# Probability and Statistics

Unit II: Random Variables & Probability Distribution

#### Random Variables: Sachin Verma

Mukesh Patel School of Technology Management & Engineering, Mumbai, India

January 24, 2025





## Contents

- Random Variables
- Probability mass function
- Cumulative distribution function,
- Expectation, variance





### Definition

A random variable (abbreviatively RV) is a function that assigns a real number X(s) to every element  $s \in S$ , where S is the sample space corresponding to a random experiment E.)





#### Definition

A random variable (abbreviatively RV) is a function that assigns a real number X(s) to every element  $s \in S$ , where S is the sample space corresponding to a random experiment E.)

### Definition

If X is a random variable (RV) which can take a finite number or countably infinite number of values, X is called a discrete RV. When the RV is discrete, the possible values of X may be assumed as  $x_1$ ,  $x_2$ ,  $x_3$ ,  $x_n$ ,...





### Definition

If X is a discrete RV which can take the values  $x_1$ ,  $x_2$ ,  $x_3$ ,... such that  $P(X = x_i) = p_i$ , then  $p_i$  is called the probability function or probability mass function or point probability function, provided  $p_i$  (i = 1, 2, 3, ...) satisfy the following conditions:

- $\mathbf{0}$   $p_i \geq 0$
- $2 \sum_{i} p_{i} = 1$





# Examples

- Bernoulli
- Binomial
- Poisson





PDF of random variable X is

| X        | 0 | 1  | 2  | 3  | 4  | 5   | 6   |
|----------|---|----|----|----|----|-----|-----|
| P(X = x) | k | 3k | 5k | 7k | 9k | 11k | 13k |

Find k, 
$$P(X < 4)$$
,  $P(X \ge 5)$ ,  $P(3 < X \le 6)$ 





PDF of random variable X is

| Di Ci iuna | ~ | va.ia | _,_, |    |    |     |     |
|------------|---|-------|------|----|----|-----|-----|
| X          | 0 | 1     | 2    | 3  | 4  | 5   | 6   |
| P(X = x)   | k | 3k    | 5k   | 7k | 9k | 11k | 13k |
|            |   |       |      |    |    |     |     |

Find k, 
$$P(X < 4)$$
,  $P(X \ge 5)$ ,  $P(3 < X \le 6)$ 

$$\sum_{i=1}^{7} P(X=x) = 1$$





PDF of random variable X is

| i Di Ci iana | <u> </u> | v a i i a i | <del>0,0,0</del> | . , . |    |     |     |  |
|--------------|----------|-------------|------------------|-------|----|-----|-----|--|
| X            | 0        | 1           | 2                | 3     | 4  | 5   | 6   |  |
| P(X = x)     | k        | 3k          | 5k               | 7k    | 9k | 11k | 13k |  |
|              |          |             |                  |       |    |     |     |  |

Find k, 
$$P(X < 4)$$
,  $P(X \ge 5)$ ,  $P(3 < X \le 6)$ 

$$\sum_{i=1}^{\ell} P(X=x) = 1$$

$$k + 3k + 5k + 7k + 9k + 11k + 13k = 1$$





PDF of random variable X is

| I DI OI IAIIA | <u> </u> | varia | 010 / | . 13 |    |     |     |
|---------------|----------|-------|-------|------|----|-----|-----|
| X             | 0        | 1     | 2     | 3    | 4  | 5   | 6   |
| P(X = x)      | k        | 3k    | 5k    | 7k   | 9k | 11k | 13k |

Find k, 
$$P(X < 4)$$
,  $P(X \ge 5)$ ,  $P(3 < X \le 6)$ 

$$\sum_{i=1}^{7} P(X=x) = 1$$

$$k + 3k + 5k + 7k + 9k + 11k + 13k = 1$$

$$k=\frac{1}{49}$$





PDF of random variable X is

| Di Ci iana | ~ | va.ia | _,_, |    |    |     |     |
|------------|---|-------|------|----|----|-----|-----|
| Χ          | 0 | 1     | 2    | 3  | 4  | 5   | 6   |
| P(X = x)   | k | 3k    | 5k   | 7k | 9k | 11k | 13k |
|            |   |       |      |    |    |     |     |

