LOGISTIC REGRESSION

```
library(datasets)
ir_data<- iris
head(ir_data)</pre>
```

```
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
              5.1
                                       1.4
                                                    0.2 setosa
                          3.5
## 2
              4.9
                                                    0.2 setosa
                          3.0
                                       1.4
## 3
              4.7
                          3.2
                                       1.3
                                                    0.2 setosa
## 4
              4.6
                          3.1
                                       1.5
                                                    0.2 setosa
              5.0
                                                    0.2 setosa
## 5
                          3.6
                                       1.4
## 6
              5.4
                          3.9
                                       1.7
                                                    0.4 setosa
```

```
set.seed(100)
samp<-sample(1:100,80)
ir_test<-ir_data[samp,]
ir_ctrl<-ir_data[-samp,]
#install.packages("GGally")
#install.packages("ggplot2")
library(ggplot2)
library(GGally)
ggpairs(ir_test)</pre>
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
y<-ir_test$Species
x<-ir_test$Sepal.Length
glfit<-glm(y~x, family = 'binomial')
newdata<- data.frame(x=ir_ctrl$Sepal.Length)
predicted_val<-predict(glfit, newdata, type="response")
prediction<-data.frame(ir_ctrl$Sepal.Length, ir_ctrl$Species,predicted_val)
prediction</pre>
```

##	<pre>ir_ctrl.Sepal.Length i</pre>	r_ctrl.Species	_	
## 1	5.1	setosa	0.176005274	
## 2	4.7	setosa	0.031871367	
## 3	4.6	setosa	0.020210042	
## 4	5.0	setosa	0.118037011	
## 5	4.6	setosa	0.020210042	
## 6	4.3	setosa	0.005048194	
## 7	4.6	setosa	0.020210042	
## 8	5.2	setosa	0.254235573	
## 9	5.2	setosa	0.254235573	
## 10	5.0	setosa	0.118037011	
## 11	5.0	setosa	0.118037011	
## 12	6.6	versicolor	0.995801728	
## 13	5.2	versicolor	0.254235573	
## 14	5.8	versicolor	0.849266756	
## 15	6.2	versicolor	0.973373695	
## 16	6.6	versicolor	0.995801728	
## 17	5.5	versicolor	0.580872616	
## 18	6.3	versicolor	0.983149322	
## 19	5.7	versicolor	0.779260130	
## 20	5.7	versicolor	0.779260130	
## 21	6.3	virginica	0.983149322	
## 22	5.8	virginica	0.849266756	
## 23	7.1	virginica	0.999593038	
## 24	6.3	virginica	0.983149322	
## 25	6.5	virginica	0.993316274	
## 26	7.6	virginica	0.999960686	
## 27	4.9	virginica	0.077368260	
## 28	7.3	virginica	0.999840193	
## 29	6.7	virginica	0.997365376	
## 30	7.2	virginica	0.999744973	
## 31	6.5	virginica	0.993316274	
## 32	6.4	virginica	0.989375085	
## 33	6.8	virginica	0.998347610	
## 34	5.7	virginica	0.779260130	
## 35	5.8	virginica	0.849266756	
## 36	6.4	virginica	0.989375085	
## 37	6.5	virginica	0.993316274	
## 38	7.7	virginica	0.999975367	
## 39	7.7	virginica	0.999975367	
## 40	6.0	virginica	0.934860430	
## 41	6.9	virginica	0.998964030	
## 42	5.6	virginica	0.688659177	
## 43	7.7	virginica	0.999975367	
## 44	6.3	virginica	0.983149322	
## 45	6.7	virginica	0.997365376	

##	46	7.2	virginica	0.999744973
##	47	6.2	virginica	0.973373695
##	48	6.1	virginica	0.958168208
##	49	6.4	virginica	0.989375085
##	50	7.2	virginica	0.999744973
##	51	7.4	virginica	0.999899865
##	52	7.9	virginica	0.999990329
##	53	6.4	virginica	0.989375085
##	54	6.3	virginica	0.983149322
##	55	6.1	virginica	0.958168208
##	56	7.7	virginica	0.999975367
##	57	6.3	virginica	0.983149322
##	58	6.4	virginica	0.989375085
##	59	6.0	virginica	0.934860430
##	60	6.9	virginica	0.998964030
##	61	6.7	virginica	0.997365376
##	62	6.9	virginica	0.998964030
##	63	5.8	virginica	0.849266756
##	64	6.8	virginica	0.998347610
##	65	6.7	virginica	0.997365376
##	66	6.7	virginica	0.997365376
##	67	6.3	virginica	0.983149322
##	68	6.5	virginica	0.993316274
##	69	6.2	virginica	0.973373695
##	70	5.9	virginica	0.899922463

qplot(prediction[,1], round(prediction[,3]), col=prediction[,2], xlab = 'Sepal
Length', ylab = 'Prediction using Logistic Reg.')

