1. Вектор-функции двух переменных

Пусть V- евклидово линейное пространство и $G\subseteq \mathbb{R}^2.$

Опр. Отображение из множества G в V называется векторной функцией (вектор-функцией) двух скалярных аргументов.

Опр. Вектор $\overrightarrow{a} \in V$ называется **пределом** векторной функции $\overrightarrow{r}(u,v)$ при $(u,v) \to (u_0,v_0)$, $(u_0,v_0) \in G$, если

$$\lim_{(u,v)\to(u_0,v_0)}|\overrightarrow{r}(u,v)-\overrightarrow{a}|=0$$

(или, что то же самое, $\lim_{\substack{u \to u_0 \\ v \to v_0}} |\overrightarrow{r}(u,v) - \overrightarrow{a}| = 0$).

Обозначается этот предел $\lim_{(u,v)\to(u_0,v_0)}\overrightarrow{r}(u,v)=\overrightarrow{a}$ и, как видно, сводится к пределу функции двух скалярных переменных.

Опр. Векторная функция $\overrightarrow{r}(u,v)$ называется **непрерывной** в $(u_0,v_0)\in G$, если

$$\lim_{(u,v)\to (u_0,v_0)}\overrightarrow{r}(u,v)=\overrightarrow{r}(u_0,v_0).$$

Пускай в Vвыбран ортонормированный базис \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} . Тогда определены функции $x(u,v)=\overrightarrow{r}(u,v)\cdot\overrightarrow{i}$, $y(u,v)=\overrightarrow{r}(u,v)\cdot\overrightarrow{j}$, $z(u,v)=\overrightarrow{r}(u,v)\cdot\overrightarrow{k}$ из G в $\mathbb R$, которые ставят в соответствие вектору $\overrightarrow{r}(u,v)$ при $(u,v)\in G$ одну из его координат:

$$\overrightarrow{r}(u,v) = x(u,v)\overrightarrow{i} + y(u,v)\overrightarrow{j} + z(u,v)\overrightarrow{k}.$$

Эти функции называются **координатами** функции \overrightarrow{r} в данном базисе.

Опр. Частной производной векторной функции $\overrightarrow{r}(u,v)$ по переменной u в точке $(u_0,v_0)\in G$ называется производная векторной функции $\overrightarrow{r}(u,v_0)$ одной переменной u, то есть

$$\lim_{\Delta u \rightarrow 0} \frac{\overrightarrow{r}(u_0 + \Delta u, v_0) - \overrightarrow{r}(u_0, v_0)}{\Delta u}.$$

Обозначается частная производная по u как $\frac{\partial \vec{r}}{\partial u}$ или \vec{r}'_u .

По аналогии определяется частная производная $\overrightarrow{r}(u,v)$ по переменной v, которая обозначается $\frac{\partial \overrightarrow{r}}{\partial v}$ или \overrightarrow{r}'_v .

Теор 1. Векторная функция $\overrightarrow{r}(u,v)=x(u,v)\overrightarrow{i}+y(u,v)\overrightarrow{j}+z(u,v)\overrightarrow{k}$ имеет s $(u_0,v_0)\in G$ частные производные тогда и только тогда, когда s (u_0,v_0) существуют частные производные x'_u , y'_u , z'_u и x'_v , y'_v , z'_v . При этом s (u_0,v_0) имеет место

$$\overrightarrow{r}_u' = x_u' \overrightarrow{i} + y_u' \overrightarrow{j} + z_u' \overrightarrow{k} \quad u \quad \overrightarrow{r}_v' = x_v' \overrightarrow{i} + y_v' \overrightarrow{j} + z_v' \overrightarrow{k}.$$

Опр. Векторная функция называется **дифференцируемой** в точке, если ее координаты дифференцируемы в этой точке.

Согласно определению для скалярных функций, например, для функции x(u,v) это означает, что ее приращение $\Delta x = x(u_0+\Delta u,v_0+\Delta v)-x(u_0,v_0)$ представляется в виде $\Delta x = x_u'\Delta u + x_v'\Delta v + o(\rho)$ при $\rho = \sqrt{\Delta u^2 + \Delta v^2} \to 0$.

