来源网站:www.zikaocs.com 历年真题,自考资料,自考视频网课

绝密★启用前

2021年4月高等教育自学考试全国统一命题考试

概率论与数理统计(二)

(课程代码 02197)

- 1. 本试卷分为两部分,第一部分为选择题,第二部分为非选择题。
- 2. 应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。
- 3. 涂写部分、画图部分必须使用 2B 铅笔,书写部分必须使用黑色字迹签字笔。

第一部分 选择题

- 一、单项选择题: 本大题共 10 小题, 每小题 2 分, 共 20 分。在每小题列出的备选项中只 有一项是最符合题目要求的、请将其选出。
- 1. 对于事件 A,B,C ,下列命题不成立的是
- 2. 设事件 A 与 B 互不相容,且 P(A) = 0.5, P(B) = 0.3,则 P(A B) =
 - A. 0.2
- B. 0.3
- C. 0.5
- 3. 现有 10 只电子产品,在其中取两次,每次任取一只,取后不放回.已知取出的两只 都是正品的概率为 $\frac{28}{45}$,则其中的次品数为
- B. 1 C. 2
- 4. 设随机变量 $X \sim N(3,2^2)$, 且 $P\{X > c\} = P\{X \le c\}$, 则常数 c =
 - A. 0
- B. 2
- C. 3 D. 4
- 5. 对于任意参数,随机变量 X 均可满足 E(X) = D(X) ,则 X 服从的分布一定是

- A. 二项分布 B. 泊松分布 C. 均匀分布 D. 指数分布

概率论与数理统计(二)试题第1页(共5页)

6. 设随机变量 $X \sim N(2.2^2)$, 在下列随机变量中服从标准正态分布的是

A.
$$\frac{X-2}{2}$$
 B. $\frac{X-2}{4}$ C. $\frac{X}{2}$ D. $\frac{X}{4}$

- 7. 设随机变量 $X \sim N(1,4^2)$, $Y \sim N(0,2^2)$, X 与 Y相互独立,则 D(X Y) =
- A. 2 B. 6 C. 12 D. 20
- 8. 设总体 $X \sim N(0,1)$, $X_1, X_2, \dots, X_n (n>1)$ 为来自 X 的样本, \overline{X} 与 S^2 分别为样本均 值与样本方差,则服从自由度为n-1的 χ^2 分布的统计量是

A.
$$(n-1)S^2$$

B.
$$(n-1)\overline{X}^2$$

D.
$$\bar{X}$$

9. 设总体 $X \sim N(0, \sigma^2)$, X_1, X_2, \dots, X_n (n > 1) 为来自X 的样本, \bar{X} 为样本均值,则未 知参数 σ^2 的无偏估计是

A.
$$\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}$$
 B. $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$

B.
$$\frac{1}{n}\sum_{i=1}^{n}\lambda_i$$

C.
$$\frac{1}{n-1} \sum_{i=1}^{n} X_i^2$$
 D. $\frac{1}{n+1} \sum_{i=1}^{n} X_i^2$

D.
$$\frac{1}{n+1} \sum_{i=1}^{n} X_{i}$$

- 10. 设总体 $X \sim N(\mu, \sigma_0^2)$, 其中 σ_0^2 已知, 样本容量n和置信水平 $1-\alpha$ 均不变,则对不 同的样本观测值, μ 的置信区间长度l的变化是
 - A. 变小
- B. 变大 C. 不变
- D. 不确定

第二部分 非选择题

- 二、填空题:本大题共15小题,每小题2分,共30分。
- 11. 已知 $P(A) = \frac{1}{4}$, $P(B|A) = \frac{1}{3}$, $P(A|B) = \frac{1}{2}$, 则 $P(A \cup B) = \underline{\hspace{1cm}}$
- 12. 设随机事件 A 与 B 相互独立, $P(A) = P(B) = \frac{1}{3}$,则 $P(\overline{AB}) = \underline{\hspace{1cm}}$
- 13. 甲、乙两人对弈一局,两人下成和棋的概率是 $\frac{1}{2}$,乙获胜的概率是 $\frac{1}{3}$,则甲获胜的概率是_____.
- 14. 某射手射击所得环数 X 的分布律为 $\frac{X \mid 6 \mid 7 \mid 8 \mid 9 \mid 10}{P \mid 0.1 \mid 0.28 \mid 0.11 \mid 0.29 \mid 0.22}$,如果命中 $8 \sim 10$ 环为优秀,则这名射手射击一次为优秀的概率是_______.
- 15. 设随机变量 $X \sim N(0,1)$,已知 $P\{|X| > x\} = 0.05$, $P\{X \le 1.96\} = 0.975$,则 x =______.
- 16. 设随机变量 X 服从参数为 λ 的泊松分布,随机变量 Y 服从二项分布 $B\left(2,\frac{1}{2}\right)$,且满足 $P\{X=0\}=P\{Y=0\}$,则 $\lambda=$ ______.
- 17. 设随机变量 X 服从参数为 1 的指数分布,则 $P\{X \ge 2\} =$ ______
- 18. 设二维随机变量(X,Y)的分布律为

