Diameters.

The following table gives the average free path L derived from Boltzmann's formula μ (.3502 $\rho\Omega$), μ being the viscosity, ρ the density, and from Meyer's formula μ (.3007 $\rho\Omega$). Experimental values (Verh. d. Phys. Ges. 14, 506, 1913; 15. 373, 1013) agree better with Meyer's values, although many prefer Boltzmann's formula. As the pressure decreases, the free path increases, at one bar (ordinary incandescent lamp) becoming 5 to 10 cm. The diameters may be determined from L by Sutherland's equation $\{1.402/\sqrt{2\pi NL}(1+C/T)\}^{\frac{1}{2}}$, N being the number of molecules per unit vol. and C Sutherland's constant; from van der Waal's b, $\{3b/2NV\pi\}^{\frac{1}{2}}$; from the heat conductivity k, the specific heat at constant volume c_{v} , $\{1.46\rho Gev/Nk\}^{\frac{1}{2}}$ (Laby and Kaye); a superior limit from the maximum density in solid and liquid states (Jeans, Sutherland, 1916) and an inferior limit from the dielectric constant D, $\{(D-1)2/\pi N\}^{\frac{1}{2}}$, or the index of refraction n, $\{n^2-1)2/\pi N\}^{\frac{1}{2}}$. The table is derived principally from Dushman, Lc.

		× 10 ⁶ (cm		Collision	108 × Molecular diameters (cm);						
Gas.		mann.	Meyer.	frequency. Ω/L \times 10 ⁻⁶	From L	From van der	From heat		iting		
	o° C	20° C	20° C	20°C*	cosity)	Waal's	conduc- tivity k	\max_{ρ}	Min. D or n		
Ammonia. Argon. Carbon monoxide. dioxide. Helium. Hydrogen. Krypton. Mercury. Nitrogen. Oxygen. Xenon.		6.60 9.88 9.23 6.15 27.45 17.44 (14.70) 9.29 9.93	5.83 8.73 8.16 5.44 33.10 15.40 (13.0) 8.21 8.78	9150 4000 5100 6120 4540 10060 — 5070 4430	2.97 2.88 3.19 3.34 1.90 2.40 — 3.15 2.98	3.08 2.94 3.12 3.23 2.65 2.34 (3.69) 3.01 3.15 2.92 4.02	2.86 3.40 2.30 2.32 3.14 3.53 3.42	2 87 3 · 27 3 · 35 1 · 98 2 · 40 3 · 35 3 · 23 2 · 99 3 · 55	2.66 2.74 2.90 1.92 2.17 (2.70) 		

^{*} Pressure = 10^6 bars = 10^6 dynes ÷ cm² = 75 cm Hg.

TABLE 513. - Cross Sections and Lengths of Some Organic Molecules.

According to Langmuir (J. Am. Ch. Soc. 38, 2221, 1916) in solids and liquids every atom is chemically combined to adjacent atoms. In most inorganic substances the identity of the molecule is generally lost, but in organic compounds a more permanent existence of the molecule probably occurs. When oil spreads over water evidence points to a layer a molecule thick and that the molecules are not spheres. Were they spheres and an attraction existed between them and the water, they would be dissolved instead of spreading over the surface. The presence of the COOH, —CO or —OH groups generally renders an organic substance soluble in water, whereas the hydrocarbon chain decreases the solubility. When an oil is placed on water the —COOH groups are attracted to the water and the hydrocarbon chains repelled but attracted to each other. The process leads the oil over the surface until all the —COOH groups are in contact if possible. Pure hydrocarbon oils will not spread over water. Benzole will not mix with water. When all limited amount of oil is present the spreading ceases when all the water-attracted groups are in contact with water. If weight wo oil spreads over water surface A, the area covered by each molecule is AM/wN where M is the molecular weight of the oil (O = 16), N, Avogadro's constant. The vertical length of a molecule l = M/apN = W/pA where ρ is the oil density and a the horizontal area of the molecule.

Substance.	Cross section in cm ² × 10 ¹⁶	l in cm (length) × 108	Substance.	Cross section in cm ² × 10 ¹⁶	l in cm (length)
Palmitic acid C ₁₅ H ₃₁ COOH. Stearic acid C ₁₇ H ₃₅ COOH. Cerotic acid C ₂₅ H ₅₁ COOH Oleic acid C ₁₇ H ₃₅ COOH. Linoleic acid C ₁₇ H ₃₁ COOH. Linolein acid C ₁₇ H ₃₁ COOH. Ricinoleic acid C ₁₇ H ₃₂ COH.	24 24 25 48 47 . 66	19.6 21.8 29.0 10.8 10.7 7.6 5.8	Cetyl alcohol C16H33OH Myricyl alcohol C20H41OH Cetyl palmitate C16H31COOC16H33 Tristearin (C16H36O2)3C3H5 Trielaidin (C16H36O2)3C3H5 Triolein (C16H36O2)3C3H5 Castor oil (C17H32(OH)COO)3C3H3 Linseed oil (C17H31COO)3C3H3	21 29 21 69 137 145 280 143	21.9 35.2 44.0 23.7 11.9 11.2 5.7 11.0

TABLE 514. - Size of Diffracting Units in Crystals. ¶

The use of crystals for the analysis of X-rays leads to estimates of the relative sizes of molecular magnitudes. The diffraction phenomenon is here not a surface one, as with gratings, but one of interference of radiations reflected from the regularly spaced atomic units in the crystals, the units fitting into the lattice framework of the crystal. In cubical crystals [100] this framework is built of three mutually perpendicular equidistant planes whose distance apart in crystallographic parlance is d_{100} . This method of analysis from the nature of the diffraction pattern leads also to a knowledge of the structure of the various atoms of the crystal. See Bragg and Bragg, X-rays and Crystal Structure, 1918. 1018.

Crystal.	Elementary diffracting element.	Side of cube.	Molecules or atoms in unit cube.
KCl NaCl ZnS. CaF ₂ . FeS ₂ .	Face-centered cube * " " " " † " † " † " §	cm 6.30 × 10 ⁻⁸ 5.56 × 10 ⁻⁸ 5.46 × 10 ⁻⁸ 5.40 × 10 ⁻⁸ 5.26 × 10 ⁻⁸	4 molecules
FeAlNaNi	Body-centered cube Face-centered cube Body-centered cube	2.86 × 10 ⁻⁸ 4.05 × 10 ⁻⁸ 4.30 × 10 ⁻⁸ 2.76 × 10 ⁻⁸ 3.52 × 10 ⁻⁸	. 2 atoms 4 " 2 " 4 " 4 "

^{*} Each atom is so nearly equal in diffracting power (atomic weight) in KCl that the apparent unit diffracting element is a cube (simple) of \(\frac{1}{2} \) this size. Elementary body-centered cube. — atom at each corner, one in center; e.g., Fe, Ni (in part), Na, Lir Elementary face-centered cube, — atom at each corner, one in center of each face; e.g., Cu, Ag, Au, Pb, Al, Ni (in part), etc. Simple cubic lattice, — atom in each corner. Double face-centered cubic or diamond lattice + C (diamond); Si, Sb, Bi, As?, Te?.

† Diamond lattice. † Cubic-holohedral. \(\frac{8}{2} \) Cubic-pyritohedral.

Metals taken from Hull, Phys. Rev. ro, p. 661, 1917

¶ See Table 528 for best values of calcite and rock-salt grating spaces.

ELECTRONS, RUTHERFORD ATOM, BOHR ATOM, MAGNETIC FIELD OF ATOM.

References: Millikan, The Electron, 1917; Science, 45, 421, 1917; Humphreys, Science, 46, 273, 1917; Lodge, Nature, 104, 15 and 82, 1919; Thomson, Conduction of Electricity through Gases; Campbell, Modern Electrical Theory; Lorentz, The Theory of Electrons; Richardson, The Electron Theory of Matter, 1914.

Electron: an elementary + or - unit of electricity.

Free negative electron: (corpuscle, J. J. Thomson); mass = $9.01 \times 10^{-28} g = 1/1845$ H atom, probably all of electrical origin due to inertia of self-induction.

Theory shows that when speed of electron = 1/10 velocity of light its mass should be appreciably dependent upon

If m_0 be mass for small velocity v, m be the transverse mass for v, $v/(\text{velocity of light}) = \beta$, then m = 1 $m_0(1-\beta^2)^{\frac{1}{2}}$, Lorentz, Einstein;

for
$$\beta = 0.01$$
 0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $m/m_0 = 1.00005$ 1.05 1.02 1.048 1.091 1.155 1.250 1.400 1.667 2.294

(Confirmed by Bucherer, Ann. d. Phys. 1009, Wolz, Ann. d. Phys. Radium ejects electrons with 3/10 to 98/100 velocity of light.) m, due to charge $=2E^2/3a$, E= charge, a= radius, when e radius of electron $=2\times$ 10⁻¹³ cm =1/50,000 atomic radius. Cf. (radius of earth)/(radius of Neptune's orbit) =1/360,000.

Positive electron: heavy, extraordinarily small, never found associated with mass less than that of H atom. If mass all electrical (?) radius must be 1/2000 that of the — electron. No experimental evidence as with — electron, since high enough speeds not available. Penetrability of atom by β particle (may penetrate 10,000 atomic systems before it happens to detach an electron) and α particles (8000 times more massive than — electron, pass through 500,000 atoms without apparent deflection by nucleus more than 2 or 3 times) shows extreme minuteness. Upper limit: not larger than 10⁻¹² cm for Au (heavy atom) or 10⁻¹³, H (light atom) (Rutherford). Cf. (radius sun)/(radius Neptune's orbit) = 1/3000, but sun is larger than planets. (Hg atoms by billions may pass through thin-walled highly-evacuated glass tubes without impairing vacuum, therefore massive parts of atoms must be extremely small compared to volume of atom). of atom.)

Rutherford atom: number of free + charges on atomic nuclei of different elements = approximately ½ atomic weight (Rutherford, Phil. Mag. 21, 1911, deflection of α particles); Barkla concluded free — electrons outside nucleus same in number (Phil. Mag. 21, 1911, X-ray scattering). If mass is electromagnetic, then lack of exact equivalence may be due to overlapping fields in heavy crowded atoms, a sort of packing effect; the charge on U = 22, at. wt. = 238.5. Moseley (Phil. Mag. 26, 1912; 27, 1914) photographed and analyzed X-ray spectra, showing their exact similarity in structure from element to element, differing only in frequencies, the square roots of these frequencies forming an arithmetical progression from element to element. Moseley's series of increasing X-ray frequencies is with one or two exceptions that of increasing atomic weights, and these exceptions are less anomalous for the X-ray series than for the atomic-weight series. It seems plausible then that there are 92 elements (from H to U) built up by the addition of some electrical element. Moseley assigned successive integers to this series (see Table 531) known now as atomic numbers. atomic numbers

Moseley's discovery may be expressed in the form

$$\frac{n_1}{n_2} = \frac{E_1}{E_2}$$
 or $\frac{\lambda_2}{\lambda_1} = \frac{E_1^2}{E_2^2}$

where E is the nuclear charge and Λ the wave-length. Substituting for the highest frequency line of W, $\Lambda_2 = 0.167$ \times 10⁻⁸ cm (Hull), $E_2 = 74 = N_{w_0}$, and $E_1 = 1$, then $\lambda_1 = \text{highest}$ possible frequency by element which has one + electron; $\lambda_1 = 91.4$ m_{μ} . Now the H ultra-violet series highest frequency line = 91.2 m_{μ} (Lyman); i.e., this ultra-violet line of H is nothing but its K X-ray line. Similarly, it seems equally certain that the ordinary Balmer series of H (head at 365 m_{μ}) is its L X-ray series and Paschen's infra-red series its M X-ray series.

There may be other - electrons on the nucleus (with corresponding + charges) since they seem to be shot out by radioactive processes. They may serve to hold the + charges together. He, atomic, no. = 2, has 2 free + charges, at. wt. = 4; may imagine nucleus has 4 + electrons held together by 2 - electrons, with 2 - electrons outside nucleus. H has one + and one - electron.

The application of Newton's law to Moseley's law leads to $E_1/E_2 = a_2/a_1$, where the a's are the radii of the immost - electronic orbits, i.e., the radii of these orbits are inversely proportional to the central charges or atomic numbers. (Note: When an a particle (+ charge -2e) is emitted by a radioactive element, its atomic number decreases by 2, the emission of a - charged particle increases its atomic number by 1.)

Bohr atom: (Phil. Mag. 26, 1, 476, 857, 1913; 29, 332, 1915; 30, 394, 1915). The experimental facts and the law of circular electronic orbits limit the electrons to orbits of particular radii. When an electron is disturbed from its orbit, e.g., struck out by a cathode ray, or returns from space to a particular orbit, energy must be radiated. It is suggestive that the emission of a β ray requires a series of γ ray radiations. Hose not radiate unless ionized and then gives out a spectrum represented by Balmer's formula $\nu = N(1/n^2 - 1/n^2)$ where ν is the frequency, N, a constant, and n_1 for all the lines in the visible spectrum has the value 2, n, the successive integers, 3, 4, 5, . . .; if $n_1 = 1$ and n, 2, 3, 4, Lyman's ultra-violet series results; if $n_1 = 3$, n, 4, 5, 6, . . ., n Paschen's infra-red series. These considerations led Bohr to his atom and he assumed: (a) a series of circular non-radiating orbits governed as above; (b) radiation taking place only when an electron jumps from one to another of these orbits, the amount radiated and its frequency

BOHR ATOM, MAGNETIC FIELD OF ATOM.

being determined by $h\nu=A_1$, h being Planck's constant and A_1 and A_2 the energies in the two orbits; (c) the various possible circular orbits, for the case of a single electron rotating around a single positive nucleus, to be determined by T=(1/2)rhn, in which τ is a whole number, n is the orbital frequency, and T is the kinetic energy of rotation. The remarkable test of this theory is not its agreement with the H series, which it was constructed to fit, but in the value found for N. From (a), (b), and (c) it follows that $N=(2\pi^2e^3E^2m)/k^2=3.294 \times 10^{15}$, within 1/10 per cent of the observed value (Science, 45, p. 327).

The radii of the stable orbits $=\tau^2k^2/4\pi^2me^4$, or the radii bear the ratios 1, 4, 9, 16, 25. If normal H be assumed to be with its electron in the immost orbit, then $2a=1.1\times 10^{-8}$; best determination gives 2.2×10^{-8} . The fact that H emits its characteristic radiations only when ionized favors the theory that the emission process is a settling down to normal condition through a series of possible intermediate states, i.e., a change of orbit is necessary for radiation. That in the stars there are 33 lines in the Balmer series, while in the laboratory we never get more than 12, is easily explicable from the Bohr theory.

Bohr's theory leads to the relationship $\nu_K = \nu_L a$ (see X-ray tables), Rydberg-Schuster law.

For further development, see Sommerfeld, Ann. d. Phys. 51, 1, 1016, Paschen, Ann. d. Phys., October, 1916; Harkins, Recent work on the structure of the atom, J. Am. Ch. Soc. 37, p. 1396, 1915; 39, p. 856, 1916.

Magnetic field of atom: From the Zeeman effect due to the action of a magnetic field on the radiating electron the strength of the atomic magnetic field comes out about 10⁸ gauss, 2000 times the most intense field yet obtained by an electromagnet. A similar result is given by the rotation of a number of electrons, A10⁸, where A is the atomic weight; for Fe this gives 10⁸ gauss. For other determinations, see Weiss (J. de Phys. 6, p. 661, 1907; 7, p. 249, 1908), Ritz (Ann. d. phys. 25, p. 660, 1908), Oxley (change of magnetic susceptibility on crystallization, Phil. Tr. Roy. Soc. 215, p. 95, 1915) and Merritt (fluorescence, 1915); Humphreys, "The Magnetic Field of an Atom," Science, 46, p. 276,

Note: The phenomena of Electron Emission, Photo-electric Effect and Contact (Volta) Potential treated in the subsequent tables are extremely sensitive to surface conditions of the metal. The most consistent observations have been made in high vacua with freshly cut metal surfaces.

TABLE 516. Electron Emission from Hot Metals.

Among the free electrons within a metal some may have velocities great enough to escape the surface attraction.

The number n reaching the surface with velocities above this critical velocity = $N(RT/2\pi M)^{\frac{1}{4}}e^{-\frac{T}{RT}}$ where N= number of electrons in each cm³ of metal, R the gas constant (83.15 × 10⁶ erg-dyne), T the absolute temperature, M the atomic weight of electron (.000546, O=16), w the work done when a "gram-molecule" of electrons (6.06 × 10³⁰ electrons or 96,500 coulombs) escape. It seems very probable that this work is done against the attraction of the electron's own induced image in the surface of the conductor. When a sufficiently high + field is applied to escaping electrons so that none return to the conductor, then the saturation current has been found to follow the equation

$$i = a\sqrt{Te^{-b/T}}$$

assuming N and w constant with the temperature; this is equivalent to the equation for n just given and is known as Richardson's equation. In the following table due to Langmuir (Tr. Am. Electroch. Soc. 29, 125, 1916) $i_{2000} = \text{saturation current per cm}^2$ for $T = 2000 \text{ K}^2$; $\phi = w/F = Rb/F = \text{work}$ done when electrons escape from metal in terms of equivalent potential difference in volts; $\phi = \frac{1}{2} F = \text{Faraday constant} = \frac{1}{2} \frac$

Metal.	amp/cm ²	b	i2000 amp/cm ²	φ (volts).
Tungsten * Thorium. Tantalum Molybdenum Carbon (untreated) Titanium Iron. Platinum †	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52500 39000 50000 50000 48000 28000? 37000? 51060	0.0042 30.0 0.007 .013 	4.52 3.36 4.31 4.31 4.14 2.4? 3.2? 4.4

^{*} Best determined value of table, pressure less than 10⁻⁷ mm Hg. † Schlichter, 1915.

TABLE 517. Photo-electric Effect.

A negatively charged body loses its charge under the influence of ultra-violet light because of the escape of negative electrons freed by the absorption of the energy of the light. The light must have a wave-length shorter than some limiting value λ_0 characteristic of the metal. The emission of these electrons, unlike that from hot bodies, is independlimiting value λ_0 characteristic of the metal. The emission of these electrons, unlike that from hot bodies, is independent of the temperature. The relation between the maximum velocity v of the expelled electron and the frequency v of the light is $(1/2)mv^2 = hv - P$ (Einstein's equation) where h is Planck's constant $(6.58 \times 10^{-20} \text{ erg. sec.})$; hv sometimes taken as the energy of a "quanta," P, the work which must be done by the electron in overcoming surface forces, $(1/2)mv^2$ is the maximum kinetic energy the electron may have after escape. Richardson identifies the P of Einstein's formula with the w of electron emission of the preceding table. The minimum frequency v_0 (corresponding to maximum wave-length λ_0) at which the photo-electric effect can be observed is determined by hv = P. P applies to a single electron, whereas w applies to one coulomb $(6.062 \times 10^{20} \text{ electrons})$; electrons v = NP = (0.030940 ergs.) of v = NP = (0.030940 ergs.). A volts. See Millikan, v = N at Acad. 2, 78, 1916; Phys. Rev. 7, 355, 1916; 4, 73, 1914; Hennings, Phys. Rev. 4, 228, 1914.

TABLE 518. Ionizing Potentials and Single-line Spectra.

When electrons are accelerated through gases or vapors, especially those with small electron affinity (inert gases, metallic vapors) at well-defined potentials a large transfer of energy takes place between the moving electrons and the gas atoms. There appear to be two types of inelastic encounters under such circumstances: the first accompanied by the emission of a radiation of a single line at a potential called the resonance potential and satisfying the relation $\hbar \nu = eV$ where V is the potential fall, ν the frequency and \hbar Planck's constant; the second ionizes the gas (ionization potential), exciting the radiation of a composite spectrum. The latter potential satisfies a relation $\hbar \nu = eV$ except that ν is now the limiting frequency of a series of lines. The following table was communicated by Tate and Foote (see Phil. Mag. 36, 64, 1918).

see Phh.	. Mag. 30, 04,	1916).							
Meta	1. λ	Ioniz poten		$\frac{h}{x} \uparrow_{10^{27}}$	λ .	Resor poten Obs.		$\frac{h}{x}$ 10 ²⁷	Observers.
Na. K	2856.65† 2968.40‡ 3184.28‡ 1621.7\$ 1319.95\$ 1378.69\$ 1187.96\$	5.13 4.1 4.1 3.9 7.75 9.5 8.92 10.35 7.3 6.04	5.11 4.32 4.15 3.87 7.61 9.34 8.95 10.38	6.57 6.22 6.46 6.59 6.67 6.66 6.53 6.53	5889.97 7661.94 7806.29 8521.12 4571.38 3075.90 3260.17 2536.72 11513.22 6717.69 4226.73 **	2.12 1.55 1.6 1.48 2.05 4.1 3.88 4.9 1.07 1.93 3.0 4.7 1.26	2.09 1.61 1.58 1.45 2.70 4.01 3.78 4.86 1.07 1.84 2.92	6.63 6.31 6.62 6.69 6.43 6.70 6.71 6.60	Tate and Foote Foote, Rognley, Mohler Tate and Mohler Tate and Foote Tate, Davis, Goucher, others Tate and Mohler Mohler and Foote Foote, Rognley, Mohler Mohler and Foote
			MEAN O	F COM	PUTED $h = 6.5$	5 × 10	-27 ERG.	SEC.	

Computed from relation $Ve = h\nu$ or $V = 12334/\lambda$ volts; λ in Angstrom units Computed from $h = 0.5308\lambda V 10^{-20}$

t Limit of principal series.
|| Short wave-length line of first doublet of principal series. Limit of principal series of single lines, 1.5S.
Combination series line 1.5S - 2p2 ** First line principal series single lines 1.55 - 2P

CONTACT (VOLTA) POTENTIALS.

There has been considerable controversy over the reality and nature of the contact differences of potential between two metals. At present, due to the studies of Langmuir, there is a decided tendency to believe that this Volta difference of potential is an intrinsic property of metals closely allied to the phenomena just given in Tables 516 to 518 and that the discrepancies among different observers have been caused by the same disturbing surface conditions. The following values of the contact potentials with silver and the relative photo-sensitiveness of a few of the metals are from Henning, Phys. Rev. 4, 228, 1914. The values are for freshly cut surfaces in vacuo. Freshly cut surfaces are more electro-positive and grow more electro-negative with age. That the observed initial velocities of emission of electrons from freshly cut surfaces are nearly the same for all metals suggests that the more electro-positive a metal is the greater the actual velocity of emission of electrons from its surface.

Contact potential with Ag	Ag o 50	Cu .05 60	Fe .19 65	Brass	Sn .27 70	Zn •59 80	Al . 99 500	Mg 1.42 1000

From the equation $w = RT \log(N_A/N_B)$, where w is the work necessary per gram-molecule when electrons pass through a surface barrier separating concentrations N_A and N_B of electrons, it can be shown (Langmuir, Tr. Am. Eletroch. Soc. 29, 142, 1916, et seq.) that the Volta potential difference between two metals should be

$$v_1 - v_2 = \frac{1}{F} \{ w_2 - w_1 + RT \log(N_A/N_B) \} = \frac{w_2 - w_1}{F} = \phi_2 - \phi_1$$

(see Table 517 for significance of symbols), since the number of free electrons in different metals per unit volume is so nearly the same that $RT\log{(N_A/N_B)}$ may be neglected. The contact potentials may thus be calculated from photoelectric phenomena (see Table 517 for references). They are independent of the temperature. The following table gives a summary of values of ϕ in volts obtained from the various phenomena where an electron is torn from the attraction of some surface. In the case of ionization potentials the work necessary to take an electron from an atom of metal vapor is only approximately equal to that needed to separate it from a solid metal surface.

(a) The Electron Affinity of the Elements, in Volts.

Metal.		Thermionic. (Langmuir.)	Photo- electric and contact. (Millikan.)	Photo- electric, (Richardson)	Miscel- laneous.	Single- line spectra.	Adjusted mean.
Tungsten. Platinum. Tantalum. Molybdenum. Carbon. Silver. Copper. Bismuth. Tin. Iron. Zinc. Thorium. Aluminum. Magnesium. Titanium. Lithium. Sodium.	4.05 (4.0) 	4.52 4.31 4.31 4.14 — 3.2? 3.36 — 2.4?	2.35 1.82	4 3	: 45		4.52 4.42 4.3 4.3 4.1 4.1 4.0 3.7 3.7 3.7 3.4 3.4 3.4 3.0 2.7 2.4 2.35 1.82

(b) It should not be assumed that all the emf of an electrolytic cell is contact emf. Its emf varies with the electrolyte, whereas the contact emf is an intrinsic property of a metal. There must be an emf between the two electrodes of such a cell dependent upon the concentration of the electrolyte used. The following table gives in its first line the electrode potential e_h of the corresponding metals (in solutions of their salts containing normal ion concentration) on assumption of no contact emf at the junction of the metals. The second line, $\phi - e_h = 3.7$ volts, gives an idea of the electrode potentials (arbitrary zero) exclusive of contact emf.

Metal	Ag	Cu	Ri	Sn	Fe	Zn	26	T.	
							Mg	L1	Na ———
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	+0.80 -0.40	+0.34	+0.20 +0.20	-0.10 -0.20	-0.43 -0.43	-0.76 -0.46	-1.55 -0.55	-3.03 -1.65	-2.73 -0.85
									0.03

TABLES 520-521.

IONIC MOBILITIES AND DIFFUSIONS

The process of ionization is the removal of an electron from a neutral molecule, the molecule thus acquiring a resultant + charge and becoming a + ion. The negative carriers in all gases at high pressures, except inert gases, consist for the most part of carriers with approximately the same mobilities as the + ions. The negative electrons must, therefore, change initially to ions by union with neutral molecules.

The mobility, U, of an ion is its velocity in em/sec. for an electrical field of one volt per cm. The rates of diffusion, D, are given in cm³/sec. U = DP/Ne, where P is the pressure, N, the number of molecules per unit volume of a gas and e the electronic charge.

and e the electronic charge.

Nature of the gas and the mobilities: (τ) The mobilities are approximately proportional to the inverse sq. rts. of the molecular weights of the permanent gases; better yet when the proportionality is divided by the 4th root of the dielectric constant minus unity; (2) The ratio U+/U—seems to be greater than unity in all the more electronegative gases.

Mobilities of Gaseous Mixtures: Three types: (1) Inert gases have high mobilities; small traces of electronegative gases make values normal. (2) Mixed gases; lowering of mobilities is greater than would be expected from simple law of mixture. (3) Abnormal changes produced by addition of small quantities of electro-negative gases:

e.g.: normal mobility 6 mm C ₂ H ₅ Br gave	U + = 1.37	1.80	Wellisch, Pr. Roy. Soc. 82A,
6 mm C ₂ H ₃ I "	· I.37	1.80	p. 500, 1909.
10 mm C2H5OH "	0.91	1.10	
9 mm C₃H₅O "	1.15	1.37	

Temperature Coefficient of Mobility: There is no decided change with the temperature. Pressure Coefficient of Mobility: Mobility varies inversely with the pressure in air from 100 to 1/100 atmosphere for — ion, to 1/1000, for + ion; below 1/100 atmosphere all observers agree that the negative ion in air increases abnormally rapidly.

Free Electrons: In pure He, Ar, and N, the negative carriers have a high mobility and are, in part at any rate, free electrons; electrons become appreciable in air at 100 cm pressure.

TABLE 520. - Ionic Mobilities.

Dry gas.	Mobilities.		Mobilities.		K - 1 Observer.		Dry gas.	Mobilities.		K - 1	Observer.
H He Ar. N. O CO ₂ . NH ₃ . Air.	0.81	7.95 6.31 — 1.80 0.85 0.80 1.78	.000273 .000074 .000100 .000590 .000540 .000960 .000770	Zeleny Franck " Zeleny Wellisch Mean	Nitrous oxide Ethyl alcohol. CCla. Ethyl chloride Ethyl chloride Ethyl bromide Ethyl formate Ethyl formate		0.90 0.27 0.31 0.31 0.28 0.31 0.16	.00107 .00940 .00426 .01550 .00742 .01460 .00870	Wellisch		

Franck, Jahr, d. Rad. u. Elek. 9, p. 2, 1912; Wellisch, Pr. Roy. Soc. 82A, p. 500, 1909. The following values are from Yen, Pr. Nat. Acad. 4, 19 8.

	H_2	N ₂	Air.	SO ₂	C ₅ H ₁₂	C ₂ H ₆ O	C ₂ H ₄ O	C ₂ H₅Cl	CH₃I	C ₂ H ₅ I
$\begin{array}{c} U+\ldots \\ U-\ldots \\ U-/U+. \end{array}$	8.45	1.30 1.80 1.38	I.37 I.81 I.34	.412 .414 I.00	.385 .451 1.17	.363 .373 I.03	.307 .331 I.07	.304 .317 I.04	.216 .226 1.05	1.81 1.81 1.00

TABLE 521. - Diffusion Coefficients.

