Lineare Algebra

Manuel Strenge

Vektoren

Sinn

Wenn eine Grösse mit einem wert dargestellt werden kann, wie z.B. Temperator, dann wird es skalar genannt. skalare = reele zahlen.

Gewisse physische faktoren können nicht nur mit einer nummer dargestellt werden. z.B. Richtung.

Ein Vektor \mathbb{R}^3 kann durch 3 reele Zahlen, ein 3-Tupel beschrieben werden.

Für 2- oder 3-Tupel lassen sich die Rechenoperationen auch geometrisch veranschaulichen. Für allgemeine n-Tupel ist das nicht möglich, trotzdem ist die geometrische Anschauung für n=2 oder n=3 oft der Schlüssel zur Lösung komplizierter Probleme.

Definition

Ein n-Tupel $(a_1, a_2, ..., a_n) \in \mathbb{R}^n$ nennt man auch Vektor. Die reellen Zahlen $a_1, a_2, ..., a_n$ heissen die Koordinaten oder Komponenten des Vektors.

Die Komponenten eines Vektors schreiben wir häufig als Spalten:

$$\underset{a}{\rightarrow} = \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{pmatrix} = R^n$$

Zwei Vektoren sind gleich, wenn sie koordinatenweise übereinstimmen. Die Vektorgleichung $\underset{a}{\rightarrow} = \underset{b}{\rightarrow}$ ist also nichts anderes als eine abkürzende Schreibweise für die n Gleichungen.

$$a_1 = b_1 a_2 = b_2 ... a_n = b_n$$

Vektoren in \mathbb{R}^2 bzw. in \mathbb{R}^3 können wir uns als Pfeile vorstellen und der Pfeil darf vom beliebigen Punkt eingezeichnet werden.

Um einen Vektor $\vec{a} = \begin{pmatrix} a_x \\ a_y \end{pmatrix}$ in R^2 einzuzeichnen:

- 1. wählt man einen Anfangspunkt,
- 2. geht ax Schritte entlang der x-Achse und ay Schritte entlang der y-Achse,
- 3. erreicht so den Endpunkt des Vektors.

Der Vektor $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ wird auch als Pfeil ausgehend vom Ursprung O

Seine Spitze beschreibt den Ort jenes Punktes, dessen Koordinaten gleich den Komponenten des Vektors sind. Um zu betonen, dass es der Ortsvektor des Punktes P ist, schreibt man \vec{OP} .

1

Siehe bild unter definition vektor

Figure 1: Eingezeichnete Ortsvektoren

Zusammenfassend darf der Pfeil in R^2 bzw. R^3 beliebig parallel verschoben werden. Es bleibt immer der gleiche Vektor: $\vec{v} = \vec{OP}$

In der Ebene:
$$\overrightarrow{OP} = \begin{pmatrix} x \\ y \end{pmatrix}$$
, mit $P(x;y)$

Im Raum: $\overrightarrow{OP} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, mit $P(x;y;z)$

In \mathbb{R}^n : $\overrightarrow{OP} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, mit $P(x_1;\ldots;x_n)$

Figure 2: Insbesondere lautet dieser Zusammenhang für den Ortsvektor

Definition

Der Vektor, dessen Anfangspunkt und Endpunkt übereinstimmen, heisst der Nullvektor und wird durch $\vec{0}$ bezeichnet.

Addition, Subtraktion und Skalarmultiplikation

Definition Die Summe zweier Vektoren der gleichen Dimension n ist komponentenweise definiert und ergibt wieder einen n-dimensionalen Vektor:

$$ec{a}+ec{b}=egin{pmatrix} a_1\ a_2\ dots\ a_n \end{pmatrix}+egin{pmatrix} b_1\ b_2\ dots\ b_n \end{pmatrix}=egin{pmatrix} a_1+b_1\ a_2+b_2\ dots\ a_n+b_n \end{pmatrix}$$

Figure 3: vector addition

Geometrische betrachtungsweise

Die geometrische Addition der Vektoren \vec{a} und \vec{b} :

- 1. Der Vektor \vec{b} wird parallel zu sich selbst verschoben, bis sein Anfangspunkt auf den Endpunkt des Vektors \vec{a} trifft
- 2. Der Anfangspunkt des Vektors \vec{a} wird mit dem Endpunkt des Vektors \vec{b} verbunden. Der resultierende Pfeil repräsentiert den Summenvektor $\vec{c} = \vec{a} + \vec{b}$.

