Metric TSP Problem

Problem Formulation

- Fully connected graph
- Each node is connected to all other nodes
- The edge weight is given by Euclidean distance between the vertices that form the edge
- Triangular inequality holds

Steps to solve the TSP problem (2 – Approximation algorithm)

- 1. Find MST
- 2. Depth first method to travel through nodes to form a tour

Finding MST in Graph (Kruskal's Algorithm)

Step 1	Initialize empty set $T = \{\emptyset\}$
Step 2	For each node in list of vertices Make SET
Step 3	Arrange the edges by length in ascending order
Step 4	For each edge in the list:
	If the nodes are present in different sets:
	Join the sets
	Add the edge to set <i>T</i>
	Else:
	Discard the edge
Step 5	Form Tree from the edges in set <i>T</i>

The algorithm is based on 'Disjoint Sets' data structure. This data structure is used to find if there is any cycles in a graph.

The complexity if the algorithm is given by

 $O(E \log(V))$

Where,

E - Number of edgesV - Number of Vertices

In the above figure, Red node is the root node of MST

Depth First Traversal

The MST is collection of edges that connects all the vertices without any cycles in minimum possible edge length.

Step 1	Find root node
Step 2	Get all children for the node
Step 3	Select one child node that is not added to tour
Step 4	If the is leaf node:
	Go to Step 5
	Else:
	Go to Step 2
Step 5	If all nodes are visited:
	Terminate
	Else:
	Go to parent node

Figure 1: Depth First Traversal

To keep track of the visited nodes and nodes to be visited, a stack is maintained. To the stack, we add the child nodes and visit these nodes in last in first out fashion.

It should be noted that the tree is traversed form parent to child nodes are added to tour but when we traverse from child to parent, nodes are not added to the tour. This form a shortcut from leaf node to next node. The length of this edge will be less than the sum of edge lengths if travelled backwards. This property holds when the graph is fully connected, and the edge weights are Euclidian distances. i.e. triangle inequality holds.

$$L_{AB} + L_{BC} + L_{CD} \le L_{AD}$$

This approach ensures that the tour will be at most $2 \times L(opt)$

Heuristics on Depth first traversal

From the above figures it is very evident that there are lot of cross over in the tour path. These can be reduced to some extent by making few changes in traversing the MST. Based on certain heuristics, the nodes are popped from the stack which holds the nodes to be visited

Nearest Neighbor First

In this method, the stack is considered as a priority stack and the priority is decided on the distance between the current node and node to be visited. The highest priority goes to the node with least distance i.e. nearest node from current node

This method need not reduce the tour length and instead it often increases the tour length

Nearest Child First

In this method, the stack is normal. When adding the child nodes to the stack, the nodes are sorted in descending order of the distance from its parent node. Thus, when popping nodes form stack, the node which is nearest to parent is visited first (since stack follows LIFO pattern).

This method also doesn't guarantee reduction in tour length in all cases

Nearest Node at Leaf

This method is a combination of above two heuristics. Here the nodes are sorted in descending order before adding to stack. Also, if the node has no child, i.e. the node is leaf node, the nearest node in stack with is chosen over other nodes in stack.

This heuristic guarantee reduction in tour length

Improvement Heuristics

By comparing the result of above heuristics, the Nearest Node at Leaf heuristic gives the best results. Also, it is observed that the crossover of the tour path is generally reduced. To reduce the cross over of tour path, some heuristics on the semi optimal path obtained above can be implemented.

2- OPT algorithm

This is am improvement heuristics that operates on existing tour. In this method, two nodes are taken in the tour and their positions are switched. If the tour length thus obtained is less than the original tour length the new tour is considered. All possible swaps are performed and the tour with least distance is considered.

The time complexity of this method is higher than that of all other previous heuristics. At each iteration, there can be a maximum if $O(n^2)$ swaps possible. But it is possible that removing a crossover by a swap might create another intersection. Thus, at worst case, the complexity is O(n!).

