Welcome

- Versatile and popular CPU Technology
- Favorite for PM's
- 50% of 32bit Digital world ruled by ARM
- Every Embedded company has ARM Project
- Most Efficient in 32bit platform
- Competitors
 - PowerPC , Free Scale , MPC etc..

Introduction

- ARM9 is 32 bit General Purpose CPU architecture.
- Designed and Developed by ARM Technologies Ltd.
 (Advanced RISC Machine)
- ARM9 is used as the core CPU for Designing 32 bit Embedded Micro controllers.

Micro Controller⁴

Features of ARM9

- High Performance
- Low Power
- Low Cost

Features of ARM9

- High Performance----- 1 MIPS per Mhz
- Low Power ----- 0.05mw per Mhz
- Low Cost-----\$ 8

Features of ARM9

- High Performance----- 1 MIPS per Mhz
- Low Power ----- 0.05mw per Mhz
- Low Cost-----\$ 8

Application of ARM:

Telecommunication- Cellphone, Cellphone Base station, Routers, Gateways, etc....

Portable Devices- Handheld computers, Cellphones, PDA devices, GPS devices, etc....

Consumer Electronics- DVD Players, MP3 Players, iPod, Gamming Devices etc....

ARM is a RISC Processor

RISC	CISC				
Reduced Instruction Set Computer	Complex Instruction Set Computer				
Fewer number of instructions	Larger number of instructions				
Ex: ARM , PIC , PowerPC , Free Scale , TI DSP's , MIPS etc	Ex: 8085 , 8086 , 80386 , 80486 , Pentium , Dual-core etc				
Instructions finished in single cycle.	Instructions finished in multiple cycles.				
Low hardware Complexity	High hardware Complexity				
Hardware based Decoder and Control Unit.	Micro programmed Decoder And Control Unit.				
Large Code Size	Small code Size				
Low Cycles Per Second	High Cycles Per Second				
Word sized Instruction	Instruction length varies				

CPU Operations

Performance is ¼ or 25% of CPU time used for Execution.

Pipelined CPU architecture.

Conventional CPU Execution cycle.

Fetch → Decode → Execute → Write Back

Pipelined CPU architecture.

Conventional CPU Execution cycle.

Fetch → Decode → Execute → Write Back

Pipelined CPU architecture.

3 stage Pipelining

- ARM7 uses 3 stage pipelining
- ARM9 uses 5 stage pipelining
- ARM10 uses 6 stage pipelining
- ARM11 uses 8 stage pipelining

Thumb Strategy

- ARM9 Employs an unique architectural strategy called THUMB.
- > THUMB is suitable for projects with high volume application with memory restriction.
- THUMB is suitable for applications where code density is an issue.

What is THUMB

- THUMB is not one more parallel Architecture in the CPU
- THUMB is all about an another Instruction set in addition to the ARM Instruction
- So Essentially there need to be 2 decoders
 - 1. ARM Decoder
 - 2. THUMB Decoder

Thumb Concept

- Super Reduced Instruction Set.
- ARM Instructions are of 32 bit whereas THUM instruction are of 16 bit.
- > THUMB code provides twice the density of standard ARM code.

MOV r0,r1 ARM...... 32bit
MOV r0,r1THUMB...... 16 bit

Advantages of Thumb

- THUMB can manipulate 32 bit integer with single instruction.
- > 32 bit architecture with 16 bit instruction.
- Fast interrupt functions or DSP Functions could be coded ARM instruction Set and can be linked with THUMB functions.

THUMB-2

New Thumb-2 extensions for the ARM architecture blend 16- and 32-bit instructions to enable higher performance, greater energy efficiency and lower memory costs.

Functional Block Diagram

ARM926EJ-S architecture

MMU

Protects Memory from Unauthorized access

Supports / Implements Virtual Memory

Translation Look aside Buffer is a cache for MMU to hold recently accessed Translation information from Translation Table

Functional Block Diagram

ARM926EJ-S architecture

AMBA — Advanced Microcontroller BUS Architecture

AMBA is internal BUS in ARM used to connect on chip Memory & Peripheral systems

AMBA is available in 3 Flavors

- ASB Advanced System BUS
- 2. AHB Advanced High-Performance BUS
- 3. APB Advanced Peripheral BUS
- 4. ATB Advanced TRACE Bus
- 5. AXI AMBA Extensible Interface

