References	Energy band gap	Reaction temperature (C)	Calcination temperature (C)	Reaction hour (hr)	Calcination hour (hr)	Synthesis method	Precursor	рН	Precursor concentration (M)	Nanoparticle size (nm)
[1]	(eV) 3.375	50	500		1	Sol-gel	Zinc nitrate	9	0.165	21.82
[2]	3.377	100		6		Hydrothermal	Zinc acetate	8	0.1	18
[2]	3.787	80	450	5	6	Sol-gel	Zinc acetate	8	0.5	14
[3]	3.45	25		2		Green	Zinc acetate	12	0.5	21
[4]	2.57					Green	Zinc nitrate			41.23
[5]	3.5	25	300	6	0.75	Green	Zinc acetate	8	0.5	14.7
[6]	3.62	25	70	24	12	Green	Zinc acetate	7	2	15.2
[7]	3.1	80		5		Green	Zinc nitrate	7	0.3	35.8
[7]	3.12	80		5		Green	Zinc nitrate	7	0.3	30.83
[7]	3.07	80		5		Green	Zinc nitrate	7	0.3	33.1
[8]	3.23	25		2		Sol-gel	Zinc acetate	10	0.2	38.32
[8]	3.14	25		2		Sol-gel	Zinc acetate	11	0.2	36.65
[9]	3.33	25	400	4		Sol-gel	Zinc acetate	8		38.35
[9]	3.3	25	500	4		Sol-gel	Zinc acetate	8		39.28
[10]	3.43	30	80	7	10	Sol-gel	Zinc acetate	6	0.2	13.8
[10]	3.37	30	80	7	10	Sol-gel	Zinc acetate	8	0.2	18
[10]	3.32	30	80	7	10	Sol-gel	Zinc acetate	12	0.2	24.7
[10]	3.25	30	80	7	10	Sol-gel	Zinc acetate	13	0.2	33
[11]	3.31	25	100	2	12	Sol-gel	Zinc acetate	8		
[11]	3.33	25	100	2	12	Sol-gel	Zinc acetate	9		
[11]	3.3	25	100	2	12	Sol-gel	Zinc acetate	10		
[11]	3.29	25	100	2	12	Sol-gel	Zinc acetate	11		46.45
[12]	3.375	25	100	3	4	Green	Zinc acetate			21.75
[13]	3.23	60	200		3	Sol-gel	Zinc acetate	8		28
[13]	3.22	60	400		3	Sol-gel	Zinc acetate	8		39
[13]	3.2	60	500		3	Sol-gel	Zinc acetate	8		44

[14]	3.56	25	60	2	12	Green	Zinc	12	0.02	21.49
[14]	3.30	25	60	2	12	Green	acetate	12	0.02	21.49
[14]	3.57	25	60	2	12	Green	Zinc nitrate	12	0.05	25.26
[15]	3.48	70	40	1	12	Sol-gel	Zinc acetate	9	0.1	22.37
[15]	3.47	70	40	1	12	Sol-gel	Zinc acetate	10	0.1	21.27
[15]	3.45	70	40	1	12	Sol-gel	Zinc acetate	11	0.1	19.39
[15]	3.38	70	40	1	12	Sol-gel	Zinc acetate	12	0.1	16.11
[16]	3.3	60	600			Solvothermal	Zinc acetate		0.01	21.5
[17]	3.23	25	600		3	Solvothermal	Zinc nitrate			14.24
[17]	3.14	25	700		3	Solvothermal	Zinc nitrate			16.2
[17]	3.12	25	800		3	Solvothermal	Zinc nitrate			28
[18]	3.13	120	500	0.3		Sol-gel	Zinc acetate		0.6	45.8
[18]	3.15	120	650	0.3		Sol-gel	Zinc acetate		0.6	48
[19]	2.99	80	400	2	2	Solvothermal	Zinc acetate			32.5
[20]	2.95	140	60	12	6	Solvothermal	Zinc acetate	7	0.1	38
[21]	3	80	100	12	12	Solvothermal	Zinc acetate			40.5
[22]	3.349	150	60	3		Solvothermal	Zinc acetate	9	0.1	28.79
[22]	3.88	150	60	12		Solvothermal	Zinc acetate	9	0.1	24.28
[23]	3.23	140		4		Solvothermal	Zinc nitrate			16.2
[24]	3.15	50	160		48	Solvothermal	Zinc acetate	7		46
[25]	3.27	60	170	0.5	18	Solvothermal	Zinc acetate	9		45
[26]	3.386	25	150	0.3	8	Solvothermal	Zinc acetate		0.1	24.2
