

Valid inference

Example of a valid inference (syllogism):

All politicians are rich.

Some students are politicians.

Some students are rich.

Valid inference

Example of a valid inference:

All politicians are rich.	$(\forall x \cdot Px \to Rx)$
Some students are politicians.	$(\exists y \cdot Sy \wedge Py)$
Some students are rich.	$\exists z \cdot Sz \wedge Rz$)

where:

Px means "x is a politician" Sx means "x is a student" Rx means "x is rich"

Valid inference

When is an inference valid?

Reminder - Valid inference in cluedo

- A1 At least one of them is guilty.
- A2 Not all of them are guilty.
- A3 If Mrs White is guilty, then Colonel Mustard helped her (he is guilty too).
- A4 If Miss Scarlet is innocent then so is Colonel Mustard.

innocent	innocent	innocent
innocent	innocent	guilty
innocent	guilty	innocent
innocent	guilty	guilty
guilty	innocent	innocent
guilty	innocent	guilty
guilty	guilty	innocent

Reminder - Valid inference in propositional logic

Inference:
$$\frac{\varphi_1, \dots, \varphi_n}{\psi}$$

Valid inference. An inference is valid if and only if every time (every situation) in which all premises $\varphi_1, \ldots, \varphi_n$ are true, ψ is also true.

Reminder - Valid inference in syllogisms

- Draw the Skeleton. Draw the domain of discourse with the three predicates.
- ② Universal step: crossing out Apply the universal statements from the premises ("All ...are ..." and "No ...is ...") by crossing out the forbidden regions.
- ② Existential step: filling up Apply the existential statements from the premises ("Some ...are ..." and "Some ...are not ..."), trying to put a • in an appropriate region. (This could produce several diagrams.)
- Check conclusion Verify that at least one of the conclusion's representation is in all the diagrams.

An inference in predicate logic of the form

$$\frac{\varphi_1,\ldots,\varphi_n}{\psi}$$

is valid if,

An inference in predicate logic of the form

$$\frac{\varphi_1,\ldots,\varphi_n}{\psi}$$

is valid if,

• for every model M for which we have $M \models \varphi_1$ and ... and $M \models \varphi_n$, then we also have $M \models \psi$.

An inference in predicate logic of the form

$$\frac{\varphi_1,\ldots,\varphi_n}{\psi}$$

is valid if,

- for every model M for which we have $M \models \varphi_1$ and ... and $M \models \varphi_n$, then we also have $M \models \psi$.
- In such case we will "overload" the \models operator and write $\varphi_1, \ldots, \varphi_n \models \psi$.

An inference in predicate logic of the form

$$\frac{\varphi_1,\ldots,\varphi_n}{\psi}$$

is valid if,

- for every model M for which we have $M \models \varphi_1$ and ... and $M \models \varphi_n$, then we also have $M \models \psi$.
- In such case we will "overload" the \models operator and write $\varphi_1, \ldots, \varphi_n \models \psi$.

So: what's a model?

Classification of formulas according to their behaviour

A formula φ in predicate logic is:

- a tautology if, for every model M, we have $M \models \varphi$. In this case we often simply write " $\models \varphi$ ".
- a contradiction if there is no model M for which $M \models \varphi$. In this case we often simply write " $\not\models \varphi$ ".
- satisfiable if there is at least one model M for which $M \models \varphi$.

Classification of formulas according to their behaviour

A formula φ in predicate logic is:

- a tautology if, for every model M, we have $M \models \varphi$. In this case we often simply write " $\models \varphi$ ".
- a contradiction if there is no model M for which $M \models \varphi$. In this case we often simply write " $\not\models \varphi$ ".
- satisfiable if there is at least one model M for which $M \models \varphi$.

So: what's a model?

Models in other logics

So: what's a model?

- in Cluedo a model was just an assignment of innocence or guilt to each character.
- in propositional logic a model was a single line in the truth table (we called it a "valuation").
- in syllogistic logic a model is a Venn diagram with some information filled in (crossing-out or adding a '•').

