Advanced Linear Models

J. Savoy Université de Neuchâtel

lan H. Witten, Eibe Frank: *Data Mining. Practical Machine Learning Tools and Techniques*. Morgan Kaufmann, 2005.

Christopher M. Bishop: *Pattern Recognition and Machine Learning*. Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman: *The Elements of Statistical Learning*. Springer, New York, 2009.

- Simple Winnow
- Variants of Winnow

A relatively simple solution when facing with numerous binary attributes. We denote by *m* the number of features / attributes.

The decision is binary (two classes).

We want to determine a linear boundary (e.g., line, plan, hyperplan) between the two classes.

This learning scheme is related to the Perceptron (linear boundary, but additive learning (here multiplicative learning)).

N. Littlestone: Learning Quickly When Irrelevant Attributes Around: A New Linear-threshold Algorithms, *Machine Learning*, 1988, 285-318.

We represent each example by a binary vector of size m. We denote by a_{ji} the binary value of the *ith* attribute (feature) for the *jth* instance (or A_i).

$$A_j = [a_{j1}, a_{j2}, ..., a_{jm}] = \{0,1\}^m$$

Each instance can be viewed as a point in a *m*-dimensional cube.

We must split this *m*-space into two distinct regions (classes) using a linear boundary.

Example

With two species of iris, separation according to the length and width of the petals.

Is it possible?
How to find the linear boundary?

The idea is to define a hyperplan (or simply a line in 2-D) that can separate the two classes.

This border is presented by a vector of weights (one nonnegative weight per attribute) to be learned

$$W = [w_1, w_2, ..., w_m]$$

For each instance A_j , we can compute the "distance" to the border and compare it to a predefined threshold (θ)

Decision:

Classify in Class 1 if

$$d_j = \sum_{i=1}^n w_i \cdot a_{ji} > \theta$$

Geometrical View

The vector W of weights $W = [w_1, w_2, ..., w_m]$ is the normal vector of the separating hyperplan. This vector indicates the perpendicular direction to the (tangent) plan (at a given point).

Usually, a plan is defined by a point and the normal vector.

Why useful?

Geometrical View

$$\overrightarrow{x_0} = \overrightarrow{OP_0} \quad and \ \overrightarrow{x} = \overrightarrow{OP}$$

Is P on the plane?

Easy to answer with the normal vector

$$\vec{w} \cdot (\vec{x} - \vec{x}_0) = 0$$

$$\vec{w} \cdot \vec{x} - \vec{w} \cdot \vec{x}_0 = 0$$
 with $b = -\vec{w} \cdot \vec{x}_0$

$$\vec{w} \cdot \vec{x} + b = 0$$

Winnow: Learning

Learning means modifying the weights of the vector W. We only learn from misclassified instances (do nothing when we predict the correct decision)

If the predicted class in incorrect

```
If the predicted class in incorrect if A_j belongs to Class 1 for each a_{ji} = 1, multiply w_i by \alpha (promotion) otherwise for each a_{ii} = 1, divide w_i by \alpha (demotion)
```

This is a *mistake driven* approach.

The user must specify the value for α (> 1) and θ . Start with w_i = constant (e.g., 1)

Use our weather problem

We specify the value for $\alpha = 2$ and $\theta = 2$ (e.g., half of the mean number of $a_{ji} = 1$).

Start with w_i = constant = 1.

But the features are not binary!

Transform them into (many) binary features

Outlook	Temperature	Humidity	Windy?	Play?
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no ¹²

ID	sun? o	over'	? rain?	hot? mild? cool?			hig nor	jh? m?	Windy?	Play?
A1	1	0	0	1	0	0	1	0	0	0
A2	1	0	0	1	0	0	1	0	1	0
A3	0	1	0	1	0	0	1	0	0	1
A4	0	0	1	0	1	0	1	0	0	1
A5	0	0	1	0	0	1	0	1	0	1
A6	0	0	1	0	0	1	0	1	1	0
A7	0	1	0	0	0	1	0	1	1	1
A8	1	0	0	0	1	0	1	0	0	0
A9	1	0	0	0	0	1	0	1	0	1
A10	0	0	1	0	1	0	0	1	0	1
A11	1	0	0	0	1	0	0	1	1	1
A12	0	1	0	0	1	0	1	0	1	1
A13	0	1	0	1	0	0	0	1	0	1 ₁₃
A14	0	0	1	0	1	0	1	0	1	0

