LECTURE 9

DATA WAREHOUSE

Muhammad Hamiz Mohd Radzi Faiqah Hafidzah Halim

Content

- Introduction to Data Warehouse
- Data Warehouse Architecture
- Data Warehouse Tools and Techniques
- Data Marts
- Data Mining
- Designing a Data Warehousing Database
- Dimensionality Modeling
- Multidimensional Data Representation

Introduction to Data Warehouse

- A data warehouse is a collection of integrated databases designed to support a Decision Support System.
- A central data repository where data from operational database and other sources are integrated, cleaned, and standardized to support decision making.
- Objective of DW is to evaluate future strategy of a company.

- For example, it increased Capital One's customers from 1 million to approximately 9 millions in 8 years.
- Just like a muscle: DW increases in strength with active use.
 - With each new test and product, valuable information is added to the DW, allowing the analyst to learn from the success and failure of the past.

- The key to survival:
 - Is the ability to analyze, plan, and react to changing business conditions in a much more rapid fashion.

Characteristic of Data Warehouse

Subject-oriented

Can be used to analyze a particular subject area.

Integrated

Integrates data from multiple data sources.

Time-variant

Historical data is kept in a data warehouse.

Non-volatile

Once data is in the data warehouse, it will not change.

DW vs OPERATIONAL DB (OLTP)

Characteristic	Operational Data Store	Data Warehouse	
How is it built?	One application or subject area at a time.	Typically multiple subject areas at a time	
Area of support?	Day-to-day business operations.	Decision support for managerial activities.	
Currency of data?	Up-to-the-minute, real time.	Typically represents a static point in time.	
Typical unit for analysis?	Small, manageable, transaction level units.	Large, unpredictable, variable units.	
Design focus?	High-performance, limited flexibility.	High flexibility, high performance.	

To summarize ...

 OLTP Systems are used to "run" a business

 The Data Warehouse helps to "optimize" the business

Data Warehouse Architecture

The architecture consists of various interconnected elements:

- Operational and external database layer the source data for the DW
- Information access layer the tools the end user access to extract and analyze the data
- Data access layer the interface between the operational and information access layers
- Metadata layer the data directory or repository of metadata information

Components of the Data Warehouse Architecture

Additional layers are:

- Process management layer the scheduler or job controller
- Application messaging layer the "middleware" that transports information around the firm
- Physical data warehouse layer where the actual data used in the DSS are located
- Data staging layer all of the processes necessary to select, edit, summarize and load warehouse data from the operational and external data bases

Typical DW Architecture

Data Warehouse Tools and Techniques

■ ETL Process

- Extract take the data from operational DB or any reliable sources to be integrated.
- Transform change the data format such as data merging, calculation and data summarization. But before transform, it must be cleaned to free from any data error.
- Loading once the data is summarized, it must be loaded into the DW.

DW DBMS

- Choose the right software to run a data warehouse.
- Requirements needed:
 - Load Performance must be fast as the data is huge.
 - Load Processing load data into a data warehouse must be done periodically and only involve changed data.
 - Data Quality Management must give user precise result eventhough data is huge.
 - Query Performance ad hoc analysis must not be slow.
 - Terabyte scalability size can be scale up when needed.

- Requirements needed:
 - Mass user scalability number of users can be increased without affecting the performance.
 - Networked DW should be able to cooperating in larger network environment.
 - Warehouse administration the DBA must be ready all the time to support any operation in the warehouse.
 - Integrated dimensional analysis data representation can be done from the DW.
 - Advanced Query Functionality any advance query by the user for calculation and comparative analysis can be done.

Data Warehouse Metadata:

For example, a line in a sales database may contain:

4056 KJ596 223.45

This is mostly meaningless until we consult the metadata that tells us it was store number 4056, product KJ596 and sales of \$223.45

The metadata are essential ingredients in the transformation of raw data into knowledge. They are the "keys" that allow us to handle the raw data.

