

RADIO SPECTRUM STUDIES OF 32 FIRST-QUADRANT GALACTIC SUPERNOVA REMNANTS

NAMIR E. KASSIM¹

University of Maryland, and E. O. Hulbert Center for Space Research, Naval Research Laboratory

Received 1989 May 5; accepted 1989 May 30

ABSTRACT

We present a comprehensive list of integrated radio continuum flux density measurements for 32 first-quadrant Galactic supernova remnants (SNRs). The list includes all available measurements from the literature, as well as some previously unpublished low-frequency measurements from the Clark Lake Galactic plane survey. All measurements have been placed on the same absolute flux density scale, and those which are deemed poor or otherwise inappropriate for the purposes of constructing continuum spectra have been noted. This compilation has been used in a separate paper to construct accurate spectra and to constrain the distribution and physical properties of ionized gas in the interstellar medium.

Subject headings: nebulae: supernova remnants — radio sources: general — radio sources: spectra

I. INTRODUCTION

It is widely accepted that the radio continuum spectra of Galactic supernova remnants (SNRs) have an intrinsic non-thermal power-law spectrum, characterized by a constant spectral index α ($S \propto \nu^{\alpha}$) over the entire radio range. Typical values of α range from -0.1 to -0.3 for plerionic or filled-center SNRs, -0.3 to -0.8 for shell-type SNRs, and intermediate values for composite remnants (Weiler and Sramek 1988). Theoretical reasons for expecting α to remain constant have been discussed by Dulk and Slee (1972), while Kassim (1989) has shown that, in the absence of intervening absorbing gas, it remains constant to dekametric wavelengths. Therefore the spectra of Galactic SNRs provide an excellent probe of the properties and distribution of ionized gas in the interstellar medium (ISM), since turnovers in their low-frequency spectra must be extrinsic and due to absorption by intervening thermal material along the line of sight. Such turnovers have been shown to be common, particularly for SNRs located toward the inner Galaxy (Dulk and Slee 1972, 1975; Kassim 1989).

In order to use an individual SNR to measure or set limits on the opacity of any intervening ionized material, its entire radio spectrum must be accurately determined. Higher frequency ($\nu \geq 300$ MHz) measurements are necessary to determine the intrinsic spectral index α which is then used, in conjunction with lower frequency (usually ≤ 100 MHz) measurements, to determine the free-free optical depth τ . Unfortunately, the information necessary to construct the entire spectrum of individual SNRs, specifically the measured values of the integrated flux densities, are often widely scattered throughout the literature and are thus not readily available. Moreover, flux densities for individual sources obtained from observations made by different authors using different instruments are rarely based on the same absolute flux density scale. Finally, many published flux density measurements are

not appropriate for determining continuum spectra, usually for a variety of instrumental reasons.

In this paper, we have gathered all available integrated flux densities for 32 first-quadrant Galactic SNRs, including several previously unpublished low-frequency measurements made with the Clark Lake TPT telescope (Erickson, Mahoney, and Erb 1982; Kassim 1989, and references therein). All flux densities have been placed on the same absolute flux density scale, and poor or inappropriate measurements have been noted. The data presented here are used in a separate paper (Kassim 1989) to construct accurate spectra for these 32 sources, which in turn can be used to constrain the distribution and properties of low-density ionized gas in the ISM. Parameters from the derived spectra are also included here.

a) Data

The observed and derived parameters for each of the 32 SNRs are presented in Table 1 which is divided into 32 sections, one for each source. The header for each remnant gives the position (R.A., decl.), size (in arcminutes), and the best estimate of the morphological type (i.e., P, plerionic; S, shell; C, composite; or ?, uncertain) of each object. A distance estimate (in kiloparsecs) is included where one is available, with the reliability indicated by A, “good”; B, “reasonable”; C, “poor.” Other names for the SNRs are listed where appropriate. These header parameters have been taken from the comprehensive SNR lists of Green (1984, 1988).

For each SNR we have also obtained the parameters α , τ_{408} , and S_{408} from a least-squares fit to the equation:

$$S_\nu = [S_{408}(\nu/408)^\alpha] \exp[-\tau_{408}(\nu/408)^{-2.1}], \quad (1)$$

where S_ν is the integrated flux density in janskys at frequency ν in MHz and S_{408} and τ_{408} are the flux density and optical depth at the reference frequency of 408 MHz, respectively.

¹National Research Council/NRL Cooperative Research Associate.

Report Documentation Page			Form Approved OMB No. 0704-0188		
<p>Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p>					
1. REPORT DATE DEC 1989	2. REPORT TYPE	3. DATES COVERED 00-00-1989 to 00-00-1989			
4. TITLE AND SUBTITLE Radio Spectrum Studies of 32 First-Quadrant Galactic Supernova Remnants			5a. CONTRACT NUMBER		
			5b. GRANT NUMBER		
			5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)			5d. PROJECT NUMBER		
			5e. TASK NUMBER		
			5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory, Code 7213, 4555 Overlook Avenue, SW, Washington, DC, 20375			8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)		
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited					
13. SUPPLEMENTARY NOTES					
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES 17	19a. NAME OF RESPONSIBLE PERSON
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified			

TABLE 1
OBSERVED AND DERIVED PARAMETERS FOR 32 GALACTIC SUPERNOVA REMNANTS

G349.7+0.2						
R.A.:	17 ^h 14 ^m 35 ^s	Size:	2'	S ₄₀₈ :	24.5 Jy	Type: ?
Dec.:	-37°23'	α:	-0.3	Dist:	18.3±4.6 kpc (A)	r _{30.9} : ≤0.7
ν(MHz)	Sc(Jy) ¹	Error(Jy)	Telescope	Reference	Correction ¹	
57.5	39.5	±7.9	CLRO	CLGPS	1.0	
80.0	<u>22.6</u>	±3.2	Culgoora	Slee & Higgins 1973	1.074	
80.0	33.0	±7.0	Culgoora	Dulk & Slee 1975	1.0	
160.0	33.7		Culgoora	Slee 1977	1.11	
160.0	33.0	±7.0	Culgoora	Dulk & Slee 1975	1.0	
408.0	28.1	±2.8	Molonglo	Green 1974	0.97	
408.0	30.1	±3.0	Molonglo	Caswell et al. 1975	0.97	
1410.0	18.6		Parkes	Milne et al. 1969	1.02	
1660.0	17.1	±2.6	Parkes	Milne et al. 1969	NA	
2650.0	13.1		Parkes	Beard et al. 1969	1.01	
5000.0	9.1		Parkes	Caswell et al. 1975	1.0	
10600.0	10.0	±1.5	NRAO 140'	Becker & Kundu 1975	0.99	

G350.1-0.3						
R.A.:	17 ^h 17 ^m 40 ^s	Size:	4'?	S ₄₀₈ :	16.0 Jy	Type: ?
Dec.:	-37°24'	α:	-0.8	Dist:	r _{30.9} : ≤0.7	
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
57.5	101.6	±20.3	CLRO	CLGPS	1.0	
80.0	<u>22.6</u>		Culgoora	Slee 1977	1.074	
160.0	<u>15.3</u>		Culgoora	Slee 1977	1.11	
408.0	10.4		Molonglo	Clark et al. 1975	0.97	
2695.0	5.0	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99	
5000.0	1.7		Parkes	Clark et al. 1975	1.0	

G355.9-2.5						
R.A.:	17 ^h 42 ^m 40 ^s	Size:	14'	S ₄₀₈ :	12.0 Jy	Type: S
Dec.:	-33°42'	α:	-0.5	Dist:	r _{30.9} : 1.1±0.2	
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
30.9	14.3	±2.9	CLRO	CLGPS	1.0	
408.0	11.9		Molonglo	Clark et al. 1975	0.97	
5000.0	3.4		Parkes	Clark et al. 1975	1.0	

