Hamming codes; and generalities on finite fields

George McNinch

2024-02-21

A result on check-matrices.

We resume our discussion from the previous lecture. An $m \times n$ matrix H with entries in \mathbb{F}_q determines a subspace $C \subset \mathbb{F}_q^n$ by the rule

$$C = \{x \mid Hx^T = 0\} = \text{Null}(H).$$

Proposition Suppose that every collection of d-1 columns of H is linearly independent and that some collection of d columns of H is linearly dependent.

Then the minimal distance of the code C is d.

Proof Let $x=(x_1,x_2,\cdots,x_n)\in C\subset \mathbb{F}_q^n$.

Let $D = D(x) = \{i \mid x_i \neq 0\}$ so that the weight of x is given by |D|.

If we denote by $\mathbf{h}_1,\mathbf{h}_2,\cdots,\mathbf{h}_n$ the $\mathit{columns}$ of the matrix H, then we have

$$x_1\mathbf{h}_1 + x_2\mathbf{h}_2 + \dots + x_n\mathbf{h}_n = 0$$

and thus

$$\sum_{i \in D} x_i \mathbf{h}_i = 0$$

so that the there are |D| columns that are linearly dependent.

If d' denotes the *minimal distance* of the code C, and if x' has weight d' then the indices D(x') define a collection of d' linearly dependent columns. Moreover, any smaller collection of columns is linearly independent; thus d' = d.

Remark Given a check matrix H with coefficients in \mathbb{F}_q , one can construct a code C_a over the field \mathbb{F}_{q^a} for any natural number a - i.e.

$$C_a = \{ x \in \mathbb{F}_{q^a}^n \mid Hx^T = 0 \}.$$

This Proposition shows that the *minimal distance* of the code C_a is independent of a, since the minimal distance can be determined from the matrix H.

Projective spaces over \mathbb{F}_q and the Hamming Codes

Projective spaces over a finite field and their size

Definition For a natural number n, the projective space \mathbb{P}^n is defined to be the set lines through the origin in the vector space \mathbb{F}_q^{n+1} .

If $0 \neq \mathbf{v} = (v_0, v_1, \cdots, v_n) \in k^{n+1}$, then $\mathbb{F}_q \mathbf{v}$ is a line, and we denote this line using the symbol

$$\mathbb{F}_q\mathbf{v}=[v_0:v_1:\cdots:v_n]\in\mathbb{P}^n=\mathbb{P}^n_{\mathbb{F}_q}.$$

For $\lambda \neq 0$ note that $\mathbb{F}_q \mathbf{v} = \mathbb{F}_q \lambda v$, and it follows that

$$[v_0:v_1:\dots:v_n]=[\lambda v_0:\lambda v_1:\dots:\lambda v_n].$$

Example Let's consider $\mathbb{P}^1 = \mathbb{P}^1_{\mathbb{F}_q}$. An arbitrary point has the form [a:b]. If $a \neq 0$, this point may be written [a:b] = [1:b/a]. There are exactly q points of the form [1:c].

If a = 0, then b is non-zero and [0 : b] = [0 : 1].

Thus $\mathbb{P}^1=\{[1:c]:c\in\mathbb{F}_q\}\cup\{[0:1]\}$ so that $|\mathbb{P}^1|=q+1.$

 $\textbf{Proposition:} \ \ \text{For} \ n \geq 1 \ \text{we have} \ \mathbb{P}^n = \{[1:u_1:u_2:\dots:u_n] \mid u_i \in \mathbb{F}_q\} \cup \{[0:\beta]:\beta \in \mathbb{P}^{n-1}\}.$

In particular,

$$|\mathbb{P}^n| = q^n + |\mathbb{P}^{n-1}|.$$

Sketch: If $v_0 \neq 0$ then $[v_0:v_1:\dots:v_n]=[1:v_1/v_0:\dots:v_n/v_0]=[1:u_1:\dots:u_n]$ where $u_i=v_i/v_0$. Moreover, if $[1:u_1:\dots:u_n]=[1:u_1':\dots:u_n]$ then $u_i=u_i'$ for each i.

