Dokážeme nejdříve implikaci "K obsahuje přímku $\implies K^*$ neobsahuje n-tici LN vektorů":

K obsahuje přímku neboli existuje nenulový vektor $v \in K$ tž. $\forall \lambda \in \mathbb{R} : \lambda v \in K$, speciálně $-v, v \in K$. Mějme libovolnou n-tici vektorů $y_1, \ldots, y_n \in K^*$. Z definice K^* platí, že $\forall i : v^T y_i \geq 0 \land -(v^T y_i) \geq 0 \implies v^T y_i = 0$. Uvažujme matici

$$A = \begin{pmatrix} y_1^T \\ y_2^T \\ \vdots \\ y_n^T \end{pmatrix} \implies Av = \begin{pmatrix} v^T y_1 \\ v^T y_2 \\ \vdots \\ v^T y_n \end{pmatrix}$$

Z lineární algebry víme, že matice A je singulární \iff existuje nenulový vektor x tž. Ax = 0. Tento vektor existuje a je to právě v. Dále víme, že A je singulární \iff řádky A jsou lineárně závislé. Takže y_1, \ldots, y_n je lineárně závislá posloupnost.

Nyní dokážeme implikaci "K neobsahuje n-tici LN vektorů $\Longrightarrow K^*$ obsahuje přímku": Pokud K neobsahuje n-tici LN vektorů, tak K je obsažen v podprostoru R^n menší dimenze než n (lineární obal K). Z toho plyne, že existuje vektor $v \in \mathbb{R}^n$ tž. je kolmý na daný podprostor (Gram-Schmidt), speciálně $\forall y \in K : v^T y = 0$. Z definice plyne $v \in K^*$ a také jeho libovolný násobek cv, kde $c \in R$, protože $\forall y \in K : (cv)^T y = c(v^T y) = c(0) = 0$.

Druhá implikace ze zadání (K^* neobsahuje n-tici LN vektorů $\implies K$ obsahuje přímku") plyne z přechozích dvou:

Předpokládáme, že K je uzavřená množina neboli $\overline{K} = K$ a díky faktu ze zadání tedy platí $(K^*)^* = K$. V předchozí implikaci tedy dosadíme místo K K^* a máme dokázanou zbývající implikaci.

2

Předpokládejme, že platí první implikace co máme dokázat. Jestliže K je "proper cone", tak neobsahuje přímku a je uzavřený, tudíž z 1) plyne, že K^* obsahuje n lineárně nezávislých vektorů a díky implikaci, co si dokážeme, z toho plyne, že K^* má neprázdný vnitřek. (Z přednášky také ale víme, že pokud K proper $\Longrightarrow K^*$ proper $\Longrightarrow K^*$ neprázdný vnitřek, takže tohle by nebylo potřeba).

Dokážeme tedy zbývající implikaci:

Předpokládáme tedy, že existuje n lineárně nezávislých vektorů $b_1,\ldots,b_n\in K$. Tyto vektory tvoří bázi B prostoru \mathbb{R}^n . Položme $p=\sum_{i=1}^n b_i$. Jelikož K je kužel, tak $p\in K$. Budeme uvažovat maximovou normu. Buď A matice přechodu od kanonické báze k bázi B. Označme $M:=\sup\{\|Ax\|:x\in\mathbb{R}^n,\|x\|=1\}$. M je tedy největší souřadnice, kterou může jednotkový vektor v bázi B dostat a uvažujeme-li indukovanou normu na maticích tak právě $\|A\|=M$. Uvažujeme-li vektor v tž. $\|v\|<\frac{1}{M}$, pak z vlastností normy platí: $\|Av\|\leq\|A\|$. $\|v\|<M\frac{1}{M}=1$. Neboli všechny souřadnice (Av je vektor souřadnic) vektoru s normou menší než $\frac{1}{M}$ v bázi B jsou menší než 1.

Uvažujme nyní množinu $C = \{y \in \mathbb{R}^n : \|p - y\| < \frac{1}{D}\}$. Zvolme $y \in C$. Pokud $y \in K$, tak K má neprázdný vnitřek. Pro vektor p - y z definice platí $\|p - y\| < \frac{1}{D} \Longrightarrow \|A(p - y)\| < 1$. Dozvěděli jsme se, že souřadnice vektoru p - y jsou v absolutní hodnotě menší než 1. Vyjádříme p - y v bázi $B \Longrightarrow p - y = \sum_{i=1}^n c_i b_i$, kde $|c_i| < 1$. p - y umíme vyjádřit druhým způsobem: $p - y = \sum_{i=1}^n b_i - \sum_{i=1}^n d_i b_i = \sum_{i=1}^n (1 - d_i) b_i \Longrightarrow 1 - d_i = c_i \Longrightarrow |1 - d_i| < 1 \Longrightarrow d_i > 0$. Takže y je konvexní kombinací b_1, \ldots, b_n neboli $y \in K$.

