Language modeling and Basic RNN

Harika Abburi

Slides adapted from Stanford's NLP with Deep Learning course

Overview

Today we will:

- Introduce a new NLP task
 - Language Modeling

motivates

- Introduce a new family of neural networks
 - Recurrent Neural Networks (RNNs)

Language Modeling

• Language Modeling is the task of predicting what word comes next.

the students opened their _____

• More formally: given a sequence of words $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(t)}$ compute the probability distribution of the next word $\boldsymbol{x}^{(t+1)}$:

$$P(\boldsymbol{x}^{(t+1)}|\ \boldsymbol{x}^{(t)},\dots,\boldsymbol{x}^{(1)})$$

where $m{x}^{(t+1)}$ can be any word in the vocabulary $V = \{m{w}_1, ..., m{w}_{|V|}\}$

A system that does this is called a Language Model.

Language Modeling

- You can also think of a Language Model as a system that assigns probability to a piece of text.
- For example, if we have some text $x^{(1)}, \dots, x^{(T)}$, then the probability of this text (according to the Language Model) is:

$$P(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(T)}) = P(\mathbf{x}^{(1)}) \times P(\mathbf{x}^{(2)} | \mathbf{x}^{(1)}) \times \dots \times P(\mathbf{x}^{(T)} | \mathbf{x}^{(T-1)}, \dots, \mathbf{x}^{(1)})$$

$$= \prod_{t=1}^{T} P(\mathbf{x}^{(t)} | \mathbf{x}^{(t-1)}, \dots, \mathbf{x}^{(1)})$$

This is what our LM provides

You use Language Models every day!

n-gram Language Models

the students opened their _____

- Question: How to learn a Language Model?
 Answer (pre- Deep Learning): learn a *n*-gram Language Model!
- Definition: A *n*-gram is a chunk of *n* consecutive words.
 - unigrams: "the", "students", "opened", "their"
 - bigrams: "the students", "students opened", "opened their"
 - trigrams: "the students opened", "students opened their"
 - 4-grams: "the students opened their"
- Idea: Collect statistics about how frequent different N-grams are, and use these to predict next word.

n-gram Language Models

• First we make a simplifying assumption: $x^{(t+1)}$ depends only on the preceding n-1 words.

$$p(\boldsymbol{x}^{(t+1)}|\boldsymbol{x}^{(t)},\dots,\boldsymbol{x}^{(1)}) = P(\boldsymbol{x}^{(t+1)}|\boldsymbol{x}^{(t)},\dots,\boldsymbol{x}^{(t-n+2)})$$
 (assumption)

prob of a n-gram
$$= P(\boldsymbol{x}^{(t+1)}, \boldsymbol{x}^{(t)}, \dots, \boldsymbol{x}^{(t-n+2)})$$
 (definition of conditional prob)

- **Question:** How do we get these n-gram and (n-1)-gram probabilities?
- **Answer:** By counting them in some large corpus of text!

$$pprox rac{\operatorname{count}(oldsymbol{x}^{(t+1)},oldsymbol{x}^{(t)},\ldots,oldsymbol{x}^{(t-n+2)})}{\operatorname{count}(oldsymbol{x}^{(t)},\ldots,oldsymbol{x}^{(t-n+2)})}$$
 (statistical approximation)

n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their discard

condition on this

$$P(\boldsymbol{w}|\text{students opened their}) = \frac{\text{count}(\text{students opened their }\boldsymbol{w})}{\text{count}(\text{students opened their})}$$

For example, suppose that in the corpus:

- "students opened their" occurred 1000 times
- "students opened their books" occurred 400 times
 - \rightarrow P(books | students opened their) = 0.4
- "students opened their exams" occurred 100 times
 - \rightarrow P(exams | students opened their) = 0.1

Should we have Discarded the "proctor" context?

Sparsity Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if "students opened their w" never occurred in data? Then w has probability 0!

(Partial) Solution: Add small delta the count for every $w \in V$. This is called *smoothing*.

 $P(\boldsymbol{w}|\text{students opened their}) =$

count(students opened their w)

count(students opened their)

Sparsity Problem 2

Problem: What if "students opened their" never occurred in data? Then we can't calculate probability for any w!

(Partial) Solution: Just condition on "opened their" instead. This is called backoff.

Sparsity Problems with n-gram Language Models

(Partial) Solution: Add small delta the count for every $w \in V$. This is called *smoothing*.

 $P(\boldsymbol{w}|\text{students opened their}) = \frac{\text{count}(\text{students opened their }\boldsymbol{w})}{\text{count}(\text{students opened their})}$

Sparsity Problem 2

Problem: What if "students opened their" never occurred in data? Then we can't calculate probability for any \boldsymbol{w} !

(Partial) Solution: Just condition on "opened their" instead. This is called backoff.

Note: Increasing *n* makes sparsity problems *worse*. Typically we can't have *n* bigger than 5.

