Tema 2

Arquitectura de un Sistema de Gestión de Bases de Datos

Tema 2 Arquitectura de un SGBD Contenidos

- 1. Una arquitectura con tres niveles
- 2. Correspondencias entre niveles
- 3. Lenguajes de una BD
- 4. Enfoques para la arquitectura de un SGBD
- 5. El administrador de la BD

Tema 2 Arquitectura de un SGBD Contenidos

- 1. Una arquitectura con tres niveles
- 2. Correspondencias entre niveles
- 3. Lenguajes de una BD
- 4. Enfoques para la arquitectura de un SGBD
- 5. El administrador de la BD

¿Por qué organizar en niveles?

- Los usuarios pueden acceder a los mismos datos, pero desde distintas perspectivas.
 - Si un usuario cambia la forma de ver los datos no influye en el resto.
- La organización global de los datos puede cambiarse sin afectar a los usuarios.
- Los usuarios no tienen por qué gestionar aspectos relativos a la representación física de los datos.
 - El administrador de la BD puede cambiar la forma de representar los datos sin influir en los usuarios.

- La percepción de los datos en un SGBD puede hacerse siguiendo tres niveles de abstracción:
 - Nivel Interno
 - Nivel Conceptual
 - Nivel Externo
 - ANSI/SPARC
 - Precedente de dos niveles: DBTG CODASYL

Definición 2.1 (Nivel Interno). Constituye la representación de la BD más cercana a la estructura de almacenamiento físico. Por tanto, es la capa donde se establece la forma en que se implantan las estructuras de datos que organizan los niveles superiores.

Definición 2.2 (Nivel Conceptual). Supone una abstracción global de la BD que integra y aglutina todas las percepciones que los usuarios tienen de ella.

Definición 2.3 (Nivel Externo). A este nivel se definen todas las percepciones particulares de la BD por parte de los usuarios. Cada usuario puede tener su propia visión de la BD.

Nivel Externo

- Parte de la BD que es relevante para cada usuario.
 - Sólo aquellas entidades, relaciones y atributos que le son de interés.
 - Representadas de la forma que le interesa al usuario:
 - Ejemplos:
 - Nombre completo o nombre y apellidos
 - Fecha o día, mes y año
 - ...
 - Datos calculados a partir de los que hay:
 - Edad
 - Ventas totales
 - ٠.,

Nivel Conceptual

- Visión global de los datos
- Estructura lógica de los datos:
 - Qué datos están almacenados y qué relaciones hay entre ellos.
- Este nivel representa:
 - Todas las entidades, atributos y relaciones.
 - Las restricciones que afectan a los datos.
 - Información semántica sobre los datos.
 - Información de seguridad y de integridad.
- Da soporte a cada vista externa
- No debe contener ningún detalle de almacenamiento

Nivel Interno

- Representación física de la BD en el ordenador.
- Cómo están almacenados los datos.
- Busca el rendimiento óptimo del sistema.
- Representa:
 - Estructuras de datos
 - Organizaciones en ficheros
 - Comunicación con el SO para gestionar el uso de unidades de almacenamiento
 - Compresión de datos, encriptación ...
- Parte de las responsabilidades de este nivel las realiza el SO
 - Nivel físico.
 - No existe una división clara:
 - Depende de cada SGBD y de cada SO

- Fjemplo de Gestión Docente Universitaria:
 - Item básico PROFESOR
 - Identificado por:
 - Número de registro personal (NRP)
 - Caracterizado por:
 - Nombre y apellidos.
 - Sueldo
 - Departamento al que pertenece.

