

PICS INSTITUTE,
Sonipat, Delhi-NCR - IIT- JEE | NEET | CBSE

INDEX

	10ріс	Page No.	
	ORGANIC CHEMISTRY		
	<u>NOMENCLATURE</u>		
1.	Common Name	01	
2.	Derived System	14	
3.	Nomenclature of Saturated unbranched hydrocarbon	17	
4	Nomenclature of Saturated branched hydrocarbon	18	
5.	Nomenclature of Unsaturated unbranched hydrocarbon	22	
6.	Nomenclature of Unsaturated branched hydrocarbon	23	
7.	Nomenclature of Functional group compounds	26	
8.	Nomenclature of Polyfunctional group compounds	32	
9.	Nomenclature of Alicyclic/Cyclic compounds	39	
10.	Nomenclature of Bicyclo compounds	41	
11.	Nomenclature of Spiro compounds	42	
12.	Exercise - 1	46	
	Exercise - 2	53	
	Exercise - 3	58	
	Exercise - 4	61	
13.	Answer Key	63	
14.	Hints/Solution	64	

NOMENCLATURE

NOMENCLATURE OF ORGANIC COMPOUNDS

Mainly three systems are adopted for naming an organic compound : –

- (i) Common Names or Trivial System
- (ii) Derived System
- (iii) IUPAC system or Geneva System

COMMON OR TRIVIAL SYSTEM

(i) On the basis of source from which they were obtained.

S.No.	Organic Compound	Trivial Name	Source
1.	CH ₃ OH	Wood spirit or Methyl spirit	Obtained by destructive distillation of wood.
2.	NH ₂ CONH ₂	Urea	Obtained from urine
3.	CH ₄	Marsh gas (fire damp)	It was produced in marsh places.
4.	CH ₃ COOH	Vinegar	Obtained from Acetum - i.e. Vinegar
5.	COOH COOH	Oxalic acid	Obtained from oxalis plant.
6.	НСООН	Formic acid	Obtained from formicus [Red ant]
7.	СН ₃ – СН – СООН ОН	Lactic acid	Obtained from lactous (milk)
8.	CH ₂ – COOH CH(OH)COOH	Malic acid	Obtain from Apple
9	CH3CH2CH2COOH	Butyric acid	Obtained from butter.
10.	CH ₃ (CH ₂) ₄ COOH	Caproic acid	Obtained from goats.
11.	С ₂ H ₅ OH	Grain alcohol	Obtained from barley.

(ii) On the basis of property

1. Glucose - Sweet in test

2. Glycol - Sweet poisnous

3. Glycerol - Sweet (Glycus - Sweet)

(iii) On the basis of discovery

1. RMgx (Grigard Reagent)

2. R₂Zn (Frankland reagent)

(iv) On the basis of structure

S.No.	No. of Carbon atom	Word Root
(i)	1C	Meth
(ii)	2C	Eth
(iii)	3C	Prop
(iv)	4C	But
(v)	5C	Pent
(vi)	6C	Hex
(vii)	7C	Hept
(viii)	8C	Oct
(ix)	9C	Non
(x)	10C	Dec

Common Names for Hydrocarbon Derivatives

S.No.	Compound	Name
1.	R - X	Alkyl halide
2.	R – OH	Alkyl alcohol
3.	R – SH	Alkyl thio alcohol
4.	$R - NH_2$	Alkyl amine
5.	R-O-R	Dialkyl ether
6.	R-C-R 	Dialkyl ketone
7.	R-NH-R	Dialkyl amine
8.	R-N-R R	Trialkyl amine
9.	R-O-R'	Alkyl alkyl' ether
10.	R-C-R'	Alkyl alkyl' ketone
11.	R-NH-R'	Alkyl alkyl' amine
12.	R–N–R' R"	Alkyl alkyl' alkyl' amine

R is termed as alkyl -

GROUPS

Atom or a group of atoms which possess any 'free valency' are called as **Groups**.

If their are two structure of same molecular formula then some prefix (n, iso, neo) are used two differentiate them.

