Отчет о практическом задании «Градиентные методы обучения линейных моделей. Применение линейных моделей для определения токсичности комментария».

Практикум 317 группы, ММП ВМК МГУ.

Аристеев Олег Алексеевич.

Октябрь 2024.

Содержание

1	Вступление	2
2	Георетическая часть 2.1 Бинарная логистическая регрессия	3
3	Эксперименты 3.1 Предварительная обработка текста 3.2 Преобразование выборки в разреженную матрицу	66 77 93 111 112
4	Улучшения 4.1 Добавление n-грамм	1 4
5	Reibouri	15

1 Вступление

В данной работе рассматриваются линейные модели классификации и градиентные методы обучения. Эксперименты проводились на датасете, содержащим комментарии из раздела обсуждений английской Википедии, который был преобразован для решения задачи бинарной классификации: является комментарий токсичным или нет. В качестве метрик качества использовались *Accuracy*, равная доле правильных предсказаний среди всех

2 Теоретическая часть

Пусть $(x_i, y_i)_{i=1}^l$ — обучающая выборка, где $x_i \in \mathbb{R}^d$, а $y_i \in Y = \{-1, 1\}$. Тогда линейная модель бинарной классификации будет иметь следующий вид:

$$a(x, w) = \operatorname{sign}(\langle w, x \rangle)$$

Здесь $w \in \mathbb{R}^d$ – вектор весов. Отступом будет называться следующая величина:

$$M_i(w) = y_i \cdot \langle w, x_i \rangle$$

Если $M_i(w) < 0$, то модель допускает ошибку на объекте x_i , поскольку y_i и $\langle w, x_i \rangle$ имеют разные знаки. Чем больше $M_i(w)$, тем «надёжнее» модель классифицирует объект x_i .

Пусть $\mathcal{L}(M)$ такая монотонно невозрастающая функция, что $[M<0]\leqslant \mathcal{L}(M)$. Тогда задача обучения линейной модели классификации имеет следующий вид:

$$Q(X, Y, w) = \frac{1}{l} \sum_{i=1}^{l} \mathcal{L}(M_i(w)) \to \min_{w}$$

2.1 Бинарная логистическая регрессия

В рамках задачи бинарной логистической регрессии рассматривается логарифмическая функция потерь $\mathcal{L}(M) := \log(1 + e^{-M})$. Тогда:

$$Q(X, Y, w) = \frac{1}{l} \sum_{i=1}^{l} \mathcal{L}(M_i(w)) = \frac{1}{l} \sum_{i=1}^{l} \log(1 + \exp(-y_i \langle w, x_i \rangle)))$$

Найдем градиент функции Q(X, w) по переменной w. Поскольку он линеен, задача сводится к поиску градиента функции $\mathcal{L}(M_i(w))$. Для начала найдем её дифференциал:

$$d_{w}\mathcal{L}(M_{i}(w))[dw] = \frac{1}{1 + \exp(-y_{i} \langle w, x_{i} \rangle)} d_{w}[1 + \exp(-y_{i} \langle w, x_{i} \rangle)][dw] =$$

$$= \frac{\exp(-y_{i} \langle w, x_{i} \rangle)}{1 + \exp(-y_{i} \langle w, x_{i} \rangle)} d_{w}[-y_{i} (\langle w, x_{i} \rangle)][dw] =$$

$$= -y_{i} \frac{\exp(-y_{i} \langle w, x_{i} \rangle)}{1 + \exp(-y_{i} \langle w, x_{i} \rangle)} \langle dw, x_{i} \rangle =$$

$$= \left\langle -x_{i}y_{i} \frac{\exp(-y_{i} \langle w, x_{i} \rangle)}{1 + \exp(-y_{i} \langle w, x_{i} \rangle)}, dw \right\rangle$$

Значит градиент $\mathcal{L}(M_i(w))$ по вектору w равен:

$$\nabla_{w} \mathcal{L}(M_{i}(w)) = -x_{i} y_{i} \frac{\exp(-y_{i} \langle w, x_{i} \rangle)}{1 + \exp(-y_{i} \langle w, x_{i} \rangle)}$$

Возвращаясь к градиенту функции Q(X, Y, w):

$$\nabla_w Q(X, Y, w) = -\frac{1}{l} \sum_{i=1}^l x_i y_i \frac{1}{1 + \exp(y_i \langle w, x_i \rangle)}$$
(1)

