- (9) En cada caso, caracterizar con ecuaciones al subespacio vectorial dado por generadores.
 - a) $\langle (1,0,3), (0,1,-2) \rangle \subseteq \mathbb{R}^3$.
 - b) $\langle (1,2,0,1), (0,-1,-1,0), (2,3,-1,4) \rangle \subseteq \mathbb{R}^4$.
 - a) See $W = \langle (1,0,3), (0,1,-2) \rangle$, entonces $(K_1, K_2, K_3) \in W$ si existen $S, t \in \mathbb{R}$ tall que $(K_1, K_2, K_3) = S(1,0,3) + t(0,1,-2)$ = (5,0,35) + (0,t,-2t)

For 6 tento
$$W = \{(s_1t, 3s-2t) : s, t \in \mathbb{R}\}$$

= $\{(k_1, k_2, k_3) \in \mathbb{R}^3 : k_3 = 3k_4 - 2k_2\}$

= (5, t, 3s-2t)

b) Sea $W = \langle (1,2,0,1), (0,-1,-1,0), (2,3,-1,4) \rangle$, si formamos le matriz cuyas filas son los vectores, la MERF equivalente nos derá generadores más sencilos:

$$\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & -1 & -1 & 0 \\ 2 & 3 & -1 & 4 \end{bmatrix} \xrightarrow{\int_{3} -2f_{1}} \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 2 \end{bmatrix} \xrightarrow{\int_{3} -2f_{2}} \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 2 \end{bmatrix} \xrightarrow{\int_{3} -2f_{2}} \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \xrightarrow{\int_{3} -2f_{2}} \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

(K_1, K_2, K_3, K_n) $\in W$ so existen $\Gamma_1 S_1 \notin \mathbb{R}$ to lave (K_1, K_2, K_3, K_n) = $\Gamma(1,0,-2,0) + S(0,1,1,0) + E(0,0,0,1)$ = $(\Gamma_1,0,-2\Gamma_1,0) + (0,5,5,0) + (0,0,0,0)$ = $(\Gamma_1, S_1, -2\Gamma_1 + S_1, E)$