Exam 2 Outline

Torque and Equlibrium

- Torque
 - Every force has a corresponding torque around any given axis (or pivot)
 - Lever arm \vec{r} from the pivot to the point where the force is applied
 - The torque is $\tau = rF \sin \theta = r_{\perp}F = rF_{\perp}$
 - Force has a larger torque if applied farther from pivot, and perpendicular to lever arm
 - Torque can be positive or negative depending on if it causes a counterclockwise or clockwise spin
- Equilibrium
 - If an object is not moving, then net force and net torque are both zero
 - You can calculate torque around any pivot (in this case, since object is not moving)
 - Gravity acts at the center of mass of the object
 - Variable forces act along point or surface of contact, to create equilibrium if they can
 - Stable/unstable equilibrium: give the object a small push and it returns/does not return to equilibrium
 - Remember the basic forces:
 - Weight (force of gravity): mg
 - Normal: perpendicular to surface of contact, adjustable
 - Tension: in direction of rope, adjustable
 - Kinetic Friction: $\mu_K N$, opposite direction of motion
 - Static Friction: adjustable, parallel to surface of contact

Angular Motion

- Angular displacement $\Delta\theta$, equivalent to position
- Angular velocity $\omega = \Delta \theta / \Delta t$
 - normally measured in radians per second
 - $f = \frac{\omega}{2\pi}$ is the number of revolutions per second: "frequency"
 - $T = 1/f = 2\pi/\omega$ is the period of rotation
- Angular acceleration $\alpha = \Delta\omega/\Delta t$
- constant angular-acceleration equations:
 - $\omega = \omega_0 + \alpha t$
 - $\bullet \ \theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$
 - $\bullet \ \theta = \theta_0 + \omega t \frac{1}{2}\alpha t^2$
 - $\omega^2 = \omega_0^2 + 2\alpha \bar{\Delta \theta}$
 - $\theta = \theta_0 + \frac{1}{2}(\omega + \omega_0)t$
- A point on a wheel has linear velocity $v = r\omega$
- A wheel rolling down a hill has speed $v = r\omega$ as well
- Acceleration of a point on the wheel: $\vec{a} = \vec{a}_c + \vec{a}_t$:
 - centripetal acceleration $\vec{a}_c = r\omega^2$ towards center
 - tangential acceleration $\vec{a}_t = r\alpha$ tangent to circle
- Newton's Second Law: $\tau = I\alpha$
- \bullet Rotational Inertia I
 - Larger when mass is farther from the axis
 - For disk: $\frac{1}{2}mr^2$
 - For ring: mr^2
- Angular Momentum
 - $L = I\omega$
 - conserved if net torque is zero

Momentum and Impulse

- Momentum: $\vec{p} = m\vec{v}$ (vector quantity)
- Impulse: $\Delta \vec{p} = \vec{J} \equiv \vec{F}_{\text{avg}} \Delta t$: area under F-t curve
- Systems of objects
 - Can consider a group of objects as a single system
 - Total momentum of the system is $\vec{p}_{\text{tot}} = \vec{p}_1 + \vec{p}_2 + \dots$
 - Total momentum is $\vec{p}_{\text{tot}} = m_{\text{tot}} \vec{v}_{\text{com}}$
 - \bullet If no net external force, then momentum $\vec{p}_{\rm tot}$ is conserved
- Some cases where momentum is conserved
 - Explosions
 - Recoil of a gun
 - Rocket thrust: exhaust goes one way, rocket goes the other
 - Maximally Inelastic Collisions: Objects stick together after the collision, move with same velocity
- Center of Mass
 - For particles: $\vec{r}_{\text{com}} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + \dots}{m_1 + m_2 + \dots}$ Average of all positions, closer to more massive particles

 - Velocity of center of mass is $\vec{v}_{\rm com} = \vec{p}_{\rm tot}/m_{\rm tot}$