Vadique Myself

PHYSICS of ELASTIC CONTINUA

CONTENTS

Chapter 2 Classical generic mechanics	1
§ 1. Discrete collection of particles	1
§ 2. Absolutely rigid undeformable solid body	5
§ 3. Principle of virtual work	10
\S 4. Balance of momentum, rotational momentum, and energy \dots	13
§ 5. Hamilton's principle and Lagrange's equations	14
§ 6. Statics	16
§ 7. Mechanics of relative motion	19
§ 8. Small oscillations (vibrations)	20
List of referenced publications	22

CLASSICAL GENERIC MECHANICS

§1. Discrete collection of particles

Classical generic mechanics models physical objects by discretizing them into a collection of particles ("pointlike masses", "material points"*).

In a collection of N particles, each k-th particle has its nonzero mass $m_k = \text{constant} > 0$ and motion function $r_k(t)$. Function $r_k(t)$ is measured relative to the chosen reference system.

A reference system (also "reference frame") consists of (fig. 1)

- ✓ some "null" reference point o,
- \checkmark a set of coordinates,
- ✓ a clock.

Long time ago, the reference system was some absolute space: empty at first, and then filled with the continuous elastic medium — the æther. Later it became clear that for classical mechanics

any reference systems can be used, but the preference is given to the so called "inertial" systems, where a point moves with a constant velocity without acceleration ($\ddot{r} = 0$, $\dot{r} = \text{constant}$) in the absence of external interactions.

^{*} Point mass (pointlike mass, material point) is the concept of an object, typically matter, that has nonzero mass and is (or is being thought of as) infinitesimal in its volume (dimensions).

A motion along a straight line with the constant velocity, also known as a free motion, supposes absence of external interactions (or applied forces):

$$\dot{r} = \text{constant} = \alpha_i e_i$$
 (1.1)

$$\alpha_i = \text{constant}$$
 (1.2)

The measure of interaction in mechanics is the vector of force \mathbf{F} . In the widely known* Newton's equation

$$m\mathbf{\ddot{r}} = \mathbf{F}(\mathbf{r}, \mathbf{\dot{r}}, t) \tag{1.3}$$

the right-hand side can depend only on position, velocity and explicitly presented time, whereas acceleration \ddot{r} is directly proportional to force F with coefficient 1/m.

^{*&}quot;Axiomata sive Leges Motus" ("Axioms or Laws of Motion") were written by Isaac Newton in his Philosophiæ Naturalis Principia Mathematica, first published in 1687. Reprint (en Latin), 1871. Translated into English by Andrew Motte, 1846.

Here're theses of the dynamics of a collection of particles.

The force acting on the k-th particle (fig. 2)

$$m_k \mathbf{r}_k^i = \mathbf{F}_k, \ \mathbf{F}_k = \mathbf{F}_k^{(e)} + \sum_i \mathbf{F}_{kj}^{(i)}.$$
 (1.4)

 $F_k^{(e)}$ is the external force—such forces emanate from objects outside the considered system. The second addend is the sum of internal forces (force $F_{kj}^{(i)}$ is the interaction induced by the j-th particle on the k-th particle). Internal interactions happen only between elements of the observed system and don't affect (mechanically) anything other. Neither particle interacts with itself, $F_{kk}^{(i)} = \mathbf{0} \ \forall k$.

From (1.4) together with the action–reaction principle

figure 2

$$F_{kj}^{(i)} = -F_{jk}^{(i)} \ \forall k,j \ \Rightarrow \ \sum_{k} \sum_{j} F_{kj}^{(i)} = \mathbf{0},$$

ensues the balance of momentum

$$\left(\sum_{k} m_{k} \mathbf{\dot{r}}_{k}\right)^{\bullet} = \sum_{k} m_{k} \mathbf{\ddot{r}}_{k} = \sum_{k} \mathbf{F}_{k}^{(e)}.$$
 (1.5)

The moment acting on the k-th particle

$$\mathbf{r}_k \times m_k \mathbf{\ddot{r}}_k = \mathbf{r}_k \times \mathbf{F}_k = \mathbf{r}_k \times \mathbf{F}_k^{(e)} + \mathbf{r}_k \times \sum_j \mathbf{F}_{kj}^{(i)}.$$
 (1.6)

It is relative to the reference point.

When in addition to the action–reaction principle, internal interactions between particles are central, that is

$$oldsymbol{F}_{kj}^{(i)} \parallel ig(oldsymbol{r}_k - oldsymbol{r}_jig) \ \Leftrightarrow \ ig(oldsymbol{r}_k - oldsymbol{r}_jig) imes oldsymbol{F}_{kj}^{(i)} = oldsymbol{0},$$

the balance of angular (rotational) momentum comes out*

$$\left(\sum_{k} \mathbf{r}_{k} \times m_{k} \dot{\mathbf{r}}_{k}\right)^{\bullet} = \sum_{k} \mathbf{r}_{k} \times \mathbf{F}_{k}^{(e)}.$$
 (1.7)

Changes in momentum and angular momentum are determined only by external forces $\mathbf{\emph{F}}_{k}^{(e)}.$

. . .

$$\begin{split} *\left(\sum_{k}\boldsymbol{r}_{k}\times m_{k}\boldsymbol{\mathring{r}}_{k}\right)^{\!\bullet} &= \sum_{k}\boldsymbol{\mathring{r}}_{k}\times m_{k}\boldsymbol{\mathring{r}}_{k} + \sum_{k}\boldsymbol{r}_{k}\times m_{k}\boldsymbol{\mathring{r}}_{k} = \sum_{k}\boldsymbol{r}_{k}\times m_{k}\boldsymbol{\mathring{r}}_{k}, \\ \boldsymbol{F}_{kj}^{(i)} &= -\boldsymbol{F}_{jk}^{(i)} \ \text{and} \ \left(\boldsymbol{r}_{k}-\boldsymbol{r}_{j}\right)\times \boldsymbol{F}_{kj}^{(i)} = \boldsymbol{0} \ \Rightarrow \\ &\Rightarrow \sum_{k=1}^{N}\boldsymbol{r}_{k}\times \sum_{j=1}^{N}\boldsymbol{F}_{kj}^{(i)} = \sum_{k=1}^{N}\sum_{j=k+1}^{N}\left(\boldsymbol{r}_{k}-\boldsymbol{r}_{j}\right)\times \boldsymbol{F}_{kj}^{(i)} = \boldsymbol{0} \end{split}$$

§ 2. Absolutely rigid undeformable solid body

An absolutely rigid undeformable body is a solid* body, in which deformation is zero (or negligibly small — so small that it can be neglected). The distance between any two points of a non-deformable rigid body remains constant regardless of external forces exerted on it.

A non-deformable rigid body is modeled using the "continual approach" as a continuous distribution of mass (a material continuum, a continuous medium), rather than using the "discrete approach" (that is modeling a body as a discrete collection of particles).

The mass of a material continuum is continuously distributed in its volume $dm \equiv \rho \, d\mathcal{V} \tag{2.1}$

(ρ is a volume(tric) mass density and $d\mathcal{V}$ is an infinitesimal volume).

A formula with a summation over discrete points becomes a formula for a continuous body by replacing the masses of particles with the mass (2.1) of an infinitesimal volume element $d\mathcal{V}$, and with the following integration over the whole volume of a body. In particular, here are the formulas for the (linear) momentum

$$\sum_{k} m_{k} \dot{\boldsymbol{r}}_{k} \text{ becomes } \int_{\mathcal{Y}} \dot{\boldsymbol{r}} dm \tag{2.2}$$

and the angular (rotational) momentum

$$\sum_{k} \mathbf{r}_{k} \times m_{k} \, \mathbf{\dot{r}}_{k} \quad \text{becomes} \quad \int_{\mathcal{V}} \mathbf{r} \times \mathbf{\dot{r}} \, dm \,. \tag{2.3}$$

To fully describe the location (position, place) of any non-deformable body with all its points, it's enough to choose some unique point as the "pole", to find or to set the location p = p(t) of the chosen point, as well as the angular orientation of a body relative to the pole (fig. 3). As a result, any motion of an undeformable rigid body is either a rotation around the chosen pole, or an equal displacement

^{*&}quot;Rigid" is inelastic and not flexible, and "solid" is not fluid. A solid substance retains its size and shape without a container (as opposed to a fluid substance — liquid or gas).

of the pole and all body's points—translation (linear motion)*, or a combination of them both.

figure 3

 \mathring{e}_i — triplet of orthonormal basis vectors, immovable relatively to the absolute (or any inertial) reference system

Имея неподвижный базис $\stackrel{\circ}{e}_i$ and движущийся вместе с телом базис e_i, \dots

Если добавить базис e_i (этот базис движется вместе с телом), то угловая ориентация тела может быть определена тензором поворота $O \equiv e_i \tilde{e}_i$.

