MTH 517: Time Series Analysis Quiz #1; Full Marks 20

Date: September 06, 2019

Name: RAHUL Roll No. 181110

Let $\{\varepsilon_t\}$ be a sequence of i.i.d. $N(0,\sigma^2)$ and s_t be a seasonal component of periodicity

12. Define
$$X_t = (a_0 + a_1 t)e^{-s_t} + \varepsilon_t + \varepsilon_{t-12}$$
 and $Y_t = \sum_{j=0}^{t-1} \phi^j \varepsilon_{t-j}, |\phi| < 1$.

Prove or disprove the following statements:

- (a) $\{\nabla X_t\}$ does not contain any time trend component
- (b) $\{\nabla_{12}X_t\}$ does not contain any seasonal component
- (c) $\{\nabla_{12}X_t\}$ is a Gaussian process
- (d) $\{\nabla_{12}^2 X_t\}$ is strict stationary
- (e) $\{Y_i\}$ is a covariance stationary process
- (f) $\{Y_t\}$ is a Gaussian process
- (g) $\left\{e^{s_i+\varepsilon_i}\right\}$ is a Gaussian process

a)
$$\nabla x_t = x_t - x_{t-1}$$
 [$x_t = m_t e^{-s_t} + \varepsilon_t + \varepsilon_{t-12}$, $m_t = (a_0 + a_1 t) e^{-s_t} + \varepsilon_t + \varepsilon_{t-12} - (a_0 + a_1 (t-1)) e^{-s_{t-1}}$ = $a_0 (e^{-s_t} - e^{-s_{t-1}}) + a_1 (t e^{-s_t} - (t-1)) e^{-s_{t-1}} + \varepsilon_t - \varepsilon_t + \varepsilon_{t-12} - \varepsilon_{t-13}$

2 λ As seasonal combonents have periodicity 12 so $(e^{-s_t} - e^{-s_{t-1}})$ do not vanish and hence the temperature remain in the expression of ∇x_t . ∇x_t contains time then do component.

MTH517A: Time Series Analysis Mid semester examination: Full Marks 60

- [1] Let $\{X_t\}$ be an MA(1) process $X_t = \varepsilon_t + \varepsilon_{t-1}$; $\{\varepsilon_t\}$ is a sequence of independently and identically distributed $N(0,\sigma^2)$ random variables. Consider the exponentially weighted moving average obtained from $\{X_t\}$ as $Y_1 = X_1$ and for $2 \le t \le n$, $Y_t = \alpha X_t + (1-\alpha)Y_{t-1}$ with $\alpha = 3/4$.
 - (a) Find the joint distribution of (Y_1, Y_2, Y_3) .
 - **(b)** Is $\{Y_t : t \ge 1\}$ a Gaussian process?
 - (c) Is $\{Y_t : t \ge 1\}$ a strict stationary process?

12 marks

- [2] Let $\{\varepsilon_t\}$ and $\{\delta_t\}$ be two mutually independent sequences of independently and identically distributed $N(0,\sigma^2/2)$ random variables. Let $\{Y_t\}$ be a complex valued time series defined as $Y_t = \varepsilon_{2t-1} \, e^{i\omega t} + (\varepsilon_t + i\, \delta_t); \omega \in (0,\pi)$ is a fixed constant and $i = \sqrt{-1}$. Prove or disprove the following statements:
 - (a) $\{Y_i\}$ is covariance stationary.
 - **(b)** $Z_t = \varepsilon_t + \delta_t + \varepsilon_{2t+1}$ is white noise process.

8 marks

- [3] Consider the AR(2) process $X_t = 0.5X_{t-1} 0.25X_{t-2} + \varepsilon_t$, $\varepsilon_t \sim WN(0, \sigma^2)$ and define $Y_t = \sum_{k=0}^{1} (k+1)X_{t-k}$. Prove or disprove the following statements:
 - (a) $\{Y_i\}$ is a causal ARMA process.
 - (b) $\{Y_i\}$ is stationary and invertible ARMA process.

