1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

$X - \bar{X}$	$ x-ar{x} $
-3.5	3.5
3.5	3.5
5.5	5.5
-5.5	5.5
======	$\sum x - \bar{x} = 18$
	-3.5 3.5 5.5

We are ready for the formula.

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{18}{4}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
54	-1	1
54	-1	1
58	3	9
54	-1	1
=======	======	=======
$\sum x = 220$ $\bar{x} = 55$		$\sum (x - \bar{x})^2 = 12$

We are ready for the formula.

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{12}{4 - 1}}$$
$$= \sqrt{4}$$

= 2