

LOW V_{CE(SAT)} NPN SURFACE MOUNT TRANSISTOR

Features

- Ideal for Medium Power Amplification and Switching
- Complementary PNP Type Available (DSS20200L)
- Ultra Low Collector-Emitter Saturation Voltage
- Lead Free By Design/RoHS Compliant (Note 1)
- "Green" Device (Note 2)

Mechanical Data

- Case: SOT-23
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020D
- Terminals: Finish Matte Tin annealed over Copper leadframe.
 Solderable per MIL-STD-202, Method 208
- Marking Information: See Page 4
- Ordering Information: See Page 4
- Weight: 0.008 grams (approximate)

B E Device Schematic

Maximum Ratings @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V_{CBO}	20	V
Collector-Emitter Voltage	V_{CEO}	20	V
Emitter-Base Voltage	V _{EBO}	6	V
Peak Pulse Current	I _{CM}	4	Α
Continuous Collector Current	Ic	2	Α

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 3) @ T _A = 25°C	P _D	600	mW
Thermal Resistance, Junction to Ambient Air (Note 3) @ T _A = 25°C	$R_{ hetaJA}$	209	°C/W
Power Dissipation (Note 4) @ T _A = 25°C	P_{D}	1.2	mW
Thermal Resistance, Junction to Ambient Air (Note 4) @ T _A = 25°C	$R_{ hetaJA}$	104	°C/W
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C

Notes:

- 1. No purposefully added lead.
- 2. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
- 3. Device mounted on FR-4 PCB with minimum recommended pad layout.
- 4. Device mounted on FR-4 PCB with 1 inch² copper pad layout.

Electrical Characteristics @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Unit	Test Conditions	
OFF CHARACTERISTICS							
Collector-Base Breakdown Voltage	V _{(BR)CBO}	20		_	V	$I_C = 100 \mu A$	
Collector-Emitter Breakdown Voltage (Note 5)	V _{(BR)CEO}	20		_	V	$I_C = 10mA$	
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	6		_	V	$I_E = 100 \mu A$	
Collector-Base Cutoff Current	I _{CBO}	_	_	100	nA	$V_{CB} = 20V, I_E = 0$	
Emitter-Base Cutoff Current	I _{EBO}	_	_	100	nA	$V_{EB} = 6V, I_{C} = 0$	
ON CHARACTERISTICS (Note 5)							
		200	_	_		$V_{CE} = 2V$, $I_C = 10mA$	
DC Current Gain	h	200	330	_		$V_{CE} = 2V, I_{C} = 500mA$	
DC Current Gain	h _{FE}	200		_		$V_{CE} = 2V$, $I_C = 1A$	
		200		_		$V_{CE} = 2V$, $I_C = 2A$	
		_	_	10		$I_C = 0.1A, I_B = 10mA$	
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	_	40	50	mV	$I_C = 1.0A$, $I_B = 100mA$	
Collector-Emitter Saturation voltage		_	75	90	IIIV	$I_C = 1.0A, I_B = 10mA$	
		_	70	100		$I_C = 2.0A$, $I_B = 200mA$	
Equivalent On-Resistance	R _{CE(SAT)}	_	35	50	mΩ	$I_E = 2A$, $I_B = 200mA$	
Base-Emitter Saturation Voltage	V _{BE(SAT)}	_	_	0.9	V	$I_C = 1A, I_B = 10mA$	
Base-Emitter Turn-on Voltage	V _{BE(ON)}	_	_	0.9	V	$V_{CE} = 2V$, $I_C = 1A$	
SMALL SIGNAL CHARACTERISTICS							
Transition Frequency	f⊤	150	_	_	MHz	$V_{CE} = 5V, I_{C} = 100mA,$ f = 100MHz	
Output Capacitance	C_{obo}	_	_	45	pF	$V_{CB} = 3V, f = 1MHz$	
Input Capacitance	C _{ibo}	_	_	450	pF	$V_{EB} = 0.5V, f = 1MHz$	
SWITCHING CHARACTERISTICS							
Turn-On Time	ton	_	_	200	ns	$V_{CC} = 15V, I_C = 750mA,$	
Delay Time	t _d	_	_	100	ns	$I_{B1} = 15\text{mA}$	
Rise Time	t _r		_	100	ns	IRI - IOIIIV	
Turn-Off Time	t _{off}	_		610	ns	\\\\ 15\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Storage Time	t _s	_	_	500	ns	$V_{CC} = 15V, I_C = 750mA,$	
Fall Time	t _f	_	_	110	ns	$I_{B1} = I_{B2} = 15$ mA	

Notes: 5. Measured under pulsed conditions. Pulse width = $300\mu s$. Duty cycle $\leq 2\%$.

Fig. 1 Power Dissipation vs. Ambient Temperature

1,000 CAPACITANCE (pF) 100 10 0.1 10 100 V_R, REVERSE VOLTAGE (V)

Fig. 8 Typical Capacitance Characteristics

Fig. 9 Typical Gain-Bandwidth Product vs. Collector Current

Fig. 10 Transient Thermal Response

Ordering Information (Note 6)

Part Number	Case	Packaging
DSS20201L-7	SOT-23	3000/Tape & Reel

Notes: 6. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

ZN1 = Product Type Marking Code YM = Date Code Marking Y = Year (ex: V = 2008) M = Month (ex: 9 = September)

Date Code Key

Year	2008		2009	2010		2011	2012		2013	2014		2015
Code	V		W	Х		Υ	Z		Α	В		С
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D

Package Outline Dimensions

	SOT-23					
Dim	Min	Max	Тур			
Α	0.37	0.51	0.40			
В	1.20	1.40	1.30			
С	2.30	2.50	2.40			
D	0.89	1.03	0.915			
F	0.45	0.60	0.535			
G	1.78	2.05	1.83			
Н	2.80	3.00	2.90			
J	0.013	0.10	0.05			
K	0.903	1.10	1.00			
K1	-	-	0.400			
L	0.45	0.61	0.55			
M	0.085	0.18	0.11			
α	0°	8°	-			
All	All Dimensions in mm					

Suggested Pad Layout

Dimensions	Value (in mm)
Z	2.9
Х	0.8
Y	0.9
С	2.0
Е	1.35

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.