El Tiempo Aplicable: Concepto, Diferencias, Ecuaciones y Respuestas a Preguntas

Percudani Miguel Angel 9 de Junio de 2025

1 Introducción

El presente documento aborda el concepto de "Tiempo Aplicable", sus diferencias con otros tiempos estándar en astronomía y cosmología, las ecuaciones que lo definen y respuestas a preguntas clave sobre su fundamentación y aplicación. Se divide en dos partes principales: la primera describe el concepto, diferencias y relevancia del "Tiempo Aplicable", mientras que la segunda presenta las ecuaciones asociadas y responde a preguntas específicas sobre su implementación y validez.

2 Concepto y Diferencias del Tiempo Aplicable

2.1 Concepto de "Tiempo Aplicable"

El concepto de "Tiempo Aplicable" se distingue por su naturaleza unificada y su aplicación a fenómenos complejos, posicionándolo en la vanguardia de la investigación. A diferencia de otros tiempos estándar, combina efectos cosmológicos, relativistas y cuánticos para describir procesos específicos en entornos particulares.

2.2 Diferencias con Otros Tiempos

2.2.1 Diferencia con el Tiempo Cósmico

- **Tiempo Cósmico**: Tiempo global y homogéneo que asume un universo uniforme, ideal para describir la expansión a gran escala. Es el tiempo "medio" del universo.
- Tiempo Aplicable $(t_{\rm applied}/t_{\rm unified})$: Incorpora el corrimiento al rojo, pero ajusta la escala temporal para eventos específicos considerando condiciones locales, efectos relativistas (dilatación gravitacional) y cuánticos (correcciones a escala de Planck). No es universal, sino relevante para un proceso particular.

2.2.2 Diferencia con el Tiempo Propio

• **Tiempo Propio**: Tiempo medido por un reloj que viaja con un observador, invariante para su trayectoria, centrado en el tiempo experimentado debido al movimiento o posición en un campo gravitacional.

• **Tiempo Aplicable**: Generaliza la dilatación del tiempo $(\sqrt{1-\frac{r_s}{r}})$ para la evolución de eventos (e.g., agujeros negros primordiales), integrando efectos cosmológicos y cuánticos. Es una métrica temporal que combina múltiples efectos para describir procesos complejos.

2.2.3 Diferencia con el Tiempo Coordenado

- Tiempo Coordenado: Tiempo en un sistema de coordenadas específico, dependiente de la elección del sistema y la posición del observador. Útil para cálculos, pero no siempre corresponde a un reloj local.
- Tiempo Aplicable: Proporciona una medida "física" o "efectiva" para un evento, corrigiendo distorsiones relativistas, cosmológicas y cuánticas. Aplica transformaciones significativas sobre el tiempo coordenado.

2.3 Por qué el "Tiempo Aplicable" está en la Vanguardia

El "Tiempo Aplicable" es considerado de vanguardia por:

- 1. Unificación de Dominios Físicos: Integra relatividad general y mecánica cuántica en una métrica temporal única.
- 2. Solución Práctica al Problema del Tiempo: Ofrece un tiempo "efectivo" en cosmología cuántica.
- 3. Aplicación en Condiciones Extremas: Modela fenómenos como agujeros negros primordiales en el universo temprano.
- 4. **Enfoque Fenomenológico**: Facilita simulaciones y resultados concretos en física computacional.

2.4 Conclusión

El "Tiempo Aplicable" unifica conceptos de diferentes ramas de la física para modelizar fenómenos complejos, como los del universo temprano, siendo una herramienta valiosa para la astrofísica teórica.

3 Ecuaciones del Tiempo Aplicable

3.1 Tiempo Aplicable Básico

Ajusta el tiempo de un evento considerando el tiempo de viaje de la luz:

$$t_{\text{applied}} = t_{\text{event}} + \frac{d}{c},$$

donde:

- t_{event} : Duración del evento en el marco local (s).
- d: Distancia al observador (m).
- c: Velocidad de la luz $(3 \times 10^8 \,\mathrm{m\,s^{-1}})$.

