Et cetera

Ben Antieau, Viktor Burghardt, Noah Riggenbach, Lucy Yang

Abstract

Dumping ground for other stuff: Notes, one-off observations, stuff that we can collectively use when

preparing talks, etc. Contents 1 Talk prep References 1 Questions and directions 1 Thoughts & observations $\mathbf{2}$ 5 Desperate Flailing 2 3 6 Modules with genuine involution 10 10

1 Talk prep

2 References

- Involutions of Azumaya algebras by First and Williams (2020 Documenta)
- Counterexamples in involutions of Azumaya algebras by First and Williams; much more readable than the 2020 Documenta paper

3 Questions and directions

Categorification and structure

Question 3.1 (Morita theory for $\operatorname{Cat}_{\infty}^{\mathsf{p}}$). Let R be a Poincaré ring. Suppose given two R-algebras (suitably interpreted so their module categories are canonically endowed with R-linear Poincaré structures—perhaps \mathbb{E}_{σ}) A, B. Can we characterize

$$\operatorname{hom}_{\operatorname{Cat}_{\infty B}^{\operatorname{p}}}\left(\left(\operatorname{Mod}_{A}^{\omega}, \Omega_{A}\right), \left(\operatorname{Mod}_{B}^{\omega}, \Omega_{B}\right)\right)$$

in terms of something bimodule-like?

promises re: organization but I will do my best to keep it reasonably readable

12

L: I make no

Question 3.2. On page 2 of the *Counterexamples* paper, First and Williams write that "existence of an extraordinary involution means classification of Azumaya algebras with involution...*cannot* be reduced to questions about projective modules and hermitian forms on them."

What if we replaced projective modules by perfect complexes?

Question 3.3. First-Williams show (see discussion in §4 of the *Counterexamples* paper) that coarse type classify many (most?) Azumaya algebras up to (étale-local) isomorphism.

What is a suitable derived version of "coarse type"?

Question 3.4 (asked by Andrew Nov 2, 2024). C. Schlichtkrull shows in this paper that a map $BGL_1(R) \to K(R) \to THH(R) \to R$ in terms of the Hopf map η .

Is there a "Poincaré" version of this result?

4 Thoughts & observations

Question 4.1. When R has the Tate Poincaré structure and $(\operatorname{Mod}_A^{\omega}, M_A, N_A, N_A \to M_A^{tC_2})$ is invertible, then by invertibility have an equivalence $\operatorname{hom}_R(A,R) \simeq N_A \otimes_R N_{A^{\operatorname{op}}}$ of $A \otimes_R A^{\operatorname{op}}$ -modules. Restricting the left-hand side along the unit map $R \to A$ gives a map $N_A \otimes_R N_{A^{\operatorname{op}}} \to \operatorname{hom}_R(R,R) \simeq R$. Is this a perfect (R-linear) pairing?

I think using that $R^{\varphi C_2} \simeq R$ and combining the linear and bilinear part conditions, we get something like

$$M_A \otimes_R M_{A^{\mathrm{op}}} \simeq (N_A \otimes_R N_{A^{\mathrm{op}}})^{\otimes_R 2}$$
 as $A \otimes_R A^{\mathrm{op}}$ -bimodules.

Is this useful?

Brauer-Severi schemes We know there is a correspondence between Azumaya algebras A over X and Brauer-Severi schemes. What does a Poincaré structure on $\operatorname{Mod}_A^{\omega}$ mean 'geometrically' for D_{coh}^b of the corresponding Brauer-Severi scheme? (Lucy: I didn't get very far here, but just typing up what I had)

- $\operatorname{Mod}_A^{\omega}$ corresponds to α -twisted sheaves on X (see Proposition 3.2.2.1 of Max Lieblich's thesis)
- The bounded derived category of α -twisted sheaves on X includes as one 'piece' of a semiorthogonal decomposition on D^b_{coh} of the corresponding Brauer-Severi scheme (see Theorem 5.1 here)

5 Desperate Flailing

This section is a cronical of my thoughts about $\mathbb{G}_m^{\mathfrak{Q}}$.

Goal The goal is to build a Poincaré ring $\mathbb{G}_m^{\mathfrak{Q}} := (\operatorname{Mod}_R, \mathfrak{Q}_R)$ such that $B\mathbb{G}_m^{\mathfrak{Q}}(\underline{S}) = \operatorname{Pic}^{\mathfrak{p}}(\underline{S})$ for any Poincaré ring \underline{S} .

Lemma 5.1. Let
$$\underline{S}$$
 be a Poincaré ring. Then $\pi_0(\operatorname{Aut}_{\operatorname{Pn}(\operatorname{Mod}_S)}(S,u)) = \{s \in \pi_0(S)^{\times} | s = 1 \text{ in } \pi_0(S^{C_2})\}.$

Proof. Since the functor $\operatorname{Pn}(\operatorname{Mod}_S) \to \operatorname{Mod}_S$ is conservative it follows that an element of $\pi_0(\operatorname{Aut}_{\operatorname{Pn}(\operatorname{Mod}_S)}(S, u))$ must have underlying map an element of $\pi_0\operatorname{Aut}(S) = \pi_0(S)^{\times}$. Then in order for $s \in \pi_0(S)^{\times}$ to induce a map $(S, u) \to (S, u)$, the induced map $s^* : S^{C_2} \to S^{C_2}$ must satisfy $s^*(u) = u$. The pullback is given by multiplication by s, so this requirement translates into s being the unit, as desired.

The problem I thought existed maybe doesn't. Here is a candidate construction:

Construction 5.2. Define R to be the \mathbb{E}_{∞} ring given by $\mathbb{S}\{x^{\pm 1}, y^{\pm 1}\} \otimes_{\mathbb{S}\{z\}} \mathbb{S}$ where the map $\mathbb{S}\{z\} \to \mathbb{S}\{x^{\pm 1}, y^{\pm 1}\}$ is induced by the map $z \mapsto xy$, and the map $\mathbb{S}\{z\} \to \mathbb{S}$ is induced by $z \mapsto 1$. We can give R an \mathbb{E}_{∞} ring structure in Sp^{BC_2} by taking the trivial action on $\mathbb{S}\{z\}$ and \mathbb{S} , and taking the action induced by $x \mapsto y$ and $y \mapsto x$ on $\mathbb{S}\{x^{\pm 1}, y^{\pm 1}\}$. Thus in $\mathrm{CAlg}(\mathrm{Sp}^{BC_2})$ the ring R corepresents the functor $S \mapsto \{s \in \pi_0(S)^\times | s\sigma(s) = 1\}$.

Now take \underline{R} to be the Poincaré ring with underlying Borel C_2 structure as described in the previous paragraph and geometric fixed points $R^{\varphi C_2} = \mathbb{S}$ and the map $R^{\varphi C_2} \to R^{tC_2}$ given by the unit map. Endowing $R^{\varphi C_2}$ with the R-module structre given by $x,y\mapsto 1$, it remains to show that the unit map $R^{\varphi C_2} \to R^{tC_2}$ factors the Tate valued Frobenius $R\to R^{tC_2}$ in order to promote \underline{R} to a Poincaré ring. By construction of R it is then enough to show that on π_0 the Tate valued Frobenius sends $x,y\mapsto 1$ in $\pi_0(R^{tC_2})$. This map sends both x and y to $xy\in\pi_0(R^{tC_2})$. These are equal to 1 in $\pi_0(R^{tC_2})$ since the functor $(-)^{tC_2}$ is lax-monoidal so R^{tC_2} is a modules over $\mathbb{S}\{x^{\pm 1},y^{\pm 1}\}^{tC_2}\otimes_{\mathbb{S}\{z\}^{tC_2}}\mathbb{S}^{tC_2}$ which has the image of xy equal to 1.

Now consider another Poincaré ring \underline{S} . We then have that maps $\pi_0(\operatorname{Maps}(\underline{R},\underline{S}))$ is the data of a unit $s \in \pi_0(S)^{\times}$, a path $s\sigma(s) \to 1$ in $\Omega^{\infty}S$, and paths $x, y \to 1$ in $\Omega^{\infty}S^{\varphi C_2}$. This then agrees with \mathbb{G}_m^{φ} by the following lemma.

Lemma 5.3. Let $S \in \operatorname{CAlg}(\operatorname{Sp}^{BC_2})$ and $s \in \pi_0(S)^{\times}$. Then $s\sigma(s) = 1$ in $\pi_0(S)$ if and only if $(s \otimes s)^*$ acts by 1 on $\pi_0(S^{hC_2}) = \pi_0(\operatorname{Hom}_{S \otimes S}(S \otimes S, S)^{hC_2})$.

Proof. The 'only if' direction follows from the fact that the map $S^{hC_2} \to S$ is an S-bimodule map. Now suppose that $s\sigma(s) = 1$ in S. Then before taking homotopy fixed points the induced map $s^* = id$ because S is \mathbb{E}_{∞} .

6 Modules with genuine involution

Remark 6.1 (Lucy). I'm just going to put drafts of stuff pertaining to hermitian modules here. Eventually when it gets to be more complete, I will hopefully move this entire section over to the main file.

