

Doc. Number:

- Tentative Specification
- Preliminary Specification
- Approval Specification

**MODEL NO.: N133BGE  
SUFFIX: P42****Customer:****APPROVED BY****SIGNATURE****Name / Title**

Note

---

Please return 1 copy for your confirmation with your signature and comments.

| Approved By                       | Checked By                        | Prepared By                        |
|-----------------------------------|-----------------------------------|------------------------------------|
| 方健穎<br>2012-02-16<br>15:43:35 CST | 曹文彬<br>2012-02-10<br>14:46:10 CST | 歐陽志全<br>2012-02-10<br>11:09:37 CST |

**CONTENTS**

|                                                                |           |
|----------------------------------------------------------------|-----------|
| <b>1. GENERAL DESCRIPTION .....</b>                            | <b>4</b>  |
| 1.1 OVERVIEW .....                                             | 4         |
| 1.2 GENERAL SPECIFICATIONS .....                               | 4         |
| <b>2. MECHANICAL SPECIFICATIONS .....</b>                      | <b>4</b>  |
| 2.1 CONNECTOR TYPE.....                                        | 4         |
| <b>3. ABSOLUTE MAXIMUM RATINGS .....</b>                       | <b>5</b>  |
| 3.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASEd on CMI Module)..... | 5         |
| 3.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL).....           | 5         |
| 3.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL) .....              | 6         |
| <b>4. ELECTRICAL SPECIFICATIONS .....</b>                      | <b>7</b>  |
| 4.1 TFT LCD OPEN CELL .....                                    | 7         |
| 4.2. INTERFACE CONNECTIONS .....                               | 7         |
| 4.3 ELECTRICAL CHARACTERISTICS.....                            | 9         |
| 4.4 LVDS INPUT SIGNAL TIMING SPECIFICATIONS.....               | 11        |
| 4.5 DISPLAY TIMING SPECIFICATIONS.....                         | 13        |
| 4.6 POWER ON/OFF SEQUENCE.....                                 | 14        |
| <b>5. OPTICAL CHARACTERISTICS .....</b>                        | <b>15</b> |
| 5.1 TEST CONDITIONS .....                                      | 15        |
| 5.2 OPTICAL SPECIFICATIONS .....                               | 15        |
| <b>6. PACKING .....</b>                                        | <b>18</b> |
| 6.1 CMI OPEN CELL LABEL .....                                  | 18        |
| 6.2 PACKAGE RELIABILITY.....                                   | 19        |
| 6.3 CARTON .....                                               | 19        |
| 6.4 PALLET .....                                               | 20        |
| <b>7. PRECAUTIONS .....</b>                                    | <b>21</b> |
| 7.1 HANDLING PRECAUTIONS .....                                 | 21        |
| 7.2 STORAGE PRECAUTIONS.....                                   | 21        |
| 7.3 OPERATION PRECAUTIONS .....                                | 21        |

**Appendix. OUTLINE DRAWING**



## PRODUCT SPECIFICATION

## REVISION HISTORY

| Version | Date        | Page | Description                             |
|---------|-------------|------|-----------------------------------------|
| 3.0     | 9.Feb, 2012 | All  | Approval spec Ver.3.0 was first issued. |
|         |             |      |                                         |
|         |             |      |                                         |
|         |             |      |                                         |
|         |             |      |                                         |
|         |             |      |                                         |
|         |             |      |                                         |

**1. GENERAL DESCRIPTION****1.1 OVERVIEW**

N133BGE-P42 is a 13.3 TFT Liquid Crystal Display with 30-pins-and-1ch-LVDS circuit board. This product supports 1366 x 768 HD mode and can display 262,144 colors. The backlight unit and converter are not built in.

