

TOC

Past Iterations of Script Package

Current Iteration of Script Package

Performance: Comparisons

Moving Forward

Q&A

Past Iterations of Script Package (Audio-Manip main branch)

Past iterations of script had incorrect formatting of data matrices, clunky handling of visuals, and an overall lack of formatting to take in *.wav files outright.

- Data intake was too rigid.
- Data Matrices were incorrectly formatted and led to bad training for Autoencoder.
- Visuals were unsightly/didn't make sense.
- Data preparation scripts were useful for only the *.wav files being used on my PC.
- Duplicated names of variables across script package caused training/testing issues.

Current Iteration of Script Package (newest-version-Audio-Manip)

The new additions to the updated scripts have gone through the full process of data retrieval, preparation, training, and testing.

Visuals provided use 200 samples of audio files with 160000 points, a sampling rate (Hz) of 16000 Hz, 7 Channel Audio, and a total time length of 10 seconds.

Shown tests take on the 1 second chunks of each sound sample, providing more accurate classification and more distinct learned patterns/hidden features that the Auto Encoder learned.

Current Iteration of Script Package (newest-version-Audio-Manip)

Ol AutoEncoderSVMPairing.mlx:

Holds the Auto encoder and paired SVM that takes on the learned features for classification.

02 <u>competitorsvm.mlx:</u>

Holds the SVM that follows: Data/Feature Preparation->SVM Train/Testing.

03 <u>trainingdataprep.mlx:</u>

Holds the normal data preparation script for AutoEncoderSVMPairing.mlx.

04 <u>abnormaldataprep.mlx:</u>

Holds the abnormal data preparation script for AutoEncoderSVMPairing.mlx.

SVM Accuracy: 85.00% Iteration Number 1.000000 SVM Accuracy: 80.00% Iteration Number 2.000000 17 5 15 SVM Accuracy: 83.33% Iteration Number 3.00000 8 22 SVM Accuracy: 78.75% Iteration Number 4.000000 33 10 30 SVM Accuracy: 86.00% Iteration Number 5.000000 SVM Accuracy: 77.50% Iteration Number 6.000000 54 21 39 SVM Accuracy: 74.29% Iteration Number 7.000000 13 47 SVM Accuracy: 66.25% Iteration Number 8.00000 54 26 28 52 SVM Accuracy: 75.00% Iteration Number 9.000000 75 15 30 60


```
SVM Accuracy: 55.00%
Iteration Number 1.000000
SVM Accuracy: 37.50%
Iteration Number 2.000000
SVM Accuracy: 51.67%
Iteration Number 3.000000
   19
        11
SVM Accuracy: 46.25%
Iteration Number 4.000000
        21
   22 18
SVM Accuracy: 49.00%
Iteration Number 5.000000
        25
   26
        24
SVM Accuracy: 51.67%
Iteration Number 6.00000
        25
   33
        27
SVM Accuracy: 55.00%
Iteration Number 7.000000
   27
        43
SVM Accuracy: 55.00%
Iteration Number 8.000000
SVM Accuracy: 48.89%
Iteration Number 9.000000
   56
   58
         32
```



```
SVM Accuracy (Autoencoder Features): 95.00%
Iteration Number 1.000000
    0 10
SVM Accuracy (Autoencoder Features): 95.00%
Iteration Number 2.000000
    0 20
SVM Accuracy (Autoencoder Features): 93.33%
Iteration Number 3.000000
    0 30
SVM Accuracy (Autoencoder Features): 93.75%
Iteration Number 4.000000
SVM Accuracy (Autoencoder Features): 96.00%
Iteration Number 5.000000
SVM Accuracy (Autoencoder Features): 95.00%
Iteration Number 6.000000
SVM Accuracy (Autoencoder Features): 94.29%
Iteration Number 7,000000
SVM Accuracy (Autoencoder Features): 94.38%
Iteration Number 8.000000
    4 76
SVM Accuracy (Autoencoder Features): 81.11%
Iteration Number 9.000000
    63 27
        83
```


Moving Forward

My personal conclusion from various testing cases and analyzing hyperparameters, learned parameters, encoded/decoded spaces, the latent space of the Auto Encoder, the weights and performance of the SVM's, and playing around with different data formats, is as follows:

- Data time frame doesn't matter, what matters is that the provided time frame holds the right features in the right places (i.e., healthy data looks relatively uniform, anomalous data has distinct peaks in time frame)
- The method of passing raw data through the Auto Encoder and providing the learned features
 to an SVM has consistently outperformed the initial process of just Data Processing -> SVM
 Classification. These were the hypothesized results and the hypothesis has been confirmed
 true.
- If you were to prepare your own array of features from your sound samples and conduct the same tests with: Data Prep -> Auto Encoder Analysis -> SVM Data Prep -> SVM Performance between both methods is similar, with the Auto Encoder route still outperforming the initial SVM method by ~=1%.

Moving Forward

Questions and comments from me:

- Content for slideshows that can be provided? Amidst final lectures, we are to put together a slideshow detailing our work. If there's anything that can be used for that from your guys' end?
- During this time I could start the framework on a Multi-head Attention.
- Professor is satisfied with progress so far so we are in a good time frame.
- Any news on when to start working with experimental data?

