LOGICAL AND THEORETICAL FOUNDATIONS OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

Expectations in Predicate Logic

Propositional Logic:

- resolution is sound and complete (formula unsatisfiable iff algo outputs UNSAT)
- decision procedure (terminates always)

Expectations in Predicate Logic

Propositional Logic:

- resolution is sound and complete (formula unsatisfiable iff algo outputs UNSAT)
- decision procedure (terminates always)

Predicate Logic:

resolution will be shown to be sound and complete

Expectations in Predicate Logic

Propositional Logic:

- resolution is sound and complete (formula unsatisfiable iff algo outputs UNSAT)
- decision procedure (terminates always)

Predicate Logic:

- oresolution will be shown to be sound and complete
- O but it is not a decision prodecure

2-Stage Resolution

Generalisation of resolution has two stages

- ground resolution: works on ground literals (generalisation of literals)
- unification: works on non-ground literals

Ground . . .

Definition

- ground term: term without variables
- ground atomic (FO-)formula: atomic formula (only 1. from the formula definition) with only ground terms
- O ground (FO-)literal: ground atomic formula or its negation
- ground (FO)-formula: quantifier-free formula with only grond atomic formulae

Definition

 C_1 , C_2 ground clauses, ℓ ground literal, $\ell \in C_1$, $\neg \ell \in C_1$

Definition

 C_1, C_2 ground clauses, ℓ ground literal, $\ell \in C_1, \neg \ell \in C_1$

 \bigcirc C_1 , C_2 clash on ℓ

Definition

 C_1 , C_2 ground clauses, ℓ ground literal, $\ell \in C_1$, $\neg \ell \in C_1$

- \bigcirc C_1 , C_2 clash on ℓ
- \bigcirc *C* resolvent of C_1 , C_2 : $C = (C_1 \setminus \{\ell\}) \cup (C_2 \setminus \{\neg \ell\})$

Definition

 C_1 , C_2 ground clauses, ℓ ground literal, $\ell \in C_1$, $\neg \ell \in C_1$

- \bigcirc C_1 , C_2 clash on ℓ
- \bigcirc *C* resolvent of C_1 , C_2 : $C = (C_1 \setminus \{\ell\}) \cup (C_2 \setminus \{\neg \ell\})$
- \bigcirc C_1 , C_2 parent clause of C

Theorem

A resolvent is satisfiable iff the parents are both satisfiable.

Theorem

A resolvent is satisfiable iff the parents are both satisfiable.

Proof. Not done here (based on Herbrand interpretations)

Theorem 1

A resolvent is satisfiable iff the parents are both satisfiable.

Proof. Not done here (based on Herbrand interpretations)

Theorem

The ground resolution is sound and complete.

Theorem

A resolvent is satisfiable iff the parents are both satisfiable.

Proof. Not done here (based on Herbrand interpretations)

Theorem

The ground resolution is sound and complete.

Proof. Not done here.

 $|\mathcal{F}| \ge 1$

- \bigcirc $|\mathcal{F}| \ge 1$
- $\, \bigcirc \, \rightsquigarrow \text{set of ground terms infinite}$

- \bigcirc $|\mathcal{F}| \ge 1$
- $\bigcirc \rightsquigarrow$ set of ground terms infinite
- \bigcirc \rightarrow ground resolution not a useful refutation procedure

- $|\mathcal{F}| \ge 1$
- $\bigcirc \rightarrow$ set of ground terms infinite
- \bigcirc \rightarrow ground resolution not a useful refutation procedure
- O Robinson (1965): substitutions causing clashes
 - substitution maps variables to terms
 - empty substitution does not map anything (sets as point of view)

Expressions and Instances

Definition

- *E* expression: term, literal, clause, or set of clauses
- \bigcirc *β*(*E*) instance of *E*: replace simultaneously all occurrences of x_i by $\beta(x_i)$ for substitution β and variables x_i
- composition of substitutions $\beta_1 \circ \beta_2$ for all $x \in \text{dom}(\beta_1) \cup \text{dom}(\beta_2)$

$$(\beta_1 \circ \beta_2)(x) = \begin{cases} \beta_2(\beta_1(x)) & \text{if } x \in \text{dom}(\beta_1) \land x \neq \beta_2(\beta_1(x)) \\ \beta_2(x) & \text{if } x \notin \text{dom}(\beta_1) \land x \in \text{dom}(\beta_2) \\ \text{undef} & \text{otherwise.} \end{cases}$$

Properties of Instances

Lemma

E substitution, β_1 , β_2 , β_3 substitutions

- $\bigcirc (\beta_1 \circ \beta_2)(E) = \beta_2(\beta_1(E))$
- \bigcirc $\beta_1 \circ (\beta_2 \circ \beta_3) = (\beta_1 \circ \beta_2) \circ \beta_3$