L: or whateve we want to keep calling these

Meta-commentary There are (at least) three things we want to do:

- (a) Define a category of 'bimodules with involution over algebras with anti-involution' equipped with a forgetful functor $\Theta \colon \mathrm{BMod_{inv}}(-) \to \mathbb{E}_1 \, \mathrm{Alg}(-)^{hC_2}$.
- (b) Show that Θ is a coCartesian fibration. For this, it suffices to show that it is a *Cartesian* fibration and that it satisfies the hypotheses of [Lur09, Corollary 5.2.2.5]
 - I used to think that we could obtain this by 'bootstrapping' a result from Higher Algebra, plus some facts about assembly. This doesn't seem to be working, so I'm just going to try to do this directly (imitating certain aspects of Chapter 4 of higher algebra.)
- (c) Define a relative tensor product for hermitian bimodules
- (d) Show that the formula for the cocartesian pushforward along a map $A \to B$ in $\mathbb{E}_1 \operatorname{Alg}(-)^{hC_2}$ is something like $\otimes_{A \otimes A^{\operatorname{op}}} (B \otimes B^{\operatorname{op}}) \otimes_{B \otimes B^{\operatorname{op}}} B$.
 - In Higher Algebra, the formula for the cocartesian pushforward is proven in [Lur17, §4.6]; in particular, this is in the section on duality. In particular, see Proposition 4.6.2.17 and the paragraph immediately preceding this.
 - I don't know how to do this yet—while (a) and (b) are not useful if I can't show (c), I can't suss out the feasibility of (c) without (a) and (b) already in place.
- (e) Towards an adjunction between \mathbb{E}_{σ} -algebras and categories with additional structure.
 - Involutive version of statement that, for a monoidal ∞ -category \mathcal{C} and an \mathbb{E}_1 -algebra A, $\mathrm{LMod}_A(\mathcal{C})$ is right-tensored over \mathcal{C} ?
 - Involutive version of endomorphism categories? [Lur17, §4.7.1]

6.1 Step (a)

Definition 6.2. Define a colored operad Assoc $_{\sigma}$ as follows:

- (i) The colored operad has a single object, which we denote by a
- (ii) For every finite set I, the set of operations $\operatorname{Mul}_{\operatorname{Assoc}_{\sigma}}\left(\left\{\mathfrak{a}_{i}\right\}_{i\in I},\mathfrak{a}\right)\simeq\mathcal{L}I\times\{\pm1\}^{I}$, where $\mathcal{L}I$ is the set of linear orderings on I and an element of $\{\pm1\}^{I}$ is a function $I\to\{\pm1\}$.
- (iii) Suppose given a map of finite sets $\alpha\colon I\to J$, together with operations $(\preceq_j,f_j\colon I_j\to\{\pm 1\})\in \operatorname{Mul}_{\operatorname{Assoc}_\sigma}\left(\{\mathfrak{a}_i\}_{\alpha(i)=j},\mathfrak{a}\right)$ and $(\preceq_J,g\colon J\to\{\pm 1\})\in \operatorname{Mul}_{\operatorname{Assoc}_\sigma}\left(\{\mathfrak{a}_j\}_{j\in J},\mathfrak{a}\right)$. Define a linear ordering on the set I as follows: $i\le i'$ if $\alpha(i)\preceq_J\alpha(i')$ or $\alpha(i)=\alpha(i')=j$ and $i\preceq_ji'$ and g(j)=+1 or $\alpha(i)=\alpha(i')=j$ and $i\succeq_ji'$ and g(j)=-1. Finally, define a function

$$I \to \{\pm 1\}$$

 $i \mapsto f_{\alpha(i)}(i) \cdot g(\alpha(i)),$

where the multiplication on $\{\pm 1\}$ is the usual one.

Remark 6.3. There is a map of colored operads ι : Assoc \to Assoc $_{\sigma}$ which is the identity on objects and on operations $\operatorname{Mul}_{\operatorname{Assoc}}\left(\left\{\mathfrak{a}_{i}\right\}_{i\in I},\mathfrak{a}\right)\simeq\mathcal{L}I\to\operatorname{Mul}_{\operatorname{Assoc}_{\sigma}}\left(\left\{\mathfrak{a}_{i}\right\}_{i\in I},\mathfrak{a}\right)\simeq\mathcal{L}I\times\left\{\pm 1\right\}^{I}$ is $\operatorname{id}_{\mathcal{L}I}\times\left\{c_{1}\right\}$ where c_{1} is the constant function on I with value 1.

There is another map of colored operads ι^{rev} : Assoc \to Assoc $_{\sigma}$ which is the identity on objects and on operations $\mathrm{Mul}_{\mathrm{Assoc}}\left(\left\{\mathfrak{a}_{i}\right\}_{i\in I},\mathfrak{a}\right)\simeq\mathcal{L}I\to\mathrm{Mul}_{\mathrm{Assoc}_{\sigma}}\left(\left\{\mathfrak{a}_{i}\right\}_{i\in I},\mathfrak{a}\right)\simeq\mathcal{L}I\times\left\{\pm1\right\}^{I}$ sends a linear ordering ℓ to $(\ell^{\mathrm{rev}},c_{-1})$ where c_{-1} is the constant function on I with value 1.

Definition 6.4. Let $\operatorname{Assoc}_{\sigma}^{\otimes}$ denote the associated ∞ -operad (via Construction 2.1.1.7 and Example 2.1.1.21 of [Lur17]).

Remark 6.5. Unwinding definitions

- Objects Assoc $_{\sigma}^{\otimes}$ are finite pointed sets $\langle n \rangle \in \operatorname{Fin}_*$
- Morphisms $\langle m \rangle \to \langle n \rangle$ consist of
 - $-\alpha:\langle m\rangle\to\langle n\rangle$ a map of finite pointed sets
 - for each $i \in \langle n \rangle^{\circ}$, a linear ordering \leq_i on the inverse image $\alpha^{-1}(\{i\})$
 - a map of sets $s: \alpha^{-1}(\langle m \rangle^{\circ}) \to \{\pm 1\}$
- For each pair of morphisms

$$(\beta: \langle \ell \rangle \to \langle m \rangle, \leq_i, s)$$
 $(\alpha: \langle m \rangle \to \langle n \rangle, \leq_i, t)$,

the composite is the triple $(\alpha \circ \beta, \preceq''_j, u)$ where \preceq''_j is the ordering on $(\alpha \circ \beta)^{-1}(\{i\})$ so that if $a, b \in \langle \ell \rangle$ so that $\alpha(\beta(a)) = \alpha(\beta(b))$, then $a \preceq''_j b$ if $\beta(a) \preceq_i \beta(b)$ or $\beta(a) =_i \beta(b) = i$ and $a \preceq_i b$ if s(i) = 1 or $a \succeq_i b$ if s(i) = -1. Finally $u(l) = s(l) \cdot t(\beta(l))$.

Remark 6.6. The maps $\iota, \iota^{\text{rev}}$ of Remark 6.3 induce maps of ∞ -operads $\operatorname{Assoc}^{\otimes} \to \operatorname{Assoc}_{\sigma}^{\otimes}$. There is a canonical identification $\iota^{\text{rev}} = \sigma \circ \iota$, where σ is the automorphism of the associative operad considered in [Lur17, Remark 4.1.1.7].

Note that each object $\langle n \rangle \in \operatorname{Assoc}_{\sigma}^{\otimes}$ has a distinguished automorphism $\operatorname{rev}_{\langle n \rangle}$ of order two given by the identity map on $\langle n \rangle$ and the constant map $c_{-1} \colon \langle n \rangle^{\circ} \to \{\pm 1\}$ at -1. There is a canonical natural equivalence $\iota \xrightarrow{\sim} \iota^{\operatorname{rev}}$ whose component at $\langle n \rangle$ is $\operatorname{rev}_{\langle n \rangle}$.

Definition 6.7. Let \mathcal{C}^{\otimes} be a ∞ -operad equipped with the data of a fibration $p: \mathcal{C}^{\otimes} \to \operatorname{Assoc}_{\sigma}^{\otimes}$. Let $\operatorname{Alg}^{\sigma}(\mathcal{C})$ denote the ∞ -category $\operatorname{Alg}_{/\operatorname{Assoc}_{\sigma}}(\mathcal{C})$ of ∞ -operad sections of p. We will refer to $\operatorname{Alg}^{\sigma}(\mathcal{C})$ as the ∞ -category of *involutive algebra objects of* \mathcal{C} .

An involutive monoidal ∞ -category is the data of a cocartesian fibration $\mathcal{C}^{\otimes} \to \mathrm{Assoc}_{\sigma}^{\otimes}$.

L: This is just an imitation of [Lur17, Definition 4.1.1.1], modified in accordance with ideas from §5.4.2.

L: Note that when s,t are identically one, the resulting order \leq_j^m agrees with the lexicographic order defined in [Lur17, Remark 4.1.1.4].

L: do we need weaker than cocartesian fibration?

¹Or just \mathbb{E}_2 .

Remark 6.8. Suppose given a cocartesian fibration $f \colon \mathcal{D}^{\otimes} \to \operatorname{Assoc}_{\sigma}^{\otimes}$ of ∞ -operads. Write $\mathcal{C}^{\otimes} := \mathcal{D}^{\otimes} \times_{\operatorname{Assoc}_{\sigma, \iota}^{\otimes}, \iota}$ Assoc $^{\otimes}$; \mathcal{C}^{\otimes} is a monoidal ∞ -category in the sense of [Lur17, Definition 4.1.1.10]. Furthermore, $\mathcal{C}^{\otimes}_{\operatorname{rev}} := \mathcal{D}^{\otimes} \times_{\operatorname{Assoc}_{\sigma, \iota}^{\otimes}, \iota^{\operatorname{rev}}}$ Assoc $^{\otimes}$ is a monoidal ∞ -category. By Remark 6.6, this notation is consistent with that of [Lur17, Remark 4.1.1.7]. In particular, a $\operatorname{Assoc}_{\sigma}$ -monoidal ∞ -category \mathcal{C}^{\otimes} equipped with a monoidal equivalence $\sigma_{\mathcal{C}} : \mathcal{C}^{\otimes} \xrightarrow{\sim} \mathcal{C}^{\otimes}_{\operatorname{rev}}$. Pullback along the involution of $\operatorname{Assoc}^{\otimes}$ determines another monoidal equivalence $\sigma_{\mathcal{C}}^{\operatorname{rev}} : \mathcal{C}^{\otimes}_{\operatorname{rev}} \xrightarrow{\sim} \mathcal{C}^{\otimes}$, and our assumptions imply that $\sigma_{\mathcal{C}}^{\operatorname{rev}} \circ \sigma_{\mathcal{C}}$ is equivalent to the identity on \mathcal{C}^{\otimes} .

