Scatter plot in Matplotlib****

add Codeadd Markdown

import pandas as pd add Codeadd Markdown

Defining the data****

add Codeadd Markdown

rollno = [1,2,3,4,5,6,7,8,9,10] marks = [10,20,30,40,50,60,70,80,90,100] add Codeadd Markdown

Implementing the Scatter plot****

add Codeadd Markdown

[4]:

[2]:

[3]:

Changing color of the Plotted points****

add Codeadd Markdown

[12]:

Changing Marker of the PLotter Points****

add Codeadd Markdown

[22]:

Defining plot figure() function****

add Codeadd Markdown

plt.figure(figsize = (6,3))
plt.scatter(rollno, marks, color = 'green', marker = 'v')
plt.show()

[33]:

More functions unsing plot function****

add Codeadd Markdown

plt.figure(figsize = (8,4))
plt.plot(rollno, marks, 'ro', markersize = 25)
plt.show()

[51]:

Multiple plots on Same Figure****

add Codeadd Markdown

[53]:

temp_pune = [2,4,6,12,34,8,29,36,18,9,40,56] humid_pune = [59,56,53,51,50,45,48,42,39,36,34,24]

temp_bangalore = [20,23,24,26,28,30,38,33,35,22,21,27] humid_bangalore = [45,43,32,42,41,40,36,37,31,44,40,34]

plt.figure(figsize = (10,4))
plt.plot(temp_pune, humid_pune, 'ro', markersize = '20')
plt.show()

[69]:

add Codeadd Markdown

plt.figure(figsize = (10,5))
plt.xticks(np.arange(0,70,5))
plt.yticks(np.arange(10,70,5))
plt.plot(temp_pune, humid_pune, 'go', markersize = '10') plt.xlabel('temp') plt.ylabel('humid') plt.show()


```
plt.figure(figsize = (10,5))
plt.xticks(np.arange(0,70,5))
plt.yticks(np.arange(10,70,5))
plt.plot(temp_pune, humid_pune, 'go', markersize = '20')
plt.plot(temp_bangalore, humid_bangalore, 'ro', markersize = '20')
plt.xlabel('temp')
plt.ylabel('humid')
plt.show()
```


△

df=pd.read_csv('/kaggle/input/iris-flowers/iris.csv') df.head()

[73]:

[73]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa

Introducing Alpha(Transparency) 0-Transparent, 1-opaque****

add Codeadd Markdown

```
plt.figure(figsize = (10,6))
plt.xticks(np.arange(1,10,0.5))
plt.yticks(np.arange(1,10,0.5))

plt.plot(df['sepal_length'], df['petal_length'], 'bo', alpha = 0.6, markersize = 15)

plt.xlabel('sepal length')
plt.ylabel('petal length')
plt.show()
```

[84]:

Line plot in Matplotlib****

add Codeadd Markdown

import matpiotilis.pypiot as p import numpy as np import pandas as pd add Codeadd Markdown [85]:

[86]:

[<matplotlib.lines.Line2D at 0x7c7d73a4a6e0>]

[91]:

[<matplotlib.lines.Line2D at 0x7c7d73b8d870>]

[92]:

[92]:

[<matplotlib.lines.Line2D at 0x7c7d75300670>]

[94]:

[- .]

[94]:

> Multiple plots on same figure

add Codeadd Markdown

[96]:

plt.figure(figsize = (6,6)) plt.xticks(np.arange(0,10,1)) plt.yticks(np.arange(10,100,5))

plt.plot(rollno,marks, 'g-.')
plt.plot(rollno,marks, 'ro')

plt.xlabel('Roll no')
plt.ylabel('Marks')
plt.show()

[98]:

Bar plot in Matplotlib****

add Codeadd Markdown

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
add Codeadd Markdown

[99]:

[152]:

plt.style.use('dark_background') add Codeadd Markdown

subjects = ['Python', 'ML', 'DL', 'CV', 'AI', 'NLP', 'SQL', 'R'] rank = [90, 98, 45, 67, 91, 75, 50, 30] add Codeadd Markdown

plt.bar(subjects, rank)
plt.show()

add Codeadd Markdown

[100]:

[124]:

[125]:

plt.bar(subjects, rank, color = 'yellow')

plt.show()

add Codeadd Markdown

[127]:

colors = ['green', 'red', 'yellow', 'purple', 'pink', 'blue', 'orange', 'deeppink']
plt.bar(subjects, rank, color = colors)
plt.show()

add Codeadd Markdown

plt.bar(subjects, rank, color = colors, width = 0.5) plt.show()

[136]:

add Codeadd Markdown

plt.bar(subjects, rank, color = colors, width = 0.5, edgecolor = 'white') plt.show()

[128]:

add Codeadd Markdown

plt.bar(subjects, rank, color = colors, width = 0.5, edgecolor = 'white', linewidth = 4) plt.show()

[129]:

add Codeadd Markdown

plt.bar(subjects, rank, color = colors, width = 0.5, edgecolor = 'white', linewidth = 2, linestyle = ':') plt.show()

[134]:

add Codeadd Markdown

plt.barh(subjects, rank, color = colors)
plt.show()

[135]:

add Codeadd Markdown

subjects = ['Python', 'ML', 'DL', 'CV', 'AI', 'NLP', 'SQL', 'R']

rank = [90, 98, 45, 67, 91, 75, 50, 30] value = [20,25,35,40,55,60,65,70]

add Codeadd Markdown

plt.figure(figsize = (8,8))

plt.bar(subjects, rank, color = 'green')

plt.bar(subjects, value, color = 'deeppink')

plt.xlabel('Subjects') plt.ylabel('Rank/Value')

plt.show()

[137]:

[154]:

[142]:

subjects_len = np.arange(len(subjects)) width = 0.4

add Codeadd Markdown

[156]:

```
plt.figure(figsize = (8,8))
plt.bar(subjects_len, rank, color = 'purple', width = width)
plt.bar(subjects_len+width, rank, color = 'yellow', width = width)
plt.xlabel('Subjects')
plt.ylabel('Rank/Value')
plt.show()
```


add Codeadd Markdown

[157]:

add Codeadd Markdown

**#plotting a bar plot from Supermarket Dataset

add Codeadd Markdown

df = pd.read_csv('/kaggle/input/supermarket-dataset/SUPERMARKET.csv')
df.head()

[158]:

	Inv oic e ID	Br an ch	City	Cus tom er type	Ge nd er	Pro duct line	U ni t pr ic e	Qu anti ty	Ta x 5%	Tot al	Dat e	Ti m e	Pay me nt	co gs	gros s mar gin perc enta ge	gro ss inc om e	Ra tin g
0	75 0- 67- 84 28	A	Yan gon	Me mbe r	Fe mal e	Heal th and beau ty	74 .6 9	7	26. 141 5	548. 971 5	1/5/ 201 9	13 :0 8	Ew allet	52 2.8 3	4.76 1905	26. 141 5	9.1
1	22 6- 31- 30 81	С	Nay pyita w	Nor mal	Fe mal e	Elect ronic acce ssori es	15 .2 8	5	3.8 200	80.2 200	3/8/ 201 9	10 :2 9	Cas h	76. 40	4.76 1905	3.8 200	9.6
2	63 1- 41- 31 08	A	Yan gon	Nor mal	Ma le	Hom e and lifest yle	46 .3 3	7	16. 215 5	340. 525 5	3/3/ 201 9	13 :2 3	Cre dit card	32 4.3 1	4.76 1905	16. 215 5	7.4
3	12 3- 19- 11 76	A	Yan gon	Me mbe r	Ma le	Heal th and beau ty	58 .2 2	8	23. 288 0	489. 048 0	1/27 /201 9	20 :3 3	Ew allet	46 5.7 6	4.76 1905	23. 288 0	8.4
4	37 3- 73- 79 10	A	Yan gon	Nor mal	Ma le	Spor ts and trave	86 .3 1	7	30. 208 5	634. 378 5	2/8/ 201 9	10 :3 7	Ew allet	60 4.1 7	4.76 1905	30. 208 5	5.3

add Codeadd Markdown

[164]:

Payment_df = pd.DataFrame(df['Payment'].value_counts())
Payment_df

Payment

Ewallet 345

Cash 344

Credit card 311

add Codeadd Markdown

▲▼ **★**

colors = ['deeppink', 'yellow', 'blue']
plt.bar(Payment_df.index, Payment_df['Payment'], color = colors)
plt.show()

[164]:

[165]:

add Codeadd Markdown

City_df = pd.DataFrame(df['City'].value_counts())
City_df
colors = ['deeppink', 'yellow', 'blue']
plt.bar(City_df.index, City_df['City'], color = colors)
plt.show()

[166]:

add Codeadd Markdown

Quantity_df = pd.DataFrame(df['Quantity'].value_counts())
Quantity_df
colors = ['deeppink', 'yellow', 'blue']
plt.bar(Quantity_df.index, Quantity_df['Quantity'], color = colors)
plt.show()

[176]:

add Codeadd Markdown

Hist plot in Matplotlib****

add Codeadd Markdown

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
add Codeadd Markdown

marks_50_student = np.random.randint(0,100,(50))
marks_50_student

array([25, 48, 6, 88, 54, 61, 36, 14, 17, 26, 70, 65, 77, 13, 21, 59, 17, 5, 19, 81, 73, 76, 44, 76, 81, 55, 61, 70, 77, 33, 33, 46, 94, 32, 31, 90, 61, 65, 2, 47, 14, 22, 6, 94, 37, 67, 38, 71, 0, 75])

[177]:

[178]:

[178]:

plt.hist(marks_50_student)
plt.show()

add Codeadd Markdown

[181]:

bins = np.arange(0,100,5) add Codeadd Markdown

plt.figure(figsize = (8,6))
plt.hist(marks_50_student, bins = bins)
plt.xticks(np.arange(0,100,10))
plt.show()

[185]:

[186]:

bins = np.arange(0,100,5)
plt.figure(figsize = (8,6))
plt.hist(marks_50_student, bins = bins, color= 'yellow')
plt.xticks(np.arange(0,100,10))
plt.show()

[190]:

bins = np.arange(0,100,5) plt.figure(figsize = (8,6))

plt.hist(marks_50_student, bins = bins, color= 'blue', orientation = 'horizontal') plt.yticks(np.arange(0,100,10))

plt.show()

[191]:

bins = np.arange(0,100,5)
plt.figure(figsize = (8,6))
plt.hist(marks_50_student, bins = bins, color= 'deeppink', rwidth = 0.6)
plt.xticks(np.arange(0,100,10))

plt.show()

add Codeadd Markdown

[196]:

bins = np.arange(0,100,5)
plt.figure(figsize = (8,6))
plt.hist(marks_50_student, bins = bins, color= 'red', histtype = 'step')
plt.xticks(np.arange(0,100,10))
plt.show()

add Codeadd Markdown

[199]:

```
marks_50_student1 = np.random.randint(0,100,(50))
marks_50_student2 = np.random.randint(0,100,(50))
bins = np.arange(0,100,10)
plt.figure(figsize = (8,6))
plt.hist([marks_50_student1, marks_50_student2], bins = bins, color= ['green', 'white'])
plt.xticks(np.arange(0,100,10))

plt.xlabel('marks')
plt.ylabel('frequency')
plt.title('Marks of Students of 2 classes')
plt.show()
```


add Codeadd Markdown

Pie Chart/ Pie PLot in Matplotlib****

add Codeadd Markdown

[200]:

classes = ['physics', 'chemistry', 'maths', 'english', 'science'] marks = [80, 79, 93, 72, 99] add Codeadd Markdown

[202]:

plt.pie(marks, labels = classes)

[206]:

colors = ['#ff0000', '#00ff00', '#3399ff', '#66ffff', '#ff1aff'] plt.pie(marks, labels = classes, colors = colors) plt.show()