RADIO SPECTRUM STUDIES OF GALACTIC SNRS

TABLE 1—Continued

G6.4-0.1

R.A.: 17 ^h 58 ^m 00 ^s	Size: 45'	S ₄₀₈ : 424.3 Jy	Type: C?
Dec: -23°20'	α: -0.4	Dist:	τ30.9: 0.9±0.3
Other Names: W28, MSH 17-216, Kes 25			
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope
30.9	527.0	±105.4	CLRO
30.9	<u>165.0</u>	±16.0	FRO
86.0	855.0		Mills, Slee & Hill 1961
408.0	486.0		LMH 1961
408.0	430.0	±86.0	JB
408.0	446.2		Davis, Gelato-Volders, & W. 1965
510.0	325.0	±81.3	Molonglo
635.0	321.3	±80.3	Shaver & Goss 1970a
960.0	250.0		Milne 1965
1390.0	249.0	±74.7	CTB
1410.0	291.7	±58.3	Dwing
1430.0	270.0		Parkes
2650.0	192.6	±48.2	Parkes
2695.0	<u>53.5</u>	±0.4	NRAO 140'
2700.0	216.3	±32.4	Parkes
2700.0	206.0		Milne & Hill 1969
2700.0	199.0		Milne & Hill 1969
2727.0	220.0	±33.0	Parkes
2800.0	127.8	±12.0	NRAO 140'
5000.0	186.2	±37.2	Kundu 1970
5000.0	183.0		Parkes
5000.0	155.0	±23.3	Milne & Wilson 1971
5000.0	<u>39.1</u>	±0.4	NRAO 140'
			Milne & Dickel 1975
			Parkes
			Kundu 1970
			Altenhoff et al. 1970
			Ft. Davis

G9.8+0.6

R.A.: 18 ^h 02 ^m 10 ^s	Size: 13'	S ₄₀₈ : 5.8 Jy	Type: S
Dec: -20°14'	α: -0.8	Dist:	τ30.9: ≥8.0
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope
57.5	<3.0	±0.6	CLRO
408.0	5.6	±0.6	Molonglo
2695.0	1.0	±0.4	NRAO 140'
2700.0	1.8		Parkes

G10.0-0.3

R.A.: 18 ^h 05 ^m 45 ^s	Size: 8'	S ₄₀₈ : 3.1 Jy	Type: S?
Dec: -20°26'	α: -0.5	Dist:	τ30.9: ≥3.9
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope
57.5	<3.0		CLRO
408.0	5.2	±0.4	Molonglo
408.0	1.8		Molonglo
5000.0	0.83		Parkes

KASSIM

TABLE 1—Continued

G11.2-0.3

R.A.:	$18^{\text{h}}08^{\text{m}}30^{\text{s}}$	Size:	4'	S_{408} :	29.9 Jy	Type:	S
Dec:	-19°27'	α :	-0.5	Dist:	7.5 ± 2.5 (C)	$\tau_{30.9}$:	2.1 ± 0.3
ν (MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference		Correction	
30.9	14.2	± 2.8	CLRO	CLGPS		1.0	
57.5	31.7	± 6.3	CLRO	CLGPS		1.0	
80.0	108.9	± 15.0	Culgoora	Dickel 1973		1.1	
80.0	53.0	± 16.0	Culgoora	Dulk & Slee 1975		1.0	
80.0	38.7	± 5.4	Culgoora	Slee & Higgins 1973		1.074	
160.0	43.0	± 3.0	Culgoora	Dulk & Slee 1975		1.0	
160.0	43.4		Culgoora	Slee 1977		1.11	
408.0	34.8	± 2.4	Molonglo	Shaver & Goss 1970a		0.97	
635.0	<u>13.2</u>		?	Milne et al. 1969		NA	
1000.0	13.0		?	Milne et al. 1969		NA	
1410.0	12.9		Parkes	Milne et al. 1969		1.02	
2650.0	11.8		Parkes	Milne et al. 1969		NA	
2650.0	11.8		Effelsberg	Downes 1984		1.0	
2695.0	10.9	± 0.4	NRAO 140'	Altenhoff et al. 1970		0.99	
2700.0	12.4		Parkes	Goss & Day 1970		1.03	
4875.0	9.0		Effelsberg	Downes et al. 1980		1.0	
5000.0	11.3	± 0.4	Ft. Davis	Altenhoff et al. 1970		1.03	
5000.0	8.8		Parkes	Shaver & Goss 1970b		1.04	
5000.0	9.0		Effelsberg	Downes 1984		1.0	
10600.0	5.7	± 0.8	NRAO 140'	Becker & Kundu 1975		0.99	

G11.4-0.1

R.A.:	$18^{\text{h}}07^{\text{m}}45^{\text{s}}$	Size:	7'?	S_{408} :	7.1 Jy	Type:	S
Dec:	-19°06'	α :	-0.4	Dist:		$\tau_{30.9}$:	3.7 ± 0.8
ν (MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference		Correction	
57.5	5.8	± 1.2	CLRO	CLGPS		1.0	
408.0	9.1	± 0.9	Molonglo	Clark et al. 1975		0.97	
408.0	5.1		Molonglo	Clark et al. 1973		0.97	
2695.0	4.0	± 0.4	NRAO 140'	Altenhoff et al. 1970		0.99	
2700.0	<u>10.3</u>		Parkes	Goss & Day 1970		1.03	
4875.0	<u>4.3</u>		Effelsberg	Downs et al. 1980		1.0	
5000.0	2.0	± 0.4	NRAO 140'	Angerhofer et al. 1977		0.99	
5000.0	2.8		Parkes	Clark et al. 1973		1.0	

G12.0-0.1

R.A.:	$18^{\text{h}}09^{\text{m}}10^{\text{s}}$	Size:	5'?	S_{408} :	7.5 Jy	Type:	?
Dec:	-18°38'	α :	-0.8	Dist:		$\tau_{30.9}$:	≤ 0.2
ν (MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference		Correction	
30.9	62.9	± 12.6	CLRO	CLGPS		1.0	
408.0	6.4	± 0.6	Molonglo	Clark et al. 1975		0.97	
2700.0	6.8		Parkes	Goss & Day 1970		1.03	
5000.0	1.1		Parkes	Clark et al. 1975		1.0	

TABLE 1—Continued

G15.9+0.2						
R.A.: $18^{\text{h}}16^{\text{m}}10^{\text{s}}$	Size: 5'	S ₄₀₈ : 8.5 Jy	Type: S?	Dec: -15°03'	α : -0.7	Dist: $r_{30.9}$: 2.1 ± 0.3
ν (MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference		Correction
30.9	6.0	± 1.2	CLRO	CLGPS		1.0
80.0	22.6		Culgoora	Slee 1977		1.074
160.0	14.5		Culgoora	Slee 1977		1.11
408.0	7.5		Molonglo	Clark et al. 1975		0.97
1414.0	3.0	± 0.4	NRAO 300'	Altenhoff et al. 1970		1.01
2695.0	3.0	± 0.4	NRAO 140'	Altenhoff et al. 1970		0.99
5000.0	1.9		Parkes	Clark et al. 1975		1.0
5000.0	1.1	± 0.2	NRAO 140'	Angerhofer et al. 1977		0.99

G18.8+0.3						
R.A.: $18^{\text{h}}21^{\text{m}}10^{\text{s}}$	Size: 15'	S ₄₀₈ : 49.4 Jy	Type: S	Dec: -12°25'	α : -0.5	Dist: 14 ± 5 (B) $r_{30.9}$: 0.6 ± 0.3
Other Names:	Kes 67					
ν (MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference		Correction
30.9	87.4	± 17.5	CLRO	CLGPS		1.0
80.0	94.5	± 14.2	Culgoora	Slee & Higgins 1973		1.074
80.0	157.3	± 50.0	Culgoora	Dickel 1973		1.1
408.0	36.9	± 3.7	Parkes	Clark et al. 1975		0.97
408.0	38.4		Molonglo	Kesteven 1968		1.129
1414.0	33.3	± 0.4	NRAO 300'	Altenhoff et al. 1970		1.01
2695.0	18.8	± 0.4	NRAO 140'	Altenhoff et al. 1970		0.99
2700.0	17.2	± 7.0	NRAO 300'	Willis 1973		1.011
2700.0	22.7	± 3.4	Parkes	Milne & Dickel 1974		1.03
2700.0	12.4		Parkes	Goss & Day 1970		1.03
4875.0	23.4		Effelsberg	Downes et al. 1980		1.0
5000.0	19.2		Parkes	Milne & Dickel 1975		1.04
5000.0	15.7	± 2.4	Parkes	Milne 1969		1.04
5000.0	12.4	± 0.4	Ft. Davis	Altenhoff et al. 1970		1.03

