Learning Features and Abstract Actions for Computing Generalized Plans

Blai Bonet Universidad Simón Bolívar, Venezuela

Guillem Francès University of Basel, Switzerland

Hector Geffner ICREA & Universitat Pompeu Fabra, Spain

Planning and Generalized Planning

- Planning is about solving single planning instances
 - \triangleright E.g., find **plan** to achieve on(A,B) for **particular configuration of blocks**
- Generalized planning is about solving multiple planning instances at once.
 - E.g., find **general strategy** for
 - 1. go to target location (x^*, y^*) in empty square grid of **any** size
 - 2. pick objects spread in 2D grid, any number, size, locations
 - 3. achieve goal on(x,y) in Blocks, **any** number of blocks and configuration
 - 4. achieve any goal in Blocks, any number of blocks, any configuration, . . .

Srivastava et al, 2008; Bonet et al, 2009; Hu and De Giacomo 2011, . . .

Generalized Planning: Motivation

- Broaden scope of planners: General strategies for playing Atari games?
- Insight into representations: What representations adequate and why?
- Connections with (deep) learning: How to learn general features and plans?

Outline of the Talk

- Generalized planning: basic formulation
- Extended formulation. abstract actions
- **Learning** features and abstract actions
- Wrap Up, Future

Generalized Planning: Basic Formulation

- Generalized Q is set of planning instances P sharing actions and features
- Features f represent state functions $\phi_f(s)$ over finite domains (observations)
- Policy for Q is mapping π from feature valuations into actions
- Solutions: π solves general $\mathcal Q$ iff π solves each $P \in \mathcal Q$

Example

- Task Q_{hall} : Clean cells in $1 \times n$ hall, starting from left, any n and dirt
- Features d, e: if current cell is dirty, if current cell is last
- Actions move, clean: move right, clean current cell
- **Solution:** Policy "If d, clean", "If $\neg d$ and $\neg e$, move"

Generalized Planning: Extended Formulation, BG 2018

- ullet Generalized ${\mathcal Q}$ is set of planning instances P sharing set of features F
- Features can be boolean p or numerical n with functions $\phi_p(s)$ and $\phi_n(s)$
- Boolean feature valuation assigns truth values to atoms $X_p = true$ and $X_n = 0$
- Sound abstract actions on feature variables that track value of features

- Policy π for $\mathcal Q$ maps boolean feature valuations into abstract actions
- Solutions: π solves general $\mathcal Q$ iff π solves each $P \in \mathcal Q$

Abstract Actions: Language

- Features F will refer to state functions $\phi_f(s)$ in instances P but to state (feature) variables in abstraction
- Abstract action $\bar{a} = Pre \mapsto Eff$ defined over feature variables:
 - **Description** Boolean preconditions and effects: p, $\neg p$
 - **Numerical preconditions:** n = 0, n > 0
 - \triangleright Numerical effects: $n\uparrow$, $n\downarrow$ (inc's and dec's by unspecified amounts)
- Language of qualitative numerical problems (QNPs), Srivastava et al, 2011
 - Sufficiently expressive for abstraction
 - Compiles into fully observable non-deterministic (FOND) planning:

Abstract Actions: Soundness and Completeness

They enable us to reason about all instances P in parallel, in terms of **abstract** actions that operate at the level of features

Def: Action b and abstract $\bar{a} = Pre \mapsto Eff$ have same effects over F in state s, if both applicable in s with same effects on the features p and n in F:

- 1. $p \in \mathit{Eff} \ \text{iff} \ \phi_p(s') \ \text{true and} \ \phi_p(s) \ \text{false}; \ \ s' = f(b,s)$
- 2. $\neg p \in \mathit{Eff} \ \mathsf{iff} \ \phi_p(s') \ \mathsf{false} \ \mathsf{and} \ \phi_p(s) \ \mathsf{true}; \ \ s' = f(b,s)$
- 3. $n \uparrow \in Eff \text{ iff } \phi_n(s') > \phi_p(s); \ s' = f(b,s)$
- 4. $n \uparrow \in Eff \text{ iff } \phi_n(s') > \phi_p(s); \ s' = f(b,s)$

Def: Abstract actions A_F sound in \mathcal{Q} iff for any s over instance P of \mathcal{Q} , if \bar{a} in A_F is applicable in s, there is action b in P with the same effects as \bar{a} in s.

Def: Abstract actions A_F complete in \mathcal{Q} iff for any s over instance P of \mathcal{Q} , if \bar{a} in A_F is applicable in s, there is action b in P with the same effects as \bar{a} in s.

