COMP 3225

Natural Language Processing

Parts of Speech Tagging

Stuart E. Middleton

sem03@soton.ac.uk

University of Southampton

Overview

- Introduction to Parts of Speech (POS)
- Tagsets
- POS Tagging
- <break discussion point>
- Hidden Markov Model (HMM) POS tagger

What is Parts of Speech?

- The concept of Parts-of-Speech (POS) probably originated from Dionysius
 Thrax of Alexandria around 100 BC attempting to summarize Greek
 linguistic knowledge
- Thrax defined eight POS which we still use today
 - Noun, Verb, Pronoun, Preposition, Adverb, Conjunction, Participle, Article
- POS can also be called word classes, morphological classes or lexical tags
- POS are generally assigned to individual words or morphemes
- Labelling POS is called POS Tagging

Proper names

- A proper name is called a Named Entity, and can be a multi-word phrase (e.g. New York)
- Labelling named entities is called Named Entity Recognition (NER)
- Named entity types include Location, Person, Organization etc.

- Why are POS and Named Entities useful?
 - POS gives us clues to neighboring words and syntactic structure
 - Nouns are preceded by determiners and adjectives
 - Verbs are preceded by nouns
 - Verbs have dependency links to nouns

- ... the river
- ... swimming in the river
- swimming dobj the river
- POS tagging a key aspect of parsing natural language
- NER is important to many natural language understanding tasks such as question answering, stance detection and information extraction
- Sequence labelling tasks
 - Input >> X >> Sequence of words
 - Output >> Y >> Sequence of labels
 - len(X) == len(Y)
- Both POS tagging and NER can be formulated as a sequence labelling task

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
Open Class	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
C	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
)sen	VERB	words for actions and processes	draw, provide, go
O	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
ος.		spacial, temporal, or other relation	
Words	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
>	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
Closed Class	DET	Determiner: marks noun phrase properties	a, an, the, this
\Box	NUM	Numeral	one, two, first, second
seq	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
Clo	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
H	PUNCT	Punctuation	; , ()
Other	SYM	Symbols like \$ or emoji	\$, %
)	X	Other	asdf, qwfg

The 17 parts of speech in the Universal Dependencies tagset for English

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
ass	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
\Box	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
Open Class	VERB	words for actions and processes	draw, provide, go
O	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
s,		spacial, temporal, or other relation	
ord	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
≥	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
Closed Class Words	DET	Determiner: marks noun phrase properties	a, an, the, this
\Box	NUM	Numeral	one, two, first, second
seq	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
12	PUNCT	Punctuation	; , ()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

- Closed Classes fixed membership
 - Typically function words used for structuring grammar (of, it, and, you)
- Open Classes open membership
 - Noun (including proper noun), verb, adjective, adverb, interjection

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
ass	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
\Box	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
Open Class	VERB	words for actions and processes	draw, provide, go
O	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
s,		spacial, temporal, or other relation	
ord	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
≥	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
Closed Class Words	DET	Determiner: marks noun phrase properties	a, an, the, this
\Box	NUM	Numeral	one, two, first, second
seq	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
12	PUNCT	Punctuation	; , ()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

Nouns

- Common Noun concrete terms, abstractions and verb-like terms
 - Count Noun occur in the singular and plural (goat/goats, relationship/relationships, and irregular ones like sheep/sheep)
 - Mass Noun homogeneous groups (snow, salt)
- Proper Noun names of things

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
ass	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
\Box	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
Open Class	VERB	words for actions and processes	draw, provide, go
O	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
S		spacial, temporal, or other relation	
Words	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
≥	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
Class	DET	Determiner: marks noun phrase properties	a, an, the, this
\Box	NUM	Numeral	one, two, first, second
Closed	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
E	PUNCT	Punctuation	; , ()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

- Verbs actions and processes
- Adjective properties or qualities of nouns

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
ass	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
\Box	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
Open Class	VERB	words for actions and processes	draw, provide, go
O	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
s,		spacial, temporal, or other relation	
ord	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
≥	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
Closed Class Words	DET	Determiner: marks noun phrase properties	a, an, the, this
\Box	NUM	Numeral	one, two, first, second
seq	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
12	PUNCT	Punctuation	; , ()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

Adverb - modifier words

- Locative Adverb direction or location of some action (here, downhill)
- Degree Adverbs extent of some action (extremely, very, somewhat)
- Manner Adverbs manner of some action (slowly, slinkily, delicately)
- Temporal Adverbs time of action or event (yesterday, Monday)

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
ass	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
Open Class	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
ben	VERB	words for actions and processes	draw, provide, go
O	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
S		spacial, temporal, or other relation	
ord	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
>	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
Closed Class Words	DET	Determiner: marks noun phrase properties	a, an, the, this
\Box	NUM	Numeral	one, two, first, second
sed	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
er	PUNCT	Punctuation	; , ()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

 Interjection - exclamation (oh, hey, alas), greetings (hello, goodbye) and question responses (yes, no, uh-huh)

