BGGN-213: FOUNDATIONS OF BIOINFORMATICS

Find-a-gene project assignment!

Name: Blair Chang

UCSD email: yac046@ucsd.edu

PID: A59000602

Q1. Tell me the name of a protein you are interested in. Include the species and the accession number. This can be a human protein or a protein from any other species as long as its function is known.

1. Protein name:

RAS guanyl-releasing protein 1 (RASGRP1) isoform b

2. Species:

Home sapiens (taxid:9606)

3. Accession number:

NP 001122074.1

4. Function known:

RASGRP1 is guanine nucleotide exchange factor (GEF) that activates RAS small GTPase by converting GDP to GTP. It mediates MAPK signaling in T cells and is important for T cell activation and proliferation.

Q2. Perform a BLAST search against a DNA database, such as a database consisting of genomic DNA or ESTs. The BLAST server can be at NCBI or elsewhere. Include details of the BLAST method used, database searched, and any limits applied (e.g. Organism). Also include the output of that BLAST search in your document. If appropriate, change the font to Courier size 10 so that the results are displayed neatly. You can also screen capture a BLAST output.

[Search Results]

1. Blast method: TBLASTN

1 Your searc	h is limited to records that include: Egretta (taxid:56073)
Job Title	NP_001122074:RAS guanyl-releasing protein
RID	KFZBVN8U016 Search expires on 10-26 01:23 am Download All ▼
Program	TBLASTN ? Citation ∨
Database	refseq_genomes (GPIPE/188379/101/ref_top_level) <u>See details</u> ▼
Query ID	NP_001122074.1
Description	RAS guanyl-releasing protein 1 isoform b [Homo sapiens]
Molecule type	amino acid
Query Length	762
Other reports	•

	Description	Scientific Name	Max Score	Total Score	Query Cover	E value	Per.	Acc. Len	Accession
$ \overline{\mathbf{Z}} $	Egretta garzetta isolate BGI_Z169 unplaced genomic scaffold, ASM68718v1 scaffold2	Egretta garzetta	145	1047	89%	1e-33	57.26%	5184829	NW_009258894.1
	Egretta garzetta isolate BGI_Z169 unplaced genomic scaffold, ASM68718v1 scaffold54	Egretta garzetta	94.4	456	41%	7e-18	53.57%	1815773	NW_009259313.1
	Egretta garzetta isolate BGI_Z169 unplaced genomic scaffold, ASM68718v1 scaffold621	Egretta garzetta	70.9	70.9	6%	9e-11	49.02%	61843	NW_009258687.1
☑	Egretta garzetta isolate BGI_Z169 unplaced genomic scaffold, ASM68718v1 scaffold287	Egretta garzetta	68.6	68.6	6%	5e-10	49.02%	14638873	NW_009260435.1
$\overline{\mathbf{Z}}$	Egretta garzetta isolate BGI_Z169 unplaced genomic scaffold, ASM68718v1 scaffold59	Egretta garzetta	67.0	67.0	7%	2e-09	45.76%	6298149	NW_009267230.1
	Egretta garzetta isolate BGI_Z169 unplaced genomic scaffold, ASM68718v1 scaffold858	Egretta garzetta	55.1	55.1	6%	7e-06	37.74%	387784	NW_009260590.1
$ \mathbf{Z} $	Egretta garzetta isolate BGI_Z169 unplaced genomic scaffold, ASM68718v1 scaffold215	Egretta garzetta	50.8	50.8	5%	1e-04	43.59%	8482504	NW_009259719.1
✓	Egretta garzetta isolate BGI_Z169 unplaced genomic scaffold, ASM68718v1 scaffold1584	Egretta garzetta	48.5	48.5	4%	6e-04	48.65%	13711	NW_009259416.1
✓	Egretta garzetta isolate BGI_Z169 unplaced genomic scaffold, ASM68718v1 scaffold123	Egretta garzetta	48.5	48.5	9%	7e-04	34.21%	1562861	NW_009259182.1