2.2 Мультиномиальная логистическая регрессия

Теперь рассмотрим логистическую регрессию с произвольным числом классов K. Для удобства будем считать $Y = \{1, \ldots, K\}$ (ясно, что можно было присвоить названиям классов любые другие метки). Тогда линейный классификатор будет иметь следующий вид:

$$a(x, w) = \arg \max_{i=\overline{1,K}} \langle x, w_i \rangle$$

Здесь $w_1, \ldots, w_K \in \mathbb{R}^d$ – векторы весов. Составим из них матрицу $w = [w_1|\ldots|w_K] \in \mathbb{R}^{d \times K}$. Вероятность, что объект x принадлежит классу $j \in Y$:

$$P(y = j | x, w) = \frac{\exp \langle w_j, x \rangle}{\sum_{k=1}^{K} \exp \langle w_k, x \rangle}$$

По принципу максимального правдоподобия, получим:

$$MSE(X, Y, w) = \prod_{i=1}^{l} P(y = y_i | x_i, w) \to \max_{w}$$

Прологарифмируем функцию правдоподобия получим, что задача обучения мультиномиальной логистической регрессии имеет следующий вид:

$$\log MSE(X, Y, w) = \sum_{i=1}^{l} \log P(y = y_i | x_i, w) \to \max_{w}$$

Или, в терминах функции потерь, можно записать:

$$Q(X, Y, w) = \frac{1}{l} \sum_{i=1}^{l} \mathcal{L}(x_i, w) = \frac{1}{l} \sum_{i=1}^{l} \left[-\log P(y = y_i | x_i, w) \right] \to \min_{w}$$

Тогда найдем дифференциал общего члена $\mathscr{L}(x_i,w)$ по переменной $w=[w_1,\ldots,w_K]\in\mathbb{R}^{d\times K}$ с приращением $dw=[dw_1,\ldots,dw_K]\in\mathbb{R}^{d\times K}$:

$$d_{w}\mathcal{L}(x_{i}, w)[dw] = d_{w} \left[-\log P(y = y_{i}|x_{i}, w) \right] [dw] =$$

$$= d_{w} \left[-\log \frac{\exp \langle w_{y_{i}}, x_{i} \rangle}{\sum_{k=1}^{K} \exp \langle w_{k}, x_{i} \rangle} \right] [dw] = d_{w} \left[\log \sum_{k=1}^{K} \exp \langle w_{k}, x_{i} \rangle - \log \left(\exp \langle w_{y_{i}}, x_{i} \rangle \right) \right] [dw] =$$

$$= d_{w} \left[\log \sum_{k=1}^{K} \exp \langle w_{k}, x_{i} \rangle - \langle w_{y_{i}}, x_{i} \rangle \right] [dw] = d_{w} \left[\log \sum_{k=1}^{K} \exp \langle w_{k}, x_{i} \rangle \right] [dw] - \langle dw_{y_{i}}, x_{i} \rangle =$$

$$= \frac{1}{\sum_{k=1}^{K} \exp \langle w_{k}, x_{i} \rangle} \sum_{k=1}^{K} d_{w} \left[\exp \langle w_{k}, x_{i} \rangle \right] [dw] - \langle dw_{y_{i}}, x_{i} \rangle =$$

$$= \frac{1}{\sum_{j=1}^{K} \exp \langle w_{j}, x_{i} \rangle} \sum_{k=1}^{K} d_{w} \left[\exp \langle w_{k}, x_{i} \rangle \right] [dw] - \langle dw_{y_{i}}, x_{i} \rangle =$$

$$= \sum_{k=1}^{K} \left(\underbrace{\frac{\exp \langle w_{k}, x_{i} \rangle}{\sum_{j=1}^{K} \exp \langle w_{j}, x_{i} \rangle}}_{P(y=k|x_{i}, w)} \cdot \langle dw_{k}, x_{i} \rangle} - \langle dw_{y_{i}}, x_{i} \rangle =$$

$$= \sum_{k=1}^{K} P(y = k | x_i, w) \langle dw_k, x_i \rangle - \langle dw_{y_i}, x_i \rangle =$$

$$= \sum_{k=1}^{K} \left\langle \underbrace{\left(P(y = k | x_i, w) - \mathbb{1}\{k = y_i\}\right) x_i}_{A_k}, dw_k \right\rangle =$$

Заметим, что последнее выражение можно переписать в форме матричного скалярного произведения, где $A = [A_1, \ldots, A_K]$:

$$= \sum_{k=1}^{K} \langle A_k, dw_k \rangle = \operatorname{tr}\left((dw)^T A \right) = \langle A, dw \rangle$$

Это означает, что матрица A равна градиенту функции $\mathcal{L}(x_i, w)$. Таким образом, k-й столбец градиента функции $\mathcal{L}(x_i, w)$ равен:

$$\left(\nabla_{w} \mathcal{L}(x_i, w)\right)_k = \left(P(y = k | x_i, w) - \mathbb{1}\{k = y_i\}\right) x_i$$

В силу линейности градиента, получим:

$$\nabla_w Q(X, Y, w) = \frac{1}{l} \sum_{i=1}^{l} \nabla_w \mathcal{L}(x_i, w)$$

