CHƯƠNG II: TÍCH PHÂN BỘI

§1. Tích phân kép

I. ĐỊNH NGHĨA VÀ CÁC TÍNH CHẤT

1. Định nghĩa

Cho hàm f(x,y) xác định trong miền đóng, bị chặn D. Chia miền D thành n mảnh rời nhau $D_1, D_2, ..., D_n$ có diện tích lần lượt là $\Delta S_{I, \Delta} S_{2,...}, \Delta S_n$. Trong mỗi mảnh D_i , lấy tùy ý một điểm $M_i(x_i, y_i)$. Lập tổng (gọi là tổng tích phân của hàm f(x,y))

$$S_n = \sum_{i=1}^n f(x_i, y_i) \triangle S_i$$

Gọi $d(D_i)$ là khoảng cách lớn nhất giữa hai điểm trong D_i . Nếu tồn tại giới hạn

$$\lim_{n \to +\infty} S_n = \lim_{\max_{i} d(D_i) \to 0} S_n = S$$

hữu hạn, không phụ thuộc vào cách chia miền D và cách chọn điểm $M_i(x_i, y_i)$, thì hàm f(x,y) gọi là khả tích trên miền D, và S gọi là tích phân kép của hàm f(x,y) trên miền D, ký hiệu

$$\iint_{\mathcal{D}} f(x,y) dS$$

Nếu f(x,y) khả tích trên miền D, thì tích phân kép không phụ thuộc vào cách chia miền D. Do đó, ta chia miền D bởi các đường thẳng song song với các trục tọa độ. Khi đó, $\Delta S_i = \Delta x \cdot \Delta y \ v \ dS = dx \cdot dy$

Vì vậy có thể viết

$$\iint f(x,y)dS = \iint f(x,y)dxdy$$

Người ta chứng minh được rằng: Hàm f(x,y) liên tục trên một miền đóng, bị chặn D thì khả tích trên miền đó.

Tính chất:

a)
$$\int_{D} dS = S(D)$$
 (diện tích của D)

b)
$$\iint_{\mathcal{D}} C.f(x,y)dS = C.\iint_{\mathcal{D}} f(x,y)dS$$

$$\iint_{\mathcal{D}} [f(x,y) + g(x,y)] dS = \iint_{\mathcal{D}} f(x,y) dS + \iint_{\mathcal{D}} g(x,y) dS$$

d) Nếu
$$D = D_1 \cup D_2$$
, $D_1 \cap D_2 = \Phi$ thì
$$\iint_D f(x, y) dS = \iint_D f(x, y) dS + \iint_D f(x, y) dS$$

e) Nếu
$$f(x,y) \le g(x,y) \ \forall (x,y) \in D$$
 thì $\iint_{\mathbb{R}} f(x,y) dS \le \iint_{\mathbb{R}} g(x,y) dS$

- f) Nếu m $\leq f(x,y) \leq$ M \forall $(x,y) \in$ D, m và M là hằng số, thì $m.S(D) \leq \iint f(x,y) dS \leq M.S(D)$
- g) Nếu f(x,y) liên tục trên miền đóng, bị chặn D thì tồn tại điểm $\iint_{\mathcal{D}} f(x,y) dS = f(x_0,y_0).S(D)$ $M(x_0,y_0)$ sao cho \mathcal{D} (Định lý về giá trị trung bình).

Đại lượng
$$\frac{1}{S(D)} \iint f(x,y) dS$$
 gọi là giá trị trung bình của hàm $f(x,y)$

trên D.

2. Ý nghĩa hình học

Ta xét bài toán: "Tìm thể tích của vật thể Ω giới hạn dưới bởi miền $D \subset (Oxy)$, giới hạn trên bởi mặt cong có phương trình $z = f(x,y) \ge 0$ và giới hạn xung quanh bởi mặt trụ có đường sinh song song với Oz và đường chuẩn là biên của D ".

Ta tính thể tích của Ω bằng phương pháp gần đúng.

Chia miền D thành n mảnh rời nhau $D_1,D_2,...,D_n$ có diện tích $\Delta S_1, \Delta S_2,...,\Delta S_n$. Lấy mỗi mảnh nhỏ làm đáy, dựng hình trụ con có đường sinh song song với Oz, mặt phía trên giới hạn bởi mặt z = f(x,y).

