Best Available Copy

UK Patent Application (19) GB (11) 2 168 815 A

(43) Application published 25 Jun 1986

(22) Date of filing 13 Nov 1984

- (71) Applicant
 Genetics International Inc (USA-Massachusetts),
 50 Milk Street, Boston, MA 02109, United States of
 America
- (72) Inventors Wyndham John Albery, Nigel Philip Bartlett, Derek Harry Craston, Mark Bycroft
- (74) Agent and/or Address for Service Marks & Clerk, 57-60 Lincoln's Inn Fields, London WC2A 3LS

- (51) INT CL⁴ G01N 27/30
- (52) Domestic classification (Edition H): G1N 25B3X 25B 25DX BEX
- (56) Documents cited None
- (58) Field of search
 G1N
 Selected US specifications from IPC sub-class G01N

(54) Bioelectrochemical assay electrode

(57) An electrode is, at least in part made from a material(X) having one-dimensional electrical conduction properties. The material X is conveniently an organic conductor, and preferably a derivative of 7, 7, 8, 8 tetracyano p-quinodimethane, especially in combination with one of the following ions or a salt thereof; Cu(di-pyridylamine), tetrathiafulvalene, ferricinium, triethylammonium or quinolinium. It may be a single crystal or packed into the cavity of a cavity electrode. The electrode may and comprise, at least at an external surface thereof the combination of an enzyme and a mediator compound which transfers electrons to the electrode when the enzyme is catalytically active. The additional material may be NAD+/NADH couple, an oxidised/reduced flavin couple, or choline oxidase.

FIG.13.

Conveniently the material (X) is an organic conductor. Preferably the material (X) is a derivative of 7, 7, 8, 8 tetracyano p-quinodimethane. One of the important requirements for an organic conductor was originally thought to be that the molecules of the solid had to have large planar molecules in which the valence electrons are found predominantly above and below the planar framework. One of the first organic molecules of this type to be synthesised was 7, 7, 8, 8-tetracyano-p-quinodimethane (TCNQ) which was found to a poor conductor of More preferably the material (X) further comprises at least one of the following ions or a salt thereof; Cu(di-pyridylamine), tetrathiafulvalene, ferricinium, triethyl ammonium or quinolinium. In a preferred embodiment of the invention, the material (X) comprises a tetrathiafluvaline (TTF) salt of 7, 7, 8, 8-tetracyano-p-quinodimethane It has been determined that the salt TTFTCNQ is particularly stable, and is more stable than the other salts specifically exemplified herein. A particular utility of this compound is that it can be used in combination with a number of flavoprotein oxidases. In one particular embodiment of the present invention the TTFTCNQ salt is used in combination with a flavoprotein selected from the following group; choline oxidase, zanthine oxidase, L-amino acid oxidase and D-amino acid oxidase. In a further prefferred embodiment of the invention, the material (X) comprises an n-methyl phenazinum (NMP) salt of 7, 7, 8, 8-tetracyano p-quinodimethane. NMPTCNQ was first prepared by Melby (Canadian Journal of Chemistry 1965, 43, 1448) and was found to have a conductivity comparable to that of copper. Studies of the enzyme electrochemisty (Kulys et al.Anal Chim Acta 1982 138 19 and 1980 117 115) of this material have shown that it may enter into biochemical redox reactions, however no previous worker has shown that the material can be employed with an NADH -containing system. We have determined that one particularly useful feature of the embodiments which employ NMPTCNQ 25 is that the electrode potential may be swept outside of the region of electrode stability to dissolve the outer layers of the electrode in a controlled fashion, and thereby present a fresh surface to the electrovte. Accordingly, a further aspect of the invention resides in a method for the regeneration of an electrode 30 for use in an electrochemical assay system, in which the potential of the electrode is swept outside of 30 that range within which the outer layers of the electrode are stable to regenerate the electrode. The above procedure is not possible with electrodes which have been modified with a covalent monolayer, or with a polymer layer containing redox groups. In the solid form of the mixture, the TCNQ and for example TTF molecules, stack in separate, parallel columns and electrons are transferred from the TTF stack (donor) to the TCNQ stack (acceptor). Due to 35 this electron transfer there can be a net motion of electrons along both stacks, hence the material is conductive. This material was found to have the surprising property of anisotropic electrical conduction; that is, the material is highly conductive in one direction only, with the most favourable direction showing a fivehundred fold increase in conductivity over the least favourable direction. We have demonstrated the general applicability of TCNQ containing assay systems when employed with oxidases and dehydrogenases, either when these are NAD-linked or are flavoproteins with other prosthetic groups. Various configurations of electrodes can be envisaged within the scope of the present invention. For 45 example the following general types of electrode; where the material (X) is packed as a paste into the cavity of a cavity electrode; where the material (X) is drop coated onto a glassy carbon electrode, or where the material (X) is present as a single crystal. In the most preferrential embodiment of the invention the electrode further comprises an enzyme at least at an external surface thereof, whereby charge is transferred to the electrode when the enzyme is 50 catalytically active. Preferably the enzyme is a flavoprotein, and is selected from the following group; 50 Glucose Oxidase, Xanthine Oxidase, Choline Oxidase, L-amino acid Oxidase, D-amino acid Oxidase and Monoamine Oxidase. All the materials studied, show reactivity as electrodes for the reoxidation of glucose oxidase. However in most cases the background currents were large and tended to drift. Thus one important feature in the 55 choice of the TCNQ salt to be used as the electrode material is the background electrochemistry. For this 55 reason TTF.TCNQ is the material of choice out of the five materials investigated. A particularly useful and unexpected finding was that TTF.TCNQ could reoxidise choline oxidase, an enzyme for which no alternativee electron acceptor to O2 was previously known. It is envisaged that an acetylcholine sensor could be configured by the use of choline oxidase in conjunction with acetylcholine 60 esterase. Furthermore an acetylcholine esterase sensor can be envisaged which has a supply of acetyl-

