# Stochastic programming & Robust optimisation

Lecture 2/4

Fabricio Oliveira

Systems Analysis Laboratory Department of Mathematics and Systems Analysis

> Aalto University School of Science

UFMG, Belo Horizonte, Brazil 23.08.2024

### Outline of this lecture

Introduction

Scenario trees

Generating scenario trees

Scenario (tree) generation methods

Sample Average Approximation (SAA)

### Outline of this lecture

Introduction

Scenario trees

Generating scenario trees

Scenario (tree) generation methods

Sample Average Approximation (SAA)

fabricio.oliveira@aalto.fi Introduction 1/42

### Stochastic programming models

Mathematical programming models in which some of the parameters are assumed to be random variables.

It comprises the following parts:

- 1. A mathematical programming model
- 2. Deterministic parameter values
- 3. Description of the stochasticity, e.g.,
  - a known probability distribution;
  - historical data;
  - distribution properties (average, standard deviation, i.e., moments)

fabricio.oliveira@aalto.fi Introduction 2/42

### Stochastic programming models

Mathematical programming models in which some of the parameters are assumed to be random variables.

It comprises the following parts:

- 1. A mathematical programming model
- 2. Deterministic parameter values
- 3. Description of the stochasticity, e.g.,
  - a known probability distribution;
  - historical data;
  - distribution properties (average, standard deviation, i.e., moments)

The most widespread use of stochastic programs relies on scenarios:

- Lead to tractable deterministic equivalents;
- Are approximations of the original stochastic process

fabricio.oliveira@aalto.fi Introduction 2/42

A scenario tree  $\xi$  comprises sequentially observed realisations of  $\xi^t$ , for  $t=1,\ldots,H$ :

- $$\begin{split} \xi &= (\xi^t)_{t \in [H]} \text{, where } (\cdot) \text{ denotes a sequence and } \xi^t \in \Xi_t; \\ & \text{a scenario is denoted } \xi_s = (\xi^t_s)_{t \in [H]} \text{ forming a "path" through } \xi; \\ & \text{Thus, } \xi = \{\xi_s\}_{s \in [S]} \text{, where } S \text{ is the number of scenarios.} \end{split}$$

$$\begin{array}{ccc}
 & (5', 5', 5') = > & (5')_{t \in [3]} \\
 & \downarrow & \downarrow & \downarrow \\
 & \int_{5, =}^{5} (6, 8, 10) \\
 & (12 = (6, 10, 15))
\end{array}$$

fabricio.oliveira@aalto.fi Introduction 3/42

### Stochastic programming models

A scenario tree  $\xi$  comprises sequentially observed realisations of  $\xi^t$ , for  $t=1,\ldots,H$ :

- $\blacktriangleright$   $\xi = (\xi^t)_{t \in [H]}$ , where  $(\cdot)$  denotes a sequence and  $\xi^t \in \Xi_t$ ;
- ▶ a scenario is denoted  $\xi_s = (\xi_s^t)_{t \in [H]}$  forming a "path" through  $\xi$ ;
- ▶ Thus,  $\xi = \{\xi_s\}_{s \in [S]}$ , where S is the number of scenarios.

#### **Example:**



Figure: A 4-stage (lattice) scenario tree with 2 scenarios per stage.  $\xi = (\xi^1, \xi^2, \xi^3)$ ;

fabricio.oliveira@aalto.fi Introduction 3/42

### Outline of this lecture

Introduction

Scenario trees

Generating scenario trees

Scenario (tree) generation methods

Sample Average Approximation (SAA)

fabricio.oliveira@aalto.fi Scenario trees 4/42



fabricio.oliveira@aalto.fi Scenario trees 5/42

Terminology



fabricio.oliveira@aalto.fi Scenario trees 5/42

Terminology



Terminology



### Taxonomy of scenario trees



Branching indicates a decision upon arrival of new information

- ▶ No branching, no additional information;
- ► Fan trees represent multi-period 2-stage problems.

fabricio.oliveira@aalto.fi Scenario trees 6/42

### Outline of this lecture

Introduction

Scenario trees

Generating scenario trees

Scenario (tree) generation methods

Sample Average Approximation (SAA)

### Trade-off approximation quality vs. tractability

Two parameters govern the geometry of a scenario tree:

- **Depth:** number of stages *H*
- **Breadth (or width):** number of realisations per stage  $|\xi^t|$



### Trade-off approximation quality vs. tractability

Two parameters govern the geometry of a scenario tree:

- **Depth:** number of stages *H*
- **Breadth (or width):** number of realisations per stage  $|\xi^t|$

The total of scenarios is  $O(N^H)$  (assuming  $|\xi_t| = N$  for  $t \in [H]$ )

- ► Larger *H* convey more adaptability to revealed information;
- Larger S convey a more precise description of the uncertainty;
- Computational tractability issues pressure them to be as small as possible.

Most scenario generation methods seek to find trees with minimal  $|\xi|$  such that representation quality requirements are observed.

#### Data source

#### Typical sources for scenarios include:

- 1. **Historical data:** past observations as possible future observations;
- 2. **Simulation models:** Monte Carlo, systems dynamics, agent-based and discrete event simulation;
- Expert elicitation: typically a small number of scenarios with no possible (out-of-sample) testing.



