Automatic Structure Detection for Decomposition-based Methods in Mixed Integer Linear Programs

Mixed Integer Programming Workshop (2018) — Clemson University Matthew Galati, SAS Institute Inc.
Robert Pratt, SAS Institute Inc.
Taghi Khaniyev, University of Waterloo
Samir Elhedhli, University of Waterloo

INTRODUCTION | SOFTWARE — HISTORY

- Frameworks supporting branch-and-price, as far back as 1994:
 - ► MINTO, ABACUS, COIN/SYMPHONY, COIN/BCP
 - ► Issue user must derive most algorithmic components for their application

INTRODUCTION | SOFTWARE — HISTORY

- Frameworks supporting branch-and-price, as far back as 1994:
 - MINTO, ABACUS, COIN/SYMPHONY, COIN/BCP
 - ► Issue user must derive most algorithmic components for their application
- Generalize and automate these frameworks:
 - 2000 by Vanderbeck (BaPCod) and Galati/Ralphs (COIN/DIP) user defines the blocks
 - 2010 by Gamrath/Lübbecke (SCIP/GCG) and Wang/Ralphs (COIN/DIP) automated detection of blocks

INTRODUCTION | SOFTWARF — HISTORY

- Frameworks supporting branch-and-price, as far back as 1994:
 - MINTO, ABACUS, COIN/SYMPHONY, COIN/BCP
 - ► Issue user must derive most algorithmic components for their application
- Generalize and automate these frameworks:
 - 2000 by Vanderbeck (BaPCod) and Galati/Ralphs (COIN/DIP) user defines the blocks
 - 2010 by Gamrath/Lübbecke (SCIP/GCG) and Wang/Ralphs (COIN/DIP) automated detection of blocks
- SAS DECOMP is the first/only commercial implementation
 - 2012 user-defined blocks (MPS or PROC OPTMODEL) and automated (network/concomp/set)
 - 2014 general automated detection of blocks (auto)

• Pros:

- (Dual side) often improves the bound obtained by CPM
- (Primal side) helps to find good integer solutions faster
- Relaxation separability provides a natural parallelization of the bounding method
- Isomorphic subproblems can be aggregated to eliminate symmetry

Cons:

- The work to obtain the bound is much more extensive
- Convergence of dual space is slow (stabilization techniques can help)
- Numeric issues mapping from the DW space to the original space
- Question: How do we automatically permute (and stretch) the original matrix into SBDF?

$$\begin{pmatrix} D^1 & & & & F^1 \\ & D^2 & & & F^2 \\ & & \ddots & & \vdots \\ & & D^K & F^K \\ A^1 & A^2 & \cdots & A^K & G \end{pmatrix}$$

$$\begin{pmatrix} D^1 & & & & \\ & D^2 & & & \\ & & \ddots & & \\ & & & D^K \\ A^1 & A^2 & \cdots & A^K \end{pmatrix}$$

Singly-bordered block-diagonal form (SBDF)

INTRODUCTION | CUSTOMER EXAMPLE — PHARMACEUTICALS

MILP Branch & Cut

NOTE: The presolved problem has 52638 variables, 3215 constraints, and 131250 constraint co€ Active Sols BestBound Time Rest Integer Gap 3 6151.1464478 8590.4503506 28.40% -- snip --6151.1466160 7045.9724210 -- snip --6871.8766247 7044.1201668 2.45% NOTE: Real time limit reached.

MILP Branch & Price — DECOMP

NOTE: The problem has a decomposable structure with 610 blocks.

