Práctica Nº 3 - Demostración en Lógica Proposicional

Los ejercicios marcados con el símbolo ★ constituyen un subconjunto mínimo de ejercitación. Sin embargo, aconsejamos fuertemente hacer todos los ejercicios.

SEMÁNTICA

Ejercicio 1

Determinar el valor de verdad de las siguientes proposiciones:

I.
$$(\neg P \lor Q)$$

$$\text{V. } ((P \lor S) \land (T \lor Q))$$

$$\text{VI. } ((P \lor S) \land (T \lor Q)) \Leftrightarrow (P \lor (S \land T) \lor Q))$$

$$\text{III. } \neg (Q \lor S)$$

$$\text{IV. } (\neg P \lor S) \Leftrightarrow (\neg P \land \neg S)$$

$$\text{VII. } (\neg Q \land \neg S)$$

cuando el valor de verdad de P y Q es V, mientras que el de S y T es F.

Ejercicio 2 ★

Mostrar que cualquier fórmula de la lógica proposicional que utilice los conectivos \neg (negación), \wedge (conjunción), \vee (disyunción), \Rightarrow (implicación), \Leftrightarrow (equivalencia) puede reescribirse a otra fórmula equivalente que usa sólo los conectivos \neg y \vee . Sugerencia: hacer inducción en la estructura de la fórmula.

Nota: en los siguientes ejercicios de esta sección, recomendamos utilizar la semántica dada por la definición de valuación para proposiciones, y no tablas de verdad.

Ejercicio 3

Sean τ , σ , ρ y ζ proposiciones tales que $\tau \Rightarrow \sigma$ es tautología y $\rho \Rightarrow \zeta$ es contradicción. Determinar si las siguientes proposiciones son tautologías, contradicciones o contingencias y demostrarlo:

I.
$$(\tau \Rightarrow \sigma) \lor (\rho \Rightarrow \zeta)$$

II.
$$(\tau \Rightarrow \rho) \lor (\sigma \Rightarrow \zeta)$$

III.
$$(\rho \Rightarrow \sigma) \lor (\zeta \Rightarrow \sigma)$$

Ejercicio 4

Probar que cualquier proposición que sea una tautología contiene un \neg o una \Rightarrow .

Ejercicio 5

Probar que si una proposición σ no contiene otro conectivo que \Leftrightarrow , y cada variable proposicional aparece una cantidad par de veces, entonces σ es una tautología.

Sugerencia: probar primero por inducción estructural que toda proposición que contiene solo el conectivo
⇔ es verdadera si y solo si tiene un número par de apariciones de variables proposicionales valuadas como falsas.

DEDUCCIÓN NATURAL

Ejercicio 6 ★

Demostrar en deducción natural que las siguientes fórmulas son teoremas sin usar principios de razonamiento clásicos salvo que se indique lo contrario. Recordemos que una fórmula σ es un teorema si y sólo si vale $\vdash \sigma$:

- I. Modus ponens relativizado: IV. Eliminación de la triple negación: $\neg \neg \neg P \Rightarrow \neg P$ $(P \Rightarrow Q \Rightarrow R) \Rightarrow (P \Rightarrow Q) \Rightarrow P \Rightarrow R$ V. Contraposición: $(P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P)$ VI. Adjunción: $((P \land Q) \Rightarrow R) \Leftrightarrow (P \Rightarrow Q \Rightarrow R)$
- III. Introducción de la doble negación: $P \Rightarrow \neg \neg P$ VII. de Morgan (I): $\neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q)$

- VIII. de Morgan (II): $\neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$. Para la dirección \Rightarrow es necesario usar principios de razonamiento clásicos.
- X. Asociatividad (\wedge): $((P \wedge Q) \wedge R) \Leftrightarrow (P \wedge (Q \wedge R))$
- XI. Conmutatividad (\vee): $(P \vee Q) \Rightarrow (Q \vee P)$
- IX. Conmutatividad (\wedge): $(P \wedge Q) \Rightarrow (Q \wedge P)$
- XII. Asociatividad (\vee): $((P \vee Q) \vee R) \Leftrightarrow (P \vee (Q \vee R))$

¿Encuentra alguna relación entre teoremas de adjunción, asociatividad y conmutatividad con algunas de las propiedades demostradas en la práctica 2?

