(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平10-20290

(43)公開日 平成10年(1998) 1 月23日

(51) Int.Cl.4		識別記号	庁内整理番号	ΡI			技術表示箇所
G02F	1/1333	500		G 0 2 F	1/1333	500	
	1/1335	520			1/1335	520	

審査請求 未請求 請求項の数3 OL (全 5 頁)

(21)出願番号	特顧平 8-173218	(71)出顧人	000001007
			キヤノン株式会社
(22)出顧日	平成8年(1996)7月3日		東京都大田区下丸子3丁目30番2号
		(72)発明者	基 淳一
			東京都大田区下丸子3丁目30番2号キヤノ
		· ·	ン株式会社内
		(72)発明者	古島 輝彦
			東京都大田区下丸子3丁目30番2号キャノ
			ン株式会社内
		(72)発明者	石井 隆之
			東京都大田区下丸子3丁目30番2号キヤノ
			ン株式会社内
		(74)代理人	弁理士 丸島 (猿一
			最終質に続く

(54) 【発明の名称】 被晶表示装置とその製造方法

(57)【要約】

【課題】 特に、反射型の液晶表示装置のコントラスト を低コストで向上させる。

【解決手段】 透明である一方の基板1と、前記一方の 基板と対向する他方の基板と、前記一方の基板と前記他 方の基板に挟持される液晶材料を有する液晶表示装置に おいて、前記一方の基板は山形形状の部分3を有し、前 記山形形状は多角錐または円錐形状である。

【特許請求の範囲】

【請求項1】 透明である一方の基板と、前記一方の基板と対向する他方の基板と、前記一方の基板と前記他方の基板に挟持される液晶材料を有する液晶表示装置において

前記一方の基板は山形形状の部分を有し、前記山形形状 は多角錐または円錐形状であることを特徴とする液晶表 示装置。

【請求項2】 透明である一方の基板と、前記一方の基板と対向する他方の基板と、前記一方の基板と前記他方の基板に挟持される液晶材料を有する液晶表示装置の製造方法において、

前記一方の基板は山形形状の部分を有し、前記山形形状 は多角錐または円錐形状であり、前記山形形状を硬化型 樹脂を用いたレプリカ法またはモールド法を使って作製 することを特徴とする液晶表示装置の製造方法。

【請求項3】 前記硬化型樹脂は、前記一方の基板と、前記硬化型樹脂上にある透明電極との中間の屈折率を有する請求項2に記載の液晶表示装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、液晶表示装置、と くにシュリーレン光学系を用いる反射型の液晶表示装置 に関する。

[0002]

【従来の技術】従来、高分子分散液晶を注入した反射型液晶表示装置(LCD)は、主にシュリーレン光学系を用いて投影型ディスプレーに使用される。前記シュリーレン光学系は、前記反射型LCDによって散乱された光は系に入射しないような瞳の作りになっている。前記し 30 CDが黒表示を行う場合には、前記高分子分散液晶に電圧を印加せず、前記液晶の小液液群の向く方向がまちまちの状態として、屈折率差の生じた高分子分散液晶が光を散乱することによって、黒表示を行う。

[0003]

【発明が解決しようとする課題】しかし前記LCD液晶 セルの光が通る経路中には各々の屈折率差が有る界面が 存在し、そこからの正反射光が前記シュリーレン光学系 の職に入射するため、前記思表示の表示が白に近い灰色 となってしまう。

【0004】特に対向基板側に蒸着する透明電極である ITO (インジウム・ティン・オキサイド) 膜とガラス 基板の界面は、その屈折率差(2.0-1.5=0. 5) が大きいため、特に問題となる。

【0005】前記問題を解決する方法として、前記界面 に凹凸を付ける方法が例えば SID 95 DIGE ST PP227 「16.2 Reflective -Type LCPC Projection Dis play」, USP 5, 283, 675号等で紹介さ れている。 【0006】前記に紹介されているのは、研磨法やエッチング法であるが、これらの方法は、広い面積にわたって均一な凹凸を得る事は困難であり、またピット等の点欠陥も生じ易い。

2

【0007】また屈折率差による反射を防ぐ他の方法として、両者の中間の屈折率値を示す薄膜を積層して反射防止(AR)コートを形成する方法もある。しかしこの方法は薄膜蒸着を必要とするために、コストアップを招く。

0 【0008】そこで、以上の問題を解決し、黒表示の特性が良く、コントラストが大きく、しかも、低コストで安定した性能を示す液晶表示装置とその製造方法を提供することを本発明の目的とする。

[0009]

