

CUSTOMER CHURN PREDICTION FOR Syria Tel TELECOM

Understanding and predicting customer churn is crucial for telecom companies like SyriaTel to maintain profitability and market share.

Project Overview

This project aims to predict customer churn, identify influencing factors, and recommend retention strategies for SyriaTel.

Business Understanding Data Understanding Context, problem, objectives, and success metrics. Dataset overview and initial observations. Data Preparation Exploratory Data Analysis Feature correlation and selection. Target and feature distributions.

Modelling & Evaluation

Logistic Regression and Decision Tree models.

Conclusion & Recommendations

Key findings and actionable insights.

Business Context & Objectives

Problem Statement

SyriaTel experiences customer churn, impacting profitability.

Acquiring new customers is more expensive than retaining existing ones.

The company needs to understand churn patterns and identify atrisk customers for retention.

Project Objectives

- Predict customer Churn (churn = True) or not (churn = False)
- Identify factors influencing churn.
- Advise on key retention strategies.

Success Metrics

- Recall (catch churners).
- Precision (avoid false positives).
- F1 Score (balance between Precision and Recall).
- ROC-AUC (How well model separates the two).

Data Understanding & Preparation

Dataset Overview

- 3,333 customer records from Kaggle.
- 21 features inclusive of demographics, usage, plans, support.
- Target variable: churn (True/False).
- No missing values.

Feature Selection Using Correlation

1. Highly correlated features were dropped to avoid redundancy and multicollinearity.

Dropped Feature	Highly Correlated With
total day charge	total day minutes
total eve charge	total eve minutes
total night charge	total night minutes
total intl charge	total intl minutes

Data Understanding & Preparation

ANOVA for numeric				
customer service calls	. 151 767013			
total day minutes	146.350785			
total eve minutes	28.932577			
number vmail messages	27.035912			
total intl minutes	15.583468			
total intl calls	9.327945			
total night minutes	4.201496			
total day calls	1.135412			
total eve calls	0.283994			
total night calls	0.125631			
dtype: float64				
Chi2 for categoricals				
international plan	203.244178			
voice mail plan	25.156959			
dtype: float64				

Feature Selection USING Statistical Metrics Evaluation - SelectKBest

- Chi-square was used for categorical variables to test the independence between features and the target. We drop those below 10 score
- ANOVA F-test was used for numeric variables to check whether feature means differ significantly across churn categories. We drop those less than 2

Observations

- *International plan* showed the strongest association with churn in categorical features, but Voice mail plan was also significant with 25
- Customer service calls and total day minutes had the highest F-scores, indicating strong influence on churn.
- **Total day calls, total eve calls, total night calls** were dropped by ANOVA F-test
- Chi-square did not drop any as it deemed International plana and Voice male plan as significant

Exploratory Data Analysis (EDA)

Target distribution to check balance

The target variable is imbalanced, with only 14% churners.

This will be addressed by:

- Balancing class weights in the regression model
- Using **SMOTE**(Synthetic Minority Oversampling Technique) to balance the classes to help model understand the minority.

Exploratory Data Analysis (EDA)

Numerical Columns Data Distribution

Observations from Numerical Feature Distributions

- **Customer Service Calls**: Most customers made 1–3 service calls, Frequent customer service calls may signal dissatisfaction.
- **Total Day Minutes**: Follows a normal distribution, around 180–200 minutes.
- Total Evening Minutes: Slight Right-skewed, peaks around 200 minutes.
- **Number Vmail Messages**: Highly right-skewed with most customers having 0 messages, potential low predictive measure.
- Total International Minutes: Normally distributed around 10 minutes.
- Total International Calls: Most customers made 3–5 international calls; skewed right. May indicate Niche usage patterns
- **Total Night Minutes**: Near-normal distribution centered around 200 minutes.

Exploratory Data Analysis (EDA)

Categorical Columns Data Distribution Observations

- Most customers have no international plans
- Churn customers are less

Modelling: Logistic Regression

A logistic regression model was built with preprocessing, SMOTE for class balancing, RFECV for feature selection, and GridSearch for tuning.

