# Aggregate Demand and Sovereign Debt Crises

Francisco Roldán

New York University

Sovereign debt crises associated with deep recessions



 $\cdot$  Conventional view: low output  $\implies$  high spreads

1

Sovereign debt crises associated with deep recessions



 $\cdot$  Conventional view: low output  $\implies$  high spreads

1

- Spain: large output and consumption drops
  - $\cdot |\Delta C| > |\Delta Y| \implies$  Saving rate  $\uparrow$  in the crisis
- · IVs on Eurozone country-level data show
  - 1. High spreads cause output to fall
  - High spreads cause consumption to fall more than output

- $\cdot$  Sovereign debt literature assumes hand-to-mouth households or Law of One Price
  - Saving rate in the crisis?
  - Consequences?
  - Household sector manages substantial wealth (avg 96% of GDP) Spanish data
  - Substantial fraction of government debt held by residents spanish data

- Spain: large output and consumption drops
  - $\cdot |\Delta C| > |\Delta Y| \implies$  Saving rate  $\uparrow$  in the crisis
- · IVs on Eurozone country-level data show
  - 1. High spreads cause output to fall
  - 2. High spreads cause consumption to fall more than output

- Sovereign debt literature assumes hand-to-mouth households or Law of One Price
  - · Saving rate in the crisis?
  - · Consequences?
  - · Household sector manages substantial wealth (avg 96% of GDP) Spanish data
  - Substantial fraction of government debt held by residents spanish

- Spain: large output and consumption drops
  - $\cdot |\Delta C| > |\Delta Y| \implies$  Saving rate  $\uparrow$  in the crisis
- · IVs on Eurozone country-level data show
  - 1. High spreads cause output to fall
  - 2. High spreads cause consumption to fall more than output

- · Sovereign debt literature assumes hand-to-mouth households or Law of One Price
  - · Saving rate in the crisis?
  - · Consequences?
  - · Household sector manages substantial wealth (avg 96% of GDP)
  - Substantial fraction of government debt held by residents

- Spain: large output and consumption drops
  - $\cdot |\Delta C| > |\Delta Y| \implies$  Saving rate  $\uparrow$  in the crisis
- · IVs on Eurozone country-level data show
  - 1. High spreads cause output to fall
  - 2. High spreads cause consumption to fall more than output

- · Sovereign debt literature assumes hand-to-mouth households or Law of One Price
  - · Saving rate in the crisis?
  - · Consequences?
  - Household sector manages substantial wealth (avg 96% of GDP) Spanish data

#### THIS PAPER

- I propose a model of debt crises
  - · Prominent role for household consumption/savings decision
    - · Heterogeneous domestic savers can choose to be exposed to sovereign debt
  - · Savings pattern in the crisis
  - Feedback loop between spreads and output
    - $\cdot \uparrow Spreads \implies \downarrow Demand \implies \downarrow Output$
- · Model
  - · Expectations of outcomes in case of default
    - Aggregate income losses

TFP costs of default

Redistributive effects

- Domestic debt holding.
- Economy looks riskier when the default probability increases
  - Default risk interacts with precautionary behavior

#### THIS PAPER

- I propose a model of debt crises
  - Prominent role for household consumption/savings decision
    - Heterogeneous domestic savers can choose to be exposed to sovereign debt
  - Savings pattern in the crisis
  - · Feedback loop between spreads and output
    - $\cdot \uparrow Spreads \implies \downarrow Demand \implies \downarrow Output$
- Model
  - · Expectations of outcomes in case of default
    - Aggregate income losses ← TFP costs of default

Redistributive effects ← Domestic debt holdings

- Economy looks riskier when the default probability increases
  - · Default risk interacts with precautionary behavior

#### MAIN FINDINGS

- · Feedback effect explains significant portion of the crisis
  - · Calibration numbers soon
- · Highlight role of inequality, identity of debt holders
- New light on Aguiar-Gopinath facts
  - · Amplification of negative shocks, demand-driven recessions
  - In downturns volatility of C > volatility of Y

#### LITERATURE

- Sovereign risk affecting the supply side through finance Bocola (2016), Arellano, Bai, and Mihalache (2018), Balke (2017)
- Domestic debt and default incentives
   Gennaioli, Martin, and Rossi (2014), Mengus (2014), Mallucci (2015), Pérez (2016), D'Erasmo and Mendoza (2016), Ferriere (2016)
- Sovereign risk and fiscal austerity
   Cuadra, Sánchez, and Sapriza (2010), Romei (2015), Bianchi, Ottonello, and Presno (2016), Anzoategui (2017),
   Philippon and Roldán (2018)
- Shocks affecting aggregate demand through redistribution
   Auclert (2017), Eggertsson and Krugman (2012), Korinek and Simsek (2016), ...

# **ROADMAP**

- Evidence
- · Description of Model
- Model Results
- Simulations
- Crises



#### MAIN SPECIFICATION

· Regress outcome variable  $Q_{jt}$  on country j's spread

$$Q_{jt} = \beta \Delta Spread_{jt} + \gamma X_{jt} + \delta_t + \mu_j + \epsilon_{jt}$$

where  $Q_{jt} = \log Y_{jt}, \log C_{jt}$ 

• IV strategy (based on Martin and Philippon, 2017)

$$\Delta Spread_{jt} = \underbrace{\phi B_{jo} + \delta_t}_{Z_{jt}} + \eta_{jt}$$

Data for 11 European countries between 2010Q1 – 2013Q1
 Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Portugal, Spain

## **FEEDBACK**

|                              | Dependent variable:  |                      |                     |                               |
|------------------------------|----------------------|----------------------|---------------------|-------------------------------|
|                              | $\log Y_{jt}$ (1)    | $\log C_{jt}$ (2)    | $\log Y_{jt}$ (3)   | log <i>C<sub>jt</sub></i> (4) |
| $\Delta$ Spread $_{jt}$      | -0.008***<br>(0.001) | -0.013***<br>(0.001) |                     |                               |
| $\Delta$ Spread $_{jt}$ (IV) |                      |                      | -0.006**<br>(0.002) | -0.010***<br>(0.003)          |
| Country + Time FE            | <b>√</b>             | ✓                    | ✓                   | <b>√</b>                      |
| Observations                 | 143                  | 143                  | 143                 | 143                           |
| Adj. R <sup>2</sup>          | 0.772                | 0.784                | 0.765               | 0.776                         |

Standard errors in parentheses. \*\*\* p < 0.01, \*\* p < 0.05, \* p < 0.1.

