1 Bewegungsplanung bei unvollständiger Information

1.1 Ausweg aus einem Labyrinth

1.1.1 Pledge-Strategie

Input: polygonales Labyrinth L, Roboter R, Drehwinkel $\varphi \in \mathbb{R}$ Output: Ausweg aus Labyrinth falls möglich, ansonsten Endlosschleife

- · While $R \in L$
 - gehe vorwärts, bis $R \notin L$ oder Wandkontakt
 - gehe links der Wand, bis $R \not\in L$ oder $\varphi = 0$

1.2 Zum Ziel in unbekannter Umgebung

1.2.1 Wanze (Bug)

Input:

- · P_1, \dots, P_n disj. einf. zsh. endl. poly. Gebiete aus \mathbb{R}^2 \cdot $\mathbf{s}, \mathbf{z} \in \mathbb{R}^2 \setminus \bigcup_{i=1}^n P_i$ \cdot R Roboter mit Position \mathbf{r}
- Output:
- While $\mathbf{r} \neq \mathbf{z}$
 - laufe in Richtung ${\bf z}$ bis ${\bf r}={\bf z}$ oder $\exists i:r\in P_i$
 - · If $\mathbf{r} \neq \mathbf{z}$
 - · umlaufe P_i und suche ein $\mathbf{q} \in \mathop{\arg\min}_{\mathbf{x} \in P_i} ||\mathbf{x} - \mathbf{z}||_2$
 - · gehe zu **q**

terminiert. Universales Steuerwort: Führt für alle Startpunkte zum geg. Ziel. (ungültige Befehle werden ignoriert)

1.3 Behälterproblem (bin packing)

Maximale Füllmenge h, verteile Zahlenmenge auf möglichst wenige Behälter. NP-hart.

First fit ·

- $\begin{array}{c} B_1,\dots,B_m \leftarrow \emptyset \\ \cdot \text{ For } i=1,\dots,m \\ \cdot \text{ Bestimme kleinstes j mit} \end{array}$ $\begin{array}{l} b_i + \sum_{b \in B_j} b \leq h \\ \cdot \text{ Füge } b_i \text{ zu } B_j \text{ hinzu} \end{array}$

ist 2-kompetitiv.

Algorithmus A ist c-kompetitiv falls $k_A \leq a + c k_{min}$ für alle Eingaben

Türsuche ·

- Wähle Erkundungstiefen $f_i>0$ für $i \in \mathbb{N}$
- · For i := 1 to ∞ (stoppe, wenn Tür gefunden)
- gehe f_i Meter die Wand entlang und zurück
- · wechsle Laufrichtung

 $d:=\mathrm{dist}(\mathbf{s},\mathrm{T}\ddot{\mathbf{u}}\mathbf{r})=f_n+\varepsilon\in$ $\begin{array}{l} (f_n,f_{n+1}] \\ \text{Legt } L=2\sum_{i=0}^n f_i + d \text{ zurück} \end{array}$ $(oder^{n+1})$ $L \in \Theta(n^2) = \Theta(d^2)$ Bestmöglich: 9-kompetetitiv (z.B. für $f_i = 2^i$)

1.4 Sternsuche

Gleich Türsuche, nur mit mehr als zwei Wänden (Halbgeraden). Bestmöglich: Für $f_i = (\frac{m}{m-1})^i$ c-kompetitiv mit $c := 2m(\frac{m}{m-1})^{m-1} + 1 < 2me + 1$

1.5 Suche in Polygonen

Roboter R sucht Weg in polygonalem Gebiet P mit n Ecken von s nach z.

