

Министерство науки и высшего образования Российской Федерации **Муромский институт (филиал)**

федерального государственного бюджетного образовательного учреждения высшего образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (МИ ВлГУ)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Тема: «Разработка программы имитационного моделирования моделей машинного обучения»

Выполнил: Студент ИС-117 Минеев Р.Р.

Руководитель: к. т. н., доц. каф. ИС Щаников С.А.

Муром 2021

Актуальность темы

Рисунок 1 – организация вычислений в памяти

Цель и задачи

Цель работы: разработать программу, при помощи которой возможно определить, будут ли на ReRAM готовые модели нейронных сетей работать с приемлемой точностью.

Задачи:

- реализовать возможность тестировать любую модель нейронной сети;
- добавить алгоритмы имитации аналоговых помех для тестирования работы нейронных сетей;
- повысить производительность работы программы за счет использования параллельных вычислений в целях ускорения процесса тестирования;
- сформулировать выводы о работе реализованной программы тестирования.

Обзор программ моделирования ИНС

Общий принцип работы

Пример способа распределённых вычислений

Рисунок 2 – Принцип работы программы

Проблема GIL и её решение

Multi-Threading

Multi-processing

Проект программы

Рисунок 4 – Диаграмма последовательности

Алгоритмы имитации погрешностей весов

Рисунок 5 – График равномерного распределения

Рисунок 6 – График нормального распределения

Параметр, указываемый в конфигурации теста: deviation

Параметр, указываемый в конфигурации теста: sigma

Протокол взаимодействия с программой

Рисунок 7 — Последовательность первого запуска программы

```
class NeuralCrashTest (NeuralCrash):
def init (self):
     super(). init ()
 def load model (self):
     self.model = load model('../2 II Creation/fashion mnist.h5')
def load testdata(self):
     ( , ), (testX, testY) = fashion mnist.load data()
     testX = testX.reshape(testX.shape[0], 784) \frac{1}{255}
     self.testdata = testX, testY
def get tested values(self):
     return self.model.get weights()
def set tested values (self, values):
     new model = self.model
     new model.set_weights(values)
     return new model
def test model(self, model, data):
     results = model.evaluate(data[0], data[1], batch size=64)
     return results[-1]
```

Реализованная программа

10/14

Benchmark (Компьютер)

Ядра Значения	1	4	12
10	7	8	7
100	64	53	38
1000	723	504	239

Ядра Значения	1	4	12
10	16	13	12
100	102	87	56
1000	2152	1628	890

Время тестирования

Результаты тестирования модели Fashion_mnist

Время тестирования

Результаты тестирования модели Fashion_mnist_big

Benchmark (Ноутбук)

Ядра Значения	1	2	4
10	18	13	17
100	176	148	113
1000	2042	1593	1142

Ядра Значения	1	2	4
10	31	25	24
100	299	231	170
1000	3102	2615	2097

Время тестирования

Время тестирования

Результаты тестирования модели Fashion_mnist

Результаты тестирования модели Fashion_mnist_big

Заключение

Таким образом, в процессе разработки программы были выполнены следующие поставленные на работу задачи:

- реализована возможность тестировать любую модель нейронной сети;
- добавлены алгоритмы имитации аналоговых помех для тестирования работы нейронных сетей (алгоритм равномерного распределения и алгоритм нормального распределения);
- повышена производительность работы программы за счет использования метода распараллеливания процессов в целях сокращения времени тестирования;
- сформулированы выводы о работе реализованной программы тестирования.

Спасибо за внимание!