Xét hình trụ con thứ i: đáy là D_i , Lấy tùy ý 1 điểm $M_i(x_i,y_i)$. ta có thể tích hình trụ con thứ i

$$\Delta V_i \approx f(x_i, y_i) \cdot \Delta S_i$$

Thể tích gần đúng của Ω :

$$V(\Omega) \approx \sum_{i=1}^{n} f(x_i, y_i) \triangle S_i$$

Phép xấp xỉ này càng chính xác nếu n càng lớn và các mảnh D_i có đường kính càng nhỏ ($d(D_i)$: đường kính của D_i)

$$V(\Omega) = \lim_{\substack{m \neq x \ d(D_i) \to 0}} \sum_{i=1}^{n} f(x_i, y_i) \triangle S_i = \iint_{D} f(x, y) dS$$

II. CÁCH TÍNH TÍCH PHÂN KÉP

1. Đưa về tích phân lặp

Néu
$$D = \{(x,y) : a \le x \le b; \varphi_1(x) \le y \le \varphi_2(x)\}_{thi}$$

$$\iint_D f(x,y) dx dy = \int_a^b dx \int_{P_1(x)}^{P_2(x)} f(x,y) dy$$

$$N\acute{\text{e}u} \ D = \left\{ (x,y) : c \le y \le d; \varphi_1(y) \le x \le \varphi_2(y) \right\}_{\text{thi}} \iint_{\mathcal{D}} f(x,y) dx dy = \int_{c}^{d} \int_{\varphi_1(y)}^{\varphi_2(y)} f(x,y) dx$$

 $\underline{\underline{Vi\ du\ 1:}}$ Xác định cận của tích phân $\underline{\int_D^{} f(x,y) dx dy}$ với miền D xác định bởi các đường

$$y=0,\,y=x,\,x=2$$

$$y = 0$$
, $y = x^2$, $x + y = 2$

Giải:

Có hai cách biểu diễn D:

$$D = \{(x, y) : 0 \le x \le 2; 0 \le y \le x\}$$

hoặc

$$D = \{(x, y) : 0 \le y \le 2; y \le x \le 2\}$$

Có 2 cách biểu diễn D:

$$D = \{(x, y) : 0 \le y \le 1; \sqrt{y} \le x \le 2 - y\}$$

$$\iint_{\mathcal{D}} f(x,y) dx dy = \int_{0}^{0} dy \int_{y}^{2-y} f(x,y) dx$$

$$D = D_1 \cup D_2 = \{(x, y) : 0 \le x \le 1; 0 \le y \le x^2\} \cup \{(x, y) : 1 \le x \le 2; 0 \le y \le 2 - x\}$$

$$\iint_{\mathcal{D}} f(x, y) dx dy = \int_{0}^{1} dx \int_{0}^{x^2} f(x, y) dy + \int_{0}^{2} dx \int_{0}^{2 - x} f(x, y) dy$$

<u>Ví dụ 2:</u> Tính $I = \iint_{\mathcal{D}} xy dx dy$, D giới hạn bởi các đường y = x - 4, $y^2 = 2x$

Giải: Hoành độ giao điểm:

$$2x = (x-4)^2 \Leftrightarrow x^2 - 10x + 16 = 0 \Leftrightarrow \begin{bmatrix} x = 2 \\ x = 8 \end{bmatrix} \Rightarrow \begin{bmatrix} y = -2 \\ y = 4 \end{bmatrix}$$

Do đó, miền D được biểu diễn

$$D = \left\{ (x, y) : -2 \le y \le 4; \frac{y^2}{2} \le x \le y + 4 \right\}$$

Vậy

$$I = \int_{-2}^{4} \frac{y+4}{2} xy dx = \int_{-2}^{4} \left(y \cdot \frac{x^2}{2} \Big|_{x = \frac{y^2}{2}}^{x = y + 4} \right) dy$$

$$= \frac{1}{2} \int_{-2}^{4} \left(y^3 + 8y^2 + 16y - \frac{y^5}{4} \right) dy = \frac{1}{2} \left(\frac{y^4}{4} + \frac{8y^3}{3} + 8y^2 - \frac{y^6}{24} \right) \Big|_{-2}^{4}$$

