

	DIBUAT	DISETUJUI
	DEPT. QC	PJT
	No. Dok : CHCl	MM/F/QC/05
Ī	II-1 1/12	•

Tanggal Terbit : 2 Januari 2023	Tanggal Efektif: 1 Maret 2023	No. Dok : CHCMM/F/QC/05
Revisi : 00	Tanggal Revisi:-	Halaman: 1/13

LAPORAN UJI STABILITAS ZOI FARADAY CEILING PENDANT (ELECTRIC SINGLE ARM) ZOI-CP-FE-1100

Tanggal Terbit : 2 Januari 2023Tanggal Efektif : 1 Maret 2023Revisi : 00Tanggal Revisi : -

DIBUAT	DISETUJUI
DEPT. QC	PJT
No. Dok : CHC	MM/F/QC/05
Halaman: 2/13	

DAFTAR ISI

1.	Kata pengantar	3
2.	Tujuan uji stabilitas	3
3.	Referensi	3
4.	Alat pengujian	3
5.	Protokol uji stabilitas secara keseluruhan	3
6.	Skema uji stabilitas	4

DIBUAT	DISETUJUI
DEPT. QC	PJT
No. Dok : CHCMM/F/QC/05	

Fanggal Terbit : 2 Januari 2023	Tanggal Efektif: 1 Maret 2023	No. Dok : CHCMM/F/QC/0
Revisi : 00	Tanggal Revisi:-	Halaman: 3/13

1. Kata pengantar

Stabilitas dianalisis berdasarkan persyaratan stabilitas. Sesuai dengan persyaratan mengenai desain kinerja dan manufaktur yang ditetapkan dalam perangkat harus stabil pada saat pengoperasian. Perangkat harus mampu untuk menahan tekanan pada lingkungan kerja dan mampu untuk mempertahankan ketahanan ini selama masa pakai yang diharapkan, mengikuti persyaratan pemeriksaan dan pemeliharaan seperti yang ditunjukkan oleh manufaktur. Perangkat juga harus memiliki sudut putar yang mampu menahan rangka beban. Pemeriksaan stabilitas elektrik juga diuji dan dipastikan aman digunakan selama pengguna memakai untuk keperluan medis. Metode yang digunakan mengacu Standar Nasional Indonesia SNI IEC 60601-1 tentang Medical Electrical Equipment

2. Tujuan uji stabilitas

Uji stabilitas merupakan indikator penting dalam proses penggunaan serta untuk memastikan keamanan dan efektivitas produk. Melalui penelitian mengenai stabilitas keseluruhan alat, stabilitas transportasi, dan stabilitas masa pakai dalam kondisi yang berbeda, untuk menghindari cacat, untuk menghindari kesalahan desain, dan memastikan keandalan produk.

3. Referensi

Mengacu Standar Nasional Indonesia SNI IEC 60601-1 mengenai Medical Electrical Equipment

4. Alat pengujian

Peralatan inspeksi yang sesuai dengan pengujian inspeksi produk jadi yang dapat memastikan keandalan, kelengkapan dan keefektifannya.

5. Protokol uji stabilitas secara keseluruhan

- 5.1. Siapkan peralatan inspeksi yang sesuai dengan prosedur inspeksi produk jadi untuk memastikan keandalan,kelengkapan, dan keefektifannya.
- 5.2. Pengujian stabilitas harus dilakukan per item
- 5.3. Penguji harus melakukan pemeriksaan dan pencatatan pada saat pengujian stabilitas
- 5.4. Penguji harus memeriksa setiap item sesuai dengan prosedur pengujian stabilitas dan metode yang telah ditentukan.

		DIBUAT	DISETUJUI
LAPORAN			
UJI STABILITAS			
		DEPT. QC	PJT
Tanggal Terbit : 2 Januari 2023	Tanggal Efektif: 1 Maret 2023	No. Dok : CHC	MM/F/QC/05
Revisi : 00	Tanggal Revisi : -	Halaman: 4/13	

- 5.5. Laporan Uji Stabilitas harus ditulis dengan rapi, jelas dan isinya harus lengkap dan komprehensif.
- 5.6. Laporan Uji Stabilitas harus disimpan sebagai file teknis kualitas produk untuk waktu yang lama.

