MODIFIED DAI-YUAN ITERATIVE SCHEME FOR NONLINEAR SYSTEMS AND ITS APPLICATION

Mohammed Yusuf Waziri*,1,4, Kabiru Ahmed^{1,4}

Abubakar Sani Halilu^{2,4} and Aliyu Muhammed Awwal^{3,4}

- ¹ Department of Mathematical Sciences, Bayero University, Kano, Nigeria
- ² Department of Mathematics, Sule Lamido University, Kafin Hausa, Nigeria
 ³ Department of Mathematics, Gombe state University, Gombe, Nigeria
- ⁴ Numerical Optimization Research Group, Bayero University, Kano, Nigeria

(Communicated by Yu-Hong Dai)

ABSTRACT. By exploiting the idea employed in the spectral Dai-Yuan method by Xue et al. [IEICE Trans. Inf. Syst. 101 (12)2984-2990 (2018)] and the approach applied in the modified Hager-Zhang scheme for nonsmooth optimization [PLos ONE 11(10): e0164289 (2016)], we develop a Dai-Yuan type iterative scheme for convex constrained nonlinear monotone system. The scheme's algorithm is obtained by combining its search direction with the projection method. One of the new scheme's attribute is that it is derivative-free, which makes it ideal for solving non-smooth problems. Furthermore, we apply the method to recover obscure or blurry images in compressed sensing. By employing mild assumptions, global convergence of the scheme is determined and results of some numerical experiments show the method to be favorable compared to some recent iterative methods.

1. **Introduction.** In this paper, we consider the system of nonlinear equations given by

$$F(x) = 0, \quad x \in \Omega \subset \mathbf{R}^n, \tag{1}$$

where $F: \mathbf{R}^n \longrightarrow \mathbf{R}^n$ is a nonlinear, monotone mapping, which may not be differentiable and $x = (x_1, x_2, ..., x_n)$. Also, Ω in (1) is a nonempty closed convex set, while monotonicity of F implies that $\forall x, y \in \mathbf{R}^n$, the following holds:

$$(F(x) - F(y))^T (x - y) \ge 0.$$
 (2)

Finding solutions of nonlinear systems of equations is a popular trend in the field of optimization. This is due to real life applications of the concept in science, engineering, economics and other areas of human endeavor. In radiactive transfer and transport theory [25], the Chandrasekhar integral equation [11] is discretized and expressed as system of nonlinear equations. The economic equilibrium problems that arise in [13, 35], are remodeled as systems of nonlinear equations. Also, some ℓ_1 -norm regularized optimization problems in signal and image processing [30, 53] are obtained by reformulating systems of monotone nonlinear equations. For more applications of the concept, see [43, 59].

²⁰¹⁰ Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35. Key words and phrases. Nonlinear monotone equations, Linesearch, Projection method, Signal processing, Image de-blurring, Convex constraint.

^{*} Corresponding author: Mohammed Yusuf Waziri.

The conjugate gradient (CG) method stands out as one of the most ideal iterative scheme for solving large-scale unconstrained optimization problems of the form

$$\min_{x \in \mathbf{R}^n} f(x),\tag{3}$$

where $f: \mathbf{R}^n \longrightarrow \mathbf{R}$ is a smooth nonlinear function whose gradient $\nabla f(x)$ is obtainable. The scheme is implemented using the iterative formula

$$x_{k+1} = x_k + s_k, \quad s_k = \alpha_k d_k, \quad k = 0, 1, ...,$$
 (4)

where x_k represents the current iterate, α_k is a steplength obtained using some line search technique, and d_k is the CG search direction defined by

$$d_k = -g_k + \beta_k d_{k-1}, \quad d_0 = -g_0, \tag{5}$$

where $g_k = g(x_k) = \nabla f(x_k)$ and β_k represents the CG update parameter, which is crucial in the scheme.

The attributes of the CG scheme includes less storage requirement and strong global convergence properties [4]. The most essential CG methods include the Fletcher-Reeves (FR) method [17], Conjugate gradient (CD) method [18], Dai-Yuan (DY) method [12], Hestenes-Stiefel (HS) method [24], Polak-Ribi'ere-Polyak (PRP) method [38, 39], and the Liu-Storey (LS) method [33]. The HS, PRP and LS methods are numerically effective due to their ability to initiate a restart whenever a bad direction is encountered. However, they fail to generate descent search directions, which is vital for global convergence. On the other hand, the FR, DY and CD methods posses the ability to generate descent directions under some suitable line search rule, but they are not numerically efficient. The reason for this stems from the fact that these methods are prone to jamming phenomenon, which results when small steps are made without making significant progress to the minimum.

Quite a number of CG methods have been developed for solving systems of nonlinear equations as extensions of the classical CG methods described above. By combining the PRP method [38, 39] with the hyperplane projection scheme [44], Cheng [9] developed an effective PRP-type scheme for solving nonlinear systems of equations. Li and Li [27] equally proposed a set of PRP-type algorithms for solving system of nonlinear monotone equations by employing the projection strategy [44]. Liu et al. [29] developed an LS-type scheme for constrained system of nonlinear monotone equations by implementing Powell's idea on the classical Liu-Storey scheme [33]. The method converges globally under basic assumptions. Inspired by the self-adaptive method proposed in [23], Wang et al. [46] proposed a self-adaptive three-term CG method for monotone nonlinear equations with convex constraints. By extending the modified FR method developed by Zhang et al. [58] for unconstrained optimization, Li and Wang [26] proposed an FR-type iterative scheme for symmetric nonlinear equations. The method was shown to converge globally under mild assumptions. Abubakar et al. [1, 2] recently proposed efficient FR-type methods for convex constrained monotone systems with their applications to signal and image processing problems. Also, the DY method [12] has gained the attention of researchers recently. By combining the DY scheme [12] with the spectral gradient method [6] and the projection technique [44], Liu and Li [31] developed a spectral DY-type projection scheme for solving system of nonlinear equations. Global convergence of the scheme was established without the differentiability assumption on the system of equations. Liu and Li [32] combined the DY method [12] with the multivariate spectral gradient scheme [56] to propose a multivariate spectral DY method for system of monotone nonlinear equations with convex constraint. The

scheme is derivative-free, which makes it suitable for non-smooth equations. Global convergence of the method was also proved under mild conditions. Inspired by the work in [27] and [31], Liu and Feng [28] proposed a DY-type scheme for solving system of nonlinear monotone equations with convex constraint. An attribute of the scheme is its ability to solve large-scale non-smooth problems, which stems from the fact that it is derivative-free and requires low storage to implement. Global convergence of the proposed method is proved under the Lipschitz continuity assumption. Recently, motivated by the work in [28], Sani et al. [3] proposed a DY-type method for convex constrained system of monotone equations. Search direction of the scheme is taken as a convex combination of the DY update parameter and the classical CD parameter. Under mild conditions, global convergence of the scheme is proven. For further recent progress on addition methods, we refer the reader to [20, 47, 48, 49, 50, 40, 41, 51, 21, 22] and the references therein.

The aim of this article is to develop an efficient DY-type projection scheme for solving constrained systems of nonlinear equations with its application to image deblurring. We are inspired by the work of Xue et al. [54] and Yuan et al. [57], where in [54] the authors took advantage of the nice attribute of DY scheme to develop an algorithm with a spectral conjugate parameter and a search direction with the descent property vital for global convergence. Also, in [57], the authors developed an update parameter that switches between the efficient $CG_DESCENT$ scheme [19] and a scheme that guarantees sufficient descent. We are also motivated by the fact that the DY method for unconstrained as well as constrained systems of nonlinear equations are rare in the literature as most of the research conducted on the scheme are focused on solving the minimization problem (8).

Apart from developing a new scheme with global convergence properties, another contribution of this research is its application in image restoration problems in compressed sensing.

The article is prepared as follows: Preliminaries leading to derivation of the new scheme is presented in the next section. The third section deals with derivation as well as convergence analysis of the scheme. Results of numerical experiments carried out on the scheme and three other methods are discussed in the fourth section. In section five, we present application of the proposed scheme to highlight its effectiveness. concluding remarks are presented in section six.

- 2. Preliminaries and the Proposed Method. Throughout the article, $||x|| = \sqrt{x^T x}$, represents the ℓ_2 norm, $F_k = F(x_k)$, $F_{k-1} = F(x_{k-1})$, and $s_{k-1} = x_k x_{k-1}$. Now, we give two assumptions, that will be required later in the article:
- (i). A solution $\bar{x} \in \Omega$ exists such that $F(\bar{x}) = 0$.
- (ii). The mapping F satisfies the Lipschitz continuity property; i.e, there exists a positive constant L such that for all $x, y \in \mathbf{R}^n$, the following holds:

$$||F(x) - F(y)|| \le L||x - y||. \tag{6}$$

Next, we discuss the projection scheme [44], in which a sequence $\{\bar{z}_k\}$ is generated satisfying

$$\bar{z}_k = x_k + \alpha_k d_k,\tag{7}$$

and $\alpha_k > 0$ is a steplength obtained in the direction d_k via suitable line search technique so that

$$F(\bar{z}_k)^T(x_k - \bar{z}_k) > 0.$$
 (8)

For a solution \bar{x} of (1), and using the monotonicity of F, we obtain

$$F(\bar{z}_k)^T(\bar{x} - \bar{z}_k) = F(\bar{z}_k) - F(\bar{x})^T(\bar{x} - \bar{z}_k) \le 0.$$
(9)

Hence, by (8) and (9) it is clear that

$$H_k = \{ x \in \mathbf{R}^n | F(\bar{z}_k)^T (x - \bar{z}_k) = 0 \}, \tag{10}$$

represents the hyperplane, which separates x_k strictly from the solution \bar{x} of (1). Solodov and Svaiter [44] employed this approach, where they suggested the use of the projection of x_k onto the hyperplane H_k to be the new iterate, namely

$$x_{k+1} = x_k - \frac{F(\bar{z}_k)^T (x_k - \bar{z}_k)}{\|F(\bar{z}_k)\|^2} F(\bar{z}_k).$$
(11)

Next we introduce the projection operator. Let $\Omega \subset \mathbf{R}^n$ be a nonempty, closed convex set. Then for each vector $x \in \mathbf{R}^n$, its projection onto Ω is given by

$$P_{\Omega}(x) = \arg\min \|x - y\| : y \in \Omega. \tag{12}$$

 $P_{\Omega}: \mathbf{R}^n \to \Omega$ is referred to as the projection operator, with the nonexpansive property given by,

$$||P_{\Omega}(x) - P_{\Omega}(y)|| \le ||x - y||, \quad \forall x, y \in \mathbf{R}^n, \tag{13}$$

for which, we can write

$$||P_{\Omega}(x) - y|| \le ||x - y||, \quad \forall y \in \Omega. \tag{14}$$

3. Modified DY Method and Global Convergence. This section deals with derivation of the scheme, its algorithm and convergence analysis. Firstly, we recall that a vital factor in global convergence of the CG method is the sufficient descent condition given by

$$g_k^T d_k \le -\Gamma \|g_k\|^2, \quad \forall k \ge 0. \tag{15}$$

In the scheme to solve (8) by Hager and Zhang [19], namely

$$\beta_k^{HZ} = \frac{g_k^T y_{k-1}}{d_{k-1}^T y_{k-1}} - 2 \frac{\|y_{k-1}\|^2}{d_{k-1}^T y_{k-1}} \frac{g_k^T d_{k-1}}{d_{k-1}^T y_{k-1}}, \quad y_{k-1} = g_k - g_{k-1}, \tag{16}$$

the sufficient descent condition (15) holds for $\Gamma = \frac{7}{8}$. In an attempt to develop a scheme with descent direction, Yuan et al. [57] gave the following modification of (16):

$$\beta_k^{GN} = \left(y_{k-1} - 2\frac{\|y_{k-1}\|^2}{T_k}d_{k-1}\right)^T \frac{g_k}{T_k},\tag{17}$$

where

$$T_{k} = \max \left\{ \nu \|d_{k-1}\| \|y_{k-1}\|, d_{k-1}^{T} y_{k-1}, \frac{2\|y_{k-1}\|^{2} d_{k-1}^{T} g_{k}}{y_{k-1}^{T} g_{k}} \right\},$$
(18)

with $\nu \in (0,1)$. Clearly, if $T_k = d_{k-1}^T y_{k-1}$, then (17) reduces to (16). Inspired by [19], Yu et al. [55] proposed a descent modification of the classical DY method with search direction defined by

$$d_k^{DDY} = -g_k + \beta_k^{DDY} d_{k-1}, (19)$$

where

$$\beta_k^{DDY} = \beta_k^{DY} - \frac{C||g_k||^2}{(d_{k-1}^T y_{k-1})^2} d_{k-1}^T g_k, \tag{20}$$

with the update parameter β_k^{DY} given by

$$\beta_k^{DY} = \frac{g_k^T g_k}{d_{k-1}^T y_{k-1}}. (21)$$

The scheme satisfies condition (15) for $\Gamma = 1 - \frac{1}{4C}$, where $C > \frac{1}{4}$. Recently, motivated by (20), and its improvement, Xue et al. [54] presented a modified DY method, which has application in image denoising. Search direction of the scheme is given by

$$\beta_k^{SDDY} = \beta_k^{SDY} - \min \left\{ \beta_k^{SDY}, \frac{C \|g_k\|^2}{\delta_k (d_{k-1}^T y_{k-1})^2} d_{k-1}^T g_k \right\}, \tag{22}$$

where

$$\beta_k^{SDY} = \frac{\beta_k^{DY}}{\delta_k}, \quad \delta_k = \frac{s_{k-1}^T y_{k-1}}{\|s_{k-1}\|^2}.$$
 (23)

By exploiting the descent PRP method by Cheng [8], the authors in [54] defined search direction of the scheme as

$$d_{k} = \begin{cases} -g_{k} + \beta_{k}^{SDDY} \left(I - \frac{g_{k}g_{k}^{T}}{g_{k}^{T}g_{k}} \right) d_{k-1} & k \ge 1; \\ -g_{k}, & \text{if } k = 0. \end{cases}$$
 (24)

Careful observation reveals that (24) satisfies the condition (15). Here, with motivation from the work of Xue et al. [54] as described by (22) and the approach employed by Yuan et al. [57] as presented in (17) and (18), we propose the following modified DY search direction

$$d_k = \begin{cases} -F_k + \beta_k^{MDDYM} s_{k-1}, & k \ge 1; \\ -F_k, & \text{if } k = 0, \end{cases}$$
 (25)

with

$$\beta_k^{MDDYM} = \beta_k^{MDY} - \min\left\{\beta_k^{MDY}, \frac{\mu \|F_k\|^2}{\Phi_k^2} F_k^T s_{k-1}\right\}, \quad \beta_k^{MDY} = \frac{F_k^T F_k}{\Phi_k}, \quad (26)$$

and

$$\Phi_k = \max \left\{ \theta \|F_k\| \|s_{k-1}\|, s_{k-1}^T \bar{y}_{k-1}, \frac{\mu F_k^T F_k}{F_k^T y_{k-1}} \right\}, \quad \theta \in (0, 1), \quad \mu \ge \frac{1}{4}.$$
 (27)

Here, $y_{k-1} = F_k - F_{k-1}$, and \bar{y}_{k-1} is defined as

$$\bar{y}_{k-1} = y_{k-1} + \bar{m} \frac{\|F_k\|}{\|s_{k-1}\|} s_{k-1}, \quad \bar{m} > 0.$$
 (28)

From (28) and the monotonicity of F we obtain

$$s_{k-1}^T \bar{y}_{k-1} = s_{k-1}^T y_{k-1} + \bar{m} \|F_k\| \|s_{k-1}\| \ge \bar{m} \|F_k\| \|s_{k-1}\| > 0.$$
 (29)

Considering (3), it is easy to deduce that

$$\Phi_k = \max \left\{ \theta \| F_k \| \| d_{k-1} \|, s_{k-1}^T \bar{y}_{k-1}, \frac{\mu F_k^T F_k}{F_k^T y_{k-1}} \right\} \ge s_{k-1}^T \bar{y}_{k-1} > 0, \tag{30}$$

and

$$\beta_k^{MDDYM} \ge 0, \quad \forall k.$$

Next, we describe algorithm of the proposed method as follows:

Algorithm 1 Modified Descent Dai-Yuan Method (MDDYM)

Step 0: Choose a tolerance $\epsilon > 0$, initial guess $x_0 \in \Omega$, parameters $\beta \in (0,1)$,

 $\rho \in (0,1), \, \eta > 0, \, \theta \in (0,1), \, \mu \geq \frac{1}{4} \text{ and } \bar{m} > 0. \text{ Set } k = 0 \text{ and } d_0 = -F_0.$

Step 1: Obtain $F(x_k)$. If $||F(x_k)|| \le \epsilon$, stop. If not, proceed to **Step** 2.

