CS528 Task Scheduling (Part II)

A Sahu

Dept of CSE, IIT Guwahati

A Sahu

Scheduling Problems

Ref: "Scheduling Algorithm" Book by P. Brucker

Google "Scheduling Algorithm Brucker pdf" to get a PDF copy of the Book Soft copy will be uploaded to MS Team

Parallel Machine Problems

- P: We have jobs j as before and m identical machines M₁, ..., M_m.
- The processing time for j is the same on each machine.
- One has to assign the jobs to the machines and to schedule them on the assigned machines.
- This problem corresponds to an RCPSP with r
 = 1, R₁ = m, and r_{i1} = 1 for all jobs j.

Parallel Machine Problems

- **Q:** The machines are called **uniform** if $p_{jk} = p_j/r_k$.
- **R**: For **unrelated machines** the processing time p_{jk} depends on the machine M_k on which j is processed.
- MPM: In a problem with multi-purpose machines a set of machines μ_j is is associated with each job j indicating that j can be processed on one machine in μ_i only.

Parallel Machines

Ti	P1	P2	Р3	P4
T1	10	10	10	10
T2	12	12	12	12
Т3	16	16	16	16
T4	20	20	20	20

P: Identical

Ti	P1	P2	P3	P4
T1	10	15	20	25
T2	12	18	24	30
Т3	16	24	32	40
T4	20	30	40	50
Q: Uniform : with				

speed difference

Ti **P2 P3 P4 T1** 8 12 2 10 **T2 12** 28 **25 13 T3** 32 16 14 4 38 42 **22** 20 **T4**

 $(S_1=1, S_2=2/3, S_3=1/2, S_4=2/5)$ R: Unrelated :

R: Unrelated : heterogeneous

Classification of Scheduling Problems

Classes of scheduling problems can be specified in terms of the three-field classification

where

- α specifies the **machine environment**,
- β specifies the **job characteristics**, and
- γ describes the **objective function(s)**.

Machine Environment: α

Symbol	Meaning
1	Single Machine
P	Parallel Identical Machine
Q	Uniform Machine
R	Unrelated Machine
MPM	Multipurpose Machine
J	Job Shop
F	Flow Shop

If the number of machines is fixed to m we write

Pm, Qm, Rm, MPMm, Jm, Fm, Om.

Job Characteristics: β

Symbol	meaning
pmtn	preemption
r_{j}	release times
d_{j}	deadlines
$p_j = 1 \text{ or } p_j = p \text{ or } p_j \in \{1,2\}$	restricted processing times
prec	arbitrary precedence constraints
intree (outtree)	intree (or outtree) precedence
chains	chain precedence
series-parallel	a series-parallel precedence graph

A Sahu

Job Precedence Examples

Objective Functions: γ

Two types of objective functions are most common:

- bottleneck objective functions max {f_i(C_i) | j= 1, ..., n}, and
- sum objective functions Σ $f_j(C_j) = f_1(C_1) + f_2(C_2) + ... + f_n(C_n)$.

 C_j is completion time of task j

Objective Functions: γ

- C_{max} and L_{max} symbolize the bottleneck objective
 - $-\mathbf{C}_{max}$ objective functions with $f_j(C_j) = C_j$ (makespan)
 - L_{max} objective functions $f_j(C_j) = C_j d_j$ (maximum Lateness)

- Common sum objective functions are:
 - $-\Sigma C_i$ (mean flow-time)
 - $-\Sigma \omega_i C_i$ (weighted flow-time)

Objective Functions : γ

• Σ U_j (number of late jobs) and Σ ω_j U_j (weighted number of late jobs) where $U_j = 1$ if $C_j > d_j$ and $U_j = 0$ otherwise.

• Σ T_j (sum of tardiness) and Σ ω_j T_j (weighted sum of tardiness/lateness) where the tardiness of job j is given by

$$T_{j} = \max \{ 0, C_{j} - d_{j} \}.$$

Examples of Scheduling Problem

- 1 | $prec; p_j = 1 | \Sigma \omega_j C_j$
- P2 | | C_{max}
- P | $p_j = 1$; $r_j | \sum \omega_j U_j$
- R2 | chains; pmtn | C_{max}
- R | $n = 3 | C_{max}$
- P | $p_{ij} = 1$; outtree; $r_j \mid \sum_{j} C_{j}$
- Q | $p_j = 1 | \Sigma T_j$

Polynomial algorithms

 A problem is called polynomially solvable if it can be solved by a polynomial algorithm.

Example

 $\begin{array}{c|c} 1 & | & \Sigma \; \omega_{j} C_{j} \; \text{can be solved by} \\ \text{Scheduling the jobs in an ordering of non-increasing} \; \omega_{j}/p_{j} \; \text{- values.} \end{array}$

Complexity: O(n log n)

Polynomial algorithms for $1 \mid \Sigma C_j$

Example

```
1 \mid | \sum C_j can be solved by Scheduling the jobs in an ordering of non-increasing 1/p_j - values. == > SJF C_i = Q_i + P_i: Waiting time + Processing time (SJF is optimal) Complexity: O(n log n)
```

Polynomial algorithms: P|p_i=1|Cmax

 A problem is called polynomially solvable if it can be solved by a polynomial algorithm.

Example

P|p_i=1|Cmax can be solved by
Scheduling the jobs in phase wise, P jobs in
one phase, require ceil(n/P) phases.

Complexity: O(n)

P2 | | C_{max}

- n tasks, 2 processors
- ET: t₁, t₂, t₃,...., t_n
- Subset Sum problem: 1+e APPROX
 - Ref: CLR Book Chapter 37 Section 4
- Divide the tasks in two sets such that
 - Difference of Sum of ETs of both the set is minimized
 - Min (Max(Sum(Set₁), Sum(Set₂)))

P_m | | C_{max}

- n tasks, m processors
- ET: t₁, t₂, t₃,...., t_n
- m-Subset Sum problem
- INDEP(m) Problem: NPC in strong sense
- Divide the tasks in m sets such that
 - Difference of Sum of ETs of all the set is minimized: does not exceed a value K
 - Min (Max(Sum(Set₁), Sum(Set₂), ...Sum(Set_m)))