#### Data source

#### Typical sources for scenarios include:

- 1. Historical data: past observations as possible future observations;
- 2. **Simulation models:** Monte Carlo, systems dynamics, agent-based and discrete event simulation;
- Expert elicitation: typically a small number of scenarios with no possible (out-of-sample) testing.

#### Often, a combination of the above is used:

- 1. Start from the data;
- 2. Define and fit a parametric model;
- Generate observations from the model.

### Scenario generation and modelling

## Scenario generation must be part of the modelling process

- Problem dependent;
- The method for generating scenarios is a modelling decision;
- Often overlooked in applications;
- Quality of scenarios majorly influences quality of solution ("garbage in = garbage out").



Apart from epistemic error questions, two measures must be considered when generating scenario trees:

#### 1. Error

- Error introduced for using an approximation of the real stochastic process;
- Unlikely to be measurable, but possible to be approximated.

#### 2. Stability

- Scenario-trees approximating the same stochastic process should yield the same solution;
- Likewise, objective function values should be stable.



Apart from epistemic error questions, two measures must be considered when generating scenario trees:

#### 1. Error

- Error introduced for using an approximation of the real stochastic process;
- Unlikely to be measurable, but possible to be approximated.

#### 2. Stability

- Scenario-trees approximating the same stochastic process should yield the same solution;
- Likewise, objective function values should be stable.

Let  $\xi$  be a scenario tree representing the original stochastic process  $\eta$ , and  $\mathcal{F}(x,\xi) = \mathbb{E}_{\xi}[F(x,\xi)]$ . We are interested in understanding how well

$$\min_{x} \mathcal{F}(x,\xi)$$
 approximates  $\min_{x} \mathcal{F}(x,\eta)$ 

fabricio.oliveira@aalto.fi Generating scenario trees 11/42

Let  $\xi_k$ , for  $k=1,\ldots,n$ , be a collection of alternative scenario trees generated (e.g., by sampling) to represent  $\eta$ . We have that

$$x_k^* = \arg\min_{x} \mathcal{F}(x, \xi_k).$$

Let  $\xi_k$ , for  $k=1,\ldots,n$ , be a collection of alternative scenario trees generated (e.g., by sampling) to represent  $\eta$ . We have that

$$x_k^* = \arg\min_{x} \mathcal{F}(x, \xi_k).$$

The approximation error [Pflug, 2001] is defined as

$$e(\eta, \xi_k) = \mathcal{F}(\arg\min_{x} \mathcal{F}(x, \xi_k), \eta) - \mathcal{F}(\arg\min_{x} \mathcal{F}(x, \eta), \eta)$$
$$= \mathcal{F}(x_k^{\star}, \eta) - \min_{x} \mathcal{F}(x, \eta).$$

Let  $\xi_k$ , for  $k=1,\ldots,n$ , be a collection of alternative scenario trees generated (e.g., by sampling) to represent  $\eta$ . We have that

$$x_k^* = \arg\min_{x} \mathcal{F}(x, \xi_k).$$

The approximation error [Pflug, 2001] is defined as

$$e(\eta, \xi_k) = \mathcal{F}(\arg\min_{x} \mathcal{F}(x, \xi_k), \eta) - \mathcal{F}(\arg\min_{x} \mathcal{F}(x, \eta), \eta)$$
$$= \mathcal{F}(x_k^{\star}, \eta) - \min_{x} \mathcal{F}(x, \eta).$$

- ▶ Calculating  $\mathcal{F}(x_k^{\star}, \eta)$  requires evaluating the "true" objective function;
- ▶ Alternatively, Monte Carlo simulation is often employed to approximate  $\mathcal{F}(x_k^{\star}, \eta)$ ;
- ightharpoonup Clearly, there is no way to evaluate  $\min_x \mathcal{F}(x,\eta)$ .

Out-of-sample stability

Assume that we can approximate  $\mathcal{F}(x_k^\star, \eta)$ . This allows us to

- ightharpoonup compare solutions  $x_1^{\star}$  and  $x_2^{\star}$ ;
- compare alternative scenario generation methods;
- perform out-of-sample stability test:
  - 1. Generate a set of scenario trees  $\{\xi_1,\dots,\xi_n\}$ ,
  - 2. Obtain solutions  $x_k$ ,  $k = 1, \ldots, n$ ;
  - 3. Test whether  $\mathcal{F}(x_k^{\star}, \eta) \approx \mathcal{F}(x_l^{\star}, \eta)$ , for  $k, l = 1 \dots, n : k \neq l$ .

#### Out-of-sample stability

Assume that we can approximate  $\mathcal{F}(x_k^{\star}, \eta)$ . This allows us to

- ightharpoonup compare solutions  $x_1^{\star}$  and  $x_2^{\star}$ ;
- compare alternative scenario generation methods;
- perform out-of-sample stability test:
  - 1. Generate a set of scenario trees  $\{\xi_1, \ldots, \xi_n\}$ ;
  - 2. Obtain solutions  $x_k$ ,  $k = 1, \ldots, n$ ;
  - 3. Test whether  $\mathcal{F}(x_k^\star,\eta) \approx \mathcal{F}(x_l^\star,\eta), \text{ for } k,l=1\ldots,n: k \neq l.$

#### Remarks:

- $\bullet$   $e(\eta, \xi_k) \approx 0 \Rightarrow e(\eta, \xi_k) \approx e(\eta, \xi_l) \equiv \mathcal{F}(x_k^{\star}, \eta) \approx \mathcal{F}(x_l^{\star}, \eta);$
- ► The procedure above can also be used to assess scenario tree width (scenarios per stage).