Then any motion of a body is completely described by two functions $\boldsymbol{p}(t)$ and $\boldsymbol{O}(t)$.

Вектор положения некоторой точки тела

$$r = p + x \tag{2.4}$$

 $\widetilde{\boldsymbol{x}} = x_i \widetilde{\boldsymbol{e}}_i, \ \boldsymbol{x} = x_i \boldsymbol{e}_i$ (??), § ??..?? $\boldsymbol{x} = \boldsymbol{O} \cdot \widetilde{\boldsymbol{x}}$

$$\boldsymbol{\dot{r}}=\boldsymbol{\dot{p}}+\boldsymbol{\dot{x}},$$

For a non-deformable rigid body, components x_i don't depend on time: $x_i = \text{constant}(t)$ and $\mathbf{\dot{x}} = x_i \mathbf{\dot{e}}_i$

^{*} A translation can also be thought of as a rotation with the revolution center at the infinity

$$\dot{x} = \dot{O} \cdot \dot{x}$$

$$x_i \dot{e}_i = \dot{O} \cdot x_i \dot{e}_i \iff \dot{e}_i = \dot{O} \cdot \dot{e}_i$$

• • •

The linear momentum and the rotational (angular) momentum of a non-deformable continuous body are described by the following integrals

...

..

$$\int_{\mathcal{V}} oldsymbol{p} dm = oldsymbol{p} \int_{\mathcal{V}} dm = oldsymbol{p} m$$
 $\int_{\mathcal{V}} oldsymbol{x} dm = oldsymbol{\Xi} m, \ oldsymbol{\Xi} \equiv m^{-1} \int_{\mathcal{V}} oldsymbol{x} dm$

Three inertial characteristics of the body:

- ✓ integral mass $m = \int_{\mathcal{V}} dm = \int_{\mathcal{V}} \rho d\mathcal{V}$ the mass of the whole body,
- \checkmark eccentricity vector Ξ measures the offset of the chosen pole from the body's "center of mass",
- ✓ inertia tensor $^{2}\Im$.

The eccentricity vector is equal to the null vector only when the chosen pole coincides with the "center of mass"— the unique point within a body with location vector \boldsymbol{n} , in short

$$egin{aligned} oldsymbol{\Xi} &= oldsymbol{0} \ oldsymbol{x} &= oldsymbol{r} - oldsymbol{p}, \ oldsymbol{\Xi} m &= oldsymbol{\int}_{\mathcal{V}} (oldsymbol{r} - oldsymbol{n}) dm = oldsymbol{0}, \ \int_{\mathcal{V}} oldsymbol{r} dm - oldsymbol{n} \int_{\mathcal{V}} dm = oldsymbol{0} \ \Rightarrow \ oldsymbol{n} = m^{-1} \int_{\mathcal{V}} oldsymbol{r} dm \end{aligned}$$

...

Introducing (pseudo)vector of angular velocity ω , ...

$$oldsymbol{\dot{e}}_i = oldsymbol{\omega} imes oldsymbol{e}_i$$

. . .

inertia tensor ²3

$$^{2}\mathfrak{I} \equiv -\int_{\mathcal{V}} (\boldsymbol{x} \times \boldsymbol{E}) \cdot (\boldsymbol{x} \times \boldsymbol{E}) dm = \int_{\mathcal{V}} (\boldsymbol{x} \cdot \boldsymbol{x} \boldsymbol{E} - \boldsymbol{x} \boldsymbol{x}) dm$$

It is assumed (can be proven?) that the inertia tensor changes only due to a rotation

$$^{2}\mathfrak{J}=\boldsymbol{O}\boldsymbol{\cdot}^{2}\overset{\circ}{\mathfrak{J}}\boldsymbol{\cdot}\boldsymbol{O}^{\mathsf{T}}$$

and its components in basis e_i (moving together with a body) don't change over time

$$^2\mathfrak{I}=\mathfrak{I}_{ab}\boldsymbol{e}_a\boldsymbol{e}_b,\ \mathfrak{I}_{ab}=\mathsf{constant}(t)$$

thus the time derivative is

$$egin{aligned} \mathbf{\hat{z}} &= \mathfrak{I}_{ab} ig(\mathbf{\dot{e}}_a e_b + e_a \mathbf{\dot{e}}_b ig) = \mathfrak{I}_{ab} ig(oldsymbol{\omega} imes e_a e_b + e_a oldsymbol{\omega} imes e_b ig) = \ &= \mathfrak{I}_{ab} ig(oldsymbol{\omega} imes e_a e_b - e_a e_b imes oldsymbol{\omega} ig) = oldsymbol{\omega} imes ^2 \mathfrak{I} - ^2 \mathfrak{I} imes oldsymbol{\omega} \end{aligned}$$

Substitution of (....) into (1.5) and (1.7) gives equations of balance the balance of linear momentum and the balance of rotational momentum— for a model of continuous non-deformable rigid body

...

here f is the external force per mass unit, F is the resultant of external forces (also called the "equally acting force" or the "main vector"), M is the resultant of external couples (the "main couple", the "main moment").

...

- Are there any scenarios for which the center of mass is not almost exactly equivalent to the center of gravity?
- Non-uniform gravity field. In a uniform gravitational field, the center of mass is equal to the center of gravity.

...

Work

$$W(\mathbf{F}, \mathbf{u}) = \mathbf{F} \cdot \mathbf{u}$$

as the exact (full) differential

$$dW = \frac{\partial W}{\partial \mathbf{F}} \cdot d\mathbf{F} + \frac{\partial W}{\partial \mathbf{u}} \cdot d\mathbf{u}$$

by "product rule"

$$dW = d(\mathbf{F} \cdot \mathbf{u}) = d\mathbf{F} \cdot \mathbf{u} + \mathbf{F} \cdot d\mathbf{u}$$
$$\frac{\partial W}{\partial \mathbf{F}} = \mathbf{u}, \ \frac{\partial W}{\partial \mathbf{u}} = \mathbf{F}$$

. . .

Constraints

Imposed on the positions and velocities of particles, there are restrictions of a geometrical or kinematical nature, called constraints.

Holonomic constraints are relations between position variables (and possibly time) which can be expressed as equality like

$$f(q^1, q^2, q^3, \dots, q^n, t) = 0,$$

where $q^1, q^2, q^3, \dots, q^n$ are n parameters (coordinates) that fully describe the system.

A constraint that cannot be expressed as such is nonholonomic.

Holonomic constraint depends only on coordinates and time. It does not depend on velocities or any higher time derivatives.

Velocity-dependent constraints like

$$f(q^1, q^2, \dots, q^n, \dot{q}^1, \dot{q}^2, \dots, \dot{q}^n, t) = 0$$

are mostly not holonomic.

For example, the motion of a particle constrained to lie on a sphere's surface is subject to a holonomic constraint, but if the particle is able to fall off a sphere under the influence of gravity, the constraint becomes non-holonomic. For the first case the holonomic constraint may be given by the equation: $r^2 - a^2 = 0$, where r is the distance from the centre of a sphere of radius a. Whereas the second non-holonomic case may be given by: $r^2 - a^2 \ge 0$.

Three examples of nonholonomic constraints are: when the constraint equations are nonintegrable, when the constraints have inequalities, or with complicated non-conservative forces like friction.

$$\boldsymbol{r}_i = \boldsymbol{r}_i(q^1, q^2, \dots, q^n, t)$$

(assuming n independent parameters/coordinates)

§ 3. Principle of virtual work

Mécanique analytique (1788–89) is a two volume French treatise on analytical mechanics, written by Joseph Louis Lagrange, and published 101 years following Isaac Newton's *Philosophiæ Naturalis Principia Mathematica*.

Joseph Louis Lagrange. Mécanique analytique. Nouvelle édition, revue et augmentée par l'auteur. Tome premier. Mme Ve Courcier, Paris, 1811. 490 pages.

Joseph Louis Lagrange. Mécanique analytique. Troisième édition, revue, corrigée et annotée par M. J. Bertrand. Tome second. Mallet-Bachelier, Paris, 1855. 416 pages.

The historical transition from geometrical methods, as presented in Newton's Principia, to methods of mathematical analysis.

Consider the exact differential of any set of location vectors r_i , that are functions of other variable parameters (coordinates) $q^1, q^2, ..., q^n$ and time t.