The following table gives the observed and computed (D=300UP/Ne= very nearly 0.0236U) values of the diffusion coefficients. The diffusion coefficients are given for some neutral molecules as actually determined for some gases into gases of nearly equal molecular weight. Table taken from Loeb, "The Nature of the Gaseous Ion," J. Franklin Inst. 184, p. 775, 1017.

C . J.T.	Gas diffused	D	<i>U</i> +	D + for ions.		
Gas, diffusing.	into	molecules.		Computed.	Observed.	
Ar	He N ₂ O ₂ N ₂ N ₂ N _{2O} CO CO ₂ Ethyl acetate Air NH ₃	0.706 .739 .178 .171 1.5-1.0 1.31 0.0693 .093 .246 .190 ‡	5.09 6.02 1.35 1.27 .82 .81 .34 .30† 1.35	I.20 0.143 0.0319 0.0299 0.0193 0.0103 0.00805 0.0071 0.0319 0.0174	0.123 0.028 .025 .023* —	

* CO2 into CO2. † Ethyl formate. ‡ Estimated.

COLLOIDS.

TABLE 522. — General Properties of Colloids.

For methods of preparing colloids, see The Physical Properties of Colloidal Solutions, Burton, 1916; for general properties, see Outlines of Colloidal Chemistry, J. Franklin Inst. 185, p. 1, 1918 (contains bibliography).

The colloidal phase is conditioned by sufficiently fine division (1 × 10⁻⁴ to 10⁻⁷ cm). Colloids are suspensions (in gas, liquid, solid) of masses of small size capable of indefinite suspension; suspensions in water, alcohol, benzole, glycerine, are called hydrosols, alcosols, benzosols, glycerosols, respectively. The suspended mass is called the disperse phase, the medium the dispersion medium.

Smallest	partic	ele of Au	1 0	bserved by Zsigmody (ultramicroscope)		
66		visible	in	ordinary microscope about	2.5	\times 10 ⁻⁵ cm.
66	6.6	, 66	6.6	ultramicroscope, with electric arc	15	\times 10 ⁻⁷ cm.
66	6.6	6.6	66	46 with direct sunlight	T	Y 70-7 cm

TABLE 523. - Molecular Weights of Colloids.

Determined from diffusion.		Determined from freezing point	
Gum arabic. Tannic acid (322)*. Egg albumen. Caramel. (Due to Graham)	1750 2730 7420 13200	Glycogen (162) *. Tungstic acid (250) *. Gum Albumose Ferric hydrate (107) * Egg albumen Starch (162) *	1625 1750 1800 2400 6000 14000 25000

^{*} Formula weight.

TABLE 524. - Brownian Movement.

The Brownian movement is a microscopically observed agitation of colloidal particles. It is caused by the bombardment of them by the molecules of the medium and may be used to determine the value of Avogadro's number. Perrin, Chaudesaignes, Ehrenhaft and De Broglie found, respectively, 70, 64, 63 and 64×10^{22} as the value of this constant. The following table indicates the size and the dependence of this movement on the magnitude of the particles.

, Material.	Diameter × 105 cm	Medium.	Temp.	Velocity × 10 ⁵ cm/sec.	Observer.
Dust particles Gold. Gold. Gold. Platinum. Platinum. Rubber emulsion. Mastic. Gamboge.	2 0 0.35 0.1 0.06 .4 to .5 10. 10. 4.5 2.13	Water Acetone Water	20? 44 18 20 17 20? 20	none 200. 280. 700. 3900. 3200. 124. 1.55 2.4 3.4	Zsigmody " Svedberg, 1906–9 Henri, 1908 Perrin, Dabrowski, 1909. Chaudesaignes, 1908.

The movement varies inversely as the size of the particles; in water, particles of diameter greater than 4μ show no perceptible movement; when smaller than 4μ lively movement begins, while at 10 $m\mu$ the trajectories amount up to 20mu.

COLLOIDS.

TABLE 525. — Adsorption of Gas by Finely Divided Particles.

Fine division means great surface per unit weight. All substances tend to adsorb gas at surface, the more the higher the pressure and the lower the temperature. Since different gases vary in this adsorption, fractional separation is possible. Pt black can absorb 100 vols. H₂, 800 vols. O₃, Pd 3000 vols. H₂. In gas analysis Pd, heated to 100°, is used to remove H₂ (higher temperature used for faster adsorption, will take more at lower temperature). Pt can dissolve several vols. of H₂, Pd, nearly 100 at ordinary temperatures; but it seems probable that the bulk of the 100 vols. of H₃ taken by Pt and the 3000 by Pd must be adsorbed. In 1848 Rose found the density 21 to 22 for Pt foil, but 26 for precipitated Pt.

H2 taken by Pt and the 3000 by Pt must be austrock.

The film of adsorbed air entirely changes the behavior of very small particles. They flow like a liquid (cf. fog).

With substances like carbon black as little as 5 per cent of the bulk is C; a liter of C black may contain 2.5 liters of air. Mitscherlich calculated that when CO₂ at atmospheric pressure, 12° C, is adsorbed by boxwood charcoal, it occupies 1/56 original vol. Apparent densities of gases adsorbed at low temperatures by cocoanut charcoal are of the same order (sometimes greater) as liquids.

Cm³ of Gas Adsorbed by a Cm³ of Synthetic Charcoal (corrected to o° C, 76 cm²) (Hemperl and Vater).									
°C	H_2	Ar	N ₂	O ₂	СО	CC	D ₂ 1	NO	N ₂ O
+20° -78 -185	7.3 19.5 284.7	12.6 92.6	21.0 107.4 632.2	25.4 122.4 —	26.8 139.4 697.0	85 568		03.6	109.4
	CH4	C ₂ H ₆	C ₂ H ₄	C ₂ H ₂	NH₃	H	:S	Cl ₂	SO ₂
+20° -78	4I.7 I74.3	119.1 275.5		135.8 488.5	197.0	213	30	04.5	337.8
Cm ³ (of Gas Adso	rbed by a	Cm³ of Cocoa	nut Charcoal	(correcte	i to o° (C, 76 cm) (Dewa	r).
°C	Н	e	H ₂	N_2		O ₂	со		Ar
-185°	I	5	4 135	15 155		18	21 190		12

See Langmuir, J. Am. Ch. Soc. 40, 1361, 1918; Richardson, 39, 1829, 1916.

TABLE 526. - Heats of Adsorption.

Adsorber.	Amylene,	Water.	Acetone.	Methyl alcohol.	Ethyl alcohol.	Aniline.	Amyl alcohol.	Ethyl ether.	Chloro- form.	Benzole.	Carbon disulphide.	Carbon tetra- chloride.	Hexane.
Fuller's earth * Bone charcoal * Kaolin * Fuller's earth †	57.1 78.8	30.2 18.5	27.3 19.3 — .684	21.8 17.6 27.6 .679	17.2 16.5 24.5	13.4 — —	10.9 10.6 20.4	10.5	8.4 14.0 15.7 .611	4.6 11.1 9.9 .610	4.6 8.4 9.9 .621	4.2 13.9 9.4 .625	3.9 8.9 7.2

^{*} Small calories liberated when 1 g of the adsorbent is added to a relatively large quantity of the liquid. † Volume adsorped from saturated vapor by 1 g of fuller's earth.

Gurvich, J. Russ. Phys. Ch. Soc. 47, 805, 1915.

TABLE 527. - Molecular Heats of Adsorption and Liquefaction (Favre).

		Molecular l	eats of			Molecular heats of		
Adsorber.	Gas.	adsorption.	lique- faction.	Adsorber.	Gas.	adsorption.	lique- faction.	
Platinum Paladium. Charcoal	H ₂ H ₂ NH ₃ CO ₂ N ₂ O	46200 18000 5900-8500 6800-7800 7100-10900	 (5000) 6250 4400	Charcoal	SO ₂ HCl HBr HI	10000-10000 9200-10200 15200-15800 21000-23000	5600 (3600) (4000) (4400)	

TABLE 528. - Miscellaneous Constants (Atomic, Molecular, etc.).

Elementary electrical charge, charge on electron	$e = 4.774 \times 10^{-10} \text{ su (M)}$ = 1.591 × 10 ⁻²⁰ emu = 1.501 × 10 ⁻¹⁹ coulomb
Mass of an electron. Radius of an electron. Ratio e/m, small velocities.	about 2 X 10 ⁻¹³ cm
Number of molecules per gram molecule or per gram molecular weight (Avogadro constant). Number of gas molecules per cm³, 76 cm, o° C (Loschmidt's number). Number of gas molecules per cm³, 0° C at 1 × 10⁵ bars. Kinetic energy of translation of a molecule at o° C. Constant of molecular energy, Eo/T = change of translational energy per ° C Mass of hydrogen atom. Radius of hydrogen molecule about	$N = 0.002 \times 10^{26} \text{ (M)}$ $n = 2.705 \times 10^{19} \text{ (M)}$ 2.670×10^{19} $E_0 = 5.621 \times 10^{-14} \text{ erg (M)}$ $\epsilon = 2.058 \times 10^{-16} \text{ erg/}^{\circ} \text{ C (M)}$ $= 1.662 \times 10^{-24} \text{ g (M)}$
Mean free path, ditto, 76 cm, o° C, about Sq. rt. mean sq. velocity, ditto, 76 cm, o° C. Arithmetical average velocity, ditto, 76 cm, o° C. Average distance apart of molecules, 76 cm, o° C. Boltzmann gas constant = constant of entropy equation = R/N = poVo/TN =	= 3 × 10 ⁻⁰ cm
Volume per mol(e) or gram-molecular weight of ideal gas, 76 cm, 0° C (1.01323 \times 106 bars). Ditto, 1 \times 106 bars, 0° C (75 cm Hg). Gas constant: $PV_m = RT$, $V_m = \text{vol. molec.}$ when P in atmospheres, V_m in liters. when P in dynes, V_m in cm³.	k = 1.372 X 10 ⁻¹⁶ erg/° C = 22.412 liters = 22.708 liters R = 84.780 g-cm/° C R = 0.08204 l-atm/° C R = 8.315 X 10 ⁷ ergs/° C
Absolute zero = 0° Kelvin 1 bar = 106 dynes/cm² = 1.013 kg/cm² Mechanical equivalent of heat, 1 g (20° C) cal.	= -273.13° C = 0.987 atmosphere = 4.184 × 10 ⁷ ergs = 4.184 Joules
Faraday constant Velocity of light in vacuo Planck's element of action Rydberg's fundamental frequency Rydberg's constant, V_0/e . Wien's constant of spectral radiation Stefan-Boltzmann constant of total radiation. Grating space in calcite. Grating space in rock-salt (Uhler, Cooksey) Potential difference in volts for X-ravs of wave-length λ in cm = $V\lambda = he/e$.	F = 96494 coulombs $c = 2.99860 \times 10^{10}$ cm/sec. $h = 6.547 \times 10^{-20}$ erg. sec. (M) $V_0 = 3.28880 \times 10^{15}$ sec. (M) $V = 1.4312$ for λ in cm (M) $\sigma = 5.72 \times 10^{-12}$ watt/cm ² (M) d = 3.030 $Ad = 2.814 \times 10^{-8} cmd = 1.241 \times 10^{-8} volt. cm$
Reference: (M) Millikan, Phil. Mag. 34, 1, 1917.	The state of the s

TABLE 529. - Radiation Wave-length Limits.

Hertzen waves, longest	000.	o cm
shortest	0	2 cm
Infra-red, longest, restrahlung, focal-isolation.	0.	o3 cm
Infra-red, spectroscopically studied.	0.	002 cm
Visible, longest	0.	000 o8 cm
shortest	0.	000 01 cm
Ultra-violet, Lyman, shortest*	0.	000 006 cm
X-rays, longest	0.	000 000 12 cm
Shortest	0.	000 000 001 cm
γ rays, longest	0.	000 000 013 cm
" shortest	0.0	000 000 000 7 cm

^{*0.000 0032} cm (Millikan-Sawyer, 1919)

TABLE 530. - Periodic System of the Elements.

0	I	П	III	, IV	V	VI	VI	
ļ. <u>-</u>	R ₂ O	RO	R ₂ O ₃	RO ₂	R ₂ O ₅	RO ₃	R ₂ O ₇	RO4 Oxides.
		_	_	RH ₄	RH ₃	RH	RH	— Tydrides.
He 4	Li 7	Gl 9	В	C 12	N 14	O 16	F 19	
Ne 20	Na 23	Mg 24	Al 27	Si 28	P 31	S 32	Cl 35	_
A 40	K 39	Ca 40	Sc 44	Ti 48	V 51	Cr 52	Mn 55	Fe Ni Co 56 59 59
=	Cu 64	Zn ú5	Ga 70	Ge 72	As 75	Se 79	Br 80	=
Kr 82	Rb 85	Sr 88	Yt 89	Zr 91	Съ 94	Mo 96	_	Ru Rh Pd 102 103 107
=	Ag 108	Cd 112	In 115	Sn 119	Sb 120	Te 128	I 127	_
X 128	Cs 133	Ba 137	La 139	Ce 140	Pr 141	· Nd 144	=	=
=	Sa 150	_	Gd 157	Tb 159	=	Er 168	=	_
=	Tm 168	_	Yb 173	=	Ta 181	W 184	_	Os Ir Pt 191 193 195
=	Au 197	Hg 201	Tl 204	Pb 207	Bi 208	Po 210	=	=
Em (222)	=	Ra 226	Ac (227)	Th 232	UrX: 234	U 238	=	=

TABLE 531. — Atomic Numbers.*

r Hydrogen 2 Helium 3 Lithium 4 Beryllium 5 Boron 6 Carbon 7 Nitrogen 8 Oxygen 9 Fluorine 10 Neon 11 Sodium 12 Magnesium 13 Aluminum 14 Silicon 15 Phosphorus 16 Sulphur 17 Chlorine 18 Argon 19 Potassium	20 Calcium 21 Scandium 22 Titanium 23 Vanadium 24 Chromium 25 Manganese 26 Iron 27 Cobalt 28 Nickel 29 Copper 30 Zinc 31 Gallium 32 Germanium 33 Arsenic 34 Selenium 35 Bromine 36 Krypton 37 Rubidium 38 Strontium	39 Yttrium 40 Zirconium 41 Niobium ‡ 42 Molybdenum 43 Ruthenium 45 Rhodium 46 Palladium 47 Silver 48 Cadmium 50 Tin 51 Antimony 52 Tellurium 53 Jodine 54 Xenon 55 Caesium 56 Barium 57 Lanthanum	58 Cerium 59 Praesodymium 60 Neodymium 61 62 Samarium 63 Europium 64 Gadolinium 65 Terbium 66 Dysprosium 67 Holmium 68 Erbium 69 Thulium 77 Vtterbium 71 Lutecium 72 73 Tantalum 74 Tungsten 75	76 Osmium 77 Iridium 78 Platinum 79 Gold 80 Mercury 81 Thalium 82 Lead 83 Bismuth 84 Polonium 85 Emanation 87 88 Radium 89 Actinium 90 Thorium 91 Uranium X2 92 Uranium
--	---	---	---	---

^{*} Quoted from Millikan's The Electron, 1917. † Glucinium.

[‡] Columbium.

SMITHSONIAN TABLES.

TABLE 532.

PERODIC SYSTEM AND THE RADIOACTIVE ISOTOPES.*

	4	5A	6A	7A	0	ıA	2A	3A	4		
Vb IVb IIIb IIb	82 Pb 50 Sn 32 Ge 14 Si 6 C	83 Bi 51 Sb 33 As 15 P	Non-meta 84 Po 52 Te 34 Se 16 S 8 O 1	85 	Inert-gases. 86	Li 87 55 Cs 37 Rb 19 K 11 Na 3 Li	ght-met 88 Ra 56 Ba 38 Sr 20 Ca 12 Mg 4 Be	als. 89 Ac 57 La 39 Y 21 Sc 13 Al 5	90 Th 58 Ce 40 Zr 22 Ti 14 Si 6 C	VI . Va IVa IIIa IIa	
III' IV'	22 Ti 40 Zr	23 V 41 Cb	24 Cr 42 Mo	25 Mn 43	Heavy metals. 26 27 22 Fe Co N 44 45 44 Ru Rh P	8 29 Ii Cu	30 Zn 48 Cd	31 Ga 49 In	Ge 50 Sn	III'	
V"	58 Ce	60 Pr Nd	61 62 — Sa	63 Eu	64 65 66 Gd Tb Dy	67 68 Ho E	69 Ad	70 71 Cp Yb	72 Lu	V"	
V' VI	72 Lu 90 Th	73 Ta 91 Bv	02	75 	76 77 78 Os Ir Pt	79 Au	80 Hg	81 Tl	82 Pb	V' VI	
	4	5B	6B	7B		ıВ	2B	3B	4		
81 (Th)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
{ AcI Rac	$ \begin{cases} ThB \\ AcB \\ RaB \end{cases} $	{ AcC RaC ↑ ←				MsT'	Ac ←	Th Uy Ux'	Uz Ux" ←	U ₁	

← Indicates the loss of an alpha particle (producing He); the element becomes more electro-positive and the atomic weight decreases by 4, position changing 2 columns to the left.

✓ Indicates beta radiation (loss of electron); the element becomes more electro-negative, atomic weight remains the same, position changes one column to the right and up.

Isotopes of an element have the same valency and the same chemical properties (solubility, reactivity, etc.), although their atomic weights may differ. The isotopes of Bi are, e.g., RaE, ThC, AcC, RaC.

In the upper half of the table are the elements possessing high electro-potential, simple spectra, colored ions and tending to form complex double salts, the general properties of the elements. tial, complex spectra, colored ions and tending to form complex double salts, the general properties of the elements being more pronounced in the horizontal direction (periods)

being more pronounced in the horizontal direction (periods).

On the left side of the table are the electro-negative elements, those of the upper half forming strong acids, those of the lower half weak oxyacids.

On the right side of the table are the electro-positive elements, forming bases, oxysalts, sulfides, etc.

The center of the lower half is occupied by the amphoteric elements forming weak acids and bases, many complex compounds and double salts, many insoluble and mostly colored compounds.

A very striking point, however, is, as already mentioned, that the similarity among the elements in the upper half is in the vertical direction, and in the lower half in the horizontal direction. This justifies the use of the expressions group-relation and period-relation.

*Table adapted from Hackh, J. Am. Chem. Soc. 40, 1023, 1918, Phys. Rev. 13, 169, 1919.

ASTRONOMICAL DATA.

TABLE 533. - Stellar Spectra and Related Characteristics.

The spectra of almost all the stars can be arranged in a continuous sequence, the various types connected in a series of imperceptible gradations. With one unimportant exception, the sequence is linear, the transition between two given types always involving the same intermediate steps. According to the now generally adopted Harvard system of classification, certain principal types of spectrum are designated by letters, —O. B., A. F., G. K., M., R. and N., — and the intermediate types by suffixed numbers. A spectrum halfway between classes B and A is denoted Bs, while those differing slightly from Class A in the direction of Class B are called B8 or Bo. In Classes M and O the notation Ma, Mb. Mc, etc., is employed. Classes R and N apparently form a side chain branching from the main series near Class K.

The colors of the stars, the degree to which they are concentrated into the region of the sky, including the Milky Way, and the average magnitudes of their peculiar velocities in space, referred to the center of gravity of the nakedeye stars as a whole, all show important correlations with the spectral type. In the case of colors, the correlation is so close as to indicate that both spectrum and color depend almost entirely on the surface temperature of the stars. The correlation in the other two cases, though statistically important, is by no means as close.

Examples of all classes from O to M are found among the bright stars. The brightest star of Class N is of magnitude 5.3; the brightest of Class R, 7.0.

tude 5.3; the brightest of Class R, 7.0.

TABLE 534. - The Harvard Spectral Classification.

Class.	Principal spectral lines (dark unless otherwise stated).	Example.	Number brighter than 6.25, mag.	Per cent in galactic region.	Color index.	Effective surface temperature, K	Mean peculiar velocity, km/sec.
O B	Bright H lines, bright spark lines of He, N,O,C H, He, spark lines of N and O, a few spark lines	γ Velorum	20	100	-0.3	_	_
	of metals	€ Orionis	696	82	-0.30	20,000°	6
A	H series very strong, spark lines of metals	Sirius	1885	66	0.00	11,000°	10
F	H lines fainter. Spark and		Ŭ				
G	arc lines of metals Arc lines of metals, spark	Canopus	720	57	+0.33	7,500°	14
K	lines very faint	The sun	609	58	+0.70	5,000°	15
	Arc lines of metals, spec- trum faint in violet	Arcturus	1710	56	+1.12	4,200°	17
M	Bands of TiO2, flame and	Antares			+1.00	3,100°	17
R	Bands of carbon, flame and	B. D.	457	54	71.00		17
N	arc lines of metals	-10° 5057	0	63	+1.7	3,000°	15
N	Bands of carbon, bright lines, very little violet light		8	87	+2.5	2,300°	13

Compiled mainly from the Harvard Annals. Temperatures based on the work of Wilsing and Scheiner. Radial velocities from Campbell. Data for classes R and N from Curtis and Rufus. The color indices are the differences of the visual and photographic magnitudes. Negative values indicate bluish white stars; large positive values, red stars. The peculiar velocities are in the radial direction (towards or from the sun). The average velocities in space should

be twice as great. The "galactic region" here means the zone between galactic latitudes = 30°, and including half the area of the heavens.

96% of the stars of known spectra belong to classes A, F, G, K, 99.7% including B and M (Innes, 1919).

TABLE 535. - Apex and Velocity of Solar Motion.

R. A. 1900.	Dec.	Velocity, km/sec.	Method.	No. of stars.	Authority.
18 ^h 02 ^m 17 54 18 00	+34.3 25.1 29.2	19.5 21.4	Proper motions Radial velocities	5413 1193 1405	Boss, Astron. J. 614, 1910 Campbell, Lick Bull. 196, 1911 Strömberg, Astrophys. J. 1918.

TABLES 536-537.

ASTRONOMICAL DATA.

TABLE 536. - Motions of the Stars.

The individual stars are moving in all directions, but, for the average of considerable groups, there is evidence of a drift away from the point in the heavens towards which the sun is moving (solar apex). The best determinations of the solar motion, relative to the stars as a whole, are given in Table 535. In round numbers this motion of the sun may be taken as 20 km/sec, towards the point R. A. 18 h. o m., Dec +30.0°.

After allowance is made for the solar motion, the motions of the stars in space, relative to the general mean, present marked peculiarities. If from an arbitrary origin a series of vectors are drawn, representing the velocities of the various stars, the ends of these vectors do not form a spherical cluster (as would occur if the motions of the stars were at random), but a decidedly elongated cluster, whose form can be approximately represented either by the superposition of two intermingling spherical clusters with different centers (Kaptepu's two-stream hypothesis) or by a single ellipsoidal cluster (Schwarzschild), the actual form, however, being more complicated than is indicated by either of these hypotheses. The direction of the longest axis of the cluster is known as that of preferential motion. The two opposite points in the heavens at the extremities of this axis are called the vertices. The components of velocity of the stars parallel to this axis average considerably larger than those parallel to any axis perpendicular to it.

The preferential motion varies greatly with spectral type, being practically absent in Class B, very strong in Class A, and somewhat less conspicuous in Classes F to M, on account of the greater mean velocities of these stars in all directions. The positions of the vertices are nearly the same for all.

Numerous investigators, from the more distant naked-eye stars, find substantially the 'same position for the

directions. The positions of the vertices are nearly the same for all.

Numerous investigators, from the more distant naked-eye stars, find substantially the same position for the vertex, the mean being R. A. 6 h, 6 m., Dec. +9°. The nearer stars, of large proper motion, give a mean of 6 h. 12m., +25°. (See Strömberg's discussion, cited above.)

In addition to these general phenomena, there are numerous clusters of stars whose members possess almost exactly equal and parallel motions, — for example, the Pleiades, the Hyades, and certain large groups in Ursa Major, Scorpius, and Orion. The vertices, and the directions toward which these clusters are moving, are all in the plane of the galaxy. Several faint stars are known which have radial velocities between 300 and 350 km/sec. (e.g. A. G. Berlin 1366 R.A. 1900 = 4h 8m 6, Dec. 1900 = +22.7°, mag. 8.9 velocity of recession 339 km/sec.), and it is probable that the actual velocity in space exceeds 500 km/sec. for some of these.

The 9th magnitude star A. G. Berlin 1366 has a radial velocity of 404 km/sec.

The greatest known proper motion is that of Barnard's star of the ninth magnitude in Ophiuchus, 10.3" per year, position angle 356°. The parallax of this star is 0.52", and its radial velocity about —100 km/sec.

The average radial velocity of the globular clusters is 100 km/sec, and that of the spiral nebulae 400 km. The greatest individual values are —410 km for the cluster N. G. C. 6934 and +1100 km for the nebula N. G. C. 1068.

Average velocities with regard to center of gravity of the stellar system, according to Campbell (Stellar Motion, 1913):

1913):

For radial velocities of 119 stars see Astrophysical Journal, 48, p. 261, 1918.

TABLE 537. - Distances of the Stars.

Distances.	Parsecs.*	Light years.
Alpha Centauri (nearest star)	1.32	4.3
Barnard's Star	1.9	6.3
Sirius	2.7	8.7
Arcturus	13.0	43.0
The Hyades	40.	130.
Nebula of Orion (Kapteyn)	185.	600.
Centauri (nearest)	6,500.	21,000.
N. G. C. 7006 (farthest)	67,000.	220,000.

^{*}Parsec = 206,265 astronomical units = 3.08 × 1013 km = 3.26 light years. I astronomical unit = distance sun to earth.

Practically all the stars visible to the naked eye lie within 1000 parsecs of the sun, and most of them are more than 100 parsecs distant. In the vicinity of the sun, the majority of the stars lie within two or three hundred parsecs of the galactic plane; but along this plane the star-filled region extends far beyond 1000 parsecs in all directions, and may reach 30,000 parsecs in the great southern star clouds (Shapley).

Average parallax 6 planetary nebulae, 0.018" (van Maanen, Pr. Nat. Acad. 4, p. 394, 1918).

ASTRONOMICAL DATA.

TABLE 538.—Brightness of the Stars.

Stellar magnitudes give the apparent brightness of the stars on a logarithmic scale, — a numerical increase of one magnitude corresponding to a decrease of the common logarithm of the light by 0.400, and a change of five magnitudes to a factor of 100. The brightest objects have negative stellar magnitudes. The visual magnitude of the Sun is -26.7; of the mean full Moon, -12.5; of Venus at her brightest, -4.3; of Jupiter, at opposition, -2.3; of Sirius, -1.6; of Vega, +0.2; of Polaris, +2.1. (The stellar magnitude of a standard candle 1 m distant is -14.18.) The faintest stars visible with the naked eye on a clear dark night are of about the sixth magnitude (though a single luminous point as faint as the eighth magnitude can be seen on a perfectly black background). The faintest stars visible with a telescope of aperture A in . are approximately of magnitude 9 + 5 log10 A. The faintest photographed with the 60-inch reflector at Mt. Wilson are of about the 21st magnitude. A standard candle, of the same color as the stars, would appear of magnitude +0.8 at a distance of one kilometer.

The actual luminous posts of a star is expressed by means of its absolute magnitude, which (Kapteyn's definition) is

magnitude +0.8 at a distance of one kilometer. The actual luminosity of a star is expressed by means of its absolute magnitude, which (Kapteyn's definition) is the stellar magnitude which the star would appear to have if placed at a distance of ten parsecs. The absolute magnitude of the sun is +4.8 (equal to that of a_2 Centauri); of Sirius is +1.3; of Arcturus, -0.4. The faintest star at present known (Innes), a distant companion to a Centauri, has the (visual) absolute magnitude +15.4, and a luminosity 0.00006 that of the sun. The brightest so far definitely measured, β Orionis, has (Kapteyn) the abs. mag. -5.5 and a luminosity 13,000 times the sun's. Canopus, and some other stars, may be still brighter. Intrinsic brightness of sun's surface = 57,000 candles per cm² of surface. (Abbot-Fowle, 1920)

The absolute magnitudes of 6 planetary nebulae average 9.1; average diameter, 4000 astronomical units (Solar system to Neptune = 60 astr. units), van Maanen, Pr. Nat. Acad. 4, p. 394, 1918.

Giant and Dwarf Stars.

The stars of Class B are all bright, and nearly all above the absolute magnitude zero. Stars of comparable brightness occur in all the other spectral classes, but the inferior limit of brightness diminishes steadily for the "later" or redder types. The distribution of absolute magnitudes conforms to the superposition of two series, in each of which the individual stars of each spectral class range through one or two magnitudes on each side of the mean absolute magnitude. In one, —the "giant stars,"—this mean brightness is nearly the same for all spectral classes, and not far from absolute magnitude zero. In the other, —the "dwarf stars,"—it diminishes steadily from about abs. mag.—2 for Class Bo to +10 for Class M. The two series overlap in Classes A and F, are fairly well separated in Class K, and sharply so in Class M. Two very faint stars of Classes A and F fall into neither series.

