

Theory of Machines and Languages

Fatemeh Deldar

1403-1404

A Pumping Lemma

Let L be an infinite regular language. Then there exists some positive integer m such that any $w \in L$ with $|w| \ge m$ can be decomposed as

$$w = xyz$$

with

$$|xy| \leq m$$
,

and

$$|y| \ge 1$$
,

such that

$$w_i = xy^i z,$$

is also in L for all
$$i = 0, 1, 2, \dots$$

• Finite languages are always regular

Example

- \triangleright Use the pumping lemma to show that $L = \{a^nb^n : n \ge 0\}$ is not regular
- \triangleright Assume that L is regular, so that the pumping lemma must hold
- \triangleright We can choose m = n
- > Therefore, the substring y must consist entirely of a's
- ightharpoonup Suppose |y| = k
- Then the string obtained by using i = 0 is $w_0 = a^{m-k}b^m$, which is clearly not in L
- ➤ This contradicts the pumping lemma and indicates that the assumption that

 L is regular must be false

Example

 \triangleright Show that $L = \{ww^R : w ∈ Σ^*\}$ is not regular

- Fiven m, we pick as our string $w = a^m b^m b^m a^m$, which is in L
- \triangleright Because of the constraint $|xy| \le m$, y consists entirely of a's

$$y = a^k$$
 $1 \le k \le m$

 $i = 0 \Rightarrow w_2 = a^{m-k}b^mb^ma^m$ is not in L

Example

 \triangleright Let $\Sigma = \{a, b\}$. Show that $L = \{w \in \Sigma^* : n_a(w) < n_b(w)\}$ is not regular.

- Fiven m, we pick as our string $w = (a)^m b^{m+1}$, which is in L
- \triangleright Because of the constraint $|xy| \le m$:

$$y = a^k$$
 $1 \le k \le m$

i = 2 \Rightarrow $w_2 = a^{m+k}b^{m+1}$ is not in L

- Example
 - ightharpoonup Show that $L = \{(ab)^n a^k : n > k, k \ge 0\}$ is not regular
 - Fiven m, we pick as our string $w = (ab)^{m+1}a^m$, which is in L
 - Example Because of the constraint $|xy| \le m$, both x and y must be in the part of the string made up of ab's
 - ightharpoonup If $y = a \Rightarrow$ We choose i = 0 and get a string not in L
 - ightharpoonup If $y = ab \Rightarrow$ We choose i = 0 and get the string $(ab)^m a^m$
 - \triangleright In the same way, we can deal with any possible choice of y

Example

 \triangleright Show that $L = \{a^n : n \text{ is a perfect square}\}$ is not regular

Given the opponent's choice of m, we pick

$$w = a^{m^2}$$
.

If w = xyz is the decomposition, then clearly

$$y = a^k$$

with $1 \leq k \leq m$. In that case,

$$w_0 = a^{m^2 - k}.$$

But $m^2 - k > (m - 1)^2$, so that w_0 cannot be in L. Therefore, the language is not regular.