Space X Falcon 9 First Stage Landing Prediction

Assignment: Machine Learning Prediction

Estimated time needed: 60 minutes

Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. In this lab, you will create a machine learning pipeline to predict if the first stage will land given the data from the preceding labs.

Several examples of an unsuccessful landing are shown here:

Most unsuccessful landings are planed. Space X; performs a controlled landing in the oceans.

Objectives

Perform exploratory Data Analysis and determine Training Labels

- create a column for the class
- Standardize the data
- · Split into training data and test data

-Find best Hyperparameter for SVM, Classification Trees and Logistic Regression

Find the method performs best using test data

Type *Markdown* and LaTeX: α 2 α 2

Import Libraries and Define Auxiliary Functions

We will import the following libraries for the lab

Pandas is a software library written for the Python programming language for data manipulation and analysis.

import pandas as pd

NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays

import numpy as np

Matplotlib is a plotting library for python and pyplot gives us a MatLab like plotting framework. We will use this in our plotter f unction to plot data.

import matplotlib.pyplot as plt

#Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and i nformative statistical graphics

import seaborn as sns

Preprocessing allows us to standarsize our data

from sklearn import preprocessing

Allows us to split our data into training and testing data

from sklearn.model_selection import train_test_split

Allows us to test parameters of classification algorithms and find the best one

from sklearn.model_selection import GridSearchCV

Logistic Regression classification algorithm

from sklearn.linear_model import LogisticRegression

Support Vector Machine classification algorithm

from sklearn.svm import SVC

Decision Tree classification algorithm

from sklearn.tree import DecisionTreeClassifier

K Nearest Neighbors classification algorithm

from sklearn.neighbors import KNeighborsClassifier

This function is to plot the confusion matrix.

def plot confusion matrix(y,y predict):

"this function plots the confusion matrix"

from sklearn.metrics import confusion_matrix

```
cm = confusion_matrix(y, y_predict)
ax= plt.subplot()
sns.heatmap(cm, annot=True, ax = ax); #annot=True to annotate cells
ax.set_xlabel('Predicted labels')
ax.set_ylabel('True labels')
ax.set_title('Confusion Matrix');
ax.xaxis.set_ticklabels(['did not land', 'land']); ax.yaxis.set_ticklabels(['did not land', 'landed'])
```

Load the dataframe

Load the data

data = pd.read_csv("https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/
dataset_part_2.csv")

If you were unable to complete the previous lab correctly you can uncomment and load this csv

data = pd.read_csv('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DS0701E N-SkillsNetwork/api/dataset_part_2.csv')

data.head()

	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	Launch Site	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	Latitude	CI
0	1	2010- 06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0003	-80.577366	28.561857	
1	2	2012- 05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.577366	28.561857	
2	3	2013- 03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.577366	28.561857	
3	4	2013- 09-29	Falcon 9	500.000000	PO	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610829	34.632093	
4	5	2013- 12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1004	-80.577366	28.561857	

X = pd.read_csv('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/datasets/dataset_part_3.csv')

If you were unable to complete the previous lab correctly you can uncomment and load this csv

 $\#X = pd.read_csv('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DS0701EN-SkillsNetwork/api/dataset_part_3.csv')$

X.head(100)

	lightNumber	PayloadMass	Flights	Block	ReusedCount	Orbit_ES- L1	Orbit_GEO	Orbit_GTO	Orbit_HEO	Orbit_ISS	 Serial_B1058	Serial_B1059	Serial_B1060	Serial_B1062	GridFir
0	1.0	6104.959412	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	
1	2.0	525.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	
2	3.0	677.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	 0.0	0.0	0.0	0.0	
3	4.0	500.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	
4	5.0	3170.000000	1.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	 0.0	0.0	0.0	0.0	
85	86.0	15400.000000	2.0	5.0	2.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	1.0	0.0	
86	87.0	15400.000000	3.0	5.0	2.0	0.0	0.0	0.0	0.0	0.0	 1.0	0.0	0.0	0.0	
87	88.0	15400.000000	6.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	
88	89.0	15400.000000	3.0	5.0	2.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	1.0	0.0	
89	90.0	3681.000000	1.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	1.0	

90 rows x 83 columns

TASK 1

Create a NumPy array from the column Class in data, by applying the method to_numpy() then assign it to the variable Y,make sure the output is a Pandas series (only one bracket df['name of column']).

