Chapitre 8

Structures algébriques usuelles : rappels et compléments

Dans tout ce chapitre, \mathbb{K} est un sous-corps de \mathbb{C} .

Révisions MP2I

Revoir les chapitres 13, 14, 15, et 19.

1 Rappels sur les groupes et les anneaux

1.1 Structure de groupe

Définition 1. On dit qu'un ensemble (G, *) est un groupe lorsque :

- * est une loi de composition interne associative sur G
- (G,*) possède un élément neutre (nécessairement unique) $e: \forall x \in G, \ e*x = x*e = x$
- Tout élément $x \in G$ possède un symétrique $y \in G$ (nécessairement unique) pour *: x * y = y * x = e.
- Si * est commutative, on dit que (G,*) est un groupe commutatif ou abélien

Remarques:

- Si la loi * est clairement identifiée, le groupe (G,*) est noté plus simplement G.
- Les symboles classiques utilisés pour la loi d'un groupe sont \times , +, \circ , *, \cdot , qui peuvent se référer à des opérations précises sur certains ensembles (multiplication ou addition de nombres, composition).
- \bullet \times , \circ , *, \cdot sont des notations dites "multiplicatives". Dans ce cas :
 - l'élément neutre peut être noté 1_G ou simplement 1 (ou encore I ou Id pour la loi de composition des fonctions \circ)
 - Le symétrique de x est noté x^{-1} et appelé inverse.
 - Le *n*-ième itéré de x, avec $n \in \mathbb{N}$ est noté x^n ($x^0 = 1_G$ par convention)
 - on a a tendance à ne pas écrire du tout le symbole d'opération : xy au lieu de x * y.
- + est une notation dite "additive". Dans ce cas :
 - l'élément neutre est plutôt noté 0_G ou simplement 0.
 - Le symétrique de x est noté -x et appelé opposé
 - Le n-ième itéré de x, avec $n \in \mathbb{N}$ est noté $n \cdot x$ ou nx $(0 \cdot x = 0_G$ par convention)
 - La loi doit être <u>commutative</u> (ne jamais utiliser + comme loi pour un groupe non commutatif)

Proposition 1. Étant donnés deux groupes $(G_1, *_1)$ et $(G_2, *_2)$ d'éléments neutres e_1 et e_2 , la loi produit * définie sur $G_1 \times G_2$ par :

$$(x_1, x_2) * (y_1, y_2) = (x_1 *_1 y_1, x_2 *_2 y_2)$$

confère à $G_1 \times G_2$ une structure de groupe, avec pour élément neutre (e_1, e_2) . $G_1 \times G_2$ est appelé groupe produit.

Remarque : Cette construction se généralise par récurrence pour définir le groupe produit d'une famille finie de groupes. On l'utilise surtout pour donner à G^n une structure de groupe lorsque G est un groupe : \mathbb{Z}^n par exemple est un groupe abélien pour la loi +.

1.2 Sous-groupes et morphismes de groupes

Définition 2. Soit (G, *) un groupe d'élément neutre e. On dit qu'une partie H de G est un sous-groupe de G lorsque :

- $e \in H$
- H est stable pour *: pour tout $x, y \in H$, on a $x * y \in H$
- H est stable par symétrisation : pour tout $x \in H$, on a $x^{-1} \in H$.

Remarque : Il suffit de montrer que $H \neq \emptyset$ et que pour tout $x, y \in H$, $x * y^{-1} \in H$.

Proposition 2. Si H est un sous-groupe de (G,*) d'élément neutre e, alors la loi induite par * sur H (notée encore *) est une loi de composition interne et (H,*) est un groupe d'élément neutre e.

On rappelle que pour pour $\alpha \in \mathbb{R}$, $\alpha \mathbb{Z}$ désigne $\{\alpha k, k \in \mathbb{Z}\}$.

Proposition 3. Une partie H de \mathbb{Z} est un sous groupe de $(\mathbb{Z}, +)$ si, et seulement si, il existe $n \in \mathbb{N}$ tel que $H = n\mathbb{Z}$.

Exercice 1. Soit H un sous-groupe de $(\mathbb{R}, +)$. Montrer que l'une **ou** l'autre des deux situations suivantes se présente :

- H est dense dans \mathbb{R}
- Il existe $\alpha \ge 0$ tel que $H = \alpha \mathbb{Z}$.

