Imperial College London

DEPARTMENT OF MATHEMATICS IMPERIAL COLLEGE LONDON Academic Year 2019-2020

Introduction to University Mathematics

MATH40001/MATH40009

Problem Sheet 1: Logic

To try these questions in Lean, go to https://tinyurl.com/Lean-M40001-Sheet1. Remember that this is completely optional, and there will be no Lean in any M40001/M40009 tests or exams.

1. In lectures, we proved that if P and Q were propositions, then $P \vee Q \implies Q \vee P$. This is called "symmetry of \vee "; we also say " \vee is symmetric".

Prove that \wedge is also symmetric. That is, prove that if P and Q are propositions, then $P \wedge Q \Longrightarrow Q \wedge P$.

2. (a) Is \implies symmetric? In other words, is it true that for all propositions P and Q we have

$$(P \Longrightarrow Q) \Longrightarrow (Q \Longrightarrow P)$$
?

Give a proof or a counterexample.

(b) Is \iff symmetric? In other words, is it true that for all propositions P and Q we have

$$(P \iff Q) \implies (Q \iff P)$$
?

Give a proof or a counterexample.

- 3. Suppose P, Q and R are propositions, and we know that if Q is true then P is true, and that if Q is false then R is false. Can we deduce that R implies P? Give a proof or a counterexample.
- 4. Your friend is thinking of three true-false statements P, Q and R, and they tell you the following facts:
 - (a) $P \implies (Q \land R)$;
 - (b) $Q \implies (R \land \neg P)$;
 - (c) $R \implies (P \land \neg Q)$.

What can you deduce?

5. An *integer* (or a "whole number") is an element of the set $\{\dots, -2, -1, 0, 1, 2, 3, \dots\}$. Say that for every integer n we have a true/false statement P_n . Say we know that $P_n \implies P_{n+8}$ for every integer n, and also that $P_n \implies P_{n-3}$ for every integer n. Prove that the P_n are either all true, or all false.