Description par la methode de Gauss du système de matria de permission (obtense par permission des colonnes de In), L'est triangulaire inférieure de diagonale unité, U est triangulaire supérieure invenible.

2) Si PA = L₁U₁ = L₂U₂ alors U₁U₂⁻¹ = L₁⁻¹L₂. L₁ et L₂ étant triangulaires inf de diagonale unité, c'est aussi le cas de L₁⁻¹ et L₁⁻¹L₂ = U₁U₂⁻¹.

OR U₁U₂⁻¹ est aussi triangulaire sup, car U₁, U₂, et donc aussi U₂⁻¹ sont triangulaires sup. Donc U₁U₂⁻¹ = I = L₁⁻¹L₂, d'ou U₁=U2 et L₁=L₂.

D 1) Le calcul d'un cref. de A² représente 2m-1 optrabions elémentaires (produit scalaire de deux verteurs) d'où un coût no 2n³ optrabions poir calcular A².

La dydustion par la mètre de de Gauss du système de matria A² coûte no 2n³, donc le 1^{en} algorithme coûte no 8n³ optrabions.

2) On réformule le proteime en:

a) PA = LU -> coût no 2n³

b) LU y = Pb -> coût calcul y = O(n²)

c) LU x = Py -> coût calcul x = O(n²) (connaissant y)

Le coût total de calcul de x et donc = 2 n3 (4 fais moiss que le 1 als

a) PA = LU -> coit too of m³

b) LUy = Pb -> coit calcul y = O(m²)

c) LUX = Py -> coit calcul x = O(m²) ((connocitant y))

Le coit total du calcul de x est donc too of meins que le thalgo.)

The soit A & Hn (IR) avec aic + O Vi=1... m at D = diag (a11, a22, ..., ann).

La mother de Jacobi pour resocuelle AX = b (x, b & IR") \$1 \in ait : DX = [D-A) \in ait on bait que cette methode converge to A est à diagonale strictement dominant ic |aii| > \in |aii| \times i = 1... m.

2) A = I - & P est à diagonale strictement dominante (at donc invenible) bi | A| < 1.

En ellet, \times i = 1... m, |aii| = \in |aii| = |1 - & |aii| = |1 - & |aii| = |aiii|

ie |aii| - \in |aii| > 1 - |A| > O.

Far ailleur, purique A est à diagonale thirt dom, la methode de Jacobi converge.

- D) Notions $g(u) = \frac{2}{3} g(t+R, v+Ru)$. Si L < b-T (de soute que $t+R \in J^{a}, 5E$)

 pour tout $t \in [0,T]$), on a quels que soient $U_1, U_2 \in \mathbb{R}$: $|g(u_1) g(u_2)| = \frac{2}{3} |g(t+R, v+Ru_1)| g(t+R, v+Ru_2)| \le \frac{2}{3} L \ln |u_1 u_2|$ Done g est une contraction tur |R| di $\frac{2}{3} L R < 1$, ie $|R| < \frac{3}{3} L R < 1$.

 D'après le théorème du point fixe de Banach |g| admet alors un unique point fixe qu'en vote $|u| = \varphi(t,v,R)$. On notera $|u| = \min(b-T,\frac{3}{2L})$.
 - 2) L'équation (5) equivant à (5et \frac{1}{3}ye + \frac{1}{3
 - 3) On veut résouche N(gen) = 0, où N(gen) = 3 yen 24 e + 144 hoften yen).

 Dour l'algo de Newton, on considère la suite (3m) no de condition initiale

 Bo (on feut penho p. ex. 3 = \frac{1}{3}[49e 9e-1 + 24](\frac{t_{2}}{2}+1)\frac{4}{3}\frac{4}{3}e^{-\frac{1}{3}}\frac{4}{3}e^{-\frac{1
 - 4) P(t) = y(tex) + Sty(tex) (t-tex) + Sty(tex, tex) (t-tex) (t-tex) (t-tex) d'après la formule de Newton, avec Sy(tex, te) = y(tex) y(tex) = y(tex) y(tex) et = -tex

 Sty(tex, te, tex) = Sty(tex, tex) Sty(tex, te) = 1/2 (y(tex) 2y(tex) + y(tex)).
 - 5) P'(ten) = Sylten te) + S2y(ten te ten) (ten-te) = 1 (y(ten)-y(te)) + 1 (y(ten)-vy(te)) + y(ten)) = 1 (3y(ten) - 4y(te) + y(ten))
 - Le schema (4) whiline y'(ten) = f(ten, ylten)) et approuve y'cten) par P'cten).