Find k, 
$$P(X < 4)$$
,  $P(X \ge 5)$ ,  $P(3 < X \le 6)$ 

$$\sum_{i=1}^{7} P(X=x) = 1$$

$$k + 3k + 5k + 7k + 9k + 11k + 13k = 1$$

$$k=\frac{1}{49}$$

| X        | 0              | 1    | 2    | 3              | 4    | 5  | 6  |
|----------|----------------|------|------|----------------|------|----|----|
| P(X = x) | $\frac{1}{40}$ | 3/10 | 5/10 | $\frac{7}{40}$ | 9/10 | 11 | 13 |



$$P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)$$





$$P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)$$

$$P(X \ge 5) = P(X = 5) + P(X = 6)$$





$$P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)$$

$$P(X \ge 5) = P(X = 5) + P(X = 6)$$

$$P(3 < X \le 6) = P(X = 4) + P(X = 5) + P(X = 6)$$





A random variable X has following probability function:

| X      | 0 | 1      | 2             | 3             |
|--------|---|--------|---------------|---------------|
| P(X=x) | 0 | 1<br>5 | <u>2</u><br>5 | $\frac{2}{5}$ |

Determine the distributive function of X.





A random variable X has following probability function:

| X      | 0 | 1             | 2             | 3             |
|--------|---|---------------|---------------|---------------|
| P(X=x) | 0 | $\frac{1}{5}$ | <u>2</u><br>5 | <u>2</u><br>5 |

Determine the distributive function of X.

$$F(X=x)=P(X\leq x)$$





A random variable X has following probability function:

| X      | 0 | 1      | 2             | 3             |
|--------|---|--------|---------------|---------------|
| P(X=x) | 0 | 1<br>5 | <u>2</u><br>5 | <u>2</u><br>5 |

Determine the distributive function of X.

$$F(X=x)=P(X\leq x)$$

$$F(X = 0) = P(X \le 0) = P(X = 0) = 0$$





A random variable X has following probability function:

| X      | 0 | 1             | 2             | 3             |
|--------|---|---------------|---------------|---------------|
| P(X=x) | 0 | $\frac{1}{5}$ | <u>2</u><br>5 | <u>2</u><br>5 |

Determine the distributive function of X.

$$F(X=x)=P(X\leq x)$$

$$F(X = 0) = P(X \le 0) = P(X = 0) = 0$$
$$F(X = 1) = P(X \le 1)$$





A random variable X has following probability function:

| X      | 0 | 1             | 2             | 3             |
|--------|---|---------------|---------------|---------------|
| P(X=x) | 0 | $\frac{1}{5}$ | <u>2</u><br>5 | <u>2</u><br>5 |

Determine the distributive function of X.

$$F(X=x)=P(X\leq x)$$

$$F(X = 0) = P(X \le 0) = P(X = 0) = 0$$
$$F(X = 1) = P(X \le 1) = P(X = 0) + P(X = 1) = \frac{1}{5}$$





A random variable X has following probability function:

| X      | 0 | 1             | 2             | 3             |
|--------|---|---------------|---------------|---------------|
| P(X=x) | 0 | $\frac{1}{5}$ | <u>2</u><br>5 | <u>2</u><br>5 |

Determine the distributive function of X.

$$F(X=x)=P(X\leq x)$$

$$F(X = 0) = P(X \le 0) = P(X = 0) = 0$$

$$F(X = 1) = P(X \le 1) = P(X = 0) + P(X = 1) = \frac{1}{5}$$
  
 $F(X = 2) = P(X \le 2)$ 





A random variable X has following probability function:

| X        | 0 | 1   | 2             | 3             |
|----------|---|-----|---------------|---------------|
| P(X = x) | 0 | 1 5 | <u>2</u><br>5 | <u>2</u><br>5 |

Determine the distributive function of X.