Normal group: -

- (a) It is represented by 'n'.
- (b) Groups having no branch (Straight chain).
- (c) Free bond will come either on Ist carbon atom or on last carbon atom.

$$n - butyl$$
 $CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 - CH_2 - CH_2 - CH_2 - CH_3 - CH_2 - CH_3 - CH$

Iso group: -

When one methyl group is attached to the second last carbon of the straight carbon chain is named as iso group.

Exception:

$$\begin{array}{cccc} \operatorname{CH}_{3} & \operatorname{CH}_{3} \\ \operatorname{CH}_{3} - \operatorname{C} - \operatorname{CH}_{2} - \operatorname{CH} - \operatorname{CH}_{2} - & \operatorname{CH}_{3} - \operatorname{C} - \operatorname{CH} - \operatorname{CH}_{2} - \\ \operatorname{CH}_{3} & \operatorname{CH}_{3} & \operatorname{CH}_{3} & \operatorname{CH}_{3} & \operatorname{CH}_{3} \end{array}$$
(i) Iso octyl (ii) Iso heptyl

Neo group: -

- (a) When two methyl groups on second last carbon of a straight carbon chain is attached to other four carbon atom group is named as neo group.
- (b) It is represented by following structure -

$$C$$
 $C-C-C$
for eg. $C-C-C$
Neo pentyl
 C

(c) There should be one 4° carbon and atleast three methyl group on 4° carbon.

NOTE: (Optically Active) = If all valency are attached to different atoms.

Amyl group: -

Secondary group : -

- (a) The carbon having free valency attached to two carbon is called secondary carbon.
- (b) It is represented by following structure. C C C C

eg. (i)
$$CH_3 - CH - CH_2 - CH_3$$
 (ii) $CH_3 - CH - CH_2 - CH_2 - CH_3$ (secondary butyl) (secondary pentyl)

Tertiary group: –

- (a) The carbon having free valency attached to three other carbon.
- (b) It is represented by following structure C C C

e.g.
$$(i)CH_3 - C-CH_3$$
 CH_3 $CH_3 - C-CH_2 - CH_3$ (Tertiary butyl) (Tertiary pentyl)

Alkyl group: -

When a hydrogen is removed from Alkane (saturated hydrocarbon) then alkyl group is formed. A bond is vacant on alkyl group on which any functional group may come.

alkane
$$\xrightarrow{-H}$$
 Alkyl - (C_nH_{2n+2}) (C_nH_{2n+1})

e.g.

(i)
$$CH_4 \xrightarrow{-H} CH_3 -$$

Methane Methyl

(ii)
$$CH_3$$
- CH_3 $\xrightarrow{-H}$ CH_3 - CH_2 -
Ethane ethyl

(iv)
$$CH_3-CH_2-CH_2-CH_3$$

n-Butane

 $CH_3-CH_2-CH_2-CH_2$

n-Butyl

 $CH_3-CH_2-CH_2-CH_2$

Sec. Butyl

(v)
$$CH_3$$
- CH - CH_3
 CH_3

Alkenyl group: -

Alkynyl group -

Alkylidene group -

Alkylene group

Position of double bond: -

In an unsaturated hydrocarbon if the position of double bond is on Ist or last carbon then it's prefix will be α (alpha) if it is on 2nd carbon it is termed as β (Beta) & the γ (gamma) & δ (delta) and so on.

COMMON - NAMING OF DIHALIDES

- (a) When two same halogen atoms are attached to the same carbon such compounds are called **Gemdihalides**.
- (b) Common names of such compounds are alkylidene halides

$$\begin{array}{c} \text{cg.} : & \begin{array}{c} \text{CH}_3\text{-CH-CH} \\ \text{Cl} \\ \text{Ethylidene chloride} \end{array} & \begin{array}{c} \text{CH}_3\text{-CH-CH-CH} \\ \text{CH}_3 \\ \text{Isobutylidene Iodide} \end{array} \end{array}$$

Exception : Methylidene halide (wrong)
$$CH_3$$
- $CH < X$

Methylene halide (right)

7

(c) When two same halogen atoms are attached to adjacent carbon, these are called as vicinal dihalides. Common names of such compounds are alkylene halide.

eg
$$CH_3 - CH - CH_2$$
 Propylene Iodide $H_3C - C - CH_2 - CI$ Isobutylene chloride CH_3

(d) When two same halogen atoms are attached at the two ends of a carbon chain its common naming will be polymethylene halide.

