Lecturer: Set up MATLAB

```
In [17]:
```

```
clear all
format compact
```

Worksheet 3

To accompany Chapter 2 Elementary Signals

We will step through this worksheet in class.

You are expected to have at least watched the video presentation of <u>Chapter 2</u> (https://cpjobling.github.io/eg-247-textbook/elementary_signals/index) of the notes (https://cpjobling.github.io/eg-247-textbook) before coming to the first class. If you haven't watch it afterwards!

Elementary Signals

Consider this circuit, and assume that the switch is closed at t=0 and that all components are ideal:

Q1: What happens **before** t = 0?

- 1. $v_{\text{out}} = \text{undefined}$
- 2. $v_{\text{out}} = 0$
- 3. $v_{\rm out} = V_s$
- 4. $v_{\text{out}} = 1/2$
- 5. $v_{\text{out}} = \infty$

-> Open Poll

Q2: What happens after t = 0?

- 1. $v_{\text{out}} = \text{undefined}$
- 2. $v_{\text{out}} = 0$
- 3. $v_{\rm out} = V_s$
- 4. $v_{\text{out}} = 1/2$
- 5. $v_{\text{out}} = \infty$

-> Open Poll

Q3: What happens at t = 0?

- 1. $v_{\text{out}} = \text{undefined}$
- 2. $v_{\text{out}} = 0$
- 3. $v_{\text{out}} = V_s$
- 4. $v_{\text{out}} = 1/2$
- 5. $v_{\text{out}} = \infty$

-> Open Poll

Q4: What does the response of $V_{ m out}$ look like?

Circle the picture you think is correct on your handout.

-> Open Poll

The Unit Step Function

$$u_0(t) = \begin{cases} 0 & t < 0 \\ 1 & t > 0 \end{cases}$$

In Matlab

In Matlab, we use the heaviside function (Named after Oliver Heaviside (http://en.wikipedia.org/wiki/Oliver Heaviside)).

In [16]:

```
syms t
ezplot(heaviside(t),[-1,1])
heaviside(0)
```


See: heaviside function.m (matlab/heaviside function.m)

Note that, so it can be plotted, Matlab defines the *heaviside function* slightly differently from the mathematically ideal unit step:

heaviside(t) =
$$\begin{cases} 0 & t < 0 \\ 1/2 & t = 0 \\ 1 & t > 0 \end{cases}$$

Circuit Revisited

Consider the network shown below, where the switch is closed at time t = T.

Express the output voltage $\upsilon_{\rm out}$ as a function of the unit step function, and sketch the appropriate waveform.

Simple Signal Operations

Amplitude Scaling

Sketch $Au_0(t)$ and $-Au_0(t)$

	e Reversal
Sket	$u_0(-t)$
Sket	$h u_0(-t)$
Sket	$\ln u_0(-t)$
Sket	$\ln u_0(-t)$
Sket	n $u_0(-t)$
Sket	n $u_0(-t)$
Sket	$\ln u_0(-t)$

Time Delay and Advance

Sketch $u_0(t-T)$ and $u_0(t+T)$

Examples

Example 1

Which of these signals represents $-Au_0(t+T)$?

-> Open Poll

Example 2

What is represented by

1.
$$-Au_0(t+T)$$

2.
$$-Au_0(-t+T)$$

3.
$$-Au_0(-t-T)$$

4.
$$-Au_0(t-T)$$

-> Open Poll

Synthesis of Signals from Unit Step

Unit step functions can be used to represent other time-varying functions such as rectangular pulses, square waves and triangular pulses.

Synthesize Rectangular Pulse

Synthesize Square Wave

Synthesize Symmetric Rectangular Pulse

Synthesize Symmetric Triangular Pulse

The Ramp Function

In the circuit shown above i_s is a constant current source and the switch is closed at time t=0.

Show that the voltage across the capacitor can be represented as

$$v_C(t) = \frac{i_s}{C} t u_0(t)$$

and sketch the wave form.

The unit ramp function is defined as

$$u_1(t) = \int_{-\infty}^t u_0(\tau) d\tau$$

so

$$u_1(t) = \begin{cases} 0 & t < 0 \\ t & t \ge 0 \end{cases}$$

and

$$u_0(t) = \frac{d}{dt}u_1(t)$$

Note

Higher order functions of t can be generated by the repeated integration of the unit step function.

For future reference, you should determine $u_2(t)$, $u_3(t)$ and $u_n(t)$ for yourself and make a note of the general rule:

$$u_{n-1} = \frac{1}{n} \frac{d}{dt} u_n(t)$$

Details are given in equations 1.26—1.29 in the textbook.

The Dirac Delta Function

In the circuit shown above, the switch is closed at time t=0 and $i_L(t)=0$ for t<0. Express the inductor current $i_L(t)$ in terms of the unit step function and hence derive an expression for $v_L(t)$.

Notes

To solve this problem we need to invent a function that represents the derivative of the unit step function. This function is called $\delta(t)$ or the *dirac delta* function (named after Paul Dirac (http://en.wikipedia.org/wiki/Paul Dirac)).

The delta function

The unit impulse or the delta function, denoted as $\delta(t)$, is the derivative of the unit step.

This function is tricky because $u_0(t)$ is discontinuous at t=0 but it must have the properties

$$\int_{-\infty}^{t} \delta(\tau)d\tau = u_0(t)$$

and

$$\delta(t) = 0$$
 for all $t \neq 0$.

Sketch of the delta function

Important properties of the delta function

See the accompanying notes (index).

Examples

Example 3

Evaluate the following expressions

$$3t^4\delta(t-1)$$

$$\int_{-\infty}^{\infty} t \delta(t-2) dt$$

$$t^2\delta'(t-3)$$

Example 4

	xpress the voltage waveform $v(t)$ shown above as a sum of unit step functione time interval $-1 < t < 7 \; \mathrm{s}$
sin	g the result of part (1), compute the derivative of $v(t)$ and sketch its wavefor

Lab Work

In the first lab, next Tuesday, we will solve further elemetary signals problems using MATLAB and Simulink following the procedure given between pages 1-17 and 1-22 of the Karris. We will also explore the heaviside and dirac functions.

Answers to in-class questions

Mathematically

Q1.
$$v_{\text{out}} = 0$$
 when $-\infty < t < 0$ (answer 2)

Q2.
$$v_{\mathrm{out}} = V_{\mathrm{s}}$$
 when $0 < t < \infty$ (answer 3)

Q3.
$$v_{\text{out}} = \text{undefined when } t = 0 \text{ (answer 1)}$$

 V_{out} jumps from 0 to V_s instantanously when the switch is closed. We call this a discontinuous signal!

Q4: The correct image is:

Example 1: Answer 3.

Example 2: Answer 2.