MAT 2002 Ordinary Differential Equations
Assignment 7 solution

Question | : Let $A = \begin{pmatrix} -2 & -1 \\ -\alpha & -1 \end{pmatrix}$ $\det(A - \lambda I) = (2 + \lambda)(2 + \lambda) - \alpha$ So the two eigenvalues are $\lambda_1 = -2 - \sqrt{\alpha}$, $\lambda_2 = -2 + \sqrt{\alpha}$ if $\alpha > 0$ $\lambda_1 = -2 - \sqrt{-\alpha}i$, $\lambda_2 = -2 + \sqrt{-\alpha}i$ if $\alpha < 0$ (a) When $\alpha = 3$, $\alpha = -2 - \sqrt{3}i < 0$, $\alpha = -2 + \sqrt{3}i < 0$ So the critical point 0 is a node and asymptotically stable

(b) when d=5, $\lambda_1=-2-58<0$, $\lambda_2=-2+55>0$ So the critical point 0 is a saddle point

and unstable

(c) The transition happens when -2+12=0 $\alpha=4$

So the value of α where the transition happens is $\alpha = 4$

Notice there also exist another transition point at $\alpha = 0$. (from asymptotically stable spiral to asymptotically stable node) (No need to include this result in answer)

Question 2:

(a) Let
$$A = \begin{pmatrix} 1 & 1 \\ -5 & -3 \end{pmatrix}$$

 $\det (A - \lambda I) = 0 \implies (1 - \lambda)(-3 - \lambda) + 5 = 0 \implies (\lambda + 1)^{2} + 1 = 0$

So the eigenvalues of A is $\lambda_1 = -1 - i$ $\lambda_2 = -1 + i$

O is an asymptotically stable and spirial point.

At point (0,1), $\frac{dy}{dt} = (\frac{1}{-3})$, so the trajectory is chockwise

The phase portrait:

OR

(b) Let $A = \begin{pmatrix} 3 & 1 \\ -4 & -1 \end{pmatrix}$

det $(A-\lambda I)=0 \Rightarrow (3-\lambda)(-1-\lambda)+4=0 \Rightarrow (\lambda-1)^2=0 \Rightarrow \lambda_1=\lambda_2=1>0$ The matrix $(A-I)=\begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix}$ has only one eigen vector $\xi_1=\begin{pmatrix} -1 \\ 2 \end{pmatrix}$ From $(A-\lambda I)\eta=\xi_1$, we can find $\eta=\begin{pmatrix} -\frac{1}{2} \end{pmatrix}$

DR

Note: the tendency (clockwise) can also be computed from some particular prints particular points.

Suggestion: use point (0,1), whose derivative is $\frac{dy}{dt} = (\frac{1}{4})$

So it is clockwise.

Question 3:

(a) First, we find the critical point where
$$\frac{dx}{d\tau} = 0$$

$$x^{0} = \begin{pmatrix} 1 & -1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
Let $X = X^{0} + U$, then
$$\frac{dU}{d\tau} = \frac{dX}{d\tau} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} U$$

$$\begin{vmatrix} 1-\lambda & 1 \\ 1 & -1-\lambda \end{vmatrix} = \lambda^{2} \Rightarrow \text{the eigenvalues are } \lambda_{1} = \sqrt{2}, \ \lambda_{2} = -\sqrt{2}$$
So the critical point is saddle and unstable

(b) First, we find the critical point where
$$\frac{dx}{dt} = 0$$

$$x^{0} = \begin{pmatrix} -1 & -1 \\ 2 & -1 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
Let $x = x^{0} + u$, then
$$\frac{du}{dt} = \frac{dx}{d\tau} = \begin{pmatrix} -1 & -1 \\ 2 & -1 \end{pmatrix} u$$

$$\begin{vmatrix} -1 - \lambda & -1 \\ 2 & -1 - \lambda \end{vmatrix} = \begin{pmatrix} (x+1)^{2} + \lambda \end{pmatrix} \Rightarrow \text{ the eigenvalues are } \lambda_{1} = -1 + \sqrt{2}i, \lambda_{2} = -1 - \sqrt{2}i$$
So the critical point is asymptotically stable and spirial point.

