A REPORT

<u>ON</u>

MODELING, SIMULATION AND FABRICATION OF LATTICE BASED IMPLANT

SUBMITTED IN PARTIAL FULFILMENT FOR THE DEGREE OF **BACHELOR OF TECHNOLOGY**

IN

MECHANICAL ENGINEERING

BY

Anurag Mishra 1802740904 Avichal Singh 1802740908 Bhanu Pratap Singh 1702740038 Divyanshu Verma 1702740049

Under the Guidance of
Dr. Tarun Bhardwaj
Assistant Professor
Department of Mechanical Engineering

AJAY KUMAR GARG ENGINEERING COLLEGE GHAZIABAD

ACKNOWLEDGEMENT

We would like to thank Assistant Professor Dr. Tarun Bhardwaj who has given us this invaluable opportunity and supporting me all the time. We learned many things from him for two years studying at AJAY KUMAR GARG ENGINEERING COLLEGE. It is really my pleasure to work under his supervision. We also extended my thanks to other faculty members of the Mechanical Engineering Department, for their valuable support, whenever it requires to us.

Anurag Mishra Avichal Singh Bhanu Pratap Singh Divyanshu Verma

Department of Mechanical Engineering
AJAY KUMAR GARG ENGINEERING COLLGE
GHAZIABAD

<u>ABSTRACT</u>

Orthopedic regenerative medicine is the latest trend in biomedical sector. Designing of bone scaffolds and implants is a challenging step followed by its fabrication and surgical implantation. Lattice structure based designs are desirable candidates for healing or replacing the damaged bones, as they provide larger surface area for osseointegration. Additive manufacturing has the potential to fabricate these complex lattice structures. In these work SolidWorks 2020 CAD software is used for modelling the hollow cubical lattice structure which are then scaled while maintaining the same overall size and volume. After designing Finite Element Analysis (FEA) is performed to investigate the compressive behaviors of the lattice structures using the Ansys FEA package. The compressive modulus of porous scaffolds for stainless steel and TI-6Al-4V are calculated and compared with that of compact bone.

INTRODUCTION

IMPLANT

- ➤ It is a medical device manufactured to replace a missing biological structure, support a damaged biological structure, or enhance an existing biological structure.
- ➤ Implants are required for large segmental damaged bones because they cannot heal themselves, as against the small damaged bones which have the ability of self healing.
- ➤ The main goal of implants is to help patients with disabilities to return to normal function for the longest possible duration. Further, implants can be used either to augment existing performance of the body or to replace missing tissues, organs or parts of the body.

Dental Implant

Cranial Implant

Orthopedic Implant

Unit cell & Scaffold

The unit cell is the smallest part, that repeated regularly in three dimensions to creates the scaffold

Figure 1. Approaches for scaffold design: unit cell types [1]

Use & Advantage of Scaffold

- Use to make a bridge between the gap of two ends of damaged bone.
- Porous scaffold is best for the growth (proliferation) and deposition (vascularization).
- Porous scaffold are also good in osseointegration(the direct structural and functional connection b/w living bone and surface of load bearing artificial implant.

Fig. 1. Model of the femur bone and segmental defect with the applied osteo-synthesis plate and filled with lattice structure based implant [3].

Lattice Based Implant

Additive Manufacturing

- The process of joining materials to make objects from 3D model data, usually layer by layer.
- Commonly known as 3D printing.
- Manufacturing components with virtually no geometric limitations or tools.

Advantages of Additive Manufacturing

- It has the capability to fabricate external as well as internal architecture.
- Cost effective, low wastage, rapid manufacturing of parts or components that can be customized basis.

Techniques used to manufacture Porous Scaffold

- Fused Deposition Modeling
- Selective Laser Melting
- Selective Laser Sintering

- Electron Beam Melting
- Direct Laser Deposition

Fused Deposition Modeling (FDM)

➤ FDM Printer use a thermoplastic filament, which is heated to its melting point and then extruded, layer by layer, to create a 3D object.

→ Polymers Printed by FDM

- PLA (Polylactic Acid)
- ABS (Acrylonitrile Butadiene Styrene)
- PET (Polyethylene terephthalate)
- Nylon
- TPU (Thermoplastic polyurethane)
- PU (polyurethane)

DESIGN & METHODLOGY

- Lattice based part designed in SolidWorks (CAD software)
 & import in Ansys (simulation software).
- Two rigid plates are modeled, assembled with lattice part.
- Surface to surface contact has been selected and the contact properties are taken as friction coefficient of 0.2 with normal behavior of hard contact.
- To simulate the boundary conditions, the lower plate is kept fixed and the upper plate is given a downward displacement of 0.01 mm.

