Siamese RNN for Learning Text Similarity

2017-12-13

CONTENT

- Learning text / sentence / sequence similarity
- Siamese network
- •LSTM
- Character-level & word-level

- **♦** *Reference*
- 1. 《Learning Text Similarity with Siamese Recurrent Networks》,2016
- 2. 《Siamese Recurrent Architectures for Learning Sentence Similarity》,2016

CONTENT

Background

Model

Experiment

Conclusion

PARTONE

Background

Siamese architecture

a network architecture & a similarity metric

Siamese architecture

Make this small

Similar images (neighbors in the neighborhood graph)

Make this large

Dissimilar images (non-neighbors in the neighborhood graph)

Application:

- □ Dimensionality reduction
- Signature Verification
- ☐ Face identification & Face verification

Siamese network loss function

- □两个相同结构、权值共享的子网络
- □三元组 (X1,X2,Y), X1和X2相同时y=1, 不同时y=0
- □损失函数设计:
- 1. 输入样本对不相似(y=0)时,距离越大(相似度越小),损失越小,即是关于距离的单调递减函数(相似度的单调递增函数)
- 2. 输入样本对相似(y=1)时,距离越大(相似度越小),损失越大,即是 关于距离的单调递增函数(相似度的单调递减函数)

Loss function:

PARTIMO

Model

Model architectures

Word-level

Character-level

Model ~ character-level

INPUT Phrase:

International Business Machines = I.B.M Synergy Telecom = SynTel Beam inc = Beam Incorporate Sir J J Smith = Johnson Smith Alex, Julia = J Alex James B. D. Joshi = James Joshi James Beaty.Jr. = Beaty

Job title:

Developer = software architect J2EE = Java developer

Model ~ character-level

INPUT: (x1, x2 ,y)

y=1 similar

y=0 dissimilar

OUTPUT:

Sequence similarity

Sentence embedding:

Output of feedforward layer

Model ~ character-level

$$E_{W}(x_{1}, x_{2}) = \frac{\langle f_{W}(x_{1}), f_{W}(x_{2}) \rangle}{\|f_{W}(x_{1})\| \|f_{W}(x_{2})\|}$$

$$\mathcal{L}_{\mathbf{W}}(X) = \sum_{i=1}^{N} L_{\mathbf{W}}^{(i)}(x_1^{(i)}, x_2^{(i)}, y^{(i)})$$

$$L_{W}^{(i)} = y^{(i)}L_{+}(x_{1}^{(i)}, x_{2}^{(i)}) + (1 - y^{(i)})L_{-}(x_{1}^{(i)}, x_{2}^{(i)})$$

$$L_{+}(x_{1}, x_{2}) = \frac{1}{4} (1 - E_{W})^{2}$$

$$L_{-}(x_{1}, x_{2}) = \begin{cases} E_{W}^{2} & \text{if } E_{W} < m \\ 0 & \text{otherwise} \end{cases}$$

Model ~ word-level

Sentence sample:

He is smart = He is a wise man.

Someone is travelling countryside = He is travelling to a village.

She is cooking a dessert = Pudding is being cooked.

Microsoft to acquire Linkedin ≠ Linkedin to acquire microsoft

Model ~ word-level

$$g(h_{T_a}^{(a)}, h_{T_b}^{(b)}) = \exp(-||h_{T_a}^{(a)} - h_{T_b}^{(b)}||_1) \in [0, 1].$$

INPUT: (x1,x2,y) y=1 similar y=0 dissimilar

OUTPUT:

Sentence embedding: last hidden state of the model

PARTIHREE

Experiment

Data and data augmentation

□Sysnonyms:

 Replace random word with one of their synonyms found in

 Wordnet
 □Typo and spelling invariance characters randomly substituted and deleted
 □Extra words invariant to superfluous words

Data:

- Train data: SemEval 2014 train data, 5000
- Test data: SemEval 2014 test data ,4927
- Sample: ["Nobody is pouring ingredients into a pot.", "Someone is pouring ingredients into a pot.", 3.5]

experiment

Pearson's correlation coefficient is a statistical measure of the strength of a **linear** relationship between paired data, r belongs to [-1,1]

$$\rho_{X,Y} = \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

experiment

Spearman's correlation coefficient is a statistical measure of the strength of a **monotonic** relationship between paired data, rho belongs to [-1,1]

$$\rho = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2 \sum_{i=1}^{N} (y_i - \bar{y})^2}}$$

experiment

- ☐ Semantic relatedness scoring
- ■Sentence representation:
- 1、sentence similarity between sentences by aggregating differences
 - 2, semantic information
- ☐ Entailment classification: textual entailment task

Sentence pair	\mathbf{G}	\mathbf{S}	\mathbf{M}
A little girl is looking at a woman in costum	e.		
A young girl is looking at a woman in			
costume.	4.7	4.5	4.8
A person is performing tricks on a motorcyc	le.		
The performer is tricking a person on a			
motorcycle.	2.6	4.4	2.9
Someone is pouring ingredients into a pot.			
A man is removing vegetables from a pot.	2.4	3.6	2.5
Nobody is pouring ingredients into a pot.			
Someone is pouring ingredients into a pot.	3.5	4.2	3.7

Example sentence pairs from the SICK test data. G denotes ground truth relatedness \in [1, 5], S = skip-thought predictions, and M = MaLSTM predictions.

Method	r	ρ	MSE
Illinois-LH	0.7993	0.7538	0.3692
(Lai and Hockenmaier 2014)			
UNAL-NLP	0.8070	0.7489	0.3550
(Jimenez et al. 2014)	0.00.00	0.7724	0.2224
Meaning Factory	0.8268	0.7721	0.3224
(Bjerva et al. 2014) ECNU	0.8414		
(Zhao, Zhu, and Lan 2014)	0.6414	_	_
Skip-thought+COCO	0.8655	0.7995	0.2561
(Kiros et al. 2015)			
Dependency Tree-LSTM	0.8676	0.8083	0.2532
(Tai, Socher, and Manning 20	15)		
ConvNet	0.8686	0.8047	0.2606
(He, Gimpel, and Lin 2015)			
MaLSTM	0.8822	0.8345	0.2286

☐Three metrics:

r: Pearson correlation

p: Spearman's p

MSE: mean-squared-error

□only an evaluation of complete relatedness-scoring systems

□[0,1] ~ [1,5] by an additional nonparametric regression

- Semantic similarity between sentences by simply aggregating their differences in various characteristics.
- □Different dimensions of h (h1,h2): negation, categorization

□Sentence representation space

□PCA

Method	Accuracy
Illinois-LH	84.6
(Lai and Hockenmaier 2014)	
ECNU	83.6
(Zhao, Zhu, and Lan 2014)	
UNAL-NLP	83.1
(Jimenez et al. 2014)	
Meaning Factory	81.6
(Bjerva et al. 2014)	
Reasoning-based n-best	80.4
(Lien and Kouylekov 2015)	
LangPro Hybrid-800	81.4
(Abzianidze 2015)	
SNLI-transfer 3-class LSTM	80.8
(Bowman et al. 2015)	
MaLSTM features + SVM	84.2

□ Evaluate sentence representation
☐Feature: element-wise (abs) differences & element-wise product
□SVM
□Data: SemEval 2014 textual entailmen task pair label: entailment, contradiction or neutral
□LH features specially constructed for this task

PART FOUR

Conclusion

Conclusion

- ■Map from a general space of variable length sequence into an structured metric space of fixed dimensionality
- □Simple metrics capture sentence similarity
- □Sentence embedding
 - Last hidden state of the model
 - Add a BP net based last hidden state
- **□**Sentence distance
 - Cosine distance
 - Manhattan distance

Discussion

□Different weight W:
asymmetric domains such as IR(query and document)

□sentence represent: RNN、CNN

□Triplet network

THANKS