

Trees

swatimali@somaiya.edu

Outline

- Tree concept
- General tree
- Types of trees
- Binary tree: representation, operation
- Binary tree traversal
- Binary search tree
- BST- The data structure and implementation
- Threaded binary trees.
- Search Trees
 - AVL tree, Multiway Search Tree, B Tree, B+ Tree, and Trie,
- Applications/Case study of trees.
- Summary

Samayar Queries?

Tree

- linear data structures strings, arrays, lists, stacks and queues
- Non-linear data structure tree.
- Mainly used to represent data containing a hierarchical relationship between elements, for example, records, family trees and table of contents.
 - E.g. a parent-child relationship

A family tree

TRES

Types of trees

- General tree
- Binary tree
- Binary search tree
- Threaded binary tree
- AVL Tree
- B tree
- B+ Tree
- Trie
- Heap
- Red black tree
- Splay tree

K J Somaiya College of Engineering

Splay Tree

Heap (MinHeap)

Trie

Tree Data structure

- A tree is an abstract model of a hierarchical structure that consists of nodes with a parentchild relationship.
- Tree is a sequence of nodes
- There is a starting node known as a root node
- Every node other than the root has a parent node.
- Nodes may have any number of children

1. Root

- The first node from where the tree originates is called as a root node.
- In any tree, there must be only one root node.
- We can never have multiple root nodes in a tree data structure.

2. Edge

- The connecting link between any two nodes is called as an edge.
- In a tree with n number of nodes, there are exactly (n-1) number of edges.

3. Parent

- The node which has a branch from it to any other node is called as a parent node.
- In other words, the node which has one or more children is called as a parent node.
- In a tree, a parent node can have any number of child nodes.

4. Child

- The node which is a descendant of some node is called as a child node.
- All the nodes
 except root node
 are child nodes.

5. Siblings

- Nodes which belong to the same parent are called as siblings.
- In other words, nodes with the same parent are sibling nodes.

7. Internal Node

- The node which has at least one child is called as an internal Internal Node node.
- Internal nodes are also called as nonterminal nodes.
- Every non-leaf node is an internal node.

8. Leaf Node

- The node which does not have any child is called as a leaf node.
- Leaf nodes are also called as external nodes or terminal nodes.

9. Level

- In a tree, each step from top to bottom is called as level of a tree.
- The level count starts with 0 and increments by 1 at each level or step.

10. Height

- Total number of edges that lies on the longest path from any Height(B)=2 leaf node to a particular node is called as height of that node.
- Height of a tree is the height of root node.
- Height of all leaf nodes = 0
- Computed from bottom to top

11. Depth

- Total number of edges from root node to a particular node is called as depth of that node.
- Depth of a tree is the total number of edges from root node to a leaf node in the longest path.
- Depth of the root node = 0
- The terms "level" and "depth" are used interchangeably.
- Computed from top to bottom

12. Subtree

- In a tree, each child from a node forms a subtree recursively.
- Every child node forms a subtree on its parent node.

13. Forest

A forest is a set of disjoint trees.

Forest

14. Path

 The sequence of consecutive edges from source node to destination node.

 In any tree, 'Path' is a sequence of nodes and edges between two nodes.

15. Keys

 Key represents a value of a node based on which a search operation is to be carried out for a node.

SOLVIALYA VIDYAVIHAR UNIVERSITY K J Somaiya College of Ingineering aracteristics of trees

- Non-linear data structure
- Combines advantages of an ordered array and linked list
- Searching as fast as in ordered array
- Insertion and deletion as fast as in linked list
- Simple and fast

Application

- Directory structure of a file storage
- Structure of an arithmetic expressions
- Used in almost every 3D video game to determine what objects need to be rendered.
- Used in almost every high-bandwidth router for storing router-tables.
- used in compression algorithms, such as those used by the .jpeg and .mp3 file formats
- Game trees

Directory structure of a file storage

Image courtesy:

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter11/1 1_10_TwoLevelStructure.jpg

Structure of an arithmetic expressions

Object rendering in 3-D game

Image Courtesy: https://www.bogotobogo.com/Games/images/BVH.png

DNS Server entries

Graphic created by Blake Khan (blakekhan.com)

Image Courtesy: https://res.cloudinary.com/practicaldev/image/fetch/s--b9G6DenD-/c_limit%2Cf_auto%2Cfl_progressive%2Cq_auto%2Cw_880/https://i.imgur.com/xOdVIPZ.png

Compression Algorithm

https://brilliant-staff-media.s3-us-west-2.amazonaws.com/tiffany-wang/VEIWKBhSSc.png

Game Tree

Binary Trees

- A binary tree, T, is either empty or such that
- 1. T has a special node called the root node
- T has two sets of nodes L_T and R_T, called the left subtree and right subtree of T, respectively.
- 3. L_T and R_T are binary trees.

