1. Начальные распределения для задачи двух тел

1.1. Точные формулы для двухатомной системы

Рассмотрим вектор, соединяющий центры атомов. Обозначим \mathbf{r} его координаты в лабораторной системе координат, \mathbf{R} – в молекулярной системе координат. Производные \mathbf{r} и \mathbf{R} связаны при помощи матрицы эйлеровых углов $\mathbb S$ и угловой скорости Ω :

$$\dot{\mathbf{r}} = \mathbb{S}^{-1} \left(\dot{\mathbf{R}} + [\mathbf{\Omega} \times \mathbf{R}] \right). \tag{1}$$

Пусть атомы в молекулярной системе координат расположены на оси Z, в таком случае правая часть выражения (1) превращается в

$$\dot{\mathbf{r}} = \mathbb{S}^{-1} \left\{ \begin{bmatrix} 0 \\ 0 \\ \dot{R} \end{bmatrix} + \begin{bmatrix} \Omega_y R \\ -\Omega_x R \\ 0 \end{bmatrix} \right\}$$

$$\mathbb{S}\dot{\mathbf{r}} = \begin{bmatrix} \Omega_y R \\ -\Omega_x R \\ \dot{R} \end{bmatrix}. \tag{2}$$

Лагранжиан в молекулярной системе координат имеет следующий вид:

$$\mathcal{L} = \frac{1}{2}\mu \dot{R}^2 + \frac{1}{2}\mathbf{\Omega}^{\top} \begin{bmatrix} \mu R^2 & 0 & 0\\ 0 & \mu R^2 & 0\\ 0 & 0 & 0 \end{bmatrix} \mathbf{\Omega} - U$$

Используя теорему Донкина, находим связь гамильтоновых переменных ${\bf J}$ и ${\bf p}=[p_R]$ с лагранжевыми переменными ${\bf \Omega}$ и ${\bf q}=[R]$:

$$\mathbf{J} = \frac{\partial \mathcal{L}}{\partial \mathbf{\Omega}} = \mathbb{I} \, \mathbf{\Omega} \qquad J_x = \mu R^2 \, \Omega_x
\mathbf{p} = \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} = \mathbf{a} \, \dot{\mathbf{q}} \qquad \Longrightarrow \qquad J_y = \mu R^2 \, \Omega_y
p_R = \mu \dot{R} \qquad (3)$$

Выкладка в приложении A показывает, что каждая компонента $\dot{\mathbf{r}}$ имеет нормальное распределение $\dot{\mathbf{r}} \sim \mathcal{N}\left(\mu = 0, \sigma^2 = \frac{kT}{\mu}\right)$.

"Экспериментально" проверено, что действие равномерно распределенной матрицы поворота \mathbf{S} на $\dot{\mathbf{r}}$ не приводит к изменению распределения $\dot{\mathbf{r}}$. Это интуитивно понятно, но строгого доказательства пока нет. Используем этот "экспериментальный" факт для получения точных распределений для переменных J_x , J_y и p_R :

$$\begin{array}{ccc}
\Omega_{x}R \sim \mathcal{N}\left(0, \frac{kT}{\mu}\right) & J_{x} \sim \mu \Omega_{x}R^{2} \sim \mathcal{N}\left(0, kT\mu R^{2}\right) \\
\mathbb{S}\dot{\mathbf{r}} \sim \dot{\mathbf{r}} \sim \begin{bmatrix} \Omega_{y}R \\ -\Omega_{x}R \\ \dot{R} \end{bmatrix} & \Longrightarrow & \Omega_{y}R \sim \mathcal{N}\left(0, \frac{kT}{\mu}\right) & \Longrightarrow & J_{y} \sim \mu \Omega_{y}R^{2} \sim \mathcal{N}\left(0, kT\mu R^{2}\right) \\
\dot{R} \sim \mathcal{N}\left(0, \frac{kT}{\mu}\right) & p_{R} \sim \mu \dot{R} \sim \mathcal{N}\left(0, kT\mu\right)
\end{array}$$

