Course code	Course Name	L-T-P-Credits	Year of Introduction
AO202	AERODYNAMICS - I	3-1-0-4	2016

Prerequisite: Nil

Course Objectives

- To introduce the concepts of mass, momentum and energy conservation relating to aerodynamics.
- To make the student understand the concept of vorticity, irrotationality, theory of airfoils and wing sections.
- To introduce the basics of viscous flow

Syllabus

Basics of fluid Mechanics-methodology of conformal transformation- Boundary layer and boundary layer thickness, displacement thickness, momentum thickness, energy thickness, shape parameter

Expected Outcome

The students will have

- i. an ability to apply airfoil theory to predict air foil performance
- ii. a knowledge of incompressible flow
- iii. an exposure to Boundary layer theory

Text Books:

- 1. Houghton, E.L., and Caruthers, N.B., "Aerodynamics for Engineering students", Edward Arnold Publishers Ltd., London, 1989.
- 2. Anderson, J.D., "Fundamentals of Aerodynamics", MaGraw Hill Book Co., 1999

References:

- 1. Milne Thomson, L.H., "Theoretical Aerodynamics", Macmillan, 1985
- 2. John J Bertin., "Aerodynamics for Engineers", Pearson Education Inc, 2002
- 3. Clancey, L J.," Aerodynamics", Pitman, 1986
- 4. Kuethe, A.M and Chow, C.Y, "Foundations of Aerodynamics", Fifth Edition, John Wiley & Sons, 2000.

Course Plan

Module	Contents	Hours	Sem. Exam Marks
I	Euler equation	2	15%
	incompressible Bernoulli's equation	2	
	circulation and vorticity	2	
	Green's lemma and Stoke's theorem	2	
II	Barotropic flow, Kelvin's theorem	2	15%
	streamline, stream function, irrotational flow	3	
	potential function, equipotential line	2	

	Elementary flows and their combinations.	4			
	FIRST INTERNAL EXAM		l		
Ш	Ideal Flow over a circular cylinder,		15%		
-	D'Alembert's paradox, magnus effect,.				
	Kutta Jukowski's theorem, starting vortex, Kutta condition				
	real flow over smooth and rough cylinders	2			
IV	Cauchy-Riemann relations, complex potential,		15%		
	methodology of conformal transformation,		-		
	Kutta Jukowski transformation and its applications				
	thin airfoil theory and its applications.	2			
	SECOND INTERNAL EXAM				
V	Vortex filament	2	20%		
	Biot and Savart law,	2	2		
	bound vortex and trailing vortex, horse shoe vortex,	2			
	Lifting line theory and its limitations.	2			
1	Boundary layer and boundary layer thickness, displacement thickness, momentum thickness, energy thickness, shape parameter,	2	20%		
	boundary layer equations for a steady, two dimensional incompressible flow,				
	boundary layer growth over a flat plate, critical Reynolds number				
	Blasius solution, basics of turbulent flow.	3			
	END SEMESTER EXAM	7			

Question Paper Pattern

Maximum marks: 100 Exam duration: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.