Storage Problems with n-gram Language Models

Increasing *n* or increasing corpus increases model size!

n-gram Language Models in practice

• You can build a simple trigram Language Model over a 1.7 million word corpus (Reuters) in a few seconds on your laptop*

Otherwise, seems reasonable!

Generating text with a n-gram Language Model

You can also use a Language Model to generate text.

Generating text with a n-gram Language Model

• You can also use a Language Model to generate text.

Generating text with a n-gram Language Model

You can also use a Language Model to generate text.

How to build a neural Language Model?

- Recall the Language Modeling task:
 - Input: sequence of words $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(t)}$
 - Output: prob dist of the next word $P(\boldsymbol{x}^{(t+1)}|\ \boldsymbol{x}^{(t)},\dots,\boldsymbol{x}^{(1)})$

How about a window-based neural model?

A fixed-window neural Language Model

discard

the proctor started the clock the students opened their _____

fixed window

A fixed-window neural Language Model

output distribution

$$\hat{\boldsymbol{y}} = \operatorname{softmax}(\boldsymbol{U}\boldsymbol{h} + \boldsymbol{b}_2) \in \mathbb{R}^{|V|}$$

hidden layer

$$\boldsymbol{h} = f(\boldsymbol{W}\boldsymbol{e} + \boldsymbol{b}_1)$$

concatenated word embeddings

$$e = [e^{(1)}; e^{(2)}; e^{(3)}; e^{(4)}]$$

words / one-hot vectors $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \boldsymbol{x}^{(3)}, \boldsymbol{x}^{(4)}$

A fixed-window neural Language Model

Improvements over *n*-gram LM:

- No sparsity problem
- Don't need to store all observed n-grams

Remaining **problems**:

- Fixed window is too small
- Enlarging window enlarges W
- Window can never be large enough!
- $x^{(1)}$ and $x^{(2)}$ are multiplied by completely different weights in W. No symmetry in how the inputs are processed.

We need a neural architecture that can process *any length input*

Recurrent Neural Networks (RNN)

A family of neural architectures

Core idea: Apply the same weights *w repeatedly*

A RNN Language Model

output distribution

$$\hat{m{y}}^{(t)} = \operatorname{softmax}\left(m{U}m{h}^{(t)} + m{b}_2\right) \in \mathbb{R}^{|V|}$$

hidden states

$$\boldsymbol{h}^{(t)} = \sigma \left(\boldsymbol{W}_h \boldsymbol{h}^{(t-1)} + \boldsymbol{W}_e \boldsymbol{e}^{(t)} + \boldsymbol{b}_1 \right)$$

 $h^{(0)}$ is the initial hidden state

word embeddings

$$oldsymbol{e}^{(t)} = oldsymbol{E} oldsymbol{x}^{(t)}$$

words / one-hot vectors

$$oldsymbol{x}^{(t)} \in \mathbb{R}^{|V|}$$

 $\hat{\mathbf{y}}^{(4)} = P(\mathbf{x}^{(5)}|\text{the students opened their})$

Note: this input sequence could be much longer, but this slide doesn't have space!

 $h^{(0)}$

A RNN Language Model

 $h^{(0)}$

RNN Advantages:

- Can process any length length
- Computation for step *t can* (in theory) use information From Many steps back
- Model size doesn't increase for longer input
- Same weights applied on every timestep, so there is symmetry in how inputs are processed.

RNN Disadvantages:

- Recurrent computation is slow
- In practice, difficult to access information from many steps back

- Get a big corpus of text which is a sequence of words $x^{(1)}, \dots, x^{(T)}$
- Feed into RNN-LM; compute output distribution $\hat{y}^{(t)}$ for each step t.
 - i.e. predict probability dist of *every word*, given words so far
 - Loss function on step is cross-entropy between predicted prob. distribution $\hat{y}^{(t)}$, and the true next word $y^{(t)}$ (one-hot for $x^{(t+1)}$)

$$J^{(t)}(\theta) = CE(\boldsymbol{y}^{(t)}, \hat{\boldsymbol{y}}^{(t)}) = -\sum_{w \in V} \boldsymbol{y}_w^{(t)} \log \hat{\boldsymbol{y}}_w^{(t)} = -\log \hat{\boldsymbol{y}}_{\boldsymbol{x}_{t+1}}^{(t)}$$

• Average this to get overall loss for entire training set:

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} J^{(t)}(\theta) = \frac{1}{T} \sum_{t=1}^{T} -\log \hat{\boldsymbol{y}}_{\boldsymbol{x}_{t+1}}^{(t)}$$

Goal of Loss function: To find the parameters, U,V,W that minimize the loss function for our training data

• However: Computing loss and gradients across entire corpus $x^{(1)}, \dots, x^{(T)}$ is too expensive!

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} J^{(t)}(\theta)$$

- Stochastic Gradient Descent
- Iterate over all the training data during each itertaion and nudge the parameters into direction that reduces the error.

