This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

								$\theta_{\rm s}$
			\$ 1 · · ·					
				the second				
	the second	1						
		•						
					,	er titte		
	e de Santa de Carlos de Ca							
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
				1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1				
			•					
			y					
		**************************************				*		
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		. 4		en e			
			** .					i i
								ŕ
			*					
		•			j da			
								ut topic Notice

							i.	
				t in the second	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		· 3.	
							1.1	
1. San 1.	Age to the second							

PCT:

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/62, C07K 19/00, C12N 1/21, 5/10, C12Q 1/37, 1/533 // C07K 14/18, C12N 9/50

A2

(11) International Publication Number:

WO 99/28482

(43) International Publication Date:

10 June 1999 (10.06.99)

(21) International Application Number:

PCT/US98/24528

(22) International Filing Date:

24 November 1998 (24.11.98)

(30) Priority Data:

60/067,315

US 28 November 1997 (28.11.97)

60/094,331

28 July 1998 (28.07.98) US

(71) Applicant: SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).

(72) Inventors: MALCOLM, Bruce, A.; 515 Trinity Place, Westfield, NJ 07090 (US). TAREMI, S., Shane; 12 Park Terrace, Upper Montclair, NJ 07043 (US). WEBER, Patricia, C.; 1970 Timber Lakes Drive, Yardley, PA 19067 (US). YAO, Nanhua; 4 Timothy Court, Edison, NJ 08837 (US).

(74) Agents: McLAUGHLIN, Jaye, P. et al.; Schering-Plough Corporation, Patent Dept., K-6-1 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).

(81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CZ, EE, GD, GE, HR, HU, ID, IL, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: SINGLE-CHAIN RECOMBINANT COMPLEXES OF HEPATITIS C VIRUS NS3 PROTEASE AND NS4A COFACTOR PEPTIDE

(57) Abstract

Covalent HCV NS4A-NS3 complexes comprising the central hydrophobic domain of native HCV NS4A peptide, a linker, and the HCV NS3 serine protease domain, wherein the hydrophobic domain of native HCV NS4A peptide is tethered by the linker to the amino terminus of the HCV NS3 protease domain.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Senegal
ΑZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Swaziland Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Togo
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Tajikistan Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Turkey
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Trinidad and Tobago
BR	Brazil	IL	Israel	MR	Mauritania	UG	Ukraine
BY	Belarus	IS	Iceland	MW	Malawi	US	Uganda
CA	Canada	IT	Italy	MX	Mexico	UZ	United States of Americ
CF	Central African Republic	JP	Japan	NE	Niger	VN	Uzbekistan
CG	Congo	KE	Kenya	NL	Netherlands	YU	Viet Nam
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Yugoslavia
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	ZW	Zimbabwe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/28482 PCT/US98/24528

SINGLE-CHAIN RECOMBINANT COMPLEXES OF HEPATITIS C VIRUS NS3 PROTEASE AND NS4A COFACTOR PEPTIDE

5

This filing claims priority from Provisional U.S. Patent Applications USSN 60/067,315, filed November 28, 1997 and USSN 60/094,331, filed July 28, 1998, each of which is incorporated herein by reference.

10

15

20

25

30

BACKGROUND OF THE INVENTION

Hepatitis C virus (HCV) is considered to be the major etiological agent of non-A non-B (NANB) hepatitis, chronic liver disease, and hepatocellular carcinoma (HCC) around the world, with an estimated human seroprevalence of 1% globally. [Alter et al., 1994, Gastroenterol. Clin. North Am. 23:437-455; Behrens et al., 1996, EMBO J. 15:12-22]. Four million individuals may be infected in the United States. The viral infection accounts for greater than 90% of transfusion-associated hepatitis in the U.S. and it is the predominant form of hepatitis in adults over 40 years of age. Almost all of the infections result in chronic hepatitis and nearly 20% of those infected develop liver cirrhosis.

The virus particle has not been identified due to the lack of an efficient *ex vivo* replication system and the extremely low amount of HCV particles in infected liver tissues or blood. However, molecular cloning of the viral genome has been accomplished by isolating the messenger RNA (mRNA) from the serum of infected chimpanzees and preparing cDNA using recombinant methodologies. [Grakoui A. *et al.*, 1993, J. Virol. 67: 1385-1395]. It is now known that HCV contains a positive strand RNA genome comprising approximately 9400 nucleotides, organization of which is similar to that of flaviviruses and pestiviruses. The genome of HCV, a (+)-stranded RNA molecule of -9.4 kb, encodes a single large polyprotein of about 3000 amino acids which undergoes proteolysis to form mature viral proteins in infected cells.

Cell-free translation of the viral polyprotein and cell culture expression studies have established that the HCV polyprotein is processed by cellular and viral proteases to produce the putative structural and nonstructural (NS) proteins. At least ten mature viral proteins are produced from the polyprotein by specific proteolysis. The 5 order and nomenclature of the cleavage products are as follows: NH2-C-E1-E2-p7-NS2-NS4A-NS3-NS4B-NS5A-NS5B-COOH (Fig. 1) [Grakoui et al., 1993, J. Virol. 67:1385-95; Hijikata et al., 1991, PNAS 88:5547-51; Lin et al., 1994, J. Virol. 68:5063-73]. The three amino-terminal putative structural proteins, C (capsid), E1, and E2 (two envelope glycoproteins), 10 are believed to be cleaved by a host signal peptidase of the endoplasmic reticulum (ER). The host enzyme is also responsible for generating the amino terminus of NS2. The proteolytic processing of the nonstructural proteins are carried out by the viral proteases: NS2-3 and NS3, contained 15 within the viral polyprotein. The NS2-3 protease catalyzes the cleavage between NS2 and NS3. It is a metalloprotease and requires both NS2 and the protease domain of NS3.

The NS3 protease catalyzes the rest of the cleavages in the nonstructural part of the polyprotein. The NS3 protein contains 631 amino acid residues and is comprised of two enzymatic activities: the protease domain contained within amino acid residues 1-181 and a helicase ATPase domain contained within the rest of the protein Kim et al., 1995, Biochem Biophys Res. Comm., 215:160-166. It is not known if the 70 kD NS3 protein is cleaved further in infected cells to separate the protease domain from the helicase domain, although no cleavage has been observed in cell culture expression studies.

The NS3 protease is a member of the serine class of enzymes. It uses a His, Asp, Ser catalytic triad. Mutation of the Ser residue abolishes cleavage of NS3/4A, NS4A/4B, NS4B/5A, and NS5A/5B substrates. The cleavage between NS3 and NS4A is intramolecular, whereas the cleavages at the NS 4A/4B, 4B/5A, 5A/5B sites occur in *trans*.

20

25

30

10

15

20

25

30

Experiments using transient expression of various forms of HCV NS polyproteins in mammalian cells have established that the NS3 serine protease is necessary but not sufficient for efficient processing of all of these cleavages. Like the flaviviruses, the HCV NS3 protease also requires a cofactor to catalyze some of these cleavage reactions. Efficient proteolytic processing at NS3/4A, NS4A/4B, NS4B/5A, and NS5A/5B sites within the non-structural domain of hepatitis C virus requires a heterodimeric complex of the NS3 serine protease and the NS4A protein. [Bartenschlager et al. 1995, J. Virol. 67:3835-3844; Failla et al., 1994, J. Virol. 68:3753-3760]. A 13-amino acid synthetic NS4A peptide, corresponding to the central hydrophobic domain of NS4A protein, spanning residues 21-33 has been shown to be sufficient for activation of NS3 protease [Butkiewicz et al., 1996, Virology, 225: 328-338]. A smaller domain (amino acid residues 22-30) of NS4A has been shown to be sufficient for activation of the protease [Lin et al., 1995, J. Virol 69:4377-801.

The recently published three dimensional structure of the NS3 protease [Kim *et al*, 1996, *Cell* 87:343-355; Love *et al*, 1996, *Cell* 87:331-342] revealed that the N-terminal 37 residues of NS3 adopt a β (residues 6-9)- α (residues 14-22)- β (residues 33-37) structure upon binding of a synthetic peptide corresponding to the central hydrophobic domain spanning residues 21-32 of NS4A protein.

Production of an active NS3₁₋₁₈₁-NS4A peptide complex at present involves two steps. First, the NS3 catalytic domain (amino acid residues 1-181) is produced as a recombinant protein in *E. coli*. Next, a 13-19 residue NS4A peptide spanning the central hydrophobic domain of the full-length NS4A protein is added to form a non-covalent complex [Kim *et al.*, 1996, *Cell* 87:343-355]. This complex, although more active than the protease alone, is approximately 8-10 fold less active than the full-length NS3₁₋₆₃₁-NS4A₁₋₅₄ form of the protease as judged by its proteolytic activity toward a synthetic substrate based on the native NS5A-NS5B amino acid sequence. [Urbani *et al.*, 1997, J. Biol. Chem.,

272(14):9204-09; Steinkuhler *et al.*, 1996, *J. Virol.* 70(10):6694-6700]. Moreover, NS4A peptide has been shown to have a very low affinity (10 μM) for NS3 in solution [Bianchi *et al.*, 1997, *Biochemistry* 36: 7890-7897], requiring addition of NS4A peptide in the high micromolar range to insure a 1:1 stoichiometric complex with NS3 protease. The limited solubility of this peptide in aqueous buffer due to its hydrophobic nature makes working with this peptide at these concentrations difficult.

Because the HCV NS3 protease cleaves the non-structural HCV proteins necessary for HCV replication, the NS3 protease can be a target for the development of therapeutic agents against the HCV virus. The gene encoding the HCV NS3 protein has been cloned as disclosed in U.S. Patent No. 5,371,017. To date, however, the protease has not been produced in a covalent complex with the NS4A cofactor in a soluble, active and stable form. Such a complex would be useful as a target in a high throughput screen to discover therapeutic agents. A stable, active HCV protease is also required for determination of modes of binding of inhibitors by NMR, for structural determination by NMR spectroscopy, for crystallography, and for virtually all biophysical and biochemical studies interested in the activated form of the enzyme.

20

25

30

5

10

15

SUMMARY OF THE INVENTION

The present invention provides NS4A tethered forms of the HCV NS3 protease comprising single-chain recombinant covalent complexes of Hepatitis C virus NS3 protease and an NS4A cofactor peptide which require no subsequent addition of NS4A peptide for activation and which are as active as the full-length NS3₁₋₆₃₁ NS4A₁₋₅₄. The covalent NS4A-NS3 complexes of the invention are more soluble, stable and active than the non-covalent protease-peptide complexes previously available.

The NS4A tethered forms of the HCV NS3 protease of the invention consist of covalent NS4A-NS3 complexes comprising a

10

15

20

25

30

central hydrophobic domain of the NS4A peptide tethered by linker of at least about 4 amino acid residues to the amino terminus of the serine protease domain of NS3. The amino acid sequences of 20 such embodiments are defined in the Sequence Listing by SEQ ID NOs: 1-20. Corresponding nucleotide sequences are provided in SEQ ID NOs: 91-111.

Preferred embodiments of the invention also provide NS4A tethered forms of the full length NS3 protease. The amino acid sequences of 8 such embodiments are defined in SEQ ID NOs: 11-18.

Other preferred embodiments of the invention further provide mutant forms of the covalent NS4A-NS3 complexes in which point mutations introduced at positions 17 and/or 18 of the NS3 domain change a hydrophobic amino acid residue to a hydrophilic residue. This further improves the solubility of the complexes and provides the protein in a monodispersed form. The amino acid sequences of 13 such embodiments are defined in the Sequence Listing by SEQ ID NOs: 2-4, 6-8, 10, 12-14, and 16-18.

The invention still further provides mutant forms of the covalent NS4A-NS3 complexes in which a mutation introduced at position 139 of the NS3 domain changes a serine residue to an alanine residue. The amino acid sequences of 9 such embodiments are defined in SEQ ID NOs: 5-8, 15-18 and 20.

The invention further provides covalent HCV NS4A-NS3 complexes having an easily removable histidine tag comprising three or more histidine residues fused to the complex. This enables rapid purification of the protease with easy removal of the tag following purification.

The present invention further provides for isolated nucleic acids and vectors which encode the covalent NS4A-NS3 complexes of the present invention, and host cells transformed or transfected by said nucleic acids or vectors.

The invention still further provides methods for making the covalent NS4A-NS3 complexes comprising culturing the transformed or transfected host cell under conditions in which the nucleic acid or vector is expressed.

The invention also provides methods for identifying inhibitors of HCV NS3. Methods are provided for detecting inhibitors of the protease activity, the helicase activity and the ATPase activity of NS3 using the disclosed covalent complexes.

10

25

5

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 schematically depicts the HCV genome.

Figure 2 depicts the recombinant synthesis of plasmid pHIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁.

Figure 3 depicts the recombinant synthesis of plasmid pHIS-NS31-631.

Figure 4 depicts the recombinant synthesis of plasmid pHIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁.

Figures 5A and 5B schematically depict a high throughput assay for discovering HCV protease inhibitors using surface plasmon resonance technology. Figure 5A illustrates the outcome expected in the absence of an uninhibited HCV protease, while 5B illustrates the outcome expected in the presence of an active, uninhibited HCV protease.

Figure 6 shows the nucleic acid unwinding activity of the covalent His-NS4A₂₁₋₃₂-GSGS-NS₃₃₋₆₃₁ as compared to that of the His NS3₁₋₆₃₁/NS4A₁₋₅₄

Figure 7 shows the ATPase activity of the covalent His-NS4A₂₁₋₃₂-GSGS-NS₃₃₋₆₃₁ complex as monitored by thin layer chromatography.

10

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

The teachings of all references cited are incorporated herein in their entirety by reference.

The covalent NS4A-NS3 complexes of the present invention are useful for structural determination and determination of mode of binding of HCV inhibitors by NMR spectroscopy. Moreover, they provide a more soluble and stable form of HCV NS3 protease than the presently available non-covalent NS3₁₋₁₈₁-NS4A peptide complexes for crystallography studies, high throughput screening assays and other conventional biophysical and biochemical investigations.

Several representative embodiments of the covalent NS4A-NS3 complexes of the invention are disclosed in the examples below. In one such embodiment, NS4A residues 21-32 were tethered to the amino terminus of residues 3-181 of mature NS3 protease by a 4-residue linker, GSGS (SEQ ID NO: 21). The complex was overexpressed as a soluble protein in *E. coli* and purified to homogeneity by a combination of metal chelate and size-exclusion chromatography. The tethered complex, HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁ (SEQ ID NO: 1) cleaved a NS5A/5B synthetic substrate with a catalytic efficiency identical to that of the non-covalent full-length protease, NS3₁₋₆₃₁-NS4A₁₋₅₄.

In other embodiments of the invention, the NS4A hydrophobic domain and the NS3 serine protease domain are covalently tethered using different amino acid linkers. The preferred amino acid linkers of the invention comprise at least about four amino acid residues. More preferably, the linkers consist of from four to six amino acid residues. More preferably, four-residue linkers are used. Most preferably, amino acid linkers having the sequence defined by SEQ ID NO: 21 or 22 are used to tether the NS4A hydrophobic domain and the NS3 serine protease domain.

Routine procedures in the art would allow one to construct covalent NS4A-NS3 complexes of the invention having linkers of

10

15

20

25

30

various sizes. It will be understood by one skilled in the art, for example, that if smaller or larger portions of the NS3 or NS4A domains are used to construct the covalent complexes of the invention, longer or shorter amino acid linkers can be used.

Other embodiments of the present invention contain smaller or larger portions of the NS4A cofactor peptide. In preferred embodiments, the complexes contain an NS4A hydrophobic domain comprising at least amino acid residues 22-30 of the full length NS4A cofactor peptide. More preferably, the complexes contain from 12-19 amino acid residues spanning the central hydrophobic domain of the full length NS4A peptide. Most preferably, the complexes contain amino acid residues 21-32 of full length NS4A peptide.

Still further embodiments of the present invention contain smaller or larger portions of the NS3 protease. In preferred embodiments, the complexes contain an NS3 serine protease domain comprising at least amino acid residues 3-181 of the full length NS3 protease. More preferably, the complexes contain amino acid residues 1-181 of full length NS3 protease. Most preferably, the complexes contain amino acid residues 3-181 of full length NS3 protease.

The present invention thus also includes covalent NS4A-NS3 complexes comprising the central hydrophobic domain of the NS4A peptide tethered to the amino terminus of full-length mature NS3 protease (amino acids 1-631) by an amino acid linker. The amino acid sequences of preferred embodiments comprising NS4A tethered to full-length mature NS3 protease are set forth in SEQ ID NOs: 11-18.

Surprisingly, it has also been found that the introduction of point mutations at position 17 and/or 18 of the NS3 domain of the NS4A-NS3 constructs of the present invention which change a hydrophobic amino acid residue to a hydrophilic amino acid residue produces a more soluble and mono-dispersed form of the tethered complex. Thirteen representative embodiments of such mutant NS4A-NS3 complexes are disclosed in the Examples below. In some embodiments, the isoleucine

10

15

20

25

30

at position 17 is mutated to lysine. One such mutant form is referred to as His-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/I17K (SEQ ID NO: 2). In other embodiments, the same mutation is made at position 18. One such mutant form is referred to as His-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/I18K (SEQ ID NO: 3). In yet other embodiments, the mutations are introduced at both positions. One such mutant is referred to as His-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/I17K,I18K (SEQ ID NO: 4). Each of the purified mutants results in a monodispersed (as judged by size exclusion chromatography) and more soluble (as judged by achieving higher concentration of the complex 17-20 mg/ml) form of the complex, which remains monodispersed for a period of about one week at 4°C, while still exhibiting kinetic properties identical to those of the wild type.

It will be understood that although the foregoing embodiments are presently preferred, other modifications to the hydrophobic residues at positions 17 and 18 can be made to produce other soluble complexes. Preferably, neutral amino acid residues will be substituted for charged residues. These modifications can be used in a number of combinations to produce the final modified protein chain.

Also provided are NS4A-tethered forms of NS3 full-length domain. In contrast to the NS4A-tethered forms of the catalytic domain, a considerable amount of autocleavage in the helicase domain of the NS3 protein is detected during the purification of their native full-length counterpart, HIS-NS4A₂₁₋₃₂-NS3₃₋₆₃₁. To prevent autocleavage of the full-length covalent complexes, the catalytic serine residue at position 139 is mutated to alanine. The amino acid sequence of one such embodiment is defined by SEQ ID NO: 15. The mutation of the full length constructs at position 139 can also be made in the NS4A-tethered forms of the NS3 catalytic domain, and can be made in combination with any of the aforementioned mutations to increase solubility and stability while preventing autocleavage. Representative embodiments are set forth in SEQ ID NOs: 5-8, 15-18 and 20.

10

15

20

25

30

As used herein, the terms "native NS3" and "full-length NS3" are used interchangeably and are defined as a protein which (a) has an amino acid sequence substantially identical to the sequence defined by SEQ ID NO: 23 and (b) has biological activity that is common to native NS3. This includes natural allelic variants and other variants having one or more conservative amino acid substitutions [Grantham, 1974, Science 185:862] that do not substantially impair biological activity. Such conservative substitutions involve groups of synonymous amino acids, e.g., as described in U.S. patent No. 5,017,691 to Lee et al.

The "serine protease domain" of NS3 or the "catalytic domain" of NS3 refers to amino acids 1-181 of mature NS3, which have been shown to contain the active catalytic triad His, Asp and Ser.

The term "native NS4A peptide" as used herein is defined as a peptide which (a) has an amino acid sequence substantially identical to the sequence defined by SEQ ID NO: 24; and (b) has biological activity that is common to native NS4A. This includes natural allelic variants and other variants having one or more conservative amino acid substitution [Grantham, 1974, Science 185:862] that do not substantially impair biological activity. Such conservative substitutions involve groups of synonymous amino acids, e.g., as described in U.S. patent No. 5,017,691 to Lee et al.

As used herein, the "central hydrophobic domain of NS4A peptide" refers to that portion of the native NS4A peptide (approximately amino acid residues 22 - 30) which is sufficient for activation of NS3 protease. Size and sequence variants of this domain which also activate the NS3 protease in the claimed complexes also fall within this term.

A "soluble" covalent complex as referred to herein is defined as a protein which will remain in solution after a high spin centrifugation step at 300,000 x g in a standard ultracentrifuge in a buffer containing 25 mM HEPES, pH 7.6, 10% glycerol, 0.3 M NaCl, 10 mM β ME.

10

15

An "active" covalent complex as referred to herein is defined as a complex which will cleave synthetic substrates corresponding to NS5A-NS5B cleavage site (for example, DTEDVVCC SMYTWTGK) (SEQ ID NO: 25)) between P1 residue, cysteine and P1' residue, serine in a buffer containing 25 mM Tris, pH 7.5, 150 mM NaCl, 10 % glycerol, and 0.05 % lauryl maltoside.

Nucleic acids encoding the covalent NS4A-NS3 complexes are also a part of this invention. DNA encoding the covalent NS4A-NS3 complexes of this invention can be prepared by chemical synthesis using the known nucleic acid sequence [Ratner et al., 1985, Nucleic Acids Res. 13:5007] and standard methods such as the phosphoramidite solid support method of Matteucci et al., 1981, J. Am. Chem. Soc. 103:3185 or the method of Yoo et al., 1989, J. Biol. Chem. 764:17078. See also Glick, Bernard R. and Pasternak, Molecular Biotechnology, pages 55 - 63, (ASM Press, Washington, D.C. 1994). The genes encoding the desired regions of the HCV protein can also be obtained using the plasmid disclosed in Grakoui, et al., 1993, J. Virol. 67:1385-1395 or that disclosed in Takamizawa et al., 1991, J. Virology 65(3):1105-1113. Also, the nucleic acid encoding HCV NS3 20 and NS4A can be isolated, amplified and cloned from patients infected with the HCV virus. Furthermore, the HCV genome has been disclosed in PCT WO 89/04669 and is available from the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, MD under ATCC accession no. 40394.

Of course, because of the degeneracy of the genetic code, there 25 are many functionally equivalent nucleic acid sequences that can encode the NS3 and NS4A domains of the covalent NS4A-NS3 complexes as defined herein. Such functionally equivalent sequences, which can readily be prepared using known methods such as chemical synthesis, PCR employing modified primers and site-30 directed mutagenesis, are within the scope of this invention.

15

Various vectors can be used to express DNA encoding the covalent NS4A-NS3 complexes. Conventional vectors used for expression of recombinant proteins in prokaryotic or eukaryotic cells may be used. Preferred vectors include the pET vectors described by Studier *et al*, 1990, *Methods of Enzymology* 185: 60-89, and the pcD vectors described by Okayama *et al.*, 1983, *Mol. Cell. Bio.* 3: 280-289; and Takebe *et al.*, 1988, *Mol. Cell. Biol.* 8: 466-472. Other SV40-based mammalian expression vectors include those disclosed in Kaufman *et al.*, 1982, *Mol. Cell. Biol.* 2: 1304-1319 and U.S. Patent No. 4,675,285. These SV40-based vectors are particularly useful in COS7 monkey cells (ATCC No. CRL 1651), as well as in other mammalian cells such as mouse L cells and CHO cells.

Standard transfection methods can be used to produce eukaryotic cell lines which express large quantities of polypeptides. Eukaryotic cell lines include mammalian, yeast and insect cell lines. Exemplary mammalian cell lines include COS-7 cells, mouse L cells and Chinese Hamster Ovary (CHO) cells. See Sambrook et al., supra and Ausubel et al., supra.

As used herein, the term "transformed bacteria" means bacteria 20 that have been genetically engineered to produce a viral or mammalian protein. Such genetic engineering usually entails the introduction of an expression vector into a bacterium. The expression vector is capable of autonomous replication and protein expression relative to genes in the bacterial genome. Construction of bacterial expression vectors is well 25 known in the art, provided the nucleotide sequence encoding a desired protein is known or otherwise ascertainable. For example, DeBoer in U.S. Pat. No. 4,551,433 discloses promoters for use in bacterial expression vectors; Goeddel et al. in U.S. Pat. No. 4,601,980 and Riggs, in U.S. Pat. No. 4,431,739 disclose the production of mammalian proteins by E. coli 30 expression systems; and Riggs supra, Ferretti et al., 1986, Proc. Natl. Acad. Sci. 83:599, Sproat et al., 1985, Nucleic Acid Research 13:2959 and Mullenbach et al., 1986, J. Biol. Chem 261:719 disclose how to construct

10

15

20

25

30

synthetic genes for expression in bacteria. Many bacterial expression vectors are available commercially and through the American Type Culture Collection (ATCC), Rockville, Maryland.

Insertion of DNA encoding the covalent NS4A-NS3 complexes into a vector is easily accomplished when the termini of both the DNA and the vector comprise the same restriction site. If this is not the case, it may be necessary to modify the termini of the DNA and/or vector by digesting back single-stranded DNA overhangs generated by restriction endonuclease cleavage to produce blunt ends, or to achieve the same result by filling in the single-stranded termini with an appropriate DNA polymerase.

Alternatively, any site desired may be produced by ligating nucleotide sequences (linkers) onto the termini. Such linkers may comprise specific oligonucleotide sequences that define desired restriction sites. The cleaved vector and the DNA fragments may also be modified if required by homopolymeric tailing.

Many *E. coli*-compatible expression vectors can be used to produce soluble covalent NS4A-NS3 complexes of the present invention, including but not limited to vectors containing bacterial or bacteriophage promoters such as the Tac, Lac, Trp, LacUV5, λ P_r and λ P_L promoters. Preferably, a vector selected will have expression control sequences that permit regulation of the rate of expression. Then, production of covalent NS4A-NS3 complexes can be regulated to avoid overproduction that could prove toxic to the host cells. Most preferred is a vector comprising, from 5' to 3' (upstream to downstream), a Tac promoter, a lac Iq repressor gene and DNA encoding mature human HCV protease. The vectors chosen for use in this invention may also encode secretory leaders such as the ompA or protein A leader, as long as such leaders are cleaved during post-translational processing to produce covalent NS4A-NS3

10

15

20

25

30

complexes or if the leaders are not cleaved, the leaders do not interfere with the enzymatic activity of the protease.

The covalent complexes of the invention, or portions thereof, can also be synthesized by a suitable method such as by exclusive solid phase synthesis, partial solid phase methods, fragment condensation or classical solution synthesis. The polypeptides are preferably prepared by solid phase peptide synthesis as described by Merrifield, 1963, J. Am. Chem. Soc. 85:2149. The synthesis is carried out with amino acids that are protected at the alpha-amino terminus. Trifunctional amino acids with labile side-chains are also protected with suitable groups to prevent undesired chemical reactions from occurring during the assembly of the polypeptides. The alpha-amino protecting group is selectively removed to allow subsequent reaction to take place at the amino-terminus. The conditions for the removal of the alpha-amino protecting group do not remove the side-chain protecting groups.

The alpha-amino protecting groups are those known to be useful in the art of stepwise polypeptide synthesis. Included are acyl type protecting groups (e.g., formyl, trifluoroacetyl, acetyl), aryl type protecting groups (e.g., biotinyl), aromatic urethane type protecting groups [e.g., benzyloxycarbonyl (Cbz), substituted benzyloxycarbonyl and 9-fluorenylmethyloxy-carbonyl (Fmoc)], aliphatic urethane protecting groups [e.g., t-butyloxycarbonyl (tBoc), isopropyloxycarbonyl, cyclohexyloxycarbonyl] and alkyl type protecting groups (e.g., benzyl, triphenylmethyl). The preferred protecting groups are tBoc and Fmoc, thus the peptides are said to be synthesized by tBoc and Fmoc chemistry, respectively.

The side-chain protecting groups selected must remain intact during coupling and not be removed during the deprotection of the amino-terminus protecting group or during coupling conditions. The side-chain protecting groups must also be removable upon the

completion of synthesis, using reaction conditions that will not alter the finished polypeptide. In tBoc chemistry, the side-chain protecting

10

1.5

20

25

30

groups for trifunctional amino acids are mostly benzyl based. In Fmoc chemistry, they are mostly tert.-butyl or trityl based.

In tBoc chemistry, the preferred side-chain protecting groups are tosyl for Arg, cyclohexyl for Asp, 4-methylbenzyl (and acetamidomethyl) for Cys, benzyl for Glu, Ser and Thr, benzyloxymethyl (and dinitrophenyl) for His, 2-Cl-benzyloxycarbonyl for Lys, formyl for Trp and 2-bromobenzyl for Tyr. In Fmoc chemistry, the preferred side-chain protecting groups are 2,2,5,7,8-pentamethylchroman-6-sulfonyl (Pmc) or 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (Pbf) for Arg, trityl for Asn, Cys, Gln and His, tert butyl for Asp, Glu, Ser, Thr and Tyr, tBoc for Lys and Trp.

For the synthesis of phosphopeptides, either direct or post-assembly incorporation of the phosphate group is used. In the direct incorporation strategy, the phosphate group on Ser, Thr or Tyr may be protected by methyl, benzyl or tert.butyl in Fmoc chemistry or by methyl, benzyl or phenyl in tBoc chemistry. Direct incorporation of phosphotyrosine without phosphate protection can also be used in Fmoc chemistry. In the post-assembly incorporation strategy, the unprotected hydroxyl group of Ser, Thr or Tyr is derivatized on solid phase with di-tert.butyl-, dibenzyl- or dimethyl-N,N'-diisopropylphosphoramidite and then oxidized by tert.butylhydroperoxide.

Solid phase synthesis is usually carried out from the carboxylterminus by coupling the alpha-amino protected (side-chain protected) amino acid to a suitable solid support. An ester linkage is formed when the attachment is made to a chloromethyl, chlortrityl or hydroxymethyl resin, and the resulting polypeptide will have a free carboxyl group at the C-terminus. Alternatively, when an amide resin such as benzhydrylamine or *p*-methylbenzhydrylamine resin (for *t*Boc chemistry) and Rink amide or PAL resin (for Fmoc chemistry) is used, an amide bond is formed and the resulting

10

15

20

25

30

polypeptide will have a carboxamide group at the C-terminus. These resins, whether polystyrene- or polyamide-based or polyethyleneglycol-grafted, with or without a handle or linker, with or without the first amino acid attached, are commercially available, and their preparations have been described by Stewart et al (1984)., "Solid Phase Peptide Synthesis" (2nd Edition), Pierce Chemical Co., Rockford, IL.; and Bayer & Rapp (1986) Chem. Pept. Prot. 3, 3; and Atherton, et al. (1989) Solid Phase Peptide Synthesis: A Practical Approach, IRL Press, Oxford.

