Федеральное агентство по образованию Центральный оргкомитет Всероссийских олимпиад

XXXVII Всероссийская олимпиада школьников по физике

Заключительный этап

Экспериментальный тур

Методическое пособие

Воронеж, 2002/2003 уч.г.

Комплект задач подготовлен методической комиссией по физике Центрального оргкомитета Всероссийских олимпиад школьников Министерства образования и науки Российской Федерации Телефоны: (095) 408-80-77, 408-86-95.

E-mail: fizolimp@mail.ru (с припиской antispam к теме письма)

Авторы задач

9 класс 10 класс 11 класс 1. Москаленко А. 1. Тураева Т. 1. Федоров В. 2. Бовин И. 2. Тураева Т. 2. Татьянкин Б.

Общая редакция — Антипов С., Слободянин В.

Оформление и верстка — Ильин А.

При подготовке оригинал-макета использовалась издательская система \LaTeX 2 ε . © Авторский коллектив Подписано в печать 14 марта 2005 г. в 22:42.

141700, Московская область, г.Долгопрудный Московский физико-технический институт

Задача 1. Заводная машинка

Определите энергию, запасенную в пружине заводной игрушки (машинки), при фиксированном заводе.

Оборудование. Заводная игрушка известной массы, линейка, штатив с лапкой и муфтой, наклонная плоскость.

Примечание. Заводите игрушку так, чтобы ее пробег не превышал длину стола.

Задача 2. Плотности

Определить плотность груза (резиновой пробки) и рычага (деревянной рейки), используя предложенное оборудование.

Оборидование. Груз известной массы (пробка маркированная): рычаг (деревянная рейка); пилиндрический стакан на 200 - 250 мл; нитки (1 м); деревянная линейка, вода.

10 класс

Задача 1. Резиновый шарик

Определить массу резинового шарика.

Оборидование. Резиновый шарик, 2 булавки и 2 силовые кнопки, нить, миллиметровая бумага формата А5, маркированный груз.

Примечание. В качестве маркированного груза используется моток ниток с ярлычком, на котором указана масса ниток.

Задача 2. Неизвестная жидкость (1)

Определите показатель преломления неизвестной жидкости.

Оборидование. Тонкостенный химический стакан (пилиндрической формы), исследуемая жидкость, миллиметровая бумага, источник света (карманный фонарик), ножницы, скотч.

11 класс

Задача 1. Нить

Измерьте силу натяжения нити, прикрепленной к столу в точках A и B, с подвешенным к ней посередине грузом. Необходимо придумать два способа измерения: с использованием часов и без использования часов.

Примечание. Длину верхней нити и положение точек A и B задают организаторы олимпиады.

Оборудование. Закрепленная силовыми кнопками в точках A и B нить, груз известной массы m, кусок нити длиной 1 м.

Задача 2. Неизвестная жидкость (2)

Определите показатель преломления неизвестной жилкости.

Оборидование. Чашка Петри, плоскопараллельная пластина, скотч, линейка (треугольник), лист бумаги, неизвестная жидкость.

XXXVII Всероссийская олимпиада школьников по физике

Возможные решения 9 класс Задача 1. Заводная машинка

Установим наклонную плоскость пол углом около 20° от горизонтали. Для создания плавного перехода между поверхностями можно использовать лист бумаги. При движении по столу на машинку действует сила сопротивления F_1 , а при лвижении по наклонной плоскости — F_2 (приближенно эти силы можно считать постоянными).

Проделаем сдедующие опыты:

1)Заведем машинку (завод во всех опытах должен быть один и тот же). поставим ее на некотором расстоянии S_1 от наклонной плоскости и отпустим. Проехав расстояние S_1 по столу и S_2 по наклонной плоскости, машинка остановится на высоте h. При остановке она еще обладает некоторым остаточным заводом, который нужно учесть. Для этого нужно, придерживая ведущие колеса, поставить машинку на стол и отпустить. Она проедет некоторое расстояние S_3 . Тогда, воспользовавшись законом сохранения энергии, получаем:

$$E = F_1 S_1 + F_2 S_2 + mgh + E', \qquad E' = F_1 S_3,$$

где E — энергия, запасенная в пружине первоначально: E' — «остаточная» энергия, запасенная в пружине. Следовательно.

$$E = mgh + F_1(S_1 + S_3) + F_2S_2. (1)$$

2)Пустим машинку без завода вниз по наклонной плоскости с той же высоты h. Она проезжает путь S_4 по столу, тогда:

$$mgh = F_2 S_2 + F_1 S_4. (2)$$

3)Заведем машинку и пустим ее только по столу. Она проезжает расстояние S_0 , тогда:

$$E = F_1 S_0. (3)$$

Из (1), (2) и (3) получаем:

$$E = 2mgh \frac{S_0}{S_0 + S_4 - S_1 - S_3}.$$

Зная все входящие в формулу величины, вычисляем Е.

