MIT OpenCourseWare http://ocw.mit.edu

18.02 Multivariable Calculus Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.02 Lecture 16. - Thu, Oct 18, 2007

Handouts: PS6 solutions, PS7.

Double integrals.

Recall integral in 1-variable calculus: $\int_a^b f(x) dx = \text{area below graph } y = f(x) \text{ over } [a, b].$

Now: double integral $\iint_R f(x,y) dA$ = volume below graph z = f(x,y) over plane region R.

Cut R into small pieces $\Delta A \Rightarrow$ the volume is approximately $\sum f(x_i, y_i) \Delta A_i$. Limit as $\Delta A \to 0$ gives $\iint_R f(x, y) dA$. (picture shown)

How to compute the integral? By taking slices: S(x) = area of the slice by a plane parallel to yz-plane (picture shown): then

$$\text{volume} = \int_{x_{min}}^{x_{max}} S(x) \, dx, \quad \text{and for given } x, \, S(x) = \int f(x,y) \, dy.$$

In the inner integral, x is a fixed parameter, y is the integration variable. We get an *iterated integral*.

Example 1: $z = 1 - x^2 - y^2$, region $0 \le x \le 1$, $0 \le y \le 1$ (picture shown):

$$\int_0^1 \int_0^1 (1 - x^2 - y^2) \, dy \, dx.$$

(note: dA = dy dx, limit of $\Delta A = \Delta y \Delta x$ for small rectangles).

How to evaluate:

- 1) inner integral (x is constant): $\int_0^1 (1 x^2 y^2) \, dy = \left[(1 x^2)y \frac{1}{3}y^3 \right]_0^1 = (1 x^2) \frac{1}{3} = \frac{2}{3} x^2.$
- 2) outer integral: $\int_0^1 (\frac{2}{3} x^2) dx = \left[\frac{2}{3}x \frac{1}{3}x^3 \right]_0^1 = \frac{2}{3} \frac{1}{3} = \frac{1}{3}$.

Example 2: same function over the quarter disc $R: x^2 + y^2 < 1$ in the first quadrant.

How to find the bounds of integration? Fix x constant: what is a slice parallel to y-axis? bounds for y = from y = 0 to $y = \sqrt{1 - x^2}$ in the inner integral. For the outer integral: first slice is x = 0, last slice is x = 1. So we get:

$$\int_0^1 \int_0^{\sqrt{1-x^2}} (1-x^2-y^2) \, dy \, dx.$$

(note the inner bounds depend on the outer variable x; the outer bounds are constants!)

Inner:
$$[(1-x^2)y - y^3/3]_0^{\sqrt{1-x^2}} = \frac{2}{3}(1-x^2)^{3/2}$$
.

Outer:
$$\int_0^1 \frac{2}{3} (1 - x^2)^{3/2} dx = \dots = \frac{\pi}{8}$$
.

(... = trig. substitution $x = \sin \theta$, $dx = \cos \theta d\theta$, $(1 - x^2)^{3/2} = \cos^3 \theta$. Then use double angle formulas... complicated! I carried out part of the calculation to show how it would be done but then stopped before the end to save time; students may be confused about what happened exactly.)

Exchanging order of integration.

 $\int_0^1 \int_0^2 dx \, dy = \int_0^2 \int_0^1 dy \, dx$, since region is a rectangle (shown). In general, more complicated!

1

Example 3: $\int_0^1 \int_x^{\sqrt{x}} \frac{e^y}{y} dy dx$: inner integral has no formula. To exchange order:

- 1) draw the region (here: $x < y < \sqrt{x}$ for $0 \le x \le 1$ picture drawn on blackboard).
- 2) figure out bounds in other direction: fixing a value of y, what are the bounds for x? here: left border is $x = y^2$, right is x = y; first slice is y = 0, last slice is y = 1, so we get

$$\int_0^1 \int_{y^2}^y \frac{e^y}{y} \, dx \, dy = \int_0^1 \frac{e^y}{y} (y - y^2) \, dy = \int_0^1 e^y - y e^y \, dy = [-y e^y + 2e^y]_0^1 = e - 2.$$

(the last integration can be done either by parts, or by starting from the guess $-ye^y$ and adjusting;).

18.02 Lecture 17. - Fri, Oct 19, 2007

Integration in polar coordinates. $(x = r \cos \theta, y = r \sin \theta)$: useful if either integrand or region have a simpler expression in polar coordinates.

Area element: $\Delta A \simeq (r\Delta\theta) \Delta r$ (picture drawn of a small element with sides Δr and $r\Delta\theta$). Taking $\Delta\theta$, $\Delta r \to 0$, we get $dA = r dr d\theta$.

Example (same as last time):
$$\iint_{x^2+y^2 \le 1, \ x \ge 0, \ y \ge 0} (1-x^2-y^2) \, dx \, dy = \int_0^{\pi/2} \int_0^1 (1-r^2) \, r \, dr \, d\theta.$$
Inner:
$$\left[\frac{1}{2}r^2 - \frac{1}{4}r^4\right]_0^1 = \frac{1}{4}. \text{ Outer: } \int_0^{\pi/2} \frac{1}{4} \, d\theta = \frac{\pi}{2} \frac{1}{4} = \frac{\pi}{8}.$$

In general: when setting up $\iint f r dr d\theta$, find bounds as usual: given a fixed θ , find initial and final values of r (sweep region by rays).

Applications.

