KATTAR NEET (2026)

Physical Chemistry By Amit Mahajan Sir

Ionic Equilibrium

- **Q1** Conjugate acid of PO_4^{-3} is:
 - (A) H₃PO₄
- (B) $H_2 PO_4^-$
- (C) HPO_{4}^{-2}
- (D) HPO_3^-
- Q2 At infinite dilution, the percentage ionisation for both strong and weak electrolytes is;
 - (A) 1%
- (B) 20%
- (C) 50%
- (D) 100%
- Q3 The dissociation constants of HCN and HOCl are 5×10^{-10} and 2×10^{-4} respectively. The equilibrium constant for the reaction

$$CN^- + HOCl \rightleftharpoons OCl^- + HCN$$
 is:

- (A) 4×10^5
- (B) 2.5×10^{-6}
- (C) 4×10^{-5}
- (D) 1×10^6
- Q4 1L of a solution of pH = 2 and 9 L of a solution of pH = 3 are mixed then pH of final solution is: $(\log 1.9 = 0.28)$
 - (A) 0.72
- (B) 1.72
- (C) 2.72
- (D) 3.72
- Q5 The pH of 0.01 M of HCOOH is:

 $[K_a \text{ of HCOOH} = 2 \times 10^{-4}, \log 1.41 = 0.15]$

(A) 2

- (B) 3.15
- (C) 3.5
- (D) 2.85
- **Q6** The solubility of CaF_2 is 2×10^{-4} moles/litre. its solubility product (K_{sp}) is;
 - (A) 2.0×10^{-4}
 - (B) 4.0×10^{-3}
 - (C) 8.0×10^{-12}
 - (D) 3.2×10^{-11}
- Q7 10⁻⁶ M NaOH is diluted by 100 times. The pH of diluted base is:
 - (A) Between 6 and 7

- (B) Between 10 and 11
- (C) Between 7 and 8
- (D) Between 5 and 6
- **Q8** K_a for hydrofluoric acid is 6.9×10^{-4} . What is the equilibrium constant K for the following reaction?

$$F_{(aq.)}^- + H_2 O_{(l)} \rightleftharpoons HF_{(aq.)} + OH_{(aq.)}^-$$

- (A) 6.9×10^{-11}
- (B) 1.4×10^{-11}
- (C) 2.6×10^{-9}
- (D) 8.3×10^{-6}
- Q9 Match the following

	Column I (Sample)		Column II (pH)		
	(A)	Basic Buffer	(I)	$\mathrm{pk_a} + \log rac{\mathrm{[salt]}}{\mathrm{[acid]}}$	
	(B)	Salt of strong acid and weak base	(II)	$\frac{pk_w \! + \! pk_a \! + \! logC}{2}$	
	(C)	Salt of weak acid and strong base	(III)	$\frac{pk_w - pk_b - logC}{2}$	
	(D)	Acid Buffer	(IV)	$14-\mathrm{pk_b} \ -\lograc{\mathrm{[salt]}}{\mathrm{base}}$	

Choose the **correct** answer from the options given below.

- (A) A-III, B-I, C-IV, D-II
- (B) A-IV, B-III, C-II, D-I
- (C) A-III, B-IV, C-II, D-I
- (D) A-IV, B-III, C-I, D-II
- **Q10** The precipitate of CaF_2 ($K_{sp} = 1.7 \times 10^{-10}$) is obtained by mixing equal volumes of which of the following?
 - (A) 10^{-4} M Ca²⁺ + 10^{-4} M F⁻
 - (B) 10^{-2} M Ca²⁺ + 10^{-3} M F⁻
 - (C) 10^{-5} M Ca²⁺ + 10^{-3} M F⁻
 - (D) 10^{-3} M Ca²⁺ + 10^{-5} M F⁻

- **Q11** If the degree of ionization of water be 1.8×10^{-9} at 298 K. Its ionization constant will be
 - (A) 1.8×10^{-16}
 - (B) 1×10^{-14}
 - (C) $1 imes 10^{-16}$
 - (D) 1.67×10^{-14}
- Q12 When a solution of benzoic acid was titrated with NaOH, the pH of the solution when half the acid neutralized was 4.2. Dissociation constant of the acid is
 - (A) 6.31×10^{-5}
 - (B) $3.\,2\times10^{-5}$
 - (C) 8.7×10^{-8}
 - (D) 6.42×10^{-4}
- Q13 10^{-2} mole of NaOH was added to 10 litre of water. The pH will change by
 - (A)3

(B) 4

(C)7

- (D) 11
- Q14 pH of Ba(OH)₂ solution is 12. Its solubility product
 - (A) $10^{-6}M^3$
 - (B) $4 \times 10^{-6} M^3$
 - (C) $0.5 \times 10^{-7} M^3$
 - (D) $5 \times 10^{-7} M^3$
- Q15 The hydrolysis constant for ZnCl₂ will be; Where K_b is effective dissociation constant of base Zn²⁺

- $\begin{array}{ll} \text{(A)} \ K_h = \frac{K_w}{K_b} & \text{(B)} \ K_h = \frac{K_w^2}{K_b^2} \\ \text{(C)} \ K_h = \frac{K_w^2}{K_b} & \text{(D)} \ K_h = \frac{K_w}{K_w^2} \end{array}$
- Q16 The strongest Bronsted base in the following anion is
 - (A) ClO^-
- (B) ClO_2^-
- (C) ClO_3^-
- (D) ClO_4^-
- Q17 Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: $BaCO_3$ is more soluble in HNO_3 than in plain water.

