DS 4400

Machine Learning and Data Mining I Spring 2024

David Liu
Khoury College of Computer Science
Northeastern University

Announcements

- Final exam grading in progress
- Released HW 4 grades
- Final Project due on Monday, May 2
 - Project video recording (5 minute presentation)
 - Project report (6-8 pages)
 - Grading
 - Presentation: 20 points
 - Exploratory data analysis: 18 points
 - ML models: 30 points
 - Metrics: 14 points
 - Interpretation of results: 15 points
 - References: 3 points

Outline

- Training Neural Networks
 - Backpropagation
 - Parameter Initialization
 - Derivation for feed-forward neural network for binary classification (sigmoid activation)
- Stochastic Gradient Descent
 - Gradient descent variants
- Regularization methods for neural networks
 - Weight decay
 - Dropout

How to train Neural Networks?

- Backpropagation algorithm
- David Rumelhart, Geoffrey Hinton, Ronald Williams. "Learning representations by backpropagating errors". Nature. 323 (6088): 533– 536. 1986
- Applicable to both FFNN and CNN
- Extension of Gradient Descent to multi-layer neural networks

Reminder: Logistic Regression

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

Cost of a single instance:

loss
$$(h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

Can re-write objective function as

$$J(oldsymbol{ heta}) = \sum_{i=1}^n \; \mathsf{loss} \; \left(\; h_{oldsymbol{ heta}}(x_i), y_i \; \;
ight)$$

Gradient Descent

• Initialize θ

$$\boldsymbol{\theta} = (W, b)$$

Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$

- Converges for convex objective
- Could get stuck in local minimum for non-convex objectives

Training Neural Networks

- Training data $x_1, y_1, ... x_N, y_N$
- One training example $x_i = (x_{i1}, ... x_{id})$, label y_i
- One forward pass through the network
 - Compute prediction $\hat{y}_i = h_{\theta}(x_i)$
- Loss function

Training Neural Networks

- Training data $x_1, y_1, \dots x_N, y_N$
- Training example $x_i = (x_{i1}, ... x_{id})$, label y_i
- One forward pass through the network
 - Compute prediction $\hat{y}_i = h(x_i)$
- Loss function for each example

$$-L(\hat{y}, y) = -[(1 - y)\log(1 - \hat{y}) + y\log\hat{y}]$$

Cross-entropy loss

Loss function for training data

$$-J(W,b) = \frac{1}{N} \sum_{i} L(\widehat{y}_{i}, y_{i})$$

GD for Neural Networks

- Initialization
 - For all layers ℓ
 - Initialize $W^{[\ell]}$, $b^{[\ell]}$
- Backpropagation
 - Fix learning rate α
 - Repeat
 - For all layers ℓ

GD for Neural Networks

Initialization

- For all layers ℓ
 - Initialize $W^{[\ell]}$, $b^{[\ell]}$

Backpropagation

- Fix learning rate α
- For all layers ℓ (starting backwards)

•
$$W^{[\ell]} = W^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}_i, y_i)}{\partial W^{[\ell]}}$$

•
$$b^{[\ell]} = b^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}_i, y_i)}{\partial b^{[\ell]}}$$

GD for Neural Networks

- Initialization
 - For all layers ℓ
 - Set $W^{[\ell]}$, $b^{[\ell]}$ at random
- Backpropagation
 - Fix learning rate α
 - Repeat
 - For all layers ℓ (starting backwards)

$$\bullet \ W^{[\ell]} = W^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}_i, y_i)}{\partial W^{[\ell]}}$$

$$\bullet \ b^{[\ell]} = b^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}_i, y_i)}{\partial b^{[\ell]}}$$

•
$$b^{[\ell]} = b^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}_i, y_i)}{\partial b^{[\ell]}}$$

This is expensive!