On the other hand, points for which $v_0=0$ are in one-to-one correspondence with points $\beta=[v_1:\dots:v_n]$ in \mathbb{P}^{n-1} .

Proposition For $n \geq 1$, we have

$$|\mathbb{P}^n| = \frac{q^{n+1} - 1}{q - 1} = q^n + q^{n-1} + \dots + q + 1.$$

Proof We proceed by induction on n. When n = 1 we have already seen that

$$|\mathbb{P}^1| = q + 1 = \frac{q^2 - 1}{q - 1}.$$

Now let n > 1. We have seen that

$$|\mathbb{P}^n| = q^n + |\mathbb{P}^{n-1}|$$

and we know by induction that

$$|\mathbb{P}^{n-1}| = \frac{q^n - 1}{q - 1}.$$

Thus

$$|\mathbb{P}^n| = q^n + \frac{q^n-1}{q-1} = \frac{q^{n+1}-q^n+q^n-1}{q-1} = \frac{q^{n+1}-1}{q-1}.$$

Hamming codes

Let $m \geq 1$ and consider the projective space $\mathbb{P}^{m-1} = \mathbb{P}^{m-1}_{\mathbb{F}_q}$.

List the elements

$$p_1,p_2,\cdots,p_n\quad\text{of }\mathbb{P}^{m-1}$$

so that
$$n = \frac{q^m - 1}{q - 1}$$
.

For each point $p_i \in \mathbb{P}^{m-1}$, choose a (column) vector h_i in \mathbb{F}_q^m representing p_i , and let H be the $m \times n$ matrix whose columns are the h_i :

$$H = \begin{bmatrix} h_1 & h_2 & \cdots & h_n \end{bmatrix}.$$

If b_1, \dots, b_m is a basis for \mathbb{F}_q^m , the lines $\mathbb{F}_q b_j$ determine points $p_{i_j} \in \mathbb{P}^{m-1}$, and the corresponding vectors $h_{i_1}, h_{i_2}, \dots, h_{i_m}$ are again a basis for \mathbb{F}_q^m .

This shows that H has m linearly independent columns, since H is $m \times n$ it follows that H has rank m.

If we set

$$C = \operatorname{Null}(H) = \{v \in \mathbb{F}_q^n \mid Hv^T = 0\}$$

then the rank-nullity theorem implies that $\dim C = n - m = \frac{q^m - 1}{q - 1} - m$.

Proposition C is a $[n, n-m, 3]_q$ -code. In particular, the minimal distance of C is d=3.

Proof If p,q are distinct points of \mathbb{P}^{m-1} and if $p=\mathbb{F}_q v$ and $q=\mathbb{F}_q w$ then v and w are linearly independent. In particular, any two distinct columns of H are linearly independent.

On the other hand, let p, q as above and let r be the point determined by the vector v + w. Then $\{p, q, r\}$ consists of 3 distinct points of \mathbb{P}^{m-1} , say $p=p_i, q=p_j, r=p_k$. Since v, w, v+w are linearly dependent, it follows that h_i, h_j, h_k are linearly dependent. Thus there are 3 columns of H that are linearly dependent. This shows that C has minimal distance d = 3.

Some recollections on finite fields

Proposition Let k be a finite field. Then k contains the field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ for some prime number p, and |k| is a power of p, say $|k| = p^n$ where $n = \dim_{\mathbb{F}_n} k$.

Proof If k is a finite field, consider the additive subgroup generated by $1 = 1_k$. This additive subgroup is cyclic of some order n, and is in fact a subring of k isomorphic to $\mathbb{Z}/n\mathbb{Z}$.

If n were *composite* this subring would contain zero divisors, which is impossible since k is a field. Thus n = p is prime and we see that k contains a copy of $\mathbb{Z}/p\mathbb{Z}$ as required.