Step 2: Find $\bar{z}_k = x_k + \alpha_k d_k$, where $\alpha_k = \max\{\beta \rho^{\iota} : \iota = 0, 1, 2, ...\}$, for which

$$-F(x_k + \alpha_k d_k)^T d_k \ge \eta \alpha_k \|F(x_k + \alpha_k d_k)\| \|d_k\|^2, \tag{31}$$

holds.

Step 3: If $\bar{z_k} \in \Omega$ and $||F(\bar{z_k})|| \le \epsilon$, stop, else determine

$$x_{k+1} = P_{\Omega} \left[x_k - \bar{\mu}_k F(\bar{z_k}) \right],$$

where

$$\bar{\mu}_k = \frac{(\bar{z}_k)^T (x_k - \bar{z}_k)}{\|F(\bar{z}_k)\|^2}.$$

Step 4: Generate direction d_{k+1} by (25),(26),(27).

Step 5: Set k = k + 1. Goto Step 1.

Global convergence of the MDDYM scheme is discussed in the remainder of this section.

Lemma 3.1. Consider the sequence $\{d_k\}$ generated by (25),(26),(27). Then $\forall k \geq 0$, the following holds:

$$F_k^T d_k \le -\psi \|F_k\|^2 \quad \psi > 0, \quad \forall k \in \mathbf{N}.$$
(32)

Proof. Clearly by (25), if k = 0, then $F_0^T d_0 = -\|F_0\|^2$. For $k \ge 1$, using (25), (26), and (27), we have

$$F_k^T d_k = -\|F_k\|^2 + \beta_k^{MDDYM} s_{k-1}^T F_k$$

$$= -\|F_k\|^2 + \left(\beta_k^{MDY} - \min\left\{\beta_k^{MDY}, \frac{\mu \|F_k\|^2}{\Phi_k^2} s_{k-1}^T F_k\right\}\right) s_{k-1}^T F_k$$

$$= -\|F_k\|^2 + \left(\frac{\|F_k\|^2}{\Phi_k} - \min\left\{\frac{\|F_k\|^2}{\Phi_k}, \frac{\mu \|F_k\|^2}{\Phi_k^2} s_{k-1}^T F_k\right\}\right) s_{k-1}^T F_k$$
(33)

Now, two cases need to be analyzed.

1. If
$$\beta_k^{MDY} < \frac{\mu \|F_k\|^2}{\Phi_k^2} s_{k-1}^T F_k$$
, then by (33), $F_k^T d_k = -\|F_k\|^2$.

2. If $\beta_k^{MDY} \ge \frac{\mu \|F_k\|^2}{\Phi_k^2} s_{k-1}^T F_k$, then (33) can be expressed as

$$F_{k}^{T}d_{k} = -\|F_{k}\|^{2} + \frac{\|F_{k}\|^{2}}{\Phi_{k}}s_{k-1}^{T}F_{k} - \frac{\mu\|F_{k}\|^{2}}{\Phi_{k}^{2}}\left(s_{k-1}^{T}F_{k}\right)^{2}$$

$$= \frac{\|F_{k}\|^{2}\Phi_{k}s_{k-1}^{T}F_{k} - \Phi_{k}^{2}\|F_{k}\|^{2} - \mu\|F_{k}\|^{2}\left(s_{k-1}^{T}F_{k}\right)^{2}}{\Phi_{k}^{2}}$$

$$= \frac{\frac{\Phi_{k}F_{k}^{T}}{\sqrt{2\mu}}\left(s_{k-1}^{T}F_{k}\right)F_{k}\sqrt{2\mu} - \Phi_{k}^{2}\|F_{k}\|^{2} - \mu\|F_{k}\|^{2}\left(s_{k-1}^{T}F_{k}\right)^{2}}{\Phi_{k}^{2}}$$

$$\leq \frac{\frac{1}{2}\left(\frac{\Phi_{k}^{2}\|F_{k}\|^{2}}{2\mu} + 2\mu\|F_{k}\|^{2}\left(s_{k-1}^{T}F_{k}\right)^{2}\right) - \Phi_{k}^{2}\|F_{k}\|^{2} - \mu\|F_{k}\|^{2}\left(s_{k-1}^{T}F_{k}\right)^{2}}{\Phi_{k}^{2}}$$

$$= \frac{\Phi_{k}^{2}\|F_{k}\|^{2}}{\Phi_{k}^{2}} - \Phi_{k}^{2}\|F_{k}\|^{2}}{\Phi_{k}^{2}}$$

$$= -\left(1 - \frac{1}{4\mu}\right)\|F_{k}\|^{2}.$$
(34)

The fourth inequality resulted from the relation $a^Tb = \frac{1}{2}(\|a\|^2 + \|b\|^2)$, where

$$a = \frac{\Phi_k}{\sqrt{2\mu}} F_k, \quad b = s_{k-1}^T F_k \sqrt{2\mu} F_k.$$

Setting $\psi = \min\{1, 1 - \frac{1}{4\mu}\}\$, we obtain the result.

In the following Lemma, it is indicated that when solution of (1) is not attained, there exists always a step-size α_k such that the line search condition (31) is satisfied.

Lemma 3.2. Let Assumptions (i) and (ii) hold. Then a step-size α_k exists satisfying the line search (31) $\forall k \geq 0$.

Proof. For the sake of contradiction, suppose there exists $k_0 \ge 0$ such that for any non-negative integer i (31) does not hold at the k_0^{th} iterate, i.e,

$$-F(x_{k_0} + \beta \rho^i d_{k_0})^T d_{k_0} < \eta \beta \rho^i ||F(x_{k_0} + \beta \rho^i d_{k_0})|| ||d_{k_0}||^2.$$
(35)

Applying continuity of F, (31), with the fact that $\rho \in (0,1)$, allowing i to grow to infinity, i.e $i \to \infty$, we obtain

$$-F(x_{k_0})^T d_{k_0} \le 0. (36)$$

From (32), we have

$$-F(x_{k_0})^T d_{k_0} = ||F(x_{k_0})||^2 > 0, (37)$$

which clearly contradicts (36).

Lemma 3.3. Let Assumptions (i), and (ii) hold and the sequences $\{x_k\}$ and $\{\bar{z}_k\}$ be generated by **Algorithm** 1. Then a positive constant α_k exists satisfying

$$\alpha_k \ge \min \left\{ \beta, \frac{\rho \psi \|F_k\|^2}{(L + \eta \|F(x_k + \bar{\alpha}_k d_k)\|) \|d_k\|^2} \right\}.$$
 (38)

Proof. By (31), if $\alpha_k = \beta$, then (38) holds. On the other hand, if $\alpha_k \neq \beta$ then $\bar{\alpha}_k = \alpha_k \rho^{-1}$ will not satisfy (38), which implies that,

$$-F(x_k + \bar{\alpha}_k d_k)^T d_k < \eta \bar{\alpha}_k \|F(x_k + \bar{\alpha}_k d_k)\| \|d_k\|^2,$$
(39)

By Assumption (ii) and (32), we can write

$$\psi \|F_k\|^2 = -F_k^T d_k$$

$$= (F(x_k + \bar{\alpha}_k d_k - F_k)^T d_k - F(x_k + \bar{\alpha}_k d_k)^T d_k$$

$$< \alpha_k \rho^{-1} (L + \eta \|F(x_k + \bar{\alpha}_k d_k)\|) \|d_k\|^2.$$
(40)

So,

$$\alpha_k \ge \frac{\rho \psi \|F_k\|^2}{(L + \eta \|F(x_k + \bar{\alpha}_k d_k)\|) \|d_k\|^2}.$$
(41)

Hence (38) holds, which completes the proof.

Lemma 3.4. Let $\{x_k\}$ be the sequence generated by **Algorithm** 1, then

$$\lim_{k \to \infty} \alpha_k \|d_k\| = 0. \tag{42}$$

Proof. First, boundedness of the sequences $\{x_k\}$ and $\{\bar{z}_k\}$ needs to be shown. Given a solution \bar{x} of (1), applying monotonicity of F we can write

$$F(\bar{z}_k)^T(x_k - \bar{x}) \ge F(\bar{z}_k)^T(x_k - \bar{z}_k).$$
 (43)

From the line search condition (31) and (7), we obtain

$$F(\bar{z}_k)^T(x_k - \bar{z}_k) \ge \eta \alpha_k^2 ||d_k||^2 > 0.$$
(44)

Also, by using (13) and (3) we get

$$||x_{k+1} - \bar{x}||^2 = ||P_{\Omega}(x_k - \bar{\mu}_k F(\bar{z}_k)) - (\bar{x})||^2$$

$$\leq ||x_k - \bar{\mu}_k F(\bar{z}_k) - \bar{x}||^2$$

$$= ||x_k - \bar{x}||^2 - 2\bar{\mu}_k F(\bar{z}_k)^T (x_k - \bar{x}) + \bar{\mu}_k^2 ||F(\bar{z}_k)||^2.$$
(45)

Since F is monotone, we can write

$$F(\bar{z}_k)^T(x_k - \bar{x}) = F(\bar{z}_k)^T(x_k - \bar{z}_k) + F(\bar{z}_k)^T(\bar{z}_k - \bar{x})$$

$$\geq F(\bar{z}_k)^T(x_k - \bar{z}_k) + F(\bar{x})^T(\bar{z}_k - \bar{x})$$

$$= F(\bar{z}_k)^T(x_k - \bar{z}_k).$$
(46)

From (44), (45), (46), and Cauchy Schwartz inequality, we have

$$||x_{k+1} - \bar{x}||^{2} \leq ||x_{k} - \bar{x}||^{2} - 2\bar{\mu}_{k}F(\bar{z}_{k})^{T}(x_{k} - \bar{z}_{k}) + \bar{\mu}_{k}^{2}||F(\bar{z}_{k})||^{2}$$

$$= ||x_{k} - \bar{x}||^{2} - \frac{F(\bar{z}_{k})^{T}(x_{k} - \bar{z}_{k})}{||F(\bar{z}_{k})||^{2}}$$

$$\leq ||x_{k} - \bar{x}||^{2},$$
(47)

for which we obtain

$$||x_{k+1} - \bar{x}|| \le ||x_k - \bar{x}||, \quad \forall k \ge 0.$$
 (48)

So, $\{\|x_k - \bar{x}\|\}$ clearly is a sequence that is decreasing, and therefore, bounded. Furthermore, utilizing Assumption (ii), (6) and (48) we have

$$||F(x_{k+1})|| = ||F(x_{k+1}) - F(\bar{x})|| \le L||x_{k+1} - \bar{x}|| \le L||x_0 - \bar{x}||. \tag{49}$$

Setting $L||x_0 - \bar{x}|| = \pi$, the boundedness of $\{F_k\}$ is established.

By using (7), (44), Cauchy inequality, and the fact that F is monotone, we have

$$\eta \|x_k - \bar{z}_k\| = \frac{\eta \|\alpha_k d_k\|^2}{\|x_k - \bar{z}_k\|} \le \frac{F(\bar{z}_k)^T (x_k - \bar{z}_k)}{\|x_k - \bar{z}_k\|} \le \frac{F_k^T (x_k - \bar{z}_k)}{\|x_k - \bar{z}_k\|} \le \|F_k\|.$$
 (50)

So, using the boundedness of $\{x_k\}$, $\{F_k\}$, and utilizing (50), we deduce that $\{\bar{z}_k\}$ is bounded.

Now, boundedness of $\{\bar{z}_k\}$ implies that $\{\|\bar{z}_k - \bar{x}\|\}$ is bounded, namely, a constant $\bar{\varphi} > 0$ exists for any $\bar{x} \in \Omega$, such that

$$\|\bar{z}_k - \bar{x}\| \le \bar{\varphi}.\tag{51}$$

From (6) and (51), we have

$$||F(\bar{z}_k)|| = ||F(\bar{z}_k) - F(\bar{x})|| \le L||\bar{z}_k - \bar{x}|| \le L\bar{\varphi}.$$
 (52)

Now, from (42), we deduce that there exists a constant $\bar{\kappa} > 0$ satisfying $t_k ||d_k|| \leq \bar{\kappa}$. So, using $\bar{z}_k = x_k + \alpha_k \rho^{-1} d_k$ and employing similar argument as above, we can write

$$||F(\bar{z}_k)|| = ||F(\bar{z}_k) - F(\bar{x})|| \le L||\bar{z}_k - \bar{x}|| \le L(||x_0 - \bar{x}|| + \rho^{-1}\bar{\kappa}) = \zeta.$$
 (53)

Also, from (47), (50), (52), we obtain

$$\frac{\eta^2}{(L\bar{\varphi})^2} \sum_{k=0}^{\infty} \|x_k - \bar{z}_k\|^4 \le \sum_{k=0}^{\infty} \frac{F(\bar{z}_k)^T (x - \bar{z}_k)^2}{\|F(\bar{z}_k)\|^2} \le \sum_{k=0}^{\infty} (\|x_k - \bar{x}\|^2 - \|x_{k+1} - \bar{x}\|^2) < \infty.$$
(54)

Hence, taking limit as k approaches infinity of the convergent series in (54) and applying definition of \bar{z}_k , we obtain

$$\lim_{k \to \infty} \|x_k - \bar{z}_k\| = \lim_{k \to \infty} \alpha_k \|d_k\| = 0.$$
 (55)

Lemma 3.5. Let Assumptions (i) and (ii) hold and let $\{d_k\}$ be the sequence of directions generated by **Algorithm** 1. Then $\{d_k\}$ is bounded, namely, a constant $\vartheta > 0$ exists such that

$$||d_k|| \le \vartheta, \quad \forall k \quad positive.$$
 (56)

Proof. From (42) we have that $\|\alpha_k d_k\| = \|s_k\|$ is convergent, hence bounded; i.e, there exists a constant $\bar{\varpi}$ such that

$$||s_k|| \le \bar{\varpi}, \quad \forall k. \tag{57}$$

By utilizing (25), (26), and (30), we obtain

$$||d_k|| = || - F_k + \beta_k^{MDDYM} s_{k-1}||$$

$$= || - F_k + \left(\beta_k^{MDY} - \min\left\{\beta_k^{MDY}, \frac{\mu || F_k ||^2}{\Phi_k^2} s_{k-1}^T F_k\right\}\right) s_{k-1}||.$$
(58)

Here, we consider two possibilities.

