Éléments de corred° D5 ~ ° 4: Q1. Even = ϕSZ er $\Gamma_n = \phi i$ $\phi = \frac{E_{cen}}{S2} = \frac{15}{446 \times 10^3/60} = \frac{15 \times 2,5}{1000} = 0,04 \text{ T.m}^2$ $i = \frac{Cem}{\phi} = \frac{Cr}{\phi} = \frac{60}{0.04} = 1500 \text{ A}$ $dairement surevalue II a ce qui errole dans une viraie
<math display="block">V = Ecem + Ri \quad d'où \quad R = \frac{V - Ecem}{i}$ $=\frac{5}{1500} \approx 33 \,\mathrm{m} \,\Omega$ Q4, en régime stationnaire le TMC devient $\frac{-\Gamma_{t} + \Gamma_{em} = 0}{\text{couple résistant,}} \quad \text{or} \quad \Gamma_{em} = \frac{\beta}{R} \left(\upsilon - \phi \Omega \right)$ Tem loi des muilles. s'oppose à l'em 70 donc $\int_{em} = E_{cen} \times \Omega$ $= b + 2i \Omega$ $= b + 2i \Omega$ $= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^$ mlentissant la mêche de Q5. Les frottements sont ici la poissance utile (pour trover), la perceuse $\frac{\int_{-\times}^{2} (x+bx) dx}{(x+bx)} = \frac{\int_{-\times}^{2} (x+bx) dx}{(x+bx)}$ Putile Poorterse donc 2 = Ri2+ (a+b52)52 et uxi = Ri2 + Eceni = > Paissipée par effet Joule $V = \frac{(a+b\Omega)\Omega}{(a+b\Omega)\Omega + Ri^2}$

Q 6.
$$J \cdot \Omega = \frac{\phi}{R} (v - \phi \cdot \Omega) - b - a\Omega$$

$$T' = \frac{\partial^2}{\partial R} + \frac{a}{J} = \frac{1}{3 \times 10^{-3}} \left(\frac{q \cdot o^4}{q \cdot o^4} + q \cdot o^4 \right)$$

$$T'' = \frac{2}{3 \times 10^{-3}} s^4 = 6 \times 10^{-5} \quad 2$$

chairement le moteur est

sur dimensionné pour cette applicat °

$$Pb \quad n^{\circ} Z:$$

$$Q 7: \quad dl = \sqrt{dz^{1} \cdot dy^{2}} \quad (pythisgore) \quad denc$$

$$dl = dz \sqrt{1 + \left(\frac{dy}{dz} \right)^{2}} \quad 2 \quad dx \left(1 + \frac{1}{2} \left(\frac{dy}{dz} \right)^{2} \right)$$

$$= dx \quad av \quad Ac \quad arder \quad non \quad not.$$

$$Q P. \quad tensions \quad notées$$

$$= dx \quad av \quad Ac \quad arder \quad non \quad not.$$

$$Q P. \quad tensions \quad notées$$

$$= dx \quad av \quad Ac \quad arder \quad non \quad not.$$

$$Corder \quad de la partie \quad (at)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

$$= -\frac{7}{3}(x + d \cdot z) \cdot (x + d \cdot z)$$

Q10.
$$c = \sqrt{\frac{T_0}{F}}$$
 (ar $c = \sqrt{\frac{T_0}{P_0}}$ (b), on $a = \sqrt{\frac{T_0}{P_0}}$ (c) $a = \sqrt{\frac{T_0}{P_0}}$ (c) $a = \sqrt{\frac{T_0}{P_0}}$ (d) $a = \sqrt{\frac{T_0}{P_0}}$ (e) $a = \sqrt{\frac{T_0}{P_0}}$ (f) $a = \sqrt{\frac{T_0}{P_0}}$ (e) $a = \sqrt{\frac{T_0}{P_0}}$ (f) $a = \sqrt{\frac{T_0}$

un de à donne donc les un jegnex connaître les $\frac{\int \forall}{\int t} (x, 0) = \beta(x) \quad \text{donc} \quad \beta(x) = \sum_{n=0}^{+\infty} b_n \frac{n \pi c}{L} \sin(n \pi x)$ donc connuître les vn de B donne les bante er donc by= L va (B) Q15. Calculons vn pour B fourni, sachant que $v_n(Z)=0$ car $\widetilde{Z}=0$ dans le cas présenté. $\nabla_{n} = \frac{1}{L} \int_{0}^{2L} \beta(x) \sin(\pi n \frac{\pi}{L}) dx = -\frac{\beta_{0}}{L} \int_{\frac{L}{\rho}}^{\frac{L}{\rho} + \delta} \sin(\pi n \frac{\pi}{L}) dx$ $\nabla_{\Lambda} = \frac{\beta_{0}}{L} \left[\frac{\cos(\pi n \frac{2L}{L})}{\frac{\pi n}{L}} \right]_{L}^{L} + \delta$ $= \frac{\beta_{\circ}}{n \pi} \left[\cos \left(\frac{\pi_{\circ}}{L} \left(\frac{L}{P} + \delta \right) \right) - \cos \left(\frac{\pi_{\circ}}{L} \left(\frac{L}{P} - \delta \right) \right) \right]$ $\nabla_{\Lambda} = \frac{\beta}{\Lambda \Pi} \times 2 \sin \left(\frac{\Pi n}{\rho} \right) \sin \left(\frac{\Pi n \delta}{L} \right)$ =0 si p=nprésente une donc $b_p = 0$, y(x,t)harmonique nulle. Q16. Il faut coîncidence (ustant que possible) entre une harmonique du doz et une zutre note

Note								do5
réquence fondamentale (Hz)	130.8	261.6	392.0	523.3	659	784	932	1046.5

Harmonique n° X	1	2	3	4	S	6	7	P
fréquence (Hz)	130,8	261,6	392,4	523,2	654	784,8	915,	6 1046,4
écart Of (Hz) 11 * la nihe 12+	0	0,2	0,4	9,1	5)	(16,	4) 0,1
Proche.								

La sème et la 7 ème harmoniques sont particulièrement dissonantes, c'est donc logique que ce soit celts que l'on souhaite ander, surtout la 7 ème qui est de loin la + dissonante.

en tapant ici, on impregne une vitesse initiale non-nule à la corde, on interdit donc à tout jamais l'existence d'un noeud à cet endroit, y t, endroit puisque g'(x) + 0 à cet endroit, y t,