We may choose a basis for k as a vector space over \mathbb{F}_p , and this basis is finite, say $\dim_{\mathbb{F}_n} k = n$. Writing $\mathbf{b}_1, \dots, \mathbf{b}_n$ for the elements of this basis, we know that every element of k may be written uniquely in the form

$$s_1\mathbf{b}_1 + s_2\mathbf{b}_2 + \dots + s_n\mathbf{b}_n$$

for scalars $s_i \in \mathbb{F}_p$. Since there are p choices for each scalar s_i , conclude that $|k| = p^n$.

Proposition Let k be a finite field having $q = p^n$ elements. For any $x \in k$ we have $x^q = x$ in k.

Proof We may suppose $x \neq 0$. Then k = kx and thus

$$\prod_{a \in k \ \{0\}} a = \prod_{\alpha \in kx \ \{0\}} \alpha = \prod_{a \in k \ \{0\}} ax = \left(\prod_{a \in k \ \{0\}} a\right) x^{q-1}.$$

Canceling the common non-zero factor, we find that

$$1 = x^{q-1}$$

so that indeed $x = x^q$.

We recall that if F is a field and if $f \in F[T]$, we may find an extension field $F \subset E$ such that f splits over E; i.e. there are elements $a_1, \dots, a_r \in E$ and $\alpha \in F$ such that

$$f = \alpha (T - a_1)(T - a_2) \cdots (T - a_r).$$

The field $F(a_1, a_2, \dots, a_r)$ is called a *splitting field* for f.

If $q = p^n$, we write \mathbb{F}_q for a splitting field over \mathbb{F}_p for the polynomial $T^q - T$.

Theorem \mathbb{F}_q is a field having q elements, and any field having q elements is isomorphic to \mathbb{F}_q . **Proof** The previous Proposition shows that each element of \mathbb{F}_q is a root of $f(T) = T^q - T$. Since the degree of f(T) is q, this shows that $|\mathbb{F}_q| \leq q$. Since the formal derivative safeise f'(T) = -1, one knows that $\gcd(f(T), f'(T)) = 1$ so that f(T) has distinct roots in a splitting field. Thus f(T) has exactly q roots, and it follows that $|\mathbb{F}_q| \geq q$ so that indeed $|\mathbb{F}_q| = q.$

The uniqueness assertion follows since any two splitting fields for the polynomial $f(T) \in \mathbb{F}_n[T]$ are isomorphic (this is a general fact about splitting fields).

Proposition Suppose that $a, b \in \mathbb{N}$ and that $a \mid b$. Then $T^a - 1 \mid T^b - 1$ in the polynomial ring $\mathbb{Z}[T]$.

Proof First suppose that a = 1. Then

$$\frac{T^b-1}{T-1} = T^{b-1} + T^{b-2} + \dots + T + 1$$

so indeed $T-1 \mid T^b-1$ in $\mathbb{Z}[T]$.

Now in general set $U = T^a$ so that $T^b = U^m$ where m = b/a.

The preceding discussion shows that $U-1 \mid U^m-1$; we have

$$\frac{U^m-1}{U-1} = U^{m-1} + U^{m-2} + \dots + U + 1.$$

Thus

$$\frac{T^b-1}{T^a-1} = T^{a(m-1)} + T^{a(m-2)} + \dots + T^a + 1$$

so indeed $T^a - 1$ divides $T^b - 1$ in $\mathbb{Z}[T]$.

Proposition Let $a, b \in \mathbb{N}$. Then $T^{p^a-1} - 1$ divides $T^{p^b-1} - 1$ in $\mathbb{F}_p[T]$ if and only if $a \mid b$.

Proof (\Leftarrow) : Assume that $a \mid b$. The previous proposition shows that $T^a - 1 \mid T^b - 1$ in $\mathbb{Z}[T]$, and it then follows (by evaluation of the polynomials at p) that $p^a - 1 \mid p^b - 1$ in \mathbb{Z} .

