Auswählen nach Rang (Selektion)

Geg.: Folge X von n Schlüsseln, eine Zahl k mit 1≤k≤n

Ges.: ein k-kleinster Schlüssel von X, also den Schlüssel x_k für X sortiert als $x_1 \le x_2 \le \cdots \le x_n$

trivial lösbar in Zeit O(kn) (k mal Minimum Entfernen), oder auch in Zeit O(n·log n) (Sortieren)

Ziel: O(n) Zeit Algorithmus für beliebiges k (z.B. auch k=n/2, "Median von X")

Vereinfachende Annahme für das Folgende: alle Schlüssel in X sind verschieden, also für sortiertes X gilt $x_1 < x_2 < \cdots < x_n$

Geg.: Folge X von n Schlüsseln, eine Zahl k mit $1 \le k \le n$

Ges.: ein k-kleinster Schlüssel von X, also den Schlüssel x_k für X sortiert

 $\mathsf{als}\; \mathsf{x_1} \! \leq \! \mathsf{x_2} \! \leq \cdots \leq \mathsf{x_n}$

Idee: Dezimiere!

Wähle irgendein $z \in X$ und berechne $X_{<z} = \{x \in X \mid x < z\}$ und $X_{>z} = \{x \in X \mid x > z\}$

(z.B. durch Partitionsfunktion aus der letzten Vorlesung)

Vorlesung vom 18.11.2021

Geg.: Folge X von n Schlüsseln, eine Zahl k mit $1 \le k \le n$

Ges.: ein k-kleinster Schlüssel von X, also den Schlüssel x_k für X sortiert

als $x_1 \le x_2 \le \cdots \le x_n$

Idee: Dezimiere!

Wähle irgendein $z \in X$ und berechne $X_{<z} = \{x \in X \mid x < z\}$ und $X_{>z} = \{x \in X \mid x > z\}$

(z.B. durch Partitionsfunktion aus der letzten Vorlesung)

Es gilt dann $z=x_h$ mit $h-1 = |X_{<z}|$.

Fall h=k: $\Rightarrow z$ ist das gesuchte x_k

Fall h>k: $\Rightarrow x_k$ liegt in $X_{<z}$ und ist darin der k-kleinste Schlüssel ($X_{>z}$ ist irrelevant)

Fall h<k: $\Rightarrow x_k$ liegt in $X_{>z}$ und ist darin der (k-h)-kleinste Schlüssel ($X_{<z}$ ist irrelevant)

Also $-x_k$ wird bei gegebenem z entweder sofort gefunden, oder man kann es rekursiv in $X_{<z}$ oder $X_{>z}$ finden. Welcher Fall für gewähltes z eintritt ist a priori nicht bekannt. Es wäre also günstig, wenn sowohl $X_{<z}$ als auch $X_{>z}$ "wenig" Schlüssel enthalten.

Algorithmus zum Finden des k-kleinsten Schlüssel in X (bei festgelegtem α)

```
Select(X, k)
```

- 1. If |X| klein (z.B. $|X| \le 50$) then verwende eine triviale Methode.
- 2. Finde einen α -guten Splitter $z \in X$ für X
- 3. Berechne $X_{<z} = \{x \in X \mid x < z\}$ und $X_{>z} = \{x \in X \mid x > z\}$ und bestimme $h = |X_{<z}| + 1$.
- 4. If h=k then return z else if h>k then return Select(X_{<z} , k) else (* h<k *) return Select(X_{>z} , k-h)

```
Sei \frac{1}{2} < \alpha < 1:
Wir nennen z \in X einen \alpha-guten Splitter für X, wenn sowohl |X_{<z}| \le \alpha |X| als auch |X_{>z}| \le \alpha |X| gilt.
```

Algorithmus zum Finden des k-kleinsten Schlüssel in X (bei festgelegtem α)

```
Select(X,k)
```