Weglängen: gefunden: l, kürzest: d Strategie existiert mit $\frac{l}{d} \in O(n)$ Baum der kürzesten Wege (BkW) (Blätter sind Polygonecken)

2 Konvexe Hüllen

2.1 Dualität

 $\mathbf{x} := \left[\begin{smallmatrix} 1 \end{smallmatrix} \bar{\mathbf{x}} \right]^t, \bar{\mathbf{x}} \in \mathbb{R}^d$ bilden affinen Raum $A^d.$

 $\mathbf{u}^t \mathbf{x} := \begin{bmatrix} u_0 \ u_1 \dots \ u_d \end{bmatrix} \cdot \begin{bmatrix} 1 \ x_1 : x_d \end{bmatrix}^t \ge 0$ ${\bf u}$ bezeichnet Halbraumvektor und \mathbf{x} einen seiner Punkte

den Halbraum.

Nur betrachtet mit $\begin{pmatrix} 1 & 0 & \dots & 0 \end{pmatrix}^t$ im Inneren, d.h. $u_0 > 0$, normiert $u_0 = 1$. \mathbf{u}^* ist dual zu \mathbf{u} und bezeichnet

 $\mathbf{x} \in \mathbf{u}^* \Leftrightarrow \mathbf{u} \in \mathbf{x}^* \text{ (Dualität)}$

2.2 Konvexe Mengen

Verbindungsstrecke $\mathbf{x} := \mathbf{a}(1-t) + \mathbf{b}t, \quad t \in [0,1] \text{ wird}$ genannt ab.

 $M\subset A$ ist konvexwenn sie zu je zwei ihrer Punkte auch die Verbingungsstrecke enthält. Konvexe Hülle [M] von M ist Schnitt aller konvexen Obermengen.

Ist $M \subset A$ bilden alle Halbräume, die M enthalten, eine konvexe Menge im Dualraum.

Ist $M^* \subset A^*$ eine Halbraummenge, bilden alle Punkte, die in allen $m^* \in M^*$ enthalten sind, eine konvexe Menge im Primalraum A.

2.3 Konvexe Polyeder P

ist Schnitt endlich vieler Halbräume.

Rand ∂P ; Facetten darauf. Jede Facectte liegt auf Rand eines Halbraums (FHR)

P ist konvexe Hülle seiner Eckenmenge

Ist P ein konvexes Polyeder mit den Ecken $\mathbf{p}_1, \dots, \mathbf{p}_e$ und den FHRen $\mathbf{u}_1^*, \dots, \mathbf{u}_f^*,$ hat die Menge $U^* := \{\mathbf{u}^* | \mathbf{u}^* \supset \mathring{P}\} \subset A^* \text{ die Ecken}$ $\mathbf{u}_1^*, \dots, \mathbf{u}_f^*$ und die FHRe $\mathbf{p}_1, \dots, \mathbf{p}_e$. Dual ausgedrückt heißt das, dass die Menge $U := \{\mathbf{u} | \mathbf{u}^* \supset P\} \subset A$ die Ecken \mathbf{u}_i und die FHRe \mathbf{p}_i^* hat. Polyeder P und $U \subset A$ heißen dual zueinander.

2.4 Euler: Knoten, Kanten, Facetten

v Knoten, e Kanten, f Seiten Eulers Formel: v - e + f = 2

2.5 Datenstruktur für Netze

Für jede Ecke p:

- · Koordinaten von p
- · Liste von Zeigerpaaren:
 - die ersten Zeiger im Gegenuhrzeigersinn auf alle Nachbarn von p
 - Sind $\mathbf{p},\mathbf{q},\mathbf{r}$ im GUS geordnete Nachbarn einer Facette und weist der 1. Zeiger eines Paares auf ${\bf q},$ zeigt der 2. Zeiger indirekt auf r. Er weist auf das Zeigerpaar von q

2.6 Konvexe Hülle

Input: $P := (\mathbf{p}_1, \dots, \mathbf{p}_n) \subset A^3$ Output: [P]

