Отчет по заданию 3

Андрей Коновалов, 073

1 Постановка задачи

Для 103 образцов раствора бетона известно содержание в кубическом метре семи основных компонент, для каждого образца измерены также осадка, растекание и прочность на сжатие. Хочется построить функцию, оценивающую растекание бетона по его составу.

2 Построение модели

Визуализация исходных данных приведена на рис. 1. На рис. 2 приведена гистограмма растеканий, по которой видно, что выбросов по растеканиям нет. Поскольку $\frac{\max y}{\min y}=4$, то преобразование растекания искать нецелесообразно.

2.1 Модель 1

Построим линейную модель 1 с учетом всех факторов:

```
> fit1 <- lm(formula = Pacтекание ~ Цемент + Шлак + Зола + Вода +
SP + Крупный.заполнитель + Мелкий.заполнитель, data = data)
> summary(fit1)
```

Call:

Residuals:

```
Min 1Q Median 3Q Max
-30.880 -10.428 1.815 9.601 22.953
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-252.87467	350.06649	-0.722	0.4718
Цемент	0.05364	0.11236	0.477	0.6342
Шлак	-0.00569	0.15638	-0.036	0.9710
Зола	0.06115	0.11402	0.536	0.5930

Figure 1: Визуализация данных.

Вода	0.73180	0.35282	2.074	0.0408 *
SP	0.29833	0.66263	0.450	0.6536
Крупный.заполнитель	0.07366	0.13510	0.545	0.5869
Мелкий.заполнитель	0.09402	0.14191	0.663	0.5092

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 12.84 on 95 degrees of freedom Multiple R-squared: 0.5022, Adjusted R-squared: 0.4656 F-statistic: 13.69 on 7 and 95 DF, p-value: 3.915e-12

У полученной модели:

$$R^2 = 0.5022, \ R_{\alpha}^2 = 0.4656, \ F = 13.69, \ \text{p-value} = 3.915 \cdot 10^{-12}$$

Проверим нормальность, несмещенность и гомоскедастичность:

Критерий	p-value
Шапиро-Уилка (нормальность)	0.0428
Уилкоксона (несмещенность)	0.7987
Бройша-Пагана (гомоскедастичность)	0.09443

Гистограмма растекания

Figure 2: Гистограмма растекания.

На рис. 3 приведены нормализованные остатки для полученной модели. По графику видно, что больших выбросов нет.

2.2 Модель 2

Признаки, коэффициенты которых значимо отличаются от нуля (по результатам множественной проверки с дисперсиями Уайта): Шлак и SP. Выбросим эти признаки и построим новую модель 2:

```
> fit2 <- lm(formula = Растекание ~ Цемент + Зола + Вода +
  Крупный. заполнитель + Мелкий. заполнитель, data = data)
> summary(fit2)
Call:
lm(formula = Растекание ~ Цемент + Зола +
    Вода + Крупный. заполнитель + Мелкий. заполнитель,
    data = data)
Residuals:
    Min
             1Q Median
                              3Q
                                     Max
-31.893 -10.125
                  1.773
                          9.559
                                 23.914
```


Figure 3: Нормализованные остатки для модели 1.

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-249.50866	48.90884	-5.102	1.67e-06	***
Цемент	0.05366	0.01979	2.712	0.007909	**
Зола	0.06101	0.01859	3.281	0.001436	**
Вода	0.72313	0.08426	8.582	1.53e-13	***
Крупный. заполнитель	0.07291	0.02266	3.217	0.001760	**
Мелкий.заполнитель	0.09554	0.02573	3.714	0.000341	***
Signif. codes: 0 '	*** ['] 0.001 '	*** 0.01 *	0.05	·.' 0.1 '	' 1

Residual standard error: 12.74 on 97 degrees of freedom Multiple R-squared: 0.5003, Adjusted R-squared: 0.4745 F-statistic: 19.42 on 5 and 97 DF, p-value: 2.36e-13

У полученной модели:

$$R^2 = 0.5003, \ R_{\alpha}^2 = 0.4745, \ F = 19.42, \ \text{p-value} = 2.36 \cdot 10^{-13}$$

Критерий	p-value
Шапиро-Уилка (нормальность)	0.07786
Уилкоксона (несмещенность)	0.7962
Бройша-Пагана (гомоскедастичность)	0.1612

На рис. 4 приведены остатки для полученной модели.

Figure 4: Остатки для модели 2.

Критерий Фишера не показывает существенной разницы между моделями 1 и 2 (p=0.8283).

2.3 Модель 3

Видно, что зависимости остатков для Золы и Воды имеют квадратичный характер. Добавим квадраты этих признаков в модель.