The C-terminal amino acid, protected at the side-chain if necessary and at the alpha-amino group, is attached to a hydroxylmethyl resin using various activating agents including dicyclohexylcarbodiimide (DCC), N,N'-diisopropylcarbodiimide DIPCDI) and carbonyldiimidazole (CDI). It can be attached to chloromethyl or chlorotrityl resin directly in its cesium tetramethylammonium salt form or in the presence of triethylamine (TEA) or diisopropylethylamine (DIEA). First amino acid attachment to an amide resin is the same as amide bond formation during coupling reactions.

Following the attachment to the resin support, the alphaamino protecting group is removed using various reagents depending on the protecting chemistry (e.g., tBoc, Fmoc). The extent of Fmoc removal can be monitored at 300-320 nm or by a conductivity cell. After removal of the alpha-amino protecting group, the remaining protected amino acids are coupled stepwise in the required order to obtain the desired sequence.

Various activating agents can be used for the coupling reactions including DCC, DIPCDI, 2-chloro-1,3-dimethylimidium hexafluorophosphate (CIP), benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate (BOP) and its pyrrolidine analog (PyBOP), bromo-tris-pyrrolidino-phosphonium hexafluorophosphate (PyBroP), O -(benzotriazol-1-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphate (HBTU) and its tetrafluoroborate analog (TBTU) or its pyrrolidine analog (HBPyU), O -(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) and its tetrafluoroborate analog (TATU) or pyrrolidine analog (HAPyU). The most common catalytic 5 additives used in coupling reactions include 4dimethylaminopyridine (DMAP), 3-hydroxy-3,4-dihydro-4-oxo-1,2,3benzotriazine (HODhbt), N-hydroxybenzotriazole (HOBt) and 1hydroxy-7-azabenzotriazole (HOAt). Each protected amino acid is used in excess (>2.0 equivalents), and the couplings are usually 10 carried out in N-methylpyrrolidone (NMP) or in DMF, CH2Cl2 or mixtures thereof. The extent of completion of the coupling reaction can be monitored at each stage, e.g., by the ninhydrin reaction as described by Kaiser et al., Anal. Biochem. 34:595 (1970). In cases where incomplete coupling is found, the coupling reaction is extended and 15 repeated and may have chaotropic salts added. The coupling reactions can be performed automatically with commercially available instruments such as ABI model 430A, 431A and 433A peptide synthesizers.

After the entire assembly of the desired polypeptide, the polypeptide-resin is cleaved with a reagent with proper scavengers. The Fmoc peptides are usually cleaved and deprotected by TFA with scavengers (e.g., H₂O, ethanedithiol, phenol and thioanisole). The tBoc peptides are usually cleaved and deprotected with liquid HF for 1-2 hours at -5 to 0°C, which cleaves the polypeptide from the resin and removes most of the side-chain protecting groups. Scavengers such as anisole, dimethylsulfide and p-thiocresol are usually used with the liquid HF to prevent cations formed during the cleavage from alkylating and acylating the amino acid residues present in the polypeptide. The formyl group of Trp and dinitrophenyl group of His need to be removed, respectively, by piperidine and thiophenol in DMF prior to the HF cleavage. The acetamidomethyl group of Cys can

20

25

30

10

15

20

25

30

be removed by mercury(II) acetate and alternatively by iodine, thallium (III) trifluoroacetate or silver tetrafluoroborate which simultaneously oxidize cysteine to cystine. Other strong acids used for tBoc peptide cleavage and deprotection include trifluoromethanesulfonic acid (TFMSA) and trimethylsilyltrifluoroacetate (TMSOTf).

Recombinant DNA methodology can also be used to prepare the polypeptides. The known genetic code, tailored if desired with known preferred codons for more efficient expression in a given host organism, can be used to synthesize oligonucleotides encoding the desired amino acid sequences. The phosphoramidite solid support method of Matteucci et al., J. Am. Chem. Soc. 103:3185 (1981) or other known methods can be used for such syntheses. The resulting oligonucleotides can be inserted into an appropriate vector and expressed in a compatible host organism.

The polypeptides of the invention can be purified using HPLC, gel filtration, ion exchange and partition chromatography, countercurrent distribution or other well known methods. In a preferred embodiment of the present invention the covalent NS4A-NS3 complexes also contain a histidine tag which facilitates purification using a Ni⁺ column as is illustrated below.

One can use the covalent NS4A-NS3 complexes of the invention, along with known synthetic substrates, to develop high throughput assays. These can be used to screen for compounds which inhibit proteolytic activity of the protease. This is carried out by developing techniques for determining whether or not a compound will inhibit the covalent NS4A-NS3 complexes of the invention from cleaving the viral substrates. Examples of such synthetic substrates are set forth in SEQ ID NOs 25 and 93. If the substrates are not cleaved, the virus cannot replicate. One example of such a high throughput assay is the scintillation proximity assay (SPA). SPA technology involves the use of beads coated with scintillant. Bound to the beads are acceptor molecules

10

15

20

25

30

such as antibodies, receptors or enzyme substrates which interact with ligands or enzymes in a reversible manner.

For a typical protease assay the substrate peptide is biotinylated at one end and the other end is radiolabelled with low energy emitters such as ¹²⁵I or ³H. The labeled substrate is then incubated with the enzyme. Avidin coated SPA beads are then added which bind to the biotin. When the substrate peptide is cleaved by the protease, the radioactive emitter is no longer in proximity to the scintillant bead and no light emission takes place. Inhibitors of the protease will leave the substrate intact and can be identified by the resulting light emission which takes place in their presence.

Another type of protease assay, utilizes the phenomenon of surface plasmon resonance (SPR). A novel, high throughput enzymatic assay utilizing surface plasmon resonance technology has been successfully developed. Using this assay, and a dedicated BIAcoreTM instrument, at least 1000 samples per week can be screened for either their enzymatic activity or their inhibitory effects toward the enzymatic activity, in a 96 well plate format. This methodology is readily adaptable to any enzyme-substrate reaction. The advantage of this assay over the SPA assay is that it does not require a radiolabeled peptide substrate.

EXAMPLES

Several covalent NS4A-NS3 complexes have been constructed, purified, characterized and assayed for activity based on a cDNA clone containing an HCV Japanese (1b/BK) strain whose sequence is published in Takamizawa *et al.*, 1991, *J. Virology* 65:1105-1113. DNA sequencing of the clone (BK 138-1) revealed four amino acid differences with the published sequence, at positions 66 (A->G), 86 (P->Q), 87 (K->A) and 147 (F->S) of the NS3 protein.

The present invention can be illustrated by the following non-limiting examples.

Reagents and General Methods

Plasmid pHCV-1b/BK can be derived from DNA fragments containing the entire DNA sequence of HCV BK cDNA as reported by Takamizawa *et al.*, 1991, *J. Virology* 65:1105-1113, with the abovementioned changes. Plasmid pMD-34-2 is derived from that portion of the disclosed DNA sequence which encodes NS3 residues 1-631 from HCV BK cDNA.

Restriction Enzymes, Vent Polymerase and ThermoPol buffer were obtained from New England Biolabs (Beverly, MA). The 10 QuickChange mutagenesis kit and dNTP's were obtained from Stratagene (LaJolla, CA). Ready-to-Go T4 DNA Ligase was obtained from Pharmacia Biotech (Piscataway, NJ). Oligonucleotide primers were synthesized by Genosys Biotechnologies (Woodland, Texas). DNA sequencing was performed according to the Sanger-Dideoxy method by Bioserve Biotechnologies (Laurel, MD). pET vectors and BL21(DE3) cells 15 were obtained from Novagen (Madison, WI). PCR reactions were carried out in a Perkin Elmer Cetus, model 480 DNA thermocycler. DH5 α cells and TAE buffer were purchased from Gibco, BRL. GTG agarose was purchased from FMC corporation. The Qiaquick gel extraction kit and Qiaquick PCR purification kit were purchased from 20 Qiagen Inc. (Chatsworth, CA).

Standard DNA recombinant DNA methods were carried out essentially as described by Sambrook et. al. in "Molecular Cloning: A Laboratory Manual," 2nd edition, 1989, Cold Springs Harbor Press, Plainview, New York.

25

15

20

25

Preparation of NS4A-Tethered Forms of HCV NS3 Protease

Native, NS4A-tethered forms of NS3 catalytic domain

Various NS4A-tethered forms of the NS3 catalytic domain were constructed by joining the NS4A peptide GSVVIVGRIILS (NS4A amino acids 21-32) to the amino terminus of NS3 amino acids 3-181 via various three or four residue linkers, and were cloned into the pET-28b+vector.

Single stranded oligonucleotide primers were designed to generate a 616 base pair PCR fragment containing an NdeI site followed by the NS4A peptide, a linker, and amino acids 3-181 of the NS3 catalytic domain at the 5' terminus and a stop codon flanked by an EcoRI site at the 3' terminus. The template used was the sequence disclosed in Takamizawa, et al, 1991, J. Virology 65(3):1105-1113, which contains the entire HCV genome from the 1b/BK strain, except for the four differences described above. Other sources for HCV DNA can be used in the disclosed methods, including plasmid pBRTM/HCV 1-3011 (Grakoui et al., 1993), which contains the entire genome from the 1a strain.

Vent DNA polymerase was utilized to amplify the DNA by PCR. Primers were diluted in dH_20 to give a final concentration of $50 \,\mu g/ml$. The template was diluted in dH_20 to give a final concentration of $10 \, mg/\mu l$; The dNTP's (GTP, ATP, CTP, GGT) were diluted to a concentration of $10 \, mM$ (2.5 mM each) in dH_20 .

100 μl reactions were prepared for PCR in a 500 ul Eppendorf tube by addition of the following reagents: 74 μl of dH20, 10 ul of the 10x Thermopol buffer (final 1x buffer: 10 mM KCL, 20 mMTris-HCL (pH 8.8), 2mM MgSO₄ and 0.1% Triton X), 10 μl of template (100 ng), 2 μl of the 5' primer (100 ng); 1 μl of the 3' primer (50 ng), 2 μl of the dNTP mixture (200 μM) and 1 μl of Vent polymerase enzyme (1 unit). The mixture was

then overlayed with 20 ul of immersion oil and placed in the thermocycler for amplification. The PCR conditions were as follows: 95 °C for 45 seconds (1 cycle); 95 °C for 30 seconds, 55 °C for 1 minute, 72 °C for 2 minutes (25 cycles).

5 The amplified 616 base pair fragment was purified in preparation for restriction digestion using a Qiaquick PCR purification kit according to the manufacturer's protocol without modification. Briefly, the aqueous layer was removed and placed in a 1.5 ml Eppendorf tube with a regent that aids the DNA to bind to a column matrix. The DNA was washed while bound to the column and then eluted with $43 \mu l$ of H20. 10 The DNA was then double digested with EcoRI and NdeI in a 50 ul volume for 1 hour at 37 °C. The reaction took place in a 1.5 ml polypropylene Eppendorf tube with 5 µl of 10x EcoRI buffer (final concentration of 50mM NaCl, 100 mM Tris-HCL, 10mM MgCl₂, 0.25% Triton X-100, pH 7.5) and $\mu 1$ l of EcoRI and NdeI (20 units). The pET-28b+ 15 vector (3 µg) was also digested using the same conditions. The digests were further purified by resolving them on a 1.0 % agarose electrophoresis gel for 45 minutes under 100 volts. They were rendered visible with $0.5 \mu g/ml$ of ethidium bromide, excised with a scalpel under short-wave UV, solubilized and purified using the QIAquick gel 20 extraction kit according to manufacturer's protocol without modifications. The fragments were quantitated by visually comparing a 5 ul aliquot of the purified fragment versus Lambda Hind/III DNA standards on a 1% agarose gel. Approximately 200 ng of vector and 50 ng 25 of PCR fragment were ligated together in a 20 ul volume for 18 hours at 16 degrees. They were combined together in a T4 ligase (Ready-to-Go) reaction tube according to standard protocol without modifications.

 $2\,\mu l$ of this mixture was then used to transform $\,50\,\mu l$ of DH5 α cells for plasmid propagation according to manufacturer's protocol.

15

20

Briefly, a 1.5 ml Eppendorf tube was placed on ice and 50 ul of DH5 α cells (previously stored at -80°C and then thawed on ice immediately prior to use) were added to the tube along with the 2 ul of ligation mixture and allowed to incubate for 30 minutes. They were then heat shocked for 1 minute at 42°C, returned to the ice for 2 minutes and then regenerated with 500 μ l of SOC medium and incubated at 37°C for 1 hour at 300 rpm.

200 µl of these cells were then plated out on LB/20-10-5 agar (per liter: tryptone 50 grams, yeast extract 25 grams, NaCl 12.5 gram) with kanamycin (25 μg/ml), spread for single colony isolation and incubated at 37 °C overnight. Three single colonies were selected for plasmid preparations. They were inoculated into 100 mls of LB/20-10-5 broth with kanamycin (25 μg/ml) in a 250 ml baffled flask and grown overnight for 18 hours at 37 degrees at 300 RPM in a shaker. The next day, the cultures were spun down in 500 ml Nalgene centrifuge bottles (8000 RPM, 10 minutes, 4 °C) and the pellet was harvested for plasmid isolation. The Qiagen midi-prep kit was used according to manufacturer's protocol. The DNA was quantitated using a UV/VIS spectrophotometer (Perkin-Elmers) at 260 nm. The purified, plasmid-DNA isolates were sequenced on an Applied Biosystems 373A DNA sequencer at Bioserve Biotechnologies, Inc. To confirm the sequence, both top and bottom strands were sequenced via primers that were synthesized by Bioserve Biotechnologies.

Native, NS4A-tethered forms of NS3 full-length domain

Both parental plasmids, HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ and HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ /S139A parental plasmids were created via a cut and paste method. Briefly, 5 μl of plasmid PMD34-2 (1μg), plasmid HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁ (5 μg) and plasmid HIS-NS3₁₋₆₃₁/S139A (1μg) were each digested separately in a 1.5 ml Eppendorf tube with 5 μl of NEB buffer #2 (at final concentration of 10mM Tris-HCL, 10mM MgCl₂,

10

15

20

25

50mM NaCl, 1mM DTT, pH 7.9), 0.5 μ l of acetylated BSA (final concentration 100 μ g/ml), 1 μ l of XbaI (2 Units) and 38.5 μ l of ddH₂0.

These digests were incubated at 37 °C for one hour at which time 2.5 μ l of 2M NaCl (final concentration of 150mM) 45 μ l of ddH₂0 and 2.5 μ l of BspMI (2 Units) were added to the digests and incubated for 2 more hours at 37 °C. The double digests were then resolved on 0.8 % agarose gels and the size and quantity of the fragments were determined. The agarose gels were electorphoresed in BioRad apparatus and the fragments were excised using a scalpel. The excised backbone fragments which were derived from PMD34-2 and HIS-NS3₁₋₆₃₁/S139A were each 7.1 KB and the insert from HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁ was 275 base pairs. Approximately 2 μ l of 7.1 KB backbone (200 ng) and 1 μ l of 225 bp insert (50 ng) were ligated together in a 20 μ l volume for 18 hours at 16 °C. They were combined together in a T4 ligase (Ready-to-Go) reaction tube according to standard protocol without modifications. 2 μ l of this mixture was then used to transform 50 μ l of DH5 α cells for plasmid propagation according to manufacturer's protocol.

Three single colonies of each construct were selected for miniprep plasmid isolations using a Qiagen miniprep kit. They were inoculated into 5 mls of LB/20-10-5 broth with ampicillin (100 µg/ml) in a 15 ml tubes and grown overnight for 18 hours at 37°C at 300 RPM in a shaker. The next day, the cultures were spun down 3000 RPM, 10 minutes, 4°C and the pellet was harvested for plasmid isolation. The clones were then assessed for recombination by digesting with BspMI and Xba1 according to the conditions described above. The digests were resolved on a 1% agarose gel and only those constructs yielding a 225 bp and 7.1 KB bp fragment were chosen as positives. Cultures from the positive clones were inoculated into 100 mls of LB/20-10-5 broth with ampicillin (100 ug/ml) in a 250 ml baffled flask and grown overnight for 18 hours

WO 99/28482 PCT/US98/24528

- 25 -

at 37°C at 300 RPM in a shaker. The next day, the cultures were spun down in 500 ml Nalgene centrifuge bottles (8000 RPM, 10 minutes, 4°C) and the pellet was harvested for plasmid isolation. The Qiagen midiprep kit was used according to manufacturer's protocol. The DNA was quantitated using a UV/VIS spectrophotometer (Perkin-Elmers) at 260 nm. The purified plasmid-DNA isolates were sequenced at the restriction site junctions on an Applied Biosystems 373A DNA sequencer at Bioserve Biotechnologies, Inc.

Site-directed Mutants.

5

10

15

20

25

All site-directed mutations created in either NS4A-tethered forms of catalytic or full-length domain of NS3 protease were carried out using the quikchange site-directed mutagenesis kit (Stratagene) according to the manufacturer's protocol. For each mutation, two oligonucleotide primers (10 picomoles each) containing the desired mutation were used to amplify the entire plasmid encompassing the NS4A-tethered NS3 protease gene (50 or 100 ng/reaction) using pfu DNA polymerase (2.5 units/reaction) in a final reaction volume of 50 µl. The PCR conditions were as follows: 95 °C for 45 seconds (1 cycle); 95 °C for 30 seconds, 55 °C for 1 minute, 68 °C for 15 minutes (16 cycles). After amplification, the reaction mixture was treated with 1 ul of DpnI (1 Unit) for 1 hour at 37 °C in order to digest the parental DNA.

One microliter of this digest was used to transform 50 µl of XLI Blue cells to repair nicks and propagate the mutated plasmid. Plasmid-DNA were purified and transformed into BL21 (DE3) cells for expression studies.

EXAMPLE 1

NS3 Catalytic Domain Constructs

i. HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁ (SEQ ID NO: 1)

HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁ was constructed by joining amino acids 21-32 of the NS4A peptide to the N-terminal domain of NS3 protease (NS3 amino acids 3-181) via the linker GSGS (SEQ ID NO: 21), and was cloned into the pET-28b+ vector as described above. The 5' primer reads as follows:

5'GATATACATATGGGTTCTGTTGTTGTTGGTAGAATTATTTTATCT
GGTAGTGGTAGTATCACGGCCTACTCCCAA 3' (SEQ ID NO:26).

The 3' primer reads as follows:

5' CTCAGCGAATTCTCAAGACCGCATAGTAGTTTCCAT 3' (SEQ ID NO:27).

ii. HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/I17K (SEQ ID NO: 2)

A single amino acid mutant of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁ was constructed by creating a point mutation at position 17 of the NS3 domain of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁ construct as described above. Two oligonucleotide primers, each complementary to opposite strands of the template weregenerated which contain the point mutation which alters amino acid number 17 (isoleucine) to a lysine. The top strand primer was as follows:

5'CGGGGCCTACTTGGTTGCAAGATCACTAGCCTTACAGGC 3' (SEQ ID NO:28).

The bottom strand read as follows:

25 5' GCCTGTAAGGCTAGTGATCTTGCAACCAAGTAGGCCCCG 3' (SEQ ID NO: 29).

SUBSTITUTE SHEET (rule 26)

15

The template, HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁, along with these two primers, were utilized in a PCR reaction to generate the point mutation.

5 (iii) HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/I18K (SEQ ID NO: 3)

A single amino acid mutant of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁ was constructed by creating a point mutation at position 18 of the NS3 domain of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁ construct as described above. Two oligonucleotide primers, each complementary to opposite strands of the template, were generated which contain the point mutation which alters amino acid number 18 (isoleucine) to a lysine. The top strand primer was as follows:

5' CGGGGCCTACTTGGTTGCATCAAGACTAGCCTTACAGGC 3' (SEQ ID NO: 30).

The bottom strand reads as follows:

5' GCCTGTAAGGCTAGTCTTGATGCAACCAAGTAGGCCCCG 3' (SEQ ID NO: 31).

The template, HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁, along with these two primers was utilized in a PCR reaction to generate the point mutation.

20 (iv) HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/I17K, I18K (SEQ ID NO: 4)

A single amino acid mutant of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/I18K was constructed by creating a point mutation at position 17 of the NS3 domain of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/I18K construct as described above. Two oligonucleotide primers, each complementary to opposite strands of the template, were generated which contain the point mutation which alters amino acid number 18 (isoleucine) to a lysine. The top strand primer was as follows:

25

5' CGGGGCCTACTTGGTTGCAAGAAGACTAGCCTTACAGGC 3' (SEQ ID NO:32).

The bottom strand read as follows:

5' GCCTGTAAGGCTAGTCTTCTTGCAACCAAGTAGGCCCCG 3'.

5 (SEQ ID NO:33)

The template HIS-NS4A $_{21-32}$ -GSGS-NS3 $_{3-181}$ /I18K, along with these two primers, was utilized in a PCR reaction to generate the point mutation.

v. HIS-NS $4A_{21-32}$ -GSGS-NS 3_{3-181} /S139A (SEQ ID NO: 5)

A single amino acid mutant of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁ was constructed by creating a point mutation at position 139 of the NS3 domain of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁ construct as described above. Two oligonucleotide primers, each complementary to opposite strands of the template, were generated which contain the point mutation which alters amino acid number 139 (catalytic serine) to an alanine. The top strand primer was as follows:

5' CTCCTACTTGAAGGGCTCTGCTGGTGGTCCACTGCTCTGC 3' (SEQ ID NO:34).

The bottom strand reads as follows:

5' GCAGAGCAGTGGACCACCAGCAGAGCCCTTCAAGTAGGAG 3' (SEQ ID NO:35).

The template HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁, along with these two primers, was utilized in a PCR reaction to generate the point mutation.

10

15

20

25

vi. HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/S139A, I17K (SEQ ID NO: 6)

A single amino acid mutant of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃.

181/S139A was constructed by creating a point mutation at position 17 of the NS3 domain of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/S139A construct as described above. Two oligonucleotide primers, each complementary to opposite strands of the template, were generated which contain the point mutation which alters amino acid number 17 (isoleucine) to a lysine. The top strand primer was as follows:

5' CGGGGCCTACTTGGTTGCAAGATCACTAGCCTTACAGGC 3' (SEQ ID NO:36).

The bottom strand reads as follows:

5' GCCTGTAAGGCTAGTGATCTTGCAACCAAGTAGGCCCCG 3' (SEQ ID NO:37).

The template, HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/S139A, along with these two primers, was utilized in a PCR reaction to generate this point mutation.

vii. HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/S139A, I18K (SEQ ID NO: 7)

A single amino acid mutant of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/S139A was constructed by creating a point mutation at position 18 of the NS3 domain of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/S139A construct as described above. Two oligonucleotide primers, each complementary to opposite strands of the template, were generated which contain the point mutation which alters amino acid number 18 (isoleucine) to a lysine. The top strand primer was as follows:

5' CGGGGCCTACTTGGTTGCATCAAGACTAGCCTTACAGGC 3' (SEQ ID NO:38).

10

15

The bottom strand reads as follows:

5' GCCTGTAAGGCTAGTCTTGATGCAACCAAGTAGGCCCCG 3' (SEQ ID NO:39).

The template, HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/S139A along with these two primers was utilized in a PCR reaction to generate this point mutation.

viii. HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/S139A, I17K, I18K (SEQ ID NO. 8)

A single amino acid mutant of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃. 181/S139A, I17K was constructed by creating a point mutation at position 18 of the NS3 domain of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/S139A,I17K construct as described above. Two oligonucleotide primers, each complementary to opposite strands of the template were generated which contain the point mutation which alters amino acid number 18 (isoleucine) to a lysine. The top strand primer was as follows:

5' CGGGGCCTACTTGGTTGCAAGAAGACTAGCCTTACAGGC 3' (SEQ ID NO: 40).

The bottom strand reads as follows:

5' GCCTGTAAGGCTAGTCTTGATGCAACCAAGTAGGCCCCG 3' (SEQ ID NO: 41).

The template, HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/S139A,I17K, along with these two primers, was utilized in a PCR reaction to generate this point mutation.

ix. HIS-NS $4A_{21-32}$ -PAGG-NS 3_{3-181} (SEQ ID NO: 9)

An NS4A-tethered form of the NS3 catalytic domain, HIS-NS4A₂₁₋₃₂-PAGG-NS3₃₋₁₈₁, was constructed by joining the NS4A peptide GSVVIVGRIILS (NS4A amino acids 21-32) to the N-terminal domain of NS3 protease (NS3 amino acids 3-181) via the linker PAGG (SEQ ID NO:

25

22), and was cloned into the pET-28b+ vector as described above. Primers were designed to generate a 616 base pair PCR fragment containing an NdeI site followed by the NS4A peptide, the PAGG linker, and amino acids 3-181 of the NS3 catalytic domain at the 5' terminus and a stop codon flanked by an EcoRI site at the 3' terminus. The 5' primer reads as follows:

5' GATATACATATGGGTTCTGTTGTTATTGTTGGTAGAATTATTTT

ATCTCCTGCTGGTGGTATCACGGCCTACTCCCAA 3' (SEQ ID NO: 42).

The 3' primer reads as follows:

10 5' CTCAGCGAATTCTCAAGACCGCATAGTAGTTTCCAT 3' (SEQ ID NO: 43).

Plasmid-DNA (PMD-34-2), comprised of pET-22b+ vector encompassing the gene insert encoding HIS-NS3 (1-631) from 1b/BK strain was used as the template for PCR.

15 x. HIS-NS $4A_{21-32}$ -PAGG-NS 3_{3-181} /I17K (SEQ ID NO: 10)

A single amino acid mutant of HIS-NS4A₂₁₋₃₂-PAGG-NS3₃₋₁₈₁ was constructed by creating a point mutation at position 17 of the NS3 domain of the HIS-NS4A₂₁₋₃₂-PAGG-NS3₃₋₁₈₁ construct as described above. Two oligonucleotide primers, each complementary to opposite strands of the template, were generated which contain the point mutation which alters amino acid number 17 (isoleucine) to a lysine. The top strand primer was as follows:

5' CGGGGCCTACTTGGTTGCAAGATCACTAGCCTTACAGGC 3' (SEQ ID NO: 44).

25 The bottom strand reads as follows:

20

5' GCCTGTAAGGCTAGTGATCTTGCAACCAAGTAGGCCCCG 3' (SEQ ID NO: 45).

The template, HIS-NS4A₂₁₋₃₂-PAGG-NS3₃₋₁₈₁, along with these two primers was utilized in a PCR reaction to generate this point mutation.

5 xi. HIS-NS $4A_{21-32}$ -PAG-NS 3_{3-181} (SEQ ID NO: 46)

A NS4A-tethered form of the NS3 catalytic domain, HIS-NS4A₂₁.

32-PAG-NS3₃₋₁₈₁, was constructed by joining the NS4A peptide
GSVVIVGRIILS (NS4A amino acids 21-32) to the N-terminal domain of
NS3 protease (NS3 amino acids 3-181) via the linker PAG (SEQ ID NO:
47), and was cloned into the pET-28b+ vector as described above. Primers
were designed to generate a 613 base pair PCR fragment containing an
NdeI site followed by the NS4A peptide, the PAG linker, and amino
acids 3-181 of the NS3 catalytic domain at the 5' terminus and a stop
codon flanked by an EcoRI site at the 3' terminus. The 5' primer reads as
follows:

5' GATATACATATGGGTTCTGTTGTTATTGTTGGTAGAATTATTTT
ATCTCCTGCTGGTATCACGGCCTACTCCCAA 3' (SEQ ID NO: 48).

The 3' primer reads as follows:

5' CTCAGCGAATTCTCAAGACCGCATAGTAGTTTCCAT 3'

20 (SEQ ID NO: 49).

Plasmid-DNA (PMD-34-2), comprised of pET-22b+ vector encompassing the gene insert encoding HIS-NS3 (1-631) from 1b/BK strain was used as the template for PCR.

xii. HIS-NS4A₂₁₋₃₂-PAG-NS3₃₋₁₈₁/I17K (SEQ ID NO: 50)

A single amino acid mutant of HIS-NS4A₂₁₋₃₂-PAG-NS3₃₋₁₈₁ was constructed by creating a point mutation at position 17 of the NS3

domain of HIS-NS4A₂₁₋₃₂-PAG-NS3₃₋₁₈₁ construct as described above. Two oligonucleotide primers, each complementary to opposite strands of the template were generated which contains the point mutation which alters amino acid residue number 17 (isoleucine) to a lysine. The top strand primer was as follows:

5' CGGGGCCTACTTGGTTGCAAGATCACTAGCCTTACAGGC 3' (SEQ ID NO: 51).

The bottom strand reads as follows:

5' GCCTGTAAGGCTAGTGATCTTGCAACCAAGTAGGCCCCG 3'

10 (SEQ ID NO: 52).

WO 99/28482

5

15

20

25

The template, HIS-NS4A₂₁₋₃₂-PAG-NS3₃₋₁₈₁ along with these two primers were utilized in a PCR reaction to generate this point mutation.

xiii. HIS-NS4A₂₁₋₃₂-GGS-NS3₃₋₁₈₁ (SEQ ID NO: 53)

An NS4A-tethered form of NS3 catalytic domain, HIS-NS4A₂₁₋₃₂-GGS-NS3₃₋₁₈₁ was constructed by joining the NS4A peptide GSVVIVGRIILS (NS4A amino acids 21-32) to the N-terminal domain of NS3 protease (NS3 amino acids 3-181) via the linker GGS (SEQ ID NO: 54), and was cloned into the pET-28b+ vector as described above. Primers were designed to generate a 613 base pair PCR fragment containing an NdeI site followed by the NS4A peptide, the GGS linker, and amino acids 3-181 of the NS3 catalytic domain at the 5' terminus and a stop codon flanked by an EcoRI site at the 3' terminus. The 5' primer reads as follows:

5' GATATACATATGGGTTCTGTTGTTATTGTTGGTAGAATTATTTT
ATCTGGTGGTTCTATCACGGCCTACTCCCAA 3' (SEQ ID NO: 55).

