3.1 VECTOR FIELDS

functions whose range set are vector sets e.g. $F(z_1 y) = \hat{l}$ work a point in R^2 to a 2 dimensional yestery.

デ(スツ) = -x2- y? command for plotting vector fields in mattalfactave

F(x, y, z) = F(x, y, z) î + F2(x, z, z) î + F3(x, z) î Fora field (a,y,z) = 9, (x,y,z) 2+ 1, (x,z) 3+ 1, (x,z) (x Velocity field

Preview of the chapter work done by F on moving a particle along the given path C . Greens theorem] Simplification in JF. 27 if . Stokes theorem] Cis a closed loop · Conservative Vector Fields

Later half of Chapter 13 18.7 Z flux of rector fields J Divergence theorem:

13.2 LINE INTEGRALS

EXAMPLE I Evaluate $\int_C (2 + x^2 y) ds$, where C is the upper half of the unit circle

$$x^{2} + y^{2} = 1.$$

$$f = 2 + x^{2}y : mass per unit length$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$\int (2 + x^{2}y) ds = mass + C$$

$$= (2+x^2y) \sqrt{(2x)^2 + (2y)^2} dt$$

Total wass
$$m = \int_{0}^{\infty} dm = \int_{0}^{\infty} (2+x^{2}y) \sqrt{\frac{dy}{dt}^{2}} dt$$

$$= \int_{0}^{\pi} (2 + \cos^{2}t \sin t) dt = \text{whotever}$$

EXAMPLE 5 Evaluate $\int_C y \sin z \, ds$, where C is the circular helix given by the equations $x = \cos t$, $y = \sin t$, z = t, $0 \le t \le 2\pi$. (See Figure 9.)

Nim for Today: finish 13.3

along C INE INTEGRALS OF VECTOR FIELDS. C F. d? = by F in moving a particle component of Fin the direction with a displacement) x (distance of a realled) dW = (tangential component) dL

tangential Component of
$$\vec{F} = \vec{F} \cdot \frac{\vec{\tau}'(t)}{|\vec{\tau}'(t)|}$$

$$dW = \vec{F} \cdot \frac{\vec{\tau}'(t)}{|\vec{\tau}'(t)|} \cdot |\vec{\tau}'(t)| dt$$

$$= \vec{F} \cdot \vec{\tau}'(t) dt$$

[= . 7'(t) dt

$$\overrightarrow{T}(t) = \chi(t) \hat{i} + \chi(t) \hat{i} + \chi(t) \hat{k}$$

$$\alpha \leq t \leq b$$

$$\overrightarrow{F}(m, q, 2) = F_1 \hat{i} + F_2 \hat{i} + F_3 \hat{k}$$

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} dW = \int_{C} \vec{F} \cdot \vec{r}'(t) dt$$

$$= \int_{C} \vec{F} \cdot \vec{r}'(t) dt$$

EXAMPLE 7 Find the work done by the force field $\mathbf{F}(x, y) = x^2 \mathbf{i} - xy \mathbf{j}$ in moving a particle along the quarter-circle $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j}$, $0 \le t \le \pi/2$.

EXAMPLE 8 Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = xy \, \mathbf{i} + yz \, \mathbf{j} + zx \, \mathbf{k}$ and C is the twisted cubic given by

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} \vec{F} \cdot \vec{r}'(t) dt = \int_{C} (t^{3}, t^{5}, t^{4}) \cdot (t, 2t, 3t^{2}) dt \\
= \int_{C} (t^{3} + 2t^{6} + 3t^{6}) dt = \frac{27}{28}$$

13.3

THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

whats the theorem ??

$$\nabla f = \frac{\partial f}{\partial x} \hat{i} + \frac{\partial f}{\partial y} \hat{j} + \frac{\partial f}{\partial z} \hat{k}$$

=
$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \hat{j}$$
 for some scalar valued for $f(x_1 y_2)$

II-16 • (a) Find a function
$$f$$
 such that $\mathbf{F} = \nabla f$ and (b) use part (a) to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the given curve C .

