Laura è in una camera nella quale sono posizionate due casse acustiche lungo una parete, alla distanza d = 3,50 m l'una dall'altra. Laura si posiziona lungo la parete opposta, distante 4,00 m dalla parete precedente.

0 < x < 3,50 m

▶ Determina *x* lungo la parete in modo da ottimizzare l'ascolto di un suono (velocità pari a 340 m/s) di frequenza *f* = 700 Hz.

Suggerimento: considera $k = \pm 1$ nella condizione di interferenza costruttiva.

[1,14 m e 2,36 m]

$$|AP - BP| = k\lambda$$
 $k = 1$ $\lambda = \frac{N}{4} = \frac{340 \%}{700 H_7} = \frac{N}{4} = \frac{N}{700 H_7} = \frac{N}{4} = \frac{N}{100 H_7} =$

$$|\overline{AP} - \overline{BP}| = \lambda$$

$$\overline{AP} - \overline{BP} = \lambda$$

$$\overline{AP} - \overline{BP} = \lambda$$

$$1) \sqrt{x^{2}+16} - \sqrt{(3,5-x)^{2}+16} = 0,4857$$

$$\sqrt{x^{2}+16} = \sqrt{(3,5-x)^{2}+16} + 0,4857$$

$$x^{2}+16 = (3,5-x)^{2}+16 + (0,4857)^{2} + (0,4857)^{2}$$

 $+0,9714\sqrt{(3,5-x)^2+16}$

2)
$$\sqrt{x^2+16} - \sqrt{(3,5-x)^2+16} = -0,4857$$

 $\sqrt{x^2+16} = \sqrt{(3,5-x)^2+16} - 0,4857$
 $\times^2+16 = (3,5-x)^2+16+(0,4857)^2$
 $-0,9714\sqrt{(3,5-x)^2+16}$

1)
$$_{x}^{2}+16=(3,5-x)^{2}+16+(0,4857)^{2}+0$$
, $9714\sqrt{(3,5-x)^{2}+16}$
 $x^{2}=12$, $25+x^{2}-7x+0$, $2359+0$, $9714\sqrt{(3,5-x)^{2}+16}$
 $7x-12$, $4859=0$, $9714\sqrt{(3,5-x)^{2}+16}$
 $49x^{2}+155$, $838-174$, $8026x=(0,9714)^{2}$ [12 , $25+x^{2}-7x+16$]

 $x=1$, 14 y $x=2$, 36 (con wolfrest supplies)

 $x=1$, 14 y $x=2$, 36 (con wolfrest supplies)

 $x=1$, $x=1$

Le solutioni sons commune

$$x_1 = 1,14 \, \text{m}$$
 $x_2 = 2,36 \, \text{m}$