OPTIMAL CONTROL

MAE 546 : Fall 2024

Nathaniel Chen

Ryne Beeson Andlinger 017 9:30-10:50 AM

Contents

1	Optimal Control Introduction		3
	1.1	Deterministic Finite-Dimensional Continuous-Time Problem	
	1.2	Definitions	
2	Par	ameter Optimization Conditions	,
	2.1	Defining Optimality	
	2.2	Unconstrained Smooth Parameter Optimization	•

1 Optimal Control Introduction

1.1 Deterministic Finite-Dimensional Continuous-Time Problem

$$\inf_{u \in \mathcal{U}} J(u; t_0, t_f, X_0) \equiv K(t_f, X_f) + \int_{t_0}^{t_f} L(s, X_s, u_s) \, ds \tag{1}$$

$$dX_t \equiv f(t, X_t, u_t) dt \quad X_0 \in \mathbb{R}^m$$
 (2)

$$\psi(t, X_t, u_t) = 0 \in \mathbb{R}^l, \quad \forall t \in [t_0, t_f]$$
(3)

$$\phi(t_f, X_f, u_t) \le 0 \in \mathbb{R}^k, \quad \forall t \in [t_0, t_f]$$
(4)

1.2 Definitions

Summary. Fundamental definitions

1. Metric Space: (M, d)

2. Inner Product Induced Metric: $(M, \langle \cdot, \cdot \rangle)$

3. Topology: $\mathcal{T} \equiv (A_i)$

4. Open & Closed Sets: A, A^c

5. Open & Closed Balls: $B(x,\epsilon;d), \bar{B}(x,\epsilon;d)$

6. Metric Topology: $\mathcal{T}(M)$

7. Set Closure: \bar{A}

8. Set Interior: A°

9. Open Neighborhood: $A \subseteq M$

Definition 1.1 (Metric Space):

Defining

• (M,d): a metric space

• M: a set with topology induced by d

• $d: M \times M - > [0, \infty)$

Then

1. $d(x,y) = d(y,x) \ \forall x,y \in M$

Symmetric

2. $d(x,x) = 0 \ \forall x \in M$

3. d(x,y) > 0, $\forall x,y \in M$, $x \neq y$

Non-Negative

4. $d(x,y) \le d(x,z) + d(z,y) \forall x,y,z \in M$

Triangle Inequality

Definition 1.2 (Inner Product Induced Metric):

Defining

- $(M, \langle \cdot, \cdot \rangle)$: an inner product space
- M: a vector space
- $\langle \cdot, \cdot \rangle$: an inner product

This induces the metric

$$d(x,y) = |x-y| \equiv \langle x-y, x-y \rangle^{1/2}, \quad \forall x, y \in M$$
 (5)

Definition 1.3 (Topology):

Defining

• $\mathcal{T} \equiv (A_i)$: a collection of subsets of M

 \mathcal{T} forms a topology for M if the following hold

- 1. $M, \emptyset \in \mathcal{T}$
- 2. If $(E_i) \subseteq \mathcal{T}$ is a countable collection
- 3. If $(E_i) \subseteq \mathcal{T}$ is a finite collection

Definition 1.4 (Open & Closed Sets):

- Open Set: elements of a topology (i.e., $A \in \mathcal{T}$)
- Closed Set: complement of an open set (i.e., A^c)

Definition 1.5 (Open & Closed Balls):

Defining

- (M, d): a metric space
- $\epsilon > 0$: Radius
- $x \in M$: Center

Open and closed balls are defined as

- 1. Open Ball: $B(x, \epsilon; d) \equiv \{y \in M | d(x, y) < \epsilon\}$
- 2. Closed Ball: $\bar{B}(x, \epsilon; d) \equiv \{y \in M | d(x, y) \le \epsilon\}$

Definition 1.6 (Metric Topology):

Given

• (M, d): a metric space

The metric can induce a topology by considering a collection of open balls.

Example 1.6.1 (Borel Topology):

- standard topology on \mathbb{R}^m
- all open balls centered at rational numbers $\mathbb Q$
- radius is positive rational

Definition 1.7 (Set Closure):

Given

- $A \subseteq M$: a subset of a metric space
- D_i : collection of all closed sets that contain A
- $\bar{A} \supseteq A$: the closure of A

Closure is defined as

$$\bar{A} \equiv \bigcap_{i} D_{i} \tag{6}$$

Remark. In Borel topology, isolated points are closed

Definition 1.8 (Set Interior):

Given

- $A \subseteq M$: a subset of a metric space
- E_i : collection of all open sets that contain A
- $A^{\circ} \subseteq A$: the interior of A

The interior is defined as

$$A^{\circ} \equiv \bigcup_{i} E_{i} \tag{7}$$

Definition 1.9 (Open Neighborhood): Given

• $x \in M$: a point in a metric space

• $\mathcal{T}(M)$: the topology of M

 $A \subseteq M$ is an open neighborhood of x if

- $x \in A$
- $A \in \mathcal{T}(M)$

Remark. The neighborhood is implied to be small, with motivation from metric topology implying that A looks like a small open ball centered at x.

