The Ito Integral

Shino Takayama
School of Economics
University of Queensland

Construction of the Ito Integral

* Consider:

$$\frac{dN}{dt} = (r(t) + "noise")N(t)$$

* More generally:

$$\frac{dX}{dt} = b(t, X_t) + \sigma(t, X_t) \cdot "noise"$$

where b and σ are some given functions.

Case of 1-dimensional noise

* Let W_t be a stochastic process to represent the noise term. Then, we obtain:

$$\frac{dX}{dt} = b(t, X_t) + \sigma(t, X_t) \cdot W_t$$

- * What property do we want for W_t ? It would be nice if:
- 1. If $t_1 \neq t_2$, then W_{t_1} and W_{t_2} are independent.
- 2. $\{W_t\}$ is stationary, i.e. $\{W_{t_1+t}, \cdots, W_{t_k+t}\}$ does not depend on t.
- 3. $E[W_t] = 0$ for all t.

The difficulty

- * There does not exist any "reasonable" stochastic process satisfying the first and second properties.
- * Such a process cannot have continuous paths.
- * If we require $E[W_t^2] = 1$, then the function $(t, \omega) \to W_t(\omega)$ cannot even be measurable w.r.t. the σ -algebra $\mathcal{B} \times \mathcal{F}$, where \mathcal{B} is the Borel σ -algebra on $[0, \infty]$.
- * It is possible to represent W_t as a generalized stochastic process called the <u>white noise process</u>.

White Noise Process

- * $\{\epsilon_t\}_t$ is a white noise process if
- 1. $E(\epsilon_t) = 0 \ \forall t$;
- 2. $E(\epsilon_t^2) = s^2 < \infty \ \forall t$; and
- 3. $E(\epsilon_t \epsilon_{t'}) = 0 \ \forall t \neq t';$

where all those expectations are taken prior to t,t.

It is possible to represent W_t as a generalized stochastic process, "the White noise process."

Approach from Discrete Version

Rewrite

$$\frac{dX}{dt} = b(t, X_t) + \sigma(t, X_t) \cdot W_t$$

by replacing W_t by a proper stochastic process.

* To do so, we consider the discrete version

$$X_{k+1}-X_k=b(t_k,X_k)\Delta t_k+\sigma(t_k,X_k)W_k\Delta t_k$$
 where $X_j=X(t_j)$, $W_k=W_{t_k}$, $\Delta t_k=t_{k+1}-t_k$.

- * Regard $W_k \Delta t_k$ as $\Delta V_k = V_{t_{k+1}} V_{t_k}$.
- * V_t should have stationary independent increments with mean 0.
- * The only such process with continuous paths is the Brownian motion B_t . So replace $W_k \Delta t_k$ by $\Delta B_k = B_{t_{k+1}} B_{t_k}$.

From discrete to continuous time

* Sum up and then we obtain:

$$X_{k} = X_{0} + \sum_{j=0}^{k-1} b(t_{j}, X_{j}) \Delta t_{j} + \sum_{j=0}^{k-1} \sigma(t_{j}, X_{j}) \Delta B_{j}$$

* If we can take $\Delta t_i \rightarrow 0$, then we obtain:

$$X_k = X_0 + \int_0^t b(s, X_s) ds + \left[\int_0^t \sigma(s, X_s) dB_s \right]$$

First Step to Ito Integral

* Suppose $0 \le S < T$ and $f(t, \omega)$ is given. We want to define:

$$\int_{S}^{T} f(t,\omega) dB_{t}(\omega).$$

* First assume that f has the form

$$\phi(t,\omega) = \sum_{j\geq 0} e_j(\omega) \cdot \chi_{[\frac{j}{2^n},\frac{j+1}{2^n})}(t)$$

where χ denotes the characteristic (indicator) function and n is a natural number.