6. Skema uji stabilitas

- 6.1 Permukaan pada Ceiling Pendant harus rata, dengan transisi yang jelas dan tidak ada cacat seperti tonjolan atau cekungan.
- 6.2 Struktur Ceiling Pendant harus kokoh dan tanpa adanya kelonggaran dan penyesuaian lengan harus fleksibel. Bagian yang berputar dari Ceiling Pendant harus dapat berputar dengan mudah, lengan dan rak Ceiling Pendant harus dapat tetap stabil pada posisi yang dipilih tanpa mengubah posisi awal saat tidak terkena gaya eksternal.
- 6.3 Rentang gerak Ceiling Pendant tidak boleh kurang dari nilai yang ditentukan pada Tabel 1

Tabel 1 Pengujian pada Ceiling Pendant

Tindakan	Tipe Ceiling Pendant
	ZOI-CP-FE-1100
Tinggi dari Ceiling Pendant	2000 - 4000 mm
Panjang lengan Ceiling Pendant tidak kurang dari	600 mm
Jarak pergerakan lengan secara horizontal tidak kurang dari	500 mm
Jarak pergerakan lengan secara vertikal tidak kurang dari	500 mm
Sudut putar lengan	340°

Tanggal Terbit : 2 Januari 2023

: 00

Revisi

DIBUAT	DISETUJUI
DEPT. QC	PJT
No. Dok : CHCl	MM/F/QC/05
Halaman: 5/13	

6.4 Kekuatan inisial pada saat berotasi tidak boleh kurang dari parameter berikut pada tabel 2

Tanggal Efektif: 1 Maret 2023

Tanggal Revisi : -

Tabel 2 Pengujian pada Kekuatan Rotasi Ceiling Pendant

Tindakan	Tipe Ceiling Pendant	
	ZOI-CP-FE-1100	
Kekuatan putar awal dalam rotasi keatas	75 N	
Kekuatan putar awal dalam rotasi kebawah	75 N	

- 6.5 Beban rak maksimal pada *Ceiling Pendant* tidak lebih dari 80 kg pada setiap rak. Tingkat stabilitas yang terjaga adalah selama 4 jam. Selain itu, sistem pengereman menggunakan sistem pneumatik dan pengereman ganda agar sudut yang telah disesuaikan tepat dan tidak mudah berubah.
- 6.6 Soket yang menjadi sarana penyedia kebutuhan medis juga harus sesuai dengan tempat dan kegunaan gas medis. Konfigurasi soket medis yang disediakan terdapat pada Tabel 3

Tabel 3 Konfigurasi Soket Gas Medis

Simbol	Produk
O2	Oksigen
AIR	Udara Medis
N2O	Nitrit Oksida
CO2	Karbon Dioksida
VAC	Vaccum
AGSS	AGSS
10A	Arus Listrik 10A
15A	Arus Listrik 15A
USB 2.0	USB 2.0 Port
AV	AV Port
VGA	VGA Port
RS232	Data Port

DIBUAT	DISETUJUI
DEPT. QC	PJT
No. Dok : CHCl	MM/F/QC/05

Tanggal Terbit : 2 Januari 2023	Tanggal Efektif: 1 Maret 2023	No. Dok : CHCMM/F/QC/05
Revisi : 00	Tanggal Revisi : -	Halaman: 6/13

RJ11	RJ11 Port
Rj45	RJ45 Web Port
TV	TV Video Port

6.7 Impedansi grounding antara kaki pembumian pelindung pada konektor daya pelindung dan semua bagian logam yang dapat diakses $\leq 0.1\Omega$. Tabel impedansi dan kemampuan membawa arus dari sambungan grounding

Tabel 4 Data Energi Terukur pada Grounding

Tipe dari peralatan energi terukur dan impedansi yang terukur antar part	Tes Arus (A) / Durasi (s)	Tegangan yang turun antar bagian part (V)	Impendansi maksimal terhitung (mΩ)	Batas maksimal inpendansi (mΩ)
Peralatan energi terukur dipasang permanen impendansi antara protektif terminal grounding input dengan lembaran metal	25 A / 10s	1.95	78	100
Peralatan energi terukur dipasang permanen, impendansi antara protektif terminal grounding input dengan baut	25 A / 10s	1.87	74.8	100
Peralatan energi terukur dipasang permanen, impendansi antara protektif terminal grounding input dengan konduktor penyeimbang potensial	25 A / 10s	1.04	41.6	100

