MODEL QUESTIONS ON THERMODYNAMICS (sem 3)

- 1. Given the state function U(S, V) : dU = TdS PdV. Apply Legendre transformation to get functions X(T, V) and Y(T, P).
- 2. Given the state function H(S, P) : dH = TdS + VdP. Apply Legendre transformation to get functions X(T, V) and Y(T, P).
- 3. Given the state function S(U, V): dS = (1/T)dU (P/T)dV. Apply Legendre transformation to get functions X(T, V).
- 4. Show that $\mu_i = (\partial A/\partial n_i)_{T,V,n} = (\partial U/\partial n_i)_{S,V,n} = T(\partial S/\partial n_i)_{U,V,n}$
- 5. How does μ depend on T and P?
- 6. Discuss whether μ is an extensive/intensive property.
- 7. Define a partial molar quantity. Discuss whether μ is a partial molar quantity.
- 8. Discuss the physical significance of μ .
- 9. What is fugacity and fugacity coefficient of a real gas? How can you determine the fugacity coefficient of a real gas.
- 10. How will you determine the fugacity coefficient of a gas obeying *van der Waals* eqn. ?
- 11. How does μ/T depend on T at a constant P?
- 12. How does *Inf* depend on *T* and *P*?
- 13. Derive Gibbs Duhem eqn.
- 14. $\mu = \mu^0 + RT \ln P$. Hence a plot of μ vs T would give a straight line with a positive slope. Justify or criticize.
- 15. Calculate the value of (μ μ^0) of an ideal gas in J mol⁻¹ at 300K and 76 cm of Hg