FINITE ELEMENT ANALYSIS (FEA)

- ➤ Design geometry is a lot more complex; and the accuracy requirement is a lot higher. We need To understand the physical behaviours of a complex object (strength, heat transfer capability, fluid flow, etc.) To predict the performance and behaviour of the design; to calculate the safety margin; and to identify the weakness of the design accurately; and To identify the optimal design with confidence.
- FEA is used to simulate the compressive behavior of lattice structures.
- Compressive behavior of designed scaffold must be predicted before actual fabrication, to reduce the cost of experimentation and material.
- In this analysis, compressive behavior & strength of the lattice structures will be simulated.

Literature Review

Sr No.	Paper Description	Remarks
1.	Finite Element Modeling and Analysis of Implant Scaffolds By- T Bhardwaj, SP Singh, M Shukla. International Conference on, 2017	 Geometry of structure such that Elastic modulus is in the range of Elastic modulus of the cortical bone (3-30-GPa) By porous structure, surface area is increase. It helps to cell in growth & vascularization.
2.	Lattice modeling and Finite Element Simulation for Additive Manufacturing of Porous Scaffolds By- T Bhardwaj, SP Singh, M Shukla International Conference on, 2017	 To avoid the stress shielding effect, low dense porous scaffolds are manufactured that provide cell attachment, mechanical stability and fluid perfusion. Effect of unit size scaling results in generating more surface area for same porosity that leads to more bone regeneration

Sr No.	Paper Description	Remarks
3.	Additively manufactured porous metallic biomaterials By-Amir A Zadpoor - 2019	 Porous metallic biomaterials with topologically ordered unit cells have improving bone tissue regeneration and preventing implant-associated infections. Discussed how the huge (internal) surfaces of AM porous biomaterials and their pore space could be used respectively for surface biofunctionalization and accommodation of drug delivery vehicles so as to enhance their bone tissue regeneration performance and minimize the risk of implant-associated infections. We conclude with a general discussion and by suggesting some possible areas for future research.

Sr No.	Paper Description	Remarks
4.	Additively manufactured functionally graded biodegradable porous zinc By - Y Li 1, P Pavanram 2, J Zhou 1, K Lietaert 3, F S L Bobbert 1, Yusuke Kubo 2, M A Leeflang 1, H Jahr 4, A A Zadpoor - 2020	 Two uniform AM porous Zn designs with diamond unit cell. Cylindrical specimens were fabricated from pure Zn powder by using a powder bed fusion technique, followed by a comprehensive study on their static and dynamic biodegradation behaviors, mechanical properties, permeability, and biocompatibility. Topological design, indeed, affected the biodegradation behavior of the specimens, as evidenced by 150% variations in biodegradation rate between the three different designs. Using topological design of AM porous Zn for controlling its mechanical properties and degradation behavior is thus clearly promising, thereby rendering flexibility to the material to meet a variety of clinical requirements.

- 5. Direct Laser Deposition Additive Manufacturing
 of Ti-15Mo Alloy: Effect
 of Build Orientation
 Induced Surface
 Topography on Corrosion
 and Bioactivity
 - By- T Bhardwaj, M Shukla, NK Prasad, CP Paul

Published in- Metals & Materials, 2020 Springer

- Examined the higher content of refractory metals(Mo, Nb & Ta) in Ti alloy.
- But select Ti (15%)Mo due to better density as compare to other alloy composition.
- To optimize the DED-LAM process parameters for minimum dilution, RSM technique is used

- 6. Biomaterials & Scaffolds
 for tissue engineering
 Author of article Fregal
 J. O'Brien
- Biomaterials are generally categorized in three 1.-Ceramic, 2-Synthetic Polymer, 3 - Natural Polymer
- Scaffold should have a balance between mechanical properties and porous architecture which allows cell infiltration and vascularization & it is the key to success of any scaffold.
- Improvement in vascularization strategies is one of the area requiring the most extensive research in the field of tissue engineering.

CONCLUSION from Literature review

- ❖ There are different approach of generating lattice for AM, CAD, Image and implicit based. Implicit based lattice is preferred now a days as it reduces weight whilst maintaining optimal performance.
- Polymer based lattice have a balance between mechanical properties and porous architecture which allows cell infiltration and vascularization
- Design of AM porous Zn for controlling its mechanical properties and degradation behavior.
- ❖ FEA is performed for static load, pressure to get stress deformation curve, which will decrease the physical manufacturing cost .
- Increase in more surface area for same porosity increases the chances of bone regeneration.