6.8 Nilai kebocoran arus pasien dibagi menjadi 2 jenis kondisi normal dan kondisi apabila terdapat kesalahan tunggal.

Tabel 5 Data Kebocoran arus

Tipe kebocoran arus	Nilai yang diijinkan (kondisi normal)	Nilai yang diijinkan (kondisi kesalahan tunggal)
Kebocoran arus bumi	5 mA	10 mA
Kebocoran arus sentuh	100 μΑ	500 μΑ

Tanggal Terbit : 2 Januari 2023

: 00

Revisi

DIBUAT	DISETUJUI
DEPT. QC	PJT
No. Dok : CHCl	MM/F/QC/05
Halaman: 7/13	•

Kebocoran arus pasien	10 μΑ	50 μΑ
Arus bocor pasien dengan tegangan eksternal pada bagian Input/Output Sinyal	10 μΑ	50 μΑ
Kebocoran arus pasien dengan tegangan eksternal pada logam dapat diakses bagian yang tidak di-grounding secara Protektif	500 μΑ	500 μΑ
Arus penolong pasien	10 μΑ	50 μΑ
Fungsi Arus Kebocoran Konduktor Bumi	5 uA	10 μΑ

Tanggal Efektif: 1 Maret 2023

Tanggal Revisi: -

6.9 Pengujian untuk kekuatan dielektrik bahan isolasi padat untuk sarana keselamatan operator (MOOP) dan sarana keselamatan pasien (MOPP).

Tabel 6 Pengujian kekuatan dielektrik

Isolasi yang diuji (area dari	Tipe isolasi (1	Refrensi Tegar	ıgan	Pengujian tegangan AC	Kerusakan dielektrik dalam waktu 1 menit
diagram isolasi)	atau 2 MOOP / MOPP)	Tegangan kerja maksimal (Vpeak)	Tegangan kerja maksimal (Vdc)	dalam Vrms	
Primer ke perangkat	1 MOOP	326	-	1500	Tidak
Primer ke sekunder	2 MOOP	326	-	3000	Tidak
Primer ke penutup plastik	2 MOOP	326	-	3000	Tidak
Primer ke sekunder setelah melewati berbagai macam tes lain	2 MOOP	326	-	3000	Tidak

6.10 Pengujian ketahanan terhadap panas. Pengujian dilakukan dengan memberikan tekanan bola pada bagian termoplastik. Dampak pengaruh percobaan ≤ 2 mm, Tekanan yang digunakan 2N.

Tanggal Terbit : 2 Januari 2023

: 00

Revisi

DIBUAT	DISETUJUI
DEPT. QC	PJT
No. Dok : CHCl	MM/F/QC/05
Halaman: 8/13	•

Tabel 7 Pengujian ketahanan terhadap panas

Tanggal Revisi : -

Tanggal Efektif: 1 Maret 2023

Part / Material	Temperatur Pengujian (°C)	Dampak diameter (mm)
Penutup/Bagian isolasi eksternal	75	N/A
Bahan insulasi yang menopang Bagian Listrik yang tidak berinsulasi	125	1.52
Pendukung bahan isolasi - terminal input SMPS	125	1.13

Kondisi kesalahan tunggal yang terdapat pada tabel 5 dan tingkat berbahaya dari kegagalan tunggal tersebut mengacu pada tabel berikut.

Tabel 8 Pengujian terhadap kesalahan tunggal

Nomor	Deskripsi Kesalahan Tunggal	Situasi yang berbahaya?
1	Batas untuk Tegangan, Arus, dan Energi tidak melebihi batas komponen yang terpasang dan dapat diakses baik dalam kondisi normal ataupun kondisi abnormal	Tidak
2	Konduktor dan konektor tidak terpasang dengan baik yang berpotensi membuat masalah lebih lanjut	Tidak
3	Kerusakan pada catu daya	Tidak
4	Status panas (overheat) karena transformer mengalami konsleting (short circuit)	N/A
5	Kegagalan thermostats karena penggunaan berlebih, konsleting(short circuit), terputus	-
6	Kegagalan thermostats dalam membatasi perangkat karena penggunaan berlebih, konsleting(short circuit), terputus	-
7	Kebocoran cairan	-
8	Ketidakcocokan pendinginan yang berakibat kepada potensi bahaya karena salah satu ventilasi udara terhambat terus menerus	-
9	Ketidakcocokan pendinginan yang berakibat kepada	-

