From Natural Language Processing to Transformer

Alexandre Allauzen and Florian Le Bronnec

26/09/2023

Roadmap

Introduction

A bit of language, of ambiguity and diversity

Old Tasks and Milestones

Neural Language modelling

From language models to large language models

Roadmap

Outline

Introduction

A bit of language, of ambiguity and diversity

Old Tasks and Milestones

Neural Language modelling

From language models to large language models

Roadmap

"Successful" applications of NLP

"Successful" applications of NLP

"Successful" applications of NLP

A great success

The reason of this success:

- availability of (very) large amount of training data
- progress of machine learning for NLP
- increase of computational power
 - \rightarrow analyse and generate sentences, discourse, document

And a couple of decades

of diverse and intensive research

Outline

Introduction

A bit of language, of ambiguity and diversity

Old Tasks and Milestones

Neural Language modelling

From language models to large language models

Roadmap

Formal language

A Formal language is by construction explicit and non-ambiguous

- In the beginning was the grammar, like in programming language
- The grammar produces a unique parse for each statement, along with efficient (deterministic) parsing

Natural (human) language

The goal in the production and comprehension of natural language is communication.

For the speaker:

- Intention: what is the message?
- Generation: translate the information into a sequence
- Synthesis: output the sequence (speech, signs, ...)

For the hearer:

- Perception:
- Analysis
- Incorporation

Analysis: Syntax, Semantic, Pragmatic

Syntax concerns the proper ordering of words and its affect on meaning.

- the dog bit the boy.
- the boy bit the dog.
- bit boy dog the the.

Semantics concerns the (literal) meaning of words, phrases, and sentences.

- plant: an organism or a factory
- plant: the act of sowing

Pragmatics concerns the overall communicative and social context and its effect on interpretation.

- The ham sandwich wants another beer. (co-reference, anaphora)
- John thinks vanilla. (ellipsis)

The features of the communication system

Conciseness

The student gave his homework to the professor who said that it could be improved.

Shared knowledge

Trump left the White House. I gave him a nice pen, A Mont-Blanc!

Expression / unlimited expressive power

logical expressions of any order ... and even non sense! Earth is curved Everything quickly done is not well done

Why is natural language implicit and ambiguous?

Having a unique linguistic expression for every possible conceptualization would make language overly complex and linguistic expressions unnecessarily long. (R. Mooney)

- Implicit enables conciseness (ellipsis, anaphora, ...), but entails potential ambiguities
- Unlimited expressivity requires flexible interpretation rules, but the surface forms just a part of the message.

Cooking recipies

Remove the stones from the cherries and put them in the pie.

Ambiguity

I saw the man on the hill with a telescope
(From the course of R. Mooney)

Ambiguity everywhere

Speech Recognition

"recognize speech" vs. "wreck a nice beach"

Syntactic Analysis

"I ate spaghetti with chopsticks" / "I ate spaghetti with meatballs"

Semantic Analysis

"The dog is in the pen"/ "The ink is in the pen"

Pragmatic Analysis (The Pink Panther Strikes Again)

Clouseau: Does your dog bite?

Hotel Clerk: No.

Clouseau: (bowing down to pet the dog) Nice doggie.

(Dog barks and bites Clouseau in the hand)

Clouseau: I thought you said your dog did not bite!

Hotel Clerk: That is not my dog.

Ambiguous, noisy and with great variability

Named entities and Idioms

- Where is A Bug's Life playing?
- Let It Be was recorded...
- Push the daisies

Neologism unfriend, retweet, Mary and Sue are sisters bromance, +1, ...

Headlines

- Hospitals are Sued by 7 Foot Doctors
- Kids Make Nutritious Snacks
- Iraqi Head Seeks Arms

Non-canonical language Great job @justinbieber! Were SOO PROUD of what youve done! U taught us 2 #neversaynever

World knowledge Mary and Sue are sisters / mothers

Outline

Introduction

A bit of language, of ambiguity and diversity

Old Tasks and Milestones

Neural Language modelling

From language models to large language models

Roadmap

Morphology

Morphology: the field of linguistics that studies the internal structure of words.