- 1. If |X| klein (z.B. $|X| \le 50$) then verwende eine triviale Methode.
- 2. Finde einen α -guten Splitter $z \in X$ für X
- 3. Berechne $X_{<z} = \{x \in X \mid x < z\}$ und $X_{>z} = \{x \in X \mid x > z\}$ und bestimme $h = |X_{<z}| + 1$.
- 4. If h=k then return z else if h>k then return Select(X_{<z} , k) else (* h<k *) return Select(X_{>z} , k-h)

Laufzeitanalyse: T(n) Laufzeit von Select(X , k), wobei n=|X|S_{\alpha}(n) (erwartete) Laufzeit um \alpha-guten Splitter zu finden

- 1. $a \cdot n$ für eine Konstante a 2. $S_{\alpha}(n)$
- 3. c·n für eine Konstante c 4. $T(\alpha n)$

```
\begin{array}{ll} T(n) \leq a \cdot n & \text{wenn } n \leq 50 \\ T(n) \leq c \cdot n + S_{\alpha}(n) + T(\alpha n) & \text{wenn } n > 50 \end{array}
```

Wie findet man einen α -guten Splitter für X?

Methode 1: Randomisiert

Ziehe ein zufälliges Element z von X und bestimme die Größen von $|X_{z}|$ und $|X_{z}|$ und bestimme so, ob z ein α -guter Splitter ist. (Zeit O(n))

Wiederhole dies, bis ein α -guter Splitter gefunden ist.

Wie findet man einen α -guten Splitter für \times ?

Methode 1: Randomisiert

Ziehe ein zufälliges Element z von X und bestimme die Größen von $|X_{< z}|$ und $|X_{> z}|$ und bestimme so, ob z ein α -guter Splitter ist. (Zeit O(n))

Wiederhole dies, bis ein α -guter Splitter gefunden ist.

Die $(1-\alpha)n$ kleinsten Schlüssel in X sind keine α -guten Splitter, weil sonst $X_{>z}$ zu groß Die $(1-\alpha)n$ größten Schlüssel in X sind keine α -guten Splitter, weil sonst $X_{<z}$ zu groß

Es gibt also $n-2(1-\alpha)n=(2\alpha-1)n=\beta n$ viele α -gute Splitter.

Chance, zufällig gezogenes z ein α -guter Splitter, ist β .

Die erwartete Anzahl von Wiederholungen, bis ein α -guter Splitter gefunden wird, ist also $1/\beta$.

Für die erwartete Laufzeit, um einen α -guten Splitter zu finden, gilt

$$S_{\alpha}(n) = (1/\beta) O(n) \le b_{\alpha} \cdot n$$
 für irgendeine Konstante b_{α} .

```
Sei \frac{1}{2} < \alpha < 1:
Wir nennen z \in X einen \alpha-guten Splitter für X, wenn sowohl |X_{< z}| \le \alpha |X| als auch |X_{> z}| \le \alpha |X| gilt.
```

Laufzeitanalyse: T(n) Laufzeit von Select(X , k), wobei n=|X| $S_{\alpha}(n)$ (erwartete) Laufzeit um α -guten Splitter zu finden

Sei $\frac{1}{2} < \alpha < 1$:

Wir nennen $z \in X$ einen α -guten Splitter für X, wenn sowohl

 $|X_{z}| \le \alpha |X|$ als auch $|X_{z}| \le \alpha |X|$ gilt.

Laufzeitanalyse: T(n) Laufzeit von Select(X , k), wobei n=|X| $S_{\alpha}(n)$ (erwartete) Laufzeit um α -guten Splitter zu finden

$$\begin{array}{ll} T(n) \leq a \cdot n & \text{wenn } n \leq 50 \\ T(n) \leq c \cdot n + S_{\alpha}(n) + T(\alpha n) & \text{wenn } n > 50 \end{array}$$

Methode 1: $S_{\alpha}(n) \leq b_{\alpha} \cdot n$

$$\begin{array}{ll} T(n) \leq a \cdot n & \text{wenn } n \leq 50 \\ T(n) \leq c \cdot n + b_{\alpha} \cdot n + T(\alpha n) & = C_{\alpha} \cdot n + T(\alpha n) & \text{wenn } n > 50 \end{array}$$

$$\Rightarrow$$
T(n) \leq B _{α} ·n / (1- α) = O(n) mit B _{α} = max{ a, C _{α} }

mit Induktion

Auswahl nach Rang kann in O(n) erwarteter Laufzeit gelöst werden.