Значит, k-й столбец градиента функции Q(X,Y,w):

$$\left(\nabla_w Q(X, Y, w)\right)_k = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_k, x_i \right\rangle}{\sum_{j=1}^K \exp\left\langle w_j, x_i \right\rangle} - \mathbb{1}\{k = y_i\} \right) x_i \tag{2}$$

2.3 Эквивалентность бинарной логистической регрессии и мультиномиальной с двумя классами

Рассмотрим задачу бинарной логистической регрессии:

$$a_1(x, w) = \operatorname{sign}(\langle w, x \rangle)$$

И мультиномиальную логистическую регрессию при $Y = \{-1, 1\}$:

$$a_2(x, w) = \arg\max_{y \in Y} \langle x, w_y \rangle$$

Пусть \hat{w} – набор весов для модели a_1 . Тогда заметим, что:

$$a_1(x,\hat{w}) = \operatorname{sign}\left(\langle x,\hat{w}\rangle\right) = \operatorname{arg\,max}\{\underbrace{0}_{y=-1},\underbrace{\langle x,\hat{w}\rangle}_{y=1}\} = \operatorname{arg\,max}\{\underbrace{\langle x,0\rangle}_{y=-1},\underbrace{\langle x,\hat{w}\rangle}_{y=1}\} = \operatorname{arg\,max}\{\underbrace{\langle x,\hat{w}\rangle}_{y=1},\underbrace{\langle x,\hat{w}\rangle}_{y=1}\} = \operatorname{arg\,max}\{\underbrace{\langle x,\hat{w}\rangle}_{y=1},\underbrace{\langle x,\hat{w}\rangle}_{y=1},\underbrace{\langle x,\hat{w}\rangle}_{y=1}\} = \operatorname{arg\,max}\{\underbrace{\langle x,\hat{w}\rangle}_{y=1},\underbrace{\langle x,\hat{w}\rangle}_{y=1}$$

Выберем в качестве $w_{-1} := 0$, а $w_{+1} := \hat{w}$:

$$=\arg\max\{\underbrace{\langle x,w_{-1}\rangle}_{y=-1},\underbrace{\langle x,w_{+1}\rangle}_{y=1}\}=\arg\max_{y\in Y}\langle x,w_y\rangle=a_2(x,[0,\hat{w}])$$

Теперь в другую сторону. Пусть $[w_{-1}, w_{+1}]$ – совокупность весов для модели a_2 . Тогда:

$$a_{2}(x,\left[w_{-1},w_{+1}\right]) = \arg\max_{y \in Y} \left\langle x,w_{y} \right\rangle = \arg\max\{\left\langle x,w_{-1}\right\rangle,\left\langle x,w_{+1}\right\rangle\} = 2 \left\langle x,\left[w_{-1},w_{+1}\right]\right\rangle$$

Выберем в качестве $w := w_{+1} - w_{-1}$

$$= sign (\langle w_{+1}, x \rangle - \langle w_{-1}, x \rangle) = sign (\langle w_{+1} - w_{-1}, x \rangle) = a_1(x, w_{+1} - w_{-1})$$

Теперь докажем, что если набор весов w является нулем градиента функции потерь бинарной логистической регрессии Q_1 (1), то совокупность весов [0,w] будет нулем градиента функции потерь мультиномиальной логистической регрессии с двумя классами Q_2 (2) и наоборот. Рассмотрим:

$$\nabla_w Q_1(X, Y, w) = -\frac{1}{l} \sum_{i=1}^{l} x_i y_i \frac{1}{1 + \exp(y_i \langle w, x_i \rangle)}$$

Заметим, что:

$$1\{y_i = -1\} = \begin{cases} 1, & y_i = -1, \\ 0, & y_i = 1 \end{cases} \implies 1\{y_i = -1\} = \frac{1 - y_i}{2}$$

$$1\{y_i = +1\} = \begin{cases} 1, & y_i = 1, \\ 0, & y_i = -1 \end{cases} \implies 1\{y_i = +1\} = \frac{1 + y_i}{2}$$

