7. Понятие исключающих кванторов, модификация правил построения формул, связанная с введением исключающих кванторов. Выражение истинностных значений формул, содержащих исключающие кванторы, через истинностные значения формул без исключающих кванторов. Понятие Г-формулы. Логическая равносильность любой формулы языка первого порядка некоторой Г-формуле, примеры

Расширим синтаксис языка 1-го порядка выражениями такого типа:

 $(\forall x|y_1,\ldots,y_k)$ – для любого x, кроме y_1,\ldots,y_k ; $(\exists x|y_1,\ldots,y_k)$ – существует x, отличный от y_1,\ldots,y_k .

 y_1, \dots, y_k — значения-исключения для переменной x (могут быть как константами из универсума, так и переменными). Список исключений может быть пустым, тогда исключающий квантор = классическому квантору.

Выражения вида $(\forall x | y_1, ..., y_k)$ и $(\exists x | y_1, ..., y_k)$ будем называть *исключающими кванторами общности* и *существования*, соответственно.

Дополним правила построения формул: если A – формула, то $(\forall x | y_1, ..., y_k)A$ и $(\exists x | y_1, ..., y_k)A$ также являются формулами. Мы расширили синтаксис языка, однако это расширение не является существенным, так как выразительные способности языка не увеличились.

Формулы с исключающими кванторами равносильны следующим формулам без использования исключающих кванторов:

$$(\forall x | y_1, ..., y_k) A = \forall x [(x \neq y_1) \& (x \neq y_2) \& ... \& (x \neq y_k) \to A]$$

$$(\exists x | y_1, ..., y_k) A = \exists x [(x \neq y_1) \& (x \neq y_2) \& ... \& (x \neq y_k) \& A]$$

Если в формуле вида: $(Qx|y_1,...,y_k)A$, где $Q \in \{\forall,\exists\}$, список исключений состоит в точности из всех переменных, имеющих свободные вхождения в формулу A, то формула обозначается следующим образом: $\dot{Q}xA$ (уточним, что все свободные вхождения переменной х в A не принимаются в расчет).

 Γ -формула (гамма формула) — формула, в которой каждый из кванторов имеет вид $\forall x A$ или $\exists x A$ (то есть, в списке исключений каждого квантора находятся все свободные переменные, расположенные в его области действия).

Любую формулу языка 1-го порядка можно привести логически к Г-формуле. Для получения эквивалентной Г-формулы используют соотношения:

 $x, y_1, ..., y_k$ – все свободные переменные формулы $F, F_x[y_i]$ – результат подстановки y_i в F вместо свободных вхождений переменной x.

Для получения Γ -формулы рассматриваются все кванторы исходной формулы справа налево и к ним применяются соотношения (1) и (2).

Пример 1. Формула $\forall x \exists y R(x, y)$, где R - двухместный предикатный символ, логически равносильна Γ -формуле: $(\forall x)[(\exists y|x)R(x,y) \lor R(x,x)]$.

Пример 2. Формула
$$A = \forall x (\exists y | x) \left[\underline{R(x,y) \lor (\forall z | x) [R(x,z) \to R(y,z)]} \right]$$
 не является Γ -формулой.

$$\begin{cases} \forall x = \dot{\forall} x \\ (\exists y | x) = \dot{\exists} y \end{cases}$$
$$(\forall z | x) \neq \dot{\forall} z$$

Если добавить к квантору $(\forall z|x)$ в список исключения еще y, то формула A будет Γ -формулой.