Figure 4: vector addition geomoetrisch visualisiert

$$\vec{a} + \vec{b} = \begin{pmatrix} 7 \\ 5 \end{pmatrix} + \begin{pmatrix} -2 \\ 4 \end{pmatrix} = \begin{pmatrix} 5 \\ 9 \end{pmatrix}$$

Kommutativgesetz

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}.$$

Assoziativgesetz

$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c}).$$

Der Nullvektor ist das Neutralelement der Addition

$$\vec{a} + \vec{0} = \vec{a}$$

Zu jedem Vektor \vec{a} gibt es genau einen Gegenvektor $-\vec{a} \in \mathbb{R}^n$ mit

$$\vec{a} + (-\vec{a}) = \vec{0}$$

Die Subtraktion zweier Vektoren lässt sich wie bei den reellen Zahlen als Umkehrung der Addition auffassen und damit auf die Addition zweier Vektoren zurückführen:

Definition

Die Subtraktion oder die Differenz von zwei Vektoren \vec{a} und \vec{b} ist definiert als die Summe von \vec{a} und $-\vec{b}$, dem Gegenvektor zu \vec{b} , also:

$$\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$$

Multiplikation

Bei der Multiplikation eines Vektors mit einem Skalar λ wird jede Komponente mit λ multipliziert:

$$\lambda \vec{a} = \lambda \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \lambda a_2 \\ \vdots \\ \lambda a_n \end{pmatrix}$$

Das Ergebnis ist wieder ein Vektor im \mathbb{R}^n .

Die Anschauung der Multiplikation eines Vektors mit einem Skalar im \mathbb{R}^2 :

Kollineare und windschiefe Vektoren

Definition

2 Vektoren \vec{a} und \vec{b} heissen kollinear, wenn es eine reelle Zahl λ gibt, so dass $\vec{a} = \lambda \vec{b}$. Dies bedeutet, dass \vec{a} ein Vielfaches von \vec{b} ist. Existiert keine solche Zahl, dann sagen wir, dass \vec{a} und \vec{b} windschief oder nichtkollinear sind.

Kollineare Vektoren

Windschiefe Vektoren

Vektoren sind also kollinear, wenn sie in der Richtung übereinstimmen.

Der Nullvektor ist zu jedem Vektor kollinear, denn: $\vec{0} = 0 \cdot \vec{a}, \, \forall \vec{a}$.

Linearkombination

Definition

Seien $\vec{w}_1, \ldots, \vec{w}_m$ Vektoren und a_1, \ldots, a_m reellen Zahlen, wobei $m \in \mathbb{N}$. Der folgende Vektor

$$\vec{v} = a_1 \vec{w}_1 + a_2 \vec{w}_2 + a_3 \vec{w}_3 + ... + a_m \vec{w}_m =: \sum_{i=1}^m a_i \vec{w}_i$$

heisst eine **Linearkombination** von den Vektoren $\vec{w}_1, \ldots, \vec{w}_m$. Die Zahlen a_1, \ldots, a_m heissen Koeffizienten.

Weitere Rechengesetze für Vektoren

Für alle $\lambda, \mu \in \mathbb{R}$ und für alle Vektoren \vec{a}, \vec{b} gelten die folgenden Rechenregeln:

$$\lambda (\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b} \qquad (Distributivgesetz) \qquad (1)$$

$$(\lambda + \mu) \vec{a} = \lambda \vec{a} + \mu \vec{a} \qquad (Distributivgesetz) \qquad (2)$$

$$(\lambda \mu) \vec{a} = \lambda (\mu \vec{a}) = \mu (\lambda \vec{a})$$
 (Assoziativgesetz) (3)

Betrag

Der Betrag eines Vektors ist eine reelle Zahl, die >= 0 ist und der Länge dieses Vektors entspricht.

Sei \vec{a} ein beliebiger Vektor im \mathbb{R}^n . Der Betrag oder die Länge (oder die Norm) von \vec{a} ist:

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + \ldots + a_n^2} = \sqrt{\sum_{i=1}^n a_i^2}.$$

Ist der Vektor \vec{a} durch den Anfangspunkt $P_1 = (x_1; x_2; ...; x_n)$ und den Endpunkt $P_2 = (y_1; y_2; ...; y_n)$ gegeben, so lautet sein Betrag wie folgt:

$$|\vec{a}| = |\overrightarrow{P_1P_2}| = \sqrt{(y_1-x_1)^2+(y_2-x_2)^2+\ldots+(y_n-x_n)^2}.$$

Rechenregeln

Für alle reellen Zahlen λ und für alle Vektoren \vec{a} , \vec{b} gelten:

$$|\lambda \vec{a}| = |\lambda| |\vec{a}| \tag{4}$$

$$|\vec{a}| = 0 \Leftrightarrow \vec{a} = \vec{0} \tag{5}$$

$$|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$$
 (Dreiecksungleichung) (6)

Einheitsvektoren

Jeder Vektor \vec{e} mit Betrag Eins, $|\vec{e}|=1$, wird als **Einheitsvektor** oder **Einsvektor** bezeichnet.