The Hong Kong Polytechnic University Department of Applied Mathematics AMA1120 Test 1 2021/22 Semester 2

Question 1.

(60 marks) Let $f(x) = 5x^3 - 3x^5, -\infty < x < \infty$

- (a) Find all critical points, if any.
- (b) Find all open intervals where the function is increasing or decreasing, if any.
- (c) Find all local (i.e., relative) and global (i.e., absolute) maximum and minimum, if any.
- (d) Find all open intervals where the function is concave-up (i.e., convex) or concave-down (i.e., concave), if any.
- (e) Find all inflection points, if any.
- (f) Sketch the curve of the function f(x).

My work:

(a)
$$f'(x) = 15x^2 - 15x^4 = 0 \iff x = -1, 0, 1$$

The critical points of f are: $-1, 0, 1$

The open interval where f is increasing is: (-1, 1)The open intervals where f is decreasing are: $(-\infty, -1)$, $(1, +\infty)$

(c)
$$f$$
 attains local minimum at $x = -1$ and $f(-1) = -2$
 f attains local maximum at $x = 1$ and $f(1) = 2$
Since $\lim_{x \to -\infty} f(x) = +\infty$ and $\lim_{x \to +\infty} f(x) = -\infty$, f has no global maximum nor global minimum.

The open intervals where f is convex are: $(-\infty, -\frac{1}{\sqrt{2}}), (0, \frac{1}{\sqrt{2}})$

The open intervals where f is concave are: $(-\frac{1}{\sqrt{2}}, 0), (\frac{1}{\sqrt{2}}, +\infty)$

(e) Change of convexity / concavity occurs at $x = 0, \pm \frac{1}{\sqrt{2}}$

The inflection points are: $0, \pm \frac{1}{\sqrt{2}}$

(f) y-intercept: f(0) = 0

x-intercepts: $f(x) = 5x^3 - 3x^5 = 0 \iff x = 0, \pm \sqrt{\frac{5}{3}}$

Question 2.

(20 marks) Let a and b be two real numbers such that a > b > 0. Demonstrate that $e^{a^2} - e^{b^2} > 2 (ab - b^2) e^{b^2}$

My work:

Let $f(x) = e^{x^2}$, which is continuous on [b, a] and differentiable in (b, a), and $f'(x) = 2x e^{x^2}$, $f''(x) = (2 + 4x^2) e^{x^2} > 0$ for all $x \Rightarrow f'$ is strictly increasing. By Mean-Value Theorem, $\exists \xi \in (b, a)$ such that $f(a) - f(b) = f'(\xi) (a - b) > f'(b) (a - b)$, since a - b > 0 i.e. $e^{a^2} - e^{b^2} > (2b e^{b^2}) (a - b) = 2 (ab - b^2) e^{b^2}$

Question 3.

(20 marks) A ball of radius 1 is contained in a right circular cone. Find the smallest possible surface area of the cone. [Hint: If the base radius of the cone is r and its height is h, then its surface area is $\pi r^2 + \pi r \sqrt{h^2 + r^2}$.]

My work:

By similar triangle, we have
$$\frac{r}{1} = \frac{h}{\sqrt{(h-1)^2 - 1^2}} = \sqrt{\frac{h}{h-2}}$$
 where $h > 2$

As hinted, the surface area =
$$\pi r^2 + \pi r \sqrt{h^2 + r^2} = \pi r^2 \left(1 + \sqrt{1 + \frac{h^2}{r^2}} \right)$$

$$= \frac{\pi h}{h-2} [1 + \sqrt{1 + h (h-2)}] = \frac{\pi h^2}{h-2} =: S(h) \text{ on } h > 2$$

$$S'(h) = \pi \cdot \frac{(h-2)(2h) - h^2}{(h-2)^2} = 0 \iff h = 4$$

h	(2,4)	4	$(4, +\infty)$
S(h)	,	8π	7
S'(h)	_	0	+

The smallest possible surface area of the cone is 8π with $r = \sqrt{2}$ and h = 4.