In-sample stability

In-sample stability is defined as

$$\mathcal{F}(x_k^{\star}, \xi_k) \approx \mathcal{F}(x_l^{\star}, \xi_l), \text{ for } k, l = 1, \dots, n : k \neq l.$$

In-sample stability

In-sample stability is defined as

$$\mathcal{F}(x_k^{\star}, \xi_k) \approx \mathcal{F}(x_l^{\star}, \xi_l), \text{ for } k, l = 1, \dots, n : k \neq l.$$

In some contexts, can also be defined as

$$||x_k^* - x_l^*||_p \approx 0$$
, for  $k, l = 1, \dots, n : k \neq l$ .

where  $||\cdot||_p$  is a vector p-norm.

In-sample stability

In-sample stability is defined as

$$\mathcal{F}(x_k^{\star}, \xi_k) \approx \mathcal{F}(x_l^{\star}, \xi_l), \text{ for } k, l = 1, \dots, n : k \neq l.$$

In some contexts, can also be defined as

$$||x_k^* - x_l^*||_p \approx 0$$
, for  $k, l = 1, \dots, n : k \neq l$ .

where  $||\cdot||_p$  is a vector p-norm.

- No direct connection to out-of-sample stability;
- Useful for assessing the internal stability of a random scenario generation method;
- Translates into confidence in the objective function value reported.



Figure: Trade-off analysis: error v. computational time [Dillon et al., 2017]

### Outline of this lecture

Introduction

Scenario trees

Generating scenario trees

Scenario (tree) generation methods

Sample Average Approximation (SAA)

The main types of scenario-generation methods are:

1. **Moment matching:** artificially generates a set of scenarios with the same (four plus correlation, usually) statistical moments as the desired distribution;

The main types of scenario-generation methods are:

- 1. **Moment matching:** artificially generates a set of scenarios with the same (four plus correlation, usually) statistical moments as the desired distribution;
- Metric-based: form smaller scenario sets whilst minimising some probabilistic distance metric. Includes clustering (k-means and related methods) and scenario reduction.

The main types of scenario-generation methods are:

- Moment matching: artificially generates a set of scenarios with the same (four plus correlation, usually) statistical moments as the desired distribution;
- Metric-based: form smaller scenario sets whilst minimising some probabilistic distance metric. Includes clustering (k-means and related methods) and scenario reduction.
- 3. **Sampling:** Monte-Carlo sampling, or quasi Monte-Carlo sampling using variance reduction techniques (e.g., Sobol sequences). Combined with Sample Average Approximation (SAA).

Moment matching

Build a scenario tree 
$$\xi=\{(z_s,p_s)\}_{s\in[S]}$$
 that has statistical moments  $f_m(z,p)$  matching  $M_m^{\text{VAL}}$  target values.

Moment matching

Build a scenario tree  $\xi=\{(z_s,p_s)\}_{s\in[S]}$  that has statistical moments  $f_m(z,p)$  matching  $M_m^{\rm VAL}$  target values.

Moments extracted from the original distribution, or data;

Moment matching

Build a scenario tree  $\xi=\{(z_s,p_s)\}_{s\in[S]}$  that has statistical moments  $f_m(z,p)$  matching  $M_m^{\text{VAL}}$  target values.

- Moments extracted from the original distribution, or data;
- ▶ The following problem must be solved ([Høyland and Wallace, 2001]):

$$\begin{split} & \min_{z,p \geq 0} \sum_{m \in M} w_m (f_m(z,p) - M_m^{\text{VAL}})^2 \\ & \text{s.t.: } \sum_{j=1}^S p_j = 1, \end{split}$$

where  $w_m$  are weights.

**Remark:** [Høyland et al., 2003] show how the above problem can be heuristically solved.

#### Metric-based methods

Probability-metric based methods use the following result [Pflug, 2001]

$$e(\eta, \xi_k) \le Kd(\eta, \xi_k)$$

where K is a (Lipschitz-related) constant and d is a Wasserstein distance between  $\eta$  and  $\xi_k$ . Thus, the focus is on obtaining trees that minimise d.

#### Metric-based methods

Probability-metric based methods use the following result [Pflug, 2001]

$$e(\eta, \xi_k) \le Kd(\eta, \xi_k)$$

where K is a (Lipschitz-related) constant and d is a Wasserstein distance between  $\eta$  and  $\xi_k$ . Thus, the focus is on obtaining trees that minimise d.