[208]:

explode_values = [0.1,0.2,0,0,0]
plt.pie(marks, labels = classes, colors = colors, autopct = '%0.1f%%', explode = explode_values)
plt.show()

[209]:

plt.pie(marks, labels = classes, colors = colors, autopct = '%0.1f%%', explode = explode_values, shadow = **True**)
plt.show()

[210]:

plt.pie(marks, labels = classes, colors = colors, autopct = '%0.1f%%', explode = explode_values, shadow = **True**, radius = 1.6) plt.show()

add Codeadd Markdown

textprops = {'fontsize':14, 'color':'k'} add Codeadd Markdown

plt.pie(marks, labels = classes, colors = colors, autopct = '%0.1f%%', explode = explode_values, shadow = **True**,radius = 1.6, textprops = textprops)
plt.show()

[214]:

[216]:

add Codeadd Markdown

[219]:

[221]:

plt.figure(figsize = (6,6))

plt.pie(marks, labels = classes, colors = colors, autopct = '%0.1f%%', explode = explode_values, shadow = **True**, radius = 1, textprops = textprops)
plt.title('Subjects and Average Scores')

plt.legend()

plt.show()

add Codeadd Markdown

△

df = pd.read_csv('/kaggle/input/supermarket-dataset/SUPERMARKET.csv')
df.head()

[222]:

[222]:

	Inv oic e ID	Br an ch	City	Cus tom er type	Ge nd er	Pro duct line	U ni t pr ic e	Qu anti ty	Ta x 5%	Tot al	Dat e	Ti m e	Pay me nt	co gs	gros s mar gin perc enta ge	gro ss inc om e	Ra tin g
0	75 0- 67-	A	Yan gon	Me mbe r	Fe mal e	Heal th and	74 .6 9	7	26. 141 5	548. 971 5	1/5/ 201 9	13 :0 8	Ew allet	52 2.8 3	4.76 1905	26. 141 5	9.1

	Inv oic e ID	Br an ch	City	Cus tom er type	Ge nd er	Pro duct line	U ni t pr ic e	Qu anti ty	Ta x 5%	Tot al	Dat e	Ti m e	Pay me nt	co gs	gros s mar gin perc enta ge	gro ss inc om e	Ra tin g
	84 28					beau ty											
1	22 6- 31- 30 81	С	Nay pyita w	Nor mal	Fe mal e	Elect ronic acce ssori es	15 .2 8	5	3.8 200	80.2 200	3/8/ 201 9	10 :2 9	Cas h	76. 40	4.76 1905	3.8 200	9.6
2	63 1- 41- 31 08	A	Yan gon	Nor mal	Ma le	Hom e and lifest yle	46 .3 3	7	16. 215 5	340. 525 5	3/3/ 201 9	13 :2 3	Cre dit card	32 4.3 1	4.76 1905	16. 215 5	7.4
3	12 3- 19- 11 76	A	Yan gon	Me mbe r	Ma le	Heal th and beau ty	58 .2 2	8	23. 288 0	489. 048 0	1/27 /201 9	20 :3 3	Ew allet	46 5.7 6	4.76 1905	23. 288 0	8.4
4	37 3- 73- 79 10	A	Yan gon	Nor mal	Ma le	Spor ts and trave	86 .3 1	7	30. 208 5	634. 378 5	2/8/ 201 9	10 :3 7	Ew allet	60 4.1 7	4.76 1905	30. 208 5	5.3

Payment_df = pd.DataFrame(df['Payment'].value_counts())
Payment_df

[223]:

[223]:

Payment

Ewallet 345

Payment

Cash 344

Credit card 311

add Codeadd Markdown

[227]:

plt.pie(Payment_df['Payment'], labels = Payment_df.index, colors = ['red', 'white', 'green'], autopct = '%0.2f%%')

Ewallet

34.50%

Cash

Credit card

add Codeadd Markdown

Subplot in Matplotlib****

add Codeadd Markdown Type Markdown and LaTeX: α^2 add Codeadd Markdown

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
add Codeadd Markdown

study_hours = [2,3,4,4,5,6,7,8,9,9,10,11,11,12,13] marks = [6,10,15,66,72,23,98,80,70,28,19,33,57,65,88]

plt.scatter(study_hours, marks,)

add Codeadd Markdown

[236]:

[237]:

add Codeadd Markdown

(array([3., 2., 2., 0., 0., 1., 3., 1., 2., 1.]), array([6., 15.2, 24.4, 33.6, 42.8, 52., 61.2, 70.4, 79.6, 88.8, 98.]), <BarContainer object of 10 artists>) [238]:

[238]:

add Codeadd Markdown

plt.figure(figsize =(6,6))
plt.plot(study_hours, marks, 'b--')
plt.plot(study_hours, marks, 'yo')

[<matplotlib.lines.Line2D at 0x7c7d6c1e99f0>]

[240]:

[240]:

add Codeadd Markdown

plt.subplot(2,2,4) plt.plot(study_hours, marks, 'b--') plt.plot(study_hours, marks, 'yo')

plt.subplot(2,2,3)
plt.hist(marks)

[<matplotlib.lines.Line2D at 0x7c7d6846a740>]

[242]:

[242]:

add Codeadd Markdown

Showing Images in Matplotlib - Imshow function****

add Codeadd Markdown

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
add Codeadd Markdown

[266]:

[267]:

from numpy import *
from matplotlib import *
add Codeadd Markdown

img = mpimg.imread(r'/kaggle/input/bangalow/image.jpg')
add Codeadd Markdown

from matplotlib import pyplot as plt
plt.imshow(img)

add Codeadd Markdown

[270]:

[271]:

[274]:

img = mpimg.imread(r'/kaggle/input/bangalow2/2017SFdupdXMinej.jpg')
from matplotlib import pyplot as plt
plt.imshow(img)

add Codeadd Markdown

img = mpimg.imread(r'/kaggle/input/mercedessedan/MercedesSedan-Galley-1.webp')
from matplotlib import pyplot as plt
plt.imshow(img)
plt.show()

[275]:

add Codeadd Markdown

Reading Image using OpenCV****

import cv2 add Codeadd Markdown

imgcv2 = cv2.imread('/kaggle/input/homeimage/R (2).jpg')
add Codeadd Markdown

plt.imshow(imgcv2) plt.show() [276]:

[280]:

[281]:

add Codeadd Markdown

imgcv2 = cv2.cvtColor(imgcv2, cv2.COLOR_BGR2RGB) add Codeadd Markdown

plt.imshow(imgcv2)
plt.show()

[285]:

[287]:

add Codeadd Markdown

#Changing Aspect****

add Codeadd Markdown

plt.imshow(img, aspect = 1) plt.show()

[291]:

add Codeadd Markdown

img1 = mpimg.imread('/kaggle/input/bangalow/image.jpg')

img2 = mpimg.imread('/kaggle/input/bangalow2/2017SFdupdXMinej.jpg') img3 = mpimg.imread('/kaggle/input/homeimage/R (2).jpg')

img4 = mpimg.imread('/kaggle/input/mercedessedan/MercedesSedan-Galley-1.webp')

add Codeadd Markdown

plt.figure()

plt.subplot(2,2,1) plt.imshow(img1)

plt.figure() plt.subplot(2,2,2) plt.imshow(img2)

plt.figure() plt.subplot(2,2,3) plt.imshow(img3)

plt.figure() plt.subplot(2,2,4) plt.imshow(img4) [293]:

[298]:

plt.show()

add Codeadd Markdown

#ColorBar****

add Codeadd Markdown

plt.figure(figsize = (14,6)) plt.imshow(img, aspect = 1.5) plt.colorbar() plt.show()

[315]:

[307]:

add Codeadd Markdown

img = mpimg.imread(r'/kaggle/input/bangalow2/2017SFdupdXMinej.jpg')

from matplotlib import pyplot as plt
plt.imshow(img, cmap = 'gray')
plt.colorbar()
plt.show()

add Codeadd Markdown

add Codeadd Markdown