

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková
	organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky směřující k rozvoji odborných
	kompetencí žáků středních škol (20 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	MEC I
Popis sady vzdělávacích materiálů:	Mechanika I, 1. ročník
Sada číslo:	G-19
Pořadové číslo vzdělávacího materiálu:	19
Označení vzdělávacího materiálu:	VY_32_INOVACE_G-19-09
(pro záznam v třídní knize)	
Název vzdělávacího materiálu:	Spojité zatížení
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Iva Procházková

Spojité zatížení

Je to zatížení např. od vlastní tíhy nosníků, tedy zatížení, které je rovnoměrně rozložené po určité délce. Velikost tohoto tzv. spojitého zatížení značíme **q** a jednotkou je **N/m**.

Tento nosník počítáme jako nosník zatížený silou **Q** umístěnou do těžiště spojitého zařízení.

$$Q = q \cdot I$$

$$\sum F_{iy} = 0 \Rightarrow F_{RAy} - Q + F_{RBy} = 0 \Rightarrow F_{RBy} = Q - F_{RAy} = Q - \frac{Q}{2} = \frac{Q}{2}$$

$$\sum M_{iB} = 0 \Rightarrow F_{RAy} \cdot l - Q \cdot \frac{l}{2} = 0 = F_{RAy} = \frac{Q \cdot \frac{l}{2}}{l} = \frac{Q}{2}$$

Př.:
$$q = 100 \text{ N/m}, l = 2 \text{ m}$$

$$Q = q \cdot l$$

$$Q = q \cdot l = 100 \cdot 2 = 200 \text{ N}$$

$$F_{RAx} = 0 N$$

$$F_{RAy} = \frac{Q}{2} = \frac{200}{2} = 100 \text{ N}$$

$$F_{RBy} = \frac{Q}{2} = 100 \text{ N}$$

Př.:
$$q = 10 \frac{\text{N}}{\text{mm}}$$
, $l = 200 \text{ mm}$.

$$Q = q \cdot l = 10 \cdot 200 = 2.000 \text{ N}$$

$$\sum F_{ix} = 0 \Rightarrow F_{RBx} = 0$$

$$\sum F_{iy} = 0$$

$$F_{RAy} - Q - F + F_{RBy} = 0$$

$$\Rightarrow F_{RBy} = Q + F - F_{RAy} = 0$$

$$= 2.000 + 500 - 1.625 = 875 \text{ N}$$

$$\sum M_{iB} = 0$$

$$F_{RAy}\cdot 400-Q\cdot 300-F\cdot 100=0$$

$$\Rightarrow F_{RAy} = \frac{Q \cdot 300 + F \cdot 100}{400} = \frac{2000 \cdot 300 + 500 \cdot 100}{400} = 1.625 \text{ N}$$

Př.:

Př.: Na opakování rovnováhy momentů.

Grafické řešení výslednice soustavy obecných rovinných sil

Metoda posunutí působiště

Řešíme postupným skládáním sil. Využíváme toho, že sílu můžeme na její nositelce libovolně posouvat, aniž se změní její účinek. Síly si posuneme tak, aby vždy dvě působily v jednom bodě.

Postup:

- Posuneme síly F₁, F₂ na svých nositelkách tak, aby měly společné působiště.
- Vyřešíme silovým rovnoběžníkem částečnou výslednicí F_{V1,2}.
- Posuneme síly F_{V1,2} a F₃ tak, aby měly společné působiště.
- Vyřešíme výslednici F_V(F_{V1,2,3}).

Poznámka: Tento postup nelze použít u rovnoběžných sil, protože jejich průsečík je v nekonečnu.

Metoda postupného rozkládání

Sílu musíme rozložit do dvou směrů, které si libovolně zvolíme. Hledáme výslednici sil F₁, F₂.

Sestrojením silového trojúhelníku určíme výslednici, ale neznáme její polohu.

Sestrojíme další dva silové trojúhelníky, které znamenají rozklad síly do dvou směrů.

Sílu:

F₁ do 1, 2

F₂ do 2, 3

Síla F_v je potom automaticky rozložena do směrů 1, 3. Bod, ve kterém se směry protínají, se nazývá **pól**. Obrazci říkáme vláknový obrazec.

Postup řešení:

1) Nakreslit zadání.

2) Sestrojit silový trojúhelník nebo mnohoúhelník.

Tento rozklad sil přeneseme zpět do zadání a to takto:

Libovolným bodem síly F₁ vedeme vlákno 1, tam, kde vlákno 1 protne sílu F₁, vedeme vlákno 2. Tam, kde protne vlákno 2 sílu F_2 , vedeme vlákno 3. Směry vláken jsou rovnoběžné se směry ve vláknovém obrazci. Výslednice pak musí procházet průsečíkem vláken 1 a 3. Její směr a velikost už známe z vláknového obrazce (silový trojúhelník).

Tomuto řešení říkáme také řešení pomocí vláknového obrazce. V praktickém použití síly v jednotlivých vláknech nezakreslujeme, důležité jsou pouze směry vláken. Lze použit najednou pro více sil (silový mnohoúhelník).

3) Zvolit pól P a sestrojit vlákna.

4) Vlákna rovnoběžně postupně převést do zadání tak, aby se příslušná vlákna protínala na příslušné síle. Tím se zjistí poloha výslednice.

Seznam použité literatury

- SALABA S. MATĚNA A.: MECHANIKA I STATIKA pro SPŠ strojnické. Praha: SNTL, 1977.
- MRŇÁK L. DRDLA A.: MECHANIKA Pružnost a pevnost pro střední průmyslové školy strojnické.
 Praha: SNTL, 1977.
- TUREK, I., SKALA, O., HALUŠKA J.: MECHANIKA Sbírka úloh. Praha: SNTL, 1982.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 5. doplněné vydání. Praha: Albra, 2011. ISBN 80-7361-033-7.