Тогда:

$$\nabla_w Q_1(X, Y, w) = -\frac{1}{l} \sum_{i=1}^l \left(x_i y_i \frac{\exp(-y_i \langle w, x_i \rangle)}{1 + \exp(-y_i \langle w, x_i \rangle)} \mathbb{1}\{y_i = -1\} + x_i y_i \frac{\exp(-y_i \langle w, x_i \rangle)}{1 + \exp(-y_i \langle w, x_i \rangle)} \mathbb{1}\{y_i = +1\} \right) =$$

$$= -\frac{1}{l} \sum_{i=1}^l \left(-x_i \frac{\exp(\langle w, x_i \rangle)}{1 + \exp(\langle w, x_i \rangle)} \frac{1 - y_i}{2} + x_i \frac{\exp(-\langle w, x_i \rangle)}{1 + \exp(-\langle w, x_i \rangle)} \frac{1 + y_i}{2} \right) =$$

$$= \frac{1}{2l} \sum_{i=1}^l \left(\frac{\exp(\langle w, x_i \rangle)(1 - y_i)}{1 + \exp(\langle w, x_i \rangle)} - \frac{1 + y_i}{1 + \exp(-\langle w, x_i \rangle)} \right) x_i =$$

$$= \frac{1}{2l} \sum_{i=1}^l \left(\frac{\exp(\langle w, x_i \rangle)(1 - y_i) - 1 - y_i}{1 + \exp(\langle w, x_i \rangle)} \right) x_i$$

Теперь рассмотрим градиент функции $Q_2(X,Y,w)$ для задачи многомерной логистической регрессии. Он будет состоять из двух компонент, каждый соответствующий классу y=1 или y=-1. Рассмотрим первую компоненту, отвечающую классу -1:

$$\left[\nabla_w Q_2(X, Y, w)\right]_{y=-1} = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle + \exp\left\langle w_{+1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle + \exp\left\langle w_{+1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle} - \mathbb{1}\{y_i = -1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{-1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i$$

Пользуясь тем, что $w_{-1} = 0$, $w_{+1} = w$:

$$= \frac{1}{l} \sum_{i=1}^{l} \left(\frac{1}{1 + \exp{\langle w, x_i \rangle}} - \mathbb{1}\{y_i = -1\} \right) x_i = \frac{1}{l} \sum_{i=1}^{l} \left(\frac{1}{1 + \exp{\langle w, x_i \rangle}} + \frac{y_i - 1}{2} \right) x_i$$

$$= \frac{1}{2l} \sum_{i=1}^{l} \left(\frac{2 + (y_i - 1)(1 + \exp{\langle w, x_i \rangle})}{1 + \exp{\langle w, x_i \rangle}} \right) x_i = \frac{1}{2l} \sum_{i=1}^{l} \left(\frac{y_i + 1 + (y_i - 1)\exp{\langle w, x_i \rangle})}{1 + \exp{\langle w, x_i \rangle}} \right) x_i = -\nabla_w Q_1(X, Y, w)$$

Теперь рассмотрим вторую компоненту градиента:

$$\left[\nabla_w Q_2(X,Y,w)\right]_{y=+1} = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w_{+1}, x_i \right\rangle}{\exp\left\langle w_{-1}, x_i \right\rangle + \exp\left\langle w_{+1}, x_i \right\rangle} - \mathbb{1}\{y_i = +1\}\right) x_i = \frac{1}{l} \sum_{i=1}^l \left(\frac{\exp\left\langle w, x_i \right\rangle}{1 + \exp\left\langle w, x_i \right\rangle} - \frac{1 + y_i}{2}\right) x_i = -\frac{1}{2l} \sum_{i=1}^l \left(\frac{y_i + 1 + (y_i - 1) \exp\left\langle w, x_i \right\rangle}{1 + \exp\left\langle w, x_i \right\rangle}\right) x_i = \nabla_w Q_1(X, Y, w)$$

Таким образом, были установлены следующие равенства:

$$\left[\nabla_w Q_2(X, Y, w) \right]_{y=-1} = -\nabla_w Q_1(X, Y, w)$$
$$\left[\nabla_w Q_2(X, Y, w) \right]_{y=+1} = \nabla_w Q_1(X, Y, w)$$

3 Эксперименты

Исходный набор данных состоит из двух частей: обучающей и тестовой выборки, которые содержат 52061 и 20676 объектов соответственно. Каждый объект – документ – представляет из себя строку, а его метка может принимать одно из двух значений $\{+1,-1\}$, которые соответствуют тому, токсичен комментарий или нет.

Наблюдается дисбаланс в сторону нетоксичных комментариев: их 69.11% от общего числа. Такое соотношение сохраняется как в обучающей (68.83%), так и в тестовой выборке (69.81%). Поэтому константное приближение классом -1 будет иметь **Accuracy** = **0.6981**.

3.1 Предварительная обработка текста

Для начала весь текст был обработан. Каждый комментарий был приведен к нижнему регистру, все символы, не являющиеся буквами и цифрами, были заменены на пробелы. Это было сделано, потому что в рамках текущего и части последующих экспериментов каждый документ будет представляться в качестве d-мерного вектора $x = [x_1, \dots, x_d]$, где x_j – количество встретившихся в данном документе слов с порядковом номером j, а d – длина словаря. Кроме того, в конце будет рассмотрено другое представление с использование Tfidf.