2. Đổi biến trong tích phân kép

a. Đổi biến tổng quát

Giả sử $x=x(u,v),\ y=y(u,v)$ là hai hàm có đạo hàm riêng liên tục trên miền đóng, bị chặn D_{uv} . Gọi $D_{vy}=\left\{(x,y)\,/\,x=x(u,v);y=y(u,v),(u,v)\in D_{uv}\right\}$

Nếu f(x,y) khả tích trên D_{xy} và định thức Jacobi

$$J = \frac{D(x,y)}{D(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} \neq 0$$

$$tr\hat{n} D \quad thi taken to the following states that the following states are the following states as the following states are the fol$$

$$\iint\limits_{D_{uv}} f(x,y) dx dy = \iint\limits_{D_{uv}} f(x(u,v),y(u,v)). \mid J \mid du dv$$

_

 $\underline{Vi \ du \ 3:}$ Tính $D \ \text{giới hạn bởi các đường}$

$$y = 1 - x, y = 2 - x, y = 2x - 1, y = 2x - 3$$

Giải: Các đường thẳng viết lại x + y = 1, x + y = 2, 2x - y = 1, 2x - y = 3

Đặt
$$u = x + y$$
, $v = 2x - y$ thì $x = \frac{u + v}{3}$, $y = \frac{2u - v}{3}$

$$J = \frac{D(x,y)}{D(u,v)} = -\frac{1}{3}; D_{uv} = \{(u,v) : 1 \le u \le 2; 1 \le v \le 3\}$$

$$V_{av}^{2} \int_{D} dx dy = \int_{L_{w}} \frac{1}{3} du dv = \frac{1}{3} \int_{1}^{2} du \int_{1}^{3} dv = \frac{2}{3}$$

b. Tích phân kép trong tọa □ộ cực

Công thức liên hệ tọa độ

$$x = r.cos\varphi$$

$$y = r.sin\varphi$$

Ta có:

$$J = \frac{D(x, y)}{D(u, v)} = \begin{vmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{vmatrix} = r$$

Do vậy:
$$\iint_{\mathcal{P}} f(x,y) dx dy = \iint_{\mathcal{P}} f(r\cos\varphi, r\sin\varphi) r dr d\varphi$$

$$I = \iint \frac{dxdy}{\sqrt{4-x^2-y^2}}, \text{ với D giới hạn bởi: } (x-1)^2 + y^2 \le 1, y \ge 0$$

Giải:

Rõ ràng
$$0 \le \varphi \le \frac{\pi}{2}$$

Thay $x = r\cos\varphi$, $y = r\sin\varphi$ vào $(x-1)^2 + y^2 = 1$, ta được $r = 2\cos\varphi$

$$V_{\hat{\mathbf{q}}\mathbf{y}}^{D} = \left\{ (r, \varphi) : 0 \le \varphi \le \frac{\pi}{2}; 0 \le r \le 2\cos \varphi \right\}$$

Do đó:

$$I = \iint_{\Gamma_{0}} \frac{r dr d\varphi}{\sqrt{4 - r^{2}}} = \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\cos \varphi} \frac{r dr}{\sqrt{4 - r^{2}}} = 2 \int_{0}^{\frac{\pi}{2}} (1 - \sin \varphi) d\varphi = \pi - 2$$

$$I = \iint_{D} e^{-x^{1}-y^{1}} dx dy$$
Với D là hình tròn $x^{2} + y^{2} \le R^{2}$.

Giải: Chuyển sang hệ tọa độ cực, ta có:

$$D_{r_{\mathbf{P}}} = \{ (r, \varphi) : 0 \le \varphi \le 2\pi, 0 \le r \le R \}$$

Do đó:

BÀI TẬP

1 -Tính các tích phân kép

a)
$$\int_{0}^{23} (4-x^2) dy dx$$

$$\int_{b}^{\ln 8 \ln y} \int_{e}^{x+y} dx dy$$

$$\int_{0}^{4\pi} x \sin y dy dx$$

$$\int_{d}^{1}\int_{y}^{1/y}ye^{xy}dxdy$$

2-Tính các tích phân kép

a)
$$\iint (4x+2)dxdy$$
, D: $0 \le x \le 2$; $x^2 \le y \le 2x$

b)
$$\int_{\mathcal{D}} (1 - 6xy^2) dx dy$$
, D: $0 \le x \le 2$; $-1 \le y \le 1$