$$(4)$$

Рис. 1: Распределения переменных p_R , J_x , J_y для двух атомов с массами m_{Ar} и m_{CO_2} при T=300K, 500.000 точек.

```
#include <iostream>
  #include <random>
2
3
   using namespace std;
4
5
6
   // boltzamnn constant
7
   const double BOLTZCONST = 1.38064e-23;
   // dalton to kg
8
   const double DALTON = 1.660539e-27;
9
10
   // atomic length unit to m
11
   const double ALU = 5.29177e - 11;
12
13
   // reduced mass of ar and co2 = m(ar) * m(co2) / (m(ar) + m(co2)) in kg
   const double MU = 20.952 * DALTON;
14
15
16
   // planck constant
   const double HBAR = 1.0545718e - 34;
17
18
   const double temperature = 300;
19
20
21
   // distance between atoms
   const double RDIST = 20.0;
22
23
24
   // a Mersenne Twister pseudo-random generator of 32-bit numbers with a state size
       of 19937 bits
   static thread local mt19937 generator;
25
```

```
26
   double nextGaussian (const double &mean, const double &sigma)
27
28
29
        normal distribution < double > d( mean, sigma );
30
       return d( generator );
31
32
   int main( int argc , char* argv[] )
33
34
     int n = atoi(argv[1]);
35
36
     for ( int i = 0; i < n; i +++)
37
38
       double jx = nextGaussian( 0, RDIST * ALU * sqrt(BOLTZCONST * temperature * MU )
39
           ) / HBAR;
       double jy = nextGaussian( 0, RDIST * ALU * sqrt(BOLTZCONST * temperature * MU )
40
           ) / HBAR;
       double pR = nextGaussian( 0, sqrt(BOLTZCONST * temperature * MU)) / HBAR * ALU;
41
42
       cout << jx << "___" << jy << "___" << pR << endl;
43
44
45
     return 0;
46
47
```

Пример программы на C++ для генерации значений J_x , J_y и p_R по точным распределениям (4).

1.2. Равномерно распределенные матрицы поворота

Следующий алгоритм к получению равномерно распределенных матриц поворота состоит из двух шагов:

- 1. равномерно распределенный поворот вокруг оси ${\cal O}Z$
- 2. поворот, приводящий к равномерному на сфере положению северного полюса

Первый шаг осуществить легко; пусть случайная величина x_1 равномерно распределена на отрезке [0,1], тогда матрица R осуществляет равномерно распределенный поворот вокруг оси OZ

$$R = \begin{bmatrix} \cos(2\pi x_1) & \sin(2\pi x_1) & 0\\ -\sin(2\pi x_1) & \cos(2\pi x_1) & 0\\ 0 & 0 & 1 \end{bmatrix}$$
 (5)

Второй шаг может быть выполнен при помощи $npeoбразования\ Xaycxoлдepa$ (Householder transform). Точка z=(0,0,1) может быть перенесена в любую точку сферу при помощи отражения относительно плоскости, перпендикулярной вектору \bar{zp} и проходящей через центр координат O. Такое отражение описывается $Xaycxoлдepoвckoй\ мampuqei$

$$H = 1 - 2vv^{\top},$$

где v — единичный вектор, параллельный \bar{zp} . Взяв комбинацию хаусхолдеровского отражения и инверсии мы получим поворот, т.к. детерминант такого преобразования будет равен $\det(\cdot)$ =

+1 (матрица преобразования будет равна -H). Таким образом, искомоая матрица поворота равна

$$M = -HR$$

Матрица поворота M будет равномерно распределена внутри SO(3), если H равномерно преобразует Северный полюс в любую точку на сфере, а R описывает равномерный поворот вокруг OZ. Оператор H будет удовлевторять поставленному условию, если мы возьмем

$$v = \begin{bmatrix} \cos(2\pi x_2)\sqrt{x_3} \\ \sin(2\pi x_2)\sqrt{x_3} \\ \sqrt{1 - x_3} \end{bmatrix},$$