- 1. Verschiebe P sodass Ursprung in P liegt
- 2. $U_4 \leftarrow \mathbf{p}_1^* \cap \ldots \cap \mathbf{p}_4^*$ 3. For $i = 5, \ldots, n$
- - · (falls $U_4 \subset \mathbf{p}_i^*$, markiere \mathbf{p}_i als gelöscht
 - · sonst verknüpfe **p**_i bidirektional mit einem Knoten von $U_4 \notin \mathbf{p}_i^*$
- 4. For $i=5,\ldots,n$
 - $\cdot \ U_i \leftarrow U_{i-1} \cap \mathbf{p}_i^*$
 - · ...zeug
- 5. Dualisiere, verschiebe und gib $\bigcap_{\mathbf{u}\in U}\mathbf{u}^*-\mathbf{v}$ aus

3 Distanzprobleme 3.1 Voronoi-Gebiet

eines der Punkte \mathbf{p}_i ist $V_i = \{\mathbf{x} \in \mathbb{R}^2 | \forall j = 1, \dots, n:$ $||\mathbf{x} - \mathbf{p}_i||_2 \le ||\mathbf{x} - \mathbf{p}_j||_2\}$ V_i ist konvex da Schnitt der Halbebenen.

Voroni-Kreis (Punkte des Schnitts von drei Voronoi-Gebieten) ist leer.

3.2 Delaunay-Triangulierung

Delaunay-Triangulierung D(P)einer Punktemenge P hat Kantenmenge $\{\mathbf{p}_i\mathbf{p}_j|V_i\cap V_j \text{ ist }$ Kante des Voronoi-Diagramms

Ist der zu V(P) duale Graph. Die Gebiete von D(P) sind disjunkte Dreiecke und zerlegen die konvexe Hülle [P]

3.2.1 Eigenschaften

Umkreise der Dreiecke sind leer Paraboloid-Eigenschaft: Sei $Z(x, y) = x^2 + y^2$.

Projiziert man den unteren Teil der konvexen Hülle

$$[\{ \begin{pmatrix} \mathbf{p}_i \\ Z(\mathbf{p}_i) \end{pmatrix} | i=1,\ldots,n \}]$$
 orthogonal auf die xy-Ebene, erhält

man D(P)

D(P) kann mit Konvexe Hülle und mittlerem Aufwand $O(n \log n)$ berechnet werden

Kanten einer Triangulierung von Q sind konvex (Tal) oder konkav (Berg), ersetze sukzessiv in konkave durch konvexe Kanten

Winkeleigenschaft: Der kleinste Winkel in jedem Viereck ist größer bei DT als bei jeder anderen Triangulierung

 \mathbf{jeder} Punkt \mathbf{p}_i ist mit nächstem Nachbarn durch Kante in D(P) $verbunden \rightarrow n$ ächste Nachbarn aller p_i können in O(n) bestimmt

minimale Spannbäume von P liegen auf D(P) (findbar mit Kruskal (greedy))

Rundweg um minimalen Spannbaum ist 2-kompetitiv zu kürzestem Rundweg.

4 Stationäre Unterteilung für Kurven

4.1 Kardinale Splines

$$\begin{cases} N^0(u) \coloneqq \begin{cases} 1, & u \in [0,1) \\ 0, & sonst \end{cases} \\ N^n(u) \coloneqq \int_{u-1}^u N^{n-1}(t) dt \\ N^n(u) \begin{cases} = 0, & u \notin [0,n+1) \\ > 0, & u \in (0,n+1) \end{cases}$$

4.2 Symbole

Dopplung: $\alpha_0(z) = 1 + z$ Mittelung: $\mu(z) = (1+z)/2$ Lane-Riesenfeld-Algorithmus: $\alpha_n(z) = \frac{(1+z)^{n+1}}{2^n}$, Differenz: $\beta(z) = \alpha_{n-1}(z)/2$ Chaikin: $\alpha_1(z) = \frac{1}{2}(1+z)^2$ Unterteilungsgleichung: $\alpha(z)c(z^2)=b(z)$ Differenzenschema zu einem $\alpha(z)$: $\beta(z) = \frac{\alpha(z)}{1+z}$ (Polynomdivision). Existiert nur wenn $\alpha(z)$ den Faktor (1+z) hat, bzw. wenn $\alpha(-1) =$ $\sum_{j\in\mathbb{Z}} \alpha_{2j} - \sum_{j\in\mathbb{Z}} \alpha_{2j+1} = 0$ Für konvergentes $\alpha(z)$ gilt $\sum_{j\in\mathbb{Z}}\alpha_{2j} = \sum_{j\in\mathbb{Z}}\alpha_{2j+1} = 1$

