PREDAVANJA

Direktne vsote

<u>Def:</u> Grupa G je **notranji direktni produkt (DP)** svojih podgrup edink N_1, \ldots, N_s , če velja:

(i) $G = N_1 \cdots N_s$

(ii) $N_i \cap (N_1 \cdots N_{i-1} \cdot N_{i+1} \cdots N_s) = \{1\} \text{ za } \forall i \in [s].$

<u>Trditev:</u> Naj bodo $N_1, \ldots, N_s \triangleleft G$, potem sta naslednji trditvi ekvivalentni:

(i) G je DP N_1, \ldots, N_s

(ii) $\forall a \in G$ lahko na en sam način zapišemo kot $n_1 n_2 \cdots n_s$ za $n_i \in N_i$. **Def: Komutator** elementov $a, b \in G$ je $[a, b] := aba^{-1}b^{-1}$.

<u>Trditev:</u> $M, N \triangleleft G \land M \cap N = \{1\} \implies \forall m \in M, \forall n \in N : mn = nm.$ <u>Izrek:</u> $G \text{ DP } N_1, \dots, N_s \implies G \cong N_1 \times \dots \times N_s.$

<u>Def:</u> Naj bo G NDP N_1, \ldots, N_s . Če je G aditivna (Abelova), namesto direktni produkt pravimo **direktna vsota (DV)** in pišemo $G = N_1 \oplus \cdots \oplus N_s$.

Trditev: Naj bo G Abelova in |G|=mn za $m\perp n$. Potem za $H:=\{x\in G\mid mx=0\}$ in $K:=\{x\in G\mid nx=0\}$ velja $G=H\oplus K,$ |H|=m in |K|=n.

Posledica: $m \perp n \implies \mathbb{Z}_{mn} \cong \mathbb{Z}_m \oplus \mathbb{Z}_n$.

<u>Trditev:</u> Naj bo G Abelova in $|G| = p_1^{k_1} \cdots p_s^{k_s}$ kjer p_i različna praštevila. Potem podgrupe $H_i = \{x \in G \mid p_i^{k_i} x = 0\}$ za $i \in [s]$ zadoščajo $|H_i| = p_i^{k_i}$ in $G = H_1 \oplus \cdots \oplus H_s$.

<u>Def.</u> Naj bo $p \in \mathbb{P}$ in G grupa reda p^k za $k \geq 0$. Potem je G p-**grupa**. **<u>Trditev.</u>** Naj bo G Abelova netrivialna p-grupa. Potem je G ciklična \iff ima samo eno podgrupo redo p.

<u>Trditev:</u> Naj boGkončna Abelova p-grupa in Cciklična podgrupa z največjim redom. Potem $\exists K \leq G: G = C \oplus K.$

<u>Izrek:</u> (osnovni izrek o končnih Abelovih grupah) \forall končna Abelova grupa G je DV cikličnih p-podgrup. Če je G DV C_1, \dots, C_n in hkrati DV $D_1, \dots, D_{n'}$, potem je n = n' in $\exists \sigma \in S_n \ \forall i \in [n] : C_i \cong D_{\sigma(i)}$.

<u>Def.</u> Naj bo G grupa, potem je $T(G) = \{g \in G \mid \operatorname{red}(g) < \infty\}$ torzijska podgrupa G. Če je $T(G) = \{0\}$, pravimo, da je G brez torzije. <u>Izrek:</u> Naj bo G končno generirana Abelova grupa. Potem je $G \cong \mathbb{Z}^m \oplus K$, kjer je K končna Abelova grupa.

<u>Trditev:</u> Če je G končno generirana Abelova grupa brez torzije, potem je $G\cong \mathbb{Z}^n$, za nek $n\in \mathbb{N}$.

 $\underline{\mathbf{Trditev:}}\ \forall$ končno generirana Abelova grupa je DV neke končno generirane Abelove grupe brez torzije in neke končne Abelove grupe.

<u>Def.</u> Naj bo K kolobar, $e \in K$ je **idempotent**, če $e^2 = e$. Če zraven še ae = ea za $\forall a \in K$, je **centralni idempotent**. Idempotenta e in f sta **ortogonalna**, če ef = fe = 0.

<u>Izrek:</u> Naj bodo I_1, \ldots, I_s ideali kolobarja K, potem sta naslednji trditvi ekvivalentni:

(i) $K = I_1 \oplus \cdots \oplus I_s$

(ii) \exists paroma ortogonalni centralni idempotenti $e_1, \ldots, e_s \in K$: $e_1 + \cdots + e_s = 1 \land \forall i \in [s] : I_i = e_i K$.

Izrek: $K = I_1 \oplus \cdots \oplus I_s \implies K \cong I_1 \times \cdots \times I_s$.

Delovania grup

<u>Izrek:</u> (Cayleyev izrek) \forall grupo lahko vložimo v neko simetrično grupo.

<u>Def:</u> Podgrupi simetrične grupe pravimo **permutacijska grupa.**

Posledica: \forall končno grupo lahko vložimo v simetrično grupo S_n za nek $n\in\mathbb{N}.$

<u>Def.</u> Grupa G **deluje na množici** X, če $\exists \varphi: G \times X \to X$, $(g,x) \mapsto g \cdot x$, da velja:

(i) $\forall a,b \in G \ \forall x \in X : (ab) \cdot x = a \cdot (b \cdot x)$

(ii) $\forall x \in X : 1 \cdot x = x$.

Preslikavi φ pravimo delovanje grupe G na množici X.

