

Supervised Learning: Important Concepts

- ▶ Data: labeled instances $\langle x_i, y \rangle$, e.g. emails marked spam/not spam
 - ► Training Set
 - ► Held-out Set
 - Test Set
- **Features:** attribute-value pairs which characterize each x
- Experimentation cycle
 - ▶ Learn parameters (e.g. model probabilities) on training set
 - ▶ (Tune hyper-parameters on held-out set)
 - ▶ Compute accuracy of test set
 - ▶ Very important: never "peek" at the test set!
- Evaluation
 - ▶ Accuracy: fraction of instances predicted correctly
- Overfitting and generalization
 - ▶ Want a classifier which does well on test data
 - Overfitting: fitting the training data very closely, but not generalizing well

Example: Spam Filter

Input: email

Output: spam/ham

Setup:

- Get a large collection of example emails, each labeled "spam" or "ham"
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future emails

Features: The attributes used to make the ham / spam decision

- Words: FREE!
- Text Patterns: \$dd, CAPS
- Non-text: SenderInContacts

• ...

Dear Sir.

First, I must solicit your confidence in this transaction, this is by virture of its nature as being utterly confidencial and top secret. ...

99 MILLION EMAIL ADDRESSES FOR ONLY \$99

Ok, Iknow this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.

Example: Digit Recognition

Input: images / pixel grids

Output: a digit 0-9

- Setup:
- Get a large collection of example images, each labeled with a digit
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future digit images

Features: The attributes used to make the digit decision

- Pixels: (6,8)=ON
- Shape Patterns: NumComponents, AspectRatio, NumLoops

0

Classification Examples

- \blacktriangleright In classification, we predict labels γ (classes) for inputs χ
- Examples:
 - ▶ Medical diagnosis (input: symptoms, classes: diseases)
 - ► Fraud detection (input: account activity, classes: fraud / no fraud)
 - ► Customer service email routing
 - ▶ Recommended articles in a newspaper, recommended books
 - ▶ DNA and protein sequence identification
 - ► Categorization and identification of astronomical images
 - ► Financial investments
 - **.**..

Supervised Learning

- ▶ Learning a discrete function: Classification
 - ▶ Boolean classification:
 - ▶ Each example is classified as true(positive) or false(negative).
- ▶ Learning a continuous function: Regression

Classification - A Two-Step Process

- ▶ Model construction: describing a set of predetermined classes
 - ► Each tuple/sample is assumed to belong to a predefined class, as determined by the class label
 - ▶ The set of tuples used for model construction is training set
 - ► The model is represented as classification rules, decision trees, or mathematical formulae
- ▶ Model usage: for classifying future or unknown objects
 - ▶ Estimate accuracy of the model
 - ▶ The known label of test sample is compared with the classified result from the model
 - ▶ Test set is independent of training set, otherwise over-fitting will occur
 - ▶ If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

7

Illustrating Classification Task

Model validation

Model validation

- ► How can we get an unbiased estimate of the accuracy of a learned model?
 - when learning a model, you should pretend that you don't have the test data
 - ▶ if the test set labels influence the learned model in any way, accuracy estimates will be biased

Learning and testing

- ► When dealing with supervised learning algorithm, the key concept for validation is to build learning and test samples
- ► Classical methods will split the dataset with an 80% / 20% sampling after permutations

training set

test set

learning method

learning method

learning method

Training / validation / test

- ▶ We could need a supplementary validation set for estimating values of hyperparameters
- ▶ In that case, data are split in 3 sub-datasets

Random sampling

Another solution is random sampling, we can randomly split our data into training and test sets

Stratified sampling

▶ If we are in a classification case, we can use stratified sampling in order to have the same proportion of + and - in each set

