离散数学

Discrete Mathematics

第4章 代数系统

第4章代数系统

代数论由法国数学家伽罗华创立。

代数论的建立解决了古典数学难题: 高次方程求根、倍立方、化圆为方、三等分角和作正n边形。

集合、数理逻辑和**布尔代数**从代数论的角度看是同一个代数系统,三者在代数论的基础上统一了起来。

4.1 运算

定义4-1 运算:设有非空集合A,函数f: $A^n \rightarrow A$ 称为A上的一个n元运算,n称为运算的阶。

函数 f: $A^2 \rightarrow A$ 是A上的二元运算,函数 f: $A \rightarrow A$ 是A上的一元运算。

例 \cup 、 \cap : $(2^{U})^{2}$ → 2^{U} ,是 2^{U} 上的二元运算。

例 A={0,1,2,...,p-1]} (p为正整数≥2),则<u>模p加法</u>: x,y∈A,x+y(modp),<u>模p乘</u> <u>法</u>x×y(modp)都是A上的运算。

实数域上的加、减、乘、除运算。

有时运算可以用表格来定义

+	a	b
a	a	a
b	b	a

	a	b
a	a	a
b	a	b

前面都是二元运算的例子。

<u>一元运算的例子:</u> 求集合的补集,关系的逆关系,数的绝对值,矩阵的转置和逆矩阵

定义4-2 **封闭性**: 设运算*是集合A上的一个n元运算, $S\subseteq A$,如果对于每一个 $(a_1,a_2,...,a_n)\in S^n$,都有* $(a_1,a_2,...,a_n)\in S$,称运算*在S上封闭。

封闭性:运算 $f: A^n \rightarrow B$,若 $B \subseteq A$,则称运算在A上是封闭的。

定义4-3 交换性: 设*是集合A上的一个二元运算,如果对于任意的 $a,b \in A$,有 a*b=b*a

则称运算*在A上是可交换的。

定义4-4 结合性: 设*是集合A上的一个二元运算,如果对于任意的 $a,b,c \in A$,有 $a^*(b^*c)=(a^*b)^*c$

则称运算*在A上是可结合的。

定义4-5 分配性:设*和*是集合A上的二元运算,如果对于任意的 $a,b,c \in A$,有

$$a*(b*c)=(a*b)*(a*c)$$

$$(b * c)*a=(b*a) * (c*a)$$

则称运算*在A上对于*是可分配的。

例 加法+和乘法*运算在自然数域N上是封闭的、可交换的、可结合的,乘法*对加法+是可分配的。

但*减法-和除法/运算在自然数域N上*是不封闭的,在实数R域上是封闭的,且除 法对减法是可分配的。

<u>例</u> 任意集合A的幂集2^A上的○和∪运算,是封闭的、可交换的、可结合的,○对∪ 是可分配的,∪对○也是可分配的。

<u>当运算*可结合时</u>,可表示为

$$a * (b * c) = a * b * c$$

并<u>定义</u> a¹=a

$$a^{n+1}=a^n * a$$

则 $a^m * a^n = a^{m+n}$

$$(a^m)^n = a^{mn}$$

<u>左单位元</u>: *是A上的二元运算,如果存在 $e_l \in A$,使得对于所有的 $a \in A$,有 $e_l * a = a$

称e,为A上关于运算*的左单位元。

右单位元: * 是A上的二元运算,如果存在 $e_r \in A$,使得对于所有的 $a \in A$,有 $a * e_r = a$

称e_r为A上关于运算*的右单位元。

单位元: *是A上的二元运算,如果存在 $e \in A$,使得对于所有的 $a \in A$,有 e * a = a * e = a (既是左单位元又是右单位元)

称e为A上关于运算*的单位元。

定理4-2:如A上的运算,同时存在左单位元 e_r 和右单位元 e_r ,则

 $e_r = e_r = e$

且e是A上关于*的唯一单位元。

证明: 设存在左单位元和右单位元,即存在 $e_i,e_r \in A$,则有

 $e_l=e_l * e_r=e_r=e$

若e'也是单位元, e'∈A,则

e'=e' * e=e

单位元是唯一的。

定义4-7 零元: *是A上的二元运算,如果存在 $z_l \in A$,使得对于所有的 $a \in A$,有

 $z_{l} * a = z_{l}$

称z_i为A上关于运算*的<u>左零元</u>。

如果存在 $z_r \in A$,使得对于所有的 $a \in A$,有

 $a * z_r = z_r$

称z,为A上关于运算*的<u>右零元</u>。

上午10时45分

如果存在z∈A,使得对于所有的a∈A,有

 $\mathbf{z} * \mathbf{a} = \mathbf{a} * \mathbf{z} = \mathbf{z}$ (既是左零元又是右零元)

