1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»			
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»			
Лабораторная работа № <u>1</u>			
Дисциплина Конструирование компиляторов			
Тема Распознавание цепочек регулярного языка			
Вариант №2			
Студент Брянская Е.В.			
Группа ИУ7-21М			
Преподаватель <u>Ступников А.А.</u>			

Задание

Напишите программу, которая в качестве входа принимает произвольное регулярное выражение, и выполняет следующие преобразования:

- 1. По регулярному выражению строит НКА.
- 2. По НКА строит эквивалентный ему ДКА.
- 3. По ДКА строит эквивалентный ему КА, имеющий наименьшее возможное количество состояний.
- 4. Моделирует минимальный КА для входной цепочки из терминалов исходной грамматики

Результаты и выводы

Входные данные		Результат	
Рег.выражение	Строка		
(a b)*	пустая	-допуск	
	aab	-aab -ab -b -допуск	
	ab	-ab -b -допуск	
	b	-b -допуск	
	aaaac	-аааас -аас -ас -с -недопуск	

Контрольные вопросы

- 1. Какие из следующих множеств регулярны? Для тех, которые регулярны, напишите регулярные выражения.
 - а. Множество цепочек с равным числом нулей и единиц. Не является регулярным множеством (возможно контекстнозависимая грамматика?)
 - b. Множество цепочек из $\{0,1\}^*$ с четным числом нулей и нечетным числом единиц.

1(00|11|10|01)*

- P.S. она не совсем верно работает)) Например, 101 пропускает.
- с. Множество цепочек из $\{0,1\}^*$, длины которых делятся на 3. $((0|1)(0|1)(0|1))^*$
- d. Множество цепочек из $\{0,1\}^*$, не содержащих подцепочки 101. 0*(1|00|000)*0*
- 2. Найдите праволинейные грамматики для тех множеств из вопроса 1, которые регулярны.

b	С	d
$S \rightarrow 1A$	$S \rightarrow A$	$S \rightarrow A$
$A \rightarrow 00A$	$A \rightarrow 0B$	$A \rightarrow 0A$
$A \rightarrow 11A$	$A \rightarrow 1B$	$A \rightarrow B$
$A \rightarrow 10A$	$A \rightarrow \varepsilon$	$B \rightarrow 1B$
$A \rightarrow 01A$	$B \rightarrow 0C$	$B \rightarrow 00B$
$A \rightarrow \epsilon$	$B \rightarrow 1C$	$B \rightarrow 000B$
	$C \rightarrow 0A$	$B \rightarrow C$
	$C \rightarrow 1A$	$C \rightarrow 0C$
		$C \rightarrow \varepsilon$

3. Найдите детерминированные и недетерминированные конечные автоматы для тех множеств из вопроса 1, которые регулярны

b.

НКА

Рисунок 1 – НКА 3b

ДКА

Рисунок 2 — ДКА 3b

c.

НКА

Рисунок 3 — НКА 3с

ДКА

Рисунок 4 -- ДКА 3с

d.

НКА

Рисунок 5 -- 3d

Рисунок 6 -- ДКА 3d

4. Найдите конечный автомат с минимальным числом состояний для языка, определяемого автоматом $M=(\{A,B,C,D,E\},\{0,1\},d,A,\{E,F\})$, где функция задается таблицей

Состояние	Вход		
	0	1	
A	В	С	
В	Е	F	
С	A	A	
D	F	Е	
Е	D	F	
F	D	Е	

Рисунок 7 -- 4 задание

Использовался метод различимых состояний.

Таблица неэквивалентности:

	A	В	С	D	Е	F
A						
В						
С						
D						
Е						
F						

Вектор классов эквивалентности:

A	В	C	D	Е	F
0	1	2	1	3	3

Стартовая вершина: А

Терминальная вершина: Е

Минимальный КА:

Рисунок 8 -- Минимальный КА