Z Farskasova lemma plyne, že pokud dokážeme, že existuje $y \in \mathbf{R}^3$: $A^Ty \ge 0 \land b^Ty < 0$, kde $b^T = (3, -2, 0)$ a

$$A = \begin{pmatrix} 0 & 0 & 2 & -1 & -1 & 0 & 0 \\ 1 & 1 & -1 & 1 & 0 & -1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(A reprezentuje zadanou soustavu), tak daná soustava nemá řešení. Stačí zvolit $y^T = (-1, 0, 2)$:

$$-1 \begin{pmatrix} 0 \\ 0 \\ 2 \\ -1 \\ -1 \\ 0 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 0 \\ 1 \\ 1 \\ 0 \\ 2 \end{pmatrix} \ge 0, (3 -2 0) \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} = -3 < 0$$

4

Dokážeme 2 inkluze: $int(S_+^n) \subseteq S_{++}^n$ a $S_{++}^n \subseteq int(S_+^n)$. Budeme uvažovat spektrální normu. První inkluze:

Zvolme $A \in int(S_+^n)$. Z definice tedy $\exists \epsilon > 0, \forall X \in S^n, \|A - X\| < \epsilon \implies X \in S_+^n$. Zvolme $0 < \delta < \epsilon$, položme $X \coloneqq A - \delta I_n$. Poté zřejmě $\|A - X\| = \|\delta I_n\| = \delta < \epsilon$. Takže $A - \delta I_n \in S_+^n$. Vlastní čísla matice $A - \delta I_n$ jsou právě $\lambda_i - \delta$, kde λ_i je vlastní číslo A. To platí z definice: nechť x vlastní vektor A příslušný vlastnímu číslu $\lambda_i \iff x$ je vlastní vektor $A - \delta I_n$ příslušný $\lambda_i - \delta$, protože:

$$\implies : (A - \delta I_n)x = Ax - \delta I_n x = \lambda_i x - \delta x = (\lambda_i - \delta)x$$

$$\iff : Ax - \delta x = (A - \delta I_n)x = (\lambda_i - \delta)x = \lambda_i x - \delta x \implies Ax = \lambda_i x$$

 $A-\delta I_n\in S^n_+\implies \lambda_i-\delta\geq 0,$ takže pro vlastní čísla Aplatí $\lambda_i\geq \delta>0.$ Takže $A\in S^n_{++}.$

Nyní druhá inkluze:

Zvolme $A \in S^n_{++}$. Položme λ_{min} jako nejmenší vlastní číslo A. A je pozitivně definitní, takže $\lambda_{min} > 0$. Uvažujme kouli $S := \{X \in S^n : \|A - X\| < \lambda\}$. Dokážeme, že $S \subseteq S^n_+$ a tím bude platit druhá inkluze. Zvolme $X \in S$, z definice spektrální normy (pro symetrické matice) tedy plyne, že pro největší vlastní číslo matice A - X, které označíme δ_{max} , platí $\delta_{max} < \lambda_{min}$.

Zvolme libovolný $x \in \mathbb{R}^n$, ||x|| = 1. Matice A - X je symetrická, tudíž ortogonálně diagonalizovatelná, a proto platí $x^T(A - X)x \leq \delta_{max}$. Protože buď QDQ^T ortogonální rozklad A - X:

$$x^{T}(A - X)x = x^{T}(QDQ^{T})x = (Q^{T}x)^{T}D(Q^{T}x) = \sum_{i=1}^{n} \delta_{i}(q_{i}^{T}x)^{2} \le \delta_{max} \sum_{i=1}^{n} (q_{i}^{T}x)^{2} = \delta_{max} ||x||^{2} = \delta_{max}$$

Obdobně lze dokázat, že $\forall x \in \mathbb{R}^n, \|x\|=1: x^TAx \geq \lambda_{min},$ kde λ_{min} je nejmenší vlastní číslo A.

Pokud tyto nerovnosti spojíme, tak dostaneme $\forall x \in \mathbb{R}^n: \|x\| = 1$:

$$\delta_{max} \ge x^T (A - X) x = x^T A x - x^T X x \implies x^T X x \ge x^T A x - \delta_{max}$$
$$x^T A x \ge \lambda_{min} \implies x^T X x \ge \lambda_{min} - \delta_{max} > 0$$

Dokázali jsme tedy, že $X \in S^n_+.$ Tedy i druhou inkluzi.

5