$$F(X=x)=P(X\leq x)$$

$$F(X = 0) = P(X \le 0) = P(X = 0) = 0$$

$$F(X = 1) = P(X \le 1) = P(X = 0) + P(X = 1) = \frac{1}{5}$$
  
 $F(X = 2) = P(X \le 2) = P(0) + P(1) + P(2) = \frac{1}{5} + \frac{2}{5} = \frac{3}{5}$ 





$$F(X = 3) = P(X \le 3) = P(0) + P(1) + P(2) + P(3)$$





$$F(X = 3) = P(X \le 3) = P(0) + P(1) + P(2) + P(3)$$

$$F(X=3) = \frac{1}{5} + \frac{2}{5} + \frac{2}{5} = \frac{5}{5}$$

## The distributive function is

| X | P(X = x)      | F(X=x)                                        |
|---|---------------|-----------------------------------------------|
| 0 | 0             | 0                                             |
| 1 | <u>1</u><br>5 | $0+\frac{1}{5}=\frac{1}{5}$                   |
| 2 | <u>2</u><br>5 | $\frac{1}{5} + \frac{2}{5} = \frac{3}{5}$     |
| 3 | <u>2</u><br>5 | $\frac{3}{5} + \frac{2}{5} = \frac{5}{5} = 1$ |





Write down the probability distribution of the sum of numbers appearing on the toss of two unbiased dice.

Solution: Two unbiased dice are rolled. Sample Space

$$S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}$$





## X: Sum of numbers appearing on dice.

 $x = 2, 3, 4, 5, \dots, 12.$ 

| <i>x</i> — 4 | $x = 2, 3, 4, 5, \dots, 12.$              |                |  |  |  |
|--------------|-------------------------------------------|----------------|--|--|--|
| X            | elements                                  | P(X = x)       |  |  |  |
| 2            | $\{(1,1)\}$                               | 1<br>36        |  |  |  |
| 3            | $\{(1,2),(2,1)\}$                         | <u>2</u><br>36 |  |  |  |
| 4            | $\{(1,3),(3,1),(2,2)\}$                   | 3<br>36<br>4   |  |  |  |
| 5            | $\{(1,4),(4,1),(2,3),(3,2)\}$             | 36<br>5        |  |  |  |
| 6            | $\{(2,4),(4,2),(1,5),(5,1),(3,3)\}$       | 5<br>36<br>6   |  |  |  |
| 7            | $\{(2,5),(5,2),(1,6),(6,1),(3,4),(4,3)\}$ | 6<br>36<br>5   |  |  |  |
| 8            | $\{(3,5),(5,3),(2,6),(6,2),(4,4)\}$       | 5<br>36<br>4   |  |  |  |
| 9            | $\{(5,4),(4,5),(6,3),(3,6)\}$             | <u>4</u><br>36 |  |  |  |
| 10           | $\{(4,6),(6,4),(5,5)\}$                   | 36<br>3<br>36  |  |  |  |
| 11           | $\{(5,6),(6,5)\}$                         | $\frac{2}{36}$ |  |  |  |
| 12           | $\{(6,6)\}$                               | $\frac{1}{36}$ |  |  |  |





For the above distribution,

- 1 Find the probability that X is an odd number.
- 2 Find the probability that X lies between 3 and 9.

### Solution:

P(odd number)

$$= P(X = 3) + P(X = 5) + P(X = 7) + P(X = 9) + P(X = 11)$$

$$= \frac{2}{36} + \frac{4}{36} + \frac{6}{36} + \frac{4}{36} + \frac{2}{36} = \frac{18}{36} = \frac{1}{2}$$

$$P(3 \le X \le 9) = P(3) + P(4) + P(5) + P(6) + P(7) + P(8) + P(9)$$

$$=\frac{2}{36}+\frac{3}{36}+\frac{4}{36}+\frac{5}{36}+\frac{6}{36}+\frac{5}{36}+\frac{4}{36}=\frac{29}{36}$$



If X is a RV taking 0,1,2,3,4 with probabilities 0.20,0.30,0.25,0.15,0.10, find the probability distribution of  $Y=2X^2+3$  and find the probability that  $Y\geq 20$ 

| X | P(X = x) | $Y = 2X^2 + 3$    |
|---|----------|-------------------|
| 0 | 0.20     | $2(0)^2 + 3 = 3$  |
| 1 | 0.30     | $2(1)^2 + 3 = 5$  |
| 2 | 0.25     | $2(2)^2 + 3 = 11$ |
| 3 | 0.15     | $2(3)^2 + 3 = 21$ |
| 4 | 0.10     | $2(4)^2 + 3 = 35$ |

$$P(Y \ge 20) = P(Y = 21) + P(Y = 35)$$
  
=  $P(X = 3) + P(X = 4)$   
=  $0.15 + 0.10 = .25$ 





# Continuous Random Variable

If X is an RV which can take all values (i.e., infinite number of values) in an interval, then X is called a continuous RV. For example, the length of time during which a vacuum tube installed in a circuit functions is a continuous RV.





