Optimisation décrémentale de la reconfiguration d'ensembles dominants

Alexandre Blanché¹ Haruka Mizuta² Paul Ouvrard¹ Akira Suzuki²

¹LaBRI, Bordeaux ²Tohoku University, Sendai, Japon

16 Novembre 2018

Ensembles dominants

Définition

Un **ensemble dominant** est un sous-ensemble de sommets dont le voisinage contient tous les sommets.

Problème de l'ensemble dominant

- **Instance** : Un graphe *G*, un entier *s*
- **Question**: Existe-t-il un dominant de *G* de taille au plus *s*?

Ce problème est NP-complet.

Reconfiguration d'ensembles dominants

Modèle : ajouts ou suppressions successives de sommets

Reconfiguration d'ensembles dominants

Modèle : ajouts ou suppressions successives de sommets

Reconfiguration d'ensembles dominants

Modèle : ajouts ou suppressions successives de sommets

Borne de taille

Sans borne sur la taille, tous les dominants sont joignables par ajouts ou suppressions successives :

Borne de taille

On limite donc la taille des dominants considérés par une borne k:

Problème d'optimisation

OPT-DSR (OPTimization variant of Dominating Set Reconfiguration)

• **Instance** : Un graphe G, deux entiers k,s, un dominant D_0 de taille $|D_0| \le k$.

• Question : Existe-t-il un dominant D_s de taille $|D_s| \le s$, tel que $D_0 \stackrel{k}{\longleftrightarrow} D_s$?

Observation

OPT-DSR généralise le problème de l'ensemble dominant.

Un graphe G = (V, E) a un dominant de taille $\leq s$

l'instance (G, k = |V|, s, D = V) est solution de OPT-DSR.

Observation

OPT-DSR généralise le problème de l'ensemble dominant.

Un graphe
$$G = (V, E)$$
 a un dominant de taille $\leq s$

l'instance (G, k = |V|, s, D = V) est solution de OPT-DSR.

Corollaire

OPT-DSR est NP-dur.

 $(NP \subseteq PSPACE \subseteq EXPTIME)$

Théorème [B., Mizuta, Ouvrard, Suzuki, (2018+)]

OPT-DSR est PSPACE-complet, y compris lorsque le graphe d'entrée :

est un graphe biparti ;

 $(NP \subseteq PSPACE \subseteq EXPTIME)$

Théorème [B., Mizuta, Ouvrard, Suzuki, (2018+)]

OPT-DSR est PSPACE-complet, y compris lorsque le graphe d'entrée :

- est un graphe biparti;
- est un graphe split ;

 $(NP \subseteq PSPACE \subseteq EXPTIME)$

Théorème [B., Mizuta, Ouvrard, Suzuki, (2018+)]

OPT-DSR est PSPACE-complet, y compris lorsque le graphe d'entrée :

- est un graphe biparti;
- est un graphe split ;
- a une *pathwidth* bornée.

 $(NP \subseteq PSPACE \subseteq EXPTIME)$

Théorème [B., Mizuta, Ouvrard, Suzuki, (2018+)]

OPT-DSR est PSPACE-complet, y compris lorsque le graphe d'entrée :

- est un graphe biparti ;
- est un graphe split ;
- a une *pathwidth* bornée.

Preuve : Adaptation d'un résultat sur les **stables** et le problème **OPT-ISR**, analogue à OPT-DSR.

Reconfiguration de stables

OPT-ISR concerne la reconfiguration de stables.

OPT-ISR

OPT-ISR

- **Instance** : Un graphe G, $k, s \in \mathbb{N}$, un stable I_0 avec $|I_0| \ge k$.
- **Question**: Existe-t-il un stable I_s avec $|I_s| \ge s$ et $I_0 \stackrel{\geq k}{\iff} I_s$?

OPT-ISR

OPT-ISR

- **Instance** : Un graphe G, $k, s \in \mathbb{N}$, un stable I_0 avec $|I_0| \ge k$.
- **Question**: Existe-t-il un stable I_s avec $|I_s| \ge s$ et $I_0 \stackrel{\geq k}{\longleftrightarrow} I_s$?

