Prüfungsvorbereitung Teil 1

Frühjahr 2024

Inhalt

1	Fac	hkomp	petenz	3
	1.1	Projel	ktmanagement - DIN 69901	3
		1.1.1	Definitionen	
		1.1.2	Weitere Grundlagen	5
		1.1.3	Instrumente/Modelle des Projektmanagement	6
		1.1.4	Agiles Projektmanagement	10
		1.1.5	Glossar	12
	1.2	Qualit	tätmanagement DIN EN ISO 9000ff.	13
		1.2.1	DIN EN ISO 9000ff	13
		1.2.2	Kano Modell	15
		1.2.3	Softwarequalität	16
		1.2.4	Barrierefreiheit	18
		1.2.5	Begriffsklärungen	19

1 Fachkompetenz

1.1 Projektmanagement - DIN 69901

1.1.1 Definitionen

Projekt Ein Projekt ist ein Vorhaben in dem etwas erreicht werden soll. Dieses Vorhaben muss bestimmte Kriterien/Eigenschaften erfüllen.

- Zielorientiert
- Zeitlich begrenzt
- Begrenzte Ressourcen
- Einzigartig
- Komplex
- Organisiert

Zur Definition der Zielvorgaben wird oftmals das **SMART** Konzept verwendet. Dabei handelt es sich um ein Kriterium zur eindeutigen Formulierung von Zielen. Diese sind dadurch messbar und überprüfbar.

- (S) Specific spezifisch \rightarrow Ziele müssen eindeutig definiert sein
- (M) Measurable messbar \rightarrow Ziele müssen messbar sein
- (A) **Achievable** erreichbar, attraktive, akzeptiert \to Ziele müssen ansprechend bzw. erstrebenswert sein
- (R) Reasonable realistisch \rightarrow Zeile müssen realistisch sein
- (T) **Time-bound** terminiert \rightarrow Ziele müssen mit einem fixen Datum festgelegt werden können

Projektmanagement Projektmanagement hat die Aufgabe das Projekt erfolgreich zum Ziel zu führen. Das Ziel des Projektmanagements ist es eine Leistung/Ziel zu erbringen unter Einhaltung von Zeit und Kosten (magisches Dreieck).

Magische Dreieck

Daraus ergibt sich die Definition: **Projektmanagemnt:** "Gesamtheit von Führungsaufgaben, -organisation, -techniken und -mitteln" für die Abwicklung eines Projetks"

Proejktmanagement

Je nach Projekttyp, Vorgehensweise (Projektmanagementsystem) können diese Bereiche auf verschiedene Personen, Personengruppen und Berufsgruppen unterschiedlich verteilt werden. (Bespielsweise: Projektleiter, Entwicklerteam usw.)

Agiles Projetkmanagement "Agiles Projektmanagement beschreibt eine Form des Projektmanagements, bei der auf unvorhergesehene Ereignisse, neue Anforderungen und Veränderungen flexibel und proaktiv reagiert wird. Das betrifft nicht nur die Struktur von Prozessen, sondern auch Organisationen und handelnde Personen selbst." https://scolution.de/was-ist-agiles-projektmanagement/

1.1.2 Weitere Grundlagen

Phasen eines Projekts Ein Projekt durchläuft in der Regel vier Phasen.

- Initiierung (Projektauftrag/Projektdefintion)
- Projektplanung
- Projektdurchführung
- Projektabschluss

Initiierung: Hier werden Ziele, Umfang, Zweck und Stakeholder des Projekts identifiziert und definiert.

Mögliche Schritte sind: Machbarkeitsstudie, Identifizieren des Umfangs, Identifizieren von Projektbeteiligten, Stakeholder-Analyse, Entwickeln eines Business Case, Entwicklung eines Aufgabenbeschreibung (Dokumentation als Arbeitsvereinbarung)

Projektplanung: In dieser Phase werden Aufgaben, Ressourcen, Zeitpläne und Budgets erstellt, um das Projekt effektiv umzusetzen. Mögliche Schritte: Projektplan, Netzplan, Gant-Diagramm, Planung von Meilensteinen, Ist- und Soll-Analyse

Projektdurchführung: Die Umsetzung des Projekts findet in dieser Phase statt, und die Teams setzen die im Plan festgelegten Aktivitäten um. Mögliche Schritte: Realisierung, Testung, Erstellung detaillierter Aufgaben (Gant-Diagramm, Kanban Board), Tests

Abschluss: Die Umsetzung des Projekts findet in dieser Phase statt, und die Teams setzen die im Plan festgelegten Aktivitäten um.