2. Search output list (top 5 hits):

	Description	Scientific Name	Max Score	Query Cover	E- value	Per. Ident	Accession
1 Picked	Egretta garzetta isolate BGI_Z169 unplaced genomic scaffold, ASM68718v1 scaffold2	Egretta garzetta	145	89%	1e-33	57.26%	NW_009258894.1
2	Egretta garzetta isolate BGI_Z169 unplaced genomic scaffold, ASM68718v1 scaffold54	Egretta garzetta	94.4	41%	7e-18	53.57%	NW_009259313.1
3	Egretta garzetta isolate BGI_Z169 unplaced genomic scaffold, ASM68718v1 scaffold621	Egretta garzetta	70.9	6%	9e-11	49.02%	NW_009258687.1
4	Egretta garzetta isolate BGI_Z169 unplaced genomic scaffold, ASM68718v1 scaffold287	Egretta garzetta	68.6	6%	5e-10	49.02%	NW_009260435.1
5	Egretta garzetta isolate BGI_Z169 unplaced genomic scaffold, ASM68718v1 scaffold59	Egretta garzetta	67.0	7%	2e-09	45.76%	NW_009267230.1

3. Database searched:

refseq genomes

4. Limits applied:

Organism limited to Egretta (taxid:56073)

5. Alignment of choice:

Egretta garzetta isolate BGI_Z169 unplaced genomic scaffold, ASM68718v1 scaffold2

Egretta garzetta isolate BGI_Z169 unplaced genomic scaffold, ASM68718v1 scaffold2

Sequence ID: NW 009258894.1 Length: 5184829 Number of Matches: 12

Range 1: 1148188 to 1148559 GenBank Graphics ▼ Next Match ▲ Previous Match Identities Frame Expect Method Positives Gaps 145 bits(365) 1e-33 Compositional matrix adjust. 79/124(64%) 94/124(75%) 0/124(0%) -2 Query 323 VLGEMTELLSSSRNYDNYRRAYGECTDFKIPILGVHLKDLISLYEAMPDYLEDGKVNVHK V EMTELLSS RNYD+YRRAY EC++FKIPILGVHLKDLISLYE MPDYLED K+N++K Sbjct 1148559 VFNEMTELLSSYRNYDSYRRAYNECSNFKIPILGVHLKDLISLYEGMPDYLEDKKINIYK 1148380 LLALYNHISELVOLOEVAPPLEANKDlvhlltlsldlYYTEDEIYELSYAREPRNHRAPS Query 383 L +LYNHI+EL+QLQE+ PLEAN DLVHLLT+SL + +SY + LYSLYNHINELIQLQEMPLPLEANMDLVHLLTVSLLDKINMSILKIISYTSQTTK*RIPL Sbjct 1148379 Query 443 VFKN 446 + N Sbjct 1148199 ILHN 1148188

6. E-value and other alignment stats:

E- value	Score	Method	Identities	Positives	Gaps
1e-33	145 bits (365)	Compositional matrix adjust	79/124(64%)	75%	0%

Q3. Gather information about this "novel" protein. At a minimum, show me the protein sequence of the "novel" protein as displayed in your BLAST results from [Q2] as FASTA format (you can copy and paste the aligned sequence subject lines from your BLAST result page if necessary) or translate your novel DNA sequence using a tool called EMBOSS Transeq at the EBI.

Egretta garzetta isolate BGI Z169 unplaced genomic scaffold, ASM68718v1 scaffold2

Sequence ID: NW 009258894.1 Length: 5184829 Number of Matches: 12

Range	1: 114818	8 to 114	48559 GenBank Graphics	<u> </u>		▼ Next Match	<u> </u>
Score	Exp	pect Meth	nod	Identities	Positives	Gaps	Frame
145 bit	ts(365) 1e	-33 Con	npositional matrix adjust	. 79/124(64%)	94/124(75%)	0/124(0%)	-2
Query	323		ΓELLSSSRNYDNYRRAYGECT ΓELLSS RNYD+YRRAY EC+				382
Sbjct	1148559		TELLSSYRNYDSYRRAYNECS				1148380
Query	383		NHISELVQLQEVAPPLEANKD NHI+EL+OLOE+ PLEAN D				442
Sbjct	1148379		NHINELIQLQEMPLPLEANMD				1148200
Query	443	VFKN + N	446				
Sbjct	1148199	ILHN	1148188				