We specify the value for α = 2 and θ = 2 Start with w_i = constant = 1

W	1	1	1	1	1	1	1	1	1	
A1	1	0	0	1	0	0	1	0	0	0

Decision: 1 + 1 + 1 = 3 > 2, decision Class 1. Incorrect Divide by $\alpha = 2$

W	0.5	1	1	0.5	1	1	0.5	1	1	
A11	1	0	0	0	1	0	0	1	0	1

Decision: 0.5 + 1 + 1 = 2.5 > 2, decision Class 1. Correct₁₄

Winnow: Example

. . .

W	0.5	1	1	0.5	1	1	0.5	1	1	
A6	0	0	1	0	0	1	0	1	0	0

Decision: 1 + 1 + 1 = 3 > 2, decision Class 1. Incorrect Divide by $\alpha = 2$

W	0.5	1	0.5	1	1	0.5	0.5	0.5	0.5	
A14	0	0	1	0	1	0	1	0	1	0

. . .

We need to learn from all training examples.

The order of the presentation may have an impact on the quality of the resulting model. (why not a random order?) (one epoch = set of all training examples)

Consider many epochs?
until we have a perfect separation
or no improvement...

No guarantee that a linear boundary exists between the two classes...

- Simple Winnow
- Variants of Winnow

The (unbalanced / simple) Winnow algorithm does not include negative weights.

In some applications, this could be a problem

Replace the vector W by two vectors, W⁺ and W⁻.

The decision rule is

Classify in Class 1 if m

$$d_j = \sum_{i=1}^{n} (w_i^+ - w_i^-) \cdot a_{ji} > \theta$$

Modifying the weights of the vector W⁺ and W⁻ We still only learn from misclassified instances

```
If the predicted class in incorrect if A_j belongs to Class 1 for each a_{ji} = 1, multiply w^+_i by \alpha, divide w^-_i by \alpha otherwise for each a_{ji} = 1, divide w^+_i by \alpha, multiply w^-_i by \alpha
```

The weights w_i^+ and w_i^- are non-negative. Instead of dividing by α , we can multiply by β , another user-defined parameter

Balanced Winnow: Example

We specify the value for $\alpha = 2$ and $\theta = 2$ Fix $w_i^+ = constant = \theta / 2$ and $w_i^- = constant = \theta / 4$

W+	1	1	1	1	1	1	1	1	1	
W-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
A3	0	1	0	1	0	0	1	0	0	1

Decision: (1-0.5) + (1-0.5) + (1-0.5) = 1.5 > 2, decision Class 0. Incorrect

W+	1	2	1	2	1	1	2	1	1	
W-	0.5	0.25	0.5	0.25	0.5	0.5	0.25	0.5	0.5	
A12	0	1	0	0	1	0	1	0	1	1

It will be important that the boundary is, when possible, not too close to some points (instances).

Use two boundaries, with the decision rule

Class 1 if
$$\sum_{i=1}^{m} w_i \cdot a_{ji} > \theta^+$$

Class 0 if
$$\sum_{i=1}^{m} w_i \cdot a_{ji} < \theta^-$$

incorrect if the sum is between the two limits

When we have more than two classes?

Let *r* the number of possible assignments.

Maintain non-negative weights (to be learned).

We have *r* vectors W, one for each class.

Learning: mistake-driven learning.

