

Huazhong University of Science & Technology

Electronic Circuit of Communications

School of Electronic Information and Commnications

Jiaqing Huang

Oscillators Classification

Coupling Oscillators

Oscillators Classification

Coupling Oscillator (Base)

- $ightharpoonup \mathsf{R}_{\mathsf{i}}$ of b-e \downarrow \Rightarrow Q \downarrow
- Tap-connected between
 Transistor & LC Oscillator

 \succ Key: Determine \dot{V}_f ($\dot{V}_f = \dot{V}_i$)

Coupling Oscillator (Emitter)

- $ightharpoonup \mathsf{R}_{\mathsf{i}}$ of b-e \downarrow \Rightarrow Q \downarrow
- Tap-connected between
 Transistor & LC Oscillator

 \succ Key: Determine \dot{V}_f ($\dot{V}_f = \dot{V}_i$)

Coupling Oscillator (Collector)

> Stable output when radio frequency

 \triangleright Key: Determine \dot{V}_f ($\dot{V}_f = \dot{V}_i$)

Coupling Oscillator

ightharpoonup Oscillation Frequency: $f_0 = \frac{1}{2\pi\sqrt{LC}}$

- > Advantage:
 - \triangleright Adjust F (by M) \Rightarrow f_0
- > Disadvantage:
 - Upper-bound frequency can not be high Reason: Distributed capaciance of transformer, unstable

Inductor Feedback Oscillators

Oscillators Classification

Inductor Feedback Oscillator (Hartley)

- Inductor Feedback Oscillator
- Equivalent Circuit
- > RF Equivalent Circuit Principle
 - \triangleright Resistor Open: R_{b1} , R_{b2} , R_e
 - > Inductor Open: No RF Choke
 - > Capacitor Short:
 - \triangleright Bypass Capacitor: C_e
 - \triangleright Coupling Capacitor: C_b
 - > Power Filter Capacitor: None

Inductor Feedback Oscillator (Hartley)

Inductor Feedback Oscillator

Equivalent Circuit

Oscillation Frequency:
$$f_0 pprox rac{1}{2\pi \sqrt{LC}}$$
 $L = L_1 + L_2 + 2M$
Feedback Coefficient: $F = rac{L_2 + M}{L_1 + M}$

Inductor Feedback Oscillator (Hartley)

Inductor Feedback Oscillator

Equivalent Circuit

Advantage:

- 1) M between L_1 & L_2 is strong to start oscillation easily
- 2) Adjust frequency by C conveniently
- 3) $C \Rightarrow F$

Disadvantage:

- 1) Distorted oscillation waveform Reason: high feedback/impedence of Inductors
- 2) Upper-bound frequency is not high Reason: distributed capacitance

Capacitor Feedback Oscillators

Oscillators Classification

Capacitor Feedback Oscillator (Coplitts)

- > RF Equivalent Circuit Principle
 - \triangleright Resistor Open: R_{b1} , R_{b2} , R_e , R_s
 - > Inductor Open: No RF Choke
 - > Capacitor Short:
 - \triangleright Bypass Capacitor: C_e
 - \triangleright Coupling Capacitor: C_b , C_c
 - > Power Filter Capacitor: None

Capacitor Feedback Oscillator (Coplitts)

Advantage:

- > Better oscillation waveform
- > Better stability
- > Higher frequency

Capacitor Feedback Oscillator (Coplitts)

$$\left\{\begin{array}{ll} \text{Frequency } f_0 \approx \frac{1}{2\pi\sqrt{LC}} & C = \frac{C_1C_2}{C_1+C_2} \end{array}\right.$$
 Feedback $F = \frac{C_1}{C_2}$

➤ Disadvantage:

- \triangleright Adjust f_0 by C_1 or $C_2 \Rightarrow F$ (Solution: L // a capacitor)
- $> F \Rightarrow f_0$

Oscillators Classification

- > Equivalent Circuit Principle
 - \triangleright Resistor Open: R_{b1} , R_{b2} , R_e , R_s , R_L
 - > Inductor Open: No RF Choke
 - > Capacitor Short:
 - \triangleright Bypass Capacitor: C_h
 - > Coupling Capacitor: None
 - > Power Filter Capacitor: None

$$\begin{cases} \text{Frequency } f_0 \approx \frac{1}{2\pi\sqrt{LC}} \approx \frac{1}{2\pi\sqrt{LC_3}} \\ \text{Feedback } F = \frac{C_1}{C_2} \end{cases}$$

