```
import pandas as pd
import numpy as np
import missingno as msno
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
from \ sklearn.ensemble \ import \ Random Forest Classifier
from sklearn.naive bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from \ sklearn.neural\_network \ import \ MLPClassifier
from \ sklearn.ensemble \ import \ AdaBoostClassifier
from sklearn.ensemble import GradientBoostingClassifier
from \ sklearn.ensemble \ import \ ExtraTreesClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from xgboost import XGBClassifier
from sklearn import metrics
from sklearn.metrics import roc curve
from sklearn.metrics import recall_score, confusion_matrix, precision_score, f1_score, accuracy_score, classification_report
df=pd.read_csv('/content/WA_Fn-UseC_-Telco-Customer-Churn.csv')
```

df.head()

₹		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	Mult
	0	7590- VHVEG	Female	0	Yes	No	1	No	
	1	5575- GNVDE	Male	0	No	No	34	Yes	
	2	3668- QPYBK	Male	0	No	No	2	Yes	
	3	7795- CFOCW	Male	0	No	No	45	No	
	4	9237- HQITU	Female	0	No	No	2	Yes	

5 rows × 21 columns

13 StreamingTV

df.shape

→ (7043, 21)

df.info()

_	<cla Rang Data</cla 						
	# Column Non-Null Count						
	0	customerID	7043 nor	n-null	object		
	1	gender	7043 nor	n-null	object		
	2	SeniorCitizen	7043 nor	n-null	int64		
	3	Partner	7043 nor	n-null	object		
	4	Dependents	7043 nor	n-null	object		
	5	tenure	7043 nor	n-null	int64		
	6	PhoneService	7043 nor	n-null	object		
	7	MultipleLines	7043 nor	n-null	object		
	8	InternetService	7043 nor	n-null	object		
	9	OnlineSecurity	7043 nor	n-null	object		
	10	OnlineBackup	7043 nor	n-null	object		
	11	DeviceProtection	7043 nor	n-null	object		
	12	TechSupport	7043 nor	n-null	object		

7043 non-null

```
14 StreamingMovies
                      7043 non-null
                                      object
15 Contract
                      7043 non-null
                                      object
16
    PaperlessBilling 7043 non-null
                                      object
17
    PaymentMethod
                      7043 non-null
                                      object
   MonthlyCharges
                      7043 non-null
18
                                      float64
19 TotalCharges
                      7043 non-null
                                     object
20 Churn
                      7043 non-null
                                     object
dtypes: float64(1), int64(2), object(18)
memory usage: 1.1+ MB
```

df.columns.values

df.dtypes

Visualize missing values as a matrix
msno.matrix(df);

df = df.drop(['customerID'], axis = 1)
df.head()

df[np.isnan(df['TotalCharges'])]

→		gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup
	488	Female	0	Yes	Yes	0	No	No phone service	DSL	Yes	Nc
	753	Male	0	No	Yes	0	Yes	No	No	No internet service	No interner service
	936	Female	0	Yes	Yes	0	Yes	No	DSL	Yes	Yes
	1082	Male	0	Yes	Yes	0	Yes	Yes	No	No internet service	No internet service
	1340	Female	0	Yes	Yes	0	No	No phone service	DSL	Yes	Yes
;	3331	Male	0	Yes	Yes	0	Yes	No	No	No internet service	No internet service
3	3826	Male	0	Yes	Yes	0	Yes	Yes	No	No internet service	No internet service
4	4380	Female	0	Yes	Yes	0	Yes	No	No	No internet service	No interner service
;	5218	Male	0	Yes	Yes	0	Yes	No	No	No internet service	No interner service
(6670	Female	0	Yes	Yes	0	Yes	Yes	DSL	No	Yes
(6754	Male	0	No	Yes	0	Yes	Yes	DSL	Yes	Yes
4											>

