Pràctica 6: Nombres aleatoris 2. 23-24

Objectius: Métodes de Montecarlo (cru, sampleig d'importància), nombres aleatoris

— Nom del programa principal P6-23-24.f.

Totes les sortides de dades (separades convenientment) a P6-23-24-res.dat. Inicialitza els nombres aleatoris amb el teu NIUB.

1) Integrals Montecarlo 1D.

a) Dins del protó, les densitats dels quarks de valència "up" i "down", u(x) i d(x), es poden escriure com (on x és una variable adimensional),

$$x u(x) = 5.109 x^{0.8002} (1-x)^3$$

$$x d(x) = 3.058 x^{0.803} (1-x)^4$$
(0.18)

Calcula el nùmero de quarks de valència dins del protó, $n_u = \int_0^1 u(x) dx$ i $n_d = \int_0^1 d(x) dx$ fent servir el mètode de Montecarlo cru utilitzant $N = 150, 300, 450, \ldots, 45000$ sumands. Escriu al fitxer de dades: N, $n_u(N)$, $\sigma_{n_u}(N)$, $n_d(N)$, $\sigma_{n_d}(N)$. Genera una figura, **P6-23-24-fig1.png** que mostri la convergència dels càlculs dibuixant els valors amb les seves barres d'error corresponents.

- b) Genera 1000000 valors aleatoris per la posició d'un àtom ultrafred confinat dins d'una caixa de potencial 1D, $x \in (-L,L)$, de longitud $L=\pi\mu$ m amb densitat de probabilitat $p(x)=(1/L)\sin^2\left(\frac{\pi(x-L)}{2L}\right)$.
- c) Amb els nombres generats, calcula, fent servir $N=10000,20000,\ldots,1000000$, la integral següent,

$$I_2 = \int_{-L}^{L} g(x)p(x) dx$$
 amb $g(x) = \sin^2\left(\frac{8\pi(x-L)}{2L}\right)$.

Fes una figura mostrant la convergència del càlcul d' I_2 , $\mathbf{P6-23-24-fig2.png}$ i escriu al fitxer de dades $N, I_2(N), \sigma_{I_2}(N)$.

2) Encert/errada.

Programa un algorisme d'encert/errada per tal de trovar el valor del número π i una estimació de l'error comès. Considera doncs la integral de mitja circumferència de radi 1, $f(x) = \sqrt{1-x^2}$,

$$I_3 = 2\int_{-1}^1 f(x)dx \tag{0.19}$$

Fes una figura comparant la convergència del càlcul de π , **P6-23-24-fig3.png** i escriu al fitxer de dades N, $I_3(N)$, $\sigma_{I_3}(N)$, amb N el nombre total de punts, $N=10000,20000,\ldots 300000$.

Entregable: P6-23-24.f, P6-23-24-res.dat, P6-23-24-fig1.png, P6-23-24-fig2.png, P6-23-24-fig3.png + scripts gnuplot