

Deep Learning for Recommendation (II)

Rensheng Wang,

https://sit.instructure.com/courses/55957

Attention-Based Neural Networks

- Attention is a useful tool in deep learning. It is originally proposed to dynamically and selectively collect information from the source sentence in an encoder-decoder model in neural machine translation (NMT) (Bahdanau et al., 2015).
- → Attention based Model:

Figure below shows an encoder-decoder model with the additive attention mechanism.

Attention-Based Neural Networks

- \square Input sequence (w_1, w_2, \dots, w_M) length M; Output sequence (y_1, y_2, \dots, y_N) length N.
- The encoder (e.g., an RNN) creates a hidden state h_i at each input position $w_i (i=1,\cdots,M)$. The decoder constructs a hidden state $s_t = f(s_{t-1}, y_{t-1}, c_t)$ at output position $t(t=1,\cdots,N)$, where f is the function of the decoder, s_{t-1} and y_{t-1} are the state and output of the previous position, and c_t is the context vector at the position

Attention-Based Neural Networks

The context vector is defined as the sum of hidden states at all input positions, weighted by attention scores:

$$c_t = \sum_{i=1}^{M} \alpha_{t,i} h$$

Context Vector and Attention Score

 \square The attention score in context vector $\alpha_{t,i}$ is defined as:

$$\alpha_{t,i} = \frac{\exp(g(s_t, h_i))}{\sum_{j=1}^{M} \exp(g(s_t, h_j))}$$

- The function $g(\cdot)$ is determined by the hidden state of the previous output position and the context vector of the **current output position**.
- For example, a feed-forward network with a single hidden layer:

$$g(s_t, h_i) = \mathbf{v}_a^T \tanh\left(\mathbf{W}_a[s_t, h_i]\right)$$

where \mathbf{v}_a and \mathbf{W}_a are parameters.

- We can see that the context vector ct selectively and dynamically combines the information of the entire input sequence with the attention mechanism.
- Compared to the traditional encoder-decoder model in which only a single vector is used, multiple vectors are used to capture the information of the encoder regardless of the distance.

Transformer

- Transformer (Vaswani et al., 2017) is another attention-based neural network under the encoder and decoder framework.
- ☐ Different from the aforementioned model which sequentially reads the input sequence (left-to-right or right-to-left), Transformer reads the entire input sequence at once. The characteristic enables it to learn the model by considering both the left and the right context of a word.
- Transformer consists of an encoder for transforming the input sequence of words into a sequence of vectors (internal representation) and a decoder for generating an output sequence of words one by one given the internal representation.

Transformer

- The encoder is a stack of encoder components with an identical structure, and the decoder is also a stack of decoder components with an identical structure, where the encoder and decoder have the same number of components.
- Each encoder component or layer consists of a self-attention sublayer and a feed-forward network sublayer.

Transformer

- It receives a sequence of vectors (packed into a matrix) as input, processes the vectors with the self-attention sublayer, and then passes them through the feed-forward network sublayer.
- ☐ Finally, it sends the vectors as output to the next encoder component.
- \square Specifically, the input is a sequence of words (w_1, w_2, \cdots, w_M) with length M.
- $lue{}$ Each word w_i is represented by a vector \mathbf{x}_i as a sum of the word embedding and positional encoding of it.
- \square The vectors are packed into a matrix $\mathbf{X}(0) = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_M]^T$.
- $oxed{\Box}$ The self-attention sub-layer converts $\mathbf{X}(0)$ into $\mathbf{Z} = [\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_M]^T$ through self-attention

$$\mathbf{Z} = \mathsf{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \mathsf{softmax}\left(rac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}}
ight)\mathbf{V}$$

Self-Attention

- The main idea behind self-attention is that instead of using a fixed embedding for each token, we can use the whole sequence to compute a weighted average of each embedding.
- Another way to formulate this is to say that given a sequence of token embeddings x_1, \cdots, x_M , self-attention produces a sequence of new embeddings x_1', \cdots, x_M' , where each x_i' is a linear combination of all the x_j : $x_i' = \sum_{j=1}^M a_{ji}x_j$ where a_{ji} are called attention weights and are normalized so that $\sum_i a_{ji} = 1$.
- To see why averaging the token embeddings might be a good idea, consider the word "apple". You might think of a fruit, but if you were given more context, like apple devices, then you would realize that "apple" refers to the computer company. Similarly, we can create a representation for "apple" that incorporates this context by combining all the token embeddings in different proportions, perhaps by assigning a larger weight a_{ji} to the token embeddings for "device". Embeddings that are generated in this way are called contextualized embeddings and predate the invention of transformers in language models like ELMo.
- As we explained above, depending on the context, two different representations for "apple" can be generated via self-attention.