**1.2 GENERAL SPECIFICATIONS**

| Item              | Specification                 | Unit  | Note |
|-------------------|-------------------------------|-------|------|
| Screen Size       | 13.3 diagonal                 | -     | -    |
| Driver Element    | a-si TFT active matrix        | pixel | -    |
| Pixel Number      | 1366 x R.G.B. x 768           | mm    | -    |
| Pixel Pitch       | 0.2148 (H) x 0.2148 (V)       | -     | -    |
| Pixel Arrangement | RGB vertical stripe           | color | -    |
| Display Colors    | 262,144                       | -     | -    |
| Transmissive Mode | Normally white                | -     | -    |
| Surface Treatment | Hard coating (3H), Anti-Glare | -     | -    |

**2. MECHANICAL SPECIFICATIONS**

| item                                     | Min.                                                                                               | Typ.   | Max.   | Unit   | Note    |
|------------------------------------------|----------------------------------------------------------------------------------------------------|--------|--------|--------|---------|
| Size                                     | Horizontal (H) with PCB                                                                            | 301.77 | 301.97 | 302.17 | mm      |
|                                          | Horizontal (H) w/o PCB                                                                             | 301.77 | 301.97 | 302.17 | mm      |
|                                          | Vertical (V) with PCB                                                                              | 190.74 | 191.24 | 191.74 | mm      |
|                                          | Vertical (V) w/o PCB                                                                               | 174.62 | 174.82 | 175.02 | mm      |
|                                          | Thickness (T) with PCB                                                                             | -      | 1.9    | 2      | mm      |
|                                          | Thickness (T) w/o PCB                                                                              | -      | 1.27   |        | mm      |
| Weight<br>(with polarizer release paper) |                                                                                                    | -      | 130    | 135    | g       |
| I/F connector mounting position          | The mounting inclination of the connector makes the screen center within ±0.5mm as the horizontal. |        |        |        | (1) (2) |

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) Connector mounting position

**2.1 CONNECTOR TYPE****2.1.1 LVDS Connector**

Please refer Appendix Outline Drawing for detail design.

Connector Part No.: IPEX-20455-030E-12 or equivalent

User's connector Part No: IPEX-20453-030T-01 or equivalent

**2.1.2 LED Light-Bar Connector**

STM-MSK24036P8A

### 3. ABSOLUTE MAXIMUM RATINGS

#### 3.1 ABSOLUTE RATINGS OF ENVIRONMENT (Based on CMI Module)

| Item                          | Symbol   | Value |      | Unit | Note     |
|-------------------------------|----------|-------|------|------|----------|
|                               |          | Min.  | Max. |      |          |
| Storage Temperature           | $T_{ST}$ | -20   | +60  | °C   | (1)      |
| Operating Ambient Temperature | $T_{OP}$ | 0     | +50  | °C   | (1), (2) |

Note (1) (a) 90 %RH Max. ( $T_a \leq 40^{\circ}\text{C}$ ).  
 (b) Wet-bulb temperature should be 39 °C Max. ( $T_a > 40^{\circ}\text{C}$ ).  
 (c) No condensation.

Note (2) The temperature of panel surface should be 0 °C min. and 60 °C max.



#### 3.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

High temperature or humidity may reduce the performance of panel. Please store LCD panel within the specified storage conditions.

Storage Condition: With packing.

Storage temperature range:  $25\pm5^{\circ}\text{C}$ .

Storage humidity range:  $50\pm10\%$ RH.

Shelf life: 30days

### 3.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

#### 3.3.1 TFT LCD MODULE

| Item                                | Symbol          | Value |          | Unit | Note |
|-------------------------------------|-----------------|-------|----------|------|------|
|                                     |                 | Min.  | Max.     |      |      |
| Power Supply Voltage                | VCCS            | -0.3  | +4.0     | V    | (1)  |
| Logic Input Voltage                 | V <sub>IN</sub> | -0.3  | VCCS+0.3 | V    |      |
| System PWM signal input for dimming | PWM_IN          | -0.3  | 5        | V    |      |
| Dynamic backlight control           | CABC_EN         | -0.3  | 5        | V    | (1)  |