► The Cycle is the Trend



**DESCRIPTION OF MODEL** 

#### GENERAL DESCRIPTION

- · Small open economy with
  - Uninsurable idiosyncratic income risk + Incomplete markets
  - Default risk
  - Nominal rigidities
- Actors:
  - · A government
    - · Issues long-term debt, purchases goods, decides repayment
  - Households
    - · Consume, work, save in the gov't bond + risk-free debt
    - · Differ in 'cash' holdings, idiosyncratic income shock
  - Firms
    - · Produce the goods with labor, subject to wage rigidities
  - Foreigners
    - · Lend to the government and to the private sector
    - · Price all assets



Decisions within a period
Dashed ellipses encircle simultaneous decisions

#### **GOVERNMENT POLICY**

## At each t, the government

- Chooses repayment  $h_t \in \{1, 1-\hbar\}$
- Follows fiscal rules for new issuances  $B'(S_t)$  and spending  $G(S_t)$ 
  - · Can depend on full state:  $(B_t, \lambda_t, \xi_t, \zeta_t, z_t)$
- Must satisfy its budget constraint

$$\underbrace{q_t^g}_{\text{debt price}}\underbrace{(B_t' - (1 - \rho)B_t)}_{\text{new debt issued}} + \underbrace{T_t}_{\text{lump-sum}} + \underbrace{\tau w_t L_t}_{\text{payroll tax}} = \underbrace{G_t}_{\text{spending}} + \underbrace{\kappa B_t}_{\text{coupor}}$$

 $\rightarrow T_t$  summarizes a default / austerity tradeoff

#### PRIVATE ECONOMY

Given a government policy  $h(S, \xi', z'), B'(S), T(S, q^g)$ , in a comp eq'm

- Risk-neutral foreigners
  - Price all assets

$$q^{h}(S) = \frac{1}{1 + r^{\star}}$$

$$q^{g}(S) = \frac{1}{1 + r^{\star}} \mathbb{E} \left[ \underbrace{\mathbb{1}_{(\zeta'=1)}(1 - \xi')\kappa}_{coupon} + \underbrace{(1 - \rho)}_{depreciation} \underbrace{(1 - \hbar \mathbb{1}_{(\zeta=1 \cap \zeta' \neq 1)})}_{potential \ haircut} \underbrace{q^{g}(S')}_{resale \ price} \mid S \right]$$

#### PRIVATE ECONOMY

# Given a government policy $h(S, \xi', z'), B'(S), T(S, q^g)$ , in a comp eq'm

- Risk-neutral foreigners
  - · Price all assets

$$q^{g}(S) = \underbrace{\frac{1}{1+r^{\star}}}_{q^{h}(S)} \mathbb{E} \left[ \underbrace{\mathbb{1}_{(\zeta'=1)}(1-\xi')\kappa}_{coupon} + \underbrace{(1-\rho)}_{depreciation} \underbrace{(1-\hbar\mathbb{1}_{(\zeta=1\cap\zeta'\neq1)})}_{potential\ haircut} \underbrace{q^{g}(S')}_{resale\ price} \right] S$$

- Firms
  - · Traded and nontraded goods, CES aggregator, wage rigidities

$$Y_{Nt} = L_{Nt}^{\alpha_N} \left( 1 - \Delta \mathbb{1}_{(\zeta \neq 1)} \right) \qquad \qquad Y_{Tt} = Z_t L_{Tt}^{\alpha_T} \left( 1 - \Delta \mathbb{1}_{(\zeta \neq 1)} \right) \qquad \qquad \mathbf{w}_t \geq \bar{\mathbf{w}}$$

#### PRIVATE ECONOMY

# Given a government policy $h(S, \xi', z'), B'(S), T(S, q^g)$ , in a comp eq'm

- Risk-neutral foreigners
  - Price all assets

$$q^{g}(S) = \underbrace{\frac{1}{1+r^{\star}}}_{q^{h}(S)} \mathbb{E} \left[ \underbrace{\mathbb{1}_{(\zeta'=1)}(1-\xi')\kappa}_{coupon} + \underbrace{(1-\rho)}_{depreciation} \underbrace{(1-\hbar\mathbb{1}_{(\zeta=1\cap\zeta'\neq1)})}_{potential\ haircut} \underbrace{q^{g}(S')}_{resale\ price} \right] S$$

- Firms
  - · Traded and nontraded goods, CES aggregator, wage rigidities

$$Y_{Nt} = L_{Nt}^{\alpha_N} \left( 1 - \Delta \mathbb{1}_{(\zeta \neq 1)} \right) \qquad \qquad Y_{Tt} = Z_t L_{Tt}^{\alpha_T} \left( 1 - \Delta \mathbb{1}_{(\zeta \neq 1)} \right) \qquad \qquad \mathbf{W}_t \geq \mathbf{\bar{W}}$$

- Households
  - Access to both assets with borrowing limits, inelastic labor supply
- Approximation:  $\lambda_t = \log \mathcal{N}(\mu_t, \Sigma_t)$ . So  $S = (B, \mu, \sigma, \xi, \zeta, z)$

