BÀI GIẢNG 5. SỬ DỤNG CÔNG THỰC HẠ BẬC CAO

Biên soạn: Kiều Thị Thùy Linh

Tóm tắt lí thuyết

Trong nhiều bài toán giải phương trình lượng giác, ta thường gặp các dạng bài mà các hàm $\sin x$, $\cos x$, $\tan x$, $\cot x$ có bậc 3 trở lên. Để giải quyết các dạng bài toán này, ta cần ghi nhớ một số công thức hạ bậc cao sau:

1. Công thức hạ bậc ba

- $\sin^3 x = \frac{1}{4} (3\sin x \sin 3x).$
- $\bullet \quad \cos^3 x = \frac{1}{4} (3\cos x + \cos 3x).$
- $\bullet \quad \tan^3 x = \frac{3\sin x \sin 3x}{3\cos x + \cos 3x}.$
- $\cot^3 x = \frac{3\cos x + \cos 3x}{3\sin x \sin 3x}$

2. Công thức hạ bậc dạng $\sin^n x \pm \cos^n x$.

- $\bullet \quad \sin^4 x + \cos^4 x = 1 \frac{1}{2} \sin^2 2x.$
- $\bullet \quad \sin^6 x + \cos^6 x = 1 \frac{3}{4} \sin^2 2x.$
- $\bullet \quad \cos^4 x \sin^4 x = \cos 2x.$
- $\cos^6 x \sin^6 x = \cos 2x \left(1 \frac{1}{4} \sin^2 2x \right)$.
-

3. Một số công thức hạ bậc mở rộng tổng quát

- $\cos^{2n} x = \frac{1}{2^{2n-1}} \sum_{k=0}^{n-1} C_{2n}^k \cos 2(n-k) x + \frac{1}{2^{2n}} C_{2n}^n$.
- $\cos^{2n+1} x = \frac{1}{2^{2n}} \sum_{k=0}^{n} C_{2n+1}^{k} \cos(2n-2k+1) x$.
- $\sin^{2n} x = \frac{(-1)^n}{2^{2n-1}} \sum_{k=0}^{n-1} (-1)^k C_{2n}^k \cos 2(n-k) x + \frac{1}{2^{2n}} C_{2n}^n.$
 - $\sin^{2n+1} x = \frac{(-1)^n}{2^{2n}} \sum_{k=0}^n (-1)^k C_{2n+1}^k \sin(2n-2k+1) x$.

Nhận xét: Nhờ các công thức góc nhân đôi, góc nhân ba, công thức góc mở rộng,... và qua các biến đổi, ta nhân được công thức ha bâc cao như ở trên.

I. Một số ví dụ

Ví dụ 1. Giải phương trình lượng giác $\cos^3 x.\cos 3x + \sin^3 x.\sin 3x = \frac{\sqrt{2}}{4}$.

Giải

$$PT \Leftrightarrow \frac{3\cos x + \cos 3x}{4} \cos 3x + \frac{3\sin x - \sin 3x}{4} = \frac{\sqrt{2}}{4}$$

$$\Leftrightarrow 3\cos 3x \cos x + 3\sin 3x \sin x + \cos^2 3x - \sin^2 3x = \sqrt{2}$$

$$\Leftrightarrow 3(\cos 3x \cos x + \sin 3x \sin x) + \cos 6x = \sqrt{2}$$

$$\Leftrightarrow 3\cos 2x + \cos 6x = \sqrt{2}$$

$$\Leftrightarrow 4\cos^3 2x = \sqrt{2}$$

$$\Leftrightarrow \cos^3 2x = \frac{\sqrt{2}}{4} = \frac{1}{\left(\sqrt{2}\right)^3}$$

$$\Leftrightarrow \cos 2x = \frac{1}{\sqrt{2}} = \cos \frac{\pi}{4}$$

$$\Leftrightarrow x = \pm \frac{\pi}{8} + k\pi \ (k \in \mathbb{Z}).$$

Vậy phương trình đã cho có nghiệm là $x = \pm \frac{\pi}{8} + k\pi$ $(k \in \mathbb{Z})$.

Ví dụ 2. Giải phương trình lượng giác $\cos^3 x \cos 3x + \sin^3 x \sin 3x = \cos^3 4x$.

