# Unit 16 Theorems Related With Area

# THEOREM 16.1.1

Parallelograms on the same base and between the same parallel lines (or of the same altitude) are equal in area.

#### **Solution:**



#### Given:

Two parallelograms ABCD and ABEF having the same base AB and between the same parallel lines AB and DE.

#### To Prove:

Area of parallelogram ABCD = Area of parallelogram ABEF **Proof:** 

| Statements                                             | Reasons                           |
|--------------------------------------------------------|-----------------------------------|
| area of (parallelogram ABCD)                           | _                                 |
| = area of (quadrilateral ABED)<br>+ area of (ΔCBE) (1) | Area addition axiom               |
|                                                        | Area addition axiom               |
| $m\overline{CB} = m\overline{DA}$                      | Opposite sides of a parallelogram |
| $m\overline{BE} = m\overline{AF}$                      | Opposite sides of a parallelogram |
| Z(: i- f-                                              | Opposite sides of a parallelogram |

#### **SEDINFO.NET**

| ∴ ∆CBE ≅ ∆DAF                     | S.A.S. congruent Axiom |
|-----------------------------------|------------------------|
| area of ( $\Delta$ CBE) = area of | Congruent area axiom   |
| (ΔDAF)(3)                         |                        |
| Hence area of (parallelogram      |                        |
| ABCD)                             |                        |
| = area of (parallelogram          | from (1), (2) and (3)  |
| ABEF)                             |                        |

# THEOREM 16.1.2

Parallelograms on equal bases and having the same (or equal) altitude are equal in area.

#### Solution:



Given:

Parallelograms ABCD, EFGH are on the equal bases BC, FG, having equal altitudes.

#### To Prove:

area of (parallelogram ABCD) = area of (parallelogram EFGH)

#### **Construction:**

Place the parallelograms ABCD and EFGH so that their equal bases  $R\tilde{G}$   $F\tilde{G}$  are in the straight line BCFG. Join  $B\bar{E}$  and G

#### **Proof:**

| Statements                                                                | • | Reasons                           |
|---------------------------------------------------------------------------|---|-----------------------------------|
| The given II <sup>3' *</sup> ABCD and EFGH are between the same parallels |   | Their altitudes are equal (given) |

|                                                    | the state of the s |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hence ADEH is a straight line II                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| to BC                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\therefore$ m $\overline{BC} = m.\overline{G}$    | Given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $= m\overline{E}\overline{H}$                      | EFGH is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                    | parallelogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Now $m\overline{BC} = m\overline{EH}$ and they are |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>]</b> [ [                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ∴ BE and CH are both equal.                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and II                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hence EBCH is a parallelogram                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                    | two opposite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Now $II^{gm}$ ABCD = $II^{gm}$ EBCH (i)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -1                                                 | base BC and between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DA 1000 EDOLL WITH EEOU (II)                       | the same parallels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                    | Being on the same base EH and between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                                  | the same parallels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                  | are same paranets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Hence                                              | rtal (i) and (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                    | From (i) and (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EFGH)                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# EXERCISE 16.1

Q1. Show that the line segment joining the midpoints of opposite sides of a parallelogram, divides it into two equal parallelograms.

#### Solution:



#### Given:

ABCD is a parallelogram. L is mid point of  $\overline{AB}$  and M is mid point of  $\overline{DC}$ .

# THEOREM 16.1.3

Triangles on the same base and of the same (i.e., equal) altitudes are equal in area.

#### Solution:



#### Given:

 $\Delta s$  ABC, DBC on the same base  $\overline{BC}$ , and having equal altitudes.

