Lab4-GEMM 通用矩阵乘法

实验思路

MPI 进程并行

采用了4节点16进程的进程并行,首先,由0号进程负责矩阵A,B的转置和相加操作,由1号进程负责矩阵C2的清零,然后将矩阵通过MPI_Bcast的方式传给其他进程,各自进程负责各自的计算任务;当全部进程计算结束后,再通过MPI_Gather传给0号进程,汇总相加算出最后结果,另外2号进程还要处理部分的计算任务,计算完成后再传给0号进程进行汇总

OMP 进程并行

指定了线程数为8,使用 #pragma omp parallel for 的方式加速for循环

Blocking

把大矩阵的乘法转成小矩阵的乘法,提高缓存利用率,块的大小设置为256,64的长方形矩阵

4*4的计算单元

每次计算时同时计算4*4的小单元,加速计算

编译选项

开启了-Ofast, 让编译器向量化代码; 使用了-fopenmp, 开启openmp的线程并行; 开启了-favx2, 允许使用SIMD指令集

优化缓存

优化循环顺序,减小cache miss;baseline的代码中,刚开始的矩阵转置,也减小了cache miss的几率

运行参数

1. 节点4 进程16 线程8

make

I_MPI_PMI_LIBRARY=/usr/lib/x86_64-linux-gnu/libpmi.so.0 srun -N 4 -n 16 -c 8
./gemm

2. 节点4 进程16 线程8

make run

实验结果

实验次数	n=1	n=2	n=4	n=8
1	$8.4068*10^4$	$8.5598*10^4$	$8.5978*10^4$	$8.5689*10^4$
2	$8.6022*10^4$			
3	$8.5518*10^4$			
平均	$8.5202*10^4$	$8.5598 * 10^4$	$8.5978*10^4$	$8.5689*10^4$

单位均为Mops