Cheat Sheet for CS/STAT 6313

DISCRETE DISTRIBUTIONS

Expected value
$$\mu = E(X) = \sum x f(x)$$

Expected value of a function
$$Eg(X) = \sum_{x}^{x} g(x)f(x)$$

Variance
$$\sigma^2 = Var(X) = \sum_{x} (x - \mu)^2 f(x)$$

Binomial probability mass function
$$f(x) = \frac{n!}{x!(n-x)!}p^x(1-p)^{n-x}$$
 for $x = 0, 1, ..., n$,

Geometric probability mass function
$$f(x) = (1-p)^{x-1}p$$
 for $x = 1, 2, ...$

Poisson probability mass function
$$f(x) = \frac{e^{-\lambda} \lambda^x}{x!}$$
 for $x = 0, 1, ...$

CONTINUOUS DISTRIBUTIONS

Expected value
$$\mu = E(X) = \int x f(x) dx$$

Expected value of a function
$$Eg(X) = \int g(x)f(x)dx$$

Variance
$$\sigma^2 = Var(X) = \int (x - \mu)^2 f(x) dx$$

Exponential density
$$f(x) = \lambda e^{-\lambda x}$$
 for $0 < x < \infty$

Uniform density
$$f(x) = \frac{1}{b-a}$$
 for $a < x < b$

Gamma density
$$f(x) = \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x} \text{ for } 0 < x < \infty$$

Normal density
$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$
 for $-\infty < x < \infty$

Normal approximation Binomial
$$(n, p) \approx \text{Normal}(\mu = np, \sigma^2 = np(1-p))$$

for
$$n \ge 30$$
, $0.05 \le p \le 0.95$

Central Limit Theorem
$$\frac{(X_1 + \ldots + X_n) - n\mu}{\sigma\sqrt{n}} \text{ or } \frac{X - \mu}{\sigma/\sqrt{n}} \to \text{Normal}(0,1) \text{ as } n \to \infty$$

EXPECTED VALUES AND VARIANCES OF SOME DISTRIBUTIONS

Distribution	Bernoulli	Binomial	Geometric	Poisson	Exponential	Gamma	Uniform	Normal
	(p)	(n,p)	(p)	(λ)	(λ)	(r,λ)	(a,b)	(μ, σ^2)
E(X)	n	np	$\frac{1}{-}$		$\frac{1}{2}$	$\frac{r}{}$	$\frac{a+b}{}$	11.
2(11)	P	· · · p	p		λ	λ	2	٣
V (V)	(1)	(1)	1-p	,	1	r	$(b-a)^2$	2
Var(X)	p(1-p)	np(1-p)	$\overline{p^2}$	λ	$\overline{\lambda^2}$	$\overline{\lambda^2}$	12	σ^2