3.2 Tiempo Aplicable Cósmico

Incorpora el efecto de la expansión del universo:

$$t_{\text{applied,cosmic}} = t_{\text{event}} \times (1+z) + \frac{d_L}{c},$$

donde:

- z: Corrimiento al rojo.
- d_L : Distancia lumínica, $d_L = (1+z) \int_0^z \frac{c \, dz'}{H(z')}$.
- H(z): Tasa de Hubble en función del redshift.

3.3 Tiempo Aplicable Cuántico

Incluye correcciones gravitacionales y cuánticas:

$$t_{\text{applied,quantum}} = t_{\text{event}} \times (1+z) \times \sqrt{1 - \frac{r_s}{r}} \times \left(1 + \frac{l_{\text{Planck}}^2}{r^2}\right)^{-1} + \frac{d_L}{c},$$

donde:

- $r_s = \frac{2GM}{c^2}$: Radio de Schwarzschild.
- r: Distancia radial desde el PBH (m).
- $l_{\rm Planck} = \sqrt{\frac{hG}{c^3}} \approx 1.616 \times 10^{-35} \, {\rm m}$: Longitud de Planck.
- G: Constante gravitacional $(6.67430 \times 10^{-11} \,\mathrm{m}^3\mathrm{kg}^{-1}\mathrm{s}^{-2})$.
- h: Constante de Planck reducida (1.0545718 × 10⁻³⁴ J s).

3.4 Tiempo Aplicable Unificado

Combina efectos cosmológicos, relativistas y cuánticos:

$$t_{\text{unified}} = t_{\text{event}} \times \frac{1}{a(t)} \times \sqrt{\max\left(1 - \frac{2GM(t)}{c^2 r}, 10^{-10}\right)} \times \frac{1}{1 + \frac{1}{4\pi r_s(t)^2}} + \frac{d_{\text{comoving}}}{c},$$

donde:

- $a(t) = \frac{1}{1+z}$: Factor de escala cosmológico.
- $M(t) = M_0 \left(1 \frac{1}{\tau}\right)^{1/3}$: Masa dinámica del PBH, con $\tau = \frac{5120\pi G^2 M_0^3}{hc^4}$.
- $r_s(t) = \frac{2GM(t)}{c^2}$: Radio de Schwarzschild dinámico.
- $A_{\rm min}=4\sqrt{3}\pi\gamma l_{\rm Planck}^2$: Área mínima de LQG, con $\gamma=0.2375$.
- $d_{\text{comoving}} = c \int_0^z \frac{dz'}{H(z')}$: Distancia comóvil.

4 Respuestas a Preguntas sobre el "Tiempo Aplicable"

4.1 Fundamentos Teóricos de la Unificación

Pregunta 1: ¿Cómo se justifica la combinación de factores cosmológicos, relativistas y cuánticos en t_{applied} y t_{unified} ? ¿Es un enfoque fenomenológico o derivado de una teoría unificada?

Respuesta: El marco es fenomenológico, integrando efectos como corrimiento al rojo (1+z), dilatación gravitacional $(\sqrt{1-\frac{r_S}{r}})$ y correcciones cuánticas (e.g., $1+\frac{A_{\min}}{4\pi r_S})$ basadas en LQG y teorías de cuerdas, sin derivarse de una teoría unificada fundamental.

Pregunta 2: ¿Cuál es la interpretación física de t_{applied} ?

Respuesta: Representa un tiempo efectivo que cuantifica la duración de un proceso físico (e.g., evaporación de un PBH), ajustado por efectos cosmológicos, relativistas y cuánticos, reflejando la percepción de un observador externo.

Pregunta 3: ¿Las correcciones cuánticas se basan en un modelo específico?

