```
Assignment 2
```

```
import pandas as pd
import numpy as np
df = pd.read_csv("C:\\Users\\pjanh\\Desktop\\sales_data.csv")
df.head()
```

`	flag	gender		education	house_val	age	online	customer_psy
0	Υ	М		4. Grad	75646.0	1_Unk	N	В
1	N	F		3. Bach	213171.0	7_>65	N	Е
2	N	М	2. S	ome College	111147.0	2_<=25	Υ	С
3	Υ	М	2. S	ome College	354151.0	2_<=25	Υ	В
4	Υ	F	2. S	ome College	11787.0	1_Unk	Υ	J

	occupation	mortgage	region	car_prob	<pre>fam_income</pre>
0	Professional	1Low	Midwest	1.0	L
1	Professional	1Low	Northeast	3.0	G
2	Professional	1Low	Midwest	1.0	J
3	Sales/Service	1Low	West	2.0	L
4	Sales/Service	1Low	South	7.0	Н

1.Importing all the necessary libraries. 2.Load the date file in df using "read_csv"

df.shape

```
(40000, 12)
```

Shows the dimensions of dataframe (rows,columns)

df.columns

Gives the list of columns in dataframe

```
df.isnull().sum()
```

```
flag 0
gender 0
education 741
house_val 7696
```

```
0
age
online
                    0
customer_psy
                    0
occupation
                    0
mortgage
                    0
region
                    0
                  127
car prob
fam income
                    0
dtype: int64
```

Returns the number of missing values in the data set.

df.describe()

	house_val	car_prob
count	3.230400e+04	39873.000000
mean	1.993657e+05	3.502270
std	3.429706e+05	2.574268
min	1.000000e+00	1.000000
25%	1.936500e+04	1.000000
50%	7.782600e+04	3.000000
75%	2.696110e+05	5.000000
max	9.99999e+06	9.000000

used to view some basic statistical details

df.dtypes

```
flag
                 object
                 object
gender
education
                 object
                float64
house val
age
                 object
online
                 object
                 object
customer psy
occupation
                 object
mortgage
                 object
region
                 object
car_prob
                float64
fam income
                 object
dtype: object
```

checks the data type of all columns

```
missing_columns = [col for col in df.columns if
df[col].isnull().any()]
missingvalues_count = df.isna().sum()
missingvalues_df = pd.DataFrame (missingvalues_count.rename('Null
values count')).loc[missingvalues_count.ne(0)]
missingvalues_df.style.background_gradient(cmap="tab20c")
pandas.io.formats.style.Styler at 0x1cc9fcaf4c0>
```

Filling the missing values

```
df['education'] =
df['education'].replace(np.nan,df['education'].mode()[0])
df['house val'] =
df['house_val'].replace(np.nan,df['house val'].mean())
df['car prob'] = df['car prob'].replace(np.nan,df['car prob'].mode()
[0]
df.isnull().sum()
flag
gender
                0
                0
education
house val
                0
                0
age
online
                0
customer_psy
                0
                0
occupation
                0
mortgage
                0
region
car prob
                0
fam income
                0
dtype: int64
```

1) missing values in 'education' filled with mode of value in 'education' 2) missing values in 'house_val' filled with mean of value in 'house_val' 3) missing values in 'car_prob' filled with mode of value in 'car_prob'

Detect and remove outliers

What is an Outlier?

An outlier is a data point in a data set that is distant from all other observation.

```
import warnings
warnings.filterwarnings('ignore')
plt.figure(figsize=(16,5))
plt.subplot(1,2,1)
sns.distplot(df['house_val'])

<AxesSubplot:xlabel='house_val', ylabel='Density'>
```



```
print("Highest allowed",df['house_val'].mean() +
3*df['house_val'].std())
print("Lowest allowed",df['house_val'].mean() -
3*df['house_val'].std())
```

Highest allowed 1124010.783196662 Lowest allowed -725279.4104873977

Finding the highest and lowest allowed values

```
df[(df['house_val'] > 1124010.78) | (df['house_val'] < -725279.41)]</pre>
                                      house_val
      flag gender
                           education
                                                      age online
customer psy
34
                    2. Some College
                                       1151448.0
                                                  3 <=35
                                                               Ν
                 М
В
         Υ
63
                 М
                             3. Bach
                                       1383733.0
                                                  6 <=65
                                                                Υ
В
         Υ
165
                 Μ
                             4. Grad
                                       1856444.0
                                                  5 <=55
                                                               Υ
C
195
         Υ
                    2. Some College
                                       1256225.0
                 М
                                                    1_{Unk}
                                                               Υ
В
363
         Υ
                 М
                    2. Some College
                                       1552846.0
                                                    1 Unk
                                                                Υ
В
39205
         Υ
                 Μ
                    2. Some College
                                      2792122.0
                                                               Υ
                                                  4 <=45
```

