assignment

September 18, 2024

```
[22]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
```

Dataset Link: https://www.kaggle.com/datasets/nikbearbrown/tmnist-alphabet-94-characters

Dataset Deatils: Typography MNIST (TMNIST)

MNIST style images of the following 94 alphabetic characters:

```
 \{ \text{`0', `1', `2', `3', `4', `5', `6', `7', `8', `9', `a', `b', `c', `d', `e', `f', `g', `h', `i', `j', `k', `l', `m', `n', `o', `p', `q', `r', `s', `t', `u', `v', `w', `x', `y', `z', `A', `B', `C', `D', `E', `F', `G', `H', `l', `J', `K', `L', `M', `N', `O', `P', `Q', `R', `S', `T', `U', `V', `W', `X', `Y', `Z', `!', `", `#', `$', `%', `&', "", '(',')', `*', '+', ', '-', ", '/', `:', `;', `<', `=', `>', `?', `@', `[', ", ']', ``', '_, '", '\{','\}, '\}
```

This repository contains a single csv .file. The structure of the csv file is:

```
the first row contains column headers ['names', 'labels','1','2',....'784']
```

The 'names' column contains font file names such as 'Acme-Regular' and 'ZillaSlab-Bold'

The 'labels' column contains characters such as '@', 'E' or '+'

The remaining 784 columns contain the grayscale pixel values for the image of the corresponding

This dataset contains over 281,000 images and is part of the Warhol.ai Computational Creativity and Cognitive Type projects.

```
[12]: data = pd.read_csv(r"C:\Users\vishn\Downloads\archive(1)\94_character_TMNIST.
```

```
[27]: head = data.head(10)

plt.figure(figsize=(10, 4))
for i in range(10):
    pixels = head.iloc[i, 2:].values.astype(np.uint8).reshape((28, 28))

    label = head.iloc[i, 1]
    font_name = head.iloc[i, 0]

plt.subplot(2, 5, i+1)
```

```
plt.imshow(pixels, cmap='gray')
  plt.title(f"{label}")
  plt.axis('off')

plt.tight_layout()
plt.show()
```


Activation Function: Sigmoid

Epochs: 20

Weight Updation Rule: Learning Rate * Xi ,where Xi is the input value

```
[15]: X = data.iloc[:, 2:].values / 255.0
    y = data['labels'].values

label_encoder = LabelEncoder()
    y_numeric = label_encoder.fit_transform(y)

X_train, X_test, y_train, y_test = train_test_split(X, y_numeric, test_size=0.
    -2, random_state=42)

num_features = X_train.shape[1]
num_classes = len(np.unique(y_numeric))
weights = np.random.randn(num_features, num_classes)
bias = np.zeros(num_classes)
learning_rate = 0.01

def activation(z):
    return 1 / (1 + np.exp(-z))
```

```
for epoch in range(20):
    for i in range(X_train.shape[0]):
        z = np.dot(X_train[i], weights) + bias
        y_pred = activation(z)

    if y_pred != y_train[i]:
        weights[:, y_train[i]] += learning_rate * X_train[i]
        weights[:, y_pred] -= learning_rate * X_train[i]

z_test = np.dot(X_test, weights) + bias
y_test_pred = activation(z_test)

accuracy = np.mean(y_test_pred == y_test)
print(f"Test accuracy: {accuracy * 100:.2f}%")
```

Test accuracy: 80.86%

Confusion Matrix:

Classification Report:

	precision	recall	f1-score	support
!	0.88	0.90	0.89	602
11	0.88	0.94	0.91	556
#	0.92	0.95	0.93	579
\$	0.94	0.90	0.92	583
%	0.94	0.91	0.92	617
&	0.89	0.88	0.89	566
•	0.76	0.74	0.75	617
(0.96	0.93	0.94	587
)	0.92	0.93	0.92	591
*	0.80	0.89	0.84	624
+	0.98	0.96	0.97	626
,	0.75	0.87	0.80	583