- Reason R: Carbonate is a weak base and reacts with the H⁺ from the strong acid, casuing the barium salt to dissociate.
- In the light of the above statements, choose the correct answer from the options given below:
- (A) A is true but R is false.
- (B) A is false but R is true.
- (C) Both A and R are true and R is the correct explanation of A.
- (D) Both A and R are true but R is NOT the correct explanation of A.
- **Q18** Dissociation constant of a weak acid is 1×10^{-4} . Equilibrium constant of its reaction with strong base is
 - (A) 1×10^{-4}
 - (B) 1×10^{10}
 - (C) 1×10^{-10}
 - (D) 1×10^{14}
- Q19 The pH value of 0.1 M HCl is approximately 1. What will be the approximate pH value of 0.05 M H₂SO₄?
 - (A) 0.05
- (B) 0.5

(C)1

- (D) 2
- **Q20** Which one has pH = 12?
 - (A) 0.01M KOH
- (B) 1M KOH
- (C) 1N NaOH
- (D) 1M $Ca(OH)_2$
- **Q21** At 90°C pure water has $[H_3O^+] = 10^{-6} M$, the value of K_w at this temperature will be;
 - (A) 10^{-6}
- (B) 10^{-12}
- $(C) 10^{-14}$
- (D) 10^{-8}
- Q22 Any precipitate is formed when
 - (A) Solution becomes saturated
 - (B) The value of ionic product is less that than the value of solubility product
 - (C) The value of ionic product is equal to the value of solubility product
 - (D) The value of ionic product is greater than the value of solubility product
- **Q23** The solubility product of BaSO₄ is 1.5×10^{-9} . The precipitation in a 0.01 M Ba²⁺ solution will

start, on adding H₂SO₄ of concentration;

- (A) $1.5 \times 10^{-9} \mathrm{M}$
- (B) $1.5 \times 10^{-8} M$
- (C) $1.5 \times 10^{-7} M$
- (D) $1.5 \times 10^{-10} \mathrm{M}$
- Q24 Ionic product of water increases, if
 - (A) Pressure is reduced
 - (B) H⁺ is added
 - (C) OH is added
 - (D) Temperature increases
- Q25 Which hydroxide will have lowest value of solubility product at normal temperature $(25^{\circ}\mathrm{C})$
 - (A) $Mg(OH)_2$
- (B) $Ca(OH)_2$
- (C) $Ba(OH)_2$
- (D) $Be(OH)_2$
- Q26 Which of the following salts undergoes hydrolysis?
 - (A) CH_3 COONa
- (B) KNO_3
- (C) NaCl
- (D) $K_2 SO_4$
- Q27 The pH of an aqueous solution of 0.1M solution of a weak monoprotic acid which is 1% ionised is;
 - (A)1

(B) 2

- (C)3
- (D) 11
- **Q28** An example of a Lewis acid is
 - (A) NaCl
- (B) H₂O
- (C) AlCl₃
- (D) NH_3
- Q29 Review the equilibrium and choose the correct

$$HClO_4 + H_2O \rightleftharpoons H_3O^+ + ClO_4^-$$

- (A) $HClO_4$ is the conjugate acid of H_2O
- (B) H_3O^+ is the conjugate base of H_2O
- (C) $H_3\,O$ is the conjugate acid of $H_3\,O^+$
- (D) ClO_4^- is the conjugate base of $HClO_4$
- **Q30** If α is the degree of ionization, C the concentration of a weak electrolyte (HCN) and Ka the acid ionization constant, then the correct relationship between α , C and K_a is:

$$^{ extsf{(A)}}lpha^2=\sqrt{rac{ extsf{K}_{
m a}}{ extsf{C}}}$$

(B)
$$lpha^2=\sqrt{rac{ ext{C}}{ ext{K}_a}}$$

(C)

$$lpha = \sqrt{rac{
m K_a}{
m C}}$$

$$lpha = \sqrt{rac{ ext{K}_{ ext{a}}}{ ext{C}}} \qquad \qquad lpha = \sqrt{rac{C}{K_a}}$$

- Q31 The pH of 0.01 M NH₄Cl solution will be [Given: K_b of NH₄OH = 10^{-5}]
 - (A) 8.5
- (B) 6.5
- (C) 5.5
- (D) 11.5
- Q32 Given below are two statements:

Statement I: In aqueous solution H⁺ may exist as $H_5O_2^+$

Statement II: Autoprotolysis constant of water increases with increase in temperature.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (A) Statement I is correct but Statement II is incorrect.
- (B) Statement I is incorrect but Statement II is correct.
- (C) Both Statement I and Statement II are correct.
- (D) Both Statement I and Statement II are incorrect.
- Q33 If the solubility of $Ni(OH)_2$ in water is S molL⁻¹ then the expected solubility of Ni(OH)2 in a buffer solution of pH = 13 will be
 - (A) $200 S^3 M$
- (B) $50 S^3 M$
- (C) $100 S^3 M$
- (D) $400 S^3 M$
- Q34 When equal volume of following solutions are mixed precipitation of AgCl ($K_{sp} = 1.8 \times 10^{-18}$) will occure in which option?
 - (A) 10^{-9} M Ag⁺ and 10^{-9} M Cl⁻
 - (B) 10^{-7} M Ag⁺ and 10^{-7} M Cl⁻
 - (C) 10^{-5} M Ag⁺ and 10^{-5} M Cl⁻
 - (D) 10^{-3} M Ag⁺ and 10^{-3} M Cl⁻
- Q35 If dissociation constant (Ka) of 0.1 M HA is 4×10^{-6} , then the dissociation constant of A⁻ will be;
 - (A) 2.5×10^{-9}
 - (B) 5×10^{-8}
 - (C) 2.5×10^{-10}
 - (D) 5×10^{-9}