Models in predicate logic: definition

How do we build a model of some predicate logic formula φ ?

Models in predicate logic: definition

How do we build a model of some predicate logic formula φ ?

- Define some non-empty set *D* called the domain.
- ② Provide an interpretation I that shows how each constant/predicate symbol used in φ is mapped to an object/relation in the domain.
- **③** Check that the formula φ is actually *true* for this domain and interpretation.

Models in predicate logic: definition

How do we build a model of some predicate logic formula φ ?

- Define some non-empty set *D* called the domain.
- **2** Provide an interpretation I that shows how each constant/predicate symbol used in φ is mapped to an object/relation in the domain.
- **②** Check that the formula φ is actually *true* for this domain and interpretation.

NB: Note that we can only check for truth *after* we have picked the domain and interpretation.

Example: build a model of $(\forall x \cdot Px \rightarrow Rx)$

Choose a domain: { Tom, Dick, Harry}.
Suppose Tom and Dick are rich, but only Tom is a politician.

- Choose a domain: { Tom, Dick, Harry }.
 Suppose Tom and Dick are rich, but only Tom is a politician.
- Choose an interpretation for the predicate symbols:
 - Px means "x is a politician"
 - Rx means "x is rich"

- Choose a domain: { Tom, Dick, Harry}.
 Suppose Tom and Dick are rich, but only Tom is a politician.
- Choose an interpretation for the predicate symbols:
 - Px means "x is a politician"
 - Rx means "x is rich"
- **3** Evaluate the sentence: $(\forall x \cdot Px \rightarrow Rx)$:

Example: build a model of $(\forall x \cdot Px \rightarrow Rx)$

- Choose a domain: { Tom, Dick, Harry}.
 Suppose Tom and Dick are rich, but only Tom is a politician.
- Choose an interpretation for the predicate symbols:
 - Px means "x is a politician"
 - Rx means "x is rich"
- **3** Evaluate the sentence: $(\forall x \cdot Px \rightarrow Rx)$:

Assignment $Px \rightarrow Rx$ Result

- Choose a domain: { Tom, Dick, Harry}.
 Suppose Tom and Dick are rich, but only Tom is a politician.
- Choose an interpretation for the predicate symbols:
 - Px means "x is a politician"
 - Rx means "x is rich"
- **3** Evaluate the sentence: $(\forall x \cdot Px \rightarrow Rx)$:

Assignment
$$Px \rightarrow Rx$$
 Result $x := Tom$ $T \rightarrow T$

- Choose a domain: { Tom, Dick, Harry}.
 Suppose Tom and Dick are rich, but only Tom is a politician.
- Choose an interpretation for the predicate symbols:
 - Px means "x is a politician"
 - Rx means "x is rich"
- **3** Evaluate the sentence: $(\forall x \cdot Px \rightarrow Rx)$:

Assignment	$Px \rightarrow Rx$	Result
x := Tom	$T \rightarrow T$	✓
x := Dick	extstyle F ightarrow T	✓

- Choose a domain: { Tom, Dick, Harry}.
 Suppose Tom and Dick are rich, but only Tom is a politician.
- Choose an interpretation for the predicate symbols:
 - Px means "x is a politician"
 - Rx means "x is rich"
- **3** Evaluate the sentence: $(\forall x \cdot Px \rightarrow Rx)$:

Assignment	$Px \rightarrow Rx$	Result)
x := Tom	$T \rightarrow T$	✓	l
x := Dick	F o T	✓	ĺ
x := Harry	${\sf F} o {\sf F}$	✓	J

- Choose a domain: { Tom, Dick, Harry}.
 Suppose Tom and Dick are rich, but only Tom is a politician.
- Choose an interpretation for the predicate symbols:
 - Px means "x is a politician"
 - Rx means "x is rich"
- **3** Evaluate the sentence: $(\forall x \cdot Px \rightarrow Rx)$:

Assignment
$$Px \to Rx$$
 Result $x := Tom$ $T \to T$ \checkmark $x := Dick$ $F \to T$ \checkmark $x := Harry$ $F \to F$ \checkmark