Grading Rubric: Spring 2025

MECH 4366 CRN 27926 Senior Design Project Spring 2025

ABET defined Design Experience

The capstone experience, ideally demonstrated via an openended project-based experience, must include a formal design or drafted product with analysis, and presentation material.

	Assessment Rubric		
	0	1	5
ABET Required Topics	•		
a. use of 3D parametric computer-aided drafting and design			Drawings are complete,
software for a variety of mechanical drawing techniques (such as			appropriate views to clearly
orthographic, section, auxiliary, assembly models, detailed			explain component geometries,
working drawings and rendered images).	None	Manual sketches, incomplete	correct assembly
b. apply principals of 1. geometric dimensioning and tolerancing; 2. fundamentals of engineering materials, applied mechanics; 3. manufacturing methods.	None	Inappropriate use of GD&T (or no use where appropriate), material selection not justified, manufacturing method inappropriate or design not compatible with manufacturing method.	Appropriate GD&T on drawings; Selection of materials appropriate to use, environment, and disposal; manufacturing methods proposed are appropriate to production volume and cost targets (documented)
o. manuactuming methods.	None	Inappropriate use of calculus	Appropriate use of calculus
		and/or statistics; no use of calculus and/or statistics where	and/or statistics with clear documentation explaining
c. applications of calculus and statistics.	None	needed	purpose and application.
d. use of advanced 3D parametric modeling tools for design and analysis.	None	Inappropriate use of 3D parametric modeling or no use where 3D parametric modeling is appropriate	Appropriate use of 3D parametric modeling. Documentation indicating design evolution/optimization through use of 3D parametric modeling
			The documentation includes
			evidence of multiple concepts,
			trade-offs, calculations, and
e. application of physics, materials, manufacturability,		Very limited and incomplete	selection and application of
environmental and economic concepts to design of machine or		documentation of the application	"best" options in the design
mechanical elements.	None	of the listed concepts	execution
		Inappropriate or incorrect	Appropriate standard applied in
f. use of industry codes, specifications and standards (ASME,		standards considered and	an appropriate fashion with
ANSI or others);	None	applied	suitable documentation

Grading Rubric: Spring 2025

MECH 4366 CRN 27926 Senior Design Project Spring 2025

ABET defined Design Experience

The capstone experience, ideally demonstrated via an openended project-based experience, must include a formal design or drafted product with analysis, and presentation material.

	Assessment Rubric		
	0	1	5
			Documentation is clear, concise,
		Documentation is disorganized,	logical, with significant graphical
g. technical communications typically used in preparation of		incomplete, verbose, lacking	explanatory elements, and
engineering proposals, reports, and specifications.	None	ownership, and/or illogical	complete.

Section Specific Required Elements

Section Specific Required Elements			
Competitive analysis of a range of products available in the			Comparison is clear, reveals the
market. The documented analysis should reveal essential		Comparison is unclear, key	key function requirements, all
functional requirements and trade-offs required for the		functional requirements not	phases of the product lifecycles
manufacturing, distribution, sales, use, and disposal of the		revealed, not all phases of	have been considered, design
products.	None	product lifecycle evaluated	requirements are established
			A minimum of 3 distinct design
			concepts have been evaluated
			that could fill a majority of the key
Development and documentation of a minimum of 3 distinct		Only a single design considered,	functional requirements as well
concepts to fulfill the product design requirements established by		lacking documentation to justify	as the critical business
the project team.	None	selection	requirements
			Pugh Concept Selection matrix
		Pugh Concept Selection matrix	has appropriate functional and
		has inappropriate criteria or is	commercial criteria. Selection of
Selection of the concept to develop using the Pugh Concept		not providing adequate	concept to develop is
Selection Matrix	None	justification for design selection	substantiated by the matrix.
			The documents are complete,
		Documents are incomplete, are	consistent in format and intent as
		done inconsistent with examples	shown in "The Power of
		in "The Power of Deduction" text,	Deduction" text, logical, and
Function Model, Interface Matrix, and Design FMEA performed		not logical, and/or revisions are	revisions indicate how design
with revision history	None	not documented	has been evolving/optimized.

Grading Rubric: Spring 2025

MECH 4366 CRN 27926 Senior Design Project Spring 2025

ABET defined Design Experience

The capstone experience, ideally demonstrated via an openended project-based experience, must include a formal design or drafted product with analysis, and presentation material.

	Assessment Rubric		
	0	1	5
			Project schedule incorporates
			the planning for developing all of
			the elements for the Design
			FMEA and then subsequent
			steps based on executing
		Project schedule not organized	required activities and mitigating
Project schedule based on Design FMEA risk assessment with		based on risks and/or not	identified high risks. Schedule
weekly update	None	regularly updated	updated at least weekly.
			The number of required
			prototypes, tests, and iterations
			are documented. Plan is updated
Prototype plan, test and validation based on Design FMEA risk			at each iteration of the
assessment	None	Plan is incomplete or unclear	prototypes.
Final report documenting project schedule, competitive analysis,			
design requirements, concept selection, function model,			Documentation is clear, concise,
interface matrix, Design FMEA, engineering analyses,		Documentation is disorganized,	logical, with significant graphical
engineering drawings, prototype and test and validation plan		incomplete, verbose, lacking	explanatory elements, and
and results, final recommendation	None	ownership, and/or illogical	complete.