Steering system operating method for motor vehicles

Patent number:

DE19751397

Publication date:

1998-09-24

Inventor:

KRAEMER WOLFGANG DR (DE)

Applicant:

BOSCH GMBH ROBERT (DE)

Classification:

- international:

B62D5/00; B62D5/04; B62D6/00

- european:

B62D6/00

Application number: DE19971051397 19971120

Priority number(s): DE19971051397 19971120; DE19971012167 19970322

Abstract of DE19751397

The method is for an override system with actuating drive and override transmission. The transmission superimposes a first movement, and a second movement initiated by the drive due to energy supply. Standstill of the actuating drive is recognized, and as a result, the energy supply is reduced to zero, interrupted, or switched off. The time variation in the movement initiated by the drive, is measured and recognized dependant upon the variation. Standstill is esp. recognized when the variation has reached a set value, esp. zero.

Data supplied from the esp@cenet database - Worldwide

[入 JP11005553 (A)

THIS PAGE BLANK (USPTO)

19 BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift _® DE 197 51 397 A 1

(5) Int. Cl.⁶: **B** 62 **D** 5/00 B 62 D 5/04 B 62 D 6/00

② Aktenzeichen: 197 51 397.2 ② Anmeldetag: 20.11.97

(43) Offenlegungstag: 24. 9.98

(6) Innere Priorität:

197 12 167.5

22.03.97

(7) Anmelder:

Robert Bosch GmbH, 70469 Stuttgart, DE

② Erfinder:

Kraemer, Wolfgang, Dr., 70191 Stuttgart, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Verfahren und Vorrichtung zum Betrieb eines Überlagerungs- bzw. Lenksystems, insbesondere für ein Kraftfahrzeug
- Die Erfindung geht aus von einem Überlagerungssystem mit einem Stellantrieb und einem Überlagerungsgetriebe, wobei durch das Überlagerungsgetriebe eine erste Bewegung und eine durch den Stellantrieb durch eine Energiezufuhr zu dem Stellantrieb initiierte zweite Bewegung überlagert werden. Die von dem Stellantrieb initiierte Bewegung wird über einen selbsthemmenden Mechanismus dem Überlagerungsgetriebe zugeführt. Der Kern der Erfindung besteht darin, daß ein Stillstand des Stell-antriebs erkannt wird und in Reaktion auf einen erkannten Stillstand die Energiezufuhr zu dem Stellantrieb zumindest reduziert wird. Besonders vorteilhaft ist die Realisierung der Erfindung bei einem Überlagerungslenksystem.

BUNDESDRUCKEREI 07.98 802 039/738/1

Ţ

Beschreibung

Stand der Technik

Die Erfindung geht aus von einem Verfahren bzw. einer Vorrichtung zum Betrieb eines Überlagerungs- bzw. Lenksystems, insbesondere für ein Kraftfahrzeug, mit den Merkmalen der Oberbegriffe der unabhängigen Ansprüche.

Ein solches Lenksystem ist aus der DE-OS 40 31 316 (entspricht der US 5,205,371) bekannt und soll, soweit es 10 zum Verständnis der vorliegenden Erfindung relevant ist, anhand der Fig. 1 und 2 erläutert werden. Bei einem solchen Lenksystem werden die vom Fahrer durch das Lenkrad 11 bzw. 21 aufgebrachten Lenkbewegungen, der durch den Sensor 28 erfaßte Lenkradwinkel δ_L , in dem Überlagerungsgetriebe 12 bzw. 22 mit den Bewegungen, dem Motorwinkel $\delta_{\rm M}$, des Stellantriebes 13 bzw. 23 überlagert. Die so entstandene Gesamtbewegung δ_L' wird über das Lenkgetriebe 14 bzw. das Lenkgestänge 16 an die lenkbar ausgelegten Räder 15a und 15b zur Einstellung des Lenkwinkels δ_V weitergeleitet. Hierbei kann der Stellantrieb 13 bzw. 23 als Elektromotor ausgelegt sein, wobei der Antrieb von dem Elektromotor über ein selbsthemmendes Getriebe erfolgt, so daß der Motor nicht durch in der Lenkwelle wirkende Drehmomente verdreht werden kann. Ein solches Lenksystem kann 25 als Servolenksystem verwendet werden, indem die Lenkung durch die Übersetzung in des Überlagerungsgetriebes 12 bzw. 22 sehr indirekt gemacht werden kann und damit geringe Lenkradmomente M_L erreicht werden können. Dadurch bedingte, sehr große Lenkradwinkel δ_L werden vermieden, indem geeignete Motorwinkel δ_M überlagert werden, so daß entsprechend dem Zusammenhang