KASSIM

TABLE 1—Continued

G21.5-0.9						
R.A.: 18 ^h 30 ^m 45 ^s	Size:	1.2'	S ₄₀₈ :	7.2 Jy	Type: F	
Dec: -10°37'	α:	-0.0	Dist:		τ _{30.9} :	≤0.2
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
30.9	10.4	±2.1	CLRO	CLGPS	1.0	
57.5	6.0	±1.2	CLRO	CLGPS	1.0	
80.0	8.6	±3.9	Culgoora	Slee & Higgins 1975	1.074	
160.0	8.4		Culgoora	Slee 1977	1.11	
408.0	4.9		Molonglo	Caswell & Clark 1975	0.97	
1414.0	6.1	±0.4	NRAO 300'	Altenhoff et al. 1970	1.01	
1660.0	6.5		Parkes	Milne et al. 1969	NA	
2695.0	6.9	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99	
2700.0	5.7		Parkes	Milne et al. 1969	NA	
2700.0	7.0	±0.7	Parkes	Milne & Dickel 1974	1.03	
2700.0	7.0	±0.4	NRAO Inter.	Becker & Kundu 1976	NA	
2700.0	6.9		Parkes	Goss & Day 1970	1.03	
4875.0	6.9		Effelsberg	Downes et al. 1980	1.0	
5000.0	8.3		WRST	Wilson & Weiler 1976	1.17	
5000.0	6.2	±0.4	Ft. Davis	Altenhoff et al. 1970	1.03	
8100.0	7.0	±0.4	NRAO Inter.	Becker & Kundu 1976	NA	
8900.0	6.6		Parkes	Caswell & Clark 1975	1.0	
10600.0	6.8	±0.8	NRAO 140'	Becker & Kundu 1975	0.99	

G21.8-0.6						
R.A.: 18 ^h 30 ^m 00 ^s	Size:	20'	S ₄₀₈ :	94.6 Jy	Type: S	
Dec: -10°10'	α:	-0.5	Dist:	≥ 6.3 (C)	τ _{30.9} :	0.9±0.3
Other Names: Kes 69						
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
30.9	170.6	±34.1	CLRO	CLGPS	1.0	
57.5	168.0	±33.6	CLRO	CLGPS	1.0	
80.0	320.1	±100.0	Culgoora	Dickel 1973	1.1	
80.0	103.1		Culgoora	Slee & Higgins 1973	1.074	
408.0	68.9	±6.9	Molonglo	Shaver & Goss 1970b	0.97	
408.0	106.7		Molonglo	Shaver & Goss 1970a	0.97	
408.0	180.6		Molonglo	Kesteven 1968	1.129	
1414.0	46.5	±0.4	NRAO 300'	Altenhoff et al. 1970	1.01	
1660.0	41.5		Parkes	Milne et al. 1969	NA	
2695.0	29.7	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99	
2700.0	41.0		Parkes	Milne et al. 1969	NA	
2700.0	31.3		NRAO 300'	Willis 1973	1.011	
2700.0	42.8	±4.6	NRAO 300'	Velusamy & Kundu 1974	1.011	
2700.0	40.2	±8.0	Parkes	Milne & Dickel 1974	1.03	
2700.0	39.0		Parkes	Goss & Day 1970	1.03	
4875.0	27.6		Effelsberg	Downes et al. 1980	1.0	
5000.0	20.6	±0.4	Ft. Davis	Altenhoff et al. 1970	1.03	
5000.0	16.7		Parkes	Shaver & Goss 1970b	1.04	
5000.0	24.0		NRAO 140'	Kundu et al. 1974	0.99	
5000.0	31.2		Parkes	Milne & Dickel 1974	1.04	
5000.0	29.1		Parkes	Goss and Shaver 1970	1.04	
10700.0	14.0		NRAO 140'	Kundu et al. 1974	0.99	

TABLE 1—Continued

G22.7-0.2

R.A.: 18 ^h 30 ^m 30 ^s	Size: 25'	S ₄₀₈ : 65.0 Jy	Type: S		
Dec: -09°15'	α : -0.2	Dist:	$r_{30.9}$: 3.5±0.9		
<hr/>					
ν (MHz)	Sc(Jy)	Error(Jy)	Telescope		
Reference	Correction				
57.5	37.5	±7.5	CLRO	CLGPS	1.0
408.0	53.4		Molonglo	Shaver & Goss 1970b	0.97
1414.0	66.7	±0.4	NRAO 300'	Altenhoff et al. 1970	1.01
2695.0	50.5	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99
4875.0	7.2		Effelsberg	Downes et al. 1980	1.0
5000.0	42.2	±0.4	Ft. Davis	Altenhoff et al. 1970	1.03
5000.0	28.0		Parokes	Shaver & Goss 1970b	1.04

G23.3-0.3

R.A.: 18 ^h 32 ^m 00 ^s	Size: 22'	S ₄₀₈ : 119.3 Jy	Type: S?		
Dec: -08°45'	α : -0.4	Dist:	$r_{30.9}$: 7.2±0.8		
<hr/>					
ν (MHz)	Sc(Jy)	Error(Jy)	Telescope		
Reference	Correction				
57.5	57.7	±11.5	CLRO	CLGPS	1.0
80.0	35.4		Culgoora	Slee & Higgins 1973	1.074
408.0	109.3		Molonglo	Shaver & Goss 1970b	0.97
408.0	146.8		Molonglo	Kesteven 1968	1.129
408.0	228.9		Molonglo	Shaver & Goss 1970a	0.97
1414.0	50.5	±0.4	NRAO 300'	Altenhoff et al. 1970	1.01
2695.0	35.6	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99
2700.0	92.7		Parokes	Goss & Day 1970	1.03
4875.0	13.0		Effelsberg	Downes et al. 1980	1.0
5000.0	61.1		Parokes	Shaver & Goss 1970b	1.04
5000.0	47.8		Parokes	Goss & Shaver 1970	1.04
5000.0	234.0		Parokes	Milne 1969	1.04
5000.0	24.7	±.4	NRAO 300'	Altenhoff et al. 1970	1.03

G23.6+0.3

R.A.: 18 ^h 30 ^m 20 ^s	Size: 7'	S ₄₀₈ : 10.2 Jy	Type: ?		
Dec: -08°14'	α : -0.1	Dist:	$r_{30.9}$: ≥5.3		
<hr/>					
ν (MHz)	Sc(Jy)	Error(Jy)	Telescope		
Reference	Correction				
57.5	<3.0		CLRO	CLGPS	1.0
408.0	10.0		Molonglo	Shaver & Goss 1970b	0.97
5000.0	7.0		Molonglo	Shaver & Goss 1970b	1.04

TABLE 1—Continued

G24.7+0.6						
R.A.:	18 ^h 31 ^m 40 ^s	Size:	16'?	S ₄₀₈ :	21.3 Jy	Type: ?
Dec:	-07°08'	α:	-0.1	Dist:	r _{30.9} : ≥1.0	
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
30.9	10.5	±2.1	CLRO	CLGPS	1.0	
408.0	18.2		Molonglo	Shaver & Goss 1970b	0.97	
408.0	19.	+	Molonglo	Green 1974	0.97	
408.0	26.2		Molonglo	Shaver & Goss 1970a	0.97	
1414.0	14.1	±0.4	NRAO 300'	Altenhoff et al. 1970	1.01	
2695.0	10.9	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99	
2695.0	19.0	±3.0	Effelsberg	Reich et al. 1984	1.0	
2700.0	21.6		Parkes	Goss & Day 1970	1.03	
4750.0	17.0	±4.0	Effelsberg	Reich et al. 1984	1.0	
5000.0	13.4	±0.4	Ft. Davis	Altenhoff et al. 1970	1.03	
10200.0	15.0	±3.0	Effelsberg	Reich et al. 1984	1.0	

