teoria de números computacional

cláudia mendes araújo

2024/2025

lcc+lmat | uminho

congruências

congruências módulo n

definição. Seja $n \in \mathbb{N}$. Diz-se que um inteiro a é congruente módulo n com um inteiro b, e escreve-se $a \equiv b \pmod{n}$, se n é um divisor de a-b, i.e., se a-b=nk, para algum $k \in \mathbb{Z}$.

teorema. Para quaisquer inteiros a e b,

 $a \equiv b \pmod{n}$ se e só se a e b têm o mesmo resto na divisão por n.

corolário. Para todo o inteiro a, a é congruente módulo n com o resto da sua divisão por n.

Assim, cada inteiro a é congruente módulo n com um e um só dos inteiros

$$0, 1, 2, \cdots, n-2, n-1.$$

1

sistema completo de resíduos módulo n

definição. Seja $n \in \mathbb{N}$. Um conjunto de n inteiros $\{a_1, a_2, \cdots, a_n\}$ diz-se um sistema completo de resíduos módulo n se todo o inteiro é congruente módulo n com um e um só a_k $(k \in \{1, 2, ..., n\})$.

exemplo. Os conjuntos $A=\{0,1,2,3,4\}$ e $B=\{-13,-5,1,13,24\}$ são sistemas completos de resíduos módulo 5.

Os conjuntos $C=\{-13,-5,0,1,13\}$ e $D=\{0,1,2,3,4,5\}$ não são sistemas completos de resíduos módulo 5.

propriedades

teorema. Sejam $a,b,c,d\in\mathbb{Z}$. Então,

- (i) $a \equiv a \pmod{n}$;
- (ii) $a \equiv b \pmod{n} \Rightarrow b \equiv a \pmod{n}$;
- (iii) $(a \equiv b \pmod{n}) \in b \equiv c \pmod{n}$;

(iv)
$$a \equiv b \pmod{n} \Rightarrow \begin{cases} ac \equiv bc \pmod{n} \\ a+c \equiv b+c \pmod{n} \end{cases}$$
;

- (v) $ac \equiv bc \pmod{n} \Rightarrow a \equiv b \pmod{\frac{n}{m.d.c.(n,c)}}$;
- (vi) $(ac \equiv bc \pmod{n} \text{ e m.d.c.}(n, c) = 1) \Rightarrow a \equiv b \pmod{n}$;

(vii)
$$(a \equiv b \pmod{n} e \ c \equiv d \pmod{n}) \Rightarrow \begin{cases} ac \equiv bd \pmod{n} \\ a+c \equiv b+d \pmod{n} \end{cases}$$
;

(viii)
$$a \equiv b \pmod{n} \Rightarrow a^k \equiv b^k \pmod{n}$$
, para todo $k \in \mathbb{N}$;

$$\left. \begin{array}{l} a \equiv b (\operatorname{mod} n_1) \\ a \equiv b (\operatorname{mod} n_2) \\ \vdots \\ a \equiv b (\operatorname{mod} n_k) \end{array} \right\} \Rightarrow a \equiv b (\operatorname{mod} \operatorname{m.m.c.}(n_1, n_2, \ldots, n_k));$$

congruências lineares

definição. Chama-se congruência linear a toda a expressão da forma $ax \equiv b \pmod{n}$ em que $a, b \in \mathbb{Z}$, $a \neq 0$ e $x \notin \text{um}$ símbolo.

Chama-se solução da congruência linear $ax \equiv b \pmod{n}$ a qualquer inteiro x_0 tal que " $ax_0 \equiv b \pmod{n}$ " é uma afirmação verdadeira.

Resolver uma congruência linear é determinar o conjunto de todas as soluções dessa congruência linear.

exemplo. A congruência linear $2x \equiv 3 \pmod 4$ não tem soluções em \mathbb{Z} . De facto, para qualquer $x_0 \in \mathbb{Z}$, $2x_0 - 3$ é um número ímpar e, portanto, não divisível por 4.

exemplo. A congruência linear $2x\equiv 4(\bmod{12})$ admite, entre outras, as soluções $x_0=2,\ x_1=8$ e $x_2=-10.$

existência de soluções e determinação do conjunto de soluções

teorema. Sejam $a,b\in\mathbb{Z}$ e $a\neq 0$. A congruência linear $ax\equiv b(\bmod n)$ admite solução se e só se $\mathrm{m.d.c.}(a,n)\mid b$.

teorema. Sejam $n \in \mathbb{N}$, $a, b \in \mathbb{Z}$ e d = m.d.c.(a, n). Se x_0 é solução da congruência linear $ax \equiv b \pmod{n}$, então,

$$x_0, x_0 + \frac{n}{d}, x_0 + \frac{2n}{d}, \dots, x_0 + \frac{(d-1)n}{d}$$

é a lista completa das soluções da congruência linear $ax \equiv b \pmod{n}$, não congruentes módulo n duas a duas.

corolário. Se $\mathrm{m.d.c.}(a,n)=1$, então, a congruência linear $ax\equiv b \pmod n$ tem uma e uma só solução módulo n.

exemplo. Queremos resolver a congruência linear

$$18x \equiv 30 \pmod{42}.$$

Como $\mathrm{m.d.c.}(18,42)=6$ e 6 | 30, a congruência admite exactamente 6 soluções não congruentes módulo 42, duas a duas.

Uma solução possível é 4 porque

$$18 \times 4 = 72 \equiv 30 \pmod{42}$$
.

