SPECIFICA ARCHITETTURALE

SWEVEN TEAM

swe7.team@gmail.com

_			
INFORMAZIONI	CIII	DOCUMENTO	١

Versione	0.0.0
Uso	Esterno
Destinatari	Gruppo Sweven Team
	Prof. Tullio Vardanega
	Prof. Riccardo Cardin
	Azienda Imola Informatica
Stato	in lavorazione
Redattori	
Verificatori	
Approvatori	

Sintesi

Specifica architetturale e delle tecnologie per la realizzazione del $Chatbot_G$.

Diario delle modifiche

Versione	Data	Descrizione	Ruolo	Autore	Verificatore
	2022-08-27	Modifiche \$2	Progettista	Irene Benetazzo	
	2022-08-22	Scrittura \$2.2 e \$2.3	Progettista	Irene Benetazzo	
	2022-08-09	Scrittura \$3	Progettista	Irene Benetazzo	
	2022-08-08	Scrittura \$1	Amministratore	Irene Benetazzo	
	2022-07-21	Creazione docu- mento	Amministratore	Irene Benetazzo	

Indice

1	Intro	troduzione	4
	1.1	Scopo del Documento	 4
	1.2	2 Scopo del Capitolato	 4
	1.3	B Glossario	 4
	1.4	Riferimenti	 4
		1.4.1 Normativi	 4
		1.4.2 Informativi	 4
2	Arch	chitettura	5
	2.1	Diagramma delle classi	 5
	2.2	2 App	 6
	2.3		6
	2.4	4 Server	 6
		2.4.1 Chatterbot	 6
		2.4.2 Statement	 6
		2.4.3 LogicAdapter	 6
		2.4.4 State	 6
		2.4.5 Statement State	 6
		2.4.6 Request	 6
		2.4.7 Login	7
		2.4.8 Logout	 7
		2.4.9 Activity	 7
		2.4.10 Gate	7
		2.4.11 Project Creation	 7
		2.4.12 Presence	7
		2.4.13 Undo	7
	2.5		7
3	Tecn	cnologie	8
	3.1	API Rest	 8
	3.2	2 Server	 8
		3.2.1 Python	 8
		3.2.1.1 Chatterbot	8
	3.3	3 Client	 8
		3.3.1 React	 8
		3.3.2 HTML	8
		3.3.3 CSS	8
		3.3.4 Flask	8
		3 3 5 ADI AssemblyAI	9

1 Introduzione

1.1 Scopo del Documento

La Specifica Architetturale ha lo scopo di descrivere le scelte architetturali e tecnologiche attuate per la realizzazione del $Chatbot_G$.

1.2 Scopo del Capitolato

Lo scopo di tale progetto è quello di sviluppare un Chatbot che interfacciandosi con software aziendali spesso complessi e dispersivi, semplifichi i compiti che i dipendenti devono svolgere. In particolare vengono individuate le seguenti operazioni:

- Tracciamento della presenza in sede (EMT_G)
- Rendiconto attività svolte quotidianamente (EMT_G)
- Apertura del cancello aziendale (MQTT_G)
- · Creazione di una riunione in un servizio esterno
- Servizio di ricerca documentale (CMIS_G)
- Creazione e tracciamento di bug (**Redmine**_G)

1.3 Glossario

Per assicurare la massima fruibilità e leggibilità del documento, il team SWEven ha deciso di creare un documento denominato *Glossario* il cui scopo sarà quello di contenere le definizioni dei termini ambigui o specifici del progetto. Sarà possibile riconoscere i termini presenti al suo interno in quanto terminanti con la lettera *G* posta come pedice della parola stessa.

1.4 Riferimenti

1.4.1 Normativi

• Norme di Progetto *v1.0.0*

1.4.2 Informativi

- Capitolato di appalto C1 BOT4ME
- Slide del corso Diagrammi dei casi d'uso
- Slide del corso Diagrammi di sequenza
- Slide del corso I pattern architetturali

2 Architettura

L'architettura del prodotto è suddivisa tra Client e Server, inoltre si utilizzano le API $Rest_G$ messe a disposizione dall'azienda Imola Informatica.

2.1 Diagramma delle classi

Figure 1: Diagramma UML delle classi

2.2 App

Classe in cui vengono gestiti gli utenti e si interfaccia direttamente con l'utente.

2.3 Client

2.4 Server

2.4.1 Chatterbot

Classe della libreria esterna scritta in $Python_G$. La classe *Chatterbot* e le seguenti *Statement*, *Adapter* fanno parte della libreria.