The majority of the stars visible to the naked eye are giants, since these, being brighter, can be seen at much greater distances. The greatest percentage of dwarf stars among those visible to the eye is found in Classes F and G. The dwarf stars of Classes K and M are actually much more numerous per unit of volume, but are so faint that few of the former, and none of the latter, are visible to the naked eye.

Adams and Stromberg have shown that the mean peculiar velocities of the giant stars are all small, —increasing only from about 6 km/sec. for Class B to 12 for Class M,—while those of the dwarf stars are much greater, increasing within each spectral class by about 1.5 km per unit of absolute magnitude, and reaching fully 30 km for stars of Class M and abs. mag. 10. Both giant and dwarf stars show the phenomenon of preferential motion. The stars of Class B are all bright, and nearly all above the absolute magnitude zero. Stars of comparable bright-

TABLE 539. - Masses and Densities.

The stars differ much less in mass than in any other characteristic. The greatest definitely determined mass is that of the brighter component of the spectroscopic binary β Scorpii, which is of 13 times the sun's mass, 400 times its luminosity, and spectrum B1. The smallest known mass is that of the faint component of the visual binary Krueger 60, whose mass is 0.15, and luminosity 0.0004 of the sun's, and spectrum M.

The giant stars are in general more massive than the dwarfs. According to Russell (Publ. Astron. Soc. America, 3, 327, 1917) the mean values are:

Spectrum.	Mass of a Binary System.	Spectrum.	Mass.
B2	12 × Sun	F2 dwarf	3.o X Sun
Ao	6.5 "	G2 "	I.2 "
F5 giant	8 "	K8 "	0.0 "
TZ = 66	TO 66		

The densities of stars can be determined only if they are eclipsing variables. It appears that the stars of Classes B and A have densities averaging about one tenth that of the sun and showing a relatively small range about this value, while those of Classes F to K show a wide range in density, from 1.8 times that of the sun (W Urs. Maj.) to 0.00002

while those of Classes I to K show a water large.

(W Crucis).

The surface brightness of the stars probably diminishes by at least one magnitude for each step along the Harvard scale from B to M. It follows that the dwarf stars are, in general, closely comparable with the sun in diameter, while the stars of Classes B and A, though larger, rarely exceed ten times the sun's diameter. The redder giant stars, however, must be much larger, and a few, such as Antares, may have diameters exceeding that of the earth's orbit. The densities of these stars must be exceedingly low.

If arranged in order of increasing density, the giant and dwarf stars form a single sequence starting with the giant that of Class M. It is believed by

stars of Class M, proceeding up that series to Class B, and then down the dwarf series to Class M. It is believed by Russell and others that this sequence indicates the order of stellar evolution,—a star at first rising in temperature as it contracts and then cooling off again. The older theory, however, regards the evolutionary sequence as proceeding in all cases from Class B to Class M.

MISCELLANEOUS ASTRONOMICAL DATA.

```
= \{365.24219879 - 0.0000000614 (t - 1900)\} days
Tropical (ordinary) year
                                Sidereal year
Anomalistic year
Eclipse year
Synodical (ordinary) month = \{29.530588102 - 0.0000000294 (t - 1900)\} days
                                = \{27.321660890 - 0.00000000252 (t - 1900)\} days
Sidereal month
Sidereal day (ordinary, two successive transits
of vernal equinox, might be called equinoctial
                                                        = 86164.09054 mean solar seconds
day)
                                                        = 23 h. 56 m. 4.09054 mean solar time
Sidereal day (two successive transits of same
                                                        = 86164.00066 mean solar seconds
fixed star)
1920, Julian Period = 6633
January 1, 1920, Julian-day number = 2422325
Solar parallax = 8.7958'' \pm 0.002'' (Weinberg)
                    8.807 ± 0.0027 (Hincks, Eros)
                    8.799 (Sampson, Jupiter satellites; Harvard observations)
                    8.80 Paris conference
Lunar parallax = 3422.63'' = 57' 2.63'' (Newcomb)
Mean distance earth to sun = 149500000 kilometers = 92900000 miles
Mean distance earth to moon = 60.2678 terrestrial radii
                                  = 384411 kilometers = 238862 miles
Light traverses mean radius of earth's orbit in 498.580 seconds
Velocity of light (mean value) in vacuo, 299860 kilometers/sec. (Michelson-Newcomb)
= 186324 statute miles/sec.
Constant of aberration
                                  = 20.4874'' \pm 0.005''
                                     20.47 Paris conference (work of Doolittle and others
                                       indicates value not less than 20.51)
Light year = 9.5 \times 10^{12} kilometers = 5.9 \times 10^{12} miles

Parsec, distance star whose parallax is 1 sec. = 31 \times 10^{12} km = 19.2 \times 10^{12} m)

General precession = 50.2564'' + 0.000222 (t - 1900)'' (Newcomb)

Obliquity of ecliptic = 23^{\circ} 27' 8.26'' - 0.4684 (t - 1900)'' (Newcomb)

Gravitation constant = 666.07 \times 10^{-10} (Paris conference)

Freentricity earth's orbit
Eccentricity earth's orbit
                                  = e = 0.01675104 - 0.0000004180 (t - 1900) -
                                         0.000000000126 (t - 1900)^2
Eccentricity moon's orbit
                                  = e_2 = 0.05490056 (Brown)
Inclination moon's orbit
                                  = I = 5^{\circ} 8' 43.5'' \text{ (Brown)}
Delaunay's \gamma = \sin \frac{1}{2}I
                                  = 0.04488716 (Brown)
Lunar inequality of earth
                                  = L = 6.454^{h}
Parallactic inequality moon
                                   = Q = 124.785'' \text{ (Brown)}
mean sidereal motion of moon's node in 365.25 days = -19^{\circ} 21' 19.3838'' + 0.001294 (t - 1900)''
Pole of Milky Way
                                  = R. A., 12 h. 48 m.; Dec., +27°
```

ASTRONOMICAL DATA-

TABLE 541. — The First-magnitude Stars.

No	Star.	Mag.	Spec- trum.	R.A. 1900.	Dec. 1900.	Annual proper motion,	P.A. of µ	Parallax.	Abs.	Radial velocity km.
1 2 3 4 5 6 6 7 8 9 9 10 11 12 13 14 15 16 17 17 18 19 20 20 21	Achernar Aldebaran † Capella † † Rigel *† Betelgeuse † § Canopus Sirius * Procyon * Pollux § Regulus † a Crucis * B Crucis † Spica † Acturus a Centauri * Antares † † Vega § Altair § Deneb § Fomalhaut	0.5 1.2 1.3 1.1 1.5 1.2 0.9 0.2 0.3 1.2 0.1	B5 K5 G B8 Ma F A F5 K B8 B1 B2 B7 K G Ma A A5 A2 A3	1 ^h 34.0 ^m 4 30.2 5 9.3 5 9.7 5 49.8 6 21.7 7 34.1 7 39.2 10 3.0 12 21.0 12 41.9 13 19.9 13 56.8 14 11.1 14 32.8 16 23.3 18 33.6 19 45.9 20 38.0 22 52.1	-57° 45′ +16 18 +45 54 -8 19 +7 23 -52 38 -52 38 +5 29 +28 16 +12 27 -62 33 -59 9 -10 38 -59 53 +19 42 -60 25 -26 13 +38 41 +8 36 +44 55 -30 9	0.094" 0.203 0.437 0.001 0.020 0.018 1.316 1.242 0.625 0.247 0.045 0.056 0.055 0.041 2.282 3.680 0.360 0.055 0.041 0.365	108° 160 168 135 74 204 214 269 240 229 219 281 192 36 54 180 117	+0.051" +0.056 +0.075 +0.007 +0.010 +0.007 +0.376 +0.330 +0.047 +0.033 +0.047 +0.075 +0.759 +0.075 +0.759 +0.020 +0.020 +0.138	-0.9 -0.2 -0.5 -5.5 -5.5 -2.7 -6.7 +1.2 +3.0 +0.2 -1.1 -0.5 -4.0 -1.3 -0.5 +4.7 -1.5 -7.2 +2.0	+55.1 +30.2 +22.6 +21.3 +20.8 -7.4 -3.5 +3.9 -9.1 +7. +13.6 -7. -3.9 -21.6 -3.1 -13.8 -33. -4. +6.7

*Visual binary. † Spectroscopic binary. † Pair with common proper motion.

§ Wide pair probably optical.

Mass relative to sun of (7) is 3.1; of (8), 1.5; of (16), 2.0. For description of types, see Table 534 or Annals of Harvard College Observatory, 28, p. 146, or more concisely 56, p. 66, and 91, p. 5. The light ratio between successive stellar magnitudes is $\sqrt[4]{100}$ or the number whose logarithm is 0.4000, viz., 2.512. The absolute magnitude of a star is its magnitude reduced to a distance corresponding to 0.1" parallax.

TABLE 542. - Wolf's Observed Sun-spot Numbers. Annual Means.

Sun-spot number = $k(10 \times \text{number})$ of groups and single spots observed + total number of spots in groups and single spots). k depends on condition of observation and telescope, equaling unity for Wolf with 3-in. telescope and power of 64. Wolf's numbers are closely proportional to spotted area on sun. 100 corresponds to about 1/500 of visible disk covered (umbras and penumbras). Periodicity: mean, 11.13, extremes, 7.3 and 1.7.1 years. Monthly Weather Review, 30, p. 171, 1902; monthly means, revised, 1749–1901; see A. Wolfer in Astronomische Mitteilungen and Zeitschrift für Meteorologie, daily and monthly values.

Year.	0	I	2	3	4	5	6	7	8	9
1750 1760 1770 1780 1790 1800 1810 1820 1830 1840	83 63 101 85 90 14 0 16 71 63 66	48 86 82 68 67 34 1 7 48 37 64	48 61 66 38 60 45 5 4 28 24	31 45 35 23 47 43 12 2 8 11	12 36 31 10 41 48 14 8 13 15 21	10 21 7 24 21 42 35 17 57 40	10 11 20 83 16 28 46 36 122 62 41	32 38 92 132 6 10 41 50 138 98 23	48 70 154 131 4 8 30 62 103 124	54 106 126 118 7 2 24 67 86 96
1860 1870 1880 1890 1900	96 139 32 7 10 19	77 111 54 36 3 6	59 102 60 73 5 4	44 66 64 85 24 1	47 45 64 78 42 10	30 17 52 64 63 46	10 11 25 42 54 55	7 12 13 26 62 99	37 3 7 27 48 78	74 6 6 6 12 44

Note: The sun's apparent magnitude is -26.5, sending the earth 90,000,000,000 times as much light as the star

Aldebaran. Its absolute magnitude is +4.8.

Ratio of total radiation of sun to that of moon about 100,000 to 1 \ Langley

GEODETICAL AND ASTRONOMICAL TABLES.

TABLE 543 .- Length of Degrees on the Earth's Surface,

At	Miles p	Miles per degree		Km. per degree		Miles p	er degree	, Km. pe	er degree
Lat.	of Long.	of Lat.	of Long.	of Lat.	At Lat.	of Long.	of Lat.	of Long.	of Lat.
10 20 30 40 45 50	69.17 68.13 65.03 59.96 53.06 49.00 44.55	68.70 68.72 68.79 68.88 68.99 69.05 69.11	111.32 109.64 104.65 96.49 85.40 78.85 71.70	110.57 110.60 110.70 110.85 111.03 111.13 111.23	55° 60 65 70 75 80 90	39.77 34.67 29.32 23.73 17.96 12.05	69.17 69.23 69.28 69.32 69.36 69.39 69.41	64.00 55.80 47.18 38.19 28.90 19.39 0.00	111.33 111.42 111.50 111.57 111.62 111.67

For more complete table see "Smithsonian Geographical Tables."

TABLE 544 .- Equation of Time.

The equation of time when + is to be added to the apparent solar time to give mean time. When the place is not on a standard meridian (75 th, etc.) its difference in longitude in time from that meridian must be subtracted when east, added when west to get standard time (75 th meridian time, etc.). The equation varies from year to year cyclically, and the figure following the \pm sign gives a rough idea of this variation.

M.	S.	M. S.		M. S.		M. S.
Jan. I + 3 15 + 9 Feb. I + 13 15 + 14 Mar. I + 12 15 + 9	25± 9 19 42± 4 May 1 20± 2 19 34± 4 June 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Aug. I I5 Sept. I	+6 9±3 +4 24±5 +0 2±7	Nov. 1 15 Dec. 1	-10 12± 8 -14 5± 6 -16 19± 2 -15 22± 4 -10 58± 8 - 4 53±10

TABLE 545 .- Planetary Data.

Body.	Reciprocals of masses.	Mean distance from the sun. Km.	Sidereal period. Mean days.	Equatorial diameter.	Inclination of orbit.	Mean density. H ₂ O=1	Gravity at surface.
Sun Mercury Venus Earth* Mars Jupiter Saturn Uranus Neptune Moon	I. 6000000. 408000. 329390. 3093500. 1047.35 3501.6 22869. 19700. †81.45	58 x 10 ⁶ 108 " 149 " 228 " 778 " 1426 " 2869 " 4495 " 38 x 10 ⁴	87.97 244.70 365.26 686.98 4332.59 10759.20 30685.93 60187.64 27.32	1391107 4842 12191 12757 6784 142745 120798 49693 52999 3476	7°.003 3.393 1.850 1.308 2.492 0.773 1.778 5.145	1.42 5.61 5.16 5.52 3.95 1.34 .69 1.36 1.30 3.36	28.0 0.4 0.9 1.00 0.4 2.7 1.2 1.0 0.17

^{*}Earth and moon. † Relative to earth. Inclination of axes: Sun 7°.25; Earth 23°.45; Mars 24°.6; Jupiter 3°.1; Saturn 26°.8; Neptune 27°.2. Others doubtful. Approximate rates of rotation: Sun 25dd; Moon 27dd; Mercury 88d; Venus 225d; Mars 24h 37m; Jupiter 9h 55m; Saturn 10h 14m.

TABLE 546. - Numbers and Equivalent Light of the Stars.

The total of starlight is a sensible but very small amount. This table, taken from a paper by Chapman, shows that up to the 20th magnitude the total light emitted is equivalent to 687 rst-magnitude stars, equal to about the hundredth part of full moonlight. If all the remaining stars are included, following the formula, the equivalent addition would be only three more rst-magnitude stars. The summation leaves off at a point where each additional magnitude is adding more stars than the last. But, according to the formula, between the 23d and 24th magnitudes there is a turning point, after which each new magnitude adds less than before. The actual counts have been carried so near this turning point that there is no reasonable doubt of its existence. Given its existence, the number of stars is probably finite, a conclusion open to very little doubt. All the indications of the earlier terms must be misleading if the margin between 1 and 2 thousand millions is not enough to cover the whole. (Census of the Sky, Sampson, Observatory, 1915.)

Magnitude,	Number.	Equivalent number of 1st- magnitude stars.	Totals to magnitude,	Magnitude,	Number.	Equivalent number of 1st- magnitude stars.	Totals to magnitude,
	a Carinæ a Centauri 8 27 73 189 650 2,200 6,600 22,550	11 6 2 14 17 18 19 26 35 42 56	33 50 68 87 113 148 190 246 311	9.0-10.0. 10.0-11.0. 11.0-12.0. 12.0-13.0. 13.0-14.0. 14.0-15.0. 15.0-16.0. 17.0-18.0. 17.0-18.0. 19.0-20.0. All stars fainter than 20.0	174,000 426,000 961,000 2,020,000 3,960,000 7,820,000 14,040,000 38,400,000 54,600,000 76,000,000	69 68 60 51 40 31 22 16 10 6	380 448 508 559 599 630 652 668 678 684 687 690

TABLE 547. - Albedos.

The albedo, according to Bond, is defined as follows: "Let a sphere S be exposed to parallel light. Then its Albedo is the ratio of the whole amount reflected from S to the whole amount of light incident on it." In the following table, m = the stellar magnitude at mean opposition; g = magnitude it would have at full phase and unit distance from earth and sun; $\sigma =$ assumed mean semi-diameter at unit distance; p = ratio of observed brightness at full phase to that of a flat disk of same size and same position, illuminated and viewed normally and reflecting all the incident light according to Lambert's law; g depends on law of variation of light with phase; albedo = pq. Russell, Astrophysical Journal, 43, p. 173, 1916.

Journal, 43, p. 173, 1916.

Albedo of the earth: A reduction of Very's observations by Russell gives 0.45 in close agreement with the recent value of Aldrich of 0.43 (see Aldrich, Smithsonian Misc. Collections, 69, 1919).

Object.	m	g	σ	þ	q	Visual albedo.	Color index.	Photo- graphic albedo.
Moon	-12.55 -2.94 -2.12 -4.77 -1.85 -2.29 +0.89 +5.74 +7.65	+0.40 -0.88 -0.06 -4.06 -1.36 -8.99 -8.67 -6.98 -7.06	2.40" 3.45 3.45 8.55 4.67 95.23 77.95 36.0 34.5	0.105 .164 .077 .492 .139 .375 .420 .42	0.694 0.42 0.72 1.20 1.11 1.5: 1.5:	0.073 .069 .055 .59 .154 .56: .63: .63:	+1.18 +0.78 +1.38 +0.50 +1.12	0.051 - .60 .090 .73: 0.47: -

TABLE 548. - Duration of Sunshine.

Declination	-23° 27′	-15°	-10°	-5°	o°	+5°	+10°	+15°	+20°	+23° 27′
of sun: approx. date:	Dec. 22.	Feb. 9 Nov. 3.	Feb. 23 Oct. 19.	Mar. 8 Oct. 6.	Mar. 21 Sept. 23.	Sept. 10 Apr. 3.	Apr. 16 Aug. 28.	May 1 Aug. 13.	May 20 Jan. 24.	June 21
Latitude. 0° 10° 20° 30° 40° 50° 60° 65° 70° 75° 80°	h m 12 07 11 32 10 55 10 13 9 19 8 04 7 09 5 52 3 34	h m 12 07 11 45 11 22 10 57 10 25 9 43 9 12 8 34 7 39 6 10 2 37	h m 12 07 11 53 11 38 11 21 11 01 10 34 10 15 9 52 9 19 8 31 7 04 3 10	h m 12 07 12 00 11 53 11 44 11 35 11 23 11 14 11 04 10 50 10 29 0 55 8 40	h m 12 07 12 07 12 07 12 07 12 08 12 09 12 10 12 12 12 13 12 16 12 19 12 26 12 38	h m 12 07 12 14 12 22 12 31 12 43 12 58 13 09 13 23 13 43 14 11 15 00 16 44	h m 12 07 12 21 12 37 12 25 13 17 13 48 14 09 14 36 15 15 16 15 18 05	h m 12 07 12 29 12 52 13 19 13 53 14 40 15 13 15 57 17 01 18 50	h m 12 07 12 36 13 08 13 46 14 32 15 38 16 26 17 31 19 19	h m 12 07 12 43 13 20 14 05 15 01 16 23 17 23 18 52 22 03

For more extensive table, see Smithsonian Meteorological Tables.

TABLE 549. - The Solar Constant.

Solar constant (amount of energy falling at normal incidence on one square centimeter per minute on body at earth's mean distance) = 1.932 calories = mean 696 determinations 1902—12. Apparently subject to variations, usually within the range of 7 per cent, and occurring irregularly in periods of a week or ten days.

Computed effective temperature of the sun: from form of black-body curves, 6000° to 7000° Absolute; from λ max. = 2930 and max. = 0.470 μ , 6230°; from total radiation, $J = 76.8 \times 10^{-12} \times T^4$,

5830°.

TABLE 550. — Solar spectrum energy (arbitrary units) and its transmission by the earth's atmosphere.

Values computed from $e_m = e_0 a^m$, where e_m is the intensity of solar energy after transmission through a mass of air m; m is unity when the sun is in the zenith, and approximately = sec, zenith distance for other positions (see table 556); e_0 = the energy which would have been observed had there been no absorbing atmosphere; a is the fractional amount observed when the sun is in the zenith.

th.	Т	ransmis ficier		ef-		Intensity Solar Energy. Arbitrary Units.									
Wave-length μ	ficients, a. 100 10	u g sa								'ashing	ashington.				
l	W.	Mo	Mo	o I	m = 0	m = 1	m = 1	2	4	6	m = 1	2	3	4	6
0.30 .32 .34 .36 .38 .40 .46 .50 .60 .70 .80 1.50 2.00	(.380)	.520 .580 .635 .676	.615 .692 .741 .784	562	54 1111 232 302 354 414 618 606 504 364 266 166 63 25	30 68 160 224 278 335 548 557 474 351 260 162 61 23	25 58 135 192 239 302 514 522 454 346 258 163 61* 24*	111 30 78 122 162 220 428 450 409 329 250 160 60* 23*	2 8 26 49 74 117 296 334 331 297 235 154 57* 21*	2 9 20 34 62 205 248 268 268 221 147 55* 19*	134 232 426 441 393 312 236 153 59 23	51 130 294 323 306 268 209 141 55 21	19 73 203 237 238 230 185 130 52	7 41 140 174 185 197 164 120 49	3 13 67 94 112 145 145 102 43 14

Transmission coefficients are for period when there was apparently no volcanic dust in the air.

*Possibly too high because of increased humidity towards noon.

TABLE 551. — The intensity of Solar Radiation in different sections of the spectrum, ultra-violet, visual infra-red. Calories.

Wave-length.	Wave-length. Mount Whitney.				Mount	Wilson	١.	Washington.					
μ μ	m=o	m=1	2	3	4	m = 1	2	3	4	m = 1	2	3	4
0.00 to 0.45 0.45 to 0.70 0.70 to ∞ 0.00 to ∞	.31 .71 .91	.25 .67 .87 1.78	.19 .62 .85 1.66	.16 .58 .82 1.56	.13 .54 .80	.23 .65 .69	.16 .57 .68	.12 .51 .66	.09 .45 .63	.13 .53 .69	.06 .40 .62	.04 .30 .57	.02 .24 .53

TABLE 552. — Distribution of brightness (Radiation) over the Solar Disk. (These observations extend over only a small portion of a sun-spot cycle.)

Wave- length.	μ μ	μ μ 0.433 0.456	μ 0.48τ	μ 0.501	μ 0.534	μ 0.604	μ 0.670	μ 0.699	μ 0.866	μ	μ 1.225	μ 1.655	μ 2.097
Fraction Radius, 0.00 60.00	144 338 128 312 120 289 112 267 99 240 86 214 76 188 64 163 49 141	456 515 423 486 395 455 368 428 333 390 296 351 266 317 233 277 205 242	511 483 456 430 394 358 324 290 255	489 463 457 414 380 347 323 286 254	463 440 417 396 366 337 312 281 254	399 382 365 348 326 304 284 259 237	333 320 308 295 281 262 247 227 210	307 295 284 273 258 243 229 212	174 169 163 159 152 145 138 130 122	111 108 105.5 103 99 94.5 90.5 86	77.6 75.7 73.8 72.2 69.8 67.1 64.7 61.6 58.7	39.5 38.9 38.2 37.6 36.7 35.7 34.7 33.6 32.3	14.0 13.8 13.6 13.4 13.1 12.8 12.5 12.5

Taken from vols. II and III and unpublished data of the Astrophysical Observatory of the Smithsonian Institution. Schwartzchild and Villiger: Astrophysical Journal, 23, 1906.

SMITHSONIAN TABLES.

ATMOSPHERIC TRANSPARENCY AND SOLAR RADIATION.

TABLE 553. - Transmission of Radiation Through Moist and Dry Air.

This table gives the wave-length, λ ; a the transmission of radiation by dry air above Mount Wilson (altitude = 1730 m. barometer, 620 mm.) for a body in the zenith; finally a correction factor, a_w , due to such a quantity of aqueous vapor in the air that if condensed it would form a layer I cm. thick. Except in the bands of selective absorption due to the air, a agrees very closely with what would be expected from purely molecular scattering. a_w is very much smaller than would be correspondingly expected, due possibly to the formation of ions by the ultra-violet light from the sun. The transmission varies from day to day. However, values for clear days computed as follows agree within a per cent or two of those observed when the altitude of the place is such that the effect due to dust may be neglected, e. g. for altitudes greater than 1000 meters. If B =

the barometric pressure in mm., w, the amount of precipitable water in cm., then $a_B = \overline{a}^{620}$ \overline{a}_w^W . w is best determined spectroscopically (Astrophysical Journal, 35, p. 149, 1912, 37, p. 359, 1913) other-

wise by formula derived from Hann, $w = 2.3e_w 10^{-22000}$, e_w being the vapor pressure in cm. at the station, h, the altitude in meters. See Table 377 for long-wave transmission.

	λ (μ)	.360	.384	.413 .783	-452 -840	.503	·535 .898	•574	.624	.653	.720	.986 .986	1.74
۱	a _w	.950	.960	.965	.967	·977	.980	•974	.978	.985	.988	.990	.990

Fowle, Astrophysical Journal, 38, 1913.

TABLE 554. - Brightness of (radiation from) Sky at Mt. Wilson (1730 m.) and Flint Island (sea level),

Zenith dist, of zone . Mt. Wils ro ⁸ × mean ratio sky/sun Mt. Wils Flint Isla Ditto × area of zone Mt. Wils Flint Isla	nd	0-15 ⁰ 1500* 115 51.0 3.9	35-50° 520 128 91.5 22.5	50-60° 610 150 87.2 21.4	60-70 ⁰ 660 185 104.3 29.2	70-80° 700 210 117.6 35·3	80-90° 720 460 125.3 80.0	- - - -	Sun. - - 636 210
Altitude of sun Sun's brightness, cal. per cm. per Ditto on horizontal surface Mean brightness on normal surface se Total sky radiation on horizontal caper m. Total sun + sky, ditto	ky × 10 ⁸ /su		 5° •533 •046 423 •056 •102	.15° .900 .233 403 .110 .343	25° 1.233 .524 -385 .162 686	35° 1.358 .780 365 .189 .969	47½° 1.413 1.041 346 .205 1.246	65° 1.496 1.355 326 .226 1.581	82½° 1.521 1.507 310 .240 1.747

^{*}Includes allowance for bright region near sun. For the dates upon which the observation of the upper portion of table were taken, the mean ratios of total radiation sky/sun, for equal angular areas, at normal incidence, at the island and on the mountain, respectively, were 636 × 10-8 and 210 × 10-8, on a horizontal surface, 305 × 10-8 and 77 × 10-8; for the whole sky, at normal incidence, 0.57 and 0.20; on a horizontal surface 0.27 and 0.07. Annals of the Astrophysical Observatory of the Smithsonian Institution, vols. II and III, and unpublished researches (Abbot).

TABLE 555. — Relative Distribution in Normal Spectrum of Sunlight and Sky-light at Mount Wilson.

Zenith distance about 50°.

	μ	μ	μ	μ	μ	μ	С	D	ь	F
Place in Spectrum Intensity Sunlight Intensity Sky-light Ratio at Mt. Wilson Ratio computed by Rayleigh Ratio observed by Rayleigh	0.422 186 1194 642 -	0.457 232 986 425	0.491 227 701 309	0.566 211 395 187 -	0.614 191 231 121	0.660 166 174 105 -	I02 I02 I02	143 164 168	246 258 291	316 328 369

TABLE 556. - Air Masses.

See Table 174 for definition. Besides values derived from the pure secant formula, the table contains those derived from various other more complex formula, taking into account the curvature of the earth, refraction, etc. The most recent is that of Bemporad.

Zenith Dist.	00	20 ⁰	40°	60°	70°	75°	800	85°	880
Secant Forbes Bouguer Laplace Bemporad	I.00 I.00 I.00 I.00	1.064 1.065 1.064 -	1.305 1.306 1.305	2.000 1.995 1.990 1.993 1.995	2.924 2.902 2.900 2.899 2.904	3.864 3.809 3.805	5.76 5.57 5.56 5.56 5.60	11.47 10.22 10.20 10.20 10.39	28.7 18.9 19.0 18.8 19.8

The Laplace and Bemporad values, Lindholm, Nova Acta R. Soc. Upsal. 3, 1913; the others, Radau's Actinometric, 1877.

TABLES 557-558.

RELATIVE INTENSITY OF SOLAR RADIATION.

TABLE 557. — Mean intensity J for 24 hours of solar radiation on a horizontal surface at the top of the atmosphere and the solar radiation A, in terms of the solar radiation, A_{\odot} , at earth's mean distance from the sun.