Now suppose that A is an involutive algebra object of \mathcal{D} . With the same notation as before, pullback along ι (resp. ι^{rev}) determines associative algebra objects u(A), $u^{\mathrm{rev}}(A)$ of \mathcal{C} and $\mathcal{C}_{\mathrm{rev}}$, respectively. Note that $\sigma_{\mathcal{C}}(u(A))$ is an algebra object of $\mathcal{C}_{\mathrm{rev}}$, which we may regard as an algebra object of \mathcal{C} by precomposing with the autoequivalence σ : Assoc $\overset{\otimes}{\longrightarrow}$ Assoc $\overset{\otimes}{\longrightarrow}$. It follows from Remark 6.6 that A determines an equivalence σ_A : $u(A)\overset{\sim}{\longrightarrow}\sigma_{\mathcal{C}}(u(A))^{\mathrm{rev}}$ of algebra objects in \mathcal{C} .

Now suppose furthermore that \mathcal{D}^{\otimes} is of the form $\mathcal{E}^{\otimes} \times_{\operatorname{Fin}_*} \operatorname{Assoc}_{\sigma}^{\otimes}$ for some symmetric monoidal ∞ -category \mathcal{E} . Then the associated involution $\sigma_{\mathcal{C}}$ is the identity, and for any involutive algebra object A of \mathcal{D} , σ_A is an equivalence $u(A) \simeq u(A)^{\operatorname{rev}}$ satisfying $\sigma_A^{\operatorname{rev}} \circ \sigma_A \simeq \operatorname{id}_A$.

Definition 6.9. Define a category Δ_{σ}

- objects are pairs $([n], s: \{1, \dots, n\} \rightarrow \{\pm 1\})$
- a morphism from $([n], s: \{1, \dots, n\} \to \{\pm 1\})$ to $([m], t: \{0, 1, \dots, m\} \to \{\pm 1\})$ is an order-preserving map $[n] \to [m]$ in Δ .

Construction 6.10. Define a functor Cut: $\Delta_{\sigma}^{\text{op}} \to \text{Assoc}_{\sigma}^{\otimes}$:

- For each ([n], s), we have $Cut([n], s) = \langle n \rangle$.
- Given a morphism $\alpha:([n],s)\to([m],t)$, the associated morphism $\mathrm{Cut}([n],s)\to\mathrm{Cut}([m],t)$ consists of
 - On underlying finite pointed sets $\langle m \rangle \rightarrow \langle n \rangle$, Cut agrees with that appearing in [Lur17, Construction 4.1.2.9]
 - Identifying the cut $\{k \mid k < j\} \sqcup \{k \mid k \geq j\}$ with the morphism j 1 < j, we may regard $s \colon \langle n \rangle^{\circ} \to \{\pm 1\}$ and likewise $t \colon \langle m \rangle^{\circ} \to \{\pm 1\}$. Define $u \colon \operatorname{Cut}(\alpha)^{-1}(\langle n \rangle^{\circ}) \to \{\pm 1\}$ to be the unique function so that $u(j)t(j) = s(\operatorname{Cut}(\alpha)(j))$.

Lemma 6.11. The functor $\operatorname{Cut} \colon \Delta_{\sigma}^{\operatorname{op}} \to \operatorname{Assoc}_{\sigma}^{\otimes}$ exhibits $\Delta_{\sigma}^{\operatorname{op}}$ as an approximation to the ∞ -operad $\operatorname{Assoc}_{\sigma}^{\otimes}$

L: I think the proof of this lemma is not too different from the proof of Proposition 4.1.2.11 of [Lur17]; the point here is just to unravel the definitions of locally coCartesian and Cartesian; the morphisms in $\Delta_{\sigma}^{\text{op}}$ are a little more complicated than Δ^{op} , but not by much.

Notation 6.12. Let $\mathcal{C}^{\otimes} \to \operatorname{Assoc}_{\sigma}^{\otimes}$ exhibit \mathcal{C} as \mathbb{E}_{σ} -monoidal. Let \mathcal{C}^{\otimes} denote the fiber product $\mathcal{C}^{\otimes} \times_{\operatorname{Assoc}_{\sigma}^{\otimes}} \Delta_{\sigma}^{\operatorname{op}}$.

Definition 6.13. Say that a morphism $([n], s) \to ([m], t)$ is *inert* if the induced map $\operatorname{Cut}([m], t) \to \operatorname{Cut}([n], s)$ is an inert morphism in $\operatorname{Assoc}_{\sigma}^{\otimes}$.

Definition 6.14. A \mathbb{R}^{σ} -planar operad is an ∞ -category \mathcal{O}^{\otimes} equipped with a functor $q: \mathcal{O}^{\otimes} \to \Delta_{\sigma}^{\mathrm{op}}$ so that

- 1. For every object $X \in \mathcal{O}^{\otimes}$ and every inert morphism $\alpha \colon ([n], s) \to q(X)$ in Δ_{σ} , there is a q-cocartesian morphism $\overline{\alpha} \colon X \to Y$ satisfying $q(\overline{\alpha}) = \alpha$
- 2. Let X be an object satisfying q(X) = ([n], s), and choose q-cocartesian morphisms $\overline{\alpha}_i \colon X \to X_i$ corresponding to the morphism $([i-1 < i], s_i) \to ([n], s)$ which is the inclusion on underlying sets and satisfies $s_i(i) = s(i)$. Then the morphisms $\overline{\alpha}_i$ exhibit X as the q-product of the X_i .
- 3. For each $n \ge 0$, the construction $C \mapsto \{C_i\}_{1 \le i \le n}$ induces an equivalence of ∞ -categories

$$\mathcal{O}^\circledast \times_{\Delta^{\mathrm{op}}_\sigma} \{([n],s)\} \xrightarrow{\sim} \left(\mathcal{O}^\circledast \times_{\Delta^{\mathrm{op}}_\sigma} \{([1],s|_{\{i\}})\}\right)^{\times n}$$

L: maybe better to write s as a function defined on the set of morphisms i < i + 1 in [n]

We say that a morphism α in \mathbb{R}^{σ} -planar operad is *inert* if it is q-cocartesian and $q(\alpha)$ is inert in $\Delta_{\sigma}^{\text{op}}$ in the sense of Definition 6.13.

Definition 6.15. Let $q: \mathcal{O}^{\otimes} \to \Delta_{\sigma}^{\text{op}}$ be a \mathbb{R}^{σ} -planar operad. An $\mathbb{A}_{\infty}^{\sigma}$ -algebra object of \mathcal{O}^{\otimes} is a section of q which carries inert morphisms to inert morphisms. Write $\operatorname{Alg}_{\mathbb{A}_{\infty}^{\sigma}}(\mathcal{O})$ for the full subcategory of $\operatorname{Fun}_{\Delta_{\sigma}^{\operatorname{op}}}(\Delta_{\sigma}^{\operatorname{op}}, \mathcal{O}^{\otimes})$ on $\mathbb{A}_{\infty}^{\sigma}$ -algebra objects.

Proposition 6.16. Let $\mathcal{O}^{\otimes} \to \operatorname{Assoc}_{\sigma}^{\otimes}$ be a fibration of ∞ -operads. Then precomposition with the functor Cut of Construction 6.10 induces an equivalence of ∞ -categories

$$\operatorname{Alg}_{\operatorname{Assoc}_{\sigma}}(\mathcal{O}) \xrightarrow{\sim} \operatorname{Alg}_{\mathbb{A}_{\infty}^{\sigma}}(\mathcal{O})$$
.

Proof. Combine Lemma 6.11 with [Lur17, Theorem 2.3.3.23].

Definition 6.17. Define a colored operad LM_{inv}

- (i) The set of objects of LM_{inv} has two elements, which we denote by $\mathfrak{a}, \mathfrak{m}$.
- (ii) Let $\{X_i\}_{i\in I}$ be a finite collection of objects of $\mathbf{LM}_{\mathrm{inv}}$ and let Y be another object of $\mathbf{LM}_{\mathrm{inv}}$. If $Y = \mathfrak{a}$, then $\mathrm{Mul}_{\mathbf{LM}_{\mathrm{inv}}}$ ($\{X_i\}_{i\in I}, Y$) is the set of pairs consisting of a linear ordering on I and a function $I \to \{\pm 1\}$ if $X_i = \mathfrak{a}$ for all i, and empty otherwise. If $Y = \mathfrak{m}$, then $\mathrm{Mul}_{\mathbf{LM}_{\mathrm{inv}}}$ ($\{X_i\}_{i\in I}, Y$) is a subset of the set of pairs (λ, c) consisting of a linear ordering $\lambda = \{i_1 < i_2 < \cdots < i_n\}$ on I and a function $c \colon I \to \{\pm 1\}$ satisfying either
 - $X_{i_n} = \mathfrak{m}$ and $c(i_n) = 1$ and $X_j = \mathfrak{a}$ otherwise
 - $X_{i_1} = \mathfrak{m}$ and $c(i_n) = -1$ and $X_j = \mathfrak{a}$ otherwise
- (iii) The composition law on **LM**_{inv} is determined by the composition of linear orderings, with reversal of linear orderings according to Definition 6.2

Remark 6.18. There is a colored operad \mathbf{RM}_{inv} defined exactly in the same way as \mathbf{LM}_{inv} in Definition 6.17. In the interest of precision: \mathbf{RM}_{inv} has the same objects $\mathfrak{a}, \mathfrak{m}$. Let $\{X_i\}_{i \in I}$ be a finite collection of objects of \mathbf{RM}_{inv} and let Y be another object of \mathbf{RM}_{inv} . If $Y = \mathfrak{m}$, then $\mathrm{Mul}_{\mathbf{RM}_{inv}}$ ($\{X_i\}_{i \in I}, Y$) is a subset of the set of pairs (λ, c) consisting of a linear ordering $\lambda = \{i_1 < i_2 < \cdots < i_n\}$ on I and a function $c: I \to \{\pm 1\}$ satisfying either

- $X_{i_n} = \mathfrak{m}$ and $c(i_n) = -1$ and $X_i = \mathfrak{a}$ otherwise
- $X_{i_1} = \mathfrak{m}$ and $c(i_n) = 1$ and $X_i = \mathfrak{a}$ otherwise

Remark 6.19. Restricting to the objects which are both called \mathfrak{a} , we see that both LM_{inv} and RM_{inv} have a sub-colored operad which is canonically identified with $Assoc_{inv}$ of Definition 6.2.