1. If $\beta_k^{MDY} < \frac{\mu \|F_k\|^2}{\Phi_k^2} s_{k-1}^T F_k$, using (49), then (58) becomes

$$||d_k|| = ||F_k|| < \pi = \vartheta_1. \tag{59}$$

2. If $\beta_k^{MDY} \ge \frac{\mu \|F_k\|^2}{\Phi_k^2} s_{k-1}^T F_k$, then from (27) we observe three cases or possibilities for Φ_k .

CASE I. $\Phi_k = \theta ||s_{k-1}|| ||F_k||$. Using (30), (49), (57), and the Cauchy Schwarz inequality, then (58) becomes

$$||d_{k}|| = ||F_{k} + \beta_{k}^{MDY} s_{k-1} - \frac{\mu ||F_{k}||^{2}}{\Phi_{k}} \frac{s_{k-1}^{T} F_{k}}{\Phi_{k}} s_{k-1}||$$

$$= ||F_{k} + \frac{||F_{k}||^{2}}{\Phi_{k}} s_{k-1} - \frac{\mu ||F_{k}||^{2}}{\Phi_{k}} \frac{s_{k-1}^{T} F_{k}}{\Phi_{k}} s_{k-1}||$$

$$\leq ||F_{k}|| + \frac{||F_{k}||^{2} ||s_{k-1}||}{\theta ||s_{k-1}|| ||F_{k}||} + \frac{\mu ||F_{k}||^{3} ||s_{k-1}||^{2}}{\theta^{2} ||s_{k-1}||^{2} ||F_{k}||^{2}}$$

$$= ||F_{k}|| + \frac{||F_{k}||}{\theta} + \frac{\mu ||F_{k}||}{\theta^{2}}$$

$$\leq \pi + \frac{\pi}{\theta} + \frac{\mu \pi}{\theta^{2}}$$

$$= \left(1 + \frac{1}{\theta} + \frac{\mu}{\theta^{2}}\right) \pi = \vartheta_{2}.$$

$$(60)$$

CASE II. $\Phi_k = s_{k-1}^T \bar{y}_{k-1}$. Using (3), (49), (57), the Cauchy Schwarz inequality, then (58) becomes

$$||d_{k}|| = ||F_{k} + \beta_{k}^{MDY} s_{k-1} - \frac{\mu ||F_{k}||^{2}}{\Phi_{k}} \frac{s_{k-1}^{T} F_{k}}{\Phi_{k}} s_{k-1}||$$

$$= ||F_{k} + \frac{||F_{k}||^{2}}{\Phi_{k}} s_{k-1} - \frac{\mu ||F_{k}||^{2}}{\Phi_{k}} \frac{s_{k-1}^{T} F_{k}}{\Phi_{k}} s_{k-1}||$$

$$\leq ||F_{k}|| + \frac{||F_{k}||^{2} ||s_{k-1}||}{s_{k-1}^{T} \bar{y}_{k-1}} + \frac{\mu ||F_{k}||^{3} ||s_{k-1}||^{2}}{(s_{k-1}^{T} \bar{y}_{k-1})^{2}}$$

$$\leq ||F_{k}|| + \frac{||F_{k}||^{2} ||s_{k-1}||}{\bar{m} ||F_{k}|| ||s_{k-1}||} + \frac{\mu ||F_{k}||^{3} ||s_{k-1}||^{2}}{\bar{m}^{2} ||F_{k}||^{2} ||s_{k-1}||^{2}}$$

$$= ||F_{k}|| + \frac{||F_{k}||}{\bar{m}} + \frac{\mu ||F_{k}||}{\bar{m}^{2}}$$

$$= \pi + \frac{\pi}{\bar{m}} + \frac{\mu \pi}{\bar{m}^{2}}$$

$$= \left(1 + \frac{1}{\bar{m}} + \frac{\mu}{\bar{m}^{2}}\right) \pi = \vartheta_{3}.$$

$$(61)$$

CASE III. $\Phi_k = \frac{\mu ||F_k||^2}{F_k^T y_{k-1}}$. Using (30), (49), (57), the Cauchy Schwarz inequality, then (58) becomes

$$||d_{k}|| = ||F_{k} + \beta_{k}^{MDY} s_{k-1} - \frac{\mu ||F_{k}||^{2}}{\Phi_{k}} \frac{s_{k-1}^{T} F_{k}}{\Phi_{k}} s_{k-1}||$$

$$= ||F_{k} + \frac{||F_{k}||^{2}}{\Phi_{k}} s_{k-1} - \frac{\mu ||F_{k}||^{2}}{\Phi_{k}} \frac{s_{k-1}^{T} F_{k}}{\Phi_{k}} s_{k-1}||$$

$$\leq ||F_{k}|| + \frac{||F_{k}||^{3} ||s_{k-1}|| ||y_{k-1}||}{\mu ||F_{k}||^{2}} + \frac{\mu ||F_{k}||^{5} ||s_{k-1}||^{2} ||y_{k-1}||^{2}}{\mu^{2} ||F_{k}||^{4}}$$

$$= ||F_{k}|| + \frac{||F_{k}|| ||s_{k-1}|| ||y_{k-1}||}{\mu} + \frac{||F_{k}|| ||s_{k-1}||^{2} ||y_{k-1}||^{2}}{\mu}$$

$$\leq ||F_{k}|| + \frac{L||F_{k}|| ||s_{k-1}||^{2}}{\mu} + \frac{L^{2} ||F_{k}|| ||s_{k-1}||^{4}}{\mu}$$

$$(62)$$

$$\leq \pi + \frac{L\pi\bar{\varpi}^2}{\mu} + \frac{L^2\pi\bar{\varpi}^4}{\mu}$$

$$= \left(1 + \frac{L\bar{\varpi}^2}{\mu} + \frac{L^2\bar{\varpi}^4}{\mu}\right)\pi = \vartheta_4.$$

Setting $\theta = \max\{\theta_1, \theta_2, \theta_3, \theta_4\}$, the proof is completed.

The following theorem establishes global convergence of **Algorithm** 1.

Theorem 3.6. Let Assumptions (i) and (ii) hold. Consider the sequences $\{x_k\}$ and $\{\bar{z}_k\}$ generated by **Algorithm** 1. Then

$$\liminf_{k \to \infty} ||F_k|| = 0.$$
(63)

Proof. We proceed by contradiction. Let the conclusion (63) be false, then there exists $\epsilon_1 > 0$ satisfying

$$||F_k|| \ge \epsilon_1, \quad \forall k \ge 0. \tag{64}$$

From (32) and the Cauchy-Schwarz inequality, we have

$$\psi \|F_k\|^2 \le -F_k^T d_k \le \|F(x_k)\| \|d_k\|, \tag{65}$$

for which, using (64) we obtain,

$$||d_k|| \ge \psi \epsilon_1. \tag{66}$$

Applying (38), (53), (56), (64) and (66) we get

$$\alpha_{k} \|d_{k}\| \geq \min \left\{ \beta, \frac{\rho \psi \|F_{k}\|^{2}}{(L + \eta \|F(x_{k} + \bar{\alpha}_{k} d_{k})\|) \|d_{k}\|^{2}} \right\} \|d_{k}\|$$

$$\geq \min \left\{ \beta \psi \epsilon_{1}, \frac{\rho \psi \epsilon_{1}^{2}}{(L + \eta \zeta) \vartheta} \right\} > 0.$$

$$(67)$$

Taking limits of both sides of the last inequality yields a contradiction with (42), and we conclude that $\liminf_{k\to\infty} ||F_k|| = 0$.

4. Numerical Experiments and Discussions. To investigate effectiveness of the MDDYM scheme, its performance is compared with the three recent efficient methods presented in [28, 3, 2]. For simplicity, the three methods are labeled as PDYM, MDY, and MFR and the line search parameters are set as the authors applied them in each of the papers. On the other hand, the line search parameters for the MDDYM method was set as $\rho = 0.45$, $\beta = 0.95$, $\eta = 10^{-4}$. In addition, we set $\mu = 0.26$, $\theta = 0.1$. Codes for the algorithms were written using Matlab R2015a and run on a PC with configuration (2.30GHZ CPU, 4GB RAM). In the experiments, all four algorithms are set to terminate if $||F(x_k)|| \le 10^{-8}$ or iterations exceed 1000.

Furthermore, numerical results of the experiments conducted are reported in Tables 1-8, where "Nvars" denote dimensions, "IGuess" and "Niter" represent the initial starting point and number of iterations respectively. Also, "Nfev" and "Cpt" indicate total number of function evaluations and processing time recorded. In addition, "Norm" stands for residual at stopping point, while the symbol " **" indicates failure to obtain a solution after 1000 iterations. Moreover, to support the results of Tables 1-8, performance profile of Dolan and Moré [14] was utilized as an evaluation tool to approximately assess the performances of the four schemes.

The following test problems were used to test the four methods:

Problem 4.1. Non-smooth function [10].

$$F_i(x) = 2x_i - \sin|x_i|, \quad i = 1, 2, \dots, n,$$
where $\Omega = \left\{ x \in \mathbf{R}^n | \sum_{i=1}^n x_i \le n, \quad x_i \ge 0, \quad i = 1, 2, \dots, n \right\}.$

Problem 4.2. [10]

 $F_i(x) = \min(\min(|x_i|, x_i^2), \max(|x_i|, x_i^3)), \quad i = 1, 2 \dots, n,$ where $\Omega = \mathbf{R}_+^n$.

Problem 4.3. Trigexp function [37].

$$F_1(x) = 3x_1^3 + 2x_2 - 5 + \sin(x_1 - x_2)\sin(x_1 + x_2),$$

$$F_i(x) = -x_{i-1}e^{(x_{i-1} - x_i)} + x_i(4 + 3x_i^2) + 2x_{i+1} + \sin(x_i - x_{i+1})\sin(x_i + x_{i+1}) - 8,$$

$$F_n(x) = -x_{n-1}e^{(x_{n-1} - x_n)} + 4x_n - 3, \quad i = 2, 3, \dots, n-1,$$
where $\Omega = \mathbf{R}_+^n$.

Problem 4.4. Strictly convex function [45].

$$F_i(x) = e^{x_i} - 1, \quad i = 1, 2, \dots, n,$$

where $\Omega = \mathbf{R}^n_{\perp}$.

Problem 4.5. Tridiagonal Exponential Function [30].

$$F_{1}(x) = x_{1} - e^{\left(\cos\frac{x_{1} + x_{2}}{n+1}\right)},$$

$$F_{i}(x) = x_{i} - e^{\left(\cos\frac{x_{i-1} + x_{i} + x_{i+1}}{n+1}\right)}, \quad i = 2, 3, \dots, n-1,$$

$$F_{n}(x) = x_{n} - e^{\left(\cos\frac{x_{n-1} + x_{n}}{n+1}\right)}.$$
where $\Omega = \mathbf{R}_{+}^{n}$.

Problem 4.6. Non-smooth function [53]

$$F_{i}(x) = x_{i} - \sin|x_{i} - 1|, \quad i = 1, 2, \dots, n,$$
where $\Omega = \left\{ x \in \mathbf{R}^{n} | \sum_{i=1}^{n} x_{i} \le n, \quad x_{i} \ge -1, \quad i = 1, 2, \dots, n \right\}.$

Problem 4.7. Non-smooth function [53]

$$F_i(x) = x_i - 2\sin|x_i - 1|, \quad i = 1, 2, \dots, n,$$

where $\Omega = \mathbf{R}^n_{\perp}$.

Problem 4.8. The problem is obtained from [37].

$$F_1(x) = -2x_1 - x_2 + e^{x_1} - 1,$$

$$F_i(x) = -x_{i-1} + 2x_i - x_{i+1} + e^{x_i} - 1, \quad i = 2, 3, \dots, n-1,$$

$$F_n(x) = 2x_n - x_{n-1} + e^{x_n} - 1.$$
where $\Omega = \mathbf{R}_+^n$.

For each of the above test problems, 24 numerical experiments were performed with dimensions 5,000, 10,000, 50,000, and the following initial starting points:

$$\begin{array}{l} x1=(\frac{1}{100},\frac{1}{100},...,\frac{1}{100})^T, x2=(\frac{2}{100},\frac{2}{100},...,\frac{2}{100})^T, x3=(\frac{1}{10},\frac{1}{10},...,\frac{1}{10})^T,\\ x4=(0.75,0.75,...,0.75)^T, x5=(1.25,1.25,...,1.25)^T, x6=(1.75,1.75,...,1.75)^T,\\ x7=(2.25,2.25,...,2.25)^T, x8=(2.5,2.5,...,2.5)^T. \text{ In all, a total of 192 cases were considered for the experiments.} \end{array}$$