Multiplicative updates

Each class is represented by a vector of m (features) + 1 for the ith class: $W^i = [w^i_0, w^i_1, w^i_2, ..., w^i_m]$

Each vector Wⁱ is initialized with wⁱ_j = 1 wⁱ₀ is the bias (with the corresponding feature always = 1)²²

Each instance is represented by a vector X of size m + 1 (the number of features + 1)

$$X = [1, x_1, x_2, ..., x_m]$$

These values x_j can take any value in [0,1]

and with $x_0 = 1$

Decision:

The predicted class t for a given instance X is

Arg $Max_i X \cdot W^i$ over the i = 1,, r possible class

Learning:

Present the training set in a random order, and repeat this epoch s times (e.g., s = 10)

With t the correct target class and p the predicted class, α the positive learning constant,

If the predicted class *p* in incorrect (we expect *t*)

$$w_j^t = w_j^t \cdot (1 + \alpha \cdot x_j)$$
 # increase the weights $w_j^p = w_j^p / (1 + \alpha \cdot x_j)$ # decrease the weights

Mesterharm C., A Multi-class Linear Learning Algorithm Related to Winnow. Advances in Neural Information Processing Systems, 12, 200, p. 519-525 Schler J., Koppel, M., Argamon, S., Pennebacker, J., Effects of Age and Gender on Blogging. Processing AAAI, 2005

Multi-Class Winnow: Example

Available examples

ID	F1	F2	F3	F4	F5	F6	Class
1	0.5	0.01	0.45	0.02	0.25	0.02	1
2	0.3	0.02	0.52	0.05	0.3	0.09	1
3	0.25	0.03	0.49	0.09	0.26	0.05	1
4	0.7	0.04	0.39	0.05	0.32	0.03	1
5	0.02	0.05	0.47	0.04	0.31	0.03	1
6	0.03	0.5	0.12	0.22	0.02	0.04	2
7	0.01	0.45	0.2	0.18	0.09	0.03	2
8	0.06	0.54	0.18	0.17	0.11	0.01	2
9	0.05	0.6	0.09	0.21	0.09	0.05	2
10	0.02	0.65	0.26	0.16	0.07	0.03	2
11	0.2	0.1	0.01	0.5	0.31	0.02	3
12	0.1	0.3	0.02	0.48	0.37	0.07	3

Multi-Class Winnow: Example

Example #8

ld	F1	F2	F3	F4	F5	F6	
8	0.06	0.54	0.18	0.17	0.11	0.01	Class=2
W1	1	1	1	1	1	1	Bias 0
W ²	1	1	1	1	1	1	Bias 1
M_3	1	1	1	1	1	1	Bias 2

Predict: Class 3 (Arg max = 3.07)

Update: $(\alpha = 2)$

Incorrect decision:

decrease the predicted class (W³) increase the correct class (W²) no change for the rest

Example #8

For W²:
$$w_i = w_i \cdot (1 + \alpha \cdot x_i)$$
 # 1 * (1+2*0.06) = 1.12

For W³:
$$w_i = w_i / (1 + \alpha \cdot x_i)$$
 # 1 / (1+2*0.06) = 0.89

ld	F1	F2	F3	F4	F5	F6	
8	0.06	0.54	0.18	0.17	0.11	0.01	Class=2
W 1	1	1	1	1	1	1	Bias 0
W 2	1.12	2.08	1.36	1.34	1.22	1.02	3.00
W 3	0.89	0.48	0.74	0.75	0.82	0.98	0.67

With the new weights: Prediction: Class 2 (Arg max = 4.81 {1.07, 4.81, 1.34})

- Linear separating (hyper)plan are well-known approaches
- Simple model with two classes, variants with more than two classes
- Learning: the weights of the boundary (hyper)plan
- Other new idea: repeat the learning process (epoch)
- Linear separable? not always the case (stop when no real improvement)
- Not so clear to explain the proposed decision...


```
With r classes, and
  with t the correct class and o the output class,
       \alpha the positive learning constant,
  If the predicted class t in incorrect (we expect o)
       \mathbf{W}_{i}^{t} = \mathbf{W}_{i}^{t} \cdot \alpha (\mathbf{x}_{i}^{o} - \mathbf{x}_{i}^{t})
   then normalize the weights sum_i (w_i^t) = 1
When x_i^i are in \{0,1\}
  and x_i^o = 1, x_i^t = 0, we multiply by \alpha
  and x_i^o = 0, x_i^t = 1, we divide by \alpha
  otherwise no change
```

Mesterharm C., A Multi-class Linear Learning Algorithm Related to Winnow. Advances in Neural Information Processing Systems, 12, 200, p. 519-525