Numerical Techniques 2025-2026

0. Welcome

Daan Degrauwe daan.degrauwe@meteo.be

Postgraduate Studies in Weather and Climate Modeling

Ghent University

Content

- Welcome
- Context: why numerical techniques
- Objectives of this course
- Course material
- Practical information

Why numerical techniques?

Atmosphere

0. Welcome 3,

Why numerical techniques?

0. Welcome 3 / 9

Why numerical techniques?

0. Welcome 3 / 9

Course objectives

 Get hold of problems that occur due to solving equations numerically (with a computer)

0. Welcome 4 /

Course objectives

- Get hold of problems that occur due to solving equations numerically (with a computer)
- Distinguish these problems from other aspects of modeling
- Develop knowledge of existing solutions to these problems
- Be able to communicate with numerical analyst

Course objectives

- Get hold of problems that occur due to solving equations numerically (with a computer)
- Distinguish these problems from other aspects of modeling
- Develop knowledge of existing solutions to these problems
- Be able to communicate with numerical analyst
- Don't be frightened by code
 - ... but it's no course on programming either!

Relation to Al-driven models

- Al-driven weather models are performing better and better, sometimes beating physics-based models on specific scores, often at a fraction of the computational cost
- [personal assessment!] This will make physics-based models less and less relevant, especially for operational weather forecasting
- Nevertheless.
 - ▶ Physics-based models remain (for now) important for training AI models
 - There is value in scientific understanding
 - Many aspects treated in this course are also relevant for AI models, e.g. time-stepping, stability, scalability, etc.

0. Welcome 5 /

Course agenda

date	16h00	17h30
22/09	Introduction, Stability	(optional) Practicum Python basics
29/09	Time discretization	
06/10	Time discretization (cont'd)	Space discretization
13/10	Space discretization (cont'd)	Spectral methods
27/10	Nonlinearity	Practicum Linux & Fortran
10/11	Semi-Implicit and Semi-Lagrangian models	Project assignment + finish practica
17/11	Parallel computing (TBC)	Project support session
24/11	Guest lecture (TBC)	Project support session
01/12	Guest lecture (TBC)	Project support session
08/12	Student project presentations	

Course material

- Slides will appear on Ufora
- All material (slides sources, Jupyter notebooks) available on https://github.com/ddegrauwe/ugent_numtech
- References:
 - Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, Dale R. Durran, Springer, 1999, ISBN 0-387-98376-7.
 - Chebyshev and Fourier Spectral Methods, John P. Boyd, Springer, 2001, ISBN 978-3-540-51487-9.

• Some papers (depending on project)

Practical information

- (Check Ufora for modifications to time schedule)
- Practical sessions
 - We will use High-Performance Computing (HPC) infrastructure of UGent: create account on
 - https://www.ugent.be/hpc/en/access/faq/access
 - access through browser via https://login.hpc.ugent.be
 - ... or you can just install Linux on your laptop
- Programs needed: python, Jupyter notebooks
- Evaluation: student project (2/3/4 persons) on simple model
 - presentation for other students
 - (small) report

Questions?

0. Welcome 9 /