Evaluating Contrastive Embeddings of Extracellular Dynamics for Cell Typing with 'Ground Truth' Data

Aims

 Ephys data from MEAs can record information from 1000s of cells, but with only waveforms and location it can be difficult to cluster individual units and distinguish different cell types.

 Computational techniques can be used to address these problems, however without ground truth data they are difficult to verify

 Contrastive learning (CEED) has been proposed as a method to identify cell types based on their extracellular dynamics, but are these clusters biologically meaningful?

 Using the allen institute's optotagging dataset allows some insight into the genetic properties of cells recorded with NPs

Overview:

Contrastive Learning

- Self-supervised
 method to generate
 latent
 representations of
 objects
- Relies on data augmentation to create multiple views of data
- Minimises distance between representations of similar objects, maximises distance between different objects

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." *International conference on machine learning*. PMLR, 2020.

Electrophysiology Background

- Ephys Data is Clustered into units using spike location, and a descriptor of the spike's waveform
 - o E.g. ptp amplitude and maximum channel location
- Other Dimensionality Reduction methods can be used to further split or merge these clusters
 - There are many cell-types
 throughout the mouse brain,
 understanding what units correspond to different cell types would be very useful.
 - This is not trivial with NP data.

Why CEED embeddings

Contrastive Embeddings of Extracellular Dynamics

A representation of waveform shape insensitive to noise, temporal jitter, and other nuisance variables.

Can allow a more 'human' interpretation of a waveform shape

This representation could improve upon clustering methods previously mentioned and possibly allow for waveform based cell-type classification

CEED for Cell Typing

GMM Clustered CEED embeddings group similar waveforms well. But, does waveform clustering == Cell-typing?

CEED for Cell Typing

The same method produces seemingly worse clusters when using hand picked features, unsure if it's better than PCA

Optotagging Dataset

- Neuropixel Data recorded from mouse brain - filtered to only include cortical neurons
- 3 genotypes used: Vip, Sst, Pvalb.
 Tagged with ChR2, allowing stimulation with blue light
- Allows cell-type identification based on tuning to this stimulus

- Only templates no single spikes
- Allen processing is different than IBL, 'artifactual waveforms' are removed

Extracting Tuned Units

Wild Type Comparison

Results

GMM clustering of CEED embedded Optotagging Templates

Results

What's not perfect

Tuning selection is brute force

Not individual spikes

Different processing makes it hard to compare to IBL data

Questions