Example: build a model of $(\forall x \cdot Px \rightarrow Rx)$

- Choose a domain: { Tom, Dick, Harry}.
 Suppose Tom and Dick are rich, but only Tom is a politician.
- Choose an interpretation for the predicate symbols:
 - Px means "x is a politician"
 - Rx means "x is rich"
- **3** Evaluate the sentence: $(\forall x \cdot Px \rightarrow Rx)$:

Assignment
$$Px \to Rx$$
 Result $x := Tom$ $T \to T$ \checkmark $x := Dick$ $F \to T$ \checkmark $x := Harry$ $F \to F$ \checkmark

This is a model of the formula.

- Choose a domain: { Tom, Dick, Harry}.
 Suppose Tom and Dick are rich, but only Tom is a politician.
- Choose an interpretation for the predicate symbols:
 - Px means "x is a politician"
 - Rx means "x is rich"

Example: build a model of $(\exists x \cdot Px \land Rx)$

- Choose a domain: { Tom, Dick, Harry}.
 Suppose Tom and Dick are rich, but only Tom is a politician.
- Choose an interpretation for the predicate symbols:
 - Px means "x is a politician"
 - Rx means "x is rich"
- **3** Evaluate the sentence: $(\exists x \cdot Px \land Rx)$:

Assignment $Px \wedge Rx$ Result

- Choose a domain: { Tom, Dick, Harry}.
 Suppose Tom and Dick are rich, but only Tom is a politician.
- Choose an interpretation for the predicate symbols:
 - Px means "x is a politician"
 - Rx means "x is rich"
- **3** Evaluate the sentence: $(\exists x \cdot Px \land Rx)$:

Assignment
$$Px \land Rx$$
 Result $x := Tom$ $T \land T$

- Choose a domain: { Tom, Dick, Harry }.
 Suppose Tom and Dick are rich, but only Tom is a politician.
- Choose an interpretation for the predicate symbols:
 - Px means "x is a politician"
 - Rx means "x is rich"
- **3** Evaluate the sentence: $(\exists x \cdot Px \land Rx)$:

Assignment	$Px \wedge Rx$	Result
x := Tom	$T \wedge T$	✓
x := Dick	$F \wedge T$	×

- Choose a domain: { Tom, Dick, Harry }.
 Suppose Tom and Dick are rich, but only Tom is a politician.
- Choose an interpretation for the predicate symbols:
 - Px means "x is a politician"
 - Rx means "x is rich"
- **3** Evaluate the sentence: $(\exists x \cdot Px \land Rx)$:

Assignment	$Px \wedge Rx$	Result)
x := Tom	$T \wedge T$	✓	l
x := Dick	$F \wedge T$	×	
x := Harry	$F \wedge F$	×	J

Example: build a model of $(\exists x \cdot Px \land Rx)$

- Choose a domain: { Tom, Dick, Harry}.
 Suppose Tom and Dick are rich, but only Tom is a politician.
- Choose an interpretation for the predicate symbols:
 - Px means "x is a politician"
 - Rx means "x is rich"
- **3** Evaluate the sentence: $(\exists x \cdot Px \land Rx)$:

Assignment
$$Px \land Rx$$
 Result $x := Tom$ $T \land T$ \checkmark $x := Dick$ $F \land T$ $x := Harry$ $F \land F$ $x := Harry$ X

This is a model of the formula.

Models in predicate logic: Notation

- Reminder: A model consists of two things:
 - a domain D (sets and relations)
 - some interpretation I mapping symbols into D.
- Only **after** we have been given (or have chosen) a model can we can evaluate a formula to either "true" or "false".

