How do we use models?

- Select the best available model (model selection)
- Critically evaluate the fit of this model (model adequacy)
- Accept, refine, or reject (the art)

Should we always use GTR+I+ Γ ?

- \circ GTR+I+ Γ seems pretty complicated!
- 10 parameters to describe change in 4 nucleotides
- Surely that's enough to capture evolutionary dynamics.

Just remember...

- Nearly all of our models (or at least the ones we usually consider) still assume a lot of things:
 - Independence of sites
 - Constant site rates across the tree
 - Constant base frequencies across the tree
 - Consistent evolutionary dynamics across the tree

The Fundamental Tradeoff

Number of Parameters

Model too simple! We're misinterpreting the data.

Model too complicated!
We don't have enough information.

Number of Parameters

Bias and Variance can be traded off in different ways.

This leads to **multiple criteria** for model selection.

Number of Parameters

The Likelihood Function

Read as "the probability of the sequence data given a tree and model".

The quantity by which the data provide information.

Compares how well different trees and models predict the observed data or as a "measure of relative surprise".

Maximum Likelihood

If the more complex model always gives a likelihood that is at least as good as a simpler model, even if the simpler one is true, we need ways to assess whether it's enough better to warrant our attention.

If the **more complex** model always gives a likelihood that is **at least as good** as a simpler model, even if the simpler one is true, we need ways to assess **whether it's enough better to warrant our attention**.

- Akaike's Information Criterion (AIC)
- Bayesian Information Criterion (BIC)
- Likelihood Ratio Test (LRT)

If the more complex model always gives a likelihood that is at least as good as a simpler model, even if the simpler one is true, we need ways to assess whether it's enough better to warrant our attention.

- Akaike's Information Criterion (AIC)
- Bayesian Information Criterion (BIC)
- Likelihood Ratio Test (LRT)

Different penalties for extra parameters.

Akaike's Information Criterion (AIC)

Minimum AIC preferred.

$$AIC = 2k - 2ln(\hat{L})$$

$$BIC = ln(n)k - 2ln(\hat{L})$$

LRT
Hypothesis test
Pairwise

If the simpler model is true, twice the difference in log-likelihoods between the true and more complex model will follow a **Chi-squared** distribution with d.f. = the difference in complexity between the models.

Only for **nested models** (simple = restriction of complex)

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

$$P(\theta|D,M) = \frac{P(D|\theta,M)P(\theta|M)}{P(D|M)}$$

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

$$P(\theta|D,M) = \frac{P(D|\theta,M)P(\theta|M)}{\int P(D|\theta,M)P(\theta|M)d\theta}$$

Marginal Likelihood

Probability of the data given the model, considering uncertainty in model parameters.

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

$$P(\theta|D,M) = \frac{P(D|\theta,M)P(\theta|M)}{\int P(D|\theta,M)P(\theta|M)d\theta}$$

Marginal Likelihood

Essentially, the **weighted average likelihood**, weighted by the prior probability of different parameter values.

Evolutionary Distance

Sp. A ————— Sp. B

Compare **JC** and **K80** models

v: edge length estimated in both models

k: transition-transversion ratio estimated in K80 and fixed at 1 for JC

Example taken from Paul Lewis - Workshop on Molecular Evolution 2016

Important contrast with ML-based model selection: by averaging, rather than maximizing, marginal likelihoods automatically account for extra parameters.

More complicated models can have lower marginal likelihoods.

Easy Approach 1 - Sample from the prior

Prior

Likelihood

Easy Approach 1 - Sample from the prior

Prior

Likelihood

Easy Approach 1 - Sample from the prior

Prior

Likelihood

Take average of blue dots

Easy Approach 1 - Sample from the prior

Prior

Likelihood

Take average of blue dots

Easy Approach 1 - Sample from the prior

Prior

Likelihood

Take average of blue dots??!!

We'd like to make sure we're sampling high likelihood parts of space with reasonable frequency.

Less-Naive Approach 2- Sample from the posterior

Prior

Posterior (~Likelihood)

Since we're supposed to be integrating across the prior, we need to correct for the fact that our samples are from the posterior.

