Project Report

Customer Lifetime Value Prediction Model using Machine Learning

1. Project Objective

The primary objective is to model Customer Lifetime Value (CLV) using transactional data from an online retail business. This enables customer segmentation, targeted marketing, and better resource allocation by identifying high-value customers.

2. <u>Dataset Description</u>

- Source: Kaggle Online Retail Dataset
- **Attributes**: InvoiceNo, StockCode, Description, Quantity, InvoiceDate, UnitPrice, CustomerID, Country
- **Time Period**: December 2010 to December 2011
- **Size**: ~500k rows

3. Methodologies Applied

Data Preprocessing

- Removed nulls and canceled transactions.
- Filtered only positive quantities and prices.
- Converted InvoiceDate to datetime.
- Created training and testing splits based on a cut-off date (2011-08-31).

Feature Engineering

- **latetime**: Days since last transaction
- **earlytime**: Days since first transaction
- freq: Total transactions
- **freq 3m**: Transactions in recent 3 months
- target: Future transactions in test period

4. Modeling Approaches

Probabilistic Model: BG/NBD + Gamma-Gamma

- Fitted the model to historical transaction data to predict CLV.
- Assumptions:
 - Purchase follows a Poisson-Gamma process.
 - Dropout follows a Geometric-Beta process.

Model Performance:

• **RMSE**: 1.6298

• R²: 0.5610

Machine Learning Model: XGBoost Regressor

• Used engineered features to train a predictive model.

✓ Model Performance:

• **RMSE**: 0.9432

• R²: 0.8530

Conclusion: XGBoost significantly outperforms the probabilistic model in accuracy but lacks interpretability and simplicity of assumptions.

5. Visualizations

- Poisson / Gamma / Beta / Geometric Distributions used in probabilistic modeling.
- **RFM Segmentation** heatmap for strategic targeting.

6. Recommendations

Segment	Strategy
Champions	Reward, promote referrals, early access to launches
Loyal Customers	Encourage reviews, loyalty programs
At Risk	Win-back campaigns, personalized offers
Hibernating	Reactivation emails, feedback surveys
Potential Loyalists	Promote upsell/cross-sell, early incentives
Can't Lose Them	Urgent retention via discounts, premium engagement

Summary

- **XGBoost** > **Probabilistic models** in predictive power.
- However, **BG/NBD** + **Gamma-Gamma** provides strong interpretability.
- Combining both helps balance accuracy and business insight.

\sim AKASH KUMAR RAJAK