الأسبوع الثاني

Linear Regression with Multiple Variables

• التعامل مع اكثر من بعد:

- تحدثنا سابقا, عن التعامل مع متغير واحد (قيمة لاكس و نجيب منها قيمة واي) الان نتعامل مع اكثر من متغير
- أكثر من متغير معناها أن البيانات الداخلة لها أكثر معلومة لكل صف , فبدلا من ادخال مساحة البيت لمعرفة سعره ,
 (اكس واحدة) , نقوم بادخال مساحة البيت و عدد غرفه , وعمره, و موقعه , وحالته , ولونه , لتحديد سعره ,
 وهذه الأشياء تسمى features

Multiple features (variables).

_	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
	×I	Xz	×3	*4	9	
	2104	5	1	45	460 7	
	1416	3	2	40	232	M= 47
	1534	3	2	30	315	1 - 1 - 1
	852	2	1	36	178	
N	ntation:	大	1	1	•	

 $\rightarrow n$ = number of features n=

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_i^{(i)}$ = value of feature j in i^{th} training example.

- o فنري ان سعر البيت (Label Y) يتاثر بعدد من العوامل (Features Xs)
 - o عدد الاكسات نسميه n, بينما عدد الصفوف لازال m
 - ٥ عشان منتلغبطش , هنعمل التسمية ديه

 $x_{j}^{(i)} = ext{value of feature } j ext{ in the } i^{th} ext{ training example}$

- الرقم اللي فوق يكون رقم الصف (انهي ريكورد فيهم m) و الرقم اللي تحت هيكون رقم العمود (انهي معلومة فيهم
 n)
 - وقتها الفنكشن , هتكون متعددة الحدود زي كدة , وهنعمل ماتركس للاكسات , وواحدة للثيتات , ونضربهم في
 بعض بعد ما نعمل ترانزبوس لوحدة فيهم
- ليه بنعمل ترانزبوس ؟ لان الثيتا و الاكس اصلا هما فيكتورات (عمود واحد في كذا صف) , فلازم اعمل
 ترانزبوس لواحد فيهم و اضربه في التاني , عشان تكون المصفوفة الاولي صف واحد في 5 عواميد مثلا , والتانية
 زي ما هي 5 صفوف في عمود واحد , يتضربو يبقو رقم واحد بس

For convenience of notation, define
$$x_0 = 1$$
. $(x_0) = 1$ (x_0)

Multivariate linear regression.

- وخد بالك الصيغة القديمة اللي كانت للـ J هيكون فيها شوية تعديل وعثمان مبقاش عامل واحد ونفس المعادلة وخد بالك دلوقتى H بقت فيها ثيتات كتيرة
- لما اعمل تفاضل, هتظل اتش زي هي , وهيموت كل الثيتات التانية عدا الثيتا اللي باعمل تفاضل علي اساسها
 اللي هتتبقي في الاخر

```
\begin{split} \text{repeat until convergence: } \{ \\ \theta_0 &:= \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)} \\ \theta_1 &:= \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)} \\ \theta_2 &:= \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \\ & \dots \\ \} \end{split}
```

عشان كدة ممكن اعمل صيغة عامة زي ديه

```
repeat until convergence: \{ 	heta_j := 	heta_j - lpha rac{1}{m} \sum_{i=1}^m (h_{	heta}(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)} \qquad 	ext{for j} := 0... 	ext{n} \}
```

0 لاحظ ان ثيتا 0 مكانش فيها اكس صفر , بس مفيش مشاكل من وضعه لان اساسا اكس صفر = 1

• اعادة التكبير Rescaling

- لو كانت قيم اكس 1 و اكس اتنين بتدريجات مختلفة , يعني الاول ينتهي عند 5 و التاني 2000 مثلا , هنالقي الكونتورز لرسم الـ J طويلة و رفيعة او العكس , وده هيخلي عملية الـ gradient descent طويلة جدا
 - فالحل اننا نخلي سكيل جميع الاكسات على 1 بس, فنقسم اي قيمة لاكس 1 على القيمة الاقصى لاكس واحد

Feature Scaling

Idea: Make sure features are on a similar scale.