A morpheme: the smallest linguistic unit that has semantic meaning (Wikipedia)

Examples

- independently: in + (depend + ent) + ly
- Mineralwasserflasche
- carried: carry + ed (the past tense)
- görüntülenebilir: görüntüle+n+ebil+ir visualize+passiv+can+be (can be visualized)

The morphological properties can carry a lot of information (gender, case, syntactic role, ...)

Part Of Speech (POS) Tagging

Sequence tagging tag each word in a sentence with its part-of-speech (or morpho-syntactic property)

Sentence	POS-tags
er	PPER-case=nom gender=masc number=sg person=3
fürchtet	VVFIN-mood=ind number=sg person=3 tense=pres
noch	ADV
$\operatorname{schlimmeres}$	NN-case=acc gender=neut number=sg

or in English:

I	ate	$_{ m the}$	$_{ m spaghetti}$	with	${ m meatballs}$	
Pro	V	Det	N	Prep	N	PUN

Syntactic parsing

Produce the correct syntactic parse tree for a sentence.

(R. Mooney)

Semantic analysis

Word Sense Disambiguation (WSD)

Infer the sense of each ambiguous word in a sentence

- Ellen has a strong interest in computational linguistics.
- Ellen pays a large amount of interest on her credit card.

Semantic Role Labeling (SRL)

Assign semantic role to words or phrases in a sentence (e.g agent, goal, or result) xb (Agent Patient Source Destination Instrument)

John drove Mary from Austin to Dallas in his DS Citroën A P S D I

Important for many downtream tasks (Q&A, machine translation, . . .)

The 50's: two trends emerged

- Shannon explored probabilistic models of natural language (1951).
- Chomsky developed formal models of syntax, i.e. finite state and context-free grammars (1956).
- First computational parser developed at U-Penn as a cascade of finite-state transducers (Joshi, 1961; Harris, 1962).
- Bayesian methods developed for optical character recognition (OCR) (Bledsoe & Browning, 1959).

Who wrote?

But it must be recognized that the notion of "probability of a sentence" is an entirely useless one, under any known interpretation of this term.

The 60's

- Semantic network models of language for question answering (Simmons, 1965).
- First electronic corpus collected, Brown corpus, 1 million words (Kucera and Francis, 1967).
- Bayesian methods used to identify document authorship (The Federalist papers) (Mosteller & Wallace, 1964).

1964: The ALPAC report

The Automatic Language Processing Advisory Committee claimed that human translators are cheaper than the research in MT

The 70's: the Bayes rules and Markov models

For speech recognition, machine translation, OCR, ...

$$P(\mathbf{W}|\mathbf{X}) = \underbrace{\frac{f(\mathbf{X}|\mathbf{W}) P(\mathbf{W})}{P(\mathbf{X})}}_{\text{acoustic}}$$

- Acoustic likelihood: HMM and GMM
- Language model: prior model, originally a Markovian source

H.M.M rising

In the mid-70's: the spoken language as a Markovian source (Baker, 1975; Jelinek, 1976).

H.M.M and machine learning

A new mainstream

- For Syntactic analysis (POS tagging) in 1988
- Statistical Machine Translation (Brown et al., 1990)
- WordNet (Fellbaum & Miller, 90's)
- Other statistical models: SVM (Joachims,1999), CRF (Lafferty, 2001), Structured Perceptron (Collins, 2002).
- Unsupervised topic model, or Latent Dirichlet Allocation (Blei, 2003)

And in parallel, a new revolution

- Nettalk, a NNet "to read at loud" (Sejnowski et al., 1986)
- Then for POS tagging (Nakamura et al. 1986): the first embeddings!
- But really understood in (Bengio et al. 2001)