3.2 Преобразование выборки в разреженную матрицу

В соответствии с предыдущим пунктом, выборка была преобразована в разреженную матрицу с помощью конструктора sklearn.feature_extraction.text.CountVectorizer. Таким образом, матрица объекты-признаки на (i, j)-позиции содержит количество слов с порядковым номером j в i-м документе.

Кроме того, использовался параметр min_df, отвечающий за пороговое значение частоты слова для добавления его в словарь (табл. 1)

min_df	1	2	5	10	20	50	100	500	1000	5000	10000
Длина словаря d	90764	37837	18227	11222	7180	3928	2337	586	303	60	21

Таблица 1: Зависимость длины словаря d от порога min_df

При малых значениях параметра min_df признаковое описание документа становится очень длинным, что может привести к вычислительным трудностям и переобучению, при больших – уменьшается, из-за чего может потеряться важная информация, содержащаяся в документе. В дальнейших экспериментах будет рассмотрена зависимость качества решения задачи от этого и других параметров.

3.3 Градиентный спуск и стохастический градиентный спуск. Сравнение численного и аналитического подсчета градиента

В рамках исследования были реализованы методы градиентного спуска (GD) и стохастического градиентного спуска (SGD). Градиент функции потерь $Q(X,Y,w)=\frac{1}{n}\sum_{i=1}^n\log(1+\exp(-y_i\langle w,x_i\rangle))$ можно было вычислять двумя способами: либо по аналитической формуле, полученной в теоретической части (1):

$$\nabla_w Q(X, Y, w) = -\frac{1}{n} \sum_{i=1}^n x_i y_i \frac{1}{1 + \exp(y_i \langle w, x_i \rangle)},$$

либо «численно», пользуясь методом конечных разностей:

$$[\nabla_w Q(X, y, w)]_i \approx \frac{Q(X, y, w + \varepsilon e_i) - Q(X, y, w)}{\varepsilon}, \quad i = 1, \dots, d$$

здесь $x_1, ..., x_n \in \mathbb{R}^d$ – объекты выборки, $y \in \mathbb{R}^n$ – столбец ответов и $w \in \mathbb{R}^d$ – набор весов. Если считать, что арифметические операции, а также операции логарифмирования и экспонирования требуют константного времени, то вычисление скалярного произведения $\langle w, x_i \rangle$ будет требовать O(d) времени, а значит сложность вычисления функции потерь Q(X,Y,w) составит O(nd). Аналитическое вычисление градиента $t_{analytical}$ также имеет сложность O(nd). В то же время «численное» вычисление градиента требует 2d раз вычислить значение функции потерь, а значит асимптотическая сложность такого подхода – $t_{numerical} \sim O(2d \cdot nd) = O(nd^2)$, что на порядок d больше, чем аналитическое вычисление $t_{analytical}$. А если учитывать, что значение длины словаря d может быть достаточно большим, например, 90764 при выборе $\min_{\mathbf{d}} \mathbf{f} = \mathbf{1}$, то подсчет численного градиента может требовать значительно большего вычислительного времени, чем аналитическое. Этот теоретический результат подтверждается экспериментально:

d	$ m t_{analytical}~(mc)$	${ m t_{numerical}}$ (MC)
21	5.245	7.523
60	7.004	26.816
303	10.412	123.713
586	12.060	232.749
2337	14.141	868.585

Таблица 2: Среднее время итерации градиентного спуска при различных значениях длины словаря d

Действительно, по мере роста d время, необходимое для вычисления градиента функции потерь, растет быстрее при численном расчете, чем при аналитическом. Коэффициент корреляции на полученных данных (см. 2) между d и $t_{numerical}/t_{analytical}$ равен 0.998, что согласуется с асимптотическими оценками для сложности вычисления. Рассчеты выполнялись при использовании обычного градиентного спуска со следующими параметрами: step_alpha = 1, step_beta = 0, tolerance = 1e-5, max_iter = 1000, 12_coef = 0.

3.4 Зависимость градиентного спуска от параметров

В этом эксперименте был выбран min_df = 0.025, то есть в словарь не вошли все слова, которые встретились менее, чем в 2.5% от всех документов, tolerance = 1e-5, max_iter = 1000, 12_coef = 0.01. Было исследовано поведение градиентного спуска при разных значениях параметров шага step_alpha = α , step_beta = β и начального приближения весов w_0 .

В рамках текущей реализации градиентного спуска, learing rate определялся по формуле $\eta_k = \alpha/k^{\beta}$, где k – номер шага градиентного спуска. Таким образом, чем больше β , тем быстрее уменьшается η_k , и тем менее резким может стать изменение функции потерь на каждом шаге. В свою очередь, слишком маленький α может привести к тому, что спуск будет медленным, а чрезмерно большой – к тому, что оптимальный набор весов не будет достигнут. Это подтверждается экспериментально (рис. 1).

