1. Parties de \mathbb{R}^n

Les parties suivantes sont-elles ouvertes? fermées? bornées?

- (a) $A = \{(x, y) \in \mathbb{R}^2 \text{ tq } xy = 1\}.$
- **(b)** $B = \{(x, y) \in \mathbb{R}^2 \text{ tq } x^2 + xy + y^2 < 1\}$
- (c) $C = \{z \in \mathbb{C} \text{ tq } Re(z) \leq 1\}$
- (d) $B = \{(x, y) \in \mathbb{R}^2 \mid x^2 + xy + y^2 < 1\}.$
- **2.** On définit un sous ensemble A de \mathbb{R}^2 en posant

$$A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 2\} \setminus \{(x, y) \in \mathbb{R}^2 \mid (x - 1)^2 + y^2 < 2\}$$

Déterminer l'intérieur, l'adhérence et la frontière de A.

3. Addition de parties

Soient A, B deux parties non vides d'un evn E. On note $A + B = \{a + b \mid a \in A, b \in B\}$. Montrer que . . .

- (a) Si A ou B est ouvert, alors A + B est ouvert.
- (b) Si A et B sont fermés, alors A+B n'est pas nécessairement fermé (prendre $A=\{(x,y)\in\mathbb{R}^2\,|\,xy=1\}$ et $B=\{(x,0)\,|\,x\in\mathbb{R}\}$).
- 4. Soient A et B deux parties d'un espace vectoriel normé (E, N).
 - (a) On suppose $A \subset B$. Établir $\overset{\circ}{A} \subset \overset{\circ}{B}$ et $\bar{A} \subset \bar{B}$.
 - **(b)**) Comparer $(A \cap B)$ et $\overset{\circ}{A} \cap \overset{\circ}{B}$ d'une part puis $(A \cup B)$ et $\overset{\circ}{A} \cup \overset{\circ}{B}$ d'autre part.
 - (c) Comparer $\overline{A \cup B}$ et $\overline{A} \cup \overline{B}$ d'une part puis $\overline{A \cap B}$ et $\overline{A} \cap \overline{B}$ d'autre part.
- 5. Inégalités sur les normes

Soit $(E, \|\cdot\|)$ un espace vectoriel normé.

(a) Démontrer que, pour tous $x, y \in E$, on a

$$||x|| + ||y|| \le ||x + y|| + ||x - y||.$$

En déduire que

$$||x|| + ||y|| \le 2 \max(||x + y||, ||x - y||).$$

La constante 2 peut elle être améliorée?

(b) On suppose désormais que la norme est issue d'un produit scalaire. Démontrer que, pour tous $x, y \in E$, on a

$$(\|x\| + \|y\|)^2 \le \|x + y\|^2 + \|x - y\|^2.$$

En déduire que

$$||x|| + ||y|| \le \sqrt{2} \max(||x + y||, ||x - y||).$$

La constante $\sqrt{2}$ peut elle être améliorée?

6. Oh les boules!

Soit E un espace vectoriel normé. Pour $a \in E$ et r > 0, on note $\bar{B}(a,r)$ la boule fermée de centre a et de rayon r. On fixe $a, b \in E$ et r, s > 0.

- (a) On suppose que $\bar{B}(a,r) \subset \bar{B}(b,s)$. Démontrer que $||a-b|| \leq s-r$.
- (b) On suppose que $\bar{B}(a,r) \cap \bar{B}(b,s) = \emptyset$. Montrer que ||a-b|| > r + s.
- 7. Soit E une espace vectoriel normé.
 - (a) Soient F une partie fermée de E et $x \in E$. Montrer que $d(x, F) = 0 \Leftrightarrow x \in F$.
 - (b) Soient F et G deux fermés de E disjoints.

Montrer qu'il existe U et V ouverts tels que $F \subset U, G \subset V$ et $U \cap V = \emptyset$.

8. E est un espace vectoriel normé, B et C sont deux parties non vides de E.

Montrer que $\delta(B \cup C) \leq \delta(B) + \delta(C) + d(B,C)$. (où $d(B,C) = Inf\{||x-y||/|x \in B, y \in C\}$)

- **9.** On note $E = C^1([0,1], \mathbb{R})$.
 - (a) Pour $f \in E$, on pose $N(f) = ||f||_{\infty} + ||f'||_{\infty}$. Montrer que N est une norme sur E. Est-elle équivalente à $||.||_{\infty}$?
 - (b) Pour $f \in E$, on pose $N'(f) = |f(0)| + ||f'||_{\infty}$.

Montrer que N' est une norme sur E. Montrer qu'elle est équivalente é N.

10. Sur $\mathbb{R}[X]$ on définit N_1 et N_2 par :

$$N_1(P) = \sum_{k=0}^{+\infty} |P^{(k)}(0)| \text{ et } N_2(P) = \sup_{t \in [-1,1]} |P(t)|$$

- (a) Montrer que N_1 et N_2 sont deux normes sur $\mathbb{R}[X]$.
- (b) Etudier la convergence de la suite de terme général

$$P_n = \frac{1}{n}X^n$$

pour l'une et l'autre norme.