Functional Block Diagram

ARM926EJ-S architecture

ARM supports 16 co-processors
They are referred as CP0 to CP15

MMU is one of the coprocessor on the core MMU is CP15

Functional Block Diagram

ARM926EJ-S architecture

Embedded Trace Macro cell

Is used as interface between HOST & TARGET

ETM is used for Debugging the Target

Functional Block Diagram

ARM926EJ-S architecture

Programming Model

- Processor Operating States
- Processor Switching States
- Instruction Length
- Memory Formats
- Registers
- Operating Modes
- Exception Types

Processing Operating States

- > ARM State which executes 32 bit word aligned ARM instructions.
- > THUMB State which executes 16 bit THUMB instruction.
- Java State which executes 8 bit Java byte code

Switching States

BX Branch & Exchange

BX R0 R0 shall have the branch address

Switching States

Switching from ARM to THUMB state

Execute BX instruction with state bit set(bit 0 of operand register.)

Ex: BX R0 where bit 0 of R0 register is 1

Switching from THUMB to ARM state

Execute BX instruction with state bit cleared (bit 0 of operand register)

Ex: BX R0 where bit 0 of R0 register is 0.

31	30	29	Operand Register	2	1	Sta 0	ate bit

Switching States (contd..)

Switching from ARM state to JAVA State

BXJ R0

Memory Formats

Data

B4 B3 B2 B1	
-------------	--

B1	а
B2	a+
B3	а+
B4	а+
	•

-3

LITTLE ENDIAN

BIG ENDIAN

Instruction Length

ARM state

- 32 bit

THUMB state

- 16 bit

JAVA

8 bit (Native)

8 bit (Byte data)

16 bit (half word data)

32 bit(Word data)

Operating modes

ARM9 supports 7 operating modes.

User (usr): The normal ARM program execution state

IRQ (**irq**): Used for general-purpose interrupt handling

FIQ (**fiq**): Designed to support a data transfer or channel process

Supervisor (svc): Protected mode for the operating system

Abort mode (abt): Entered after a data or instruction pre etch abort

System (sys): A privileged user mode for the operating system

Undefined (und): Entered when an undefined instruction is executed

Registers

ARM9 has total 37 registers each is of 32 bit in length.

Of them

- > 30 registers are general purpose
- A Program Counter
- 6 registers are status

ARM state General Purpose / status registers

System & user FIQ Supervisor mode IRQ Abort Undefined•• R0 R0 R0 R0 R0 R0 R1 R1 R1 R1 R1 **R1** R2 R2 R2 R2 R2 R2 R3 R3 R3 R3 R3 R3 R4 R4 R4 R4 R4 R4 R5 R5 R5 R5 R5 R5 R6 R6 R6 R6 R6 R6 R7 R7 **R7** R7 R7 R7 R8_fiq R8 R8 R8 R8 R8 R9_fiq R9 R9 R9 R9 R9 R10_fiq **R10 R10 R10 R10 R10** R11_fiq **R11 R11 R11 R11 R11** R12_fiq **R12 R12 R12 R12 R12** R13_fiq R13 svc R13 abt **R13** R13 und R13_irq R14_fiq R14 abt R14 svc R14_und **R14** R14 irg R15(PC) R15(PC) R15(PC) R15(PC) R15(PC) R15(PC) ARM state program status registers **CPSR CPSR CPSR CPSR CPSR**

SPSR svc

SPSR fig

CPSR

SPSR abt

SPSR ira

SPSR und

THUMB state General Purpose /status Registers

System &	use	r
R0		
R1		
R2		
R3		
R4		
R5		
R6		
R7		
SP		
I R		1

R0
R1
R2
R3
R4
R5
R6
R7
SP_fiq
LR_fiq
PC

FIQ

Supervisor m	ode	Abort
R0		R0
R1		R1
R2		R2
R3		R3
R4		R4
R5		R5
R6		R6
R7		R7
SP_svc		SP_al
LR_svc		LR_ak
PC		PC

110011
R0
R1
R2
R3
R4
R5
R6
R7
SP_abt
LR_abt
PC
am etatue r

IRQ
R0
R1
R2
R3
R4
R5
R6
R7
SP_irq
LR_irq
PC
ers

R0 R1 R2 R3 R4 R5 R6 R7 SP und
R2 R3 R4 R5 R6 R7
R3 R4 R5 R6 R7
R4 R5 R6 R7
R5 R6 R7
R6 R7
R7
SP und
or und
LR_und
PC

THUMB state program status regis

CPSR

PC

CPSR SPSR_svc

CPSR SPSR_abt

CPSR SPSR_abt

CPSR SPSR_abt

ARM & THUMB state register mapping

PSR Detail

EXCEPTIONS

nsion of the

Exceptions is an event which causes temporary suspension of the program flow to service source of the exception