Рис. 1: Зависимость значения функционала ошибок на итерациях GD при разных α и β

Действительно, на первых трёх изображениях видно, что с увеличением β функция ошибок медлениее достигает своего оптимального значения. И исходя из первых трёх экспериментов при $\alpha=0.001,0.01,0.1$ может показаться, что всегда выгоднее выбирать β как можно меньше, однако это не так. При $\alpha=1$ и $\beta=0$ наблюдается ситуация, описываемая выше – функция не достигает оптимального значения – её значения колеблются вокруг минимума. Дело в том, что при $\beta=0$ learning rate не изменяется в зависимости от шага и принимает константное значение, равное α . И если α будет достаточно велико, то функция будет постоянно «перескакивать» вокруг оптимального значения либо вовсе расходиться.

Далее, аналогичный эксперимент, только теперь рассматривается значение *Accuracy* на различных этапах градиентного спуска: (рис 2)

Рис. 2: Зависимость Ассигасу на обучающей выборке от номера итерациии GD при разных α и β

Как можно, видеть, при выбранных параметрах градиентного спуска, значение *Accuracy* не претерпевает больших изменений в течение итераций градиентного спуска.

Теперь перейдем к исследованию зависимости поведения градиентного спуска от выбора начальных весов w_0 . Будем использовать три способа: $w_0 \in N(0,\sigma), w_0 \in U(-a,a), w_0 = 0$. И исследуем зависимость при фиксированных step_alpha = 1, step_beta = 0.25, 12_coef = 0.01. Были подобраны разные значения параметров распределения σ , a (рис. 3):

Рис. 3: Зависимость значения функционала ошибок от номера итерациии GD при разных w_0

Как можно видеть, если выбрать параметры распределения достаточно большими, то на начальном наборе весов, функция ошибок принимает достаточно большие значения. И поэтому у неё происходит более «резкий» спуск. Однако на текущих данных было замечено, что чем меньше параметр распределения, тем меньше получается итоговое значение функции, и тем больше распределение похоже на $w_0 = 0$. Наименьшее значение функционала шибки было получено при выбор весов $w_0 = 0$ (рис. 4):

Рис. 4: Зависимость значения ассигасу на train от номера итерациии GD при разных w_0

3.5 Зависимость стохастического градиентного спуска от параметров

Теперь, проведем такое же исследование для стохастического градиентного спуска. Зафиксируем параметры стохастического градиентного спуска: tolerance = 1e-5, max_iter = 100, 12_coef = 0.01. И исследуем зависимость от step_alpha = α , step_beta = β . Были получены следующие значения (рис. 5, 6):

Рис. 5: Зависимость значения функции ошибок от номера эпохи SGD при разных α и β

Рис. 6: Зависимость значения ассигасу на train от номера эпохи SGD при разных α и β

Выводы, которые были сделаны для параметров α и β обычного градиентного спуска переносятся также на стохастический градиентный спуск. Основное различие заключается в том, что функция менее плавно достигает своего минимума, а чаще делает скачки в процессе. Теперь проведем исследование зависимости от batch_size:

Рис. 7: Зависимость значения функции ошибок от номера эпохи SGD при разных batch_size

Рис. 8: Зависимость значения ассигасу на train от номера эпохи SGD при разных batch_size

Видно, что, чем меньше batch_size, тем дольше функция сходится к своему оптимальному значению. Однако, также с уменьшением batch_size увеличивается количество вычислений градиента, что приводит к вычислительным и временным затратам.

Теперь найдем зависимость от начального приближения весов w_0 . Как и в прошлом эксперименте, были рассмотрены три случая: $w_0 = 0, w_0 \in N(0, \sigma), w_0 \in U[-a, a]$. Результаты эксперимента отмечены на (рис. 9, 10):

Рис. 9: Зависимость значения функции ошибок от номера эпохи SGD при разных w_0

Рис. 10: Зависимость значения ассигасу на train от номера эпохи SGD при разном w_0

Исходя из графиков, можно сделать вывод, что наилучшая точность была получена при выборе $w_0 \in U[-0.1, 0.1]$.

