Intro To Database

(Database Fundamental using SQL SERVER)

Mohamed ELshafei

Agenda

- Relational Database.
- ERD Mapping to Tables
- SQL.
- MYSQL.
- DDL.
- MySQL Data Types
- DCL.
- General Query

Relational Database

- A data structure through which data is stored in tables that are related to one another in some way.
- The way the tables are related is described through a relationship.

Basic Database Structure

- **Table or entity**: a collection of records
- Attribute or Column or field: a Characteristic of an entity
- **Row or Record**: the specific characteristics of one entity
- **Database**: a collection of tables

Mapping

ERD Mapping to Tables

Steps

ER-to-Relational Mapping

- Step 1: Mapping of Regular Entity Types
- Step 2: Mapping of Weak Entity Types
- Step 3: Mapping of Binary 1:1 Relation Types
- Step 4: Mapping of Binary 1:N Relationship Types.
- Step 5: Mapping of Binary M:N Relationship Types.
- Step 6: Mapping of N-ary Relationship Types.
- **Step 7**: Mapping of Unary Relationship.

Step 1: Mapping of Regular Entity Types

- Create table for each entity type.
- Choose one of key attributes to be the primary key.

Mapping Composite attribute

CUSTOMER CUSTOMER relation with address detail					
Customer_ID	Customer_Name	Street	City	State	Zip

Mapping Multivalued Attribute

Multivalued attribute becomes a separate relation with foreign key

Mapping Derived & Complex

- In the most cases **Derived** attribute not be stored in DB.
- Mapping Complex Like Mapping Multivalued attribute then including parts of the multivalued attributes as columns in DB

Step 2: Mapping of Weak Entity Types

- Create table for each weak entity.
- Add foreign key that correspond to the owner entity type.

Primary key composed of:

- Partial identifier of weak entity
- Primary key of identifying relation (strong entity)

Step 3: Mapping of Binary 1:1 Relation Types

- Merged two tables if both sides are Mandatory.
- Add FK into table with the total participation relationship to represent optional side.
- Create third table if both sides are optional.

One To One 2 Mandatory

2 Mandatory

1 table

tbl_xy (<u>PK</u>,...,)

PK = PKx or PKy

Emp(<u>EID</u>, Ename, Cname, <u>CID</u>)

One To One Optional-Mandatory

EID

 $X ext{ optional} - Y ext{ mandatory}$

2 tables

tbl_x (<u>PKx</u>,...,) tbl_y (<u>PKy</u>,...,PKx...) Employee(EID, Ename)

EName

Employee

Computer(CID, Cname, EID_FK)

Has

<u>CID</u>

Intake 39 - DB

CName

Computer

One To One 2 Optional

Step 4: Mapping of Binary 1:N Relationship Types

- Add FK to N-side table if N-Side mandatory
- Add any simple attributes of relationship as column to N-side table.

One To Many (Many is Mandatory)

EID

X whatever—Y mandatory

2 tables

tbl_x (<u>PKx</u>,...,) tbl_y (<u>PKy</u>,...,FKy...) FKy= PKx

work

DID

Department(DID, Dname)

EName

Employee

M

Employee(EID, Ename, DID)

Intake 39 - DB

DName

Department

One To Many (Many is Optional)

Step 5: Mapping of Binary M:N Relationship Types.

- Create a new third table
- Add FKs to the new table for both parent tables
- Add simple attributes of relationship to the new table if any .

Many To Many

X whatever—Y whatever

3 tables

tbl_x (<u>PKx</u>,...,)

tbl_y (<u>PKy</u>,...,)

tbl_xy (<u>PKx</u> ,<u>PKy</u>,,)

PKxy=_PKx+PKy

Student(SID, Sname)

Course(CID, Cname)

Stud_Course(SID, CID)

Many To Many with attribute

The Supplies relationship will need to become a separate relation

Step 6: Mapping of N-ary Relationship Types.

If n > 2 then :

- Create a new third table.
- Add FKs to the new table for all parent tables.
- Add simple attributes of relationship to the new table if any .

Step 6: Mapping of N-ary Relationship Types.

Step 7: Mapping Unary Relationship

EMPLOYEE relation with recursive foreign key

Case Study

Company

Case study

Result

Intake 39 - DB

Result

- Student(<u>St-id</u>,st-fname,st-Lname,st-age,<u>st-super</u>,<u>Dept-ID</u>)
- Course(<u>Crs-id</u>.Crs-Name,Crs-Duration,<u>Top-id</u>)
- Topic(<u>Top-ID</u>,Top-Name)
- Stud-Course(<u>St-ID,Crs-ID</u>,grade)
- Instructor(<u>Ins-ID</u>,ins-Name,Address,Salary,Dept-ID)
- Ins-Course(<u>Ins-ID,Crs-ID</u>,Evalution)
- Department(<u>Dept-ID</u>,Dept-Name,Manager-ID,HireDate)