'poly' word indicates the number of -CH₂- groups.

eg.
$$\begin{array}{ccc} \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 \\ | & | \\ \operatorname{I} & \operatorname{I} \end{array}$$

$$\begin{array}{c} \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 \\ | \\ \operatorname{Br} & \operatorname{Br} \end{array}$$

Trimethylene Iodide

Pentamethylene Bromide

Exception: -

$$\operatorname{CH}_2$$
 - X dimethylene halide (wrong)
 $|$ CH_2 - X ethylene halide (right)

COMMON - NAMING OF DI-HYDROXY COMPOUNDS

(a) When two -OH groups are attached to adjacent carbon atoms they are termed as alkylene glycol.

$$\begin{array}{c} \text{OH} \\ \mid \\ \text{CH}_3 - \text{CH}_2 - \text{C} - \text{CH}_2 - \text{OH} \\ \mid \\ \text{CH}_3 \end{array}$$

Butylene glycol

Active amylene glycol

(b) When two –OH group are attached at the two ends of a carbon chain, these compounds are named as polymethylene glycol.

Poly \rightarrow Number of CH₂ groups.

eg. :
$$\begin{array}{ccc} \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 \\ | & | \\ \operatorname{OH} & \operatorname{OH} \end{array}$$

$$\begin{array}{c} \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 \\ | \\ \operatorname{OH} \end{array}$$

Tetra methylene glycol

Hexamethylene glycol

Exception:

$$\mathrm{CH_2}-\mathrm{OH}$$
 Dimethylene glycol (wrong) | $\mathrm{CH_2}-\mathrm{OH}$ Ethylene glycol (right)

PROBLEMS

Make the structure of following organic compounds -

- 1. Isopropylidene Bromide 2. Active amylene Iodide
- 3. Isobutylene glycol 4. Isobutylene

5. Trimethylene glycol

ANSWERS

1.
$$CH_3 - C - CH_3 - C - CH_2 - I$$
 3. $CH_3 - C - CH_2 - OH$ 4. $H_3C - C = CH_2$ 5. $CH_2 - CH_2 - CH_2$ CH_3 CH_3

COMMON-NAMING OF THE FUNCTIONAL GROUP HAVING CARBON

(Common naming for Hydrocarbon derivatives)

S.No.	Functional group	Suffix
(i)	-C - OH	-ic Acid
(ii)	O O — — — — — — — — — — — — — — — — — —	-ic anhydride
(iii)	0 -C-O-R	-ate
(iv)	O -C -NH ₂	-amide
(v)	O -C - X	-yl halide
(vi)	O -C-H	-aldehyde
(vii)	$-C \equiv N$	-o-nitrile
(viii)	–N = C	-o-isonitrile

Prefix: -

1 Carbon \rightarrow Form-

2 Carbon \rightarrow Acet-

3 Carbon → Propion-

4 Carbon \rightarrow Butyr $|\xrightarrow{}$ Normal -

5 Carbon \rightarrow

Valer \rightarrow Normal-Iso \rightarrow Secondary-Tertiary- \rightarrow A C + double bond = Croton-

Formaldehyde

Acetic Acid

$$\begin{array}{c} \mathsf{CH_3} - \mathsf{CH_2} - \mathsf{C} - \mathsf{CI} \\ \mathsf{CH_3} - \mathsf{CH_2} - \mathsf{C} - \mathsf{CI} \\ \mathsf{CH_3} \end{array} \quad \begin{array}{c} \mathsf{CH_3} - \mathsf{CH} - \mathsf{C} - \mathsf{NH_2} \\ \mathsf{CH_3} \end{array}$$

Propionyl chloride

Isobutyramide

Acetaldehyde

NOMENCLATURE OF ESTER

The group which is attached to the oxygen is written as alkyl & the remaining structure is named on the basis of Functional Group suffix.

eg. (i)
$$H-C-O-CH_3$$
 (ii) $CH_3-O-C-H$ (iii) $CH_3-C-O-H$

Methyl formate

Methyl formate

Acetic acid

(v)
$$CH_3 - C - O - CH_2 - CH_3$$

Methyl acetate

Ethyl acetate

Ethyl propionate

(vii)
$$CH_2 = CH - C - O - CH_2 - CH_3$$
 (viii) $CH_3 - CH = CH - C - O - CH_3$