$$\delta_{L}' = \delta_{L}/i_{ii} + \delta_{M}$$

mit Lenkradwinkeln üblicher Größe erforderliche Ausgangswinkel δ_L' eingestellt werden können. Der zur Lenkunterstützung erforderliche Motorwinkel δ_M bzw. sein Sollwert wird aus dem Lenkradwinkel δ_L bestimmt. Darüber hinaus kann der Motorwinkel δ_M zur Beeinflussung des dynamischen Verhaltens des Fahrzeugs zusätzlich oder ausschließlich auch abhängig von Signalen Sm gewählt werden, wobei diese Signale Sm die durch die Sensoren 26 erfaßten Fahrzeugbewegungen repräsentieren. Dann kann das Übersetzungsverhältnis auch $i_{\bar{u}}=1$ sein.

Bei einem oben beschriebenen Lenksystem muß der Zusatzlenkwinkel δ_M im allgemeinen über längere Zeiten konstante Werte, insbesondere Null, annehmen. Wird der konstante Wert von dem Motor z. B. aufgrund von Reibung nicht exakt eingestellt, fließt ein konstanter Dauerstrom, der nachteilhafterweise zur Erwärmung des Motors führt und unnötig elektrische Energie verbraucht. Dieses anhand eines Lenksystems dargestellte Problem kann bei allen Stellern und Antrieben mit Selbsthemmung auftreten, bei denen die Ausgangsgröße (Winkel, Position) für längere Zeiten konstante Werte annehmen soll.

Die Aufgabe der vorliegenden Erfindung besteht darin, diesen Nachteil auszuräumen.

Diese Aufgabe wird durch die Merkmalskombinationen der unabhängigen Ansprüche gelöst.

Vorteile der Erfindung

Wie anhand eines Lenksystems erwähnt geht die Erfindung aus von einem Überlagerungssystems mit einem Stell- 65 antrieb und einem Überlagerungsgetriebe, wobei durch das Überlagerungsgetriebe eine erste Bewegung und eine durch den Stellantrieb durch eine Energiezufuhr zu dem Stellan-

trieb initiierte zweite Bewegung überlagert werden. Die von dem Stellantrieb initiierte Bewegung wird über einen selbsthemmenden Mechanismus dem Überlagerungsgetriebe zugeführt. Der Kern der Erfindung besteht darin, daß ein Stillstand des Stellantriebs erkannt wird und in Reaktion auf einen erkannten Stillstand die Energiezufuhr zu dem Stellantrieb zumindest reduziert wird.

Eine spezielle Realisierung des allgemeinen erfindungsgemäßen Gedankens geht aus von einem Lenksystem für ein Kraftfahrzeug mit wenigstens einem lenkbaren Rad, einem Stellantrieb und einem Überlagerungsgetriebe. Durch das Überlagerungsgetriebe wird die durch den Fahrer des Fahrzeugs initiierte Lenkbewegung und die durch den Stellantrieb initiierte Bewegung zur Erzeugung der Lenkbewegung des lenkbaren Rades über einen selbsthemmenden Mechanismus überlagert. Dem Stellantrieb wird zur Initiierung der Bewegung Energie zugeführt. Der Kern der Erfindung besteht darin, daß ein Stillstand des Stellantriebs erkannt wird und in Reaktion auf einen erkannten Stillstand die Energiezufuhr zu dem Stellantriebs zumindest reduziert wird. Zur Vermeidung der obenerwähnten Erwärmung des Stellantriebs und zur Verhinderung eines unnötig hohen Energieverbrauchs des Stellantriebs wird also erfindungsgemäß die Energiezufuhr des Stellantrieb zumindest reduziert, insbesondere unterbrochen oder abgeschaltet, wenn der Stellantrieb stillsteht.

