CS 323: Numerical Analysis

Rutgers: Spring 2022

Homework #1

Deadline: February 10

Name: Scott Burke

Problem 1. Find the real root of $x^2 = 0.7$ using 3 iterations of the bisection method with a = 0.5, b = 2. Solution. We apply the bisection method to $f(x) = x^2 - 0.7$:

iteration	a	b	c=(a+b)/2	f(a)	f(c)	f(a)f(c)	action
0	0.5	2	1.25	-0.45	0.8625	-0.38813	b < c
1	0.5	1.25	0.875	-0.45	0.065625	-0.02953	b < c
2	0.5	0.875	0.6875	-0.45	-0.22734	0.102305	a < c
3	0.6875	0.875	0.78125				

After 3 iterations, we've computed a root of 0.78125. We note that $0.78125^2 - 0.7 = -0.08965$.

Problem 2. Find all real roots of $f(x) = -2 + 6x - 4x^2 + 0.5x^3$ using Newton's Method with $\epsilon = 0.01$. Solution. First we plot f(x) to get an idea where the real roots are:

Based on this plot, we run Newton's Method on f(x) with initial values $x_0 \in \{0, 2, 6\}$. We apply differentiation rules to get $f'(x) = 6 - 8x + 1.5x^2$ and compute $x_1 = x_0 + f(x_0)/f'(x_0)$:

iteration	x0	f(x0)	f'(x0)	x1	e= x1-x0
1	0	-2	6	0.333333	0.333333
2	0.333333	-0.42593	3.5	0.455026	0.121693
3	0.455026	-0.05093	2.670362	0.474099	0.019073
4	0.474099	-0.0012	2.544361	0.474572	0.000473
iteration	x0	f(x0)	f'(x0)	x1	e= x1-x0
1	2	-2	-4	1.5	0.5
2	1.5	-0.3125	-2.625	1.380952	0.119048
3	1.380952	-0.02565	-2.18707	1.369227	0.011726
4	4 1.369227		-2.14164	1.369102	0.000124
iteration	x0	f(x0)	f'(x0)	x1	e= x1-x0
1	6	-2	12	6.166667	0.166667
2	6.166667	0.141204	13.70833	6.156366	0.010301
3	6.156366	0.000556	13.60034	6.156325	4.09E-05

Our computed (real) roots are 0.47, 1.37, and 6.16. Since this polynomial is of degree 3, we know we have found all 3 real roots.

Problem 3. The sum of 2 numbers is 20. If we add to each number its square root, the product of both sums is 155.55. Find the two numbers with $\epsilon = 10^{-4}$.

Solution. Let x and y be 2 numbers such that x+y=20 and $(x+\sqrt{x})(y+\sqrt{y})=155.55$. We limit our search to x and y in the open interval (0,20) so that the square roots are real numbers and we can avoid dividing by zero. The first equation implies y=20-x, and we make this substitution for y in the second equation to get $(x+\sqrt{x})((20-x)+\sqrt{20-x})=155.55$. It is tedious to calculate the first derivative of the left-hand side of this equation, so we attempt fixed-point iteration and write the second equation in the form x=g(x):

$$(x + \sqrt{x})((20 - x) + \sqrt{20 - x}) = 155.55 \iff x \cdot (20 - x + \sqrt{20 - x}) + \sqrt{x} \cdot (20 - x + \sqrt{20 - x}) = 155.55$$
$$\iff x = \frac{155.55}{20 - x + \sqrt{20 - x}} - \sqrt{x} \doteq g(x)$$

We run fixed point iteration with $x_0 = 10$, setting $x_{k+1} = g(x_k)$ in each iteration k:

k	x_k	x_k+1	e
0	10	8.655586	1.344414
1	8.655586	7.630561	1.025025
2	7.630561	7.02901	0.601551
3	7.02901	6.734794	0.294216
4	6.734794	6.604993	0.129801
5	6.604993	6.550514	0.054479
6	6.550514	6.528145	0.022369
7	6.528145	6.519044	0.009101
8	6.519044	6.515355	0.003689
9	6.515355	6.513862	0.001493
10	6.513862	6.513259	0.000604
11	6.513259	6.513014	0.000244
12	6.513014	6.512916	9.87E-05

So we see that fixed point iteration converges, yielding x = 6.5129 and y = 20 - 6.5129 = 13.4871.