Ableitungsschema: $2\alpha(z)/(1+z)$ Existiert das r-te Ableitungsschema von α und ist konvergent,

konvergieren alle durch α erzeugten Folgen $(c^m)_{m\in\mathbb{N}}$ gegen r-mal stetig differenzierbare Funktionen.

Unterteilungsschema konvergent \leftrightarrow Differenzenschema Nullschema

konvergent: für jede Maske ist die Summe der Gewichte 1

5 Unterteilung für Flächen

Matrix $C = \mathbf{c}_{\mathbb{Z}^2}$ hat das Symbol $\mathbf{c}(\mathbf{x}) := \mathbf{c}(x,y)$
$$\begin{split} &:= \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} \mathbf{c}_{ij} x^i y^j \\ &:= \sum_{\mathbf{i} \in \mathbb{Z}^2} \mathbf{c}_{\mathbf{i}} \mathbf{x}^{\mathbf{i}} \\ &\text{Seien U,V} \end{split}$$
Unterteilungsalgorithmen mit Symbol $\alpha(x)$, $\beta(x)$ Das Unterteilte Netz $B := \mathbf{b}_{\mathbb{Z}^2} := UCV^t$ hat das Symbol $\mathbf{b}(x,y) \coloneqq \alpha(x)\mathbf{c}(x^2,y^2)\beta(y)$ $\gamma(x,y) := \alpha(x)\beta(y)$ ist das Symbol des Tepus(U, V) mit der Unterteilungsgleichung $\mathbf{b}(\mathbf{x}) =$ $\gamma(\mathbf{x})\mathbf{c}(\mathbf{x}^2)$ $\mathbf{b_i} = \sum_{\mathbf{k} \in \mathbb{Z}^2} \gamma_{\mathbf{i}-2\mathbf{k}} \mathbf{c_k}$ $\mathbf{x}^2 = (x^2, y^2)!$

 $\label{lem:verfeinerungsschema} \textit{Verfeinerungsschema} \ (U_1, U_1) \text{:}$ $\gamma(x,y) :=$

$$\frac{1}{4}[1\,x\,x^2] \begin{bmatrix} 1\\2\\1 \end{bmatrix} \cdot [1\,2\,1] \begin{bmatrix} 1\\y\\y^2 \end{bmatrix}$$

5.1 Wavelets 1D

Grundfunktionen

$$B_i^k \coloneqq N_i^0(2^k u)$$

$$\begin{aligned} & \mathbf{Wavelets} \ W_i^k \coloneqq B_{2i}^{k+1} - B_{2i}^{k+1} \\ & \mathbf{geg:} \ s(u) = \sum_{i=0}^{2^{m}-1} c_i^m N_i^0(2^m u) \\ & \mathbf{oder} \ s = \\ & \sum_{i=0}^{2^{m}-1-1} (c_i^{m-1} B_i^{m-1} + d_i^{m-1} W_i^{m-1}) \end{aligned}$$

Zerlegung ·

Zeriegung $\begin{array}{l} \cdot \\ \cdot \text{ For } k = m-1, \ldots, 0 \\ \cdot \text{ For } i = 0, \ldots, 2^k-1 \\ \cdot c_i^k = 0.5(c_{2i}^{k+1} + c_{2i+1}^{k+1}) \\ \cdot d_i^k = 0.5(c_{2i}^{k+1} - c_{2i+1}^{k+1}) \end{array}$

Ausgabe:
$$s = c_0^0 B_0^0 + \sum_{i=0}^{2^0-1} d_i^0 W_i^0 + \dots + \sum_{i=0}^{2^{m-1}-1} d_i^{m-1} W_i^{m-1}$$

