# Data Science para Negócios III

#### Visualização e Storytelling de Dados

Prof. Klayton R. Castro

IDP Instituto Brasileiro de Ensino, Desenvolvimento e Pesquisa

11 de abril de 2024



## **Jupyter Notebooks**

- Os Datasets e Jupyter Notebooks utilizados durante o curso estão disponíveis no GitHub para referência, revisão ou prática adicional.
- Visite o repositório idp-storytelling na seguinte URL:

https://github.com/klaytoncastro



# Entendendo as Tarefas de Classificação e Regressão

- Baixe os notebooks no GitHub do Professor com os exemplos de fluxo de trabalho para resolver problemas de Classificação e Regressão.
- Lembre-se que este curso tem o objetivo de esclarecer os fundamentos do aprendizado de máquina. Para isso, analise o código calmamente, executando os notebooks célula por célula. Evite simplemente copiar e colar código sem entendê-lo.
- Agora carregue os notebooks em seu ambiente Jupyter ou Google Colab e analise os fluxos de trabalho que adotamos para criação de uma máquina preditiva em um contexto de aprendizado supervisionado.

# Fluxo de trabalho para o Aprendizado de Máquina

Observe como utilizamos as bibliotecas Pandas e Numpy para manipulação de dados, Seaborn e Matplotlib para visualização e Scikit-Learn para carregar os algoritmos empregados para criar os dois modelos de Machine Learning. De maneira resumida, programamos uma máquina preditiva capaz de:

- Executar a tarefa de classificação do tipo de vinho (branco ou tinto);
- Executar a tarefa de regressão para a previsão de sua qualidade (nota).

# Análise Exploratória de Dados

- Antes de abordarmos a modelagem preditiva e identificarmos eventual margem de otimização, é importante enfatizar a estatística descritiva como base para obter as características de cada variável e observar o impacto dessas características (features) em nosso conjunto de dados (dataset).
- Isso inclui calcular medidas de tendência central (média, mediana), dispersão (desvio padrão, intervalo interquartil), além de explorar a distribuição de cada variável (contagem, valores únicos, possíveis outliers), bem como a relação entre as variáveis preditoras e a variável alvo.

# Análise Exploratória de Dados

- Primeiramente carregamos o Dataset em formato CSV e realizamos as operações e manipulação dos dados necessárias.
- Depois disso, realizamos a análise de distribuição de cada variável numérica usando histogramas.
- Efetuamos também a análise de Boxplots para identificar outliers, ou seja, pontos que se destacam significativamente dos demais em um conjunto de dados, estando distantes da maioria das demais observações da amostra.

## Análise Exploratória de Dados

- Visualização Geral: obtivemos uma visão geral do dataset através dos métodos '.describe()' e '.info()' para uma visão geral do tipo de dados e verificação de valores ausentes (missing values).
- Análise Descritiva: obtivemos as medidas de tendência central e dispersão para cada variável.
- Realizamos a contagem de valores para a variável categórica (color) e discreta (quality), alvos de nosso modelo de Machine Learning.

#### Escolha do Algoritmo

- Depois de analisar o código para criar nosso Primeiro Modelo de Aprendizado de Máquina, optamos pelo robusto algoritmo ExtraTrees para criar nosso primeiro modelo de Machine Learning.
- Este algoritmo utiliza o conceito de adotar múltiplas árvores de decisão para realizar as tarefas de classificar os vinhos em tintos ou brancos e, em seguida, usamos a mesma técnica para predizer a qualidade (nota) conforme análise de suas propriedades químicas.

## Modelo de Aprendizado de Máquina

Pronto! Agora que compreendemos o fluxo de trabalho para criação do modelo, vimos a importância da análise exploratória para entendimento dos dados e executamos tarefas comuns de pré-processamento, seleção de dados de treino e teste, escolha do algoritmo e modelagem básica para criação de uma máquina preditiva funcional.