- كدة هيتحول الرسم لعادي , وهتكون قيم اكس كلها بين 0 وواحد والعملية هتكون اسر ع
- كمان لمزيد من الدقة و السرعة فيما بعد , ممكن نطرح كل قيم اكس , ناقص المتوسط (هيتم اعطاؤه او نجيبه احنا)
 على الرينج (الرقم الاكبر ناقص الرقم الاصغر)

Mean normalization

Replace $\underline{x_i}$ with $\underline{x_i - \mu_i}$ to make features have approximately zero mean (Do not apply to $\overline{x_0 = 1}$).

E.g.
$$x_1 = \frac{size - 1000}{2000}$$

$$x_2 = \frac{\#bedrooms - 2}{5}$$

$$-0.5 \le x_1 \le 0.5, -0.5 \le x_2 \le 0.5$$

$$x_1 \leftarrow \frac{x_1 - x_2}{5}$$

$$x_2 = \frac{x_1 + x_2}{5}$$

$$x_3 = \frac{x_4 - x_2}{5}$$

$$x_4 = \frac{x_4 - x_4}{5}$$

$$x_5 = \frac{x_4 - x_5}{5}$$

$$x_6 = \frac{x_6 - x_6}{5}$$

$$x_7 = \frac{x_7 - x_7}{5}$$

$$x_8 = \frac{x_8 - x_8}{5}$$

وده هيخلي غالبا ارقام اكسات كلها بتلعب من 1 لسالب 1, وبشكل عام, مفيش مشكلة لو كان الرقم بين 3 و سالب
 3

• احاول كام مرة ؟ ؟

- من الواضح ان كل ما بنحاول اكتر , قيمة ل بتقل و ديه حاجة كويسة , بس ياتر ى هنحاول كام مرة ؟ ؟
- الرسمة هنا واضح فيها ان كل ما بنزود عدد المحاولات , كل ما قيمة \mathbf{U} هنقل اكتر , بس بعد فترة معينة السلوب بيقرب لصفر , و بيكون فيه عدد ضخم جدا من المحاولات مع فرق بسيط , و هنا لازم نوقف , عشان هيكون ضياع وقت على الفاضى
 - ممكن نوقف بعد 5 او 50 او 5 مليون محاولة , محدش هيقدر يحدد الرقم كام , كل حالة بحالتها

Making sure gradient descent is working correctly.

• تحديد قيمة الفا

و لو زادت قيمة الفا هجري بسرعة بس ممكن اقع في مشكلة اني ازود قيمة الـ \mathbf{J} , ولو مشيت ببطئ وهيكون دقيق بس بطئ جدا وفلازم اختار قيم مظبوطة

- علي اليمين قيمة كبيرة, في النص قيمة صغيرة, على الشمال قيمة معقولة
 - ٥ و ممكن نختار القيم كالتالى:

$$\dots, \underbrace{0.001, \circ \cdot \circ \circ}_{1}, \underbrace{0.01, \circ \cdot \circ}_{2}, \underbrace{0.1, \circ \cdot \circ}_{2}, \underbrace{0.1, \circ \cdot \circ}_{2}, \underbrace{1, \dots}_{2}$$

هات 0.001 و جرب , لو الخطوات صغيرة , اضرب في 3 , يعني 0.003 , لسة صغيرة , اضرب في 3 يعني
 0.01 و هكذا , اول ما الاقى القيمة كبرت ارجع خطوة ورا

- التعديل في عدد البيانات
- ٥ لو عندنا بيت , وسعره يقيم على اساس طوله و عرضه , فممكن نعمل حاجتين
- بدل ما يكون الاعتماد علي عنصرين X1, X2 فهتكون معادلة فيها 3 ثيتا و تغلبنا, نجيب المساحة مكانها باعتبارها تشمل الطول و العرض, وتكون معالة خطية X1 بس
 - اننا نجيب المساحة و تكون بيان اضافي للطول و العرض فيكون فيه X1, X2, X3