称z为A上关于运算*的零元。

定理4-4:如A上的运算*同时存在左零元z₁和右零元z_r,则

 $\mathbf{Z_l} = \mathbf{Z_r} = \mathbf{Z}$

且z是A上关于*的唯一零元。

证明:设存在左零元和右零元,即存在 $z_1,z_r \in A$,则有

 $z_l = z_l * z_r = z_r = z$

若z'也是零元, z'∈A, 则

z'=z' * z=z

零元是唯一的。

例 〈Z;+〉,0是单位元,不存在零元。

〈Z;×〉,1是单位元,0是零元。

∩的零元是Ø,单位元是U。∪的零元是U,单位元是Ø。

例

+	a	b
a	a	a
b	b	b

对运算+, a,b是左零元, 也是右单位元。对运算●, a,b是左单位元, 也是右零元。可以看到它们不唯一。

定义4-8 幂等元: *是A上的二元运算,若有元素a∈A,满足

a * a=a

称a为A上关于运算*的幂等元。对幂等元,有

 $a^n=a$

<u>定义4-9</u> 逆元: *是A上具有单位元e的运算,对于a \in A,如存在 a_l -1 \in A,使

$$a_{1}^{-1} * a = e$$

则称称a_l-1为a的<u>左逆元</u>。

如果存在**a**_r-1∈**A**,使得

$$a * a_r^{-1} = e$$

称a_r-1为a的<u>右逆元</u>。

如果存在a⁻¹∈A,使得

(既是左逆元又是右逆元)

称a-1为a的逆元。

<u>定理4-4</u>: <u>设 * 是A上具有单位元e的运算</u>,且是<u>可结合的</u>。如果对元素 $a \in A$,存在左逆元 a_{l} ⁻¹和右逆元 a_{r} ⁻¹,则

$$a_1^{-1}=a_r^{-1}=a^{-1}$$

且a-1是a的唯一逆元。

证明:设元素a存在左逆元a_r-1和右逆元a_r-1,则有

$$a_1^{-1}=a_1^{-1} * e= a_1^{-1} * (a * a_r^{-1})=(a_1^{-1} * a) * a_r^{-1}=e * a_r^{-1}=a_r^{-1}$$

若b也是逆元,则

$$b=b * e=b * (a * a^{-1})=(b * a) * a^{-1}=e * a^{-1}=a^{-1}$$

逆元是唯一的。

零元是否可以和单位元相等?

定理4-5:设*是A上二元的运算,且#A>1,若运算*有单位元e和零元z,则e+z。

证明:设e=z,因#A>1,所以至少还存在一元素 $x \in A$, $x \neq e$,但

x=e * x=z * x=z=e

与前设矛盾。

4.2 代数系统

代数系统

定义4-10 代数系统: <u>非空集合</u>和定义在该集合上的一个和多个运算所组成的系统称为代数系统,用记号<S;O₁,O₂,...,O_n>表示。

其中S是非空集合, 称为该代数系统的域,

 $O_1,O_2,...,O_n$ 为S上的运算。

例 <2^U; ',∪,∩> 集合代数

<u>例</u> <N;+>, <N;×>

代数系统的基数: 非空集合的基数。

若代数系统的基数有限,称有限代数系统。

子代数系统: $\langle S_1; O \rangle$, $\langle S_2; O \rangle$ 为两个代数系统,若 $S_2 \subseteq S_1$,则称 $\langle S_2; O \rangle$ 为 $\langle S_1; O \rangle$ 的子代数系统,简称**子代数**。若 $S_2 \subseteq S_1$,则称 $\langle S_2; O \rangle$ 为 $\langle S_1; O \rangle$ 的**真子代数系统**。

例 <N;+>是<R;+>的子代数。

<u>定义4-11</u> 整环: 若代数系统<J; +, ·>满足

(1)交换律 对任意的i,j∈J,有

$$i+j=j+i$$
, $i\cdot j=j\cdot I$

(2)结合律 对任意的i,j,k∈J,有

$$i+(j+k)=(i+j)+k$$
, $i\cdot(j\cdot k)=(i\cdot j)\cdot k$

(3)分配律 对任意的i,j,k∈J,有

$$i \cdot (j+k) = (i \cdot j) + (i \cdot k)$$

(4)单位元 存在元素0,1∈J, 使对任意的i∈J

$$i+0=0+i=i$$
, $i\cdot 1=1\cdot i=i$

- (5)+可逆 对任意的i∈J,存在元素-i∈J, i+(-i)=(-i)+i=0
- (6)削去律 若i≠0,则对于任意的j,k∈J,有 i·j=i·k ⇒ j=k

则称该代数系统为整环。

例
$$\langle Z_3; \oplus_3, \odot_3 \rangle$$

4.3 同态和同构

同态与同构

同态: $V_1 = \langle S_1; \cdot \rangle, V_2 = \langle S_2; * \rangle$ 为两个代数系统,若存在 $\underline{S_1} \underline{\mathfrak{g}} \underline{S_2} \underline{\mathfrak{g}} \underline{\mathfrak{g}} \underline{\mathfrak{g}} \underline{\mathfrak{g}} \underline{\mathfrak{g}} \underline{\mathfrak{g}}$,对任意的 $x_1, x_2 \in S_1$,满足方程

$$h(x_1 \cdot x_2) = h(x_1) * h(x_2)$$

则称h为 V_1 到 V_2 的同态, V_2 称为 V_1 的同态像。

例 代数系统 V₁=<R;×>, V₂=<R;+>

函数 y:R→R, y=log₁₀x。

对于任意的 $x_1,x_2 \in \mathbb{R}$,有

 $y(x_1 \times x_2) = \log_{10}(x_1 \times x_2) = \log_{10}(x_1) + \log_{10}(x_2)$