Ito and Stratonovich

- * The Ito integral $t_j^* = t_j$
 - * We write it as

$$\int_{S}^{T} f(t,\omega) dB_{t}(\omega)$$

* The Stratonovich integral – $t_j^* = (t_j + t_{j+1}) / 2$

$$\int_{S}^{T} f(t,\omega) \circ dB_{t}(\omega)$$

Def: "adapted"

- * Let $B_t(\omega)$ be n-dimensional Brownian motion. Then we define $\mathcal{F}_t = \mathcal{F}_t^{(n)}$ to be the σ -algebra generated by the random variables $\{B_i(s)\}_{1 \le i \le n, 0 \le s \le t}$.
- * Let $\{\mathcal{N}_t\}_{t\geq 0}$ be an increasing family of σ -algebras of subsets of Ω . A process $g(t,\omega)\colon [0,\infty)\times\Omega\to\Re^n$ is called \mathcal{N}_t -adapted if for each $t\geq 0$ the function $\omega\to g(t,\omega)$

is \mathcal{N}_{t} -measurable.

Intuitive Understanding

- * One often thinks of \mathcal{F}_t as "the history of B_s up to time t."
- * Intuitively, that h is \mathcal{F}_t -measurable means that the value of $h(\omega)$ can be decided from the value of $B_s(\omega)$ for s < t.
- * For example,
 - * $h_1(\omega) = B_{t/2}(\omega)$ is \mathcal{F}_t -measurable;
 - * $h_2(\omega) = B_{2t}(\omega)$ is not \mathcal{F}_t measurable.
- * Note that $\mathcal{F}_s \subset \mathcal{F}_t$ for s < t and that $\mathcal{F}_t \subset \mathcal{F}$ for all t.

The Class of Functions for Ito Integral

* Let $\mathcal{V} = \mathcal{V}(S,T)$ be the class of functions

$$f(t,\omega):[0,\infty)\times\Omega\to\Re$$

such that

- 1. $(t,\omega) \to f(t,\omega)$ is $\mathcal{B} \times \mathcal{F}$ -measurable, where \mathcal{B} denotes the Borel σ -algebra on $[0,\infty)$.
- 2. $f(t,\omega)$ is \mathcal{F}_t -adapted.

3.
$$E[\int_{S}^{T} f(t,\omega)^{2} dt] < \infty.$$

Steps to the Ito integral

* We will define the Ito integral $\mathcal{I}(f)(\omega) = \int_{S}^{t} f(t,\omega) dB_{t}(\omega)$ where B_{t} is a Brownian motion.

The procedure consists of 3 steps:

- 1. Define $\mathcal{I}(\phi)$ for a simple class of functions ϕ ;
- 2. Show that each $f \in \mathcal{V}$ can be approximated by such ϕ ;
- 3. Define $\int f dB$ as the limit of $\int \phi dB$ as $\phi \to f$.

We start with "elementary" functions.

Definition [Elementary Functions]. A function $\phi \in \mathcal{V}$ is called elementary if it has the form

$$\phi(t,\omega) = \sum_{j\geq 0} e_j(\omega) \cdot \chi_{[t_j,t_{j+1})}(t).$$

Lemma: The Ito isometry

* If $\phi(t,\omega)$ is bounded and elementary, then

$$E\left[\left(\int_{s}^{t}\phi(t,\omega)dB_{t}(\omega)\right)^{2}\right]=E\left[\int_{s}^{t}\phi(t,\omega)^{2}dt\right].$$

Proof: The Ito isometry

* Proof:

* Let
$$\Delta B_j = B_{t_{j+1}} - B_{t_j}$$
. Then,
$$E \Big[e_i e_j \Delta B_i \Delta B_j \Big] = \begin{cases} 0 & \text{if } i \neq j; \\ E[e_j^2] \cdot (t_{j+1} - t_j) & \text{if } i = j \end{cases} .$$
 Thus,
$$E \Big[\left(\int_S^T \phi dB \right)^2 \Big] = \sum_i \sum_j E \Big[e_i e_j \Delta B_i \Delta B_j \Big]$$

$$= \sum_j E[e_j^2] \cdot (t_{j+1} - t_j) = E \Big[\int_S^T \phi^2 dt \Big] .$$

Bounded Convergence Theorem

- * Let (X_1, X_2, \cdots) be a sequence in \Re on a probability space (Ω, \mathcal{F}, P) . Assume that $X = \lim_{n \to \infty} X_n$ exists almost surely.
- * Suppose that there exists a finite constant M such that for all $n \ge 1$, $|X_n| \le M$ almost surely.
- * Then,
 - * $E(|X|) \le M$;
 - * $\lim E(X_n) = E(X)$; and
 - $* \lim_{n \to \infty}^{n \to \infty} E(|X X_n|) = 0$