• اختيار نوع الدالة

- لاحظ ان النقط الحمرا و هي البيانات, لو همثلها بمعادلة خطية (بناء على المتغير X) فممكن متدينيش الخط المناسب
- فممكن افكر في معادلة تربيعية (بناء علي X, X تربيع), بس المعادلة التربيعية بتؤول انها تنزل تحت و ده غلط عمليا (سعر البيت مش هيقل بزيادة المساحة) فالافضل اخليها معادلة تكعيبية اللي بتطلع لفوق (اس, اكس تربيع, اكس تكعيب) و ده صح منطقيا
 - الكلام اللي فات ده كان علي دالة سعر البيت, بس وارد المعادلة التربيعية تكون مناسبة مثلا لعدد العمال اللي هجيبهم المصنع و المكسب (لو زاد عدد العمل عن المطلوب هيعمل خساير و ده منطقي)
 - ممكن استعين بالمعادلة الجذرية (روت اكس جنب الاكس), وديه بتخلي الرسم (flattered) قدام, وده وارد
 يكون مناسب لنوع معين من المشاكل

Hormal Equation طریقة الـ

o و هي عن طريق الاعتماد علي تفاضل الـ J و مساوتها بالصفر لايجاد قيمة الثيتا المطلوبة

Examples: m = 4.

J	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
$\rightarrow x_0$	x_1	x_2	x_3	x_4	y	_
1	2104	5	1	45	460	٦
1	1416	3	2	40	232	- 1
1	1534	3	2	30	315	- (
1	852	2	1_1	36	178	7
<i>></i>	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	2104 5 1 1416 3 2 1534 3 2 852 2 1	2 30	$\underline{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$	460 232 315 178	
		W X (V+I))	r ·	- dimensial	1estor

٥ و اذا كان لدينا جدول مثل هذا لاكثر من متغير , فبعد مفاضلتها و مساوتها بالصفر ستكون الثيتا كالتالي

$$\theta = (X^T X)^{-1} X^T y$$

- و متنساش ان دایما ماترکس اکسات فیها اول عمود و حاید بس (عشان یتضرب في ثیتا صفر و یعمل نفس قیمتها)
 بعدها قیم اکسات , بینما ماترکس و اي هي فیکتور لقیم و اي تحت بعض
 - أيهما أافضل : الجرادينت و لا النورمال اكواشن :
 - النورمال ميزتها ان مش محتاج تحسب قيمة الفا, و مش هتعمل خطوات كتير, هي خطوة واحدة
 - بس عيبها انها بتكون صعبة و بطيئة جدا مع عدد كبير للخواص n لان الماتركس هتكون مخيفة خاصة لعمل الانفرس, فلو عدد الـ N يقول عن 10 الاف خليك في النورمال, زادت روح للجرادينت
 - كمان فيه خوارزميات (زي linear regression) مش هينفع تشتغل الا بالجرادينت , و خوارزميات تانية ممكن بالنورمال , فلازم تكون عارف الاتتين و تشوف مين مناسب لايه

- أحيانا بتحصل مشكلة في نوع النورمال, ان ماتركس اكس ترانسبوز في اكس تكون singular و معناها ان مش هينفع يتعمل لها انفرس, وده هيلغبط الدنيا
 - غالبا بیکون سبب انها انفرس حاجة من انتین
 - اما يكون فيه عمودين معتمدين علي بعض , يعني فيه مثلاً مساحة البيت بالمتر المربع , ومساحة البيت بالقدم المربع , وده معناه ان فيه عمود كامل يساوي عمود تاني مضروب في فاكتور , وده هيؤدي ان قيمة الماتركس كلها تساوي صفر , فالانفرس هيختفي
- ن عدد الـ m (عدد الصفوف) اقل من عدد الـ n (العواميد او المعلومات عن كل بيت) خاصة لو الفرق كبير, فا اما تمسح شوية عواميد مش مهمة, او تزود بيانات و صفوف, او تشوف نوع تاني