Задача 2. Плотности

На одной нити к концу рейки подвешивается груз, на другой крепится сама рейка (рис. 3). Вместо подвеса рычага можно использовать, в качестве опоры, край стола.

Применяя правило рычага (условие равновесия), имеем (рис. 4):

$$F_1 l_1 = F_2 l_2, \qquad F_2 = \frac{l_1}{l_2} F_1,$$
 (1)

где F_2 — сила тяжести рычага, F_1 — сила тяжести груза.

Повторим опыт, опустив груз в воду (рис. 5)

$$F_1 l'_1 - F_A l'_1 = F_2 l'_2.$$
 (2) Так как $F_1 = \rho_1 V_1 g$ и $F_A = \rho_{\text{воды}} V_1 g$, а $F_2 = F_1 l_1 / l_2$, то

$$\rho_1 = \frac{l_1' l_2}{l_1' l_2 - l_1 l_2'} \rho_{\text{воды}},$$

где ρ_1 — искомая плотность груза, $\rho_{\rm воды}=10^3~{\rm kr/m^3}.$ Плотность рычага (деревянной рейки)

$$\rho_2 = \frac{m_2}{V_2} = \frac{F_2}{V_2 g}. (3)$$

Так как $F_2 = F_1 l_1 / l_2$ и объем рычага $V_2 = abl$, где a и b — соотвественно ширина и толшина рейки, l — ее длина (a.b и l можно измерить непосредственно линейкой), то

$$\rho_2 = \frac{l_1 F_1}{g l_2 a b l}.\tag{4}$$

Толщину b более точно можно измерить следующим образом: слегка натягивая нить, намотать ее на рычаг (n витков, виток к витку). Общая длина намотанной нити L=2n(a+b). Отсюда

$$b = (L - 2na)/(2n),$$
 $V_2 = \frac{al(L - 2na)}{2n},$ $\rho_2 = \frac{2nl_1F_1}{al(L - 2na)l_2g}.$

Так как $F_1 = m_1 q = \rho_1 V_1 q$, то

 $F_2 = F_1 l_1 / l_2$, to

$$\rho_2 = \frac{2nl_1\rho_1V_1}{al(L-2na)l_2}.$$

10 класс Задача 1. Резиновый шарик

Закрепим силовые кнопки в краю стола на одной горизонтали. Прикрепим к ним кусок нити, так чтобы она свободно провисала. В шарик (масса m_x) и в моток ниток (масса m) воткнуть по булавке и с помощью коротких кусочков нити привязать их к провисающей нити так, как показано на рисунке (рис. 6). Необходимо добиться того. чтобы участок нити AB был горизонтальным. Из условия равновесия следует:

$$T\sin\alpha = T_x\sin\beta$$
,

$$T\cos\alpha = m_1g$$
,

$$T_x \cos \beta = m_x g.$$

Отсюда $m_x = m \operatorname{tg} \alpha / \operatorname{tg} \beta$. Легко видеть, что $\operatorname{tg} \alpha / \operatorname{tg} \beta = x/y$, следовательно

$$m_x = m \frac{y}{x}.$$

Длину отрезков x и y измеряем с помощью миллиметровой бумаги.

Задача 2. Неизвестная жидкость (1)

Наиболее точный метод измерения показателя преломления жидкости с помощью данного оборудования это метод толстой линзы. Снимем с фонарика отражатель, тогда при больших расстояниях фонарик можно рассматривать как точечный источник света S. Сделаем из миллиметровой бумаги экран и будем наблюдать на нем изображение S_1 спирали лампочки в толстой линзе. Экран

и фонарик должны быть расположены на столе так, чтобы они были одинаково удалены от стакана с водой (рис. 7). При этом ход лучей окажется симметричным, и внутри линзы параксиальные лучи пойдут парадлельно оси системы, то есть $\beta = \alpha$, следовательно

$$\beta = \frac{\alpha + \gamma}{n}, \qquad n = \frac{\alpha + \gamma}{\beta} = \frac{\alpha + \gamma}{\alpha} = 1 + \frac{\gamma}{\alpha}.$$

