Capítulo 3

Sistemas Homogêneos, o Núcleo de uma Matriz e Independência Linear

3.0 Introdução

Neste capítulo, introduziremos três conceitos importantes, que estão intimamente relacionados.

Na primeira seção, estudaremos sistemas lineares cujos termos independentes são todos iguais a zero. Tais sistemas, ditos *homogêneos*, têm certo papel especial em álgebra linear. Na segunda seção, estudaremos mais a fundo os conjuntos-solução desses sistemas, abordando, também, seus aspectos geométricos.

Finalmente, abordaremos o conceito fundamental de *independência linear*, na última seção. Essencialmente, um conjunto de vetores é linearmente independente quando nenhum de seus elementos pode ser escrito como uma combinação linear dos demais. O conceito será "oficialmente" definido de uma outra maneira, mais conveniente. Veremos, no entanto, que a definição formal será equivalente a essa caracterização intuitiva (conforme a proposição 3.18).

3.1 Sistemas lineares homogêneos

Lembre-se de que qualquer sistema de n equações lineares com m variáveis pode ser escrito na "forma compacta" $A\mathbf{x} = \mathbf{b}$, onde A é uma matriz $n \times m$ (a matriz de coeficientes do sistema), e \mathbf{b} é um vetor de \mathbb{R}^n (o vetor dos termos independentes). A definição abaixo irá distinguir o caso especial em que os termos independentes são todos iguais a zero, isto é, o caso em que \mathbf{b} é o vetor zero $\mathbf{0}_n$.

Definição 3.1

Um sistema linear é dito **homogêneo** se puder ser escrito na forma $A\mathbf{x} = \mathbf{0}_n$, onde A é uma matriz $n \times m$.

O sistema $A\mathbf{x} = \mathbf{b}$ é dito **não-homogêneo** se **b** $n\tilde{a}o$ for o vetor zero.

Os sistemas (a), (b) e (c) da página 1 são todos não-homogêneos, bem como quase todos os outros exemplos que vimos até aqui. Já os sistemas

$$\begin{cases} x_1 - 3x_2 + 2x_3 = 0 \\ 2x_1 + x_2 - x_3 = 0 \end{cases}$$
 e
$$\begin{cases} x_1 - 1 + 2x_3 = 3x_2 - 1 \\ x_2 + 2 - x_3 = 2 - 2x_1 \end{cases}$$
 (3.1)

são homogêneos. O segundo "parece" não-homogêneo, mas isso é enganoso. É fácil ver que esses sistemas são equivalentes e podem ser escritos na forma

$$\begin{bmatrix} 1 & -3 & 2 \\ 2 & 1 & -1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \tag{3.2}$$

onde $\mathbf{x} \in \mathbb{R}^3$ é o vetor das variáveis x_1, x_2 e x_3 (exercício P3.1). A matriz completa desse sistema é

$$\begin{bmatrix} 1 & -3 & 2 & 0 \\ 2 & 1 & -1 & 0 \end{bmatrix}.$$

A matriz completa do sistema homogêneo "geral" $A\mathbf{x} = \mathbf{0}_n$ é dada por $[A \mid \mathbf{0}_n]$. Perceba que esta notação faz sentido.

Sistemas homogêneos são sempre possíveis. De fato, qualquer que seja a matriz $A(n \times m)$, o vetor zero $\mathbf{0}_m$ de \mathbb{R}^m será sempre uma solução do sistema $A\mathbf{x} = \mathbf{0}_n$, pois $A\mathbf{0}_m = \mathbf{0}_n$ (ver o exercício P2.6). Chamamos $\mathbf{x} = \mathbf{0}_m$ de solução trivial do sistema $A\mathbf{x} = \mathbf{0}_n$. A seguir iremos sintetizar essas observações.

Observação 3.2

Seja A uma matriz $n \times m$ qualquer. O sistema homogêneo $A\mathbf{x} = \mathbf{0}_n$ sempre possui a solução trivial $\mathbf{x} = \mathbf{0}_m$. Em particular, todo sistema homogêneo é possível.

Um sistema homogêneo $A\mathbf{x} = \mathbf{0}$ pode ou não ter soluções $n\tilde{a}o\text{-}triviais$, isto é, soluções diferentes do vetor zero. A proposição a seguir caracteriza esta questão em termos das posições-pivô da matriz A, e será fundamental na seção 3.3.

Proposição 3.3

Um sistema linear homogêneo $A\mathbf{x} = \mathbf{0}$ ou possui unicamente a solução trivial, ou então possui uma infinidade de soluções (a trivial e mais uma infinidade de soluções não-triviais).

O sistema $A\mathbf{x} = \mathbf{0}$ possui unicamente a solução trivial $\mathbf{x} = \mathbf{0}$ se e somente se todas as colunas de sua matriz de coeficientes A são colunas-pivô.

Demonstração: Esta é uma consequência direta do teorema de existência e unicidade 1.13. Já sabemos que o sistema $A\mathbf{x} = \mathbf{0}$ é possível, isto é, possui ao menos uma solução. Se todas as colunas da matriz A forem colunas-pivô, então o sistema $A\mathbf{x} = \mathbf{0}$ não terá variáveis livres, e, portanto, irá possuir uma única solução. Como $\mathbf{x} = \mathbf{0}$ é uma solução, ela será, exata e necessariamente, esta única solução!

Se, por outro lado, a matriz A tiver pelo menos uma coluna não-pivô, então o sistema $A\mathbf{x} = \mathbf{0}$ terá pelo menos uma variável livre, e, portanto, irá possuir uma infinidade de soluções. Sendo assim, o sistema $A\mathbf{x} = \mathbf{0}$ necessariamente terá uma infinidade de soluções, $além\ da\ solução-trivial\ \mathbf{x} = \mathbf{0}$.

¹Para simplificar a notação, iremos usar " $\mathbf{0}$ " para indicar os vetores $\mathbf{0}_n$ e $\mathbf{0}_m$. O contexto deverá ser suficiente para que você faça a distinção.

Exemplo 3.4

Vamos determinar se o sistema homogêne
o $B\mathbf{x}=\mathbf{0}$ possui soluções não-triviais, onde

$$B = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 4 & -5 \\ 0 & -1 & 2 \end{bmatrix}. \tag{3.3}$$

Escalonemos a matriz de coeficientes B a fim de localizar suas posições-pivô:

$$B = \begin{bmatrix} \boxed{1} & 0 & 1 \\ 3 & 4 & -5 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{\ell_2 \to \ell_2 - 3\ell_1} \begin{bmatrix} \boxed{1} & 0 & 1 \\ 0 & \boxed{4} & -8 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{\ell_3 \to \ell_3 + \frac{1}{4}\ell_2} \begin{bmatrix} \boxed{1} & 0 & 1 \\ 0 & \boxed{4} & -8 \\ 0 & 0 & 0 \end{bmatrix}.$$

Não é necessário obter a forma escalonada reduzida. Observe que B possui uma coluna não-pivô (a terceira). Pela proposição 3.3, o sistema $B\mathbf{x} = \mathbf{0}$ possui uma infinidade de soluções não-triviais, além da solução trivial.