Logo, as 6 soluções referidas são

$$x \equiv 4 + \frac{42}{6}t \pmod{42}, \qquad t \in \{0, 1, 2, 3, 4, 5\},$$

i.e.,

$$egin{align*} x_1 \equiv 4 \pmod{42}, & x_2 \equiv 11 \pmod{42}, & x_3 \equiv 18 \pmod{42} \ x_4 \equiv 25 \pmod{42}, & x_5 \equiv 32 \pmod{42}, & x_6 \equiv 39 \pmod{42}. \end{aligned}$$

6

exemplo e resultado

Assim, o conjunto das soluções da congruência linear $18x \equiv 30 \pmod{42}$ é

$$\begin{aligned} C.S. &= \{x \in \mathbb{Z} \mid x \equiv 4 \pmod{42} \lor x \equiv 11 \pmod{42} \lor x \equiv 18 \pmod{42} \lor \\ &\lor x \equiv 25 \pmod{42} \lor x \equiv 32 \pmod{42} \lor x \equiv 39 \pmod{42} \}. \end{aligned}$$

proposição. Sejam $ax \equiv b \pmod n$ uma congruência linear que admite soluções e d = m.d.c.(a,n). Então,

$$ax \equiv b \pmod{n} \Leftrightarrow \frac{a}{d}x \equiv \frac{b}{d} \pmod{\frac{n}{d}}.$$

observação. m.d.c. $\left(\frac{a}{d},\frac{n}{d}\right)=1$, pelo que $ax\equiv b \pmod{n}$ admite uma e uma só solução módulo $\frac{n}{d}$.

exemplo. Consideremos novamente a congruência linear

$$18x \equiv 30 \pmod{42}.$$

Como m.d.c.(18, 42) = 6 e 6 | 30,

$$18x \equiv 30 \pmod{42} \Leftrightarrow \frac{18}{6}x \equiv \frac{30}{6} \pmod{\frac{42}{6}}$$
$$\Leftrightarrow 3x \equiv 5 \pmod{7}$$

e, portanto, $18x \equiv 30 \pmod{42}$ admite uma e uma só solução módulo 7.

A solução é 4 porque

$$3 \times 4 \equiv 5 \pmod{7}$$
.

Logo, o conjunto das soluções da congruência linear dada é

$$C.S. = \{x \in \mathbb{Z} \mid x \equiv 4 \pmod{7}\}.$$

8

Consideremos a congruência linear

$$ax \equiv 1 \pmod{n}$$
.

Sabemos que a congruência tem solução se e só se $\mathrm{m.d.c.}(a,n)=1$ e, nesse caso, a solução é única módulo n.

Se m.d.c.(a, n) = 1, a solução da congruência $ax \equiv 1 \pmod{n}$ é o inverso de a em \mathbb{Z}_n , denotado por a^{-1} .

Dado um natural n, denotamos por \mathbb{Z}_n^* o conjunto dos elementos a de \mathbb{Z}_n invertíveis (i.e., a tal que $\mathrm{m.d.c.}(a,n)=1$).

Dado um primo p, sabemos que

$$\mathbb{Z}_p^* = \{1, \ldots, p-1\}.$$

 $(\mathbb{Z}_p^*,+,\cdot)$ é um corpo. Em particular, (\mathbb{Z}_p^*,\cdot) é um grupo comutativo (cíclico).

 $a = a^{-1}$ e teste de primalidade

Mais tarde, precisamos saber quais inteiros são os seus próprios inversos módulo p, onde p é primo. O próximo teorema diz-nos quais inteiros têm esta propriedade.

teorema. Seja p um número primo. O inteiro positivo a é o seu próprio inverso módulo p se e só se $a \equiv 1 \pmod{p}$ ou $a \equiv -1 \pmod{p}$.

demonstração. Suponhamos que $a \equiv 1 \pmod{p}$ ou $a \equiv -1 \pmod{p}$.

Então, $a^2 \equiv 1 \pmod{p}$, o que implica que a é o seu próprio inverso módulo p.

Reciprocamente, se a é o seu próprio inverso módulo p, então $a^2 = a \cdot a \equiv 1 \pmod{p}$. Assim, $p \mid (a^2 - 1)$.

Como $a^2-1=(a-1)(a+1)$, isto implica que $p\mid (a-1)$ ou $p\mid (a+1)$. Portanto, $a\equiv 1\pmod p$ ou $a\equiv -1\pmod p$.

observação. Se n for um natural para o qual existe a tal que $a^2 \equiv 1 \pmod n$, mas $a \not\equiv 1 \pmod n$ e $a \not\equiv -1 \pmod n$, podemos concluir que n não é primo.

sistemas de congruências

definição. Chama-se sistema de congruências lineares a um sistema do tipo

(S)
$$\begin{cases} a_1x \equiv b_1 \pmod{n_1} \\ a_2x \equiv b_2 \pmod{n_2} \\ \vdots \\ a_kx \equiv b_k \pmod{n_k} \end{cases}$$

onde $k \in \mathbb{N} \setminus \{1\}$ e, para todo $i \in \{1,...,k\}$, $a_i,b_i \in \mathbb{Z}$ e $n_i \in \mathbb{N}$.

Uma solução de (S) é qualquer inteiro que é solução de todas as congruências de (S).

exemplo. O sistema de congruências lineares

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 1 \pmod{4} \end{cases}$$

admite a solução $x_0 = 5$.

exemplo. O sistema de congruências lineares

$$\begin{cases} x \equiv 1 \pmod{4} \\ x \equiv 4 \pmod{6} \end{cases}$$

não admite soluções inteiras.

