专题1-6 二倍角的解题策略:倍半角模型与绝配角

导语:见到 2 倍角的条件,首先想到"导",将图形中的角度都推导出来,挖掘出隐藏边的信息,再观察角度的位置,结合其他条件,这里做题的经验,总结了六个字:翻、延、倍、分、导、造

题型•归纳

目录
知识点梳理
策略一: 向外构造等腰 (大角减半)
策略二: 向内构造等腰(小角加倍或大角减半)
策略三:沿直角边翻折半角(小角加倍)
策略四: 邻二倍角的处理
【经典例题讲解】
【一题多解 1】围绕 2 倍角条件,解法围绕"翻""延"倍""分"。
【一题多解 2】常规法与倍半角处理对比
策略五: 绝配角模型
<u> </u>
2023·深圳南山区联考二模
2023·山西·统考中考真题
慰型吕 向内构造等腰 (小角加倍或大角减半)

2023·深圳宝安区二模
2023·深圳中学联考二模
<u> </u>
题型 运 绝配角
图例会。从七 乡 市的一位各边版

宿迁·中考
盐城·中考
河南·中考
2023·内蒙古赤峰·统考中考真题
江苏苏州·统考中考真题

内蒙古鄂尔多斯·统考中考真题	
2022·内蒙古呼和浩特·统考中考真题	
2023·湖北黄冈·统考中考真题	
题型令 其它构造方式	

知识点•梳理

知识点梳理

策略一:向外构造等腰(大角减半)

已知条件:如图,在△ABC中,∠ABC=2∠ACB

辅助线作法:延长 CB 到 D, 使 BD=BA, 连接 AD

结论: AD=AC, △BDA∽△ADC

策略二:向内构造等腰(小角加倍或大角减半)

已知条件:如图,在 $\triangle ABC$ 中, $\angle ABC=2\angle B$

辅助线作法:法一:作 $\angle ABC$ 的平分线交AC于点D,结论: $\angle DBC = \angle C$, DB = DC

法二:在BC上取一点E,使AE=CE,则 $\angle AEB=2\angle C=\angle B$ (作AC中垂线得到点E)

总结: 策略一和策略二都是当2倍角和1倍角共边时对应的构造方法。下面我们再来看看不在同一个三角

形中时该如何处理

策略三: 沿直角边翻折半角(小角加倍)

已知条件:如图,在 $Rt\triangle ABC$ 中, $\angle ACB=90^{\circ}$,点D为边BC上一点,连接AD, $\angle B=2\angle CAD$

辅助线作法:沿AC 翻折△ACD 得到△ACE

结论: AD=AE, ∠DAE=∠B, BA=BE, △ADE∽△BAE

策略四:邻二倍角的处理

已知条件:如图,在Rt $\triangle ABC$ 中, $\angle C=90^{\circ}$,点D为边BC上一点, $\angle BAD=2\angle CAD$

辅助线作法:

法一: 向外构造等腰(导角得相似)

延长 AD 到 E, 使 AE=AB, 连接 BE

结论: BD=BE, ∠DBE=∠BAD, △BDE∽△ABE

法二:作平行线,把二倍角转到同一个三角形中

延长 AD 到 F, 使 CE//AB, 则 $\angle F = \angle BAD$

【经典例题讲解】

例题 1 如图,在正方形 ABCD 中,AB=1,点 $E \setminus F$ 分别在边 BC 和 CD 上,AE=AF, $\angle EAF=60^{\circ}$,则 CF

的长是()

A.
$$\frac{\sqrt{3}+1}{4}$$

B.
$$\frac{\sqrt{3}}{2}$$

c.
$$\sqrt{3}-1$$

D.
$$\frac{2}{3}$$

【简析】(1)方法一(常规解法):如图,连接 EF,易证△AEF 为等边三角形,

且△ADF≌△ABE(HL),则 DF=BE,从而 CF=CE,即△CEF 为等腰直角三角形;设 CF=x,

则 DF=1-x, $AF=EF=\sqrt{2}x$, 在 $Rt\triangle ADF$ 中,由勾股定理可得 $1+(1-x)^2=2x^2$,

解得
$$x = \sqrt{3} - 1(x = -\sqrt{3} - 1)$$
 舍去),故选 C :

方法二(倍半角模型):如图,在边<mark>AD</mark>上取点**P**,使 AP=PF,

同上可得 $\triangle ADF \cong \triangle ABE(HL)$,则 $\angle DAF = \angle BAE = 15^{\circ}$,从而 $\angle DPF = 30^{\circ}$;设DF = x,则 $PD = \sqrt{3} x$,AP = PF = 2x 故 $AD = (2 + \sqrt{3})x = 1$,解得 $x = 2 - \sqrt{3}$, $CF = \sqrt{3} - 1$ 选 C

=PF = 2x, $to AD = (2 + \sqrt{3})x = 1$, to AD =

例题 2 如图,正方形 ABCD 的边长为 4,点 E 是 CD 的中点,AF 平分 $\angle BAE$,交 BC 于点 F ,将 $\triangle ADE$ 绕点 A 顺时针旋转 90° 得 $\triangle ABG$,则 CF 的长为

【简析 1(1) 方法一(常规解法): 由题可得 $\angle AFG = \angle DAF = \angle DAE + \angle EAF = \angle BAG + \angle BAF = \angle FAG$ 即 $\angle AFG$

 $= \angle FAG$,故 $FG = AG = AE = 2\sqrt{5}$,从而 $CF = CG - FG = 6 - 2\sqrt{5}$;

方法二(倍半角模型): 如图 17-2-3, 延长 AF, DC 交于点 P, 易得 $\angle P = \angle BAF = \angle EAF$, 则 PE = AE

 $=2\sqrt{5}$, 故 $CP=2\sqrt{5}-2$, $DP=2\sqrt{5}+2$: 又易证△PCF∽△PDA,故 $\frac{CF}{DA}=\frac{CP}{DP}$, 即 $\frac{CF}{4}=\frac{2\sqrt{5}-2}{2\sqrt{5}+2}$

从而 $CF=6-\sqrt{5}$;

【反思】方法一的关键是通过导角得到等腰<u>△AFG</u>,方法二由"倍角∠AED"造"半角∠P",并且这里的构造是通过"角平分线十平行线→等腰三角形"自然衍生出来的

【简析】方法一(常规解法): 如图,作 $DG \perp BE$ 于点 G, 由题易得 $\angle CBD = \angle ABD = \angle CDB$,则 BC = CD;进一步由 $DE \perp BD$,可得 $\angle CDE = \angle E$,则 CD = CE = BC,从而 $S \square ABCD = 2S \triangle BCD = S \triangle BDE$ 即 $S \triangle BDE = 24$.

越 BD=8,BE=10,所以 $DG=\frac{24}{5}$,CD=5, $\sin \angle DCE=\frac{24}{5}$,选 A

方法二(倍半角模型): 如图,在 BD 上取点 F,使 EF=BF,易证 $\angle DFE=2\angle EBF$, $\angle DCE=2\angle EBF$,故 $\angle DFE=\angle DCE$,要求 $\sin \angle DCE$ 的值,只需求 $\sin \angle DFE$,设 EF=BF=x,同上可得 BD=8,则 DF=8-x,在

Rt $\triangle DEF$ 中,由勾股定理可得 $36 + (8-x)^2 = x^3$,解得 $x = \frac{24}{5}$,从面 $\sin \angle DFE = \frac{DE}{EF} = \frac{24}{5}$,即 $\sin \angle DCE$

 $=\frac{24}{5}$,选A.

【反思】方法一通过作高是线构造 $Rt \triangle CDG$,结合面积法求解,方法二由"半角 $\angle CBD$ "造"倍角 $\angle DFE$ ",结合勾股定理列方程求。

例题 4 如图,在 Rt $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$,AB = 10,BC = 6,CD // AB, $\angle ABC$ 的平分线 BD 交 AC 于点 E,则 DE =

简析(1)方法一(常规解法): 由题得 $\angle CBD = \angle ABD = \angle D$, 则CD = BC = 6; 又易得 $\triangle CDE \hookrightarrow \triangle ABE$, 则 $AE = \frac{DE}{BE}$

 $=\frac{CD}{AB}=\frac{3}{5}$, $\frac{1}{8}$ $CE=\frac{3}{8}$ AC=3, $\frac{1}{8}$ BE=3 $\sqrt{5}$, $DE=\frac{3}{5}$ $BE=\frac{9\sqrt{5}}{5}$;

方法二(倍半角模型): 如图, 延长 CB 至点 F, 使 BF=AB=10, 连接 AF, 由题可得 AC=8, CF=16, 则 tan

 $\angle F = \frac{1}{2}$; 又易得 $\angle CBE = \angle F$, 故 $\tan \angle CBE = \frac{1}{2}$, 即 $\frac{CE}{BC} = \frac{1}{2}$,从而 CE = 3, $BE = 3\sqrt{5}$; 再作 $CG \perp BD$ 于

点 G, 易得 $BG = 2 BC = \frac{12\sqrt{5}}{5}$; 同上可得 CB = CD, 故 $BD = 2BG = \frac{24\sqrt{5}}{5}$, 因此 $DE = BD - BE = \frac{9\sqrt{5}}{5}$

总结: 具体问题具体对待, 并非哪一种方法绝对简单, 需根据问题特征选取较为合适的方法.

【一题多解1】围绕2倍角条件,解法围绕"翻""延"倍""分"

如图,在 $\triangle ABC$ 中, $\angle ABC = 2 \angle ACB$,AB = 3,BC = 5,求线段 AC 的长.

法 1: 延长或翻折向外构造等腰(双等腰)

易知 $AE = 2\sqrt{2} \Rightarrow AC = 2\sqrt{6}$

法 2: 翻折或取点向内构造等腰(双等腰)

法 3: 作角平分线

易知△ABH∽△ACB |
$$\frac{3}{x+y} = \frac{y}{3} = \frac{x}{5}$$

法 4: 翻折一边+平行线向外作等腰(补成等腰梯形)

法 5: 向外延长作等腰

易知△ABC∽△ADC

【一题多解 2】常规法与倍半角处理对比

如图,AB 为 $\odot O$ 的直径,BC、CD 是 $\odot O$ 的切线,切点分别为点 B、D,点 E 为线段 OB 上的一个动点,连接 OD、CE、DE,已知 AB = $2\sqrt{5}$,BC = 2 ,当 CE + DE 的值最小时,则 CE DE 的值为(

反思: 本题结构相当于已知"半角∠BOC"求"倍角∠DOG", 方法一通过作高法,构造直角三角形求解;方法二构造"倍半角模型",结合勾股定理列方程求解:方法三依然基于导角分析,借助对称性,结合面积法求解,以上提供的三种方法都是"倍半角"处理的常见方法。

如图,AB 为 $\bigcirc O$ 的直径,D 是弧BC 的中点,BC 与 AD、OD 分别交于点 E、F.

(1) 求证: **DO//AC**;

(2) 求证: *DE · DA* = *DC*²

(3)若 $\tan \angle CAD = \frac{1}{2}$,求 $\sin \angle CDA$ 的值。

简析(1)如图,连接 OC,易证 DO⊥BC 且 AC⊥BC,故 DO//AC;

[2]由题可得 $\angle BCD = \angle CAD$,故 $\triangle DCE \hookrightarrow \triangle DAC$,进一步可证 $DE \cdot DA = DC^2$;
[3]方法一(母子型相似):由 $\tan \angle CAD = \frac{1}{2}$ 可得 $\frac{CE}{AC} = \frac{1}{2}$;又 $\triangle DCE \hookrightarrow \triangle DAC$ 过 $\frac{DE}{DC} = \frac{DC}{DA} = \frac{1}{AC} = \frac{1}{2}$;设 DE = k 则 DC = 2k,DA = 4k,AE = 3k;又 易证 $\frac{FE}{CE} = \frac{DE}{AE}$,故 $\frac{FE}{CE} = \frac{1}{3}$;由此再设 FE = m,则 CE = 3m,CF = 4m,从而 BC = 8m,AC = 6m,因此 AB = 10m, $\sin \angle B = \frac{3}{5}$,即 $\sin \angle CDA = \frac{3}{5}$; $f = \frac{1}{2}$; f =

可设
$$CE=1$$
, $AC=2$, 则 $EG=1$, $AG=2$; 又易得 $\triangle BEG \hookrightarrow \triangle BAC$, $\frac{BC}{BG} = \frac{BA}{BE} = \frac{AC}{EG} = 2$; 再设 $BG=x$, 则

$$BC = 2x$$
, $BA = BG + AG = x + 2$, $BE = BC - CE = 2x - 1$, 从而有 $x + 2 = 2(2x - 1)$, 解得 $x = \frac{4}{3}$, 所以 $AB = BC + CE = 2x - 1$

$$\frac{10}{3}$$
, $\sin \angle B = \frac{AC}{AB} = \frac{3}{5}$, $\boxed{\text{RP}}$ $\sin \angle CDA = \frac{3}{5}$

方法三(角平分线之对称策略):如图,连接BD并延长,交AC的延长线于点P,由题可设BD=PD=1,

则
$$AD=2$$
, $AB=AP=\sqrt{5}$; 又 $\sin \angle PBC=\sin \angle PAD=\frac{\sqrt{5}}{5}$,故 $PC=PB \cdot \sin \angle PBC=\frac{2\sqrt{5}}{5}$ 从 而 $AC=$

$$AP - CP = \frac{3\sqrt{5}}{5}$$
 因此 $\sin \angle B = \frac{AC}{AB} = \frac{3}{5}$ 即 $\sin \angle CDA = \frac{3}{5}$

方法四(倍半角模型):如图 17-14-4,在 AC 上取点 M,使 AM=EM,则∠CME=2∠CAD=∠BAC。

由题可设 CE=1, AC=2, 再设 AM=ME=x, 则 CM=2-x, 在 $Rt\triangle CME$ 中, 由勾股定理可得 $1+(2-x)^2=x^2$,

解得
$$x = \frac{5}{4}$$
, 从而 $CM = \frac{3}{4}$, 鼓 $\cos \angle CME = \frac{CM}{ME} = \frac{3}{5}$, 即 $\cos \angle BAC = \frac{3}{5}$, 所以 $\sin \angle B = \frac{3}{5}$, $\sin \angle CDA = \frac{3}{5}$

反思:本题的结构为已知"半角 $\angle CAD$ "求"倍角 $\angle BAC$ ",从而转化为其余角 $\angle CDA$ 。以上提供的前三种方法

都是借助相似或三角函数等进行计算,属常规思路,方法四基于导角分析,构造"倍半角模型",显得尤为简单、直接,直指问题本质。

策略五:绝配角模型

【释义】当 m, n 两个角满足 m+2n=180° 时,称其为一对绝配角,或者:半角的余角与它本身称为绝配资料整理【淘宝店铺:向阳百分百】

【举例】常见的剧配角组合如下:

绝配角	组合 1	组合 2	组合 3	组合 4	组合 5
m	2α	$90 + 2\alpha$	90-2 α	$60+2\alpha$	$60-2\alpha$
n	90-α	$45-\alpha$	$45+\alpha$	60 -α	60 -α

【解 决】

思路(一):根据三角形内角和是180°,构造等腰三角形。

思路(二):根据平角是 180°, m 和 2 个 n 构成一个平角(有两条边在同一直线上)

用一句话概括为: 有等腰找等腰, 没等腰造等腰

其中"等腰"指的是以m为顶角、以n为底角的等腰三角形,了解绝配角模型,可以给我们提供一些辅助 线思路

(一) 共顶共边 翻折

当两个角满足两个角满足 m+2n=180° 时,且共顶点共一边,这样的两个角是什么样的呢?

