CSC/ECE 570: Computer Networks

Course Introduction

Fall, 2024

Yuchen Liu, Computer Science, NCSU

Welcome to 570

- Introductions
- Course communication mechanisms
- Schedule/Topics
- Grading
- Policies
- Questions

Administrative Information

- Instructor: Dr. Yuchen Liu
 - Email : yuchen.liu@ncsu.edu
 - Office hours: Wednesday 3:15-4:00pm (zoom)
 https://ncsu.zoom.us/j/99012841293?pwd=0qx83VuE9T5P8BK78qSsbdsfbCiy0B.1
- TAs: Zhizhen Li
 - Email: zli92@ncsu.edu
 - Office hours: Tuesday 2:00 pm to 3:30 pm, zoom: https://ncsu.zoom.us/j/7685800976
- TAs: Jinming Xing
 - Email: jxing6@ncsu.edu
- Office hours: Thursday 10.30am to 12pm
 zoom: https://ncsu.zoom.us/j/2407868069?pwd=OXMyczdHdldtcGhxNXUxNmJveG1EUT09
- Class website: Moodle

Research Group

Networking + Intelligence

- networking and systems (wireless, digital twins, Open RAN, protocols, and security)
- mobile computing (robotic networking, infrastructure mobility)
- ML/LLM for data, networking, and sensing (distributed/on-device learning, generative AI, data analytics)
- new communication paradigms (mmWave, THz, nextG Wi-Fi)
- optimization and resilience (theory, large-scale systems)
- software development for computer networks (differentiable simulator, open-source testbed, ns-3)

Course Delivery Mechanisms

- Lectures: in-classroom, F2F
 - Live sessions during <u>normal lecture hours</u>
- Announcements: Moodle
- **Submissions:** Moodle
- Exams: in-person, F2F
- All are subject to change!

- Instructor office hours
 - Via zoom from 8/26 (skip this week)
 - Link posted on Moodle
 - In-person in office by appointment
- TA office hours
 - Via Zoom (separate dates & times)
 - Posted on Moodle
 - Contact TA with course-related issues
 - Contact instructor with exception situations, policy questions (be prepared for delay)

Course Introductions

- CSC/ECE 570 Computer Networks
 - Entry-level graduate computer networking course
 - Focus on fundamental concepts in different kinds of computer networks, e.g., p2p communication, wired network, wireless network.
 - Different from CSC/ECE 573 Internet Protocols which focuses on the Internet
 - Emphasis on theoretical and conceptual development
 - Serve to prepare for advanced networking courses

Examples

Client-server network

P2P network

Wired network

Wireless network

Goals

- Fundamental concepts in computer networks (protocols and algorithms)
- Technology, modeling, analysis and simulation methodologies for computer networking
- Evolved mechanisms in new generation networks, and theoretical and practical exposure to problems and solutions in network protocols
- Learning the capabilities and use of network simulation tools, and then
 using these tools to demonstrate and investigate network behavior.

Class Communications??

Moodle announcements

- Always IMPORTANT!
- Reflect latest course updates or changes
- Sometimes require quick responses related to graded materials

- Piazza course forum
 - De facto place to ask offline questions or discuss!
 - Both instructor/TA and peer students can answer
 - Instructor/TA can endorse good answers from students
 - Can send private communications:
 about grades, code, ...
 - Emails will likely receive delayed responses!

Schedule

- Tentative
 - Lecture orders
 - # hws
 - Due dates
- Updates on Moodle

ure	Date	Topic	Learning Outcomes	Homeworks
1	8/:	9 Course Intro & Introduction	Syllabus, schedule, grading, other stuff, Introduction	
2	8/3	21 Cancelled (No Class)		
3	8/:	26 Functionality and Decomposition	packet- vs. circuit-switching, Layers, planes, NEs	Hw1 Posted
4	8/3	8 Network Performance and Design	Delay, throughput, loss, variability, capacity, queueing delay	
i de	9	/2	Labor Day (No Class)	
5	9	4 Network Simulation	the basic use of ns-3, examples	
6	9	9 Physical Layer	Functionalities, modulation	
7	9/	1 Physical Layer	Theoretical limits, SINR, wireless	
8		.6 Data Link Layer	Bitpipes, framing, error control	Hw1 Due
9	9/:	8 Data Link Layer	Error control, retransmissions	Hw2 Posted
10	9/:	23 Data Link Layer	Retransmissions and ARQ	
11	9/:	25 Media Access Control	Shared medium access, collisions, ethernet	
12	9/	0 Media Access Control	Modeling, wireless	
13	10	² Media Access Control	Bridging, VLAN	Hw2 Due
	10	77	Midterm Exam	
14	10	9 Forwarding and Addressing	Addressing, header and lookup	Hw3 Posted
	10/		Wellness Day (No Class)	
15	10/	.6 Forwarding and Addressing	IP addresses	
16	10/	21 Forwarding and Addressing	IP forwarding, label forwarding	
17	10/	23 Routing	Pathfinding algorithms, protocols	
18	10/	28 Routing	Distributed approach, distribution, exterior and interior, ad-hoc	
19	10/	0 Transport	TCP principles and basics	Hw3 Due, Hw4 Posted
20	11,	4 Transport	End-to-end context, connection management	
21	11	6 Transport	Sliding window, congestion control	
22	11/	1 Application Design	Client-server, concurrency, peer-to-peer, pub-sub	
23		3 Application Design	Sockets	
24	11/	8 Wireless Networks	Wireless characteristics, WiFi/CSMA, cellular & mobility	HW4 Due
25	11/	20 Advanced Topics for networks	TBD	
26	11/	25 Report Day	Diverse Topics	
	11/	27	Thanksgiving Break (No Class)	
27	12	2 Review		