满足同态方程,是V₁到V₂的同态。

从上例可以看出,**同态可看成一种变换,将一个代数系统变为另一个代数系统**,一个较复杂的问题转为较易解决的问题:对数尺,传输损耗,放大倍数等。

例 摩根定律

 $(A \cap B)' = A' \cup B'$

例 V_1 =< Z_i +>, V_2 =< Z_6 ; \oplus_6 >, Z_6 ={0,1,2,3,4,5}, \oplus_6 是模6加。 定义函数**h**:**Z**→**Z**₆,对任意的i∈**Z**,有**h**(i)=res₆(i)。 证明 h是 V_1 到 V_2 的同态。

证明:对任意的i,j∈Z,设

$$i=6q_1+r_1, 0 \le r_1 \le 6$$

$$j=6q_2+r_2, 0 \le r_2 \le 6$$

则
$$i+j=6(q_1+q_2)+(r_1+r_2)$$

$$h(i+j)=res_6(i+j)=res_6(r_1+r_2)$$

$$res_6(i) \oplus {}_6res_6(j) = r_1 \oplus {}_6r_2 = res_6(r_1 + r_2)$$

故
$$\operatorname{res}_6(i+j) = \operatorname{res}_6(i) \oplus_6 \operatorname{res}_6(j)$$

定义4-15 设h是 V_1 到 V_2 的同态, V_1 =< $S_1; >, <math>V_2$ =< $S_2; * >, 如果$

- (1) h是单射,则称h为<mark>单同态</mark>;
- (2) h是满射,则称h为满同态;
- (3) h是双射,则称h为同构。

定理4-6 若存在代数系统 $V_1 = \langle S_1; +_1, *_1 \rangle$ 到 $V_2 = \langle S_2; +_2, *_2 \rangle$ 的**满同态h**,则 V_1 具有的许多性质可在 V_2 中保持:

- (1) **交换** 若+₁(*₁)可交换,则+₂(*₂)可交换;
- (2) **结合** 若+1(*1)可结合,则+2(*2)可结合;
- (3) <u>分配</u> 若+₁对*₁可分配,则+₂对*₂可分配;
- (4) **单位元** 若+₁(*₁)存在单位元,则+₂(*₂)也存在单位元;
- (5) <u>零元</u> 若+₁(*₁)存在零元,则+₂(*₂)也存在零元;
- (6) <u>**逆元</u>** 若对运算+₁(*₁),元素x存在逆元x⁻¹,则对运算+₂(*₂),元素h(x)也存在逆元 h(x⁻¹);</u>

<u>推论</u>: 若h是 V_1 到 V_2 的同构,则h的逆函数 h^{-1} 是 V_2 到 V_1 的同构,因此称 V_1 和 V_2 彼此同构。

设
$$V_1 = \langle S_1; * \rangle, V_2 = \langle S_2; * \rangle$$
,则对任意的 $y_1, y_2 \in S_2$,必存在 $x_1, x_2 \in S_1$,使

$$y_1 = h(x_1), y_2 = h(x_2)$$

故
$$h^{-1}(y_1 \cdot y_2) = h^{-1}(h(x_1) \cdot h(x_2))$$

$$=h^{-1}(h(x_1 * x_2))$$

$$=h^{-1}h(x_1 * x_2)$$

$$=$$
X₁ * X₂

$$=h^{-1}(y_1) * h^{-1}(y_2)$$

逆函数h-1也满足同态方程,是V2到V1的同构。

两代数系统在同构的情况下,它们的运算一一对应,满足的性质完全相同,元素一一对应,*从代数论的角度看,是同一个代数系统*,区别仅仅是运算符号和元素的名称不同,一个代数系统中的理论完全可用于同构的另一代数系统,一个代数系统的理论清楚了,所有和它同构的代数系统的问题也就清楚了。

<u>例如集合代数、布尔代数、逻辑代数三</u>者是同构的,在代数论的基础上统一了起来。

例 $V_1 = \langle \{\emptyset, A, A', U\}; \cup \rangle$, $V2 = \langle \{U, A', A, \emptyset\}; \cap \rangle$, h = '同构

U	Ø	A	A'	U
Ø	Ø	A	A'	U
A	A	A	U	U
Α'	A'	U	Α'	U
U	U	U	U	U

\cap	U	A'	A	Ø
U	U	A'	A	Ø
A'	A'	A'	Ø	Ø
A	A	Ø	A	Ø
Ø	Ø	Ø	Ø	Ø

3(1)(4), 6, 7(1)(3)(5), 10, 12, 15, 16

20

内容提要

1. 集合 *A* 上的运算

- 集合 *A* 上的运算;
- •运算的封闭性;
- •二元运算的一些常见的性质;
- ·集合中与二元运算相联系的一些特殊的元素:单位元、零元、幂等元、元素的 逆元.

