Package 'ConConPiWiFun'

October 12, 2022

Title Optimisation with Continuous Convex Piecewise (Linear and

Type Package

Quadratic) Functions
Version 0.4.6.1
Date 2013-06-05
Author Robin Girard
Maintainer Robin Girard < robin.girard@mines-paristech.fr>
Description Continuous convex piecewise linear (ccpl) resp. quadratic (ccpq) functions can be implemented with sorted breakpoints and slopes. This includes functions that are ccpl (resp. ccpq) on a convex set (i.e. an interval or a point) and infinite out of the domain. These functions can be very useful for a large class of optimisation problems. Efficient manipulation (such as log(N) insertion) of such data structure is obtained with map standard template library of C++ (that hides balanced trees). This package is a wrapper on such a class based on Rcpp modules.
License GPL (>= 2)
Depends methods, graphics, Rcpp (>= 0.10.3)
LinkingTo Rcpp
RcppModules mod_cplfunction,mod_cpqfunction
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-10-14 16:34:23 UTC
R topics documented: ConConPiWiFun-package cplfunction cplfunctionvec cpqfunction cpqfunction cpqfunction cpqfunctionvec OptimPriceStorage
Index 10

ConConPiWiFun-package This package contains an implementation of continuous convex piecewise (linear) functions (quadratic coming soon)

Description

Continuous convex piecewise linear (ccpl) resp. quadratic (ccpq) functions can be implemented with sorted breakpoints and slopes. This includes functions that are ccpl (resp. ccpq) on a convex set (i.e. an interval or a point) and infinite out of the domain. These functions can be very usefull for a large class of optimisation problems. Efficient manipulation (such as log(N) insertion) of such data structure is obtained with map standard template library of C++ (that hides balanced trees). This package is a wrapper on such a class based on Rcpp modules.

Details

Package: ConConPiWiFun

Type: Package Version: 0.3.0 Date: 2013-02-08 License: GPL

Author(s)

Robin Girard

Maintainer: <robin.girard@mines-paristech.fr>

References

Related Papers are

```
library(ConConPiWiFun)
#### See
#? cplfunction for continuous convex piecewise functions
#? cplfunctionvec for (optimized) list of continuous convex piecewise functions
```

cplfunction 3

cplfunction

This class implements continuous convex piecewise linear functions

Description

This includes functions that are ccpl (resp. ccpq) on a convex set (i.e. an interval or a point) and infinite out of the domain. These functions can be very usefull for a large class of optimisation problems. Efficient manipulation (such as log(N) insertion) of such data structure is obtained with map standard template library of C++ (that hides balanced trees). This package is a wrapper on such a class based on Rcpp modules.

Author(s)

Robin Girard

###Swap function

See Also

to See Also as cplfunction,

```
##
#Construction of a piecewise linear function
##
Slopes=c(-1,2,Inf) # increasing ! convexity is required
Breakpoints=c(-Inf,2,4) # increasing. length is number of slopes +1
FirstNonInfBreakpointVal=3
CCPWLfunc1=new(cplfunction, Slopes, Breakpoints, FirstNonInfBreakpointVal)
plot(CCPWLfunc1) #visualisation method
###Etoile transformation (legendre transform of f)
# Changes f no return value
CCPWLfunc1$Etoile()
plot(CCPWLfunc1) #if f = CCPWLfunc1 CCPWLfunc1 becomes is f^*(y) = \inf_x \{xy - f(x)\}
CCPWLfunc1$Etoile()
plot(CCPWLfunc1)
                  ## (f^*)^* is f!
###Squeeze function
# Changes f, no return value
left=-Inf; right=3
CCPWLfunc1$Squeeze(left,right) # CCPWLfunc1 is now infinite (or not definite) out of [left,right]
# i.e. all breakpoints out of [left,right] removed
```