发现 OD 为 ZAOB 邻补角的平分线,此时处理问题一般用翻折,把 OB 沿 OD 翻折.

例题 1: 已知 Rt
$$\triangle ABC$$
 中 $\angle C=90^{\circ}$, $DE=3DC$, $2\angle E=\angle CAD$,求 AE 的值.

方法一:分析: $\angle EAC$ 与 \angle DAC是共点A的绝配角,

绝配角重叠,要翻折两次.

解:将 \triangle AEC 关于 AE 作轴对称图形,将 \triangle ADC 关于 AC 作轴对称图形,如图, \triangle EFG 为直角三角形

设 DC = x, DE = 3x, 则 EF = 4x, $CG = x \Rightarrow EG = 5x \Rightarrow FG = 3x$

$$\triangle GAC \sim \triangle GEF \Rightarrow AC = \frac{4}{3}x, AD = \frac{5}{3}x, \quad AE = \frac{4\sqrt{10}}{3}x$$

即可求出
$$\frac{AE}{AD} = \frac{4\sqrt{10}}{5}$$

方法二:分析:由于 $\angle CAD=2t$,构造一个以 $\angle A$ 为顶点的等腰 $\triangle ADK$,然后出现 $\triangle ECA\sim \triangle DCK$

解:构造以∠A为顶点的等腰△ADK(AD=AK).

导角易得∠CDK=∠AEC,<mark>△</mark>ECA~ADCK

$$\frac{AC}{CK} = \frac{EC}{DC} = 4$$
, $\frac{CK}{CK} = \frac{AC}{DC} = 4$, $\frac{CK}{CK} = \frac{AC}{AC} = 4x$, $\frac{AC}{AD} = 5x$, $\frac{DC}{AD} = 3x$, $\frac{ED}{AD} = 9x$

$$AE = 4\sqrt{10}x, \frac{AE}{AD} = \frac{4\sqrt{10}}{5}$$

(二)共三角形 | 等腰

(1)若 $m, n = 90^{\circ} - \frac{m}{2}$ 为同一个三角形的内角,则此时三角形为等腰三角形.

(2)若
$$m, n = 90^{\circ} + \frac{m}{2}$$
分别为同一个三角形的内角和外角,则另一内角为 $90^{\circ} - \frac{m}{2}$,此时三角形为等腰三角形

(3)若 $m, n = 90^{\circ} - \frac{m}{2}$ 分别为同一个三角形的内角和外角,此时可以以m 为顶角作等腰三角形,此时会构成

另一个相似的等腰三角形.

(4)若
$$m, n = 90^{\circ} + \frac{m}{2}$$
 为同一个三角形的内角,与(3)的情况相同.

总结:"半角的余角,等腰形来找"

例题 2: 如图在矩形 ABCD 中,点 E, F 分别为 AD, CD 的中点,连接 BE, BF,且 $\angle ABE = 2 \angle FBC$,若 BE = 5,则 BF 的长度为

解法一:将 \triangle BFC 沿 CB 翻折,交 DC 的延长线于点 G, 延长 CD 交 BE 的延长线于点 H, $\angle G = \angle BFC = 90 - \alpha$, $\angle H = 2\alpha$, $\triangle BHG$ 为等腰,5x = 10, x = 2, AE = 3, BC = 6, $BF = 3\sqrt{5}$.

解法二:

连接并延长交 BA 的延长导角,得出 $\triangle FHC$ 为等腰三角形,平行不改变形状, $\triangle GBH$ 为等腰三角形。根据腰

等得出 10-x=4x, 可求 $BF=3\sqrt{5}$

解法三: 取AB 中点 G, 连接 CG, 延长 BE 交 CD 的延长线于点 H, 得到 $\triangle BCF \cong \triangle CBG$, 导角得出 $\triangle BGK$ 为 等腰平行不改变形状, $\triangle HKC$ 也为等腰。根据腰等得出 10-x=4x, 可求 BF

以上三种解法都是利用造全等,转移角,构等腰,得出边的等量关系来求解。

此题还可以构直接造等腰。用相似得出边的数量关系求解。请看解法四

解法四:可以直接利用 $\angle ABE=2$ a, 构等腰 $\triangle GBE$, $\triangle BCF \sim \triangle EAG \mid \frac{AE}{BC} = \frac{GA}{CF}$ 根据腰等得出 $\frac{5}{2}x=5$

可求 BF

重点题型•归类精练

國國一 向外构造等腰三角形 (大角减半)

1. 如图,在 $\triangle ABC$ 中, $\angle ABC = 2 \angle C$,BC = a,AC = b,AB = c,探究 a,b,c 满足的关系.

解: 延长 <u>CB</u> 到 <u>D</u>, 使 <u>BD=AB=c</u>, 连接 AD.

则 $\angle BAD = \angle D$, $\therefore \angle ABC = 2 \angle D$.

 $\therefore \angle ABC = 2 \angle C, \quad \therefore \angle D = \angle C,$

 $\triangle AD = AC = b$, $\triangle BAD \hookrightarrow \triangle ACD$

 $\frac{AD}{BD} = \frac{CD}{AD},$

 $\therefore \frac{b}{c} = \frac{a+c}{b},$

 $\therefore b^2 = c(a+c).$

2. 如图,在 $\triangle ABC$ 中, $\angle ABC = 2 \angle C$,AB = 3, $AC = 2\sqrt{6}$,求BC的长.

解:延长 <u>CB</u> 到 <u>D</u>,使 <u>DB=AB=3</u>,连接 AD.

则 $\angle D = \angle DAB$, $\therefore \angle ABC = 2 \angle D$.

 $\therefore \angle ABC = 2 \angle C, \quad \therefore \angle C = \angle D = \angle DAB$

 $AD = AC = 2\sqrt{6}$, $\triangle BDA \hookrightarrow \triangle ADC$

 $\therefore \frac{AD}{BD} = \frac{CD}{AD},$

 $\frac{2\sqrt{6}}{3} = \frac{CD}{2\sqrt{6}}$

 $\therefore CD = 8, \therefore BC = 5.$

2023·深圳南山区联考二模

3. 一副三角板按如图 1 放置,图 2 为简图,D 为 AB 中点,E、F 分别是一个三角板与另一个三角板直角边 AC、BC 的交点,已知 AE=2,CE=5,连接 DE,M 为 BC 上一点,且满足 $\angle CME$ =2 $\angle ADE$,EM=____.

【答案】 29

【分析】由 CE=5。 AE=2。得 AC=7。利用勾股定理,得到 AD 的长度,过 E 作 EN ⊥ AD 于 N,求出 EN 和 DN 的长度,由于 ∠CME=2 ∠AI E,延长 MB 至 P,是 MP=ME。可以证明 △DNE ~△PCE MP=x。在 Rt△MCE 中,利用勾股定理列出方程,即可求解。

【详解】解:如图,过E作EN_AD于N,

 $\angle END = \angle ENA = 90^{\circ}$

 $\angle NEA = \angle A = 45^{\circ}$

. NE= NA,

 $AE = \sqrt{NE^2 + NA^2} = \sqrt{2}NA,$

$$\therefore NE = NA = \frac{AE}{\sqrt{2}} = \sqrt{2},$$

同理,
$$AD = \frac{AC}{\sqrt{2}} = \frac{7\sqrt{2}}{2}$$

$$\therefore DN = AD - NA = \frac{5\sqrt{2}}{2},$$

延长 MB 至 P,使 MP=ME,连接 PE,

∴可设 ∠MPE = ∠MEP = x

- $\therefore \angle EMC = \angle MPE + \angle MEP = 2x,$
- $: \angle EMC = 2\angle ADE$
- $\therefore \angle ADE = \angle MPE = x$
- \nearrow $\angle DNE = \angle PCE = 90^{\circ}$

 $.\Delta DNE \sim \Delta PCE$,

$$\therefore \frac{CE}{PE} = \frac{NE}{DN} = \frac{\sqrt{2}}{5\sqrt{2}} = \frac{2}{5},$$

$$\therefore PC = \frac{25}{2}$$

设
$$MP = ME = x$$
,则 $CM = \frac{25}{2} - x$,

在 $Rt \triangle MCE$ 中, $ME^2 = CM^2 + CE^2$,

$$\left(\frac{25}{2} - x \right)^2 + 25 = x^2, \ \therefore \ x = \frac{29}{4},$$

2023·山西·统考中考真题

4. 如图,在四边形ABCD中, $\angle BCD = 90^{\circ}$,对角线AC,BD相交于点O. 若

 $AB = AC = 5, BC = 6, \angle ADB = 2\angle CBD$,则AD的长为

【答案】 $\frac{\sqrt{97}}{3}$

【思路点拨】过点A作 $AH \perp BC$ 于点H,延长AD,BC交于点E,根据等腰三角形性质得出

 $BH = HC = \frac{1}{2}BC = 3$,根据勾股定理求出 $AH = \sqrt{AC^2 - CH^2} = 4$,证明 $\angle CBD = \angle CED$,得出 DB = DE ,根

据等腰三角形性质得出CE = BC = 6,证明CD // AH,得出 $\frac{CD}{AH} = \frac{CE}{HE}$,求出 $CD = \frac{8}{3}$,根据勾股定理求出

$$DE = \sqrt{CE^2 + CD^2} = \sqrt{6^2 + \left(\frac{8}{3}\right)^2} = \frac{2\sqrt{97}}{3}$$
, 根据 $CD // AH$, 得出 $\frac{DE}{AD} = \frac{CE}{CH}$, 即 $\frac{2\sqrt{97}}{3} = \frac{6}{3}$, 求出结果即可.

【详解】解:过点A作 $AH \perp BC$ 于点H,

$$\square$$
 $\angle AHC = \angle AHB = 90^{\circ}$

$$AB = AC = 5, BC = 6,$$

$$\therefore BH = HC = \frac{1}{2}BC = 3$$

$$AH = \sqrt{AC^2 - CH^2} = 4,$$

$$\angle ADB = \angle CBD + \angle CED$$
, $\angle ADB = 2\angle CBD$,

$$\angle CBD = \angle CED$$
,

$$DB = DE$$

$$\angle BCD = 90^{\circ}$$

$$\therefore DC \perp BE$$

$$CE = BC = 6$$

$$\therefore EH = CE + CH = 9,$$

$$: DC \perp BE$$
, $AH \perp BC$,

∴ CD // AH ,

$$\frac{CD}{AH} = \frac{CE}{HE}$$

$$\boxed{P} \frac{CD}{4} = \frac{6}{9},$$

解得:
$$CD = \frac{8}{3}$$

$$DE = \sqrt{CE^2 + CD^2} = \sqrt{6^2 + \left(\frac{8}{3}\right)^2} = \frac{2\sqrt{97}}{3}$$

$$\therefore \frac{DE}{AD} = \frac{CE}{CH} ,$$

$$\frac{2\sqrt{97}}{3} = \frac{6}{3}$$

解得:
$$AD = \frac{\sqrt{97}}{3}$$

5. 如图,在 Rt△ABC 中,∠ACB=90° ,AC=6,BC=8,AD 平分∠BAC,AD 交 BC 于点 D,ED⊥AD 交 AB 于点 E,△ADE 的外接圆⊙0交AC 于点 F,连接 EF.

(1) 求证: *BC* 是 ○ *O* 的切线;

(2) 求 $\odot 0$ 的半径 r 及 $\angle 3$ 的正切值.

简析(1)如图,连接 OD,由题易得 $\angle 2 = \angle 1 = \angle ODA$,则 OD //AC,故 $\angle ODB = \angle C = 90^{\circ}$,即 $OD \perp BC$,所 以 BC 是 \odot 0 的切线;

(2)方法一(常规解法): 由 OD //AC,可得 $\triangle BOD \hookrightarrow \triangle BAC$,则 $\frac{OD}{AC} = \frac{OB}{AB}$, $\boxed{PD} = \frac{10-r}{6}$,解得 $r = \frac{15}{4}$ 卫又

 $\boxed{9} \frac{BD}{BC} = \frac{OD}{AC} \boxed{5} \boxed{\text{id}} \frac{BD}{BC} = \frac{5}{8} \boxed{\text{id}} \frac{CD}{BC} = \frac{3}{8}, \boxed{\text{pp}} CD = \frac{3}{8}BC = 3, \text{ if is, } \tan \angle 3 = \tan \angle 2 = \frac{CD}{AC} = \frac{1}{2} \boxed{\text{id}}$

方法二(倍半角模型): 如图 17-8-3, 延长 CA 至点 P, 使 AP=AB=10, 易证 ∠3=∠2=∠1=∠P, 故

 $\tan \angle 3 = \tan \angle P = \frac{BC}{PC} = \frac{1}{2}$; 又由 $\tan \angle 2 = \frac{1}{2}$,可得 CD = 3,故 BD = 5,从而易得 $r = 0D = \frac{3}{4}$ $BD = \frac{15}{4}$

6. 如图,AB 为 $\odot O$ 的直径,点 P 在 AB 的延长线上,点 C 在 $\odot O$ 上,且 $PC^2 = PB \cdot PA$.

(1) 求证: *PC* 是 ⊙ *O* 的切线;

(2)已知 PC=20, PB=10, 点 D 是弧 AB 的中点, $DE \perp AC$, 垂足为 E, DE 交 AB 于点 F, 求 EF 的长.