15

Cross validation

- Iteratively leave one sample out of the training set and use it for testing purposes
- ► The k-fold cross validation is used to validate your model and is more robust as classical train/test
- k should be chosen depending on different variables:
 - ▶ k will be larger when N is large
 - k will be smaller if training time is long
 - Values are usually between 5 and

iteration	train on	test on
1	s ₂ s ₃ s ₄ s ₅	s ₁
2	s ₁ s ₃ s ₄ s ₅	s_2
3	s ₁ s ₂ s ₄ s ₅	s ₃
4	s ₁ s ₂ s ₃ s ₅	s ₄
5	s ₁ s ₂ s ₃ s ₄	s ₅
		10

Cross validation

▶ We can use internal cross validation to set the model and still keep a test set for global testing

17

Hyper parameters tuning

- ► Many machine learning algorithm have some hyperparameters and it is somehow difficult to fix their value
 - ▶ Number of neighbor in k-NN
 - Depth of a tree
 - ► Kernel in SVM
 - **.**..
- ► The main method is grid search which consist of testing all possible combinations on a grid

18

Hyper parameters tuning

- ► A search consists of:
 - ▶ an estimator (regressor or classifier such as sklearn.svm.SVC());
 - a parameter space;
 - ▶ a method for searching or sampling candidates;
 - ▶ a cross-validation scheme; and
 - ▶ a score function.

Model validation

- ▶ Metrics for Performance Evaluation
 - ► How to evaluate the performance of a model?
- ▶ Methods for Performance Evaluation
 - ► How to obtain reliable estimates?
- ▶ Methods for Model Comparison
 - ▶ How to compare the relative performance among competing models?

Some Metrics

- ▶ Error Metrics for Regression Problems
 - Mean Absolute Error, Weighted Mean Absolute Error, Root Mean Squared Error, Root Mean Squared Logarithmic Error
- ► Error Metrics for Classification Problems
 - ▶ Logarithmic Loss, Mean F Score, Multi Class Log Loss, Hamming Loss, Mean Utility
- ► Error Metrics for probability distribution function
 - ► Continuous Ranked Probability Score
- Metrics
 - Area Under Curve (AUC), Gini, Average Among Top P, Average Precision, Mean Average Precision
- ► Other and rarely used:
 - Average Precision, Absolute Error

Metrics available

▶ Here ae the results of metrics on the UCI Breast Cancer dataset

http://mlr.cs.umass.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Algo	Acc	RMSE	TPR	FPR	Prec	Rec	F	AUC	Info S
NB	71.7	.4534	.44	.16	.53	.44	.48	.7	48.11
C4.5	75.5	.4324	.27	.04	.74	.27	.4	.59	34.28
3NN	72.4	.5101	.32	.1	.56	.32	.41	.63	43.37
Ripp	71	.4494	.37	.14	.52	.37	.43	.6	22.34
SVM	69.6	.5515	-33	.15	.48	.33	.39	.59	54.89
Bagg	67.8	.4518	.17	.1	.4	.17	.23	.63	11.30
Boost	70.3	.4329	.42	.18	.5	.42	.46	.7	34.48
RanF	69.23	.47	·33	.15	.48	.33	.39	.63	20.78

Metrics for Performance Evaluation

- ► Focus on the predictive capability of a model
 - ▶ Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

Confusion Matrix		Target				
		Positive	Negative			
Model	Positive	а	b	Positive Predictive Value	a/(a+b)	
	Negative	С	d	Negative Predictive Value	d/(c+d)	
			Specificity	• (- · d) ((- · b · · · d)		
		a/(a+c)	d/(b+d)	Accuracy = (a+d)/(a+b+c+d)		

a: TP (true positive)b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

24

Limitation of Accuracy

- ► Consider a 2-class problem
 - ▶ Number of Class 0 examples = 9990
 - ▶ Number of Class 1 examples = 10
- ► If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - ▶ Accuracy is misleading because model does not detect any class 1 example

25

Cost Matrix

	PREDICTED CLASS				
	C(i j)	Class=Yes	Class=No		
ACTUAL CLASS	Class=Yes	C(Yes Yes)	C(No Yes)		
	Class=No	C(Yes No)	C(No No)		