Tagsets

- A list of POS labels is called a Tagset
- Tagsets come in different shapes and sizes
 - Penn Treebank (45 labels)
 - Brown Corpus (87 labels)
 - C7 Tagset (146 labels)
- Penn Treebank

Tag Desc	ription	Example	Tag	Description	Example	Tag	Description	Example
CC coord	. conj.	and, but, or	NNP	proper noun, sing.	IBM	TO	"to"	to
CD cardin	nal number	one, two	NNPS	proper noun, plu.	Carolinas	UH	interjection	ah, oops
DT deter	niner	a, the	NNS	noun, plural	llamas	VB	verb base	eat
EX existe	ntial 'there'	there	PDT	predeterminer	all, both	VBD	verb past tense	ate
FW foreig	n word	mea culpa	POS	possessive ending	's	VBG	verb gerund	eating
IN prepo	sition/	of, in, by	PRP	personal pronoun	I, you, he	VBN	verb past partici-	eaten
subor	din-conj						ple	
JJ adjec	ive	yellow	PRP\$	possess. pronoun	your, one's	VBP	verb non-3sg-pr	eat
JJR comp	arative adj	bigger	RB	adverb	quickly	VBZ	verb 3sg pres	eats
JJS super	lative adj	wildest	RBR	comparative adv	faster	WDT	wh-determ.	which, that
LS list it	em marker	1, 2, One	RBS	superlatv. adv	fastest	WP	wh-pronoun	what, who
MD moda	1	can, should	RP	particle	ир, off	WP\$	wh-possess.	whose
NN sing o	r mass noun	llama	SYM	symbol	+,%,&	WRB	wh-adverb	how, where

Cite: Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large annotated corpus of English: The Penn treebank. Computational Linguistics 19(2), 313–330

POS Tagging

- POS tagging is the process of assigning a POS tag to each word in a text
 - Input sequence >> X >> x₁; x₂; ::: ; x_n of (tokenized) words
 - Output sequence >> Y >> y₁; y₂; ::: ; y_n of POS tags
 - Each output y_i corresponding exactly to one input x_i

POS Tagging

- POS Tagging is a disambiguation task
 - Words are ambiguous they have more than one possible POS
 - Goal is to find the correct tag for any given situation
- Example
 - 'book' can be a verb (<u>book</u> that flight) or a noun (hand me that <u>book</u>).
- There are many ways you can build a POS tagger
 - Rule-based taggers
 - Set of possible POS for a word >> hand-crafted disambiguation rules
 - EngCG tagger >> 56,000 entries each with a set of morphological and syntactic features
 - Transformation-based taggers
 - Supervised learning of tagging rules + small set of hand-crafted templates
 - Brill tagger
 - Hidden Markov Model (HMM) >> this lecture
 - Conditional Random Fields (CRF) >> NER lecture

Break

- Panopto Quiz discussion point
- What would be the PENN Treebank POS tags for the following sentence:
 "At the same time, it develops multinational operations"

IN DT NN NN, PRP VBZ NN NNS
IN DT NN NN, VBG VBZ NN NNS
IN DT JJ NN, VBG VBZ JJ NNS
IN DT JJ NN, PRP VBZ JJ NNS
IN DT JJ RB, PRP VBZ JJ NNS

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coord. conj.	and, but, or	NNP	proper noun, sing.	IBM	TO	"to"	to
CD	cardinal number	one, two	NNPS	proper noun, plu.	Carolinas	UH	interjection	ah, oops
DT	determiner	a, the	NNS	noun, plural	llamas	VB	verb base	eat
EX	existential 'there'	there	PDT	predeterminer	all, both	VBD	verb past tense	ate
FW	foreign word	mea culpa	POS	possessive ending	'S	VBG	verb gerund	eating
IN	preposition/	of, in, by	PRP	personal pronoun	I, you, he	VBN	verb past partici-	eaten
	subordin-conj						ple	
JJ	adjective	yellow	PRP\$	possess. pronoun	your, one's	VBP	verb non-3sg-pr	eat
JJR	comparative adj	bigger	RB	adverb	quickly	VBZ	verb 3sg pres	eats
JJS	superlative adj	wildest	RBR	comparative adv	faster	WDT	wh-determ.	which, that
LS	list item marker	1, 2, One	RBS	superlatv. adv	fastest	WP	wh-pronoun	what, who
MD	modal	can, should	RP	particle	up, off	WP\$	wh-possess.	whose
NN	sing or mass noun	llama	SYM	symbol	+,%, &	WRB	wh-adverb	how, where

Break

Panopto Quiz - discussion point

• What would be the PENN Treebank POS tags for the following sentence:

- Markov chain
 - Model of the probability of a next state given the current state
 - Very strong assumption >> future depends only on current state (not past)
 - State = set of variables (words)
- Sequence of state variables = q_1 , q_2 , ... q_i

Markov Assumption:
$$P(q_i = a | q_1...q_{i-1}) = P(q_i = a | q_{i-1})$$

Prob of state q_i depends only on state q_{i-1}

- Markov chain
 - Model of the probability of a next state given the current state
 - Very strong assumption >> future depends only on current state (not past)
 - State = set of variables (words)
- Sequence of state variables = q_1 , q_2 , ... q_i

