考研数学笔记 以姜晓千强化课讲义为底本

Weary Bird

2025年7月31日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年7月31日

目录

第一章	函数极限连续	1
1.1	函数的性态	1
1.2	极限的概念	3
1.3	函数极限的计算	3
1.4	已知极限反求参数	6
1.5	无穷小阶的比较	7
1.6	数列极限的计算	10
1.7	间断点的判定	12

第一章 函数极限连续

1.1 函数的性态

Remark. (有界性的判定)

- (1) 连续函数在闭区间 [a,b] 上必然有界
- (2) 连续函数在开区间 (a,b) 上只需要判断端点处的左右极限, 若 $\lim_{x\to a^+} \neq \infty$ 且 $\lim_{x\to b^-} \neq \infty$, 则连续函数在该区间内有界.
- (3) f'(x) 在有限区间 (a,b) 内有界.

Proof: $\forall x \in (a,b)$, 由拉格朗日中值定理, ∃ ξ

$$f(x) - f(\frac{a+b}{2}) = f'(\xi)(x - \frac{a+b}{2})$$
$$|f(x)| \le |f'(\xi)| \left| x - \frac{a+b}{2} \right| + \left| f(\frac{a+b}{2}) \right|$$
$$|f(x)| \le \frac{b-a}{2} |f'(\xi)| + \left| f(\frac{a+b}{2}) \right| \le M$$

1. 下列函数无界的是

A
$$f(x) = \frac{1}{x}\sin x, x \in (0, +\infty)$$
 B $f(x) = x\sin\frac{1}{x}, x \in (0, +\infty)$

C
$$f(x) = \frac{1}{x} \sin \frac{1}{x}, x \in (0, +\infty)$$
 D $f(x) = \int_0^x \frac{\sin t}{t} dt, x \in (0, 2022)$

- (A) $\lim_{x\to 0^+} f(x)=1$, $\lim_{x\to +\infty}=0$ 均为有限值, 故 A 在区间 $(0,+\infty)$ 有界
- (B) $\lim_{x\to 0^+} f(x) = 0$, $\lim_{x\to +\infty} = 1$ 均为有限值, 故 B 在区间 $(0, +\infty)$ 有界
- (C) $\lim_{x\to 0^+} f(x) = +\infty$, $\lim_{x\to +\infty} = 0$ 在 0 点的极限不为有限值, 故 C 在区间 $(0,+\infty)$ 无界

(D) $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \int_0^x 1 dt = 0$, $\lim_{x\to 2022^-} f(x) = \int_0^{2022} \frac{\sin t}{t} dt =$ 有限值 故 D 在区 间 (0, 2022) 有界

无穷 VS 无界

无界 只有有一个子列趋于无穷即可

无穷 任意子列均趋于无穷.

例如 A 选项, 当 $x_n = \frac{1}{2n\pi + \pi/2}, f(x_n) = 2n\pi + \pi/2, n \rightarrow \infty, f(x_n) \rightarrow \infty$; 当 $x_n = \pi/2$ $\frac{1}{2n\pi}, f(x_n) = 0, n \to \infty, f(x_n) \to 0$ 不为无穷大, 仅仅是无界.

Remark. (导函数与原函数的奇偶性与周期性)

连续奇函数的所有原函数 $\int_0^x f(t)dt + C$ 都是偶函数

连续偶函数仅有一个原函数 $\int_0^x f(t)dt$ 为奇函数

连续周期函数的原函数为周期函数 $\iff \int_0^T f(x) dx = 0$

- 2. (2002, 数二) 设函数 f(x) 连续,则下列函数中,必为偶函数的是
 - A $\int_0^x f(t^2)dt$ B $\int_0^x f^2(t)dt$
- - C $\int_0^x t[f(t) f(-t)]dt$ D $\int_0^x t[f(t) + f(-t)]dt$