Table 1. Test results of the four methods for problems 4.1

	Norm	0.0000E + 00	0E+00	0E+00	0E+00	0E+00).0000E+00	0.0000E + 00	0E+00	0E+00	0E+00	0E+00	0E+00	0E+00	0.0000E + 00	0E+00	0E+00	0E+00	0E+00	0E+00	0.0000E + 00	0.0000E+00	0.0000E + 00).0000E+00	
	No		9 0.0000E+0	0.0000E+	1 0.0000E+(3 0.0000E+C	_	_	7 0.0000E + 0	1 0.0000E+0	3 0.0000E+(0.0000E+(1 0.0000E+	7 0.0000E+C	_	1 0.0000E+0	1 0.0000E+0	5 0.0000E+	3 0.0000E+	3 0.0000E+C	_	_	_		
MFR	Cpt	0.36405	0.12459	0.17739	0.16181	0.18173	0.17659	0.16383	0.18567	0.22574	0.25446	0.25620	0.26421	0.31887	0.31019	0.29184	0.29874	1.02635	0.99223	1.16776	1.26896	1.33839	1.28348	1.33907	
	Nfev	106	106	122	138	146	141	142	142	106	106	122	138	146	141	142	142	106	106	122	138	146	141	142	
	Niter	26	26	30	34	36	35	35	35	26	26	30	34	36	35	35	35	26	26	30	34	36	35	35	
	Norm	2.4989E-09	2.2971E-09	5.7248E-09	2.5758E-09	2.6441E-09	5.1003E-09	5.0139E-09	4.5835E-09	8.5342E-09	3.1978E-09	3.7136E-09	4.4531E-09	5.1673E-09	3.0303E-09	3.0885E-09	2.9293E-09	3.4966E-09	5.2020E-09	4.4055E-09	2.3366E-09	2.9724E-09	3.2582E-09	3.3731E-09	
MDY	Cpt	0.13273	0.05936	0.07119	0.05971	0.05510	0.06630	0.09094	0.07043	0.05868	0.13233	0.08322	0.10267	0.11103	0.12905	0.12267	0.14901	0.31329	0.32265	0.37285	0.43939	0.53469	0.59269	0.60155	
	Nfev	25	28	28	34	37	36	39	41	23	28	28	33	37	39	43	41	28	28	31	42	52	55	61	
	Niter	11	12	12	14	15	15	15	15	10	12	12	14	15	16	16	15	12	12	13	16	18	19	19	
	Norm	4.1222E-09	8.2456E-09	4.5974E-09	4.6462E-09	8.5913E-09	3.4438E-09	4.3326E-09	5.2005E-09	5.8297E-09	3.8700E-09	6.5017E-09	6.5707E-09	4.0482E-09	5.5936E-09	6.1272E-09	7.3547E-09	4.3261E-09	8.6535E-09	4.8342E-09	4.8925E-09	5.3731E-09	7.2056E-09	4.9765E-09	
PDYM	Cpt	0.30469	0.05510	0.06173	0.06536	0.07339	0.07166	0.08474	0.07816	0.11302	0.10115	0.10617	0.12137	0.12382	0.15292	0.13180	0.12698	0.43468	0.39080	0.47699	0.48957	0.54401	0.54909	0.58040	
PDYM	Nfev	35	35	39	43	43	45	46	46	35	37	39	43	45	44	46	47	37	37	41	45	53	54	54	
	Niter	16	16	18	20	20	21	21	21	16	17	18	20	21	20	21	21	17	17	19	21	23	23	23	
	Norm	2.0475E-09	4.0428E-09	8.4985E-09	1.8997E-09	3.9754E-10	8.4879E-09	5.4026E-10	9.5806E-09	2.8956E-09	5.7173E-09	5.9571E-10	2.6866E-09	5.6221E-10	6.1811E-09	7.6404E- 10	3.5449E-10	6.4748E-09	4.9344E-10	1.3320E-09	6.0075E-09	1.2571E-09	7.5655E-09	1.7085E-09	
MDDYM	$^{ m Cpt}$	0.27234	0.07889	0.01436	0.02079	0.03935	0.08341	0.05233	0.04351	0.04366	0.04652	0.02748	0.03605	0.09120	0.14197	0.08928	0.07167	0.18477	0.18950	0.09771	0.13988	0.29815	0.55331	0.32319	
Z	Nfev	12	12	ಬ	6	23	45	25	21	12	12	9	6	23	48	25	22	12	13	9	6	23	51	22	
	Niter	9	9	က	25	11	20	12	10	9	9	4	r.	11	21	12	11	9	7	4	ಬ	11	22	12	
IGuess		x1	x	x3	x 4	x5	9x	×7	8x	x1	x	x3	x 4	x5	9x	×7	8×	x1	x	x3	x 4	x5	9x	×7	
Nvars IGness		2000	2000	2000	2000	2000	2000	2000	2000	10000	10000	10000	10000	10000	10000	10000	10000	20000	50000	20000	20000	20000	20000	20000	

Table 2. Test results of the four methods for problems 4.2 $\,$

N_{vars}	$_{\rm IGness}$		4	MDDYM				PDYM				MDY				MFR	
		Niter	Nfev	Cpt	Norm	Niter	Nfev	$^{ m Cpt}$	Norm	Niter	Nfev	$^{ m Cpt}$	Norm	Niter	Nev	$^{ m Cpt}$	Norm
2000	x1	-	2	0.01078	0.00000E+00	1	2	0.01097	0.0000E + 00	1	2	0.01014	0.0000E + 00	1	2	0.01003	0.0000E+00
2000	x2	П	2	0.02040	0.00000E+00	_	2	0.00944	0.0000E+00	П	2	0.01005	0.0000E+00	1	2	0.02019	0.00000E+00
2000	x3	_	2	0.01013	0.00000E+00		2	0.00965	0.0000E+00		2	0.00947	0.00000E + 00		2	0.01038	0.00000E+00
2000	x4	П	2	0.00951	0.00000E+00		2	0.00966	0.0000E+00		2	0.00928	0.00000E+00	*	*	*	*
2000	x5	_	2	0.01045			2	0.00748	0.0000E+00		2	0.00649	0.00000E + 00		2	0.00520	0.00000E+00
2000	9x	1	2	0.00940		1	2	0.00732	0.00000E+00	1	2	0.00662	0.00000E + 00	1	2	0.00842	0.00000E+00
2000	7×	_	2	0.00979			2	0.00660	0.0000E+00	_	2	0.00667	0.0000E + 00	_	2	0.00757	0.00000E+00
2000	8x	_	2	0.01111			2	0.00795	0.0000E+00	_	2	0.00687	0.0000E + 00	_	2	0.00779	0.00000E+00
10000	x1	П	2	0.01478		1	2	0.01622	0.0000E+00	1	2	0.01650	0.0000E+00	1	2	0.01449	0.00000E+00
10000	x2	П	2	0.01571	0.00000E+00	1	2	0.01633	0.0000E+00	1	2	0.01488	0.0000E+00	1	2	0.01594	0.00000E+00
10000	x3	_	2	0.01490			2	0.02384	0.0000E+00	_	2	0.03357	0.0000E + 00	_	2	0.01579	0.00000E+00
10000	x 4	_	2	0.01739			2	0.01549	0.0000E+00	_	33	0.02037	0.0000E + 00	*	*	*	*
10000	x5	_	2	0.01636			2	0.01000	0.0000E+00	_	2	0.01013	0.0000E + 00	_	2	0.00759	0.00000E+00
10000	9x	П	2	0.01637		-	2	0.00939	0.0000E+00	-	2	0.01043	0.0000E + 00	1	2	0.01118	0.00000E+00
10000	7×	П	2	0.01602		-	2	0.00893	0.0000E+00	-	2	0.00994	0.0000E + 00	1	2	0.01012	0.00000E+00
10000	8x	П	2	0.01539		-	2	0.01026	0.0000E+00	-	2	0.01045	0.0000E + 00	1	2	0.01100	0.00000E+00
20000	x1	П	2	0.05796		-	2	0.06032	0.0000E+00	-	2	0.06280	0.0000E + 00	1	2	0.05899	0.00000E+00
20000	x2	П	2	0.06203		-	2	0.05772	0.0000E+00	-	2	0.06076	0.0000E+00	1	2	0.05922	0.00000E+00
20000	x3	П	2	0.05224		-	2	0.05857	0.0000E+00	-	2	0.06821	0.0000E+00	1	2	0.06629	0.00000E+00
20000	x 4	П	2	0.06079	0.00000E+00	-	33	0.07697	0.0000E+00	-	IJ	0.11996	0.0000E+00	*	*	*	*
20000	x5	П	2	0.06053	0.00000E+00	-	2	0.03772	0.0000E+00	-	2	0.03890	0.0000E+00	1	2	0.03026	0.00000E+00
20000	9x	П	2	0.05694	0.00000E+00	_	2	0.03597	0.0000E+00	П	2	0.03897	0.0000E + 00	1	2	0.03691	0.00000E+00
20000	×7	П	2	0.06281			2	0.03922	0.0000E+00		2	0.03959	0.00000E+00	П	2	0.03842	0.00000E+00
20000	8×	_	2	0.05664	0.0000E+00	П	2	0.03785	0.0000E+00	_	2	0.03866	0.0000E + 00	_	2	0.04029	0.00000E + 00

Table 3. Test results of the four methods for problems 4.3

** 60		* * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
6.8393E-09	6.8393E-09 6.8393E-09 8.9989E-09 7.4457E-09 7.2966E-09	6.8393E-09 8.9989E-09 7.4457E-09 7.2966E-09 9.8882E-09 4.9792E-09	6.8393E-09 8.9989E-09 7.4457E-09 7.24199E-09 9.8882E-09 4.9792E-09 6.2921E-09 8.5659E-09	6.8393E-09 8.9989E-09 7.4457E-09 7.2266E-09 9.8882E-09 4.9792E-09 6.2921E-09 8.5659E-09 9.7816E-09	6.8393E-09 8.9989E-09 7.4457E-09 7.2266E-09 9.8882E-09 4.9792E-09 6.2921E-09 8.5659E-09 9.7816E-09	6.8393E-09 6.8393E-09 8.9989E-09 7.4457E-09 7.2966E-09 9.8882E-09 4.9792E-09 6.2921E-09 8.5559E-09 9.7816E-09 **	6.8393E-09 6.8393E-09 7.4457E-09 7.4199E-09 9.8882E-09 4.9792E-09 6.2921E-09 8.5659E-09 9.7816E-09 8.5653E-09 8.5653E-09 8.5653E-09 8.5653E-09	6.8393E-09 6.8393E-09 8.9989E-09 7.4457E-09 7.2966E-09 9.8882E-09 4.9792E-09 6.2921E-09 8.5659E-09 9.7816E-09 8.5659E-09 9.7816E-09 8.5659E-09 9.7816E-09	6.8393E-09 6.8393E-09 8.9989E-09 7.4457E-09 7.2966E-09 9.8882E-09 4.9792E-09 6.2921E-09 8.5659E-09 9.7816E-09 8.5659E-09 9.7816E-09 8.8553E-09 9.7848E-09	6.8393E-09 6.8393E-09 8.9989E-09 7.4457E-09 7.2966E-09 9.8882E-09 4.9792E-09 6.2921E-09 8.5659E-09 9.7816E-09 ** 6.7343E-09 8.8953E-09 9.6843E-09 7.2817E-09	6.8393E-09 8.93989E-09 7.4457E-09 7.4199E-09 7.2966E-09 9.8882E-09 4.9792E-09 6.2921E-09 8.5659E-09 9.7816E-09 8.5659E-09 9.7816E-09 ** 6.7343E-09 8.8953E-09 8.8953E-09 8.8953E-09 8.8953E-09 6.7344E-09	6.8393E-09 6.8393E-09 8.93989E-09 7.4457E-09 7.2966E-09 9.8882E-09 4.9792E-09 6.2921E-09 8.5559E-09 9.7816E-09 8.8559E-09 9.7816E-09 8.8553E-09 8.853E-09 8.853E-09 8.853E-09 8.853E-09 8.853E-09 8.853E-09 8.853E-09 8.853E-09 8.853E-09 8.853E-09 8.853E-09 8.853E-09 8.853E-09 8.853E-09 8.8559E	6.8393E-09 6.8393E-09 8.93989E-09 7.4477E-09 7.2966E-09 9.8882E-09 4.9792E-09 6.2921E-09 8.559E-09 9.7816E-09 8.8559E-09 9.7816E-09 8.8553E-09 9.7816E-09 8.8553E-09 3.8370E-09 3.8370E-09	6.8393E-09 6.8393E-09 7.4457E-09 7.4457E-09 7.2966E-09 9.8882E-09 4.9792E-09 6.2921E-09 8.5659E-09 9.7816E-09 8.5659E-09 9.7816E-09 8.5659E-09 7.2817E-09 3.5019E-09 3.5019E-09	6.8393E-09 6.8393E-09 7.4457E-09 7.4457E-09 7.2966E-09 9.882E-09 6.2921E-09 6.2921E-09 9.7816E-09 9.7816E-09 8.8559E-09 9.7816E-09 7.2817E-09 3.5019E-09 3.5019E-09 3.5019E-09	6.8393E-09 6.8393E-09 7.4457E-09 7.4457E-09 7.2966E-09 9.882E-09 6.2921E-09 8.5559E-09 9.7816E-09 8.5559E-09 9.7816E-09 8.5559E-09 9.7816E-09 3.8370E-09 3.8370E-09 3.8370E-09 3.6052E-09
49 253 0.65486 6	0.65486 0.42323 0.51740 0.52178 0.89216	0.05480 0.42323 0.51740 0.52178 0.89216 0.43868 0.51684	0.05480 0.42323 0.51740 0.52178 0.89216 0.43868 0.51888 0.51888	0.05480 0.42323 0.51740 0.52178 0.89216 0.51684 0.51684 0.99828 0.65028	0.05480 0.42323 0.51740 0.52178 0.89216 0.51684 0.51684 0.99828 0.65028 ***	0.05480 0.42323 0.51740 0.52178 0.89216 0.51684 0.99828 0.99828 0.90475 **	253 0.05480 147 0.42323 194 0.51740 204 0.52178 358 0.43868 212 0.51684 201 0.99828 125 0.65028 125 0.65028 126 0.90475 ** ** 165 0.78884 189 0.88094	253 0.05480 147 0.42323 194 0.51740 204 0.52178 358 0.89216 160 0.43868 212 0.51684 201 0.99828 125 0.65028 200 0.90475 *** ** 165 0.78884 189 0.88094 207 1.01358	253 0.05480 147 0.42323 194 0.51740 204 0.52178 358 0.89216 160 0.43868 212 0.51684 201 0.99828 125 0.65028 200 0.90475 ** ** 165 0.78884 189 0.88094 207 1.01358 **	253 0.05480 147 0.42323 194 0.51740 204 0.52178 358 0.89216 160 0.43868 212 0.51684 201 0.99828 125 0.65028 200 0.90475 ** ** 165 0.78884 189 0.88094 207 1.01358 ** **	253 0.05480 147 0.42323 194 0.51740 204 0.52178 358 0.89216 160 0.43868 212 0.51684 201 0.99828 125 0.65028 200 0.90475 ** ** 165 0.78884 189 0.88094 207 1.01358 ** ** 187 4.12196 181 4.31980	253 0.05480 147 0.42323 194 0.51740 204 0.52178 358 0.89216 160 0.43868 212 0.51684 201 0.99828 125 0.65028 200 0.90475 ** ** 165 0.78884 189 0.88094 207 1.01358 ** ** 187 4.12196 181 4.31980 190 4.36631	253 0.05480 147 0.42323 194 0.51740 204 0.52178 358 0.89216 160 0.43868 212 0.51684 201 0.99828 125 0.65028 200 0.90475 ** ** 165 0.78884 165 0.78884 189 0.88094 207 1.01358 ** ** 187 4.12196 181 4.31980 190 4.36631 143 3.36253	253 0.05480 147 0.42323 194 0.51740 204 0.52178 358 0.89216 160 0.43868 212 0.51684 201 0.99828 125 0.65028 200 0.90475 ** ** 165 0.78884 165 0.78884 165 0.78884 189 0.88094 207 1.01358 ** ** 187 4.12196 181 4.31980 190 4.36631 143 3.36253 132 3.13728	253 0.05480 147 0.42323 194 0.51740 204 0.52178 358 0.89216 160 0.43868 212 0.51684 201 0.99828 125 0.65028 200 0.90475 ** ** 165 0.78884 165 0.78884 189 0.88094 207 1.01358 ** ** 187 4.12196 181 4.312180 190 4.36631 143 3.36253 164 3.76700	253 0.05480 147 0.42323 194 0.51740 204 0.52178 358 0.89216 160 0.43868 212 0.51684 201 0.99828 125 0.65028 200 0.90475 ** ** 165 0.78884 189 0.88094 207 1.01358 ** ** 165 0.43884 189 0.88094 207 1.01358 33631 143 3.3623 164 3.76700 200 200 2441362
1					3. 3. 3. 3. 1. 1. 3. 3. 1. 1.	9.1694E-09 9.0123E-09 8.7841E-09 6.6311E-09 7.0629E-09 9.7994E-09 8.5691E-09 7.5636E-09 7.4878E-09	9.1694E-09 9.0123E-09 8.7841E-09 6.6311E-09 7.0629E-09 9.799E-09 8.5691E-09 7.5636E-09 7.4878E-09 7.2962E-09 8.3641E-09	9.1694E-09 9.0123E-09 8.7841E-09 6.6311E-09 7.0629E-09 9.7994E-09 8.7049E-09 7.5636E-09 7.2962E-09 8.3641E-09	9.1694E-09 9.0123E-09 8.7841E-09 6.6311E-09 7.0629E-09 8.7049E-09 8.7536E-09 7.4878E-09 7.2962E-09 8.3641E-09 7.2962E-09	9.1694E-09 9.0123E-09 8.7841E-09 6.6311E-09 7.0629E-09 8.7049E-09 8.5691E-09 7.4878E-09 7.2862E-09 8.3641E-09 9.2095E-09 7.9323E-09	9.1694E-09 9.0123E-09 8.7841E-09 6.6311E-09 7.0629E-09 8.7049E-09 8.5691E-09 7.5636E-09 7.2862E-09 8.3641E-09 9.2095E-09 7.9323E-09 7.9101E-09	9.1694E-09 9.0123E-09 8.7841E-09 6.6311E-09 7.0629E-09 8.7049E-09 8.5691E-09 7.54878E-09 7.2962E-09 8.3641E-09 9.2095E-09 7.9101E-09 7.9223E-09 7.9222E-09	9.1694E-09 9.0123E-09 8.7841E-09 6.6311E-09 7.0629E-09 9.7994E-09 8.5691E-09 7.5636E-09 7.263E-09 7.2962E-09 7.2962E-09 7.2962E-09 7.2025E-09 7.2025E-09 7.2025E-09 7.2026E-09	9.1694E-09 9.0123E-09 8.7841E-09 6.6311E-09 7.0629E-09 8.7049E-09 8.5691E-09 7.536E-09 7.2962E-09 8.3641E-09 9.2095E-09 7.9101E-09 7.9205E-09 7.9205E-09 7.9205E-09 7.8102E-09	9.1694E-09 9.0123E-09 8.7841E-09 6.6311E-09 7.0629E-09 8.7049E-09 8.5691E-09 7.5636E-09 7.2962E-09 8.3641E-09 9.2095E-09 7.9233E-09 7.9101E-09 7.8102E-09 7.827E-09	9.1694E-09 9.0123E-09 8.7841E-09 6.6311E-09 7.0629E-09 8.7049E-09 8.5691E-09 7.4878E-09 7.2962E-09 7.2962E-09 7.323E-09 7.9323E-09 7.9101E-09 7.8102E-09 7.827E-09 8.80717E-09
41 252 0.58345 9	0.53482 0.53483 0.57437	0.53482 0.53483 0.57437 0.55987 0.56374	0.53482 0.53483 0.57437 0.55987 0.56374 1.06589 1.09452	0.53482 0.53483 0.57437 0.55987 0.56374 1.06589 1.09452	0.53482 0.53483 0.57437 0.55987 0.56374 1.06589 1.09452 1.11311 0.95719	0.53482 0.53483 0.57437 0.55374 1.06589 1.09452 1.11311 0.95719	0.53482 0.53483 0.57437 0.55987 0.56374 1.06589 1.09452 1.11311 0.95719 0.95539	0.53482 0.53483 0.57437 0.55374 1.06589 1.09452 1.11311 0.95719 0.95539 1.02612 0.91508	0.53482 0.53483 0.57437 0.55374 1.06589 1.09452 1.11311 0.95719 0.95539 1.02612 0.91508	0.53482 0.53483 0.57437 0.55987 0.56374 1.06589 1.09452 1.11311 0.95719 0.95719 0.91508 1.23987 5.4556	0.53482 0.53483 0.57437 0.55987 0.56374 1.00452 1.10452 1.11311 0.95719 0.95539 1.02612 0.91508 1.23987 5.45556	0.53482 0.53483 0.57437 0.55987 0.56374 1.00452 1.10452 1.11311 0.95719 0.95539 1.02612 0.91508 1.23987 5.45556 5.42795	0.53482 0.53483 0.57437 0.55987 0.56374 1.00452 1.10452 1.11311 0.95719 0.95539 1.02612 0.91608 1.23987 5.4556 5.4556 5.36750	0.53482 0.53483 0.57437 0.55987 0.56374 1.00589 1.00452 1.11311 0.95719 0.95719 0.95539 1.02612 0.915387 5.45556 5.45556 5.36750 4.33667	0.53482 0.53483 0.57437 0.55987 0.56374 1.09452 1.11311 0.95719 0.95719 0.95719 0.95539 1.02612 0.91588 1.23987 5.42795 5.36750 4.33667 4.33667	0.53482 0.53483 0.57437 0.55987 0.56374 1.00589 1.00452 1.11311 0.95719 0.95719 0.95719 0.95539 1.02612 0.91508 1.23987 5.45756 5.36750 4.36821 5.25738 4.87686
0.60480 7.5147E-09 41 0.57729 3.7953E-09 35																
252 233 202	$\frac{1}{212}$		212 267 244 283 270	212 267 244 283 270 213	212 267 244 283 270 213 256	212 267 244 283 270 213 256	212 267 244 283 270 213 256 232 232	212 264 244 283 270 213 256 232 232 262	212 264 244 283 270 213 256 232 232 262 263	212 267 244 283 270 213 256 232 232 262 263 316	212 267 244 283 270 213 256 232 232 262 263 316 301	212 264 244 283 270 270 283 283 283 283 283 283 283 283 283 283	212 244 244 270 270 232 232 232 262 263 301 218	212 244 244 246 270 232 232 232 232 233 243 243 301 218 206	212 244 244 247 256 232 232 232 232 233 243 244 244 244 244	212 244 244 244 256 232 232 232 233 243 244 244 245 246 247 247 248 248 248 248 248 248 248 248 248 248
x x x x x x x x x x x x x x x x x x x																