8 marks

[4] Let $\{X_t\}$ be a causal and invertible ARMA(1,1) process $X_t = \phi X_{t-1} + \delta + \varepsilon_t + \theta \varepsilon_{t-1}$, $|\phi| < 1, |\theta| < 1 \varepsilon_t \sim WN(0, \sigma^2)$

Find
$$\lim_{N\to\infty} E\left(X_{t} - \varepsilon_{t} - \delta \sum_{j=0}^{N} (-\theta)^{j} - (\theta + \phi) \sum_{j=1}^{N} (-\theta)^{j-1} X_{t-j}\right)^{2}$$
.

8 marks

[5] Let $\{X_i\}$ and $\{Y_i\}$ be two covariance stationary ARMA processes given by

$$\{Y_i\}$$
 and $\{Y_i\}$ be two covariance start $X_i = \phi X_{i-1} + \varepsilon_i - \alpha^{-1} \varepsilon_{i-1}$ and $Y_i = \alpha Y_{i-1} + \delta_i - (\phi + \phi^{-1}) \delta_{i-1} + \delta_{i-2}$; $|\phi| < 1, |\alpha| < 1$

 $\{\varepsilon_i\}$ and $\{\delta_i\}$ be two mutually independent sequences of independently and identically distributed $N(0,\sigma^2)$ random variables. Define $\{P_i\}$, $\{Q_i\}$ and $\{R_i\}$ as:

$$P_{t} = (1 - \alpha^{-1}B)(1 - \phi^{-1}B)(\varepsilon_{t} + \delta_{t});$$

$$Q_t = (1 - \phi B)(1 - \alpha B)(X_t + Y_t) \text{ and } (1 - \phi B)(1 - \alpha B)R_t = (1 - \alpha^{-1}B)(1 - \phi^{-1}B)\varepsilon_t.$$

- (a) Express ACGF of $\{P_i\}$ in terms of ACGFs of $\{X_i\}$ and $\{Y_i\}$.
- (b) Using the ACGF of $\{P_t\}$, obtained in (a), find $\gamma_P(1)$.
- (c) Does there exist a finite k, such that $\gamma_{Q}(h) = 0, \forall |h| > k$?
- (d) Prove or disprove: " $\{R_i\}$ is a white noise process".

Note: Appropriate conditions for existence of ACGFs may be assumed to hold.

16 marks

[6] $\{\varepsilon_t\}$, $\{\delta_t\}$ and $\{\gamma_t\}$ be three mutually independent white noise $WN(0, \sigma^2)$ processes. Define $X_t = \varepsilon_t + \delta_t \cos(\pi t/4) + \gamma_t \sin(\pi t/4); Y_t = \delta_{t-1} + \gamma_{t-1} \cos(\pi t/4) + \varepsilon_{t-1} \sin(\pi t/4).$ Prove or disprove the following statements:

(a) $\begin{pmatrix} X_t \\ Y_t \end{pmatrix}$ is covariance stationary.

(b)
$$\begin{pmatrix} \varepsilon_t \\ \delta_t \\ \varepsilon_{t-3} \end{pmatrix} \sim VWN$$
.

8 marks

MTH 517: Time Series Analysis Quiz #2; Full Marks 20

Date: September 06, 2019

Name: RAHUL Roll No. 181110

Let $\{\varepsilon_t\}$, $\{\delta_t\}$ and $\{\eta_t\}$ be three mutually independent sequence of i.i.d. $N\left(0,\sigma^2\right)$. Define $X_t = X_{t-1} + 0.5 Y_{t-1} + \varepsilon_t$; $Y_t = 0.5 + 0.6 Y_{t-1} + \delta_t$ and $Z_t = 0.5 Z_{t-1} + 0.4 Y_{t-1} + \eta_t$ such that $\forall j > 0$, $Cov\left(\varepsilon_t, X_{t-j}\right) = Cov\left(\delta_t, X_{t-j}\right) = Cov\left(\eta_t, X_{t-j}\right) = Cov\left(\varepsilon_t, Y_{t-j}\right) = Cov\left(\eta_t, Y_{t-j}\right) = Cov\left(\eta_t, Y_{t-j}\right) = 0$.