Rekonstruktion ·

- · For k = 0...m-1
 - $\begin{array}{l} \cdot \text{ For } \mathbf{i} = 0...1^{k} 1 \\ \cdot \text{ For } \mathbf{i} = 0...2^{k} 1 \\ \cdot c_{2i}^{k+1} = c_{i}^{k} + d_{i}^{k} \\ \cdot c_{2i+1}^{k+1} = c_{i}^{k} d_{i}^{k} \end{array}$

5.2 Wavelets 2D

$$s(x,y) = \sum_{i,j=0}^{2^m-1} c_{ij}^m B_i^m(x) B_j^m(y)$$

Zerlegung^2 (Spalte erster Index!)

- · Für k = m-1...0
- Für i,
j $=0...2^k-1$
 - $\begin{array}{l} \ldots \, \sum\limits_{i,j} = 0...2 1 \\ \cdot \, c_{ij}^k = 0.25(c_{2i,2j}^{k+1} + c_{2i+1,2j}^{k+1} + \\ c_{2i,2j+1}^{k+1} + c_{2i+1,2j+1}^{k+1}) \end{array}$
 - $d_{ij}^k = 0.25(+-+-)$
 - $\begin{array}{l} \cdot \ e^{k}_{ij} = 0.25(++--) \\ \cdot \ f^{k}_{ij} = 0.25(+--+) \end{array}$

Beachte auch: in der nächsten Matrix sind die c_{ij} nur in den 4er Feldern jeweils links oben! Rekonstruktion^2 analog zu Zerlegung^2, jedoch mit Faktor 4 statt 0.25 und c, d, e, f, ergeben jeweils (2i,2j), (2i+1,2j) usw.

6 Flussmaximierung

Flussnetzwerk F := (G = $(V, E), q \in V, s \in V, k : V^2 \to \mathbb{R}_{>0})$ Graph zusammenhängend (für jeden Knoten ex. Weg von q zu s), $|E| \ge |V| - 1$ Fluss $f: V^2 \to \mathbb{R}$ mit $f \leq k$

Residual graph $G_f \coloneqq (V, E_f \coloneqq$ $\{e \in V^2 | f(e) < k(e)\})$ Residualnetz

 $F_f := (G_f,q,s,k_f := k-f)$

6.1 Methoden

6.1.1 Ford-Fulkerson (naiv)

solange es einen Weg $q \leadsto s$ in G_f gibt, erhöhe f maximal über diesen Weg. (Nur für $k \in \mathbb{Q}$)

6.1.2 Edmonds-Karp

=FF, erhöhen immer längs eines kürzesten Pfades in G_f . (für bel.

6.1.3 Präfluss-Pusch

Präfluss-Eigenschaft Fluss mit Rein-Raus ≥ 0

Höhenfunktion h(q) = |V|, h(s)

 $\forall (x,y) \in E_f: h(x) - h(y) <= 1$ Push(x,y) schiebe maximal Mögliches (ü und k beachten!) über

Pushbar(\mathbf{x},\mathbf{y}) $x \in V \setminus \{q,s\}$ und h(x) - h(y) = 1 und $\ddot{\mathbf{u}}(x) > 0$ und $(x,y) \in E_f$

Lift(x)

 $h(x) \leftarrow 1 + \min_{(x\,,\,y) \in E_f} h(y)$

Liftbar(x) $x \in V \setminus \{q, s\}$ und $\ddot{\mathbf{u}}(x) > 0$ und

 $h(x) \leq \min_{(x,y) \in E_f} h(y)$

Präfluss-Push:

- $\cdot h(x) \leftarrow \text{if } x = q \text{ then } |V| \text{ else } 0$
- $f(x,y) \leftarrow \text{if } x =$ q then k(x, y) else 0

6.1.4 An-Die-Spitze Leere(x) ·

- · while $\ddot{\mathbf{u}}(x) > 0$
 - $\cdot \text{ if } i_x \leq Grad(x) \\$
 - · if $pushbar(x, n_x(i_x))$: $\operatorname{push}(x,n_x(i_x))$
 - $\cdot \text{ sonst: } i_x \mathrel{+}= 1$