	Motion of			RELATI		•		TENSITY	$\left(\frac{J}{A_{\odot}}\right)$			A
Date.	in longi- tude.	0 °	10°	20°	30°	40°	50°	60°.	70°	80°	90°	$\frac{A}{A_{\circ}}$.
Jan. I Feb. I Mar. I Apr. I May I June I July I Aug. I Sept. I Oct. I Nov. I Dec. I	0.99 31.54 59.14 89.70 119.29 149.82 179.39 200.94 240.50 270.07 300.63 330.19	0.303 .312 .320 .317 .303 .287 .283 .294 .310 .317 .312	0.265 .282 .303 .319 .318 .315 .312 .316 .318 .308 .286	0.220 .244 .279 .312 .330 .334 .333 .330 .316 .289 .251	o.169 .200 .245 .295 .329 .345 .347 .334 .305 .261 .211	0.117 .150 .204 .269 .320 .349 .352 .330 .285 .225 .164	0.066 .100 .158 .235 .302 .345 .351 .318 .256 .183 .114	0.018 .048 .108 .195 .278 .337 .345 .300 .220 .135 .063	0.006 .056 .148 .253 .344 .356 .282 .180 .084	0.013 .101 .255 .360 .373 .295 .139	0.082 .259 .366 .379 .300	1.0335 1.0288 1.0173 1.0009 0.9841 0.9666 0.9709 0.9828 0.9995 1.0164 1.0288
Year		0.305	0.301	0.289	0.268	0.241	0.209	0.173	0.144	0.133	0.126	

TABLE 558, - Mean Monthly and Yearly Temperatures.

Mean temperatures of a few selected American stations, also of a station of very high, two of very low temperature, and one of very great and one of very small range of temperature.

	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
3 Montreal 4 Boston 5 Chicago 6 Denver 7 Washington 8 Pikes Peak 9 St. Louis 10 San Francisco 11 Yuma 12 New Orleans 13 Massaua 14 Ft. Conger (Greenl'd) 15 Werchojansk	-21.6 -10.9 - 2.8 - 4.8 - 2.1 + 0.7 -16.4 - 0.8 +10.1 +12.3 +12.1 +25.6	-18.8 - 9.1 - 2.2 - 2.9 + 0.1 + 2.1 - 15.6 + 1.7 + 10.9 + 14.9 + 14.5 + 26.0 - 40.1 - 45.3	-11.0 - 4.3 + 1.2 + 1.2 + 3.8 + 5.2 -13.4 + 6.2 + 12.0 + 18.1 + 16.7 - 27.1 - 33.5 - 32.5	+ 1.9 + 4.8 + 7.3 + 7.9 + 8.3 + 11.7 - 10.4 + 13.4 + 12.6 + 21.0 6 + 20.6 + 20.6 - 25.3 - 13.7	+10.9 +12.6 +13.6 +13.4 +13.6 +17.7 - 5.3 +18.8 +13.7 +25.1 +23.7 +25.1 +23.7 +25.0 +2.0	+17.1 +18.3 +19.1 +19.7 +19.1 +22.9 +0.4 +24.0 +14.7 +29.4 +26.8 +33.5 +0.4 +12.3	+18.9 +20.5 +21.8 +22.2 +22.1 +24.9 + 4.5 +26.0 +14.6 +33.1 +27.9 +34.8 +15.5	+17.6 +19.3 +20.6 +21.6 +21.2 +23.7 + 3.6 +24.9 +14.8 +32.6 +34.7 +10.1	+11.6 +14.7 +16.9 +17.9 +16.6 +19.9 +20.8 +15.8 +29.1 +25.7 +33.3 -2.5	+ 4.1 + 7.8 + 11.1 + 10.3 + 13.4 - 5.8 + 14.2 + 15.2 + 22.8 + 21.0 - 22.7	- 7.6 - 0.2 + 4.8 + 3.6 + 3.3 + 6.9 - 11.8 + 6.4 + 13.5 + 16.6 + 15.9 + 29.0 - 30.0 - 30.	-15.7 -7.1 -0.5 -1.5 0.0 +2.3 -14.4 +2.0 +10.8 +13.3 +13.1 +27.0 -33.4	+ 0.6 + 5.5 + 9.2 + 9.1 + 9.7 + 12.6 - 7.1 + 13.1 + 13.2 + 22.3 + 20.4 + 3.03 - 20.0

Lat., Long., Alt. respectively: (1) $+58^{\circ}.5, 63^{\circ}.0$ W, —; (2) +49.9, 97.1 W, 233m.; (3) +45.5, 73.6 W, 57m.; (4) +42.3, 71.1 W, 35m.; (5) +44.9, 87.6 W, 1.51m.; (6) +39.7, 105.0 W, 1013m.; (7) +38.9, 77.0 W, 34m.; (8) +38.8, 105.0 W, 4308m.; (9) +38.6, 90.2 W, 173m.; (10) +37.8, 122.5 W, 47m.; (11) +32.7, 114.6 W, 43m.; (12) +30.9, 90.1 W, 16m.; (13) +15.6, 37.5 E, 9m.; (14) +81.7, 64.7 W, —; (15) +07.6, 133.8 E, 140m.; (16) -6.2, 100.8 E, 7m.

Taken from Hann's Lehrbuch der Meteorologie, 2'nd edition, which see for further data.

Note: Highest recorded temperature in world 57°C in Death Valley, California, July 10, 1913. SMITHSONIAN TABLES.

THE EARTH'S ATMOSPHERE.

TABLE 559. - Miscellaneous Data. Variation with Latitude.

Optical ev, lence of atmosphere's extent: twilight 63 km, luminous clouds 83, meteors 200, aurora 44–360. Jeans computes a density at 170 km of 2 × 10¹⁸ molecules per cm³, nearly all H (5% He); at 810 km, 3 × 10¹⁸ molecules per cm³ almost all H. When in equilibrium, each gas forms an atmosphere whose density decrease with altitude is independent of the other components (Dalton's law, Ho Vapor does not). The lighter the gas, the smaller the decrease rate. A homogeneous atmosphere, 76 cm pressure at sea-level, of sea-level density, would be 7991 m high. Average sea-level barometer is 74 cm; corresponding homogeneous atmosphere (truncated cone) 7790 m, weights (base, m²) 10,120 kg; this times earth's area is 52 × 10¹⁴ metric tons or 10 °6 of earth's mass. The percentage by vol. and the partial pressures of the dry-air components at sea-level are: N², 78.03, 593.02 mm; O², 20.09, 159.52; A, 0.94, 7.144; CO², 0.03, 0.228; H², 0.01, 0.076; Ne, 0.0012, 0.00; He, 0.0004, 0.003 (Hann). The following table gives the variation of the mean composition of moist air with the latitude (Hann).

77.87 20.94 0.94 0.22 0.03	Equator. 50° N. 70° N.	77.32	O ₂ 20.44 20.80 20.94	A 0.92 0.94 0.94	H ₂ O 2.63 0.92 0.22	CO ₂ 0.02 0.02 0.03
----------------------------	------------------------	-------	--	------------------------	---------------------------------------	--------------------------------------

TABLE 560. — Variation of Percentage Composition with Altitude (Humphreys).

Computed on assumptions: sea-level temperature 11°C; temperature uniformly decreasing 6° per km up to 11 km, from there constant with elevation at -55°. J. Franklin Inst. 184, p. 388, 1917.

Height,	Argon.	Nitrogen.	Water vapor.	Oxygen.	Carbon dioxide.	Hydrogen.	Helium.	Total pressure, mm
140 120 100 80 60 50 40 30 20 15 11	0.03 0.12 0.22 0.35 0.59 0.77 0.94 0.94	0.01 0.19 2.95 32.18 81.22 86.78 86.42 84.26 81.24 79.52 78.02 77.80	0.05 0.17 0.15 0.10 0.06 0.03 0.02 0.01 0.01 0.18	0.11 1.85 7.69 10.17 12.61 15.18 18.10 19.66 20.99 20.95 20.75	0.01 0.01 0.02 0.03 0.03	90.15 98.71 95.58 64.70 10.68 2.76 0.67 0.16 0.04 0.02 0.01	0.84 1.07 1.31 1.10 0.23 0.07 0.02 0.01	0.0040 0.0052 0.0067 0.0123 0.0935 0.493 1.84 8.63 40.90 89.66 168.00 495. 760.

TABLE 561. - Variation of Temperature, Pressure and Density with Altitude.

Average data from sounding balloon flights (65 for summer, 52 for winter data) made at Trappes (near Paris), Uccle (near Brussels), Strassburg and Munich. Compiled by Humphreys, 16 to 20 m chiefly extrapolated.

		Summer.			Winter.	
Elevation, km	Temp. ° C	Pressure, mm of Hg.	Density, dry air, g/cm ³	Temp. ° C	Pressure, mm of Hg.	Density, dry air, g/cm³
20.0	-51.0	44.I	0.000092	-57.0	39.5	0.000085
10.0	-51.0	51.5	.000108	-57.0	46.3	001000
18.0	-51.0	60.0	.000126	-57.0	54.2	,000117
17.0	-51.0	70.0	.000146	-57.0	63.5	.000137
16.0	-51.0	81.7	.000171	-57.0	74.0	.000160
15.0	-51.0	95.3	.000199	-57.0	87.I	.000187
14.0	-51.0	III.I	.000232	-57.0	102.1	.,000220
13.0	-51.0	129.6	.000270	-57.0 .	119.5	.000257
12.0	-51.0	151.2	.000316	-57.0	140.0	.000301
II.O	-49.5	176.2	.000366	-57.0	164.0	.000353
10.0	-45.5	205.1	.000419	-54-5	192.0	.000408
9.0	-37.8	237.8	.000470	-49-5	224.I	.000466
8.0	-29.7	274.3	.000524	-43.0	260.6	.000526
7.0	-22.I	314.9	.000583	-35.4	301.6	.000590
6.0	-15.1	360.2	.000649	-28.I	347.5	.000659
5.0	-8.9	410.6 466.6	.000722	-21.2	398.7	.000735
4.0	-3.0	528.9	.000803	-15.0	455.9	.000021
3.0	+2.4	562.5		-9.3 -6.7	519.7	,000913
2.5	+5.0	502.5	.000942		554·3 590.8	.000907
2.0	+7.5 +10.0	635.4	.000990	-4.7 -3.0	629.6	.001023
1.5	+10.0	674.8	.001043	-1.3	670.6	.001146
0.5	+12.5	716.3	.001157	0.0	714.0	.001140
0.5	+15.7	760.0	.001137	+0.7	760.0	.001213

760 mm = 29.921 in. = 1013.3 millibars. 1 mm = 1.33322387 millibars. 1 bar = 1,000,000 dynes; this value, sanctioned by International Meteorological Conferences, is 1,000,000 times that sometimes used by physicists.

SMITHSONIAN TABLES.

TERRESTRIAL TEMPERATURES

TABLE 562. - Temperature Variation over Earth's Surface (Hann).

North pole	Latituda			Temperatu	res ° C			Mean	Land
	+80° 70 60 50 40 30 20 +10 Equator -10 20 30 40 50 60 70	-41.0 -32.2 -26.3 -16.1 -7.2 +5.5 14.7 21.0 25.8 26.4 25.3 21.6 15.4 8.4 3.2 -1.2 (-4.3)	-28.0 -22.7 -14.0 -2.8 +5.2 13.1 20.1 25.2 26.6 25.9 24.0 18.7 12.5 5.4	July. -1.0 +2.0 7.3 14.1 17.9 24.0 27.3 28.0 27.0 25.7 19.8 8.8 3.0 -9.3 -21.0 (-28.7)	Oct. -24.0 -19.1 -9.3 +0.3 6.9 15.7 21.8 26.4 26.9 26.5 25.7 22.8 18.0 11.7 4.8	-22.7 -17.1 -10.7 -1.11 +5.8 14.1 20.4 25.3 26.8 26.3 25.5 23.0 18.4 11.9 5.4 -3.2 -12.0 (-20.6)	40.0 34.2 33.6 30.2 25.1 18.5 12.6 6.1 1.4 5.5 7.1 6.6 5.4 12.5 19.8	Ocean temp. -I.7 -I.7 -I.7 +0.7 +0.8 7.9 14.1 21.3 25.4 27.2 27.1 25.8 24.0 10.5 13.3 +0.4 0.0	surface % 20 53 61 58 45 43.5 31.5 24 22 20 24 20 4 2 71

TABLE 563. - Temperature Variation with Depth (Land and Ocean).

Table illustrates temperature changes underground at moderate depths due to surface warming (read from plot for Tiflis, Lehrbuch der Meteorologie, Hann and Süring, 1915). Below 20-30 m (nearer the surface in tropics) there is no annual variation. Increase downwards at greater depths, 0.03 ± °C per m (r° per 35 m) l.c. At Pittsburgh, 1524 m, 40.4°, .0294 per m; Oberschlesien, 2003 m, 70°, .0294 per m; or W. Virginia, 2200 m, 70°, .034° per m (Van Orstrand). Mean value outflow heat from earth's center, 0.0000172 g-cal/cm²/sec. or 54 g-cal/cm²/year (30 Laby). Open ocean temperatures: Greatest mean annual range (Schott) 40° N, 4.2° C; 30° S, 5.7°; but 10° N, only 2.2°; 50° S, 2.9°. Mean surface temp. whole ocean (Krümmel) 17,4°; all depths, 3,0°, Below 1 km nearly isothermal with depth. In tropics, surface 28°; at 183 m, 11°, 80% all water less than 4.4°. Deep-sea (bottom) temps. range —0.5° to +2.6°. Soundings in S. Atlantic: 0 km, 18.9°; .25 km, 15°; .5 km, 8.3°; 1 km, 3.3°; 3 km, 1.7°; 4.5 km, 0.6°.

Depth,					Tempe	rature, c	entigrade.					
m	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
0 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0	1 6 9 11 14 15 15	4 6 8 10 12 13 14	10 9 8 9 10 12 12 13 14	14 13 12 11 11 11 12 13	21 18 15 14 13 13 12 13	29 23 20 18 16 14 13 13	32 26 24 21 19 16 14 14	32 28 26 23 21 17 16 14	24 24 23 22 21 18 16 15	16 18 18 18 18 18 17 16	9 12 14 15 16 17 17 16	4 6 10 12 14 15 16 16

N TABLES.

GEOCHEMICAL DATA.

Eighty-three chemical elements (86 including Polonium, Actinium and Uranium X2) are found on the earth. Besides the 8 occurring uncombined as gases, 16 are found native, C, Au, Fe, Pb, Hg, Ni, Pt, Ir, Os, Ru, Rh, Pd, Ag, S, Te and Zn. Combined, the elements form about 1000 known mineral species. Rocks are general aggregates of these species Some few rocks (e.g. quartzite, limestone, etc.) consist of one species only. The crust of the earth may be divided into three layers: the first and innermost, of the crystalline or Plutonic 100 rocks, the second of sedimentary and fragmentary 100 rocks, the third of clays, gravels, etc. We have some knowledge of this crust to a depth of 10 miles, — 93% is solid matter, 7% liquid, and the atmosphere amounts by weight to about 0.03% of it. See Data of Geochemistry, F. W. Clarke, Bul. 616 U. S. Geological Survey, 1916.

AVERAGE COMPOSITION OF KNOWN TERRESTRIAL MATTER.

	Avera	age compo	sition.		Ave	erage com	position (of lithosp	here.	
Atomic number and element.	Litho- sphere, 93%	Hydro- sphere, 7%	Average includ- ing atmos- phere.	Igneous rocks.	Compound.	Igneous rocks, 95%	Shale, 4%	Sand- stone, 0.75%	Lime- stone, o. 25%	Weighted average.
8 O 14 Si 13 Al 26 Fe 20 Ca 12 Mg 11 Na 19 K 1 H 22 Ti 6 C 17 Cl 35 Br 15 P 16 Sa 25 Mn 38 Sr 7 N 9 FI etc.	47 · 33 27 · 74 7 · 85 4 · 50 3 · 47 2 · 24 6 · 2 · 46 0 · 22 0 · 46 10 .06 	85.79	50.02 25.80 7.30 4.18 3.22 2.08 2.36 2.36 2.28 0.95 .10 .11 .11 .08 .08 .02 .03 .10	47.29 28.02 7.06 4.56 3.47 2.29 2.50 2.47 0.16 46 .13 .003 .13 .103 .002 .078 .033 .10 .091	SiO2 Al2O3 FeeO3 FeeO4 MgO CaO MgO CaO MgO CaO MgO CaO MgO CaO MgO CaO MgO MgO CaO MgO MgO MgO CaO MgO MgO CaO MgO MgO MgO Ca MgO MgO MgO CaO MgO MgO CaO Ca	50.83 14.08 2.65 3.46 3.81 4.84 3.36 2.99 1.89 .02 .48 .29 .11 .06 .10 .10 .04 .10 .025 .025 .025	58.10 15.40 4.02 2.45 2.44 3.11 1.30 3.24 5.00 65 2.63 .17 .64	78.33 4.77 1.07 .30 1.16 5.50 .45 1.31 1.63 .25 5.03 .08 .07	5.19 0.81 .54 7.89 42.57 .05 .33 .77 .06 41.54 .09 .05 .02	59.77 14.89 2.69 3.39 3.74 4.86 3.25 2.98 2.02 .77 .02 .70 .28 .10 .03 .06 .09 .04 .09 .025 .05 .01 .03

AVERAGE COMPOSITION OF METFORITES: The following figures give in succession the element, atomic number (bracketed), and the percentage amount in stony meteorites (Merrill, Mem. Nat. Acad. Sc. 14, p. 28, 1916). The "iron" meteorites contain a much larger percentage of iron and nickel, but there is a tendency to believe that with such meteorites the composition is altered by the volatilization or burning up of the other material in passing through the air. Note the greater abundance of elements of even atomic number (97.2 per cent).

S (16) 1.80 Ca (Na (11) 1.64 Cr (C (6) 0.15 Co (H (1) 0.09 Cu (6) 23.32 Si (14) 0) 1.72 Al (13) 44 0.32 Mn (25) 7) 0.12 Ti (22) 0) 0.01 Cl (17) 6) tr. Pt (78)	18.03 1.53 0.23 0.11 0.09 tr. Mg (12) Ni (28) K (19) P (15) V (23) Ir (77)	13.60 1.52 0.17 0.11 tr. tr.
---	--	--	---

TABLE 565.

ACCELERATION OF GRAVITY-

For Sea Level and Different Altitudes.

Latitude φ g cm/sec² log g ft/sec² Latitude φ g cm/sec² log g ft/sec² c° 978.030 2.9003562 32.0878 50° 981.071 2.9017004 32.1873 5 .078 .9003735 .0801 51 .150 .0017304 .1901 10 .105 .904234 .0929 52 .247 .0017784 .1931 12 .262 .904483 .0951 53 .336 .0018177 .1960 14 .340 .990498 .0971 54 .422 .9018558 .1988 15 .978.384 2.900504 32.0001 55 .981.507 .901834 32.2016 16 .430 .909520 .1023 57 .075 .0918034 32.2016 17 .480 .909580 .1007 50 .592 .9018034 32.2016 18 .532 .909585 .1057 59 .830 .9020403 .2125 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th>								1
S		cm/sec²	log g	ft./sec²		g cm/sec²	log g	ft./sec²
\$.078 .0903735 .0801 51 .159 .0917394 .19031 12	00	078 020	2 0002562	22 0878	500	081.071	2.0017004	32.1873
10	-					.150	.9917394	. 1902
12 .262 .9904898 .0977 54 .422 .9918558 .1988 15 .978.384 2.9905904 .32.091 55 .981.507 2.9918334 32.2016 16 .430 .9905295 .1023 57 .075 .9919677 .2011 17 .480 .9905520 .1023 57 .075 .9919677 .2011 18 .532 .9907520 .1030 58 .757 .9920403 .2125 20 .98 .641 .996 .839 .9920403 .2125 20 .98 .641 .996 .839 .9920403 .2125 20 .98 .641 .982 .990734 .1116 62 .982.070 .9921424 .2201 21 .701 .990600 .1106 62 .982.070 .9921424 .2201 22 .763 .9907348 .1136 63 .145 .9021752 .32.116						. 247		
14	12				53	.336		
16	14	.340		-0977	54	.422	.9918558	. 1988
17	15	978.384			55			
18		.430						
19	17				57			
20 978 64T 2.9906234 32.1076 60 981.918 2.9902752 32.2151 21 .701 .9906500 .1095 6T .995 .9921073 .2176 22 .763 .9906775 .1116 62 .982.070 .9921424 .2201 23 .825 .9907050 .1136 63 .1445 .992175 .2225 24 .892 .9907449 .1158 64 .218 .9922079 .2249 25 .978.960 2.9907649 .32.1180 .65 .982.288 2.992288 .2225 26 .979.030 .9907960 .1203 .66 .356 .9922089 .2215 26 .979.030 .9907860 .1227 .67 .422 .992288 .2318 27 .101 .9908603 .1251 .68 .487 .9923568 .2338 29 .251 .9908603 .1251 .69 .549 .9923542 .2358		-532						
21 .701 .9906500 .1095 61 .995 .9921073 .2176 22 .703 .9906775 .1116 62 .982.070 .99214244 .2201 23 .825 .9907050 .1136 63 .1445 .9921756 .2225 24 .892 .990748 .1158 64 .218 .9922799 .22249 25 .978.060 2.9907649 .32.1180 .65 .982.288 2.9922388 .32.2272 .20 .990.30 .9907060 .1203 .66 .356 .9922689 .2205 .27 .101 .9908275 .1227 .67 .422 .9922861 .2318 .290 .251 .9908040 .1251 .68 .487 .992368 .2338 .29 .251 .9908040 .1276 .69 .549 .9923542 .2358 30 .979.329 .9909286 .32.1302 70 .982.688 2.9923803 .32.2377 31 .407 <t< td=""><td>19</td><td>- 585</td><td>.9905985</td><td>.1057</td><td>59</td><td>.039</td><td>.9920403</td><td>.2125</td></t<>	19	- 585	.9905985	.1057	59	.039	.9920403	.2125
22	20		2.9906234	32.1076		981.918		
22 .763 .9906775 .1116 62 982.070 .9921424 .2201 23 .825 .9907050 .1136 63 .145 .9921756 .2225 24 .892 .9907348 .1158 64 .218 .9922079 .2249 25 978.960 2.990760 .1203 66 .356 .9922089 .2295 26 979.030 .9907960 .1203 66 .356 .9922089 .2295 27 .101 .9908275 .1227 67 .422 .9922089 .2316 28 .175 .9908603 .1251 68 .487 .9923568 .2338 29 .251 .9909086 32.1302 70 982.608 2.9923803 32.2377 31 .407 .9909087 .1357 71 .665 .9924952 .2338 32 .487 .9909987 .1353 72 .720 .9924528 .2411	21	.701						
24 .892 .9907348 .1158 64 .218 .9922079 .2249 25 978.960 2.9907649 32.1180 65 982.288 2.9922388 32.2272 26 979.030 .9907960 .1203 66 .356 .9922689 .2295 27 101 .9908475 .1227 67 .422 .9922869 .2318 28 .175 .9908603 .1251 68 .487 .9923268 .2338 29 .251 .990940 .1276 69 .549 .9923542 .2358 30 970.329 2.990286 32.1302 70 982.608 2.9923803 32.2377 31 .407 .9909087 .1353 72 .720 .9924508 .2411 33 .560 .9910350 .1380 73 .772 .9924528 .2411 33 .560 .9910350 .1380 73 .772 .9924528 .2411		. 763						
25								
26 970.000 .9907060 .1203 66 .336 .992869 .2205 27 .101 .9908275 .1227 68 .422 .9922981 .2316 28 .175 .9908073 .1251 68 .487 .992368 .2338 29 .251 .9908040 .1276 69 .549 .9923542 .2358 30 979.329 2.990286 32.1327 71 .665 .9024055 .2306 32 .467 .9909987 .1353 72 .720 .9924528 .2414 33 .569 .9910350 .1380 73 .772 .9924528 .2431 34 .652 .9910718 .1407 74 .822 .9924749 .2448 35 970.737 2.9911095 32.1435 75 982.868 2.9924952 .2431 36 .822 .9911472 .1463 76 .912 .992474 37 .908 .991853 .1491 77 .954 .9925332 .2491 38 .995 .9912238 .1520 78 .992 .9925500 .2503 39 .980.083 .9912088 .1549 79 .983.027 .9925505 .2505 40 .980.171 2.9913018 32.1578 80 .983.059 2.9925706 .2503 40 .980.171 2.9913018 32.1578 80 .983.059 2.9925706 .2503 41 .261 .9913417 .1607 81 .089 .992 .9925500 .2503 42 .350 .991381 .1636 82 .115 .992043 .2544 43 .440 .9914210 .1666 83 .139 .9926449 .2554 44 .531 .9914613 .1696 84 .160 .9926431 .2544 43 .440 .9914210 .1666 83 .139 .9926449 .2554 44 .531 .9914613 .1696 84 .160 .9926432 .2554 45 .980.621 2.9915011 32.1725 85 .983.178 2.9926321 32.2564 46 .711 .9915410 .1755 86 .191 .9926432 .2556 47 .802 .991684 .1785 87 .203 .9926432 .2572 48 .802 .9916413 .1785 87 .203 .9926432 .2572 48 .802 .9916414 88 .211 .9926473 .2577	24	.892	. 9907348	.1158	04	.218	.9922079	. 2249
26 979.030 .9007060 .1203 66 .356 .9922680 .2295 27 .101 .9008275 .1227 67 .422 .992281 .2316 28 .175 .9908003 .1227 68 .447 .9923268 .2338 29 .251 .9908040 .1276 69 .549 .9923542 .2338 30 970.329 2.990286 32.1302 70 982.608 2.9923803 32.2377 31 .497 .990987 .1353 72 .720 .9924958 .2316 32 .447 .9909087 .1353 72 .720 .9924928 .2414 33 .569 .9910350 .1380 73 .772 .9924528 .2414 35 .970.737 2.9011095 32.1435 75 .982.868 2.9024952 32.2463 36 .822 .9911472 .1403 76 .012 .9925147 .2477	25	978.960	2.0007640	32,1180	65	982.288	2.9922388	32.2272
28 .175 .9008603 .1251 68 .487 .0923268 .2338 29 .251 .9908940 .1276 69 .549 .9923542 .2338 30 979.329 2.9909286 32.1302 70 982.608 2.9923803 32.2377 31 .497 .9909087 .1533 72 .720 .9924208 .2414 32 .487 .9909087 .1533 72 .720 .9924208 .2414 33 .569 .9910350 .1380 73 .772 .9924528 .2431 34 .652 .9910718 .1407 74 .822 .9924749 .2448 35 970.737 2.9911095 32.1435 75 982.868 2.9924952 32.2463 36 .822 .9911472 .1463 76 .012 .9925147 .2417 37 .908 .9911853 .1491 .77 .954 .992532 .2491		979.030	.0007060	.1203	66	.356	.9922689	. 2295
29	27	.IOI	.9908275	.1227		.422		
30 979.329 2.9909286 32.1302 70 982.608 2.9923803 32.2377 31 .407 .9909632 .1327 71 .605 .9924055 .2366 32 .487 .9909987 .1353 72 .720 .9924298 .2414 33 .509 .9910350 .1380 73 .772 .9924528 .2431 34 .652 .9910718 .1407 74 .822 .9924749 .2448 35 970.737 2.9911095 32.1435 75 982.868 2.9924749 .2448 35 970.737 2.9911095 .1407 77 .822 .9924749 .2448 36 .822 .991472 .1463 76 .912 .9925147 .2477 37 .008 .991853 .1491 77 .054 .9925332 .2491 38 .905 .9912238 .1520 78 .992 .9925300 .2503 39 980.083 .9912028 .1549 79 983.027 .992505 .2515 40 980.171 2.9913018 32.1578 80 983.059 2.9925796 32.2554 41 .201 .9913417 .1607 81 .080 .9925029 .2535 42 .350 .9913812 .1636 82 .115 .9926043 .2534 43 .440 .9014210 .1666 83 .139 .9926149 .2552 44 .531 .9914013 .1696 84 .160 .9926242 .2558 45 980.621 2.9915011 32.1725 85 983.178 2.9926321 32.2564 46 .711 .9915410 .1765 87 .000 .9926321 32.2564 47 .802 .9915814 .1785 87 .203 .9926432 .2552 48 .802 .9915814 .1785 87 .203 .9926432 .2572 48 .802 .9916212 .1614 88 .211 .9926479 .25572	28	.175				.487		
31 .407 .900632 .1327 71 .665 .9924055 .2306 32 .487 .9909987 .1353 72 .720 .992498 .2411 33 .569 .9910350 .1380 73 .772 .9924528 .2411 34 .652 .9910718 .1407 74 .822 .9924749 .2448 35 .970,737 2.9911095 .32.1435 .75 .982.868 2.9924952 .32.2463 36 .822 .9911853 .1491 .77 .954 .9925147 .2477 37 .908 .9911853 .1491 .77 .954 .9925332 .2401 38 .905 .991238 .1520 .78 .902 .9925302 .2503 39 .980.683 .9912628 .1549 .79 .983.027 .9925055 .2513 40 .981.71 .29013018 .32.1578 80 .983.059 2.9925796 .32.2525	29	.251	.9908940	.1276	69	- 549	.9923542	. 2358
32 .487 .9900987 .1353 72 .720 .0924208 .2414 33 .569 .9910350 .1380 73 .772 .9924528 .2431 34 .052 .9910718 .1407 74 .822 .9924749 .2448 35 .970.737 2.9011095 32.1435 75 .982.868 2.9024952 .32.2463 36 .822 .9911472 .1403 76 .012 .9925147 .2477 37 .008 .9911853 .1491 .77 .054 .9925332 .2491 38 .995 .9912238 .1520 78 .992 .9925505 .2503 39 .980.033 .9912028 .1549 79 .983.027 .9925055 .2515 40 .980.171 2.9913018 .32.1578 80 .983.059 2.9025796 .32.2525 41 .201 .9913417 .1607 81 .080 .9925020 .2535								
33 .569 .9910350 .1380 73 .772 .9924528 .2431 34 .652 .9910718 .1407 74 .822 .9924749 .2448 35 979.737 2.9911095 32.1435 75 982.868 2.9924749 .2448 36 .822 .9911472 .1463 76 .012 .9925427 .2477 37 .908 .9911853 .1491 77 .954 .9925332 .2491 38 .995 .9912238 .1520 78 .992 .9925500 .2503 39 980.083 .9912628 .1549 79 983.027 .9925055 .2515 40 980.171 2.9913018 32.1578 80 983.039 2.9025706 32.2525 41 .261 .9914317 .1606 81 .089 .9925929 .2535 42 .350 .9913417 .1606 83 .139 .9926049 .2554 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
34 .652 .9910718 .1407 7.4 .822 .9924749 .2448 35 970.737 2.9911095 32.1435 75 982.868 2.9924952 32.2463 36 .822 .9911472 .1403 76 .912 .9925147 .2477 37 .908 .9911853 .1491 77 .954 .9925332 .2491 38 .995 .9912238 .1520 78 .992 .9925300 .2503 39 980.683 .9912628 .1549 79 983.027 .9925055 .2515 40 980.171 2.9913018 32.1578 80 983.059 2.992505 .2515 41 .201 .9913812 .1607 81 .080 .9925029 .2535 42 .350 .9913812 .1636 82 .115 .9926043 .2544 43 .440 .991401 .1666 83 .139 .9926149 .2552 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>								
35 979.737 2.9911095 32.1435 75 982.868 2.9924952 32.2463 36 .822 .9911472 .1463 76 .912 .9925147 2.477 37 .908 .9911853 .1491 77 .954 .9925332 2.491 38 .995 .9912238 .1520 78 .992 .9925302 .2503 39 980.083 .9912628 .1549 79 983.027 .9925055 .2503 40 980.171 2.9913018 32.1578 80 983.027 .9925055 .2515 40 980.171 2.9913018 32.1578 81 .089 .992929 .25354 41 .261 .9913417 .1607 81 .089 .9925929 .25354 42 .350 .9913812 .1636 82 .115 .9926043 .2544 43 .440 .9914210 .1666 83 .139 .9926149 .2552 44 .511 .9914613 .1696 84 .160 .9926449 .2552 45 980.621 2.9915011 32.1725 85 .983.178 2.9926321 32.2564 46 .711 .9913410 .1755 86 .191 .9926379 .2569 47 .802 .9915814 .1785 87 .203 .9926379 .2569 47 .802 .9916814 .1785 87 .203 .9926373 .2572 48 .802 .9916814 .1814 88 .211 .9926407 .2575								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34	.052	.9910718	. 1407	7-4	.822	.9924749	. 2448
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35	979.737			75		2.9924952	32.2463
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37				77			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39	980.003	.9912026	.1549	79	983.027	.9925055	. 2515
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40						2.9925796	32.2525
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
45 980.621 2.9915011 32.1725 85 983.178 2.9926321 32.2564 46 .711 .9915410 .1755 86 .191 .9926379 .2569 47 .802 .9915814 .1785 87 .203 .9926432 .2572 48 .802 .9916212 .1814 88 .211 .9926467 .2575								
$ \begin{array}{ccccccccccccccccccccccccccccccc$	44	.531	.9914013	.1090	84	.100	.9920242	. 2558
47								
48 892 .9016212 .1814 88 .211 .9926467 .2575								
0- 1-66-6 -0	47							
49 .901 .9910000 .1044 90 903.217 .9920494 .2577								
	49	.901	.9910000	.1044	90	903.217	.9920494	- 2577

To reduce log g (cm. per sec.) to log g (ft. per sec. per sec.) add log 0.03280833 = 8.5159842 — 10.