General metadata issues associated with Data Warehouse use:

- What tables, attributes and keys does the DW contain?
- Where did each set of data come from?
- What transformations were applied with cleansing?
- How have the metadata changed over time?
- How often do the data get reloaded?
- Are there so many data elements that you need to be careful what you ask for?

Component of DW Metadata

- Transformation maps records that show what transformations were applied
- Extraction & relationship history records that show what data was analyzed
- Algorithms for summarization methods available for aggregating and summarizing
- Data ownership records that show origin
- Patterns of access records that show what data are accessed and how often

Example of DW Applications

Industry	Key Applications
A irlin e	Y ield management,
	route assessment
T elecom m unications	Customer retention,
	network design
Insurance	Risk assessment, product
	design, fraud detection
R e ta i 1	Target marketing,
	supply-chain
	m anagem ent

Data Marts

- It is a subset or view of a data warehouse
- Typically at a department or functional level.

Data Mining

- The process of discovering implicit patterns in data and using these patterns for business advantage.
- Facilitates the ability to detect, understand, and predict patterns.
- Example of data mining application is on mobile data usage for telecommunication industry.

Designing a Data Warehousing Database

Designing a DW is highly complex. These questions must be answered before start designing:

- 1. Which user requirements are most important?
- 2. Which data should be considered first?
- 3. Should the project be scaled down?

Why? Because a failed DW project could lead to company bankruptcy.

Methodology

■ There are 2 different methodologies suggested by Inmon and Kimball.

- Both Kimball and Inmon's architectures share a same common feature that each has a single integrated repository of atomic data.
- In Inmon's architecture, it is called *enterprise data warehouse*. And in Kimball's architecture, it is known as the *dimensional data warehouse*.

■ Both architectures have an enterprise focus that supports information analysis across the organization.

■ This approach enables to address the business requirements not only within a subject area but also across subject areas.

■ However there are some differences in the data warehouse architectures of both experts:

1. Kimball uses the dimensional model such as star schemas or snowflakes to organize the data in *dimensional data warehouse* while Inmon uses ER model in enterprise data warehouse.

Inmon only uses dimensional model for data marts only while Kimball uses it for all data

2. Inmon uses data marts as physical separation from enterprise data warehouse and they are built for departmental uses.

While in Kimball's architecture, it is unnecessary to separate the data marts from the dimensional data warehouse.

3. In dimensional data warehouse of Kimball, analytic systems can access data directly.

While in Inmon's architecture, analytic systems can only access data in enterprise data warehouse via data marts.

Characteristics	Favours Kimball	Favours Inmon	
Business decision support requirements	Tactical	Strategic	
Data integration requirements	Individual business requirements	Enterprise-wide integration	
The structure of data	KPI, business performance measures, scorecards	Data that meet multiple and varied information needs and non-metric data	
Persistence of data in source systems	Source systems are quite stable	Source systems have high rate of change	
Skill sets	Small team of generalists	Bigger team of specialists	
Time constraint	Urgent needs for the first data warehouse	Longer time is allowed to meet business' needs.	
Cost to build	Low start-up cost	High start-up costs	

Dimensionality Modeling

■ It is a logical design technique that aims to represent the data in standard, intuitive form that allows for high-performance access.

- It will look like ERD, but it can be called as either:
 - 1. Star Schema
 - 2. Snowflake Schema
 - 3. Constellation Schema

- Each schema must contain:
 - 1. Fact table numeric table
 - 2. Dimension table descriptive table

Star Schema

Data modeling representation of multidimensional database

 Star schema diagram looks like star with one large central table is fact table while other is dimension tables

■ There is 1-M relationship from each dimension table to facts table

Product

Product _Code	Description	Color	Size
100 110 125	Sweater Shoes Gloves	Blue Brown Tan	40 10 1/2 M

