Konstantin Zelmanovich, Claudio Del Valle A

Dr. Nagarajan Kandasamy

ECEC 413 – Introduction to Parallel Computer Architecture

Assignment 2

April 28, 2019

Part 1 - Pthreads: Jacobi Solver

```
int
compute_using_pthreads_jacobi (grid_t *grid, int num_threads)
   pthread_t *tids = (pthread_t *) malloc (num_threads * sizeof(pthread_t));
   pthread_attr_t attributes;
   pthread_attr_init (&attributes);
   grid_t *grid_copy = copy_grid(grid);
   int *iterations = (int *) malloc (num_threads * sizeof(int));
   int i;
   thread_params *params = (thread_params *) malloc (num_threads *
sizeof(thread_params));
    if (grid->dim % num_threads) {
        for (i = 0; i < num_threads - 1; i++) {</pre>
            params[i].tid = i;
            params[i].chunk_size = grid->dim / num_threads;
            params[i].iterations = iterations;
            params[i].grid_ping = grid;
            params[i].grid_pong = grid_copy;
        params[num_threads-1].tid = num_threads-1;
        params[num_threads-1].chunk_size = grid->dim % num_threads;
        params[num_threads-1].iterations = iterations;
        params[num_threads-1].grid_ping = grid;
        params[num_threads-1].grid_pong = grid_copy;
    } else {
        for(i = 0; i < num_threads; i++) {</pre>
            params[i].tid = i;
            params[i].chunk_size = grid->dim / num_threads;
            params[i].iterations = iterations;
            params[i].grid_ping = grid;
            params[i].grid_pong = grid_copy;
    }
```

Table 1: Timing results for 100-150

# of		Serial Time	Parallel Time	
Threads	Grid Size	(s)	(s)	Speedup
4	512	0.7	0.14	5
4	1024	0.48	0.11	4.36
4	2048	0.41	0.09	4.55
8	512	0.63	0.11	5.72
8	1024	0.46	0.06	7.66
8	2048	0.39	0.14	2.78
16	512	0.64	0.14	4.57
16	1024	0.44	0.06	7.33
16	2048	0.39	0.88	0.44
32	512	0.73	0.11	6.63
32	1024	0.42	0.07	6
32	2048	0.35	0.8	0.43

Figure 1: Time vs Matrix Size using 4 Threads

Figure 2: Time vs Matrix Size using 8 Threads

Figure 3: Time vs Matrix Size using 16 Threads

Figure 4: Time vs Matrix Size using 32 Threads

Table 2: Timing results for 1000-1500

# of		Serial Time	Parallel Time	
Threads	Grid Size	(s)	(s)	Speedup
4	512	19.98	27.55	0.72
4	1024	63.6	18.81	3.38
4	2048	34.2	23.94	1.42
8	512	20.88	28.59	0.73
8	1024	60.24	17.83	3.37
8	2048	35.56	38.72	0.91
16	512	19.98	27.65	0.72
16	1024	63.12	18.69	3.37
16	2048	33.96	39.18	0.86
32	512	21.21	28.48	0.74
32	1024	60.6	18.68	3.24
32	2048	35.52	31.56	1.12

Figure 5: Time vs Matrix Size using 4 Threads

Figure 6: Time vs Matrix Size using 8 Threads

Figure 7: Time vs Matrix Size using 16 Threads

Figure 8: Time vs Matrix Size using 32 Threads