The actual displacement is the differential

$$d\mathbf{r}_{i} = \frac{\partial \mathbf{r}_{i}}{\partial t} dt + \sum_{j=1}^{n} \frac{\partial \mathbf{r}_{i}}{\partial q^{j}} dq^{j}$$

Now, imagine an arbitrary path through the configuration space/manifold. This means it has to satisfy the constraints of the system but not the actual applied forces

$$\delta \boldsymbol{r}_i = \sum_{j=1}^n rac{\partial \boldsymbol{r}_i}{\partial q^j} \delta q^j$$

A virtual infinitesimal displacement of a system of particles refers to a change in the configuration of a system as the result of any arbitrary infinitesimal change of location vectors (or coordinates) δr_k , consistent with the forces and constraints imposed on the system at the current/given instant t. This displacement is called "virtual" to distinguish it from an actual displacement of the system occurring in a time interval dt, during which the forces and constraints may be changing.

Assume the system is in equilibrium, that is the full force on each particle vanishes, $\mathbf{F}_i = \mathbf{0} \ \forall i$. Then clearly the term $\mathbf{F}_i \cdot \delta \mathbf{r}_i$, which is the virtual work of force \mathbf{F}_i in displacement $\delta \mathbf{r}_i$, also vanishes for each

particle, $\mathbf{F}_i \cdot \delta \mathbf{r}_i = 0 \ \forall i$. The sum of these vanishing products over all particles is likewise equal to zero:

$$\sum_{i} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i} = 0.$$

Decompose the full force \mathbf{F}_i into the applied (active) force $\mathbf{F}_i^{(a)}$ and the force of constraint $\mathbf{\Phi}_i$,

$$oldsymbol{F}_i = oldsymbol{F}_i^{(a)} + oldsymbol{\Phi}_i$$

We now restrict ourselves to systems for which the net virtual work of the force of every constraint is zero:

$$\sum_{i} \boldsymbol{\Phi}_{i} \cdot \delta \boldsymbol{r}_{i} = 0.$$

We therefore have as the condition for equilibrium of a system that the virtual work of all applied forces vanishes:

$$\sum_{i} \boldsymbol{F}_{i}^{(a)} \cdot \delta \boldsymbol{r}_{i} = 0.$$

— the principle of virtual work.

Note that coefficients $\mathbf{F}_i^{(a)}$ can no longer be thought equal to zero: in common $\mathbf{F}_i^{(a)} \neq 0$, since $\delta \mathbf{r}_i$ are not independent but are bound by constraints.

A virtual displacement of a particle with vector radius r_k is variation δr_k — any infinitesimal change of vector r_k , which is compatible with the constraints. If the system is free, that is there are no constraints, then virtual displacements δr_k are perfectly random.

Связи бывают голономные (holonomic, или геометрические), связывающие только положения (смещения) — they are functions of only the coordinates and probably time

$$c(\mathbf{r},t) = 0 \tag{3.1}$$

— и неголономные (или дифференциальные), содержащие производные координат по времени: $c(\boldsymbol{r}, \boldsymbol{\dot{r}}, t) = 0$ and not интегрируемые till the geometrical constraints.

When all constraints are holonomic, then the virtual displacements of a particle "k" satisfy the equation

$$\sum_{j=1}^{m} \frac{\partial c_j}{\partial \mathbf{r}_k} \cdot \delta \mathbf{r}_k = 0. \tag{3.2}$$

В несвободных системах все силы делятся на две группы: активные и реакции связей. Реакция Φ_k действует со стороны всех материальных ограничителей на частицу "k" и меняется согласно уравнению (3.1) для каждой связи. Связи предполагаются идеальными:

$$\sum_{k} \boldsymbol{\Phi}_{k} \cdot \delta \boldsymbol{r}_{k} = 0 \quad - \tag{3.3}$$

работа реакций на любых виртуальных смещениях равна нулю.

Принцип виртуальной работы із

$$\sum_{k} \left(\mathbf{F}_{k}^{(a)} - m_{k} \mathbf{\tilde{r}}_{k}^{\bullet} \right) \cdot \delta \mathbf{r}_{k} = 0, \tag{3.4}$$

где $m{F}_k^{(a)}$ — лишь активные силы, без реакций связей.

Дифференциальное вариационное уравнение (3.4) может показаться тривиальным следствием закона Ньютона (1.3) и условия идеальности связей (3.3). Однако содержание (3.4) несравненно обширнее. Читатель вскоре увидит, что принцип (3.4) может быть положен в основу механики [91]. The various models of elastic bodies that I describe in this book are based on this principle.

Для примера рассмотрим совершенно жёсткое (недеформируемое) твёрдое тело.

....
$$(2.4) \Rightarrow \delta \mathbf{r} = \delta \mathbf{p} + \delta \mathbf{x}$$
 (begin copied from §??.??)

Варьируя тождество (??), получим $\delta O \cdot O^{\mathsf{T}} = -O \cdot \delta O^{\mathsf{T}}$. Этот тензор антисимметричен, и потому выражается через свой сопутствующий вектор δo как $\delta O \cdot O^{\mathsf{T}} = \delta o \times E$. Приходим к соотношениям

$$\delta \mathbf{O} = \delta \mathbf{o} \times \mathbf{O}, \ \delta \mathbf{o} = -\frac{1}{2} \left(\delta \mathbf{O} \cdot \mathbf{O}^{\mathsf{T}} \right)_{\mathsf{X}},$$
 (3.5)

(end of copied from §??.??)

...

Проявилась замечательная особенность (3.4): это уравнение эквивалентно системе такого порядка, каково число степеней свободы системы, то есть сколько независимых вариаций δr_k мы имеем. Если в системе N точек есть m связей, то число степеней свободы n=3N-m.

...

§ 4. Balance of momentum, rotational momentum, and energy

Эти уравнения баланса могут быть связаны со свойствами пространства and времени [92]. Сохранение импульса (количества движения) в за́мкнутой (изолированной)* системе выводится из однородности пространства (при любом параллельном переносе — трансляции — замкнутой системы как целого свойства этой системы не меняются). Сохранение момента импульса — следствие изотропии пространства (свойства замкнутой системы не меняются при любом повороте этой системы как целого). Энергия же изолированной системы сохраняется, так как время однородно** (энергия $\mathbf{E} \equiv \mathbf{K}(q, \mathbf{q}) + \mathbf{\Pi}(q)$ такой системы не зависит явно от времени).

Уравнения баланса могут быть выведены из принципа виртуальной работы (3.4). Перепишем его в виде

$$\sum_{k} \left(\mathbf{F}_{k}^{(e)} - m_{k} \dot{\mathbf{r}}_{k}^{e} \right) \cdot \delta \mathbf{r}_{k} + \delta W^{(i)} = 0, \tag{4.1}$$

где выделены внешние силы $\pmb{F}_k^{(e)}$ и виртуальная работа внутренних сил $\delta W^{(i)} = \sum_k \sum_i \pmb{F}_{kj}^{(i)} \cdot \delta \pmb{r}_k$.

Предполагается, что внутренние силы не совершают работы на виртуальных смещениях тела как жёсткого целого ($\delta \rho$ и δo — произвольные постоянные векторы, определяющие трансляцию и поворот)

$$\delta \mathbf{r}_k = \delta \rho + \delta \mathbf{o} \times \mathbf{r}_k,
\delta \rho = \text{constant}, \ \delta \mathbf{o} = \text{constant} \Rightarrow \delta W^{(i)} = 0.$$
(4.2)

^{*} За́мкнутая (изолированная) система это такая система частиц, которые взаимодействуют only друг с другом, but ни с какими другими телами.

^{**} Характеристики "однородность" and "изотропность" пространства, "однородность" времени не фигурируют среди аксиом классической механики.

Предпосылки-соображения для этого предположения таковы.

Первое — для случая упругих (потенциальных) внутренних сил. Тогда $\delta W^{(i)} = -\delta \Pi$ — вариация потенциала с противоположным знаком. Достаточно очевидно, что только лишь деформирование меняет Π .

Второе соображение — в том, что суммарный вектор и суммарный момент внутренних сил равен нулю

$$\sum \dots$$

. . .

Принимая (4.2) и подставляя в (4.1) сначала $\delta r_k = \delta \rho$ (трансляция), а затем $\delta r_k = \delta o \times r_k$ (поворот), получаем баланс импульса (...) и баланс момента импульса (...).

. . .

§ 5. Hamilton's principle and Lagrange's equations

Two branches of analytical mechanics are Lagrangian mechanics (using generalized coordinates and corresponding generalized velocities in configuration space) and Hamiltonian mechanics (using coordinates and corresponding momenta in phase space). Both formulations are equivalent by a Legendre transformation on the generalized coordinates, velocities and momenta, therefore both contain the same information for describing the dynamics of a system.

