Implicit Bias of Mirror Flow on Separable Data

Radu-Alexandru Dragomir (Télécom Paris)

with Scott Pesme and Nicolas Flammarion (EPFL)

EUROPT 2024, Lund

Logistic regression:

$$\min_{\beta \in \mathbb{R}^d} L(\beta) = \sum_{i=1}^n \ln \left(1 + e^{-y_i \langle \beta, x_i \rangle} \right)$$

points $x_i \in \mathbb{R}^d$, labels $y_i \in \{-1, +1\}$

Logistic regression:

$$\min_{\beta \in \mathbb{R}^d} L(\beta) = \sum_{i=1}^n \ln \left(1 + e^{-y_i \langle \beta, x_i \rangle} \right)$$

points $x_i \in \mathbb{R}^d$, labels $y_i \in \{-1, +1\}$

Linear separability:

The set $\mathcal{I} = \{\beta^* : y_i \langle \beta^*, x_i \rangle > 0 \text{ for } i = 1 \dots n\}$ is nonempty.

Logistic regression:

$$\min_{\beta \in \mathbb{R}^d} L(\beta) = \sum_{i=1}^n \ln \left(1 + e^{-y_i \langle \beta, x_i \rangle} \right)$$

points $x_i \in \mathbb{R}^d$, labels $y_i \in \{-1, +1\}$

Linear separability:

The set
$$\mathcal{I} = \{\beta^* : y_i \langle \beta^*, x_i \rangle > 0 \text{ for } i = 1 \dots n\}$$
 is nonempty.

The loss is minimized at infinity: $\lim_{s\to\infty} L(s\beta^*) = 0$ for $\beta^* \in \mathcal{I}$

Logistic regression:

$$\min_{\beta \in \mathbb{R}^d} L(\beta) = \sum_{i=1}^n \ln \left(1 + e^{-y_i \langle \beta, x_i \rangle} \right)$$

points $x_i \in \mathbb{R}^d$, labels $y_i \in \{-1, +1\}$

Linear separability:

The set
$$\mathcal{I} = \{\beta^* : y_i \langle \beta^*, x_i \rangle > 0 \text{ for } i = 1 \dots n\}$$
 is nonempty.

The loss is minimized at infinity: $\lim_{s\to\infty} L(s\beta^*) = 0$ for $\beta^* \in \mathcal{I}$

Mirror flow:

$$\dot{\beta}_t = -\nabla^2 \phi(\beta_t)^{-1} \nabla L(\beta_t)$$

Logistic regression:

$$\min_{\beta \in \mathbb{R}^d} L(\beta) = \sum_{i=1}^n \ln \left(1 + e^{-y_i \langle \beta, x_i \rangle} \right)$$

points $x_i \in \mathbb{R}^d$, labels $y_i \in \{-1, +1\}$

Linear separability:

The set
$$\mathcal{I} = \{\beta^* : y_i \langle \beta^*, x_i \rangle > 0 \text{ for } i = 1 \dots n\}$$
 is nonempty.

The loss is minimized at infinity: $\lim_{s\to\infty} L(s\beta^*) = 0$ for $\beta^* \in \mathcal{I}$

Mirror flow:

$$\dot{\beta}_t = -\nabla^2 \phi(\beta_t)^{-1} \nabla L(\beta_t)$$

We expect $L(\beta_t) \to 0$ and $\|\beta_t\| \to \infty$.

Logistic regression:

$$\min_{\beta \in \mathbb{R}^d} L(\beta) = \sum_{i=1}^n \ln \left(1 + e^{-y_i \langle \beta, x_i \rangle} \right)$$

points $x_i \in \mathbb{R}^d$, labels $y_i \in \{-1, +1\}$

Linear separability:

The set
$$\mathcal{I} = \{\beta^* : y_i \langle \beta^*, x_i \rangle > 0 \text{ for } i = 1 \dots n\}$$
 is nonempty.

The loss is minimized at infinity: $\lim_{s\to\infty} L(s\beta^*) = 0$ for $\beta^* \in \mathcal{I}$

Mirror flow:

$$\dot{\beta}_t = -\nabla^2 \phi(\beta_t)^{-1} \nabla L(\beta_t)$$

We expect $L(\beta_t) \to 0$ and $\|\beta_t\| \to \infty$.