Let  $\xi^l=(z^l,p^l)\in\Xi^l.$  The (p-order) Wasserstein distance  $d(\xi^1,\xi^2)$  is given by:

$$\begin{split} & \min_{\pi}. \ \, \sum_{i \in \xi^1, j \in \xi^2} ||z_i^1 - z_j^2||_p \pi_{ij} \\ & \text{s.t.:} \ \, \sum_{j \in \xi^2} \pi_{ij} = p_i^1, \ \forall i \in \xi_1 \\ & \sum_{i \in \xi^1} \pi_{ij} = p_j^2, \ \forall j \in \xi_2. \end{split}$$



Metric-based methods

### 1. "Clustering-like" methods:

- ► *k*-means, and variants incorporating Wasserstein distance as the metric [Condeixa et al., 2020]
- ▶ Work well in case scenarios are generated from data [Kaut, 2021];

#### Metric-based methods

# 1. "Clustering-like" methods:

- **k**-means, and variants incorporating Wasserstein distance as the metric [Condeixa et al., 2020]
- Work well in case scenarios are generated from data [Kaut, 2021];
- 2. **Scenario reduction methods:** Obtain  $\xi^2$  from  $\xi^1$  where  $|\xi^2| < |\xi^1|$ .
  - ▶ Based on the theory of stability of stochastic programs [Römisch, 2003]
    - Changes in the solution can be approximated using a Fortet-Mourier-type metric
    - Calculation amounts to solving a Monge-Kantorovich mass transportation problem
  - "Historical" chronology:
    - 1. [Dupačová et al., 2003, Heitsch and Römisch, 2003]: first backward reduction and forward selection methods;
    - 2. [Heitsch and Römisch, 2007] improved versions of the heuristics;
    - 3. [Heitsch and Römisch, 2009] The above does not work for multi-stage problems. Provides a method that does.

#### Scenario reduction

Types of reduction algorithms. Let K be a target value for  $|\xi^2|$ 

- **Backward reduction:** repeat until  $|\xi^2| = K$ . Start from  $\xi^1$ 
  - 1. Find the scenario whose removal causes the smallest error increase
  - 2. Remove the scenario and redistribute its probability
- **Forward selection:** repeat until  $|\xi^2| = K$ . Start from  $\xi^2 = \emptyset$ 
  - 1. Find the scenario whose inclusion causes the largest error decrease
  - 2. Add the scenario and redistribute its probability

Scenario reduction

Types of reduction algorithms. Let K be a target value for  $|\xi^2|$ 

- **Backward reduction:** repeat until  $|\xi^2| = K$ . Start from  $\xi^1$ 
  - 1. Find the scenario whose removal causes the smallest error increase
  - 2. Remove the scenario and redistribute its probability
- ▶ Forward selection: repeat until  $|\xi^2| = K$ . Start from  $\xi^2 = \emptyset$ 
  - 1. Find the scenario whose inclusion causes the largest error decrease
  - 2. Add the scenario and redistribute its probability

### Some final practical remarks:

- In [Heitsch and Römisch, 2003], their results indicate:
  - 50% of the scenarios gives 90% relative accuracy
  - 1% of the scenarios gives 50% accuracy
- **Forward selection** gives better results, but is slow for large  $|\xi^1|$  and K.
- Scenred2 (GAMS) is an available implementation.

#### Some of my own experience



Figure: Relative accuracy for scenario reduction; x-axis is  $|\xi^1|$ , lines are different  $|\xi^2|$ . [Oliveira et al., 2016]

Some of my own experience



Figure: Objective function standard deviation comparing 3 alternative scenario reduction methods. Original sample had 1000 scenarios [Fernández Pérez et al., 2018]



Figure: Out-of-sample error comparison of various scenario generation methods [Kaut, 2021]

# Outline of this lecture

Introduction

Scenario trees

Generating scenario trees

Scenario (tree) generation methods

Sample Average Approximation (SAA)

# What is SAA?

SAA [Shapiro and Homem-de Mello, 1998] is an alternative to generating scenario trees in the context of stochastic programming.

- Purely based on sampling;
- Monte Carlo simulation for estimating objective function bounds;
- Useful for handling large scenario sets;
- ► The sample m scenario tree size N is such that  $N << |\xi|$  or  $|\eta|$ ;
- ▶ Requires solving *M* problems.

# What is SAA?

SAA [Shapiro and Homem-de Mello, 1998] is an alternative to generating scenario trees in the context of stochastic programming.

- Purely based on sampling;
- Monte Carlo simulation for estimating objective function bounds;
- Useful for handling large scenario sets;
- The sample m scenario tree size N is such that  $N<<|\xi|$  or  $|\eta|$ ;
- Requires solving M problems.



SAA is based on the law of large numbers (LLN) and the central limit theorem (CLT). As such, we can

- Estimate bounds using mean values;
- Estimate confidence intervals.

 $<sup>^{1}</sup>f(x)$  is a shorthand for  $\mathcal{F}(x,\xi)$ .

SAA is based on the law of large numbers (LLN) and the central limit theorem (CLT). As such, we can

- Estimate bounds using mean values;
- Estimate confidence intervals.

First, let us define our notation for 2SSPs

$$z=\min_{x}f(x),$$
 where:

- $f(x) = \mathbb{E}_{\xi} [F(x,\xi)]^{1}$
- $F(x,\xi) = \{c^{\top}x + Q(x,\xi) : x \in X\};$
- $Q(x,\xi) = \min_{y} \{ q(\xi)^{\top} y : W(\xi) y = h(\xi) T(\xi) x, y \ge 0 \};$
- $X = \{x \in \mathbb{R}^n : Ax = b, x > 0\}.$

 $<sup>^{1}</sup>f(x)$  is a shorthand for  $\mathcal{F}(x,\xi)$ .

#### Calculating a lower bounds for z

Let N be the number of samples we draw from our original stochastic process, forming the scenario tree  $\xi = \{\xi_1, \dots, \xi_N\}$ .

