Few-Shot Fine-Tuning of Stable Diffusion XL for Defect Image Generation

Babak Badnava

August 12, 2025

Project Overview

- ▶ Goal: Generate high-quality synthetic images of defective pills (e.g., color or scratch defects) from few-shot examples.
- Approach:
 - 1. Sample small subsets from real dataset.
 - Fine-tune Stable Diffusion XL with LoRA and/or Textual Inversion.
 - 3. Generate synthetic images conditioned on defect type.
 - 4. Evaluate quality using standard image generation metrics.
- Supports multiple defect types and different sample sizes.

Model Selection

Chosen Models:

- ► SDXL Base 1.0:
 - ► High-resolution generation (1024×1024).
 - Well-suited for fine detail (important for defect representation).
- ► SDXL Refiner 1.0:
 - Refines base model outputs for sharper textures.
 - Especially helpful for subtle defects.

Why good for this task?

- ▶ Pretrained on large, diverse datasets → strong visual priors.
- ▶ LoRA fine-tuning \rightarrow efficient adaptation to new visual concepts.

Dataset and Preprocessing

- ▶ Dataset contains multiple defect types: color, scratch, etc.
- ▶ **Few-Shot Sampler** selects *N* samples for a given defect.
- Data is split for:
 - LoRA fine-tuning
 - Textual Inversion
- Masks and captions:
 - Masks localize defects for inpainting.
 - Captions describe object and defect ("a macro photo of a pill with a color defect").

Pipeline Workflow

- 1. Few-shot sampling. Distributed and scalable.
- 2. Fine-tuning (LoRA + TI).
- 3. Inference: Generate synthetic images.
- 4. Evaluation: Compare to real dataset.

Evaluation Metrics

- ▶ **ISC** (Inception Score): Measures image quality and diversity.
- ► **FID** (Frechet Inception Distance): Measures realism by comparing distribution of features.
- ► **KID** (Kernel Inception Distance): Similar to FID but unbiased.
- ▶ **PRC** (Precision Recall for Distributions): Measures coverage and fidelity of generated samples.

Using Segmentation Masks in Fine-Tuning

- Purpose: Highlight the defective region so the model focuses learning on relevant areas.
- In inpainting fine-tuning, the mask tells the model:
 - ▶ Which pixels to **replace** (defect region).
 - ▶ Which pixels to **keep** (background / non-defective areas).
- ► This improves:
 - ▶ **Defect localization** (model learns where defects occur).
 - **Sample efficiency** (few-shot training focuses on critical areas).

base image

mask image

generated image

Using Masks in Inference and Generation

- During inference, masks allow:
 - ▶ **Defect injection:** Generate a defect only in a given masked area.
 - ▶ **Defect removal or replacement:** Inpaint over defective area.
- Workflow:
 - 1. Provide initial image + segmentation mask.
 - 2. Specify prompt (e.g., "a pill with a scratch defect").
 - 3. Model edits only masked region, preserving the rest.

Benefit

Mask-guided generation increases **control**, **accuracy**, and **consistency** of defect placement.

Results and Next Steps

Results:

- Generated images closely match defect type and preserve pill structure.
- ► LoRA + TI improves fine detail and defect accuracy.

Next Steps:

- Extend to additional defect types.
- Experiment with Refiner model for all outputs.
- Experiment with Inpainting model to incorporate masks for defect generation.
- Automate hyperparameter search for better few-shot adaptation.

References and Acknowledgments

- Hugging Face Diffusers Library.
- Stability Al Stable Diffusion XL.
- ▶ ISC, FID, KID, PRC evaluation methods from literature.