What is the directional limit $\bar{\beta}$ of $\frac{\beta_t}{\|\beta_t\|}$?

Logistic regression:

$$\min_{\beta \in \mathbb{R}^d} L(\beta) = \sum_{i=1}^n \ln \left(1 + e^{-y_i \langle \beta, x_i \rangle} \right)$$

points $x_i \in \mathbb{R}^d$, labels $y_i \in \{-1, +1\}$

Linear separability:

The set
$$\mathcal{I} = \{\beta^* : y_i \langle \beta^*, x_i \rangle > 0 \text{ for } i = 1 \dots n\}$$
 is nonempty.

The loss is minimized at infinity: $\lim_{s\to\infty} L(s\beta^*) = 0$ for $\beta^* \in \mathcal{I}$

Mirror flow:

$$\dot{\beta_t} = -\nabla^2 \phi(\beta_t)^{-1} \nabla L(\beta_t)$$

We expect $L(\beta_t) \to 0$ and $\|\beta_t\| \to \infty$.

What is the directional limit $\bar{\beta}$ of $\frac{\beta_t}{\|\beta_t\|}$?

Many possible limit directions in \mathcal{I} . Which one is preferred by the algorithm?

■ Least squares regression, gradient flow: [Lemaire 1996]

$$L(\beta) = ||X^T \beta - y||^2, \quad \dot{\beta}_t = -\nabla L(\beta_t)$$

■ Least squares regression, gradient flow: [Lemaire 1996]

$$L(\beta) = ||X^T \beta - y||^2, \quad \dot{\beta}_t = -\nabla L(\beta_t)$$

Let
$$\mathcal{I} = \{\beta : X^T \beta = y\}.$$

Then $eta_t o ar{eta}_{\mathrm{GF}}$ where

$$\bar{\beta}_{GF} = \operatorname{argmin} \{ \|\beta^* - \beta_0\| : \beta^* \in \mathcal{I} \}$$

■ Least squares regression, gradient flow: [Lemaire 1996]

$$L(\beta) = ||X^T \beta - y||^2, \quad \dot{\beta}_t = -\nabla L(\beta_t)$$

Let
$$\mathcal{I} = \{\beta : X^T \beta = y\}.$$

Then $\beta_t \to \bar{\beta}_{\mathrm{GF}}$ where

$$\bar{\beta}_{GF} = \operatorname{argmin} \{ \|\beta^* - \beta_0\| : \beta^* \in \mathcal{I} \}$$

■ Least squares regression, mirror flow: [Gunasekar et al., ICML 2018]

$$L(\beta) = ||X^T \beta - y||^2, \quad \dot{\beta}_t = -\nabla^2 \phi(\beta_t)^{-1} \nabla L(\beta_t)$$

■ Least squares regression, gradient flow: [Lemaire 1996]

$$L(\beta) = ||X^T \beta - y||^2, \quad \dot{\beta}_t = -\nabla L(\beta_t)$$

Let
$$\mathcal{I} = \{\beta : X^T \beta = y\}$$
.

Then $\beta_t \to \bar{\beta}_{\mathrm{GF}}$ where

$$\bar{\beta}_{GF} = \operatorname{argmin} \{ \|\beta^* - \beta_0\| : \beta^* \in \mathcal{I} \}$$

■ Least squares regression, mirror flow: [Gunasekar et al., ICML 2018]

$$L(\beta) = ||X^T \beta - y||^2, \quad \dot{\beta}_t = -\nabla^2 \phi(\beta_t)^{-1} \nabla L(\beta_t)$$

Then $eta_t o ar{eta}_{\mathrm{MF}}$ where

$$\bar{\beta}_{\mathrm{MF}} = \operatorname{argmin} \left\{ D_{\phi}(\beta^*, \beta_0) : \beta^* \in \mathcal{I} \right\}$$

