COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

January 16, 2023

Lecture 6: Nondeterminism: Epsilon Transitions

- Languages, Decision problems.
- Finite State Automata devices with finite memory.
- Deterministic Finite State Automata (DFA): From one state, reading an action we move to exactly one other state.
- ▶ Regular languages: L is regular if there exists some DFA A such that L = L(A).
- Closed under Union, Intersection, Complement.

- Languages, Decision problems.
- Finite State Automata devices with finite memory.
- ▶ Deterministic Finite State Automata (DFA): From one state, reading an action we move to exactly one other state.
- ▶ Regular languages: L is regular if there exists some DFA A such that L = L(A).
- Closed under Union, Intersection, Complement.
- NFA: From one state, reading an action we move to a subset of states!

- Languages, Decision problems.
- Finite State Automata devices with finite memory.
- Deterministic Finite State Automata (DFA): From one state, reading an action we move to exactly one other state.
- ▶ Regular languages: L is regular if there exists some DFA A such that L = L(A).
- Closed under Union, Intersection, Complement.
- NFA: From one state, reading an action we move to a subset of states!
- Subset Construction: Every NFA has an equivalent DFA.

- Languages, Decision problems.
- Finite State Automata devices with finite memory.
- Deterministic Finite State Automata (DFA): From one state, reading an action we move to exactly one other state.
- ▶ Regular languages: L is regular if there exists some DFA A such that L = L(A).
- Closed under Union, Intersection, Complement.
- NFA: From one state, reading an action we move to a subset of states!
- Subset Construction: Every NFA has an equivalent DFA.
- Exponential blowup in state complexity unavoidable! NFAs indeed are very concise.

- Languages, Decision problems.
- Finite State Automata devices with finite memory.
- ▶ Deterministic Finite State Automata (DFA): From one state, reading an action we move to exactly one other state.
- ▶ Regular languages: L is regular if there exists some DFA A such that L = L(A).
- Closed under Union, Intersection, Complement.
- NFA: From one state, reading an action we move to a subset of states!
- Subset Construction: Every NFA has an equivalent DFA.
- Exponential blowup in state complexity unavoidable! NFAs indeed are very concise.
- Question: Can we always make sure a DFA has exactly one final/accepting state?

$$L = \{x \in \{a\}^* \mid |x| \text{ is divisible by } 3 \text{ or } 5\}$$

$$L = \{x \in \{a\}^* \mid |x| \text{ is divisible by } 3 \text{ or } 5\}$$

Epsilon Transitions

$$L = \{x \in \{a\}^* \mid |x| \text{ is divisible by } 3 \text{ or } 5\}$$

Jump from a state to another without reading any letter.

Such transitions are called ε -transitions.

- ▶ How to define them formally?
- Are they more powerful than normal DFA/NFA?
- Usefulness?

Closure under union

Lemma

If L_1 and L_2 are regular then so is $L_1 \cup L_2$

Closure under union

Lemma

If L_1 and L_2 are regular then so is $L_1 \cup L_2$

Closure under concatenation

Lemma

If L_1 and L_2 are regular then so is $L_1 \circ L_2$

$$L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* \mid w_1 \in L1, w_2 \in L_2 \}$$

Closure under concatenation

Lemma

If L_1 and L_2 are regular then so is $L_1 \circ L_2$

$$L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* \mid w_1 \in L_1, w_2 \in L_2 \}$$

Closure under Kleene star

Lemma

If L is regular then so is L^* .

$$L^* = \{w_1 w_2 \dots w_k \in \Sigma^* \mid k \ge 0 \ \forall i, w_i \in L\}$$

Closure under Kleene star

Lemma

If L is regular then so is L^* .

$$L^* = \{w_1 w_2 \dots w_k \in \Sigma^* \mid k \ge 0 \ \forall i, w_i \in L\}$$

Modelling epsilon transitions

Definition

An ε -nondeterministic finite-state automaton (ε -NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- ightharpoonup Q is a finite set of states
- $ightharpoonup \Sigma$ is a finite alphabet, i.e., set of input symbols
- $\delta: Q \times (\Sigma \cup \varepsilon) \to 2^Q$ is a function that takes a state and input symbol and returns the set of possible next states,
- $q_0 \in Q$ is the start/initial state
- ▶ $F \subseteq Q$ is the set of final/accepting states.

