Hidden Markov Models

Markov assumption:

- The current state is conditionally independent of all the other past states given the state in the previous time step
- The evidence at time t depends only on the state at time t

Transition model:

$$P(X_t | X_{0:t-1}) = P(X_t | X_{t-1})$$

Observation model:

$$P(E_t | X_{0:t}, E_{1:t-1}) = P(E_t | X_t)$$

An example HMM

- States: X = {home, office, cafe}
- Observations: E = {sms, facebook, email}

Transition Probabilities

	home	office	cafe
home	0.2	0.6	0.2
office	0.5	0.2	0.3
cafe	0.2	8.0	0.0

Emission Probabilities

	sms	facebook	email
home	0.3	0.5	0.2
office	0.1	0.1	8.0
cafe	8.0	0.1	0.1

Slide credit: Andy White

The Joint Distribution

- Transition model: $P(X_t | X_{t-1})$
- Observation model: P(E_t | X_t)
- How do we compute the full joint $P(X_{0:t}, E_{1:t})$?

$$P(X_{0:t}, E_{1:t}) = P(X_0) \prod_{i=1}^{t} P(X_i | X_{i-1}) P(E_i | X_i)$$

• **Filtering:** what is the distribution over the current state X_t given all the evidence so far, $\mathbf{e}_{1:t}$?

- Filtering: what is the distribution over the current state X_t given all the evidence so far, e_{1:t}?
- **Smoothing:** what is the distribution of some state X_k given the entire observation sequence **e**_{1:t}?

- Filtering: what is the distribution over the current state X_t given all the evidence so far, e_{1:t}?
- Smoothing: what is the distribution of some state X_k given the entire observation sequence e_{1:t}?
- Evaluation: compute the probability of a given observation sequence e_{1:t}

- Filtering: what is the distribution over the current state X_t given all the evidence so far, e_{1:t}
- **Smoothing:** what is the distribution of some state X_k given the entire observation sequence **e**_{1:t}?
- Evaluation: compute the probability of a given observation sequence e_{1:t}
- Decoding: what is the most likely state sequence X_{0:t} given the observation sequence e_{1:t}?

- Task: compute the probability distribution over the current state given all the evidence so far: P(X_t | e_{1:t})
- Recursive formulation: suppose we know P(X_{t-1} | e_{1:t-1})

- Task: compute the probability distribution over the current state given all the evidence so far: $P(X_t \mid e_{1:t})$
- Recursive formulation: suppose we know $P(X_{t-1} | e_{1:t-1})$

Time: t - 1 Time: t $e_{t-1} = Facebook$ Home Home 0.6 ?? 0.6 0.2 Office Office 0.3 ?? Cafe Cafe 0.1 ?? $P(X_{t-1} \mid \mathbf{e}_{1:t-1}) P(X_t \mid X_{t-1})$

What is
$$P(X_t = Office \mid \mathbf{e}_{1:t-1})$$
?

$$0.6 * 0.6 + 0.2 * 0.3 + 0.8 * 0.1 = 0.5$$

- Task: compute the probability distribution over the current state given all the evidence so far: P(X_t | e_{1:t})
- Recursive formulation: suppose we know P(X_{t-1} | e_{1:t-1})

Time: t - 1 Time: t What is $P(X_t = Office \mid \mathbf{e}_{1:t-1})$? $e_{t-1} = Facebook$ 0.6 * 0.6 + 0.2 * 0.3 + 0.8 * 0.1 = 0.5Home Home 0.6 ?? $P(X_t | \boldsymbol{e}_{1:t-1}) = \sum P(X_t, X_{t-1} | \boldsymbol{e}_{1:t-1})$ 0.6 $= \sum P(X_t \mid X_{t-1}, \boldsymbol{e}_{1:t-1}) P(X_{t-1} \mid \boldsymbol{e}_{1:t-1})$ 0.2 Office Office 0.3 ?? $= \sum P(X_t \mid X_{t-1}) P(X_{t-1} \mid \boldsymbol{e}_{1:t-1})$ Cafe Cafe 0.1 ?? $P(X_{t-1} \mid \mathbf{e}_{1:t-1}) P(X_t \mid X_{t-1})$