Isso responde à questão proposta nesse exemplo, mas desejamos explorá-lo um pouco mais, a fim de elucidar a proposição 3.3. Vamos, então, resolver o sistema $B\mathbf{x} = \mathbf{0}$, e obter explicitamente todas as suas soluções. Verifique que a forma escalonada reduzida de sua matriz completa $\begin{bmatrix} B & \mathbf{0} \end{bmatrix}$ é

$$\begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix},$$
(3.4)

Observe que x_3 é uma variável livre do sistema $B\mathbf{x} = \mathbf{0}$, e que uma descrição vetorial paramétrica de seu conjunto-solução (ver seção 2.4) é dada por

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_3 \\ 2x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}. \tag{3.5}$$

Agora é evidente que o sistema possui uma infinidade de soluções: todos os múltiplos do vetor $\begin{bmatrix} -1\\2\\1 \end{bmatrix}$. Para cada escolha de $x_3 \neq 0$ em (3.5), obtemos uma solução não-trivial distinta. Fazendo $x_3 = 0$, obtemos a solução trivial $\mathbf{x} = \mathbf{0}$.

Exemplo 3.5

Agora vamos determinar se o sistema homogêneo $C\mathbf{x} = \mathbf{0}$ possui soluções nãotriviais, onde

$$C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}.$$

Basta uma operação-linha para escalonar a matriz C:

$$C = \begin{bmatrix} \boxed{1} & 2 \\ 3 & 4 \end{bmatrix} \xrightarrow{\ell_2 \to \ell_2 - 3\ell_1} \begin{bmatrix} \boxed{1} & 2 \\ 0 & -2 \end{bmatrix}.$$

Pela proposição 3.3, o sistema $C\mathbf{x} = \mathbf{0}$ possui somente a solução trivial $\mathbf{x} = \mathbf{0}$, já que ambas as colunas de C são colunas-pivô. Como exercício, sugerimos que você resolva o sistema $C\mathbf{x} = \mathbf{0}$ usando o método de escalonamento, e, assim, obtenha uma verificação direta de que $\mathbf{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ é a única solução. Ao fazer esse exercício, repare, em particular, que o sistema não tem variáveis livres.

Um sistema linear homogêneo com mais variáveis do que equações tem, necessariamente, variáveis livres, e, portanto, uma infinidade de soluções. Enunciamos esse resultado, formalmente, a seguir. Lembre que se A é uma matriz $n \times m$, então m é o número de variáveis do sistema $A\mathbf{x} = \mathbf{0}$ e n o de equações.

Proposição 3.6

Seja A uma matriz $n \times m$. Se m > n, então o sistema homogêneo $A\mathbf{x} = \mathbf{0}$ possui uma infinidade de soluções (em particular, de soluções não-triviais).

Demonstração: Como A tem n linhas, essa matriz tem no máximo n posiçõespivô. Já que A tem m colunas, e m > n, então, necessariamente, há colunas sem posição-pivô. Assim sendo, pela proposição 3.3, o sistema $A\mathbf{x} = \mathbf{0}$ tem uma infinidade de soluções.

Exemplo 3.7

Consideremos o seguinte "sistema" homogêneo de uma só equação:

$$2x_1 + 5x_2 - 6x_3 = 0. (3.6)$$

Usando a notação vetorial, essa equação se escreve na forma $D\mathbf{x}=0$, onde $D=\begin{bmatrix}2&5&-6\end{bmatrix}$ (verifique).² Pela proposição 3.6, o "sistema" (3.6) possui uma infinidade de soluções, já que D é uma matriz 1×3 e 3>1 (ou, em termos mais simples, já que (3.6) é um sistema homogêneo com mais variáveis do que equações). Neste exemplo, é fácil verificar isso diretamente, pois as soluções de (3.6) são dadas por

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -\frac{5}{2}x_2 + 3x_3 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} -\frac{5}{2} \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}.$$
 (3.7)

Obtemos uma solução distinta para cada escolha das variáveis livres x_2 e x_3 .

3.2 O núcleo de uma matriz

O conjunto-solução de um sistema homogêneo é um "objeto matemático" importante, pois aparece naturalmente em muitos problemas de álgebra linear e aplicações. Veremos exemplos disso em alguns capítulos mais adiante. Em virtude de sua importância, há um nome especial para esse "objeto", conforme a definição a seguir.

Definição 3.8

Seja A uma matriz de tamanho $n \times m$. O conjunto-solução do sistema linear homogêneo $A\mathbf{x} = \mathbf{0}_n$ é um subconjunto de \mathbb{R}^m que chamamos de **núcleo** ou **espaço nulo** da matriz A. Denotamos o núcleo de A por Nuc A.

Ou seja, um vetor \mathbf{u} de \mathbb{R}^m pertence ao núcleo de A se e somente se $A\mathbf{u} = \mathbf{0}_n$.

Repare que escrevemos o zero escalar em $D\mathbf{x} = 0$. O vetor zero $\mathbf{0}$ de \mathbb{R}^1 corresponde simplesmente ao escalar 0, quando pensamos no conjunto \mathbb{R}^1 como o conjunto \mathbb{R} dos escalares.

Alguns autores denotam o núcleo de A como NulA ou KerA, ao invés de NucA. A notação KerA é padrão em textos em inglês e alemão, pois, nessas línguas, as palavras usadas para núcleo são kernel e Kern, respectivamente.

Cuidado!

Não confunda o núcleo de uma matriz com seu espaço-coluna. Ambos são subconjuntos definidos em termos de uma matriz dada, mas veja que suas definições são bastante diferentes! Observe, em particular, que se a matriz $A \in n \times m$, então $\operatorname{Col} A \in \operatorname{um} \operatorname{subconjunto} \operatorname{de} \mathbb{R}^n$ e $\operatorname{Nuc} A \in \operatorname{um} \operatorname{subconjunto} \operatorname{de} \mathbb{R}^m$.

Exemplo 3.9

Seja
$$A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$
. Determine se os vetores $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}$ e $\mathbf{0}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ pertencem ao núcleo de A .

Solução: Verifique que $A\mathbf{u} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$. Como este não é o vetor zero, \mathbf{u} não pertence a Nuc A. Por outro lado, vale $A\mathbf{v} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \mathbf{0}_2$, logo $\mathbf{v} \in \operatorname{Nuc} A$. Finalmente, é fácil ver que $A\mathbf{0}_3 = \mathbf{0}_2$, logo o vetor zero $\mathbf{0}_3$ também pertence ao núcleo de A. \square

Observação 3.10

Seja A uma matriz $n \times m$ qualquer. O núcleo de A sempre contém o vetor zero $\mathbf{0}_m$ de \mathbb{R}^m . Em particular, Nuc A nunca é o conjunto vazio.

Essa observação é uma mera reformulação, em termos do conceito de núcleo, da observação 3.2. Podemos reformular também a importante proposição 3.3.

Proposição 3.11

Seja A uma matriz qualquer. O núcleo de A contém unicamente o vetor zero (em símbolos, $\operatorname{Nuc} A = \{0\}$) se e somente se todas as colunas de A são colunas-pivô.

O exemplo 3.9 mostra que verificar se um dado vetor pertence ao núcleo de uma matriz é uma tarefa muito simples. O núcleo de A é descrito, *implicitamente*, pela relação $A\mathbf{x} = \mathbf{0}$. Assim, para determinar se um dado vetor pertence a Nuc A, basta "testar" se ele satisfaz ou não essa equação.