Remark 6.20. There is a map of colored operads $\iota: LM \to LM_{\sigma}$ which sends \mathfrak{m} to \mathfrak{m} and sends \mathfrak{a} to \mathfrak{a} . On $\mathrm{Mul}_{\mathrm{LM}}\left(\{(\mathfrak{a}_{\pm})_i\}_{i\in I},\mathfrak{a}\right) \simeq \mathcal{L}I \to \mathrm{Mul}_{\mathrm{LM}_{\sigma}}\left(\{\mathfrak{a}_i\}_{i\in I},\mathfrak{a}\right) \simeq \mathcal{L}I \times \{\pm 1\}^I$ is $\mathrm{id}_{\mathcal{L}I} \times \{c_1\}$, this map agrees with ι of Remark 6.3. On $\mathrm{Mul}_{\mathrm{BM}}\left(\{(\mathfrak{a}_{\pm})_i\}_{i\in I} \sqcup \{\mathfrak{m}\},\mathfrak{m}\right) \subseteq \mathcal{L}(I \sqcup \{j\}) \to \mathrm{Mul}_{\mathrm{BM}_{\sigma}}\left(\{\mathfrak{a}_i\}_{i\in I} \sqcup \{\mathfrak{m}\},\mathfrak{m}\right) \simeq \mathcal{L}I \times \{\pm 1\}^I$ is the restriction of the map $\mathrm{id}_{\mathcal{L}(I \sqcup \{j\})} \times \{c_1\}$ where c_1 is the constant function on $I \sqcup \{j\}$ with value 1.

There is a map of colored operads $\iota^{\text{rev}} \colon \text{RM} \to \text{LM}_{\sigma}$ which sends \mathfrak{m} to \mathfrak{m} and sends \mathfrak{a} to \mathfrak{a} . On $\text{Mul}_{\text{RM}}\left(\{(\mathfrak{a}_{\pm})_i\}_{i\in I},\mathfrak{a}\right) \simeq \mathcal{L}I \to \text{Mul}_{\text{LM}_{\sigma}}\left(\{\mathfrak{a}_i\}_{i\in I},\mathfrak{a}\right) \simeq \mathcal{L}I \times \{\pm 1\}^I$ is $\text{rev}_{\mathcal{L}I} \times \{c_1\}$, this map agrees with ι^{rev} of Remark 6.3. On $\text{Mul}_{\text{BM}}\left(\{(\mathfrak{a}_{\pm})_i\}_{i\in I} \sqcup \{\mathfrak{m}\},\mathfrak{m}\right) \subseteq \mathcal{L}(I \sqcup \{j\}) \to \text{Mul}_{\text{BM}_{\sigma}}\left(\{\mathfrak{a}_i\}_{i\in I} \sqcup \{\mathfrak{m}\},\mathfrak{m}\right) \simeq \mathcal{L}I \times \{\pm 1\}^I$ is the restriction of the map $\text{rev}_{\mathcal{L}(I \sqcup \{j\})} \times \{c_1\}$ where c_1 is the constant function on $I \sqcup \{j\}$ with value 1.

Definition 6.21. Define a colored operad $BM_{\rm inv}$

- (i) The set of objects of \mathbf{BM}_{inv} has three elements, which we denote by $\mathfrak{a}_{\ell}, \mathfrak{a}_{r}, \mathfrak{m}$.
- (ii) Let $\{X_i\}_{i\in I}$ be a finite collection of objects of $\mathbf{BM}_{\mathrm{inv}}$ and let Y be another object of $\mathbf{BM}_{\mathrm{inv}}$. If $Y = \mathfrak{a}_{\ell}$ (resp. $Y = \mathfrak{a}_r$), then $\mathrm{Mul}_{\mathbf{BM}_{\mathrm{inv}}}(\{X_i\}_{i\in I}, Y)$ is the set of pairs consisting of a linear ordering on I and a function $I \to \{\pm 1\}$ if $X_i = \mathfrak{a}_{\ell}$ (resp. $X_i = \mathfrak{a}_r$) for all i, and empty otherwise. If $Y = \mathfrak{m}$, then $\mathrm{Mul}_{\mathbf{BM}_{\mathrm{inv}}}(\{X_i\}_{i\in I}, Y)$ is the subset of pairs (λ, c) consisting of a linear ordering $\lambda = \{i_1 < i_2 < \cdots < i_n\}$ on I and a function $c: I \to \{\pm 1\}$ satisfying: if there is exactly one index i_k so that $X_{i_k} = \mathfrak{m}$, either

- $c(i_k) = 1$, $X_j = \mathfrak{a}_\ell$ for $j < i_k$ and $X_j = \mathfrak{a}_r$ for $j > i_k$; or
- $c(i_k) = -1$, $X_j = \mathfrak{a}_\ell$ for $j > i_k$ and $X_j = \mathfrak{a}_r$ for $j < i_k$
- (iii) The composition law on $\mathbf{BM}_{\mathrm{inv}}$ is determined by the composition of linear orderings, with reversal of linear orderings according to Definition 6.2

Remark 6.22. The colored operad $\mathbf{BM}_{\mathrm{inv}}$ has a canonical involution σ which fixes \mathfrak{m} , exchanges \mathfrak{a}_{ℓ} and \mathfrak{a}_{r} , and sends a morphism (λ, c) to $(\lambda^{\mathrm{rev}}, I \xrightarrow{c} \{\pm 1\} \xrightarrow{\cdot (-1)} \{\pm 1\})$.

Remark 6.23. There is a map of colored operads ι : BM \to BM $_{\sigma}$ which sends \mathfrak{m} to \mathfrak{m} and sends \mathfrak{a}_{-} to \mathfrak{a}_{ℓ} and \mathfrak{a}_{+} to \mathfrak{a}_{r} . On Mul_{BM} $\left(\left\{(\mathfrak{a}_{\pm})_{i}\right\}_{i\in I},\mathfrak{a}_{\pm}\right)\simeq\mathcal{L}I\to \operatorname{Mul_{BM}}_{\sigma}\left(\left\{\mathfrak{a}_{i}\right\}_{i\in I},\mathfrak{a}\right)\simeq\mathcal{L}I\times\left\{\pm1\right\}^{I}$ is $\operatorname{id}_{\mathcal{L}I}\times\left\{c_{1}\right\}$, this map agrees with ι of Remark 6.3. On Mul_{BM} $\left(\left\{(\mathfrak{a}_{\pm})_{i}\right\}_{i\in I}\sqcup\left\{\mathfrak{m}\right\},\mathfrak{m}\right)\subseteq\mathcal{L}(I\sqcup\{j\})\to\operatorname{Mul_{BM}}_{\sigma}\left(\left\{\mathfrak{a}_{i}\right\}_{i\in I}\sqcup\left\{\mathfrak{m}\right\},\mathfrak{m}\right)\simeq\mathcal{L}I\times\left\{\pm1\right\}^{I}$ is the restriction of the map $\operatorname{id}_{\mathcal{L}(I\sqcup\{j\})}\times\left\{c_{1}\right\}$ where c_{1} is the constant function on $I\sqcup\left\{j\right\}$ with value 1.

There is also a map of colored operads $\iota^{\text{rev}} \colon \text{BM} \to \text{BM}_{\sigma}$ which sends \mathfrak{m} to \mathfrak{m} and and sends \mathfrak{a}_{-} to \mathfrak{a}_{r} and \mathfrak{a}_{+} to \mathfrak{a}_{ℓ} . On $\text{Mul}_{\text{BM}}\left(\{(\mathfrak{a}_{\pm})_{i}\}_{i\in I}, \mathfrak{a}_{\pm}\right) \simeq \mathcal{L}I \to \text{Mul}_{\text{BM}_{\sigma}}\left(\{\mathfrak{a}_{i}\}_{i\in I}, \mathfrak{a}\right) \simeq \mathcal{L}I \times \{\pm 1\}^{I}$ is $\text{id}_{\mathcal{L}I} \times \{c_{1}\}$, this map agrees with ι^{rev} of Remark 6.3. On $\text{Mul}_{\text{BM}}\left(\{(\mathfrak{a}_{\pm})_{i}\}_{i\in I} \sqcup \{\mathfrak{m}\}, \mathfrak{m}\right) \subseteq \mathcal{L}(I \sqcup \{j\}) \to \text{Mul}_{\text{BM}_{\sigma}}\left(\{\mathfrak{a}_{i}\}_{i\in I} \sqcup \{\mathfrak{m}\}, \mathfrak{m}\right) \simeq \mathcal{L}I \times \{\pm 1\}^{I}$ is the restriction of the map $\text{rev}_{\mathcal{L}(I \sqcup \{j\})} \times \{c_{-1}\}$ where c_{-1} is the constant function on $I \sqcup \{j\}$ with value -1.

Definition 6.24. Let $\mathcal{LM}_{inv}^{\otimes}$, $\mathcal{RM}_{inv}^{\otimes}$, and $\mathcal{BM}_{inv}^{\otimes}$ denote the associated ∞ -operads (via Construction 2.1.1.7 and Example 2.1.1.21 of [Lur17]).

Remark 6.25. We can describe the category $\mathcal{LM}_{inv}^{\otimes}$ as follows:

- (1) An object of $\mathcal{LM}_{\text{inv}}^{\otimes}$ is a pair $(\langle n \rangle, S)$ where S is a subset of $\langle n \rangle^{\circ}$.
- (2) Morphisms $(\langle m \rangle, T) \to (\langle n \rangle, S)$ consist of a map $(\alpha : \langle m \rangle \to \langle n \rangle, \lambda : \langle m \rangle^{\circ} \to \{\pm 1\})$ in Assoc $_{\sigma}^{\otimes}$ satisfying:
 - The map α takes $T \cup \{*\}$ to $S \cup \{*\}$
 - For each $s \in S$, then $\alpha^{-1}(\{s\})$ contains exactly one element t_s of T, and it is maximal (resp. minimal) with respect to the linear ordering on $\alpha^{-1}(\{s\})$ if $\lambda(t_s) = 1$ (resp. $\lambda(t_s) = -1$).