Binary Tree

- A binary tree is a finite set of elements that are either empty or is partitioned into three disjoint subsets.
- The first subset contains a single element called the root of the tree.
- The other two subsets are themselves binary trees called the left and right sub-trees of the original tree.
- A left or right sub-tree can be empty.
- Each element of a binary tree is called a node of the tree

Binary Tree Properties

- If a binary tree contains m nodes at level L, it contains at most 2^m nodes at level L+1
- Since a binary tree can contain at most 1 node at level 0 (the root), it contains at most 2^L nodes at level L.

Samples of Trees

Types of Binary Tree

- Complete binary tree
- Strictly binary tree
- Almost complete binary tree

A complete binary tree

Complete Binary Tree

If a node in a complete binary tree is assigned a number k, where $1 \le k \le n$, then

Binary tree types

- **Strictly binary** trees are binary trees where every node either has two children or is a leaf (has no children).
- Complete binary trees are strictly binary trees where every leaf is on the same "maximum" level.
- Almost complete binary trees are not necessarily strictly binary (although they can be), and are not complete.

Full BT VS Complete BT

- A full binary tree of depth k is a binary tree of depth k having 2^k -1 nodes, k>=0.
- A binary tree with n nodes and depth k is complete iff its nodes correspond to the nodes numbered from 1 to n in the full binary tree of depth k.

Sequential Representation

В

[1]

Linked Representation

```
typedef struct node *tree_pointer;
typedef struct node {
  int data;
  tree_pointer left_child, right_child;
};
```

left_child data r	ight_child
-------------------	------------

KJ Somaiya Charmany representaion of tree

Binary tree traversal

Traversal: visiting each node only once

Traversal methods:

Inorder : Left-Root-Right

Preorder : Root-Left-Right

Postorder : Left-Right-Root

- Let L, V, and R stand for moving left, visiting the node, and moving right.
- There are six possible combinations of travers
 - LVR, LRV, VLR, VRL, RVL, RLV
- Adopt convention that we traverse left before right, only 3 traversals remain
 - LVR, LRV, VLR
 - inorder, postorder, preorder

inorder -10, 20,30, Preorder - 30, 20, 10 Postorder - 10, 20,30

inorder - 10, 20,30 Preorder - 10, 20,30 Postorder - 30, 20,10

inorder - 10, 20,30 Preorder - 30, 10,20, postorder - 20, 10,30

CHAPTER 5

51

K J Somaiya College of Engine Binary Tree Traversals

Preorder- 50, 34, 12,5, 23, 20,77, 56,98 79,120, 100, Postorder- 5, 20, 23, 12, 34, 56, 79, 100, 120, 98, 77, 50 Inorder- 5, 12, 20, 23, 34, 50, 56, 77,79, 98, 100, 120

K J Somaiya College of Engineering Linary tree Traversal

• Inorder: 1-5-6-10-17-19-21

• Preorder: 10-5-1-6-19-17-21

Postorder: 1-6-5-17-21-19-10

KJ Somaiya College of Engineering Binary tree Traversal

- Inorder: ?
- Preorder: ?
 - Postorder: ?

Arithmetic Expression Using BT

inorder traversal A / B * C * D + E infix expression preorder traversal + * * / A B C D E prefix expression postorder traversal A B / C * D * E + postfix expression level order traversal + * E * D / C A B

Inorder Traversal (recursive version)

```
void inorder(tree pointer ptr)
/* inorder tree traversal */
                         A/B*C*D+E
    if (ptr) {
        inorder(ptr->left child);
        printf("%d", ptr->data);
        indorder(ptr->right child);
```

Somanya TRUST

Preorder Traversal (recursive version)

```
void preorder(tree pointer ptr)
/* preorder tree traversal */
                          + * * / A B C D E
    if (ptr) {
        printf("%d", ptr->data);
        preorder(ptr->left child);
        predorder(ptr->right child);
```

Smayar TRUST

Postorder Traversal (recursive version)

```
void postorder(tree pointer ptr)
/* postorder tree traversal */
                         A B / C * D * E +
    if (ptr) {
        postorder(ptr->left child);
        postdorder(ptr->right child)
        printf("%d", ptr->data);
```

Smayar TRUST

Construction of binary tree from traversals

- Can be done with two pairs of information:
 - Inorder & Preorder
 - Inorder & Postorder

• Inorder: 1-5-6-10-17-19-21

Preorder: 10-5-1-6-19-17-21

Binary Search Tree

Binary Search Tree is a node-based binary tree data structure which has the following properties:

- The left subtree of a node contains only nodes with keys lesser than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- The left and right subtree each must also be a binary search tree.