Visión conceptual:

```
Profesor = registro de

NRP campo alfanumérico de 10 caracteres,
Apellidos campo alfanumérico de 30 caracteres,
Nombre campo alfanumérico de 20 caracteres,
Sueldo campo decimal de 8+2 dígitos,
Departamento campo alfanumérico de 30 caracteres
fin Profesor.
```

- Visión externa 1:
 - Gestión de personal
 - Lenguaje A

```
TYPE Profesor IS RECORD (
NRP VARCHAR2(10),
Apellidos VARCHAR2(30),
Nombre VARCHAR2(20),
Sueldo NUMBER(8,2)
);
```

Visión externa 2:

- Ordenación académica
- Lenguaje B

```
TYPE Profesor = RECORD

NRP : STRING[10];
Apellidos : STRING[30];
Nombre : STRING[20];
Departamento : STRING[30];
END;
```

Visión interna:

```
Profesor_interno BYTES=74

NRP TYPE=BYTES(10),OFFSET=0

Apellidos TYPE=BYTES(30),OFFSET=10

Nombre TYPE=BYTES(20),OFFSET=40

Sueldo TYPE=WORD(2),OFFSET=60

Departamento TYPE=BYTES(10),OFFSET=64.
```

Tema 2 Arquitectura de un SGBD Contenidos

- 1. Una arquitectura con tres niveles
- 2. Correspondencias entre niveles
- 3. Lenguajes de una BD
- 4. Enfoques para la arquitectura de un SGBD
- 5. El administrador de la BD

- Transformación o correspondencia entre niveles:
 - Conjunto de normas que establece cómo se definen los datos de un nivel en términos de otro.
 - Mecanismo fundamental para el establecimiento de la independencia:
 - Lógica
 - Física

Transformación conceptual/interna:

- Cómo se organizan las entidades lógicas del nivel conceptual en términos de registros y campos almacenados en el nivel interno.
- Independencia física:
 - Varía el nivel interno
 - Cambia la correspondencia
 - No varía el nivel conceptual

Transformación externa/conceptual:

- Describe un esquema externo en términos del esquema conceptual subyacente.
- Independencia lógica:
 - Varía el nivel conceptual
 - Cambia la correspondencia
 - No varía el nivel externo

No siempre es posible

Transformación externa/externa:

- Algunos SGBDs permiten describir esquemas externos en términos de otros esquemas externos.
- Independencia lógica:
 - Varía el esquema externo subyacente
 - Cambia la correspondencia
 - No varía el esquema definido

Nivel externo u1B U2A u2B Esqu. A Visión 1 Visión 2 Esqu. B Corr A/Conc **Nivel conceptual** Corr A/Conc Esquema Visión Conceptual DBA conceptual Nivel Físico C. Con./Int. Base de Esquema Visión Interna datos Interno real SGBD

Tema 2 Arquitectura de un SGBD Contenidos

- 1. Una arquitectura con tres niveles
- 2. Correspondencias entre niveles
- 3. Lenguajes de una BD
- 4. Enfoques para la arquitectura de un SGBD
- 5. El administrador de la BD

- Recomendación ANSI/SPARC:
 - Disponer de un lenguaje específico orientado a los datos:
 - Definición
 - Control
 - Manipulación de datos
 - Sublenguaje de datos: DSL
 - Implementado en el propio SGBD
 - Tiene distintas partes:
 - DDL
 - DML
 - DCL

Definición 2.4 (DDL). (Del inglés, Data Definition Language) O sublenguaje de definición de datos. Subconjunto del DSL destinado a la definición de estructuras de datos y esquemas en la BD.

Definición 2.5 (DML). (Del inglés, Data Manipulation Language) O sublenguaje de manipulación de datos. Subconjunto del DSL mediante el que podemos introducir datos en los esquemas, modificarlos, eliminarlos y consultarlos. También debe permitir consultar la estructura de los esquemas definidos en la BD.

Definición 2.6 (DCL). (Del inglés, Data Control Language) O sublenguaje de control de datos, que permite gestionar los requisitos de acceso a los datos y otras tareas administrativas sobre la BD.

