ETL Project (Steve Kinsella, David Lin, Neil Mudjer)

- Extract: your original data sources and how the data was formatted (CSV, JSON, pgAdmin 4, etc).
 - o Original data source:
 - Source 1:
 - https://data.oecd.org/earnwage/average-wages.htm

- Use the "Full indicator data" ("avg_wages")
- Source 2:
 - https://data.worldbank.org/indicator/ny.gdp.mktp.cd

Use the "CSV" file under "Download" ("gdp")

- Transform: what data cleaning or transformation was required.
 - o The type of transformation needed for this data (cleaning, joining, filtering, aggregating, etc).
 - · Cleaning: we renamed columns to allow easier join later in SQL
 - Create a table of code and country name as the country_code table and set index as c_id

	c_id	country	code
C) 1	Aruba	ABW
1	2	Afghanistan	AFG
2	3	Angola	AGO
3	4	Albania	ALB
4	5	Andorra	AND

- Melt the data frame:
 - The **wage** dataframe was structured such that each year / country combination was a row.

The **gdp** dataframe was structured such that each year was a column within the country row

	Country	Country	Indicator	Indicator Code	1960	1961	
	Name	Code	Name				
0	Aruba	ABW	GDP (current US\$)	NY.GDP.MKTP.CD	NaN	NaN	
1	Afghanistan	AFG	GDP (current US\$)	NY.GDP.MKTP.CD	537777811.1	548888895.6	54
2	Angola	AGO	GDP (current US\$)	NY.GDP.MKTP.CD	NaN	NaN	
3	Albania	ALB	GDP (current US\$)	NY.GDP.MKTP.CD	NaN	NaN	
4	Andorra	AND	GDP (current US\$)	NY,GDP.MKTP.CD	NaN	NaN	

•

ETL Project (Steve Kinsella, David Lin, Neil Mudjer)

• We used <u>Pandas.melt</u> to rearrange the **gdp** dataframe to match the wages dataframe so that each country / year combination is a it's own row

- Load: the final database, tables/collections, and why this was chosen.
 - o We loaded the country_code, avg_wage, and gdp tables separately into SQL
 - We chose the SQL data structure over Mongo because the data was already in a tabular format, and we did not feel a need for Mongo's flexibility
 - o Setting things up in SQL
 - The avg_wage and the gdp tables were transformed to replace the code and country name with c_id. The tables were linked via key c_id.

- o Joining: we did not join in python. this was done as part of SQL query,
 - e.g.,

```
SELECT *
FROM country_code
JOIN avg_wage ON country_code.c_id = avg_wage.c_id
JOIN gdp ON country_code.c_id = gdp.c_id
```

ETL Project (Steve Kinsella, David Lin, Neil Mudjer)

- o **Filtering**: this was also in SQL query, e.g., year,
 - e.g.,

```
SELECT country_code.country, country_code.code, avg_wage.year, gdp, avg_wage, ((avg_wage/gdp)*100) AS div
FROM country_code
JOIN avg_wage ON country_code.c_id = avg_wage.c_id
JOIN gdp ON country_code.c_id = gdp.c_id
WHERE
gdp.year = avg_wage.year
and
gdp IS NOT NULL
and
avg_wage <= 45000
and
gdp.year = 1990
ORDER BY div desc;
```

o We chose these data because we wanted to see if there's a relationship between the success of the country (as indicated by GDP) and success of the average person (as indicated by average wage)