

ZX-NUNCHUK (#8000339)

Wii-Nunchuk interface board

1. Features

- Interface with Wii Nunchuk remote control directly. Modification the remote control is not required.
- Two-wire Interface. Easy to interface with any modern microcontroller
- Connect to INEX microcontroller board via 3-pin JST connector.
- +5Vdc supply voltage. On-board +3.3V regulator.
- 2x4 cm. size.

2. Board contents:

ZX-NUNCHUK board x 1
 JST3AA-8 cable x 2
 Documentation x 1

The Wii-Nunchuk remote control is optional. This is also sold separated. Controller is provided in the **Nunchuk Interface kit (#8000347).**

3. General information

There is 3-axis accellerometer sensor *LIS3L02AL* of ST Microelectronics inside the Wii-Nunchuk. It includes a 10-bit A/D converter, an analog joystick and 2-button switches. The figure 1 shows the components of Wii-Nunchuk and connectoris pin assignment.

Figure 1: Wii-Nunchuk remote control information

Figure 2: ZX-NUNCHUK scematic diagram and shows the connecting with Wii-Nunchuk

The wiring signal of Wii-Nunchuck has 4 lines. It includes +3.3V supply voltage (red line), Ground (white line), Serial clock line - SCL (yellow line) and Serail data line - SDA (green line). They are connected to special female connector and assigned pin location are shown in the figure 1.

The interfacing protocol is 2-wire interface or I^2C bus compatible. The logic level is $\pm 3.3V$. The ZX-NUNCHUK is designed for bridging between any modern microcontroller and Wii-Nunchuk remote control. The 3-axis accellerometer sensor can detect accelleration $\pm 2g$ maximum. The schematic diagram of ZX-NUNCHUK and how to interface with the Wii-Nunchuk remote control are shown in figure 2.

Figure 3: Wii-Nunchuk physical operation

4. Protocol

Wii-Nunchuck is a slave I^2C bus device. It has 2 slave ID for writing (0xA4) and reading (0xA5) data which is as follows:

1 0 1 0 0 1 0	R/W
---------------	-----

The reading data of the Wii-Nunchuk consists of 6 bytes data. Before using these data, programmer must decode these data following:

Exact data = (Redaing data XOR 0x17) + 0x17

The summary of exact data after decoding can show as follows:

Data byte receive									
			Joys	tick X				0x00	
			Joys	tick Y				0x01	
	Acce	lerometer :	X (bit 9 to	bit 2 for 10)-bit resolu	ution)		0x02	
	Accelerometer Y (bit 9 to bit 2 for 10-bit resolution)								
Accelerometer Z (bit 9 to bit 2 for 10-bit resolution)								0x04	
Accel. Z bit 1	Accel. Z bit 0	Accel. Y	Accel. Y bit 0	Accel. X bit 1	Accel. X bit 0	C-button	Z-button	0x05	

Byte 0x00: X-axis data of the joystick

Byte 0x01: Y-axis data of the joystick

Byte 0x02: X-axis data of the accellerometer sensor

Byte 0x03: Y-axis data of the accellerometer sensor

Byte 0x04: Z-axis data of the accellerometer sensor

Byte 0x05: bit 0 as Z button status - 0 = pressed and 1 = release

bit 1 as C button status - 0 =pressed and 1 =release

bit 2 and 3 as 2 lower bit of X-axis data of the accellerometer sensor

bit 4 and 5 as 2 lower bit of Y-axis data of the accellerometer sensor

bit 6 and 7 as 2 lower bit of Z-axis data of the accellerometer sensor

5. Programming

5.1 Initialize start Nunchuk command

Set the Nunchuk as ready after power-on. Write the command 0x40 and 0x00 follows the slave ID byte 0xA4. Normally this command is written at once.

5.2 Conversion command (0x00)

Send this command to get all sensor data and store into the 6-byte register within Nunchuk controller. This must be execute before reading data from the Nunchuk.

5.3 Data read command

Send the slave ID for reading (0xA5) and wait for the stream data 6-byte from the Nunchuk.

Next, decode the data to exact data by XOR with 0x17 and plus with 0x17. This step is very important. Do not skip this step!

