Série 12

1. On donne deux arcs de parabole Γ_1 et Γ_2 définis par

$$\Gamma_1: f_1(x) = -2x^2 + 6$$
 et $\Gamma_2: f_2(x) = -(x-1)^2$.

Déterminer l'équation cartésienne de la tangente t commune aux courbes Γ_1 et Γ_2 , de pente négative.

2. Calculer la dérivée $y' = \frac{dy}{dx}$ de la fonction donnée sous forme paramétrique :

$$(x(t); y(t)) = (t^3 + t; t^4 - t), t \in \mathbb{R}.$$

En quels points P de la courbe, la pente de la tangente vaut-elle -1?

3. Soit Γ la courbe définie par $\left\{ \begin{array}{ll} x(t)=1-t^2 \\ y(t)=t^2-t^3 \end{array} \right. \quad t\in\mathbb{R}\,.$

Calculer l'équation cartésienne de la tangente à la courbe Γ passant par le point $P(4; -8) \notin \Gamma$.

4. On considère Γ la courbe du plan définie par $y^3 + x^2 + a^2xy = 1$ où a est un paramètre réel strictement négatif.

Soit $P(x_P; a) \in \Gamma$, $x_P < 0$. Déterminer a pour que la normale à la courbe Γ en P passe par le point $Q(-\frac{5}{2}; 0)$.

5. On considère un point matériel M décrivant la trajectoire Γ définie par l'équation : $xy^3 + x^2y^2 + x^3y = 99 - 20x$.

Sachant que l'abscisse de M se déplace en fonction du temps t selon la loi $x(t)=1+\sqrt{t}+t\;,\;t\geq 0\;,\;$ déterminer :

- a) le(s) point(s) P de Γ pour le(s)quel(s) la vitesse de l'abscisse vaut $\frac{3}{2}$,
- b) l'équation cartésienne de la tangente à la trajectoire en ce(s) point(s).
- 6. Soit Γ la courbe du plan définie par les équations suivantes, où x est défini en fonction du paramètre t à l'aide d'une relation implicite.

$$\Gamma: \begin{cases} x t - x^2 t^2 + x^3 t^2 = 2 \\ y(t) = 3\sqrt{2t} + t - 2t^2 \end{cases} \quad t \ge 0.$$

Déterminer l'équation cartésienne de la normale à la courbe $\ \Gamma$ au point $\ P$ de $\ \Gamma$ défini par $\ x_P=2$.

- 7. Soient $f(x) = x^2 x$, Γ la courbe définie par y = f(x) et $b \in \mathbb{R}_+^*$.
 - a) Déterminer $x_0 \in]0$; b[tel que la tangente à Γ en x_0 soit parallèle à la sécante définie par les deux points de Γ d'abscisses x=0 et x=b.
 - b) Faire une représentation graphique de cette situation qui illustre le théorème des accroissements finis.
- 8. On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} \frac{3 - x^2}{2} & \text{si } x \le 1\\ \frac{1}{x} & \text{si } x > 1 \end{cases}$$

- a) A l'aide du théorème des accroissements finis, montrer qu'il existe $c \in]0, 2[$ tel que f(2) f(0) = (2 0) f'(c).
- b) Déterminer toutes les valeurs de c.

Réponses de la série 12

1. Equation de la tangente t: 4x + y - 8 = 0.

2.
$$y' = \frac{4t^3 - 1}{3t^2 + 1}$$
, $P_1(0, 0)$, $P_2(-\frac{75}{64}, \frac{273}{256})$.

- 3. Equation de la tangente à Γ issue de P: 5x + 2y 4 = 0.
- **4.** a = -1.
- **5.** a) P(3, 1). b) x + y 4 = 0.
- **6.** Equation de la normale à Γ en $P: y-3=\frac{6}{5}(x-2)$.
- 7. $x_0 = \frac{b}{2}$.
- **8.** $c = \frac{1}{2}$ ou $c = \sqrt{2}$.