The largest block covers 0.2488% of the constraints in the problem.

december of the subproblems cover 52638 (100%) variables and 3207 (99.75%) constrain

The	deco	omposition	subproblems	cover	52638	(100%)	var	lables	and	3207	(99	. 7
Ite:	r	Best	Maste	r	Best	t	LP		IP	CPU	Real	
		Bound	Objectiv	e	Intege:	r	Gap		Gap	Time	Time	
		7963.9759	6467.213	6 6	467.213	6 18	.79%	18.	79%	13	8	
	2	7267.7239	6467.213	6 6	467.213	6 11	.01%	11.	01%	26	13	
	3	7147.9955	6878.437	5 6	467.213	6 3	.77%	9.	52%	51	21	
	5	6986.1299	6960.540	0 6	960.540	0 0	.37%	0.	37%	74	30	
	6	6986.1299	6965.533	5 6	965.533	5 0	.29%	0.	29%	84	33	
	7	6972.3310	6972.330	9 6	972.330	9 0	.00%	0.	00%	87	34	
1	Node	Active	Sols	Best		Best		Gap	C	PU	Real	
			I	nteger		Bound			Τi	me	Time	
	0	0	9 697	2.3309	697	2.3310	(0.00%		87	34	

NOTE: The Decomposition algorithm time is 34.61 seconds.

NOTE: Optimal within relative gap.

INTRODUCTION | SOFTWARE — BRANCH & CUT VS BRANCH & PRICE

Is automated (black-box) Branch & Price worth pursuing? Yes.

			Branch & Cut		Branch &		
Source	Model/Industry	Instance	Time	Gap	Time	Gap	Δ
MIPLIB/NEOS	Unknown	noswot	17	OPT	0.2	OPT	86x
MIPLIB/NEOS	Unknown	noes_942830	198	OPT	6	OPT	33x
MIPLIB/NEOS	Unknown	ns1208400	252	OPT	35	OPT	7.2x
Research	Machine Reassignment	modela15	103	OPT	15	OPT	6.9x
Research	Cutting Stock	test0055	33	OPT	10	OPT	3.3x
MIPLIB/NEOS	Unknown	neos_885524	523	OPT	169	OPT	3.1x
MIPLIB/NEOS	Unknown	neos_885086	85	OPT	30	OPT	2.8x
Research	Grid Load Management	partition_trim47	261	OPT	99	OPT	2.6x
Customer	Finance	bank_bad	301	OPT	123	OPT	2.4x
Customer	Revenue Management	golfrm_500_471123	12	OPT	5	OPT	2.4x
Customer	Finance	atmorig	T	∞	363	OPT	∞
MIPLIB/NEOS	Unknown	ns3974959	T	∞	257	INF	∞
Customer	Finance	design3_miqp	T	165%	60	OPT	165%
MIPLIB/NEOS	Unknown	chrom_1024	T	33%	984	OPT	33%
MIPLIB/NEOS	Unknown	neos_787933	T	30%	271	OPT	30%
MIPLIB/NEOS	Unknown	ns903616	T	24%	1,650	OPT	24%
MIPLIB/NEOS	Unknown	neos_631694	T	8%	3	OPT	8%
MIPLIB/NEOS	Unknown	neos_799838	T	6%	31	OPT	6%
MIPLIB/NEOS	Unknown	neos_1426662	T	5%	2	OPT	5%
MIPLIB/NEOS	Unknown	neos_826650	T	4 %	62	OPT	4%
MIPLIB/NEOS	Unknown	neos_826841	T	4%	71	OPT	4%
MIPLIB/NEOS	Unknown	neos_911880	T	3%	3	OPT	3%
Customer	Pharmaceuticals	pharma	T	2%	949	OPT	2%
MIPLIB/NEOS	Unknown	neos9	T	1%	64	OPT	1%
MIPLIB/NEOS	Unknown	neos19	T	0.3%	283	OPT	0.3%
Research	Resource Allocation	rap_i71	T	0.1%	28	OPT	0.1%
Customer	Hotel Management	roomassign30	T	35%	T	9%	26%
Research	Unit Commitment	unitcommitment	T	26%	T	7%	19%