Less-Naive Approach 2- Sample from the posterior

The Harmonic Mean Method

$$\frac{1}{ML} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_3}$$

What's an important property of harmonic means?

Anyone remember discussing bottlenecks in pop gen?

Less-Naive Approach 2- Sample from the posterior

The reverse problem to our first naive approach!

Rarely sampled low likelihoods have a big influence on estimates.

Very unstable.

Approach 3* - Sample from a series of distributions

Steppingstone or path sampling

Steppingstone Sampling

Steppingstone Sampling

An alternative way to think about our first approach (sampling directly from the prior) is to sample points from the prior (area=1.0), then ask what proportion fall under the curve of interest.

Unfortunately, not many! As before, this is unstable.

Unnormalized Posterior $\longrightarrow P(D|\theta)P(\theta)$

Steppingstone Sampling

Power Posteriors

$$\frac{c_{1.0}}{c_{0.0}} = \left(\frac{c_{1.0}}{c_{0.9}}\right) \left(\frac{c_{0.9}}{c_{0.8}}\right) \left(\frac{c_{0.8}}{c_{0.7}}\right) \left(\frac{c_{0.7}}{c_{0.6}}\right) \left(\frac{c_{0.6}}{c_{0.5}}\right) \left(\frac{c_{0.4}}{c_{0.4}}\right) \left(\frac{c_{0.4}}{c_{0.3}}\right) \left(\frac{c_{0.4}}{c_{0.2}}\right) \left(\frac{c_{0.2}}{c_{0.1}}\right) \left(\frac{c_{0.1}}{c_{0.0}}\right) \\
1$$

Posterior

$$\beta = 1$$

Prior

$$\beta = 0$$

$$P(D|\theta)_{\beta} \propto P(D|\theta)^{\beta} P(\theta)$$

Power Posteriors

$$\frac{c_{1.0}}{c_{0.0}}=$$
 Stable estimate of marginal likelihood!

But it requires a **specific type of analysis**, independent of standard MCMC.

$$\frac{P(H_1|D)}{P(H_2|D)} = \frac{\frac{P(H_1)P(D|H_1)}{P(D)}}{\frac{P(H_2)P(D|H_2)}{P(D)}}$$

$$\frac{P(H_1|D)}{P(H_2|D)} = \frac{\frac{P(H_1)P(D|H_1)}{P(D)}}{\frac{P(H_2)P(D|H_2)}{P(D)}}$$

$$\frac{P(H_1|D)}{P(H_2|D)} = \frac{P(H_1)P(D|H_1)}{P(H_2)P(D|H_2)}$$

Posterior Odds

Prior Odds

$$egin{array}{c} P(H_1|D) \ P(H_2|D) \end{array} = egin{array}{c} P(H_1) & P(D|H_1) \ P(H_2) & P(D|H_2) \end{array}$$

Prior Odds

Bayes Factor

Posterior Odds

$$\frac{P(H_1)}{P(H_2)} \frac{P(D|H_1)}{P(D|H_2)} = \frac{P(H_1|D)}{P(H_2|D)}$$

2In(BF)	BF	Strength of evidence
0-2	1-3	Barely worth mentioning.
2-6	3-20	Positive
6-10	20-150	Strong
>10	>150	Very Strong

For now, we're going to use these to **compare different models of sequence evolution** as our hypotheses.

However, BFs can also be used for other hypotheses, like **topological relationships**.

Or...don't choose a model!

Reversible Jump MCMC

Instead of picking a model, include MCMC moves that jump between. Integrate out uncertainty about which model is best. This is a Bayesian form of **model averaging**.

We already do this for trees. Can also do this for models.

Or...don't choose a model!

Reversible Jump MCMC

Instead of picking a model, include MCMC moves that jump between. Integrate out uncertainty about which model is best. This is a Bayesian form of **model averaging**.

We already do this for trees. Can also do this for models.

*Disclaimer: Setting up proper reversible jump moves can often be **very challenging**.