Teorema Chinês dos Restos

Teorema Chinês dos Restos (TCR). Sejam $k \in \mathbb{N} \setminus \{1\}$, $a_1, a_2, ..., a_k \in \mathbb{Z}$ e $n_1, n_2, ..., n_k \in \mathbb{N}$ tais que

$$\forall i, j \in \{1, ..., k\}$$
 $(i \neq j \Longrightarrow \text{m.d.c.}(n_i, n_j) = 1).$

Então, o sistema de congruências lineares

$$(S) \begin{cases} x \equiv a_1 \pmod{n_1} \\ x \equiv a_2 \pmod{n_2} \\ \vdots \\ x \equiv a_k \pmod{n_k} \end{cases}$$

tem uma e uma só solução módulo $n_1 n_2 \cdots n_k$.

demonstração Seja
$$n=n_1\times n_2\times \cdots \times n_k$$
. Para cada $i\in\{1,2,...,k\}$, seja $N_i=rac{n}{n_i}=n_1\cdots n_{i-1}n_{i+1}\cdots n_k$

.

Teorema Chinês dos Restos

Como, para $i \neq j$, n_i e n_j são primos entre si, também $\operatorname{m.d.c.}(N_i, n_i) = 1$ e, portanto, para cada i, a congruência linear $N_i x \equiv 1 \pmod{n_i}$ admite solução única módulo n_i . Seja ela x_i .

Mostremos que o inteiro

$$x_0 = x_1 N_1 a_1 + x_2 N_2 a_2 + \cdots + x_k N_k a_k$$

é solução de (S).

Comecemos por observar que, para $r, i \in \{1, 2, ..., k\}$ e $r \neq i$, como $n_r \mid N_i$, $N_i \equiv 0 \pmod{n_r}$ e, portanto,

$$x_0 = x_1 N_1 a_1 + x_2 N_2 a_2 + \cdots + x_k N_k a_k \equiv a_r N_r x_r \pmod{n_r}.$$

Como x_r é solução de $N_r x \equiv 1 \pmod{n_r}$, obtemos

$$x_0 \equiv a_r \pmod{n_r}$$
.

Portanto, o sistema (S) admite a solução x_0 .

Teorema Chinês dos Restos

Suponhamos de seguida que x' é outra solução de (S).

Então,

$$x_0 \equiv x' \pmod{n_r},$$

para qualquer $r \in \{1, 2, ..., k\}$.

Portanto, $n_r \mid x_0 - x'$, para cada $r \in \{1, 2, ..., k\}$.

Como $\mathrm{m.d.c.}(n_i,n_j)=1 \; (i \neq j)$, obtemos

$$n_1n_2\cdots n_k\mid x_0-x'.$$

Assim, $x_0 \equiv x' \pmod{n}$.

exemplo

Problema de Sun-Tsu. Encontre um número que tem resto 2, 3 e 2 na divisão por 3, 5 e 7, respectivamente.

O problema traduz-se na resolução do seguinte sistema de congruências lineares

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}.$$

Sejam

$$n = 3 \times 5 \times 7 = 105$$

е

$$N_1=\frac{n}{3}=35,$$

$$N_2 = \frac{n}{5} = 21$$

е

$$N_3 = \frac{n}{7} = 15.$$

Como $\mathrm{m.d.c.}(35,3)=\mathrm{m.d.c.}(21,5)=\mathrm{m.d.c.}(15,7)=1$, temos que cada uma das congruências lineares

$$35x \equiv 1 \pmod{3}$$
, $21x \equiv 1 \pmod{5}$, $15x \equiv 1 \pmod{7}$

admite uma e uma só solução módulo 3, 5 e 7: $x_1=2, \ x_2=1$ e $x_3=1,$ respectivamente.

Pelo TCR,

$$x_0 = 2 \times 35 \times 2 + 3 \times 21 \times 1 + 2 \times 15 \times 1 = 233$$

é uma solução do sistema inicial.

Logo, a única solução do sistema módulo 105 é

$$x \equiv 233 \pmod{105}$$
, ou seja, é $x \equiv 23 \pmod{105}$.

O TCR fornece uma forma de realizar aritmética computacional com inteiros grandes.

Armazenar inteiros muito grandes e efetuar operações aritméticas com eles requer técnicas especiais.

O TCR diz-nos que, dados módulos m_1, m_2, \ldots, m_r , primos entre si dois a dois, um inteiro positivo n tal que $n < M = m_1 m_2 \ldots m_r$ é determinado univocamente pelos seus menores resíduos positivos módulo m_j para $j = 1, 2, \ldots, r$.

aritmética computacional usando o Teorema Chinês dos Restos

exemplo. Suponhamos que uma máquina opera apenas com números inferiores a 100, mas queremos calcular 123+456.

Primeiro, encontramos inteiros primos entre si dois a dois menores ou iguais a 100, cujo produto exceda o valor que pretendemos calcular. Por exemplo, podemos escolher $m_1 = 99$ e $m_2 = 98$.

De seguida, convertemos a=123 e b=456 em pares formados pelos seus menores resíduos positivos módulo m_1 e m_2 .

Temos que a é associado ao par (24, 25) e b ao par (60, 64), uma vez que

$$a \equiv 24 \pmod{99}$$
 e $a \equiv 25 \pmod{98}$

e

$$b \equiv 60 \pmod{99}$$
 e $b \equiv 64 \pmod{98}$.

Sabemos que

$$a + b \equiv 24 + 60 \pmod{99}$$
 e $a + b \equiv 25 + 64 \pmod{98}$

Pelo TCR, sabemos que a+b é univocamente determinado pelos seus menores resíduos positivos módulo m_1 e m_2 , uma vez que existe uma única solução módulo $m_1 \times m_2 = 9702$ do sistema

$$\begin{cases} x \equiv 84 \pmod{99} \\ x \equiv 89 \pmod{98} \end{cases}.$$

Usando o TCR, obtemos a solução $x \equiv 579 \pmod{9702}$, o que nos permite concluir que 123 + 456 = 579 (pois claramente 123 + 456 < 9702).

exemplo. Suponhamos, agora, que pretendemos calcular 123×456 numa máquina que opera apenas com números inferiores a 100.

