

Rasterization

Teacher: Dr. Zhuo SU (苏卓)

E-mail: suzhuo3@mail.sysu.edu.cn

School of Data and Computer Science

To make an image, we can...

Drawing

Photography

Two Ways to Render an Image

In CG, drawing is...

Rasterization

Photography is...

Ray Tracing

Screen

Sensors

真实物理世界没有颜色的概念,只有频率。颜色只是人的主观感受,不是物体的客观属性,物体只是在发射或反射电磁波。

Rasterization

- The task of displaying a world modeled using primitives like lines, polygons, filled/patterned area, etc. can be carried out in two steps:
 - determine the pixels through which the primitive is visible,
 - determine the color value to be assigned to each such pixel

Raster Graphics Packages

- The efficiency of these steps forms the main criteria to determine the performance of a display
- The raster graphics package is typically a collection of efficient algorithms for scan converting (rasterization) of the display primitives
- High performance graphics workstations have most of these algorithms implemented in hardware
- Comparison of raster graphics editors :
- https://en.wikipedia.org/wiki/Comparison of raster graphics editors

Rasterization

To convert vector data to raster format

Scan Conversion: Figure out which pixel should to shade.

- Requirements
 - chosen pixels should lie as close to the ideal line as possible
 - the sequence of pixels should be as straight as possible
 - all lines should appear to be of constant brightness independent of their length and orientation
 - should start and end accurately
 - should be drawn as rapidly as possible
 - should be possible to draw lines with different width and line styles

Question I: How?

$$(x_1, y_1), (x_2, y_2)$$

$$(x_1, y_1), (x_2, y_2)$$

$$y=mx+b$$

 $x_1+1 \Rightarrow y=?$, rounding

 $x_1+2 \Rightarrow y=?$, rounding $x_1+i \Rightarrow y=?$, rounding

Equation of Line

- Equation of a line is $y m \cdot x + c = 0$
- For a line segment joining points
- $P(x_1, y_1)$ and $Q(x_2, y_2)$ $slope m = \frac{y^2 y^1}{x^2 x^1} = \frac{\Delta y}{\Delta x}$
- Slope m means that for every unit increment in x the increment in y is m units

- We consider the line in the first octant.
 Other cases can be easily derived.
- Uses differential equation of the line

$$y_i = mx_i + c$$
where, $m = \frac{y^2 - y^1}{x^2 - x^1}$

Incrementing X-coordinate by I

$$x_i = x_{i prev} + 1$$

$$y_i = y_{i prev} + m$$

- Illuminate the pixel $[x_i, round(y_i)]$

If
$$\triangle x < \triangle y$$

$$y += 1, x += 1/m$$

$$y += 1, x += 1/m$$

$$y += 1, x += 1/m$$

DDA Algorithm

```
#include "device.h"
#include ROUND(a) ((int) (a+0.5))
Void LineDDA( int xa, int ya, int xb, int yb)
 int dx =xb-xa, dy=yb-ya, steps, k;
 float xIncrement, yIncrement, x=xa, y=ya;
 if (abs(dx)>abs(dy)) steps=abs(dx);
  else steps=abs(dy);
 xIncrement=dx/(float) steps;
 yIncrement=dx/(float) steps;
 setPixel (ROUND(x), ROUND(y));
 for (k=0;k<steps; k++)
 { x+=xIncrement; y+=Yincrement; SetPixel (ROUND(x), ROUND(y)); }
```

Advantage:

 The primary advantages of a DDA over the conventional analog differential analyzer are greater precision of the results and the lack of drift/noise/slip/lash in the calculations.

Problems:

However reprogramming a DDA to solve a different problem (floating-point number) is much harder than reprogramming a general purpose computer. Many DDAs were hardwired for one problem only and could not be reprogrammed without redesigning them.