Définition 3. Soient (G, *) et (G', *') deux groupes d'éléments neutre e et e'. On appelle morphisme de groupes de G dans G', toute application f de G dans G' qui vérifie :

$$\forall (x, y) \in G^2, \ f(x * y) = f(x) *' f(y).$$

Remarques:

- On a alors nécessairement f(e) = e' et $f(x^{-1}) = (f(x))^{-1}$ pour tout $x \in G$.
- Si f est bijective, l'application réciproque f^{-1} est aussi un morphisme et f est appelé isomorphisme: On dit alors que G et G' sont isomorphes ce qu'on peut noter $G \simeq G'$.
- Si (G,*)=(G',*'), f est appelé endomorphisme. Si de plus f est bijective, f est appelé automorphisme.

Proposition 4. Soit (G, *) et (G', *') deux groupes d'éléments neutre e et e', et soit $f: G \to G'$ un morphisme.

- Si H est un sous-goupe de G, f(H) est un sous-groupe de G'. En particulier f(G) est un sous-groupe de G' appelé image de f et noté Im(f). On a Im(f) = G' si, et seulement si, f est surjectif.
- Si H' est un sous-groupe de G', $f^{-1}(H')$ est un sous-groupe de G. En particulier $f^{-1}(\{e'\})$ est un sous-groupe de G appelé noyau de f et noté Ker(f). On a $Ker(f) = \{e\}$ si, et seulement si, f est injectif.

1.3 Structure d'anneau

Définition 4. Soit A un ensemble muni de deux lois de composition internes + et \times . On dit que $(A, +, \times)$ est un anneau lorsque :

- (A, +) est un groupe commutatif,
- × est associative.
- A possède un élément neutre 1_A pour \times .
- × est distributive par rapport à +.

On dit que l'anneau est commutatif si \times est commutative.

Remarques:

- Si $1_A = 0_A$, on a $A = \{0_A\}$, appelé anneau nul ou trivial. On évitera de se placer dans ce cas.
- On note généralement $x \cdot y$ ou encore xy au lieu de $x \times y$.
- Un élément $a \in A$ est dit *inversible* lorsqu'il est symétrisable pour la loi \times . On note alors a^{-1} son inverse.
- On montre que 0_A est absorbant $(0_A \times a = a \times 0_A = 0_A \text{ pour tout } a \in A)$, en particulier jamais inversible.
- On note $n \cdot a$ ou na avec $n \in \mathbb{Z}$ pour l'itération additive et a^n avec $n \in \mathbb{N}$ (ou $n \in \mathbb{Z}$ si a est inversible) l'itération multiplicative.

Proposition 5. Étant donnés deux anneaux A_1 et A_2 , On peut munir l'ensemble produit $A_1 \times A_2$ de deux lois + et \times :

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$
 et $(x_1, x_2) \times (y_1, y_2) = (x_1 \times y_1, x_2 \times y_2)$

Cela confère à $A_1 \times A_2$ une structure d'anneau, avec pour éléments neutres additifs et multiplicatifs (0,0) et (1,1). $A_1 \times A_2$ est appelé anneau produit.

Remarque : Cette construction se généralise par récurrence pour définir l'anneau produit d'une famille finie d'anneaux.

1.4 Sous-anneaux et morphismes d'anneaux

Définition 5. On appelle sous-anneau d'un anneau $(A, +, \times)$ un sous-groupe de (A, +) qui est stable par \times et qui contient 1_A . Muni des lois induites, un sous-anneau est un anneau.

Définition 6. Soient $(A, +, \times)$ et $(B, +, \times)$ deux anneaux. On dit que $f: A \to B$ est un morphisme d'anneau si :

- 1. $\forall (x,y) \in A^2$, f(x+y) = f(x) + f(y),
- 2. $\forall (x,y) \in A^2$, $f(x \times y) = f(x) \times f(y)$
- 3. $f(1_A) = 1_B$.

Remarques:

- Un morphisme d'anneaux est en particulier un morphisme de groupes pour les lois +. En particulier on a nécessairement $f(0_A) = 0_B$ et f(-x) = -f(x) pour tout $x \in A$.
- Si $a \in A$ est inversible, alors f(a) est inversible et $f(a^{-1}) = (f(a))^{-1}$.
- Les terminologies endomorphisme, isomorphismes, automorphisme s'adaptent au cas des anneaux.
- L'image d'un sous-anneau par f, en particulier l'image Im(f) de A, est un sous-anneau de B.
- \bullet Le noyau de f, en revanche, n'est jamais un sous-anneau de A, sauf si B est l'anneau nul (pourquoi?).

Exercice 2. Déterminer les endomorphismes de \mathbb{Z} :

- a) En tant que groupe pour +
- b) En tant qu'anneau pour + et \times .