Sabemos que

$$123 \times 456 \equiv 24 \times 60 \pmod{99}$$
 e $123 \times 456 \equiv 25 \times 64 \pmod{98}$.

Pelo TCR, sabemos que 123×456 é univocamente determinado pelos seus menores resíduos positivos módulo 99 e 98, uma vez que existe uma única solução módulo $99 \times 98 = 9702$ do sistema

$$\begin{cases} x \equiv 54 \pmod{99} \\ x \equiv 32 \pmod{98} \end{cases}.$$

Usando o TCR, obtemos a solução $x\equiv7578\pmod{9702}$, mas, obviamente, $123\times456>7578$. Por este processo, apenas concluímos que $123\times456\equiv7578\pmod{9702}$.

Para contornar esta questão, podemos usar representações de 123 e 456 como ternos ordenados de resíduos em \mathbb{Z}_{99} , \mathbb{Z}_{98} e \mathbb{Z}_{m_3} , com $m_3 < 100$ (suficientemente grande) que seja primo com 99 e com 98.

Consideremos $m_3 = 97$.

Sabemos que

$$123 \times 456 \equiv 24 \times 60 \pmod{99}, \ 123 \times 456 \equiv 25 \times 64 \pmod{98} \ \ \text{e} \ \ 123 \times 456 \equiv 26 \times 68 \pmod{97}.$$

Pelo TCR, sabemos que 123×456 é univocamente determinado pelos seus menores resíduos positivos módulo 99, 98 e 97, uma vez que existe uma única solução módulo $99 \times 98 \times 97 = 941094$ do sistema

$$\begin{cases} x \equiv 54 \pmod{99} \\ x \equiv 32 \pmod{98} \\ x \equiv 22 \pmod{97} \end{cases}$$

Usando o TCR, obtemos a solução $x \equiv 56088 \pmod{941094}$, o que nos permite concluir que $123 \times 456 = 56088$ (uma vez que, claramente, $123 \times 456 < 941094$).

O algoritmo de fatorização ρ -Pollard é um algoritmo probabilístico para fatorizar números inteiros grandes.

John Pollard inventou este algoritmo de factorização em 1975. É relativamente rápido para números com fatores primos pequenos, mesmo que esses números sejam grandes, e tem um consumo de memória muito reduzido, tornando-se assim uma ferramenta útil para uma análise inicial.

Explora a ideia de que, se tivermos dois números x_i e x_j que são congruentes módulo um fator primo de n, mas não módulo n inteiro, então podemos extrair um fator não trivial de n usando o máximo divisor comum.

O primeiro passo é escolher uma sequência pseudoaleatória x_0, x_1, \ldots, x_s . Escolhemos um número inicial x_0 e definimos uma sequência recorrente dada por uma função polinomial $f(x) \in \mathbb{Z}[x]$, tipicamente:

$$x_{k+1} \equiv f(x_k) (\bmod n).$$

Um polinómio simples e comum é $f(x) = x^2 + 1$ (ou $f(x) = x^2 \pm a$, onde $a \ne 0, 2$), pois gera bons números pseudoaleatórios quando considerado com vários módulos.

algoritmo de fatorização ρ-Pollard

O segundo passo do algoritmo é procurar "colisões" módulo um fator de n.

A ideia-chave é que, se n for composto e tivermos o seu menor fator primo p, então os números da sequência terão comportamentos diferentes quando tomamos restos módulo p.

Em particular, queremos encontrar dois índices i e j (com i < j) tais que:

$$x_i \equiv x_j \pmod{p}$$
 (iguais módulo p),

mas

$$x_i \not\equiv x_j \pmod{n}$$
 (differentes módulo n).

Ou seja, os valores repetem-se módulo p, mas não módulo n. Isto acontece porque a sequência repete-se mais cedo quando reduzida módulo p, criando um ciclo.

Se conseguirmos obter tais inteiros, então, dado que p divide $(x_j - x_i)$ e p divide n, e dado que n não divide $(x_j - x_i)$, segue-se que

$$p \leq \text{m.d.c.}(x_i - x_i, n) \leq n$$

e, portanto, $\text{m.d.c.}(x_j - x_i, n)$ seria um fator não trivial de n.

Como assumimos que p é pequeno, é provável que rapidamente encontremos x_i e x_j , com i < j, tais que $x_j - x_i \equiv 0 \pmod{p}$, (pois módulo p existem apenas p valores distintos), mas ao mesmo tempo $x_j - x_i \not\equiv 0 \pmod{n}$.

Obviamente, não podemos testar diretamente esta congruência, pois não conhecemos p, mas podemos calcular $\mathrm{m.d.c.}(x_j-x_i,n)$ e verificar se o resultado é diferente de 1 e de n.

algoritmo de fatorização ρ-Pollard

Suponhamos que, ao longo do processo, encontramos x_i e x_j tais que $x_i \equiv x_j \pmod{p}$. Depois do índice i, estes valores irão repetir-se a cada j-i elementos. Por exemplo, se i=22 e j=27, então a repetição ocorre a cada 5 elementos a partir de i=22.

Dado isto, seja s o menor múltiplo de j-i que seja maior ou igual a i. Como 2s-s=s é um múltiplo de j-i, segue-se que

$$x_{2s} \equiv x_s \pmod{p}.$$

Muito provavelmente também teremos

$$x_{2s} \not\equiv x_s \pmod{n}$$
,

e assim x_{2s} e x_s serão úteis para encontrar um fator de n.

algoritmo de fatorização ρ-Pollard

Mas como podemos encontrar s sem saber i ou j?