- (a) Prove or disprove: $(X_t, Y_t)^T$ is a causal VAR(1) process.
- (b) Prove or disprove: $(Y_t, Z_t, 2Y_{t-1}, 2Z_{t-1})^T$ is a stationary VAR(1) process.
- (c) Prove or disprove: $(\varepsilon_t, \eta_t, 2\varepsilon_{t-1}, 2\eta_{t-1})^T$ is a *VWN* process.
- (d) If $(Y_1, ..., Y_n)$ is a sample of size n, then find the distribution of $\overline{Y}_n = n^{-1} \sum_{t=1}^n Y_t$.
- (e) Find the BLP of Y_{n+1} based on Y_n and Y_{n-1} .

a)
$$\forall let \ V_{t} = \begin{bmatrix} x_{t} \\ Y_{t} \end{bmatrix}$$

Now $X_{t} = X_{t-1} + 0.5 Y_{t-1} + \xi_{t}$
 $Y_{t} = 0.5 + 0.6 Y_{t-1} + \delta_{t}$
 $V_{t} = \begin{bmatrix} x_{t} \\ Y_{t} \end{bmatrix} = \begin{bmatrix} x_{t-1} \\ y_{t-1} \end{bmatrix} + \begin{bmatrix} \xi_{t} \\ y_{t-1} \end{bmatrix} +$

MTH 517: Time Series Analysis End semester examination; Full Marks-100

Date: November 27, 2019

- [1] (a) Let X_1, X_2, X_3 be random sample from a causal AR(1) process $X_{t} = \mu_{X} (1 - \phi) + \phi X_{t-1} + \varepsilon_{t}; \quad \mu_{X} = E(X_{t}), |\phi| < 1, \varepsilon_{t} \sim WN(0, \sigma^{2}).$ Suppose $\delta_1 = (X_1 + X_2)/2$ and $\delta_2 = (X_1 + X_2 + X_3)/3$. Prove or disprove:
- (b) $\{X_t\}$ is a covariance stationary AR(1) process; $X_t = 0.5 X_{t-1} + \varepsilon_t$; $\varepsilon_t \sim WN(0,1)$ and $Y_t = X_t + \eta_t$; $\eta_t \sim WN(0,1)$, ε_t and η_t are independently distributed.

 (i) Prove or disprove: "In the BLD = 0.33.
 - Y_t is greater than the coefficient of Y_{t-1} ".
 - (ii) Find the PACF at lag 2 of $\{Y_i\}$.

20 (8+6+6) marks

- [2] Let $X_1, ..., X_n$ be a random sample from a Gaussian invertible MA(1) model $X_t = \varepsilon_t + \theta \, \varepsilon_{t-1}, \, |\theta| < 1 \text{ and } \varepsilon_t \sim i.i.d. \, N(0, \sigma^2).$
 - (a) Prove or disprove: "conditional LSE of θ , conditional on given ε_0 at it's expected value is $\hat{\theta}_{CLSE} = \arg\min_{\theta} \sum_{i=1}^{n} \left(X_i - \theta \left(\sum_{k=0}^{i-2} (-\theta)^k X_{i-k-1} \right) \right)^2$.
 - (b) Prove or disprove: "conditional MLE of θ , conditional on given ε_0 at it's expected value is $\hat{\theta}_{CMLE} = \arg\min_{\theta} \sum_{i=1}^{n} \left(\sum_{i=1}^{t} (-\theta)^{t-i-1} X_i \right)^2$.