2 Parameter Optimization Conditions

2.1 Defining Optimality

Summary. Defining local and global minimum on a metric space for a cost function

- 1. Local minimum
- 2. Global minimum
- 3. Local minimum; (\mathbb{R}, d) : Local minimum in standard 1D metric space
- 4. Global minimum; (\mathbb{R}, d) : Global minimum in standard 1D metric space
- 5. Extremum

Definition 2.1 (Local Minimum):

Given

- (M,d): a metric space
- \mathcal{T} : a topology on M induced by the metric d
- $f: M \to \mathbb{R}$: a cost function

 $x^* \in M$ is a local minimum of f if \exists neighborhood A of x^* such that

$$f(x^*) \le f(x) \quad \forall x \in A \tag{8}$$

Remark. x^* is a strict local minimum if

$$f(x^*) < f(x) \quad \forall x \in A \backslash x^*$$
 (9)

Definition 2.2 (Global Minimum):

Given

- (M, d): a metric space
- \mathcal{T} : a topology on M induced by the metric d
- $f: M \to \mathbb{R}$: a cost function

 $x^* \in M$ is a global minimum of f if

$$f(x^*) \le f(x) \quad \forall x \in M \tag{10}$$

Definition 2.3 (Local Minimum; (\mathbb{R}, d)):

 $x^* \in \mathbb{R}$ is a local minimum of $f : \mathbb{R} \to \mathbb{R}$ if $\exists \epsilon > 0$ such that

$$f(x^*) \le f(x) \quad \forall x \in (x^* - \epsilon, x^* + \epsilon) = B(x^*, \epsilon) \tag{11}$$

 x^* is a strict local minimum if

$$f(x^*) < f(x) \quad \forall x \in (x^* - \epsilon, x^* + \epsilon) \setminus \{x^*\}$$
(12)

Definition 2.4 (Global Minimum; (\mathbb{R}, d)):

 $x^* \in \mathbb{R}$ is a global minimum of $f: \mathbb{R} \to \mathbb{R}$ if

$$f(x^*) \le f(x) \quad \forall x \in \mathbb{R} \tag{13}$$

 x^* is a strict global minimum if

$$f(x^*) < f(x) \quad \forall x \in \mathbb{R} \setminus \{x^*\}$$
 (14)

Definition 2.5 (Extremum):

If x^* is a local minimum or maximum, then x^* is an extremum.

2.2 Unconstrained Smooth Parameter Optimization

Summary. Deriving first and second order necessary and sufficient optimiality conditions in Euclidean space \mathbb{R}^n .

Definitions:

- 1. Continuously Bounded Differentiable Function
- 2. Compact Set
- 3. Stationary Point
- 4. Unit Sphere
- 5. Hessian Matrix

Theorems:

- 1. Heine-Borel Property
- 2. Weierstrass Extreme Value
- 3. First Order Necessary Condition; (\mathbb{R}, d)
- 4. Taylor's Formula; Using Lagrange Form of the Mean-Value of the Remainder
- 5. Second Order Necessary Condition; (\mathbb{R}, d)
- 6. Second Order Sufficient Condition; (\mathbb{R}, d)
- 7. First Order Necessary Condition; (\mathbb{R}^n, d)

$\begin{tabular}{ll} \textbf{Definition 2.6} & (Continuously Bounded Differentiable Function): \\ \end{tabular}$

Defining

- $C^k(\Omega; \mathbb{R})$: real-valued k-times continuously differentiable functions on the set Ω . So $f \in C^k(\Omega; \mathbb{R})$ is k-times differentiable, and each derivative is continuous. e.g., $\Omega \subseteq \mathbb{R}^n$
- $C_b^k(\Omega;\mathbb{R})$: real-valued k-times continuously differentiable functions on the set Ω that are bounded

Definition 2.7 (Compact Set):

Given

- (M, \mathcal{T}) : a topological space
- $\Omega \subseteq M$: a set

 Ω is compact if

- $(E_i)_{i \in I}$: open cover of Ω
- $(E_j)_{j\in J}$: finite subcover where $J\subseteq I$
- For any $(E_i)_{i\in I}$, there exists $(E_j)_{j\in J}$.

Theorem 2.8 (Heine-Borel Property). A metric space has the Heine-Borel property iff every compact set is closed and bounded. In particular, \mathbb{R}^n with the sandard metric has this property.

Theorem 2.9 (Weierstrass Extreme Value). Let

- Ω : a compact set
- $f: \omega \to \mathbb{R}$ a continous function.

Then f has extremums on Ω .

Remark. If Ω is compact, then the class of functions is automatically $C_b^k(\Omega;\mathbb{R})$

Theorem 2.10 (First Order Necessary Condition; (\mathbb{R}, D)). Given

- $f \in C^1(\Omega; \mathbb{R})$
- $x^* \in \Omega^{\circ} \subseteq \mathbb{R}$

If x^* is a local minimum for f, then

$$\frac{\partial f}{\partial x_{x^*}} = 0$$

Proof. asfdf

Definition 2.11 (Stationary Point):

 x^* is a stationary point for f if

$$\partial_x f|_{x^*} = 0 \tag{15}$$

Theorem 2.12 (Taylor's Formula; Using Language Form of the Mean-Value of the Remainder). Assume

- $f \in C_b^2(\mathbb{R}; \mathbb{R})$
- x, x^*
- $\delta x \equiv x x^*$

there exists a point y between x and x^* such that

$$f(x) = f(x^*) + \delta_x f|_{x^*} \delta x + \frac{1}{2} \delta_x^2 f|_y \delta x^2$$
 (16)

Theorem 2.13 (Second Order Necessary Condition; (\mathbb{R}, d)). If $x^* \in \Omega^{\circ} \subseteq \mathbb{R}$ is a local minimum for $f \in C_b^2(\Omega; \mathbb{R})$, then

$$\left. \frac{\partial^2 f}{\partial x^2} \right|_{x^*} \ge 0 \tag{17}$$

Proof. Since x^* is a local minimum, we have that $\partial_x f|_{x^*} = 0$. Then, by Taylor's formula, there exists a $y \in (x^*, x) \subset \Omega^{\circ}$ such that with $\delta x = x - x^*$, we have