Question 1.1:

$$G' = (V \cup \{s, t\}, E')$$

$$E \subseteq E'$$

$$for all \ u \in V \begin{cases} (s, u) \in E' \\ (u, t) \in E' \end{cases}$$

$$w_{uv} = \begin{cases} 1 & (u, v) \in E \\ \deg(v), & u = s \\ c & v = t \end{cases}$$

suppose
$$\exists S \subseteq V \text{ and } \rho(S) \ge \lambda$$

 $\bar{S} = V \setminus S$

$$\begin{split} \rho(S) &= \frac{\sum_{(u,v) \in E(S)} w_{uv}}{|S|} \\ \frac{\sum_{(u,v) \in E(S)} w_{uv}}{|S|} &\geq \lambda \\ \frac{2|E(S,S)|}{|S|} &\geq \lambda \\ \\ \sum_{u \in S} \deg(u) - |E(S,\bar{S})| &\geq \lambda |S| \\ \\ \sum_{u \in S} \deg(u) - \sum_{u \in \bar{S}} \deg(u) - |E(S,\bar{S})| &\geq \lambda |S| \\ \\ \sum_{u \in S} \deg(u) + |E(S,\bar{S})| + \lambda |S| &\leq 2|E| \end{split}$$

cut value if
$$S \begin{cases} = \emptyset, & 2|E| \\ \neq \emptyset, & \sum_{u \in \bar{S}} \deg(u) + |E(S, \bar{S})| + \lambda|S| \end{cases}$$

$$WC(\{s\} \cup S, \bar{S} \cup \{t\}) \leq \gamma$$

$$\frac{\sum_{(u,v) \in E', u \in \{s\} \cup S, v \in \bar{S} \cup \{t\}} w_{uv}}{|S|} \leq \frac{\gamma}{|S|}$$

$$\frac{\gamma}{|S|} \geq \rho(S)$$

$$\gamma \geq \lambda |S|$$

Question 1.2:

$$\rho(S) = \frac{c - 1}{2}$$

$$\frac{\sum_{(u,v) \in E(S)} w_{uv}}{|S|} = \frac{c - 1}{2}$$

$$\sum_{(u,v) \in E'} w_{uv} = \frac{|S|(c - 1)}{2}$$

Question 2

					A_i	ij					
j∖i	1	2	3	4	5	6	7	8	9	10	11
1	0	1	1	0	0	0	0	0	0	0	0
2	1	0	1	1	1	0	0	0	0	0	0
3	1	1	0	1	1	0	0	0	0	0	0
4	0	1	1	0	1	0	0	0	0	0	0
5	0	1	1	1	0	1	1	0	0	0	0
6	0	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	1	1	1	0
8	0	0	0	0	0	0	1	0	1	1	0
9	0	0	0	0	0	0	1	1	0	1	1
10	0	0	0	0	0	0	1	1	1	0	1
11	0	0	0	0	0	0	0	0	1	1	0
d_1	d_2	d_3	d_4	d_5	d_6	d ₇	d_8	d_9	d ₁₀	d ₁₁	E
= 2	= 4	= 4	= 3	= 5	= 2	= 5	= 3	= 4	= 4	= 2	= 19

					$d_i d_j/2$	2 E					
j∖i	1	2	3	4	5	6	7	8	9	10	11
1	2/19	4/19	4/19	3/19	5/19	2/19	5/19	3/19	4/19	4/19	2/19
2	4/19	8/19	8/19	6/19	10/19	4/19	10/19	6/19	8/19	8/19	4/19
3	4/19	8/19	8/19	6/19	10/19	4/19	10/19	6/19	8/19	8/19	4/19
4	3/19	6/19	6/19	9/38	15/38	3/19	15/38	9/38	6/19	6/19	3/19
5	5/19	10/19	10/19	15/38	25/38	5/19	25/38	15/38	10/19	10/19	5/19
6	2/19	4/19	4/19	3/19	5/19	2/19	5/19	3/19	4/19	4/19	2/19
7	5/19	10/19	10/19	15/38	25/38	5/19	25/38	15/38	10/19	10/19	5/19
8	3/19	6/19	6/19	9/38	15/38	3/19	15/38	9/38	6/19	6/19	3/19
9	4/19	8/19	8/19	6/19	10/19	4/19	10/19	6/19	8/19	8/19	4/19
10	4/19	8/19	8/19	6/19	10/19	4/19	10/19	6/19	8/19	8/19	4/19
11	2/19	4/19	4/19	3/19	5/19	2/19	5/19	3/19	4/19	4/19	2/19