<u>Def.</u> Naj G deluje na X. Orbita elementa $x \in X$ je $G \cdot x := \{a \cdot x \mid a \in G\}$, stabilizator elementa x pa je $G_x := \{g \in G \mid g \cdot x = x\}$. Množica fiksnih točk $g \in G$ je $X^g := \{x \in X \mid g \cdot x = x\} = \operatorname{fix}(g)$, fiksne točke/invariante delovanja pa je množica $X^G := \bigcap_{g \in G} X^g = \operatorname{fix}(G)$.

<u>Trditev:</u> Naj G deluje na X, potem je $x \sim y \iff \exists a \in G : a \cdot x = y$ ekvivalenčna relacija, $[x] = G \cdot x$ in $G_x \leq G$.

<u>Def.</u> Kvocientno množico $X/G = \{G \cdot x \mid x \in X\}$ imenujemo **prostor** orbit. Če je |X/G| = 1, je delovanje **tranzitivno**.

<u>Def:</u> Naj bo G grupa in $x \in G$. Potem je njegov **konjugiranostni** razred $\operatorname{Raz}(x) := \{axa^{-1} \mid a \in G\}$, **centralizator** pa $C(x) := \{g \in G \mid xg = gx\}$.

<u>Izrek:</u> (izrek o orbiti in stabilizatorju) Naj G deluje na X. Potem za $\forall x \in X$ velja $|G \cdot x| = [G : G_x]$ in če G končna $|G| = |G \cdot x| \cdot |G_x|$. <u>Izrek:</u> Naj G deluje netrivialno na končni X, potem $\exists x_1, \ldots, x_m \in G$

 $X \backslash X^G$, da je $|X| = |X^G| + \sum_{j=1}^m [G:G_{x_j}]$.

<u>Posledica:</u> Naj končna p-grupa G deluje na končni X. Potem $p \mid |X| - |X^G|$.

<u>Izrek:</u> (Burnsideova lema) Naj končna grupa G deluje na končni X, potem $|X/G| = \frac{1}{|G|} \sum_{a \in G} |X^g|$.

Razredna formula in Cauchyjev izrek

<u>Izrek:</u> (razredna formula) Naj bo G končna grupa. Če G ni Abelova, potem $\exists x_1, \ldots, x_m \in G \setminus Z(G)$, da je $|G| = |Z(G)| + \sum_{i=1}^{m} [G:C(x_j)]$.

Posledica: \forall končna netrivialna p-grupa ima netrivialen center.

Posledica: $|G| = p^2$ za $p \in \mathbb{P} \implies G$ Abelova.

<u>Izrek:</u> (Cauchyjev izrek) Naj boGkončna grupa. Če praštevilo $p\mid |G|,$ potemG vsebuje element reda p.

 $\underline{\textbf{Posledica:}}$ Končna grupa je $p\text{-}\text{grupa}\iff \text{red vsakega elementa je}$ potenca p.

Izreki Sylowa

<u>Def:</u> Naj bo $H \leq G$, množici $N(H) := \{a \in G \mid aHa^{-1} = H\}$ pravimo normalizator H.

<u>Def.</u> $H \leq G$ je p-podgrupa Sylowa, če je $|H| = p^k \wedge p^{k+1} \nmid |G|$. Z n_p ozn. #p-podgrup Sylowa grupe G.

<u>Izrek:</u> (izreki Sylowa) Naj praštevilo p deli red končne grupe G:

(a) $p^k \mid |G| \implies G$ vsebuje vsaj eno p-podgrupo reda p^k .

(b) $\forall p$ -podgrupa G je vsebovani v kaki p-podgrupi Sylowa.

(c) $\forall p$ -podgrupi Sylowa sta konjugirani.

(d) #p-podgrup Sylowa grupe G deli |G|.

(e) #p-podgrup Sylowa grupe G je pm+1 za nek $m\geq 0$.

Posledica: $|G| = p^k t \land p \nmid t \implies n_p \mid t$.

<u>Posledica:</u> Naj boS p-podgrupa Sylowa vG, potem $S \triangleleft G \iff n_p = 1.$

Končne enostavne grupe

 $\underline{\mathbf{Def:}}$ Grupa Gje
enostavna, če sta njeni edini podgrupi edinki $\{1\}$ in
 G.

<u>Def.</u> Naj bo G končna netrivialna grupa in podgrupe $M_i \leq G$ take, da velja: $\{1\} = M_s \subseteq M_{s-1} \subseteq \cdots \subseteq M_0 = G, \ M_{i+1} \triangleleft M_i \text{ in } M_i/M_{i+1}$ enostavne za $i = 0, 1, \ldots, s-1$. Takemu zaporedju pravimo **kompozicijska vrsta** grupe G.

<u>Izrek:</u> (Jordan-Hölderjev izrek) Če sta M_0, \ldots, M_s in N_0, \ldots, N_t

kompozicijski vrsti G, potem t=s in $\exists \sigma \in S_t: N_i/N_{i+1} \cong M_{\sigma(i)}/M_{\sigma(i+1)}.$

Izrek: A_n je enostavna za n > 5.

 $\overline{\textbf{Izrek:}}$ (klasifikacija končnih enostavnih grup) Če je G lkončna enostavna grupa, potem sodi v eno izmed naslednjih družin:

(i) $\mathbb{Z}_p, p \in \mathbb{P}$

(ii) $A_n, n \ge 5$

(iii) grupe Liejevega tipa

(iv) 26 Sporadičnih grup.