1.5 Anneau intègre et corps, groupe des inversibles

Définition 7. On dit qu'un anneau A est *intègre* lorsqu'il est non nul, commutatif, et qu'il vérifie :

$$\forall a, b \in A, \quad ab = 0 \Rightarrow a = 0 \text{ ou } b = 0$$

Remarques:

• Dans un anneau intègre, on a ainsi les règles de simplifications suivantes, pour tout $a, x, y \in A$ avec $a \neq 0$:

$$ax = ay \Rightarrow x = y$$
 et $xa = ya \Rightarrow x = y$

On dit que tout $a \in A$ non nul est régulier

• Si a est inversible, a est régulier. La réciproque est fausse.

Exemples:

- $\mathbb Z$ est un anneau intègre, mais seuls 1 et -1 sont inversibles.
- $\mathbb{K}[X]$ est un anneau intègre (si P et Q sont non nuls, PQ est non nul de degré $\deg(P) + \deg(Q)$) mais seuls les polynômes constants non nuls sont inversibles.
- l'anneau $\mathcal{M}_n(\mathbb{K})$ n'est pas intègre pour $n \ge 2$ ($E_{1,2}^2$ est la matrice nulle, par exemple, et de toute façon, ce n'est pas un anneau commutatif).

Exercice 3. Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est inversible si, et seulement si, elle est régulière dans $\mathcal{M}_n(\mathbb{K})$.

Proposition 6. L'ensemble A^{\times} des éléments inversibles de A est un groupe pour la loi \times .

Définition 8. L'ensemble A^{\times} s'appelle groupe des inversibles, ou encore groupe des unités de A. On peut le noter aussi U(A).

Exemples:

- $\mathbb{Z}^{\times} = \{-1, 1\}$, à ne pas confondre avec $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$.
- $\mathbb{K}[X]^{\times} = \mathbb{K}_0[X] \simeq \mathbb{K}^*$.
- $\mathcal{M}_n(\mathbb{K})^{\times} = GL_n(\mathbb{K}).$

Définition 9. Un anneau A est un corps lorsque c'est un anneau non nul, commutatif, et dans lequel tout élément non nul est inversible. On a alors $A^{\times} = A^* = A \setminus \{0\}$.

Exemples:

- \mathbb{C} , \mathbb{R} , \mathbb{Q} (corps des fractions de l'anneau intègre \mathbb{Z})
- L'ensemble des fractions rationnelles $\mathbb{K}(X)$: c'est le corps des fractions de l'anneau intègre $\mathbb{K}[X]$.

1.6 Structure de $\mathbb{Z}/n\mathbb{Z}$

Définition 10. Soit $n \in \mathbb{N}$. On dit que a est congru à b modulo n lorsque $a - b \in n\mathbb{Z}$. On note alors $a \equiv b$ [n].

Proposition 7. La congruence modulo n est une relation d'équivalence sur \mathbb{Z} .

Définition 11. Pour $n \in \mathbb{N}$, on note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble des classes d'équivalence pour la relation de congruence modulo n.

Pour $k \in \mathbb{Z}$, on note \overline{k} (ou \dot{k}) la classe de k pour cette relation.

Proposition 8. Pour $n \in \mathbb{N}^*$, $\mathbb{Z}/n\mathbb{Z}$ est un ensemble fini de cardinal n, et on a :

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$$

Remarque : Cela ne fonctionne pas pour n=0 puisque $\mathbb{Z}/0\mathbb{Z}=\{\{k\},k\in\mathbb{Z}\}$ qui est infini. À "l'opposé" de cette situation, on a $\mathbb{Z}/1\mathbb{Z}=\{\mathbb{Z}\}$ de cardinal 1.

Proposition 9. La relation de congruence modulo n sur \mathbb{Z} est compatible avec sa structure d'anneau :

- $Si \ a_1 \equiv b_1 \ et \ a_2 \equiv b_2, \ a_1 + a_2 \equiv b_1 + b_2$
- $Si \ a \equiv b, -a \equiv -b.$
- $si \ a_1 \equiv b_1 \ et \ a_2 \equiv b_2, \ alors \ a_1a_2 \equiv b_1b_2$

Le résulat précédent permet de définir une addition et une multiplication sur $\mathbb{Z}/n\mathbb{Z}$.

Définition 12. Soit $n \in \mathbb{N}$. Pour tout $u, v \in \mathbb{Z}/n\mathbb{Z}$:

$$u + v = \overline{a + b}$$
, où $u = \overline{a}$ et $v = \overline{b}$,

$$uv = \overline{ab}$$
, où $u = \overline{a}$ et $v = \overline{b}$,

ce qui ne dépend pas des représentants a et b choisis dans \mathbb{Z} .