Step 1: Elementary Functions

* Let $g \in \mathcal{V}$ be bounded and $g(\cdot, \omega)$ continuous for each ω . Then there exist elementary functions $\phi_n \in \mathcal{V}$ such that

$$E\left[\int_{S}^{T} (g - \phi_{n})^{2} dt\right] \to 0 \quad \text{as } n \to \infty.$$

* Proof:

Define $\phi_n(t,\omega) = \sum_j g(t_j,\omega) \cdot \chi_{[t_j,t_{j+1})}(t)$. Then, ϕ_n is elementary. Then,

 $\int_{S}^{T} (g - \phi_n)^2 dt \to 0 \quad \text{as } n \to \infty, \text{for each } \omega,$ because $g(\cdot, \omega)$ is continuous for each ω .

By bounded convergence theorem, the proof is complete.

Step 2: Bounded Functions

Let $h \in \mathcal{V}$ be bounded. Then, there exist bounded functions $g_n \in \mathcal{V}$ such that $g_n(\cdot, \omega)$ is continuous for all ω and n, and

$$E\left[\int_{S}^{T} (h-\phi_n)^2 dt\right] \to 0 \quad \text{as } n \to \infty.$$

* Proof:

Suppose $|h(t,\omega)| \le M$ for all (t,ω) . For each n, let Ψ_n be a non-negative, continuous function on \Re such that

(i) $\psi_n(x) = 0$ for all $x \le -(1/n)$ and $x \ge 0$; and

(ii)
$$\int_{-\infty}^{\infty} \psi_n(x) dx = 1$$

Step 2 Continued

Define

$$g_n(t,\omega) = \int_0^t \psi_n(s-t)h(s,\omega)ds$$

- * Then, $g_n(\cdot,\omega)$ is continuous for each ω and $|g_n(t,\omega)| \leq M$.
- * Since $h \in \mathcal{V}$, we can show that $\mathcal{S}_n(t,\cdot)$ is \mathcal{F}_t -measurable.
- * Moreover,

$$\int_{S}^{T} (g_{n}(s,\omega) - h(s,\omega))^{2} ds \to 0 \text{ as } n \to \infty, \text{ for each } \omega$$

as $\{\psi_n\}_n$ constitutes an approximate identity.

* By Bounded convergence theorem, we obtain

$$E\left[\int_{S}^{T} (h(t,\omega) - g_n(t,\omega))^2 dt\right] \to 0 \text{ as } n \to \infty, \text{ for each } \omega.$$

Dominated Convergence Theorem

- Let f_1, f_2, \cdots be measurable functions in \Re on a measure space $(\Omega, \mathcal{F}, \mu)$.
- * Suppose that g is a nonnegative measurable function defined on $(\Omega, \mathcal{F}, \mu)$ such that, for each $n, |f_n| \leq g$ a.e..

* If
$$\int g d\mu < \infty$$
, then $-\infty < \int (\liminf f_n) d\mu \le \liminf \int f_n d\mu$

$$\leq \limsup \int f_n d\mu \leq \int (\limsup f_n) d\mu$$
 * If $f = \lim f_n$ exists almost everywhere, then

*
$$\int |f| d\mu < \infty$$
;

*
$$\int |f| d\mu < \infty;$$
*
$$\lim \int f_n d\mu = \int f d\mu; \text{ and}$$
*
$$\lim \int (|f - f_n|) d\mu = 0.$$

*
$$\lim \int (|f - f_n|) d\mu = 0.$$

Here all the limits are taken over n.

Step 3: A Sequence of Bounded Functions

* Let $f \in \mathcal{V}$. Then, there exists a sequence $\{h_n\} \subset \mathcal{V}$ such that h_n is bounded for each n and

$$E\left[\int_{S}^{T} (f - h_n)^2 dt\right] \to 0 \quad \text{as } n \to \infty.$$

* Proof:

Let

$$h_n(t,\omega) = \begin{cases} -n & \text{if } f(t,\omega) < -n; \\ f(t,\omega) & \text{if } -n \le f(t,\omega) \le n; \\ n & \text{if } f(t,\omega) > n. \end{cases}$$

The conclusion follows by dominated convergence theorem.

