Tests du khi-deux Homogénéité et indépendance

Mohamed LEMDANI

MISO

Université de Lille

30 Septembre 2021

Variable catégorielle

X variable catégorielle \Longrightarrow prend un nombre fini de valeurs (modalités/catégories) :

$$X = 1, 2, ..., c$$

 $\textbf{Exemples}: groupe \ sanguin, \ nombre \ d'enfants, \ IMC \ (regroupée \ en \ classes), \dots$

Loi (distribution) de X:

Valeurs	1	2	 С	
Probabilités	$\pi_1 = P(X = 1)$	π_2	 π_{c}	$\sum_{\mathfrak{i}} \pi_{\mathfrak{i}} = 1$
Effectifs observés	O_1	O ₂	 O_c	$\sum_{i} O_{i} = n$

Types de tests portant sur des données catégorielles :

- Comparer la loi de X à une loi théorique (test d'ajustement).
- Comparer les lois de X entre les populations (test d'homogénéité).
- Tester l'indépendance de deux variables X et Y (test d'indépendance).

Introduction Homogénéité Indépendance Compléments

Présentation

Test d'homogénéité : 1 variable catégorielle X et 2 (ou plusieurs) populations

X = 1, 2, ..., c et l populations étudiées \Longrightarrow l échantillons de $n_1, n_2, ..., n_l$ observations.

Tableau de contingence des effectifs observés O_{ii}

		X				
		1	2		с	Totaux
	1	O ₁₁	O ₁₂		O _{1c}	n_1
Échantillon	2	O ₂₁	O ₂₂		O _{2c}	n_2
	÷	:	:	٠	:	:
	l	O _{l1}	O ₁₂		O_{lc}	n_l
	Totaux	m_1	m_2		m _c	n

$$p_{11} = O_{11}/n_1$$
: proportion de $X = 1$ dans l'échantillon 1.

 p_{21}, \dots, p_{11} : proportions de X = 1 dans les autres échantillons.

 $p_1 = m_1/n$: proportion de X = 1 dans l'ensemble des échantillons.

 $H_0: \{\mathcal{L}_1 = \ldots = \mathcal{L}_1\} \qquad \text{versus} \qquad H_1: \{\text{il } y \text{ a au moins deux lois distinctes}\}.$

 $\begin{array}{l} H_0 \text{ vraie} \Longrightarrow p_{11} \approx p_{12} \approx \ldots \approx p_{11} \approx p_1 \Longrightarrow O_{11}/n_1 \approx m_1/n \Longrightarrow O_{11} \approx \frac{n_1 \times m_1}{n} = T_{11}. \\ T_{ij} : \text{effectif th\'eorique pour } X = i \text{ et } Y = j \qquad \longrightarrow T_{ij} = \frac{n_i \times m_j}{n}. \end{array}$

Introduction Homogénéité Indépendance Compléments Présentation

Test du khi-deux d'homogénéité (suite)

Variable de décision :

$$k = \sum_{i,j} \frac{(O_{ij} - T_{ij})^2}{T_{ij}} = \sum_{i,j} \frac{O_{ij}^2}{T_{ij}} - n \sim \chi^2_{(l-1)(c-1)} \text{ sous } H_0.$$

Conditions : Tous les $T_{ij} \ge 5$.

Nombre de ddl : (Nombre de lignes -1) × (Nombre de colonnes-1).

Exemple 6: On souhaite évaluer une nouvelle méthode pour combattre le stress. Pour cela, on la teste auprès d'un échantillon paritaire de 100 personnes. On note une amélioration auprès de 29 femmes (qui sont donc moins stressées) et une détérioration pour 11 autres (il n'y avait pas de différence notable pour les autres, entre avant et après). Pour les hommes, les chiffres respectifs étaient de 25 "améliorations" et de 15 "détériorations".

Peut-on dire que l'effet de la méthode diffère entre les hommes et les femmes au seuil de 10%?

Exemple 6 (suite):

Variable observée : X = 'Effet de la méthode' (A, D, =), deux échantillons

$$n_F = n_H = 50$$
 et lois de $X: \pi_A, \pi_D$ et $\pi_=$ pour les F et les H .

$$H_0: \{\mathcal{L}_F = \mathcal{L}_H\} \qquad \textit{versus} \qquad H_1: \{\mathcal{L}_F \neq \mathcal{L}_H\}$$

	A		D		=		Total
Femmes	29	(27)	11	(13)	10	(10)	50
Hommes	25	(27)	15	(13)	10	(10)	50
Total	Ę	54	26		20		100

$$\begin{split} & T_{11} = \frac{50 \times 54}{100} = 27, \ T_{12} = \frac{50 \times 26}{100} = 13, \ldots \Longrightarrow tous \ les \ T_{ij} \geqslant 5. \\ & \textbf{Variable de décision} : k = \sum_{\text{cores}} \frac{(O_{ij} - T_{ij})^2}{T_{ij}} \sim \chi_{1 \times 2}^2 = \chi_2^2 \ sous \ H_0. \end{split}$$

Variable de décision :
$$k = \sum_{\text{cases}} \frac{(O_{ij} - I_{ij})}{T_{ij}} \sim \chi_{1\times 2}^2 = \chi_2^2 \text{ sous } H_0$$

Zone de rejet (10%): $k_c \notin [4.605, +\infty[\implies \text{non rejet de H}_0 \text{ au seuil de 10%}]$.

Calculs:
$$k_c = \frac{(29-27)^2}{27} + \frac{(25-27)^2}{27} + \frac{(11-13)^2}{13} + \frac{(15-13)^2}{13} + 0 \approx 0.912.$$

P-value : 0.5 .

Test d'indépendance : 2 variables catégorielles X et Y sur 1 population

$$X = 1, 2, ..., l$$
 et $Y = 1, 2, ..., c$.

 $H_0: \{X,Y \ ind\'{e}pendantes\} \qquad \textit{versus} \qquad H_1: \{X,Y \ li\'{e}es\}.$

Tableau de contingence

		Y					
		1	2		с		
	1	O ₁₁	O ₁₂		O _{1c}		
X	2	O ₂₁	O ₂₂		O _{2c}		
	:	:	:	٠	:		
	l	O _{l1}	O _{l2}		Olc		

Variable de décision :

$$k = \sum_{i,i} \frac{(O_{ij} - T_{ij})^2}{T_{ij}} = \sum_{i,i} \frac{O_{ij}^2}{T_{ij}} - n \sim \chi^2_{(l-1)(c-1)} \text{ sous } H_0.$$

Conditions: Tous les $T_{ij} \ge 5$.

Conditions non remplies

Certains $T_{ij} < 5 \Longrightarrow$ regrouper (si cela a un sens) :

IMC	< 18	[18, 25[[25, 30[[30,40[≥ 40
T _i	7	23	18	9	3
Regroupement	7	23	18	12	

Cas d'un tableau 2×2 avec certains $T_{ij}<5\Longrightarrow$ khi-deux de Yates ou test exact de Fisher.