简析(1)如图,连接OC,由 $PC2=PB^{\circ}PA$,可得 $PC=PB^{\circ}PA$,可得 $PC=PB^{\circ}PA$, $PC=PB^{\circ}PA$,PC=

 $A = \angle ACO$, 进一步可证 $\angle OCP = \angle ACB = 90^{\circ}$, 即 $OC \perp CP$, 所以 PC 是 $\odot O$ 的切线;

(2)方法一(常规解法): 连接 OD, 易证 OD ⊥ AB; 由 PC2=PB PA, 可得 PA=40, AB=30; 又由△PCB∽△PAC,

可得
$$\frac{CB}{AC} = \frac{PB}{PC} = \frac{1}{2}$$
, 故 $\tan \angle D = \tan \angle A = \frac{1}{2}$, 从而 $OF = \frac{1}{2}$ $OD = \frac{15}{2}$, $AF = OA - OF = \frac{15}{2}$, 进一步可得

 $EF = AF \sin \angle A = \frac{3\sqrt{5}}{2}$;

方法二(倍半角模型): 同上可得AB=30,则OC=15,OP=25,即OC:CP:OP=3:4:5;如图17-9-3,

延长 \overline{CO} 至点 \overline{Q} , 使 $\overline{OQ=OP}$, 易得 $\tan \angle D=\tan \angle A=\tan \angle Q=\frac{1}{2}$, 下略.

反思: 这是一个确定性问题,其结构相当于已知"倍角∠POC"求"半角∠A",方法一利用"母子型相思似"求解,方法二构造"倍半角模型"求解,相对而言,前者更简单,后者更通用

题型 一向内构造等腰 (小角加倍或大角减半)

7. 如图,在 Rt $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$,点 D 为边 AB 上一点, $\angle ACD = 2\angle B$, $\frac{AD}{BD} = \frac{1}{3}$,求 $\cos B$ 的值.

解: 过点 C 作 CE L AB 于点 E.

$$\angle ACB = 90^{\circ}$$
, $\angle ACE = 90^{\circ} - \angle BCE = \angle B$.

$$ACD = 2 \angle B$$
 $ACD = 2 \angle ACE$

$$\therefore \angle ACE = \angle DCE, \quad \therefore \angle A = \angle CDE,$$

$$AC = DC$$
, $AE = DE$.

设
$$AE = DE = a$$
,则 $AD = 2a$, $BD = 6a$, $BE = 7a$.

$$\angle ACE = \angle B$$
, $\angle AEC = \angle CEB = 90^{\circ}$

$$\therefore \triangle CEA \hookrightarrow \triangle BEC, \quad \therefore \frac{AE}{CE} = \frac{CE}{BE},$$

$$\therefore \frac{a}{CE} = \frac{CE}{7a}, \quad \therefore CE = \sqrt{7a}, \quad \therefore BC = \sqrt{BE^2 + CE^2} = 2\sqrt{14a},$$

$$\therefore \cos B = \frac{BE}{BC} = \frac{7a}{2\sqrt{14}a} = \frac{\sqrt{14}}{4}.$$

8. 如图,在 Rt△ABC 中,∠BAC=90°,点 D 为边 BC 上一点,∠BAD=2∠C, BD=2, CD=3, 求 AD 的长.

解: 过点 A 作 AE L BC 于点 E.

$$\angle BAC = 90^{\circ}$$
, $\angle BAE = 90^{\circ} - \angle CAE = \angle C$.

$$: ZBAD = 2 \angle C$$
, $: ZBAD = 2 \angle BAE$

$$\therefore \angle BAE = \angle DAE, \quad \therefore \angle B = \angle ADE,$$

$$\therefore AB = AD \qquad \therefore BE = DE = \frac{1}{2} BD = 1, \quad \therefore CE = 4.$$

$$\therefore \angle BAE = \angle C$$
, $\angle AEB = \angle CEA = 90^{\circ}$

$$AE = \frac{CE}{AE}$$

$$\therefore \frac{AE}{1} = \frac{4}{AE}, \quad \therefore AE = 2, \quad \therefore AD = \sqrt{DE^2 + AE^2} = \sqrt{5}.$$

9. 如图,BM 是以AB 为直径的○0 的切线,B 为切点,BC 平分∠ABM,弦 CD 交AB 于点E,DE=OE.

(1) 求证: $\triangle ACB$ 是等腰直角三角形;

(2) 求证: *OA*²=*OE*·*DC*;

(3)求 tan $\angle ACD$ 的值.

简析(1)由题易得 $\angle ABC = 45^{\circ}$,从而易证 $\triangle ACB$ 是等腰直角三角形;

(2)如图,连接 OC、OD, 易证 ∠DOE = ∠D = ∠OCD, 故△DOE ∽ △DCO, 从而易得 OD² = DE DC, 即 OA² = OE DC;

(3)方法一(倍半角模型): 如图,连接 AD、BD,设 $\angle ACD=x$,则 $\angle ABD=x$, $\angle AOD=2x$,从而 $\angle CEO=4x$, $\angle CAE=3x=45^{\circ}$,所以 $x=15^{\circ}$;在 BD 上取点 F,使 AF=BF,则 $\angle AFD=30^{\circ}$;由此可设 AD=k,则 DF

$$=\sqrt{3}$$
 k, $AF=BF=2k$, 从而 $BD=(2+\sqrt{3})k$, 故 $\tan \angle ABD=\frac{AD}{BD}=2-\sqrt{3}$, 即 $\tan \angle ACD=2-\sqrt{3}$;

方法二(解三角形): 同上可得∠ACD=15°, 则∠BCE=75°, ∠BEC=60°; 如图 17-10-4, 作 EG⊥BC

于点
$$G$$
,可设 $OE=1$,则 $OB=OC=\sqrt{3}$, $BC=\sqrt{6}$, $BE=\sqrt{3}+1$,从而 $BG=EG=\frac{BE}{\sqrt{2}}=\frac{\sqrt{6}+\sqrt{2}}{2}$, $CG=BC$

$$-BG = \frac{\sqrt{6} - \sqrt{2}}{2}$$
, 数 tan $\angle ACD = \tan \angle CEG = \frac{CG}{EG} = 2 - \sqrt{3}$

反思: (2)主要通过换边,结合相似证乘积式;(3)通过导角得到 15°,方法一借助"倍半角模型",由特殊角 30° 求"特殊半角 15°,方法二的本质是解△BCE,显然前者更为简便

10. 如图,在四边形 ABCD 中, $\angle ABD = 2 \angle BDC$,AB = AC = BD = 4,CD = 1,求BC 的长.

解: 过点 B 作 $BE \perp AD$ 于点 E, 过点 C 作 $CF \perp BE$ 于点 F.

AB = BD, AE = DE, $\angle ABE = 2 \angle DBE$

 $\angle ABD = 2 \angle DBE$.

 $\therefore \angle ABD = 2 \angle BDC, \quad \therefore \angle BDC = \angle DBE$

 $\therefore CD // BE, \therefore CD \perp AD,$

∴四边形 *CDEF* 是矩形, $AD = \sqrt{AC^2 - CD^2} = \sqrt{15}$,

$$\therefore EF = CD = 1, \ AE = DE = \frac{\sqrt{15}}{2},$$

$$\therefore BE = \sqrt{BD^2 - DE^2} = \frac{7}{2}, \quad \therefore BF = BE - EF = \frac{5}{2},$$

$$\therefore BC = \sqrt{BF^2 + CF^2} = \sqrt{10}$$

11. 如图,在 $\triangle ABC$ 中, $\angle C=2\angle B$,点D是BC的中点,AE是BC边上的高,若AE=4,CE=2,求DE的

长.

解:取 AB 的中点 M,连接 MD, ME.

∵点 D 是 BC 中点,∴MD 是 △ABC 的中位线,

 $\therefore MD//AC$, $MD = \frac{1}{2}AC$ $\therefore \angle BDM = \angle C$.

 $\Box \angle C = 2 \angle B$, $\Box \angle BDM = 2 \angle B$.

 $: AE \to BC$ 边上的高, $: \angle AEB = 90^{\circ}$,

 $\therefore ME = \frac{1}{2} AB = MB, \quad \therefore \angle B = \angle MED,$

 $\angle BDM = 2 \angle MED$, $\angle DME = \angle MED$

:.DE=DM= $\frac{1}{2}AC=\frac{1}{2}\sqrt{AE^2+CE^2}=\sqrt{5}$.

12. 如图,在 $\triangle ABC$ 中, $\angle ABC = 2 \angle C$, $AD \bot BC$ 于点D,AE 为BC 边上的中线,BD = 3,DE = 2,求AE 的长.

解: 延长 CB 到 F,使 BF=AB,连接 AF.

则 $\angle F = \angle BAF$,: $\angle ABC = 2 \angle F$.

∵AE 是中线,:BE=EC, ∴BD+DE=EC.

 $\therefore \angle ABC = 2 \angle C, \quad \therefore \angle F = \angle C, \quad \therefore AF = AC.$

 $AD \perp BC$, DF = DC, BF + BD = DE + EC

AB+BD=DE+BD+DE, AB=2DE=4,

:. $AD^2 = AB^2 - BD^2 = 7$, :. $AE = \sqrt{DE^2 + AD^2} = \sqrt{11}$.

13. 如图,在 $\triangle ABC$ 中,AB=AC=5,点 D 为 BC 边上一点,BD=2DC,点 E 在 AD 的延长线上, $\angle ABC=2$ $\angle DEC$, $AD \cdot DE=18$,求 $\sin \angle BAC$ 的值.

解: 延长 \overline{CB} 到 \overline{F} , 使 $\overline{BE} = AB$, 连接 \overline{AF} , 过点 \overline{A} 作 $\overline{AG} \perp BC$ 于点 \overline{G} , 过点 \overline{B} 作 $\overline{BH} \perp AC$ 于点 \overline{H} .

则 $\angle F = \angle BAF$, $\therefore \angle ABC = 2 \angle F$.

 $ABC = 2 \angle DEC$ $AF = \angle DEC$

$$\angle ADF = \angle CDE$$
 $AD = \frac{CD}{DF}$

 $\therefore CD \cdot DF = AD \cdot DE = 18.$

设CD=a,则BD=2a,DF=2a+5,

$$\therefore a(2a+5)=18$$
, 解得 $a=-\frac{9}{2}$ (舍去) 或 $a=2$,

$$\therefore BC = 3a = 6, \quad \therefore BG = CG = 3, \quad \therefore AG = \sqrt{5^2 - 3^2} = 4,$$

$$\therefore BH = \frac{4}{5}BC = \frac{24}{5}, \quad \therefore \sin \angle BAC = \frac{BH}{AB} = \frac{24}{25}.$$

14. 如图,在 $\Box ABCD$ 中, $\angle D=2\angle ACB$,AE平分 $\angle BAC$ 交BC于点E,若BE=2,CE=3,求AE的长.

解:延长 CB 到 F,使 BF=AB,连接 AF,过点 A作 AH \ BC 于点 H,

过点 E 作 EM LAB 于点 M, EN LAC 于点 N.

 $\mathbb{Q} \angle F = \angle BAF$, $\therefore \angle ABC = 2 \angle F$.

::四边形 ABCD 是平行四边形,: $\angle ABC = \angle D$.

 $\therefore \angle D = 2 \angle ACB$ $\therefore \angle ABC = 2 \angle ACB$

 $AF = \angle ACB$, AF = AC, $\triangle ABF \hookrightarrow \triangle CAF$, $AF = \frac{CF}{BF}$

∵AE 平分 ∠BAC, ∴EM=EN,

 $\therefore \frac{BE}{CE} = \frac{S_{\triangle ABE}}{S_{\triangle ACE}} = \frac{\frac{1}{2}AB \cdot EM}{\frac{1}{2}AC \cdot EN} = \frac{AB}{AC} = \frac{2}{3}, \quad \therefore \frac{AB}{AF} = \frac{2}{3}.$

设AB=2x,则BF=2x,AF=3x,CF=2x+5

 $\therefore \frac{3x}{2x} = \frac{2x+5}{3x}$, 解得 x=2, ∴ CF=9, AB=BF=4.

:.FH = $\frac{9}{2}$, :.BH = $\frac{1}{2}$, :.EH = $\frac{3}{2}$, $AH^2 = AB^2 - BH^2 = \frac{63}{4}$,

 $\therefore AE = \sqrt{AH^2 + EH^2} = 3\sqrt{2}$

15. 如图,在四边形 ABCD 中,AD//BC,AB=AC=4, $CD=2\sqrt{11}$, $\angle ABD=2\angle DBC$,求 BD 的长.

解: 延长 BA 到 P, 使 PA = AB, 过点 P 作 $PE \perp BD$ 于点 E, 连接 AE, PD.

AD //BC, $ADB = \angle DBC$.

 $\angle ABD = 2 \angle DBC$, $\therefore \angle ABD = 2 \angle ADB$.

 $\therefore AD //BC$, $\therefore \angle PAD = \angle ABC$, $\angle CAD = \angle ACB$.

AB = AC, PA = AC, $\angle ABC = \angle ACB$, $\angle PAD = \angle CAD$.

:AD=AD, :∴ $\triangle PAD \cong \triangle CAD$, $:∴PD=CD=2\sqrt{11}$.

$$\therefore$$
 PA=AB, \angle PEB=90°, \therefore AE= $\frac{1}{2}$ PB=AB=4,

 $\therefore \angle AEB = \angle ABD = 2 \angle ADB$ $\therefore \angle ADB = \angle DAE$

$$\therefore DE = AE = 4, \quad \therefore PE^2 = PD^2 - DE^2 = 28$$

$$\therefore BE = \sqrt{PB^2 - PE^2} = 6, \quad \therefore BD = BE + DE = 10.$$

题型 2 沿直角边翻折半角 (小角加倍)

16. 如图,在 Rt $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$,点 D 为边 BC 上一点, $\angle B = 2 \angle CAD$, $AB \cdot CD = 5$,求 AD 的长.

解: 延长 BC 到 E,使 CE = CD,连接 AE.

 $\therefore \angle ACB = 90^{\circ}, \therefore AD = AE$

 $\angle CAD = \angle CAE$, $\angle ADC = \angle E$.

 $\therefore \angle B = 2 \angle CAD$, $\therefore \angle B = \angle DAE$,

 $\therefore \angle BAE = \angle ADE = \angle E, \quad \therefore \triangle ABE \hookrightarrow \triangle DAE, \quad BE = AB,$

$$\therefore \frac{AE}{DE} = \frac{BE}{AE}, \quad \therefore AE^2 = BE \cdot DE = BE \cdot 2CD = 10,$$

$$AD = AE = \sqrt{10}$$

17. 如图,在 Rt△*ABC* 中, <u>∠*ACB*=90°</u>,点 <u>D</u> 为 <u>BC</u> 边上一点, <u>BD=2CD</u>, <u>∠*B*=2∠*DAC*, <u>AB=4</u>,求 <u>AD</u> 的长.</u>

解: 延长 <u>BC</u> 到 <u>E</u>, 使 <u>CE=CD</u>, 连接 <u>AE</u>.

