MC- 405 GRAPH THEORY

Assignment-III

1. Prove that for a graph G with n vertices and e edges,

vertex connectivity
$$\leq$$
 edge connectivity $\leq \frac{2e}{n}$

- 2. Define a separable graph. Prove that in a non-separable graph G set of edges incident on each vertex of G is a cut-set.
- 3. Define the capacity of a cut-set. Prove that the maximum flow possible between two vertices a and b in a network is equal to the minimum of capacities of all cut-sets with respect to a and b.
- 4. Describe Ford-Fulkerson Algorithm for maximum flow and hence find maximum flow for the network given below.

5. Find the chromatic number of each of the graph given below.

- 6. Prove that a nonempty graph G is bicolourable if and only if G is bipartite.
- 7. Define Complete matching in a graph. Find the number of complete matchings in $K_{n,n}$, a complete bipartite graph with n vertices in each subset.
- 8. Define Perfect matching in a graph. Find the number of perfect matchings in:
 - (a) K_{2n} ,a complete graph with 2n vertices
 - (b) C_{2n} ,a cycle with 2n vertices