Small-Signal Model

ECE 214

Q: How is the small-signal diode model defined?

- step #1: Consider the conceptual circuit.
 - DC voltage (V_D) is applied to diode
 - Upon V_D, arbitrary time-varying signal v_d is

- . DC only upper-case w/ upper-case subscript
- time-varying only lower-case w/ lower-case subscript
- * total instantaneous lower-case w/ upper-case subscript
 - · DC + time-varying

Small-Signal Model

ECE 2

- step #2: Define DC current as in (4.8).
- step #3: Define total instantaneous voltage (v_D) as composed of V_D and v_d
- step #4: Define total instantaneous current (i_D) as function of v_D
- (eq4.8) $I_D = I_S e^{V_D/V_T}$ (eq4.9) $v_{D}(t) = V_{D} + v_{d}(t)$
 - $\begin{aligned} & v_D\left(t\right) = \text{total instantaneous} \\ & v_D\left(t\right) = \text{dc component} \\ & \text{of } v_D\left(t\right) \\ & v_g\left(t\right) = \text{time varying} \\ & \text{component of } v_D\left(t\right) \end{aligned}$

+(eq4.10) $i_{b}(t) = I_{s}e^{\sqrt{t}/V_{T}}$

example: $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$

Step: 5: ip(t) = Ise(VD+Va)/VT -> ip(t) - Ise evalvT

Small-Signal Model

ECE 214

• step #8: Apply power series expansion to (4.12).

(eq4.12a)
$$i_D(t) = I_D \left[1 + \frac{V_d}{V_\tau} + \left[\left(\frac{V_d}{V_\tau} \right)^2 \frac{1}{2!} \right] + \left[\left(\frac{V_d}{V_\tau} \right)^3 \frac{1}{3!} \right] + \dots \right]$$

$$\frac{\dot{i}_{D}(t) = I_{D} + I_{D} (v_{d})}{v_{T}} \qquad \frac{U_{d}h_{m}}{\dot{i}_{D}(t) = I_{D} + \dot{I}_{d}(t)}$$
Truly i.e.(t)

$$[xd dnoth signed selection 4 = $\frac{V_T}{I_0}$$$