S&P 500 emini Future Trading Strategy

Pham Tuan Phong

PhD in Finance – La Trobe University

Summary of Strategy

Short-Term Rates Trend Strategy, Step by Step:

- 1. For each futures contract, forecast the next day's volatility using a GARCH(1,1) with past three years' daily return.
- 2. Compare the forecast to the trailing three years' fitted GARCH volatility; if the forecast is above the median, use High Vol Regime; otherwise, use Low Vol Regime.
- 3. Compare the current contract price to the moving average price that corresponds to the current volatility regime (Low, use 66 days; High, use 252 days).
- 4. If the contract price is above the moving average price, the strategy generates a "Long" signal—buy the contract (or hold if already long) at the close on the next business day. If the contract is below the moving average price, the strategy generates a "Short" signal—sell the contract (or hold if already short).
- 5. Repeat process for each of the four contracts in each region, equally weighting the four contracts and weighting the regions proportionally to open interest.

Notes:

- 1. Volatility will be calculated based on S&P 500 index.
- 2. The strategy compares the median of forecast volatility last three year with the forecast volatility tomorrow to decide whether the volatility regime is high ow low
 - if volatility regime is low, it will go long (buy) if price of STIR > moving average price of MA1 days and short if price of STIR < moving average price of MA1 days
 - if volatility regime is high, it will go long (buy) if price of STIR > moving average price of MA2 days and short if price of STIR < moving average price of MA2 days
- 3. The transaction cost is modelled by using the Bid-Ask price for S&P e-mini future contracts. Details are as follows:
- When there is a buy signal, I buy the contract with ask price and when there is a sell signal, I sell the contract with bid price.
- In addition, I also add the commission fee into the transaction cost.

Main functions

sp500_future_analyzing:

```
sp500_future_analyzing(data = data, MA1=5, MA2=210, initial_equity1 = 1000000, commission_fee1 = 0.002):
This function is to calculate the return of a portfolio of many S&P 500 emini future constracts with a trading strategy
    based of volatility regime and moving average price of MA1 days (for low volatility regime) and MA2 days (for high volatilit
Input
    Price: a data frame with a Time column and Price column of S&P 500 emini future constract and volatility regime column
    MA1: moving average price using in low volatility regime
    MA2: moving average price using in high volatility regime
    initial equity1: initial equity for each contract
    commission feel: commission fee for each transaction
Output
    summary port: a dataframe with 9 columns including 'Start date', 'Finish Date', 'MA1', 'MA2', 'annualized return',
                                                         'annualized_sd','annualized_Sharpe','max_draw_down','winning_percentage'
111
```

Main functions

get_portfolio_return:

```
get_portfolio_return(data = data, MA1=5, MA2=210, initial_equity1 = 1000000, commission_fee1 = 0.002):
This function is to calculate the return of a portfolio of many S&P 500 emini future constracts with a trading strategy
    based of volatility regime and moving average price of MA1 days (for low volatility regime) and MA2 days (for high volatility
Input
    Price: a data frame with a Time column and Price column of S&P 500 emini future constract and volatility regime column
   MA1: moving average price using in low volatility regime
   MA2: moving average price using in high volatility regime
    initial equity1: initial equity for each contract
    commission fee1: commission fee for each transaction
Output
    port ret1: return of portfolio
individual ret =[]
```

1. run grid-search with changes of MA1 (fast-moving window) and MA2 (slow-moving window) to see how these parameters affect the Sharpe ratio

summary.sort_values('annualized_Sharpe', ascending = False)

		Start	Finish	MA1	MA2	annualized_return	annualized_sd	annualized_Sharpe	max_draw_down	winning_percentage
	0	2009-09-11	2019-12-11	10	252	0.144032	0.254663	0.565579	0.416330	0.027734
	0	2009-10-12	2019-12-11	10	273	0.136067	0.273701	0.497138	0.279517	0.025328
	0	2009-11-10	2019-12-11	35	294	0.118940	0.252271	0.471479	0.315676	0.026094
	0	2009-11-10	2019-12-11	30	294	0.095664	0.249387	0.383598	0.356379	0.026094
	0	2009-11-10	2019-12-11	40	294	0.083961	0.256240	0.327665	0.380123	0.022256
		***							•••	
	0	2009-04-17	2019-12-11	60	147	NaN	0.645414	NaN	1.000158	0.019087
	0	2009-05-18	2019-12-11	60	168	NaN	0.757131	NaN	1.934011	0.017372
	0	2009-02-18	2019-12-11	65	105	NaN	1.331893	NaN	1.000002	0.016206
	0	2009-04-17	2019-12-11	65	147	NaN	0.670319	NaN	1.000203	0.018713
	0	2009-05-18	2019-12-11	65	168	NaN	0.750850	NaN	1.925471	0.017749

1. run grid-search with changes of MA1 (fast-moving window) and MA2 (slow-moving window) to see how these parameters affect the Sharpe ratio

For easier to imagination, I created a 3d heat map

It can be seen that MA1 = 5 days and MA2 moves in a range from 200 - 300 days tends to produce highest Sharpe ratio

2. How changes in MA1 and MA2 affect risk and return profile?

3. Analyse the performance of max Sharpe case (MA1 = 10, MA2 = 252, Sharpe = 0.56)

Performance Summary in years:

	Year	Annualize_return	Annualize_volatility	Annualize_sharpe	MaxDrawdown
0	2009	0.219752	0.136759	1.606855	NaN
1	2010	-0.087801	0.269921	-0.325285	0.245721
2	2011	-0.163455	0.261814	-0.624317	0.292011
3	2012	0.603147	0.312354	1.930971	0.049694
4	2013	0.282557	0.218975	1.290363	0.099840
5	2014	0.399546	0.289733	1. run grid-search wi	th change 4873
6	2015	-0.212352	0.160407	-1.323833	0.203402
7	2016	-0.004651	0.264983	-0.017551	0.256936
8	2017	0.343559	0.246524	1.393614	0.062849
9	2018	0.270700	0.260584	1.038822	0.142350
10	2019	0.294662	0.261500	1.126813	0.114413