Mögliche Schritte: Abschlussbericht, Analyse der Teamleistung, Abrechnung

1.1.3 Instrumente/Modelle des Projektmanagement

Gantt-Diagramm Das Gantt-Diagramm ist ein Instrument, das die zeitliche Abfolge von Aktivitäten in Form von Balken darstellt.

Nr.	Phase	Dauer	Vorgänger
A	Analyse	1	
В	Planung	4	A
С	Design 1	3	A
D	Modul 1	6	C, B
\overline{E}	Design 2	4	В
F	Modul 2	8	E, D
G	Testphase Design 1	5	С
H	Übergabe	3	F, G

Gantt-Diagramm

Netzplan Ein Netzplan ist eine grafische Darstellung eines Projektablaufs, die die Abhängigkeiten zwischen verschiedenen Aufgaben und Aktivitäten zeigt. Er wird verwendet, um den zeitlichen Ablauf eines Projekts zu planen, zu visualisieren und zu steuern. Ein Netzplan besteht aus Knoten, die die verschiedenen Aktivitäten repräsentieren, und Pfeilen, die die logischen Abhängigkeiten zwischen den Aktivitäten darstellen.

Nr.	Phase	Dauer	Vorgänger
A	Analyse	1	
В	Planung	4	A
\overline{C}	Design 1	3	A
D	Modul 1	6	C, B
\overline{E}	Design 2	4	В
F	Modul 2	8	E, D
G	Testphase Design 1	5	С
H	Übergabe	3	F, G

Vorgehensweise:

- 1. Dauer einzeichnen
- 2. FAZ und FEZ ermitteln \to FAZ = das letzte FEZ der Vorgänger (Zu Beginn 0), FEZ = FAZ + Dauer
- 3. SAZ und SEZ Ermitteln \rightarrow SEZ = SAZ des Nachfolgers (Bei letzten Vorhaben FEZ des letzten Vorhabens), SAZ = SEZ Dauer
- 4. FP ermitteln = FAZ des Nachfolgers FEZ des Vorhabens
- 5. GP ermittlen = SEZ FEZ oder SAZ FAZ
- 6. ggf. Kritischen Pfad ermittlen. (Pfad, bei dem es zu keiner Verzögerung kommen darf)

 $\label{eq:Netzplan} \mbox{Kritischer Pfad: } A \rightarrow B \rightarrow D \rightarrow F \rightarrow H$

Wasserfallmodell Das Wasserfallmodell gehört zu den klassischen Methoden im Projektmanagement. Es ist ein lineares Planungsmodell, das in aufeinanderfolgende Projektphasen unterteilt ist. Das neue Projekt startet mit der ersten Phase und läuft strikt nach der zu Beginn definierten Reihung ab. Sobald eine Phase abgeschlossen ist, geht es in eine Neue über.

- 1. **Initiierung:** In dieser Phase werden die Ziele und der Umfang des Projekts definiert. Es beinhaltet die Identifizierung der Stakeholder, Festlegung von Zielen und die Klärung von Erwartungen.
- 2. **Planung:** Die Planungsphase beinhaltet die detaillierte Festlegung von Aufgaben, Ressourcen, Zeitplänen und Budgets. Es können auch Risiken identifiziert und bewertet werden.
- 3. **Implementierung:** Die eigentliche Programmierung oder Entwicklung des Systems findet in dieser Phase statt.
- 4. **Test/Überwachung:** In der Testphase wird das Produkt das erste Mal im Ganzen getestet. Überprüft wird, ob die gesetzten Anforderungen erfüllt sind. Ziel ist es Fehler aufzudecken und diese zu beseitigen.
- 5. Abschluss/Inbetriebnahme: Sobald alle Tests abgeschlossen sind wird das fertige Produkt in den Betrieb aufgenommen und schließlich an den Kunden ausgeliefert. In dieser letzten Phase kann das Produkt immer wieder optimiert und aktualisiert werden.

Im Wasserfallmodell markieren **Meilensteine** entscheidende Punkte im Projektverlauf, wie zum Beispiel den Abschluss von Entwicklungsphasen. Jeder Meilenstein repräsentiert einen klaren Fortschritt und dient der Überprüfung, ob das Projekt im Zeitplan liegt und den Anforderungen entspricht. Meilensteine werden in der Planungsphase geplant.