[26]	3.401	25	150	0.3	8	Solvothermal	Zinc acetate		0.1	18.9
[26]	3.408	25	150	0.3	8	Solvothermal	Zinc acetate		0.1	14.7
[27]	3.246	60		24		Solvothermal	Zinc acetate	7	0.5	45.55
[27]	3.267	60		24		Solvothermal	Zinc acetate	7	0.5	42.05
[28]	3.42					Solvothermal	Zinc acetate		0.45	24.02
[29]	2.97	70	500	2	2	Green	Zinc acetate	4		27.38
[29]	3.69	70	500	2	2	Green	Zinc acetate	6		22.98

[29]	3.9	70	500	2	2	Green	Zinc	9.5		25.39
[29]	3.9	70	300	2	2	Green	acetate	9.5		25.59
[29]	3.97	70	500	2	2	Green	Zinc acetate	11		22.17
[30]	3.245	80	80	2		Sol-gel	Zinc nitrate	9	0.1	36.36
[30]	3.249	80	80	2		Sol-gel	Zinc nitrate	11	0.1	32.32
[30]	3.306	80	80	2		Sol-gel	Zinc nitrate	13	0.1	27.27
[30]	3.25	80	80	2		Sol-gel	Zinc acetate	11	0.1	31.16
[30]	3.245	80	80	2		Sol-gel	Zinc acetate	13	0.1	41.77
[31]	3.2	65	400	1	5	Sol-gel	Zinc acetate		0.15	16
[32]	2.7	80	150	3	2	Green	Zinc nitrate	8	0.1	35.202
[32]	2.692	80	250	3	2	Green	Zinc nitrate	8	0.1	35.203
[32]	2.672	80	350	3	2	Green	Zinc nitrate	8	0.1	42.249
[32]	2.645	80	450	3	2	Green	Zinc nitrate	8	0.1	43.308
[33]	3.349	80	400	12	2	Sol-gel	Zinc nitrate		0.5	24
[33]	3.295	80	500	12	2	Sol-gel	Zinc nitrate		0.5	33
[33]	3.278	80	600	12	2	Sol-gel	Zinc nitrate		0.5	44
[34]	3.274	90	400	2	8	Sol-gel	Zinc acetate			30.3
[35]	3.09	80	600			Green	Zinc nitrate			43.82
[35]	3.13	80	600			Green	Zinc nitrate			37.25
[35]	3.16	80	800			Green	Zinc nitrate			34.24
[36]	3.25	60	500	3	2	Green	Zinc nitrate	8		21.61
[37]	3.18	60	500	3	2	Green	Zinc acetate	8		36.75
[38]	3.79	80	500	2	4	Sol-gel	Zinc nitrate	7		40
[38]	3.16	25	80		12		Zinc acetate	5		18
[38]	3.19	25	80		12		Zinc acetate	7		21
[38]	3.18	25	80		12		Zinc acetate	8		23
[38]	3.17	25	80		12		Zinc acetate	10		20
[38]	3.19	25	80		12		Zinc acetate	7		23
[38]	3.18	25	80		12		Zinc acetate	8		20

[38]	3.15	25	80		12		Zinc acetate	10		20
[39]	3.15	25	80		12		Zinc acetate	12		20
[39]	3.39	25	80	0.5	12	Solvothermal	Zinc nitrate		0.5	24
[39]	3.32	25	80	0.5	12	Solvothermal	Zinc nitrate		0.5	23
[40]	3.4	25	80	0.5	12	Solvothermal	Zinc nitrate		0.5	20
[40]	3.236	80	80	12		Solvothermal	Zinc acetate	7	0.45	42.13
[41]	3.234	80	80	12		Solvothermal	Zinc acetate	7	0.45	45.14
[41]	3.216	140	60	1	24	Hydrothermal	Zinc acetate	9	0.4	33.67
[41]	3.213	140	60	1	24	Hydrothermal	Zinc acetate	9	0.4	35.34
[42]	3.22	160	60	1.5	24	Hydrothermal	Zinc acetate	9	0.4	43.04
[43]	3.47	25	50	2	48	Green	Zinc acetate	12	0.15	19.51
[44]	3.29	70	380	1	1	Sol-gel	Zinc acetate			30.6
[45]	3.27	120	450	3	2	Sol-gel	Zinc acetate	6	0.6	24
[45]	3.05	25	60	2	12	Green	Zinc acetate	10	0.02	40
[45]	3.08	25	60	2	12	Green	Zinc acetate	11	0.02	33.3
[46]	3.14	25	60	2	12	Green	Zinc acetate	12	0.02	30.7
[46]	3.42	80	400		1	Green	Zinc nitrate		0.4	12.5