Simplesmente continuamos a calcular a sequência e testamos apenas x_{2s} e x_s .

Mais uma vez, não conseguimos testar diretamente $x_{2s} \equiv x_s \pmod{p}$, pois não conhecemos p, mas podemos calcular

$$\mathrm{m.d.c.}(x_{2s}-x_s,n)$$

e verificar se o resultado é diferente de 1 e n.

É possível (embora, na prática, improvável) que as repetições sejam congruentes módulo n assim como módulo p, o que resultaria num máximo divisor comum igual a n. Nesse caso, o algoritmo falha. Quando isso acontece, tentamos um valor inicial diferente ou, eventualmente, um polinómio distinto.

Se n for primo, o algoritmo ρ -Pollard falha em encontrar um fator, pois ele depende da existência de um divisor próprio de n para funcionar.

exemplo. Vamos fatorizar n = 1111. Definimos $x_0 = 2$ e $f(x) = x^2 + 1$.

Calculemos:

$$\begin{split} f(x_0) &= 2^2 + 1 = 5; \quad x_1 \equiv 5 \pmod{1111}, \\ f(x_1) &= 5^2 + 1 = 26; \quad x_2 \equiv 26 \pmod{1111}, \\ \text{m.d.c.}(x_2 - x_1, n) &= \text{m.d.c.}(26 - 5, 1111) = 1, \\ f(x_2) &= 26^2 + 1 = 677; \quad x_3 \equiv 677 \pmod{1111}, \\ f(x_3) &= 677^2 + 1 = 458330; \quad x_4 \equiv 598 \pmod{1111}, \\ \text{m.d.c.}(x_4 - x_2, n) &= \text{m.d.c.}(598 - 26, 1111) = 11. \end{split}$$

Sabemos, assim, que 11 é um fator de n.

algoritmo de fatorização ρ -Pollard | exemplo

Temos

$$x_0 \equiv 2 \pmod{11},$$
 $x_1 \equiv 5 \pmod{11},$
 $x_2 \equiv 4 \pmod{11},$
 $x_3 \equiv 6 \pmod{11},$
 $x_4 \equiv 4 \pmod{11},$
 $x_5 \equiv 6 \pmod{11},$
 \vdots

exemplo. Vamos fatorizar n = 5293. Definimos $x_0 = 2$ e $f(x) = x^2 + 1$.

Calculemos:

$$\begin{split} &f(x_0)=2^2+1=5; \quad x_1\equiv 5(\bmod{5293}),\\ &f(x_1)=5^2+1=26; \quad x_2\equiv 26(\bmod{5293}),\\ &m.d.c.(x_2-x_1,n)=1,\\ &f(x_2)=26^2+1=677; \quad x_3\equiv 677(\bmod{5293}),\\ &f(x_3)=677^2+1=458330; \quad x_4\equiv 3132(\bmod{5293}),\\ &m.d.c.(x_4-x_2,n)=1,\\ &f(x_4)=3132^2+1=9809425; \quad x_5\equiv 1495(\bmod{5293}),\\ &f(x_5)=1496^2+1=2238017; \quad x_6\equiv 4371(\bmod{5293}),\\ &m.d.c.(x_6-x_3,n)=1,\\ &f(x_6)=4371^2+1=19105642; \quad x_7\equiv 3205(\bmod{5293}),\\ &f(x_7)=3205^2+1=10272026; \quad x_8\equiv 3606(\bmod{5293}),\\ &m.d.c.(x_8-x_4,n)=79. \end{split}$$

Sabemos, assim, que 79 é um fator de n.

algoritmo de fatorização ρ-Pollard | exemplo

Vejamos que os números x_0, \ldots, x_8 são incongruentes dois a dois módulo 5293, mas há "colisão" módulo 79:

$x_0 \equiv 2 \pmod{5293}$	$x_0 \equiv 2 \pmod{79}$
$x_1 \equiv 5 \pmod{5293}$	$x_1\equiv 5(\bmod{79})$
$x_2 \equiv 26 \pmod{5293}$	$x_2 \equiv 26 \pmod{79}$
$x_3 \equiv 677 \pmod{5293}$	$x_3 \equiv 45 \pmod{79}$
$x_4\equiv 3132 (\bmod{5293})$	$x_4 \equiv 51 \pmod{79}$
$x_5 \equiv 1495 \pmod{5293}$	$x_5 \equiv 73 \pmod{79}$
$x_6 \equiv 4371 \pmod{5293}$	$x_6 \equiv 26 \pmod{79}$
$x_7\equiv 3205 (\bmod{5293})$	$x_7 \equiv 45 \pmod{79}$
$x_8 \equiv 3606 \pmod{5293}$	$x_8 \equiv 51 \pmod{79}$

input: inteiro n composto

output: um fator não trivial de n

passo 1.: $a \leftarrow 2, b \leftarrow 2$

passo 2.:

2.1. calcular

$$b = b^2 + 1$$

$$a = a^2 + 1$$

$$a = a^2 + 1$$

2.2. calcular

$$d = \text{m.d.c.}(a - b, n)$$

- **2.3.** se d = 1, voltar ao passo **2.1**.
- **2.4.** se 1 < d < n, devolver o fator d.
- **2.5.** se $d = n^{(*)}$, terminar sem sucesso.

obs.: a probabilidade de (*) acontecer é quase nula.

teorema (Teorema de Wilson). Se p é um número primo, então, $(p-1)! \equiv -1 \pmod{p}.$

Antes de provar o teorema de Wilson, usamos um exemplo para ilustrar a ideia por detrás da demonstração.

exemplo. Seja p=7. Temos $(7-1)!=6!=1\times2\times3\times4\times5\times6$. Rearranjamos os fatores no produto, agrupando pares de inversos módulo 7. Notamos que

$$2\times 4\equiv 1(\operatorname{mod} 7)\quad \mathrm{e}\quad \ 3\times 5\equiv 1(\operatorname{mod} 7).$$

Assim,

$$\begin{aligned} 6! &\equiv 1 \times (2 \times 4) \times (3 \times 5) \times 6 (\operatorname{mod} 7) \\ &\equiv 1 \times 1 \times 1 \times 6 (\operatorname{mod} 7) \\ &\equiv -1 (\operatorname{mod} 7). \end{aligned}$$

teorema de Wilson

demonstração (teorema de Wilson). A verificação da condição para p=2 e p=3 é trivial.