2. 代数系统

- 代数系统;
- 整环及其性质;
- 子代数.

3. 代数系统的同态与同构

- 同态;
- 满同态;
- •满同态的性质;
- 同构.

例题讲解

- **例 4-1** 通常数的乘法运算是否可看做下列集合上的二元运算?请逐个回答,并说明理由.
 - (1) $A = \{1, 2\}$;
 - (2) $B = \{x | x$ 是素数 $\};$
 - (3) $C = \{x \mid x$ 是偶数 $\};$
 - (4) $D = \{2^n \mid n \in \mathbb{N}\}.$
 - 解 (1) 乘法运算不是集合 A 上的二元运算. 因为 $2\times 2=4$ $\in A$.
- (2) 乘法运算不是集合 B 上的二元运算. 因为素数乘素数不再是素数. 例如 $3 \times 5 = 15 \in B$.
 - (3) 乘法运算是集合 C 上的运算. 因为偶数乘偶数仍为偶数.
- (4) 乘法运算是集合 D 上的二元运算. 因为对于任意 2^n , $2^m \in D$, $2^n \times 2^m = 2^{n+m} \in D$.
 - **例 4-2** 设有集合 A, $A^A = \{f | f : A \rightarrow A\}$ 是由 A 到 A 的所有函数组成的集合. 因为对于任意 f_1 , $f_2 \in A^A$, f_1 与 f_2 的复合函数 $f_1 \cdot f_2$ 仍是一由 A 到 A 的函数,因此函数的复合运算可看做是集合 A^A 上的一个二元运算.

- 例 4-3 通常数的加法运算可看做是正整数集 N 上的一个二元运算. 下列集合均是 N 的子集,加法运算在这些子集上是封闭的吗? 说明理由.
 - (1) $S_1 = \{n \mid n \text{ 是 } 15 \text{ 的因子}\};$

 - **解** (1) 加法运算在 S_1 上不封闭. 因为 $3 \in S_1$, $5 \in S_1$, 但 $3+5=8 \notin S_1$.
 - (2) 加法运算在 S_2 上是封闭的. 其证明如下.

对于任意 n_1 , $n_2 \in S_2$, 设 $n_1 = 15k_1$, $n_2 = 15k_2$ (k_1 , $k_2 \in \mathbb{N}$), 则 $n_1 + n_2 = 15k_1 + 15k_2 = 15(k_1 + k_2)$, ($k_1 + k_2 \in \mathbb{N}$). 因此 $n_1 + n_2 \in S_2$.

(3) 加法运算在 S_3 上是封闭的. 其证明如下.

首先,对于任意 n_1 , $n_2 \in S_3$,设 $n_1 = 6k_1$, $n_2 = 6k_2$ (k_1 , $k_2 \in \mathbb{N}$),则 $n_1 + n_2 = 6k_1 + 6k_2 = 6(k_1 + k_2)$, $n_1 + n_2$ 能被 6 整除.

又 $(n_1+n_2)^2=n_1^2+2n_1\cdot n_2+n_2^2$,根据题意 $,n_1^2$ 能被 24 整除 $,n_2^2$ 能被 24 整除,

$$2n_1 \cdot n_2 = 2 \cdot 6k_1 \cdot 6k_2 = 24 \cdot (3k_1k_2)$$

也能被 24 整除,因此 $(n_1+n_2)^2$ 能被 24 整除.由此知 $n_1+n_2 \in S_3$.

例 4-4 设 W 是集合 A 上所有关系的集合, H_1 是 A 上所有自反关系的集合, H_2 是 A 上所有可传递关系的集合. 显然关系的复合运算是 W 上的一个二元运算,试问关系的复合运算在 H_1 和 H_2 上是封闭的吗?为什么?

解 关系的复合运算。在 H_1 上是封闭的,这是因为 A 上任意两个自反关系的复合关系仍是 A 上的自反关系;但。在 H_2 上不封闭,这是因为 A 上任意两个可传递关系的复合关系不一定是可传递的.举例如下.

设 $A = \{1,2,3\}$, 定义集合 A 上的关系

$$\rho_1 = \{ (1,2), (2,3), (1,3) \},
\rho_2 = \{ (2,3), (3,1), (2,1) \},$$

显然, ρ_1 和 ρ_2 均是可传递的. 又

$$\rho_1 \cdot \rho_2 = \{(1,3),(1,1),(2,1)\},$$

但 $\rho_1 \cdot \rho_2$ 不可传递.

例 4-7 实数集 R 上的二元运算 * 定义为

$$r_1 * r_2 = r_1 + \frac{1}{2}r_2$$

集合 R 中关于运算 * 存在有单位元、零元和幂等元吗?

解 (1) 运算 * 不可交换,因此我们分别考虑它是否有左单位元和右单位元. 若 r_1 是左单位元,则对于任意 $r \in \mathbf{R}$,应有

$$r_1 * r = r$$
, $r_1 + \frac{r}{2} = r$,

于是 $r_1 = \frac{r}{2}$.