For inorder & Preorder traversal pairs:

- For inorder & Preorder traversal pairs:
 - Read the preorder input from left to right
 - Mark the corresponding nodes in inorder traversal to mark and left & right subtrees recursively
- For inorder & Postorder traversal pairs:
 - Read the postorder input from right to left
 - Mark the corresponding nodes in inorder traversal to mark and right & left subtrees recursively

• Inorder: 1-5-6-10-17-19-21

• Preorder: 10-5-1-6-19-17-21

Step 1: read preorder sequence from left to right, mark the corresponding node in inorder.

The preorder sequence gives roots and subroots while inorder sequence divides them in left and right part.

- Inorder: 1-5-6-10-17-19-21
- Preorder: 10-5-1-6-19-17-21 (mark 5 as next root)

- Inorder: 1-5-6-10-17-19-21
- Preorder: 10-5-1-6-19-17-21 (Mark 1 as next root, but it has no unmarked elements in inorder sequence i.e. it's a leaf node)

- Inorder: 1-5-6-10-17-19-21
- Preorder: 10-5-1-6-19-17-21 (Mark 6 as next root, but it has no unmarked elements in inorder sequence i.e. it's a leaf node, too)

• Inorder: 1-5-6-10-17-19-21

• Preorder: 10-5-1-6-19-17-21 (Mark 19 as next root)

- Inorder: 1-5-6-10-17-19-21
- Preorder: 10-5-1-6-19-17-21 (Mark 17 as next root, it turns out to be a leaf node)

- Inorder: 1-5-6-10-17-19-21
- Preorder: 10-5-1-6-19-17-21 (Mark 21 as next root, it turns out to be a leaf node, too)

 Follow same process for postorder and inorder sequence, but read the postorder from right to left.

Construction of Binary Search Tree

Construct a BST for:

- 10,45,23,90,21,65,100,4,78,50
- 50,78,4,100,65,21,90,23,45,10
- 65,4,50,10,78,45,100,23,90,21

Binary Search implementation

```
Struct tree{
    int data;
    struct tree *left;
    struct tree *right;
    }
Struct tree *t;
```


Insertion in BST

```
Treetype insert(TreeType *root, int key)
     CreateNode(NewNode)
  // find the position to insert the new node
  Treetype *temp = root;
  // Pointer parent maintains the trailing pointer of temp
  Treetype *parent = NULL;
  while (temp != NULL) {
    parent = temp;
    if (key < temp->data) temp = temp->left;
    else
                temp = temp->right;
  // If the root is NULL i.e the tree is empty The new node is the root node
  if (parent == NULL)
                      root = newnode;
  // If the new key is less then the leaf node key Assign the new node to be its left child
  else if (key < parent->data)
                                    parent->left = newnode;
  // else assign the new node its right child
  else
                         parent->right = newnode;
    return root;
```

Count nodes

```
int countNodes(TreeType t)
If (t==Null)
Print "tree is empty"
Else if (Left(t)==Null AND Right(t)==Null)
     return 1
Else
return(CountNodes(Left(t)+CountNodes(Right(t))+1
```


Binary Search tree deletion

Cases:

- 1. Deletion from empty tree
- 2. The key to be deleted doesn't exist in tree
- 3. The node to be deleted is the only node in tree
- 4. The node to be deleted is root
- 5. The node to be deleted has
 - No child
 - 2. Exactly one child
 - 3. Two children

Deletion of a node in BST

```
//Deletion from empty tree
If (root==null)
{ print "Error"
 exit
//Deletion of only node
If(root->data ==key && root->left==Null && root->right==Null)
   temp=root
   Root=null
   Return(temp)
```

```
Parent = null
Temp =root
While(temp!=null && temp->data !=key)
{ if (key< temp->data)
    parent = temp; temp=temp->left
 else
    parent = temp; temp=temp->right
If (temp==null)
Print "Error, element not found" Exit
Elseif (temp->left== null && temp->right==Null)
//node with no children
   { if (temp==parent->left)
         parent->left= Null
     Else
        parent->right=Null
```

```
Elseif(temp->left!= null && temp->right==Null)
//node with only left child
{ if (temp==parent->left)
         parent->left= temp->left
     Else
       parent->right=temp->left
Elseif(temp->left== null && temp->right!=Null)
//node with only right child
{ if (temp==parent->left)
         parent->left= temp->right
     Else
       parent->right=temp->right
```

//Deletion of node with two children

AVL tree

Named after their inventors **Adelson, Velski & Landis**, AVL trees are height balancing binary

search tree.