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

## 4. ELECTRICAL SPECIFICATIONS

### 4.1 TFT LCD OPEN CELL



### 4.2. INTERFACE CONNECTIONS

#### 4.2.1 PIN ASSIGNMENT

| Pin | Symbol               | Description                         | Remark            |
|-----|----------------------|-------------------------------------|-------------------|
| 1   | NC                   | No Connection (Reserve)             |                   |
| 2   | VCCS                 | Power Supply (3.3V typ.)            |                   |
| 3   | VCCS                 | Power Supply (3.3V typ.)            |                   |
| 4   | V <sub>EDID</sub>    | DDC 3.3V power                      |                   |
| 5   | BIST                 | Panel self test                     | Bist              |
| 6   | CLK <sub>EDID</sub>  | DDC clock                           |                   |
| 7   | DATA <sub>EDID</sub> | DDC data                            |                   |
| 8   | RxIn0-               | LVDS differential data input        | R0-R5, G0         |
| 9   | RxIn0+               | LVDS differential data input        |                   |
| 10  | VSS                  | Ground                              |                   |
| 11  | RxIn1-               | LVDS differential data input        | G1~G5, B0, B1     |
| 12  | RxIn1+               | LVDS differential data input        |                   |
| 13  | VSS                  | Ground                              |                   |
| 14  | RxIn2-               | LVDS Differential Data Input        | B2-B5, HS, VS, DE |
| 15  | RxIn2+               | LVDS Differential Data Input        |                   |
| 16  | VSS                  | Ground                              |                   |
| 17  | RxCLK-               | LVDS differential clock input       | LVDS CLK          |
| 18  | RxCLK+               | LVDS differential clock input       |                   |
| 19  | VSS                  | Ground                              |                   |
| 20  | PWM_IN               | System PWM signal input for dimming |                   |
| 21  | CABC_EN              | CABC Enable Input                   |                   |
| 22  | PWM_OUT              | Panel PWM signal output to system   |                   |
| 23  | NC                   | No Connection (Reserve)             |                   |

|    |             |                         |  |
|----|-------------|-------------------------|--|
| 24 | VLED Output | LED driver output       |  |
| 25 | VLED Output | LED driver output       |  |
| 26 | NC          | No Connection (Reserve) |  |
| 27 | LED_CA1     | LED Cathode 1           |  |
| 28 | LED_CA2     | LED Cathode 2           |  |
| 29 | LED_CA3     | LED Cathode 3           |  |
| 30 | LED_CA4     | LED Cathode 4           |  |

Note (1) The first pixel is odd as shown in the following figure.



Note (2) The setting of CABC function are as follows.

| Pin     | Enable | Disable    |
|---------|--------|------------|
| CABC_EN | Hi     | Lo or Open |

Hi = High level, Lo = Low level.

Note (3) The I<sup>2</sup>C structure of CLKEDID and DATAEDID uses multiple slave device and the device addresses are defined as follows. The EDID part is M24C02-RMC6TG and D-VCOM part is iML7978CL.

| Component | Device Address |    |    |    |    |    |    |    |
|-----------|----------------|----|----|----|----|----|----|----|
|           | B7             | B6 | B5 | B4 | B3 | B2 | B1 | WR |
| EEPROM    | 1              | 0  | 1  | 0  | 0  | 0  | 0  | X  |
| D-VCOM    | 1              | 0  | 0  | 1  | 1  | 1  | 1  | X  |

## 4.2.2 LED CONVERTER OUTPUT PIN ASSIGNMENT

| Pin | Symbol      | Description             | Remark |
|-----|-------------|-------------------------|--------|
| 1   | VLED Output | LED driver output       |        |
| 2   | VLED Output | LED driver output       |        |
| 3   | NC          | No Connection (Reserve) |        |
| 4   | LED_CA1     | LED Cathode 1           |        |
| 5   | LED_CA2     | LED Cathode 2           |        |
| 6   | LED_CA3     | LED Cathode 3           |        |
| 7   | LED_CA4     | LED Cathode 4           |        |
| 8   | NC          | No Connection (Reserve) |        |