1) The area of the region R is $\iint_R 1 \, dA$. Also, the total mass of a planar object with density $\delta = \lim_{\Delta A=0} \Delta m/\Delta A$ (mass per unit area, $\delta = \delta(x,y)$ – if uniform material, constant) is given by:

$$M = \iint_R \delta \, dA.$$

2) recall the average value of f over R is $\bar{f} = \frac{1}{Area} \iint_R f \, dA$. The center of mass, or centroid, of a plate with density δ is given by weighted average

$$\bar{x} = \frac{1}{mass} \iint_R x \, \delta \, dA, \qquad \bar{y} = \frac{1}{mass} \iint_R y \, \delta \, dA$$

3) moment of inertia: physical equivalent of mass for rotational motion. (mass = how hard it is to impart translation motion; moment of inertia about some axis = same for rotation motion around that axis)

Idea: kinetic energy for a single mass m at distance r rotating at angular speed $\omega = d\theta/dt$ (so velocity $v = r\omega$) is $\frac{1}{2}mv^2 = \frac{1}{2}mr^2\omega^2$; $I_0 = mr^2$ is the moment of inertia.

For a solid with density δ , $I_0 = \iint_R r^2 \delta \, dA$ (moment of inertia / origin). (the rotational energy is $\frac{1}{2}I_0\omega^2$).

Moment of inertia about an axis: $I = \iint_R (\text{distance to axis})^2 \delta \, dA$. E.g. about x-axis, distance is |y|, so

$$I_x = \iint_R y^2 \delta \, dA.$$

Examples: 1) disk of radius a around its center ($\delta = 1$):

$$I_0 = \int_0^{2\pi} \int_0^a r^2 r \, dr \, d\theta = 2\pi \left[\frac{r^4}{4} \right]_0^a = \frac{\pi a^4}{2}.$$

2) same disk, about a point on the circumference?

Setup: place origin at point so integrand is easier; diameter along x-axis; then polar equation of circle is $r = 2a\cos\theta$ (explained on a picture). Thus

$$I_0 = \int_{-\pi/2}^{\pi/2} \int_0^{2a\cos\theta} r^2 r \, dr \, d\theta = \dots = \frac{3}{2}\pi a^4.$$

18.02 Lecture 18. - Tue, Oct 23, 2007

Change of variables.

Example 1: area of ellipse with semiaxes a and b: setting u = x/a, v = y/b,

$$\iint_{(x/a)^2+(y/b)^2<1} dx\,dy = \iint_{u^2+v^2<1} ab\,du\,dv = ab \iint_{u^2+v^2<1} du\,dv = \pi ab.$$

(substitution works here as in 1-variable calculus: $du = \frac{1}{a} dx$, $dv = \frac{1}{b} dy$, so $du dv = \frac{1}{ab} dx dy$.

In general, must find out the scale factor (ratio between du dv and dx dy)?

Example 2: say we set u = 3x-2y, v = x+y to simplify either integrand or bounds of integration. What is the relation between dA = dx dy and dA' = du dv? (area elements in xy- and uv-planes).

Answer: consider a small rectangle of area $\Delta A = \Delta x \Delta y$, it becomes in uv-coordinates a parallelogram of area $\Delta A'$. Here the answer is independent of which rectangle we take, so we can take e.g. the unit square in xy-coordinates.

In the uv-plane, $\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$, so this becomes a parallelogram with sides given by

vectors
$$\langle 3, 1 \rangle$$
 and $\langle -2, 1 \rangle$ (picture drawn), and area = det = $\begin{vmatrix} 3 & 1 \\ -2 & 1 \end{vmatrix} = 5 = \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{vmatrix}$.

For any rectangle $\Delta A' = 5\Delta A$, in the limit dA' = 5dA, i.e. $du \, dv = 5dx \, dy$. So $\iint \ldots dx \, dy = \iint \ldots \frac{1}{5} du \, dv$.

General case: approximation formula $\Delta u \approx u_x \Delta x + u_y \Delta y$, $\Delta v \approx v_x \Delta x + v_y \Delta y$, i.e.

$$\left[\begin{array}{c} \Delta u \\ \Delta v \end{array}\right] \approx \left[\begin{array}{cc} u_x & u_y \\ v_x & v_y \end{array}\right] \left[\begin{array}{c} \Delta x \\ \Delta y \end{array}\right].$$

A small xy-rectangle is approx. a parallelogram in uv-coords, but scale factor depends on x and y now. By the same argument as before, the scale factor is the determinant.

Definition: the Jacobian is
$$J = \frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix}$$
. Then $du \, dv = |J| \, dx \, dy$.

(absolute value because area is the absolute value of the determinant).

Example 1: polar coordinates $x = r \cos \theta$, $y = r \sin \theta$:

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \left| \begin{array}{cc} x_r & x_\theta \\ y_r & y_\theta \end{array} \right| = \left| \begin{array}{cc} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{array} \right| = r\cos^2\theta + r\sin^2\theta = r.$$

So $dx dy = r dr d\theta$, as seen before.

Example 2: compute $\int_0^1 \int_0^1 x^2 y \, dx \, dy$ by changing to u = x, v = xy (usually motivation is to simplify either integrand or region; here neither happens, but we just illustrate the general method).

- 1) Area element: Jacobian is $\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ y & x \end{vmatrix} = x$, so $du \, dv = x \, dx \, dy$, i.e. $dx \, dy = \frac{1}{x} du \, dv$.
 - 2) Express integrand in terms of u, v: $x^2y dx dy = x^2y \frac{1}{x} du dv = xy du dv = v du dv$.
- 3) Find bounds (picture drawn): if we integrate du dv, then first we keep v = xy constant, slice looks like portion of hyperbola (picture shown), parametrized by u = x. The bounds are: at the top boundary y = 1, so v/u = 1, i.e. u = v; at the right boundary, x = 1, so u = 1. So the inner

1

integral is \int_v^1 . The first slice is v=0, the last is v=1; so we get

$$\int_0^1 \int_v^1 v \, du \, dv.$$

Besides the picture in xy coordinates (a square sliced by hyperbolas), I also drew a picture in uv coordinates (a triangle), which some students may find is an easier way of getting the bounds for u and v.