Proposition 10. Muni de l'addition définie ci-dessus, $\mathbb{Z}/n\mathbb{Z}$ est un groupe commutatif d'élément neutre $\overline{0}$. L'application $\phi: k \mapsto \overline{k}$ est un morphisme de surjectif de groupes, de \mathbb{Z} sur $\mathbb{Z}/n\mathbb{Z}$, appelé surjection canonique, et de noyau $n\mathbb{Z}$.

Exemples:

- Pour n = 0, ϕ est un isomorphisme : $\mathbb{Z}/0\mathbb{Z} \simeq \mathbb{Z}$.
- Pour n=1, on a $\operatorname{Ker}(\phi)=\mathbb{Z}$ et $\mathbb{Z}/1\mathbb{Z}=\{\overline{0}\}$ est le groupe trivial à un seul élément.
- Pour n=2, on a $\mathrm{Ker}(\phi)=2\mathbb{Z}$ (ensemble des entiers pairs) et $\mathbb{Z}/2\mathbb{Z}=\{\overline{0},\overline{1}\}$: il s'agit de l'unique groupe à 2 éléments, à isomorphisme près.

Exercice 4. Soit $f: \mathbb{Z} \to \mathbb{Q}^*$ défini par $f(k) = (-1)^k$.

- a) Montrer que f définit un morphisme de groupes de $(\mathbb{Z},+)$ vers (\mathbb{Q}^*,\times)
- **b)** Déterminer Ker(f) et Im(f).
- c) Montrer que $\operatorname{Im}(f) \simeq \mathbb{Z}/2\mathbb{Z}$.

Proposition 11. Muni de l'addition et de la multiplication précedemment définies, l'ensemble $\mathbb{Z}/n\mathbb{Z}$ est un anneau commutatif d'éléments neutres $\overline{0}$ et $\overline{1}$.

L'application $\phi: k \mapsto \overline{k}$ est un morphisme surjectif d'anneaux, de \mathbb{Z} sur $\mathbb{Z}/n\mathbb{Z}$, appelé surjection canonique, et de noyau $n\mathbb{Z}$.

Remarques:

- Pour $n=0, \phi$ est un isomorphisme : $\mathbb{Z}/0\mathbb{Z} \simeq \mathbb{Z}$.
- Pour n=1, on a $\overline{0}=\overline{1}$ et $\mathbb{Z}/1\mathbb{Z}=\{\overline{0}\}$ est donc l'anneau nul.

2 Compléments sur les groupes

2.1 Sous-groupe engendré par une partie

Soit (G, \cdot) un groupe.

Proposition 12. Toute intersection de sous-groupes de G est un sous-groupe de G.

Définition 13. Soit $A \subset G$.

- on appelle sous-groupe engendré par A l'intersection de tous les sous-groupes de G contenant A. On le note $\langle A \rangle$.
- On dit que A est une partie génératrice de G lorsque $\langle A \rangle = G$.

Remarques:

- Le sous-groupe engendré par A est le plus petit (au sens de la relation d'inclusion) sous-groupe contenant A. Pour montrer que H est le sous-groupe engendré par A, il suffit donc de montrer que :
 - H est un sous-groupe contenant A.
 - Si H' est un autre sous-groupe contenant A, alors $H \subseteq H'$.
- Si A est un singleton $\{a\}$, on peut aussi parler du sous-groupe engendré par a (et on dit alors que a est un $g\acute{e}n\acute{e}rateur$), qu'on note plus simplement $\langle a \rangle$. Si A est une paire $\{a,b\}$, avec $a \neq b$, on peut parler du sous-groupe engendré par a et b, qu'on note $\langle a,b \rangle$.

Exemples:

- Le sous-groupe engendré par e est le sous-groupe trivial $\{e\}$.
- Dans le groupe $(\mathbb{Z}, +)$, si $n \in \mathbb{N}^*$, alors $\langle n \rangle = n\mathbb{Z}$.
- En particulier, 1 est un générateur de \mathbb{Z} .
- L'ensemble \mathcal{T} des transpositions de [1,n] est une partie génératrice du groupe symétrique S_n .
- L'ensemble des matrices de $\mathcal{M}_n(\mathbb{K})$ associées à des opérations élémentaires (dilatation, transvection, permutation) est une partie génératrice de $GL_n(\mathbb{K})$.
- L'ensemble des réflexions d'un espace euclidien E est une partie génératrice du groupe orthogonal O(E) (voir chapitre ultérieur).

2.2 Groupes engendrés par un élément

Dans ce qui suit, on considère toujours un groupe (G,\cdot) d'élément neutre e, en notant sans symbole la loi du groupe.

Proposition 13. Si $a \in G$, le sous-groupe de G engendré par a est :

$$\langle a \rangle = \{a^k, k \in \mathbb{Z}\}$$
 ou $\langle a \rangle = \{k \, a, k \in \mathbb{Z}\}$ (en notation additive)

Définition 14.

