Computer Science & IT

Discrete Mathematics

Set Theory & Algebra

Lecture No. 22

Recap of Previous Lecture

Topic

Addition modulo 'm' \bigoplus_m

Topic

Multiplication modulo 'm' ⊗_m

Topic

Order of an element in a group (G,*)

Topics to be Covered

Subgroup Topic

Cyclic group Topic

Some important properties Topic

Topic : Subgroup (let (G1,*) be a group. A subset H al set G7 is Called a subgroup a group (G1,*) if (H, *) is a group. · Let (G1,*) be a group with 'e' as the identity element, then (G,*) and (fe) *) are the trivial subgroup at group (61,*), any other subgroup at group (61,*) will be called a proper subgroup at (61,*) Let (G1, *) is a group of order = |G1|, then

(G1) is a subgroup of order = |G1|,

and (feb, *) is a sub-group of order = 1

eg: let {1,-1, i,-j} is a group wort multiplication. toivial subgroups af the given group. ({1,-1},.) is a proper subgroup al

eg: $\{1,3,5,7\}$ is a group with \otimes_8 . $\{1,3,5,7\}$ \otimes_8 and $\{1\}$ \otimes_8 are trivial sub-groups ({1,3}, (8), ({1,5}, (x)) ({1,7}, (x)) are proper sub-groups at given group.

1) Let (G,*) be a group, and H is a non-empty subset of G, (H,*) is a subgroup of G if and only if $(A*b^{-1}) \in H$, $\forall a,b \in H$

 $(a*b')\in H$, $\forall a,b\in H$ Let identity Associative We know (G,*) is let a & H, a group .. aaeH (a*51) et1, 4 a,6 et1 associative OAEH M.o.t. Elemonts : (a * a') EH al set Has well

le.

Identity

inverse: let a & H, and we know tor e,a E H We know (e*a') EH

Closure:let a, b EH We know, a, b EH for element. We Know Q*(5')

Note: (G,*) is a group if and only if Da*b'EG, tabeGZ and (2) 'x' is associative,

2) Let (G,*) be a group, and H is any non-empty subset at G. (H,*) is a subgroup at group (67,*). If and only if $(a*b) \in H$, $\forall a,b \in H$ 3 geh, AaeH

(G1, X) 18 a group subgroup a group Jun ven divides Order a Subgroup divides the Order cel the

Let (G1, *) is a group, and H1 and H2 are two subgroups of group G1, then $H_1 \cup H_2$ is a subgroup at group (G, *)if and only if $\int H_1 \subseteq H_2$ {ie $H_1 \cup H_2 = H_2$ }

H2 C H1 {ie. H1 UH5= H1}

not be Closed wist. * * H. & H2 Will

let (G1,*) is a group, and H1 4 H2 are two subgroups of (G1,*) We know Gr= (Z, +) is a group let H1 = {0, ±2, ±4, ±6, ±8 - -, and we know Hy, +) is a subgroup let H2= {0, ±3, ±6, ±9,... 11 UH2 = 50, ±2 ±3, ±4, ±6, ±8, ±9, ... & Subgroup a HIUHZ is not closed Wort Addition

Let (G1, *) is a group, and H1 and H2 are two subgroups of group HIPLA 18 always a subgroup at group (61,*) a, b \in H1 nH2 then a, b \in H1 and a, b \in H2 Hy is a subgroup Hz is a subgroup ax5'EH1(and) ax5'EH2 où Hintz is a group with 'x'

let (G,*) is a group at prime order, then find the number at subgroups at Q: group G. O(bi) - Poime number, and order al any subgroup al group (67 x) must divide O(07) O((n)= Prime no(p). Only divisors al prime no. p) mat(let*)
mat(let*)

mat(let*)

mat(let*)

Topic: Cyclic group

Let (G,*) be a group, if there exists any element a ∈ G1, Such that every element al group (G1, x) Can be written in the form a for some tre integer n' then (G1,*) is called a cyclic group and element o' is talled generator a Cyclic group (Gr. *) {because every element can be generated (a* a*a* - -** *49) from element 'a' }

S1,-17 is a cyclic group al order=2 W. v.t. multiplication., where '-1' is the generator of the cyclic group. $(-1)_{T} = -1$ we can generate all the clements all set using -1',

(-1)² = 1 Clements al set using -1'.