Table 4. Test results of the four methods for problems 4.4

IVIETO	ter Nfev Cpt Norm	3 22 0.05005 2.5649E-09	5 0 05655 1 2150F 00			. 25 45	. 25 .5 .5	. 25 45 45 45	. 25 05 05 05 05	. 25 05 05 05 05	. 25 05 05 05 05 05		. 25 05 05 05 05 05 05 11 2-	. 10 00 00 00 00 00 00 11 2 - 10	. 25 05 05 05 05 05 05 11 2 - 25 25	1 25 05 05 05 05 05 05 11 2 25 25 25	0.03030 0.03043 0.09843 0.09015 0.08100 0.08352 0.07581 0.12292 0.13895 0.13895 0.138979 0.13807	0.03030 0.03043 0.09843 0.07153 0.09015 0.08100 0.07581 0.12292 0.13054 0.13054 0.13112 0.13112 0.13112 0.13112	0.03030 0.03845 0.09845 0.09845 0.07153 0.08015 0.08352 0.07581 0.12385 0.12385 0.12385 0.12392 0.13054 0.13054 0.13054 0.13054 0.13054 0.13054	0.03030 0.09845 0.09845 0.09815 0.09015 0.08100 0.08352 0.07581 0.12385 0.12385 0.12385 0.1385 0.12392 0.1385 0.12392 0.1385	0.03055 0.09845 0.09845 0.09815 0.09015 0.08100 0.08352 0.12385 0.12385 0.12385 0.1385 0.12385 0.12385 0.12392 0.1385 0.1249 0.12479 0.12479 0.12479 0.29020 0.48431	0.05955 0.05855 0.05855 0.05855 0.07153 0.08010 0.08352 0.07581 0.12385 0.12385 0.12385 0.12385 0.12385 0.12385 0.12385 0.12385 0.12385 0.12385 0.12479 0.129799 0.12979 0.12979 0.12979 0.12979 0.12979 0.12979 0.12979 0.129	0.05845 0.05845 0.05845 0.09515 0.09015 0.08352 0.07581 0.12385 0.12385 0.12385 0.12385 0.12385 0.12392 0.13074 0.13074 0.13074 0.13079 0.1207	0.03050 0.03050 0.00843 0.007153 0.09015 0.08352 0.07581 0.12385 0.12385 0.12385 0.12385 0.12379 0.1307 0.13112 0.12479 0.12479 0.29020 0.49698 0.49698	0.03030 0.03043 0.00843 0.07153 0.09015 0.08352 0.07581 0.12385 0.12292 0.13807 0.13807 0.12479 0.12979 0.12479 0.12479 0.12479 0.12479 0.29020 0.40698 0.49968
	Norm Niter Nf	2.7254E-09 13 2	52F 00 1E 9	0.0E-09 1.0 2	4.8432E-09 17 2:	2.4951E-09 21 3.	4.8432E-09 17 29 2.4951E-09 21 3 5.0128E-09 21 3	2.4332E-09 17 2. 2.4951E-09 21 3. 5.0128E-09 21 3.	2.43325-09 17 27 4.843225-09 17 27 2.249515-09 21 37 4.88015-09 22 44.88015-09 22 44.88355-09 22 44.	2.4332E-09 17 22 4.8432E-09 17 23 2.2451E-09 21 3 5.0128E-09 22 4 4.8801E-09 22 4 4.4557E-09 22 4	2.4532E-09 17 2.48432E-09 17 3.2.451E-09 21 3.3.5.0128E-09 22 4.4801E-09 22 4.4457E-09 22 4.4557E-09 13 22.21388E-09 13 22	2.4532E-09 17 23 2.4951E-09 21 3 5.0128E-09 21 3 4.8801E-09 22 4 4.457E-09 22 4 4.457E-09 22 4 3.1362E-09 13 22	4.8432E-09 17 23 2.4951E-09 21 3 5.0128E-09 21 3 4.8801E-09 22 4 4.4557E-09 22 4 4.4557E-09 13 22 3.1362E-09 15 2 6.4560E-09 17 2	2.4535E-09 17 2 2.4951E-09 21 3 2.4951E-09 21 3 4.8801E-09 22 4 4.885E-09 22 4 4.455TE-09 22 4 2.1388E-09 13 2 2.1388E-09 15 2 6.4560E-09 17 2 6.4560E-09 21 3	2.4535E-09 17 23 2.4951E-09 21 3 2.4951E-09 21 3 5.0128E-09 22 4 4.8801E-09 22 4 4.4557E-09 22 4 2.1388E-09 13 2 2.1388E-09 15 2 6.4560E-09 17 2 6.4560E-09 21 3 3.1362E-09 21 3 3.1439E-09 21 3	22 22 22 22 22 22 22 22 22 22 22 22 22	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 25 25 25 25 25 25 25 25 25 25 25 25 25	12 22 22 22 22 22 22 22 22 22 22 22 22 2	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	2	7	2
Cpt		0.04204	14 0.02475 3.7553E-09		28 0.04195 4.8432												0.04195 0.05059 0.06009 0.06403 0.05725 0.05747 0.06575 0.0648 0.07826 0.09462 0.09462 0.10622 0.10622	0.04195 0.05059 0.06009 0.06403 0.05725 0.052479 0.06438 0.07826 0.09462 0.09462 0.09462 0.09462 0.09462 0.09462	0.04195 0.05059 0.06009 0.06403 0.05725 0.05725 0.06498 0.07826 0.09462 0.21861 0.10622 0.08559 0.11307	0.04195 0.05059 0.06009 0.06403 0.05725 0.05725 0.06498 0.07826 0.09462 0.09462 0.1861 0.10622 0.1867 0.11377 0.27787	0.04195 0.05059 0.06009 0.06403 0.05725 0.05725 0.06498 0.07826 0.09462 0.00462 0.0046	0.04195 0.05059 0.06009 0.06403 0.05725 0.06498 0.06575 0.09462 0.0946	0.04195 0.05059 0.06009 0.06403 0.05725 0.06498 0.06575 0.09462 0.09462 0.09462 0.09462 0.09559 0.10622 0.08559 0.1307 0.27787 0.27787 0.27787 0.27787	0.04195 0.05059 0.06009 0.06403 0.05725 0.06498 0.07826 0.09462 0.09462 0.09462 0.09559 0.11307 0.27787 0.27787 0.27787 0.27745 0.39497 0.44577	0.04195 0.05059 0.06009 0.06403 0.05725 0.06478 0.06498 0.07826 0.09462 0.09462 0.09462 0.08559 0.11307 0.27787 0.27787 0.27745 0.39497 0.44577 0.44672
Niter		11 25	9 6 14	00 01	12 20	9 12 20 9 13 30	19 12 20 19 13 30 19 15 36	12 28 19 13 30 19 15 36 19 16 41	19 12 20 19 13 30 19 15 36 19 16 41 19 15 43	19 12 20 19 13 30 19 15 36 19 16 41 19 15 43	12 20 13 30 13 30 15 41 16 41 17 44 19 15 44 11 25	12 20 13 30 19 15 36 19 16 41 19 15 44 19 15 44 10 11 25 10 11 25	12 20 13 30 19 15 36 19 15 44 19 15 44 19 15 24 10 11 25 11 26	12 20 13 30 19 15 41 19 15 44 19 15 44 19 11 25 10 12 28 11 26 11 26 11 26 11 26	19 12 20 19 15 36 19 16 41 19 15 44 19 15 44 19 11 25 10 11 26 11 26 10 11 26 11 26 10 11 26 11 26 10 11 26 11 26 10 11 26 10 11 26 11 26 10 11 26 11 26 10 11 26 11 26 10 11 26 10 11 26 11 26 10 11 26 11 26 10 11 26 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 6 3 2 2 6 6 6 6 7 1 2 1 3 3 6 7 3 7	10 28 22 22 22 22 22 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	8 12 8 12 12 12 12 12 12 12 12 12 12 12 12 12
	Cpt Norm	0.06067 4.1367E-09	0.06441 8.3035E-09		0.05937 4.7509E-09																				
Niter Nfev		16 35 0	16 35 0	18 39 0		20 43 0	20 43 0 16 35 0	20 43 0 16 35 0 20 44 0	20 43 0 16 35 0 20 44 0 20 46 0	20 43 0 16 35 0 20 44 0 20 46 0 20 46 0	20 43 0 16 35 0 20 44 0 20 46 0 20 46 0 16 35 0	20 43 0 16 35 0 20 44 0 20 46 0 20 46 0 16 35 0 17 37 0	20 43 0 16 35 0 20 44 0 20 46 0 20 46 0 16 35 0 17 37 0 18 39 0	20 43 0 16 35 0 20 44 0 20 46 0 20 46 0 16 35 0 17 37 0 18 39 0 20 43 0	20 43 0 20 44 0 20 46 0 20 46 0 16 35 0 17 37 0 18 39 0 20 43 0 17 37 0 18 39 0 17 38 0	20 43 0 20 46 0 20 46 0 20 46 0 16 35 0 17 37 0 18 39 0 20 43 0 17 38 0 17 38 0	44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	43 44 46 60 60 60 60 60 60 60 60 60 6	44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	43 44 46 46 46 46 47 48 48 48 48 48 48 48 48 48 48	43 44 46 60 60 60 60 60 60 60 60 60 6	43 44 46 46 46 46 47 48 48 48 48 48 48 48 48 48 48	8	8	8
Norm		1.1694E-09	8.3703E-09	3.3286E-09	1001	1.7766E-09		1.776 1.083 6.988													1.776 1.083 1.083 1.808 1.808 1.653 1.653 1.531 1.531 1.531 2.558 3.179 3.698 3.698				
	ev Cpt	5 0.01613	5 0.01681	5 0.01304	0.05422	111111111111111111111111111111111111111	3 0.05208	3 0.05208 7 0.04271				0.05208 0.04271 0.06693 0.03136 0.02494 0.02770	0.05208 0.04271 0.06693 0.03136 0.02494 0.02770 0.02101	0.05208 0.04271 0.06693 0.03136 0.02494 0.02770 0.02101	0.05208 0.04271 0.06693 0.03136 0.02494 0.02770 0.02101 0.10815	0.05208 0.04271 0.06693 0.03136 0.02494 0.02770 0.02101 0.10815 0.06283	0.05208 0.04271 0.06693 0.03136 0.02494 0.02770 0.02770 0.02683 0.06283 0.05651	0.05208 0.04271 0.06693 0.03136 0.02494 0.02770 0.02101 0.10815 0.06283 0.05651 0.05651	0.05208 0.04271 0.06693 0.03136 0.02494 0.02770 0.02101 0.10815 0.05651 0.05651 0.09720	0.05208 0.04271 0.06693 0.03136 0.02494 0.02770 0.02101 0.10815 0.06283 0.06283 0.05651 0.05651 0.09720 0.09720	0.05208 0.04271 0.06693 0.03136 0.02494 0.02770 0.02101 0.10815 0.06283 0.05651 0.05610 0.09720 0.09720	0.05208 0.04271 0.06693 0.03136 0.02494 0.02770 0.02101 0.06283 0.06283 0.05651 0.05651 0.09720 0.09720 0.09722	0.05208 0.04271 0.06693 0.03136 0.02494 0.02770 0.02101 0.06283 0.06283 0.06283 0.06283 0.06283 0.06283 0.06283 0.05651 0.05651 0.05651 0.05651 0.05651 0.05651 0.05651	0.05208 0.04271 0.06693 0.03136 0.02494 0.02770 0.02101 0.06283 0.06283 0.05651 0.05651 0.05651 0.05651 0.05651 0.05651 0.05651 0.05651 0.05651 0.05651 0.05651 0.05651	0.05208 0.04271 0.06693 0.03136 0.02494 0.02770 0.02770 0.06283 0.05651 0.05651 0.05015 0.09720 0.09720 0.09720 0.09720 0.09720 0.09720 0.09720 0.09720 0.09720 0.09720 0.09720
ı	Niter Nfev	4 6	4 6	3	15 33		10 23	10 23 8 17	10 23 8 17 20 44	10 23 8 17 20 44 8 16	10 23 8 17 20 44 8 16							10 23 20 44 6 6 6 17 20 23 20 17 20 20 20 20 20 20 20 20 20 20 20 20 20							
) x1) x2) x3) x4) x5		9 x (
		2000	5000	2000	2000	2000	5000		5000	5000	5000 5000 10000	5000 5000 10000 10000	5000 5000 10000 10000	5000 5000 10000 10000 10000	5000 5000 10000 10000 10000 10000	5000 5000 10000 10000 10000 10000 10000	5000 5000 10000 10000 10000 10000 10000 10000	5000 5000 10000 10000 10000 10000 10000 10000 10000	5000 10000 10000 10000 10000 10000 10000 10000 10000 50000	5000 5000 10000 10000 10000 10000 10000 10000 50000 50000	5000 5000 10000 10000 10000 10000 10000 10000 50000 50000	5000 5000 10000 10000 10000 10000 10000 10000 50000 50000 50000	5000 5000 10000 10000 10000 10000 10000 10000 10000 50000 50000 50000	5000 10000 10000 10000 10000 10000 10000 10000 50000 50000 50000 50000	5000 5000 10000 10000 10000 10000 10000 10000 50000 50000 50000 50000 50000