df[df['tenure'] == 0].index

Index([488, 753, 936, 1082, 1340, 3331, 3826, 4380, 5218, 6670, 6754], dtype='int64')

```
7/4/24, 1:13 PM
                                                               CUSTOMER CHURN PREDICTION.ipynb - Colab
    df.drop(labels=df[df['tenure'] == 0].index, axis=0, inplace=True)
    df[df['tenure'] == 0].index
     Index([], dtype='int64')
    df.fillna(df["TotalCharges"].mean())
     \overline{\Rightarrow}
                 gender SeniorCitizen Partner Dependents tenure PhoneService MultipleLines InternetService OnlineSecurity OnlineBackur
                                                                                             No phone
             0
                                                                                                                    DSL
                 Female
                                       0
                                                                                                                                                     Yes
                                              Yes
                                                           No
                                                                     1
                                                                                   No
                                                                                                                                      No
                                                                                               service
                                                                                                                    DSL
             1
                   Male
                                       0
                                               No
                                                           No
                                                                     34
                                                                                  Yes
                                                                                                   No
                                                                                                                                      Yes
                                                                                                                                                     Nc
             2
                   Male
                                       0
                                               No
                                                            No
                                                                     2
                                                                                  Yes
                                                                                                   No
                                                                                                                    DSL
                                                                                                                                      Yes
                                                                                                                                                     Yes
                                                                                             No phone
                                                                                                                    DSL
             3
                                       0
                                                                     45
                   Male
                                               No
                                                           No
                                                                                   No
                                                                                                                                      Yes
                                                                                                                                                     Nc
                                                                                               service
             4
                 Female
                                       0
                                               No
                                                           No
                                                                     2
                                                                                   Yes
                                                                                                               Fiber optic
                                                                                                                                      No
                                                                                                                                                     Nc
                                                                                                   No
           7038
                   Male
                                       0
                                              Yes
                                                           Yes
                                                                     24
                                                                                   Yes
                                                                                                   Yes
                                                                                                                    DSL
                                                                                                                                      Yes
                                                                                                                                                     Nc
           7039
                 Female
                                       0
                                                                     72
                                              Yes
                                                           Yes
                                                                                   Yes
                                                                                                   Yes
                                                                                                               Fiber optic
                                                                                                                                      No
                                                                                                                                                     Yes
                                                                                             No phone
           7040 Female
                                       0
                                              Yes
                                                           Yes
                                                                     11
                                                                                   No
                                                                                                                    DSL
                                                                                                                                      Yes
                                                                                                                                                     Nc
                                                                                               service
           7041
                                                                     4
                   Male
                                       1
                                              Yes
                                                           No
                                                                                   Yes
                                                                                                   Yes
                                                                                                               Fiber optic
                                                                                                                                      No
                                                                                                                                                     Nc
           7042
                   Male
                                                                     66
                                                                                                               Fiber optic
                                               No
                                                           No
                                                                                   Yes
                                                                                                   No
                                                                                                                                      Yes
                                                                                                                                                     Nc
          7032 rows × 20 columns
         4
    df.isnull().sum()
     \overline{z}
          gender
                               0
          SeniorCitizen
                               0
                               0
          Partner
          Dependents
                               0
          tenure
                               0
          {\tt Phone Service}
                               0
          MultipleLines
                               0
          InternetService
                               0
          OnlineSecurity
                               0
          OnlineBackup
                               0
          DeviceProtection
                               0
                               0
          TechSupport
          StreamingTV
                               0
          {\tt Streaming Movies}
                               0
          Contract
                               0
          PaperlessBilling
                               0
          PaymentMethod
                               0
          {\tt MonthlyCharges}
                               0
          TotalCharges
                               0
          Churn
          dtype: int64
    df["SeniorCitizen"]= df["SeniorCitizen"].map({0: "No", 1: "Yes"})
```

df.head()