- On dit que G est un groupe $monog\`ene$ lorsqu'il est engendré par un seul élément : il existe $a \in G$ tel que $G = \langle a \rangle$.
- \bullet On dit que G est un groupe cyclique lorsqu'il est monogène et fini.

Tout élément a qui engendre G est appelé un $g\acute{e}n\acute{e}rateur$.

Exemples:

- $(\mathbb{Z}, +)$ est monogène infini, engendré par 1 ou par -1.
- Pour $n \in \mathbb{N}^*$, $\mathbb{Z}/n\mathbb{Z}$ est cyclique, engendré par $\overline{1}$.

En fait les exemples de \mathbb{Z} et $\mathbb{Z}/n\mathbb{Z}$ (pour $n \in \mathbb{N}^*$) encapsulent toutes les situations possibles de groupes monogènes, à isomorphisme près :

Proposition 14. Supposons G monogène. Alors :

- Si G est infini, $G \simeq \mathbb{Z}$.
- Si G est fini de cardinal n, $G \simeq \mathbb{Z}/n\mathbb{Z}$.

Exercice 5. Soit $n \in \mathbb{N}^*$. Montrer que l'ensemble \mathbb{U}_n des racines n-ièmes de l'unité est un groupe cyclique, isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

Remarques:

- \mathbb{U}_n est le noyau du morphisme de groupes $\varphi:\mathbb{C}^*\to\mathbb{C}^*$ défini par $\varphi(z)=z^n$.
- Rappelons que \mathbb{U}_n est aussi un sous-groupe de \mathbb{U} , lui-même sous-groupe de (\mathbb{C}^*, \times) , comme noyau du morphisme de groupes $z \mapsto |z|$.

2.3 Ordre d'un élément d'un groupe

Définition 15. Soit $a \in G$. Si le sous-groupe $\langle a \rangle$ est fini, on appelle *ordre* de a le cardinal de $\langle a \rangle$. On dit sinon que a est d'ordre infini.

Remarque : Lorsque a est d'ordre fini $d \ge 1$, d est le plus petit entier n > 0 tel que $a^n = e$ (élément neutre).

Proposition 15. Si a est d'ordre fini d alors pour tout $n \in \mathbb{Z}$, $a^n = e \Leftrightarrow d|n$.

Proposition 16. Si G est un groupe fini, alors tout élément de G est d'ordre fini, et son ordre divise card(G).

Remarque : Un théorème plus général (Lagrange) montre que si G est fini, le cardinal de n'importe quel sous-groupe divise le cardinal de G.

Exercice 6.

- a) Déterminer l'ordre de $(\overline{1},\overline{1})$ dans le groupe $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}$, et en déduire qu'il s'agit d'un groupe cyclique.
- b) Montrer que $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (appelé groupe de Klein) n'est pas cyclique.
- c) montrer que $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ est cyclique si, et seulement si, m et n sont premiers entre eux.

3 Complément sur les anneaux

3.1 Idéal d'un anneau commutatif

Dans toute la suite, A est un anneau commutatif. On a vu que le noyau d'un morphisme d'anneaux $f:A\to B$ n'est pas un sous-anneau de A car il ne contient pas 1_A . Il a cependant une structure intéressante que nous découvrons ici.

Définition 16. Une partie I de A est appelé un idéal lorsque :

- (I, +) est un sous-groupe de (A, +)
- Pour tout $a \in I$ et tout $x \in A$, $ax \in I$.

Remarque: les deux points important à noter par rapport à un sous-anneau sont

- le fait que $1_A \notin I$ en général.
- la stabilité multiplicative lors du produit d'un élément a de I par n'importe quel élement x de A (et pas seulement de I).

Il suffit en pratique de vérifier que I n'est pas vide, est stable pour l'addition, et vérifie de plus $ax \in I$ pour tout $(a, x) \in I \times A$.

Exercice 7. Soit I un idéal de A. Montrer que I = A si, et seulement si, $I \cap A^{\times} \neq \emptyset$.

Proposition 17. Le noyau d'un morphisme $f: A \to B$ d'anneaux est un idéal de A.

3.2 Idéal engendré par un élément

Proposition 18. Soit $a \in A$. L'ensemble $aA = \{ax, x \in A\}$ est un idéal de A. On dit que c'est l'idéal engendré par a.

Un idéal engendré ainsi par un seul élément est appelé un idéal principal.

Définition 17. On dit qu'un idéal I est principal lorqu'il est engendré par un seul élément, i.e lorsqu'il existe $a \in A$ tel que I = aA.