 $\angle ACB = 90^{\circ}$, AD = AE,

 $\triangle \angle ADE = \angle E \bigcirc \angle DAC = \angle EAC$

 $\therefore \angle B = 2 \angle DAC \dots \angle B = \angle DAE$

 \therefore \angle BAE= \angle ADE= \angle E, \therefore BE=AB=4

设 CE = CD = x,则 BD = 2x, BE = 4x

 $\therefore 4x=4$, $\therefore x=1$, $\therefore BC=3$, $\therefore AC^2=4^2-3^2=7$,

 $AD = \sqrt{CD^2 + AC^2} = 2\sqrt{2}$

18. 如图,在 Rt△ABC 中, ∠ACB=90°, 点 D 为边 BC 上一点, ∠B=2∠DAC BD=3, DC=2, 求 AD 的 长.

解:延长 BC 到点 E,使 CE=CD,连接 AE.

 $AC \perp BC$, AD = AE,

 $|\therefore \angle ADE = \angle E$, $|\angle DAC = \angle EAC|$

B=2/DAC, B=/DAE

 $\therefore \angle BAE = \angle ADE = \angle E$, $\therefore AB = BE$, $\triangle ABE \hookrightarrow \triangle DAE$,

 $\therefore \frac{AE}{BE} = \frac{DE}{AE}$

BD=3, DC=2, DE=4, BE=7,

$$\therefore \frac{AE}{7} = \frac{4}{AE}, \quad \therefore AD = AE = 2\sqrt{7}$$

2023•深圳宝安区二模

19. 如图,在 $Rt\triangle ABC$ 中, $\angle B=90^{\circ}$,点D为BC中点, $\angle C=2\angle BAD$,则AD的值为_____.

【答案】 $\frac{\sqrt{6}}{3}$

【详解】解:延长CB至E,使BE=BD,连接AE,设BD=a,

 $\therefore \angle B = 90^{\circ}$

 $\angle ABD = \angle ABE$

 \therefore Rt $\triangle ABD \cong$ Rt $\triangle ABE$ (HL)

$$\therefore \angle E = \angle ADE$$
, $AE = AD$,

 $\angle C = 2 \angle BAD$,

 $\angle C = \angle EAD$,

 $\angle D = \angle C + \angle DAC$

 $\therefore \angle E = \angle ADE = \angle EAC$

AC = CE = 3a

 $\angle E = \angle ADE = \angle EAC$, $\angle C = \angle EAD$,

 $\triangle ECA \hookrightarrow \triangle EAD$,

$$\therefore \frac{CA}{AD} = \frac{AD}{ED} = \frac{3a}{AD} = \frac{AD}{2a},$$

 $AD = \sqrt{6}a$, AC = 3a,

$$\therefore \frac{AD}{AC} = \frac{\sqrt{6}a}{3a} = \frac{\sqrt{6}}{3}, \quad$$
 故答案为: $\boxed{\frac{\sqrt{6}}{3}}$

20. 如图,在 Rt $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$,点 D 为 AC 的中点,连接 BD, $\angle A = 2 \angle DBC$,求 tan $\angle ABD$ 的值.

【答案】

使 CE = CD, 连接 BE, 过点 D 作 $DH \perp AB$ 于点 H.

- $\therefore \angle ACB = 90^{\circ}, \quad \therefore BD = BE,$
- $\angle DBC = \angle EBC$, $\angle BDC = \angle E$,
- $A=2\angle DBC$, $A=\angle DBE$
- \therefore $\angle ABE = \angle BDE = \angle E$ $\therefore AB = AE$, $\triangle ABE \hookrightarrow \triangle BDE$,

$$\therefore \frac{AB}{BE} = \frac{BD}{DE}, \quad \therefore \frac{AE}{BD} = \frac{BD}{DE}.$$

 $\overline{BE} = \overline{DE}$, $\overline{BD} = \overline{DE}$ 设 $\overline{AD = CD = CE = a}$, 则 $\overline{AB = AE = 3a}$, $\overline{DE = 2a}$,

$$\therefore \frac{3a}{BD} = \frac{BD}{2a}, \quad \therefore BD = \sqrt{6a}, \quad \therefore BC = \sqrt{5a}.$$

$$\because \sin A = \frac{DH}{AD} = \frac{BC}{AB}, \quad \therefore \frac{DH}{a} = \frac{\sqrt{5}a}{3a},$$

$$\therefore DH = \frac{\sqrt{5}}{3}a, AH = \frac{2}{3}a, BH = \frac{7}{3}a,$$

$$\therefore \tan \angle ABD = \frac{DH}{BH} = \frac{\sqrt{5}}{7}.$$

2023 • 深圳中学联考二模

21. 如图,在 $\triangle ABC$ 中,点 E 在边 AC 上, EC = EB , $\angle C = 2 \angle ABE$, $AD \perp BE$ 交 BE 的延长线于点 D ,若 AC = 22,BD = 16,则AB =

【答案】8√5

【详解】解:如图所示,延长BD至F使DF = BD,作 $AG \parallel BC$ 交DF 于G,

$$\therefore BD = DF , AD \perp BE ,$$

$$\therefore \overline{AF = AB} \quad \angle F = \angle ABD,$$

: *AG // BC* ,

$$\therefore \angle AGD = \angle EBC, \ \ \angle GAE = \angle C,$$

: EB = EC,

$$\angle EBC = \angle C$$
,

$$\therefore \angle C = \angle EBC = \angle AGD = \angle GAE,$$

 $\therefore AE = EG$,

$$\therefore \angle C = 2 \angle ABE$$
,

$$\therefore \angle AGD = 2\angle ABE = 2\angle F ,$$

 $\therefore FG = AG,$

$$\therefore AC = 22$$
, $BD = 16$,

$$\therefore BG = BE + GE = CE + AE = AC = 22,$$

:.
$$AG = FG = BF - BD = 2BD - BG = 2 \times 16 - 22 = 10$$
,

$$\therefore DG = DF - FG = 16 - 10 = 6,$$

$$\therefore AD = \sqrt{AG^2 - DG^2} = \sqrt{10^2 - 6^2} = 8,$$

$$AB = \sqrt{AD^2 + BD^2} = \sqrt{8^2 + 16^2} = 8\sqrt{5}$$

解:延长 BC 到 F,使 CF=CD,连接 AF.

- $\angle ACB = 90^{\circ}, \triangle AD = AF$
- \therefore $\angle ADF = \angle F$, $\angle DAC = \angle FAC$.
- $\therefore \angle ABC = 2 \angle DAC \bigcirc \angle ABC = \angle DAF$
- $\therefore \angle BAF = \angle ADF = \angle F, \quad \therefore AB = BF, \quad \triangle ABF \hookrightarrow \triangle DAF$

$$\therefore \frac{AF}{BF} = \frac{DF}{AF}$$

设CF=CD=a,则BD=2a,DF=2a,BF=4a

$$\therefore \frac{AF}{4a} = \frac{2a}{AF}, \quad \therefore AF^2 = 8a^2, \quad \therefore AC = \sqrt{AF^2 - CF^2} = \sqrt{7}a$$

∵BE 平分∠ABC,∴∠EBC=∠FAC.

 $\bot \angle BCE = \angle ACF = 90^{\circ}$, $\bot \triangle BCE \hookrightarrow \triangle ACF$.

$$\therefore \frac{CE}{CF} = \frac{BC}{AC}, \quad \therefore \frac{CE}{a} = \frac{3a}{\sqrt{7}a}, \quad \therefore CE = \frac{3\sqrt{7}}{7}a$$

23. 如图,在 \triangle Rt \triangle ABC中, \angle BAC=90°,D,E分别是边 AB,BC 上的点,DC 平分 \angle ADE, \angle B=2 \angle ACD, 求 CE 的长.

解:延长 BA 到 \overline{F} ,使 $\overline{AF} = AD$,连接 \overline{CF} ,过点 \overline{E} 作 $\overline{EH} \perp AB$ 于点 \overline{H} . 资料整理【淘宝店铺:向阳百分百】

24. 如图,在 $\triangle ABC$ 中, $\angle B=2\angle C$,AD 是中线,AB=6, $AD=\sqrt{41}$,求BC,AC 的长.

解: 过点 A 作 $AH \perp BC$ 于点 H,在 HC 上截取 HE = BH,连接 AE.

则 AE=AB=6, \therefore $\angle AEB=\angle B=2\angle C$,

 $\therefore \angle EAC = \angle C$, $\therefore CE = AE = 6$.

设BH = EH = x,则BC = 2x + 6,BD = CD = x + 3,

 $\therefore DH = 3, \quad \therefore AH = \sqrt{AD^2 - DH^2} = 4\sqrt{2},$

 $:BH = \sqrt{AB^2 - AH^2} = 2$, :BC = 10, CH = 8,

 $AC = \sqrt{AH^2 + CH^2} = 4\sqrt{6}$

25. 如图,在 $Rt\triangle ABC$ 中, $\angle BAC = 90^\circ$,AB = AC,点 D,E 分别为边 BC,AC 上的点,连接 AD,DE, $\angle AED$ $=2\angle DAE$,CE = 7, $BD = 18\sqrt{2}$,求 DE 的长.

解: 过点 D 作 $DG \perp AB$ 于点 G, $DH \perp AC$ 点 H,

在 AH 上截取 FH=EH, 连接 DF.

则 DE=DF . $\angle DFE=\angle AED=2\angle DAE$

 $\angle DFE = \angle AED$, AF = DF.

 $\therefore \angle BAC = 90^{\circ}, \ AB = AC, \ \therefore \angle B = \angle C = 45^{\circ}$

$$AH = DG = \frac{\sqrt{2}}{2}BD = 18, CH = DH.$$

设CH=DH=x,则FH=EH=x-7,DF=AF=25-x,

在 Rt $\triangle DFH$ 中, $DH^2 + FH^2 = DF^2$,

 $(x^2+(x-7)^2=(25-x)^2$,解得 x=-48 (舍去) 或 x=12

DE = DF = 25 - x = 13.

26. 如图,在 $\triangle ABC$ 中, $\angle C = 2 \angle B$,AD 平分 $\angle BAC$,BD = 3,CD = 2,求AD 的长.

解:在 AB 上截取 AE=AC,连接 DE,过点 A 作 $AF \perp BC$ 于点 F

过点 D 作 $DG \perp AB$ 于点 G, $DH \perp AC$ 于点 H.

 $\Box \angle DAE = \angle DAC$, AD = AD, $\therefore \triangle ADE \cong \triangle ADC$,

 $\therefore DE = CD = 2, \angle AED = \angle C = 2 \angle B$

 $\angle EDB = \angle B$, $\angle BE = DE = 2$.

 $\therefore \angle DAE = \angle DAC, \quad \therefore DG = DH,$

$$\therefore \frac{BD}{CD} = \frac{S_{\triangle ABD}}{S_{\triangle ACD}} = \frac{\frac{1}{2}AB \cdot DG}{\frac{1}{2}AC \cdot DH} = \frac{AB}{AC} = \frac{AC + 2}{AC} = \frac{3}{2},$$

AC=4, AB=6.

 $AF^2 = AB^2 - BF^2 = AC^2 - CF^2$

...
$$6^2 - BF^2 = 4^2 - (5 - BF)$$
, 解得 $BF = \frac{9}{2}$
... $DF = \frac{3}{2}$, $AF^2 = 6^2 - BF^2 = \frac{63}{4}$,

風型四 邻二倍角的处理

:. $AD = \sqrt{DF^2 + AF^2} = 3\sqrt{2}$

27. 如图,在 $\triangle ABC$ 中, $AD \perp BC$ 于点D, $\angle DAC = 2 \angle DAB$,BD = 4,DC = 9,求AD的长.

解: 延长 DA 到 E, 使 AE=AC, 连接 EC.

则 $\angle E = \angle ACE$, $\therefore \angle DAC = 2 \angle E$.

 $\therefore \angle DAC = 2 \angle DAB$ $\therefore \angle DAB = \angle E$

 \therefore $\angle ADB = \angle EDC = 90^{\circ}$ $\therefore \triangle ABD \hookrightarrow \triangle ECD$,

$$\frac{AD}{ED} = \frac{BD}{CD} = \frac{4}{9}.$$

设AD=4m,则ED=9m,AC=AE=5m,

∴ $CD = \sqrt{AC^2 - AD^2} = 3m = 9$, ∴m = 3

AD = 4m = 12

28. 如图,在 Rt△ABC 中, ∠A=90°,点 D 为边 AC 上一点, ∠DBC=2∠ABD, CD=3, BC=7, 求 BD 的 长.

解: 延长 BD 到 E, 使 BE=BC, 连接 CE.

 $\angle CDE = \angle ADB = 90^{\circ} - \alpha$

 \therefore $\angle CDE = \angle E = \angle BCE$, \therefore CE = CD = 3, $\triangle CDE \hookrightarrow \triangle BCE$,

$$\therefore \frac{CE}{DE} = \frac{BE}{CE}, \quad \therefore \frac{3}{DE} = \frac{7}{3}, \quad \therefore DE = \frac{2}{7}$$

:.BD=BE-DE=
$$7 - \frac{9}{7} = \frac{40}{7}$$
.

29. 如图,在 Rt△ABC 中, ∠ACB=90° ,点 D 为 BC 边上一点, ∠BAD=2∠CAD, BD=10, DC=3,求 AD 的长.

解: 延长 AD 到 E, 使 AE=AB, 连接 BE.

设 $\angle CAD = \alpha$,则 $\angle BAD = 2\alpha$, $\angle ABE = \angle E = 90^{\circ} - \alpha$,

 $\angle BDE = \angle ADC = 90^{\circ} - \alpha$

 \therefore $\angle BDE = \angle E = \angle ABE$, \therefore BE = BD = 10, $\triangle BDE \hookrightarrow \triangle ABE$,

$$\therefore \frac{BE}{DE} = \frac{AE}{BE}, \quad \therefore AE \cdot DE = BE^2 = 100,$$

 $DE(AD+DE) = 100, :: 2DE^2 + 2AD \cdot DE = 200.$

 $AC^2 = AB^2 - BC^2 = AD^2 - DC^2$

: $(AD+DE)^2-13^2=AD^2-3^2$

 $DE^2 + 2AD \cdot DE = 160$, $DE^2 + 160 = 200$,

 $DE^2 = 40$, $DE = 2\sqrt{10}$, $2\sqrt{10}AE = 100$

 $AE = 5\sqrt{10}$, $AD = 3\sqrt{10}$.

30. 如图,在 $\triangle ABC$ 中,点E在边AC上,EB=EA, $\angle A=2\angle CBE$, $CD\perp BE$ 交 BE 的延长线于点D,

BD=8<mark>,*AC*=11</mark>,则 *BC* 的长为

【答案】4√5

【解析】过点C作 CF//AB 交 BD 的延长线于点F.

则 $\angle ECF = \angle A$, $\angle F = \angle ABE$.