AUTO DETECTION | APC — AYKANAT ET AL., 2004

- Search for a fixed number \hat{K} of partitions (blocks)
- Hypergraph Model for $A \rightarrow A_{SRDE}$ SCIP/GCG uses hMETIS
 - ► Bergner et al., 2015 root node only
- Bipartite Graph Model for $A o A_{\rm DBDF} o A_{\rm SBDF}$ SAS/DECOMP ($\hat{K} = \text{NumCores}$)
 - ightharpoonup A
 igh
 - $ightharpoonup A_{\text{DBDF}}
 ightharpoonup A_{\text{SBDF}}$ Column-splitting (Lagrangian decomposition)
 - ► APC Goals: minimize border (S) and balance clusters (blocks)
 - ► Forced balance (good for LP, bad for MILP) further break down disjoint blocks

AUTO DETECTION | APC — AYKANAT ET AL., 2004

- Search for a fixed number \hat{K} of partitions (blocks)
- Hypergraph Model for $A \rightarrow A_{SRDE}$ SCIP/GCG uses hMETIS
 - ► Bergner et al., 2015 root node only
- Bipartite Graph Model for $A o A_{\mathrm{DBDF}} o A_{\mathrm{SBDF}} \mathsf{SAS/DECOMP}$ ($\hat{K} = \mathsf{NumCores}$)
 - $ightharpoonup A
 ightarrow A_{
 m DBDF}$ Graph Partitioning with Vertex Separator (GPVS)
 - $ightharpoonup A_{\text{DBDF}}
 ightharpoonup A_{\text{SBDF}}$ Column-splitting (Lagrangian decomposition)
 - ► APC Goals: minimize border (S) and balance clusters (blocks)
 - ► Forced balance (good for LP, bad for MILP) further break down disjoint blocks

AUTO DETECTION | APC — AYKANAT ET AL., 2004

- Search for a fixed number \hat{K} of partitions (blocks)
- Hypergraph Model for $A \rightarrow A_{SRDE}$ SCIP/GCG uses hMETIS
 - ► Bergner et al., 2015 root node only
- Bipartite Graph Model for $A o A_{\rm DBDF} o A_{\rm SBDF}$ SAS/DECOMP ($\hat{K} = \text{NumCores}$)
 - ightharpoonup A
 igh
 - $ightharpoonup A_{\text{DBDF}}
 ightharpoonup A_{\text{SBDF}}$ Column-splitting (Lagrangian decomposition)
 - ► APC Goals: minimize border (S) and balance clusters (blocks)
 - ► Forced balance (good for LP, bad for MILP) further break down disjoint blocks

- Key Idea: Remove the restriction for a fixed number of blocks
- Goals (conflicting objectives):
 - Minimize the border area same as APC
 - ► Maximize the *quality* of the diagonal for a fixed border modularity
- Modularity measures subgraph cohesion compared to a random graph with same degree distribution

$$M(\mathbf{A}^{\pi}) = \sum_{k \in K} \left[\frac{e_k}{m} - \left(\frac{d_k}{2m} \right)^2 \right]$$

- DFCOMP/MILP intuition:
 - Subproblems (subsets of constraints) with strong interconnectivity (variables) relative to a random partition

$$\begin{split} Q(\mathbf{A}^{\pi}) &= \sum_{k \in K} \frac{e_k}{m} \left(1 - \frac{e_k}{m} \right) \\ P_r(\mathbf{A}^{\pi}, \alpha) &= e^{-\alpha B_r} \\ P_c(\mathbf{A}^{\pi}, \alpha) &= e^{-\alpha B_c} \\ \Gamma(\mathbf{A}^{\pi}, \alpha_r, \alpha_c) &= Q(\mathbf{A}^{\pi}) P_r(\mathbf{A}^{\pi}, \alpha_r) P_c(\mathbf{A}^{\pi}, \alpha_c) \end{split}$$

AUTO DETECTION GOODNESS FUNCTION

- $\Gamma \in [0, 1)$
 - $\Gamma = 0$ (single block, or empty diagonal)
 - $ightharpoonup \Gamma
 ightarrow 1$ (empty border, balanced blocks, as $K \uparrow$)

AUTO DETECTION GOODNESS FUNCTION - RESULTS

Does choosing a decomposition based on (higher) Γ improve B&P performance? Yes.

