VI. Problems

- A. Multicollinearity (Chapter 8)
- B. Random Regressors
- C. Heteroskedasticity (Chapter 9)
- D. Autocorrelation (Chapter 10)

B. Heteroskedasticity

CRMA

1. Definition: One of our CRM assumptions is **violated**. The disturbances do not have constant variances: $Var(u_i) = E[u_i^2] = \sigma_i^2$

Examples:
$$Var(u_i) = \sigma^2 X_i \leftarrow \omega \times \uparrow \sigma_i^2 \uparrow$$

or: $Var(u_i) = \sigma^2 X_i \leftarrow \omega \times \uparrow \sigma_i^2 \downarrow$

1

2. Consequences (Eg. Simple Regression)

• OLS estimates the variance as: $\int s_{b_1}^2 = \frac{1}{2} s_{b_2}^2 = \frac{1}{2} s_{b_1}^2 = \frac{1}{2} s_{b_2}^2 = \frac{1}{2} s_{b_1}^2 = \frac{1}{2} s_{b_2}^2 = \frac{1}{2} s_{b_2}^2 = \frac{1}{2} s_{b_1}^2 = \frac{1}{2} s_{b_2}^2 = \frac{1}{2} s_{b_2}^2$

OLS assumes all CRMA are true.

• CRMA#4 is violated – the correct estimated variance is: $\sum x_i^2 \hat{\sigma}_i^2$

of S by

OLS uses the wrong formula – OLS results would
 give you the "wrong standard errors"

- 3. Diagnosis: How can we tell if we have this problem?
 - ✓ Nothing on your printout tells you you have to look.
 - ✓ Plot: Errors (or e_i^2) vs. Xs, or Y.
 - ✓ Regressions: e_i^2 used as dependent variable.
 - Hypothesis:
 - Bruesch-Pagan Test: regress e_i² on Xs and other factors.

White's Test: regress e_i^2 on X_k s, $X_k \cdot X_l$ and X_k^2 s.

- Statistical Test: $\chi^2_{calc} = nR^2 \sim \chi^2_K$
- df for the chi-square is the number of coefficients estimated in the e_i² regression.

- 3. Diagnosis: How can we tell if we have this problem?
 - ✓ Group-wise heteroskedasticity:
 - Hypothesis: $H_0: \sigma_1^2 = \sigma_2^2 : H_{a'} : \sigma_1^2 \neq \sigma_2^2$
 - Goldfeld-Quandt Test: Compare variances for two groups.
 - Estimate two regressions:
 - Statistical Test:

- 4. Solutions:
 - OLS calculate proper standard errors
 - Generalized Least Squares: These are the **BLUE** estimators. But, you must know σ_i^2 .
 - "Feasible Generalized Least Squares"
 - Weight the dependent and independent variables.
 - Estimate using the weighted variables.
 - Example: suppose $E[u_i^2] = \sigma_i^2 = X_i \sigma^2$ Transform data: $Y_i^* = \frac{Y_i}{\sqrt{X_i}}$; $X_i^* = \frac{X_i}{\sqrt{X_i}}$; $u_i^* = \frac{X_i}{\sqrt{X_i}}$. Estimate:

$$Y_{i}^{*} = \beta_{0}^{*} + \beta_{1} X_{i}^{*} + u_{i}^{*}$$

proc reg data=new2;
model wage = yrsed exp expsq fe expfe/spec;
output out=ests residual=e;
run;

SAS

SAS

Output out=ests residual=e;
For residual, or expressions

Model: MODEL1
Dependent Variable: wage
Number of Observations Used 410

Analysis of Variance

		Julii U i	Wear		
Source	DF	Squares	Square	F Value	Pr > F
Model	5	20635	4126.91882	16.07	<.000
Error	404	103781	256.88486		
Connected Total	400	104416			

Corrected Total 409 124416

 Root MSE
 16.02763
 R-Square
 0.1659

 Dependent Mean
 16.11876
 Adj R-Sq
 0.1555

 Coeff Var
 99.43465

Parameter Estimates Standard Parameter Pr > |t| 0.0016 Variable DF Estimate Error t Value Intercept -16.68316 5.23960 -3.18 <.0001 YRSED 0.27844 2.00215 7.19 0.46415 exp 0.24737 1.88 0.0613 0.00322 0.00457 0.4812 expsq 0.70 -4.69790 3.38288 -1.39 0.1657 fe 1 0.6485 0.13623 expfe -0.06215

Example: Wage model

- Heteroskedasticity arises due to level of education (Yrsed).
- Yrsed varies from a few years to 24. Many levels.
- What might we assume about the form of heteroskedasticity?
- How would we test for this form of heteroskedasticity?