G24.7-0.6						
R.A.:	18 ^h 36 ^m 00 ^s	Size:	15'?	S ₄₀₈ :	11.8 Jy	Type: S
Dec:	-07°35'	α:	-0.6	Dist:	r _{30.9} : ≥1.6	
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
30.9	11.3	±2.3	CLRO	CLGPS	1.0	
408.0	11.9	±1.2	Molonglo	Clark et al. 1975	0.97	
1414.0	6.1	±0.4	NRAO 300'	Altenhoff et al. 1970	1.01	
2695.0	3.0	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99	
5000.0	3.6		Parkes	Clark et al. 1975	1.0	
5000.0	2.2	±0.5	NRAO 140'	Angerhofer et al. 1977	0.99	

G27.4+0.0						
R.A.:	18 ^h 38 ^m 40 ^s	Size:	4'	S ₄₀₈ :	13.3 Jy	Type: S?
Dec:	-04°59'	α:	-0.7	Dist:	r _{30.9} : ≥2.8	
Other Names:	Kes 73, 4C -04.71					
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
30.9	<5.0	<±1.0	CLRO	CLGPS	1.0	
80.0	33.0	±18.0	Culgoora	Dulk & Slee 1975	1.0	
160.0	23.0	±3.0	Culgoora	Dulk & Slee 1975	1.0	
160.0	23.0		Culgoora	Slee 1977	1.11	
408.0	10.4		?	Caswell 1982	NA	
1414.0	13.1	±0.4	NRAO 300'	Altenhoff et al. 1970	1.01	
2695.0	9.9	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99	
2700.0	23.3	±7.0	NRAO 300'	Willis 1973	1.011	
2700.0	49.1	±5.0	NRAO 300'	Velusamy & Kundu 1974	NA	
2700.0	35.0	±7.0	Parkes	Milne & Dickel 1974	1.03	
4875.0	4.0		Effelsberg	Downes et al. 1980	1.0	
5000.0	8.2	±0.4	Ft. Davis	Altenhoff et al. 1970	1.03	
5000.0	1.9	±0.2		Haynes et al. 1978	NA	
5000.0	2.0	±0.5	NRAO 140'	Angerhofer et al. 1977	0.99	

RADIO SPECTRUM STUDIES OF GALACTIC SNRS

TABLE 1—Continued

G29.7-0.3						
R.A.:	18 ^h 43 ^m 50 ^s	Size:	2.5'	S ₄₀₈ :	15.1 Jy	Type: C
Dec:	-03°02'	α:	-0.6	Dist:		γ30.9: 0.8±0.2
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
30.9	32.6	±6.5	CLRO	CLGPS	1.0	
80.0	34.4	±4.8	Culgoora	Slee & Higgins 1973	1.074	
80.0	37.0	±5.0	Culgoora	Dulk & Slee 1975	1.0	
160.0	29.5		Culgoora	Slee 1977	1.11	
160.0	31.0	±5.0	Culgoora	Dulk & Slee 1975	1.0	
178.0	20.1		4C	Gower et al. 1967	1.11	
408.0	14.0		Molonglo	Shaver & Goss 1970b	0.97	
408.0	12.4		Molonglo	Kesteven 1968	1.129	
408.0	18.9		Molonglo	Shaver & Goss 1970a	0.97	
1414.0	7.1	±0.4	NRAO 300'	Altenhoff et al. 1970	1.01	
2650.0	3.6		Parkes	Beard & Kerr 1969	1.0	
2695.0	5.0	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99	
2700.0	5.2	±1.0	Parkes	Milne & Dickel 1974	1.0	
4875.0	3.0		Effelsberg	Downes et al. 1980	1.0	
5000.0	3.4	±0.3	Parkes	Milne 1969	1.04	
10600.0	2.8	±0.5	NRAO 140'	Becker & Kundu 1975	0.99	
G31.9+0.0						
R.A.:	18 ^h 46 ^m 50 ^s	Size:	5'	S ₄₀₈ :	32.6 Jy	Type: S
Dec:	-00°59'	α:	-0.5	Dist:	11±2.5 (C)	γ30.9: ≥3.2
Other Names: 3C391						
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
30.9	≤5.0	≤1.0	CLRO	CLGPS	1.0	
80.0	28.9	±5.0	Culgoora	Caswell et al. 1971	1.07	
80.0	56.9		Culgoora	Slee & Higgins 1973	1.074	
80.0	40.0	±8.0	Culgoora	Dulk & Slee 1975	1.0	
85.0	17.1		MSH	Holden & Caswell 1969	1.07	
160.0	43.1		Culgoora	Slee 1977	1.11	
160.0	42.0	±3.0	Culgoora	Dulk & Slee 1975	1.0	
178.0	18.9			Holden & Caswell 1969	1.11	
178.0	19.7		4C	Holden & Caswell 1969	1.11	
178.0	25.2		3C	Bennett 1962	1.049	
178.0	17.8			KPW	1.049	
318.0	34.0	±5.0		Condon 1971	1.05	
408.0	33.4		Molonglo	Caswell et al. 1971	0.97?	
408.0	30.5		Molonglo	Kesteven 1968	1.129	
408.0	33.4		Molonglo	Green 1974	0.97	
750.0	32.8			Holden & Caswell 1969	1.114	
750.0	29.4		NRAO 300'	KPW	1.046	
1400.0	20.8			KPW	1.029	
1400.0	22.7			Holden & Caswell 1969	1.099	
1400.0	20.0	±2.0	FST	Goss et al. 1979	NA	
1410.0	19.8		Parkes	Beard & Kerr 1969	1.04	
1414.0	20.2	±0.4	NRAO 300'	Altenhoff et al. 1970	1.01	
2650.0	10.8		Parkes	Beard & Kerr 1969	0.98	
2695.0	13.8		NRAO 140'	KPW	1.011	
2695.0	13.9	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99	
2700.0	14.0		NRAO Inter.	Becker & Kundu 1976	NA	
4875.0	9.8		Effelsberg	Downes et al. 1980	1.0	
5000.0	10.0		NRAO 140'	KPW	0.993	
5000.0	9.3		Ft. Davis	Altenhoff et al. 1970	1.03	
5000.0	10.4	±0.8	Parkes	Milne 1969	1.04	
6630.0	9.0	±0.5	Algonquin	Bridle & Kesteven 1971	1.0	
8160.0	7.8		NRAO Inter.	Becker & Kundu 1976	1.0	
8800.0	10.2		Parkes	Dickel et al. 1973	1.06	
10600.0	7.9	±1.0	NRAO 140'	Becker & Kundu 1975	0.99	
10630.0	7.6	±0.6	Algonquin	Bridle & Kesteven 1971	1.0	
10700.0	7.5	±0.8	FST	Goss et al. 1979	1.0	
15500.0	5.3	±0.5	Haystack	Chaisson 1974	0.99	

KASSIM

TABLE 1—Continued

G32.8-0.1						
R.A.:	18 ^h 48 ^m 50 ^s	Size:	17'?	S ₄₀₈ :	17.3 Jy	Type: S
Dec:	-00°12'	α:	-0.5	Dist:	r _{30.9} : ≤0.2	
Other Names: Kes 78						
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
30.9	64.5	±12.9	CLRO	CLGPS	1.0	
408.0	12.4	±1.2	Molonglo	Caswell et al. 1975	0.97	
430.0	20.0	±15.5	Arecibo	Dickel & DeNoyer 1975	1.05	
2650.0	2.0		Parkes	Beard & Kerr 1969	0.98	
2695.0	5.9	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99	
2700.0	7.3	±0.5	NRAO 300'	Velusamy & Kundu 1974	1.011	
5000.0	7.7		Parkes	Caswell et al. 1975	1.0	
10600.0	2.8	±0.6	NRAO 140'	Becker & Kundu 1975	0.99	

G33.2-0.6						
R.A.:	18 ^h 51 ^m 10 ^s	Size:	18'?	S ₄₀₈ :	8.5 Jy	Type: S?
Dec:	-00°12'	α:	-0.6	Dist:	r _{30.9} : ≤0.2	
Other Names:						
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
30.9	44.1	±8.8	CLRO	CLGPS	1.0	
2700.0	2.6	±0.3	Effelsberg	Reich 1982	1.0	
4750.0	1.75	±0.2	Effelsberg	Reich 1982	1.0	