· Given govt's policies, aggregates, and evolution of the state

$$\begin{split} v(\omega,\epsilon,\mathbf{S})^{\frac{\psi-1}{\psi}} &= \max_{c,a',b'} \left(1-\beta\right) c^{\frac{\psi-1}{\psi}} + \beta \mathbb{E}\left[\left(v(\underline{a'} + R_{\mathbf{S},\mathbf{S'}}b',\epsilon',\mathbf{S'})\right)^{1-\gamma} \middle| \omega,\epsilon,\mathbf{S}\right]^{\frac{1}{\psi(1-\gamma)}} \\ &\text{subject to } p_{\mathcal{C}}(\mathbf{S})c + q^h(\mathbf{S})a' + q^g(\mathbf{S})b' = \omega + \ell(\mathbf{S})\epsilon - T(\mathbf{S}) \\ &\ell(\mathbf{S}) = w(\mathbf{S})L(\mathbf{S})(1-\tau) + \Pi(\mathbf{S}) \\ &R_{\mathbf{S},\mathbf{S'}} = \mathbb{1}_{\left(\zeta'=1\right)}\kappa + \left(1-\rho\right)\left(1-\hbar\mathbb{1}_{\left(\zeta=1\right)\left(\zeta'\neq1\right)}\right)q^g(\mathbf{S'}) \\ &a' \geq \bar{a}; \qquad b' \geq \mathbf{O} \\ &\mathbf{S'} = \Psi(\mathbf{S},\xi',z',h') \\ &\operatorname{Exog\ LoMs\ for\ } (\epsilon,\xi,z); \ \operatorname{prob\ of\ } h' \ \operatorname{given\ } (\mathbf{S},\xi',z') \end{split}$$

· Given govt's policies, aggregates, and evolution of the state

$$v(\omega, \epsilon, \mathbf{S})^{\frac{\psi-1}{\psi}} = \max_{c, a', b'} (1 - \beta) c^{\frac{\psi-1}{\psi}} + \beta \mathbb{E} \left[ \left( v(\underline{\mathbf{a'}} + R_{\mathbf{S}, \mathbf{S'}} \underline{\mathbf{b'}}, \epsilon', \mathbf{S'}) \right)^{1 - \gamma} \middle| \omega, \epsilon, \mathbf{S} \right]^{\frac{\psi}{\psi(1 - \gamma)}}$$
subject to  $p_{\mathcal{C}}(\mathbf{S})c + q^{h}(\mathbf{S})\underline{\mathbf{a'}} + q^{g}(\mathbf{S})\underline{\mathbf{b'}} = \omega + \ell(\mathbf{S})\epsilon - T(\mathbf{S})$ 

$$R_{\mathbf{S}, \mathbf{S'}} = \mathbb{1}_{(\zeta'=1)}\kappa + (1 - \rho) \left( 1 - \hbar \mathbb{1}_{(\zeta=1)(\zeta'\neq 1)} \right) q^{g}(\mathbf{S'})$$

Skipping steps: in crisis times

$$\begin{array}{ll} \cdot \ \pi \uparrow \Longrightarrow \mathbb{E}\left[w'L'\right] = \pi \mathbb{E}\left[w'L'|\zeta' \neq 1\right] + (1-\pi)\mathbb{E}\left[w'L'|\zeta' = 1\right] \downarrow \leftarrow \text{Aggregate effect} \\ \cdot \ q^g \downarrow \Longrightarrow \omega \downarrow \text{ for all} \\ \cdot \ \text{cov}(R_{S,S'},sdf'\mid S) \downarrow \qquad \qquad \leftarrow \text{`Savings technology' effect} \end{array}$$

· Given govt's policies, aggregates, and evolution of the state

$$v(\omega, \epsilon, \mathbf{S})^{\frac{\psi-1}{\psi}} = \max_{c, a', b'} (1 - \beta) c^{\frac{\psi-1}{\psi}} + \beta \mathbb{E} \left[ \left( v(\underline{\mathbf{a'}} + R_{\mathbf{S}, \mathbf{S'}} \underline{\mathbf{b'}}, \epsilon', \mathbf{S'}) \right)^{1 - \gamma} \middle| \omega, \epsilon, \mathbf{S} \right]^{\frac{\psi}{\psi(1 - \gamma)}}$$
subject to  $p_{\mathcal{C}}(\mathbf{S})c + q^{h}(\mathbf{S})\underline{\mathbf{a'}} + q^{g}(\mathbf{S})\underline{\mathbf{b'}} = \omega + \ell(\mathbf{S})\epsilon - T(\mathbf{S})$ 

$$R_{\mathbf{S}, \mathbf{S'}} = \mathbb{1}_{(\zeta'=1)}\kappa + (1 - \rho) \left( 1 - \hbar \mathbb{1}_{(\zeta=1)(\zeta'\neq 1)} \right) q^{g}(\mathbf{S'})$$

Skipping steps: in crisis times

$$\begin{array}{ll} \cdot \ \pi \uparrow \Longrightarrow \ \mathbb{E}\left[w'L'\right] = \pi \mathbb{E}\left[w'L'|\zeta' \neq 1\right] + (1-\pi)\mathbb{E}\left[w'L'|\zeta' = 1\right] \downarrow \leftarrow \text{Aggregate effect} \\ \cdot \ q^g \downarrow \Longrightarrow \ \omega \downarrow \text{ for all} \\ \cdot \ \text{cov}(R_{S,S'}, sdf' \mid S) \downarrow \\ \end{array} \\ \leftarrow \text{ 'Savings technology' effect} \end{array}$$