- Q36 A certain weak acid has a dissociation constant 1 \times 10⁻⁶. The equilibrium constant for its reaction with a strong base is;
 - $(A) 10^8$
- (B) 10^6
- $(C) 10^4$
- (D) 10^{12}
- Q37 Solubility product (K_{sp}) of salts MX, MX₂, and M_3X are 4 × 10⁻⁸, 3.2 × 10⁻¹⁴ and 2.7 × 10⁻¹⁵ respectively. The solubility order of the salts is:
 - (A) $MX > MX_2 > M_3X$
 - (B) $MX > M_3X > MX_2$
 - (C) $M_3X > MX_2 > MX$
 - (D) $M_3X > MX > MX_2$
- Q38 At T K, pure water has $[H_3O^+] = 10^{-8}$ M. The K_w of water at T K is;
 - (A) $10^{-14} \,\mathrm{M}^2$
- (B) $10^{-8} \,\mathrm{M}^2$
- (C) $10^{-16} \,\mathrm{M}^2$
- (D) $10^{-12} \,\mathrm{M}^2$
- Q39 Match List-I with List-II:

	List-I (Solution)		List-II (pH)
A.	0.5 M HF (K _a = 2 × 10 ⁻⁴)	l.	13
B.	0.5 M Ba(OH) ₂	II.	12.3
C.	10 ⁻⁸ M HCl	III.	2
D.	0.02 M NaOH	IV.	6.95

Choose the correct answer from the options given below:

- (A) A-III, B-II, C-I, D-IV
- (B) A-III, B-I, C-IV, D-II
- (C) A-II, B-III, C-IV, D-I
- (D) C-II B-I C-III D-IV
- Q40 How much water from 4 L of 10⁻³ M HCl should be evaporated to change its pH by 2 units?
 - (A) 3.96 L
- (B) 2.24 L
- (C) 1.42 L
- (D) 0.84 L
- Q41 Amongest the following, the total number of compounds whose aqueous solution turns blue litmus paper red is

Na₂SO₄, Zn(NO₃)₂, FeCl₃, K₂CO₃, KCl

(A)5

(B) 4

(C) 3

(D) 2

Q42 Given below are two statements:

Statement I: $(CH_3)_3B$ behaves as an Lewis acid.

Statement II: NH_{2}^{-} can not exits in equeous solution.

In the light of the above statements, choose the most appropriate answer from the options given

- (A) Statement I is correct but Statement II is incorrect.
- (B) Statement I is incorrect but Statement II is correct.
- (C) Both Statement I and Statement II are correct.
- (D) Both Statement I and Statement II are incorrect.
- Q43 The pH of a resulting solution obtained by mixing 400 ml of 0.1 M HCl and 100 ml of 0.3 M H₂SO₄ will be nealy;
 - (A) 2.3
- (B) 0.7
- (C) 0.3
- (D) 1.3
- Q44 pH of 0.01 M (CH₃COO)₂Ca solution is; (given: pK_a of $CH_3COOH = 4.74$)
 - (A) 8.5
- (B) 9.2
- (C) 10.6
- (D) 7.4
- Q45 Which pair of electrolytes will show common ion effect?
 - (A) $HCl + HNO_3$
- (B) NaOH + HCN
- (C) CH₃COOH + HNO₃ (D) NaOH + KOH
- Q46 Ostwald dilution Law is applicable for an aqueous solution of;
 - (A) NaOH
- (B) H_2SO_4
- (C) HNO_3
- (D) NH₄OH
- **Q47** Given below are two statements:

Statement I: The degree of hydrolysis of aqueous solution of NH₄CN does not depends on concentration of salt.

Statement II: Blood behave as buffer solution. In the light of the above statements, choose the most appropriate answer from the options given below:

(A) Statement I is correct but Statement II is incorrect.

- (B) Statement I is incorrect but Statement II is correct.
- (C) Both Statement I and Statement II are correct.
- (D) Both Statement I and Statement II are incorrect.
- Q48 Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: $I^- + I_2 o I_3^-,$ is an example of Lewis acid-lewis base reaction.

Reason R: I^- can donate a pair of electron while I_2 can accept a pair of electron.

In the light of the above statements, choose the correct answer from the options given below:

- (A) A is true but R is false.
- (B) A is false but R is true.
- (C) Both A and R are true and R is the correct explanation of A.
- (D) Both A and R are true but R is NOT the correct explanation of A.
- Q49 10 mL of 0.1 M H₂SO₄ solution is added to 30 mL of 0.2 M NH₄OH solution. The pH of resultant solution will be: (Given: pK_b of $NH_4OH = 4.7$)
 - (A) 9.6
- (B) 10.2
- (C) 8.4
- (D) 11.8
- **Q50** Concentration of S²⁻ in a solution containing 0.1 M HCl and 0.2 M H₂S will be; [Given: for H₂S, K_{a1} $= 1.4 \times 10^{-7}$ and $K_{a2} = 1 \times 10^{-14}$]
 - (A) 1×10^{-14} M
 - (B) 1.4×10^{-22} M
 - (C) 2.8×10^{-20} M
 - (D) 1.4×10^{-20} M
- Q51 Which of the following solutions will have pH close to 1.0?
 - (A) 75 mL of 0.2 M HNO₃ + 25 mL of 0.2 M NaOH
 - (B) 10 mL of 0.1 M HNO₃ + 90 mL of 0.1 M NaOH
 - (C) 55 mL of 0.1 M HNO₃ + 45 mL of 0.1 M NaOH
 - (D) 100 mL of 0.1 M HNO₃ + 100 mL of 0.1 M
- Q52 Identify conjugate acid-base pair among the following:

- (A) HPO_3^{2-} and $\mathrm{H_2\,PO}_2^{-}$
- (B) $\mathrm{H}_2\ \mathrm{PO}_4^-$ and HPO_3^{2-}
- (C) PO_4^{3-} and HPO_4^{2-}
- (D) H_3 PO₄ and H_2 PO₃
- Q53 Solubility of AgCl will be maximum is;
 - (A) pure H₂O
- (B) 0.1 M NaCl
- (C) $0.1 \,\mathrm{M} \,\mathrm{NH}_3$
- (D) 0.2 M AgNO_3
- Q54 The correct increasing order of pH for 0.1 M ag. solution of given electrolytes is;
 - (A) NaCl < HCl < NH₄Cl < NaCN < NaOH
 - (B) HCl < NH₄Cl < NaOH < NaCN < NaCl
 - (C) HCl < NH₄Cl < NaCl < NaCN < NaOH
 - (D) NH₄Cl < NaCN < NaCl < HCl < NaOH
- Q55 The degree of dissociation of weak acid (HA) having pH = 3 of its 0.1 M aq. solution is;
 - (A) 1%
- (B) 0.1%
- (C) 10%
- (D) 0.01%
- Q56 If Hydronium ion concentration in an aq. solution of H_2SO_4 is 1×10^{-4} M at 25°C. The hydroxide ion concentration in the solution will be;
 - (A) zero
 - (B) 0.5×10^{-10} M
 - (C) 1×10^{-4} M
 - (D) 1×10^{-10} M
- Q57 Correct order regarding acidic strenth is;
 - (A) HCl > HI
 - (B) $H_2O > H_2S$
 - (C) $NH_3 > HF$
 - (D) HBr > H_2O
- Q58 Weakest base among the following is;
 - $(A) H^{-}$
- (B) HCO_3^-
- (C) Cl⁻
- (D) OH-
- Q59 What concentration of Ag+ ion in aqueous solution will just fail to give a precipitate of Ag_2CrO_4 which contain 3×10^{-4} M CrO_4^{2-} ion? (Given: K_{sp} of $Ag_2CrO_4 = 1.2 \times 10^{-11}$)
 - (A) 2×10^{-4} M
 - (B) 1×10^{-4} M
 - (C) 2×10^{-3} M

(D) 1×10^{-2} M

Q60~ pH of 0.1 M aq. H_2CO_3 solution is; [given: K_{a_1} = 4 $\times\,10^{-3}$ and K_{a_2} = 9 $\times\,10^{-6}]$

(A) 1.7

(B) 2.7

(C) 1.3

(D) 2.1

Answer Key

Q31

(C)

Q1	(C)			

- Q2 (D) Q32 (C)
- Q3
- (A) Q33 (D) (C) Q34 Q4
- (D) (A) Q5 (D) Q35
- (D) Q36 (A) Q6
- Q7 (C) Q37 (B)
- Q8 (B) Q38 (C)
- Q9 (B) Q39 (B)
- (B) Q40 (A) Q10
- (A) (D) Q11 Q41
- Q12 (A) Q42 (C)
- Q13 (B) Q43 (B)
- (D) Q44 (A) Q14
- Q15 (C) Q45 (C)
- (A) (D) Q16 Q46
- Q17 (C) Q47 (C)
- (C) Q18 (B) Q48
- (C) (A) Q19 Q49
- **Q20** (A) Q50 (C)
- Q21 (B) Q51 (A)
- (D) Q52 (C) **Q22**
- **Q23** (C) Q53 (C)
- **Q24** (D) Q54 (C)
- **Q25** (D) Q55 (A)
- (A) Q56 (D) **Q26**
- **Q27** (C) Q57 (D)
- (C) (C) **Q28 Q58**
- (D) (A) Q59 **Q29**
- Q30 (C) Q60 (A)

Hints & Solutions

Q1 Text Solution:

$$\mathrm{PO_4^{3-} + H^+
ightarrow HPO_4^{2-}}$$

Q2 Text Solution:

At infinite dilution, even weak electrolytes ionize completely, so both strong and weak electrolytes show 100% ionization.

Q3 Text Solution:

$$\begin{split} & \text{HCN} \rightleftharpoons \text{H}^+ + \text{CN}^-, \, \text{K}_1 = 5 \times 10^{-10} \\ & \text{HOCl} \rightleftharpoons \text{H}^+ + \text{OCl}^-, \, \text{K}_2 = 2 \times 10^{-4} \\ & \text{CN}^- + \text{HOCl} \rightleftharpoons \text{OCl}^- + \text{HCN}, \\ & \text{K} = \frac{\text{K}_2}{\text{K}_1} = 4 \times 10^5 \end{split}$$

Q4 Text Solution:

$$[\mathrm{H^+}] = rac{10^{-2} imes 1 + 10^{-3} imes 9}{10} = \ 1.9 \ imes \ 10^{-3}$$
 pH = 2.72

Q5 Text Solution:

$$\begin{split} [H^+] &= \sqrt{K_a C} \\ &= \sqrt{2 \times 10^{-4} \times 0.01} \\ &= \sqrt{2} \times 10^{-3} \\ \text{pH} = -\log[\text{H}^+] = 3 - \frac{1}{2} \times 0.3 = 2.85 \end{split}$$

Q6 Text Solution:

Dissociation of CaF₂ in water:

$$\mathrm{CaF}_2 \leftrightarrow \mathrm{Ca}^{2+} + 2\mathrm{F}^-$$

Let solubility $S = 2 \times 10^{-4}$

$$[Ca^{2+}] = S = 2 \times 10^{-4}$$

$$[F^-] = 2S = 4 \times 10^{-4}$$

Now.