Then, we can solve the sample-based approximation problem

$$\hat{z}_{N} = \min_{x} \left\{ \tilde{f}_{N}(x) = \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_{n}) \right\}.$$

$$\text{min } C^{T}x + \sum_{s} P_{s} \Rightarrow_{s} Y_{s}$$

$$A_{x} = 6$$

$$\text{T}_{sx} + W_{s} y_{s} = h_{s}, \quad \forall s \in S = \{1, ..., N\}$$

$$\times z_{o}$$

$$y_{s} \ge o, \quad \forall s \in S = \{1, ..., N\}$$

 $^2$ LLN:  $\lim_{N \to \infty} \mathbb{E}\left[\frac{\sum_{n=1}^N X_n}{N}\right] = \frac{N\overline{X}}{N} = \overline{X}$  for i.i.d. random variable  $X_n$  with mean value  $\overline{X}$ . Sample Average Approximation (SAA)

Calculating a lower bounds for z

Let N be the number of samples we draw from our original stochastic process, forming the scenario tree  $\xi = \{\xi_1, \dots, \xi_N\}.$ 

Then, we can solve the sample-based approximation problem

$$\hat{z}_N = \min_{x} \left\{ \tilde{f}_N(x) = \frac{1}{N} \sum_{n=1}^N F(x, \xi_n) \right\}.$$
 (1)

First, notice that  $\tilde{f}_N(x)$  is an unbiased estimator<sup>2</sup> for f(x):

$$\mathbb{E}_{\xi} \left[ \tilde{f}_{N}(x) \right] = \frac{1}{N} \mathbb{E}_{\xi} \left[ \sum_{n=1}^{N} F(x, \xi_{n}) \right] \xrightarrow{LLN} \frac{1}{N} (Nf(x)) = f(x). \quad \Box$$

<sup>&</sup>lt;sup>2</sup>LLN:  $\lim_{N\to\infty}\mathbb{E}\left[\frac{\sum_{n=1}^N X_n}{N}\right] = \frac{N\overline{X}}{N} = \overline{X}$  for i.i.d. random variable  $X_n$  with mean value  $\overline{X}$ .

### Calculating lower bounds for z

fexi

$$\hat{z}_N = \min_{x} \left\{ \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_n) \right\} \le \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_n)$$

### Calculating lower bounds for z

$$\hat{z}_N = \min_{x} \left\{ \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_n) \right\} \le \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_n)$$
$$\mathbb{E}_{\xi} \left[ \min_{x} \left\{ \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_n) \right\} \right] \le \mathbb{E}_{\xi} \left[ \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_n) \right]$$

#### Calculating lower bounds for z

$$\hat{z}_{N} = \min_{x} \left\{ \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_{n}) \right\} \leq \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_{n})$$

$$\mathbb{E}_{\xi} \left[ \min_{x} \left\{ \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_{n}) \right\} \right] \leq \mathbb{E}_{\xi} \left[ \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_{n}) \right]$$

$$\mathbb{E}_{\xi} \left[ \hat{z}_{N} \right] \leq \mathbb{E}_{\xi} \left[ \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_{n}) \right]$$

#### Calculating lower bounds for z

$$\hat{z}_{N} = \min_{x} \left\{ \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_{n}) \right\} \leq \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_{n})$$

$$\mathbb{E}_{\xi} \left[ \min_{x} \left\{ \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_{n}) \right\} \right] \leq \mathbb{E}_{\xi} \left[ \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_{n}) \right]$$

$$\mathbb{E}_{\xi} \left[ \hat{z}_{N} \right] \leq \mathbb{E}_{\xi} \left[ \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_{n}) \right]$$

$$\mathbb{E}_{\xi} \left[ \hat{z}_{N} \right] \leq \min_{x} \left\{ \mathbb{E}_{\xi} \left[ \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_{n}) \right] \right\} \xrightarrow{N \to \infty}$$

$$\min_{x} \left\{ \mathbb{E}_{\xi} \left[ F(x, \xi) \right] \right\} = \min_{x} f(x) = z. \quad \square$$

#### Calculating lower bounds for z

In turn, we can approximate  $\mathbb{E}\left[\hat{z}_{N}\right]$  using a sample estimate.

1. For that, we sample M scenario trees of size N:

$$\{\xi_1^1, \dots, \xi_N^1\}, \dots, \{\xi_1^M, \dots, \xi_N^M\}.$$

<sup>&</sup>lt;sup>3</sup>Again an unbiased estimator, see footnote 2.

### Calculating lower bounds for z

In turn, we can approximate  $\mathbb{E}\left[\hat{z}_{N}\right]$  using a sample estimate.

1. For that, we sample M scenario trees of size N:

$$\{\xi_1^1,\ldots,\xi_N^1\},\ldots,\{\xi_1^M,\ldots,\xi_N^M\}.$$

2. For each scenario tree, we solve

$$\hat{z}_N^m = \min_{x} \left\{ \frac{1}{N} \sum_{n=1}^N F(x, \xi_n^m) \right\}.$$

<sup>&</sup>lt;sup>3</sup>Again an unbiased estimator, see footnote 2.

#### Calculating lower bounds for z

In turn, we can approximate  $\mathbb{E}\left[\hat{z}_{N}\right]$  using a sample estimate.