Best Parameters: {'classifierC': 0.01, 'classifiermax_iter': 100} F1 Score on Test Set: 0.42633228840125387								
Classification Report:								
	precision	recall	f1-score	support				
Ø	0.93	0.73	0.82	570				
1	0.31	0.70	0.43	97				
accuracy			0.73	667				
macro avg	0.62	0.72	0.62	667				
weighted avg	0.84	0.73	0.76	667				
ROC-AUC Score: 0.797069994574064								

Observations

- Precision (non-churners): 93% (excellent).
- Precision (churners): 31% (low, high false positives).
- Recall (non-churners): 73%.
- Recall (churners): 70% (relatively good).
- F1 Score (churners): 0.43 (struggles to identify).
- Accuracy: 73%.
- ROC-AUC: 0.797 (good separation ability).
- The model performs well in identifying non-churners with high Accuracy (73%) and good ROC-AUC 0.80, indicating strong separation capability between churners and non-churners.
- ➤ However, it struggles with precision for churners (31%), meaning it often wrongly predicts churn. Further tuning or trying other models

I will therefore try another tree-based model "Decision tree" and compare the findings

Modelling: Decision Tree Modeling

Model was built with preprocessing, SMOTE for class balancing and

GridSearch for tuning.

```
Best Parameters: {'classifier max depth': 10, 'classifier min samples leaf': 4, 'classifier min samples split': 10}
F1 Score on Test Set: 0.7236180904522612
Classification Report:
                           recall f1-score support
              precision
                  0.96
                                                570
                            0.95
                                      0.95
                  0.71
                            0.74
                                      0.72
                                                  97
                                      0.92
                                                667
   accuracy
                                                667
                  0.83
                            0.84
                                      0.84
   macro avg
weighted avg
                  0.92
                            0.92
                                      0.92
                                                667
 ROC-AUC Score: 0.8558690540784952
```


Observations and Comparison with Logistic regression

Precision (non-churners):

Decision Tree: 96% | Logistic Regression: 93% → (Slight improvement)

Precision (churners): Decision Tree: 71% | Logistic Regression: 31% → (Significantly fewer false positives)

Recall (non-churners):Decision Tree: 95% | Logistic Regression: 73% → (Much better detection)

Recall (churners): Decision Tree: 74% | Logistic Regression: 70% → (Slight gain)

F1 Score (churners): Decision Tree: 0.72 | Logistic Regression: 0.43 → (Better balance of precision & recall)

Accuracy:Decision Tree: 92% | Logistic Regression: 73% → (Significant improvement)

ROC-AUC:Decision Tree: 0.856 | Logistic Regression: 0.797 → (Stronger class separation)

The Decision Tree ROC curve is closer to the top-left, showing a better trade-off between true positives and false positives than Logistic Regression. While Logistic Regression performs reasonably well, the Decision Tree offers superior churn classification.

The results demonstrate the Decision Tree capability to correctly identify churn customers while maintaining high reliability for loyal customers.

Model Comparison

The Decision Tree model significantly outperformed Logistic Regression across all key metrics.

The Decision Tree provides more reliable identification of churners, crucial for targeted business action.

Conclusion & Recommendations

The Decision Tree model's capability to correctly identify churn customers makes it the superior choice.

Deploy Decision Tree Model

Use as the core engine to score and flag customers likely to churn.

Prioritize High-Risk Customers for campaigns

Focus retention resources on identified high-risk churners.

Integrate Churn Scores into CRM

Embed predictions into dashboards for real-time monitoring and faster decisions.

Monitor Heavy Daytime Users & Intl. Plan Holders

Offer custom bundles or cheaper rates to retain these highusage or globally connected users. Prioritize High Call Volume Customers

Flag customers with many service calls for priority support or follow-up.

By implementing these recommendations, SyriaTel can proactively reduce customer churn and enhance customer loyalty.

Thank You!

We value your input! Please take a moment to provide feedback on the analysis using the following questions:

- 1. Did the analysis of the data resonate with the company's goal?
- 2. Any other insight on the data that you find useful?

"Thank you for your valuable feedback! Your input will help us refine the analysis.

Contacts

Name: Erastus Kaiba Njuguna

Email: Erastusnjuguna24@gmail.com