Formally complete the definition

* We are considering: $\mathcal{I}(f)(\omega) = \int_{S}^{T} f(t,\omega) dB_{t}(\omega) \text{ for } f \in \mathcal{V}$

* Let $f \in \mathcal{V}$. By Step 1-3, we can choose elementary functions

$$\phi_n$$
 such that

$$E\left[\int_{S}^{T} |f-\phi_{n}|^{2} dt\right] \to 0 \quad \text{as } n \to \infty.$$

Then, define

To the settine
$$\mathcal{I}(f)(\omega) \coloneqq \int_{S}^{T} f(t,\omega) dB_{t}(\omega) = \lim_{n \to \infty} \int_{S}^{T} \phi_{n}(t,\omega) dB_{t}(\omega) .$$

The limit exists as $\{\int_S^T \phi_n(t,\omega) dB_t\}$ forms a Cauchy sequence in $L^2(P)$ by the Ito isometry.

Definition: The Ito integral

* Let $f \in \mathcal{V}(S,T)$. Then the Ito integral of f from S to T is defined by

$$\int_{S}^{T} f(t,\omega)dB_{t}(\omega) = \lim_{n\to\infty} \int_{S}^{T} \phi_{n}(t,\omega)dB_{t}(\omega).$$

where $\{\phi_n\}$ is a sequence of elementary functions such that

$$E\left[\int_{S}^{T} (f(t,\omega) - \phi_{n}(t,\omega))^{2} dt\right] \to 0$$

as $n \to \infty$.

Two corollaries to the Ito isometry

Corollary 3.1.7: For all $f \in \mathcal{V}(S,T)$,

$$E\left[\left(\int_{S}^{T} f(t,\omega)dB_{t}\right)^{2}\right] = E\left[\int_{S}^{T} f^{2}(t,\omega)dB_{t}\right].$$

Corollary 3.1.8: If
$$f(t,\omega) \in \mathcal{V}(S,T)$$
 and $f_n(t,\omega) \in \mathcal{V}(S,T)$ for $n=1,2,\cdots$ and $E\left[\int_S^T \left(f_n(t,\omega) - f(t,\omega)\right)^2 dt\right] \to 0$ as $n\to\infty$, then

$$\int_{S}^{T} f_{n}(t,\omega)dB_{t}(\omega) \to \int_{S}^{T} f(t,\omega)dB_{t}(\omega) \quad \text{in } L^{2}(P) \text{ as } n \to \infty.$$

Example 3.1.9.

* Assume
$$B_0 = 0$$
. Then, $\int_{0}^{t} B_s dB_s = \frac{1}{2}B_t^2 - \frac{1}{2}t$.

* Proof:

Let
$$\phi_n(t,\omega) = \sum B_j(\omega) \cdot \chi_{[t_j,t_{j+1})}(s)$$
 where $B_j = B_{t_j}$. Then,

$$E\left[\int_{0}^{t} (\phi_{n} - B_{s})^{2} ds\right] = E\left[\sum_{j} \int_{t_{j}}^{t_{j+1}} (B_{j} - B_{s})^{2} ds\right]$$

$$= \sum_{j} \int_{t_{j}}^{t_{j+1}} (s - t_{j}) ds = \sum_{j} \frac{1}{2} (t_{j+1} - t_{j})^{2} \to 0$$

as
$$\Delta t_i \rightarrow 0$$
.

