Ariadna Evans - Micaela Floridia - Vanessa Galeano - Leandro Villanueva

¿QUÉ PAÍSES CONTRIBUYEN MÁS AL AUMENTO DE LAS EMISIONES DE CO₂, Y CÓMO EL CONSUMO ENERGÉTICO IMPACTA EN ESTAS A LO LARGO DE LOS AÑOS?

GRUPO XIII – ICD – UNSAM 10-06-2024

INTRODUCCIÓN

PRESENTACIÓN DEL DATASET

EL PROBLEMA DEL CALENTAMIENTO GLOBAL

AUMENTO DE LA QUEMA DE COMBUSTIBLES FÓSILES

NIVELES ALTOS DE GASES DE EFECTO INVERNADERO (principalmente de CO₂)

AUMENTOS EN LA TEMPERATURA MEDIA GLOBAL

DATASETS TRABAJADOS

CONSUMO ENERGÉTICO POR PAÍS POR AÑO POR TIPO -> 11 Variables, 63105 Filas

TEMPERATURA MEDIA GLOBAL POR AÑO

→ 2 Variables, 75 Filas

EMISIONES DE CO₂ POR PAIS POR AÑO

→ 12 Variables, 6980 Filas

LIMPIEZA Y FILTRADO

- → PROGRAMAS UTILIZADOS: EXCEL POWER QUERY R STUDIO
- → NA REEMPLAZADOS POR O
- → FILTRAMOS POR AÑO Y POR PAÍS
- → NO SE HALLARON DATOS REPETIDOS O FILAS SIN DATOS
- → RENOMBRAMIENTO DE VARIABLES POR NOMBRES MÁS DESCRIPTIVOS
- → TRADUCCIÓN DE DATOS AL ESPAÑOL
- → REDEFINIMOS TIPOS DE DATOS Y REESCALAMOS VALORES NUMÉRICOS.

DF_FINAL_PAISES

1

15 Variables, 171 Filas

DF'S FINALES

DF_FINAL_MUNDO

1

7 Variables, 58 Filas

Entidad	(países)	chr
Año	(1965/2021)	Int
Energía_tot_sin_CO ₂	TWh	dbl
Energía_tot_con_CO ₂	TWh	dbl
Energía_tot	TWh	dbl
Total (emisiones)	Mill. Ton.	dbl

VARIABLES UTILIZADAS PARA EL ANÁLISIS

Año (1965/2021) chr Energía_tot_sin_CO₂ dbl TWh Energía_tot_con_CO₂ dbl TWh Energía_tot dbl TWh Total (emisiones) dbl Mill. Ton. Temp_Glob_Med dbl $^{\circ}C$

VARIACIÓN DE TEMPERATURAS Y EMISIONES GLOBALES DE CO₂ A TRAVES DE LOS AÑOS

MODELO DE LA TEMPERATURA VS EMISIONES GLOBALES DE CO₂

ANÁLISIS DEL MODELO

Im(Temperatura_Global_Media ~ Total)

T° = W0 + W1xTotal

RSE 0.1023

R-squared 0.8981

Intercept 1.343e+01 ***

Total 3.966e-05 ***

¿CUÁLES SON LOS PAÍSES QUE MÁS EMISIONES LLEVAN ACUMULADAS DESDE EL AÑO 1965?

SE OBSERVA QUE ESTADOS UNIDOS, CHINA Y RUSIA LLEVAN ACUMULADAS MÁS EMISIONES QUE EL RESTO DE LOS PAÍSES DEL MUNDO.

MODELADO: EMISIONES DE LOS 3 PAÍSES A LO LARGO DE LOS ÚLTIMOS AÑOS

MOD 1

Im (Total ~ Año*Entidad)

Residual standard error: **771,5** Multiple R-squared: **0,9078**

MOD 2

Im: (Total ~ poly (Año, 2,raw=TRUE)*Entidad)

Residual standard error: **402,2** Multiple R-squared: **0,9754**

ANOVA

MOD 1: Total ~ Año * Entidad

MOD 2: Total ~ poly(Año, 2,raw=TRUE) * Entidad

	Res.Df	RSS	Df	Sum of Sq	F	
1	165	98198513		62 L		
2	162	26204536	3	71993977	148.36	

F Pr(>F)

148.36 < 2.2e-16 ***

¿CÓMO VARIARON LAS EMISIONES DE LOS 3 PAÍSES A LO LARGO DE LOS ÚLTIMOS AÑOS?