_		gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup	D
	0	Female	No	Yes	No	1	No	No phone service	DSL	No	Yes	
	1	Male	No	No	No	34	Yes	No	DSL	Yes	No	
	2	Male	No	No	No	2	Yes	No	DSL	Yes	Yes	
	3	Male	No	No	No	45	No	No phone service	DSL	Yes	No	
	4	Female	No	No	No	2	Yes	No	Fiber optic	No	No	
	4											•

Generate code with df View recommended plots Next steps:

```
df["InternetService"].describe(include=['object', 'bool'])
                       7032
    count
     unique
                          3
     top
                Fiber optic
     freq
                       3096
     Name: InternetService, dtype: object
numerical_cols = ['tenure', 'MonthlyCharges', 'TotalCharges']
df[numerical_cols].describe()
\overline{z}
                  tenure MonthlyCharges TotalCharges
                                                            \blacksquare
      count 7032.000000
                              7032.000000
                                             7032.000000
               32.421786
                                64.798208
                                             2283.300441
      mean
               24.545260
                                30.085974
                                             2266.771362
       std
                1.000000
                                18.250000
                                               18.800000
       min
       25%
                9.000000
                                35.587500
                                              401.450000
       50%
               29.000000
                                70.350000
                                             1397.475000
       75%
               55.000000
                                89.862500
                                             3794.737500
               72.000000
                               118.750000
                                             8684.800000
       max
g_labels = ['Male', 'Female']
c_labels = ['No', 'Yes']
# Create subplots: use 'domain' type for Pie subplot
fig = make_subplots(rows=1, cols=2, specs=[[{'type':'domain'}, {'type':'domain'}]])
fig.add_trace(go.Pie(labels=g_labels, values=df['gender'].value_counts(), name="Gender"),
               1, 1)
fig.add_trace(go.Pie(labels=c_labels, values=df['Churn'].value_counts(), name="Churn"),
              1, 2)
# Use `hole` to create a donut-like pie chart
fig.update_traces(hole=.4, hoverinfo="label+percent+name", textfont_size=16)
fig.update_layout(
    title_text="Gender and Churn Distributions",
    # Add annotations in the center of the donut pies.
    annotations = [dict(text='Gender', \ x=0.16, \ y=0.5, \ font\_size=20, \ showarrow=False), \\
                  dict(text='Churn', x=0.84, y=0.5, font_size=20, showarrow=False)])
fig.show()
\overline{\Rightarrow}
```

Gender and Churn Distributions


```
df["Churn"][df["Churn"]=="No"].groupby(by=df["gender"]).count()

gender
Female 2544
```

 $\overline{2}$

```
Male
               2619
     Name: Churn, dtype: int64
df["Churn"][df["Churn"]=="Yes"].groupby(by=df["gender"]).count()
     gender
     Female
               939
     Male
               930
     Name: Churn, dtype: int64
plt.figure(figsize=(6, 6))
labels =["Churn: Yes","Churn:No"]
values = [1869,5163]
labels_gender = ["F","M","F","M"]
sizes_gender = [939,930 , 2544,2619]
colors = ['#ff6666', '#66b3ff']
colors_gender = ['#c2c2f0','#ffb3e6', '#c2c2f0','#ffb3e6']
explode = (0.3, 0.3)
explode_gender = (0.1, 0.1, 0.1, 0.1)
textprops = {"fontsize":15}
#Plot
plt.pie(values, labels=labels,autopct='%1.1f%',pctdistance=1.08, labeldistance=0.8,colors=colors, startangle=90,frame=True, explode=expl
plt.pie(sizes_gender,labels=labels_gender,colors_gender,startangle=90, explode=explode_gender,radius=7, textprops =textprops, cour
#Draw circle
centre_circle = plt.Circle((0,0),5,color='black', fc='white',linewidth=0)
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.title('Churn\ Distribution\ w.r.t\ Gender:\ Male(M),\ Female(F)',\ fontsize=15,\ y=1.1)
# show plot
plt.axis('equal')
plt.tight_layout()
plt.show()
```