	B_{ij}										
$j \backslash i$	1	2	3	4	5	6	7	8	9	10	11
1	- 2/19	15/19	15/19	- 3/19	- 5/19	- 2/19	- 5/19	- 3/19	- 4/19	- 4/19	- 2/19
2	15/19	- 8/19	11/19	13/19	9/19	- 4/19	- 10/19	- 6/19	- 8/19	- 8/19	- 4/19
3	15/19	11/19	- 8/19	13/19	9/19	- 4/19	- 10/19	- 6/19	- 8/19	- 8/19	- 4/19
4	- 3/19	13/19	13/19	- 9/38	23/38	- 3/19	- 15/38	- 9/38	- 6/19	- 6/19	- 3/19
5	- 5/19	9/19	9/19	23/38	- 25/38	14/19	13/38	- 15/38	- 10/19	- 10/19	- 5/19
6	- 2/19	- 4/19	- 4/19	- 3/19	14/19	- 2/19	14/19	- 3/19	- 4/19	- 4/19	- 2/19
7	- 5/19	- 10/19	- 10/19	- 15/38	13/38	14/19	- 25/38	23/38	9/19	9/19	- 5/19
8	- 3/19	- 6/19	- 6/19	- 9/38	- 15/38	- 3/19	23/38	- 9/38	13/19	13/19	- 3/19
9	- 4/19	- 8/19	- 8/19	- 6/19	- 10/19	- 4/19	9/19	13/19	- 8/19	11/19	15/19
10	- 4/19	- 8/19	- 8/19	- 6/19	- 10/19	- 4/19	9/19	13/19	11/19	- 8/19	15/19
11	- 2/19	- 4/19	- 4/19	- 3/19	- 5/19	- 2/19	- 5/19	- 3/19	15/19	15/19	- 2/19

Question 3

Iteration 1		Distance to		Assign to			
icration i	Centroid 1	Centroid 2	Centroid 3	Assign W		X	у
A1	0	3.6056	8.0623	Centroid 1	Centroid 1	2	10
A2	5	4.2426	3.1623	Centroid 3	Centroid 2	6	6
A3	8.4853	5	7.2801	Centroid 2	Centroid 3	1.5	3.5
A4	3.6056	0	7.2111	Centroid 2			
A5	7.0711	3.6056	6.7082	Centroid 2			
A6	7.2111	4.1231	5.3852	Centroid 2			
A7	8.0623	7.2111	0	Centroid 3			
A8	2.2361	1.4142	7.6158	Centroid 2			

Iteration 2		Distance to		Aggion to			
Herauon 2	Centroid 1	Centroid 2	Centroid 3	Assign to		х	у
A1	0	5.6569	6.5192	Centroid 1	Centroid 1	3	9.5
A2	5	4.1231	1.5811	Centroid 3	Centroid 2	6.5	5.25
A3	8.4853	2.8284	6.5192	Centroid 2	Centroid 3	1.5	3.5
A4	3.6056	2.2361	5.7009	Centroid 2			
A5	7.0711	1.4142	5.7009	Centroid 2			
A6	7.2111	2	4.5277	Centroid 2			
A7	8.0623	6.4031	1.5811	Centroid 3			
A8	2.2361	3.6056	6.0415	Centroid 1			

Iteration 3		Distance to		Aggiom to			
neration 5	Centroid 1	Centroid 2	Centroid 3	Assign to		X	у
A1	1.1180	6.5431	6.5192	Centroid 1	Centroid 1	3.6667	9
A2	4.6098	4.5069	1.5811	Centroid 3	Centroid 2	7	4.3333
A3	7.4330	1.9526	6.5192	Centroid 2	Centroid 3	1.5	3.5
A4	2.5	3.1325	5.7009	Centroid 1			
A5	6.0208	0.5590	5.7009	Centroid 2			
A6	6.2650	1.3463	4.5277	Centroid 2			
A7	7.7621	6.3885	1.5811	Centroid 3			
A8	1.1180	4.5069	6.0415	Centroid 1			

Iteration 4		Distance to		Aggion to			
neration 4	Centroid 1	Centroid 2	Centroid 3	Assign to		X	у
A1	1.9437	7.5572	6.5192	Centroid 1	Centroid 1	3.6667	9
A2	4.3333	5.0442	1.5811	Centroid 3	Centroid 2	7	4.3333
A3	6.6165	1.0541	6.5192	Centroid 2	Centroid 3	1.5	3.5
A4	1.6667	4.1767	5.7009	Centroid 1			
A5	5.2068	0.6667	5.7009	Centroid 2			
A6	5.5176	1.0541	4.5277	Centroid 2			
A7	7.4907	6.4377	1.5811	Centroid 3			
A8	0.3333	5.5478	6.0415	Centroid 1			

The new centroids are:

 $C1: \{A1, A4, A8\} \ centre \ at \ (3.6667,9)$

C2: {A3, A5, A6} centre at (7,4.333)

C3: {A2, A7} centre at (1.5,3.5)

Question 4.1

K = 1

K = 2

K = 3

Core number of each node

Question 4.2:

Input: undirected graph G = (V, E)

Output: array of number of core number for each node

- 1. Set a degree map for each node u in G, MapD, key: u, value: degree
- 2. Sort MapD by degree
- 3. Set a core number array for each node, coreD
- 4. Set G' <- G
- 5. For $k \le 1$ to n
 - 1. If (G' empty) break from loop
 - 2. For all MapD [value] = < k
 - 1. G' <- G'\u
 - 3. Recalculate MapD
 - 4. For all MapD [value]! = 0
 - 1. coreD [v]++
- 6. Return coreD

Question 4.3:

Running time in second = (6.985, 7.246)