Markov Assumption:
$$P(q_i = a | q_1...q_{i-1}) = P(q_i = a | q_{i-1})$$

Markov Model >> all events (words and tags) must be observed

$$Q = q_1q_2 \dots q_N$$
 a set of N states
$$A = a_{11}a_{12} \dots a_{N1} \dots a_{NN}$$
 a **transition probability matrix** A , each a_{ij} representing the probability of moving from state i to state j , s.t.
$$\sum_{j=1}^{n} a_{ij} = 1 \quad \forall i$$
 an **initial probability distribution** over states. π_i is the probability that the Markov chain will start in state i . Some states j may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

 Hidden Markov Model >> POS tags are hidden states, which we must infer from observed words

Markov Assumption:
$$P(q_i|q_1,...,q_{i-1}) = P(q_i|q_{i-1})$$

Output Independence: $P(o_i|q_1,\ldots,q_t,\ldots,q_T,o_1,\ldots,o_t,\ldots,o_T) = P(o_i|q_i)$

$Q=q_1q_2\ldots q_N$	a set of N states
$A = a_{11} \dots a_{ij} \dots a_{NN}$	a transition probability matrix A , each a_{ij} representing the probability
	of moving from state i to state j, s.t. $\sum_{i=1}^{N} a_{ij} = 1 \forall i$
$O = o_1 o_2 \dots o_T$	a sequence of T observations, each one drawn from a vocabulary $V =$
	$v_1, v_2,, v_V$
$B = b_i(o_t)$	a sequence of observation likelihoods, also called emission probabili-
	ties , each expressing the probability of an observation o_t being generated
	from a state q_i
$\pi=\pi_1,\pi_2,,\pi_N$	an initial probability distribution over states. π_i is the probability that
	the Markov chain will start in state i. Some states j may have $\pi_i = 0$,
	meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

- Compute A matrix (tag transition probability) by counting
- WSJ corpus >> MD occurs 13124 times, and is followed by VB 10471 times

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})} \qquad P(VB|MD) = \frac{C(MD,VB)}{C(MD)} = \frac{10471}{13124} = .80$$

- Compute B matrix (word observation probability) by counting
- WSJ corpus >> Of the 13124 occurrences of MD, it is associated with the word 'will' 4046 times

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)} \qquad P(will|MD) = \frac{C(MD, will)}{C(MD)} = \frac{4046}{13124} = .31$$

 If we were going to generate a MD tag, how likely is it that this tag will have the word 'will'?

 Decoding = Given a model and a sequence of observations (w₁...w_n), find the most probable sequence of states (t₁...t_n)

$$\hat{t}_{1:n} = \operatorname*{argmax}_{t_1...t_n} P(t_1...t_n | w_1...w_n)$$

Apply Bayes' rule

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)} \qquad \hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} \frac{P(w_1...w_n|t_1...t_n)P(t_1...t_n)}{P(w_1...w_n)}$$

Probability of seq of words does not vary by tag seq (so drop it)

Decoding (from last slide)

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(w_1...w_n|t_1...t_n) P(t_1...t_n)$$

- Assumptions
 - Probability of word depends only on tag (independent on neighbours)
 - Probability of tag depends only on previous tag (bigram)

$$P(w_1 \dots w_n | t_1 \dots t_n) \approx \prod_{i=1}^n P(w_i | t_i)$$
 $P(t_1 \dots t_n) \approx \prod_{i=1}^n P(t_i | t_{i-1})$ Matrix B Matrix A

Decoding (using matrix A and B)

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(t_1...t_n | w_1...w_n) \approx \underset{t_1...t_n}{\operatorname{argmax}} \prod_{i=1}^n \underbrace{P(w_i | t_i)}_{P(t_i | t_{i-1})}$$

 The Viterbi Algorithm is an efficient algorithm for HMM decoding using dynamic programming

```
function VITERBI(observations of len T, state-graph of len N) returns best-path, path-prob
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                          ; initialization step
      viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
      backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                           ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max_{s',s}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
      backpointer[s,t] \leftarrow \underset{\sim}{\operatorname{argmax}} \ viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max_{s=1}^{N} viterbi[s, T]; termination step
bestpathpointer \leftarrow \underset{\sim}{\operatorname{argmax}} viterbi[s, T]; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```

 Exercise >> Run through worked example of the Viterbi algorithm from 3rd edition (online) chapter 8 of course text

Required Reading

- Sequence Labelling for Parts of Speech
 - Jurafsky and Martin, Speech and Language Processing, 3rd edition (online)
 >> chapter 8

Questions

Panopto Quiz - 1 minute brainstorm for interactive questions

Please write down in Panopto quiz in **1 minute** two or three questions that you would like to have answered at the next interactive session.

Do it **right now** while its fresh.

Take a screen shot of your questions and **bring them with you** at the interactive session so you have something to ask.