5. Краен недетерминиран автомат

 $L = (ab \cup aba)^*$

краен детерминиран автомат на L

3аб. Където $\$ = \varepsilon$

<u>Def.</u> Краен недетерминиран автомат (КНА) се нарича петорката $M = < K, \Sigma, \Delta, s, F >$, където K - крайно множество (крайна азбука) от състояния,

Σ - крайна основна азбука,

 $s \in K$, s - начално състояние,

 $F \subseteq K, F$ - множество на заключителните състояния,

 Δ ⊆ K×(Σ ∪ { ε })×К, Δ – релация на преходите.

$$(q, u, q') \in \Delta \Rightarrow q, q' \in K, u \in \Sigma$$
 или $u = \varepsilon$

<u>Def.</u> Конфигурация за автомата $M = \langle K, \Sigma, \Delta, s, F \rangle$, се нарича всеки елемент от $K \times \Sigma^*$. $(q, w) \in K \times \Sigma^* \Rightarrow q \in K, w \in \Sigma^*$.

<u>**Def.**</u> Ще определиме релацията (бинарна) \vdash_M в $K \times \Sigma^*$. Нека $M = < K, \Sigma, \Delta, s, F > e$ КНА. Казваме, че конфигурацията (q, w) се преработва за една стъпка в (q', w') и пишем $(q, w) \vdash_M (q', w')$ т.т.к. $\exists \ u \in \Sigma^* \cup \{\varepsilon\}: w = uw'$ и $(q, u, q') \in \Delta$.

 \vdash_{M} – бинарна релация в множеството на конфигурациите.

 \vdash_{M}^{*} - рефлексивно и транзитивно затваряне на \vdash_{M} .

<u>Def.</u> Нека $M = \langle K, \Sigma, \Delta, s, F \rangle$ е КНА. Казваме, че w се разпознава(приема) от автомата M, ако съществува (f, ε) , $f \in F$, такова, че $(s, w) \vdash_M^* (f, \varepsilon)$.

$$a,b$$
 a
 $q1$
 b
 $q2$

ababa – дума

 $(s,ababa) \vdash_{M} (s,baba) \vdash_{M} (s,aba) \vdash_{M} (s,ba) \vdash_{M} (s,a) \vdash_{M} (s,\epsilon)$ $(s,ababa) \vdash_{M} (q_{1},baba) \vdash_{M} (q_{2},aba) \vdash_{M}^{*} (q_{2},\epsilon)$

<u>Def.</u> Нека $M = \langle K, \Sigma, \Delta, s, F \rangle$ е КНА.

 $CL(M) = \{w | w \in \Sigma^* \text{ и } w \text{ се разпознава от } M\}.$

 $\underline{\mathbf{Def.}}$ Нека M_1 и M_2 са два автомата. Казваме, че M_1 и M_2 са еквивалентни, ако $L(M_1)=L(M_2).$

<u>Забележка.</u> Ако $M=<K,\Sigma,\delta,s,F>$ е КДА, то можем да го разглеждаме като КНА по следния начин:

 $M_1 = \langle K_1, \Sigma, G_\delta, s, F \rangle$, където $G_\delta = \{(q, a, q') | \delta(q, a) = q'\}$.

Теорема. Нека $M=<K,\Sigma,\Delta,s,F>$ е КНА. Тогава съществува КДА $M'=<K',\Sigma,\delta',s',F'>$, такъв, че M и M' са еквивалентни.

Доказателство:

 $M' = \langle K', \Sigma, \delta', s', F' \rangle$

 $K' = 2^K = \mathcal{P}(K)$ – съвкупността на всички подмножества на K.

 $F' = \{Q | Q \subseteq K: Q \cap F \neq \emptyset\}$

Дефинираме $E(q) = \{p | (q, \varepsilon) \vdash_{M}^{*} (p, \varepsilon)\}$

 $R = \{(p_1, p_2) | p_1, p_2 \in K \text{ if } (p_1, \varepsilon, p_2) \in \Delta\}$

E(q) – затв. на $\{q\}$ относно релацията R

Пример за E:

$$E(q_0) = \{q_0, q_1, q_2, q_3\}$$

$$E(q_1) = \{q_1, q_2, q_3\}$$

$$E(q_2) = \{q_2\}$$

$$E(q_3) = \{ q_3 \}$$

$$E(q_4) = \{ q_3, q_4 \}$$

$$s'=E(s)$$
 $\delta'(Q,\sigma)=\cup \{E(p)|$ Съществува $q\in Q,p\in K: (q,\sigma,p)\in \Delta\}$

Помощно твърдение:

$$(q,w) \vdash_{M}^{*} (p,\varepsilon)$$
 т. т. к $(E(q),w) \vdash_{M}^{*} (P,\varepsilon)$, такова, че $p \in P$.

Тогава

$$w \in L(M) \Leftrightarrow \exists (s,w) \vdash_{M}^{*} (f,\varepsilon), f \in F$$
 $\Leftrightarrow (E(s),w) \vdash_{M}^{*} (P,\varepsilon),$ където $f \in P$
 $P \cap F \neq \emptyset; P \in F'$
 $\Leftrightarrow w \in L(M')$

Следователно L(M) = L(M').

$$\begin{split} s' &= E(q_0) \\ \delta'(E(q_0), a) &= E(q_0) \cup E(q_4) = \{q_0, q_1, q_2, q_3, q_4\} = Q_0 \\ \delta'(E(q_0), b) &= E(q_2) \cup E(q_4) = \{q_2, q_3, q_4\} = Q_1 \\ \delta'(Q_0, a) &= E(q_0) \cup E(q_4) = \{q_0, q_1, q_2, q_3, q_4\} = Q_0 \\ \delta'(Q_0, b) &= E(q_2) \cup E(q_4) = \{q_2, q_3, q_4\} = Q_1 \\ \delta'(Q_1, a) &= E(q_4) = \{q_3, q_4\} = Q_2 \\ \delta'(Q_1, b) &= E(q_4) = \{q_3, q_4\} = Q_2 \\ \delta'(Q_2, a) &= E(q_4) = \{q_3, q_4\} = Q_2 \\ \delta'(Q_2, b) &= \emptyset = Q_3 \\ \delta'(Q_3, a) &= \emptyset = Q_3 \\ \delta'(Q_3, b) &= \emptyset = Q_3 \end{split}$$

Забележка. Eq $0 = E(q_0)$