#### Tarefa 01

Após executar os notebooks **passo** a **passo**, **entender** o que o código está realizando e efetuar os **ajustes** necessários, responda:

- Quais células precisam ser ajustadas no notebook da tarefa de classificação? Por que?
- Quais células precisam ser ajustadas no notebook da tarefa de regressão? Por que?
- Qual variável aparece com mais outliers? Como isso pode interferir no nosso modelo de ML?

# Classificação com outros algoritmos

Para problemas de classificação, além do algoritmo ExtraTreesClassifier, os algoritmos Naive Bayes (NB) e Support Vector Machine (SVM) são alternativas populares, dependendo da natureza dos dados e do problema específico que você está tentando resolver.

- NB é uma técnica de classificação baseada na ideia de aplicar o teorema de Bayes com a "ingenuidade"de supor independência entre os preditores.
- É fácil de construir e particularmente útil para grandes volumes de dados.
- Costuma ser eficaz em problemas de classificação multinomial e binomial.

#### **Usando Naive Bayes**

Há diferentes implementações de NB no Scikit-Learn, adequados para diferentes tipos de dados.

- GaussianNB: Adequado para classificação de features contínuas que seguem uma distribuição normal.
- BernoulliNB: Adequado para features binárias.
- MultinomialNB: Adequado para features que são contagens ou frequências de termos (comumente usado em classificação de texto).

## Código Python

Experimente a implementação do algoritmo NB e avalie os resultados em comparação à Árvore de Decisão com ExtraTreesClassifier. Use as métricas de desempenho acurácia, precisão, recall e F1-score para isso. Segue exemplo de código:

```
from sklearn.naive_bayes import BernoulliNB

modelo = BernoulliNB()
modelo.fit (x_train, y_train)

y_pred = modelo.predict(x_test)
```

#### **Usando SVM**

O Support Vector Machine (SVM) é um método poderoso e versátil para tarefas de classificação e detecção de outliers. Para classificação, especialmente em casos de categorias claramente distintas, o algoritmo SVM pode ser eficaz.

- O Scikit-Learn oferece várias implementações do SVM, incluindo SVC (Support Vector Classification), que é comumente usado para problemas de classificação.
- Teste e avalie os resultados usando as métricas apropriadas para classificação. Consulte a documentação do Scikit-learn para obter maiores detalhes sobre os kernels.

## Código Python

```
from sklearn.svm import SVC

# Inicializando o classificador SVM com um
    kernel. O kernel 'rbf' pode ser alterado para
    'linear', 'poly', etc.

modelo_svm = SVC(kernel='linear')
modelo_svm.fit(X_train, y_train)
y_pred = modelo_svm.predict(X_test)
```

# Usando Regressão Logística

Embora seja chamada de regressão, esta técnica é utilizada para classificação binária (prever entre duas classes).

- Estima probabilidades usando uma função logística que mapeia qualquer valor real para um valor entre 0 e 1.
- É ideal para problemas onde a variável dependente é categórica (por exemplo, sim/não, verdadeiro/falso).

## Código Python

```
from sklearn.linear_model import
   LogisticRegression
modelo = LogisticRegression()
modelo.fit(X_train, y_train)
```

#### Avaliação

Após testar os algoritmos, você precisa desenvolver uma abordagem e avaliar quão bem seu modelo irá performar. Para esta tarefa, seguem as métricas mais usuais:

- Acurácia: Proporção de previsões corretas (positivas ou negativas) em relação ao total de casos analisados. Mede a eficácia geral do modelo.
- Precisão: Proporção de previsões corretas positivas (VP) em relação ao total de previsões positivas feitas (VP + FP). Indica a exatidão das previsões positivas.
- Recall: Proporção de previsões corretas positivas (VP) em relação ao total de casos positivos reais (VP + FN). Mede a capacidade do modelo de identificar todos os casos relevantes.
- **F1-score**: Média harmônica entre precisão e recall. É útil quando se deseja um equilíbrio entre precisão e recall, especialmente se as classes estiverem desbalanceadas.

