Clock Tree Synthesis

Workshop Session 6

Presented by Hafiz Wajeh ul Hasan

https://github.com/merledu https://www.merledupk.org MERL Confidential
Disclosed Pursuant to NDA

Contents

- ➤ Clock Tree Synthesis
- ➤ Why Clock Tree Synthesis?
 - Timing
 - Power
 - Signal integrity
- **Solution**
 - Tree
 - H-Tree
 - Grid [Mesh Tree]
 - Spine Tree
- LAB PRACTICE

Clock Tree Synthesis

Clock Tree Synthesis (CTS) is a process which distributes the clock evenly to all sequential elements in a design

It adds buffers and inverters to achieve zero/minimum skew or balanced skew

Clock Tree Synthesis

Why can't the clock be routed like any other net?

> Implications on clock

Timing

Power

Signal integrity etc.

Timing

>Skew

 Clock skew is the difference in the arrival time of a clock signal at two different Flops.

> Jitter

Clock jitter is the deviation of a clock edge from its ideal position in time

>Slew

■ Transition time of the clock-rise/fall time of the clock

>Insertion Delay

• The amount of time taken by the clock signal to travel from source to sinks is called the **insertion delay**

Insertion Delay

The time from the source of the clock to the sink is called insertion delay

Source

Power

$$P_{dyn} = f \cdot C_{eff} \cdot V_{dd}^{2}$$

- The clock capacitance consists of
 - Clock Generation [PLL etc]
 - Clock Elements [Buffers etc]
 - Clock Wires
 - Clock Load Of Sequential Elements

The clock networks are so huge that they require a large percentage of the total chip power.

Signal Integrity

- ➤ Noise can disrupt the clock
 - Irregular clock edges can effect the register operation
- ➤ Slow clock transition
 - Bad t_{cq} , t_{setup} , t_{hold}
- Fast clock transition
 - Power
 - Area

Solution?

- >Trees
 - H-Tree
 - Mesh Tree [Grid]
 - Spine tree

Clock Tree

- Try to make a tree
 - Balance the RC-Delay
- ➤ Challenges ?
 - Excessive power usage
 - Large RC for each net
 - Signal integrity at risk
- Solution?
 - Buffered Tree

Buffered Tree

- ➤ Good slew rates
- Less total switching capacitance
- ► Lower RC Values

H-Tree

- **≻**Advantages
 - The skew in this type of tree is lower
 - Power consumption is tolerable
- ➤ Disadvantages
 - Very low floorplan flexibility

Grid

- ► Advantages
 - Skew is determined by the grid density and not overly sensitive to load position
 - Signals are available across the chip
 - Extreme low skew values
- **→** Disadvantages
 - Power hungry
 - Large wire cap
 - Large routing area

Spine Tree

- >Advantages
 - Small RC delay
 - Floorplan flexibility higher than H-Tree, But lower than Mesh Tree
 - Consumes less power as compared to Mesh Tree/Grid
- ➤ Disadvantages
 - Difficult to balance delays, high skew

A Quick Comparison

Structure	Skew	Cap/area/power	Floorplan Flexibility
H-Tree	Low /medium	Low	Low
Grid	Low	High	High
Spine	High	Medium	Medium