 $: EB = EA, : \angle A = \angle ABE,$

 $\therefore \angle ECF = \angle F, \therefore EF = EC,$

:.BF = AC = 11, :.DF = BF - BD = 11 - 8 = 3

在 BD 上取点 G, 使 DG = DF, 连接 CG.

则 CF = CG, $\therefore \angle CGF = \angle F = \angle ECF = \angle A = 2 \angle CBE$.

 $\therefore \angle CBG = \angle BCG, \quad \therefore CG = BG = BD - DG = 5$

$$\therefore CD = \sqrt{CG^2 - DG^2} = \sqrt{5^2 - 3^2} = 4$$

 $\therefore BC = \sqrt{BD^2 + CD^2} = \sqrt{8^2 + 4^2} = 4\sqrt{5}.$

31. 如图,在△ABC中,AB=AC,点 D 在 CA 的延长线上,∠ABC=2∠DBA,DE L BA 交 BA 的延长线于点 E、若 BE=8,CD=11,求 BD 的长.

解:过点D作DF//BC交BE的延长线于点F,在EB上截取EG=EF,连接DG.

 $\mathbb{N} \angle F = \angle ABC = 2 \angle DBA, \ \angle ADF = \angle C.$

AB = AC, $ABC = \angle C$

 $\therefore \angle F = \angle ADF$, $\therefore AF = AD$, $\therefore BF = CD = 11$

EG = EF = BF - BE = 11 - 8 = 3.

 $\therefore DE \perp BA$, $\therefore DF = DG$, $\therefore \angle DGE = \angle F = 2 \angle DBA$,

 $\angle BDG = \angle DBA$, DG = BG = BE - EG = 5

: $DE = \sqrt{DG^2 - EG^2} = 4$, : $BD = \sqrt{BE^2 + DE^2} = 4\sqrt{5}$

题型亞 绝配角

32. 如图,在 Rt△*ABC* 中, ∠*C*=90°,点 *D*, *E* 分别为 *BC*, *AC* 上的点, ∠*B*=2∠*CDE*, ∠*ADE*=45°, *AB* = 5, *AE*=3,则 *BD* 的长为

【答案】2

【解析】在 BA 上截取 BF=BD, 连接 DF.

 $\boxed{\mathbb{P}} \angle BFD = \angle BDF = 90^{\circ} - \frac{1}{2} \angle B = 90^{\circ} - \angle CDE = \angle CED$

 $\angle AFD = \angle AED$, $\angle BDF + \angle CDE = 90^{\circ}$

 $\angle EDF = 90^{\circ}, \angle ADF = \angle ADE = 45^{\circ}.$

 $: AD = AD, : \triangle ADF \cong \triangle ADE,$

AF = AE = 3, BD = BF = AB - AF = 5 - 3 = 2.

33. 如图,在 Rt△*ABC*中, ∠*BAC*=90°,点 *D* 为边 *AB* 上一点, ∠*ACD*=2∠*B*,若 *BD*=2,*AD*=4,求 *CD* 的长.

解: 延长 CA 到点 E, 连接 DE, 使 $\angle ADE = \angle B$.

AD=3, BD=1, AB=4.

 $\angle ADE = \angle B$, $\angle DAE = \angle BAC = 90^{\circ}$

 $\therefore \triangle ADE \backsim \triangle ABC, \quad \frac{AE}{AC} = \frac{AD}{AB} = \frac{2}{3}$

设 $\angle ADE = \angle B = \alpha$,则 $\angle ACD = 2\alpha$,

 $\angle ADC = 90^{\circ} - 2\alpha$, $\angle CDE = \angle E = 90^{\circ} - \alpha$,

: CD = CE.

设AE=2x,则AC=3x,CD=CE=5x,

AD = 4x = 4, $\therefore x = 1$, $\therefore CD = 5x = 5$.

34. 如图,在 $Rt \triangle ABC$ 中, $\angle ACB = 90^{\circ}$,点 D 为边 BC 上一点, BD = 2CD, $\angle DAC = 2 \angle B$, $AD = \sqrt{2}$,求 AB 的长.

解: 延长 AC 到 E,使 AE = AD,连接 DE

设 $\angle B = \alpha$,则 $\angle DAC = 2\alpha$, $\angle ADE = \angle E = 90^{\circ} - \alpha$

```
\angle CDE = \alpha, \therefore \angle B = \angle CDE.
    \angle ACB = \angle ECD = 90^{\circ}, :: \triangle ABC \hookrightarrow \triangle EDC,
    AB = AC = BC = 3
              CE
设CE=a,则AC=3a,AD=AE=4a=\sqrt{2},
  \therefore a = \frac{\sqrt{2}}{4}, \quad \therefore AC = \frac{3\sqrt{2}}{4}, \quad \therefore DC = \sqrt{AD^2 - AC^2} = \frac{\sqrt{14}}{4},
 DE = \sqrt{DC^2 + CE^2} = 1, AB = 3DE = 3.
35. 如图,在\triangle ABC中,\angle BAC=45°,AD \perp BC 于点D,点E在线段AD上,\angle CED=2\angle BAD,若AE=9,
      DE=3,求BC的长.
解: 在 AD 上取点 P, 连接 PC, 使 PC = AP, 过点 B 作 BH \perp AC 于点 H.
     \angle BAD = \alpha,则 \angle CED = 2\alpha, \angle DCE = 90^{\circ} - 2\alpha,
 \angle PAC = \angle ACP = 45^{\circ} - \alpha, \angle DPC = 90^{\circ} - 2\alpha
     \angle DCE = \angle DPC.
\angle CDE = \angle PDC, \quad \therefore \triangle CDE \hookrightarrow \triangle PDC,
            =\frac{PD}{CD}, \cdot \cdot \cdot CD^2 = DE \cdot PD
   \frac{CD}{DE} = \frac{PD}{CD},
设PE=x,则PD=x+3,PC=AP=9-x,
CD^2 = (9-x)^2 - (x+3)^2
 (9-x)^2-(x+3)^2=3(x+3),解得 x=-
 :.CD^2 = 3(x+3) = 16, :.CD = 4,
  AC = \sqrt{CD^2 + AD^2} = 4\sqrt{10}
  \angle BCH = \angle ACD, \angle BHC = \angle ADC = 90^{\circ},
 \therefore \triangle BCH \hookrightarrow \triangle ACD, \therefore \frac{BH}{CV} = \frac{AD}{CV} = \frac{12}{3} = 3
 :.AH = BH = 3CH = \frac{3}{4}AC = 3\sqrt{10}
```

$$AB^2 = 2AH^2 = 180$$
 $BD = \sqrt{AB^2 - AD^2} = 6$, $BC = BD + CD = 6 + 4 = 10$.

36. 如图, $\triangle ABC$ 是等边三角形,点 D 在 BC 的延长线上,点 E 在线段 AD 上, $\angle DAC = 2 \angle DBE$,BE 与 AC 交于点 E,若 CF = 1,DE = 2,则 CD 的长为

【答案】3

【解析】在AD上截取 DG=DC, 连接 CG.

设 $\angle DBE = x$ 则 $\angle DAC = 2x$, $\angle BAD = 60^{\circ} + 2x$,

 $\angle ABE = \angle AEB = 60^{\circ} - x$, $\angle D = 60^{\circ} - 2x$,

 $\angle DGC = \angle EFC = 60^{\circ} + x$

AE = AB = AC $\angle AGC = \angle AFE$.

 $: \angle CAG = \angle EAF, : \triangle ACG \cong \triangle AEF,$

 $\therefore AG = AF, \therefore EG = CF = 1$

: CD = DG = DE + EG = 2 + 1 = 3

37. 如图,在 $\triangle ABC$ 中, $\angle ACB = 90^\circ$,点 D 为边 BC 上一点,BD = 2CD, $\angle DAC = 2\angle ABC$,若 $AD = \sqrt{2}$,求 AB 的长.

【答案】3

解:延长 BC 到点 E, 使 CE=CD, 连接 AE, 过点 B 作 AE 的垂线, 垂足为 F

$$B$$
 D
 C
 E

 \therefore $\angle ACB = 90^{\circ}$, $\therefore AE = AD$, $\therefore \angle EAC = \angle DAC = 2 \angle ABC$.

 $\angle FBE = \angle EAC = 90^{\circ} - \angle E, \quad \therefore \angle FBE = 2 \angle ABC$

 $\therefore \angle ABF = \angle ABC, \quad AF = AC, \quad BF = BC.$

设CD=a,则BD=2a,BF=BC=3a,BE=4a,

在△ABE中,由面积法得BE·AC=AE·BF

$$\therefore 4a \cdot AC = AE \cdot 3a, \quad \therefore \frac{AC}{AE} = \frac{3}{4}.$$

设AC=3m,则AD=AE=4m, $CD=\sqrt{7}m$,

$$BC = 3\sqrt{7}m$$
, $AB = 6\sqrt{2}m = \frac{3\sqrt{2}}{2}AD = 3$

38. 如图,在四边形 ABCD 中,AD//BC, $AC \perp CD$,AB=AC, $\angle ABD=2\angle ADC$, $CD=2\sqrt{5}$,求AD 的长.

解:延长 BA 到点 E,使 AE=AC,延长 AE 到点 F,使 EF=AE,连接 DE,DF.

AD //BC, AD //BC,

AB = AC $ABC = \angle ACB$ $ACB = \angle DAC$.

 $\triangle AD = AD$, $\triangle ADE \cong \triangle ADC$

 $DE = CD = 2\sqrt{5}, \quad \angle AED = \angle ACD = 90^{\circ} \quad \angle ADE = \angle ADC,$

AD = FD, $\therefore \angle F = \angle DAE$, $\angle ADE = \angle FDE$,

 $? \angle ABD = 2 \angle ADC, : \angle ABD = 2 \angle ADE = \angle ADF$

 $\therefore \angle BDF = \angle DAE = \angle F, \therefore BD = BF$

设AB=AC=x,则BE=2x,BD=BF=3x,

 $\therefore CH = EH, \ \frac{AE}{CE} = \frac{BE}{AE}, \ \therefore AE^2 = CE \cdot BE.$

设 CH = EH = x 则 DH = x + 1 , $AH = \sqrt{3}x + \sqrt{3}$, CE = 2x BE = 2x + 6 , $AE^2 = x^2 + (\sqrt{3}x + \sqrt{3})^2$,

: $x^2 + (\sqrt{3}x + \sqrt{3})^2 = 2x(2x+6)$, $\# = \frac{1}{2}$

AD = 2DH = 2x + 2 = 3.

40. 如图,在 $Rt \triangle ABC$ 中, $\angle BAC = 90^\circ$, AB = AC,点 D 是 BC 的中点,点 E 是边 AC 上一点,连接 BE,DE, $\angle ABE = 2 \angle EDC$, AE = 3,求 DE 的长.

解:在EA上截取EF=EC,延长CA到G,使AG=AF,连接BF,BG.

 $\angle BAC = 90^{\circ}$, BF = BG, $\angle G = \angle AFB$.

```
::点 D 是 BC 的中点,:: DE 是 \triangle BCF 的中位线,:: DE // BF.
\therefore \angle BAC = 90^{\circ}, AB = AC, \therefore \angle ABC = \angle C = 45^{\circ}
设\angle EDC = \alpha,则\angle ABE = 2\alpha,\angle G = \angle AFB = \angle AED = 45^{\circ} + \alpha
\angle ABG = 45^{\circ} - \alpha, \angle EBG = 45^{\circ} + \alpha,
\therefore \angle G = \angle EBG, \quad : BE = GE.
设 EF=EC=x,则 AG=AF=3-x,AB=AC=3+x
BE = GE = 6 - x.
在 Rt\triangle ABE 中, (3+x)^2+3^2=(6-x)^2,
解得 x=1, AF=2, AB=4,
                                 :. DE = \frac{1}{1}BF = \sqrt{5}
 \cdot BF = \sqrt{AB^2 + AF^2} = 2\sqrt{5},
41. 如图,在△ABC 中,<mark>∠BAC=120°,AB=AC,点 D 是 BC</mark> 的中点,点 E 是边 AC 上一点,连接 BE,DE,
     \angle ABE = 2 \angle EDC, CE = 2\sqrt{6}, 求 AE 的长.
             D
解:延长 BA 到 F,使 BF=BE,连接 AD,EF,过点 E 作 EH丄AF 于点 H.
\angle BAC = 120^{\circ}, AB = AC, \angle EAF = 60^{\circ}, \angle ABC = \angle C = 30^{\circ}
::点D是BC的中点,:\angle BAD = \angle EAD = 60^{\circ},\angle ADC = 90^{\circ},
\therefore \angle EAD = \angle EAF.
设\angle EDC = \alpha,则\angle ABE = 2\alpha,\angle F = \angle BEF = 90^{\circ} - \alpha.
 \angle ADE = 90^{\circ} - \alpha, \therefore \angle ADE = \angle F.
 AE = AE, ADE \cong \triangle AFE, AD = AF.
设AE=2x, 则AH=x, EH=\sqrt{3}x, AB=AC=2x+2\sqrt{6},
BH = 3x + 2\sqrt{6}, AF = AD = x + \sqrt{6}, BE = BF = 3x + 3\sqrt{6}.
在 Rt\triangle BEH 中,BH^2 + EH^2 = BE^2,
: (3x+2\sqrt{6})^2+(\sqrt{3}x)^2=(3x+3\sqrt{6})^2
解得 x = \sqrt{6-4} (舍去) 或 x = \sqrt{6+4},
 AE = 2x = 2\sqrt{6+8}.
42. 如图,在\triangle ABC中,\angle BAC = 90^{\circ},AB = AC,点D,E分别为边 AC,BC 上的点,\angle ABD = 2 \angle BAE,BE
```


解: 延长 CA 到 E, 使 DF = BD, 连接 BF, 过点 A 作 $AH \perp BC$ 于点 H.

 $\therefore \angle BAC = 90^{\circ}, AB = AC, \therefore \angle ABC = \angle C = 45^{\circ}.$

设 $\angle BAE = \alpha$,则 $\angle AEH = 45^{\circ} + \alpha$ $\angle ABD = 2\alpha$,

 $\angle ADB = 90^{\circ} - 2\alpha$, $\angle F = \angle DBF = 45^{\circ} + \alpha$,

 $AEH = \angle F$.

