<u>Base</u>	SIMD&FP	<u>SVE</u>	<u>SME</u>	Index by
<u>Instructions</u>	<u>Instructions</u>	<u>Instructions</u>	<u>Instructions</u>	Encoding

Pseu

PMUL

Polynomial Multiply. This instruction multiplies corresponding elements in the vectors of the two source SIMD&FP registers, places the results in a vector, and writes the vector to the destination SIMD&FP register.

For information about multiplying polynomials see *Polynomial arithmetic* over $\{0, 1\}$.

Depending on the settings in the *CPACR_EL1*, *CPTR_EL2*, and *CPTR_EL3* registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 1 1 1 Rn Rd
```

```
PMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
```

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if U == '1' && size != '00' then UNDEFINED;
if size == '11' then UNDEFINED;
constant integer esize = 8 << UInt(size);
constant integer datasize = 64 << UInt(Q);
integer elements = datasize DIV esize;</pre>
boolean poly = (U == '1');
```

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T>

Is an arrangement specifier, encoded in "size:Q":

size	Q	<t></t>
0.0	0	8B
00	1	16B
01	Х	RESERVED
1x	Х	RESERVED

<Vn>

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm>

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n, datasize];
bits(datasize) operand2 = V[m, datasize];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) product;

for e = 0 to elements-1
    element1 = Elem[operand1, e, esize];
    element2 = Elem[operand2, e, esize];
    if poly then
        product = PolynomialMult(element1, element2) < esize-1:0>;
    else
        product = (UInt(element1) *UInt(element2)) < esize-1:0>;
    Elem[result, e, esize] = product;
V[d, datasize] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

Internal version only: isa v33.64, AdvSIMD v29.12, pseudocode no diffs 2023 09 RC2, sve v2023-06 rel ; Build timestamp: 2023-09-18T17:56

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Sh Pseu