An Introduction to FPGA Placement

Yonghong Xu

Supervisor: Dr. Khalid

Island FPGA Architecture

An Abstract Logic Block

IC Design Flow

Placement Definition

- Input:
 - Netlist of logic blocks
 - I/O pads
 - Inter connections
- Output:
 - Coordinates (x_i, y_i) for each block.
 - The total wire length is minimized.
 - Also need to consider delay and routability.

An Example

 MCNC Benchmark circuit e64 (contains 230 4-LUT). Placed to a FPGA

Random placement

Initial Placement. Cost: 74.5562. Channel Factor: 100

Final placement

Final Placement. Cost: 28.5384. Channel Factor: 100

Placement is NP-Complete

- NP (non-deterministic polynomial-time)
 - the class **NP** consists of all those decision problems whose positive solutions can be verified in polynomial time given the right information, or equivalently, whose solution can be found in polynomial time on a non-deterministic machine
- NP-Complete basically means that there is no efficient way to compute a solution using a computer program
- Approximate solutions for NP-complete problems can be found using heuristic method.

Major Placement Techniques

- Partitioning-Based Placement
- Simulated Annealing Placement
- Quadratic Placement
- Hybrid and Hierarchical Placement

Partitioning-Based Placement

- Partitioning: Decomposition of a complex system into smaller subsystems
- Partitioning-based placement recursively apply min-cut partitioning to map the netlist into the layout region
- Cutsize: the number of nets not contained in just one side of the partition
- e.g. FM partitioning algorithm

Partitioning-Based Placement

- Pros:
 - Open Cost Function(partitioning cost)
 - Minimize net cut, edge cut etc.
 - It is Move Based, Suitable to Timing Driven Placement
- Cons:
 - Lots of "indifferent" moves
 - May not work well with some cost functions
 - Multi partitioning

Simulated Annealing Placement

- Simulated annealing algorithm mimics the annealing process used to gradually cool molten metal to produce high quality metal structures
- Initial placement improved by iterative swaps and moves
- Accept swaps if they improve the cost
- Accept swaps that degrade the cost under some probability conditions to prevent the algorithm from being trapped in a local minimum

Simulated Annealing Placement

- Pros:
 - Open Cost Function
 - Wire length cost
 - Timing cost
 - Can Reach Globally Optimal Solution given enough time
- Cons:
 - Slow

Quadratic Placement

- Use squared wire length as objective function
- Minimize the objective function by solving linear equations
- Expand the design to entire chip area

Quadratic Placement

Min
$$[(x1-x3)^2 + (x1-x2)^2 + (x2-x4)^2]$$
: F

$$\delta F/\delta x 1 = 0;$$

 $\delta F/\delta x 2 = 0;$

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} x3 \\ x4 \end{bmatrix} \qquad x = \begin{bmatrix} x1 \\ x2 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{x3} \\ \mathbf{x4} \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}\mathbf{1} \\ \mathbf{x}\mathbf{2} \end{bmatrix}$$

Quadratic Placement

- Pros:
 - Very fast
 - Can handle large design
- Cons:
 - Minimize squared wire length while not the wire length
 - Not Suitable for Simultaneous Optimization of Other Aspects of Physical Design
 - Gives Trivial Solutions without Pads

Hybrid and Hierarchical Placement

- The scale of logic circuits grows fast
- Compile time grows exponential with the number of logic blocks
- Hierarchical methods are introduced to reduce the compile time
- in different hierarchies use different algorithms
- E.g.
 - GORDIAN quadratic + partitioning
 - Dragon: partitioning + Simulated Annealing

Timing Optimization

- To minimize the longest path delay or maximize the minimum slack
- Existing Algorithms
 - Path based algorithms
 - Net weighting algorithms

Path Based Algorithms

- Directly minimize the longest path delay
- Accurate timing view during optimization
- High computational cost
- Popular approaches:
 - Explicitly reduce the maximum length of a set of paths; the set could be pre-computed or dynamically adjusted
 - Mathematical programming by introducing auxiliary variables(arrival time, required time)

Net Weighting Algorithms

- Timing criticalities are translated into net weights; then compute a placement which minimized total weighted delay or wire length
- Edges have smaller slack are assigned higher weight
- Edges shared by more path are assigned higher weight
- Less accurate, less computational cost

Dominating Placement algorithm: VPR

- Simulated Annealing based
- Adaptive annealing schedule
- Use delay profile of target FPGA to evaluate the delay of each connection
- Trades off between circuit delay and wiring cost optimization

```
474
```

```
S = RandomPlacement();
T = InitialTemperature ();
R_{limit} = InitialR_{limit} ():
Criticality_Exponent = ComputeNewExponent();
ComputeDelayMatrix();
while (ExitCriterion () == False) { /* "Outer loop" */
       TimingAnalyze();
                           /* Perform a timing-analysis and update each connections criticality */
       Previous_Wiring_Cost = Wiring_Cost(S); /* wire-length minimization normalization term */
       Previous_Timing_Cost = Timing_Cost(S);
                                                                /* delay minimization normalization term */
       while (InnerLoopCriterion () == False) { /* "Inner loop" */
              Snew = GenerateViaMove (S. R<sub>limit</sub>);
              \DeltaTiming_Cost = Timing_Cost(S<sub>new</sub>) - Timing_Cost(S);
              \DeltaWiring_Cost = Wiring_Cost(S<sub>new</sub>) - Wiring_Cost(S);
              \Delta C = \lambda \cdot (\Delta Timing\_Cost/Prev\_Timing\_Cost) +
                                                   (1-λ) (ΔWiring_Cost/Previous_Wiring_Cost); /* new cost fcn */
              if (\Delta C < 0) {
                      S = Snew /* Move is good, accept */
              else {
                      r = random (0,1);
                      if (r < e^{-\Delta C/T}) {
                             S = S<sub>new</sub>: /* Move is bad, accept anyway */
                  /* End "inner loop" */
       }
       T = UpdateTemp();
       R<sub>limit</sub> = UpdateR<sub>limit</sub> ();
       Criticality_Exponent = ComputeNewExponent();
    /* End "outer loop" */
```

VPR Cost Function

$$\Delta C = \lambda \cdot \frac{\Delta Time_Cost}{Pr\ evious_Time_Cost} + (1 - \lambda) \frac{\Delta Wiring_Cost}{Pr\ evious_Wiring_Cost}$$

Wiring
$$Cost = \sum_{i=1}^{N_{nets}} q(i) \cdot [bb_i(x) + bb_i(y)]$$

$$Time _\cos t = \sum_{\forall i,j \subset circuit} Time _Cost(i,j)$$

$$Time \ \ \ \ cos \ t(i,j) = Delay(i,j) \cdot Criticality(i,j)^{criticality} = exponent$$

VPR Stopping Criteria

Inner loop

InnerNum
$$\cdot N_{blocks}^{4/3}$$

Outer loop

$$T < 0.005 * Cost / N_{nets}$$

VPR Temperature Update

$$T_{new} = \alpha \cdot T_{old}$$

Fraction of Moves Accepted (R _{accept})	Temperature Update Factor (a)
R _{accept} >0.96	0.5
0.8 <r<sub>accept<=0.96</r<sub>	0.9
$0.15 < R_{accept} < = 0.8$	0.95
$R_{accept} <= 0.15$	0.8

Thank you