(D_{ϕ} : Bregman divergence)

$$\min_{\beta \in \mathbb{R}^d} L(\beta) = \sum_{i=1}^n \ln\left(1 + e^{-y_i \langle \beta, x_i \rangle}\right) \qquad \mathcal{I} = \{\beta^* : y_i \langle \beta^*, x_i \rangle \ge 1, \ \forall i\}$$

The iterates β_t diverge: what is their directional limit?

$$\min_{\beta \in \mathbb{R}^d} L(\beta) = \sum_{i=1}^n \ln\left(1 + e^{-y_i \langle \beta, x_i \rangle}\right) \qquad \mathcal{I} = \{\beta^* : y_i \langle \beta^*, x_i \rangle \ge 1, \ \forall i\}$$

The iterates β_t diverge: what is their directional limit?

■ Gradient flow [Soudry et al., JMLR 2018]: $\frac{\beta_t}{\|\beta_t\|} \to \bar{\beta}_{GF}$ where

$$\bar{\beta}_{GF} \propto \operatorname{argmin} \left\{ \|\beta^*\|_2 : \beta^* \in \mathcal{I} \right\}$$

$$\min_{\beta \in \mathbb{R}^d} L(\beta) = \sum_{i=1}^n \ln\left(1 + e^{-y_i \langle \beta, x_i \rangle}\right) \qquad \mathcal{I} = \{\beta^* : y_i \langle \beta^*, x_i \rangle \ge 1, \ \forall i\}$$

The iterates β_t diverge: what is their directional limit?

■ Gradient flow [Soudry et al., JMLR 2018]: $\frac{\beta_t}{\|\beta_t\|} \to \bar{\beta}_{GF}$ where

$$\bar{\beta}_{\mathrm{GF}} \propto \mathrm{argmin} \left\{ \|\beta^*\|_2 : \beta^* \in \mathcal{I} \right\} \rightarrow \mathsf{max-margin} \ \mathsf{classifier} \ (\mathsf{SVM})$$

$$\min_{\beta \in \mathbb{R}^d} L(\beta) = \sum_{i=1}^n \ln\left(1 + e^{-y_i \langle \beta, x_i \rangle}\right) \qquad \mathcal{I} = \{\beta^* : y_i \langle \beta^*, x_i \rangle \ge 1, \ \forall i\}$$

The iterates β_t diverge: what is their directional limit?

■ Gradient flow [Soudry et al., JMLR 2018]: $\frac{\beta_t}{\|\beta_t\|} \to \bar{\beta}_{GF}$ where

$$\bar{\beta}_{\mathrm{GF}} \propto \mathrm{argmin} \left\{ \|\beta^*\|_2 : \beta^* \in \mathcal{I} \right\} \rightarrow \mathsf{max-margin} \ \mathsf{classifier} \ \mathsf{(SVM)}$$

■ Mirror flow: our work. $\frac{\beta_t}{\|\beta_t\|} \to \bar{\beta}_{\mathrm{MF}}$ where

$$\bar{\beta}_{\mathrm{MF}} \propto \operatorname{argmin} \left\{ \phi_{\infty}(\beta^*) : \beta^* \in \mathcal{I} \right\} \rightarrow \phi_{\infty}$$
-max margin classifier

 ϕ_{∞} : horizon function of ϕ (limit of ϕ "at infinity")

$$\dot{\beta}_t = -\nabla^2 \phi(\beta_t)^{-1} \nabla L(\beta_t)$$

$$\dot{\beta}_t = -\nabla^2 \phi(\beta_t)^{-1} \nabla L(\beta_t)$$

Potential function ϕ is

- **strictly convex** and C^2 on \mathbb{R}^d (full domain),
- coercive and has coercive gradients.

$$\dot{\beta}_t = -\nabla^2 \phi(\beta_t)^{-1} \nabla L(\beta_t)$$

Potential function ϕ is

- **strictly convex** and C^2 on \mathbb{R}^d (full domain),
- coercive and has coercive gradients.

