DIGITAL SYSTEMS AND MICROPROCESSORS (ELE2002M)

LECTURE 5 - COMBINATIONAL LOGIC CONT...

Instructor:

Assoc. Prof. Dr. Edmond Nurellari

What we have covered so far?

- Half Adders
- Full Adders
- Binary Adders (for multi-digit binary numbers)
- Half Subtractor
- Full Subtractor
- Binary Subtractor
- Adder-Subtractor Unit

Decimal Adder

Decimal	Binary Sum					BCD Sum				
	C3'	\$3'	\$2 '	S1 '	SO'	Cout	\$3	S2	S 1	SO
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	1
2	0	0	0	1	0	0	0	0	1	0
3	0	0	0	1	1	0	0	0	1	1
4	0	0	1	0	0	0	0	1	0	0
5	0	0	1	0	1	0	0	1	0	1
6	0	0	1	1	0	0	0	1	1	0
7	0	0	1	1	1	0	0	1	1	1
8	0	1	0	0	0	0	1	0	0	0
9	0	1	0	0	1	0	1	0	0	1
10	0	1	0	1	0	1	0	0	0	0
11	0	1	0	1	1	1	0	0	0	1
12	0	1	1	0	0	1	0	0	1	0
13	0	1	1	0	1	1	0	0	1	1
14	0	1	1	1	0	1	0	1	0	0
15	0	1	1	1	1	1	0	1	0	1
16	1	0	0	0	0	1	0	1	1	0
17	1	0	0	0	1	1	0	1	1	1
18	1	0	0	1	0	1	1	0	0	0
19	1	0	0	1	1	1	1	0	0	1

Decimal (BCD) Adder

$$\Box$$
 $C = C_3' + S_3S_2 + S_3S_1$

Binary Multiplier

- Work same way as multiplication of binary numbers.
- Multiplicand is multiplied by each bit of the multiplier
- Each multiplication forms a partial product
- Successive partial products are shifted one position to the left.
- Final product is obtained from the sum of the partial products.
- Example:
 - 2-bit binary multiplication

4x3 Binary Multiplier

- For J multiplier bits and K multiplicand bits we need
 - (JxK) AND gates
 - □ (J-1) K-bit adders
 - to produce J+K bits
- Let multiplicand be $B = B_3 B_2 B_1 B_0$
- Let multiplier be $A = A_2 A_1 A_0$

Comparator

- Compare two 4-bit binary numbers $A = A_3A_2A_1A_0$ and $B = B_3B_2B_1B_0$
- \square Two numbers are equal if $A_3 = B_3$, $A_2 = B_2$, $A_1 = B_1$, $A_0 = B_0$
- Let x_i be the XNOR function AiBi + Ai'Bi' for I = 0,1,2,3
- \square So x_i is 1 only if the pair of bits at position i is equal (A=B).
- What about A>B and A<B?</p>

Decoder

- A n-bit binary code is capable of representing
 2ⁿ distinct elements of coded information.
- A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2ⁿ outputs.
- A decoder presented here is called n-to-m-line decoder. Where m <= 2ⁿ

Inp	uts	Outputs						
Х	у	D0	D1	D2	D3			
0	0	1	0	0	0			
0	1	0	1	0	0			
1	0	0	0	1	0			
1	1	0	0	0	1			

3x8 Decoder

Inputs			Outputs								
х	у	Z	D0	D1	D2	D3	D4	D5	D6	D7	
0	0	0	1	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	0	0	0	
0	1	0	0	0	1	0	0	0	0	0	
0	1	1	0	0	0	1	0	0	0	0	
1	0	0	0	0	0	0	1	0	0	0	
1	0	1	0	0	0	0	0	1	0	0	
1	1	0	0	0	0	0	0	0	1	0	
1	1	1	0	0	0	0	0	0	0	1	

Complemented 2x4 Line Decoder

E	х	у	DO	D1	D2	D 3
1	X	Χ	1	1	1	1
0	0	0	0	1	1	1
0	0	1	ī	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

Combinational Logic Implementation

Implement a Full adder using a 3x8 Decoder.

□ Implement a 4x16 Decoder using 2 3x8 Decoders