

planetmath.org

Math for the people, by the people.

mixed group

Canonical name MixedGroup

Date of creation 2013-03-22 18:42:32 Last modified on 2013-03-22 18:42:32

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771)
Entry type Definition
Classification msc 20N99
Defines kernel

A mixed group is a partial groupoid G such that G contains a non-empty subset K, called the kernel of G, with the following conditions:

- 1. if $a, b \in G$, then ab is defined iff $a \in K$,
- 2. if $a, b \in K$ and $c \in G$, then (ab)c = a(bc),
- 3. if $a \in K$, then $K \subseteq aK \cap Ka$,
- 4. if $a \in K$ and $b \in G$ such that ab = b, then ac = c for all $c \in G$.

Mixed groups are generalizations of groups, as the following proposition illustrates:

Proposition 1. If K = G, then G is a group.

Proof. G is a groupoid by condition 1, and a semigroup by condition 2.

Now, by condition 3, given $a \in G$, there is $b \in G$ such that ba = a, so that bc = c for all $c \in G$ by condition 4. In other words, b is a left identity of G. Again, by condition 3, for every $a \in G$, there is a $d \in G$ such that b = da. So $ad = a(bd) = a(da)d = (ad)^2$, so, by condition 4, adx = x for all $x \in G$. In particular, set x = a, we get a = (ad)a = a(da) = ab. Hence, b is a two-sided identity, and G is a monoid.

Finally, by condition 3, for every $a \in G$, there are $c, d \in G$, such that b = ac = da. So, c = bc = (da)c = d(ac) = db = d, showing that a has a two-sided inverse. This means that G is a group.

For a non-trivial example of a mixed group, let G be a group and H a subgroup of G. Define a new multiplication \cdot on G as follows: $a \cdot b$ is defined iff $a \in H$, and if $a \cdot b$ is defined, it is defined as ab, the group multiplication of a and b. Then (G, \cdot) is a mixed group. Clearly, associativity of \cdot is automatically satisfied. Next, pick any $a \in H$, then, for any $b \in H$, $a^{-1} \cdot b$ and $b \cdot a^{-1}$ are both elements of H, so that $b \in a \cdot H \cap H \cdot a$, and condition 3 is also satisfied. Finally, if $a \in H$ and $b \in G$ such that $a \cdot b = b$, then a is the multiplicative identity of G, clearly $a \cdot c = c$ for all $c \in G$.

References

[1] R. H. Bruck, A Survey of Binary Systems, Springer-Verlag, 1966

- [2] R. Baer, Zur Einordnung der Theorie der Mischgruppen in die Gruppentheorie, S.-B. Heidelberg. Akad. Wiss., Math.-naturwiss. KI. 1928, 4, 13 pp
- [3] R. Baer, Über die Zerlegungen einer Mischgruppe nach einer Untermischgruppe, S.-B. Heidelberg. Akad. Wiss., Math.-naturwiss. KI. 1928, 5, 13 pp
- [4] A. Loewy, Über abstrakt definierte Transmutationssysteme oder Mischgruppen, J. reine angew. Math. 157, pp 239-254, 1927