微分方程测验

一、客观题. (每题 5 分, 共 60 分)

1、下列给定的方程中,不是微分方程的是(B) 因为不含未知函数的导数或者微分

A. xy' = 2y B. $x^2 + y^2 = C^2$ C. y'' + y = 0 D. $y'' + y^2 = 0$

2、微分方程 $y'-y \cot x = 0$ 的通解为 (B)

A. $y = C \cos x$ B. $y = C \sin x$ C. $y = C \tan x$ D. $y = C \csc x$

3、下列微分方程是线性方程的是(A) 未知函数及未知函数的导数都是一次

A. $\frac{dy}{dx} = \frac{y}{x}$ B. $y' + y = y^2 \cos x$ C. $y' = y^3 + \sin x$ D. $y'^2 + 6y' = 1$

4、以下函数组线性无关的是(C) 线性无关:二者的商不等于常数

A. e^{x}, e^{x+1} B. $x^{2}, 3x^{2}$ C. $\sin^{2} x, \sin x$ D. $\ln x, \ln x^{2}$

5、设线性无关的函数 y_1, y_2 与 y_3 都是二阶线性非齐次方程 y'' + P(x)y' + Q(x)y = f(x)

的解, C_1, C_2 为任意常数,则方程的通解为(D)

A. $C_1 y_1 + C_2 y_2 + y_3$

B.
$$C_1 y_1 + C_2 y_2 + (C_1 + C_2) y_3$$

C.
$$C_1 y_1 + C_2 y_2 - (1 + C_1 + C_2) y_3$$
 D. $C_1 y_1 + C_2 y_2 + (1 - C_1 - C_2) y_3$

解析: $y_1 - y_3, y_2 - y_3$ 是齐次方程的两个线性无关的特解, $C_1(y_1 - y_3) + C_2(y_2 - y_3)$ 是齐次 方程的通解。故非齐次方程的通解为 $C_1(y_1-y_3)+C_2(y_2-y_3)+y_3$

6、设常数 p,q 满足 $p^2 - 4q = 0, p \neq 0$,则微分方程 y'' + py' + qy = 0 的通解为(C)

A. $y = Ce^{-\frac{p}{2}x}$ B. $y = Cxe^{-\frac{p}{2}x}$ C. $y = (C_1 + C_2x)e^{-\frac{p}{2}x}$ D. $y = C_1 + C_2x$

解析:特征方程 $r^2 + pr + q = 0$,因为 $p^2 - 4q = 0$,即判别式=0,所以特征方程有两

个相等实根 $r_1 = r_2 = -\frac{p}{2}$, 所以,齐次方程 y'' + py' + qy = 0 为 $y = (C_1 + C_2 x)e^{-\frac{p}{2}x}$.

7、
$$\frac{dy}{dx} + P(x)y = Q(x)$$
的通解为 _____y = $e^{-\int P(x)dx} \left(\int Q(x)e^{\int P(x)dx} dx + C \right)$ _____.

8、以函数 $y = e^x (C_1 \sin x + C_2 \cos x)$ (C_1, C_2 为任意常数) 为通解的二阶常系数线性齐次

微分方程为____y"-2y'+2y=0_____.

解析: 因为 $y = e^x (C_1 \sin x + C_2 \cos x)$ 是通解,则 $r_1 = 1 + i, r_2 = 1 - i$ 是特征方程的两个复根。

以 $r_1 = 1 + i$, $r_2 = 1 - i$ 为根的一元二次方程应为 $r^2 - (r_1 + r_2)r + r_1r_2 = 0$,即 $r^2 - 2r + 2 = 0$,

故以 $r^2-2r+2=0$ 为特征方程的二阶常系数线性齐次微分方程为y''-2y'+2y=0.

10、微分方程
$$y'' - 2y' - 3y = 3x + 5$$
 的一个特解为__ $y^* = -x - 1$ _____.

解析:因为 $\lambda=0$ 不是特征方程的根,由第9题的结论,可设 $y^*=ax+b$,将其代入原方程,

得 -3ax-2a-3b=3x+5,比较系数得到 a=-1,b=-1,所以特解 $y^*=-x-1$.

11、方程
$$y'' = e^{3x} + \sin x$$
 的通解为___ $y = \frac{1}{9}e^{3x} - \sin x + C_1x + C_2$ _____.

