License Plate Recognition e Problema Fictício Análise e interpretação de dados

Vitor Greati ¹ Vinicius Campos¹

¹Instituto Metrópole Digital UFRN

Outubro, 2016

- License Plate Recognition
 - Conceituação
 - Etapas
 - Dados disponibilizados
 - Extração de descritores
 - Análises estatísticas e tratamento dos descritores
- 2 Problema Fictício
 - Descrição do problema
 - Medidas de tendência central e distribuição
 - Grau de normalidade, assimetria, curtose e correlação
 - Resolução do problema
- Bibliografia

Conceituação

Um sistema de *License Plate Recognition* (**LPR**) consiste em um *hardware* e um *software* integrados com o objetivo de reconhecer placas de veículos a partir de imagens [1].

Ou seja, o sistema recebe uma imagem e retorna o conteúdo da placa, se ela existir:

Aplicabilidade

Sistemas LPR são comumente aplicados em:

- Segurança de áreas restritas;
- Emissão de bilhetes em estacionamentos;
- Vrl Vehicle re-Identification;
- Identificação de modelo e fabricante.

- License Plate Recognition
 - Conceituação
 - Etapas
 - Dados disponibilizados
 - Extração de descritores
 - Análises estatísticas e tratamento dos descritores
- 2 Problema Fictício
 - Descrição do problema
 - Medidas de tendência central e distribuição
 - Grau de normalidade, assimetria, curtose e correlação
 - Resolução do problema
- 3 Bibliografia

Etapas

Um sistema LPR implementa geralmente as seguintes etapas:

- Aquisição da imagem;
- ② Detecção da placa;
- Segmentação dos caracteres;
- Reconhecimento ótico dos caracteres.

Aquisição da imagem e detecção da placa

- Todo o processo se inicia com a obtenção da imagem por câmeras e sensores adicionais, adequadamente calibrados para o ambiente de utilização;
- Essa imagem compreende partes do ambiente, partes do veículo, além de outros ruídos. Por essa razão, faz-se necessária a etapa de detecção da placa, baseada essencialmente em técnicas de Processamento de Imagens.

Segmentação de caracteres

- Com a placa em mãos, o próximo passo é a obtenção de cada caractere separadamente;
- Para tanto, pode ser necessária uma etapa de pré-processamento, para normalizar a imagem, remover ruídos e acentuar características importantes;
- As projeções horizontal e vertical são técnicas muito utilizadas nesse processo.

Reconhecimento ótico de caracteres

- Dado um caractere segmentado, resta classificá-lo em uma das 36 classes possíveis (26 letras + 10 dígitos);
- Entre as principais técnicas, as redes neurais e os classificadores estatísticos têm se destacado;
- Os resultados desta fase compõem a saída do sistema: um conjunto de caracteres ASCII correspondentes ao conteúdo da placa.

F,

Q

- License Plate Recognition
 - Conceituação
 - Etapas
 - Dados disponibilizados
 - Extração de descritores
 - Análises estatísticas e tratamento dos descritores
- 2 Problema Fictício
 - Descrição do problema
 - Medidas de tendência central e distribuição
 - Grau de normalidade, assimetria, curtose e correlação
 - Resolução do problema
- 3 Bibliografia

Caracterização dos dados fornecidos

- São caracteres já segmentados de imagens capturadas em 11 locais diferentes da UFRJ [2];
- Cada classe (letra) possui aproximadamente 600 instâncias, ou seja, é garantido o balanceamento;
- Os dados estão organizados em uma matriz $M_{11\times26}$ de vetores de *structs* contendo os campos:

```
bmp_data Três matrizes iguais de dimensão 16 \times 16, representando a imagem do caractere em tons de cinza;
```

target_char A classe à qual a imagem pertence;

target O índice dessa classe;

local Índice do local de origem.

Separação das amostras

Para a tarefa de classificação, é importante a separação da massa de dados em conjuntos de **treino**, **testes** e **validação**. Neste trabalho, foi escolhida a seguinte configuração de amostras:

Treino	Testes	Validação
60%	25%	15%

Para obtê-las, um *script* em Octave/MATLAB foi criado, buscando garantir a **representatividade** quanto às letras e aos locais de obtenção.