$$K_{sp} = [Ca^{2+}] \cdot [F^{-}]2 = (2 \times I0^{-4}) \cdot (4 \times I0^{-4})^{2}$$

$$= 2 \times 10^{-4} \cdot 16 \times 10^{-8}$$

$$= 32 \times 10^{-12}$$

$$= 3.2 \times 10^{-11}$$

Q7 Text Solution:

$$\rm NaOH \rightarrow Na^{+} + OH^{-}$$

[OH-] after dilution from NaOH,
$$= \frac{10^{-6}}{100} = 10^{-6} \times 10^{-2} = 10^{-8} M$$

$$\left[\overline{O}H_{total}\right] = 10^{-8} + 10^{-7}$$

pOH =
$$-\log[OH]$$

= $-\log[10^{-8} + 10^{-7}]$,
= $-\log[10^{-8}(1+10^{1})]$,
= $-\log[10^{-8}(11)]$,
= $-(\log 10^{-8} + \log 11)$
= $(-1)(-8)\log 10 - \log 11$
= $8 - \log 11$
= 6.96
pH= $14 - 6.96$
= 7.04

Q8 Text Solution:

$$F^{-} + H_{2}O \rightleftharpoons HF + OH^{-}$$
 $K = \frac{[HF][OH^{-}]}{[F^{-}][H_{2}O]}$
 $K = \frac{K_{W}}{Ka} = \frac{10^{-14}}{6.9 \times 10^{-4}}$
 $K = 1.4 \times 10^{-11}$

Q9 Text Solution:

$$\begin{array}{ll} \text{(A)} & \text{Basic buffer}: \ pKb + \log\frac{[\mathrm{salt}]}{[\mathrm{base}]} = pOH \\ & = pKb + \log\frac{[\mathrm{salt}]}{[\mathrm{base}]} = 14 - pH \\ & pH = 14 - pKb - \log\frac{[\mathrm{salt}]}{[\mathrm{base}]} \end{array}$$

$$ext{A} o ext{IV}$$

(B) Salt of S.A. + W.B.

$$\mathrm{pH} = rac{\mathrm{pK_w}}{2} - rac{1}{2}\mathrm{pKb} - rac{1}{2}\mathrm{log}~\mathrm{C}$$
 $\mathrm{B}
ightarrow \mathrm{III}$

(C) Salt of W.A. + S.B.

$$pH = \frac{pKw}{2} + \frac{1}{2}pKa + \frac{1}{2}\log C$$

(D) Acidic Buffer

$$pH = pKa + log\frac{[salt]}{[acid]}$$

$$\mathrm{D}
ightarrow \mathrm{I}$$

Q10 Text Solution:

Precipitation occurs only when ionic product exceeds the value of solubility product.

When equal volumes of solutions containing Ca²⁺ and F⁻ are mixed, [Ca²⁺] and [F⁻] will be halved.

(a) Ionic product = $[Ca^{2+}][F^{-}]^2$

$$=\left(rac{1}{2} imes 10^{-4}
ight)\left(rac{1}{2} imes 10^{-4}
ight)^2=rac{1}{8} imes 10^{-12}$$
 < $(K_{sp}=1.7 imes 10^{-10})$

K_{sp}; no precipitation.

(b) Ionic product =
$$\left(\frac{1}{2} \times 10^{-2}\right) \left(\frac{1}{2} \times 10^{-3}\right)^2$$
 = $\frac{1}{8} \times 10^{-8}$ > K_{sp}; precipitation.

(c) Ionic product =
$$\left(\frac{1}{2} \times 10^{-5}\right) \left(\frac{1}{2} \times 10^{-3}\right)^2$$
 = $\frac{1}{8} \times 10^{-11}$ < K_{sp}; precipitation.

(d) Ionic product =
$$\left(\frac{1}{2} \times 10^{-3}\right) \left(\frac{1}{2} \times 10^{-5}\right)^2$$
 = $\frac{1}{8} \times 10^{-13}$ < K_{sp}; no precipitation.

Q11 Text Solution:

$$K_{\rm a} = \frac{K_{\rm w}}{[H_2{\rm O}]} = \frac{10^{-14}}{55.5} = ~1.8~\times~10^{-16}$$

Q12 Text Solution:

$$C_6H_5COOH + NaOH \rightleftharpoons C_6H_5COONa + H_2O$$

After 0.5 0.5

neutralization

It is a buffer solution of weak acid and its salt $pH = pK_a + log \frac{[salt]}{[acid]}$

$$pK_a = 4.2$$

$$K_a = 6.31 \times 10^{-5}$$

Q13 Text Solution:

Old pH = 7

New
$$[OH^-] = 10^{-2} \times \frac{1}{10} = 10^{-3} \text{ M}$$

$$\therefore \text{ pOH } = -\log\left(10^{-3}\right)$$

=3

New pH = 11

Change in pH = 4

Q14 Text Solution:

Since pH =
$$12$$
 : pOH = $14 - 12 = 2$

∴[OH⁻] =
$$10^{-2}$$
M

We know Ba $(OH)_2 \rightleftharpoons Ba^{2+} + 2OH^{-}$

$$\therefore$$
 [Ba²⁺] = $\frac{10^{-2}}{2}$ M

$$K_{SP} = [Ba^{2+}][OH^{-}]^2 = (\frac{10^{-2}}{2}) \times (10^{-2})^2$$

= $5 \times 10^{-7} M^3$

Q15 Text Solution:

$$Zn^{2+} + 2H_2O \rightleftharpoons Zn(OH)_2 + 2H^+$$

$$\therefore K_h = \frac{\left[\operatorname{Zn} \left(\operatorname{OH}\right)_2\right] \left[\operatorname{H}^+\right]^2}{\left[\operatorname{Zn}^{2+}\right]} \quad \dots (1)$$

