B. E. Fourth Semester (CT/IT) Examination

Course Code: GE 1206/GE 206 **Course Name: Discrete Mathematics** /GE 510 and Graph Theory Time: 3 Hours / 4 Hours [Max. Marks: 60 Instructions to Candidates :— All questions are compulsory. All questions carry marks as indicated. For MCQ, only first attempt will be considered. 1. Solve **Q.** A or **Q.** B: (A1) The symbolic form of statement "x is an even number iff it is divisible by 2" (b) $q \rightarrow p$ (a) $p \longrightarrow q$ (c) $p \leftrightarrow q$ (d) None of these 1 (A2) Write the converse and contrapositive of the following statements. If a triangle is equilateral, then it is equiangular. (A3) Prove the following by applying principle of mathematical induction $n < 2^n$, $n \ge 0$ (B) (B1) If p and q are the two statements then by De-Morgan's law \sim (p \wedge q) = _____ (a) $\sim p \lor \sim q$ (b) $\sim p \land \sim q$ (c) $\sim p \cong \sim q$ (d) None of these 1 (B2) Examine for the tautology, contradiction and contingency? $((p \longrightarrow q) \land (q \longrightarrow r)) \longrightarrow (p \longrightarrow r)$ 2 (B3) If A, B and C are any non-empty sets then show that $(A \cup B) \times C = (A \times C) \cup (B \times C)$ 4

RRD/2KEN/ET-8164/8169

Contd.

2. Solve	Q. A or Q. B :	
(A)	(A1) A function f from A to B is said to be Bijective iff is	
	(a) One-to-one (b) Onto	
	(c) Both one-to-one and onto (d) None of these	1
	(A2) Prove that $R = \{(x, y)/x^2 - 4xy + 3y^2 = 0, \forall x, y \in N\}$ is reflective but not symmetric.	exive 2
	(A3) Examine by Using properties of characteristics function	
	(i) $f_{(A \cup B)}(x) = f_A(x) + f_B(x) - f_A(x) \cdot f_B(x)$	
	(ii) $f_{(A \cap B)}(x) = f_A(x) \cdot f_B(x)$	5
(B)	(B1) A function f from A to B is said to be Onto function if	
	(a) B = Range of f (b) B = Domain of f (c) B = Co - Domain of f (d) None of these	1
	(B2) If $f(x) = x^2$ and $g(x) = 2^x$ then find $f(0)$ g	2
	(B3) Let $A = \{0, 1, 2, 3\}$. Find the matrix for $R = \{(x, y)/x + y \le S = \{(x, y)/x + y \le 4\}$.	= 3},
	Also find $(M_R \cdot M_S)'$ and show that $(M_R \cdot M_S)' \neq (M_R)' \cdot (M_S)'$	5
3. Solve	Q. A or Q. B :	
(A)	(A1) An Algebraic structure (G, *) is called Monoid if it satisfied	
	(a) Closure and Associative (b) Associative and Identity	7
	(c) Closure, Associative and (d) None of these Identity	1

- (A2) Prove that for any element a in a group G if $a^2 = e$, then G must be an abelian group.
- (A3) Show that set of matrices $A_{\alpha} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$, $\alpha \in R$ form a group under matrix multiplication.

	(a) Homomorphism	(b) Endomorphism	
	(c) Automorphism	(d) None of these	1
(E	32) Prove that for any eleme G must be an abelian g		e, then
(E	33) Examine whether the set abelian group under multip	{0, 1, 2, 3, 4} of order 5 is olication modules as composition	
4. Solve Q. A	A or Q. B :		
(A) (A	A1) R be a commutative ring a if their exist an element	n element $a \neq 0$ in R is called b $\neq 0$ in R such that ab	
	(a) Identity	(b) Zero divisor	
	(c) Inverse	(d) None of these	1
(A	A2) If R is a ring such that	at $a^2 = a$, $\forall a \in \mathbb{R}$, then shows	w that
	$a + a = 0, \forall a \in R$		2
(A	A3) Given $A = \left\{ \frac{0.8}{3}, \frac{0.9}{4}, \frac{0.6}{5} \right\}$	and B = $\left\{ \frac{0.7}{3}, \frac{0.3}{5} \right\}$ be two fu	ızzy sets.
	Verify De-Morgan's law A meaning.	$\overline{UB} = \overline{A}\cap\overline{B}$ symbols have the	neir usual 5
(B) (E	31) Intersection of two Fuzzy C =	set A and B is a Fuzz	y set
	$(a) max\{\mu_{A}(x),\mu_{B}(x)\}$	$(b) min\{\mu_{A}(x),\mu_{B}(x)\}$	
	$(c) \{\mu_{\boldsymbol{A}}(x), \mu_{\boldsymbol{B}}(x)\}$	(d) None of these	1
(E	32) If R is a ring and a, b	$o \in R$, then show that	
	$(a + b)^2 = a^2 + ab + ba + b^2$	$a^2 + 2ab + b^2$	2
(E	33) Show that the set R = w. r. t. addition and mul		field 5
RRD/2KEN/ET	-8164/8169	3	Contd.

(B) (B1) An isomorphism of semi group into itself is called semi

group_____

5. Solve any Three:

(A) Construct the tree for the following algebraic expression. Also draw its Venn diagram

$$[x + (y + z)] - [a \times (b + c)]$$
 5

(B) Prove that the following graphs are isomorphic

(C) Draw the digraph of the following adjacency matrices A and B. Are these graphs isomorphic?

$$A = \begin{bmatrix} 0 & 1 & 0 & \overline{0} \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} , B = \begin{bmatrix} 0 & 1 & 0 & \overline{1} \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

(D) Draw a railway network of minimal cost for the following cities. Also find the minimal cost.

RRD/2KEN/ET-8164/8169

4

Contd.

5

5

5

- Solve any Three:
 - (A) The joint probability function of two random variable X and Y is given by

$$f(x, y) = \begin{cases} C & xy \ , & x = 1, 2, 3, y = 1, 2, 3 \\ 0 & , & otherwise \end{cases}$$

Find:

- (i) The constant C,
- (ii) P(X = 3, Y = 1),
- (iii) $P(1 \le X \le 2, Y \le 3)$, (iv) $P(X \ge 2)$

(v)
$$P(Y < 2)$$

5

5

(B) Let X and Y be two continuous random variables having joint density function

$$f(x, y) = \begin{cases} C (x^2 + y^2), & 0 \le x \le 1, \ 0 \le y \le 1 \\ 0, & \text{otherwise} \end{cases}$$

Find:

(i) Constant C,

- (ii) $P(X < \frac{1}{2}, Y > \frac{1}{2}),$
- (iii) $P(\frac{1}{4} < X \frac{3}{4})$,
- (iv) $P(Y < \frac{1}{2})$
- (C) Let X and Y be two random variables with joint probability function

$$f(x, y) = \begin{cases} \frac{x + 2y}{27}, & x = 0, 1, 2, y = 0, 1, 2 \\ 0, & \text{otherwise} \end{cases}$$

Find

- (i) P(X = 0, Y = 2),
- (ii) $P(X \ge 1)$
- (iii) Marginal probability functions of X and Y. Also determine whether X and Y are independent. 5
- (D) Find the conditional density function of (i) X given Y and (ii) Y given X for the distribution

$$f(x, y) = \begin{cases} \frac{3(x^2 + y^2)}{2}, & 0 \le x \le 1, \ 0 \le y \le 1 \\ 0, & \text{otherwise} \end{cases}$$