Computation: Solving Generalized Problem Q

- 1. Define abstraction $Q_F = \langle V_F, I_F, G_F, A_F \rangle$ from features F and sound A_F . Initial and goals I_F and G_F to match \mathcal{Q} .
- 2. Abstraction Q_F converted into **FOND** Q_F' by replacing $n \in N$ by symbol n = 0, and effects $n \uparrow$ and $n \downarrow$, by n > 0 and $n > 0 \mid n = 0$ resp.
- 3. Amend Q'_F into FOND Q^+_F so that solutions assume **conditional fairness** (infty decrements of n eventually yield n=0, if increments finite).

Theorem (BG 2018): Solutions of FOND Q_F^+ computed by FOND planners off-the-shelf are solutions to all instances P in Q.

Example: $Q_{on(x,y)}$

- Features $F = \{n(x), n(y), X, H, on(x, y)\}; n(x)$ is # blocks above x
- Abstract Actions A_F ; E abbreviates $\neg X \land \neg H$
 - \triangleright Pick- $x: E, n(x) = 0 \mapsto X$,
 - ightharpoonup Pick-above- $x:E,n(x)>0 \mapsto H,n(x)\downarrow$,
 - ho Pick-above- $y:E,n(y)>0 \mapsto H,n(y)\downarrow$,
 - ightharpoonup Put-x-on- $y:X,n(y)=0 \mapsto \neg X,on(x,y),n(y)\uparrow$,
 - \triangleright Put-other-aside : $H \mapsto \neg H$.
- Abstraction $Q_F = \langle V_F, I_F, G_F, A_F \rangle$, $I_F = \dots$ and $G_F = \{on(x, y)\}$
- **FOND** $Q_F' = \langle V_F', I_F', G_F', A_F' \rangle$ with booleans n(x) = 0 and n(y) = 0 only
- **FOND planner** yields policy π that achieves on(x,y) in 70msecs:
 - ightharpoonup If E, n(x) > 0, n(y) > 0 do Pick-above-x,
 - ightharpoonup If $H, \neg X, n(x) > 0, n(y) > 0$ do Put-other-aside,
 - ightharpoonup If $H, \neg X, n(x) = 0, n(y) > 0$ do Put-other-aside,
 - ightharpoonup If E, n(x) = 0, n(y) > 0 do Pick-above-y,
 - ightharpoonup If $H, \neg X, n(x) = 0, n(y) = 0$ do Put-other-aside,
 - ightharpoonup If E, n(x) = 0, n(y) = 0 do Pick-above-x,
 - ▶ If $X, \neg H, n(x) = 0, n(y) = 0$ do Put-x on y.

Learning Features and Abstract Actions From Samples

Sample S: Finite set of **state transitions** (s, b, s') drawn from instances P in Q such that states s appearing **first** in transitions, **fully expanded**

Def: Abstract actions A_F sound relative to sample S of Q, iff for any \bar{a} in A_F applicable in $s \in S$, there is a transition (s, b, s') in S such that \bar{a} and b have same effects over features in s.

Def: Abstract actions A_F complete relative to sample S of Q, iff for any transition (s, b, s') in S, there is \bar{a} in A_F applicable in $s \in S$, such that b and \bar{a} have same **effects** over features in s.

For sufficiently large sample, approx and exact soundness and completeness converge

Learning F and A_F with SAT: $T(S, \mathcal{F})$

Variables:

- selected(f) for each $f \in \mathcal{F}$, true iff $f \in F$, $F \subseteq \mathcal{F}$
- $D_1(s,t)$ true iff selected features distinguish s from t; p or n=0 true in one
- $D_2(s, s', t, t')$ true iff selected features f distinguish transitions (s, s'), (t, t')

Formulas:

- $D_1(s,t) \Leftrightarrow \bigvee_f selected(f)$
- $D_2(s, s', t, t') \Leftrightarrow \bigvee_f selected(f)$
- $\bullet \neg D_1(s,t) \Rightarrow \bigvee_{t'} \neg D_2(s,s',t,t')$
- $D_1(s,t)$, when one of s and t is a goal state

Theorem: $T(S, \mathcal{F})$ is SAT iff \exists set of features $F \subseteq \mathcal{F}$ and abstract actions A_F over F such that A_F is **sound and complete** relative to S.

