

COMPUTAÇÃO EVOLUCIONÁRIA ALGORITMOS GENÉTICOS (2)

Cristiano Leite de Castro

crislcastro@ufmg.br

Departamento de Engenharia Elétrica Universidade Federal de Minas Gerais Belo Horizonte, Brasil

Componentes de um AG

- 1. Representação;
- 2. Operadores de Variação:
 - 1. Recombinação e Mutação;
- 3. Modelos de População;
- 4. Mecanismos de Seleção:
 - 1. Seleção dos Pais
 - 2. Seleção dos Sobreviventes (substituição);

Modelos de População

- seja μ =tamanho da população; λ = número de descendentes;
- Modelo Geracional: $(\mu = \lambda)$
 - cada indivíduo vive por exatamente uma geração;
 - todos os pais são substituídos por seus descendentes.
- Modelo Steady-State: $(\mu > \lambda)$
 - apenas uma parte dos pais é substituída pelos λ descendentes;
 - no caso extremo, tem-se apenas 1 filho por geração e assim, 1 membro da população é substituído;
 - Generation Gap:
 - proporção da população a ser substituída;
 - 1.0 para GGA e λ/μ para SSGA.

Componentes de um AG

- Representação;
- 2. Operadores de Variação:
 - 1. Recombinação e Mutação;
- 3. Modelos de População;
- 4. Mecanismos de Seleção:
 - 1. Seleção dos Pais
 - 2. Seleção dos Sobreviventes (substituição);

Seleção dos Pais

- os operadores de seleção funcionam com base somente nas aptidões (*fitness*) individuais das soluções candidatas;
 - isto é, eles são independentes da forma de representação adotada para as soluções;
- é importante fazer a distinção entre:
 - **operador**: responsável por definir as probs. de seleção (PS_i) ;
 - algoritmo: responsável por definir como é feita a amostragem a partir das probs. de seleção.;
- Valor esperado para o número de cópias selecionadas do i-ésimo indivíduo:

$$E(n_i) = \lambda \times PS_i$$

(λ = número de pais a serem selecionados; PS_i = prob. de seleção do i-ésimo)

. Operador de Seleção Proporcional ao Fitness (SPF):

– a probabilidade de seleção PS_i para a i-ésimo indivíduo é

$$PS_i = \frac{f_i}{\sum_{j=1}^{\mu} f_j}$$

- convenção:
 - assume-se maximização da função de fitness (função objetivo);
 - assume-se fitness não-negativo.

Problemas do SPF:

- 1. **convergência prematura**: "super-indivíduos" podem tomar conta da população rapidamente.
- **2. perda de pressão na seleção**: qdo os valores de *fitness* são muito próximos, a seleção tende a tornar-se aleatória a partir de uma distribuição uniforme;
- 3. susceptibilidade a versões deslocadas da função fitness.
- Escalonamento é comumente usado p/ corrigir os itens 2 e 3:
 - Ex: Janelamento (Windowing): $f'_i = f_i \beta$
 - onde f_i é o valor do *fitness* para o *i*-ésimo indivíduo;
 - e β é o pior *fitness* da geração corrente;

Exemplo: susceptibilidade do operador SPF ao deslocalmente da função de aptidão.

• Operador baseado em Ranking:

- tenta remover os problemas do operador SPF por obter as probs. de seleção a partir de valores relativos (não-absolutos) de fitness.
- ranqueia a população de acordo com o *fitness* e calcula as probs.
 com base nesse *ranking*, o qual geralmente varia entre:
 - $\mu 1$ (melhor indivíduo) e 0 (pior indivíduo).
- impõe um *overhead* de ordenação. Porém, esta operação é usualmente simples quando comparada ao tempo gasto para avaliação do *fitness*.

Ranking Linear

$$P_{lin-rank}(i) = \frac{(2-s)}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$$

- parametrizado pelo fator s: $1.0 < s \le 2.0$
 - s determina a inclinação da reta;
 - em GGAs (geracionais) *s* representa o número de cópias a serem selecionadas do indivíduo de melhor *fitness*.
 - $s_{max} = 2$, para que na média o indivíduo de rank mediano seja capaz de ser selecionado pelo menos uma vez.

• Exemplo:

	Fitness	rank	SPF	RL(s=2)	RL(s=1.5)	RL(s=1.1)
Α	1	0	0.1	0	0.167	0.3
В	5	2	0.5	0.67	0.5	0.37
С	4	1	0.4	0.33	0.33	0.33
soma	10		1.0	1.0	1.0	1.0

Ranking Exponencial

$$Pre_i = \frac{1 - e^i}{c} \qquad c = \sum_{j=1}^{\mu} Pre_i$$

- Conforme visto, a pressão imposta pelo *ranking* linear na seleção dos pais é limitada por $s_{max} = 2$;
- Ranking exponencial pode ser usado p/ se obter mais de 2 cópias p/ o indivíduo de melhor fitness;
- fator de normalização c é função do tamanho da população (μ) .
 - ele garante que a soma das probabilidades seja igual a 1.