Dada uma matriz A, no entanto, como podemos encontrar uma descrição explícita de seu núcleo? Ora, isso também é simples. Basta resolver o sistema $A\mathbf{x} = \mathbf{0}$, e obter uma descrição paramétrica de seu conjunto-solução, que, por definição, é Nuc A.

Exemplo 3.12

Obtenha uma descrição explícita do núcleo da matriz B do exemplo 3.4.

Solução: Teríamos que resolver o sistema $B\mathbf{x} = \mathbf{0}$, mas já fizemos isso no exemplo 3.4. Obtivemos, em (3.5), uma descrição explícita de Nuc B, em forma vetorial paramétrica.

Queremos apresentar esse resultado de uma maneira mais formal. A descrição (3.5) diz que Nuc B é o conjunto dos múltiplos do vetor $\mathbf{u} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$. Isso

³Dizemos isso porque a condição $A\mathbf{x} = \mathbf{0}$ não fornece uma "lista" ou descrição *explícita* dos elementos de Nuc A.

se traduz, em símbolos, para $\operatorname{Nuc} B = \operatorname{Span}\{\mathbf{u}\}$ (faça uma rápida revisão da seção 2.5, se necessário).

Span $\{\mathbf{u}\}$ é a descrição explícita do núcleo de B que procurávamos. Vale a pena, no entanto, fazer mais alguns comentários de natureza geométrica acerca deste exemplo. O conjunto Nuc $B = \operatorname{Span}\{\mathbf{u}\}$ é representado pela reta no \mathbb{R}^3 que passa pela origem e que contém o vetor \mathbf{u} .

Reveja a matriz B em (3.3) e verifique que $B\mathbf{x} = \mathbf{0}$ equivale ao sistema

$$\begin{cases} x_1 + x_3 = 0 \\ 3x_1 + 4x_2 - 5x_3 = 0 \\ - x_2 + 2x_3 = 0. \end{cases}$$
 (3.8)

Cada uma das três equações acima representa (implicitamente) um plano passando pela origem em \mathbb{R}^3 . A interseção desses três planos é justamente o conjunto-solução do sistema (3.8), ou seja, é Nuc B. Como acabamos de discutir, essa interseção Nuc B é uma reta. Tente visualizar esta situação: três planos no espaço cuja interseção seja uma reta.

Enfatizamos que Span $\{\mathbf{u}\}$ é uma descrição *explícita* da reta Nuc B, enquanto (3.8) (ou, equivalentemente, $B\mathbf{x} = \mathbf{0}$) é uma descrição *implícita* da mesma. \square

Exemplo 3.13

Obtenha uma descrição explícita do núcleo da matriz $D = \begin{bmatrix} 2 & 5 & -6 \end{bmatrix}$.

Solução: Já fizemos isso no exemplo 3.7. Obtivemos, em (3.7), uma descrição explícita do conjunto-solução de $D\mathbf{x} = 0$, isto é, de Nuc D.

Novamente, desejamos escrever o resultado de maneira mais formal. A descrição (3.7) mostra que Nuc D é o conjunto das combinações lineares dos vetores $\mathbf{v}_1 = \begin{bmatrix} -5/2 \\ 1 \\ 0 \end{bmatrix}$ e $\mathbf{v}_2 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$. Em símbolos, temos Nuc $D = \mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$.

Geometricamente, Nuc D é representado pelo plano do \mathbb{R}^3 gerado pelos vetores \mathbf{v}_1 e \mathbf{v}_2 . Observamos, como no exemplo anterior, que $2x_1 + 5x_2 - 6x_3 = 0$ (ou, equivalentemente, $D\mathbf{x} = 0$) é uma descrição implícita do plano Nuc D. O mesmo plano é descrito explicitamente por Span $\{\mathbf{v}_1, \mathbf{v}_2\}$.

Dada uma matriz A, é sempre possível escrever Nuc A, explicitamente, como o span de certos vetores⁴, como fizemos nos exemplos acima. Esse procedimento será muito usado em outras seções, problemas e aplicações, e, por isso, recomendamos fortemente o exercício P3.10.

É fácil interpretar, geometricamente, o núcleo de uma matriz quando este é um subconjunto de \mathbb{R}^2 ou \mathbb{R}^3 , pois, nesses casos, uma concepção visual direta é possível.

3.3 Dependência e independência linear

Considere os vetores $\mathbf{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ e $\mathbf{v} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$ de \mathbb{R}^2 . Note que \mathbf{u} e \mathbf{v} são colineares: \mathbf{v} é um múltiplo de \mathbf{u} , a saber, $\mathbf{v} = 3\mathbf{u}$. O vetor \mathbf{u} também é um múltiplo de

 $^{^4}$ Isso irá valer mesmo quando Nuc $A = \{\mathbf{0}\}$, pois $\{\mathbf{0}\} = \mathrm{Span}\{\mathbf{0}\}$ (veja o exercício P2.18). Nesse caso, no entanto, escrever NucA dessa maneira é uma bobagem.

 ${\bf v}$, pois ${\bf u}=\frac{1}{3}{\bf v}$ (veja o exercício P2.19(a)). Nesse sentido, os vetores ${\bf u}$ e ${\bf v}$ são "dependentes" entre si: podemos escrever um deles como uma combinação linear do outro.⁵

Por outro lado, os vetores $\mathbf{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ e $\mathbf{w} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$ são "independentes": \mathbf{u} não é múltiplo de \mathbf{w} , nem \mathbf{w} é múltiplo de \mathbf{u} . E quanto aos vetores \mathbf{u} e $\mathbf{0}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$? São "dependentes" ou "independentes"? Bom, \mathbf{u} não é um múltiplo de $\mathbf{0}_2$, mas $\mathbf{0}_2$ é um múltiplo de \mathbf{u} , pois $\mathbf{0}_2 = 0\mathbf{u}$ (veja o exercício P2.19(b)). Assim, entendemos que os vetores \mathbf{u} e $\mathbf{0}_2$ são dependentes (afinal, é possível escrever $\mathbf{0}_2$ como a combinação linear $0\mathbf{u}$ do vetor \mathbf{u} , não é?).

A definição a seguir generaliza esses conceitos de "dependência" e "independência" para conjuntos contendo mais do que dois vetores.⁶

Definição 3.14

O conjunto $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ de vetores de \mathbb{R}^n é dito linearmente independente se o sistema linear homogêneo

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_m \mathbf{a}_m = \mathbf{0}_n \tag{3.9}$$

tem apenas a solução trivial $\mathbf{x} = \mathbf{0}_m$ (isto é, $x_1 = 0, x_2 = 0, \dots, x_m = 0$).

Em contrapartida, o conjunto $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ é dito **linearmente dependente** se o sistema (3.9) tem alguma solução não-trivial, ou seja, se existem escalares c_1, c_2, \dots, c_m , não todos iguais a zero, tais que

$$c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + \dots + c_m \mathbf{a}_m = \mathbf{0}_n. \tag{3.10}$$

Por simplicidade, podemos escrever "os vetores $\mathbf{a}_1, \ldots, \mathbf{a}_m$ são linearmente independentes" (ou dependentes), ao invés de "o conjunto $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$ é linearmente independente" (ou dependente). Às vezes, as expressões "linearmente independente" e "linearmente dependente" são abreviadas por "LI" e "LD".