Вариационное уравнение (3.4) удовлетворяется в любой момент времени. Проинтегрируем его* по какому-либо промежутку $[t_1, t_2]$

$$\int_{t_1}^{t_2} \left(\delta \mathbf{K} + \sum_{k} \mathbf{F}_k \cdot \delta \mathbf{r}_k \right) dt - \left[\sum_{k} m_k \mathbf{\mathring{r}}_k \cdot \delta \mathbf{r}_k \right]_{t_1}^{t_2} = 0.$$
 (5.1)

$$* \delta \mathbf{K} = \sum_{k} m_{k} \mathbf{\mathring{r}}_{k} \cdot \delta \mathbf{\mathring{r}}_{k}, \quad \left(\sum_{k} m_{k} \mathbf{\mathring{r}}_{k} \cdot \delta \mathbf{r}_{k}\right)^{\bullet} = \sum_{k} m_{k} \mathbf{\mathring{r}}_{k} \cdot \delta \mathbf{r}_{k} + \underbrace{\sum_{k} m_{k} \mathbf{\mathring{r}}_{k} \cdot \delta \mathbf{\mathring{r}}_{k}}_{\delta \mathbf{K}}$$

$$- \int_{t_{1}}^{t_{2}} \sum_{k} m_{k} \mathbf{\mathring{r}}_{k} \cdot \delta \mathbf{r}_{k} dt = \int_{t_{1}}^{t_{2}} \delta \mathbf{K} dt - \left[\sum_{k} m_{k} \mathbf{\mathring{r}}_{k} \cdot \delta \mathbf{r}_{k}\right]_{t_{1}}^{t_{2}}$$

Без ущерба для общности можно принять $\delta r_k(t_1) = \delta r_k(t_2) = 0$, тогда внеинтегральный член исчезает.

Вводятся обобщённые координаты q^i $(i=1,\ldots,n-$ число степеней свободы). Векторы-радиусы становятся функциями вида $r_k(q^i,t)$, тождественно удовлетворяющими уравнениям связей (3.1). Если связи стационарны, то есть (3.1) не содержат t, то оста- ётся $r_k(q^i)$. Кинетическая энергия превращается в функцию $K(q^i,\dot{q}^i,t)$, где явно входящее t характерно лишь для нестационарных связей.

Весьма существенно понятие обобщённых сил Q_i . Они вводятся через выражение виртуальной работы

$$\sum_{k} \mathbf{F}_{k} \cdot \delta \mathbf{r}_{k} = \sum_{i} Q_{i} \delta q^{i}, \ \ Q_{i} \equiv \sum_{k} \mathbf{F}_{k} \cdot \frac{\partial \mathbf{r}_{k}}{\partial q^{i}}.$$
 (5.2)

Сто́ит акцентировать происхождение обобщённых сил через работу. Установив набор обобщённых координат системы, следует сгруппировать приложенные силы F_k в комплексы Q_i .

Если силы потенциальны с энергией $\Pi = \Pi(q^i, t)$, то

$$\sum_{i} Q_{i} \delta q^{i} = -\delta \Pi, \ Q_{i} = -\frac{\partial \Pi}{\partial q^{i}}.$$
 (5.3)

Явное присутствие t может быть при нестационарности связей или зависимости физических полей от времени.

..

Известны уравнения Lagrange'а не только второго, но и первого рода. Рассмотрим их ради методики вывода, много раз применяемой в этой книге.

При наличии связей (3.1) равенство $\mathbf{F}_k = m_k \ddot{\mathbf{r}}_k$ не следует из вариационного уравнения (3.4), ведь тогда виртуальные смещения $\delta \mathbf{r}_k$ не независимы. Каждое из m (m — число связей) условий для вариаций (3.2) умножим на некий скаляр λ_{α} ($\alpha=1,\ldots,m$) и добавим к (3.4):

$$\sum_{k=1}^{N} \left(\mathbf{F}_{k} + \sum_{\alpha=1}^{m} \lambda_{\alpha} \frac{\partial c_{\alpha}}{\partial \mathbf{r}_{k}} - m_{k} \mathbf{\tilde{r}}_{k} \right) \cdot \delta \mathbf{r}_{k} = 0.$$
 (5.4)

Среди 3N компонент вариаций δr_k зависимых m. Но столько же и множителей Лагранжа: подберём λ_{α} так, чтобы коэффици-

енты(??каки́е?) при зависимых вариациях обратились в нуль. Но при остальных вариациях коэффициенты(??) также должны быть нулями из-за независимости. Следовательно, все выражения в скобках (\cdots) равны нулю — это и есть уравнения Lagrange'а первого рода.

Поскольку для каждой частицы

...

§ 6. Statics

Рассмотрим систему со стационарными (постоянными во времени) связями при статических (не меняющихся со временем) активных силах \mathbf{F}_k . В равновесии $\mathbf{r}_k = \mathbf{constant}$, и формулировка принципа виртуальной работы следующая:

$$\sum_{k} \mathbf{F}_{k} \cdot \delta \mathbf{r}_{k} = 0 \iff \sum_{k} \mathbf{F}_{k} \cdot \frac{\partial \mathbf{r}_{k}}{\partial q^{i}} = Q_{i} = 0.$$
 (6.1)

Существенны обе стороны этого положения: и вариационное уравнение, и равенство нулю обобщённых сил.

Соотношения (6.1) — это самые общие уравнения статики. В литературе распространено узкое представление об уравнениях равновесия как балансе сил и моментов. Но при этом нужно понимать, что набор уравнений равновесия точно соответствует обобщённым координатам. The resultant force (также называемая "равнодействующей силой" или "главным вектором") and the resultant couple ("главный момент") в уравнениях равновесия фигурируют*, поскольку у системы есть степени свободы трансляции и поворота. Огромная популярность сил и моментов связана не столько с известностью статики совершенно недеформируемого твёрдого тела, но с тем, что виртуальная работа внутренних сил на смещениях системы как жёсткого целого равна нулю в любой среде.

^{*} Since describing a composition of any system of forces, acting on the same absolutely rigid body, into a single force and a single couple (about a chosen point) in the book "Éléments de statique" by Louis Poinsot.

Пусть в системе действуют два вида сил: потенциальные с энергией от обобщённых координат $\Pi(q^i)$ и дополнительные внешние \mathring{Q}_i . Из (6.1) следуют уравнения равновесия

$$\frac{\partial \Pi}{\partial q^i} = \mathring{Q}_i,$$

$$d\Pi = \sum_i \frac{\partial \Pi}{\partial q^i} dq^i = \sum_i \mathring{Q}_i dq^i.$$
(6.2)

Здесь содержится нелинейная в общем случае задача статики о связи положения равновесия q^i с нагрузками \mathring{Q}_i .

В линейной системе с квадратичным потенциалом вида $\Pi = \frac{1}{2} C_{ik} q^k q^i \qquad \sum_k C_{ik} q^k = \mathring{Q}_i. \tag{6.3}$

Here figure elements C_{ik} of "the stiffness matrix", coordinates q^k and loads \mathring{Q}_i .

Сказанное возможно обобщить и на континуальные линейные упругие среды.

Матрица жёсткости C_{ik} обычно бывает положительной (таково́ свойство конструкций и в природе, и в технике). Тогда $\det C_{ik} > 0$, линейная алгебраическая система (6.3) однозначно разрешима, а решение её можно заменить минимизацией квадратичной формы

$$\mathscr{E}(q^j) \equiv \Pi - \sum_i \mathring{Q}_i q^i = \frac{1}{2} \sum_{i,k} q^i C_{ik} q^k - \sum_i \mathring{Q}_i q^i \to \min.$$
 (6.4)

Бывает однако, что конструкция неудачно спроектирована, тогда матрица жёсткости сингулярна (необратима) и det $C_{ik}=0$ (или же весьма близок к нулю — nearly singular матрица с det $C_{ik}\approx 0$). Тогда решение линейной проблемы статики (6.3) существует лишь при ортогональности столбца нагрузок \mathring{Q}_i всем линейно независимым решениям однородной сопряжённой системы

...

Известные теоремы статики линейно упругих систем легко доказываются в случае конечного числа степеней свободы. Теорема Clapeyron'а выражается равенством

...

Reciprocal work theorem ("работа W_{12} сил первого варианта на смещениях от сил второго равна работе W_{21} сил второго варианта на смещениях от сил первого") мгновенно выводится из (6.3):

(...)

Тут существенна симметрия матрицы жёсткости C_{ij} , то есть консервативность системы.

...