It happens that if the algorithm is performed on any arbitrary tour, multiple iterations are needed to remove all intersections. Since, we apply 2 - OPT on the tour which is at most $2 \times L(OPT)$, number of iterations required is greatly reduced. Even with 300 points it gives almost no intersections with single iteration.

The current implementation of 2- OPT algorithm can be improved by vectorizing the tour length calculation and implementing C inline functions in python using libraries such as weaver.

Simple Test Cases

For simple cases, the 2-OPT and Nearest Neighbor at Leaf give same results but as complexity increases, 2-OPT gives best result

Sample Test Cases (eil51, eil76, eil101):

Comparison of different heuristics - Tour Length

	File	test.tsp	test1.tsp	test2.tsp	eil51.tsp	eil76.tsp	eil101.tsp	100Random	200Random	300Random
	riie	test.tsp	test1.tsp	testz.tsp	eliotrish	eii/o.tsp	enitut.tsp	.tsp	.tsp	.tsp
Nu	ımber of Nodes	10.000	7.000	6.000	51.000	76.000	101.000	100.000	200.000	300.000
Νι	umber of Edges	100.000	49.000	36.000	2601.000	5776.000	10201.000	10000.000	40000.000	90000.000
	MST Cost	21.000	16.971	18.645	376.491	472.331	562.257	602.829	852.179	1035.075
	2*MST Cost	42.000	33.941	37.290	752.981	944.661	1124.515	1205.658	1704.358	2070.149
	No Heuristic	28.606	27.314	30.891	613.552	741.903	917.540	954.653	1365.972	1657.525
	Nearest Neighbour	30.606	27.314	31.496	645.639	842.314	1002.134	1023.862	1427.865	1731.873
Tour	Nearest Child First	24.000	20.971	33.592	626.361	708.292	832.529	927.876	1297.951	1551.742
Length	Nearest Neighbour at Leaf	24.000	20.971	30.101	515.198	681.910	817.474	916.795	1290.999	1549.256
	2 - OPT over Nearest Neighbour at Leaf	24.000	20.971	24.557	445.700	579.652	693.092	743.687	1037.811	1268.699

From the above graph, the tour length is $MST\ COST \le Tour\ Length \le 2 \times MST\ Cost$ irrespective of any heuristic chosen. Also, the 2-OPT Algorithm gives the best result of all the heuristics as expected.

Overall performance of heuristics in terms of tour length is

 $MST\ Cost \le 2 - OPT \le NN\ at\ leaf \le Nearest\ Child\ First \le No\ Heuristic \le Nearest\ neighbour$ $\le 2 \times MST\ Cost$

Comparison of different heuristics – Time Complexity

	File	test.tsp	test1.tsp	test2.tsp	eil51.tsp	eil76.tsp	eil101.tsp	100Random	200Random	300Random
			test1.tsp	testz.tsp	elio1.tsp	eii/o.tsp	elitot.tsp	.tsp	.tsp	.tsp
	No Heuristic	0.062	0.068	0.102	0.013	0.035	0.052	0.105	0.121	0.126
	Nearest Neighbour	0.068	0.071	0.086	0.017	0.031	0.067	0.108	0.125	0.134
Executio	Nearest Child First	0.052	0.064	0.098	0.018	0.029	0.053	0.110	0.128	0.134
n Time	Nearest Neighbour	0.066	0.077	0.094	0.015	0.030	0.062	0.104	0.126	0.132
n rime	at Leaf	0.000	0.077	0.094	0.015	0.030	0.062	0.104	0.126	0.132
	2 - OPT over Nearest	0.065	0.099	0.105	0.982	2.230	5.098	5.614	43.642	156.951
	Neighbour at Leaf	0.003	0.055	0.105	0.962	2.230	5.056	5.014	45.042	150.951

In general, the time complexity of different heuristics is given by

Heuristic	Time Complexity
MST	$O(E \log V)$
Nearest Neighbor	O(V)
Nearest Child First	O(V)
Nearest Neighbor at Leaf	O(V)
2-OPT	O(V!)

The time taken by 2-opt heuristic increases with number of vertices and from the above graph, it can be seen exponentially increasing for single iteration. As number of iterations increases the computation complexity further increases. The next best heuristic is Nearest Neighbor at leaf but the gap in tour length between the two increases with number of nodes. Thus, there must be a trade off between available resources and the tour length.