 $Zn(OH)_2 \rightleftharpoons Zn^{2+} + 2OH^-$

$$\begin{split} \therefore \mathsf{K}_b = & \frac{\left[\mathrm{Zn}^{2+}\right] \ \left[\mathrm{OH}^{-}\right]^2}{\left[\mathrm{Zn} \left(\mathrm{OH}\right)_2\right]}, \qquad \mathsf{K}_w = \left[\mathsf{H}^{+}\right] \left[\mathsf{OH}^{-}\right] \\ \therefore & \frac{\mathsf{K}_w^2}{\mathsf{K}_{\cdot}} = \mathsf{K}_h \end{split}$$

Q16 Text Solution:

HCIO is the weakest acid. Its conjugate base ${
m ClO}^-$ is the strongest base.

Q17 Text Solution:

Barium carbonate is more soluble in HNO₃ than in water become carbonate is a weak base and reacts with the H⁺ ion of HNO₃ causing the barium salt to dissociate.

$$\begin{aligned} \operatorname{BaCO_3} + \operatorname{HNO_3} &\to \operatorname{Ba}\left(\operatorname{NO_3}\right)_2 + \operatorname{CO_2} \\ + \operatorname{H_2O} \end{aligned}$$

Q18 Text Solution:

$$m K_{
m H} = rac{K_a}{K_w} = rac{10^{-4}}{10^{-14}} = rac{1}{10^{-10}} = 10^{10}$$

Q19 Text Solution:

$$[H^+] = 0.05 \times 2 \; M \; = \; 0.1 \; M$$

$$\therefore \; pH = 1$$

Q20 Text Solution:

A pH of 12 means the solution is basic.

pH + pOH = 14, so **pOH = 2**
$$\rightarrow$$
 [OH⁻] = 10⁻² = 0.01 M

So, we are looking for the solution that gives an

OH- concentration of 0.01 M.

Option A: 0.01 M KOH

KOH is a **strong base**, fully dissociates:

$$KOH \rightarrow K^+ + OH^-$$

$$[OH^{-}] = 0.01 \text{ M} \Rightarrow pOH = 2 \Rightarrow pH = 14 - 2 = 12$$

Q21 Text Solution:

For pure water
$$\left[H^{+}\right]=\left[OH^{-}\right],$$
 $\therefore \ K_{w}=10^{-12}$

Q22 Text Solution:

Solubility Product (Ksp):

The maximum product of the ion concentrations that can exist in a solution without forming a precipitate at a given temperature.

Ionic Product (IP):

The actual product of ion concentrations in a solution at any moment.

Q23 Text Solution:

$$egin{align*} \mathsf{K}_{\mathsf{sp}} \, \mathsf{of} \, \mathsf{BaSO}_4 &= 1.\, 5 imes 10^{-9}; \ \left[\mathsf{Ba}^{2+}
ight] &= 0.\, 01 \, \mathrm{M} \ \left[\mathsf{SO}_4^{2-}
ight] &= rac{1.5 imes 10^{-9}}{0.01} = 1.\, 5 imes 10^{-7} \mathrm{M} \end{split}$$

Q24 Text Solution:

The ionic product of water (Kw) is:

$$H_2O \rightleftharpoons H^+ + OH^-$$

- The self-ionization of water is an endothermic process.
- According to Le Chatelier's Principle, if temperature increases, the equilibrium shifts to the right (more ionization).
- This increases the concentration of H+ and OH- ions, hence increasing Kw.

Q25 Text Solution:

Be(OH)₂ has lowest solubility and hence lowest solubility product.

Q26 Text Solution:

Salt hydrolysis occurs when a salt reacts with water to produce either an acidic or basic solution. This typically happens when the salt is formed from a weak acid or weak base.

Q27 Text Solution:

HA
$$\longrightarrow$$
 H⁺ + A⁻
0.1 0 0
0.1 $\left(1 - \frac{1}{100}\right)$ $\frac{1 \times 0.1}{100}$ $\frac{1 \times 0.2}{100}$
[H⁺] = 10⁻³ ...pH = 3

Q28 Text Solution:

A Lewis acid is a substance that can accept a pair of electrons to form a coordinate covalent bond.

Q29 Text Solution:

$$HCIO_4 + H_2O \Rightarrow H_3O^+ + CIO_4^-$$

Q30 Text Solution:

According to the Ostwald's dilution formula $lpha^2 = rac{\mathrm{K}(1-lpha)}{C}$. But for weak electrolytes lpha is very small. So that (1-lpha) can be neglected. So that $lpha = \sqrt{rac{
m K_a}{
m C}}$

Q31 Text Solution:

$$egin{aligned} pH &= rac{1}{2} igl[pK_w - pK_b - \log c igr] \ &= rac{1}{2} igl[14 + \log igl(10^{-5} igr) - \log igl(10^{-2} igr) igr] \ &= rac{1}{2} igl[14 - 5 + 2 igr] \ &= 5.5 \end{aligned}$$

Q32 Text Solution:

- $H^+ \xrightarrow{H_2O} H_3O^+ \xrightarrow{H_2O} H_5O_2^+$
- K_w of H₂O increases with increase in temperature.