由于r是任意的,因此不存在元素能成为运算*的左单位元.由此可知*不存在单位元.

若 r_1 是右单位元,则对于任意 r ∈ **R**,应有

$$r * r_1 = r, \quad r + \frac{r_1}{2} = r.$$
 (1)

要使式(1)成立,只有 $r_1=0$,因此 0 是运算 * 的右单位元.

上午10时45分

(2) 若 r_1 是左零元,则对于任意的 $r \in \mathbf{R}$,应有

$$r_1 * r = r_1, \quad r_1 + \frac{r}{2} = r_1.$$
 (2)

要使式(2)成立,必须 r=0,但 r 是任意的,因此运算 * 没有左零元.由此可知运算 * 不存在零元.

若 r_1 是右零元,则对于任意的 $r \in \mathbb{R}$,应有

$$r * r_1 = r_1, \quad r + \frac{r_1}{2} = r_1,$$

于是

$$r = \frac{r_1}{2}, \quad r_1 = 2r.$$

由于 r 是任意的,因此运算 * 也没有右零元.

(3) 若 $r \in \mathbf{R}$ 是幂等元,则应有

$$r + \frac{r}{2} = r, \quad \frac{r}{2} = 0. \tag{3}$$

要使式(3)成立,必须 r=0,因此 0 是幂等元.

例 4-8 设有集合 A,B,并设 $W = \{\rho \mid \rho \text{ 是由 } A \text{ 到 } B \text{ 的关系} \}$. 因为由 A 到 B 的任一关系均是 $A \times B$ 的一个子集,所以任意两个关系经过并运算和交运算后,其结果仍是 $A \times B$ 的一个子集,即仍是由 A 到 B 的一个关系. 若将 $A \times B$ 看做是全集合,则关系 ρ 的补 ρ' 也是 $A \times B$ 的一个子集,即也是由 A 到 B 的一个关系. 因此集合的并运算、交运算和补运算可分别看做是 W 上的二元运算和一元运算. 于是 $\langle W; \bigcup, \bigcap, ' \rangle$ 是一代数系统.

例如 设 $A = \{0,1\}, B = \{a,b,c\},$ 则 $A \times B = \{(0,a),(0,b),(0,c),(1,a),(1,b),(1,c)\}.$ 设 A 到 B 的关系 $\rho_1 = \{(0,a),(0,c),(1,a)\}, \\ \rho_2 = \{(0,b),(0,c),(1,c)\}, \\ \rho_1 \cup \rho_2 = \{(0,a),(0,b),(0,c),(1,a),(1,c)\}, \\ \rho_1 \cap \rho_2 = \{(0,c)\}, \\ \rho_1' = \{(0,b),(1,b),(1,c)\}$ 也都是由 A 到 B 的关系.

上午10时45分

例 4-9 设 $A = \left\{ \begin{bmatrix} a & b \\ 2b & a \end{bmatrix} \middle| a, b \in \mathbf{Z} \right\}$,试证明集合 A 与矩阵的加法和乘法运算

构成一个整环(这里 Z 表示整数集).

证 对于任意的
$$\begin{bmatrix} a & b \\ 2b & a \end{bmatrix}$$
, $\begin{bmatrix} c & d \\ 2d & c \end{bmatrix}$ $\in A$, 因为
$$\begin{bmatrix} a & b \\ 2b & a \end{bmatrix} + \begin{bmatrix} c & d \\ 2d & c \end{bmatrix} = \begin{bmatrix} a+c & b+d \\ 2(b+d) & a+c \end{bmatrix} \in A$$
,
$$\begin{bmatrix} a & b \\ 2b & a \end{bmatrix} \cdot \begin{bmatrix} c & d \\ 2d & c \end{bmatrix} = \begin{bmatrix} ac+2bd & ad+bc \\ 2(bc+ad) & 2bd+ac \end{bmatrix} \in A$$
,

所以 $\langle A; +, \bullet \rangle$ 构成一个<u>代数系统</u>.

(1) 根据矩阵加法运算的定义,十满足交换律.对于运算•,因为

$$\begin{bmatrix} c & d \\ 2d & c \end{bmatrix} \cdot \begin{bmatrix} a & b \\ 2b & a \end{bmatrix} = \begin{bmatrix} ac+2bd & bc+ad \\ 2(ad+bc) & 2bd+ac \end{bmatrix},$$

与前面计算的 $\begin{bmatrix} a & b \\ 2b & a \end{bmatrix}$ • $\begin{bmatrix} c & d \\ 2d & c \end{bmatrix}$ 相等,所以 • 也满足交换律.

- (2) 矩阵的加法和乘法运算均满足结合律.
- (3) 矩阵的乘法运算对加法运算是可分配的.
- (4) 矩阵 $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ 是加法运算的单位元.

矩阵
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 是乘法运算的单位元.

(5) 对任意
$$\begin{bmatrix} a & b \\ 2b & a \end{bmatrix}$$
 $\in A$,其加法逆元是矩阵 $\begin{bmatrix} -a & -b \\ -2b & -a \end{bmatrix}$.

