Prove the union of CFLs is a CFL

John Carlyle

December 8, 2013

Define the G_u to be the union of the grammars G_1 , G_2 . More concretly $G_u=(V_u,\Sigma,S_u,P_u),\ G_1=(V_1,\Sigma,S_1,P_1)$ and $S_2=(V_2,\Sigma,S_2,P_2)$. Assume that $V_1\cap V_2=\phi$ since the elements can be arbitrarily renamed.

Let
$$V_u = V_1 \cup V_2 \cup \{S_u\}$$
 where S_u is not in V_1 or V_2 .
Let $P_u = P_1 \cup P_2 \cup \{S \to S_1 \mid S_2\}$

We must show that $L(G_u) = L_1 \cup L_2$ Firstly $L(G_u) \subseteq L_1 \cup L_2$

 $_{\rm bam}$

Secondly $L_1 \cup L_2 \subseteq L(G_u)$