· Given govt's policies, aggregates, and evolution of the state

$$v(\omega, \epsilon, \mathbf{S})^{\frac{\psi-1}{\psi}} = \max_{c, a', b'} (1 - \beta) c^{\frac{\psi-1}{\psi}} + \beta \mathbb{E} \left[ \left( v(\underline{\mathbf{a'}} + R_{\mathbf{S}, \mathbf{S'}} \underline{\mathbf{b'}}, \epsilon', \mathbf{S'}) \right)^{1 - \gamma} \middle| \omega, \epsilon, \mathbf{S} \right]^{\frac{\psi}{\psi(1 - \gamma)}}$$
subject to  $p_{c}(\mathbf{S})c + q^{h}(\mathbf{S})\underline{\mathbf{a'}} + q^{g}(\mathbf{S})\underline{\mathbf{b'}} = \omega + \ell(\mathbf{S})\epsilon - T(\mathbf{S})$ 

$$R_{\mathbf{S}, \mathbf{S'}} = \mathbb{1}_{(\zeta'=1)}\kappa + (1 - \rho) \left( 1 - \hbar \mathbb{1}_{(\zeta=1)(\zeta'\neq 1)} \right) q^{g}(\mathbf{S'})$$

Skipping steps: in crisis times

$$\begin{array}{ll} \cdot \ \pi \uparrow \Longrightarrow \ \mathbb{E}\left[w'L'\right] = \pi \mathbb{E}\left[w'L'|\zeta' \neq 1\right] + (1-\pi)\mathbb{E}\left[w'L'|\zeta' = 1\right] \downarrow \leftarrow \text{Aggregate effect} \\ \cdot \ q^g \downarrow \Longrightarrow \ \omega \downarrow \text{ for all} \\ \cdot \ \text{cov}(R_{S,S'}, sdf' \mid \textbf{S}) \downarrow \\ \leftarrow \text{ 'Savings technology' effect} \end{array}$$



$$Y_{N}^{d} = C\varpi \left(\frac{p_{N}}{p_{C}}\right)^{-\eta} + \frac{\vartheta_{N}}{p_{N}}G$$

$$Y_{N}^{s} = L_{N}^{\alpha_{N}} \left(1 - \mathbb{1}_{(\zeta \neq 1)}\Delta\right)$$

$$L_{N}^{d} = \left(\alpha_{N} \frac{p_{N}}{W}\right)^{\frac{1}{1-\alpha_{N}}}$$



$$Y_{N}^{d} = C\varpi \left(\frac{p_{N}}{p_{C}}\right)^{-\eta} + \frac{\vartheta_{N}}{p_{N}}G$$

$$Y_{N}^{s} = L_{N}^{\alpha_{N}} \left(1 - \mathbb{1}_{(\zeta \neq 1)}\Delta\right)$$

$$L_{N}^{d} = \left(\alpha_{N} \frac{p_{N}}{\max\{W, \bar{W}\}}\right)^{\frac{1}{1-\alpha_{N}}}$$





$$Y_{N}^{d} = C\varpi \left(\frac{p_{N}}{p_{C}}\right)^{-\eta} + \frac{\vartheta_{N}}{p_{N}}G$$

$$Y_{N}^{s} = L_{N}^{\alpha_{N}} \left(1 - \mathbb{1}_{(\zeta \neq 1)}\Delta\right)$$

$$L_{N}^{d} = \left(\alpha_{N} \frac{p_{N}}{\max\{W, \bar{W}\}}\right)^{\frac{1}{1 - \alpha_{N}}}$$

- $\cdot C \downarrow \Longrightarrow p_N \downarrow \Longrightarrow w \downarrow$
- Wage rigidity creates price stickiness

# THE GOVERNMENT'S OBJECTIVE

- $B'_t$  and  $G_t$  are given functions of  $S_t$
- Default / Repayment is an optimal **choice** 
  - · Utilitarian objective

$$W(S) = \int v(s, S) d\lambda_S(s)$$

- In period t, observe  $S_{t-1}$  and  $(\xi_t, z_t)$
- · Gov't understands  $\mathbf{S}_t = \mathbf{\Psi}(\mathbf{S}_{t-1}, \xi_t, Z_t, \zeta_t)$  Distribution
- · Default iff

$$\underbrace{\mathcal{W}\left(\Psi(S_{t-1},\xi_t,Z_t,\zeta_t\neq 1)\right)}_{\text{v under def}} - \underbrace{\mathcal{W}\left(\Psi(S_{t-1},\xi_t,Z_t,\zeta_t=1)\right)}_{\text{v under rep}} \geq \sigma_g \xi_t^{\text{def}}$$

where 
$$\xi_t^{\mathsf{def}} \stackrel{\mathit{iid}}{\sim} \mathcal{N}(\mathsf{O}, \mathsf{1})$$

#### **EQUILIBRIUM CONCEPT**

#### Definition

Given fiscal rules B'(S), G(S), an equilibrium consists of



- A government policy  $h'(S, \xi', z')$
- Policy functions  $\{\phi_a, \phi_b, \phi_c\}$  (s, S)
- Prices  $p_c(S)$ ,  $p_N(S)$ , w(S),  $q^g(S)$ . Quantities  $L_N(S)$ ,  $L_T(S)$ ,  $\Pi(S)$ , T(S)
- Laws of motion  $\mu'(S, \xi', z'; h), \sigma'(S, \xi', z'; h)$

#### such that

- The policy functions solve the household's problem
- · The laws of motion are consistent with the policy functions
- Firms maximize profits,  $w(S) \ge \bar{w}$ , markets clear Market Clearing
- The government's default policy maximizes  $\mathcal{W}(\Psi(S,\xi',z',\cdot))$