The standard value of gravity, used in barometer reductions, etc., is 980.665. It was adopted by the International Committee on Weights and Measures in 1901. It corresponds nearly to latitude 45° and sea-level.

FREE-AIR CORRECTION FOR ALTITUDE.

- -0.0003086 cm/sec²/m when altitude is in meters. -0.00003086 ft/sec²/ft when altitude is in feet.

Altitude.	Correction.	Altitude.	Correction.
200 m. 300 400 500 600 700 800 900	-0.0617 cm/sec ² .0926 .1234 .1543 .1852 .2160 .2469	200 ft. 300 400 500 600 700 800 900	-0.000617 ft./sec² .000926 .001234 .001543 .001852 .002160 .002460 .002777

GRAVITY.

The following more recent gravity determinations (Potsdam System) serve to show the accuracy which may be assumed for the values in Table 565, except for the three stations in the Arctic Ocean. The error in the observed gravity is probably not greater than 0.010 cm/sec², as the observations were made with the half-second invariable pendulum,

using modern methods.

using modern methods.

In recent years the Coast and Geodetic Survey has corrected the computed value of gravity for the effect of material above sea-level, the deficiency of matter in the oceans, the deficiency of density in the material below sea-level under the continents and the excess of density in the earth's crust under the ocean, in addition to the reduction for elevation. Such corrections make the computed values agree more closely with those observed. See special publication No. 40 of the U. S. Coast and Geodetic Survey entitled, "Investigations of Gravity and Isostasy," by William Bowie, 1917; also Special Publication No. 10 of same bureau entitled, "Effect of Topography and Isostatic Compensation upon the Intensity of Gravity," by J. F. Hayford and William Bowie, 1912.

		Elevation.	Gravity	, cm/sec²	Refer-
Name.	Latitude.	meters.	Observed.	Reduced to sea-level.	ence.
Kodaikanal, India Ootacamund, India Madras, India Jamestown, St. Helena Cuttack, India Amraoti, India Jubbulpur, India Gaya, India Siliguri, India Kuhrja, India Galveston, Texas Rajpur, India Alexandria, La St. Georges, Bermuda McCormick, S. C. Shamrock, Texas Cloudland, Tenn Mount Hamilton, Cal. Kala-i-Chumb, Turkestan Denver, Col. Hachinohe, Japan Chieago, Ill. Albany, N. Y.	10° 14' 11 25 13 4 -15 55 20 20 20 56 23 9 24 48 26 42 28 14 29 18 30 24 31 19 32 21 33 55 35 13 36 6 37 20 38 27 39 41 40 31 41 47 42 39	2336 2254 6 10 28 342 447 110 118 198 3 -1012 24 24 24 21 1390 1282 1345 1038 21 182 6	977 · 645 977 · 735 978 · 279 978 · 712 978 · 659 978 · 669 978 · 884 978 · 884 979 · 272 979 · 082 979 · 429 979 · 429 979 · 386 979 · 624 979 · 624	978.366 978.427 978.281 978.715 978.668 978.714 978.918 978.918 979.273 979.436 979.273 979.436 979.674 979.966 980.056 970.877 980.114 980.365	I 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Florence, Italy Minneapolis, Minn. Simplon Hospice, Switzerland Fort Kent, Me. Sandpoint, Idaho. Medicine Hat, Canada. Field, Canada. Magleby, Denmark. Copenhagen, Denmark St. Paul Island, Alaska Fredericksvarn, Norway Christiania, Norway Ashe Inlet, Hudson Strait St. Michael, Alaska Hatnarfjordr, Iceland Niantilik, Cumberland Sound Glaesibaer, Iceland Sorvagen, Norway Umanak, Greenland. Danes Island, Spitzbergen Arctic Sea Arctic Sea	43 45 44 59 46 15 47 15 48 16 50 2 51 24 54 47 55 41 57 7 59 55 62 33 63 28 64 54 65 40 67 54 70 40 70 40 84 12 84 52 85 55	184 256 1998 160 637 664 1239 14 10 10 28 15 1 1 4 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10	980. 491 980. 597 980. 202 980. 765 980. 680 980. 865 980. 745 981. 502 981. 726 981. 726 981. 927 982. 105 982. 266 982. 273 982. 266 982. 273 982. 342 982. 590 983. 109 983. 109 983. 174 983. 155	980. 548 980. 676 980. 819 980. 814 980. 877 981. 506 981. 556 981. 556 981. 729 981. 877 981. 936 982. 110 982. 192 982. 267 982. 267 982. 259 982. 593 983. 799 983. 174 983. 155	2 2 2 2 2 2 2 1 1 2 1 3 2 1 3 1 2 1 1 3 1 1

References: (1) Report 16th General Conference International Geodetic Association, London and Cambridge, 1909, 3d Vol. by Dr. E. Borráss, 1911; (2) U. S. Coast and Geodetic Survey, Special Publ. No. 40; * (3) U. S. Coast and Geodetic Survey, Report for 1897, Appendix 6.*

^{*}For references (2) and (3), values were derived from comparative experiments with invariable pendulums, the value for Washington being taken as 980.112. For the latter, Appendix 5 of the Coast and Geodetic Survey Report for 1901, and pages 25 and 244 of the 3d vol. by Dr. E. Borráss in 1911 of the Report of the 16th General Conference of the Intern. Geodetic Association, London and Cambridge, 1909. As a result of the adjustment of the net of gravity base stations throughout the world by the Central Bureau of the Intern. Geodetic Association, the value of the Washington base station was changed to 980.112.

ACCELERATION OF GRAVITY (g) IN THE UNITED STATES.

The following table is abridged from one for 210 stations given on pp. 50 to 52, Special Publication No. 40, U.S. Coast and Geodetic Survey. The observed values depend on relative determinations and on adopted value of 980.112 for Washington (Coast and Geodetic Survey Office, see footnote, Table 566). There are also given terms necessary in reducing the theoretical value (Table 565) to the proper elevation (free-air) and to allow for topography and isostatic compensation by the Hayford method (see introductory note to Table 566).

To a certain extent, the greater the bulk of material below any station, the less its average density. This phenomenon is known as isostatic compensation. The depth below sea-level to which this compensation extends is about 96 km. Below this depth any mass element is subject to equal (fluid) pressure from all directions.

					Corre	ection.
Station.	Latitude.	Longitude.	Eleva- tion, meters.	Observed g cm/sec²	Elevation, cm/sec ²	Topography and com- pensation, cm/sec ²
Key West, Fla. New Orleans, La. Austin, Tex. university El Paso, Tex. Yuma, Ariz. Charleston, S. C. Birmingham, Ala. Arkansas City, Ark. Atlanta, Ga. capitol. Beaufort, N. C. Little Rock, Ark Memphis, Tenn. Charlotte, N. C. Las Vegas, N. Mex. Knoxville, Tenn. Grand Canyon, Ariz. Cloudland, Tenn. Mount Hamilton, Cal., Obs'y. Richmond, Va. San Francisco, Cal. St. Louis, Mo., university. Pike's Peak, Col. Colorado Springs, Col. Washington, D. C., Bur. St'ds. Wallace, Kans. Green River, Utah. Cincinnati, Ohio, obs'y. Baltimore, Md., university. Wheeling, W. Va. Princeton, N. J. Pittsburg, Pa. Salt Lake City, Utah. New York, N. Y., university. Wheeling, W. Va. Princeton, N. J. Pittsburg, Pa. Salt Lake City, Utah. New York, N. Y., university. Winnemucca. Nev. Cleveland, Ohio. Chicago, Ill., university. Worcester, Mass. Cambridge, Mass. observatory Ithaca, N. Y., university. Fort Dodge, Iowa. Grand Rapids, Mich. Madison, Wis., university. Boise, Idaho Mitchell, S. Dak. university Boise, Idaho Mitchell, S. Dak. university Lancaster, N. H. Grand Canyon, Wyo. Minneapolis, Minn. Calais, Me. Miles City, Mont.	29 57.0 30 17.2 31 46.3 32 43.3 32 43.3 33 30.8 33 36.5 33 45.0 34 43.1 34 45.0 35 8.8 35 13.8 35 57.7 36 6.3 37 20.4 37 32.2 37 47.5 38 50.3 38 50.7 38 50.3 38 50.7 38 50.3 38 50.7 38 50.3 38 50.7 38 50.3 39 17.8 40 46.1 41 47.4 42 16.5 43 37.8 44 42.0.5 44 43.3 41.8 42 90.5 44 43.3 41.8 42 90.5	81° 48.4′ 90 4.2 90 4.2 106 29.0 114 37.0 79 56.0 86 48.8 91 12.2 84 23.3 76 39.8 92 16.4 90 3.3 80 50.8 105 12.1 83 55. 112 6.8 82 7.0 121 38.6 77 26.1 122 25.7 90 12.2 105 2.0 104 49 0 77 4.0 101 35.4 110 9.9 84 25.3 76 37.3 87 23.8 104 56.9 75 11.7 80 43.4 74 39.5 80 0.6 111 53.8 81 36.1 71 48.5 81 36.1 71 48.5 71 7.8 87 36.1 71 48.5 87 36.1 71 48.5 87 36.1 71 48.5 87 36.1 71 7.8 87 40.8 89 24.0 94 11.4 85 40.8 89 24.0 98 1.8 81 10.9 97 11.7 93 13.9 96 116.9	1 2 189 1146 54 44 324 1 1 80 80 228 1960 280 1800 1282 30 114 154 4293 11638 166 205 64 235 1322 338 181 210 182 217 340 236 256 821 408 261 408 265 38	978.970 979.324 979.283 979.124 979.526 979.546 979.536 979.500 979.546 979.721 979.721 979.721 979.722 979.463 979.726 979.727 979.204 979.727 979.204 979.727 979.204 980.001 978.954 979.755 979.636 980.001 980.095 979.755 979.636 980.097 970.636 980.097 970.636 980.097 970.636 980.097 970.838 980.196 980.321 980.321 980.324 980.324 980.324 980.324 980.321 980.372 980.321 980.372 980.372 980.372 980.373	0.0000010583540170020550141000000270250706050862625833960320350481.32504838438	+0.035 +013 -001 +010 +010 +016 +011 +005 +014 +0036 +001 +001 -0016 +017 -0016 +018 +0017 -0016 +019 +019 +019 +019 +019 +019 +019 +019
Seattle, Wash. university Pembina, N. Dak	47 30.6	105 50. 122 18.3 97 14.9	718 58 243	980.539 980.733 980.917	222 018 075	020 020 009

TABLE 568. - Length of Seconds Pendulum at Sea Level and for Different Latitudes.

	Length in cm	Log.	Length in inches.	Log.		Length in cm	Log.	Length in inches.	Log.
0 5 10 15 20 25 30 35 40 45	99.0961 .1000 .1119 .1310 .1571 99.1894 .2268 .2681 .3121 .3577	I.996056 .996074 .996126 .996210 .996324 I.996465 .996829 .996810 .997002	39.0141 .0157 .0204 .0279 .0382 39.0509 .0656 .0819 .0992 .1171	1.591222 .591239 .591292 .591375 .591490 1.591631 .591794 .591976 .592168	50 55 60 65 70 75 80 85 90	99.4033 .4475 .4891 .5266 .5590 99.5854 .6047 .6168 .6207	1.997401 .997594 .997776 .997939 .998081 1.998196 .998280 .998332 .998350	39.1351 .1525 .1689 .1836 .1964 39.2068 .2144 .2191 .2207	1.592566 .592760 .592941 .593104 .593246 1.593361 .593446 .593498

Calculated from Table 565 by the formula $l=g/\pi^2$. For each 100 ft. of elevation subtract 0.000933 cm or 0.000375 in. or 0.0000333 ft. This table could also have been computed by either of the following formulae derived from the gravity formula at the top of Table 565. $l=0.990961 (r+0.005204 \sin^2\phi-0.00007 \sin^2\phi) \text{ meters } \\ l=0.990961 + 0.005246 \sin^2\phi-0.00007 \sin^2\phi \text{ meters } \\ l=39.014135 (r+0.005204 \sin^2\phi-0.00007 \sin^2\phi) \text{ inches.}$

 $l = 39.014135 + 0.206535 \sin^2 \phi - 0.000276 \sin^2 2\phi$ inches.

TABLE 569. - Miscellaneous Geodetic Data.

Equatorial radius = a = 6378206 meters; $6378388 \pm 18 \text{ meters};$ Clarke 3963.339 miles. 6356909 meters; 3963.225 miles. = 6356584 meters; Polar semi-diameter Survey. Reciprocal of flattening = $\frac{a}{a-b}$ = 295.0 3949.992 miles. 297.0 ± 0.5 Square of eccentricity $=e^2=\frac{a^2-b^2}{a^2}=0.006768658$ 0.0067237 ± 0.0000120

Difference between geographical and geocentric latitude = $\phi - \phi' = 688.2242'' \sin 2\phi - 1.1482'' \sin 4\phi + 0.0026'' \sin 6\phi$.

Mean density of the earth = 5.5247 ± 0.0013 (Burgess Phys. Rev. 1902).

Continental surface density of the earth = 2.67 Mean density outer ten miles of earth's crust = 2.40 Harkness.

Constant of gravity, 6.66 × 10-8 c.g.s. units.

Rigidity = $n = 8.6 \times 10^{11}$ c.g.s. units. Viscosity = $e = 10.9 \times 10^{16}$ c.g.s. units (comparable to steel). A. A. Michelson, Astrophysical Journal, 39, p. 105, 1914.

Moments of inertia of the earth; the principal moments being taken as A, B, and C, and C the greatest:

$$\frac{C-A}{C} = 0.00326521 = \frac{1}{306.259};$$

 $\frac{C-A}{C} = 0.001064767 Ea^2;$
 $A = B = 0.325009 Ea^2;$
 $C = 0.325004 Ea^2;$
1 a its equatorial semi-diameter.

where E is the mass of the earth and a its equatorial semi-diameter.

TABLE 570.

TERRESTRIAL MAGNETISM.

Secular Change of Declination.

Changes in the magnetic declination between 1810, the date of the earliest available observations, and 1920. Based on tables in "Distribution of the Magnetic Declination in Alaska and Adjacent Regions in 1910" and "Distribution of the Magnetic Declination in the United States for January 1, 1915," published by the United States Coast and Geodetic Survey. For a somewhat different set of stations, see 6th Revised Edition of the Smithsonian Physical Tables.

State.	Station.	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910	1920
Ala.	Ashland	6.0E	6.2E	6.1E	5.9E	5.6E	5.2E	• 4.7E	4.IE	o 3.4E	3.0E	0 2.QE	3.0E
II	Tuscaloosa	7.1 E	7.3 E	7.3 E	7.2 E	6.9E	6.6E	6.IE	5.5 E	4.8E	4.4E	4.4E	
Alas.	Sitka	_	=	=	_	=	26.2 E	29.0 E 25.7 E 20.1 E	25.2 E	24.8E	24.5 E 18.3 E	24.2 E 17.5 E	24.2 E 17.2 E
Ariz.	St. Michael Holbrook Prescott	=	_	_	=			13.8 E	13.6E		13.5 E	14.1E	14.5E
Ark.	Augusta	7.7E	7.9 E	8.0E		7.8E	7.5 E	13.7 F 7.1 E	6.5E 8.1E		5.5 E	5.6 E	5.8E
Cal.	Danville Bagdad	12.4E	12.9E	13.4E	13.8E	13.9 E 14.2 E	14.4 E	14.3 E	14.4E 14.9E	14.4E 14.9E	14.6 E	15.8 E	15.7E 16.3E
Colo.	Redding Pueblo Ouray		16.1E	16.6E	17.0E	17.4E 13.7E	17.8E 13.8E	18.1 E 13.7 E 15.2 E	18.2 E	18.3E	18.7E	19.4E 13.3E	19.7E
Conn. Del.	Hartford	5.IW	5.5W	6.IW		7.5W	8. IW	8.7W	9.4W	9.8w	10.4W	II.2W	12.1W
D. C.	Dover Washington	1.6W	1.9W 0.3E	2.3W 0.0	2.8W	3.4W I.OW	4.CW 1.7W	4.7W 2.4W	5.3W 3.0W		6.5W	7.2W	8.ow 5.6w
Fla.	Miami	5.8E	5.7 E	5.3E	4.9 E	4.4 E	3.9 E	3.3 E	2.7 E	2.2E	1.7E	1.5E	1.5E
	Bartow Jacksonville	5.5 E 5.0 E	5.4E 5.0E	5.2 E 4.9 E	4.8E	4.4E 4.2E	3.8E	3.2E 3.0E	2.6 E	2.1E 1.8E	1.6E		1.3E 0.QE
	Tallahassee	5.8E	5.8E	5.7 E	5.5 E	5.2 E	4.8E	4.2E	3.6 E	3.0E	2.5E	2.4E	2.4E
Ga.	Millen	4.9 E 5.9 E	4.8E 6.0E	4.6E 5.9E	4.3 E 5.6 E	3.9 E 5.2 E	3.4E 4.7E	2.7 E 4.1 E	2.IE 3.5E	1.5E	0.9E	0.7E	0.5E 2.2E
Haw.	Honolulu					9.4E	9.4E	9.5E	9.8E	IO. I E	10.4E	10.7 E	II.IE
Idaho	Pocatello Boise	_	_	_	_	17.7E	17.9 E 18.5 E	18.0E 18.8E	17.9E	17.8 E	17.9E	18.5 E	18.8E
III.	Pierce Kankakee	- 6.6E	— 6.8 €	 6.8 E	20.2E 6.6E	20.6 E	21.0 E	21.2 E	21.1 E	21.2 E	21.4E	22.0E	22.2E
	Rushville	7.7E	8.0E	8.1E	8.0E	6.3E	5.8E	5.3 E 7.0 E	4.8E	4 I E	3.5 E	3.3E 5.1E	
Ind. Iowa	Indianapolis Walker	5.0E	5. I E	5.0E	4.7 E	1.3E 8.9E	3.8E 8.6E	3.3E 8.2E	2.7 E	2. I E	I.5 E	I.IE	0.9E
	Sac City		8.9E	9. I E 10. 7 E	9.1E	10.8E	0.0E	0.2 E	7.5E	6.8E	6.2E	6.2E 8.6E	
Kans.	Ness City	_	_	_		II.5E	II.4E	II.2E	10.8E	10.2 E	9.9 E	IO. I E	10.3E
Ky.	Manchester	3.5E	3.6 E	3.4E		2.8 E	2.4 E	12.2E	1.0E	0.3E	0.3W	0.6W	
	Louisville	4.8E 6.8E	4.9E 6.9E	4.8E 6.gE	4.6E 6.8E	4.3 E	3.8E 6.0E	3.2 E		I.9 E	I.5 E	1.3E	I.2E
La.	Winfield	8.6E	8.9E	Q.OE	0.0E	6.5E 8.9E	8.6 E	5.5 E 8.2 E	4.8E 7.6E	4.2E 7.IE	3.9E 6.8E	3.7E	7 1 F
Me.	Eastport Bangor			15.5W 13.2W	16.3W	17.2W	18.ow	18.5W	18.8w	IQ.OW	1Q.3W	20. OW	2I.OW
263	Portland	9.3W	9.9W	10.6W	II.2W	II.OW	12.6W	15.9W 13.1W	13.6W	14.1W	17.1W	17.5W	18.8W 16.3W
Md. Mass.	Baltimore Boston	0.9W	1.1W 7.8W	I.4W 8.4W	I.9W Q.IW	2.4W	3. IW	3.8W	4.4W	5.OW	5.6W	6. 3W	7. OW
	Pittsfield	5 · 7W	6.2W	6.7W	7.4W	8. IW	8.7W	0.3W	11.5W	12.0W	11.0W	13.4W	14.4W
Mich.	Marquette Lapeer	_	6.7 E 2.6 E	6.7E	6.5E 2.IE	6.1E	5.5 E	4.7 E	3.8 E	3.0 E	2.4E	2. I E	I.7E
3.6	Grand Haven.	-	5.1 E	5.0 E	1.8 E	1.1E	1.0E 3.8E	0.3E	0.5W 2.4E	I. 2W I. 6 E	I.SW	2.3W 0.7E	2.8W 0.3E
Minn.	St. Paul	_	11.6E	11.8E	II.9E	II.7 E	II.4E	IO.QE	10.3E	9.5E	8.9E	8.8E	8.7 E
	Hibbing	:	10.5E	10.7 E	10.8 E	10.6 E	10.3 E	11.0E 9.7E	0.0 E	9.8E 8.2E	9.3E 7.6E	9.4E 7.7E	9.4E 7.5E
Miss.	Bagley			13.0 E	13.1E	13. I E	12.8 E	12.3 E	11.7 E	II.OE	10.4E	10.6E	10.5 E
	Vicksburg	8.2 E	8.4E	8.5 E	8.4E	7.2 E 8.2 E	8 O E	0.5E 7.0E	5.9 E 7.1 E		4.SE 6.0E	4.9E	5.1 E 6.4 E
													0.42
					-				_				

Secular Change of Declination (concluded).

			-										
State.	Station.	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910	1920
Mo.	Hermann		Q. 2 E	Q.3E	Q. 2 E	0.05	8.7E	8 2 16	אר ד	7 O.F.	бек	6.5E	6.6E
	Sedalia			10.0E	10.0E	9.9E	9.6E	9.3 E	8.7 E	8.0E	7.6E	7.8 E	8.0E
Mont.	Miles City Lewistown		_										17.6E
	Ovando	_	_	_									22.0E
Nebr.	Albion	_			12.9 E								11.5E
	Valentine	_	_			14.1E	14.1E	13.9E	13.4E	12.8E	12.0E	12.8E	13.1E 14.8E
Nev.	Elko	_	_		_	17.3 E	17.6 E	17.7 E	17.7 E	17.6 E	17.8E	18.4E	18.9E
N. H.	Hawthorne Hanover	7.IW	7.5W	8.2W	8.gw								18.4E
N. J. N. M.	Trenton	2.8W	3.1W	3.5W	4.IW	4.7W							9.4W
N. M.	Santa Rosa		_		·		12.8 E	12.7 E	12.4E	12.0E	II.9E	12.5E	12.9E
N. Y	Albany	5.7W	5.9W	6.4W	7.0W	7.8w							14.1E 12.5W
	Elmira	2.2W	2.4W	2.8w	3.3W	4.0W	4.8w	5.4W	6.3w	7.0W	7.5W	8.2W	9.ow
N. C.	Buffalo Newbern	I.OW	I.IW I.6E	I.4W I.3 E	1.9W 0.8E				4.7W 1.7W		5.9W		
14. 0.	Greensboro	3.5E	3.4E	3.1 E	2.7 E	2.2E				0.3W			
N. D.	Asheville Jamestown	4.2 E	4.2 E	4.0E	3.6E					0.7E			
14. 15.	Bismarck		_	14.0 E	14.2 E		14.0 E 16.3 E						
01:	Dickinson				<u> </u>	17.7 E	17.7E	17.5 E	17.IE	16.5E	16.3E	16.7E	16.9E
Ohio	Canton Urbana	2.3 E 4.4 E	2.2 E 4.4 E	2.0 E 4.3 E	1.7E		0.6E		0.7W	I.3W	1.9W		
Okla.	Okmulgee		_		-	10.2 E	IO. I E	9.8E	9.5E	9.1E	8.7E	8.9E	9.2E
Ore.	Enid Sumpter						11.2 E						10.5E 21.4E
	Detroit	16.7E	17.4E	18.0E	18.6 E	19.2 E	19.7 E	20. I E	20.3 E	20.5 E	20.8 E	21.6E	21.9E
Pa.	Wilkes-Barre	2.3W I.4W	2.5W I.5W	2.9W I.9W	3.4W 2.4W	4.0W 3.0W			6.ow	6.6w			
	Indiana	0.6E	0.5 E	0.3 E		0.7W						4.6W	5.2W
P. R. R. R. I.	San Juan	6.6w	_		-		- 077		- 0		I.OW		
S. C.	Newport Marion	3.4E	7.IW 3.3E	7.7W 3.0E							I.OW		
	Aiken	4.8E	4.7 E	4.5E	4.2 E	3.7 E	3.1 E	2.5 E	1.9 E	1.3 E	0.7E	0.4E	
S. D.	Huron	_	_	_	13.2 E		13.0 E						13.9E
	Rapid City				_		16.4 E	16.3 E	15.8E	15.3E			15.7 E
Tenn.	Knoxville	3.8E	3.8E 6.5E	3.6E					1.1E 4.3E			0.3W 3.0E	
	Huntingdon	7.3E	7.4E	7.4E	7.3 E	7.0E	6.6E	6.1E	5.5E	4.9E	4.4E	4.3 E	4.4E
Tex.	Houston San Antonio		9.0E	9.2 E 9.5 E							7.7E 8.7E	8.IE	
	Pecos	_	_	10.7 E	II.OE	II.IE	II.IE	II.OE	10.8E	10.4E	10.3 E	10.8 E	11.3E
Wash.	Wytheville Wilson Creek	2.9E	2.9 E	2.7 E	2.4 E	2.0E	I.4 E		O.IE			I.5W	1.9W 23.3E
Wasii.	Seattle	18.9E		20. I E		21.2 E	21.6E	22.0 E	22.2 E	22.4E	22.8 E	23.5 E	23.8E
W. Va.	Sutton	1.9E	1.8E	1.6E	I.2 E		0.2E					2.9W	
Wis.	Shawamo	_	7.4E	7.4E	7.3 E	7.0E	6.5E	5.9E		4.3 E			3.1 E
Utah	Manti	1 —	_	_	_	16.4 E	16.7E	16.8 E	16.7 E	16.4E	16.5 E	17.1E	17.5E
Vt. Va.	Rutland	6.6w	7.IW			9. TW		10.5W	2.5W	3.1W	3.7W	12.8W	13.8W 4.0W
va.	Lynchburg	1.6E	1.5E	1.3E	0.9E	0.5 E	O.IW	0.7W	1.4W	2.0W	2.6W	3.IW	3.7W
Wvo.	Stanley Douglas	_	8.9E	9.0E	9.0E	8.8E				6.3 E			5.4E 16.0E
Wyo.	Green River	_		_	_								17.5E
				!				1	!			Į	

TABLE 571. - Dip or Inclination.

