K. N. Toosi University of Technology

Faculty of Mathematics Problems 3 - Calculus II

A. R. Moghaddamfar

1. Find the work done by the force $\overrightarrow{\mathbf{F}}(x,y) = (2x + e^{-y}) \overrightarrow{\mathbf{i}} + (4y - xe^{-y}) \overrightarrow{\mathbf{j}}$ along the indicated curve:

2. Find a potential function for the given vector field:

$$\vec{\mathbf{F}}(x, y, z) = (2xy^2 + 3xz^2) \vec{\mathbf{i}} + (2x^2y + 2y) \vec{\mathbf{j}} + (3x^2z - 2z) \vec{\mathbf{k}}.$$

3. Find the line integral $\int_C \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{r}$ of the vector field

$$\overrightarrow{\mathbf{F}}(x, y, z) = 3x^2z \overrightarrow{\mathbf{i}} + z^2 \overrightarrow{\mathbf{j}} + (x^3 + 2yz) \overrightarrow{\mathbf{k}},$$

along the curve C parametrized by $\vec{r}(t) = \left\langle \frac{\ln t}{\ln 2}, t^{\frac{3}{2}}, t \cos(\pi t) \right\rangle$, $1 \leqslant t \leqslant 4$.

- 4. Let $\overrightarrow{\mathbf{F}}(x, y, z) = -y \overrightarrow{\mathbf{i}} + x \overrightarrow{\mathbf{j}} + \overrightarrow{\mathbf{k}}$ and let C be the portion of the helix given by $\overrightarrow{r}(t) = \langle \cos t, \sin t, \frac{t}{2\pi} \rangle$ on $[0, 2\pi]$. Evaluate $\int_C \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{r}$.
- 5. Evaluate $\int_C \vec{\mathbf{F}} \cdot d\vec{r}$, where $\vec{\mathbf{F}}(x,y,z) = \langle xy,yz,zx \rangle$ and $\vec{r}(t) = \langle t,t^2,t^3 \rangle$, $t \in [0,1]$.
- 6. Compute $\operatorname{div} \overrightarrow{\mathbf{F}}$ for $\overrightarrow{\mathbf{F}}(x, y, z) = \langle x^2y, xyz, -x^2y^2 \rangle$.
- 7. Find the Laplacian of $f(x, y, z) = x^2y^2z + 2xz$.
- 8. If $f(x, y, z) = 2xz y^2z$, find $\nabla \times \nabla f$.

- 9. Find the line of intersection of two planes x + y + z = 1 and x + 2y + 2z = 1.
- 10. Find the tangent line to the following curve:

C:
$$\begin{cases} x^2 - 3xy + z^2 = 1, \\ 2x \tan^{-1}(xz) + 2y^2 - z = 1, \end{cases}$$

at point (0,1,1).

- 11. Find an equation of the line perpendicular to two vectors $\overrightarrow{u} = \langle 1,1,4 \rangle$ and $\overrightarrow{v} = \langle 0, -1,2 \rangle$ passing through the point (0,1,3).
- 12. Find the area of the triangle with vertices at A=(1,0,2), B=(3,1,0), and C=(0,0,2).
- 13. Consider the function $f(x, y) = x^3 + 3xy + y^3$. Find the critical points of the function.
- 14. Find the arc length of the curve parametrized by $\vec{r}(t) = \langle e^t, e^{-t}, \sqrt{2} t \rangle$, on the range $0 \le t \le \ln 2$.
- 15. Find the limit $\lim_{(x,y)\to(0,0)} \frac{x^4 4y^2}{2x^4 + y^2}$.
- 16. Find an equation of the plane tangent to the surface $xyz \ln z = 0$ at point (0,1,1).
- 17. Find and classify all critical points of the function $f(x, y) = 2x^2 + y^4 4xy$ on the entire plane.
- 18. Given two vectors $\overrightarrow{u} = \langle 1, -1, 0 \rangle$ and $\overrightarrow{v} = \langle 1, 0, 1 \rangle$ find the angle between them. Compute the area of the parallelogram by the vectors.
- 19. Find and classify all critical points of the function $f(x,y) = x^2y 2xy 5x^2 + 10x$ and classify them using the Second Derivative Test.

20. Consider the function $f(x, y) = 3x^2 + 4y^2 - 2$. Find the directional derivative of f(x, y) at the point (1,1) in the direction of the vector $\overrightarrow{u} = \langle \frac{1}{2}, \frac{\sqrt{3}}{2} \rangle$.

$$\overrightarrow{u} = \langle \frac{1}{2}, \frac{\sqrt{3}}{2} \rangle.$$