(viii)
$$CH_3 - CH = CH - C - O - C$$

Ethyl acrylate

Methyl crotonate

NOMENCLATURE OF ANHYDRIDE

Rule: - Add the total number of carbon atoms & divide it by 2, the substract will give you the number of C - atom. Now name it according to suffix use for anhydride.

$$\frac{\text{Total}}{2} = \text{Substract}$$
= Number of C atom

$$\frac{4}{2} = 2$$

$$\frac{O}{CH_3-C-O-C-CH_3}$$
Acetic anhydride

$$\frac{6}{2} = 3$$

Propionic anhydride

If $R \neq R'$, You need not to find out substract.

eg.
$$OOO$$
 \parallel \parallel \parallel \parallel $CH_3-C-O-C-C,H_3$

Acetic propionic anhydride (right)

Propionic Acetic anhydride (wrong)

Divide it in two parts as above & name it by suffixing ic anhydride (alphabatically)

Butyric propionic anhydride

Isobutyric Secondary valeric anhydride

$$CH_2=CH-C$$
 $CH_2=CH-C$
 CH_2

SOLVED EXAMPLE

Q.1 Which of the following is not a neo structure:-

C (A) C-C-C (B) C-C-C-C (C) C-C

Ans.

Sol. A carbon must be attached with four carbons.

- 0.2 Acryl aldehyde is -
 - (A) A saturated aldehyde

(B) An alkene

(C) A polymer

(D) An unsaturated aldehyde

Ans.

Sol. $CH_2 = CH - CHO$ unsaturated aldehyde.

- The common name of the compound $CH_2 = CH C CH = CH_2$ is \parallel O **Q.3**
 - (A) Divinyl ketone
- (B) Diallyl ketone (C) Both A and B
- (D) None

Ans.

 $CH_2 = CH - is$ called as vinyl group. Sol.

- **Q.4** Common name of CH₂=CH-CN is:
 - (a) acrylonitrile
- (b) vinyl cyanide
- (c) allyl cyanide
- (d) allyl nitrile

- (A) a, b and d
- (B) a, and b
- (C) only b
- (D) a, b and c

- Ans.
- **Q.5** The number of possible alkyl groups of iso octane are -
 - (A) 1
- (B) 3
- (C) 5
- (D) 6

В Ans.

Sol.
$$CH_3$$

 $CH_3 - C - CH_2 - CH - CH_3$
 $CH_3 - CH_3$
 $CH_3 - CH_3$

- Write the common names of the following compounds **Q.6**
- 1. $CH_3 CH_2 CN$

- 7. $CH_2 = CH SH$ 8. $CH_3 CH_2 CH_2 CH_3 NH_2$ 9. $CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_3 CH_3 CH_2 CH_3 CH$
- $\begin{array}{c} \mathsf{CH_3} \\ \mathsf{10.} \ \mathsf{CH_3} \mathsf{C} \mathsf{CH_2} \mathsf{SH} \\ \mathsf{CH_3} \end{array} \qquad \begin{array}{c} \mathsf{11.} \ \mathsf{CH_3} \mathsf{C} = \mathsf{CH_2} \\ \mathsf{I} \\ \mathsf{CH_3} \end{array}$

12. $CH \equiv C - CH_2 - Br$

ANSWERS

- 1. Ethyl cyanide
- 3. Active amyl fluoride
- 5. Active amyl alcohol
- 7. Vinyl thio alcohol
- 9. Secondary amyl alcohol.
- 11. Isopropenyl amine

- Isobutyl Iodide 2.
- 4. Iso pentyl chloride
- 6. Tertiary hexyl amine
- 8. Active secondary amyl amine
- Neopentyl thio alcohol 10.
- 12. Propargyl Bromide

MCQ

- **Q.1** Which of the following are secondary radicals:
 - (a) $CH_3 CH C_2H_5$ (b) $CH_2 = C CH_3$ (c) $CH_2 = CH CH_3$ (d) $(CH_3)_2CH CH_3 CH_3$