# Probability Density Function

If X is a continuous RV such that

$$P\{x-\frac{1}{2}dx \le X \le x+\frac{1}{2}dx\} = f(x)dx$$

then f(x) is called the probability density function (shortly denoted as pdf) of X, provided f(x) satisfies the following conditions:





# Examples

- Uniform
- normal
- Rayleig





# **Cumulative Distribution Function**

If X is an RV, discrete or continuous, then  $P(X \le x)$  is called the cumulative distribution function of X or distribution function of X and denoted as F(x). If X is continuous,

$$F(x) = P(-\infty \le X \le x) = \int_{-\infty}^{x} f(x) dx$$





# Properties of cdf

### Properties of the *cdf* F(x)

- 1. F(x) is a non-decreasing function of x, i.e., if  $x_1 < x_2$ , then  $F(x_1) \le F(x_2)$ .
- 2.  $F(-\infty) = 0$  and  $F(\infty) = 1$ .
- 3. If *X* is a discrete RV taking values  $x_1, x_2, ...,$  where  $x_1 < x_2 < x_3 < ... < x_{i-1} < x_i < ...,$  then  $P(X = x_i) = F(x_i) F(x_{i-1})$ .
- 4. If *X* is a continuous RV, then  $\frac{d}{dx}F(x) = f(x)$ , at all points where F(x) is differentiable.

Note Although we may talk of probability distribution of a continuous RV, it cannot be represented by a table as in the case of a discrete RV. The probability distribution of a continuous RV is said to be known, if either its pdf or cdf is given.





# Question (Q.1.)

If f(x) is a density function

$$f(x) = \begin{cases} cx^2, & 0 < x < 3 \\ 0, & elsewhere \end{cases}$$

Then find (i) c, (ii) P(1 < X < 2) (iii) cdf

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

$$c\left[\frac{x^3}{3}\right]_0^3 = 1$$

$$\int_0^3 cx^2 dx = 1$$

$$c = \frac{1}{9}$$









$$P(1 < X < 2) = \int_{1}^{2} \frac{x^{2}}{9} dx = \frac{7}{27}$$

cdf

$$F(x) = P(-\infty \le X \le x) = \int_{-\infty}^{x} f(x)dx$$
$$F(x) = \int_{0}^{x} \frac{x^{2}}{9} dx = \frac{x^{3}}{27}$$

$$F(x) = \begin{cases} 0 & x \le 0\\ \frac{x^3}{27}, & 0 < x < 3\\ 1, & x \ge 3 \end{cases}$$





# Question (Q.2.)

$$f(x) = \begin{cases} xe^{\frac{-x^2}{2}}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

- **1** Show that f(x) is a pdf of a continuous random variable.
- 2 Find its distribution function

### Solution: Consider

$$I = \int_0^\infty x e^{\frac{-x^2}{2}} dx$$

Put 
$$\frac{x^2}{2} = t$$
,  $xdx = dt$ 

$$I = \int_0^\infty e^{-t} dt = \left[ -e^{-t} \right]_0^\infty$$
$$= -e^{-\infty} + e^0 = 0 + 1 = 1$$









### Distribution function is given by

$$F(x) = P(-\infty \le X \le x) = \int_{-\infty}^{x} f(x) dx$$

$$F(x) = \int_{0}^{x} x e^{\frac{-x^{2}}{2}} dx = 1 - e^{\frac{-x^{2}}{2}}$$

$$F(x) = \begin{cases} 1 - e^{\frac{-x^{2}}{2}}, & x \ge 0\\ 0, & x < 0 \end{cases}$$





### cdf







## Question (Q.3.)

Suppose that in a certain region the daily rainfall (in inches) is a continuous RV X with p.d.f f(x) given by

$$f(x) = \begin{cases} \frac{3}{4}(2x - x^3), & 0 < x < 2\\ 0, & \text{elsewhere} \end{cases}$$

Find the probability that on a given day in this region the rainfall is

- 1 not more than 1 inch
- 2 greater than 1.5 inches
- 3 between 0.5 and 1.5 inches





### Hint: X: daily rainfall in inches

0

$$P(\text{not more than 1 inch}) = P(X \le 1) = \int_0^1 \frac{3}{4} (2x - x^3) dx$$