Bresenham's algorithm (布兰森汉姆算法)

- Introduced in 1967 by J. Bresenham of IBM
- Best-fit approximation under some conditions
- In DDA, only y_i is used to compute y_i+1 , the information for selecting the pixel is neglected
- Bresenham algorithm employs the information to constrain the position of the next pixel

Notations

- The line segment is from (x_0, y_0) to (x_1, y_1)
- Denote $\Delta x = x_1 x_0 > 0, \Delta y = y_1 y_0 > 0$ $m = \Delta y / \Delta x$
- Assume that slope $|m| \le 1$
- Like DDA algorithm, Bresenham Algorithm also starts from $x=x_0$ and increases x coordinate by 1 each time
- Suppose the i-th point is (x_i, y_i)
- Then the next point can only be one of the following two

$$(\overline{x}_i+1,\overline{y}_i)$$
 $(\overline{x}_i+1,\overline{y}_i+1)$

Criteria(判别标准)

 We will choose one which distance to the following intersection is shorter

$$x_{i+1} = x_i + 1$$

 $y_{i+1} = mx_{i+1} + B$
 $= m(x_i + 1) + B$.

Computation of Criteria

The distances are respectively

$$\begin{split} d_{upper} &= \overline{y}_i + 1 - y_{i+1} \\ &= \overline{y}_i + 1 - mx_{i+1} - B \\ d_{lower} &= y_{i+1} - \overline{y}_i \\ &= mx_{i+1} + B - \overline{y}_i \end{split}$$

显然:如果 $d_{lower} - d_{upper} > 0$ 则应取右上方的点;如果 $d_{lower} - d_{upper} < 0$ 则应取右边的点; $d_{lower} - d_{upper} = 0$ 可任取,如取右边点。

Computation of Criteria

$$d_{lower} - d_{upper} = m(x_i + 1) + B - \overline{y}_i - (\overline{y}_i + 1 - m(x_i + 1) - B)$$

$$= 2m(x_i + 1) - 2\overline{y}_i + 2B - 1$$
division operation

It has the same sign with

$$\begin{aligned} p_{\mathrm{i}} &= \Delta x \bullet \overleftarrow{\left(d_{lower} - d_{upper}\right)} = 2\Delta y \bullet (x_{i} + 1) - 2\Delta x \bullet \overline{y}_{i} + (2B - 1)\Delta x \\ &= 2\Delta y \bullet x_{i} - 2\Delta x \bullet \overline{y}_{i} + (2B - 1)\Delta x + 2\Delta y \\ &= 2\Delta y \bullet x_{i} - 2\Delta x \bullet \overline{y}_{i} + c \end{aligned}$$

where

$$\Delta x = x_1 - x_0, \Delta y = y_1 - y_0, \quad m = \Delta y / \Delta x$$
$$c = (2B - 1)\Delta x + 2\Delta y$$

Restatement of the Criteria

• If $p_i > 0$, then $(\bar{x}_i + 1, \bar{y}_i + 1)$ is selected If $p_i < 0$, then $(\bar{x}_i + 1, \bar{y}_i)$ is selected If $p_i = 0$, arbitrary one

Can we simplify the computation of P_i ?

$$p_{0} = 2\Delta y \bullet x_{0} - 2\Delta x \bullet \overline{y}_{0} + (2B - 1)\Delta x + 2\Delta y$$

$$= 2\Delta y \bullet x_{0} - 2(\Delta y \bullet x_{0} + B \bullet \Delta x) + (2B - 1)\Delta x + 2\Delta y$$

$$= 2\Delta y - \Delta x$$

$$y_{i+1} = mx_{i+1} + B$$

Recursive for computation of pi

As

$$\mathbf{p}_{i+1} - \mathbf{p}_{i} = (2\Delta y \bullet x_{i+1} - 2\Delta x \bullet \overline{y}_{i+1} + c) - (2\Delta y \bullet x_{i} - 2\Delta x \bullet \overline{y}_{i} + c)$$
$$= 2\Delta y - 2\Delta x (\overline{y}_{i+1} - \overline{y}_{i})$$