 \therefore $\angle AHE = \angle BAF = 90^{\circ}, \quad \therefore \triangle AEH \hookrightarrow \triangle BFA,$

$$\therefore \frac{AF}{EH} = \frac{AB}{AH} = \sqrt{2}, \quad \therefore AF = \sqrt{2}EH.$$

设 $EH = \sqrt{2x}$,则 AF = 2x, $AH = BH = \sqrt{2x} + 3\sqrt{2}$,

AB = AC = 2x + 6, AD = 2x - 1, BD = DF = AD + AF = 4x - 1

在 Rt $\triangle ABD$ 中, $(2x+6)^2+(2x-1)^2=(4x-1)^2$,

解得
$$x=-1$$
 或 $x=\frac{9}{2}$, ... $BD=4x-1=17$

43. 如图,在等边 $\triangle ABC$ 中,点D,E分别为边BC,AC 上的点,连接AD,DE, $\angle ADB = 2 \angle CDE$,BD = 3,CE = 4,求CD 的长.

解: 在 AC 上截取 AF = BD,在 CE 上截取 CG = EF,连接 DF, DG,过点 D 作 $DH \perp AB$ 于点 H

 $: \triangle ABC$ 是等边三角形,: AC = BC, $\angle C = 60^{\circ}$,

∴*CF=CD*,**∴**△*CDF* 是等边三角形,

 $\therefore DF = DC$ $\angle DFE = \angle C$ $\therefore \triangle DEF \cong \triangle DGC$,

 $\angle DE = DG$, $\angle EDF = \angle GDC$

 $\therefore \angle DEG = \angle DGE, \ \ \angle GDF = \angle CDE.$

设 $\angle GDF = \angle CDE = \alpha$,则 $\angle ADB = 2\alpha$,

 $\angle DGE = \angle DEG = 120^{\circ} - \alpha$, $\angle EDG = 2\alpha - 60^{\circ}$

 $\angle DAG = 2\alpha - 60^{\circ}$, $\therefore \angle EDG = \angle DAG$,

 $\angle ADG = \angle DEG = \angle DGE$

:AD = AG = AF + FG = BD + CE = 3 + 4 = 7

$$BH = \frac{1}{2}BD = \frac{3}{2}, DH = \frac{3\sqrt{3}}{2}, :AH = \sqrt{AD^2 - DH^2} = \frac{13}{2},$$

BC = AB = AH + BH = 8, CD = BC - BD = 5

44. 如图,在 Rt△ABC 中, ∠ACB=90°,点 D 为 AB 边上一点, AD < BD , ∠ADC=2∠ACD , AB=8 , CD= 3,求 AD 的长.

解:在 DB 上截取 DE=DC,延长 BA 到 F,使 DF=DC,连接 CE, CF.

 \square $\angle DCE = \angle AEC$, $\angle DCF = \angle F$.

 $\mathcal{U} \angle ACD = \alpha$,则 $\angle BCD = 90^{\circ} - \alpha$, $\angle ADC = 2\alpha$

 $\angle DCE = \angle AEC = \alpha$, $\angle DCF = \angle F = 90^{\circ} - \alpha$

 $\angle ACD = \angle AEC$, $\angle BCD = \angle F$.

 $\angle CAD = \angle EAC \ \angle CBD = \angle FBC$

 $\triangle ACD \hookrightarrow \triangle AEC \ \triangle BCD \hookrightarrow \triangle BFC$

$$\therefore \frac{AC}{AD} = \frac{AE}{AC}, \quad \frac{BC}{BD} = \frac{BF}{BC},$$

 $AC^2 = AD \cdot AE, BC^2 = BD \cdot BF.$

设AD = x,则AE = x + 3,BD = 8 - x,BF = 11 - x,

 $AC^2 = x(x+3)$, $BC^2 = (8-x)(11-x)$

 $AC^2 + BC^2 = AB^2$, $AC(x+3) + (8-x)(11-x) = 8^2$,

解得x=2或x=6(舍去),即AD的长为 2.

45. 如图,在 $Rt \triangle ABC$ 中, $\angle ACB = 90$ °, AC = 6, BC = 8,点 D, E 为边 BC 上两点(点 D 在点 E 左侧),且 BD = CE, $\angle DAE = \frac{1}{2} \angle BAC$,求 DE 的长.

解:作 $\angle BAC$ 的角平分线AF交BC于点F,过点F作 $FG \perp AB$ 于点G,

> 坐标系中的二倍角问题

宿迁•中考

46. 如图,抛物线 $y = x^2 + bx + c$ 交 x 轴于 A、B 两点,其中点 A 坐标为(1,0),与 y 轴交于点 C(0,-3)。
(1) 求抛物线的函数表达式:

(2)连接AC,点 P 在抛物线上,且满足 $\angle PAB = 2 \angle ACO$,求点 P 的坐标;

简析(1)抛物线的函数表达式为 $y=x^2+2x-3$

(2)如图,在 OC 上取点 E,使 AE = CE,则 $\angle AEO = 2 \angle ACO = \angle PAB$;设 OE = t,则 AE = 3 - t,在 $Rt \triangle AOE$ 中,由勾股定理可得 $1+t^2=(3-t)^2$,解得 $t=\frac{4}{3}$, <u>故 tan</u> $\angle AEO = \frac{OA}{OE} = \frac{3}{4}$,即 tan $\angle PAB = \frac{3}{4}$;

盐城•中考

47. 如图,二次函数 $y = k(x-1)^2 + 2$ 的图像与一次函数 y = kx - k + 2 的图像交于 A、B 两点,点 B 在点 A 的 右侧,直线 AB 分别与 x 轴、y 轴交于 C、D 两点,其中 k < 0.

(1) 求 AB 两点的横坐标;

(2) 二次函数图像的对称轴与 \mathbf{x} 轴交于点 \mathbf{E} ,是否存在实数 \mathbf{k} ,使得 $\angle ODC = 2 \angle BEC$? 若存在,求出 \mathbf{k} 的值: 若不存在,说明理由。

简析

(1) 令 $k(x-1)^2 + 2 = kx - k + 2$,即 $(x-1)^2 = x - 1$,解得 x = 1 或 2,即 A 、B 两点的横坐标分别为 1、2;

(2)由前知A(1, 2), B(2, k+2);

① 情形一: 当 k+2>0,即 -2<k<0 时,点 B 在 x 轴上方,

如图(已隐去抛物线)过点B分别向x轴、对称轴作垂线,垂足依次为G、H,则 tan? BEC

 $\frac{BG}{FG} = k + 2$; 在

EA 的延长线上取点 \overline{F} ,使 $\overline{AF}=AB$,连接 \overline{BF} ,则 $\angle BAH=2\angle BFH$,又 $\angle BAH=\angle ODC=2\angle BEC$,故 $\angle BFH$

= \angle BEC ,易得 BH=1 ,AH=-k ,则 $AF=AB=\sqrt{k^2+1}$,从而 $FH=\sqrt{k^2+1}-k$,故 \tan \angle BFH=

 $\frac{BH}{FH} = \frac{1}{\sqrt{k^2 + 1} - k} = \sqrt{k^2 + 1} + k$, 所以有 $k + 2 = \sqrt{k^2 + 1} + k$, 解得 $k = -\sqrt{3}(k = \sqrt{3})$ 舍去);

②<mark>情形二:当 k+2<0</mark>,即 k<-2 时,点 B 在 x 轴下方,

如图(已隐去抛物线),同上作相关辅助线,同理有 tan? BEC

 $\frac{BG}{EG}$ =-k-2, tan? BFH $\sqrt{k^2+1}+k$, 从而

$$k-2=\sqrt{k^2+1}+k$$
,解得 $k=\frac{-4-\sqrt{7}}{3}(k=\frac{-4+\sqrt{7}}{3})>-2$,故舍去);

综上所述: k 的值为 $-\sqrt{3}$ 或 $\frac{-4-\sqrt{7}}{3}$

反思: (2) 是一个等腰三角形存在性问题,可借助代数方法盲解盲算,这里并未展开; (3) 中存在"倍半角"关系,这里首先利用平行导角,将 $\angle ODC$ 转化为 $\angle BAH$,借助 A、B 两点的坐标来刻画其正切值,然后构造其"半角" $\angle BFH$,最后列方程求解需。要特别提醒的是,这里根据点 B 的纵坐标的正负性,即点 B 与x 轴的位置关系分两类讨论,很容易漏解。另外,本题还有其他解法,请自行探究。

河南•中考

48. 如图,抛物线 $y=ax^2+6x+c$ 交 x 轴于 A、B 两点,交 y 轴于点 C。直线 y=x-5 经过点 B、C。

(1) 求抛物线的解析式;

(2)过点 A 的直线交直线 BC 于点 M ,连接 AC ,当直线 AM 与直线 BC 的夹角等于 ∠ACB 的 2 倍时,请直接写出点 M 的坐标。

简析: (1)抛物线的解析式为 $y = -x^2 + 6x - 5$

(2)如图,当 ∠ACM=∠CAM 时,有 ∠AMB=2∠ACB,此时点 M 符合题意;再过点 A 作 AC 的垂线,交直线 BC 于点 R, 作 RS⊥x 轴于点 S,

易证 $\tan \angle RAS = \tan \angle ACO = \frac{1}{5}$ 即 $\frac{RS}{AS} = \frac{1}{5}$; 又 易证 $\frac{RS = BS}{AS}$,故 $\frac{BS}{AS} = \frac{1}{5}$,从而 $BS = \frac{1}{6}AB = \frac{2}{3}$,点 R 的坐

标为 $(\frac{13}{3}, -\frac{2}{3})$; 易证点 M 为 CR 的中点,所以点 M 的坐标 $(\frac{13}{6}, -\frac{17}{6})$

如图,作 AG⊥BC 于点 G,再作 AM 关于直线 AG 的对称线段 AM′

则 $\angle AM'$ $M=\angle AMM'=2\angle ACB$,故点 M' 是符合题意的另一个点;作 $GH\perp x$ 轴于点 H,易证 GH=AH=

BH=2,则点 G 的坐标为(3, -2);因为点 G 为 MM 的中点,所以点 M 的坐标为 $\left(\frac{23}{6}, -\frac{7}{6}\right)$;因此,点 M 的

坐标为 $(\frac{13}{6}, -\frac{17}{6})$ | 或 $(\frac{23}{6}, -\frac{7}{6})$

反思:第(2)问看似"倍半角"问题,却采取了"垂直处理"策略,结合中点坐标公式加以解决。"成也模型,败也模型",切勿形成思维定式,盲目套用模型。当然,这两个问题都还有其他的处理方式,可自行探索。总结的话:数学中转化思想无处不在,所谓"倍半角"问题,其解题策略大体也是围绕着转化思想进行的,或将"倍角"变为"半角",或将"半角"变为"倍角",最终转化为等角问题,当然变化手段可能不一,比如作"倍角"的角平分线或者构造等腰三角形,再如将"半角"翻折等。总之,具体问题需要具体对待,

并无绝对的通法、简法,一切都要依据题目的条件以及结论去分析、构造,以至于解决。

2023·内蒙古赤峰·统考中考真题

49. 如图,抛物线 $y=x^2-6x+5$ 与x 轴交于点 A,B,与 y 轴交于点 C,点 D(2,m) 在抛物线上,点 E 在直

线 BC 上,若 $\angle DEB = 2\angle DCB$,则点 E 的坐标是

[答案] $(\frac{17}{5}, \frac{8}{5})$ 和 $(\frac{33}{5}, -\frac{8}{5})$

【分析】先根据题意画出图形,先求出D点坐标,当E点在线段BC上时: $\angle DEB$ 是 Δ DCE 的外角, $\angle DEB = 2\angle DCB$,而 $\angle DEB = \angle DCE + \angle CDE$,所以此时 $\angle DCE = \angle CDE$,有CE = DE,可求出BC所在直线的解析式y = -x + 5,设E点。(a, -a + 5)坐标,再根据两点距离公式,CE = DE,得到关于a的方程,求解a的值,即可求出E点坐标;当E点在线段CB的延长线上时,根据题中条件,可以证明 $BC^2 + BD^2 = DC^2$,得到 $\angle DBC$ 为直角三角形,延长EB = E',取BE' = BE,此时, $\angle DE'E = \angle DEE' = 2\angle DCB$,从而证明E'是要找的点,应为CC = OB, ΔOCB 为等腰直角三角形,点E和E'关于B点对称,可以根据E点坐标求出E'点坐标。

【详解】解: 在 $y = x^2 - 6x + 5$ 中, 当x = 0时, y = 5, 则有C(0.5),

令 y=0 , 则有 $x^2-6x+5=0$,

解得: $x_1 = 1, x_2 = 6$,

A(1,0), B(5,0),

根据D点坐标,有 $m = 2^2 - 6 \times 2 + 5 = -3$

所以D点坐标(2,-3)

设BC所在直线解析式为y = kx + b, 其过点C(0,5)、B(5,0)

有
$$\begin{cases} b = 5 \\ 5k + b = 0 \end{cases}$$

解得
$$\begin{cases} k = -1 \\ b = 5 \end{cases}$$

 $\therefore BC$ 所在直线的解析式为: y = -x + 5

当E 点在线段BC上时,设E(a,-a+5)

 $\angle DEB = \angle DCE + \angle CDE$

丙 $\angle DEB = 2\angle DCB$

. ∠DCE = ∠CDE

CE = DE

因为: E(a,-a+5), C(0,5), D(2,-3)

有 $\sqrt{a^2 + (-a+5-5)^2} = \sqrt{(a-2)^2 + [-a+5-(-3)]^2}$

解得: $a = \frac{17}{5}$, $-a+5=\frac{8}{5}$

所以E点的坐标为: $(\frac{17}{5}, \frac{8}{5})$

当E在CB的延长线上时,

在
$$\triangle BDC$$
 中, $BD^2 = (5-2)^2 + 3^2 = 18$, $BC^2 = 5^2 + 5^2 = 50$, $DC^2 = (5+3)^2 + 2^2 = 68$

 $BD^2 + BC^2 = DC^2$

 $\therefore BD \perp BC$

如图延长EB至E',取BE'=BE,

则有 $\triangle DEE'$ 为等腰三角形,DE = DE',

 \therefore $\angle DEE' = \angle DE'E$

 \mathcal{I} : $\angle DEB = 2 \angle DCB$

 $\angle DE'E = 2\angle DCB$

则 E' 为符合题意的点,

COC = OB = 5

 \therefore $\angle OBC = 45^{\circ}$

E'的横坐标: $5+(5-\frac{17}{5})=\frac{33}{5}$ 纵坐标为 $-\frac{8}{5}$

<u>综上</u><u>E</u>点的坐标为: $(\frac{17}{5}, \frac{8}{5})$ <u>或</u> $(\frac{33}{5}, -\frac{8}{5})$

故答案为: $\left(\frac{17}{5}, \frac{8}{5}\right)$ 或 $\left(\frac{33}{5}, -\frac{8}{5}\right)$

江苏苏州·统考中考真题

资料整理【淘宝店铺: 向阳百分百】

50. 如图, 在平面直角坐标系中, 点 $A \setminus B$ 的坐标分别为 $(-4,0) \setminus (0,4)$, 点 C(3,n) 在第一象限内, 连接 $AC \setminus B$ BC. 已知 $\angle BCA = 2\angle CAO$, 则 n =B(0,4)> C(3,n)E \overline{x} A(-4,0)【答案】 【分析】过点 C 作 CD⊥y 轴, 交 y 轴于点 D,则 CD // AO,先证 CDE S A CDB (ASA),进而可得 DE= DB=4-n, 再证 △AOE \backsim △CDE, 进而可得 $\frac{4}{3} = \frac{2n-4}{4-n}$, 由此计算即可求得答案. 【详解】解:如图,过点 C 作 $CD \perp y$ 轴,交 y 轴于点 D,则 CD //AO, *y* **↑** B(0,4)D C(3,n)EA(-4,0) O .∠DCE=∠CAO ∠BCA=2∠CAO, ∴∠BCA=2∠DCE, ∴ ∠DCE=∠DCB, ∵CD⊥y 轴, \therefore \angle CDE= \angle CDB= 90° , 又∵CD=CD, . △ CDE≌ △ CDB (ASA), ∴DE=DB, B (0, 4), C (3, n), \therefore CD=3, OD=n, OB=4, DE = DB = OB - OD = 4 - n∴OE=OD-DE =n-(4-n)=2n-4A (-4, 0), \therefore AO=4, ∵CD//AO,

 $... \triangle AOE \hookrightarrow \triangle CDE,$ $... \frac{AO}{CD} = \frac{OE}{DE}$ $... \frac{4}{3} = \frac{2n-4}{4-n}$ m m m m m m m

内蒙古鄂尔多斯·统考中考真题

51. 如图 1, 抛物线 y=x²+bx+c 交 x 轴于 A, B 两点, 其中点 A 的坐标为(1, 0), 与 y 轴交于点 C ((0, -3)).