2.4.2 Statement

Classe fornita dalla libreria $Chatterbot_G$ che rappresenta una singola entità, parola o frase che qualcuno può dire.

2.4.3 LogicAdapter

Classe astratta fornita dalla libreria $Chatterbot_G$ che permette al programmatore esterno di scrivere nuovi adapter. Dispone dei due metodi base di cui verrà fatto l' $overriding_G$:

- can_process: metodo booleano che controlla tutte le varie condizioni e se tutto okay fa procedere il metodo *process*.
- process: controlla ed elabora tutti i dati forniti così da produrre una risposta.

2.4.4 State

Interfaccia che definisce il contratto di tutti i vari stati e come dato privato si salva l'attuale stato corrente e pubblicamente dispone anche di un metodo per aggiungere informazioni necessarie per completare la richiesta in corso.

State_Null Sottoclasse concreta di *Stato* che simula uno stato nullo, utilizzato quando l'utente non ha effettuato nessuna richiesta.

2.4.5 Statement State

Sottoclasse di Statement, cioè adatta l'adapter alla libreria chatterbot, in più ha lo stato attuale dell'utente, e l'api-key che dimostra l'autenticazione dell'utente che funge come input di ogni adapter.

2.4.6 Request

Interfaccia che riceve i dati pronti verificandone la completezza e in base all'adapter invia la richiesta $HTTP_G$ alle $APIRest_G$ di Imola per interagire con i loro servizi e soddisfare la richiesta dell'utente e infine ritorna ad adapter una risposta.

2.4.7 Login

Classi Adapter Login, State Login permettono di effettuare il login

2.4.8 Logout

Classe Adapter_Logout permette di effettuare il logout.

2.4.9 Activity

Classi *Adapter_Activity*, *State_Activity* e *Request_Activity* per la funzionalità di consuntivare le ore dedicate ad un progetto compreso le eventuali ore di viaggio.

2.4.10 Gate

Classi Adapter Gate, State Gate e Request Gate per la funzionalità di apertura cancello

2.4.11 Project_Creation

Classi Adapter_Project_Creation, State_Project_Creation e Request_Project_Creation

2.4.12 Presence

Classi *Adapter_Presence*, *State_Presence* e *Request_Presence* per la funzionalità di registrazione della presenza

2.4.13 Undo

Classe *Adapter_Undo* permette di annullare l'operazione in corso e di ricominciare la stessa o un'altra operazione dall'inizio.

2.5 API Rest Imola Informatica

L'azienda ha fornito delle $APIRest_G$ che permettono al $chatbot_G$ di interagire con i loro sistemi aziendali. Sono facilmente consultabili a questo link.

3 Tecnologie

3.1 API Rest

Un'API REST è un'interfaccia di programmazione delle applicazioni conforme ai vincoli dello stile architetturale REST, che consente l'interazione con servizi web RESTful.

Il termine REST è l'acronimo di REpresentational State Transfer. REST è un insieme di vincoli architetturali, non un protocollo né uno standard. Quando una richiesta client viene inviata tramite un'API RESTful, questa trasferisce al richiedente o all'endpoint uno stato rappresentativo della risorsa. L'informazione viene consegnata in HTTP in un formato JSON, HTML, Python o txt.

3.2 Server

3.2.1 Python

Linguaggio di programmazione ad alto livello, adatto alla programmazione orientata agli oggetti. E' stato utilizzato per sviluppare il back-end insieme alla libreria esterna Chatterbot.

3.2.1.1 Chatterbot Libreria esterna in $Python_G$ che utilizza algoritmi di intelligenza artificiale per trovare la migliore risposta per emulare il comportamento di un $chatbot_G$ nel server. Grazie alla sua flessibilità si sono implementati degli adapter che modellano e gestiscono le varie richieste dell'utente.

Durante l'esecuzione Chatterbot crea in automatico dei file dall'estensione SQL_G

3.3 Client

3.3.1 React

React è una libreria JavaScript per costruire l'interfaccia utente caratterizzata dal fatto che è dichiarativa, efficiente e flessibile. E' stato utilizzato per creare l'applicazione lato client.

3.3.2 HTML

Linguaggio di markup, in standard W3C, per documenti visualizzabili attraverso un web browser

3.3.3 CSS

Linguaggio di formattazione per i documenti HTML.

3.3.4 Flask

Framework Python per lo sviluppo di applicazioni web. Flask contiene tutte le classi e le funzioni necessarie per la costruzione di una web app, e ha agevolato l'organizzazione e la gestione del $chatbot_G$

3.3.5 API AssemblyAI

L'API deve essere integrata con React e permette di tradurre automaticamente l'audio in testo.