PRIMER PARCIAL DE ÁNALISIS MATEMÁTICO I

FechaCurso	Turno:						Tema 1		
	1		2		3		4		
	1 a	1 b	2 a	2 b	3 a	3 b	4a	4 b	
	Nota:								

Nombre y Apellido......DNI......DNI

1. a) Hallar el Dominio, conjunto Imagen y graficar la función $f(x) = 2 - \sqrt{5 - x}$ Determinar también la fórmula de su función inversa, su Dominio e Imagen. Graficar ambas funciones en el mismo sistema.

b) Dada la función $f(x) = \ln x$ determinar f(x-3), f(x), f(-x), f(-x). Hacer los gráficos correspondientes. Explicar qué modificaciones sufre la función original en cada caso.

2 a) Sean f(x) = 2x - 1, $g(x) = 2 - \frac{1}{x}$ y $h(x) = g_0 f(x)$. Calcular $\lim_{x \to +\infty} h(x)$ y determinar las ecuaciones de las asíntotas verticales y horizontales de h(x). Hacer los gráficos de f, g y h

b) Resolver: i)
$$\lim_{x \to +\infty} \sqrt{x^2 + x} - x$$

ii)
$$\lim_{x \to -2} \frac{\sin 4x + 8}{x^2 - x - 6}$$

3.- a) Indicar V o F y justificar la respuesta.

- i) $P(x) = 3x^8 x 1$ tiene al menos una raíz real en el intervalo (-1, 0).
- ii) La función derivada de una función impar es una función impar

b) Hallar, si existen, "a", "b" para que la siguiente función sea continua en todo "x" real sabiendo que f = 1. Graficar la función.

$$f \quad x = \begin{cases} ax + 5 & si \quad x \le 1 \\ bx^2 + 2 & si \quad x > 1 \end{cases}$$

4.- a) Sea $f(x) = \ln (a x + 7) + 6x^2$. Determinar el valor de a para que la recta tangente al gráfico de f(x) en $x_0 = 1$ tenga pendiente m = 11.

b) Enunciar el Teorema de Rolle. Interpretar geométricamente. ¿Se cumple el teorema de Rolle para la función $g(x) = \sqrt[3]{(x-5)^2} - 1$ en 4;6 ? Justificar. De cumplirse hallar el punto intermedio c.

En cada ejercicio escribir todos los razonamientos que justifican la respuesta

PRIMER PARCIAL DE ÁNALISIS MATEMÁTICO I

Fecha......Curso......

Turno:.... Tema 2 1 b 2 a 2 b 3 a 3 b 4a 4 b Nota:

Nombre y Apellido......DNI......DNI....

1.a) Si $f(x) = \log_2 x$, $g(x) = x^2 - 4$ Determinar Dominio e Imagen de cada una y graficarlas. Hallar las funciones f_0g y f_0f y sus dominios.

b) Definir función par y función impar. Explicar qué características presentan los gráficos de cada una de ellas. Indicar si la siguiente función es par, impar o no tiene paridad $f(x) = \frac{3x}{x^2 + 5}$

2 a) Calcular los siguientes límites:

i)
$$\lim_{x \to 1} \frac{\sqrt{x+1} - \sqrt{3x-1}}{\sqrt{3x} - \sqrt{3}} =$$

ii)
$$\lim_{x \to \infty} \left(1 - \frac{7}{5x^2} \right)^{2x^2 + x} =$$

b) Si
$$f(x) = \frac{ax+1}{-4x+b}$$
 verifica que $\lim_{x \to +\infty} f(x) = 2$ $y \qquad \lim_{x \to 3^+} f(x) = +\infty$,

Determinar a y b. Graficar la función.

3.- a) Indicar V o F y justificar la respuesta.

i) $P = 2x^5 - 5x^2 + 1$ tiene al menos un punto en el intervalo (0, 2) cuya imagen es 10

- ii) Las funciones derivadas de funciones inversas son también funciones inversas
- b) Para la siguiente función hallar el valor de la constante a para que sea continua en toda la recta real. Graficarla.

$$f(x) = \begin{cases} \frac{x^2 - a^2}{x + a} & si \quad x \neq -a \\ 6 & si \quad x = -a \end{cases}$$

- **4.- a)** Determinar el valor de *a* para que la pendiente de la recta tangente a $f(x) = a \operatorname{sen}(3x)$ en $x = \pi$ sea 18. Escribir la ecuación de dicha recta tangente.
- b) Determinar la n-ésima derivada de la siguiente función, calculando algunas de las primeras derivadas y observando el patrón que se presenta: $f(x) = \frac{1}{x}$

En cada ejercicio escribir todos los razonamientos que justifican la respuesta