1. Dani sta permutaciji
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 5 & 2 & 6 & 3 & 1 & 8 & 7 \end{pmatrix}$$
 in $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 1 & 6 & 7 & 8 & 5 \end{pmatrix}$.

- (a) Določi ciklično strukturo permutacij α in β .
- (b) Določi inverzno permutacijo α^{-1} .
- (c) Zapiši β kot produkt transpozicij in določi njeno parnost.
- (d) Izračunaj permutacije $\alpha * \beta$, $\alpha^2 * \beta^2$ in $\alpha * \beta^2 * \alpha$.
- (e) Določi red permutacije $\alpha * \beta$, tj. najmanjši k, za katerega je $(\alpha * \beta)^k = \mathrm{id}$.
- 2. Dana je permutacija

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 1 & 3 & 7 & 5 & 6 & 4 \end{pmatrix} .$$

- (a) Določi π^{-1} .
- (b) Zapiši π kot produkt samih transpozicij in določi parnost te permutacije.
- (c) Določi π^2 in π^{2022} .
- 3. Dani sta permutaciji

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 5 & 8 & 1 & 7 & 4 & 6 \end{pmatrix} \quad \text{in} \quad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}.$$

- (a) Zapiši α in β z disjunktnimi cikli.
- (b) Zapiši permutacijo $\alpha * \beta * \alpha^{-1}$.
- (c) Ali je $\alpha * \beta = \beta * \alpha$?
- (d) Poišči najmanjše število k, za katerega je $\alpha^k = \mathrm{id}$.
- (e) Poišči najmanjše število m, za katerega je $\beta^m = \mathrm{id}$.
- 4. Dana je permutacija $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 4 & 3 & 6 & 8 & 7 & 2 & 10 & 9 & 1 & 5 \end{pmatrix}$.
 - (a) Določi red permutacije π .
 - (b) Določi permutacije π^2 , π^{20} , π^{201} in π^{2017} .
 - (c) Poišči kako liho in kako sodo permutacijo α , za katero je $\alpha^2 = \pi^2$.
- 5. Poišči vsaj dve permutaciji $\pi \in S_6$, za kateri je

$$\pi^3 = (12)(34)(56)$$
.

6. Dane so permutacije $\alpha=(123)(4567),\,\beta=(1234)$ in $\gamma=(1564)(789)$ ter enačba:

$$\alpha * \pi^2 * \alpha = \beta * \gamma * \alpha^2.$$

- (a) Izračunaj permutacijo π^2 in določi njeno ciklično strukturo.
- (b) Poišči vse možne ciklične strukture permutacije π , ki reši zgornjo enačbo.
- (c) Za vsako možno ciklično strukturo poišči eno rešitev enačbe.