G33.6+0.1						
R.A.:	18 ^h 50 ^m 10 ^s	Size:	10'x8.6'	S ₄₀₈ :	27.4 Jy	Type: S
Dec:	00°37'	α:	-0.5	Dist:	r _{30.9} : ≤0.2	
Other Names:						
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
30.9	94.0	±18.8	CLRO	CLGPS	1.0	
80.0	111.1	±25.0	Culgoora	Dickel 1973	1.1	
80.0	41.9		Culgoora	Slee 1977	1.074	
80.0	58.0	±8.7	Culgoora	Slee & Higgins 1973	1.074	
80.0	31.2	±4.7	Culgoora	Slee & Higgins 1975	1.074	
160.0	63.1		Culgoora	Slee 1977	1.11	
408.0	33.4	±3.3	Molonglo	Caswell et al. 1975	0.97	
408.0	37.8		Molonglo	Kesteven 1968	1.129	
430.0	72.5	±33.0	Arecibo	Dickel & DeNoyer 1975	1.05	
1410.0	9.9		Parkes	Beard & Kerr 1969	0.98	
1414.0	13.1	±0.4	NRAO 300'	Altenhoff et al. 1970	1.01	
2650.0	7.8		Parkes	Beard & Kerr 1969	0.98	
2695.0	8.9	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99	
4875.0	3.7		Effelsberg	Downes et al. 1980	1.0	
5000.0	7.8		Parkes	Caswell et al. 1975	1.0	
5000.0	11.3	±1.1	NRAO 140'	Angerhofer et al. 1977	0.99	
5000.0	5.2	±0.4	Ft. Davis	Altenhoff et al. 1970	1.03	
10600.0	6.7	±1.5	NRAO 140'	Becker & Kundu 1975	0.99	

RADIO SPECTRUM STUDIES OF GALACTIC SNRS

TABLE 1—Continued

G34.7-0.4						
R.A.: 18 ^h 53 ^m 30 ^s	Size: 35'x25'	S ₄₀₈ : 325.1 Jy	Type: S			
Dec: 01°18'	α: -0.4	Dist: 3±1 (A)	r _{30.9} : ≤0.2			
Other Names: W44, 3C392						
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
30.9	849.0	±169.8	CLRO	CLGPS	1.0	
38.0	834.9		WKB	KPW	1.09	
80.0	363.0	±54.5	Culgoora	Slee & Higgins 1973	1.074	
85.0	468.3		MSH	Holden & Caswell 1969	1.074	
178.0	396.5		Pencil Beam	KPW	1.049	
178.0	419.6		3CR	Bennett 1962	1.049	
178.0	479.5		3CR	Holden & Caswell 1969	1.11	
178.0	419.6		Pencil Beam	Holden & Caswell 1969	1.11	
195.0	441.8		K&V 1967	Holden & Caswell 1969	1.11	
400.0	406.4		D	Holden & Caswell 1969	1.129	
408.0	291.3		LMH	Holden & Caswell 1969	1.129	
408.0	290.0		Molonglo	Clark et al. 1975	0.97	
408.0	440.3		Molonglo	Kesteven 1968	1.129	
430.0	567.0	±187.0	Arecibo	Dickel & DeNoyer 1975	1.05	
430.0	291.3		K&V	Holden & Caswell 1969	1.129	
610.0	313.6		JB	Holden & Caswell 1969	1.12	
750.0	269.6		NRAO 300'	Holden & Caswell 1969	1.114	
750.0	242.0		NRAO 300'	KPW	1.046	
960.0	253.1		CTB	Holden & Caswell 1969	1.11	
1390.0	163.8		W	Holden & Caswell 1969	1.099	
1400.0	187.9		NRAO 300'	Holden & Caswell 1969	1.099	
1400.0	172.7		NRAO 300'	KPW	1.029	
1410.0	236.1		Parkes	Beard & Kerr 1969	1.04	
1410.0	236.3		S	Holden & Caswell 1969	1.099	
1414.0	274.7	±0.4	NRAO 300'	Altenhoff et al. 1970	1.01	
2650.0	166.6		Parkes	Beard & Kerr 1969	0.98	
2695.0	170.3	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99	
2700.0	107.2		A	Holden & Caswell 1969	1.083	
2700.0	168.8	±18.0	NRAO 300'	Willis 1973	1.011	
2700.0	179.0	±10.0	NRAO 300'	Velusamy & Kundu 1974	1.011	
2700.0	123.6	±18.5	Parkes	Milne & Dickel 1974	1.03	
3000.0	146.2		S	Holden & Caswell 1969	1.083	
3125.0	135.4		K42	Holden & Caswell 1969	1.083	
4875.0	123.1		Effelsberg	Downes et al. 1980	1.0	
5000.0	126.7	±0.4	Ft. Davis	Altenhoff et al. 1970	1.03	
5000.0	155.0	±23.3	Parkes	Milne 1969	1.04	
10700.0	104.0	±7.0	NRAO 140'	Kundu & Velusamy 1972	0.99	

KASSIM

TABLE 1—Continued

G39.2-0.3						
R.A.: 19 ^h 01 ^m 35 ^s	Size: 6.5'x6'	S ₄₀₈ : 25.1 Jy	Type: ?			
Dec: 05°23'	α : -0.4	Dist: ≥ 7.7 (A)	$\tau_{30.9}$: 0.5±0.2			
Other Names: 3C396, HC24, NRAO 593						
ν (MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
30.9	45.3	±9.1	CLRO	CLGPS	1.0	
38.0	61.7		WKB	Holden & Caswell 1969	1.029	
80.0	43.0	±7.0	Culgoora	Dulk & Slee 1975	1.0	
80.0	40.8		Culgoora	Slee & Higgins 1973	1.074	
80.0	83.6		Culgoora	Dickel 1973	1.1	
160.0	37.5		Culgoora	Slee 1977	1.11	
160.0	38.0	±7.0	Culgoora	Dulk & Slee 1975	1.0	
178.0	95.5		Pencil Beam	Holden & Caswell 1969	1.11	
178.0	18.8		4C	Holden & Caswell 1969	1.11	
178.0	41.7		3C	Bennett 1962	1.049	
178.0	25.0		3C	KPW	1.049	
408.0	30.3		Molonglo	Shaver & Goss 1970b	0.97	
408.0	29.1		Molonglo	Shaver & Goss 1970a	0.97	
408.0	63.2		LMH	Holden & Caswell 1969	1.129	
430.0	56.7	±38.0	Arecibo	Dickel & DeNoyer 1975	1.05	
610.0	40.3		JB	Holden & Caswell 1969	1.12	
750.0	19.3		NRAO 300'	Holden & caswell 1969	1.114	
750.0	17.3		NRAO 300'	KPW	1.046	
960.0	15.5		CTB	Holden & Caswell 1969	1.11	
1400.0	13.8		NRAO 300'	KPW	1.029	
1400.0	15.2		NRAO 300'	Holden & Caswell 1969	1.099	
1410.0	16.3		Parkes	Milne et al. 1969	1.02	
1414.0	16.2	±0.4	NRAO 300'	Altenhoff et al. 1970	1.01	
2650.0	12.7		Parkes	Milne et al. 1969	1.03?	
2695.0	10.9	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99	
2700.0	12.1		Parkes	Day et al. 1970	1.01	
4875.0	8.0		Effelsberg	Downes et al. 1980	1.0	
5000.0	10.0		NRAO 140'	KPW	0.993	
5000.0	9.3	±0.4	Ft. Davis	Altenhoff et al. 1970	1.03	
5000.0	9.2		Parkes	Milne & Dickel 1974	1.04	
10600.0	4.1	±1.0	NRAO 140'	Becker & Kundu 1975	0.99	

G40.5-0.5						
R.A.: 19 ^h 04 ^m 45 ^s	Size: 26'	S ₄₀₈ : 15.5 Jy	Type: S			
Dec: 06°25'	α : -0.5	Dist:	$\tau_{30.9}$: 2.1±0.3			
Other Names: Flo						
ν (MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
30.9	6.3	±1.3	CLRO	CLGPS	1.0	
1414.0	8.1	±0.4	NRAO 300'	Altenhoff et al. 1970	1.01	
1720.0	9.3	±1.3	Effelsberg	Downes et al. 1980	1.0	
2695.0	5.9	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99	
2700.0	7.2	±0.5	Effelsberg	Downes et al. 1980	1.0	
2700.0	3.0		Parkes 210'	Day et al. 1970	1.01	

