Análise e Síntese de Algoritmos

Estruturas de Dados para Conjuntos Disjuntos [CLRS, Cap. 21]

24 Março 2009

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Árvores abrangentes
 - Caminhos mais curtos
 - Fluxos máximos
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Programação dinâmica
 - Algoritmos greedy
- Tópicos Adicionais [CLRS, Cap.32-35]
 - Emparelhamento de Cadeias de Caracteres
 - Complexidade Computacional
 - Algoritmos de Aproximação

Resumo

- Definições
 - Estrutura de dados para conjuntos disjuntos
 - Operações
- 2 Aplicações
- Struturas Baseadas em Listas
- Estruturas Baseadas em Árvores

Estrutura de Dados para Conjuntos Disjuntos

Estrutura de Dados para Conjuntos Disjuntos

Permite manter uma colecção de conjuntos dinâmicos disjuntos

- Cada conjunto caracterizado por representante, um elemento do conjunto
- Representante n\u00e3o alterado devido a consultas \u00e0 estrutura de dados

Operações sobre Conjuntos Disjuntos

Operações sobre Conjuntos Disjuntos

Cada elemento da estrutura é representado por objecto x

- Make-Set(x)
 - Cria novo conjunto que apenas inclui elemento apontado por x
 - x aponta para único elemento do conjunto, o representante do conjunto
- Union(x,y)
 - Realiza a união dos conjuntos que contém x e y, respectivamente S_x e S_v
 - Novo conjunto criado: S_x ∪ S_v
 - S_x e S_v eliminados (conjuntos disjuntos)
 - Novo representante será o representante de S_x ou S_y
- Find-Set(x)
 - Retorna apontador para representante do conjunto que contém x

Problema

Considere que está na equipa de projecto de uma rede de distribuição entre um conjunto de cidades. Foram efectuados estudos que calcularam o custo c(u,v) associado a cada ligação possível da nova rede.

Pretende-se saber qual o menor custo total de uma rede que interligue todas as cidades.

Problema

Considere que está na equipa de projecto de uma rede de distribuição entre um conjunto de cidades. Foram efectuados estudos que calcularam o custo c(u,v) associado a cada ligação possível da nova rede.

Pretende-se saber qual o menor custo total de uma rede que interligue todas as cidades.

Solução

- Representar a rede como um grafo não-dirigido e pesado
- Função de pesos é definida pelo custo entre as possíveis ligações
- Rede de menor custo será a Árvore Abrangente de Menor Custo (MST) do grafo

Algoritmo Kruskal (Cap. 23)

- Make-Set: Cria cada conjunto (disjunto) que representa conjunto de vértices
- Find-Set: Identifica conjunto a que pertence um dado vértice
- Union: Coloca conjuntos de vértices num mesmo conjunto

Identificar elementos ligados (componentes ligados) de um grafo não dirigido G=(V,E)

Componentes Ligados

Connected-Components(G)

```
    1 for each v ∈ V[G]
    2 do Make-Set(v)
```

- do Make-Set(v)
- 3 for each $(u, v) \in E[G]$
- 4 **do if** Find-Set(u) \neq Find-Set(v)
- 5 **then** Union(u, v)

Same-Component(u, v)

- 1 **if** Find-Set(u) \neq Find-Set(v)
- 2 then return FALSE

3

else return TRUE

Organização

- Elementos de cada conjunto em lista (simplesmente) ligada
- Primeiro elemento é o representante do conjunto
- Todos os elementos incluem apontador para o representante do conjunto

Tempos de Execução

- Complexidade é $O(m^2)$ para sequência de m operações
- Union(x,y):
 - Colocar elementos de x no fim da lista de y
- Operações: $(n = \lceil m/2 \rceil + 1; q = |m/2| 1; m = n + q)$
 - n operações Make-Set
 - Sequência de q operações Union (x_{i-1}, x_i) , para i = 2, ..., q
 - Cada operação Union(x_{i−1}, x_i) actualiza i − 1 elementos
 - Custo de q operações: Θ(q²)
 - Tempo total de m operações é $\Theta(n+q^2)$, o que representa $\Theta(m^2)$