Ejercicio 7 ★

Demostrar en deducción natural que vale $\vdash \sigma$ para cada una de las siguientes fórmulas. Para estas fórmulas es imprescindible **usar lógica clásica**:

I. Absurdo clásico: $(\neg \tau \Rightarrow \bot) \Rightarrow \tau$

- V. Contraposición clásica: $(\neg \rho \Rightarrow \neg \tau) \Rightarrow (\tau \Rightarrow \rho)$
- II. Ley de Peirce: $((\tau \Rightarrow \rho) \Rightarrow \tau) \Rightarrow \tau$
- VI. Análisis de casos: $(\tau \Rightarrow \rho) \Rightarrow (\neg \tau \Rightarrow \rho) \Rightarrow \rho$

III. Tercero excluido: $\tau \vee \neg \tau$

- IV. Consecuencia milagrosa: $(\neg \tau \Rightarrow \tau) \Rightarrow \tau$
- VII. Implicación vs. disyunción: $(\tau \Rightarrow \rho) \Leftrightarrow (\neg \tau \lor \rho)$

Ejercicio 8

Probar las siguientes propiedades:

I. **Debilitamiento.** Si $\Gamma \vdash \sigma$ es válido entonces $\Gamma, \tau \vdash \sigma$ es válido.

Tip: utilizar inducción sobre el tamaño de la derivación.

II. Regla de corte. Si $\Gamma, \tau \vdash \sigma$ es válido y $\Gamma \vdash \tau$ es válido, entonces $\Gamma \vdash \sigma$ es válido.

Ejercicio 9

Si $[\tau_1,\ldots,\tau_n]$ es una lista de fórmulas, definimos la notación $[\tau_1,\ldots,\tau_n] \Rightarrow^* \sigma$ inductivamente:

$$\begin{array}{lcl} ([] \Rightarrow^* \sigma) & = & \sigma \\ ([\tau_1, \tau_2, \dots, \tau_n] \Rightarrow^* \sigma) & = & \tau_1 \Rightarrow ([\tau_2, \dots, \tau_n] \Rightarrow \sigma) \end{array}$$

Probar por inducción en n que $\tau_1, \ldots, \tau_n \vdash \sigma$ es válido si y sólo si $\vdash [\tau_1, \ldots, \tau_n] \Rightarrow^* \sigma$ es válido.

Ejercicio 10

Probar los siguientes teoremas:

I.
$$((P \Rightarrow Q) \Rightarrow Q) \Rightarrow ((Q \Rightarrow P) \Rightarrow P)$$

II.
$$(P \Rightarrow Q) \Rightarrow ((\neg P \Rightarrow Q) \Rightarrow Q)$$

Ejercicio 11

Demostrar las siguientes tautologías utilizando deducción natural.

I.
$$(P \Rightarrow (P \Rightarrow Q)) \Rightarrow (P \Rightarrow Q)$$

II.
$$(R \Rightarrow \neg Q) \Rightarrow ((R \land Q) \Rightarrow P)$$

III.
$$((P \Rightarrow Q) \Rightarrow (R \Rightarrow \neg Q)) \Rightarrow \neg (R \land Q)$$

CORRECCIÓN Y COMPLETITUD

Ejercicio 12

Completar la prueba de corrección ("soundness") vista en la teórica.

Ejercicio 13 ★

Probar que $\{P,Q\Rightarrow P\}$ es consistente. Ayuda: Usar el contrarecíproco del lema de corrección.

Ejercicio 14 ★

Probar que si Γ es consistente maximal entonces para cada fórmula σ se tiene que $\Gamma \vdash \sigma$ implica $\sigma \in \Gamma$ (i.e. Γ es cerrada respecto a derivabilidad). Ayuda: razonar por el absurdo.

Ejercicio 15

Probar que Γ es consistente maximal si y sólo si Γ es consistente y para toda fórmula σ , $\sigma \in \Gamma$ o $\neg \sigma \in \Gamma$.