c)
$$\iint_{\mathcal{D}} y \ln x dx dy$$
, D: $xy = 1$; $y = \sqrt{x}$; $x = 2$

3- Đổi thứ tự biến lấy tích phân

$$\int_{a}^{1} \int_{2}^{4-2x} f(x,y) dy dx$$

$$\int_{0}^{3/29-4x^2} \int_{0}^{4x^2} f(x,y) dy dx$$

$$\int_{0}^{1} \int_{y}^{1} f(x,y) dx dy$$

$$\int_{0}^{1} \int_{2-y}^{1+\sqrt{1-y^2}} f(x,y) dx dy$$

4- Tính các tính phân

d)
$$\int_{D}^{\infty} e^{x^{2}+y^{2}} dx dy$$
, D: $y = \sqrt{1-x^{2}}$; $y = 0$

e)
$$\int_{\mathcal{D}} x dx dy$$
, D: $y = x$; $x = \sqrt{2 - y^2}$; $y = 0$

f)
$$\int_{\mathbb{Z}} \frac{2dxdy}{\sqrt{1+x^2+y^2}}$$
, D: $x^2 + y^2 \le 1$

g)
$$\iint \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} dx dy} \Big|_{\text{D:}} \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$$
; a, b > 0

h)
$$\iint_{\mathcal{D}} \frac{\sin \sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} dx dy$$
, D: $x^2 + y^2 = \frac{\pi^2}{4}$; $x^2 + y^2 = \pi^2$

$$\iint_{D} (y-x)dxdy, D: y = x + 1; y = x - 3; y = -\frac{1}{3}x + \frac{7}{9}; y = -\frac{1}{3}x + 5$$

5-Tính diện tích miền D giới hạn bởi

j) D:
$$y = x^2$$
; $y = x + 2$

k) D:
$$y^2 = x$$
; $y = 2x - x^2$

1) D:
$$y = 2\sqrt{1-x^2}$$
; $x = \pm 1$; $y = -1$

m) D:
$$y = 2^x$$
; $y = -2x$; $y = 4$

§2 Tích phân bội 3

I. ĐỊNH NGHĨA VÀ TÍNH CHẤT

1. Định nghĩa

Cho hàm số f(x,y,z) xác định trong miền đóng, giới nội Ω của không gian Oxyz.

Chia miền Ω thành n miền nhỏ có thể tích là Δ V_1, \ldots, Δ V_n . Lấy tùy ý một điểm $M_i(x_i,y_i,z_i)$ trong miền nhỏ thứ i.

Lập tổng

$$I_n = \sum_{i=1}^n f(x_i, y_i, z_i) \triangle V_i$$

 $\lim_{N\to\infty} I_{_{N}} = \lim_{N\to\infty} I_{_{N}} = I$ Nếu giới hạn $\lim_{N\to\infty} I_{_{N}\to\infty} = 1$: hữu hạn, không phụ thuộc vào cách chia miền Ω , và $M_{_{i}}$, thì f(x,y,z) gọi là khả tích trên miền Ω , và I gọi là tích phân bội I0 của hàm I0 trên I1, ký hiệu

$$\iiint f(x,y,z)dV$$

Tương tự như tích phân kép, ta ký hiệu dxdydz thay cho dV và tích phân bội 3 thường viết

$$\iiint f(x,y,z)dxdydz$$

Chú ý: Nếu
$$f(x,y,z) = 1$$
 thì $\int_{\Omega} dx dy dz = V(\Omega)$ (thể tích của Ω).

2. Tính chất

$$\iint_{\Omega} Cf(x,y,z)dV = C \iint_{\Omega} f(x,y,z)dV$$

$$\iint_{\Omega} f + g)dV = \iint_{\Omega} fdV + \iint_{\Omega} gdV$$

- Nếu $f(x,y,z) \ge g(x,y,z) \ \forall \ (x,y,z) \in \Omega$ thì $\iint f dV \ge \iint g dV$
- Nếu f(x,y,z) liên tục trong miền đóng, bị chặn Ω thì tồn tại điểm $(x_0,y_0,z_0) \in \Omega$ sao cho

$$f\left(x_{0},y_{0},z_{0}\right)=\frac{1}{V(\Omega)}\iiint\limits_{\Omega}f\left(x,y,z\right)dV$$
 (Định lý về giá trị trung bình)