Но вернёмся к проблеме (6.2), иногда называемой теоремой Lagrange'a. Её можно обратить преобразованием Лежандра Legendre (involution) transform(ation):

$$d\left(\sum_{i}\mathring{Q}_{i}q^{i}\right) = \sum_{i}d\left(\mathring{Q}_{i}q^{i}\right) = \sum_{i}\left(q^{i}d\mathring{Q}_{i} + \mathring{Q}_{i}dq^{i}\right),$$

$$d\left(\sum_{i}\mathring{Q}_{i}q^{i}\right) - \sum_{i}\mathring{Q}_{i}dq^{i} = \sum_{i}q^{i}d\mathring{Q}_{i},$$

$$d\left(\sum_{i}\mathring{Q}_{i}q^{i} - \Pi\right) = \sum_{i}q^{i}d\mathring{Q}_{i} = \sum_{i}\frac{\partial\widehat{\Pi}}{\partial\mathring{Q}_{i}}d\mathring{Q}_{i};$$

$$q^{i} = \frac{\partial\widehat{\Pi}}{\partial\mathring{Q}_{i}}, \ \widehat{\Pi}(\mathring{Q}_{i}) = \sum_{i}\mathring{Q}_{i}q^{i} - \Pi.$$

$$(6.5)$$

Это теорема Castigliano, $\widehat{\Pi}$ называется дополнительной энергией. В линейной системе $(6.3) \Rightarrow \widehat{\Pi} = \Pi$. Теорема (6.5) бывает очень полезна — когда легко находится $\widehat{\Pi}(\mathring{Q}_i)$. Встречаются так называемые статически определимые системы, в которых все внутренние силы удаётся найти лишь из баланса сил и моментов. Для них (6.5) эффективна.

В отличие от линейной задачи (6.3), нелинейная задача (6.2) может не иметь решений вовсе или же иметь их несколько.

. . .

Рассказ о статике в общей механике закончим the d'Alembert's principle: уравнения динамики отличаются от статических лишь наличием дополнительных "сил инерции" $m_k \hat{r}_k$. Принцип d'Alembert'а достаточно очевиден, но бездумное применение может

привести к ошибкам. Например, уравнения вязкой жидкости в статике и в динамике отличаются не только лишь инерционными добавками. Но для твёрдых упругих тел принцип d'Alembert'a полностью справедлив.

§ 7. Mechanics of relative motion

До этого не ставился вопрос о системе отсчёта, всё рассматривалось в некой "абсолютной" системе или одной из инерциальных систем (§ 1). Теперь представим себе две системы: "абсолютную" и "подвижную"

...
$$\overset{\circ}{r} = r + x$$

$$r = \rho_i \overset{\circ}{e}_i, \quad x = x_i e_i$$

$$\overset{\circ}{r} = \overset{\bullet}{r} + \overset{\bullet}{x}$$

$$\overset{\bullet}{r} = \dot{\rho}_i \overset{\bullet}{e}_i, \quad \overset{\bullet}{x} = (x_i e_i)^{\bullet} = \overset{\bullet}{x}_i e_i + x_i \overset{\bullet}{e}_i$$

$$x_i \neq \text{constant} \Rightarrow \overset{\bullet}{x}_i \neq 0$$
By $(???, \S?????)$

$$\overset{\bullet}{e}_i = \omega \times e_i \Rightarrow x_i \overset{\bullet}{e}_i = \omega \times x_i e_i = \omega \times x$$

$$\overset{\bullet}{x} = \overset{\bullet}{x}_i e_i + \omega \times x$$

$$v \equiv \overset{\bullet}{r} = \overset{\bullet}{r} + \overset{\bullet}{x} = \underbrace{\overset{\bullet}{r} + \omega \times x}_{v_e} \underbrace{-\omega \times x + \overset{\bullet}{x}}_{v_{rel}}$$

$$\overset{\bullet}{x} - \omega \times x = \overset{\bullet}{x}_i e_i \equiv v_{rel} - \text{relative velocity}, \quad \overset{\bullet}{r} + \omega \times x \equiv v_e$$

$$v = v_e + v_{rel}$$
...
$$\overset{\bullet}{r} = \overset{\bullet}{r} + \overset{\bullet}{x}$$
(7.1)

$$\dot{\ddot{r}} = \dot{r} + \dot{x}$$

$$\ddot{\ddot{r}} = \ddot{r} + \ddot{x}$$

$$w \equiv \dot{v} = \ddot{\ddot{r}} = \ddot{r} + \ddot{x}$$

$$\dot{\vec{r}} = \ddot{\rho}_i \mathring{e}_i, \quad \ddot{x} = (x_i e_i)^{\bullet \bullet} = (\dot{x}_i e_i + x_i \dot{e}_i)^{\bullet} = \ddot{x}_i e_i + \dot{x}_i \dot{e}_i + \dot{x}_i \dot{e}_i + x_i \ddot{e}_i$$

$$\dot{e}_i = \omega \times e_i \Rightarrow \ddot{e}_i = (\omega \times e_i)^{\bullet} = \dot{\omega} \times e_i + \omega \times \dot{e}_i = \dot{\omega} \times e_i + \omega \times (\omega \times e_i)$$

$$x_i \ddot{e}_i = x_i (\omega \times e_i)^{\bullet} = \dot{\omega} \times x_i e_i + \omega \times (\omega \times x_i e_i) = \dot{\omega} \times x + \omega \times (\omega \times x)$$

$$\begin{split} \mathring{\boldsymbol{e}}_i &= \boldsymbol{\omega} \times \boldsymbol{e}_i \, \Rightarrow \, \mathring{\boldsymbol{x}}_i \mathring{\boldsymbol{e}}_i = \boldsymbol{\omega} \times \mathring{\boldsymbol{x}}_i \boldsymbol{e}_i = \boldsymbol{\omega} \times \boldsymbol{v}_{rel} \\ \mathring{\boldsymbol{x}}_i \boldsymbol{e}_i &\equiv \boldsymbol{w}_{rel} - \text{ relative acceleration} \\ 2\mathring{\boldsymbol{x}}_i \mathring{\boldsymbol{e}}_i &= 2\boldsymbol{\omega} \times \boldsymbol{v}_{rel} \equiv \boldsymbol{w}_{Cor} - \text{ Coriolis acceleration} \\ \mathring{\boldsymbol{x}} &= \boldsymbol{w}_{rel} + \boldsymbol{w}_{Cor} + x_i \mathring{\boldsymbol{e}}_i \\ \left(x_i \mathring{\boldsymbol{e}}_i\right)^{\bullet} &= \mathring{\boldsymbol{x}}_i \mathring{\boldsymbol{e}}_i + x_i \mathring{\boldsymbol{e}}_i = \frac{1}{2}\boldsymbol{w}_{Cor} + x_i \mathring{\boldsymbol{e}}_i \\ \left(x_i \mathring{\boldsymbol{e}}_i\right)^{\bullet} &= \left(\boldsymbol{\omega} \times \boldsymbol{x}\right)^{\bullet} = \mathring{\boldsymbol{\omega}} \times \boldsymbol{x} + \boldsymbol{\omega} \times \mathring{\boldsymbol{x}} \\ \boldsymbol{\omega} \times \mathring{\boldsymbol{x}} &= \boldsymbol{\omega} \times \left(\mathring{\boldsymbol{x}}_i \boldsymbol{e}_i + \boldsymbol{\omega} \times \boldsymbol{x}\right) = \underbrace{\boldsymbol{\omega} \times \mathring{\boldsymbol{x}}_i \boldsymbol{e}_i}_{\mathring{\boldsymbol{e}}_i + \boldsymbol{\omega}} + \boldsymbol{\omega} \times \left(\boldsymbol{\omega} \times \boldsymbol{x}\right) \\ \mathring{\boldsymbol{x}}_i \mathring{\boldsymbol{e}}_i &= \frac{1}{2}\boldsymbol{w}_{Cor} \end{split}$$

. . .

§ 8. Small oscillations (vibrations)

If the statics of a linear system is described by equation (6.3), then in the dynamics we have

$$\sum_{k} \left(A_{ik} \dot{q}_k^{\bullet} + C_{ik} q^k \right) = \dot{Q}_i(t), \tag{8.1}$$

where A_{ik} is the symmetric and positive "matrix of kinetic energy".

Any description of oscillations almost always includes the term "mode". A mode of vibration can be defined as a way of vibrating or a pattern of vibration. A normal mode is a pattern of periodic motion, when all parts of an oscillating system move sinusoidally with the same frequency and with a fixed phase relation. The free motion described by the normal modes takes place at fixed frequencies — the natural resonant frequencies of an oscillating system.

