EXERCICES — CHAPITRE 7

Exercice 1 $(\star\star)$ – Calculer les limites suivantes.

1.
$$\lim_{x \to 3} 8x^2 - 2x + 4$$

2.
$$\lim_{t \to 5} \frac{3t+2}{6t-4}$$

3.
$$\lim_{x\to 3} (2x-1)(8x-4)$$

4.
$$\lim_{x \to +\infty} (3x-4)(x-7)$$

5.
$$\lim_{x \to -\infty} (3x+2)(-6x+4)$$

6.
$$\lim_{x \to 7^{-}} \frac{1}{x - 7}$$

7.
$$\lim_{x \to 3^+} \frac{-2}{-x+3}$$

8.
$$\lim_{x \to 2^+} \frac{x+1}{x^2 - 7x + 10}$$

$$9. \lim_{x \to +\infty} \frac{1}{-x+4}$$

10.
$$\lim_{x \to -\infty} \frac{-4}{x^4 - 7}$$

1.
$$\lim_{x \to 3} 8x^2 - 2x + 4$$
 6. $\lim_{x \to 7^-} \frac{1}{x - 7}$ 10. $\lim_{x \to -\infty} \frac{-4}{x^4 - 7}$ 2. $\lim_{t \to 5} \frac{3t + 2}{6t - 4}$ 7. $\lim_{x \to 3^+} \frac{-2}{-x + 3}$ 11. $\lim_{x \to +\infty} 4 + \frac{1}{x} - \frac{2}{x^2}$ 12. $\lim_{x \to 0^-} 4 + \frac{1}{x} - \frac{2}{x^2}$ 15. $\lim_{x \to +\infty} (3x - 4)(x - 7)$ 9. $\lim_{x \to 1} \frac{1}{x^2 - 7x + 10}$ 13. $\lim_{x \to 1} 4 + \frac{1}{x} - \frac{2}{x^2}$ 15. $\lim_{x \to 1} (3x + 2)(-6x + 4)$ 16. $\lim_{x \to 1} (3x - 4)(x - 7)$ 17. $\lim_{x \to 1} (3x - 4)(x - 7)$ 18. $\lim_{x \to 2^+} (3x - 4)(x - 7)$ 19. $\lim_{x \to 1} (3x - 4)(x - 7)$ 19. $\lim_{x \to 1} (3x - 4)(x - 7)$ 11. $\lim_{x \to 1} (3x - 4)(x - 7)$ 11. $\lim_{x \to 1} (3x - 4)(x - 7)$ 12. $\lim_{x \to 1} (3x - 4)(x - 7)$ 13. $\lim_{x \to 1} (3x - 4)(x - 7)$ 15. $\lim_{x \to 1} (3x - 4)(x - 7)$ 16. $\lim_{x \to 1} (3x - 4)(x - 7)$ 17. $\lim_{x \to 1} (3x - 4)(x - 7)$ 18. $\lim_{x \to 1} (3x - 4)(x - 7)$ 19. $\lim_{x \to 1} (3x - 4)(x - 7)(x - 7)$ 19. $\lim_{x \to 1} (3x - 4)(x - 7)(x - 7)(x - 7)$ 19. $\lim_{x \to 1} (3x - 4)(x - 7)(x - 7$

12.
$$\lim_{x \to 0^{-}} 4 + \frac{1}{x} - \frac{2}{x^2}$$

13.
$$\lim_{x \to 0^+} 4 + \frac{1}{x} - \frac{2}{x^2}$$

Exercice 2 $(\star\star)$ – Calculer les limites suivantes.

1.
$$\lim_{x \to +\infty} 3x^3 - 2x^2 + 6x - 1$$

2.
$$\lim_{x \to +\infty} \frac{5x^4 - 8x^2 + 3}{7x^3 - 5x + 4}$$

3.
$$\lim_{x \to +\infty} \frac{8x^4 - 6x + 7}{-5x^7 - 8x + 4}$$

4.
$$\lim_{x \to -\infty} \frac{6x^4 - 8x^2 + 7}{2x^2 - 3x^4 + 6x}$$

5.
$$\lim_{x \to -\infty} \frac{-3x^7 + 8x^3 + 5}{7x^3 - 8x + 12}$$

6.
$$\lim_{x \to -\infty} (3x^2 - 8x + 2)(-8x^3 - 2x + 7)$$

Exercice 3 $(\star\star)$ – Calculer les limites suivantes.