On a déjà vu que tous les sous-groupes de $(\mathbb{Z}, +)$ sont de la forme $n\mathbb{Z}$, avec $n \in \mathbb{N}$. Ce sont donc également des idéaux de l'anneau $(\mathbb{Z}, +, \times)$. Il s'avère même que ce sont les seuls :

Proposition 19. Si I est un idéal de \mathbb{Z} , il existe un unique $n \in \mathbb{N}$ tel que $I = n\mathbb{Z}$.

Remarques:

- -n est aussi un générateur de $n\mathbb{Z}$, mais il n'y en a pas d'autres.
- Tous les idéaux de \mathbb{Z} sont donc principaux : on dit que \mathbb{Z} est un anneau principal.

Si \mathbb{K} est un corps, une situation similaire se présente dans l'anneau $\mathbb{K}[X]$ des polynômes en X

Proposition 20. Si I est un idéal de $\mathbb{K}[X]$, il existe un unique $P \in \mathbb{K}[X]$ unitaire tel que $I = P\mathbb{K}[X]$.

Remarques:

- Pour tout $\lambda \in \mathbb{K}^*$, λP est aussi un générateur.
- Tous les idéaux de $\mathbb{K}[X]$ sont donc principaux : tout comme \mathbb{Z} , $\mathbb{K}[X]$ est un anneau principal.

3.3 Compléments sur $\mathbb{Z}/n\mathbb{Z}$

Proposition 21. Soit $n \in \mathbb{N}^*$ et $k \in \mathbb{Z}$.

- k est un générateur du groupe $(\mathbb{Z}/n\mathbb{Z}, +)$ si, et seulement si, k est premier avec n.
- \overline{k} est inversible dans l'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ si, et seulement si, k est premier avec n.

Remarques:

- Les inversibles de l'anneau $\mathbb{Z}/n\mathbb{Z}$ correspondent donc précisément aux générateurs du groupe $(\mathbb{Z}/n\mathbb{Z},+)$.
- Pour trouver en pratique l'inverse de \overline{k} dans $\mathbb{Z}/n\mathbb{Z}$, on doit chercher une relation de Bézout uk+vn=1: les nombres u et v s'obtiennent grâce à l'algorithme d'Euclide étendu (voir cours MP2I).

Corollaire 1. $\mathbb{Z}/p\mathbb{Z}$ est un corps si, et seulement si, p est premier. On note alors ce corps \mathbb{F}_p .

Exercice 8. Déterminer les inverses des éléments non nuls du corps \mathbb{F}_{17} .

3.4 Divisibilité dans un anneau intègre

Dans ce paragraphe, on suppose que A est intègre, donc commutatif et sans diviseur de 0 (un produit de deux éléments non nuls n'est pas nul). Cette propriété, vérifiée notamment par \mathbb{Z} et $\mathbb{K}[X]$, va permettre de généraliser différents aspects liés à la relation de divisibilité présente dans ces deux anneaux, et de dégager notamment la notion d'élément irréductible.

Définition 18. Étant donnés a et b non nuls dans A, on dit que a divise b et on note $a \mid b$ lorsqu'il existe $c \in A$ tel que b = ac.

Proposition 22. Soient $a, b \in A \setminus \{0\}$. Alors $a \mid b$ si, et seulement si, $bA \subset aA$.

Remarque : La relation «divise» est réflexive et transitive, mais pas symétrique. Ce n'est donc pas une relation d'ordre, mais seulement de $pr\'{e}ordre$. Le fait que A est intègre va conduire à ce que ce défaut de symétrie soit complétement encapsulée par le groupe A^{\times} des inversibles.

Proposition 23. Les trois assertions suivantes sont équivalentes :

- (i) $a \mid b \mid et \mid b \mid a$.
- (ii) aA = bA
- (iii) Il existe $u \in A^{\times}$ tel que b = ua

Dans ces conditions, on dit que a et b sont associés.

Exemples:

- dans l'anneau \mathbb{Z} , a et b sont associés si, et seulement si, $a = \pm b$.
- dans l'anneau $\mathbb{K}[X]$, P et Q sont associés si, et seulement si, il existe $\lambda \in \mathbb{K}^*$, tel que $P = \lambda Q$.

La définition suivante généralise la notion de nombre premier.

Définition 19. Un élément $p \in A$ non nul est dit *irréductible* lorsque :

- p ∉ A[×]
- Pour tout $a, b \in A$, $p = ab \Rightarrow a \in A^{\times}$ ou $b \in A^{\times}$.

Autrement dit, un élément irréductible n'est pas inversible et ses seuls diviseurs sont ses associés ou les inversibles.

