Predicting handwritten digits using Support vector machine

Ishank Pahwa

Binary Classification Analysis (Using all features)

Using SVM from Sklearn which implements libsvm Binary classification for labels 0 and 1 initially

Linear Kernel:

Hyperparameters is

1. C (Regularization parameter)

Using k-fold cross validation with 6 folds and ranging 50 values of c from 0.01 to 0.00001

Max Cross Validation Score: 100% Optimal Value of C: 0.00408755

Now using train test split with 75% training set and 25% test set

Train Accuracy using optimal values: 100% Test Accuracy Using optimal values: 100%

Visualization of variation of hyperparameters

Range of C: 0.0001 to 0.2

Train-Test Errors Plot with variation in C (75% split):

RBF Kernel

Hyperparameters is

- 1. C (Regularization parameter)
- 2. Gamma

Grid search was performed to find the optimal values with k-fold cross validation k-fold=6

50 values of C between 0.01 to 0.00001 20 values of Gamma between 0.1 to 0.001

Max Cross Validation Score: 0.996667

Optimal Value of C: 0.00857286

Optimal Value of Gamma: 0.0166316

Train-Test Split: 75% Train, 25% Test

Train Accuracy: 0.9777 Test Accuracy: 0.9733

Visualization of variation of hyperparameters 1.

Using optimal Gamma and Varying C:

Gamma: 0.0166316

2. Using optimal C and Varying Gamma: C : 0.00857286

Polynomial Kernel

Hyperparameters is

- 1. C (Regularization parameter)
- 2. Gamma
- 3. Degree of Polynomial (p)

Using 3D Grid Search to get optimal value of hyperparameters :

K-fold: 6

Range of C: 50 values linearly spaced between (0.01, 0.0001)

Range of Gamma: 50 values linearly spaced between (0.1, 0.001)

Range of p: 0-5

Results .

Max Cross Validation Score: 100% Optimal Value of C: 0.00583158 Optimal Value of Gamma: 0.0791579

Optimal Value of Degree: 3

Train-Test Split: 75% Train, 25% Test

Test Accuracy Using the above optimal values: 92%

Variation of Hyperparameters:

 Using optimal Gamma and Varying C : Optimal value of gamma : 0.0791579

Optimal Value of Degree: 3

2. Using Optimal C and varying gamma :

Optimal value of C: 0.00583158 Optimal Value of Degress: 3

Multiclass Classification

One-versus-one Classification-

Linear Kernel

Hyperparameters is

1. C (Regularization parameter)

Using k-fold cross validation with 10 folds and ranging values of c from 0.1 to 0.01

Max Cross Validation Score: 89.26%

Optimal Value of C: 0.0667

Now using train test split with 75% training set and 25% test set

Train Accuracy using optimal values: 92.222% Test Accuracy Using optimal values: 88.4%

Visualization of variation of hyperparameters

Range of C: 0.001 to 1

Train-Test Errors Plot with variation in C (75% split):

RBF Kernel

Hyperparameters is

- 1. C (Regularization parameter)
- 2. Gamma

Grid search was performed to find the optimal values with k-fold cross validation k-fold=10

10 values of C between 3 to 0.4

10 values of Gamma between 0.1 to 0.001

Max Cross Validation Score: 0.9470

Optimal Value of C: 2.13333 Optimal Value of Gamma: 0.034

Train-Test Split: 75% Train, 25% Test

Train Accuracy: 99.46% Test Accuracy: 94%

Visualization of variation of hyperparameters Using

optimal Gamma and Varying C:

Gamma: 0.034

Polynomial Kernel

Hyperparameters is

- 1. C (Regularization parameter)
- 2. Gamma
- 3. Degree of Polynomial (p)

Using 3D Grid Search to get optimal value of hyperparameters :

K-fold: 10

Range of C: 10 values linearly spaced between (0.04, 0.8)

Range of Gamma: 10 values linearly spaced between (0.1, 0.001)

Range of p: 0-5

Results ,

Max Cross Validation Score: 93.8%

Optimal Value of C: 0.546667
Optimal Value of Gamma: 0.045
Optimal Value of Degree: 3

Train-Test Split: 75% Train, 25% Test

Training Accuracy: 99.28% Test Accuracy: 93.06%

Variation of Hyperparameters:

1. Using optimal Gamma and Varying C : Optimal value of gamma : 0.045

Optimal Value of Degree: 3

One-versus-many Classification- Linear Kernel-

Max Cross Validation Score: 89.26%

Optimal Value of C: 0.0659

Now using train test split with 75% training set and 25% test set

Train Accuracy using optimal values: 92.222% Test Accuracy Using optimal values: 88.3%

RBF Kernel-

Max Cross Validation Score: 94.70%

Optimal Value of C: 2.14

Optimal Value of Gamma: 0.034

Train-Test Split: 75% Train, 25% Test

Train Accuracy: 99.46% Test Accuracy: 94%

Polynomial Kernel

Max Cross Validation Score: 93.8%

Optimal Value of C: 0.547

Optimal Value of Gamma: 0.045

Optimal Value of Degree: 3

Train-Test Split: 75% Train, 25% Test

Training Accuracy: 99.28% Test Accuracy: 93.06%

Change in number of features (to first 10 features):

Hyperparameters and Results After changing Features:

Type of Kernel	C (Regularization Parameter)		Gamma Value (γ)		Degree (p)		Accuracy using Train-Test Data	
Romor	25 Features	10 Features	25 Features	10 Features	25 Features	10 Features	25 Features	10 Features
Linear	0.00408 755	0.00070 6122	None	None	None	None	100%	100%
Gaussian	0.00857 286	0.00758	0.01663 16	0.00092 9	None	None	97.33%	96.33%
Poly	0.00583 158	0.00433	0.07915 79	0.06	3	3	92%	91.8%

C decreases when we take only 10 features as compared to when we took 25 features

For Different Pairs of Target classes :

Target Classes	C (Regularization Parameter)		Gamma	Value (γ)	Accuracy using Train-Test Data	
	Linear Kernel	Gaussian Kernel	Linear Kernel	Gaussian Kernel	Linear Kernel	Gaussian Kernel
A = 0 B = 1	0.00408	0.00857	None	0.01663	100%	97.33%

A = 6 B = 7	0.0009081	0.0167333	None	0.012	99.33%	100%

We see that as we change the pair, the choice of the best kernel changes from linear to gaussian which gives 100% accuracy in the 2end pair.

CVX Optimization Analysis:

Hyperparameters from the respective kernel results have been used Soft_threshold: 1e-4 (The values above which we consider the point to be a support vector)

Linear Kernel

Optimal Value of C: 0.00408755 Accuracy on Test Set: 100%

RBF Kernel

Optimal Value of C: 0.0000857286 Optimal Value of Gamma: 0.0166316

Accuracy on Test Set: 100%

Polynomial Kernel

Optimal Value of C: 0.00018315

Optimal Value of Degree : 3

Optimal Value of Gamma: 0.0791579

Accuracy on Test Set: 100%