# All rights are reserved by 合为 (103) Fudan University

Introduction to Cryptography

Judan University



#### Outline-Modern Block Ciphers

- now look at modern block ciphers
- one of the most widely used types of cryptographic algorithms
- provide confidential/authentication services
- focus on DES (Data Encryption Standard)
- to illustrate block cipher design principles

#### This has are reserved by Li Jingtao, and content may not be reproduced, downloaded, disseminated, published, or transferred in any form or by any means

#### Review: Symmetric Cipher Model





**Monoalphabetic Cipher** 

- reserved by Li Jingtao @ Fudan University Playfair • Vigenère Cipher Li Jingtao @ Fudan University



#### Review: Product Ciphers

- ciphers using substitutions or transpositions are not secure because of language characteristics
- hence consider using several ciphers in succession to make harder, but:
  - two substitutions make a more complex substitution
  - two transpositions make more complex transposition
  - but a substitution followed by a transposition makes a new much harder cipher
- this is bridge from classical to modern ciphers

#### Block vs Stream Ciphers

- block ciphers process messages in blocks, each of which is then en/decrypted
- like a substitution on very big characters
  - -64-bits or more
- stream ciphers process messages a bit or byte at a time when en/decrypting
- many current ciphers are block ciphers
- broader range of applications



#### **Block Cipher Principles**

- most symmetric block ciphers are based on a Feistel Cipher Structure
- needed since must be able to decrypt ciphertext to recover messages efficiently
- block ciphers look like an extremely large substitution
- would need table of 2<sup>64</sup> entries for a 64-bit block
- instead create from smaller building blocks
- using idea of a product cipher



#### Ideal Block Cipher



## Ideal Block Cipher

|         | Plaintext             | Ciphertext |
|---------|-----------------------|------------|
| Al      | 0000                  | 1110       |
|         | 0001 ar               | 0100       |
|         | 0010                  | remon Ver  |
|         | 0011                  | 0001       |
|         | 0100                  | 0010       |
| Allri   | 0101                  | 1111       |
| THE THE | 3ht 0110              | 1011       |
|         | 0111 <sup>©</sup> I e | Ser 1000   |
|         | 1000                  | 0011 6     |
|         | 1001                  | 1010       |
|         | 1010                  | 0110       |
|         | 1011                  | 1100       |
|         | 1100                  | 0101       |
|         | 1101                  | 1001       |
|         | 1110                  | 0000       |
| 20.     | 1111                  | 0111       |

|          | Ciphertext | Plaintext        |
|----------|------------|------------------|
|          | 0000       | 1110             |
|          | 0001       | 0011             |
| 7        | 0010       | 0100             |
| by Li Ji | 0011       | 1000             |
| 71 11    | 18t0100    | 0001             |
|          | 0101       | UQ1100 -         |
|          | 0110       | 1010             |
|          | 0111       | 1111             |
| Li Jingt | 1000       | 0111             |
| Jingt    | 1001       | 1101             |
|          | 1010 U     | an 1001          |
|          | 1011       | 0110 <i>i</i> Ve |
|          | 1100       | 1011             |
|          | 1101       | 0010             |
|          | 1110       | 0000             |
|          | 1111       | 0101             |

The red TALL TIME

#### Ideal Block Cipher->Feistel

- Feistel proposed
  - We can approximate the ideal block cipher by product cipher;
- Develop a block cipher with a key length of k bits and a block length of n bits, allowing a total of  $2^k$  possible transformation Igtao @ Fudan University
  - Rather than  $2^n!$



#### Shannon and Substitution-Permutation Ciphers

- Claude Shannon introduced idea of substitutionpermutation (S-P) networks in 1949 paper
- form basis of modern block ciphers
- S-P nets are based on the two primitive cryptographic operations seen before: - substitution (S-box)
- provide confusion & diffusion of message & key

#### Confusion and Diffusion

- cipher needs to completely obscure statistical properties of original message
- a one-time pad does this
- more practically Shannon suggested combining S & P elements to obtain:
- diffusion dissipates statistical structure of plaintext over bulk of ciphertext
- confusion makes relationship between ciphertext and key as complex as possible