(a)
$$\det(A-\lambda I) = \begin{pmatrix} a_{11}-\lambda & a_{12} \\ a_{21} & a_{22}-\lambda \end{pmatrix}$$

$$= \lambda^2 - (a_{11}+a_{22})\lambda + a_{11}a_{22}-a_{12}a_{21}$$
The solution of λ is
$$\lambda_{1,2} = -\frac{(a_{11}+a_{22})\pm\sqrt{(a_{11}+a_{22})^2-4(a_{11}a_{22}-a_{12}a_{21})}}{2}$$
If $\lambda_{1,2}$ are pure imaginary,
$$a_{11}+a_{22}=0 \qquad a_{11}a_{22}-a_{12}a_{21}>0$$
(b) Now $\frac{dy}{dx} = \frac{a_{21}x+a_{22}y}{a_{11}x+a_{12}y}$

$$(a_{21}x+a_{22}y)-(a_{11}x+a_{12}y)$$

$$(a_{21}x+a_{22}y)-(a_{11}x+a_{12}y)$$
We have $\frac{\partial M}{\partial y}=+a_{22}$

$$N=-(a_{11}x+a_{12}y)$$
So this equation is exact
$$\frac{\partial M}{\partial x}=\frac{\partial M}{\partial y}=\frac{\partial M}{\partial y}$$
, There exists α such that
$$\frac{\partial \alpha}{\partial y}=\frac{\partial M}{\partial y}=\frac{\partial M}{\partial y}$$

(c) Since
$$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y} = \frac{\partial N}{\partial x}$$
, There exists Q such that $\frac{\partial Q}{\partial x} = M$ and $\frac{\partial Q}{\partial y} = N$
So $Q = \int M dx + f(y) = \frac{1}{2} a_{21}x^2 + a_{22}xy + f(y)$
 $\frac{\partial Q}{\partial y} = a_{22}x + f(y) = -(a_{11}x + a_{12}y)$
So $f(y) = -\frac{1}{2}a_{11}y^2$

Thus the solution is $az_1x^2 + 2a_{zz}xy - a_{1z}y^2 = k$

Notice the this equation can be transformed into

Notice Now we have $\Delta^2 = 4a_{22} + 4a_{21}a_{12} = 4(-a_n a_{22} + a_n a_{12})$

So The trajectory must be ellipses,

Question 5:

$$\begin{array}{c} (A) \frac{dx}{dt} = 0 \\ \frac{dy}{dx} = 0 \end{array}$$
 $\Rightarrow 3 \text{ solutions} \begin{cases} \hat{x} = 0 & \hat{x} = 0.15 \\ \hat{y} = 0 & \hat{y} = 0 \end{cases}$

Let F = -y, G = -yy - x(x-0.15)(x-2), the Jacobian matrix would be:

$$\vec{J} = \begin{pmatrix} \vec{F}_{x} & \vec{F}_{y} \\ G_{x} & G_{y} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -(3x^{2} - 4.3x + 0.3) & -y \end{pmatrix}$$

So the linear system near
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} : \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -0.3 & -y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

the linear system near
$$\binom{0.15}{0}$$
: $\binom{dx}{dt} = \binom{0}{0.2775} \binom{x}{y}$

the linear system near
$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -3.7 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

the eigenvalue for the linear system near $(0) = \lambda_1 = \frac{-y - y^2 + 1/2}{2} < 0$, $\lambda_2 = \frac{-y + y^2 + 1/2}{2} > 0$

So the critical point (%) is saddle point and unstable

the eigenvalue for the linear system near $\binom{0.15}{0}$: $\lambda = \frac{-y \pm \sqrt{y^2 - 1/1}}{2}$ So the critical point (0.15) is

spiral point and asymptotically stable if O<Y<1.17 node and asymptotically stable if Y > 1.11

node or spiral point and asymptotically stable if y= 1.11

the eigenvalue for the linear system near. (2): $\chi = -\frac{1}{2} \pm \frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{1}{12} = \frac{1}{12} + \frac{1}{12} = \frac$

So the critical point (3) is saddle point and unstable.