[46]	3.38	80	600		1	Green	Zinc nitrate		0.4	20
[47]	3.35	80	800		1	Green	Zinc nitrate		0.4	22.5
[47]	3.23	35	250	0.3	4	Sol-gel	Zinc acetate		0.6	33.2
[48]	3.25	35	250	0.3	4	Green	Zinc acetate			25.97
[49]	3.15	90	700		4	Sol-gel	Zinc nitrate	5		40
[49]	3.26	25	90	2	24	Hydrothermal	Zinc nitrate	12	1	21.13
[49]	3.25	25	190	2	24	Hydrothermal	Zinc nitrate	12	1	28.59
[50]	3.23	25	550	2	24	Hydrothermal	Zinc nitrate	12	1	32.41
[51]	3.21	70	450	1	4	Sol-gel	Zinc acetate	8	0.15	19.32
[51]	3.19	30	400	1	2	Sol-gel	Zinc acetate		0.25	25
[52]	3.12	30	400	1	2	Sol-gel	Zinc acetate		0.25	27
[52]	3.3	50	300			Sol-gel			0.3	

[53]	3.269	60	400		2	Sol-gel	Zinc acetate		0.15	21.76
[53]	3.257	60	500		2	Sol-gel	Zinc acetate		0.15	25.72
[53]	3.359	60	600		2	Sol-gel	Zinc		0.15	31.42
[53]	3.356	60	700		2	Sol-gel	Zinc acetate		0.15	35.42
[54]	3.11		500		2	Sol-gel	Zinc acetate		0.25	27.92
[54]	3.12		500		2	Sol-gel	Zinc acetate		0.25	37.14
[54]	3.08		500		2	Sol-gel	Zinc acetate		0.25	34
[55]	3.18	60	400	1	2	Sol-gel	Zinc nitrate	12	0.1	17
[56]	3.28	40	450	2	4	Sol-gel	Zinc nitrate	7	0.2	24.7
[57]	3.29	75	500	8		Sol-gel	Zinc nitrate			49
[58]	3.81	25	100	4	4	Sol-gel	Zinc acetate		0.1	
[58]	3.8	25	300	4	4	Sol-gel	Zinc acetate		0.1	
[58]	3.56	25	100	8	4	Sol-gel	Zinc acetate		0.1	
[58]	3.49	25	300	8	4	Sol-gel	Zinc acetate		0.1	
[58]	3.42	25	100	12	4	Sol-gel	Zinc acetate		0.1	
[58]	3.36	25	300	12	4	Sol-gel	Zinc acetate		0.1	
[58]	3.34	25	100	16	4	Sol-gel	Zinc acetate		0.1	
[58]	3.12	25	300	16	4	Sol-gel	Zinc acetate		0.1	
[59]	3.31	80	400	10	8	Sol-gel	Zinc nitrate			21
[59]	3.28	80	500	10	8	Sol-gel	Zinc nitrate			36
[59]	3.28	80	600	10	8	Sol-gel	Zinc nitrate			42
[60]	3.09	25	300			Sol-gel	Zinc acetate			27.9
[61]	3.15	60	400	1	1	Sol-gel	Zinc acetate		0.35	24.7
[61]	2.96	60	500	1	1	Sol-gel	Zinc acetate		0.35	40.45
[62]	4.1	32	85		24	Green	Zinc nitrate	12	0.1	18
[62]	3.78	32	85		24	Green	Zinc acetate	12	0.1	20
[63]	2.69	60	400	1	1	Green	Zinc nitrate			38.63
[64]	2.7	25	100	8	2	Sol-gel	Zinc acetate	8	0.75	28

[64]	2.87	25	100	8	2	Sol-gel	Zinc acetate	9	0.75	25
[64]	3.31	25	100	8	2	Sol-gel	Zinc acetate	10	0.75	29
[64]	3.47	25	100	8	2	Sol-gel	Zinc acetate	11	0.75	35
[65]	3.42		100	2	8	Sol-gel	Zinc acetate		0.5	42.63
[66]	3	65	400	0.6	2	Green	Zinc nitrate		0.01	32.32
[67]	3.179	80	600	6	2	Sol-gel	Zinc nitrate			22.99
[68]	3	70	600	2	2	Green	Zinc nitrate	4.5		18.82
[69]	3.24	60	500	3	2		Zinc nitrate		0.1	35
[70]	3.75	85	350	2	2	Green	Zinc acetate	10	0.05	46.5
[71]		60	350	1	3	Green	Zinc acetate		0.2	36

- 1. Patel, M., et al., Synthesis of ZnO and CuO nanoparticles via Sol gel method and its characterization by using various technique. Discover Materials, 2022. **2**(1): p. 1.