Standardize the data in X then reassign it to the variable X using the transform provided below.

students get this

transform = preprocessing.StandardScaler()

X	FlightNumber	PayloadMass	Flights	Block	ReusedCount	Orbit_E\$-	Orbit_GEO	Orbit_GTO	Orbit_HEO	Orbit_ISS	 Serial_B1058	Serial_B1059	Serial_B1060	Serial_B1062	GridFir
0		6104.959412	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1	2.0	525.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	
2	3.0	677.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	 0.0	0.0	0.0	0.0	
3	4.0	500.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	
4	5.0	3170.000000	1.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	 0.0	0.0	0.0	0.0	
85	86.0	15400.000000	2.0	5.0	2.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	1.0	0.0	
86	87.0	15400.000000	3.0	5.0	2.0	0.0	0.0	0.0	0.0	0.0	 1.0	0.0	0.0	0.0	
87	88.0	15400.000000	6.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	
88	89.0	15400.000000	3.0	5.0	2.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	1.0	0.0	
89	90.0	3681.000000	1.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	1.0	

90 rows × 83 columns

```
X = preprocessing.StandardScaler().fit(X).transform(X)
```

```
array([[-1.71291154e+00, -3.32153339e-17, -6.53912840e-01, ..., -8.35531692e-01, 1.93309133e+00, -1.93309133e+00], [-1.67441914e+00, -1.19523159e+00, -6.53912840e-01, ..., -8.35531692e-01, 1.93309133e+00, -1.93309133e+00], [-1.63592675e+00, -1.16267307e+00, -6.53912840e-01, ..., -8.35531692e-01, 1.93309133e+00, -1.93309133e+00], ..., [1.63592675e+00, 1.99100483e+00, 3.49060516e+00, ..., 1.19684269e+00, -5.17306132e-01, 5.17306132e-01], [1.67441914e+00, 1.99100483e+00, 1.00389436e+00, ..., 1.19684269e+00, -5.17306132e-01, 5.17306132e-01], [1.71291154e+00, -5.19213966e-01, -6.53912840e-01, ..., -8.35531692e-01, -5.17306132e-01, 5.17306132e-01]])
```

We split the data into training and testing data using the function <code>train_test_split</code>. The training data is divided into validation data, a second set used for training data; then the models are trained and hyperparameters are selected using the function <code>GridSearchCV</code>.

TASK 3

Use the function train_test_split to split the data X and Y into training and test data. Set the parameter test_size to 0.2 and random_state to 2. The training data and test data should be assigned to the following labels. X train, X test, Y train, Y test

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=2)
```

we can see we only have 18 test samples.

Y_test.shape

(18,)

Create a logistic regression object then create a GridSearchCV object <code>logreg_cv</code> with <code>cv = 10</code>. Fit the object to find the best parameters from the dictionary <code>parameters</code>.

tuned hpyerparameters : (best parameters) { 'C': 0.01, 'penalty': '12', 'solver': 'lbfgs

TASK 5

Calculate the accuracy on the test data using the method score:

print("accuracy :",logreg_cv.best_score_)

accuracy: 0.8464285714285713

Lets look at the confusion matrix:

Examining the confusion matrix, we see that logistic regression can distinguish between the different classes. We see that the major problem is false positives.

TASK 6

Create a support vector machine object then create a <code>GridSearchCV</code> object <code>svm_cv</code> with cv - 10. Fit the object to find the best parameters from the dictionary <code>parameters</code>.