This table gives for the epoch January 1, 1915, the values of the magnetic dip, I, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column.

λφ	65	70	75	80	85	90	95	0 100	0 105	. 110	0 115	120	125
19 21 23 25	·	·	50.4 52.7 55.1 57.6	49.4 51.9 54.2 56.8	48.5 51.1 53.7 56.1	47.2 50.1 52.8 55.2	6.1 48.9 51.7 54.2 56.6	45.I 47.9 50.4 53.I	44.I 46.9 49.7 52.2	48.7 51.2 53.6	50.1	·	o
27 29 31 33 35 37		63.6 65.4 67.2 69.1	59.8 61.9 63.8 65.6 67.3 69.2	59.3 61.3 63.4 65.3 67.2 69.0	58.3 60.5 62.8 64.7 66.6 68.9	57.6 59.7 62.0 64.0 66.1 68.1	58.9 61.1 63.1 65.3 67.3	55.6 57.9 60.1 62.4 64.3 66.4	54.6 56.8 59.0 61.2 63.2 65.2	55.8 58.1 60.2 62.2 64.2	52.4 54.6 57.0 59.1 61.0 63.1	53.8 55.8 58.0 60.1 62.1	
39 41 43 45 47	74·3 75·6	70.6 72.2 73.6 74.9 76.3	70.8 72.3 74.0 75.4 76.8	70.6 72.5 74.1 75.5 76.9	70.6 72.2 74.0 75.5 76.9	70.0 71.7 73.5 75.2 77.0	69.2 71.0 72.6 74.5 76.1	68.3 70.1 71.8 73.5 75.1	67.3 69.0 70.7 72.4 74.2	66.2 68.0 69.7 71.3 72.9	64.9 66.6 68.4 70.2 71.7	63.9 65.5 67.2 69.0 70.5	62.5 64.3 65.9 67.8 69.5
49	76.5	77 - 4	78.2	78.5	78.5	78.3	77-7	76.7	75.7	74.5	73 . 2	72.I	71.2

TABLE 572. - Secular Change of Dip.

Values of the magnetic dip for places designated by the north latitudes and longitudes west of Greenwich in the first two columns for January 1 of the years in the heading. The degrees are given in the third column and the minutes in the succeeding columns.

Latitude.	Long- itude.		1855	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910	1915
25 25 30 30 30	80 110 83 100	55+ 49+ 60+ 57+ 54+	, 32 14 66 41 47	, 32 26 70 46 56	, 31 36 73 55 63	, 29 45 74 64 65	, 26 52 73 67 64	23 61 67 62 66	18 67 57 57 69	, 18 74 51 58 73	, 22 82 53 65 79	, 31 92 63 74 85	, 43 102 78 87 90	73 116 101 103 96	, 108 132 126 120 102
35 35 35 35 40	80 90 105 120 75	66+ 65+ 62+ 59+ 71+	67 67 - 56 82	68 61 - 59 82	67 53 61 78	64 46 47 61 73	55 39 45 60 65	45 34 39 59 55	36 28 39 61 43	31 27 39 64 33	30 27 43 66 27	32 29 49 66 24	40 38 57 66 24	55 51 65 66 29	72 66 72 66 36
40 40 40 45 45	90 105 120 65 75	70+ 67+ 64+ 74+ 75+	118 - 118 91	31 — 112 87	34 — I03 83	37 56 51 94 78	36 53 52 82 73	32 51 54 70 61	57 59 50	26 51 58 48 41	25 52 58 37 31	26 56 54 30 26	30 50 50 26 24	38 63 45 22 24	48 66 42 18 24
45 45 45 49 49	90 105 122.5 92 120	74+ 72+ 68+ 77+ 72+	86 	86 44 70 27	86 47 78 25	84 50 76 24	82 50 74 23	80 30 49 74 22	73 28 47 69 21	68 27 44 66 20	66 26 40 65 20	64 26 37 63 19	65 25 33 60 17	68 25 27 58 12	72 24 21 60 06

TABLE 573. - Horizontal Intensity.

This table gives for the epoch January 1, 1915, the horizontal intensity, H, expressed in cgs units, corresponding to the longitudes in the heading and the latitudes in the first column.

λ	65°	70°	75°	80°	85°	90°	95°	100°	105°	110°	115°	120°	125°
21 23 25 27	11111		. 297 . 290 . 283 . 273 . 264	.303 .296 .288 .281 .271	.311 .303 .294 .286 .276	.316 .310 .301 .202 .281	.321 .315 .307 .208 .288	.325 .320 .311 .302 .292	.325 .320 .311 .303 .295		.304		_
31 33 35 37 39 41		.237 .225 .213 .202	. 2.12 . 230 . 217 . 205 . 193 . 178	.247 .236 .223 .210	.254 .242 .232 .213	.260 .248 .235 .222 .206	.266 .255. .241 .227 .212	.272 .259 .249 .234 .218	.276 .264 .251 .240	.279 .270 .256 .244 .232 .218	.280 .271 .260 .250	. 280 . 272 . 263 . 253 . 242 . 232	.245
43 45 47 49	.150 .146	.166 .154 .143	.166 .153 .139	.165 .153 .139	.171 .155 .141	.174 .160 .142	.182 .167 .150	.189 .174 .159	.198 .185 .168	. 207 . 192 . 180	.214 .202 .187	.221 .210 .195	.227

TABLE 574. - Secular Change of Horizontal Intensity.

Values of horizontal intensity, H, in cgs units for the places designated by the latitude and longitude in the first two columns for January 1 of the years in the heading.

Lat.	Long.	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910	1915
25 25 30 30 30 35 35 35 35	80 110 83 100 115 80 90 105	.3086 .3216 .2775 2996 .2367	.3073 .3202 .2768 .2978 .2981 .2362	.3057 .3187 .2760 .2959 .2966 .2357 .2460	.3042 .3168 .2752 .2941 .2949 .2355 .2460	.3025 .3153 .2743 .2924 .2934 .2351 .2459	.3008 .3141 .2732 .2908 .2922 .2347 .2456 .2598 .2690	.2990 .3128 .2720 .2894 .2910 .2340 .2453 .2589 .2679	.2970 .3115 .2705 .2882 .2899 .2335 .2445 .2582	.2949 .3102 .2686 .2867 .2890 .2325 .2435 .2572 .2663	.2917 .3088 .2658 .2847 .2880 .2306 .2418 .2559	. 2870 . 3063 . 2614 . 2817 . 2863 . 2272 . 2387 . 2537 . 2645	.2810 .3030 .2560 .2780 .2840 .2230 .2350 .2510 .2630
40 40 40 40 45 45	75 90 105 120 65 75	. 1876 . 2080 — . 1504 . 1487	. 1884 . 2076 — . 1515 . 1490	. 2727 . 1895 . 2073 . 2269 . 2439 . 1527 . 1497	. 2714 . 1904 . 2070 . 2263 . 2430 . 1543 . 1508	.2702 .1912 .2069 .2258 .2422 .1557 .1518	.2068 .2254 .2416 .1568 .1529	.2079 .1923 .2066 .2250 .2409 .1579	.2070 .1924 .2062 .2245 .2402 .1590 .1548	.2003 .1921 .2054 .2237 .2396 .1598	.2042 .2042 .2227 .2390 .1600	.2045 .1889 .2019 .2210 .2381 .1596 .1543	.1990 .2190 .2370 .1590
45 45 45 49 49	90 105 122.5 92 120	.1648 .2183 .1336 .1846	.1646 	.1644 .1895 .2166 .1330 .1844	.1641 .1894 .2158 .1327 .1841	.1639 .1893 .2148 .1325 .1836	.1637 .1891 .2140 .1324 .1831	.1636 .1888 .2134 .1324 .1826	.1637 .1885 .2130 .1327 .1824	.1636 .1881 .2128 .1330 .1825	.1633 .1875 .2128 .1336 .1825	.1620 .1864 .2125 .1330 .1823	.1600 .1850 .2120 .1320 .1820

TABLE 575. — Total Intensity.

This table gives for the epoch January 1, 1915, the values of the total intensity, F, expressed in cgs units corresponding to the longitudes in the heading and the latitudes in the first column.

λφ	65°	70°	75°	80°	85°	90°	95°	100°	105°	110°	115°	120°	125°
0 19 21 23 25 27 29 31 33		- - - - - - - - - - - - - - - - - - -	. 466 . 478 . 495 . 509 . 525 . 537 . 548 . 557	.466 .480 .492 .513 .531 .537 .552	.469 .482 .497 .513 .525 .538 .556	. 465 . 483 . 498 . 512 . 524 . 539 . 554 . 506	. 463 . 479 . 495 . 510 . 523 . 536 . 550 . 564	.461 .477 .488 .503 .517 .533 .546 .559	.453 .468 .481 .494 .509 .522 .536 .548		-474 -487 -497 -514 -528		
35 37 39 41 43		.550 .566 .575 .582 .588	.562 .577 .587 .585 .602	.576 .586 .590 .605 .602	.584 .592 .602 .605	.580 .595 .602 .608	.577 .588 .597 .605	.574 .585 .590 .599 .605	.557 .572 .586 .592 .599	.549 .561 .575 .582 .597	.536 .552 .559 .569 .581	.528 .541 .550 .559 .570	.531 .544 .556
45 47 49	.588 .587 .578	.596	.607 .609 .616	.611 .613	.619 .622	.626	.625 .624 .638	.613 .618	.612 .617 .619	.599 .612	.596	. 586 . 584 . 592	.572

TABLE 576. - Secular Change of Total Intensity.

Values of total intensity, F, in cgs units for places designated by the latitudes and longitudes in the first two columns for January τ of the years in the heading.

Lat.	Long.	1855	1860	1865	1870	1875	1880	1885	1830	1895	1900	1905	1910	1915
25 25 30 30	80 110 83 100	.5476 .4941 .5758	.5453 .4946 .5755	. 5427 . 4941 . 5749 . 5608	.5396 .4933 .5735 .5595	.4914 .5716 .5567	. 5324 . 4906 . 5678 . 5523	. 5285 . 4900 . 5625 . 5479	. 5253 . 4889 . 5584 . 5455	.5227 .4884 .5559 .5450	-5444	.4876 .5534 .5441	. 5160 . 4861 . 5510 . 5426	.5131 .4836 .5471 .5399
35 35 35 35 40	80 90 105 120 75	.6101	.6090	.6075	.5182 .6048 .5993 - .5457 .6204	.5149 .6008 .5966 .5720 .5428	.5129 .5955 .5946 .5675 .5401	.5114 .5010 .5014 .5056 .5383 .6115	.5101 .5873 .5904 .5636 .5369	.5856 .5885 .5834 .5356 .6047	. 5092 . 5838 . 5868 . 5630 . 5342 . 6022	.5861 .5627	.5068 .5706 .5834 .5604 .5306	. 5041 . 5756 . 5800 . 5567 . 5276
40 40 40 45 45	90 105 120 65	.6161	.6236 .6159	.6240	.6246 .6040 .5739 .6126		.6209 .5988 .5709 .6082	.6190 .5978 .5707 .6052	.6169 .5967 .5692 .6022	.6151 .5058 .5070 .5094 .6180	.6133 .5955 .5047 .5980	.5944 .5621 .5962	.5948 .6089 .5912 .5581 .5923 .6121	. 5892 . 6052 . 5871 . 5546 . 5875
45 45 45 49 49	90 105 122.5 92 120	.6037	.6552 .6019 .6507	.6544 .6010 .6578	.6522 .6000 .6540 .6098	.6495	.6474 .0296 .5044 .0498	.6415 .6276 .5013 .6148	.6377 .6201 .5883 .6421	.6366 .6245 .5855 .6427	.6349 .6232 .5837 .6424	.6344 .6206 .5820	.6315 .6170 .5784 .6380 .5963	.6070 .6264 .6118 .5745 .6349 .5922

TABLE 577. — Agonic Line.

The line of no declination appears to be still moving westward in the United States, but, as the line of no annual change is only a short distance to the west of it, it is probable that the extreme westerly position will soon be reached.

Lat.	Lo	ngitudes	of the ago	nic line fo	or the yea	irs
N.	1800	1850	1875	1890	1905	1915
25 30	• —	· -	0	75.5 78.6	76. I 79. 7	77·4 80.0
35 6 7 8 9	75.2 76.3 76.7 76.9	76.7 77.3 77.7 78.3 78.7	79.0 79.7 80.6 81.3 81.6	79.9 80.5 82.2 82.6 82.2	81.7 82.8 83.5 83.6 83.6	82.7 84.4 84.0 84.1 83.9
40 I 2 3 4	77.0 77.9 79.1 79.4 79.8	79.3 80.4 81.0 81.2	81.6 81.8 82.6 83.1 83.3	82.7 82.8 83.7 84.3 84.9	84.0 84.6 84.8 85.0 85.5	84.3 85.1 85.3 85.4 85.8
45 6 7 8 9		 	83.6 84.2 85.1 86.0 86.5	85.2 84.8 85.4 85.9 86.3	86.0 86.4 86.4 86.5 87.2	86.2 86.3 86.6 87.2 88.0

TABLE 578. — Mean Magnetic Character of Each Month in the Years 1906 to 1917.*

Means derived from daily magnetic characters based upon the following scale: o, no disturbance; 1, moderate disturbance, and 2, large disturbance.

Year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year Mean.
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916	0.45 0.69 0.64 0.76 0.58 0.78 0.42 0.51 0.46 0.53 0.61	0.90 0.83 0.71 0.63 0.71 0.89 0.49 0.53 0.50 0.64 0.56	0.68 0.58 0.87 0.79 0.81 0.78 0.45 0.62 0.68 0.86	0.63 0.55 0.68 0.49 0.68 0.76 0.45 0.54 0.50 0.61	0.58 0.72 0.82 0.59 0.72 0.70 0.47 0.45 0.37 0.58 0.75 0.66	0.56 0.67 0.66 0.54 0.53 0.53 0.47 0.45 0.52 0.61 0.67	0.69 0.67 0.49 0.53 0.55 0.61 0.41 0.42 0.61 0.47 0.62 0.61	0.63 0.66 0.77 0.65 0.81 0.53 0.49 0.46 0.61 0.60 0.75 0.85	0.79 0.68 0.89 0.70 0.80 0.50 0.47 0.58 0.53 0.53 0.75 0.61	0.59 0.71 0.53 0.69 0.96 0.59 0.46 0.57 0.64 0.77 0.74	0.55 0.61 0.60 0.49 0.77 0.49 0.45 0.60 0.82 0.83 0.53	0.71 0.53 0.47 0.58 0.76 0.45 0.43 0.36 0.46 0.54 0.65	0.65 0.66 0.68 0.62 0.72 0.63 0.46 0.48 0.54 0.54 0.62

^{*}Compiled from annual reviews of the "Caractère magnétique de chaque jour" prepared by the Royal Meteorological Institute of the Netherlands for the International Commission for Terrestrial Magnetism. The number of stations supplying complete data for the above years were respectively, 30, 32, 36, 38, 34, 39, 43, 42, 37, 35, 35, Data from Sitka, Ekaterinburg, Stonyhurst, Wilhelmshaven, Potsdam-Seddin, De Bitt, Greenwich, Kew, Val Joyeux, Pola, Cheltenham, Honolulu, Bombay, Porto Rico, and Buitenzorg were employed for all of the years.

RECENT VALUES OF THE MAGNETIC ELEMENTS AT MAGNETIC OBSERVATORIES.

(Compiled by the Department of Terrestrial Magnetism, Carnegie Institution of Washington.)

			251111		Magnetic	elements		
Place.	Latitude.	Longitude.	Middle of			Inter	sity (cgs	units).
			year.	Declination.	Inclination.	Hor'l.	Ver'l.	Total.
	0 /	· /		0 /	0 /			
Pavlovsk	59 41 N	30 29 E 135 20 W	1907	1 09.9 E 30 24.0 E	70 37.7 N 74 26.0 N	. 1650	. 4694	-4975 -5805
Sitka Katharinenburg	57 03 N 56 50 N	60 38 E	1907	10 35.5 E	70 52.2 N 68 50.6 N	.1762	. 5081	.5378
Rude Skov	55 51 N 55 47 N	12 27 E 49 08 E	1915	8 44.3 W 8 09.1 E	69 17.3 N	. 1802	. 4765	. 5094
Eskdalemuir Stonyhurst	55 19 N 53 51 N	3 12 W 2 28 W	1913	17 54.9 W 16 38.0 W	69 37.3 N 68 41.4 N	.1682	.4528	.483I .4772
Wilhelmshaven	53 32 N	8 00 E	1911	11 28.2 W 8 07.6 W	67 30.7 N 66 27.1 N	.1811	· 4375 . 4290	· 4735 · 4680
Potsdam	52 23 N 52 17 N	13 04 E 13 01 E	1916 1916	8 o8.9 W	66 24.I N	.1874	. 4289	.4680
Irkutsk	52 16 N 52 06 N	104 16 E 5 11 E	1905	1 58.1 E 12 22.6 W	70 25.0 N 66 46.5 N	. 2001	. 5625	. 5970
Valencia	51 56 N 51 48 N	10 15 W 10 20 E	1913	20 19.6 W 10 40.3 W	68 og. 2 N	.1789	. 4463	. 4808
Bochum	51 29 N	7 14 E	1912	11 39.4 W 15 18.4 W	66 56.6 N	. 1846	.4338	.4714
Kew	51 28 N 51 28 N	0 19 W	1915	14 46.0 W	66 52.8 N	. 1849	.4332	.4710
Uccle	50 48 N 50 46 N	4 21 E 16 14 E	1911	13 13.9 W 6 58.2 W	66 00.1 N	. 1902	.4273	.4677
BeuthenFalmouth	50 21 N 50 09 N	18 55 E 5 05 W	1908	6 12.3 W 17 24.2 W	66 26.6 N	.1880	.4312	.4704
Prague	50 05 N	14 25 E	1912	7 50.3 W	_		-	
Cracow	50 04 N 48 49 N	19 58 E 2 01 E	1913	5 03.3 W 13 59.2 W	64 18.4 N 64 38.9 N	.1974	.4167	.4611
1 Munich	48 09 N 48 03 N	11 37 E 14 08 E	1911	9 23.8 W 9 02.4 W	63 06.2 N	. 2063	. 4068	.4561
Kremsmünster O'Gyalla (Pesth) Odessa.	47 53 N 46 26 N	18 12 E 30 46 E	1912	6 17.5 W 3 35.9 W	62 26.9 N	.2106	.4161	. 4603
Pola. Agincourt (Toronto)	44 52 N	13 51 E	1915	7 39.0 W 6 33.4 W	60 05.1 N	.2217	.3853	. 4445
Perpignan	42 42 IN	79 16 W 2 53 E 44 48 E	1910	12 44.0 11	74 43.5 N	.1599	. 5854	. 6068
Tiffis	4I 43 N 40 52 N	11 15 E	1913	3 09.1 E	56 51.1 N 56 11.7 N	. 2522	.3761	. 4528
Ebro (Tortosa)	40 49 N 40 12 N	0 31 E 8 25 W	1914	12 51.6 W	57 47.5 N 58 34.7 N	. 2330	. 3698	.437I .4422
Coimbra	38 47 N	95 10 W	1909	15 57.5 W 8 34.0 E	08 50.2 IN	.2167	- 5596	.6001
Cheltenham San Fernando	38 44 N 36 28 N	76 50 W 6 12 W	1916	6 07.6 W 14 51.7 W	70 49.9 N 54 26 6 N	.1934	.5662	. 5889
Tokio	35 41 N 32 15 N	139 45 E 110 50 W	1912	5 03.4 W 13 44.4 E	48 53.7 N 59 26.1 N	.3000	.4582	.4563
Tucson Lukiapang ** Dehra Dun.	31 19 N 30 19 N	121 02 E 78 03 E	1909	2 59.6 W 2 18.8 E	45 34.9 N 44 22.9 N	.3323	.3391	-4747
Helwan	20 52 N	31 20 E 88 22 E	T913	2 17.0 W	40 47.6 N	.3316	.3246	.4641
Barrackpore †	22 18 N	114 10 E	1914	0 32.2 E 0 13.8 W	30 58.9 N 30 51.8 N	.3740	. 2246	. 4363
Honolulu Toungoo	18 56 N	158 04 W 96 27 E	1916	9 43.8 E 0 02.6 E	39 29.2 N 23 06.1 N	. 2896	. 2386	·3752 ·4238
Alibág	18 38 N	72 52 E 65 26 W	1915	0 40.6 E 3 19.4 W	24 21.1 N	.3687	.1669	. 4047
Vieques	14 36 N	121 10 E	1911	0 40.9 E	50 56.7 N 16 18.2 N	. 2815	.3470	.4468
Kodaikánal Batavia-Buitenzorg	10 14 N 6 11 S	77 28 E 106 49 E	1914 1912	1 17.1 W 0 47.3 E	4 11.2 N 31 19.4 S	·3757 .3668	.0275	.3767
St. Paul de Loanda Samoa (Apia)	8 48 S	13 13 E 171 46 W	1910	16 12.3 W 9 59.9 E	31 19.4 S 35 32.2 S 29 54.5 S	. 2012	.1437	. 2473
Tananarive	18 55 S	47 32 E	1907	9 29.7 W	54 05.7 S	. 2533	.3409	.4319
Pilar	31 40 S	57 33 E 63 53 W	1916 1914	9 47.6 W 8 40.4 E	52 54.6 S 25 41.5 S	. 2320 .	.3069	.3847
Santiago Christchurch	33 27 S 43 32 S	70 42 W 172 37 E	1909 1914	13 57.9 E 16 44.8 E	29 57.2 S 67 59.8 S	. 2241	.5546	.5982
New Year's Island Orcadas	54 45 8 1	64 03 W‡ 42 32 W	1906	15 41.6 E 4 46.5 E	50 03.6 S 54 20.0 S	.2717	.3244	.4231
Siculation, , , , ,	00 43 0	4- 3- 11	1912	4 40.5 15	34 20.03	.2534	.3544	-4357

^{*} Baldwin Obs'y replaced by Tucson Obs'y, Oct. 1909; mean given for Jan.—Oct. '09.
** Replaced Zi-ka-wei Obs'y, 1908. † Observations discontinued Apr. 26, 1915.
‡ Provisional values taken for position of Port Cork, p. 298, American Practical Navigator, 1914 edition.

APPENDIX.

DEFINITIONS OF UNITS.

ACTIVITY. Power or rate of doing work; unit, the watt.

AMPERE. Unit of electrical current. The international ampere, "which is one-tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications, deposits silver at the rate of 0.00111800 of a gram per second.

The ampere = 1 coulomb per second = 1 volt through 1 ohm = 10^{-1} E. M. U. = 3 \times

10 ° E. S. U.*

Amperes = volts/ohms = watts/volts = $(watts/ohms)^{\frac{1}{2}}$.

Amperes \times volts = amperes $^2 \times$ ohms = watts.

ANGSTROM. Unit of wave-length = 10-10 meter.

ATMOSPHERE. Unit of pressure.

English normal = 14.7 pounds per sq. in. = 29.929 in. = 760.18 mm Hg. 32° F.

French "=760 mm of Hg. 0° C=29.922 in.=14.70 lbs. per sq. in. BAR. A pressure of one dyne per cm.²

BRITISH THERMAL UNIT. Heat required to raise one pound of water at its temperature of maximum density, 1° F. = 252 gram-calories.

Small calorie = gram-calorie = therm = quantity of heat required to

raise one gram of water at its maximum density, one degree Centigrade.

Large calorie = kilogram-calorie = 1000 small calories = one kilogram of water reised one degree Centigrade at the temperature of maximum density.

For conversion factors see page 197.

CANDLE, INTERNATIONAL. The international unit of candlepower maintained jointly by national laboratories of England, France and United States of America. CARAT. The diamond carat standard in U. S. = 200 milligrams. Old standard = 205.3 milligrams = 3.168 grains.

The gold carat: pure gold is 24 carats; a carat is 1/24 part.

CIRCULAR AREA. The square of the diameter = 1.2733 × true area.

True area = 0.785398 × circular area.

COULOMB. Unit of quantity. The international coulomb is the quantity of electricity transferred by a current of one international ampere in one second. = 10-1 E. M. U. $= 3 \times 10^{\circ}$ E. S. U.

Coulombs = $(volts-seconds)/ohms = amperes \times seconds$.

CUBIT = 18 inches.

DAY. Mean solar day = 1440 minutes = 86400 seconds = 1.0027379 sidereal day. Sidereal day = 86164.10 mean solar seconds.

DIGIT. 3/4 inch; 1/12 the apparent diameter of the sun or moon.

DIOPTER. Unit of "power" of a lens. The number of diopters = the reciprocal of the focal length in meters.

DYNE. C. G. S. unit of force = that force which acting for one second on one gram produces a velocity of one cm per sec. $= \text{Ig} \div \text{gravity}$ acceleration in cm/sec./sec.

Dynes = wt. in g × acceleration of gravity in cm/sec./sec.

ELECTROCHEMICAL EQUIVALENT is the ratio of the mass in grams deposited in an electrolytic cell by an electrical current to the quantity of electricity.

ENERGY. See Erg.

ERG. C. G. S. unit of work and energy = one dyne acting through one centimeter.

For conversion factors see page 197.

FARAD. Unit of electrical capacity. The international farad is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity = 10-9 E. M. U. = 9 × 10¹¹ E. S. U.

The one-millionth part of a farad (microfarad) is more commonly used.

Farads = coulombs/volts.

^{*} E. M. U.=C. G. S. electromagnetic units. E. S. U.=C. G. S. electrostatic units.

FOOT-POUND. The work which will raise one pound one foot high.

For conversion factors see page 197.

FOOT-POUNDALS. The English unit of work = foot-pounds/g.

For conversion factors see page 197. g. The acceleration produced by gravity.

GAUSS. A unit of intensity of magnetic field = 1 E. M. U. = \(\frac{1}{3} \times 10^{-10} \) E. S. U.

GRAM. See page 6.

GRAM-CENTIMETER. The gravitation unit of work = g. ergs.

GRAM-MOLECULE = x grams where x = molecular weight of substance.

GRAVITATION CONSTANT = G in formula G $\frac{m_1 m_2}{r^2}$ = 666.07 × 10⁻¹⁰ cm.³/gr. sec.²

HEAT OF THE ELECTRIC CURRENT generated in a metallic circuit without selfinduction is proportional to the quantity of electricity which has passed in coulombs multiplied by the fall of potential in volts, or is equal to (coulombs × volts)/4.181 in small calories.

The heat in small or gram-calories per second = (amperes² × ohms)/4.181 = volts²/

(ohms × 4.181) = (volts × amperes)/4.181 = watts/4.181. HEAT. Absolute zero of heat = -273.13° C., -459.6° Fahrenheit, -218.5° Reaumur.

HEFNER UNIT. Photometric standard; see page 260.

HENRY. Unit of induction. It is "the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second." = 10⁹ E. M. U. = 1/9 × 10⁻¹¹ E. S. U. HORSEPOWER. The English and American horsepower is defined by some authorities as 746 watts and by others as 550 foot-pounds per second. The continental horsepower is defined by some authorities as 746 watts and by others as 750 foot-pounds per second.

power is defined by some authorities as 736 watts and by others as 75 kilogrammeters per second. See page 197.

JOULE. Unit of work = 10⁷ ergs. For electrical Joule see p. xxxvii.

Joules = (volts² × seconds)/ohms = watts × seconds = amperes² × ohms × sec.

For conversion factors see page 197.

JOULE'S EQUIVALENT. The mechanical equivalent of heat = 4.185 × 107 ergs. See page 197.

KILODYNE. 1000 dynes. About I gram.

KINETIC ENERGY in ergs = grams \times (cm./sec.)²/2.

LITER. See page 6.

LUMEN. Unit of flux of light-candles divided by solid angles.

MEGABAR. Unit of pressure = 1 000 000 bars = 0.987 atmospheres.

MEGADYNE. One million dynes. About one kilogram.