Period

Period _Code	Year	Quarter	Month
001	2004	1	4
002	2004	1	5
003	2004	1	6

Sales

	Product	Period	Store	Units	Dollars	Dollars
	_Code	Code	Code	_Sold	_Sold	_Cost
98	110	002	S1	30	1500	1200
	125	003	S2	50	1000	600
	100	001	S1	40	1600	1000
	110	002	S3	40	2000	1200
	100	003	S2	30	1200	750

Store

	Store _Code	Store _Name	City	Telephone	Manager
е	S1	Jan's	San Antonio	683-192-1400	Burgess
	S2	Bill's	Portland	943-681-2135	Thomas
	S3	Ed's	Boulder	417-196-8037	Perry

Snowflake Schema

- Data modeling representation of multidimensional database
- Snowflake schema has multiple levels of dimension tables related to one or more facts tables
- The snowflake schema instead of the star schema for small dimension tables that are not in 3NF
- However, the snowflake structure can reduce the effectiveness of browsing, since more joins will be needed

© etl-tools.info

Constellation Schema

- Data modeling representation of multidimensional database
- A constellation schema contains multiple facts table in the center related to the dimension table
- Typically, the facts table share some dimension tables
- Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

Year	Region	Agent	Product	Quantity
2009	East	Carlos	Erasers	50
2009	East	Tere	Erasers	12
2009	North	Carlos	Widgets	120
2009	North	Tere	Widgets	100
2009	North	Carlos	Widgets	30
2009	South	Victor	Balls	145
2009	South	Victor	Balls	34
2009	South	Victor	Balls	80
2009	West	Mary	Pencils	89
2009	West	Mary	Pencils	56
2010	East	Carlos	Pencils	45
2010	East	Victor	Balls	55
2010	North	Mary	Pencils	60
2010	North	Victor	Erasers	20
2010	South	Carlos	Widgets	30
2010	South	Mary	Widgets	75
2010	South	Mary	Widgets	50
2010	South	Tere	Balls	70
2010	South	Tere	Erasers	90
2010	West	Carlos	Widgets	25
2010	West	Tere	Balls	100

Multidimensional Data Representation

- Multidimensional data model supports data representation and operations for decision support processing in data warehouse
- Users think about decision support data as data cubes
- Data cube or hypercube is multidimensional format consists of cells containing measures (eg sales amount) and dimensions to label numeric data (eg product, location, time). Each dimension contains values known as members (eg location members are California, Utah etc)

PRODUCT	LOCATION	SALES
Mono Laser	California	80
Mono Laser	Utah	40
Mono Laser	Arizona	70
Mono Laser	Washington	75
Mono Laser	Colorado	65
Ink Jet	California	110
Ink Jet	Utah	90
Ink Jet	Arizona	55
Ink Jet	Washington	85
Ink Jet	Colorado	45
Photo	California	60
Photo	Utah	50
Photo	Arizona	60
Photo	Washington	45
Photo	Colorado	85
Portable	California	25
Portable	Utah	30
Portable	Arizona	35
Portable	Washington	45
Portable	Colorado	60

		Product		
Location	Mono Laser	Ink Jet	Photo	Portable
California	80	110	60	25
Utah	40	90	50	30
Arizon	70	55	60	35
Washington	75	85	45	45
Colorado	65	45	85	60

Multidimensional Terminology:

- Dimension: subject label for a row or column
- Member: value of dimension
- Measure: quantitative data stored in cells
- Sparsity: large empty cells in a data cube.
 - Waste space and be slow to process.

We have a multidimensional data model with the fact table Sales and the dimension tables Customers, Products, and Salespeople. The sales table below represents sales data for 1st January 2010:

CUSTID	PRODID	STAFFID	QUANTITY
101	1	10	20
101	2	11	10
101	3	10	5
102	2	11	8
102	3	10	24
103	1	11	50
103	2	11	45
103	3	10	30

OLAP Servers

- Online Analytical Processing Server (OLAP) is based on the multidimensional data model.
- It allows managers, and analysts to get an insight of the information through fast, consistent, and interactive access to information.
- This part will cover the types of OLAP, operations on OLAP, difference between OLAP, and statistical databases and OLTP.

