

C. Søppelsug

Oppgavenavn	Sopsug
Tidsbegrensning	5 sekunder
Minnebegrensning	1 gigabyte

Grushaug er et uferdig leilighetskompleks i utkanten av Lund. Nå er all nødvendig infrastruktur under konstruksjon, inkludert det viktigste av alt: søppelhåndtering. Som i mange områder i Sverige vil et søppelsug (automatisert vakum-basert samlesystem) bli brukt til å samle søppel. Ideen er å transportere søppel gjennom rør under bakken, ved å anvende lufttrykk.

Det er N bygninger på Grushaugen, nummerert fra 0 til N-1. Din oppgave er å koble noen par av bygninger med rør. Hvis du bygger et rør fra bygning u til en annen bygning v, vil u sende alt sitt søppel til v (men ikke i den andre retningen). Ditt mål er å lage et nettverk av N-1 rør slik at alt søppel ender opp i én bygning. Med andre ord, du vil at nettverke skal forme et tre med en bestemt rot (engelsk: v rooted v tree), hvor kantene er orientert i retning mot roten.

M rør er allerede konstruert. Disse $m\mathring{a}$ anvendes i ditt nettverk. Disse rørene er også rettet, og kan derfor kun anvendes i én retning.

Videre er det K rør det ikke er mulig å bygge, mellom gitte bygninger. Disse umulige rørene er beskrevet som par, så om det er umulig å bygge et rør fra u til v, kan det i utgangspunktet fortsatt være mulig å bygge et rør fra v til u.

Input

Første linje i input inneholder de tre heltallene N, M og K.

De følgende M linjene inneholder hver two ulike heltall a_i, b_i , som betyr at det allerede er bygget et rør fra a_i og b_i .

De følgende K linjene inneholder hver to ulike heltall c_i, d_i , som betyr at det er umulig å bygge et rør fra c_i til d_i .

Alle de M+K ordnede parene i input vil være unike. Merk at (u,v) og (v,u) er ansett som ulike par.

Output

Hvis det ikke finnes en løsning, print "NO".

Ellers, skriv ut N-1 linjer som hver inneholder to heltall u_i , v_i , som betyr at det skal være et rør fra u_i til v_i . Hvis det eksisterer flere løsninger, kan du printe hvilken som helst av dem. Husk at alle de M allerede eksisterende rørene må være inkludert i løsningen din.

Begrensninger og poenggiving

- $2 \le N \le 300000$.
- $0 \le M \le 300\,000$.
- $0 \le K \le 300\,000$.
- $0 \le a_i, b_i \le N-1$ for $i = 0, 1, \dots, M-1$.
- $0 \le c_i, d_i \le N-1$ for $i = 0, 1, \dots, K-1$.

Løsningen din vil testes på ulike testgrupper, hver verdt et gitt antall poeng. Hver testgruppe består av tester. For å få poeng på en testgruppe, må du løse alle testene i den gjeldende testgruppen.

Group	Poeng	Ytterligere begrensninger
1	12	$M=0 \ { m og} \ K=1$
2	10	M=0 og $K=2$
3	19	K=0
4	13	$N \leq 100$
5	17	Det er garantert å eksistere en løsning med 0 som rot.
6	11	M=0
7	18	Ingen ytterligere begrensninger

Eksempel

Figurene under viser den første og andre eksempeltesten. De blå kantene indikerer rør som allerede er bygget, og de stiplede rød kantene markerer rør det er umulig å konstruere.

Figuren til venstre viser det første eksempelet, med løsningen gitt i eksempel-output, som viser konstruerte rør som svarte kanter (i tillegg til det allerede konstruerte røret fra 4 til 1 som er blått). I dette nettverket vil alt søppel hentes fra bygning 0. Dette er ikke den eneste løsningen; for eksempel kan røret fra 1 til 3 erstattes med et rør fra 0 til 1, som fortsatt vil gi en gyldig løsning.

For den andre eksempeltesten ser vi fra figuren under til høyre at det er umulig å løse oppgaven, da vi har en sykel (2,3,4).

Input	Output
5 1 8 4 1 3 1 3 4 3 2 0 2 0 4 2 4 1 0 2 0	4 1 3 0 1 3 2 3
5 4 0 1 0 2 3 3 4 4 2	NO
3 0 1 0 1	1 0 2 0
4 0 2 0 1 1 0	2 0 3 0 1 3