AUTO DETECTION | KEE IN SAS/DECOMP

- Run APC for $\hat{K} = 2...22$ (threaded) and choose max goodness (Γ^{APC})
- Define the initial border rows (S) from APC directly (SBDF) or greedily (DBDF)
- Iterative two-phase routine record S with max goodness (Γ^{KEE})
 - REMOVE: At each sub-iteration
 - \star Move vertices (rows) into S based on community structure (maximizing modularity)
 - MERGE: At each sub-iteration
 - * Move vertices (rows) out of S that maximize $\Delta\Gamma$ (merging blocks / components)
- Return S corresponding to $\max(\Gamma^{\text{KEE}}, \Gamma^{\text{APC}})$

- Find communities (blocks) in $G = [V \setminus S]$ which maximizes modularity using Louvain (heuristic)
- Move vertices (rows) into S with the highest number of inter-community edges
- Evaluate Γ with blocks defined as the connected components of $G = [V \setminus S]$
- STOP when there are no inter-community edges

- Find communities (blocks) in $G = [V \setminus S]$ which maximizes modularity using Louvain (heuristic)
- Move vertices (rows) into S with the highest number of inter-community edges
- Evaluate Γ with blocks defined as the connected components of $G = [V \setminus S]$
- STOP when there are no inter-community edges

- Find communities (blocks) in $G = [V \setminus S]$ which maximizes modularity using Louvain (heuristic)
- Move vertices (rows) into S with the highest number of inter-community edges
- Evaluate Γ with blocks defined as the connected components of $G = [V \setminus S]$
- STOP when there are no inter-community edges

- Find communities (blocks) in $G = [V \setminus S]$ which maximizes modularity using Louvain (heuristic)
- Move vertices (rows) into S with the highest number of inter-community edges
- Evaluate Γ with blocks defined as the connected components of $G = [V \setminus S]$
- STOP when there are no inter-community edges

- Find communities (blocks) in $G = [V \setminus S]$ which maximizes modularity using Louvain (heuristic)
- Move vertices (rows) into S with the highest number of inter-community edges
- Evaluate Γ with blocks defined as the connected components of $G = [V \setminus S]$
- STOP when there are no inter-community edges

- Find communities (blocks) in $G = [V \setminus S]$ which maximizes modularity using Louvain (heuristic)
- Move vertices (rows) into S with the highest number of inter-community edges
- Evaluate Γ with blocks defined as the connected components of $G = [V \setminus S]$
- STOP when there are no inter-community edges

- Move vertices (rows) out of S that maximize $\Delta\Gamma$ (merging blocks / components)
- STOP when the number of blocks is 1.

- Move vertices (rows) out of S that maximize $\Delta\Gamma$ (merging blocks / components)
- STOP when the number of blocks is 1.

- Move vertices (rows) out of S that maximize $\Delta\Gamma$ (merging blocks / components)
- STOP when the number of blocks is 1.

AUTO DETECTION | TUNING α

- Fix $\alpha_c = 20$, and vary α_r
 - $\triangleright \alpha_r \uparrow$ emphasizes minimization of the (row) border
 - $\triangleright \alpha_r \downarrow$ emphasizes quality of the diagonal

AUTO DETECTION TUNING α

Comparison to $\alpha = 1$

Comparison to $\alpha_r = 1$							
α_r	Solved		ShGeo-Mean				
0.0	168	-6 (+17/-23)	0.89 (140)				
0.5	175	+1 (+13/-12)	0.94 (150)				
1.0	174		1.00				
1.5	177	+3 (+11/-8)	0.94 (154)				
2.0	178	+4 (+15/-11)	0.91 (151)				
3.0	176	+2 (+16/-14)	0.90 (148)				
4.0	176	+2 (+17/-15)	0.84 (147)				
5.0	169	-5 (+15/-20)	0.82 (142)				
Best	213	+39	1.26 (162)				

Best — could be a share-nothing (gridded) nondeterministic concurrent

AUTO DETECTION Γ VS B&P PERFORMANCE

Does choosing a decomposition based on maximizing Γ improve B&P performance? Yes.