The most generic motion of an oscillating system is some superposition of normal modes of this system.*

^{*} The modes are "normal" in the sense that they move independently, and an excitation of one mode will never cause a motion of another mode. In mathematical terms, normal modes are orthogonal to each other. In music, normal modes of vibrating instruments (strings, air pipes, percussion and others) are called "harmonics" or "overtones".

A research of an oscillating system most often begins with orthogonal (normal) "modes"— harmonics, free (without any driving or damping force) sinusoidal oscillations

$$q^k(t) = q_k^* \sin \omega_k t.$$

Multipliers $q_k^* = \text{constant}$ are orthogonal (normal) "modes" of oscillation, ω_k are natural (resonant, eigen-) frequencies. This set, dependent on the structure of an oscillating object, the materials and the boundary conditions, is found from the eigenvalue problem

$$\mathring{Q}_{i} = 0, \quad \mathring{q}_{k}^{*} = -\omega_{k}^{2} \mathring{q}_{k}^{*} \sin \omega_{k} t, \quad (8.1) \Rightarrow
\Rightarrow \sum_{k} \left(C_{ik} - A_{ik} \omega_{k}^{2} \right) \mathring{q}_{k}^{*} \sin \omega_{k} t = 0$$
(8.2)

...

The Duhamel's integral is a way of calculating the response of linear systems to an arbitrary time-varying external perturbation.

...

Bibliography

In a long list of the books about the classical mechanics, the reader can find the works of both the specialists in mechanics [86, 87, 93, 94, 95] and the broadly oriented theoretical physicists [92, 88]. The book by Felix R. Gantmacher (Феликс Р. Гантмахер) [91] with the compact but complete narration of the fundamentals is pretty interesting.

LIST OF REFERENCED PUBLICATIONS

- 1. **Antman, Stuart S.** The theory of rods. In: Truesdell C. (editor) Mechanics of solids. Volume II. Linear theories of elasticity and thermoelasticity. Linear and nonlinear theories of rods, plates, and shells. Springer-Verlag, 1973. Pages 641–703.
- 2. **Алфутов Н. А.** Основы расчета на устойчивость упругих систем. Издание 2-е. М.: Машиностроение, 1991. 336 с.
- 3. **Артоболевский И. И.**, **Бобровницкий Ю. И.**, **Генкин М. Д.** Введение в акустическую динамику машин. «Наука», 1979. 296 с.
- 4. **Ахтырец Г. П.**, **Короткин В. И.** Использование МКЭ при решении контактной задачи теории упругости с переменной зоной контакта // Известия северо-кавказского научного центра высшей школы (СКНЦ ВШ). Серия естественные науки. Ростов-на-Дону: Издательство РГУ, 1984. № 1. С. 38–42.
- 5. **Ахтырец Г. П.**, **Короткин В. И.** К решению контактной задачи с помощью метода конечных элементов // Механика сплошной среды. Ростов-на-Дону: Издательство РГУ, 1988. С. 43–48.
- 6. **Бидерман В. Л.** Механика тонкостенных конструкций. М.: Машиностроение, 1977. 488 с.
- 7. **Вениамин И. Блох**. Теория упругости. Харьков: Издательство Харьковского Государственного Университета, 1964. 484 с.
- 8. Власов В. З. Тонкостенные упругие стержни. М.: Физматгиз, 1959. $568\ c$
- 9. **Гольденвейзер А. Л.** Теория упругих тонких оболочек. «Наука», 1976. 512 с.
- 10. **Гольденвейзер А. Л.**, **Лидский В. Б.**, **Товстик П. Е.** Свободные колебания тонких упругих оболочек. «Наука», 1979. 383 с.
- 11. **Gordon, James E.** Structures, or Why things don't fall down. Penguin Books, 1978. 395 pages. *Перевод:* **Гордон** Дж. Конструкции, или почему не ломаются вещи. «Мир», 1980. 390 с.

- 12. **Gordon, James E.** The new science of strong materials, or Why you don't fall through the floor. Penguin Books, 1968. 269 pages. *Перевод:* Гордон Дж. Почему мы не проваливаемся сквозь пол. «Мир», 1971. 272 с.
- 13. **Александр Н. Гузь**. Устойчивость упругих тел при конечных деформациях. Киев: "Наукова думка", 1973. 271 с.
- Перевод: Де Вит Р. Континуальная теория дисклинаций. «Мир», 1977. 208 с.
- 15. **Джанелидзе Г. Ю.**, **Пановко Я. Г.** Статика упругих тонкостенных стержней. Л., М.: Гостехиздат, 1948. 208 с.
- 16. **Димитриенко Ю. И.** Тензорное исчисление: Учебное пособие для вузов. М.: "Высшая школа", 2001. 575 с.
- 17. **Владимир В. Елисеев** Одномерные и трёхмерные модели в механике упругих стержней. Диссертация на соискание учёной степени доктора физико-математических наук. ЛГТУ, 1991. 300 с.
- 18. **Eshelby, John D.** The continuum theory of lattice defects // Solid State Physics, Academic Press, vol. 3, 1956, pp. 79–144. *Перевод:* Эшелби Дж. Континуальная теория дислокаций. М.: ИИЛ, 1963. 247 с.
- 19. **Журавлёв В. Ф.** Основы теоретической механики. 3-е издание, переработанное. М.: ФИЗМАТЛИТ, 2008. 304 с.
- 20. Зубов Л. М. Методы нелинейной теории упругости в теории оболочек. Изд-во Ростовского ун-та, 1982. 144 с.
- 21. **Кап, Арнольд М.** Теория упругости. 2-е издание, стереотипное. Санкт-Петербург: Издательство «Лань», 2002. 208 с.
- 22. **Качанов Л. М.** Основы механики разрушения. «Наука», 1974. 312 с.
- 23. **Керштейн И. М., Клюшников В. Д., Ломакин Е. В., Шестериков С. А.** Основы экспериментальной механики разрушения. Изд-во МГУ, 1989. 140 с.
- 24. Cosserat E. et Cosserat F. Théorie des corps déformables. Paris: A. Hermann et Fils, 1909. 226 p.
- 25. Cottrell, Alan. Theory of crystal dislocations. Gordon and Breach (Documents on Modern Physics), 1964. 94 р. Перевод: Коттрел А. Теория дислокаций. «Мир», 1969. 96 с.

- 26. **Kröner, Ekkehart** (i) Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer-Verlag, 1958. 180 pages. (ii) Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen // Archive for Rational Mechanics and Analysis. Volume 4, Issue 1 (January 1959), pp. 273–334. Перевод: **Крёнер Э.** Общая континуальная теория дислокаций и собственных напряжений. «Мир», 1965. 104 с.
- 27. Augustus Edward Hough Love. A treatise on the mathematical theory of elasticity. Volume I. Cambridge, 1892. 354 p. Volume II. Cambridge, 1893. 327 p. 4th edition. Cambridge, 1927. Dover, 1944. 643 p. Перевод: Аугустус Ляв Математическая теория упругости. М.: ОНТИ, 1935. 674 с.
- 28. **Лурье А. И.** Нелинейная теория упругости. «Наука», 1980. 512 с. *Translation:* Lurie, A. I. Nonlinear Theory of Elasticity: translated from the Russian by K. A. Lurie. Elsevier Science Publishers B.V., 1990. 617 р.
- 29. **Лурье А. И.** Теория упругости. «Наука», 1970. 940 с. *Translation:* **Lurie, A. I.** Theory of Elasticity (translated by A. Belyaev). Springer-Verlag, 2005. 1050 р.
- 30. **Лурье А. И.** Пространственные задачи теории упругости. М.: Гостехиздат, 1955. 492 с.
- 31. **Лурье А. И.** Статика тонкостенных упругих оболочек. М., Л.: Гостехиздат, 1947. 252 с.
- 32. **George E. Mase**. Schaum's outline of theory and problems of continuum mechanics (Schaum's outline series). McGraw-Hill, 1970. 221 р. *Перевод:* Джордж Мейз. Теория и задачи механики сплошных сред. Издание 3-е. URSS, 2010. 320 с.
- 33. Ernst Melan, Heinz Parkus. Wärmespannungen infolge stationärer Temperaturfelder. Wein, Springer-Verlag, 1953. 114 Seiten. Перевод: Мелан Э., Паркус Г. Термоупругие напряжения, вызываемые стационарными температурными полями. М.: Физматгиз, 1958. 167 с.
- 34. **Меркин Д. Р.** Введение в механику гибкой нити. «Наука», 1980. $240~\rm c.$
- 35. **Меркин Д. Р.** Введение в теорию устойчивости движения. 3-е издание. «Наука», 1987. 304 с.

