Data partitioning strategies for simulating non-IID data distributions in the DDM-PS-Eval evaluation platform

Mikołaj Markiewicz, Jakub Koperwas

ICSOFT 2022 Lisbon, 11-13 July, 2022

Outline

- 1. Introduction
- 2. Non-IID data partitioning
 - 2.1. Partitioning taxonomy
 - 2.2. Partitioning strategies
- 3. DDM-PS-Eval platform
- 4. Experiments & results
- 5. Conclusions
- 6. Q&A

Introduction

Problem statement - algorithms and distributed data

Non-IID data partitioning

Minimal test suite - correct coverage

Minimal test suite - incomplete coverage

Partitioning strategies

Covariate Shift (Feature Distribution Skew)

Controlling "shift" (skew) size:

$$\begin{cases} \sum_{n=2}^{splits} \frac{M_n - M_{n-1}}{max - min} = (splits - 1) \cdot shift \\ \forall n \quad \frac{M_n - M_{n-1}}{max - min} = shift \end{cases}$$
(4)

$$\land \quad \textit{splits} > 1; \quad \textit{shift} \in (0, \frac{1}{\textit{splits}}]$$

Different parameterisation results:

Prior Probability Shift (Label Distribution Skew)

Real-life examples:

- Single kangaroos in zoos around the world live wild in Australia
- A group of people from a single nation in a community emigrated from another country
- Mostly English texts in US or UK, and this language used all around the world

Different parameterisation possibilities and the 1st stage results:

Concept Drift (Same Label, Different Features)

Simplified algorithm:

- Extract data with chosen class,
- 2. Discretize numeric attributes,
- Group data into buckets with the same attributes.
- 4. Find "individuals" in all-nominal data,
- 5. Check if the "drift" condition is fulfilled,
 - 5.1. Perform partitioning (go to step 6),
 - 5.2. Otherwise, remove "individuals" and attribute with the lowest entropy and repeat step 3.
- 6. Divide buckets across partitions,
- Scatter "individuals".

Nominal attributes example:

```
bucket 3:
1st pass:
             Id: a1, a2, a3
                                bucket 1:
                                                  bucket 2:
                                ids=[1, 2, 5]
                                                   ids=[3, 8]
                                                                      ids=[4, 6, 7]
                                                                      a1 =[d, c]
                                 a1 = [a, w]
                                                    a1 =[x]
                                 a2 = [b, d]
                                                    a2 =[y]
                                                                      a2 = [e, f, c]
                                 a3 = [c, e, b]
                                                    a3 =[z]
                                                                      a3 = [f, d]
                     f, d
                                                    individuals
2nd pass:
                     a2, a3
                                bucket 1:
                                                  bucket 2:
                                                                     bucket 3:
                                                                                        bucket 4:
                     b, c
                                ids=[1, 5]
                                                   ids=[2]
                                                                      ids=[4, 7]
                                                                                         ids=[6]
                                 a2 =[b]
                                                    a2 =[d]
                                                                      a2 =[e, c]
                                                                                         a2 =[f]
                                 a3 = [c, b]
                                                    a3 =[e]
                                                                      a3 =[f]
                                                                                         a3 =[d]
                     b, b
                     f, d
                                                                       individuals
3nd pass..
```

Concept Drift - sample results

3 "drifts" for a 2-dimensional Gaussian cluster:

2 "drifts" for Iris dataset on 'Iris-setosa' class:

Concept Shift (Same Features, Different Label)

Creating artificial classes → "mutate" the label:

- The problem for supervised learning,
 e.g. non-fuzzy classifiers
- Transparent for unsupervised learning,
 e.g. clustering

Example:

Unbalancedness (Quantity Skew)

Trivial approach example:

Controlling unbalancedness (skew) ratio:

DDM-PS-Eval platform

Platform architecture - partitioning component

A simplified version with the most interesting components highlighted:

Experiments & results

Experimental configurations

Data (classes/groups, number of samples)	Shuttle (7, 58.000), MNIST (10, 70.000), CURE (5, 2.000), Synthetic-Gaussians (7, 100.000)
Algorithms	Naive Bayes, DN-SVM, DK-means, Opt-DKM, LCT, DP-BIRCH
Worker nodes / partitions	Three workers for the first three literature datasets Four workers for the synthetic dataset
Partitioning strategies (parameterised separately for each dataset)	uniform, dense-outliers, covariate-shift, separated, most-plus-some, most-plus-all, all-but, concept-drift, concept-shift, unbalancedness

Quality results for classification

Quality results for clustering

(Negative) Impact on the results quality

Main non-IID category of data partitioning strategy	Naive Bayes	DN-SVM	DK-means	Opt-DKM	LCT	DP-BIRCH
Covariate shift	0	0 - L	0 - M	0 - H	0 - H	0 - H
Concept shift	М - Н	н	0	0 - L	0 - H	0 - L
Concept drift	0	0 - M	0 - L	0 - H	0 - H	L-H
Prior probability shift	0	0 - H	0 - L	0 - H	0 - H	0 - M
Unbalancedness	0	0	0 - L	0 - L	0 - H	L - H

L, M, H indicate low (<5%), medium (<10%), high (≥10%) impact, respectively, and 0 indicates no noticeable impact or results that are better than those obtained for uniform data distribution

Sample time processing results (ms)

MAX - MNIST					
Impact		Strategy	Chart		
	Algorithm		DN-SVM		
0		uniform	107,069		
Н		dense-outliers	149,673		
0		separated	20,245		
0		most-of-one-plus-some	45,745		
0		most-plus-all	67,137		
0		all-but	54,878		
н		unbalancedness=1	151,959		
н		unbalancedness=0	149,228		
0		covariate=2	98,239		
M		covariate=3	113,235		
0		concept-drift=2	107,318		
0		concept-drift=3	104,365		
н		concept-shift	119,338		

MAX - Synthetic					
Impact		Strategy	Chart		
	Algorithm		Opt-DKM		
0		uniform	1,984		
н		dense-outliers	2,347		
н		separated	2,286		
н		most-of-one-plus-some	2,298		
L		most-plus-all	2,044		
Н		all-but	2,388		
Н		unbalancedness=1	2,535		
Н		unbalancedness=0	2,468		
M		covariate=2	2,136		
M		covariate=3	2,103		
н		concept-drift=2	2,419		
M		concept-drift=3	2,175		
н		concept-shift	2,324		

Conclusions

Conclusions and Future Work

- ★ Introduced extended non-IID data partitioning taxonomy
- ★ Presented new data partitioning methods simulating non-IID data dispersion
- ★ Illustrated partitioning impact on the distributed algorithms processing results
- ★ Extended DDM-PS-Eval platform with new partitioning strategies implementations

- Create data partitioning schemes for different dataset types, such for example textual datasets
- Prepare more realistic distributions of non-IID data by mixing multiple partitioning strategies
- Develop more sophisticated scattering of data with few labels for a large number of partitions
- **∟** ...

Q&A