(6) 所谓运算•满足<u>消去律是</u>指,对于任意的矩阵 $x,y,z \in A$,若 $x \neq 0$,则由 $x \cdot y = x \cdot z$,可得 y = z. 这里 $x \neq 0$ 指 x 不是加法运算的单位元.

设
$$\begin{bmatrix} a & b \\ 2b & a \end{bmatrix}$$
, $\begin{bmatrix} c & d \\ 2d & c \end{bmatrix}$, $\begin{bmatrix} e & f \\ 2f & e \end{bmatrix}$ $\in A$,其中 a , b 至少有一个不为 0 . 并设

$$\begin{bmatrix} a & b \\ 2b & a \end{bmatrix} \cdot \begin{bmatrix} c & d \\ 2d & c \end{bmatrix} = \begin{bmatrix} a & b \\ 2b & a \end{bmatrix} \cdot \begin{bmatrix} e & f \\ 2f & e \end{bmatrix},$$

于是

$$\begin{bmatrix} ac+2bd & ad+bc \\ 2(bc+ad) & 2bd+ac \end{bmatrix} = \begin{bmatrix} ae+2bf & af+be \\ 2(be+af) & 2bf+ac \end{bmatrix},$$

因此

$$ac + 2bd = ae + 2bf, \tag{1}$$

$$ad+bc=af+be. (2)$$

将式(1)两边同乘以 a,将式(2)两边同乘以 2b,分别得

$$a^2c + 2abd = a^2e + 2abf, \tag{3}$$

$$2abd + 2b^2c = 2abf + 2b^2e, (4)$$

式(3)一式(4)得

$$(a^2-2b^2)c=(a^2-2b^2)e,$$

 $(a^2-2b^2)(c-e)=0,$

因此

$$a^2 - 2b^2 = 0$$
 或 $c - e = 0$.

因为 a,b 均为整数,且 a,b 中至少一个不为 0,所以 $a^2-2b^2\neq 0$,因此必有 c=e. 类似地,可以证明 d=f,故

$$\begin{bmatrix} c & d \\ 2d & c \end{bmatrix} = \begin{bmatrix} e & f \\ 2f & e \end{bmatrix}.$$

由上可知 $\langle A; +, \bullet \rangle$ 是一整环.

例 4-11 设 $V=\langle \mathbf{Z};+,\bullet\rangle$,其中 \mathbf{Z} 表示整数集,十和•分别表示通常数的加法和乘法运算.对下面 \mathbf{Z} 的每个子集,确定它是否能构成 V 的子代数?为什么?

- (1) $H_1 = \{2n+1 \mid n \in \mathbf{Z}\};$
- (2) $H_2 = \{-1,0,1\};$
- (3) $H_3 = \{2n | n \in \mathbb{Z}\}.$

 \mathbf{H} (1) H_1 不能构成 V 的子代数.

因为对于任意的 $2n_1+1, 2n_2+1 \in H_1$,有

$$(2n_1+1)+(2n_2+1)=2n_1+2n_2+2 \in H_1$$
,

所以加法运算在 H_1 上不封闭.

(2) H_2 也不能构成 V 的子代数.

因为加法运算在 H_2 上也不封闭. 例如, $1+1=2 \in H_2$.

(3) H_3 能构成 V 的子代数.

因为对于任意的 $2n_1$, $2n_2 \in H_3$, 有 $2n_1 + 2n_2 = 2(n_1 + n_2) \in H_3$, 且 $2n_1 \cdot 2n_2 = 2(2n_1n_2) \in H_3$, 所以加法运算和乘法运算在 H_3 上均是封闭的. 因此〈 H_3 ; +, \bullet 〉是〈 \mathbf{Z} ; +, \bullet 〉的子代数.

例 4-12 设 $V = \langle \mathbf{R}; * \rangle$,其中 \mathbf{R} 是实数集,运算 * 定义为

$$x * y = [x, y].$$

符号[x,y]表示不小于x和y的最小整数,又设

$$H_1 = \{x \mid 0 \le x \le 10, x \in \mathbf{R}\},$$

$$H_2 = \{x \mid 0 \le x < 10, x \in \mathbf{R}\},$$

试问 H_1 与 H_2 能否构成 V 的子代数?

解 正确理解符号[x,y]的含义. 例如

$$[1.5,\sqrt{2}]=2, [-3,-2.1]=-2.$$

因为运算 * 在 H_1 上是封闭的,所以 $\langle H_1; * \rangle$ 是 $\langle \mathbf{R}; * \rangle$ 的子代数.但 H_2 与运算 * 不能构成 V 的子代数,因为 * 在 H_2 上不封闭.例如 $\lceil 9.8,2 \rceil = 10$,但 $10 \in H_2$.

例 4-13 设有代数系统 $V_1 = \langle \mathbf{R}; +, \sim \rangle$ 和 $V_2 = \langle \mathbf{R}_+; \cdot, ' \rangle$,其中 \mathbf{R} 和 \mathbf{R}_+ 分别表示实数集和正实数集,十和 · 是通常数的加法和乘法,~表示求相反数的运算,'表示求倒数的运算.

