Implementasi Basis Data

DDL, DML, DCL, TCL

Prof. Dr. Ridwan Sanjaya

Scoring

- Assignments and Presentations 40%
 - Mid Term 20%
 - After Mid Term 20%
- Mid-Term Exam 30%
- Final Exam 30%

https://bit.ly/bukupostgresql

- PostgreSQL 15 Cookbook, Mohammad Samsad Hussain, BPB Online, 2024
- Mastering PostgreSQL, Kameron Hussain & Frahaan Hussain, Sonar Publishing, 2024
- Developing Modern Database Applications with PostgreSQL, Quan Ha Le, Marcelo Diaz, Packt Publishing, 2021
- PostgreSQL Query Optimization, Henrietta Dombrovskaya, Boris Novikov, Anna Bailliekova, Apress, 2021
- The Art of PostgreSQL, Dimitri Fontaine, 2022.

SQL Sub Language

- Data Definition Language (DDL)
 - create, alter, and drop
- Data Manipulation Language (DML)
 - insert, select, update, and delete
- Data Control Language (DCL)
 - grant and revoke
- Transaction Control Language (TCL)
 - rollback and commit

DCL

 Buatlah user "project" dengan password "newexperience2024#" untuk database "ibd"

NORMALISASI

Pentingnya Normalisasi

- Karena adanya struktur database yang kurang bagus
 - Data yang sama tersimpan di beberapa tempat (file atau record)
 - Ketidakmampuan untuk menghasilkan informasi tertentu
 - Terjadi kehilangan informasi
 - Terjadi adanya redundansi (pengulangan) atau duplikasi data sehingga memboroskan ruang penyimpanan dan menyulitkan saat proses updating data
 - Adanya NULL VALUE

Tujuan Normalisasi

- Tujuan normalisasi adalah menyempurnakan struktur table menjadi lebih baik
- Bentuk normalisasi yang sering digunakan adalah 1st NF, 2nd NF, 3rd NF, dan BCNF

Functional Dependency (FD)

- Untuk melakukan normalisasi, tentukan terlebih dahulu <u>Functional Dependency (FD)</u> atau <u>Ketergantungan Fungsional</u>, khususnya dalam melakukan dekomposisi rancangan database.
- Functional Dependency (FD) disimbolkan dengan:
 - A → B, artinya B memiliki ketergantungan dengan A
- Berarti A secara fungsional menentukan B atau
 B secara fungsional tergantung pada A.

Functional Dependency (FD)

Contoh:

	Mata_Kuliah	NRP	Nama	Nilai
row 1	Aplikasi Web	7405040100	Deni Astikapuri	Α
row 2	Aplikasi Web	7405040101	Uun Widiatmoko	А
row 3	Basis Data 1	7405040100	Deni Astikapuri	В
row 4	Basis Data 1	7405040102	Wasis Waskito Adi	В
row 5	Basis Data 1	7405040103	lmam Bukhori	Α
row 6	Basis Data 2	7405040104	Aswina Rahayu Kurniati	А
row 8	Administrasi Basis Data	7405040101	Uun Widiatmoko	AB

Functional Dependency:

- NRP → Nama
- Mata_Kuliah, NRP → Nilai

Non Functional Dependency:

- Mata_Kuliah → NRP
- NRP → Nilai

Normalisasi 1NF

1st Normal Form (1NF)

- Merubah dari bentuk tabel tidak normal (unnormalized table) menjadi bentuk normal (1NF).
- Suatu relasi R disebut 1st NF jika dan hanya jika kondisi tablenya dari unnormalized dirubah ke bentuk normal dengan kondisi semua attribute value-nya harus <u>atomic</u> (tidak boleh ada attribute yang <u>composit</u> / <u>multivalue</u>)

Unnormalized Table

Tabel dikatakan **unnormalized** (tabel tidak normal) jika:

a) Mempunyai penggandaan field yang sejenis

Contoh:

Berikut adalah tabel siswa mengambil mata kuliah

SISWA

b) Elemen datanya memungkinkan untuk **null value** (kosong)

Contoh:

Berikut adalah tabel yang mencatat No SIM milik siswa

SISWA_SIM

NIS	Nama	No SIM
1	Budi	12345
2	Amin	
3	Irfan	67890
4	Bayu	

Dalam bentuk normal 1NF, jika:

 Suatu tabel dikatakan berada pada bentuk normal I jika ia tidak berada pada bentuk unnormalized table, dimana terjadi penggandaan field yang sejenis dan memungkinkan ada field yang null (kosong)

Normalisasi 2NF

2st Normal Form (2NF)

- Normalisasi 2NF: jika tabel berada dalam bentuk Normal Pertama (1NF) dan setiap atribut bukan kunci bergantung penuh pada kunci primer.
- Sehingga tidak ada atribut bukan kunci yang bergantung pada sebagian (parsial) kunci primer.