Problem 4. The following equation is used to compute monthly payments on a mortgage:

$$A = \frac{P}{i} \left(1 - (1+i)^{-n} \right)$$

Where A is the total mortgage amount, P is the monthly payment, i is the monthly interest rate, and n is the number of months.

Suppose that a client wants an \$800,000.00 mortgage to be paid in 30 years but he can pay no more than \$7,000.00 each month. What is the highest monthly interest rate that he would be able to pay?

Solution. The highest monthly interest rate the client would be able to pay is the value i that satisfies the given equation. This is equivalent to finding a positive root of the function

$$f(i) = P(1 - (1+i)^{-n}) - A \cdot i$$

= \$7,000(1 - (1+i)^{-12\cdot30}) - \$800,000 \cdot i

We use Newton's method. The first derivative of f is given by

$$f'(i) = P \cdot n(1+i)^{-n-1} - A$$

= \$7,000 \cdot 360(1+i)^{-361} - \$800,000.

To calculate an initial value i_0 , we note that the *simple* interest rate, i.e. with no compounding of interest, would be $A/(P \cdot n) = 800/(7 \cdot 360) \approx 32\%$, and that an equivalent compounding interest rate would be i that satisfies $1 + 32\% \cdot 360 = (1+i)^{360}$. So we solve for $i_0 = 116.2^{1/360} - 1 = 1.33\%$. We use $\epsilon = 10^{-4}$, based on the convention that interest is quoted in basis points, i.e. hundredths of a percentage point:

iteration	iO	f(iO)	f'(i0)	i1	e= i1-i0
1	1.33%	-3.70017	-778.622	0.85%	0.004752
2		-0.1651			
3	0.83%	-0.00125	-672.787	0.83%	1.87E-06

So we find 0.83% is the highest monthly interest rate the client would be able to pay.

Problem 5. Enumerate all elements in $f_l(2, 2, -1, 1)$.

Solution. We list all base-2 values with 2-digit mantissas and exponents ranging between -1 and 1:

$$\pm 0.10 \times 10^{-1}$$
 $\pm 0.10 \times 10^{0}$ $\pm 0.10 \times 10^{1}$ $\pm 0.11 \times 10^{-1}$ $\pm 0.11 \times 10^{0}$ $\pm 0.11 \times 10^{1}$ 0.00×10^{0}

Problem 6. Use the bisection method to find a root of $x^3 - 7x^2 + 14x - 6 = 0$ in [1, 3.2] with $\epsilon = 10^{-2}$.

Solution. We apply the bisection method to $f(x) = x^3 - 7x^2 + 14x - 6$:

iteration	а	b	c=(a+b)/2	f(a)	f(c)	f(a)f(c)	action	b-a
0	1	3.2	2.1	2	1.791	3.582	a < c	2.2
1	2.1	3.2	2.65	1.791	0.552125	0.988856	a < c	1.1
2	2.65	3.2	2.925	0.552125	0.085828	0.047388	a < c	0.55
3	2.925	3.2	3.0625	0.085828	-0.05444	-0.00467	b < c	0.275
4	2.925	3.0625	2.99375	0.085828	0.006328	0.000543	a < c	0.1375
5	2.99375	3.0625	3.028125	0.006328	-0.02652	-0.00017	b < c	0.06875
6	2.99375	3.028125	3.010938	0.006328	-0.0107	-6.8E-05	b < c	0.034375
7	2.99375	3.010938	3.002344	0.006328	-0.00233	-1.5E-05	b < c	0.017187
8	2.99375	3.002344	2.998047					0.008594

After 8 iterations, we've computed a root of 3.00.