16 (8+8) marks

- [3] Let $\{X_i\}$ and $\{Y_i\}$ be 2 independent 0 mean covariance stationary time series processes with absolutely summable ACVF $\gamma_{\chi}(h)$ and $\gamma_{\chi}(h)$, respectively. Define $Z_{i} = (1 - X_{i})Y_{i}$.
 - (a) Express the spectral density function of $\{Z_i\}$, $f_Z(\lambda)$, as $f_Z(\lambda) = \int \psi(\lambda, \omega) d\omega$; where $\psi(\lambda, \omega)$ is a function ONLY of the spectral densities of $\{X_i\}$ and $\{Y_i\}$.
 - (b) Suppose $X_i = \delta_i \delta_{i-2}$ and $Y_i = \varepsilon_i$, $\{\varepsilon_i\}$ and $\{\delta_i\}$ are independent $WN(0, \sigma^2)$ processes. Using the spectral density function of $\{Z_i\}$, derived in (a) (and NOT using $\gamma_z(h)$), find the value of $f_z(0)$.

16 (8+8) marks

[4] (a) Consider the following ARMA(3,3) representation of $\{X_i\}$

(a) Consider the form
$$\left(1 - \frac{5}{6}B + \frac{B^2}{6}\right) \left(1 - \frac{B}{4}\right) X_i = \left(1 - 5B + 6B^2\right) \left(1 - 4B\right) \varepsilon_i,$$

 $\varepsilon_1 \sim WN(0, \sigma^2)$. Find $\gamma_X(5)$.

(b) Let $\{X_i\}$ be a k-variate covariance stationary VAR(1) process $X_i = \Phi X_{i-1} + \varepsilon_i$; $\sum_{i} \sim VWN(0, \Sigma), \Sigma > 0$. Prove or disprove:

"
$$Z_t = \begin{pmatrix} X_t \\ 3X_{t-3} \end{pmatrix}$$
 is a covariance stationary $VAR(3)$ process".

16 (8+8) marks

[5] (a) Let $\{X_t\}$ be a linear covariance stationary time series with mean μ and ACVF

$$\gamma(h) = (0.6)^{|h|} + 2(0.3)^{|h|} + (0.1)^{|h|}$$

Using the asymptotic distribution of \overline{X}_n , find the smallest n such that $P(\overline{X}_n - 0.49 \le \mu \le \overline{X}_n + 0.49) \ge 0.95$.

- (b) Let $X_i = \begin{pmatrix} X_{1,i} \\ \vdots \\ X_{k,t} \end{pmatrix}$ be a *k*-variate covariance stationary process such that $E(X_i) = 0 \ \forall t$;
- ACVF of $\{X_i\}$, $\gamma_{X_i}(h)$ is absolutely summable $\forall i = 1(1)k$ and the cross-covariance between $\{X_i\}$ and $\{X_j\}$, $\gamma_{X_iX_j}(h)$ is absolutely summable $\forall i \neq j; i, j = 1(1)k$. If $C_{X_iX_j}(\lambda)$ denote the co-spectrum between X_i and X_j , prove or disprove:

"
$$C_{X_{i}X_{j}}(\lambda) = \frac{1}{2\pi} \left(\gamma_{X_{i}X_{j}}(0) + \sum_{h=1}^{\infty} \left(\gamma_{X_{i}X_{j}}(h) - \gamma_{X_{j}X_{i}}(h) \right) \cos \lambda h \right)$$
"

14 (8+6) marks

[6] Let $X_i = \sum_{j=1}^{2} (A_j \cos(\pi j t/4) + B_j \sin(\pi j t/4) + j \varepsilon_{i-j})$, A_1, A_2, B_1, B_2 are independent random variables with mean 0 and variance $1, \varepsilon_i \sim WN(0, \sigma^2)$. Further, $\{\varepsilon_i\}$ is independent of A_1, A_2, B_1, B_2 .

- (a) Find the spectral distribution function of $\{X_t\}$,
- (b) Using the spectral distribution function derived in (a), find $\gamma_{\chi}(0)$.
- (c) Find the continuous and/or discrete spectra associated with spectral distribution function derived in (a).

18 (9+4+5) marks

Useful data: ZNN(0,1), P(Z>1.96)=0.025