- 2. Brintha, S. and M. Ajitha, *Synthesis and characterization of ZnO nanoparticles via aqueous solution, sol-gel and hydrothermal methods.* IOSR J Appl Chem, 2015. **8**(11): p. 66-72.
- 3. George, J.M., et al. *Green synthesis of ZnO nanoparticles*. in *AIP Conference Proceedings*. 2020. AIP Publishing.
- 4. Faisal, S., et al., *Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: their characterizations and biological and environmental applications.* ACS omega, 2021. **6**(14): p. 9709-9722.
- 5. Balogun, S.W., et al., *Green synthesis and characterization of zinc oxide nanoparticles using bashful (Mimosa pudica), leaf extract: A precursor for organic electronics applications.* Sn Applied Sciences, 2020. **2**: p. 1-8.
- 6. Degefa, A., et al., *Green synthesis, characterization of zinc oxide nanoparticles, and examination of properties for dye-sensitive solar cells using various vegetable extracts.* Journal of Nanomaterials, 2021. **2021**: p. 1-9.
- 7. Almarhoon, Z.M., T. Indumathi, and E.R. Kumar, *Optimized green synthesis of ZnO nanoparticles:* evaluation of structural, morphological, vibrational and optical properties. Journal of Materials Science: Materials in Electronics, 2022. **33**(30): p. 23659-23672.
- 8. Alias, S., A. Ismail, and A. Mohamad, *Effect of pH on ZnO nanoparticle properties synthesized by sol—gel centrifugation*. Journal of Alloys and Compounds, 2010. **499**(2): p. 231-237.
- 9. Rajarajeswari, P., R. Shaikh, and L. Ravangave, *Effect of temperature reaction on chemically synthesized ZnO nanoparticles change in particle size.* Materials Today: Proceedings, 2021. **45**: p. 3997-4001.
- 10. Jay Chithra, M., M. Sathya, and K. Pushpanathan, *Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method.*Acta Metallurgica Sinica (English Letters), 2015. **28**: p. 394-404.
- 11. Ribut, S.H., et al., *Influence of pH variations on zinc oxide nanoparticles and their antibacterial activity.* Materials Research Express, 2018. **6**(2): p. 025016.

- 12. Indramahalakshmi, G., Characterization and antibacterial activity of zinc oxide nanoparticles synthesized using Opuntia ficus indica fruit aqueous extract. Asian Journal of Physical and Chemical Sciences, 2017. **3**(2): p. 1-7.
- 13. Parra, M.R. and F.Z. Haque, Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. Journal of Materials Research and Technology, 2014. **3**(4): p. 363-369.
- 14. Fakhari, S., M. Jamzad, and H. Kabiri Fard, *Green synthesis of zinc oxide nanoparticles: a comparison*. Green chemistry letters and reviews, 2019. **12**(1): p. 19-24.
- 15. Abdol Aziz, R.A., S.F. Abd Karim, and N.A. Rosli, *The effect of ph on zinc oxide nanoparticles characteristics synthesized from banana peel extract.* Key Engineering Materials, 2019. **797**: p. 271-279.
- 16. Sugihartono, I., et al. *The influence of calcination temperature on optical properties of ZnO nanoparticles*. in *AIP Conference Proceedings*. 2019. AIP Publishing.