Example 3.1.9. continued

By Corollary 3.1.8,

$$\int_{0}^{t} B_{s} dB_{s} = \lim_{\Delta t_{j} \to 0} \int_{0}^{t} \phi_{n} dB_{s} = \lim_{\Delta t_{j} \to 0} \sum_{j} B_{j} \Delta B_{j}.$$
Now,
$$\Delta(B_{j}^{2}) = B_{j+1}^{2} - B_{j}^{2} = (B_{j+1} - B_{j})^{2} + 2B_{j}(B_{j+1} - B_{j})$$

$$= (\Delta B_{j})^{2} + 2B_{j} \Delta B_{j}$$

Since
$$B_0=0$$
, we obtain
$$B_t^2=\sum_j \Delta(B_j^2)=\sum_j (\Delta B_j)^2+2\sum_j B_j \Delta B_j \text{; or}$$

$$\sum_j B_j \Delta B_j=\frac{1}{2}B_t^2-\frac{1}{2}\sum_j (\Delta B_j)^2$$
 Since $\sum_j (\Delta B_j)^2 \to t$ in $L^2(P)$ as $\Delta t_j \to 0$, the result follows.

Theorem 3.2.1

Let
$$f, g \in \mathcal{V}(0,T)$$
 and $0 \le S < U < T$. Then,

Let
$$f, g \in \mathcal{V}(0,T)$$
 and $0 \le S < U < T$. Then,

1.
$$\int_{S}^{T} f dB_{t} = \int_{S}^{U} f dB_{t} + \int_{U}^{T} f dB_{t}$$
 for a.a. ω ;

2.
$$\int_{S}^{T} (cf + g) dB_{t} = c \cdot \int_{S}^{T} f dB_{t} + \int_{S}^{T} g dB_{t} \text{ for some } c \text{ and a.a. } \omega ;$$

3.
$$E\left[\int_{S}^{T} f dB_{t}\right] = 0$$
;

4.
$$\int_{S}^{T} f dB_{t}$$
 is \mathcal{F}_{T} -measurable.

Def: Filtration and Martingale

A filtration on (Ω, \mathcal{F}) is a family $\mathcal{M} = \{\mathcal{M}_t\}_{t \geq 0}$ of σ -algebras with $\mathcal{M}_t \subset \mathcal{F}$ such that

$$0 \le s < t \Longrightarrow \mathcal{M}_s \subset \mathcal{M}_t$$
.

- * An n-dimensional stochastic process $\{M_t\}_{t\geq 0}$ on (Ω,\mathcal{F},P) is called a martingale with respect to a filtration $\{\mathcal{M}_t\}_{t\geq 0}$ and P if
- (1) M_t is \mathcal{M}_t -measurable for all t;
- (2) $E[|M_t|] < \infty$ for all t; and
- (3) $E[M_s \mid \mathcal{M}_t] = M_t$ for all $s \ge t$.

Example 3.2.3.

* Brownian motion B_t in \Re^n is a martingale w.r.t. the σ -algebras \mathcal{F}_t generated by $\{B_s: s \leq t\}$, because $E[|B_t|]^2 \leq E[|B_t|^2] = |B_0|^2 + nt$.

For
$$s \ge t$$
,
$$E[B_s \mid \mathcal{F}_t] = E[B_s - B_t + B_t \mid \mathcal{F}_t]$$

$$= E[B_s - B_t \mid \mathcal{F}_t] + E[B_t \mid \mathcal{F}_t]$$

$$= 0 + B_t = B_t$$
 .

Theorem 3.2.4. Doob's Martingale Inequality

* If M_t is a martingale such that $t \to M_t$ is continuous a.s., then for all $p \ge 1$, $T \ge 0$ and all $\lambda > 0$,

$$P[\sup_{0 \le t \le T} |M_t| \ge \lambda] \le \frac{1}{\lambda^p} \cdot E[|M_T|^p].$$

We can use this inequality to prove that the Ito integral can be chosen to depend continuously on time.

Borel-Cantelli Lemma

* Let (A_1, A_2, \cdots) be a sequence of events in a probability space (Ω, \mathcal{F}, P) . Assume that for each $i \neq j$, the events A_i and A_j are either negatively correlated or uncorrelated.

Then, if
$$\sum_{n=1}^{\infty} P(A_n) = \infty$$
, then $P(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m) = 1$.