RADIO SPECTRUM STUDIES OF GALACTIC SNRS

TABLE 1—Continued

G41.1-0.3					
R.A.:	19 ^h 05 ^m 10 ^s	Size:	3'x4'	S ₄₀₈ :	38.7 Jy
Dec:	07°03'	α:	-0.4	Dist:	≥ 7.5 (A)
Other Names:	3C397, HC 26, NRAO 597				τ _{30.9} : 0.9±0.3
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction
26.3	32.9		Clark Lake	Erickson & Cronyn 1965	1.029
30.9	40.7	±8.1	CLRO	CLGPS	1.0
38.0	43.6		WKB	KPW	1.09
80.0	56.9		Culgoora	Slee 1977	1.074
80.0	53.7	±8.1	Culgoora	Slee & Higgins 1973	1.074
80.0	64.4	±8.4	Culgoora	Slee & Higgins 1975	1.074
80.0	61.0	±6.0	Culgoora	Dulk & Slee 1975	1.0
160.0	57.4		Culgoora	Slee 1977	1.11
160.0	41.0	±7.0	Culgoora	Dulk & Slee 1975	1.0
178.0	33.3		3CR	Holden & Caswell 1969	1.11
178.0	26.5		4C	Holden & Caswell 1969	1.11
178.0	68.8		Pencil Beam	Holden & Caswell 1969	1.11
178.0	65.0		Pencil Beam	KPW	1.049
178.0	29.4	±5.9	3CR	Bennett 1963	1.049
408.0	24.8		LMH	Holden & Caswell 1969	1.129
408.0	28.9	±2.9	Molonglo	Caswell et al. 1975	0.97
430.0	86.1	±51.0	Arecibo	Dickel & DeNoyer 1975	1.05
610.0	40.3		JB	Holden & Caswell 1969	1.12
750.0	42.1		NRAO 300'	KPW	1.046
750.0	46.8		NRAO 300'	Holden & Caswell 1969	1.114
960.0	21.1		CTB	Holden & Caswell 1969	1.11
1400.0	31.9		NRAO 300'	Holden & Caswell 1969	1.099
1400.0	29.2		NRAO 300'	KPW	1.029
1414.0	24.2	±0.4	NRAO 300'	Altenhoff et al. 1970	1.01
2695.0	16.8	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99
2695.0	19.8		NRAO 140'	KPW	1.011
2700.0	18.1	±3.6	NRAO 300'	Willis 1973	1.011
2700.0	21.5	±1.2	NRAO 300'	Velusamy & Kundu 1974	1.011
2700.0	20.2		Parkes	Day et al. 1970	1.01
4875.0	6.4		Effelsberg	Downes et al. 1980	1.0
5000.0	15.5	±0.4	Ft. Davis	Altenhoff et al. 1970	1.03
5000.0	15.1		NRAO 140'	Kellermann, Pauliny-toth, + W.	0.993
5000.0	8.7		Parkes	Caswell et al. 1975	1.0
5000.0	19.6		NRAO 140'	Kundu et al. 1974	0.99
10600.0	12.0	±2.0	Arecibo	Dickel & DeNoyer 1975	NA
10700.0	13.9		NRAO 140'	Kundu et al. 1974	0.99
15500.0	8.5	±3.0	Arecibo	Dickel & DeNoyer 1975	NA

KASSIM

TABLE 1—Continued

G43.3-0.2						
R.A.:	19 ^h 08 ^m 40 ^s	Size:	4'	S ₄₀₈ :	45.6 Jy	Type: S
Dec:	09°01'	α:	-0.4	Dist:	10.0 (B)	γ30.9: 0.9±0.3
Other Names: 3C398, W49B						
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
30.9	59.2	±11.8	CLRO	CLGPS	1.0	
38.0	<u>16.5</u>		WKB	Holden & Caswell 1969	1.029	
80.0	49.4		Culgoora	Slee & Higgins 1973	1.074	
80.0	73.7	±12.0	Culgoora	Dickel 1973	1.1	
80.0	55.0	±7.0	Culgoora	Dulk & Slee 1975	1.0	
160.0	69.0	±6.0	Culgoora	Dulk & Slee 1975	1.0	
160.0	74.0		Culgoora	Slee 1977	1.11	
178.0	<u>65.5</u>		3CR	Holden & Caswell 1969	1.11	
178.0	<u>86.6</u>		Pencil Beam	Holden & Caswell 1969	1.11	
178.0	71.3		Pencil Beam	KPW	1.049	
178.0	<u>35.1</u>		4C	Holden & Caswell 1969	1.11	
408.0	56.9		Molonglo	Shaver & Goss 1970	0.97	
408.0	51.4		Molonglo	Shaver 1969	0.97	
408.0	<u>88.1</u>		LMH	Holden & Caswell 1969	1.129	
610.0	<u>69.4</u>		JB	Holden & Caswell 1969	1.12	
750.0	<u>101.4</u>		NRAO 300'	Holden & Caswell 1969	1.114	
750.0	46.3		NRAO 300'	KPW	1.046	
960.0	<u>78.8</u>		CTB	Holden & Caswell 1969	1.11	
1390.0	<u>64.8</u>		W49	Holden & Caswell 1969	1.099	
1400.0	36.8		NRAO 300'	KPW	1.029	
1400.0	<u>96.3</u>		NRAO 300'	Holden & Caswell 1969	1.099	
1414.0	29.3	±0.4	NRAO 300'	Altenhoff et al. 1970	1.01	
2650.0	25.8	±5.2	Parkes	Milne & Hill 1969	1.03	
2695.0	19.8	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99	
2700.0	<u>58.5</u>		A56	Holden & Caswell 1969	1.083	
2700.0	27.3		Parkes	Day et al. 1970	1.01	
3125.0	<u>85.6</u>		K46	Holden & Caswell 1969	1.07	
4875.0	18.5		Effelsberg	Downes et al. 1980	1.0	
5000.0	16.6		Parkes	Goss & Shaver	1.04	
5000.0	17.4		Parkes	Shaver & Goss 1970	1.04	
5000.0	14.6		NRAO 140'	KPW	0.993	
5000.0	14.4	±0.4	Ft. Davis	Altenhoff et al. 1970	1.03	
7830.0	18.7		Haystack	Burke & Wilson 1967	0.99	
15000.0	8.9	±0.7	Effelsberg	Green et al. 1975	0.99	

G46.8-0.3

R.A.:	19 ^h 15 ^m 50 ^s	Size:	17'	S ₄₀₈ :	28.6 Jy	Type: S
Dec:	12°04'	α:	-0.6	Dist:	γ30.9: ≤0.2	
Other Names: Part of HC30						
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
30.9	93.9	±18.8	CLRO	CLGPS	1.0	
38.0	102.9		WKB	Holden & Caswell 1969	1.029	
80.0	111.1	±50.0	Culgoora	Dickel 1973	1.1	
80.0	43.0		Culgoora	Slee & Higgins 1973	1.074	
178.0	46.6		Pencil Beam	Holden & Caswell 1969	1.11	
408.0	19.6		Molonglo	Caswell et al. 1975	0.97	
408.0	24.8		JB	Holden & Caswell 1969	1.129	
430.0	48.3	±21.0	Arecibo	Dickel & DeNoyer 1975	1.05	
610.0	23.4		JB	Holden & Caswell 1969	1.112	
750.0	27.9		NRAO 300'	Holden & Caswell 1969	1.114	
1400.0	18.9		NRAO 300'	Holden & Caswell 1969	1.099	
1414.0	17.2	±0.4	NRAO 300'	Altenhoff et al. 1970	1.01	
1665.0	15.4	±5.5	VRO 37m	Willis 1973	1.06	
2695.0	10.0	±0.4	NRAO 140'	Altenhoff et al. 1970	0.99	
2700.0	10.1		Parkes	Day et al. 1970	1.01	
2700.0	6.5		A	Holden & Caswell 1969	1.083	
2730.0	10.9	±0.9	NRAO 300'	Willis 1973	1.02	
5000.0	7.1		Parkes	Caswell et al. 1975	1.0	
5000.0	5.2	±0.5	NRAO 140'	Angerhofer et al. 1977	0.99	