AUTO DETECTION Γ VS B&P PERFORMANCE

Does choosing a decomposition based on maximizing Γ improve B&P performance? Yes.

289 Instances

$\Gamma_{\rm max}$ vs $0.9\Gamma_{\rm max}$

- +1 instances solved (+10/-9)
- Shifted Geo-Mean Speedup
 - ► 1.20 (50 instances)

$\Gamma_{\rm max}$ vs $0.8\Gamma_{\rm max}$

- +13 instances solved (+19/-6)
- Shifted Geo-Mean Speedup
 - ► 1.77 (41 instances)

AUTO DETECTION | KEE — RESULTS

Does choosing a decomposition based on maximizing Γ improve B&P performance? Yes.

585 Instances

KEE vs APC2..22

- +15 instances solved (+29/-14)
- Shifted Geo-Mean Speedup
 - 1.17 (135 instances)

KEE vs APC4

- +32 instances solved (+49/-17)
- Shifted Geo-Mean Speedup
 - ► 1.40 (115 instances)

AUTO DETECTION | SOFTWARE — BRANCH & CUT VS BRANCH & PRICE

- Reality check (automated methods) 85% of the time B&C wins (faster or better gap)
- How do we get the best of both (by default)?
 - Concurrent
 - \blacktriangleright Machine Learning, of course!... ask Marco this research may provide a new feature (Γ)

	NumSolved	NumWins	Shifted Geo-Mean		
Branch & Cut	345/585 (59%)	415/487 (85%)	3.3x (145)		
Branch & Price	174/585 (30%)				

AUTO DETECTION | SOFTWARE — BRANCH & CUT VS BRANCH & PRICE

- Reality check (automated methods) 85% of the time B&C wins (faster or better gap)
- How do we get the best of both (by default)?
 - Concurrent
 - \blacktriangleright Machine Learning, of course!... ask Marco this research may provide a new feature (Γ)

	NumSolved	NumWins	Shifted Geo-Mean		
Branch & Cut	345/585 (59%)	415/487 (85%)	3.3x (145)		
Branch & Price	174/585 (30%)				

AUTO DETECTION | SOFTWARE — BRANCH & CUT AND BRANCH & PRICE

Does Γ provide a decision rule for when to use B&P over B&C?

AUTO DETECTION | SOFTWARE — BRANCH & CUT AND BRANCH & PRICE

Does Γ provide a decision rule for when to use B&P over B&C? No.

AUTO DETECTION | FUTURE DIRECTIONS

- Build ML model to choose among options (e.g., for various α) features: Q, B_r, B_c, \dots
 - ► Played data scientist for a week Fail
 - ► What exactly is the target output? How do you score (or rank) solved versus not solved cases?
 - ► How do you handle cases that are *close*? Doesn't that depend on the user's value function?
- Improve the form of $\Gamma()$ directly regression $f(O, B_r, B_c, ...)$
- Analyze the effect of cuts (and presolve) hiding structures run KEE before and after
 - Especially important for isomorphic structures (which KEE indirectly encourages)
- DBDF
 - ightharpoonup KEE on A_{DBDE} from APC preliminary results are poor
 - Generalize the KEE algorithm directly
 - Compare APC to hMETIS (also requires a fixed number of blocks)
- Speed of KEE algorithm
 - Median = 0.3 secs, but 95% quantile = 175 secs
 - ▶ Need a better stopping criterion do we know a tight bound on max Γ ?

support.sas.com/or

AUTO DETECTION | SOFTWARE — BRANCH & PRICE (AUTO) PROGRESS

Default (Hybrid) — 4 Threads

- 585 Instances bench minus:
 - Solved in presolver
 - Solved in B&C root
 - Auto-detect failed
- Max Time = 3600 seconds