Self-Attention

- Self-Attention Parameters:
 - K, V, and Q are matrices of key vectors, value vectors, and query vectors respectively;
 - \bowtie d_k is the dimensionality of the key vector;
 - ${f K}$ is the resulting matrix consisting of M vectors.
- \square The matrices K, V, and Q are calculated as

$$\mathbf{Q} = \mathbf{X}^{(0)} \mathbf{W}_Q$$

$$\mathbf{K=}\mathbf{X}^{(0)}\mathbf{W}_{K}$$

$$\mathbf{V} = \mathbf{X}^{(0)} \mathbf{W}_V$$

where \mathbf{W}_{O} , \mathbf{W}_{K} and \mathbf{W}_{V} are embedding matrices.

After that, the vectors \mathbf{z}_i in \mathbf{Z} are independently processed by the feed-forward network sub-layer.

Self-Attention

- ☐ In each sub-layer, a residual connection is employed, followed by layer-normalization.
- ☐ The output of the encoder component is represented as

$$\mathbf{X}(1) = [\mathbf{x}(1), \mathbf{x}(1), \cdots, \mathbf{x}(1)]^T.$$

- $oldsymbol{\square}$ $\mathbf{X}^{(1)}$ is then fed into the next encoder component.
- The encoder finally outputs the vectors (representations) corresponding to all input words, denoted as X^{enc} .

Decoder in Transformer

- Each decoder component or layer in the decoder consists of a self-attention sub-layer, an encoder-decoder attention sub-layer, and a feed-forward network sub-layer.
- ☐ The sub-layers have the same architecture as that of the encoder component.
- After encoding, the output of the encoder is used to represent the key and value vectors: $\mathbf{K} = \mathbf{V} = \mathbf{X}^{\mathsf{enc}}$, which are then used for "encoder-decoder attention" in each decoder component.
- lacksquare The decoder sequentially generates words for all output positions $1,2,\cdots,N$.
- At each position $1 \le t \le N$, the bottom decoder component receives the previously outputted words "[start], $y_1, y_2 \cdots, y_{t-1}$ ", masks the future positions, and outputs internal representations for the next decoder component.
- \Box Finally, the word at position t, denoted as \mathbf{v}_t , is selected according to a probabilistic distribution generated by the softmax layer on the top decoder component.
- ☐ The process is repeated until a special symbol (e.g., "[end]") is generated, or the maximal length is reached.

Attention-Based Recommendation

- One observation in the learning of user representation is that histor- ical items may not equally contribute to the modeling of the users preference. For example, a user may choose a trendy item based on its high popularity rather than his/her own interest.
- Although, in principle, an MLP learned from interaction history may be able to capture the complicated relationships, the process is too implicit and there is no guarantee for that.
- To solve the problem, the Neural Attentive Item Similarity (NAIS) model (He et al., 2018a) employs a neural attention network to explicitly learn the weight of each historical item.

Neural Attentive Item Similarity (NAIS) model

- NAIS uses a learnable weight on each interacted item of a user.
- Let \mathcal{Y}_u be the set of interacted items of user u, and each item i is associated with two ID embedding vectors \mathbf{p}_i and \mathbf{q}_i to represent its role as a target item and a historical item, respectively.

Rensheng Wang, https://sit.instructure.com. Slide 14/15

Neural Attentive Item Similarity (NAIS) model

- Let \mathcal{Y}_u be the set of interacted items of user u, and each item i is associated with two ID embedding vectors \mathbf{p}_i and \mathbf{q}_i to represent its role as a target item and a historical item, respectively.
- ☐ The matching function in NAIS is formulated as

$$f(u,i) = \left(\sum_{j \in \mathcal{Y}_u \setminus \{i\}} a_{ij} \mathbf{q}_j\right)^T \mathbf{p}_i$$
$$a_{ij} = \frac{\exp(g(\mathbf{p}_i, \mathbf{q}_j))}{\left[\sum_{j \in \mathcal{Y}_u \setminus \{i\}} a_{ij} \exp(g(\mathbf{p}_i, \mathbf{q}_j))\right]^{\beta}}$$

where a_{ij} is an attention weight that controls the weight of the historical item j in an estimation of the user us matching score on the target item i.

The output of $g(\cdot)$ is further processed by a smoothed softmax function where β is in (0,1) to smooth the weighted sum of active users ((the default value of β is 0.5).

