Aritmética computacional - Aula5

Nicolas Chagas Souza

05/08/2022

Representação de números decimais em binário:

$$5, 5_{10} = 101, 1_2$$

Um número está representado em notação científica quando se encontra na forma $\pm F \times 10^E$, e encontra-se na forma **normalizada** quando 0 < F < 10. O F denota a mantissa, também chamada de fração ou significando, e o E denota o expoente.

Para representar números binários utilizamos a base 2, logo, a representação de números binários em notação científica é da forma $\pm 1, zzzz... \times 2^{yyyy...}$.

$$5,5_{10}=1,011\times 2^2$$

Representação IEEE754

A representação de números em pontos flutuantes segue o padrão IEEE754, que consiste em registrar os valores de:

- Mantissa (ou fração)
- Expoente
- Sinal

Que são utilizados para calcular o número da seguinte forma:

$$(-1)^S \times (1+F) \times 2^{E-bias}$$

Um número de ponto flutuante é representado por uma palavra (32 bits) da seguinte forma:

31	30 23	22 0
Sinal (1 bit)	Expoente (8 bits)	Fração (22 bits)

Sendo o bit de sinal 0 para números positivos e 1 para números negativos.

Essa representação de ponto flutuante é chamada de precisão simples.

É possível representar em precisão dupla (double), que utiliza dois registradores para representação.

31	30 19	18 0 31 0
Sinal (1 bit)	Expoente (11 bits)	Fração (52 bits)

O padrão IEEE754 estabelece os seguintes casos particulares:

Single precision		Double precision		Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	± denormalized number
1–254	Anything	1–2046	Anything	± floating-point number
255	0	2047	0	± infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

Exemplos

$$5, 5_{10} = 101, 1_2 = 1,011 \times 2^2$$

Sinal	Expoente	Fração
+	2	011

Sinal	Expoente (8 bits)	Fração (22 bits)
0	000 0001 0	011 0000 0000 0000 0000 0000

$$9,25_{10}=1001,01_2=1,00101\times 2^3$$

Sinal	Expoente	Fração
+	3	00101

Sinal	Expoente (8 bits)	Fração (22 bits)
)	000 0001 1	001 0100 0000 0000 0000 0000

Se usássemos complemento a 2 para representar os expoentes negativos, perderíamos a propriedade de que os binários ordenados implicam pontos flutuantes ordenados. Por esse motivo, o expoente é representado por excesso.

- Precisão simples: A representação dos expoentes válidos vai de 1 a 254, utilizamos um deslocamento (bias) de 127 unidades.
- Precisão dupla: A representação dos expoentes válidos vai de 1 a 2046, utilizamos um deslocamento (bias) de 1023 unidades.

$$0, 5_{10} = 0, 1_2 = 1 \times 2^{-1}$$

Sinal	Expoente	Fração
+	$-1 \rightarrow -1 + 127 = 126$	0

Sinal	Expoente (8 bits)	Fração (22 bits)
0	011 1111 0	000 0000 0000 0000 0000 0000

Intervalos de representação

Precisão simples

Os menor e maior números representáveis em precisão simples são:

\overline{S}	E + 127	F	Decimal
			$1, 0 \times 2^{-126} \approx 1, 2 \times 10^{-38}$ $1, 1 \times 2^{127} \approx 3, 4 \times 10^{38}$

E em precisão dupla, temos:

S	E + 1023	F	Decimal
0	000 0000 0000	000 0000	$1, 0 \times 2^{-1022} \approx$
0	111 1111 0000	111 1111	$2,2 \times 10^{-308}$ $1,1\times 2^{1023} \approx 1,8\times 10^{308}$