- 17. Alzahrani, J.S., et al., *Effect of calcination temperature on the structural and optical properties of (ZnO) 0.8 (ZrO2) 0.2 nanoparticles.* Journal of Inorganic and Organometallic Polymers and Materials, 2022. **32**(5): p. 1755-1765.
- 18. Kayani, Z.N., F. Saleemi, and I. Batool, *Effect of calcination temperature on the properties of ZnO nanoparticles*. Applied Physics A, 2015. **119**: p. 713-720.
- 19. Wang, Y., et al., Solvothermal synthesis of ZnO nanoparticles for photocatalytic degradation of methyl orange and p-nitrophenol. Water, 2021. **13**(22): p. 3224.
- 20. Widiyastuti, W., et al., *Morphology and Optical Properties of Zinc Oxide Nanoparticles Synthesised by Solvothermal Method.* CHEMICAL ENGINEERING, 2017. **56**.
- 21. Kalam, A., et al., *Effect of stabilizer on optical band gap of ZnO and their performance in dye*sensitized solar cells. Bulletin of the Chemical Society of Ethiopia, 2022. **36**(1): p. 209-222.
- 22. Barrera, D., et al., *Reliable preparation of ZnO nanoparticles by different synthesis methods for bactericidal applications*. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020. **11**(2): p. 025015.
- 23. Biron, D.d.S., V.d. Santos, and C.P. Bergmann, *Synthesis and characterization of zinc oxide obtained by combining zinc nitrate with sodium hydroxide in polyol medium.* Materials Research, 2020. **23**: p. e20200080.
- 24. Middya, S., et al., *Role of zinc oxide nanomorphology on Schottky diode properties.* Chemical Physics Letters, 2014. **610**: p. 39-44.
- 25. Talebian, N., S.M. Amininezhad, and M. Doudi, *Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties.* Journal of Photochemistry and Photobiology B: Biology, 2013. **120**: p. 66-73.
- 26. Lian, J., et al., *Template-free solvothermal synthesis of ZnO nanoparticles with controllable size and their size-dependent optical properties.* Materials letters, 2012. **66**(1): p. 318-320.
- 27. Motelica, L., et al., *Influence of the alcohols on the zno synthesis and its properties: The photocatalytic and antimicrobial activities.* Pharmaceutics, 2022. **14**(12): p. 2842.
- 28. Pimentel, A., et al., *Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: A photocatalytic study.* Journal of Materials Science, 2015. **50**: p. 5777-5787.
- 29. Gherbi, B., et al., Effect of pH value on the bandgap energy and particles size for biosynthesis of ZnO nanoparticles: Efficiency for photocatalytic adsorption of methyl orange. Sustainability, 2022. **14**(18): p. 11300.
- 30. Sheikhi, S., M. Aliannezhadi, and F.S. Tehrani, *Effect of precursor material, pH, and aging on ZnO nanoparticles synthesized by one-step sol-gel method for photodynamic and photocatalytic applications*. The European Physical Journal Plus, 2022. **137**(1): p. 60.

- 31. Dodoo-Arhin, D., et al., *Photocatalytic degradation of Rhodamine dyes using zinc oxide nanoparticles*. Materials Today: Proceedings, 2021. **38**: p. 809-815.
- 32. Karam, S.T. and A.F. Abdulrahman. *Green synthesis and characterization of ZnO nanoparticles by using thyme plant leaf extract.* in *Photonics*. 2022. MDPI.
- 33. Kermani, M., et al., *The photocatalytic, cytotoxicity, and antibacterial properties of zinc oxide nanoparticles synthesized using Trigonella foenum-graecum L extract*. Environmental Science and Pollution Research, 2023. **30**(7): p. 19313-19325.
- 34. Bekele, B. and G.B.a.D. Shiferaw, *Synthesis, Characterization and Application of Zinc Oxide Nanoparticles for Textile Materials against Ultra Violet Radiation*. International Journal of Innovative Science and Research Technology.—2021.—6. **1**: p. 1156-1165.
- 35. Kaningini, A.G., et al., Effect of optimized precursor concentration, temperature, and doping on optical properties of ZnO nanoparticles synthesized via a green route using bush tea (Athrixia phylicoides DC.) leaf extracts. ACS omega, 2022. **7**(36): p. 31658-31666.
