AI PHASE 1 PROBLEM DEFINITION AND **DESIGN THINKING MEASURE ENERGY CONSUMPTION MENTOR:** Dr. SUDHAKAR T **TEAM MEMBERS:** DARSHAN B AJAYKUMAR K PRASANNA M SANTHOSH D **DINESH T**

Problem Definition

The problem at hand is to create an automated system that measures energy consumption, analyzes the data, and provides visualizations for informed decision-making. This solution aims to enhance efficiency, accuracy, and ease of understanding in managing energy consumption across various sectors.

Design Thinking

To address the problem of measuring energy consumption and providing valuable insights, we will follow a structured approach as outlined below:

DATA SOURCE

Objective:

Identify an available dataset containing energy consumption measurements.

Approach:

Data Collection: Identify and collect relevant data sources, which may include historical energy consumption data, sensor data, or utility bills.

Data Quality Check: Assess data quality, ensuring completeness, accuracy, and consistency.

Data Integration: Integrate data from multiple sources if necessary, to create a comprehensive dataset.

DATA PREPROCESSING

Objective:

Clean, transform, and prepare the dataset for analysis.

Approach:

Data Cleaning: Address missing values, duplicate entries, and outliers.

Data Transformation: Convert data into a suitable format for analysis, which may include normalization or scaling.

Data Imputation: Impute missing values using appropriate techniques.

Data Aggregation: Aggregate data at an appropriate granularity (e.g., hourly, daily, monthly) as required.

FEATURE EXTRACTION

Objective:

Extract relevant features and metrics from the energy consumption data.

Approach:

Feature Selection: Identify the most relevant features for analysis, such as total consumption, peak usage, and consumption trends.

Feature Engineering: Create new features that may provide valuable insights, e.g., average daily consumption or seasonal patterns.

Dimensionality Reduction: Apply dimensionality reduction techniques if necessary to reduce complexity.

MODEL DEVELOPMENT

Objective:

Utilize statistical analysis to uncover trends, patterns, and anomalies in the data.

Approach:

Exploratory Data Analysis (EDA): Perform EDA to understand the data's characteristics, identify outliers, and visualize preliminary insights.

Statistical Models: Develop statistical models (e.g., regression, time series analysis) to analyze energy consumption trends and make predictions.

Anomaly Detection: Implement anomaly detection techniques to identify unusual consumption patterns that may indicate issues or opportunities for optimization.

Machine Learning: Explore machine learning algorithms for more advanced analysis if needed.

VISUALIZATION

Objective:

Develop visualizations (graphs, charts) to present the energy consumption trends and insights.

Approach:

Data Visualization: Create interactive visualizations using tools like Matplotlib, Seaborn, or Plotly to represent consumption patterns, trends, and anomalies.

Dashboard Creation: Design dashboards that provide real-time or periodic updates on energy consumption and related metrics.

User-Friendly Interface: Ensure the visualizations are user-friendly, intuitive, and accessible to various stakeholders.

AUTOMATION

Objective:

Build a script that automates data collection, analysis, and visualization processes.

Approach:

Script Development: Develop scripts or code pipelines using programming languages like Python to automate data collection, preprocessing, modeling, and visualization.

Schedule Automation: Implement scheduled tasks to ensure periodic data updates and analyses.

Alerts and Notifications: Set up alerts and notifications for critical events, such as abnormal consumption spikes or data source failures.

Scalability: Ensure the system can handle large datasets and scale as needed.

By following this structured approach, we aim to create a robust system that not only measures energy consumption but also empowers stakeholders with actionable insights for better energy management and decision-making.