Lebesque measurable set

Def: $E \in M$ if $\forall \Sigma > 0$ I an open set $U \ge E$ s.t. $M_*(U \setminus E) < \Sigma$

 $V \in \mathbb{R} = \mathbb{R}$ 由 Def ,存在开集 $U_K \ge E$ 且 $M_*(U_K \setminus E) < E_K$ \Rightarrow We define $G = \bigcap_{k=1}^n U_k \in G_S$ intersection of countable open sets

We know $G \supseteq E$ Notice $G \setminus E \subseteq U_k \setminus E$ $m_*(G \setminus E) \le m_*(U_k \setminus E) < \varepsilon_k \Longrightarrow m_*(G \setminus E) = 0$

DM is closed under countable intersection / union & complement

For general set E, if $m_(E) < \infty$, then I a set G \in Gs s.t. $E \le G$ and $m_*(E) = m_*(G) = m(G)$, G is called a 节测包

Exercise

Ex1: Suppose $A_1 \subseteq A_2$ and $A_1 \in \mathcal{M}$, $m(A_1) = m_{\frac{1}{2}}(A_2) < \infty$ prove $A_2 \in \mathcal{M}$ Hint: Consider the ##10 of A_2

proof: $\exists A_3 \in M \quad A_3 \ge A_2 \quad \text{and} \quad m(A_3) = m_*(A_2) = m(A_1)$ $m(A_3 \setminus A_1) = m(A_3) = m(A_1) = 0 \implies m_*(A_3 \setminus A_2) = m(A_3 \setminus A_1) = 0$ $\Rightarrow A_3 \setminus A_2 \in M \implies A_2 = A_3 \setminus (A_3 \setminus A_2) = A_3 \cap (A_3 \setminus A_2)^c$

Ex2: E, E₂ Asume $M_*(E_1 \cup E_2) < \infty$ s.t. $M_*(E_1 \cup E_2) = M_*(E_1) + M_*(E_2)$ if & only if $\exists E_1 \subseteq F_1$, $E_2 \subseteq F_2$ s.t. $F_1, F_2 \subseteq M$ and $M(F_1 \cap F_2) = 0$

proof: " \Longrightarrow " $F_i = \mathcal{T} : M \mathcal{D} = f E_i \quad F_i \ge E_i \quad \text{and} \quad m_*(E_i) = m_*(F_i)$ $m(F_i \cup F_2) = m(F_i) + m(F_2) = m(F_i \cap F_2) = 0$ $m(F_i \cup F_2) \ge m(F_i) + m(F_2) \ge m(F_i \cap F_2) \ge 0$ $F_i \cup F_2 \ge E_i \cup E_2 \Longrightarrow m(F_i \cup F_2) \ge m_*(E_i \cup E_2) = m_*(E_i) + m_*(E_2)$

Consider
$$F = \# M \mathbb{P}$$
 of $E_1 \cup E_2$
Ne define $F_1' = F \cap F_1$ $F_2' = F \cap F_2 \in M$
First, we know $O F_1' \supseteq E_1 (i = 1, 2)$
 $O m(F_1' \cap F_2') \le m(F_1 \cap F_2) = 0$
 $O m(E_1 \cup E_2) = m(F) \ge m(F_1' \cup F_2') \ge m(F_1') + m(F_2')$
 $O m(E_1 \cup E_2) = m(F) \ge m(F_1' \cup F_2') \ge m_*(E_1) + m_*(E_2)$

 $= m(F_1) + m(F_2)$

*6 - algebra is a collection of subsets of \mathbb{R}^n which is closed under countable \union and complement

B (Borel sets) is the smallest 6 -algebra countaining all open sets.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function $\iff f^{-1}(u)$ is open if $u \in \mathbb{R}$ is open

Fact: f7(E) is a Borel set if E is a Borel set.

proof: We define $B_1 = \{E \subseteq R \mid f^{\dashv}(E) \text{ is a Borel set }\}$ O if $U \subseteq R$ is open, then $U \in B_1$ B is a σ -algebra $E_1 \in B_1$ $f^{\dashv}(\bigcup_{i=1}^{\infty} E_i) = \bigcup_{i=1}^{\infty} f^{\dashv}(E_i) \in B(R^n)$ $\bigcap_{i=1}^{\infty} E_i \in B_i$ $E \in B_i$ $\Rightarrow E^c \in B_i$

Fact: $B_2 = 6$ - algebra generated by $\{(-\infty, a), a \in \mathbb{R}^d\}$ we have $B_2 = B(\mathbb{R})$

Def (Measurable function): $f: \mathbb{R}^n \to \mathbb{R}$ if $f^{-1}(E)$ is a measurable set. if $E = (-100, \alpha)$, $\alpha \in \mathbb{R}$. property: If f is a measurable function, then f'(E) is measurable with E is a Borel set.

Question

- 1: If f is continuous and E is a Borel set, is it true that f(E) is a Borel set?
- Δ : If f is continuous and E is a Borel set, then f(E) is a measurable set

Def: Recall f is the Cantor function $[0,1] \rightarrow [0,1]$ Of is measurable O \exists non-measurable set $N \subseteq [0,1]$

3 f(c) = [0, 1] (c cantor set)

we consider $C_1 = f^{-1}(N) \cap C \subseteq C$ $m_{*}(C_1) = m_{*}(C) = 0 \implies C_1$ is measurable, but not a Borel set.