18.02 Lecture 19. - Thu, Oct 25, 2007

Handouts: PS7 solutions; PS8.

Vector fields.

 $\vec{F} = M\hat{\imath} + N\hat{\jmath}$, where M = M(x,y), N = N(x,y): at each point in the plane we have a vector \vec{F} which depends on x,y.

Examples: velocity fields, e.g. wind flow (shown: chart of winds over Pacific ocean); force fields, e.g. gravitational field.

Examples drawn on blackboard: (1) $\vec{F} = 2\hat{\imath} + \hat{\jmath}$ (constant vector field); (2) $\vec{F} = x\hat{\imath}$; (3) $\vec{F} = x\hat{\imath} + y\hat{\jmath}$ (radially outwards); (4) $\vec{F} = -y\hat{\imath} + x\hat{\jmath}$ (explained using that $\langle -y, x \rangle$ is $\langle x, y \rangle$ rotated 90° counterclockwise).

Work and line integrals.

 $W = (\text{force}).(\text{distance}) = \vec{F} \cdot \Delta \vec{r}$ for a small motion $\Delta \vec{r}$. Total work is obtained by summing these along a trajectory C: get a "line integral"

$$W = \int_{C} \vec{F} \cdot d\vec{r} \, \left(= \lim_{\Delta \vec{r} \to 0} \sum_{i} \vec{F} \cdot \Delta \vec{r}_{i} \right).$$

To evaluate the line integral, we observe C is parametrized by time, and give meaning to the notation $\int_C \vec{F} \cdot d\vec{r}$ by

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{t_{1}}^{t_{2}} \left(\vec{F} \cdot \frac{d\vec{r}}{dt} \right) dt.$$

Example: $\vec{F} = -y\hat{\imath} + x\hat{\jmath}$, C is given by x = t, $y = t^2$, $0 \le t \le 1$ (portion of parabola $y = x^2$ from (0,0) to (1,1)). Then we substitute expressions in terms of t everywhere:

$$\vec{F} = \langle -y, x \rangle = \langle -t^2, t \rangle, \quad \frac{d\vec{r}}{dt} = \langle \frac{dx}{dt}, \frac{dy}{dt} \rangle = \langle 1, 2t \rangle,$$

so
$$\int_C \vec{F} \cdot d\vec{r} = \int_0^1 \vec{F} \cdot \frac{d\vec{r}}{dt} dt = \int_0^1 \langle -t^2, t \rangle \cdot \langle 1, 2t \rangle dt = \int_0^1 t^2 dt = \frac{1}{3}$$
. (in the end things always reduce to a one-variable integral.)

In fact, the definition of the line integral does not involve the parametrization: so the result is the same no matter which parametrization we choose. For example we could choose to parametrize the parabola by $x = \sin \theta$, $y = \sin^2 \theta$, $0 \le \theta \le \pi/2$. Then we'd get $\int_C \vec{F} \cdot d\vec{r} = \int_0^{\pi/2} \dots d\theta$, which would be equivalent to the previous one under the substitution $t = \sin \theta$ and would again be equal to $\frac{1}{3}$. In practice we always choose the simplest parametrization!

New notation for line integral: $\vec{F} = \langle M, N \rangle$, and $d\vec{r} = \langle dx, dy \rangle$ (this is in fact a differential: if we divide both sides by dt we get the component formula for the velocity $d\vec{r}/dt$). So the line integral

becomes

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} M \, dx + N \, dy.$$

The notation is dangerous: this is not a sum of integrals w.r.t. x and y, but really a line integral along C. To evaluate one must express everything in terms of the chosen parameter.

In the above example, we have x = t, $y = t^2$, so dx = dt, dy = 2t dt by implicit differentiation; then

$$\int_{C} -y \, dx + x \, dy = \int_{0}^{1} -t^{2} \, dt + t \, (2t) \, dt = \int_{0}^{1} t^{2} \, dt = \frac{1}{3}$$

(same calculation as before, using different notation).

Geometric approach.

Recall velocity is $\frac{d\vec{r}}{dt} = \frac{ds}{dt}\hat{T}$ (where s = arclength, $\hat{T} = \text{unit tangent vector to trajectory}$).

So $d\vec{r} = \hat{T} ds$, and $\int_C \vec{F} \cdot d\vec{r} = \int_C \vec{F} \cdot \hat{T} ds$. Sometimes the calculation is easier this way!

Example: $C = \text{circle of radius } a \text{ centered at origin, } \vec{F} = x\hat{\imath} + y\hat{\jmath}, \text{ then } \vec{F} \cdot \hat{T} = 0 \text{ (picture drawn), so } \int_C \vec{F} \cdot \hat{T} \, ds = \int 0 \, ds = 0.$

Example: same C, $\vec{F} = -y\hat{\imath} + x\hat{\jmath}$, then $\vec{F} \cdot \hat{T} = |\vec{F}| = a$, so $\int_C \vec{F} \cdot \hat{T} ds = \int a ds = a (2\pi a) = 2\pi a^2$; checked that we get the same answer if we compute using parametrization $x = a \cos \theta$, $y = a \sin \theta$.

18.02 Lecture 20. - Fri, Oct 26, 2007

Line integrals continued.

Recall: line integral of $\vec{F} = M\hat{\imath} + N\hat{\jmath}$ along a curve C: $\int_C \vec{F} \cdot d\vec{r} = \int_C M \, dx + N \, dy = \int_C \vec{F} \cdot \hat{T} \, ds$.