Vector Address	Exception	Priority	Mode on entry
0x00000000	Reset	1 Highest	Supervisor
0x0000004	Undefined instruction	6 Lowest	Undefined
0x00000008	Software interrupt	6 Lowest	Supervisor
0x000000C	Abort(prefetch)	5	Abort
0x00000010	Abort(data)	2	Abort
0x00000014	Reserved		Reserved
0x00000018	IRQ	3	IRQ
0x000001C	FIQ	4	FIQ

- Preserves the address of the next instruction in an appropriate Lin register(LR)
- Copies CPSR into appropriate SPSR
- Forces CPSR mode bits to a value to mode on entry of that exception occurred
- ✓ Forces PC to fetch next instruction from relevant vector address

- ✓ Moves the Lin register(LR) to PC
- Copies SPSR to CPSR
- Clears interrupt disable flag, if any where set during entry

Nomenclature

ARM {x} {y} {z} {T} {D} {M} {I} {E} {J} {F} {-s}

- x Family
- y Memory management/protection unit
- z Cache
- T Thumb 16-bit decoder
- D JTAG debug
- M fast multiplier
- I Embedded ICE macro cell
- E Enhanced instructions (assumes TDMI)
- J Jazelle
- F Vector floating-point unit
- -S Synthesizible version

X	У	Z	Description	Example	
7	*	*	ARM7 Processor Core	ARM7TDMI	
9	*	*	ARM9 Processor Core	ARM926EJ-S	
10	*	*	ARM10 Processor Core	ARM1026EJ-S	
11	*	*	ARM11 Processor Core	ARM1136EJ-S	
*	2	*	Cache and MMU	ARM920T	
*	3	*	Cache and MMU with Physical Address Tagging	ARM1136EJ-S	
*	4	*	Cache and an MPU	ARM946E-S	
*	6	*	Write buffer but no cache	ARM966E-S	
*	*	0	Standard cache size	ARM920T	
*	*	2	Reduced Cache size	ARM922T	
*	*	6	Includes TCM	ARM946E-S	

Family Attribute Comparison

				,
	ARM 7	ARM9	ARM10	ARM11
Pipeline depth	three-stage	Five-stage	Six-stage	Eight-stage
Typical MHz	80	150	260	335
mW/Mhz ^a	0.06mW/MHz	0.19mW/MHz (+ Cache)	0.5mW/MHz (+ Cache)	0.4mW/MHz (+ Cache)
MIPS ^b / MHz	0.97	1.1	1.3	1.2
Architecture	VonNeumann	Harvard	Harvard	Harvard
Multiplier	8 x 32	8x32	16x32	16x32

ARM926EJ-S

- ARM926EJ-S processor is a member of the ARM9 family of generalpurpose microprocessors.
- ARM926EJ-S processor is targeted at
 - Multi-tasking applications
 - Where full memory management,
 - High performance,
 - Low die size, and
 - Low power.

ARM926EJ-S

ARM926EJ-S is a fully synthesizable 32 bit RISC processor comprising an

- ARM926EJ-S JAVA enhanced processor core.
- Instruction and data caches
- > Tightly coupled memory interfaces
- Memory Management Unit
- Separate Instruction and data AMBA AHB bus interfaces
- New Power management system that allows
 - System level power down
 - Architectural clock stopping
 - Logic level clock gating
- The sizes of both caches and TCM memories can all be specified independently.
- The MMU supports virtual memory based platform operating systems such as
 - EPOC
 - LINUX
 - WindowsCE
 - PalmOS

Target Applications

- Java enabled Mobile, Smart phones and PDAs
- Applications requiring a ploat OS:
 - **EPOC**
 - Linix
 - **PalmOS**
 - WindowsCE
- Wireless internet applications
- Networking applications
- Digital set to boxes
- **Automative**
 - Hands-free interfaces
 - Infotainment
- MPEG4 Video encoding and Decoding
- Autdio decoding
 - Doble AC3 digital
 - High-end MP3 players
 - AASC
- **Speech Codes**

R&D Training Consultancy

Benefits

- Integrated single chip microcontroller, DSP and Java solution
- Very efficient Java byte code execution
- Reduced power consumption and chip complexity over a Java coprocessor solution
- > Flexibility with tightly coupled memory system and variable size caches
- Rapid ASIC or ASSO integration with a short time-to-market
- Interface to ETM9 for real time trace support

END OF SESSION 1

THANK YOU