Note for Question 5:

We can also consider the case when $\gamma \leq 0$

near (%) = 7, <0 and 2,70 still holds, so it is saddle point and unstable

Near $\binom{0.15}{0}$: When $\gamma=0$, the eigenvalue is $\lambda=\frac{1}{2}$ is $\pm \frac{1}{2}$ in

So it is center and stable

So the type is center or spiral point, while the stability is indeterminate

when $\Rightarrow Y < -\sqrt{|I|}$, it is asymptotically node and unstable when $\sqrt{|I|} = \sqrt{|I|} - \sqrt{|I|} < Y < 0$, it is spiral and unstable when $Y = \sqrt{|I|}$, it is node or spiral point and unstable

here $\binom{2}{0}$: $\lambda_1 = \frac{-y - \sqrt{y^2 + 14.8^2}}{2} < 0$, $\lambda_2 = \frac{-y + \sqrt{y^2 + 14.8^2}}{2} > 0$ So it is saddle point and unstable Question 6

Let
$$V = ax^2 + bxy + cy^2$$

then $\dot{V} = (2ax + by) x' + (bx + 2cy) y'$
 $= (2ax + by) (-x^3 + xy^2) + (bx + 2cy) (-2x^2y - y^3)$
 $= -2ax^4 - bx^3y + 2ax^2y^2 + bxy^3 - 2bx^3y - bxy^3 - 4cx^2y^2 - 2cy^4$
 $= -2ax^4 - 3bx^3y + (2a - 4c)x^2y^2 - 2cy^4$

Let
$$a=1$$
, $c=1$, $b=0$
then $V=X^2+y^2$, positive definite
$$\dot{V}=-2X^4-2X^2y^2-2y^4$$
, negative definite
so the critical point $\binom{0}{0}$ is asymptotically stable.

Let
$$V = ax^2 + bxy + cy^2$$

then $\dot{V} = (2ax + by) x' + (bx + 2cy) y'$
 $= (2ax + by)(x^3 - y^3) + (bx + 2cy) x(2xy^2 + 4x^2y + 2y^3)$
 $= 2ax^4 + bx^3y - 2axy^3 - by^4 + 2bx^2y^2 + 4bx^3y + 2bx^2y + 4cxy^3$
 $+ 2bxy^3 + 4cxy^3 + 8cx^2y^2 + 4cy^4$
 $= 2ax^4 + 5bx^3y + (2b + 8c)x^3y^2 + (2b - 2a + 4c)xy^3 + (4c - b)y^4$
Let $a = x^2 + b = 0$, $c = 1$, $a = 2$

then
$$V = 2x^2 + y^2$$
, positive definite $\dot{V} = 4x^4 + 8x^2y^2 + 4y^4$, positive definite

So the critical point (8) is unstable

$$\begin{pmatrix} \frac{dx}{dt} = 0 \\ \frac{dy}{dt} = 0 \end{pmatrix} \Rightarrow \begin{cases} x(1-x-y) = 0 \\ y(1/2-x-y) = 0 \end{cases} \Rightarrow 3 \text{ solutions } \begin{cases} x=0 \\ y=0 \end{cases} \begin{cases} x=1 \\ y=0 \end{cases}$$

Let F = x(1-x-y), G = y(1.5-x-y), the Jacobian matrix would be:

$$J = \begin{pmatrix} F_x & F_y \\ G_x & G_y \end{pmatrix} = \begin{pmatrix} 1 - 2x - y & -x \\ -y & 15 - x - 2y \end{pmatrix}$$