Example: $\vec{F} = y\hat{\imath} + x\hat{\jmath}$, $\int_C \vec{F} \cdot d\vec{r}$ for $C = C_1 + C_2 + C_3$ enclosing sector of unit disk from 0 to $\pi/4$. (picture shown). Need to compute $\int_{C_i} y \, dx + x \, dy$ for each portion:

- 1) x-axis: x = t, y = 0, dx = dt, dy = 0, $0 \le t \le 1$, so $\int_{C_1} y \, dx + x \, dy = \int_0^1 0 \, dt = 0$. Equivalently, geometrically: along x-axis, y = 0 so $\vec{F} = x\hat{\jmath}$ while $\hat{T} = \hat{\imath}$ so $\int_{C_1} \vec{F} \cdot \hat{T} \, ds = 0$.
 - 2) C_2 : $x = \cos \theta$, $y = \sin \theta$, $dx = -\sin \theta d\theta$, $dy = \cos \theta d\theta$, $0 \le \theta \le \frac{\pi}{4}$. So

$$\int_{C_2} y \, dx + x \, dy = \int_0^{\pi/4} \sin \theta (-\sin \theta) d\theta + \cos \theta \cos \theta \, d\theta = \int_0^{\pi/4} \cos(2\theta) d\theta = \left[\frac{1}{2} \sin(2\theta) \right]_0^{\pi/4} = \frac{1}{2}.$$

3) C_3 : line segment from $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ to (0,0): could take $x = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}t$, y = same, $0 \le t \le 1$, ... but easier: C_3 backwards (" $-C_3$ ") is y = x = t, $0 \le t \le \frac{1}{\sqrt{2}}$. Work along $-C_3$ is opposite of work along C_3 .

$$\int_{C_3} y \, dx + x \, dy = \int_{1/\sqrt{2}}^0 t \, dt + t \, dt = -\int_0^{1/\sqrt{2}} 2t \, dt = -[t^2]_0^{1/\sqrt{2}} = -\frac{1}{2}.$$

If \vec{F} is a gradient field, $\vec{F} = \nabla f = f_x \hat{\imath} + f_y \hat{\jmath}$ (f is called "potential function"), then we can simplify evaluation of line integrals by using the fundamental theorem of calculus.

Fundamental theorem of calculus for line integrals:

$$\int_{C} \nabla f \cdot d\vec{r} = f(P_1) - f(P_0) \text{ when } C \text{ runs from } P_0 \text{ to } P_1.$$

Equivalently with differentials: $\int_C f_x dx + f_y dy = \int_C df = f(P_1) - f(P_0)$. Proof:

$$\int_{C} \nabla f \cdot d\vec{r} = \int_{t_0}^{t_1} \left(f_x \frac{dx}{dt} + f_y \frac{dy}{dt} \right) dt = \int_{t_0}^{t_1} \frac{d}{dt} \left(f(x(t), y(t)) dt = [f(x(t), y(t))]_{t_0}^{t_1} = f(P_1) - f(P_0).$$

E.g., in the above example, if we set f(x,y) = xy then $\nabla f = \langle y,x \rangle = \vec{F}$. So \int_{C_i} can be calculated just by evaluating f = xy at end points. Picture shown of C, vector field, and level curves.

Consequences: for a gradient field, we have:

- Path independence: if C_1, C_2 have same endpoints then $\int_{C_1} \nabla f \cdot d\vec{r} = \int_{C_2} \nabla f \cdot d\vec{r}$ (both equal to $f(P_1) f(P_0)$ by the theorem). So the line integral $\int_C \nabla f \cdot d\vec{r}$ depends only on the end points, not on the actual trajectory.
- Conservativeness: if C is a closed loop then $\int_C \nabla f \cdot d\vec{r} = 0$ (= f(P) f(P)). (e.g. in above example, $\int_C = 0 + \frac{1}{2} \frac{1}{2} = 0$.)

WARNING: this is only for gradient fields!

Example: $\vec{F} = -y\hat{\imath} + x\hat{\jmath}$ is not a gradient field: as seen Thursday, along C = circle of radius a counterclockwise $(\vec{F}//\hat{T})$, $\int_C \vec{F} \cdot d\vec{r} = 2\pi a^2$. Hence \vec{F} is not conservative, and not a gradient field.

Physical interpretation.

If the force field \vec{F} is the gradient of a potential f, then work of \vec{F} = change in value of potential.

E.g.: 1) \vec{F} = gravitational field, f = gravitational potential; 2) \vec{F} = electrical field; f = electrical potential (voltage). (Actually physicists use the opposite sign convention, $\vec{F} = -\nabla f$).

Conservativeness means that energy comes from change in potential f, so no energy can be extracted from motion along a closed trajectory (conservativeness = conservation of energy: the change in kinetic energy equals the work of the force equals the change in potential energy).

We have four equivalent properties:

- (1) \vec{F} is conservative $(\int_C \vec{F} \cdot d\vec{r} = 0$ for any closed curve C)
- (2) $\int F \cdot d\vec{r}$ is path independent (same work if same end points)
- (3) \vec{F} is a gradient field: $\vec{F} = \nabla f = f_x \hat{\imath} + f_y \hat{\jmath}$.
- (4) M dx + N dy is an exact differential $(= f_x dx + f_y dy = df.)$
- ((1) is equivalent to (2) by considering C_1, C_2 with same endpoints, $C = C_1 C_2$ is a closed loop. (3) \Rightarrow (2) is the FTC, \Leftarrow will be key to finding potential function: if we have path independence then we can get f(x,y) by computing $\int_{(0,0)}^{(x,y)} \vec{F} \cdot d\vec{r}$. (3) and (4) are reformulations of the same property).

18.02 Lecture 21. - Tue, Oct 30, 2007

Test for gradient fields.

Observe: if $\vec{F} = M\hat{\imath} + N\hat{\jmath}$ is a gradient field then $N_x = M_y$. Indeed, if $\vec{F} = \nabla f$ then $M = f_x$, $N = f_y$, so $N_x = f_{yx} = f_{xy} = M_y$.

Claim: Conversely, if \vec{F} is defined and differentiable at every point of the plane, and $N_x = M_y$, then $\vec{F} = M\hat{\imath} + N\hat{\jmath}$ is a gradient field.

