Алгоритми та структури даних. Основи алгоритмізації

Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 2 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів розгалуження»

Варіант <u>25</u>

Виконав	III-15, Плугатирьов Дмитро Валерінович
студент	(шифр, прізвище, ім'я, по батькові)
Перевірив	
	(прізвище, ім'я, по батькові)

Лабораторна робота № 2

Дослідження алгоритмів розгалуження

Мета – дослідити подання керувальної дії чергування у вигляді умовної та альтернативної форм та набути навичок їх використання під час складання програмних специфікацій.

Варіант 25

Завдання

З'ясувати, скільки розв'язків (один, безліч, не має) має система рівнянь, задана коефіцієнтами a_1 , b_1 , a_2 , b_2 і правими частинами c_1 , c_2 :

$$\begin{cases} a_1 x + b_1 y = c_1 \\ a_2 x + b_2 y = c_2 \end{cases}$$

1. Постановка задачі

Підрахувати кількість можливих розв'язків системи рівнянь в залежності від значень коефіцієнтів, які вводить користувач.

Результатом розв'язку ϵ кількість можливих варіантів розв'язку (один, не ма ϵ , безліч).

2. Побудова математичної моделі

Змінна	Tun	Ім 'я	Призначення
Перший	Дійсний	A1	Початкові дані
коефіцієнт			
Другий	Дійсний	B1	Початкові дані
коефіцієнт			
Перша права	Дійсний	C1	Початкові дані
частина			
Третій коефіцієнт	Дійсний	A2	Початкові дані
Четвертий	Дійсний	B2	Початкові дані
коефіцієнт			
Друга права	Дійсний	C2	Початкові дані
частина			
Кількість	Цілочисельний	Quantity	Результат
способів			
вирішення			
системи рівнянь			

Алгоритми та структури даних. Основи алгоритмізації

Доречно скористатись властивостями системи лінійних рівнянь: пропорційністю коефіцієнтів. Якщо $a_1b_2 \neq a_2b_1$ — система має єдине рішення, якщо $a_1b_2 = a_2b_1$, але $a_1c_2 \neq a_2c_1$ або $b_1c_2 \neq b_2c_1$ — система не має рішень, якщо $a_1b_2 = a_2b_1$, $a_1c_2 = a_2c_1$, $b_1c_2 = b_2c_1$ — система має нескінченно багато рішень.

Символ ∞ - будь-яке додатне число, яке більше за 0.

3. Розв'язання

Програмні специфікації записати у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначити основні дії.

Крок 2. Виконати добуток першого з четвертим та другого з третім коефіцієнтами. Порівняти добутки. У разі виконання тотожності – перейти до наступного кроку. Інакше - показати результат.

Крок 3. Помножити перший коефіцієнт на другу праву частину та третій коефіцієнт - на першу праву частину. У разі виконання тотожності — перейти до наступного кроку. Інакше - показати результат.

Крок 4. Помножити другий коефіцієнт на другу праву частину та четвертий коефіцієнт - на першу праву частину. У разі виконання тотожності – показати результат, у разі невиконання – інший результат.

4. Псевдокод

Крок 1

початок

обчислення добутків $(a_1b_2$ та $a_2b_1)$

обчислення добутків $(a_1c_2$ та $a_2c_1)$

обчислення добутків (b_1c_2 та b_2c_1)

кінець

```
Крок 2
```

```
початок
```

T0

обчислення добутків (a_1c_2 та a_2c_1)

обчислення добутків (b_1c_2 та b_2c_1)

інакше

Quantity := 1

все якщо

кінець

Крок 3

початок

T0

T0

обчислення добутків (b_1c_2 та b_2c_1)

інакше

Quantity := 0

все якщо

інакше

Quantity := 1

все якщо

кінець

Крок 4

початок

якщо A1 * B2 == A2 * B1

T0

якщо A1 * C2 == A2 * C1

T0

якщо B1 * C2 == B2 * C1

T0

Quantity := 00

інакше

Quantity := 0

все якщо

інакше

Quantity := 0

все якщо

інакше

Quantity := 1

все якщо

кінець

Блок-схема

Крок 1

5. Тестування

Блок	Дія 1	Дія 2
	Початок	Початок
1	A1 = 1, A2 = 4, B1 = 2, B2 = 8,	A1 = 1.23, A2 = 3.387, B1 = 0,
	C1 = 10, C2 = 12,	B2 = 67, C1 = 0.369, C2 = 12.13145,
	1 * 8 = 4 * 2	$1.23 * 67 \neq 3.387 * 0,$
		Quantity := 1
2	$1*12 \neq 4*10,$	-
	Quantity := 0	
3	-	-
4	-	-
	Кінець	Кінець

Алгоритми та структури даних. Основи алгоритмізації

6. Висновки

В цій роботі я досліджував подання керувальної дії чергування у вигляді умовної та альтернативної форм та набув практичних навичок їх використання під час складання програмних специфікацій на прикладі пошуку кількості можливих варіантів розв'язку системи рівнянь з двома змінними.