form (27), provided that there are n linearly independent eigenvectors, but in general all the solutions are complex-valued.

## **PROBLEMS**

In each of Problems 1 through 6:

- (a) Find the general solution of the given system of equations and describe the behavior of the solution as  $t \to \infty$ .
- (b) Draw a direction field and plot a few trajectories of the system.

1. 
$$\mathbf{x}' = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix} \mathbf{x}$$

$$2. \mathbf{x}' = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix} \mathbf{x}$$

$$3. \mathbf{x}' = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \mathbf{x}$$

$$4. \mathbf{x}' = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix} \mathbf{x}$$

$$5. \mathbf{x}' = \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} \mathbf{x}$$

$$6. \mathbf{x}' = \begin{pmatrix} \frac{5}{4} & \frac{3}{4} \\ \frac{3}{4} & \frac{5}{4} \end{pmatrix} \mathbf{x}$$

In each of Problems 7 and 8:

- (a) Find the general solution of the given system of equations.
- (b) Draw a direction field and a few of the trajectories. In each of these problems, the coefficient matrix has a zero eigenvalue. As a result, the pattern of trajectories is different from those in the examples in the text.

$$7. \mathbf{x}' = \begin{pmatrix} 4 & -3 \\ 8 & -6 \end{pmatrix} \mathbf{x}$$

$$8. \mathbf{x}' = \begin{pmatrix} 3 & 6 \\ -1 & -2 \end{pmatrix} \mathbf{x}$$

In each of Problems 9 through 14, find the general solution of the given system of equations.

9. 
$$\mathbf{x}' = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} \mathbf{x}$$

10. 
$$\mathbf{x}' = \begin{pmatrix} 2 & 2+i \\ -1 & -1-i \end{pmatrix} \mathbf{x}$$

11. 
$$\mathbf{x}' = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix} \mathbf{x}$$

12. 
$$\mathbf{x}' = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix} \mathbf{x}$$

13. 
$$\mathbf{x}' = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ -8 & -5 & -3 \end{pmatrix} \mathbf{x}$$

14. 
$$\mathbf{x}' = \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix} \mathbf{x}$$

In each of Problems 15 through 18, solve the given initial value problem. Describe the behavior of the solution as  $t \to \infty$ .

15. 
$$\mathbf{x}' = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix} \mathbf{x}$$
,  $\mathbf{x}(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$  16.  $\mathbf{x}' = \begin{pmatrix} -2 & 1 \\ -5 & 4 \end{pmatrix} \mathbf{x}$ ,  $\mathbf{x}(0) = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ 

16. 
$$\mathbf{x}' = \begin{pmatrix} -2 & 1 \\ -5 & 4 \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

17. 
$$\mathbf{x}' = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ 1 & 1 & 3 \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$

17. 
$$\mathbf{x}' = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3 \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$
 18.  $\mathbf{x}' = \begin{pmatrix} 0 & 0 & -1 \\ 2 & 0 & 0 \\ -1 & 2 & 4 \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 7 \\ 5 \\ 5 \end{pmatrix}$ 

19. The system  $t\mathbf{x}' = \mathbf{A}\mathbf{x}$  is analogous to the second order Euler equation (Section 5.4). Assuming that  $\mathbf{x} = \boldsymbol{\xi} t^r$ , where  $\boldsymbol{\xi}$  is a constant vector, show that  $\boldsymbol{\xi}$  and r must satisfy  $(\mathbf{A} - r\mathbf{I})\boldsymbol{\xi} = \mathbf{0}$  in order to obtain nontrivial solutions of the given differential equation.

Referring to Problem 19, solve the given system of equations in each of Problems 20 through 23. Assume that t > 0.

20. 
$$t\mathbf{x}' = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \mathbf{x}$$
 21.  $t\mathbf{x}' = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix} \mathbf{x}$  22.  $t\mathbf{x}' = \begin{pmatrix} 4 & -3 \\ 8 & -6 \end{pmatrix} \mathbf{x}$  23.  $t\mathbf{x}' = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix} \mathbf{x}$ 

In each of Problems 24 through 27, the eigenvalues and eigenvectors of a matrix  $\mathbf{A}$  are given. Consider the corresponding system  $\mathbf{x}' = \mathbf{A}\mathbf{x}$ .