2

$$P(\text{greater than 1.5 inches}) = P(X \ge 1.5) = \int_{1.5}^{2} \frac{3}{4} (2x - x^3) dx$$

3

$$P(\text{between } 0.5 \text{ and } 1.5 \text{ inches}) = P(0.5 \le X \le 1.5) = \int_{0.5}^{1.5} \frac{3}{4} (2x - x)^{-1} dx$$











# Expectation

X is a discrete random variable.

$$E(X) = \sum x.P(X)$$

$$E(X^2) = \sum x^2 . P(X = x)$$

$$Var(X) = E(X^2) - [E(X)]^2$$





For the continuous random variable X whose probability density function is given by

$$f(x) = \begin{cases} cx(2-x) & \text{if } 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

Find c, mean and variance.





#### Expectation and Variance Binomial distribution Poisson distribution



## Question (Expectation, Mean and Variance Q.4.)

A random variate X has the probability distribution;

| X        | -3 | 6   | 9             |
|----------|----|-----|---------------|
| P(X = x) | 16 | 1/2 | $\frac{1}{3}$ |

Find E(X),  $E(2X + 1)^2$ 

#### Solution:

$$E(X) = \sum xP(X = x) = \left(-3 \times \frac{1}{6}\right) + \left(6 \times \frac{1}{2}\right) + \left(9 \times \frac{1}{3}\right) = E(X^2) = \sum x^2P(X = x) = \left((-3)^2 \times \frac{1}{6}\right) + \left(6^2 \times \frac{1}{2}\right) + \left(9^2 \times \frac{1}{3}\right) = E(X^2) = \sum x^2P(X = x) = \left((-3)^2 \times \frac{1}{6}\right) + \left(6^2 \times \frac{1}{2}\right) + \left(9^2 \times \frac{1}{3}\right) = E(X^2) = \frac{1}{2}$$

$$E(2X + 1)^{2} = E(4X^{2} + 4X + 1)$$

$$= E(4X^{2}) + E(4X) + 1$$

$$= 4E(X^{2}) + 4E(X) + 1$$





### Question (Expectation, Mean and Variance Q.1.)

A fair coin is tossed 3 times. A person receives Rs.  $X^2$ , if he gets X heads. Find his expectation.

**Solution:** A fair coin is tossed 3 times.

$$S=\{HHH, HHT, HTH, THH, TTH, THT, HTT, TTT\}, n(S)=8$$

X: number of heads.

$$x = 0, 1, 2, 3$$

| X              | 0             | 1        | 2   | 3   |
|----------------|---------------|----------|-----|-----|
| P(X = x)       | $\frac{1}{8}$ | <u>3</u> | 3 8 | 1/8 |
| X <sup>2</sup> | 0             | 1        | 4   | 9   |

$$E(X^{2}) = \sum x^{2} P(X = x)$$

$$= (0 \times \frac{1}{8}) + (1^{2} \times \frac{3}{8}) + (2^{2} \times \frac{3}{8}) + (3^{2} \times \frac{1}{8})$$





## Question (Homework problem)

A discrete variable has the pdf given below:

| Х        | -2 | -1 | 0   | 1  | 2   | 3  |
|----------|----|----|-----|----|-----|----|
| P(X = x) | .2 | k  | 0.1 | 2k | 0.1 | 2k |

Find k, mean and variance.





# Expectation and Variance

If X is a continuous random variable, then the expectation (or expected value or mean) of X, denoted by E[X], is defined by

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

$$E[X^2] = \int_{-\infty}^{\infty} x^2 f(x) dx$$

Variance

$$V(X) = E[X^2] - [E(X)]^2$$

Standard deviation

$$SD = \sqrt{V(X)}$$



## Gamma Function

$$\int_0^\infty e^{-x} x^{n-1} dx = \Gamma(n) = (n-1)!$$





A continuous RV X has a pdf

$$f(x) = kx^2 e^{-x}; x \ge 0.$$

Find k, mean and variance.