Tanggal Terbit : 2 Januari 2023

: 00

Revisi

DIBUAT	DISETUJUI
DEPT. QC	PJT
No. Dok : CHCl	MM/F/QC/05
Halaman: 9/13	

	potensi bahaya karena salah satu ventilasi udara bagian atas dan samping, menutup bagian atas dengan penutup atau memposisikan terlalu dekat dengan tembok	
10	Ketidakcocokan pendinginan yang berakibat kepada potensi bahaya karena mensimulasikan menutup filter	-
11	Alur pendinginan terhambat	-
12	Kuncian dari bagian yang bergerak - hanya satu bagian yang terkunci dalam satu waktu	-
13	Motor terhambat	Tidak
14	Motor mengalami hambatan atau konsleting pada kapasitor motor	N/A
15	Kegagalan komponen yang digunakan berhubungan dengan lingkungan yang kaya oksigen	N/A
16	Kegagalan akibat dari potensi mekanik pada tabel XXX	N/A

Tanggal Efektif: 1 Maret 2023

Tanggal Revisi : -

6.13 Pengujian Kekuatan Mekanik terhadap alat untuk menentukan potensi bahaya

Tabel 9 Tabel Pengujian Mekanik dan Potensi Bahaya

Nomor	Nama Pengujian	Kondisi Pengujian	Hasil
1	Pengujian Dorong	Kekuatan = 250N ± 10N selama 5 detik	Tidak ada potensi bahaya
2	Pengujian benturan	Bola besi 50 mm, 500 g ±25g, jatuh dari 1300m	Tidak ada potensi bahaya
3	Pengujian jatuh (dipegang)	-	-
4	Pengujian jatuh (portabel)	-	-
5	Pengujian penangan dengan kasar	-	-
6	Pengujian stress relief pada cetakan	7 jam di oven pada 70°C	Tidak ada potensi bahaya

6.14 Inspeksi Produk Jadi:

6.14.1 Pengujian Penampilan (fisik)

DIBUAT	DISETUJUI
DEPT. QC	PJT
No. Dok : CHCMM/F/QC/05	
II 1 10/12	

Tanggal Terbit : 2 Januari 2023	Tanggal Efektif: 1 Maret 2023	No. Dok : CHCMM/F/QC
Revisi : 00	Tanggal Revisi :-	Halaman: 10/13

Penampilan harus memenuhi persyaratan pada bagian 6.1 seperti yang diamati.

6.14.2 Pengujian dimensi

Sudut pada setiap dimensi harus diukur dengan penggaris khusus untuk sudut, sesuai dengan ketentuan pada bagian 6.2

6.14.3 Pengujian kinerja alat

Pasangkan Ceiling pendant vertikal, periksa seluruh bagian dari *ceiling* pendant agar standar spesifikasi rentang gerak sesuai dengan yang telah ditetapkan. Pengujian dilakukan dengan alat pengukuran khusus dan harus memenuhi ketentuan pada bagian 6.3

6.14.4 Pengujian kinerja putaran

Ketika ceiling pendant dipasang pada langit-langit (ceiling), periksa kekuatan putar pada pergerakan lengan dengan alat khusus, standar harus memenuhi ketentuan pada bagian 6.4

6.14.5 Pengujian soket medis

Perika seluruh jenis soket medis dan kelistrikan yang tersedia. Periksa kembali terhadap kebocoran dan jenis soket dengan steker yang digunakan. Pastikan seluruh soket berfungsi tanpa ada kebocoran. Jenis soket harus sesuai dengan bagian 6.6.