Table 5. Test results of the four methods for problems 4.5

Nvars	$_{ m IGness}$		4	MDDYM			1	PDYM				MDY				MFR	
	•	Niter	Nfev	$^{ m Cpt}$	Norm	Niter	Nfev	$^{ m Cpt}$	Norm	Niter	Nfev	Cpt	Norm	Niter	Nfev	$^{ m Cpt}$	Norm
2000	x1	13	29	0.08409	6.1206E-09	21	45	0.11835	4.5793E-09	13	34	0.07926	8.7285E-09	27	22	0.14177	9.2581E-09
2000	×2	13	56	0.08607	6.0981E-09	21	45	0.11653	4.5624E-09	13	34	0.07905	8.6940E-09	27	22	0.14553	9.2256E-09
2000	x3	13	29	0.08117	5.9183E-09	21	45	0.09188	4.4271E-09	13	34	0.09186	8.4192E-09	27	22	0.13343	8.9623E-09
2000	x4	13	29	0.07941	4.4547E-09	20	43	0.14263	9.9982E-09	12	53	0.09527	8.3184E-09	27	22	0.14216	6.6834E-09
2000	x5	13	29	0.07700	3.3263E-09	20	43	0.11080	7.4583E-09	15	38	0.09559	3.4919E-09	27	22	0.12148	4.9324E-09
2000	9x	12	27	0.07471	8.0821E-09	20	43	0.12521	4.9185E-09	14	34	0.08074	3.5022E-09	56	55	0.12577	7.3575E-09
2000	×7	12	27	0.11041	3.8935E-09	19	41	0.11220	7.1229E-09	13	31	0.07748	4.0165E-09	25	53	0.13185	8.0804E-09
2000	8x	11	25	0.06216	4.7068E-09	18	39	0.10240	9.9853E-09	13	31	0.08459	3.3404E-09	24	51	0.51949	8.5601E-09
10000	x1	13	30	0.15350		23	53	0.19978	5.1107E-09	15	46	0.16562	8.1229E-09	28	28	0.31646	0.00000E + 00
10000	x	15	37	0.15897		23	53	0.19735	5.0918E-09	15	46	0.17351	8.0936E-09	28	28	0.24591	0.0000E + 00
10000	x3	19	54	0.23207		23	53	0.21008	4.9409E-09	15	46	0.15890	7.8592E-09	28	28	0.23659	0.0000E + 00
10000	x 4	13	32	0.13566		21	45	0.18849	4.7069E-09	14	39	0.16351	6.5113E-09	27	22	0.37153	9.3333E-09
10000	x5	14	35	0.13436		21	45	0.16255	3.5112E-09	13	34	0.12313	6.3921E-09	27	22	0.23985	6.9447E-09
10000	9x	12	28	0.12876	7.1509E-09	20	43	0.18314	6.9563E-09	11	25	0.12049	8.3813E-09	27	26	0.25423	0.00000E + 00
10000	x7	6	18	0.08808		20	43	0.21754	3.3642E-09	12	53	0.13141	4.5477E-09	56	54	0.21101	0.0000E + 00
10000	8x	7	13	0.06663	5.1294E-09	19	41	0.16822	4.6958E-09	13	31	0.14696	4.3632E-09	25	25	0.23674	0.00000E + 00
50000	x1	∞	14	0.31637	9.7835E- 10	56	29	1.02269	9.0422E-09	23	107	1.49375	8.1128E-09	24	20	0.92306	0.00000E + 00
20000	x	∞	14	0.29982	9.7482E-10	56	29	1.06621	9.0088E-09	23	107	1.41950	8.0837E-09	24	20	0.92547	0.00000E + 00
20000	x3	œ	14	0.29072	9.4607E-10	56	29	1.07177	8.7417E-09	23	104	1.38072	6.5311E-09	24	20	0.89133	0.00000E + 00
50000	x4	œ	14	0.29903	7.1236E-10	22	63	1.00707	7.9619E-09	20	80	1.19303	6.3556E-09	24	20	0.94953	0.0000E + 00
50000	x5	∞	14	0.29453	5.3210E -10	23	53	0.87334	6.1957E-09	17	28	0.90448	6.6277E-09	24	20	0.88540	0.00000E + 00
50000	9x	œ	14	0.31612	3.5134E-10	22	49	0.86319	7.0213E-09	14	40	0.63377	7.7993E-09	22	46	0.86539	0.0000E + 00
20000	x7	∞	14	0.28685	1.7015E-10	20	43	0.74746	7.5227E-09	15	38	0.65625	3.5221E-09	22	46	0.85031	0.00000E + 00
50000	8x	7	13	0.27290	5.4616E-09	20	43	0.74983	3.5066E-09	11	27	0.48111	6.0062E-09	22	46	0.85129	0.00000E + 00

Table 6. Test results of the four methods for problems 4.6

Nvars	IGness		4	MDDYM			ш	PDYM				MDY				MFR	
	1	Niter	Nfev	Cpt	Norm	Niter	Nfev	$^{ m Cpt}$	Norm	Niter	Nfev	$^{ m Cpt}$	Norm	Niter	Nfev	Cpt	Norm
2000	x1	11	29	0.05830	5.9634E-09	21	99	0.09121	4.9608E-09	12	33	0.05388	5.3440E-09	09	245	0.30692	9.2918E-09
2000	x2	11	53	0.05493	4.3213E-09	21	99	0.07995	4.7837E-09	12	33	0.05358	5.8173E-09	09	245	0.29193	9.1558E-09
2000	x3	10	27	0.04793	1.1728E-09	20	63	0.08563	9.6409E-09	12	33	0.05520	4.2467E-09	09	245	0.30544	7.9678E-09
2000	x4	_∞	21	0.03816	8.8309E-09	9	15	0.02606	1.5409E-09	10	25	0.04814	5.5576E-09	29	241	0.27576	8.6175E-09
2000	x5	17	52	0.08657	6.7905E-09	22	69	0.10643	3.8403E-09	12	32	0.06375	3.6002E-09	61	248	0.29183	8.0471E-09
2000	9x	12	31	0.04854	6.6177E-09	22	89	0.11060	4.6406E-09	13	42	0.10346	5.9588E-09	62	250	0.29224	8.1876E-09
2000	7×	13	36	0.05865		23	7.5	0.11025	5.6953E-09	11	31	0.05111	2.8649E-09	62	250	0.27411	7.6296E-09
2000	8×	14	38	0.06893		7	18	0.03452	1.0412E-09	11	53	0.05033	7.4314E-09	62	250	0.31480	8.3682E-09
10000	x1	11	53	0.12935		21	99	0.14482	7.0156E-09	13	37	0.09583	1.4459E-09	61	249	0.49287	9.5333E-09
10000	x2	11	53	0.08446		21	99	0.18801	6.7652E-09	13	37	0.10481	1.7840E-09	61	249	0.50182	9.3937E-09
10000	x3	10	27	0.08571	1.6586E-09	21	99	0.15276	4.9435E-09	12	33	0.10223	4.7426E-09	61	249	0.48216	8.1748E-09
10000	x 4	6	23	0.07085		9	15	0.05041	2.1791E-09	10	25	0.08289	9.5969E-09	09	245	0.46931	8.8414E-09
10000	x5	17	52	0.14664	9.6032E-09	22	69	0.18159	5.4309E-09	11	28	0.08064	8.7915E-09	62	252	0.50543	8.2562E-09
10000	9x	12	31	0.08264	9.3589E-09	23	73	0.15916	6.3474E-09	14	46	0.10846	1.7662E-09	63	254	0.51418	8.4004E-09
10000	×7	13	36	0.12906	7.2220E-09	23	73	0.25665	8.5323E-09	14	43	0.10606	2.1715E-09	63	254	0.51744	7.8279E-09
10000	8x	14	38	0.10402	1.3508E-09	7	18	0.07598	1.4725E-09	14	42	0.09957	2.1096E-09	63	254	0.49114	8.5857E-09
20000	x1	12	31	0.33042	9.3840E- 10	22	69	0.62427	5.6816E-09	14	41	0.42098	2.3754E-09	64	261	2.32850	8.1397E-09
20000	x2	12	31	0.36379		22	69	0.62287	5.4788E-09	14	41	0.42743	2.1971E-09	64	261	2.27368	8.0206E-09
20000	x3	10	27	0.29782	3.7088E-09	22	69	0.64410	4.0033E-09	13	39	0.41428	8.9237E-09	63	257	2.26461	9.6210E-09
20000	x4	6	23	0.26084		9	15	0.17896	4.8726E-09	13	38	0.39586	3.2734E-09	63	257	2.21871	7.5490E-09
20000	x5	18	54	0.54905	3.5244E-09	24	22	0.69938	4.1819E-09	17	62	0.58483	2.4241E-09	64	260	2.27889	9.7167E-09
20000	9x	13	33	0.38900	1.9096E-09	24	22	0.74722	5.1440E-09	15	20	0.45349	5.4303E-09	65	262	2.28170	9.8864E-09
20000	×7	14	38	0.38756	1.1869E-09	24	22	0.67827	6.9131E-09	14	39	0.40820	1.4432E-09	65	262	2.33294	9.2126E-09
20000	8x	14	38	0.40306	3.0204E-09	24	22	0.69055	7.2256E-09	14	38	0.38383	1.4634E-09	99	266	2.30200	7.3306E-09

