Lab 10: Earth's Magnetic Field

Philip Kim

April 14, 2021

- 1. Record the initial dip angle $\theta_0=36^\circ$
- 2. Set source to 4V.

Table 1: High-Pass Filter						
Resistance	20Ω	40Ω	75Ω	150Ω	180Ω	200Ω
Current i	0.122A	0.0733A	0.0442A	21.24 mA	0.02124A	0.01824A
Dip Angle Θ_i	-71°	-49°	-14°	6°	12°	15°
Calculated B_i	1	2	3	4	5	6

- 3. Record the Helmholtz coil radius: R = 9.75cm \rightarrow 0.0975m
- 4. Record the Helmholtz coil number of turns: N=128
- 5. Calculations: $(B_i = \frac{8N_{\mu_0}I_i}{R\sqrt{125}}, where \mu_0 = 4\pi \times 10^{-7}Tm/A)$
 - Plot $tan\theta_i$ vs B_i with straight line. Deduce the values of B_V and B_H from the graph.

$$B_V =$$

$$B_H =$$

Calculate B_E

Lookup value of \mathcal{B}_{E}