Random Scenario Testing

Tour for 100 uniformly distributed random points

Neighbour at Leaf.png

100RandomPoints - 0.tsp - Nearest Neighbour.png

Iteration **Number of Nodes**

Number of Edges MST Cost

No Heuristic

at Leaf

Length

Nearest Neighbour

Nearest Child First

Nearest Neighbour

2 - OPT over Nearest

Neighbour at Leaf

									leuristic.png	H	
	Average	10.000	9.000	8.000	7.000	6.000	5.000	4.000	3.000	2.000	1.000
0	100.00	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
0	10000.00	10000.000	10000.000	10000.000	10000.000	10000.000	10000.000	10000.000	10000.000	10000.000	10000.000
9	602.82	598.025	586.463	614.057	586.694	626.693	613.041	588.457	644.911	551.952	617.999
3	954.65	972.847	938.698	932.545	903.828	994.766	942.939	919.501	1053.849	868.756	1018.798
2	1023.86	1079.904	1004.723	1062.438	956.001	1053.457	991.733	942.271	1104.200	965.782	1078.106
6	927.87	935.773	900.317	942.628	898.195	979.629	878.934	919.932	1043.527	835.482	944.345
5	916.79	883.106	943.968	988.803	845.354	948.866	910.066	887.138	1050.192	775.614	934.847
7	743.68	725.459	711.077	765.635	723.415	797.112	780.788	686.639	772.882	694.620	779.241

	Iteration	1.000	2.000	3.000	4.000	5.000	6.000	7.000	8.000	9.000	10.000	Average
	No Heuristic	0.017	0.036	0.069	0.075	0.080	0.120	0.109	0.156	0.170	0.215	0.105
	Nearest Neighbour	0.020	0.038	0.071	0.084	0.090	0.131	0.132	0.151	0.171	0.196	0.108
Executio	Nearest Child First	0.018	0.034	0.071	0.080	0.086	0.129	0.143	0.165	0.173	0.197	0.110
n Time	Nearest Neighbour	0.018	0.034	0.057	0.079	0.093	0.129	0.115	0.157	0.167	0.187	0.104
II IIIIle	at Leaf	0.018	0.034	0.057	0.079	0.093	0.129	0.115	0.157	0.167	0.187	0.104
	2 - OPT over Nearest	5.872	4.751	6.220	3.788	3.904	5.044	5.974	6.143	8.603	5.841	5.614
	Neighbour at Leaf	5.872	4.751	6.220	3.788	3.904	5.044	5.974	0.143	8.003	5.841	5.014

Tour for 200 uniformly distributed random points

200RandomPoints - 0.tsp - 2-OPT over NN at Leaf.png

200RandomPoints - 0.tsp - Nearest Neighbour.png

200RandomPoints - 0.tsp - MST.png

200RandomPoints - 0.tsp - No Heuristic.png

200RandomPoints - 0.tsp - Nearest Child First.png

200RandomPoints - 0.tsp - Nearest Neighbour at Leaf.png

	Iteration	1.000	2.000	3.000	4.000	5.000	6.000	7.000	8.000	9.000	10.000	Average
Nu	mber of Nodes	200.000	200.000	200.000	200.000	200.000	200.000	200.000	200.000	200.000	200.000	200.000
Nι	ımber of Edges	40000.000	40000.000	40000.000	40000.000	40000.000	40000.000	40000.000	40000.000	40000.000	40000.000	40000.000
	MST Cost	824.321	871.688	834.668	840.819	847.613	869.579	844.389	858.879	882.195	847.639	852.179
	No Heuristic	1282.876	1404.706	1361.602	1364.422	1350.316	1393.790	1360.152	1396.906	1417.057	1327.897	1365.972
	Nearest Neighbour	1317.879	1413.648	1396.917	1443.327	1382.173	1509.852	1455.591	1500.376	1509.150	1349.739	1427.865
Tour	Nearest Child First	1233.951	1324.793	1235.130	1238.879	1288.050	1349.038	1316.912	1324.903	1366.893	1300.965	1297.951
Length	Nearest Neighbour at Leaf	1145.427	1288.071	1283.170	1210.502	1276.745	1332.064	1351.363	1342.294	1366.243	1314.109	1290.999
	2 - OPT over Nearest Neighbour at Leaf	995.695	1042.450	991.679	1018.159	1038.658	1042.323	1048.225	1123.216	1065.093	1012.616	1037.811