II. CÁCH TÍNH TÍCH PHÂN BỘI 3

1. Tích phân bội 3 trong hệ toa □ô Descartes

Cho Ω giới hạn bỡi:

- Mặt trên: $z = \varphi_2(x,y)$
- Mặt dưới: $z = \varphi_1(x,y)$
- Xung quanh: mặt trụ có đường sinh song song với trục Oz và đường chuẩn là biên của miền D thuộc mặt phẳng Oxy. (D là hình chiếu của Ω xuống mặt phẳng Oxy).

Khi đó

$$\iiint_{\Omega} f(x,y,z) dx dy dz = \iint_{B} \left[\int_{P_{1}}^{P_{2}(x,y)} f(x,y,z) dz \right] dx dy$$

Nếu miền D = $\{(x, y) : a \le x \le b, \psi_1(x) \le y \le \psi_2(x)\}_{thì}$

$$\iint_{\Omega} f(x,y,z) dx dy dz = \int\limits_{a}^{b} dx \int\limits_{\Psi_{1}(x)}^{\Psi_{2}(x)} \int\limits_{\Psi_{1}(x,y)}^{\Psi_{2}(x,y)} f(x,y,z) dz$$

Ví dụ 1: Cho miền Ω giới hạn bởi các mặt: x = 0, y = 0, z = 0, x + y + 2z = 2.

Viết tích phân bội 3 $I = \iiint f(x, y, z) dx dy dz$ theo các thứ tự:

- a). dxdydz
- b). dxdzdy
- c). dydzdx

Giải:

a). Hình chiếu của Ω xuống mặt phẳng Oxy là miền

$$D_1 = \{(x, y) : 0 \le x \le 2; 0 \le y \le 2 - x\}$$

Giới hạn trên của
$$\Omega$$
: $z = 1 - \frac{x}{2} - \frac{y}{2}$

Giới hạn dưới của Ω : z = 0

Vậy:

$$I = \int\limits_{0}^{2} dx \int\limits_{0}^{2-x} dy \int\limits_{0}^{1-\frac{x}{2}-\frac{y}{2}} f(x,y,z) dz$$

b). Hình chiếu của Ω xuống mặt phẳng Oxz là miền

$$D_2 = \left\{ (x, z) : 0 \le x \le 2; \ 0 \le z \le 1 - \frac{x}{2} \right\}$$

Giới hạn trên của Ω : y = 0 - x - 2z

Giới hạn dưới của Ω : y = 0

Vậy:

$$I = \int\limits_{0}^{2} dx \int\limits_{0}^{1-\frac{\lambda}{2}} dz \int\limits_{0}^{2-x-2z} f(x,y,z) dy$$

c). Hình chiếu Ω của xuống mặt phẳng Oyz là

$$D_3 = \{(y, z) : 0 \le y \le 2; 0 \le z \le 1 - \frac{y}{2}\}$$

Giới hạn trên của Ω là : x = 2-y-2z

Giới hạn dưới của Ω là : x = 0

Vậy

$$I = \int_0^2 dy \int_0^{1-\frac{y}{2}} dz \int_0^{2-y-2z} f(x, y, z) dx$$

$$I = \iiint\limits_{\Omega} x dx dy dz$$
 Ví dụ 2: Tính , Ω là miền giới hạn bởi các mặt:

2 2

$$z = x^2 + y^2$$
; $z = 4$; $x = 0$; $y = 0$.

Giải:

Hình chiếu của miền Ω xuống mặt phẳng Oxy là $\frac{1}{4}$ hình tròn :

$$D_4 = \{(y, z): 0 \le y \le 2; 0 \le y \le \sqrt{4 - x^2} \}$$

Mặt trên của Ω: z=4,

Mặt dưới của Ω: $z=x^2+y^2$.