где x_2 , x_3 — равномерно распределены на [0,1]. В таком случае матрица H принимает следующий вид

$$H = 1 - 2vv^{\top} = \begin{bmatrix} 1 - 2\cos^{2}(2\pi x_{2})x_{3} & -2\sin(2\pi x_{2})\cos(2\pi x_{2})x_{3} & -2\cos(2\pi x_{2})\sqrt{x_{3}(1 - x_{3})} \\ -2\sin(2\pi x_{2})\cos(2\pi x_{2})x_{3} & 1 - 2\sin^{2}(2\pi x_{2})x_{3} & -2\sin(2\pi x_{2})\sqrt{x_{3}(1 - x_{3})} \\ -2\cos(2\pi x_{2})\sqrt{x_{3}(1 - x_{3})} & -2\sin(2\pi x_{2})\sqrt{x_{3}(1 - x_{3})} \end{bmatrix}$$

Действие H на вектор z приводит к вектору p, компоненты которого равны

$$p = Hz = (1 - 2vv^{\top}) \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -2\cos(2\pi x_2)\sqrt{x_3(1 - x_3)} \\ -2\sin(2\pi x_2)\sqrt{x_3(1 - x_3)} \\ 2x_3 - 1 \end{bmatrix}$$

Заметим, что если положить $\sin \phi = -2\sqrt{x_3(1-x_3)}$, то тогда $\cos \phi = 2x_3 - 1$. Действительно,

$$\sin^2 \phi + \cos^2 \phi = \left[-2\sqrt{x_3(1-x_3)} \right]^2 + \left[2x_3 - 1 \right]^2 = 1$$

То есть, вектор p может быть представлен в следующей форме

$$p = \begin{bmatrix} \cos(2\pi x_2)\sin\varphi\\ \sin(2\pi x_2)\sin\varphi\\ \cos\varphi \end{bmatrix} = \begin{bmatrix} \cos(2\pi x_2)\sqrt{z}\\ \sin(2\pi x_2)\sqrt{z}\\ \sqrt{1-z} \end{bmatrix}.$$

Следовательно p равномерно распределен на сфере, т.к. азимутальный угол и косинус полярного угла $\cos \varphi = 2x_3 - 1$ распределены равномерно на [-1,1]. Для упрощения компонент вектора переобозначим $\sqrt{z} = \sqrt{x_3(1-x_3)}, \sqrt{1-z} = 2x_3 - 1$. Итак, схема алгоритма представлена ниже.

Algorithm 1 Scheme of [3]

