Event Selection using FSRoot

Malte Albrecht Indiana University

GlueX Analysis Workshop 2022

02 / 24 / 2022

What is FSRoot and Why use it?

- Alternative approach to DSelector for event selection
- Based on analysis of "flat" root trees
 - Format is lighter than analysis trees,
 - Facilitates interaction with data in shorter time
- Each combo that survives is a new entry to the tree
- Get FSRoot here: <u>https://github.com/remitche66/</u> <u>FSRoot.git</u>
- Documentation available in repository

Notes on the FSRoot Package

Ryan Mitchell

May 11, 2022 (v4.0)

Abstract

FSRoot is a set of utilities, built around the CERN ROOT framework, that can be used to analyze a variety of final states (FS) produced in particle physics experiments. This document provides a short introduction to FSRoot.

Contents

1	Installation and Initial Setup	2
2	Using this Document: the Examples/Tutorial directory	3
3	Basic Conventions: the TTree format	3
4	Basic Operations: the FSBasic directory 4.1 Basic Histogram Utilities: the FSHistogram class	
5	Final State Operations: the FSMode directory 5.1 Mode Numbering and Conventions	10 12 13
6	Fitting Utilities: the FSFit directory	14
7	Organizing Data and Data Sets: the FSData directory	14

Example: $\gamma p \rightarrow \eta \pi^0 p$

- Focus on $\gamma p \to \eta \pi^0 p$ for this tutorial
- Using analysis trees produced by ReactionFilter:
 - pi0eta__B4_M7_M17_Tree
 - 4 beam bunches
 - Pi0 and eta masses not constrained in kinematic fit
 - Mass windows for two-photon combinations applied
 - Can contain multiple combos per event (different beam photons, swapping of final state photons between eta / pi0 with both in mass windows)

Step 1: FlattenForFSRoot

- Helper program to create flat trees: <u>FlattenForFSRoot</u> in hd_utilities repository
- Reduces size of trees, possibility to apply some pre-selection cuts:

```
Usage:
  flatten -in
                 <input file name>
                                                       (required)
                                                       (default: none)
          -out [output file name or none]
                 (if none, just print info and quit)
                 [is this mc? -1, 0, or 1]
                                                       (default: -1)
          -mc
                  (-1: determine automatically; 0: no; 1: yes)
          -mctag [MCExtras_MCDecayCode2_MCDecayCode1] (default: none)
                  (pick out a single final state from MC)
          -chi2 [optional Chi2/DOF cut value]
                                                       (default: 1000)
          -shQuality [optional shower quality cut value] (default: -1 (no cut))
          -massWindows [pi0, eta, (A)Lambda, Ks windows (GeV)] (default: -1 (no cut))
                       (uses the most constrained four-momenta)
          -numUnusedTracks
                           [optional cut (<= cut)] (default: -1 (no cut))
          -numUnusedNeutrals [optional cut (<= cut)] (default: -1 (no cut))
          -numNeutralHypos [optional cut (<= cut)] (default: -1 (no cut))
          -usePolarization [get polarization angle from RCDB? 0 or 1] (default: 0)
                     [include PID info in the output tree? 0 or 1] (default: 0)
          -mcChecks [check for baryon number violation, etc.,
                      when parsing truth information? 0 or 1] (default: 1)
          -safe [check array sizes? 0 or 1]
                                                      (default: 1)
          -print [print to screen:
                  -1 (less); 0 (regular); 1 (more)] (default: 0)
```

Example for eta pi0 run (note: wildcards allowed):

```
$HD_UTILITIES_HOME/FlattenForFSRoot/flatten -in <path_to_trees>/tree_pi0eta__B4_M17_M7_031057.root
-out tree_pi0eta__B4_M17_M7_FLAT_031057.root
-chi2 15 -massWindows 0.3 -numNeutralHypos 6 -numUnusedTracks 1 -usePolarization 1
```