1. Protein sequence of choice matches Subject above:
VAQKLHQLQNFNTLMAVIGGLCHSSISRLKETSSCVPHDVIKVFNEMTELLSSYRNYDSYRRAYNECSN
FKIPILGVHLKDLISLYEGMPDYLEDKKINVYKLYSLYNHIDELIQLQEMPLPLEANMDLVHLLTLSLD
LYYTEDEIYELSYAREPRSHRAAPMTPSKPPVVADWASGVAPKPDPKTISKHVQRMVDSVFKNYDHDQD
GYISQEEFEKIAASFPFSFCVMAKDWEG

- 3. Species:
 Egretta garzetta
- **Q4.** Prove that this gene, and its corresponding protein, are novel. For the purposes of this project, "novel" is defined as follows. Take the protein sequence (your answer to [Q3]) and use it as a query in a blastp search of the nr database at NCBI.
 - 1. Blastp output list with identities and Evalue:

Job Title	Protein Sequence
RID	KPA7X1CE013 Search expires on 10-28 11:05 am Download All ▼
Program	BLASTP ② Citation ▼
Database	nr <u>See details</u> ▼
Query ID	Icl Query_91565
Description	unnamed protein product
Molecule type	amino acid
Query Length	60
Other reports	Distance tree of results Multiple alignment MSA viewer

	Description	Scientific Name	E value	Per.	Accession
$\overline{\mathbf{v}}$	RAS guanyl releasing protein 1 [Serinus canaria]	Serinus canaria	7e-34	98.33%	AGX29484.1
	hypothetical protein DUI87_23033 [Hirundo rustica rustica]	Hirundo rustica rustica	4e-33	98.33%	RMC00424.1
	RAS_guanyl-releasing_protein 1 [Willisornis vidua]	Willisornis vidua	6e-33	100.00%	KAJ7412799.1
	GRP1 protein [Pandion haliaetus]	Pandion haliaetus	6e-33	100.00%	NXS75269.1
	PREDICTED: RAS guanyl-releasing protein 1-like [Cariama cristata]	Cariama cristata	1e-32	100.00%	XP_009696774.1

2. Top alignment shown with alignment statistics:

RAS guanyl releasing protein 1, partial [Serinus canaria]

Sequence ID: AGX29484.1 Length: 235 Number of Matches: 1

Range 1: 43 to 102 GenPept Graphics

▼ Next Match ▲ Previous Match

Score Expect Method Identities Positives Gaps
125 bits(314) 7e-34 Compositional matrix adjust. 59/60(98%) 60/60(100%) 0/60(0%)

Query 1 VFNEMTELLSSYRNYDSYRRAYNECSNFKIPILGVHLKDLISLYEGMPDYLEDKKINIYK 60 VFNEMTELLSSYRNYDSYRRAYNECSNFKIPILGVHLKDLISLYEGMPDYLEDKKIN+YK
Sbjct 43 VFNEMTELLSSYRNYDSYRRAYNECSNFKIPILGVHLKDLISLYEGMPDYLEDKKINVYK 102

3. Results indicates a "novel" gene found:

My top match has 98.33% identity to a different species - Serinus canaria. Thus, this gene from NW_009258894.1 and its corresponding protein are novel.

"Hi! It's me, again!"

Q5. Generate a multiple sequence alignment with your novel protein, your original query protein, and a group of other members of this family from different species. A typical number of proteins to use in a multiple sequence alignment for this assignment purpose is a minimum of 5 and a maximum of 20 - although the exact number is up to you. Include the multiple sequence alignment in your report. Use Courier font with a size appropriate to fit page width.