4 cplfunctionvec

```
# Changes f no return value !
y=2;
CCPWLfunc1$Swap(y)
plot(CCPWLfunc1); #now f = CCPWLfunc1 is replaced by x -> f(y-x)

### Sum function (uses fast insertion) do not affect operands
CCPWLfunc1=new(cplfunction,c(-1,2,Inf),c(-Inf,2,4),0)
CCPWLfunc2=new(cplfunction,c(-1,2,Inf),c(-Inf,1,3),0)
CCPWLfunc1plus2=Suml(CCPWLfunc1,CCPWLfunc2)
CCPWLfunc1plus2

par(mfrow=c(1,3))
plot(CCPWLfunc2,col='red');
plot(CCPWLfunc1,col='blue');
plot(CCPWLfunc1plus2);

rm(list=ls())
gc()
```

cplfunctionvec

This class implements "optimized list" of continuous convex piecewise linear functions

Description

This is a wrapper to stl vector of convex piecewise linear functions. Allows to loop efficiently on such list.

Author(s)

Robin Girard

See Also

to See Also as cplfunction, cpqfunctionvec

```
####
# construction of a vector of
# continuous convex piecewise linear functions
CCPWLfuncList=new(cplfunctionvec)
```

cpqfunction 5

```
CCPWLfuncList$push_back(new(cplfunction,c(-1,1),c(-Inf,0),0))
CCPWLfuncListpush_back(new(cplfunction, c(-1,1), c(-Inf,0),0))
CCPWLfuncList=new(cplfunctionvec)
n=1000; Y=rnorm(n); S1=array(-1,n); S2=array(1,n); B0=array(-Inf,n); B1=rnorm(n);
for (i in 1:n){
 CCPWLfuncList$push_back(new(cplfunction,c(S1[i],S2[i]),c(B0[i],B1[i]),0))
CCPWLfuncList$size() ## gives the size
## The same but faster
CCPWLfuncList=new(cplfunctionvec)
CCPWLfuncList$SerialPush_2Breaks_Functions(S1,S2,B0,B1);
#### method OptimMargInt solves
#
           min_x sum_i=1^n C_i(x_i)
                    Pmoins_i \le x_i \le Pplus_i \quad i=1,...,n
# Cmoins_i<= sum_j=1^i x_j <=Cplus_i i=1,...,n
Pmoins=array(-1,n);Pplus=array(1,n);Cmoins=array(0,n);Cplus=array(5,n);
res=CCPWLfuncList$OptimMargInt(Pmoins,Pplus,Cmoins,Cplus)
par(mfrow=c(1,2))
plot(Y,type='l',ylim=range(res$xEtoile))
lines(y=Pmoins,x=1:n,col='blue'); lines(y=Pplus,x=1:n,col='blue');
lines(y=res$xEtoile,x=1:n,col='red')
text(x=800,y=3,paste("Optimum=",signif(sum(abs(res$xEtoile-Y)),digits=6)))
plot(Y, type='l', ylim=c(min(Y), max(diffinv(res$xEtoile)[1:n+1])))
lines(y=Cmoins,x=1:n,col='blue'); lines(y=Cplus,x=1:n,col='blue');
lines(y=diffinv(res$xEtoile)[1:n+1],x=1:n,col='red')
rm(list=ls())
gc()
```

cpqfunction

This class implements continuous convex piecewise quadratic functions

Description

This includes functions that are ccpq on a convex set (i.e. an interval or a point) and infinite out of the domain. These functions can be very usefull for a large class of optimisation problems. Efficient manipulation (such as log(N) insertion) of such data structure is obtained with map standard template library of C++ (that hides balanced trees). This package is a wrapper on such a class based on Rcpp modules.