Definition

Let $(Q, \Sigma, \delta, q_0, F)$ be an ε -NFA. For each set $S \subseteq Q$, EClose(S) is the set of states reachable via ε -transitions from S.

Definition

Let $(Q, \Sigma, \delta, q_0, F)$ be an ε -NFA. For each set $S \subseteq Q$, EClose(S) is the set of states reachable via ε -transitions from S. Inductive definition of EClose(S):

Definition

Let $(Q, \Sigma, \delta, q_0, F)$ be an ε -NFA. For each set $S \subseteq Q$, EClose(S) is the set of states reachable via ε -transitions from S. Inductive definition of EClose(S):

▶ For all $q \in S$, $q \in EClose(S)$

Definition

Let $(Q, \Sigma, \delta, q_0, F)$ be an ε -NFA. For each set $S \subseteq Q$, EClose(S) is the set of states reachable via ε -transitions from S. Inductive definition of EClose(S):

- ▶ For all $q \in S$, $q \in EClose(S)$
- ▶ If $q \in EClose(S)$ and $q' \in \delta(q, \varepsilon)$, then $q' \in EClose(S)$.

Definition

Let $(Q, \Sigma, \delta, q_0, F)$ be an ε -NFA. For each set $S \subseteq Q$, EClose(S) is the set of states reachable via ε -transitions from S. Inductive definition of EClose(S):

- ▶ For all $q \in S$, $q \in EClose(S)$
- ▶ If $q \in EClose(S)$ and $q' \in \delta(q, \varepsilon)$, then $q' \in EClose(S)$.

Extended Transition Relation

Let $\hat{\delta}: Q \times \Sigma^* \to 2^Q$ be defined as:

$$\hat{\delta}(q,\varepsilon) = EClose(\{q\})$$

Definition

Let $(Q, \Sigma, \delta, q_0, F)$ be an ε -NFA. For each set $S \subseteq Q$, EClose(S) is the set of states reachable via ε -transitions from S. Inductive definition of EClose(S):

- ▶ For all $q \in S$, $q \in EClose(S)$
- ▶ If $q \in EClose(S)$ and $q' \in \delta(q, \varepsilon)$, then $q' \in EClose(S)$.

Extended Transition Relation

Let $\hat{\delta}: Q \times \Sigma^* \to 2^Q$ be defined as:

- $\hat{\delta}(q,\varepsilon) = EClose(\{q\})$
- $\hat{\delta}(q, wa) = \bigcup_{q' \in \hat{\delta}(q, w)} EClose(\delta(q', a))$

Definition

Let $(Q, \Sigma, \delta, q_0, F)$ be an ε -NFA. For each set $S \subseteq Q$, EClose(S) is the set of states reachable via ε -transitions from S. Inductive definition of EClose(S):

- ▶ For all $q \in S$, $q \in EClose(S)$
- ▶ If $q \in EClose(S)$ and $q' \in \delta(q, \varepsilon)$, then $q' \in EClose(S)$.

Extended Transition Relation

Let $\hat{\delta}: Q \times \Sigma^* \to 2^Q$ be defined as:

- $\hat{\delta}(q,\varepsilon) = EClose(\{q\})$
- $\hat{\delta}(q, wa) = \bigcup_{q' \in \hat{\delta}(q, w)} EClose(\delta(q', a))$

Acceptance: An ε -NFA A accepts w iff $\hat{\delta}(q_0, w) \cap F \neq \emptyset$.

How Powerful are Epsilon Transitions

Question: Do ε transitions add expressive power to NFAs?

How Powerful are Epsilon Transitions

Question: Do ε transitions add expressive power to NFAs?

Answer: No!

Theorem

For any $\varepsilon\text{-NFA }A$, there exists an NFA A' (without $\varepsilon\text{-transitions}$) such that L(A)=L(A').

Theorem

For any ε -NFA A, there exists an NFA A' (without ε -transitions) such that L(A) = L(A').

