Chapter 25 Magnetism

Magnets: interact on iron objects / other magnets

- 1) North pole (N-pole) & south pole (S-pole)
- 2) Opposite poles attract, like poles repel
- 3) Magnetic monopoles have not been found

Magnetic field

Magnets interact each other by magnetic field

magnetic field

magnetic field lines

North geographic pole Magnetic pole Compass Magnetic , pole South geographic pole

Inner: $S \Rightarrow N$; Outer: $N \Rightarrow S$

Currents produce magnetism

H. C. Oersted found in 1820:

An electric current produces a magnetic field.

A. M. Ampère: (molecular currents)

Magnetism is caused by electric currents.

Nature of magnetism

Magnetism is the interaction of electric currents or moving charges.

A. Einstein: electromagnetic field in relativity

Magnetic field:

1) Created by / interacts on currents or moving charges

2) Closed field lines without beginning or end

Force on a current

Magnetic field exerts a force on a current (wire)

It's called Ampère force

1) Uniform field:

$$F = IlB \quad \left(\vec{l} \perp \vec{B}\right)$$

or
$$F = IlB \sin \theta$$

$$\vec{F} = I\vec{l} \times \vec{B}$$

You can also decide the direction of the Ampere force using your left hand.

Definition of B

Define magnetic field \vec{B} by using: $\vec{F} = I\vec{l} \times \vec{B}$

SI unit for B: Tesla (T), $1 \text{ T} = 1 \text{ N/A} \cdot \text{m} = 10^4 \text{ G}$

2) General case: nonuniform B & curved wire

$$d\vec{F} = Id\vec{l} \times \vec{B}$$
 \Rightarrow $\vec{F} = \int Id\vec{l} \times \vec{B}$

where $d\vec{l}$ is a infinitesimal length of the wire integral over the current-carrying wire

F on curved wire

Example1: Uniform magnetic field B. Show that any curved wire connecting points A and B is exerted by the same magnetic force.

Solution: Total magnetic force:

$$\vec{F} = \int Id\vec{l} \times \vec{B} = I\left(\int d\vec{l}\right) \times \vec{B}$$

$$= I\vec{l}_{ab} \times \vec{B}$$

It is equivalent to a straight wire from A to B

$$\vec{F} = \int Id\vec{l} \times \vec{B} = I\vec{l}_{ab} \times \vec{B}$$

× curved × b × curved × b × straight × × a × × ×

Discussion:

- 1) It is valid only when B is uniform
- 2) Total force exerted on a current loop (coil)?

$$F_{\widehat{ab}} = F_{ab} = I \cdot \sqrt{2}R \cdot B \cdot \sin 45^{\circ}$$

$$F_{ab} = F_{ao} = IRB$$

Nonuniform field

Example2: I_1 and I_2 are on the same plane. What is the force on I_2 , if the magnetic field created by

$$I_1 \text{ is } B = k \frac{I_1}{r}?$$

Solution: Total force on I_2

$$F = \int I_2 B dl = \int_a^{a+b} k \frac{I_1 I_2}{r} dr$$

$$= kI_1I_2 \ln \frac{a+b}{a}$$

direction?

Interaction of currents

Question: Infinitely long current I_1 and circular current I_2 are insulated and on the same plane. What is the force between them?

$$dF = k \frac{I_1 I_2}{R \sin \theta} \cdot R d\theta$$

$$I_1 \qquad d\vec{F}$$

$$I_2 d\vec{l}$$

$$F = \int \sin \theta dF \qquad = kI_1 I_2 \int d\theta$$

$$= 2\pi k I_1 I_2$$

*Railgun

Armature: the part of a generator, motor etc that turns around to produce electricity, movement etc

Weapon for space war in future → railgun

High power $\sim 10^7 \, \mathrm{J}$

High velocity ~ 10 Mach about 3 km/s

Battery & rail

Torque on a current loop (1)

Rectangular current loop in a uniform field

$$\vec{F}_{total} = \vec{F}_{AB} + \vec{F}_{BC} + \vec{F}_{CD} + \vec{F}_{DA} = 0$$

$$\tau = 2 \times F_{AB} \frac{b}{2} \sin \theta = BIab \sin \theta = BIS \sin \theta$$

Torque on a current loop (2)

Torque on the loop:

$$\tau = BIS \sin \theta$$

Magnetic dipole moment: \vec{F}_{AB}

$$\vec{\mu} = I\vec{S}$$

where the direction is defined by right-hand rule

$$\vec{ au} = \vec{\mu} \times \vec{B}$$

$$ec{ au} = ec{\mu} imes ec{B}$$
 compare with $\left\{ egin{array}{l} ec{p} = Q ec{l} \ ec{ au} = ec{p} imes ec{E} \end{array}
ight.$

Magnetic dipoles

$$\vec{\mu} = I\vec{S}$$
 $\vec{\tau} = \vec{\mu} \times \vec{B}$

These are valid for any plane current loop

A small circular current \rightarrow a magnetic dipole

1) $\theta = \pi/2$: maximum torque $\vec{l} \rightarrow \vec{l} \otimes \vec{r}$

2) θ =0 or π : stable / unstable equilibrium $\frac{I}{\theta}$

$$\vec{R}$$

3) N loops coil / solenoid: $\vec{\mu} = NI\vec{S}$

Magnetic moment of an atom

Example3: Show that μ of an electron inside a hydrogen atom is related to angular momentum L of the electron by $\mu = eL/(2m)$.