1. For that, we sample M scenario trees of size N:

$$\{\xi_1^1, \dots, \xi_N^1\}, \dots, \{\xi_1^M, \dots, \xi_N^M\}.$$

2. For each scenario tree, we solve

$$\hat{z}_{N}^{m} = \min_{x} \left\{ \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_{n}^{m}) \right\}.$$

3. We can then estimate  $\mathbb{E}\left[\hat{z}_{N}\right]$  as

$$L_N^M = \frac{1}{M} \sum_{m=1}^M \hat{z}_N^m.$$

<sup>&</sup>lt;sup>3</sup>Again an unbiased estimator, see footnote 2.

Statistical bounds for  ${\cal L}_N^M$ 

We can use the CLT to provide confidence intervals for  $L_N^M$ . A sample-estimate for  $\sigma_{L_N^M}^2$  can be obtained as

$$s_{L_N^M}^2 = \frac{1}{M-1} \sum_{m=1}^M (\hat{z}_N^m - L_N^M)^2.$$

Statistical bounds for  ${\cal L}_N^M$ 

We can use the CLT to provide confidence intervals for  $L_N^M$ . A sample-estimate for  $\sigma_{L_N^M}^2$  can be obtained as

$$s_{L_N^M}^2 = \frac{1}{M-1} \sum_{m=1}^M (\hat{z}_N^m - L_N^M)^2.$$

We can use  $s^2_{L^M_N}$  to obtain an 1- $\alpha$  confidence interval for  $L^M_N$ :

$$\left[L_N^M - \frac{z_{\alpha/2} s_{L_N^M}}{\sqrt{M}}, L_N^M + \frac{z_{\alpha/2} s_{L_N^M}}{\sqrt{M}}\right],$$

where  $z_{\alpha/2}$  is the standard normal  $1 - \alpha/2$  quantile.

Calculating upper bounds for z

Z=min f(x)

Let

$$\hat{x}_{N}^{m} = \underset{x}{\operatorname{argmin}} \left\{ \frac{1}{N} \sum_{n=1}^{N} F(x, \xi_{n}^{m}) \right\}, \ \forall m \in [M].$$

Under a relatively complete recourse assumption, we have that  $f(\hat{x}_N^m) \geq z$ ,  $\forall m \in [M]$ .

Calculating upper bounds for z

Let

$$\hat{x}_N^m = \underset{x}{\operatorname{argmin}} \left\{ \frac{1}{N} \sum_{n=1}^N F(x, \xi_n^m) \right\}, \ \forall m \in [M].$$

Under a relatively complete recourse assumption, we have that  $f(\hat{x}_N^m) \geq z$ ,  $\forall m \in [M]$ .

We can obtain an unbiased estimate for  $f(\hat{x}_N^m)$  by

- 1. Choosing one solution  $\hat{x}_N^{m'}$ ,  $m' \in [M]$ ;
- 2. Sampling T scenario trees of size  $\overline{N}$

$$\{\xi_1^1,\ldots\xi_{\overline{N}}^1\},\ldots,\{\xi_1^T,\ldots\xi_{\overline{N}}^T\}$$
 Threes of size  $\overline{N}$ 

3. For each scenario tree t, we evaluate

$$\tilde{z}_{\overline{N}}^{t} = \frac{1}{\overline{N}} \sum_{n=1}^{\overline{N}} F(\hat{x}_{N}^{m'}, \xi_{n}^{t})$$

$$1 \times t \quad \text{where } h_{s} \quad \text{where } h_{s}$$

Min ( 95 / 2 95 / 5

Calculating upper bounds for  $\boldsymbol{z}$ 

4. We can estimate  $f(\hat{x}_N^m)$  as

$$U_{\overline{N}}^{T} = \frac{1}{T} \sum_{t=1}^{T} \check{z}_{\overline{N}}^{t}.$$

E(\$\varphi\) \(\frac{1}{2}\varphi\) \(\frac{1}\varphi\) \(\frac{1}{2}\varphi\) \(\frac{1}\v

Analogously, we can use the sample-estimate for  $\sigma_{U_{\overline{N}}^{T}}^{2}$ 

$$s_{U_{\overline{N}}}^2 = \frac{1}{T-1} \sum_{t=1}^{T} (\tilde{z}_{\overline{N}}^t - U_{\overline{N}}^T)^2$$

to calculate the 1- $\alpha$  confidence interval for  $U^T_{\overline{N}}$  as

$$\left[U_{\overline{N}}^T - \frac{z_{\alpha/2} s_{U_{\overline{N}}^T}}{\sqrt{T}}, U_{\overline{N}}^T + \frac{z_{\alpha/2} s_{U_{\overline{N}}^T}}{\sqrt{T}}\right].$$

In this context, an optimality gap refers to the quantity

$$f(\hat{x}_N^{m'}) - z$$

In this context, an optimality gap refers to the quantity

$$f(\hat{x}_N^{m'}) - z.$$

On the other hand, we know that

$$\mathbb{E}\left[\hat{z}_N\right] \le z \le f(\hat{x}_N^{m'}).$$

Since we have estimates for  $\mathbb{E}\left[\hat{z}_N\right]\left(L_N^M\right)$  and  $f(\hat{x}_N^{m'})\left(U_{\overline{N}}^T\right)$ , we can calculate the optimality gap estimate

$$gap(N,M,\overline{N},T) = U_{\overline{N}}^T - L_N^M.$$
 
$$\begin{cases} (\hat{x}_{\overline{N}}) - \mathbb{E} \left[ \hat{z}_{\nu} \right] & \approx U_{\overline{N}}^T - L_N^M. \end{cases}$$

