Вступ

Темпи розвитку економіки, розв'язання багатьох соціальних проблем залежать від інтенсивності впровадження досягнень науково-технічного прогресу в галузях народного господарства. В свою чергу, цю проблему неможливо розв'язати без швидкого розвитку і впровадження в усі сфери людської діяльності сучасних засобів обчислювальної техніки і прикладної математики.

Одним з розділів прикладної математики, до якого інженерно-технічні працівники і економісти проявляюсь підвищений інтерес, це мінімізація функцій і функціоналів. Велика кількість різноманітних задач і методів їх розв'язання обумовлює мати посібники, в яких в стислій формі було б викладено алгоритми самих відомих методів і методику їх застосування. До цього спонукають також нові форми навчання студентів.

Основне завдання посібника — це допомога студентам в опануванні основних алгоритмів розв'язування задач мінімізації функцій багатьох змінних, задач варіаційного числення і оптимального керування.

Частина I

Мінімізація функцій

1 Мінімізація функцій однієї змінної

Нехай на числовій прямій E^1 задана скалярна функція $\varphi(x)$. Розглянемо задачу пошуку точок, в яких функція досягає свого мінімального або максимального значення. Точка мінімуму або максимуму функції будемо називати максимальними точками.

Сформулюємо означення, що відносяться до теорії мінімізації функції.

Означення 1 Якщо для всіх $x \in E^1$ виконується умова $\varphi(x^*) \leq \varphi(x)$, то точка x^* називається точкою глобального (абсолютного) мінімуму функції $\varphi(x)$.

Означення 2 Якщо для достатньо малого $\varepsilon > 0$ виконується нерівність $\varphi(x^*) \leq \varphi(x)$ для всіх $x \in E^1$ таких, що $|x - x^*| \leq \varepsilon$, то точка x^* називається точкою локального (відносного) мінімуму функції $\varphi(x)$.

Означення 3 Точка x^* називається точкою строгого мінімуму (в локальному або глобальному сенсі), якщо відповідні нерівності в означеннях точок локального і глобального мінімумів виконуються як строгі ($npu \ x \neq x^*$).

Аналогічним чином вводиться означення точок локального і глобального максимумів.

Зазначимо, що точки глобального мінімуму є точками локального мінімуму. І тому далі розглядатимемо тільки точки локального мінімуму.

Теорема 1 (необхідна умова екстремуму першого порядку) Hexaŭ функція $\varphi(x)$ визначена і диференційована на E^1 . Якщо x^* - точка ло-кального мінімуму (максимуму), то в ній перша похідна функції дорівнює нулю:

$$\frac{d\varphi\left(x^{*}\right)}{dx} = 0. \tag{1}$$

Означення 4 Точки, що задовольняють умові (1) називаються стаціонарними.

Приклад 1 Знайти стаціонарні точки функції $\varphi(x) = \frac{1}{3}x^3 - 5x^2 + 24x + 6$. Знайдемо нулі першої похідної: $\frac{d\varphi(x)}{dx} = x^2 - 10x + 24$. Маємо $x^1 = 4, x^2 = 6$. Отже, в точках x^1 і x^2 функція може досягати екстремальних значень.

Теорема 2 (необхідна умова екстремуму другого порядку) Hexaŭ функція $\varphi(x)$ визначена і двічі диференційована на E^1 . Тоді в точці ло-кального мінімуму (максимуму) друга похідна функції невід'ємна (недодатна): $\frac{d^2\varphi(x^*)}{dx^2} \geq 0 \ (\leq 0)$.

Приклад 2 Розглянемо ту ж саму функцію $\varphi(x) = \frac{1}{3}x^3 - 5x^2 + 24x + 6$. Друга похідна має вигляд $\frac{d^2\varphi(x)}{dx^2} = 2x - 10$. У стаціонарній точці $x^1 = 4$ друга похідна дорівнює -2, тобто від'ємна. У цій точці може досягатися максимум функції. У точці $x^2 = 6$ друга похідна додатна, тобто в ній може досягатися мінімум функції.

Теорема 3 (достатня умова екстремуму) Нехай функція $\varphi(x)$ визначена, двічі диференційована на E^1 . Якщо у стаціонарній точці x^* виконується умова $\frac{d^2\varphi(x^*)}{dx^2} > 0$ (< 0), то точка x^* - точка локального мінімуму (максимуму) функції $\varphi(x)$.

Приклад 3 Розглядається відома нам функція $\varphi(x) = \frac{1}{3}x^3 - 5x^2 + 24x + 6$. У стаціонарній точці $x^1 = 4$ друга похідна дорівнює -2. Отже, в цій точці досягається максимум функції, а в точці $x^2 = 6$ друга похідна дорівнює 2, тобто в ній досягається мінімум.

Якщо в стаціонарній точці x^* друга похідна дорівнює нулю, то питання про мінімум чи максимум у цій точці залишається відкритим.

Теорема 4 (загальна достатня умова екстремуму) $Hexaŭ \phi yнкція \varphi(x)$ визначена на E^1 і має неперервні похідні до k-го порядку включно. Якщо в точці x^* похідні до (k-1)-го порядку дорівнюють нулю:

$$\frac{d\varphi\left(x^{*}\right)}{dx}=0,\ldots,\frac{d^{k-1}\varphi\left(x^{*}\right)}{dx^{k-1}}=0,\frac{d^{k}\varphi\left(x^{*}\right)}{dx^{k}}\neq0,\ mo:$$

- 1. x^* е точкою локального мінімуму, якщо k-парне число і $\frac{d^k \varphi(x^*)}{dx^k} > 0;$
- 2. x^* е точкою локального максимуму, якщо k-парне число $i \frac{d^k \varphi(x^*)}{dx^k} < 0;$
- 3. x^* не e ні точкою мінімуму, ні точкою максимуму, якщо k непарне число.

Далі сформулюємо необхідну умову мінімуму функції на відрізку [a;b].

Теорема 5 Якщо точка $x^* = a$ є точкою мінімуму функції $\varphi(x)$ на відрізку [a;b], то $\frac{d\varphi(x^*)}{dx} \geq 0$, а якщо $x^* = b$ – точка мінімуму, то $\frac{d\varphi(x^*)}{dx} \leq 0$.