The 3' primer reads as follows:

5' CTCAGCGAATTCTCAAGACCGCATAGTAGTTTCCAT 3'

(SEQ ID NO: 56).

Plasmid-DNA (PMD-34-2), comprised of pET-22b+ vector encompassing the gene insert encoding HIS-NS3 (1-631) from 1b/BK strain was used as the template for PCR.

5 xiv. HIS-NS $4A_{21-32}$ -GGS-NS 3_{3-181} /I17K (SEQ ID NO: 57)

A single amino acid mutant of HIS-NS4A₂₁₋₃₂-GGS-NS3₃₋₁₈₁ was constructed by creating a point mutation at position 17 of the NS3 domain of HIS-NS4A₂₁₋₃₂-GGS-NS3₃₋₁₈₁ construct as described above. Two oligonucleotide primers, each complementary to opposite strands of the template, were generated which contain the point mutation which alters amino acid number 17 (isoleucine) to a lysine. The top strand primer was as follows:

5' CGGGGCCTACTTGGTTGCAAGATCACTAGCCTTACAGGC 3' (SEQ ID NO: 58).

15 The bottom strand reads as follows:

5' GCCTGTAAGGCTAGTGATCTTGCAACCAAGTAGGCCCCG 3' (SEQ ID NO: 59).

The template, HIS-NS4A₂₁₋₃₂-GGS-NS3₃₋₁₈₁, along with these two primers, was utilized in a PCR reaction to generate this point mutation.

20

10

EXAMPLE 2

NS3 Full-Length Constructs

i. HIS-NS3₁₋₆₃₁/I17K (SEQ ID NO: 60)

A single amino acid mutant of HIS-NS3₁₋₆₃₁ was formed by creating a point mutation at position 17 of NS3 protease using the Plasmid-DNA (PMD-34-2), comprised of pET-22b+ vector encompassing

the gene insert, encoding HIS- NS3₁₋₆₃₁ from 1b/BK strain as described above. Two oligonucleotide internal primers, each complementary to opposite strands of the template, were generated which contain the point mutation which alters amino acid number 17 (isoleucine) to a lysine.

5 The top strand primer was as follows:

5' CGGGGCCTACTTGGTTGCAAGATCACTAGCCTTACAGGC 3' (SEQ ID NO: 61).

The bottom strand reads as follows:

5' GCCTGTAAGGCTAGTGATCTTGCAACCAAGTAGGCCCCG 3'

10 (SEQ ID NO: 62).

The template, plasmid-DNA (PMD-34-2), comprised of pET-22b+ vector encompassing the gene insert, encoding HIS-NS3₁₋₆₃₁ from 1b/BK strain, along with these two primers was utilized in a PCR reaction to generate this point mutation.

ii. HIS-NS3₁₋₆₃₁/I18K (SEQ ID NO: 63)

A single amino acid mutant of HIS-NS3₁₋₆₃₁ was formed by creating a point mutation at position 18 of NS3 protease using the Plasmid-DNA (PMD-34-2), comprised of pET-22b+ vector encompassing the gene insert, encoding HIS-NS3₁₋₆₃₁ from 1b/BK strain as described above. Two oligonucleotide internal primers, each complementary to opposite strands of the template, were generated which contain the point mutation which alters amino acid number 18 (isoleucine) to a lysine. The top strand primer was as follows:

5' CGGGGCCTACTTGGTTGCATCAAGACTAGCCTTACAGGC 3' (SEQ ID NO: 64).

The bottom strand reads as follows:

5' GCCTGTAAGGCTAGTCTTGATGCAACCAAGTAGGCCCCG 3'

20

10

(SEQ ID NO: 65).

The template, plasmid-DNA (PMD-34-2), comprised of pET-22b+ vector encompassing the gene insert, encoding HIS-NS3₁₋₆₃₁ from 1b/BK strain along with these two primers was utilized in a PCR reaction to generate this point mutation.

iii. HIS-NS3₁₋₆₃₁/S139A (SEQ ID NO: 66)

A single amino acid mutant of HIS-NS3₁₋₆₃₁ was formed by creating a point mutation at position 139 of the NS3 protease using the Plasmid-DNA (PMD-34-2), comprised of pET-22b+ vector encompassing the gene insert, encoding HIS-NS3₁₋₆₃₁ from 1b/BK strain as described above. Two oligonucleotide internal primers, each complementary to opposite strands of the template, were generated which contain the point mutation which altered amino acid number 139 (catalytic serine) to an alanine. The top strand primer was as follows:

5' CTCCTACTTGAAGGGCTCTGCTGGTGGTCCACTGCTCTGC 3' (SEQ ID NO: 67).

The bottom strand reads as follows:

5' GCAGAGCAGTGGACCACCAGCAGAGCCCTTCAAGTAGGAG 3' (SEQ ID NO: 68).

The template, plasmid-DNA (PMD-34-2), comprised of pET-22b+ vector encompassing the gene insert, encoding HIS-NS3₁₋₆₃₁ from 1b/BK strain along with these two primers was utilized in a PCR reaction to generate this point mutation.

iv. HIS-NS3₁₋₆₃₁/I403S (SEQ ID NO: 69)

A single amino acid mutant of HIS-NS3₁₋₆₃₁ was formed by creating a point mutation at position 403 of the NS3 protease using the Plasmid-DNA (PMD-34-2), comprised of pET-22b+ vector encompassing

the gene insert, encoding HIS-NS3₁₋₆₃₁ from 1b/BK strain as described above. Two oligonucleotide internal primers, each complementary to opposite strands of the template, were generated which contain the point mutation which alters amino acid number 403 (isoleucine) to a serine.

5 The top strand primer was as follows:

5' GTCCGTCATACCAACTTCCGGAGACGTCGTTGTCG 3' (SEQ ID NO: 70).

The bottom strand reads as follows:

5' CGACAACGACGTCTCCGGAAGTTGGTATGACGGAC 3'

10 (SEQ ID NO: 71).

The template, plasmid-DNA (PMD-34-2), comprised of pET-22b+ vector encompassing the gene insert, encoding HIS-NS3₁₋₆₃₁ from 1b/BK strain along with these two primers was utilized in a PCR reaction to generate this point mutation.

15 v. HIS-NS3₁₋₆₃₁/NdeI (SEQ ID NO. 72)

A silent mutant of HIS-NS3₁₋₆₃₁ was formed to eliminate the internal NdeI restriction site within NS3 protease using the Plasmid-DNA (PMD-34-2), comprised of pET-22b+ vector encompassing the gene insert, encoding HIS-NS3₁₋₆₃₁ from 1b/BK strain as described above. Two oligonucleotide internal primers, each complementary to opposite strands of the template, were generated which contain point mutations which alters the codons on the reading strand of alanine 217 from GCA to GCC and tyrosine 218 from TAT to TAC. The top strand primer was as follows:

25 5' ACTAAAGTGCCGGCTGCCTACGCAGCCCAAGGG 3' (SEQ ID NO: 73).

The bottom strand reads as follows:

5' CCCTTGGGCTGCGTAGGCAGCCGGCACTTTAGT 3'

(SEQ ID NO: 74).

The template, plasmid-DNA (PMD-34-2), comprised of pET-22b+ vector encompassing the gene insert encoding HIS-NS3₁₋₆₃₁ from 1b/BK strain, along with these two primers, was utilized in a PCR reaction to generate this point mutation.

vi. HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ (SEQ ID NO: 4)

An NS4A-tethered form of the NS3 full-length domain, HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁, was constructed via a cut and paste strategy as 10 described above. Briefly, a 270 bp fragment was generated by restricting HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁ with XbaI/BspMI; This fragment encompassed sequences encoding a histidine tag followed by a thrombin site, the NS4A peptide, GSVVIVGRIILS (NS4A amino acids 21-32), the linker GSGS (SEQ ID NO: 21) and NS3 amino acids 3-48. A second 7111 15 fragment (7111 bp) was generated by restricting Plasmid-DNA (PMD-34-2), comprised of pET-22b+ vector encompassing the gene insert, encoding HIS-NS3 (1-631) from 1b/BK strain with XbaI/BspmI resulting in a fragment encompassing the pET 22b+ vector backbone in addition to amino acids 49-631. These two fragments were then ligated together 20 with T4 DNA ligase to form HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁.

vii. HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/I17K (SEQ ID NO: 12)

A single amino acid mutant of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ was constructed by creating a point mutation at position 17 of the NS3 domain of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ construct as described above. Two oligonucleotide primers, each complementary to opposite strands of the template, were generated which contain the point mutation which alters amino acid number 17 (isoleucine) to a lysine. The top strand primer was as follows:

WO 99/28482

- 39 -

5' CGGGGCCTACTTGGTTGCAAGATCACTAGCCTTACAGGC 3' (SEQ ID NO: 75).

The bottom strand read as follows:

5' GCCTGTAAGGCTAGTGATCTTGCAACCAAGTAGGCCCCG 3'

5 (SEQ ID NO: 76).

The template, HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ along with these two primers was utilized in a PCR reaction to generate this point mutation.

viii. HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/I18K (SEQ ID NO: 13)

A single amino acid mutant of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ was constructed by creating a point mutation at position 18 of the NS3 domain of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ construct as described above. Two oligonucleotide primers, each complementary to opposite strands of the template were generated which contained the point mutation which alters amino acid number 18 (isoleucine) to a lysine. The top strand primer was as follows:

5' CGGGGCCTACTTGGTTGCATCAAGACTAGCCTTACAGGC 3' (SEQ ID NO: 77).

The bottom strand reads as follows:

5' GCCTGTAAGGCTAGTCTTGATGCAACCAAGTAGGCCCCG 3'

20 (SEQ ID NO: 78).

The template, HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁, along with these two primers was utilized in a PCR reaction to generate this point mutation.

ix. HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/I17K, I18K (SEQ ID: 14)

A double amino acid mutant of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ was constructed by creating 2 point mutations at positions 17 and 18 of the

NS3 domain of the HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ construct simultaneously as described above. Two oligonucleotide primers, each complementary to opposite strands of the template, were generated which contain the point mutations which alter amino acid numbers 17 (isoleucine) and 18 (isoleucine) to lysines. The top strand primer was as follows:

5' CGGGGCCTACTTGGTTGCAAGAAGACTAGCCTTACAGGC 3' (SEQ ID NO: 79).

The bottom strand read as follows:

5' GCCTGTAAGGCTAGTCTTCTTGCAACCAAGTAGGCCCCG 3' (SEQ ID NO: 80).

The template, HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁, along with these two primers, was utilized in a PCR reaction to generate this point mutation.

x. HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/S139A (SEQ ID NO: 15)

An NS4A-tethered form of NS3 full-length domain, HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/S139A, was constructed via a cut and paste strategy as described above. Briefly, a 290 bp fragment was generated by restricting HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁ with XbaI/BspMI; this fragment encompass sequence encoding a histidine tag, a thrombin site, amino acids 21-32 of the the NS4A peptide, the linker GSGS (SEQ ID NO. 21) and NS3 amino acids 3-48. A second 7111 fragment (7111 bp) was generated by restricting HIS-NS3₁₋₆₃₁/S139A construct with XbaI/BspmI resulting in a fragment encompassing the pET 22b+ vector backbone in addition to amino acids 49-631. These two fragments were then ligated together with T4 DNA ligase to form HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/S139A.

PCT/US98/24528

-41 -

xi. HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/S139A, I17K (SEQ ID NO: 16)

A single amino acid mutant of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃.

631/S139A was constructed by creating a point mutation at position 17 of the NS3 domain of the HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/S139A construct as described above. Two oligonucleotide primers, each complementary to opposite strands of the template, were generated which contain the point mutation which alters amino acid number 17 (isoleucine) to a lysine. The top strand primer was as follows:

5' CGGGGCCTACTTGGTTGCAAGATCACTAGCCTTACAGGC 3'

10 (SEQ ID NO: 81).

WO 99/28482

5

15

20

The bottom strand is as follows:

5'GCCTGTAAGGCTAGTGATCTTGCAACCAAGTAGGCCCCG 3' (SEQ ID NO: 82).

The template HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/S139A, along with these two primers, was utilized in a PCR reaction to generate this point mutation.

xii. HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/S139A, I18K (SEQ ID NO: 17)

A single amino acid mutant of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃.
631/S139A was constructed by creating a point mutation at position 18 of the NS3 domain of the HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/S139A construct as described above. Two oligonucleotide primers, each complementary to opposite strands of the template, were generated which contain the point mutation which alters amino acid number 18 (isoleucine) to a lysine. The top strand primer was as follows:

5' CGGGGCCTACTTGGTTGCATCAAGACTAGCCTTACAGGC 3'

25 (SEQ ID NO: 83).

The bottom strand read as follows:

20

25

5' GCCTGTAAGGCTAGTCTTGATGCAACCAAGTAGGCCCCG 3' (SEQ ID NO: 84).

The template HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/S139A, along with these two primers, was utilized in a PCR reaction to generate this point mutation.

5 xiii. HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/S139A, I17K, I18K (SEQ ID NO: 18)

A single amino acid mutant of HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/S139A, I17K was constructed by creating a point mutation at position 18 of the NS3 domain of the HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/S139A, I17K construct as described above. Two oligonucleotide primers, each complementary to opposite strands of the template, were generated which contain the point mutation which alters amino acid number 18 (isoleucine) to an lysine. The top strand primer was as follows:

5' CGGGGCCTACTTGGTTGCAAGAAGACTAGCCTTACAGGC 3' (SEQ ID NO: 85).

15 The bottom strand reads as follows:

5' GCCTGTAAGGCTAGTCTTCTTGCAACCAAGTAGGCCCCG 3' (SEQ ID NO: 86).

The template HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/S139A,I17K, along with these two primers was utilized in a PCR reaction to generate this point mutation.

xiv. HIS-NS4A₁₅₋₃₂-GSGS-NS3₃₋₆₃₁ (SEQ ID NO: 19)

A NS4A-tethered form of NS3 full-length domain, HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ was constructed by joining the amino acids 15-32 of NS4A peptide to the N-terminal end of the NS3 protease (NS3 amino acids 3-631) via the linker GSGS, and was cloned into the pET-28b+ vector as described above with the following modification. Primers were designed to generate a PCR fragment containing an NdeI site followed by the

NS4A peptide, the GSGS linker (SEQ ID NO: 21), and amino acids 3-631 of the NS3 catalytic domain at the 5' terminus and a stop codon flanked by an EcoRI site at the 3' terminus. The 5' primer sequence was as follows:

5 5'GATATACATATGGCTTACTCTCTGACTACGGGTTCTGTTATT
GTTGGTAGAATTATTTTATCTGGTAGTGGTAGTATCACGGCCTACTCCCAA 3'
(SEQ ID NO: 87).

The 3' primer sequence was as follows:

10 5' GTGGTGGTGCTCGAGGCTGCCGCGCGCA
CCAGCGTAACGACCTCCAGGTC 3' (SEQ ID NO: 88).

The template used was HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁. The resulting PCR fragment was 1974 bases. Vent DNA polymerase was employed and a final concentration of 200 µM dNTPS was used. The PCR conditions were as follows: 95 °C for 45 seconds (1 cycle); 95 °C for 30 seconds, 55 °C for 1 minute, 72 °C for 2 minutes (25 cycles). The product was purified with QIAquick PCR kit (Qiagen). This PCR product, along with the 6.6 kb vector backbone (HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁), were double digested with NdeI and BamHI. The digested fragments of 1.43 and 6.6 Kbp respectively were run on agarose gel, excised, and column purified with QIAquick gel extraction kit (Qiagen). They were quantitated and then ligated together with T4 DNA ligase.

xv.HIS-NS4A₁₅₋₃₂-GSGS-NS3₃₋₆₃₁/S139A (SEQ ID NO: 20)

An NS4A-tethered form of NS3 full-length domain, HIS-NS4A₂₁. ₃₂-GSGS-NS3₃₋₆₃₁/S139A was constructed by joining amino acids 15-32 of the NS4A peptide to the N-terminal end of the NS3 protease (NS3 amino acids 3-631) via the linker GSGS (SEQ ID NO: 21), and was cloned

15

20

into the pET-28b+ vector as described above with the following modification. Primers were designed to generate a PCR fragment containing an NdeI site followed by the NS4A peptide, the GSGS linker (SEQ ID NO: 21), and amino acids 3-631 of the NS3 catalytic domain at the 5' terminus and a stop codon flanked by an EcoRI site at the 3' terminus. The 5' primer sequence was as follows:

5'GATATACATATGGCTTACTCTCTGACTACGGGTTCTGTTATT
GTTGGTAGAATTATTTTATCTGGTAGTGGTAGTATCACGGCCTACTCCCAA 3'
(SEQ ID NO: 89).

10 The 3' primer reads as follows:

5' TGGTGGTGCTCGAGGCTGCCGCGCGCACCAGCGTAACGACCT CCAGGTC 3' (SEQ ID NO: 90).

The template used was HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/S139A. The resulting PCR fragment was 1974 bases. Vent DNA polymerase was employed and a final concentration of 200 µM dNTPS was used. The PCR conditions were as follows: 95 °C for 45 seconds (1 cycle); 95 °C for 30 seconds, 55 °C for 1 minute, 72 °C for 2 minutes (25 cycles). The product was purified with QIAquick PCR kit (Qiagen). This PCR product along with the 6.6 kb vector backbone (HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁) were double digested with NdeI and BamHI. The digested fragments of 1.43 and 6.6 Kbp respectively were run on agarose gel, excised, and column purified with QIAquick gel extraction kit (Qiagen). They were quantitated and then ligated together with T4 DNA ligase.

15

10

15

20

EXAMPLE 3

Expression and Purification of HCV NS4A-NS3 Complexes

A. Small Scale Expression Studies

All constructed plasmids were transformed into DH5α cells for production of large amount of plasmid-DNA. The purified plasmid-DNA was transformed into BL21(DE3) cells for expression studies. The cells were grown in Terrific Broth in baffled flasks at 37°C to an OD of 1.0 and the temperature was lowered to 23°C. The cultures were induced with 0.4 mM IPTG and were harvested 3 hours after induction. Cells were sonicated for 1 min in 50 mM HEPES, pH 7.5, 20% glycerol, 0.1% βOG, 0.3 M NaCl, 10 mM βME and spun at 13,000 rpm for 10 min. The supernatants were analyzed on 10% Novex SDS-PAGE.

B. Large-Scale Expression And Purification Of NS4A-Tethered Forms Of HCV NS3₃₋₁₈₁ Protease

E. coli, BL21(DE3) cells harboring either plasmid pET-22b or pET-28b encoding various native, single, or multiple mutants of NS4A-tethered forms of NS3₁₋₁₈₁ were grown at 37°C in Terrific Broth supplemented with either 100 ug/ml of ampicillin (for pET-22b) or 25 ug/ml kanamycin (for pET28-b) in 10-liter fermentor. When the cell density reaches an OD of 2-3, the temperature was lowered to 23°C within 5 minutes and cells were induced with 0.4 mM IPTG. Cells were harvested 3 hours after induction and frozen at -20 °C prior to purification.

Cell pellets were resuspended in 600 ml of lysis buffer containing 50 mM HEPES, pH 7.4, 10% glycerol, 0.3 M NaCl, 0.1% βOG, 2 mM βME (buffer A), homogenized using a cell homogenizer (Omni Mixer ES) for 2 min and the cells were disrupted by two passes through a Microfluidizer (Microfluidics Model #M-110F) at 10,000 p.s.i. The lysate was centrifuged at 85,000 x g for 45 min. The supernatant was filtered

10

15

through 0.8 micron filter units (Nalgene) and applied at 40 ml/min to a 11-ml Ni-imidodiacetate (POROS 20 MC resin) column in the presence of 20 mM immidazole on BIOCAD (Perseptive Biosystems). The column was washed with 10 column volumes of buffer A, followed by 15 column volume of buffer A containing 1.0 M NaCl and 20 mM imidazole (buffer B). The bound protease was eluted with the elution buffer (buffer B containing 250 mM imidazole). The eluted fractions containing the protease were pooled and dialyzed versus 16 liters of 50 mM HEPES, pH 7.4, 10% glycerol, 1 M NaCl, 10 mM βME in order to remove the imidazole and the detergent.

When the removal of the N-terminal histidine tag was required, human thrombin (Enzyme Research) was added to the eluted, pooled fractions at a thrombin:protease ratio of 8 units per mg of protease and thrombin cleavage was allowed to proceed during the dialysis step for 18 hours. The dialyzed, thrombin-cleaved protease was applied to 3 sephacryl-100 sizing column (26×60 cm, Pharmacia) in series, equilibrated in of 50 mM HEPES, pH 7.4, 10% glycerol, 1 M NaCl, 10 mM bME at 0.5 ml/min. Fractions containing purified protease at above >95% homogeneity as judged by SDS-PAGE were pooled and flash-20 frozen at -80 °C

C. Large-Scale Expression And Purification Of NS4A-Tethered Forms Of HCV NS33-631 Protease

E. coli, BL21(DE3) cells harboring either plasmid pET-22b or pET-28b encoding various native, single, or multiple mutants of NS4A-25 tethered forms of NS3₁₋₁₈₁ were grown at 37°C in Terrific Broth supplemented with either 100 µg/ml of ampicillin (for pET-22b) or 25 µg/ml kanamycin (for pET28-b) in 10-liter fermentor. When the cell density reaches an OD of 2-3, the temperature was lowered to 23°C within 5 minutes and cells were induced with 0.4 mM IPTG. Cells were harvested 3 hours after induction and frozen at -20 °C prior to purification.

Cell pellets were resuspended in 600 ml of lysis buffer containing 50 mM HEPES, pH 7.4, 10% glycerol, 0.3 M NaCl, 0.1% βOG, 2 mM βME (buffer A), homogenized using a cell homogenizer (Omni Mixer ES) for 2 min and the cells were disrupted by two passes through a Microfluidizer (Microfluidics Model #M-110F) at 10,000 p.s.i. The lysate was centrifuged at 85,000 x g for 45 min. The supernatant was filtered through 0.8 micron filter units (Nalgene) and applied at 40 ml/min to a 11-ml Ni-imidodiacetate (POROS 20 MC resin) column in the presence of 20 mM immidazole on BIOCAD (Perseptive Biosystems). The column was washed with 10 column volumes of buffer A, followed by 15 column volume of buffer A containing 1.0 M NaCl and 20 mM imidazole (buffer B). The bound protease was eluted with the elution buffer (buffer B containing 250 mM imidazole). The eluted fractions containing the protease were pooled and dialyzed versus 16 liters of 50 mM HEPES, pH 7.4, 10% glycerol, 1 M NaCl, 10 mM βME in order to remove the imidazole and the detergent.

When the removal of the N-terminal histidine tag was required,

human thrombin (Enzyme Research) was added to the eluted, pooled
fractions at a thrombin:protease ratio of 8 units per mg of protease and
thrombin cleavage was allowed to proceed during the dialysis step for 18
hours. The dialyzed, thrombin-cleaved protease was applied to 3
sephacryl-100 sizing column (26 x 60cm, Pharmacia) in series,

equilibrated in of 50 mM HEPES, pH 7.4, 10% glycerol, 1 M NaCl, 10 mM
βME at 0.5 ml/min. Fractions containing purified protease at above
>95% homogeneity as judged by SDS-PAGE were pooled and flashfrozen at -80 °C.

10

EXAMPLE 4

Molecular Weight Determination Of Various NS3 Protease Forms By Size Exclusion Chromatography

Two hundred μl of various purified proteins were applied to a

5 calibrated Superdex-75 HR (1cm x 30 cm) FPLC column equilibrated with
25 mM HEPES, pH 7.4, 1M NaCl and 10% glycerol and 10 mM βME at 0.5
ml/min. The column was precalibrated using Pharmacia standard
calibration proteins (BSA: 67 KDa; Ovalbumin: 43 KDa;
Chymotrypsinogen A: 31 KDa; Ribonuclease A: 13.7 KDa). Protein
elution was monitored at 280 nm.

The following covalent NS4A-NS3 complexes described above were characterized by the above method:

HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/I17K HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/I17K 15 HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/I18K HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/S139A HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/S139A, I17K HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₁₈₁/S139A, I18K HIS-NS4A₂₁₋₃₂-PAGG-NS3₃₋₁₈₁

20 HIS-NS4A₂₁₋₃₂-PAGG-NS3₃₋₁₈₁/I17K

HIS-NS4A₂₁₋₃₂-PAG-NS3₃₋₁₈₁/I17K

HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁. HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/I17K HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/I18K HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/S139A

HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/S139A, I17K HIS-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁/S139A, I18K

Of those constructs characterized, all covalent NS4A-NS3 complexes containing a three amino acid linker resulted in aggregated forms, as judged by size exclusion chromatography. NS4A-tethered forms in which a point mutation at position 17 or 18 had not been introduced also resulted in aggregated forms, although they exhibited activity identical to that of the monodispersed forms of the protease.

25

Covalent NS4A-NS3 complexes which contained a four amino acid linker and a point mutation at position 17 and/or 18 resulted in active, monodispersed proteins with apparent molecular weights smaller than predicted as determined by size exclusion chromatography.

5

10

15

20

WO 99/28482

EXAMPLE 5 Determination of Proteolytic Activity

Following expression and purification, newly engineered recombinant species were assayed for proteolytic activity utilizing a 1D-HPLC (reverse-phase chromatography) technique. Assays were conducted using the 5A/5B (P8P8') substrate DTEDVVCC*SMSYTWTG-K (SEQ ID NO: 25) in 25 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 10 mM DTT, 10% glycerol, and 0.05% lauryl maltoside. Concentration of all proteins were determined by BIORAD dye method). The catalytic domain His-NS3₁₋₁₈₁ (batch # 51072-92E) was preincubated at a concentration of 250 nM in the presence of 20 µM 4A peptide (KKGSVVIVGRIVLSGKPAIIPKK) for 15 minutes at 4°C. This mixture was then diluted into the reaction volume at a final concentration of 8 µM 4A peptide and 100 nM catalytic domain. Reactions were incubated at room temperature for 60 minutes and were quenched with an equal volume of 10% phosphoric acid. Following injection, cleavage products were monitored under a linear 0-80% acetonitrile gradient in 0.1% TFA. The product P1'P8'K peak areas were automatically converted to product quantity in nanomoles by a standard curve.

The various covalent NS4A-NS3 complexes whose proteolytic efficiency has been determined according to the above method, and the results of each determination, are shown in Table 1.

Table 1.
Catalytic Efficiency Of Various Forms Of NS3 Protease

Construct	k _{cat} (min ⁻¹)	K _m (μM)	$k_{cat}/K_{m} (M^{\cdot 1} s^{\cdot 1})$			
NS3 ₁₋₆₃₁ -NS4A ₁₋₅₄	10 ± 2	20 ± 2	(8 ± 2) $\times 10^3$			
His-NS3 ₁₋₁₈₁ + NS4A Peptide	3±1	80 ± 20	$(0.5 \pm 0.2) \times 10^3$			
His-NS4A ₂₁₋₃₂ -GSGS-NS3 ₃₋₁₈₁	9±2	19 ± 3	(8 ± 2) $\times 10^3$			
His-NS4A ₂₁₋₃₂ -GSGS-NS3 ₃₋₁₈₁ /I17K	16±3	20 ± 2	(14 ± 2) $\times 10^3$			
His-NS4A ₂₁₋₃₂ -GSGS-NS3 ₃₋₁₈₁ /I18K	10±2	22 ± 2	(8 ± 2) $\times 10^3$			

As can be seen from the forgoing results, all covalent NS4A-NS3 complexes were shown to have an equivalent catalytic efficiency to that of full-length NS3₁₋₆₃₁-NS4A₁₋₅₄. In contrast, the non-covalent complex of NS3₁₋₁₈₁ with the NS4A peptide (0.1:8 μ M), KK-(NS4A₂₁₋₃₉)-KK, had an catalytic activity which is 8 fold lower than the full-length NS3₁₋₆₃₁-NS4A₁₋₅₄.

15

10

Example 6 High Throughput Screening Assays Using Covalent NS4A-NS3 Complexes

The claimed covalent NS4A-NS3 complexes are useful in screening methods for identifying NS3 protease inhibitors. One such method in which the claimed covalent complexes can be used is illustrated below.

Surface Plasmon Resonance Assay

25

The present example illustrates a method for determining if a compound can be useful as an HCV protease inhibitor using the surface plasmon resonance assay. Figures 5A and 5B schematically depict the technique.

 $^{^{}a}$ [E] = 0.25 μ M, [NS4A Peptide] = 10 μ M

BIAcore™ is a processing unit for Biospecific Interaction Analysis. The processing unit integrates an optical detection system with an autosampler and a microfluidic system. BIAcore™ uses the optical phenomena of surface plasmon resonance to monitor interaction between biomolecules.

SPR is a resonance phenomenon between incoming photons and electrons on the surface of thin metal film. Resonance occurs at a sharply defined angle of incident light. At this angle, called the resonance angle, energy is transferred to the electrons in the metal film, resulting in a decreased intensity of the reflected light. SPR response depends on a change in refractive index in the close vicinity of the sensor chip surface, and is proportional to the mass of analyte bound to the surface. The BIAcoreTM continuously measures the resonance angle by a relative scale of resonance units (RU) and displays it as an SPR signal in a sensorgram, where RU are plotted as a function of time.

BIAcore™ uses continuous flow technology. One interactant is immobilized irreversibly on the sensor chip, comprising a non-crosslinked carboxymethylated dextran providing a hydrophilic environment for bimolecular interaction. Solution containing the other interactant flows continuously over the sensor chip surface. As molecules from the solution bind to the immobilized ligand, the resonance angle changes resulting in a signal registered by the instrument.

In this methodology, the enzymatic reactions are carried out outside of the BIAcoreTM, in reaction tubes or 96-well tissue culture plates, as it is conventionally done for any of the other available high throughput assays. The SPR is only used as a detection means for determination of the amount of an intact substrate remaining in a solution after the reaction is quenched.