Churn Distribution w.r.t Gender: Male(M), Female(F)

fig = px.histogram(df, x="Churn", color="Contract", barmode="group", title="Customer contract distribution")
fig.update_layout(width=700, height=500, bargap=0.1)
fig.show()

Customer contract distribution

labels = df['PaymentMethod'].unique()
values = df['PaymentMethod'].value_counts()

fig = go.Figure(data=[go.Pie(labels=labels, values=values, hole=.3)])
fig.update_layout(title_text="Payment Method Distribution")
fig.show()

→

Payment Method Distribution

fig = px.histogram(df, x="Churn", color="PaymentMethod", title="Customer Payment Method distribution w.r.t. Churn")
fig.update_layout(width=700, height=500, bargap=0.1)
fig.show()

Customer Payment Method distribution w.r.t. Churn

```
df["InternetService"].unique()
⇒ array(['DSL', 'Fiber optic', 'No'], dtype=object)
df[df["gender"]=="Male"][["InternetService", "Churn"]].value_counts()
→ InternetService
                   Churn
    Fiber optic
                   No
                            717
                   No
    No
    Fiber optic
                   Yes
                            633
                   Yes
                           240
    DSL
    Nο
                   Yes
                            57
    Name: count, dtype: int64
df[df["gender"]=="Female"][["InternetService", "Churn"]].value_counts()
→ InternetService
                  Churn
    DSL
                            965
                   No
    Fiber optic
                   No
                            690
                   No
    No
    Fiber optic
                   Yes
                            664
                            219
    DSI
                   Yes
    No
                   Yes
                            56
    Name: count, dtype: int64
fig = go.Figure()
fig.add_trace(go.Bar(
 y = [965, 992, 219, 240],
 name = 'DSL',
fig.add_trace(go.Bar(
 x = [['Churn:No', 'Churn:No', 'Churn:Yes', 'Churn:Yes'],
      ["Female", "Male", "Female", "Male"]],
 y = [889, 910, 664, 633],
 name = 'Fiber optic',
fig.add_trace(go.Bar(
 y = [690, 717, 56, 57],
 name = 'No Internet',
fig.update_layout(title_text="<b>Churn Distribution w.r.t. Internet Service and Gender</b>")
fig.show()
```


Churn Distribution w.r.t. Internet Service and Gender

color_map = {"Yes": "#FF97FF", "No": "#AB63FA"}
fig = px.histogram(df, x="Churn", color="Dependents", barmode="group", title="Dependents distribution", color_discrete_map=color_r
fig.update_layout(width=700, height=500, bargap=0.1)
fig.show()

Dependents distribution

color_map = {"Yes": '#FFA15A', "No": '#00CC96'}
fig = px.histogram(df, x="Churn", color="Partner", barmode="group", title="Chrun distribution w.r.t. Partners", color_discrete_maj
fig.update_layout(width=700, height=500, bargap=0.1)
fig.show()

Chrun distribution w.r.t. Partners

color_map = {"Yes": '#00CC96', "No": '#B6E880'}
fig = px.histogram(df, x="Churn", color="SeniorCitizen", title="Chrun distribution w.r.t. Senior Citizen", color_discrete_map=co
fig.update_layout(width=700, height=500, bargap=0.1)
fig.show()

Chrun distribution w.r.t. Senior Citizen

color_map = {"Yes": "#FF97FF", "No": "#AB63FA"}
fig = px.histogram(df, x="Churn", color="OnlineSecurity", barmode="group", title="Churn w.r.t Online Security", color_discrete_m
fig.update_layout(width=700, height=500, bargap=0.1)
fig.show()

Churn w.r.t Online Security

color_map = {"Yes": '#FFA15A', "No": '#00CC96'}
fig = px.histogram(df, x="Churn", color="PaperlessBilling", title="Chrun distribution w.r.t. Paperless Billing", color_discrete
fig.update_layout(width=700, height=500, bargap=0.1)
fig.show()

