MATH 644

Chapter 4

SECTION 4.1: INTEGRATION ON CURVES

Contents

Curves In The Complex Plane	2
Integration On Complex Curves	Ę
Cycles	7
Integration and Arc-Length	g

Created by: Pierre-Olivier Parisé Spring 2023

CURVES IN THE COMPLEX PLANE

DEFINITION 1. A curve is a continuous map $\gamma: I \subset \mathbb{R} \to \mathbb{C}$, where I is (mostly) a closed interval.

Example 2.

- a) The circle of radius r and centered at $z_0 \in \mathbb{C}$ is a curve, where $\gamma(t) = z_0 + re^i t$, with $t \in [0, 2\pi]$.
- b) A straigth line joining a to b is a curve, where $\gamma(t) = (1-t)a + tb$, with $t \in [0,1]$.

Notes:

- Different curves can have the same image. [Example:
- Use the symbol γ interchangeably to denote the image and the curve itself.
- Arrows on the image γ show how a parametrization $\gamma(t)$ traces the image as $t \in I$ increases.

DEFINITION 3.

- i) A curve γ is an arc if it is one-to-one.
- ii) A curve $\gamma:[a,b]\to\mathbb{C}$ is closed if $\gamma(a)=\gamma(b)$.
- iii) A curve $\gamma:[a,b]\to\mathbb{C}$ is simple if $\gamma:[a,b)\to\mathbb{C}$ is one-to-one.

Example 4.

- a) Is $\gamma(t) = a(1-t) + bt$, $0 \le t \le 1$ an arc, closed, or simple?
- **b)** Is $\gamma(t) = t^2$, $-1 \le t \le 1$ an arc, closed, or simple?
- c) Is $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$ is an arc, closed, or simple?

DEFINITION 5. A curve $\gamma(t) = x(t) + iy(t)$ is called piecewise continuously differentiable if $\gamma'(t) = x'(t) + iy'(t)$

- i) exists and is continuous except for finitely many t;
- ii) x' and y' have one-sided limits at the exceptional points.

Notes: If γ is piecewise continuously differentiable, then for $t_1 \neq t_2$,

• we have

$$\gamma(t_2) - \gamma(t_1) = \int_{t_1}^{t_2} x'(t) dt + i \int_{t_1}^{t_2} y'(t) dt.$$

• $\gamma'(t_1)$ is tangent to γ at $\gamma(t_1)$.

DEFINITION 6. A curve $\psi:[c,d]\to\mathbb{C}$ is called a reparametrization of a curve $\gamma:[a,b]\to\mathbb{C}$ if there is a one-to-one, onto, increasing function $\alpha:[a,b]\to[c,d]$ such that

$$\psi(\alpha(t)) = \gamma(t) \quad \forall t \in [a, b].$$

Example 7.

- a) Show that $\psi(t) = t^2 + it^4$ $(0 \le t \le 1)$ is a reparametrization of $\gamma(t) = t + it^2$ $(0 \le t \le 1)$.
- **b)** If $\sigma:[0,1]\to\mathbb{C}$ is a curve, then show that $\beta:[0,1]\to\mathbb{C}$ defined by $\beta(t)=\sigma(1-t)$ is not a reparametrization of σ .
- c) Show that any curve $\gamma:[a,b]\to\mathbb{C}$ can be reparametrized to a curve $\psi:[0,1]\to\mathbb{C}$.

Notes:

• If ψ is a piecewise continuously differentiable reparametrization of a piecewise continuously differentiable curve γ with α also piecewise continuously differentiable, then

$$\psi'(\alpha(t))\alpha'(t) = \gamma'(t).$$

INTEGRATION ON COMPLEX CURVES

DEFINITION 8. If $\gamma:[a,b]\to\mathbb{C}$ is a piecewise continuously differentiable curve and f is a continuous \mathbb{C} -valued function on the image γ , then

$$\int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

EXAMPLE 9. Compute $\int_{\gamma} \frac{1}{z} dz$, where γ is the circle of radius 1/2 centered at the origin.

THEOREM 10. The integral of a continuous function over a piecewise continuously differentiable curve does not depend on the parametrization.

Proof.

