

Control 3 Cálculo III forma B 24 de noviembre de 2022

Coordinación de Cálculo III y Cálculo Avanzado para el Módulo Básico de Ingeniería

Problema 1. Sea la integral

$$I = \iint_E e^{-y^2} dy dx,$$

donde $E = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1; x \le y \le 1\}.$

- a) Reescriba esta integral en el orden dxdy.
- b) Calcule la integral I.

Solución.

a) Como E es una región del tipo I, convertiremos esta región a una del tipo II. Como $0 \le x \le 1$ e $x \le y \le 1$, entonces $0 \le y \le 1$ y $0 \le x \le y$, por tanto

$$I = \iint_D e^{-y^2} dy dx,$$

donde $D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le 1; 0 \le x \le y\}.$

b) Directamente calculamos la integral

$$I = \iint_{D} e^{-y^{2}} dy dx$$

$$= \int_{0}^{1} \int_{0}^{y} e^{-y^{2}} dx dy$$

$$= \int_{0}^{1} e^{-y^{2}} (x) \Big|_{0}^{y} dy$$

$$= \int_{0}^{1} y e^{-y^{2}} dy$$

$$= -\frac{1}{2} \left(e^{-y^{2}} \right) \Big|_{0}^{1}$$

$$= -\frac{1}{2} \left(e^{-1} - 1 \right)$$

$$= \frac{1 - e^{-1}}{2}.$$

Problema 2. Para a < 2, determine el valor de

$$\iiint_{\Omega} \frac{x^2}{(x^2+y^2)^a} dx dy dz,$$

donde Ω es el sólido acotado que está encerrado entre el cono de ecuación $z^2 = x^2 + y^2$ y el plano z = 1.

Solución. Usaremos coordenadas cilíndricas. Primero si proyectamos el sólido en el plano XY, obtenemos una circunferencia unitaria centrada en el origen. De ahí tenemos que $0 \le \theta \le 2\pi$.

Por otro lado, si fijo θ , intersectamos el sólido Ω con el plano dado por dicho θ tenemos una región plana en rz que se ilustra a continuación:

Del dibujo, se tiene que $0 \le z \le 1$ y $0 \le r \le z$ (o bien $0 \le r \le 1$ y $r \le z \le 1$). En resumidas cuentas:

$$\Omega = \{ (r, \theta, z) : 0 \le r \le 1, \ r \le z \le 1, \ 0 \le \theta \le 2\pi \}.$$

Así, usando el teorema de Cambio de Variable, tenemos

$$\iiint_{\Omega} \frac{x^2}{(x^2 + y^2)^a} dx dy dz = \int_0^{2\pi} \int_0^1 \int_0^z \frac{r^2 \cos^2(\theta)}{r^{2a}} r dr dz d\theta$$

$$= \int_0^{2\pi} \int_0^1 \int_0^z r^{3 - 2a} \cos^2(\theta) dr dz d\theta$$

$$= \int_0^{2\pi} \int_0^1 \cos^2(\theta) \left[\frac{r^{4 - 2a}}{4 - 2a} \Big|_0^z \right] dz d\theta$$

$$= \frac{1}{4 - 2a} \int_0^{2\pi} \int_0^1 \cos^2(\theta) z^{4 - 2a} dz d\theta$$

$$= \frac{1}{4 - 2a} \int_0^{2\pi} \cos^2(\theta) \left[\frac{z^{5-2a}}{5 - 2a} \Big|_0^1 \right] d\theta$$

$$= \frac{1}{(4 - 2a)(5 - 2a)} \int_0^{2\pi} \cos^2(\theta) d\theta$$

$$= \frac{1}{(4 - 2a)(5 - 2a)} \left[\frac{\theta}{2} + \frac{\sin(2\theta)}{4} \right] \Big|_0^{2\pi}$$

$$= \frac{\pi}{(4 - 2a)(5 - 2a)}.$$

Problema 3. Encuentre el área de la región del primer cuadrante acotada por las curvas $y = x^3, y = 2x^3, x = y^3, x = 4y^3$.

Solución. Sean $u = \frac{y}{x^3}, v = \frac{x}{y^3}$.

Entonces R se transforma en $R' = \{(u, v) : 1 \le u \le 2, 1 \le v \le 4\}.$

Su jacobiano es

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} -\frac{3y}{x^4} & \frac{1}{x^2} \\ \frac{1}{y^3} & -\frac{3x}{y^4} \end{vmatrix} = \frac{9xy}{x^4y^4} - \frac{1}{x^3y^3} = \frac{8}{x^3y^3}.$$

Como $uv = \frac{1}{x^2y^2}$, entonces $\frac{8}{x^3y^3} = 8u^{\frac{3}{2}}v^{\frac{3}{2}}$. Luego $\frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{8u^{\frac{3}{2}}v^{\frac{3}{2}}}$. Así,

Tiempo: 90 minutos.

Justifique completamente sus respuestas.