- (1) 求抛物线的函数解析式;
- (2) 如图 2,连接 AC,点 P 在抛物线上,且满足∠PAB=2∠ACO,求点 P 的坐标.

$$.OA = 1, OC = 3,$$

:
$$AC = \sqrt{OA^2 + OC^2} = \sqrt{1+9} = \sqrt{10}$$

$$\therefore$$
 \angle ACO= \angle ECO, CE=AC= $\sqrt{10}$,

$$: S_{\triangle AEC} = \frac{1}{2} AE \times OC = \frac{1}{2} AC \times EF$$

$$\therefore \text{EF} = \frac{2 \times 3}{\sqrt{10}} = \frac{3\sqrt{10}}{5}$$

$$\therefore \text{CF} = \sqrt{CE^2 - EF^2} = \sqrt{10 - \frac{18}{5}} = \frac{4\sqrt{10}}{5},$$

$$\therefore \tan \angle ECA = \frac{EF}{CF} = \frac{3}{4},$$

如图 2, 当点 P 在 AB 的下方时,设 AO 与 y 轴交于点 N,

$$\therefore \tan \angle ECA = \tan \angle PAB = \frac{ON}{AO} = \frac{3}{4},$$

$$\therefore ON = \frac{3}{4}$$

∴点N
$$(0, \frac{3}{4}),$$

∴直线 AP 解析式为:
$$y = \frac{3}{4}x - \frac{3}{4}$$
,

解得:
$$\begin{cases} x_1 = 1 \\ y_1 = 0 \end{cases} \Rightarrow \begin{cases} x_2 = -\frac{9}{4} \\ y_2 = -\frac{39}{16} \end{cases}$$

∴点 P 坐标为:
$$(-\frac{9}{4}, -\frac{39}{16})$$

当点 P 在 AB 的上方时,同理可求直线 AP 解析式为: $y = -\frac{3}{4}x + \frac{3}{4}$

综上所述: 点 P 的坐标为
$$\left(-\frac{15}{4}, \frac{57}{16}\right)$$
, $\left(-\frac{9}{4}, -\frac{39}{16}\right)$

2022·内蒙古呼和浩特·统考中考真题

52. 如图,抛物线 $y = -\frac{1}{2}x^2 + bx + c$ 经过点 B(4,0) 和点 C(0,2) ,与 x 轴的另一个交点为 A ,连接 AC 、 BC .

(1)求抛物线的解析式及点 A 的坐标;

(2)如图,点P是第一象限内抛物线上的动点,过点P作PQ // y轴,分别交BC、x轴于点M、N,当 $\triangle PMC$

中有某个角的度数等于 $\angle OBC$ 度数的 2 倍时,请求出满足条件的点 \underline{P} 的横坐标.

【答案】 (1)
$$y = -\frac{1}{2}x^2 + \frac{3}{2}x + 2$$
; A (-1, 0):

(2)2 或 3/2

【分析】(1) 利用待定系数法解答,即可求解;

(2) 先求出
$$\tan \angle OBC = \frac{OC}{OB} = \frac{1}{2}$$
, 再求出直线 BC 的解析式,然后设点 $P\left(a, -\frac{1}{2}a^2 + \frac{3}{2}a + 2\right)$ 则

```
M\left(a,-\frac{1}{2}a+2\right), CF=a, 可得 PM=-\frac{1}{2}a^2+2a, 再分三种情况讨论: 若\angle PCM=2\angle OBC, 过点 C 作 CF//x
轴交PM 于点F; 若∠PMC=2∠OBC; 若∠CPM=2∠OBC
                                                                  过点P作PG平分\angle CPM,则\angle MPG = \angle OBC,
即可求解.
【详解】(1) 解: 把点B(4,0)和点C(0,2)代入, 得:
  -\frac{1}{2} \times 16 + 4b + c = 0
 c = 2
                                  c = 2
∴ 抛物线的解析式为 y = -\frac{1}{2}x^2 + \frac{3}{2}x + 2,
                  \frac{1}{2}x^2 + \frac{3}{2}x + 2
解得: x_1 = -1, x_2 = 4,
∴点A (-1, 0);
(2)解: ∵点<u>B</u> (4, 0), <u>C</u> (0, 2),
\therefore OB=4, OC=2,
设直线 BC 的解析式为 y = kx + b_1(k \neq 0)
把点B (4, 0), C (0, 2) 代入得:
                        \begin{cases} k = -\frac{1}{2} \end{cases}
\int 4k + b_1 = 0
               解得:
 b_1 = 2
∴直线 BC 的解析式为 y = -\frac{1}{2}x + 2
设点 P\left(a, -\frac{1}{2}a^2 + \frac{3}{2}a + 2\right), 则 M\left(a, -\frac{1}{2}a + 2\right), CF=a.
                              \left(-\frac{1}{2}a+2\right) = -\frac{1}{2}a^2 + 2a
                      过点C作CF//x轴交PM于点F, 如图甲所示
                     \angle FCM = \tan \angle OBC = \frac{1}{2}
\angle FCM = \angle OBC
  \angle PCF = \angle FCM
∵ PQ // y 轴,
\therefore CF \perp PQ,
•PM=2FM
: FM = -\frac{1}{4}a^2 + a
                1,解得:解得: a=2 或 0 (舍去),
∴点P的横坐标为2;
```

若∠PMC=2∠OBC

 $\angle BMN=2 \angle OBC$

 $\angle OBC + \angle BMN = 90^{\circ}$

...
$$\angle OBC=30^{\circ}$$
, 与 $\tan \angle OBC=\frac{OC}{OB}=\frac{1}{2}$ 相矛盾,不合题意,舍去;

如图乙所示,过点P作PG平分 $\angle CPM$,则 $\angle MPG = \angle OBC$ $\angle CPM=2 \angle OBC$

 $\triangle PMG \hookrightarrow \triangle BMN$,

 $\therefore \angle PGM = \angle BNM = 90^{\circ}$

 $\angle PGC = 90^{\circ}$

· PG 平分 ∠CPM,即 ∠MPG=∠CPG,

 $\therefore \angle PCM = \angle PMC$

PC=PM

$$\therefore -\frac{1}{2}a^2 + 2a = \sqrt{a^2 + \left(-\frac{1}{2}a^2 + \frac{3}{2}a + 2 - 2\right)^2}$$

综上所述,点P的横坐标为2或

B x0 N Q 图乙

2023·湖北黄冈·统考中考真题

 $\frac{1}{2}x^2 + bx + c$ 与x 轴交于A, B(4,0) 两点,与y 轴交于点C(0,2) ,点P 为第一象限抛物线 53. 己知抛物线 y=-

上的点,连接*CA,CB,PB,PC*.

故答案为: $\frac{3}{2}$, 2, (-1,0), $\frac{1}{2}$;

(2) 解: 过点C作CD//x轴,交BP于点D, 过点P作PE//x轴,交y轴于点E,

AO=1, OC=2, OB=4

$$\therefore \tan \angle OCA = \frac{AO}{CO} = \frac{1}{2},$$

由 (1) 可得, $\tan \angle ABC = \frac{1}{2}$ 即 $\tan \angle OCA = \tan \angle ABC$

 $\angle OCA = \angle ABC$

$$\therefore \angle PCB = 2\angle OCA$$

$$\angle PCB = 2 \angle ABC$$

: CD // x 轴, EP // x 轴,

$$\angle ACB = \angle DCB$$
, $\angle EPC = \angle PCD$

 $\angle EPC = ABC$

$$\checkmark$$
: $\angle PEC = \angle BOC = 90^{\circ}$,

 $\therefore \triangle PEC \hookrightarrow \triangle BOC$

$$\therefore \frac{EP}{OB} = \frac{EC}{OC}$$

设点 P 坐标为 $\left(t, -\frac{1}{2}t^2 + \frac{3}{2}t + 2\right)$ **则** EP = t , $EC = -\frac{1}{2}t^2 + \frac{3}{2}t + 2 - 2 = -\frac{1}{2}t^2 + \frac{3}{2}t$

$$\frac{t}{4} = \frac{-\frac{1}{2}t^2 + \frac{3}{2}t}{2}$$
, 解得: $t = 0$ (舍), $t = 2$

∴点 P 坐标为(2,3).

54. (2020·湖南张家界·中考真题) 如图,抛物线 $y = ax^2 - 6x + c$ 交 x 轴于 A, \mathcal{B} 两点,交 y 轴于点 C. 直线

y = -x + 5 经过点 B, C.

(1) 求抛物线的解析式;

(2) 在直线 BC 上是否存在点 M,使 AM 与直线 BC 的夹角等于 $\angle ACB$ 的 2 倍? 若存在,请求出点 M 的坐

标; 若不存在,请说明理由.

【答案】(1) $y = x^2 - 6x + 5$;

(2) 存在使 AM 与直线 BC 的夹角等于 $\angle ACB$ 的 2 倍的点,且坐标为 M_1 $(\frac{13}{6}, \frac{17}{6})$, M_2 $(\frac{23}{6}, \frac{7}{6})$

【分析】(1) 先根据直线 y = -x + 5 经过点 B, C ,即可确定 B、C 的坐标,然后用带定系数法解答即可;

[(2) 作 $AN \perp BC \neq N$, $NH \perp x$ 轴 $\neq H$, 作 AC 的垂直平分线交 $BC \neq M$ 1, $AC \neq E$ 2; 然后说明 $\triangle ANB$ 为 等腰直角三角形,进而确定 N 的坐标;再求出 AC 的解析式,进而确定 M_1E 的解析式;然后联立直线 BC 和 M_1E 的解析式即可求得 M_1 的坐标;在直线 BC 上作点 M_1 关 $\neq N$ 点的对称点 M_2 ,利用中点坐标公式即可确定点 M_2 的坐标

【详解】解: (1) : 直线 y = -x + 5 经过点 B, C

∴当 x=0 时, 可得 y=5, 即 C 的坐标为 (0,5)

当 y=0 时,可得 x=5,即 B 的坐标为(5,0)

$$\begin{cases} 5 = a \cdot 0^2 - 6 \times 0 + c \\ 0 = 5^2 a - 6 \times 5 + c \end{cases}$$

$$\begin{cases} a = 1 \\ c = 5 \end{cases}$$

∴该抛物线的解析式为 $y = x^2 - 6x + 5$

(2) 如图:作 AN⊥BC 于 N, NH⊥x 轴于 H, 作 AC 的垂直平分线交 BC 于 M1, AC 于 E,

 $M_1A=M_1C$

 $\therefore \angle ACM_1 = \angle CAM_1$

∴∠AM₁B=2∠ACB

∵△ANB 为等腰直角三角形.

•• AH=BH=NH=2

∴N (3, 2)

设AC的函数解析式为 y=kx+b

C(0, 5), A(1, 0)

$$\begin{cases}
5 = k \cdot 0 + b \\
0 = k + b
\end{cases}$$

$$\begin{array}{c}
\text{## } | \text{## }$$

:.AC 的函数解析式为 y=-5x+5

设
$$EM_1$$
的函数解析式为 $y=\frac{1}{5}x+n$

$$\therefore$$
点 E 的坐标为 $(\frac{1}{2},\frac{5}{2})$

∴
$$\frac{5}{2} = \frac{1}{5} \times \frac{1}{2} + n$$
 [[解得:] $n = \frac{12}{5}$

: EM₁的函数解析式为 $y = \frac{1}{5}x + \frac{12}{5}$

$$y = -x + 5$$

$$y = \frac{1}{5}x + \frac{12}{5}$$

$$y = \frac{13}{6}$$

$$y = \frac{17}{6}$$

:M₁的坐标为 $(\frac{13}{6}, \frac{17}{6})$

在直线 BC 上作点 M1 关于 N 点的对称点 M2

设 M₂(a, -a+5)

则有:
$$3 = \frac{13}{6} + a$$

 2 , 解得 $a = \frac{23}{6}$

$$\therefore$$
-a+5= $\frac{7}{6}$

: M₂的坐标为 $(\frac{23}{6}, \frac{7}{6})$.

综上,存在使AM与直线BC的夹角等于 $\angle ACB$ 的 2 倍的点,且坐标为 M_1 $(\frac{13}{6},\frac{17}{6})$, M_2 $(\frac{23}{6},\frac{7}{6})$.

風型 设 其它构造方式

55. 如图,在 $Rt \triangle ABC$ 中, $\angle ACB = 90^\circ$, AC = BC,点 D, E 分别在边 AC, BC 上,且 $\angle DBC = 2 \angle BAE$, AE = 2, $BD = \sqrt{5}$,求 AB 的长.

解: 延长 BC 到 F,使 CF=CD,连接 AF.

 $ACF = \angle BCD = 90^{\circ}$, AC = BC, $ACF \cong \triangle BCD$,

 $\triangle AF = BD = \sqrt{5}$, $\angle FAC = \angle DBC = 2 \angle BAE$

设 $\angle BAE = \alpha$,则 $\angle FAC = \angle DBC = 2\alpha$,

 $\angle AEF = 45^{\circ} + \alpha$, $\angle EAC = 45^{\circ} - \alpha$, $\angle EAF = 45^{\circ} + \alpha$,

 $\angle AEF = \angle EAF$, $\therefore EF = AF = \sqrt{5}$.