choline provided at the electrode surface together with choline oxidase, and in which choline produced

NMP.TCNQ also works well with the other flavoproteins, in addition to glucose oxidase, for example,

The invention will be further described by way of example and with reference to the accompanying

by the action of any added acetylcholine esterase is assayed as described herein.

Xanthine Oxidase and Monoamine Oxidase.

Oxidase.

without a membrane.

60 B: Where the electrode was dipped in 2.06 mg/ml Glucose oxidase for I hr and then washed before use

Where the same electrode as B was used, but after storage in buffer solution overnight.

9d) Continuous operation

Figure 12 shows the results of a further test into the stability of the electrode under conditions of continuous operation. Glucose Oxidase was the enzyme chosen in this case as it was the best characterised of the range of assay systems inventigated.

5 A 3.5mg/ml solution of glucose oxidase was entrapped on a TTFTCNQ packed cavity electrode using tissue paper and a membrane. The electrode was set up in a 20ml of degassed pH 7.4 phosphate buffer, background current was allowed to decay and additions of 1M glucose in phosphate buffer made. The electrode was then left at a constant potential of +50mV in a 30mM glucose solution for 65 hours. The glucose solution was then replaced by fresh buffer, the system was degassed and additions of 1M glucose were again made. The electrode was then left at the same potential for a further 100 hours of 40nM

0 cose were again made. The electrode was then left at the same potential for a further 100 hours of 40nM glucose solution at +50mV (Method of enzymatic analysis Vol II p.149 Verlay Chemie) and at room temperature. Each day the solution was degassed and the current recorded.

After 65 hours of operation the current/concentration profile showed a slight alteration in slope. Kinetic analysis of this data has suggested that this may be due to deterioration of the membrane. (Figure 13).