Wie findet man einen α -guten Splitter für \times ?

Methode 1: Randomisiert

Methode 2: Deterministisch (Blum, Floyd, Pratt, Rivest, Tarjan) für $\alpha = 7/10$

- i) Teile X in n/5 Gruppen zu je 5 Schlüssel auf
- ii) Bestimme für jede 5-er Gruppe den Median (3.-kleinsten Schlüssel)
- iii) Verwende verschränkt rekursiv **Select**()
 um den Median z dieser n/5 Mediane zu bestimmen

Wie findet man einen α -guten Splitter für X?

Methode 2: Deterministisch (Blum, Floyd, Pratt, Rivest, Tarjan) für $\alpha = 7/10$

- i) Teile X in n/5 Gruppen zu je 5 Schlüssel auf
- ii) Bestimme für jede 5-er Gruppe den Median (3.-kleinsten Schlüssel)
- iii) Verwende verschränkt rekursiv **Select**()
 um den Median z dieser n/5 Mediane zu bestimmen

Behauptung: z ist ein α -guter Splitter für $\alpha = 7/10$.

11	23	9	29	15	34	23
15	31	24	42 Z	31	41	42
22	39	31	(47)	53	61	59
38	52	41	63	59	81	74

Wie findet man einen α -guten Splitter für \times ?

Methode 2: Deterministisch (Blum, Floyd, Pratt, Rivest, Tarjan) für $\alpha = 7/10$

- i) Teile X in n/5 Gruppen zu je 5 Schlüssel auf
- ii) Bestimme für jede 5-er Gruppe den Median (3.-kleinsten Schlüssel)
- iii) Verwende verschränkt rekursiv **Select**()
 um den Median z dieser n/5 Mediane zu bestimmen

Behauptung: z ist ein α -guter Splitter für $\alpha = 7/10$.

Wie findet man einen **α-guten Splitter** für X?

Methode 2: Deterministisch (Blum, Floyd, Pratt, Rivest, Tarjan) für $\alpha = 7/10$

- i) Teile X in n/5 Gruppen zu je 5 Schlüssel auf
- ii) Bestimme für jede 5-er Gruppe den Median (3.-kleinsten Schlüssel)
- iii) Verwende verschränkt rekursiv **Select**()
 um den Median z dieser n/5 Mediane zu bestimmen

Behauptung: z ist ein α -guter Splitter für $\alpha = 7/10$.

also höchstens $n - 3 \cdot (n/5)/2 = 7n/10$ sind $\leq z$

Wie findet man einen α -guten Splitter für \times ?

Methode 2: Deterministisch (Blum, Floyd, Pratt, Rivest, Tarjan) für $\alpha = 7/10$

- i) Teile X in n/5 Gruppen zu je 5 Schlüssel auf
- ii) Bestimme für jede 5-er Gruppe den Median (3.-kleinsten Schlüssel)
- iii) Verwende verschränkt rekursiv **Select**()
 um den Median z dieser n/5 Mediane zu bestimmen

Behauptung: z ist ein α -guter Splitter für $\alpha = 7/10$.

Laufzeit:

Wie findet man einen α -guten Splitter für \times ?