Тогда эквивалентно, для самой \overrightarrow{r} и ее приращения $\Delta \overrightarrow{r}$ это переписывается как $\Delta \overrightarrow{r} = \Delta x \overrightarrow{i} + \Delta y \overrightarrow{i} + \Delta z \overrightarrow{i} = (x'_u \overrightarrow{i} + y'_u \overrightarrow{j} + z'_u \overrightarrow{k}) \Delta u + (x'_v \overrightarrow{i} + y'_v \overrightarrow{j} + z'_v \overrightarrow{k}) \Delta v + o(\rho) = \overrightarrow{r}'_u \Delta u + \overrightarrow{r}'_v \Delta v + o(\rho)$ при $\rho \to 0$. То есть, \overrightarrow{r} дифференцируема, когда $\Delta \overrightarrow{r} = \overrightarrow{r}'_u \Delta u + \overrightarrow{r}'_v \Delta v + o(\rho)$. Линейная часть этого выражения называется **дифференциалом** функции \overrightarrow{r} и обозначается $d\overrightarrow{r} = \overrightarrow{r}'_u du + \overrightarrow{r}'_v dv$.

2. Параметризованные поверхности.

Далее рассматривается евклидово аффинное пространство E_3 над линейным пространством Vи в нем задана декартова система координат $O\stackrel{\rightarrow}{i}\stackrel{\rightarrow}{j}\stackrel{\rightarrow}{k}$.

Опр. Фигура называется **элементарной поверхностью**, если она гомеоморфна одному из следующих подпространств в \mathbb{R}^2 :

- 1. \mathbb{R}^2
- 2. $\mathbb{R}^2_+ = \{(u, v) \in \mathbb{R}^2 \mid u, v \geqslant 0\}$
- 3. $G = \{(u, v) \in \mathbb{R}^2 \mid 0 \leqslant u \leqslant 1, 0 \leqslant v \leqslant 1\}$

Опр. Фигура называется **поверхностью**, если ее можно покрыть конечным или счетным множеством элементарных поверхностей.

Прим 1. Плоскость, квадрат, круг — элементарные поверхности. Сфера не является элементарной.

Таким образом, для каждой элементарной поверхности γ гомеоморфизм задает непрерывную векторную функцию $\overrightarrow{r}(u,v)=(x(u,v),y(u,v),z(u,v)),$ определенную на множестве G.

Уравнение $\overrightarrow{r}=\overrightarrow{r}(u,v)$ или x=x(u,v),y=y(u,v),z=z(u,v) называются параметрическими уравнениями поверхности γ .

Опр. Поверхность называется **простой**, если любая ее точка имеет окрестность, в которой эта поверхность является элементарной поверхностью (точка является простой).

Опр. Элементарная поверхность $\overrightarrow{r}(u,v)=(x(u,v),y(u,v),z(u,v)),\,(u,v)\in G$, называется **гладкой поверхностью класса** C^k , если

1. ее координаты имеют непрерывные частные производные до порядка k включительно (что влечет их дифференцируемость) и

2.
$$\operatorname{rank} \begin{pmatrix} x'_u & y'_u & z'_u \\ x'_v & y'_v & z'_v \end{pmatrix} = 2$$
 при любом $(u,v) \in G.$

Опр. Простая поверхность называется **гладкой поверхностью класса** C^k , если у каждой ее точки существует окрестность, в которой эта поверхность является гладкой элементарной поверхностью класса C^k .

Пусть дана элементарная поверхность γ , заданная параметрическими уравнениями x=x(u,v), y=y(u,v), z=z(u,v) на G.

Опр. Всякий гомеоморфизм $(\alpha, \beta) = h(u, v)$, отображающий G на G', называется преобразованием (заменой) параметра поверхности γ .

Гомеоморфизм h задает непрерывные на G функции $\alpha=\alpha(u,v)$ и $\beta=\beta(u,v)$. Отображение h^{-1} будет гомеоморфизмом G' на G, который задает

непрерывные на G' функции $u=u(\alpha,\beta)$ и $v=v(\alpha,\beta)$. При этом $(u,v)=(u(\alpha,\beta),v(\alpha,\beta))$. Формулы $x=x(u(\alpha,\beta),v(\alpha,\beta)),y=y(u(\alpha,\beta),v(\alpha,\beta)),z=z(u(\alpha,\beta),v(\alpha,\beta))$ задают гомеоморфизм G' на γ .