Chrun distribution w.r.t. Paperless Billing

fig = px.histogram(df, x="Churn", color="TechSupport",barmode="group", title="Chrun distribution w.r.t. TechSupport")
fig.update_layout(width=700, height=500, bargap=0.1)
fig.show()

Chrun distribution w.r.t. TechSupport


```
color_map = {"Yes": '#00CC96', "No": '#B6E880'}
fig = px.histogram(df, x="Churn", color="PhoneService", title="<b>Chrun distribution w.r.t. Phone Service</b>", color_discrete_map=colo
fig.update_layout(width=700, height=500, bargap=0.1)
fig.show()
```


Chrun distribution w.r.t. Phone Service

Tenure vs Churn

plt.figure(figsize=(25, 10))


```
corr = df.apply(lambda x: pd.factorize(x)[0]).corr()
mask = np.triu(np.ones_like(corr, dtype=bool))
```

ax = sns.heatmap(corr, mask=mask, xticklabels=corr.columns, yticklabels=corr.columns, annot=True, linewidths=.2, cmap='coolwarm', vmin=


```
def object_to_int(dataframe_series):
    if dataframe_series.dtype=='object':
        dataframe_series = LabelEncoder().fit_transform(dataframe_series)
    return dataframe_series

df = df.apply(lambda x: object_to_int(x))
df.head()
```

24, 1:13 PM CUSTOME						CUS	TOMER CHUR	MER CHURN PREDICTION.ipynb - Colab				
$\overline{\Rightarrow}$	gender SeniorCitizen Partner Dependents tenure Phon					PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup	D	
	0	0	0	1	0	1	0	1	0	0	2	
	1	1	0	0	0	34	1	0	0	2	0	
:	2	1	0	0	0	2	1	0	0	2	2	
;	3	1	0	0	0	45	0	1	0	2	0	
•	4	0	0	0	0	2	1	0	1	0	0	
Next s	steps:	Ge	nerate code with	df 🧧	→ View recom	mended p	olots					
1. (*												
<pre>plt.figure(figsize=(14,7)) df.corr()['Churn'].sort_values(ascending = False)</pre>												

```
→ Churn
                        1.000000
     MonthlyCharges
                        0.192858
     PaperlessBilling 0.191454
     SeniorCitizen
                        0.150541
     PaymentMethod
                        0.107852
     MultipleLines
                        0.038043
     PhoneService
                        0.011691
     gender
                       -0.008545
     StreamingTV
                       -0.036303
     StreamingMovies
                       -0.038802
                       -0.047097
     InternetService
                       -0.149982
     Partner
                       -0.163128
     Dependents
     DeviceProtection -0.177883
     OnlineBackup
                       -0.195290
                       -0.199484
     TotalCharges
     TechSupport
                       -0.282232
     OnlineSecurity
                       -0.289050
                       -0.354049
                       -0.396150
     Contract
     Name: Churn, dtype: float64
     <Figure size 1400x700 with 0 Axes>
X = df.drop(columns = ['Churn'])
y = df['Churn'].values
 \textbf{X\_train, X\_test, y\_train, y\_test = train\_test\_split(X,y,test\_size = 0.30, random\_state = 40, stratify=y) } 
def distplot(feature, frame, color='r'):
    plt.figure(figsize=(8,3))
    plt.title("Distribution for {}".format(feature))
    ax = sns.distplot(frame[feature], color= color)
num_cols = ["tenure", 'MonthlyCharges', 'TotalCharges']
for feat in num_cols: distplot(feat, df)
```


Divide the columns into 3 categories, one ofor standardisation, one for label encoding and one for one hot encoding
cat_cols_ohe =['PaymentMethod', 'Contract', 'InternetService'] # those that need one-hot encoding
cat_cols_le = list(set(X_train.columns)- set(num_cols) - set(cat_cols_ohe)) #those that need label encoding

scaler= StandardScaler()

