Ejercicios Geometría Diferencial

Hugo Del Castillo Mola

11 de enero de 2023

Índice general

1.	Curvas	2
2.	Superficies I	Ę
3.	Superficies II	10

Capítulo 1

Curvas

Ejercicio 1 (25). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular \mathcal{C}^∞ . Demuestra que la recta tangente en cada punto $\alpha(s_0)$ es límite de rectas secantes, es decir, el límite de las rectas que pasan por $\alpha(s_1)$ y $\alpha(s_2)$ cuando s_1 y s_2 tienden a s_0 .

Solución (25). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular \mathcal{C}^∞ , $s_0,s_1,s_2\in I:s_1< s_0< s_2$. Entonces,

$$S \equiv \alpha(s_2) - \alpha(s_1)$$

es la recta secante que pasa por s_1 y s_2 . Si $s_i \to s_0$, $i \in \{1,2\}$ entonces, $s_1 = s_0 - h_1 \xrightarrow{h_1 \to 0} s_0$ y $s_2 = s_0 + h_2 \xrightarrow{h_2 \to 0} s_0$. Consideramos el vector secante unitario

$$\vec{v} = \frac{\alpha(s_2) - \alpha(s_1)}{||s_2 - s_1||}$$

$$= \frac{\alpha(s_0 + h_2) - \alpha(s_0 - h_1)}{||h_2 + h_1||}$$

donde tomando límites

$$\lim_{h_1, h_2 \to 0} \frac{\alpha(s_0 + h_2) - \alpha(s_0 - h_1)}{||h_2 + h_1||}$$

$$= \lim_{h_2 \to 0} \left(\lim_{h_1 \to 0} \frac{\alpha(s_0 + h_2) - \alpha(s_0 - h_1)}{||h_2 + h_1||} \right)$$

$$= \lim_{h_2 \to 0} \frac{\alpha(s_0 + h_2) - \alpha(s_0)}{||h_2||} = \alpha'(s_0)$$

es el vector tangente unitario en $s_0 \in I$.

Ejercicio 2 (35). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ curva p.p.a., $M:\mathbb{R}^3\to\mathbb{R}^3$ movimiento rígido y $\beta=M\circ\alpha$ curva. Demostrar

- (I) M conserva la orientación $\Rightarrow k_{\beta} = k_{\alpha}$, $\tau_{\beta} = \tau_{\alpha}$,
- (II) M invierte la orientación $\Rightarrow k_{\beta} = k_{\alpha}$, $\tau_{\beta} = -\tau_{\alpha}$.

Solución (35). Sea $\beta=(M\circ\alpha)$ donde $\phi:\mathbb{R}^3\to\mathbb{R}^3:t\mapsto\phi(t)=At+\vec{v}$ es un movimiento rígido con A matriz ortonormal asociada a la isometría y $\vec{v}\in\mathbb{R}^3$. Sea α p.p.a entonces,

$$||\beta'|| = ||(M \circ \alpha)'|| = ||A\alpha'|| = ||\alpha'|| = 1$$

 β es p.p.a.. Esto se debe a que

$$d_t M = \frac{d}{dt}(At + \vec{v}) = A$$

$$\Rightarrow d_t(M \circ \alpha) = \frac{d}{dt}(A\alpha(t) + \vec{v}) = A\alpha'(t)$$

y dado que A es ortonormal, es decir, $A^t = A^{-1}$

$$\Rightarrow ||Ax|| = \sqrt{Ax \cdot Ax} = \sqrt{x \cdot A^t A} = ||x||, \ \forall x \in \mathbb{R}^3$$

 $\Rightarrow A$ conserva la norma.

Para la curvatura de β , que es $k_{\beta} = ||\beta''||$, tenemos que

$$k_{\beta} = ||(M \circ \alpha)''|| = ||(A\alpha + \vec{v})''|| = ||A\alpha''|| = ||\alpha''|| = k_{\alpha}$$

dado que A es la matriz asociada a la ismoetría del movimiento rígido M, y conserva la norma. Entonces, $k_{\beta}=k_{\alpha}\Rightarrow$ la curvatura es invariante por movimiento rígido.