12、二阶常系数齐次线性方程的一个特解为 $y = xe^{2x}$,则此微分方程为y'' - 4y' + 4y = 0.

解析: 因为方程的一个特解为 $y=xe^{2x}$,则特征方程有二重根 $r_1=r_2=2$,故特征方程为

$$r^2 - 4r + 4 = 0$$
, 所以微分方程 $y'' - 4y' + 4y = 0$.

二、计算题. (每题 10分, 共 40分)

1、(10分) 求微分方程 $\frac{dy}{dx} = x^2 \tan y$ 的通解.

解: 分离变量
$$\frac{dy}{\tan y} = x^2 dx$$
, 两边积分 $\int \frac{dy}{\tan y} = \int x^2 dx$

得通解为 $\ln |\sin y| = \frac{x^3}{3} + C$. (5+5 分)

或者
$$\ln |\sin y| = \frac{x^3}{3} + C_1$$
, 去掉对数 $\Rightarrow \sin y = \pm e^{C_1} \cdot e^{\frac{x^3}{3}} = Ce^{\frac{x^3}{3}} (C = \pm e^{C_1})$,

通解为 $y = \arcsin(Ce^{\frac{x^3}{3}})(C = \pm e^{C_1})$ (化简正确不加分,错误扣分)

2、(10 分) 求微分方程
$$\frac{dy}{dx} = \frac{y}{2x - y^2}$$
 的通解.

解: 关于 y=y(x)不是线性方程.

但是
$$\frac{dx}{dy} = \frac{2x - y^2}{y} = \frac{2x}{y} - y \Rightarrow \frac{dx}{dy} - \frac{2}{y}x = -y$$
 这是一个关于 $x = x(y)$ 的一阶线性非齐次微

分方程(倒线性),且 $P(y) = -\frac{2}{y}$, Q(y) = -y,所以方程的通解为

$$x = (\int -y \cdot e^{\int -\frac{2}{y} dy} dy + C)e^{\int \frac{2}{y} dy} = (\int -y \cdot y^{-2} dy + C)y^2 = (\int -y \cdot y^{-2} dy + C)y^2 = (-\ln|y| + C)y^2$$

即 $x = Cy^2 - y^2 \ln|y|$ 为方程的通解. (5+5 分)

3、(10分) 求微分方程 y'' - y' - 6y = 0,满足初始条件 y(0) = 2, y'(0) = 1的特解.

解: 特征方程为 $r^2-r-6=0$,解得特征根 $r_1=-2$, $r_2=3$,所以通解 $y=C_1e^{-2x}+C_2e^{3x}$.

又因为
$$y(0) = 2$$
, $y'(0) = 1$, 得到
$$\begin{cases} C_1 + C_2 = 2 \\ -2C_1 + 3C_2 = 1 \end{cases}$$

解得 $C_1 = C_2 = 1$, 故所求特解为 $y = e^{-2x} + e^{3x}$ (6+4分)

4、(10分) 求微分方程 $y'' + 2y' + y = (x^2 - 1)e^{-x}$ 的通解.

解: 对应齐次方程 y'' + 2y' + y = 0, 其特征方程为 $r^2 + 2r + 1 = 0$, 有二重根 $r_1 = r_2 = -1$,

所以齐次方程的通解为 $Y = (C_1 + C_2 x)e^{-x}$ (5分)

又因为 $f(x) = (x^2 - 1)e^{-x}$, $\lambda = -1$ 是二重根,所以设非齐次方程的一个特解为

$$y^* = x^2(ax^2 + bx + c)e^{-x} = Q(x)e^{-x}, (7 \%)$$

代入方程 $(\lambda^2 + p\lambda + q)Q(x) + (2\lambda + p)Q'(x) + Q''(x) = P_n(x)$ 。因为 $\lambda = -1$ 是二重根,所

以 $\lambda^2 + p\lambda + q = 0$, 且 $2\lambda + p = 0$, 得到 $12ax^2 + 6bx + 2c = x^2 - 1$, 比较系数得

$$a = \frac{1}{12}, b = 0, c = -\frac{1}{2}$$
,所以非齐次方程的一个特解为 $y^* = (\frac{x^2}{12} - \frac{1}{2})x^2e^{-x}$ (9分)

故非齐次方程的通解为: $y = (C_1 + C_2 x)e^{-x} + (\frac{x^2}{12} - \frac{1}{2})x^2 e^{-x}$ (10 分)