Rešljive grupe

<u>Def:</u> Grupa G je **rešljiva**, če $\exists N_0, \ldots, N_m \triangleleft G$, da velja $\{1\} = N_0 \subseteq N_1 \subseteq \cdots \subseteq N_m = G$ in N_{i+1}/N_i je Abelova za $i = 0, 1, \ldots, m-1$.

<u>Def:</u> Naj bo G grupa, z G' ozn. podgrupo generirano z vsemi komutatorji iz G in ji pravimo komutatorska podgrupa.

Trditev: $N \triangleleft G \implies N' \triangleleft G$.

Trditev: Naj bo $N \triangleleft G$. Potem je G/N Abelova $\iff G' \subseteq N$.

<u>Izrek:</u> Naj bo G grupa. Ozn. $G^{(0)} = G$ in induktivno $G^{(i+1)} := (G^{(i)})'$ za $i \ge 0$. G je rešljiva $\iff \exists m \in \mathbb{N} : G^{(m)} = \{1\}.$

Posledica: Podgrupa rešljive grupe je rešljiva.

<u>Posledica:</u> Naj bo $N \triangleleft G$. G je rešljiva $\iff N$ in G/N sta rešljivi.

<u>Izrek:</u> (Feit-Thompsonov izrek) \forall grupe lihe moči so rešljive.

Kolobarji polinomov

Trditev: Naj bo F polje, potem je F[x] brez deliteljev niča.

<u>Izrek:</u> (osnovni izrek o deljenju) Za poljubna $f(x),g(x) \in F[x]$, kjer $g(x) \neq 0$ in F polje, \exists enolična k(x),r(x), da velja $f(x) = k(x) \cdot g(x) + r(x)$, $\deg(r) < \deg(g)$.

Posledica: \forall ideal v kolobarju F[x], kjer F polje je glavni ideal.

<u>Trditev:</u> Naj bo F polje in $f(x) \in F[x]$. Potem je $a \in F$ ničla $f(x) \iff (x-a) \mid f(x)$.

Posledica: Naj boF polje in $p(x) \neq 0 \in F[x].$ Potem je vF kvečjemu $\deg(p)$ ničel p(x).

<u>Def:</u> Naj bo F polje, $p(x) \in F[x]$, $\deg(p) > 0$. Pravimo, da je p(x) **nerazcepen nad** F, če iz $p(x) = g(x) \cdot h(x)$ za $g(x), h(x) \in F[x]$ sledi, da je eden od g,h konstanten.

Trditev: Naj bo F polje, $p(x) \in F[x]$, $\deg(p) > 0$:

(i) $deg(p) = 1 \implies p(x)$ nerazcepen

(ii) $deg(p) \ge 2$ in p(x) nerazcepen \implies nima ničle v F

(iii) $deg(p) \in \{2,3\} \implies (p(x) \text{ nerazcepen } \iff \text{ nima ničle v } F.$

<u>Def:</u> $p(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$ je **primitiven**, če so a_0, \dots, a_n tuja.

<u>Izrek:</u> (Gaussova lema) Produkt primitivnih polinomov je primitiven polinom.

<u>Izrek:</u> Naj bo $f(x) \in \mathbb{Z}[x]$ tak, da ga ne moremo zapisati kot produkt dveh nekonstantnih polinomov v $\mathbb{Z}[x]$, potem je f(x) nerazcepen nad $\mathbb{O}[x]$.

<u>Izrek:</u> (Eisensteinov kriterij) Naj bo $f(x) = a_n x^n + \cdots + a_0$ in $\exists p \in \mathbb{P}$, da $p \mid a_i$ za $i < n, p \nmid a_n, a_0^2$. Potem je f(x) nerazcepen nad $\mathbb{Q}[x]$.

Razširitve polj

<u>Def:</u> Naj bosta K,F polji in $F \subseteq K$, potem je K razširitev polja F, ozn. K/F.

<u>Def:</u> Naj bo K/F razširitev, potem je $a \in K$ algebraičen nad F, če $\exists p(x) \in F[x] : p(a) = 0$. Če je p(x) moničen in minimalne stopnje, pravimo da je $m_a(x) := p(x)$ minimalni polinom za a nad F in a stopnje algebraičnosti $\deg(m_a(x))$ nad F. Sicer je transcendentalen nad F. V primeru $F = \mathbb{Q}$ in $K = \mathbb{C}$, pravimo da je a algebraično/transcen-

dentalno število.

Izrek: π je transcendentalno nad \mathbb{Q} .

Izrek: Naj bo $a \in K$ algebraičen nad F in $p(x) \neq 0 \in F[x] : p(a) = 0$ moničen. Naslednje trditve so ekvivalentne:

- (i) p(x) minimalen polinom za a
- (ii) p(x) nerazcepen
- (iii) $\forall q(x) \in F[x] : q(a) = 0 \implies p(x)|q(x)$

Končne razširitve

Def: Razširitev K/F je **končna**, če je K končno razsežen vektorski prostor nad F in pišemo $[K:F] := \dim_F(K)$.

Izrek: Naj bosta razširitvi L/K in K/F končni, potem:[L:F] = [L:K] · [K:F].

Posledica: Naj bo K/F končna razširitev in L podpolje K, ki vsebuje F, potem [L:F] deli [K:F].

Def: Razširitev K/F je **algebraična**, če je $\forall a \in K$ algebraičen nad F, sicer je transcendentalna.

Trditev: Vsaka končna razširitev je algebraična.

<u>Def:</u> Razširitev K/F je enostavna/primitivna, če $\exists a \in K : K =$ F(a). Elementu a pravimo **primitivni element** K.