Remark 6.26. We can describe the category $\mathcal{BM}_{inv}^{\otimes}$ as follows:

- (1) An object of $\mathcal{BM}_{\text{inv}}^{\otimes}$ is a triple $(\langle n \rangle, c_+, c_-)$ where c_{\pm} are functions $\langle n \rangle^{\circ} \to \{0, 1\}$ and $c_-(i) \leq c_+(i)$ for all $i \in \langle n \rangle^{\circ}$.
- (2) Morphisms $(\langle m \rangle, c_+, c_-) \to (\langle n \rangle, c'_+, c'_-)$ consist of a map $(\alpha : \langle m \rangle \to \langle n \rangle, \lambda : \langle m \rangle^{\circ} \to \{\pm 1\})$ in Assoc $_{\sigma}^{\otimes}$ satisfying: if $j \in \langle n \rangle^{\circ}$ and $\alpha^{-1}(j) = \{i_1 < i_2 < \cdots < i_{\ell}\},$
 - If $c_{-}(j) = c_{+}(j)$, then

$$c'_{-}(j) = c_{-}(i_1) \le c_{+}(i_1) = c_{-}(i_2) \le c_{+}(i_2) \cdot \cdot \cdot \cdot \cdot c_{-}(i_{m-1}) \le c_{+}(i_m) = c'_{+}(j)$$

• If $c_{-}(j) < c_{+}(j)$, then there exists a unique k so that $c_{-}(i_{k}) < c_{+}(i_{k})$ and

$$\lambda(i_k) \cdot c'_{-}(j) = \lambda(i_k) \cdot c_{-}(i_1) \le \lambda(i_k) \cdot c_{+}(i_1) = \lambda(i_k) \cdot c_{-}(i_2) \le \lambda(i_k) \cdot c_{+}(i_2) \cdots \\ \lambda(i_k) \cdot c_{-}(i_{m-1}) \le \lambda(i_k) \cdot c_{+}(i_m) = \lambda(i_k) \cdot c'_{+}(j)$$

Remark 6.27. Each morphism $\varphi \in \operatorname{Mul}_{\mathbf{BM}_{\operatorname{inv}}}(\{X_i\}_{i\in I},Y)$ determines a linear ordering ℓ on the set I and a function $s\colon I\to \{\pm 1\}$. Passing from φ to the pair (ℓ,s) determines a map of colored operads $j\colon \mathbf{BM}_{\operatorname{inv}}\to \mathbf{Assoc}_{\operatorname{inv}}^\otimes$. The map j induces a morphism of ∞ -operads $\mathcal{BM}_{\operatorname{inv}}^\otimes\to \operatorname{Assoc}_{\sigma}^\otimes$ which we will also denote by j. For any \mathbb{E}_{σ} -monoidal ∞ -category \mathcal{C} , restriction along j sends an \mathbb{E}_{σ} -algebra $A\colon \operatorname{Assoc}_{\sigma}\to \mathcal{C}^\otimes$ to the pair (A,A) where A is regarded as an involutive bimodule over itself.

L: hermitian

Remark 6.28. The maps $\iota, \iota^{\text{rev}}$ of Remark 6.20 induce maps of ∞ -operads $\iota: \mathcal{LM}^{\otimes} \to \mathcal{LM}_{\text{inv}}^{\otimes}$ and $\iota^{\text{rev}}: \mathcal{RM}^{\otimes} \to \mathcal{LM}_{\text{inv}}^{\otimes}$.

Remark 6.29. The maps $\iota, \iota^{\text{rev}}$ of Remark 6.23 induce maps of ∞ -operads $\iota, \iota^{\text{rev}} \colon \mathcal{BM}^{\otimes} \to \text{BM}_{\sigma}^{\otimes}$. There are canonical identifications $\iota \circ \text{rev} \simeq \sigma \circ \iota^{\text{rev}}$ where σ is the involution on $\text{BM}_{\sigma}^{\otimes}$ induced by Remark 6.22 and rev is the involution on \mathcal{BM}^{\otimes} of [Lur17, Construction 4.6.3.1].

Remark 6.30. There are canonical maps of operads $\mathcal{LM}_{\mathrm{inv}}^{\otimes} \to \mathcal{BM}_{\mathrm{inv}}^{\otimes}$ and $\mathcal{RM}_{\mathrm{inv}}^{\otimes} \to \mathcal{BM}_{\mathrm{inv}}^{\otimes}$ sending \mathfrak{a} to \mathfrak{a}_{ℓ} , resp. \mathfrak{a}_{r} and making the diagram

commute, where rev is (an involutive version of) the reversal involution of [Lur17, Remark 4.6.3.2].

Definition 6.31. Let $\mathcal{C}^{\otimes} \to \operatorname{Assoc}_{\sigma}^{\otimes}$ and $\mathcal{D}^{\otimes} \to \operatorname{Assoc}_{\sigma}^{\otimes}$ be fibrations of ∞ -operads and let \mathcal{M} be an ∞ -category. Suppose given a fibration of ∞ -operads $q \colon \mathcal{O}^{\otimes} \to \mathcal{L}\mathcal{M}_{\operatorname{inv}}^{\otimes}$ together with equivalences $\mathcal{O}_{\mathfrak{a}}^{\otimes} \simeq \mathcal{C}^{\otimes}$ and $\mathcal{O}_{\mathfrak{m}}^{\otimes} \simeq \mathcal{M}$. Let $L^{\sigma}\operatorname{Mod}(\mathcal{M})$ denote the ∞ -category $\operatorname{Alg}_{/\mathcal{L}\mathcal{M}_{\operatorname{inv}}}(\mathcal{O})$. We will refer to $L^{\sigma}\operatorname{Mod}(\mathcal{M})$ as the ∞ -category of left hermitian module objects of \mathcal{M} .

Suppose given a fibration of ∞ -operads $q: \mathcal{O}^{\otimes} \to \mathcal{BM}_{\mathrm{inv}}^{\otimes}$ together with equivalences $\mathcal{O}_{\mathfrak{a}_{\ell}}^{\otimes} \simeq \mathcal{C}^{\otimes}$, $\mathcal{O}_{\mathfrak{a}_{R}}^{\otimes} \simeq \mathcal{D}^{\otimes}$ and $\mathcal{O}_{\mathfrak{m}}^{\otimes} \simeq \mathcal{M}$. Let ${}^{\sigma}\mathrm{Mod}(\mathcal{M})$ denote the ∞ -category $\mathrm{Alg}_{/\mathcal{BM}_{\mathrm{inv}}}(\mathcal{O})$. We will refer to ${}^{\sigma}\mathrm{Mod}(\mathcal{M})$ as the ∞ -category of hermitian bimodule objects of \mathcal{M} . Composition with the inclusions $\mathrm{Assoc}_{\sigma}^{\otimes} \to \mathcal{BM}_{\mathrm{inv}}^{\otimes}$ induces a categorical fibration

$${}^{\sigma}\mathrm{Mod}\left(\mathcal{M}\right) = \mathrm{Alg}_{/\mathcal{BM}_{\mathrm{inv}}}\left(\mathcal{O}\right) \to \mathrm{Alg}_{\mathrm{Assoc}_{\sigma}}\left(\mathcal{C}\right) \times \mathrm{Alg}_{\mathrm{Assoc}_{\sigma}}\left(\mathcal{D}\right).$$

If A is an $\operatorname{Assoc}_{\sigma}$ -algebra object of \mathcal{C} , we let ${}^{\sigma}\operatorname{Mod}_{A}(\mathcal{M})$ denote the fiber ${}^{\sigma}\operatorname{Mod}(\mathcal{M}) \times_{\operatorname{Alg}_{\operatorname{Assoc}_{\sigma}}(\mathcal{C})} \{A\}$. We will refer to ${}^{\sigma}\operatorname{Mod}_{A}(\mathcal{M})$ as the ∞ -category of hermitian A-bimodule objects of \mathcal{M} .

Definition 6.32. Let $q: \mathcal{O}^{\otimes} \to \mathcal{BM}_{\text{inv}}^{\otimes}$ be a fibration of ∞ -operads. We say that q exhibits $\mathcal{O}_{\mathfrak{m}}$ as \mathbb{E}_{σ} -bitensored over $\mathcal{O}_{\mathfrak{a}_{\ell}}$ and $\mathcal{O}_{\mathfrak{a}_{r}}$ if q is a cocartesian fibration.

Remark 6.33. Let $q: \mathcal{O}^{\otimes} \to \mathcal{BM}_{\mathrm{inv}}^{\otimes}$ be a cocartesian fibration of ∞ -operads. Then q is classified by a map $\chi: \mathcal{BM}_{\mathrm{inv}}^{\otimes} \to \mathrm{Cat}_{\infty}$. By Remark 6.29, we can think of q as giving two \mathbb{E}_{σ} algebras \mathcal{C} , \mathcal{D} in Cat_{∞} with an ∞ -category \mathcal{M} equipped with both the structure of a \mathcal{C} - \mathcal{D} -bimodule (equivalently, the structure of a left $\mathcal{C} \times \mathcal{D}_{\mathrm{rev}}$ -module) and of a \mathcal{D} - \mathcal{C} -bimodule, and an autoequivalence $\sigma_{\mathcal{M}} \colon \mathcal{M} \simeq \mathcal{M}$ of order two which is linear with respect to the autoequivalence $\mathcal{C} \times \mathcal{D}_{\mathrm{rev}} \xrightarrow{\mathrm{flip}} \mathcal{D}_{\mathrm{rev}} \times \mathcal{C} \xrightarrow{\sigma_{\mathcal{D}}^{-1} \times \sigma_{\mathcal{C}}} \mathcal{D} \times \mathcal{C}_{\mathrm{rev}}$.

