Fourth Year B.S. (Honors) 2020-2021 Math Lab Assignment 01

Course: AMT 450

Department of Applied Mathematics University of Dhaka

Roll No:

Group:

Name:

maine.	Kon No. Group.
1.	a. Use PolarPlot and ParametricPlot to sketch the curve: $r = e^{\cos\theta} - 2\cos 4\theta + \sin^5 \frac{\theta}{12}$,
	$0 \le \theta \le 24\pi$, which is known as 'butterfly'.
	b. Sketch the intersection of the paraboloid $z = x^2 + y^2$ with the plane $y + z = 12$. Obtain
	two different views. Use Plot3D.
	c. Let $f(x, y, z) = 5x^2 + y^2 + z^2$. Draw the level surfaces $f(x, y, z) = k$ for $k = 1,4,9,16,25$.
	Sketch only for $y \ge 0$ so all the surfaces will be visible. Use ContourPlot3D .
2.	Consider the function $(x, y) = \frac{x^2y}{x^4 + 4y^2}$. Draw the three dimensional figure and the level curves using
	Plot3D, DensityPlot in the neighbourhood of the origin. Also try to use Axes , PlotPoints , PlotStyle ,
	ColorFunction options to get a better graph.
3.	a. A parametrization of "umbillic torus NC" is given by $r(s,t) = x(s,t)i + y(s,t)j + z(s,t)k, -\pi \le s \le \pi, -\pi \le t \le \pi$, where
	$x(s,t) = \left(7 + \cos\left(\frac{1}{3}s - 2t\right) + 2\cos\left(\frac{1}{3}s + t\right)\right)\sin s$
	($(1$ $)$ $(1$ $))$
	$y(s,t) = \left(7 + \cos\left(\frac{1}{3}s - 2t\right) + 2\cos\left(\frac{1}{3}s + t\right)\right)\cos s$
	(1) 1
	$z(s,t) = \sin\left(\frac{1}{3}s - 2t\right) + 2\sin\left(\frac{1}{3}s + t\right)$
	Graph the torus. Use ParametricPlot3D , DensityPlot and ContourPlot . In the plot use Mesh , MeshFunctions , PlotPoints and PlotRange options.
	b. The equations $r = sinn\theta$, where n is a positive integer, represent a family of polar curves
	called roses. Investigate the behavior of this family and form a conjecture about how the number of loops is related to n .
4.	a. The Cornu spiral has parametric equations
	$x = \int_0^t \sin\left(\frac{1}{2}u^2\right) du$
	$y = \int_0^t \cos \frac{1}{2} u^2 du$
	Graph the Cornu spiral. Use AspectRatio , PlotLabel , Frame , FrameLabel and ColorFunction
	options to get better graph.
	b. Let $g(x) = x \sin^2 x$. Find the volume of the solid obtained by revolving the region bounded
	by the graph of $y = g(x)$, $x = 0$, $x = \pi$ and x-axis about (i) the x-axis and (ii) the y-axis.
5.	Let $f(x, y) = e^x \sin \pi y$. Find the equation of the tangent plane and normal line to $f(x, y)$ at the
	point $P(0, 1, 0)$. Confirm your result graphically.
6.	An electric charge is spread over the half-disk described by $x^2 + y^2 = 4$, $y \ge 0$. Draw the region graphically and calculate the total charge on if the charge density at any point in (measured in
	coulombs per square meter) is $\sigma(x,y) = \sqrt{x^2 + y^2}$.
	y = y = y

7	a. Calculate and draw the volume of the solid bounded between the surfaces $z = 4(x^2 + y^2)$ and $z = 16 - 4(x^2 + y^2)$ on the rectangular domain $[-1,1] \times [-1,1]$.
	b. Calculate the mass of the solid region W bounded between the planes $z = 1 - x - y$ and $z = 1 + x + y$ situated over the triangular domain D bounded by $x = 0$, $y = 0$ and $y = 1 - x$. Assume the density of W is given by $\rho(x, y, z) = 1 + x^2 + y^2$.
	c. Find the volume of the solid lying under the graph of the surface $z = x^3 + 4y$ and above the region in the xy-plane bounded by the line $y = 2x$ and the parabola $y = x^2$. Also draw the solid region.