Contents

1	General Guidance	2
2	Specific words and terms	3
3	Math and notation	5

1 General Guidance

```
Tables, Figures and Captions
     In Eq. (13), (14), and (16)
     In Fig. 4(a)
     In Ref. 5
Dates and numbers
     02 February 2016 (no commas)
     four or fewer numbers closed up:
          1200
          24.0032~\mathrm{cm}
     Five or more digits, spaces instead of commas:
          12 000
          24.077 89 \text{ cm}
     one throgh ten
     11,12 and above
     2x2 matrix (numerals)
     0.03 and 106.0(no "naked" decimal points
     6 V (number before units are always numerals)
     1D, 2D, 3D
Punctuation
     en-dash: Paris-London train, (1950-), University of
     Wisconsin-Madison
     serial commas (a, b, and c)
     hyphenate multi-word modifiers: macro-time
     parenthesis:
          inserted into another sentence, no period (such as
          isolated, period inside. (Such as this.)
          pairs surrounded letters in innumerated list (a) and
     possessives: Smith and Green's theory
     plurals:
          1950s
          x's, K's
     quotation marks after commas and periods, before
     colons and semi-colons
Abbreviations
     Plural add 's: LCAO's
```

2	Specific words and terms	J	
\mathbf{A}		\mathbf{K}	
	α particle	${f L}$	
	ad hoc		Laplacian
	à la		l.h.s.
	anti-compounds closed (antilogarithm)		lifetime
В		\mathbf{M}	
	burnup (n)		Maxwell(ian)
			midpoint
\mathbf{C}			modeling
	Cartesian		multigroup
	collision-flux estimator		multivarient
	cross-section (n)	${f N}$	
	cross term	1,	non-compound closed:
D			nonelastic
	delta-tracking		nonradioactive
	Doppler		but proper noun, symbol, numeral:
	downscatter		non-Fermi 12-fold
${f E}$			12-1010
	eigenfunction	О	
	eigenvalue	P	
${f F}$			path length
_	Fourier transform/analysis/spectra	${f Q}$	
		\mathbf{R}	
\mathbf{G}	Gauss-Seidel (adj)		radioactive
			ray tracing
Н			r.h.s.
	half-compound hyphenated:		runtime
	half-life	\mathbf{S}	
	halfway		setup
Ι			self-compound hyphenated:
	indexes (to book)		self-shielded (adj)
	indices (to variable)		semiempirical
	$in \; situ$		semi-infinite

${f T}$	
	track length
	track-length estimator
\mathbf{U}	
	upscatter
	uranium
\mathbf{V}	
\mathbf{W}	
	waveheight
	wavelength
X	
	x ray (n)
	x-ray (adj)
Y	

 ${\bf Z}$

3 Math and notation

Cross-sections

macroscopic: $\tilde{\sigma}$

microscopic: σ

Matrices

Bold capital letters, A.

Use brackets (bmatrix) for normal matrix, pipes (vmatrix) for determinants, and double pipes (Vmatrix) for a matrix norm.

Vectors

Topped with an arrow, $\vec{\phi}$. Vector superscripts must be shifted slightly using $\ensuremath{\mbox{vec}{\phi}}^{\hbar}_{\hbar}$. For comparison:

 $\label{eq:condition} $\operatorname{\phi}^{\ell} : \vec{x}^{\ell} \times (x^{\ell}, \ell) : \vec{x}^{\ell}$

Use hats to denote unit vectors, $\hat{\Omega}$.

In general, if a vector is made up of other vectors, use a capital letter for the larger vector, and lowercase for the smaller vectors.

$$ec{\Phi} = egin{bmatrix} ec{\phi_0} \ ec{\phi_1} \end{bmatrix}$$