Properties of Instances

Lemma

E substitution, β_1 , β_2 , β_3 *substitutions*

$$\bigcirc (\beta_1 \circ \beta_2)(E) = \beta_2(\beta_1(E))$$

$$\bigcirc \ \beta_1 \circ (\beta_2 \circ \beta_3) = (\beta_1 \circ \beta_2) \circ \beta_3$$

Proof. Etudes.

$$P(f(x), g(y))$$
 not clashing with $\neg P(f(f(a)), g(z))$

$$P(f(x), g(y))$$
 not clashing with $\neg P(f(f(a)), g(z))$

Can we get it clashing?

$$P(f(x), g(y))$$
 not clashing with $\neg P(f(f(a)), g(z))$

$$P(f(x), g(y))$$
 not clashing with $\neg P(f(f(a)), g(z))$

$$\bigcirc \ \sigma(P(f(x),g(y))) = P(f(f(a)),g(g(b)))$$

$$P(f(x), g(y))$$
 not clashing with $\neg P(f(f(a)), g(z))$

$$\bigcirc \ \sigma(P(f(x),g(y))) = P(f(f(a)),g(g(b)))$$

$$\bigcirc \ \sigma(P(f(f(a)),g(z))) = P(f(f(a)),g(g(b)))$$

$$P(f(x), g(y))$$
 not clashing with $\neg P(f(f(a)), g(z))$

- $\bigcirc \ \sigma(P(f(x),g(y))) = P(f(f(a)),g(g(b)))$
- $\bigcirc \ \sigma(P(f(f(a)),g(z))) = P(f(f(a)),g(g(b)))$
- $\bigcirc \sim$ they clash

Unification

Definition

Let $\varphi_1, \ldots, \varphi_n$ be predicate logic formulae.

○ A substitution σ is a unifier for $\varphi_1, \ldots, \varphi_n$ if $\sigma(\varphi_i) = \sigma(\varphi_j)$ for all $i, j \in [n]$.

Unification

Definition

Let $\varphi_1, \ldots, \varphi_n$ be predicate logic formulae.

- A substitution σ is a unifier for $\varphi_1, \ldots, \varphi_n$ if $\sigma(\varphi_i) = \sigma(\varphi_j)$ for all $i, j \in [n]$.
- O A unifier σ is called most general unifier (mgu) such that for every unifier σ' there exists a substitution σ'' with $\sigma' = \sigma \circ \sigma''$.

Example

 $\sigma(x) = f(a)$, $\sigma(y) = g(b)$, and $\sigma(z) = g(b)$ is a unifier for P(f(x), g(y)) and $\neg P(f(f(a)), g(z))$ but it is not mgu:

$$\bigcirc$$
 $\mu(x) = f(a), \mu(z) = \mu(y) = b$

Example

$$\sigma(x) = f(a), \ \sigma(y) = g(b), \ \text{and} \ \sigma(z) = g(b) \ \text{is a unifier for} \ P(f(x), g(y)) \ \text{and} \ \neg P(f(f(a)), g(z)) \ \text{but it is not mgu:}$$

$$\bigcirc$$
 $\mu(x) = f(a), \mu(z) = \mu(y) = b$

$$\circ$$
 $v(y) = g(g(b)) = v(z)$

Example

 $\sigma(x) = f(a)$, $\sigma(y) = g(b)$, and $\sigma(z) = g(b)$ is a unifier for P(f(x), g(y)) and $\neg P(f(f(a)), g(z))$ but it is not mgu:

$$\bigcirc$$
 $\mu(x) = f(a), \mu(z) = \mu(y) = b$

$$\circ$$
 $\nu(y) = g(g(b)) = \nu(z)$

$$\circ$$
 $\sigma = \mu \circ \nu$

Preparations for a Unification Algorithm

Definition

A set of term equations is in solved form iff

- \bigcirc all equations are of the form $x_i = t_i$ for variables x_i and terms t_i
- \bigcirc each variable x_i that appears on the left-hand side of an equation does not appear elsewhere in the set

Preparations for a Unification Algorithm

Definition

A set of term equations is in solved form iff

- \bigcirc all equations are of the form $x_i = t_i$ for variables x_i and terms t_i
- \bigcirc each variable x_i that appears on the left-hand side of an equation does not appear elsewhere in the set

A set of equation in solved form defines a substitution.

Unification Algorithm

Input: Set of term equations While a rule is applicable

- 1. Transform t = x into x = t.
- 2. Delete x = x.
- 3. For each t = t': if the left-most symbols are not identical, stop with *not unifiable*For each t = t' with $t = f(t_1, ..., t_k)$ and $t' = f(t'_1, ..., t'_k)$
 - delete t = t'
 - insert $t_i = t'_i$ for all $i \in [k]$
- 4. For x = t with other occurrences of x in the set:
 - If *x* occurs in *t* and differs from *t*, stop with *not unifiable*
 - Otherwise replace each x by t.