3.6 Сравнение градиентного и стохастического градиентного спуска

Сравнение этих методов проведем по среднему времени работы и итоговому качеству. max_iter_GD — максимальное количество итераций в градиентном спуске, max_iter_SGD — максимальное количество итераций в стохастическом градиентном спуске. Тогда вычисление градиента в первом методе происходит max_iter_GD раз, а во втором — около $max_iter_SGD \times N/batch_size$ раз, где N — количество объектов в обучающей выборке. Поэтому сравнение по времени можно проводить, при

$$max_iter_GD \approx max_iter_SGD \times N/batch_size$$

По условию, N = 52061, выберем max_iter_GD=1000, batch_size=1000, тогда, чтобы количество вычислений градиента оказалось одинаковым, можно выбрать max_iter_SGD = 20. При step_alpha=1, step_beta=0.25, 12_coef=0.01 время выполнение GD заняло 3.580 (c), a SGD - 0.0329 (c) (рис. 11):

(a) Зависимость значения функции ошибок от номера итерации GD и эпохи SGD

(b) Зависимость значения ассuracy на train от номера итерации GD и эпохи SGD

Рис. 11: Сравнение GD и SGD

Как можно видеть, алгоритм стохастического спуска работает в 108.6 раз быстрее при выбранных параметрах. Однако стохастический спуск немного уступает обычному в Accuracy на test -0.7899 и 0.79618 соответственно.

3.7 Алгоритм лемматизации, удаление стоп-слов

В рамках этого и последующих экспериментов обучающая выборка была разбита на валидационную и обучающую в отношении 3:7, чтобы избежать утечки данных.

В этом эксперименте было рассмотрено влияние применение алгоритма лемматизации и удаления стоп-слов на качество (Accuracy), время обучения и размер признакового описания при решении задачи. Лемматизация — это процесс приведения слова к его базовой форме, которая называется леммой. Лемма обычно соответствует начальной форме слова например: «write», «written», «wrote» преобразуются в форму «write».

Из текста были удалены все стоп-слова. Это часто встречающиеся слова, которые обычно не несут смысловой нагрузки в тексте. Они включают предлоги, союзы, местоимения, артикли и другие части речи, которые часто используются для связки слов и предложений, но сами по себе не добавляют значимой информации, например: the, a, is, in, and, of, to и другие. Кроме того, из текста были убраны все цифры.

Таким образом, количество уникальных слов в тексте сократилось с 90764 до 74755. Исследуем, как предобработка документа повлияет на точность классификации и время работы алгоритма. Для этого выберем одинаковые параметры стохастического градиентного спуска и рассмотрим, как меняется точность классификации в зависимости от того, используется предобработка, или нет. Обучение происходило с стохастического градиентного спуска при batch_size = 1000, min_df = 1. Обозначим time₁, time₂ – время обучения на непредобработанной выборке, и на выборке с применением лемматизации и удалением стоп слов соответственно. Аналогично – Accuracy₁, Accuracy₂ – точности модели на валидационной выборке, полученные на непредобработанной и предобработанной соответственно обучающей выборке (табл. 3).

step_alpha	step_beta	12_coef	$ \text{ time}_1 (c)$	$time_2$ (c)	\mid Accuracy ₁	$Accuracy_2$
0.10	0.01	0.01	0.039635	0.037847	0.860106	0.872399
0.05	0.02	0.02	0.054764	0.048856	0.849926	0.862859
0.25	0.25	0.10	0.014099	0.006971	0.827966	0.836481
1.00	0.00	0.10	0.060769	0.043400	0.618413	0.829246

Таблица 3: Результаты перебора параметров для моделей с лемматизацией и удалением стоп-слов и без

Таким образом, на всех проведенных экспериментах модель с вышеуказанной предобработкой данных показывает лучшее качество классификации валидационной выборке. и скорость обучения на

3.8 Анализ влияние других параметров – формата представления и порогов частоты для добавления в словарь.

эксперимент направлен на изучение зависимости от параметров конструктора CountVectorizer — min_df, max_df, и формата представления данных — через BagOfWords или Tfidf. В прошлом эксперименте было установлено, что использование предобработки тестовых данных улучшает качество на валидацинной выборке, таким образом из выборки были удалены стоп-слова, а значит большая часть слишком частых слов. Поэтому ограничимся исследование только параметра min_df.

min_df	Accuracy _{BoW}	$f Accuracy_{tfidf}$	$\mid { m time_{BoW}} \; ({ m c})$	$\mathrm{time_{tfidf}}\;(\mathrm{c})$
0.00001	0.863692	0.898905	0.045594	0.055363
0.00002	0.863628	0.899033	0.025229	0.019038
0.00005	0.863372	0.898713	0.033679	0.029571
0.00010	0.862091	0.896984	0.019577	0.027835
0.00100	0.855497	0.886228	0.015085	0.023822
0.01000	0.789167	0.804085	0.013309	0.013020

Таблица 4: Результаты перебора параметров для моделей с использование BagOfWords и Tfidf

Как видно в таблице 4, использование Tfidf-представления улучшает точность на валидационной выборке. Кроме того, максимум точности достигается при min_df=2e-5, а при дальнейшем увеличении происходит только убывание.

