PRUEBA DE ACCESO (LOGSE)

UNIVERSIDAD DE CASTILLA Y LEÓN

<u>JUNIO – 2015</u>

MATEMÁTICAS II

Tiempo máximo: 1 horas y 30 minutos

- 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo desarrollar los cuatro ejercicios de la misma en el orden que desee.
- 2.- CALCULADORA: Se permitirá el uso de calculadoras no programables (que no admitan memoria para texto ni representaciones gráficas).

CRITERIOS GENERALES DE EVALUACIÓN: Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

OPCIÓN A

1°) Dada la matriz
$$A = \begin{pmatrix} m+2 & 0 & 0 \\ -3 & m+1 & 1 \\ 1 & 0 & m-1 \end{pmatrix}$$
, se pide:

- a) Hallar los valores de m para que la matriz A^{10} tenga inversa.
- b) Para m = 0, calcular, si es posible, la matriz inversa de A.
- 2°) a) Calcular la recta s que corta perpendicularmente al eje OZ y que pasa por el punto P(1,2,3).
- b) Estudiar, en función del parámetro real a, la posición relativa de la recta $r \equiv \begin{cases} x = 0 \\ y = 0 \end{cases}$ y el plano $\pi \equiv x + y + az = 1$.
- 3°) Determinar los vértices del rectángulo de área máxima que tiene lados paralelos a los ejes de coordenadas y vértices en el borde del recinto delimitado por las gráficas de las funciones $f(x) = x^2$ y $g(x) = 2 x^2$.
- 4°) a) Sea g(x) una función continua y derivable en toda la recta real tal que g(0) = 0 y g(2) = 2. Probar que existe algún punto c del intervalo (0, 2) tal que g'(c) = 1.
- b) Hallar la función f(x) que cumple que $f'(x) = xL(x^2 + 1)$ y f(0) = 1.

OPCIÓN B

- 1°) Dado el sistema de ecuaciones lineales $\begin{cases} x + my = -1 \\ (1 2m)x y = m \end{cases}$, se pide:
- a) Discutir el sistema según los valores del parámetro m.
- b) Resolver el sistema en los casos en que la solución no sea única.
- c) Calcular los valores de m para que x = -3, y = 2 sea solución.
- 2°) a) ¿Puede haber dos vectores \vec{u} y \vec{v} de \mathbb{R}^3 tales que $\vec{u} \cdot \vec{v} = -3$, $|\vec{u}| = 1$ y $|\vec{v}| = 2$?
- b) Hallar a para que existan una recta t que pasa por el punto P(1+a,1-a,a), corte a la recta $r \equiv \begin{cases} x+y=2 \\ z=1 \end{cases}$ y sea paralela a la recta $s \equiv \begin{cases} x+z=0 \\ y=0 \end{cases}$.
- 3°) Dada la función $f(x) = \frac{x}{Lx}$, determinar su dominio, asíntotas, intervalos de crecimiento y decrecimiento y extremos relativos. Esbozar su gráfica.
- 4°) a) Calcular $\lim_{x\to 0} \left[\frac{1}{x} \frac{1}{L(1+x)}\right]$.
- b) Calcular el área del recinto limitado por las gráficas de las funciones $f(x) = \frac{1}{x}$, $g(x) = \frac{1}{x^2}$ y la recta x = e.