• If $p_i \le 0$ then $\overline{y}_{i+1} - \overline{y}_i = 0$ therefore

$$p_{i+1} = p_i + 2\Delta y$$

• If $p_i > 0$ then $\overline{y}_{i+1} - \overline{y}_i = 1$ therefore

$$p_{i+1} = p_i + 2\Delta y - 2\Delta x$$

Summary of Bresenham Algorithm

- draw (x_0, y_0)
- Calculate Δx , Δy , $2\Delta y$, $2\Delta y$ $2\Delta x$, $p_0 = 2\Delta y \Delta x$
- If $p_i \le 0$ draw $(x_{i+1}, \overline{y}_{i+1}) = (x_i + 1, \overline{y}_i)$
 - and compute $p_{i+1} = p_i + 2\Delta y$
- If $p_i > 0$ draw $(x_{i+1}, \overline{y}_{i+1}) = (x_i + 1, \overline{y}_i + 1)$
 - and compute $p_{i+1} = p_i + 2\Delta y 2\Delta x$
- Repeat the last two steps

Example

- Draw line segment (3,4)-(8,7)
- Calculate Δx , Δy , $2\Delta y$, $2\Delta y$ $2\Delta x$, $p_0 = 2\Delta y \Delta x$
- If $p_i \le 0$ draw $(x_{i+1}, \overline{y}_{i+1}) = (x_i + 1, \overline{y}_i)$ and compute $p_{i+1} = p_i + 2\Delta y$
- If $p_i > 0$ draw $(x_{i+1}, \overline{y}_{i+1}) = (x_i + 1, \overline{y}_i + 1)$ and compute $p_{i+1} = p_i + 2\Delta y - 2\Delta x$

Example (Continued)

- Draw line segment (3,4)-(8,7)
- Calculate Δx , Δy , $2\Delta y$, $2\Delta y$ $2\Delta x$, $p_0 = 2\Delta y \Delta x$
- If $p_i \le 0$ draw $(x_{i+1}, \overline{y}_{i+1}) = (x_i + 1, \overline{y}_i)$ and compute $p_{i+1} = p_i + 2\Delta y$
- If $p_i > 0$ draw $(x_{i+1}, \overline{y}_{i+1}) = (x_i + 1, \overline{y}_i + 1)$ and compute $p_{i+1} = p_i + 2\Delta y - 2\Delta x$

k	p_k	(x_{k+1}, y_{k+1})
0	1	(4,5)
1	-3	(5,5)
2	3	(6,6)
3	-1	(7,6)
4	5	(8,7)

Implementation of Bresenham algorithm

Basic

```
void Bresenhamline (int x0, int y0, int x1,
                      int y1, int color)
  int x, y, dx, dy;
  float k, e;
  dx = x1-x0; dy = y1-y0; m=dy/dx;
  e = -0.5; x = x0; y = y0;
  for (i = 0; i < dx; i++)
  { drawpixel (x, y, color);
      x = x + 1; e = e + m;
      if (e >= 0)
     { y++;
        e = e - 1;
```

Improved

```
void InterBresenhamline (int x0,int y0,int x1,
                            int y1,int color)
{ dx = x1-x0,; dy = y1-y0,; e=-dx;
   x = x0; y = y0;
   for (i = 0; i < dx; i++)
   { drawpixel (x, y, color);
       X++;
       e = e + 2 * dy;
       if (e >= 0)
       { y++;
          e = e - 2 * dx;
```

More Raster Line Issues

- The coordinates of endpoints are not integer
- Generalize to draw other primitives: circles, ellipsoids
- Line pattern and thickness?

3D Bresenham algorithm

Computer Graphics @ ZJU

Hongxin Zhang, 2014

What Makes a Good Line?

- Not too jaggy
- Uniform thickness along a line
- Uniform thickness of lines at different angles
- Symmetry, Line(P,Q) = Line(Q,P)

A good line algorithm should be fast.