Definition 11. If $\gamma:[a,b]\to\mathbb{C}$ is a curve, then $-\gamma:[-b,-a]\to\mathbb{C}$ is a curve defined by $-\gamma(t):=\gamma(-t).$

<u>Picture</u>

- $-\gamma$ has the same image as γ ;
- However, $-\gamma$ traces the image in the opposite direction.

Notes:

- Another way to "inverse" the direction: $\sigma(t) := \gamma(ta + (1-t)b)$, for $0 \le t \le 1$.
- If γ is a piecewise continuously differentiable curve, then

$$\int_{-\gamma} f(z) dz = -\int_{\gamma} f(z) dz.$$

DEFINITION 12. If $\gamma_1, \gamma_2, \ldots, \gamma_n$ are curves defined on [0, 1], then we define their **sum** or **union** $\gamma : [0, n] \to \mathbb{C}$ by setting

$$\gamma(t) := \begin{cases} \gamma_1(t) & 0 \le t < 1 \\ \gamma_2(t-1) & 1 \le t < 2 \\ \vdots \\ \gamma_j(t-j+1) & j-1 \le t < j \\ \vdots \\ \gamma_n(t-n+1) & n-1 \le t \le n. \end{cases}$$

COROLLARY 13. If

- f is continuous on each γ_j $(1 \le j \le n)$;
- each γ_j is piecewise continuously differentiable and;
- γ is defined as above,

then

$$\int_{\gamma} f(z) dz = \sum_{j=1}^{n} \int_{\gamma_j} f(z) dz.$$

Notes:

- From the last Corollary, we will also denote the union of finitely many curves γ_j as $\gamma := \sum_j \gamma_j$.
- If α , β and γ are three curves, then

$$-\alpha + \beta = \beta + \alpha;$$

$$-(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma).$$

• In particular, for γ a piecewise continuously differentiable curve, we have

$$\int_{\gamma+(-\gamma)} f(z) dz = \int_{\gamma} f(z) dz - \int_{\gamma} f(z) dz = 0.$$

DEFINITION 14. A cycle $\gamma = \sum_{j=1}^{n} \gamma_j$ is a finite union of closed curves $\gamma_1, \ldots, \gamma_n$.

EXAMPLE 15. Let S_1 and S_2 be two (closed) squares such that $S_1 \cap S_2 = \emptyset$. Show that $\partial(S_1 \cup S_2)$ is a cycle.

COROLLARY 16. If S_1 and S_2 are two (closed) squares sharing exactly one side. Show that, for every continuous function defined on $\partial S_1 \cup \partial S_2$,

$$\int_{\partial S_1} f(z) dz + \int_{\partial S_2} dz = \int_{\partial (S_1 \cup S_2)} f(z) dz$$

where ∂S_1 , ∂S_2 and $\partial (S_1 \cup S_2)$ are parametrized in the counter-clockwise direction.

INTEGRATION AND ARC-LENGTH

DEFINITION 17. If $\gamma:[a,b]\to\mathbb{C}$ is a piecewise continuously differentiable curve, and if f is a continuous complex-valued function defined on the image of γ , then we define

$$\int_{\gamma} f(z)|dz| := \int_{a}^{b} f(\gamma(t))|\gamma'(t)| dt.$$

Note:

• The length of a piecewise continuously differentiable curve $\gamma:[a,b]\to\mathbb{C}$ is defined by

$$\ell(\gamma) = |\gamma| := \int_{\gamma} |dz|.$$

Properties:

a) If γ is piecewise continuously differentiable and f is continuous on γ , then

$$\left| \int_{\gamma} f(z) \, dz \right| \le \int_{\gamma} |f(z)| \, |dz|.$$

b) If γ is piecewise continuously differentiable and f is continuous on γ , then

$$\left| \int_{\gamma} f(z) \, dz \right| \le \left(\sup_{\gamma} |f(z)| \right) \ell(\gamma).$$

c) If γ is piecewise continuously differentiable and (f_n) is a sequence of continuous function on γ such that $f_n \to f$ uniformly on γ , then

$$\lim_{n \to \infty} \int_{\gamma} f_n(z) \, dz = \int_{\gamma} f(z) \, dz.$$

d) Integration on piecewise continuously differentiable curves is linear.