	Iteration	1.000	2.000	3.000	4.000	5.000	6.000	7.000	8.000	9.000	10.000	Average
	No Heuristic	0.019	0.043	0.070	0.085	0.120	0.121	0.143	0.172	0.208	0.233	0.121
	Nearest Neighbour	0.024	0.048	0.058	0.094	0.131	0.133	0.146	0.154	0.240	0.218	0.125
Executio	Nearest Child First	0.022	0.051	0.064	0.101	0.121	0.130	0.164	0.182	0.223	0.222	0.128
n Time	Nearest Neighbour	0.022	0.049	0.061	0.091	0.121	0.140	0.158	0.180	0.205	0.230	0.126
II IIIIe	at Leaf	0.022	0.049	0.001	0.091	0.121	0.140	0.136	0.180	0.203	0.230	0.120
	2 - OPT over Nearest	42.436	43.684	61.211	35.710	44.380	44.507	35.440	35.839	55.809	37.405	43.642
	Neighbour at Leaf	42.436	43.084	61.211	35.710	44.380	44.507	35.440	33.839	55.809	37.405	43.642

Tour for 300 uniformly distributed random points

300RandomPoints - 0.tsp - MST.png

300RandomPoints - 0.tsp - No Heuristic.png

00	The same	3	400 mg/h	hage f	No. of the
80	1	V	0	mil	105
80	1		7.1	1	5
40	10	230		-	-1/2°
	1		550		gardine.
"	West or	mail and	-	Ç12 🔏	215

300RandomPoints - 0.tsp - Nearest Child First.png

300RandomPoints - 0.tsp - Nearest Neighbour at Leaf.png

	Iteration	1.000	2.000	3.000	4.000	5.000	6.000	7.000	8.000	9.000	10.000	Average
Nι	ımber of Nodes	300.000	300.000	300.000	300.000	300.000	300.000	300.000	300.000	300.000	300.000	300.000
N	umber of Edges	90000.000	90000.000	90000.000	90000.000	90000.000	90000.000	90000.000	90000.000	90000.000	90000.000	90000.000
	MST Cost	1032.504	1038.631	1077.240	1050.419	1011.433	1042.617	1040.959	1025.673	1012.545	1018.726	1035.075
	No Heuristic	1596.558	1656.002	1703.459	1720.452	1568.072	1726.200	1631.879	1658.267	1637.814	1676.548	1657.525
	Nearest Neighbour	1689.567	1722.422	1774.938	1781.910	1606.804	1791.480	1693.236	1742.274	1698.936	1817.165	1731.873
Tour	Nearest Child First	1528.421	1525.944	1633.353	1515.899	1587.781	1520.757	1507.003	1602.635	1542.976	1552.648	1551.742
Length	Nearest Neighbour at Leaf	1529.356	1552.278	1599.621	1601.541	1532.474	1539.192	1516.707	1559.446	1506.055	1555.893	1549.256
	2 - OPT over Nearest Neighbour at Leaf	1288.437	1313.167	1283.391	1300.904	1244.753	1268.054	1218.503	1252.278	1258.276	1259.230	1268.699