- (A) a, b, c,
- (B) a, d, c
- (C) b, c, d
- (D) a, b, d

- **Q.2** Common name of the structure $CH_2 - OH$ $CH_2 - OH$
 - (A) Ethylene Glycol (B) Ethene dialcohol (C) Glycerol
- (D) Ethylene alcohol
- Common name of the compound $CH_3 CH_2 C NH_2$ is -**Q.3**
 - (A) Acetamide
- (B) Propionamide
- (C) Butyramide
- (D) Acetic amide

- The structure of 2-butenyl radical is: **Q.4**
 - (A) $CH_3 CH C_2H_5$

(B) CH_3 –CH=CH– CH_2 –

(C) $CH_3 - CH_2 - C - CH_3$

- (D) $CH_2 = CH_2 C CH_3$
- **Q.5** Which one is structure of Maleic acid

HO-CH-COOH HO-CH-COOH

- CH₂ COOH
 O
 H C C OH
 H C C OH
 H C C OH
- Common name of the structure $CH_3 C C CH = CH_2$ is : **Q.6**
 - (A) vinyl acetate
- (B) acryle acetate
- (C) methyl acrylate
- (D) Vinyl ethanoate

Q.7 Which is the structural formula of isoprene

(A)
$$CH_3 - C = CH_2$$

$$CH_3$$

$$Cl$$

$$CH_{3}$$
(B) $CH_{2} = C - CH = CH_{2}$

(C)
$$CH_2 = C - CH = CH_2$$

(D)
$$CH_3$$
– CH = CH – CH_3

- The number of gem dihalides possible with the molecular formula $C_2H_4X_2$ and $C_3H_6X_2$ is given 0.8 by the set:
 - (A) 1, 2
- (B) 2, 1
- (C) 2, 2
- (D) 1, 1

- **Q.9** Common name of the compound C₆H₅CHO
 - (A) Anisole
- (B) Benzaldehyde
- (C) Salicylaldehyde
- (D) None of these

ANSWERS

Q.1(D)

Q.2(A)

Q.3(B)

Q.4(B)

Q.5(D) Q.6(A) Q.7(B)

Q.8(A)

Q.9(B)

PROBLEMS

- Write down the structures of the following -**Q.1**
 - 1. Di allyl amine

2. Tri methyl amine

3. Di isobutyl ether

4. Di isopentyl ketone

5. Di Active amyl amine

Di normal propyl ether 6.

- 7. Tri neopentyl amine
- **Q.2** Write down the common names of the following:

$$CH_3$$
|
1. $CH_3 - C - N = C$
|
 CH_3

Ans.(1) 1.
$$CH_2$$
= CH - CH_2 - NH - CH_2 - CH = CH_2 2. CH_3 - N - CH_3 CH_3

5.
$$CH_3$$
 – CH_2 – CH_2 – CH_2 – CH_2 – CH_2 – CH_3 6. CH_3 – CH_2 – CH_2 – CH_2 – CH_2 – CH_3 – CH_3

7.
$$CH_3$$
 CH_3 CH_3 7. $CH_3 - C - CH_2 - N - CH_2 - C - CH_3$ CH_3 CH_2 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

- Ans. (2) 1. Tertiary valero-isonitrile 2. Isobutyryl chloride
- 3. Secondary Valer amide

EXERCISE-1 (Exercise for JEE Mains)

[SINGLE CORRECT CHOICE TYPE]