Exemples:

- dans l'anneau \mathbb{Z} on retrouve au signe près la notion de nombre premier : $p \in \mathbb{Z}$ est irréductible si, et seulement si, |p| est un nombre premier.
- dans l'anneau $\mathbb{K}[X]$ on retrouve la notion de polynôme irréductible : P est irréductible si, et seulement si, $\deg(P) \geqslant 1$ et $P = AB \Rightarrow A$ ou B constant.

3.5 Décomposition en facteurs irréductibles

Grâce à la division euclidienne, les éléments irréductibles de \mathbb{Z} et $\mathbb{K}[X]$ constituent des briques fondamentales permettant de reconstruire tous les éléments de ces anneaux.

Théorème 1. (de décomposition en facteurs premiers dans \mathbb{Z})

Soit $n \in \mathbb{Z}$ avec $|n| \geqslant 2$. Il existe alors $k \in \mathbb{N}^*$, $p_1, \ldots, p_k \in \mathbb{N}$ premiers et deux à deux distincts, et $m_1, \ldots, m_k \in \mathbb{N}^*$ tels que

$$n = \pm p_1^{m_1} \cdots p_k^{m_k}$$

Cette décomposition est unique à l'ordre des facteurs près.

Remarque : En notant $p = p_i$ pour un certain $i \in [1, k]$, m_i est la valuation p-adique de n, et peut se noter $\nu_p(n)$.

Exemple: $-6600 = -2^3 \times 3 \times 5^2 \times 11$ et $\nu_5(-6600) = 2$.

Théorème 2. (de décomposition en facteurs irréductibles dans $\mathbb{K}[X]$)

Soit $P \in \mathbb{K}[X]$ avec $\deg(P) \geqslant 1$. Il existe alors $a \in \mathbb{K}^*$, $k \in \mathbb{N}^*$, $P_1, \ldots, P_k \in \mathbb{K}[X]$ unitaires irréductibles deux à deux distincts et $m_1, \ldots, m_k \in \mathbb{N}^*$ tels que

$$P = aP_1^{m_1} \cdots P_k^{m_k}$$

Cette décomposition est unique à l'ordre des facteurs près.

Remarques:

- Il peut être important de bien préciser dans quel anneau de polynôme on considère l'irréductibilité, autrement dit de quel corps \mathbb{K} on parle. Par exemple $X^2 2$ est irréductible dans $\mathbb{Q}[X]$, mais pas dans $\mathbb{R}[X]$
- Tout polynôme de degré 1 est irréductible.
- Si P est irréductible dans $\mathbb{K}[X]$, P n'admet aucune racine dans \mathbb{K} , mais attention, la réciproque est fausse $(X^4 + 1)$ n'a aucune racine réelle mais n'est pas irréductible sur \mathbb{R})

Le cas de $\mathbb{C}[X]$ est fondamental : seuls les polynômes de degré 1 sont irréductible, de sorte que tout polynôme est scindé. C'est une conséquence immédiate du théorème fondamental de l'algèbre :

Théorème 3. (de d'Alembert-Gauss)

Tout polynôme de $\mathbb{C}[X]$ non constant admet au moins une racine.

Corollaire 2.

- Les éléments irrédutibles de $\mathbb{C}[X]$ sont les polynômes de degré 1;
- Tout polynôme $P \in \mathbb{C}[X]$ est scindé : il existe $a \in \mathbb{K}^*$, $k \in \mathbb{N}^*$, $\lambda_1, \ldots, \lambda_k \in \mathbb{C}$ deux à deux distincts et $n_1, \ldots, n_k \in \mathbb{N}^*$ tels que

$$P = a(X - \lambda_1)^{m_1} \cdots (X - \lambda_k)^{m_k}$$

Cette décomposition est unique à l'ordre des facteurs près.

Remarque : Dans ce contexte, m_i est la multiplicité de la racine λ_i , pour tout $i \in [1, k]$.

Exercice 9.

- a) Montrer que tout polynôme $P \in \mathbb{R}[X]$ de degré impair admet au moins une racine réelle.
- b) En déduire que les polynômes irréductibles de $\mathbb{R}[X]$ sont ceux de degré 1 et ceux de degré 2 à discriminant strictement négatif.
- c) Expliciter le théorème de decomposition en facteurs irréductibles dans $\mathbb{R}[X]$.

Exercice 10. Déterminer la décomposition de $X^4 - X^2 - 2$ en facteurs irréductibles dans $\mathbb{K}[X]$ suivant que \mathbb{K} est le corps \mathbb{C} , \mathbb{R} , \mathbb{Q} , et $\mathbb{Q}[i] = \mathbb{Q} + i\mathbb{Q}$.