X_train[num_cols] = scaler.fit_transform(X_train[num_cols])
X_test[num_cols] = scaler.transform(X_test[num_cols])

knn_model = KNeighborsClassifier(n_neighbors = 11)
knn_model.fit(X_train,y_train)
predicted_y = knn_model.predict(X_test)
accuracy_knn = knn_model.score(X_test,y_test)
print("KNN accuracy:",accuracy_knn)

EXECUTACY: 0.7758293838862559

print(classification_report(y_test, predicted_y))

	precision	recall	f1-score	support
0 1	0.83 0.59	0.87 0.52	0.85 0.55	1549 561
accuracy macro avg weighted avg	0.71 0.77	0.69 0.78	0.78 0.70 0.77	2110 2110 2110

```
svc_model = SVC(random_state = 1)
svc_model.fit(X_train,y_train)
predict_y = svc_model.predict(X_test)
accuracy_svc = svc_model.score(X_test,y_test)
print("SVM accuracy is :",accuracy_svc)
```

→ SVM accuracy is : 0.8075829383886256

print(classification_report(y_test, predict_y))

→		precision	recall	f1-score	support
	0 1	0.84 0.69	0.92 0.50	0.88 0.58	1549 561
accurad macro av weighted av	/g	0.76 0.80	0.71 0.81	0.81 0.73 0.80	2110 2110 2110

Make predictions
prediction_test = model_rf.predict(X_test)
print (metrics.accuracy_score(y_test, prediction_test))

→ 0.8137440758293839

print(classification_report(y_test, prediction_test))

⋺	precision	recall	f1-score	support
0	0.84	0.92	0.88	1549
1	0.71	0.51	0.59	561
accuracy			0.81	2110
macro avg	0.77	0.72	0.74	2110
weighted avg	0.80	0.81	0.80	2110

plt.title(" RANDOM FOREST CONFUSION MATRIX",fontsize=14)
plt.show()

RANDOM FOREST CONFUSION MATRIX


```
y_rfpred_prob = model_rf.predict_proba(X_test)[:,1]
fpr_rf, tpr_rf, thresholds = roc_curve(y_test, y_rfpred_prob)
plt.plot([0, 1], [0, 1], 'k--' )
plt.plot(fpr_rf, tpr_rf, label='Random Forest',color = "r")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Random Forest ROC Curve',fontsize=16)
plt.show();
```


lr_model = LogisticRegression()
lr_model.fit(X_train,y_train)
accuracy_lr = lr_model.score(X_test,y_test)
print("Logistic Regression accuracy is :",accuracy_lr)

→ Logistic Regression accuracy is : 0.8090047393364929

lr_pred= lr_model.predict(X_test)
report = classification_report(y_test,lr_pred)
print(report)

∑ ▼		precision	recall	f1-score	support
	0	0.86	0.89	0.87	1549
	1	0.66	0.58	0.62	561
accur	racy			0.81	2110
macro	avg	0.76	0.74	0.75	2110
weighted	avg	0.80	0.81	0.81	2110

plt.title("LOGISTIC REGRESSION CONFUSION MATRIX",fontsize=14)
plt.show()

$\overline{2}$

LOGISTIC REGRESSION CONFUSION MATRIX

y_pred_prob = lr_model.predict_proba(X_test)[:,1]
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr, label='Logistic Regression',color = "r")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Logistic Regression ROC Curve',fontsize=16)
plt.show();

dt_model = DecisionTreeClassifier()
dt_model.fit(X_train,y_train)
predictdt_y = dt_model.predict(X_test)
accuracy_dt = dt_model.score(X_test,y_test)
print("Decision Tree accuracy is :",accuracy_dt)

 \Rightarrow Decision Tree accuracy is : 0.7303317535545024

 $\verb|print(classification_report(y_test, predictdt_y))|\\$

→	precision	recall	f1-score	support
0 1	0.82 0.49	0.81 0.52	0.81 0.51	1549 561
accuracy macro avg weighted avg	0.66 0.74	0.66 0.73	0.73 0.66 0.73	2110 2110 2110