Stochastic Gradient Descent

- Initialization
 - For all layers ℓ
 - Set $W^{[\ell]}$, $b^{[\ell]}$ at random
- Backpropagation
 - Fix learning rate α
 - Repeat
 - For all layers ℓ (starting backwards)
 - For all training examples x_i , y_i

$$W^{[\ell]} = W^{[\ell]} - \alpha \frac{\partial L(\hat{y}_i, y_i)}{\partial W^{[\ell]}}$$
$$b^{[\ell]} = b^{[\ell]} - \alpha \frac{\partial L(\hat{y}_i, y_i)}{\partial b^{[\ell]}}$$

Incremental version of GD

Online Perceptron

```
Let \theta \leftarrow [0,0,...,0]
Repeat:
Receive training example (x_i,y_i)
If y_i\theta^Tx_i \leq 0 // prediction is incorrect \theta \leftarrow \theta + y_i x_i
Until stopping condition
```

Online learning – the learning mode where the model update is performed each time a single observation is received

Batch learning – the learning mode where the model update is performed after observing the entire training set

Mini-batch Gradient Descent

- Initialization
 - For all layers ℓ
 - Set $W^{[\ell]}$, $b^{[\ell]}$ at random
- Backpropagation
 - Fix learning rate α
 - Repeat
 - For all layers ℓ (starting backwards)
 - For all batches b of size B with training examples x_{ib} , y_{ib}

$$W^{[\ell]} = W^{[\ell]} - \alpha \sum_{i=1}^{B} \frac{\partial L(\hat{y}_{ib}, y_{ib})}{\partial W^{[\ell]}}$$
$$b^{[\ell]} = b^{[\ell]} - \alpha \sum_{i=1}^{B} \frac{\partial L(\hat{y}_{ib}, y_{ib})}{\partial b^{[\ell]}}$$

Gradient Descent Variants

Backpropagation Intuition

$$\delta_j^{(l)} =$$
 "error" of node j in layer l Formally, $\delta_j^{(l)} = \frac{\partial}{\partial z_j^{(l)}} \log (\mathbf{x}_i)$ where $\log (\mathbf{x}_i) = y_i \log h_{\Theta}(\mathbf{x}_i) + (1-y_i) \log (1-h_{\Theta}(\mathbf{x}_i))$

Backpropagation Intuition

17

Backpropagation Intuition

$$\delta_2^{[1]} \approx W_{21}^{[2]} \delta_1^{[2]} + W_{22}^{[2]} \delta_2^{[2]}$$

$$\delta_j^{(l)} =$$
 "error" of node j in layer l
Formally. $\delta_i^{(l)} = \frac{\partial}{\partial t} \operatorname{cost}(\mathbf{x}_i)$

Formally,
$$\delta_j^{(l)} = \frac{\partial}{\partial z_j^{(l)}} \operatorname{cost}(\mathbf{x}_i)$$

where
$$cost(\mathbf{x}_i) = y_i \log h_{\Theta}(\mathbf{x}_i) + (1 - y_i) \log(1 - h_{\Theta}(\mathbf{x}_i))$$

Backpropagation

Let $\delta_j^{(l)} =$ "error" of node j in layer l $L(y, \hat{y}) = -[(1-y)\log(1-\hat{y}) + y\log\hat{y}]$

Definitions

- $-z^{[\ell]} = W^{[\ell]} a^{[\ell-1]} + b^{[\ell]}, a^{[\ell]} = g(z^{[\ell]})$
- $-\delta^{[\ell]}=\frac{\partial L(\hat{y},y)}{\partial z^{[\ell]}}$; Output $\hat{y}=a^{[L]}=g(z^{[L]})$

Backpropagation

Let $\delta_j^{(l)} =$ "error" of node j in layer l $L(y, \hat{y}) = -[(1-y)\log(1-\hat{y}) + y\log\hat{y}]$

Definitions

- $-z^{[\ell]} = W^{[\ell]} a^{[\ell-1]} + b^{[\ell]}, a^{[\ell]} = g(z^{[\ell]})$
- $-\delta^{[\ell]} = \frac{\partial L(\hat{y},y)}{\partial z^{[\ell]}};$ Output $\hat{y} = a^{[L]} = g(z^{[L]})$

Backpropagation

Let $\delta_j^{\,(l)}=$ "error" of node j in layer l

$$L(y, \hat{y}) = -[(1-y)\log(1-\hat{y}) + y\log\hat{y}]$$

Definitions

$$-z^{[\ell]} = W^{[\ell]} a^{[\ell-1]} + b^{[\ell]}, a^{[\ell]} = g(z^{[\ell]})$$

$$-\delta^{[\ell]}=\frac{\partial L(\hat{y},y)}{\partial z^{[\ell]}}$$
; Output $\hat{y}=a^{[L]}=g(z^{[L]})$