- 36. Abdulqudos, A.N. and A.F.F. Abdulrahman, *Biosynthesis and Characterization of ZnO Nanoparticles by using Leaf Extractionof Allium Calocephalum Wendelbow Plant*. Passer Journal of Basic and Applied Sciences, 2022. **4**(2): p. 113-126.
- 37. Limón-Rocha, I., et al., *Effect of the precursor on the synthesis of ZnO and its photocatalytic activity.* Inorganics, 2022. **10**(2): p. 16.
- 38. Arellano-Cortaza, M., et al., pH dependent morphology and texture evolution of ZnO nanoparticles fabricated by microwave-assisted chemical synthesis and their photocatalytic dye degradation activities. Ceramics International, 2021. **47**(19): p. 27469-27478.
- 39. Zare, M., et al., *Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties.* Journal of materials science & technology, 2018. **34**(6): p. 1035-1043.
- 40. Motelica, L., et al., *Antibacterial activity of solvothermal obtained zno nanoparticles with different morphology and photocatalytic activity against a dye mixture: Methylene blue, rhodamine b and methyl orange.* International Journal of Molecular Sciences, 2023. **24**(6): p. 5677.
- 41. Nageswara Rao, B., et al., Structural and Optical Studies of ZnO Nanostructures Synthesized by Rapid Microwave Assisted Hydrothermal and Solvothermal Methods. Transactions of the Indian Ceramic Society, 2018. **77**(3): p. 169-174.
- 42. Keskin, Z.S. and U. AÇIKEL, *Biosynthesis, Characterization and Antioxidant Properties of ZnO Nanoparticles Using Punica Granatum Peel Extract as Reducing Agent.* Cumhuriyet Science Journal, 2023. **44**(1): p. 90-98.
- 43. Truong, T.T., et al., *Green Synthesis of ZnO Nanoparticles using Piper chaudocanum L. Leaf Extract: Characterization and its Application in Pb (II) Adsorption.* VNU Journal of Science: Natural Sciences and Technology, 2022. **38**(3).
- 44. Assi, N., et al., Synthesis of ZnO-nanoparticles by microwave assisted sol-gel method and its role in photocatalytic degradation of food dye Tartrazine (Acid Yellow 23). International Journal of Nano Dimension, 2017. **8**(3): p. 241-249.
- 45. Abdullah, F., N.A. Bakar, and M.A. Bakar, Low temperature biosynthesis of crystalline zinc oxide nanoparticles from Musa acuminata peel extract for visible-light degradation of methylene blue. Optik, 2020. **206**: p. 164279.
- 46. Vidya, C., et al., *Hazard free green synthesis of ZnO nano-photo-catalyst using Artocarpus Heterophyllus leaf extract for the degradation of Congo red dye in water treatment applications.*Journal of Environmental Chemical Engineering, 2017. **5**(4): p. 3172-3180.

- 47. Haque, M.J., et al., Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Express, 2020. **1**(1): p. 010007.
- 48. Ganesan, V., et al., *Periconium sp.*(*endophytic fungi*) *extract mediated sol-gel synthesis of ZnO nanoparticles for antimicrobial and antioxidant applications.* Materials Science in Semiconductor Processing, 2020. **105**: p. 104739.
- 49. Lal, M., et al., *Photocatalytic degradation of hazardous Rhodamine B dye using sol-gel mediated ultrasonic hydrothermal synthesized of ZnO nanoparticles.* Results in Engineering, 2023. **17**: p. 100890.
- 50. Saridewi, N., et al., Synthesis of ZnO Nanoparticle using Lidah Mertua (Sansevieria trifasciata) Extract through Sol-Gel Method and Its Application for Methylene Blue Photodegradation.
 Bulletin of Chemical Reaction Engineering & Catalysis, 2023. **18**(3): p. 375-385.
- 51. Kumar, D., R. Singh, and M. Gautam, *Impact of surfactant-assisted synthesis on the structural, optical, and dielectric characteristics of ZnO nanoparticles.* Nano Express, 2023. **5**(1): p. 015002.
- 52. Samy, A., A.E. El-Sherbiny, and A. Menazea, *Green synthesis of high impact zinc oxide nanoparticles*. Egyptian Journal of Chemistry, 2019. **62**(The First International Conference on Molecular Modeling and Spectroscopy 19-22 February, 2019): p. 29-37.