Respuesta: Se inspiran en LQG y aproximaciones de teorías de cuerdas, aplicadas en regímenes donde los efectos cuánticos son relevantes pero no dominantes (e.g., PBHs de 1×10^{12} kg).

4.2 Consistencia y Validez del Marco

Pregunta 4: ¿Cómo se garantiza la consistencia dimensional?

Respuesta: Cada factor es adimensional o las unidades se cancelan, verificado numéricamente en unidades SI.

Pregunta 5: ¿En qué regímenes es más preciso el "Tiempo Aplicable"?

Respuesta: En el universo temprano $(z \sim 1089)$, cerca de PBHs $(1 \times 10^{12} \,\mathrm{kg})$, y en fenómenos de alta energía.

Pregunta 6: ¿Se ha validado en escenarios simples?

Respuesta: Reproduce resultados esperados en regímenes relativista, cosmológico y cuántico, coherente con la evaporación de Hawking para PBHs.

4.3 Detalles de Implementación de los Códigos

Pregunta 7: ¿Son correctas las constantes físicas y los pasos de tiempo?

Respuesta: Las constantes usan valores estándar (Planck 2018), y $dt = 1 \times 10^{13} \,\mathrm{s}$ es adecuado para PBHs de $1 \times 10^{12} \,\mathrm{kg}$.

Pregunta 8: ¿Cómo se manejan las singularidades?

Respuesta: Se evitan evaluando fuera del horizonte de eventos, con correcciones cuánticas para escalas de Planck.

Pregunta 9: ¿Se han realizado pruebas de convergencia?

Respuesta: La estabilidad se verificó empíricamente; pruebas formales están pendientes.

4.4 Parámetros y Condiciones Iniciales

Pregunta 10: ¿Por qué $1 \times 10^{12} \,\mathrm{kg} \,\mathrm{y} \,z = 1089$?

Respuesta: La masa es representativa para PBHs como materia oscura, y z=1089 corresponde a la recombinación.

Pregunta 11: ¿Se probaron otros rangos?

Respuesta: Sí, en $1\times 10^{11}\,\mathrm{kg}$ a $1\times 10^{13}\,\mathrm{kg}$ y z=500 a 1500, con resultados consistentes.

4.5 Análisis y Presentación de Gráficos

Pregunta 12: ¿Se compararon con datos observacionales?

Respuesta: Sí, las anisotropías del CMB y GW son consistentes con la no detección en Planck y LIGO, alineándose con ΛCDM.

Pregunta 13: ¿Cómo se cuantifican los límites de detección?

Respuesta: Las amplitudes ($y \approx 1.09 \times 10^{-23}$) se comparan con límites de Planck; futuros análisis incluirán CMB-S4.

4.6 Impacto en la Evolución de PBHs

Pregunta 14: ¿Implicaciones de la lenta disminución de masa?

Respuesta: Su longevidad los hace candidatos viables para materia oscura, con impacto mínimo en el universo tardío.

Pregunta 15: ¿Cómo afecta el "Tiempo Aplicable" la evaporación de Hawking?

Respuesta: Reduce la tasa de evaporación al incluir correcciones cuánticas, resultando en una disminución de masa más lenta.

4.7 Predicciones Observacionales

Pregunta 16: ¿Robustez de las predicciones de CMB y GW?

Respuesta: Son robustas debido al marco unificado y consistentes con la no detección actual.

Pregunta 17: ¿Cuándo podrían ser detectables?

Respuesta: En 10–20 años con CMB-S4 o detectores de GW avanzados.

4.8 Discusión de Limitaciones y Direcciones Futuras

Pregunta 18: ¿Limitaciones del marco?

Respuesta: Es fenomenológico, limitado a ciertos regímenes. Futuros trabajos incluirán métricas de Kerr y modelos de agrupamiento.

Pregunta 19: ¿Conexiones con teorías escalares?

Respuesta: La variación temporal en t_{applied} es análoga a la variación de G en Brans-Dicke, a explorar en futuros trabajos.