A nearly correctly-rounded cube root

Robin Leroy (eggrobin)

2021-03-26

This document describes the error analysis of the real cube root function Cbrt implemented in numerics/cbrt.cpp.

Overview

The general approach to compute the cube root of y > 0 is the same as the one described in [KBo1]:

- 1. integer arithmetic is used to get a an initial quick approximation q of $\sqrt[3]{y}$;
- 2. a root finding method is used to improve that that to an approximation ξ with a third of the precision;
- 3. ξ is rounded to a third of the precision, resulting in the rounded approximation x whose cube x^3 can be computed exactly;
- 4. a single high order iterate of a root finding method is used to get the final result.

Notation

We define the fractional part as frac $a := a - \lfloor a \rfloor \in [0, 1[$, regardless of the sign of a. The quantities $p \in \mathbb{N}$ (precision in bits) and $bias \in \mathbb{N}$ are as defined in IEEE 754-2008.

We use capital letters fixed-point numbers involved in the computation, and A > 0 for the normal floating-point number a > 0 reinterpreted as a binary fixed-point number with t bits after the binary point¹,

$$A := bias + \lfloor \log_2 a \rfloor + \operatorname{frac}(2^{-\lfloor \log_2 a \rfloor}a)$$

= $bias + \lfloor \log_2 a \rfloor + 2^{-\lfloor \log_2 a \rfloor}a - 1$,

and vice versa,

$$a := 2^{\lfloor A \rfloor - bias} (1 + \operatorname{frac} A).$$

This corresponds to [KBo1]'s B + K + F.

For both fixed- and floating-point numbers, given $\alpha \in \mathbb{R}$, we write $[\![\alpha]\!]$ for the nearest representable number (rounding ties to even). For fixed-point numbers, we write $[\![\alpha]\!]_0$ for directed rounding towards 0 to the fixed-point precision (as in division implemented with integer division).

Except in the section on rescaling, the input *y* and all intervening floating-point numbers are taken to be normal; the rescaling performed to avoid overflows also avoids subnormals.

^{&#}x27;The implementation uses integers (obtained by multiplying the fixed-point numbers by 2^{p-1}). For consistency with [KBo1] we work with fixed-point numbers here. Since we do not multiply fixed point numbers together, the expressions are unchanged.

1 Quick approximation

The quick approximation q is computed using fixed-point arithmetic as

$$Q \coloneqq C + \left[\left[\frac{Y}{3} \right] \right]_0,$$

where the fixed-point constant C is defined as²

$$C \coloneqq \left[\frac{2 \operatorname{bias} - \gamma}{3} \right]$$

for some $\nu \in \mathbb{R}$

Let $\varepsilon := \frac{q}{\sqrt[3]{y}} - 1$, so that $\sqrt[3]{y}(1 + \varepsilon) = q$; the relative error of q as an approximation of $\sqrt[3]{y}$ is $|\varepsilon|$. Considering Y, Q, q, and ε as functions of y, we have

$$Y(8y) = Y(y) + 3,$$

$$Q(8y) = Q(y) + 1,$$

$$q(8y) = 2q(y),$$

$$\varepsilon(8y) = \varepsilon(y),$$

so that the properties of ε need only be studied on some interval of the form $[\eta, 8\eta[$. Pick $\eta := 2^{|\gamma|}$, and $y \in [\eta, 8\eta[= [2^{|\gamma|}, 2^{|\gamma|+3}[$, so that $\log_2 y \in [|\gamma|, |\gamma| + 3[$. Let $k := [\log_2 y] - |\gamma|$; note that $k \in \{0, 1, 2\}$. Let $f := \operatorname{frac}(2^{-\lceil \log_2 y \rceil}y) \in [0, 1[$. Up to at most 1.5 units in the last place from rounding,

$$Q \approx Q' := bias + \frac{\lfloor \log_2 y \rfloor}{3} + \frac{\operatorname{frac}(2^{-\lfloor \log_2 y \rfloor} y) - \gamma}{3},$$

= $bias + \frac{\lfloor \gamma \rfloor + k}{3} + \frac{f - \gamma}{3},$
= $bias + \frac{k + f - \operatorname{frac} \gamma}{3}.$

Since $k \in [0, 2]$, the numerator $k + f - \text{frac } \gamma$ lies in]-1,3[. Further, it is negative only if k = 0, so that

$$[Q'] = \begin{cases} bias - 1 & \text{if } k = 0 \text{ and } \operatorname{frac} \gamma > \operatorname{frac}(2^{-|\gamma|} \gamma), \\ bias & \text{otherwise,} \end{cases}$$
 and
$$\operatorname{frac} Q' = \begin{cases} 1 + \frac{f - \operatorname{frac} \gamma}{3} & \text{if } k = 0 \text{ and } \operatorname{frac} \gamma > f, \\ \frac{k + f - \operatorname{frac} \gamma}{3} & \text{otherwise.} \end{cases}$$

Accordingly, for the quick approximation q, we have, again up to at most 1.5 units in the last place,

$$q \approx q' = \begin{cases} 1 + \frac{f - \operatorname{frac} \gamma}{6} & \text{if } k = 0 \text{ and } \operatorname{frac} \gamma > f, \\ 1 + \frac{k + f - \operatorname{frac} \gamma}{3} & \text{otherwise,} \end{cases}$$

