Universidade Federal de Minas Gerais Programa de Pós-Graduação em Ciência da Computação Exame de Qualificação 1º Estágio 2º Semestre de 2012

Área: Teoria: Estrutura de Dados, Projeto e Análise de Algoritmos, Técnicas de Programação, Pesquisa e Ordenação

Em 14/08/2012, 10:00 horas

Prova individual sem consulta com duração de 2 horas

Observações:

- 1. A prova deve ser resolvida no próprio caderno de questões.
- 2. As questões desta prova estão nas páginas seguintes, as quais estão numeradas de 1 a 12.
- 3. Faz parte da prova a interpretação das questões. Caso você ache que falta algum detalhe nos enunciados ou nos esclarecimentos, você deverá fazer as suposições que achar necessárias e escrever essas suposições juntamente com as respostas.
- 4. Todas as respostas devem ser justificadas.
- 5. Somente serão corrigidas respostas legíveis.
- 6. Não se esqueça de escrever seu nome abaixo.

Desejamos a você uma boa prova!

A COPEQ

_	-				`	/	questões, das quais você deve fazer 4 (quatro) radas para avaliação:
	1	2	3	4	5	6	(selecione até quatro)
Nome:							
Assinatura:							

Para cada uma das notações $\Theta,\,O,\,\Omega,$ prove se ela é:

- a) Transitiva.
- b) Simétrica.

Considere um vetor com n números inteiros dos quais os m primeiros são iguais 0 e os números restantes são diferentes de 0.

- a) Implemente um algoritmo recursivo cujo pior caso tenha complexidade logarítmica $(O(\log(n)))$ para determinar o valor de m.
- b) Para comprovar a complexidade do seu algoritmo, determine e resolva a sua equação de recorrência.

Compare as estruturas de dados Árvore Binária de Pesquisa e Heap com relação ao custo de realizar as operações abaixo. Em sua análise, considere que a estrutura foi inicialmente preenchida com n elementos fornecidos em ordem aleatória.

- a) Inserir um novo elemento.
- b) Retirar o maior elemento.
- c) Pesquisar por um elemento qualquer.
- d) Imprimir todos os elementos em ordem crescente.

A Amazon quer instalar um centro de distribuição no Brasil e contratou você como consultor. Ela te forneceu um mapa com a malha aérea brasileira (mapa com aeroportos, voos e tempo de voo entre cada cidade) e quer saber qual a cidade onde ela deve instalar o seu centro. Duas métricas diferentes interessam à Amazon: minimizar o tempo médio de entrega e minimizar o tempo máximo de entrega.

- a) Modele o problema utilizando grafos. Discuta duas possíveis estruturas de dados para a representação desse grafo com suas vantagens e desvantagens.
- b) Descreva um algoritmo para encontrar a cidade que minimiza o tempo médio de entrega da Amazon. Qual a complexidade do seu algoritmo? (Considere que a demanda por produtos da Amazon é uniformemente distribuída em todas as cidades do Brasil).
- c) Descreva um algoritmo para encontrar a cidade que minimiza o tempo máximo de entrega da Amazon. Qual a complexidade do seu algoritmo?
- d) Depois de testes iniciais com o algoritmo desenvolvido na letra b), a Amazon descobriu que a Demanda de produtos no Brasil não é uniformemente distribuída. Como você alteraria o seu algoritmo ou modelagem frente a essa nova situação?

O problema de Conjunto Independente (Independent Set) pode ser definido da seguinte forma. Dado um grafo (conectado e não-direcionado) G = (V, E), ache um conjunto $I \subseteq V$ de tamanho máximo (ou de tamanho k, na versão de decisão do problema), tal que o subgrafo induzido por I em G não tenha nenhuma aresta. Sabe-se que o problema de achar um conjunto independente de tamanho k em um grafo arbitrário é NP-completo.

O problema de Cobertura de Vértices ($Vertex\ Cover$) pode ser definido da seguinte forma. Dado um grafo (conectado e não-direcionado) G=(V,E), ache um conjunto $C\subseteq V$ de tamanho mínimo (ou de tamanho k, na versão de decisão do problema), tal que para qualquer aresta $(u,v)\in E$, seja verdadeiro que $u\in C$ ou $v\in C$. Ou seja, estamos interessados no conjunto mínimo de vértices que cubram todas as arestas.

Prove que o problema de Cobertura de Vértices (CV) é NP-completo, através de uma redução do problema de Conjunto Independente (CI).

Considere o seguinte problema: algumas moedas estão espalhadas em um tabuleiro $n \times n$, cada célula contendo no máximo uma moeda. Um robô localizado na célula superior mais à esquerda deve coletar um número máximo de moedas e levá-las à célula inferior mais à direita. Em cada passo, o robô pode se mover para a célula imediatamente abaixo ou imediatamente à direita daquela em que se encontra. Ao atingir uma célula em que exista uma moeda, o robô coleta a mesma.

Construa um algoritmo de complexidade $O(n^2)$ que dada uma configuração de tabuleiro:

- a) determine o número máximo de moedas que o robô pode coletar;
- b) determine o caminho (ou um dos caminhos, caso exista mais de um) que ele deve seguir para coletar tal número de moedas.