التعلم علي كود برنامج Octave من الملف الخاص به

• مثال عملى : هنجيب دالة الكوست باستخدام اوكتيف

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

- دالة الكوست عبارة عن : واحد علي ضعف عدد السامبل , مضروبة في مجموع مربعات فروق قيمة الاتش من قيمة الواي
 - قيمة الاتش عبارة حاصل ضرب الاكسات في الثيتا
 - الأول هنكتب الكود في ملف خارجي بامتداد m وهو:

```
function J = costfunctionJ(x,y,theta)

m = size(x,1);

predictions = x*theta;

sgrerrors = (predictions -y).^2;

J = (1/(2*m))* sum(sgrerrors );
```

- ٥ اول سطر تعريف للفنكشن , والمدخلات و المخرج
- ٥ تاني حاجة باعرف الفنكشن , ان الأم هي عدد صفوف الماتركس اكس اللي هدخلها
- بعدها باعمل ماتركس جديدة اسمها بريدكشنز (اللي هي كانها قيم H), وهي حاصل ضرب ماتركس اكس في
 ماتركس ثيتا
- لاحظ ان قيم اكس, انا اضفت عليها عمود على الشمال (قيمة XO) اللي هو وحايد, عشان لما يتضرب في ثيتا 0
 يكون نفس القيمة, ولما قيم اكس تتضرف في ثيتا واحد يدونا الرقم المطلوب
 - ٥ ضرب المصفوفتين هيعملنا مصفوفة جديدة اللي هي البريديكشن
 - دلوقتی نطرح مصفوفة البریدیکشن من مصفوفة الواي عشان اجیب الفرق
- بعدها اعمل سكوير لقيمهم بس (مش ماتركس سكوير) عشان كدة عملت بوينت قبل ما اعمل سكوير, عشان اقوله
 عايز سكوير لقيمهم
 - o اخر حاجة اني اضرب 1 علي ضعف الـ m , مضروبة في مجموع كل قيم الماتركس الاخيرة

• دلوقتي ندخل البيانات

- 1 1
- 1 2
- 1 3

- >> theta = [0;1] عشان القيم , بس بفرض اننا مش عارفينها , وديه القيم اللي ممكن قدام نغيرها عشان [0;1]
 خيب افضل قيم ليها
- >> j = costfunctionJ(x,y,theta) جي المناكشن داخل فيها التلات حاجات دول , يجيبلي جي j = costfunctionJ(x,y,theta)
 و لو غيرنا اي قيمة في اكسات او وايات او ثيتات هتلاقي الناتج اختلف

تتبع الاختبار الاول

• هي مجموعة من الملفات المرتبطة ببعض, ويقودها الملف الرئيسي ex1 والذي يذهب الي باقي الملفات و الفنكشنز

Ex1()	
%% Machine Learning Online Class - Exercise 1: Linear Regression	كل هذه مقدمة يشرح فيها المطلوب
% Instructions % % This file contains code that helps you get started on the % linear exercise. You will need to complete the following functions % in this exericse: % % warmUpExercise.m % plotData.m % gradientDescent.m % computeCost.m % gradientDescentMulti.m % computeCostMulti.m % featureNormalize.m % normalEqn.m % For this exercise, you will not need to change any code in this file, % or any other files other than those mentioned above. % % x refers to the population size in 10,000s % y refers to the profit in \$10,000s % % Initialization	
clear ; close all; clc	لتصفير البيانات كلها
%% ===================================	لطباعة كلمة كذا و كذا