Re-labeled sequences for my alignment:

>HUMAN RASGRP1

MGTLGKAREAPRKPSHGCRAASKARLEAKPANSPFPSHPSLAHITQFRMMVSLGHLAKGASLDDLIDSCIQSFDADGNLCR SNQLLQVMLTMHRIVISSAELLQKVITLYKDALAKNSPGLCLKICYFVRYWITEFWVMFKMDASLTDTMEEFQELVKAKGE ELHCRLIDTTQINARDWSRKLTQRIKSNTSKKRKVSLLFDHLEPEELSEHLTYLEFKSFRRISFSDYQNYLVNSCVKENPT MERSIALCNGISQWVQLMVLSRPTPQLRAEVFIKFIQVAQKLHQLQNFNTLMAVIGGLCHSSISRLKETSSHVPHEINKVL GEMTELLSSSRNYDNYRRAYGECTDFKIPILGVHLKDLISLYEAMPDYLEDGKVNVHKLLALYNHISELVQLQEVAPPLEA NKDLVHLLTLSLDLYYTEDEIYELSYAREPRNHRAPPLTPSKPPVVVDWASGVSPKPDPKTISKHVQRMVDSVFKNYDHDQ DGYISQEEFEKIAASFPFSFCVMDKDREGLISRDEITAYFMRASSIYSKLGLGFPHNFQETTYLKPTFCDNCAGFLWGVIK QGYRCKDCGMNCHKQCKDLVVFECKKRAKNPVAPTENNTSVGPVSNLCSLGAKDLLHAPEEGPFTFPNGEAVEHGEESKDR TIMLMGVSSQKISLRLKRAVAHKATQTESQPWIGSEGPSGPFVLSSPRKTAQDTLYVLPSPTSPCPSPVLVRKRAFVKWEN KDSLIKSKEELRHLRLPTYQELEQEINTLKADNDALKIQLKYAQKKIESLQLEKSNHVLAQMEQGDCS

>Novel protein Serinus canaria

VAQKLHQLQNFNTLMAVIGGLCHSSISRLKETSSCVPHDVIKVFNEMTELLSSYRNYDSYRRAYNECSNFKIPILGVHLKD LISLYEGMPDYLEDKKINVYKLYSLYNHIDELIQLQEMPLPLEANMDLVHLLTLSLDLYYTEDEIYELSYAREPRSHRAAP MTPSKPPVVADWASGVAPKPDPKTISKHVQRMVDSVFKNYDHDQDGYISQEEFEKIAASFPFSFCVMAKDWEG

>Amazona guildingii

VFNEMTELLSSYRNYDSYRRAYNECSNFKIPILGVHLKDLISLYEGMPDYLEDKKINIYKLYSLYNHINELIQLQEMPLPL EANMDLVHLLTLSLDLYYTEDEIYELSYAREPRSHRAAPLTPSRPPVVADWASGVAPKPDPKTISKHVQRMVDSVFKNYDH DQDGYISQEEFEKIAASFPFSFCVMAKDWEGLISRDEITAYFMRASSIYSKLGLGFAHNFQETTYLRPTFCDNCAGFLWGV IKQGYRCKDCGMNCHKQCKDLVVIECKRRPKTSIPDSSPTSALASSLCPVGVKEQFHGQEEGLFTFPNGEVVEHSEDSKDR TIMLMGSSAQKISVRLKPSVVHEGTQTDPVLLAGDVSRRQIEKKEHKMPENPYLQLAPPSPFPSPILGRKKAYVKWENKDS SQKKKEEHYSCKPSYQELEQERNILKAHNEGLKIQLEQAHKTIESLTIHRRNHVVDNLQHRDCS