Théorème [Ito, Mizuta, Nishimura, Suzuki (2018)]

OPT-ISR est PSPACE-complet, y compris lorsque le graphe d'entrée est un graphe split ou biparti ou a une pathwidth bornée.

Idée de la réduction

Corollaire

OPT-ISR est PSPACE-dur \Rightarrow **OPT-VCR** est PSPACE-dur

Théorème [B., Mizuta, Ouvrard, Suzuki, (2018+)]

OPT-DSR est PSPACE-dur.

Résultats positifs

Théorème [B., Mizuta, Ouvrard, Suzuki, (2018+)]

OPT-DSR peut être résolu en temps polynomial sur les graphes d'intervalles.

Preuve: (G, k, s, D), avec G un graphe d'intervalles

Preuve: (G, k, s, D), avec G un graphe d'intervalles

• On construit une représentation possible de G sous forme d'intervalles, en temps linéaire en |G|.

Preuve: (G, k, s, D), avec G un graphe d'intervalles

 On construit un dominant minimum D_m de G, en temps linéaire en |G|.

Lemme [Bonamy, Dorbec, Ouvrard (2017+)]

On peut reconfigurer D en D' t.q. $D_m \subseteq D'$, sous la borne |D|+1, en temps linéaire en |G|.

Preuve: (G, k, s, D), avec G un graphe d'intervalles

- On construit un **dominant minimum** D_m de G, en temps linéaire en |G|.
- On a donc $D \overset{k}{\longleftrightarrow} D' \overset{k}{\longleftrightarrow} D_m$. On peut répondre oui si $|D_m| \le s$ et produire la séquence correspondante en temps linéaire en |G|.

- Ordre : par date de fin
- Voisin privilégié de $v_i := voisin max de v_i$ dans l'ordre

- Ordre : par date de fin
- Voisin privilégié de $v_i := voisin max de v_i dans l'ordre$

- Algorithme Parcourir les sommets dans l'ordre.
 - Si *v_i* est dominé, passer au suivant.
 - Sinon, ajouter son voisin privilégié au dominant.

- Ordre : par date de fin
- Voisin privilégié de v_i := voisin max de v_i dans l'ordre

- Algorithme Parcourir les sommets dans l'ordre.
 - Si *v_i* est dominé, passer au suivant.
 - Sinon, ajouter son voisin privilégié au dominant.

- Ordre : par date de fin
- Voisin privilégié de v_i := voisin max de v_i dans l'ordre

- Algorithme Parcourir les sommets dans l'ordre.
 - Si *v_i* est dominé, passer au suivant.
 - Sinon, ajouter son voisin privilégié au dominant.

- Ordre : par date de fin
- Voisin privilégié de v_i := voisin max de v_i dans l'ordre

- Algorithme Parcourir les sommets dans l'ordre.
 - Si *v_i* est dominé, passer au suivant.
 - Sinon, ajouter son voisin privilégié au dominant.

- Ordre : par date de fin
- Voisin privilégié de v_i := voisin max de v_i dans l'ordre

- Algorithme Parcourir les sommets dans l'ordre.
 - Si *v_i* est dominé, passer au suivant.
 - Sinon, ajouter son voisin privilégié au dominant.

- Ordre : par date de fin
- Voisin privilégié de $v_i := voisin max de v_i dans l'ordre$

- Algorithme Parcourir les sommets dans l'ordre.
 - Si v_i est dominé, passer au suivant.
 - Sinon, ajouter son voisin privilégié au dominant.

- Ordre : par date de fin
- Voisin privilégié de v_i := voisin max de v_i dans l'ordre

- Algorithme Parcourir les sommets dans l'ordre.
 - Si *v_i* est dominé, passer au suivant.
 - Sinon, ajouter son voisin privilégié au dominant.

- Ordre : par date de fin
- Voisin privilégié de v_i := voisin max de v_i dans l'ordre

- **Algorithme** Parcourir les sommets dans l'ordre.
 - Si *v_i* est dominé, passer au suivant.
 - Sinon, ajouter son voisin privilégié au dominant.