Das Wasserfallmodell ist **dokumentgetrieben**. Das bedeutet nach jede Phase muss dokumentiert werden. Beispiele hierfür: Lastenheft, Pflichtenheft, Abschlussbericht.

1.1.4 Agiles Projektmanagement

Agile Entwicklung Agile Entwicklung zielt darauf ab, schnell und flexibel auf sich ändernde Anforderungen zu reagieren, um Softwareprodukte effizient zu liefern. Sie betont enge Zusammenarbeit im Team, regelmäßige Anpassung an Änderungen, Kundenorientierung und inkrementelle Fortschritte. Sie basiert auf Agilen Modellen.

Agile Modelle Agile Modelle sind Rahmenwerke oder Ansätze. Sie bieten eine allgemeine Struktur für die Organisation von Projekten und betonen flexible und iterative Vorgehensweisen. Beispiele für agile Modelle sind Scrum, Kanban und Extreme Programming (XP). Agile Modelle werden durch agile Methoden und agile Prozesse unterstützt.

Agile Methoden Agile Methoden sind konkrete Techniken und Praktiken, die innerhalb eines agilen Modells angewendet werden, um den Entwicklungsprozess zu unterstützen. Zum Beispiel beinhaltet Scrum bestimmte Meetings wie Sprint Planning, Daily Standups und Sprint Reviews, die als agile Methoden betrachtet werden können.

Agile Prozesse Agile Prozesse beziehen sich auf die Gesamtheit der Aktivitäten und Abläufe, die in einem agilen Modell implementiert werden. Diese Prozesse sind darauf ausgerichtet, auf Veränderungen zu reagieren, die Anforderungen flexibel zu gestalten und inkrementelle Fortschritte zu ermöglichen. Ein Beispiel für einen agilen Prozess könnte der Scrum-Prozess sein, der Sprints, Backlog-Management und regelmäßige Retrospektiven umfasst.

Agiles Manifest Das Agile Manifest erklärt grundlegende Werte und Prinzipien der agiles Softwareenwicklung. Die zentralen vier Werte sind:

- 1. Individuen und Interaktionen mehr als Prozesse und Werkzeuge
- 2. Funktionierende Software mehr als umfassende Dokumentation
- 3. Zusammenarbeit mit dem Kunden mehr als Vertragsverhandlung
- 4. Reagieren auf Veränderung mehr als das Befolgen eines Plans

Scrum Scrum ist ein agiles Model und ist sehr verbreitet. Scrum bietet eine strukturierte Methode für die Zusammenarbeit in selbstorganisierten Teams. Das Scrum Modell umfasst 3 unterschiedliche Rollen.

- 1. Product Owner
- 2. Scrum Master
- 3. Entwicklerteam

Der Product Owner pflegt das *Product Backlog*. Das *Product Backlog* ist eine übersichtliche Anordnung von Anforderungen.

Grundsätzlich wird in sogenannten **Sprints** gearbeitet. Ein **Sprint** ist ein agiler Prozess mit dem Ziel effizient entwickeln zu können. Er soll eine Woche bis 4 Wochen dauern, wobei 2 Wochen üblich sind und wird grundsätzlich nicht unterbrochen. Dieser ist aufgeteilt in 4 Phasen.

- Sprint Planning → Ein Meeting am Anfang eines Sprints, bei dem das Entwicklungsteam gemeinsam mit dem Product Owner die zu erledigenden Aufgaben auswählt und plant.
- 2. Entwicklungsphase
- Sprint Review → Ein Meeting am Ende eines Sprints, bei dem das Entwicklungsteam die abgeschlossenen Arbeiten präsentiert und Feedback sammelt.
- 4. Sprint Retrospective \rightarrow Ein Meeting am Ende eines Sprints, bei dem das Team darüber reflektiert, was gut gelaufen ist und wie es sich verbessern kann.

Der Sprint wird durch **Daily Scrums** begleitet. Das ist ein tägliches, kurzes Meeting, bei dem das Entwicklungsteam den Fortschritt bespricht, Herausforderungen identifiziert und den Tag plant. Der Scrum Master sollte dabei sein, der Product Owner kann dabei sein.