In order to measure the amount of the intact substrate prior to the addition of enzyme, a means of capturing the substrate onto the sensor chip had to be established. In addition, to satisfy the requirement for a

5

10

15

20

25

10

15

20

25

30

high throughput assay on the BIAcore™, the substrate needed to be removed from the surface after completion of analysis, so that the same surface can be used for subsequent reactions. To accomplish these two requirements, a phosphotyrosine is synthetically attached to one end of the substrate. The phosphotyrosine was chosen due to the commercial availability of an anti-phosphotyrosine monoclonal antibody. The antibody is covalently attached to the sensor chip by standard amine coupling chemistry. The anti-phosphotyrosine antibody, bound permanently to the chip, is used to capture the phosphotyrosine in a reversible manner. The antibody-phosphotyrosine interaction is ultimately used to capture and release the attached peptide substrate. After completion of analysis, the surface can be regenerated using various reagents such as 2 M MgCl₂.

When an intact peptide substrate is introduced onto the antibody surface, a large mass is detected by the instrument. To follow the extent of peptide cleavage, a mixture of peptide substrate and enzyme is incubated for the desired time and then quenched. Introduction of this mixture, containing both cleaved peptide and intact peptide, to a regenerated antibody surface results in detection by the instrument of a lower mass than that detected for the sample containing only intact peptide. The difference in the two values is then used to calculate the exact amount of intact peptide remaining after cleavage by the enzyme.

Although the reduction in mass can be directly followed with many large substrates, due to the small mass of a typical synthetic peptide substrate (10-20 amino acids, 1-3 Daltons), the mass difference, and thus the signal difference between the intact and cleaved peptide, is very small within the signal to noise ratio of the instrument. To circumvent this low sensitivity, a biotin can be attached at the N-terminus of the peptide. Streptavidin can then be added, thus tagging the peptide. When the tagged peptide is introduced onto the antibody surface of the chip, the signal will be higher. The signal resulting from

introduction of a cleaved peptide which lacks the N-terminal half, (and thus the streptavidin), will be much lower.

To carry out this method, an HCV protease 5A-5B peptide substrate, (such as 5A/5B substrate DTEDVVACSMSYTWYG-K (SEQ ID NO: 91)) is synthesized with an additional phosphotyrosine at the C-terminus and a biotin at the N-terminus. The biotin is then tagged with streptavidin. An anti-phosphotyrosine monoclonal antibody, 4G10 (Upstate Biotechnology Inc., Lake Placid, New York) is coupled to the sensor chip. In the absence of an active, uninhibited HCV protease, introduction of the intact phosphotyrosine peptide results in a large signal (large mass unit/large signal) through its interaction with the anti-phosphotyrosine monoclonal antibody (Mab).

The protease-catalyzed hydrolysis of the phosphotyrosine-biotinylated peptide is carried out in a 96 well plate. The reaction is stopped with an equal volume of mercuribenzoate. The cleaved peptide which lacks the tagged streptavidin (less mass) results in the loss of response units (lower signal).

Using this method, numerous compounds can be tested for their inhibitory activity since the antibody surface can be regenerated repetitively with 2 M MgCl₂.

Procedure for Coupling Anti-phosphotyrosine Mab to the Sensor Chip

The anti-phosphotyrosine Mab is coupled to the

25 carboxymethylated dextran surface of a sensor chip in the following
manner. The flow rate used throughout the coupling procedure is 5
μl/min. The surface is first activated with a 35 μl injection of NHS/EDC
(N-hydroxysuccinimide/N-dimethyllaminopropyl-N'ethylcarbodiimide-HCl). This is followed by a 40 ml injection of Mab

30 4G10 at 50 μg/ml in 10 mM sodium acetate buffer, pH=4.0. Any
remaining activated esters are then blocked by the injection of 35 μl of
1 M ethanolamine. These conditions result in the immobilization of
approximately 7,500 response units (420 μM) of antibody.

10

15

Binding of Peptide and Regeneration of Mab 4G10 Surface

The flow rate used throughout the BIAcore analysis run is 5 μ l/min. A 4 μ l injection containing streptavidin-tagged peptide (peptide concentration at $2\mu M$, streptavidin binding sites concentration at $9\mu M$) is carried out. The amount of streptavidin-tagged peptide bound to the antibody surface (in response units) is measured 30 seconds after the injection is complete.

10

5

Regeneration of sensor chip surface

Regeneration of the Mab 4G10 surface is achieved using a 4 μ l pulse of 2 M MgCl₂ after each peptide injection. Surfaces regenerated up to 500 times still showed 100% binding of tagged peptide.

Determination of the Optimal Concentration of Peptide and <u>Streptavidin</u>

20

15

To determine the optimal peptide concentration, a standard curve was generated using various amounts of peptide (0-10 μM) in the presence of excess streptavidin. A value in the linear range, 2 μ M, was chosen for standard assay conditions.

The amount of streptavidin required to completely tag the peptide is determined using a peptide concentration of 2.5 µM and titrating the 25 amount of streptavidin (µM of binding sites). All the peptides were shown to be completely tagged when streptavidin concentrations greater than 3 μM (approximately equimolar to the peptide concentration) were used. A streptavidin concentration of 9 μ M (a 4.5 fold excess) was chosen for standard assay conditions.

30

Application of Described Methodology to Covalent HCV NS4A-NS3 Complexes

35

The HCV protease 5A/5B peptide substrate, (such as 5A/5B substrate DTEDVVACSMSYTWYG-K (SEQ ID NO: 91)), with a

10

phophotyrosine synthetically attached to the C-terminus and a biotin attached at the N-terminus, is synthesized. Anti-phosphotyrosine monoclonal antibody, 4G10 is coupled to the sensor chip.

In the absence of active, uninhibited covalent HCV NS4A-NS3 complex, the introduction of the intact streptavidin-tagged biotinylated phosphotyrosine peptide to the sensor chip results in a large signal (large mass unit/large response units) through its interaction with the antiphosphotyrosine monoclonal antibody.

The protease-catalyzed hydrolysis of the phosphotyrosine-biotinylated peptide is carried out with and without a suspected inhibitor in a 96 well plate. The reaction is stopped with an equal volume of the quenching buffer containing mercuribenzoate. Streptavidin is then added to tag the peptide. The cleaved peptide, which lacks the streptavidin (less mass), results in the loss of response units.

Using this assay, numerous compounds can be tested for their inhibitory activity since the antibody surface can be regenerated repetitively with 2 M MgCl₂.

Standard Operating Procedure for BIAcore-based HCV Assay

20

25

30

15

Reactions are prepared in a 96-well tissue culture plate using the Reaction Buffer (50 mM HEPES, pH 7.4, 20 % glycerol, 150 mM NaCl, 1mM EDTA, 0.1% Tween-20,1 mM DTT) as diluent. The final reaction volume is 100 μ l. Sample with the peptide alone (Biotin-DTEDVVAC SMSYTWTGKpY) is prepared by addition of 10 μ l of peptide stock at 100 μ M (prepared in the reaction buffer) to 90 μ l of reaction buffer, so that the final concentration of peptide is 10 μ M. Samples comprised of peptide and the covalent NS4A-NS3 complexes are prepared by addition of 10 μ l of peptide stock at 100 μ M and 10 μ l of covalent NS4A-NS3 stock at 0.17 mg/ml (both prepared in the reaction buffer) to 80 μ l of reaction buffer, so that the final concentration of peptide and the enzyme is 10 and 0.1 μ M respectively. The reaction is held at 30°C for the specified time and then quenched. Quenching is achieved by transferring a 20- μ l

Glu	Val	Ala 355	Leu	Ser	Asn	Thr	Gly 360	Glu	Ile	Pro	Phe	Туг 365	Gly	Lys	Ala
Ile	Pro 370	Ile	Glu	Ala	Ile	Arg 375	Gly	Gly	Arg	His	Leu 380	Ile	Phe	Cys	His
Ser 385	Lys	Lys	Lys	Cys	Asp 390	Glu	Leu	Ala	Ala	Lys 395	Leu	Ser	Gly	Leu	Gly 400
Ile	Asn	Ala	Val	Ala 405	Tyr	Tyr	Arg	Gly	Leu 410	Asp	Val	Ser	Val	Ile 415	Pro
Thr	Ile	Gly	Asp 420	Val	Val	Val	Val	Ala 425	Thr	Asp	Ala	Leu	Met 430	Thr	Gly
Tyr	Thr	Gly 435	Asp	Phe	Asp	Ser	Val 440	Ile	Asp	Суз	Asn	Thr 445	Cys	Val	Thr
Gln	Thr 450	Val	Asp	Phe	Ser	Leu 455	Asp	Pro	Thr	Phe	Thr 460	Ile	Glu	Thr	Thr
Thr 465	Val	Pro	Gln	Asp	Ala 470	Val	Ser	Arg	Ser	Gln 475	Arg	Arg	Gly	Arg	Thr 480
Gly	Arg	Gly	Arg	Arg 485	Gly	Ile	Tyr	Arg	Phe 490	Val	Thr	Pro	Gly	Glu 495	Arg
Pro	Ser	Gly	Met 500	Phe	Asp	Ser	Ser	Val 505	Leu	Cys	Glu	Cys	Tyr 510	Asp	Ala
Gly	Cys	Ala 515	Trp	Tyr	Glu	Leu	Thr 520	Pro	Ala	Glu	Thr	Ser 525	Val	Arg	Leu
	530					535					540			His	
545					550					555				Ala	560
				565					570					Leu 575	
Ala	Tyr	Gln	Ala 580	Thr	Val	Cys	Ala	Arg 585	Ala	Gln	Ala	Pro	Pro 590	Pro	Ser
Trp	Asp	Gln 595	Met	Trp	Lys	Cys	Leu 600	Ile	Arg	Leu	Lys	Pro 605	Thr	Leu	His
Gly	Pro 610	Thr	Pro	Leu	Leu	Tyr 615	Arg	Leu	Gly	Ala	Val 620	Gln	Asn	Glu	Val
625					630	Thr	Lys	Tyr	Ile	Met 635	Ala	Cys	Met	Ser	Ala 640
Asp	Leu	Glu	Val	Val	Thr	*									

10

activity using a scintillation proximity assay (SPA, Amersham Life Science Inc., Arlington Height, IL). The unwinding activity present in this covalent His-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ complex was compared with that of the full length His-NS3₁₋₆₃₁-NS4A₁₋₅₄ complex under their corresponding optimal buffer conditions. The double stranded RNA substrate (Oligos, Etc., Inc. Wilsonville, OR) used in the assay contained a template 5'-GCU CGC CCG GGG AUC CUC UAG GAA UAC ACG UUC GAU-3' (SEQ ID NO: 121) annealed to a primer 5'-CUA GAG GAU CCC CGG GCG AGC CCU AUA GUG AGU CGU-3' (complementary sequences of the template and the primer are underlined). This substrate is end-labeled with ³³P using T4 polynucleotide kinase.

The assay conditions for the covalent His-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ complex were 100 mM MOPS [pH 7.0], 0.5 mM MgCl₂, 2 mM ATP, 0.5 mM DTT, 100 mg/ml BSA, 2% dimethylsulfoxide (DMSO) and 1 U RNase inhibitor (5 prime->3 prime, Inc., Boulder, CO). For the full 15 length His-NS3 $_{1-631}$ /NS4A $_{1-54}$ complex, the assay conditions were 100 mM PIPES [pH 6.0], 1 mM MgCl₂, 2 mM ATP, 0.6 mM DTT, 100 mg/ml BSA and 1 U RNase inhibitor. In both reactions, 0.5 nM double stranded RNA substrate in a final volume of 50 ml was used. The reaction was carried out at 37 ∞C for 1 h and terminated by an addition of 10 ml of 0.5 20 M EDTA. The released primer was captured using 60 ml of 100 nM biotinylated capture oligomer (5'-biotin-GCT-CGC-CCG-GGG-ATC-CTC-TAG-3') (Gibco/BRL, Grand Island, NY) (SEQ ID NO: 123) in 2X hybridization buffer (40 mM HEPES [pH 7.3], 2M NaCl, 2 mg/ml BSA) at 25 37 ∞C for 1 h. The primer-oligomer complex was retained by Streptavidin coated SPA beads (SPA, Amersham Life Science Inc., Arlington Height, IL), filtered and washed thoroughly with wash buffer (20 mM HEPES [pH 7.3], 15 mM NaCl, 1.5 mM sodium citrate and 0.05% SDS). The amount of the released labeled primer was quantified using a TopCount reader (Packard A991200, Meriden, CT). 30

As shown in Fig. 6, the covalent His-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ displayed nucleic acid unwinding activity which was proportional to the

concentration of enzyme. In the linear range of the assay for both enzymes (1 - 10 pM), about 5 - 6 fold more product was released by the His-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ than that from an equivalent concentration of full length His-NS3₁₋₆₃₁/NS4A₁₋₅₄ complex. In addition, 10 fold less covalent His-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ complex was required to yield a similar percentage of unwound products compared with the full length His-NS3₁₋₆₃₁/NS4A₁₋₅₄ complex in the corresponding reactions.

The nucleic acid unwinding activity associated with the recombinant covalent His-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ complex is useful for screening inhibitors of this function. For antiviral screening, compounds were tested at concentrations of less than 40 mM in the assay conditions as described above except that 0.3 nM of the double stranded RNA substrate and 20 pM of the covalent His-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ complex were used in a reaction which was carried out at room temperature for 30 minutes. The inhibition of the enzyme was monitored by a decrease in the level of released labeled primer as reflected in fewer counts in the capture assay. IC₅₀ of the inhibitory compounds was determined as the concentration of the compounds required to inhibit 50% of the unwinding activity.

20

25

30

15

5

10

EXAMPLE 8 Determination of ATPase activity

ATPase activity of the covalent His-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ complex (SEQ ID NO: 4) was monitored by direct measurement of [a-³²P]ATP hydrolysis using thin layer chromatography. The enzyme was incubated with 1 mM ATP mixed with [a-³²P]ATP (3000 Ci/mmol, approximately 0.5 mCi per reaction) in a reaction buffer containing 50 mM HEPES [pH 7.3], 10 mM KCl, 0.5 mM DTT, 100 mg/ml bovine serum albumin, fraction V (BSA), 1 mM MgCl₂ in the presence or absence of 1 mM polyuridylic acid (poly U) (Pharmacia, Piscataway, NJ) in a final volume of 10 ml. The reaction was carried out at 37 ∞C for 1 h and terminated by an addition of 1 ml of 0.5 M EDTA. Half a microliter of the reaction mix was spotted onto a polyethyleneimine-cellulose sheet

10

(SA Scientific Adsorbents Inc., Atlanta, GA) and developed by ascending chromatography in 0.375 M potassium phosphate buffer [pH 3.5]. The cellulose sheet was dried and quantified with a Storm 860 PhosphoImager (Molecular Dynamics, Sunnyvale, CA).

The covalent His-NS4A₂₁₋₃₂-GSGS-NS3₃₋₆₃₁ complex exhibited poly U dependent ATPase activity which was proportional to the concentration of the enzyme. The ATP hydrolysis (8 - 13 fold increase) was enhanced in the presence of poly U at all enzyme concentrations examined (see Figure 7). Only minimal ATP hydrolysis was observed in the absence of poly U.

The presence of ATPase activity in this covalent $His-NS4A_{21-32}$ - GSGS-NS3₃₋₆₃₁ complex makes it suitable for screening inhibitors against HCV helicase.

20

WE CLAIM:

- 1. A covalent HCV NS4A-NS3 complex comprising the central hydrophobic domain of native HCV NS4A peptide, a linker, and the HCV NS3 serine protease domain, wherein the hydrophobic domain of native HCV NS4A peptide is tethered by the linker to the amino terminus of the HCV NS3 protease domain.
- 2. The covalent HCV NS4A-NS3 complex of claim 1, wherein the linker comprises at least about 4 amino acid residues.
 - 3. The covalent HCV NS4A-NS3 complex of claim 2, wherein the linker consists essentially of 4-6 amino acid residues.
- 15 4. The covalent HCV NS4A-NS3 complex of claim 3, wherein the linker consists essentially of about 4 amino acid residues.
 - 5. The covalent HCV NS4A-NS3 complex of claim 4, wherein the linker has a sequence defined by SEQ ID NO: 21 or SEQ ID NO: 22.
 - 6. The covalent HCV NS4A-NS3 complex of claim 5, having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-20.
- 7. The covalent HCV NS4A-NS3 complex of claim 1 which is modified by replacement of one or more hydrophobic amino acid residues at position 17 or 18 of the HCV NS3 serine protease domain with a hydrophilic amino acid residue.
- 30 8. The covalent HCV NS4A-NS3 complex of claim 7 in which one or more isoleucine residues at position 17 or 18 of the HCV NS3 serine protease domain is replaced by a lysine residue.

- 9. The covalent HCV NS4A-NS3 complex of claim 8, having an amino acid sequence selected from the group consisting of SEQ ID NOs: 2-4, 6-8, 10, 12-14 and 16-18.
- 5 10. The covalent HCV NS4A-NS3 complex of claim 1 which is modified by replacement of a serine residue at position 139 of the HCV NS3 serine protease domain with an alanine residue.
- 11. The covalent HCV NS4A-NS3 complex of claim 10, having an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8, 15-18 and 20.
 - 12. A nucleic acid encoding a covalent HCV NS4A-NS3 complex, which covalent HCV NS4A-NS3 complex comprises the central hydrophobic domain of native HCV NS4A peptide, a linker, and the HCV NS3 serine protease domain, wherein the hydrophobic domain of native HCV NS4A peptide is tethered by the amino acid linker to the amino terminus of the HCV NS3 protease domain.
- 20 13. The nucleic acid of claim 12, wherein the linker comprises a least about 4 amino acid residues.
 - 14. The nucleic acid of claim 13, wherein the linker consists essentially of 4-6 amino acid residues.

- 15. The nucleic acid of claim 14, wherein the linker consists essentially of 4 amino acid residues.
- 16. The nucleic acid of claim 15, wherein the amino acid linker30 has a sequence defined by SEQ ID NO: 21 or SEQ ID NO: 22.

- 17. The nucleic acid of claim 16, which encodes a covalent HCV NS4A-NS3 complex having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-20.
- 18. The nucleic acid of claim 12, which encodes a covalent HCV NS4A-NS3 complex which is modified by replacement of one or more hydrophobic amino acid residues at position 17 or 18 of the HCV NS3 serine protease domain with a hydrophilic amino acid residue.
- 19. The nucleic acid of claim 18 which encodes a covalent HCV NS4A-NS3 complex in which one or more isoleucine residues at position 17 or 18 of the HCV NS3 serine protease domain are replaced by a lysine residue.
- 15 20. The nucleic acid of claim 19, which encodes a covalent HCV NS4A-NS3 complex having an amino acid sequence selected from the group consisting of SEQ ID NOs: 2-4, 6-8, 10, 12-14 and 16-18.
- The nucleic acid of claim 12, which encodes a covalent HCV
 NS4A-NS3 complex which is modified by replacement of a serine residue at position 139 of the HCV NS3 serine protease domain with an alanine residue.
- The nucleic acid of claim 21, which encodes a covalent
 HCV NS4A-NS3 complex having an amino acid sequence selected from the group consisting of SEQ ID NOs: 5-8, 15-18 and 20.
 - 23. A recombinant vector comprising the nucleic acid of claim 12, which vector is capable of directing expression of the nucleic acid.
 - 24. A host cell comprising the recombinant vector of claim 23.

- 25. A method for making a covalent HCV NS4A-NS3 complex comprising culturing the host cell of claim 24 under conditions in which the nucleic acid or vector is expressed.
- 26. A method for identifying an HCV NS3 protease inhibitor, comprising (a) contacting a covalent HCV NS4A-NS3 complex of claim 1 with a peptide substrate and a suspected protease inhibitor under conditions in which proteolysis can occur; and (b) detecting whether the covalent HCV NS4-NS3 complex has cleaved the substrate.

15

5

WO 99/28482

- 27. A method for identifying an inhibitor of the nucleic acid unwinding activity of an HCV NS3 helicase, comprising (a) contacting a covalent HCV NS4A-NS3 complex of SEQ ID NO: 4, 12-19 or 20 with a double stranded RNA substrate and a suspected inhibitor under conditions in which unwinding of the substrate can occur; and (b) detecting whether and the extent to which the covalent HCV NS4-NS3 complex has unwound the substrate.
- 28. A method for identifying an inhibitor of an HCV NS3

 20 helicase, comprising (a) contacting a covalent HCV NS4A-NS3 complex of SEQ ID NO: 4, 12-19 or 20 with ATP and a suspected inhibitor under conditions in which ATP hydrolysis can occur; and (b) detecting whether the covalent HCV NS4-NS3 complex has exhibited ATPase activity.

25

2/7

SUBSTITUTE SHEET (rule 26)

3/7

FIG. 4

FIG. 5A

FIG. 5B

FIG. 6

7/7

FIG. 7

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT:
 - (A) NAME: Schering Corp.
 - (B) STREET: 2000 Galloping Hill Road
 - (C) CITY: Kenilworth
 - (D) STATE: New Jersey
 - (E) COUNTRY: USA
 - (F) ZIP: 07090
 - (G) TELEPHONE: 908-298-5056
 - (H) TELEFAX: 908-298-5388
 - (ii) TITLE OF INVENTION: Covalent Complexes of Hepatitis C Virus NS3 Protease and NS4A Cofactor Peptide
 - (iii) NUMBER OF SEQUENCES: 123
 - (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: Power Macintosh
 - (C) OPERATING SYSTEM: 8.0.1
 - (D) SOFTWARE: Microsoft Word 6.0.1
 - (v) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (vi) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 60/067,315
 - (B) FILING DATE: 28-NOV-1997
 - (A) APPLICATION NUMBER: US 60/094,331
 - (B) FILING DATE: 28-JUL-1998
 - (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 217 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu 20 25 30

Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu

40

45

- Leu Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val 50 55 60
- Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala
 65 70 75 80
- Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser 85 90 95
- Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn 100 105 110
- Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser 115 120 125
- Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg 130 135 140
- His Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser 145 150 155 160
- Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly 165 170 175
- Pro Leu Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala 180 185 190
- Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu
 195 200 205
- Ser Met Glu Thr Thr Met Arg Ser * 210 215

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 217 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

 1 5 10 15
- Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu 20 25 30
- Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu 35 40 45
- Leu Gly Cys Lys Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val

50 55 60

Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala 65 70 75 80

Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser 85 90 95

Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn 100 105 110

Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser 115 120 125

Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg 130 135 140

His Ala Asp Val Ile Pro Val Arg Arg Arg Gly Asp Ser Arg Gly Ser 145 150 155 160

Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly
165 170 175

Pro Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala 180 185 190

Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu 195 200 205

Ser Met Glu Thr Thr Met Arg Ser * 210 215

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 217 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15

Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu $20 \hspace{1cm} 25 \hspace{1cm} 30$

Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu
35 40 45

Leu Gly Cys Ile Lys Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val 50 55 60

Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala

70

75

80

Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser 85 90 95

Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn 100 105 110

Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser 115 120 125

Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg 130 135 140

His Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser 145 150 155 160

Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly 165 170 175

Pro Leu Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala 180 185 190

Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu 195 200 205

Ser Met Glu Thr Thr Met Arg Ser * 210 215

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 217 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

1 5 10 15

Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu 20 25 30

Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu 35 40 45

Leu Gly Cys Lys Lys Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val 50 55 60

Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala 65 70 75 80

Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser

WO 99/28482 5 PCT/US98/24528

95

85 90

Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn 100 105 110

Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser 115 120 125

Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg 130 135 140

His Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser 145 150 155 160

Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly
165 170 175

Pro Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala 180 185 190

Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu 195 200 205

Ser Met Glu Thr Thr Met Arg Ser * 210 215

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 216 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

1 5 10 15

Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu 20 25 30

Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu 35 40 45

Leu Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val
50 60

Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala 65 70 75 80

Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser 85 90 95

Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn

100 105 110

Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser 115 120 125

Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg 130 135 140

His Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser 145 150 155 160

Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ala Gly Gly
165 170 175

Pro Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala 180 185 190

Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu 195 200 205

Ser Met Glu Thr Thr Met Arg Ser 210 215

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 216 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

1 5 10 15

Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu 20 25 30

Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu 35 40 45

Leu Gly Cys Lys Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val
50 55 60

Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala 65 70 75 80

Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser 85 90 95

Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn 100 105 110

Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser

WO 99/28482 7 PCT/US98/24528

115 120 125

Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg 130 135 140

His Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser 145 150 155 160

Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ala Gly Gly
165 170 175

Pro Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala 180 185 190

Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu 195 200 205

Ser Met Glu Thr Thr Met Arg Ser 210 215

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 217 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15

Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu 20 . 25 30

Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu 35 40 45

Leu Gly Cys Ile Lys Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val 50 55 60

Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala 65 70 75 80

Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser 85 90 95

Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn 100 105 110

Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser 115 120 125

Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg

130 135 140

His Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser 145 150 155 160

Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ala Gly Gly
165 170 175

Pro Leu Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala 180 185 190

Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu 195 200 205

Ser Met Glu Thr Thr Met Arg Ser * 210 215

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 217 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15

Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu 20 25 30

Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu 35 40 45

Leu Gly Cys Lys Lys Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val 50 55 60

Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala 65 70 75 80

Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser
85 90 95

Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn 100 105 110

Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser 115 120 125

Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg 130 135 140

His Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser

WO 99/28482 9 PCT/US98/24528

145 150 155 160

Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ala Gly Gly
165 170 175

Pro Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala 180 185 190

Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu
195 200 205

Ser Met Glu Thr Thr Met Arg Ser * 210 215

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 217 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

1 10 15

Ser Pro Ala Gly Gly Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu 35 40 45

Leu Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val 50 55 60

Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala 65 70 75 80

Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser 85 90 95

Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn 100 105 110

Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser 115 120 125

Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg
130 135 140

His Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser 145 150 155 160 WO 99/28482 10 PCT/US98/24528

Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly
165 170 175

Pro Leu Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala 180 185 190

Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu 195 200 205

Ser Met Glu Thr Thr Met Arg Ser * 210 215

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 217 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

1 5 10 15

Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu 20 25 30

Ser Pro Ala Gly Gly Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu 35 40 45

Leu Gly Cys Lys Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val 50 55 60

Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala
65 70 75 80

Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser 85 90 95

Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn 100 105 110

Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser 115 120 125

Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg 130 135 140

His Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser 145 150 155 160

Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly
165 170 175

WO 99/28482 11 PCT/US98/24528

Pro Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala 180 185 190

Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu 195 200 205

Ser Met Glu Thr Thr Met Arg Ser 210 215

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 665 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15

Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu 20 25 30

Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu 35 40 45

Leu Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val 50 55 60

Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala 65 70 75 80

Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser 85 90 95

Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn 100 105 110

Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser 115 120 125

Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg 130 135 140

His Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser 145 150 155 160

Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly 165 170 175

Pro Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala 180 185 190

Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser 215 Pro Pro Ala Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro 230 Thr Gly Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly 265 Phe Gly Ala Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg 280 Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr 295 Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp 315 Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu 330 Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu 345 Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His 355 Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe 375 Tyr Gly Lys Ala Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu 385 395 Ile Phe Cys His Ser Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser Gly Leu Gly Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser Val Ile Pro Thr Ile Gly Asp Val Val Val Val Ala Thr Asp Ala 435 440 Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn 455 Thr Cys Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr 465 475

SUBSTITUTE SHEET (rule 26)

490

Ile Glu Thr Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg

Arg Gly Arg Thr Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr

485

WO 99/28482

500 505 510

Pro Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu 515 520 525

Cys Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr 530 535 540

Ser Val Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys 545 550 555 560

Gln Asp His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His
565 570 575

Ile Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe 580 585 590

Pro Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala 595 600 605

Pro Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys 610 615 620

Pro Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val 625 630 635 640

Gln Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala 645 650 655

Cys Met Ser Ala Asp Leu Glu Val Val 660 665

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 665 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu 20 25 30

Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu 35 40 45

Leu Gly Cys Lys Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val 50 55 60

Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala

65 70 75 80 Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn 105 Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser 120 Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg 135 His Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser 155 Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly 170 Pro Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala 180 Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu 200 Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser 215 Pro Pro Ala Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro 230 235 Thr Gly Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln 250 Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe Gly Ala Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg 280 Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr 290 295 Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp 310 Ile Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu 325 330 Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu 340 Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His 360 365 Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe 370 375 380

Tyr Gly Lys Ala Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu Ile Phe Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser Gly Leu Gly Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser Val Ile Pro Thr Ile Gly Asp Val Val Val Ala Thr Asp Ala Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr 475 Ile Glu Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg 485 Arg Gly Arg Thr Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr Pro Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu 520 Cys Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr 535 Ser Val Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys 555 Gln Asp His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe 585 Pro Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala 600 Pro Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys 610 615 Pro Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val 630 635 Gln Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met Ser Ala Asp Leu Glu Val Val

660

⁽²⁾ INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 665 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
- Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

 1 5 10 15
- Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu 20 25 30
- Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu 35 40 45
- Leu Gly Cys Ile Lys Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val
 50 55 60
- Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala 65 70 75 80
- Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser 85 90 95
- Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn 100 105 110
- Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser 115 120 125
- Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg 130 135 140
- His Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser 145 150 155 160
- Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly
 165 170 175
- Pro Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala 180 185 190
- Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu 195 200 205
- Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser 210 215 220
- Pro Pro Ala Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro 225 230 235 240
- Thr Gly Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln 245 250 255

Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly
260 265 270

Phe Gly Ala Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg 275 280 285

Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr 290 295 300

Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp 305 310 315 320

Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu 325 330 335

Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu 340 345 350

Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His 355 360 365

Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe 370 375 380

Tyr Gly Lys Ala Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu 385 390 395 400

Ile Phe Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu 405 410 415

Ser Gly Leu Gly Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val 420 425 430

Ser Val Ile Pro Thr Ile Gly Asp Val Val Val Val Ala Thr Asp Ala 435 440 445

Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn 450 455 460

Thr Cys Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr 465 470 475 480

Ile Glu Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg
485 490 495

Arg Gly Arg Thr Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr 500 505 510

Pro Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu 515 520 525

Cys Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr 530 535 540

Ser Val Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys 545 550 555 560

Gln Asp His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His

570

575

- Ile Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe 580 585 590
- Pro Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala 595 600 605
- Pro Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys 610 615 620
- Pro Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val 625 630 635 640
- Gln Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala 645 650 655

Cys Met Ser Ala Asp Leu Glu Val Val 660 665

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 665 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
- Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15
- Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu 20 25 30
- Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu 35 40 45
- Leu Gly Cys Lys Lys Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val
 50 55 60
- Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala 65 70 75 80
- Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser 85 90 95
- Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn 100 105 110
- Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser 115 120 125
- Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg

His Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser 150 Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly 170 Pro Leu Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala 180 185 Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu 200 Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro Pro Ala Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro Thr Gly Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln 250 Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly 265 Phe Gly Ala Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg 275 280 Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr 295 Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp 310 315 320 Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu 330 Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu 345 Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His 355 Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe 375 Tyr Gly Lys Ala Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu 385 390 395 Ile Phe Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser Gly Leu Gly Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val 425

445

Ser Val Ile Pro Thr Ile Gly Asp Val Val Val Ala Thr Asp Ala

440

435

Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn 455 Thr Cys Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr 470 475 Ile Glu Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg Thr Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr 505 Pro Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu 515 Cys Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr 535 Ser Val Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys 545 550 555 Gln Asp His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His 565 Ile Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe 585 Pro Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala 595 Pro Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys 615 Pro Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val 625 630 635 Gln Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala 645 Cys Met Ser Ala Asp Leu Glu Val Val 660

(2) INFORMATION FOR SEQ ID NO:15:

WO 99/28482

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 665 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

1 5 10 15

SUBSTITUTE SHEET (rule 26)

- Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu
- Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu
- Leu Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val
- Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala 75
- Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser 90
- Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn 105
- Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser 115 120 125
- Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg 135
- His Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser 155 150
- Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ala Gly Gly
- Pro Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala
- Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu 200 205
- Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser 215
- Pro Pro Ala Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro 235 230
- Thr Gly Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln 245
- Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly 265
- Phe Gly Ala Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg 280
- Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr 290 295
- Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp 310 315

WO 99/28482 22 PCT/US98/24528

Ile	Ile	Ile	Cys	Asp 325	Glu	Cys	His	Ser	Thr 330	Asp	Ser	Thr	Thr	Ile 335	Leu
Gly	Ile	Gly	Thr 340	Val	Leu	Asp	Gln	Ala 345	Glu	Thr	Ala	Gly	Ala 350	Arg	Leu
Val	Val	Leu 355	Ala	Thr	Ala	Thr	Pro 360	Pro	Gly	Ser	Val	Thr 365	Val	Pro	His
Pro	Asn 370	Ile	Glu	Glu	Val	Ala 375	Leu	Ser	Asn	Thr	Gly 380	Glu	Ile	Pro	Phe
Tyr 385	Gly	Lys	Ala	Ile	Pro 390	Ile	Glu	Ala	Ile	Arg 395	Gly	Gly	Arg	His	Leu 400
Ile	Phe	Суѕ	His	Ser 405	Lys	Lys	Lys	Cys	Asp 410	Glu	Leu	Ala	Ala	Lys 415	Leu
Ser	Gly	Leu	Gly 420	Ile	Asn	Ala	Val	Ala 425	Tyr	Tyr	Arg	Gly	Leu 430	Asp	Val
Ser	Val	Ile 435	Pro	Thr	Ile	Gly	Asp 440	Val	Val	Val	Val	Ala 445	Thr	Asp	Ala
Leu	Met 450	Thr	Gly	Tyr	Thr	Gly 455	Asp	Phe	Asp	Ser	Val 460	Ile	Asp	Cys	Asn
Thr 465	Cys	Val	Thr	Gln	Thr 470	Val	Asp	Phe	Ser	Leu 475	Asp	Pro	Thr	Phe	Thr 480
Ile	Glu	Thr	Thr	Thr 485	Val	Pro	Gln	Asp	Ala 490	Val	Ser	Arg	Ser	Gln 495	Arg
Arg	Gly	Arg	Thr 500	Gly	Arg	Gly	Arg	Arg 505	Gly	Ile	Tyr	Arg	Phe 510	Val	Thr
Pro	Gly	Glu 515	Arg	Pro	Ser	Gly	Met 520	Phe	Asp	Ser	Ser	Val 525	Leu	Cys	Glu
Cys	Tyr 530	Asp	Ala	Gly	Cys	Ala 535	Trp	Tyr	Glu	Leu	Thr 540	Pro	Ala	Glu	Thr
Ser 545	Val	Arg	Leu	Arg	Ala 550	Tyr	Leu	Asn	Thr	Pro 555	Gly	Leu	Pro	Val	Cys 560
Gln	Asp	His	Leu	Glu 565	Phe	Trp	Glu	Ser	Val 570	Phe	Thr	Gly	Leu	Thr 575	His
Ile	Asp	Ala	His 580	Phe	Leu	Ser	Gln	Thr 585	Lys	Gln	Ala	Gly	Asp 590	Asn	Phe
Pro	Tyr	Leu 595	Val	Ala	Tyr	Gln	Ala 600	Thr	Val	Cys	Ala	Arg 605	Ala	Gln	Ala
Pro	Pro 610	Pro	Ser	Trp	Asp	Gln 615	Met	Trp	Lys	Cys	Leu 620	Ile	Arg	Leu	Lys
Pro	Thr	Leu	His	Gly	Pro	Thr	Pro	Leu	Leu	Tyr	Arg	Leu	Gly	Ala	Val

625 630 635 640

Gln Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala 645 650 655

Cys Met Ser Ala Asp Leu Glu Val Val 660 665

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 665 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

1 10 15

Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu 20 25 30

Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu 35 40 45

Leu Gly Cys Lys Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val
50 60

Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala 65 70 75 80

Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser 85 90 95

Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn 100 105 110

Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser 115 120 125

Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg 130 135 140

His Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser 145 150 155 160

Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ala Gly Gly
165 170 175

Pro Leu Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala 180 185 190

Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu

195 200 205 Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser 215 Pro Pro Ala Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro 230 Thr Gly Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln 245 250 Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly 265 Phe Gly Ala Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg 280 Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr 290 Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp 310 Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu 345 Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His 360 Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe 370 380 Tyr Gly Lys Ala Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu 390 Ile Phe Cys His Ser Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu 410 Ser Gly Leu Gly Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val 420 425 Ser Val Ile Pro Thr Ile Gly Asp Val Val Val Ala Thr Asp Ala 440 Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn 450 455 460 Thr Cys Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr 470 Ile Glu Thr Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg 490 Arg Gly Arg Thr Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr 500 505

WO 99/28482 25 PCT/US98/24528

Pro Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu 515 520 525

Cys Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr 530 540

Ser Val Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys 545 550 555 560

Gln Asp His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His
565 570 575

Ile Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe
580 585 590

Pro Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala 595 600 605

Pro Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys 610 615 620

Pro Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val 625 630 635 640

Gln Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala 645 650 655

Cys Met Ser Ala Asp Leu Glu Val Val 660 665

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 665 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15

Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu 20 25 30

Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu 35 40 45

Leu Gly Cys Ile Lys Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val 50 55 60

Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala 65 70 75 80 WO 99/28482 26 PCT/US98/24528

Thr	Cys	Val	Asn	Gly 85	Val	Cys	Trp	Thr	Val 90	Tyr	His	Gly	Ala	Gly 95	Ser
Lys	Thr	Leu	Ala 100	Gly	Pro	Lys	Gly	Pro 105	Ile	Thr	Gln	Met	Tyr 110	Thr	Asn
Val	Asp	Gln 115	Asp	Leu	Val	Gly	Trp 120	Gln	Ala	Pro	Pro	Gly 125	Ala	Arg	Ser
Leu	Thr 130	Pro	Cys	Thr	Cys	Gly 135	Ser	Ser	Asp	Leu	Tyr 140	Leu	Val	Thr	Arg
His 145	Ala	Asp	Val	Ile	Pro 150	Val	Arg	Arg	Arg	Gly 155	Asp	Ser	Arg	Gly	Ser 160
Leu	Leu	Ser	Pro	Arg 165	Pro	Val	Ser	Tyr	Leu 170	Lys	Gly	Ser	Ala	Gly 175	Gly
Pro	Leu	Leu	Cys 180	Pro	Ser	Gly	His	Ala 185	Val	Gly	Ile	Phe	Arg 190	Ala	Ala
Val	Cys	Thr 195	Arg	Gly	Val	Ala	Lys 200	Ala	Val	Asp	Phe	Val 205	Pro	Val	Glu
Ser	Met 210	Glu	Thr	Thr	Met	Arg 215	Ser	Pro	Val	Phe	Thr 220	Asp	Asn	Ser	Ser
Pro 225	Pro	Ala	Val	Pro	Gln 230	Ser	Phe	Gln	Val	Ala 235	His	Leu	His	Ala	Pro 240
Thr	Gly	Ser	Gly	Lys 245	Ser	Thr	Lys	Val	Pro 250	Ala	Ala	Tyr	Ala	Ala 255	Gln
Gly	Tyr	Lys	Val 260	Leu	Val	Leu	Asn	Pro 265	Ser	Val	Ala	Ala	Thr 270	Leu	Gly
Phe	Gly	Ala 275	Tyr	Met	Ser	Lys	Ala 280	His	Gly	Ile	Asp	Pro 285	Asn	Ile	Arg
Thr	Gly 290	Val	Arg	Thr	Ile	Thr 295	Thr	Gly	Ala	Pro	Val 300	Thr	Tyr	Ser	Thr
Tyr 305	Gly	Lys	Phe	Leu	Ala 310	Asp	Gly	Gly	Cys	Ser 315	Gly	Gly	Ala	Tyr	Asp 320
Ile	Ile	Ile	Cys	Asp 325	Glu	Cys	His	Ser	Thr 330	Asp	Ser	Thr	Thr	Ile 335	Leu
Gly	Ile	Gly	Thr 340	Val	Leu	Asp	Gln	Ala 345	Glu	Thr	Ala	Gly	Ala 350	Arg	Leu
Val ·	Val	Leu 355	Ala	Thr	Ala	Thr	Pro 360	Pro	Gly	Ser	Val	Thr 365	Val	Pro	His
Pro	Asn 370	Ile	Glu	Glu	Val	Ala 375	Leu	Ser	Asn	Thr	Gly 380	Glu	Ile	Pro	Phe

Tyr 385	Gly	Lys	Ala	Ile	Pro 390	Ile	Glu	Ala	Ile	Arg 395	Gly	Gly	Arg	His	Leu 400
Ile	Phe	Cys	His	Ser 405	Lys	Lys	Lys	Cys	Asp 410	Glu	Leu	Ala	Ala	Lys 415	Leu
Ser	Gly	Leu	Gly 420	Ile	Asn	Ala	Val	Ala 425	Tyr	Tyr	Arg	Gly	Leu 430	Asp	Val
Ser	Val	Ile 435	Pro	Thr	Ile	Gly	Asp 440	Val	Val	Val	Val	Ala 445	Thr	Asp	Ala
Leu	Met 450	Thr	Gly	Tyr	Thr	Gly 455	Asp	Phe	Asp	Ser	Val 460	Ile	Asp	Cys	Asn
Thr 465	Cys	Val	Thr	Gln	Thr 470	Val	Asp	Phe	Ser	Leu 475	Asp	Pro	Thr	Phe	Thr 480
Ile	Glu	Thr	Thr	Thr 485	Val	Pro	Gln	Asp	Ala 490	Val	Ser	Arg	Ser	Gln 495	Arg
Arg	Gly	Arg	Thr 500	Gly	Arg	Gly	Arg	Arg 505	Gly	Ile	Tyr	Arg	Phe 510	Val	Thr
Pro	Gly	Glu 515	Arg	Pro	Ser	Gly	Met 520	Phe	Asp	Ser	Ser	Val 525	Leu	Cys	Glu
Cys	Tyr 530	Asp	Ala	Gly	Cys	Ala 535	Trp	Tyr	Glu	Leu	Thr 540	Pro	Ala	Glu	Thr
Ser 545	Val	Arg	Leu	Arg	Ala 550	Tyr	Leu	Asn	Thr	Pro 555	Gly	Leu	Pro	Val	Cys 560
Gln	Asp	His	Leu	Glu 565	Phe	Trp	Glu	Ser	Val 570	Phe	Thr	Gly	Leu	Thr 575	His
Ile	Asp	Ala	His 580	Phe	Leu	Ser	Gln	Thr 585	Lys	Gln	Ala	Gly	Asp 590	Asn	Phe
Pro	Tyr	Leu 595	Val	Ala	Tyr	Gln	Ala 600	Thr	Val	Cys	Ala	Arg 605	Ala	Gln	Ala
Pro	Pro 610		Ser	Trp	Asp	Gln 615		Trp	Lys	Cys	Leu 620	Ile	Arg	Leu	Lys
Pro 625		Leu	His	Gly	Pro 630		Pro	Leu	Leu	Tyr 635		Leu	Gly	Ala	Val 640
Gln	Asn	Glu	Val	Thr 645		Thr	His	Pro	11e 650		Lys	Туr	Ile	Met 655	Ala
Cys	Met	Ser	Ala 660	_	Leu	Glu	Val	Val 665							

(2) INFORMATION FOR SEQ ID NO:18:

WO 99/28482 28 PCT/US98/24528

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 665 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

1 5 10 15

Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu 20 25 30

Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu
35 40 45

Leu Gly Cys Lys Lys Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val
50 55 60

Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala
65 70 75 80

Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser 85 90 95

Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn 100 105 110

Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser 115 120 125

Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg 130 135 140

His Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser 145 150 155 160

Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ala Gly Gly
165 170 175

Pro Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala 180 185 190

Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu 195 200 205

Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser 210 215 220

Pro Pro Ala Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro 225 230 235 240

Thr Gly Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln 245 250 255

Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly

260 265

Phe Gly Ala Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg 280

Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr 295

Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp 310

Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu 330

Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu 345

Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His 360

Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe 375

Tyr Gly Lys Ala Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu 390 395

Ile Phe Cys His Ser Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu 405 410

Ser Gly Leu Gly Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val 425

Ser Val Ile Pro Thr Ile Gly Asp Val Val Val Ala Thr Asp Ala

Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn 455

Thr Cys Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr 470 475

Ile Glu Thr Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg 485 490

Arg Gly Arg Thr Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr 505

Pro Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu 515 520

Cys Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr

Ser Val Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys 555

Gln Asp His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His 565 570

Ile Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe 580 585 590

Pro Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala 595 600 605

Pro Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys 610 620

Pro Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val 625 630 635 640

Gln Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala 645 650 655

Cys Met Ser Ala Asp Leu Glu Val Val 660 665

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 671 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

1 5 10 15

Arg Gly Ser His Met Ala Tyr Ser Leu Thr Thr Gly Ser Val Val Ile 20 25 30

Val Gly Arg Ile Ile Leu Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser 35 40 45

Gln Gln Thr Arg Gly Leu Leu Gly Cys Ile Ile Thr Ser Leu Thr Gly 50 55 60

Arg Asp Lys Asn Gln Val Glu Gly Glu Val Gln Val Val Ser Thr Ala 65 70 75 80

Thr Gln Ser Phe Leu Ala Thr Cys Val Asn Gly Val Cys Trp Thr Val 85 90 95

Tyr His Gly Ala Gly Ser Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile
100 105 110

Thr Gln Met Tyr Thr Asn Val Asp Gln Asp Leu Val Gly Trp Gln Ala 115 120 125

Pro Pro Gly Ala Arg Ser Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp 130 135 140

SUBSTITUTE SHEET (rule 26)

Leu 145	Tyr	Leu	Val	Thr	Arg 150	His	Ala	Asp	Val	Ile 155	Pro	Val	Arg	Arg	Arg 160
Gly	Asp	Ser	Arg	Gly 165	Ser	Leu	Leu	Ser	Pro 170	Arg	Pro	Val	Ser	Tyr 175	Leu
Lys	Gly	Ser	Ser 180	Gly	Gly	Pro	Leu	Leu 185	Cys	Pro	Ser	Gly	His 190	Ala	Val
Gly	Ile	Phe 195	Arg	Ala	Ala	Val	Cys 200	Thr	Arg	Gly	Val	Ala 205	Lys	Ala	Val
Asp	Phe 210	Val	Pro	Val	Glu	Ser 215	Met	Glu	Thr	Thr	Met 220	Arg	Ser	Pro	Val
Phe 225	Thr	Asp	Asn	Ser	Ser 230	Pro	Pro	Ala	Val	Pro 235	Gln	Ser	Phe	Gln	Val 240
Ala	His	Leu	His	Ala 245	Pro	Thr	Gly	Ser	Gly 250	Lys	Ser	Thr	Lys	Val 255	Pro
Ala	Ala	Tyr	Ala 260	Ala	Gln	Gly	Tyr	Lys 265	Val	Leu	Val	Leu	Asn 270	Pro	Ser
Val	Ala	Ala 275	Thr	Leu	Gly	Phe	Gly 280	Ala	Tyr	Met	Ser	Lys 285	Ala	His	Gly
Ile	Asp 290	Pro	Asn	Ile	Arg	Thr 295	Gly	Val	Arg	Thr	Ile 300	Thr	Thr	Gly	Ala
Pro 305	Val	Thr	Tyr	Ser	Thr 310	Tyr	Gly	Lys	Phe	Leu 315	Ala	qsA	Gly	Gly	Cys 320
Ser	Gly	Gly	Ala	Tyr 325	qsA	Ile	Ile	Ile	Cys 330		Glu	Cys	His	Ser 335	Thr
Asp	Ser	Thr	Thr 340	Ile	Leu	Gly	Ile	Gly 345		Val	Leu	Asp	Gln 350		Glu
Thr	Ala	Gly 355		Arg	Leu	Val	Val 360		Ala	Thr	Ala	Thr 365		Pro	Gly
Ser	Val 370		Val	Pro	His	Pro 375		ıl∈	e Glu	Glu	Val 380		Leu	Ser	Asn
Thr 385		Glu	ılle	Pro	Phe 390		: Gly	, rys	s Ala	Ile 395		Ile	Glu	Ala	11e 400
Arg	Gly	Gly	/ Arg	His 405		Ile	e Phe	e Cys	410		Lys	Lys	Lys	415	Asp
Glu	. Leu	Ala	420		Lev	Sei	c Gly	/ Let		/ Ile	e Asn	n Ala	430		Tyr
Tyr	Arç	Gl ₃ 435		Asp	Val	. Sei	r Val		e Pro	o Thi	: Ile	Gly 445		Val	. Val

V	al	Val 450	Ala	Thr	Asp	Ala	Leu 455	Met	Thr	Gly	туг	Thr 460	Gly	Asp	Phe	Asp
	65	Val	Ile	Asp	Cys	Asn 470	Thr	Cys	Val	Thr	Gln 475	Thr	Val	Asp	Phe	Ser 480
L	eu	Asp	Pro	Thr	Phe 485	Thr	Ile	Glu	Thr	Thr 490	Thr	Val	Pro	Gln	Asp 495	Ala
ν	al	Ser	Arg	Ser 500	Gln	Arg	Arg	Gly	Arg 505	Thr	Gly	Arg	Gly	Arg 510	Arg	Gly
Ι	le	Tyr	Arg 515	Phe	Val	Thr	Pro	Gly 520	Glu	Arg	Pro	Ser	Gly 525	Met	Phe	Asp
S	er	Ser 530	Val	Leu	Cys	Glu	Cys 535	Tyr	Asp	Ala	Gly	Cys 540	Ala	Trp	Tyr	Glu
	eu 45	Thr	Pro	Ala	Glu	Thr 550	Ser	Val	Arg	Leu	Arg 555	Ala	Tyr	Leu	Asn	Thr 560
P	ro	Gly	Leu	Pro	Val 565	Cys	Gln	Asp	His	Leu 570	Glu	Phe	Trp	Glu	Ser 575	Val
P	he	Thr	Gly	Leu 580	Thr	His	Ile	Asp	Ala 585	His	Phe	Leu	Ser	Gln 590	Thr	Lys
G	ln	Ala	Gly 595	Asp	Asn	Phe	Pro	Tyr 600	Leu	Val	Ala	Tyr	Gln 605	Ala	Thr	Val
С	ys	Ala 610	Arg	Ala	Gln	Ala	Pro 615	Pro	Pro	Ser	Trp	Asp 620	Gln	Met	Trp	Lys
6	ys 25	Leu	Ile	Arg	Leu	Lys 630	Pro	Thr	Leu	His	Gly 635	Pro	Thr	Pro	Leu	Leu 640
T	yr	Arg	Leu	Gly	Ala 645	Val	Gln	Asn	Glu	Val 650	Thr	Leu	Thr	His	Pro 655	Ile
Т	hr	Lys	Tyr	Ile 660	Met	Ala	Cys	Met	Ser 665	Ala	Asp	Leu	Glu	Val 670	Val	

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 671 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
- Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

 1 5 10 15

- Arg Gly Ser His Met Ala Tyr Ser Leu Thr Thr Gly Ser Val Val Ile $20 \hspace{1cm} 25 \hspace{1cm} 30$
- Val Gly Arg Ile Ile Leu Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser 35 40 45
- Gln Gln Thr Arg Gly Leu Leu Gly Cys Ile Ile Thr Ser Leu Thr Gly
 50 55 60
- Arg Asp Lys Asn Gln Val Glu Gly Glu Val Gln Val Val Ser Thr Ala 65 70 75 80
- Thr Gln Ser Phe Leu Ala Thr Cys Val Asn Gly Val Cys Trp Thr Val 85 90 95
- Tyr His Gly Ala Gly Ser Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile 100 105 110
- Thr Gln Met Tyr Thr Asn Val Asp Gln Asp Leu Val Gly Trp Gln Ala 115 120 125
- Pro Pro Gly Ala Arg Ser Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp 130 135 140
- Leu Tyr Leu Val Thr Arg His Ala Asp Val Ile Pro Val Arg Arg Arg 145 150 155 160
- Gly Asp Ser Arg Gly Ser Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu 165 170 175
- Lys Gly Ser Ala Gly Gly Pro Leu Leu Cys Pro Ser Gly His Ala Val 180 185 190
- Gly Ile Phe Arg Ala Ala Val Cys Thr Arg Gly Val Ala Lys Ala Val 195 200 205
- Asp Phe Val Pro Val Glu Ser Met Glu Thr Thr Met Arg Ser Pro Val 210 215 220
- Phe Thr Asp Asn Ser Ser Pro Pro Ala Val Pro Gln Ser Phe Gln Val 225 230 235 240
- Ala His Leu His Ala Pro Thr Gly Ser Gly Lys Ser Thr Lys Val Pro 245 250 255
- Ala Ala Tyr Ala Ala Gln Gly Tyr Lys Val Leu Val Leu Asn Pro Ser 260 265 270
- Val Ala Ala Thr Leu Gly Phe Gly Ala Tyr Met Ser Lys Ala His Gly 275 280 285
- Ile Asp Pro Asn Ile Arg Thr Gly Val Arg Thr Ile Thr Thr Gly Ala 290 295 300
- Pro Val Thr Tyr Ser Thr Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys 305 310 315 320
- Ser Gly Gly Ala Tyr Asp Ile Ile Ile Cys Asp Glu Cys His Ser Thr

335

Asp Ser Thr Thr Ile Leu Gly Ile Gly Thr Val Leu Asp Gln Ala Glu 340 345 350

Thr Ala Gly Ala Arg Leu Val Val Leu Ala Thr Ala Thr Pro Pro Gly 355 360 365

Ser Val Thr Val Pro His Pro Asn Ile Glu Glu Val Ala Leu Ser Asn 370 375 380

Thr Gly Glu Ile Pro Phe Tyr Gly Lys Ala Ile Pro Ile Glu Ala Ile 385 390 395 400

Arg Gly Gly Arg His Leu Ile Phe Cys His Ser Lys Lys Lys Cys Asp 405 410 415

Glu Leu Ala Ala Lys Leu Ser Gly Leu Gly Ile Asn Ala Val Ala Tyr 420 425 430

Tyr Arg Gly Leu Asp Val Ser Val Ile Pro Thr Ile Gly Asp Val Val
435 440 445

Val Val Ala Thr Asp Ala Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp 450 455 460

Ser Val Ile Asp Cys Asn Thr Cys Val Thr Gln Thr Val Asp Phe Ser 470 475 480

Leu Asp Pro Thr Phe Thr Ile Glu Thr Thr Thr Val Pro Gln Asp Ala 485 490 495

Val Ser Arg Ser Gln Arg Arg Gly Arg Thr Gly Arg Gly Arg Arg Gly 500 505 510

Ile Tyr Arg Phe Val Thr Pro Gly Glu Arg Pro Ser Gly Met Phe Asp 515 520 525

Ser Ser Val Leu Cys Glu Cys Tyr Asp Ala Gly Cys Ala Trp Tyr Glu 530 535 540

Leu Thr Pro Ala Glu Thr Ser Val Arg Leu Arg Ala Tyr Leu Asn Thr 545 550 555 560

Pro Gly Leu Pro Val Cys Gln Asp His Leu Glu Phe Trp Glu Ser Val 565 570 575

Phe Thr Gly Leu Thr His Ile Asp Ala His Phe Leu Ser Gln Thr Lys 580 585 590

Gln Ala Gly Asp Asn Phe Pro Tyr Leu Val Ala Tyr Gln Ala Thr Val
595 600 605

Cys Ala Arg Ala Gln Ala Pro Pro Pro Ser Trp Asp Gln Met Trp Lys 610 615 620

Cys Leu Ile Arg Leu Lys Pro Thr Leu His Gly Pro Thr Pro Leu Leu 625 630 635 640 Tyr Arg Leu Gly Ala Val Gln Asn Glu Val Thr Leu Thr His Pro Ile 645 650 655

Thr Lys Tyr Ile Met Ala Cys Met Ser Ala Asp Leu Glu Val Val 660 665 670

- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Gly Ser Gly Ser

- (2) INFORMATION FOR SEQ ID NO:22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Pro Ala Gly Gly

- (2) INFORMATION FOR SEQ ID NO:22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1964 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1964
- (2) INFORMATION FOR SEQ ID NO:23:

WO 99/28482 36 PCT/US98/24528

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 632 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Met Ala Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly
1 5 10 15

Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu Gly 20 25 30

Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys 35 40 45

Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys Thr 50 55 60

Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val Asp 65 70 75 80

Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu Thr 85 90 95

Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His Ala 100 105 110

Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser Leu Leu 115 120 125

Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro Leu 130 135 140

Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val Cys 145 150 155 160

Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser Met 165 170 175

Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro Pro 180 185 190

Ala Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro Thr Gly
195 200 205

Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln Gly Tyr 210 215 220

Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe Gly 225 230 235 240

Ala Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg Thr Gly 250 Val Arg Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr Tyr Gly 260 Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Ile Ile 280 Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu Gly Ile 295 300 Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val Val 310 315 305 Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His Pro Asn 330 325 Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe Tyr Gly 340 Lys Ala Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu Ile Phe 360 Cys His Ser Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser Gly 375 Leu Gly Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser Val 385 390 395 Ile Pro Thr Ile Gly Asp Val Val Val Ala Thr Asp Ala Leu Met 410 405 Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys 420 Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly 455 Arg Thr Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr Pro Gly 465 480 Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr 490 Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Ser Val 505 510 500 Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp 540 535

WO 99/28482 38 PCT/US98/24528

Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr 545 550 555 560

Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro Pro 565 570 575

Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr 580 585 590

Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn 595 600 605

Glu Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met 610 615 620

Ser Ala Asp Leu Glu Val Val Thr 625 630

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 54 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Ser Thr Trp Val Leu Val Gly Gly Val Leu Ala Ala Leu Ala Ala Tyr 1 5 10 15

Cys Leu Thr Thr Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu Ser 20 25 30

Gly Arg Pro Ala Ile Val Pro Asp Arg Glu Leu Leu Tyr Gln Glu Phe 35 40 45

Asp Glu Met Glu Glu Cys 50

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
Asp Thr Glu Asp Val Val Cys Cys Ser Met Tyr Thr Trp Thr Gly Lys 1 5 10 15	
(2) INFORMATION FOR SEQ ID NO:26:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 78 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
GATATACATA TGGGTTCTGT TGTTATTGTT GGTAGAATTA TTTTATCTGG TAGTGGTAGT	60
ATCACGGCCT ACTCCCAA	78
(2) INFORMATION FOR SEQ ID NO:27:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 36 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
CTCAGCGAAT TCTCAAGACC GCATAGTAGT TTCCAT	36
(2) INFORMATION FOR SEQ ID NO:28:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs	

- - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

(B) TYPE: nucleic acid

(C)	STRANDEDNESS:	single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

CGGGGCCTAC TTGGTTGCAA GAAGACTAGC CTTACAGGC

39

- (2) INFORMATION FOR SEQ ID NO:33:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

GCCTGTAAGG CTAGTCTTCT TGCAACCAAG TAGGCCCCG

39

- (2) INFORMATION FOR SEQ ID NO:34:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

CTCCTACTTG AAGGGCTCTG CTGGTGGTCC ACTGCTCTGC

40

- (2) INFORMATION FOR SEQ ID NO:35:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
GCAGAGCAGT GGACCACCAG CAGAGCCCTT CAAGTAGGAG	40
(2) INFORMATION FOR SEQ ID NO:36:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
CGGGGCCTAC TTGGTTGCAA GATCACTAGC CTTACAGGC	39
(2) INFORMATION FOR SEQ ID NO:37:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
GCCTGTAAGG CTAGTGATCT TGCAACCAAG TAGGCCCCG	39
(2) INFORMATION FOR SEQ ID NO:38:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
CGGGGCCTAC TTGGTTGCAT CAAGACTAGC CTTACAGGC	39
(2) INFORMATION FOR SEC ID NO. 20.	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
GCCTGTAAGG CTAGTCTTGA TGCAACCAAG TAGGCCCCG	39
(2) INFORMATION FOR SEQ ID NO:40:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
CGGGGCCTAC TTGGTTGCAA GAAGACTAGC CTTACAGGC	39
(2) INFORMATION FOR SEQ ID NO:41:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
GCCTGTAAGG CTAGTCTTGA TGCAACCAAG TAGGCCCCG	39
(2) INFORMATION FOR SEQ ID NO:42:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 78 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

(ii) MOLECULE TYPE: cDNA

(xi)) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
GATATAC:	ATA TGGGTTCTGT TGTTATTGTT GGTAGAATTA TTTTATCTCC TGCTGGTGGT	60
ATCACGG	CCT ACTCCCAA	78
(2) INFO	DRMATION FOR SEQ ID NO:43:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:43:	
CTCAGCGA	AT TCTCAAGACC GCATAGTAGT TTCCAT	36
(2) INFO	RMATION FOR SEQ ID NO:44:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:44:	
CGGGGCCT	AC TTGGTTGCAA GATCACTAGC CTTACAGGC	39
(2) INFO	RMATION FOR SEQ ID NO:45:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

GCCTGTAAGG CTAGTGATCT TGCAACCAAG TAGGCCCCG

39

(2) INFORMATION FOR SEO ID NO:46:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 216 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu 20