Vậy:

$$I = \int_{0}^{2} dx \int_{0}^{\sqrt{4-x^{2}}} dy \int_{x^{2}+y^{2}}^{4} x dz = \int_{0}^{2} dy \int_{0}^{\sqrt{4-x^{2}}} \left(x z \Big|_{z=x^{2}+y^{2}}^{z=4} \right) dy$$

$$= \int_{0}^{2} dx \int_{0}^{\sqrt{4-x^{2}}} (4x - x^{3} - xy^{2}) dy = \int_{0}^{2} (4xy - x^{3}y - \frac{xy^{3}}{3}) \Big|_{y=0}^{\sqrt{4-x^{2}}} dx$$

$$I = \frac{2}{3} \int_{0}^{2} x (4 - x^{2})^{3/2} dx = \frac{64}{15}$$

2. Tính tích phân bội 3 trong hệ toạ ⊏ộ trụ

Toạ độ trụ của điểm M(x,y,z) là bộ ba số (r,φ,z) , với (r,φ) là toạ độ cực của hình chiếu của M xuống mặt phẳng Oxy (Hình vẽ)

Ta luôn có: $r \ge 0$; $0 \le \varphi < 2\pi$; $-\infty < z < +\infty$.

Mối liên hệ giữa toạ độ Descartes và toạ độ trụ

$$x = r \cos \varphi$$

$$y = r \sin \varphi$$

$$z = z$$

Ta có:

$$\iiint\limits_{0}f(x,y,z)dxdydz=\iiint\limits_{0}f(r\sin\,\varphi,r\sin\,\varphi,z).rdrd\,\varphi dz$$

$$I = \iiint (x^2 + y^2) dx dy dz$$

 $I = \iiint (x^2 + y^2) dx dy dz$ với Ω là miền giới hạn bởi $z = x^2 + y^2$; z = 4

Giải:

Hình chiếu của Ω xuống mặt phẳng Oxy là hình tròn $x^2+y^2 \le 4$

Chuyển sang toạ độ trụ

$$x = r \cos \varphi$$
, $y = r \sin \varphi$, $z = z$.

 Ω giới hạn bởi: $0 \le \varphi \le 2\pi$; $0 \le r \le 2$; $r^2 \le z \le 4$.

Vậy:

$$I = \iint_{\Omega} \int r^2 r dr d\varphi dz = \int_{0}^{2\pi} d\varphi \int_{0}^{2} r^3 dr \int_{r^2}^{4} dz = \frac{64\pi}{3}$$

3. Tính tích phân bội 3 trong hệ toạ ⊑ộ cầu

Toạ độ cầu của một điểm M(x,y,z) là bộ 3 số (r,θ,ϕ) , với r = OM, θ là góc giữa trục Oz và \overrightarrow{OM} , ϕ là góc giữa trục Ox và \overrightarrow{OM} , với M' là hình chiếu của M xuống mặt phẳng Oxy.

Ta có: Với mọi điểm M trong không gian thì $r \ge 0$; $0 \le \theta \le \pi$; $0 \le \phi \le 2\pi$

Mối liên hệ giữa toạ độ Descartes và toạ độ cầu:

 $x = r \sin\theta \cos\phi$

 $y = r \sin\theta \sin\phi$

 $z = r \cos\theta$

Công thức tích phân trong hệ toạ độ cầu

$$\iiint f(x,y,z)dxdydz$$

$$= \iiint f(r\sin\theta\cos\varphi, r\sin\theta\sin\varphi, r\cos\theta).r^2\sin\theta dr d\theta d\varphi$$

Ví dụ 1: Tính

 $I = \iiint (x^2 + y^2 + z^2) dx dy dz$ với Ω là miền giới hạn bởi hai mặt cầu

$$x^2+y^2+z^2=1$$
; $x^2+y^2+z^2=4$.

Chuyển sang hệ toạ độ cầu, ta có: $I = \iiint_{\Omega} f^4 \sin \phi dr d\phi d\phi$

Miền Ω xác định bởi $1 \le r \le 2$; $0 \le \theta \le \pi$; $0 \le \phi \le 2\pi$.

Vậy:

$$I = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin \phi d\phi \int_{1}^{2} r^{4} dr = \frac{124\pi}{5}$$

 $I = \iiint_{\Omega} \sqrt{x^2 + y^2 + z^2} dx dy dz$ với Ω là miền giới hạn bởi $x^2 + y^2 + z^2 \le z$.

Chuyển sang hệ toạn độ cầu ta có:

$$I = \iiint r^3 \sin \phi dr d\phi d\phi$$

Miền Ω xác định bởi $0 \le r \le \cos\theta$; $0 \le \theta \le \frac{\pi}{2}$; $0 \le \phi \le 2\pi$.