6.14.6 Uji pembumian

Pengujian pembumian (grounding) dilakukan dengan menggunakan *voltmeter* dan diukur sesuai dengan tabel 4. Seluruh data harus memenuhi ketentuan pada bagian 6.7

6.14.7 Uji kebocoran arus

Pengujian kebocoran arus diukur dengan *amperemeter*, lalu diukur dengan nilai maksimal sesuai dengan tabel 5. Seluruh data harus memenuhi ketentuan pada bagian 6.8

6.14.8 Uji kekuatan dielektrik insulator

Pengujian kekuatan dielektrik insulator diukur dengan *multimeter*, lalu hasil pengukuran dengan nilai sesuai dengan tabel 6. Vrms merupakan kekuatan yang dikeluarkan produk secara terus- menerus. Hasil pengujian sesuai

DIBUAT	DISETUJUI
DEPT. QC	PJT
No. Dok : CHCMM/F/QC/05	
II-1 11/12	•

Tanggal Terbit : 2 Januari 2023Tanggal Efektif : 1 Maret 2023No. Dok : CHCMMRevisi : 00Tanggal Revisi : -Halaman : 11/13

dengan kerusakan dielektrik selama 1 menit pada bagian 6.9

6.14.9 Uji ketahanan panas

Pengujian ketahanan panas diukur dengan *termometer*, lalu diukur dengan nilai sesuai dengan tabel 7. Batas dampak dari pengujian harus kurang dari 2 mm terhadap diameter bola pengujian.

6.14.10 Kondisi kesalahan tunggal

Kondisi kesalahan tunggal pada tabel 8 merupakan kondisi yang memperlihatkan sebuah kemungkinan yang dapat terjadi sewaktu-waktu. Perlu dipahami tabel tersebut agar dampak dan pengaruh yang ditimbulkan terhadap sebuah hal dapat diminimalisir.

6.14.10.1 Uji Pencahayaan Tersisa Rana Tunggal

Saat menggunakan uji rana tunggal untuk menghilangkan berkas cahaya, harus sesuai dengan ketentuan pada bagian 6.9

6.14.10.2 Uji Pencahayaan Tersisa Rana Ganda

Saat menggunakan dua daun jendela untuk menghilang cahaya, harus memenuhi ketentuan pada bagian 6.10

6.14.10.3 Uji Penerangan Tersisa pada double baffle deep cavity tube

Tabung berongga dalam dengan diameter dan tinggi yang ditentukan oleh standar harus ditempatkan pada atas pusat titik cahaya (*LFC*). Permukaan bagian dalam tabung berrongga dalam harus ditutup dengan lapisan non-relektif hitam dan *light-absorbing threads* untuk menghilangkan pantulan difusi, sesuai dengan ketentuan pada bagian 6.11

6.14.11 Uji Irradiansi

Pengujian menggunakan *PMS-50 UV-visible-near-infrared spectroscopic* analysis system harus memenuhi ketentuan pada bagian 6.12

6.14.12 Uji Iklim dan Lingkungan Mekanis

Pengujian harus dilakukan sesuai dengan standar yang berlaku dan memenuhi ketentuan pada bagian 6.13

6.14.13 Uji Kinerja Keselamatan

DIBUAT	DISETUJUI
DEPT. OC	P.IT
DEI 1. QC	1 J 1
No. Dok : CHCMM/F/QC/05	
TT 1 10/12	

Tanggal Terbit : 2 Januari 2023Tanggal Efektif : 1 Maret 2023No. Dok : CHCMM/F/Revisi : 00Tanggal Revisi : -Halaman : 12/13

Pengujian ini harus memenuhi ketentuan pada bagian 6.14. Tiga macam pengujian keamanan harus diuji menurut metode berikut:

- a. Uji kekuatan elektrolit: Gunakan pengujian tegangan tinggi untuk melakukan pengujian sesuai dengan prosedur pengoperasian untuk pengujian tegangan tinggi medis.
- b. Uji arus bocor: Gunakan penguji arus bocor medis untuk melakukan pengujian sesuai dengan prosedur pengoperasian untuk pengujian arus bocor medis.
- c. Arus bocor *shell*: Gunakan pengujian arus bocor medis untuk melalukan pengujian sesuai dengan prosedur pengoperasian untuk pengujian arus bocor medis.
- d. Uji *grounding impedance*: Gunakan pengujian *grounding* untuk melakukan pengujian sesuai dengan prosedur pengujian *grounding* untuk medis.

6.14.14 Uji Kompatibiltas elektromagnetik

Pengujian menurut metode yang ditentukan standar IEC 60601;2014, hasilnya harus memenuhi persyaratan yang berlaku, aturan pengujian yang berlaku,