#### Tarefa 2

Após **experimentar** os algoritmos acima e **compreender** sua implementação, gere as **Curvas ROC** para cada um deles e responda:

- Qual algoritmo performou melhor em termos de métricas?
- Qual algoritmo performou melhor em termos de velocidade?
- Explique os comportamentos das curvas ROC para cada algoritmo.

## Regressão com outros algoritmos

Para a tarefa de regressão, no caso, prever um número inteiro que reflete a qualidade do vinho, existem vários algoritmos disponíveis no Scikit-Learn.

- Inicialmente utilizamos uma abordagem de Árvore de Decisão com a implementação ExtraTreesRegressor.
- Dentre outras alternativas populares destacamos: SVR, Regressão (Linear, Ridge, Lasso) e Random Forest Regressor.

# Support Vector Machine (SVM) para Regressão (SVR)

- O Support Vector Regression (SVR) é a versão do SVM que pode ser usada para problemas de regressão.
- O SVR pode ser eficaz em espaços de alta dimensionalidade, até mesmo em casos onde o número de dimensões excede o número de amostras.

#### Regressão Linear

A regressão linear é um dos métodos mais simples, mas amplamente utilizado.

- Costuma ser um bom ponto de partida para problemas de regressão, sendo eficaz para estimar relações lineares diretas entre variáveis dependentes e independentes.
- Sensível a outliers e a multicolinearidade, um fenômeno no qual duas ou mais variáveis preditoras são altamente correlacionadas, o que pode causar problemas na estimação dos coeficientes do modelo de regressão.

```
modelo_lr.fit(x_train, y_train)
y_pred = modelo_lr.predict(x_test)
```

# Otimizando a Modelagem

No contexto de modelagem estatística e machine learning, viés e variância são dois componentes fundamentais do erro de previsão de qualquer modelo:

- Um modelo com alto viés não aprende bem os detalhes e padrões nos dados (underfitting), simplificando em demasia um problema complexo.
- Um modelo com alta variância é fortemente influenciado por detalhes mínimos dos dados de treinamento, o que pode levar a modelagem do ruído dos dados ao invés dos padrões reais (overfitting).
- Ou seja, um modelo simples demais aumenta o viés e reduz a variância (risco de underfitting), enquanto um modelo complexo demais reduz o viés e aumenta a variância (risco de overfitting).
- Para evitar isso, podemos adotar métodos de regularização como Ridge e Lasso, capazes de ajustar o compromisso viés-variância adicionando um termo de penalidade ao modelo.



#### Regressão Ridge

Adiciona uma penalidade igual ao quadrado dos coeficientes multiplicados por um fator  $\alpha$ . Isso reduz a variância, pois impede que os coeficientes atinjam valores muito altos, mas aumenta o viés, pois o modelo é forçado a ser menos sensível aos dados.

```
from sklearn.linear_model import Ridge
modelo_ridge = Ridge(alpha=1.0) # 0
parametro alpha controla a forca da
regularizacao.
```

#### Regressão Lasso

Adiciona uma penalidade igual ao valor absoluto dos coeficientes multiplicados por  $\alpha$ . Além de ajustar o viés e a variância, pode reduzir o número de variáveis no modelo (*zeroing out coefficients*), uma forma de seleção automática das features.

```
from sklearn.linear_model import Lasso
modelo_lasso = Lasso(alpha=0.1)
```

#### Árvores de Decisão Aleatórias

São extensões otimizadas das árvores de decisão, cuja implementação combina múltiplas árvores para definir um modelo estatiscamente mais robusto (método ensemble).

- Em uma Random Forest, muitas árvores de decisão são criadas usando um subconjunto aleatório dos atributos (features), ao invés de utilizar todas as variáveis disponíveis.
- Esta técnica é conhecida como "feature bagging"e ajuda a descorrelacionar as árvores, aumentando a diversidade do modelo.
- Cada árvore individual faz sua própria previsão de valor, e a previsão final é tipicamente a média (ou a mediana) das previsões de todas as árvores.
- Este método de agregação é conhecido como averaging e ajuda a reduzir a variância sem aumentar o viés.



