10.1.1 PDFs and CDFs

Consider the random process $\{X(t), t \in J\}$. For any $t_0 \in J$, $X(t_0)$ is a random variable, so we can write its CDF

$$F_{X(t_0)}(x) = P\big(X(t_0) \le x\big).$$

If $t_1,t_2\in J$, then we can find the joint CDF of $X(t_1)$ and $X(t_2)$ by

$$F_{X(t_1)X(t_2)}(x_1,x_2) = Pig(X(t_1) \le x_1, X(t_2) \le x_2ig).$$

More generally for $t_1, t_2, \dots, t_n \in J$, we can write

$$F_{X(t_1)X(t_2)\cdots X(t_n)}(x_1,x_2,\cdots,x_n) = P(X(t_1) \leq x_1,X(t_2) \leq x_2,\cdots,X(t_n) \leq x_n).$$

Similarly, we can write joint PDFs or PMFs depending on whether X(t) is continuous-valued (the $X(t_i)$'s are continuous random variables) or discrete-valued (the $X(t_i)$'s are discrete random variables).

Example 10.3

Consider the random process $\{X_n, n=0,1,2,\cdots\}$, in which X_i 's are i.i.d. standard normal random variables.

- 1. Write down $f_{X_n}(x)$ for $n=0,1,2,\cdots$
- 2. Write down $f_{X_mX_n}(x_1,x_2)$ for $m \neq n$.

Solution

1. Since $X_n \sim N(0,1)$, we have

$$f_{X_n}(x)=rac{1}{\sqrt{2\pi}}e^{-rac{x^2}{2}},\quad ext{ for all }x\in\mathbb{R}.$$

2. If $m \neq n$, then X_m and X_n are independent (because of the i.i.d. assumption), so

$$egin{aligned} f_{X_m X_n}(x_1, x_2) &= f_{X_m}(x_1) f_{X_n}(x_2) \ &= rac{1}{\sqrt{2\pi}} e^{-rac{x_1^2}{2}} \cdot rac{1}{\sqrt{2\pi}} e^{-rac{x_2^2}{2}} \ &= rac{1}{2\pi} \mathrm{exp}igg\{ -rac{x_1^2 + x_2^2}{2} igg\}, \quad ext{ for all } x_1, x_2 \in \mathbb{R}. \end{aligned}$$