Y para la torsión de β que es

$$\tau_{\beta} = (\beta' \times \beta'') \cdot \beta''' = (A\alpha' \times A\alpha'') \cdot A\alpha'''$$

$$= \det(A)A(\alpha' \times \alpha'') \cdot A\alpha'''$$

$$= \det(A)(\alpha' \times \alpha'') \cdot \alpha'''$$

$$= \det(A)\tau_{\alpha}$$

$$\pm \det(A)\tau_{\alpha}$$

esto se debe a que el producto vectorial bajo transformaciones de matrices obedece $(Ba) \times (Bb) = (\det(B))(B^{-1})^t(a \times b), B \in \mathcal{M}_{3\times 3}, a,b \in \mathbb{R}^3$. Luego, A es ortogonal por ser la matriz asociada a una isometría linea $\Rightarrow (A^t)^{-1} = A$. Y $\det(A) = \pm 1$ por ser A matriz ortogonal.

Por tanto, la torsión de β es

$$\tau_{\beta} = \begin{cases} \tau_{\alpha}, \text{ si } A \text{ conserva la orientación} \\ -\tau_{\alpha}, \text{ si } A \text{ invierte la orientación} \end{cases}$$

Ejercicio 3 (40). Sea α una curva C^{∞} con k(s) > 0. Demostrar que el plano osculador en $\alpha(s)$ generado por T(s), N(s) es el límite de los planos que pasan por las tripletas $\alpha(s_1), \alpha(s_2), \alpha(s_3)$ cuando $s_i \to s$.

Solución (40). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular p.p.a., $s_1,s_2,s_3\in I:\alpha(s_1),\alpha(s_2),\alpha(s_3)$ puntos no alineados y $P(s_1,s_2,s_3)$ el plano generado por $\alpha(s_1),\alpha(s_2),\alpha(s_3)$. Sea la curva

$$\phi(s) = \alpha(s) \cdot n(s_1, s_2, s_3), s \in I$$

donde n es el vector unitario perpendicular al plano P. Como

$$\alpha(s_i) \in P(s_1, s_2, s_3) \Rightarrow \phi(s_i) = \alpha(s_i) \cdot n(s_1, s_2, s_3) = 0, \forall i \in \{1, 2, 3\}$$

entonces, por el teorema del Valor Medio

$$\exists c_i \in (s_i, s_{i+1}) : \phi'(c_i) = \alpha'(c_i) \cdot n(s_1, s_2, s_3) = 0, \forall i \in \{1, 2\}$$

Volviendo a aplicar el teorema de Valor Medio

$$\exists t \in (c_1, c_2) : \phi''(t) = \alpha''(t) \cdot n(s_1, s_2, s_3) = 0$$

Por tanto, $n(s_1, s_2, s_3) = \alpha'(c_i) \times \alpha''(t), i \in \{1, 2\}$. Si $s_i \to s_0$ entonces, $n(s_1, s_2, s_3) \to \vec{n} = n(s_0, s_0, s_0) = \alpha'(s_0) \times \alpha''(s_0) \Rightarrow \vec{n}$ es normal al plano generado por α' y α'' , es decir, el límite de los planos que pasan por las tripletas $\alpha(s_1), \alpha(s_2), \alpha(s_3)$ es el plano osculador, generado por T, N.

Capítulo 2

Superficies I

Ejercicio 4 (1). Halla el plano tangente en cada punto de la esfera de radio 2 en \mathbb{R}^3 .

Solución. Sea $\mathbb{S}^2(r) = \{p \in \mathbb{R}^3 : |p - p_0| \le r\}$ con $p_0 \in \mathbb{R}^3$ es la esfera de centro p_0 y radio r.

Sea $f: \mathbb{R}^3 \to \mathbb{R}$ definida por $f(p) = |p-p_0|^2$ y $r \in f(\mathbb{R}^3) \subset \mathbb{R}$. Entonces, $\forall p \in \mathbb{R}^3: f(p) = r$ se tiene que $(df)_p \neq 0$. Por tanto, r es valor regular de f. Luego, $\mathbb{S}^2(r)$ es superfice. En particular, $\mathbb{S}^2(2) = f^{-1}(\{2\})$ es superficie.

Ahora, si $v \in T_p(S)$, entonces $\exists \alpha : (-\epsilon, \epsilon) \to S$ con $\alpha(0) = p$ y $\alpha'(0) = v$. Por tanto, $(f \circ \alpha)(t) = r, \forall t \in (-\epsilon, \epsilon) \Rightarrow (df)_p = (f \circ \alpha)'(0) = 0 \Rightarrow v \in \ker(df)_p$. Como $T_p(S) \subset \ker(df)_p$ y ambos son subespacios lineales de dimensión dos, entonces $T_p(S) = \ker(df)_p$.