#### To Prove:

area of  $(\Delta ABC)$  = area of  $(\Delta DBC)$ 

#### Construction:

Draw  $\overline{BM}$  II to  $\overline{CA}$ ,  $\overline{CN}$  II to  $\overline{BD}$  meeting  $\overline{AD}$  produced in M, N. C+110

#### Proof:

| Statements                                              | Reasons                                                                                                                     |  |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| ΔABC. A DEF are between the                             | Their altitudes are                                                                                                         |  |  |
| same #gm                                                | equal                                                                                                                       |  |  |
| <b>Hence MADN</b> is parallel to $\overline{BC}$        |                                                                                                                             |  |  |
| ∴ area (II <sup>9m</sup> BCAM) = area (II <sup>9m</sup> | These II <sup>gms</sup> are on                                                                                              |  |  |
| BCND)(i)                                                | same base $\overline{BC}$ and                                                                                               |  |  |
| But $\triangle ABC = \frac{1}{2} (II^{gm} BCAM)$ (ii)   | between the same    <sup>S</sup>  <br>Each diagonal of a ll <sup>gm</sup>  <br>bisects it into two  <br>congruent triangles |  |  |
| and $\Delta DEF = (ll^{gm}EFYD)$ (iii)                  |                                                                                                                             |  |  |
| Hence<br>Area (Δ ABC ) = Area (Δ DBC)                   | From (i), (ii) and (iii)                                                                                                    |  |  |

# **THEOREM 16.1.4**

Triangles on equal bases and of equal altitudes are equal in area.

#### Solution:



#### Given:

Δs ABC, DEF on equal bases BC, EF and having altitudes equal.

#### To prove:

Area (Δ ABC) = Area (Δ DEF)

#### **Construction:**

Place the  $\Delta s$  ABC and DEF so that their equal bases  $\overline{BC}$  and  $\overline{EF}$  are in the same straight line BCEF and their vertices on the same side of it. Draw BX II to CA and FY II to ED meeting AD produced in X, Y respectively.

#### Proof:

| Statements                                              | Reasons                        |
|---------------------------------------------------------|--------------------------------|
| Δ ABC, Δ DEF are between the                            | Their altitudes are            |
| same parallels                                          | equal (given)                  |
| : XADY is II to BCEF                                    |                                |
| ∴ area (H <sup>gm</sup> BCAX ) = area (II <sup>gm</sup> | These II <sup>gms</sup> are on |
| EFYD )(i)                                               | equal bases and                |
|                                                         | between the same               |
|                                                         | parallels                      |
| But $\triangle ABC = \frac{1}{2} (II^{gm} BCAX)$ (ii)   | Diagonal of a II <sup>gm</sup> |
| 2                                                       | bisects it                     |
| and $\Delta DEF = \frac{1}{2} (II^{gim} EFYD)$ (iii)    |                                |
| •                                                       | From (i) (ii) and (iii)        |
| ∴ area (ΔABC) = area (ΔDEF)                             | From (i), (ii) and (iii)       |

|                                                    | the state of the s |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hence ADEH is a straight line II                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| to BC                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\therefore$ m $\overline{BC} = m.\overline{G}$    | Given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $= m\overline{E}\overline{H}$                      | EFGH is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                    | parallelogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Now $m\overline{BC} = m\overline{EH}$ and they are |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>]</b> [ [                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ∴ BE and CH are both equal.                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and II                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hence EBCH is a parallelogram                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                    | two opposite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Now $II^{gm}$ ABCD = $II^{gm}$ EBCH (i)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -1                                                 | base BC and between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DA 1000 EDOLL WITH EEOU (II)                       | the same parallels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                    | Being on the same base EH and between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                                  | the same parallels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                  | are same paranets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Hence                                              | rtal (i) and (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                    | From (i) and (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EFGH)                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# EXERCISE 16.1

Q1. Show that the line segment joining the midpoints of opposite sides of a parallelogram, divides it into two equal parallelograms.

#### Solution:



#### Given:

ABCD is a parallelogram. L is mid point of  $\overline{AB}$  and M is mid point of  $\overline{DC}$ .

#### To prove:

Area of parallelogram ALMD = Area of parallelogram LBCM.

#### **Proof:**

AB || CD opposite sides of parallelogram ABCD.

As L is mid point of  $\overline{AB}$ 

 $\overline{AL} \cong \overline{LB}$ 

The parallelogram ALMD and LBCD are on equal bases  $(\overline{AL} = \overline{LB})$  and between the same parallel lines  $\overline{AB}$  and  $\overline{DC}$ .

