Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра автоматизированных систем управления (АСУ)

Отчет по практической работе №3 «Построение формальной модели системы»» по дисциплине «Теория систем и системный анализ»

Вып	олнил	студен	т(ы) гр. 431-3	
	Андреев.Д.І			
			Романов.В.В	
			_ _ Гурулёв.А.В	
	~		2023	
			Проверила	
		Ав	ерьянова А.М.	
	«		2023	

Оглавление

Введение	3
Основная часть	
1 Наименование системы	
2 Формальная модель «черного ящика».	
3 Формальная модель состава.	
- 4 Формальная модель структуры	4
Заключение	6

Введение

Цель:

Получить практические навыки в формировании базовых моделей («черного ящика», состава, структуры) системы и описании их на формальном языке.

Задачи:

- 1. Построить формальную модель «черного ящика»;
- 2. Построить формальную модель состава;
- 3. Построить формальную модель структуры.

Основная часть

1 Наименование системы.

Автоматизированные системы управления уличным освещением — это программно-аппаратный комплекс, позволяющий контролировать состояние сетей наружного (уличного) освещения, организовать учёт электроэнергии, осуществлять диагностику оборудования.

2 Формальная модель «черного ящика».

Множество $X = \{x_i\}$ входных переменных:

 x_1 – текущее время,

 x_2 – время включения/отключения,

 x_3 – команда смены состояния (0 – выключить, 1 – включить),

 x_4 – наличие электроэнергии (0 – отсутствует, 1 – присутствует).

Множество $Y = \{y_i\}$ выходных переменных:

 y_1 – наличие освещения (0 – нет, 1 – есть),

у2 – количество исправных контакторов.

Множество Z = $\{z_k\}$ состояний внутри системы:

 z_1 – количество запущенных групп светильников,

 z_2 – статус работы резервной батареи (0 – не работает, 1 – работает),

 z_3 – статус работы системы (0 – не активна, 1 – успешно запустилась).

Зависимости:

$$y_1 = f_1(z_1, z_3),$$

$$y_2 = f_2(z_1),$$

$$z_2 = f_3(x_4),$$

$$z_3 = f_4(x_1, x_2, x_3, x_4).$$

3 Формальная модель состава.

Множество $S = \{s_i\}$ систем:

 s_0 – автоматическая система освещения,

 s_1 – подсистема освещения,

 s_2 – подсистема управления,

 s_3 — подсистема питания,

 s_4 – группа светильников_n,

s₅ – GPRS модем,

 s_6 – контроллер,

s₇ – автономная система питания,

 s_8 – внешнее питание,

 s_9 — входной контактор,

 s_{10} – счетчик,

 s_{11} – управляющий контактор,

 s_{12} – реле контроля,

 s_{13} — светильники.

Модель состава:

 $s_0 \ R^{ag} \ s_1, \ s_0 \ R^{ag} \ s_2, \ s_0 \ R^{ag} \ s_3, \ s_1 \ R^{ag} \ s_4, \ s_2 \ R^{ag} \ s_5, \ s_2 \ R^{ag} \ s_6, \ s_2 \ R^{ag} \ s_7, \ s_3 \ R^{ag} \ s_8, \\ s_3 \ R^{ag} \ s_9, \ s_3 \ R^{ag} \ s_{10}, \ s_4 \ R^{ag} \ s_{11}, \ s_4 \ R^{ag} \ s_{12}, \ s_4 \ R^{ag} \ s_{13}.$

4 Формальная модель структуры.

Множество $V = \{v_j\}$ объектов среды:

 v_1 – оператор,

 v_2 – прохожий,

 v_3 — электростанция.

Описание взаимодействия подсистем и элементов:

 $v_1 \: R^S \: s_5$ – оператор передает команду на включение по GPRS модулю,

- $v_3 \ R^S \ s_8$ электростанция подает электричество на вход системы,
- $s_5 \ R^S \ s_6 GPRS$ модуль передает команду в контроллер,
- $s_8 \; R^S \; s_9 -$ питание проходит через контактор,
- $s_9 \; R^S \; s_{10} -$ питание проходит с контактора к счётчику,
- $s_{10} \ R^S \ s_6$ питание проходит от счётчика к контроллеру,
- $s_{10} \ R^S \ s_7$ питание проходит от счётчика к автономной системе питания,
- $s_7\ R^S\ s_6$ в случае необходимости, контроллер питается от автономной системы питания,
 - $s_6 \ R^S \ s_4$ контроллер включает группу светильников,
 - $s_4 \ R^S \ s_{11} -$ питание доходит до контактора,
- $s_{11}\ R^S\ s_6$ контактор возвращает контроллеру свое состояние (исправен/неисправен),
 - $s_{11} \; R^S \; s_{12} -$ питание переходит от контактора к реле,
 - $s_{12} \; R^S \; s_{13}$ реле распределяет питание для светильников,
 - $s_{13} \; R^S \; v_2 c$ ветильник освещает дорогу прохожему.

Заключение

В результате практической работы были получены практические навыки в формировании базовых моделей («черного ящика», состава, структуры) системы и описании их на формальном языке.