Ejercicio 5 (2). *Sea* $S = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 - y^2\}$. *Demostrar que*

- (I) S es una superficie
- (II) $\varphi:\mathbb{R}^2\to\mathbb{R}^3$ definida por $\varphi(u,v)=(u+v,u-v,4uv)$ es una parametrización de S y dibujar las líneas coordenadas.

Solución.

(I) Sea $f: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ definida por

$$f(x,y) = x^2 - y^2.$$

La aplicación es diferencible y

$$S = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in U, z = f(x, y)\}\$$

$$= \{(x, y, z) \in \mathbb{R}^3 : z = x^2 - y^3\}$$

es la gráfica de f. Luego, $X:U\to S:(u,v)\mapsto (u,v,f(u,v))$ es parametrización de S. Entonces, S es una superficie.

(II) $\varphi = X \circ h$ donde $h : \mathbb{R}^2 \to \mathbb{R}^2$ definida por h(u,v) = (u+v,u-v). Como X es parametrización $\Rightarrow X$ difeomorfismo y h es difeomorfismo, entonces φ es difeomorfismo con $\varphi(\mathbb{R}^2) = S \Rightarrow \varphi$ es parametrización.

Ejercicio 6 (3). Parametrizar el elipsoide

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, \quad a, b, c > 0$$

Además, para cada plano Ax + By + Cz = 0 encontrar los puntos del elipsoide cuyo plano tangente es paralelo.

Solución. Sea el conjunto de puntos del elipsoide

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \right\}$$

y sea una función

$$f: \mathbb{R}^3 \to \mathbb{R}: (x, y, z) \mapsto \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1$$

Entonces, $f^{-1}(0) = S$ donde 0 es valor regular ya que

$$\nabla f(x, y, z) = \left(\frac{2x}{a^2}, \frac{2y}{b^2}, \frac{2z}{c^2}\right) \neq 0, \quad \forall (x, y, z) \in f^{-1}(0)$$

y por tanto, S es una superficie.

Ahora, el plano tangente de S es el núcleo de $(df)_p$. Sea $p=(p_1,p_2,p_3)\in S$. Entonces,

$$T_p S = \ker(df)_p$$

$$= \left\{ (v_1, v_2, v_3) \in \mathbb{R}^3 : \left(\frac{2p_1}{a^2}, \frac{2p_2}{b^2}, \frac{2p_3}{c^2} \right) \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = 0 \right\}$$

$$= \left\{ (v_1, v_2, v_3) \in \mathbb{R}^3 : \frac{2p_1}{a^2} \cdot v_1 + \frac{2p_2}{b^2} \cdot v_2 + \frac{2p_3}{c^2} \cdot v_3 = 0 \right\}$$

es un plano tangente a S en el punto p que pasa por el origen. Luego, los puntos del elipsoide cuyo plano tangente es paralelo a Ax + By + Cz = 0 serán

$$\left\{ (p_1, p_2, p_3) \in S : \frac{2p_1}{a^2} = A \cdot k, \frac{2p_2}{b^2} = B \cdot k, \frac{2p_3}{c^2} = C \cdot k, \quad k \in \mathbb{R} \right\}$$

ya que dos planos son paralelos si y solo si sus vectores normales son paralelos.

Ejercicio 7 (4). Sea $V=\{(\theta,\phi):\theta\in(0,\pi),\phi\in(0,2\pi)\}$, $X:V\to\mathbb{R}^3$ definida por

$$X(\theta, \phi) = (\operatorname{sen}(\theta) \cos(\phi), \operatorname{sen}(\theta) \sin(\phi), \cos(\theta)).$$

Demostrar que X es una parametrización de un abierto de la esfera.

Solución. Es claro que $X(V) \subset \mathbb{S}^2$. Veamos que X es una parametrización de S.

Primero, X es diferenciable y tiene derivadas parciales continuas. Por tanto, X es diferenciable. Además,

$$X_{\theta} = (\cos(\theta)\cos(\phi), \cos(\theta)\sin(\phi), -\sin(\theta))$$

$$X_{\phi} = (-\sin(\theta)\sin(\phi), \sin(\theta)\cos(\phi), 0)$$

$$X_{\theta} \times X_{\phi} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \cos(\theta)\cos(\phi) & \cos(\theta)\sin(\phi) & -\sin(\theta) \\ -\sin(\theta)\sin(\phi) & \sin(\theta)\cos(\phi) & 0 \end{vmatrix}$$