Lenguajes de una BD

- ANSI/SPARC recomienda disponer de un DDL, un DML y un DCL para cada nivel de la arquitectura.
- En la práctica todos estos sublenguajes se presentan bajo una implementación única.
 - Cada sentencia trabaja sobre uno o varios niveles.
 - Un sistema de privilegios discrimina quién puede ejecutar qué.
- La industria ha seguido un camino diferente:
 - Lenguajes de datos estándares
- Ejemplo destacado:
 - SQL
 - SQL89
 - SQL92
 - SQL3

- Lenguaje anfitrión o de aplicación
 - Desarrollo de aplicaciones en el SO que trabajen sobre la BD.
 - Propósito general:
 - C/C++
 - Java
 - C#
 - Herramientas de desarrollo específicas:
 - Developer de Oracle
 - PowerBuilder de PowerSoft
 - Delphi de Borland
 - · ...
 - Proporciona:
 - Procesamiento avanzado de datos
 - Gestión de la interfaz de usuario

- Hay que establecer un mecanismo para traducir:
 - Estructuras de datos
 - Operaciones
- Acoplamiento:
 - Débilmente acoplados:
 - Lenguajes de propósito general
 - El programador puede distinguir:
 - Sentencias propias del lenguaje
 - Sentencias dispuestas para acceder a la BD a través del DSL
 - Fuertemente acoplados
 - Lenguajes y herramientas de propósito específico
 - Se parte del DSL como elemento central y se le incorporan características para facilitar el desarrollo de aplicaciones.

- Alternativas para implementar el acoplamiento débil:
 - APIs de acceso a BD
 - ODBC Open Database Connectivity
 - JDBC Java Database Connectivity
 - DSL inmerso en el código fuente del lenguaje anfitrión
 - El programador escribe un código híbrido.
 - Hay un preprocesador que lo desarrolla.

- Alternativas para implementar el acoplamiento fuerte:
 - Diversas propuestas (la mayoría propietarias)
 - PL/SQL de Oracle
 - Extensión Procedural para SQL
 - Ejecución de Java sobre una máquina virtual implantada en el propio SGBD.

- También han aparecido numerosos entornos de desarrollo específicos para el desarrollo de aplicaciones de gestión:
 - Diseñadores de informes
 - Diseñadores de formularios
 - ...

Tema 2 Arquitectura de un SGBD Contenidos

- 1. Una arquitectura con tres niveles
- 2. Correspondencias entre niveles
- 3. Lenguajes de una BD
- 4. Enfoques para la arquitectura de un SGBD
- 5. El administrador de la BD

- El concepto de SGBDs ha evolucionado bastante.
 - Paralelamente al desarrollo de la Informática
 - Forma de gestionar la información
 - Forma de ejecutar los programas
 - Forma de interactuar con el usuario
- Inicialmente:
 - Esquema centralizado
 - Toda la carga de gestión y procesamiento de información recaía en servidores centrales
 - El usuario accedía mediante terminales
 - En el ordenador principal:
 - SGBD
 - Programas de aplicación

- Problema:
 - Elevado coste de los ordenadores principales
 - Aparece el PC
- Solución
 - Desplazar la ejecución de los programas de usuario y la interacción hasta los PCs.
 - Reducción de costes en hardware
 - Aproximación Cliente/Servidor:
 - Servidor
 - Servidor de BD
 - Servicio de escucha de peticiones
 - PCs conectados en red con el servidor:
 - Programas de aplicación
 - Servicio de enlace cliente que interactúa con el servicio de escucha instalado en el servidor.
- Desarrollo de las redes de comunicaciones:
 - Enfoque distribuido

Enfoques para la arquitectura de un sistema de BD

Problema:

- Coste de mantenimiento de los PCs:
 - Instalación
 - Configuración
 - Actualización

Solución

- Separar en las aplicaciones:
 - Parte que interactúa con el usuario
 - Parte de ejecución lógica del programa

Enfoques para la arquitectura de un sistema de BD

Actualmente:

- Arquitectura articulada en tres niveles de procesamiento
 - Nivel de servidor de datos
 - Posiblemente distribuido
 - El SGBD permite organizar la información de la empresa como una BD global.
 - Las peticiones de datos formuladas desde una sede se traducen de forma transparente a peticiones en las sedes donde se encuentran esos datos.