Consideremos p>3. Seja $a\in\{1,2,3,...,p-1\}$. Consideramos a congruência linear $ax\equiv 1 (\operatorname{mod} p)$.

Como $\mathrm{m.d.c.}(a,p)=1$, existe uma e uma só solução módulo p desta congruência linear. Note-se que essa solução é o inverso de a em \mathbb{Z}_p , a^{-1} .

Então,

$$1 \le a^{-1} \le p - 1$$
 e $aa^{-1} \equiv 1 \pmod{p}$.

teorema de Wilson

Se
$$a=a^{-1}$$
 temos
$$a^2\equiv 1(\bmod p)\quad\Leftrightarrow p\mid a^2-1$$

$$\Leftrightarrow p\mid (a-1)(a+1)$$

$$\Leftrightarrow p\mid a-1 \qquad ou \qquad p\mid a+1$$

$$\Leftrightarrow a\equiv 1(\bmod p) \qquad ou \qquad a\equiv -1(\bmod p).$$

Se $a \neq a^{-1}$, temos então que

$$a \in \{2, 3, 4, ..., p - 3, p - 2\}.$$

Os p-3 elementos deste conjunto podem ser agrupados em pares (a,a^{-1}) tais que $a\neq a^{-1}$ e $aa^{-1}\equiv 1 \pmod p$.

Obtemos $\frac{p-3}{2}$ pares e, portanto, $\frac{p-3}{2}$ expressões do tipo $aa^{-1} \equiv 1 \pmod{p}$.

Assim,

$$2 \times 3 \times \cdots \times (p-3) \times (p-2) \equiv 1 \pmod{p}$$

i.e.,

$$(p-2)! \equiv 1 \pmod{p}.$$

Logo,

$$(p-1)! = (p-1)(p-2)! \equiv p-1 \pmod{p}$$

e, portanto,

$$(p-1)! \equiv -1 \pmod{p}.$$

exemplo. Vejamos que o resto da divisão de 18! por 19 é 18, ilustrando a demonstração do Teorema de Wilson.

Seja
$$p=19$$
. Da lista

$$2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17$$

exemplo

podemos formar 8 pares de números e com eles formar as 8 congruências:

$$2 \times 10 \equiv 1 \pmod{19}$$

$$3 \times 13 \equiv 1 \pmod{19}$$

$$4\times 5\equiv 1(\mathrm{mod}\,19)$$

$$6\times 16\equiv 1(\mathrm{mod}\,19)$$

$$7\times 11\equiv 1(\operatorname{mod} 19)$$

$$8\times 12\equiv 1(\mathrm{mod}\,19)$$

$$9\times 17\equiv 1(\bmod{\,19})$$

$$14\times 15\equiv 1(\operatorname{mod} 19).$$

Então,

$$2 \times 10 \times 3 \times 13 \times 4 \times 5 \times 6 \times 16 \times 7 \times 11 \times 8 \times 12 \times 9 \times 17 \times 14 \times 15 \equiv 1 \pmod{19}$$
,

exemplo & recíproco do Teorema de Wilson

i.e.,
$$17! \equiv 1 (\bmod{19}).$$
 Logo,
$$18! = 18 \times 17! \equiv 18 \times 1 (\bmod{19}),$$
 i.e.,
$$(19-1)! \equiv -1 (\bmod{19}).$$

teorema. Se $(n-1)! \equiv -1 \pmod{n}$, então n é primo.

demonstração. Suponhamos que n não é primo. Então, n=ab para alguns naturais a,b tais que $1< a,b \leq n-1$.

recíproco do Teorema de Wilson

Como $1 < a \le n-1$ concluímos que $a \mid (n-1)!$.

De a $\mid n$, como $n \mid (n-1)! + 1$ por hipótese, concluímos que a $\mid (n-1)! + 1$.

Logo,

$$a \mid (n-1)! + 1 - (n-1)!,$$

ou seja, $a \mid 1$, o que contradiz o facto de 1 < a.

Portanto, n é primo.

observação. Um inteiro positivo n é primo se e só se $(n-1)! \equiv -1 \pmod{n}$.

Os primos de Wilson são números primos p que satisfazem a seguinte propriedade

$$(p-1)! \equiv -1 \pmod{p^2},$$

ou seja, além da condição do teorema de Wilson $(p-1)! \equiv -1 \pmod{p}$, o fatorial de p-1 também é congruente a -1 módulo p^2 .

Os primos de Wilson são extremamente raros. Conhecem-se apenas três números que satisfazem essa condição:

$$p = 5, 13, 563$$

Nenhum outro primo menor que 5×10^8 foi encontrado como primo de Wilson.

A propriedade que define um primo de Wilson envolve fatoriais, que crescem rapidamente, tornando a verificação para números grandes computacionalmente difícil.