$$= (-\sin^{2}(\theta)\cos^{2}(\phi), -\sin^{2}(\theta)\sin(\phi), \cos(\theta)\sin(\theta))$$

$$X_{\theta} \times X_{\phi} = \sqrt{\sin^{4}(\theta)\cos^{2}(\phi) + \sin^{4}(\theta)\sin^{2}(\phi) + \cos^{2}(\theta)\sin^{2}(\theta)}$$

$$= \sin^{4}(\theta) + \cos^{2}(\theta)\sin^{2}(\theta)$$

$$= \sin^{2}(\theta)$$

Entonces, $X_{\theta} \times X_{\phi} = 0 \Leftrightarrow \operatorname{sen}^2(\theta) = 0$. Pero $\forall \theta \in (0,\pi), \operatorname{sen}^2(\theta) \neq 0$. Por tanto, $(dX)_p$ son linealmente independientes $\forall p \in V$. Falta ver que X es continua y tiene inversa continua.

(ESCRIBIR BIEN INTERVALOS) Como $(0,0),(0,2\pi),(\pi,0),(\pi,2\pi)\not\in V$ definimos $\mathbb{S}^2\setminus C$ donde C es el semicírculo

$$\{(x, y, z) \in \mathbb{S}^2 : y = 0, x \ge 0\}.$$

Entonces, X es continua en $\mathbb{S}^2 \setminus C$ y por el teorema de la función inversa $\Rightarrow X$ tiene inversa X^{-1} en $\mathbb{S}^2 \setminus C$. Satisfechas las condiciones anteriores y siendo X inyectiva, tenemos que X^{-1} es continua. Por tanto, X es una parametrización de $\mathbb{S}^2 \setminus C$.

Ejercicio 8 (5). Una forma de definir un sistema de coordenadas para la esfera \mathbb{S}^2 , dada por $x^2+y^2+(z-1)^2=1$, es considerar la proyección estereográfica $\pi:\mathbb{S}^2\setminus\{N\}\to\mathbb{R}^2$ que lleva el punto p=(x,y,z) de la esfera $\mathbb{S}^2\setminus\{N\}$ donde N=(0,0,2) a la intersección del plano XY con la línea recta que conecta N con p. Sea $(u,v)=\pi(x,y,z)$ donde $(x,y,z)\in\mathbb{S}^2\setminus\{N\}$ y $(u,v)\in XY$.

(I) Mostrar que $\pi^{-1}:\mathbb{R}^2 o \mathbb{S}^2$ viene dada por

$$\pi^{-1} \begin{cases} x = \frac{4u}{u^2 + v^2 + 4} \\ y = \frac{4v}{u^2 + v^2 + 4} \\ z = \frac{2(u^2 + v^2)}{u^2 + v^2 + 4} \end{cases}$$

(II) Mostrar si es posible, usando la proyección estereográfica, cubrir la esfera con dos entornos coordenados.

Solución.

(I) Dado $q \in XY$ tal que $q = (q_1, q_2)$ hallamos el punto $p \in \mathbb{S}^2 : \pi(p) = q$. Buscamos el punto de intersección entre la esfera \mathbb{S}^2 y la recta r que une q con N. Una parametrización de la recta puede ser

$$r \equiv \begin{pmatrix} q_1 \\ q_2 \\ 0 \end{pmatrix} + \begin{pmatrix} -q_1 \\ -q_2 \\ 2 \end{pmatrix} t$$

entonces, $\forall (x, y, z) \in r$ tenemos que

$$x = q_1(1-t), \quad y = q_2(1-t), \quad z = 2t$$

Sustituimos en la ecuación de la esfera $x^2+y^2+(z-1)^2=1$ para hallar el punto de intersección

$$q_1^2(1-t)^2 + q_2^2(1-t)^2 + (2t-1)^2 = 1$$

$$(q_1^2 + q_2^2)(1-t)^2 + (2t-1)^2 = 1$$

$$(q_1^2 + q_2^2)(1-t)^2 = 4t(1-t)$$

$$(q_1^2 + q_2^2)(1-t) = 4t$$

$$q_1^2 + q_2^2 = t(4+q_1^2+q_2^2)$$

$$\Rightarrow t = \frac{q_1^2 + q_2^2}{4+q_1^2+q_2^2}$$

$$\Rightarrow x = \frac{4q_1}{q_1^2 + q_2^2 + 4}, \quad y = \frac{4q_2}{q_1^2 + q_2^2 + 4}, \quad z = \frac{2(q_1^2 + q_2^2)}{q_1^2 + q_2^2 + 4}$$

(II) Se puede cubrir la esfera usando dos parametrizaciones, una X usando N=(0,0,2) y otra Y usando S=(0,0,0).