• Directios are given by the gradients on the loss:

- Needs a learning rate
- SGD, allows us to compute loss and gradients for small chunk of data, and update.
- Compute loss $J(\theta)$ for a sentence (actually a batch of sentences), compute gradients and update weights. Repeat.

$$heta^{new} = heta^{old} - \alpha \nabla_{ heta} J(heta)$$
 gradient

Backpropagation for RNNs

• How to calculate the gradients?

Backpropagation for RNNs

Question: What's the derivative of $J^{(t)}(\theta)$ w.r.t. the repeated weight matrix W_h ?

Answer:
$$\frac{\partial J^{(t)}}{\partial W_h} = \sum_{i=1}^t \frac{\partial J^{(t)}}{\partial W_h} \Big|_{(i)}$$

"The gradient w.r.t. a repeated weight is the sum of the gradient w.r.t. each time it appears"

Why?

Multivariable Chain Rule

ullet Given a multivariable function f(x,y), and two single variable functions x(t) and y(t), here's what the multivariable chain rule says:

$$\left(rac{d}{dt} f(oldsymbol{x}(t), oldsymbol{y}(t))
ight) = rac{\partial f}{\partial oldsymbol{x}} rac{doldsymbol{x}}{dt} + rac{\partial f}{\partial oldsymbol{y}} rac{doldsymbol{y}}{dt}
ight)$$

Derivative of composition function

Source:

Backpropagation for RNNs: Proof sketch

ullet Given a multivariable function f(x,y), and two single variable functions x(t) and y(t), here's what the multivariable chain rule says:

$$\left(rac{d}{dt} \, f(oldsymbol{x}(t), oldsymbol{y}(t))
ight) = rac{\partial f}{\partial oldsymbol{x}} \, rac{doldsymbol{x}}{dt} + rac{\partial f}{\partial oldsymbol{y}} \, rac{doldsymbol{y}}{dt}
ight)$$

Derivative of composition function

Source:

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Backpropagation for RNNs

$$\frac{\partial J^{(t)}}{\partial \boldsymbol{W_h}} = \sum_{i=1}^{t} \frac{\partial J^{(t)}}{\partial \boldsymbol{W_h}} \Big|_{(i)}$$

Answer: Backpropagate over timesteps *i*=*t*,...,0, summing gradients as you go. This algorithm is called "backpropagation through time"

Question: How do we calculate this?

Generating text with a RNN Language Model

Just like a n-gram LM, you can use a RNN Language Model to generate text by repeated sampling. Sampled output is next step's input.

Evaluating Language Models

• The standard evaluation metric for Language Models is perplexity.

$$\text{perplexity} = \prod_{t=1}^T \left(\frac{1}{P_{\text{LM}}(\boldsymbol{x}^{(t+1)}|\ \boldsymbol{x}^{(t)},\dots,\boldsymbol{x}^{(1)})} \right)^{1/T}$$
 Normalized by number of words

Inverse probability of corpus, according to Language Model

• This is equal to the exponential of the cross-entropy loss $J(\theta)$:

$$= \prod_{t=1}^{T} \left(\frac{1}{\hat{\boldsymbol{y}}_{\boldsymbol{x}_{t+1}}^{(t)}} \right)^{1/T} = \exp \left(\frac{1}{T} \sum_{t=1}^{T} -\log \hat{\boldsymbol{y}}_{\boldsymbol{x}_{t+1}}^{(t)} \right) = \exp(J(\theta))$$

Lower perplexity is better!

RNNs have greatly improved perplexity

	Model	Perplexity
<i>n</i> -gram model──	→ Interpolated Kneser-Ney 5-gram (Chelba et al., 2013)	67.6
Increasingly complex RNNs	RNN-1024 + MaxEnt 9-gram (Chelba et al., 2013)	51.3
	RNN-2048 + BlackOut sampling (Ji et al., 2015)	68.3
	Sparse Non-negative Matrix factorization (Shazeer et al., 2015)	52.9
	LSTM-2048 (Jozefowicz et al., 2016)	43.7
	2-layer LSTM-8192 (Jozefowicz et al., 2016)	30
	Ours small (LSTM-2048)	43.9
	Ours large (2-layer LSTM-2048)	39.8

Perplexity improves (lower is better)

Source: https://research_fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

Why should we care about Language Modeling?

- Language Modeling is a benchmark task that helps us to measure our progress on understanding language
- Language Modeling is a subcomponent of many NLP tasks, especially those involving generating text or estimating the probability of text:
 - Predictive typing
 - Speech recognition
 - Handwriting recognition
 - Spelling/grammar correction
 - Authorship identification
 - Machine translation
 - Summarization
 - Dialogue
 - etc.

Recap

- Language Model: A system that predicts the next word
- Recurrent Neural Network: A family of neural networks that:
 - Take sequential input of any length
 - Apply the same weights on each step
 - Can optionally produce output on each step
- Recurrent Neural Network ≠ Language Model
- We've shown that RNNs are a great way to build a LM.
- But RNNs are useful for much more!

Thanks!