- License Plate Recognition
 - Conceituação
 - Etapas
 - Dados disponibilizados
 - Extração de descritores
 - Análises estatísticas e tratamento dos descritores
- 2 Problema Fictício
 - Descrição do problema
 - Medidas de tendência central e distribuição
 - Grau de normalidade, assimetria, curtose e correlação
 - Resolução do problema
- 3 Bibliografia

Mapa de bits com projeções

A técnica adotada foi a de mapa de bits com projeções, a qual resulta em um vetor com os valores dos pixels normalizados mais as projeções horizontal e vertical, como resumido na tabela abaixo:

Descritores	itores Tipo Valores		Passos da Extração
$N \times N$ pixels	Numérico	[0, 1]	Moldura, normalização, complemento
Projeção horizontal (N)	Numérico	Inteiros	Binarização, soma das linhas
Projeção vertical (N)	Numérico	Inteiros	Binarização, soma das colunas

Neste caso, N = 14, totalizando **224 descritores** à princípio.

- 1 License Plate Recognition
 - Conceituação
 - Etapas
 - Dados disponibilizados
 - Extração de descritores
 - Análises estatísticas e tratamento dos descritores
- 2 Problema Fictício
 - Descrição do problema
 - Medidas de tendência central e distribuição
 - Grau de normalidade, assimetria, curtose e correlação
 - Resolução do problema
- Bibliografia

Da normalidade dos dados

Os *q-q plots* revelaram o que já era esperado, pela natureza do problema: os descritores não obedecem, em geral, à distribuição normal.

Esse fato torna desnecessárias as análises de curtose e assimetria.

- Observou-se que 34 dos descritores ligados aos pixels possuem média abaixo de 10⁻², o que pode indicar que são pixels de background;
- Desses, 29 possuem variância menor que 0.005¹, mostrando que possuem baixa dispersão e que podem ser eliminados.
 Abaixo está uma representação deles:

Figura : Vermelho: variância ≤ 0.005 ; Vermelho + Laranja: variância ≤ 0.01

¹A média das variâncias é 0.07

Correlação e descorrelação

A matriz de correlação indicou que **pixels vizinhos estão mais correlacionados**, e positivamente, o que é observável comparando-se as imagens:

Havendo tal redundância, a descorrelação foi feita pela multiplicação da matriz de dados pela de autovetores da matriz de covariâncias. *T*.

Conclusões

- A normalidade dos descritores, por não se fazer presente, não pode ser ferramenta imediata para a classificação;
- É possível reduzir a dimensionalidade do problema com base apenas na variância de certos descritores;
- A vizinhança dos pixels provoca uma maior correlação e, portanto, redundância de informação.

- 1 License Plate Recognition
 - Conceituação
 - Etapas
 - Dados disponibilizados
 - Extração de descritores
 - Análises estatísticas e tratamento dos descritores
- 2 Problema Fictício
 - Descrição do problema
 - Medidas de tendência central e distribuição
 - Grau de normalidade, assimetria, curtose e correlação
 - Resolução do problema
- Bibliografia

Descrição do problema

O problema consiste em um conjunto de dados de dimensão 6 com 150 instâncias, ou seja, é uma matriz 150×6 . As seis variáveis estão relacionadas a três targets, A, B e C, e se encontram distribuídas desta forma:

- Linhas 1 a 50: Target A;
- Linhas 51 a 100: Target B;
- **Linhas 101 a 150:** Target C.

- - Conceituação
 - Etapas
 - Dados disponibilizados
 - Extração de descritores
 - Análises estatísticas e tratamento dos descritores
- Problema Fictício
 - Descrição do problema
 - Medidas de tendência central e distribuição
 - Grau de normalidade, assimetria, curtose e correlação
 - Resolução do problema

Medidas de tendência central

Variáveis	V1	V2	V3	V4	V5	V6
Médias	-1.4572e-15	-1.6383e-15	-1.2923e-15	-5.5437e-16	1.6017e-15	3.0790e-16

Tabela: Média aritmética

Variáveis	V1	V2	V3	V4	V5	V6
Medianas	-0.052331	-0.131539	0.335354	0.132067	-0.259902	-0.444690

Tabela: Mediana

Variáveis	V1	V2	V3	V4	V5	V6
Modas	-1.01844	-0.13154	-1.33575	-1.31105	-0.53542	-0.44469