TABLE 1—Continued

G54.4-0.3						
R.A.:	19 ^h 31 ^m 10 ^s	Size:	40'?	S ₄₀₈ :	36.0 Jy	Type: S
Dec:	18°45'	α:	-0.3	Dist:	r _{30.9} : ≤0.2	
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
30.9	68.5	±13.7	CLRO	CLGPS	1.0	
38.0	67.9		WKB	Holden & Caswell 1969	1.029	
178.0	65.7	±15.0	Pencil Beam	Day et al. 1972	1.011	
178.0	4.1		4C	Holden & Caswell 1969	1.011	
178.0	44.4		Pencil Beam	Holden & Caswell 1969	1.011	
1414.0	21.2	±10.0	NRAO 300'	Day et al. 1972	1.01	
2700.0	34.8	±5.0	NRAO 300'	Velusamy & Kundu 1974	1.011	
2700.0	17.2	±8.0	Parkes	Day et al. 1972	1.01	

G94.0+1.0						
R.A.:	21 ^h 23 ^m 10 ^s	Size:	30'x25'	S ₄₀₈ :	20.5 Jy	Type: ?
Dec:	51°40'	α:	-0.5	Dist:	r _{30.9} : ≤0.1	
ν(MHz)	Sc(Jy)	Error(Jy)	Telescope	Reference	Correction	
26.3	72.5	±7.0	Clark Lake	Montovani et al. 1982	1.0	
30.9	99.3	±19.9	CLRO	CLGPS	1.0	
38.0	63.2	±6.0	WKB	Montovani et al. 1982	1.0	
178.0	35.5	±5.0	Pencil Beam	Montovani et al. 1982	1.0	
750.0	13.3	±1.5	NRAO 300'	Montovani et al. 1982	1.0	
1400.0	12.0	±1.5	NRAO 300'	Montovani et al. 1982	1.0	
1665.0	11.7	±3.0	NRAO 300'	Montovani et al. 1982	1.0	
1720.0	12.0	±1.3	Bologna	Montovani et al. 1982	1.0	
2700.0	5.9	±0.4	NRAO 300'	Montovani et al. 1982	1.0	
2730.0	6.2	±0.8	NRAO 300'	Montovani et al. 1982	1.0	

NOTES.—The following are a list of abbreviations used for references and telescopes cited in Table 1.

Reference abbreviations:

A	Altenhoff <i>et al.</i> 1960	Algonquin	Algonquin 48 m
3C(R)	Bennett 1962, 1963	Arecibo	Arecibo 1000'
D	Davis, Volders, and Westerhout 1965	Bologna	Bologna Cross Telescope
CLGPS	Kassim 1987, 1988	CLRO	Clark Lake TPT
K&V	Kundu and Velusamy 1972	Culgoora	Culgoora Radio Heliograph
K	Kuzmin <i>et al.</i> 1960	Dwing	Dwingelo 25 m
LMH	Large, Mathewson, and Hoslam 1961	Effelsberg	Effelsberg 100 m
MSH	Mills, Slee, and Hill 1958	FRO	Fleurs Radio Observatory
4C	Pilkington and Scott 1964, Gower, Scott, and Wills 1967	Ft. Davis	Fort Davis 85'
S	Scheuer 1963	FST	Fleurs Synthesis Telescope
W	Westerhout 1958	Haystack	Haystack 36.5 m
WKB	Williams, Kenderdine, and Baldwin 1966	JB	Jodrell Bank 250'
CTB	Wilson 1963	Molongolo	Molongolo Cross Telescope
		Parke	Parke 64 m
		VRO	Vermillion Radio Observatory
		WRST	Westerbork Synthesis Array

Telescope abbreviations:

¹Sc = Correction × S (published). The correction factor has been used to bring the published flux density in the literature to the Baars *et al.* 1977 scale.

The intrinsic spectral index of the SNR (α) is assumed to be constant throughout the radio range. In the headers of Table 1 we have scaled the derived optical depths to 30.9 MHz ($\tau_{30.9}$) by multiplication of τ_{408} by the appropriate conversion factor of $(30.9/408)^{-2.1}$ (see Kassim 1989, and references therein).

As expected, $\tau_{30.9}$ is most sensitive to the accuracy of the lowest frequency flux density measurements, i.e., those from Clark Lake, so that the errors for τ have been obtained from the ~20% error estimate appropriate to the Clark Lake data (Kassim 1987, 1988; see also Kassim 1989). While τ is also dependent on the spectral index of the SNR and therefore on the higher frequency measurements, in most cases numerous higher frequency points are available to determine the optically thin spectral index, making τ relatively insensitive to the error of any individual measurement.

Table 1 lists all available integrated flux density measurements. Columns (1), (2), and (3) list, respectively, the observing frequency in MHz, the corrected (see below) integrated flux density (Sc) in janskys (underlined values are not used; see below), and an error estimate (also in janskys) if one is available. Columns (4) and (5) list the instrument and reference for each observation, and column (6) gives the correction factor which was used to bring the published flux density to the absolute scale of Baars *et al.* (1977). Most of these correction factors were obtained from Kuhr *et al.* (1981). The remainder was derived by comparing the assumed flux densities of the original calibrators with their values determined by Baars *et al.* (1977). The notation "NA" in column (6) means that an estimate of the correction factor is not available, usually because the original reference does not list the assumed flux densities of the primary calibrators. (In some cases note that only a secondary reference or instrument description is listed in col. [4].)

The flux densities listed in Table 1 have also been edited to remove poor or inappropriate measurements. The principal rejection criteria were the following:

1. The observations have been superseded by more recent, higher quality observations at a comparable frequency, or the observations are in strong disagreement with a number of other measurements made at nearby frequencies.

2. The observations were made with an instrument having insufficient resolution to avoid confusion from nearby sources. Confusion by thermal sources often leads to an overestimate of the flux density at high frequencies.

3. The observations were made by an interferometer with insufficient short spacings to measure the full integrated flux density of a large remnant. This undersampling leads to an underestimate of the flux density.

Some personal judgement was often required in compiling Table 1 since the data rarely fall neatly into the acceptance or rejection categories. Therefore, column (2) lists *all* of the available flux densities, but the underlined measurements are those which were not used to derive the spectra presented in Kassim (1989).

A discussion of the analysis and interpretation of these data and plots of the points and fitted spectra for the SNRs within the radio regime are given in Kassim (1989). Results of that analysis are inconsistent with low-frequency absorption of SNRs by a widely distributed, homogeneous ionized component of the ISM. Instead they suggest that low-frequency turnovers in SNR spectra are due to absorption by localized regions of low-density ionized gas probably associated with normal H II regions.

The author would like to thank William C. Erickson and Kurt W. Weiler for many useful discussions and comments. The Clark Lake Radio Observatory was supported by the National Science Foundation under grant AST-8416179. Part of this work was taken from a thesis submitted in partial fulfillment of the requirements for the Ph.D. degree in the department of Physics and Astronomy at the University of Maryland.