- 36. Mindlin, Raymond David and Tiersten, Harry F. Effects of couplestresses in linear elasticity // Archive for Rational Mechanics and Analysis. Volume 11, Issue 1 (January 1962), pp. 415–448. Перевод: Миндлин Р. Д., Тирстен Г. Ф. Эффекты моментных напряжений в линейной теории упругости // Механика: Сборник переводов и обзоров иностранной периодической литературы. «Мир», 1964. № 4 (86). С. 80–114.
- 37. **Морозов Н. Ф.** Математические вопросы теории трещин. «Наука», 1984. 256 с.
- 38. Naghdi P. M. The theory of shells and plates. In: Truesdell C. (editor) Mechanics of solids. Volume II. Linear theories of elasticity and thermoelasticity. Linear and nonlinear theories of rods, plates, and shells. Springer-Verlag, 1973. Pages 425–640.
- 39. Witold Nowacki. Dynamiczne zagadnienia termosprężystości. Warszawa: Państwowe wydawnictwo naukowe, 1966. 366 stron. Translation: Nowacki, Witold. Dynamic problems of thermoelasticity. Leyden: Noordhoff international publishing, 1975. 436 pages. Перевод: Витольд Новацкий. Динамические задачи термоупругости. «Мир», 1970. 256 с.
- 40. **Witold Nowacki**. Teoria sprężystości. Warszawa: Państwowe wydawnictwo naukowe, 1970. 769 stron. *Перевод:* **Новацкий Витоль**д. Теория упругости. «Мир», 1975. 872 с.
- 41. **Witold Nowacki**. Efekty elektromagnetyczne w stałych ciałach odkształcalnych. Państwowe wydawnictwo naukowe, 1983. 147 stron. *Перевод:* **Новацкий В.** Электромагнитные эффекты в твёрдых телах. «Мир», 1986. 160 с.
- 42. **Новожилов В. В.** Теория тонких оболочек. 2-е издание. Л.: Судпромгиз, 1962. 431 с.
- 43. Пановко Я.Г., Бейлин Е.А. Тонкостенные стержни и системы, составленные из тонкостенных стержней. В сборнике: Рабинович И.М. (редактор) Строительная механика в СССР 1917—1967. М.: Стройиздат, 1969. С. 75—98.
- 44. Пановко Я. Г., Губанова И. И. Устойчивость и колебания упругих систем. Современные концепции, парадоксы и ошибки. 4-е издание. «Наука», 1987. 352 с.
- 45. **Heinz Parkus**. Instationäre Wärmespannungen. Springer-Verlag, 1959. 176 Seiten. *Перевод:* Паркус Г. Неустановившиеся температурные напряжения. М.: Физматгиз, 1963. 252 с.

- Партон В. З. Механика разрушения: от теории к практике. «Наука», 1990. 240 с.
- 47. **Партон В. З.**, **Кудрявцев Б. А.** Электромагнитоупругость пьезоэлектрических и электропроводных тел. «Наука», 1988. 472 с.
- 48. **Партон В. З.**, **Морозов Е. М.** Механика упругопластического разрушения. 2-е издание. «Наука», 1985. 504 с.
- 49. **Подстригач Я. С.**, **Бурак Я. И.**, **Кондрат В. Ф.** Магнитотермоупругость электропроводных тел. Киев: Наукова думка, 1982. 296 с.
- Поручиков В. Б. Методы динамической теории упругости. «Наука», 1986. 328 с.
- 51. Southwell, Richard V. An introduction to the theory of elasticity for engineers and physicists. Dover Publications, 1970. 509 pages. *Перевод:* Саусвелл Р. В. Введение в теорию упругости для инженеров и физиков. М.: ИИЛ, 1948. 675 с.
- Седов Л. И. Механика сплошной среды. Том 2. 6-е издание. «Лань», 2004. 560 с.
- 53. Ciarlet, Philippe G. Mathematical elasticity. Volume 1: Three-dimensional elasticity. Elsevier Science Publishers B. V., 1988. xlii + 452 pp. Перевод: Филипп Сьярле Математическая теория упругости. «Мир», 1992. 472 с.
- 54. Adhémar-Jean-Claude Barré de Saint-Venant. Mémoire sur la torsion des prismes, avec des considérations sur leur flexion ainsi que sur l'équilibre intérieur des solides élastiques en général, et des formules pratiques pour le calcul de leur résistance à divers efforts s'exerçant simultanément. Memoires presentes par divers savants a l'Academie des sciences, t. 14, année 1856. 327 pages. Перевод на русский язык: Сен-Венан Б. Мемуар о кручении призм. Мемуар об изгибе призм. М.: Физматгиз, 1961. 518 страниц.
- 55. Adhémar-Jean-Claude Barré de Saint-Venant. Mémoire sur la flexion des prismes Journal de mathematiques pures et appliquees, publie par J. Liouville. 2me serie, t. 1, année 1856. Перевод на русский язык: Сен-Венан Б. Мемуар о кручении призм. Мемуар об изгибе призм. М.: Физматгиз, 1961. 518 страниц.
- 56. **Cristian Teodosiu**. Elastic models of crystal defects. Springer-Verlag, 1982. 336 pages. *Перевод:* **Теодосиу К.** Упругие модели дефектов в кристаллах. «Мир», 1985. 352 с.
- 57. **Тимошенко Степан П.** Устойчивость стержней, пластин и оболочек. «Наука», 1971. 808 с.

- 58. **Тимошенко Степан П.**, **Войновский-Кригер С.** Пластинки и оболочки. «Наука», 1966. 635 с.
- 59. Stephen P. Timoshenko and James N. Goodier. Theory of Elasticity. 2nd edition. McGraw-Hill, 1951. 506 pages. 3rd edition. McGraw-Hill, 1970. 567 pages. Перевод: Тимошенко Степан П., Джеймс Гудьер. Теория упругости. 2-е издание. «Наука», 1979. 560 с.
- 60. **Truesdell, Clifford A.** A first course in rational continuum mechanics. Volume 1: General concepts. 2nd edition. Academic Press, 1991. 391 pages. *Перевод:* **Трусделл К.** Первоначальный курс рациональной механики сплошных сред. «Мир», 1975. 592 с.
- 61. **Феодосьев В. И.** Десять лекций-бесед по сопротивлению материалов. 2-е издание. «Наука», 1975. 173 с.
- 62. *Перевод:* **Хеллан К.** Введение в механику разрушения. «Мир», 1988. 364 с.
- 63. *Перевод*: **Циглер Г.** Основы теории устойчивости конструкций. «Мир», 1971. 192 с.
- 64. **Черепанов Г. П.**. Механика хрупкого разрушения. «Наука», 1974. 640 с.
- Черны́х К.Ф. Введение в анизотропную упругость. «Наука», 1988.
 192 с.
- 66. **Шермергор Т. Д.** Теория упругости микронеоднородных сред. «Наука», 1977. 400 с.

Oscillations and waves

- 67. Timoshenko, Stephen P.; Young, Donovan H.; William Weaver, jr. Vibration problems in engineering. 5th edition. John Wiley & Sons, 1990. 624 pages. *Перевод:* Тимошенко Степан П., Янг Донован Х., Уильям Уивер. Колебания в инженерном деле. М.: Машиностроение, 1985. 472 с.
- 68. Бабаков И. М. Теория колебаний. 4-е издание. «Дрофа», 2004. 592 с.
- 69. **Бидерман В. Л.** Теория механических колебаний. М.: Высшая школа, 1980. 408 с.
- 70. **Болотин В. В.** Случайные колебания упругих систем. «Наука», 1979. 336 с.
- 71. Гринченко В. Т., Мелешко В. В. Гармонические колебания и волны в упругих телах. Киев: Наукова думка, 1981. 284 с.

- Whitham, Gerald B. Linear and nonlinear waves. John Wiley & Sons, 1974. 636 pages. Перевод: Уизем Дж. Линейные и нелинейные волны. «Мир», 1977. 624 с.
- 73. Kolsky, Herbert. Stress waves in solids. Oxford, Clarendon Press, 1953. 211 р. 2nd edition. Dover Publications, 2012. 224 р. *Перевод:* Кольский Г. Волны напряжения в твёрдых телах. М.: ИИЛ, 1955. 192 с.
- 74. **Энгельбрехт Ю. К.**, **Нигул У. К.** Нелинейные волны деформации. «Наука», 1981. 256 с.
- Слепян Л. И. Нестационарные упругие волны. Л.: Судостроение, 1972. 376 с.
- 76. **Григолюк Э. И.**, **Селезов И. Т.** Неклассические теории колебаний стержней, пластин и оболочек. (Итоги науки и техники. Механика твёрдых деформируемых тел. Том 5.) М.: ВИНИТИ, 1973. 272 с.