Tabela: Moda

Medidas de distribuição

Variáveis	V1	V2	V3	V4	V5	V6
Desvios absolutos médios	0.83031	0.77267	0.88526	0.86342	0.85385	0.87463

Tabela: Desvio absoluto médio

Variáveis	V1	V2	V3	V4	V5	V6
Variâncias	1	1	1	1	1	1

Tabela: Variância

Variáveis	V1	V2	V3	V4	V5	V6
Desvios padrões	1	1	1	1	1	1

Tabela: Desvio padrão

- - Conceituação
 - Etapas
 - Dados disponibilizados
 - Extração de descritores
 - Análises estatísticas e tratamento dos descritores
- Problema Fictício
 - Descrição do problema
 - Medidas de tendência central e distribuição
 - Grau de normalidade, assimetria, curtose e correlação
 - Resolução do problema

Grau de normalidade

Grau de assimetria e curtose

Variável	\bar{x}	X _{mo}	S	AS	Assimetria
V1	-1.4572e-15	-1.0184e+00	1.0000e+00	1.01844e+00	positiva
V2	-1.6383e-15	-1.3154e-01	1.0000e+00	1.3154e-01	negativa
V3	-1.2923e-15	-1.3358e+00	1.0000e+00	1.3358e+00	positiva
V4	-5.5437e-16	-1.3111e+00	1.0000e+00	1.3111e+00	positiva
V5	1.6017e-15	-5.3542e-01	1.0000e+00	5.3542e-01	negativa

Tabela: Grau de assimetria

Variáveis	V1	V2	V3	V4	V5
Grau	2.4264	3.1810	1.6045	1.6639	2.1943

Tabela : Grau de curtose das variáveis

Grau de correlação

```
1.000000
           -0.117570
                       0.871754
                                   0.817941
                                              -0.448685
                                                          0.136343
                                                                     0.782561
-0.117570
            1.000000
                       -0.428440
                                   -0.366126
                                               0.648175
                                                          0.079311
                                                                    -0.426658
0.871754
           -0.428440
                       1.000000
                                   0.962865
                                              -0.828920
                                                          0.075906
                                                                     0.949035
0.817941
           -0.366126
                       0.962865
                                   1.000000
                                              -0.822567
                                                          0.088966
                                                                     0.956547
-0.448685
            0.648175
                       -0.828920
                                   -0.822567
                                               1.000000
                                                          0.016014
                                                                    -0.837950
0.136343
            0.079311
                       0.075906
                                   0.088966
                                               0.016014
                                                          1.000000
                                                                     0.104404
0.782561
           -0.426658
                                   0.956547
                                              -0.837950
                                                          0.104404
                                                                     1.000000
                       0.949035
```

Descrição

A matriz acima representa a matriz de correlações das variáveis V1 à V6 (**normalizadas**) com targets. Substituíram-se os targets (A,B,C) pelos números (1,2,3), os quais foram incluídos em uma sétima coluna na matriz das variáveis normalizadas.

- License Plate Recognition
 - Conceituação
 - Etapas
 - Dados disponibilizados
 - Extração de descritores
 - Análises estatísticas e tratamento dos descritores
- 2 Problema Fictício
 - Descrição do problema
 - Medidas de tendência central e distribuição
 - Grau de normalidade, assimetria, curtose e correlação
 - Resolução do problema
- Bibliografia

Resolução do problema - 1 variável

Figura : Plot V3 Figura : Plot V4

Análise

Ao analisar os gráficos, é possível perceber que as variáveis V3 e V4 podem solucionar o problema, pois conseguem delimitar as regiões de cada target com poucas sobreposições.

Resolução do problema - 2 variáveis

Análise

Neste caso, os pares de variáveis que podem resolver o problema são: (V1,V3), (V1,V4), (V1,V5), (V2,V3), (V2,V4), (V3,V4), (V3,V5) e (V4,V5).

Figura: Plot V2-V3

Resolução do problema - 2 variáveis

Bibliografia

C.-N. E. Anagnostopoulos.

License plate recognition: A brief tutorial.

IEEE Intelligent Transportation Systems Magazine, 6(1):59 – 67, 2014.

A. A. Dieguez.

Reconhecimento de Caracteres de Placa Veicular Usando Redes Neurais.

Escola Politécnica – Departamento de Eletrônica e de Computação, 2010.