设有函数 $h: \mathbf{R} \to \mathbf{R}_+$,对于任意 $x \in \mathbf{R}, h(x) = e^x$. 于是对于任意 $x, y \in \mathbf{R}$,

$$h(x+y) = e^{x+y} = e^x \cdot e^y = h(x) \cdot h(y)$$
.

对于任意 $x \in \mathbf{R}$,

$$h(\sim(x)) = h(-x) = e^{-x} = \frac{1}{e^x} = (h(x))'.$$

因此 h 是由 V_1 到 V_2 的一个同态.

例 4-14 设 $V = \langle \mathbf{R}^*; \cdot \rangle$,其中 \mathbf{R}^* 表示非零实数集, · 表示通常数的乘法运算. 试问下列两个函数是否由 V 到 V 的满同态?

(1) $h(x) = x^2$;

(2)
$$g(x) = \frac{1}{x}$$
.

解 (1) 对任意 $x \in \mathbb{R}^*$,有 $x^2 \in \mathbb{R}^*$,所以 h 是由 \mathbb{R}^* 到 \mathbb{R}^* 的函数. 又对于任意 $x,y \in \mathbb{R}^*$,有

$$h(x \cdot y) = (x \cdot y)^2 = x^2 \cdot y^2 = h(x) \cdot h(y),$$

所以 h 是从 V 到 V 的同态.

但 h 不是从 V 到 V 的满同态. 因为 h 不是由 \mathbf{R}^* 到 \mathbf{R}^* 的满射,例如 $-5 \in \mathbf{R}^*$,但不存在 $x \in \mathbf{R}^*$,使 $x^2 = -5$.

(2) 对任意 $x \in \mathbb{R}^*$,因为 $x \neq 0$,所以有 $\frac{1}{x} \in \mathbb{R}^*$,因此 g 是由 \mathbb{R}^* 到 \mathbb{R}^* 的函数.

又对于任意 $x,y \in \mathbf{R}^*$,

有
$$g(x \cdot y) = \frac{1}{x \cdot y} = \frac{1}{x} \cdot \frac{1}{y} = g(x) \cdot g(y),$$

所以g是从V到V的同态.

对于任意
$$x \in \mathbf{R}^*$$
,有 $\frac{1}{x} \in \mathbf{R}^*$,且 $\frac{1}{x} = x$,因此 $g\left(\frac{1}{x}\right) = x$.即 \mathbf{R}^* 中任一元素在

 \mathbf{R}^* 中均有像源. 所以 g 是由 \mathbf{R}^* 到 \mathbf{R}^* 的满射,因此 g 是从 V 到 V 的满同态.

例 4-15 设 $A = \{a,b,c\}$,试问代数系统 $\langle \{\emptyset,A\}; \bigcup, \bigcap \rangle$ 和 $\langle \{\{a,b\},A\}; \bigcup, \bigcap \rangle$ 是否同构?

解 令 $S = \{\emptyset, A\}, H = \{\{a,b\}, A\}.$ 定义函数 $f: S \rightarrow H$, 使得 $f(\emptyset) = \{a,b\}, f(A) = A$. 显然 f 是一双射.

对于任意 $x,y \in S$, 若 x=y, 则

$$f(x \cup y) = f(x),$$

$$f(x) \cup f(y) = f(x) \cup f(x) = f(x),$$

$$f(x \cup y) = f(x) \cup f(y).$$

所以

若 $x \neq y$,则 $f(x \cup y) = f(A) = A$, $f(x) \bigcup f(y) = \{a,b\} \bigcup A = A,$ $f(x \cup y) = f(x) \cup f(y)$. 所以 因此对于任意 $x,y \in S$,都有 $f(x \cup y) = f(x) \cup f(y)$. 类似地,对于任意 $x,y \in S$,若 x = y,则 $f(x \cap y) = f(x)$, $f(x) \cap f(y) = f(x) \cap f(x) = f(x)$, 所以 $f(x \cap y) = f(x) \cap f(y)$. 若 $x \neq y$,则 $f(x \cap y) = f(\emptyset) = \{a,b\},$ $f(x) \cap f(y) = \{a,b\} \cap A = \{a,b\},\$ 所以 $f(x \cap y) = f(x) \cap f(y)$. 因此对于任意的 $x,y \in S$,都有 $f(x \cap y) = f(x) \cap f(y)$. 由上证得 $\langle \{\emptyset,A\}, \bigcup, \bigcap \rangle = \langle \{\{a,b\},A\}, \bigcup, \bigcap \rangle = \emptyset$.

上午10时45分

例 4-16 代数系统 $V_1 = \langle \mathbf{Z}; + \rangle = \langle \mathbf{N}; \cdot \rangle$ 是否同构? 这里 \mathbf{Z} 和 \mathbf{N} 分别表示整数集和正整数集,十和 · 分别表示通常数的加法和乘法.