Giải

$$PT \Leftrightarrow \frac{3\cos x + \cos 3x}{4} \cos 3x + \frac{3\sin x - \sin 3x}{4} \sin 3x = \cos^3 4x \lim_{x \to \infty}$$

$$\Leftrightarrow \frac{1}{4} (\cos^2 3x - \sin^2 3x) + \frac{3}{4} (\cos 3x \cos x + \sin 3x \sin x) = \cos^3 4x$$

$$\Leftrightarrow \frac{1}{4} \cos 6x + \frac{3}{4} \cos 2x = \cos^3 4x$$

$$\Leftrightarrow \frac{1}{4} (4\cos^3 2x - 3\cos 2x) + \frac{3}{4} \cos 2x = \cos^3 4x$$

$$\Leftrightarrow \cos^3 2x = \cos^3 4x$$

$$\Leftrightarrow \cos^3 2x = \cos^3 4x$$

$$\Leftrightarrow \cos 4x = \cos 2x$$

$$\Leftrightarrow \begin{bmatrix} 4x = -2x + 2k\pi \\ 4x = 2x + 2k\pi \end{bmatrix} \Leftrightarrow x = \frac{k\pi}{3} \quad (k \in \mathbb{Z}).$$

Vậy phương trình đã cho có nghiệm là $x = \frac{k\pi}{3}$ $(k \in \mathbb{Z})$.

Ví dụ 3. Giải phương trình lượng giác $\sin^4 x + \cos^4 \left(x + \frac{\pi}{4} \right) = \frac{1}{4}$.

Giải

$$PT \Leftrightarrow \left(\frac{1-\cos 2x}{2}\right)^{2} + \left[\frac{1+\cos\left(2x+\frac{\pi}{2}\right)}{2}\right]^{2} = \frac{1}{4}$$

$$\Leftrightarrow \left(1-\cos 2x\right)^{2} + \left(1-\sin 2x\right)^{2} = 1$$

$$\Leftrightarrow \sin 2x + \cos 2x = 1$$

$$\Leftrightarrow \sqrt{2}\cos\left(2x-\frac{\pi}{4}\right) = 1$$

$$\Leftrightarrow \cos\left(2x-\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} = \cos\frac{\pi}{4}$$

$$\Leftrightarrow \left[2x-\frac{\pi}{4} = \frac{\pi}{4} + 2k\pi\right] \Leftrightarrow \left[x=k\pi\right]$$

$$\Leftrightarrow \left[2x-\frac{\pi}{4} = -\frac{\pi}{4} + 2k\pi\right] \Leftrightarrow \left[x=\frac{\pi}{4} + k\pi\right] (k \in \mathbb{Z}).$$

Vậy phương trình đã cho có nghiệm là $x = k\pi, x = \frac{\pi}{4} + k\pi \quad (k \in \mathbb{Z}).$

Ví dụ 4. Giải phương trình lượng giác $\sin^6 x + \cos^6 x = \cos^2 2x + \frac{1}{16}$.

Giải

$$PT \Leftrightarrow 1 - \frac{3}{4}\sin^2 2x = \cos^2 2x + \frac{1}{16}$$

$$\Leftrightarrow 1 - \frac{3}{4}\sin^2 2x = 1 - \sin^2 2x + \frac{1}{16}$$

$$\Leftrightarrow 4\sin^2 2x = 1 \Leftrightarrow 4\left(\frac{1 - \cos 4x}{2}\right) = 1$$

$$\Leftrightarrow 2 - 2\cos 4x = 1 \Leftrightarrow \cos 4x = \frac{1}{2} = \cos\frac{\pi}{3}$$

$$\Leftrightarrow \begin{bmatrix} 4x = \frac{\pi}{3} + k2\pi & \Leftrightarrow x = \pm\frac{\pi}{12} + k2\pi & (k \in \mathbb{Z}). \\ 4x = -\frac{\pi}{3} + k2\pi & \end{cases}$$

Vậy phương trình đã cho có nghiệm là $x = \pm \frac{\pi}{12} + k2\pi$ $(k \in \mathbb{Z})$.

Ví dụ 5. Giải phương trình lượng giác $\sin^8 x + \cos^8 x = \frac{17}{16}\cos^2 2x$.

Giải

$$PT \Leftrightarrow \left(\frac{1-\cos 4x}{2}\right)^4 + \left(\frac{1+\cos 4x}{2}\right)^4 = \frac{17}{16}\cos^2 2x$$
$$\Leftrightarrow \left(\cos 2x + 1\right)^4 + \left(\cos 2x - 1\right)^4 = 17\cos^2 2x.$$

