Lec3 Note of Abstract Algebra

Xuxuayame

日期: 2023年3月17日

例 2.4. 由正 n 边形保持自身不变的所有旋转与翻转构成的群,称为二**面体群 (Dihedra group)**,记为 D_n 。

定义 2.4. 设 G 为群, $H \subset G$ 为非空子集。称 H 为 G 的**子群 (Subgroup)**,若 H 在 G 的 乘法运算下形成一个群。记作 H < G。

若 $H \le G$ 且 $H \ne G$, 称 H 为 G 的**真子群 (Proper subgroup)**, 记为 H < G.

设 $H \leq G$,那么

- (1) $\forall a, b \in H, ab \in H$;
- (2) $1_H \cdot 1_H = 1_H \Rightarrow 1_H = 1_G \in G$;
- (3) $\forall a \in H, a^{-1} \in H_{\circ}$

命题 2.1. 设 $\emptyset \neq H \subset G$,则下述等价:

- 1. $H \leq G$;
- 2. (1)(2)(3);
- 3. $\forall a, b \in H, ab^{-1} \in H_{\circ}$

证明. 仅证明 3⇒2。

取
$$b = a \in H$$
,则 $aa^{-1} = 1_G \in H$ 。
对 $\forall a \in H$,则 $1 \cdot a^{-1} = a^{-1} \in H$ 。

$$\forall a, b \in H \Rightarrow a(b^{-1})^{-1} = ab \in H$$

例 2.5. 设 $\emptyset \neq A \subset G$, $|A| = n < \infty$, 则下述等价:

- 1. $A \le G$;
- 2. $G_A = \{g \in G \mid gA = A\} = A, \text{ } \boxtimes \coprod gA = \{ga \mid a \in A\} \subset G;$
- 3. $1 \in A \perp |G_A| = |A| = n_{\circ}$

评论. $G_A \leq G$:

- $1 \cdot A = A \Rightarrow 1 \in G_A$;
- aA = A, $bA = A \Rightarrow (ab)A = a(bA) = aA = A \Rightarrow ab \in G_A$;
- $aA = A \Rightarrow A = a^{-1}(aA) = a^{-1}A \Rightarrow a^{-1} \in G_{A}$.

证明. 1⇒2:

若 A < G, 则 $xA = A \Rightarrow x \cdot 1 = x \in A$, 即 $x \in G_A \Rightarrow x \in A$, 反过来亦成立。

 $2\Rightarrow 3$

显然。

3⇒1:

 $1 \in A, \ |G_A| = n, \ \$ 则 $\forall \ g \in G_A, \ gA = A \Rightarrow g \cdot 1 \in A, \ \$ 即 $G_A \subset A, \ \$ 而 $|G_A| = |A|,$ 所以 $G_A = A$ 。

例 2.6. 对任何群 $G, G \leq G, \{1_G\} \leq G,$ 称为 G 的**平凡子群**。

例 2.7. $A_n < S_n$, A_n 是由偶置换形成的子群。

例 2.8. 称 $GL_n(\mathbb{F})$ 的子群为**典型群 (Classical group)**, 这里 \mathbb{F} 为域, 如 $\mathbb{F} = \mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \cdots$ 。有以下几种:

- (1) 一般线性群 (General linear group) $GL_n(\mathbb{F})$ 。 特殊线性群 (Special linear group) $SL_n(\mathbb{F}) = \{A \in GL_n(\mathbb{F}) \mid \det A = 1\}$ 。
- (2) 设 $X \in GL_n(\mathbb{F})$ 为对称或反对称阵。 则 $G(X) := \{A \in GL_n(\mathbb{F}) \mid A^TXA = X\} \leq GL_n(\mathbb{F})$ 。 这是因为:
 - $I_n \in G(X)$;
 - $\bullet \ A^TXA = X \Rightarrow (A^{-1})^TA^TXAA^{-1} = (A^{-1})^TXA^{-1} = X \,, \ \ \mathbb{P} \ A^{-1} \in G(X) \,;$
 - $A^TXA = X$, $B^TXB = X \Rightarrow (AB)^TXAB = B^TA^TXAB = B^TXB = X$, $\mathbb{R}^TAB \in G(X)$.

特别取 $X = I_n$ 时,得到**正交群 (Orthogonal group)**,记为 $O_n(\mathbb{F})$ 。

记 $SL_n(\mathbb{F}) \cap O_n(\mathbb{F}) = SO_n(\mathbb{F})$,称为特殊正交群 (Special orthogonal group)。

评论. $H_i \leq G$, $i \in I \Rightarrow \bigcap_{i \in I} H_i \leq G$, 但一般而言 $\bigcup_{i \in I} H_i$ 未必是 G 的子群。 $\stackrel{\cdot}{H}_i$ $\stackrel{\cdot}{H$

取
$$X = \begin{pmatrix} I_p \\ -I_q \end{pmatrix}$$
,则记 $G(X) = O_{p,q}(\mathbb{F})$,相应地有 $SO_{p,q}(\mathbb{F})$,称为**广义正交群**。
取 $X = \begin{pmatrix} I_n \\ -I_n \end{pmatrix}$,则记 $G(X) = Sp_{2n}(\mathbb{F})$,称为**辛群 (Symplectic group)**。

评论. $Sp_{2n}(\mathbb{F}) \leq SL_{2n}(\mathbb{F})$.

(3) $X \in GL_n(\mathbb{C})$ 为 Hermite 阵。

则 $G(X) = \{A \in GL_n(\mathbb{C}) \mid A^HXA = X\} \leq GL_n(\mathbb{C})$ 。特别取 $X = I_n$,则 $G(I_n) = U_n$ 。称该群为**西群 (Unitary group)**。同样地有**特殊西群 (Special unitary group)** $SU_n = U_n \cap SL_n(\mathbb{C})$ 。

例 2.9.

$$O_{2} = \left\{ \begin{pmatrix} -\cos\theta & \mp\sin\theta \\ \mp\sin\theta & \cos\theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\}.$$

$$SO_{2} = \left\{ \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\}.$$

$$Sp_{2} = SL_{2}.$$

$$U_{1} = \left\{ z \mid \overline{z}z = 1 \right\} = S^{1}.$$

$$SU_{2} = \left\{ \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} \middle| |\alpha|^{2} + |\beta|^{2} = 1 \right\} = S^{3}.$$

3 群的直积

设有群 G, H, 定义

$$G \times H = \{(g,h) \mid g \in G, h \in H\}, (g_1,h_1) \cdot (g_2,h_2) := (g_1g_2,h_1h_2).$$

定义 3.1. $G \times H$ 在上述运算下形成一个群, 称为群 G 和 H 的**直积 (Direct product)**。

评论. 若
$$G_1 \leq G, H_1 \leq H$$
,则 $G_1 \times H_1 \leq G \times H$ 。
$$|G| < \infty, |H| < \infty \Rightarrow |G \times H| = |G| \cdot |H| < \infty.$$

$$G \leftrightarrow G \times \{1_H\} \le G \times H, \ H \leftrightarrow \{1_G\} \times H \le G \times H_{\circ}$$