VE485, Optimization in Machine Learning (Summer 2020) Homework Five

5. Solving Non-constrained Problem

Lecturer: Xiaolin Huang xiaolinhuang@sjtu.edu.cn

Student: Junjie Zhang bigzhang@sjtu.edu.cn

## Problem 1

The pure Newton method. Newton's method with fixed step size t = 1 can diverge if the initial point is not close to  $x^*$ . In this problem we consider two examples.

- 1.  $f(x) = \log(e^x + e^{-x})$  has a unique minimizer  $x^* = 0$ . Run Newton's method with fixed step size t = 1, starting at  $x^{(0)} = 1$  and at  $x^{(0)} = 1.1$ .
- 2.  $f(x) = -\log x + x$  has a unique minimizer  $x^* = 1$ . Run Newton's method with fixed step size t = 1, starting at  $x^{(0)} = 3$ .

Plot f and f', and show the first few iterates.

## Answer.

1. The plot of f and f' can be seen in Figure 1. When  $x^{(0)} = 1.0$ , the first 10 iterations are shown in Table 1.



Figure 1: Plot of f and f', where  $f(x) = \log(e^x + e^{-x})$ 

When  $x^{(0)} = 1.1$ , the first 10 iterations are shown in Table 2.

2. The plot of f and f' can be seen in Figure 2. At the beginning,  $x^{(0)} = 3$  and  $f(x^{(0)}) - f(x^*) = 0.901388$ . For the first iteration,  $x^{(1)} = -3$ , which is out of the domain of  $f(x) = -\log x + x$ .

| iteration $k$ | $x^{(k)}$ | $f(x^{(k)}) - f(x^*)$ |
|---------------|-----------|-----------------------|
| 0             | 1.000000  | 0.433781              |
| 1             | 0.412399  | 0.082730              |
| 2             | 0.200305  | 0.019928              |
| 3             | 0.099481  | 0.004940              |
| 4             | 0.049659  | 0.001232              |
| 5             | 0.024819  | 0.000308              |
| 6             | 0.012408  | 0.000077              |
| 7             | 0.006204  | 0.000019              |
| 8             | 0.003102  | 0.000005              |
| 9             | 0.001551  | 0.000001              |

Table 1: First 10 iterations when  $x^{(0)} = 1.0$  and  $f(x) = \log(e^x + e^{-x})$ 

| iteration $k$ | $x^{(k)}$ | $f(x^{(k)}) - f(x^*)$ |
|---------------|-----------|-----------------------|
| 0             | 1.100000  | 0.511936              |
| 1             | 0.432176  | 0.090618              |
| 2             | 0.209298  | 0.021745              |
| 3             | 0.103883  | 0.005386              |
| 4             | 0.051848  | 0.001344              |
| 5             | 0.025913  | 0.000336              |
| 6             | 0.012955  | 0.000084              |
| 7             | 0.006477  | 0.000021              |
| 8             | 0.003239  | 0.000005              |
| 9             | 0.001619  | 0.000001              |

Table 2: First 10 iterations when  $x^{(0)} = 1.1$  and  $f(x) = \log(e^x + e^{-x})$ 



Figure 2: Plot of f and f', where  $f(x) = -\log x + x$