In this context, an optimality gap refers to the quantity

$$f(\hat{x}_N^{m'}) - z.$$

On the other hand, we know that

$$\mathbb{E}\left[\hat{z}_N\right] \le z \le f(\hat{x}_N^{m'}).$$

Since we have estimates for  $\mathbb{E}\left[\hat{z}_N\right]$   $(L_N^M)$  and  $f(\hat{x}_N^{m'})$   $(U_{\overline{N}}^T)$ , we can calculate the optimality gap estimate

$$gap(N, M, \overline{N}, T) = U_{\overline{N}}^T - L_N^M.$$

Confidence intervals can also be obtained for  $gap(N, M, \overline{N}, T)$  using

$$\sigma^2_{gap(N,M,\overline{N},T)} = s_{L_N^M}^2 + s_{U_{\overline{N}}^T}^2.$$

Some remarks on  $gap(N, M, \overline{N}, T)$ :

 $ightharpoonup gap(N,M,\overline{N},T)$  is a biased estimator, since

$$f(\hat{x}_N^{m'}) - \mathbb{E}\left[\hat{z}_N\right] \ge f(\hat{x}_N^{m'}) - z;$$

Some remarks on  $gap(N, M, \overline{N}, T)$ :

 $ightharpoonup gap(N,M,\overline{N},T)$  is a biased estimator, since

$$f(\hat{x}_N^{m'}) - \mathbb{E}\left[\hat{z}_N\right] \ge f(\hat{x}_N^{m'}) - z;$$

As it overestimates  $f(\hat{x}_N^{m'}) - z$ , it is still useful in practice;

# On estimating optimality gaps

Some remarks on  $gap(N, M, \overline{N}, T)$ :

 $ightharpoonup gap(N,M,\overline{N},T)$  is a biased estimator, since

$$f(\hat{x}_N^{m'}) - \mathbb{E}\left[\hat{z}_N\right] \ge f(\hat{x}_N^{m'}) - z;$$

- As it overestimates  $f(\hat{x}_N^{m'}) z$ , it is still useful in practice;
- ▶ Confidence intervals for  $gap(N, M, \overline{N}, T)$  can be improved by reducing:

# On estimating optimality gaps

Some remarks on  $gap(N, M, \overline{N}, T)$ :

▶  $gap(N, M, \overline{N}, T)$  is a biased estimator, since

$$f(\hat{x}_N^{m'}) - \mathbb{E}\left[\hat{z}_N\right] \ge f(\hat{x}_N^{m'}) - z;$$

- As it overestimates  $f(\hat{x}_N^{m'}) z$ , it is still useful in practice;
- ▶ Confidence intervals for  $gap(N, M, \overline{N}, T)$  can be improved by reducing:
  - 1.  $s_{L_N^M}^2$ , via increasing N and M: larger N leads to larger problems, but they can be solved as M parallel problems;

# On estimating optimality gaps

Some remarks on  $gap(N, M, \overline{N}, T)$ :

▶  $gap(N, M, \overline{N}, T)$  is a biased estimator, since

$$f(\hat{x}_N^{m'}) - \mathbb{E}\left[\hat{z}_N\right] \ge f(\hat{x}_N^{m'}) - z;$$

- As it overestimates  $f(\hat{x}_N^{m'}) z$ , it is still useful in practice;
- ▶ Confidence intervals for  $gap(N, M, \overline{N}, T)$  can be improved by reducing:
  - 1.  $s_{L_N}^2$ , via increasing N and M: larger N leads to larger problems, but they can be solved as M parallel problems;
  - 2.  $s^2_{U^T_{\overline{N}}}$ , via increasing  $\overline{N}$  and T; larger  $\overline{N}$  leads to more costly evaluation; solvable as T (as  $\overline{N} \times T$  for 2SSPs) parallel problems.

## Regarding choosing a solution $\hat{x}_N^{m'}$ :

If feasible, evaluate all distinct solutions  $\hat{x}_N^m$  for  $m \in [M]$  and choose that with best  $L_N^M$ ,  $U_{\overline{N}}^T$  or  $gap(N, M, \overline{N}, T)$ ;

## Regarding choosing a solution $\hat{x}_N^{m'}$ :

- If feasible, evaluate all distinct solutions  $\hat{x}_N^m$  for  $m \in [M]$  and choose that with best  $L_N^M$ ,  $U_{\overline{N}}^T$  or  $gap(N, M, \overline{N}, T)$ ;
- Too many distinct solutions may indicate that N is too small. Perform stability analysis.

## Regarding choosing a solution $\hat{x}_N^{m'}$ :

- If feasible, evaluate all distinct solutions  $\hat{x}_N^m$  for  $m \in [M]$  and choose that with best  $L_N^M$ ,  $U_{\overline{N}}^T$  or  $gap(N, M, \overline{N}, T)$ ;
- Too many distinct solutions may indicate that N is too small. Perform stability analysis.
- SAA holds for non-independent sampling schemes (e.g., Latin hypercube sampling or quasi Monte Carlo). These help keep N small.