Line Attributes

- line width
- dash patterns
- end caps: butt, round, square

Line Attributes

• Joins: round, bevel, miter

Scan conversion of circles

A circle with center (x_c, y_c) and radius r:

$$(x-x_c)^2 + (y-y_c)^2 = r^2$$

orthogonal coordinate

$$y = y_{c} \pm \sqrt{r^{2} - (x - x_{c})^{2}}$$

Polygon Rasterization

Takes shapes like triangles and determines which pixels to set

- Polygon scan-conversion
 - sweep the polygon by scan line, set the pixels whose center is inside the polygon for each scan line
- Polygon fill
 - select a pixel inside the polygon
 - grow outward until the whole polygon is filled

Scan conversion of polygon

Polygon representation

By vertex

By lattice

Polygon filling

 fill a polygonal area --> test every pixel in the raster to see if it lies inside the polygon.

Inside Check

even-odd test

Computer Graphics 2014, ZJU

What's Inside?

Tests for what's inside:

- odd-parity rule: odd-crossing means inside
- non-exterior rule: a point is inside if every ray to infinity intersects the polygon
- winding rule: inside if walking along the edges encircles a point ≥ 1 times which is right? rather arbitrary . . .

How to ensure correct scan conversion of a polygon?

Scan-line Methods

- Makes use of the coherence properties
 - Spatial coherence: Except at the boundary edges, adjacent pixels are likely to have the same characteristics
 - Scan line coherence: Pixels in the adjacent scan lines are likely to have the same characteristics
- Uses intersections between area boundaries and scan lines to identify pixels that are inside the area

Scan Line Method

 Proceeding from left to right the intersections are paired and intervening pixels are set to the specified intensity

Algorithm

- Find the intersections of the scan line with all the edges in the polygon
- Sort the intersections by increasing X-coordinates
- Fill the pixels between pair of intersections

Discussion: How to speed up, or how to avoid calculating intersection

Efficiency Issues Scan-line Methods

 Intersections could be found using edge coherence the X-intersection value x_{i+1} of the lower scan line can be computed from the X-intersection value x_i of the preceeding scanline as

$$x_{i+1} = x_i + \frac{1}{m}$$

- List of active edges could be maintained to increase efficiency
- Efficiency could be further improved if polygons are convex, much better if they are only triangles

Special cases for Scan-line Methods

- Overall topology should be considered for intersection at the vertices
- Intersections like I_1 and I_2 should be considered as two intersections
- Intersections like I₃ should be considered as one intersection
- Horizontal edges like E need not be considered

Advantages of Scan Line method

- The algorithm is efficient
- Each pixel is visited only once
- Shading algorithms could be easily integrated with this method to obtain shaded area

- Efficient could be further improved if polygons are convex
- Much better if they are only triangles

What is Convex?

A set C in S is said to be convex if, for all x and y in C and all t in the interval [0,1], the point

$$(I-t)x+ty$$

is in C.

Triangle Rasterization

Two questions:

- which pixel to set?
- what color to set each pixel to?

How would you rasterize a triangle?

- Edge-walking
- 2. Edge-equation
- 3. Barycentric-coordinate based

Edge Walking

Idea:

- scan top to bottom in scan-line order
- "walk" edges: use edge slope to update coordinates incrementally
- on each scan-line, scan left to right (horizontal span), setting pixels
- stop when bottom vertex or edge is reached

Edge Walking

```
void edge walking(vertices T[3])
  for each edge pair of T {
   initialize x_{t}, x_{R};
   compute dx_{t}/dy_{t} and dx_{R}/dy_{R};
   for scanline at y {
     for (int x = x_L; x \le x_R; x++) {
       set pixel(x, y);
                                          dx_{l}
                                      dy_L
   x_L += dx_L/dy_L;
   x_R += dx_R/dy_R;
```

Funkhouser09

Edge Walking

Advantage: very simple

Disadvantages:

- very serial (one pixel at a time) ⇒ can't parallelize
- inner loop bottleneck if lots of computation per pixel
- · special cases will make your life miserable
 - ullet horizontal edges: computing intersection causes divide by 0!

sliver: not even a single pixel wide

Edge Equations

- compute edge equations from vertices
 - orient edge equations: let negative halfspaces be on the triangle's exterior (multiply by -1 if necessary)
- scan through each pixel and evaluate against all edge equations
- 3. set pixel if all three edge equations > 0

Edge Equations

```
void edge equations(vertices T[3])
 bbox b = bound(T);
                                              can be rewritten
 foreach pixel(x, y) in b {
                                              to update the
   inside = true;
                                              L^{\prime}s
   foreach edge line L; of Tri {
                                              incrementally by
     if (L_i.A*x+L_i.B*y+L_i.C < 0) {
                                            \mathbf{y} and then by x
       inside = false;
   if (inside) {
     set pixel(x, y);
```

Edge Equations

Can we reduce #pixels tested?

- 1. compute a bounding box: x_{min} , y_{min} , x_{max} , y_{max} of triangle
- 2. compute edge equations from vertices
 - orient edge equations: let negative halfspaces be on the triangle's exterior (multiply by -1 if necessary)
 - can be done incrementally per scan line
- 3. scan through *each* pixel in bounding box and evaluate against all edge equations
- 4. set pixel if all three edge equations > 0

Hierarchical bounding boxes

how to quickly exclude a bounding box?

Aliasing

- Aliasing is caused due to the discrete nature of the display device
- Rasterizing primitives is like sampling a continuous signal by a finite set of values (point sampling)
- Information is lost if the rate of sampling is not sufficient. This sampling error is called *aliasing*.
- Effects of aliasing are
 - –Jagged edges
 - -Incorrectly rendered fine details
 - -Small objects might miss

Aliasing

A classic part of the computer graphics curriculum

 (x_2, y_2)

- Input:
 - Line segment definition
 - (x1, y1), (x2, y2)
- Output:
 - List of pixels

Aliasing

- How Do They Look?
- So now we know how to draw lines
- But they don't look very good:

Antialiasing

Anti-aliasing

- Essentially 2 techniques:
 - Super-sampling vs. filtering
 - We discussed a simple averaging filter
 - Compute the fraction of a line that should be applied to a pixel
 - Ratio method

Anti-aliasing: Super-sampling

- Technique:
 - 1. Create an image 2x (or 4x, or 8x) bigger than the real image
 - 2. Scale the line endpoints accordingly
 - 3. Draw the line as before
 - No change to line drawing algorithm
 - 4. Average each 2x2 (or 4x4, or 8x8) block into a single pixel

Anti-aliasing: Super-sampling

Anti-aliasing: Ratios

$$\left(.5*MAX\left(\frac{error}{x_1-x_0},0\right)\right)RGB$$

$$\left(1.0 - .5 * abs\left(\frac{error}{x_1 - x_0}\right)\right) RGB$$

$$\left(.5*MAX\left(\frac{-error}{x_1-x_0},0\right)\right)RGB$$

Anti-aliasing: Ratios

Anti-aliasing (Area Sampling)

- A scan converted primitive occupies finite area on the screen
- Intensity of the boundary pixels is adjusted depending on the percent of the pixel area covered by the primitive. This is called weighted area sampling

Acknowledgement

- USTC Computer Graphics (Spring 2018), Prof. Ligang Liu
 - http://staff.ustc.edu.cn/~lgliu/Courses/ComputerGraphics_2018_spring
 -summer/default.htm
- ZJU CAD Computer Graphics 2017, Dr. Hongxin Zhang
 - http://www.cad.zju.edu.cn/home/zhx/CG/2017/doku.php
- XMU Digital Geometry Processing, Dr. Zhonggui Chen
 - http://graphics.xmu.edu.cn/courses/dgp/index.html
- Tsinghua Computer Graphics, Prof. Shimin Hu
 - http://cg.cs.tsinghua.edu.cn/course/