С другой стороны, $\gamma L = \alpha D/2$, где D — диаметр стакана, L — расстояние от стакана до источника, откуда n = 1 + D/(2L). Измерим расстояние x между источником и изображением: x = 2L + D. Тогда:

$$n = 1 + \frac{D}{x - D} \tag{1}.$$

В данном эксперименте, как видно из формулы (1), определяется величина n-1, что, очевидно, точнее определения величины n. Как известно, для тонкой линзы при симметричном ходе лучей расстояние между предметом и его

изображением минимально. Нетрудно убедиться, что то же самое выполняется для толстой линзы. Так как это минимум, то небольшие отклонения линзы от центра системы не вносят значительной ошибки в результат и особо точной установки стакана не требуется — это еще одно достоинсво данного метода. Оценим погрешность результата:

$$\mathscr{E}_n \approx \frac{\frac{D}{x - D} (\mathscr{E}_D + \frac{\Delta x + \Delta D}{x - D})}{1 + \frac{D}{x - D}}.$$
 (2)

Для измерения диаметра D необходимо обмотать стакан в несколько оборотов полоской миллиметрововй бумаги. Таким образом погрешность ΔD можно сделать весьма малой и в формуле (2) ею можно пренебречь:

$$\mathscr{E}_n \approx \frac{D\Delta x}{x(x-D)}.$$

Характерные значения: $x \approx 1$ см, $D \approx 4$ см, $\Delta x \approx 1$ мм, $\mathcal{E}_n \approx 2$ %.

11 класс Задача 1. Нить

В равновесии $mg=2T\sin\alpha$, где $\sin\alpha=(L_1-L_2)/L$. Отсюда, сила натяжения нити

$$T = \frac{mgL}{2(L_1 - L_2)} = \frac{mg}{2} \frac{L/L_2}{(L_1/L_2 - 1)}.$$

Длину L_2 целесообразно выбрать равной L и измерить L_1/L_2 , возбудив в системе колебания маятника. Частоты колебаний маятника вдоль осей x и y соответственно равны $\omega_x = \sqrt{g/L_1}$ и $\omega_y = \sqrt{g/L_2}$; при этом координаты x и y изменяются со временем по законам $x = A\cos\omega_x t$ и $y = B\cos\omega_y t$.

1. При наличии часов измеряют периоды колебаний маятника в направлениях x и y. Тогда

$$\frac{L_1}{L_2} = \left(\frac{T_x}{T_y}\right)^2 \qquad \text{if} \qquad T = \frac{mg}{2} \frac{1}{\left(\frac{T_x}{T_y}\right)^2 - 1}.$$

2. При отсутствии часов рассматривается маятник, совершающий колебания в произвольном направлении. В результате суперпозиции x и y колебаний груз будет описывать траекторию с изменяющимся направлением движения. Если отношение ω_x/ω_y является рациональной дробью вида X/Y, то после X циклов в направлении x и Y циклов в направлении y траектория замыкается. Тогда

$$\frac{L_1}{L_2} = \left(\frac{Y}{X}\right)^2 \qquad \text{и} \qquad T = \frac{mg}{2} \frac{1}{\left(\frac{Y}{X}\right)^2 - 1}.$$

XXXVII Всероссийская олимпиада школьников по физике

Задача 2. Неизвестная жидкость (2)

Обведите чашку Петри по листу бумаги и найдите центр получившейся окружности. Проведите через центр прямую MM'. Наклейте скотч на верхнее и нижнее основания призмы и нанесите на него метки A и B, не лежащие на одной нормали к этим основаниям. Установите призму на листе так, чтобы метка B совпала с центром окружности, и проведите на листе вдоль основания призмы линию MM'. Отметьте на листе точку A. Совместите чашку Петри с нарисованной окружностью и установите призму в чашке Петри так, как это делали в предыдущем пункте (рис. 9). Наклейте скотч на боковую поверхность чашки Петри. Нанесите метку C на скотч там, где видимое продолжение линии AB пересекает нарисованную окружность. Налейте в чашку Петри исследуемую жидкость и отметьте точку D на окружности, повторив предыдущую операцию. Согласно обобщенному закону Снедла:

$$n_{\text{стекла}} \sin \alpha = \sin \beta, \tag{1}$$

$$n_{\text{стекла}} \sin \alpha = n_{\text{жидкости}} \sin \gamma.$$
 (2)

Из (1) и (2) следует:

$$n_{\text{жидкости}} = \frac{\sin \beta}{\sin \gamma}.$$