## Regarding choosing a solution $\hat{x}_N^{m'}$ :

- If feasible, evaluate all distinct solutions  $\hat{x}_N^m$  for  $m \in [M]$  and choose that with best  $L_N^M$ ,  $U_{\overline{N}}^T$  or  $gap(N, M, \overline{N}, T)$ ;
- Too many distinct solutions may indicate that N is too small. Perform stability analysis.
- SAA holds for non-independent sampling schemes (e.g., Latin hypercube sampling or quasi Monte Carlo). These help keep N small.



Figure: Monte Carlo (top) and quasi-Monte Carlo sampling [Fernández Pérez et al., 2018]

Regarding the choice of N [Oliveira and Hamacher, 2012]:

Notice that  $\hat{z}_N$  is the expected value of the random variable

$$z_N(\xi) = F(\hat{x}_N, \xi), \text{ where } \hat{x}_N = \operatorname*{argmin}_x \left\{ \frac{1}{N} \sum_{n=1}^N F(x, \xi_n) \right\}$$



Regarding the choice of N [Oliveira and Hamacher, 2012]:

Notice that  $\hat{z}_N$  is the expected value of the random variable

$$z_N(\xi) = F(\hat{x}_N, \xi), \text{ where } \hat{x}_N = \underset{x}{\operatorname{argmin}} \left\{ \frac{1}{N} \sum_{n=1}^N F(x, \xi_n) \right\}$$

As such, we can estimate its sample-based variance and a  $1-\alpha$  confidence interval, given by

$$s_N^2 = rac{1}{N-1} \sum_{n=1}^N (\hat{z}_N - z_N(\xi_n))^2 ext{ and } \hat{z}_N \pm rac{z_{lpha/2} s_N}{\sqrt{N}}.$$

Regarding the choice of N [Oliveira and Hamacher, 2012]:

Notice that  $\hat{z}_N$  is the expected value of the random variable

$$z_N(\xi) = F(\hat{x}_N, \xi), \text{ where } \hat{x}_N = \underset{x}{\operatorname{argmin}} \left\{ \frac{1}{N} \sum_{n=1}^N F(x, \xi_n) \right\}$$

As such, we can estimate its sample-based variance and a  $1-\alpha$  confidence interval, given by

$$s_N^2 = rac{1}{N-1} \sum_{n=1}^N (\hat{z}_N - z_N(\xi_n))^2 ext{ and } \hat{z}_N \pm rac{z_{lpha/2} s_N}{\sqrt{N}}.$$

If we predefine a desired relative width  $\beta$  for the confidence interval, we can infer that

$$N \ge \left(\frac{z_{\alpha/2}s_N}{(\beta/2)\hat{z}_N}\right)^2.$$

#### Tutorial 3

# **SAA** example

#### References I



Condeixa, L., Oliveira, F., and Siddiqui, A. S. (2020).

Wasserstein-distance-based temporal clustering for capacity-expansion planning in power systems.

In 2020 International Conference on Smart Energy Systems and Technologies (SEST), pages 1–6. IEEE.



Dillon, M., Oliveira, F., and Abbasi, B. (2017).

A two-stage stochastic programming model for inventory management in the blood supply chain.

International Journal of Production Economics, 187:27–41.



Dupačová, J., Gröwe-Kuska, N., and Römisch, W. (2003).

Scenario reduction in stochastic programming.

Mathematical programming, 95:493-511.

#### References II

Fernández Pérez, M. A., Oliveira, F., and Hamacher, S. (2018).

Optimizing workover rig fleet sizing and scheduling using deterministic and stochastic programming models.

Industrial & engineering chemistry research, 57(22):7544–7554.

Heitsch, H. and Römisch, W. (2003).

Scenario reduction algorithms in stochastic programming. Computational optimization and applications, 24:187–206.

Heitsch, H. and Römisch, W. (2007).

A note on scenario reduction for two-stage stochastic programs. Operations Research Letters, 35(6):731–738.

Heitsch, H. and Römisch, W. (2009).

Scenario tree modeling for multistage stochastic programs.

Mathematical Programming, 118:371–406.

#### References III

Høyland, K., Kaut, M., and Wallace, S. W. (2003).

A heuristic for moment-matching scenario generation.

Computational optimization and applications, 24:169–185.

Høyland, K. and Wallace, S. W. (2001).

Generating scenario trees for multistage decision problems.

Management science, 47(2):295–307.

Faut, M. (2021).

Scenario generation by selection from historical data.

Computational Management Science, 18(3):411–429.

Oliveira, F. and Hamacher, S. (2012).

Optimization of the petroleum product supply chain under uncertainty: A case study in northern brazil.

Industrial & Engineering Chemistry Research, 51(11):4279–4287.

#### References IV



Oliveira, F., Nunes, P. M., Blajberg, R., and Hamacher, S. (2016).

A framework for crude oil scheduling in an integrated terminal-refinery system under supply uncertainty.

European Journal of Operational Research, 252(2):635–645.



Pflug, G. C. (2001).

Scenario tree generation for multiperiod financial optimization by optimal discretization.

Mathematical programming, 89:251–271.



Römisch, W. (2003).

Stability of stochastic programming problems.

Handbooks in operations research and management science, 10:483–554.



Shapiro, A. and Homem-de Mello, T. (1998).

A simulation-based approach to two-stage stochastic programming with recourse.

Mathematical Programming, 81(3):301–325.