# 信息论 信号传输与处理的理论基础

第七章习题选解



7.1、7.5、7.7、7.11、7.15(a)(b)(c)、7.18(a)(b)(C)、7.20、7.25、7.28、7.34(a)。

- \* 习题7.1 对接收分组实施后处理,能否提升互信息量?
- \* 答案: 否。提示: 应用数据处理不等式
- \* <u>习题7.5</u> 两个信道的并行组合的总容量 码字X1 信道1: p(y<sub>1</sub>|x<sub>1</sub>) Y1
  \* 对并行组合的两个信道,联合的比特(x1,x2) 信道2: p(y<sub>2</sub>|x<sub>2</sub>)
- \* 经信道传输后生成联合的接受比特(y1,y2),因此
- \* 联合的码字(X1,X2)经信道传输后生成联合的接受
- \* 分组(Y1,Y2)。
- \* 并行信道的转移概率 P((y1,y2)|(x1,x2)) = P(y1|x1)P(y2|x2), 因此(请完成
- \* 计算) 互信息量I((x1,x2); (y1,y2)) = I(x1; y1) + I(x1; y2), 进而(请证明)有结论
- \* C = C1 + C2
- \* 推广:任意N个信道的并行组合的总容量 C = C1 + C2+ ... + C<sub>N</sub>。



#### 习题7.7 串联BSC信道的Shannon容量

$$X_0 \to \boxed{\mathrm{BSC}} \to_1 \to \cdots \to X_{n-1} \to \boxed{\mathrm{BSC}} \to_n$$

- \* 一组n个差错概率为p的BSC信道依次串联组合,得到一个等效的BSC信道,
- \* 计算该信道的容量C(n).
- \* <u>求解概要</u>  $C(n) = 1 H(p_n), p_n =$  串联组合信道的等效差错概率,因此问题归结为计算pn。

1 - p

- \* 对组合信道做递归分解,有方程(为什么?)
- \* p<sub>n</sub> = P[输出0|输入1] = (1-p)p<sub>n-1</sub> + p(1-p<sub>n-1</sub>)
- \* 完成递归计算(请完成)得

$$p_n = \frac{1}{2}(1 - (1 - 2p)^n).$$



 $1 - p_{n-1}$ 

#### 习题7.11 时变离散无记忆信道

- \* x<sub>i</sub>表示jT时刻的传输比特, y<sub>i</sub>表示相应的接收
- \* 比特,转移概率P(y<sub>i</sub>|x<sub>i</sub>)随j变化(时变信道)
- \* 且y,,...,yn两两概率独立,于是:

$$P(y_1,...,y_n|x_1,...,x_n) = P(y_1|x_1)...p(y_n|x_n)$$

\* 第一步: 计算互信息量l(y<sub>1</sub>,...,y<sub>n</sub>; x<sub>1</sub>,...,x<sub>n</sub>)

$$I(X^{n}; Y^{n}) = H(Y^{n}) - H(Y^{n}|X^{n})$$

$$= H(Y^{n}) - \sum_{i=1}^{n} H(Y_{i}|Y_{1}, \dots, Y_{i-1}, X^{n})$$

【子问题1: 为什么? 】  $= H(Y^n) - \sum_{i=1}^{n} H(Y_i|X_i),$ 

$$I(X^n; Y^n) \ = \ H(Y^n) - \sum_{i=1}^n H(Y_i|X_i)$$

【子问题2: 为什么?】  $\leq \sum_{i=1}^{n} H(Y_i) - \sum_{i=1}^{n} H(Y_i|X_i)$  $\leq \sum_{i=1}^{n} (1 - h(p_i)),$ 



#### 第二步:

$$\mathsf{Max}_{\mathsf{p}(\mathsf{xn})} \mathsf{I}(\mathsf{X}^\mathsf{n}; \mathsf{Y}^\mathsf{n}) = \Sigma_{\mathsf{j}} (1 - h(p_{\mathsf{j}}))$$

【子问题3:以上最大值在什么样的分布p(x<sup>n</sup>)上达到?】

【子问题4: 定义平均容量

 $C=\frac{1}{n}$  Max  $_{p(xn)}$  I(X<sup>n</sup>;Y<sup>n</sup>),如果所有的 $p_j$ 相同,这时C的结果是什么?】



- 》 习 题 7.15 (所有的对数取为log。)
  - 设BSC信道的转移概率和联合概率如表所示:
- \* (a)计算H(X), H(Y), H(X,Y), I(X;Y)
  - 【答案】H(X)=1, H(Y)=1, H(X,Y)=1+H(p)=1.46, p=0.1, I(X;Y)=0.53.

| 0.9                   |  |  |
|-----------------------|--|--|
|                       |  |  |
| 11 14 lar to D( 1 0.1 |  |  |
| 转移概率P(y x) 0.1 0.1    |  |  |
|                       |  |  |
| 1                     |  |  |
| 0.9                   |  |  |

