Sprint 1 Report - ASR Baseline and Limitations Study

1 Objective

The goal of this sprint was to benchmark existing automatic speech recognition (ASR) systems and establish a Whisper-based baseline for multilingual meeting transcription. We evaluated leading ASR tools on **English**, **Arabic**, and **code-switch** (English–Arabic) recordings under both clean and noisy conditions to identify limitations and define the scope for model improvement in future sprints.

2 Experimental Setup

Audio Samples 3 short meeting recordings (English / Arabic / code-

switch)

Models Evaluated Google Speech-to-Text (Pro API v2), Google Docs Voice

Typing, Otter.ai (free demo), Whisper Large (open-

source)

Evaluation Metrics Word Error Rate (WER), Noise robustness, Code-switch

handling, Speaker separation (qualitative)

Whisper Inference Settings

```
result = model.transcribe(
    audio_path,
    language=language,
    prompt=prompt,
    temperature=0.0,
    beam_size=5,
    best_of=5,
    patience=2,
    condition_on_previous_text=True
)
```

3 Results

Language / Condition	Google Pro	Google Docs	Otter.ai	Whisper Large
English (no noise)	0.18	0.20	0.20	0.20
English (+ noise)	0.21	0.19	0.17	0.29
Arabic (no noise)	0.21	0.21	_	0.19
Arabic (+ noise)	0.22	0.22	_	0.21
Code-switch (no noise)	0.55	_	_	0.35
Code-switch $(+ noise)$	1.24	_	_	0.28

4 Observations & Insights

- English recordings: Google Pro achieved the lowest WER in clean settings, while Otter.ai was most resilient under noise. Whisper slightly underperformed in noisy conditions.
- Arabic recordings: Whisper Large marginally outperformed Google models, demonstrating better handling of Arabic phonetics and dialectal variations.
- Code-switch recordings: Whisper Large outperformed Google Pro (0.28 vs 1.24 WER). Google incorrectly transcribed English words using Arabic letters, while Whisper preserved most English words correctly.

5 Limitations & Gaps

Limitation	Observation	Impact	Improvement Goal
Noise Robustness	Whisper WER \uparrow from 0.20 \rightarrow 0.29 with noise	Lower accuracy in real meetings	Integrate noise suppression or augmentation
Code-Switch Support	Google fails on mixed-language speech	Misinterpretation of bilingual users	Fine-tune Whisper using code-switch corpora
Speaker Diarization	Missing in all base- line models	Harder to extract per-speaker insights	Add diarization using WhisperX/Pyannote
Latency / Speed	Whisper Large = slow inference	Delayed output	Explore smaller or quantized models
Context Retention	Whisper resets context across segments	Fragmented transcripts	Enhance with prompt conditioning

6 Next Steps

Sprint 3 will focus on:

- Speaker Diarization Integration: Implement WhisperX or Pyannote.audio for speaker segmentation and diarization, enabling speaker-labeled transcripts in meetings (Sprint 3a).
- Summarization & Task Extraction: Generate concise meeting summaries and extract action items using T5/BART with rule-based task extraction (Sprint 3b).
- Code-Switch Fine-Tuning: Improve bilingual transcription using the ArzEn Speech Corpus (Egyptian Arabic-English) or the Arabic-Whisper-CodeSwitching-Edition model (subject to discussion).
- Noise & Accent Robustness: Apply preprocessing (noise suppression, filtering) and data augmentation (speed, pitch, volume) for real-world meeting conditions.
- Streaming Optimization (pre-Sprint 7): Explore lightweight or quantized Whisper variants for near-real-time transcription.

7 Conclusion

This sprint established a strong empirical baseline for multilingual ASR performance in realistic meeting conditions. Whisper Large demonstrated superior multilingual and code-switch capabilities compared to commercial baselines, while Google and Otter.ai showed better noise resilience.

Future improvements will focus on adaptation rather than architecture: fine-tuning for bilingual/dialectal contexts, integrating speaker-aware transcription pipelines, and enhancing noise robustness. The combination of WhisperX/Pyannote and fine-tuning on ArzEn or the Arabic-Whisper-CodeSwitching-Edition model is expected to bridge the gap between baseline performance and a practical, speaker-aware meeting assistant.