Any value of R_C higher than 4.3 $k\Omega$ would push Q in saturation

- ightharpoonup Choose $R_C = 20 \text{ k}\Omega$:
 - Assuming FA operation is maintained, V_{CE} comes out to be -15 V!
 - Golden rule:
 - ❖ Potential at any point in a circuit can never go beyond the positive and negative extremes of the power supply voltages, unless there is a power source within the circuit
 - Thus, $V_{CE} = -15 \text{ V is } absurd!$
 - Hence, Q is *no more* in the *FA* mode of operation, rather it has been pushed into *saturation*

- Whether it is in soft saturation (SS) or hard saturation (HS), would depend on the degree of saturation (DoS)
- *For HS*, *DoS must be* \geq 2 ($\beta_{sat} \leq \beta/2$)
- Assume *HS*: $V_{BE}(HS) = 0.8 \text{ V}, V_{CE}(HS) = 0.1 \text{ V}$
 - $I_{B,sat} = [V_{CC} V_{BE}(HS)]/R_B = (5 0.8)/(430 \text{ kΩ}) = 9.77$ μA
 - $I_{C,sat} = [V_{CC} V_{CE}(HS)]/R_C = (5 0.1)/(20 \text{ k}Ω) = 245 \text{ μA}$
 - $\beta_{\text{sat}} = I_{\text{C,sat}}/I_{\text{B,sat}} = 245/9.77 = 25$
 - **♦** DoS = β/β_{sat} = 4 (> 2)
 - **Assumption verified, and analysis is correct!**
- \triangleright Ex.: Find the values of R_C that would put Q at the edge of: i) HS, and ii) SS

Base Width Modulation Effect

- In FA mode, as $|V_{BC}|^{\uparrow}$, BC depletion region width $\uparrow \Rightarrow$ neutral base width \downarrow
 - ➤ Electrons spend less time in base ⇒ chance of recombination ↓
 - > More electrons make it to the collector \Rightarrow I_C^{\uparrow} as V_{CE}^{\uparrow}
 - ➤ Known as the *Base Width Modulation Effect* (or *Early Effect*)

- The *current-voltage characteristic*, including *Early Effect*, is modeled as:
 - $I_{C} = I_{S}[exp(V_{BE}/V_{T})](1 + V_{CE}/V_{A})$
 - ➤ V_A: *Early Voltage* (~ 130 V for *npn*, and ~ 52 V for *pnp*)
 - ➤ V_A is a *negative number*, but taken to be a *positive quantity*
- Imparts a *positive slope* in the *output* characteristics in the *FA region*
 - ➤ Introduces an *output resistance*, and makes the current source *non-ideal*!

All characteristics merge at $|V_A|$ in the negative V_{CE} axis Note: If $V_A \to \infty$, all characteristics become horizontal in the FA region

IEEE Notational Convention

- Pure DC quantities:
 - > Capital letter with capital subscript (e.g., V_{BE})
- Pure ac quantities:
 - > Small-case letter with small-case subscript (e.g., v_{be})
- Instantaneous (DC + ac) quantities:
 - Either capital letter with small-case subscript (e.g., V_{be}) or small-case letter with capital subscript (e.g., v_{BE})

Small-Signal Model

- The *electrical equivalent* of the BJT at the *DC bias point*
- Basically an *electrical network*, having *passive and active elements*
- To obtain this model, *DC analysis* is needed, since the *information* regarding the *Q-point* (I_C, V_{CE}) is necessary
- This model for npn and pnp BJT is same