NIST, 2017b, "Guidelines for Nonlinear Structural Analysis for Design of Buildings, Part IIb—Concrete Moment Frames," NIST GCR 17-917-46v3, prepared by the Applied Technology Council for the National Institute of Standards and Technology, Gaithersburg, MD.

Odello, R. J., and Mehta, B. M., 1967, "Behavior of a Continuous Prestressed Concrete Slab with Drop Panels," *Graduate Student Research Report*, Division of Structural Engineering and Structural Mechanics, University of California, Berkeley, Berkeley, CA, 63 pp. doi: 10.14359/19581

Oesterle, R. G., 1997, "The Role of Concrete Cover in Crack Control Criteria and Corrosion Protection," PCA R&D Serial No. 2054, Portland Cement Association, Skokie, IL, 87 pp. doi: 10.14359/16540

Olesen, S. E.; Sozen, M. A.; and Siess, C. P., 1967, "Investigation of Prestressed Reinforced Concrete for Highway Bridges, Part IV: Strength in Shear of Beams with Web Reinforcement," *Bulletin* No. 493, Engineering Experiment Station, University of Illinois, Urbana, IL., 115pp. doi: 10.14359/16580

Olsen, J.; Pregartner, T.; and Lamanna, A. J., 2012, "Basis for Design of Screw Anchors in Concrete," *ACI Structural Journal*, V. 109, No. 4, July-Aug., pp. 559-568. doi: 10.14359/51683875

Orakcal, K.; Massone, L. M.; and Wallace, J. W., 2009, "Shear Strength of Lightly Reinforced Wall Piers and Spandrels," *ACI Structural Journal*, V. 106, No. 4, July-Aug., pp. 455-465. doi: 10.14359/56611

Orangun, C. O.; Jirsa, J. O.; and Breen, J. E., 1977, "A Reevaluation of Test Data on Development Length and Splices," *ACI Journal Proceedings*, V. 74, No. 3, Mar., pp. 114-122. doi: 10.14359/10993

Ospina, C. E., and Alexander, S. D. B., 1998, "Transmission of Interior Concrete Column Loads through Floors," *Journal of Structural Engineering*, V. 124, No. 6, June, pp. 602-610. doi: 10.1061/(ASCE)0733-9445(1998)124:6(602)

Ožbolt, J.; Eligehausen, R.; Periškić, G.; and Mayer, U., 2007, "3D FE Analysis of Anchor Bolts with Large Embedment Depths," *Engineering Fracture Mechanics*, V. 74, No. 1-2, Jan., pp. 168-178. doi: 10.1016/j.engfracmech.2006.01.019

Ozcebe, G.; Ersoy, U.; and Tankut, T., 1999, "Evaluation of Minimum Shear Reinforcement for Higher Strength Concrete," *ACI Structural Journal*, V. 96, No. 3, May-June, pp. 361-368. doi: 10.14359/51701132

Ozyildirim, C., and Halstead, W., 1988, "Resistance to Chloride Ion Penetration of Concretes Containing Fly Ash, Silica Fume, or Slag," *Permeability of Concrete*, SP-108, American Concrete Institute, Farmington Hills, MI, pp. 35-61. doi: 10.14359/2158

Pacific Earthquake Engineering Center, 2017, "Guidelines for Performance-Based Seismic Design of Tall Buildings," *Report* No. 2017/06, University of California, Berkeley, Berkeley, CA.

Palmieri, L.; Saqan, E.; French, C.; and Kreger, M., 1996, "Ductile Connections for Precast Concrete Frame Systems," *Mete A. Sozen Symposium: A Tribute from his Students*,

SP-162, American Concrete Institute, Farmington Hills, MI, pp. 315-335. doi: 10.14359/1515

Pan, A., and Moehle, J. P., 1989, "Lateral Displacement Ductility of Reinforced Concrete Flat Plates," *ACI Structural Journal*, V. 86, No. 3, May-June, pp. 250-258. doi: 10.14359/2889

Park, R., and Paulay, T., 1975, *Reinforced Concrete Structures*, Wiley-Interscience, New York, 769 pp.

Park, R., and Thompson, K. J., 1977, "Cyclic Load Tests on Prestressed and Partially Prestressed Beam-Column Joints," *PCI Journal*, V. 22, No. 5, pp. 84-110. doi: 10.15554/pcij.09011977.84.110

Parra-Montesinos, G. J., 2006, "Shear Strength of Beams with Deformed Steel Fibers," *Concrete International*, V. 28, No. 11, Nov., pp. 57-66. doi: 10.14359/18323

Paulay, T., and Binney, J. R., 1974, "Diagonally Reinforced Coupling Beams of Shear Walls," *Shear in Reinforced Concrete*, SP-42, American Concrete Institute, Farmington Hills, MI, pp. 579-598. doi: 10.14359/17302

Paulay, T., and Priestley, M. J. N., 1992, *Seismic Design of Reinforced Concrete and Masonry Buildings*, John Wiley and Sons, New York, 768 pp.

Paulson, C.; Graham, S. K.; and Rautenberg, J. M., 2013, "Determination of Yield Strength for Nonprestressed Steel Reinforcement," Charles Pankow Foundation RGA #04-13, WJE No. 2013.4171, Wiss, Janney, Elstner Associates, Inc., Pasadena, CA, Dec. 31, 100 pp. doi: 10.14359/51702081

Paultre, P., and Légeron, F., 2008, "Confinement Reinforcement Design for Reinforced Concrete Columns," *Journal of Structural Engineering*, V. 134, No. 5, pp. 738-749. doi: 10.1061/(ASCE)0733-9445(2008)134:5(738)

Pauw, A., 1960, "Static Modulus of Elasticity of Concrete as Affected by Density," *ACI Journal Proceedings*, V. 57, No. 6, Dec., pp. 679-687. doi: 10.14359/17302

PCI, 1993, "Recommended Practice for Design, Manufacture, and Installation of Prestressed Concrete Piling," *PCI Journal*, V. 38, No. 2, Mar.-Apr., pp. 14-41. doi: 10.14359/19099

PCI Committee on Precast Concrete Bearing Wall Buildings, 1976, "Considerations for the Design of Precast Concrete Bearing Wall Buildings to Withstand Abnormal Loads," *PCI Journal*, V. 21, No. 2, Mar.-Apr., pp. 18-51. doi: 10.14359/16702

Peiris, C., and Ghali, A., 2012, "Flexural Reinforcement Essential for Punching Shear Resistance of Slabs," *Recent Developments in Reinforced Concrete Slab Analysis, Design and Serviceability*, SP-287, American Concrete Institute, Farmington Hills, MI, May, pp. 1-16. doi: 10.14359/51683860

Perez, F. J.; Pessiki, S.; Sause, R.; and Lu, L.-W., 2003, "Lateral Load Tests of Unbonded Post-Tensioned Precast Concrete Walls," *Large Scale Structural Testing*, SP-211, American Concrete Institute, Farmington Hills, MI, pp. 161-182. doi: 10.14359/12589

Pessiki, S.; Graybeal, B.; and Mudlock, M., 2001, "Proposed Design of High-Strength Spiral Reinforcement in Compression Members," *ACI Structural Journal*, V. 98, No. 6, Nov.-Dec., pp. 799-810. doi: 10.14359/10747