1. For last layer L:
$$\delta^{[L]} = \frac{\partial L(\hat{y}, y)}{\partial z^{[L]}} = \frac{\partial L(\hat{y}, y)}{\widehat{\partial} \, \hat{y}} \frac{\partial \hat{y}}{\widehat{\partial} \, z^{[L]}} = \frac{\partial L(\hat{y}, y)}{\widehat{\partial} \, \hat{y}} g'(z^{[L]})$$

2. For layer
$$\ell$$
: $\delta^{[\ell]} = \frac{\partial L(\hat{y}, y)}{\partial z^{[\ell]}} = \frac{\partial L(\hat{y}, y)}{\partial z^{[\ell+1]}} \frac{\partial z^{[\ell+1]}}{\partial a^{[\ell]}} \frac{\partial a^{[\ell]}}{\partial z^{[\ell]}} = \delta^{[\ell+1]} W^{[\ell+1]} g'(z^{[\ell]})$

3. Compute parameter gradients

$$-\frac{\partial L(\hat{y},y)}{\partial W^{[\ell]}} = \frac{\partial L(\hat{y},y)}{\partial z^{[\ell]}} \frac{\partial z^{[\ell]}}{\partial W^{[\ell]}} = \delta^{[\ell]} a^{[\ell-1]T}$$

$$-\frac{\partial L(\hat{y},y)}{\partial h^{[\ell]}} = \frac{\partial L(\hat{y},y)}{\partial z^{[\ell]}} \frac{\partial z^{[\ell]}}{\partial h^{[\ell]}} = \delta^{[\ell]}$$

Example 2 Hidden Layers

Training data Dimension d

$$\begin{split} z^{[1]} &= W^{[1]} \ \chi_i + b^{[1]} \\ a^{[1]} &= g(z^{[1]}) \\ z^{[2]} &= W^{[2]} a^{[1]} + b^{[2]} \\ a^{[2]} &= g(z^{[2]}) \\ z^{[3]} &= W^{[3]} a^{[2]} + b^{[3]} \\ \hat{y}^{(i)} &= a^{[3]} = g(z^{[3]}) \end{split}$$

Binary Classification Example

Binary Classification Example

•
$$\delta^{[3]} = \frac{\partial L(\hat{y}, y)}{\partial z^{[3]}} = \frac{\partial L(\hat{y}, y)}{\partial \hat{y}} g'(z^{[3]}); \hat{y} = g(z^{[3]}) = a^{[3]}$$

•
$$\frac{\partial L(\hat{y},y)}{\partial \hat{y}} = -\frac{\partial [(1-y)\log(1-\hat{y}) + y\log\hat{y}]}{\partial \hat{y}} = \frac{1-y}{1-\hat{y}} - \frac{y}{\hat{y}} = \frac{\hat{y}-y}{\hat{y}(1-\hat{y})}$$

•
$$\delta^{[3]} = \frac{\hat{y} - y}{\hat{y}(1 - \hat{y})} g'(z^{[3]})$$

= $\frac{a^{[3]} - y}{g(z^{[3]})(1 - g(z^{[3]}))} g(z^{[3]}) (1 - g(z^{[3]})) = a^{[3]} - y$

•
$$\frac{\partial L(\hat{y},y)}{\partial w^{[3]}} = \delta^{[3]} a^{[2]T} = (a^{[3]} - y) a^{[2]T}$$

$$\bullet \quad \frac{\partial L(\hat{y}, y)}{\partial h^{[3]}} = a^{[3]} - y$$

$$g(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$$
$$g'(x) = \sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Binary Classification Example

•
$$\delta^{[2]} = \frac{\partial L(\hat{y}, y)}{\partial z^{[2]}} = \delta^{[3]} W^{[3]} g'(z^{[2]})$$

•
$$\frac{\partial L(\hat{y}, y)}{\partial W^{[2]}} = \delta^{[2]} a^{[1]T} = \delta^{[3]} W^{[3]} g'(z^{[2]}) a^{[1]T} =$$

= $[a^{[3]} - y] W^{[3]} g(z^{[2]}) (1 - g(z^{[2]})) a^{[1]T}$

•
$$\frac{\partial L(\hat{y},y)}{\partial h^{[2]}} = [a^{[3]} - y]W^{[3]}g(z^{[2]}) (1 - g(z^{[2]}))$$

$$g(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$$
$$g'(x) = \sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Parameter Initialization

How about we set all W and b to 0?