Example: $\vec{F} = -y\hat{\imath} + x\hat{\jmath}$: $N_x = 1$, $M_y = -1$, so \vec{F} is not a gradient field.

Example: for which value(s) of a is $\vec{F} = (4x^2 + axy)\hat{\imath} + (3y^2 + 4x^2)\hat{\jmath}$ a gradient field? Answer: $N_x = 8x, M_y = ax$, so a = 8.

Finding the potential: if above test says \vec{F} is a gradient field, we have 2 methods to find the potential function f. Illustrated for the above example (taking a = 8):

Method 1: using line integrals (FTC backwards):

We know that if C starts at (0,0) and ends at (x_1,y_1) then $f(x_1,y_1) - f(0,0) = \int_C \vec{F} \cdot d\vec{r}$. Here f(0,0) is just an integration constant (if f is a potential then so is f+c). Can also choose the simplest curve C from (0,0) to (x_1,y_1) .

Simplest choice: take C = portion of x-axis from (0,0) to $(x_1,0)$, then vertical segment from $(x_1,0)$ to (x_1,y_1) (picture drawn).

Then
$$\int_C \vec{F} \cdot d\vec{r} = \int_{C_1 + C_2} (4x^2 + 8xy) \, dx + (3y^2 + 4x^2) \, dy$$
:
Over C_1 , $0 \le x \le x_1$, $y = 0$, $dy = 0$: $\int_{C_1} = \int_0^{x_1} (4x^2 + 8x \cdot 0) \, dx = \left[\frac{4}{3}x^3\right]_0^{x_1} = \frac{4}{3}x_1^3$.
Over C_2 , $0 \le y \le y_1$, $x = x_1$, $dx = 0$: $\int_{C_2} = \int_0^{y_1} (3y^2 + 4x_1^2) \, dy = \left[y^3 + 4x_1^2y\right]_0^{y_1} = y_1^3 + 4x_1^2y_1$.
So $f(x_1, y_1) = \frac{4}{3}x_1^3 + y_1^3 + 4x_1^2y_1$ (+constant).

Method 2: using antiderivatives:

We want f(x, y) such that (1) $f_x = 4x^2 + 8xy$, (2) $f_y = 3y^2 + 4x^2$.

Taking antiderivative of (1) w.r.t. x (treating y as a constant), we get $f(x,y) = \frac{4}{3}x^3 + 4x^2y + 1$ integration constant (independent of x). The integration constant still depends on y, call it g(y).

So
$$f(x,y) = \frac{4}{3}x^3 + 4x^2y + g(y)$$
. Take partial w.r.t. y, to get $f_y = 4x^2 + g'(y)$.

Comparing this with (2), we get $g'(y) = 3y^2$, so $g(y) = y^3 + c$.

Plugging into above formula for f, we finally get $f(x,y) = \frac{4}{3}x^3 + 4x^2y + y^3 + c$.

Curl.

Now we have: $N_x = M_y \Leftrightarrow^* \vec{F}$ is a gradient field $\Leftrightarrow \vec{F}$ is conservative: $\oint_C \vec{F} \cdot d\vec{r} = 0$ for any closed curve.

(*): \Rightarrow only holds if \vec{F} is defined everywhere, or in a "simply-connected" region – see next week. Failure of conservativeness is given by the *curl* of \vec{F} :

Definition: $\operatorname{curl}(\vec{F}) = N_x - M_y$.

Interpretation of curl: for a velocity field, curl = (twice) angular velocity of the rotation component of the motion.

1

(Ex: $\vec{F} = \langle a, b \rangle$ uniform translation, $\vec{F} = \langle x, y \rangle$ expanding motion have curl zero; whereas $\vec{F} = \langle -y, x \rangle$ rotation at unit angular velocity has curl = 2).

For a force field, $\operatorname{curl} \vec{F} = \operatorname{torque}$ exerted on a test mass, measures how \vec{F} imparts rotation motion.

For translation motion: $\frac{\text{Force}}{\text{Mass}} = \text{acceleration} = \frac{d}{dt}(\text{velocity}).$

For rotation effects: $\frac{\text{Torque}}{\text{Moment of inertia}} = \text{angular acceleration} = \frac{d}{dt} (\text{angular velocity}).$

18.02 Lecture 22. - Thu, Nov 1, 2007

Handouts: PS8 solutions, PS9, practice exams 3A and 3B.

Green's theorem.

If C is a positively oriented closed curve enclosing a region R, then

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_R \operatorname{curl} \vec{F} \, dA \quad \text{which means} \quad \oint_C M \, dx + N \, dy = \iint_R (N_x - M_y) \, dA.$$

Example (reduce a complicated line integral to an easy $\int \int$): Let C = unit circle centered at (2,0), counterclockwise. R = unit disk at (2,0). Then

$$\oint_C ye^{-x} dx + (\frac{1}{2}x^2 - e^{-x}) dy = \iint_B N_x - M_y dA = \iint_B (x + e^{-x}) - e^{-x} dA = \iint_B x dA.$$

This is equal to area $\cdot \bar{x} = \pi \cdot 2 = 2\pi$ (or by direct computation of the iterated integral). (Note: direct calculation of the line integral would probably involve setting $x = 2 + \cos \theta$, $y = \sin \theta$, but then calculations get really complicated.)

Application: proof of our criterion for gradient fields.

Theorem: if $\vec{F} = M\hat{\imath} + N\hat{\jmath}$ is defined and continuously differentiable in the whole plane, then $N_x = M_y \Rightarrow \vec{F}$ is conservative ($\Leftrightarrow \vec{F}$ is a gradient field).

If
$$N_x = M_y$$
 then by Green, $\oint_C \vec{F} \cdot d\vec{r} = \iint_R \operatorname{curl} \vec{F} dA = \iint_R 0 dA = 0$. So \vec{F} is conservative.