## 4.3 ELECTRICAL CHARACTERISTICS

### 4.3.1 TFT LCD OPEN CELL

| Parameter             | Symbol            | Value               |      |      | Unit | Note    |
|-----------------------|-------------------|---------------------|------|------|------|---------|
|                       |                   | Min.                | Typ. | Max. |      |         |
| Power Supply Voltage  | V <sub>CCS</sub>  | 3.0                 | 3.3  | 3.6  | V    | (1)-    |
| Ripple Voltage        | V <sub>RP</sub>   | -                   | 50   | -    | mV   | (1)-    |
| CABC_EN Input Voltage | High Level        | V <sub>IHCABC</sub> | 2.3  | -    | V    |         |
|                       | Low Level         | V <sub>ILCABC</sub> | 0    | -    | V    |         |
| PWM Input Voltage     | High Level        | V <sub>IHCABC</sub> | 2.3  | -    | V    |         |
|                       | Low Level         | V <sub>ILCABC</sub> | 0    | -    | V    |         |
| PWM Input Frequency   | f <sub>PWM</sub>  | 190                 | -    | 2K   | Hz   |         |
| PWMO Output Voltage   | High Level        | V <sub>IHCABC</sub> | 2.0  | -    | V    |         |
|                       | Low Level         | V <sub>ILCABC</sub> | 0    | -    | V    |         |
| PWM Output Frequency  | f <sub>PWM</sub>  | 190                 | -    | 2K   | Hz   |         |
| Inrush Current        | I <sub>RUSH</sub> | -                   | -    | 1.5  | A    | (1),(2) |
| Power Supply Current  | Mosaic            | I <sub>cc</sub>     | -    | 170  | 190  | mA (3)a |
|                       | Black             |                     | -    | 200  | 230  | mA (3)b |

Note (1) The ambient temperature is Ta = 25 ± 2 °C.

Note (2)  $I_{RUSH}$ : the maximum current when VCCS is rising

$I_S$ : the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black.



### VCCS rising time is 0.5ms



Note (3) The specified power supply current is under the conditions at  $VCCS = 3.3$  V,  $T_a = 25 \pm 2$  °C, DC Current and  $f_v = 60$  Hz, whereas a power dissipation check pattern below is displayed.

a. Mosaic Pattern



Active Area

b. Black Pattern



Active Area

#### 4.4 LVDS INPUT SIGNAL TIMING SPECIFICATIONS

##### 4.4.1 LVDS DC SPECIFICATIONS

| Parameter                              | Symbol         | Value |      |       | Unit | Note                  |
|----------------------------------------|----------------|-------|------|-------|------|-----------------------|
|                                        |                | Min.  | Typ. | Max.  |      |                       |
| LVDS Differential Input High Threshold | $V_{TH(LVDS)}$ | -     | -    | +100  | mV   | (1),<br>$V_{CM}=1.2V$ |
| LVDS Differential Input Low Threshold  | $V_{TL(LVDS)}$ | -100  | -    | -     | mV   | (1)<br>$V_{CM}=1.2V$  |
| LVDS Common Mode Voltage               | $V_{CM}$       | 1.125 | -    | 1.375 | V    | (1)                   |
| LVDS Differential Input Voltage        | $ V_{ID} $     | 100   | -    | 600   | mV   | (1)                   |
| LVDS Terminating Resistor              | $R_T$          | -     | 100  | -     | Ohm  | -                     |

Note (1) The parameters of LVDS signals are defined as the following figures.



