

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЕ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент информационных и компьютерных систем

ОТЧЕТ

по дисциплине «системы искусственного интеллекта»

Выполнил студенты группы Б9122-			
09.03.03пикд			
	Зверев Р. И.		
	_		
Проверил преподаватель			
	Бочарова В. В.		
	_		
зачтено/не зачтено			

г. Владивосток 2025 г

Оглавление

Цель работы	3
Введение	4
Описание данных	5
Обучение классификатора	6
Заключение	7
Список литературы	8

Цель работы

Целью работы является применение наивного Байесовского классификатора в базовой задаче классификации текстов.

Постановка задачи

В данной работе рассматривается задача классификации текстов на примере датасета 20 Newsgroupds.

Необходимо реализовать следующие этапы и функции:

- Подобрать оптимальное значение α из интервала (0, 1);
- Обучить классификатор с разными вероятностями классов: равными и соответствующими долями классов, и сравнить их.

Введение

Целью работы является применение наивного байесовского классификатора для решения базовой задачи классификации текстов на примере датасета **20 Newsgroups**. Практическая задача — настроить и оценить поведение модели при различном сглаживании (параметр α) и при различных предположениях о априорных вероятностях классов.

В работе потребуется подобрать оптимальное значение α из интервала (0, 1), обучить классификатор при двух вариантах априорных вероятностей (равные априорные и априорные, совпадающие с долями классов в выборке) и сравнить качество моделей (например, accuracy, precision/recall/F1, матрица ошибок). В качестве инструментов используются scikit-learn (векторизация текста), pandas, numpy.

Описание данных

Описание набора данных 20 Newsgroups.

Для проведения анализа был выбран набор данных 20 Newsgroups, который содержит статьи, сгруппированные по рубрикам. Датасет включает 18 тыс. записей (статей) и 20 рубрик.

Обучение классификатора

В качестве моделей классификации наивным Байесом были взяты классификатор с мультиномиальным распределением (MultinomialNB) и классификатор с распределением Бернулли (BernoilliNB).

Оба обучаются на одинаковом наборе данных, с одинаковым параметром alpha (α) равным 1 и одинаковыми параметрами вероятности классов (равные).

В ходе определения оптимального параметра α в интервале (0, 1) путем поиска с помощью GridSearchCV метода, который автоматически выбирает лучшие из представленных параметров для модели, для обоих классификаторов оптимальным параметром оказался $\alpha = 0.05$.

Также, оба классификатора были обучены не только с равными вероятностями классов, но и с вероятностями, соответствующие долям классов.

Результаты трех экспериментов показаны в таблице:

Задание	MultinomialNB	BernoulliNB
Обучение с равными	0.635555	0.618030
вероятностями классов		
Обучение с оптимальным	0.707619	0.590419
параметром (α = 0.05)		
Обучение с	0.738848	0.701407
вероятностями,		
соответствующие долям классов		

Как видно из таблицы, лучше всего обучать классификаторы с вероятностями, соответствующие долям классов в обучающей выборке и результат вырастет на $\sim 10\%$.

Заключение

Эксперимент показал, что для датасета 20 Newsgroups наиболее удачным оказался MultinomialNB при подборе сглаживания и учёте априорных вероятностей классов. Оптимальное значение параметра сглаживания получилось $\alpha = 0.05$ для обоих классификаторов по результатам GridSearchCV, но влияние сглаживания различно: для MultinomialNB это дало заметный прирост (~11% относительного роста), тогда как для BernoulliNB качество при $\alpha = 0.05$ снизилось. Наибольший выигрыш даёт использование априорных вероятностей, соответствующих долям классов в выборке: точность MultinomialNB выросла с 0.6356 до 0.7388, а BernoulliNB - с 0.6180 до 0.7014.

При решении задачи классификации текстов на этом датасете рекомендовано использовать MultinomialNB с подбором α и априорными вероятностями, совпадающими с долями классов; для дальнейшего улучшения - усиленная предобработка текста (TF-IDF, n-grams, очистка стопслов), регуляризация признаков и кросс-валидация.

Список литературы

1. GitHub: исходный код лабораторной работы. — URL: <u>Лабораторная</u> работа 3.4 (дата обращения: [09.10.2025]). — Текст: электронный.