Nach Abschluss eines Sprints wird meist, sofern der Product Owner zufrieden ist deployed. Ein deploy währrend eines Sprints findet in der Regel nicht statt.

1.1.5 Glossar

Machbarkeitstudie: Die Machbarkeitsstudie oder Machbarkeitsanalyse ist ein Instrument und Grundlage für die Entscheidung, ob ein Projekt durchgeführt und auf welche Art und Weise werden kann.

Stakeholder: Als Stakeholder wird eine Person oder Gruppe bezeichnet, die ein berechtigtes Interesse am Verlauf oder Ergebnis eines Prozesses oder Projektes hat.

Productowner: Der Product Owner setzt sich für die Interessen der Stakeholder ein und achtet darauf, den maximalen und wirtschaftlichen Mehrwert eines zu entwickelnden Produktes/Software herauszuholen.

Stakeholderanalyse: Die Stakeholderanalyse oder auch Projektumfeldanalyse ist ein Instrument zur Ermittlung, welche Personen- oder Interessengruppen mögliche Stakeholder sind und welchen Einfluss diese auf die Entwicklung haben. Ebenfalls wird analysiert welche Zeile/Erwartungen die Stakeholder haben.

Scrum Master Verantwortlich für die Umsetzung von Scrum-Prinzipien, das Entfernen von Hindernissen für das Team und die Förderung einer effektiven Zusammenarbeit.

1.2 Qualitätmanagement DIN EN ISO 9000ff.

Qualitätsmanagement bezieht sich auf die systematische Planung, Steuerung und Überwachung aller Tätigkeiten und Prozesse in einer Organisation, die darauf abzielen, die Qualität ihrer Produkte oder Dienstleistungen sicherzustellen und kontinuierlich zu verbessern. Das Ziel des Qualitätsmanagements ist es, die Kundenzufriedenheit zu erhöhen, die Effizienz der Abläufe zu steigern und die Wettbewerbsfähigkeit der Organisation zu stärken.

1.2.1 DIN EN ISO 9000ff.

Die Normenreihe DIN EN ISO 9000ff. bildet die Grundlage für die Planung und Umsetzung eines Qualitätsmanagementsystems. In den verschiedenen Normen werde unterschiedliche Bereiche abgedeckt. Unternehmen, die diese Normen erfüllen können von sogenannten Auditoren zertifiziert werden. Solch eine Zertifizierung nennt man auch Audit und diese kann bei Verhandlungen und Partnern Vorteile bringen.

DIN EN ISO 9000 Diese Norm definiert Grundbegriffe der Norm und nennt auch die sieben Grundsätze des Qualitätsmanagements.

- 1. **Kundenorientierung** \rightarrow Erfüllung der Kundenanforderungen
- Verantwortlichkeit der Führung → Führungskräfte auf allen Ebenen der Organisation, die sich für die Erreichung der Qualitätsziele engagieren
- 3. Einbeziehung der beteiligten Personen \rightarrow Kompetente, befugte und engagierte Personen auf allen Ebenen der Organisation
- 4. Prozessorientierter Ansatz und Systemorientierter Managementansatz → Ergebnisse werden wirksamer und effizienter erzielt, wenn Tätigkeiten als zusammenhängende Prozesse verstanden werden
- 5. Kontinuierliche Verbesserung \rightarrow fortlaufende Verbesserungen
- 6. Sachbezogener Entscheidungsfindungsansatz \rightarrow Entscheidungen auf Basis der Analyse und Auswertungen der Daten und Informationen
- 7. **Beziehungsmanagement** → Nachhaltiger Erfolg durch führen und steuern der Beziehungen zu relevanten interessierte Parteien.

DIN EN ISO 9001 In dieser Norm werden Mindestanforderungen an ein QMS (Qualitätsmanagementsystem) beschrieben. Diese Norm ist somit auch Grundlage für eine Zertifizierung. Diese Mindestanforderung lassen sich anhand eines PDCA-Zyklus darstellen.

Figure 1: PDCA - Zyklus

DIN EN ISO 9004 Diese Leitlinien für die kontinuierliche Verbesserung der allgemeinen Leistungsfähigkeit einer Organisation. Deswegen knüpft sie an das **Total Quality Management** (TQM) an.

Total Quality Management TQM steht für Total Quality Management, zu Deutsch "umfassendes Qualitätsmanagement". Es handelt sich um einen systematischen Ansatz zur kontinuierlichen Verbesserung der Qualität in allen Aspekten einer Organisation. Ein Modell des TQM ist das EFQM-Modell (European Foundation for Quality Management).