 $AC^2 = AE^2 - EC^2 = AF^2 - CF^2$

:.2²-EC²=
$$(\sqrt{5})^2$$
- $(\sqrt{5}$ -EC)², 解得 EC= $\frac{2\sqrt{5}}{5}$

:.
$$AC^2 = 2^2 - EC^2 = \frac{16}{5}$$
, :. $AB = AC = \frac{4\sqrt{5}}{5}$.

56. 如图,在四边形 *ABCD* 中,*AD∥BC*,*AB=AC*,∠*ACD=2∠ABD*,*AD=19*,*CD=25*,求*AB* 的长.

解: 过点 D 作 $DH \perp AC$ 于点 H, 延长 CA 到 F, 使 FH = CH, 连接 DF,

延长 CF 到 E,使 EF=DF,连接 DE.

 \square EF = DF = DC = 25, $\angle E = \angle EDF$,

 $\therefore \angle DFH = \angle ACD = 2 \angle ABD$, $\angle DFH = 2 \angle E$, $\therefore \angle E = \angle ABD$.

AD //BC, $AC = \angle ACB$.

AB = AC, $ABC = \angle ACB$

 $\therefore \angle DAC = \angle ABC, \quad \therefore \angle DAE = \angle DAB.$

AD = AD, $ADE \cong \triangle ADB$, AE = AB = AC.

设 CH = FH = x, 则 EH = x + 25, CE = 2x + 25, $AC = AE = x + \frac{25}{2}$

∴ $AH = \frac{5}{2}$, ∴ $DH^2 = AD^2 - AH^2 = \frac{819}{4}$,

∴ $x = FH = \sqrt{DF^2 - DH^2} = \frac{41}{2}$, ∴ $AB = AC = x + \frac{25}{2} = 33$

57. 如图,在 $\triangle ABC$ 中,AB=4,AC=5,D 为 $\triangle ABC$ 内一点, $\angle BDC=2\angle BAD$,BD=CD,求 $\triangle ABD$ 的面积.

解: 将 \triangle CDA 绕点 D 顺时针旋转到 \triangle BDE,连接 AE,过点 D 作 $DG \perp AB$ 于点 G, $DH \perp AE$ 于点 H.

 \square BE=AC=5, AD=DE, \angle ADE= \angle BDC= $2\angle$ BAD,

 $\therefore AH = EH, \ \angle ADE = 2 \angle ADH, \ \therefore \angle BAD = \angle ADH$

 $\triangle BAE = \angle BAD + \angle DAH = \angle ADH + \angle DAH = 90^{\circ}$

$$\therefore AE = \sqrt{BE^2 - AB^2} = 3, \quad \therefore DG = AH = EH = \frac{3}{2},$$

$$\therefore S_{\triangle ABD} = \frac{1}{2} AB \cdot DG = \frac{1}{2} \times 4 \times \frac{3}{2} = 3.$$

58. 如图,在等边 $\triangle ABC$ 中,点D在边AB上,点E在BC的延长线上, $\angle CAE = 2 \angle DCB$,BD = 2,AD = 6, 求CE的长.

解:在 BC 上截取 BF=BD,连接 AF,过点 A 作 $AH \perp BC$ 于点 H.

 $: \triangle ABC$ 是等边三角形,: AB = BC.

 $\therefore \angle ABF = \angle CBD, \quad \therefore \triangle ABF \cong \triangle CBD,$

FAR = /DCR

: BD=2, AD=6, : CF=6, AB=8, $AH=4\sqrt{3}$

设 $\angle FAB = \angle DCB = \alpha$,则 $\angle CAE = 2\alpha$, $\angle CAF = 60^{\circ} - \alpha$,

 $\angle EAF = 60^{\circ} + \alpha$, $\angle AFE = 60^{\circ} + \alpha$,

AE = EE

设
$$CE=x$$
, 则 $AE=EF=x+6$, $EH=x+4$.
在 $Rt\triangle AHE$ 中, $AH^2+EH^2=AE^2$,
∴ $(4\sqrt{3})^2+(x+4)^2=(x+6)^4$, 解得 $x=7$,
∴ CE 的长为 7.

59. 如图,在四边形 *ABCD* 中,*AB=AD*,*BD* 平分 ∠*ABC*,∠*DAC*=2∠*ADB*,若 <u>CD</u>=4,<u>BD</u>=10,求△*ACD* 的面积.

解: 过点 A 作 $AE \perp BD$ 于点 E, $AF \perp CD$ 于点 F.

∵BD 平分∠ABC, ∴∠ABD=∠DBC,

 $ADB = \angle DBC$ AD // BC $\angle DAC = \angle ACB$

 $\therefore \angle DAC = 2 \angle ADB \quad \therefore \angle ACB = 2 \angle ADB = 2 \angle DBC$

 $\therefore \angle ACB = \angle ABC, \quad \therefore AC = AB = AD,$

 \therefore $\angle CAF = \angle DAF$ \therefore $\angle DAC = 2 \angle DAF$ \therefore $\angle DAF = \angle ADB$.

 $AD = \angle AFD = \angle DEA = 90^{\circ}, AD = DA, \triangle ADF \cong \triangle DAE,$

$$\therefore AF = DE = 5, \quad \therefore S_{\triangle ACD} = \frac{1}{2}CD \cdot AF = \frac{1}{2} \times 4 \times 5 = 10.$$

60. 如图,在 $\triangle ABC$ 中,AB=AC,点 D,E 分别是边 AC,BC 上的点,连接 AE 与 BD 交于点 F, $\angle BFE=\angle$ $BAC=2\angle AEB$,探究 AF,EF 与 BF 的数量关系,并证明.

解:在BD上截取BG=AE,连接AG.

AB = AC, $ABE = \angle C$,

```
\triangle ZBAC = 180^{\circ} - 2 \angle C
```

 $\therefore \angle ABE + \angle AEB = 90^{\circ}, \quad \angle BAE = 90^{\circ}.$

 \therefore $\angle AFD = \angle BFE = \angle BAC$, \therefore $\angle CAE = \angle ABG$,

 $\therefore \triangle ABG \cong \triangle CAE, \quad \therefore \angle AGB = \angle AEC, \quad \angle BAG = \angle C,$

 $\angle AGF = \angle AEB = 90^{\circ} - \angle C$, $\angle GAF = 90^{\circ} - \angle BAG = 90^{\circ} - \angle C$,

 $\therefore \angle AGF = \angle GAF$, $\therefore AF = GF = BF - BG = BF - AE = BF - AF - EF$

BF = 2AF + EF.

61. 如图,在 $\triangle ABC$ 中,点D 为边BC 上一点,DC = 3 点 E 为AD 的中点,若 $\angle BAC = \angle BED = 2 \angle CED$,

求 $\frac{BE}{AD}$ 的值.

解: 过点 C 作 CG//BE 交 AD 的延长线于点 G,在 AG 上取点 F,连接 CF 使 CF = CG.

则
$$\triangle BDE \sim \triangle CDG$$
, $\therefore \frac{BE}{CG} = \frac{BD}{DC} = \frac{3}{4}$.

$$\angle ECF = \angle CED$$
, $\angle AEB = \angle CFA$, $\angle BAE = \angle ACF = 2\alpha - \angle CAF$

$$\therefore EF = CF = CG, \triangle ABE \Leftrightarrow \triangle CAF, \cdot \cdot \frac{AB}{AC} = \frac{AE}{CF} = \frac{BE}{AF}$$

设
$$BE=3$$
, $AE=DE=a$,则 $EF=CF=CG=4$, $DF=4-a$, $AF=a+4$,

$$\frac{a}{4} = \frac{3}{a+4}$$
, 解得 $a = -6$ (舍去) 或 $a = 2$.

$$\therefore AF = a + 4 = 6, \quad \therefore \frac{AB}{AC} = \frac{BE}{AF} = \frac{1}{2}.$$

62. 如图,在 $Rt \triangle ABC$ 中, $\angle BAC = 90^{\circ}$,点 P 为 BC 边上一点,连接 AP,分别过点 B,C 作 AP 的垂线,

垂足为
$$\overline{D}$$
, \overline{E} , 若 $\angle ADC = 2 \angle ABC$, $\frac{BP}{PC} = \frac{3}{4}$, 求 $\tan \angle ACB$ 的值.

解: 延长 AE 到 F,使 DF=DC,连接 BF, CF.

则 $\angle \mathit{EFC} = \angle \mathit{DCF}$, $\therefore \angle \mathit{ADC} = 2 \angle \mathit{EFC}$.

 $\angle ADC = 2 \angle ABC$, $\angle EFC = \angle ABC$.

 \therefore \angle FEC = \angle BAC = 90°, \therefore \triangle EFC \hookrightarrow \triangle ABC,

$$\therefore \frac{CE}{AC} = \frac{CF}{BC}, \quad \angle ECF = \angle ACB$$

 $\angle BCF = \angle ACE$, $\triangle BCF \hookrightarrow \triangle ACE$,

 $\angle CBF = \angle CAF$, $\angle DFB = \angle ACB = \angle ECF$

$$\therefore \triangle DBF \circ \triangle EFC, \quad : \frac{BD}{FF} = \frac{DF}{CE}, \quad : DF \cdot EF = BD \cdot CE$$

 $\angle BDP = \angle CEP = 90^{\circ}, \ \angle BPD = \angle CPE,$

$$\triangle BDP \sim \triangle CEP$$
, $\frac{BD}{CE} = \frac{BP}{PC} = \frac{3}{4}$

设 BD=3, CE=4, DE=a, EF=b, 则 DC=DF=a+b,

∴ $(a+b)b=3\times 4=12$, ∴ $b^2+ab=12$, ∴ $2ab=24-2b^2$.

 $\therefore DC^2 = CE^2 + DE^2, \quad \therefore (a+b)^2 = 16 + a^2,$

 $\therefore b^2 + 2ab = 16, \quad \therefore b^2 + 24 - 2b^2 = 16, \quad \therefore b = 2\sqrt{2},$

 $\therefore \tan \angle ACB = \tan \angle ECF = \frac{EF}{CE} = \frac{b}{4} = \frac{\sqrt{2}}{2}.$

63. 如图,在 $Rt \triangle ABC$ 中, $\angle BAC = 90^{\circ}$,点 D, E 为边 BC 上两点(点 D 在点 E 左侧), $\angle BAD = \angle CAE$, $\angle AED = 2 \angle ADE$, BD = 7, CE = 2, 求 AE, DE 的长.

解: 取 BC 中点 G,过点 A 作 $AH \perp BC$ 于点 H,在 HC 上截取 FH = EH,连接 AG,AF.

 $\mathbb{M} AG = BG = CG$. $\angle BAG = \angle B$.

设
$$\angle BAD = \angle CAE = 3\alpha$$
,则 $\angle DAE = 90^{\circ} - 6\alpha$ $\angle ADE = 30^{\circ} + 2\alpha$,

 $\angle AED = 60^{\circ} + 4\alpha$, $\angle BAG = \angle B = 30^{\circ} - \alpha$, $\angle AGE = 60^{\circ} - 2\alpha$,

$$\angle GAE = 60^{\circ} - 2\alpha$$
 $\angle AFE = \angle AEF = 120^{\circ} - 4\alpha$, $\angle DAF = 30^{\circ} + 2\alpha$.

 $\therefore \angle AGE = \angle GAE$, $\angle ADE = \angle DAF$

:DF=AF=AE=GE, :EF=DG.

设
$$DF = AF = AE = GE = x$$
,则 $AG = BG = CG = x + 2$,

BC = 2x + 4, EF = DG = 7 - (x + 2) = 5 - x

$$EH = FH = \frac{1}{2}EF = \frac{5-x}{2}, DE = x - (5-x) = 2x - 5.$$

$$GH = x + \frac{5}{2} - \frac{1}{2}x = \frac{5+x}{2}$$

 $AH^2 = AG^2 - GH^2 = AE^2 - EH^2$

$$\therefore (x+2)^2 - (\frac{5+x}{2})^2 = x^2 - (\frac{5-x}{2})^2$$

解得 x=4, : AE=4, DE=2x-5=3

64. 如图,在正方形 ABCD 中,点 E, F 分别在 BA, BC 的延长线上,连接 DE, EF, $DE = \sqrt{7}$, EF = 5, \angle $BEF = 2 \angle DEF$,求 BF 的长.

解: 如图 1,图 2,过点 D 作 $DG \perp DE$ 交射线 CB 于点 G,连接 EG.


```
∵四边形 ABCD 是正方形,: AD=CD, ∠DAE=∠DCG=∠ADC=90°,
\therefore \angle ADE = \angle CDG, \quad \triangle ADE \cong \triangle CDG
 DE = DG = \sqrt{7}, EG^2 = DE^2 + DG^2 = 14.
如图 1,当 EF 在 \angle BED 内部时,延长 BF 到 H,使 FH = EF,连接 EH.
设\angle DEF = \alpha, 则\angle BEF = 2\alpha, \angle EFB = 90^{\circ} - 2\alpha.
\angle FEG = 45^{\circ} - \alpha, \angle EHG = \angle FEH = 45^{\circ} - \alpha,
\angle FEG = \angle EHG.
\angle EGF = \angle HGE, \triangle EGF \circ \triangle HGE,
 \therefore \frac{EG}{GF} = \frac{GH}{EG}, \quad \therefore GF \cdot GH = EG^2, \quad \therefore GF(GF + 5) = 14,
解得 GF = -7 (舍去) 或 GF = 2.
 BE^2 = EF^2 - BF^2 = EG^2 - BG^2
 \therefore BF^2 - BG^2 = EF^2 - EG^2
\therefore BF^2 - (BF - GF)^2 = EF^2 - EG^2
 \therefore 2GF \cdot BF - GF^2 = EF^2 - EG^2
∴4BF-2<sup>2</sup>=5<sup>2</sup>-14, ∴BF=\frac{15}{1}
②如图 2,当EF在\angle BED外部时
\angle BEF = 2 \angle DEF \angle AED = \angle DEF
\therefore \triangle ADE \cong \triangle CDG, \quad \therefore \angle AED = \angle CGD,
\angle DEF = \angle CGD.
\Box DE = DG, \Box \angle DEG = \angle DGE,
\therefore \angle GEF = \angle EGF, \therefore GF = EF = 5
\pm①知,2GF \cdot BF - GF^2 = EF^2 - EG^2
∴ 10BF - 5^2 = 5^2 - 14, ∴ BF = \frac{18}{18}
```