

# Dekodierung eines Funkfernschreibersignals mithilfe der Zynq-Plattform

Lehrstuhlseminar Benjamin Koch





# Gliederung

- Aufgabenstellung
- Funkfernschreiben (RTTY)
- Aufbau des Systems
- Fazit und Ausblick



## Aufgabenstellung

- Eingangsseitig gegeben 24 Bit Audiosamples
- Samplerate 94 kHz
- Aufbereitung/Verarbeitung des Signals
  - Filterung
  - FFT
- Dekodierung (zunächst max. 50 Baud)
- Ausgabe





### Aufgabenstellung

## Zynq-7000 von Xilinx

- Kopplung von programmierbarer Logik mit einem ARM Dualcore auf Cortex-A9-Basis
- System-on-a-Chip
- Optimiertes Hardware/Software-Codesign
- Entwicklungssystem: ZedBoard



Abbildung 1
ZedBoard



# Funkfernschreiben (Radio TeleTYpe)

- Asynchroner serieller Bitstrom
- 1 und 0 durch 2 Töne signalisiert
- 5-Bit-Baudot Code
- 1 Startbit, 1, 1.5 oder 2 Stoppbits
- Baudrate üblicherweise zwischen 10 und 1000 Baud
- Modulationsart: Einseitenbandmodulation (SSB)





# Funkfernschreiben (Radio TeleTYpe)





# Funkfernschreiben (Radio TeleTYpe)

- CCITT-2 Code
- Seit 1932 als internationales Telegraphenalphabet Nr. 2 standardisiert

Tabelle 1

| CODE  | Buchstabe | Ziffern/Zeichen |
|-------|-----------|-----------------|
| 00011 | A         | -               |
| 11001 | В         | ?               |
| 01110 | С         | :               |
| 01001 | D         | Wer Da?         |
| 00001 | Е         | 3               |
| 01101 | F         | unbenutzt       |
| 11010 | G         | unbenutzt       |



# Funkfernschreiben (RTTY)

- Heute weitestgehend durch modernere Verfahren ersetzt
- Beliebt bei Funkamateuren
- Wetterdaten des deutschen Wetterdienstes
- Militärische Nutzung



Abbildung 2
Sender Pinneberg des
deutschen Wetterdienstes











$$y_1(t) = y_0 \cos(2\pi f_1 t)$$

$$y_2(t) = y_0 \cos(2\pi f_2 t)$$



Transformation in den Frequenzbereich

$$Y_1(f) = \frac{1}{2} \left( \delta(f + f_1) + \delta(f - f_1) \right)$$
  
$$Y_2(f) = \frac{1}{2} \left( \delta(f + f_2) + \delta(f - f_2) \right)$$

 $\delta$  Diracsche Deltafunktion



- Eingangssignal 96-kHz-Audiodaten mit 24 Bit
  - → Maximale Frequenz 48 kHz (Shannon-Theorem)
- Zu erkennende Signale aber nur zwischen 0 und 2 kHz
- Downsampling auf 16 kHz
  - → Gelockerte Anforderungen an die FFT
  - → Reduzierte Komplexität der Berechnung
- 5 Abtastwerte pro Bit



$$T_{\text{bit}} = \frac{1}{B} = \frac{1}{50 \times \text{s}^{-1}} = 20 \text{ms}$$
 (Symboldauer)



$$f_s = 16kHz$$
 (Samplerate)

Festlegung Größe der FFT: 60 Punkte

$$T_{st} = 60 \times f_s = 3,75 \text{ms} \rightarrow \text{jedes Bit wird etwa 5-mal abgetastet}$$





### Design Flow von Xilinx (Vivado)

- Entwurf eines IP-Cores für die Programmierbare Logik
- Verdrahten der Systemkomponenten in einem Block Design
- Programmierung der Software
- Kommunikation der Komponenten via AXI Bus
- Datenaustausch über Block RAM







