1. Show that if rank(A) = q, then

$$E[RSS_H - RSS] = \sigma^2 q + (A\beta)' (A(X'X)^- A')^{-1} (A\beta)$$

PROOF. First observe that from section 3.8.1 and using formula 4.3, $\hat{\beta}_H = \hat{\beta} + (X'X)^{-1}A'[A(X'X)^{-1}A']^{-1}(A\hat{\beta} - c)$, we find,

$$RSS_{H} - RSS = ||\hat{Y} - \hat{Y}_{H}||^{2}$$

$$= (\hat{\beta} - \hat{\beta}_{H})'X'X(\hat{\beta} - \hat{\beta}_{H}).$$

$$= (\hat{\beta} - \hat{\beta} + (X'X)^{-1}A'[A(X'X)^{-1}A']^{-1}(A\hat{\beta} - c))'X'X(\hat{\beta} - \hat{\beta} + (X'X)^{-1}A'[A(X'X)^{-1}A']^{-1}(A\hat{\beta} - c))$$

$$= ((X'X)^{-1}A'[A(X'X)^{-1}A']^{-1}(A\hat{\beta} - c))'X'X((X'X)^{-1}A'[A(X'X)^{-1}A']^{-1}(A\hat{\beta} - c))$$

$$= (A\hat{\beta} - c)'[A(X'X)^{-1}A']^{-1}A(X'X)^{-1}X'X((X'X)^{-1}A'[A(X'X)^{-1}A']^{-1}(A\hat{\beta} - c))$$

$$= (A\hat{\beta} - c)'[A(X'X)^{-1}A']^{-1}A((X'X)^{-1}A'[A(X'X)^{-1}A']^{-1}(A\hat{\beta} - c))$$

$$= (A\hat{\beta} - c)'[A(X'X)^{-1}A']^{-1}(A\hat{\beta} - c).$$

Next, from section 2.2 in the text, we know that $\hat{\beta} \sim N_p(\beta, \sigma^2(X'X)^{-1})$ and thus, $A\hat{\beta} \sim N_p(A\beta, \sigma^2A(X'X)^{-1}A')$. Then if we let $Z = A\hat{\beta} - c$ and $B = A(X'X)^{-1}A'$, we get that

$$E[Z] = A\beta - c,$$
 $Var[Z] = Var[A\hat{\beta}] = \sigma^2 B.$

Now we refer to theorem 1.5 which shows the form of the expected value of quadratics forms,

$$E[RSS_H - RSS] = E[(A\hat{\beta} - c)'[A(X'X)^{-1}A']^{-1}(A\hat{\beta} - c))$$

$$= E[Z'B^{-1}Z]$$

$$= tr(\sigma^2B^{-1}B) + (A\beta - c)'B^{-1}(A\beta - c)$$

$$= tr(\sigma^2I_q) + (A\beta - c)'B^{-1}(A\beta - c)$$

$$= \sigma^2q + (A\beta - c)'B^{-1}(A\beta - c)$$

$$= \sigma^2q + (A\beta - c)'[A(X'X)^{-1}A']^{-1}(A\beta - c)$$

2. Let

$$Y_1 = \theta_1 + \theta_2 + \epsilon_1$$

$$Y_2 = 2\theta_2 + \epsilon_2$$

$$Y_3 = -\theta_1 + \theta_2 + \epsilon_3$$

where the ϵ_i are iid $N(0, \sigma^2)$. Derive the F statistic for testing the hypothesis $H: \theta_1 = 2\theta_2$.

SOLUTION.

3. Given the two regression lines

$$Y_{ki} = \beta_k + \epsilon_{ki}, \qquad k = 1, 2, \dots, n.$$

show that the F statistic for testing $H:\beta_1=\beta_2$ can be written as

$$F = \frac{(\hat{\beta}_1 - \hat{\beta}_2)^2}{(2S^2(\sum_i x_i^2)^{-1})}.$$

Obtain RSS and RSS_H and verify that $RSS_H - RSS = \sum_i x_i^2 (\hat{\beta}_1 - \hat{\beta}_2)^2/2$

SOLUTION.

4. Prove that $(RSS_H - RSS)/\sigma^2$ has a non-central chi-squared distribution with non-centrality parameter,

$$\lambda = \mu'(P_{\Omega} - P_{\omega})\mu/2\sigma^2.$$

SOLUTION.