Vậy:

$$I = \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{\pi}{2}} d\phi \int_{0}^{\cos\phi} r^{3} \sin \phi dr = \frac{\pi}{10}$$

§3 Ứng dụng của tích phân bội

I. ÚNG DỤNG HÌNH HỌC

1. Tính diện tích hình phẳng

Diện tích của miền D trong mặt phẳng Oxy

$$S(\mathbb{D}) = \iint \!\! dx dy$$

2. Thể tích vật thể

Vật thế Ω trong không gian Oxyz là:

Nếu Ω giới hạn trên bởi mặt $z=f_2(x,y)$, giới hạn dưới bởi mặt $z=f_1(x,y)$ và giới hạn xung quanh bởi mặt trụ có đường sinh song song với Oz và có đường chuẩn là biên của miền D trong mặt phẳng Oxy thì

$$\mathbb{V}(\Omega) = \iint [f_2(x,y) - f_1(x,y)] dx dy$$

Ví dụ 1: Tính thể tích phần hình nón $z \ge \sqrt{x^2 + y^2}$ nằm trong mặt cầu $x^2 + y^2 + z^2 = 4$

Giải:

Gọi Ω là vật thể hình nón $z \ge \sqrt{x^2 + y^2}$ nằm trong hình cầu $x^2 + y^2 + z^2 \le 4$

$$V(\Omega) = \iint \!\!\! dx dy dz$$

Chuyển sang hệ toạ độ cầu thì

$$V(\Omega) = \iiint r^2 \sin \phi dr d\phi d\phi$$

Miền giới hạn bởi $0 \le r \le 2; \ 0 \le \theta \le \frac{\pi}{4}; \ 0 \le \phi \le 2\pi.$

Vây

$$V(\Omega) = \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{\pi}{4}} d\phi \int_{0}^{2} r^{2} \sin \phi dr = \frac{\pi^{3}}{3} (2 - \sqrt{2})(dvtt)$$

Ví dụ 2: Tính thể tích hình cầu có bán kính R

Giải:

Ta có thể tích hình cầu hình cầu

$$V(\Omega) = \iint \!\!\! dx dy dz$$

Hình cầu Ω : $x^2+y^2+z^2 \le R^2$

Chuyển sang hệ toạ độ cầu thì

$$V(\Omega) = \iiint^2 \sin \phi dr d\phi d\phi$$

Và miền Ω: $0 \le r \le R$, $0 \le \theta \le \pi$, $0 \le \phi \le 2\pi$

Vậy:

$$I = \int_0^{2\pi} d\varphi \int_0^{\pi} d\theta \int_0^R r^2 \sin \theta dr = \int_0^{2\pi} d\varphi \int_0^{\pi} \sin \theta d\theta \int_0^R r^2 dr$$
$$= 2\pi \cdot (-\cos \theta) \int_0^{\pi} \cdot \frac{r^3}{3} \int_0^R = \frac{4}{3}\pi R^3 (dvtt)$$

II. ỨNG DỤNG CƠ HỌC

1. Tính khối lượng

a. Khối lương của vật thể Ω có khối lương riêng tại điểm M(x, y, z) là f(x, y, z)z) thì:

$$m(\Omega) = \iiint f(x,y,z) dx dy dz$$

b. Nếu bản phẳng D trong mặt phẳng Oxy và có khối lượng riêng là f(x, y) thì

$$m(\Omega) = \iint f(x, y) dx dy$$

2. Momem quán tính của vật thể Ω với khối lượng riêng $\rho(x, y, z)$ Γδί với

$$I_x = \iiint (y^2 + z^2) \rho(x, y, z) dx dy dz$$
 c. true Ox:

d. true Oy:
$$I_y = \iiint_{\Omega} x^2 + z^2) \, \rho(x,y,z) dx dy dz$$

e. trục Oz:
$$I_z = \iiint_{\Omega} (x^2 + y^2) \rho(x, y, z) dx dy dz$$

$$I_L = \iiint f^2(x,y,z) \rho(x,y,z) dx dy dz$$
f. đường thẳng L: , r(x, y, z) là khoảng cách từ điểm M(x, y, z) đến L