AVL tree

Let's consider creation of a BST i.e. insert values starting from an empty tree

Insert values 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

- If inserted in given order, what is the tree?
- Is inserting in the reverse order any better?

BST: Efficiency of Operations?

Problem:

Worst-case running time:

• find, insert, delete

• buildTree

How can we make a BST efficient?

Observation

Solution: Require a Balance Condition that

- When we build the tree, make sure it's balanced.
- BUT...Balancing a tree only at build time is insufficient.
- We also need to also keep the tree balanced as we perform operations.

Potential Balance Conditions

Left and right subtrees

Left and right subtrees

The AVL Tree Data Structure

An AVL tree is a self-balancing binary search tree.

Structural properties
Binary tree property (same as BST)
Order property (same as for BST)

Balance condition: balance of every node is between -1 and 1

where balance(node) = height(node.left) – height(node.right)

Example #1: Is this an AVL Tree?

Balance Condition:

balance of every node is between -1 and 1

Example #2: Is this an AVL Tree?

Balance Condition:

balance of every node is between -1 and 1

AVL Trees

First insert example

Insert(6)

Insert(3)

Insert(1)

Third insertion

What's the only way to fix it?

Fix: Apply "Single Rotation"

- Single rotation: The basic operation we'll use to rebalance
 - Move child of unbalanced node into parent position
 - Parent becomes the "other" child (always okay in a BST!)
 - Other subtrees move in only way BST allows (we'll see in generalized example)

TREE ROTATIONS: GENERALIZED

Generalized Single Rotation

Generalized Single Rotation

Single Rotations

(Figures by Melissa O'Neill, reprinted with her permission to Lilian)

- Insert 1,2,3
- Right-Right or R-R case
- Solution: rotate left

Insertion

- First, insert the new key as a new leaf just as in ordinary binary search tree
- Then trace the path from the new leaf towards the root. For each node x encountered, check if heights of left(x) and right(x) differ by at most 1.
- If yes, proceed to parent(x). If not, restructure by doing either a single rotation or a double rotation
- For insertion, once we perform a rotation at a node x, we won't need to perform any rotation at any ancestor of x.

- Insert 3,2,1
- Left-Left or L-L situation
- Solution: Rotate right

- Insert 1,2,3
- Right-Right or R-Right situation
- Solution: one rotation

- Insert 1,3,2
- Right-Left or R-L situation
- Solution: Two rotations
 - Rotate right → R-R
 - Rotate left

- Insert 1,3,2
- Right-Left or R-L situation
- Solution: Two rotations
 - Rotate right → R-R
 - Rotate left

- Insert 3,1, 2
- Left-Right or L-R situation
- Solution: Two rotations
 - Rotate left → L-L
 - Rotate right

Rotation summary

- L-L then single rotation --> rotate right
- R-R then single rotation--> rotate left
- L-R then double rotation --> rotate left to get
 L-L then rotate right
- R-L then double rotation --> rotate right to get
 R-R then rotate left

Example- 12, 45, 65, 23, 89, 50, 4, 35,100

Create AVL tree:10, 20, 30, 25, 40, 50, 35, 33, 37, 60,38

Balance the tree

Example 3: 8,3,5,25,76, 45, 30,26,28,27

Case #1:

(Figures by Melissa O'Neill, reprinted with her permission to Lilian)

Example #2 for left-left case:

insert(16)

Case #2:

(Figures by Melissa O'Neill, reprinted with her permission to Lilian)

Example for right-right case:

insert (26)

Case #3:

(Figures by Melissa O'Neill, reprinted with her permission to Lilian)

A Better Look at Case #3:

(Figures by Melissa O'Neill, reprinted with her permission to Lilian)

Case #3: Right-Left Case (after one rotation)

A way to remember it:

Move d to grandparent's position. Put everything else in their only legal positions for a BST.

(Figures by Melissa O'Neill, reprinted with her permission to Lilian)

Practice time! Example of Case #4

Starting with this AVL tree:

Which of the following is the updated AVL tree after inserting 42?

Pros and Cons of AVL Trees

Arguments for AVL trees:

- 1. All operations logarithmic worst-case because trees are *always* balanced
- 2. Height balancing adds no more than a constant factor to the speed of insert and delete

Arguments against AVL trees:

- Difficult to program & debug [but done once in a library!]
- 2. More space for height field
- 3. Asymptotically faster but rebalancing takes a little time
- 4. If *amortized* logarithmic time is enough, use splay trees (also in the text, not covered in this class)

Queries?

Thank you!