- 1: $x_1, x_2, x_3 \leftarrow 3$ random variables uniformly distributed over [0,1]
- 2: Pick a rotation about the pole: $\theta \leftarrow 2\pi x_1$
- 3: Pick a direction to deflect the pole: $\phi \leftarrow 2\pi x_2$
- 4: Pick the amount of pole deflection: $z \leftarrow x_3$.
- 5: Construct a vector to perform the reflection: $\mathbf{v} = \begin{bmatrix} \cos \phi \sqrt{z} \\ \sin \phi \sqrt{z} \\ \sqrt{1-z} \end{bmatrix}$
- 6: Construct the rotation matrix by combining two simple rotations: first rotate about the Z-axis, then rotate the Z-axis to a random orientation: $M \leftarrow \left(2vv^{\top} 1\right) \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

```
1 #include <iostream>
2 #include <random>
3 #include <Eigen/Dense>
5 using namespace std;
6 using namespace Eigen;
7
   //a Mersenne Twister pseudorandom generator of 32 bit numbers with a state
8
        size of 19937 bits
9
   random device rd;
   mt19937 eng(rd());
10
   uniform real distribution < double > distr(0.0, 1.0);
11
12
   void rotationMatrix ( Matrix3d &m )
13
14
      \mathbf{double} \ \ \mathbf{theta} \ = \ 2 \ * \ \mathbf{M\_PI} \ * \ \ \mathbf{distr} \left( \ \ \mathbf{eng} \ \ \right); \ \ / / \ \ a \ \ rotation \ \ about \ \ the \ \ pole
15
      double phi = 2 * M_PI * distr( eng ); // a direction to deflect the pole
16
      double z = distr(eng); // the amount of pole deflection
17
      double sz = sqrt(z);
18
19
20
      // a vector to perform the reflection
      Vector3d v (\cos(\text{phi}) * \text{sz}, \sin(\text{phi}) * \text{sz}, \operatorname{sqrt}(1-z));
21
22
      // the Householder matrix
      Matrix3d \ s = 2 * v * v.transpose() - Matrix < double, 3, 3>::Identity();
23
24
25
      Matrix3d r;
26
        r \ll \cos(theta), \sin(theta), 0,
27
        -\sin(\text{theta}), \cos(\text{theta}), 0,
28
        0, 0, 1;
29
30
     m = s * r;
31
32
33
   int main( int argc, char* argv[] )
34
35
      int n = atoi(argv[1]);
36
37
      // initial vector
      Vector3d v (0.0, 0.0, 1.0);
38
39
      // resulting vector
40
      Vector3d r;
41
42
      for ( int i = 0; i < n; i ++ )
43
        // filling rotation matrix
44
           Matrix3d m;
45
46
           rotationMatrix ( m );
47
        // performing a random rotation of OZ-vector
48
49
        r = m * v;
50
51
        // displaying the components of resulting vector
52
        cout << r(0) << "" << r(1) << "" << r(2) << endl;
53
54
55
        return 0;
```

56

Пример программы на C++ с применением библиотеки линейной алгебры Eigen. Программа принимает на вход количество рассчитываемых векторов n. Внутри главного цикла генерируется по описанному алгоритму случайная матрица поворота и применяется для поворота вектора v=[0,0,1]. На выходе получаем n равномерно распределенных на сфере векторов.

Рис. 2: Пример равномерно распределенных на сфере точек, полученных в результате приведенной выше программы. 2000 точек.

1.3. MCMC-sampling

Предположим мы генерируем последовательность случайных величин, $\{X_0, X_1, X_2, \dots\}$, такую что в каждый момент $t \geq 0$ следующее состояние X_{t+1} выбирается исходя из распределения $P(X_{t+1}|X_t)$, которое зависит от текущего состояния X_t , но не от предыдущего набора состояний $\{X_0, X_1, X_2 \dots X_{t-1}\}$. То есть, состояние X_{t+1} определяется исключительно предыдущим X_t . Такая последовательность состояний называется *цепью Маркова*.

Рассмотрим алгоритм Метрополиса-Гастингса, позволяющий получать последовательность точек — элементов Марковской цепи — распределенную согласно заданной плотности вероятности $\pi(\cdot)$.

Первым шагом алгоритма является выбор случайной точки (эта величина выбирается определенным образом на основе распределения; я же выбирал ее совершенно случайным

Algorithm 2 Scheme of Metropolis-Hastings algorithm from [1]

```
Initialize x^{(0)} \sim q(x)

2: for iteration i = 1, 2, ... do

Propose: x^{cand} \sim q\left(x^{(i)}|x^{(i-1)}\right)

4: Acceptance probability:

\alpha\left(x^{cand}|x^{(i-1)}\right) = \min\left\{1, \frac{q\left(x^{(i-1)}|x^{cand}\right)\pi\left(x^{(cand)}\right)}{q\left(x^{cand}|x^{(i-1)}\right)\pi\left(x^{(i-1)}\right)}\right\}

6: u \sim \text{Uniform}(u; 0, 1)

if u < \alpha then

8: Accept the proposal: x^{(i)} \leftarrow x^{cand}

else

10: Reject the proposal: X^{(i)} \leftarrow x^{(i-1)}

end if

12: end for
```