-	0.68	0.94	0.79	634
	0.91	0.78	0.84	574
/	0.79	0.90	0.84	597
0	0.49	0.71	0.58	570
1	0.82	0.75	0.78	589
2	0.94	0.93	0.93	613
3	0.93	0.90	0.92	600
4	0.92	0.89	0.91	581
5	0.90	0.83	0.86	588
6	0.95	0.84	0.89	634
7	0.87	0.90	0.89	595
8	0.92	0.84	0.88	586
9	0.89	0.90	0.90	620
:	0.96	0.98	0.97	615
;	0.96	0.93	0.95	584
, <	0.96	0.98	0.97	595
=	0.98	0.94	0.96	613
>	0.98	0.96	0.97	622
?	0.97	0.91	0.94	612
: @	0.94	0.91	0.94	594
	0.94	0.82		
A			0.86	547
В	0.83	0.87	0.85	585
C	0.58	0.74	0.65	547
D	0.88	0.89	0.89	571
E	0.87	0.86	0.86	542
F	0.87	0.88	0.87	577
G	0.86	0.78	0.82	600
Н	0.90	0.84	0.87	565
Ι	0.63	0.32	0.42	586
J	0.76	0.79	0.78	576
K	0.86	0.86	0.86	577
L	0.89	0.87	0.88	574
M	0.78	0.88	0.83	565
N	0.72	0.90	0.80	578
0	0.59	0.58	0.58	618
P	0.77	0.89	0.83	604
Q	0.72	0.89	0.79	590
R	0.80	0.92	0.86	595
S	0.65	0.79	0.71	605
T	0.92	0.81	0.86	567
U	0.49	0.90	0.64	615
V	0.53	0.79	0.64	550
W	0.65	0.20	0.31	555
X	0.57	0.78	0.66	602
Y	0.83	0.89	0.86	529
Z	0.69	0.56	0.62	593
[0.91	0.80	0.85	583
\	0.91	0.93	0.92	576
`	3.01	3.00	J.02	510

```
0.85
                                0.89
                                           0.87
                                                        578
            ]
                     0.95
                                0.96
                                           0.96
                                                        592
                     0.90
                                0.56
                                           0.69
                                                        572
                     0.93
                                0.92
                                           0.93
                                                        550
                     0.71
                                0.88
                                           0.79
                                                        522
            a
            b
                     0.89
                                0.87
                                           0.88
                                                        590
                                0.51
            С
                     0.64
                                           0.57
                                                        587
                     0.90
                                0.82
            d
                                           0.86
                                                        554
                     0.80
                                0.87
                                           0.83
                                                        578
            е
            f
                     0.83
                                0.79
                                           0.81
                                                        588
                     0.76
                                0.80
                                           0.78
                                                        630
            g
                     0.85
                                0.85
                                           0.85
                                                        598
            h
            i
                     0.91
                                0.77
                                           0.83
                                                        558
                     0.78
                                0.84
                                           0.81
                                                        601
            j
                     0.94
                                0.81
                                           0.87
                                                        594
            k
                                0.38
            1
                     0.58
                                           0.46
                                                        540
            m
                     0.91
                                0.87
                                           0.89
                                                        565
                     0.91
                                0.79
                                           0.85
                                                        575
            n
                     0.68
                                0.35
                                           0.46
                                                        551
            0
                                0.72
                     0.89
                                           0.80
                                                        578
            p
                                0.83
                                           0.84
                     0.86
                                                        567
            q
                     0.90
                                0.78
                                           0.84
                                                        554
            r
                     0.66
                                0.61
            s
                                           0.63
                                                        561
                     0.64
                                0.91
                                           0.75
                                                        588
            t
                     0.85
                                0.23
                                           0.37
                                                        614
            u
                     0.68
                                0.25
                                           0.37
                                                        571
            ٧
                     0.50
                                0.85
                                           0.63
                                                        503
            W
                     0.71
                                0.43
                                           0.54
                                                        602
            X
                     0.89
                                0.81
                                           0.85
                                                        570
            у
            z
                     0.60
                                0.64
                                           0.62
                                                        501
            {
                     0.96
                                0.95
                                           0.95
                                                        588
            0.50
                                0.87
                                           0.64
                                                        578
            }
                     0.95
                                0.93
                                           0.94
                                                        619
                     0.97
                                0.95
                                           0.96
                                                        583
                                           0.81
                                                     54819
    accuracy
                     0.82
                                0.81
                                           0.80
                                                     54819
   macro avg
weighted avg
                     0.82
                                0.81
                                           0.80
                                                     54819
```

```
[25]: y_test_actual_labels = label_encoder.inverse_transform(y_test)
y_test_pred_labels = label_encoder.inverse_transform(y_test_pred)

results_df = pd.DataFrame({
    'Actual': y_test_actual_labels,
    'Predicted': y_test_pred_labels,
    'Correct': y_test_actual_labels == y_test_pred_labels
```

```
print(results_df.head(10))
```

	Actual	${\tt Predicted}$	Correct
0	&	&	True
1	1	1	True
2	i	i	True
3	v	V	False
4	/	/	True
5	_	_	True
6	S	d	False
7	g	,	False
8	,	,	True
9	h	H	False

Save the trained weights so you dont have to train the model again and again.

```
[26]: np.savez('perceptron_model_weights.npz', weights=weights, bias=bias)
```