With $\sqrt[3]{y} = 2^{\frac{|y|+k}{3}} \sqrt[3]{1+f}$, we can define

$$\varepsilon' \coloneqq \frac{q'}{\sqrt[3]{y}} - 1,$$

which we can express piecewise as a function of f and k. This gives us a bound on the relative error,

$$|\varepsilon| \le |\varepsilon'| + 1.5 \cdot 2^{p-1} (1 + |\varepsilon'|).$$

The values $\gamma = 0.1009678$ and $\varepsilon < 3.2\%$ from [KBo1] may be recovered by choosing γ minimizing the maximum of $|\varepsilon'|$ over $\gamma \in [\eta, 8\eta]$, or equivalently.

$$\gamma_{Kahan} \coloneqq \underset{\gamma \in \mathbb{R}}{\operatorname{argmin}} \max_{y \in [\eta, 8\eta[} |\epsilon'| = \underset{\gamma \in \mathbb{R}}{\operatorname{argmin}} \max_{(f, k)} |\epsilon'|$$

²Note that there is a typo in the corresponding expression C := (B - 0.1009678)/3 in [KBo1]; a factor of 2 is missing on the bias term.

where the maximum is taken over $(f, k) \in [0, \operatorname{frac} \gamma[\times \{0\} \cup [0, 1] \times \{1, 2\},$

$$= \underset{\gamma \in \mathbb{R}}{\operatorname{argmin}} \max_{(f,k) \in \mathcal{E} \cup \mathcal{L}} |\varepsilon'|,$$

where $\mathcal{E} \coloneqq \{(\operatorname{frac} \gamma, 0)\} \cup \{(0, k) \mid k \in \{0, 1, 2\}\}$ is the set of the endpoints of the intervals whereon q' is piecewise affine, and $\mathcal{L} \coloneqq \left\{ \left(\frac{k - \operatorname{frac} \gamma}{2}, k\right) \mid k \in \{1, 2\} \right\}$ are the local extrema.

The values are more precisely³

 $\gamma_{Kahan} \approx 0.10096\,78121\,55802\,88786\,36993\,42643\,55358\,06489\,88235\,75289$ with

 $\max_{\nu} |\varepsilon'| \approx 0.03155\,46327\,73624\,80606\,11789\,73328\,17135\,58940\,02093\,40816,$

leading to $C_{\text{Kahan}} = {}_{16}2\text{A9F} 7625 3119 \,\text{D328} \cdot 2^{-52}$ for IEEE 754-2008 binary64. However, as we will see in the next section, this value does not optimize the final error, so it is not the one that we use.

2 Getting to a third of the precision

We use a single iterate of Fantet de Lagny's method to compute ξ ,

$$\xi \coloneqq \left\lVert q - \left\lceil \frac{ \left \lceil \left(\left \lceil \left \lceil q^2 \right \rceil \right \rceil q \right \rceil - y) q \right \rceil }{ \left \lceil 2 \left \lceil \left \lceil q^2 \right \rceil q \right \rceil + y \right \rceil } \right\rceil \right\rceil.$$

Note that the subtraction in the numerator is exact by Sterbenz's lemma. Let $\Delta := \frac{\xi}{3/N} - 1$ and

$$\xi' = q' - \frac{({q'}^3 - y)q'}{2{q'}^3 + y}.$$

We have, up to rounding errors (TODO: bound those)

$$\Delta \approx \Delta' \coloneqq \frac{\xi'}{\sqrt[3]{\nu}} - 1.$$

With $q' = \sqrt[3]{y}(1 + \varepsilon')$, we can express Δ' using the transformation of the relative error error by one step of Fantet de Lagny's method on the cube root,

$$\Delta' = \frac{2{\varepsilon'}^3 + {\varepsilon'}^4}{3 + 6{\varepsilon'} + 6{\varepsilon'}^2 + 2{\varepsilon'}^3}.$$

If q' is computed using $\gamma = \gamma_{Kahan}$, we get

$$\max_{\alpha} |\Delta'| \approx 0.00002196,$$

$$\log_2 \max_{y} |\Delta'| \approx -15.47.$$

However, γ_{Kahan} , which minimizes $\max_{\gamma} |\varepsilon|$, does not minimize $\max_{\gamma} |\Delta'|$. This is because while Δ' is monotonic as a function of ε' , it is not odd: positive errors are reduced more than negative errors are, so that the minimum is attained for a different value of γ . Specifically, we have

$$\gamma_{L} \coloneqq \underset{\gamma \in \mathbb{R}}{\operatorname{argmin}} \max_{y} |\Delta'|$$

 $\approx 0.09918746152985599525661492076131234347202306792759$

with

 $\max_{y} |\varepsilon'| \approx 0.03103\,20521\,29929\,93577\,08166\,75859\,02139\,33719\,41389\,93269,$

but

 $\max_{y} |\varDelta'| \approx 0.00002\,08686\,35536\,39593\,48770\,92008\,39844\,10254\,14831\,61229.$

The corresponding fixed-point constant is $C_L := {}_{16}2A9F7893782DA1CE \cdot 2^{-52}$ for binary 64.

 $^{^{3}}$ These may be computed formally, but the expressions are unwieldy.

References

[KBo1] W. Kahan and D. Bindel. "Computing a Real Cube Root". 2001 retypesetting by Bindel of a purported 1991 version by Kahan, at https://csclub.uwaterloo.ca/~pbarfuss/qbrt.pdf. 21st Apr. 2001.

References

[KBo1] W. Kahan and D. Bindel. "Computing a Real Cube Root". 2001 retypesetting by Bindel of a purported 1991 version by Kahan, at https://csclub.uwaterloo.ca/~pbarfuss/qbrt.pdf. 21st Apr. 2001.