Опр. Всякий гомеоморфизм $(\alpha, \beta) = h(u, v)$, отображающий G на G', называется преобразованием параметра гладкой поверхности γ класса C^k , если h(u, v) имеет на G непрерывные производные до порядка k включительно и $\begin{vmatrix} \alpha'_u & \alpha'_v \\ \beta'_u & \beta'_v \end{vmatrix} \neq 0$ для всех $(u, v) \in G$.

3. Касательная плоскость и нормаль

Пусть поверхность γ задана параметрически $\overrightarrow{r}=\overrightarrow{r}(u,v)$ на G.

Допустим, что задана пара функций u=u(t), v=v(t) на некотором промежутке $I\subseteq\mathbb{R}$, таких, что отображение $t\mapsto (u(t),v(t))$ переводит I в G и является взаимно непрерывным и инъективным. В этом случае функция $\overrightarrow{r}(u(t),v(t))$ является векторной функцией одного скалярного аргумента, определенной на промежутке I, и задает некоторую элементарную кривую. Эта кривая лежит на поверхности γ .

В свою очередь всякая кривая на поверхности γ , заданная на некотором промежутке I, определяет взаимно непрерывные функции u=u(t), v=v(t) так, что $t\mapsto \overrightarrow{r}(u(t),v(t))$ отображает I в γ и является гомеоморфизмом I на кривую.

Для гладкой класса C^k поверхности γ функции u=u(t), v=v(t), имеющие в I непрерывные производные до порядка k включительно и $\left(\frac{du}{dt}, \frac{dv}{dt}\right) \neq (0,0)$, определяют лежащую на γ кривую класса C^k .

Теор 2. Пусть M_0 — точка гладкой поверхности γ класса C^k , заданной векторной функцией $\overrightarrow{r}(u,v)$. Тогда существует такая плоскость, что для любой гладкой кривой на поверхности γ касательная к кривой в точке M_0 лежит в этой плоскости. Всякая прямая, проходящая через M_0 и лежащая в этой плоскости, является касательной к некоторой гладкой кривой на поверхности γ .

Док-во. Так как поверхность гладкая, то векторы \overrightarrow{r}'_u и \overrightarrow{r}'_v не коллинеарны. Покажем, что плоскость π , проходящая через M_0 параллельно \overrightarrow{r}'_u и \overrightarrow{r}'_v удовлетворяет условию.

Кривая на поверхности задается уравнением $\overrightarrow{r}=\overrightarrow{r}(u(t),v(t))$ на I для соответствующих функций u(t),v(t). Вектор касательной к кривой в точке M_0 равен $\frac{d\overrightarrow{r}}{dt}=\overrightarrow{r}'_u\frac{du}{dt}+\overrightarrow{r}'_v\frac{dv}{dt}$ и компланарен векторам \overrightarrow{r}'_u и \overrightarrow{r}'_v . Поэтому касательная лежит в плоскости π .

Если l — произвольная прямая плоскости π , проходящая через M_0 , то ее направляющий вектор можно представить $\alpha \overrightarrow{r}'_u + \beta \overrightarrow{r}'_v$. Пусть $M_0 = O + \overrightarrow{r}(u_0,v_0)$. Кривая на поверхности, определяемая функциями $u=u_0+\alpha t$ и $v=v_0+\beta t$ так, чтобы $(u(t),v(t))\in G$, задается уравнением $\overrightarrow{r}=\overrightarrow{r}(u_0+t)$

 $\alpha t, v_0 + \beta t)$. Касательная к этой кривой в точке M_0 будет параллельна вектору $\frac{d\vec{r}}{dt} = \vec{r}'_u \frac{du}{dt} + \vec{r}'_v \frac{dv}{dt} = \vec{r}'_u \alpha + \vec{r}'_v \beta.$ То есть касательная совпадает с l.

Плоскость, удовлетворяющую условию Теоремы, называют **касательной плоскостью** к поверхности γ в точке M_0 . Касательная плоскость задается $M+\alpha\overrightarrow{r}'_u+\beta\overrightarrow{r}'_v$ и не зависит от параметризации.