C									
39436	Υ	М	3.	Bach	11853	75.0	1_\	Jnk	Υ
B 39604	N	F	3.	Bach	11976	92.0	4_<=	= 45	Υ
C 39799	Υ	М	3.	Bach	15472	55.0	5_<=	=55	Υ
B 39948 B	Υ	М	3.	Bach	12935	57.0	6_<=	=65	Y
	0.00	notion	mortaga	-	ogi on	60.0	nnah	£-m	incomo
34		essional	mortgage 2Med		egion South	car_	1.0	ı allı_	_income F
63		essional	1Low		South		1.0		K
165		essional	1Low		West		6.0		K
195	Sales/	'Service	3High		West		1.0		L
363	-	Others	3High		South		1.0		L
39205		essional	3High		West		1.0		J
39436		essional	3High		South		1.0		L
39604	Profe	essional	3High		West		1.0		Н
39799	Profe	essional	1Low	Nort	heast		1.0		L
39948	Profe	essional	3High	Nort	heast		1.0		L

[580 rows x 12 columns]

Showing the outliers.

Trimming of Outliers

Creating a new df and storing the values except outliers in it.

```
new_df = df[(df['house_val'] < 1124010.78) & (df['house_val'] > -
725\overline{2}79.41)
new_df
```

	flag ge	ender		education	house_val	age	online
custo	mer_psy	\			_		
0	Υ	М		4. Grad	75646.000000	1_Unk	N
В							
1	N	F		3. Bach	213171.000000	7_>65	N
E			_				.,
2	N	М	2.	Some College	111147.000000	2_<=25	Y
(V	M	2	C C-11	254151 000000	2 . 25	V
3	Υ	I ^ν I	۷.	Some College	354151.000000	2_<=25	Y
В 4	Υ	_	2	Some College	11787.000000	1 Unk	Υ
1	1	1	۷.	Julie Cuttege	11/8/.000000	T_OUK	1
J							
	• • •			• • • • • • • • • • • • • • • • • • • •	•••		

```
39995
         Υ
                 F
                             Bach
                                       199365.686355
                                                        7 > 65
                                                                    Υ
C
39996
                                                       4 <=45
         N
                 F
                               1. HS
                                       213596.000000
                                                                    N
Ι
39997
         Υ
                                         1347.000000
                                                       3 <=35
                                                                    Υ
                 М
                               . <HS
                                                                    Υ
39998
         Ν
                 М
                               1. HS
                                         4221,000000
                                                        7 >65
39999
         Ν
                 F
                             3. Bach
                                         8363.000000
                                                        7 >65
                                                                    Υ
В
          occupation mortgage
                                     region
                                             car prob fam income
0
        Professional
                           1Low
                                   Midwest
                                                   1.0
                                                                 L
1
        Professional
                                                   3.0
                                                                 G
                           1Low
                                 Northeast
2
                                                                 J
        Professional
                           1Low
                                   Midwest
                                                   1.0
3
                                                                 L
       Sales/Service
                           1Low
                                      West
                                                   2.0
4
                                                   7.0
                                                                 Н
       Sales/Service
                           1Low
                                      South
                            . . .
                                                               . . .
39995
              Retired
                                                   3.0
                                                                 F
                           1Low
                                      South
39996
         Blue Collar
                           1Low
                                     South
                                                   1.0
                                                                 D
                                                                 Ε
39997
       Sales/Service
                           1Low
                                   Midwest
                                                   4.0
                          1Low
                                                   2.0
                                                                 В
39998
       Sales/Service
                                       West
                                                                 J
39999
             Retired
                          2Med
                                 Northeast
                                                   1.0
[39420 rows x 12 columns]
# Capping on Outliers
upper_limit = df['house_val'].mean() + 3*df['house_val'].std()
lower limit = df['house val'].mean() - 3*df['house val'].std()
df['house val'] = np.where(
    df['house val']>upper limit,
    upper_limit,
    np.where(
        df['house_val']<lower_limit,</pre>
        lower_limit,
        df['house val']
    )
)
df['house_val'].describe()
         4.000000e+04
count
         1.881645e+05
mean
std
         2.139570e+05
min
         1.000000e+00
25%
         2.659500e+04
50%
         1.646600e+05
         2.218008e+05
75%
```

max 1.124011e+06
Name: house_val, dtype: float64