AMFitzgerald Company Overview

January 2014

Mission: Your Partner in MEMS Product Development

Company background

- Founded 2003 by Alissa M.
 Fitzgerald, self-funded
- Burlingame, CA: near SFO and Silicon Valley
- Goal: to be the premier MEMS product development firm
- Consistent growth
 - Over 120 clients served to date
- Active member of the MEMS Industry Group

Headquarters in Burlingame, CA

Fab operations at UC Berkeley Marvell Nanolab

Our value

- First time developing MEMS?
 - We can provide the complete solution
- Improving your MEMS product?
 - Let us optimize your design
- Investing in MEMS?
 - Valuable insight from expert practitioners
- Our competitive advantage
 - A complete MEMS solution
 - Expert design and process engineers

A complete solution from concept to production

- Make vs. buy decisions; technology roadmaps
- R&D management, multi-disciplinary engineering team
- Design and process integration for volume production
- In-house prototype fabrication (150 mm wafers) by our engineers, not operators
- Smooth transition to production partners

Production solutions

A menu to satisfy different customer needs

Full custom low volume

Open search for foundry partner

Full custom high volume

Open search for foundry partner

Fast time to market with foundry-specific design

Faster time to market with semi-custom sensors

Fastest time to market with standardized 200mm process

Process flexibility

Speed to market

A new era in MEMS development

- MEMS solutions for OEMs and system integrators
 - ISO-certified foundries
 - Verified reference designs
 - Cost-effective multi project wafer runs
- Customer supplies sensor spec, AMFitzgerald delivers customized chips run on established foundry process
- First run: pressure sensors at Silex Microsystems
- More sensors and more foundries in the future...

Our diverse customer base

MEMS type core competencies

Sensor types

- Motion, pressure, acoustic, infrared, magnetic, radiation, resonators, chemical
- Transduction principles
 - Piezoresistive, piezoelectric, electrostatic, capacitive
- Actuators
 - Electrostatic, piezoelectric
- Microfluidics
- Micromolds and surface texturing

AMFitzgerald Client Products

Cantimer OSMO Dehydration Sensor

Fluxion Biosciences BioFlux product

NNTS C-Scout product

MEMS process core competencies

- All MEMS process techniques
- Process specialties:
 - Thick lithography
 - High aspect ratio silicon etch
 - Sacrificial release by vapor HF or XeF2
 - Aluminum nitride and other new materials
 - Silex Sil-Via TSV
 - Laser and abrasive drilling
 - Stealth dicing
- Managing risk and uncertainty of MEMS R&D

MEMS design core competencies

- ANSYS Multiphysics
- Tanner EDA L-Edit
- SoftMEMS
- Matlab
- Proprietary fracture prediction
- Intelligent use of simulation to minimize risk and reduce fab cycles
 - Management of uncertainty in MEMS material properties

Package-induced stresses

Magnetic field of inductor coils

Case studies: Design and process integration

Accelerometer:

- Design to specification
- Fabrication on the InvenSense NF Shuttle

Microfluidic pump:

- Redesign to lower cost of fabrication
- Prototype, then foundry transfer

Process improvement:

 Improved DRIE aspect ratio from 20:1 to 46:1 on existing toolset

Case study: From concept to manufacturing

Cantimer dehydration sensor

Development

- First prototypes functional (7 layer process)
- Piezoresistor value matched simulation

Foundry Transfer

- Bidding and diligence process with five foundries
- Die shrink
- Transfer of AMFitzgerald prototype enabled > 90% yield on the first run

Fabricated Sensor (Viewed From Above)

Business process: custom R&D

- Initial meeting: fit and scope of work
- Detailed project plan and cost proposal provided
- Project performed in discrete Phases to minimize risk
 - Phase 1: Design exploration
 - Phase 2: Prototype fabrication 1
 - Phase 3: Test and design iteration
 - Phase 4: Prototype fabrication 2
 - Etc.
- Collaborative interactions
- Client owns all work product and intellectual property
 - Including masks and runsheets, which will be transferred to foundries

The secrets to MEMS development success

- Have adequate funds and timeline for multiple prototype iterations
- Robust designs do not push process tolerances
- Bring only mature prototypes to foundry

Public client list (partial)

Startups and Small-Medium Businesses:

Advanced Diamond Technologies

Bay Materials LLC

CPAC

Cantimer, Inc.

Edge Embossing LLC

Endotronix

Fluxion Biosciences

Hepregen

Microfabrica

Micralyne

NovaSpectra

PolyOptic Technologies

SemQuest

Silicon Light Machines

Silicon Microstructures

Tactus Technologies

Wave 80 Biosciences

Yole Développment

Public Companies:

Agilent Technologies

Applied Materials

Caliper LifeSciences

Cypress Semiconductor

Maxim Integrated

Measurement Specialties

Micrel

Mirion

Panasonic ACOM-TC

Sorin

Symmetricom

Ricoh Innovations

Research Institutions:

Alfred E. Mann Foundation

DARPA

MIT

Stanford University

Stowers Institute

UCSF, Opthalmology

Weill Medical College of Cornell Univ.

Company contact information

700 Airport Blvd. Suite 210 Burlingame, CA 94010, USA

Phone: +1 (650) 347 MEMS

Fax: +1 (650) 347 6366

General Inquiries: info@amfitzgerald.com