Ser Pro Ala Gly Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu

Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu 55

Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr 75

Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys

Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val 100 105

Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu

Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His 135

Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser Leu 145 150

Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro

Leu Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val 185

Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser 200

Met Glu Thr Thr Met Arg Ser * 210 215

(2)	INFO	RMATION FOR SEQ ID NO:47:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 3 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: peptide	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:47:	
	Pro 1	Ala Gly	
(2)	INFO	RMATION FOR SEQ ID NO:48:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 75 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:48:	
GAT	ATACA	TA TGGGTTCTGT TGTTATTGTT GGTAGAATTA TTTTATCTCC TGCTGGTATC	60
ACG	GCCTA	CT CCCAA	75
(2)	INFO	RMATION FOR SEQ ID NO:49:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:49:	
CTC	AGCGA	AT TCTCAAGACC GCATAGTAGT TTCCAT	36

(2) INFORMATION FOR SEQ ID NO:50:

WO 99/28482

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 213 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15

Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu $20 \hspace{1cm} 25 \hspace{1cm} 30$

Ser Pro Ala Gly Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu
35 40 45

Gly Cys Lys Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu 50 55 60

Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr 65 70 75 80

Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys 85 90 95

Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val 100 105 110

Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu 115 120 125

Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His 130 135 140

Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser Leu 145 150 155 160

Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro 165 170 175

Leu Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val 180 185 190

Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser 195 200 205

Met Glu Thr Thr Met 210

- (2) INFORMATION FOR SEQ ID NO:51:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

CGGGGCCTAC TTGGTTGCAA GATCACTAGC CTTACAGGC

39

- (2) INFORMATION FOR SEQ ID NO:52:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:
 GCCTGTAAGG CTAGTGATCT TGCAACCAAG TAGGCCCCG

39

- (2) INFORMATION FOR SEQ ID NO:53:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 166 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

Met Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu Gly Glu 1 5 10 15

Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys Val 20 25 30

Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys Thr Leu 35 40 45

Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val Asp Gln 50 55 60

Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu Thr Pro 65 70 75 80

Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His Ala Asp 85 90 95

	WO 99/284	182												PC 1703	70/24320
Val	Ile Pro	Val 100	Arg	Arg	Arg	Gly	Asp 105	Ser	Arg	Gly	Ser	Leu 110	Leu	Ser	
Pro	Arg Pro 115	Val	Ser	Tyr	Leu	Lys 120	Gly	Ser	Ser	Gly	Gly 125	Pro	Leu	Leu	
Cys	Pro Ser 130	Gly	His	Ala	Val 135	Gly	Ile	Phe	Arg	Ala 140	Ala	Val	Cys	Thr	
Arg 145	Gly Val	Ala	Lys	Ala 150	Val	Asp	Phe	Val	Pro 155	Val	Glu	Ser	Met	Glu 160	
Thr	Thr Met	Arg	Ser 165												
(2)	INFORMA	MOIT	FOR	SEQ	ID	NO:5	4:								
(2	. ((A) I (B) I (C) S (D) I OLECT EQUE 1y S (ATIO (B) (C) (D)	LENGT TYPE: STRAN TOPOI ULE T NCE T ON FO CNCE LENG TYPE STRA	CHAR CHAR CHAR CHAR CHAR CHAR CHAR CHAR	amino a IESS: lir per RIPT Q ID ACTE 75 b IcleionESS	no acid sinear otido ION: CRIST base case inear	sEQ SEQ Sid	ID 1	NO : 5	4 :					
	(xi)														
G	ATATACAT	a TG	GGTT	CTGT	TGT	TATT	GTT	GGTA	GAAT	TA T	TTTA	TCTG	G TG	GTTCTATC	60
A	CGGCCTAC	T CC	CAA												75
(2) INFOR	ITAM	ON F	OR S	EQ I	D NC	:56:								
	(i)		LEN	CHA IGTH: PE: r	36	base	pai	: Lrs							

(C) STRANDEDNESS: single

WO 99/28482 50 PCT/US98/24528

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

CTCAGCGAAT TCTCAAGACC GCATAGTAGT TTCCAT

36

- (2) INFORMATION FOR SEQ ID NO:57:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 216 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

1 5 10 15

Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu 20 25 30

Ser Gly Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu 35 40 45

Gly Cys Lys Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu 50 55 60

Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr 65 70 75 80

Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys
85 90 95

Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val 100 105 110

Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu 115 120 125

Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His 130 135 140

Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser Leu 145 150 155 160

Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro
165 170 175

Leu Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val

WO 99/28482 PCT/US98/24528

180

185

190

Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser 200

Met Glu Thr Thr Met Arg Ser *

- (2) INFORMATION FOR SEQ ID NO:58:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

CGGGGCCTAC TTGGTTGCAA GATCACTAGC CTTACAGGC

39

- (2) INFORMATION FOR SEQ ID NO:59:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

GCCTGTAAGG CTAGTGATCT TGCAACCAAG TAGGCCCCG

39

- (2) INFORMATION FOR SEQ ID NO:60:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 668 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

Met His Met His His His His His Leu Val Pro Arg Gly Ser Ala

Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly Cys Lys 25

Ile	Thr	Ser 35	Leu	Thr	Gly	Arg	Asp 40	Lys	Asn	Gln	Val	Glu 45	Gly	Glu	Val
Gln	Val 50	Val	Ser	Thr	Ala	Thr 55	Gln	Ser	Phe	Leu	Ala 60	Thr	Cys	Val	Asn
Gly 65	Val	Cys	Trp	Thr	Val 70	Tyr	His	Gly	Ala	Gly 75	Ser	Lys	Thr	Leu	Ala 80
Gly	Pro	Lys	Gly	Pro 85	Ile	Thr	Gln	Met	Туг 90	Thr	Asn	Val	Asp	Gln 95	Asp
Leu	Val	Gly	Trp 100	Gln	Ala	Pro	Pro	Gly 105	Ala	Arg	Ser	Leu	Thr 110	Pro	Суѕ
Thr	Cys	Gly 115	Ser	Ser	Asp	Leu	Tyr 120	Leu	Val	Thr	Arg	His 125	Ala	qzA	Val
Ile	Pro	Val	Arg	Arg	Arg	Gly	Asp	Ser	Arg	Gly	Ser	Leu	Leu	Ser	Pro

130 135 140

Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro Leu Leu Cys 145 150 155 160

Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val Cys Thr Arg 165 170 175

Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser Met Glu Thr 180 185 190

Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro Pro Ala Val 195 200 205

Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro Thr Gly Ser Gly 210 215 220

Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln Gly Tyr Lys Val 225 230 235 240

Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe Gly Ala Tyr 245 250 255

Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg Thr Gly Val Arg 260 265 270

Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr Tyr Gly Lys Phe 275 280 285

Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Ile Ile Cys 290 295 300

Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu Gly Ile Gly Thr 305 310 315 320

Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val Val Leu Ala 325 330 335

Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His Pro Asn Ile Glu

340 345 350

Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe Tyr Gly Lys Ala 355 360 365

Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu Ile Phe Cys His 370 380

Ser Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser Gly Leu Gly 385 390 395 400

Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser Val Ile Pro
405 410 415

Thr Ile Gly Asp Val Val Val Val Ala Thr Asp Ala Leu Met Thr Gly 420 425 430

Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys Val Thr 435 440 445

Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr Thr 450 455 460

Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg Thr 465 470 475 480

Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr Pro Gly Glu Arg
485 490 495

Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr Asp Ala 500 505 510

Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Ser Val Arg Leu 515 520 525

Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp His Leu 530 535 540

Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala His 545 550 555 560

Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr Leu Val 565 570 575

Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro Pro Pro Ser 580 585 590

Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr Leu His 595 600 605

Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn Glu Val 610 615 620

Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met Ser Ala 625 630 635 640

Asp Leu Glu Val Val Thr * Glu Phe Glu Leu Arg Arg Gln Ala Cys 645 650 655

Gly Arg Thr Arg Ala Pro Pro Pro Pro Pro Leu Arg
660 665

- (2) INFORMATION FOR SEQ ID NO:61:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

CGGGGCCTAC TTGGTTGCAA GATCACTAGC CTTACAGGC

39

- (2) INFORMATION FOR SEQ ID NO:62:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

GCCTGTAAGG CTAGTGATCT TGCAACCAAG TAGGCCCCG

39

- (2) INFORMATION FOR SEQ ID NO:63:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 668 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

Met His Met His His His His His Leu Val Pro Arg Gly Ser Ala 1 5 10 15

Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly Cys Ile
20 25 30

Lys Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu Gly Glu Val

SUBSTITUTE SHEET (rule 26)

35 40 45

Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys Val Asn
50 55 60

Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys Thr Leu Ala 65 70 75 80

Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val Asp Gln Asp 85 90 95

Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu Thr Pro Cys
100 105 110

Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His Ala Asp Val 115 120 125

Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser Leu Leu Ser Pro 130 135 140

Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro Leu Leu Cys 145 150 155 160

Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val Cys Thr Arg 165 170 175

Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser Met Glu Thr 180 185 190

Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro Pro Ala Val 195 200 205

Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro Thr Gly Ser Gly 210 215 220

Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln Gly Tyr Lys Val 225 230 235 240

Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe Gly Ala Tyr 245 250 255

Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg Thr Gly Val Arg 260 265 270

Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr Tyr Gly Lys Phe 275 280 285

Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Ile Ile Ile Cys 290 295 300

Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu Gly Ile Gly Thr 305 310 315 320

Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val Val Leu Ala 325 330 335

Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His Pro Asn Ile Glu 340 345 350

Glu	Val	Ala 355	Leu	Ser	Asn	Thr	Gly 360	Glu	Ile	Pro	Phe	Туг 365	Gly	Lys	Ala
Ile	Pro 370	Ile	Glu	Ala	Ile	Arg 375	Gly	Gly	Arg	His	Leu 380	Ile	Phe	Cys	His
Ser 385	Lys	Lys	Lys	Cys	Asp 390	Glu	Leu	Ala	Ala	Lys 395	Leu	Ser	Gly	Leu	Gly 400
Ile	Asn	Ala	Val	Ala 405	Tyr	Tyr	Arg	Gly	Leu 410	Asp	Val	Ser	Val	Ile 415	Pro
Thr	Ile	Gly	Asp 420	Val	Val	Val	Val	Ala 425	Thr	Asp	Ala	Leu	Met 430	Thr	Gly
Tyr	Thr	Gly 435	Asp	Phe	Asp	Ser	Val 440	Ile	Asp	Cys	Asn	Thr 445	Cys	Val	Thr
Gln	Thr 450	Val	Asp	Phe	Ser	Leu 455	Asp	Pro	Thr	Phe	Thr 460	Ile	Glu	Thr	Thr
Thr 465	Val	Pro	Gln	Asp	Ala 470	Val	Ser	Arg	Ser	Gln 475	Arg	Arg	Gly	Arg	Thr 480
Gly	Arg	Gly	Arg	Arg 485	Gly	Ile	Tyr	Arg	Phe 490	Val	Thr	Pro	Gly	Glu 495	Arg
Pro	Ser	Gly	Met 500	Phe	Asp	Ser	Ser	Val 505	Leu	Cys	Glu	Cys	Туr 510	Asp	Ala
Gly	Cys	Ala 515	Trp	Tyr	Glu	Leu	Thr 520	Pro	Ala	Glu	Thr	Ser 525	Val	Arg	Leu
	Ala 530					535					540				
545	Phe				550					555					560
	Leu			565					570					575	
Ala	Tyr	Gln	Ala 580	Thr	Val	Cys	Ala	Arg 585	Ala	Gln	Ala	Pro	Pro 590	Pro	Ser
Trp	Asp	Gln 595	Met	Trp	Lys	Cys	Leu 600	Ile	Arg	Leu	Lys	Pro 605	Thr	Leu	His
Gly	Pro 610	Thr	Pro	Leu	Leu	Туr 615	Arg	Leu	Gly	Ala	Val 620	Gln	Asn	Glu	Val
Thr 625	Leu	Thr	His	Pro	Ile 630	Thr	Lys	Tyr	Ile	Met 635	Ala	Cys	Met	Ser	Ala 640
Asp	Leu	Glu	Val	Val	Thr	*									

SUBSTITUTE SHEET (rule 26)

WO 99/28482 57 PCT/US98/24528

(2) INFORMATION FOR SEQ ID NO:64:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

CGGGGCCTAC TTGGTTGCAT CAAGACTAGC CTTACAGGC

39

- (2) INFORMATION FOR SEQ ID NO:65:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

GCCTGTAAGG CTAGTCTTGA TGCAACCAAG TAGGCCCCG

39

- (2) INFORMATION FOR SEO ID NO:66:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 668 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

Met His Met His His His His His Leu Val Pro Arg Gly Ser Ala 1 5 10 15

Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly Cys Ile
20 25 30

Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu Glu Val
35 40 45

Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys Val Asn 50 55 60

Gly 65	Val	Cys	Trp	Thr	Val 70	Tyr	His	Gly	Ala	Gly 75	Ser	Lys	Thr	Leu	Ala 80
Gly	Pro	Lys	Gly	Pro 85	Ile	Thr	Gln	Met	Туr 90	Thr	Asn	Val	Asp	Gln 95	Asp
Leu	Val	Gly	Trp 100	Gln	Ala	Pro	Pro	Gly 105	Ala	Arg	Ser	Leu	Thr 110	Pro	Cys
Thr	Cys	Gly 115	Ser	Ser	Asp	Leu	Tyr 120	Leu	Val	Thr	Arg	His 125	Ala	Asp	Val
Ile	Pro 130	Val	Arg	Arg	Arg	Gly 135	Asp	Ser	Arg	Gly	Ser 140	Leu	Leu	Ser	Pro
Arg 145	Pro	Val	Ser	Tyr	Leu 150	Lys	Gly	Ser	Ala	Gly 155	Gly	Pro	Leu	Leu	Cys 160
Pro	Ser	Gly	His	Ala 165	Val	Gly	Ile	Phe	Arg 170	Ala	Ala	Val	Cys	Thr 175	Arg
Gly	Val	Ala	Lys 180	Ala	Val	Asp	Phe	Val 185	Pro	Val	Glu	Ser	Met 190	Glu	Thr
Thr	Met	Arg 195	Ser	Pro	Val	Phe	Thr 200	Asp	Asn	Ser	Ser	Pro 205	Pro	Ala	Val
Pro	Gln 210	Ser	Phe	Gln	Val	Ala 215	His	Leu	His	Ala	Pro 220	Thr	Gly	Ser	Gly
225					Pro 230					235		٠			240
				245	Ser				250					255	
			260		Gly			265					270		
		275			Ala		280					285			
	290				Cys	295					300				
305					Thr 310					315					320
				325	Glu				330					335	
			340		Gly			345					350		
Glu	Val	Ala 355	Leu	Ser	Asn	Thr	Gly 360	Glu	Ile	Pro	Phe	Tyr 365	Gly	Lys	Ala

Ile	Pro 370	Ile	Glu	Ala	Ile	Arg 375	Gly	Gly	Arg	His	Leu 380	Ile	Phe	Суѕ	His
Ser 385	Lys	Lys	Lys	Cys	Asp 390	Glu	Leu	Ala	Ala	Lys 395	Leu	Ser	Gly	Leu	Gly 400
Ile	Asn	Ala	Val	Ala 405	Tyr	Tyr	Arg	Gly	Leu 410	Asp	Val	Ser	Val	Ile 415	Pro
Thr	Ile	Gly	Asp 420	Val	Val	Val	Val	Ala 425	Thr	Asp	Ala	Leu	Met 430	Thr	Gly
Tyr	Thr	Gly 435	Asp	Phe	Asp	Ser	Val 440	Ile	Asp	Cys	Asn	Thr 445	Cys	Val	Thr
Gln	Thr 450	Val	Asp	Phe	Ser	Leu 455	Asp	Pro	Thr	Phe	Thr 460	Ile	Glu	Thr	Thr
Thr 465	Val	Pro	Gln	Asp	Ala 470	Val	Ser	Arg	Ser	Gln 475	Arg	Arg	Gly	Arg	Thr 480
Gly	Arg	Gly	Arg	Arg 485	Gly	Ile	Tyr	Arg	Phe 490	Val	Thr	Pro	Gly	Glu 495	Arg
Pro	Ser	Gly	Met 500	Phe	Asp	Ser	Ser	Val 505	Leu	Суѕ	Glu	Cys	Туг 510	Asp	Ala
Gly	Cys	Ala 515	Trp	Tyr	Glu	Leu	Thr 520	Pro	Ala	Glu	Thr	Ser 525	Val	Arg	Leu
Arg	Ala 530	Tyr	Leu	Asn	Thr	Pro 535	Gly	Leu	Pro	Val	Cys 540	Gln	Asp	His	Leu
Glu 545	Phe	Trp	Glu	Ser	Val 550	Phe	Thr	Gly	Leu	Thr 555	His	Ile	Asp	Ala	His 560
Phe	Leu	Ser	Gln	Thr 565	Lys	Gln	Ala	Gly	Asp 570		Phe	Pro	Tyr	Leu 575	Val
Ala	Tyr	Gln	Ala 580		Val	Суѕ	Ala	Arg 585	Ala	Gln	Ala	Pro	Pro 590	Pro	Ser
Trp	Asp	Gln 595		Trp	Lys	Cys	Leu 600		Arg	Leu	Lys	Pro 605		Leu	His
Gly	Pro 610		Pro	Leu	Leu	Туг 615		Leu	Gly	Ala	Val 620		Asn	Glu	Val
Thr 625		Thr	His	Pro	630		· Lys	Tyr	Ile	Met 635		Cys	Met	Ser	Ala 640

(2) INFORMATION FOR SEQ ID NO:67:

Asp Leu Glu Val Val Thr *

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 40 base pairs

WO 99/28482 60 PCT/US98/24528

(B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

CTCCTACTTG AAGGGCTCTG CTGGTGGTCC ACTGCTCTGC

40

- (2) INFORMATION FOR SEQ ID NO:68:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

GCAGAGCAGT GGACCACCAG CAGAGCCCTT CAAGTAGGAG

40

- (2) INFORMATION FOR SEQ ID NO:69:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 668 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

Met His Met His His His His His Leu Val Pro Arg Gly Ser Ala

1 5 10 15

Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly Cys Ile 20 25 30

Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu Gly Glu Val
35 40 45

Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys Val Asn 50 55 60

Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys Thr Leu Ala 65 70 75 80 Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val Asp Gln Asp 90 Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu Thr Pro Cys 105 Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His Ala Asp Val 115 120 Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser Leu Leu Ser Pro 135 Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro Leu Leu Cys 155 150 Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val Cys Thr Arg 165 170 Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser Met Glu Thr 185 Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro Pro Ala Val 200 Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro Thr Gly Ser Gly 215 Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln Gly Tyr Lys Val 230 235 Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe Gly Ala Tyr 250 245 Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg Thr Gly Val Arg 265 Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr Tyr Gly Lys Phe 280 Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Ile Ile Cys 290 295 Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu Gly Ile Gly Thr 310 315 Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His Pro Asn Ile Glu 345 Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe Tyr Gly Lys Ala 360

SUBSTITUTE SHEET (rule 26)

Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu Ile Phe Cys His

Ser Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser Gly Leu Gly

375

370

385 390 395 400 Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser Val Ile Pro 405 410 Thr Ser Gly Asp Val Val Val Ala Thr Asp Ala Leu Met Thr Gly 425 Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys Val Thr 435 440 Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr Thr 455 460 Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg Thr 470 475 Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr Pro Gly Glu Arg 485 490 Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr Asp Ala 505 Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Ser Val Arg Leu 520 Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp His Leu 535 Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala His 550 555 Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr Leu Val 570 Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr Leu His 600 Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn Glu Val 610 615 Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met Ser Ala 630 Asp Leu Glu Val Val Thr * Glu Phe Glu Leu Arg Arg Gln Ala Cys 645 650 Gly Arg Thr Arg Ala Pro Pro Pro Pro Leu Arg 660

- (2) INFORMATION FOR SEQ ID NO:70:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 base pairs
 - (B) TYPE: nucleic acid

WO 99/28482 63 PCT/US98/24528

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

GTCCGTCATA CCAACTTCCG GAGACGTCGT TGTCG

35

- (2) INFORMATION FOR SEQ ID NO:71:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

CGACAACGAC GTCTCCGGAA GTTGGTATGA CGGAC

35

- (2) INFORMATION FOR SEQ ID NO:72:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 669 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

Met His Met His His His His His Leu Val Pro Arg Gly Ser Ala 1 5 10 15

Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly Cys Ile 20 25 30

Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu Gly Glu Val
35 40 45

Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys Val Asn 50 55 60

Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys Thr Leu Ala 65 70 75 80

Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val Asp Gln Asp

85 90 95 Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu Thr Pro Cys 105 Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His Ala Asp Val 120 Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser Leu Leu Ser Pro 130 135 Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro Leu Leu Cys 155 Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val Cys Thr Arg 170 Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser Met Glu Thr 180 Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro Pro Ala Val 200 Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro Thr Gly Ser Gly 210 215 Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln Gly Tyr Lys Val 230 235 Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe Gly Ala Tyr 250 Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg Thr Gly Val Arg 260 270 Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Ile Ile Cys 290 295 Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu Gly Ile Gly Thr 310 Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val Val Leu Ala 330 Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His Pro Asn Ile Glu 340 345 Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe Tyr Gly Lys Ala Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu Ile Phe Cys His 375

SUBSTITUTE SHEET (rule 26)

400

Ser Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser Gly Leu Gly

390

385

Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser Val Ile Pro 410 Thr Ile Gly Asp Val Val Val Ala Thr Asp Ala Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys Val Thr 440 Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg Thr 470 475 Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr Pro Gly Glu Arg 490 Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr Asp Ala 500 510 505 Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Ser Val Arg Leu 520 Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp His Leu 535 Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala His 545 550 Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr Leu Val 570 Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro Pro Pro Ser 580 Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr Leu His 600 Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn Glu Val 620 615 Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met Ser Ala 625 635 630

- Asp Leu Glu Val Val Thr *
- (2) INFORMATION FOR SEQ ID NO:73:
 - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs
 - (B) TYPE: nucleic acid
 - (B) TIPE: Nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:	
ACTAAAGTGC CGGCTGCCTA CGCAGCCCAA GGG	33
(2) INFORMATION FOR SEQ ID NO:74:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:	
CCCTTGGGCT GCGTAGGCAG CCGGCACTTT AGT	33
(2) INFORMATION FOR SEQ ID NO:75:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:	
CGGGGCCTAC TTGGTTGCAA GATCACTAGC CTTACAGGC	39
(2) INFORMATION FOR SEQ ID NO:76:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:	
GCCTGTAAGG CTAGTGATCT TGCAACCAAG TAGGCCCCG	39

(2)	INFORMATION FOR SEQ ID NO:77:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:	
CGG	GGCCTAC TTGGTTGCAT CAAGACTAGC CTTACAGGC	39
(2)	INFORMATION FOR SEQ ID NO:78:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:	
GCC	CTGTAAGG CTAGTCTTGA TGCAACCAAG TAGGCCCCG	39
(2)	INFORMATION FOR SEQ ID NO:79:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:	
CG	GGGCCTAC TTGGTTGCAA GAAGACTAGC CTTACAGG	38
(2) INFORMATION FOR SEQ ID NO:80:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 39 base pairs(B) TYPE: nucleic acid	

(C) STRANDEDNESS: single

	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:	
GCCT	IGTAAGG CTAGTCTTCT TGCAACCAAG TAGGCCCCG	39
(2)	INFORMATION FOR SEQ ID NO:81:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:	
CGGG	GCCTAC TTGGTTGCAA GATCACTAGC CTTACAGGC	39
(2)	INFORMATION FOR SEQ ID NO:82:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:	
GCCT	TGTAAGG CTAGTGATCT TGCAACCAAG TAGGCCCCG	39
(2)	INFORMATION FOR SEQ ID NO:83:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

(ii) MOLECULE TYPE: cDNA

69

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 96 base pairs(B) TYPE: nucleic acid

<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:	
GATATACATA TGGCTTACTC TCTGACTACG GGTTCTGTTG TTATTGTTGG TAGAATTATT	60
TTATCTGGTA GTGGTAGTAT CACGGCCTAC TCCCAA	96
(2) INFORMATION FOR SEQ ID NO:88:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 51 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:	
GTGGTGGTGC TCGAGGCTGC CGCGCGGCAC CAGCGTAACG ACCTCCAGGT C	51
(2) INFORMATION FOR SEQ ID NO:89:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 96 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:	
GATATACATA TGGCTTACTC TCTGACTACG GGTTCTGTTG TTATTGTTGG TAGAATTATT	60
TTATCTGGTA GTGGTAGTAT CACGGCCTAC TCCCAA	96
(2) INFORMATION FOR SEQ ID NO:90:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 50 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

TGGTGGTGCT CGAGGCTGCC GCGCGGCACC AGCGTAACGA CCTCCAGGTC

50

- (2) INFORMATION FOR SEQ ID NO:91:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

Asp Thr Glu Asp Val Val Ala Cys Ser Met Ser Tyr Thr Trp Tyr Gly
1 10 15

Lys

- (2) INFORMATION FOR SEQ ID NO:92:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 651 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..651
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

ATG GGC AGC CAT CAT CAT CAT CAT CAC AGC AGC GGC CTG GTG CCG

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

CGC GGC AGC CAT ATG GGT TCT GTT GTT ATT GTT GGT AGA ATT ATT TTA 96
Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu

20 25 30

TCT Ser	GGT Gly	AGT Ser 35	GGT Gly	AGT Ser	ATC Ile	ACG Thr	GCC Ala 40	TAC Tyr	TCC Ser	CAA Gln	CAG Gln	ACG Thr 45	CGG Arg	GGC Gly	CTA Leu	144
CTT Leu	GGT Gly 50	TGC Cys	ATC Ile	ATC Ile	ACT Thr	AGC Ser 55	CTT Leu	ACA Thr	GGC Gly	CGG Arg	GAC Asp 60	AAG Lys	AAC Asn	CAG Gln	GTC Val	192
GAG Glu 65	GGA Gly	GAG Glu	GTT Val	CAG Gln	GTG Val 70	GTT Val	TCC Ser	ACC Thr	GCA Ala	ACA Thr 75	CAA Gln	TCC Ser	TTC Phe	CTG Leu	GCG Ala 80	240
ACC Thr	TGC Cys	GTC Val	AAC Asn	GGC Gly 85	GTG Val	TGT Cys	TGG Trp	ACC Thr	GTT Val 90	TAC Tyr	CAT His	GGT Gly	GCT Ala	GGC Gly 95	TCA Ser	288
AAG Lys	ACC Thr	TTA Leu	GCC Ala 100	GGC Gly	CCA Pro	AAG Lys	GGG Gly	CCA Pro 105	ATC Ile	ACC Thr	CAG Gln	ATG Met	TAC Tyr 110	ACT Thr	AAT Asn	336
GTG Val	GAC Asp	CAG Gln 115	GAC Asp	CTC Leu	GTC Val	GGC Gly	TGG Trp 120	CAG Gln	GCG Ala	CCC Pro	CCC Pro	GGG Gly 125	GCG Ala	CGT Arg	TCC Ser	384
TTG Leu	ACA Thr 130	CCA Pro	TGC Cys	ACC Thr	TGT Cys	GGC Gly 135	AGC Ser	TCA Ser	GAC Asp	CTT Leu	TAC Tyr 140	TTG Leu	GTC Val	ACG Thr	AGA Arg	432
CAT His 145	GCT Ala	GAC Asp	GTC Val	ATT Ile	CCG Pro 150	GTG Val	CGC Arg	CGG Arg	CGG Arg	GGC Gly 155	GAC Asp	AGT Ser	AGG Arg	GGG Gly	AGC Ser 160	480
CTG Leu	CTC Leu	TCC Ser	CCC Pro	AGG Arg 165	CCT Pro	GTC Val	TCC Ser	TAC Tyr	TTG Leu 170	AAG Lys	GGC Gly	TCT Ser	TCG Ser	GGT Gly 175	GGT Gly	528
CCA Pro	CTG Leu	CTC Leu	TGC Cys 180	CCT Pro	TCG Ser	GGG Gly	CAC His	GCT Ala 185	GTG Val	GGC Gly	ATC Ile	TTC Phe	CGG Arg 190	GCT Ala	GCC Ala	576
GTA Val	TGC Cys	ACC Thr 195	CGG Arg	GGG Gly	GTT Val	GCG Ala	AAG Lys 200	GCG Ala	GTG Val	GAC Asp	TTT Phe	GTG Val 205	CCC Pro	GTA Val	GAG Glu	624
	ATG Met 210							TGA *								651

(2) INFORMATION FOR SEQ ID NO:93:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 651 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: CDS(B) LOCATION: 1..651

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

									CAC His 10							48	
									ATT Ile							96	
									TCC Ser							144	
	_								GGC Gly							192	
									GCA Ala							240	
									GTT Val 90							288	
									ATC Ile							336	
									GCG Ala							384	
		Pro							GAC Asp							432	
	Ala		Val		Pro	Val	Arg	Arg	CGG Arg	Gly	qzA	Ser	Arg			480	
					Pro					Lys					GGT Gly	528	
				Pro					Val					Ala	GCC Ala	576	
GTA	TGC	ACC	CGG	GGG	GTT	GCG	AAG	GCG	GTG	GAC	777	GTG	ccc	GTA	GAG	624	

Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu TCC ATG GAA ACT ACT ATG CGG TCT TGA 651 Ser Met Glu Thr Thr Met Arg Ser * (2) INFORMATION FOR SEQ ID NO:94: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 651 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..651 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94: ATG GGC AGC CAT CAT CAT CAT CAC AGC AGC GGC CTG GTG CCG 48 Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 CGC GGC AGC CAT ATG GGT TCT GTT GTT GTT GGT AGA ATT ATT TTA 96 Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu TCT GGT AGT GGT ATC ACG GCC TAC TCC CAA CAG ACG CGG GGC CTA 144 Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu 35 CTT GGT TGC ATC AAG ACT AGC CTT ACA GGC CGG GAC AAG AAC CAG GTC 192 Leu Gly Cys Ile Lys Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val 50 GAG GGA GAG GTT CAG GTG GTT TCC ACC GCA ACA CAA TCC TTC CTG GCG 240 Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala 70 ACC TGC GTC AAC GGC GTG TGT TGG ACC GTT TAC CAT GGT GCT GGC TCA 288 Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser 85 AAG ACC TTA GCC GGC CCA AAG GGG CCA ATC ACC CAG ATG TAC ACT AAT 336 Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn 100 105 GTG GAC CAG GAC CTC GTC GGC TGG CAG GCG CCC CCC GGG GCG CGT TCC 384 Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser 115 120 TTG ACA CCA TGC ACC TGT GGC AGC TCA GAC CTT TAC TTG GTC ACG AGA 432

