

FACULTAD DE CIENCIAS ÁLGEBRA LINEAL 1

Tarea 01

Semestre 2024-1

Profesora:

Mindy Yaneli Huerta Pérez

Ayudantes:

Elizabeth Chalnique Ríos Alvarado Gilbert Raúl Avendaño Aguilar Aldair Reyes Gónzalez

Alumnos:

Paul César Cabañas Segura Marco Silva Huerta

Tarea 01

Ejercicio 1

Sean X un conjunto no vacío y F un campo. Sea $f[X] := \{f : f : X \to F\}$ el conjunto de todas las funciones que van de X a F. Entonces f[x] es un espacio vectorial sobre F con las siguientes operaciones para cualesquiera $x \in X$ y $a \in F$:

$$(f+g)(x) = f(x) + g(x)$$
$$(af)(x) = af(x)$$

Demuéstralo o escribe cuál es la propiedad que no cumple y justifica tu respuesta

1. Cerradura bajo la suma:

Para demostrar que la suma de dos elementos en f[x] sigue estando en f[x], tomemos dos funciones arbitrarias f y g en f[x]. Entonces, para cualquier x en X, tenemos:

$$(f+g)(x) = f(x) + g(x)$$

 $\in F + F$ (porque $f(x)$ y $g(x)$ están en F)
 $\subseteq F$ (ya que F es cerrado bajo la suma)

Por lo tanto, (f+g)(x) está en F para todo x, lo que significa que la suma f+g es una función de X a F y, por lo tanto, pertenece a f[x]. La cerradura bajo la suma se cumple.

2. Cerradura bajo la multiplicación por escalar: Para demostrar la cerradura bajo la multiplicación por escalar en f[x], consideremos una función $f \in f[x]$ y un escalar $a \in F$. La multiplicación por escalar se define como:

$$(af)(x) = af(x) \in F$$
 (Definición de multiplicación por escalar)

Dado que f(x) está en F (ya que $f \in f[x]$) y a también está en F, el producto af(x) también estará en F. Esto significa que (af)(x) está en F para todo x, y por lo tanto, la función af(x) pertenece a f[x]. La cerradura bajo la multiplicación por escalar se cumple.

3. Asociatividad de la suma:

La propiedad de asociatividad de la suma en f[x] sigue directamente de la asociatividad de la suma en F, ya que estamos sumando funciones de X a F y, en cada punto x, estamos sumando elementos de F. Entonces para cualesquiera $f, g, h \in f[x]$ y $x \in X$, tenemos:

$$[(f+g)+h](x) = (f+g)(x)+h(x) \quad \text{(Definición de suma en } f[x])$$

$$= [f(x)+g(x)]+h(x) \quad \text{(Definición de suma en } f[x])$$

$$= f(x)+[g(x)+h(x)] \quad \text{(Asociatividad en } F)$$

$$= f(x)+(g+h)(x) \quad \text{(Definición de suma en } f[x])$$

$$= [(f+(g+h))(x) \quad \text{(Definición de suma en } f[x])$$

Como esta igualdad es válida para todo $x \in X$, concluimos que (f+g)+h=f+(g+h) en f[x]. La propiedad de asociatividad se cumple.

4. Conmutatividad de la suma:

La propiedad de conmutatividad de la suma en f[x] se deriva de la conmutatividad de la suma en el campo F. Esto se debe a que, en cada punto $x \in X$, estamos sumando elementos del campo F, y estas sumas individuales se comportan de acuerdo con la conmutatividad de F. Formalmente, para cualesquiera $f,g \in f[x]$ y $x \in X$, tenemos:

$$(f+g)(x) = f(x) + g(x)$$
 (Definición de suma en $f[x]$)
= $g(x) + f(x)$ (Conmutatividad en F)
= $(g+f)(x)$ (Definición de suma en $f[x]$)

Como esta igualdad es válida para todo $x \in X$, concluimos que f + g = g + f en f[x]. La propiedad de conmutatividad se cumple.

5. Elemento neutro de la suma:

La función nula o cero, que mapea todos los elementos de X a 0 en F, actúa como el elemento neutro de la suma en f[x]. Formalmente, para cualquier función $f \in f[x]$ y cualquier $x \in X$, tenemos:

$$(0+f)(x) = 0(x) + f(x)$$
 (Definición de suma en $f[x]$)
= $0+f(x)$ (Definición de la función nula)
= $f(x)$ (Propiedad del elemento neutro en F)

Como 0 es la función nula en f[x] y esta igualdad se cumple para todo $x \in X$, concluimos que 0 + f = f para toda $f \in f[x]$. La función nula actúa como el elemento neutro de la suma.

6. Inverso aditivo:

Dada una función f en f[x], su inverso aditivo sería la función -f(x), que mapea cada x a -f(x) en F. Esta función existe en f[x] debido a la estructura del campo F. Formalmente, para cualquier función $f \in f[x]$ y cualquier $x \in X$, tenemos:

$$(f+(-f))(x)=f(x)+(-f)(x)$$
 (Definición de suma en $f[x]$)
= $f(x)-f(x)$ (Definición de $-f(x)$)
= 0 (Propiedad de inversos aditivos en F)

Como esta igualdad se cumple para todo $x \in X$, concluimos que f + (-f) = 0 para toda $f \in f[x]$. El inverso aditivo existe y es la función -f(x).

7. Distributividad de la suma de escalares sobre la suma de funciones:

Dados $a \in F$ y funciones $f, g \in f[x]$, tenemos

$$a(f+g)(x) = a(f(x) + g(x))$$

$$= af(x) + ag(x)$$

$$= (af)(x) + (ag)(x)$$

$$= (af + ag)(x)$$

Por lo tanto, la distributividad se cumple.

8. Distributividad de la suma de escalares sobre la multiplicación de funciones:

Dados $a, b \in F$ y una función $f \in f[x]$, tenemos

$$(a+b)f(x) = af(x) + bf(x)$$
$$= (af)(x) + (bf)(x)$$
$$= (af + bf)(x)$$

Por lo tanto, la distributividad se cumple.

Todas las propiedades necesarias para que f[x] sea un espacio vectorial sobre F están satisfechas. Por lo tanto, las operaciones definidas cumplen con las condiciones requeridas para formar un espacio vectorial de funciones.

Ejercicio 3

El conjunto de matrices en $M_{m \times n}(\mathbf{R})$ con entradas positivas o cero es un subespacio de $M_{m \times n}(\mathbf{R})$. Demuéstralo o escribe cuál es la propiedad que no cumple y justifica tu respuesta.

1. Cerradura bajo la adición de matrices

Para que V sea un subespacio, la suma de dos matrices en V debe ser otra matriz en V.

Sea A una matriz en V y B otra matriz en V. Entonces, las entradas de A y B son no negativas. Queremos mostrar que la matriz suma A+B también tiene todas sus entradas no negativas.

Dado que $a_{ij} \ge 0$ y $b_{ij} \ge 0$, la suma $a_{ij} + b_{ij}$ también es no negativa. Por lo tanto, $(A+B)_{ij} \ge 0$, lo que significa que A+B tiene entradas no negativas. Esto demuestra que A+B está en V y que V cumple con la cerradura bajo la adición de matrices.

2. Cerradura bajo la multiplicación por un escalar

Falta por demostrar