: They are equal areas

Hence Area of parallelogram ALMD = Area of parallelogram LBCM.

Q2. In a parallelogram ABCD,  $m\overline{AB} = 10 \text{ cm}$ . The altitudes corresponding to sides AB and AD are respectively 7 cm and 8 cm. Find  $\overline{AD}$ .





#### Given:

ABCD is a parallelogram.

 $\overline{mAB} = 10 \text{ cm}, \overline{DL} \text{ and } \overline{BM} \text{ are altitudes}$  $\overline{mDL} = 7 \text{ cm}, \overline{mBM} = 8 \text{ cm}$ 

To prove:

$$m\overline{AD} = ?$$

#### **Proof:**

Area of a parallelogram = base xaltitude

Area of a parallelogram ABCD

$$\overline{\text{mAB}} \times \overline{\text{mDL}} = \overline{\text{mAD}} \times \overline{\text{mBM}}$$

$$10 \times 7 = m\overline{AD} \times 8$$

$$m\overline{AD} = \frac{10 \times 7}{8} = \frac{35}{8} = 8.75 \text{ cm}$$

Q3. If two parallelograms of equal areas have the same or equal bases, their altitudes are equal.





Given:

In a parallelogram ABCD,  $\overline{CQ}$  is altitude and in parallelogram LMNP,  $\overline{NP}$  is altitude. Areas of parallelogram ABCD = Area of parallelogram LMNP and  $\overline{MAB} = \overline{mLM}$ 

To prove:

$$m\overline{CQ} = m\overline{NP}$$
.

**Proof:** 

Area of a parallelogram ABCD = Area of parallelogram LMNP (Given)

We know that area of a parallelogram= base  $\times$  altitude

$$m\overline{AB} \times m\overline{CQ} = m\overline{LM} \times m\overline{NP}$$
  
but 
$$m\overline{AB} = m\overline{LM} \text{ (Given)}$$

$$m\overline{CQ}=m\overline{NP}$$

# EXERCISE 16.2

# Q1. Show that a median of a triangle divides it into two triangles of equal area.

#### Solution:



#### Given:

In AABC, AM is median

i.e.  $\overline{mBM} = \overline{mMC}$ 

#### To prove:

Area  $\triangle ABM = \text{area } \triangle ACM$ 

#### **Construction:**

Draw RQ | BC, Draw BS | AM and CT | AM

#### Proof:

BS MA

(Construction)

BM | SA

(Construction)

.: BMAS is a parallelogram.

Similarly AMCT is a parallelogram.

Parallelograms BMAS and they are between the same parallel lines  $\overline{BC}$  and  $\overline{PQ}$ .

:. They have equal areas.

So Area parallelogram BMAS=Area parallelogram AMCT

 $\Rightarrow \frac{1}{2} \text{(area parallelogram BMAS)}$ 

 $=\frac{1}{2}$  (area parallelogram AMCT)

 $\Rightarrow$  Area ΔABM = Area ΔAMC

So a median of a triangle divides it into two triangles of equal area.

# Q2. Prove that a parallelogram is divided by its diagonals into four triangles of equal area.

#### Solution:



#### Given:

In parallelogram ABCD,  $\overline{AC}$  and  $\overline{BD}$  are its diagonal, which meet at L.

#### To prove:

Triangles ABL, 3CL, CDL and ADL have equal area.

#### **Proof:**

Triangles ABC and ABD have the same base  $\overline{AB}$  and are between the same parallel lines  $\overline{AB}$  and  $\overline{DC}$ .

They have equal area.

or Area  $\triangle ABC = Area \triangle ABD$ 

or Area  $\triangle ABL + Area \triangle BCL = Area \triangle ABL + Area \triangle ADL$ 

 $\Rightarrow$  Area ΔBCL = Area ΔADL (i)

Similarly (

Area  $\triangle ABC = Area \triangle BCD$ 

Area  $\Delta BCL = Area \Delta ABL$ 

Area  $\triangle BCL = Area \triangle CDL$ 

 $\Rightarrow$  Area ΔABL = Area ΔCDL (ii)

As diagonals of a parallelogram bisect each other. L is mid point of  $\overline{AC}$ .