# Comparando implementações

Os algoritmos Random Forest Regressor e ExtraTrees Regressor (Extremely Randomized Trees), que utilizamos inicialmente, possuem diferenças significativas na forma de construir a floresta e dividir os dados, o que pode afetar seu desempenho e aplicabilidade.

- O Random Forest Regressor constrói a floresta de forma relativamente conservadora. Utiliza amostragem com reposição (bootstrap sampling) para selecionar os dados e, em cada divisão, seleciona aleatoriamente um subconjunto de características (features) para compor cada árvore.
- Esta técnica visa garantir que as árvores sejam distintas, reduzindo a variância do modelo sem aumentar muito o viés, o que previne o overfitting.

# Comparando implementações

Já o *ExtraTreesRegressor* leva a ideia de aleatoriedade um passo adiante para aumentar ainda mais a diversificação entre as árvores.

- Embora adote bootstrap sampling, ao contrário do Random Forest, que busca a melhor divisão em cada subconjunto de dados, o ExtraTrees faz divisões escolhendo pontos de corte totalmente ao acaso para cada feature e usa a melhor dessas divisões aleatórias.
- A ideia é que esta aleatoriedade extra ajude a criar modelos que generalizam melhor. Ou seja, oferece uma redução na variância mas, potencialmente, a um aumento no viés.
- Entretanto, costuma ser mais rápido para treinar, já que não precisa encontrar a melhor divisão possível para cada subconjunto de features, mas pode ser menos sensível a outliers e ter sua precisão reduzida em certos conjuntos de treinamento.

## **Usando Random Forest Regressor**

```
from sklearn.ensemble import
RandomForestRegressor
modelo_rfr = RandomForestRegressor()
```

# Avaliação

Após experimentar os algoritmos, você avaliar como eles estão performando. Seguem as métricas de avaliação usuais em tarefas de regressão:

- MAE (Mean Absolute Error): Média dos valores absolutos dos erros entre previsões e valores reais. Oferece uma ideia da magnitude média dos erros.
- MSE (Mean Squared Error): Média dos quadrados dos erros. Penaliza mais erros maiores, sendo útil quando grandes erros são indesejáveis.
- RMSE (Root Mean Squared Error): Raiz quadrada do MSE. Retorna a taxa à mesma unidade das variáveis de interesse e mais é sensível a grandes desvios, sendo comumente usada por sua interpretabilidade.
- R² (Coefficient of Determination): Proporção da variância dos dados que é explicada pelo modelo. Valores próximos de 1 indicam que o modelo explica uma grande parte da variabilidade dos dados.

#### Tarefa 03

Após **experimentar** os algoritmos acima e **compreender** sua implementação, responda:

- Qual algoritmo performou melhor em termos de métricas?
- Qual algoritmo performou melhor em termos de velocidade?

#### Tarefa 04

Agora que você testou várias alternativas para tratar problemas de classificação, regressão e compreendeu as métricas para avaliar o desempenho nestes tipos de tarefas, vamos resolver o desafio de predizer a qualidade dos vinhos de uma forma diferente:

- Selecione uma nota de corte para definir se um vinho é bom ou ruim em termos de qualidade. Por exemplo, considerando o histograma do atributo quality, vimos que os melhores vinhos da nossa amostra possuem nota >= 7.
- Transforme os dados desta coluna ou crie uma nova coluna no dataframe para reduzir o problema de regressão a um problema de classificação, atribuindo valores binários para classificar os vinhos.
- Compare os resultados entre as abordagens: no primeiro momento com regressão e no segundo como classificação, utilizando a nota de corte definida para predizer se o vinho é um dos melhores ou não.



## Colocando o modelo em produção

Agora que o modelo está treinado e desempenhando como MVP (*Minimum Viable Product*), como transformar um programa de machine learning em uma aplicação em produção?

MVP é um conceito usado no desenvolvimento de produtos em startups e projetos de inovação tecnológica para descrever uma versão simplificada de um novo produto que possui apenas as funcionalidades essenciais para ser lançado.