2. izpit iz Uvoda v geometrijsko topologijo

22. 8. 2018

1. naloga (10 točk)

2. naloga (20 točk)

Naj bo X poljuben topološki prostor. Prostora $\mathcal{C}(X,\mathbb{R})$ in $\mathcal{C}(X,(-2,2))$ opremimo s kompaktno odprto topologijo. Za $f \in \mathcal{C}(X,\mathbb{R})$ naj bo

$$\widetilde{f}(x) = \begin{cases} \min\{1, f(x)\}, & f(x) \ge 0, \\ \max\{-1, f(x)\}, & f(x) < 0. \end{cases}$$

- 1. Pokaži, da je za vsak $f\in\mathcal{C}(X,\mathbb{R})$ preslikava $\widetilde{f}\colon X\to (-2,2)$ zvezna.
- 2. Pokaži, da je $F \colon \mathcal{C}(X,\mathbb{R}) \to \mathcal{C}(X,(-2,2))$, definirana s predpisom $F(f) = \widetilde{f}$, zvezna.
- 3. Pokaži, da $\{f \in \mathcal{C}(X,\mathbb{R}) \mid f(X) \subset (-2,2)\}$ ni retrakt prostora $\mathcal{C}(X,\mathbb{R})$.

3. naloga (20 točk)

Naj bo $X = \{(x, y, z) \in [-1, 1]^3 \mid xy = 0\}$ in $G = \mathbb{Z}$.

- 1. Poišči podprostor evklidskega prostora, ki je homeomorfen kvocientu X/G, kjer grupa G deluje na X s predpisom $n \cdot (x, y, z) = ((-1)^n x, (-1)^n y, z)$.
- 2. Ali je X mnogoterost?

4. naloga (20 točk)

Naj bo **T** torus in **M** Möbiusov trak. Poišči vse trojice kompaktnih ploskev X, Y in Z, za katere velja $X\#Y\#Z\approx \mathbf{M}\#2\mathbf{T}, X\#Y\approx Z\#2\mathbf{T}$ in $X\#Z\approx Y\#\mathbf{T}$. Odgovor utemelji!