METER. See page 6.

METER CANDLE. The intensity of lumination due to standard candle distant one meter.

MHO. The unit of electrical conductivity. It is the reciprocal of the ohm.

MICRO. A prefix indicating the millionth part.

MICROFARAD. One-millionth of a farad, the ordinary measure of electrostatic capacity.

MICRON. (μ) = one-millionth of a meter.

MIL. One-thousandth of an inch.

MILE. See pages 5, 6.

MILE, NAUTICAL or GEOGRAPHICAL = 6080.204 feet.

MILLÍ. A prefix denoting the thousandth part.

MONTH. The anomalistic month = time of revolution of the moon from one perigee to another = 27.55460 days.

The nodical month = draconitic month = time of revolution from a node to the same node again = 27.21222 days.

The sidereal month = the time of revolution referred to the stars = 27.32166 days (mean value), but varies by about three hours on account of the eccentricity of the orbit and "perturbations."

The synodic month = the revolution from one new moon to another = 29.5306 days (mean value) = the ordinary month. It varies by about 13 hours.

OHM. Unit of electrical resistance. The international ohm is based upon the ohm equal to 10° units of resistance of the C. G. S. system of electromagnetic units, and "is represented by the resistance offered to an unvarying electric current by a column of mercury, at the temperature of melting ice, 14.4521 grams in mass, of a constant cross section and of the length of 106.3 centimeters." = 10° E. M. U. = 1/9 × 10⁻¹¹ E. S. U.

International ohm = 1.01367 B. A. ohms = 1.06292 Siemens' ohms.

B. A. ohm = 0.98651 international ohms.

Siemens' ohm = 0.94080 international ohms.

PENTANE CANDLE. Photometric standard. See page 260.

 $PI = \pi = \text{ratio of the circumference of a circle to the diameter} = 3.14159265359.$

POUNDAL. The British unit of force. The force which will in one second impart a velocity of one foot per second to a mass of one pound.

RADIAN = $180^{\circ}/\pi = 57.29578^{\circ} = 57^{\circ} 17' 45'' = 206265''$.

SECOHM. A unit of self-induction = I second X I ohm.

THERM = small calorie = (obsolete).

THERMAL UNIT, BRITISH = the quantity of heat required to warm one pound of water at its temperature of maximum density one degree Fahrenheit = 252 gram-

VOLT. The unit of electromotive force (E. M. F.). The international volt is "the electromotive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampere. The value of the E. M. F. of the Weston Normal cell is taken as 1.0183 international volts at 20° C. = 108 E. M. U. = 1/300 E. S. U. See page 197.

VOLT-AMPERE. Equivalent to Watt/Power factor.

WATT. The unit of electrical power = 107 units of power in the C. G. S. system. It is represented sufficiently well for practical use by the work done at the rate of one Joule per second.

Watts = volts × amperes = amperes × ohms = volts / ohms (direct current or alternating current with no phase difference).

For conversion factors see page 197.

Watts \times seconds = Joules.

WEBER. A name formerly given to the coulomb.

WORK in ergs = dynes × cm. Kinetic energy in ergs = grams × (cm./sec.) 3/2.

YEAR. See page 414.

Anomalistic year = 365 days, 6 hours, 13 minutes, 48 seconds. " = 365 " 6 " 9 " 9.314 " = 365 " 5 " 48 " 46 + Sidereal 66 Ordinary

" same as the ordinary year. Tropical

INDEX.

PAGE	INGL
a particles energy of 306	Atomic heats, elements at 50° K
helium	magnetic field 401
a particles: energy of	magnitudes
production of 394	numbers
range	volumes, elements
stopping powers of substances 395	weights, international 71
	Remarks absorption coefficients 205
Abbreviations	absorption of
Aberration constant 414	ions produced by
Absolute units xxxvi, 311	velocity
Absolute zero of temperature 195, 408	Ralmer series spectrum formula
Absorption coefficients; see transmission coef.	Bar, definition
β-rays 395	Barometer, altitude, variation with 421
γ-rays 395	heights, determination of by 145
X-rays 389	reduction for capillarity 143
## Arays 395	to std. gravity 138-143
Accumulators, voltage 313	to std. temperature 137
Actinium group of radioactive substances 395	Batteries, composition, voltages 312-31
Activity, definition 435	Baumé scale, conversion to densities 10
Adaptation, rate of eye	Bessel functions, 1st, 2d orders, roots 66-1730
Adsorption, by charcoal	Blaxial crystals, formulae, + refractive indices 234
by fine particles 407	Plant -bank and land transparencies 2 19
neat of 407	Plack absorbers, long-A transparencies
Aerodynamical tables	luminosity of
Agonic line	luminous officiency of 57-59
Air: composition of, variation with air, and lat 421	Planel's constant
densities in air reduction to Vacuo	radiation, total for various temp 16, 207
dialactric etrenoth	hy wave-lenths var temp. • 175
humidity relative, via v. n. and dry	Stefan-Boltzmann constant
via wet and dry 180	-temperature for C. Pt and W
index of refraction	Bohr atom
masses 419	Beiling points: elements
moist, transparency, short \(\lambda\) 410	pressure effect
Air: composition of; variation with alt. and lat. 421 density of moist. $133-135$ densities in air, reduction to vacuo 73 dielectric strength 353 humidity relative, via v. p. and dry 187 via wet and dry 189 index of refraction 292 masses 419 moist, transparency, short λ 419 long λ 308 transmission coefficients 308 , 418 , 419 resistance, fluid 137 resistance, fluid 137 coefficients 138 ,	Numbers 409 volumes elements 2266 weights international 71 β-rays absorption 6 ions produced by 398 sabsorption 397 ions produced by 398 Balmer series spectrum formula 275 Bar, definition 435 Barometer, altitude, variation with 421 heights, determination of by 145 reduction for eapillarity 143 to std. temperature 137 Baumé scale, conversion to densities 312-31 Baumé scale, conversion to densities 194 Bessel functions, rst, 2d orders, roots 66-67 Baumé scale, conversion to densities 194 Bessel functions, rst, 2d orders, roots 63-67 Baumé scale, conversion to densities 194 Bessel functions, rst, 2d orders, roots 64-67 Bessel functions, rst, 2d orders, roots 64-67 Bessel functions, rst, 2d orders, roots 195 Bauxial crystals, formulae, + refractive indices 239 Black absorbers, long-λ transparencies 195 Black-body: brightness (photometric) of 43 Luminosity of 77-55 Luminous efficiency of 37 Planck's constant 22 Black-body: brightness (photometric) of 43 Luminosity of 77-55 Planck's constant 22 Bohr atom 24 Boltzman gas-constant (entropy) 44 organic compounds 11-55 rise of, salts in H ₂ O 60 Roltzman gas-constant (entropy) 44 Bougle decimale 26 Break-down voltage, dielectrics 304 Strightness of sky 419 of sun 260 God, 413 temperature of C, Pt and W 250 of various illuminations 256 of various illuminations 256 of vario
transmission coefficients 308, 418, 419	organic compounds
resistance, fluid	rise of, salts in H_2O 66
sparkling potentials for	water,- pressure variation i
thermal conductivity, high temperatures 254	Boltzman gas-constant (entropy)
thermometer, comparison with 59111 193	Bougle decimale
vapor pressure of water in 185-186	Brightness of sky
VISCOSITY	of store
thermometer, comparison with 59 lll 193 vapor pressure of water in 185-186 viscosity 164 wave-lengths in air, reduction to vacuo 293	of sun 260 412
Albeidos harometer 145 Altitudes by horometer 145 by boiling points of water 144 Alternating current resistances 344	temperature of C Pt and W
hy holling points of water	of various illuminations
Alternating current registeness	of various light sources 260-262
Aluminums machanical manarism	Brinell hardness
recistivity constants	British thermal unit
Aluminum: mechanical properties 79-80 resistivity constants 334 wire-tables, English units 342	British weights and measures 8-11
Metric units	Brownian movement 406
	Buoyancy correction: of densities
Ampere equivalents 311 Ampere turns xlvi Angstrom, wave-length unit 266 Antennae, resistances 364 Antilogarithms, std. 4-place, p. 28; 9 to 1.0 30 Apothecaries weights 7,8	weighings
Annere turns	γ -function
Angetram wave langth unit	γ-rays: absorption coemcients
Antennae resistances 264	absorption of
Antilogarithms std 4-place n 28' o to 10 30	Cadmium line and A of intern prim atd
Anotheraries weights 7.8	Calaita grating grans
Aug draw Name 266-267	Calibration points for temperatures
Arc, iron, lines	Calcite grating space
Astronomical data	Calorie definition
timosphere, composition, art. and fat. var 421	Canal rays
density, altitude variation 421	Candle, energy from
height of 421	international standard
homogeneous, height of 421	for thermoelements
pressure, altitude variation 421 'Atmosphere ": value of pressure unit 421, 435	Capacity of wires for electrical current
Atmosphere : value of pressure unit 421, 435	Capacity, specific inductive: crystals
Atmospheric water vapor	gases, f(t, p) 356-357
Atom: Bohr	liquids 357
tion, hydrogen: mass, mean free path 408	liq. gases 359
radius, mean velocity 408 Rutherford 401	solids 360
Rutherford 401	standard solutions . 360

nacr i	PAGE
PAGE	Crystals: diffracting units, X-rays 400
correction to barometer	elasticity 102-103
Carcel unit 260	refraction indices: alums, quartz 281
Cathode rays:	rock-salt, silvine 279
penetration denths	refr. indices: minerals, isotropic 282
Capillarity	Crystals: diffracting units, X-rays
Cathodic sputtering	biaxial
Weston normal	(+-) . 286, 287
Weston portable xliii	miscel. uniaxial 285 biaxial 289
voltaic, composition, voltages 312-313	Cubes of numbers
Centipoise	Cubes of numbers
Charcoal, adsorption by	· liquids 221
Charge, elementary electrical 408	solids
Centipoise 155 Characteristic X-rays 387-392 Charcoal, adsorption by 407 Charge, elementary electrical 408 Chemical energy data 241-246 Coals, heats of combustion 242 Collision frequencies, molecules 399 Colloids 406-407 Color: eye sensitiveness to 256-258 indices of various stars 411 lights, of various 261 screens 306-307 complimentary colors 307 temperature of C, Pt and W 250	equivalents 311
Collision frequencies, molecules	Comin modium etendend 208
Colloids	point and constant, magnetic
Color: eye sensitiveness to	Cylindrical harmonics (Bessel) 1st and 2nd deg 66
lights, of various	general formulæ . 68
screens	
complimentary colors 307	Day, length of sidereal 414
temperature of C, Pt and W	Declination, magnetic: secular change 428
Combustion, heats of: carbon and misc. cpds 241	Degree on earth's surface, length of
explosives 243-244	Densities in air, reduction to vacuo
Tuels	Densities: air moist, values of 12/700 133-135
Compustion, neats of: carbon and musc. cpus	alcohol ethyl aqueous
solids 74 seq, 108	allovs
iductivity, electrical: see resistivity 322-332	aqueous colutions 122, 159-163 Baume equivalents 109
electrolytic:	Baumė equivalents 109
alloys	cane subar, aqueous
ionic	earth
sp. molecular 347 limiting values 348	elements chemical
temp. coefs 348	glycerol, aqueous
tivity, thermal: alloys, metals 213	inorganic compounds 201
building materials 215	Clements Chemical
earth	mercury — 70° to +260° C
high temp	minerals
gases	organic compounds 203
nigh temp, 214	planets
metals, high temp 213	stars
liquids 217 metals, high temp 213 salt solutions 216	stars 413 stars 413 sucrose, aqueous 156 sulphuric acid, aqueous 126 tin, liquid; tin-lead eutectic 115 water of 10 15 C 10 10 10 20 20 20 20
water	Sulphuric acid, aqueous
'onstants: mathematical	water, o° to 41° C.—10° to 250° C 118 120
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	water, o° to 41° C, -10° to 250° C.118, 120 woods
radiation, σ , C_1 , C_2	Developers and resolving power of photo. plate 263
Contact difference of potential 314, 316, 404 Contrast, eye sensitiveness to	Diamagnetic suscentibility temperature offeet
Convection, cooling by	Diameter molecules 399 some organic molecules 400 Dielectric constant (cp. industries constant)
Convection, cooling by	some organic melecules 400
Conversion factors: general formulae, see introduction.	organic constant: (sp. inductive capacity) . 356-360
Baumé to densities 109	Dielectric constant: (sp. inductive capacity) 356-360 crystals
horse-power	liquids
Cooling of bodies	liquefied gases 359
Cooling of bodies	standard solutions
wire, atternating current resistance 344 wire tables, English units 336	Standard solutions
metric units	Dielectrics, volume and surface resistances 331
Cernuscle (Thomson)	Diffusion: 12
Corpuscular radiation (X-rays) 387-388	good solutions into water 166
Cesines, circular, natural, (° ')	integral 60
(radians) 37–40	ionie
logarithmic, (°')	vapors 168
nynernous natural locarithmia	24365 167, 168 167, 168 167, 168 167, 168 169
(Otangents circular natural (° ')	Digit 217
(radians) 37–40	Dimensional formulae
(radians)	reasoning
hyperbolic, natural logarithmic	Diopter
Coulomb, electrical equivalents	Diopter XXV Dip, magnetic, 1915 value, secular variation 435 Disk, distribution of brightness over sun's 418 Distance earth to meccal the magnetic forms and the magnetic forms are secular variation 430 Distance earth to meccal the magnetic forms are secular variation 430 Distance earth to meccal the magnetic forms are secular variation 430 Distance earth to meccal the magnetic forms are secular variation 430 Distance earth to meccal the magnetic forms are secular variation 435 Distance earth to meccal the magnetic forms are secular variation 430 Distance earth to meccal the magnetic forms are secular variation 430 Distance earth to meccal the magnetic forms are secular variation 430 Distance earth to meccal the magnetic forms are secular variation 430 Distance earth to meccal the magnetic forms are secular variation 430 Distance earth to meccal the magnetic forms are secular variation 430 Distance earth to meccal the magnetic forms are secular variation 430 Distance earth to meccal the magnetic forms are secular variation 430 Distance earth to meccal the magnetic forms are secular variation 430 Distance earth to meccal the magnetic forms are secular variation 430 Distance earth to meccal the magnetic forms are secular variation 430 Distance forms
Coulomb, electrical equivalents	Distance earth to mean
Crova wave-length	Distance earth to moon
	414

PAGE	PAG
Distance of the stars, nebulae and clusters 412	Elements: evaporation rate, Mo, W, Pt 17
Dyes, transparency of 301	expansion, cubical (gaseous) 22
Dynamical equivalent of thermal unit 197	
	hardness
e (base of natural logarithms)	latent heat of evaporation
e (elementary electrical charge) 408	melting naints
to the following determines and the following set of the following set	hardness
e^x , e^{-x} , and their logarithms $x=0$ to 10 48	Peltier effect 317, 320-32
x fractional 56	periodic system 409-41
e^{x^2} , e^{-x^2} $x = 0.1$ to 5.0 54	resistance, electrical 323-32
$\frac{\pi}{e^4}x, -\frac{\pi}{4}x$ $x=1 \text{ to 20 } \dots $	specific heats
e^4 e^4 $x=1$ to 20 55	spectra
$\sqrt{\pi}$. $\sqrt{\pi}$.	thermal conductivities
$e \xrightarrow{x} e \xrightarrow{x} x$	thermo-electric powers
$e^{x} + e^{-x}$ $e^{x} - e^{-x}$	Thomson effect
$e \frac{\sqrt{\pi}}{4}x, e - \frac{\sqrt{n}}{4}x$ $e^{\frac{x}{4} + e^{-x}}, e^{\frac{x}{4} - e^{-x}}$ and their logarithms 41	valencies
Earth: atmospheric data 421	vapor pressures
conductivity, thermal 422 degrees on, length of 416	Elementary electric charge 40
degrees on, length of	Elements, magnetic, at various observatories 43
elements, percentage composition 423	Elliptic integrals 43 Elliptic integrals 46 Emanation (radioactive) 39 Emissivities, radiation 249, 25 Energy kinetic, definition 42 Energy, minimum visible to eye 26 solar, data relating to 418–42 of candle radiation 26
geochemical data	Emissivities radiation
geodetical	Energy kinetic definition
moon distance of 414	of molecule
rigidity 427	Energy, minimum visible to eye
rigidity	solar, data relating to 418-42
spheroid constants	of candle radiation
sun, distance of 414	of sound waves
temperatures 420, 427 viscosity 427 Efficiency of various lights 262 Elastic limit (see mechanical properties) 74 Elastic modulus of rigidity, —temp. variation 100	Solial, atta relating to 416-42 of candle radiation 26 of sound waves 14 Entropy constant (Boltzmann) 40 Entropy of steam 234-24 Equation of time 41 Equilibrium radioactive 39 Equivalent, electrochemical 345-34 mechanical, of heat 19 Erg 43
Efficiency of various lights 202	Equation of time
Elastic limit (see mechanical properties)	Equilibrium radioactive
Elastic modulus of rigidity, —temp. variation 100	Equivalent, electrochemical
Elasticity (see mechanical data) 74	mechanical, of heat
crystals 102, 103	Erg
Elasticity (see mechanical data)	Erichson values
Electrical charge, elementary 400	Errors, probable 57-5
Floatrical units international	Futgatia mixtures molting points
Electrical dharge, elementary 408 Electrical equivalents 311 Electrical units: international	Erg
practical	Expansion, cubical; gases
Electric lights, efficiency of	Expansion, cubical: gases
Electric, tribo-, series (frictional) 322	
Electrochemical equivalents	linear: elements
practical .xxxvi Electric lights, efficiency of . 262 Electric, tribo-, series (frictional) .322 Electrochemical equivalents . 345, 346 silver .345 Electrolytic conduction: ammonium acetate .352	Soliton 22
equivalent conductance 345–346	miscellaneous 242-24
hydrolysis	
ionic	diffusion integral 6 gudermanians 4 hyperbolic functions (nat) 4 hyperbolic functions (logs) 4
ionization water 352	gudermanians 4
solutions 345-346 spec. molecular 347	nyperbolic functions (nat) . 4
limiting value μ 348	ncohahility integral
temp. coef 348	Eye: adaptation rate
Electro-motive force: accumulators 313	color sensitiveness
contact 314, 316, 404	contrast sensibility
Peltier 321	Fechner's law
standard cens	grare sensibility
pres effect 220	minimum energy visible
voltaic cells 312-313	miscellaneous data
temp. coef. 348	Eye: adaptation rate color sensitiveness contrast sensibility 25 Fechner's law glare sensibility 25 minimum energy visible 25 minimum energy visible 25 persistence of vision pupil size for various intensities 25 Purkinje phenomenon 25 sensitiveness to light 25 sensitiveness to light 25 sensitiveness to light 25 curies of vision 25 sensitiveness to light 25 curies and differences 25 curies bold gensitiveness to 25 curies bold gensitiveness to 25 curies bold gensitiveness 25 curies 25 cur
Weston portable xliii	pupil size for various intensities
Electromagnetic system of units xxxi	Purkinje phenomenon
Electromagnetic/electrostatic units=v xxx, xxxvi	sensitiveness to light
Electrons: -, + 401	small dif. of color, sensitiveness to
amnity of elements 404	threshold sensitiveness
elementary charge	visionity of fadiation, relative 250
emission from hot bodies	Factorials: γ function, $n=1$ to 2 6
ionization potentials 403	n!, n=1 to 20 4
mass 408	n I, n=1 to 20
photo-electric effect 403	Falling bodies (Stokes' law)
radius 408	Farad
resonance potentials 403	Faraday xliv, 311, 34
work required to remove 403	Faraday constant
	Fechner's law
atomic numbers	Field, magnetic; earth's, components
atomic volumes	Ferromagnetism 36. Field, magnetic: earth's, components 428-43. metals, behavior of in 365-37.
boiling points 199	resistance of metals in
compressibility	rotation of plane of polarization . 37
conductivity electrical 323-326	thermo-galvanometric effects 38
thermal	Filaments, heat losses from
earth's crust occurrence in	Flame temperatures
cardo crust, occurrence at , , , , , , 423	randed as a same a same a same a same

PAGE	PAGI
	Hardness: (see mechanical properties)
Fork, tuning, temperature coefficient	Brinell test 74
Formation, heat of, for elements	elements
Formulæ: conversion	scleroscope test
Formulæ: conversion	Harmonics: cylindrical (Bessel)
	roots, formulæ Go
Fraunhofer lines, solar, wave-lengths 265 Free path of molecules 399 Freezing mixtures 211	zonal
Free path of molecules 399	Heat: adsorption heats
Freezing mixtures	atomic heats of elements
point, lowering of for salt solutions 208	complication avalogives 243-244
point of water, pressure effect 200	fuels 242
Frequencies, corresponding to wave-lengths 293 in air, reduction to vacuo 293	72509
In air, reduction to vacuo 293	organic compounds
Friction, mechanical internal of metals, temp. variation 154 internal of metals, temp. variation 101	conductivity: metals (also high temp.) 213
skin (air resistance)	gases 217, 254
Frictional electricity series	liquids
Frictional electricity series	diffusivities
cylindrical harmonics 66-68	
elliptic 69	formation
exponential	latent heat of fusion
gamma 62	
hyperbolic 41 probability	$ m NH_3 \ \ .23$ $ m steam \ \ .23$ $ m various \ \ .232-233$
probability 56-58	various 232-231
Ungonometric, circular (°') 32	
trigonometric, circular (radians) 37	losses from incandescent wires
Fundamental frequency (Rydborg)	mechanical equivalent of 197
Fundamental standards	neutralization, H_2SO_4
hyperbolic	losses from incandescent wires 255 mechanical equivalent of 197 neutralization, H_2SO_4 24 solution 226 specific alloys 227 ammonia, liq. 226 electricity 217
Fusion current for wires	specific: alloys
Fusion, latent heat of	ammonia, Ilq
	electricity
Florest miss	elements
Gages, wire	gases
Gamma function	mercury
Class assured and	minerals, rocks
Gas thermometry	silicates
Gases: absorption of by liquids	solids
absorption of by water	solids
absorption coef: long-wave radiation 309	vapors
X-rays	water
Gas thermometry 192-194 Gases: absorption of by liquids 172 absorption of by water 170-171 absorption coef: long-wave radiation 309 X-rays 389 compressibility 104 conductivity, thermal 217 critical data 212 densities 127	Vapors
conductivity, thermal 217	Heating effect radium and amounties
critical data	Hefner unit
	Heights, barometric determination of
dielectric constants	boiling point of water determination of
strength	Helium, production, relation to radium
diffusion	Henry
diffusion	Heterochromatic sensibility of eye
expansion of	Hertzen wave-lengths 408
flow in tubes	High-frequency electric resistance of wires 344
ignition temperatures of mixtures 244	Herizontal intensity earth's field, 1915 43:
magnetic susceptibility	Horse power Humidity relative years program and decider var. 431
magnetic-optical rotation	Humidity, relative: vapor-pressure and dry
retractive indices	wet and dry
resistance (aerodynamical) 150-153	Hydrogen: atomic data, mass, radius, etc
cound velocity of in	wet and dry
specific heats (also c. /c.)	thermometer 192-194
viscosity	Hydrolysis of ammonium acetate
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hydrolysis of ammonium acetate Hydrostatic pressures of Hg and H ₂ O columns Hyperbolic functions, natural and logarithmic Hysteresis 265, et esq. 275, 401
f(t), 1+0.00367, logs 128-132	Hystorogic functions, natural and logarithmic 41
Gauss	305 ct seq, 375-376
Gaussian system of units xxxv	Ice, allotropic modifications
Geochemical data 423	freezing point, pressure effects 200 Ice-point, thermodynamic scale 193
Geodetic data 424-427	Ice-point, thermodynamic scale
Gilbert	agricult temperatures gaseous unxtures 242
Glare sensibility of eye	
Glasses: refraction indices, American 277	Inclination (dip) of magnetic needle, 1915 430
German, temp. var 278	Index of refraction: eight
resistance electric, temp. var	Index of refraction: air
Glass vessels, volume of	crystals see minerals atc againg
Gram-molecule, definition	fats
Gram-molecule, definition	fluorite, f(t)
Cravitation constant.	gases and vapors
Gravity, acceleration of, altitude variation 424	fats
latitude variation 424	
observed values 425-426	
Gravity specific, see densities.	inquened gases
Gudermanians 41	notale
Gyration, radii of 70	metals
	uniaxial 28
Hall effect, temperature variation	biaxial 28
	0 0 0 0 20

PAGE		PAGE
Index of refraction: miscellaneous, isotropic 283	Length, standards of	. xxxiv, 5
uniaxial , 285	Light: eye, sensitiveness of to	256-258
biaxial 289	flux, definition	259
nitroso-dimthyl-aniline 280	intensities on various days	250
quartz 280	lambert, definition	256
quartz <t< td=""><td>least visible to eye mechanical equivalent</td><td> 261</td></t<>	least visible to eye mechanical equivalent	261
salt solutions 291	mechanical equivalent	261
silvine	photometric standards	200
solids, blaxial 286, 289	units	259
ISOUTOPIC 282, 283	rotation of plane by substances	295-297
etendard media for microscope	rotation of plane by substances	
standard media for microscope. 294	reflection of formula	3/0-303
Vapors	function of "n"	207
Vapors	reflection of: formulæ function of "n" reflecting power: metals	205-208
Inductive capacity, specific crystals 361	pigments powders rough surfaces scattered light temperature variation sensitiveness of eye to	299
gases, f(t, p) 356-357	powders	300
Sales 10 17 3 3 3 3 3 3 3 3 3	rough surfaces	299
liq. gases 359	scattered light	300
solids	temperature variation .	300
standard solutions 360	sensitiveness of eye to	256-258
Inertia, moments of	transparency to: crystais	30,5
anorganic compounts; boiling points 201	transparency to: crystals	301
melting points	giasses, American	303-304
soluihilities 201	water	302
Insulators: break-down potentials	velocity of	408, 414
dielectric properties	wave-lengths: cadmium std. line	266
resistance, thermal	elements	269-271
Standard solutions 360 3	Fraunhofer lines	265
Integral: diffusion 60	solar, Rowland	272
Integral: diffusion	glasses, American Jena water velocity of wave-lengths: cadmium std. line elements Fraunhofer lines solar, Rowland Std. iron lines Lights, brightness of various color of various efficiency of various electric photographic efficiency of	266-267
formulæ	Lights, brightness of various	260
gamma function 62	officients of various aleatric	261
Intensity horizontal court fall	photographic officiency of	202
secular var 431	photographic efficiency of visibility of white lights Light-year	204
Intensity total earth field rore	Light-year	200
International candle standard	Limits of spectrum series	276
International candle standard	Limits of spectrum series Linear expansion coefficients Liquids: absorption of gases by	218-219
electric units	Liquids: absorption of gases by	172
standards xxxviii	Baumé density scale	IOQ
standard radium 304, 308	capillarity of	173-174
standard wave-lengths 266-267	capillarity of combustion heat, fuels	242
Intrinsic brightness of various lights 260	compressibilities	107
Ionic charge	conductivity, thermal	217
diffusion	densities	314-310
Tanization notautials	mercury f(t)	115-11/
Tons produced by a. B. v rays	water, f(t)	118-120
work required to detach	dielectric constant	357-360
Ions, conductance of	strength	• • 355
heat of formation	diffusion, aqueous solutions	166
Iron, magnetic properties (steels) 365-376	expansion coefficients	221
standard wave-lengths, international 266-267	expansion coefficients	221
200000000000000000000000000000000000000	magnetic optic retation	242
	magnetic suscentibility	380
Joule	notential dif with substances	211-216
Joule magnetic effect	refractive indices	280-201
W X-ray spectrum series	sound velocity in	147
K X-ray spectrum series	specific heats	228
Kinetic energy	surface tensions	173-174
molecular 408	thermal conductivity	217
Kinetic energy	expansion, cubical	221
1 V 201	vapor pressures	175-187
L X-ray series 391 Lambert, definition 256, 259 Latent heat of fusion Latent heat of pressure variation liq. ammonia Latent heat of vaporization: ammonia formula steam tables	compressibilities conductivity, thermal contact emf densities mercury, f(t) dielectric constant strength diffusion, aqueous solutions expansion coefficients expansion coefficients fuels, combustion heats magnetic optic rotation magnetic susceptibility potential dif. with substances refractive indices sound velocity in specific heats surface tensions thermal conductivity expansion, cubical vapor pressures viscosity, absolute specific, solutions Logarithms: standard 4-place	157-159
Latent heat of fusion	Logarithms: standard 4-place	103
Latent heat of pressure variation liq. ammonia 232	1000 to 2000	20
Latent heat of vaporization: ammonia , 232	rooo to 2000 anti-, standard 4-place	28
formulæ 232	.9000 to 1.0000	30
DUCATA 000200 8 8 8 8 204	Logarithmic functions	40
various	Longitudes of a few stations	420, 434
Latitude correction to barometer	Long-wave transmissions	300
of a few stations 420, 434	Loschmidt's number	408
Least squares: formulæ	Lowering of freezing points by salts	208
propantity integral, arg, nx 50 x/r 57	Lubricants for cutting tools	154
inverse 60	Lumen	259
$0.6745\sqrt{1/(n-1)}$	Luminosity of black-body, f(t)	
	Lumar parallax	
	Lux	259
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M V roy chectrum	201
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M X-ray spectrum	39
Legal electrical units	Maclauren's theorem	I;