Composites

- 77. **Christensen, Richard M.** Mechanics of composite materials. New York: Wiley, 1979. 348 р. *Перевод:* **Кристенсен Р.** Введение в механику композитов. «Мир», 1982. 336 с.
- 78. **Кравчук А. С.**, **Майборода В. П.**, **Уржумцев Ю. С.** Механика полимерных и композиционных материалов. Экспериментальные и численные методы. «Наука», 1985. 304 с.
- 79. **Победря Б. Е.** Механика композиционных материалов. Изд-во Моск. ун-та, 1984. 336 с.
- 80. **Черепанов Г. П.** Механика разрушения композиционных материалов. «Наука», 1983. 296 с.
- 81. **Бахвалов Н. С.**, **Панасенко Г. П.** Осреднение процессов в периодических средах. Математические задачи механики композиционных материалов. «Наука», 1984. 352 с.
- 82. Bensoussan A., Lions J.-L., Papanicolaou G. Asymptotic analysis for periodic structures. Amsterdam: North-Holland, 1978. 700 p.

The finite element method

- 83. **Зенкевич О.**, **Морган К.** Конечные элементы и аппроксимация. «Мир», 1986. 318 с.
- 84. **Шабров Н. Н.** Метод конечных элементов в расчётах деталей тепловых двигателей. Л.: Машиностроение, 1983. 212 с.

- 85. Feynman, Richard Ph. Leighton, Robert B. Sands, Matthew. The Feynman Lectures on Physics. New millennium edition. Volume II: Mainly electromagnetism and matter. Basic Books, 2011. 566 pages. Online: The Feynman Lectures on Physics. Online edition.
- 86. Goldstein, Herbert; Poole, Charles P.; Safko, John L. Classical Mechanics. 3rd edition. Addison–Wesley, 2001. 638 pages. Перевод: Голдстейн Г., Пул Ч., Сафко Дж. Классическая механика. URSS, 2012. 828 с.
- 87. **Pars, Leopold A.** A treatise on analytical dynamics. London: Heinemann, 1965. 641 pages. *Перевод:* Парс Л. А. Аналитическая динамика. «Наука», 1971. 636 с.
- 88. **Ter Haar, Dirk**. Elements of hamiltonian mechanics. 2nd edition. Pergamon Press, 1971. 201 pages. *Перевод:* **Tep Xaap** Д. Основы гамильтоновой механики. «Наука», 1974. 223 с.
- 89. **Беляев Н. М.**, **Рядно А. А.** Методы теории теплопроводности. М.: Высшая школа, 1982. В 2-х томах. Том 1, 328 с. Том 2, 304 с.
- 90. **Бредов М. М.**, **Румянцев В. В.**, **Топтыгин И. Н.** Классическая электродинамика. «Наука», 1985. 400 с.
- 91. **Феликс Р. Гантмахер** Лекции по аналитической механике. Издание 2-е. «Наука», 1966. 300 с.
- 92. **Ландау Л. Д.**, **Лифшиц Е. М.** Краткий курс теоретической физики. Книга 1. Механика. Электродинамика. «Наука», 1969. 271 с.
- 93. **Лойцянский Л. Г.**, **Лурье А. И.** Курс теоретической механики: В 2-х томах. «Дрофа», 2006. Том 1: Статика и кинематика. 9-е издание. 447 с. Том 2: Динамика. 7-е издание. 719 с.
- 94. Лурье А. И. Аналитическая механика. М.: Физматгиз, 1961. 824 с.
- 95. **Ольховский И. И.** Курс теоретической механики для физиков. 3-е издание. Изд-во МГУ, 1978. $575~\mathrm{c}$.
- 96. **Тамм И. Е.** Основы теории электричества. 11-е издание. М.: Физматлит, 2003. 616 с.

Tensors and tensor calculus

97. **McConnell, Albert Joseph**. Applications of tensor analysis. New York: Dover Publications, 1957. 318 pages. *Перевод:* **Мак-Коннел А. Дж.** Введение в тензорный анализ с приложениями к геометрии, механике и физике. М.: Физматгиз, 1963. 412 с.

- 98. **Schouten, Jan A.** Tensor analysis for physicists. 2nd edition. Dover Publications, 2011. 320 pages. *Перевод:* **Схоутен Я. А.** Тензорный анализ для физиков. «Наука», 1965. 456 с.
- 99. Sokolnikoff, I. S. Tensor analysis: Theory and applications to geometry and mechanics of continua. 2nd edition. John Wiley & Sons, 1965. 361 pages. *Перевод:* Сокольников И. С. Тензорный анализ (с приложениями к геометрии и механике сплошных сред). «Наука», 1971. 376 с.
- 100. **Рашевский П. К.** Риманова геометрия и тензорный анализ. Издание 3-е. «Наука», 1967. 664 с.

Variational methods

- 101. Karel Rektorys. Variační metody v inženýrských problémech a v problémech matematické fyziky. SNTL (Státní nakladatelství technické literatury), 1974. 593 s. *Translation:* Rektorys, Karel. Variational Methods in Mathematics, Science and Engineering. Second edition. D. Reidel Publishing Company, 1980. 571 р. *Перевод:* Ректорис К. Вариационные методы в математической физике. «Мир», 1985. 590 с.
- 102. Washizu, Kyuichiro. Variational methods in elasticity and plasticity. 3rd edition. Pergamon Press, Oxford, 1982. 630 pages. *Перевод:* Васидзу К. Вариационные методы в теории упругости и пластичности. «Мир», 1987. 542 с.
- 103. **Бердичевский В. Л.** Вариационные принципы механики сплошной среды. «Наука», 1983. 448 с.
- 104. **Михлин С. Г.** Вариационные методы в математической физике. Издание 2-е. «Наука», 1970. 512 с.

Perturbation methods (asymptotic methods)

- 105. **Cole, Julian D.** Perturbation methods in applied mathematics. Blaisdell Publishing Co., 1968. 260 pages. *Перевод:* **Коул Дж.** Методы возмущений в прикладной математике. «Мир», 1972. 274 с.
- 106. **Nayfeh, Ali H.** Introduction to perturbation techniques. Wiley, 1981. 536 pages. *Перевод:* **Найфэ Али X.** Введение в методы возмущений. «Мир», 1984. 535 с.
- 107. Nayfeh, Ali H. Perturbation methods. Wiley-VCH, 2004. 425 pages.
- 108. **Боголюбов Н. Н.**, **Митропольский Ю. А.** Асимптотические методы в теории нелинейных колебаний. «Наука», 1974. 504 с.

- 109. **Васильева А. Б.**, **Бутузов В. Ф.** Асимптотические методы в теории сингулярных возмущений. М.: Высшая школа, 1990. 208 с.
- 110. **Зино И. Е.**, **Тропп Э. А.** Асимптотические методы в задачах теории теплопроводности и термоупругости. Изд-во ЛГУ, 1978. 224 с.
- 111. **Моисеев Н. Н.** Асимптотические методы нелинейной механики. 2-е издание. «Наука», 1981. 400 с.
- 112. **Товстик П. Е.** Устойчивость тонких оболочек: асимптотические методы. «Наука», 1995. 319 с.

Other topics of mathematics

- 113. Collatz, Lothar. Eigenwertaufgaben mit technischen Anwendungen. 2. Auflage. Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 1963. 500 Seiten. Перевод: Коллатц Л. Задачи на собственные значения (с техническими приложениями). «Наука», 1968. 504 с.
- 114. Dwight, Herbert Bristol. Tables of integrals and other mathematical data. 4th edition. The Macmillan Co., 1961. 336 pages. Перевод: Двайт Г. Б. Таблицы интегралов и другие математические формулы. Издание 4-е. «Наука», 1973. 228 с.
- 115. **Kamke, Erich**. Differentialgleichungen, Lösungsmethoden und Lösungen. Bd. I. Gewöhnliche Differentialgleichungen. 10. Auflage. Teubner Verlag, 1977. 670 Seiten. *Перевод:* **Камке Э.** Справочник по обыкновенным дифференциальным уравнениям. 6-е издание. «Лань», 2003. 576 с.
- 116. Korn, Granino A. and Korn, Theresa M. Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. Revised edition. Dover Publications, 2013. 1152 радев. Перевод: Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. «Наука», 1974. 832 с.
- 117. **Лаврентьев М. А.**, **Шабат Б. В.** Методы теории функций комплексного переменного. 4-е издание. «Наука», 1973. 736 с.
- 118. **Погорелов А. В.** Дифференциальная геометрия. Издание 6-е. «Наука», 1974. 176 с.