MP - Lycée du Parc des Loges
Séries entières

Exercice 1 (Questions de cours.)

Donner l'énoncé complet ainsi que la démonstration des résultats suivants.

- 1. Lemme d'Abel.
- 2. Règle de d'Alembert.
- 3. Lemme concernant $\sum_n a_n z^n$ et $\sum_n n a_n z_n$. À quoi sert ce lemme ?

EXERCICE 2 (Exercice préparé.)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=3$ et par la relation de récurrence

$$\forall n \in \mathbb{N}, \ u_{n+1} = \sum_{k=0}^{n} \binom{n}{k} u_k u_{n-k}$$

1. Montrer que

$$\forall n \in \mathbb{N}, \ 1 \le \frac{u_n}{n!} \le 4^{n+1}.$$

- 2. Soit $f(x) = \sum_{n=0}^{+\infty} \frac{u_n}{n!} x^n$, montrer que f est solution de l'équation $y' = y^2$.
- 3. Résoudre cette équation différentielle et en déduire la valeur de u_n .

Exercice 3

Calculer le rayon de convergence des séries entières suivantes :

a)
$$\sum_{n} \frac{1}{\sqrt{n}} x^{n}$$
 b) $\sum_{n} \frac{n!}{(2n)!} x^{n}$ c) $\sum_{n} \frac{n!}{2^{2n} \sqrt{(2n)!}} x^{n}$ d) $\sum_{n} \ln(n) x^{n}$ e) $\sum_{n} \frac{\sqrt{n} x^{2n}}{2^{n} + 1}$ f) $\sum_{n} \frac{(-1)^{n}}{1 \times 3 \times \dots \times (2n - 1)} x^{n}$

Exercice 4

Soit $(a_n)_n$ une suite.

- 1. Supposons que $\sum_n a_n x^n$ a un rayon de convergence $\rho > 0$. Montrer que $\sum_n \frac{a_n}{n!} x^n$ a pour rayon de convergence $+\infty$.
- 2. On suppose maintenant que $\sum_{n} \frac{a_n}{n!} x^n$ a pour rayon de convergence $\rho > 0$. Que peut-on dire du rayon de convergence de $\sum_{n} a_n x^n$?

Exercice 5

Soit f la somme de la série entière $\sum_n a_n x^n$ de rayon de convergence R > 0. Démontrer que f est paire si et seulement si, pour tout $k \in \mathbb{N}$, $a_{2k+1} = 0$.

EXERCICE 6

Soit f la somme d'une série entière de rayon de convergence non nul. On suppose qu'il existe $\alpha>0$ tel que, pour tout $x\in]-\alpha,\alpha[,f(x)=0.$ Prouver que f est identiquement nulle.

Exercice 7

On note \mathcal{A} l'ensemble des séries entières (à coefficients complexes) de rayon de convergence supérieur ou égal à 1. L'ensemble \mathcal{A} , muni de l'addition et du produit de Cauchy, forme un anneau. Prouver que \mathcal{A} est intègre.

Exercice 8

Développer en série entière les expressions suivantes :

a)
$$\ln(1+2x^2)$$
 b) $\frac{1}{a-x}$ avec $a \neq 0$ c) $\ln(a+x)$ avec $a > 0$
d) $\frac{e^x}{1-x}$ e) $\ln(1+x-2x^2)$ f) $(4+x^2)^{-3/2}$

Exercice 9

Pour les séries entières suivantes, donner le rayon de convergence et exprimer la somme en terme de fonctions usuelles :

a)
$$\sum_{n} \frac{n-1}{n!} x^{n}$$
 b) $\sum_{n} \frac{n+2}{n+1} x^{n}$ c) $\sum_{n} \frac{(n+1)(n+2)}{n!} x^{n}$ d) $\sum_{n} \frac{(-1)^{n+1}}{2^{n} n!} x^{2n}$ e) $\sum_{n} \frac{n^{3}}{n!} x^{n}$ f) $\sum_{n} \frac{x^{2n}}{2n+1}$

Exercice 10 (Nombre de dérangements)

Pour tous les entiers k et n tels que $n \ge 1$ et $0 \le k \le n$, on note $D_{n,k}$ le nombre de bijections (ou permutations) σ de l'ensemble $\{1, \ldots, n\}$ ayant k points fixes, i.e. telles que

Card
$$\{i \in \{1, ..., n\} \mid \sigma(i) = i\} = k$$
.

On pose $D_{0,0} = 1$ et $d_n = D_{n,0}$ le nombre de dérangements, i.e. le nombre de permutations sans point fixe.

- 1. Dresser la liste des permutations de $\{1,2,3\}$ et en déduire $D_{3,0},D_{3,1},D_{3,2},D_{3,3}$.
- 2. Montrer que $n! = \sum_{k=0}^{n} D_{n,k}$.
- 3. Montrer que $D_{n,k} = \binom{n}{k} D_{n-k,0}$
- 4. Montrer que la série entière $\sum_n \frac{d_n}{n!} z^n$ a un rayon de convergence supérieur ou égal à 1.
- 5. On pose $f(x) = \sum_{n = 1}^{\infty} \frac{d_n}{n!} x^n$. Montrer que $e^x f(x) = \frac{1}{1-x}$ pour |x| < 1.
- 6. En déduire que $d_n = n! \sum_{k=0}^n \frac{(-1)^n}{k!}$.
- 7. Soit p_n la probabilité qu'une permutation prise au hasard soit un dérangement. Quelle est la limite de p_n quand n tend vers $+\infty$?