Motivation: reparametrized problems $\beta = F(\theta)$

Gradient flow on $\theta \mapsto L(F(\theta)) \Leftrightarrow Mirror flow on <math>\beta \mapsto L(\beta)$

$$\dot{\beta_t} = -\nabla^2 \phi(\beta_t)^{-1} \nabla L(\beta_t)$$

Potential function ϕ is

- **strictly convex** and C^2 on \mathbb{R}^d (full domain),
- coercive and has coercive gradients.

Motivation: reparametrized problems $\beta = F(\theta)$

Gradient flow on $\theta \mapsto L(F(\theta)) \Leftrightarrow Mirror flow on <math>\beta \mapsto L(\beta)$

Example: $\beta = u \odot v$ ("diagonal neural networks")

Gradient flow on $L(u \odot v) \Leftrightarrow$ mirror flow on $L(\beta)$ with hyperbolic potential

$$\phi(\beta) = \sum_{i=1}^{d} \left(\beta_i \operatorname{arcsinh}(\beta_i) - \sqrt{\beta_i^2 + 1} \right)$$

Hyperbolic potential: not homogenous

$$\phi(\beta) = \sum_{i=1}^{d} \left(\beta_i \operatorname{arcsinh}(\beta_i) - \sqrt{\beta_i^2 + 1} \right)$$

Hyperbolic potential: not homogenous

$$\phi(\beta) = \sum_{i=1}^{d} \left(\beta_i \operatorname{arcsinh}(\beta_i) - \sqrt{\beta_i^2 + 1} \right)$$

Homogenous potential

$$\phi(\beta) = \sum_{i=1}^d \beta_i^4$$

Hyperbolic potential: not homogenous

$$\phi(\beta) = \sum_{i=1}^{d} \left(\beta_i \operatorname{arcsinh}(\beta_i) - \sqrt{\beta_i^2 + 1} \right)$$

Homogenous potential

$$\phi(\beta) = \sum_{i=1}^d \beta_i^4$$

We want to define the shape of the potential ϕ "at infinity"

Hyperbolic potential: not homogenous

$$\phi(\beta) = \sum_{i=1}^{d} \left(\beta_i \operatorname{arcsinh}(\beta_i) - \sqrt{\beta_i^2 + 1} \right)$$

Homogenous potential

$$\phi(\beta) = \sum_{i=1}^d \beta_i^4$$

We want to define the shape of the potential ϕ "at infinity"

 \rightarrow horizon function ϕ_{∞}

$$S_c = \{\beta : \phi(\beta) \le c\}$$

$$S_c = \{\beta : \phi(\beta) \le c\}$$

$$\bar{S}_c = S_c / \max_{\beta \in S_c} \|\beta\|$$

$$ar{S}_c = S_c / \max_{eta \in S_c} \|eta\|$$

We say that ϕ admits a **horizon** if \bar{S}_c converges to a set S_{∞} as $c \to \infty$.

$$\bar{S}_c = S_c / \max_{\beta \in S_c} \|\beta\|$$

We say that ϕ admits a **horizon** if \bar{S}_c converges to a set S_{∞} as $c \to \infty$.

Horizon function: Minkowski gauge of S_{∞}

$$\phi_{\infty}(\beta) = \inf\{r > 0 : \frac{\beta}{r} \in S_{\infty}\}$$

 ϕ_{∞} is **1-homogenous** and its level sets are λS_{∞} for $\lambda > 0$.

Does ϕ always admit a horizon?

Does ϕ always admit a horizon? Yes, for all reasonable functions (or tame).

Does ϕ always admit a horizon? Yes, for all reasonable functions (or tame).

If ϕ is **definable in a** *o*-**minimal structure**, then it admits a horizon.

Does ϕ always admit a horizon? Yes, for all reasonable functions (or tame).

If ϕ is **definable in a** o-minimal structure, then it admits a horizon.

E.g. semianalytic, globally subanalytic, log-exp. This includes polynomials, power functions, exp, log, and **reasonable** combinations of those...

Does ϕ always admit a horizon? Yes, for all reasonable functions (or tame).

If ϕ is **definable in a** o-minimal structure, then it admits a horizon.

E.g. semianalytic, globally subanalytic, log-exp. This includes polynomials, power functions, exp, log, and **reasonable** combinations of those...

