Скорость света. Частота колебаний

Скорость распространения света в вакууме $c=2,997\cdot 10^8\, {\it M/c}$ Скорость света в среде обратно пропорциональна ее показателю преломления $\frac{c}{}$

Длина волны излучения в среде
$$\lambda = \frac{\lambda_0}{n}$$

где λ_0 - длина волны этого излучения в вакууме

Число полных колебаний в секунду (частота) $v = \frac{c}{\lambda_0}$

Соотношение длины волны и частоты колебаний света

$$\lambda = 400 \text{ }\mu\text{M}$$
 $v = 7.5 \cdot 10^{14} \Gamma \text{U}$
 $\lambda = 750 \text{ }\mu\text{M}$ $v = 4.0 \cdot 10^{14} \Gamma \text{U}$

Условия максимума и минимума интерференции

 $d_2-d_1 = \Delta d -$ pазность xoda

$$\Delta d = n\lambda$$
 - условие усиления волн (max)

$$\Delta d = (2n + 1) \lambda / 2,$$
 где $n = 0, \pm 1, \pm 2,$

- условие ослабления волн (min)

Дифракцию света открыл Гримальди Франческо Мария (2.04.1618-28.12.1663) – итальянский физик и астроном

Теория дифракции света была разработана в 1816г. француским ученым Огюстеном Френелем, развившим идеи Христиана Гюйгенса

Христиан Гюйгенс (14.04.1629 — 8.07.1695) голландский физик, математик и астроном

Френель Огюстен Жан (10.05.1788 – 14.06.1827) – французский физик

Принцип Гюйгенса-Френеля

Дифракция Френеля на круглом отверстии

Если открыто четное число зон m, то

$$A = \frac{A_1}{2} - \frac{A_m}{2}$$

В точке P (центре) – темное пятно

Освещенность в точке M будет такой же, как и в отсутствие экрана. Вследствие симметрии центральная светлая точка будет окружена кольцами света и тени.

Дифракция на одной узкой щели

Томас Юнг 13. 06. 1773 — 10. 05. 1829

Опыт Юнга с двумя щелями

$$m\lambda = \Delta d = l \cdot \sin \alpha = l \cdot \frac{x_n}{L}$$

$$\sin \alpha \approx tg\alpha = \frac{x_n}{L}$$

Фотография пламени свечи через дифракционную решетку. Изображение пламени разложено подобно радуге.

Дифракционная решетки хак спектральный прибор

Поскольку положения max зависят от длины волны (кроме нулевого порядка, m=0), дифракционная решетка разлагает падающий на нее свет в спектр. Наибольшее отклонение в каждом порядке (кроме m=0) испытывает наиболее длинноволновая красная часть спектра.

«Кольца Ньютона»

Интерференция в пленках

Наблюдения интерференции света