#### Shannon理论

- Shannon提出利用扰乱(Confusion)和扩散(Diffusion)交替的方法来构造乘积密码密码(SPN, Substitution Permutation Network:替代-置换网络)
- 目的为了使基于统计的分析方法不易或者不能实现
- Shannon理论是现代分组密码算法的基础

## SPN的基本操作

# All rights

#### Permutation



#### 16位网络SPN



#### SPN的雪崩效应



#### Feistel Cipher Structure

- Horst Feistel devised the feistel cipher
  - based on concept of invertible product cipher
- partitions input block into two halves
  - process through multiple rounds which
  - perform a substitution on left data half
  - based on round function of right half & subkey
  - then have permutation swapping halves
- implements Shannon's SPN concept





#### Feistel Cipher Design Elements

- block size
- key size
- number of rounds
- subkey generation algorithm
- round function
- Other consideration
  - Ther considers.

     fast software en/decryption

     traic

rights are reserved by Li Jingtao, and content may not be **Output (plaintext)**ynloaded, dis<mark>seminated, published, or transferred in any form or by any means.</mark>







## **Feistel** Cipher Decryption

#### Data Encryption Standard (DES)

- most widely used block cipher in world
- adopted in 1977 by NBS (now NIST)
  - as FIPS PUB 46
- encrypts 64-bit data using 56-bit key
- has widespread use
- has been considerable controversy over its security
  - NBS (National Bureau of Standards)
  - NIST (National Institute of Standards and Technology)



#### **DES History**

- IBM developed Lucifer cipher
  - by team led by Horst Feistel in late 60's
  - used 64-bit data blocks with 128-bit key
- then redeveloped as a commercial cipher with input from NSA and others
- in 1973 NBS issued request for proposals for a national cipher standard
- IBM submitted their revised Lucifer which was eventually accepted as the DES,1977



#### DES Design Controversy

- although DES standard is public
- was considerable controversy over design
  - in choice of 56-bit key (vs Lucifer 128-bit)
  - and because design criteria were classified
- subsequent events and public analysis show in fact design was appropriate
- use of DES has flourished
  - especially in financial applications
  - still standardised for legacy application use

#### DES Encryption Overview



**德里大學** 软件学院

LiJT

#### Initial Permutation, IP

- first step of the data computation
- IP reorders the input data bits
- even bits to LH half, odd bits to RH half
- quite regular in structure (easy in h/w)
- example:

```
example:

IP(675a6967 5e5a6b5a) = (ffb2194d 004df6fb)
```

#### **DES Round Structure**

- uses two 32-bit L & R halves
- as for any Feistel cipher can describe as:

$$L_i = R_{i-1}$$

$$A_{i} = L_{i-1} \oplus F(R_{i-1}, K_i)$$

- Jingtao @ Fudan Universit F takes 32-bit R half and 48-bit subkey:
  - expands R to 48-bits using perm E
  - adds to subkey using XOR
  - passes through 8 S-boxes to get 32-bit result
  - finally permutes using 32-bit perm P

#### **DES**Round Structure



#### DES Round Structure



復旦大學软件学院

LiJT

#### Substitution Boxes S

- have eight S-boxes which map 6 to 4 bits
- each S-box is actually 4 little 4 bit boxes
  - outer bits 1 & 6 (row bits) select one row of 4
- inner bits 2-5 (**col** bits) are substituted
  - result is 8 lots of 4 bits, or 32 bits
  - row selection depends on both data & key
    - feature known as autoclaving (autokeying)
  - example:
    - $-S(18\ 09\ 12\ 3d\ 11\ 17\ 38\ 39) = 5fd25e03$

#### DES Key Schedule

- forms subkeys used in each round
  - initial permutation of the key (PC1) which selects 56-bits in two 28-bit halves
- 16 stages consisting of:
  - rotating each half separately either 1 or 2 places depending on the key rotation schedule K
  - selecting 24-bits from each half & permuting them by PC2 for use in round function F
  - note practical use issues in h/w vs s/w