C(i|j): Cost of misclassifying class j example as class i

Cost-Sensitive Measures

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F)	2 <i>rp</i>	2 <i>a</i>
1'- incasure (1') -	r+p	2a+b+c

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Positive Predictive Value

Negative Predictive Value

Accuracy = (a+d)/(a+b+c+d)

d/(c+d)

Target Positive

Specificity

d/(b+d)

Sensitivity

a/(a+c)

Positive

Negative

Model

Other measures

RMSE

- ▶ The square root of the mean/average of the square of all of the error.
- The use of RMSE is very common and it makes an excellent general purpose error metric for numerical predictions.
- Compared to the similar Mean Absolute Error, RMSE amplifies and severely punishes large errors.

Other measures

▶ Mean F score: based on recall and precision

$$F1 = 2 \frac{pr}{p+r}$$

Model Evaluation

- ▶ Metrics for Performance Evaluation
 - ▶ How to evaluate the performance of a model?
- ▶ Methods for Performance Evaluation
 - ► How to obtain reliable estimates?
- ▶ Methods for Model Comparison
 - ▶ How to compare the relative performance among competing models?

Methods for Performance Evaluation

- ▶ How to obtain a reliable estimate of performance?
- ▶ Performance of a model may depend on other factors besides the learning algorithm:
 - ▶ Class distribution
 - ▶ Cost of misclassification
 - ► Size of training and test sets

Learning Curve

- Learning curve shows how accuracy changes with varying sample size
- ▶ Effect of small sample size:
 - ▶ Bias in the estimate
 - ▶ Variance of estimate

Learning Curve

Methods of Estimation

- ▶ Holdout
 - ▶ Reserve 2/3 for training and 1/3 for testing
- ▶ Random subsampling
 - ► Repeated holdout
- Cross validation
 - ▶ Partition data into k disjoint subsets
 - ▶ k-fold: train on k-1 partitions, test on the remaining one
 - ► Leave-one-out: k=n
- Bootstrap
 - ► Sampling with replacement

Model Evaluation

- ▶ Metrics for Performance Evaluation
 - ► How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - ► How to obtain reliable estimates?
- ► Methods for Model Comparison
 - ▶ How to compare the relative performance among competing models?

ROC (Receiver Operating Characteristic)

- ► Characterize the trade-off between positive hits and false alarms
- ▶ ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - ► changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Curve

(TP,FP):

- ► (0,0): declare everything to be negative class
- ▶ (1,1): declare everything to be positive class
- ▶ (1,0): ideal
- Diagonal line:
 - ▶ Random guessing
 - ▶ Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- · Area Under the ROC curve
 - · Ideal:
 - Area = 1
 - · Random guess:
 - Area = 0.5

39

Obtaining ROC cruve with python

- Scikit-learn has funtions for ROC curve and Area Under Curve (AUC)
- You should use:

from sklearn.metrics import roc_curve, auc

Precision / recall curve

- A precision/recall curve plots the precision vs. recall (TP-rate) as a threshold on the confidence of an instance being positive is varied
- You can use precision_recall_curve() and average_precision_score() functions from sklearn.metrics

Strenghts

- both
 - ▶ allow predictive performance to be assessed at various levels of confidence
 - assume binary classification tasks
 - ▶ sometimes summarized by calculating *area under the curve*
- ROC curves
 - ▶ insensitive to changes in class distribution (ROC curve does not change if the proportion of positive and negative instances in the test set are varied)
 - can identify optimal classification thresholds for tasks with differential misclassification costs
- precision/recall curves
 - ▶ show the fraction of predictions that are false positives
 - well suited for tasks with lots of negative instances

Comparing models with tests

- ▶ You can compare models using statistical testing
- ▶ Using the null hypothesis that suppose models are not different
- Using cross validation you will obtain as many score as folds for each model
- ▶ Using non parametric comparison test will lead to statistical significance of the difference
- ▶ In that case, we suppose that scores are randomly sampled from the population of all possible scores associated to the models

43

Lets practice with python