Models in predicate logic: Notation

- Reminder: A model consists of two things:
 - a domain D (sets and relations)
 - some interpretation I mapping symbols into D.
- Only **after** we have been given (or have chosen) a model can we can evaluate a formula to either "true" or "false".
- Notation:

```
\langle D, I \rangle \models \phi means the formula \phi is true in the model \langle D, I \rangle
```

 $\langle D, I \rangle \not\models \phi$ means the formula ϕ is false in the model $\langle D, I \rangle$

Example: colours

Suppose we choose a domain D with four objects {o₁, o₂, o₃, o₄}
 ... and some properties of these objects:

Property	Objects
is-blue	$\{o_1\}$
is-red	$\{o_4\}$
is-purple	$\{o_2, o_3\}$
is-green	{ }
is-square	$\{o_2, o_4\}$
is-circle	$\{o_1, o_3\}$

Example: colours

• Suppose we choose a domain D with four objects $\{o_1, o_2, o_3, o_4\}$... and some properties of these objects:

Property	Objects
is-blue	{ <i>o</i> ₁ }
is-red	$\{o_4\}$
is-purple	$\{o_2, o_3\}$
is-green	{ }
is-square	$\{o_2, o_4\}$
is-circle	$\{o_1, o_3\}$

Example: colours

• Suppose we choose a domain D with four objects $\{o_1, o_2, o_3, o_4\}$... and some properties of these objects:

Predicate	Property	Objects
Bx	is-blue	$\{o_1\}$
Rx	is-red	$\{o_4\}$
Px	is-purple	$\{o_2, o_3\}$
Gx	is-green	{ }
Sx	is-square	$\{o_2, o_4\}$
Cx	is-circle	$\{o_1, o_3\}$

② Then suppose we define an interpretation *I* for six predicate symbols (of arity 1) that map to these properties, as above.

Example: colours (continued)

 $\begin{array}{c} \mathsf{Predicate} \mapsto \mathsf{Property} \\ \mathsf{Bx} \mapsto \mathsf{is\text{-}blue} \\ \mathsf{Rx} \mapsto \mathsf{is\text{-}red} \\ \mathsf{I} = & \mathsf{Px} \mapsto \mathsf{is\text{-}purple} \\ \mathsf{Gx} \mapsto \mathsf{is\text{-}green} \\ \mathsf{Sx} \mapsto \mathsf{is\text{-}square} \\ \mathsf{Cx} \mapsto \mathsf{is\text{-}circle} \end{array}$

Example: colours (continued)

$$\begin{array}{c} \mathsf{Predicate} \mapsto \mathsf{Property} \\ \mathsf{Bx} \mapsto \mathsf{is\text{-}blue} \\ \mathsf{Rx} \mapsto \mathsf{is\text{-}red} \\ \mathsf{I} = & \mathsf{Px} \mapsto \mathsf{is\text{-}purple} \\ \mathsf{Gx} \mapsto \mathsf{is\text{-}green} \\ \mathsf{Sx} \mapsto \mathsf{is\text{-}square} \\ \mathsf{Cx} \mapsto \mathsf{is\text{-}circle} \end{array}$$

Q: For which of the following formula ϕ can we say that $\langle D, I \rangle \models \phi$?

- 1. $(\exists x \cdot Rx \wedge Cx)$
- 2. $(\forall x \cdot Cx \lor Sx)$
- 3. $(\exists x \cdot Gx) \lor (\exists x \cdot Cx)$

- 4. $(\exists x \cdot Rx) \wedge (\exists x \cdot Cx)$
- 5. $(\forall x \cdot Cx) \lor (\forall x \cdot Sx)$
- 6. $(\exists x \cdot Gx \lor Cx)$

Evaluating predicate logic formulas (1)

Colors (Red, Green, Blue, Purple) and shapes (Square, Circle).

- $\bullet \exists x R x$
- $\exists x (Gx \land Cx)$

- $\bullet \neg \forall x \neg Rx$
- $\bullet \ \forall x (Rx \to Cx) \\ \\ \bullet \ \forall x (Rx \land Cx)$
 - $\bullet \; \exists x (Gx \to Cx)$

Evaluating predicate logic formulas (1)

Colors (Red, Green, Blue, Purple) and shapes (Square, Circle).