Theorem

For any ε -NFA A, there exists an NFA A' (without ε -transitions) such that L(A) = L(A').

Removing ϵ and adding transitions from EClose.

Theorem

For any ε -NFA A, there exists an NFA A' (without ε -transitions) such that L(A) = L(A').

Removing ϵ and adding transitions from EClose.

Theorem

For any ε -NFA A, there exists an NFA A' (without ε -transitions) such that L(A) = L(A').

Theorem

For any ε -NFA A, there exists an NFA A' (without ε -transitions) such that L(A) = L(A').

Proof.

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an ε -NFA. Then, we construct NFA

$$A = (Q', \Sigma, \delta', q'_0, F')$$
 s.t.,

- ▶ Q' = Q
- $ightharpoonup \Sigma$ is the same but no -transitions are used now.
- $\delta'(q, a) = EClose(\delta(q, a)).$
- $q_0' = q_0$
- F' = F

Theorem

For any ε -NFA A, there exists an NFA A' (without ε -transitions) such that L(A) = L(A').

Proof.

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an ε -NFA. Then, we construct NFA

$$A = (Q', \Sigma, \delta', q'_0, F')$$
 s.t.,

- ▶ Q' = Q
- $ightharpoonup \Sigma$ is the same but no -transitions are used now.
- $\delta'(q, a) = EClose(\delta(q, a))$.
- $q_0' = q_0$
- ► F' = F

Correctness: $\forall w \in \Sigma^*$, w accepted by A' iff w is accepted by A.

Theorem

For any ε -NFA A, there exists an NFA A' (without ε -transitions) such that L(A) = L(A').

Proof.

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an ε -NFA. Then, we construct NFA

$$A = (Q', \Sigma, \delta', q'_0, F')$$
 s.t.,

- ▶ Q' = Q
- $ightharpoonup \Sigma$ is the same but no -transitions are used now.
- $\delta'(q, a) = EClose(\delta(q, a))$.
- $q_0' = q_0$
- ► F' = F

Correctness: $\forall w \in \Sigma^*$, w accepted by A' iff w is accepted by A. Is this always true?

Theorem

For any ε -NFA A, there exists an NFA A' (without ε -transitions) such that L(A) = L(A').

Proof.

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an ε -NFA. Then, we construct NFA

$$A = (Q', \Sigma, \delta', q'_0, F') \text{ s.t.,}$$

- ▶ Q' = Q
- $ightharpoonup \Sigma$ is the same but no -transitions are used now.
- $\delta'(q,a) = EClose(\delta(q,a)).$
- $q_0' = q_0$
- F' = F

Correctness: $\forall w \in \Sigma^*$, w accepted by A' iff w is accepted by A. Is this always true? What if there are -transitions to start or final state?

▶ What went wrong?

- What went wrong?
- Base case was handled incorrectly!
- ▶ Need to distinguish between first visit and subsequent visits of q_0 .

Proof.

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an ε -NFA. Then, we construct NFA $A = (Q', \Sigma, \delta', q'_0, F')$ s.t.,

- $Q' = Q \cup \{\tilde{q_0}\}$
- $ightharpoonup \Sigma$ is the same but no -transitions are used now.
- $q_0' = \tilde{q_0}$
- $F' = F \cup \{\tilde{q}_0\}$ (if $EClose(\{q_0\}) \cap F \neq \emptyset$) and F (otherwise)
- $\delta'(q, a) = EClose(\delta(EClose(q_0, a)))$ (if $q = \tilde{q_0}$), otherwise $EClose(\delta(q, a))$.

Handling Epsilon moves: The Algorithm

Lemma

For any NFA A with ϵ transitions, there is another NFA, say B, such that B has no ϵ transitions and L(A) = L(B).

Handling Epsilon moves: The Algorithm

Lemma

For any NFA A with ϵ transitions, there is another NFA, say B, such that B has no ϵ transitions and L(A) = L(B).

Proof Idea.

Construction in 3 steps:

- **9 Saturate:** repeatedly add shortcuts that make ϵ -transitions redundant.
- **9 Fix final states:** if some state reachable from initial state by ϵ -transitions is final, then make initial state as final!
- **8 Remove** ϵ -transitions.