Teop 3. Расстояние от произвольной точки гладкой поверхности $\overrightarrow{r}(u,v)$ до касательной плоскости есть бесконечно малая более высокого порядка, чем $\rho=\sqrt{\Delta u^2+\Delta v^2}$ при $\rho\to 0$.

Док-во. Раскладываем координаты по формуле Тейлора: $x(u_0+\Delta u,v_0+\Delta v)=x(u_0,v_0)+\frac{dx}{du}\Delta u+\frac{dx}{dv}\Delta v+o(\rho)$ при $\rho\to 0$ и аналогично для y,z. Получается разложение векторной функции $\overrightarrow{r}(u_0+\Delta u,v_0+\Delta v)=\overrightarrow{r}(u_0,v_0)+\frac{d\overrightarrow{r}}{du}\Delta u+\frac{d\overrightarrow{r}}{dv}\Delta v+o(\rho), \rho\to 0.$

Пусть плоскость π проходит через M_0 параллельно единичным неколлинеарным напрявляющим векторам \overrightarrow{a} , \overrightarrow{b} . Вектор $\overrightarrow{n}=[\overrightarrow{a},\overrightarrow{b}]$ будет единичным нормальным вектором π . Тогда расстояние от точки M на поверхности до плоскости π равно $\frac{|\overrightarrow{n}\cdot\Delta\overrightarrow{r}|}{|\overrightarrow{n}|}=|\overrightarrow{n}\cdot\Delta\overrightarrow{r}|=|\overrightarrow{n}\frac{d\overrightarrow{r}}{du}\Delta u+\overrightarrow{n}\frac{d\overrightarrow{r}}{dv}\Delta v+o(\rho)|\leqslant |\overrightarrow{n}\frac{d\overrightarrow{r}}{du}\rho|+|\overrightarrow{n}\frac{d\overrightarrow{r}}{dv}\rho|+o(\rho)$ будет $o(\rho)$ только в случае $\overrightarrow{n}\frac{d\overrightarrow{r}}{du}=0$ и $\overrightarrow{n}\frac{d\overrightarrow{r}}{dv}=0$, то есть когда π и касательная плоскость совпадают.

Опр. Нормалью к гладкой поверхности γ в точке $M_0 \in \gamma$ называется прямая, проходящая через M_0 перпендикулярно касательной плоскости к γ в этой точке.

Нормаль задается $M_0 + \alpha \overrightarrow{N}$ для $\overrightarrow{N} = [\overrightarrow{r}_u', \overrightarrow{r}_v'].$

Teop 4. Если гладкая поверхность задана уравнением F(x,y,z)=0, то вектор $\overrightarrow{N}(F'_x,F'_y,F'_z)$ является вектором, перпендикулярным касательной плоскости к данной поверхности.

Док-во. Возьмем произвольную гладкую кривую γ , лежащую на поверхности и проходящую через некоторую ее точку M_0 . Пусть кривая γ задана векторной функцией $\overrightarrow{r}(t)=(x(t),y(t),z(t))$ при $t\in I$. Тогда F(x(t),y(t),z(t))=0 для любого $t\in I$. Дифференцируя это равенство по t, в точке M_0 получаем $F_x'\frac{dx}{dt}+F_y'\frac{dy}{dt}+F_z'\frac{dz}{dt}=0$ или $\overrightarrow{N}\cdot\frac{d\overrightarrow{r}}{dt}=0$.

4. Первая квадратичная форма

Пусть гладкая поверхность γ задана параметрически $\overrightarrow{r}=\overrightarrow{r}(u,v)$ при $(u,v)\in G$. Дифференциал векторной функции \overrightarrow{r} равен $d\overrightarrow{r}=\overrightarrow{r}'_udu+\overrightarrow{r}'_vdv$. Тогда

$$\begin{split} d\overrightarrow{r} \cdot d\overrightarrow{r} &= (d\overrightarrow{r})^2 = \\ &= (\overrightarrow{r}_u')^2 (du)^2 + \overrightarrow{r}_u' \overrightarrow{r}_v' du \, dv + \overrightarrow{r}_v' \overrightarrow{r}_u' dv \, du + (\overrightarrow{r}_v')^2 (dv)^2 = \\ &= \gamma_{11} (du)^2 + \gamma_{12} du \, dv + \gamma_{21} dv \, du + \gamma_{22} (dv)^2 = \\ &= \gamma_{11} (du)^2 + 2\gamma_{12} du \, dv + \gamma_{22} (dv)^2 \end{split}$$

