Lecture 7

Math 467

Jan 24 2024

$$f: \Omega \mapsto \mathbb{R}, \Omega \subset \mathbb{R}^n$$

restricted problem if $\Omega \neq \mathbb{R}^n$ unrestricted problem if $\Omega = \mathbb{R}^n$

Assume if differentiable, $d \neq 0$, $d \in \mathbb{R}^n$ is a feasible direction at $x \in \Omega$, if $\exists \alpha_0 > 0$ so that $x + \alpha d \in \Omega \forall 0 \leq \alpha \leq \alpha_0$.

Remark

- 1. x interior point if and only if every $d \in \mathbb{R}^n$ is a feasible direction
- 2. (directional derivative, ||d|| = 1)

$$\frac{\partial}{\partial d} = d^T D f(x)$$

(Example) Given $n = 3, f : \mathbb{R}^3 \mapsto f$

$$f(x_1,x_2,x_3)=2(x_1+x_2+x_2x_3)\\$$

$$=2x_1+2x_2+2x_2x_3\\$$

Our direction:

$$d = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \frac{1}{\sqrt{14}}$$

Gradient

$$Df(x) = \begin{pmatrix} 2 \\ 2 + 2x_3 \\ 2 + 2x_2 \end{pmatrix}$$

$$x = (x_1, x_2, x_3).$$

$$\begin{split} \frac{\partial}{\partial d}f &= d^T D f(x) = \frac{1}{\sqrt{14}}(1,2,3) \begin{pmatrix} 2\\ 2+2x_3\\ 2+2x_2 \end{pmatrix} \\ &= \frac{2}{\sqrt{14}}(1+2+2x_3+3x_2) \end{split}$$

at $\tilde{x} = (6, 8, 4)$

$$\frac{\partial}{\partial p} f(\tilde{x}) = \frac{2}{\sqrt{14}} (3 + 2 \cdot 4 + 3 \cdot 8) = \frac{70}{\sqrt{14}}$$

First Order Necessary Condition (FONC)

Let $f: \Omega \to \mathbb{R}$, $\Omega \subset \mathbb{R}^3$, be differentiable. Assume $\begin{cases} x* & \text{is a local minimizer} \\ d & \text{feasible direction} \end{cases}$. Then

$$d^T D f(x*) \ge 0$$

What it means

Corollary

If x^* is an interior point of Ω , then $\nabla f(x^*) = 0$.

Proof

x interior point of Ω means that d is feasible and -d is also feasible. d being feasible implies $d^T Df(x^*) \geq 0$. -d being feasible implies $(-d)^T D(f(x^*)) \geq 0$ or $-(d^T Df(x^*)) \geq 0$. Thus $d^T Df(x^*) = 0 \forall d$.

Proof of FONC

Let x^* be a local minimizer and d a feasible direction. $x(\alpha) = x^* + \alpha d \in \Omega$. $\forall \quad \alpha \in [0, \alpha_0]$ for some $\alpha_0 > 0$. $\phi(\alpha) = f(x(\alpha)) = f(x^* + \alpha d)$. $\phi(0) = f(x^*)$.

 x^* is a local minimizer implies $\epsilon>0$ so that $\phi(\alpha)\geq\phi(0)$ for all $\alpha<\epsilon$. Taylor's Approximation

$$\phi(\alpha) = \phi(0) + \alpha\phi'(0) + r(\alpha)$$

with remainder $r(\alpha) = o(\alpha)$. where $\phi'(0) = d^T D f(x^*)$. We have to show $\phi'(0) \geq 0$ (by contradiction). Assume $\phi'(0) < 0$. Now, there exists an $\epsilon' > 0$, $\epsilon' < \epsilon$ so that $\left|\frac{r(\alpha)}{2}\right| < \frac{|\phi'(0)|}{2} \forall 0 < \alpha < \epsilon'$. This implies that $\phi(\alpha) \leq \phi(0) + \alpha \phi'(0) + \alpha \frac{|\phi'(0)|}{2} \forall \alpha \in (0, \epsilon')$.

$$\begin{split} & \to \phi(\alpha) + \frac{\alpha}{2} \phi'(0) < \phi(0) \\ & f(x^* + \alpha d) < f(x^*) \forall \alpha \in (0, \epsilon') \end{split}$$

This contradicts the assumption that x^* is a local minimizer. So $\phi'(0) \geq 0$.

Example

$$n=2,\, f(x_1,x_2)=x_1^2+\tfrac{1}{2}x_2^2+3x_2+\tfrac{9}{2}$$

$$\Omega = \{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : x_1 \geq 0, x_2 \geq 0 \}$$

(it's the first quadrant)

For convenience, the gradient

$$\nabla f(x_1,x_2) = \begin{pmatrix} 2x_1 \\ x_2+3 \end{pmatrix}$$

1. $x^* = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$. Is this a local minimizer?

Feasible directions are all, x^* is interior point.

$$\nabla f(1,3) = \binom{2}{6} \neq 0$$

 $\rightarrow x^* = (1,3)$ is not a local minimizer.

2. Is $x^* = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$ is local minimizer? $x^* \in \partial \Omega$ (the boundary of Ω). Feasible directions:

 $d = \begin{pmatrix} a \\ b \end{pmatrix}, a, b \in \mathbb{R}. \ d \text{ is feasible if } a \geq 0.$

$$d^T Df(0,3) = (a,b) \begin{pmatrix} 0 \\ 6 \end{pmatrix} = 6b$$

Therefore, a could be positive or negative. So (0,3) is not a local minimizer.

3. Is $x^* \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ a local minimizer?, $x \in \partial \Omega$ Feasible directions:

$$d = \begin{pmatrix} a \\ b \end{pmatrix}, a, b \in \mathbb{R}$$

 $b \ge 0$ (because it must go up)

$$d^T D(f(1,0)) = (a,b) \begin{pmatrix} 2 \\ 3 \end{pmatrix} = 2a + 3b$$

3

 \rightarrow (1, 0) is not a Local Minimizer

4. Is $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ a local minimizer? Feasible directions

$$d = \begin{pmatrix} a \\ b \end{pmatrix} \ a \ge 0, b \ge 0$$

 $\rightarrow d^T Df(0,0) = (a,b) \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 3b \ge 0$ for all feasible directions $\rightarrow (0,0)$ is a local minimizer.

Second Order Necessary Condition (SONC)

Let
$$f:\Omega\mapsto\mathbb{R}$$
 be C^2 assume
$$\begin{cases} x^* & \text{is local minimizer}\\ d & \text{feasible direction} \ . \ Then\\ d^TDf(x^*)=0 \end{cases}$$

$$d^TFd\geq 0$$

Where F is the Hessian matrix.

Homework

pg 93 6.1, 6.4, 6.9, 6.10, 6.11