Uma equação do tipo (3.10), quando os escalares c_j não são todos iguais a zero, é chamada de uma **relação de dependência linear** entre os vetores $\mathbf{a}_1, \ldots, \mathbf{a}_m$. É claro que só existem relações de dependência linear entre vetores linearmente dependentes. Assim, $3\mathbf{u} - \mathbf{v} = \mathbf{0}_2$ e $0\mathbf{u} + 17(\mathbf{0}_2) = \mathbf{0}_2$ são relações de dependência linear entre os vetores considerados no início dessa seção (verifique!).⁷

Em uma primeira leitura, a definição 3.14 e o seu propósito podem não estar muito claros. O conceito de independência linear, no entanto, é importantíssimo, e recomendamos uma leitura atenciosa do restante dessa seção. As proposições 3.18 e 3.20, em particular, são elucidativas quanto à natureza de conjuntos linearmente dependentes e independentes. Mas vamos começar com exemplos simples, apenas para fixar ideias.

⁵Observe que uma combinação linear de um só vetor é simplesmente um múltiplo desse vetor. Assim, $\mathbf{v} = 3\mathbf{u}$ é uma combinação linear do vetor \mathbf{u} .

⁶Há um pequeno "deslize técnico" nessa definição. Veja a observação no final da seção.

⁷Obteríamos outras relações de dependência linear entre \mathbf{u} e $\mathbf{0}_2$ substituindo o escalar 17 por qualquer outro escalar não nulo em $0\mathbf{u} + 17(\mathbf{0}_2) = \mathbf{0}_2$.

Exemplo 3.15

Sejam

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \quad \text{e} \quad \mathbf{a}_3 = \begin{bmatrix} -1 \\ 1 \\ 10 \end{bmatrix}.$$

Observe que estes são os mesmos vetores do exemplo 2.21. Vamos investigar se o conjunto $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ é linearmente independente ou não.

Temos que determinar se o sistema homogêneo $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{0}$ possui unicamente a solução trivial, ou se possui uma infinidade de soluções (veja a seção 3.1). Primeiro, obtemos uma forma escalonada da matriz $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$:

$$\begin{bmatrix} \boxed{1} & 1 & -1 \\ 2 & 3 & 1 \\ -1 & 2 & 10 \end{bmatrix} \xrightarrow{\ell_2 \to \ell_2 - 2\ell_1} \begin{bmatrix} \boxed{1} & 1 & -1 \\ 0 & \boxed{1} & 3 \\ 0 & 3 & 9 \end{bmatrix} \xrightarrow{\ell_3 \to \ell_3 - 3\ell_2} \begin{bmatrix} \boxed{1} & 1 & -1 \\ 0 & \boxed{1} & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

Agora, basta aplicar a proposição 3.3: como a matriz $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$ tem uma coluna não-pivô, o sistema $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{0}$ possui soluções não-triviais, e, portanto, os vetores \mathbf{a}_1 , \mathbf{a}_2 e \mathbf{a}_3 são linearmente dependentes.

Exemplo 3.16

Sejam agora

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \quad \text{e} \quad \mathbf{a}_4 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

Vejamos se o conjunto $\{a_1, a_2, a_4\}$ é linearmente independente.

Vamos escalonar a matriz $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_4 \end{bmatrix}$:

$$\begin{bmatrix} \boxed{1} & 1 & 1 \\ 2 & 3 & 0 \\ -1 & 2 & 0 \end{bmatrix} \xrightarrow[\ell_3 \to \ell_3 + \ell_1]{\ell_2 \to \ell_2 - 2\ell_1} \begin{bmatrix} \boxed{1} & 1 & 1 \\ 0 & \boxed{1} & -2 \\ 0 & 3 & 1 \end{bmatrix} \xrightarrow[\ell_3 \to \ell_3 - 3\ell_2]{\ell_3 \to \ell_3 - 3\ell_2} \begin{bmatrix} \boxed{1} & 1 & 1 \\ 0 & \boxed{1} & -2 \\ 0 & 0 & \boxed{7} \end{bmatrix}.$$

Como todas as colunas da matriz $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_4 \end{bmatrix}$ são colunas-pivô, o sistema $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_4 = \mathbf{0}$ possui apenas a solução trivial $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \mathbf{0}$, logo o conjunto $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_4\}$ é, de fato, linearmente *independente*.

Esses exemplos motivam e ilustram o resultado a seguir.

Teorema 3.17

Seja $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ um conjunto de vetores de \mathbb{R}^n . Este conjunto é linearmente independente se e somente se todas as colunas da matriz $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_m \end{bmatrix}$ são colunas-pivô.

O teorema é uma consequência imediata da proposição 3.3 e da definição 3.14. De fato, ele é uma mera reformulação das proposições 3.3 e 3.11 em termos do conceito de independência linear.

A seguinte proposição fornece uma caracterização de conjuntos linearmente dependentes e, também, uma boa justificativa para o uso dessa terminologia.

Proposição 3.18

Um conjunto $\{\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m\}$ de dois ou mais vetores de \mathbb{R}^n é linearmente dependente se e somente se (pelo menos) um dos \mathbf{a}_k é uma combinação linear dos demais vetores do conjunto.

Demonstração: Suponha que o conjunto $\{\mathbf{a}_1, \dots, \mathbf{a}_m\}$ seja linearmente dependente. Então existe alguma relação de dependência linear $c_1\mathbf{a}_1 + \dots + c_m\mathbf{a}_m = \mathbf{0}_n$, em que os escalares c_j não são todos nulos. Assim, podemos escolher algum $c_k \neq 0$ (pode haver várias escolhas admissíveis) e reescrever essa relação como

$$c_k \mathbf{a}_k = -c_1 \mathbf{a}_1 - c_2 \mathbf{a}_2 - \dots - c_{k-1} \mathbf{a}_{k-1} - c_{k+1} \mathbf{a}_{k+1} - \dots - c_m \mathbf{a}_m$$

ou ainda como

$$\mathbf{a}_k = -\frac{c_1}{c_k} \mathbf{a}_1 - \frac{c_2}{c_k} \mathbf{a}_2 - \dots - \frac{c_{k-1}}{c_k} \mathbf{a}_{k-1} - \frac{c_{k+1}}{c_k} \mathbf{a}_{k+1} - \dots - \frac{c_m}{c_k} \mathbf{a}_m.$$

A hipótese $c_k \neq 0$ foi usada nesse último passo. Se c_k fosse zero, a divisão não estaria definida! Concluímos da última equação acima que \mathbf{a}_k é uma combinação linear dos demais vetores do conjunto dado.

