In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline
```

In [2]:

```
df_aisles = pd. read_csv('aisles.csv')
df_aisles.head()
```

Out[2]:

aisle	aisle_id	
prepared soups salads	0 1	0
specialty cheeses	1 2	1
energy granola bars	2 3	2
instant foods	3 4	3
marinades meat preparation	4 5	4

In [3]:

```
df_departments = pd.read_csv('departments.csv')
df_departments.head()
```

Out[3]:

	department_id	department
0	1	frozen
1	2	other
2	3	bakery
3	4	produce
4	5	alcohol

In [4]:

```
df_order_products_prior= pd.read_csv('order_products_prior.csv')
df_order_products_prior.head()
```

Out[4]:

	order_id	product_id	add_to_cart_order	reordered
0	2	33120	1	1
1	2	28985	2	1
2	2	9327	3	0
3	2	45918	4	1
4	2	30035	5	0

In [5]:

```
df_order_products_train = pd. read_csv('order_products__train.csv')
df_order_products_train.head()
```

Out[5]:

	order_id	product_id	add_to_cart_order	reordered
0	1	49302	1	1
1	1	11109	2	1
2	1	10246	3	0
3	1	49683	4	0
4	1	43633	5	1

In [6]:

```
df_orders = pd. read_csv('orders. csv')
df_orders. head()
```

Out[6]:

	order_id	user_id	eval_set	order_number	order_dow	order_hour_of_day	days_since_prior_
0	2539329	1	prior	1	2	8	
1	2398795	1	prior	2	3	7	
2	473747	1	prior	3	3	12	
3	2254736	1	prior	4	4	7	
4	431534	1	prior	5	4	15	
4							•

In [7]:

```
df_products = pd. read_csv('products. csv')
df_products. head()
```

Out[7]:

product_id		product_name	aisle_id	department_id
0	1	Chocolate Sandwich Cookies	61	19
1	2	All-Seasons Salt	104	13
2	3	Robust Golden Unsweetened Oolong Tea	94	7
3	4	Smart Ones Classic Favorites Mini Rigatoni Wit	38	1
4	5	Green Chile Anytime Sauce	5	13

In [8]:

```
df_sample_submission = pd.read_csv('sample_submission.csv')
df_sample_submission.head()
```

Out[8]:

	order_id	products
0	17	39276 29259
1	34	39276 29259
2	137	39276 29259
3	182	39276 29259
4	257	39276 29259

In [9]:

```
df_orders.eval_set.value_counts()
```

Out[9]:

prior 3214874 train 131209 test 75000

Name: eval_set, dtype: int64

In [10]:

```
data = df_orders.eval_set.value_counts()
plt.figure(figsize = (10,6))

#data.plot.bar(x = data.index, color = ['g'], alpha =0.8)

sns.set()
sns.barplot(x = data.index, y = data.values, color = 'g')
plt.show()
```


In [11]:

```
data = df_orders.groupby('user_id').count().groupby('order_number').count()
```

In [12]:

```
plt.figure(figsize= (10,8))
sns.barplot(x = data.index , y = data.order_id, color = 'r')
plt.xticks(rotation = 'vertical', fontsize = 10)
plt.xlabel('count order number')
plt.ylabel('Number')
plt.show()
```


In [13]:

```
df_orders.groupby('order_dow')['order_id'].count()
```

Out[13]:

```
order_dow
     600905
0
     587478
1
2
     467260
3
     436972
4
     426339
5
     453368
6
     448761
Name: order_id, dtype: int64
```

In [14]:

```
data = df_orders.groupby('order_dow')['order_id'].count()

plt.figure(figsize= (10,6))
sns.barplot(x = data.index, y= data.values,color = 'purple', alpha = 0.6)
plt.xlabel('Day of week')
plt.ylabel('Number of orders')
plt.title('The distribution of order in the week ', fontsize = 20)
plt.show()
```

The distribution of order in the week

In [15]:

```
df_orders.groupby('order_hour_of_day')['order_number'].count()
```

Out[15]:

```
order_hour_of_day
       22758
       12398
1
2
        7539
3
        5474
        5527
4
5
        9569
       30529
6
7
       91868
8
      178201
      257812
9
10
      288418
11
      284728
12
      272841
13
      277999
14
      283042
15
      283639
16
      272553
17
      228795
18
      182912
19
      140569
20
      104292
21
       78109
22
       61468
23
       40043
Name: order_number, dtype: int64
```

In [16]:

```
data = df_orders.groupby('order_hour_of_day')['order_number'].count()

plt.figure(figsize = (10,6))
sns.barplot(x = data.index, y = data.values, color = 'g', alpha = 0.6)
plt.xlabel('Hour of day')
plt.ylabel('Count')
plt.title('The distribution of hour of day')

plt.show()
```


In [17]:

```
data=df_orders.groupby(['order_dow','order_hour_of_day']).count().reset_index()
data = data.pivot('order_dow','order_hour_of_day','order_id')
data
```

Out[17]:

order_hour_of_day	0	1	2	3	4	5	6	7	8	9	 14	
order_dow												
0	3936	2398	1409	963	813	1168	3329	12410	28108	40798	 54552	1
1	3674	1830	1105	748	809	1607	5370	16571	34116	51908	 46764	
2	3059	1572	943	719	744	1399	4758	13245	24635	36314	 37173	;
3	2952	1495	953	654	719	1355	4562	12396	22553	32312	 34773	;
4	2642	1512	899	686	730	1330	4401	12493	21814	31409	 33625	;
5	3189	1672	1016	841	910	1574	4866	13434	24015	34232	 37407	;
6	3306	1919	1214	863	802	1136	3243	11319	22960	30839	 38748	;

7 rows × 24 columns

In [18]:

```
plt.figure(figsize=(14,8))
color = sns.diverging_palette(220, 150, as_cmap = True)
sns.heatmap(data, cmap = color)
```

Out[18]:

 ${\tt matplotlib.axes._subplots.AxesSubplot}$ at ${\tt 0xb0977f0}{\tt >}$

In [19]:

data = df_orders.groupby('days_since_prior_order')['order_id'].count()

In [20]:

```
plt.figure(figsize = (12,8))

sns.barplot(x = data.index, y = data.values, color = 'blue', alpha = 0.6)
plt.xlabel('Days since prior order')
plt.xticks(rotation = 'vertical')
plt.ylabel('Count')
plt.title('The distribution of by days since prior order', fontsize = 20)
plt.show()
```


In [21]:

df_order_products_prior['reordered'].value_counts()/df_order_products_prior.shape[0]

Out[21]:

1 0.589697

0 0.410303

Name: reordered, dtype: float64

In [22]:

df_order_products_train['reordered'].value_counts()/df_order_products_train.shape[0]

Out[22]:

1 0. 598594

0 0.401406

Name: reordered, dtype: float64

In [23]:

data = df_order_products_train.groupby('order_id').count().reset_index().groupby('product_id').count
data[:10]

Out[23]:

order	ы	hhe	to	cart	order	reordered
oraer	ıu	auu	ιO	cart	oraer	reordered

product_id			
1	6845	6845	6845
2	7368	7368	7368
3	8033	8033	8033
4	8218	8218	8218
5	8895	8895	8895
6	8708	8708	8708
7	8541	8541	8541
8	7983	7983	7983
9	7217	7217	7217
10	6553	6553	6553

In [24]:

```
plt.figure(figsize = (14,10))

sns.barplot(x = data.index, y = data.order_id)
plt.xticks(rotation = 'vertical', fontsize = 10)
plt.xlabel('number of Order')
plt.ylabel('count')
plt.title('Distribution')
plt.show()
```


In [25]:

```
df_order_products_prior = pd.merge(df_order_products_prior, df_products, how = 'left', on = 'product_id
df_order_products_prior = pd.merge(df_order_products_prior, df_aisles, how = 'left', on = 'aisle_id')
df_order_products_prior = pd.merge(df_order_products_prior, df_departments, how = 'left', on = 'departments')
print(df_order_products_prior.shape)
```

(32434489, 9)

In [26]:

 ${\tt df_order_products_prior.head()}$

Out[26]:

	order_id	product_id	add_to_cart_order	reordered	product_name	aisle_id	department_id	
0	2	33120	1	1	Organic Egg Whites	86	16	_
1	2	28985	2	1	Michigan Organic Kale	83	4	,
2	2	9327	3	0	Garlic Powder	104	13	٤
3	2	45918	4	1	Coconut Butter	19	13	
4	2	30035	5	0	Natural Sweetener	17	13	i
4							•	•

In [27]:

```
data = df_order_products_prior['product_name'].value_counts().reset_index().head(20)
data.columns = ['product_name', 'Count']
data
```

Out[27]:

	product_name	Count
0	Banana	472565
1	Bag of Organic Bananas	379450
2	Organic Strawberries	264683
3	Organic Baby Spinach	241921
4	Organic Hass Avocado	213584
5	Organic Avocado	176815
6	Large Lemon	152657
7	Strawberries	142951
8	Limes	140627
9	Organic Whole Milk	137905
10	Organic Raspberries	137057
11	Organic Yellow Onion	113426
12	Organic Garlic	109778
13	Organic Zucchini	104823
14	Organic Blueberries	100060
15	Cucumber Kirby	97315
16	Organic Fuji Apple	89632
17	Organic Lemon	87746
18	Apple Honeycrisp Organic	85020
19	Organic Grape Tomatoes	84255

In [28]:

```
data = df_order_products_prior['aisle'].value_counts().head(20)
data
```

Out[28]:

fresh fruits	3642188
fresh vegetables	3418021
packaged vegetables fruits	1765313
yogurt	1452343
packaged cheese	979763
milk	891015
water seltzer sparkling water	841533
chips pretzels	722470
soy lactosefree	638253
bread	584834
refrigerated	575881
frozen produce	522654
ice cream ice	498425
crackers	458838
energy granola bars	456386
eggs	452134
lunch meat	395130
frozen meals	390299
baby food formula	382456
fresh herbs	377741
NT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Name: aisle, dtype: int64

In [29]:

```
fig, ax = plt. subplots(figsize = (12,8))
sns. barplot(x = data.index, y = data.values, ax = ax, color = 'pink', alpha = 0.8)

plt. xticks(rotation = 'vertical')
plt. xlabel("Aisle's name")
plt. ylabel('Count')

plt. show()
```


In [30]:

```
data = df_order_products_prior['department'].value_counts()
data
```

Out[30]:

```
produce
                    9479291
dairy eggs
                    5414016
snacks
                    2887550
beverages
                    2690129
frozen
                    2236432
pantry
                    1875577
bakery
                    1176787
canned goods
                    1068058
deli
                    1051249
dry goods pasta
                     866627
household
                     738666
breakfast
                     709569
meat seafood
                     708931
personal care
                     447123
babies
                     423802
                     269253
international
alcohol
                     153696
pets
                      97724
                      69145
missing
other
                      36291
                      34573
bulk
Name: department, dtype: int64
```

In [31]:

data.index.tolist()

Out[31]:

```
['produce',
'dairy eggs',
'snacks',
'beverages',
 'frozen',
'pantry',
'bakery',
 'canned goods',
 'deli',
'dry goods pasta',
'household',
 'breakfast',
'meat seafood',
'personal care',
'babies',
 'international',
'alcohol',
'pets',
 'missing',
 'other',
'bulk']
```

In [32]:

```
explode = [0]*len(data)
explode[0] = 0.1
explode
```

Out[32]:

In [33]:

```
plt.figure(figsize=(14,8))
ax = plt.pie(data, labels = data.index.tolist(), autopct = '%.1f%%', shadow = True, explode = explode)
```


In [34]:

```
df_order_products_prior.groupby('department')['reordered'].mean()
```

Out[34]:

department	
alcohol	0.569924
babies	0. 578971
bakery	0.628141
beverages	0.653460
breakfast	0.560922
bulk	0.577040
canned goods	0. 457405
dairy eggs	0.669969
deli	0.607719
dry goods pasta	0.461076
frozen	0. 541885
household	0.402178
international	0.369229
meat seafood	0. 567674
missing	0. 395849
other	0.407980
pantry	0.346721
personal care	0. 321129
pets	0.601285
produce	0.649913
snacks	0.574180
Name: reordered,	dtype: float64

In [35]:

```
data = df_order_products_prior.groupby('department')['reordered'].mean()

fig, axis = plt.subplots(figsize = (14,8))
sns.pointplot(ax = axis, x = data.index, y = data.values)
plt.xticks(rotation = 'vertical')
plt.xlabel('Dempartment')
plt.ylabel('Reordered rate')
plt.title('The Reordered rate of department', fontsize = 20)
plt.show()
```


In [36]:

data = df_order_products_prior.groupby(['department_id', 'aisle'])['reordered'].mean().reset_index()
data.head()

Out[36]:

	department_id	aisle	reordered
0	1	frozen appetizers sides	0.525557
1	1	frozen breads doughs	0.539992
2	1	frozen breakfast	0.626221
3	1	frozen dessert	0.420777
4	1	frozen juice	0.450855

In [37]:

```
fig, ax = plt. subplots(figsize = (16, 20))
ax. scatter(x = 'reordered', y = 'department_id', data = data)
for i, txt in enumerate(data.aisle.values):
    ax. annotate(txt, (data.reordered.values[i], data.department_id.values[i]),
        rotation = 45, ha = 'center', va = 'center', color = 'g')
plt. xlabel('Reorder rate')
plt. ylabel('department_id')
plt. title('Reorder ratio of different aisles')
plt. show()
```


In [38]:

```
df_order_products_prior['add_to_cart_order_code'] = df_order_products_prior['add_to_cart_order'].cor
df_order_products_prior['add_to_cart_order_code'][df_order_products_prior['add_to_cart_order']>70] =
```

D:\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/in dexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)

In [39]:

```
data = df_order_products_prior.groupby('add_to_cart_order_code')['reordered'].mean()
data.head()
```

Out[39]:

In [40]:

```
plt. figure(figsize = (14,8))
sns. pointplot(x = data.index, y = data.values)
plt. xlabel('add_to_cart_order')
plt. xticks(rotation = 'vertical')
plt. ylabel('Reordered rate')
plt. title('Overview', fontsize = 20)
plt. show()
```


add_to_cart_order add_to_cart_

In [41]:

```
df_order_products_prior = pd.merge(df_order_products_train, df_orders, on = 'order_id', how = 'left')
```

In [42]:

```
data = df_order_products_prior.groupby('order_dow')['reordered'].mean()
data
```

Out[42]:

In [43]:

```
plt.figure(figsize = (14,8))
sns.barplot(x = data.index, y = data.values, color = 'blue', alpha = 0.8)

plt.xlabel('Day of week')
plt.ylabel('Reordered')
plt.ylim(0.5,0.7)
plt.title('Reordered - Day of week', fontsize = 20)

plt.show()
```


In [49]:

```
data = df_order_products_prior.groupby('order_hour_of_day')['reordered'].mean()
data.head()
```

Out[49]:

In [56]:

```
plt.figure(figsize = (10,6))
sns.barplot(x = data.index, y = data.values, color = 'brown', alpha = 0.8)
plt.xlabel('Hour of day')
plt.ylabel('Reorder rate')
plt.title('Hour of day - Reorder rate', fontsize = 20)
plt.ylim(0.5, 0.7)
plt.show()
```


In [61]:

```
data = df_order_products_prior.groupby(['order_dow','order_hour_of_day'])['reordered'].mean().reset_
data = data.pivot('order_dow','order_hour_of_day','reordered')
data
```

Out[61]:

order_hour_of_day	0	1	2	3	4	5	6	
order_dow								
0	0.577806	0.587189	0.593341	0.553435	0.599455	0.607201	0.653686	0.677
1	0.622407	0.550877	0.511111	0.664921	0.626016	0.597846	0.664765	0.656
2	0.589645	0.621521	0.596045	0.567485	0.637427	0.629555	0.630402	0.639
3	0.610324	0.507788	0.615730	0.553797	0.469101	0.638132	0.672999	0.624
4	0.530852	0.575233	0.540659	0.593985	0.617761	0.666062	0.683973	0.635
5	0.524818	0.582648	0.518617	0.562005	0.631579	0.610675	0.615789	0.639
6	0.548270	0.613260	0.645455	0.619266	0.607629	0.614907	0.632563	0.657

7 rows × 24 columns

In [65]:

```
fig, axis = plt. subplots(figsize=(12,8))
sns. heatmap(data, cmap = color)
plt. title("Reorder ratio of Day of week Vs Hour of day")
plt. show()
```


In [57]:

 ${\tt df_order_products_prior.head()}$

Out[57]:

	order_id	product_id	add_to_cart_order	reordered	user_id	eval_set	order_number	order_c
0	1	49302	1	1	112108	train	4	
1	1	11109	2	1	112108	train	4	
2	1	10246	3	0	112108	train	4	
3	1	49683	4	0	112108	train	4	
4	1	43633	5	1	112108	train	4	
4								>