Der Unterschied zwischen Qualitätsmanagement (QM) und Total Quality Management (TQM) liegt darin, dass beim QM das Unternehmen sich auf die Verbesserung der Produkte und Dienstleistungen fokussiert, während TQM alle Abteilungen und Aspekte eines Unternehmens oder Organisation umfasst.

1.2.2 Kano Modell

Das Kano-Modell ist ein Konzept, das von Professor Noriaki Kano entwickelt wurde, um die Kundenzufriedenheit zu verstehen und zu verbessern. Es basiert auf der Idee, dass verschiedene Produktmerkmale unterschiedliche Auswirkungen auf die Zufriedenheit der Kunden haben.

- 1. Basismerkmale: Grundlegende Funktionen oder Eigenschaften eines Produkts, die erwartet werden und als selbstverständlich gelten. Kunden werden unzufrieden, wenn diese fehlen, sind jedoch nicht besonders zufrieden, wenn sie vorhanden sind, da sie diese als selbstverständlich betrachten.
- 2. Leistungsmerkmale: Diese beeinflussen die Kundenzufriedenheit direkt. Je besser diese Faktoren erfüllt sind, desto zufriedener sind die Kunden. Allerdings gibt es hier eine lineare Beziehung: mehr Leistung führt zu mehr Zufriedenheit, weniger Leistung zu weniger Zufriedenheit.
- 3. **Begeisterungsmerkmale:** Diese überraschen die Kunden positiv, auch wenn sie nicht unbedingt erwartet werden. Das Hinzufügen dieser Merkmale steigert die Zufriedenheit, während ihr Fehlen die Zufriedenheit nicht unbedingt beeinträchtigt.
- 4. Unerhebliche Merkmale: Dies sind Merkmale, die die Kundenzufriedenheit nicht signifikant beeinflussen, unabhängig davon, ob sie vorhanden sind oder nicht. Kunden sind in Bezug auf diese Faktoren gleichgültig.
- 5. **Rückweisungsmerkmale:** Hin und wieder gibt es Merkmale, die direkt zur **Unzufriedenheit** des Kunden führen. Im Kano Modell werden sie als Rückweisungsmerkmale bezeichnet.

Figure 2: Kano-Modell - Diagramm

1.2.3 Softwarequalität

Softwarequalität bezieht sich auf die Gesamtheit der Merkmale und Eigenschaften einer Software, die ihre Fähigkeit bestimmen, bestimmte Anforderungen zu erfüllen und die Kundenerwartungen zu erfüllen. Es handelt sich um einen umfassenden Begriff, der verschiedene Aspekte der Softwareentwicklung und Nutzung abdeckt.

- **Zuverlässigkeit** → Zuverlässigkeit bezieht sich auf die Fähigkeit der Software, konsistente und genaue Ergebnisse unter verschiedenen Bedingungen und über einen bestimmten Zeitraum hinweg bereitzustellen. Reife, Fehlertoleranz (funktioniert auch bei Fehlern), Wiederherstellbarkeit
- Funktionalität → Funktionalität ist ein grundlegendes Merkmal, das sicherstellt, dass die Software die gewünschten Aufgaben korrekt ausführt. Angemessenheit, Interoperabilität, Sicherheit
- Benutzbarkeit→ Eine gute Softwarequalität beinhaltet auch eine benutzerfreundliche Schnittstelle, die leicht verständlich und einfach zu bedienen ist. Verständlichkeit, Erlernbarkeit, Bedienbarkeit
- Effizienz Die Software sollte Ressourcen effizient nutzen, um ihre Aufgaben mit minimalen Systemressourcen (CPU, Speicher, etc.) zu erledigen. Zeitverhalten, Verbrauchsverhalten
- Wartbarkeit → Wartbarkeit bezieht sich darauf, wie einfach es ist, die Software zu pflegen und zu aktualisieren. Eine wartbare Software ermöglicht es Entwicklern, Änderungen vorzunehmen, Fehler zu beheben und neue Funktionen hinzuzufügen, ohne unerwünschte Seiteneffekte zu verursachen. Analysierbarkeit, Änderbarkeit
- Portabilität→ Eine portable Software kann ohne größeren Aufwand auf unterschiedlichen Systemen eingesetzt werden. Anpassbarkeit, Austauschbarkeit, Installierbarkeit