Explicit formula for separable potentials

If
$$\phi(\beta) = \sum_{i=1}^d h(\beta_i)$$
 with $h: \mathbb{R} \to \mathbb{R}$ tame and even,

$$\phi_{\infty}(\beta) \propto \lim_{s \to \infty} \frac{1}{s} h^{-1} \left[\phi(s\beta) \right]$$

$$\min_{\beta \in \mathbb{R}^d} L(\beta) = \sum_{i=1}^n \ln \left(1 + e^{-y_i \langle \beta, x_i \rangle} \right) \qquad \mathcal{I} = \{ \beta \}$$

$$\mathcal{I} = \{ \beta^* : y_i \langle \beta^*, x_i \rangle \ge 1 \ \forall i \}$$

$$\min_{\beta \in \mathbb{R}^d} L(\beta) = \sum_{i=1}^n \ln \left(1 + e^{-y_i \langle \beta, x_i \rangle} \right) \qquad \mathcal{I} = \{ \beta^* : y_i \langle \beta^*, x_i \rangle \ge 1 \ \forall i \}$$

Theorem

The mirror flow iterates converge in direction towards $\bar{\beta}$ satisfying

$$\bar{\beta} \propto \operatorname{argmin} \left\{ \phi_{\infty}(\beta^*) : \beta^* \in \mathcal{I} \right\}$$

$$\min_{\beta \in \mathbb{R}^d} L(\beta) = \sum_{i=1}^n \ln \left(1 + e^{-y_i \langle \beta, x_i \rangle} \right) \qquad \mathcal{I} = \{ \beta^* : y_i \langle \beta^*, x_i \rangle \ge 1 \ \forall i \}$$

Theorem

The mirror flow iterates converge in direction towards $\bar{\beta}$ satisfying

$$\bar{\beta} \propto \operatorname{argmin} \left\{ \phi_{\infty}(\beta^*) : \beta^* \in \mathcal{I} \right\}$$

(provided that ϕ admits a horizon and that the argmin is nonempty)

$$\min_{\beta \in \mathbb{R}^d} L(\beta) = \sum_{i=1}^n \ln \left(1 + e^{-y_i \langle \beta, x_i \rangle} \right) \qquad \mathcal{I} = \{ \beta^* : y_i \langle \beta^*, x_i \rangle \ge 1 \ \forall i \}$$

Theorem

The mirror flow iterates converge in direction towards $\bar{\beta}$ satisfying

$$\bar{\beta} \propto \operatorname{argmin} \left\{ \phi_{\infty}(\beta^*) : \beta^* \in \mathcal{I} \right\}$$

(provided that ϕ admits a horizon and that the argmin is nonempty)

Application: hyperbolic potential

$$\phi(eta) = \sum_{i=1}^d \left(eta_i \mathrm{arcsinh}(eta_i) - \sqrt{eta_i^2 + 1}
ight)$$
 $\phi_\infty(eta) \propto \|eta\|_1$

Implicit bias towards **sparsity** in diagonal neural nets (known result, different proof)

$$\bar{S}_c = S_c / \max_{\beta \in S_c} \|\beta\|$$

Building an understanding of optimization at infinity through horizon function.

$$\bar{S}_c = S_c / \max_{\beta \in S_c} \|\beta\|$$

- Building an understanding of optimization at infinity through horizon function.
- Convergence rates? Degenerate case?

$$\bar{S}_c = S_c / \max_{\beta \in S_c} \|\beta\|$$

- Building an understanding of optimization at infinity through horizon function.
- Convergence rates? Degenerate case?
- Strong assumptions: ϕ is defined everywhere and coercive (excludes $-\log(\beta), \beta\log(\beta), -\sqrt{\beta}...$)

$$\bar{S}_c = S_c / \max_{\beta \in S_c} \|\beta\|$$

- Building an understanding of optimization at infinity through horizon function.
- Convergence rates? Degenerate case?
- Strong assumptions: ϕ is defined everywhere and coercive (excludes $-\log(\beta), \beta\log(\beta), -\sqrt{\beta}...$)

Thank you! (paper out on arXiv:2406.12763)