【課題を解決するための手段】以上に挙げた問題を解決するために、本発明者が鋭意努力した結果、以下の発明を得た。すなわち、本発明の液晶表示装置は、透明である一方の基板と、前記一方の基板と前記他方の基板に挟持される液晶と、前記一方の基板と前記他方の基板に挟持される液晶20 材料を有する液晶表示装置において、前記一方の基板は山形形状の部分を有し、前記山形形状は多角錐または円錐形状であることを特徴とする。

【0010】また、本発明は液晶表示装置の製造方法も包含する。すなわち、本発明の液晶表示装置の製造方法は、透明である一方の基板と、前記一方の基板と対向する他方の基板と、前記一方の基板と前記他方の基板に挟持される液晶材料を有する液晶表示装置の製造方法において、前記一方の基板は山形形状の部分を有し、前記山形形状を硬化型樹脂を用いたレブリカ法またはモールド法を使って作製することを特徴とする。ここで、前記硬化型樹脂は、前記一方の基板と、前記硬化型樹脂上にある透明電極との中間の屈折率を有するといい。

【0011】本発明は前述の欠点を除去するものであり、低コストで安定した性能を示す反射型LCD用対向 基板を提供する。

【0012】前記一方の基板である対向基板上に前記山 形形状として立上りが5~20°の小さな斜面を形成す るのが良い。また、前記斜面上にITO膜を蒸着するこ 40 とによって、ITO膜と斜面の界面からの反射光をシュ リーレン光学系などの膜に入射しないようにできる。

【0013】前記斜面は次第に液晶セルのセルギャップを狭くするように働くため、適度の距離で折返す事によって前記液晶セルのギャップ量をほぼ均一に保つことができる。

【0014】また、前記斜面は安定した実績の有る製造 方法を用い設計通り、意図的に作り込む事によって欠陥 の発生を防止し、またモールド法、レプリカ法等の製造 方法を用いることによって前記対向基板を安価に提供す 50 る事ができる。 3

[0015]

【発明の実施の形態】

(実施形態1)図1に本発明の実施形態1である反射型 LCD用の対向基板を示す。(a)は平面図であり、

(b)は側面図である。1は基板となる大きさ3cm 角、厚さ1.1mmの無アルカリガラス、屈折率1.5 のホヤ (株) 製NA35であり、各辺は0.2mmの糸 面取2が施されている。

【0016】3はレアリカ法と呼ばれる方法によって斜 面4が形成された平均膜厚30μm、屈折率1.5のU 10 V硬化型樹脂薄膜である。

【0017】前記レプリカ法は金型を用いて樹脂を押圧 加工する方法であり、押圧後UV光を照射する事によっ て前記樹脂を硬化せしめる事によって任意の形状に加工 を行う。その際前記金型によって押出される樹脂の逃げ を前記糸面取2が保証している。

【0018】(c)は前記樹脂3部分を拡大したA-A' 断面図である。斜面4はピッチ20μmで折返され ており、徒らに液晶セルギャップのギャップ量が増大、 減少する事を防いでいる。

【0019】前記斜面は図2(a)のように正四角錐形 状であり、山5及び谷6は(a)の横方向と紙面に垂直 な方向に走っている。

【0020】前記樹脂3上には厚さ1000Å、屈折率 2. 0の透明電極である I TO膜7が全面に形成されて いる。本対向基板と反射電極が形成された基板間に高分 子分散液晶を注入する事によって液晶セルは完成する。 【0021】ガラス基板1を通って下方から垂直に入射 した光は、前記樹脂3-ITO膜7界面で数%反射され る。本実施形態では前記斜面4の立上り角 θ_1 , θ_2 は10度に設定されているため、前記反射光は各々斜面の傾 きに応じて左右方向に±20°傾いて反射される。これ によって前記界面から反射された光はシュリーレン光学 系の暗へ入射する事はなく、前述の黒表示の劣化を防止 する事ができる。

【0022】本実施形態に用いたガラス基板は何もNA 35に限る事はなく、無アルカリガラス、あるいはLC Dの動作に悪影響を及ぼさない低アルカリガラス、プラ スチックであっても良い。

【0023】またUV硬化型樹脂は何もこれに限るもの 40 また四角錐の配列する方向は上下左右方向である必要は ではなく、熱硬化型樹脂であっても良い。また樹脂の屈 折率をガラス基板とITO膜の屈折率の中間の値1.7 5程度に取る事によって反射防止 (AR) コートの効果 も期待する事ができる。

【0024】また樹脂の膜厚はレブリカ法で精度良く斜 面が形成出来る任意の膜厚で良い。

【0025】前記ピッチPの値は回折格子の働きが強く なる1μm程度の値より大きく、またギャップ精度が悪 化する値以下でありさえすれば任意の値で良い。本実施 形態の山と谷の高低差は

 $p \times 1/2 \tan \theta = 20 \times 1/2 \times 0.176 = 1.$ $8 \mu m$

程度であり、10μm程度のギャップ量に対して±0. 9μm, ±9%の増減となっている。

【0026】また立上り角 θ_1 , θ_2 は左右で等しい必要 はなく、前述のように瞳へ入射しない任意の角度で良 43.