Methode 2: Deterministisch (Blum, Floyd, Pratt, Rivest, Tarjan) für $\alpha = 7/10$

- i) Teile X in n/5 Gruppen zu je 5 Schlüssel auf
- ii) Bestimme für jede 5-er Gruppe den Median (3.-kleinsten Schlüssel)
- iii) Verwende verschränkt rekursiv **Select**()
 um den Median z dieser n/5 Mediane zu bestimmen

Behauptung: z ist ein α -guter Splitter für $\alpha = 7/10$.

Laufzeit:

Median einer 5-er Gruppe Bestimmen braucht konstant viel Zeit, O(1).

 \Rightarrow Schritt ii) braucht $(n/5) \cdot O(1) = O(n)$ Zeit.

Schritt i) braucht O(n) Zeit

Schritt iii) braucht T(n/5) Zeit

 \Rightarrow $S_{\alpha}(n) \leq D \cdot n + T(n/5)$ für irgendeine Konstante D, wobei $\alpha = 7/10$.

Sei $\frac{1}{2} < \alpha < 1$:

Wir nennen $z \in X$ einen α -guten Splitter für X, wenn sowohl

 $|X_{z}| \le \alpha |X|$ als auch $|X_{z}| \le \alpha |X|$ gilt.

Laufzeitanalyse: T(n) Laufzeit von Select(X , k), wobei n=|X| $S_{\alpha}(n)$ (erwartete) Laufzeit um α -guten Splitter zu finden

$$\begin{array}{ll} T(n) \leq a \cdot n & \text{wenn } n \leq 50 \\ T(n) \leq c \cdot n + S_{\alpha}(n) + T(\alpha n) & \text{wenn } n > 50 \\ \end{array}$$

 \Rightarrow $S_{\alpha}(n) \leq D \cdot n + T(n/5)$ für irgendeine Konstante D, wobei $\alpha = 7/10$.

Sei $\frac{1}{2} < \alpha < 1$:

Wir nennen $z \in X$ einen α -guten Splitter für X, wenn sowohl

 $|X_{z}| \le \alpha |X|$ als auch $|X_{z}| \le \alpha |X|$ gilt.

Laufzeitanalyse: T(n) Laufzeit von Select(X , k), wobei n=|X| $S_{\alpha}(n)$ (erwartete) Laufzeit um α -guten Splitter zu finden

$$\begin{array}{ll} T(n) \leq a \cdot n & \text{wenn } n \leq 50 \\ T(n) \leq c \cdot n + S_{\alpha}(n) + T(\alpha n) & \text{wenn } n > 50 \end{array}$$

 \Rightarrow $S_{\alpha}(n) \leq D \cdot n + T(n/5)$ für irgendeine Konstante D, wobei $\alpha = 7/10$.

$$T(n) \le a \cdot n$$
 wenn $n \le 50$
 $T(n) \le c \cdot n + D \cdot n + T((1/5)n) + T((7/10)n)$
 $= (c+D) \cdot n + T((1/5)n) + T((7/10)n)$ wenn $n > 50$

$$\Rightarrow$$
T(n) \leq 10E·n = O(n) mit E = max{ a, c+D}

mit Induktion

Auswahl nach Rang kann in O(n) "worst case" Laufzeit gelöst werden.

Wie "langsam" muss Sortieren sein?

Frage: Gibt es Sortieralgorithmen mit Laufzeit o(n·log n)?

Beschränke Betrachtung auf Vergleichsbasierte Algoritmen

Wie "langsam" muss Sortieren sein?

Frage: Gibt es Sortieralgorithmen mit Laufzeit o(n·log n)?