	Iteration	1.000	2.000	3.000	4.000	5.000	6.000	7.000	8.000	9.000	10.000	Average
	No Heuristic	0.023	0.037	0.053	0.091	0.096	0.129	0.151	0.174	0.207	0.299	0.126
	Nearest Neighbour	0.026	0.041	0.069	0.102	0.129	0.120	0.170	0.180	0.197	0.303	0.134
Executio	Nearest Child First	0.025	0.036	0.063	0.100	0.130	0.143	0.141	0.197	0.223	0.282	0.134
n Time	Nearest Neighbour	0.027	0.041	0.056	0.097	0.114	0.126	0.169	0.166	0.215	0.305	0.132
II IIIIle	at Leaf	0.027	0.041	0.056	0.097	0.114	0.126	0.169	0.166	0.215	0.305	0.132
	2 - OPT over Nearest	119.944	148.482	210 101	159.124	177.935	150.825	153.719	166.863	151.541	122.887	156.951
	Neighbour at Leaf	119.944	148.482	218.191	159.124	1/7.935	150.825	153./19	100.863	151.541	122.887	156.951

K Robot TSP

K robot TSP is a variation of Metric TSP where instead of single agent covering all the nodes, there are K agents that cover nodes. There the length of the largest tour must be minimized

General Assumption

Since the graph is fully connected and all the edge weights are Euclidean, the triangle inequality holds. Thus it is safe to assume that if the sum of distances of the nodes form centroid for cluster A is greater than that of cluster B, then, MST cost of nodes in cluster A will also be greater than MST cost of nodes in cluster B.

Algorithm 1 – Simple N Division

In this method all the nodes are taken and grouped into K clusters (excluding the starting node). MST is formed by including the starting point of all robots and for each cluster and a tour is generated. Each tour is assigned to one robot.

This algorithm will be highly inefficient since the nodes are assigned at random. There will be lot of intersections even if we optimize the tour of each cluster without any intersections in sub tours.

Algorithm 2 - K Means Clustering

In this method instead of randomly assigning the nodes to clusters, K Means algorithm is used for grouping the nodes. In this method also the starting node is excluded from the clustering problem. MST and thus tour is formed for each cluster. An example is as shown below

This method highly depends on the position of starting node. The tour length will be longer or shorter depending on the start node position. An Example is shown below were even though the clusters are optimal the Route 1 much larger than any other route.

Another case where this method fails is when the clusters are skewed. If the nodes are clustered in such a way that few points are grouped and far off from other points, since his method doesn't care for number of nodes in a cluster, the tour length might be very large for these set of point.
Description to each allegan also constler offs at the artifical alletion
Presence of outliers to each cluster also greatly affects the optimal olution
Algorithm 3 – Balanced K Means Clustering
In this method instead of clustering based on distance from centroid alone, number of nodes in each
cluster is also considered. The cost function is two-fold
The cost falletion is two fold

- 1. Sum of distance from centroid.
- 2. Difference in distance of each node from nearest cluster centroid and farthest cluster centroid.

The balanced K – Means algorithm is as follows

- 1. Compute current cluster means
- 2. For each object, compute the distances to the cluster means
- 3. Sort elements based on the delta of the current assignment and the best possible alternate assignment.
- 4. For each element by priority:
 - 1. For each other cluster, by element gain, unless already moved:
 - 1. If there is an element wanting to leave the other cluster and this swap yields and improvement, swap the two elements
 - 2. If the element can be moved without violating size constraints, move it
 - 2. If the element was not changed, add to outgoing transfer list.
- 5. If no more transfers were done (or max iteration threshold was reached), terminate

In this algorithm also depending on the position of the starting node, the tour lengths will not be equal for each cluster

Algorithm 4 – Balanced K means with Weighted Clusters

This method is similar to Algorithm 3, but the cost function here is 3-fold

- 1. Sum of distance from centroid.
- 2. Difference in distance of each node from nearest cluster centroid and farthest cluster centroid.
- 3. Sum of distance of the clusters from centroid is scaled by inverse of distance between cluster centroid and starting node.

Since the cost function is scaled based on the start node position, the effect of start node can be reduced. The minimization of this cost is through iterative algorithm as mentioned in Algorithm 3.

As shown in the above diagram, Route1 covers less nodes compared to other route. This is due to inclusion of position on starting node in cost function.

Conclusion

All the above algorithms are based on assumption as mentioned. In case the assumption fails, the cost function has to be changed to include the cost of MST for each cluster and the distance of non-cluster nodes has to be calculated not to centroid but to nearest leaf node in MST