As a consequence of its low background the electrode described is sensitive to glucose concentration changes of less than 10 µM over a wide concentration range. It operates without a membrane or any additional mediator. The enzyme is irreversibly adsorbed onto the electrode and no special immobilisation techniques are required. The electrode shows excellent stability of response to glucose and upon prolonged storage (1 week) at room temperature in air-saturated buffer containing glucose. Finally when the electrode needs to be regenerated this is readily achieved by polishing the surface and then re-ad-

the electrode needs to be regenerated this is readily achieved by polishing the surface and then resorbing glucose oxidase from solution.

EXAMPLE 10

Use of the electrode with other flavoproteins

25. In addition to electrodes which employ Glucose Oxidase, the present invention extends to systems which combine TTFTCNQ with other enzymes. Four other flavoprotein/TTFTCNQ systems will be exemplified.

Packed cavity (4mm diameter) and drop coated glassy carbon electrodes were prepared substantially as described above. These electrodes were used in conjunction with a Pt gauze counter electrode, and a saturated calomel reference electrode in a three electrode system. The working electrodes were held at +50mV with respect to the saturated calomel reference electrode using a potentiostat.

Current was recorded as a function of time using a Bryans 29000 A4 chart recorder at 50s/cm. Packed cavity electrodes were used in a vessel of 25ml total volume; drop coated glassy carbon electrodes were used in a vessel of 2ml total volume. All experiments were carried out at room temperature.

Doubly distilled water was used throughout. Solutions were degassed before use by bubbling O₂ free N₂ through for 15 minutes The membranes used were dialysis tubing boiled in 1% W/W Na₂CO₃ for 10 minutes and stored in Tris (BDH)/EDTA solution.

EXAMPLE 10a)

40 Choline Oxidase (EC 1.1.3.17)

Choline + O₂ = betaine aldehyde +H₂O₂

Choline chloride and choline oxidase as used in this example were both obtained from Sigma. The 45 choline oxidase used was 15u/mg. It should be noted that there is no prior known electron acceptor, other than O₂ for choline oxidase.

A 1mg/ml solution of choline oxidase in pH 7.4 phosphate buffer was entrapped on a TTFTCNQ packed cavity electrode using dialysis membrane. The electrode was set up in 20 ml of degassed pH 7.4 phosphate buffer and background current was allowed to decay (to 10nA in 30 minutes). Choline chloride

50 (0.1M in pH 7.4 phosphate buffer) was then added using a micro-litre syringe. A similar experiment was carried using an electrode which had been dipped in a 1mg/ml choline oxidase solution in an ice bath, for 1 hour in order to adsorb enzyme onto the electrode surface.

With the enzyme entrapped by a membrane the electrode responded to additions of choline (Figure 8). Without the membrane no response was obtained.

EXAMPLE 10b

60

Xanthine Oxidase (EC 1.2.3.2)

Xanthine + H_2O+O_2 = urate + H_2O_2

This enzyme exhibits low specificity and attacks a number of aldehydes, purines, pteridines, pyrimidines, ozapurines and other heterocyclic compounds. Ferricyanide, cytochrome c and several organic dyes can replace O_2 as an electron acceptor.

The materials used in this example were; xanthine (sigma grade III 98 - 100%), xanthine oxidase 65 (Sigma grade III from buttermilk, suspension in 3.2 M (NH_a), SO₄ 10mM sodium phosphate buffer pH 7.8

: '

4

15

20

. 25

30

35

.

40

AE

45

٠

50

·

55

60

blood sample from the finger, brings it into contact with the sensor, amplifies the signal and gives a digital readout.

