

Contextual Priming and Feedback for Faster R-CNN

Abhinav Shrivastava and Abhinav Gupta Carnegie Mellon University

Goal

Incorporate top-down information, feedback and contextual information in Faster R-CNN

Contribution

Using Semantic segmentation for contextually priming region proposal & object detection modules, and providing iterative feedback to the entire network

Results

Improvement across all three tasks: object detection, semantic segmentation and region proposals.

Key Ingredients of a Region-based ConvNet Object Detector [most state-of-the-art in Object Detection systems]

Networks getting deeper, but remain feedforward Are we on the right path?

Human Visual Pathway

Strong evidence of Feedback connections

- Outnumber feedforward
- Feedback even to V1

Support that Object Detection uses

Top-down information

Contextual Priming

Append input channels

Recognition using Regions

Reduces Search Space Allows use of richer features

Focuses 'attention' in right areas Reduces false positives

Generally, bottom-up, segmentation driven

From Fast R-CNN to Faster R-CNN

Fast R-CNN

- bottom-up regions
- But no top-down feedback

- Learns ConvNet to propose regions
- No Segmentation driven or bottom-up regions

Can we bridge this gap between empirical results and theory?

Incorporate top-down information, feedback and/or contextual reasoning in object detection

Contextual Priming and Feedback: Incorporating top-down information Faster R-CNN

Main Contributions:

Semantic segmentation as a top-down signal for:

- Contextual Priming For region proposals & object detection
- Iterative Feedback Top-down feedback to the entire network

O Faster R-CNN + Segmentation

- Closely follow Faster R-CNN network (e.g., VGG16)
- No post-processing (e.g., Helps with end-to-end

training We use ParseNet [Liu 2015].

(global context) Priming Object Detector (local context)

Iterative Feedback via Segmentation

Joint Model: Contextual Priming and Feedback

Experiments to study the impact of Priming & Feedback

Ablation Analysis: Contextual Priming mAP mIOU Base-MT Priming to conv5_1 77.0 65.8

Priming to conv5_1, each fc6 Priming to each RoI (which adds global context) helps detection.

Detecti

77.8 65.3

Gradients from each Rol overpower segmentation network

Ablation Analysis: Iterative Feedback

	stage=2 mit.	MAP	miou
Base-MT	-	75.6	65.8
Feedback to conv1 1	ImageNet	76.5	69.3
reedback to convi_i	Stage-1	76.3	69.3
Feedback to conv{1,2,3,4} 1	ImageNet	76.3	69.1
reeupack to conv[1,2,3,4]_1	Stage-1	77.3	69.5

More feedback helps when initializing with Stage-1 network (cf., unrolled self-feedback)

ion results					Segmentation results										
	S	Р	F	mAP		S	Р	F	mIOU						
NN				71.6	ParseNet	✓			68.2						
-CNN				75.3	ParseNet*	✓			66.0						

Test set: VOC12 Segmentation val. set

	S	Р	F	mAP		S	Р	F	mIO					
Fast R-CNN				71.6	ParseNet	✓			68.2					
Faster R-CNN				75.3	ParseNet*	✓			66.0					
Base-MT	✓			75.6	Base-MT	✓			65.8					
Ours [priming]	✓	✓		77.0	Ours [priming]	✓	✓		65.3					
Ours [feedback]	1		✓	77.3	Ours [feedback]	✓		✓	69.5					
Ours [joint]	1	✓	✓	77.8	Ours [joint]	✓	1	✓	69.6					
	ams	(see	paper)											

Recall-to-IOU: Evaluating Region Proposals:

This top-down information improves all three tasks: object detection. semantic segmentation and region proposals.

65.8

65.3

69.5 69.6

Main Results on standard dataset splits

Faster R-CNN 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6 74.7 78.4 79.3 75.9 63.2 56.8 85.9 85.4 88.4 54.9 83.9 68.6 84.6 85.6 78.5 78.1 41.3 74.6 74.8 84.0 72.4 **76.4** 79.3 80.5 76.8 72.0 58.2 85.1 86.5 89.3 60.6 82.2 69.2 87.0 87.2 81.6 78.2 44.6 77.9 Ours [joint] +8.8 +5.7 +3.3 +3.3

Detection results on VOC12 detection test set. All methods are trained on VOC07 trainval+test and VOC12 trainval

								120		120								125					
Ours [joint]	✓	72.6	84.0	81.2	75.9	60.4	51.8	81.2	77.4	90.9	50.2	77.6	58.7	88.4	83.6	82.0	80.4	41.5	75.0	64.2	82.9	65.1	
Base-MT	✓	71.1	84.2	80.9	73.1	55.1	50.6	78.2	75.6	89.0	48.6	76.7	54.8	87.6	82.5	83.0	80.0	41.7	74.2	60.7	81.4	63.1	
Faster R-CNN		70.4	84.9	79.8	74.3	53.9	49.8	77.5	75.9	88.5	45.6	77.1	55.3	86.9	81.7	80.9	79.6	40.1	72.6	60.9	81.2	61.5	
Fast R-CNN		68.4	82.3	78.4	70.8	52.3	38.7	77.8	71.6	89.3	44.2	73.0	55.0	87.5	80.5	80.8	72	35.1	68.3	65.7	80.4	64.2	
	S	mAP	aero	bike	bird	boat	bottle	bus	car	cat	chair	COW	table	dog	horse	mbike	persn	plant	sheep	sofa	train	tv	

Segmentation results on VOC12 segmentation test set. All methods are trained on 07 trainval+test and 12 trainval

	S	mIOU	bg	aero	bike	bird	boat	bottle	bus	car	cat	chair	COW	table	dog	horse	mbike	persn	plant	sheep	sofa	train	tv
Base-MT	✓	66.4	91.3	82.0	37.7	77.6	58.8	58.8	84.0	75.6	83.1	25.1	70.9	57.8	74.0	74.6	76.4	75.0	48.8	73.7	45.6	72.3	52.0
Ours [joint]	✓	71.4	93.0	89.3	41.4	84.1	63.8	65.2	88.1	80.9	88.6	28.4	75.4	60.6	80.3	80.9	83.1	79.7	55.4	77.9	48.2	75.8	58.8
				.72	. 2.7			. C A	. 4.1			. 2.2	. 4.5				7	. 47		. 40			0

Detection results on COCO 2015 test-dev set. All methods are trained COCO 2014 trainval35k

	-	Р	F .		AP, IoU:			AP, Area	Ľ.	l A	ιR, #Det	S:				
	3	г	г	0.5:0.95	0.5	0.75	Small	Med.	Large	car	10	100	Small	Med.	Large	_
Faster R-CNN				24.5	46.0	23.7	8.2	26.4	36.9	24.0	34.8	35.5	13.4	39.2	54.3	F
Base-MT	✓			25.0	47.0	24.2	8.1	27.1	38.1	24.3	35.1	35.8	13.2	39.8	55.0	
Ours [priming]	✓	✓		25.8	48.2	25.3	8.3	27.8	38.6	24.5	35.7	36.5	13.6	40.6	54.7	
Ours [joint]	✓	✓	✓	27.5	49.2	27.8	8.9	29.5	41.5	25.5	37.4	38.3	14.6	42.5	57.4	
COCO Detection 2016 Challe 1. Training with more smaller 2. Testing: a) multi-scale, b) a	propo	osals	22	32.4	529	34.3	15.0	35.4	45.7	29.5	46.3	47.2	25.5	52.1	65.3	

Ranked 4th in 2016 COCO detection challenge with a single VGG16 model!