Reciprocamente, se \mathbf{a}_k é uma combinação linear dos demais vetores, então existem escalares α_i tais que

$$\mathbf{a}_k = \alpha_1 \mathbf{a}_1 + \alpha_2 \mathbf{a}_2 + \dots + \alpha_{k-1} \mathbf{a}_{k-1} + \alpha_{k+1} \mathbf{a}_{k+1} + \dots + \alpha_m \mathbf{a}_m.$$

A equação acima é equivalente a

$$\alpha_1 \mathbf{a}_1 + \alpha_2 \mathbf{a}_2 + \dots + \alpha_{k-1} \mathbf{a}_{k-1} + (-1)\mathbf{a}_k + \alpha_{k+1} \mathbf{a}_{k+1} + \dots + \alpha_m \mathbf{a}_m = \mathbf{0}_n.$$

Essa é uma relação de dependência linear entre os vetores $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m$, pois os pesos na combinação linear à esquerda $n\tilde{a}o$ são todos iguais a zero: o coeficiente de \mathbf{a}_k , ao menos, é $-1 \neq 0$.

O corolário a seguir é, meramente, um caso particular da proposição 3.18.

Corolário 3.19

Um conjunto de dois vetores é linearmente dependente se e somente se um dos vetores é um múltiplo do outro.

Isso mostra que a definição 3.14 generaliza a noção intuitiva de dependência entre dois vetores que discutimos no início da seção, como havíamos anunciado. Recomendamos que você reveja aquela discussão. Mas cuidado: o corolário acima se aplica apenas a conjuntos de *dois* vetores! Veja os exercícios P3.14 e P3.15.

A próxima proposição começa a revelar por que conjuntos linearmente *inde*pendentes são de interesse.

Na seção 2.5, vimos que um vetor \mathbf{b} é uma combinação linear de $\mathbf{a}_1, \ldots, \mathbf{a}_m$ (isto é, $\mathbf{b} \in \operatorname{Span}\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$) se e somente se o sistema $x_1\mathbf{a}_1 + \cdots + x_m\mathbf{a}_m = \mathbf{b}$ é possível (ver proposição 2.16, na página 52). Não discutimos, no entanto, a questão da *unicidade* de solução desse sistema. A proposição a seguir mostra que essa questão diz respeito à independência linear do conjunto $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$.

Proposição 3.20

Seja $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ um conjunto de vetores de \mathbb{R}^n . Esse conjunto é linearmente independente se e somente se cada vetor $\mathbf{b} \in \operatorname{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_m\}$ pode ser escrito de uma única maneira como combinação linear de $\mathbf{a}_1, \dots, \mathbf{a}_m$.

Demonstração: Suponha, primeiro, que o conjunto $\{\mathbf{a}_1, \dots, \mathbf{a}_m\}$ seja linearmente independente, e seja \mathbf{b} um vetor qualquer de $\mathrm{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_m\}$. Ora, se \mathbf{b} pertence a $\mathrm{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_m\}$, então existem escalares c_1, \dots, c_m tais que

$$\mathbf{b} = c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + \dots + c_m \mathbf{a}_m. \tag{3.11}$$

Agora considere "outra" representação

$$\mathbf{b} = d_1 \mathbf{a}_1 + d_2 \mathbf{a}_2 + \dots + d_m \mathbf{a}_m. \tag{3.12}$$

Vamos mostrar que $d_1 = c_1$, $d_2 = c_2$, ..., $d_m = c_m$. Dessa forma, a representação (3.11) é, na realidade, única. Subtraindo a equação (3.12) da (3.11), obtemos

$$\mathbf{0}_n = (c_1 - d_1)\mathbf{a}_1 + (c_2 - d_2)\mathbf{a}_2 + \dots + (c_m - d_m)\mathbf{a}_m.$$

Como o conjunto $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$ é linearmente independente, a equação acima implica que $c_1 - d_1 = 0, c_2 - d_2 = 0, \ldots, c_m - d_m = 0$, pois não há relações de dependência entre $\mathbf{a}_1, \ldots, \mathbf{a}_m$. Portanto, vale $d_j = c_j$ para $j = 1, 2, \ldots, m$.

Agora, provaremos a recíproca. Suponha que cada vetor de Span $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$ tenha uma única representação como combinação linear dos vetores $\mathbf{a}_1, \ldots, \mathbf{a}_m$. O vetor zero $\mathbf{0}_n$, em particular, pertence ao span de $\mathbf{a}_1, \ldots, \mathbf{a}_m$ (conforme a observação 2.14, na página 51). Dessa maneira,

$$\mathbf{0}_n = 0\mathbf{a}_1 + 0\mathbf{a}_2 + \dots + 0\mathbf{a}_m$$

é a *única* forma de representar $\mathbf{0}_n$ como combinação dos vetores \mathbf{a}_j . Em outras palavras, o sistema homogêneo (3.9) possui apenas a solução trivial, e, portanto, o conjunto $\{\mathbf{a}_1, \dots, \mathbf{a}_m\}$ é linearmente independente.

A proposição 3.20 será crucial na seção 4.4.

Reunimos, no teorema abaixo, diversas formas de se dizer que um conjunto é linearmente independente. Esta lista pode auxiliar o leitor, ou a leitora, em seus estudos e na resolução de exercícios.

Teorema 3.21

Sejam $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m$ vetores de \mathbb{R}^n , e seja A a matriz de tamanho $n \times m$ dada por $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_m \end{bmatrix}$. As seguintes afirmativas são equivalentes:

- (a) O conjunto $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ é linearmente independente.
- (b) Os vetores $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m$ são linearmente independentes.
- (c) O sistema homogêneo $x_1\mathbf{a}_1 + \cdots + x_m\mathbf{a}_m = \mathbf{0}_n$ tem unicamente a solução trivial $x_1 = 0, x_2 = 0, \ldots, x_m = 0$.

- (d) Se $x_1\mathbf{a}_1 + \cdots + x_m\mathbf{a}_m = \mathbf{0}_n$, então todos os x_j têm que ser iguais a zero.
- (e) Não existem relações de dependência linear entre os vetores $\mathbf{a}_1, \ldots, \mathbf{a}_m$.
- (f) Cada vetor de Span $\{\mathbf{a}_1, \dots, \mathbf{a}_m\}$ pode ser escrito de uma única maneira como combinação linear de $\mathbf{a}_1, \dots, \mathbf{a}_m$.
- (g) O sistema homogêneo $A\mathbf{x} = \mathbf{0}_n$ tem unicamente a solução trivial $\mathbf{x} = \mathbf{0}_m$.
- (h) Nuc $A = \{ \mathbf{0}_m \}$.
- (i) O sistema $A\mathbf{x} = \mathbf{0}_n$ não possui "variáveis livres".
- (j) A matriz A possui uma posição-pivô em cada uma de suas m colunas.

A equivalência entre as afirmativas deve estar clara, tendo em vista as definições e resultados deste capítulo. Observe, em particular, que as afirmativas (f), (h) e (j) são consideradas nas proposições 3.20, 3.11 e no teorema 3.17, respectivamente. A afirmativa (d) é apenas uma outra forma de dizer (c). A afirmativa (g) também é meramente (c) escrita em forma "compacta".

Muitas vezes, a afirmativa (j) é usada, "na prática", para testar se as outras valem ou não, como fizemos nos exemplos 3.15 e 3.16.

O resultado a seguir é, essencialmente, uma reformulação da proposição 3.6.

Proposição 3.22

Se os vetores $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m$ de \mathbb{R}^n são linearmente independentes, então, necessariamente, vale $m \leq n$.

