MIS 7 : Sujet d'étude n°2

Merwan Achibet Université du Havre

1 Problème 1

1.1 Dates au plus tôt

= 8

```
\frac{b_1}{1} \text{ n'a pas de prédécesseur donc } b_1 = 0. \frac{b_2}{2} \text{ a un seul prédécesseur (1), donc } b_2 = b_1 + p_1 = 0 + 3 = 3 \frac{b_3}{3} \text{ a un seul prédécesseur (1), donc } b_3 = b_1 + p_1 = 0 + 3 = 3 \frac{b_4}{4} \text{ a un seul prédécesseur (1), donc } b_4 = b_1 + p_1 = 0 + 3 = 3 \frac{b_5}{5} \text{ a trois prédécesseurs (2, 3 et 4), on choisit parmi eux } s \text{ tel que } b_s + p_s + c_{s5} \text{ soit maximum.} pour 2: b_2 + p_2 + c_{25} = 3 + 3 + 2 = 8 pour 3: b_3 + p_3 + c_{35} = 3 + 5 + 3 = 11 pour 4: b_4 + p_4 + c_{45} = 3 + 3 + 1 = 7 on prend donc s = 3. b_5 = \max(b_S + p_s, \max_{i \in PRED(5) - \{s\}} (b_i + p_i + c_{i5}))
```

 $= \max(3+5, \max(3+3+2, 3+3+1))$

$$b_6$$

 $\overline{6}$ a deux prédécesseurs (3 et 4), on choisit parmi eux s tel que $b_s + p_s + c_{s6}$ soit maximum.

pour
$$3: b_3 + p_3 + c_{36} = 3 + 5 + 2 = 10$$

pour $4: b_4 + p_4 + c_{46} = 3 + 3 + 1 = 7$
on prend donc $s = 3$.

$$b_6 = \max(b_S + p_s, \max_{i \in PRED(6) - \{s\}} (b_i + p_i + c_{i6}))$$

= $\max(3 + 5, 3 + 3 + 1)$
= 8

 b_7

 $\overline{7}$ a deux prédécesseurs (5 et 6), on choisit parmi eux s tel que $b_s + p_s + c_{s7}$ soit maximum.

pour
$$5: b_5 + p_5 + c_{57} = 8 + 4 + 1 = 13$$

pour $6: b_6 + p_6 + c_{67} = 8 + 3 + 1 = 12$
on prend donc $s = 5$.

$$b_7 = \max(b_S + p_s, \max_{i \in PRED(7) - \{s\}} (b_i + p_i + c_{i7}))$$

= $\max(8 + 4, 8 + 3 + 1)$
= 12

Au final, on obtient les bornes au plus tôt suivantes :

X	1	2	3	4	5	6	7
PRED(X)	0	3	3	3	8	8	12

1.2 Diagramme de Gantt

On construit un graphe critique contenant les arcs (i, j) tels que $b_i + p_i + c_{ij} > b_j$.

$$\frac{\text{arc }(1,2)}{b_1 + p_1 + c_{12}} = 0 + 3 + 1 = 4 > b_2 = 3$$
 Donc on le conserve

$$\frac{\text{arc }(1,3)}{b_1+p_1+c_{13}} = 0+3+2=5 > b_3=3 \text{ Donc on le conserve}$$

$$\frac{\text{arc } (1,4)}{b_1+p_1+c_{14}} = 0 + 3 + 1 > b_4 = 3 \text{ Donc on le conserve}$$

$$\frac{\text{arc } (2,5)}{b_2+p_2+c_{25}} = 3 + 3 + 2 = b_5 = 8 \text{ Donc on le conserve}$$

$$\frac{\text{arc } (3,5)}{b_3+p_3+c_{35}} = 3 + 5 + 3 > b_5 = 8 \text{ Donc on le conserve}$$

$$\frac{\text{arc } (3,6)}{b_3+p_3+c_{36}} = 3 + 5 + 2 > b_5 = 8 \text{ Donc on le conserve}$$