```
> fit3 <- lm(formula = Pacteкaние ~ Цемент + Зола + I(Зола^2) + Вода
+ I(Вода^2) + Крупный.заполнитель + Мелкий.заполнитель, data = data)
> summary(fit3)
```

Call:

```
lm(formula = Растекание ~ Цемент + Зола + I(Зола^2) + Вода + I(Вода^2) + Крупный.заполнитель +
```

Мелкий. заполнитель, data = data)

Residuals:

```
Min 1Q Median 3Q Max
-34.079 -8.950 2.028 8.290 22.377
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   -5.038e+02 1.370e+02 -3.678 0.000389 ***
Цемент
                   5.349e-02 1.940e-02 2.758 0.006978 **
Зола
                   1.380e-01 5.125e-02
                                        2.692 0.008391 **
                   -2.810e-04 2.084e-04 -1.349 0.180575
I(Зола^2)
Вода
                    3.141e+00 1.265e+00
                                         2.483 0.014783 *
                   -5.962e-03 3.136e-03 -1.901 0.060354 .
I(Bода^2)
Крупный.заполнитель 8.461e-02 2.275e-02 3.720 0.000338 ***
Мелкий. заполнитель
                    9.301e-02 2.520e-02
                                          3.691 0.000373 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Residual standard error: 12.43 on 95 degrees of freedom

Multiple R-squared: 0.5337, Adjusted R-squared: 0.4994 F-statistic: 15.54 on 7 and 95 DF, p-value: 2.028e-13

У полученной модели:

$$R^2 = 0.5337$$
, $R_{\alpha}^2 = 0.4994$, $F = 15.54$, p-value = $2.028 \cdot 10^{-13}$

Критерий	p-value
Шапиро-Уилка (нормальность)	0.01033
Уилкоксона (несмещенность)	0.6345
Бройша-Пагана (гомоскедастичность)	0.1438

На рис. 5 приведены остатки для полученной модели.

Критерий Фишера показывает превосходство модели 3 над моделью 2 (p=0.03707).

2.4 Модель 4

Признак Зола^2 получается незначимым, поэтому выкинем его из модели.

Call:

```
lm(formula = Растекание ~ Цемент + Зола + Вода + I(Вода^2) + Крупный.заполнитель +
```


Figure 5: Остатки для модели 3.

Мелкий.заполнитель, data = data)

Residuals:

Min 1Q Median 3Q Max -33.697 -8.808 2.271 9.104 23.696

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -5.327e+02 1.358e+02 -3.921 0.000165 *** Цемент 5.563e-02 1.941e-02 2.865 0.005116 ** Зола 7.378e-02 1.910e-02 3.862 0.000204 *** Вода 3.488e+00 1.244e+00 2.804 0.006109 ** I(Bода^2) -6.857e-03 3.078e-03 -2.228 0.028244 * Крупный. заполнитель 7.820e-02 2.234e-02 3.501 0.000706 *** Мелкий. заполнитель 9.592e-02 2.522e-02 3.804 0.000250 ***

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12.48 on 96 degrees of freedom Multiple R-squared: 0.5248, Adjusted R-squared: 0.4951 F-statistic: 17.67 on 6 and 96 DF, p-value: 1.081e-13

У полученной модели:

$$R^2 = 0.5248, \ R_\alpha^2 = 0.4951, \ F = 17.67, \ \text{p-value} = 1.081 \cdot 10^{-13}$$

Критерий	p-value
Шапиро-Уилка (нормальность)	0.01824
Уилкоксона (несмещенность)	0.7064
Бройша-Пагана (гомоскедастичность)	0.05874

На рис. 6 приведены остатки для полученной модели.

Figure 6: Остатки для модели 4.

Критерий Фишера не показывает существенной разницы между моделями 3 и 4 (p=0.1806).

2.5 Модель 5

Добавим в модель попарное взаимодействие признаков и выкинем незначимые. Получим следующую модель.

```
> fit5 <- lm(formula = Pacteкaние ~ Зола + Вода + I(Вода^2) +
    Mелкий.заполнитель + Цемент:Зола + Зола:Крупный.заполнитель, data = data)
> summary(fit5)
```

Call:

```
lm(formula = Pactekahue ~ Зола + Вода + I(Вода^2) +
Meлкий.заполнитель + Цемент:Зола +
Зола:Крупный.заполнитель, data = data)
```