Remark 6.34. Let $q: \mathcal{O}^{\otimes} \to \mathcal{BM}_{\mathrm{inv}}^{\otimes}$ be a cocartesian fibration of ∞ -operads. Consider a hermitian module object $F: \mathcal{BM}_{\mathrm{inv}}^{\otimes} \to \mathcal{O}^{\otimes}$. By Remark 6.30, F determines an associative algebra A of \mathcal{C} with an equivalence of algebras $\sigma_A: A \simeq \sigma_{\mathcal{C}}(A)^{\mathrm{rev}}$ and an associative algebra B of \mathcal{D} with an equivalence of algebras $\sigma_B: B \simeq \sigma_{\mathcal{D}}(B)^{\mathrm{rev}}$, an object $M \in \mathcal{M}$ so that M (resp. $\sigma_{\mathcal{M}}(M)$) is equipped with the structure of a A-B-bimodule (resp. $\sigma_{\mathcal{D}}(B)$ - $\sigma_{\mathcal{C}}(A)$ -bimodule). Furthermore, we have an equivalence $\sigma_M: M \simeq \sigma_{\mathcal{M}}(M)$ which is linear with respect to the equivalence $A \otimes B \xrightarrow{\mathrm{flip}} B \otimes A \xrightarrow{\sigma_B^{-1} \otimes \sigma_A} \sigma_{\mathcal{D}}(B)^{\mathrm{rev}} \otimes \sigma_{\mathcal{C}}(A)^{\mathrm{rev}}$.

[L: when $\mathcal{C} = \mathcal{D}$ and $\sigma_{\mathcal{M}}$ and $\sigma_{\mathcal{C}}$ are both the identity and A = B, I think this recovers the "module with involution"

L: when $C = \mathcal{D}$ and $\sigma_{\mathcal{M}}$ and $\sigma_{\mathcal{C}}$ are both the identity and A = B, I think this recovers the "module with involution" from [Cal+20, §3.1].

Construction 6.35. Define a functor MCut: $\Delta_{\sigma}^{\text{op}} \to \mathcal{RM}_{\text{inv}}^{\otimes}$:

- For each ([n], s), we have $\mathrm{MCut}([n], s) = \langle n+1 \rangle \simeq \mathrm{RCut}_0([n])$ where RCut is from [Lur17, Construction 4.8.4.4].
- Given a morphism $\alpha \colon ([n], s) \to ([m], t)$, the associated morphism $\mathrm{MCut}([m], t) \to \mathrm{MCut}([n], s)$ consists of
 - On underlying finite pointed sets $\langle m+1 \rangle \rightarrow \langle n+1 \rangle$, MCut agrees with (the reverse of) that appearing in [Lur17, Construction 4.2.2.6]

L: Lurie gives this a name (Definition 4.2.1.12 weakly enriched)—not sure what to call this. something bienriched?

L: maybe this overloaded notation is not good. I'm running out of ideas.

- Identifying the cut $\{k \mid k < j\} \sqcup \{k \mid k \geq j\}$ with the morphism j - 1 < j, we may regard $s: \langle n+1 \rangle^{\circ} \to \{\pm 1\}$ and likewise $t: \langle m+1 \rangle^{\circ} \to \{\pm 1\}$. Define $u: \mathrm{MCut}(\alpha)^{-1} (\langle n+1 \rangle^{\circ}) \to \{\pm 1\}$ to be the unique function so that $u(j)t(j) = s(\mathrm{MCut}(\alpha)(j))$.

L: check later

Remark 6.36. We can identify $\operatorname{Assoc}_{\sigma}^{\otimes}$ with the full subcategory of $\mathcal{RM}_{\operatorname{inv}}^{\otimes}$ spanned by objects of the form $(\langle n \rangle, \langle n \rangle^{\circ})$. We can regard Construction 6.10 as defining a functor $\Delta_{\sigma}^{\operatorname{op}} \to \mathcal{RM}_{\operatorname{inv}}^{\otimes}$. For each $([n], s) \in \Delta_{\sigma}^{\operatorname{op}}$, there is a map of sets $\theta \colon \operatorname{MCut}([n], s) \to \operatorname{Cut}([n], s)$ defined as in [Lur17, Remark 4.2.2.8]. Concretely, on underlying pointed sets, θ takes the form

L: check that the signs s work out!

$$\theta \colon \langle n+1 \rangle \to \langle n \rangle$$

$$k \mapsto \begin{cases} k-1 & \text{if } k > 0 \\ * & \text{if } k = 0, *. \end{cases}$$

This construction determines a morphism γ in the ∞ -category Fun $(\Delta_{\sigma}^{op}, \mathcal{RM}_{inv}^{\otimes})$, or equivalently a map $\gamma \colon \Delta_{\sigma}^{op} \times \Delta^{1} \to \mathcal{RM}_{inv}^{\otimes}$.

Lemma 6.37. The morphism $\gamma \colon \Delta_{\sigma}^{op} \times \Delta^{1} \to \mathcal{RM}_{inv}^{\otimes}$ defined in Remark 6.36 exhibits $\Delta_{\sigma}^{op} \times \Delta^{1}$ as an approximation to the ∞ -operad $\mathcal{RM}_{inv}^{\otimes}$.

Definition 6.38. Let $q: \mathcal{O}^{\otimes} \to \mathcal{RM}_{\mathrm{inv}}^{\otimes}$ be a fibration of ∞ -operads, so q exhibits $\mathcal{M} := \mathcal{O}_{\mathfrak{m}}^{\otimes}$ as weakly bi-enriched over $\mathcal{O}_{\mathfrak{a}}^{\otimes}$. Let γ be as in Remark 6.36. Let $R^{\sigma}\mathrm{Mod}^{\mathbb{A}_{\infty}^{\sigma}}(\mathcal{M})$ denote the full subcategory of $\mathrm{Fun}_{\mathcal{RM}_{\mathrm{inv}}^{\otimes}}\left(\Delta_{\sigma}^{\mathrm{op}} \times \Delta^{1}, \mathcal{O}^{\otimes}\right)$ spanned by those maps $f: \Delta_{\sigma}^{\mathrm{op}} \times \Delta^{1} \to \mathcal{O}^{\otimes}$ satisfying

- 1. The restriction of f to $\Delta_{\sigma}^{\text{op}} \times \{1\}$ belongs to $\text{Alg}_{\mathbb{A}_{\infty}^{\sigma}}(\mathcal{O})$ of Definition 6.15
- 2. If α : $([m], s) \to ([n], t)$ so that $\alpha(0) = 0$, then the induced map $f([m], s, 0) \to f([n], t, 0)$ is an inert map in \mathcal{O}^{\otimes}
- 3. for each object ([n], s) in $\Delta_{\sigma}^{\text{op}}$, the induced map $f([n], s, 0) \to f([n], s, 1)$ is an inert map in \mathcal{O}^{\otimes}

Example 6.39. Let $\mathcal{C}^{\otimes} \to \mathcal{RM}^{\otimes}$ be a fibration of ∞ -operads. Restriction along the map of ∞ -operads $\mathcal{RM}_{\mathrm{inv}}^{\otimes} \to \mathrm{Assoc}_{\sigma}^{\otimes}$ induced by Remark 6.27 induces a map $\mathbb{E}_{\sigma} \mathrm{Alg}(\mathcal{C}) \to \mathcal{R}^{\sigma} \mathrm{Mod}(\mathcal{C})$ which is a section of the projection map $\mathcal{R}^{\sigma} \mathrm{Mod}(\mathcal{C}) \to \mathbb{E}_{\sigma} \mathrm{Alg}(\mathcal{C})$.

L: see Example 4.2.1.17 of higher algebra

Notation 6.40. Let $q: \mathcal{O}^{\otimes} \to \mathcal{RM}_{\mathrm{inv}}^{\otimes}$ be a fibration of ∞ -operads, so q exhibits $\mathcal{M} := \mathcal{O}_{\mathfrak{m}}^{\otimes}$ as weakly bi-enriched over $\mathcal{O}_{\mathfrak{q}}^{\otimes}$. Define a new simplicial set $\overline{\mathcal{M}}^{\otimes}$ by the following universal property

L: fibration?

L: this might

be off-revisit later!

$$\hom_{\mathrm{sSet}_{/\Delta^{\mathrm{op}}_{\sigma}}}\left(K, \overline{\mathcal{M}}^{\circledast}\right) \simeq \hom_{\mathrm{sSet}_{/\mathcal{R}\mathcal{M}^{\otimes}_{\mathrm{int}}}}\left(K \times \Delta^{1}, \mathcal{O}^{\otimes}\right) \,.$$

Here we regard $K \times \Delta^1$ as a simplicial set over $\mathcal{RM}_{\text{inv}}^{\otimes}$ via the composite $K \times \Delta^1 \to \Delta_{\sigma}^{\text{op}} \times \Delta^1 \xrightarrow{\gamma} \mathcal{RM}_{\text{inv}}^{\otimes}$ where γ is from Remark 6.36.

Unwinding definitions, we see that a vertex in $\overline{\mathcal{M}}^{\otimes}$ lying over an object $([n], s : \{1, \dots, n\} \to \{\pm 1\}) \in \Delta_{\sigma}^{\text{op}}$ corresponds to a morphism α in \mathcal{O}^{\otimes} whose image in $\mathcal{RM}_{\text{inv}}^{\otimes}$ is the map $(\langle n+1\rangle, \{0\}) \to (\langle n\rangle, \varnothing)$. Now let \mathcal{M}^{\otimes} denote the full simplicial subset of $\overline{\mathcal{M}}^{\otimes}$ spanned by those vertices for which α is inert.