Leu	Thr 130	Pro	Cys	Thr	Cys	Gly 135	Ser	Ser	qaA	Leu	Tyr 140	Leu	Val	Thr	Arg	
	GCT Ala															480
	CTC Leu															528
	CTG Leu															576
	TGC Cys		•													624
	ATG Met 210															651

(2) INFORMATION FOR SEQ ID NO:95:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 651 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..651
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

ATG	GGC	AGC	AGC	CAT	CAT	CAT	CAT	CAT	CAC	AGC	AGC	GGC	CTG	GTG	CCG	48
Met	Gly	Ser	Ser	His	His	His	His	His	His	Ser	Ser	Gly	Leu	Val	Pro	
1				5					10					15		
666									.					> mm	mm.	0.6
CGC	GGC	AGC	CAT	ATG	GG I	TCT	GTT	GTT.	ATT	G.L.I.	GGT.	AGA	ATT.	ATT	TTA	96
Arg	Gly	Ser	His	Met	Gly	Ser	Val	Val	Ile	Val	Gly	Arg	Ile	Ile	Leu	
			20					25					30			
TCT	GGT	AGT	GGT	AGT	ATC	ACG	GCC	TAC	TCC	CAA	CAG	ACG	CGG	GGC	CTA	144
Ser	Gly	Ser	Gly	Ser	Ile	Thr	Ala	Tyr	Ser	Gln	Gln	Thr	Arg	Gly	Leu	
		35					40					45				
CTT	GGT	TGC	AAG	AAG	ACT	AGC	CTT	ACA	GGC	CGG	GAC	AAG	AAC	CAG	GTC	192
Leu	Gly	Cys	Lys	Lys	Thr	Ser	Leu	Thr	Gly	Arg	Asp	Lys	Asn	Gln	Val	
	50					55					60					

GAG Glu 65	GGA Gly	GAG Glu	GTT Val	CAG Gln	GTG Val 70	GTT Val	TCC Ser	ACC Thr	GCA Ala	ACA Thr 75	CAA Gln	TCC Ser	TTC Phe	CTG Leu	GCG Ala 80	240
ACC Thr	TGC Cys	GTC Val	AAC Asn	GGC Gly 85	GTG Val	TGT Cys	TGG Trp	ACC Thr	GTT Val 90	TAC Tyr	CAT His	GGT Gly	GCT Ala	GGC Gly 95	TCA Ser	288
AAG Lys	ACC Thr	TTA Leu	GCC Ala 100	GGC Gly	CCA Pro	AAG Lys	GGG Gly	CCA Pro 105	ATC Ile	ACC Thr	CAG Gln	ATG Met	TAC Tyr 110	ACT Thr	AAT Asn	336
GTG Val	GAC Asp	CAG Gln 115	GAC Asp	CTC Leu	GTC Val	GGC Gly	TGG Trp 120	CAG Gln	GCG Ala	CCC Pro	CCC Pro	GGG Gly 125	GCG Ala	CGT Arg	TCC Ser	384
TTG Leu	ACA Thr 130	CCA Pro	TGC Cys	ACC Thr	TGT Cys	GGC Gly 135	AGC Ser	TCA Ser	GAC Asp	CTT Leu	TAC Tyr 140	TTG Leu	GTC Val	ACG Thr	AGA Arg	432
CAT His 145	GCT Ala	GAC Asp	GTC Val	ATT Ile	CCG Pro 150	GTG Val	CGC Arg	CGG Arg	CGG Arg	GGC Gly 155	GAC Asp	AGT Ser	AGG Arg	GGG Gly	AGC Ser 160	480
CTG Leu	CTC Leu	TCC Ser	CCC Pro	AGG Arg 165	CCT Pro	GTC Val	TCC Ser	TAC Tyr	TTG Leu 170	AAG Lys	GGC Gly	TCT Ser	TCG Ser	GGT Gly 175	GGT Gly	528
CCA Pro	CTG Leu	CTC Leu	TGC Cys 180	CCT Pro	TCG Ser	GGG Gly	CAC His	GCT Ala 185	GTG Val	GGC Gly	ATC Ile	TTC Phe	CGG Arg 190	GCT Ala	GCC Ala	576
GTA Val	TGC Cys	ACC Thr 195	CGG Arg	GGG Gly	GTT Val	GCG Ala	AAG Lys 200	GCG Ala	GTG Val	GAC Asp	TTT Phe	GTG Val 205	CCC Pro	GTA Val	GAG Glu	624
TCC Ser	ATG Met 210	GAA Glu	ACT Thr	ACT Thr	ATG Met	CGG Arg	TCT Ser	TGA *								651

(2) INFORMATION FOR SEQ ID NO:96:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 650 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..650

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

	_														
											GGC Gly				48
											AGA Arg				96
											ACG Thr 45				144
_											AAG Lys				192
											TCC Ser				240
											GGT Gly				288
											ATG Met				336
											GGG Gly 125				384
											TTG Leu				432
Ala		Val	Ile		Val	Arg	Arg		Gly	Asp	AGT Ser				480
									Lys		TCT Ser			GGT Gly	528
			Pro										Ala	GCC Ala	576
		Arg					Ala					Pro		GAG Glu	624
	Glu			ATG Met		Ser		;							650

WO 99/28482 PCT/US98/24528

(2) INFORMATION FOR SEQ ID NO:97:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 650 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..650

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

ATG Met 1	GGC Gly	AGC Ser	AGC Ser	CAT His 5	CAT His	CAT His	CAT His	CAT His	CAC His 10	AGC Ser	AGC Ser	GGC Gly	CTG Leu	GTG Val 15	CCG Pro	48
CGC Arg	GGC Gly	AGC Ser	CAT His 20	ATG Met	GGT Gly	TCT Ser	GTT Val	GTT Val 25	ATT Ile	GTT Val	GGT Gly	AGA Arg	ATT Ile 30	ATT Ile	TTA Leu	96
TCT Ser	GGT Gly	AGT Ser 35	GGT Gly	AGT Ser	ATC Ile	ACG Thr	GCC Ala 40	TAC Tyr	TCC Ser	CAA Gln	CAG Gln	ACG Thr 45	CGG Arg	GGC Gly	CTA Leu	144
CTT Leu	GGT Gly 50	TGC Cys	AAG Lys	ATC Ile	ACT Thr	AGC Ser 55	CTT Leu	ACA Thr	GGC Gly	CGG Arg	GAC Asp 60	AAG Lys	AAC Asn	CAG Gln	GTC Val	192
GAG Glu 65	GGA Gly	GAG Glu	GTT Val	CAG Gln	GTG Val 70	GTT Val	TCC Ser	ACC Thr	GCA Ala	ACA Thr 75	CAA Gln	TCC Ser	TTC Phe	CTG Leu	GCG Ala 80	240
ACC Thr	TGC Cys	GTC Val	AAC Asn	GGC Gly 85	GTG Val	TGT Cys	TGG Trp	ACC Thr	GTT Val 90	TAC Tyr	CAT His	GGT Gly	GCT Ala	GGC Gly 95	TCA Ser	288
AAG Lys	ACC Thr	TTA Leu	GCC Ala 100	GGC Gly	CCA Pro	AAG Lys	GGG Gly	CCA Pro 105	ATC Ile	ACC Thr	CAG Gln	ATG Met	TAC Tyr 110	ACT Thr	AAT Asn	336
GTG Val	GAC Asp	CAG Gln 115	GAC Asp	CTC Leu	GTC Val	GGC Gly	TGG Trp 120	CAG Gln	GCG Ala	CCC Pro	CCC Pro	GGG Gly 125	GCG Ala	CGT Arg	TCC Ser	384
TTG Leu	ACA Thr 130	CCA Pro	TGC Cys	ACC Thr	TGT Cys	GGC Gly 135	AGC Ser	TCA Ser	GAC Asp	CTT Leu	TAC Tyr 140	TTG Leu	GTC Val	ACG Thr	AGA Arg	432
CAT His 145	GCT Ala	GAC Asp	GTC Val	ATT Ile	CCG Pro 150	GTG Val	CGC Arg	CGG Arg	CGG Arg	GGC Gly 155	GAC Asp	AGT Ser	AGG Arg	GGG Gly	AGC Ser 160	480

CTG	CTC	TCC	CCC	AGG	CCT	GTC	TCC	TAC	TTG	AAG	GGC	TCT	GCT	GGT	GGT		528
Leu	Leu	Ser	Pro	Arg 165	Pro	Val	Ser	Tyr	Leu 170	Lys	Gly	Ser	Ala	Gly 175	Gly		
	CTG Leu															5	576
	TGC Cys															6	524
	ATG Met 210							TG								•	650

(2) INFORMATION FOR SEQ ID NO:98:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 651 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..651
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

								CAT His								48
								GTT Val 25								96
								TAC Tyr								144
								ACA Thr								192
_	Gly							ACC Thr								240
ACC	TGC	GTC	AAC	GGC	GTG	TGT	TGG	ACC	GTT	TAC	CAT	GGT	GCT	GGC	TCA	288

Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser

				85					90					95			
AAG Lys	ACC Thr	TTA Leu	GCC Ala 100	GGC Gly	CCA Pro	AAG Lys	GGG Gly	CCA Pro 105	ATC Ile	ACC Thr	CAG Gln	ATG Met	TAC Tyr 110	ACT Thr	AAT Asn	3	36
GTG Val	GAC Asp	CAG Gln 115	GAC Asp	CTC Leu	GTC Val	GGC Gly	TGG Trp 120	CAG Gln	GCG Ala	CCC Pro	CCC Pro	GGG Gly 125	GCG Ala	CGT Arg	TCC Ser	3	884
TTG Leu	ACA Thr 130	CCA Pro	TGC Cys	ACC Thr	TGT Cys	GGC Gly 135	AGC Ser	TCA Ser	GAC Asp	CTT Leu	TAC Tyr 140	TTG Leu	GTC Val	ACG Thr	AGA Arg	4	132
CAT His 145	GCT Ala	GAC Asp	GTC Val	ATT Ile	CCG Pro 150	GTG Val	CGC Arg	CGG Arg	CGG Arg	GGC Gly 155	GAC Asp	AGT Ser	AGG Arg	GGG Gly	AGC Ser 160	4	80
CTG Leu	CTC Leu	TCC Ser	CCC Pro	AGG Arg 165	CCT Pro	GTC Val	TCC Ser	TAC Tyr	TTG Leu 170	AAG Lys	GGC Gly	TCT Ser	GCT Ala	GGT Gly 175	GGT Gly	5	28
CCA Pro	CTG Leu	CTC Leu	TGC Cys 180	CCT Pro	TCG Ser	GGG Gly	CAC His	GCT Ala 185	GTG Val	GGC Gly	ATC Ile	TTC Phe	CGG Arg 190	GCT Ala	GCC Ala	5	76
						GCG Ala										6	24
						CGG Arg 215		TGA *								6	51

(2) INFORMATION FOR SEQ ID NO:99:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 651 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..651
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

ATG GGC AGC CAT CAT CAT CAT CAT CAC AGC AGC GGC CTG GTG CCG

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

1 5 10 15

									AGA Arg				96
									ACG Thr 45				144
									AAG Lys				192
									TCC Ser				240
									GGT Gly				288
									ATG Met				336
									GGG Gly 125				384
									TTG Leu	_			432
									AGT Ser				480
				Pro				Lys	TCT Ser				528
			Pro				Val		TTC Phe		Ala	GCC Ala	576
		Arg				Ala				Pro		GAG Glu	624
	Glu			ATG Met	Ser		.						651

(2) INFORMATION FOR SEQ ID NO:100:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 651 base pairs
 - (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 1..651

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

	GGC Gly															48
	GGC Gly															96
TCT Ser	CCT Pro	GCT Ala 35	GGT Gly	GGT Gly	ATC Ile	ACG Thr	GCC Ala 40	TAC Tyr	TCC Ser	CAA Gln	CAG Gln	ACG Thr 45	CGG Arg	GGC Gly	CTA Leu	144
CTT Leu	GGT Gly 50	TGC Cys	ATC Ile	ATC Ile	ACT Thr	AGC Ser 55	CTT Leu	ACA Thr	GGC Gly	CGG Arg	GAC Asp 60	AAG Lys	AAC Asn	CAG Gln	GTC Val	192
	GGA Gly															240
	TGC Cys															288
	ACC Thr															336
	GAC Asp															384
	ACA Thr 130															432
	GCT Ala										Asp			Gly		480
CTG Leu	CTC Leu	TCC Ser	CCC Pro	AGG Arg 165	CCT Pro	GTC Val	TCC Ser	TAC Tyr	TTG Leu 170	AAG Lys	GGC Gly	TCT Ser	TCG Ser	GGT Gly 175	GGT Gly	528
	CTG Leu															576

180 185 190

GTA TGC ACC CGG GGG GTT GCG AAG GCG GTG GAC TTT GTG CCC GTA GAG

Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu

195 200 205

TCC ATG GAA ACT ACT ATG CGG TCT TGA 651
Ser Met Glu Thr Thr Met Arg Ser *
210 215

(2) INFORMATION FOR SEQ ID NO:101:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 651 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..651
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

ATG	GGC	AGC	AGC	CAT	CAT	CAT	CAT	CAT	CAC	AGC	AGC	GGC	CTG	GTG	CCG	48	
Met	Gly	Ser	Ser	His	His	His	His	His	His	Ser	Ser	Gly	Leu	Val	Pro		
1				5					10					15			

CGC GGC AGC CAT ATG GGT TCT GTT GTT ATT GTT GGT AGA ATT ATT TTA 96
Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu
20 25 30

TCT CCT GCT GGT ATC ACG GCC TAC TCC CAA CAG ACG CGG GGC CTA

Ser Pro Ala Gly Gly Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu

35

40

45

CTT GGT TGC AAG ATC ACT AGC CTT ACA GGC CGG GAC AAG AAC CAG GTC

Leu Gly Cys Lys Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val

50 55 60

GAG GGA GAG GTT CAG GTG GTT TCC ACC GCA ACA CAA TCC TTC CTG GCG 240
Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala
65 70 75 80

ACC TGC GTC AAC GGC GTG TGT TGG ACC GTT TAC CAT GGT GCT GGC TCA

288
Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser

85
90
95

AAG ACC TTA GCC GGC CCA AAG GGG CCA ATC ACC CAG ATG TAC ACT AAT
Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn
100 105 110

	****	77/20	402													PC17US98/24528
GTG Val	GAC Asp	CAG Gln 115	GAC Asp	CTC Leu	GTC Val	GGC Gly	TGG Trp 120	CAG Gln	GCG Ala	CCC Pro	CCC Pro	GGG Gly 125	GCG Ala	CGT Arg	TCC Ser	384
	ACA Thr 130															
	GCT Ala															
	CTC Leu															
	CTG Leu															576
	TGC Cys															624
	ATG Met 210							TGA *								651

(2) INFORMATION FOR SEQ ID NO:102:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1998 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1995
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

	GGC Gly															48
1	O.J.	Jei	Ser	5	nıs	nis	uis	птѕ	10	sei	ser	GIĀ	Leu	15	Pro	
CGC	GGC	AGC	CAT	ATG	GGT	TCT	GTT	GTT	ATT	GTT	GGT	AGA	АТТ	АТТ	тта	96
	Gly		His					Val					Ile			70
	•		20					25					30			
TCT	GGT	AGT	GGT	AGT	ATC	ACG	GCC	TAC	TCC	CAA	CAG	ACG	CGG	GGC	CTA	144

Ser Gly Ser Gly Ser Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu

35	40	45

	-														
		ATC Ile													192
		GTT Val													240
		AAC Asn													288
		GCC Ala 100											_		336
		GAC Asp													384
		TGC Cys										_			432
		GTC Val													480
		CCC Pro													528
		TGC Cys 180						Val							576
		CGG Arg					Ala			Phe					624
	Glu					Ser					Asp			TCC	672
Pro					Ser					His				CCC Pro 240	720
				Ser					Ala					CAA Gln	768
			l Lei					Sei					: Lev	GGG Gly	816

86

PCT/US98/24528

WO 99/28482

500	505		510	
		GAT TCC TCG GTC Asp Ser Ser Val 525		84
		GAG CTC ACC CCC Glu Leu Thr Pro 540		32
		ACA CCA GGG TTG Thr Pro Gly Leu 555		80
 		GTC TTC ACA GGC Val Phe Thr Gly 570		28
 		AAG CAG GCA GGA Lys Gln Ala Gly		76
Val Ala Tyr		GTG TGC GCC AGG Val Cys Ala Arg 605		324
		AAG TGT CTC ATA Lys Cys Leu Ile 620		372
		CTG TAC AGG CTG Leu Tyr Arg Leu 635		920
		ATA ACC AAA TAC Ile Thr Lys Tyr 650		968
G GCT GAC CTG r Ala Asp Leu 660			19	998

(2) INFORMATION FOR SEQ ID NO:103:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1998 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 1..1997

WO 99/28482 PCT/US98/24528

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 1..1995

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

	(, , , ,	524	SOFTM	נב בי	ESCR.	LPTIC	: אוכ	SEQ .	א מז	J:10.	: ك						
ATG Met 1	GGC Gly	AGC Ser	AGC Ser	CAT His 5	CAT His	CAT His	CAT His	CAT His	CAC His 10	AGC Ser	AGC Ser	GGC Gly	CTG Leu	GTG Val 15	CCG Pro	4	18
CGC Arg	GGC Gly	AGC Ser	CAT His 20	ATG Met	GGT Gly	TCT Ser	GTT Val	GTT Val 25	ATT Ile	GTT Val	GGT Gly	AGA Arg	ATT Ile 30	ATT Ile	TTA Leu	9	96
TCT Ser	GGT Gly	AGT Ser 35	GGT Gly	AGT Ser	ATC Ile	ACG Thr	GCC Ala 40	TAC Tyr	TCC Ser	CAA Gln	CAG Gln	ACG Thr 45	CGG Arg	GGC Gly	CTA Leu	14	14
CTT	GGT Gly 50	TGC Cys	AAG Lys	ATC Ile	ACT Thr	AGC Ser 55	CTT Leu	ACA Thr	GGC Gly	CGG Arg	GAC Asp 60	AAG Lys	AAC Asn	CAG Gln	GTC Val	19	92
GAG Glu 65	GGA Gly	GAG Glu	GTT Val	CAG Gln	GTG Val 70	GTT Val	TCC Ser	ACC Thr	GCA Ala	ACA Thr 75	CAA Gln	TCC Ser	TTC Phe	CTG Leu	GCG Ala 80	24	10
ACC Thr	TGC Cys	GTC Val	AAC Asn	GGC Gly 85	GTG Val	TGT Cys	TGG Trp	ACC Thr	GTT Val 90	TAC Tyr	CAT His	GGT Gly	GCT Ala	GGC Gly 95	TCA Ser	28	88
AAG Lys	ACC Thr	TTA Leu	GCC Ala 100	GGC Gly	CCA Pro	AAG Lys	GGG Gly	CCA Pro 105	ATC Ile	ACC Thr	CAG Gln	ATG Met	TAC Tyr 110	ACT Thr	AAT Asn	33	36
GTG Val	GAC Asp	CAG Gln 115	GAC Asp	CTC Leu	GTC Val	GGC Gly	TGG Trp 120	CAG Gln	GCG Ala	CCC Pro	CCC Pro	GGG Gly 125	GCG Ala	CGT Arg	TCC Ser	38	34
TTG Leu	ACA Thr 130	CCA Pro	TGC Cys	ACC Thr	TGT Cys	GGC Gly 135	AGC Ser	TCA Ser	GAC Asp	CTT Leu	TAC Tyr 140	TTG Leu	GTC Val	ACG Thr	AGA Arg	43	32
	GCT Ala															4.8	30
	CTC Leu															52	28
	CTG Leu															57	76
	TGC Cys															62	24

. . . .

TCC . Ser :									_							672
CCC Pro 225												CTA Leu				720
												TAT Tyr				768
												GCT Ala				816
												CCC Pro 285				864
												ACA Thr				912
												GGC Gly	_			960
												ACT Thr				1008
									Glu			GGA Gly	_			1056
			Ala					Pro				ACC Thr 365	Val			1104
		Ile					Leu					GAG Glu				1152
	Gly					Ile					Gly				CTC Leu 400	1200
					Lys					Glu					CTG Leu	1248
				/ Ile					а Туг					ı Asp	GTG Val	1296

90

Cys Met Ser Ala Asp Leu Glu Val Val

PCT/US98/24528

660 665

(2) INFORMATION FOR SEQ ID NO:104:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1998 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..1995

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

GGC Gly													48
GGC Gly													96
GGT Gly													144
GGT Gly 50													192
GGA Gly													240
TGC Cys								Tyr					288
			Gly				Ile				Thr	AAT Asn	336
		Asp				Gln				Ala		TCC Ser	384
	Pro				Ser				Leu			AGA Arg	432

92

SUBSTITUTE SHEET (rule 26)

Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His

CCA AAC ATC GAG GAG GTG GCC CTG TCT AAT ACT GGA GAG ATC CCC TTC

Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe

360

1104

1152

355

	370					375				380						
			GCC Ala										His		120	0
			CAT His												124	8
			GGA Gly 420												129	6
			CCA Pro												134	4
Leu			GGC Gly												139	2
		-	ACC Thr												144	0
			ACG Thr												148	8
			ACT Thr 500												153	16
			CGG Arg												158	34
			GCG Ala				 				Pro				163	32
	Val		TTG Leu							Gly					168	80
			CTG Leu		Phe				Phe					His	17:	28
				Ph∈				Lys					Asn	TTC Phe	17	76
			ı Val				t Thi					Ala		GCC Ala	18	24

665

(2) INFORMATION FOR SEQ ID NO:105:

660

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1998 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1995
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

	GGC															48
	GGC Gly															96
	GGT Gly															144
	GGT Gly 50	Cys														192
	GGA Gly															240
ACC	TGC	GTC	AAC	GGC	GTG	TGT	TGG	ACC	GTT	TAC	CAT	GGT	GCT	GGC	TCA	288

Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser

				85					90					95		
AAG Lys																336
GTG Val					-											384
					TGT Cys											432
					CCG Pro 150											480
					CCT Pro											528
					TCG Ser											576
					GTT Val											624
					ATG Met											672
					CAG Gln 230											720
					AGT Ser					Ala					Gln	768
				Leu					Ser						GGG Gly	816
			Tyr					His					Asn		AGA Arg	864
		Val					Thr					Thr			ACC Thr	912
	Gly					Asp					G13				GAC Asp 320	960

									•	• • • • • • •	
		TGT Cys									1008
		ACA Thr 340									1056
		GCC Ala									1104
		GAG Glu									1152
Т		GCC Ala									1200
		CAT His									1248
		GGA Gly 420									1296
		CCA Pro									1344
		GGC Gly									1392
1		ACC Thr		Val		Ser	Asp				1440
		ACG Thr									1488
		ACT Thr 500									1536
		CGG Arg			 		 	 	 		1584
		GCG Ala									1632
		TTG Leu									1680

545				550			555			560	
				TTC Phe							1728
				TTG Leu							1776
		 		TAC Tyr							1824
				GAT Asp							1872
	Thr			CCA Pro 630							1920
				CTC Leu							1968
			Asp	CTG Leu	_	_					1998

(2) INFORMATION FOR SEQ ID NO:106:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1998 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1995
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

					CAT											48
Met	Gly	Ser	Ser	His	His	His	His	His	His	Ser	Ser	Gly	Leu		Pro	
1				5					10					15		
					GGT											96
Arg	Gly	Ser	His	Met	Gly	Ser	Val	Val	Ile	Val	Gly	Arg	Ile	Ile	Leu	
			20					25					30			
TCT	GGT	AGT	GGT	AGT	ATC	ACG	GCC	TAC	TCC	CAA	CAG	ACG	CGG	GGC	CTA	144

Ser	Gly	Ser 35	Gly	Ser	Ile	Thr	Ala 40	Tyr	Ser	Gln	Gln	Thr 45	Arg	Gly	Leu		
	GGT Gly 50															192	
	GGA Gly															240	
	TGC Cys															288	
	ACC Thr															336	į
	GAC Asp															384	i
	ACA Thr 130															432	}
	GCT Ala															480)
	CTC Leu															528	3
	CTG Leu															576	5
	TGC Cys															624	1
	ATG Met 210															672	2
	CCG Pro															720	0
_	GGC Gly				Ser					Ala						768	8
				Leu					Ser					Leu	GGG Gly	816	6

									GGT Gly					_		864
									GCC Ala							912
									TGC Cys							960
									ACT Thr 330							1008
									GAG Glu							1056
									GGA Gly							1104
	-								AAT Asn							1152
									ATC Ile							1200
									GAC Asp 410							1248
				Ile					TAT Tyr					Asp		1296
			Pro					Val					Thr		GCT Ala	1344
		Thr					Asp					. Ile			AAC Asn	1392
	Cys					Val					Ası				ACC Thr 480	1440
					. Val					a Val					G CGG n Arg	1488
CGG	G GG	r AGO	G ACT	r GGC	AGC	GGT	r AG	G AG	A GGC	ATC	TAC	C AGO	TTT	r GTC	ACT	1536

Arg	Gly	Arg	Thr 500	Gly	Arg	Gly	Arg	Arg 505	Gly	Ile	Tyr	Arg	Phe 510	Val	Thr		
				CCC Pro												1584	
				GGC Gly												1632	
				CGG Arg												1680	
				GAG Glu 565												1728	
				TTC Phe												1776	
				GCA Ala												1824	
				TGG Trp												1872	
				GGG Gly												1920	
				ACC Thr 645												1968	
				GAC Asp					ACT							1998	

(2) INFORMATION FOR SEQ ID NO:107:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1998 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS(B) LOCATION: 1..1997

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..1995

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

	(* *)	ياعاد	<u> </u>	E DE	.SCICI	-110	14	, L.Q. 1			•					
			AGC Ser													48
			CAT His 20													96
			GGT Gly													144
			AAG Lys													192
			GTT Val													240
			AAC Asn													288
			GCC Ala 100													336
			GAC Asp					Gln					Ala			384
		Pro	TGC Cys				Ser					Leu				432
	Ala		GTC Val			Val					Asp					480
					, Pro					ı Lys					GGT Gly	528
CC! Pro	A CTO	Lei	TG0 1 Cys 180	Pro	TCC Ser	GGC Gly	CAC	GCT S Ala 189	a Val	G GGC	ATO	TTC Phe	C CGC = Arg 190	g Ala	GCC A Ala	576
GT) Va	A TGO	C ACC	C CGC	G GGC	GTT Val	GCC L Ala	AA(a Ly:	G GC0	G GTO	G GAC l Asp	TT'	r GTO	G CCG	C GTA	A GAG L Glu	624

		195					200					205					
												GAC Asp					672
CCC Pro 225												CTA Leu					720
ACT Thr												TAT Tyr					768
GGG Gly																	816
												CCC Pro 285					864
												ACA Thr					912
												GGC Gly					960
												ACT Thr				-	1008
												GGA Gly					1056
GTC Val	GTG Val	CTC Leu 355	GCC Ala	ACC Thr	GCT Ala	ACG Thr	CCT Pro 360	CCG Pro	GGA Gly	TCG Ser	GTC Val	ACC Thr 365	GTG Val	CCA Pro	CAC His		1104
												GAG Glu					1152
												GGA Gly					1200
												GCC Ala					1248
												GGG Gly			GTG Val		1296

TCC (1344
CTG . Leu !																1392
ACA Thr 465																1440
ATT Ile									GCA Ala 490							1488
CGG Arg																1536
									GAT Asp							1584
									GAG Glu							1632
									ACA Thr							1680
									GTC Val 570							1728
				Phe					AAG Lys					Asn	_	1776
			Val					Thr					Ala		GCC Ala	1824
		Pro					Met					ı Ile			AAA Lys	1872
	Thr					Thr					Arg				GTC Val 640	1920
					Lev					€ Thi					GCA Ala	1968
			G GCT						C ACT	r						1998

WO 99/28482 PCT/US98/24528

660 665

(2) INFORMATION FOR SEQ ID NO:108:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1998 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..1995

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108

			CAT His							48
			GGT Gly							96
			ATC Ile							144
			ACT Thr							192
			GTG Val 70							240
			GTG Val							288
			CCA Pro							336
			GTC Val							384
	Pro		TGT Cys				Leu		AGA Arg	432

												AGT Ser				480
		-	-									TCT Ser				528
												TTC Phe				576
												GTG Val 205				624
												GAC Asp				672
												CTA Leu				720
												TAT Tyr				768
												GCT Ala				816
			Tyr					His				CCC Pro 285	Asn			864
		Val					Thr								ACC Thr	912
	Gly					Asp					Gly				GAC Asp 320	960
					Glu					Asp					TTG Leu	1008
				. Val					a Glu					a Arg	G CTT g Leu	1056
			u Alá					o Pro					r Val		A CAC o His	1104
CC	A AA	C AT	C GAG	G GAG	G GT	G GC	CT	G TC	T AA	T AC	r gg.	A GA	G AT	c cc	C TTC	1152

Pro	Asn 370	Ile	Glu	Glu	Val	Ala 375	Leu	Ser	Asn	Thr	Gly 380	Glu	Ile	Pro	Phe	
	GGC Gly															1200
	TTC Phe															1248
	GGC Gly															1296
	GTC Val															1344
	ATG Met 450															1392
	TGT Cys															1440
	GAG Glu															1488
	GGT Gly															1536
	GGA Gly															1584
	TAT Tyr 530															1632
	GTT Val															1680
	GAC Asp															1728
	GAT Asp			Phe				Thr								1776
	TAC Tyr		Val													1824

				ATG Met	 		 	 	1872
				CCC Pro	 	 	 	 	1920
				CAC His				 	1968
 	Ser	 	 	GTC Val	 ACT				1998

