A M

Université de Bretagne-Sud

Master MSAD: Apprentissage statistique et Big-Data

Examen du 25 mai 2022 Durée : 2 h

On considère les données suivantes :

\overline{Y}	1	2	4	5	3.5	3	2.1	1.5	0.8
x	0.2	0.7	0.8	1.2	1.4	1.6	2.4	2.5	2.9

On cherche f telle que Y = f(x).

Régression linéaire simple

- 1. Représenter Y en fonction de x et effectuer une régression linéaire. Ecrire le modèle (on identifiera la matrice X) et commenter soigneusement les résultats.
- 2. On note \widehat{Y} , les réponses fournies par ce modèle. Montrer formellement que le biais est nul en moyenne i.e. $\sum_{i=1}^n (\widehat{Y} - Y_i) = 0$. Calculer avec R.
- 3. Donner l'expression de la matrice de variance-covariance de \widehat{Y} en fonction de σ^2 . Calculer les coefficients de σ^2 sur la diagonale de la matrice.
- 4. Calculer la variance empirique de \widehat{Y} .
- 5. Rappeler l'expression et calculer une estimation de l'erreur quadratique moyenne (MSE).
 - Que faudrait-il faire pour avoir une meilleure estimation de cette erreur?
- 6. Appliquer la technique LOOCV (Leave-One-Out Cross-Validation) pour approximer le MSE.

Régression non linéaire

On se propose de rechercher un modèle non linéaire de la forme :

$$Y_i = \beta_1 f_1(x_i) + \beta_2 f_2(x_i) + \beta_3 f_3(x_i) + \varepsilon, \ \varepsilon \sim \mathcal{N}(0, \sigma^2), \ i = 1, \dots, n.$$
 (1)

Différents choix pour les fonctions $f_j(x)$, j = 1, 2, 3, sont possibles et il s'agit d'estimer $\beta = (\beta_1, \beta_2, \beta_3)$.

- 1. On considère la partition de l'intervalle [0,3] en trois intervalles A_j tels que $A_j = [j-1,j[,j=1,2,3]$ et des fonctions f_j de la forme $f_j(x) = 1$, si $x \in A_j$ et $f_j(x) = 0$, sinon, j = 1,2,3.
 - (a) Ecrire le modèle (1) pour les f_i définies sous forme matricielle (On écrira soigneusement la matrice X).
 - (b) Rappeler la formule des estimateurs de moindres carrés donnant le vecteur $\hat{\beta}$.
 - (c) Calculer \widehat{eta} à partir de la forme matricielle. Faire les calculs avec R.
 - (d) Représenter le modèle (fonction en escalier).
 - (e) Montrer de manière formelle, que le biais est nul.
 - (f) Exprimer la variance en fonction de σ^2 et comparer avec le résultat obtenu à la question 3 de la partie précédente. Calculer son estimation empirique avec R.
 - (g) Appliquer la technique LOOCV pour approximer le MSE.
 - (h) Comparer ce modèle avec le précédent.
- 2. On se propose d'ajuster des modèles linéaires dans chacun des intervalles A_j , j=1,2,3.
 - (a) Effectuer les régressions pour les valeurs dans chacun des intervalles $A_j,\,j=1,2,3.$ Commenter.
 - (b) Représenter la régression ainsi obtenue. Commentaires
 - (c) Calculer la variance empirique des prédicats et appliquer la technique LOOCV pour approximer le MSE.
- 3. Effectuer une régression sur un polynôme de degré 2.
 - (a) Commenter les résultats et représenter le modèle.
 - (b) Calculer le MSE par la technique LOOCV.
 - (c) Comparer avec une régression polynomiale de degré 3.

Régression splines

La régression splines est une technique qui permet d'ajuster une modèle non linéaire en considérant des polynôme pour les $f_i(x)$ et en imposant une contrainte de continuité. Le code suivant effectue une régression splines sur les données de l'énoncé :

```
library(splines)
fit=lm(Y~bs(x,knots=c(1,2)))
pred<-predict(fit,newdata=list(x=seq(0.2,2.9,0.01)),se=T)
plot(x,Y, col="blue", pch=20)
lines(seq(0.2,2.9,0.01), pred$fit,col="red")</pre>
```

Appliquer ce code et commenter le résultat en comparant avec ce qui a été obtenu précédemment. On représentera le modèle.