Softwaretest Ein Softwaretest prüft und bewertet Software auf Erfüllung der für ihren Einsatz definierten Anforderungen und misst ihre Qualität. Die gewonnenen Erkenntnisse werden zur Erkennung und Behebung von Softwarefehlern genutzt. Tests während der Softwareentwicklung dienen dazu, die Software möglichst fehlerfrei in Betrieb zu nehmen. Man unterscheidet zwischen White-Box-Testing (Tests mit Kenntnissen, auch auf Code Ebene) und Black-Box-Testing (Ohne Kenntnis über die Funktionalität und ohne Code). Dafür gibt es unterschiedliche Testverfahren. Es gibt 4 grundsätzliche Testverfahren.

- Komponententest (Unittest) Einzelne Komponenten und Module werden überprüft. Dies ist ein White-Box-Test und wird vom Entwickler durchgeführt. Dies kann mit gewissen Frameworks automatisiert werden.
- 2. **Integrationstest** Diese Tests überprüfen, ob mehrere Bestandteile des Gesamtsystems reibungslos und fehlerfrei miteinander zusammenspielen.
- 3. **Systemtest** Hierbei wird das ganze System zum ersten mal als Ganzes getestet. Dies geschieht meistens auf einem Testsystem, welches das Produktivsystem des Kunden darstellen soll.
- 4. **Abnahmetest** Das ist der entgültige Test vor der auslieferung and die Geräte der Kunden. Hierbei testet der Auftraggeber die Funktionalität. Es handelt sich um einen Black-Box-Test.

1.2.4 Barrierefreiheit

Die Barrierefreiheit ist durch verschiede Richtlinien geregelt. Durch die EU-Richtline EU 2016/2102 und das BITV 2.0. Ziel dieser Richtlinien ist eine grundsätzlich uneingeschränkt barrierefreie Gestaltung moderner Informations- und Kommunikationstechnik zu ermöglichen.

Im IT-Bereich ist die Barrierefreiheit folgendermaßen definiert: Barrierefreiheit im IT-Bereich bezieht sich auf die Gestaltung von Informationstechnologien und digitalen Diensten, um sicherzustellen, dass Menschen mit unterschiedlichen Fähigkeiten und Einschränkungen sie effektiv nutzen können. Dies umfasst Menschen mit Behinderungen, aber auch ältere Menschen oder solche mit vorübergehenden Einschränkungen.

Es gibt verschiede Beispiele der Umsetzung

- Eindeutige Überschriften verwenden, durch Anpassung von Styles $<\!h1\!>$ in HTML
- Bei Bildern auch Alternativtexte verwenden
- Skalierbarkeit der Texte
- Navigation ohne Maus ermöglichen
- Sinnvoller Aufbau von Websiten für Text-To-Speech

1.2.5 Begriffsklärungen

Qualität: "Grad, in dem ein Satz inhärenter Merkmale eines Objekts Anforderungen erfüllt" (DIN EN ISO 9000) inhärent \rightarrow innewohnend

DIN: Deutsches Institut für Normung

EN: Europäischen Normungsinstitut

ISO: International Organization for Standardization

IEC: International Electrotechnical Commission

Qualitätsspolitik Die Qualitätspolitik ist eine formale Erklärung eines Unternehmens, die seine Verpflichtung zur Qualität und Kundenzufriedenheit festlegt.

Qualitätsprüfung Die Qualitätsprüfung bezeichnet den Prozess der systematischen Überprüfung von Produkten oder Dienstleistungen, um sicherzustellen, dass sie den festgelegten Qualitätsstandards entsprechen.

Qualitätslenkung Qualitätslenkung bezieht sich auf die Umsetzung von Maßnahmen, um sicherzustellen, dass die Ergebnisse der Qualitätsprüfung den festgelegten Standards entsprechen.

Qualitätsplanung Die Qualitätsplanung bezieht sich auf den Prozess, bei dem Ziele und Anforderungen an die Qualität eines Produkts oder einer Dienstleistung festgelegt werden.

Qualitätssicherung Qualitätssicherung umfasst alle geplanten und systematischen Maßnahmen, die in einem Qualitätsmanagementsystem implementiert werden, um sicherzustellen, dass ein Produkt oder eine Dienstleistung die festgelegten Qualitätsanforderungen erfüllt.