# NLP with Disaster Tweet

Andy Wang, Jie Huang



**Topic and Objective** 

Improve disaster tweet detection with advanced NLP for emergency response

Apply NLP methods, convert texts to numerical data, using logistic regression

Increase the reliability and usefulness of social media information

ld: list of numbers for each tweet Keyword: particular word from the tweet Location: where the tweet was sent from Text: the content of the tweet Target:  $1 \rightarrow \text{disaster}, 0 \rightarrow \text{not}$ 



## Data is Imbalanced





## Description of data

#### **Check Missing Value**

Check for missing value with "is null" and fill them with 'No\_data'

| check missin | ng values |  |  |
|--------------|-----------|--|--|
| (10876, 5)   |           |  |  |
| id           | 0         |  |  |
| keyword      | 87        |  |  |
| location     | 3638      |  |  |
| text         | 0         |  |  |
| target       | 0         |  |  |



#### **Preprocessing Text**

- Removing stop words/special char/URLs
- Stemming
- Lemmatizing
- Tokenization





#### **Check Categorical Values**

Categorical values are keyword, location, and tweet text



#### **Split Dataset**

Split dataset to training set and testing set

Training data: (8590, 4) Testing data: (2286, 4)

## Description of data

**Preprocessing Text** 



Take out URLs, stop words, and special characters to make the text cleaner Make words shorter to their root form

For example, "studies", "studied", and "studying" all change to "stud" Change words to their basic dictionary form

For example, "studies", "studied", and "studying" all change to "study" Break the text into single words or tokens

## **Tokenization**

|   | id | keyword | location | text                                           | target | text_tokens                                    |
|---|----|---------|----------|------------------------------------------------|--------|------------------------------------------------|
| 0 | 1  | No_data | No_data  | our deeds are the reason of this earthquake ma | 1      | [our, deeds, are, the, reason, of, this, earth |
| 1 | 4  | No_data | No_data  | forest fire near la ronge sask canada          | 1      | [forest, fire, near, la, ronge, sask, canada]  |
| 2 | 5  | No_data | No_data  | all residents asked to shelter in place are be | 1      | [all, residents, asked, to, shelter, in, place |
| 3 | 6  | No_data | No_data  | 13000 people receive wildfires evacuation orde | 1      | [13000, people, receive, wildfires, evacuation |
| 4 | 7  | No_data | No_data  | just got sent this photo from ruby alaska as s | 1      | [just, got, sent, this, photo, from, ruby, ala |

#### TF-IDF method



No need additional normalization for the input

```
(8590, 15857) (2286, 15857)
  (0, 848)
                0.46990667905323236
  (0, 9896)
                0.34296827209508934
  (0, 2408)
                0.4052161557757131
  (0, 9392)
                0.35425515706464933
  (0, 8792)
                0.3171127407865453
  (0, 1504)
                0.5208676777642961
 (1, 13471)
                0.5389685790519705
 (1, 107)
                0.5389685790519705
 (1, 1497)
                0.35852281989309925
 (1, 13961)
                0.5389685790519705
 (2, 4170)
                0.22449067656843288
 (2, 79)
                0.26068525897989075
  (2, 12660)
                0.28127150472057155
 (2, 410)
                0.33508665322661846
 (2, 14335)
                0.2902634111933613
 (2, 5612)
                0.2902634111933613
  (2, 7446)
                0.2681144931903059
  (2, 9893)
                0.2902634111933613
  (2, 13327)
                0.2629944154812936
  (2, 9931)
                0.2681144931903059
 (2, 1790)
                0.23478379943877328
 (2, 13147)
                0.2527012926109532
 (2, 5244)
                0.24929114131734212
 (2, 2071)
                0.20839287251735072
 (3, 12510)
                0.2998132211401659
```

## Description of the models



#### **K Nearest Neighbors**

Find the k nearest neighbors of sample x, our text in this case

#### **Logistic Regression**

Binary classification for only two class



## K-Mean Clustering in Machine Learning

#### K-means clustering

Initialize cluster centroid, compute distance, compute mean values

## Description of the results

#### KNN

#### Not the best model

The F1 and Recall score are too low

#### **Evaluation Score**

accuracy = 0.7283464566929134 F1 = 0.5423728813559322 recall\_score = 0.3978378378378378 recall\_Zero = 0.9529757531227039 precision\_score = 0.8518518518518519

#### **Logistic Regression**

#### **Best model**

The score for each evaluating method are high enough

#### **Evaluation Score**

```
{'C': 5}
accuracy = 0.8438320209973753
macro fi = 0.8354137646674693
micro fi = 0.8438320209973753
recall score = 0.7632432432432432
recall for Zeros = 0.8986039676708303
precision score = 0.8364928909952607
```

#### k-means

#### Not the best model

Low NMI score (**0.0388**). Hard to find representative words

#### **Evaluation Score**

(5, 15857)

The normalized mutual information score of the K-means method is 0.0388

Cluster: 2 Cluster: 3 Cluster: 1 swallowed suicide im minute bomber just airport video detonated sandstorm 16yr amp watch pkk new fahlowcw dont saudi fadc people mosque faded disaster old fading news bomb fag liked trench

## Visualization: Comparison of predicting 1s and 0s

76.32%

#### **Positive 1s are classified correctly**

Of all positive results (1), the proportion that is actual positive

89.86%

#### **Negative Os are classified correctly**

Of all negative results **(0)**, the proportion that is actual negative



## Visualization: Influence on parameters



#### *W* with larger absolute values

The parameters with a larger values indicate that it has a bigger influence in that feature