REFERENCES

- Altenhoff, W. J., Downes, D., Good, L., Maxwell, A., and Rinehart, R. 1970, *Astr. Ap. Suppl.*, **1**, 319.
 Altenhoff, W., Mezger, P. G., Wendker, H., and Westerhout, G. 1960, *Veröff. U. Sternw. Bonn.*, **59**, 48.
 Angerhofer, P. E., Becker, R. H., and Kundu, M. R. 1977, *Astr. Ap.*, **55**, 11.
 Baars, J. W. M., Genzel, R., Pauliny-Toth, I. I. K., and Witzel, A. 1977, *Astr. Ap.*, **61**, 99.
 Beard, M., and Kerr, F. J. 1969, *Australian J. Phys.*, **22**, 121.
 Beard, M., Thomas, B. M., and Day, G. A. 1969, *Australian J. Phys.*, *Ap. Suppl.*, **12**, 27.
 Becker, R. H., and Kundu, M. R. 1975, *A.J.*, **80**, 679.
 ———. 1976, *Ap. J.*, **204**, 427.
 Bennett, A. S. 1962, *Mem. R.A.S.*, **68**, 163.
 ———. 1963, *Mem. R.A.S.*, **127**, 3.
 Bridle, A. H., and Kesteven, M. J. L. 1971, *A.J.*, **76**, 958.
 Burke, B. F., and Wilson, T. L. 1967, *Ap. J. (Letters)*, **150**, L13.
 Caswell, J. L. 1983, *M.N.R.A.S.*, **204**, 833.
 Caswell, J. L., and Clark, D. H. 1975, *Australian J. Phys.*, *Ap. Suppl.*, **37**, 57.
 Caswell, J. L., Clark, D. H., and Crawford, D. F. 1975, *Australian J. Phys.*, *Ap. Suppl.*, **37**, 39.
 Caswell, J. L., Dulk, G. A., Goss, W. M., Radhakrishnan, V., and Green, A. J. 1971, *Astr. Ap.*, **12**, 271.
 Caswell, J. L., Haynes, R. F., Milne, D. K., and Wellington, K. J. 1982, *M.N.R.A.S.*, **200**, 1143.
 Chaisson, E. J. 1974, *Ap. J.*, **189**, 69.
 Clark, D. H., Caswell, J. L., and Green, A. J. 1973, *Nature*, **246**, 28.
 ———. 1975, *Australian J. Phys.*, *Ap. Suppl.*, **37**, 1.
 Condon, J. J. 1971, Cornell-Sydney Univ. Astr. Centre Rept. No. 238.
 Davis, M. M., Volders, L. G., and Westerhout, G. 1965, *Bull. Astr. Inst. Netherlands*, **18**, 42.
 Day, G. A., Warne, W. G., and Cooke, D. J. 1970, *Australian J. Phys.*, *Ap. Suppl.*, **13**, 11.
 Dickel, J. R. 1973, *Australian J. Phys.*, **26**, 369.
 Dickel, J. R., and DeNoyer, L. K. 1975, *A.J.*, **80**, 437.
 Dickel, J. R., Milne, D. K., Kerr, A. R., and Ables, J. G. 1973, *Australian J. Phys.*, **26**, 370.
 Downes, A. 1984, *M.N.R.A.S.*, **210**, 845.
 Downes, A. J. B., Pauls, T., and Salter, C. J. 1980, *Astr. Ap.*, **92**, 47.
 Downes, D., Wilson, T. L., Bieging, J., and Wink, J. 1980, *Astr. Ap. Suppl.*, **40**, 379.
 Dulk, G. A., and Slee, O. B. 1972, *Australian J. Phys.*, **25**, 429.
 ———. 1975, *Ap. J.*, **199**, 61.
 Erickson, W. C., and Cronyn, W. M. 1965, *Ap. J.*, **142**, 1156.
 Erickson, W. C., Mahoney, M. J., and Erb, K. 1982, *Ap. J. Suppl.*, **50**, 403.
 Finlay, E. A., and Jones, B. B. 1973, *Australian J. Phys.*, **26**, 389.
 Goss, W. M., and Day, G. A. 1970, *Australian J. Phys.*, *Ap. Suppl.*, **13**, 3.
 Goss, W. M., and Shaver, P. A. 1968, *Ap. J. (Letters)*, **154**, L75.
 ———. 1970, *Australian J. Phys.*, *Ap. Suppl.*, **14**, 1.

- Goss, W. M., Skellern, D. J., Watkinson, A., and Shaver, P. A. 1979, *Astr. Ap.*, **78**, 75.
- Gower, J. F. R., Scott, P. F., and Wills, D. 1967, *M.N.R.A.S.*, **71**, 49.
- Green, A. J. 1974, *Astr. Ap. Suppl.*, **18**, 267.
- Green, A. J., Baker, J. R., and Landecker, T. L. 1975, *Astr. Ap.*, **44**, 187.
- Green, D. A. 1984, *M.N.R.A.S.*, **209**, 449.
- _____. 1988, *Astr. Space Sci.*, **148**, 3.
- Haynes, R. F., Caswell, J. L., and Simons, L. W. J. 1978, *Australian J. Phys., Ap. Suppl.*, **45**, 1.
- Holden, D. J., and Caswell, J. L. 1969, *M.N.R.A.S.*, **143**, 407.
- Kassim, N. E. 1987, Ph.D. thesis, University of Maryland.
- _____. 1988, *Ap. J. Suppl.*, **68**, 715.
- _____. 1989, *Ap. J.*, **347**.
- Kellermann, K. I., Pauliny-Toth, I. I. K., and Williams, P. J. S. 1969, *Ap. J.*, **157**, 1.
- Kesteven, M. J. L. 1968, *Australian J. Phys.*, **21**, 369.
- Kuhr, H., Witzel, A., Pauliny-Toth, I. I. K., and Nauber, U. 1981, *Astr. Ap. Suppl.*, **45**, 367.
- Kundu, M. R. 1970, *Ap. J.*, **162**, 17.
- Kundu, M. R., and Velusamy, T. 1972, *Astr. Ap.*, **20**, 237.
- Kundu, M. R., Velusamy, T., and Hardee, P. E. 1974, *A.J.*, **79**, 132.
- Kuzmin, A. D., Levchenko, M. T., Noskova, R. I., and Solomonovich, A. E. 1960, *Astr. Zh.*, **37**, 975.
- Large, M. I., Mathewson, D. S., and Haslam, C. G. T. 1961, *M.N.R.A.S.*, **123**, 113.
- Mantovani, F., Nanni, M., Salter, C. J., and Tomasi, P. 1982, *Astr. Ap.*, **105**, 176.
- Mills, B. Y., Slee, O. B., and Hill, E. R. 1958, *Australian J. Phys.*, **11**, 360.
- _____. 1961, *Australian J. Phys.*, **14**, 497.
- Milne, D. K. 1969, *Australian J. Phys.*, **22**, 613.
- Milne, D. K., and Dickel, J. R. 1974, *Australian J. Phys.*, **27**, 549.
- _____. 1975, *Australian J. Phys.*, **28**, 209.
- Milne, D. K., and Hill, E. R. 1969, *Australian J. Phys.*, **22**, 211.
- Milne, D. K., and Wilson, T. L. 1971, *Astr. Ap.*, **10**, 220.
- Milne, D. K., Wilson, T. L., Gardner, F. F., and Mezger, P. G. 1969, *Ap. Letters*, **4**, 121.
- Moran, M. 1965, *M.N.R.A.S.*, **129**, 447.
- Pilkington, J. D. H., and Scott, P. F. 1964, *Mem. R.A.S.*, **69**, 183.
- Reich, W. 1982, *Astr. Ap.*, **106**, 314.
- Reich, W., Furst, E., and Sofue, Y. 1984, *Astr. Ap.*, **133**, L4.
- Scheuer, P. A. G. 1963, *Observatory*, **83**, 56.
- Shaver, P. A. 1976, *Astr. Ap.*, **49**, 1.
- Shaver, P. A., and Goss, W. M. 1970a, *Australian J. Phys., Ap. Suppl.*, **14**, 77.
- _____. 1970b, *Australian J. Phys., Ap. Suppl.*, **14**, 133.
- Slee, O. B. 1977, *Australian J. Phys., Ap. Suppl.*, **43**, 1.
- Slee, O. B., and Higgins, C. S. 1973, *Australian J. Phys., Ap. Suppl.*, **27**, 1.
- _____. 1975, *Australian J. Phys., Ap. Suppl.*, **36**, 1.
- Velusamy, T., and Kundu, M. R. 1974, *Astr. Ap.*, **32**, 375.
- Weiler, K. W., and Sramek, R. A. 1988, *Ann. Rev. Astr. Ap.*, **26**, 295.
- Westerhout, G. 1958, *Bull. Astr. Inst. Netherlands*, **14**, 215.
- Williams, P. J. S., Kenderdine, S., and Baldwin, J. E. 1966, *M.N.R.A.S.*, **70**, 53.
- Willis, A. G. 1973, *Astr. Ap.*, **26**, 237.
- Wilson, R. W. 1963, *A.J.*, **68**, 181.
- Wilson, T. L., and Weiler, K. W. 1976, *Astr. Ap.*, **53**, 89.

NAMIR E. KASSIM: NRL-Code 4131K, Naval Research Laboratory, Washington, DC 20375-5000