Remark 6.41. Let $q: \mathcal{O}^{\otimes} \to \mathcal{RM}_{\mathrm{inv}}^{\otimes}$ be a fibration of ∞ -operads, so q exhibits $\mathcal{M} := \mathcal{O}_{\mathfrak{m}}^{\otimes}$ as weakly enriched over $\mathcal{O}_{\mathfrak{a}}^{\otimes}$. By [Lur09, Example 4.3.1.4 & Proposition 4.3.2.15], composition with the inclusion $\{0\} \to \Delta^1$ induces a trivial Kan fibration $\mathcal{M}^{\otimes} \xrightarrow{\sim} \mathcal{O}^{\otimes} \times_{\mathcal{RM}_{\mathrm{inv}}^{\otimes}} \Delta_{\sigma}^{\mathrm{op}}$. In particular, the fiber of \mathcal{M}^{\otimes} over an object $([n], s) \in \Delta_{\sigma}^{\mathrm{op}}$ is canonically equivalent to $\mathcal{M} \times \mathcal{C}^{\times n}$.

Finally, since q is a categorical fibration and categorical fibrations are closed under pullback and composition with trivial fibrations, q induces categorical fibrations $\mathcal{M}^{\circledast} \to \mathcal{C}^{\circledast} \to \Delta_{\sigma}^{\text{op}}$.

Lemma 6.42. Let $q \colon \mathcal{O}^{\otimes} \to \mathcal{RM}_{\mathrm{inv}}^{\otimes}$ be a cocartesian fibration of ∞ -operads, so q exhibits $\mathcal{M} := \mathcal{O}_{\mathfrak{m}}^{\otimes}$ as tensored over $\mathcal{O}_{\mathfrak{a}}^{\otimes}$. Then the associated functor $\mathcal{M}^{\circledast} \to \mathcal{C}^{\circledast}$ (Notation 6.12) is a locally coCartesian fibration.

Proposition 6.43. Let $q: \mathcal{O}^{\otimes} \to \mathcal{RM}_{\mathrm{inv}}^{\otimes}$ be a cocartesian fibration of ∞ -operads, so q exhibits $\mathcal{M} := \mathcal{O}_{\mathfrak{m}}^{\otimes}$ as tensored over $\mathcal{O}_{\mathfrak{a}}^{\otimes}$. Then precomposition with the functor MCut of Construction 6.35 induces an equivalence of ∞ -categories

$$R^{\sigma} \operatorname{Mod}(\mathcal{M}) \simeq \operatorname{Alg}_{/\mathcal{RM}_{\operatorname{inv}}}(\mathcal{O}) \xrightarrow{\sim} R^{\sigma} \operatorname{Mod}^{\mathbb{A}_{\infty}^{\sigma}}(\mathcal{M})$$
.

Proof. Combine Lemma 6.37 with [Lur17, Theorem 2.3.3.23].

L: Jacob
explains this
in a really
terse way–just
by citing Prop
4.3.2.15 of
HTT. It does
just follow
from definitions/observation
but there
are many
(for instance,
definition of

inert edge).

6.2 Part (b)

Proposition 6.44. Let C be an involutive monoidal ∞ -category and let \mathcal{M} be an ∞ -category which is bitensored over C. Let K be a simplicial set so that \mathcal{M} admits K-indexed limits, and let $\theta \colon R^{\sigma}\mathrm{Mod}(\mathcal{M}) \to \mathrm{Alg}^{\sigma}(C)$ be the forgetful functor. Then

L: This

statement is [Lur17,

Proposition

4.2.3.1] with some words

changed; no claim of originality here.

(1) For every commutative square

there exists a dashed arrow which is a θ -limit diagram.

(2) An arbitrary map $\overline{g} \colon K^{\triangleleft} \to R^{\sigma} \mathrm{Mod}(\mathcal{M})$ is a θ -limit diagram if and only if the induced map $K^{\triangleleft} \to \mathcal{M}$ is a limit diagram.

Proof.

Corollary 6.45. θ is a cartesian fibration, and a morphism $f: \Delta^1 \to R^{\sigma} \text{Mod}(\mathcal{M})$ is θ -cartesian if and only if the image of f in \mathcal{M} is an equivalence.

Corollary 6.46. Let C be an involutive monoidal ∞ -category and let \mathcal{M} be an ∞ -category which is bitensored over C. Let K be a simplicial set so that \mathcal{M} admits K-indexed limits, and let $\theta \colon R^{\sigma}\mathrm{Mod}(\mathcal{M}) \to \mathrm{Alg}^{\sigma}(C)$ be the forgetful functor. Let A be an involutive algebra object of C. Then

- (1) $R^{\sigma} \text{Mod}_A(\mathcal{M})$ admits K-indexed limits.
- (2) A diagram $K^{\triangleleft} \to R^{\sigma} \mathrm{Mod}_{A}(\mathcal{M})$ is a limit diagram if and only if the induced diagram $K^{\triangleleft} \to \mathcal{M}$ is a limit diagram.
- (3) Given a morphism $A \to B$ of involutive algebra objects of \mathcal{C} , the induced functor $R^{\sigma}\mathrm{Mod}_B(\mathcal{M}) \to R^{\sigma}\mathrm{Mod}_A(\mathcal{M})$ preserves K-indexed limits.

6.3 Towards (e)

 $\textbf{Construction 6.47. Define a functor Pr: LM}_{\rm inv}^{\otimes} \times RM_{\rm inv}^{\otimes} \to BM_{\rm inv}^{\otimes}.$

- (1) Let $(\langle m \rangle, S)$ be an object of $\mathbf{LM}_{\text{inv}}^{\otimes}$ and let $(\langle n \rangle, T)$ be an object of $\mathbf{RM}_{\text{inv}}^{\otimes}$. Let $\Pr((\langle m \rangle, S), (\langle n \rangle, T)) = (X_*, c_-, c_+)$ where X_*, c_-, c_+ are described in [Lur17, Construction 4.3.2.1(1)].
- (2) Let (α, λ) : $(\langle m \rangle, S) \to (\langle m' \rangle, S')$ be a morphism in $\mathbf{LM}_{\text{inv}}^{\otimes}$ and let (β, μ) : $(\langle n \rangle, T) \to (\langle n' \rangle, T')$ be a morphism in $\mathbf{RM}_{\text{inv}}^{\otimes}$. Write $\Pr((\langle m' \rangle, S'), (\langle n' \rangle, T')) = (X'_*, c'_-, c'_+)$. Then $\Pr((\alpha, \lambda), (\beta, \mu))$ is the unique morphism in $\mathbf{BM}_{\text{inv}}^{\otimes}$ lying over the map $\gamma \colon X_* \to X'_*$ described by

(i)
$$\gamma(i,j) = \begin{cases} (\alpha(i),\beta(j)) & \text{if } \alpha(i) \in \langle m' \rangle^{\circ}, \beta(j) \in \langle n' \rangle^{\circ} \\ * & \text{otherwise.} \end{cases}$$

- (ii) Let $i' \in \langle m' \rangle^{\circ} \setminus S'$ and $j' \in T'$ so $j' = \beta(j)$ for a unique $j \in T$. Then the linear ordering on $\gamma^{-1}(i',j') = \alpha^{-1}(i') \times \{j\}$ is (a) determined by the map α if $\mu(j) = 1$, and (b) it is the reverse of the linear ordering determined by α if $\mu(j) = -1$. The map $\gamma^{-1}(i',j') = \alpha^{-1}(i') \times \{j\} \to \{\pm 1\}$ is determined by λ if $\mu(j) = 1$ and it is $-\lambda$ if $\mu(j) = -1$.
- (iii) Likewise if $i' \in S'$ and $j' \in \langle n' \rangle^{\circ} \setminus T'$
- (iv) Let $i' \in S'$ and $j' \in T'$ so $i' = \alpha(i)$ for a unique $i \in S$ and $j' = \beta(j)$ for a unique $j \in T$. Then $\gamma^{-1}\{(i',j')\} = \{i\} \times \beta^{-1}\{(j')\} \sqcup_{\{(i,j)\}} \alpha^{-1}\{(i')\} \times \{j\}$. Define $\gamma^{-1}\{(i',j')\} \to \{\pm 1\}$ by $\lambda \times \mu$. Endow $\gamma^{-1}\{(i',j')\}$ with the linear ordering from [Lur17, Construction 4.3.2.1(2)(iv)] if $\lambda(i) = \mu(j)$ and endow $\gamma^{-1}\{(i',j')\}$ with the opposite ordering if $\lambda(i) \neq \mu(j)$ (or equivalently, if $\lambda(i) = -\mu(j)$).

Write Pr for the induced map $\mathcal{LM}_{\sigma}^{\otimes} \times \mathcal{RM}_{\sigma}^{\otimes} \to \mathcal{BM}_{\sigma}^{\otimes}$ of ∞ -categories.

Construction 6.48. Let $q: \mathcal{C}^{\otimes} \to \mathcal{BM}_{\sigma}^{\otimes}$ be a fibration of ∞ -operads. We define a map of simplicial sets $\overline{L^{\sigma}\mathrm{Mod}}(\mathcal{C}_{\mathfrak{m}})^{\otimes} \to \mathcal{RM}_{\sigma}^{\otimes}$ by the universal property: For any simplicial set $K \to \mathcal{RM}_{\sigma}^{\otimes}$, there is a bijection

$$\mathrm{Hom}_{\mathrm{sSet}_{/\mathcal{RM}_{\sigma}^{\otimes}}}\left(K,\overline{L^{\sigma}\mathrm{Mod}}(\mathcal{C}_{\mathfrak{m}})^{\otimes}\right) \simeq \mathrm{Hom}_{\mathrm{sSet}_{/\mathcal{BM}_{\sigma}^{\otimes}}}\left(\mathcal{LM}_{\sigma}^{\otimes} \times K,\mathcal{C}^{\otimes}\right)\,.$$

Let $L^{\sigma}\mathrm{Mod}(\mathcal{C}_{\mathfrak{m}})^{\otimes}$ denote the full simplicial subset of $\overline{L^{\sigma}\mathrm{Mod}}(\mathcal{C}_{\mathfrak{m}})^{\otimes}$ spanned by those vertices which correspond to a vertex $X \in \mathcal{RM}_{\sigma}^{\otimes}$ and a functor $F \colon \mathcal{LM}_{\sigma}^{\otimes}\{X\} \to \mathcal{BM}_{\sigma}^{\otimes}$ which takes inert morphisms in $\mathcal{LM}_{\sigma}^{\otimes}$ to inert morphisms in $\mathcal{BM}_{\sigma}^{\otimes}$.