Heurística União Pesada

- A cada conjunto associar o número de elementos
- Para cada operação Union, juntar lista com menor número de elementos à lista com maior número de elementos
- Custo total de m operações é melhorado

Heurística União Pesada

- A cada conjunto associar o número de elementos
- Para cada operação Union, juntar lista com menor número de elementos à lista com maior número de elementos
- Custo total de m operações é melhorado
- Sequência de m operações (que incluem n operações Union) é:
 O(m+n lg n)
- Prova:
 - Para cada objecto num conjunto com n elementos, calcular limite superior do número de vezes que ponteiro para representante é actualizado

Tempos de Execução (com Heurística)

- Sempre que ponteiro de x é actualizado, x encontra-se em conjunto com menor número de elementos
 - Da 1^a vez, conjunto resultante com pelo menos 2 elementos
 - Da 2^a vez, conjunto resultante com pelo menos 4 elementos
 - ...
 - Após representante de x ter sido actualizado $\lceil \lg k \rceil$ vezes, conjunto resultante tem pelo menos k elementos
- Maior conjunto tem n elementos
 - Cada ponteiro actualizado n\u00e3o mais do que \u00edle lg n\u00ed vezes
- Tempo total para actualizar n objectos é O(n lg n)
- Make-Set e Find-Set têm tempos de execução O(1) e há O(m) destas operações
- Tempo total para m operações (com n Union) é $O(m+n \lg n)$

Organização

- Cada conjunto representado por uma árvore
- Cada elemento aponta apenas para antecessor na árvore
- Representante da árvore é a raiz
- Antecessor da raiz é a própria raiz

Operações

- Find-Set: Percorrer antecessores até raiz ser encontrada
- Union: Raiz de uma árvore aponta para raiz da outra árvore

Complexidade

- Sequência de O(m) operações é O(m n)
- Pior caso ocorre quando as árvores que são apenas listas dos n elementos

Heurística - União por Categoria

Numa união de dois conjuntos, colocar árvore com menos elementos a apontar para árvore com mais elementos

- Utilizar estimativa do número de elementos em cada sub-árvore
- categoria (rank): aproxima logaritmo do tamanho da sub-árvore e é um limite superior na altura da sub-árvore
- Numa união, raiz da árvore com menor rank aponta para raiz da árvore com maior rank

Heurística - Compressão de Caminhos

Em cada operação Find-Set coloca cada nó visitado a apontar directamente para a raiz da árvore (representante do conjunto)

Make-Set e Find-Set

Make-Set(x)

- 1 p[x] = x
- $2 \operatorname{rank}[x] = 0$

Find-Set(x)

- 1 if $x \neq p[x]$
- 2 **then** p[x] = Find-Set(p[x])
- 3 return p[x]

Union

Union(x,y)

1 Link(Find-Set(x), Find-Set(y))

Link(x,y)

- 1 if rank[x] > rank[y]
- 2 then p[y] = x
- 3 **else** p[x] = y
- 4 **if** rank[x] = rank[y]
- 5 **then** rank[y] = rank[y] + 1

Complexidade

Execução de m operações sobre n elementos: $O(m \alpha(n))$

Onde
$$\alpha(n) = min\{k : A_k(1) \ge n\}$$

$$A_{k}(j) = \begin{cases} j+1 & \text{se } k = 0 \\ A_{k-1}^{(j+1)}(j) & \text{se } k \ge 1 \end{cases}$$

$$\begin{cases} A_{k-1}^{(0)}(j) = j \\ A_{k-1}^{(i)}(j) = A_{k-1}(A_{k-1}^{(i-1)}(j)) \end{cases}$$

$$A_{1}(j) = 2 * j + 1$$

$$A_2(j) = 2^{j+1}(j+1) - 1$$

$$\alpha(n) = \min\{k : A_k(1) \ge n\}$$

$$A_k(j) = \begin{cases} j+1 & \text{se } k = 0 \\ A_{k-1}^{(j+1)}(j) & \text{se } k \ge 1 \end{cases}$$

