

Data Structures

Performance

Ja-Hee Kim@seoultech

Contents

01

Motivation

02

Measuring an Algorithm Efficiency

03

Asymptotic Notation

Data Structures . Performance

Motivation

Example

$$sum = \sum_{i=1}^{n} i$$

Algorithm A	Algorithm B	Algorithm C
sum = 0 for i = 1 <i>to</i> n sum = sum + i	<pre>sum = 0 for i = 1 to n { for j = 1 to i sum = sum + 1 }</pre>	sum = n * (n + 1) / 2

Most Efficient

- Lower complexity is better
- Usually the "best" solution to a problem balances various criteria such as time, space, generality, programming effort, and so on.
- Time complexity:
 - Time requirement
 - the time it takes to execute
- Space complexity:
 - Space requirements
 - the memory it needs to execute

Sum from 1 to n

- How much time to add 1 ... n
- Algorithm A

```
long n = 10000;

// Algorithm A
long t0 = System.currentTimeMillis();
long sum = 0;
for(long i = 1; i <= n; i++)
    sum = sum+i;
long t1 = System.currentTimeMillis();
System.out.println(sum+" : "+(t1-t0));</pre>
```

Algorithm B

```
//Algorithm B
t0 = System.currentTimeMillis();
sum = 0;
for(long i = 1; i <= n ; i++)
    for(long j = 1; j<=i; j++)
        sum = sum+1;
t1 = System.currentTimeMillis();
System.out.println(sum+" : "+(t1-t0));</pre>
```

Algorithm C

```
// Algorithm C
t0 = System.currentTimeMillis();
sum = n*(n+1)/2;
t1 = System.currentTimeMillis();
System.out.println(sum+" : "+(t1-t0));
• Result
```

Problems @ Javadoc Declaration Console Stateminated > AlgorithmABC [Java Application] C:\Program Files\Java\Soundard Soundard Sou

Factors

- Factors that determine running time of a program
 - problem size
 - basic algorithm / actual processing
 - memory access speed
 - CPU/processor speed
 - the of processors?
 - compiler/linker optimization?

Moore's law

Moore's Law

Data Structures . Performance

Measuring an Algorithm Efficiency

Terminology

- Analysis of algorithms
 - the process of measuring the complexity of algorithms
- Problem size
 - the number of items that an algorithm processes
- Basic operation
 - the most significant contributor to its total time requirement
 - the most frequent operation is not necessarily the basic operation such as assignments, control loop
 - Simplified analysis can be based on : number of arithmetic operations performed, Number of comparisons made, Number of times through a critical loop, Number of array elements accessed, etc
- directly proportional
 - the time requirement increases by some factor
- growth-rate function: T(n)
 - how an algorithm's
 - The number of basic operations for n

Constant time

• T(n)=3

```
// Algorithm C
t0 = System.currentTimeMillis();
sum = n*(n+1)/2;
t1 = System.currentTimeMillis();
System.out.println(sum+" : "+(t1-t0));
```

Linear time

```
long n = 10000;

// Algorithm A
long t0 = System.currentTimeMillis();
long sum = 0;
for(long i = 1; i <= n; i++)
    sum = sum+i;
long t1 = System.currentTimeMillis();
System.out.println(sum+" : "+(t1-t0));</pre>
```

The number of basic operations

n	0	1	2	3	4	5
T(n)						

• T(n) = n

Quadratic time

```
//Algorithm B
t0 = System.currentTimeMillis();
sum = 0;
for(long i = 1; i <= n ; i++)
    for(long j = 1; j<=i; j++)
        sum = sum+1;
t1 = System.currentTimeMillis();
System.out.println(sum+" : "+(t1-t0));</pre>
```

The number of basic operations

n	0	1	2	3	4	5
i						
j						
T(n)						

•
$$T(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \frac{n^2}{2} + \frac{n}{2}$$

Necessary time

	Α	В	С
Additions	n	n(n+1)/2	1
Multiplications			1
Divisions			1
Total	n	$\frac{n^2}{2} + \frac{n}{2}$	3

Growth-rate function

• Dominant term: the term the one dominating as n gets bigger

Polynomial-time algorithm

f(n)	n=10 ³	n=10 ⁵	n=10 ⁶	
	10 ⁻⁵ sec	1.7 * 10 ⁻⁵ sec	2 * 10 ⁻⁵ sec	Logarithmic algorithm
	10 ⁻³ sec	0.1 sec	1 sec	Linear algorithm
n*log ₂ (n)	0.01 sec	1.7 sec	20 sec	
	1 sec	3 hr	12 days	Quadratic algorithm
n ³	17 min	32 yr	317 centuries	
2 ⁿ	10 ²⁸⁵ centuries	10 ¹⁰⁰⁰⁰ years	10 ¹⁰⁰⁰⁰⁰ years	Exponential algorithm

Data Structures . Performance

Asymptotic Notation

Asymptotic

Asymptotic notations

- O
 - Big O notation
 - Asymptotic upper bound
- Ω
 - Big Omega
 - Asymptotic lower bound
- **(**-)
 - Big Theta notation
 - Asymptotic upper and the lower bound

O-notation

- Upper bound of the running time of an algorithm
- $f(n) \in O(n^2)$
 - n²
 - $3n^2 + 2n$
 - 3n²+n log n
 - n log n
 - 3n

Ω -notation

- Upper bound of the running time of an algorithm
- $f(n) \in \Omega(n^2)$
 - n²
 - $3n^2 + 2n$
 - 3n²+n log n
 - $7n^3 + 5n$

⊕-notation

- Tight bound of the running time of an algorithm
- $\Theta(n^2) = O(n^2) \cap \Omega(n^2)$

$$\in \rightarrow =$$

- Proper notation
 - $T(n) \in O(n^2)$
- General notation
 - $T(n) = O(n^2)$
- Wrong notation
 - $O(n^2) = T(n)$

Relation of notations

Thank you!

Questions?

Fxit