Ejercicio 9 (11). Ejemplo 4 sección 2.3 do Carmo

Solución. Sea $X(u,v) = (f(v)\cos(u), f(v)\sin(u), g(v))$. Entonces,

$$X_u \times X_v = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -f(v)\operatorname{sen}(u) & f(v)\operatorname{cos}(u) & 0 \\ f'(v)\operatorname{cos}(u) & f'(v)\operatorname{sen}(u) & g'(v) \end{vmatrix}$$

$$= (f(v)g'(v)\cos(u), f(v)g'(v)\sin(u), -f(v)f'(v))$$

Entonces, $X_u \times X_v \neq 0 \Leftrightarrow f'(v), g'(v) \neq 0$. Para ello es condición suficiente que φ sea curva regular.

Capítulo 3

Superficies II

Ejercicio 10 (1). Sea $S,S'\subset\mathbb{R}^3$ superficies, $\alpha:I\to S$ una curva diferenciable, $f:S\to S'$ aplicación diferenciable. Demostrar que $f\circ\alpha:I\subset\mathbb{R}\to S'$ es una curva diferenciable.

Solución. Ejemplo 2.39 Sebastian

Ejercicio 11 (2). Construir un difeomorfismo entre la esfera y el elipsoide

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Hallar su diferencial.

Solución. Sea la esfera

$$\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$$

y el elipsoide

$$E = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\}$$

 $y f: \mathbb{S}^2 \to E$ definida por

$$f(x, y, z) = (ax, by, cz).$$

Vemos que f está bien definida. Si $(x, y, z) \in \mathbb{S}^2$, entonces

$$x^2 + y^2 + z^2 = 1$$

Ahora, f(x, y, z) = (x', y', z') tal que

$$x' = ax$$
, $y' = by$, $z' = cz$

$$\Rightarrow x = \frac{x'}{a}, \quad y = \frac{y'}{b}, \quad z = \frac{z'}{c}$$

entonces,

$$\frac{x'^2}{a^2} + \frac{y'^2}{b^2} + \frac{z'^2}{c^2} = 1$$

por tanto, $(x',y',z')=f(x,y,z)\in E.$ Y por el teorema de la función inversa, f es un difeomorfismo. Su diferencial $(df)_p:T_p(\mathbb{S}^2)\to T_{f(p)}(E)$ es

$$(df)_p = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$$

Ejercicio 12 (4). Sea $M \subset \mathbb{R}^3$ una superficie y $p_0 \not\in M$. Se define la función $f: M \to \mathbb{R}$ como

$$f(p) = |p - p_0|^2, \quad \forall p \in M.$$

Demostrar que $(df)_p(w)=2w\cdot (p-p_0), \forall w\in T_p(M)$. Demostrar también que $p\in M$ es punto crítico de $f\Leftrightarrow p_0^{\vec{}}p$ es normal a M.

Solución. Sea $p \in M, w \in T_p(M), \alpha : (-\epsilon.\epsilon) \to M$ curva tal que $\alpha(0) = p$ y $\alpha'(0) = w$. Entonces, para $p_0 \in \mathbb{R}^3 \setminus M$, tenemos por la regla de la cadena que

$$(df)_p(w) = \frac{d}{dt}|\alpha(t) - p_0|^2$$
$$= 2(\alpha'(0) \cdot (\alpha(0) - p_0))$$
$$= 2(w \cdot (p - p_0))$$

Como $(df)_p(w)=0 \Leftrightarrow p$ es punto crítico. Entonces, p es punto crítico $\Leftrightarrow 2(w\cdot (p-p_0))=0$. Es equivalente a que $p\vec{p}_0$ sea normal a M.

Ejercicio 13 (5). Demostrar que si todas las rectas normales a una superficie M conexa concurren en un punto $p_0 \in \mathbb{R}^3$, entonces M está contenida en una esfera de centro p_0 .

Solución. *Sea* $f: M \to \mathbb{R}$ *definida por*

$$f(p) = |p - p_0|^2, \quad \forall p \in M.$$

Como todas las rectas normales a M en p pasan por p_0 , entonces $\forall p \in M, p$ es un punto crítico $\Rightarrow (df)_p = 0$. Ahora, M conexa y $(df)_p = 0, \forall p \in M \Rightarrow f$ es constante. Entoces, $\exists R > 0$ tal que

$$f(p) = |p - p_0|^2 = R, \quad \forall p \in M$$

Por tanto, $\forall p \in M, p \in \mathbb{S}^2(p_0, R)$.