Total
$$C = C_1 + C_2 + C_3$$

$$C = \frac{C_1 C_2 C_3}{C_1 C_2 + C_2 C_3 + C_1 C_3} = \frac{C_3}{1 + \frac{C_3}{C_1} + \frac{C_3}{C_2}} \approx C_3$$

> Stability? (input output capacitance)

> Clue: tap-connected

Access Factor: $p'_{ce} pprox rac{C_3}{c_1} \ll 1$ Equivalent impedance of $C_{ce} \downarrow \downarrow$ Stability $\uparrow \uparrow$

Access Factor: $p_{be}' pprox rac{C_3}{C_2} \ll 1$ Equivalent impedance of $C_{be} \downarrow \downarrow$ Stability $\uparrow \uparrow$

Better frequency stability

Key: $C_3 << C_1$ and C_2

Advantage

- \succ Loose coupling (C_{ce} , C_{be} with small access factor)
- \triangleright Adjust F by C_1 , $C_2 \Rightarrow f_0$
- \triangleright Adjust f_0 by $C_3 \Rightarrow F$

Disadvantage

- > Narrow wave range (Cover factor = $\frac{f_{0max}}{f_{0min}} = 1.2 \sim 1.3$)
- > Output amplitudes vary with frequencies

Oscillators Classification

- > RF Equivalent Circuit Principle
 - \triangleright Resistor Open: R_{b1} , R_{b2} , R_e , R_s
 - > Inductor Open: No RF Choke
 - > Capacitor Short:
 - \triangleright Bypass Capacitor: C_h
 - > Coupling Capacitor: None
 - > Power Filter Capacitor: None

Frequency
$$f_0 pprox rac{1}{2\pi\sqrt{LC}} pprox rac{1}{2\pi\sqrt{L(C_3+C_4)}}$$
Feedback $F = rac{C_1}{C_2}$

$$f_0 \Leftrightarrow F$$

Total
$$C = (C_1 + C_2 + C_3) / / C_4$$

$$C = \frac{C_1 C_2 C_3}{C_1 C_2 + C_2 C_3 + C_1 C_3} + C_4 \approx C_3 + C_4$$

- \triangleright Selection of C_3
 - $\succ C_3$ too small, loosely coupling, not easy to start
 - $\succ C_3$ too big, stability \downarrow
 - \succ In general, decrease C_3 as much as possible when startup condition is satisfied

Advantage

- \triangleright Wide wave range (Cover factor = $\frac{f_{0max}}{f_{0min}} = 1.6 \sim 1.8$)
- > Output amplitudes are stable

Criteria of LC Composition

Criteria of LC Oscillator Composition

- > General case?
- ① c-e and b-e are same
- $\bigcirc b-c$ is different

Criteria of LC Oscillator Composition

> Suppose 3 reactance

$$Z_1 = jX_{ce}$$
 $Z_2 = jX_{be}$ $Z_3 = jX_{cb}$

> Purely resistive when resonant

$$X_{be} + X_{ce} + X_{cb} = 0$$

$$> AF = 1, F = 1/A > 0$$

$$\succ$$
 $F=X_{be}/X_{ce}>0$, X_{be} and X_{ce} are the same type

- > Thus:
 - $\succ X_{be}$ and X_{ce} are the same type (both inductive or both capacitive)
 - \triangleright They are different with X_{cb}

Exp 5-1 Draw AC equivalent circuit of the oscillator, determine when to start oscillation and classification.

Solution: 1) AC Equivalent circuit

- 2) Criteria of LC composition: x_{be} Capacitive, x_{ce} Capacitive x_{cb} Inductive
- L_1C_1 Capacitive $\rightarrow f_0 > f_1(L_1C_1)$ natural frequency
- L_3C_3 Inductive \rightarrow $f_0 < f_3$
- Classification: Capacitor Feedback LC Oscillator

$$\frac{1}{2\pi\sqrt{L_1C_1}} < \frac{1}{2\pi\sqrt{L_3C_3}}$$
 $L_1C_1 > L_3C_3$