##### 4.4.2 LVDS DATA FORMAT



#### 4.4.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

| Color               |               | Data Signal |    |    |    |    |    |       |    |    |    |    |    |      |    |    |    |    |    |
|---------------------|---------------|-------------|----|----|----|----|----|-------|----|----|----|----|----|------|----|----|----|----|----|
|                     |               | Red         |    |    |    |    |    | Green |    |    |    |    |    | Blue |    |    |    |    |    |
|                     |               | R5          | R4 | R3 | R2 | R1 | R0 | G5    | G4 | G3 | G2 | G1 | G0 | B5   | B4 | B3 | B2 | B1 | B0 |
| Basic Colors        | Black         | 0           | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|                     | Red           | 1           | 1  | 1  | 1  | 1  | 1  | 0     | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|                     | Green         | 0           | 0  | 0  | 0  | 0  | 0  | 1     | 1  | 1  | 1  | 1  | 1  | 0    | 0  | 0  | 0  | 0  | 0  |
|                     | Blue          | 0           | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 1    | 1  | 1  | 1  | 1  | 1  |
|                     | Cyan          | 0           | 0  | 0  | 0  | 0  | 0  | 1     | 1  | 1  | 1  | 1  | 1  | 1    | 1  | 1  | 1  | 1  | 1  |
|                     | Magenta       | 1           | 1  | 1  | 1  | 1  | 1  | 0     | 0  | 0  | 0  | 0  | 0  | 1    | 1  | 1  | 1  | 1  | 1  |
|                     | Yellow        | 1           | 1  | 1  | 1  | 1  | 1  | 1     | 1  | 1  | 1  | 1  | 1  | 0    | 0  | 0  | 0  | 0  | 0  |
|                     | White         | 1           | 1  | 1  | 1  | 1  | 1  | 1     | 1  | 1  | 1  | 1  | 1  | 1    | 1  | 1  | 1  | 1  | 1  |
| Gray Scale Of Red   | Red(0)/Dark   | 0           | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|                     | Red(1)        | 0           | 0  | 0  | 0  | 0  | 1  | 0     | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|                     | Red(2)        | 0           | 0  | 0  | 0  | 1  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|                     | :             | :           | :  | :  | :  | :  | :  | :     | :  | :  | :  | :  | :  | :    | :  | :  | :  | :  | :  |
|                     | Red(61)       | 1           | 1  | 1  | 1  | 0  | 1  | 0     | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|                     | Red(62)       | 1           | 1  | 1  | 1  | 1  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|                     | Red(63)       | 1           | 1  | 1  | 1  | 1  | 1  | 0     | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|                     | Red(64)       | 1           | 1  | 1  | 1  | 1  | 1  | 1     | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
| Gray Scale Of Green | Green(0)/Dark | 0           | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|                     | Green(1)      | 0           | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0    | 1  | 0  | 0  | 0  | 0  |
|                     | Green(2)      | 0           | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 1    | 0  | 0  | 0  | 0  | 0  |
|                     | :             | :           | :  | :  | :  | :  | :  | :     | :  | :  | :  | :  | :  | :    | :  | :  | :  | :  | :  |
|                     | Green(61)     | 0           | 0  | 0  | 0  | 0  | 0  | 0     | 1  | 1  | 1  | 1  | 0  | 1    | 0  | 0  | 0  | 0  | 0  |
|                     | Green(62)     | 0           | 0  | 0  | 0  | 0  | 0  | 0     | 1  | 1  | 1  | 1  | 1  | 0    | 0  | 0  | 0  | 0  | 0  |
|                     | Green(63)     | 0           | 0  | 0  | 0  | 0  | 0  | 0     | 1  | 1  | 1  | 1  | 1  | 0    | 0  | 0  | 0  | 0  | 0  |
|                     | Green(64)     | 0           | 0  | 0  | 0  | 0  | 0  | 0     | 1  | 1  | 1  | 1  | 1  | 1    | 0  | 0  | 0  | 0  | 0  |
| Gray Scale Of Blue  | Blue(0)/Dark  | 0           | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|                     | Blue(1)       | 0           | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 1  |
|                     | Blue(2)       | 0           | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|                     | :             | :           | :  | :  | :  | :  | :  | :     | :  | :  | :  | :  | :  | :    | :  | :  | :  | :  | :  |
|                     | Blue(61)      | 0           | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0    | 1  | 1  | 1  | 1  | 0  |
|                     | Blue(62)      | 0           | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0    | 1  | 1  | 1  | 1  | 1  |
|                     | Blue(63)      | 0           | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0    | 1  | 1  | 1  | 1  | 1  |
|                     | Blue(64)      | 0           | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0    | 1  | 1  | 1  | 1  | 1  |