# Model Results

#### PRELIMINARY RESULTS





Anticipated objective function Blue: repayment, red: default

#### PRELIMINARY RESULTS





Transfers
Blue: repayment, red: default

# PRELIMINARY RESULTS



## PRELIMINARY RESULTS



Model: Benchman

# SIMULATIONS

# **CALIBRATION**

| Parameter                       | Value          | Description                 | Source                      |  |  |
|---------------------------------|----------------|-----------------------------|-----------------------------|--|--|
| r*                              | 4% ann.        | Risk-free rate              | Anzoategui (2017)           |  |  |
| $\hbar$                         | 50%            | Haircut in case of default  | Philippon and Roldán (2018) |  |  |
| Δ                               | 10%            | TFP loss in case of default | Philippon and Roldán (2018) |  |  |
| $\varpi$                        | 0.74           | Share of nontraded in prod  | Anzoategui (2017)           |  |  |
| $\vartheta_N$                   | 80%            | Share of nontraded in G     | Anzoategui (2017)           |  |  |
| $ ho_\epsilon, \sigma_\epsilon$ | (0.978, 0.022) | Idiosyncratic income        | D'Erasmo and Mendoza (2016) |  |  |
|                                 | Target (Spain) |                             |                             |  |  |
| D                               | . 12           | -0/                         | Manager to the Table 1      |  |  |

| ı                             | nternally calibrated            | 1              | Target (Spain)     |
|-------------------------------|---------------------------------|----------------|--------------------|
| Discount rate of HHs          | $1/\beta - 1$                   | 4.5% ann.      | Moments in Table 1 |
| Risk aversion                 | $\gamma$                        | 14.1           | Moments in Table 1 |
| Progressivity of tax schedule | au                              | 19.3%          | Moments in Table 1 |
| Wage minimum                  | $\bar{w}$                       | 1.15           | Moments in Table 1 |
| TFP process                   | $\rho_{\rm Z},\sigma_{\rm Z}$   | (0.892, 0.029) | Moments in Table 1 |
| Mean risk premium             | $ar{\xi}$                       | 1.4%           | Moments in Table 1 |
| Risk premium AR(1)            | $ ho_{m{\xi}}, \sigma_{m{\xi}}$ | (0.947, 0.002) | Moments in Table 1 |

# CALIBRATION (CONT'D)

| Target                                | Model  | Data   |  |
|---------------------------------------|--------|--------|--|
| $AR(1) \operatorname{coef} \log(Y_t)$ | 0.996  | 0.966  |  |
| Std coef $log(Y_t)$                   | 0.0343 | 0.0129 |  |
| $AR(1)$ coef $log(C_t)$               | 0.995  | 0.962  |  |
| Std coef $log(C_t)$                   | 0.0207 | 0.0166 |  |
| AR(1) coef spread                     | 0.966  | 0.967  |  |
| Std coef spread                       | 0.161  | 0.103  |  |
| Avg Debt-to-GDP                       | 64.2%  | 64.6%  |  |
| Std Debt-to-GDP                       | 25.3%  | 23.5%  |  |
| Avg unemployment                      | 15.9%  | 15.9%  |  |
| Std unemployment                      | 7.59%  | 6.09%  |  |
| Median dom holdings                   | 79.6%  | 56.5%  |  |
| Avg wealth-to-GDP                     | 58%    | 94.5%  |  |

All data from Eurostat 2000Q1:2017Q4, except private consumption from OECD 2000Q1:2017Q4, domestic holdings from Banco de España, 2004Q1:2017Q4

Table 1: Model Fit

# CALIBRATION (CONT'D)

| Target                                | Model  | Data   |
|---------------------------------------|--------|--------|
| $AR(1) \operatorname{coef} \log(Y_t)$ | 0.996  | 0.966  |
| Std coef $log(Y_t)$                   | 0.0343 | 0.0129 |
| $AR(1) \operatorname{coef} \log(C_t)$ | 0.995  | 0.962  |
| Std coef $log(C_t)$                   | 0.0207 | 0.0166 |
| AR(1) coef spread                     | 0.966  | 0.967  |
| Std coef spread                       | 0.161  | 0.103  |
| Avg Debt-to-GDP                       | 64.2%  | 64.6%  |
| Std Debt-to-GDP                       | 25.3%  | 23.5%  |
| Avg unemployment                      | 15.9%  | 15.9%  |
| Std unemployment                      | 7.59%  | 6.09%  |
| Median dom holdings                   | 79.6%  | 56.5%  |
| Avg wealth-to-GDP                     | 58%    | 94.5%  |

All data from Eurostat 2000Q1:2017Q4, except private consumption from OECD 2000Q1:2017Q4, domestic holdings from Banco de España, 2004Q1:2017Q4

Table 1: Model Fit

# **AMPLIFICATION OF TFP SHOCKS**



95% confidence intervals shaded

# AMPLIFICATION OF TFP SHOCKS (CONT'D)



For large shocks



For indebted economies

## **ERGODIC DISTRIBUTIONS**



Ergodic Densities for Normalized Output and Consumption

# CRISES

#### SIMULATED CRISES

# Simulate model economy for 2000 years

- · Record all episodes of
  - i. High spreads for 6 quarters
  - ii. Default
- · Take 2-year windows around each
  - Left with 131 defaults ( $\sim$  6% annual freq)
- · Compute distribution of endogenous variables around them

#### SIMULATED PATHS



# SIMULATED DATA - HIGH SPREADS



Red: Median, Shaded blue: [0.25, 0.75] percentiles, Dashed green: Mean

## SIMULATED DATA - CRISES



Blue: Benchmark, Dashed orange: No default

# SIMULATED DATA - DEFAULT EPISODES



Red: Median, Shaded blue: [0.25, 0.75] percentiles, Dashed green: Mean

#### STILL MISSING

- · Calibrate to match moments of Spanish economy
  - · Standard: output, employment, spreads, net exports
  - New: distribution of exposures from Morelli and Roldán (2018)
- · Compare episodes of high spreads in simulated data against
  - · Same economy with no nominal rigidities
  - · Same economy with **no risk** 
    - Myopic domestic agents and foreigners who perceive no default risk
    - Myopic domestic agents only
  - No TFP costs of default

- ← shuts down aggregate income losses
- No capital losses +  $\hbar = 0$
- $\leftarrow$  shuts down redistributive wealth effects

- $\rightarrow$  Notions of **potential** output
- · Difference is amplification through extra precautionary behavior
  - · Different benchmarks emphasize different channels

#### **CONCLUDING REMARKS**

- · Interested in interaction of
  - Default risk
  - Precautionary behavior
  - + implications for amplification of shocks
- · Potentially helps explain severity of Eurozone debt crisis
  - · Exploit Spanish data for calibration of exposures
- · Key:
  - Aggregate + redistributive wealth effects if default
  - · Agents take precautions against those
  - Timing flips usual MPC / transfer argument
- · All comments welcome!