- 19. 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} 2x, & 0 < x < 1, & 0 < y < 1, \\ 0, & \text{其他,} \end{cases}$ 则当 0 < x < 1时, X 的概率密度 $f_{x}(x) =$ _______.
- 20. 设二维随机变量 (X,Y) 服从平面区域 $D = \{(x,y) | 0 \le x \le 2, 0 \le y \le 3\}$ 上的均匀分布,则 $E(XY) = ______$. 概率论与数理统计(二)试题第 3 页(共 5 页)

- 22. 某理财产品每月的收益率 X 服从正态分布 $N(\mu,0.2)$,现随机抽取 5 个月的收益率分别为-0.2, 0.1, 0.8, -0.6, 0.9 ,则 μ 的置信度为 0.95 的置信区间为_____. (附: $\Phi(1.96)=0.975$)
- 23. 设 H_0 是假设检验的原假设,显著性水平为0.05,则 $P\{拒绝H_0|H_0$ 成立 $\}=$ ______
- 24. 设总体 $X \sim N(\mu, 4)$, X_1, X_2, \cdots, X_{16} 为来自 X 的样本, \bar{X} 为样本均值,则检验假设 $H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$ 应采用的统计量表达式为______.
- 25. 设总体 $X \sim N(\mu, \sigma^2)$,其中 σ^2 未知, X_1, X_2, \cdots, X_n 为来自 X 的样本, \bar{X} 为样本均值, S 为样本标准差,检验假设 $H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$,已知在 H_0 成立的条件下, $\frac{\bar{X} \mu_0}{S/\sqrt{n}} \sim t(19)$,则 $n = \underline{\hspace{1cm}}$
- 三、计算题: 本大题共2小题, 每小题8分, 共16分。
- 26. 某在线支付设置的支付密码共有 6 位数字,每位数字都可从 0~9 中任选一个. 某客户一次购物进行在线支付时,忘记了密码的最后一位数字.
 - 求:(1)任意选择最后一位数字,不超过2次就选正确的概率:
 - (2) 如果该客户记得密码的最后一位是奇数,不超过2次选正确的概率.
- 27. 设总体 X 的概率密度为 $f(x) = \begin{cases} \theta, & 0 < x < 1, \\ 1 \theta, & 1 \le x < 2, \\ 0, & 其他, \end{cases}$

 X_1, X_2, \cdots, X_n 为来自该总体的样本,记N 为样本在区间(0,1) 内的个数(0 < N < n),其余的样本均在区间[1,2) 中.

求: (1) θ 的矩估计 $\hat{\theta}_1$; (2) θ 的极大似然估计 $\hat{\theta}_2$.

概率论与数理统计(二)试题第4页(共5页)

- 四、综合题:本大题共2小题,每小题12分,共24分。
- 28. 设二维随机变量(X,Y)的分布律为

$$\begin{array}{c|ccccc}
Y & -1 & 2 & 3 \\
\hline
-1 & 0.1 & 0.2 & 0.1 \\
2 & 0.2 & 0.2 & 0.2
\end{array}$$

求: (1) (X,Y)关于Y的边缘分布律: (2) Z的分布律: (3) $P\{Y \le 2 | X = 2\}$.

29. 设随机变量
$$X$$
 的分布函数为 $F(x) = \begin{cases} 0, & x < 0, \\ \frac{1}{8}x^3, & 0 \le x < 2, \\ 1, & x \ge 2, \end{cases}$

又Y=2X-1.

求: (1)
$$E(X), E(X^2)$$
; (2) $D(X), D(Y)$; (3) ρ_{XY} ; (4) $Cov(X,Y)$.

- 五、应用题: 10分。
- 30. 某制药厂广告宣称某种药品的疾病治愈率为80%,药品主管部门随机抽查了100 名服用此药的疾病患者,如果其中有超过75%的患者治愈就认为该广告宣称是真实的,否则为虚假广告.
 - 求: (1) 若此药的实际治愈率为75%,不接受这一广告宣称的概率 p_1 ;
 - (2) 若此药的治愈率确为80%,接受这一广告宣称的概率 p_2 .

(附:
$$\Phi(1.25) = 0.8944$$
)