Learning F and A_F via SAT: $T_G(S, \mathcal{F})$

- Similar result for smaller theory $T_G(S, \mathcal{F})$ that marks some state transition (s, s') as goal-relevant with a planner on sampled instances P
- Theory $T_G(S, \mathcal{F})$ ensures **soundness** over S but **completeness** over marked transitions in S.
- $T_G(S, \mathcal{F})$ is like $T(S, \mathcal{F})$ but transitions (s, s') in $D_2(s, s', t, t')$ range over goal relevant pairs only.

Feature Pool

- Pool of candidate features $\mathcal F$ in $T(\mathcal S,\mathcal F)$ def'ed from **primitive predicates** in $\mathcal Q$
- Boolean and numerical features b_r and n_c defined from unary predicates r:

$$\phi_{b_r}(s) = (|r^s| > 0)$$
 and $\phi_{n_r}(s) = |r^s|$ if $r^s = \{c \, | \, r(c) \text{ is true in } s\}$

- ullet New unary predicates r generated from description logic grammar
 - $ightharpoonup C \leftarrow C_p, C_u, C_x$, primitive, universal, parameter
 - $ightharpoonup C \leftarrow \neg C, C \sqcap C'$, negation, conjunction
 - $ightharpoonup C \leftarrow \exists R.C, \forall R.C$, existential and universal roles
 - $ightharpoonup R \leftarrow R_p, R_p^{-1}, R_p^*, [R_p^{-1}]^*$: primitive, inverse, closure
- $dist(C_1, R: C, C_2)$ represents min n s.t. $C_1^s(x_1)$, $C_2^s(x_n)$, and $(R: C)^s(x_i, x_{i+1})$
- Max SAT solver **minimizes** $\sum_{f:selected(f)} cost(f)$, given by structure of f

Computational Model Updated: Learn then Plan

For solving generalized problem Q:

- 1. sample set of transition $\mathcal S$ from instances P
- 2. compute pool of features \mathcal{F} from primitive predicates, grammar, bounds
- 3. Max SAT to find assignment of T(S, F) or $T_G(S, F)$ that min $\sum_{f \in F_\sigma} cost(f)$
- 4. extract features F and abstract actions A_F from assignment
- 5. define abstraction $Q_F = \langle V_F, I_F, G_F, A_F \rangle$ with I_F and G_F to match \mathcal{Q} ,
- 6. reduce Q_F to FOND Q_F^+

Theorem: If abstract actions A_F that are sound relative to the sample S are sound relative to Q, then the policy π that solves Q_F^+ solves all instances P of Q.

Experimental Results: Problem Data

			$T(\mathcal{S},\mathcal{F})$		$T_G(\mathcal{S},\mathcal{F})$						
	$ \mathcal{S} $	$ \mathcal{F} $	np	nc	np	nc	t_{SAT}	F	$ A_F $	t_{FOND}	$ \pi $
\mathcal{Q}_{clear}	927	322	535K	59.6M	7.7K	767K	0.01	3	2	0.46	5
\mathcal{Q}_{on}	420	657	128K	25.8M	18.3K	3.3M	0.02	5	7	7.56	12
\mathcal{Q}_{grip}	403	130	93K	4.7M	8.1K	358K	0.01	4	5	171	14
\mathcal{Q}_{rew}	568	280	184K	11.9M	15.9K	1.2M	0.01	2	2	1.36	7

n is # of training instances P, $|\mathcal{S}|$ is # of transitions in \mathcal{S} , $|\mathcal{F}|$ is size of pool, np and nc are # of vars and clauses in $T(\mathcal{S}, \mathcal{F})$ and $T_G(\mathcal{S}, \mathcal{F})$, t_{SAT} is time for SAT solver on T_G , |F| and $|A_F|$ are # of selected features and abstract actions, t_{FOND} is time for FOND planner, and $|\pi|$ is size of resulting policy. Times in seconds.