Solution: A continuous RV X has a pdf

$$f(x) = kx^2 e^{-x}; x \ge 0.$$

$$\int_0^\infty kx^2e^{-x}dx=1$$

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

$$k=\frac{1}{2}$$

$$f(x) = \frac{1}{2}x^2e^{-x}; x \ge 0.$$



$$E[X] = \int_{-\infty}^{\infty} x f(x) dx, \quad X \text{ is continuous}$$

$$E[X] = \int_{0}^{\infty} x \cdot \frac{1}{2} \cdot x^{2} e^{-x} dx$$

$$= \frac{1}{2} \int_{0}^{\infty} x^{3} e^{-x} dx = \frac{1}{2} \times 3!$$

$$E[X] = \int_{-\infty}^{\infty} x^{2} f(x) dx$$

$$E[X^{2}] = \frac{1}{2} \int_{0}^{\infty} x^{4} e^{-x} dx = 12$$

$$V(X) = E[X^{2}] - [E(X)]^{2} = 12 - 9 = 3$$



## Bernoulli trial

Suppose that a trial, or an experiment, whose outcome can be classified as either a success or a failure is performed.

If we let  $\mathsf{X}=1$  when the outcome is a success and  $\mathsf{X}=0$  when it is a failure, then the probability mass function of  $\mathsf{X}$  is given by

$$p(0) = P(X = 0) = 1 - p$$

$$p(1) = P(X = 1) = p$$

### Sequence of Bernoulli trials

A sequence of n trials is said to be a sequence of n Bernoulli trials if The trials are independent Each trial results in exactly one of the 2 outcomes – success and failure. The probability of success in each trial is p





### Binomial distribution

Suppose X denotes the number of successes in a sequence of n Bernoulli trials and let the probability of success in each trial be p. Then X is said to follow a Binomial distribution with parameters n and p if the probability distribution of X is given by

$$B(n,p) = P(X = x) = {}^{n} C_{x} p^{x} q^{n-x}, x = 0, 1, 2, 3, ..., n$$

Mean and variance of the Binomial distribution

$$E(X) = np$$

$$V(X) = E(X^2) - (E(X))^2 = npq$$





Find the binomial distribution if mean is 2 and variance is  $\frac{4}{3}$ 





Two dice are thrown 120 times. Find the average number of times in which the number on the first die exceeds the number on the second die.

**Solution** The number on the first die exceeds that on the second die, in the following combinations:

 $P(success) = P(no. in the first dice exceeds the no. in the second dice) = \frac{15}{36}$ 

This probability remains the same in all the throws that are independent.

If X is the no. of successes, then X follows a binomial distribution with n=120,  $p = \frac{15}{26}$ 

$$E(X) = np = 120 \times \frac{15}{36}$$
Dual-to-LUNIVERSITY

$$E(X) = np = 120 \times \frac{15}{36}$$
Dual-to-LUNIVERSITY

An irregular 6-faced dice is such that the probability that it gives 3 even numbers in 5 throws is twice the probability that it gives 2 even numbers in 5 throws. How many sets of exactly 5 trials can be expected to give no even number out of 2500 sets?

**Solution:** Let the probability of getting an even number with the unfair dice be p.

Let X denote the number of even numbers obtained in 5 trials .

$$P(X = 3) = 2P(X = 2) = {}^{5}C_{3}p^{3}q^{2} = 2 \times {}^{5}C_{2}p^{2}q^{3}$$

$$p=\frac{2}{3}$$

Now P(getting no even number)=  $P(X = 0) = {}^{5}C_{0} p^{0}q^{5} = \frac{1}{243}$ Number of sets having no success (even number) out of N sets

$$= N \times P(X = 0)$$

Required number of sets =  $2500 \times \frac{1}{243}$ 





Out of 800 families with 4 children each, how many families would be expected to have

1 2 boys and 2 girls

3 at most 2 girls

2 at least 1 boy

4 children of both sexes

Assume equal probabilities for boys and girls.

**Solution** Considering each child as a trial, n = 4.

$$p = \frac{1}{2}, q = \frac{1}{2}$$

Let X denote the number of boys.