- (c) Les normes N_1 et N_2 sont-elles équivalentes?
- **11.** Pour $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ on pose

$$||A|| = \left(\sum_{i,j=1}^{n} a_{i,j}^2\right)^{1/2}$$

Montrer que $\|.\|$ est une norme matricielle i.e. que c'est une norme sur $\mathcal{M}_n(\mathbb{R})$ vérifiant

$$\forall A, B \in \mathcal{M}_n(\mathbb{R}), \|AB\| \leqslant \|A\| \|B\|$$

12. Pour $A = (a_{i,j}) \in M_n(\mathbb{C})$, on pose

$$||A|| = \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}|$$

- (a) Montrer que ||.|| définit une norme sur $M_n(\mathbb{C})$.
- (b) Vérifier

$$\forall A, B \in M_n(\mathbb{C}), ||AB|| \leq ||A|| ||B||$$

- 13. On norme l'espace $\mathcal{B}(\mathbb{N}, \mathbb{R})$ des suites bornées par la norme infinie notée $\|.\|_{\infty}$. Déterminer la distance de la suite e constante égale à 1 au sous-espace vectoriel \mathcal{C}_0 des suites réelles convergeant vers 0.
- **14.** On norme l'espace $\mathcal{B}(\mathbb{N}, \mathbb{R})$ des suites bornées par la norme infini notée $\|.\|_{\infty}$. Déterminer la distance de la suite $u = ((-1)^n)_{n \in \mathbb{N}}$ au sous-espace vectoriel \mathcal{C} des suites réelles convergentes.
- **15.** Une suite (u_n) de nombre réels est appelée suite de Cauchy si, pour tout $\epsilon > 0$, il existe un entier N tel que, pour tout $p, q \ge N$, on a

$$|u_p - u_q| < \epsilon$$
.

- (a) Montrer que toute suite convergente est une suite de Cauchy.
- (b) On souhaite prouver la réciproque à la question précédente. Soit (u_n) une suite de Cauchy.
 - i. Montrer que (u_n) est bornée.
 - ii. On suppose que (u_n) admet une suite extraite convergente. Montrer que (u_n) est convergente.
 - iii. Conclure.
- **16.** Soit $A \in \mathcal{M}_p(\mathbb{C})$. On suppose que la suite $(A^n)_{n \in \mathbb{N}}$ converge vers B (pour une norme fixée). Montrer que B vérifie $B^2 = B$.

17. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice antisymétrique $({}^tA = -A)$ telle que la suite $(A^k)_{k \in \mathbb{N}}$ converge vers B dans $\mathcal{M}_n(\mathbb{R})$.

Que dire de B?

18. Hölder et Minkowski

Soient p > 1 et q > 1 tel que 1/p + 1/q = 1.

(a) Montrer que pour $a, b \ge 0$ on a : $ab \le \frac{1}{p}a^p + \frac{1}{q}b^q$ Pour $x = (x_1, \dots, x_n) \in \mathbb{K}^n$ et $y = (y_1, \dots, y_n) \in \mathbb{K}^n$, on pose :

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \text{ et } ||y||_q = \left(\sum_{i=1}^n |y_i|^q\right)^{1/q}$$

(b) Etablir

$$\frac{|x_i y_i|}{\|x\|_p \|y\|_q} \le \frac{1}{p} \frac{|x_i|^p}{\|x\|_p^p} + \frac{1}{q} \frac{|y_i|^q}{\|y\|_q^q}$$

et en déduire

$$\sum_{i=1}^{n} |x_i y_i| \le ||x||_p ||y||_q$$

(c) En écrivant

$$(|x_i| + |y_i|)^p = |x_i| (|x_i| + |y_i|)^{p-1} + |y_i| (|x_i| + |y_i|)^{p-1}$$

justifier:

$$||x + y||_p \le ||x||_p + ||y||_p$$

- (d) Conclure que $\|.\|_n$ définit une norme sur \mathbb{K}^n .
- 19. Soit A une partie bornée non vide d'un espace vectoriel normé (E, N) et \mathcal{L} le sous-espace vectoriel des applications lipschitziennes de A dans E.

On "rappelle" que f est lipschitienne ssi

$$(\exists K \in \mathbb{R}_+^*), (\forall (x,y) \in E^2), N(f(x) - f(y)) \leqslant K N(x - y)$$

- (a) Montrer que les éléments \mathcal{L} sont des fonctions bornées.
- (b) Pour $f \in \mathcal{L}$, soit

$$K_f = \{k \in \mathbb{R}^+ / \forall (x, y) \in A^2, N(f(x) - f(y)) \le kN(x - y)\}$$

Justifier l'existence de $c(f) = \inf K_f$ puis montrer $c(f) \in K_f$.

(c) Soient $a \in A$ et $N_a : \mathcal{L} \to \mathbb{R}^+$ définie par

$$N_a(f) = c(f) + N(f(a))$$

Montrer que N_a est une norme sur \mathcal{L} .

(d) Soient $a, b \in A$. Montrer que les normes N_a et N_b sont équivalentes.