 \bigcirc What is the complexity?

- What is the complexity?
- In the worst case exponential!

- O What is the complexity?
- In the worst case exponential!
- Consider the set of equations $\{x_i = f(x_{i-1}, x_{i-1})\}$. . .

- What is the complexity?
- In the worst case exponential!
- Consider the set of equations $\{x_i = f(x_{i-1}, x_{i-1})\}$. . .
- O Notice that the algorithm is non-deterministic!

- O What is the complexity?
- In the worst case exponential!
- \bigcirc Consider the set of equations $\{x_i = f(x_{i-1}, x_{i-1})\}\dots$
- Notice that the algorithm is non-deterministic!
- In practice: omit occurs-check and choose heuristic

Correctness and Soundness of the Unification Algorithm

Theorem

1. The algorithm terminates with the set of equations in solved form or it reports not unifiable.

Correctness and Soundness of the Unification Algorithm

Theorem

- 1. The algorithm terminates with the set of equations in solved form or it reports not unifiable.
- 2. *If the algorithm reports* not unifiable, there is no unifier for the set of equations.

Correctness and Soundness of the Unification Algorithm

Theorem

- 1. The algorithm terminates with the set of equations in solved form or it reports not unifiable.
- 2. *If the algorithm reports* not unifiable, there is no unifier for the set of equations.
- 3. If the algorithm terminates successfully, the mgu is given by the equations $x_i = t_i$.

O Rule 1. to 3. can only be used finitely many times without using 4.

- O Rule 1. to 3. can only be used finitely many times without using 4.
- *m* distinct variables in the set

- Rule 1. to 3. can only be used finitely many times without using 4.
- *m* distinct variables in the set
- \bigcirc Rule 4. is at most m times aplicable

- Rule 1. to 3. can only be used finitely many times without using 4.
- m distinct variables in the set
- \bigcirc Rule 4. is at most m times aplicable
- → termination

- Rule 1. to 3. can only be used finitely many times without using 4.
- *m* distinct variables in the set
- \bigcirc Rule 4. is at most m times aplicable
- → termination
- \bigcirc if the algorithm terminates with *not unifiable*, either the left-most symbols are not identical or x has to be t and something different

- Rule 1. to 3. can only be used finitely many times without using 4.
- m distinct variables in the set
- \bigcirc Rule 4. is at most m times aplicable
- if the algorithm terminates with *not unifiable*, either the left-most symbols are not identical or *x* has to be *t* and something different
- \bigcirc \rightarrow there cannot be a unifier

- Rule 1. to 3. can only be used finitely many times without using 4.
- m distinct variables in the set
- \bigcirc Rule 4. is at most m times aplicable
- $\bigcirc \sim$ termination
- if the algorithm terminates with *not unifiable*, either the left-most symbols are not identical or *x* has to be *t* and something different
- \bigcirc \rightarrow there cannot be a unifier
- \circ otherwise the substitution is given by the equations $x_i =$

 a transformation is called *equivalence transformation* if it preserves the set of unifiers

- a transformation is called *equivalence transformation* if it preserves the set of unifiers
- ORule 1. and 2. are equivalence transformations

- a transformation is called *equivalence transformation* if it preserves the set of unifiers
- ORule 1. and 2. are equivalence transformations
- of for proving that Rule 3. is an equivalence transformation consider $t = f(t_1, ..., t_k)$ and $t' = f(t'_1, ..., t'_k)$

- a transformation is called *equivalence transformation* if it preserves the set of unifiers
- Rule 1. and 2. are equivalence transformations
- of for proving that Rule 3. is an equivalence transformation consider $t = f(t_1, ..., t_k)$ and $t' = f(t'_1, ..., t'_k)$
- \bigcirc If $\sigma(t) = \sigma(t')$ we have $\sigma(t_i) = \sigma(t'_i)$ inductive argument

- a transformation is called *equivalence transformation* if it preserves the set of unifiers
- Rule 1. and 2. are equivalence transformations
- of for proving that Rule 3. is an equivalence transformation consider $t = f(t_1, ..., t_k)$ and $t' = f(t'_1, ..., t'_k)$
- \bigcirc If $\sigma(t) = \sigma(t')$ we have $\sigma(t_i) = \sigma(t'_i)$ inductive argument
- If $t_i = t_i'$ then $\sigma(t_i) = \sigma(t_i')$ and thus $\sigma(t) = \sigma(t')$