- (a) Sketch a phase portrait of the system.
- (b) Sketch the trajectory passing through the initial point (2, 3).
- (c) For the trajectory in part (b), sketch the graphs of  $x_1$  versus t and of  $x_2$  versus t on the same set of axes.

24. 
$$r_1 = -1$$
,  $\xi^{(1)} = \begin{pmatrix} -1\\2 \end{pmatrix}$ ;  $r_2 = -2$ ,  $\xi^{(2)} = \begin{pmatrix} 1\\2 \end{pmatrix}$   
25.  $r_1 = 1$ ,  $\xi^{(1)} = \begin{pmatrix} -1\\2 \end{pmatrix}$ ;  $r_2 = -2$ ,  $\xi^{(2)} = \begin{pmatrix} 1\\2 \end{pmatrix}$ 

26. 
$$r_1 = -1$$
,  $\xi^{(1)} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ ;  $r_2 = 2$ ,  $\xi^{(2)} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 

27. 
$$r_1 = 1$$
,  $\xi^{(1)} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ ;  $r_2 = 2$ ,  $\xi^{(2)} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ 

- 28. Consider a 2 × 2 system  $\mathbf{x}' = \mathbf{A}\mathbf{x}$ . If we assume that  $r_1 \neq r_2$ , the general solution is  $\mathbf{x} = c_1 \boldsymbol{\xi}^{(1)} e^{r_1 t} + c_2 \boldsymbol{\xi}^{(2)} e^{r_2 t}$ , provided that  $\boldsymbol{\xi}^{(1)}$  and  $\boldsymbol{\xi}^{(2)}$  are linearly independent. In this problem we establish the linear independence of  $\boldsymbol{\xi}^{(1)}$  and  $\boldsymbol{\xi}^{(2)}$  by assuming that they are linearly dependent and then showing that this leads to a contradiction.
  - (a) Note that  $\boldsymbol{\xi}^{(1)}$  satisfies the matrix equation  $(\mathbf{A} r_1 \mathbf{I})\boldsymbol{\xi}^{(1)} = \mathbf{0}$ ; similarly, note that  $(\mathbf{A} r_2 \mathbf{I})\boldsymbol{\xi}^{(2)} = \mathbf{0}$ .
  - (b) Show that  $(\mathbf{A} r_2 \mathbf{I}) \boldsymbol{\xi}^{(1)} = (r_1 r_2) \boldsymbol{\xi}^{(1)}$ .
  - (c) Suppose that  $\boldsymbol{\xi}^{(1)}$  and  $\boldsymbol{\xi}^{(2)}$  are linearly dependent. Then  $c_1\boldsymbol{\xi}^{(1)}+c_2\boldsymbol{\xi}^{(2)}=\boldsymbol{0}$  and at least one of  $c_1$  and  $c_2$  (say  $c_1$ ) is not zero. Show that  $(\mathbf{A}-r_2\mathbf{I})(c_1\boldsymbol{\xi}^{(1)}+c_2\boldsymbol{\xi}^{(2)})=\boldsymbol{0}$ , and also show that  $(\mathbf{A}-r_2\mathbf{I})(c_1\boldsymbol{\xi}^{(1)}+c_2\boldsymbol{\xi}^{(2)})=c_1(r_1-r_2)\boldsymbol{\xi}^{(1)}$ . Hence  $c_1=0$ , which is a contradiction. Therefore,  $\boldsymbol{\xi}^{(1)}$  and  $\boldsymbol{\xi}^{(2)}$  are linearly independent.
  - (d) Modify the argument of part (c) if we assume that  $c_2 \neq 0$ .
  - (e) Carry out a similar argument for the case in which the order n is equal to 3; note that the procedure can be extended to an arbitrary value of n.
- 29. Consider the equation

$$ay'' + by' + cy = 0, (i)$$

where a, b, and c are constants with  $a \neq 0$ . In Chapter 3 it was shown that the general solution depended on the roots of the characteristic equation

$$ar^2 + br + c = 0. (ii)$$

(a) Transform Eq. (i) into a system of first order equations by letting  $x_1 = y, x_2 = y'$ . Find the system of equations  $\mathbf{x}' = \mathbf{A}\mathbf{x}$  satisfied by  $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ .

- (b) Find the equation that determines the eigenvalues of the coefficient matrix **A** in part (a). Note that this equation is just the characteristic equation (ii) of Eq. (i).
- 30. The two-tank system of Problem 22 in Section 7.1 leads to the initial value problem

$$\mathbf{x}' = \begin{pmatrix} -\frac{1}{10} & \frac{3}{40} \\ \frac{1}{10} & -\frac{1}{5} \end{pmatrix} \mathbf{x}, \qquad \mathbf{x}(0) = \begin{pmatrix} -17 \\ -21 \end{pmatrix},$$

where  $x_1$  and  $x_2$  are the deviations of the salt levels  $Q_1$  and  $Q_2$  from their respective equilibria.

- (a) Find the solution of the given initial value problem.
- (b) Plot  $x_1$  versus t and  $x_2$  versus t on the same set of axes.
- (c) Find the smallest time T such that  $|x_1(t)| \le 0.5$  and  $|x_2(t)| \le 0.5$  for all  $t \ge T$ .
- 31. Consider the system

$$\mathbf{x}' = \begin{pmatrix} -1 & -1 \\ -\alpha & -1 \end{pmatrix} \mathbf{x}.$$

- (a) Solve the system for  $\alpha = 0.5$ . What are the eigenvalues of the coefficient matrix? Classify the equilibrium point at the origin as to type.
- (b) Solve the system for  $\alpha = 2$ . What are the eigenvalues of the coefficient matrix? Classify the equilibrium point at the origin as to type.
- (c) In parts (a) and (b), solutions of the system exhibit two quite different types of behavior. Find the eigenvalues of the coefficient matrix in terms of  $\alpha$ , and determine the value of  $\alpha$  between 0.5 and 2 where the transition from one type of behavior to the other occurs.

**Electric Circuits.** Problems 32 and 33 are concerned with the electric circuit described by the system of differential equations in Problem 21 of Section 7.1:

$$\frac{d}{dt} \begin{pmatrix} I \\ V \end{pmatrix} = \begin{pmatrix} -\frac{R_1}{L} & -\frac{1}{L} \\ \frac{1}{C} & -\frac{1}{CR_2} \end{pmatrix} \begin{pmatrix} I \\ V \end{pmatrix}. \tag{i}$$

- 32. (a) Find the general solution of Eq. (i) if  $R_1 = 1 \Omega$ ,  $R_2 = \frac{3}{5} \Omega$ , L = 2 H, and  $C = \frac{2}{3}$  F.
  - (b) Show that  $I(t) \to 0$  and  $V(t) \to 0$  as  $t \to \infty$ , regardless of the initial values I(0) and V(0).
- 33. Consider the preceding system of differential equations (i).
  - (a) Find a condition on  $R_1$ ,  $R_2$ , C, and L that must be satisfied if the eigenvalues of the coefficient matrix are to be real and different.
  - (b) If the condition found in part (a) is satisfied, show that both eigenvalues are negative. Then show that  $I(t) \to 0$  and  $V(t) \to 0$  as  $t \to \infty$ , regardless of the initial conditions.
  - (c) If the condition found in part (a) is not satisfied, then the eigenvalues are either complex or repeated. Do you think that  $I(t) \to 0$  and  $V(t) \to 0$  as  $t \to \infty$  in these cases as well?

*Hint:* In part (c), one approach is to change the system (i) into a single second order equation. We also discuss complex and repeated eigenvalues in Sections 7.6 and 7.8.