ESE LOGIC DESIGN 13 April 2024 01:32 AM

S	R	QQ
		Hemony (as before)
		0 1
		1 D
		orlo+ used

Level sensitive

ی	R	QQ
0	0	Not wed
0	1	10
7	0	01
1	1	Menny

Edge sensitive

CIL	5	R	\ a \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
0	X	×	Henry
1	0	0	Hemoy
1	0	1	0 1
1	1	0	1 0
1	L	T	010+used

Qny = S + On R

D FLIP FLOP

CIŁ	D	Qn+I
0		an
1		6
1		_ L

Only to store data we use this FF

Trum To	able :	-	
CIK	J	K	QnH
0		×	an 7
1	0		an memory
1			0
1		0	1
1	1		Qn (toggle)
	•		

1	€h.T	able	-	
	Qn		Ķ	Qn+1
	0	0		0
	0	٥	1	6
	0	1	٥	1
	0	1	1	<u> </u>
	T		٥	1
	1	0	1	0
	1		ם ב	1
	1		<u>l</u> 1	Ď

J = QnH

Qny = QnJ + Qn·K

Unstable diff than toggle

> Toggling is controlled But

Conditions to organize Ready:i) T/2 < product of ffii) edge trigg
indicates - flave-

Master slave is same as neg edge trig

Glitches = sudden change in the output signal

Master slave work on level triggering Which has the same effect as neg edge triggering

There are no glitches in slave that why we use master slave FF Master slave output is same as the neg edge output

T Flip Flop - Toggle

Tito for T	TT for T ff -				
CIL T	Onti				
0 ×	an (memory)				
1 0	an (memy)				
1 1	an (topping)				

Ch Table:-				
Qo	Т	OnH		
0	0	0		
		7		
	O	1		
		0		

Excitation Table: -

۵n	QnH	Т
0	0	0
		1
L		

	Т	FF	is	neg	edge	trigg	erec
--	---	----	----	-----	------	-------	------

Qn+1 =	Qn DT
--------	-------

PRESET AND RESET

Prepet	Clean	\ Qn	
0	0	Wet uting	
		1	
			0
		ff will	perform normally

Asynchronous inputs = set rest Synchronous inputs = s r j k d t

Next stage as well as the output must be same for two states for them to be reduced

MEALY AND MOORE CIRCUITS

MOORE = Doesn't depend upon the input Diff is the way the output is calc

i) Moore Cht/Moore state Mach. :- Oh is the fun of pistont

ii) Measy cht/Opeasy State Machin :- Oh is the for of pist as well as 1/P

* only in the way the orly is generally

moore

Conversion to a state diagram which follows moore prop

MEALY

Mealy: no officer are left

ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITS

Write the equations for the inputs and outputs Then write the state table

A,	Qp	×	Q'A	Q;	В
	0	0			1
		1		0	0
		٥			0
		1			
		0			
		1			
£		0			
1		1			

PATTERN DETECTOR

Step-2 State artynmut:-"So: 00 Sq: 01 SL: 10

Considering OV

QA	Qp	Z	QA	Q.	y
0	6	6	0	0	6
		7		1	
0			0	0	
			1		٥
	0				0
L		£	1	1	L
L		٥			6
1	L	1		L	£

Synchronous Seq. Ckt.

- 1. These circuits are easy to design
- 2 A clocked flip flop acts as memory element
- 3. they are Slower.
- 4. The status of memory element is affected only at the active edge of clock, if input is changed.

Asynchronous Seq. Ckt.

- These circuits are difficult to design.
- An unclocked flip flop or time delay element is used as memory element
- 3. Faster as clock is not present
- 4. The status of memory element will change any time as soon as input is changed

COUNTERS

CIL	Q.	QA	
	0	0	(0)
	0		(1)
2			
3	1	1	(3)

Asynchronous/Ripple Counter 1. Flip flops are connected in such a waythat the o/p of first flip flop drives the clock of next flip flop. 2. Flip flops are not clocked simultaneously. 3. Circuit is simple for more number of states. 4. Speed is slow as clock is propagated through number of stages Synchronous Counter 1. There is no connection between o/p of first flip flop and clock of next flip flop. 2. Flip flops are clocked simultaneously. 3. Circuit becomes complicated as number of states increases. 4. Speed is slow as clock is given at a same time.