>Neopelma_chrysocephalum

MGTLGKRRENQQSAQACSTAPESALELKQTSHCPSLSNHTQVMMVPLGHLAKGATLEDLLETCIQSFDLEGNAYQNNQLLK IILAMHQFIISSADMLQKLIDLYLNALENNSSMLCVKICYFVRYWITEFWIMFKMDSKLSTTMEEFQELVRANGEELHCRL IDTSQINSRDWSRKLTQRVKANTSKKRKVSLLFDHLEPEELSDHLTYLEFKSFRRITFSDYQNYIVNSCVKENPTMERSIS LCNGISQWVQLMVLSRPTPQLRAEVFIKFIHVAQKLHQLQNFNTLMAVIGGLCHSSISRLKETSSCVPHDVIKVFNEMTEL LSSYRNYDSYRRAYNECSNFKIPILGVHLKDLISLYEGMPDYLEDKKINIYKLYSLYNHINELIQLQEMPLPLEANMDLVH LLTLSLDLYYTEDEIYELSYAREPRSHRAAPLTPCKPPVVADWASGVAPKPDPKTISKHVQRMVDSVFKNYDHDQDGYISQ EEFEKIAASFPFSFCVMAKDWEGLISRDEITAYFMRASSIYSKLGLGFAHNFQETTYLRPTFCDNCAGFLWGVIKQGYRCK DCGMNCHKQCKDLVVIECKRRPKTSVADSSPTSALASSLCPVGVKEQFHGKKRSH

>Theropithecus gelada

GAAAGTCTCAAACCAGTTATTCACCTGAGCCACCTGGATGAACTTGATGAAGACTTCTGCTCGGAGCTGCGGGGTGGGGCGGCTGAGAA $\verb|CCATCAGTTGTACCCACTGGGAGATACCGTTGCACAGAGCAATAGATCTCTCCATGGTGGGGTTTTCCTTCACACAGCTATTTACAAGG$ TAATTCTGATAATCAGA

>Sagittarius serpentarius

DLEGNAYQNNQLLKIILAMHQFIISSADMLQKLFSTYLNALENKSSALCVKICYFVRYWITEFWVMFKMDSKLSTTMEEFQ ELVKANGEELHCHLIDTTQINSRDWSRKLTQRVKANTSKKRKVSLLFDHLEPEELSDHLTYLEFKSFRRISFSDYQNYIVN SCVKENPTMERSIALCNGISOWVOLMVLSRPTPOLRAEVFIKFIHVAOKLHOLONFNTLMAVIGGLCHSSISRLKETSSCV PHDVIKVFNEMTELLSSYRNYDSYRRAYNECSNFKIPILGVHLKDLISLYEGMPNYLEDKKINIYKLYSLYNHINELIOLO EMPLPLEANMOLVHLLTLSLDLYYTEDEIYELSYAREPRSHRAAPLTPSRPPVVADWASGVAPKPDPKTISKHVQRMVDSV FKNYDHDQDGYISQEEFEKIAASFPFSFCVMAKDW

>Macaca mulatta

 ${\tt Macaca_mulatta}$

AGATTGAGCTGGCTCGCATGAAGTAGGCTGTGATCTCATCCCTGCTGATGAGGCCTTCCCTGCCAGCAAATGACCAAGGCAAGGATGTG AGTATACG

Multiple Sequence Alignment using MUSCLE at EMBL-EBI:

CLUSTAL multiple sequence ali	gnment by MUSCLE (3.8)						
HUMAN_RASGRP1 Amazona_guildingii	MGTLGKAREAPRKPSHGCRAASKARLEAKPANSPFPSHPSLAHITQFRMMVSLGHLAKGA						
Sagittarius_serpentarius Neopelma_chrysocephalum Novel_protein_Serinus_canaria Theropithecus_gelada Macaca_mulatta	MGTLGKRRENQQSAQACSTAPESALELKQTSHCPSLSNHTQVMMVPLGHLAKGA						
HUMAN_RASGRP1 Amazona_guildingii Sagittarius_serpentarius Neopelma_chrysocephalum Novel_protein_Serinus_canaria Theropithecus_gelada Macaca_mulatta	SLDDLIDSCIQSFDADGNLCRSNQLLQVMLTMHRIVISSAELLQKVITLYKDALAKNSPGDLEGNAYQNNQLLKIILAMHQFIISSADMLQKLFSTYLNALENKSSA TLEDLLETCIQSFDLEGNAYQNNQLLKIILAMHQFIISSADMLQKLIDLYLNALENNSSM						
HUMAN_RASGRP1 Amazona_guildingii Sagittarius_serpentarius Neopelma_chrysocephalum Novel_protein_Serinus_canaria Theropithecus_gelada Macaca_mulatta	LCLKICYFVRYWITEFWVMFKMDASLTDTMEEFQELVKAKGEELHCRLIDTTQINARDWS LCVKICYFVRYWITEFWVMFKMDSKLSTTMEEFQELVKANGEELHCHLIDTTQINSRDWS LCVKICYFVRYWITEFWIMFKMDSKLSTTMEEFQELVRANGEELHCRLIDTSQINSRDWS TC						
HUMAN_RASGRP1 Amazona_guildingii Sagittarius_serpentarius Neopelma_chrysocephalum Novel_protein_Serinus_canaria Theropithecus_gelada Macaca_mulatta	RKLTQRIKSNTSKKRKVSLLFDHLEPEELSEHLTYLEFKSFRRISFSDYQNYLVNSCVKE RKLTQRVKANTSKKRKVSLLFDHLEPEELSDHLTYLEFKSFRRISFSDYQNYIVNSCVKE RKLTQRVKANTSKKRKVSLLFDHLEPEELSDHLTYLEFKSFRRITFSDYQNYIVNSCVKE						
HUMAN_RASGRP1 Amazona_guildingii Sagittarius_serpentarius Neopelma_chrysocephalum Novel_protein_Serinus_canaria Theropithecus_gelada	NPTMERSIALCNGISQWVQLMVLSRPTPQLRAEVFIKFIQVAQKLHQLQNFNTLMAVIGG NPTMERSIALCNGISQWVQLMVLSRPTPQLRAEVFIKFIHVAQKLHQLQNFNTLMAVIGG NPTMERSISLCNGISQWVQLMVLSRPTPQLRAEVFIKFIHVAQKLHQLQNFNTLMAVIGG						

HUMAN_RASGRP1
Amazona_guildingii
Sagittarius_serpentarius
Neopelma_chrysocephalum
Novel_protein_Serinus_canaria
Theropithecus_gelada
Macaca mulatta

HUMAN_RASGRP1
Amazona_guildingii
Sagittarius_serpentarius
Neopelma_chrysocephalum
Novel_protein_Serinus_canaria
Theropithecus_gelada
Macaca_mulatta

HUMAN_RASGRP1
Amazona_guildingii
Sagittarius_serpentarius
Neopelma_chrysocephalum
Novel_protein_Serinus_canaria
Theropithecus_gelada
Macaca mulatta

HUMAN_RASGRP1
Amazona_guildingii
Sagittarius_serpentarius
Neopelma_chrysocephalum
Novel_protein_Serinus_canaria
Theropithecus_gelada
Macaca mulatta

HUMAN_RASGRP1
Amazona_guildingii
Sagittarius_serpentarius
Neopelma_chrysocephalum
Novel_protein_Serinus_canaria

.

LYYTEDEIYELSYAREPRNHRAPPLTPSKPPVVVDWASGVSPKPDPKTISKHVQRMVDSV
LYYTEDEIYELSYAREPRSHRAAPLTPSRPPVVADWASGVAPKPDPKTISKHVQRMVDSV
LYYTEDEIYELSYAREPRSHRAAPLTPSRPPVVADWASGVAPKPDPKTISKHVQRMVDSV
LYYTEDEIYELSYAREPRSHRAAPLTPCKPPVVADWASGVAPKPDPKTISKHVQRMVDSV
LYYTEDEIYELSYAREPRSHRAAPMTPSKPPVVADWASGVAPKPDPKTISKHVQRMVDSV
------GGGGCGGCTGAGAACCATCAGTTGTACCCACTGGGAGATACCG
------GGAAAGCCCAGGCCCAGCTTGGAATAGATTGAGCTGGCTCGC

KISLRLKRAVAHKATQTESQPWIGSEGPSGPFVLSSPRKTAQDTLYVLPSPTSPCPSPVL
KISVRLKPSVVHEGTQTDPVLLAGDVSRRQ---IEKKEHKMPENPYLQLAPPSPFPSPIL

VRKRAFVKWENKDSLIKSKEELRHLRLPTYQELEQEINTLKADNDALKIQLKYAQKKIES GRKKAYVKWENKDSSQKKKEEHYSCK-PSYQELEQERNILKAHNEGLKIQLEQAHKTIES