Beschränke Betrachtung auf Vergleichsbasierte Algoritmen

- Vergleich ob < , = , > ist die einzige erlaubte Operation auf Schlüsseln (außer Kopieren oder im Speicher Bewegen)
- Algorithmus muss für jeden Typ von Schlüssel funktionieren, solange
 , = , > definiert sind und eine totale Ordnung auf den Schlüsseln darstellen
- z.B. unzulässig: arithmetische Operationen auf Schlüsseln, Verwendung von Schlüssel als Index in Feld

Wenn die Eingabegröße fixiert wird, kann jeder vergleichsbasierte Algorithmus als schleifenfreies Programm von **if**-Statements geschrieben werden

```
Bsp.: Programm um n=3 Schlüssel x_1, x_2, x_3 zu sortieren if x_1 < x_2 then if x_1 < x_3 then if x_2 < x_3 then output x_1, x_2, x_3 else output x_1, x_3, x_2 else output x_3, x_1, x_2 else if x_2 < x_3 then if x_1 < x_3 then output x_2, x_1, x_3 else output x_2, x_3, x_1 else output x_3, x_2, x_3
```

Wenn die Eingabegröße fixiert wird, kann jeder vergleichsbasierte Algorithmus als schleifenfreies Programm von **if**-Statements geschrieben werden

Bsp.: Programm um n=3 Schlüssel x_1, x_2, x_3 zu sortieren if $x_1 < x_2$ then if $x_1 < x_3$ then if $x_2 < x_3$ then output x_1, x_2, x_3 else output x_1, x_3, x_2 else output x_3, x_1, x_2 else if $x_2 < x_3$ then if $x_1 < x_3$ then output x_2, x_1, x_3 else output x_2, x_3, x_1 else output x_3, x_2, x_1

- Programmdurchlauf entspricht Wurzel-Blatt Pfad
- Länge des Pfades entspricht Anzahl der Schlüsselvergleiche bei diesem Programmdurchlauf
- Blatt entspricht der (sortierten) Ausgabepermutation der Eingabe
- Worst-case Laufzeit des Programmes entspricht dem längsten Wurzel-Blatt Pfad im Baum, also der Höhe des Baums.
- Zu zeigen: Jeder Entscheidungsbaum fürs Sortieren muss große Höhe haben.

- Programmdurchlauf entspricht Wurzel-Blatt Pfad
- Länge des Pfades entspricht Anzahl der Schlüsselvergleiche bei diesem Programmdurchlauf
- Blatt entspricht der (sortierten) Ausgabepermutation der Eingabe
- Worst-case Laufzeit des Programmes entspricht dem längsten Wurzel-Blatt Pfad im Baum, also der Höhe des Baums.
- Zu zeigen:

Jeder Entscheidungsbaum fürs Sortieren muss große Höhe haben.

- Programmdurchlauf entspricht Wurzel-Blatt Pfad
- Länge des Pfades entspricht Anzahl der Schlüsselvergleiche bei diesem Programmdurchlauf
- Blatt entspricht der (sortierten) Ausgabepermutation der Eingabe
- Worst-case Laufzeit des Programmes entspricht dem längsten Wurzel-Blatt Pfad im Baum, also der Höhe des Baums.
- Zu zeigen:

Jeder Entscheidungsbaum fürs Sortieren muss große Höhe haben.

B Entscheidungsbaum, um n Schlüssel zu sortieren

```
\label{eq:bounds} \begin{split} \text{\#Bl\"{a}tter}(B) &\geq n! \qquad \text{(mindestens ein Blatt f\"{u}r jede der n! Eingabepermutationen)}} \\ \text{\#Bl\"{a}tter}(B) &\leq 2^{H\"{o}he}(B) \\ \text{H\"{o}he}(B) &\geq \log_2 \left( B \ddot{a} tter(B) \right) \\ &\geq \log_2 n! \\ &\geq \log_2 n! \\ &\geq \log_2 n! \\ &\geq \log_2 (n/e)^n \\ &= n \cdot \log_2 (n/e)^n \\ &= n \cdot \log_2 n - n \cdot \log_2 e \\ &\geq n \cdot \log_2 n - 1.5 n \end{split}
```

Satz: Für jeden Entscheidungsbaum B zum Sortieren von n Schlüsseln gilt

Höhe(B) > $n \cdot \log_2 n - 1.5n$.