Q.1	The hybrid state of C-a ture are: CH ₂ =CH-C		l to a single bond with ea	ch other	in the following struc-
	(A) sp^2 , sp^2		(C) sp^2 , sp^2	(D) sp ²	, sp ³ [2030113501]
Q.2			, the C_2 – C_3 bond is the t	ype of:	
	$(A) sp - sp^2$	(B) $sp^3 - sp^3$	(C) $sp - sp^3$	(D) sp ²	- sp ² [2030110003]
Q.3	The number of acetyni	lic bonds in the structure	e are: $CH = C - C - CH$ O	= CH -	$C \equiv N$
	(A) 2	(B) 3	(C) 1	(D) 4	[2030110074]
Q.4	Which of the following (A) Ethyl ethanoate	g is the first member of es	ster homologous series? (C) Methyl methanoate	·(D) Eth	vl methanoate
	. , ,	•	. , ,	(D) Lin	[2030110457]
Q.5		ng compound's prefix			
	(A) Iso pentane	(B) Iso Hexane	(C) Iso butane	(D) Isc	octane [2030110640]
Q.6	The group of heterocyl	ic compounds is:			
	(A) Phenol, Furane	(B) Furane, Thiophene	e(C) Thiophene, Phenol	(D) Fur	ane, Aniline [2030110360]
Q.7	The compound which	has one isopropyl grou	up is :		,
	(A) 2,2,3,3-tetramethy	yl pentane	(B) 2,2-dimethyl penta	ine	
	(C) 2,2,3-trimethyl pe	ntane	(D) 2-methyl pentane		
					[2030110120]
Q.8	A substance containing (A) Mesityl Oxide	g an equal number of prin (B) Mesitylene	mary, secondary and tert (C) Maleic acid		lonic acid
					[2030111693] CH ₃
Q.9	How many secondary	carbon atoms does me	ethyl cyclopropane have	e ?	
	(A) Nine	(B) One	(C) Two	(D) Th	ree
					[2030110670]
Q.10	$(CH_3)_3C-CH=CH_2h$	as the IUPAC name:			
	(A) 3, 3–Dimethyl–1–butene		(B) 2,2–Dimethyl–1–butene		
	(C) 2,2–Dimethyl–3–b	outene	(D) 1, 3–Dimethyl–1– _I	propene	[2030110543]
Q.11		=CH-CH ₂ -CH ₂ -C≡CH			
	(A) 1, 4–Hexenyne	(B) 1–Hexen–5–yne	(C) 1–Hexyne–5–ene	(D) 1, 5	5–Hexyene [2030111749]

EXERCISE-2 (Exercise for JEE Advanced)

[REASONING TYPE]

These questions consists of two statements each, printed as Statement-I and Statement-II. While answering these Questions you are required to choose any one of the following four responses.

- (A) If both Statement-I & Statement-II are True & the Statement-II is a correct explanation of the Statement-I.
- (B) If both Statement-I & Statement-II are True but Statement-II is not a correct explanation of the Statement-I.
- (C) If Statement-I is True but the Statement-II is False.
- (D) If Statement-I is False but the Statement-II is True.
- Q.1 Statement-I: Pentane and 2-methyl pentane are homolo-gues.

 Statement-II: Pentane is a straight-chain alkane, while 2-methyl pentane is a branched-chain alkane.
- Q.2 Statement-I: All the C atom o but-2-ene lie in one plane. Statement-II: Double-bond C atoms are sp²-hybridised.
- Q.3 Statement-I: The IUPAC name of citric acid is 2-hydroxy-propane-1, 2, 3-tricarboxylic acid.

Statement-II: When an unbranched C atom is directly linked to more than two like-functional groups, then it is named as a derivative of the parent alkane which does not include the C atoms of the functional groups.

Q.4 Statement-I: Rochelle's salt is used as complexing agent in Tollens reagent.

Statement-II: Sodium potassium salt of tartaric acid is known as Rochelle's salt. The IUPAC name of

Rochelle's salt
$$\left(\begin{array}{c} OH \\ NaOOC \\ OH \end{array}\right)$$
 is sodium potassium -2, 3-dihydroxy butane-1, 4-dioate.

Q.5 Statement-I: The IUPAC name of isoprene is 2-methyl buta-1, 3-diene.

Statement-II: Isoprene unit is a monomer of natural rubber.

[MULTIPLE CORRECT CHOICE TYPE]

- **Q.6** Which of the following statements is/are wrong?
 - (A) C_nH_{2n} is the general formula of alkanes
 - (B) In homologous series, all members have the same physical properties
 - (C) IUPAC means International Union of Physics and Chemistry
 - (D) Butane contains two 1° C atoms and 2°C atom

EXERCISE-3 (Miscellaneous Exercise)

Q.1

Q.2

Q.3

Q.4 OH

Q.5

Q.6 O₂N __OH

Q.7

Q.8

Q.9 >

Q.10

EXERCISE-4

SECTION-A (IIT JEE Previous Year's Questions)