-1' is a generator of group is a cyclic group.

Note: let e=identity element

 $(e)^1 = e$

(e)2= exe= e

(e)3: exe=exe=e

(e) 4- e3 * e = e * e = e

identity element can not generate any other element any except itself

Identity element can not be the generator af a set containing any other element except itself.

reg We know \$1, w, w't is a group will multiplication 1: identity is can not be the generator =) $(\omega)^{1} = \omega^{2}$ all $(\omega)^{2} = \omega^{2}$ elements of the $(\omega)^{3} = \omega^{3} = 1$ at the $= (\omega^2)^{\frac{1}{2}} = \omega^2$ $(\omega^2)^{\frac{2}{2}} = \omega^2 = \omega$ $(\omega^2)^{\frac{2}{3}} = \omega^6 = 1 = e$ $(\omega^2)^{\frac{3}{3}} = \omega^6 = 1 = e$ $(\omega^2)^{\frac{3}{3}} = \omega^6 = 1 = e$ cut que con generator of 11, w, w?) is a Cyclic group of order=3

eg:
$$\{1,-1, i,-i\}$$
 is a group with multiplication $(-1)^{1} = i$ generated $(i)^{2} = -1$ all elements $(-1)^{3} = -1$ percepting the elements $(-1)^{4} = 1 = [e]$ repeating the elements $(-1)^{4} = 1 = [e]$ repeating the elements $(-1)^{5} = -1$ percepting the elements $(-1)^{5} = -1$

$$(i)^{1} = i$$
 generated
 $(i)^{2} = -1$ all the elements
 $(i)^{3} = -5$ elements
 $(i)^{4} = 1 = e D(i) = 4 = O(00)$
 $(-i)^{4} = -5$ generated
 $(-i)^{2} = -1$ elements
 $(-i)^{3} = +i$ elements
 $(-i)^{4} = 1 = e D(-i) = 4 = O(00)$

30 {1,-1,-5,5}

is a Cyclic

14-5 are

the generators

Topic : Cyclic group

For any Cyclic group (G1,*), if a' is the generator of Cyclic group 67, then O(a) = |G| { order of generator is } same as order of group} If element a is the generator al Cyclic group (G7,*), then at is also a generator at the same cyclic group.

Topic: Cyclic group

(3) In a group (G, *) if these exists any element whose order is some as the order of the group, then group is called a Cyclic group and that element will become generator of the Cyclic group.

Topic: Cyclic group

(4) In a finite group (17,*) if these exists no element whose order is same as the order at finite group (G1,*), then group (G1,*) is not a cyclic group.

(X) 8 is a group of order-4 No element vohore order is same as order as the given group. · {1,3,5,73 won+ (x) 18 Not a Cyclic Joons.

Q= {0,1,2,3,4} is a group wist. (+)5, Check d Whether group is a cyclic group or not? If Cyclic then find all the generators al the cyclic group 0= identity: 10(0)=1 (1)=1 all elements (1)=2 all elements (1)=2 is a guerator Group is a Cyclic group, (1)3=3 (inv(1)=4) in also a generator and 1,2,384 are the generators athe cyclic group. $(1)^5 = 0 = 0$. (0) = 5

(2)= 2 all elements (2)= 4 all elements (2)= 4 $(2)^{3} = 1$ (inv(2)= 3 ls. als. a generator (2)=3, inv(2)=3, inv(2)=3 ls. als. (2)5=01e :. (0(2)=5]

2 mins Summary

Topic

Subgroup

Topic

Cyclic group

Topic

Important properties of group

THANK - YOU