- Ordre : par date de fin
- Voisin privilégié de $v_i := voisin max de v_i dans l'ordre$

- Algorithme Parcourir les sommets dans l'ordre.
 - Si *v_i* est dominé, passer au suivant.
 - Sinon, ajouter son voisin privilégié au dominant.

Résultats positifs

Graphes d'intervalles \subseteq Dually-chordal graphs

Théorème [B., Mizuta, Ouvrard, Suzuki, (2018+)]

OPT-DSR peut être résolu en temps polynomial sur les Dually-chordal graphs.

Complexité paramétrée

Un graphe G est d-dégénéré s'il possède un sommet v de degré $\leq d$ et G-v est également d-dégénéré.

Un graphe 2-dégénéré

Théorème [B., Mizuta, Ouvrard, Suzuki, (2018+)]

OPT-DSR peut être résolu en temps FPT(d+s), i.e. en temps $f(d+s) \times n^{O(1)}$ si |G| = n; où d est la dégénérescence du graphe et s est la taille de la solution recherchée.

Complexité paramétrée

Un graphe G est d-dégénéré s'il possède un sommet v de degré $\leq d$ et G-v est également d-dégénéré.

Un graphe 2-dégénéré

Théorème [B., Mizuta, Ouvrard, Suzuki, (2018+)]

OPT-DSR peut être résolu en temps FPT(d+s), i.e. en temps $f(d+s) \times n^{O(1)}$ si |G| = n; où d est la dégénérescence du graphe et s est la taille de la solution recherchée.

Un graphe G est d-dégénéré s'il possède un sommet v de degré $\leq d$ et G-v est également d-dégénéré.

Un graphe 2-dégénéré

Théorème [B., Mizuta, Ouvrard, Suzuki, (2018+)]

OPT-DSR peut être résolu en temps $\mathrm{FPT}(d+s)$, i.e. en temps $f(d+s) \times n^{O(1)}$ si |G|=n; où d est la dégénérescence du graphe et s est la taille de la solution recherchée.

Un graphe G est d-dégénéré s'il possède un sommet v de degré $\leq d$ et G-v est également d-dégénéré.

Un graphe 2-dégénéré

Théorème [B., Mizuta, Ouvrard, Suzuki, (2018+)]

OPT-DSR peut être résolu en temps FPT(d+s), i.e. en temps $f(d+s) \times n^{O(1)}$ si |G| = n; où d est la dégénérescence du graphe et s est la taille de la solution recherchée.

Un graphe G est d-dégénéré s'il possède un sommet v de degré $\leq d$ et G-v est également d-dégénéré.

Un graphe 2-dégénéré

Théorème [B., Mizuta, Ouvrard, Suzuki, (2018+)]

OPT-DSR peut être résolu en temps FPT(d+s), i.e. en temps $f(d+s) \times n^{O(1)}$ si |G| = n; où d est la dégénérescence du graphe et s est la taille de la solution recherchée.

Théorème [B., Mizuta, Ouvrard, Suzuki, (2018+)]

OPT-DSR peut être résolu en temps FPT(τ), où τ est la taille d'un vertex cover minimum du graphe.

Théorème [B., Mizuta, Ouvrard, Suzuki, (2018+)]

OPT-DSR peut être résolu en temps $FPT(\tau)$, où τ est la taille d'un vertex cover minimum du graphe.

Preuve :

• Cas trivial : Si |D| = k et D est minimal, alors D est figé. On ne peut ni retirer ni ajouter de sommet, donc l'instance (G, k, s, D) est positive ssi |D| < s. \rightarrow On peut tester cette condition en temps O(|G|) \checkmark

Théorème [B., Mizuta, Ouvrard, Suzuki, (2018+)]

OPT-DSR peut être résolu en temps FPT(τ), où τ est la taille d'un vertex cover minimum du graphe.

Preuve:

- Cas trivial: Si |D| = k et D est minimal, alors D est figé.
 On ne peut ni retirer ni ajouter de sommet,
 donc l'instance (G, k, s, D) est positive ssi |D| ≤ s.
 → On peut tester cette condition en temps O(|G|) √
- Si |D| = k et D non minimal, alors on peut retirer un sommet à D et se ramener au dernier cas, |D| < k.