CLAIMS 1. An electrode for use in an assay system, wherein the said electrode is at least in part made from a material (X) having one-dimensional electrical conduction properties, characterised in that, the material (X) is linked to the other components of the assay system via a NAD+/NADH couple. 2. An electrode for use in an assay system, wherein the said electrode is at least in part made from a 10 material (X) having one-dimensional electrical conduction properties, characterised in that the material is other than the n-methyl phenazinum (NMP) salt of 7, 7, 8, 8-tetracyano p-quinodimethane or the n-methyl acridinium (NMA) salt of 7, 7, 8, 8-tetracyano p-quinodimethane. 3. An electrode for use in an assay system, wherein the said electrode is at least in part made from a material (X) having one-dimensional electrical conduction properties, characterised in that, the material (X) is linked to the other components of the assay system via an oxidised/reduced flavin couple. 15 4. An electrode as claimed in claim 1, 2 or 3, wherein the material (X) is an organic conductor. 5. An electrode as claimed in claim 4, wherein the material (X) is a derivative or salt of 7, 7, 8, 8 tetracyano p-quinodimethane. 6. An electrode as claimed in any of claims 1-5 wherein the material (X) further comprises at least one ion selected from the group comprising; Cu(di-pyridylamine), tetrathiafulvalene, ferricinium, triethylammonium or quinolinium. 7. An electrode as claimed in claim 6 wherein the material (X) comprises a tetrathiafluvaline salt of 7, 7, 8, 8-tetracyano p-quinodimethane. 8. An electrode as claimed in claim 1 or 3 wherein the material (X) comprises an N-methyl phenazin-25 ium salt of 7, 7, 8, 8 -tetracyano p-quinodimethane 9. An electrode as claimed in claim 1 or 3 wherein the material (X) comprises an N-methyl acridinium salt of 7, 7, 8, 8-tetracyano p-quinodimethane 10. An electrode as claimed in any of the previous claims, wherein the material(X) is packed as a paste into the cavity of a cavity electrode. 11. An electrode as claimed in claim 10, wherein; a microcrystalline sample of the material(X) is mixed with polyvinyl chloride. the resulting mixture is made up into a paste with tetrahydrofuran, and, the said paste is packed into the cavity of the cavity electrode. 12. An electrode as claimed in claim 11 wherein the tetrahydrofuran is allowed to evaporate at room 35 temperature and pressure. 13. An electrode as claimed in claim 11 or 12, wherein the ratio of material (X) to polyvinyl chloride is 9.1: 1.4 by weight. 14. An electrode as claimed in any of claims 1-9, wherein the material (X) is drop coated onto a glassy carbon electrode. 40 15. An electrode as claimed in claim 14, wherein; a microcrystalline sample of the material (X) is mixed with polyvinyl chloride, the resulting mixture is made up into a liquid with tetrahydrofuran, and, the said liquid is dropped onto the electrode, and the tetrahydrofuran is allowed to evaporate. 16. An electrode as claimed in claim 15, wherein a plurality of layers of the material (X) are applied to 45 the electrode. 17. An electrode as claimed in any of claims 1-9, wherein the material(X) is present as a single crystal. 18. An electrode as claimed in claim 17 wherein: a) a conductor is secured to a single crystal of the material (X) by silver-loaded epoxy resin, and, b) the said crystal is fitted into one end of a glass capillary, with the said conductor internal to and 50 50 co-axial with the said capillary such that substantially one half of the crystal is exposed. 19. An electrode as claimed in any of the preceeding claims further comprising an enzyme at least at an external surface thereof, whereby charge is transferred to the electrode when the enzyme is catalyti-20. An electrode as claimed in claim 19 wherein the enzyme is a flavoprotein. 21. An electrode as claimed in claim 19 or 20 wherein the enzyme is selected from the following 55 group; Glucose Oxidase, L-amino acid Oxidase, D-amino acid Oxidase, Choline Oxidase, Xanthine Oxidase or Monoamine Oxidase. 22. An electrode as claimed in claim 19, 20 or 21, wherein a second enzyme is provided at or near the surface of the electrode to convert a substrate of the second enzyme to a substrate of the first-mentioned 60 enzyme, and thereby provide a signal related to the concentration of the substrate of the second enzyme. 23. An electrode as claimed in claim 19, 20 or 21, wherein a substrate for a second enzyme is provided at or near the surface of the electrode, wherein the product of the second enzyme is a substrate of the first mentioned enzyme, whereby the electrode provides a signal related to the active concentration of the second enzyme. 24. An electrode for use in an assay system, wherein the said electrode is at least in part made from

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.