- Foi mostrado que $E(n_i) = \lambda \times PS_i$;
- Entretanto na prática, como λ é pequeno, o número de cópias selecionadas de cada indivíduo i geralmente não corresponde ao valor esperado $E(n_i)$;
- métodos comumente usados para amostragem de indivíduos a partir das probs. de seleção:
 - 1. Roleta;
 - 2. Amostragem Universal Estocástica (SUS);

Roleta

- indivíduos são mapeados para segmentos de reta contíguos no intervalo [0,1];
- o tamanho do segmento de cada indivíduo é proporcional a sua prob. de seleção;
- Obtenha $a_0 = 0$, $a_i = PS_i + \sum_{k=1}^{i-1} PS_k$ p/ i = 1 ... μ
- um número aleatório r é sorteado e o indivíduo cujo segmento contém r é então selecionado para ser um pai;
 - esse processo é análogo a girar uma Roleta com um único ponto de seleção.
- roda-se a Roleta λ vezes para selecionar λ indivíduos;

Exemplo:

No.	chrom osom e	fitness	fraction of total
1	0100010001	6.82	0.31
2	1100101001	1.11	0.05
3	1100111001	8.48	0.38
4	0101011111	2.57	0.12
5	1100100100	3.08	0.14
	Totals:	22.05	1.00


```
BEGIN
  set current_member = 1;
  WHILE ( current\_member \leq \lambda ) DO
    Pick a random value r uniformly from [0,1];
    set i=1;
    WHILE ( a_i < r ) DO
      set i=i+1;
    0D
    set mating_pool[current_member] = parents[i];
    set current\_member = current\_member + 1;
  OD
END
```

Fig. 3.20. Pseudocode for the roulette wheel algorithm

Amostragem Universal Estocástica (SUS)

- indivíduos são mapeados para segmentos de reta contíguos no intervalo [0,1];
- o tamanho do segmento de cada indivíduo é proporcional a sua prob.
 de seleção;
- obtenha $a_0 = 0$, $a_i = PS_i + \sum_{k=1}^{i-1} PS_k$ p/ i = 1 ... μ
- crie N marcas igualmente espaçadas no intervalo [0,1], tal que a primeira marca (ponto de seleção) corresponde a um número aleatório $r_1 \in [0, 1/\lambda]$. As demais marcas são obtidas, tal que :

$$r_i = r_{i-1} + \frac{1}{\lambda}, \ para \ i = 2 \dots \lambda$$

- selecione λ indivíduos de acordo com as posições das λ marcas.
- Isso é equivalente a rodar a **Roleta** uma única vez com pontos de seleção igualmente espaçados.

SUS

Exemplo:

 $a_i =$

SUS

```
BEGIN
  set current\_member = i = 1;
  Pick a random value r uniformly from [0, 1/\mu];
  WHILE ( current\_member \leq \lambda ) DO
    WHILE ( r \leq a[i] ) DO
       set mating_pool[current_member] = parents[i];
       set r = r + 1/\mu;
      set current\_member = current\_member + 1:
    OD
    set i = i + 1:
  OD
END
```

Fig. 3.21. Pseudocode for the stochastic universal sampling algorithm

 valor esperado para o número de cópias selecionadas do iésimo indivíduo:

$$E(n_i) = \lambda \times PS(i)$$

 $(\lambda = \text{number to be selected}; \quad PS(i) = \text{prob. de seleção})$

. Roleta:

• nem sempre garante que n_i cópias serão selecionadas;

. SUS:

- possui menor variância;
- é computacionalmente mais eficiente
- garante $floor(E(n_i)) \le n_i \le ceil(E(n_i))$

- FPS e *Ranking* confiam em informação global da população (μ e f_i para $i=1...\mu$):
 - isso pode acarretar problemas em implementações paralelizadas;
 - além disso, eles confiam no conhecimento de uma função de *fitness*, a qual nem sempre é conhecida.
 - exemplo: evolução de estratégias em um jogo;
- Seleção por Torneio:
 - não requer informação global da população;
 - pode controlar o mecanismo de pressão na seleção mais facilmente.

. Seleção por Torneio:

- escolha k indivíduos aleatoriamente e selecione o melhor deles;
- k é parâmetro que determina o tamanho do Torneio:
 - Qto maior k, maior a prob. de se selecionar indivíduos com fitness acima da média → maior pressão na seleção.
- Torneio pode ser determinístico ou probabilístico:
 - Determinístico (p=1): a cada torneio, sempre o indivíduo mais apto é selecionado;
- Outras variações:
 - com substituição (with replacement)
 - sem substituição (without replacement) → menor variância;

```
BEGIN
  set current_member = 1;
  WHILE ( current\_member \le \mu ) DO
    Pick & individuals randomly, with or without replacement;
    Select the best of these k comparing their fitness values;
    Denote this individual as i;
    set mating_pool[current_member] = i;
    set \ current\_member = current\_member + 1;
  OD
END
```

Fig. 3.22. Pseudocode for the tournament selection algorithm

Componentes de um AG

- Representação;
- 2. Operadores de Variação:
 - 1. Recombinação e Mutação;
- 3. Modelos de População;
- 4. Mecanismos de Seleção:
 - 1. Seleção dos Pais
 - 2. Seleção dos Sobreviventes (substituição);

Seleção de Sobreviventes

- Reduz da população atual de $\mu + \lambda$ indivíduos para μ indivíduos;
- duas principais abordagens:
 - 1. substituição baseada em Idade:
 - adotada pelo GGA (Geracional);
 - qdo $\lambda < \mu$ (*steady-state*) pode ser implementada como uma fila F.I.F.O. ou como "deleção aleatória";

- 2. substituição baseada em fitness:
 - a seguir;

Seleção de Sobreviventes

2. substituição baseada em fitness:

- todos os λ descendentes são incluídos;
- o fitness é usado para decidir quais dos λ pais serão substituídos;
- a decisão pode ser tomada usando-se os métodos FPS,
 Ranking (+ Roleta ou SUS), Torneio

ou através da

- remoção dos "piores" (genitor): os λ piores pais são substituídos;
 - pode levar a convergência prematura. Por esse motivo, ela é geralmente aplicada a grandes populações ou com a política de não permitir indivíduos duplicados;

Referências

Leitura Recomendada:

- Capítulo 3 do Livro:

A.E. EIBEN, J.E. SMITH, Introduction to Evolutionary Computing
(Natural Computing Series), Springer.

