Lab 2: Sound Waves

PHY2049L

Section: 016

Learning Outcomes

- Students will demonstrate the experimental relationship between the speed of sound, wavelength and frequency for a standing wave in a stopped tube.
- Students will also learn the effect of air temperature on the speed of sound.

Defining Sound Waves

 Sound waves are longitudinal waves: particles will be displaced parallel to the direction the wave travels, think of a slinky:

These waves can also be described by:

$$y(x,t) = A\cos(kx - \omega t)$$

For a sound wave travelling in the +x direction.

Pressure Waves

- Sound waves are Pressure waves.
- When particles are pushed together, the pressure reaches a maximum.
- When particles spread apart, the pressure reaches a minimum.

© 2012 Pearson Education, Inc.

Standing Sound Waves

- Standing waves occur when two identical travelling waves (travelling in opposite directions) interfere.
- This is very similar to the case of standing waves on a string.
 - Now we have displacement nodes N (where particles in the fluid have zero displacement).
 - Displacement anti-nodes A (where particles in the fluid have maximum displacement).

Standing Waves in Tube

Velocity of the waves are still described by:

$$v = \lambda f$$

- There exist two cases for a standing sound wave to form in a tube:
 - 1. Tube with two open ends.
 - Tube with one closed end and one open end.

1) Fundamental:
$$f_1 = \frac{v}{2L}$$

Open end is always a displacement antinode.

© 2012 Pearson Education, Inc.

Fundamental:
$$f_1 = \frac{v}{4L}$$

Closed end is always a displacement node.

© 2012 Pearson Education, Inc.

Fundamental Modes (1)

An Antinode always exists at a tube opening.

Open end is always a displacement antinode.

© 2012 Pearson Education, Inc.

(b) Second harmonic:
$$f_2 = 2\frac{v}{2L} = 2f_1$$

(c) Third harmonic:
$$f_3 = 3\frac{v}{2L} = 3f_1$$

A closed end is always a Node.

(a) Fundamental:
$$f_1 = \frac{v}{4L}$$

Closed end is always a displacement node.

@ 2012 Pearson Education, Inc.

(b) Third harmonic:
$$f_3 = 3\frac{v}{4L} = 3f_1$$

(c) Fifth harmonic:
$$f_5 = 5\frac{v}{4L} = 5f_1$$

Fundamental Modes - Open Pipe

© 2012 Pearson Education. Inc.

(b) Second harmonic: $f_2 = 2\frac{v}{2L} = 2f_1$

(c) Third harmonic: $f_3 = 3\frac{v}{2I} = 3f_1$

From the above we can see that the frequency/wavelength for a pipe with two open ends is given for various modes by:

Fundamental Modes - Stopped Pipe

(b) Third harmonic: $f_3 = 3\frac{v}{4L} = 3f_1$

(c) Fifth harmonic: $f_5 = 5\frac{v}{4L} = 5f_1$

@ 2012 Pearson Education, Inc.

 For a stopped by, only odd modes can exist as stading waves.

$$\lambda_n = \frac{4L}{n}$$

$$f_n = \frac{nv}{4L}$$