Enfoques para la arquitectura de un sistema de BD

- Nivel de servidor de aplicaciones
 - Facilita los programas de aplicación a:
 - Clientes ligeros:
 - Disponen de entornos de ejecución de aplicaciones
 - Usando estándares:
 - Protocolos de red TCP/IP
 - Navegadores basados en HTTP
 - Soporte de máquina virtual Java

• ...

Enfoques para la arquitectura de un sistema de BD

Fil nivel de cliente:

- PCs ligeros dotados de configuraciones basadas en estándares abiertos.
 - Basados en el carácter portable con que se distribuyen las aplicaciones desde los servidores de aplicaciones.
 - Menos dependencia del hardware y del SO a la hora de abordar la ejecución de las aplicaciones.

Enfoques para la arquitectura del sistema de BD

c) BD Distribuida y programas de aplicación en arquitectura de tres Capas

Enfoques para la arquitectura de un sistema de BD

Ventajas:

- Reducción significativa en cuanto al mantenimiento de los clientes
- Mayor facilidad y flexibilidad para el usuario.

Inconvenientes:

- Mayor complejidad en:
 - La configuración y administración de los servidores de aplicaciones.
 - El desarrollo de las aplicaciones conforme a este modelo distribuido.

Enfoques para la arquitectura de un sistema de BD

Ejemplo:

- Usuario del PC invoca desde el navegador la ejecución de una aplicación a través de una URL.
- La parte de interfaz de usuario de la aplicación se puede distribuir como:
 - Un applet Java que se ejecuta en la máquina virtual del navegador
 - Una serie de paginas HTML generadas desde el servidor de aplicaciones:
 - Servlets
 - ISP
 - ASP
- La interacción del usuario a través de esta interfaz determina la interacción con la parte lógica de la aplicación que se ejecuta en el servidor de aplicaciones:
 - Peticiones de procesamiento
 - Generación de nuevas páginas o evolución del applet ...

Tema 2 Arquitectura de un SGBD Contenidos

- 1. Una arquitectura con tres niveles
- 2. Correspondencias entre niveles
- 3. Lenguajes de una BD
- 4. Enfoques para la arquitectura de un SGBD
- 5. El administrador de la BD

- El DBA es una figura de primordial relevancia en el contexto de los SGBDs:
 - Elaboración del esquema conceptual
 - Análisis de las necesidades de información de la empresa
 - Identificación de los datos operativos
 - Elaboración del esquema lógico
 - Implantación del esquema conceptual
 - Decidir la estructura de almacenamiento en el nivel interno
 - Esquema interno
 - Correspondencia conceptual/interna asociada

Conexión con usuarios

- Análisis de requerimientos
- Diseño lógico
- Codificación del esquema externo, correspondencias ext/concept.

Definir las restricciones de integridad:

- Establecer reglas: genéricas y específicas
- Incluir, si es posible, la integridad en el esquema conceptual

- Definir e implantar la política de seguridad:
 - Gestión de usuarios
 - Gestión de privilegios
- Definir e implantar la estrategia de recuperación frente a fallos:
 - Los SOs y los SGBDs suelen incorporar facilidades para afrontar los fallos:
 - SGBDs redundantes
 - RAID Redundant Array of Inexpensive Disks
 - El DBA puede y debe realizar copias de seguridad de la BD
 - Políticas de gestión de transacciones

- Optimización del rendimiento
 - Liberar espacio no utilizado
 - Reorganizar las operaciones para que se ejecuten de forma más rápida
 - Determinar la necesidad de nuevos recursos hardware
 - Establecer prioridades en el uso de los recursos
- Monitorizar el SGBD
 - Seguimiento continuo de la actividad del sistema.
 - Auditar el acceso de los usuarios a los diversos recursos de la BD
 - Comprobar los niveles de uso de los sistemas de almacenamiento
 - Evaluar la eficiencia con que se realizan las operaciones

Tema 2 Arquitectura de un SGBD Hemos visto en este tema

- Una arquitectura con tres niveles
- Correspondencias entre niveles
- Lenguajes de una BD
- Enfoques para la arquitectura de un SGBD
- El administrador de la BD