где
$$\gamma_{11}=(\overrightarrow{r}'_u)^2,$$
 $\gamma_{22}=(\overrightarrow{r}'_v)^2$ и $\gamma_{12}=\gamma_{21}=\overrightarrow{r}'_u\overrightarrow{r}'_v.$

Это выражение задает положительно определенную $(d\vec{r}\cdot d\vec{r}=|d\vec{r}|>0$, так как $d\vec{r}\neq\vec{0})$ квадратичную форму в базисе \vec{r}'_u, \vec{r}'_v направляющего пространства касательной плоскости.

? она вектору $d\overrightarrow{r}=\overrightarrow{r}'_udu+\overrightarrow{r}'_vdv$ с координатами (du,dv) устанавливливает в соответствие значение $d\overrightarrow{r}\cdot d\overrightarrow{r}=\gamma_{11}(du)^2+2\gamma_{12}du\,dv+\gamma_{22}(dv)^2.$

Квадратичная форма $\gamma_{11}(du)^2+2\gamma_{12}du\,dv+\gamma_{22}(dv)^2$ называется **первой квадратичной формой** поверхности γ .

Пусть на поверхности γ лежит гладкая кривая, заданная функциями u(t),v(t) на I, то есть эта кривая определяется векторной функцией $\overrightarrow{r}(t)=\overrightarrow{r}(u(t),v(t))$ от $t\in I$. Производная этой векторной функции от t равна $\frac{d\overrightarrow{r}}{dt}=\overrightarrow{r}'_u\frac{du}{dt}+\overrightarrow{r}'_v\frac{dv}{dt}$. Поэтому производная длины s дуги этой кривой есть $\frac{ds}{dt}=\left|\frac{d\overrightarrow{r}}{dt}\right|=\sqrt{\gamma_{11}\left(\frac{du}{dt}\right)^2+2\gamma_{12}\frac{du}{dt}\frac{dv}{dt}+\gamma_{22}\left(\frac{dv}{dt}\right)^2}.$

Тогда длина дуги кривой между точками $t=t_1$ и $t=t_2$ вычисляется $s=\int\limits_{t_1}^{t_2}\sqrt{\gamma_{11}\left(\frac{du}{dt}\right)^2+2\gamma_{12}\frac{du}{dt}\frac{dv}{dt}+\gamma_{22}\left(\frac{dv}{dt}\right)^2}dt.$

Опр. Углом между двумя гладкими кривыми на поверхности, проходящими через точку M называется угол между касательными к этим кривым в точке M.

Угол между двумя кривыми, которые задаются отображениями u=u(t),v=v(t) и $u=\tilde{u}(t),v=\tilde{v}(t)$ на поверхности $\overrightarrow{r}=\overrightarrow{r}(u,v)$, возможно вычислить

через $\cos \varphi = \frac{d \overrightarrow{r}(u,v) \cdot d \overrightarrow{r}(\widetilde{u},\widetilde{v})}{|d \overrightarrow{r}(u,v)||d \overrightarrow{r}(\widetilde{u},\widetilde{v})|}$. По формуле $d \overrightarrow{r} = \overrightarrow{r}'_u du + \overrightarrow{r}'_v dv$ для первой кривой и $d \overrightarrow{r} = \overrightarrow{r}'_u d\widetilde{u} + \overrightarrow{r}'_v d\widetilde{v}$ для второй получается

$$\cos\varphi = \frac{\gamma_{11} du \, d\tilde{u} + \gamma_{12} (du \, d\tilde{v} + dv \, d\tilde{u}) + \gamma_{22} dv \, d\tilde{v}}{\sqrt{\gamma_{11} (du)^2 + 2\gamma_{12} du \, dv + \gamma_{22} (dv)^2} \sqrt{\gamma_{11} (d\tilde{u})^2 + 2\gamma_{12} d\tilde{u} \, d\tilde{v} + \gamma_{22} (d\tilde{v})^2}}.$$