Now a second application of the previous proposition shows that $T^{p^a-1}-1$ divides $T^{p^b-1}-1$ in $\mathbb{Z}[T]$ and a fortion $T^{p^a-1}-1$ divides $T^{p^b-1}-1$ in $\mathbb{F}_p[T]$

 $(\Rightarrow): \text{If } T^{p^a-1}-1 \text{ divides } T^{p^b-1}-1 \text{, then it is clear that } T^{p^a-1}-1 \text{ splits over } \mathbb{F}_{p^b}. \text{ In particular, } \mathbb{F}_{p^b} \text{ contains a splitting field for } T^{p^a-1}-1 \text{ and hence } \mathbb{F}_{p^b} \text{ contains (a copy of) } \mathbb{F}_{p^a}.$

Now, notice that the multiplicativity of extension degrees gives

$$b = [\mathbb{F}_{p^b} : \mathbb{F}_p] = [\mathbb{F}_{p^b} : \mathbb{F}_{p^a}] \cdot [\mathbb{F}_{p^a} : \mathbb{F}_p] = [\mathbb{F}_{p^b} : \mathbb{F}_{p^a}] \cdot a$$

so that indeed $a \mid b$.

Example Let's find the irreducible factors of $f(T) = T^8 - 1$ in $\mathbb{F}_{13}[T]$.

Since $8 \nmid 13-1=12$, \mathbb{F}_{13}^{\times} does not contain an element of order 8, so f(T) doesn't split over \mathbb{F}_{13} .

But \mathbb{F}_{13}^{\times} does contain an element of order 4, since $4 \mid 12$. Some investigation shows that in fact 5 is an element of order 4 (since $5^2 = 25 = 26 - 1 \equiv -1 \pmod{13}$).

In fact, we know that $T^4 - 1 \mid T^8 - 1$, and we now know that

$$T^4 - 1 = (T - 1)(T + 1)(T - 5)(T + 5).$$

In particular, ± 1 and ± 5 are the (only) roots of f(T) in \mathbb{F}_{13} .

If we consider the field \mathbb{F}_{13^2} , we see that $\mathbb{F}_{13^2}^{\times}$ has order 13^2-1 . We know that

$$13^2 - 1 \equiv 5^2 - 1 \equiv 24 \equiv 0 \pmod{8}$$

i.e. $8 \mid 13^2-1$. Thus $\mathbb{F}_{13^2}^{\times}$ contains an element of order 8, so T^8-1 splits over \mathbb{F}_{13^2} .

We know that T^2-5 is irreducible over \mathbb{F}_{13} , since if α is a root, then $\alpha^2=5 \implies \alpha^8=1$ while $\alpha^4=-1$. Thus $\pm \alpha \notin \mathbb{F}_{13}$ so T^2-5 has no roots in \mathbb{F}_{13} .

We've just seen that each root of $T^2 - 5$ is a root of $T^8 - 1$. Thus $T^2 - 5$ divides $T^8 - 1$.

Similarly, $T^2 + 5$ is irreducible and divides $T^8 - 1$ and we find that

$$\begin{split} T^8 - 1 &= (T-1)(T+1)(T-5)(T+5)(T^2-5)(T^2+5) \\ &= (T-1)(T-12)(T-5)(T-8)(T^2-5)(T^2-8) \end{split}$$

is the factorization of T^8-1 as a product of irreducibles over \mathbb{F}_{13} .

SAGE agrees:

```
k = GF(13)
k.<T> = PolynomialRing(k)

f = (T-1)*(T-12)*(T-5)*(T-8)*(T^2 - 5)*(T^2 - 8)
f

=>
T^8 + 12

[f.is_irreducible() for f in [ T^2 - 5, T^2 -8 ]]
=>
[True, True]

## in fact, we could have just asked SAGE to factor the polynomial

(T^8 - 1).factor()
=>
(T + 1) * (T + 5) * (T + 8) * (T + 12) * (T^2 + 5) * (T^2 + 8)
```

Bibliography