Die Energiezufuhr zu dem Stellantrieb kann dabei derart reduziert werden, daß der dem Stellantrieb zugeführte Strom reduziert wird, wobei insbesondere an eine Reduzierung auf den Wert Null, das heißt an eine Abschaltung des Stellantriebs gedacht ist.

In einer vorteilhaften Ausgestaltung ist vorgesehen, daß die zeitliche Änderung der durch den Stellantrieb initiierten Bewegung erfaßt wird und der Stillstand des Stellantriebs abhängig von der erfaßten zeitliche Änderung erkannt wird. Hierbei kann der Stillstand des Stellantriebs dann erkannt werden, wenn die zeitliche Änderung einen bestimmten Wert, insbesondere den Wert Null, erreicht.

Weiterhin kann vorgesehen sein, daß die Energiezufuhr zu dem Stellantrieb dann zumindest reduziert wird, wenn der Stillstand des Stellantriebs eine wählbare Zeitdauer lang erkannt worden ist. Dies hat den Vorteil, daß eine Reduzierung der Energiezufuhr bzw. Abschaltung des Stellantriebs nur dann geschieht, wenn nicht zu erwarten ist, daß durch eine weitere Energiezufuhr der gewünschte Winkel noch genauer eingestellt wird.

Besonders vorteilhaft ist es, daß die durch den Stellantrieb initiierte Bewegung erfaßt wird und ein Sollwert für die durch den Stellantrieb initiierte Bewegung sowie die Differenz zwischen dem Sollwert und der Bewegung bestimmt wird. Zum Zeitpunkt der erfindungsgemäßen Reduzierung wird dann die so bestimmte Differenz gespeichert. Hierbei ist insbesondere vorgesehen, daß die reduzierte Energiezufuhr dann wieder erhöht wird, wenn die aktuell bestimmte Differenz die gespeicherte Differenz um ein vorgebbares Maß über- oder unterschreitet.

Weiterhin ist es vorteilhaft, die gespeicherte Differenz zu einer Fehlererkennung heranzuziehen. Insbesondere ist dabei vorgeschen, daß die gespeicherte Differenz mit wenigstens einer vorgebbaren Schwelle verglichen wird und abhängig von dem Vergleichergebnis ein Fehlersignal abgegeben wird. Diese Ausgestaltung hat den Hintergrund, daß dann, wenn der Stellantrieb längere Zeit eine größere Regelabweichung aufweist, dies auf einen Fehler wegen einer erhöhten Reibung oder Klemmen im Stellantrieb oder Getriebe hinweisen kann. In diesem Fall kann auch ein Fehler in dem zum Stellantrieb gehörenden Stromregler, der Leistungselektronik oder der Energieversorgung vorliegen.

4

Solche Anomalien kann die Stillstandsabschaltung an eine Sicherheitsüberwachung melden, die dann geeignete Testoder Notmaßnahmen einleitet.

Weiterhin kann vorgesehen sein, daß die durch den Stellantrieb initiierte Bewegung während der Reduzierung der Energiezufuhr erfaßt und zu einer Fehlererkennung herangezogen wird. Insbesondere ist dabei vorgesehen, daß ein Fehlersignal dann erzeugt wird, wenn die während der Reduzierung der Energiezufuhr erfaßte initiierte Bewegung sich um ein vorgebbares Maß ändert. Dies hat den Hintergrund, daß ein sich ändernder Meßwert des Zusatzlenkwinkels während der Abschaltung auf einen Fehler des entsprechenden Sensors oder einen schwerwiegenden Fehler im Motor oder Getriebe wie z. B. Versagen der Selbsthemmung hinweist. Solche Anomalien kann die Stillstandsabschaltung an eine Sicherheitsüberwachung melden, die dann geeignete Notmaßnahmen einleitet.