- Task: compute the probability distribution over the current state given all the evidence so far: P(X_t | e_{1:t})
- Recursive formulation: suppose we know P(X_{t-1} | e_{1:t-1})

Time: t - 1 Time: t What is $P(X_t = Office \mid \mathbf{e}_{1:t-1})$? $e_{t-1} = Facebook$ 0.6 * 0.6 + 0.2 * 0.3 + 0.8 * 0.1 = 0.5Home Home 0.6 ?? $P(X_{t} | \boldsymbol{e}_{1:t-1}) = \sum P(X_{t} | X_{t-1}) P(X_{t-1} | \boldsymbol{e}_{1:t-1})$ 0.6 0.2 Office Office 0.3 ?? Cafe Cafe 0.1 ?? $P(X_{t-1} | \mathbf{e}_{1:t-1}) P(X_t | X_{t-1})$

- Task: compute the probability distribution over the current state given all the evidence so far: P(X_t | e_{1:t})
- Recursive formulation: suppose we know P(X_{t-1} | e_{1:t-1})

What is
$$P(X_t = \text{Office} \mid \mathbf{e}_{1:t-1})$$
?
 $0.6 * 0.6 + 0.2 * 0.3 + 0.8 * 0.1 = 0.5$

$$P(X_t \mid \mathbf{e}_{1:t-1}) = \sum_{x_{t-1}} P(X_t \mid x_{t-1}) P(x_{t-1} \mid \mathbf{e}_{1:t-1})$$

What is $P(X_t = Office \mid \mathbf{e}_{1:t})$?

- Task: compute the probability distribution over the current state given all the evidence so far: P(X_t | e_{1:t})
- Recursive formulation: suppose we know P(X_{t-1} | e_{1:t-1})

- Task: compute the probability distribution over the current state given all the evidence so far: P(X_t | e_{1:t})
- Recursive formulation: suppose we know $P(X_{t-1} | e_{1:t-1})$

What is
$$P(X_t = Office \mid \mathbf{e}_{1:t-1})$$
?

$$0.6 * 0.6 + 0.2 * 0.3 + 0.8 * 0.1 = 0.5$$

$$P(X_{t} | \boldsymbol{e}_{1:t-1}) = \sum_{x_{t-1}} P(X_{t} | x_{t-1}) P(x_{t-1} | \boldsymbol{e}_{1:t-1})$$

What is
$$P(X_t = Office \mid \mathbf{e}_{1:t})$$
?

$$P(X_t \mid \boldsymbol{e}_{1:t}) \propto P(e_t \mid X_t) P(X_t \mid \boldsymbol{e}_{1:t-1})$$

$$\infty 0.5 * 0.8 = 0.4$$

Note: must also compute this value for Home and Cafe, and renormalize to sum to 1

Filtering: The Forward Algorithm

- Task: compute the probability distribution over the current state given all the evidence so far: P(X_t | e_{1:t})
- Recursive formulation: suppose we know P(X_{t-1} | e_{1:t-1})
 - Base case: priors $P(X_0)$
- Prediction: propagate belief from X_{t-1} to X_t

$$P(X_{t} | \boldsymbol{e}_{1:t-1}) = \sum_{x_{t-1}} P(X_{t} | x_{t-1}) P(x_{t-1} | \boldsymbol{e}_{1:t-1})$$

• Correction: weight by evidence et

$$P(X_t | e_{1:t}) = P(X_t | e_t; e_{1:t-1}) \propto P(e_t | X_t) P(X_t | e_{1:t-1})$$

Renormalize to have all P(X_t = x | e_{1:t}) sum to 1

Filtering: The Forward Algorithm

Evaluation

- Compute the probability of the current sequence: P(e_{1:t})
- Recursive formulation: suppose we know P(e_{1:t-1})

$$P(\mathbf{e}_{1:t}) = P(\mathbf{e}_{1:t-1}, \mathbf{e}_{t})$$

$$= P(\mathbf{e}_{1:t-1}) P(\mathbf{e}_{t} | \mathbf{e}_{1:t-1})$$

$$= P(\mathbf{e}_{1:t-1}) \sum_{x_{t}} P(\mathbf{e}_{t}, x_{t} | \mathbf{e}_{1:t-1})$$

$$= P(\mathbf{e}_{1:t-1}) \sum_{x_{t}} P(\mathbf{e}_{t} | x_{t}, \mathbf{e}_{1:t-1}) P(x_{t} | \mathbf{e}_{1:t-1})$$

$$= P(\mathbf{e}_{1:t-1}) \sum_{x_{t}} P(\mathbf{e}_{t} | x_{t}) P(x_{t} | \mathbf{e}_{1:t-1})$$