 - · Lift(x), $i_x \leftarrow 1$

L ist Liste aller $x \in V \setminus \{q, s\}$ mit x vor y falls pushbar(x,y) $n_x(i) \quad (1 \le i \le Grad(x)) \text{ sind }$ Nachbarn von x (auch Gegenrichtung) i_x ist Zähler (alle $n_x(i)$ mit $i \leq i_x$

An die Spitze · Initialisiere f und h wie bei $Pr\ddot{a}fluss\text{-}Push$

 $\forall x \in V: i_x \leftarrow 1$

nicht pushbar)

- · Generiere L
- $\cdot x \leftarrow \text{Kopf}(L)$
- · while $x \neq \text{NIL}$
 - · Leere(x)
 - Falls $h_{alt} < h(x),$ setze x an Spitze von L
 - $\cdot x \leftarrow \text{Nachfolger von x in L}$

7 Zuordnungsprobleme 7.1 Paaren in allgemeinen Graphen

Alternierender Weg ist maximal, wenn er nicht Teil eines längeren alternierenden Weges ist.

→ Maximale Paarung kann durch sukzessive Vergrößerung gefunden werden

7.2 Berechnung vergrößender Wege

 $\begin{tabular}{ll} \begin{tabular}{ll} \be$ und P, Output: Vergrößernder Weg für P

- $h(x) \leftarrow 0$ wenn x frei, -1 wenn x gebunden
- Solange kein vergrößernder Pfad gefunden und gibt unutersuchte Kante $\langle x, y \rangle$ mit $h(x) \in 2\mathbb{N}_0$
- $\cdot \ \text{if} \ h(y) = -1$
- $\stackrel{\smile}{v(y)} \leftarrow x, v(p(y)) \leftarrow y, h(y) \leftarrow h(x) + 1, h(p(y)) \leftarrow h(y) + 1$
- · if $y = v^i(x)$ und $i \in 2\mathbb{N}_0$ schrumpfe die Blüte
- $x-v(x)-v^2(x)-\cdots-y-x$

 \cdot if $h(y) \in 2\mathbb{N}$ und $\begin{aligned} & w_x \coloneqq v^{h(x)}(x) \neq w_y \coloneqq v^{h(y)}(y), \\ & \text{ist ein vergrößernder Pfad} \end{aligned}$ $w_x \leadsto w_y$ über $\langle x, y \rangle$ gefunden

7.3 Maximal gewichtete Paarungen

Berechnung möglich in $O(|V|^3)$ bzw. $O(|V|\cdot |E|\log |V|)$

8 Minimale Schnitte

Sei

 \cdot $\bar{G} := (V, \bar{E}), \bar{E} := \{(x, y) | \langle y, x \rangle = 0\}$

 $\begin{aligned} \langle x,y \rangle &\in E \\ \cdot \ k : V^2 &\rightarrow \mathbb{R}_{\geq 0}, k(x,y) := \end{aligned}$ if $(\langle x, y \rangle \in$

E) then $\gamma(\langle x,y\rangle)$ else 0 $x, z \in V$ beliebig

Berechne maximalen Fluss $\to A \coloneqq \{y \mid \exists \text{ Pfad } x \leadsto y \text{ in } \bar{G}_f\}$ und $B := V \setminus A$ bilden minimalen xz-Schnitt $(x \in A, z \in B)$ Gewicht des Schnitts = Wert des

kleinster xz-Schnitt in G lässt sich mit Flussmaximierung in $O(|V|^4)$

(es existieren Algorithmen in $O(|V|^2 \log |V| + |V||E|))$

8.1 Zufällige Kontraktion

qqf. todo

 $Monte\mbox{-}Carlo\mbox{-}Algorithmus =$ stochastischer Algorithmus, kann falsche Ergebnisse Liefern Las-Vegas-Algorithmus = stoch.Algo., immer richtig

IV Optimierungsalgorithmen

9 Kleinste Kugeln

Für jede Punktmenge P ist die kleinste Kugel $K(P) \supset P$ eindeutig.