 $\text{D} \check{a}t \ t = \cos 2x, \ |t| \le 1.$

Khi đó, phương trình trở thành

$$(t+1)^{4} + (t-1)^{4} = 17t^{2}$$

$$\Leftrightarrow (t^{4} + 4t^{3} + 6t^{2} + 4t + 1) + (t^{4} - 4t^{3} + 6t^{2} - 4t + 1) = 17t^{2}$$

$$\Leftrightarrow 2t^{4} - 5t^{2} + 2 = 0 \Leftrightarrow t^{2} = \frac{1}{2}$$

Từ đó ta có

$$\cos^{2} 2x = \frac{1}{2} \Leftrightarrow \frac{1 + \cos 4x}{2} = \frac{1}{2}$$
$$\Leftrightarrow \cos 4x = 0 \Leftrightarrow 4x = \frac{\pi}{2} + k\pi \Leftrightarrow x = \frac{\pi}{8} + \frac{k\pi}{4} \quad (k \in \mathbb{Z}).$$

Vậy phương trình đã cho có nghiệm là : $x = \frac{\pi}{8} + \frac{k\pi}{4}$ $(k \in \mathbb{Z})$.

Ví dụ 6. Giải phương trình lượng giác $\frac{2(\sin^6 x + \cos^6 x) - \sin x \cos x}{\sqrt{2} - 2\sin x} = 0.$

Giải

Điều kiện : $\sin x \neq \frac{1}{\sqrt{2}}$

$$PT \Leftrightarrow 2\left(1 - \frac{3}{4}\sin^2 2x\right) - \frac{1}{2}\sin 2x = 0$$

$$\Leftrightarrow 3\sin^2 2x + \sin 2x - 4 = 0$$

$$\Leftrightarrow \left[\sin 2x = 1\right]$$

$$\Leftrightarrow \sin 2x = 1 \Leftrightarrow x = \frac{\pi}{4} + k\pi \quad (k \in \mathbb{Z}).$$

Kết hợp với điều kiện, ta có $x = \frac{5\pi}{4} + 2k\pi$ $(k \in \mathbb{Z})$.

Vậy phương trình đã cho có nghiệm là : $x = \frac{5\pi}{4} + 2k\pi \quad (k \in \mathbb{Z}).$

II. Bài tập tự luyện

Bài 1. Giải các phương trình lượng giác sau:

- a. $\cos^3 x \sin 3x + \sin^3 x \cos 3x = \sin^3 4x$.
- b. $4\sin^3 x \sin 3x + 4\sin^3 x \cos 3x + 3\sqrt{3}\cos 4x = 3$.
- c. $\cos^3 x \cos 3x \sin^3 x \sin 3x = \cos^3 4x + \frac{1}{4}$.

Ð/S: a).
$$x = \frac{k\pi}{12}$$
 $(k \in \mathbb{Z})$. b). $x = -\frac{\pi}{24} + \frac{k\pi}{2}$; $x = \frac{\pi}{8} + \frac{k\pi}{2}$ $(k \in \mathbb{Z})$.

c).
$$x = \frac{\pi}{24} + \frac{k\pi}{2}$$
 $(k \in \mathbb{Z})$.

Bài 2. Giải các phương trình lượng giác sau

a.
$$2\sin^2 x (4\sin^4 x - 1) = \cos 2x (7\cos^2 2x + 3\cos 2x - 4)$$
.

b.
$$\frac{\sin^4 2x + \cos^4 2x}{\tan\left(\frac{\pi}{4} - x\right)\tan\left(\frac{\pi}{4} + x\right)} = \cos^4 4x.$$

$$c. \sin^8 x + \cos^8 x = \frac{17}{32}.$$

d.
$$\sin^8 2x + \cos^8 2x = \frac{1}{8}$$
.

D/S: a).
$$x = \frac{\pi}{4} + k\pi; x = \pm \frac{\pi}{6} + \frac{k\pi}{2}$$
 $(k \in \mathbb{Z})$. b). $x = \frac{k\pi}{2}$ $(k \in \mathbb{Z})$.

c).
$$x = \frac{\pi}{8} + \frac{k\pi}{4}$$
 $(k \in \mathbb{Z})$. d). $x = \frac{\pi}{8} + \frac{k\pi}{4}$ $(k \in \mathbb{Z})$.

Bài 3. Cho $f(x) = 3\cos^6 2x + \sin^4 2x + \cos 4x - m$; $g(x) = 2\cos^2 2x \cdot \sqrt{1 + 3\cos^2 2x}$. Tìm m để phương trình f(x) = g(x) có nghiệm?

Bài 4. Tìm m để phương trình $\sin^4 x + (1 - \sin x)^4 = m$ có nghiệm?

Bài 5. Xác định a để phương trình $\sin^6 x + \cos^6 x = a |\sin 2x|$ có nghiệm?

Ð/S:
$$a \le -\frac{1}{4}$$
.