Note: this only works if \vec{F} and its curl are defined everywhere inside R. For the vector field on PS8 Problem 2, we can't do this if the region contains the origin – for example, the line integral along the unit circle is non-zero even though $\operatorname{curl}(\vec{F})$ is zero wherever it's defined.

Proof of Green's theorem. 2 preliminary remarks:

- 1) the theorem splits into two identities, $\oint_C M dx = -\iint_R M_y dA$ and $\oint_C N dy = \iint_R N_x dA$.
- 2) additivity: if theorem is true for R_1 and R_2 then it's true for the union $R = R_1 \cup R_2$ (picture shown): $\oint_C = \oint_{C_1} + \oint_{C_2}$ (the line integrals along inner portions cancel out) and $\iint_R = \iint_{R_1} + \iint_{R_2}$.

Main step in the proof: prove $\oint_C M dx = -\iint_R M_y dA$ for "vertically simple" regions: a < x < b, $f_0(x) < y < f_1(x)$. (picture drawn). This involves calculations similar to PS5 Problem 3.

LHS: break C into four sides (C_1 lower, C_2 right vertical segment, C_3 upper, C_4 left vertical segment); $\int_{C_2} M \, dx = \int_{C_4} M \, dx = 0$ since x = constant on C_2 and C_4 . So

$$\oint_C = \int_{C_1} + \int_{C_3} = \int_a^b M(x, f_0(x)) dx - \int_a^b M(x, f_1(x)) dx$$

(using along C_1 : parameter $a \le x \le b$, $y = f_0(x)$; along C_2 , x from b to a, hence - sign; $y = f_1(x)$).

RHS:
$$-\iint_R M_y dA = -\int_a^b \int_{f_0(x)}^{f_1(x)} M_y dy dx = -\int_a^b (M(x, f_1(x)) - M(x, f_0(x))) dx$$
 (= LHS).

Finally observe: any region R can be subdivided into vertically simple pieces (picture shown); for each piece $\oint_{C_i} M \, dx = -\iint_{R_i} M_y \, dA$, so by additivity $\oint_C M \, dx = -\iint_R M_y \, dA$.

Similarly $\oint_C N \, dy = \iint_R N_x \, dA$ by subdividing into horizontally simple pieces. This completes the proof.

Example. The area of a region R can be evaluated using a line integral: for example, $\oint_C x \, dy = \iint_R 1 dA = area(R)$.

This idea was used to build mechanical devices that measure area of arbitrary regions on a piece of paper: planimeters (photo of the actual object shown, and principle explained briefly: as one moves its arm along a closed curve, the planimeter calculates the line integral of a suitable vector field by means of an ingenious mechanism; at the end of the motion, one reads the area).

18.02 Lecture 23. - Fri, Nov 2, 2007

Flux. The flux of a vector field \vec{F} across a plane curve C is $\int_C \vec{F} \cdot \hat{n} \, ds$, where $\hat{n} = \text{normal vector}$ to C, rotated 90° clockwise from \hat{T} .

We now have two types of line integrals: work, $\int \vec{F} \cdot \hat{\boldsymbol{T}} \, ds$, sums $\vec{F} \cdot \hat{\boldsymbol{T}} = \text{component of } \vec{F} \text{ in direction of } C$, along the curve C. Flux, $\int \vec{F} \cdot \hat{\boldsymbol{n}} \, ds$, sums $\vec{F} \cdot \hat{\boldsymbol{n}} = \text{component of } \vec{F} \text{ perpendicular to } C$, along the curve.

If we break C into small pieces of length Δs , the flux is $\sum_{i} (\vec{F} \cdot \hat{n}) \Delta s_{i}$.

Physical interpretation: if \vec{F} is a velocity field (e.g. flow of a fluid), flux measures how much matter passes through C per unit time.

Look at a small portion of C: locally \vec{F} is constant, what passes through portion of C in unit time is contents of a parallelogram with sides Δs and \vec{F} (picture shown with \vec{F} horizontal, and portion of curve = diagonal line segment). The area of this parallelogram is $\Delta s \cdot \text{height} = \Delta s (\vec{F} \cdot \hat{n})$. (picture shown rotated with portion of C horizontal, at base of parallelogram). Summing these contributions along all of C, we get that $\int (\vec{F} \cdot \hat{n}) ds$ is the total flow through C per unit time; counting positively what flows towards the right of C, negatively what flows towards the left of C, as seen from the point of view of a point travelling along C.

Example: $C = \text{circle of radius } a \text{ counterclockwise, } \vec{F} = x\hat{\imath} + y\hat{\jmath} \text{ (picture shown): along } C, \vec{F}//\hat{n}, \text{ and } |\vec{F}| = a, \text{ so } \vec{F} \cdot \hat{n} = a. \text{ So}$

$$\int_{C} \vec{F} \cdot \hat{\boldsymbol{n}} \, ds = \int_{C} a \, ds = a \operatorname{length}(C) = 2\pi a^{2}.$$

Meanwhile, the flux of $-y\hat{\imath} + x\hat{\jmath}$ across C is zero (field tangent to C).

That was a geometric argument. What about the general situation when calculation of the line integral is required?

Observe: $d\vec{r} = \hat{T} ds = \langle dx, dy \rangle$, and \hat{n} is \hat{T} rotated 90° clockwise; so $\hat{n} ds = \langle dy, -dx \rangle$.

So, if $\vec{F} = P\hat{\imath} + Q\hat{\jmath}$ (using new letters to make things look different; of course we could call the components M and N), then

$$\int_C \vec{F} \cdot \hat{\boldsymbol{n}} \, ds = \int_C \langle P, Q \rangle \cdot \langle dy, -dx \rangle = \int_C -Q \, dx + P \, dy.$$

(or if
$$\vec{F} = \langle M, N \rangle$$
, $\int_C -N \, dx + M \, dy$).