Izrek: Naj bo K/F razširitev in $a \in K$ algebraičen nad F stopnje n. Potem je $F(a) = F[a] = \{\alpha_0 + \alpha_1 a + \dots + \alpha_{n-1} a^{n-1} \mid \alpha_i \in F\}$ končna razširitev F in [F(a):F]=n.

<u>Izrek:</u> Naj bo K/F razširitev in $a_1, \ldots, a_n \in K$ algebraični nad F. Potem je $F(a_1, \ldots, a_n) = F[a_1, \ldots, a_n]$ končna razširitev F.

Posledica: Naj bo K/F razširitev in L = $K \mid a$ algebraičen nad F}. L je podpolje K.

Konstrukcije z ravnilom in šestilom

Def: Naj bo $\mathcal{P} \subseteq \mathbb{R}^2$. Točka $T = (a,b) \in \mathbb{R}^2$ je konstruktibilna $iz \mathcal{P}$, če jo lahko skonstruiramo v s končnim številom operacij, kjer smemo: (i) narisati premico med točkama iz P. (ii) narisati krožnico z središčem v točki iz \mathcal{P} in točka iz \mathcal{P} leži na krožnici, in je Z presek premic/krožnic. Za $\mathcal{P} = \{(0,0),(1,0)\}$ pravimo da je (a,b) kosntruktibilna točka in a,b konstruktibilni števili.

Izrek: Naj bo $\mathcal{P} \subseteq \mathbb{R}^2$ in $F \leq \mathbb{R}$ tako polje, da $\mathcal{P} \subseteq F \times F$. Če je $(a,b) \in \mathbb{R}^2$ konstruktibilna iz \mathcal{P} , potem sta a in b algebraični nad F stopnie 2^k za k > 0.

Posledica: Podvojitev (volumna) kocke je nemogoča samo z ravnilom in šestilom.

Posledica: Trisekcija kota 60° je nemogoča samo z ravnilom in šesti-

Posledica: Konstrukcija kvadrata s površino danega kroga je nemogoča samo z ravnilom in šestilom.

Posledica: Množica konstruktibilnih števil je podpolje v \mathbb{R} .

Razpadna polia

Trditev: Naj bo K/F razširitev in $a \in K$: $\exists f(x) \in F[x] : f(a) =$ $0 \iff \exists q(x) \in K[x] : f(x) = (x-a) \cdot q(x).$

Def: Če je $a \in K$ ničla $f(x) \in F[x]$ in $\exists h(x) \in K[x] : f(x) =$ $(x-a)^k \cdot h(x) \wedge h(a) \neq 0$, je a ničla večkratnosti k za f(x).

Izrek: Polinom $f(x) \in F[x]$ stopnie n ima največ n ničel, če je štejemo večkratnost ničel, v katerikoli razširitvi $K \supset F$.

Izrek: Naj bo $f(x) \in F[x] : \deg(f) > 0$, potem \exists razširitev F, v kateri ima f(x) ničlo.

Izrek: Naj bo $f(x) \in F[x]$: $\deg(f) = n > 0$, z vodilnim koeficientom c, potem \exists razširitev F, ki vsebuje take a_1, \ldots, a_n , da $f(x) = c(x - a_1) \dots (x - a_n).$

<u>Def:</u> Naj bo K/F razširitev in $f(x) \in F[x]$. Pravimo da f(x) razpade

nad K, če je enak produktu linearnih polinomov v K[x]. Če \nexists pravo | (i) K/F končna $\implies K/L$ končna podpolje K, v katerem f(x) razpade, pravimo da je K razpadno polje f(x) nad F.

Trditev: Naj bo $p(x) \in F[x]$ nerazcepen in a ničla p(x) v neki razširitvi K/F. Če je $\varphi: F \to F'$ izomorfizem polj in a' ničla $p_{\varphi}(x)$ v neki razširitvi K'/F', potem \exists enoličen izomorfizem $\Phi: F(a) \to F'(a')$, ki zadošča $\Phi(a) = a'$.

Izrek: Naj bo $f(x) \in F[x]$: $\deg(f) > 0$ in K razpadno polje f(x) nad F. Če je $\varphi: F \to F'$ izomorfizem polj in K' razpadno polje $f_{\varphi}(x)$ nad F', potem lahko φ razširimo na izomorfizem med K in K'.

Posledica: Naj bo $f(x) \in F[x] : \deg(f) > 0$, potem je njegovo razpadno polje nad F eno samo do izomorfizma natančno.

Def: Razširitev K/F je **normalna**, če za $\forall p(x) \in K[x]$ velja: \forall ničle p(x) so v K ali nobena ničla p(x) ni v K.

Izrek: Naj bo K/F končna razširitev, potem je K/F normalna \iff K je razpadno polje nekega poljnom iz F[x].

Algebraično zaprtje polja

Def: Pravimo da je polje A algebraično zaprto, če za $\forall f(x) \in$ $A[x] \deg(f) > 0 \implies \exists a \in A : f(a) = 0$. Polje \overline{A} je algebraično **zaprtje** A, če je algebraično zaprto in algebraična razširitev A.

Trditev: Naj bo K razširitev L in L algebraična razširitev F. Če je $a \in K$ algebraičen nad L, potem je algebraičen tudi nad F.

Izrek: Naj bo F podpolje algebraično zaprtega polja A. Potem je $\overline{F} = \{a \in A \mid a \text{ algebraičen nad } F\}$ algebraično zaprtje F.

Posledica: Polje ∀ algebraičnih števil je algebraično zaprtje ℚ.