WARNING: The average covariance matrix for the SPEC test has been deemed singular which violates an assumption of the test. Use caution when interpreting the results of the test.

```
proc reg data=new2; ** where wage gt 0;
  model wage = yrsed exp expsq fe expfe/spec ;
  output out=ests residual = e.

run;

data whites; set ests;
  esq = e**2;
  edsq = yrsed**2; edexp = yrsed*exp; edfe = yrsed*fe;
run;
*Whites *****

**Whites *******

**The standard of the standard of t
```

proc reg data=whites;

model esq = yrsed edsq exp expsq edexp fe edfe expfe ;
un;

Model: MODEL1

run;

Dependent Variable: esq Number of Observations Used 410

		Analysis of	f Variance		
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	<u>(8)</u>	742807074	92850884	12.69	<.0001
Error	401	2934619424	7318253		
Corrected Total	409	3677426498			

Root MSE	2705.22696	R-Square	0.2020
Dependent Mean	253.12557	Adj R-Sq	0.1861
Coeff Var	1068.72925		

		Paramete	er Estimates		
		Parameter	Standard /		
Variable	DF	Estimate	Error/	t Value	Pr > t
Intercept	1	19943	3288.46649	6.06	<.0001
YRSED	1	-2396.48670	343.91431	6.97	<.0001
edsq	1	68.48255	9.14762	7.49	<.0001
exp	1	-462.09615	90.53337	-5.10	<.0001
expsq	1	1.95919	0.87955	2.23	0.0265
edexp		29.4771 4	4.36668	6.75	<.0001
fe	1	2834.09781	1576,96005	1.80	0.0731
edfe	1	-173.93544	96.96479	-1.79	0.0736
expfe	1	-22.52145	24.12013	-0.93	0.3510

BP or White's Test $\frac{\chi_{calc}^2}{\chi_{calc}^2} = nR^2 \sim \chi_K^2$

From our *esq* regression: $R^2 = 0.202$ and n = 410

$$n \cdot R^2 = 410 \cdot (0.202) = 82.82 \frac{P.V.M.M.}{20.0001}$$

compare to $\chi_g^2 \cong 15.50$ $\alpha = 0.05$

- 1. Use OLS properly compute standard errors
- \times 2. GLS would be BLUE, but we don't know σ_i^2
 - 3. Feasible GLS "asymptotically Best"

Test for the Regression:

Test 1 Results for Dependent Variable wage

		Mean		
Source	DF	Square	F Value	Pr > F
(Numerator	5	4126.91882	16.07	<.0001
Denominator	404	256.88486		

$$H_0: \beta_1 = \beta_2 = \beta_3 = \delta = 8 = 0$$
; $H_a: \text{ od least one } \neq 0$
 $Reject H_0:$

Correcting for Heteroskedasticity - OLS

		-	GLS Estimates			. 1	
Parameter	Es	stimate	Standard		t Value	1	Pr > t
			Error		1	Ţ	
Intercept	-27.48	868249	6.42718367		-4.28		<.0001
YRSED	2.50	557801	(0.32449684)		7.72	1	<.0001
ехр	0.76	424120	0.30933638		2.47		0.0139
expsq	-0.00	798781	0.00589328		-1.36	: /	0.1760
fe	-3.70	722012	4.07196043		-0.91	. /	0.3631
expfe	-0.11	840736	0.16850020)	-0.70		0.4826
Variable	DF	Estimate	Error	t V	alue	Pr > t	
Intercept	1	-16.68316	5.23960	-	3.18	0.0016	
YRSED	1	2.00215	0.27844		7.19	<.0001	
exp	1	0.46415	0.24737		1.88	0.0613	
expsq	1	-0.00322	0.00457		0.70	0.4812	
fe	1	-4.69790	3.38288		1.39	0.1657	
expfe	1	-0.06215	0.13623 Heterosceda		0.46 Consist	0.6485 tent	
				Standar			
Variable	Label	DF	Error	t Valu		> t	
Intercept	Intercept	1	13. 525 39	-1.2		0.2181	
YRSED	YRSED	1	0.80913	2.4		0.0138	
exp		1	0.23057	2.0		0.0448	
expsq		1	0.00455	-0.7	,	0.4787	
fe expfe		1	2.69616 0.15507	-1.7	,	0.0822 0.6888	

Group Heteroskedasticity

** Goldfeld-Quandt for Male/Female groups;

Ho!
$$\sigma_f^2 = \sigma_m^2$$
Ha: $\sigma_f^2 \neq \sigma_m^2$

Figure $\frac{\partial^2}{\partial z^2}$

wages for females

The REG Procedure Dependent Variable: wage

Number of Observations Used 207

Analysis of Variance

Source Model Error Corrected Total	DF 3 203	Sum of Squares 2972.68463 17969	Mean Square 990.89488 88.51654	F Value 11.19	Pr >F <.0001
R D	oot MSE ependent oeff Var		,		1420 1293