#### **DES** Decryption

- decrypt must unwind steps of data computation
- with Feistel design, do encryption steps again using subkeys in reverse order (SK16 ... SK1)
  - IP undoes final FP step of encryption
  - 1st round with SK16 undoes 16th encrypt round
  - **–** ....
  - 16th round with SK1 undoes 1st encrypt round
  - then final FP undoes initial encryption IP
  - thus recovering original data value



#### **Avalanche Effect**

- key desirable property of encryption algorithm
- where a change of one input or key bit results in changing approx half output bits
- making attempts to analysis by guessing keys impossible DES exhibits strong avalanche



# Avalanche Effect

|          | (a) Change in Plaintext |                              | (b) Ch    | ange in Key |                |            |
|----------|-------------------------|------------------------------|-----------|-------------|----------------|------------|
|          |                         | Number of bits               |           |             | Number of bits |            |
| A11      | Round                   | that differ                  |           | Round       | that differ    |            |
| 7 711    | 119/0/5                 | 1                            |           | 0           | 0              |            |
|          | 1                       | tre ref                      |           | 1           | 2              |            |
|          | 2                       | that differ  1 1 21 35 39 34 | dbyr.     | 2           | 14             |            |
|          | 3                       | 35                           |           | Jin 3 to    | 28             |            |
|          | 4                       | 39                           |           | 410         | (2) 32         |            |
| All righ | 5                       | 34                           |           | 5           | 30 dan         | University |
|          | Its 6 ra                | 32                           |           | 6           | 32             | versity    |
|          | 7                       | rese <sub>1</sub> 31         |           | 7           | 35             |            |
|          | 8                       | 29                           | y Li Jing | 8           | 34             |            |
|          | 9                       | 42                           |           | stag a      | 40             |            |
|          | 10                      | 44                           |           | 10          | Fu 38          |            |
|          | 11                      | 32                           |           | 11          | 31             | niversity  |
|          | 12                      | 30                           |           | 12          | 33             |            |
|          | 13                      | 30                           |           | 13          | 28             |            |
|          | 14                      | 26                           |           | 14          | 26             |            |
|          | 15                      | 29                           |           | 15          | 34             | 33         |
| 復旦大!     | 16                      | 34                           |           | 16          | 35             | LiJT       |

#### Strength of DES – Key Size

- 56-bit keys have  $2^{56} = 7.2 \times 10^{16}$  values
- brute force search looks hard
- recent advances have shown is possible
  - -in 1997 on Internet in a few months
    - in 1998 on dedicated h/w (EFF) in a few days
    - in 1999 above combined in 22hrs!
- still must be able to recognize plaintext
- must now consider alternatives to DES

## DES Design Criteria

- as reported by Coppersmith in [COPP94]
- 7 criteria for S-boxes provide for
  - non-linearity
- resistance to differential cryptanalysis
  - good confusion
- 3 criteria for permutation P provide for
  - increased diffusion



## Block Cipher Design

- basic principles still like Feistel's in 1970's
- number of rounds
  - more is better, exhaustive search best attack
- function f:
  - provides "confusion", is nonlinear, avalanche
  - have issues of how S-boxes are selected
- key schedule
  - complex subkey creation, key avalanche



#### AES

- clear a replacement for DES was needed
  - have theoretical attacks that can break it
  - have demonstrated exhaustive key search attacks
- can use Triple-DES but slow, has small blocks
- US NIST issued call for ciphers in 1997
- 15 candidates accepted in Jun 98
- 5 were shortlisted in Aug-99
- Rijndael was selected as the AES in Oct-2000
- issued as FIPS PUB 197 standard in Nov-2001



#### **AES** Requirements

- symmetric block cipher
- 128-bit data, 128/192/256-bit keys
- stronger & faster than Triple-DES
- active life of 20-30 years (+ archival use)
- provide full specification & design details
- both C & Java implementations
- NIST have released all submissions & unclassified analyses



#### Summary

- have considered:
  - block vs stream ciphers
  - block vs success.
     Feistel cipher design & structure
     *Landing*
- AllricDES

  - details erved by Li Jingtao @ block cipher design principles