II. $\mathbf{F}(x,y) = x^3 y^4 \mathbf{i} + x^4 y^3 \mathbf{j}$,

$$\nabla f = \mathbf{F}$$

C:
$$\mathbf{r}(t) = \sqrt{t} \, \mathbf{i} + (1 + t^3) \, \mathbf{j}, \quad 0 \le t \le 1$$

$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}^4 \mathbf{y}^4}{4}$$

$$f(x,y) = \frac{x^4y^4}{4} + 10$$

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} (and point of c)$$

$$- \int_{C} (arayting c)$$

$$(x,y) = \frac{x^4y^4}{4} + 10$$

24/2

$$\frac{92}{94} = x_{4}x_{3} + y_{1}(8) = x_{4}x_{3}$$

$$\frac{184}{94} + y_{1}(8)$$

II-16 • (a) Find a function f such that $\mathbf{F} = \nabla f$ and (b) use part (a) to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the given curve C.

part (a) to evaluate
$$\int_C \mathbf{F} \cdot d\mathbf{r}$$
 along the given curve C .

II.
$$\mathbf{F}(x, y) = x^3 y^4 \mathbf{i} + x^4 y^3 \mathbf{j},$$
 $\mathbf{F} = C$: $\mathbf{r}(t) = \sqrt{t} \mathbf{i} + (1 + t^3) \mathbf{j}, \quad 0 \le t \le 1$

$$\Rightarrow \frac{34}{96} = \frac{3x}{39}$$

$$= f(1/2) - f(0/1) = 4 - 0 = 4$$

II-16 • (a) Find a function
$$f$$
 such that $\mathbf{F} = \nabla f$ and (b) use part (a) to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the given curve C .

13.
$$\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$$

C is the line segment from $(1, 0, -2)$ to $(4, 6, 3)$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$
 $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + xz \, \mathbf$

f(x,y, 2)

II-16 • (a) Find a function
$$f$$
 such that $\mathbf{F} = \nabla f$ and (b) use part (a) to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the given curve C .

13.
$$\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k}$$
, *C* is the line segment from $(1, 0, -2)$ to $(4, \underline{6}, 3)$

INDEPENDENCE OF PATH

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

THEOREM $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D if and only if $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path C in D.

THEOREM Suppose **F** is a vector field that is <u>continuous</u> on an open connected region D. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D, then **F** is a conservative vector field on D; that is, there exists a function f such that $\nabla f = \mathbf{F}$.

· Previously: if F = 7f then the work done is path independent

Theorem is other way round:

if the work done is independent of path then

Finant necessarily be of for some f, provided

Fis continuous in the domain

THEOREM If $\mathbf{F}(x, y) = P(x, y) \mathbf{i} + Q(x, y) \mathbf{j}$ is a conservative vector field, where P and Q have continuous first-order partial derivatives on a domain D, then throughout D we have

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
if \vec{F} is anservative, then why $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$

$$P(x_1y_1)\hat{i} + D(x_1y_2)\hat{i} = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j}$$

$$\frac{\partial P}{\partial y} = \frac{\partial^2 f}{\partial x}$$

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial x}$$

$$\frac{\partial Q}{\partial x} = \frac{\partial Q}{\partial x}$$

THEOREM Let $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ be a vector field on an open simply-connected region D. Suppose that P and Q have continuous first-order derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \qquad \text{throughout } D$$

Then **F** is conservative.

applications: next time

regions that are not simply-connected

GREEN'S THEOREM Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. If P and Q have continuous partial derivatives on an open region that contains D, then

$$\int_{C} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

(a) Positive orientation

(b) Negative orientation

EXAMPLE 1 Evaluate $\int_C x^4 dx + xy dy$, where C is the triangular curve consisting of the line segments from (0, 0) to (1, 0), from (1, 0) to (0, 1), and from (0, 1) to (0, 0).

EXAMPLE 2 Evaluate $\oint_C (3y - e^{\sin x}) dx + (7x + \sqrt{y^4 + 1}) dy$, where C is the circle $x^2 + y^2 = 9$.

EXAMPLE 5 If $\mathbf{F}(x, y) = (-y \mathbf{i} + x \mathbf{j})/(x^2 + y^2)$, show that $\int_C \mathbf{F} \cdot d\mathbf{r} = 2\pi$ for every positively oriented simple closed path that encloses the origin.