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-11.19235	4.14088	-2.70	0.0075
YRSED	1	1.30235	0.25468	5.11	<.0001
exp	1	0.39238	0.18732	2.09	0.0374
expsq	1	-0.00403	0.00360	-1.12	0.2643

wages for males The REG Procedure

Dependent Variable: wage Number of Observations Used

203

Analysis of Variance

		Sum or	меап		
Source	DF	Squares	Square	F Value	Pr > F
Model	3	13234	4411.42857	10.37	<.0001
Error	199	84645	425.35034	2	
Corrected Total	202	97879		m	

Root MSE 20.62402 R-Square 0.1352 Dependent Mean 19.84924 Adj R-Sq 0.1222 Coeff Var 103.90331

Parameter Estimates

	Parameter	Standard		
DF	Estimate	Error	t Value	Pr > t
1	-24.82416	8.87010	-2.80	0.0056
1	2.50202	0.46857	5.34	<.0001
1	0.54066	0.46042	1.17	0.2417
1	-0.00420	0.00890	-0.47	0.6375
	DF 1 1 1	DF Estimate 1 -24.82416 1 2.50202 1 0.54066	DF Estimate Error 1 -24.82416 8.87010 1 2.50202 0.46857 1 0.54066 0.46042	DF Estimate Error t Value 1 -24.82416 8.87010 -2.80 1 2.50202 0.46857 5.34 1 0.54066 0.46042 1.17

Goldfeld-Quandt Test:

$$F_{cak} = \frac{\int_{m}^{4.2} f}{\int_{f}^{2} f} = \frac{4/25.35}{88.52} = 4.81$$

Correcting Group Heteroskedasticity: GLS

```
data grouphet; set new2;

pfe = (fe*88.52)**0.5;

pm = (m*425.35)**0.5;

wtp = 1/(pfe + pm); p2=wtp**2;

edstar = yrsed*wtp; expstar = exp*wtp; expsqstar = expsq*wtp;

festar = fe*wtp; expfestar = expfe*wtp;

wagestar = wage*wtp;

run;

proc reg data=grouphet;

model wagestar = edstar expstar expsqstar festar expfestar;

run;

proc glm data=grouphet;

model wage = yrsed exp expsq fe expfe;

weight(p2)

run;
```

~ my intercept

model wagestar = wtp edstar expstar expsqstar festar expfestar / noint;

Dependent Variable: wagestar

NOTE: No intercept in model. R-Square is redefined.

Analysis of Variance

Source Model Error Uncorrected Total	DF 6 404 410	Sum of Squares 610.71764 407.07442 1017.79206	Mean Square 101.78627 1.00761	F Value 101.02	Pr > F <.0001
Root MSE Dependent Mean Coeff Var		1.00380 1.14517 87.65508	R-Square Adj R-Sq	0.6000 0.5941	

		Parameter Estimates							
	<u>a</u> t	├ Parameter Standard							
Intere	Y Variable	DF	Estimate	Error	t Value	Pr > t			
$\mathcal{N}_{\mathbf{v}}$.	wtp	1	-10.27326	4.81967	-2.13	0.0336			
	edstar	1	1.57443	0.22439	7.02	<.0001			
	expstar	1	0.45561	0.20990	2.17	0.0305			
	expsqstar	1	-0.00353	0.00334	-1.06	0.2913			
	festar	1	-4.79260	3.50195	-1.37	0.1719			
	expfestar	1	-0.06881	0.14105	-0.49	0.6259			

The GLM Procedure Dependent Variable: wage Weight: p2

nt: p2			Sum of			
Source Model Error Corrected Tota		5 81.2 404 407.0	quares Me	ean Square 16.2506738 1.0076100	F Value 16.13	Pr > F <.0001
	R-Square 0.166391	Coeff Var 7.320180	Root MSE 1.003798	9		
			Standard 7			
Param Inter YRSED exp expsq fe expfe	-10. 1. 0. 1. -0. -4.	Estimate 27326243 57442994 45561219 00353339 79260329 06881051	Error 4.81966589 0.22438623 0.20989609 0.00334406 3.50194991 0.14105228	t Value -2.13 7.02 2.17 -1.06 -1.37 -0.49	Pr > t 0.0336 <.0001 0.0305 0.2913 0.1719 0.6259	
the same "by hand"						
results are the same "by hand" by SAS						