Assignment 6

Partial solutions for selected problems

1. (a) By the result about linear transformations,

$$f_Y(y) = \frac{1}{|a|} f_X((y-b)/a) = \frac{\lambda}{2|a|} e^{-\lambda|y-b|/|a|}, \text{ all } y.$$

(c)
$$M_Y(t) = e^{bt} M_X(at) = \frac{e^{bt}}{1 - a^2 t^2 / \lambda^2}$$
.

2. (a)
$$h(t) = \frac{x}{\beta(\beta+x)}$$
.

(b)
$$h(t) = \frac{f(x)}{1 - F(x)} = \frac{1 + 4e^{-x}}{1 + 2e^{-x}}.$$

- 3. (a) $Q_T(p)$ solves $\exp(-H(t)) = 1 p$. That is, $Q_T(p) = H^{-1}(-\log(1-p))$. The Weibull $(2, \beta)$ quantile function is $(-\beta \log(1-p))^{1/2}$.
 - (b) The minimum hazard rate is at $t=48^{-.4}=0.21257$ and the pdf is $f_T(t)=\frac{.5t^{-.5}+6t^2}{1-e^{t.5}+2t^3}$. See the plots below.

(continued next page)

- 4. There are more than one option for location and/or scale parameter, although some are more sensible than others.
 - (a) These are indeed a location-scale family; pay attention to the indicator function. One choice is location $\frac{a+b}{2}$ (the midpoint) and scale b-a (the interval width). Uniform $(-\sqrt{3}, \sqrt{3})$ has mean 0 and variance 1.
 - (b) b is a location parameter and $|a|/\lambda$ is a scale parameter. [These are the preferred choices, being simplest, although the scale parameter could be anything proportional to $|a|/\lambda$.] Laplace $(0, \frac{1}{\sqrt{2}})$, that is, $f(x) = \frac{1}{\sqrt{2}} e^{-\sqrt{2}|x|}$, has mean 0 and variance 1.
 - (c) Scale family, but (according to the book's formulation) the scale parameter is $\sqrt{\beta}$, not β . Weibull $(2, \frac{1}{1-\pi/4})$ has variance 1.
- 5. Let $Y = \frac{X-c}{s}$. Then Y has the pdf with location 0 and scale 1 (and which does not depend on either c or s).
 - (a) $\mu_X = \mathsf{E}(X) = c + s\mu_Y$.
 - (b) $\mathsf{E}((X-\mu_X)^k) = s^k \mathsf{E}((Y-\mu_Y)^k)$, including the case k=2 (variance).
- 6. Exer. 3.28. First observe that the supports do not depend on the parameters. You can identify the functions t_i and w_i by noting the following.
 - (c) $f(x) \propto \exp((\alpha 1)\log(x) + (\beta 1)\log(1 x))$.
 - (d) $f(x) \propto (x!)^{-1} \exp(-\lambda x)$.
 - (e) $f(x) \propto {r+x-1 \choose x} \exp(\log(p)x)$.
- 7. Exer. 3.33(b). We have $t_1(x) = x$, $t_2(x) = x^2$, $w_1(\theta) = -\frac{2}{a\theta}$, $w_2(\theta) = \frac{1}{a\theta^2}$.

[Even though they depend on only one parameter rather than the usual two, the examples in parts (a) and (c) are exponential families but actually <u>not curved</u>, despite what the problem suggests – check them out explicitly.]

- 8. (a) The support [a, b] depends on the parameters.
 - (b) We cannot express $\log(1 + e^{-(x-\mu)/\beta})$ in terms of products of functions of (μ, β) and functions of x.