So we can compute flux using the usual method, by expressing x, y, dx, dy in terms of a parameter variable and substituting (no example given).

Green's theorem for flux. If C encloses R counterclockwise, and $\vec{F} = P\hat{\imath} + Q\hat{\jmath}$, then

$$\oint_C \vec{F} \cdot \hat{\boldsymbol{n}} \, ds = \iint_R \operatorname{div}(\vec{F}) \, dA, \quad \text{where} \quad \operatorname{div}(\vec{F}) = P_x + Q_y \quad \text{is the divergence of } \vec{F}.$$

Note: the counterclockwise orientation of C means that we count flux of \vec{F} out of R through C.

Proof:
$$\oint_C \vec{F} \cdot \hat{n} \, ds = \oint_C -Q \, dx + P \, dy$$
. Call $M = -Q$ and $N = P$, then apply usual Green's theorem $\oint_C M \, dx + N \, dy = \iint_R (N_x - M_y) \, dA$ to get

$$\oint_C -Q dx + P dy = \iint_R (P_x - (-Q_y)) dA = \iint_R \operatorname{div}(\vec{F}) dA.$$

This proof by "renaming" the components is why we called the components P,Q instead of M,N. If we call $\vec{F} = \langle M,N \rangle$ the statement becomes $\oint_C -N \, dx + M \, dy = \iint_R (M_x + N_y) \, dA$.

Example: in the above example $(x\hat{\imath} + y\hat{\jmath})$ across circle), $\operatorname{div} \vec{F} = 2$, so $\operatorname{flux} = \iint_R 2 dA = 2 \operatorname{area}(R) = 2\pi a^2$. If we translate C to a different position (not centered at origin) (picture shown) then direct calculation of flux is harder, but total flux is still $2\pi a^2$.

Physical interpretation: in an incompressible fluid flow, divergence measures source/sink density/rate, i.e. how much fluid is being added to the system per unit area and per unit time.

18.02 Lecture 24. - Tue, Nov 6, 2007

Simply connected regions. [slightly different from the actual notations used]

Recall Green's theorem: if C is a closed curve around R counterclockwise then line integrals can be expressed as double integrals:

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_R \operatorname{curl}(\vec{F}) \, dA, \qquad \oint_C \vec{F} \cdot \hat{\boldsymbol{n}} \, ds = \iint_R \operatorname{div}(\vec{F}) \, dA,$$

where $\operatorname{curl}(M\hat{\imath} + N\hat{\jmath}) = N_x - M_y$, $\operatorname{div}(P\hat{\imath} + Q\hat{\jmath}) = P_x + Q_y$.

For Green's theorem to hold, \vec{F} must be defined on the *entire* region R enclosed by C.

Example: (same as in pset): $\vec{F} = \frac{-y\hat{\imath} + x\hat{\jmath}}{x^2 + y^2}$, C = unit circle counterclockwise, then $\text{curl}(\vec{F}) =$

$$\frac{\partial}{\partial x}(\frac{x}{x^2+y^2}) - \frac{\partial}{\partial y}(\frac{-y}{x^2+y^2}) = \dots = 0$$
. So, if we look at both sides of Green's theorem:

$$\oint_C \vec{F} \cdot d\vec{r} = 2\pi \quad \text{(from pset)}, \qquad \iint_R \operatorname{curl} \vec{F} \, dA = \iint_R 0 \, dA = 0 \, ?$$

The problem is that R includes 0, where \vec{F} is not defined.

Definition: a region R in the plane is simply connected if, given any closed curve in R, its interior region is entirely contained in R.

Examples shown.

So: Green's theorem applies safely when the domain in which \vec{F} is defined and differentiable is simply connected: then we automatically know that, if \vec{F} is defined on C, then it's also defined in the region bounded by C.

In the above example, can't apply Green to the unit circle, because the domain of definition of \vec{F} is not simply connected. Still, we can apply Green's theorem to an annulus (picture shown of a curve C' = unit circle counterclockwise + segment along x-axis + small circle around origin clockwise + back to the unit circle allong the x-axis, enclosing an annulus R'). Then Green applies and says $\oint_{C'} \vec{F} \cdot d\vec{r} = \iint_{R'} 0 \, dA = 0$; but line integral simplifies to $\oint_{C'} = \int_C - \int_{C_2}$, where C = unit circle, C_2 = small circle / origin; so line integral is actually the same on C and C_2 (or any other curve encircling the origin).

Review for Exam 3.

2 main objects: double integrals and line integrals. Must know how to set up and evaluate.

Double integrals: drawing picture of region, taking slices to set up the iterated integral.

Also in polar coordinates, with $dA = r dr d\theta$ (see e.g. Problem 2; not done)

Remember: mass, centroid, moment of inertia.

For evaluation, need to know: usual basic integrals (e.g. $\int \frac{dx}{x}$); integration by substitution (e.g. $\int_0^1 \frac{t \, dt}{\sqrt{1+t^2}} = \int_1^2 \frac{du}{2\sqrt{u}}$, setting $u = 1+t^2$). Don't need to know: complicated trigonometric integrals (e.g. $\int \cos^4\theta \, d\theta$), integration by parts.

Change of variables: recall method:

- 1) Jacobian: $\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} u_x & u_y \\ c_x & v_y \end{vmatrix}$. Its absolute value gives ratio between $du \, dv$ and $dx \, dy$.
- 2) express integrand in terms of u, v.

3) set up bounds in uv-coordinates by drawing picture. The actual example on the test will be reasonably simple (constant bounds, or circle in uv-coords).

Line integrals: $\int_C \vec{F} \cdot d\vec{r} = \int_C \vec{F} \cdot \hat{T} ds = \int_C M dx + N dy$. To evaluate, express both x, y in terms of a single parameter and substitute.