Research Gap

➤ FEA has been performed to simulate only the compression behaviour of lattice structure but we shall also perform to simulate the tensile and fatigue behaviours of lattice structure.

- > Impact testing of polymer based lattice will also performed.
- ➤ We also measure the rate of decomposition of scaffold material which is easily consume by our body because due to excess decomposition of material causes adverse effect on body.

Research Objective

To design the lattice structure which have high porosity with desire mechanical properties.

- The lattice structure in which the better interconnected network that helps in proliferation and vascularization.
- ➤ The scaffold is biodegradable it allow the body's own cells, over time, to eventually replace the implanted scaffold. Scaffold and constructs are not intended as permanent implants. The scaffold must therefore be biodegradable so to allow cell to produce their own extracellular matrix.

Research methodology

- Lattice based part designed in **SolidWorks**(CAD software) & import in **Ansys**(simulation software).
- > Two rigid plates are modeled, assembled with lattice part.
- ➤ Surface to surface contact has been selected and the contact properties are taken as friction coefficient of 0.2 with normal behavior of hard contact.
- ➤ To simulate the boundary conditions, the **lower plate** is kept **fixed** and **the upper plate** is given a downward **displacement** of **0.01 mm**.

Research Framework

Specify the need of polymer scaffold.

IMPLICIT LATTICE

CUBIC LATTICE WITH CYLINDRICAL EXTRUDE CUT.

DIMENSION = 20*20*20.

POROSITY = 51.10% (internal radius = 0mm).

= 71.94% (internal radius =0.5mm).

= 82.60% (internal radius =0.3mm).

LATTICE STRUCTURE

IMAGE LATTICE

UNIT CELL

Surface modelling with smooth circular opening from 6 faces of cube.

DIMENSION = 20*20*20.

POROSITY = 54.27% (THICKNESS=6MM).

= 66.94% (THICKNESS=7MM).

= 78.38% (THICKNESS=8MM).

= 87.75% (THICKNESS=9MM).

LATTICE STRUCTURE

Methodology

➤ Part designed in SolidWorks and imposed in Ansys in IGES file format.

- ➤ Ti6Al4V is assigned as a material (Elastic modulus 114GPa and Poission's ratio 0.34).
- ➤ Mess is generated of 0.034mm.
- Force (10N) is applied on one face while keeping the opposite face as the fixed support.
- ➤ Different solution tools like total deformation, Equivalent stress & Equivalent strain based on Von-misses criteria is used.
- > Required result is obtained.

Project*

First Saved	Wednesday, January 6, 2021
Last Saved	Wednesday, January 6, 2021
Product Version	2020 R2

Contents

ı Units

1 Model (A4) i Geometry

 $nSYS\Solid$

<u> Materials</u>

¿ Coordinate Systems

Mesh

i Static Structural (A5)

n Analysis Settings n Loads

n Solution (A6)

n Solution Information

n Results

ı Material Data

Titanium Alloy

Units

TARIE 1

TABLE 1		
Unit System	Metric (m, kg, N, s, V, A) Degrees rad/s Celsius	
•		
Angle	Degrees	
-		
Rotational Velocity	rad/s	
Temperature	Celsius	

Model (A4)

Geometry

TABLE 2 Model (A4) > Geometry

Object Name	Geometry		
State	Fully Defined		
State	Fully Defined		
Definition			
Source	C:\Users\divya\OneDrive\Documents\implicit structure compressive report_files\dp0\SYS\DM\SYS.scdoc		
Туре	SpaceClaim		
Length Unit	Meters		
Element Control	Program Controlled		
Display Style	Body Color		
	Bounding Box		
Length X	4.e-003 m		
Length Y	4.e-003 m		
Length Z	4.e-003 m		
	Properties		
Volume	1.3831e-008 m³		
Mass	6.1256e-005 kg		
Wass	5.22555 555 N _D		