```
X train, X test, Y train, Y test = train test split(X, Y, test size=0.2, random state=2)
parameters = {'kernel':('linear', 'rbf', 'poly', 'rbf', 'sigmoid'),
       'C': np.logspace(-3, 3, 5),
       'gamma':np.logspace(-3, 3, 5)}
svm = SVC()
# Instantiate the GridSearchCV object: svm_cv
svm_cv = GridSearchCV(svm, parameters, cv=10)
# Fit it to the data
svm cv.fit(X train, Y train)
GridSearchCV(cv=10, estimator=SVC(),
              param_grid={'C': array([1.00000000e-03, 3.16227766e-02, 1.00000000e+00, 3.16227766e+01,
        1.00000000e+03]),
                            gamma': array([1.00000000e-03, 3.16227766e-02, 1.00000000e+00, 3.16227766e+01,
        1.00000000e+03]),
                           'kernel': ('linear', 'rbf', 'poly', 'rbf', 'sigmoid')})
print("tuned hpyerparameters :(best parameters) ",svm_cv.best_params_)
print("accuracy :",svm_cv.best_score_)
tuned hpyerparameters : (best parameters) {'C': 1.0, 'gamma': 0.03162277660168379, 'ker
nel': 'sigmoid'}
accuracy: 0.8482142857142856
```

TASK 7

Calculate the accuracy on the test data using the method score:

We can plot the confusion matrix

Create a decision tree classifier object then create a <code>GridSearchCV</code> object <code>tree_cv</code> with <code>cv = 10</code>. Fit the object to find the best parameters from the dictionary <code>parameters</code>.

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=2)
parameters = {'criterion': ['gini', 'entropy'],
  'splitter': ['best', 'random'],
  'max_depth': [2*n for n in range(1,10)],
  'max features': ['auto', 'sqrt'],
  'min_samples_leaf': [1, 2, 4],
  'min_samples_split': [2, 5, 10]}
tree = DecisionTreeClassifier()
# Instantiate the GridSearchCV object: tree_cv
tree cv = GridSearchCV(tree, parameters, cv=10)
# Fit it to the data
tree_cv.fit(X_train, Y_train)
GridSearchCV(cv=10, estimator=DecisionTreeClassifier(),
                param grid={'criterion': ['gini', 'entropy'],
                               'max depth': [2, 4, 6, 8, 10, 12, 14, 16, 18],
                               'max features': ['auto', 'sqrt'],
                               'min samples leaf': [1, 2, 4],
                               'min samples split': [2, 5, 10],
                               'splitter': ['best', 'random']})
print("tuned hpyerparameters :(best parameters) ",tree_cv.best_params_)
print("accuracy:",tree_cv.best_score_)
tuned hpyerparameters : (best parameters) {'criterion': 'entropy', 'max depth': 8, 'max
_features': 'sqrt', 'min_samples_leaf': 2, 'min_samples_split': 2, 'splitter': 'best'}
accuracy: 0.8785714285714287
```

TASK 9

Calculate the accuracy of tree_cv on the test data using the method score:

```
tree_cv.score(X_test, Y_test)
tree_cv = tree_cv.score(X_test, Y_test)
tree_cv
0.83333333333333333333
```

We can plot the confusion matrix

yhat = svm_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)

accuracy: 0.8482142857142858

TASK 10

Create a k nearest neighbors object then create a GridSearchCV object knn_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters.

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=2)
parameters = {'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
       'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'],
       'p': [1,2]}
KNN = KNeighborsClassifier()
# Instantiate the GridSearchCV object: knn_cv
knn_cv = GridSearchCV(KNN, parameters, cv=10)
# Fit it to the data
knn_cv.fit(X_train, Y_train)
GridSearchCV(cv=10, estimator=KNeighborsClassifier(),
                param grid={'algorithm': ['auto', 'ball tree', 'kd tree', 'brute'],
                                'n neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
                                'p': [1, 2]})
print("tuned hpyerparameters :(best parameters) ",knn_cv.best_params_)
print("accuracy :",knn_cv.best_score_)
tuned hpyerparameters : (best parameters) { 'algorithm': 'auto', 'n neighbors': 10, 'p':
1}
```

Calculate the accuracy of tree_cv on the test data using the method score:

```
knn_cv.score(X_test, Y_test)
knn_cv = knn_cv.score(X_test, Y_test)
knn_cv
0.8333333333333333333
```

We can plot the confusion matrix

```
yhat = knn_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)
```


TASK 12

Find the method performs best:

Authors

Joseph Santarcangelo