Končna polja

Trditev: Naj bo K končno polje in char(K) = p, potem je $|K| = p^n$ za nek $n \in \mathbb{N}$.

Trditev: Naj bo K polje in $|K| = p^n$, potem je K razpadno polje polinoma $f(x) = x^{p^n} - x$ nad \mathbb{Z}_p .

Trditev: Naj bo R komutatitven kolobar in $char(R) = p \in \mathbb{P}$, potem je $\varphi: R \to R$, $\varphi(x) = x^p$ endomorfizem R.

Trditev: Razpadno polje \mathbb{F}_{n^n} polinoma $f(x) = x^{p^n} - x$ nad \mathbb{Z}_n ima p^n elementov.

Izrek: Za $\forall p \in \mathbb{P}$ in $\forall n \in \mathbb{N} \exists$ polje s p^n elementi, ki je do izomorfizma natančno enolično določeno, ozn. s \mathbb{F}_{p^n} ali $GF(p^n)$, ki ga imenujemo Galoisovo polje reda p^n .

Izrek: (Wedderburnov izrek) ∀ končen obseg je polje.

Trditev: Multiplikativna grupa končnega polja je ciklična.

Separabilne razširitve

Def: $f(x) \in F[x]$ je **separabilen** če so njegove ničle v poljubni razširitvi F enostavne. Algebraična razširitev K/F je **separabilna**, če je za $\forall a \in K \ m_a(x)$ separabilen. Če je vsaka končna razširitev F separabilna, je F perfektno.

Def: Naj bo K/F razširitev polj, in L podpolje K, ki vsebuje F. Potem je L **vmesno** polje.

Izrek: Naj bo F polje in char(F) = 0 ter $p(x) \in F[x]$ nerazcepen. Potem so ničle p(x) v poljubni razširitvi K/F enostavne.

Posledica: F polie, $char(F) = 0 \implies \forall$ algebraična razširitev F je separabilna.

Izrek: (primitivni element) \(\prim \) končna razširitev polja s karakteristiko 0 je enostavna.

Trditev: Končna polja so perfektna.

Def: Normalnim separabilnim razširitvam pravimo Galoisove razširitve.

Trditev: Naj bodo $F \subseteq L \subseteq K$ polja:

- (ii) K/F normalna $\implies K/L$ normalna
- (iii) K/F separabilna $\implies K/L$ separabilna.

Galoisova grupa razširitve

Def: Naj bo K/F razširitev in $\alpha: K \to K$ avtomorfizem. Pravimo da je α F-avtomorfizem, če $\alpha|_F = \mathrm{id}_F$. Množico \forall Favtomorfizmov polja K imenujemo **Galoisova grupa** razširitve K/F, ozn. Gal(K/F) = Aut(K/F).

Izrek: Naj bo F polje, char(F) = 0, $f(x) \in F[x] : deg(f) > 0$ in K razpadno polje f(x) nad F. Če je $\varphi: F \to F'$ izomorfizem polj in K'razpadno polje $f_{\varphi}(x)$ nad F', potem \exists natanko [K:F] izomorfizmov $\operatorname{med} K$ in K', ki razširjajo φ .

Trditev: Naj bo $\sigma \in \text{Aut}(K/F), f(x) \in F[x], a \in K : a \text{ ničla } f(x) \implies$ $\sigma(a)$ ničla f(x).

Def: Naj bo K/F končna razširitev, char(F) = 0 in H < Aut(K/F). Vmesnemu polju $K^H := \{x \in K \mid \forall \sigma \in H : \sigma(x) = x\}$, pravimo fiksno **polje** od H.

Trditev: Naj bo K/F končna razširitev, char(F) = 0, H < Aut(K/F)in $a \in K$, ter $\{a_1, \ldots, a_m\} = \{\sigma(a) \mid \sigma \in H\}$. Potem je p(x) = $(x-a_1)\cdots(x-a_m)$ minimalni polinom a nad K^H .

Trditev: Naj bo K/F končna razširitev, char(F) = 0 in $H < \infty$ Aut(K/F). Potem $|H| = [K : K^H]$ in $[K : F] = |H| \cdot [K^H : F]$.

Izrek: Naj bo K/F končna razširitev in char(F) = 0. Naslednie trditve so ekvivalentne:

- (i) |Aut(K/F)| = [K:F]
- (ii) $K^{\text{Aut}(K/F)} = F$
- (iii) K/F je normalna oz. \forall nerazcepen polinom iz F[x] z ničlo v K, razpade nad K
- (iv) K ie razpadno polie nekega nerazcepnega polinoma iz F[x]

(v) K je razpadno polje nekega polinoma iz F[x].

Def: Končna razširitev K/F, char(F) = 0, je **Galoisova**, če zadošča pogojem (i)-(v) prejšnjega izreka. V tem primeru grupi Aut(K/F) =: Gal(K/F) pravimo **Galoisova grupa** od K nad F. Če je K razpadno polje polinoma $f(x) \in F[x]$, ji pravimo tudi Galoisova grupa od f(x)nad F.

Izrek: (fundamentalni izrek Galoisove teorije) Naj bo K Galoisova razširitev F, char(F) = 0. Naj bo \mathcal{I} množica \forall vmesnih poli med F in K, ter G množica \forall podgrup G := Aut(K/F). Potem:

(a) $\alpha: \mathcal{G} \to \mathcal{I}$, $\alpha(H) = K^H$ je bijekcija in njen inverz je $\beta: \mathcal{I} \to \mathcal{G}$, $\beta(L) = \operatorname{Gal}(K/L).$

- (b) Če H sovpada z L, t.j. H = Gal(K/L) oz. $L = K^H$, potem je |H| = [K : L] in [G : H] = [L : F].
- (c) Če H in H' sovpadata z L in L', potem $H \subseteq H' \iff L \supseteq L'$.
- (d) Če H sovpada z L, potem je H podgruga edinka v $G \iff L$ je Galoisova razširitev F. V tem primeru je $G/H \cong Gal(L/F)$.