Q33 Text Solution:

Ni (OH)₂
$$\rightleftharpoons$$
 Ni²⁺ + 2 OH⁻
S 2S
K_{sp} = (S) (2S)² = 4S³
for pH = 13, pOH = 14 - 13 = 1
∴ [OH⁻] = 10⁻¹ M
∴ K_{sp} = (S¹) (10⁻¹)²
4S³ = S¹ × 10⁻²
S¹ = 400 S³ mol L⁻¹

Q34 Text Solution:

- ppt take place when, IP > K_{sp}
- On mixing equal volume, concentration become half.

$$\begin{aligned} \mathbf{A}\mathbf{g}^{+} + \mathbf{C}\mathbf{l}^{-} &\to \mathbf{A}\mathbf{g}\mathbf{C}\mathbf{l} \\ \mathbf{IP} &= \left[\mathbf{A}\mathbf{g}^{+}\right]\left[\mathbf{C}\mathbf{l}^{-}\right] \end{aligned}$$

• (A): IP
$$=\frac{10^{-9}}{2} imes \frac{10^{-9}}{2} = 2.5 imes 10^{-19}$$

• (B):
$$ext{IP} = rac{10^{-7}}{2} imes rac{10^{-7}}{2} = 2.5 imes 10^{-15}$$

• (B):
$$IP = \frac{10^{-7}}{2} \times \frac{10^{-7}}{2} = 2.5 \times 10^{-15}$$

• (C): $IP = \frac{10^{-5}}{2} \times \frac{10^{-5}}{2} = 0.25 \times 10^{-10}$
• (D): $IP = \frac{10^{-3}}{2} \times \frac{10^{-3}}{2} = 2.5 \times 10^{-7}$

• (D):
$$\mathrm{IP} = \frac{10^{-3}}{2} imes \frac{10^{-3}}{2} = 2.5 imes 10^{-7}$$

Q35 Text Solution:

For conjugate acid-base pair;

$$K_a K_b = K_w$$

 $4 \times 10^{-6} \times K_b = 10^{-14}$
 $K_b = 2.5 \times 10^{-9}$

Q36 Text Solution:

Anionic hydrolysis;

$$egin{aligned} X^- + H_2O &\stackrel{K_h}{
ightharpoonup} HX + OH^- \ HX + OH^- &\stackrel{K}{
ightharpoonup} X^- + H_2O \ K = rac{1}{K_h} = rac{1}{\left(rac{K_w}{K_a}
ight)} = rac{K_a}{K_w} = rac{10^{-6}}{10^{-14}} = 10^8 \end{aligned}$$

Q37 Text Solution:

•
$$MX: S_1 = \sqrt{4 \times 10^{-8}} = 2 \times 10^{-4} \ M$$

$$egin{aligned} ullet \ \mathrm{MX}_2: S_2 &= \left(rac{3.2 imes 10^{-14}}{4}
ight)^{1/3} \ &= 2 imes 10^{-5} \ \mathrm{M} \end{aligned}$$

$$= 2 imes 10^{-5} \ {
m M} \ oldsymbol{\bullet} \ M_3 X : S_3 = \left(rac{2.7 imes 10^{-15}}{27}
ight)^{1/4} = 10^{-4} \ {
m M}$$

•
$$S_1 > S_3 > S_2$$

Q38 Text Solution:

$$K_w = [H^+][OH^-] = 10^{-8} \times 10^{-8} = 10^{-16} M^2$$

Q39 Text Solution:

$$\begin{split} \bullet \ \ HF: \left[H^+\right] &= \sqrt{K_a C} \\ &= \sqrt{2 \times 10^{-4} \times 0.5} = 10^{-2} M \\ pH &= -\log \left\lceil 10^{-2} \right\rceil = 2 \end{split}$$

• Ba(OH)₂:
$$[OH^-] = 2 \times 0.05 = 0.1 \text{ M}$$

$$pH = -log [10^{-1}] = 1$$

 $pOH = 14 - 1 = 13$

• HCl:
$$[H^+] = (10^{-7} + 10^{-8}) M = 1.1 \times 10^{-7} M$$

$$pH = -log (1.1 \times 10^{-7}) = 6.95$$

• NaOH:
$$[OH^-] = 2 \times 10^{-2} M$$

pOH =
$$-\log [2 \times 10^{-2}] = 1.7$$

pH = $14 - 1.7 = 12.3$

Q40 Text Solution:

When H₂O is evaporated, conc. of HCl increases so pH decreases.

$$M_1V_1 = M_2V_2$$

$$10^{-3} \times 4 = 10^{-1} V_2$$

$$V_2 = 0.04 L$$

$$\therefore$$
 H₂O evaporated = (4 – 0.04) L = 3.96 L

Q41 Text Solution:

• Blue litmus paper turns red in acidic solution

- Zn(NO₃)₂ and FeCl₃ are salt of weaks base and strong acid so their aqueous solution are acidic.
- Na₂SO₄ and KCl are salt of strong base and strong acid so their aqueous solution are neutral.
- K₂CO₃ is salt of strong base and weak acid so its solution is basic in nature.

Q42 Text Solution:

- In (CH₃)₃ B, there are only 6 valence electrons on B so behaves as an Lewis acid.
- $NH_2^- \xrightarrow{H_2O} NH_3 + OH^-$

Q43 Text Solution:

For H⁺:
$$M_1V_1 + M_2V_2 = M_3V_3$$

 $0.1 \times 400 + 0.3 \times 2 \times 100 = M_3 \times 500$
 $M_3 = 0.2 \text{ M}$
 $pH = -log(0.2) = -log(2 \times 10^{-1})$
 $= 1 - 0.3 = 0.7$

Q44 Text Solution:

$$\begin{split} & [\text{CH}_3\text{COO}^-] = 0.01 \times 2 = 2 \times 10^{-2}\,\text{M} \\ & \text{pH} = \frac{1}{2}\left(\text{pK}_w + \text{pK}_a + \text{logC}\right) \\ & \text{pH} = \frac{1}{2}\left[14 + 4.74 + \log\left(2 \times 10^{-2}\right)\right] \\ & \text{pH} = \frac{1}{2}\left[18.74 - 2 \,+\, 0.3010\right] \\ & \text{pH} = 8.5 \end{split}$$

Q45 Text Solution:

Common ion effect is obseved for a mixture containing weak electrolyte (CH3COOH) and strong electrolyte (HNO₃), having a common ion (H^+)

Q46 Text Solution:

Ostwald dilution Law is applicable for weak electrolytes.