Neben dem erfindungsgemäßen Verfahren betrifft die Erfindung auch die entsprechenden Vorrichtungen.

Weitere vorteilhafte Ausgestaltungen sind den Unteran- 20 sprüchen zu entnehmen.

Zeichnungen

Die Fig. 1 und 2 zeigen schematisch das Lenksystem 25 nach dem Stand der Technik, von dem die Erfindung im Ausführungsbeispiel ausgeht. Die Fig. 3 stellt die Steuerungs- bzw. Regelungsstrategie eines solchen Lenksystems mit dem in der Fig. 4 abgebildeten Lageregler dar. Die Fig. 5 zeigt den erfindungsgemäßen Lageregler mit den in der 30 Fig. 6 zu sehenden Signalverläufen.

Ausführungsbeispiel

Im folgenden soll die Erfindung anhand eines Ausfüh- 35 rungsbeispiels dargestellt werden. Dabei wird beispielhaft von einer eingangs erwähnten Überlagerungslenkung ausgegangen.

Die Fig. 1 bzw. Fig. 2 zeigt mit den Bezugszeichen 11 bzw. 21 ein von dem Fahrer des Fahrzeugs betätigbares Lenkrad. Durch die Betätigung des Lenkrades 11 bzw. 21 wird dem Überlagerungsgetriebe 12 bzw. 22 über die Verbindung 101 der Lenkradwinkel δ_L zugeführt. Gleichzeitig wird dem Überlagerungsgetriebe 12 bzw. 22 über die Verbindung 104 der Motorwinkel δ_M des Stellantriebes 13 bzw. 23 zugeleitet. Hierbei kann der Stellantrieb 13 bzw. 23 als Elektromotor ausgelegt sein, wobei der Antrieb von dem Elektromotor über ein selbsthemmendes Getriebe erfolgt, so daß der Motor nicht durch in der Lenkwelle wirkende Drehmomente verdreht werden kann.

Ausgangsseitig des Überlagerungsgetriebes 12 bzw. 22 wird die Gesamtbewegung δ_L ' über die Verbindung 102 beziehungsweise 103 dem Lenkgetriebe 14 bzw. 24 zugeführt, das wiederum über das Lenkgestänge 16 entsprechend dem Gesamtwinkel δ_L ' die lenkbaren Räder 15a und 15b mit dem 55 Lenkwinkel δ_V beaufschlagt. In der Fig. 2 sind weiterhin Sensoren 28 und 26 zu sehen, wobei der Sensor 28 den Lenkradwinkel δ_L detektiert und dem Steuergerät 27 zuführt, während mit dem Bezugszeichen 26 Sensoren gekennzeichnet sind, die die Bewegungen des Fahrzeugs 25 (bspw. Gierbewegungen, Querbeschleunigung, Fahrzeuggeschwindigkeit usw.) sensieren und die entsprechenden Signale Sm dem Steuergerät 27 zuführen. Das Steuergerät 27 ermittelt, abhängig vom erfaßten Lenkradwinkel δ_L und ggf. abhängig von den Fahrzeugbewegungen eine Stellgröße u 65 (Ausgangsgröße des Steuergeräts 27) zur Ansteuerung des Stellantriebs 13 bzw. 23.