Rešljivost polinomskih enačb

Def: Naj bo F polje, $f(x) \in F[x]$ je **rešljiv z radikali** nad F, če $\exists a_1, \dots, a_m$ v neki razširitvi F, da velja:

- (i) f(x) razpade nad $F(a_1, \ldots, a_m)$
- (ii) $\exists n_i \in \mathbb{N} \text{ za } i = 2, \ldots, m \text{ da } a_1^{n_1} \in F \land a_i^{n_i} \in F(a_1, \ldots, a_{i-1}) \text{ za}$ $i=2,\ldots,m$.

Trditev: Naj bo F podpolje \mathbb{C} in $\alpha \in F$, $n \in \mathbb{N}$. Potem je Galoisova grupa polinoma $x^n - \alpha$ rešljiva nad F.

Izrek: Naj bo F podpolje \mathbb{C} in $f(x) \in F[x]$. Če je $f(x) \in F[x]$ rešljiv z radikali nad F, potem je Galoisova grupa od f(x) nad F rešljiva. (Velja tudi obrat)

Trditev: Nerazcepen kvintični polinom $p(x) \in \mathbb{Q}[x]$ z natanko 3 ni-

člami ni rešljiv z radikali nad \mathbb{Q} .

<u>Izrek:</u> (Abel-Ruffinijev izrek) \exists kvintični polinom v $\mathbb{Q}[x]$, ki ni rešljiv z radikali nad \mathbb{Q} .

Izrek: (fundamentalni izrek algebre) C je algebraično zaprto.

VAJE

Grupe

<u>Def:</u> S_n označuje simetrično grupo množice [n]. $\pi \in S_n$ je soda, če je produkt sodo mnogo transpozicij, ozn. $\operatorname{sgn}(\pi) = 1$, sicer je liha in $\operatorname{sgn}(\pi) = -1$.

Trditev: $(a_1 a_2 \dots a_k) = (a_1 a_k) \dots (a_1 a_2)$.

Trditev: Naj bo $\sigma \in S_n$. Potem $\sigma \cdot (a_1 \cdots a_k) \cdot \sigma^{-1} = (\sigma(a_1) \cdots \sigma(a_k))$.

<u>Def.</u> $\pi, \sigma \in S_n$ imata **enako zgradbo disjunktnih ciklov**, če sta oba produkt disjunktnih ciklov dolžin k_1, \ldots, k_s . Permutaciji sta **konjugirani**, če $\exists \tau \in S_n : \pi = \tau \sigma \tau^{-1}$.

 $\underline{\mathbf{Trditev:}}$ Permutaciji sta konjugirani \iff imata enako zgradbo disjunktnih ciklov.

Trditev: Transpozicije (i i+1) generirajo S_n in $(i j) = (i i+1)(i+1 i+2)\cdots(j-1 j)\cdots(i+1 i+2)(i i+1)$.

<u>Def:</u> Diedrska grupa je $D_{2n} := \{1, r, \dots, r^{n-1}, z, rz, \dots, r^{n-1}z\}$, kjer $r^n = 1, z^2 = 1$ in $r^kz = zr^{n-k}$, r-rotacija, z-zrcaljenje čez os simetrije v pravilnem n-kotniku.

Trditev: $H \cup K \leq G$, potem $K \subseteq H$ ali $H \subseteq K$.

Trditev: $H_1 \leq G_1$ in $H_2 \leq G_2 \implies H_1 \times H_2 \leq G_1 \times G_2$. Obrat ne velja - diagonalna grupa.

<u>Def.</u> $GL_n(\mathbb{R}) := \{A \in M_n(\mathbb{R}) \mid \det(A) \neq 0\}$ je glavna linearna grupa, $SL_n(\mathbb{R}) := \{A \in GL_n(\mathbb{R}) \mid \det(A) = 1\}$ pa specialna linearna grupa, ki je podgrupa edinka v $GL_n(\mathbb{R})$.

Trditev: $H,K \leq G$ končni, potem $|HK| = \frac{|H| \cdot |K|}{|H \cap K|}$.

Trditev: \mathbb{Z}_n ima (eno samo) podgrupo reda $k \iff k \mid n$.

Trditev: Podgruda ciklične grupe je ciklična.

Trditev: G neskončna \Longrightarrow G ima neskončno podgrup.

<u>Trditev:</u> Naj bo $k \in \mathbb{Z}_n$, red $(k) = \frac{n}{\gcd(k,n)}$.

Trditev: $m \perp n \implies \mathbb{Z}_{>} \times \mathbb{Z}_n$ ciklična.

<u>Def.</u> $U_n:=\{A\in M_n(\mathbb{C})\mid \overline{A^T}A=I\}$ je unitarna grupa, $SU_n:=\{A\in U_n\mid \det(A)=1\}$ pa specialna unitarna grupa.

Def: $\mathbb{T} := \{ z \in \mathbb{C} \mid |z| = 1 \}$

<u>Def.</u> Podgrupa $N \leq G$ je **edinka**, če $\forall \varphi \in \text{Inn}(G) : \varphi(N) = N$. N je **karakteristična**, če za $\forall \varphi \in \text{Aut}(G) : \varphi(N) \subseteq N$.

