A summary of Lawvere's Elementary theory of the category of sets (ETCS)

December 5, 2018

A category C consists in:

- 1. a class of objects in the category ob(C).
- 2. a class of morphisms between objects in ob(C) denoted hom(C).
- 3. for every morphism f the operator \longrightarrow denoting the home and destination $f:A\longrightarrow B$. The arrow operator indicates f's domain dom(f)=A and codomain cod(f)=B. The class of all morphisms having domain A and codomain B is denoted hom(A,B).
- 4. for every pair of morphisms $f:A\longrightarrow B$ and $g:B\longrightarrow C$ such that dom(g)=cod(f) a binary composition operator \circ such that $g\circ f=dom(f)\longrightarrow cod(g)$, that is $g\circ f=A\longrightarrow C$. For any morphism $f:A\longrightarrow B, g:B\longrightarrow C$, and $h:C\longrightarrow D$ it holds that $h\circ (g\circ f)=(h\circ g)\circ f$.
- 5. for any $A \in ob(C)$ an element $id_A : A \longrightarrow A$ in hom(C) called the identity morphism, which satisfies identity, meaning that for any morphism $f : A \longrightarrow B$ it holds that $id_B \circ f = f$ and $f \circ id_A$.

Composition (o) is a monoid since it satisfies associativity and identity.

Example: An arbitrary set S forms a category. Proof:

- 1. The class of objects is non-empty (there is S).
- 2. The class of morphisms is non-empty since there is at minimum $id_S: S \longrightarrow S$, where the domain and codomain happen to be the same. If there is another set T then there is another set $S \times T = [(s,t)|s \in S, t \in T]$. Since $S \times T$ exists $\mathcal{P}(S \times T)$ exists and it follows that $T^S = [f \in \mathcal{P}(S \times T)|f:S \longrightarrow T]$ exists, which is just hom(S,T).
- 3. id_S can be composed. Moreover, if in addition to f there is a function g from T to U and dom(g) = cod(f) then we can compose them to make a third function $g \circ f$.
- 4. Composing id_S is obviously associative. Composing f and g with an h such that dom(h) = cod(g) is also associative.

Axiom 1: There exists a terminal object and an initial object

Definition: Let C be a category. Let I and T belong to ob(C). I is an initial object and 1 a terminal object of C if:

- for any A in ob(C) there is the unique morphism $I_A: I \longrightarrow A$.
- for any A in ob(C) there is the unique morphism $T_A: A \longrightarrow T$.

If there is another initial object I' in addition to I then I and I' are the same object. Let I and I' be terminal objects of C. There exists morphisms $f: I \longrightarrow I'$ and $g: I' \longrightarrow I$. g is an inverse of f and $f \circ g = id_{I'}$ and

 $g \circ f = id_I$. Hence I and I' are isomorphic. We have shown that if I is an initial object of C then I is uniquely defined up to isomorphism. By a similar argument we can demonstrate the uniqueness of T.

Axiom 2: Initial and terminal objects are not isomorphic

I is a single object that maps to every object. T is a single object that every object maps to. There do no exist inverses for I_A or T_A because a reverse of these relations would not a be function.

Axiom 3: Cartesian products

Let C be a category and A and $B \in ob(C)$. $\pi_A, \pi_B : A \times B \Rightarrow A, B$ is a cartesian product if there is a unique morphism $h : C \longrightarrow A \times B$ such that this diagram commutes:

To say the diagram commutes is to say that it is true that $f = \pi_A \circ (f, g)$ and $g = \pi_B \circ (f, g)$. We call this a universal property of products. (f, g) is the only function satisfying the property in question.

Axiom 4: Equalizers

Definition: Let C be a category. Let $f:A\longrightarrow B$ and $g:A\longrightarrow B$ be morphisms in hom(C). Given these two functions $(f,g):A\rightrightarrows B$ We can call the equalizer of f and g the set (a subset of A) $[a\in A|f(a)=g(a)]$. $eq:E\longrightarrow A$ is an equalizer for f and g if and only if $f\circ e=g\circ e$. With this definition in hand we have another axiom of ECTS. For any two morphisms $(f,g):A\rightrightarrows B$ there must be an equalizer $eq:E\longrightarrow A$. Definition: Let C be a category and A, B and C be objects. Let $i:B\longrightarrow A$ be a morphism in hom(C). We say i is a monomorphism if for any morphisms f and g with domain and codomain $C\longrightarrow B$ it holds that $i\circ f\neq i\circ g$.

Axiom 5: Subobject classifiers and power objects

Let A and B be sets such that $B \subseteq A$. Let there be the set of boolean values $\Omega := [True, False]$ and the homset of morphisms $X \longrightarrow \Omega$.

- 1. There exists the subobject classifier $TRUE: 1 \longrightarrow \Omega$.
- 2. For any set A there exists the power object $\mathcal{P}(A)$ and the local membership relation for A, namely $\in_A: A \times \mathcal{P}(A) \longrightarrow \Omega$.

Definition: The characteristic function for the set $A \subseteq X$ is the function $\delta(A): X \longrightarrow \Omega$. It is the function of A in X.

Axiom 6: The category Set is a well-pointed topos

If, for morphisms $f:A\longrightarrow B$ and $g:A\longrightarrow B$, it is true that $f(\alpha)=g(\alpha)$ for all $\alpha:I\longrightarrow A$, then f=g.

Axiom 7: Choice for categories

If $p:A\longrightarrow B$ is an epimorphism, then there is a reverse for p, namely $q:B\longrightarrow A$ such that $p\in q=id_B$.

Axiom 8: The natural number object

Let 1 be a terminal object of category C. A natural number object is an object N for which the following holds. For mappings $a:1\longrightarrow N$ and $b:1\longrightarrow X$, there is a successor morphism $s:N\longrightarrow N$ satisfying the following condition: For any object X with distinguished member $b:1\longrightarrow X$ and successor morphism $f:X\longrightarrow X$ there is a unique function $g:N\longrightarrow X$. g satisfies $g\circ a=b$ and $g\circ s=f\circ g$.