Table 7. Test results of the four methods for problems 4.7

	Norm	9.4550E-09	9.3912E-09	8.7821E-09	7.4711E-09	7.5276E-09	8.0592E-09	7.5313E-09	8.5637E-09	9.3986E-09	9.3352E-09	8.7297E-09	7.4265E-09	7.4827E-09	8.0112E-09	7.4864E-09	8.5127E-09	7.2981E-09	7.2489E-09	9.6440E-09	8.2044E-09	8.2665E-09	8.8502E-09	8.2705E-09	0 10/3F_00
	ž	9.45	9.391	8.78	7.47]	7.527		7.531	8.56	9.398	9.335	8.729	7.426	7.482	8.011	7.480	8.512	7.298	7.248	9.64	8.20^{4}	8.26	8.85(0 40
MFR	$^{ m Cpt}$	0.32182	0.35728	0.30529	0.31769	0.31532	0.29898	0.32301	0.29418	0.54602	0.55024	0.53853	0.52338	0.52326	0.61184	0.51324	0.52918	2.61151	2.58425	2.53142	2.30189	2.46086	2.51340	2.42242	9 30068
	Nfev	349	349	349	325	346	349	333	321	355	355	355	331	352	355	339	327	373	373	367	343	364	367	351	330
	Niter	22	22	22	53	22	28	26	54	28	28	28	54	28	59	22	55	61	61	09	26	09	61	29	57
	Norm	7.5384E-09	9.1316E-09	7.4550E-09	4.7455E-09	5.2468E-09	*	* *	*	7.5740E-09	4.5397E-11	9.3470E-09	4.5079E-10	2.4455E-09	* *	*	4.7429E-11	1.1179E-09	4.0239E-10	3.8080E-09	3.4982E-09	5.5572E-09	3.9378E-09	7.7185E-09	7 1829F-09
MDY	$^{ m Cpt}$	0.04996	0.04617	0.03916	0.04321	0.05279	*	*	*	0.06356	0.07902	0.10110	0.04657	0.08054	*	*	2.60568	0.46701	0.51123	0.52341	0.30108	5.90688	4.09402	4.51278	19 83935
	Nfev	32	30	30	29	37	*	*	*	33	34	43	19	39	*	*	1820	54	09	28	32	897	222	643	1050
	Niter	10	10	6	6	11	*	*	*	11	11	13	9	11	*	*	167	14	16	16	10	87	61	99	× × ×
	Norm	7.0705E-09	6.9353E-09	5.8827E-09	1.8485E-09	9.3263E-09	2.5833E-09	3.3787E-09	6.0314E-09	9.9993E-09	9.8079E-09	8.3194E-09	2.6142E-09	1.9679E-09	3.6534E-09	4.7783E-09	8.5297E-09	4.9313E-09	4.8369E-09	8.7364E-09	5.8455E-09	4.4003E-09	8.1692E-09	1.9299E-09	6 9307F-09
PDYM	$^{ m Cpt}$	0.14592	0.13148	0.13896	0.06037	0.05478	0.06090.0	0.07650	0.06044	0.26347	0.23092	0.21597	0.30166	0.07998	0.09948	0.07941	0.09317	0.95785	0.98458	0.97264	0.33492	0.40677	0.38142	0.49638	1.04619
	Nfev	124	124	124	37	40	43	44	43	124	124	124	37	43	43	44	43	132	132	128	37	43	43	54	137
	Niter	30	30	30	11	12	13	14	14	30	30	30	11	13	13	14	14	32	32	31	11	13	13	17	35
	Norm	1.3050E-09	4.0067E-09	6.4133E-09	5.5391E-09	9.8573E-09	7.8166E-09	1.3795E-09	2.4066E-10	1.8456E-09	5.6664E-09	9.0698E-09	7.8334E-09	4.8938E-09	5.9649E-09	1.9510E-09	3.4034E-10	4.1268E-09	5.5395E-09	7.8990E-09	1.7365E-09	1.1172E-09	4.9142E-09	4.3625E-09	7.6102E-10
MDDYM	$^{ m Cpt}$	0.09432	0.07568	0.08765	0.07775	0.07999	0.07809	0.08286	0.06033	0.14692	0.10996	0.13400	0.13363	0.12671	0.12887	0.14343	0.09692	0.52241	0.46085	0.56293	0.52033	0.56208	0.57559	0.51799	0.40991
Z	Nfev	59	53	09	62	22	28	59	42	59	53	09	62	61	62	59	42	59	26	64	65	64	99	29	49
	Niter	16	14	16	16	15	15	16	12	16	14	16	16	16	16	16	12	16	15	17	17	17	17	16	12
IGuess	1	x1	x	x3	x4	x5	9x	x7	8×	x1	x	x3	x4	x5	9x	x7	8x	x1	x	x3	x 4	x5	9x	×7	œ
Nvars IGness		2000	2000	2000	2000	2000	2000	2000	2000	10000	10000	10000	10000	10000	10000	10000	10000	20000	20000	20000	20000	20000	20000	20000	50000

Table 8. Test results of the four methods for problems 4.8

Nvars	Ruess		≧;	MDDYM			-7	PDYM				MDY				MFK	
		Niter	Nfev	$^{ m Cpt}$	Norm	Niter	Nfev	$^{\mathrm{Cbt}}$	Norm	Niter	Nfev	$^{ m Cpt}$	Norm	Niter	Nfev	$^{ m Cpt}$	Norm
2000	x1	14	105	0.16757	0.00000E+00	*	*	*	*	∞	92	0.08422	0.00000E+00	က	19	0.03360	0.00000E + 00
2000	x2	14	102	0.14631	0.0000E+00	*	*	*	*	œ	92	0.10084	0.0000E+00	ro	32	0.05756	0.0000E + 00
2000	x3	14	96	0.13992	0.00000E+00	4	34	0.03438	0.0000E+00	15	141	0.16698	0.0000E+00	4	20	0.06854	0.00000E+00
2000	x4	17	126	0.17229	0.00000E+00	ಬ	44	0.06671	0.0000E+00	16	06	0.14892	0.0000E+00	2	16	0.03029	0.00000E+00
2000	x5	7	55	0.08252	0.00000E+00	9	44	0.07206	0.0000E+00	22	125	0.19471	0.0000E+00	ಣ	30	0.06496	0.00000E+00
2000	9x	4	30	0.04918	_	3	19	0.04112	0.0000E + 00	13	92	0.14016	0.0000E + 00	2	19	0.03237	0.00000E+00
2000	x7	4	30	0.05837		ಬ	36	0.06107	0.0000E+00	19	111	0.18132	0.0000E + 00	2	20	0.04827	0.00000E+00
2000	8x	9	55	0.08952		4	24	0.06101	0.0000E+00	89	499	0.65635	0.0000E + 00	ಣ	22	0.03871	0.00000E+00
10000	x1	10	73	1.18135		22	35	0.11482	0.0000E + 00	œ	92	0.16320	0.0000E + 00	33	19	0.05802	0.00000E+00
10000	x	11	75	0.20685		212	1703	3.57595	0.0000E + 00	∞	92	0.20896	0.0000E + 00	3	19	0.06237	0.0000E + 00
10000	x3	14	94	0.24852	0.000	22	37	0.11556	0.0000E + 00	5	51	0.13497	0.0000E + 00	4	20	0.06374	0.00000E+00
10000	x4	10	74	0.20559		3	20	0.05981	0.0000E+00	56	243	0.57624	0.0000E + 00	2	16	0.05057	0.00000E+00
10000	x5	4	35	0.09897	0.000	ro	31	0.09720	0.0000E+00	31	267	0.65314	0.0000E + 00	33	30	0.08397	0.00000E+00
10000	9x	က	18	0.05165	0.000	ro	34	0.10333	0.0000E+00	12	108	0.25737	0.0000E+00	2	19	0.05356	0.00000E+00
10000	X7	വ	42	0.13123	0.000	4	23	0.07361	0.0000E+00	33	288	0.65692	0.0000E + 00	2	20	0.05280	0.00000E + 00
10000	8x	4	22	0.07246	0.0000	4	23	0.08236	0.0000E+00	7	64	0.17944	0.0000E + 00	က	22	0.06539	0.00000E + 00
20000	x1	10	7.5	0.86301	0.000	7	42	0.49996	0.0000E+00	∞	92	0.82304	0.0000E+00	ಣ	19	0.24206	0.00000E+00
20000	x2	6	71	0.85537	_	_	41	0.49430	0.0000E+00	∞	92	0.85630	0.0000E + 00	က	19	0.24635	0.00000E + 00
20000	x3	10	71	0.82141		_	39	0.46821	0.0000E+00	4	28	0.35046	0.0000E + 00	က	19	0.23377	0.00000E + 00
20000	x 4	œ	51	0.64090	0.00000E+00	*	*	*	*	7	09	0.69240	0.0000E + 00	2	16	0.16730	0.0000E + 00
20000	x5	က	24	0.29724	0.0000E+00	7	38	0.40553	0.0000E + 00	6	69	0.73666	0.0000E+00	4	31	0.32924	0.0000E + 00
20000	9x	ಣ	18	0.25253	0.000	7	40	0.47899	0.0000E+00	10	73	0.88118	0.0000E+00	2	19	0.20408	0.00000E+00
20000	x7	က	18	0.22632	0.0000	*	*	*	*	∞	64	0.74632	0.00000E+00	2	20	0.23963	0.00000E + 00
20000	8×	4	24	0.30785	0.00000E+00	9	32	0.33168	0.0000E+00	36	246	2.80129	0.0000E+00	3	22	0.27244	0.00000E + 00

Table 9. Summary of result from tables 1-8 showing the number of problems/percentage solved with least number of iteration, function values and processing time by each of the four methods

Method	Niter	Percentage	fev	Percentage	Ptime	Percentage	Fails
MDDYM	83	43.22%	91	47.40%	81	40.19%	_
PDYM	19	9.90%	14	7.29%	30	15.63%	4
MDY	36	18.75%	40	20.83%	55	28.65%	7
MFR	23	11.98%	20	10.42%	26	13.53%	27
Undecided	31	16.15%	27	14.06%	_	_	_

Figure 1. Performance profile of Dolan and Mor \acute{e} for number of iterations

Figure 2. Performance profile of Dolan and Moré for function evaluations

In order to explain the results in Tables 1-8, a summary is drawn in Table 9, which describes performance of each of the four schemes relative to three characteristics, namely number of iteration, function values, and processing time. The summary table clearly indicates that the MDDYM scheme outperforms the PDYM, MDY and MFR methods as it successfully solved 43.22% of all the problems in the experiments with less number of iterations compared to the PDYM, MDY and MFR solvers, that recorded 9.90%, 18.75%, and 11.98% respectively. Interestingly,

FIGURE 3. Performance profile of Dolan and Mor \acute{e} for processing time

too, the summary table also indicates that some of the methods recorded a tie in 31 problems, which translates to 16.15% and is marked as "UNDECIDED". It is also observed from the table that the MDDYM scheme solves 47.40% of the problems with less function values, as against the PDYM, MDY and MFR schemes, that recorded 7.29%, 20.83% and 10.42% respectively. Also, the table indicates that some of the methods solved 27 problems with equal number of functions values, which corresponds to 14.06%. The summarized results also shows that the MDDYM scheme solves 42.19% of all the problems with less processing time as against the PDYM, MDY and MFR methods, that recorded 15.63%, 28.65% and 13.53% respectively.

Furthermore, a graphical view and interpretation of the data presented in Tables 1-8 is drawn in figs 1-3 by adopting Dolan and Moré [14] performance profile, which is formulated as

$$\Lambda_e(\Theta) = \frac{1}{|\mathcal{C}|} \left| \left\{ \tilde{s} \in \mathcal{C} : \frac{t_{\tilde{s},e}}{\min\{t_{\tilde{s},e} : e \in E\}} \le \Theta \right\} \right|,$$

where \mathcal{C} represent set of experiments conducted, $|\mathcal{C}|$ stands for number of the problems in the set of experiments \mathcal{C} , E denotes number of schemes considered while for each $\tilde{s} \in \mathcal{C}$ and $e \in E$, $t_{\tilde{s},e}$ represents either processing time in each iteration, number of iterations or function evaluations obtained. It is observed from all three figures that the MDDYM method is the most successful of all the four methods regarding the three characteristics considered. The top curve in each of the three figures represents the scheme with the best performance in the experiment, which clearly corresponds to the one representing the MDDYM scheme in all three cases. Hence, based on the above discussions it is concluded that the MDDYM scheme outperforms the other three methods as it yields better performance regarding the three characteristics outlined, namely number of iterations, function evaluations and processing time. Therefore, the proposed algorithm is more effective for solving large-scale systems of monotone nonlinear equations with convex constraint than PDYM, MDY and MFR methods.

5. Application In Image De-Blurring.

5.1. **Brief introduction of the concept.** Digital image processing often arises in Medical sciences, Biological engineering, file restoration, image and video coding

applications (Ref.[5, 7, 42]). In signal and image processing problems, the major interest is to obtain sparse solutions to ill-conditioned linear systems of equations, which involves minimizing the following $\ell_1 - \ell_2$ norm problem

$$\min_{x} \frac{1}{2} ||Ax - q||_{2}^{2} + \phi ||x||_{1}, \tag{68}$$

where ϕ is a nonnegative parameter, $x \in \mathbf{R}^n$, and $q \in \mathbf{R}^m$ is an observed value, and $A \in \mathbf{R}^{m \times n} (m \ll n)$ represents a linear mapping, while $||x||_1$ and $||x||_2$ denotes the ℓ_1 and ℓ_2 norms respectively. Careful observation shows that (68) is an unconstrained optimization problem, popularly referred to as the ℓ_1 -regularized least square problem. Various iterative schemes for solving (68) exists (see [15, 36, 34] for instances), however, gradient based methods are the most prominent. In [16], Figueiredo et al. reformulated (68) as a convex quadratic problem, by splitting the vector $x \in \mathbf{R}^n$ in to two parts, namely

$$x = u - v, \quad u \ge 0, \quad v \ge 0, \quad u, v \in \mathbf{R}^n. \tag{69}$$

Let $u_i = (x_i)_+$, $v_i = (-x_i)_+$ $\forall i = 1, 2, ..., n$, where $(.)_+$ is a positive operator, which is given as $(.)_+ = \max\{0, x\}$. Now, using the definition of the $\ell_1 - norm$, we obtain $||x||_1 = G_n^T u + G_n^T v$, where $G_n = (1, 1, ..., 1)^T \in \mathbf{R}^n$. Applying this representation, (68) can be reformulated as

$$\min_{u,v} \frac{1}{2} ||A(u-v) - q||_2^2 + \phi G_n u + \phi G_n v, \quad u, v \ge 0.$$
 (70)

Going by Figueiredo et al. [16], the problem in (70) is reformulated as

$$\min_{\chi} \frac{1}{2} \chi^T M \chi + D^T M \chi, \quad \chi \ge 0, \tag{71}$$

which represents a quadratic program problem where

$$\chi = \begin{pmatrix} u \\ v \end{pmatrix}, \quad D = \phi G_{2n} + \begin{pmatrix} -h \\ h \end{pmatrix}, \quad h = A^T q, \quad M = \begin{pmatrix} A^T A & -A^T A \\ -A^T A & A^T A \end{pmatrix}, (72)$$

where A denotes a positive semi-definite matrix. So, (71) represents a convex quadratic programming problem, which was translated in [52] as the problem of linear variable inequality (LVI), namely, find the value of $\chi \in \mathbb{R}^n$ such that

$$(\chi' - \chi)^T (M\chi + D) \ge 0, \quad \forall \chi' \ge 0. \tag{73}$$

Also, in [52], the authors considered (71) to be equivalent to the following linear complementarity problem. Find $\chi \in \mathbb{R}^n$,

$$\chi \ge 0$$
, $M\chi + D \ge 0$, and $\chi^T(M\chi + D) = 0$, (74)

where $\chi \in \mathbf{R}^n$ denotes the solution of (74) if and only if it satisfies the nonlinear equations

$$F(\chi) = \min\{\chi, M\chi + D\} = 0,\tag{75}$$

where F is a vector-valued mapping. Now, F is also monotone and Lipschitz continuous, hence by [36, 52], the MDDYM scheme can be applied to solve it.

The image de-blurring experiments are conducted using four images, namely Barbara, Girl, Lena, and Cameraman. Codes for the experiments are generated on MATLAB R2015a with parameter values as applied in the last experiment with $\mu = 1.5, \rho = 0.2, \beta = 0.8$. Also, to further investigate the performance of the MDDYM method, it is compared with the $CG_DESCENT - type$ algorithm [53], simply denoted as MFRM, which performs well in image de-blurring problems.