Q.1 The IUPAC name of the compound having the formula is:

$$\begin{array}{c} \operatorname{CH}_{3} \\ \operatorname{H}_{3}\operatorname{C} - \operatorname{C} - \operatorname{CH} = \operatorname{CH}_{2} \\ \operatorname{CH}_{3} \end{array}$$

- (A) 3,3,3-trimethyl-1-propene
- (B) 1,1,1-trimethyl-2-propene

(C) 3,3-dimethyl-1-butene

- (D) 2,2-dimethyl-3-butene
- Write the IUPAC name of $CH_3CH_2CH = CHCOOH$ **Q.2**
- **Q.3** The IUPAC name of the compound $CH_2=CH-CH(CH_3)_2$ is:
 - (A) 1,1-dimethyl-2-propene
- (B) 3-methyl-1-butene

(C) 2-vinyl propane

- (D) None of the above
- **Q.4** The number of sigma and pi-bonds in 1-butene 3-yne are:
 - (A) 5 sigma and 5 pi
- (B) 7 sigma and 3 pi (C) 8 sigma and 2 pi (D) 6 sigma and 4 pi
- **Q.5** Write I.U.P.A.C name of following:

Me = methyl group

(b)
$$\begin{array}{c} & CH_{3} \\ & | \\ H_{3}C-N-CH-CH_{2}CH_{3} \\ & | \\ CH_{3} & C_{2}H_{5} \end{array}$$

- **Q.6** Write IUPAC name of succinic acid.
- **Q.7** The IUPAC name of C₆H₅COCl is
 - (A) Benzoyl chloride

- (B) Benzene chloro ketone
- (C) Benzene carbonyl chloride
- (D) Chloro phenyl ketone

Q.8 The IUPAC name of the following compound is

[JEE 2009]

- (A) 4-Bromo-3-cyanophenol
- (B) 2-Bromo-5-hydroxybenzonitrile
- (C) 2-Cyano-4-hydroxybromobenzene
- (D) 6-Bromo-3-hydroxybenzonitrile

[2030110175]

Q.9 The correct structure of ethylenediaminetetraacetic acid (EDTA) is [IIT-JEE 2010]

$$(C)$$
 $N-CH_2-CH_2-N$
 CH_2-COOH_2
 CH_2-COOH_2
 CH_2-COOH_2

(D)
$$\begin{array}{c} \text{COOH} \\ \text{HOOC-CH}_2 & \text{CH}_2 \\ \text{N-CH-CH-N} \\ \text{CH}_2 & \text{CH}_2\text{-COOH} \\ \text{HOOC} \\ \end{array}$$

SECTION-B (AIEEE Previous Year's Questions)

- Q.10 The correct decreasing order of priority for the functional groups of organic compounds in the IUPAC system of nomenclature is

 - $\begin{array}{ll} \text{(A)} \mathrm{SO_3H, -COOH, -CONH}_2, \mathrm{CHO} & \text{(B)} \mathrm{CHO, -COOH, -SO_3H, -CONH}_2 \\ \text{(C)} \mathrm{CONH}_2, \mathrm{CHO, -SO_3H, -COOH} & \text{(D)} \mathrm{COOH, -SO_3H, -CONH}_2, \mathrm{CHO} \end{array}$

ANSWER KEY

EXERCISE-1

Q.1	(A)	Q.2	(C)	Q.3	(C)	Q.4	(C)
Q.5	(D)	Q.6	(B)	Q.7	(D)	Q.8	(B)
Q.9	(C)	Q.10	(A)	Q.11	(B)	Q.12	(D)
Q.13	(A)	Q.14	(B)	Q.15	(A)	Q.16	(B)
Q.17	(B)	Q.18	(D)	Q.19	(C)	Q.20	(B)
Q.21	(D)	Q.22	(C)	Q.23	(C)	Q.24	(B)
Q.25	(B)	Q.26	(B)	Q.27	(D)	Q.28	(A)
Q.29	(B)	Q.30	(D)	Q.31	(C)	Q.32	(C)
Q.33	(C)	Q.34	(A)	Q.35	(D)	Q.36	(D)
Q.37	(C)	Q.38	(B)	Q.39	(D)	Q.40	(B)
Q.41	(B)	Q.42	(C)	Q.43	(C)	Q.44	(B)
Q.45	(D)	Q.46	(A)	Q.47	(B)	Q.48	(A)
0.49	(D)	0.50	(B)	•	· /	•	\