từ điểm M(x, y, z) đến L

$$I_{xy}= \iint \int z^2 \rho(x,y,z) dx dy dz$$
g. Mặt Oxy:

h. Mặt Oxz:
$$I_{xz} = \iiint v^2 \rho(x, y, z) dx dy dz$$

i. Mặt Oyz:
$$I_{yz} = \iiint x^2 \rho(x,y,z) dx dy dz$$

j. Gốc tọa độ:
$$I_o = \iiint_\Omega x^2 + y^2 + z^2) \rho(x,y,z) dx dy dz$$

3. Momen tĩnh của Ω với khối lượng riêng $\rho(x, y, z)$ \Box ối với

a) Mặt Oxy:
$$M_{xy} = \iint_{\Omega} z \rho(x, y, z) dx dy dz$$

b) Mặt Oxz:
$$M_{xz} = \iiint_{\Omega} p\rho(x, y, z) dx dy dz$$

$$M_{yz} = \iint_{\Omega} x \rho(x, y, z) dx dy dz$$
c) Mặt Oyz:

4. Trong tâm của Ω với khối lương riêng $\rho(x, y)$

$$x_o = \frac{M_{yz}}{m(\Omega)}; y_o = \frac{M_{xz}}{m(\Omega)}; z_o = \frac{M_{xy}}{m(\Omega)}.$$

BÀI TẬP

$$\iiint_{\Omega} (1-x-y) dx dy dz$$
1- Tính với Ω

- a) giới hạn bởi $0 \le x \le 1$; $1 \le y \le 2$; $2 \le z \le 3$.
- b) giới hạn bởi các mặt: x + y + z = 1; x = 0, y = 0, z = 0.

2-Tính:

a)
$$\iint x dx dy dz$$
a)
$$\Omega: z = x^2 + y^2; z = 4, x = 0, y = 0 \text{ (lấy trong miền } x \ge 0, y \ge 0).$$

b)
$$\iint dx dy dz, \Omega; y = x^2, y + z = 1, z = 0.$$

3- Tính:

a)
$$\iint z dx dy dz$$
, Ω : $z = x^2 + y^2$; $x^2 + y^2 = 4$; $z = 0$.

b)
$$\iint_{\Omega} (x^2 + y^2 + z^2)^3 dx dy dz$$
, $\Omega: x^2 + z^2 = 1$, $y = 0$, $y = 1$.

c)
$$\iint_{\Omega} (x^2 + y^2 + 1) dx dy dz$$
, Ω : $z = \sqrt{x^2 + y^2}$, $z = x^2 + y^2$.

d) $\iint_{\Omega} fxyzdxdydz$, Ω : góc phần tám thứ nhất của khối cầu đơn vị.

e)
$$\iint z dx dy dz$$

, $\Omega: x^2 + y^2 + z^2 = 2; z = \sqrt{x^2 + y^2}$.

f)
$$\iiint_{\Omega} (y^2 + z^2)^3 dx dy dz, \Omega: x^2 + y^2 + z^2 \le R^2, x \le 0.$$

- 4-Tính thể tích vật giới hạn bởi:
 - a) $z = x^2 + 3y^2$, $z = 8 x^2 y^2$
 - b) $y+z=2;\,x=4-y^2,\,$ các mặt phẳng tọa độ nằm trong góc phần tám thứ nhất
 - c) $x^2 + y^2 + z^2 = 2z$, $x^2 + y^2 = z^2$.
 - d) $z = 4 x^2 y^2$, các mặt phẳng tọa độ nằm trong góc phần tám thứ nhất.
- 5- Tính momen quán tính đối với các trục Ox, Oy, Oz của khối chữ nhật đồng chất Ω :

$$-\frac{a}{2} \le x \le \frac{a}{2}; -\frac{b}{2} \le x \le \frac{b}{2}; -\frac{c}{2} \le x \le \frac{c}{2}.$$

- a) Tìm tọa độ trọng tâm của vật thể đồng chất giới hạn bởi các mặt $z=0,\,x^2+y^2+z^2=4.$
- b) Tìm tọa độ trọng tâm của nửa hình cầu $x^2+y^2+z^2 \le a^2$, $z \ge 0$ nếu khối lượng riêng tại mỗi điểm tỷ lệ với khoảng cách từ điểm đó đến gốc tọa độ.