- $\bullet Ba$
- $\exists xSx \lor Cb$
- $Ra \rightarrow Sb$

- $Ba \wedge Gb$
- $\bullet \neg Sa$
- $ullet Ra
 ightarrow \exists x Sx$

Suppose we are given three domains, as above.

- ... but just one interpretation in each case:
 - *I* maps *Sxy* into the "sees" relation, represented by the arrows above.

Sentence	Formula	$\langle D_1, I \rangle \langle D_2, I \rangle \langle D_3, I \rangle$
Everyone sees someone	$(\forall x \cdot (\exists y \cdot Sxy))$	

Sentence	Formula	$\langle D_1, I \rangle \langle D_2, I \rangle \langle D_2, I \rangle$		$\langle D_3, I \rangle$
Everyone sees someone	$(\forall x \cdot (\exists y \cdot Sxy))$	Т	Т	Т

Sentence	Formula	$\langle D_1, I \rangle \langle D_2, I \rangle \langle D_3, I \rangle$		$\overline{\langle D_3, I \rangle}$
Everyone sees someone	$(\forall x \cdot (\exists y \cdot Sxy))$	Т	Т	T
Someone sees everyone	$(\exists x \cdot (\forall y \cdot Sxy))$			

Sentence	Formula	$\langle D_1, I \rangle$	$\langle D_2, I \rangle$	$\langle D_3, I \rangle$
Everyone sees someone	$(\forall x \cdot (\exists y \cdot Sxy))$	Т	Т	T
Someone sees everyone	$(\exists x \cdot (\forall y \cdot Sxy))$	F	F	F

Sentence	Formula	$\langle D_1, I \rangle$	$\langle D_2, I \rangle$	$\langle D_3, I \rangle$
Everyone sees someone	$(\forall x \cdot (\exists y \cdot Sxy))$	Т	Т	Т
Someone sees everyone	$(\exists x \cdot (\forall y \cdot Sxy))$	F	F	F
Everyone is seen by someone	$(\forall x \cdot (\exists y \cdot Syx))$			

Sentence	Formula	$\langle D_1, I \rangle \langle D_2, I \rangle \langle D_3, I$		
Everyone sees someone	$(\forall x \cdot (\exists y \cdot Sxy))$	Т	Т	Т
Someone sees everyone	$(\exists x \cdot (\forall y \cdot Sxy))$	F	F	F
Everyone is seen by someone	$(\forall x \cdot (\exists y \cdot Syx))$	Т	F	Τ

Sentence	Formula	$\langle D_1, I \rangle$	$\langle D_2, I \rangle$	$\langle D_3, I \rangle$
Everyone sees someone	$(\forall x \cdot (\exists y \cdot Sxy))$	Т	Т	T
Someone sees everyone	$(\exists x \cdot (\forall y \cdot Sxy))$	F	F	F
Everyone is seen by someone	$(\forall x \cdot (\exists y \cdot Syx))$	T	F	Τ
Someone is seen by everyone	$(\exists x \cdot (\forall y \cdot Syx))$			

Sentence	Formula	$\langle D_1, I \rangle$	$\langle D_2, I \rangle$	$\langle D_3, I \rangle$
Everyone sees someone	$(\forall x \cdot (\exists y \cdot Sxy))$	Т	Т	Т
Someone sees everyone	$(\exists x \cdot (\forall y \cdot Sxy))$	F	F	F
Everyone is seen by someone	$(\forall x \cdot (\exists y \cdot Syx))$	Т	F	Т
Someone is seen by everyone	$(\exists x \cdot (\forall y \cdot Syx))$	F	Т	F

Evaluating predicate logic formulas (2)

- $Lik \rightarrow Lki$
- $\neg (Ljk \wedge Lkj)$
- $\forall x (Bx \rightarrow Lxk)$
- $\forall x((Bx \vee Gx) \rightarrow \neg Lxp)$ $\exists x(Gx \wedge Lpx \wedge Lxj)$
- $Lik \wedge Lki$
- $ullet (Ljk \wedge Lpk)
 ightarrow (
 eg Lpj \wedge
 eg Lkj) \ ullet (Gx
 ightarrow Lxx)$