Demonstração: Se m > n, pela proposição 3.6, o sistema $x_1 \mathbf{a}_1 + \cdots + x_m \mathbf{a}_m = \mathbf{0}_n$ teria uma infinidade de soluções. Em particular, esse sistema teria soluções $n\tilde{a}o$ -triviais. Assim, os vetores $\mathbf{a}_1, \ldots, \mathbf{a}_m$ não seriam independentes.

A proposição 3.22 diz que um conjunto linearmente independente de vetores em \mathbb{R}^n pode ter, no máximo, n elementos. Em outras palavras, um subconjunto de \mathbb{R}^n que contém mais do que n vetores é, necessariamente, linearmente dependente. Um conjunto de seis vetores em \mathbb{R}^5 , por exemplo, é "automaticamente" linearmente dependente. O mesmo vale para um conjunto de 117 vetores em \mathbb{R}^{100} .

A proposição 3.22 é análoga à proposição 2.25 da seção 2.7. Note, no entanto, que as direções das desigualdades são trocadas. Cuidado para não confundir esses resultados!

Observação

Rigorosamente falando, os enunciados da definição 3.14 e de diversos resultados seguintes contêm um erro. Deixamo-lo estar até aqui, a fim de não tirar o foco das ideias principais. Mas vamos, agora, remediar esse problema técnico.

Para explicar a questão, precisamos, primeiro, considerar uma sutileza da notação usual de teoria dos conjuntos. Em uma "listagem" explícita dos elementos de um conjunto, convenciona-se que elementos repetidos são irrelevantes (e podem ser ignorados). Assim, por exemplo, os conjuntos $\{a,b,a\}$ e $\{a,b\}$ são iguais: ambos representam o conjunto que contém os elementos a e b (seja lá o que forem a e b...). Em particular, se a e b forem iguais, esse conjunto na realidade conterá um só elemento: $\{a,b\}=\{a\}=\{b\}$.

Para corrigir (ou arrematar) a definição 3.14, precisamos esclarecer que ela $n\~ao$ respeita essa convenção. O conjunto $\left\{ \begin{bmatrix} 3\\2 \end{bmatrix}, \begin{bmatrix} 3\\2 \end{bmatrix} \right\}$, por exemplo, é linearmente dependente, pois $\begin{bmatrix} 3\\2 \end{bmatrix} - \begin{bmatrix} 3\\2 \end{bmatrix} = \mathbf{0}$ é uma relação de dependência entre seus elementos (há muitas outras). De acordo com a convenção de teoria dos conjuntos, no entanto, esse conjunto seria igual a $\left\{ \begin{bmatrix} 3\\2 \end{bmatrix} \right\}$, que, por sua vez, é linearmente independente (verifique). Mas não há dilema algum aqui: repetimos que a definição 3.14 não segue a convenção de ignorar elementos repetidos em uma listagem.

Para enfatizar esse ponto, alguns autores apresentam o conjunto $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ da definição 3.14 como um *conjunto indexado*, ou seja, um conjunto em que sejam relevantes a ordem e as repetições dos elementos. Inclusive, alguns preferem usar a notação $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m)$ para conjuntos indexados.

Exercícios resolvidos

R3.1. Mostre que se um conjunto $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ contém o vetor zero, então esse conjunto é, automaticamente, linearmente dependente.

Solução: Se $\mathbf{a}_i = \mathbf{0}$ (onde j é um dos índices entre 1 e m), então vale

$$0\mathbf{a}_1 + 0\mathbf{a}_2 + \dots + 0\mathbf{a}_{j-1} + 1\mathbf{a}_j + 0\mathbf{a}_{j+1} + \dots + 0\mathbf{a}_m = \mathbf{0}.$$

Essa é uma relação de dependência linear entre os elementos de $\{\mathbf{a}_1, \dots, \mathbf{a}_m\}$ (observe que o coeficiente do vetor \mathbf{a}_j não é zero), portanto, esse conjunto é linearmente dependente.

Outra forma de resolver a questão é a seguinte:

Se $\mathbf{a}_j = \mathbf{0}$, então a j-ésima coluna da matriz $\begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_m \end{bmatrix}$ é toda de zeros, portanto não pode ser coluna-pivô (justifique, pensando no efeito do processo de escalonamento sobre esta coluna). Pelo teorema 3.17, o conjunto é linearmente dependente. Esta solução é válida, mas a primeira é mais elegante.

R3.2. Sejam \mathbf{a}_1 , \mathbf{a}_2 e \mathbf{v} vetores de \mathbb{R}^n . Mostre que se \mathbf{v} pertence a Span $\{\mathbf{a}_1, \mathbf{a}_2\}$, então o conjunto $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{v}\}$ é linearmente dependente.

Solução: A hipótese $\mathbf{v} \in \text{Span}\{\mathbf{a}_1, \mathbf{a}_2\}$ equivale a dizer que \mathbf{v} é uma combinação linear de \mathbf{a}_1 e \mathbf{a}_2 (veja a proposição 2.16 da seção 2.5). Então, pela proposição 3.18, o conjunto $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{v}\}$ é linearmente dependente.

É instrutivo obter esse resultado diretamente, sem usar a proposição 3.18 (repetindo, essencialmente, a sua prova, para esse caso mais simples). Se $\mathbf{v} \in \operatorname{Span}\{\mathbf{a}_1, \mathbf{a}_2\}$, existem escalares c_1 e c_2 tais que $\mathbf{v} = c_1\mathbf{a}_1 + c_2\mathbf{a}_2$. Isso equivale a $c_1\mathbf{a}_1 + c_2\mathbf{a}_2 - \mathbf{v} = \mathbf{0}$. Observe que esta é uma relação de dependência linear entre \mathbf{a}_1 , \mathbf{a}_2 e \mathbf{v} (justifique!), portanto esses vetores são linearmente dependentes.

R3.3. Sejam $\mathbf{a}_1, \ldots, \mathbf{a}_m$ e \mathbf{v} vetores de \mathbb{R}^n , e suponha que $\mathcal{I} = \{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$ seja um conjunto linearmente independente. Mostre que se \mathbf{v} $n\tilde{a}o$ pertence a Span $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$, então o conjunto $\{\mathbf{a}_1, \ldots, \mathbf{a}_m, \mathbf{v}\}$, obtido pela inclusão de \mathbf{v} em \mathcal{I} , é, ainda, linearmente independente.

Solução: Vamos considerar a relação

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_m \mathbf{a}_m + x_{m+1} \mathbf{v} = \mathbf{0},$$
 (3.13)

e mostrar que todos os escalares x_j têm que ser iguais a zero (veja a afirmativa (d) do teorema 3.21). Primeiro, argumentamos que x_{m+1} é necessariamente igual a zero. De fato, se $x_{m+1} \neq 0$, poderíamos reescrever (3.13) como

$$\mathbf{v} = -\frac{x_1}{x_{m+1}}\mathbf{a}_1 - \frac{x_2}{x_{m+1}}\mathbf{a}_2 - \dots - \frac{x_m}{x_{m+1}}\mathbf{a}_m.$$

Mas isto contradiz a hipótese de que $\mathbf{v} \notin \operatorname{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_m\}$, portanto tem que valer $x_{m+1} = 0$. Assim, podemos simplificar a relação (3.13) para

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_m\mathbf{a}_m = \mathbf{0}.$$

Como, por hipótese, os vetores $\mathbf{a}_1, \ldots, \mathbf{a}_m$ são linearmente independentes, os escalares x_1, \ldots, x_m também são necessariamente iguais a zero.

