Problem 1

domain objects: the words and phrases of the language.

training data: whatever the person wishes to use as learning material, whether it be textbooks, online courses or tv shows.

model: the mental model of the person on how they understand the language learning algorithms: the methods in which the person uses to learn the language

 ${\bf output:}$ the set of phrases and words that the person now understands

type of learning: supervised learning

Problem 2

- a. Regression based machine learning problem
- **b.** This is a predictive task
- c. A geometric model since our output is mostly real numbers
- d. Grading model
- e. R^2 since we have 2 types of blood pressure levels
- **f.** R^2 since we have 2 different blood pressure numbers

Problem 3

let the feature vectors x1, x2 be $x1_i[33.6, 30.6, 4.8, 6.8, 1.22, 2.11, 3.00]$ and $x2_i = [36.7, 27.0, 4.7, 11.3, 1.0, 1.67, 3.83]$

a. Manhattan Distance

using the Minkowski distance formula, since Manhattan and Euclidian is just Minkowski with p = 1, 2 respectively.

$$d(x,y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

I created python code to make it easier to calculate the values:

```
x = [33.6, 30.6, 4.8, 6.8, 1.22, 2.11, 3.0]
y = [36.7, 27.0, 4.7, 11.3, 1.0, 1.67, 3.83]
pList = [1, 2, 10, 100]

def MinkowskiDistance(x, y, p):
    if len(x) != len(y):
        print("x and y vectors are not equal length")

    sum = 0
    for i in range(0, len(x)):
        sum = sum + (abs(x[i] - y[i]) ** p)

    sum = sum ** (1/p)
    print("Distance L", p, ":", sum)

def main():
    for p in pList:
        MinkowskiDistance(x, y, p)
```

- **a.** L1 distance = 12.79
- **b.** L2 distance = 6.615
- **c.** L10 distance = 4.556
- **d.** L100 distance = 4.5

e. after adding the constant vector the new vectors were

```
x1 = [38.6, 35.6, 6.8, 8.8, 1.72, 2.21, 4.0]

x2 = [41.7, 32.0, 6.7, 13.3, 1.5, 1.77, 4.83]
```

the distance values remained the same with

L1 distance = 12.79

L2 distance = 6.615

 L_{10} distance = 4.556

 L_{100} distance = 4.5

When using the constant k = 2 the new vectors will be x1 = [67.2, 61.2, 9.6, 13.6, 2.44, 4.22, 6.0]x2 = [73.4, 54.0, 9.4, 22.6, 2.0, 3.34, 7.66]All the distances end up changing L1 distance = 25.58L2 distance = 13.23 $L_{10} \text{ distance} = 9.1126$ L_{100} distance = 9.0

Problem 4

a. P(grade|class, effort)Class: 165B Effort: small $A = 0, B = \frac{1}{6}, C = \frac{1}{6}, D = \frac{1}{3}, F = \frac{1}{3}$ Class: 165B Effort: medium

Class: 165B Effort: intertain $A = \frac{5}{29}$, $B = \frac{10}{29}$, $C = \frac{10}{29}$, $D = \frac{4}{29}$, F = 0 Class: 165B Effort: large $A = \frac{20}{41}$, $B = \frac{15}{41}$, $C = \frac{5}{41}$, $D = \frac{1}{41}$, F = 0

Class: Basketweaving Effort: small $A = \frac{1}{3}, B = \frac{1}{3}, C = \frac{1}{3}, D = 0, F = 0$ Class: Basketweaving Effort: medium $A = \frac{4}{7}, B = \frac{2}{7}, C = \frac{1}{7}, D = 0, F = 0$ Class: Basketweaving Effort: large $A = \frac{6}{7}, B = \frac{1}{7}, C = 0, D = 0, F = 0$

b.

	Small	Medium	Large
A	50	125	250
В	75	100	100
С	75	75	25
D	50	20	5
F	50	0	0

Effort: Small
$$A = \frac{10}{200}, B = \frac{15}{200}, C = \frac{15}{200}, D = \frac{10}{200}, F = \frac{10}{200}$$
 Effort: Medium

Effort: Medium
$$A = \frac{25}{200}, B = \frac{20}{200}, C = \frac{15}{200}, D = \frac{4}{200}, F = 0$$

Effort: Large $A = \frac{50}{200}, B = \frac{20}{200}, C = \frac{5}{200}, D = \frac{1}{200}, F = 0$

$$A = \frac{50}{200}, B = \frac{20}{200}, C = \frac{5}{200}, D = \frac{1}{200}, F = 0$$

Using the table from part b., sum the 3 different efforts and divide them by the

Small =
$$\frac{300}{1000} \to 0.3$$
, Medium = $\frac{320}{1000} \to 0.32$, Large = $\frac{380}{1000} \to 0.38$

$$P(A|165B) = P(A \text{ and } 165B)/P(165B) = \frac{1}{4}$$

 $P(A|bascketweaving) = P(A \text{ and } bascketweaving})/P(bascketweaving) = \frac{3}{5}$

Problem 5

a.

	Labeled Spam	Labeled Non-spam
Detected as Spam	1750(TP)	250(FN)
Detected as Non-spam	250(FP)	7750(TN)

b. false positive rate = $\frac{FP}{N} = \frac{250}{8000} = \frac{1}{32}$ **c.** false negative rate = $\frac{FN}{P} = \frac{250}{2000} = \frac{1}{8}$ **d.** error rate = $\frac{FP+FN}{P+N} = \frac{250+250}{2000+8000} = \frac{500}{10000} = \frac{1}{20}$ **e.** precision = $\frac{TP}{TP+FP} = \frac{1750}{1750+250} = \frac{1750}{2000} = \frac{7}{8}$ **f.** accuracy = 1 - precision = $1 - \frac{1}{20} = \frac{19}{20}$

Problem 6

 $\begin{array}{ll} \textbf{a.} & 9 \text{ ranking errors} \\ \textbf{b.} & \text{ranking error} = \frac{9}{12 \cdot 13} = 0.058 \\ \textbf{c.} & \text{ranking accuracy} = 1 \text{ - ranking error} = 1 - 0.058 = 0.942 \\ \end{array}$

Problem 7

a.

b.

c.

Highest: $C2 = \frac{20}{25}$ **Lowest:** $C6 = \frac{9}{25}$

d.

Highest: C5 = 1 Lowest: C6 = 0

e.

Highest: C1 and C2 Lowest: C6 = 0

f.

 $\mathrm{C}1$ and $\mathrm{C}2$

 $\mathbf{g}.$

C5 and C6