Outline

Introduction

A bit of language, of ambiguity and diversity

Old Tasks and Milestones

Neural Language modelling

From language models to large language models

Roadmap

Language modelling task

A word prediction game

time goes by so
$$w_1 \quad w_2 \quad \cdots \quad w_{i-1} \quad \longrightarrow \quad w_i = ? \quad \begin{cases} & \text{a} \\ & \vdots \\ & \text{fastly} \end{cases}$$

$$\vdots$$
slowly

A probability distribution over words

$$P(w_i|w_1^{i-1}), \ w_i \in \mathcal{V}$$

A probabilistic and generative model

$$P(w_1^L) = \prod_{i=1}^{L} P(w_i | w_1^{i-1}), \ \forall i, w_i \in \mathcal{V}$$

Challenges

- Large vocabulary (from 10k to millions)
- Very sparse observation
- Large amount of available data but noisy, heterogenous, ...

A key task

Speech recognition and Machine Translation Starting in the 80's [5, 1]:

And many others

- Handwritten character recognition, Text classification
- Chatbot, Question Answering

Count based model (from 80's to 2000)

n-gram based model

$$P(w_i|w_1^{i-1}) \approx P(w_i|\underbrace{w_{i-n+1}^{i-1}}_{last \text{ words}}) = \frac{c(w_i|w_1^{i-n+1})}{c(w_1^{i-n+1})}$$

Lack of generalization

- smoothing methods as a workaround
- but no similarity between words

The Zipf law

The Zipf law - 2

A second life as an unsupervised learning task

"Language Models are Unsupervised Multitask Learners"

- Leveraging the huge amount of unlabeled texts
- To pre-train word representations
- Along with their contextualization at the sentence level
- That can be fine-tuned for downstream tasks

A profusion of architectures

- Starting with convolution networks [2]
- More recently ELMo and ULMFit with LSTM [6, 4]
- BERT and GPT with Transformers [3, 7]

Outline

Introduction

A bit of language, of ambiguity and diversity

Old Tasks and Milestones

Neural Language modelling

From language models to large language models

Roadmap

In a few dates

Bigger is ...

Remark: GLaM was released in December 2021 with more than 1T of parameters!

Why we need such resource?

Variability in written languages

- Domain, style, topic, social context, the medium, ...
- For many language pairs
- For many languages, (all?)
- Multi-modal (image captioning, data to text, SQL to text, . . .

And it is not over! What about speech processing?

The promise of a new life cycle (resource-aware)

Unlabled: Self-Supervised Learning

The promise of a new life cycle (resource-aware)

Beyond wishful thinking

What are the issues?

- The amount of resources (CPUs, GPUs, storage, bandwidth)
- The experimental cost
- And the growth is unsustainable!

A new research perspective

- The design of resources aware architecture
- Versatility and performance
- The prior knowledge and better learning principles
- Seeking Invariance and symmetries
- ...

Today: the main task

• Text classification

$$\mathbf{X} = (w_1, w_2, ..., w_L) = w_1^L \longrightarrow y$$
 the class

• Word Tagging

$$\mathbf{X} = (w_1, w_2, ..., w_L) \longrightarrow (y_1, y_2, ..., y_L)$$

• Sentences (or relation) classification

$$(\mathbf{X}_1,\mathbf{X}_2)\longrightarrow y$$

• Conditionnal Generative Model

$$P(\mathbf{W}|\mathbf{X})$$

Outline

Introduction

A bit of language, of ambiguity and diversity

Old Tasks and Milestones

Neural Language modelling

From language models to large language models

Roadmap

40/42 Roadmap

Schedules

Courses

- Intro and text classification
- NLP and NNet architectures
- Transformer architecture
- The new zoo
- Issues, applications, challenges

Labs sessions

- Text classification with simple NNets (9th of October)
- BERT-like models (24th of October)
- Transformer from scratch (11th of November)

41/42 Roadmap

Evaluation

Homeworks 2 or 3 notebooks to complete

1 Project

Team work

42/42 Roadmap