Conjetura-se que há um número infinito de primos de Wilson.

pequeno teorema de Fermat

teorema. (Pequeno Teorema de Fermat) Se p é primo e a é um inteiro não divisível por p, então, $a^{p-1} \equiv 1 \pmod{p}$.

demonstração. Consideremos os seguintes p-1 múltiplos de a:

a 2a 3a
$$\cdots$$
 $(p-1)a$. $(*)$

Como p não divide a, temos, para todos $r,s\in\{1,2,...,p-1\}$ (com $r\neq s$), que $ra\not\equiv sa(\bmod p) \qquad \text{e} \qquad ra\not\equiv 0(\bmod p).$

Temos, assim, em (*), p-1 inteiros não congruentes dois a dois módulo p; logo, $a, 2a, 3a, \cdots, (p-1)a$ são congruentes módulo p com um e um só dos números 1, 2, 3, ..., p-1.

pequeno teorema de Fermat

Portanto,

$$a \times 2a \times 3a \times \cdots \times (p-1)a \equiv 1 \times 2 \times 3 \times \cdots \times (p-1) \pmod{p}$$
.

Logo,
$$a^{p-1}(p-1)! \equiv (p-1)! \pmod{p}$$
.

Mas, m.d.c.
$$(p, (p-1)!) = 1$$
, pelo que

$$a^{p-1} \equiv 1 \pmod{p}.$$

corolário. Se p é primo, então $a^p \equiv a \pmod{p}$, para qualquer inteiro a.

demonstração. Por um lado, se $p \mid a$, então, $a \equiv 0 \pmod{p}$, pelo que $a^p \equiv 0 \pmod{p}$. Logo, $a^p \equiv a \pmod{p}$.

Por outro lado, se $p \nmid a$, então, pelo Pequeno Teorema de Fermat, $a^{p-1} \equiv 1 \pmod p$, ou seja, $a^p \equiv a \pmod p$.

exemplo. Queremos provar que $5^{33}\equiv 6(\bmod{7})$. Como 7 é primo e 7 \nmid 5, podemos afirmar, pelo Pequeno Teorema de Fermat, que

$$5^6 \equiv 1 \pmod{7}$$
.

Assim,

$$5^{33} = (5^6)^5 \times 5^3 \equiv 5^3 (\operatorname{mod} 7).$$

Como $5^2=25\equiv 4(\bmod{\,7})$, temos que $5^3\equiv 4\times 5(\bmod{\,7})$, ou seja, $5^3\equiv 6(\bmod{\,7})$.

Concluímos, então, que $5^{33} \equiv 6 \pmod{7}$.

observação. Dado $n \in \mathbb{N}$, se existe $a \in \mathbb{Z}$ tal que $a^n \not\equiv a \pmod{n}$, então n não é um número primo.

exemplo. Mostremos que 117 não é um número primo. Consideremos a=2 e vejamos que $2^{117}\not\equiv 2\pmod{117}$.

Calculemos o resto da divisão de 2^{117} por 117. A potência de 2 mais próxima de 117 é $2^7=128$.

Sabemos que

$$2^7 = 128 \equiv 11 \pmod{117}$$
.

Assim, temos que

$$2^{117} = 2^{7 \times 16 + 5} \equiv 11^{16} \times 2^5 \pmod{117} \qquad \Leftrightarrow 2^{117} \equiv 11^{2 \times 8} \times 2^5 \pmod{117} 6pt \\ \Leftrightarrow 2^{117} \equiv (11^2)^8 \times 2^5 \pmod{117} \\ \Leftrightarrow 2^{117} \equiv 121^8 \times 2^5 \pmod{117} \\ \Leftrightarrow 2^{117} \equiv 4^8 \times 2^5 \pmod{117} \\ \Leftrightarrow 2^{117} \equiv 2^{16} \times 2^5 \pmod{117} \\ \Leftrightarrow 2^{117} \equiv 2^{16} \times 2^5 \pmod{117} \\ \Leftrightarrow 2^{117} \equiv 2^{21} \pmod{117} \\ \Leftrightarrow 2^{117} \equiv (2^7)^3 \pmod{117} \\ \Leftrightarrow 2^{117} \equiv 11^3 \pmod{117} \\ \Leftrightarrow 2^{117} \equiv 121 \times 11 \pmod{117} \\ \Leftrightarrow 2^{117} \equiv 4 \times 11 \pmod{117}.$$

exemplos de aplicação do PTF & recíproco do PTF não válido

Logo, $2^{117} \not\equiv 2 \pmod{117}$, pelo que podemos concluir que 117 não é primo.

exemplo. Vejamos que existem inteiros a e p para os quais $a^{p-1} \equiv 1 \pmod p$ e p não é primo.

Como $4^2=16\equiv 1\pmod{15}$, temos que $4^{14}\equiv 1^7\pmod{15}$, ou seja, $a^{15-1}\equiv 1\pmod{15}$.

No entanto, 15 não é um número primo.

O seguinte resultado é consequência do Pequeno Teorema de Fermat.

teorema. Se p é primo e a é um inteiro tal que $p \nmid a$, então a^{p-2} é um inverso de a módulo p.

demonstração. Se $p \nmid a$, pelo pequeno teorema de Fermat, sabemos que

$$a \times a^{p-2} = a^{p-1} \equiv 1 \pmod{p}$$
.

Logo, a^{p-2} é um inverso de a módulo p.

exemplo. Pelo teorema anterior, sabemos que $2^9=512\equiv 6\pmod{11}$ é um inverso de 2 módulo 11.