Solution. 这种题可以采用奇偶性的定义直接去做, 如下面选项 A,B 的解法, 也可以按照 上述的函数奇偶性的性质判断

(A) $\diamondsuit F(x) = \int_0^x f(t^2) dt$

$$F(-x) = \int_0^{-x} f(t^2)dt = -\int_0^x f(t^2)dt = -F(x)$$

则A选项是奇函数

(B)

$$F(-x) = \int_0^{-x} f^2(t)dt = -\int_0^x f^2(-t)dt$$

推导不出B的奇偶性

- (C) t[f(t) f(-t)] 是一个偶函数, 故 C 选项是一个奇函数
- (D) t[f(t) + f(-t)] 是一个奇函数, 故 D 选项是一个偶函数

1.2 极限的概念

Definition 1.2.1 (函数极限的定义). 设函数 f(x) 在点 x_0 的某去心邻域内有定义。若存在常数 A,使得对于任意给定的正数 ϵ ,总存在正数 δ ,使得当 x 满足

$$0 < |x - x_0| < \delta$$

时,必有

$$|f(x) - A| < \epsilon$$

则称 A 为函数 f(x) 当 x 趋近于 x_0 时的极限,记作

$$\lim_{x \to x_0} f(x) = A$$

或

$$f(x) \to A \quad (x \to x_0).$$

3. (2014, 数三) 设 $\lim_{n\to\infty}a_n=a$, 且 $a\neq 0$, 则当 n 充分大时有

$$(A)|a_n| > \frac{|a|}{2}$$
 $(B)|a_n| < \frac{|a|}{2}$ $(C)a_n > a - \frac{1}{n}$ $(D)a_n < a + \frac{1}{n}$

Solution. 令 $\epsilon = |a|/2$, 则 $|a_n - a| < |a|/2 \ge ||a_n| - |a||$ 即

$$|a|/2 < |a_n| < \frac{3|a|}{2}$$

对于 CD 考虑当

$$a_n = a - \frac{2}{n}$$
 和 $a_n = a + \frac{2}{n}$ 简单来说 $\forall \epsilon$ 这里面的 ϵ 与 n 是无关的.

1.3 函数极限的计算

Remark. 这一个题型基本上是计算能力的考察, 对于常见未定式其实也没必要区分, 目标都是往最简单 $\frac{0}{0}$ 或者 $\frac{...}{\infty}$ 模型上面靠, 辅助以 Taylor 公式, 拉格朗日中值定理结合夹逼准则来做就可以.

4. (2000, 数二) 若
$$\lim_{x\to 0} \frac{\sin 6x + xf(x)}{x^3} = 0$$
, 则 $\lim_{x\to 0} \frac{6+f(x)}{x^2}$ 为 (A) 0 (B) 6 (C) 36 (D) ∞

Solution. 这个题第一次见可能想不到,但做多了就一个套路用 Taylor 就是了.

 $\sin 6x = 6x - 36x^2 + o(x^3)$, 带入题目极限有

$$\lim_{x \to 0} \frac{6x + xf(x) + o(x^3)}{x^3} = \lim_{x \to 0} \frac{6x + xf(x)}{x^3} = 36$$

5. (2002, 数二) 设 y=y(x) 是二阶常系数微分方程 $y''+py'+qy=e^{3x}$ 满足初始条件 y(0)=y'(0)=0 的特解, 则当 $x\to 0$ 时, 函数 $\frac{\ln(1+x^2)}{y(x)}$ 的极限

- (A)不等于
- (B)等于1 (C)等于2 (D)等于3

Solution. 由微分方程和 y(0) = y'(0) = 0 可知 y''(0) = 1, 则 $y(x) = \frac{1}{2}x^2 + o(x^2)$, 则

$$\lim_{x\to 0}\frac{\ln(1+x^2)}{y(x)}=\lim_{x\to 0}\frac{x^2}{\frac{1}{2}x^2}=2$$

6. (2014, 数一、数二、数三) 求极限

$$\lim_{x \to \infty} \frac{\int_1^x \left[t^2 \left(e^{\frac{1}{t}} - 1 \right) - t \right] dt}{x^2 \ln \left(1 + \frac{1}{x} \right)}$$

Solution.

$$\lim_{x \to \infty} \frac{\int_{1}^{x} \left[t^{2} (e^{\frac{1}{t}} - 1) - t \right] dt}{x} = \lim_{x \to \infty} x^{2} (e^{\frac{1}{x}} - 1) - x$$

$$= \lim_{t \to 0} \frac{e^{t} - 1 - x}{x^{2}}$$

$$= \frac{1}{2}$$

7. 求极限 $\lim_{x\to 0^+} \ln(1+x) \ln \left(1+e^{1/x}\right)$

4

8. 求极限 $\lim_{x\to\infty} (x^3 \ln \frac{x+1}{x-1} - 2x^2)$

Solution.