So  $\overline{BL}$  is a median of  $\triangle ABC$ 

Area  $\triangle ABL = Area \triangle BCL$  (iii)

From (i), (ii) and (iii) we get

Area  $\triangle ABL = Area \triangle BCL = Area \triangle CDL = Area \triangle ADL$ 

# Q3. Divide a triangle into six equal triangular parts.

#### Solution:

Given:

Δ ABCD

#### Required:

To divide ΔABC into sic equal triangular parts.

#### Construction:



- (i) Draw the ray BT making an acute angle CBT.
- (ii) On  $\overline{BT}$  mark six points D; E; F; G; H and I such that  $m\overline{BD} = m\overline{DE} = m\overline{EF} = m\overline{FG} = m\overline{GH} = m\overline{HI}$
- (iii) Join IC.
- (iv) Draw HL, GM, FN, EO, DP each parallel to IC.
- (v) Join A to L, M, N, O and P. So BAP, PAO, OAN, NAM, MAL and LAC are required six equal parts.

# REVIEW EXERCISE 16

- Q1. Which of the following are true and which are false?
- (i) Area of a figure means region enclosed by bounding lines of closed figure.
- (ii) Similar figure have same area.
- (iii) Congruent figures have same area.
- (iv) A diagonal of a parallelogram divides it into two noncongruent triangles.

#### Construction:



- (i) Draw the ray BT making an acute angle CBT.
- (ii) On  $\overline{BT}$  mark six points D; E; F; G; H and I such that  $m\overline{BD} = m\overline{DE} = m\overline{EF} = m\overline{FG} = m\overline{GH} = m\overline{HI}$
- (iii) Join IC.
- (iv) Draw HL, GM, FN, EO, DP each parallel to IC.
- (v) Join A to L, M, N, O and P. So BAP, PAO, OAN, NAM, MAL and LAC are required six equal parts.

# REVIEW EXERCISE 16

- Q1. Which of the following are true and which are false?
- (i) Area of a figure means region enclosed by bounding lines of closed figure.
- (ii) Similar figure have same area.
- (iii) Congruent figures have same area.
- (iv) A diagonal of a parallelogram divides it into two noncongruent triangles.

- (v) Altitude of a triangle means perpendicular from vertex to the opposite side (base).
- (vi) Area of parallelogram is equal to the product of base and height.

**Answers:** 

(i)

|       |          |         |        |       | ·      | ١. |
|-------|----------|---------|--------|-------|--------|----|
| /i) T | /ii\ E . | (iii) T | (iv) F | (v) T | (vi) T |    |
| (1)   | (11)     | (1117)  | (14),  | (4)   | (4.)   |    |

(ii)

Q2. Find the area of the following.









#### Solution:

- (i) Area =  $6 \times 3 = 18 \text{ cm}^2$
- (ii) Area =  $4 \times 4 = 16 \text{ cm}^2$
- (iii) Area =  $8 \times 4 = 32 \text{ cm}^2$
- (iv) Area =  $\frac{1}{5} \times 10 \times 16 = 80 \text{ cm}^2$

# Q3. Define the following.

#### Solution:

#### (i) Area of a figure:

The region enclosed by the bounding lines of a closed figure is called the area of the figure.

The area of a closed region is expressed in square units (say, sq. m or  $\mathrm{m}^2$ )

#### (ii) Triangular Region:

The interior of a triangle is the part of the plane enclosed by the triangle.

A triangle region is the union of a triangle and its interior i.e., the three line segment forming the triangle and its interior.

By area of a triangle, we mean the area of its triangular region.

#### (iii) Rectangular Region:

The interior of a rectangle is the part of the plane enclosed by the rectangle.

A rectangular region is the union of a rectangle and it's interior.

A rectangular region can be divided into two or more than two triangular regions in many ways.

#### (iv) Altitude or Height of a triangle

If one side of a triangle is taken as its base the perpendicular to that side, from the opposite vertex is called altitude or height of the triangle.

WWW.StudyNowPK.COM