$$\frac{\text{arc } (4,5)}{b_4+p_4+c_{45}} = 3 + 3 + 1 < b_5 = 8 \text{ Donc on ne le conserve pas}$$

$$\frac{\text{arc } (4,6)}{b_4+p_4+c_{46}} = 3 + 3 + 1 < b_6 = 8 \text{ Donc on ne le conserve pas}$$

$$\frac{\text{arc } (5,7)}{b_5+p_5+c_{57}} = 8 + 4 + 1 > b_7 = 12 \text{ Donc on le conserve}$$

$$\frac{\text{arc } (6,7)}{b_6+p_6+c_{67}} = 8 + 3 + 1 = b_7 = 12 \text{ Donc on ne le conserve}$$

Le graphe critique est donc :

Á partir du graphe critique, on obtient le diagramme de Gantt suivant :

	Ordonnancement optimal													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
P1		1												
ГІ		1			2									
P2		1				3				5	5		7	<u>'</u>
Р3		1				3				6				
P4		1			4									
1 1														

2 Problème 2

```
entrée :
       matrice A (de taille n*n)
       vecteur b (de taille n)
       entier n
sortie :
       vecteur solution x
DEBUT
      // Initialisation du vecteur solution.
      x = [0,0,0,0,0,0,0,0]
      // Le processeur maître distribue les données.
      SI moi = O ALORS
         POUR i = 1 å P
              // On envoie uniquement les lignes utiles de A.
              // Chaque processeur en traîte deux.
              envoyer(moi, i, A[2*(i-1)], n)
              envoyer(moi, i, A[2*(i-1)+1], n)
              // On envoie b en entier à tout le monde.
              envoyer(moi, i, b, n)
        FIN POUR
        // Attend les 2 solutions de chaque esclave
        // (une fois qu'ils ont convergé).
        POUR i = 1 \text{ à P}
              recevoir(moi, i, x[2*(i-1)], 1);
              recevoir(moi, i, x[2*(i-1)+1], 1);
        // Affiche la solution.
        affiche(x)
```

```
// Les processeurs esclaves éxécutent les calculs.
SINON
 convergence = faux
 a1 : première ligne de A à traîter
 a2 : seconde ligne de A à traîter
 b : vecteur b
 recevoir(moi, 0, a1, n)
 recevoir(moi, 0, a2, n)
 recevoir(moi, 0, b, n)
 TANT QUE convergence = faux
       // Calcule l'indice de la ligne en fonction
       // du numéro du processeur.
       i = 2*(moi-1)
       // Calcule les nouvelles valeurs de X
       x[i] = calculer(i, x, b)
       x[i+1] = calculer(i+1, x, b)
       // Diffuser les résultats et recevoir
       // ceux des autres processeurs.
       POUR i = 1 à P différent de moi
           envoyer(moi, i, x, n);
           recevoir(moi, i, x2, n);
           x[2*(i-1)] = x2[2*(i-1)]
           x[2*(i-1)+1] = x2[2*(i-1)+1]
       // Vérifie la convergence du calcul.
       convergence = t(x,y)
       // Enregistre x pour comparer à la prochaine itération.
       y = x;
```

FIN TANT QUE

FIN SINON

FIN

retourner xi

FIN PROCEDURE

Dans cet algorithme, le processeur maître ne réalise pas de calcul mais répartit les données sur les quatres processeurs esclaves. Puisqu'il y a 4 processeurs et que la matrice est de dimension 8, on envoie deux lignes de A à chaque processeur. Par exemple, le processeur 1 va traîter les ligne 1 et 2 tandis que le processeur 2 va traîter les lignes 3 et 4.

Après chaque série de calcul, les processeurs esclaves envoient leurs deux valeurs de x aux autres. De cette façon, les solutions locales de chaque P sont continuellement mises à jour.

Le test de convergence est effectué de façon décentralisée dans chaque processeur esclave. Une fois qu'un processeur a convergé, il envoie son résultat au processeur maître qui affiche le résultat final lorsque tous ses esclave ont convergé.

Le graphe suivant illustre les premières itérations de l'algorithme.

