Homework 2

Jiří Klepl

(10 points) Let φ be a CNF and $C \in \varphi$ a clause in φ and $l \in C$ a literal in C. We say that C is blocked by literal l if for every other clause $D \in \varphi$ which contains $\neg l$ we have that $Res_l(C, D)$ is a tautology (i.e. there is another literal $l_D \in D$ such that $\neg l_D \in C$). Show that φ is equisatisfiable with $\varphi \setminus \{C\}$, i.e. φ is satisfiable if and only if $\varphi \setminus \{C\}$ is satisfiable.

Let α be an assignment over the variables of φ . Then we have the following two options:

- 1. $\neg l_D \in \alpha$ for at least one of the clauses D: then under the assumption $\neg l_D \in \alpha$ it holds that φ and $\varphi \setminus \{C\}$ are equisatisfiable as C is a tautology under the assumption and removing a tautology has no effect on satisfiability.
- 2. $l_D \in \alpha$ for each of the clauses D: We know that l is not present in any clause other than C and all clauses that contain $\neg l$ are tautologies under the assumption $\{l_D|\text{for every }D\}\subseteq\alpha$. If α such that $\neg l\in\alpha$ satisfies φ , then $\alpha'=\alpha\triangle\{l,\neg l\}$ also satisfies φ . This learned fact can be formalized into a clause as follows:

Definition 1 (Learned fact)

$$\bigwedge\{l_D|for\ every\ D\} \to \{l\} \equiv \{\neg l_D|for\ every\ D\} \cup \{l\} \equiv A$$

Then we can easily notice that $A \subseteq C$ and therefore the clause C is a tautology under the assumption $\{l_D|\text{for every }D\} \cup \{l\} \subseteq \alpha \text{ implied by } A \text{ from the original assumption; and, similarly to the first option, this means that <math>\varphi$ and $\varphi \setminus \{C\}$ are equisatisfiable under the assumption $\{l_D|\text{for every }D\} \subseteq \alpha$.

Observation 1.1 The fact A in definition 1 can be directly deduced from the setup; and C is weaker than or equivalent to A. And therefore, C is also a fact.