CPSC 418 / MATH 318 — Introduction to Cryptography ASSIGNMENT 1

Name: Artem Golovin Student ID: 30018900

Problem 1 — Superencipherment for substitution ciphers, 12 marks

1. (a) Proof. Encryption using Shift cipher is given by $E_K(M) \equiv (M+K) \mod 26$. Given $\mathcal{M} = \mathcal{C} = \mathcal{K} = \mathbb{Z}_{26}, K_1, K_2 \in \mathcal{K} \text{ and } M \in \mathcal{M}$:

Let $C_1 \in \mathcal{C}$ be a ciphertext that results from encrypting plaintext M with a key K_1 :

i.
$$E_{K_1}(M) \equiv (M + K_1) \mod 26$$

ii. $C_1 \equiv E_{K_1}$

iii. $C_1 \equiv (M + K_1) \mod 26$

iv. Let
$$C_2 = E_{K_2}(C_1)$$
, where $E_{K_2}(C_1) \equiv (C_1 + K_2) \mod 26$

v. Therefore, by substituting C_1 ,

$$C_2 = C_1 + K_2$$
 (mod 26)
= $M + (K_1 + K_2)$ (mod 26)
= $M + K_3$ (mod 26)

Where $K_3 \in \mathcal{K}$ and $K_3 = K_1 + K_2$. Therefore, resulting key of multiple encipherment is K_3 .

(b) *Proof.* Based on previous proof, superencipherment using shift cipher can be defined as follows

$$E_{K_i}(M) = (M + \sum_{\substack{K_i \in \mathcal{K} \\ i=1}}^{n} K_i) \pmod{26}$$

Where $M \in \mathcal{M}$, $K_i \in \mathcal{K}$, $n \in \mathbb{Z}$, and $i \ge 1, i \in \mathbb{Z}$.

i. Base Case: let n=1,

$$C = M + \sum_{\substack{K_i \in \mathcal{K} \\ i=1}}^{1} K_i \pmod{26}$$

$$= M + K_1 \pmod{26}$$
(1)

ii. Induction hypothesis: Assume n=m, where $m\in\mathbb{Z}$. Therefore:

$$C = M + \sum_{K_i \in \mathcal{K}}^m K_i \pmod{26}$$

Let:

$$K' = \sum_{\substack{K_i \in \mathcal{K} \\ i=1}}^{m} K_i$$

$$C = M + K' \pmod{26}$$
(2)

Still results in a shift cipher, according to definition.

iii. Inductive case: According to induction hypothesis, we can show that m+1 holds true as well:

$$C = (M + \sum_{\substack{K_i \in \mathcal{K} \\ i=1}}^{m+1} K_i)$$
 (mod 26)

$$= (M + (\sum_{\substack{K_i \in \mathcal{K} \\ i=1}}^{m} K_i + \sum_{\substack{K_i \in \mathcal{K} \\ i=1}}^{1} K_i))$$
 (mod 26)

$$= (M + (\sum_{\substack{K_i \in \mathcal{K} \\ i=1}}^{m} K_i + K_1))$$
 (mod 26)

$$= (M + (K' + K_1))$$
 (mod 26)

$$= (M + K^{"}) \tag{mod 26}$$

where K_1 is our base case (1) and K' is our induction hypothesis (2). Since $K_1 \in \mathcal{K}$ and $K' \in \mathcal{K}$, therefore $K'' = K_1 + K', K'' \in \mathcal{K}$. Hence, the key of multiple encipherment is sum of all given keys.

2. Proof. Let $M \in \mathcal{M}$ be a plaintext of length $x \in \mathbb{Z}$. Let $p_0, p_1, p_2, ..., p_{x-1}$ be positions of letters in plaintext M. Given key $w_1 \in \mathcal{K}$ of length $m \in \mathbb{Z}$ and key $w_2 \in \mathcal{K}$ of length $n \in \mathbb{Z}$, let $k_0, k_1, k_2, ..., k_{m-1}$ be positions of letters in key w_1 , and $l_0, l_1, l_2, ..., l_{n-1}$ be positions of

letters in key w_2 . To encrypt plaintext p_i , we use a key k_j , where i is letter position from 0 to x-1.

$$j \equiv i \pmod{m}$$

Let ciphertext C_i be ciphertext that corresponds to p_i

$$C_i \equiv p_i + k_j \pmod{26}$$

Where $k_j \equiv i \pmod{m}$.

Let ciphertext C_{2_i} be ciphertext that corresponds to C_i . Therefore, the second round of encryption, using the key w_2 , results in following:

$$C_{2i} = C_i + l_j$$
 (mod 26)
= $(p_i + k_j) + l_z$ (mod 26)
= $p_i + (k_j + l_z)$ (mod 26)

Where $z \equiv i \pmod n$ and $l_z \equiv i \pmod n$. Therefore that ensures that length of resulting key will be x.

Problem 2 — Key size versus password size, 21 marks

1.

Problem 3 — Equiprobability maximizes entropy for two outcomes, 12 marks