Die Fig. 3 zeigt anhand eines Blockschaltbildes die Funk-

tionsweise des Lenksystems im Fahrbetrieb des Fahrzeugs. Der durch den Sensor 28 erfaßte Lenkradwinkel δ_L wird hierzu der Lenkhilfesteuerung 41 zugeführt. Abhängig von dem Lenkradwinkel δ_L und ggf. abhängig von der erfaßten Fahrzeuglängsgeschwindigkeit V_x ermittelt die Lenkhilfesteuerung 41 einen Lenkanteil δ_{MLH} . Daneben ermittelt der Fahrzeugregler 44 abhängig von dem durch die Sensoren 26 erfaßten Fahrzeugbewegungen (Fahrzeuglängsgeschwindigkeit V_x, Gierrate ω, Querbeschleunigung usw.) einen weiteren, dynamischen Lenkanteil δ_{Korr} Der Lenkanteil δ_{MLH}, der die Lenkhilfefunktion berücksichtigt, und der Lenkanteil δ_{Korr} , durch den die Fahrzeugdynamik des Fahrzeugs optimiert wird, werden im Punkt 45 überlagert zu einem Soll-Motorwinkel $\delta_{M,soll}$ der dem Lageregler 42 eingangsseitig zugeführt wird. Weiterhin wird dem Lageregler 42 der aktuelle Motorwinkel $\delta_{M.ist}$ des Motors 13 bzw. 23 zugeführt. Abhängig von einem Soll-Ist Vergleich ermittelt der unterlagerte Lageregler 42 den Soll-Motorstrom Lsoll-Aufgrund der Abweichung des Soll-Motorstroms Isoll und des am Fahrzeugmotor 13 bzw. 23 erfaßten Motor Ist-Strom Iist (Subtraktion 46) ermittelt der Stromregler 43 ein entsprechendes Ansteuersignal u für den Stellmotor 13 bzw. 23, um den gewünschten Motorwinkel $\delta_{M,soll}$ zu realisieren.

Als Lageregler wird ein Regler 42a mit einem Proportional- und einen Differentialanteil (PD-Regler) nach Fig. 4 verwendet. Diesem PD-Regler wird der Istwert für den Motorwinkel $\delta_{M,ist}$ sowie der entsprechende Sollwert $\delta_{M,soll}$ zugeführt. Von diesen beiden Eingangsgrößen $\delta_{M,ist}$ und $\delta_{M,soll}$ werden in den Differenziereinheiten 50 und 54 diezeitlichen Ableitungen gebildet und in den Verstärkungsstufen 52 und 53 mit unterschiedlichen Verstärkungsfaktoren K_{Ds} und K_{Di} gewichtet, wobei insbesondere $K_{Ds} = 0$ sein kann. Im Punkt 55 wird dann die Differenz zwischen diesen gewichteten Ableitungen ermittelt und der gewichteten (Verstärkungsstufe 51, Verstärkungsfaktor K_p) Regelabweichung ($\delta_{M,soll}$ – $\delta_{M,ist}$) überlagert zum Sollmotorstrom I_{soll}

Die Verwendung eines solchen Reglers ohne I-Anteil hat den Vorteil, daß die recht hohe Reibung des selbsthemmenden Getriebes nicht zu Grenzzyklen führen kann. Dafür ergeben sich bleibende Regelabweichungen, insbesondere bleibt bei konstantem $\delta_{M,soll}$ der Motor 13, 23 aufgrund der Reibung stehen, bevor der Istwert $\delta_{M,ist}$ den Sollwert $\delta_{M,soll}$ erreicht. Damit wird über den P-Kanal des Lagereglers (Verstärkung K_p) ein konstanter Motorstrom eingestellt, der so klein ist, daß die Reibung nicht überwunden wird und der Motor sich nicht weiter dreht. Dieser Strom erwärmt nur den Motor.

Die Fig. 5 zeigt den Lageregler 42a mit der erfindungsgemäßen Erweiterung um eine Stillstandsabschaltung. Auch hierbei handelt es sich um den schon beschriebenen PD-Regler mit den ebenfalls beschriebenen Differenziereinheiten 50 und 54 und Verstärkungsstufen 51, 52 und 53. Neu ist der Schalter 56, dessen Schaltzustand durch das Schaltsignals S geändert wird und durch dessen Öffnen der Motorstrom bzw. über den Stromregler 43 die Motorspannung u auf den Wert Null herabgesetzt wird und der Motor 13, 23 abgeschaltet wird.