9. (2010, 数三) 求极限 $\lim_{x\to +\infty} (x^{1/x}-1)^{1/\ln x}$

10. 求极限 $\lim_{x\to 0}\left(rac{a^x+a^{2x}+\cdots+a^{nx}}{n}
ight)^{1/x} \ (a>0,n\in\mathbb{N})$

Solution.

1.4 已知极限反求参数

11. (1998, 数二) 确定常数 a,b,c 的值, 使 $\lim_{x\to 0} \frac{ax-\sin x}{\int_b^x \frac{\ln(1+t^3)}{t} dt} = c \ (c \neq 0)$ *Solution*.

1.5 无穷小阶的比较

12. (2002, 数二) 设函数 f(x) 在 x=0 的某邻域内具有二阶连续导数,且 $f(0) \neq 0, f'(0) \neq 0, f''(0) \neq 0$ 。证明:存在唯一的一组实数 $\lambda_1, \lambda_2, \lambda_3$,使得当 $h \to 0$ 时, $\lambda_1 f(h) + \lambda_2 f(2h) + \lambda_3 f(3h) - f(0)$ 是比 h^2 高阶的无穷小。

13. (2006, 数二) 试确定 A,B,C 的值, 使得 $e^x(1+Bx+Cx^2)=1+Ax+o(x^3)$, 其中 $o(x^3)$ 是 当 $x\to 0$ 时比 x^3 高阶的无穷小量。

14. (2013, 数二、数三) 当 $x \to 0$ 时, $1 - \cos x \cdot \cos 2x \cdot \cos 3x$ 与 ax^n 为等价无穷小, 求 n 与 a 的值。

1.6 数列极限的计算

Remark. (方法)

- (1) 单调有界准则 (三步走, 先确定单调性, 在确定有界性, 最后解方程求极限) 确定单调性, 可以考虑作差/做商/求导
- (2) 压缩映射原理
- (3) 夹逼准则
- (4) 定积分的定义 (n 项和/n 项积)
- 15. (2011, 数一、数二)
 - (i) 证明: 对任意正整数 n, 都有 $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$
 - (ii) 设 $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} \ln n \ (n = 1, 2, \dots)$, 证明数列 $\{a_n\}$ 收敛。

Solution. (1) 是基本不等式的证明,考虑拉格朗日中值即可

(2) 考研大题, 特别是分成几个小问的题目, 都需要合理利用前面的结论 考虑 $a_{n+1} - a_n$ 有

$$a_{n+1} - a_n = \frac{1}{n+1} - \ln(n+1) + \ln(n) = \frac{1}{n+1} - \ln(1+n/1) < 0$$

即 $\{a_n\}$ 单调递减, 考虑其有界性

$$a_n = 1 + 1/2 + 1/3 + \dots + 1/n - \ln(n)$$

$$< \ln(1+1) + \ln(1+1/2) + \dots + \ln(1+n/1) - \ln(n)$$

$$= \ln(n+1) - \ln(n) > 0$$

即 $\{a_n\}$ 有上界, 故由单调有界定理知数列 $\{a_n\}$ 收敛.

16. (2018, 数一、数二、数三) 设数列 $\{x_n\}$ 满足: $x_1 > 0, x_n e^{x_{n+1}} = e^{x_n} - 1$ $(n = 1, 2, \cdots)$ 。证明 $\{x_n\}$ 收敛, 并求 $\lim_{n\to\infty} x_n$ 。

Solution. 这道题的难度在于如何处理条件. 考虑1 的妙用. 有

$$e^{x_{n+1}} = \frac{e^{x_n} - 1}{x} = \frac{e^{x_n} - e^0}{1}$$

= $e^{\xi}, \xi \in (0, x_n)$

而由于 e^x 是单调递增的函数则必然有 $\xi = x_{n+1}$ 即 $0 < x_{n+1} < x_n$ 从而单调递减有下界. 此时 $\{x_n\}$ 极限存在.