#### **ITALY**





Italian firms' self-reported limits to production

Source: Eurostat

# **GREECE**





Greek firms' self-reported limits to production Source: Eurostat

#### HOUSEHOLD SURVEY

Companion paper: dom exp to Spanish sovereign risk ■■■



#### MEASURING EXPOSURES TO SOVEREIGN DEBT - BANKS

Measure exposure based on Philippon and Salord (2017)

- study European banks resolutions in Cyprus
- · average total recapitalization need was around 17.4% of assets
- private investors provided 33% of need via loss in equity (91%), junior debt (53%) and senior debt (14%)
- remaining 2/3 came from government intervention
  - → assumed not possible in Spain!
  - → remaining need comes from senior debt and depositors



#### MEASURING EXPOSURES TO SOVEREIGN DEBT - DEPOSITS

Work with different scenarios of loss on deposits:

| Scenario                        | SD Loss           | Dep. Loss        |
|---------------------------------|-------------------|------------------|
| Extreme<br>Mild<br>Conservative | 25%<br>50%<br>75% | 14%<br>10%<br>5% |
|                                 |                   |                  |

Table 2: Expected losses on deposits

- · Assume a 50% haircut on public debt that triggers a bank crisis
- $\cdot$  Loss for depositors of 10%
- Overall, public debt and bank crisis would induce a fall of between 8% and 10% of financial assets



#### **DATA - EXPOSURES**

◆ BACK

- Companion paper: dom exp to Spanish sovereign risk
- · Pension funds, mutual funds, insurance perfect passthrough
- Deposits more complicated
  - Philippon and Salord (2017): bank resolutions in Cyprus Petails



#### FISCAL RULES



|                                     | G <sub>t</sub> /        | Y <sub>t</sub>       | $\left(B_t'-(1-\rho)B_t\right)/Y_t$ |                     |  |
|-------------------------------------|-------------------------|----------------------|-------------------------------------|---------------------|--|
|                                     | (1)                     | (2)                  | (3)                                 | (4)                 |  |
| Unemployment <sub>t</sub>           | 0.031<br>(0.039)        | 0.073***<br>(0.015)  | 0.334**<br>(0.158)                  | 0.346***<br>(0.059) |  |
| Unemployment <sup>2</sup>           | 0.002<br>(0.001)        |                      | 0.0001 (0.006)                      |                     |  |
| $B_t/Y_t$                           | 0.010*<br>(0.005)       | -0.017***<br>(0.002) | -0.010<br>(0.020)                   | 0.009<br>(0.007)    |  |
| $(B_t/Y_t)^2$                       | -0.0002***<br>(0.00004) |                      | 0.0001<br>(0.0001)                  |                     |  |
| $Net\ Exports_t$                    | 0.009<br>(0.019)        | 0.007<br>(0.012)     | 0.046<br>(0.075)                    | 0.019<br>(0.046)    |  |
| Net Exports <sup>2</sup>            | -0.0001<br>(0.001)      |                      | -0.001<br>(0.003)                   |                     |  |
| Mean FE                             | 20.675                  | 21.085               | 1.079                               | 0.571               |  |
| Country + Time FE                   | ✓                       | ✓                    | ✓                                   | ✓                   |  |
| Observations<br>Adj. R <sup>2</sup> | 968<br>0.904            | 968<br>0.901         | 957<br>0.697                        | 957<br>0.698        |  |

Standard errors in parentheses. \*\*\* p < 0.01, \*\* p < 0.05, \* p < 0.1.

# FISCAL RULES (CONT'D)







#### **EVOLUTION OF THE DISTRIBUTION**

#### The law of motion for $\lambda$

- Policy functions  $\phi_a, \phi_b$  at  $S_t$  determine assets at t+1
- After seeing  $z_{t+1}$ , the government decides **repayment**
- · At  $S_{t+1}$ , relationship between  $q^g(S_{t+1})$ ,  $R_b(S_{t+1})$ ,  $\mu_{t+1}$ ,  $\sigma_{t+1}$

$$R_b(\mathbf{S}_{t+1}) = \mathbb{1}_{(\zeta_{t+1}=1)}\kappa + (1-\rho)q^g(\mathbf{S}_{t+1})$$

$$\int \omega d\lambda_{t+1} = \int \phi_a(\mathbf{S}_t) + R_b(\mathbf{S}_{t+1})\phi_b(\mathbf{S}_t)d\lambda_t$$

$$\int \omega^2 d\lambda_{t+1} = \int (\phi_a(\mathbf{S}_t) + R_b(\mathbf{S}_{t+1})\phi_b(\mathbf{S}_t))^2 d\lambda_t$$

#### **OUTPUT GROWTH AND DEFAULTS**





Defaults and output growth

Source: Panizza, Sturzenegger, and Zettelmeyer (2009)

#### SHARE OF DOMESTIC DEBT





Source: Morelli and Roldán (2018) on Banco de España

#### SHARE OF DOMESTIC DEBT





Source: Morelli and Roldán (2018) on Banco de España Dotted lines are sample averages

