

INTRODUCTION TO

RNA-seq Workshop ACECR, Mashhad October 2021

RNA-seq Pipeline

R vs. R Studio

R: Engine RStudio: Dashboard

How R thinks?

Two slogan of R:

- 1) everything that exist in an "Object"
- 2) everything that happen is a "Function" call

Three parts of a function:

- command
- parathesis
- arguments inside paranthesis (these are not always present)

Statistics in R

```
var(x)
sd(x)
mean(x)
weighted.mean(x)
geometric.mean(x)
median(x)
t.test()
anova()
....
```


Data types in R

✓ Numeric

√ Character

✓ Logical

Vector

Central component of R

- ✓ Vectors are the most basic data structure in R.
- ✓ These structures allow to concatenate data of the same type.

A list of numbers, such as (1,2,3,4,5)

- > a <- c(1,2,3,4,5)
 - Command c creates a vector that is assigned to object a

Matrix

- ✓ A vector with an additional attribute
- ✓ A data structure for storing objectsof the same type
- ✓ The matrix function allows creating a matrix data structure in R, passing a numeric, character or logical vector.

m<- matrix(data=5,nrow=2,ncol=2)

Data Frame

A table where columns can contain numeric and string values

> df <- data.frame(a, b)

Data Structure in R

Factor

- represent categorical data
 - A list of levels, either numeric or string
 - > b<-factor(1:3)
 - > c<factor("Male","Female")
- Possible conversion:
- > Characters to factors
- Numeric to factors

R packages

CRAN is the official R repository!

R package= a library of functions (developed to cover some needs or specific scientific methods that are not implemented in base R)

R vs. R packages

R: A new phone

R Packages: Apps you can download

Input and Output

- Spreadsheet (Excel)
- Binary files
- Databases
- URL

Tabular data files

- Every line is a record
- In every record we have items separated by delimiter
- Every record have the same column

	A	В	C	D	E	F
1	Country 🕶	Salesperson 💌	Order Date 💌	OrderID 💌	Units 💌	Order Amount 🔻
2	USA	Fuller	1/01/2011	10392	13	1,440.00
3	UK	Gloucester	2/01/2011	10397	17	716.72
4	UK	Bromley	2/01/2011	10771	18	344.00
5	USA	Finchley	3/01/2011	10393	16	2,556.95
6	USA	Finchley	3/01/2011	10394	10	442.00
7	UK	Gillingham	3/01/2011	10395	9	2,122.92
8	USA	Finchley	6/01/2011	10396	7	1,903.80

Function	Header	Sep	Dec
read.csv	TRUE	и п !	<i>""</i>
read.csv2	TRUE	u.n !	и п 1

Data Visualization

Function and arguments	Output plot	
plot(x, y)	Scatterplot of x and y numeric vectors	
plot(factor)	Barplot of the factor	
plot(factor, y)	Boxplot of the numeric vector and the levels of the factor	
plot(time_series)	Time series plot	
plot(data_frame)	Correlation plot of all dataframe columns (more than two columns)	
plot(date, y)	Plots a date-based vector	
plot(function, lower, upper)	Plot of the function between the lower and maximum value specified	

ggplot2 library

(grammer of graphics)
ggplot() function

* the ability to be incremented line by line, adjusting parameters by parameters slowly *

How does ggplot2 work?

Idea: building graphics up from a set of primitives (i.e verbs, nouns)

Components of a plot

Subset data in R

- Using square brackets ([] and [[]] operators).
- Using the **dollar sign** (\$) if the elements are named.
- With functions, like the subset command for conditional or logical subsets.

Subset vector in R

- Selecting the **indices** you want to display. If more than one, select them using the c function.
- Using **boolean indices** to indicate if a value must be selected (TRUE) or not (FALSE).
- Using **logical operators** with the subset function.
- If you want to select all the values except one or some, make a subset indicating the index with negative sign.

Indexing System

How to index?	Based on what?	
	position	
_	exclude	
c() A vector of index	multiple elements	
logical vector	condition	
names	names	

Differential Expression Analysis

✓ Aim:

Finding Differrentially Expressed Genes(DEGs) in:

Cancer vs. Normal

Treated vs. Control

Cell line A vs. Cell line B

✓ R packages:

DESeq, DESeq2, edgeR, limma, ...

DESeq2 steps

Differential Expression Analysis

Read counts

Courtesy of Paul Pavlidis, UBC

samples: want to see if differences across condition are significant (w.r.t. biological and technical variation) SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 ENSG00000000003 ENSG00000000005 ENSG00000000419 ENSG00000000457

Normalization

RNA composition

Sample A Reads Sample B Reads

Gene length

Sample A Reads

Sequencing depth

Principal Component Analysis (PCA) and hierarchical clustering

PC1: 73% variance

Find the outliers

Poisson distribution Vs. Binomial distribution

So what do we use for RNA-seq count data?

Test for DE

Results()

- baseMean
- log2FoldChange
- 1fcSE
- Stat
- Pvalue
- Padj

baseMean

mean of normalized counts for all samples

log2 foldchanges

log2 (normalized_counts_interested/normalized_counts_control)

- Fold Change > 0 for gene A means that gene A is **more expressed (= up-regulated)** in interested condition compared to control.
- Fold Change < 0 for gene A means that gene A is **less expressed (= down-regulated)** in interested condition compared to control.

Why the selection shouldn't be based on fold changes only?

The fold change for gene A and gene B is **the same**!!!

P-value

Results

Gene-level filtered Table

Plot counts
 plot expression of a single gene

MA plot

mean of the normalized counts versus the log2 foldchanges for all genes tested

ENSG00000155363

Volcano

Heatmap