Theorem 3.2.5

* Let $f \in \mathcal{V}(S,T)$. There exists a *t*-continuous stochastic process J_t on (Ω, \mathcal{F}, P) such that

$$P\left[J_t = \int_0^t f dB\right] = 1 \text{ for all } t, 0 \le t \le T.$$

* Proof: Let $\phi_n = \phi_n(t, \omega) = \sum_j e_j(n) \chi_{[t_j^{(n)}, t_{j+1}^{(n)})}(t)$

be elementary functions such that

$$\lim_{n\to 0} E\left[\int_{0}^{T} (f-\phi_n)^2 dt\right] = 0.$$

Sketch of Proof: Step 2

* Let
$$\begin{cases} I_n(t,\omega) = \int_0^t \phi_n(s,\omega) dB_s(\omega); \\ I_t = I_t(t,\omega) = \int_0^t f(s,\omega) dB_s(\omega); 0 \le t \le T. \end{cases}$$

Now, $I_n(\cdot, \omega)$ is continuous for all n.

Moreover, $I_n(t,\omega)$ is a martingale w.r.t. \mathcal{F}_t for all n , because for s>t ,

$$E[I_n(s,\omega) \mid \mathcal{F}_t] = E[\left(\int_0^t \phi_n dB + \int_0^s \phi_n dB\right) \mid \mathcal{F}_t]$$

$$=\int_0^t \phi_n dB + E \left[\sum_{t \leq t_j^{(n)} \leq t_{j+1}^{(n)} \leq s} e_j^{(n)} \Delta B_j \right] \mathcal{F}_t \qquad \text{; and}$$

Because Continued

$$E\left[\sum_{t \leq t_{j}^{(n)} \leq t_{j+1}^{(n)} \leq s} e_{j}^{(n)} \Delta B_{j} \middle| \mathcal{F}_{t}\right] = \sum_{j} E[E[e_{j}^{(n)} \Delta B_{j} \middle| \mathcal{F}_{t_{j}^{(n)}}] \middle| \mathcal{F}_{t}]$$

$$= \sum_{j} E[e^{(n)} F[\Delta B_{j} \middle| \mathcal{F}_{t_{j}^{(n)}}] \middle| \mathcal{F}_{t}] = 0$$

$$= \sum_{j} E[e_{j}^{(n)} E[\Delta B_{j} | \mathcal{F}_{t_{j}^{(n)}}] | \mathcal{F}_{t}] = 0.$$

* $I_n - I_m$ is also an \mathcal{F}_t -martingale.

Sketch of Proof: Step 3

* By Theorem 3.2.4,

$$P\left[\sup_{0 \le t \le T} \left| I_n(t, \omega) - I_m(t, \omega) \right| > \epsilon \right] \le \frac{1}{\epsilon^2} \cdot E\left[\left| I_n(t, \omega) - I_m(t, \omega) \right|^2 \right]$$

$$= \frac{1}{\epsilon^2} \cdot E \left[\int_0^T (\phi_n - \phi_m)^2 ds \right] \to 0 \quad \text{as} \quad m, n \to \infty.$$

* Hence we may choose a subsequence $n_{\underline{k}} \uparrow \infty$ s.t.

$$P\left[\sup_{0\leq t\leq T}\left|I_{n_{k+1}}(t,\omega)-I_{n_k}(t,\omega)\right|>\epsilon\right]<2^{-k}.$$

Sketch of Proof: Final Step

* By the Borel-Cantelli lemma,

$$P\left[\sup_{0\leq t\leq T}\left|I_{n_{k+1}}(t,\omega)-I_{n_k}(t,\omega)\right|>2^{-k} \text{ for infinitely many } k\right]=0.$$

* For a.a. ω , there exists $k_1(\omega)$ such that

$$\sup_{0 \le t \le T} \left| I_{n_{k+1}}(t, \omega) - I_{n_k}(t, \omega) \right| \le 2^{-k} \text{ for } k \ge k_1(\omega).$$

Corollary 3.2.6

* Let $f \in \mathcal{V}(S,T)$ for all T. Then,

$$M_{t}(\omega) = \int_{0}^{t} f(s, \omega) dB_{s}$$

is a martingale w.r.t. \mathcal{F}_t and

$$P\left[\sup_{0\leq t\leq T}\left|M_{t}\right|\geq\lambda\right]\leq\frac{1}{\lambda^{2}}\cdot E\left[\int_{0}^{t}f(s,\omega)^{2}ds\right]$$

for all $\lambda, T > 0$