Total No. of Questions: 6

Total No. of Printed Pages:3

Faculty of Engineering End Sem (Even) Examination May-2022

EC3EV03 Low Power VLSI Design

Programme: B.Tech. Branch/Specialisation: EC

Duration: 3 Hrs. Maximum Marks: 60

	-	estions are compulsory. Internshould be written in full instead	nal choices, if any, are indicated. Answer ad of only a, b, c or d.	rs of
	i.	For implementing 4-input connected in&_	Static NAND Logic,PMOS areNMOS are connected in:	1
		(a) 4, Series, 4, Parallel	(b) 4, Parallel, 4, Series	
		(c) 4, Series, 4, Series	(d) 4, Parallel, 4, Parallel	
	ii.	Dynamic power dissipation is a function of:		
		(a) Drain Current	(b) Rise Time & fall time	
		(c) Capacitance	(d) All of these	
i	iii.	GIDL stands for-		1
		(a) Gate-Induced Drain Leak	age	
		(b) Gate-Induced Drain Low	ering	

- (d) Gate-Influenced Drain Leakage
 iv. 'K' stands for ______ in High-K material.

 (a) Dielectric Constant
 (b) Material Constant
 (c) Temperature
 (d) Potential
 v. Technology scaling _____ the internal capacitances on the chip, while _____ capacitances remain approximately constant.

 (a) Destroys, external
 (b) Increases, external
 (c) Reduces, external
 (d) Dominates, external
 vi. The Power dissipation which is a function of rise and fall time is 1
 - (a) Glitching power dissipation
 - (b) Leakage power dissipation

(c) Gate-Influenced Drain Lowering

- (c) Static power dissipation
- (d) Short Circuit power dissipation

P.T.O.

	vii.	. The type of adder Braun's Multiplier employ is			
		(a) Ripple Carry Adder only			
		(b) Carry Propagate adder only			
		(c) Carry Save & Carry Propagate adder			
		(d) Carry Save & Ripple Carry Adder			
viii.		In DRAM the number of MOS transistors required for storing a 1-bit	1		
		data is			
		(a) 4 (b) 3 (c) 2 (d) 1			
	ix.	Power estimation determines the major active component	1		
		during a particular duration.			
		(a) Higher level (b) Architectural			
		(c) Gate Level (d) Instruction level	_		
	х.	Glitching Power estimation can be obtained by identifying	1		
		(a) Frequency of switching (b) Instruction delays			
		(c) Propagation delay (d) Dynamic Hazards			
Q.2	i.	Explain the significance of Low power design in VLSI.	3		
Q.2	ii.	Describe in detail the working of MOS inverter using Static logic.	7		
	11.	Identify and enlist the power dissipation factors in the circuit.	•		
OR	iii.	Which transistor technology is preferably used for VLSI chip	7		
	111.	designing? Give proper explanation.	•		
Q.3	i.	What is Threshold Roll-off?	2		
	ii.	What are High-K dielectrics? Mention their significance in low			
		power designing.			
	iii.	What is power supply gating? Discuss its types. Demonstrate with	5		
		relevant diagram.			
OR	iv.	Discuss the following in detail:	5		
		(a) DIBL (b) Hot carrier injection			
0.4					
Q.4	i.	Discuss the Short circuit and Glitching power dissipation in MOS	4		
	::	circuits.	•		
ΩD	ii. :::	What is technology Scaling? Compare various types of scaling.	6		
OR	iii.	Illustrate with an example the parallel and pipelined architectural approaches for reducing dynamic power dissipation.	6		
		approaches for ieuuchig uyhanne powel uissipaholi.			

Ų.S		Attempt any two:		
i.		Discuss the adder architectures for low power VLSI design.		
	ii.	Explain Booth multiplication with an example. Compare its	5	
performance with Braun's multiplier.				
	iii. Illustrate the reading and writing operation in DRAM. Identi			
		various factors of power dissipation in its architecture?		
Q.6		Write Short note on any two:		
	i.	Probabilistic techniques for Power estimation.	5	
	ii.	Software based Power Estimation	5	
	iii.	Logic synthesis for low power design	5	

Marking Scheme EC3EV03 Low Power VLSI Design

Q.1	i.	For implementing 4-input Static NAND Logic,PMOS are connected in&NMOS are connected in: (b) 4, Parallel, 4, Series	1			
	ii.	Dynamic power dissipation is a function of:				
		(c) Capacitance				
	iii.	GIDL stands for-	1			
		(b) Gate-Induced Drain Lowering				
	iv.	'K' stands for in High-K material.				
		(a) Dielectric Constant				
	v.	Technology scaling the internal capacitances on the chip,	1			
		while capacitances remain approximately constant.				
		(c) Reduces, external				
	vi.	The Power dissipation which is a function of rise and fall time is	1			
		(d) Short Circuit power dissipation				
	vii.	. ,				
	viii.					
		data is				
		(d) 1				
	ix.	Power estimation determines the major active component				
		during a particular duration.				
		(b) Architectural				
	Х.	Glitching Power estimation can be obtained by identifying .				
		(d) Dynamic Hazards	1			
		(a) Dynamic Hazards				
Q.2	i.	3 Points (in explanation) (1 mark*3)	3			
	ii.	Working of MOS inverter	7			
		Circuit diagram 2 Marks				
		Explanation 2 Marks.				
		Power dissipation (Any 6) 3 Marks				
OR	iii.	CMOS technology 1 Marks	7			
		Merits/advantates (Atleast 6 adv.) 6 Marks	•			
		o many				

Q.3	i.	Define Threshold Roll-off	(As per explanation)	2
	ii.	What are High-K dielectrics	1 Mark	3
		Significance in low power designing.	2 Marks	
	iii.	Power supply gating	2 Marks	5
		Discuss its types	1 Mark	
		Demonstrate with relevant diagram.	2 Marks	
OR	iv.	(a) DIBL	2.5 Marks	5
		(b) Hot carrier injection	2.5 Marks	
Q.4	i.	Short circuit and Glitching power	(2 Marks*2).	4
C	ii.	Define technology Scaling	2 Marks	6
		Types of scaling.	1 Mark	
		Compare (3 Points)	3 Marks	
OR	iii.	Parallel and pipelined architectural approaches	(3 Marks*2)	6
Q.5		Attempt any two:	,	
	i.	Adder architecture (Atleast two)	(2.5 Marks*2)	5
	ii.	Explain Booth multiplication with an example.	3 Marks	5
		Compare its performance with Braun's multiplie	er. 2 Marks	
	iii.	Reading and writing operation in DRAM.	3 Marks	5
		Power factors (atleast 4)	2 Marks	
Q.6		Write Short note on any two:		
-	i.	Probabilistic techniques with example.	5 Marks	5
	ii.	Software based Power Estimation	(2.5 Marks*2)	5
	iii.	Logic synthesis (Atleast two methods)	(2.5 Marks*2)	5