Ejercicio 16 ★

Un conjunto Γ se dice *completo* si para toda fórmula σ , $\Gamma \vdash \sigma$ o $\Gamma \vdash \neg \sigma$. No confundir esta noción con el lema de completitud visto en clase. ¿El conjunto \emptyset es completo?

EJERCICIOS EXTRA DE DEDUCCIÓN NATURAL

Ejercicio 17

Probar que los siguientes secuentes son válidos sin usar principios de razonamiento clásicos:

I.
$$(P \wedge Q) \wedge R, S \wedge T \vdash Q \wedge S$$

II.
$$(P \wedge Q) \wedge R \vdash P \wedge (Q \wedge R)$$

III.
$$P \Rightarrow (P \Rightarrow Q), P \vdash Q$$

IV.
$$Q \Rightarrow (P \Rightarrow R), \neg R, Q \vdash \neg P$$

$$V. \vdash (P \land Q) \Rightarrow P$$

VI.
$$P \Rightarrow \neg Q, Q \vdash \neg P$$

VII.
$$P \Rightarrow Q \vdash (P \land R) \Rightarrow (Q \land R)$$

VIII.
$$Q \Rightarrow R \vdash (P \lor Q) \Rightarrow (P \lor R)$$

IX.
$$(P \lor Q) \lor R \vdash P \lor (Q \lor R)$$

$$X. \ P \wedge (Q \vee R) \vdash (P \wedge Q) \vee (P \wedge R)$$

XI.
$$(P \wedge Q) \vee (P \wedge R) \vdash P \wedge (Q \vee R)$$

XII.
$$\neg P \lor Q \vdash P \Rightarrow Q$$

XIII.
$$P \Rightarrow Q, P \Rightarrow \neg Q \vdash \neg P$$

XIV.
$$P \Rightarrow (Q \Rightarrow R), P, \neg R \vdash \neg Q$$

Ejercicio 18

Probar que los siguientes secuentes son válidos:

I.
$$(P \land \neg Q) \Rightarrow R, \neg R, P \vdash Q$$

II.
$$\neg P \Rightarrow Q \vdash \neg Q \Rightarrow P$$

III.
$$P \lor Q \vdash R \Rightarrow (P \lor Q) \land R$$

IV.
$$(P \lor (Q \Rightarrow P)) \land Q \vdash P$$

$$V. P \Rightarrow Q, R \Rightarrow S \vdash (P \land R) \Rightarrow (Q \land S)$$

VI.
$$P \Rightarrow Q \vdash ((P \land Q) \Rightarrow P) \land (P \Rightarrow (P \land Q))$$

VII.
$$P \Rightarrow (Q \land R) \vdash (P \Rightarrow Q) \land (P \Rightarrow R)$$

VIII.
$$(P \Rightarrow Q) \land (P \Rightarrow R) \vdash P \Rightarrow (Q \land R)$$

IX.
$$P \lor (P \land Q) \vdash P$$

$$X. P \Rightarrow (Q \lor R), Q \Rightarrow S, R \Rightarrow S \vdash P \Rightarrow S$$

XI.
$$(P \wedge Q) \vee (P \wedge R) \vdash P \wedge (Q \vee R)$$

Ejercicio 19

Probar que los siguientes secuentes son válidos:

I.
$$\neg P \Rightarrow \neg Q \vdash Q \Rightarrow P$$

II.
$$\neg P \lor \neg Q \vdash \neg (P \land Q)$$

III.
$$\neg P, P \lor Q \vdash Q$$

IV.
$$P \lor Q, \neg Q \lor R \vdash P \lor R$$

$$V. P \land \neg P \vdash \neg (R \Rightarrow Q) \land (R \Rightarrow Q)$$

VI.
$$\neg(\neg P \lor Q) \vdash P$$

VII.
$$\vdash \neg P \Rightarrow (P \Rightarrow (P \Rightarrow Q))$$

VIII.
$$P \wedge Q \vdash \neg(\neg P \vee \neg Q)$$

IX.
$$\vdash (P \Rightarrow Q) \lor (Q \Rightarrow R)$$