- There are four types of OLAP servers:
 - Relational OLAP (ROLAP)
 - Multidimensional OLAP (MOLAP)
 - Hybrid OLAP (HOLAP)
 - Specialized SQL Servers (not covered)

ROLAP (STAR SCHEMA)

 Relational OLAP (ROLAP) servers are placed between relational backend server and client front-end tools.

■ To store and manage warehouse data, ROLAP uses relational or extended-relational DBMS.

- ROLAP includes the following:
 - Implementation of aggregation navigation logic.
 - Optimization for each DBMS back end.
 - Additional tools and services.

MOLAP (DATA CUBE)

■ MOLAP uses array-based multidimensional storage engines for multidimensional views of data.

■ With multidimensional data stores, the storage utilization may be low if the data set is sparse.

■ Therefore, many MOLAP server use two levels of data storage representation to handle dense and sparse data sets.

HOLAP

■ Hybrid OLAP is a combination of both ROLAP and MOLAP.

■ It offers higher scalability of ROLAP and faster computation of MOLAP.

■ HOLAP servers allows to store the large data volumes of detailed information. The aggregations are stored separately in MOLAP store.

OLAP OPERATION

Operator	Purpose	Description
Slice	Focus attention on a subset of dimensions	Replace a dimension with a single member value or with a summary of its measure values
Dice	Focus attention on a subset of member values	Replace a dimension with a subset of members
Drill-down	Obtain more detail about a dimension	Navigate from a more general level to a more specific level
Roll-up	Summarize details about a dimension	Navigate from a more specific level to a more general level
Pivot	Present data in a different order	Rearrange the dimensions in a data cube

SLICE OPERATOR

- Focus on a subset of dimensions
- Similar to restriction operator
- Dimension are set to specific value
- Set dimension to specific value: 1/1/2006

26/11/2012 DATA WAREHOUSE 50

Example Slice Operation

		Product		
Location	Mono Laser	Ink Jet	Photo	Portable
California	80	110	60	25
Utah	40	90	50	30
Arizon	70	55	60	35
Washington	75	85	45	45
Colorado	65	45	85	60

Example Slice-Summarize Operation

		Time		
Location	1/1/2006	1/2/2006		Total Sales
California	80	110	•••	16,250
Utah	40	90		11,107
Arizon	70	55		21,500
Washington	75	85	•••	20,900
Colorado	65	45	•••	21,336

DICE OPERATOR

- Focus on a subset of member values
- Replace dimension with a subset of values
- Dice operation often follows a slice operation

DRILL-DOWN

- navigate from a more general level to more specific.
- Obtain more detail about dimension.

Location	Product			
	Mono Laser	Ink Jet	Photo	Portable
California Utah	80	110	60	25
Salt Lake	20	20	10	15
Park City	5	30	10	5
Ogden	15	40	30	10
Arizon	70	55	60	35
Washington	75	85	45	45
Colorado	65	45	85	60

ROLL-UP/DRILL-UP

Remove detail from a dimension.

 Moving from a specific level to a more general level of a hierarchical dimension.

eg: roll up sales data from daily to quarterly level.

PIVOT

 Rearrange dimensions so that data cube can be presented in a visually appealing order.

Most typically used on data cube of more than two dimensions.

26/11/2012 DATA WAREHOUSE 56

- Introduction to Data Warehouse
- Data Warehouse Architecture
- Data Warehouse Tools and Techniques
- Data Marts
- Data Mining
- Designing a Data Warehousing Database
- Dimensionality Modeling
- Multidimensional Data Representation

References

Database Systems: A Practical Approach to Design, Implementation, and Management, Thomas Connolly and Carolyn Begg, 5th Edition, 2010, Pearson.