AMPLIACIÓN DE MATEMÁTICAS

Convergencia de sucesiones y series de funciones.

- 1.- Se consideran las siguientes sucesiones de funciones:
- $f_n(x) = x^n$, y $f_n(x) = (\cos \pi x)^{2n}$ ambas definidas sobre [0, 1]. Se pide:
- 1) Representar $f_1(x), f_2(x)$ y $f_3(x)$.
- 2) Estudiar la convergencia puntual y uniforme de cada sucesión de funciones.
- 2.- Estudia la convergencia puntual y uniforme en el intervalo [0, 1] de las sucesiones de functiones:

$$f_n(x) = \frac{x}{1+nx}$$
 y $g_n(x) = \frac{1}{1+nx}$.

3.- Estudia la convergencia puntual y uniforme de las siguientes sucesiones de funciones:

a)
$$f_n(x) = \begin{cases} x & \text{si } 0 \le x \le \frac{1}{n} \\ \frac{-x}{n-1} + \frac{1}{n-1} & \text{si } \frac{1}{n} \le x \le 1 \end{cases}$$
 $b) f_n(x) = \frac{1-x^n}{1+x^n}$ si $1 \le x < \infty$

$$c)f_n(x) = x - x^n$$
 si $x \in [0, 1]$ $d)f_n(x) = (1 - x)^n$ si $0 \le x \le 1$.

- **4.-** a) Sea $f_n(x) = xe^{-nx}$, $x \ge 0$. Prueba que esta sucesión converge uniformente en $[0, \infty)$. b) Sea $f_n(x) = \frac{\sin nx}{1+nx}$, $x \ge 0$. Prueba que para todo a > 0 la sucesión anterior converge uniformemente en $[a, \infty)$, pero no así en $[0, \infty)$.
- c) $f_n(x) = \frac{nx}{1+nx}$, $x \ge 0$. Prueba que para todo a > 0 la sucesión anterior converge uniformemente en $[a, \infty)$, pero no así en [0, a].
 - 5.- Prueba que la sucesión de funciones $\frac{x^n}{1+x^n}$ no converge uniformemente en el intervalo [0,2].
- **6.-** Estudia la convergencia puntual y uniforme de la sucesión de funciones $f_n(x) = n^2 x e^{-nx^2}$ en el intervalo [0, 1].
 - 7.- Determina $\lim_{n\to\infty} \int_0^1 \frac{ne^x}{n+x} dx$.

8.- Estudia la convergencia puntual y uniforme de las series de funciones siguientes: a)
$$\sum_{n=0}^{\infty} x^n$$
 con $x \in [0,1]$ b) $\sum_{n=1}^{\infty} \frac{\sin^2 nx}{n^2}$ c) $\sum_{n=1}^{\infty} \frac{x^2}{(x^2+1)^n}$

9.- Escribe en forma de serie las siguientes integrales:

$$\int_{1}^{a} \frac{\sin t}{t} dt \qquad y \qquad \int_{1}^{a} \frac{e^{-x^{2}}}{x} dx$$