Scale Factor Value	1.		
Statistics			
Bodies	1		
Active Bodies	1		
Nodes	69547		
Elements	31098		
Mesh Metric	None		
	Update Options		
Assign Default Material	No		
	Basic Geometry Options		
Solid Bodies	Yes		
Surface Bodies	Yes		
Line Bodies	Yes		
Parameters	Independent		
Parameter Key			
Attributes	Yes		
Attribute Key			
Named Selections	Yes		
Named Selection Key			
Material Properties	Yes		
	Advanced Geometry Options		
Use Associativity			
Coordinate Systems			
Coordinate System Key			
Reader Mode Saves Updated File	No		
Use Instances	Yes		
Smart CAD Update			
Compare Parts On Update			
Analysis Type	3-D		
Mixed Import Resolution			
Clean Bodies On Import			
Stitch Surfaces On Import			
Decompose Disjoint Geometry			
Enclosure and Symmetry Processing	Yes		

Object Name	SYS\Solid
State	Meshed
Graphics Properties	
Visible	Yes
Transparency	1

Definition			
Suppressed	No		
Stiffness Behavior	Flexible		
Coordinate System	Default Coordinate System		
Reference Temperature	By Environment		
Treatment	None		
	Material		
Assignment	Titanium Alloy		
Nonlinear Effects	Yes		
Thermal Strain Effects	Yes		
Во	unding Box		
Length X	4.e-003 m		
Length Y	4.e-003 m		
Length Z	4.e-003 m		
F	Properties		
Volume	1.3831e-008 m³		
Mass	6.1256e-005 kg		
Centroid X	1.5e-003 m		
Centroid Y	1.5e-003 m		
Centroid Z	-1.5e-003 m		
Moment of Inertia Ip1	1.6229e-010 kg·m²		
Moment of Inertia Ip2	1.6229e-010 kg·m²		
Moment of Inertia Ip3	1.6229e-010 kg·m²		
	Statistics		
Nodes	69547		
Elements	31098		
Mesh Metric	None		
CAD Attributes			
PartTolerance:	0.0000001		
Color:143.149.175			

TABLE 3

Model (A4) > Geometry > Parts

FIGURE 1 Model (A4) > Geometry > SYS > Solid > Image

TABLE 4

Model (A4) > Materials			
Model (A4) > Materials Object Name	Materials		
State	Fully Defined		
Statistics			
Materials	2		
Material Assignments	0		

U.UU13 FIGURE 2

0.0040

als > Image

Object Name	Global Coordinate System
State	Fully Defined
State	rully befined
	Definition
Туре	Cartesian
Coordinate System ID	0.
coordinate system is	0.
	Origin
Origin X	0. m
Oligiii X	0.111
Origin Y	0. m
Origin Z	0. m
Directional Vectors	
Directional vectors	
X Axis Data	[1.0.0.]
V Avia Data	[0.4.0.]
Y Axis Data	[0.1.0.]
Z Axis Data	[0.0.1.]
2 AND Data	[5.5.1.]

TABLE 5 Model (A4) > Coordinate Systems > Coordinate System

FIGURE 3 Model (A4) > Coordinate Systems > Image

Mesh

TABLE 6 Model (A4) > Mesh

Object Name	Mesh
State	Solved
Display	
Бюршу	
Display Style	Use Geometry Setting
Display Style	ose deometry setting
Defaults	
Detaults	
Physics Preference	Mechanical
Element Order	Program Controlled

	Element Size	Default
	Sizing	
	Use Adaptive Sizing	Yes
	Resolution	Default (2)
	Mesh Defeaturing	Yes
	Defeature Size	Default
	Transition	Fast
	Span Angle Center	Coarse
	Initial Size Seed	Assembly
	Bounding Box Diagonal	6.9282e-003 m
	Average Surface Area	1.1781e-007 m²
	Minimum Edge Length	1.e-004 m
FIGU	Quality	
RE 4	Check Mesh Quality	Yes, Errors
	Error Limits	Aggressive Mechanical
	Target Quality	Default (0.050000)
	Smoothing	Medium
	Mesh Metric	None
	Inflation	
Model	Use Automatic Inflation	None
(A4) > Mesh	Inflation Option	Smooth Transition
VIESII	Transition Ratio	0.272
Image	Maximum Layers	5
	Growth Rate	1.2
	Inflation Algorithm	Pre
	View Advanced Options	No
	Advanced	
	Number of CPUs for Parallel Part Meshing	Program Controlled
	Straight Sided Elements	No
	Rigid Body Behavior	Dimensionally Reduced
	Triangle Surface Mesher	Program Controlled
	Topology Checking	Yes
	Pinch Tolerance	Please Define
	Generate Pinch on Refresh	No
	Statistics	
	Nodes	69547
	Elements	31098

Static Structural (A5)

TABLE 7

Model (A4) > Analysis			
Object Name	Static Structural (A5)		
State	Solved		
Definition			
Physics Type	Structural		
Analysis Type	Static Structural		
Solver Target	Mechanical APDL		
Options			
Environment Temperature	22.°C		
Generate Input Only	No		

TABLE 8
Model (A4) > Static Structural (A5) > Analysis Settings

Number Of Steps | 1.