Ejercicio 14 (6). Dos superficies regulares S_1, S_2 se cortan transversalmente si $T_p(S_1) \neq T_p(S_2), \forall p \in S_1 \cap S_2$. Demostrar que si S_1 corta transversalmente a S_2 , entonces $S_1 \cap S_2$ es una superficie regular.

Solución. Como toda superficie es localmente el grafo de una función diferenciable, S_1 viene dada por f(x,y,z)=0 y S_2 viene dado por g(x,y,z)=0 en un entorno de p, donde 0 es un valor regular de f y g. En este entorno de p, $S_1\cap S_2$ viene dado por la imagen inversa de (0,0) de la aplicación $F:\mathbb{R}^3\to\mathbb{R}^2: F(q)=(f(q),g(q)).$ Dado que S_1 y S_2 se cortan transversalmente, los vcetores normales (f_x,f_y,f_z) y (g_x,g_y,g_z) son linealmente independientes. Por tanto, (0,0) es una valor regular de F y $S_1\cap S_2$ es una curva regular.

REVISAR

Ejercicio 15 (Evaluación Continua). Sea $S \subset \mathbb{R}^3$ superficie. Demostrar que

- 1. Si $X:U\subset\mathbb{R}^2\to S$ es una parametrización y $h:V\subset\mathbb{R}^2\to U\subset\mathbb{R}^2$ es difeomorfismo, entonces $X\circ h:V\to S$ es parametrización.
- 2. Sea $S' \subset \mathbb{R}^3$ superficie. Si $X: U \subset \mathbb{R}^2 \to S$ es parametrización y $\phi: S \to S'$ difeomorfismo, entonces $\phi \circ X: U \to S'$ es parametrización de S'.
- 3. $Y:U\subset\mathbb{R}^2\to S$ parametrización de $Y(U)\Leftrightarrow Y$ es un difeomorfismo.

Solución.

- 1. Lo vemos usando la definición. Debemos comprobar que
 - a) $X \circ h$ es diferenciable.

X es parametrización $\Rightarrow X$ es diferenciable y h difeomorfismo $\Rightarrow h$ diferenciable. Por tanto, $X \circ h$ es diferenciable ya que la composición de aplicaciones diferenciables es diferenciable.

b) $X \circ h$ es homeomorfismo.

X parametrización $\Rightarrow X$ homeomorfismo y h difeomorfismo $\Rightarrow h$ homeomorfismo diferenciable con inversa diferenciable. Entoces, $X \circ h$ es homeomorfismo ya que la composición de homeomorfismos es homeomorfismo.

c) $d(X \circ h)$ es inyectiva.

X parametrización $\Rightarrow (dX)_q$ es inyectiva y h difeomorfismo $\Rightarrow (dh)_p$ es inyectiva (*). Como la composición de funciones inyectivas es inyectiva, entonces $d(X \circ h)$ es inyectiva.

Por tanto, $X \circ h$ es parametrización.

- 2. Usamos que Y es parametrización $\Leftrightarrow Y$ es difeomorfismo. Como X parametrización $\Rightarrow X$ difeomorfismo, entonces $\phi \circ X$ es difeomorfismo por ser composición de difeomorfismos. Por tanto, $\phi \circ X$ difeomorfismo $\Rightarrow \phi \circ X$ parametrización.
- 3. (\Rightarrow) Si $Y:U\subset\mathbb{R}^2\to S$ es una parametrización, entonces

$$Y^{-1}:Y(U)\to\mathbb{R}^2$$

es diferenciable. Además, $\forall p \in Y(U)$, $\forall Z: V \subset \mathbb{R}^2 \to S$ parametrización,

$$Y^{-1} \circ Z : Z^{-1}(W) \to Y^{-1}(W)$$

donde $W=Y(U)\cap Z(V)$, es diferenciable. Por tanto, U y Y(U) son difeomorfos.

(\Leftarrow) Sea $S\subset\mathbb{R}^3$ superficies. Si $Y:U\subset\mathbb{R}^2\to S$ es difeomorfismo, entonces Y es diferenciable, Y es homeomorfismo y $(dY)_p$ (*) es inyectiva. Por tanto, Y es parametrización de S.

(*)