1 P(2 boys and 2 girls) = P(X = 2)  
= 
$${}^{4}C_{2}(\frac{1}{2})^{2}(\frac{1}{2})^{4-2} =$$



No. of families having 2 boys and 2 girls

= N (P(X = 2) (where N is the total no. of families )

2 
$$P(\text{at least 1 boy}) = P(X \ge 1)$$
  
=  $P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)$ 

3 P(at most 2 girls) = P(exactly 0 girl, 1 girl or 2 girls)

4 P(children of both sexes)= 1-P(children of the same sex)=  $1-\{P(\text{all are boys}) + P(\text{all are girls})\}$ =  $1-\{P(X=4) + P(X=0)\}$ 





Fit a binomial distribution for the following data:

| X | 0 | 1  | 2  | 3  | 4 | 5 | 6 |
|---|---|----|----|----|---|---|---|
| f | 5 | 18 | 28 | 12 | 7 | 6 | 4 |





With usual notation find p of Binomial distribution if n = 6,

$$9(X = 4) = P(X = 2)$$

Also find mean, variance





# **Applications**

The Poisson distribution has many applications in science and engineering.

- The number of telephone calls arriving at a switchboard during various intervals of time.
- Number of customers arriving at a bank during various intervals of time.

are usually modeled by Poisson random variables.





## Poisson distribution

A discrete random variable X is called a Poisson random variable with parameter  $\lambda$ , where  $\lambda > 0$ , if its PMF is given by

$$p_X(x) = \frac{\lambda^x}{x!} e^{-\lambda}$$
  $x = 0, 1, 2, ...$ 

The CDF of X is given by

$$F_X(x) = P[X \le x] = \sum_{r=0}^{\infty} \frac{\lambda^x}{x!} e^{-\lambda}$$





# Expectation and Variance

The expected value of X is given by

$$E[X] = \lambda$$

The second moment of is given by

$$E[X^2] = \lambda^2 + \lambda$$

The variance of X is given by

$$\sigma_X^2 = E[X^2] - (E[X])^2 = \lambda$$





If X is a poisson variate such that  $E(X^2) = 6$ , find E(X).





If X is a Poisson variate such that

$$2P(X = 0) + P(X = 2) = 2P(X = 1)$$

, find E(X).





A car hire firm has 2 cars which it hires out day by day. The number of demands for a car on each day follows a Poisson distribution with mean 1.5. Calculate the proportion of days on which

- 1 neither car is used and
- 2 some demand is not fulfilled.







## **Problems**

Messages arrive at a switchboard in a Poisson manner at an average rate of six per hour. Find the probability for each of the following events:

- Exactly two messages arrive within one hour.
- 2 No message arrives within one hour.
- 3 At least three messages arrive within one hour.





# Exactly two messages arrive within one hour.





# No message arrives within one hour.





# At least three messages arrive within one hour.





#### Normal distribution

A continuous random variable X is defined to be a normal random variable with parameters  $\mu_X$  and  $\sigma_X^2$  if its PDF is given by

$$f_X(x) = rac{1}{\sigma_X \sqrt{2\pi}} e^{-rac{(x-\mu_X)^2}{2\sigma_X^2}} \qquad -\infty < x < \infty$$

The PDF is a bell-shaped curve that is symmetric about  $\mu_X$  , which is the mean of X





The CDF of X is given by

$$F_X(x) = P[X \le x] = \frac{1}{\sigma_X \sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{(u-\mu_X)^2}{2\sigma_X^2}} du$$





## pdf of SNV is

$$\Phi_X(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{y^2}{2}} dy$$

The CDF of X is given by

$$F_X(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{u-\mu_X}{\sigma_X}} e^{-\frac{y^2}{2}} dy$$





### Question (ND Q.3.)

If X is a normal random variable with parameters  $\mu=3$  and  $\sigma^2=9$ , find

**1** 
$$P(2 < X < 5);$$
 **2**  $P(X > 0);$ 





### Solution





#### Question (ND Q.7.)

For a normal variate X with mean 25 and standard deviation 10, find the area between

**1** 
$$X = 25, X = 35$$
 **3**  $X \ge 15$ 

**3** 
$$X \ge 15$$

**2** 
$$X = 15, X = 35$$
 **4**  $X \ge 35$ 

**4** 
$$X \ge 35$$





### Solution





#### Question (ND Q.8.)

If the height of 500 students is normally distributed with mean 68 inches and SD 4 inches, estimate the number of students having heights

- 1 greater than 72 inches
- 2 less than 62 inches
- 3 between 65 and 71 inches.





#### Question (ND Q.10.)

For a normally distributed variate X with mean 1 and s.d 3, find

**1** 
$$P(3.43 \le X \le 6.19)$$

2 
$$P(-1.43 \le X \le 2.3)$$



