Non Determinismo

DEF: l'*alfabeto epsilon* è definito da un alfabeto \sum unito all'insieme formato con epsilon ossia: $\sum_{\epsilon} = \sum \cup \{\epsilon\}$

Deterministic Finite Automaton (DFA)

E' una quintupla $(Q, \sum, \delta, q_0, F)$ dove:

- Q è l'insieme finito degli stati dell'automa
- \sum è l'alfabeto
- $\delta:\ Q \times \sum_{\epsilon} o \mathcal{P}(Q)$ è la funzione di transizione degli stati
- q_0 è lo stato iniziale dell'automa
- $F \subseteq Q$ è l'insieme degli stati accettanti dell'automa.

Definiamo $\mathcal{P}(Q)$ come l'insieme delle parti di Q, ossia l'insieme contenente tutti i sottoinsiemi possibili

Quando ho un ϵ -arco lo attraverso in ogni caso per passare da uno stato all'altro senza necessità di leggere un carattere in input.

 DEF : sia $N:=(Q,\ \sum,\ \delta,\ q_0,\ F)$ un DFA. Data una stringa $w:=w_0\ldots w_k\in\sum^*$ dove $w_0\ldots w_k\in\sum_\epsilon$, si dice che w è $\mathit{ACCETTATA}$ da N se esiste una sequenza di stati $r_0\ldots r_{k+1}\in Q$ tali che:

- ullet $r_0=q_0$ ossia che la sequenza di stati comincia da quello attuale
- $\forall i \in [0,k] r_{i+1} \in \delta(r_i,w_i)$, per ogni w_i della stringa, si può passare da r_i a r_{i+1} tramite la funzione di transizione δ . Siccome l'automa non è deterministico, δ può restituire più stati possibili: basta che ne esista uno che permette la continuazione.
- r_{k+1} ∈ F: alla fine della lettura, lo stato in cui ci si trova deve essere uno stato finale (accettante).

EQUIVALENZA TRA NFA E DFA

DEF: dato un alfabeto \sum , definiamo come *classe dei linguaggi di* \sum *riconosciuti da un DFA* il seguente insieme:

$$\mathcal{L}(DFA) = \{L \subseteq \sum\nolimits^* \mid \exists \; DFA \; D \; t. \, c \; L = L(D)\}$$

Ossia $\mathcal{L}(DFA)$ è la classe di tutti e soli linguaggi che possono essere riconosciuti da qualche DFA. Quindi $L \subseteq \sum^*$ se e solo se esiste un DFA che accetta esattamente tutte le stringhe di L.

 $\it DEF$: dato un alfabeto \sum , definiamo come $\it classe dei linguaggi di <math>\sum \it riconosciuti da un NFA$ il seguente insieme:

$$\mathcal{L}(NFA) = \{L \subseteq \sum
olimits^* \mid \exists \; DFA \; N \; t. \, c \; L = L(N) \}$$

TEOREMA

Date le due classi dei linguaggi $\mathcal{L}(DFA)$ e $\mathcal{L}(NFA)$ si ha che: $\mathcal{L}(DFA) = \mathcal{L}(NFA)$. *Dimostrazione*:

- Prima implicazione:
 - Dato $L \in \mathcal{L}(DFA)$, sia $D := (Q, \sum, \delta, q_0, F)$ il DFA tale che L = L(D)
 - Poiché il NFA è una generalizzazione del concetto di DFA, ne deriva che D sia anche un NFA, implicando che $L \in \mathcal{L}(NFA)$ e che quindi

$$\mathcal{L}(DFA) \subseteq \mathcal{L}(NFA)$$

- Seconda Implicazione:
 - Sia $L \in \mathcal{L}(NFA)$ e $N := (Q_N, \sum, \delta_N, q_{0N}, F_N)$ il NFS tale che L = L(N).
 - Consideriamo il DFA $D:=(Q_D, \sum, \delta_D, q_{0D}, F_D)$ costruito tramite N stesso:
 - 1. Insieme degli stati: $Q_D = \mathcal{P}(Q_N)$, ossia tutti i sottoinsiemi di stati di N.
 - 2. Funzione di ϵ -chiusura:
 - Per un insieme di stati $R \subseteq Q_N$, definiamo:

$$E(R) = \{q \in Q_N | q \ e \ raggiungibile \ da \ quale \ p \in R \ tramite \ solo \ transizioni \ e \}$$

Ossia l'insieme di stati raggiungibili usando archi ϵ a partire da quegli stati.

- 3. Stato iniziale: $q_{0D} = E(\{q_{0N}\})$, cioè tutti gli stati raggiungibili dallo stato iniziale di N tramite ϵ -transazioni.
- 4. Stati finali: $F_D = \{R \in Q_D | R \cap F_N \notin \emptyset\}$, quindi R è finale se contiene almeno uno stato finale dell'NFA.
- 5. Per $R \in Q_D$ e $a \in \Sigma$:

$$\delta_D(R,a) = \bigcup_{r \in R} E(\delta_N(r,a))$$

Cioè: dal sottoinsieme R, leggendo a, guardo dove vanno i singoli stati $r \in R$, poi applico la chiusura ϵ .

- Con questa costruzione, per ogni parola $w \in \sum^* : w \in L(N) \iff w \in L(D)$. Infatti il DFA simula "in parallelo" tutti i cammini possibili dell'NFA, memorizzando nel suo stato corrente l'insieme degli stati raggiungibili dell'NFA.
- Quindi D riconoscere lo stesso linguaggio di N.
- In conclusione $L(NFA) \subseteq L(DFA)$.

DEF: l'insieme dei *linguaggi regolari* di \sum , indicato con REG, è l'insieme delle classi dei linguaggi riconosciuti da un DFA: $REG := \mathcal{L}(DFA)$.