Residuals:

```
Min 1Q Median 3Q Max
-33.905 -8.065 0.938 8.603 24.039
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                         -4.244e+02 1.202e+02 -3.529 0.000642 ***
(Intercept)
Зола
                        -4.958e-01 1.077e-01 -4.602 1.28e-05 ***
                                               2.669 0.008940 **
Вода
                         3.150e+00 1.180e+00
I(Bода^2)
                        -5.862e-03 2.929e-03 -2.001 0.048184 *
Мелкий. заполнитель
                         1.006e-01 2.300e-02
                                                4.372 3.13e-05 ***
Зола:Цемент
                         3.909e-04 1.099e-04
                                                3.557 0.000584 ***
Зола:Крупный.заполнитель 5.308e-04 1.106e-04
                                                4.798 5.87e-06 ***
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 11.93 on 96 degrees of freedom Multiple R-squared: 0.5662, Adjusted R-squared: 0.5391 F-statistic: 20.88 on 6 and 96 DF, p-value: 1.578e-15

У полученной модели:

$$R^2 = 0.5662, R_{\alpha}^2 = 0.5391, F = 20.88, \text{ p-value} = 1.578 \cdot 10^{-15}$$

Критерий	p-value
Шапиро-Уилка (нормальность)	0.1294
Уилкоксона (несмещенность)	0.6966
Бройша-Пагана (гомоскедастичность)	0.06101

На рис. 7 приведены остатки для полученной модели.

Критерий Давидсона-Маккиннона показывает превосходство модели 5 над моделью 4 ($p_1=0.0003, p_2=0.98$).

2.6 Модель 6

Исключим наблюдения с наибольшими расстояниями Кука (см. рис. 8) и перестроим модель 5.

```
> fit6 <- lm(formula = Pacteкaние ~ Зола + Вода + I(Вода^2) +
    Mелкий.заполнитель + Цемент:Зола + Зола:Крупный.заполнитель,
    data = data[c(-17, -35, -41, -69),])
> summary(fit6)
```


Figure 7: Остатки для модели 5.

```
Call:
```

```
lm(formula = Pacтекание ~ Зола + Вода + I(Вода^2) +
    Mелкий.заполнитель + Цемент:Зола +
    Зола:Крупный.заполнитель, data = data[c(-17,
    -35, -41, -69),])
```

Residuals:

Min 1Q Median 3Q Max -26.294 -7.235 1.738 7.362 24.138

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-5.240e+02	1.112e+02	-4.712	8.68e-06	***
Зола	-4.717e-01	1.120e-01	-4.211	5.92e-05	***
Вода	4.213e+00	1.094e+00	3.852	0.000216	***
I(Вода^2)	-8.497e-03	2.714e-03	-3.131	0.002333	**
Мелкий.заполнитель	9.081e-02	2.160e-02	4.205	6.05e-05	***
Зола:Цемент	3.979e-04	1.064e-04	3.740	0.000320	***
Зола:Крупный.заполнитель	5.122e-04	1.137e-04	4.503	1.96e-05	***

Figure 8: Расстояния Кука для модели 5.

Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1

Residual standard error: 10.79 on 92 degrees of freedom Multiple R-squared: 0.6316, Adjusted R-squared: 0.6075 F-statistic: 26.28 on 6 and 92 DF, p-value: < 2.2e-16

У полученной модели:

$$R^2 = 0.6316, \ R_{\alpha}^2 = 0.6075, \ F = 26.28, \ \text{p-value} = 2.2 \cdot 10^{-16}$$

Критерий	p-value
Шапиро-Уилка (нормальность)	0.09962
Уилкоксона (несмещенность)	0.7761
Бройша-Пагана (гомоскедастичность)	0.2837

На рис. 10 приведены остатки для полученной модели.

2.7 Результат

Итоговая модель построена по 97 из 103 исходных наблюдений и объясняет 63% вариации логарифма отклика.

Figure 9: Остатки для модели 6.

3 Вывод

Первый килограмм воды увеличивает растекание на 4.21 см (доверительный интервал (2.04, 6.39)). Это значение уменьшается на $2 \cdot 0.008((0.003, 0.014)) \cdot$ Вода см с каждым новым килограммом воды.

Каждый килограмм мелкого заполнителя увеличивает растекание на $0.091~{\rm cm}$ (доверительный интервал $(0.048,\,0.133)$).

Каждый килограмм золы уменьшает растекание на 0.47 см (доверительный интервал (0.25, 0.69)). Это значение уменьшается на 0.00040 см (доверительный интервал (0.00019, 0.00061)) с каждым килограммом цемента и на 0.00051 см (доверительный интервал (0.00029, 0.00074)) с каждым килограммом крупного заполнителя.

Figure 10: Значения растекания для модели 6.