% Complete warmUpExercise.m	للذهاب للفنكشن وارم اب			
<pre>fprintf('Running warmUpExercise \n'); fprintf('5x5 Identity Matrix: \n'); warmUpExercise()</pre>				
warmUpExercis	se()			
function A = warmUpExercise() A = eye(5); end	اسم الدالة, وتكوين دالة ادينتيتي 5 في 5			
Ex1()				
fprintf('Program paused. Press enter to continue.\n'); pause;	لكتابة الجملة, ثم التوقف			
fprintf('Plotting Data\n')	كتابة الجملة			
data = load('ex1data1.txt');	تحميل الملف اللي فيه الداتا			
X = data(:, 1); y = data(:, 2);	الاكس فيكتور يساوي جميع الارقام اليسري , والواي تساوي الارقام اليمني			
m = length(y); % number of training examples	الإم رقم يساوي عدد صفوف الواي او الاكس			
plotData(X, y);	نذهب لفنكشن الرسم			
PlotData()				
function plotData(X, y)	اسم الدالة و متغيراتها			
plot (X, y, 'rx', 'MarkerSize', 10);	لرسم الدالة, ورقم 10 يعتبر حجم النقطة, و ار اكس و الماركر متغيرات لتحديد الرسم			
ylabel('Profit in \$10,000s'); xlabel('Population of City in 10,000s');	لكتابة العناوين علي محوري اكس وواي			
figure; % open a new figure window	لاظهار الرسم			
Ex1()				
X = [ones(m, 1), data(:,1)]; % Add a column of ones to x	لاضافة عمود بعدد ام علي يسار الاكس بحيث يكون مصفوفة ام في 2 مش في 1			
theta = zeros(2, 1); % initialize fitting parameters	عمل ثيتا مصفوفة اصفار 2 في 1			
iterations = 1500; alpha = 0.01;	عدد المحاولات, وقيمة الفا			

fprintf('\nTesting the cost function\n')	اظهار كلام
J = computeCost(X, y, theta);	حساب الجي بالدالة ديه
ComputeCost()	
function J = computeCost(X, y, theta)	تعريف الدالة
m = length(y); J = 0;	تحديد قيمة ام, وقيمة اولية للجي
Hypothesis: $h_{ heta}(x)= heta_0+ heta_1x$ Parameters: $ heta_0, heta_1$ Cost Function: $J(heta_0, heta_1)=rac{1}{2m}\sum\limits_{i=1}^m \left(h_{ heta}(x^{(i)})-y^{(i)} ight)^2$ Goal: $\min_{ heta_0, heta_1} ze J(heta_0, heta_1)$	هنا المعادلة المطلوبة
f = (X * theta);	هنعمل مصفوفة لضرب قيم اكس في ثيتا
g = f-y;	هنعمل مصفوفة تانية لطرق قيمة المصفوفة اللي عملناها من واي
h = g.^2;	مصفوفة جديدة لتكوين مربعات قيم المصفوفة اللي فاتت
o = sum(h);	هنجمع قيم المصفوفة علي بعض
J = o / (2*m)	اخيرا, هنقسم قيمة المجموع علي 2 في ام
Ex1()	
fprintf('With theta = [0 ; 0]\nCost computed = %f\n', J); fprintf('Expected cost value (approx) 32.07\n');	رغي
J = computeCost(X, y, [-1; 2]);	حساب الجي مرة اخري بنفس الدالة
fprintf('\nWith theta = [-1 ; 2]\nCost computed = %f\n', J); fprintf('Expected cost value (approx) 54.24\n'); fprintf('Program paused. Press enter to continue.\n'); Pause; fprintf('\nRunning Gradient Descent\n')	رغي
theta = gradientDescent(X, y, theta, alpha, iterations);	تعريف الفنكشن الي هنروحلها
gradientDescent	()