- FFT, FIFO, BRAM, BRAM Controller IP von Xilinx
- Audio Interface von Stefan Scholl, Lehrstuhl Entwurf Mikroelektronischer Systeme, TU Kaiserslautern
- Takt: 100 MHz, Steigerung möglich
- Verwending von Cross Clock FIFOs/BRAM zur Kopplung der Clock Domains





#### Fazit und Ausblick

#### Performance

- Bei aktueller Anwendung (RTTY, 50 Baud) noch keine Beschleunigung durch Hardware-Implementierung notwendig
- Bei komplexeren Betriebsarten oder hohen Datenraten durchaus sinnvoll
- Nutzung als Software Defined Radio denkbar

Benchmark 4096 point FFT – Complex 32 bit floating point (Zynq 7020)

| ARM processor alone | NEON SIMD engine | Hardware in PL fabric |
|---------------------|------------------|-----------------------|
| 830 μS              | 571 μS           | 129 μS                |

Tabelle 1



### Fazit und Ausblick

- Bisher nur sehr grobe Filterung des Signals
- Implementierung weiterer Betriebsarten denkbar (CW, SSTV, Digital)
- Peripherie des ZedBoards besser nutzen
  - Bildausgabe (VGA/HDMI)
  - Ethernet
- Einsatz unter Linux



### Fazit und Ausblick

- Arbeit mit Vivado aufgrund von Bugs anstrengend
- Schlechte Dokumentation f
  ür grundlegende Schritte
- Sehr guter Support im Xilinx Forum
- C-Modelle von Xilinx zur Simulation sehr hilfreich



## Quellen

#### Abbildung 1

http://zedboard.org/sites/default/files/styles/product\_slider/public/product/ZedBoard\_RevA\_sideA\_0\_ 0.png?itok=lsIF6leb

#### Abbildung 2

https://de.wikipedia.org/wiki/DDH47#/media/File:DDH47\_25112012\_1.JPG

#### **Abbildung 3**

Screenshot des Block Designs aus Vivado

#### Tabelle 1

https://www.itu.int/rec/dologin\_pub.asp?lang=e&id=T-REC-S.1-198811-S!!PDF-E&type=items

#### Tabelle 2

http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Spectrum+Analyzer+part+1+-+Accelerating+Software+%26+More+-+Installing+and+Running+the+Spectrum+Analyzer+Demo+Tech+Tip



# Quellen

Rumpf, Karl-Heinz

Trommeln, Telefone, Transistoren. Ein Streifzug durch die elektrische Nachrichtentechnik. Verlag Technik, Berlin 1971

**Professor Fettweiß** 

**Vorlesung Nachrichtentechnik** 

https://mns.ifn.et.tu-dresden.de/Teaching/Courses/NT\_Documents/Nachrichtentechnik\_Skript\_2015\_De.pdf

**Stefan Scholl** 

**Audio Interface for ZedBoard** 

https://kluedo.ub.uni-kl.de/frontdoor/deliver/index/docId/4034/file/zedboard\_audio\_doc.pdf https://github.com/ems-kl/zedboard\_audio



#### Vielen Dank für Ihre Aufmerksamkeit!

```
CQ CQ CQ DE DDH47 DDH9 DDH8
FREQUENCIES
       147.3 KHZ 11039 KHZ
                    14467.3 KHZ
CQ CQ CQ DE DDH47 DDH9 DDH8
       147.3 KHZ 11039 KHZ 14467.3 KHZ
FREQUENCIES
CQ CQ CQ DE DDH47 DDH9 DDH8
FREQUENCIES 147.3 KHZ 11039 KHZ 14467.3 KHZ
CQ CQ CQ DE DDH47 DDH9 DDH8
FREQUENCIES
       147.3 KHZ
             11039 KHZ
                    14467.3 KHZ
CQ CQ CQ DE DDH47 DDH9 DDH8
FREQUENCIES
             11039 KHZ
       147.3 KHZ
                    14467.3 KHZ
```