P2: Cálculo III

Nota:	
-------	--

Matrícula:_

INSTRUÇÕES

- 1. Prencher o nome em LETRA DE FORMA.
- 2. Para responder as questões, utilizar CANETA de cor preta, ponta grossa.
- 3. Enviar as respostas da prova em PDF, qualquer outro tipo de formato, não será aceito.
- 4. As respostas da prova deve ser enviada no arquivo "nome-p2.pdf" para o endereço mauricio@ime.uerj.br
- 5. PRAZO MÁXIMO de envio, quinta-feira 18 de novembro as 11:00h P.M.

	a	b	С	d	e
1					
2					
3					

- 1. A área da porção de superfície limitada pela interseção de x+y+z=1 e $x^2+2\,y^2\leq 1$, é:
- a) $\frac{\pi\sqrt{5}}{2}$ b) $\frac{\pi\sqrt{3}}{4}$ c) $\frac{\pi\sqrt{6}}{2}$ d) $\frac{\sqrt{5}}{2}$ e) $\frac{\sqrt{7}}{4}$

- 2. Seja a superfície S, definida por $y^2 + z^2 = 9$, x = 0 e x = 4 no primeiro octante, então $\iint_S [x + z]$, é igual a:
 - a) 36π
- **b)** $\pi 6$
- c) $\pi + 16$ d) $12\pi + 36$
- **e)** $6\pi + 16$
- 3. Seja a superfície S, definida por $z=1-x^2-y^2$, $z\geq 0$ e o campo de vetores F(x,y,z)=(y,x,z), então $\iint_S F$, é igual a:

- a) $\frac{\pi}{0}$ b) $\frac{\pi}{2}$ c) $\frac{\pi}{7}$ d) $\frac{\pi}{5}$ e) $\frac{\pi}{3}$
- 4. Utilizando o **Teorema de Stokes**, calcule $\oint_C [F_1 + F_2]$, se C é a curva $x^2 + y^2 = 1$ tal que z = 0 e:

$$F_1(x,y,z) = \left(-\frac{y}{(x-1)^2+y^2}, \frac{x-1}{(x-1)^2+y^2}, 1\right) e F_2(x,y,z) = \left(-\frac{y}{(x+1)^2+y^2}, \frac{x+1}{(x+1)^2+y^2}, 1\right).$$

5. Seja W o sólido com bordo a superfície $\partial W=S$, limitada superiormente por $z=\sqrt{32-x^2-y^2}$ e inferiormente por $z = \sqrt{x^2 + y^2}$. Se $F(x, y, z) = (e^{y^2 + z^2}, x^2 + y, z)$, calcule $\iint_S F$.