So the linear system near (%): $\begin{pmatrix} dx/dt \\ dy/dt \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1.5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

the linear system near $\binom{1}{0}$: $\binom{dx/dt}{dy/dt} = \binom{-1}{0} = \binom{-1}{0} \binom{x}{y} - \binom{1}{0}$

the linear system near $\binom{0}{LS} = \binom{dx/dt}{dy/dt} = \binom{-0.5}{-LS} \binom{X}{Y} - \binom{0}{LS}$

2, the eigenvalues for the system near (%): $\lambda_1 = 1 > 0$, $\lambda_2 = 1.5 > 0$ So the critical point (8) is node and unstable

the eigenvalues for the system near (1) = $\lambda_1 = -1<0$, $\lambda_2 = 0.570$

So the critical point (%) is saddle point and unstable

the eigenvalues for the system near (1.5): $\lambda_1 = -0.5 < 0$, $\lambda_2 = -1.5 < 0$

So the critical point (15) is node and asymptotically stable.

3. the place portrait:

4. the solutions approaches the point (15) as $t \rightarrow \infty$ if the initial $y \neq 0$ (point toward) Otherwise (y=0), the solution will converge to the point (1,0). (move on x-axis) 5, the term 1-x-y and 1.5-x-y is the limitation of

food supply. The growth rate is proportional to the presence of species and the available food supply.

When t-740, it species vanished, only y species exists. This is because y species has higher efficiency in utilizing food. (1.5-x-y > 1-x-y) This is competition relationship

So the linear system near
$$\binom{0}{0}$$
: $\binom{dx/dt}{dy/dt} = \binom{1}{0} \binom{x}{y}$

the linear system near $\binom{0}{5}$: $\binom{dx/dt}{dy/dt} = \binom{11/6}{5/4} \binom{0}{-2.5} \binom{x}{y} - \binom{0}{\frac{5}{3}}$

the linear system near $\binom{1}{0}$: $\binom{dx/dt}{dy/dt} = \binom{-1}{0.5} \binom{x}{y} - \binom{1}{0}$

the linear system near $\binom{2}{2}$: $\binom{dx/dt}{dy/dt} = \binom{-2}{0.5} \binom{1}{-3} \binom{x}{y} - \binom{2}{2}$

the linear system near $\binom{2}{2}$: $\binom{dx/dt}{dy/dt} = \binom{-2}{0.5} \binom{1}{-3} \binom{x}{y} - \binom{2}{2}$

2. the eigenvalues for the system near $\binom{0}{0}$: $\lambda_1 = 170$ $\lambda_2 = 2.570$

So the critical point (0) is mode and unstable

the eigenvalues for the system near $\binom{0}{5/3} = \lambda_1 = 1/67$, $\lambda_2 = -2.5 < 0$

So the critical point $\binom{0}{5/3}$ is saddle point and unstable

the eigenvalues for the system near () = $\lambda_1 = -1 < 0$, $\lambda_2 = 2.75 > 0$

So the critical point (6) is saddle point and unstable $\lambda_1 = \frac{-5-13}{2} < 0$, $\lambda_2 = \frac{-5+15}{2} < 0$ the eigenvalues for the system near (2): $\lambda_1 = \frac{-5-13}{2} < 0$

This is coexistence.

So the critical point (?) is node and asymptotically stable

3. Plase Portrait:

4. the solution approaches (2,2) as t->00
if x,y \$0 (point toward)
if x=0,470, then the solution will move on y-axis and
approach (4,5/3)
If x >0, y \$0, then the solution will move on X-axis and
approach (1,0)
5. the term (1-x + a5y) and (2,5-1.5y + 0,25x)
represents the limitation of food supply. The growth rate
is proportional to the presence of species and ovailable fact supply
Whom t->0, X species and y species reachs an equilibrium
Since y species increase the food supply for X, so does x to y.