Remark 6.49. The composite $\mathcal{LM}_{\sigma}^{\otimes} \times \{\mathfrak{m}\} \hookrightarrow \mathcal{LM}_{\sigma}^{\otimes} \times \mathcal{RM}_{\sigma}^{\otimes} \xrightarrow{\operatorname{Pr}} \mathcal{BM}_{\sigma}^{\otimes}$ agrees with the inclusion of Remark 6.30. Taking $K \to \mathcal{RM}_{\sigma}^{\otimes}$ to be the inclusion $\{\mathfrak{m}\} \hookrightarrow \mathcal{RM}_{\sigma}^{\otimes}$, we have an isomorphism of simplicial sets $L^{\sigma}\operatorname{Mod}(\mathcal{C}_{\mathfrak{m}})^{\otimes} \times_{\mathcal{RM}_{\sigma}^{\otimes}} \{\mathfrak{m}\} \simeq L^{\sigma}\operatorname{Mod}(\mathcal{C}_{\mathfrak{m}})$ where $L^{\sigma}\operatorname{Mod}(\mathcal{C}_{\mathfrak{m}})$ is the ∞ -category of left modules associated to the fibration of ∞ -operads $\mathcal{C}^{\otimes} \times_{\mathcal{BM}_{\sigma}^{\otimes}} \mathcal{LM}_{\sigma}^{\otimes} \to \mathcal{LM}_{\sigma}^{\otimes}$.

Proposition 6.50. Let $q: \mathcal{C}^{\otimes} \to \mathcal{BM}_{\sigma}^{\otimes}$ be a fibration of ∞ -operads. Then

- (1) the induced map $p: L^{\sigma} \mathrm{Mod}(\mathcal{C}_{\mathfrak{m}})^{\otimes} \to \mathcal{RM}_{\sigma}^{\otimes}$ is a fibration of ∞ -operads
- (2) a morphism α in $L^{\sigma} \mathrm{Mod}(\mathcal{C}_{\mathfrak{m}})^{\otimes}$ is inert if and only if $p(\alpha)$ is inert in $\mathcal{RM}_{\sigma}^{\otimes}$ and for all $X \in \mathcal{LM}_{\sigma}$, $\alpha(X)$ is an inert morphism in \mathcal{C}^{\otimes} .
- (3) if q is a cocartesian fibration of ∞ -operads, then so is p
- (4) if q is a cocartesian fibration of ∞ -operads, a morphism α in $L^{\sigma}\mathrm{Mod}(\mathcal{C}_{\mathfrak{m}})^{\otimes}$ is p-cocartesian if and only if, for all $X \in \mathcal{LM}_{\sigma}^{\otimes}$, $\alpha(X)$ is q-cocartesian in \mathcal{C}^{\otimes} .

Proof. Similar to [Lur17, Proposition 4.3.2.5].

Theorem 6.51. Let C be an \mathbb{E}_{σ} -monoidal ∞ -category, and let A be an \mathbb{E}_{σ} -algebra in C. Then $L^{\sigma}\mathrm{Mod}_A(C)$ is right \mathbb{E}_{σ} -tensored over C.

6.4 Endomorphisms

Let \mathcal{C} be an \mathbb{E}_{σ} -monoidal ∞ -category, and write $\sigma_{\mathcal{C}} \colon \mathcal{C} \xrightarrow{\sim} \mathcal{C}$ for its involution. Suppose $M \in \mathcal{C}$ is an object equipped with an equivalence $\sigma_M \colon M \simeq \sigma_{\mathcal{C}}(M)$. By [Lur17, §4.7.1], endomorphisms of M can be regarded as an \mathbb{E}_1 -algebra in $u(\mathcal{C})^{\otimes}$, where u is from Remark 6.8. Now σ_M induces an equivalence $\operatorname{End}_{\mathcal{C}}(M) \simeq \operatorname{End}_{\mathcal{C}}(\sigma_{\mathcal{C}}(M))$ On the other hand, $\sigma_{\mathcal{C}}$ induces an equivalence $\operatorname{End}_{\mathcal{C}}(\sigma_{\mathcal{C}}(M)) \simeq \operatorname{End}_{\mathcal{C}}(M)^{\operatorname{rev}}$. In particular, for any ∞ -category \mathcal{M} left \mathbb{E}_{σ} -tensored over \mathcal{C} and any object $M \in \mathcal{M}$ which is fixed by the involution on \mathcal{M} , we expect the endomorphisms of M to admit the structure of an \mathbb{E}_{σ} -algebra in \mathcal{C} .

To this end, we will define an ∞ -category of objects acting on M, show that it has an \mathbb{E}_{σ} -monoidal structure, and locate endomorphisms of M as the final object in this ∞ -category. Informally, we may define a category $\mathcal{C}[M]$ whose objects consist of either

- pairs (C, η) where $C \in \mathcal{C}$ and $\eta \colon C \otimes M \to M$ is a morphism in \mathcal{M} ; or
- pairs (C', ξ) where $C' \in \mathcal{C}$ and $\xi \colon \sigma_{\mathcal{M}}(M) \otimes C' \to \sigma_{\mathcal{M}}(M)$.

The monoidal structure is as described in [Lur17, §4.7.1]. Note that given an object (C, η) , the involution $\sigma_{\mathcal{M}}$ on \mathcal{M} sends η to the map $\sigma_{\mathcal{M}}(C \otimes M) \simeq \sigma_{\mathcal{M}}(M) \otimes \sigma_{\mathcal{C}}(C) \to \sigma_{\mathcal{M}}(M)$. This is the involution on $\mathcal{C}[M]$.

Definition 6.52. Let $p: \mathcal{M}^{\circledast} \to \Delta^1 \times \Delta^{\text{op}}_{\sigma}$ exhibit $\mathcal{M}^{\circledast}$ as weakly enriched over $\mathcal{C}^{\circledast}$. An *enriched morphism* of \mathcal{M} is a diagram

$$M \xleftarrow{\alpha} X \xrightarrow{\beta} N$$

satisfying either

• $p(\alpha)$ is the morphism $(0,[1],c_1) \to (0,[0])$ in $\Delta_{\sigma}^{\text{op}}$ determined by the embedding $[0] \simeq \{0\} \hookrightarrow [1]$ and $c_1:\{1\} \to \{\pm 1\}$ is the constant function at +1, and

• the map β is inert, and $p(\beta)$ is the morphism $(0,[1],c_1) \to (0,[0])$ in $\Delta^1 \times \Delta^{op}_{\sigma}$ determined by the embedding $[0] \simeq \{1\} \hookrightarrow [1]$

or

- $p(\alpha)$ is the morphism $(0, [1], c_{-1}) \to (0, [0])$ in $\Delta_{\sigma}^{\text{op}}$ determined by the embedding $[0] \simeq \{0\} \hookrightarrow [1]$ and $c_{-1} \colon \{1\} \to \{\pm 1\}$ is the constant function at -1.
- the map β is inert, and $p(\beta)$ is the morphism $(0,[1],c_{-1}) \to (0,[0])$ in $\Delta^1 \times \Delta^{op}_{\sigma}$ determined by the embedding $[0] \simeq \{1\} \hookrightarrow [1]$

Let $\operatorname{Str} \mathcal{M}^{\operatorname{en}}_{[1]}$ denote the full subcategory of $\operatorname{Fun}_{\Delta^1 \times \Delta^{\operatorname{op}}_{\sigma}} \left(\Lambda^2_0, \mathcal{M}^{\circledast} \right)$ spanned by the enriched morphisms of \mathcal{M} . Note that there are two evaluation functors $\operatorname{Str} \mathcal{M}^{\operatorname{en}}_{[1]} \to \mathcal{M}$. Given $M \in \mathcal{M}$, write $\mathcal{C}[M] := \{M\} \times_{\mathcal{M}} \operatorname{Str} \mathcal{M}^{\operatorname{en}}_{[1]} \times_{\mathcal{M}} \{M\}$ and refer to it as the endomorphism ∞ -category of M.

Definition 6.53. enriched n-string

Proposition 6.54 (Segal condition).

7 Categorification and structure

In the course of thinking about the 'involutive' generalization of the statement that given an \mathbb{E}_1 -algebra, its category of modules is \mathbb{E}_0 (and conversely, that given an object in a stable ∞ -category, that its endomorphism spectrum is an \mathbb{E}_1 -algebra), I have run up against some questions.

Question 7.1. • Can we sidestep an involutive version of the construction of endomorphism categories of [Lur17, §4.7.1]?

• Suppose \mathcal{C} is a monoidal ∞ -category and \mathcal{M} is an ∞ -category which is enriched over \mathcal{C} in the sense of [Lur17, §4.2.1]. The opposite category \mathcal{M}^{op} is enriched over \mathcal{C} by [Hei23, §10].

References

- [Cal+20] Baptiste Calmès, Emanuele Dotto, Yonatan Harpaz, Fabian Hebestreit, Markus Land, Kristian Moi, Denis Nardin, Thomas Nikolaus, and Wolfgang Steimle. Hermitian K-theory for stable ∞-categories I: Foundations. 2020. DOI: 10.48550/ARXIV.2009.07223. URL: https://arxiv.org/abs/2009.07223.
- [Hei23] Hadrian Heine. An equivalence between enriched ∞-categories and ∞-categories with weak action. 2023. arXiv: 2009.02428 [math.AT]. URL: https://arxiv.org/abs/2009.02428.
- [Lur09] Jacob Lurie. *Higher topos theory*. Vol. 170. Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009, pp. xviii+925. ISBN: 978-0-691-14049-0; 0-691-14049-9. DOI: 10.1515/9781400830558. URL: https://doi.org/10.1515/9781400830558.
- [Lur17] Jacob Lurie. *Higher algebra*. Manuscript available at https://www.math.ias.edu/~lurie/papers/HA.pdf. 2017.