Syarat ^{2st} Normal Form (2NF)

Syarat 2st Normal Form (2NF):

- Memenuhi kriteria tabel Normal I (1NF)
- Di dalam tabel tersebut tidak ada Redundansi / Pengulangan data dan Null Value.
- Field-field yang <u>bukan PK</u> adalah <u>Full</u>
 <u>Dependent</u> (bergantung penuh) pada PK.

Contoh 2NF:

Suatu format tabel Normal I (1NF):

Bentuk Normal II (2NF): (Decompose)

Ilustrasi 2NF

Suatu format tabel Normal I (1NF): (menghilangkan Redundansi)

NIP	Nama_Karyawan	Nama_Departemen	Gaji	<u>Kursus</u>	Tgl_Seles ai
25210021	Ali Topan	Geologi Komputasi	2.000.000	AutoCAD Map	8-Oct-2002
25210021	Ali Topan	Geologi Komputasi	2.000.001	Potoshop	9-Oct-2002
25210022	James Bond	Pengeboran	1.250.000	3D MAX	9-Oct-2002
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.000	3D MAX	9-Oct-2002
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.001	Arc∀iew	10-Dec-2002
25210024	Siti Nurhaliza	Sistem Informasi	2.500.000	Oracle	21-Sep-2002
25210024	Siti Nurhaliza	Sistem Informasi	2.500.001	SQL Server	21-Sep-2003

Bentuk Normal II (2NF): (Decompose)

KARYAWAN

NIP	Nama_Karyawan	Nama_Departemen	Gaji
25210021	Ali Topan	Geologi Komputasi	2.000.000
25210022	James Bond	Pengeboran	1.250.000
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.000
25210024	Siti Nurhaliza	Sistem Informasi	2.500.000

PENGAMBILAN KURSUS

<u>NIP</u>	<u>Kursus</u>	Tgl_Seles ai	
25210021	Auto CAD Map	8-Oct-2002	
25210021	Potoshop	9-Oct-2002	
25210022	3D MAX	9-Oct-2002	
25210023	3D MAX	9-Oct-2002	
25210023	ArcView	10-Dec-2002	
25210024	Oracle	21-Sep-2002	
25210024	SQL Server	21-Sep-2003	

Normalisasi 3NF

3rd Normal Form (3NF)

- Suatu relasi R disebut normal III (3rd NF) jika berada dalam bentuk normal II (2nd NF) dan tidak dijumpai adanya <u>ketergantungan</u> transitif (Transitive Dependency).
- Kebergantungan Transitif (Transitive Dependency) adalah ketergantungan fungsional antara 2 (atau lebih) atribut <u>bukan</u> <u>key</u> (kunci).

Syarat 3NF

Syarat 3NF:

- Harus berada dalam bentuk normal II (2NF).
- Ketergantungan field-field yang bukan PK adalah harus secara mutlak (full-dependent).
 Artinya harus tidak ada transitive dependency (ketergantungan secara transitif).

Contoh 3NF

- Bentuk Normal ke Dua (2NF):
 Tabel di samping sudah masuk dalam bentuk Normal 2.
- Field Nama dan Nilai adalah Full-Dependent terhadap NRP yang bertindak sebagai PK.
- Field Keterangan <u>Dependent</u> kepada NRP akan tetapi <u>Tidak Mutlak</u>. Ia <u>lebih</u> dekat ketergantungannya dengan field <u>Nilai</u>.
- Field Nilai <u>Dependent</u> kepada NRP dan field Keterangan <u>Dependent</u> kepada Nilai, maka field Keterangan juga dependent kepada NRP.
- Ketergantungan ini dinamakan <u>Transitive-Dependent</u> (dependent secara transitif atau samar/tidak langsung). Untuk itu dilakukan Normalisasi III (3NF).

	ţ	+	
NRP	Nama	Nilai	Keterangan
1	Budi	75	Baik
2	Amin	95	Istimewa
2	Irfan	85	Cukup baik
3	Bayu	40	Kurang

Bentuk Normal ke Tiga (3NF) :

NRP	Nama	Nilai
1	Budi	75
2	Amin	95
2	Irfan	85
3	Bayu	40

<u>Nilai</u>	Keterangan
90	Istimewa
80	Baik
70	Cukup baik
60	Lumayan
0	Kurang

Boyce-Codd Normal Form (BCNF)

- Secara praktis, tujuan rancangan database adalah cukup sampai pada 3NF. Akan tetapi untuk kasus-kasus tertentu kita bisa mendapatkan rancangan yang lebih baik lagi apabila bisa mencapai ke BCNF.
- BCNF ditemukan oleh: R.F. Boyce dan E.F. Codd
- Suatu relasi R dikatakan dalam bentuk BCNF: jika dan hanya jika setiap Atribut Kunci (Key) pada suatu relasi adalah Kunci Kandidat (Candidate Key).
- Kunci Kandidat (Candidate Key) adalah atribut-atribut dari entitas yang mungkin dapat digunakan sebagai kunci (key) atribut.
- BCNF hampir sama dengan 3NF, dengan kata lain setiap BCNF adalah 3NF.

Contoh BCNF

Normal II (2NF) :

Normal III (3NF) atau BCNF

Thank You

ridwan@unika.ac.id

