FINAL YEAR PROJECT - ZEROTH REVIEW

28-01-2022

DESIGN AND DEVELOPMENT OF IOT BASED HEALTH CARE MONITORING DEVICE FOR EARLY DIAGNOSIS USING AI

PROJECT GUIDE: DR.GEETHA C

TEAM MEMBERS

HEMANGANI - 110118031 AKSHYAH - 110118006

> 27-01-2022 Signature of Project Guide

AIM:

To design a Wearable IOT healthcare monitoring and Heart Disease Prediction device using AI.

OBJECTIVES:

This project aims at designing and developing an IOT based healthcare monitoring and Heart Disease Prediction device using AI and the sub objectives are:

- To design and develop a wearable IOT healthcare monitoring system.
- Successful Data acquisition and transfer from the sensors.
- To process the data acquired and develop a machine learning model for diagnosing of Heart Disease and other ailments using AI.
- To integrate the hardware with software and analyze and validate the system.

The further improvements in the project include making Web/app user interface design and implementation for better understanding and visualization purposes.

METHODOLOGY:

The approach for the proposed project is as follows:

• Literature survey :

- To learn and understand the previous work done in the related area and the feasibility of our idea and implementation.
- To understand the concept of heart diseases and the vital signs that affect, for better selection of features for the AI model.

• Building the wearable sensors :

- Sensors to be used body movement sensor (mems ADXL), pressure sensor (MPX10DP), temperature (LM35), heartbeat (SPO2), GPS (VK-16E), GSM/GPRS, humidity sensor, wi-fi (esp8266).
- Selection of components and design specifications.
- Calibration and testing of individual sensors.

• Collect Data:

- Data acquisition from sensors.
- Collection of datasets from online sources (UCI machine learning repository, Hungarian heart disease dataset, Framingham, and Public Health).

• Build a AI model:

- Preprocessing of the data (data cleaning, feature selection and extraction).
- Design of suitable neural network architecture.
- Proper parameters selection and optimization employed.
- Training, testing and debugging of the model.

Flowchart and block diagrams of the system to be designed

Heart Disease Prediction System

WORK PLAN:

CONTRIBUTIONS:

Literature Survey	Hemangani, Akshyah
Fabricating the Wearable sensor interfacing	Hemangani, Akshyah
Data Acquisition	Hemangani, Akshyah
Data Processing and Model Construction and testing	Hemangani, Akshyah
Diagnosis and Decision making	Hemangani, Akshyah

REFERENCE:

- A. A. Mutlag, M. K. Abd Ghani, N. Arunkumar, M. A. Mohammed, and O. Mohd,
 "Enabling technologies for fog computing in healthcare IoT systems," Future Generation
 Computer Systems, vol. 90, pp. 62–78, 2019.
- B. Farahani, F. Firouzi, V. Chang, M. Badaroglu, N. Constant, and K. Mankodiya,
 "Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare," Future Generation Computer Systems, vol. 78, pp. 659–676, 2018.
- A. M. Rahmani, T. N. Gia, B. Negash et al., "Exploiting smart e-health gateways at the edge of healthcare internet-of-things: a fog computing approach," Future Generation Computer Systems, vol. 78, pp. 641–658, 2018.
- S. Sharma and S. Singh, "Heart disease diagnosis using genetic and particle swarm optimization," International Journal of Engineering Research & Technology (IJERT), vol. 3, no. 8, 2014.
- M. A. Khan, "An IoT framework for heart disease prediction based on MDCNN classifier," IEEE Access, vol. 8, pp. 34717–34727, 2020.