$$1. \lim_{x \to +\infty} \sqrt{\frac{4x+5}{x-2}}$$

2.
$$\lim_{x \to 2^+} \sqrt{\frac{4x+5}{x-2}}$$

$$3. \lim_{x \to +\infty} \left(\sqrt{\frac{1}{x}} + x^3 \right)^2$$

4.
$$\lim_{x \to 0^+} \left(-3\sqrt{\frac{1}{x}} + 2 \right)^2$$

Exercice 4 (\star) – La courbe ci-contre, représentative d'une fonction f, admet les quatre asymptotes suivantes:

- deux asymptotes horizontales d'équations respectives y = -1 et y = 0.
- deux asymptotes verticales d'équations respectives x = 0 et x = 2.

Déterminer graphiquement les limites suivantes :

$$\lim_{x \to -\infty} f(x), \qquad \lim_{x \to 0^-} f(x), \qquad \lim_{x \to 0^+} f(x), \qquad \lim_{x \to 2^-} f(x), \qquad \lim_{x \to 2^+} f(x) \quad \text{et} \quad \lim_{x \to +\infty} f(x).$$

$$\lim_{x\to 0^-} f(x),$$

$$\lim_{x \to 0^+} f(x)$$

$$\lim_{x \to 2^-} f(x)$$

$$\lim_{x\to 2^+} f(x)$$

et
$$\lim_{x \to +\infty} f(x)$$
.

Exercice 5 $(\star \star \star)$ – Soit f la fonction définie sur l'intervalle $]0, +\infty[$ par $f(x) = \frac{2-x}{x^3}$. On note C_f sa courbe représentative dans le plan muni d'un repère orthogonal.

- 1. À l'aide d'un tableau, étudier le signe de f(x) suivant les valeurs du réel x.
- 2. a) Déterminer, en justifiant avec soin, $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to +\infty} f(x)$.
 - b) La courbe C_f admet-elle des asymptotes?

Exercice 6 $(\star \star \star)$ –

- 1. Soient $P(x) = x^2 + x 6$ et $Q(x) = 2x^2 3x 2$ deux polynômes.
 - a) Résoudre P(x) = 0 et O(x) = 0.
 - b) En déduire une factorisation de P(x) et de Q(x).
- 2. Soit f la fonction définie sur]2, $+\infty$ [par $f(x) = \frac{P(x)}{O(x)}$.
 - a) Déterminer $\lim_{x \to 2^+} f(x)$ et $\lim_{x \to +\infty} f(x)$.
 - b) La courbe représentative de la fonction *f* admet-elle des asymptotes?

Exercice 7 $(\star \star \star)$ – Soit f la fonction définie sur l'intervalle $]-1,+\infty[$ par $f(x)=\frac{2x-1}{x+1}$. On note C_f sa courbe représentative dans le plan muni d'un repère orthogonal.

- 1. À l'aide d'un tableau, étudier le signe de f(x) suivant les valeurs du réel x.
- 2. a) Déterminer, en justifiant avec soin, $\lim_{x \to -1^+} f(x)$ et $\lim_{x \to +\infty} f(x)$.
 - b) La courbe C_f admet-elle des asymptotes?

Exercice 8 (***) – Soit f la fonction définie sur $\left[\frac{1}{2}, +\infty\right[$ par $f(x) = \frac{2x^2 - 13x + 7}{4x - 2}$.

On note \mathcal{C}_f sa courbe représentative dans le plan muni d'un repère orthogonal.

- 1. Déterminer $\lim_{x \to \frac{1}{2}^+} f(x)$. Qu'en déduit-on pour la courbe \mathcal{C}_f ?
- 2. a) Déterminer $\lim_{x \to +\infty} f(x)$.
 - b) Déterminer les réels a, b et c tels que $f(x) = ax + b + \frac{c}{4x 2}$.
 - c) En déduire que la courbe \mathcal{C}_f admet pour asymptote la droite Δ d'équation

$$y = \frac{x}{2} - 3.$$

Exercice 9 (\star) – Tracer l'allure de la courbe représentative \mathcal{C}_f d'une fonction f dont le tableau de variation est donnée ci-dessous.

Exercice 10 $(\star\star)$ – Soit f la fonction définie sur \mathbb{R} par

$$f(x) = \begin{cases} x^2 & \text{si } x \leq 4, \\ 8\sqrt{x} & \text{si } x > 4. \end{cases}$$

- 1. La fonction *f* est-elle continue?
- 2. Tracer le graphe de la fonction f.