16.	Sean	A, B	\in	$\mathbb{R}^{n \times n}$	proba

- a) Si A es inversible entonces A^{-1} es inversible y $(A^{-1})^{-1} = A$.
- b) Si A, B son inversibles entonces AB es inversible y $(AB)^{-1} = B^{-1}A^{-1}$.
- c) Si A es inversible entonces A^t es inversible y $(A^t)^{-1} = (A^{-1})^t$.

a)
$$QVQ: A inversible \Rightarrow A^{-1} inversible y (A^{-1})^{-1} = A$$

 $QVQ: A^{-1}$ inversible. Por definición esto vale si existe $(A^{-1})^{-1} \in \mathbb{R}^{n \times n}$ tal que $A^{-1} (A^{-1})^{-1} = (A^{-1})^{-1} A^{-1} = I$.

Por hipótesis A es inversible, entences existe $A^{-1} \in \mathbb{R}^{n \times n}$ tal que: $AA^{-1} = A^{-1}A = I$. Basta considerar A como la inversa de A^{-1} y vernos que se cumple la definición.

$$\therefore (A^{-1})^{-1} = A \quad y \quad A^{-1} \text{ resulta inversible.}$$

 $A^{-1} \in \mathbb{R}^{n \times n}$ es inversible si existe $(A^{-1})^{-1} = A \in \mathbb{R}^{n \times n}$ tal que $A^{-1}(A^{-1})^{-1} = (A^{-1})^{-1}A^{-1} = I$.

 $A^{-1}(A^{-1})^{-1} = A^{-1}A = I$ $(A^{-1})^{-1}A^{-1} = AA^{-1} = I$ Vsamos esta igualdad

regalada por el enunciado

A inversible por hipotesis

b)

QVQ: S: A, B & IR "x" inversibles => AB inversible y (AB)-1 = B-1A-1.

Primero veamos que AB es inversible.

AB inversible \iff Nu(AB) = $\{0\}$ \iff (ABx = $0 \iff$ X=0)

Supongamos que AB no es inversible.

3xelR", x ≠0 tg ABx = 0.

Como A es inversible por hipótesis:

 $ABx = 0 \iff A^{-1}ABx = A^{-1}O \iff Bx = 0$

Como B también es inversible por hipotesis:

Bx = 0 (=> B-1Bx = B-10 (=> x = 0

Absurdo pues XXO. Entonces AB es inversible si AyB lo son.

Ahora que sabemos que AB es inversible si AyB son inversibles, veamos si efectivamente $(AB)^{-1} = B^{-1}A^{-1}$ es su inversa. Para esto basta ver que AB $(AB)^{-1} = (AB)^{-1}AB = I$.

 $AB(AB)^{-1} = ABB^{-1}A^{-1} = AIA^{-1} = AA^{-1} = I$

 $(AB)^{-1}AB = B^{-1}A^{-1}AB = B^{-1}IB = B^{-1}B = I$

: AB es inversible y $(AB)^{-1} = B^{-1}A^{-1}$ es su inversa.

C)

QVQ: A inversible
$$\Rightarrow$$
 A^{t} inversible y $(A^{t})^{-1} = (A^{-1})^{t}$
 A^{t} no es más que poner las filas de A como columnas de A^{t}

(o las columnas de A como filas), sin cambiar ningún número.

 $A = \begin{bmatrix} -E_1 \\ -E_2 \\ -E_1 \end{bmatrix}$
 $A^{t} = \begin{bmatrix} -E_1 \\ -E_2 \\ -E_1 \end{bmatrix}$

Como A es inversible tiene rango $(A) = n \Rightarrow cols(A) LI$.

 $Cols(A) = Filas(A^{t}) \Rightarrow Filas(A^{t}) LI$ pues son los mismos vectores que cols (A) .

 \Rightarrow rango $(A^{t}) = n$
 \Rightarrow A^{t} es inversible

Sabiendo que A y A^{t} son inversibles veamos que $(A^{t})^{-1} = (A^{-1})^{t}$.

 $A^{t} = I$
 $A^{t} = I$