Note (1) 0: Low Level Voltage, 1: High Level Voltage

#### 4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Refresh rate 60Hz

| Signal | Item                              | Symbol | Min.   | Typ.  | Max.   | Unit | Note |
|--------|-----------------------------------|--------|--------|-------|--------|------|------|
| DCLK   | Frequency                         | 1/Tc   | 50     | 75.44 | 80     | MHz  | -    |
|        | Vertical Total Time               | TV     | 773    | 806   | 1008   | TH   | -    |
|        | Vertical Active Display Period    | TVD    | 768    | 768   | 768    | TH   | -    |
|        | Vertical Active Blanking Period   | TVB    | TV-TVD | 38    | TV-TVD | TH   | -    |
|        | Horizontal Total Time             | TH     | 1448   | 1560  | 1950   | Tc   | -    |
|        | Horizontal Active Display Period  | THD    | 1366   | 1366  | 1366   | Tc   | -    |
|        | Horizontal Active Blanking Period | THB    | TH-THD | 194   | TH-THD | Tc   | -    |

Note (1) Because this module is operated by DE only mode, Hsync and Vsync are ignored.

INPUT SIGNAL TIMING DIAGRAM



#### 4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

| Symbol | Value |      |      | Unit | Note |
|--------|-------|------|------|------|------|
|        | Min.  | Typ. | Max. |      |      |
| t1     | 0.5   | -    | 10   | ms   |      |
| t2     | 0     | -    | 50   | ms   |      |
| t3     | 0     | -    | 50   | ms   |      |
| t4     | 500   | -    | -    | ms   |      |
| t5     | 200   | -    | -    | ms   |      |
| t6     | 200   | -    | -    | ms   |      |
| t7     | 0.5   | -    | 10   | ms   |      |



Note (1) Please don't plug or unplug the interface cable when system is turned on.

Note (2) Please avoid floating state of the interface signal during signal invalid period.

## 5. OPTICAL CHARACTERISTICS

### 5.1 TEST CONDITIONS

| Item                | Symbol                                                        | Value | Unit |
|---------------------|---------------------------------------------------------------|-------|------|
| Ambient Temperature | T <sub>a</sub>                                                | 25±2  | °C   |
| Ambient Humidity    | H <sub>a</sub>                                                | 50±10 | %RH  |
| Supply Voltage      | V <sub>CC</sub>                                               | 3.3   | V    |
| Input Signal        | According to typical value in "3. ELECTRICAL CHARACTERISTICS" |       |      |

The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

### 5.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (6).

| Item                     | Symbol          | Condition                                                                       | Min.             | Typ.  | Max.       | Unit | Note                |  |
|--------------------------|-----------------|---------------------------------------------------------------------------------|------------------|-------|------------|------|---------------------|--|
| Color Chromaticity       | R <sub>CX</sub> | θ <sub>x</sub> =0°, θ <sub>y</sub> =0°<br>CS-2000T<br>Standard light source "C" | Typ - 0.03       | 0.601 | Typ + 0.03 | -    | (0),(2),<br>(5),(8) |  |
|                          | R <sub>CY</sub> |                                                                                 |                  | 0.326 |            | -    |                     |  |
|                          | G <sub>CX</sub> |                                                                                 |                  | 0.289 |            | -    |                     |  |
|                          | G <sub>CY</sub> |                                                                                 |                  | 0.541 |            | -    |                     |  |
|                          | B <sub>CX</sub> |                                                                                 |                  | 0.145 |            | -    |                     |  |
|                          | B <sub>CY</sub> |                                                                                 |                  | 0.175 |            | -    |                     |  |
|                          | W <sub>CX</sub> |                                                                                 |                  | 0.295 |            | -    |                     |  |
|                          | W <sub>CY</sub> |                                                                                 |                  | 0.335 |            | -    |                     |  |
| Center Transmittance     | T%              | θ <sub>x</sub> =0°, θ <sub>y</sub> =0°<br>CS-2000T, CMO BLU                     | 5.9              | 6.5   |            |      | (1),(2),<br>(5),(7) |  |
| Contrast Ratio           | CR              |                                                                                 | 300              | 500   |            | -    | (2), (3)            |  |
| Response Time            | T <sub>R</sub>  | θ <sub>x</sub> =0°, θ <sub>y</sub> =0°                                          |                  | 8     | 12         | ms   | (4)                 |  |
|                          | T <sub>F</sub>  |                                                                                 |                  | 8     | 13         | ms   |                     |  |
| Transmittance uniformity | δT%             | θ <sub>x</sub> =0°, θ <sub>y</sub> =0°<br>BM-5A                                 |                  |       | 1.25       | -    | (2),(6)             |  |
| Viewing Angle            | Horizontal      | CR≥10<br>BM-5A                                                                  | θ <sub>x</sub> + | 40    | 45         |      | (2), (5)            |  |
|                          |                 |                                                                                 | θ <sub>x</sub> - | 40    | 45         |      |                     |  |
|                          | Vertical        |                                                                                 | θ <sub>y</sub> + | 15    | 20         |      |                     |  |
|                          |                 |                                                                                 | θ <sub>y</sub> - | 40    | 45         |      |                     |  |

Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages. The calculating method is as following :

1. Measure Module's and BLU's spectrums. White is without signal input and R, G, B are with signal input. BLU is supplied by CMI.
2. Calculate cell's spectrum.
3. Calculate cell's chromaticity by using the spectrum of standard light source "C"

Note (1) Light source is the BLU which is supplied by CMI and driving voltages are based on suitable gamma voltages. White is without signal input and R, G, B are with signal input. Spec is judged by CMI's golden sample.

Note (2) Definition of Viewing Angle ( $\theta_x$ ,  $\theta_y$ ):



Note (3) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

$$\text{Contrast Ratio (CR)} = L_{63} / L_0$$

L63: Luminance of gray level 63

L0: Luminance of gray level 0

$$CR = CR(1)$$

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (4) Definition of Response Time ( $T_R$ ,  $T_F$ ):



Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.



Note (6) Definition of Transmittance Variation ( $\delta T\%$ ):

Measure the transmittance at 5 points

$$\delta T\% = \frac{\text{Maximum } [T\%(1), T\%(2), \dots T\%(5)]}{\text{Minimum } [T\%(1), T\%(2), \dots T\%(5)]}$$

Note (7) Definition of Transmittance (T%):

Module is without signal input.

BLU is supplied by CMI.

$$\text{Transmittance} = \frac{\text{Luminance of LCD module}}{\text{Luminance of backlight}} * 100\%$$

Horizontal Line



Note (8) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

**6. PACKING****6.1 CMI OPEN CELL LABEL**

The barcode nameplate is pasted on each OPEN CELL as illustration for CMI internal control.



(a) Model Name: N133BGE - P42

(b) Serial ID: X X X X X X X Y M D L N N N N

Serial No.

Product Line

Year, Month, Date

CMI Internal Use

Revision

CMI Internal Use

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2010~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1<sup>st</sup> to 31<sup>st</sup>, exclude I , O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

(d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

## 6.2 PACKAGE RELIABILITY

(1) Carton Packing should have no failure in the following reliability test items

| Test Item         | Test Conditions                                                                                                                                                    | Note          |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Packing Vibration | ISTA STANDARD<br>Random, Frequency Range: 1 – 200 Hz<br>Top & Bottom: 30 minutes (+Z), 10 min (-Z),<br>Right & Left: 10 minutes (X)<br>Back & Forth 10 minutes (Y) | Non Operation |

## 6.3 CARTON

(1) Carton Dimensions: 650(L)x495(W)x320(H)mm

(2) 56 LCD Cells+PCB/Carton



Figure. 6-3 Packing method

**6.4 PALLET****Figure. 6-4 Packing method**

## 7. PRECAUTIONS

### 7.1 HANDLING PRECAUTIONS

- (1) The open cell should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the open cell.
- (2) While assembling or installing open cell, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the open cell from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the open cell.
- (10) Pins of I/F connector should not be touched directly with bare hands.

### 7.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of open cell. Please store open cell within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the open cell, because the moisture may damage open cell when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly.

### 7.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the open cell is operating.
- (2) Always follow the correct power on/off sequence when open cell is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.

## Appendix. OUTLINE DRAWING