Special case: gradient fields. Recall: \vec{F} is conservative $\Leftrightarrow \int \vec{F} \cdot d\vec{r}$ is path independent $\Leftrightarrow \vec{F}$ is the gradient of some potential $f \Leftrightarrow \text{curl } \vec{F} = 0$ (i.e. $N_x = M_y$).

If this is the case, then we can look for a potential using one of the two methods (antiderivatives, or line integral); and we can then use the FTC to avoid calculating the line integral. (cf. Problem 3).

Flux: $\int_C \vec{F} \cdot \hat{n} \, ds \, (= \int_C -Q \, dx + P \, dy)$. Geometric interpretation.

Green's theorem (in both forms) (already written at beginning of lecture).

18.02 Lecture 25. - Fri, Nov 9, 2007

Handouts: Exam 3 solutions.

Triple integrals: $\iiint_R f \, dV \, (dV = \text{volume element}).$

Example 1: region between paraboloids $z=x^2+y^2$ and $z=4-x^2-y^2$ (picture drawn), e.g. volume of this region: $\iiint_R 1 \, dV = \int_?^? \int_?^? \int_{x^2+y^2}^{4-x^2-y^2} \, dz \, dy \, dx.$

To set up bounds, (1) for fixed (x,y) find bounds for z: here lower limit is $z=x^2+y^2$, upper limit is $z=4-x^2-y^2$; (2) find the shadow of R onto the xy-plane, i.e. set of values of (x,y) above which region lies. Here: R is widest at intersection of paraboloids, which is in plane z=2; general method: for which (x,y) is z on top surface > z on bottom surface? Answer: when $4-x^2-y^2>x^2-y^2$, i.e. $x^2+y^2<2$. So we integrate over a disk of radius $\sqrt{2}$ in the xy-plane. By usual method to set up double integrals, we finally get:

$$V = \int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2-x^2}}^{\sqrt{2-x^2}} \int_{x^2+y^2}^{4-x^2-y^2} dz \, dy \, dx.$$

Evaluation would be easier if we used polar coordinates $x = r \cos \theta$, $y = r \sin \theta$, $x^2 + y^2 = r^2$: then

$$V = \int_0^{2\pi} \int_0^{\sqrt{2}} \int_{r^2}^{4-r^2} dz \, r \, dr \, d\theta.$$

(evaluation easy, not done).

Cylindrical coordinates. (r, θ, z) , $x = r \cos \theta$, $y = r \sin \theta$. r measures distance from z-axis, θ measures angle from xz-plane (picture shown).

Cylinder of radius a centered on z-axis is r = a (drawn); $\theta = 0$ is a vertical half-plane (not drawn).

Volume element: in rect. coords., $dV = dx \, dy \, dz$; in cylindrical coords., $dV = r \, dr \, d\theta \, dz$. In both cases this is justified by considering a small box with height Δz and base area ΔA , then volume is $\Delta V = \Delta A \, \Delta z$.

Applications: Mass: $M = \iiint_R \delta \, dV$.

Average value of f over R: $\bar{f} = \frac{1}{Vol} \iiint_R f \, dV$; weighted average: $\bar{f} = \frac{1}{Mass} \iiint_R f \, \delta \, dV$.

In particular, center of mass: $(\bar{x}, \bar{y}, \bar{z})$ where $\bar{x} = \frac{1}{Mass} \iiint_{R} x \, \delta \, dV$.

(Note: can sometimes avoid calculation using symmetry, e.g. in above example $\bar{x} = \bar{y} = 0$).

Moment of inertia around an axis: $I = \iiint_{R} (\text{distance from axis})^{2} \delta dV$.

About z-axis: $I_z = \iiint_R r^2 \delta dV = \iiint_R (x^2 + y^2) \delta dV$. (consistent with I_0 in 2D case)

Similarly, about x and y axes: $I_x = \iiint_R (y^2 + z^2) \, \delta \, dV$, $I_y = \iiint_R (x^2 + z^2) \, \delta \, dV$ (setting z = 0, this is consistent with previous definitions of I_x and I_y for plane regions).

Example 2: moment of inertia I_z of solid cone between z = ar and z = b ($\delta = 1$) (picture drawn):

$$I_z = \iiint_R r^2 dV = \int_0^b \int_0^{2\pi} \int_0^{z/a} r^2 r \, dr \, d\theta \, dz \quad \left(= \frac{\pi b^5}{10a^4} \right).$$

(I explained how to find bounds in order $dr d\theta dz$: first we fix z, then slice for given z is the disk bounded by r = z/a; the first slice is z = 0, the last one is z = b).

Example 3: volume of region where z > 1 - y and $x^2 + y^2 + z^2 < 1$? Pictures drawn: in space, slice by yz-plane, and projection to xy-plane.

The bottom surface is the plane z = 1 - y, the upper one is the sphere $z = \sqrt{1 - x^2 - y^2}$. So

inner is $\int_{1-y}^{\sqrt{1-x^2-y^2}} dz$. The shadow on the xy-plane = points where $1-y < \sqrt{1-x^2-y^2}$, i.e.

squaring both sides, $(1-y)^2 < 1-x^2-y^2$ i.e. $x^2 < 2y-2y^2$, i.e. $-\sqrt{2y-2y^2} < x < \sqrt{2y-2y^2}$. So we get:

$$\int_0^1 \int_{-\sqrt{2y-2y^2}}^{\sqrt{2y-2y^2}} \int_{1-y}^{\sqrt{1-x^2-y^2}} dz \, dx \, dy.$$

Bounds for y: either by observing that $x^2 < 2y - y^2$ has solutions iff $2y - y^2 > 0$, i.e. 0 < y < 1, or by looking at picture where clearly leftmost point is on z-axis (y = 0) and rightmost point is at y = 1.