образом, но так, чтобы она не оказалась в какой-то физически маловероятной области). Следующий за ним главный цикл алгоритма состоит из трех частей: (1) Получать следующую точку ("кандидата") x^{cand} исходя из вспомогательного распределения $q\left(x^{(i)}|x^{(i-1)}\right)$; (2) Рассчитать вероятность перехода в новую точку $\alpha\left(x^{cand}|x^{(i-1)}\right)$, основываясь на распределении q и функции распределения π ; (3) Принять новую точку с вероятностью α .

Обратим внимание на то, что точка, полученная исходя из вспомогательного распределения $q(\cdot)$, принимается не всегда, а лишь с вероятностью $\alpha(\cdot)$. Рассматривают вспомогательные распределения двух классов – симметричные и асимметричные. Симметричным называется распределение, удовлетворяющее следующему соотношению

$$q(x^{(i)}|x^{(i-1)}) = q(x^{(i-1)}|x^{(i)})$$

К часто используемым симметричным распределениям относятся гауссово и равномерное распределения. В качестве примера рассмотрим вспомогательное распределение Гауссса:

$$x^{cand} = x^{(i-1)} + Normal(0, \sigma)$$

Понятно, что $Normal(x^{cand} - x^{(i-1)}; 0, \sigma) = Normal(x^{(i-1)} - x^{cand}; 0, \sigma)$, то есть Гауссово распределение в действительности задает симметричное вспомогательное распределение. Среднеквадратичное отклонение σ является параметром модели. Значение этого параметра будет определять динамику Марковской цепи в рассматриваемом пространстве.

В случае симметричных вспомогательных распределений выражение для вероятности выбора новой точки $\alpha(\cdot)$ существенно упрощается:

$$\alpha\left(x^{cand}|x^{(i-1)}\right) = \min\left\{1, \frac{\pi\left(x^{cand}\right)}{\pi\left(x^{(i-1)}\right)}\right\}$$

Заметим, что если плотность вероятности (точнее говоря, величина, пропорциональная плотности вероятности) в новой точке $\pi\left(x^{cand}\right)$ больше, чем плотность вероятности в текущей $\pi\left(x^{(i-1)}\right)$, то их отношение будет больше 1, а значит вероятность перехода в новую точку будет равна 1: $\alpha\left(x^{cand}|x^{(i-1)}\right)=1$. Другими словами, если новая точка выбрана таким образом, что плотность вероятности в ней больше, чем в текущей, то в нее осуществляется переход.

Устройство алгоритма таково, что Марковская цепь "склонна"посещать те точки пространства, в которых моделируемая плотность вероятности выше. Однако, если новая точка была выбрана таким образом, что плотность вероятности в ней меньше, чем в текущей, то тогда вероятность перейти в нее будет определяться отношением плотностей вероятности:

$$\alpha \left(x^{cand} | x^{(i-1)} \right) = \frac{\pi \left(x^{cand} \right)}{\pi \left(x^{(i-1)} \right)}$$

То есть, если вероятность в новой точке будет мала по сравнению с текущей, то и переход в нее будет маловероятен.

Вид вероятности перехода в новую точку из текущей определяется условием детального баланса [2]. Последнее гарантирует, что полученная Марковская цепь в действительности будет удовлетворять заданной плотности вероятности.

2. Литература

- 1. Yildirim I. Bayesian Inference: Metropolis-Hastings Sampling. MIT Online Library
- 2. Gilks, W.R., Richardson, S., & Spiegelhalter, D.J. (1996). Markov Chain Monte Carlo in Practice. London: Chapman and Hall.
- 3. D. Kirk. Graphics Gems III. III. 4. Fast random rotation matrices.