Problem 7. Given the polynomial $P(x) = x^4 + 5x^3 - 9x^2 - 85x - 136$

- a. Use Newton's method with Horner to find a root with $\epsilon = 10^{-5}$, starting from $x_0 = -4$.
- b. If x_r is the solution found before, find the polynomial $P_1(x)$ obtained by dividing the original polynomial by $x x_r$.
- c. Again use Newton's method with Horner to find a root of $P_1(x)$.
- d. Verify that the root found is also a root of P(x).

Solution. We proceed:

a. We visualize Horner's algorithm as synthetic division with r=-4 and coefficients $\{a_4,\ldots,a_0\}=\{1,5,-9,-85,-136\}$, and find a root $x_r=-4.12311$:

- b. Immediately from the visualization of Iteration 4 above we have $P_1(x) = x^3 + 0.87689x^2 12.6155x 32.9848$.
- c. Again we visualize Horner's algorithm as synthetic division. Based on a plot of the polynomial (not shown), we can see that we'll have trouble with convergence if we start with r = -4. So we use r = 4 instead and find a root $x_{r1} = 4.12311$:

Iteration 2

Iteration 3

d. We calculate:

$$P(4.12311) = 4.12311^4 + 4.12311x^3 \cdot \cdot \cdot - 136$$
$$= 0.001645$$

So this is reasonably close to zero, though it is about 10 times larger than $P(-4.12311) = 1.58 \times 10^{-4}$.

Problem 8. Use Newton's Method to find a solution of the equation $e^{6x} + 3(\ln 2)^2 e^{2x} - e^{4x} \ln 8 - (\ln 2)^3 = 0$ with error tolerance 10^{-5} , and that is in the interval $-1 \le x \le 0$.

Solution. Call the left-hand side of this equation f(x). We run Newton's Method with an initial value $x_0 = 0.5$ and apply differentiation rules to get $f'(x) = 6e^{6x} + 6(\ln 2)^2e^{2x} - 4e^{4x} \ln 8$:

iteration x0		f(x0)	f'(x0)	x1	e= x1-x0
1	1 -0.5		0.233528	-0.35264	0.147362
2	-0.35264	-0.0079	0.117578	-0.28544	0.067202
3	-0.28544	-0.0021	0.055645	-0.24765	0.03779
4	-0.24765	-0.00059	0.025649	-0.22474	0.022907
5	-0.22474	-0.00017	0.011658	-0.21032	0.014418
6	-0.21032	-4.9E-05	0.005256	-0.20105	0.009271
7	-0.20105	-1.4E-05	0.002357	-0.19501	0.006039
8	-0.19501	-4.2E-06	0.001054	-0.19105	0.003965
9	-0.19105	-1.2E-06	0.00047	-0.18843	0.002617
10	-0.18843	-3.6E-07	0.00021	-0.1867	0.001734
11	-0.1867	-1.1E-07	9.33E-05	-0.18555	0.001151
12	-0.18555	-3.2E-08	4.15E-05	-0.18478	0.000765
13	-0.18478	-9.4E-09	1.85E-05	-0.18427	0.000509
14	-0.18427	-2.8E-09	8.21E-06	-0.18393	0.000339
15	-0.18393	-8.2E-10	3.65E-06	-0.18371	0.000226
16	-0.18371	-2.4E-10	1.62E-06	-0.18356	0.00015
17	-0.18356	-7.2E-11	7.21E-07	-0.18346	0.0001
18	-0.18346	-2.1E-11	3.21E-07	-0.18339	6.68E-05
19	-0.18339	-6.3E-12	1.43E-07	-0.18335	4.45E-05
20	-0.18335	-1.9E-12	6.33E-08	-0.18332	2.97E-05
21	-0.18332	-5.6E-13	2.82E-08	-0.1833	1.98E-05
22	-0.1833	-1.7E-13	1.25E-08	-0.18328	1.32E-05
23	-0.18328	-4.9E-14	5.56E-09	-0.18327	8.83E-06

So we compute a root of -0.18327. The convergence is much slower than we've seen for polynomials. If we plot the function on the interval [-1,0] (not shown), we can see why: the slope of f(x) becomes very flat near the root, which "slows down" Newton's method.

7