SPIKE PRIME LESSONS

By the Creators of EV3Lessons

دوران أكثر دقة

SANJAY AND ARVIND SESHAN ترجمة رنا الشلبي

أهداف الدرس

- التعرف عل كيفية تحسين دقة الدوران.
- التعرف على طرق بديلة للقيام بالدوران حول محور الروبوت والدوران حول إحدى عجلاته.

ما مدى دقة الدوران حول إحدى عجلات الروبوت؟

قم بتشغيل هذا البرنامج واستخدم لوحة المعلومات لمعرفة ما إذا كان الدوران 90 درجة يجعل الروبوت يدور بالفعل 90 درجة.

- لاحظ أننا قمنا بضبط سرعة المحرك على 50 بدلاً من 20
 في الدرس السابق.
 - بالنسبة لـ ADB بسرعة 50٪، هذا البرنامج يجعل
 الروبوت يدور 102 درجة ، أما بالنسبة لـ Droidbot IV ،
 فإنه يدور إلى 98 درجة.
 - وذلك لسببين:
- الستغرق وقتًا قصيرًا لقراءة الدوران. في هذا الوقت ،
 الروبوت. هذا التأخير في SPIKE Prime صغير نسبيًا ولكنه سينتج عنه بضع درجات خاطئة.
- يستغرق الأمر بعض الوقت لإيقاف الروبوت بسبب قوة الدفع. ينتج عن هذا عدة درجات إضافية خاطئة.

تحسين دقة الدوران حول إحدى عجلات الروبوت

- كما ذكرنا في الشريحة السابقة ، عند استخدام الروبوت ADB بسرعة 50٪ فإن الروبوت يدور 102 درجة بدلاً من 90 درجة. بالنسبة إلى Droidbot IV، تبلغ نسبة الدوران 98 درجة.
 - کیف یمکننا حل هذه المشکلة؟
- يتمثل أحد الحلول في تقليل 12 درجة لـ ADB أو 8 درجات أقل لـ Droid Bot IV
 - سيعتمد مقدار تقليل الدوران على سرعة الدوران وتصميم الروبوت. سوف تحتاج إلى تجربة بعض القيم للحصول على نتيجة صحيحة.
 - يقوم البرنامج الموجود على اليمين بالدوران 90 درجة باستخدام ADB باستخدام هذه الطريقة.

حل آخر للدوران حول إحدى عجلات الروبوت

- طريقة أخرى للدوران هي استخدام كتل الحركة مع المدة.
- تتمثل إحدى ميزات كتل الحركة هذه في أنها تتباطأ في نهاية الحركة لتحسين الدقة.

- ما مقدار دوران العجلات للبنة أعلاه؟
- المسافة المحددة هي متوسط المسافة التي تقطعها العجلتان.
- في نهاية أي حركة للروبوت، سيكون مجموع المسافة التي قطعتها كلتا العجلتين ضعف المدة التي تم إدخالها.
 - الإجابة: ستدور العجلة اليسرى بمقدار 360 درجة وستدور العجلة اليمنى بمقدار 0 درجة.
 - لاحظ أن الحركة أعلاه ستؤدي إلى دوران Droidbot IV درجة إلى اليمين فعلياً

ماذا عن الدوران المحوري (حول محور الروبوت)

- فيما يلي طريقتان للقيام بالدوران باستخدام لبنتين مختلفتين للحركة.
- في هذا المثال ، في Droid Bot IV، تتحرك كل عجلة في الروبوت 180 درجة ولكن في اتجاهين متعاكسين.
 - تتيجة لذلك ، سوف يدور الروبوت فعلياً 90 درجة إلى اليمين.
 - ا نوصي باستخدام كتلة (Move Tank) لأنها تدعم أنواع الدوران :الدوران حول محور الروبوت وحول إحدى عجلاته، والحركة المتعرجة.

تحدي

قم ببرمجة الروبوت للدوران حول عجلة واحدة 90 درجة لليمين
 باستخدام لبنات الحركة فقط.

- يمكنك استخدام لوحة المعلومات لتحديد مدى الدوران. أمسك إحدى العجلات وقم بتدوير الأخرى باليد حتى يصل الروبوت إلى الهدف. سجل عدد درجات دوران المحرك ستستخدم هذا في برنامجك.
 - بالنسبة إلى Droidbot IV، يحتاج المحرك الأيسر إلى الدوران 360 درجة ليدور الروبوت فعلياً 90 درجة إلى اليمين.
- تذكر من الشريحة السابقة كيفية حساب دوران كل عجلة عند استخدام «لبنة الحركة" أدناه:

حل التحدي

- ابدأ بتعيين منافذ المحركات.
- ا استخدم وضعیة (لزوم الموضع) للتأکد من ثبات الروبوت حیث أنهی دورته.
 - أعد ضبط زاوية الانعراج. سيسمح لك ذلك برؤية مقدار دوران الروبوت وذلك على لوحة المعلومات.
- حرك الروبوت باستخدام لبنة تحريك الروبوت Tank Move لاحظ أن هذه اللبنة لها مدة عبارة عن 180 درجة. العجلة اليمنى لا تتحرك ، والعجلة اليسرى ستدور 360 درجة. هذا خاص بـ Droid Bot IV
 - بعد تشغيل هذا البرنامج ، تحقق من زاوية الدوران الفعلية باستخدام لوحة المعلومات. يجب أن تكون قريبة من 90 درجة.

الاعتماد

- تم إنشاء هذا الدرس من قبل Sanjay Seshan و Arvind Seshan من أجل دروس سبايك برايم.
 - المزيد من الدروس متوفرة في الموقع www.primelessons.org
- rana.shalabi@hotmail.com تمت ترجمة العمل وتنسيقه باللغة العربية من قبل المدربة **رنا الشلبي** <u>rana.shalabi</u>

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.