Appendices

Приложение А. Приложение А. Распределения в лабораторной системе координат

Воспользуемся следующими двумя выводами из теории вероятностей:

1. Пусть случайная величина ξ распределена с плотностью $f_{\xi}(x)$. Тогда случайная величина $\eta = a\xi + b$ распределена с плотностью

$$f_{\eta}(x) = \frac{1}{|a|} f_{\xi} \left(\frac{x-b}{a} \right)$$

2. Если две <u>независимые</u> случайные величины X и Y распределены с плотностями $X \sim f_1(x)$ и $Y \sim f_2(x)$ соответственно, то случайна величина Z = X + Y распределена с плотностью

$$g(z) = \int_{-\infty}^{+\infty} f_1(x) f_2(z - x) dx$$

Т.к. вектор $\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$ равен разнице радиус-векторов двух атомов \mathbf{r}_1 и \mathbf{r}_2 в лабораторной системе координат соответственно, то $\dot{\mathbf{r}} = \dot{\mathbf{r}}_1 - \dot{\mathbf{r}}_2$. Используя п.1 и п.2 получим распределение для компонент \mathbf{r} :

$$\begin{cases}
\dot{\mathbf{r}}_{1x} \sim f_1(x) = \sqrt{\frac{m_1}{2\pi kT}} \exp\left(-\frac{m_1 x^2}{2kT}\right) \\
-\dot{\mathbf{r}}_{2x} \sim f_2(x) = \sqrt{\frac{m_2}{2\pi kT}} \exp\left(-\frac{m_2 x^2}{2kT}\right)
\end{cases}$$

$$\dot{\mathbf{r}}_x \sim \int_{-\infty}^{+\infty} f_1(x) f_2(z-x) dx = \frac{\sqrt{m_1 m_2}}{2\pi kT} \int_{-\infty}^{+\infty} \exp\left(-\frac{m_1 x^2}{2kT}\right) \exp\left(-\frac{m_2 (z-x)^2}{2kT}\right) dx \tag{6}$$

Отдельно рассмотрим получившийся интеграл:

$$\int_{-\infty}^{+\infty} \exp\left(-\frac{m_1 x^2}{2kT} - \frac{m_2 (z - x)^2}{2kT}\right) dx = \int_{-\infty}^{+\infty} \exp\left(\frac{-(m_1 + m_2) x^2 - m_2 z^2 + 2m_2 zx}{2kT}\right) dx =$$

$$= \int_{-\infty}^{+\infty} \exp\left(-\frac{\left(\sqrt{m_1 + m_2} x - \frac{m_2}{\sqrt{m_1 + m_2}} z\right)^2}{2kT}\right) \exp\left(-\frac{m_2 z^2 - \frac{m_2^2}{m_1 + m_2} z^2}{2kT}\right) dx =$$

$$= \left[y = \frac{\sqrt{m_1 + m_2} x - \frac{m_2}{\sqrt{m_1 + m_2}} z}{\sqrt{2kT}}\right] = \sqrt{\frac{2kT}{m_1 + m_2}} \exp\left(-\frac{m_1 m_2}{2(m_1 + m_2) kT} z^2\right) \int_{-\infty}^{+\infty} \exp\left(-y^2\right) dy =$$

$$= \sqrt{\frac{2\pi kT}{m_1 + m_2}} \exp\left(-\frac{m_1 m_2}{2(m_1 + m_2) kT} z^2\right)$$

$$(7)$$

Подставляя значение интеграла (7) в выражение для плотности распределения $\dot{\mathbf{r}}_x$ (6), получаем

$$\dot{\mathbf{r}}_x \sim \frac{1}{\sqrt{2\pi kT}} \sqrt{\frac{m_1 m_2}{m_1 + m_2}} \exp\left(-\frac{m_1 m_2}{2(m_1 + m_2)kT}z^2\right) = \sqrt{\frac{\mu}{2\pi kT}} \exp\left(-\frac{\mu z^2}{2kT}\right),$$

где через μ была обозначена приведенная масса двухатомной системы $\mu = \frac{m_1 m_2}{m_1 + m_2}$.