Theropithecus_gelada Macaca_mulatta	
HUMAN RASGRP1	LQLEKSNHVLAQMEQGDCS
Amazona guildingii	LTIHRRNHVVDNLQHRDCS
Sagittarius serpentarius	
Neopelma chrysocephalum	
Novel protein Serinus canaria	
Theropithecus_gelada	
Macaca_mulatta	TACG

Q6. Create a phylogenetic tree, using either a parsimony or distance-based approach. Bootstrapping and tree rooting are optional. Use "simple phylogeny" online from the EBI or any respected phylogeny program (such as MEGA, PAUP, or Phylip). Paste an image of your Cladogram or tree output in your report.

Using simple phylogeny from EBI to create a phylogenetic tree (distance-based approach).

Phylogram

Branch length: O Cladogram O Real

HUMAN_RASGRP1 0.45783
Theropithecus_gelada 0.35988
Macaca_mulatta 0.3713
Novel_protein_Serinus_canaria 0.45695
Neopelma_chrysocephalum 0.45369
Amazona_guildingii 0.4673
Sagittarius_serpentarius 0.47852
Sequence -0.47852

Q7. Generate a sequence identity based heatmap of your aligned sequences using R. Making heatmap using R/Bio3D

- 1. Converting alignment file to fasta file by MEGA.
- 2. Drawing heatmap on R.

Q8. Using R/Bio3D (or an online blast server if you prefer), search the main protein structure database for the most similar atomic resolution structures to your aligned sequences.

Since my consensus sequence has lots of gap positions, I used my original sequence of Novel protein Serinus canaria for the search.

My top 3 unique hits are all from humans. They are RasGRP1, RasGRP4, RasGRP2. They are different proteins from RASGRP protein family.

ID	Method	Resolution	Source	E-value	Identity
4L9M_A	X-ray Diffraction	3 Å	Homo	1e-149	87.23%
			sapiens		
6AXG_A	X-ray Diffraction	3.302 Å	Homo	1e-58	59.02%
			sapiens		
6AXF_A	X-ray Diffraction	3.1 Å	Homo	3e-48	51.20%
			sapiens		

Q9. Using AlphaFold notebook generate a structural model using the default parameters for your novel protein sequence.

Q10. Perform a "Target" search of ChEMBEL (https://www.ebi.ac.uk/chembl/) with your novel sequence. Are there any Target Associated Assays and ligand efficiency data reported that may be useful starting points for exploring potential inhibition of your novel protein? If there are no assays listed here simply list "non available as of [date]".

There are 8 Target Associated Assays for my novel protein.

One is from an article published in \underline{J} Med Chem (2018) 61:6261-6276: Activation of GFP-tagged RasGRP1 expressed in HEK293 cells assessed as ERK1/2 phosphorylation after 30 mins by immunoblot method. This paper proposed a ligand of Ras Guanine-Releasing Protein 3 (RasGRP3).

Assay ID: CHEMBL4137150 (https://www.ebi.ac.uk/chembl/assay_report_card/CHEMBL4137150/)

I think this ligand is promising since my interested protein (for Q1) is RasGRP1 in humans, which also belongs to RASGRP family. Thus, it's likely that my novel protein has binding motif for this ligand.

Yes, there's ligand efficiency data in my report.

CHEMBL519741 shows the highest Binding Efficiency index (BEI).

It is a small molecule that has a Molecular Weight of 413.51.

Ligand Efficiencies

See all bioactivities for target CHEMBL5953 used in this visualisation CHEMBL519741 ChEMBL Ligand Efficiency Plot for Target CHEMBL5953 Binding Efficiency index (BEI) 22 20 Surface Efficiency index (SEI) Total items: 17 Standard Value nM [1,100) [100,1000) >=1000 <1 The Ligand Efficiency chart plots Binding Efficiency Index (BEI) against Surface Efficiency Index (SEI), where: SEI = (-log10(Standard Value*10^-9))*100/PSA BEI = (-log10(Standard Value*10^-9))*1000/MWT