E1 222 Stochastic Models and Applications Problem Sheet 4–1

- 1. Given $P[X_n = 0] = 1 n^{-2}$, $P[X_n = e^n] = n^{-2}$. Show that X_n converge almost surely but not in r^{th} mean.
- 2. Given $P[X_n = 0] = 1 1/n$, $P[X_n = n^{1/2r}] = 1/n$, X_n are independent. Show that $E|X_n|^r \to 0$ but the sequence does not converge to zero almost surely.
- 3. Let $\Omega = [0, 1]$ and let P be the usual length measure. Let $X_n = n^{0.25}I_{[0, 1/n]}$, $n = 1, 2, \dots$, where I_A denotes indicator of event A. Does the sequence converge in (i) probability, (ii) r^{th} mean for some r?
- 4. Let X_1, X_2, \dots , be random variables with distributions

$$F_{X_n}(x) = 0$$
 if $x < -n$
 $= \frac{x+n}{2n}$ if $-n \le x \le n$
 $= 1$ if $x \ge n$

Does $\{X_n\}$ converge in distribution?

5. Let $\Omega = [0, 1]$. Consider a sequence of binary random variables: X_{nk} , $k = 1, \dots, n, n = 1, 2, \dots$ That is, the sequence is $X_{11}, X_{21}, X_{22}, X_{31}, X_{32}, X_{33}, \dots$ These random variables are defined by

$$X_{nk}(\omega) = 1 \text{ iff } \frac{k-1}{n} \le \omega < \frac{k}{n}, \ 1 \le k \le n, n = 1, 2, \dots$$

Show that the sequence converges to zero in probability but it does not converge with probability one

- 6. Let X_1, X_2, \cdots be iid Gaussian random variables with mean zero and variance unity. Let $\bar{X}_n = (X_1 + \cdots + X_n)/n$. Let F_n be the distribution function of \bar{X}_n . Find Lim F_n . Is this a distribution function?
- 7. Let X_1, X_2, \cdots be a sequence of discrete random variables with X_n being uniform over the set $\{\frac{1}{n}, \frac{2}{n}, \cdots, \frac{n}{n}\}$. Does the sequence $\{X_n\}$ converge in distribution?

- 8. Let $\{X_n\}$ be a sequence of random variables converging in distribution to a continuous random variable X. Let a_n be a sequence of positive numbers such that $a_n \to \infty$ as $n \to \infty$. Show that X_n/a_n converges to zero in probability.
- 9. Find the characteristic function of X when X has (i) Poisson distribution, (ii) Geometric distribution
- 10. Let X_1, X_2, \cdots be independent normally distributed random variables having mean zero and variance σ^2 .
 - (a). What is the mean and variance of X_1^2 ?
 - (b). How should $P[X_1^2 + X_2^2 + \dots + X_n^2 \le x]$ be approximated in terms of standard normal distribution?
 - (c). Suppose $\sigma^2 = 1$. Find (approximately) $P[80 \le X_1^2 + \dots + X_{100}^2 \le 120]$.
 - (d). Find c such that (approximately) $P[100 c \le X_1^2 + \dots + X_{100}^2 \le 100 + c] = 0.95$.
- 11. Candidates A and B are contesting an election and 55% of the electorate favour B. What is the (approximate) probability that in a sample of size 100 at least one-half of the people sampled favour A.
- 12. A fair coin is tossed until 100 heads appear. Find (approximately) the probability that atleast 230 tosses will be necessary.