PAGE	PAGE
Magnetic field: atomic 402	Mechanical properties: definitions: modulus of rupture 74
bismuth, resistance in	proportional limit. 74
Ettinghausen effect	scleroscope 74
	ultimate strength,
Hall effect 385 Joule effect 365	compr. 74
Leduc effect	tension 74
Nernst effect	yield point
nickel, resistance in	
optical rotation polarization . 378-383	brasses 83–85 bronzes 83–85
resistance of metals in	gannas 9. 9.
Villari effect	iron
Wiedemann effect 365	miscel 88–89
Villari effect	steel
Magnetic properties: cobalt, o° to 100° C 373	white metal 89
	aluminum:80-81
Curie point	brick and brick piers 93
demagnetizing factor for rods . 374	brick and brick piers 93
diamagnetism, f(t) 365, 372 ferro-cobalt alloy 370	cement 90
ferro-cobalt alloy 370	clay products
ferromagnetism	concrete
hystersis	concrete
cast. intense fields	copper:
pure	wire 82–83
soft, o and 100° C 371	heat treatment for steels 76
very weak fields 370	iron:
wrought	alloys
magneto-strictive effects 365	leatner beiting 94
magner steel	ρ-ratio extension/contraction. 101 rigidity moduli f(t) 100
maxwell 311, 365	rope, manila
maxwell	steel-wire
paramagnetism, 1(t) 305, 372	rubber, sheet 94
saturation values for steels 373	
otoole of and	anoys 77
energy losses 376	heat treatment for 76
magnet steel 370	semi
manganese steel 373	wire
energy losses	stone products
tool steel 373	terra-cotta piers
tool steel 373 transformer steel . 371, 376	tungsten 89
Steinmetz constant	white metal 89
Steinmetz constant 375	white metal
temperature effects 371-373	metric unit . 9;
Magnetism terrestrial: agonic line 425	hard: English unit . 98
	metric unit 90
dip 422 inclination 422 intensity, horizontal 423 total 424	Melting points: alloys
intensity horizontal 422	eutectics 20
total 424	inorganic compounds 20
magnetic character yearly 425	lime-alumina-silica compounds 20
observatories, elements at . 426	organic compounds 21;
Magneto-optic rotation, gases	paraffins 20;
Kerr constant 383 Kundt constant 383	pressure effect 200
liquids	water-ice, pressure effect 200
solids 379	Meniscus, volume of mercury
solids	Meniscus, volume of mercury
Megnitudes absolute steller	electric resistance standard xxxvii
stellar	meniscus, volume of 14.
Mass absorber	pressure hydrostatic of columns
Mass: electronic, f(velocity) 401, 408	specific heat
fundamental standard	thermometer 190-19
Maca absorption coefficient for X-rays 280	vapor pressure
Masses, stellar	Metals: conductivity, thermal
Mathematical constants	potential differences, Volta 316, 40
	reflection of light by 295-296, 29
Man free noth H molecule	refraction indices
Maxwell	optical constants 295-29
Measures, weights: customary—metric	resistivity, temperature coefficient 32
English—metric 5-7	pressure effect
Mechanical equivalent of heat 197	Volta emf
light	Metallic reflection
Mechanical properties: definitions	Meteors, chemical composition
Erichson value 74	Meter-candle
hardness 74	Metric weights and measures, equivalents 5-1
moduli 74	Mho

PAGE	PAG
Micron, \$\mu\$. \$\mathbf{t}\$, 7,436 Milky way, pole of .	Pendulum, second: formula; latitude variation 42 Penetration cathode rays 38 ligh speed molecules 38 Pentane candle 26 thermometer 19 Periodic system; Hackh 41 Mendelejeff 40 Permeability, magnetic 365 45 Persistence of vision 25 Petrol-ether thermometer 19 Phosphorescence (radio-active excitation) 39 Phot 25 Photoelectricity 40 Photographic data: intensification 26 40 Ights, efficiencies 26
Milky way, pole of 414	Penetration cathode rays
Minerals: densities	high speed molecules
refractive indices; blaxial 286	Pentane candle
isotropic 282	Thermometer ,
	remome system; Hackn
specific heats	Danmachility magnetic
Minimum energy for fight sensation	Perceptage of vision
Mobilities ionis	Potrol other thermometer
Mixtures freezing	Phosphoraganae (rudio active evoltation)
	Phot
Mogendorf series formula	Photoelectricity
maintenance of	Photographic data: intensification
transparency to radiation 26 to 77// 411	lights, efficiencies
to 2011	lights, efficiencies
Molecular collision fraguencies 200	resolving power
conductivities, equivalent	resolving power
spacific 246—248	Photometric definitions, units
crystal units 400	Photometric definitions, units
diameters and 100	Physiological constants of the eye
free paths	Pi (π)
heats of adsorption	Pigments, reflecting powers f(λ) 29
liquefaction 407	Pipes, organ: pitch
kinetic energy 408	Pigments, reflecting powers f(\(\lambda\) 29 Pipes, organ: pitch
magnitudes	organ pipes
number in cm ³ , 76 cm, 0° C 408	Voice, limits
gram-molecule 408	rianck s " h
kinetic energy	Plane air recistance to
weights of colloids 406	Planetary doto
Moments of inertia: earth 427	Platinum resistance thermometer
formulæ 70	thermoelectric thermometer
Month 414, 436	thermoelectric thermometer
Moon: albedo 417	Poissan's ratio
distance from earth, parallax , 414	Polonium radioactive series
radiation compared with sun's 407	Polarized light: reflection by
Musical scale	Poisson's ratio Polonium radioactive series
tone quality	magnetic
Mutual induction 370	
0.	Posttive rays 38 Potential (emf): accumulators 312 cells voltaic 312-31 contact 314, 316, 40
Nernst thermomagnetic potential difference 385	Potential (emf): accumulators
Neutral points, thermoelectric 317	cells voltaic 312-31
Neutralization, heat of	contact 314, 316, 40
Nickel, Kerr's constants for 383	ionizing 40
magnetic properties, o to 100° 373	Peltier
resistance in magnetic field 384	sparking, kerosene 35
Nitrogen thermometer	various 353–35
Nitroso-dimethyl-aniline, refractive index 280	resonance 40
Nuclear charge, atomic 393, 401	standard cells 31
Number of stars 417	thermo-electric 317-32
Numbers atomic 409	pressure enect 32
X-ray spectra and 390-393	vyestoli normai XI
Numbers: magnetic character 433	Poundal portable
sun-spot 415	Procession 47
Nutation 414	Pressure air on moving surfaces
	barometric reductions capillarity
Observatories, magnetic elements at 434	gravity 138-14
Ohm: xxxvii, xxxviii, 311	temperature
electrical equivalents 311	boiling water
Ocrsted xlvi Oils, viscosity of 156, 157 Optical constants of metals 295	contact 314, 316, 40 ionizing
Oils, viscosity of	mercury columns
Optical constants of metals	
Optical rotation magnetic 378–383	water columns
Optical thermometry	Pressure effect on boiling points 200
Organ pipes, pitch	Water columns
Organic compounds: boiling points 203	resistance electrical 320
densities 203	thermoelectric powers 320 Pressure vapor: alcohol, methyl and ethyl
melting points 203	Pressure vapor: alconol, methyl and ethyl 178
Organic salts, solubilities 170	aqueous (steam tables 234) . 103-100
Oscillation constants wireless telegraphy 362 times of wires, temperature variation 101	elements
times of wires, temperature variation 101	mercury
Overtones	water vapor (ctoom toblec 224) -82 -84
π pl	
P-limit (proportional limit)	Probable errors 56-55 Probability integral 56-55 inverse 66 Proportional limit (P-limit) 74 et seq
Parsec 414	inverse
Parallax, solar, lunar	Proportional limit (P-limit)
stellar 412, 415	Pupil diameter
Paramagnetism	Pupil diameter
Partials (sound) 149	
Particle, smallest visible	Quality, tone
Peltier effect:	Quality, tone
pressure effect 320	transmission of radiation by 30;

PAGE	PAGE
R, gas constant 408	Refraction index: air, $f(\lambda)$
ρ, Poisson's ratio	alum
Radian	crystals, see minerals 279-289
circular functions in terms of 37	fats
Radiation: black-body, formulæ	fluorite, f(t)
$f(\lambda,T)$ 247, 248 total, $f(t)$ 247	gases
candle	Jena, $f(\lambda, t)$
constants, σ , C_1 , C_2 ,	Iceland-spar 280
cooling by, across airspaces 253	liquids 290 liquefled gases 289
constants, σ , C_1 , C_2	microscopic determination media . 294
ordinary temperatures 253	minerals, blaxial, positive 286
pressure effect	noggtive 2X7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	isotropic
f(λ) 256, 258	uniaxial, positive 284
moon's compared to sun's 415	negative 284
Planck's formula	miscellaneous, blaxial 209
σ, Stefan's formula 247 solar constant of 418	uniaxial 285
variation with latitude 420	mid 050-thincengi amimi 200
month 420	oils
Stefan's formula	quartz
sun's to earth 418	rock-salt, f(t) 279 salt solutions 291
sun's compared to moon 415 temperature as function of 250	silvine
transmissibility of by air, moist . 308, 419	Vapors
aium 305	vapors
atmosphere . 308, 419 crystals, $f(\lambda)$ 305	Relative humidity, vapor pressure and dry 187
crystais, I(\lambda) 305	wet and dry
dyes, $f()$ 301 fluorite, $f(\lambda)$ 305	Resistance, air (aerodynamical)
glass, f(\lambda) .302-304	angle factor
ice-land spar 305	aspect factor 152
lamp-black 309	shape factor
$\begin{array}{c} \text{long-wave, } f(\lambda) & 309 \\ \text{quarty, } f(\lambda) & 305 \end{array}$	size factor
rock-salt. $f(\lambda)$. 305	sha iriciion
water, $f(\lambda)$ 307	skin friction
quartz, $f(\lambda)$. 305 rock-salt, $f(\lambda)$. 305 visibility of by eye 256, 258	alloys, f(t) 323, 327-328
Radii of gyration	alloys, f(t)
a rays helium	alternating current values 342, 343
ions produced	antenna (wireless)
kinetic energy 396	antennæ (wireless)
number produced 396	reduction to standard temperature 335
production of	wire-tables, English units 336
stopping powers for 395	metric units . 339 dielectrics, volume, surface
velocity, initial 396 actinium group 396	electrolytic, see conductivity 345–352
actinium group 396	equivalents
β rays: absorption coefficients . 395, 397	glass, f(t)
ions produced 398 velocities 397	glass, f(t)
γ rays: absorption coefficients . 395, 397	high temperature values
ions produced 398	low temperature values
constants, various 396-397	mercury resistance standards xxxviii
Curie unit	metals, f(t)
general characteristics 304	porcelain, f(t)
heating effects	nressure effect.
	standards, mercury xxxviii
ions produced by α , β and γ rays . 398 isotopes	surface, of dielectrics
Mache unit	thermometer, platinum resistance 195 volume, of dielectrics
phosphorescence 394	wire, auxiliary table for computing
1018 produced by 43, 9 and 9 rays 398	wire, auxiliary table for computing . 322 wire tables, aluminum, common units . 342
spectra 398	metric 343
thorium group	copper, common units 336
transformations 396, 410	Pagalring power what a little metric 339
transformation constants 396	Resolving power photographic plate
vapor pressure of emanation 398	Resonance potentials (spectra) 403 Retina, physiological data 258
Radium emanation, vapor-pressure	sensitiveness to light and colors 256-258
spectra	RIGIGILY OF PARTY
Radius hydrogen atom	Kigidity moduli, f(t)
	Ritz spectrum series formula
Renection of light: formulæ	Ritz spectrum series formula 275 Rocks, specific heats of 229 Rock-salt, index of refraction 279
Reciprocals 15 Reflection of light formulæ 297 long-wave 309 metals 295-298 miscellaneous 298 $f(n,l)$ 297 pigments dry, $f(\lambda)$ 299 polarization by 297 rough surfaces 200	Rods in reting of eve
miscellaneous	Rods in retina of eye
f(n,i)	absorption coefficients (mass) 383-393
pigments dry, $f(\lambda)$ 299	atomic numbers and spectra 300-303
polarization by 297	cathode efficiencies
	corpuscular radiation
stellite	energy relations
temperature 300	258

PAGE	PAGE
Röntgen rays: heterogeneous radiations 387	Solutions: refractive indices 291
homogeneous radiations	specific heats
independent radiations	surface tensions 7 mg
intensity	vapor pressures
ionization ,	Verdet's constant
K series of radiations 390	viscosities, specific 159, 163
L series of radiations	Sound, velocity of: gases
M series of radiations 392	liquids
monochromatic radiations 387	solids
secondary radiations	waves, energy of
spectra: absorption	Sparking potentials: air, alternating potentials 353
K Series 390	large spark-gaps, f(p) 354
M series	steady potentials 353
tungeten	dielectrics
Note Section 18 18 18 18 18 18 18 1	Kerosene
Roots of Bessel functions, 1st and 2nd orders 68	Specific heat of electricity
Roots square	elements
Roots square 15 Rope, manilla, mechanical properties 95 steel wire, mechanical properties 79 Rotation of polarized light 310 magnetie 378–382 Rough surfaces reflecting power	range also a /a
steel wire mechanical properties	Basto, also cp/cv
Retation of polarized light	margury 227
magnetic 278-282	minerals and rocks
Rough surfaces, reflecting power	rocks and rocks
Rowland solar wave-lengths	gilicated
Rupture, moduli of	solids
Rutherford atom	Vanora
magnetic 378-382	Steady potentials 353
Rydberg series formula (spectrum)	Specific gravities (see densities)
	conversion of Baumé
σ, Stefan-Boltzmann	Specific inductive capacities: crystals
Salt solutions: boiling point raising 210	gases, f(t,n) 356-357
conductivity thermal 216	liquids, f(t) . 357-359
freezing point lowering 208	solids 360
vapor pressure	std. solutions 360
Scales, musical	Specific molecular conductivity 347-348
Scleroscope (hardness test) 74	Specific resistance, see resistivity 323-326
Screens, color 306-307	Specific viscosity:
freezing point lowering 208 vapor pressure 181 Scales, musical 148 Sceleroscope (hardness test) 74 Secreens, color 306-307 Second pendulum, formula 419 sea-level values, $f(\phi)$ 419 Second y batteries 313 X-rays 387 X-rays 387 Self induction 376 Seessation, Minimum energy of light for 261 Sensitiveness of eye to light and radiation 256-258 Series, mathematical 256-358	Specific resistance, see resistanty 323–320 Specific viscosity: 159, 163 Spectrum: black-body intensities 247, 248 elements, international units 267, 270 cye sensitiveness, $f(\lambda)$ 256–258 iron standards, international units 266, 267
sea-level values, $f(\phi)$ 419	elements, international units 267, 270
Secohm xliv	eye sensitiveness, $f(\lambda)$
Secondary batteries	iron standards, international units . 266, 267
X-rays	radium
Self induction	radium
Sensation, Minimum energy of light for	solar: intensities of energy 418 Rowland wave-lengths
Sensitiveness of eye to light and radiation 256-258	Rowland wave-lengths 272
Series, mathematical	cor. to intern. scale 272
Series spectra: Balmer formula 401, 275	standard wave-lengths, intern. units. 266-267
hrst terms	stellar 403 wave-lengths standards 266, 267 reduction to std. pressure. 268
limits of	wave-lengths standards 200, 207
Morgendorn formula	reduction to std. pressure. 208
Kitz formula	X-ray: absorption
Rydderg formula	atomic numbers 390–393
Vibration differences	K Series
Silver alestrochemical agriculant	M series 391
Silver, electrochemical equivalent	tungston
Silver voltameter	Speed of ampuelles
Sensitiveness of eye to light and radiation 256-258	atomic numbers 390–393 K series 390 L series 391 M series 392 Speed of corpuscles 401 Spherical harmonics 64 Sputtering, cathodic 386 Squares of numbers 15 Square roots of numbers 15 Square square for mula and tables 55–59 Standard cells, em of 313 radium, international 394 refractive media for microscope 294 resistance, mercury xxxviii
byporbolia	Spiritering esthedie
Eku hrightness	Squares of numbers
Sky Drightness 419	Square roots of numbers
Soon films	Squares, least, — formulæ and tables
Valide compressibility	Standard cells, emf of
contact notantials 214 216 404	radium international 304
densities	refractive media for microscope 204
dialectric constants	resistance, mercury
ownergion coefficients cubical	temperature galibration points
linear 218—220	wave-lengths: primary (international) . 266
hardness 74 et seg TOT	resistance, mercury xxxviii temperature ealibration points 195 wave-lengths: primary (international) 266 secondary (international) 266
mamata antia rotation	tertiary (international)
refractive indices	tertiary (international) 267 reduction to std. pressure . 268
registance electrical 323-344	Standards: electrical, international xxxviii
Contact potentials 314, 10, 404	fundamental
Verdet's constant	photometric
Solubility: gases in water	Stare hrightness . AT2
pressure effect	densities
resistance, electrical 323-334 velocity of sound 146 Verdet's constant 379 Solubility: gases in water 170 pressure effect 171 salts in water, inorganic, f(t) 169 organic, f(t) 170 colutions: boiling point raise by salts in 210 conductivity electrolytic 346-352	densities 413 distances 412 equivalent 1st magnitude 417 first magnitude data (positions, etc.) 415
organic, f(t)	equivalent ist magnitude 417
olutions: boiling point raise by salts in 210	first magnitude data (positions, etc.) 415
	Harvard classification 411
thermal	light, total 417
thermal	light, total 417 magnitudes, apparent and absolute
diffusion of aqueous 166	masses 413
diffusion of aqueous	motions 412
freezing points lowering by salts in 208	number of 417
magneto-optic rotation by 381	motions

PAGE	PAGE
Store size	Thermal conductivity: insulators
Stars: size 413	high temp. 214
spectra	liquids 217
velocities	metals, high temper-
Steam tables 231	ature 213
Steel: mountie properties 267-376	salt solutions 216
Steam tables	water 216
Stefan-Boltzmann constant, and formula 247	Thermal diffusivities
Steinmetz magnetic constant	Thermal expansion: cubical: gases 222
Ctallita reflecting nowers	liquids
Stellite, reflecting powers	solids
Stokes law for falling bodies	linear: elements 218
Stone, mechanical properties	miscellaneous 219
Storage betteries 313	Thermal unit: British 435
Storage batteries	calorie
Cuaroca ricaccitiae of colutions f(t)	dynamical equivalents 197
Sugar cone densities aqueous solutions	Thermo-chemistry: heat of combustion: carbon cpds . 241
Sucrose, viscosities of solutions, f(t) 156 Sugar cane, densities aqueous solutions 126 Sulphuric acid, densities aqueous solutions	coals 242
Sun; anex of solar motion	cokes 242
hrightness 260	gases 242
disk brightness distribution	gases 242 liquid fuels 242
distance to earth	miscellaneous .241
Fraunhofer lines	peats 242
magnitude stellar	heat of dilution, H_2SO_4 246
Sulphuric acid, densities aqueous solutions 120	formation
numbers. Wolf's sun-spot	ions
parallax 414	formation
radiation compared to moon 414	Thermodynamical scale of temperature, ice-point 195
parallax	Thermoelectrical properties: (emf) alloys 318
variation with month and latitude 420	platinum 319
spectrum: energy intensities 418	elements 317
Fraunhofer lines 265	
Fraunhofer lines	pressure effects . 320 Thomson . 317, 320
snot numbers. Wolf's 415	Thomson . 317, 320
temperature	Thermoelements, calibration of
Velocity 411	Thormogolypnometric offeet
wave-lengths: Fraunhofer lines 265	Thermomagnetic effects
Rowland's	Thermomagnetic effects
Sunshine, duration of f (month, latitude) 417	air — 16111 o to 300° C 193
Surface resistivities, solid dielectrics	59 ¹¹¹ , 100° to 200° C 193
Surface tensions	59III, high temperature 194 calibration points, standard 195
Surface tensions	campration points, standard 195
elements, etc 377	gas-mercury, formulæ, comparisons 192–194
Tangents circular, nat. and log., f(°, ') 32	пушгоден — 16111, 0 10 100 С 192
f (radians) 37	gas-mercury, formulæ, comparisons 192-194 hydrogen—161II, o° to 100° C . 192 161II, 59 — 5° to — 35° C . 192 various . 194 ice point . 195 Kelvin scale . 193 mercury cf with gas . 190-194 platinum resistance . 190-
hyperbolic, nat, and log 41	Various to
Taylor's series	ice point
Taylor's series	Kelvin scale
Temperature, black-body scale for W 250	mercury of with gas
brightness black body as function of, 261	platinum resistance 199 resistance electrical 195 stem corrections 190—191 thermodynamic scale, ice-point 193
brightness scale for C 250	resistance electrical
color scale for W	stem corrections 100-101
critical gas constants 212	thermodynamic scale, ice-point 105
earth: f(altitude) 421	thermo-electric, Cu-Constantan 196
f (latitude) 422	Pt_PtPh
monthly and yearly means 420	Thomson thermo-electric effect 317, 320
variation below surface 422	Thomson thermo-electric effect
flame temperatures	Threshold sensitiveness of eye
flame temperatures	Timber, strength of
standards	Timble (sould)
stellar 411	Time, equation of
sun's	Time, solar, sidereal
thermodynamic 195	Time standards
thermodynamic 195 zero absolute 195 Tensile strengths, see mechanical properties 74–99	Transformation constants of radio-active substances. 306
Tensile strengths, see mechanical properties 74-99	
Tension, surface 173, 174	Transmissibility to radiation: air, moist 308, 419
Tensions, vapor, see vapor pressures 175-186	atmospheric 418
Terrestrial magnetism: agonic line 425	crystals, various 300
declination	dyes
dip 422	glass, American , 303, 304
inclination	Jena 30
intensity, horizontal 423	glass, American . 303, 304 Jena 307 water 307
total 424	water-vapor 308, 410
magnetic character, yearly . 425	water-vapor 308, 419 Trigonometric functions: circular, (°') nat., log 3
dip	(radians), log 3
THEFHIEL WILL, DITTISH	hyperbolic, nat., log.
standard calorie 435	Tribo-electric series
Thermal conductivity: alloys, metals	Tubes, flow of gas through
building materials . 215	Tuning forks, temperature coefficients 14
earth	
gases 217	Ultimate strengths of materials, see Mechanical.
high temperature 25.4	properties

PAGE	PAGE
Units of measurements, see Introduction xxiii	Voltaic cells; comp., emf: double fluid 312
electrical, absolute XXXVI	secondary 313
internationalxxxvi	single fluid 313
legal xxxvii practical xxxvi	standard
fundamental XXXVI	storage 313
fundamental	Voltameter, Silver
radioactive	Voltameter, silver storage 313 Volts, electrical equivalents 311 Volts, legal, international xli, 311
photometric 260 radioactive 394 work, transformation factors 197	Velume atomic, 50° K
Uranium group of radio-active substances 396	critical for gases
a making distance was making to make the smaller was a making and	glass vessels, determination of
v, ratio electro-magnetic to — static units xxx, xxxvi	gases, f(p) 104-106
Vacuo, reduction of densities to	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Valencies of the elements	resistance of dialectrics
Van der Waal's constants	specific of elements
Vaporization, latent heat of:	water, o° to 40° C.
ammonia 232	-10° to 250° C 120
elements, theoretical . 233 formulæ 232	Vowels, tone characteristics 149
steam tables 234	Wool's (von der) constants
Vapor pressure: alcohol ethyl	Waal's (van der) constants
Vapor pressure: alcohol ethyl	Water: hoiling point, f(p)
aqueous (see water below) 183, 234	solutions, ethyl alcohol 124
carbon disulphide 179	glycerol 156
elements 175 mercury	methyl alcohol 126
radium emanation	sucrose
salt solutions	sucrose
salt solutions	various 122, 159–163
water: atmospheric via wet and dry	freezing point, f(pressure)
sea-level 186 other altitudes . 185	ionization of
	melting point, f(p) 200
steam tables 234	pressure (hydrostatic) of columns of . 136 solutions: boiling points
Vapor, water; weight per m ³ and ft ³ 185	densities, see water, density solu-
Vapors: densities	tions 118-126, 156, 159-163
diffusion of	diffusion
heats of vaporization	electrolytic conduction 346–352 freezing points 208
Saturated 183	freezing points 208
refractive indices	viscosities 156, 159–163
specific heats 230	specific heat 227 thermal conductivity 216 transparency to radiation 307 vapor pressure 234-239, 183-184
viscosities	transparency to radiation 307
water, transparency to radiation 308, 419	vapor pressure 234-239, 183-184
molecules 300	
Velocity of light 408, 414 molecules 399 sound, in gases 147 liquids 147 collide 147 164 147 164 147 164 147 164 147 164 147 164 147 164 147 164 147 164 147 164 147 164 147 165 147 166 147 167 148 168 147 168 147 168 147 168 147 168 148 169 148 160 148 160 148 161 148 162 148 164 148 164 148 164 148 164 148 </td <td>VISCOSITY, I(t)</td>	VISCOSITY, I(t)
liquids	viscosity, f(t)
solids	and dry sea-level 186
Stars 411, 412	various altitudes 185
solids	relative humidity via wet and dry 189
gases	dry and v.p 187
gases	in atmosphere, f(altitude) 421
solids 379	transparency
vessels, volume of glass, via Hg	Watt
Villari magnetic effect	Wave-lengths: Angstrom, definition 266
Viscosity: air	cadmium red line
Villari magnetic effect	Crova
castor oil, I(t) 150	
centipolse, definition	readmines
definition	neon, international scale 266
gases, temperature and pressure var. 164-165	pipes (sound)
glycerol, dilution variation 156	Röntgen 200-202
liquids, f(t)	Rowland solar
atom cone 25° C 163	corrections to Intern \(\lambda\) 272
sucrose solutions, f(t, dilution) 156	solar, Fraunhofer lines
liquids, f(t)	Rowland
Visibility of radiation	standard pressure, correction to 268 standards: international primary 266
Visibility of radiation	secondary 266–267
white lights	tertiary 267
Vision, distinct	vacuo, reduction to 293
relative of various colors 250-258 white lights 260 Vision, distinct 258 persistence of 258 Voice, pitch limits of 149 Voltages: accumulators 314, 316, 404 Peltier 321	wireless
Voice, pitch limits of	X-ray
Voltages: accumulators	Waves, energy of sound
Peltier 314, 310, 404	Weight sheet metal
Peltier	Weights, atomic 71
thermoelectric	Weights and Measures; customary to metric 5
thermoelectric317-320 pressure effect 320	metric to customary 6
voltaic cells	metric to imperial 8
Weston normal xli Weston portable xliii	imperial to metric 10 miscellaneous 7
reston portable XIIII	miscendicous , , , , , , /

PAGE		PAG
Weston normal cell xli	X-rays:	383-39
	absorption coefficients (mass)	38
Weston portable cell xliii	atomic numbers and spectra	390-39
Wiedemann magnetic effect	calcite grating space	40
Wind pressures	cathode efficiencies	
Wire gages, comparison	characteristic radiations	38
Wire, mechanical properties: copper 82-83	corpuscular radiation	387-38
steel	crystals, diffraction with	
steel rope and cable . 79	energy relations	38
Wire resistance, auxiliary table for computing 322	general radiations	
Wire tables: aluminum. English measures 342	heterogeneous radiations	38
metric measures 343	homogeneous radiations	38
see also	independent radiations	38
copper, English measures 336	intensity	388
	ionization	
metric measures	K series of radiations	390
see also	L series of radiations	
temperature coefficients .334, 335	M series of radiations	392
reduc. to std 335	monochromatic radiations	38;
Wires, alternating-current resistance 344	secondary radiations	387
carrying capacity of 329	spectra: absorption	
high-frequency resistance 344	K series	390
Wires, heat losses from incandescent, bright Pt 255	L series	
Pt sponge . 255	M series	
Wireless telegraphy: antennæ resistances 364	tungsten	
wave-lengths, frequencies, oscil-	wave-lengths	390-393
lation constants 362	wave-lengths and cathode fall	387
Wolf sun-spot numbers, 1750 to 1917 415	Tears	
Woode: densities	Yearly temperature means	414, 437
Woods: densities	Young's modulus, definition	420
mechanical properties: conifers, Eng. units. 99	roung a modulus, definition	74
metric units 97	values Yield point (mechanical property)	. 74-103
hard wds, Eng. units 98		
Work comparison forters metric units 96	Zero, absolute, thermodynamic scale	105
Work, conversion factors	Zonal harmonics	64

230.9 ZPP 7450 a39001 006964129b 30.8 66 920

73/1