Current Stelen Name	Analysis _i Settings
Step End Fiffle	គ្នីប្បឹy Defined
Auto Time Stepping	Step Controls Program Controlled
	Solver Controls
Solver Type	Program Controlled
Weak Springs	Off
Solver Pivot Checking	Program Controlled
Large Deflection	Off
Inertia Relief	Off
Quasi-Static Solution	Off
.,	Rotordynamics Controls
Coriolis Effect	Off
	Restart Controls
Generate Restart Points	Program Controlled
Retain Files After Full Solve	No No
Combine Restart Files	Program Controlled
Combine Nestare mes	Nonlinear Controls
Newton-Raphson Option	Program Controlled
Force Convergence	Program Controlled
Moment Convergence	Program Controlled
Displacement Convergence	Program Controlled
Rotation Convergence	Program Controlled
Line Search	Program Controlled
Stabilization	Program Controlled
Stabilization	Advanced
Inverse Option	No
Contact Split (DMP)	Off
contact spirt (DIVIF)	Output Controls
Stress	Yes
Surface Stress	No No
Back Stress	No
Strain	Yes
Contact Data	Yes
Nonlinear Data	No No
Nodal Forces	No No
Volume and Energy	Yes
Euler Angles	
General Miscellaneous	Yes No
Contact Miscellaneous	No No
Store Results At	All Time Points
l l	All Time Points Program Controlled
Result File Compression	
Colora Filos Discotore	Analysis Data Management
Solver Files Directory	C:\Users\divya\OneDrive\Documents\implicit structure compressive report_files\dp0\SYS\MECH
Future Analysis	None
Scratch Solver Files Directory	NI.
Save MAPDL db	No .
Contact Summary	Program Controlled
Delete Unneeded Files	Yes
Nonlinear Solution	No
Solver Units	Active System
Solver Unit System	mks

Object Name	Fixed Support	Force
State		Fully Defined
	Scope	
Scoping Method	Geometry Selection	
Geometry		64 Faces
	Definition	
Туре	Fixed Support	Force
Suppressed		No
Define By		Components
Applied By		Surface Effect
Coordinate System		Global Coordinate System
X Component		-10. N (ramped)
Y Component		0. N (ramped)
Z Component		0. N (ramped)

TABLE 9 Model (A4) > Static Structural (A5) > Loads

FIGURE 6 Model (A4) > Static Structural (A5) > Force

FIGURE 7 Model (A4) > Static Structural (A5) > Force > Image

Solution (A6)

Object Name	Solution (A6)
State	Solved
Adaptive Mesh Refinement	
Max Refinement Loops	1.
Refinement Depth	2.
Information	
Status	Done
MAPDL Elapsed Time	12. s
MAPDL Memory Used	816. MB
MAPDL Result File Size	21.125 MB
Post Processing	
Beam Section Results	No
On Demand Stress/Strain	No

Object Name	Solution Information

TABLE 10

State	Solved
Solution Information	
Solution Output	Solver Output
Newton-Raphson Residuals	0
Identify Element Violations	0
Update Interval	2.5 s
Opuate interval	2.33
Display Points	All
FE Connection Visibility	
Activate Visibility	Yes
Display	All FE Connectors
Draw Connections Attached To	All Nodes
Line Color	Connection Type
Visible on Results	No
Visible of Results	1.0
Line Thickness	Single
Display Type	Lines

TABLE 11 Model (A4) > Static Structural (A5) > Solution (A6) > Solution Information

TABLE 12

Model (A4) > Static Structural (A5) > Solution (A6) > Results

Total Deformation Equivalent Elastic Strain Equivalent Stress Object Name State Solved Scope Scoping Method Geometry Selection All Bodies Geometry Definition Total Deformation Equivalent Elastic Strain Туре Equivalent (von-Mises) Stress Time Ву Display Time Last Calculate Time History Yes Identifie No Suppressed Results 0. m 7.3698e-007 m/m 53173 Pa 2.639e-007 m 1.8159e-004 m/m 1.8789e+007 Pa Average 1.2969e-007 m 4.2338e-005 m/m 3.7462e+006 Pa SYS\Solid Minimum Occurs On Maximum Occurs On SYS\Solid Information Time 1. s Load Step 1 Substep Iteration Number Integration Point Results Display Option Averaged Average Across Bodies No