 $\begin{aligned} \textbf{Total} &= \omega_0 + \omega_1 \text{Año} + \omega_2 \text{Año}^2 + \omega_3 \text{Entidad}_{\text{EEUU}} + \omega_4 \text{Entidad}_{\text{Rusia}} + \omega_5 \text{Entidad}_{\text{EEUU}}. \text{Año} \\ &+ \omega_6 \text{Entidad}_{\text{EEUU}}. \text{Año}^2 + \omega_7 \text{Entidad}_{\text{Rusia}}. \text{Año} + \omega_8 \text{Entidad}_{\text{Rusia}}. \text{Año}^2 \end{aligned}$

Intercept (China)	1,7 . 10 ⁷	***
Coef. Lineal Año (China)	-1,7 . 104	***
Coef. Cuadrático Año (China)	4,4	***
Intercept (EE UU)	-2,2 . 10 ⁷	***
Intercept (Rusia)	-1,9 . 10 ⁷	***
Coef. lineal Año (EE UU)	2,3 . 10 ⁴	***
Coef. Cuadrático Año (EE UU)	-5,7	***
Coef. Lineal Año (Rusia)	2.104	***
Coef. Cuadrático Año (Rusia)	-5	***

¿CÓMO EVOLUCIONÓ EL CONSUMO DE ENERGÍA DE LOS TRES PAÍSES A LO LARGO DE LOS ÚLTIMOS AÑOS?

MODELADO: EMISIONES DE CADA UNO DE LOS 3 PAÍSES A LO LARGO DE LOS AÑOS VS CONSUMOS DE LOS DISTINTOS TIPOS DE ENERGÍA

Im (Total ~ Energía1 + poly(Energía2,2, raw=TRUE) + Año)

Total = $\omega_0 + \omega_1$ ENERGÍA1 + ω_2 ENERGÍA1² + ω_3 ENERGÍA2 + ω_4 Año

MOD CHINA

Data: df_china

RSE: 108,4

R-Squared: 0,9991

MOD EEUU

Data: df_eeuu

RSE: 54,06

R-Squared: 0,9939

MOD RUSIA

Data: df_rusia

RSE: 109,3

R-Squared: 0,9002

1		Tr oquarou 0,0000		11 0444104 0,0002	
(Intercept)	-1,2.10 ⁵ ***	(Intercept)	-2,3.104 **	(Intercept)	4,6.104 ***
Coef. lineal E total con CO ₂	6,9.10-2 *	Coef. Lineal E Total sin CO ₂	2,6.10 ⁻¹ ***	Coef. lineal E total con CO ₂	7,9.10 ⁻¹ ***
Coef. cuadrático E total con CO ₂	6,5.10 ⁻⁶ ***	Coef. cuadrático E total sin CO ₂	-8,3.10 ⁻⁵ ***	Coef. cuadrático E total con CO ₂	-3,8.10-5 ***
Coef. Lineal E Total sin CO ₂	-4,3.10 ⁻¹ ***	Coef. lineal E total con CO ₂	2,7.10-1 ***	Coef. Lineal E Total sin CO ₂	2,3 ***
Año	6.02.101 ***	Año	6.02.101 **	Año	-2,5.101 ***

Emisiones globales de CO₂

Temperatura global media

PAÍSES CON MAYORES EMISIONES DE CO2 ACUMULADAS (1965-2021)

1)

2) **

PAÍSES QUE MÁS CO2 EMITIERON EN LOS ÚLTIMOS AÑOS (2000-2021)

1)

2) 3)

En general observamos que, con el uso de energías que generan CO₂ hay un impacto significativo en las emisiones.

Además, se observa para China y EE.UU. que el uso de energías que no generan CO₂ muestra una perceptible relación con la reducción en las emisiones; aun así, las emisiones siguen en aumento.

El próximo paso sería realizar un análisis más exhaustivo para el caso de Rusia.

IMUCHAS GRACIAS!

ESPACIO DE PREGUNTAS

RESIDUOS MOD 2

RESIDUOS MOD CHINA

RESIDUOS MOD EEUU

RESIDUOS MOD RUSIA

Metas de CHINA

desde 2023

Neutralidad de Carbono: China se ha comprometido a alcanzar el pico de sus emisiones CO₂ antes de 2030 y lograr la neutralidad de carbono para 2060.

Reducción del Uso de Carbón:

Está cerrando plantas de carbón ineficientes y mejorando la eficiencia energética de sus instalaciones existentes.

Energía Renovable: China es líder mundial en la inversión y desarrollo de energías renovables.

Políticas y Regulaciones:

Ha implementado una serie de políticas y regulaciones para controlar la contaminación y reducir las emisiones