

Sr H.T No

(An Autonomous Institution)

Regulations: A15

Code No: 5FC04 Date: 06-Aug-zuzz (FIN)

B.Tech II-Year II- Semester External Examination, July/August - 2022 (Supplementary)

DESIGN AND ANALYSIS OF ALGORITHMS (CSE and IT)

Time: 3 Hours Max.Marks:75

Note: a) No additional answer sheets will be provided.

- b) All sub-parts of a question must be answered at one place only, otherwise it will not be valued.
- c) Missing data can be assumed suitably.

ANSWER ANY 5 OUT OF 8 QUESTIONS. EACH QUESTION CARRIES 15 MARKS.

Remember L1 Apply L3 Evaluate L5
Understand L2 Analyze L4 Create L6

		Understand	L2	Analyze	L4	Create	L6			
								BC LL	CO(s)	Marks
1.	a)	complexity.						L2	CO1	[8M]
	b)							L4	CO1	[7M]
2.	a)	Write Divide-And-Complexity of this a	•	cursive Merge	sort algorit	hm and derive	the time	L3	CO2	[8M]
	b)							L3	CO2	[7M]
3.	a)	of knapsack m=15. The profits and weights of the objects are $(P_1,P_2,P_3,P_4,P_5,P_6,P_7)=(10,5,15,7,6,18,3),$ $(W_1,W_2,W_3,W_4,W_5,W_6,W_7)=(2,3,5,7,1,4,1)$ respectively.						L3	CO3	[8M]
	b)							L2	CO3	[7M]
4.	a)	Explain how Matrix programming with s			oblem can b	e solved using	dynamic	L2	CO4	[8M]
	b)	Solve the followin programming n=3,	g instance	of 0/1 KNA	•	•	•	L3	CO4	[7M]
5.	a)	What is a Hamilton using backtracking	•	Explain how	to find Ham	iltonian path a	ind cycle	L2	CO5	[8M]
	b)	Give the 0/1 Knaps using variable – tup	sack LCBB	•	xplain how	to find optimal	solution	L2	CO5	[7M]
6.	a)	Explain the non-dewith non-determinis		algorithms and	d write solut	tion for sorting	problem	L2	CO6	[8M]
	b)	Explain modular Ari						L2	CO6	[7M]
7.	a) b) c)	Discuss the Amortiz Distinguish between Discuss the single-s	n Merge so	rt and quick so	ort.	a suitable exar	nple.	L2 L2 L2	CO1 CO2 CO3	[5M] [5M] [5M]
8.	a) b) c)	Explain Reliability D Show that the comp Differentiate between	outing time	of function Op	timal Binary		s O (n2).	L2 L3 L4	CO4 CO5 CO6	[5M] [5M] [5M]