The parameters for the MFRM method are the same as used by the authors. The iteration for the two schemes is set to terminate whenever the following condition is reached:

 $\frac{|f(x_k) - f(x_{k-1})|}{f(x_{k-1})} < 10^{-5}, \tag{76}$

where $f(x_k)$ represents a merit function $f(x) = \frac{1}{2} ||Ax - q||_2^2 + \phi ||x||_1$. The performance of both schemes is observed in terms of functions evaluations (Obj), processing time (PT(s)), mean square error (MSE), signal to noise ratio (SNR), which is given by

 $SNR = 20 \times \log_{10} \left(\frac{\|\tilde{x}\|}{\|x - \tilde{x}\|} \right),$

where \tilde{x} denotes the recovered image, x the original image, and the structural similarity index (SSIM), which computes the similarity between original image and the restored one in each of the experiments is conducted. For the experiment conducted, the codes were implemented with $x_0 = A^T q$. A represents a partial Discrete Wavelet Transform (DWT) matrix, for which the m rows are selected randomly from the $n \times n$ DWT matrix. The encoding matrix A is able to be tested on large images without storing any matrix, since it doesn't require storage and also enables fast matrix-vector multiplications involving A and A^T . Results of the experiments carried are given in Table 10, while Figure 4 displays the original, blurred, and reconstructed images obtained by the MDDYM and MFRM schemes respectively. Careful observation of the results displayed in Table 10 indicates that the MDDYM outperformed the MFRM scheme in all the four metrics considered, namely objective function (ObjFun), mean square error (MSE), signal to noise ratio (SNR) and structural similarity index (SSIM). Figure 4 also shows that images restored from the blurred images by MDDYM scheme appears slightly closer to the original one than the restored images by MFRM method. Therefore, taking everything into consideration, it can be concluded that the MDDYM method is suitable for reconstruction of the images considered. The MATLAB implementation of the SSIM index can be obtained at http://www.cns.nyu.edu/lcv/ssim/.

TABLE 10. Performance results for MDDYM and MFRM methods based on objective function (ObjFun) value, mean square error (MSE), SNR and SSIM index

Image & size	Obj	Fun	M	SE	SN	R	SSI	M
	MDDYM	MFRM	MDDYM	MFRM	MDDYM	MFRM	MDDYM	MFRM
Barbara 256×256	1.530×10^{6}	1.585×10^{6}	1.5967×10^{2}	2.0627×10^{2}	20.66	19.55	0.80	0.75
Girl 256×256	6.224×10^{6}	6.321×10^{6}	1.4978×10^{2}	1.6071×10^{2}	21.73	21.42	0.77	0.75
Lena 256×256	1.459×10^{6}	1.513×10^{6}	6.5691×10^{1}	9.0026×10^{1}	24.29	22.93	0.90	0.87
Cameraman 256×256	1.415×10^{6}	1.473×10^{6}	1.2579×10^{2}	1.7757×10^{2}	21.55	20.05	0.87	0.83

6. **Conclusion.** We have presented a modified Dai-Yuan scheme for solving constrained system of monotone nonlinear equations in this article. It was achieved by developing a new CG update parameter, which was inspired by recent works in [54] and [57] for unconstrained optimization. The scheme requires less memory to implement and avoids computing derivatives, which makes it appropriate for large dimension and non-smooth problems. The scheme's global convergence was established by employing basic assumptions. Also, numerical experiments conducted with some benchmark problems indicates that the proposed scheme is promising

FIGURE 4. Original and blurred images (First and second columns from the left). Restored images by the two methods (Third and Fourth columns)

as it is competitive and more efficient compared to the recent PDYM, MDY, and MFR schemes. Moreover, as part of its novelty, the scheme is applied to solve image de-blurring problems in compressed sensing. The experiments conducted show that the scheme produces better results than the MFRM scheme. As a further research, we intend to explore application of the scheme in other real life problems like signal processing and robotic control.

Acknowledgments. The authors would like to thank the entire members of the numerical optimization research group, Bayero University, Kano for their comments and encouragement in the course of this work.

REFERENCES

- A. B. Abubakar, P. Kumam, H. Mohammad, A. M. Awwal and K. Sitthithakerngkiet, A modified Fletcher-Reeves conjugate gradient method for monotone nonlinear equations with some applications, *Mathematics*, 7 (2019), 745.
- [2] A. B. Abubakar, K. Muangchoo, A. H. Ibrahim, J. Abubakar and S. A. Rano, FR-type algorithm for finding approximate solutions to nonlinear monotone operator equations, Arab. J. Math., 10 (2021), 261–270.
- [3] S. Aji, P. Kumam, A. M. Awwal, M. M. Yahaya and K. Sitthithakerngkiet, An efficient DY-type spectral conjugate gradient method for system nonlinear monotone equations with applications in signal recovery, AIMS Math., 6 (2021), 8078–8106.
- [4] S. Babaie-Kafaki and R. Ghanbari, A descent family of Dai-Liao conjugate gradient methods, Optim. Methods Softw., 29 (2013), 583–591.
- [5] M. R. Banham and A. K. Katsaggelos, Digital image restoration, IEEE Signal Process Mag., 14 (1997), 24–41.
- [6] J. M. Barizilai and M. Borwein, Two point step size gradient methods, IMA J. Numer. Anal., 8 (1988), 141–148.

- [7] C. L. Chan, A. K. Katsaggelos and A. V. Sahakian, Image sequence filtering in quantum-limited noise with applications to low-dose fluoroscopy, *IEEE Trans. Med. Imaging*, 12 (1993), 610–621.
- [8] W. Cheng, A two-term PRP-based descent method, Numer. Funct. Anal. Optim., 28 (2007), 1217–1230.
- [9] W. Cheng, A PRP type method for systems of monotone equations, Math. Comput. Modelling, 50 (2009), 15–20.
- [10] W. La Cruz, A spectral algorithm for large-scale systems of nonlinear monotone equations, Numer. Algor., 76 (2017), 1109–1130.
- [11] W. La Cruz and M. Raydan, Nonmonotone spectral methods for large-scale nonlinear systems, Optim. Methods Softw., 18 (2003), 583–599.
- [12] Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (1999), 177–182.
- [13] S. P. Dirkse and M. C. Ferris, A collection of nonlinear mixed complementarity problems, Optim. Methods Softw., 5 (1995), 319–345.
- [14] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201–213.
- [15] T. Elaine, Y. Wotao and Z. Yin, A fixed-point continuation method for ℓ_1 —regularized minimization with applications to compressed sensing, CAAM TR07-07, Rice University, (2007), 43–44
- [16] M. Figueiredo, R. Nowak and S. J. Wright, Gradient projection for sparse reconstruction, application to compressed sensing and other inverse problems, *IEEE J-STSP*, IEEE Press, Piscataway, NJ. (2007), 586–597.
- [17] R. Fletcher and C. Reeves, Function minimization by conjugate gradients, The Computer Journal, 7 (1964), 149–154.
- [18] R. Fletcher, Practical Method of Optimization, Volume 1: Unconstrained Optimization, 2nd edition, Wiley, New York, 1997.
- [19] W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim., 16 (2005), 170–192.
- [20] A. S. Halilu and M. Y. Waziri, An improved derivative-free method via double direction approach for solving systems of nonlinear equations, J. Ramanujan Math. Soc., 33 (2018), 75–89.
- [21] A. S. Halilu, A. Majumder, M. Y. Waziri and K. Ahmed, Signal recovery with convex constrained nonlinear monotone equations through conjugate gradient hybrid approach, *Math. Comput. Simulation*, 187 (2021), 520–539.
- [22] A. S. Halilu, A. Majumder, M. Y. Waziri, A. M. Awwal and K. Ahmed, On solving double direction methods for convex constrained monotone nonlinear equations with image restoration, *Comput. Appl. Math.*, 40 (2021), 239–265.
- [23] B. S. He, H. Yang and S. L. Wang, Alternationg direction method with self-adaptive penalty parameters for monotone variational inequalites, J. Optim. Theory Appl., 106 (2000), 337– 356.
- [24] M. R. Hestenes and E. L. Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49 (1952), 409–436.
- [25] G. A. Hively, On a class of nonlinear integral equations arising in transport theory, SIAM J. Numer. Anal., 9 (1978), 787–792.
- [26] D. H. Li and X. L. Wang, A modified Fletcher-Reeves-type derivative-free method for symmetric nonlinear equations, Numer. Algebra, Control and Optimization, 1 (2011), 71–82.
- [27] Q. N. Li and D. H. Li, A class of derivative-free methods for large-scale nonlinear monotone equations, *IMA J. Numer. Anal.*, **31** (2011), 1625–1635.
- [28] J. Liu and Y. Feng, A derivative-free iterative method for nonlinear monotone equations with convex constraints, Numer. Algor., 82 (2019), 245–262.
- [29] J. K. Liu, J. L. Xu and L. Q. Zhang, Partially symmetrical derivative-free Liu-Storey projection method for convex constrained equations, Inter. J. Comput. Math., 96 (2019), 1787–1798.
- [30] J. K. Liu and S. J. Li, A projection method for convex constrained monotone nonlinear equations with applications, Comput. Math. Appl., 70 (2015), 2442–2453.
- [31] J. K. Liu and S. J. Li, Spectral DY-type projection methods for nonlinear monotone system of equations, J. Comput. Math., 33 (2015), 341–355.

- [32] J. K. Liu and S. J. Li, Multivariate spectral projection method for convex constrained nonlinear monotone equations, Journal of Industrial and Management Optimization, 13 (2017), 283–297
- [33] Y. Liu and C. Storey, Efficient generalized conjugate gradient algorithms, Part 1: Theory, J. Optim. Theory Appl., 69 (1991), 129–137.
- [34] A. T. Mario, R. Figueiredo and D. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Transactions on Image Processing, 12 (2003), 906–916.
- [35] K. Meintjes and A. P. Morgan, A methodology for solving chemical equilibrium systems, Appl. Math. Comput., 22 (1987), 333–361.
- [36] J. S. Pang, Inexact Newton methods for the nonlinear complementarity problem, Math. Program., 36 (1986), 54–71.
- [37] G. Peiting and H. Chuanjiang, A derivative-free three-term projection algorithm involving spectral quotient for solving nonlinear monotone equations, *Optimization*, (2018) 1-18.
- [38] E. Polak and G. Ribiére, Note Sur la convergence de directions conjugèes, Rev. Française Informat. Recherche Operationelle, 3 (1969), 35–43.
- [39] B. T. Polyak, The conjugate gradient method in extreme problems, USSR Comp. Math. Math. Phys., 9 (1969), 94–112.
- [40] J. Sabi'u, A. Shah and M. Y. Waziri, Two optimal Hager-Zhang conjugate gradient methods for solving monotone nonlinear equations, Appl. Numer. Math., 153 (2020), 217–233.
- [41] J. Sabi'u, A. Shah, M. Y. Waziri and K. Ahmed, Modified Hager-Zhang conjugate gradient methods via singular value analysis for solving monotone nonlinear equations with convex constraint, Int. J. Comput. Methods, 18 (2021), Paper No. 2050043, 33 pages.
- [42] C. H. Slump, Real-time image restoration in diagnostic X-ray imaging, the effects on quantum noise, in Proceedings 11th IAPR International Conference on Pattern Recognition, Vol.II. Conference B: Pattern Recognition Methodology and Systems, (1992), 693–696.
- [43] V. M. Solodov and A. N. Iusem, Newton-type methods with generalized distances for constrained optimization, Optimization, 41 (1997), 257–277.
- [44] M. V. Solodov and B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, in *Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods* (eds. M. Fukushima, L. Qi), Kluwer Academic Publishers, (1998), 355–369.
- [45] C. W. Wang, Y. J. Wang and C. L. Xu, A projection method for a system of nonlinear monotone equations with convex constraints, Math. Meth. Oper. Res., 66 (2007), 33–46.
- [46] X. Y. Wang, X. J. Li and X. P. Kou, A self-adaptive three-term conjugate gradient method for monotone nonlinear equations with convex constraints, Calcolo, 53 (2016), 133–145.
- [47] M. Y. Waziri, K. Ahmed and J. Sabi'u, A family of Hager-Zhang conjugate gradient methods for system of monotone nonlinear equations, Appl. Math. Comput., 361 (2019), 645–660.
- [48] M. Y. Waziri, K. Ahmed and J. Sabi'u, A Dai-Liao conjugate gradient method via modified secant equation for system of nonlinear equations, Arab. J. Math., 9 (2020), 443–457.
- [49] M. Y. Waziri, K. Ahmed and J. Sabi'u, Descent Perry conjugate gradient methods for systems of monotone nonlinear equations, Numer. Algor., 85 (2020), 763–785.
- [50] M. Y. Waziri, K. Ahmed, J. Sabi'u and A. S. Halilu, Enhanced Dai-Liao conjugate gradient methods for systems of monotone nonlinear equations, SeMA Journal, 78 (2021), 15–51.
- [51] M. Y. Waziri, H. Usman, A. S. Halilu and K. Ahmed, Modified matrix-free methods for solving systems of nonlinear equations, Optimization, (2020), DOI:10.1080/02331934.2020.1778689.
- [52] Y. Xiao, Q. Wang and Q. Hu, Non-smooth equations based method for $\ell_1 norm$ problems with applications to compressed sensing, Nonlinear Anal. Theory Methods Appl., **74** (2011), 3570–3577.
- [53] Y. Xiao and H. Zhu, A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405 (2013), 310– 319.
- [54] W. Xue, J. Ren, X. Zheng, Z. Liu and Y. Liang, A new DY conjugate gradient method and applications to image denoising, *IEICE Trans. Inf. Syst.*, 101 (2018), 2984–2990.
- [55] G. Yu, L. Guan, and W. Chen, Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization, Optim. Methods and Software, 23 (2008), 275–293.
- [56] G. H. Yu, S. Z. Niu and J. H. Ma, Multivariate spectral gradient projection method for non-linear monotone equations with convex constraints, J. Industrial and Management Optimization, 9 (2013), 117–129.

- [57] G. Yuan, Z. Sheng and W. Liu, The modified HZ conjugate gradient algorithm for large-scale nonsmooth optimization, PLoS ONE, 11 (2016), e0164289.
- [58] L. Zhang, W. Zhou and D. H. Li, Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search, Numersche Mathematik, 104 (2006), 561–572.
- [59] Y. B. Zhao and D. Li, Monotonicity of fixed point and normal mappings associated with variational inequality and its application, SIAM J. Optim., 11 (2001), 962–973.

Received February 2021; 1^{st} revision July 2021; Final revision September 2021, Early access November 2021.

 $E{-}mail\ address{:}\ {\tt mywaziri.mth@buk.edu.ng}$ $E{-}mail\ address{:}\ {\tt kabiruhungu16@gmail.com}$ $E{-}mail\ address{:}\ abubakars.halilu@slu.edu.ng}$

 $E\text{-}mail\ address: \verb"aliyumagsu@gmail.com""}$