Désormais on suppose que |D| < k.

ightarrow On peut ajouter au moins 1 sommet à D sans dépasser k

Théorème [B., Mizuta, Ouvrard, Suzuki, (2018+)]

OPT-DSR peut être résolu en temps FPT(au), où au est la taille d'un vertex cover minimum du graphe.

- On calcule τ en temps $FPT(\tau)$.
- 2 possibilités :
 - Soit $\tau > s$: Comme $d \le \tau$, on a $d + s \le 2\tau$. \rightarrow on utilise l'algorithme en temps $\mathsf{FPT}(d+s)$ \checkmark

Théorème [B., Mizuta, Ouvrard, Suzuki, (2018+)]

OPT-DSR peut être résolu en temps FPT(τ), où τ est la taille d'un vertex cover minimum du graphe.

- On calcule τ en temps $FPT(\tau)$.
- 2 possibilités :
 - Soit $\tau > s$: Comme $d \le \tau$, on a $d + s \le 2\tau$. \rightarrow on utilise l'algorithme en temps $\mathsf{FPT}(d+s)$
 - Soit $\tau \leq s$: L'instance est dans ce cas une **instance positive**. Pour le montrer, on va reconfigurer D en un dominant D' qui vérifie $|D'| \leq \tau$.

On se donne un graphe G.

On construit un vertex cover minimum en temps $FPT(\tau)$.

On se donne un dominant de départ D.

On associe un voisin j(v) à chaque $v \in X \setminus D$. Soit $J = \{j(v) \mid v \in X \setminus D\}$.

<u>P</u>reuve

<u>P</u>reuve

<u>P</u>reuve

<u>P</u>reuve

Lorsque
$$(I \cap D') \subseteq J$$
, on a :

$$|I \cap D'| \leq |j^{-1}(I \cap D')|$$

$$\leq |X \setminus D'|$$

$$= \tau - |X \cap D'|$$

Lorsque
$$(I \cap D') \subseteq J$$
, on a :

$$|I \cap D'| \leq |j^{-1}(I \cap D')|$$

$$\leq |X \setminus D'|$$

$$= \tau - |X \cap D'|$$

On a donc:

$$|D'| = |I \cap D'| + |X \cap D'|$$

$$\leq \tau$$

$$\leq s$$

Donc D' est bien une solution : l'instance est positive.

Conclusion

Complexité de OPT-DSR

- PSPACE-complet (même sur les graphes bipartis, split, ou à pathwidth bornée)
- Polynomial sur les graphes Dually-chordal (donc sur les graphes d'intervalles)
- FPT(d+s) (d = dégénérescence, s = taille de la solution)
- FPT (τ) $(\tau = \text{taille d'un vertex cover minimum})$

Conclusion

Complexité de OPT-DSR

- PSPACE-complet (même sur les graphes bipartis, split, ou à pathwidth bornée)
- Polynomial sur les graphes Dually-chordal (donc sur les graphes d'intervalles)
- $\mathsf{FPT}(d+s)$ $(d=\mathsf{dég\acute{e}n\acute{e}rescence},\,s=\mathsf{taille}\,\,\mathsf{de}\,\,\mathsf{la}\,\,\mathsf{solution})$
- FPT (τ) $(\tau = \text{taille d'un vertex cover minimum})$

Merci de votre attention.

Graphes dually chordal

$$G = (V, E) \text{ avec } V = \{v_1, v_2, \dots, v_n\}.$$

 $G_i := G[\{v_i, \dots, v_n\}]$

v est un $voisin\ maximum\ de\ u$ si : pour tout voisin w de u, $N[w] \subseteq N[v]$

(i.e. v est adjacent à tous les sommets à distance ≤ 2 de u)

Graphes dually chordal

Un ordre de voisinage maximum est un ordre sur les sommets t.q. v_i possède un voisin maximum dans G_i , pour tout $i \in [1, n]$.

Un graphe est *dually chordal* s'il possède un ordre de voisinage maximum.