Author(s)

Robin Girard

6 cpqfunction

See Also

to See Also as cplfunction,

```
#Construction of a piecewise quadratic function
Slopes1=c(-1,2)
Slopes0=c(-2,0)\# increasing ! convexity is required
Breakpoints=c(-Inf,2,4) # increasing. length is number of slopes +1
FirstNonInfBreakpointVal=3
CCPWLfunc1=new(cpqfunction,Slopes0,Slopes1,Breakpoints,FirstNonInfBreakpointVal)
CCPWLfunc1$get_BreakPoints_() ## return Breaks AND Slopes
plot(CCPWLfunc1)
###Etoile transformation (legendre transform of f)
# Changes f no return value
CCPWLfunc1$Etoile()
CCPWLfunc1$get_BreakPoints_()
CCPWLfunc1$Etoile()
CCPWLfunc1$get_BreakPoints_() ## (f^*)^* is f!
###Squeeze function
# Changes f, no return value
left=-1; right=4
CCPWLfunc1$Squeeze(left,right) # CCPWLfunc1 is now infinite (or not definite) out of [left,right]
# i.e. all breakpoints out of [left,right] removed
CCPWLfunc1$get_BreakPoints_()
###Swap function
# Changes f no return value!
y=2;
CCPWLfunc1$Swap(y)
CCPWLfunc1\$get_BreakPoints_() #now f = CCPWLfunc1 is replaced by x -> f(y-x)
### Sum function (uses fast insertion) do not affect operands
CCPWLfunc1=new(cpqfunction,Slopes0,Slopes1,Breakpoints,FirstNonInfBreakpointVal)
CCPWLfunc2=new(cpqfunction,Slopes0,Slopes1+1,Breakpoints,FirstNonInfBreakpointVal)
CCPWLfunc1plus2=Sumq(CCPWLfunc1,CCPWLfunc2)
CCPWLfunc1plus2$get_BreakPoints_()
rm(list=ls())
gc()
```

cpqfunctionvec 7

cpqfunctionvec	This class implements "optimized list" of continuous convex piecewise
	quadratic functions

Description

This is a wrapper to stl vector of convex piecewise quadratic functions. Allows to loop efficiently on such list.

Author(s)

Robin Girard

See Also

to See Also as cpqfunction, cplfunctionvec

```
CCPWLfuncList=new(cpqfunctionvec)
CCPWLfuncListpush_back(new(cpqfunction, c(0), c(1), c(-2, 2), 0))
CCPWLfuncListpush_back(new(cpqfunction, c(0), c(1), c(-2, 2), 0))
CCPWLfuncList=new(cpqfunctionvec)
n=1000; Y=rnorm(n); S0=array(0,n)+Y;S1=array(1,n)+Y; B0=array(-Inf,n); B1=array(Inf,n);
for (i in 1:n){
  CCPWLfuncList$push_back(new(cpqfunction,S0[i],S1[i],c(B0[i],B1[i]),0))
CCPWLfuncList$size() ## gives the size
## The same but faster
CCPWLfuncList=new(cpqfunctionvec)
CCPWLfuncList$SerialPush_0Breaks_Functions(S0,S1);
#### method OptimMargInt solves
#
          min_x sum_i=1^n C_i(x_i)
                    Pmoins_i<= x_i <= Pplus_i i=1,...,n
# Cmoins_i<= sum_j=1^i x_j <= Cplus_i i=1,...,n
Pmoins=array(-1,n);Pplus=array(1,n);Cmoins=array(0,n);Cplus=array(5,n);
res=CCPWLfuncList$OptimMargInt(Pmoins,Pplus,Cmoins,Cplus)
par(mfrow=c(1,2))
plot(Y, type='l')
lines(y=Pmoins,x=1:n,col='blue'); lines(y=Pplus,x=1:n,col='blue');
lines(y=res$xEtoile,x=1:n,col='red')
text(x=800,y=3,paste("Optimum=",signif(sum(abs(res$xEtoile-Y)),digits=6)))
plot(Y, type='l', ylim=c(min(Y), max(diffinv(res$xEtoile)[1:n+1])))
lines(y=Cmoins,x=1:n,col='blue'); lines(y=Cplus,x=1:n,col='blue');
lines(y=diffinv(res$xEtoile)[1:n+1],x=1:n,col='red')
```

8 OptimPriceStorage

```
rm(list=ls())
gc()
```

OptimPriceStorage	Optimisation of storage operation with market prices taking into
	acount storage efficiency and network taxes.