Experimental Results: Q_{on}

- Q_{on} : STRIPS instances with goal on(x,y), x and y not in same tower initially
- **Training:** 3 instances P, 420 state transitions in S, 657 features in F
- Features learned E, X and G: empty gripper, holding x, x on y, n(x), n(y)
- Abstract Actions learned:
 - 1. pick-ab- $x = E, \neg X, \neg G, n(x) > 0, n(y) > 0 \mapsto \neg E, n(x) \downarrow$
 - 2. pick-ab- $y=E, \neg X, \neg G, n(x)=0, n(y)>0 \mapsto \neg E, n(y)\downarrow$
 - 3. put-aside-1 = $\neg E$, $\neg X$, $\neg G$, $n(x) = 0 \mapsto E$,
 - 4. put-aside-2 = $\neg E$, $\neg X$, $\neg G$, n(x) > 0, $n(y) > 0 \mapsto E$,
 - 5. pick- $x = E, \neg X, \neg G, n(x) = 0, n(y) = 0 \mapsto \neg E, X,$
 - 6. put-x-aside = $\neg E, X, \neg G, n(x) = 0, n(y) > 0 \mapsto E, \neg X$
 - 7. put-x-on- $y = \langle \neg E, X, \neg G, n(x) = 0, n(y) = 0; E, \neg X, G, n(y) \uparrow \rangle$.
- Abstraction Q_F with $I_F = \dots$ and and $G_F = \{G\}$
- FOND Q_F^+ in 0.01 seconds, solved by FOND planner in 7.56 secs
- Resulting policy solves all instances P in Q_{on} ; any number and config of blocks

Experimental Results: $Q_{gripper}$

- $Q_{gripper}$: STRIPS instances, at-robby(l), at-ball(b,l), free(g), carry(b,g)
- Features learned from 3 instances P, 403 transitions in S, 130 features F
 - 1. $X: at_robby \sqcap C_x$ (whether robby is in target room),
 - 2. $B: |\exists at. \neg C_x|$ (number of balls not in target room),
 - 3. $C: |\exists \ carry. C_u|$ (number of balls carried),
 - 4. G:|free| (number of empty grippers).

Abstract Actions learned

- 1. drop-ball-at- $x = C > 0, X \mapsto C \downarrow, G \uparrow$,
- 2. move-to-x-half-loaded $= \neg X, B = 0, C > 0, G > 0 \mapsto X$,
- 3. move-to-x-fully-loaded $= \neg X, C > 0, G = 0 \mapsto X$,
- 4. pick-ball-not-in- $x = \neg X, B > 0, G > 0 \mapsto B \downarrow, G \downarrow, C \uparrow$,
- 5. leave- $x = X, C = 0, G > 0 \mapsto \neg X$
- Abstraction Q_F with $I_F = \ldots$, $G_F = \{B = 0\}$,
- **FOND** Q_F^+ obtained in 0.01 secs and solved by FOND planner in 171.92 secs
- Resulting policy solves $Q_{gripper}$; any number of grippers and balls.

Experimental Results: Q_{reward}

- Q_{reward} : pick rewards spread on grid with blocked cells (from *Towards Deep Symbolic RL*, M. Garnelo, K. Arulkumaran, M. Shanahan, 2016)
- STRIPS instances with predicates $reward(\cdot)$, $at(\cdot)$, $blocked(\cdot)$, $adj(\cdot, \cdot)$
- **Training:** 2 instances 4×4 , 5×5 , diff distributions of blocked cells and rewards

Learned features:

- 1. R: |reward| (number of remaining rewards),
- 2. $D: dist(at, adjacent: \neg blocked, reward)$

Learned abstract actions:

- 1. collect-reward $= D = 0, R > 0 \mapsto R \downarrow, D \uparrow$,
- 2. move-to-closest-reward $=R>0, D>0 \mapsto D\downarrow$
- **Abstract** Q_F with $I_F = \{R > 0, D > 0\}$ and $G_F = \{R = 0, D > 0\}$
- **Policy** that solves Q_{reward} obtained from Q_F^+ in 1.36 secs.

Wrap Up: Limitations

- Computational bottleneck in size of theories used to derive features and actions
 - \triangleright Used theories T_G with marked transitions, not T
 - ▶ While optimal Max SAT solvers effective, need to try suboptimal solvers
- Expressive bottleneck: pool of features from general grammar?
 - Domains with **bounded width** (Lipovetzky and G., 2012) admit **compact** policies with poly-time features $(\bar{a}:n^*>0\mapsto n^*\downarrow)$
 - ▶ For arbitrary goals, grammar seems ok, add **goal predicates** (Martin and G., 2000)

Summary and Future

- Scheme for computing general plans that mixes learning and planning:
 - ▶ Learner infers abstraction by enforcing soundness and completeness
 - ▶ **Planner** uses abstraction, transformed, to compute the general plans
- Number of samples small as learner identifies features for the planner to track
- Unlike purely learning approaches, features and policies are transparent, and scope and correctness of plans can be assessed
- Relation to dimensionality reduction and embeddings in ML/Deep Learning
 - abstraction maps states into bounded features, preserving essential properties

Challenge: Learn embeddings that yield sound and complete abstractions