Parameter Initialization

- How about we set all W and b to 0?
- First layer

$$-z^{[1]} = W^{[1]}x + b^{[1]} = (0,...0)$$

$$-a^{[1]} = g(z^{[1]}) = (\frac{1}{2}, ..., \frac{1}{2})$$

Second layer

$$-z^{[2]} = W^{[2]}x + b^{[2]} = (0,...0)$$

$$-a^{[2]} = g(z^{[2]}) = (\frac{1}{2}, ..., \frac{1}{2})$$

Third layer

$$-z^{[3]} = W^{[3]}x + b^{[3]} = (0,...0)$$

$$-a^{[3]} = g(z^{[3]}) = (\frac{1}{2}, \dots, \frac{1}{2})$$
 does not depend on x

• Initialize with random values instead!

Training NN with Backpropagation

Given training set $(x_1,y_1),\dots,(x_N,y_N)$ Initialize all parameters $W^{[\ell]},b^{[\ell]}$ randomly, for all layers ℓ Loop

```
Set \Delta_{ij}^{[l]}=0, for all layers l and indices i,j For each training instance (x_k,y_k):
   Compute a^{[1]},a^{[2]},\dots,a^{[L]} via forward propagation Compute errors \delta^{[L]}=a^{[L]}-y_k,\delta^{[L-1]},\dots\delta^{[1]} Compute gradients \Delta_{ij}^{[l]}=\Delta_{ij}^{[l]}+a_j^{[l-1]}\delta_i^{[l]}
```

Update weights via gradient step

- $W_{ij}^{[\ell]} = W_{ij}^{[\ell]} \alpha \Delta_{ij}^{[\ell]}$
- Similar for $b_{ij}^{[\ell]}$

Until weights converge or maximum number of epochs is reached

Training Neural Networks

- Randomly initialize weights
- Implement forward propagation to get prediction \widehat{y}_i for any training instance x_i
- Compute loss function $L(\hat{y}_i, y_i)$
- Implement backpropagation to compute partial derivatives $\frac{\partial L(\hat{y}_i, y_i)}{\partial w^{[\ell]}}$ and $\frac{\partial L(\hat{y}_i, y_i)}{\partial b^{[\ell]}}$
- Use gradient descent with backpropagation to compute parameter values that optimize loss
- Can be applied to both feed-forward and convolutional nets

Materials

- Stanford tutorial on training Multi-Layer Neural Networks
 - http://ufldl.stanford.edu/tutorial/supervised/Mult iLayerNeuralNetworks/
- Notes on backpropagation by Andrew Ng
 - http://cs229.stanford.edu/notesspring2019/backprop.pdf
- Deep learning notes by Andrew Ng
 - http://cs229.stanford.edu/notes2020spring/cs229-notes-deep learning.pdf

Overfitting

- The larger the network, the higher the capacity (more model parameters)
- But also more prone to overfitting!

Regularization

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)}_{i=1} + \lambda R(W)$$

 λ = regularization strength (hyperparameter)

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

L2 regularization:
$$R(W) = \sum_k \sum_l W_{k,l}^2$$

L1 regularization: $R(W) = \sum_k \sum_l |W_{k,l}|$
Elastic net (L1 + L2): $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$

Weight decay

 When computing gradients of loss function, regularization term needs to be taken into account

Dropout

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.

- Regularization technique that has proven very effective for deep learning
- Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research 15, 2014

Dropout

Figure 2: Left: A unit at training time that is present with probability p and is connected to units in the next layer with weights w. Right: At test time, the unit is always present and the weights are multiplied by p. The output at test time is same as the expected output at training time.

- At training time, sample a sub-network per epoch (batch) and learn weights
 - Keep each neuron with probability p
- At testing time, all neurons are there, but multiply weight by a factor of p

Results on MNIST

Figure 4: Test error for different architectures with and without dropout. The networks have 2 to 4 hidden layers each with 1024 to 2048 units.

Review

- Backpropagation is the standard method to train neural networks
 - Applicable to many architectures (FFNNs, CNNs, RNNs)
 - Mini batch gradient descent
 - Parameter updates are done from last layer backwards
 - Deep learning packages perform automatic differentiation (no need to compute gradients by hand)
- Neural networks tend to overfit due to overparameterization
 - Use regularization (weight decay, dropout)