Evaluation

- Compute the probability of the current sequence: P(e_{1:t})
- Recursive formulation: suppose we know P(e_{1:t-1})

$$P(\boldsymbol{e}_{1:t}) = P(\boldsymbol{e}_{1:t-1}) \sum_{x_t} P(\boldsymbol{e}_t \mid x_t) P(x_t \mid \boldsymbol{e}_{1:t-1})$$
recursion filtering

Smoothing

 What is the distribution of some state X_k given the entire observation sequence e_{1:t}?

Smoothing

- What is the distribution of some state X_k given the entire observation sequence e_{1:t}?
- Solution: the forward-backward algorithm

Forward message: $P(X_k | \mathbf{e}_{1:k})$

Backward message: $P(\mathbf{e}_{k+1:t} \mid X_k)$

Decoding: Viterbi Algorithm

 Task: given observation sequence e_{1:t}, compute most likely state sequence x_{0:t}

$$\mathbf{x}_{0:t}^* = \arg\max_{\mathbf{x}_{0:t}} P(\mathbf{x}_{0:t} | \mathbf{e}_{1:t})$$

$$X_0 \longrightarrow X_1 \longrightarrow X_k \longrightarrow X_{t-1} \longrightarrow X_t \longrightarrow X_t \longrightarrow X_{t-1} \longrightarrow X_t \longrightarrow X_$$

Decoding: Viterbi Algorithm

- Task: given observation sequence e_{1:t}, compute most likely state sequence x_{0:t}
- The most likely path that ends in a particular state x_t consists
 of the most likely path to some state x_{t-1} followed by the
 transition to x_t

Decoding: Viterbi Algorithm

 Let m_t(x_t) denote the probability of the most likely path that ends in x_t:

$$m_{t}(x_{t}) = \max_{x_{0:t-1}} P(x_{0:t-1}, x_{t} | e_{1:t})$$

$$\propto \max_{x_{0:t-1}} P(x_{0:t-1}, x_{t}, e_{1:t})$$

$$= \max_{x_{t-1}} \left[m_{t-1}(x_{t-1}) P(x_{t} | x_{t-1}) P(e_{t} | x_{t}) \right]$$

Learning

- Given: a training sample of observation sequences
- Goal: compute model parameters
 - Transition probabilities $P(X_t | X_{t-1})$
 - Observation probabilities $P(E_t | X_t)$
- What if we had complete data, i.e., e_{1:t} and x_{0:t}?
 - Then we could estimate all the parameters by relative frequencies

$$P(X_t = b \mid X_{t-1} = a) \approx$$

of times state b follows state a

total # of transitions from state a

$$P(E = e \mid X = a) \approx$$

of times e is emitted from state a

total # of emissions from state a

Learning

- Given: a training sample of observation sequences
- Goal: compute model parameters
 - Transition probabilities $P(X_t | X_{t-1})$
 - Observation probabilities $P(E_t | X_t)$
- What if we had complete data, i.e., e_{1:t} and x_{0:t}?
 - Then we could estimate all the parameters by relative frequencies
- What if we knew the model parameters?
 - Then we could use inference to find the posterior distribution of the hidden states given the observations

Learning

- Given: a training sample of observation sequences
- Goal: compute model parameters
 - Transition probabilities $P(X_t | X_{t-1})$
 - Observation probabilities $P(E_t | X_t)$
- The **EM** (expectation-maximization) algorithm:

$$\theta^{(t+1)} = \operatorname{arg\,max}_{\theta} \sum_{x} P(X = x \mid e, \theta^{(t)}) L(e, X = x \mid \theta)$$

- Starting with a random initialization of parameters:
 - **E-step:** find the posterior distribution of the hidden variables given observations and current parameter estimate
 - M-step: re-estimate parameter values given the expected values of the hidden variables