III. Dictionnaire Matriciel.

semaine du 23 mars 2020

L'écriture matricielle permet une traduction complètement calculatoire des problèmes linéaires ; c'est le point d'entrée des méthodes informatiques.

Addition Matricielle

Pour tous entiers strictement positifs n et m, notons $\mathcal{M}_{n,m}(\mathbb{K})$, l'espace vectoriel des matrices à n lignes et m colonnes, à coefficients dans un corps commutatif \mathbb{K} . Chacun espace de matrices possède une base canonique qui prouve la formule :

Théorème

$$dim(\mathcal{M}_{n,m}(\mathbb{K})) = n \times m.$$

Exemple. $dim(\mathcal{M}_{2,3}(\mathbb{K}))=6$, d'après les 6 matrices canoniques :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \ , \quad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \ , \quad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \ ,$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \ , \quad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \ , \quad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \ .$$

Algèbre Matricielle

Outre l'addition (loi interne) et les combinaisons linéaires, nous disposons d'un **produit** matriciel : une loi **associative** (externe) qui nécessite une compatibilité, que l'on résume à des fonctions $\mathcal{M}_{n,m}(\mathbb{K}) \times \mathcal{M}_{m,\ell}(\mathbb{K}) \longrightarrow \mathcal{M}_{n,\ell}(\mathbb{K})$, $(A,B) \longmapsto AB$. Rappelons que ce produit **distribue** l'addition ; il n'est pas **commutatif** :

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \ .$$

Le cas des matrices carrées est particulièrement intéressant : le produit matriciel est une **loi interne** de $\mathcal{M}_n(\mathbb{K}) = \mathcal{M}_{n,n}(\mathbb{K})$, avec **unité** I_n ; on dit que $\mathcal{M}_n(\mathbb{K})$ est une **algèbre** (ou un **anneau**). Elle est **non commutative** $(AB \neq BA \text{ en général})$, ni **simplifiable** : il ne faut pas croire l'implication $(AB = AC \text{ et } A \neq 0) \Longrightarrow B = C$.

Extensions Linéaires

Soient un e.v E, une partie $X \subset E$ et une fonction $\varphi: X \to F$, où F est un e.v. Un **prolongement** (ou une **extension**) de φ à E est toute fonction $f: E \to F$, telle que $f|_X = \varphi$.

Théorème

Si X est une partie libre, il existe (au moins) une application linéaire $f: E \longrightarrow F$, telle que $f|_X = \varphi$. Si X est une partie génératrice, il existe au plus une application linéaire $f: E \longrightarrow F$, telle que $f|_X = \varphi$.

Théorème

Si X est une base, il **existe** une **unique** application linéaire $f: E \longrightarrow F$, telle que $f|_X = \varphi$.

Construction de la Matrice

Soit une application linéaire $f: E \longrightarrow F$, où E et F sont munis de bases finies : $B = (b_1, b_2, ..., b_n)$ pour E, $C = (c_1, c_2, ..., c_m)$ pour F.

- D'après ce qui précède, $f(B) = (f(b_1), ..., f(b_n))$ détermine f, de manière unique; pour chaque $j \in [1, n]$, $f(b_j)$ a des coordonnées dans la base $C : f(b_j) = \sum_{i=1}^m a_{ij}c_i$.
- La matrice $A = (a_{ij})$, parfois notée $Mat_B^C(f)$ ou $Mat_{C,B}(f)$, est appelée la matrice de l'application f relativement aux bases B et C. Elle encode complètement l'application f.
- Bien se rappeler que chaque colonne de A encode un vecteur $f(b_j)$; le nombre de colonne de A est donc la dimension de E.
- Pas question d'oublier les bases : les coefficients a_{ij} en dépendent! Il n'y a pas de "matrice" d'une application linéaire.

Premières Propriétés

Rappelons que, pour tous e.v E et F, l'ensemble des applications linéaires $E \longrightarrow F$ est aussi un e.v, que nous notons $\mathcal{L}(E,F)$. Si E et F sont munis de bases finies, respectivement B et C, il est associé à toute fonction linéaire $f: E \to F$, une matrice $Mat_B^C(f)$.

Théorème

L'application $Mat_B^C: \mathcal{L}(E,F) \to \mathcal{M}_{m,n}(\mathbb{K})$ est un isomorphisme, où n = dim(E), m = dim(F). En particulier, $dim \mathcal{L}(E,F) = dim(E)dim(F)$.

Formulaire. Pour tout scalaire λ et toutes fonctions linéaires f,g: $Mat_B^C(f) = Mat_B^C(g) \iff f = g$; $Mat_B^C(0) = O_{nm}$; $Mat_B^C(\lambda.f) = \lambda.Mat_B^C(f)$; $Mat_B^C(f \pm g) = Mat_B^C(f) \pm Mat_B^C(g)$.

Évaluation

Si E et F sont des e.v. munis de bases finies, respectivement B et C, il est associé une matrice $A = Mat_B^C(f)$ à toute fonction linéaire $f: E \to F$. Aussi, tout $x \in E$ possède une matrice $X = Mat_B(x)$ (coordonnées de x dans B); idem, pour $y \in F: Y = Mat_C(y)$.

Théorème

Si y = f(x), nous avons : Y = A.X (produit matriciel).

Remarques.

- Donc, la propriété la plus originale d'une fonction, à savoir, l'évaluation, s'encode matriciellement : c'est la porte d'entrée d'une informatisation complète de tout problème linéaire.
- La linéarité de f revient à des calculs matriciels familiers : $A(\lambda X) = \lambda A.X$ et A(X + X') = A.X + A.X' .

Produit et Composition

Soient trois e.v E, F et G, munis de bases finies : B, C et D.

Théorème

Pour toutes applications linéaires $f: E \longrightarrow F$ et $g: F \longrightarrow G$, nous avons $Mat^D_B(g \circ f) = Mat^D_C(g)Mat^C_B(f)$.

Soient les matrices $U=Mat_{C}^{C}(f)$ et $V=Mat_{C}^{D}(g)$: le théorème interprète leur produit, comme étant la matrice de $g\circ f$. Le cas de l'Algèbre Linéaire $\mathcal{L}(E)$ (les endomorphismes de E) est encore plus intéressant; posons m=dim(E):

Théorème

L'application $Mat_B^B: \mathcal{L}(E) \longrightarrow \mathcal{M}_m(\mathbb{K})$ est un isomorphisme d'algèbres, i.e. un isomorphisme linéaire aussi compatible au produits; en particulier $Mat_B^B(id_E) = I_m$.

Matrice d'un Isomorphisme

Rappel : si $f: E \longrightarrow F$ est une bijection linéaire (isomorphisme), la réciproque $f^{-1}: F \longrightarrow E$ est aussi linéaire.

Théorème

Si E et F sont munis de bases finies, B et C, la matrice $Mat_B^C(f)$ est inversible et $(Mat_B^C f)^{-1} = Mat_C^B(f^{-1})$.

Réciproquement : toute matrice inversible $A \in \mathcal{M}_m(\mathbb{K})$ est la matrice d'un isomorphisme $f : \mathbb{K}^m \longrightarrow \mathbb{K}^m$, $A = Mat_B^B(f)$ (B est la base canonique de \mathbb{K}^m); de plus, $A^{-1} = Mat_B^B(f^{-1})$.

Théorème

(Preuve avec le théorème du rang.) Pour tout $A \in \mathcal{M}_m(\mathbb{K})$: A est inversible $\iff \exists B, \ AB = I_m \iff \exists B, \ BA = I_m$.