TABLE 13
Model (A4) > Static Structural (A5) > Solution (A6) > Total Deformation

Model (A4) > Static Structural (A5) > Solution (A6) > Total Deformation				
Time [s]	Minimum [m]	Maximum [m]	Average [m]	
1.	0.	2.639e-007	1.2969e-007	

FIGURE 9
Model (A4) > Static Structural (A5) > Solution (A6) > Total Deformation > Image

TABLE 14

	IADEL IT				
Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Elastic Strain					
Time [s]	Minimum [m/m]	Maximum [m/m]	Average [m/m]		
1.	7.3698e-007	1.8159e-004	4.2338e-005		

FIGURE 11
Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Elastic Strain > Image

TABLE 15
Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Stress

-	moder (A4) > Static Structural (A5) > Solution (A6) > Equivalent Stress				
	Time [s]	Minimum [Pa]	Maximum [Pa]	Average [Pa]	
		• •	, ,	, , ,	
Н		50470	4.0700 007	27452 225	
	1.	53173	1.8789e+007	3.7462e+006	

FIGURE 13
Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Stress > Image

Material Data

Titanium Alloy

TABLE 16

Titanium Alloy > Constants	
Density	4429 kg m^-3
Coefficient of Thermal Expansion	9.4e-006 C^-1
Specific Heat	522 J kg^-1 C^-1
Thermal Conductivity	21.9 W m^-1 C^-1
Resistivity	1.7e-006 ohm m

TABLE 17

Titanium Alloy > Color			
Red	Green	Blue	
	o.cc	Dide	
88	72	117	

TABLE 18
Titanium Alloy > Compressive Ultimate Strength
Compressive Ultimate Strength Pa 0

TABLE 19
Titanium Alloy > Compressive Yield Strength
Compressive Yield Strength Pa

1.07e+009

TABLE 20
Titanium Alloy > Tensile Yield Strength
Tensile Yield Strength Pa

1.1e+009

TABLE 21

Titanium Alloy > Tensile Ultimate Strength

Tensile Ultimate Strength Pa 1.17e+009

TABLE 22
Titanium Alloy > Isotropic Secant Coefficient of Thermal Expansion

Zero-Thermal-Strain Reference Temperature C

22

TABLE 23
Titanium Allov > Isotropic Elasticity

ritalium Alloy > Isotropic Elasticity							
Young's Modulus Pa	Poisson's Ratio	Bulk Modulus Pa	Shear Modulus Pa	Temperature C			
1.04e+011	0.36	1.2381e+011	3.8235e+010				

TABLE 24
Titanium Alloy > Isotropic Relative Permeability
Relative Permeability

References:-

Additively manufactured porous metallic biomaterials

Amir A Zadpoor 1

Affiliations

•PMID: 31701985

*DOI: 10.1039/c9tb00420c

Additively manufactured functionally graded biodegradable porous zinc

Y Li 1, P Pavanram 2, I Zhou 1, K Lietaert 2, F.S.L. Bobbert 2, Yusuke Kubo 2, M.A. Leeflang 2, H. Jahr 4, A.A. Zadpoor 2

Affiliations

PMID: 31993592

•DOI: 10.1039/c9bm01904a

Additively manufactured functionally graded biodegradable porous zinc

Y Li 1, P Pavanram 2, I Zhou 1, K Lletaert 3, F S L Bobbert 1, Yusuke Kubo 2, M A Leeflang 2, H Jahr 5, A A Zadpoor 2

Affiliations

PMID: 31993592

•DOI: 10.1039/c9bm01904a

- •] Q. Chen and G. A. Thouas, "Metallic implant biomaterials," Materials Science and Engineering R. vol. 87, pp. 1-57, 2015. [4] Y. F. Zheng, X. N. Gu and F. Witte, "Biodegradable metals," Materials Science and Engineering R, vol. 77, pp. 1-34, 2014.
- •Finite Element Modeling and Analysis of Implant Scaffolds Tarun Bhardwaja , Surya Pratap Singha , Mukul Shukla, Mechanical Engineering Department Motilal Nehru National Institute of Technology Allahabad, India
- . Biomaterials & Scaffolds for tissue engineering Author of article Fregal J. O'Brien