(2) INFORMATION FOR SEQ ID NO:109:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1998 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..1997

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..1995

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

					CAT His					48
			 		GTT Val					96
		Gly	 	-	GCC Ala 40					144
	Cys		 		CTT Leu					192
		_	 		TCC			_	_	240

65			70			75			80	
		GGC Gly 85								288
		GGC Gly								336
		CTC Leu								384
		ACC Thr								432
		ATT Ile								480
		AGG Arg 165								528
		CCT Pro								576
		GGG Gly								624
		ACT Thr								672
		CCG Pro								720
		AAG Lys 245								768
		CTC Leu								816
		ATG Met								864
	Val	ACC Thr								912

TAT Tyr 305															960
ATC .															1008
GGC															1056
GTC Val															1104
												ATC Ile			1152
												AGG Arg			1200
												GCA Ala			1248
			Ile									CTC Leu 430			1296
		Pro					Val							GCT Ala	1344
						Asp					Ile			AAC Asn	1392
	Cys				Val					Asp				ACC Thr 480	1440
				. Val					\Val					G CGG	1488
			c Gly					Gly					≀ Val	ACT L Thr	1536
		ı Ar					t Phe					l Lev		r GAG s Glu	1584
														G ACC u Thr	1632

530			535			540			
GTT Val									1680
GAC Asp									1728
GAT Asp									1776
TAC Tyr									1824
CCT Pro 610									1872
ACG Thr									1920
AAT Asn									1968
ATG Met					ACT				1998

(2) INFORMATION FOR SEQ ID NO:110:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2016 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..2013
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

ATG GGC AGC CAT CAT CAT CAT CAT CAC AGC AGC GGC CTG GTG CCG

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro

1 5 10 15

					GCT Ala											96
					TTA Leu											144
					CTA Leu											192
					GTC Val 70											240
					GCG Ala											288
					TCA Ser								_		_	336
					AAT Asn											384
					TCC Ser											432
	Tyr				AGA Arg 150											480
					AGC Ser					Arg						528
				Gly					Cys					Ala	GTG Val	576
			Arg					Thr					Lys	_	GTG Val	624
		val					Met					Arg			GTC Val	672
	Thi					Pro					Glr				GTG Val 240	720
GC	CAC	CTA	A CAC	GC:	r ccc	ac'	r GG(C AG	c GGC	C AAG	G AG	r AC	LAA 1	GTC	CCG	768

Ala	His	Leu	His	Ala 245	Pro	Thr	Gly	Ser	Gly 250	Lys	Ser	Thr	Lys	Val 255	Pro	
						GGG Gly										816
						TTT Phe										864
						ACT Thr 295										912
						ТАТ Туг										960
						ATC Ile										1008
						GGC Gly										1056
						GTC Val										1104
						CCA Pro 375										1152
						TAT Tyr										1200
						ATT Ile										1248
						TCA Ser										1296
						TCC Ser										1344
						CTG Leu 455										1392
						ACA Thr										1440

							ACG Thr 490						14	88
							ACT Thr						19	536
							CGG Arg						15	584
							GCG Ala						16	632
							TTG Leu						16	680
							CTG Leu 570						1	728
							CAC His						1	776
							GTA Val						1	824
		Arg					TCA Ser			Gln		AAG Lys	1	872
	Leu				Pro				Pro			CTG Leu 640	1	920
				Val				Thr				ATA	1	.968
			Met				GCT Ala				. Val		2	2013
ACT	•												2	2016

(2) INFORMATION FOR SEQ ID NO:111:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2016 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 1..2013

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

•																		
		GGC Gly																48
		GGC Gly		His						ACT					GTT			96
		GGT															1	L44
	vai	Gly	35	TTE	TIE	Leu	ser	40	Ser	GIY	Ser	lle	Thr 45	Ala	Tyr	Ser		
		CAG Gln 50	_														1	192
		GAC Asp																240
		CAA Gln															:	288
		CAT His	_															336
		CAG Gln																384
		CCC Pro 130											Gly					432
		Tyr					His					Pro				CGG Arg 160		480
	_					Ser					Arg					TTG Leu		528
	AAG	GGC	TCI	GCI	' GGI	GGT	CCA	CTG	CTC	TGC	CCT	TCG	GGG	CAC	GCI	GTG		576

Lys	Gly	Ser	Ala 180	Gly	Gly	Pro	Leu	Leu 185	Cys	Pro	Ser		His 190	Ala	Val	
												GCG Ala 205				624
Asp												CGG Arg				672
												TCA Ser				720
												ACT Thr				768
												CTC Leu				816
												AAG Lys 285	_		_	864
												ACC Thr				912
												GAT Asp				960
					Asp					Asp		TGC Cys				1008
				Ile					Thr			GAC Asp		Ala		1056
			Ala					. Leu					Pro		GGA Gly	1104
TCG Ser	GTC Val	Thr	GTG Val	CCA Pro	CAC His	CCA Pro	Asr	ATC	GAG Glu	GAG	GT(Va) 38(l Ala	CTG Leu	TCT Ser	AAT Asn	1152
	. GJ?					Yyr					e Pro				ATC A Ile 400	1200
					s Lev					s Se					GAC S Asp	1248

	CTC Leu															1296
	CGG Arg															1344
	GTG Val 450															1392
	GTG Val															1440
	GAT Asp															1488
	TCG Ser															1536
	TAC Tyr															1584
	TCG Ser 530															1632
	ACC Thr															1680
	GGG Gly															1728
	ACA Thr															1776
	GCA Ala															1824
	GCC Ala 610															1872
															CTG Leu 640	1920
TAC	AGG	CTG	GGA	GCC	GTC	CAA	AAT	GAG	GTC	ACC	CTC	ACC	CAC	ccc	ATA	1968

Tyr Arg Leu Gly Ala Val Gln Asn Glu Val Thr Leu Thr His Pro Ile 645 650 655

ACC AAA TAC ATC ATG GCA TGC ATG TCG GCT GAC CTG GAG GTC GTC

Thr Lys Tyr Ile Met Ala Cys Met Ser Ala Asp Leu Glu Val Val

660 665 670

ACT 2016

(2) INFORMATION FOR SEQ ID NO:112:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 648 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..648
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

ATG	GGC	AGC	AGC	CAT	CAT	CAT	CAT	CAT	CAC	AGC	AGC	GGC	CTG	GTG	CCG	48	
Met	Gly	Ser	Ser	His	His	His	His	His	His	Ser	Ser	Gly	Leu	Val	Pro		
1				5					10					15			
ccc	ccc	N.C.C	C M M	እጥሮ	CCT	mcm	CITIM	Cmm	א מיימי ע	Cmm	CCT	λCλ	አ ጥጥ	א היה	ጥጥል	96	

CGC GGC AGC CAT ATG GGT TCT GTT GTT ATT GGT AGA ATT ATT TTA 96
Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu
20 25 30

TCT CCT GCT GGT ATC ACG GCC TAC TCC CAA CAG ACG CGG GGC CTA CTT

Ser Pro Ala Gly Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu

35

40

45

GGT TGC ATC ACT AGC CTT ACA GGC CGG GAC AAG AAC CAG GTC GAG
Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu
50 55 60

GGA GAG GTT CAG GTG GTT TCC ACC GCA ACA CAA TCC TTC CTG GCG ACC
Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr
65 70 75 80

TGC GTC AAC GGC GTG TGT TGG ACC GTT TAC CAT GGT GCT GGC TCA AAG

Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys

85

90

95

ACC TTA GCC GGC CCA AAG GGG CCA ATC ACC CAG ATG TAC ACT AAT GTG

Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val

100 105 110

GAC CAG GAC CTC GTC GGC TGG CAG GCG CCC CCC GGG GCG CGT TCC TTG 384

Asp	Gln	Asp 115	Leu	Val	Gly	Trp	Gln 120	Ala	Pro	Pro	Gly	Ala 125	Arg	Ser	Leu	
	CCA Pro 130															432
	GAC Asp															480
	TCC Ser															528
	CTC Leu															576
	ACC Thr															624
	GAA Glu 210						TGA *									648

(2) INFORMATION FOR SEQ ID NO:113:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 648 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..640

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113

ATG GGC AGC CAT CAT CAT CAT CAC AGC AGC GGC CTG	
Met Gly Ser Ser His His His His His Ser Ser Gly Leu	Val Pro
1 5 10	15
CGC GGC AGC CAT ATG GGT TCT GTT GTT ATT GTT GGT AGA ATT	ATT TTA 96
	•••
Arg Gly Ser His Met Gly Ser Val Val Ile Val Gly Arg Ile	Ile Leu
20 25 30	
TCT CCT GCT GGT ATC ACG GCC TAC TCC CAA CAG ACG CGG GGC	CTA CTT 144
	·
Ser Pro Ala Gly Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly	Leu Leu
35 40 45	

											GTC Val		192
											GCG Ala		240
											TCA Ser 95		288
											AAT Asn		336
							-				TCC Ser		384
											AGA Arg		432
											AGC Ser		480
											GGT Gly 175		528
			Ser					Gly			Ala	GTA Val	576
		Gly					Val			Val		TCC Ser	624
	Thr	ACT Thr		_	GGTC	TTGA							648

(2) INFORMATION FOR SEQ ID NO:114:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 498 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:

(A) NAME/KEY: CDS(B) LOCATION: 1..498

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

						CAG Gln				48
						CTG Leu				96
						GGC Gly			1	.44
						ACT Thr 60			1	.92
						CGT Arg			2	40
_						ACG Thr			2	88
						GGG Gly			3	336
						GGT Gly			3	884
						GCT Ala 140		-	4	132
	Gly					GTA Val		GAA Glu 160	4	480
	ACT Thr									498

(2) INFORMATION FOR SEQ ID NO:115:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 648 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 1..648

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

										GTG Val 15		48
										ATT Ile		96
										CTA Leu		144
										GTC Val	_	192
										GCG Ala		240
										TCA Ser 95		288
										AAT Asn		336
						Ala					TTG Leu	384
	Cys				Ser				Val	AGA Arg	CAT	432
Asp				Arg				Ser			CTG Leu 160	480
			Val				Gly				CCA Pro	528
											GTA Val	576

TGC ACC CGG GGG GTT GCG AAG GCG GTG GAC TTT GTG CCC GTA GAG TCC Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser 195

ATG GAA ACT ACT ATG CGG TCT TGA Met Glu Thr Thr Met Arg Ser 215

(2) INFORMATION FOR SEQ ID NO:116:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2007 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

100

- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..2004

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

ATG CAT ATG CAT CAT CAC CAT CAT CTG GTG CCG CGC GGC AGC GCG

Met 1	His	Met	His	His 5	His	His	His	His	Leu 10	Val	Pro	Arg	Gly	Ser 15	Ala	
		ACG Thr														96
		AGC Ser 35														144
	_	GTT Val														192
		TGT Cys														240
		AAG Lys														288
		GGC Gly														336

48

105

110

			AGC Ser													384
			CGC Arg													432
			TCC Ser													480
			CAC His													528
			AAG Lys 180													576
			TCT Ser													624
			TTT Phe													672
			AAA Lys													720
			AAT Asn													768
									Asn					Val	AGG Arg	816
			Thr					Thr					Gly		TTT Phe	864
		Asp					Gly					Ile			TGT Cys	912
	Glu					Asp					Lev				ACA Thr 320	960
					a Glu					a Arc					GCC Ala	1008
ACC	GC'	r ac	G CCT	r ccc	G GGA	TCC	GT(C ACC	C GTC	G CCA	A CAG	CCA	AA A	TA C	C GAG	1056

Thr	Ala	Thr	Pro 340	Pro	Gly	Ser	Val	Thr 345	Val	Pro	His	Pro	Asn 350	Ile	Glu	
					AAT Asn											1104
					ATC Ile											1152
					GAC Asp 390											1200
					TAT Tyr											1248
					GTT Val											1296
					GAC Asp											1344
					AGC Ser											1392
					GCA Ala 470											1440
					GGC Gly											1488
					GAT Asp											1536
_					GAG Glu										TTG Leu	1584
		Tyr										Gln			CTG Leu	1632
						Phe					His				CAC His 560	1680
					Lys					Asn					GTA Val	1728

TAC Tyr									1776
GAT Asp									1824
CCA Pro 610									1872
CTC Leu									1920
CTG Leu									1968
 CGC Arg		Ala							2007

(2) INFORMATION FOR SEQ ID NO:117:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2007 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..2004

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

			CAT His					48
			CAG Gln					96
			GAC Asp 40					144

CAG	GTG	GTT	TCC	ACC	GCA	ACA	CAA	TCC	TTC	CTG	GCG	ACC	TGC	GTC	AAC	192
			Ser													
			TGG Trp													240
			GGG Gly													288
			TGG Trp 100													336
			AGC Ser													384
			CGC Arg													432
			TCC Ser													480
			CAC His													528
			AAG Lys 180													576
			TCT Ser													 624
			TTT Phe													672
			AAA Lys													720
			AAT Asn													768
									Asn						AGG Arg	816
															TTT Phe	864

		275					280					285			
Leu												ATC Ile			912
												GGC			960
												GTC Val			1008
												CCA Pro			1056
												TAT Tyr 365			1104
												ATT Ile			1152
												TCA Ser			1200
												TCC Ser			1248
				Val					Thr			CTG Leu			1296
			' Asp					Ile				ACA Thr 445			1344
		Val					Asp					ATT Ile			1392
	Val					. Val					a Arg	G CGG J Arg		ACT Thr 480	1440
					g Gly					e Val				A CGG L Arg	1488
				Phe					l Le				c Asp	C GCG Ala	

TGT Cys									1584
GCC Ala 530									1632
TTC Phe									1680
TTG Leu									1728
TAC Tyr									1776
GAT Asp									1824
CCA Pro 610									1872
CTC Leu									1920
CTG Leu									1968
CGC Arg						TCC			2007

(2) INFORMATION FOR SEQ ID NO:118:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2007 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..2004

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

	CAT His															48
	ATC Ile															96
	ACT Thr															144
	GTG Val 50															192
	GTG Val															240
	CCA Pro															288
	GTC Val															336
	TGT Cys		Ser													384
	CCG Pro	Val					Asp					Leu				432
						Lys					Gly				TGC Cys 160	480
					Val					, Ala					CGG Arg	528
				Ala					Pro					: Glı	ACT Thr	576
			g Sei					Asp					Pro		C GTA a Val	624
		n Se					a His					o Thi			GGC Gly	672
AA	G AG	T AC	T AA	A GT	G CC	G GC	r GC	A TA	r GC	A GC	CA.	A GG	G TA	C AA	G GTG	720

Lys 225	Ser	Thr	Lys	Val	Pro 230	Ala	Ala	Tyr	Ala	Ala 235	Gln	Gly	Tyr	Lys	Val 240	
										TTA			GGG Gly		TAT	768
													GGG Gly 270			816
													GGC Gly			864
													ATA. Ile			912
													ATC Ile			960
													GTG Val			1008
													AAC Asn 350			1056
													GGC Gly			1104
													TTC Phe			1152
													GGC Gly			1200
													GTC Val			1248
													ATG Met 430			1296
			Asp										TGT Cys			1344
		Val					Asp					Ile			ACG Thr	1392

				GCA Ala 470										1440	
				GGC Gly										1488	
				GAT Asp									_	1536	
		Trp		GAG Glu										1584	1
				ACA Thr										1632	!
				GTC Val 550										1680)
				AAG Lys										1728	3
			Thr	GTG Val										1776	5
				AAG Lys			Ile							1824	4
	Thr			CTG Leu		Arg					Gln			187	2
Leu					Thr					Ala			GCC Ala 640	192	0
				Thr					Leu				TGC Cys	196	8
			, Ala	CCA Pro				Pro				:		200	7

(2) INFORMATION FOR SEQ ID NO:119:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2007 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..2004

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:

ATG Met 1	CAT His	ATG Met	CAT His	CAT His 5	CAT His	CAC His	CAT His	CAT His	CTG Leu 10	GTG Val	CCG Pro	CGC Arg	GGC Gly	AGC Ser 15	GCG Ala	48
CCC Pro	ATC Ile	ACG Thr	GCC Ala 20	TAC Tyr	TCC Ser	CAA Gln	CAG Gln	ACG Thr 25	CGG Arg	GGC Gly	CTA Leu	CTT Leu	GGT Gly 30	TGC Cys	ATC Ile	96
ATC Ile	ACT Thr	AGC Ser 35	CTT Leu	ACA Thr	GGC Gly	CGG Arg	GAC Asp 40	AAG Lys	AAC Asn	CAG Gln	GTC Val	GAG Glu 45	GGA Gly	GAG Glu	GTT Val	144
CAG Gln	GTG Val 50	GTT Val	TCC Ser	ACC Thr	GCA Ala	ACA Thr 55	CAA Gln	TCC Ser	TTC Phe	CTG Leu	GCG Ala 60	ACC Thr	TGC Cys	GTC Val	AAC Asn	192
GGC Gly 65	GTG Val	TGT Cys	TGG Trp	ACC Thr	GTT Val 70	TAC Tyr	CAT His	GGT Gly	GCT Ala	GGC Gly 75	TCA Ser	AAG Lys	ACC Thr	TTA Leu	GCC Ala 80	240
GGC Gly	CCA Pro	AAG Lys	GGG Gly	CCA Pro 85	ATC Ile	ACC Thr	CAG Gln	ATG Met	TAC Tyr 90	ACT Thr	AAT Asn	GTG Val	GAC Asp	CAG Gln 95	GAC Asp	288
CTC Leu	GTC Val	GGC Gly	TGG Trp 100	CAG Gln	GCG Ala	CCC Pro	CCC Pro	GGG Gly 105	GCG Ala	CGT Arg	TCC Ser	TTG Leu	ACA Thr 110	CCA Pro	TGC Cys	336
ACC Thr	TGT Cys	GGC Gly 115	AGC Ser	TCA Ser	GAC Asp	CTT Leu	TAC Tyr 120	TTG Leu	GTC Val	ACG Thr	AGA Arg	CAT His 125	GCT Ala	GAC Asp	GTC Val	384
			CGC Arg													432
AGG Arg 145	CCT Pro	GTC Val	TCC Ser	TAC Tyr	TTG Leu 150	AAG Lys	GGC Gly	TCT Ser	TCG Ser	GGT Gly 155	GGT Gly	CCA Pro	CTG Leu	CTC Leu	TGC Cys 160	480
			CAC His													528

	GTT Val															576
	ATG Met															624
	CAG Gln 210				_											672
	AGT Ser														_	720
	GTC Val															768
	TCT Ser															816
	ATT Ile															864
	GCC Ala 290															912
	GAG Glu															960
	CTG Leu				Glu					Arg					Ala	1008
				Pro					Val					Ile	GAG Glu	1056
			Leu					Glu					Gly		GCC Ala	1104
		Ile					Gly					ılle			CAT His	1152
	Lys					Glu					Let				GGA Gly 400	1200
ATO	C AAC	GC:	r GTC	GCC	TAT	TAC	CGC	GGG	CTO	GA7	GT(TC	GTO	ATA	A CCA	1248

Ile	Asn	Ala	Val	Ala 405	Tyr	Tyr	Arg	Gly	Leu 410	Asp	Val	Ser	Val	Ile 415	Pro		
														ACG Thr		:	1296
	_													GTC Val		;	1344
_														ACG Thr		:	1392
														AGG Arg		,	1440
														GAA Glu 495		;	1488
														GAC Asp			1536
														AGG Arg			1584
														CAC His			1632
														GCA Ala			1680
_														CTG Leu 575			1728
_														CCA Pro			1776
			Met					Ile					Thr	CTG Leu			1824
		Thr					Arg					Gln			GTC Val		1872
	Leu					Thr					Ala				GCC Ala 640		1920

							CAA Gln		1968
	CGA Arg 660	 				TCC			2007

(2) INFORMATION FOR SEQ ID NO:120:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2007 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..2007

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

												CGC Arg				48	
												CTT Leu				96	
												GAG Glu 45				144	
												ACC Thr				192	
											Ser	AAG Lys			GCC Ala 80	240	
					Ile					Thr					GAC Asp	288	
				Gln					Ala					Pro	TGC Cys	336	
ACC	TGT	GGC	. AGC	TCA	GAC	CTI	TAC	TTG	GTC	ACC	AGA	A CAT	GCI	GAC	GTC	384	

Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His Ala Asp Val

115	12	.0	125	
		AC AGT AGG GGG AG Sp Ser Arg Gly Se 14		
		GC TCT TCG GGT GC Y Ser Ser Gly Gl 155	ly Pro Leu Leu (
		CC TTC CGG GCT GC e Phe Arg Ala Al 170		
	Ala Val Asp Ph	TT GTG CCC GTA GA ne Val Pro Val Gl 185		
		G GAC AAC TCA TO IT Asp Asn Ser Se 00		
		AC CTA CAC GCT CC .s Leu His Ala Pr 22		
		CC TAC GCA GCC CA a Tyr Ala Ala Gl 235	ln Gly Tyr Lys V	
		CC GCT ACC TTA GO La Ala Thr Leu Gl 250		
	His Gly Ile As	AC CCC AAC ATC AC Ep Pro Asn Ile Ar 265		
		TC ACA TAC TCT AC al Thr Tyr Ser Th 30		
		GG GGC GCT TAT GA Ly Gly Ala Tyr As 30		
		CG ACT ACA ATC TO er Thr Thr Ile Le 315	eu Gly Ile Gly '	
		CT GGA GCG CGG C la Gly Ala Arg Lo 330		
	Pro Gly Ser Va	TC ACC GTG CCA Ca al Thr Val Pro H: 345		

GAG Glu			CTG Leu					-						_		1104	
			GAA Glu													1152	
			AAG Lys													1200	
			GTG Val										_	_		1248	
			GAC Asp 420													1296	
			GAC Asp													1344	
			GAC Asp													1392	
			CAA Gln										_			1440	ı
			AGG Arg													1488	ţ
				Phe					Leu					Asp	GCG Ala	1536	;
			Trp					Pro					Val		TTG Leu	1584	1
		Туг					Gly					Gln			CTG Leu	1632	2
	Phe					Phe					His				CAC His 560	168	0
					Lys					Asr					G GTA 1 Val	172	8
															A TCA Ser	177	6

580 585 590 TGG GAT CAA ATG TGG AAG TGT CTC ATA CGG CTG AAA CCT ACG CTG CAC 1824 Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr Leu His 595 600 GGG CCA ACA CCC TTG CTG TAC AGG CTG GGA GCC GTC CAA AAT GAG GTC 1872 Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn Glu Val 610 615 1920 Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Ala Cys Met Ser Ala 625 630 635 640 GAC CTG GAG GTC GTT ACG TAG GAA TTC GAG CTC CGT CGA CAA GCT TGC 1968 Asp Leu Glu Val Val Thr * Glu Phe Glu Leu Arg Arg Gln Ala Cys 645 650 GGC CGC ACT CGA GCA CCA CCA CCA CCA CTG AGA TCC 2007 Gly Arg Thr Arg Ala Pro Pro Pro Pro Leu Arg Ser

(2) INFORMATION FOR SEQ ID NO:121:

660

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 36 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: RNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

GCUCGCCGG GGAUCCUCUA GGAAUACACG UUCGAU 36

- (2) INFORMATION FOR SEQ ID NO:122:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 36 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: RNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

CUAGAGGAUC CCCGGGCGAG CCCUAUAGUG AGUCGU 36

(2) INFORMATION FOR SEQ ID NO:123:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 21 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

GCTCGCCCGG GGATCCTCTA G 21

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) Internati nal Patent Classificati n 6: C12N 15/62, C07K 19/00, C12N 1/21, 5/10, C12Q 1/37, 1/533 // C07K 14/18, C12N 9/50

(11) International Publication Number:

WO 99/28482

(43) International Publication Date:

10 June 1999 (10.06.99)

(21) International Application Number:

PCT/US98/24528

A3

(22) International Filing Date:

24 November 1998 (24.11.98)

(30) Priority Data:

60/067,315 60/094,331

28 November 1997 (28.11.97) US

28 July 1998 (28.07.98) US

(71) Applicant: SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).

(72) Inventors: MALCOLM, Bruce, A.; 515 Trinity Place, Westfield, NJ 07090 (US). TAREMI, S., Shane; 12 Park Terrace, Upper Montclair, NJ 07043 (US). WEBER, Patricia, C.; 1970 Timber Lakes Drive, Yardley, PA 19067 (US). YAO, Nanhua; 4 Timothy Court, Edison, NJ 08837 (US).

(74) Agents: McLAUGHLIN, Jaye, P. et al.; Schering-Plough Corporation, Patent Dept., K-6-1 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).

(81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CZ, EE, GD, GE, HR, HU, ID, IL, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report:

22 July 1999 (22.07.99)

(54) Title: SINGLE-CHAIN RECOMBINANT COMPLEXES OF HEPATITIS C VIRUS NS3 PROTEASE AND NS4A COFACTOR PEPTIDE

(57) Abstract

Covalent HCV NS4A-NS3 complexes comprising the central hydrophobic domain of native HCV NS4A peptide, a linker, and the HCV NS3 serine protease domain, wherein the hydrophobic domain of native HCV NS4A peptide is tethered by the linker to the amino terminus of the HCV NS3 protease domain.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	T.J	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	-
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Trinidad and Tobago Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	
BY	Belarus	IS	Iceland	MW	Malawi	US	Uganda
CA	Canada	IT	Italy	MX	Mexico		United States of America
CF	Central African Republic	JP	Japan	NE	Niger	UZ	Uzbekistan
CG	Congo	KE	Kenya	NL	Netherlands	VN	Viet Nam
CH	Switzerland	KG	Kyrgyzstan	NO		YU	Yugoslavia
CI	Côte d'Ivoire	KP	Democratic People's	NZ	Norway New Zealand	zw	Zimbabwe
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT			
CU	Cuba	KZ	Kazakstan		Portugal		
CZ	Czech Republic	LC	Saint Lucia	RO	Romania		
DE	Germany	LI	Liechtenstein	RU	Russian Federation		
DK	Denmark	LK	Sri Lanka	SD	Sudan		
EE	Estonia	LR		SE	Sweden		
	Catolija	LK	Liberia	SG	Singapore		

Inte onal Application No PCT/US 98/24528

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12N15/62 C07K19/00 C12N1/21 C12N5/10 C12Q1/37
C12Q1/533 //C07K14/18,C12N9/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Minimum documentation searched (classification system followed by classification symbols) IPC 6 C07K C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 96 36702 A (SCHERING CORP) 21 November 1996 see example 6 sequence 7	1,12, 23-26
Y	KIM J L ET AL: "CRYSTAL STRUCTURE OF THE HEPATITIS C VIRUS NS3 PROTEASE DOMAIN COMPLEXED WITH A SYNTHETIC NS4A COFACTOR PEPTIDE" CELL, vol. 87, no. 4, 18 October 1996, pages 343-355, XP002053693 cited in the application see page 348, right-hand column, paragraph 2 - page 350, left-hand column see conclusions	1,12, 23-26

-/--

X Further documents are listed in the continuation of box C.	χ Patent family members are listed in annex.
"Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 25 May 1999 Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Date of mailing of the international search report 04/06/1999 Authorized officer Van der Schaal, C

Form PCT/ISA/210 (second sheet) (July 1992)

1

Inter onal Application No PCT/US 98/24528

C/C	- N	PCT/US 98/24528	
	C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No		
	Challott of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Ρ,Υ	YAN Y ET AL: "Complex of NS3 protease and NS4 peptide of BK strain hepatitis C virus: " PROTEIN SCIENCE, vol. 7 , no. 4, April 1998, pages 837-847, XP002103543 see the whole document	1,12, 23-26	
Y	BARTENSCHLAGER R ET AL: "COMPLEX FORMATION BETWEEN THE NS3 SERINE-TYPE PROTEINASE OF THE HEPATITIS C VIRUS AND NS4A AND ITS IMPORTANCE FOR POLYPROTEIN MATURATION" JOURNAL OF VIROLOGY, vol. 69, no. 12, 1 December 1995, pages 7519-7528, XP002053692 see page 7527, left-hand column, paragraph 2	1,12, 23-26	
A	WO 97 08304 A (ANGELETTI P IST RICHERCHE BIO ;FRANCESCO RAFFAELE DE (IT); TOMEI L) 6 March 1997 see sequence 4		
A	LIN C ET AL: "HEPATITIS C VIRUS NS3 SERINE PROTEINASE: TRANS-CLEAVAGE REQUIREMENTS AND PROCESSING KINETICS" JOURNAL OF VIROLOGY, vol. 68, no. 12, 1 December 1994, pages 8147-8157, XP002012002 see abstract; figure 9		
(KIM D W ET AL: "C-TERMINAL DOMAIN OF THE HEPATITIS C VIRUS NS3 PROTEIN CONTAINS AN RNA HELICASE ACTIVITY" BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 215, no. 1, 4 October 1995, pages 160-166, XP002035618 cited in the application see the whole document	27,28	
, X	TAREMI S S ET AL: "Construction, expression, and characterization of a novel fully activated recombinant single-chain hepatitis C virus protease." PROTEIN SCIENCE, (1998 OCT) 7 (10) 2143-9. JOURNAL CODE: BNW. ISSN: 0961-8368., XP002103544 United States	1-6, 12-17, 23-26	
'	see the whole document	27,28	

Inte onal Application No PCT/US 98/24528

			IS 98/24528	
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category '	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.	
T	DIMASI N ET AL: "Engineering, characterization and phage display of hepatitis C virus NS3 protease and NS4A cofactor peptide as a single-chain protein." PROTEIN ENGINEERING, (1998 DEC) 11 (12) 1257-65. JOURNAL CODE: PR1. ISSN: 0269-2139., XP002103545 ENGLAND: United Kingdom see the whole document		nelevant to claim No.	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

1

.iformation on patent family members

Inte onal Application No PCT/US 98/24528

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9636702 A	21-11-1996	US 5843752 A AU 5729196 A CA 2220575 A EP 0826038 A JP 10507933 T	01-12-1998 29-11-1996 21-11-1996 04-03-1998 04-08-1998
WO 9708304 A	06-03-1997	IT RM950573 A AU 6668696 A CA 2228265 A CN 1193997 A EP 0846164 A JP 10511556 T	24-02-1997 19-03-1997 06-03-1997 23-09-1998 10-06-1998 10-11-1998