- Nguyena, N. and V. Nguyen, *Ultrasound-assisted sol-gel synthesis, characterization, and photocatalytic application of ZnO nanoparticles*. Digest Journal of Nanomaterials & Biostructures (DJNB), 2023. **18**(3).
- 54. Modwi, A., et al., *Ultrasound-assisted green biosynthesis of ZnO nanoparticles and their photocatalytic application.* Zeitschrift für Naturforschung A, 2021. **76**(6): p. 535-547.
- 55. Kebede, M.A., et al., *Green synthesis of zinc oxide from aqueous fruit extract of Dovyalis abyssinica (Koshem) and application for water purification.* Ethiopian Journal of Science and Technology, 2023. **16**(1): p. 1-12.
- 56. Alzahrani, H.A., Y.Q. Almulaiky, and A.O. Alsaiari, *The photocatalytic dye degradation of methylene blue (MB) by nanostructured ZnO under UV irradiation.* Physica Scripta, 2023. **98**(4): p. 045703.
- 57. Hamrayev, H. and K. Shameli. *Biopolymer-based green synthesis of zinc oxide (ZnO) nanoparticles.* in *IOP Conference Series: Materials Science and Engineering.* 2021. IOP Publishing.
- 58. Kavithayeni, V., et al., Evaluation of Photocatalytic Dye Degradation Efficacy of ZnO
 Nanoparticles Synthesized by Sol-Gel Method at Different Calcination Temperatures. Pollution
 Research, 2020. **39**(4): p. 1082-1088.
- 59. Zak, A.K., et al., *Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study*. Advanced Powder Technology, 2013. **24**(3): p. 618-624.
- 60. Kayani, Z.N., F. Saleemi, and I. Batool, *Synthesis and characterization of ZnO nanoparticles*. Materials Today: Proceedings, 2015. **2**(10): p. 5619-5621.
- 61. Musleh, H., et al. Synthesis and characterization of ZnO nanoparticles using sol gel technique for dye sensitized solar cells applications. in Journal of Physics: Conference Series. 2019. IOP Publishing.
- 62. Verma, L.M., et al., *Phase controlled green synthesis of wurtzite (P 63 mc) ZnO nanoparticles: interplay of green ligands with precursor anions, anisotropy and photocatalysis.* Nanoscale Advances, 2024. **6**(1): p. 155-169.
- 63. Soto-Robles, C., et al., Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles. Results in Physics, 2019. **15**: p. 102807.
- 64. Ravangave, L. and R. Shaikh, *Influence of pH on structure, morphology and UV–visible spectra of ZnO nanorod.* Int J Eng Sci Invent, 2017. **6**(11): p. 76-79.

- 65. Shaikh, R. and L. Ravangave, *Effect of reaction time on some characterization of ZnO nanoparticles*. Int. Res. J. Sci. & Eng., Special Issue A2, 2018: p. 187-191.
- 66. Ashwini, J., et al., Synthesis and characterization of zinc oxide nanoparticles using Acacia caesia bark extract and its photocatalytic and antimicrobial activities. Catalysts, 2021. **11**(12): p. 1507.
- 67. Aalami, Z., et al., Synthesis, characterization, and photocatalytic activities of green sol-gel ZnO nanoparticles using Abelmoschus esculentus and Salvia officinalis: A comparative study versus co-precipitation-synthesized nanoparticles. Heliyon, 2024. **10**(2).
- 68. González-Fernández, J.V., et al., *Green method, optical and structural characterization of ZnO nanoparticles synthesized using leaves extract of M. oleifera*. Journal of Renewable Materials, 2022. **10**(3): p. 833.
- 69. Narath, S., et al., *Cinnamomum tamala leaf extract stabilized zinc oxide nanoparticles: A promising photocatalyst for methylene blue degradation.* Nanomaterials, 2021. **11**(6): p. 1558.
- 70. Gamedze, N.P., et al., *Biosynthesis of ZnO nanoparticles using the aqueous extract of Mucuna pruriens (utilis): structural characterization, and the anticancer and antioxidant activities.*Chemistry Africa, 2024. **7**(1): p. 219-228.
- 71. Vijayakumar, S., et al., *Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC.* Microbial pathogenesis, 2018. **116**: p. 44-48.