【0027】一般に反射型LCDに用いられるシュリー レン光学系のFNoは2.0程度であり、その場合に許 される立上り角の最小値は10度程度である。また余り にも立上り角が大きくなり過ぎると、斜面での多重反射 による問題が生じるので余り大きく取るのはよくない。 シュリーレン光学系にもよるが望ましい角度は5~20 ゜である。

【0028】また斜面の走る方向は任意の方向で良い。 【0029】図2に本実施形態の詳しい平面図と断面図 を示す。(a)は樹脂部分の拡大平面図であり、(b) はB-B′断面図である。

【0030】ガラス基板1上に形成された樹脂薄膜3は 20 レプリカ法によって山形の模様が一面に形成されてい る。5は山の一番高い部分であり、正四角錐の頂点の相 当する。6は谷に相当し、一番低い部分であり、正四角 錐の底辺に相当する。斜面4は1つの正四角錐に対して 4つ存在し、前記斜面4の立上り角は同様に10度であ る。前記斜面24に入射した光は上下左右の四方向に2 0度の角度で反射する。

【0031】前記四角錐間のピッチPは20μmであ る。また前記樹脂薄膜3の上面には同様にITO薄膜が 蒸着されている。本実施形態によれば反射光は四方向に 30 反射されるため、単位立体角当りのノイズとなるべき反 射光の強度が低下する.また上下方向と左右方向に差異 がないために本対向基板を用いた液晶セル及び反射型し CDの画質性能に上下、左右の差異を生じる事はない。 【0032】また、山の頂点が多少丸くなり、反射光が シュリーレン光学系の正面へ反射するようになった時に も、前記頂点の面積が最小である事から、黒表示の劣化 を最小とする事ができる。

【0033】また本発明の斜面形成に利用する四角錐は 何も正四角錐である必要はなく、任意の四角錐で良い。

なく、斜め45°あるいは任意の方向で構わない。

【0034】(実施形態2)図3に本発明の実施形態2 の液晶表示装置を示す。

【0035】樹脂薄膜33は図2に示した図とは逆に逆 四角錐に形成されている。一番高い部分は35の山の稜 線であり、四つの線で正方形を成している。また一番低 い部分は36の谷底であり、斜面34が同様に四方向に 形成されている。

【0036】本実施形態によればレプリカ法に用いる金 50 型が四角錐となり、樹脂を型押した後の離型が容易とな

り、製造が更に容易となる。

【0037】本発明に用いる樹脂薄膜の形状は、シュリ ーレン光学系の瞳に反射光が入射しないための特定の角 度を持つ斜面を有していさえすれば良く、その種類、数 は不問である。前述の四角錐は何も四角錐である必要は なく他の角錐、例えば三角錐でも良い。また円錐であっ ても良い。

【0038】また前記対向基板上に形成する斜面部分は 何も全面に形成する必要はなく、光の入射する有効表示 領域のみで良い。

【0039】また本発明の構造を形成する方法は、何も レアリカ法である必要はなく、他の形成方法、例えばガ ラスモールド法、プラスチックモールド法であっても良 ₽1.

[0040]

【発明の効果】以上説明したように、本発明の液晶表示 装置によれば、黒表示のとき、入射光をシュリーレン光 学系などの瞳以外の部分に反射させる事ができるので、 黒表示特性を向上させることができる。とくに、立上り 角10度程度の斜面を反射型LCDの光が入射する画素 20 7,37 ITO 領域の全面に設ける事によってさらに、黒表示特性を向

上させることができる。

【0041】また本発明の液晶表示装置のモールド法、 レプリカ法を用いる製造方法では、安価に反射型液晶表 示装置用対向基板または、反射型液晶表示装置を提供す る事ができる。

6

【図面の簡単な説明】

【図1】本発明の実施形態1の液晶表示装置の対向基板 を表す図

【図2】本発明の実施形態1の液晶表示装置の対向基板

10 を表す図

【図3】本発明の実施形態2の液晶表示装置の対向基板 を表す図

【符号の説明】

1,31 基板

2 面取

3,33 樹脂

4,34 斜面

5,35 山

6.36 谷

【図1】

【図2】

【図3】

フロントページの続き

(72)発明者 繁田 和之 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 (72)発明者 橋本 誠二 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内