Korollar: Für jeden vergleichsbasierten Algorithmus zum Sortieren von n Schlüsseln gibt es eine Eingabe, für die der Algorithmus mehr als $n \cdot \log_2 n - 1.5n$ Vergleiche durchführt.

Korollar: Jeder vergleichsbasierte Algorithmus zum Sortieren von n Schlüsseln hat im schlechtesten Fall Laufzeit

 $\Omega(n \cdot \log n).$

Korollar: Jeder vergleichsbasierte Algorithmus zum Sortieren von n Schlüsseln hat im schlechtesten Fall Laufzeit

 Ω (n·log n).

Will man schneller als in $\Theta(n \cdot \log n)$. sortieren, muss man anderes machen, als Schlüssel zu vergleichen. Man kann sich auf spezielle Schlüsseltypen konzentrieren und deren Eigenschaften ausnutzen.

Beispiel:

Die Schlüssel sind ganze Zahlen aus einem kleinen Bereich, z.B. {0,...,K-1}

Problem:

Sortiere n Stücke $x_1,...,x_n$ nach Schlüssel $\text{key}(x_i)$, wobei $\text{key}(x_i) \in \{0,...,K-1\}$.

Problem:

Sortiere n Stücke $x_1,...,x_n$ nach $key(x_i)$, wobei $key(x_i) \in \{0,...,K-1\}$.

 $x_1,...,x_n$ ist gegeben durch Eingabefeld X[1..n]

CountingSort

Idee: Bestimme für jedes $h \in \{0,...,K-1\}$ den Wert C[h], der besagt für wie viele Stücke x gilt $key(x) \le h$.

Die Stücke x mit key(x)=h gehören dann im Ausgabefeld B[1..n] auf die Stellen C[h-1]+1 bis C[h]. (C[-1]=0)

Verwendet zusätzliche Felder C[0..k-1] fürs Zählen und B[1..n] für die Ausgabe.

Problem:

Sortiere n Stücke $x_1,...,x_n$ nach $key(x_i)$, wobei $key(x_i) \in \{0,...,K-1\}$.

 $x_1,...,x_n$ ist gegeben durch Eingabefeld X[1..n]

CountingSort

Idee: Bestimme für jedes $h \in \{0,...,K-1\}$ den Wert C[h], der besagt für wie viele Stücke x gilt $key(x) \le h$.

Die Stücke x mit key(x)=h gehören dann im Ausgabefeld B[1..n] auf die Stellen C[h-1]+1 bis C[h]. (C[-1]=0)

```
CountingSort(X,n,K) for (h=0;h<K;h++) C[h]=0; for (i=1;i\leqn;i++) C[key(X[i])]++; for (h=1;h<K;h++) C[h]+=C[h-1]; for (i=n;i\geq1;i--) B[C[key(X[i])]=X[i] C[key(X[i])]--; return B[1..n];
```

Verwendet zusätzliche Felder C[0..k-1] fürs Zählen und B[1..n] für die Ausgabe.

Laufzeit: O(K+n)

Zusätzlicher Platzbedarf: K+n

CountingSort hat Laufzeit und Platzbedarf $\Theta(K+n)$. Unpraktikabel, wenn K sehr groß.

RadixSort:

Idee: Sei K=B^d. Betrachte jedes h∈{0,...,K-1} geschrieben als d-stellige Zahl zur Basis B. Sortiere X[] wiederholt nach den Stellen in dieser Darstellung, und zwar nach aufsteigender Signifikanz der Stellen. Jede dieser Sortierungen muss *stabil* sein, d.h. die relative Ordnung zweier Stücke mit gleichem Schlüssel darf nicht geändert werden.

Für die jeweiligen Sortierungen kann CountingSort verwendet werden, denn diese Methode ist **stabil**. Damit erzielt man

Laufzeit: O(d·(B+n)) Zusätzlicher Platzbedarf: B+n Bsp: B=10, d=3, n=7

GZ Algorithmen und Datenstrukturen

Vorlesung vom 18.11.2021