O teorema anterior dá-nos uma outra forma de resolver congruências lineares em relação a módulos primos.

corolário. Se a e b são números inteiros positivos e p é primo com $p \nmid a$, então as soluções da congruência linear $ax \equiv b \pmod{p}$ são os inteiros x tais que $x \equiv a^{p-2}b \pmod{p}$.

demonstração. Suponhamos que $ax \equiv b \pmod{p}$. Como $p \nmid a$, sabemos, pelo teorema anterior, que a^{p-2} é um inverso de a módulo p. Multiplicando ambos os lados da congruência original por a^{p-2} , temos

$$a^{p-2}\ ax\equiv a^{p-2}\ b\ (\operatorname{mod} p).$$

Logo,

$$x\equiv a^{p-2}b\ (\mathrm{mod}\, p).$$

O Pequeno Teorema de Fermat é a base de um método de fatorização inventado por John Pollard em 1974, o algoritmo (p-1)-Pollard.

Este método consegue encontrar um fator não trivial de um inteiro n quando n tem um fator primo p tal que os primos que dividem p-1 são relativamente pequenos.

Para entender como este método funciona, suponhamos que queremos encontrar um fator do inteiro positivo n.

Além disso, suponhamos que n tem um fator primo p tal que p-1 divide k!, onde k é um inteiro positivo.

Queremos que p-1 tenha apenas fatores primos pequenos, de modo que exista um inteiro k que não seja muito grande.

A razão pela qual queremos que p-1 divida k! é para que possamos aplicar o Pequeno Teorema de Fermat.

Pelo Pequeno Teorema de Fermat, sabemos que:

$$2^{p-1} \equiv 1 \pmod{p}.$$

Como p-1 divide k!, temos que k!=(p-1)q, para algum inteiro q. Assim, podemos escrever:

$$2^{k!} = 2^{(p-1)q} = (2^{p-1})^q \equiv 1^q = 1 \pmod{p},$$

o que implica que p divide $2^{k!} - 1$.

Seja M o resto da divisão de $2^{k!} - 1$ por n.

Temos que

$$2^{k!} - 1 = nt + M,$$

para algum inteiro t, pelo que

$$M=(2^{k!}-1)-nt.$$

Note-se que $p \mid M$, uma vez que $p \mid (2^{k!} - 1)$ e $p \mid n$. Portanto, $p \mid \text{m.d.c.}(M, n)$.

algoritmo de fatorização (p-1)-Pollard

Para encontrar um divisor de n, basta então calcular o máximo divisor comum de M e n, o que pode ser feito rapidamente utilizando o algoritmo de Euclides.

Para que este divisor seja um divisor não trivial, é necessário que M seja não nulo, correspondendo ao caso em que n não divide $2^{k!}-1$, o que é bastante provável quando n tem fatores primos grandes.

Para usar o algoritmo de fatorização (p-1)-Pollard, precisamos de calcular $2^{k!}$, onde k é um inteiro positivo.

Este cálculo pode ser feito de forma eficiente usando a exponenciação modular.

Para encontrar o menor resíduo positivo de $2^{k!}$ módulo n, definimos $r_1=2$ e usamos a seguinte sequência de cálculos:

$$r_2 \equiv r_1^2 \pmod{n}, \quad r_3 \equiv r_2^3 \pmod{n}, \quad r_4 \equiv r_3^4 \pmod{n}, \quad \ldots, \quad r_k \equiv r_{k-1}^k \pmod{n}.$$

```
exemplo. Determinemos, usando exponenciação modular, 29! (mod 5157437).
Sejam n = 5157437 e r_1 = 2. Temos que
                           r_2 \equiv r_1^2 = 2^2 \equiv 4 \pmod{n},
                           r_3 \equiv r_2^3 = 4^3 \equiv 64 \pmod{n},
                           r_4 \equiv r_3^4 = 64^4 \equiv 1304905 \pmod{n},
                           r_5 \equiv r_4^5 = 1304905^5 \equiv 404913 \pmod{n}
                           r_6 \equiv r_5^6 = 404913^6 \equiv 2157880 \pmod{n}
                           r_7 \equiv r_6^7 = 2157880^7 \equiv 4879227 \pmod{n}
                           r_8 \equiv r_7^8 = 4879227^8 \equiv 4379778 \pmod{n}
                           r_9 \equiv r_8^9 = 4379778^9 \equiv 4381440 \pmod{n}.
Logo,
                                 2^{9!} \equiv 4381440 \pmod{5157437}.
```

input: inteiro n composto

output: um fator não trivial de n

passo 1.:
$$a = 2$$
, $i = 2$

passo 2.:

2.1. calcular

$$a = a^i \pmod{n}$$

$$i = i + 1$$

2.2. calcular

$$d = \text{m.d.c.}(a-1, n)$$

- **2.3.** se d = 1, voltar ao passo **2.1**.
- **2.4.** se 1 < d < n, devolver o fator d.
- **2.5.** se d = n, terminar sem sucesso.

algoritmo de fatorização (p-1)-Pollard \mid exemplos

exemplo. Consideremos, novamente, n=5157437 e a sequência r_1, r_2, r_3, \ldots determinada no exemplo anterior.

Temos que
$$\mathrm{m.d.c.}(r_k-1,n)=1$$
, para $k=1,2,\ldots,8$, mas $\mathrm{m.d.c.}(r_9-1,n)=2269.$

Segue-se, assim, que 2269 é um fator de 5157437.

exemplo. Consideremos, agora,
$$n = 1403$$
. Tomando $r_1 = 2$, segue-se que $r_2 \equiv r_1^2 = 2^2 \equiv 4 \pmod{n}$, $\text{m.d.c.}(3,n) = 1$, $r_3 \equiv r_2^3 = 4^3 \equiv 64 \pmod{n}$, $\text{m.d.c.}(63,n) = 1$, $r_4 \equiv r_3^4 = 64^4 \equiv 142 \pmod{n}$, $\text{m.d.c.}(141,n) = 1$, $r_5 \equiv r_5^4 = 142^5 \equiv 794 \pmod{n}$, $\text{m.d.c.}(793,n) = 61$.

Assim, 61 é um fator de 1403.