不妨设 $\lim_{n\to\infty} x_n = a$ 问题转换为求方程 $ae^a = e^a - 1$ 的解的问题. 显然 a=0 是其一个根. 考虑函数 $f(x) = e^x(1-x) - 1$ 其导数为 $-xe^x$ 在 $(0,\infty)$ 上单调递减故 x=a 是 f(x) 唯一零点. 即 a=0 是唯一解. 故

$$\overline{\lim_{n\to\infty} x_n = 0}$$

常见的等价代换有

 $\underline{1}$: $e^0,\sin(\pi/2),\cos(0),\ln(e)$ 具体情况还得看题目, 题目有啥用啥替换

 $\underline{0}$: $\sin(0)$, $\cos(pi/2)$, $\ln(1)$

- 17. (2019, 数一、数三) 设 $a_n = \int_0^1 x^n \sqrt{1-x^2} dx \ (n=0,1,2,\cdots)$ 。
 - (i) 证明数列 $\{a_n\}$ 单调减少, 且 $a_n = \frac{n-1}{n+2} a_{n-2} \ (n=2,3,\cdots)$
 - (ii) 求 $\lim_{n\to\infty} \frac{a_n}{a_{n-1}}$

Solution. 这道题第一问比较重要, 第二问比较简单

(1) 方法一:

可以直接求出 a_n 的值, 令 $x = \sin(t)$

$$\begin{split} a_n &= \int_0^{\pi/2} \sin^n(t) \cos^2(t) \mathrm{d}t \\ &= \int_0^{\pi/2} \sin^n(t) - \int_0^{\pi/2} \sin^{n+2}(t) \mathrm{d}t \\ &= \frac{4 + 2 + 2 + 2}{n} \frac{1}{n+2} \frac{n-1}{n} \dots \frac{1}{2} \frac{\pi}{2}, \, \text{$\,$$$$ in $ \text{$\,$$} \text{$\,$} \text{$\,$$

当n为奇数的时候同理可得

(1) 方法二:

也可以考虑分部积分法

$$a_n = \int_0^1 x^n (1 - x^2)^{1/2} dx$$

$$= -\frac{1}{3} \left[x^{n-1} (1 - x^2)^{3/2} \Big|_0^1 - \int_0^1 (1 - x^2)^{\frac{3}{2}} dx^{n-1} \right]$$

$$= \frac{n-1}{3} \int_0^1 \sqrt{1 - x^2} (1 - x^2) x^{n-2} dx$$

$$= \frac{n-1}{3} a_{n-2} - \frac{n-1}{3} a_n$$

$$\implies a_n = \frac{n-1}{n+2} a_{n-2}$$

(2)

由(1)可知

$$\frac{n-1}{n+2} < \frac{a_n}{a_{n-1}} = \frac{n-1}{n-2} \frac{a_{n-2}}{a_{n-1}} < 1$$

当 $n \to \infty$ 由夹逼准则可知 $\lim_{n \to \infty} \frac{a_n}{a_{n-1}} = 1$

18. (2017, 数一、数二、数三) 求 $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{k}{n^2} \ln \left(1 + \frac{k}{n}\right)$

Solution. 这是最普通的定积分的定义的应用

原式 =
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k}{n} \ln(1 + \frac{k}{n})$$

$$\frac{\text{定积分定义}}{\text{ = } \frac{1}{2} \int_{0}^{1} x \ln(1 + x) dx^{2}}$$

$$= \frac{1}{2} \int_{0}^{1} \ln(1 + x) dx^{2}$$

$$= \frac{1}{4}$$

间断点的判定 1.7

19. (2000, 数二) 设函数 $f(x)=rac{x}{a+e^{bx}}$ 在 $(-\infty,+\infty)$ 内连续, 且 $\lim_{x\to-\infty}f(x)=0$, 则常数 a,b满足

A
$$a < 0, b < 0$$

$$B \quad a > 0, b > 0$$

A
$$a < 0, b < 0$$
 B $a > 0, b > 0$ C $a < 0, b > 0$ D $a > 0, b < 0$

D
$$a > 0 \ b < 0$$