Tutorial01

Q1

use a truth table to prove its tautology

$$egin{aligned} (p
ightarrow (q ee r) &\leftrightarrow (p \wedge
eg q)
ightarrow r) \ & (p
ightarrow (q
ightarrow r)) &\leftrightarrow ((p \wedge q)
ightarrow r) \end{aligned}$$

try to use the truth table, it's easy anyway.

Q2

1. Show that $(p \to r) \lor (q \to r)$ and $(p \land q) \to r$ are logically equivalent

$$egin{aligned} (p \wedge q) &
ightarrow r \ &= \lnot (p \wedge q) ee r \mid \mid rule(20) \ &= (\lnot p ee \lnot q) ee r \mid \mid De\ Morgan's\ laws \ &= (\lnot p ee r) ee (\lnot q ee r) \ &= (p
ightarrow r) ee (q
ightarrow r) \end{aligned}$$

2. Show that $\neg p \rightarrow (q \rightarrow r)$ and $q \rightarrow (p \lor r)$ are logically equivalent

$$egin{aligned}
eg p
ightarrow (q
ightarrow r) \ &= p ee (
eg q ee r) \mid\mid rule(20) \ &=
eg q ee (p ee r) \mid\mid commutative\ laws \ &= q
ightarrow (p ee r) \mid\mid rule(20) \end{aligned}$$

3. Show that $(p \rightarrow q) \rightarrow r$ and $p \rightarrow (q \rightarrow r)$ are not equivalent

$$egin{aligned} (p
ightarrow q)
ightarrow r \ &=
egin{aligned} \neg (
eg p ee q) ee r \mid\mid rule(20) \end{aligned} \ &= (p \wedge
eg q) ee r \mid\mid De\ Morgan's\ law \end{aligned}$$

$$egin{aligned} p
ightarrow (q
ightarrow r) \ &=
eg p ee (
eg q ee r) \mid\mid rule(20) \ &= (
eg p ee
eg q) ee r \mid\mid commutative \ law \end{aligned}$$

in this case:

$$(p \wedge q) ee r \ ! = (\neg p ee \neg q) ee r$$

Q3

Let $P \times X$, $Q \times X$, and $R \times X$ be the statements " $X \times X$ is a professor," " $X \times X$ is ignorant," and " $X \times X$ is vain," respectively. Express each of these statements using quantifiers; logical connectives; and $P \times X$, and $P \times X$, where the domain consists of all people.

a) No professors are ignorant.

$$\forall x \neg (P(x) \land Q(x))$$

b) All ignorant people are vain.

$$\forall x Q(x) \rightarrow R(x)$$

c) No professors are vain.

$$\neg \exists x P(x) \land R(x)$$

d) Does (c) follow from (a) and (b)?

no, for not all vain people are ignorant

Q4

Use quantifiers to express the statement that "There is a woman who has taken a flight on every airline in the world."

P(x) a person is a women

Q(x) a person take a flight on every airline in the world

$$\exists x P(x) \wedge Q(x)$$

Use quantifiers to express the statement that "There does not exist a woman who has taken a flight on every airline in the world."

$$\neg \exists x P(x) \land Q(x)$$

Q5

Suppose that the domain of Q x, y, z consists of triples x, y, z, where x = 0, 1, or 2, y = 0 or 1, and z = 0 or 1. Write out these propositions using disjunctions and conjunctions.

$$Q(0,0,0) \wedge Q(0,1,0)$$

b) $\exists x \ Q \ (x, 1, 1)$

$$Q(0,1,1) \vee Q(1,1,1) \vee Q(2,1,1)$$

c) $\exists z \neg Q(0,0,z)$

?

d) $\exists x \neg Q(x, 0, 1)$

Q6

Use rules of inference to show that if $\forall x \ (P \ (x) \to (Q \ (x) \land S \ (x)))$ and $\forall x (P \ (x) \land R \ (x))$ are true, then $\forall x (R \ (x) \land S \ (x))$ is true.