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)	اسم الدالة, و هيطلع منها معلومتين, مصفوفة ثيتا النهائية (2 في 1), وجي هيستوري, وديه ماتريكس عمود واحد فيها كل قيم جي اللي طلعت			
<pre>m = length(y); J_history = zeros(num_iters, 1);</pre>	تحديد ام, و تكوين جي هيستوري, بحيث يكون عدد صفوفها هو عدد المحاولات اللي تم تحديده من شوية 1500			
for iter = 1:num_iters	نبدا الفور , ولعدد 1500 مرة			
$egin{aligned} heta_0 &:= heta_0 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i) \ heta_1 &:= heta_1 - lpha rac{1}{m} \sum_{i=1}^m ((h_ heta(x_i) - y_i) x_i) \end{aligned}$	هنا الدالة اللي هنمشي عليها , الثيتا هي الثيتا الاصلية , د الف علي ام , مضروبة في مجموع قيم اتش ناقص واي و ثيتا واحد زيها بس المجموع مضروب في اكس 1 الاول			
th1 = theta(1,1); th2 = theta(2,1);	تحديد متغيرين ياخدو قيم ثيتا من المصفوفة			
f = (X * theta);	مصفوفة جديدة ضرب اكس في ثيتا (97*1)			
g1 = f-y; o1 = sum(g1); l1 = (alpha * o1) / m;	طرحها من واي (97*1) مجموعها (رقم) اضرب في الفا علي إم			
s2 = X(:,2); g2 = (f-y).*s2; o2 = sum(g2); l2 = (alpha * o2) / m;	مصفوفة تشيل قيم اكس علي اليمين من غير وحايد (97*1) اطرح و اضرب القيم فيها اجيب محموعها و اقسمه علي ام في الفا			
th1 = th1 - I1; th2 = th2 - I2; theta = [th1; th2];	اطرح كل ده من الثيتات, واعمل ابديت لمصفوفة الثيتا			
<pre>J_history(iter) = computeCost(X, y, theta); end</pre>	احسب قيمة ثيتا بالمعادلة القديمة, واحطها في جي هيستوري, واقفل الفور			
Ex1()				
fprintf('Theta found by gradient descent:\n'); fprintf('%f\n', theta); fprintf('Expected theta values (approx)\n'); fprintf(' -3.6303\n 1.1664\n\n');	عرض قيمة الثيتا			
hold on; % keep previous plot visible	سيب الرسمة القديمة متقفلهاش			

plot(X(:,2), X*theta, '-') legend('Training data', 'Linear regression') hold off % don't overlay any more plots on this figure	لرسم الخط البيست فيت لتحديد القيم المكتوبة خلاص اقفل الرسمة
<pre>predict1 = [1, 3.5] *theta; fprintf('For population = 35,000, we predict a profit of %f\n', predict1*10000); predict2 = [1, 7] * theta; fprintf('For population = 70,000, we predict a profit of %f\n', predict2*10000);</pre>	هنطبق الثيتا, عن طريق ضرب رقم 1, و 3.5 في الثينتين, و نشوف قيمة الواي كام, ونطبق كمان مر, ونعرض النتايج
fprintf('Program paused. Press enter to continue.\n'); pause;	رغي و التحضير لعرض الرسم المصور لثيتا
fprintf('Visualizing J(theta_0, theta_1)\n')	
theta0_vals = linspace(-10, 10, 100); theta1_vals = linspace(-1, 4, 100);	هنعمل قيم كتيرة للثيتا 0 و ثيتا 1, عن طريق فنكشن بتعمل فيكتور, وهي عدد 100 رقم (الرقم الايمن) بيدا من سالب 10 (الايسر) و ينتهي عند 10 (الاوسط) و زيها اللي تحت
J_vals = zeros(length(theta0_vals), length(theta1_vals));	هنعمل مصفوفة اصفار , هيكون بعديها طولي الرقمين اللي فوق , يعني 100*100
<pre>for i = 1:length(theta0_vals) for j = 1:length(theta1_vals)</pre>	هنملي المصفوفة الكبيرة 100*100, بقيمة كوست كل مرة, بحيث كل قيمة نعوض فيها بمقدار ثيتا صفر, وثيتا 1 و الاكس و الواي الثابتين, ونملي بيها المصفوفة الكبيرة
J_vals = J_vals';	هنعمل تر انزبوس للمصفوفة الكبيرة, لان الرسام مش هيعرف يتعامل معاها كدة
figure; surf(theta0_vals, theta1_vals, J_vals) xlabel('\theta_0'); ylabel('\theta_1');	الدالو سريف بترسم ثلاثي الابعاد , وهنحط قيم ثينتين , ومع مكتبة الجي
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20)) xlabel('\theta_0'); ylabel('\theta_1'); hold on;	لرسم الدوائر البيضاوية
plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);	لتحديد موضع الثيتا النموذجية