- a transformation is called *equivalence transformation* if it preserves the set of unifiers
- Rule 1. and 2. are equivalence transformations
- of for proving that Rule 3. is an equivalence transformation consider $t = f(t_1, ..., t_k)$ and $t' = f(t'_1, ..., t'_k)$
- \bigcirc If $\sigma(t) = \sigma(t')$ we have $\sigma(t_i) = \sigma(t'_i)$ inductive argument
- \bigcirc If $t_i = t_i'$ then $\sigma(t_i) = \sigma(t_i')$ and thus $\sigma(t) = \sigma(t')$
- $\bigcirc \rightarrow$ Rule 3. is equivalence transformation

 \bigcirc for proving that Rule 4. is an equivalence transformation consider $t_1 = t_2$ is transformed by 4. into $u_1 = u_2$ on x = t

- \bigcirc for proving that Rule 4. is an equivalence transformation consider $t_1 = t_2$ is tranformed by 4. into $u_1 = u_2$ on $x = t_1$
- \bigcirc after the application x = t is still in the set

- \bigcirc for proving that Rule 4. is an equivalence transformation consider $t_1 = t_2$ is tranformed by 4. into $u_1 = u_2$ on $x = t_1$
- \bigcirc after the application x = t is still in the set
- \bigcirc \rightsquigarrow any unifier σ fulfils $\sigma(x) = \sigma(t)$

- \bigcirc for proving that Rule 4. is an equivalence transformation consider $t_1 = t_2$ is tranformed by 4. into $u_1 = u_2$ on $x = t_1$
- \bigcirc after the application x = t is still in the set
- \bigcirc \rightarrow any unifier σ fulfils $\sigma(x) = \sigma(t)$
- $\bigcirc \leadsto \sigma(u_i) = \sigma(t_i[t/x]) = t_i[t/\sigma(x)] = \sigma(t_i)$

- Of for proving that Rule 4. is an equivalence transformation consider $t_1 = t_2$ is transformed by 4. into $u_1 = u_2$ on $x = t_1$
- \bigcirc after the application x = t is still in the set
- \bigcirc \rightarrow any unifier σ fulfils $\sigma(x) = \sigma(t)$
- $\bigcirc \leadsto \sigma(u_i) = \sigma(t_i[t/x]) = t_i[t/\sigma(x)] = \sigma(t_i)$
- \circ σ unifier for $t_1 = t_2 \leadsto \sigma(u_1) = \sigma(t_1) = \sigma(t_2) = \sigma(u_2)$

- Of for proving that Rule 4. is an equivalence transformation consider $t_1 = t_2$ is tranformed by 4. into $u_1 = u_2$ on $x = t_1$
- \bigcirc after the application x = t is still in the set
- \bigcirc \rightarrow any unifier σ fulfils $\sigma(x) = \sigma(t)$
- $\bigcirc \leadsto \sigma(u_i) = \sigma(t_i[t/x]) = t_i[t/\sigma(x)] = \sigma(t_i)$
- \circ σ unifier for $t_1 = t_2 \leadsto \sigma(u_1) = \sigma(t_1) = \sigma(t_2) = \sigma(u_2)$
- $\bigcirc \leadsto \sigma$ unifier for $u_1 = u_2$

- \bigcirc for proving that Rule 4. is an equivalence transformation consider $t_1 = t_2$ is tranformed by 4. into $u_1 = u_2$ on $x = t_1$
- \bigcirc after the application x = t is still in the set
- \bigcirc \rightsquigarrow any unifier σ fulfils $\sigma(x) = \sigma(t)$
- $\bigcirc \leadsto \sigma(u_i) = \sigma(t_i[t/x]) = t_i[t/\sigma(x)] = \sigma(t_i)$
- \circ σ unifier for $t_1 = t_2 \leadsto \sigma(u_1) = \sigma(t_1) = \sigma(t_2) = \sigma(u_2)$
- $\bigcirc \sim \sigma$ unifier for $u_1 = u_2$
- $\bigcirc \rightarrow$ Rule 4. is equivalence transformation

- \bigcirc for proving that Rule 4. is an equivalence transformation consider $t_1 = t_2$ is tranformed by 4. into $u_1 = u_2$ on x = t
- \bigcirc after the application x = t is still in the set
- \bigcirc \rightsquigarrow any unifier σ fulfils $\sigma(x) = \sigma(t)$
- $\bigcirc \leadsto \sigma(u_i) = \sigma(t_i[t/x]) = t_i[t/\sigma(x)] = \sigma(t_i)$
- \circ σ unifier for $t_1 = t_2 \leadsto \sigma(u_1) = \sigma(t_1) = \sigma(t_2) = \sigma(u_2)$
- $\bigcirc \longrightarrow \sigma$ unifier for $u_1 = u_2$
- $\bigcirc \rightarrow$ Rule 4. is equivalence transformation
- all unifiers are preserved and the output is the most general one