9.1 Algorithmus von Welzl

K(P,R) ist Kugel die P enthält und R auf der Oberfläche hat

Welzl · Input: $P, R \subset \mathbb{R}^d$. K(P,R)exist., P,R endlich

- · if $P = \emptyset$ or |R| = d + 1 $\cdot \ C \leftarrow K(R)$
- \cdot else wähle $\mathbf{p} \in P$ zufällig
 - $\cdot \overset{\bullet}{\mathbf{C}} \leftarrow \mathrm{Welzl}(P \setminus \{\mathbf{p}\}, R)$
- · if $\mathbf{p} \notin C$
- $\cdot C \leftarrow \text{Welzl}(P \setminus \{\mathbf{p}\}, R \cup \{\mathbf{p}\})$
- · Gib C aus

10 Lineare Programmierung 10.1 Lineare Programme

$$\begin{split} \text{LP ist } z(\mathbf{x}) &:= \mathbf{z}\mathbf{x} = \text{max!}, \ A\mathbf{x} \geq \mathbf{a}, \\ \text{wobei } \mathbf{z}, \mathbf{x} \in \mathbb{R}^d, A \in \mathbb{R}^{n \times d}, \mathbf{a} \in \mathbb{R}^n, \end{split}$$
und $\mathbf{z}\mathbf{x} \coloneqq \mathbf{z}^t\mathbf{x}$

d ist die Dimension des linearen Programms.

Die Ungleichungen $A\mathbf{x} \geq \mathbf{a}$ repräsentieren den Schnitt S von n Halbräumen, der Simplex genannt

Die Punkte $\mathbf{x} \in S$ heißen zulässig. Die Ecken von S liegen je auf d Hyperebenen (d Gleichungen des Gleichungssystems).

Simplexalgorithmus: Iterativ Ecken entlang gehen, bis z maximal.

10.2 Flussmaximierung als

maximiere Summe der ausgehenden Flüsse aus der Quelle. Gleichungen zur Flusserhaltung (je eingehende Kanten - ausgehende $Kanten = 0 \ (\ge und \le))$ Gleichungen zur Kapazitätsbeschränkung (Fluss ≥ 0 und (Kapazität - Fluss) ≥ 0) f(a,b) = -f(b,a)

10.3 Kürzester Weg als LP

Suche Weg 1 \leadsto 2 $\sum_{(i,j)\in E} x_{ij} \gamma_{ij} = \min!$ $x_{ij} \geq 0, (i,j) \in E$

$$\sum_{j} x_{ij} - \sum_{j} x_{ji} = \begin{cases} 1 & i = 1 \\ -1 & i = 2 \\ 0 & sonst \end{cases}$$

(Ausgehende Kanten = Eingehende Kanten außer für $i \neq 1, 2$) negative Kreise \Rightarrow keine endliche Lösung. Erzwingbar durch $x_{ij} \leq 1, (i,j) \in E \ (?)$

10.4 Maximusnorm

geg: r = A * a - c mit A Matrix wobei c konstanter Vektor und a Vektor aus Variablen. Dann LP mit $y_0 = 1/r, y_1 = a_1/r, y_2 = a_2/r, \dots$ $y_0 = max!$

$$\begin{array}{ccc}
-c & A \\
c & -A
\end{array} <= [1, 1,, 1]$$

10.5 Simplexalgorithmus $\mathbf{y}(\mathbf{x}) = A\mathbf{x}$

$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

wobei n = d + 1 und $x_n = 1$

Hyperebenen $H_i: y_i(\mathbf{x}) = 0$ Gegeben: $A = [a_{ij}]_{i,j=1,1}^{m,n}$ Gesucht: $B = [b_{ij}]_{i,j=1,1}^{m,n}$ r=Pivotzeile, s=Pivotspalte