6. Example: Interface Nunchuk with Arduino POP-168

This example show the data reading from Wii-Nunchuk by Arduino POP-168 microcontroller module. The POP-168 is fit on the POP-Interface baord or Project board (JX-POP168). Connect with Wii-Nunchuk via ZX-NUNCHUK interface board. The reading data will be shown on the Arduino IDEis Serial monitor. The construction circuit is shown below. The example C code shows in the Listing 1.

Listing 1: Arduino C code for interfaing Wii-Nunchuk with Arduino POP-168 (continue)

```
void nunchuck_init ()
  Wire.beginTransmission (nunchuk_ID); // transmit to device 0x52
  Wire.send (0x40); // sends memory address Wire.send (0x00); // sends sent a zero.
  Wire.endTransmission (); // stop transmitting
void send_zero ()
  Wire.beginTransmission (nunchuk_ID); // transmit to device 0x52
  Wire.send (0x00); // sends one byte
  Wire.endTransmission (); // stop transmitting
}
void loop ()
  Wire.requestFrom (nunchuk_ID, 6); // request data from nunchuck
  while (Wire.available ())
      buffer[cnt] = nunchuk_decode_byte (Wire.receive ()); // receive byte as an
integer
      cnt++;
  // If we recieved the 6 bytes, then go print them
  if (cnt >= 5)
      print ();
  }
  cnt = 0;
  send_zero (); // send the request for next bytes
  delay (100);
// Print the input data we have recieved
// accel data is 10 bits long
// so we read 8 bits, then we have to add
// on the last 2 bits.
void print ()
  unsigned char joy_x_axis;
  unsigned char joy_y_axis;
  int accel_x_axis;
  int accel_y_axis;
  int accel_z_axis;
  unsigned char z_button;
  unsigned char c_button;
  joy_x_axis = buffer[0];
  joy_y_axis = buffer[1];
accel_x_axis = (buffer[2]) << 2;</pre>
  accel_y_axis = (buffer[3]) << 2;</pre>
  accel_z_axis = (buffer[4]) << 2;</pre>
 // byte outbuf[5] contains bits for z and c buttons
 // it also contains the least significant bits for the accelerometer data
 // so we have to check each bit of byte outbuf[5]
  if ((buffer[5] & 0x01)!=0)
      z_button = 1;
  else
      z_button = 0; }
  if ((buffer[5] \& 0x02)!=0)
```

Listing 1: Arduino C code for interfaing Wii-Nunchuk with Arduino POP-168 (continue)

```
{ c_button = 1; }
  else
  { c_button = 0; }
  accel_x_axis += ((buffer[5]) >> 2) & 0x03;
  accel_y_axis += ((buffer[5]) >> 4) & 0x03;
accel_z_axis += ((buffer[5]) >> 6) & 0x03;
  Serial.print (joy_x_axis, DEC);
  Serial.print ("\t");
  Serial.print (joy_y_axis, DEC);
  Serial.print ("\t");
  Serial.print (accel_x_axis, DEC);
  Serial.print ("\t");
  Serial.print (accel_y_axis, DEC);
  Serial.print ("\t");
  Serial.print (accel_z_axis, DEC);
  Serial.print ("\t");
  Serial.print (z_button, DEC);
  Serial.print ("\t");
  Serial.print (c_button, DEC);
  Serial.print ("\r\n");
}
// Encode data to format that most wiimote drivers except
// only needed if you use one of the regular wiimote drivers
char nunchuk_decode_byte (char x)
  x = (x ^0x17) + 0x17;
  return x;
```

Listing 1: Arduino C code for interfaing Wii-Nunchuk with Arduino POP-168 (final)

19200 ba	ud 🔽						Se
48	174	700	506	728	0	0	
49	177	363	706	199	0	0	
48	171	706	523	619	0	0	
49	175	558	719	447	0	0	
49	174	644	499	672	1	1	
74	133	355	495	258	1	1	
128	131	549	619	1013	0	1	

Figure 4: Shows the reading data from Wii-Ninchuk remote control on the Arduino's serial monitor. First 2 bytes are X and Y axis data of Joystick. Next 3 bytes are X, Y and Z axis of accellerometer sensor and last 2 bytes are C and Z button status. If any button is pressed, the data will equal "0".