 $p(x^n, y^n) = p(x^n)p(y^n|x^n)$ 

 $= p(x^n)p(z^n|x^n)$ 

 $=\left(\frac{1}{2}\right)^{n}(1-p)^{n-k}p^{k}$ 

 $= p(x^n)p(z^n)$ 

| $X \backslash Y$ | 0    | 1    |
|------------------|------|------|
| 0                | 0.45 | 0.05 |
| 1                | 0.05 | 0.45 |

- \* (b) X<sub>1</sub>,...,X<sub>n</sub>是两两独立的、同分布二进制随机变量的序列,
- 联合概率P(x,y)
- \*  $P[X_j = 0] = P[X_j = 1] = 0.5$ ,  $\varepsilon = 0.2$ , 这时哪些分组 $(x_1, ..., x_n)$ 属于X的典型集合 $A_X(n, \varepsilon)$ ? 哪些分组 $(y_1, ..., y_n)$ 属于Y的典型集合 $A_Y(n, \varepsilon)$ ?
- \* 【答案】以X-序列为例,根据定义检验,全部分组属于A<sub>X</sub>(n,ε)。
- \* (c) 设以上的Y<sub>i</sub>= X<sub>i</sub>+ e<sub>i</sub>, P[e<sub>i</sub>=1]=p=0.1, 于是有:
  - 证明: (Xn,Yn)属于联合典型集合, 等价于
- \* Xn属于X的典型集合且Zn=Yn+Xn属于Z的典型集。
- \* 【提示:关键是证明联合典型集合关于logP(Xn,Yn)的不等式
- \* 等价于  $|1 \frac{k}{n} \log p \frac{n-k}{n} \log (1-p) H(X,Y)| < \epsilon$ , 进而等价于  $|-\frac{k}{n} \log p \frac{n-k}{n} \log (1-p) H(p)| < \epsilon$
- \* 后者正是Zn属于典型集合的条件】



习题7.18 计算以下信道容量 (所有的对数取为log,)

\* (a) 三进制数字信道X, YE $\{0,1,2\}$ ,转移概率  $p(y|x) = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$ 

$$p(y|x) = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$

【答案: C= 0. 你能推广该结果吗?】

\* (b) 三进制数字信道X, YE{0,1,2}, 转移概率 
$$p(y|x) = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \end{bmatrix}$$

\* 【答案: C= 0.58】

\* (c) 四进制数字信道X, Y∈{0,1,2,3}, 转移概率 
$$p(y|x) = \begin{bmatrix} p & 1-p & 0 & 0 \\ 1-p & p & 0 & 0 \\ 0 & 0 & q & 1-q \\ 0 & 0 & 1-q & q \end{bmatrix}$$
 \* 【答案:  $C = \log\left(2^{1-H(p)} + 2^{1-H(q)}\right)$  该题依赖于7.28, 选做。



习题7.20 设随机变量Y,和Y,以X为条件概率独立且同分布,

$$P[Y_1 = y | X] = P[Y_1 = y | X]$$

$$P[Y_1, Y_2 | X] = P[Y_1 | X]P[Y_2 | X]$$

- \* (a) 证明  $I(X;Y_1,Y_2) = 2I(X;Y_1) I(Y_1,Y_2)$ .
- \* 概要:

\*

\*

\*

\* 注: 当有疑问时,请最终用熵或互信息量定义的概率表达式从头检验。

\* (b) 证明信道 
$$X \longrightarrow (Y_1, Y_2)$$
 的容量C2低于信道  $X \longrightarrow Y$  \* 的容量C1的两倍:  $C_2 \le 2C_1$ 。

\* 概要:

$$C_1 = \max_{p(x)} I(X; Y_1).$$
  $C_2 = \max_{p(x)} I(X; Y_1, Y_2)$   $= \max_{p(x)} 2I(X; Y_1) - I(Y_1; Y_2)$   $\leq \max_{p(x)} 2I(X; Y_1)$   $= 2C_1.$ 



#### 习题7.25 信道的瓶颈



- \* 设图中信道的输入信号X有
- \* M种状态,第一个信道的输出信号V有k种状态,
- \* 第二个信道的输出信号Y有m种状态,证明该复合信道的总容量
- \*  $C \leq \log k$
- \* 概要:

$$I(X;Y) \leq I(V;Y) = H(V) - H(V|Y) \leq H(V) \leq \log k.$$

【以上第一个不等式的依据是什么? 第二个不等式的依据又是什么?】

【进一步的思考:该结论对网络设计的本质涵义是什么?】



#### \* 习题7.28

- 两个无记忆的BSC信道分别有转移概率P,[Y,X,]和P,[Y,X,],信道发送
- \* 端状态X1、X2和输出状态Y1、Y2的取值范围不相交。
- \* 将两个信道并行组合,发送端每次仅通过两个信道之一传输码字
- \* (而非同时使用两个信道),计算该复合信道的容量C。
- \* 求解概要:
- \* 注意Q1、Q2不相交, J1、J2分别也不相交。
- \* 第一步:设 $\alpha$ 是信道1被随机选中传输的概率,信道2被随机使用的概率是 $1-\alpha$ ,
- \* 于是复合信道的转移概率(为什么?)
- \*  $P[Y|X] = \alpha P_1[Y|X], \quad \forall Y \in J_1 \exists X \in Q_1;$
- $=(1-\alpha)P_2[Y|X]$ ,若 $Y \in J_2$ 且 $X \in Q_2$ ;
- \* = 0; 其他情况
- \* 第二步:根据上述转移概率计算互信息量(请完成该计算)结果是
- $I(X; Y) = H(\alpha) + \alpha I(X_1; Y_1) + (1 \alpha) I(X_2; Y_2)$



#### 习题7.28 (续)

- 两个无记忆的BSC信道分别有转移概率P, Y, X, 和 P, Y, X, ], 信道发送
- \* 端状态X,、X,和输出状态Y,、Y,的取值范围不相交。
- \* 将两个信道并行组合,发送端每次仅通过两个信道之一传输码字
- \* 而非同时使用两个信道, 计算该复合信道的容量C。
- \* 求解概要(续):
  - 第二步:根据上述转移概率计算互信息量(请完成该计算)结果是
    - $I(X; Y) = H(\alpha) + \alpha I(X_1; Y_1) + (1 \alpha) I(X_2; Y_2)$
- \* 第三步: 求I(X; Y) 的最大值:
  - 根据以上表达式有  $I(X; Y) \leq H(\alpha) + \alpha C_1 + (1 \alpha)C_2$
- \*  $C_1$ 、 $C_2$ 分别是信道1和2的容量,  $0 \le \alpha \le 1$ 是本问题的待定参数,因此
  - $C = \max_{0 \le \alpha \le 1} (H(\alpha) + \alpha C_1 + (1 \alpha)C_2)$
  - 解出以上的极值问题(例如应用乘子算法等),得到最优值 $\alpha$ \*的表达式(请完成计算)以及目标表达式的最大值,即容量  $C = \log_e(e^{C_1} + e^{C_2})$ (请完成计算)。
- 【注1】e是自然对数的底数,相应的C、C1、C2也都是基于log<sub>e</sub>的数值。若取任何其他的数为对数的底数,答案的表达式相似。
- 【注2】请回答:使复合信道的I(X;Y)达到最大值C的、发送端状态的概率分布是什么?你能基于信道1和2的发送转状态达到其最大互信息量的概率分布P<sub>1</sub>\*(X<sub>1</sub>)和P<sub>2</sub>\*(X<sub>2</sub>),写出该表达式吗?
  - 【注3】以该题为基础, 试求解习题7.18(c)。



#### 习题7.34

\*

- \* (1)按7.5题的复合方式计算图A复合信道的容量
- \* (2)按7.28题的复合方式计算图A复合信道的容量



- \* (3)按7.5题的复合方式计算图B复合信道的容量
- \* (4)按7.28题的复合方式计算图B复合信道的容量
- \* 【注:图B的第二个信道是一个无噪声二元数字信道。该信道的容量是什么?】



#### 关于复杂网络Shannon定理的一点延伸知识(1)

无记忆离散BSC信道的Shannon定理解决了链路传输可靠性的基本问题。

- \* 新问题:
- \* 如果链路上的传输信号和噪声/干扰不限于离散形态,结论怎样?
- \* 例: Gauss链路信道(第九章)、带Gauss噪声的MIMO信道(第三单元)等
- \* 如果不是简单的链路、而是针对更复杂的网络路由结构,结论怎样?
- \* 例: 多点接入网络、广播网络、因特网、自组织/Ad Hoc网等
- \* 如果传输差错特性随时间变化、差错具有特性/有记忆网络,结论怎样?
- \* 例:深度衰落信道等
  - Shannon定理时随网络技术不断发展而不断深入的永恒的问题之源,参见第15章。



#### 关于复杂网络Shannon定理的一点延伸知识(2)

例1 多点接入型网络,如WSN前端、蜂窝网和卫星的上行链路等。 例2 广播型网络,如蜂窝网和卫星的下行链路等。



## 下次课预习

#### 第九章 Gauss信道

\*

- \* Gauss信道的基本容量公式
- \* 有限带宽Gauss信道的容量公式
  - \* 更多的容量公式和性能优化

\*基础知识 时变信号的频谱、Fourier变换、随机信号的功率谱、 \*泛函优化的变分计算(参见第二章)。