Austausch ·

- $\begin{array}{l} \cdot \ b_{rs} \leftarrow \frac{1}{a_{rs}} \\ \cdot \ b_{rj} \leftarrow -\frac{a_{rj}}{a_{rs}} \ (\text{Pivotzeile}, \ j \neq s) \\ \cdot \ b_{is} \leftarrow \frac{a_{is}}{a_{rs}} \ (\text{Pivotspalte}, \ i \neq r) \end{array}$
- $b_{ij} \leftarrow a_{ij} \frac{a_{is}a_{rj}}{a_{rs}} \ (i \neq r, j \neq s)$

10.6 Normalform

Jedes lin. Programm kann auf die Form

 $\mathbf{z}\mathbf{x} = \max!$

 $A\mathbf{x} \geq 0$

mit $\mathbf{x} = [x_1 \dots x_d \ 1]^t$ kann auf die

 $[\mathbf{c}^t c]\mathbf{y} = \max!$ $\mathbf{y} \geq 0$

 $[B\mathbf{b}]\mathbf{y} \ge 0$

 $\text{mit } \mathbf{y} := [y_1 \dots y_d \ 1]^t \text{ gebracht}$ werden. Notation:

$$y_{d+1} = \begin{bmatrix} x_{0...d} & 1 \\ \vdots & B & \mathbf{b} \\ y_m = \\ z = \begin{bmatrix} \mathbf{c}^t & c \end{bmatrix} \ge 0$$
 = max!

 $\mathbf{b} \geq 0$, sonst Simplex leer.

10.7 Simplexalgorithmus

Simplex · Input: \bar{A}

Normalformmatrix eines lin. Progr. $\bar{A} := \begin{bmatrix} A & \mathbf{a} \\ \mathbf{c}^t & c \end{bmatrix}$

- Solange ein $c_s > 0$
- . Falls alle $a_{is} \geq 0$: gib $c \leftarrow \infty$ aus; Ende
- · sonst
 - $\cdot\,$ bestimme
r so, dass
 - $\begin{array}{l} \cdot \ \frac{a_r}{a_{rs}} = \max_{a_{is} < 0} \frac{a_i}{a_{is}} \\ \cdot \ \underline{\bar{A}} \leftarrow \operatorname{Austausch}(\bar{A}, r, s) \end{array}$
- Gib A aus

Die Lösung ist dann, dass alle y_i die oben an der Tabelle stehen = 0

(total) unimodular = quadratisch, $det A \in \{-1, 0, 1\}$ (+alle quad. Untermatrizen)

Util $\begin{array}{ll} \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \sphericalangle (\mathbf{a}, \mathbf{b}) \\ \sum_{k=0}^{n} 2^k = 2^{n+1} - 1 \\ \mathbf{Laufzeiten} \\ \mathbf{Kap.Name} \quad \mathbf{Laufzeit} \end{array}$

2.6 Konvexe erw: $O(n \log n)$, max: Hülle $O(n^2)$ Ford- O(|E|*W) (k Wert

Fulkerson eines max. Flusses)

Edmonds $O(|E|^2 * |V|)$ Karp

Präfluss- $|O(|V|^2 * |E|)$ 6

Push 6 An-Die- $O(|V|^3)$

Spitze Paare $O(|E| \cdot \min\{|L|, |R|\})$ Vergrö- $O(|V| \cdot |E|)$

ßernder Weg

Schnitt $O(|V|^2)$ gef. mit $P = 1 - 1/e^2$

 $O(|V|^2 \log |V|)$ richtig Schnitt $\text{mit } P \in \Theta(1/\log|V|)$

Welzl mittl: O(n)10 Simplex erw: $O(n^2d)$, max:

 $\Omega(n^{d/2})$ 10 Ellipsoid polyn.; in praxis

langsamer als Simplex 10 Innere polyn.; in praxis fast Punkte so gut wie Simplex

10.5 Seidel $O(d^3d! + dnd!)$