EXERCISE-2

Q.1	(B)	Q.2	(A)	Q.3	(A)	Q.4	(B)	
Q.5	(B)	Q.6	(A), (B), (C)	Q.7	(A), (B), (C)	Q.8	(A), (B), (C)	
Q.9	(C), (D)	Q.10	(A), (B), (C),	, (D)		Q.11	(A), (B), (C), (B)	D)
Q.12	(A), (B), (C), (D)			Q.13	(A), (B), (D)			
Q.14	(A), (B), (C), (D)			Q.15	(A), (B), (C),	(D)		
Q.16	[(A) Q; (B) R; (C) S;	(D) P]		Q.17	[(A) R; (B) P;	(C) S;	(D) Q]	
Q.18	[(A) R, Q; (B) P; (C)]	S]		Q.19	[(A) Q, R; (B)	R, S; (C) P]	
Q.20	[(A) R; (B) S; (C) P;	D) Q; (E) U; (F) T]					

EXERCISE-4

SECTION-A

Q.1	(C)	Q.3	(B)	Q.4 (B)	Q.7 (C)
Q.8	(B)	Q.9	(C)		

SECTION-B

Q.10 (D)

HINTS / SOLUTION

EXERCISE-1

Q.1
$$\begin{array}{c} H & \sigma & H \\ C = C & \longrightarrow sp^2 \\ sp & C = C - H \end{array}$$

Q.2
$$HC = \begin{matrix} sp & sp^{3} \\ \downarrow & \downarrow \\ C - CH_{2} - CH = CH - CH_{3} \\ 2 & 3 & 4 & 5 & 6 \end{matrix}$$

Q.3
$$H-C \equiv C-C-CH = CH-C \equiv N$$
Acetynilic group

$$Q.4$$
 $H - C - O - CH_3$

Q.5
$$CH_3 - CH_2 - CH_2 - CH_3 \longrightarrow Iso$$
Not Iso group

Q.7
$$CH_3 - CH_2 - CH_2$$
ISO group

Q.8
$$\begin{array}{c}
1^{\circ} - \text{Carbon} \Rightarrow 3 \\
2^{\circ} - \text{Carbon} \Rightarrow 3 \\
2^{\circ} - \text{Carbon} \Rightarrow 3 \\
3^{\circ} - \text{Carbon} \Rightarrow 3
\end{array}$$

Q.9
$$2^{\circ}$$
 3° 1° 2° $-C \Rightarrow 2$

Q.10
$$H_{3}C - CH_{3} = CH_{2}$$

 CH_{3}
 CH_{3}
 CH_{3}
3,3-dimethyl-1-butene

Q.11
$$H_2C = CH - CH_2 - CH_2 - C \equiv CH_1$$

 $1 - 2 \quad 3 \quad 4 \quad 5 \quad 6$
 $1 - Hexene-5-yne$

Q.12
$$H_2C = CH = C - CH_3$$

 $CH_2 - CH_3$
 $CH_2 - CH_3$
3-methyl-2-pentene

Q.13 Compound having hetero-atom (as O, N, S etc) in cycle are known as heterocyclic compound.

3, 5-diethyl-4,5-dimethyl -5-[1-methyl ethyl] hept-3-ene

Q.17 Ethyl
$$CH_3$$
 CH_3 CH_4 CH_4 CH_5 $CH_$

Q.18
$$H_{3}C - CH = CH - C \equiv CH$$

Pent-3-ene-1-yne

Q.19
$$H_{3}C - C = C - CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$
4, 4-dimethylpent-1-yne

Q.23
$$H_{3}C - CH_{2} - CH_{2} = N$$

Q.26
$$H_3C - CH_2 - CH - O - CH_2 - CH_3 - CH_3 - CH_4 - CH_5 -$$

1-Ethoxy-1-propanamine (✓) 1-Amino-1-Ethyoxypropane (×)

4-Ethyl-4, 5-dimethyldecane

Q.28
$$C_3H_6Br_2$$
 $H_3C - CH_2 - CH$

Br

Terminal gem dibromide

 Br
 $CH_3 - C - CH_3$

Br

Non-terminal gem dibromide