Ejercicio @ · Altro Pasz-Barda. fci = 1/64417 } fo = 2000H2 } Q = 2/22. - Filtro sinetrico, transformo la fes = 3/24/Hz 6 fcps = 2/166 > Teremos un riplote de 3dB y as un filto de maxima planicidad. por la tento: $|\pi w||^2 = \frac{1}{1 + \mathcal{L}^{2N}}$ 1 188 = 10 log (1+ Ps2N) > N=3 > d=20,18 -> Muestro prototipo es un filtro Butter de otalea 3 $H(s) = \frac{1}{(s+1)(s^2+2\cos(\frac{\pi}{3})s+1)}$

1

$$S = R(S) = 2,22 \cdot \frac{(S^{2}+1)}{S}$$

$$H(S) = \frac{1}{S} + AQ(S^{2}+1) + AQ(S^{2}+1) + 1$$

$$H(S) = \frac{S \cdot S^{2}}{(Q(S^{2}+1)^{2}+AQ(S^{2}+1)+S^{2})}$$

$$H(S) = \frac{S \cdot S^{2}}{(Q(S^{2}+1)^{2}+AQ(S^{2}+1)+S^{2}+AQ(S^{2}+1)+S^{2})}$$

$$H(S) = \frac{S \cdot S^{2}}{(Q(S^{2}+1)^{2}+AQ(S^{2}+1)+S^{$$

$$\mu(s) = \frac{S.s^{2}}{(QS^{2} + S + Q^{2}) (Q^{2}S^{4} + 2Q^{2}S^{2} + Q^{2} + AQS^{3} + AQS + S^{2})}$$

$$\frac{1}{\alpha^2} + 2 = \frac{1 + 2\alpha^2}{\alpha^2}$$

$$SOS_1 = \frac{S.\frac{1}{6}}{S^2 + \frac{5}{6} + 1}$$

		Lip A	20/10/							321-W	444	
5053 =	8. 1	(0,18)	1140	690		-	S ·			2		
	= 01			4,5208	3		- 3	93	+ W			
8087=	S //a			S	1/0	,			(2 8	. &		
	- 11,2	26 8 +1,	976 T	8 ² +	ς <u>ψ</u>	+142	2.	-5-		(42)		
	,	iferes ciz			e.C :		7.		(4)		137	
		1/Q3 .	(A) 2		13 N	F. (4)		\$		À		
		S +1)	200521	G 777	40		S ² †	S	<u>ur</u> 4 92	Wz j		·
	4	$Q = \frac{7}{2}$ $\frac{9}{7} = \frac{4}{7}$,533.		=1,2			3	4	2	SP	
>0 G	r ficer	dizpran	213					Q IA	٥			
		trers for							ro pe	, dido		

@ Sintetizor el filto utilizando estructura Acterbag-Mornberg

$$A_{O(S)} = N(S) = \frac{-SG_{1}/c}{S^{2} + \int \frac{Gz}{c} + \frac{Gz^{2}}{E^{2}}} = \frac{-G_{1}}{Gz} = \frac{SG_{2}}{S^{2} + SG_{2}} = \frac{-G_{1}}{Gz}$$

$$H(S) = -\frac{G_1}{G_2} \frac{S}{S^2 + S} \frac{G_2}{C^2} = \frac{k}{S^2 + S} \frac{Sw_0}{g} + \frac{1}{W_0^2}$$

. Sindeliza cada una de la filtras por separada.

$$80S_1 = \frac{S^{1/2}}{S^{2+1}} \rightarrow \frac{S^{2+1} 244}{Z_1 2} + \frac{1}{272} + (277244)^{2}$$

 $k = -\frac{G_1}{62}$ $-7 \ 8082 = \frac{5 \ 1/Q}{5^2 + 5 \frac{wz}{92} + wz} + \frac{5 \ w}{2} = \frac{5 \ 1/Q}{5 \ 1/Q}$ 52+ 5 wzuo + (aswz)2. 8 Wowz . (92) te δ²+ δ (ω₂ α₀) + (α₀ α₂)² · α₁ · α₁ · α₂ · α₂ · α₂ · α₂ · α₃ · α₄ luego busco jos uziones de los componentes. Wo Wz = 21 ZH+12. 1,215 = 63 → C= 1µF C
P3 = 65,5N 92 = 4,533 = Rz = Rz = 2.96,97 $\frac{9^{2}}{w_{2}Q} = \frac{4/533}{1/285.2/22} = -\frac{2}{2} = 1/680.$ 2 = 1/680 2 = 1/680

The second secon		(13 Ub)2		
The contract of the contract o	ZTTZKMZ. 0,8ZZ	$= \underbrace{1}_{\ell_3 C} \longrightarrow$	C=1µF(F3 = 97R	
· }3>	4,52 = <u>R2</u> -	> Rz = 1	440N t	
<u>भुत्र</u> w3 ह	<u>4,52</u> 0,322.2,22 =	$y = -e_z$	=D R1 = 177A	
		per es les les		328)
		37121	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1,49,36,9		4 + 62 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	# BA 1		35 303 6 2 2	
		100		