Q47 Text Solution:

 For a salt solution of weak acid and weak base:

$$h=\sqrt{rac{K_w}{K_aK_b}}$$

• Blood is an acidic buffer solution of H₂CO₃ and HCO_3^- .

Q48 Text Solution:

1 Lewis acid Lewis base (electron rich) (Vacant d-orbitals)

Q49 Text Solution:

 $H_2SO_4 + 2NH_4OH \rightarrow (NH_4)_2SO_4 + 2H_2O$ (i) 2 meg 6meg (f) -4mea resulting solution will behave as an basic buffer.

$$\begin{aligned} \mathrm{pOH} &= \mathrm{pK_b} + \log_{10} \frac{\mathrm{[salt]}}{\mathrm{[base]}} \\ &= 4.7 + \log_{10} \left(\frac{2}{4}\right) \\ &= 4.7 - 0.3010 \\ \therefore \ \mathrm{pH} &= 14 - 4.4 = 9.6 \end{aligned}$$

Q50 Text Solution:

$$egin{align} \mathrm{H_2S} &\stackrel{\mathrm{K_a}}{\rightleftharpoons} 2\mathrm{H^+} + \mathrm{S^{2-}} \ \mathrm{K_a} &= rac{\left[\mathrm{H^+}
ight]^2\left[\mathrm{S^{2-}}
ight]}{\left[\mathrm{H_2S}
ight]} \ 1.4 imes 10^{-7} imes 1 imes 10^{-14} = rac{\left(0.1
ight)^2\left(\mathrm{S^{2-}}
ight)}{0.2} \ \left[\mathrm{S^{2-}}
ight] = 2.8 imes 10^{-20}\mathrm{M} \ \end{array}$$

Q51 Text Solution:

 $\mathrm{H^+} + \mathrm{OH^-} \rightarrow \mathrm{H_2O}$ 75 mL of 0.2 M HNO₃ \Rightarrow 15 mmol HCl 25 mL of 0.2 M NaOH \Rightarrow 5 mmol HCl final, mmol of HCl = 15 - 5 = 10 mol $\left[\mathrm{H^{+}}
ight]=rac{10}{75+25}=0.1\;\mathrm{M}$ pH = -log [0.1] = 1

Q52 Text Solution:

Conjugate acid-base pair differ in one H⁺.

Q53 Text Solution:

 More the common ion effect, lesser will be solubility.

• Since Ag⁺ form complex with NH₃ so solubility will be more than solubiity in H_2O .

$$\operatorname{AgCl} + 2\operatorname{NH}_3 \rightleftharpoons \left[\operatorname{Ag}\left(\operatorname{NH}_3\right)_2\right]\operatorname{Cl}$$

Q54 Text Solution:

• HCl: strong acid: pH <<< 7

 NH₄Cl: NH₄OH + HCl: pH < 7 SA

WB

NaCl: NaOH + HCl: pH = 7

SB SA

• NaCN: NaOH + HCl: pH > 7

SB WA

NaOH: Strong base: pH >>>7

Q55 Text Solution:

$$\begin{aligned} & [\mathrm{H^+}] = 10^{-\mathrm{pH}} = 10^{-3} \, \mathrm{M} \\ & [\mathrm{H^+}] = \mathrm{C}\alpha \\ & 10^{-3} = 0.1 \times \alpha \\ & \alpha = 10^{-2} \\ & \%\alpha = 10^{-2} \times 100 = 1\% \end{aligned}$$

Q56 Text Solution:

$$[H^{+}][OH^{-}] = K_{W}$$

 $1 \times 10^{-4} \times [OH^{-}] = 10^{-14}$
 $[OH^{-}] = 10^{-10} M$

Q57 Text Solution:

Acidic strength: HF << HCl < HBr < HI : CH₄ < NH₃ < H₂O < HF $: H_2O < H_2S$

Q58 Text Solution:

- Stronger the acid, weaker will be its conjugate
- Acidic Nature: HCl > H₂CO₃ > H₂O > H₂
- Basic Nature: Cl⁻ < HCO₃⁻ < HO⁻ > H⁻

Q59 Text Solution:

$$\begin{split} K_{sp} &= \left[Ag^{+}\right]^{2} \Big[CrO_{4}^{2-}\Big] \\ 1.\, 2 \times 10^{-11} &= \left[Ag^{+}\right]^{2} \times 3 \times 10^{-4} \\ \left[Ag^{+}\right]^{2} &= 4 \times 10^{-8} \\ \left[Ag^{+}\right] &= 2 \times 10^{-4} M \end{split}$$

Q60 Text Solution:

for polyprotic weak acids:

$$\begin{split} \left[H^+ \right] &= \sqrt{K_{a_1} C} = \sqrt{4 \times 10^{-3} \times 0.1} \\ &= 2 \times 10^{-2} \\ \therefore \ pH &= -\log \big[2 \times 10^{-2} \big] \\ &= 2 - 0.3 \\ &= 1.7 \end{split}$$

