Voltage multiplier

- A *voltage multiplier* is a specialized rectifier circuit which can potentially produce an output voltage many times greater than of the applied input voltage
- Usually an integer times the AC peak input, for example,
 2, 3, or 4 times the AC peak input.
- Thus, for a 100 V_{peak} AC source it is possible to get 200 V_{DC} from a using a **doubler**, 400 V_{DC} from a **quadrupler**.
- Voltage multipliers are AC-to-DC power conversion devices, comprised of **diodes and capacitors**, that produce a high potential DC voltage from a lower voltage AC source.
- Multipliers are made up of multiple stages. Each stage is comprised of one diode and one capacitor.

Types of voltage multiplier

- Depending on the output voltage, multipliers can be of different types
 - Voltage doublers
 - Voltage tripplers
 - Voltage quadrupler

Voltage doublers

- A Voltage doubler produces a DC voltage almost twice the rms value of the input AC voltage.
- Voltage doubler can be of two types;
 - Half wave voltage doubler
 - Full wave voltage doubler

Half wave voltage doubler

The half-wave voltage doubler

- (a) clamper at
- (b) peak detector (half-wave rectifier)

$$V_{out} = V_{C2} = 2V_m$$

- During the positive half cycle of the secondary voltage diode D₁ conducts and D₂ is cut off.
- Now capacitor C_1 charges to the peak rectified voltage V_p

- During the negative half cycle, the secondary voltage comes in series with voltage across the capacitor C₁
- Thus C_2 will try to charge towards $2V_p$ (V_p of the input and V_p of the capacitor C_1 .

- After few cycles the voltage across the capacitor C_2 will be equal to $2V_m$
- Since diode D₂ acts as a short during the negative half-cycle (and diode D1 is open), we can sum the voltages around the outside loop.
- In the circuit capacitor C₁ will discharge in the negative half cycle.
- Again in the positive half cycle, it starts charging.
- Thus the half wave voltage doubler supplies the voltage to the load in one half cycles.

• Therefore regulation of the half wave voltage doubler is poor.

Full wave voltage doubler

- The full-wave voltage doubler is composed of a pair of series stacked half-wave rectifiers.
- Positive Half-Cycle
 - D₁ conducts
 - D₂ is switched off
 - Capacitor C₁ charges to V_m

Negative Half-Cycle

- D₁ is switched off
- D₂ conducts
- Capacitor C₂ charges to V_p

Since both capacitors C_1 and C_2 are in series, the final output voltage is approximately $2V_p$ Full Wave Voltage Multiplier

$$V_{out} = V_{C1} + V_{C2} = 2V_{p}$$

Output waveform

Voltage tripler and Quadrapler

- To build the voltage **Tripler** circuit, we just need to add 1 more Diode and capacitor to the above Half wave Voltage Doubler
- Again we just need to add one more diode and capacitor to Voltage Tripler circuit, to build the Voltage Quadruple circuit (4 times the input voltage).

• Positive half-cycle: D1 and D3 conducts

C₁ charges to V_p through
 D

• Negative half-cycle: D2 and D4 conducts

$$V_{in}-V_{c2}-V_{m}=0$$

$$V_{c2}=V_{in}+V_{m}$$

$$=2V_{m}$$

Voltage Quadruplers

- + half-cycle:
- C_1 charges to V_p through D_1 ,
- - half-cycle: C_2 charges to $2V_p$ through C_2
- Next + half-cycle:
- C_3 charges to $2V_p$ through C_3 .
- Next half-cycle: C₄ charges to
 2V_p through C4 Quadruple
 Output is across C₂ & C₄.

Multiplier Applications

- Originally used for television CRT's,
- voltage multipliers are now used for
 - lasers,
 - x-ray systems,
 - traveling wave tubes (TWT's),
 - photomultiplier tubes,