$$A_1(1) = A_0^{(2)}(1) = A_0(A_0(1)) = A_0(2) = 3$$

$$\alpha(n) = \min\{k : A_k(1) \ge n\}$$

$$A_k(j) = \begin{cases} j+1 & \text{se } k = 0 \\ A_{k-1}^{(j+1)}(j) & \text{se } k \ge 1 \end{cases}$$

$$A_1(1) = A_0^{(2)}(1) = A_0(A_0(1)) = A_0(2) = 3$$

$$A_1(3) = A_0^{(4)}(1) = A_0(A_0(A_0(A_0(3)))) = 7$$

 $\alpha(n) = \min\{k : A_k(1) > n\}$

$$A_k(j) = \begin{cases} j+1 & \text{se } k = 0 \\ A_{k-1}^{(j+1)}(j) & \text{se } k \ge 1 \end{cases}$$

$$A_1(1) = A_0^{(2)}(1) = A_0(A_0(1)) = A_0(2) = 3$$

$$A_1(3) = A_0^{(4)}(1) = A_0(A_0(A_0(3))) = 7$$

$$A_2(1) = A_1^{(2)}(1) = A_1(A_1(1)) = A_1(3) = 7$$

$$\alpha(n)=min\{k:A_k(1)\geq n\}$$

$$A_k(j) = \left\{ \begin{array}{ll} j+1 & \quad \text{se } k=0 \\ A_{k-1}^{(j+1)}(j) & \quad \text{se } k \geq 1 \end{array} \right.$$

$$A_1(1) = A_0^{(2)}(1) = A_0(A_0(1)) = A_0(2) = 3$$

$$A_1(3) = A_0^{(4)}(1) = A_0(A_0(A_0(3))) = 7$$

$$A_2(1) = A_1^{(2)}(1) = A_1(A_1(1)) = A_1(3) = 7$$

$$A_3(1) = A_2^{(2)}(1) = A_2(A_2(1)) = A_2(7) = 2^8 * 8 - 1 = 2047$$

 $\alpha(n) = \min\{k : A_k(1) > n\}$

$$A_k(j) = \left\{ \begin{array}{ll} j+1 & \quad \text{se } k=0 \\ A_{k-1}^{(j+1)}(j) & \quad \text{se } k \geq 1 \end{array} \right.$$

$$A_1(1) = A_0^{(2)}(1) = A_0(A_0(1)) = A_0(2) = 3$$

$$A_1(3) = A_0^{(4)}(1) = A_0(A_0(A_0(A_0(3)))) = 7$$

$$A_2(1) = A_1^{(2)}(1) = A_1(A_1(1)) = A_1(3) = 7$$

$$A_3(1) = A_2^{(2)}(1) = A_2(A_2(1)) = A_2(7) = 2^8 * 8 - 1 = 2047$$

$$A_4(1) = A_3^{(2)}(1) = A_3(A_3(1)) = A_3(2047) = A_2^{(2048)}(2047) >> A_2(2047) >> 10^{80}$$

$$\begin{split} \alpha(n) &= \text{min}\{k: A_k(1) \geq n\} \\ & A_k(j) = \begin{cases} j+1 & \text{se } k = 0 \\ A_{k-1}^{(j+1)}(j) & \text{se } k \geq 1 \end{cases} \\ A_1(1) &= A_0^{(2)}(1) = A_0(A_0(1)) = A_0(2) = 3 \\ A_1(3) &= A_0^{(4)}(1) = A_0(A_0(A_0(A_0(3)))) = 7 \\ A_2(1) &= A_1^{(2)}(1) = A_1(A_1(1)) = A_1(3) = 7 \\ A_3(1) &= A_2^{(2)}(1) = A_2(A_2(1)) = A_2(7) = 2^8 *8 - 1 = 2047 \\ A_4(1) &= A_3^{(2)}(1) = A_3(A_3(1)) = A_3(2047) = A_2^{(2048)}(2047) >> A_2(2047) >> 10^{80} \\ \alpha(n) &= \begin{cases} 0 & \text{se } 0 \leq n \leq 2 \\ 1 & \text{se } n = 3 \\ 2 & \text{se } 4 \leq n \leq 7 \\ 3 & \text{se } 8 \leq n \leq 2047 \end{cases} \end{split}$$

se $2048 \le n \le A_4(1)$