Schedule

- Tentative
 - Lecture orders
 - hws
 - exams
- Updates on Moodle

- ✓ Introduction to Computer Networks and Internet
- ✓ Network Performance and Metrics
- ✓ OSI Model and Protocol
- ✓ Network Simulation and Analysis (Basic use of ns-3)
- ✓ Physical Layer
- ✓ Data Link Layer and Media Access Control
- **✓** Routing Algorithms and Protocols
- ✓ Transmission Control Protocol
- ✓ Application Design
- ✓ Wireless Networking (Wi-Fi, Cellular)
- ✓ Other Advanced Topics (5G, mmWave, security, machine learning for networks)

Grading

- Homeworks/Assignments
 - Completeness is expected
 - Demonstrate understanding
 - (don't really need to know the final answer. We already know it)
 - Brief, to-the-point, concise
 - Essays automatically earn zero
 - Do not skip steps
 - Magical answers automatically suspect

- HW + Participation + Midterm + Final Tests
 - -30% + 10% + 30% + 30%
 - Exams happen in-person during lecture time

Policy for Options

1. Options for an individual project (10%)

Option 1: 30% HW + 10% participation + 30% Midterm + 30% Final

Option 2: 30% HW + 10% participation + 30% Midterm + 20% Final + 10% Project

Policy for Options

For individual project (10%)

- Topics: related to computer networks, protocols, models, architecture, performance evaluations, simulations (discuss with me)
- Presentation (15min + Q&A) include your discovery & evaluation
- Timeline: If you choose option 2 with the project, please send me your topic by 10/31 (12pm), as early as possible!

Grading

NCSU Standard Letter grade scale

Policies

- **Slides:** Lecture slides available on website on day of class
 - Lecture slides may NOT comprehensive students are expected to attend classes/watch videos to "fill in" information
 - Classes will be interactive. Try to participate as much as possible.
- **Cheating:** Zero tolerance policy toward cheating. Any academic misconduct will be reported immediately. Collaboration on assignments allowed within group.
- Attendance Policy: Attend all (as many) sessions synchronously (as possible), and again interact as much as possible.
 - Valid excuses for absence will be accepted before class.

Policies

- If you feel sick, stay home from classes.
 - If you feel sick before an exam, email me for alternatives.
 - A missed in-person exam will not have make-ups unless I am informed BEFORE the exam.
 - Similarly, a missed assignment due will be deducted 40 points automatically unless I am informed BEFORE the due date.
 - (Exception: everyone has one chance of late submission within 24 hours without any penalty)

Textbook

- Recommended textbook (not required)
 - COMPUTER NETWORKS
 - BY TANENBAUM, ANDREW S. AND WETHERALL, DAVID J.
 - PRINT ISBN-13: 9780132126953
 - PRINT ISBN-10: 0132126958
 - E-ISBNS: 9780133072624
 - PUBLISHER: PEARSON
 - EDITION: 5TH
 - PUB DATE: JANUARY 01, 2010
- Class discussions + slides + suggested reading

Why Study Computer Networks

 Internet: a one-size-fits-all solution for connectivity? Other than the Internet, what is one type of network that specifically interests you, and why?

What is a Network?

 Broadly, networks can be connections between humans, machines, vehicles, robots, documents, events, concepts, data, and other elements.

What is a Network?

• Specifically, it is a collection of computers (nodes) and transmission channels (links) that allow people to communicate over distances.

How to Achieve Network Connectivity?

• A variety of transmission methods, both wired and wireless, are available today to provide connectivity between computers, networks, and people.

What is Connectivity Vision Now?

Bandwidth-hungry applications; Smart X; Internet of Everything ...

Networking & Connectivity

- Coaxial Cable
- Fiber Optics 10 Gbps, 1000 Gbps, to1 Tbps
- Cellular Systems 2G, 3G, 4G, 5G ... (10 Gbps)
- WLAN Wi-Fi
- Ad Hoc Networks
- Wireless Sensor Networks
- Satellites StarLink

Cellular vs. WLAN