3.9 Выбор лучшего алгоритма для тестовой выборки

В экспериментах 7-8 было установлено, что наиболее оптимальным является использование лемматизации, удаления стоп-слов и параметра min_df=2e-5 и представления в формате Tfidf. В экспериментах 4-5 было исследовано поведение функционала ошибки и Ассигасу на обучающей выборке в зависимости от итерации на градиентом и стохастическом градиентном спуске. Далее были найдены оптимальные значения для alpha_step, beta_step, 12_score полным перебором на валидационной выборке по сетке значений.

Итоговыми значениями с наилучшим качеством на валидационной выборке (Accuracy = 0.8998) получились alpha_step = 0.06, beta_step = 1e-4, 12_score=0.01. На тестовой выборке при таких параметрах получилось Accuracy = 0.8615786, если инициализировать веса $w_0 = 0$. А если действовать в соответствии с результатом четвертого эксперимента и инициализировать $w_0 \in U[-0.1, 0.1]$, то достигается Accuracy = 0.861724

Проведем анализ ошибок. Для этого рассмотрим случайную выборку из ложноположительных ответов (FP = 1925) и ложноотрицательных ответов (FN = 588):

Оригинальный текст (нетоксичный)	После обработки
== hi == screw off!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	['screw']
lol this s kinda gay use → ENCARTA !	['kinda', 'gay', 'encarta']
" ==Vandal killing== That was fast! Thanks!! "	['vandal', 'kill', 'fast']
::You people are just sick.	['sick']
Wtf, all western corners are 90 degrees.	['wtf', 'western', 'corner', 'degree']

Таблица 5: Примеры ложноположительных распознаваний

Модель могла рассматривать слово «screw» как токсичное, хотя в контексте этого предложения оно может быть просто выражением раздражения, а не прямым оскорблением. Слово «gay» тоже может быть расценено как токсичное. Фраза «Vandal killing» может быть расценена как токсичная, так как она содержит слова «vandal» и «kill», однако в контексте этого предложения она может относиться к удалению вандальных правок, что не является токсичным. Аналогично «Wtf» и «sick».

Оригинальный текст (токсичный)	После обработки
<pre>::::Nothing makes me happier than</pre>	['make', 'happy', 'watch', 'nazis']
How many failed marriages/de facto → relationships has this bloke had? → What a goose.	['fail', 'marriage', 'facto', ' → relationship', 'bloke', 'goose']
islam is nothing but terrorism	['islam', 'terrorism']
I'm rick james, B1tch!	['rick', 'james', 'b', 'tch']
I totally agree, religious people are → hateful people. If only religion → never existed, we would be much → better off.	['totally', 'agree', 'religious', ' → hateful', 'religion', 'exist']

Таблица 6: Примеры ложнопоотрицательных распознаваний

Первый комментарий содержит прямое желания смерти, но слово «die» является стоп-словом в корпусе nltk, поэтому не участвовало при голосовании, также в комментарии присутствует несколько нейтральных слов и положительное слово «happy». Аналогично со вторым и пятым. В четвертом примере буква і была завуалирована символом «!», поэтому оскорбление «B!tch» было распознано как два слова: «В» и «tch».

4 Улучшения

4.1 Добавление п-грамм

В этом эксперименте рассмотрено влияние добавления n-грамм в признаковое описание. Это может быть полезно, потому что многие слова употребляются вместе с другими и вместе могут иметь негативный или позитивный окрас, но по отдельности являются нейтральными или вовсе стоп-словами, например «not good». Тогда оставим все параметры, зафиксированные в 9 эксперименте и добавим 2-граммы, 3-граммы, 4-граммы и 5-граммы зафиксируем точности классификации и длины признакового описания:

N-граммы	Длина признакового описания	Accuracy
1-1	29 748	0.861724
1-2	143 660	0.863271
1-3	184 757	0.863368
1-4	214 520	0.864142
1-5	242 330	0.863707

Таблица 7: Влияние n-грамм на длину признакового описания и точность модели

Таким образом, наилучшая точность на тесте достигается при использовании 4-грамм. Получается

Accuracy = 0.864142, однако значительно увеличивается длина признакового описания объекта.

5 Выводы

В ходе выполнения данного практического задания были исследованы градиентные методы обучения линейных моделей, а именно градиентный спуск (GD) и стохастический градиентный спуск (SGD), на примере задачи бинарной классификации токсичности комментариев. Основные выводы по результатам экспериментов можно сформулировать следующим образом:

- 1. Аналитический расчет градиента значительно эффективнее численного, особенно при больших значениях длины словаря d.
- 2. Параметры GD и SGD существенно влияют на сходимость и качество модели. Оптимальные значения можно найти экспериментально.
- 3. Сравнение GD и SGD показало, что SGD значительно быстрее, но требует более тщательного подбора параметров для достижения оптимальной точности.
- 4. Предобработка данных (лемматизация, удаление стоп-слов) и использование Tfidf улучшают качество модели и сокращают время обучения.