A Higher-Order Logical Framework for Reasoning about Programming Languages in Coq

Chelsea Battell

Department of Mathematics and Statistics University of Ottawa

February 12, 2016 McGill University, Montreal, Canada

OBJECTIVE

Mechanize reasoning about programming languages and logics

EXAMPLE

For STLC, want to prove $\frac{\vdash e \Downarrow v \vdash e : t}{\vdash v : t}$

Encode the object logic in an existing proof assistant

Encode the object logic in an existing proof assistant

PROBLEM

Many tedious computations for each encoding with binding structures

Use higher-order abstract syntax

Use higher-order abstract syntax

PROBLEM

Some judgments cannot be encoded as inductive types in Coq

Add intermediate layer called specification logic with parameter for provability in object logic

Object Logic

Specification Logic(s)

Higher-Order Abstract Syntax

> Ambient Logic

Ambient Logic

Higher-Order Abstract Syntax Higher-Order Abstract Syntax eval for STLC

Subject Reduction

$$\frac{e \Downarrow v \quad \rhd \langle \ e : t \ \rangle}{\rhd \langle \ v : t \ \rangle}$$

$$\frac{A:-G\quad\Gamma\rhd G}{\Gamma\rhd\langle\;A\;\rangle}\,\mathrm{s_bc}$$

$$\frac{F \in \Gamma \quad \Gamma, [F] \rhd A}{\Gamma \rhd \langle \ A \ \rangle} \text{ s_init}$$

```
\frac{\operatorname{proper} x \to \Gamma \rhd E \, x}{\Gamma \rhd \forall^{expr} E}
        \overline{\Gamma, [\langle A \rangle] \rhd A}
```

```
Inductive seq : context -> oo -> Prop :=
I s_imp :
forall (G1 G2 : oo) (L : context),
seq (L, G1) G2
-> seg L (G1 ---> G2)
| s_all :
forall (E : expr -> oo) (L : context),
(forall x : expr, proper x -> seq L (E x))
 -> seq L (A11 E)
with bch : context -> oo -> atm -> Prop :=
I b_match:
forall (A : atm) (L : context),
 bch L (< A >) A
I b_imp :
forall (F G : oo) (A : atm) (L : context),
seq L G -> bch L F A
 -> bch L (G ---> F) A.
```

STRUCTURAL RULES

Weakening, Contraction and Exchange corollaries of:

$$\frac{\Gamma_1 \subseteq \Gamma_2 \quad \boxed{\Gamma_1 \rhd o}}{\Gamma_2 \rhd o} \land \frac{\Gamma_1 \subseteq \Gamma_2 \quad \boxed{\Gamma_1, [o] \rhd a}}{\Gamma_2, [o] \rhd a}$$

PROOF

By mutual structural induction over sequent premises

$$\begin{split} P_1 &:= \lambda \Gamma_2 \cdot \lambda o \cdot \Gamma_1 \subseteq \Gamma_2 \to \Gamma_2 \rhd o \\ P_2 &:= \lambda \Gamma_2 \cdot \lambda o \cdot \lambda a \cdot \Gamma_1 \subseteq \Gamma_2 \to \Gamma_2, [o] \rhd a \\ \\ & \text{Subcase} \frac{\Gamma \rhd G \quad \Gamma, [F] \rhd A}{\Gamma, [G \to F] \rhd A} \text{ b_imp} \colon \\ \\ & \text{Then } \Gamma_1 = \Gamma, o = G \to F \text{ and } a = A. \end{split} \qquad \begin{matrix} H_1 : \Gamma \rhd G \\ IH_1 : \Gamma \upharpoonright G \\ H_2 : \Gamma, [F] \rhd A \\ IH_2 : \Gamma, [F] \rhd A \\ IH_2 : \Gamma, [F] \rhd A \\ IH_2 : \Gamma, [F] \rhd A \\ IH_3 : \Gamma \hookrightarrow G \\ IH_4 : \Gamma, [F] \rhd A \\ IH_5 : \Gamma, [F] : \Gamma, [$$

CUT RULE

$$\frac{\Gamma, \mathbf{o_1} \rhd o_2 \quad \Gamma \rhd \mathbf{o_1}}{\Gamma \rhd o_2} \land \frac{\Gamma, \mathbf{o_1}, [o_2] \rhd a \quad \Gamma \rhd \mathbf{o_1}}{\Gamma, [o_2] \rhd a}$$

structural induction over O1

mututal structural induction over Γ , $\mathbf{o_1} \rhd o_2$ and Γ , $\mathbf{o_1}$, $[o_2] \rhd a$

98 subcases (91 proven automatically)

Object Logic

hApp : $tm \rightarrow tm \rightarrow tm$ hAbs : $(tm \rightarrow tm) \rightarrow tm$ dApp : $dtm \rightarrow dtm \rightarrow dtm$

dAbs : $dtm \rightarrow dtm$ dVar : $\mathbb{N} \rightarrow dtm$

$$\frac{\Gamma \vdash H_1 \equiv_n D_1 \quad \Gamma \vdash H_2 \equiv_n D_2}{\Gamma \vdash \mathsf{hApp} \ H_1 \ H_2 \equiv_n \mathsf{dApp} \ D_1 \ D_2} \ \mathsf{hodb_app}$$

$$\frac{\Gamma, (\forall k, x \equiv_{n+k} \mathrm{dVar}\ k) \vdash H \equiv_{n+1} D}{\Gamma \vdash \mathrm{hAbs}\ (\lambda x. H) \equiv_n \mathrm{dAbs}\ D} \ \mathrm{hodb_abs}$$

[Wang, Chaudhuri, Gacek, Nadathur; PPDP-13]

DEMO

Prove $\lambda x.x \equiv_0 \lambda.1$ using Hybrid

TODO

$$\frac{ \, \triangleright \langle \; \mathsf{hodb} \; H_1 \; n \; D \; \rangle \quad \, \triangleright \langle \; \mathsf{hodb} \; H_2 \; n \; D \; \rangle }{H_1 = H_2}$$

and

$$\frac{\triangleright \langle \text{ hodb } H \text{ } n \text{ } D_1 \text{ } \rangle \quad \triangleright \langle \text{ hodb } H \text{ } n \text{ } D_2 \text{ } \rangle}{D_1 = D_2}$$