Exercícios propostos

- **P3.1.** Verifique que os sistemas em (3.1), na página 66, são equivalentes e podem ser escritos na forma (3.2).
- **P3.2.** Determine se os sistemas homogêneos abaixo possuem apenas a solução trivial, ou uma infinidade de soluções. Não é necessário resolver os sistemas completamente. Use a proposição 3.3 ou a 3.6.

(a)
$$\begin{cases} x_1 - 3x_2 = 0 \\ 2x_1 + 3x_2 = 0 \end{cases}$$

(b)
$$x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \mathbf{0}$$

(c)
$$\begin{bmatrix} 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{bmatrix} \mathbf{x} = \mathbf{0}$$

(d)
$$\begin{bmatrix} 3 & -1 & 2 \\ -6 & 2 & -4 \end{bmatrix} \mathbf{x} = \mathbf{0}$$

P3.3. Considere o sistema $B\mathbf{x} = \mathbf{0}$ do exemplo 3.4. Faça o processo de escalonamento da matriz completa $\begin{bmatrix} B & \mathbf{0} \end{bmatrix}$. Verifique, assim, que a sua forma escalonada reduzida é aquela dada em (3.4). Observe que cada matriz obtida durante o processo tem apenas zeros na última coluna.

- **P3.4.** Mostre que se a matriz $[A \mid \mathbf{0}]$ é linha-equivalente a $[G \mid \mathbf{b}]$, então $\mathbf{b} = \mathbf{0}$.
- **P3.5.** (a) Mostre que se B é uma matriz escalonada (ou escalonada reduzida), então $\begin{bmatrix} B & \mathbf{0} \end{bmatrix}$ também é (verifique os critérios da definição 1.5).
 - (b) Convença-se de que se A e B são linha-equivalentes, então $\begin{bmatrix} A & \mathbf{0} \end{bmatrix}$ e $\begin{bmatrix} B & \mathbf{0} \end{bmatrix}$ também são.
 - (c) Explique a seguinte afirmativa à luz do itens anteriores: "Para resolver o sistema $A\mathbf{x} = \mathbf{0}$, basta escalonar a matriz de coeficientes A."
- **P3.6.** Verifique uma espécie de recíproca da observação 3.2: Se $\mathbf{x} = \mathbf{0}$ é uma solução do sistema $A\mathbf{x} = \mathbf{b}$, então esse sistema é homogêneo (isto é, $\mathbf{b} = \mathbf{0}$).
- **P3.7.** Suponha que $A\mathbf{x} = \mathbf{b}$ e $B\mathbf{x} = \mathbf{d}$ sejam sistemas equivalentes, ou seja, que tenham o mesmo conjunto-solução. Mostre que $A\mathbf{x} = \mathbf{b}$ é homogêneo se e somente se $B\mathbf{x} = \mathbf{d}$ é homogêneo. Dica: Use o exercício anterior.
- P3.8. Determine se cada afirmativa é verdadeira ou falsa. Justifique.
 - (a) Se a é um escalar diferente de zero e ax = 0, então pode-se inferir que x = 0.
 - (b) Se A é uma matriz diferente da matriz zero e $A\mathbf{x} = \mathbf{0}$, então pode-se inferir que $\mathbf{x} = \mathbf{0}$. Observação: Lembre que a "matriz zero" tem todas as entradas iguais a zero.
 - (c) Um sistema linear com cinco variáveis e três equações necessariamente tem uma infinidade de soluções.
 - (d) Um sistema linear homogêneo com cinco variáveis e três equações necessariamente tem uma infinidade de soluções.
 - (e) Um sistema linear homogêneo com três variáveis e cinco equações necessariamente tem *somente* a solução trivial.
 - (f) Um sistema linear homogêneo com três variáveis e cinco equações pode ter soluções não-triviais.
 - (g) Se um sistema homogêneo possui uma solução não-trivial, então, necessariamente, possui uma infinidade de soluções.

P3.9. Seja
$$G = \begin{bmatrix} 1 & 4 & -2 & 7 \\ 3 & 0 & 6 & 9 \\ -1 & 2 & -4 & -1 \end{bmatrix}$$
.

Determine os vetores abaixo que pertencem a Nuc G:

$$\begin{bmatrix} 1 \\ 2 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}. (3.14)$$

P3.10. Descreva, explicitamente, o núcleo de cada matriz dada abaixo como o span de certos vetores. Inspire-se nos exemplos 3.12 e 3.13.

(a)
$$\begin{bmatrix} 2 & 0 & 4 \\ 1 & 3 & -1 \\ -1 & -2 & 0 \end{bmatrix} .$$

(b)
$$\begin{bmatrix} 1 & 2 & 1 & -1 \\ -2 & -4 & 0 & 4 \\ 3 & 6 & 4 & -2 \end{bmatrix}.$$

- (c) A matriz A de (1.13), página 13. Dica: Sua forma escalonada reduzida já foi obtida em (1.15).
- (d) A matriz G do exercício anterior.
- (e) $[0 \ 0 \ 0]$.
- (f) $[0 \ 1 \ 0]$.
- (g) $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.
- **P3.11.** Considere a matriz C do exemplo 3.5, na página 67. Faça o exercício sugerido ao final do exemplo. Observe que $\{0\}$ é uma descrição explícita do núcleo de C. Escrever Nuc $C = \text{Span}\{0\}$ também é correto, mas é bobagem.
- P3.12. Considere o sistema abaixo:

$$\begin{cases} 3x_1 - x_2 = 0 \\ x_1 + 2x_2 = 0 \end{cases}$$

- (a) Cada equação do sistema representa uma reta em \mathbb{R}^2 . Esboce-as.
- (b) Explique por que a interseção das duas retas representa o núcleo da matriz $A = \begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix}$.
- (c) Olhe para o seu esboço, e conclua que Nuc A contém apenas a origem de \mathbb{R}^2 .
- (d) Usando a proposição 3.11, verifique diretamente que $\text{Nuc } A = \{0\}$.
- **P3.13.** Em cada item, determine se os vetores dados são linearmente independentes ou dependentes.

(a)
$$\begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ -2 \\ 7 \end{bmatrix}$, $\begin{bmatrix} 3 \\ -2 \\ 11 \end{bmatrix}$.

(b)
$$\begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 3 \\ -2 \\ 11 \end{bmatrix}$.

(c)
$$\begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 3 \\ -2 \\ 11 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$. Dica: Use a proposição 3.22.

(d)
$$\begin{bmatrix} 1\\2\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\4\\1\\1 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$. *Dica:* Veja o exercício resolvido R3.1.

(f)
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
.