• Size of analysis trees: ~1010Gb Size of flattened trees with given cuts: ~20Gb

Step 2: Basic Cuts and Skimming Trees

- Detailed description how to use cuts in documentation, focus on example for etapi0 in a2 mass region here
- Cuts are chosen to be same as for DSelector analysis:

```
// DEFINITION OF CUTS:
  // STATIC CUTS
  FSCut::defineCut("unusedE", "EnUnusedSh<0.1");
                                                                               // UnusedEnergy < 0.1GeV
  FSCut::defineCut("unusedTracks", "NumUnusedTracks<1");
                                                                               // No unsused tracks
  FSCut::defineCut("zProton", "ProdVz>=52&&ProdVz<=78");
                                                                               // Production vertex z-position
  FSCut::defineCut("protMom", "MOMENTUM([p+])>=0.3");
                                                                               // Proton momentum > 0.3GeV/c
  FSCut::defineCut("cet0103", "OR(abs(-1*MASS2(GLUEXTARGET, -[p+])-0.2)<0.1)"); // 0.1 < t < 0.3
  FSCut::defineCut("e8288","(EnPB>8.2&&EnPB<8.8)");
                                                                               // 8.2 < E_beam < 8.8
  FSCut::defineCut("chi2", "Chi2DOF<3.3");
                                                                               // Chi2/ndf < 3.3
  FSCut::defineCut("photFiducialA","(acos(COSINE([eta]a))*180/3.141>2.5 &&
                                     acos(COSINE([eta]a))*180/3.141<10.3) || (acos(COSINE([eta]a))*180/3.141>11.9)");
  // (same fuducial cut for remaining photons)
  FSCut::defineCut("rejectOmega","!((MASS([pi0]a,[eta]a)<0.15 && MASS([pi0]b,[eta]b)<0.15) ||
                                    (MASS([pi0]a,[eta]b)<0.15 && MASS([pi0]b,[eta]a)<0.15) ||
                                    (MASS([pi0]a,[eta]a)<0.12 && MASS([pi0]b,[eta]a)<0.12) ||
                                    (MASS([pi0]a,[eta]b)<0.12 && MASS([pi0]b,[eta]b)<0.12))");
  FSCut::defineCut("a2", "MASS([eta],[pi0])>=1.04 && MASS([eta],[pi0])<=1.56");
```

- Use these cuts to skim the trees and further reduce size
- **Before doing that**: Make basic plots for signal channel, flat MC, then look at data, refine/optimize cuts

Step 3: Making basic Plots

- Look at MC for your signal channel, in this case $\gamma p o \eta \pi^0 p$ first
- One example how to plot an invariant mass:

- Lots of useful macros defined in FSRoot, that let you plot various variables of interest
- Many examples are in plots.C script

Step 3: Basic Plots using MC

Step 3: Basic Plots using MC

- Verify all cuts are appropriate for pure signal MC first
- No model needed, flat MC is a good place to start

Step 3: Analysing bggen Monte Carlo Data

• Two plots for bggen MC here to illustrate bg rejection by omega cut

Step 4: Basic Plots for DATA

Step 4: Basic Plots for DATA

- Check performance of cuts in data, refine as necessary
- Optimize cuts
- Once you're happy with all selection criteria, produce skimmed trees for PWA

Step 4: Basic Plots for Data

- Accidental and sideband subtractions: Check what will be subtracted
- FSRoot handles multi-dimensional subtractions internally (e.g. accidental + pi0 sideband + eta sideband) by calculating corresponding weights from sidebands defined in CUT definitions:

Step 5: Skimming Trees

- Which trees do we want to produce?
 - To make plots / inspect data / refine cuts:
 All cuts applied that are not used for sideband / background subtraction
 - For PWA / AmpTools:
 - DATA: All Cuts applied, select signal region only, all weights=1
 - BKGND: All Cuts applied, select appropriate sideband regions with corresponding weights
 - ACCMC: Flat signal channel MC, reconstructed and subjected to the same cuts as data, signal region only
 - GENMC: Thrown MC with no cuts applied
- Example for one polarization, DATA and BKGND trees:

Output: Writing out Trees to use in PWA

Summary & Outlook