4 Algèbres

4.1 Définition

Définition 20. On appelle \mathbb{K} -algèbre, ou algèbre sur \mathbb{K} , tout quadruplet $(A, +, \times, \cdot)$ tel que:

- (i) $(A, +, \cdot)$ est un K-espace vectoriel.
- (ii) $(A, +, \times)$ est un anneau.
- (iii) $\forall \lambda \in \mathbb{K}, \ \forall (a,b) \in A^2, \ (\lambda \cdot a) \times b = a \times (\lambda \cdot b) = \lambda \cdot (a \times b)$

On dit de plus que l'algèbre $(A, +, \times, \cdot)$, ou plus simplement A, est

- commutative si l'anneau sous-jacent $(A, +, \times)$ est commutatif
 - intègre si l'anneau sous-jacent $(A, +, \times)$ est intègre.
 - de dimension finie si l'espace vectoriel sous-jacent $(A, +, \cdot)$ est de dimension finie. La dimension de A est alors la dimension de cet espace vectoriel.

Remarques:

- En pratique la notation pour les lois multiplicatives × (interne) et · (externe) est omise.
- Si $(A, +, \cdot)$ est un \mathbb{K} -espace vectoriel, les conditions (ii) et (iii) signifient que $(a, b) \mapsto a \times b$ est une application \mathbb{K} -bilinéaire de $A \times A$ dans A définissant une l.c.i. associative et admettant un élément neutre 1_A différent de 0_A .

Exemples:

- $\mathbb{K}[X]$ est une algèbre intègre.
- Si E est un \mathbb{K} -espace vectoriel, $(\mathcal{L}(E), +, \circ, \cdot)$ est une \mathbb{K} -algèbre non intègre en général.
- $\mathcal{M}_n(\mathbb{K})$ est une \mathbb{K} -algèbre non intègre si $n \geq 2$.
- Si K est un sous-corps de K', K' est une K-algèbre.
- Si X est un ensemble quelconque, $\mathcal{F}(X,\mathbb{K})$ est une \mathbb{K} -algèbre commutative mais non intègre pour les lois usuelles + et \times déduites de celles de \mathbb{K} . La loi externe $(\lambda,f)\mapsto \lambda f$ se confond avec la loi interne \times en interprétant λ comme une fonction constante.

4.2 Sous-algèbre et morphisme d'algèbre

Définition 21. Soit A une \mathbb{K} -algèbre. On appelle sous-algèbre de A toute partie de A qui est à la fois un sous-espace vectoriel et un sous-anneau de A.

Définition 22. Soient A et B deux algèbres sur le même corps K. On dit que $f: A \to B$ est un morphisme d'algèbres lorsque f est à la fois un morphisme d'anneaux et une application linéaire :

- $\forall (x,y) \in A^2$, $\forall \lambda \in \mathbb{K}$, $f(x+\lambda y) = f(x) + \lambda f(y)$ $\forall (x,y) \in A^2$ f(xy) = f(x)f(y)
- $f(1_A) = 1_B$.

Proposition 24. Si $f: A \to B$ est un morphisme d'algèbres, alors :

- $\operatorname{Im}(f)$ est une sous-algèbre de B
- Ker(f) est à la fois un idéal et un sous-espace vectoriel de A.

Exemple: Soit E un K-espace vectoriel de dimension finie n muni d'une base \mathcal{B} . L'application $u \mapsto \operatorname{Mat}_{\mathcal{B}}(u)$ est un isomorphisme d'algèbres de $\mathcal{L}(E)$ sur $\mathcal{M}_n(\mathbb{K})$. En particulier si $E = \mathbb{K}^n$ et \mathcal{B} est la base canonique, cet isomorphisme est dit canonique: il est tellement naturel qu'on peut procéder à l'identification $\mathcal{L}(\mathbb{K}^n) = \mathcal{M}_n(\mathbb{K})$.

La proposition suivante permet de définir l'idéal annulateur d'une matrice, ainsi que la notion de polynôme minimal, un outil essentiel pour la réduction (voir chapitre suivant).

Proposition 25. Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{K})$. Il existe un unique morphisme d'algèbres $\Phi : \mathbb{K}[X] \to \mathcal{L}(E)$ vérifiant $\Phi(X) = u$.

Remarques:

- \bullet Le noyau de Φ est un idéal de $\mathbb{K}[X]$ appelé $id\acute{e}al$ annulateur de u. Il est engendré par un polynôme unitaire appelé polynôme minimal de A et noté μ_A .
- L'image de Φ est une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{K})$ de dimension finie $\deg(\mu_A)$. Elle est appelée algèbre des polynômes en A, et notée $\mathbb{K}[A]$.