P3.14. Verifique, "por inspeção", que os seguintes vetores são linearmente dependentes. *Dica*: Use o corolário 3.19.

$$\begin{bmatrix} 2\\1\\-1 \end{bmatrix} \quad e \quad \begin{bmatrix} -6\\-3\\3 \end{bmatrix}.$$

P3.15. (a) Verifique que os seguintes vetores são linearmente dependentes:

$$\begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\3\\-2 \end{bmatrix}, \begin{bmatrix} 4\\-1\\0 \end{bmatrix}.$$

- (b) Observe que, dentre os vetores dados, nenhum é multiplo do outro. Por que isso não contradiz o corolário 3.19?
- **P3.16.** Prove o corolário 3.19 novamente, fazendo uso direto da definição 3.14. *Dica*: Reproduza, nesse caso mais simples, a prova da proposição 3.18.
- **P3.17.** Seja G a matriz dada no exercício P3.9, e sejam \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 e \mathbf{u}_4 seus vetores-coluna. Verifique que vale a relação de dependência linear $\mathbf{u}_1 + 2\mathbf{u}_2 + \mathbf{u}_3 \mathbf{u}_4 = \mathbf{0}$. Sugestão: Aproveite o trabalho já feito no exercício P3.9. Repare, em particular, no primeiro vetor dado em (3.14).
- **P3.18.** Cada solução não-trivial de $A\mathbf{x} = \mathbf{0}$ (caso exista) corresponde a uma relação de dependência linear entre as colunas de A. Explique.
- **P3.19.** Se houver uma relação de dependência linear entre os vetores $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m$, então haverá uma infinidade delas. Justifique.
- **P3.20.** Em cada item, determine os valores de h tais que (i) $\mathbf{u} \in \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$, e tais que (ii) o conjunto $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{u}\}$ seja linearmente dependente.

(a)
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ 4 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 2 \\ 1 \\ h \end{bmatrix}$.

(b)
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ -6 \\ 2 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 2 \\ 1 \\ h \end{bmatrix}$.

(c)
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ -6 \\ 2 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 3 \\ 9 \\ h \end{bmatrix}$.

- **P3.21.** Sejam $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m$ e \mathbf{v} vetores de \mathbb{R}^n . Mostre que, se \mathbf{v} pertence a Span $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$, então o conjunto $\{\mathbf{a}_1, \ldots, \mathbf{a}_m, \mathbf{v}\}$ é linearmente dependente. Equivalentemente, se o conjunto $\{\mathbf{a}_1, \ldots, \mathbf{a}_m, \mathbf{v}\}$ é linearmente independente, então \mathbf{v} $n\tilde{a}o$ pertence a Span $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$. Observação: Essa é uma generalização do exercício resolvido R3.2.
- **P3.22.** Sejam $\mathbf{a}_1, \ldots, \mathbf{a}_m$ e \mathbf{v} vetores de \mathbb{R}^n , e suponha que $\mathbf{a}_1, \ldots, \mathbf{a}_m$ sejam linearmente independentes. Mostre que \mathbf{v} pertence a Span $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$ se e somente se o conjunto $\{\mathbf{a}_1, \ldots, \mathbf{a}_m, \mathbf{v}\}$ é linearmente dependente. Equivalentemente, \mathbf{v} $n\tilde{a}o$ pertence a Span $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$ se e somente se o conjunto $\{\mathbf{a}_1, \ldots, \mathbf{a}_m, \mathbf{v}\}$ é linearmente independente.

Dica: Na realidade, o trabalho todo já foi feito nos exercícios R3.3 e P3.21. Basta juntar as peças. Note que o exercício resolvido R3.3 diz que, sob a hipótese adicional da independência linear dos vetores $\mathbf{a}_1, \ldots, \mathbf{a}_m$, vale a recíproca do exercício P3.21.

- **P3.23.** Considere os vetores $\mathbf{a}_1 = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} -2 \\ -6 \\ 2 \end{bmatrix}$ e $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$. Mostre que o conjunto $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{v}\}$ é linearmente dependente, mas que \mathbf{v} $n\tilde{a}o$ pertence a Span $\{\mathbf{a}_1, \mathbf{a}_2\}$. Explique por que isso não contradiz o exercício P3.22. Conclua que, em geral, $n\tilde{a}o$ vale a recíproca do exercício P3.21.
- **P3.24.** Sejam \mathbf{a}_1 , \mathbf{a}_2 e \mathbf{v} vetores de \mathbb{R}^3 , com \mathbf{a}_1 e \mathbf{a}_2 linearmente independentes.
 - (a) Convença-se de que Span $\{a_1, a_2\}$ é um *plano* passando pela origem em \mathbb{R}^3 . *Dicas*: Os vetores a_1 e a_2 podem ser colineares? Algum deles pode ser nulo? Agora, relembre o exemplo 2.11.
 - (b) Faça dois esboços representando \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{v} e o plano $\mathrm{Span}\{\mathbf{a}_1, \mathbf{a}_2\}$: um para o caso $\mathbf{v} \in \mathrm{Span}\{\mathbf{a}_1, \mathbf{a}_2\}$, e outro para o caso $\mathbf{v} \notin \mathrm{Span}\{\mathbf{a}_1, \mathbf{a}_2\}$. Isso dará uma interpretação geométrica, em \mathbb{R}^3 , para o exercício P3.22.
- **P3.25.** Interprete, geometricamente, cada item do exercício P3.20. Em cada caso, determine se $\operatorname{Span}\{\mathbf{v}_1,\mathbf{v}_2\}$ é uma reta ou um plano em \mathbb{R}^3 . Depois, reflita sobre o significado geométrico de $\mathbf{u} \in \operatorname{Span}\{\mathbf{v}_1,\mathbf{v}_2\}$ e sobre o significado geométrico da dependência linear entre $\mathbf{v}_1,\mathbf{v}_2$ e \mathbf{u} .
- P3.26. Determine se cada afirmativa é verdadeira ou falsa. Justifique.
 - (a) Se o conjunto $\{\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}\}$ é linearmente dependente, então \mathbf{z} pode ser escrito como uma combinação linear dos demais vetores.
 - (b) Se o conjunto $\{\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}\}$ é linearmente dependente, então algum de seus elementos pode ser escrito como combinação linear dos demais.
 - (c) Para determinar se o conjunto $\{\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}\}$ é linearmente dependente, é uma boa ideia verificar se \mathbf{x} é uma combinação linear dos demais elementos.
 - (d) Para determinar se o conjunto $\{\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}\}$ é linearmente dependente, é uma boa ideia verificar se \mathbf{z} é uma combinação linear dos demais elementos.

- (e) Se o conjunto $\{\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}\}$ é linearmente dependente, então algum de seus elementos está no subespaço gerado pelos demais.
- **P3.27.** Sejam $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m \in \mathbf{u}$ vetores de \mathbb{R}^n .
 - (a) Mostre que, se $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$ for um conjunto linearmente dependente, então $\{\mathbf{a}_1, \ldots, \mathbf{a}_m, \mathbf{u}\}$ também será. Ou seja, se acrescentarmos vetores a um conjunto linearmente dependente, o resultado permanecerá dependente. Dica: Comece com uma relação de dependência linear entre $\mathbf{a}_1, \ldots, \mathbf{a}_m$. Como escrever, agora, uma relação de dependência linear entre os vetores $\mathbf{a}_1, \ldots, \mathbf{a}_m$ e \mathbf{u} ?
 - (b) Mostre que, se $\{\mathbf{a}_1, \ldots, \mathbf{a}_m, \mathbf{u}\}$ for um conjunto linearmente independente, então $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$ também será. Ou seja, se *removermos* vetores de um conjunto linearmente *independente*, o resultado permanecerá independente. *Dica*: Use o item anterior.