Trditev: Z(G) je karakteristična.

<u>Trditev</u>: $H^{\text{kar.}} \leq K$ in $K^{\text{kar.}} \leq G \implies H^{\text{kar.}} \leq G$.

Homomorfizmi

Trditev: $\varphi: G \to H$ homomorfizem, $a \in G \implies \operatorname{red}(\varphi(a)) \mid \operatorname{red}(a)$. Če φ vložitev, velja enakost.

Def: Kolobar K ie enostaven, če sta edina ideala \emptyset in K.

Trditev: D obseg $\Longrightarrow M_n(D)$ enostaven.

Trditev: Center enostavnega kolobarja je polje.

Trditev: K_1, K_2 kolobarja, potem je \forall ideal v $K_1 \times K_2$ oblike $I_1 \times I_2$, kjer I_1 ideal K_1 in I_2 ideal K_2 .

<u>Trditev:</u> I,J ideala komutativnega kolobarja in I+J=K, potem $IJ=I\cap J$.

<u>Izrek:</u> (kitajski izrek o ostankih) Naj bodo n_1, \ldots, n_s tuja cela števila. Za poljubne $a_1, \ldots, a_s \in \mathbb{Z}$ $\exists a \in \mathbb{Z}$, da je $\forall i \in [s] : a \equiv_{n_i} a_i$ in če $b \equiv_{n_i} a_i$ za nek i, potem $n_1 \cdots n_s \mid a - b$.

Direktne vsote

<u>Trditev:</u> Končna Abelova grupa G je ciklična, če za $\forall p \in \mathbb{P} : p \mid G \mid G \mid G$ vsebuje natanko p-1 elementov reda p.

Trditev: Naj bo G končna Abelova grupa, potem $\forall m: m \mid |G| \implies G$ vsebuje podgrupo reda m.

Delovanja grup

Trditev: Naj bo $\sigma \in A_n$ in $C(\sigma)$ centralizator σ v S_n , potem:

(i) $C(\sigma) \subseteq A_n \implies \operatorname{Raz}(\sigma) \vee S_n$ razpade na 2 enako velika dela v A_n (ii) $C(\sigma) \not\subseteq A_n \implies \operatorname{Raz}(\sigma) \vee S_n$ sovpada z $\operatorname{Raz}(\sigma) \vee A_n$.

Trditev: $H \leq G \implies N(H)/C(H) \cong K \leq \operatorname{Aut}(H)$.

Trditev: Naj bo G končna in H < G, $[G:H] = m:|G| \nmid m! \implies G$ ni enostavna.

 $\underline{\mathbf{Trditev:}}$ Naj bo $|G|=2m,\,m$ liho. Potem ima G podgrupo indeksa 2 in ni enostavna.

Komutatorske in rešljive grupe

<u>Def.</u> Naj bo $A,B \leq G$, potem je $[A,B] := \{aba^{-1}b^{-1} \mid a \in A, b \in B\}$. Z G' ozn. **komutatorsko podgrupo** [G,G].

Trditev: $G' \triangleleft G$ in G/G' Abelova.

Trditev: $H < G : H \triangleleft G \iff [H,G] < H$.

Trditev: $H \triangleleft G$ in G/H Abelova $\implies G' \leq H$.

Trditev: $|G| = p^k \implies G$ ie rešljiva.

Polinomi

<u>Trditev:</u> Polje F končno $\iff p(x) \neq q(x) \in F[x]$, ki imata enako polinomsko funkcijo.

<u>Trditev:</u> Naj bo F polje in $p(x) \in F[x]$ v n različnih elementih doseže enako vrednost, potem $\deg(p(x)) > n$.

<u>Trditev:</u> $f(x) = x^n + 1$ nerazcepen nad $\mathbb{Q} \iff n = 2^k, k \ge 1$.

Trditev: Naj bodo $a_0, \ldots, a_n \in \mathbb{Z}$ in $p \in \mathbb{P} : p \nmid a_n$. Če $a_n x^n + \cdots + a_0$ nerazcepen nad \mathbb{Q} , potem je nerazcepen nad \mathbb{Z}_p .

Trditev: a,b,c liha $\implies ax^4 + bx + c$ nerazcepen nad \mathbb{Q} .

<u>Trditev:</u> Naj bodo $a_1, \ldots, a_n \in \mathbb{Z}$ različna, potem sta $(x-a_1) \cdots (x-a_n)-1$ in $(x-a_1)^2 \cdots (x-a_n)^2+1$ nerazcepna nad \mathbb{Q} .

Trditev: $x^p - x + 1$ je nerazcepen in separabilen nad \mathbb{Z}_p .

Razširitve polj

<u>Trditev:</u> Naj bo $[E:F]=p\in\mathbb{P}$, potem je $\forall a\in E\backslash F$ algebraičen stopnie p nad F.

Trditev: a,b algebraična nad F in $[F(a):F] \perp [F(b):F] \implies [F(a,b):F] = [F(a):F] \cdot [F(b):F].$

Trditev: $F(a^k, a^l) = F(a^d)$ za $d = \gcd(k, l)$.

Trditev: a_1, \ldots, a_n algebraični nad F, potem $[F(a_1, \ldots, a_n) : F] \leq [F(a_1) : F] \cdots [F(a_n) : F].$

Trditev: F polje in $f(x) \in F[x]$. Ničle f(x) so v poljubni razširitvi F enostavne $\iff f(x)$ in f'(x) tuja.