解 Z和 N 都是可数集,因此 Z和 N 之间存在有双射. 例如可以定义函数 $f:Z\rightarrow N$,使得

$$f(i) = \begin{cases} 1, & i=0, \\ 2i, & i>0, \\ 2|i|+1, & i<0. \end{cases}$$

因为 Z 和 N 均是无限集,因此由 Z 到 N 可以定义许多甚至无穷多个双射函数,这些双射函数中是否有满足同态条件的呢?这里不可能对所有的双射函数去一一考察,为了回答这一问题,可以先来考察这两个代数系统所具有的性质.

 $\langle \mathbf{Z}; + \rangle$ 中运算+具有单位元 $0; \langle \mathbf{N}; \bullet \rangle$ 中运算 • 也具有单位元 1.

 $\langle \mathbf{Z}; + \rangle$ 中每一整数 i 对于运算+均有逆元-i,即 i+(-i)=(-i)+i=0;但 $\langle \mathbf{N}; \bullet \rangle$ 中除单位元 1 对于运算 • 具有逆元 1 外,其他正整数对于运算 • 均不存在逆元. 这就是说,任何一个由 \mathbf{Z} 到 \mathbf{N} 的双射函数都不能使 V_2 中运算 • 具有 V_1 中运算+每一元素均有逆元的这一条性质. 而"保持运算的性质"是 f 为同构的必要条件,由此可知 V_1 与 V_2 不同构.

例 4-23 设有代数系统〈S; * ,。〉,其中 * 和。均是二元运算,并分别具有单位元 e_1 和 e_2 . 已知运算 * 和。相互之间均是可分配的. 试证明对于 S 中任意的元素x,有 x*x=x°x=x.

证 因为 e_1 是 * 的单位元, e_2 是。的单位元, 所以

$$e_1 = e_2 \circ e_1 = (e_2 * e_1) \circ e_1 = (e_2 \circ e_1) * (e_1 \circ e_1) = e_1 * (e_1 \circ e_1) = e_1 \circ e_1,$$

$$e_2 = e_1 * e_2 = (e_1 \circ e_2) * e_2 = (e_1 * e_2) \circ (e_2 * e_2) = e_2 \circ (e_2 * e_2) = e_2 * e_2.$$

于是,对于任意的 $x \in S$,有

$$x * x = (x \circ e_2) * (x \circ e_2) = x \circ (e_2 * e_2) = x \circ e_2 = x,$$

$$x \circ x = (x * e_1) \circ (x * e_1) = x * (e_1 \circ e_1) = x * e_1 = x.$$

故对于任意 $x \in S$,有

$$x * x = x \circ x = x$$
.

例 4-24 设 f_1 和 f_2 都是从代数系统〈 S_1 ; *〉到〈 S_2 ;。〉的同态,这里 * 和。都是二元运算,且。是可交换和可结合的. 定义函数 $h:S_1 \rightarrow S_2$,使得对于任意 $x \in S_1$, $h(x) = f_1(x) \circ f_2(x)$. 试证明 h 也是从〈 S_1 ; *〉到〈 S_2 ;。〉的同态.

证 对于任意 $x,y \in S_1$,因为 f_1 和 f_2 都是从 $\langle S_1, * \rangle$ 到 $\langle S_2, \circ \rangle$ 的同态,所以有

$$h(x * y) = f_1(x * y) \circ f_2(x * y)$$

= $(f_1(x) \circ f_1(y)) \circ (f_2(x) \circ f_2(y)).$

又因为。是可交换和可结合的,所以

$$h(x * y) = (f_1(x) \circ f_2(x)) \circ (f_1(y) \circ f_2(y)) = h(x) \circ h(y).$$

由 x,y 的任意性,可知 h 也是从 $\langle S_1;*\rangle$ 到 $\langle S_2;\circ\rangle$ 的同态.

例 4-28 代数系统 $V_1 = \langle \mathbf{R} - \{0\}; \bullet \rangle = \langle \mathbf{R}; + \rangle$ 同构吗?其中 R 表示实数集, • 和十分别表示通常数的乘法和加法运算.

分析 如果 V_1 与 V_2 同构,则这两个代数系统应具有完全相同的性质.例如 V_1 中有单位元 1, V_2 中有单位元 0. 但是我们发现在 V_1 中元素 -1 满足等式(-1) \bullet (-1)=1,而在 V_2 中却找不出除单位元 0 以外的元素 x,满足 x+x=0. 因此 V_1 与 V_2 不可能同构. 下面给出这一结论的证明.

证 用反证法证明之. 设存在函数 $h: \mathbf{R} - \{0\} \rightarrow \mathbf{R}$ 是从 V_1 到 V_2 的同构,则由单位元映射为单位元,有 h(1)=0.

又设 h(-1)=b,则

$$h(1)=h((-1) \cdot (-1))=h(-1)+h(-1)=b+b.$$

因此 b+b=0,即 b=0,由此导致 h(1)=h(-1),这与 h 是双射相矛盾.故〈**R**-{0},・〉与〈**R**,+〉不同构.

若代数系统 V_1 和 V_2 是同一个代数系统 V_1 则从 V_1 到 V_2 的同态称为 V 的自同态. 从 V_1 到 V_2 的同构称为 V 的自同构.

End of Chapter 4.