3 BIT ASYNC COUNTER

No of states = 2^n

		- 0	7-	CIUCA
- 0	0	0 0		Initially
	1	o L		78+(1)
	2	L D		2nd (1)
s states	3 8			3*4 (1)
2° = 23 = B	4			4th (1)
Jaximum count:-	5 1		1	3m (1)
2 -1 - 8-1	6		Ł	6 L)
12 -112 3	0 -			7" (4)
· N				xh (1)

N bit = n FF

UPDOWN COUNTER

MODULUS COUNTER

Modulus of counter = number of states

Mod 10 counter / BCD coutner

How to Design Synchronous Counters Step 1: Decide the number of flip flops. Que: Design 2-bit synchronous up counter Step 2: Excitation table of FF. \$ to 9: Design 2-bit synchronous up counter Step 3: State diagram and circuit excitation table. Step 4: Obtain simplified equations using K' map. Step 5: Draw the logic diagram.

3 bit updown sync counter

4 bit updown counter

RING COUNTER

CLK	Q.	Q,	Q ₂	Q ₃
X		0	0	0
+	0	1	0	0
1	0	0	1	0
1	0	0	0	1
+	Ł	0	0	٥
	* + + + + + + + + + + + + + + + + + + +	X L	X L 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0	X L 0 0 1 0 1 0 1 0 0 1

*no of states = no of it was

ORI = overidding inputs

45.	PARRIED 1					
ORI	CLK	0.	Q,	Q,	Q ₃	
U	×	XX.	٥	٥	0	
1	+	0	毛	0	0	
1	ţ	0	0	至	0	
_1	1	0	0	0	重	
	1		0	0	D	

CLR	CLK	9.	Q,	Q ₂	Qz	
IJ	×	0	0	0	0	1
1	+	1	0	0	0	@
1	1	1	1	0	0	3
1	1	L	1	1	0	(4)
1	ļ	L	L	7	1	(3)
1	1	0	1	1	1	6
1	Ţ	0	0	1	1	3
1	ļ	0	0	o	1	(2)
1.	Ь	0	0	0	0	
1	1					

REGISTER

Serial FF3 FF2 FF1 FF0 1 0 1 1

Serail = temporal code Parallel = special code

Serial IN and Serial OUT

On input = 1111 The clock stores on rising edge Beneficial for long distance transmission Only one input line is required

Number of clock pulses required to store data = 4 But disadv is that we need 4 pulses to output the data as well

4 clock pulses to store the data 1 clock pulse to output the data

Parallel IN and Parallel OUT

Input the number before clocks falling edge and then make clock =0 This stores the data Output is given parallely

1 clock pulse to store the data

Storage register / buffer regsiter

Buffer Input in = output out

BIDIRECTIONAL SHIFT REGISTER

All SISO SIPO PIPO PISO are possible in this , hence universal

FSM = fininte state machine

Flip flop are edge sensitive while lathes are level sensitive

Fig-1: Freq Division Counter

oincidence logic

ASM CHART = Algorithmic State Machine

Condition box used only for mealy state machines

Mealy state machine

Z means that the output is 1 If output is 0 then don't do anything

Moore State Machine

PLA = Programmable Logic Array

PLD

It is a type of fixed architecture logic device with programmable AND gates followed by programable OR gates

А	В	C	_Yı	Y2 . N	
0	0		0	0 5xx	Y_ = ABC + ABC+ ABC
0			0		YI = AB+AC
0			0		5100.7
0			0		Y2 = BC+AC
1					
1	0				
1			0		
1	1		1		

6tep:-1 No of in buffer.

PAL = Programmable Array Logic

- >> It is most commonly used type of PLD. >> Has programmable AND array and fixed OR array.

When we don't need an AND gate , simply fuse it

Full subtractor : A - B - - B - C

- Jadentify available and required flip flop.

 2. Make characteristic table for required flip flop.

 3. Make excitation table for available flip flop.

 4. Write boolean expression for available ff.

 5. Draw the circuit.

Steps for conversion of FFs