#### **NET WORTH**





Source: Eurostat Dotted lines are sample averages

#### **NET WORTH**







Source: Eurostat Dotted lines are sample averages

### **GENERAL SDF OF FOREIGNERS**

• If risk-averse foreigners

$$q_t^h = \frac{1}{1+r^*} \mathbb{E}_t \left[ \left( \frac{C_{t+1}^f}{C_t^f} \right)^{-\gamma_f} \right]$$
$$q_t^g = \frac{1}{1+r^*} \mathbb{E}_t \left[ \left( \frac{C_{t+1}^f}{C_t^f} \right)^{-\gamma_f} R_{t,t+1}^b \right]$$

where 
$$R_{t,t+1}^b = \mathbb{1}_{(\zeta_{t+1}=1)} \tilde{\kappa} + (1-\rho)(1-\hbar \mathbb{1}_{(\zeta_t=1\cap \zeta_{t+1}\neq 1)}) q_{t+1}^g$$

· Reduces to risk-neutral if

$$\operatorname{cov}\left(\left(\frac{C_{t+1}^f}{C_t^f}\right)^{-\gamma_f}, R_{t,t+1}^b\right) = 0$$

#### **SOLUTION METHOD**

- Guess a policy for the government
  - · Guess a law of motion for the distribution
    - Compute  $q^g(S)$ ,  $q^h$  from lenders' sdf.
    - Compute  $w, L_N, L_T, \Pi, T$  as functions of  $(S, p_N)$
    - Guess a relative price of nontraded goods  $p_N$ 
      - $\cdot$  Solve the household's problem at  $(\mathbf{s},\mathbf{S},p_{\mathit{N}})$
      - $\boldsymbol{\cdot}$  Check market clearing for nontraded goods.
    - Iterate until  $p_N(S)$  converges
  - · Iterate until the law of motion converges
- Iterate on the government's policy



## **FEEDBACK**



|                              | Unemployment <sub>jt</sub> |                     |                    | S                   |                   |                   |
|------------------------------|----------------------------|---------------------|--------------------|---------------------|-------------------|-------------------|
|                              | (1)                        | (2)                 | (3)                | (4)                 | (5)               | (6)               |
| Spread <sub>jt</sub>         | 1.381***<br>(0.064)        |                     |                    | 0.461***<br>(0.097) |                   |                   |
| $Spread_{jt}$ (IV)           |                            | 2.372***<br>(0.826) | 1.951**<br>(0.896) |                     | 1.634<br>(1.186)  | 2.048<br>(1.515)  |
| Spread Non-fin <sub>jt</sub> |                            | -0.172<br>(0.297)   | -0.450<br>(0.306)  |                     | 0.654             | 0.832             |
| Spread Fin <sub>jt</sub>     |                            | -0.364<br>(0.530)   | 0.076 (0.601)      |                     | -0.265<br>(0.666) | -0.595<br>(0.901) |
| $B_{jt}/Y_{jt}$              |                            | (=:35=)             | 0.040***           |                     | (====,            | -0.035<br>(0.035) |
| Model                        | OLS                        | IV                  | IV                 | OLS                 | IV                | IV                |
| Country FE                   | Υ                          | Υ                   | Υ                  | Υ                   | Υ                 | Υ                 |
| Quad Time Trend              | Υ                          | Υ                   | Υ                  | Υ                   | Υ                 | Υ                 |
| Observations                 | 968                        | 304                 | 304                | 569                 | 179               | 179               |
| Adj. R <sup>2</sup>          | 0.731                      | 0.715               | 0.713              | 0.450               | 0.420             | 0.398             |

Standard errors in parentheses. \*\*\* p < 0.01, \*\* p < 0.05, \* p < 0.1. Gilchrist-Mojon (2017) indices of corporate spreads for FRA, DEU, ITA, ESP. 2000Q1 – 2017Q4

#### MARKET CLEARING



· Three markets need to clear

$$\begin{aligned} Y_{Nt} &= C_{Nt} + \frac{\vartheta_N}{\rho_{Nt}} G_t \\ Y_{Tt} &= C_{Tt} + (1 - \vartheta_N) G_t - \mathbf{NFI}_t \\ (L_{Nt} + L_{Tt} - 1) (w_t - \gamma w_{t-1}) &= 0 \end{aligned}$$

where net foreign inflows are

$$\mathsf{NFI}_t = \int \left(\omega - q_t^h \phi_a - q_t^g \phi_b\right) d\lambda_t - \kappa B_{t-1} + q_t^g (B_t - (1-
ho)B_{t-1})$$

## **FEEDBACK**



|                           | Dependent variable Q <sub>jt</sub> : |                     |                     |                     |                      |                      |                     |                     |
|---------------------------|--------------------------------------|---------------------|---------------------|---------------------|----------------------|----------------------|---------------------|---------------------|
|                           | $\log Y_{jt}$                        |                     |                     |                     | log C                | og C <sub>jt</sub>   |                     |                     |
|                           | (1)                                  | (2)                 | (3)                 | (4)                 | (5)                  | (6)                  | (7)                 | (8)                 |
| Spread <sub>jt</sub>      | -0.011***<br>(0.003)                 |                     |                     |                     | -0.011***<br>(0.002) |                      |                     |                     |
| Spread <sub>jt</sub> (IV) |                                      | -0.048**<br>(0.019) | -0.031<br>(0.023)   | -0.031<br>(0.024)   |                      | -0.088***<br>(0.022) | -0.035**<br>(0.017) | -0.035**<br>(0.016) |
| $R_{jt}^h$                |                                      |                     | 0.054***<br>(0.010) | 0.049***<br>(0.011) |                      |                      | 0.004<br>(0.007)    | -0.009<br>(0.007)   |
| $R_{jt}^s$                |                                      |                     |                     | 0.013               |                      |                      |                     | 0.036<br>(0.031)    |
| Model                     | OLS                                  | IV                  | IV                  | IV                  | OLS                  | IV                   | IV                  | IV                  |
| Country + Time FE         | ✓                                    | $\checkmark$        | $\checkmark$        | ✓                   | ✓                    | ✓                    | $\checkmark$        | $\checkmark$        |
| Observations              | 968                                  | 968                 | 540                 | 540                 | 968                  | 968                  | 540                 | 540                 |
| Adj. R <sup>2</sup>       | 0.995                                | 0.994               | 0.997               | 0.997               | 0.997                | 0.993                | 0.999               | 0.999               |

Standard errors in parentheses. \*\*\* p < 0.01, \*\* p < 0.05, \* p < 0.1.