Description

Optimisation of storage operation with market prices taking into acount storage efficiency and network taxes.

Usage

Arguments

Prices	A vector of prices
Pplus	A value for the upper power constraint or a vector of values with the same size as Prices
Pmoins	A value for the lower power constraint or a vector of values with the same size as Prices
Cplus	A value for the upper capacity constraint or a vector of values with the same size as Prices
Cmoins	A value for the lower capacity constraint or a vector of values with the same size as Prices
efficiencyS	storage efficiency when storing electricity
efficiencyP	storage efficiency when producing electricity
networkTax	networkTax

Details

```
function OptimPriceStorage solves # min_x sum_i=1^n Y_i*efficiencyP x_i*(x_i<0)+(Y_i*efficiencyS +networkTax)*x_i*(x_i>0) # Pmoins_i<= x_i <=Pplus_i i=1,...,n # Cmoins_i<= sum_j=1^i x_j <=Cplus_i i=1,...,n when efficiency=1 and networkTax=0 this gives # min_x sum_i=1^n Y_i x_i # Pmoins_i<= x_i <=Pplus_i i=1,...,n # Cmoins_i<= sum_j=1^i x_j <=Cplus_i i=1,...,n
```

OptimPriceStorage 9

Value

A list with

Operation the optimal operation for each time step

Revenue the revenue for each time step

Note

TODO

Author(s)

Robin Girard

References

TODO

See Also

to See Also cplfunction (method OptimMargInt that is more general)

```
n=8760

Prices=runif(n,1,100) ##uniform random prices in [1;100] in Euro/MWh

Pmax=1; Pmin=-1; Cmax=5; ## 1MW maximum during 5 hours.

res=OptimPriceStorage(Prices,Pmax,Pmin,Cmax) # solving the optimization problem

sum(res$Revenue)## Revenue

res=OptimPriceStorage(Prices,Pmax,Pmin,Cmax,efficiencyS=0.8) # solving the optimization problem

sum(res$Revenue)## Revenue
```

Index

```
* Optimisation, Dynamic programming
                                                show,Rcpp_cplfunctionvec-method
    ConConPiWiFun-package, 2
                                                        (cplfunctionvec), 4
                                                show,Rcpp_cpqfunction-method
ComputeMarketPrices
                                                        (cpqfunction), 5
        (OptimPriceStorage), 8
                                                show,Rcpp_cpqfunctionvec-method
ConConPiWiFun (ConConPiWiFun-package), 2
                                                        (cpqfunctionvec), 7
ConConPiWiFun-package, 2
                                                show-methods (cpqfunction), 5
cplfunction, 3, 3, 4, 6, 9
                                                Suml (cplfunction), 3
cplfunctionvec, 4, 7
                                                Sumq (cpqfunction), 5
cpqfunction, 5, 7
cpqfunctionvec, 4, 7
InfConvl (cplfunction), 3
InfConvq (cpqfunction), 5
OptimPriceMarket_1 (OptimPriceStorage),
OptimPriceMarket_q (OptimPriceStorage),
OptimPriceStorage, 8
OptimPriceStorage_(OptimPriceStorage),
plot, ANY-method (cplfunction), 3
plot, Rcpp_cplfunction-method
        (cplfunction), 3
plot-methods (cplfunction), 3
Rcpp_cplfunction-class (cplfunction), 3
Rcpp_cplfunctionvec-class
        (cplfunctionvec), 4
Rcpp_cpqfunction-class (cpqfunction), 5
Rcpp_cpqfunctionvec-class
        (cpqfunctionvec), 7
SerialOptimPriceStorage
        (cplfunctionvec), 4
show, ANY-method (cpqfunction), 5
show, Rcpp_cplfunction-method
        (cplfunction), 3
```