Solution:
$$\mu = IS = \frac{1}{2}evr$$

$$I = \frac{Q}{T} = e \frac{v}{2\pi r} \qquad S = \pi r^2$$

Orbital angular momentum: L = mvr

$$\therefore \mu = \frac{eL}{2m}$$
 Classic / quantum model

μ of rotating charged body

Example 4: A uniformly charged disk is rotating about the center axis (σ, R, ω) . Determine the magnetic moment.

Solution: Magnetic moment $\mu = IS$

Rotating charge:
$$I = \frac{Q}{T} = \frac{\omega}{2\pi}Q$$

Total magnetic moment:

$$\mu = \int_0^R \frac{\omega}{2\pi} \ \sigma \cdot 2\pi r dr \quad \cdot \pi r^2 = \frac{1}{4} \pi \omega \sigma R^4$$

direction?

$$\bigotimes \vec{\mu}$$

Force on moving charges

Magnetic field exerts a force on a moving charge:

$$\vec{F} = q\vec{v} \times \vec{B}$$
 \rightarrow Lorentz force

1) Magnitude: $F = qvB\sin\theta$

- 2) Direction: right-hand rule, sign of q If q < 0, \vec{F} has an opposite direction to $\vec{v} \times \vec{B}$
- 3) Lorentz force doesn't do work on the charge!

Motion in a uniform field (1)

Point charge moves in a uniform magnetic field

1)
$$\vec{v} \Box \vec{B}$$
: $\vec{F} = q\vec{v} \times \vec{B} = 0$ Free motion

2) $\vec{v} \perp \vec{B}$: Uniform circular motion

$$F = qvB = \frac{mv^2}{R}$$

$$R = \frac{mv}{qB}, \qquad T = \frac{2\pi R}{v} = \frac{2\pi m}{qB}$$

Motion in a uniform field (2)

3) General case:

$$\vec{v} = \vec{v}_{\perp} + \vec{v}_{\square}$$

Free motion + uniform circular motion

Combination: the charge moves in a helix

$$R = \frac{mv\sin\theta}{qB}, \qquad T = \frac{2\pi m}{qB}, \qquad h = \frac{2\pi mv\cos\theta}{qB}$$

*Aurora & magnetic confinement

Aurora: Caused by high-energy charges from the Solar wind

"magnetic mirror"

Lorentz equation

Example5: A proton moves under both magnetic and electric field. Determine the components of the total force on the proton. (All in SI units)

$$\vec{B} = 0.4\vec{i} + 0.2\vec{j}, \ \vec{E} = (3\vec{i} - 4\vec{j}) \times 10^3, \ \vec{v} = (6\vec{i} + 3\vec{j} - 5\vec{k}) \times 10^3$$

Solution: Total force $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

$$= e(3\vec{i} - 4\vec{j}) \times 10^3 + e(6\vec{i} + 3\vec{j} - 5\vec{k}) \times 10^3 \times (0.4\vec{i} + 0.2\vec{j})$$

$$= (6.4\vec{i} - 9.6\vec{j}) \times 10^{-16} N$$

Different regions

Example6: A proton moving in a field-free region abruptly enters a uniform magnetic field as the figure. (a) At what angle does it leave? (b) At what distance x does it exit from the field?

Solution: Circular motion

(a)
$$\theta = 45^{\circ}$$

(b)
$$r = \frac{mv}{eB} \implies x = \frac{\sqrt{2}mv}{eB}$$

Challenging question

Question: A electron is released from rest. If the field is shown as the figure, how does the electron move under the field? What is the path?

The path is a cycloid

P-type Semiconductor

The Hall effect

Current-carrying conductor / semiconductor

placed in a magnetic field → Hall voltage

Lorentz force \rightarrow Hall field \rightarrow equilibrium

$$eE_H = evB$$
 $\Rightarrow E_H = vB$ $\Rightarrow V_H = E_H l = vBl$

$$V_H = KI_H B$$

 $I_H \rightarrow Hall current$

Applications of Hall effect

1) Distinguish the types of semiconductors

$$V_C > V_D \rightarrow N - type$$

$$V_C < V_D \rightarrow P - type$$

2) Measure magnetic field

Hall sensor / switch

3) Measure the carrier concentration