ECB borrowing rates for AUT, BEL, DEU, ESP, FRA, IRL, ITA, NLD, PRT. 2003Q1 - 2017Q4

#### **FEEDBACK**





Standard errors in parentneses.  $^{n-p} \neq 0.01, ^{n-p} \neq 0.05, ^{n} \neq 0.1$ .

ECB borrowing rates for AUT, BEL, DEU, ESP, FRA, IRL, ITA, NLD, PRT. 2003Q1 - 2017Q4

# THE CYCLE IS THE TREND

|             | $\sigma(C)$ | $\sigma(Y)$ | $\sigma(C)/\sigma(Y)$ | $\sigma(C)/\sigma(Y)$ (AG) |
|-------------|-------------|-------------|-----------------------|----------------------------|
| Austria     | 0.716       | 0.782       | 0.916                 | 0.870                      |
| Belgium     | 0.556       | 0.795       | 0.700                 | 0.810                      |
| Denmark     | 1.047       | 1.178       | 0.889                 | 1.190                      |
| Finland     | 1.278       | 1.957       | 0.653                 | 0.940                      |
| France      | 0.780       | 0.773       | 1.009                 | _                          |
| Germany     | 0.692       | 0.867       | 0.799                 | _                          |
| Ireland     | 3.140       | 3.680       | 0.853                 | _                          |
| Italy       | 1.165       | 0.978       | 1.191                 | _                          |
| Netherlands | 1.726       | 1.244       | 1.388                 | 1.070                      |
| Portugal    | 1.827       | 1.576       | 1.160                 | 1.020                      |
| Spain       | 1.901       | 1.396       | 1.362                 | 1.110                      |

HP filtered data with  $\lambda =$  1600. Std deviations in %.

### SPAIN IN THE EUROZONE CRISIS





Spain in the 2000s

#### SPAIN IN THE EUROZONE CRISIS





Spain in the 2000s

#### LOW DEMAND?





Spanish firms' self-reported limits to production

Source: Eurostat

# NONDURABLE CONSUMPTION





# **ERGODIC DISTRIBUTIONS**





Densities for Output and Consumption during Crises ( $\pi \geq 15\%$ )

# **ERGODIC DISTRIBUTIONS**





Densities for Output and Consumption during Defaults

# **ERGODIC DISTRIBUTIONS**





Unconditional Ergodic Densities for Output and Consumption



REFERENCES

ANZOATEGUI, D. (2017): "Sovereign Debt and the Effects of Fiscal Austerity," mimeo, NYU. ARELLANO, C., Y. BAI, AND G. MIHALACHE (2018): "Default risk, sectoral reallocation, and persistent recessions," *Journal of International Economics*, 112, 182–199.

AUCLERT, A. (2017): "Monetary Policy and the Redistribution Channel," Working Paper 23451, National Bureau of Economic Research.

BALKE, N. (2017): "The Employment Cost of Sovereign Default," mimeo, UCL.

879-926.

BIANCHI, J., P. OTTONELLO, AND I. PRESNO (2016): "Unemployment, Sovereign Debt, and Fiscal Policy in a Currency Union," 2016 Meeting Papers 459, Society for Economic Dynamics.

BOCOLA. L. (2016): "The Pass-Through of Sovereign Risk," Journal of Political Economy, 124,

D'ERASMO, P. AND E. G. MENDOZA (2016): "Optimal Domestic (and External) Sovereign

Default," Working Paper 22509, National Bureau of Economic Research.
EGGERTSSON, G. AND P. KRUGMAN (2012): "Debt, Deleveraging, and the Liquidity Trap: a

Fisher-Minsky-Koo Approach," *Quarterly Journal of Economics*, 1469–1513.

FERRIERE, A. (2016): "Sovereign default, inequality, and progressive taxation," Working paper, European University Insitute.

GENNAIOLI, N., A. MARTIN, AND S. ROSSI (2014): "Sovereign Default, Domestic Banks, and Financial Institutions," *Journal of Finance*, 69, 819–866.

KORINEK, A. AND A. SIMSEK (2016): "Liquidity Trap and Excessive Leverage," American Economic Review, 106, 699–738.

MALLUCCI, E. (2015): "Domestic Debt and Sovereign Defaults," International Finance Discussion Papers 1153, Board of Governors of the Federal Reserve System (U.S.).

Recession in the Eurozone," *American Economic Review*, 107, 1904–37.

MORELLI, I. M. AND F. ROLDÁN (2018): "Distributional Effects in Sovereign Debt Policy."

MARTIN, P. AND T. PHILIPPON (2017): "Inspecting the Mechanism: Leverage and the Great

mimeo, NYU.

PHILIPPON, T. AND F. ROLDÁN (2018): "On the Optimal Speed of Sovereign Deleveraging with Precautionary Savings," *IMF Economic Review*, 66, 375–413.

PÉREZ, D. (2016): "Sovereign Debt, Domestic Banks and the Provision of Public Liquidity," mimeo, NYU.

ROMEI, F. (2015): "Need for (the Right) Speed: the Timing and Composition of Public Debt Deleveraging," Economics Working Papers MWP2015/11, European University Institute.