<u>Trditev</u>: Naj bo E/F razširitev in char(F) = 0, $a \in E$ je k-kratna ničla $f(x) \in F[x] \iff f(a) = f'(a) = \cdots = f^{(k)}(a) = 0$ in $f^{(k+1)}(a) \neq 0$.

<u>Trditev:</u> Naj bo char(K) = 2 in $M = K(x^2, y^2)$, potem M nima primitivnega elementa.

Razpadna polja

Trditev: Naj bo E/F razpadno polje polinoma $f(x) \in F[x]$, $\deg(f) = n$. Potem:

(i) $[E:F] \le n!$

(ii) f(x) nerazcepen $\implies n \mid [E:F]$

(ii) $E = F(a_1, \ldots, a_k)$, a_i ničle in $k \leq n$.

<u>Trditev:</u> Naj bo F polje in $a_1,\ldots,a_n\in F$, potem $\exists f(x)\in F[x]:f(a_1)=\cdots=f(a_n)=1.$

<u>Trditev:</u> F je algebraično zaprto $\iff \nexists$ prava končna razširitev F. <u>Trditev:</u> Naj bo [L:K]=2, potem je L/K normalna.

Trditev: Naj bo $f(x) = x^4 + bx^2 + c \in \mathbb{Q}[x]$ in naj bo $G = \operatorname{Gal}_{\mathbb{Q}}(f(x))$. Potem je $G \leq D_8$. Naj bodo $\pm \alpha, \pm \beta$ ničle f(x). Če $\alpha\beta$ ali $\alpha^2 \in \mathbb{Q}$, potem je $G < K_4$. Če $\sqrt{c(b^2 - 4c)} \in \mathbb{Q}$, potem $G < C_4$.

Trditev: Naj bo $f(x) = x^3 + ax^2 + bx + c \in \mathbb{Q}[x]$ nerazcepen in $D = ((x_1 - x_2)(x_1 - x_3)(x_2 - x_3))^2$ diskriminanta. Če $\sqrt{D} \in \mathbb{Q}$ potem $G \cong \mathbb{Z}_3$, sicer $G \cong S_3$.

Trditev: Naj bo $f(x) \in \mathbb{Q}[x]$ nerazcepen stopnje 5 z natanko 3 realnimi ničlami, potem $\mathrm{Gal}_{\mathbb{Q}}(f(x)) \cong S_5$.

<u>Def:</u> Naj bo $p(x) \in \mathbb{Q}[x]$ in $\deg(p) = n$, kjer $\alpha_1, \ldots, \alpha_n$ ničle p(x). Potem je njegova **diskriminanta** $D_f := \prod_{i,j \in [n] \land i < j} (\alpha_i - \alpha_j)^2$.

<u>Izrek:</u> (Cardanova formula) Naj bo $p(x)=ax^3+bx^2+cx+d\in\mathbb{Q}[x],$ $a\neq 0$ nerazcepen. Naj bo p(x)=0, potem z $x=t-\frac{b}{3a}$ dobimo $t^3+pt+q=0$, kjer $p=\frac{3ac-b^2}{3a},q=\frac{2b^3-9abc+27a^2d}{27a^3}$. Naredimo substitucijo t=u+v in dobimo $u^3+v^3+(3uv+p)(u+v)=0$. Izberemo $uv=-\frac{p}{3}$ in dobimo $u^3+v^3+q=0$. Potem sta u^3,v^3 ničle $y^2+qy-\frac{p^3}{27}=0$. Naj bo $\Delta=(\frac{q}{2})^2+(\frac{p}{3})^3$ in $u=\sqrt[3]{-\frac{q}{2}+\sqrt{\Delta}},$ $v=\sqrt[3]{-\frac{q}{2}-\sqrt{\Delta}}$. Potem so ničle $t^3+pt+q=0$ enake $t_1=u+v,$ $t_2=\omega u+\omega^2 v$ in $t_3=\omega^2 u+\omega v$. Ničle p(x) pa $x_i=t_i-\frac{b}{3a}$, kjer $\omega=e^{2\pi i/3}$.

<u>Izrek:</u> (Galoisova grupa polinomov 4. stopnje) Naj bo $f(x) = x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 \in \mathbb{Q}[x]$ nerazcepen. Nastavimo $t = x + \frac{a_3}{4}$ v f(x) in dobimo $g(t) = t^4 + pt^2 + qt + r \in \mathbb{Q}[x]$. Naj bodo $\alpha_1, \ldots, \alpha_4$ ničle g(x), $\Theta_1 := (\alpha_1 + \alpha_2)(\alpha_3 + \alpha_4)$, $\Theta_2 := (\alpha_1 + \alpha_3)(\alpha_2 + \alpha_4)$ in $\Theta_3 = (\alpha_1 + \alpha_4)(\alpha_2 + \alpha_3)$, potem je $R(x) := (x - \Theta_1)(x - \Theta_2)(x - \Theta_3) = x^3 - px^2 - 4rx + (4pr - q^2)$ kubična

rezindenta in $D_g = D_R$. Velja $\operatorname{Gal}_{\mathbb{Q}}(f(x)) = \begin{cases} A_4 \; ; \; \sqrt{D_R} \in \mathbb{Q} \\ S_4 \; ; \; \sqrt{D_R} \notin \mathbb{Q} \end{cases}$.

Trditev: Naj bo $p \in \mathbb{P}$, p > 2, potem je $Gal_{\mathbb{Q}}(x^{p} - 1) \cong C_{p-1}$.