Der in der Fig. 5 mit 13, 23 bezeichnete Block kann selbstverständlich auch der in der Fig. 4 beziehungsweise in der Fig. 3 gezeigte Stromregler 43 sein. In diesem Fall wird dem Stromregler 43 der Sollstrom I_{soll} zugeführt.

Das Schaltsignal S wird dabei in der Stillstandsabschaltung 57 gebildet.

Die Eingangsgrößen der Stillstandsabschaltung 57 sind die Regelabweichung $e = \delta_{M,soll} - \delta_{M,ist}$ und die Änderung des Motorwinkels $\delta_{M,ist}$ (= δ_{M}) bzw. die Motorgeschwindigkeit

30

35

55

Die Funktionsweise der Stillstandsabschaltung zeigt Fig. 6 beispielhaft anhand von Zeitverläufen der wesentlichen Größen. Es wird angenommen, daß der Motor von einem positiven Winkel δ_M (mit Strichen markierter Verlauf) auf den Winkel Null zurückfahren soll, d. h. am Anfang des betrachteten Zeitabschnitts ist

$$\begin{split} &\delta_{\text{M,soll}} > 0\,, \\ &\delta_{\text{M}} > 0 \text{ und} \\ &\frac{d\delta_{\text{M,soll}}}{dt} < 0\,. \end{split}$$

Der Motor 13, 23 folgt dem Sollwert, d. h.

$$\frac{d\delta_{\underline{M}}}{dt} < 0,$$

wobei sich ein gewisser Schleppfehler ergibt. Infolge des 25 Schleppfehlers und der Reibung bleibt der Motor zum Zeitpunkt t_0 stehen, bevor $\delta_M = \delta_{M,soll} = 0$ ist. Das heißt, daß ab dem Zeitpunkt t_0

$$\frac{d\delta_{M}}{dt} = 0$$

ist. Die noch bestehende Regelabweichung e (mit Strichen und Punkten markierter Verlauf) führt zu dem oben erwähnten konstanten Motorstrom I_{soll} für $t > t_0$.

Die Stillstandsabschaltung 57 erkennt nun zum Zeitpunkt t_0 aus der Änderung von δ_M bzw. der Geschwindigkeit

$$\frac{d\delta_{M}}{dt}$$

daß der Motor 13, 23 steht. Um Beeinträchtigungen von Bewegungen mit schnellen Nulldurchgängen der Sollgeschwindigkeit zu vermeiden, wartet die Stillstandsabschaltung 57 nach dem Erkennen des Motorstillstands noch eine 45 gewisse Zeit Δt . Wenn der Motor während dieser ganzen Zeit steht, wird er zum Zeitpunkt $t_1 = t_0 + \Delta t$ abgeschaltet, d. h. es wird $I_{soll} = 0$ gesetzt bzw. der in Fig. 5 enthaltene Schalter 56 umgeschaltet.

Für das Wiedereinschalten des Motors 13, 23 wird aus der 50 Regelabweichung $e(t_1)$ zum Zeitpunkt t_1 des Abschaltens eine Schwelle

$$e_0 = |e(t_1)| + \varepsilon$$

gebildet mit dem positiven konstanten Wert ϵ . Wenn die Regelabweichung e das durch \pm e $_0$ festgelegte Band überschreitet, d. h. wenn le(t)l > e $_0$ ist, so wird der Motor durch Ansteuerung S des Schalters 56 wieder eingeschaltet, d. h. der vom PD-Regler bestimmte Stromsollwert I $_{soll}$ durchgeschaltet. Bei einer ordnungsgemäßen Systemfunktion kann dies nur dadurch geschehen, daß sich der Sollwert $\delta_{M,soll}$ ändert. Im betrachteten Beispiel wird angenommen, daß $\delta_{M,soll}$ ab dem Zeitpunkt t_2 wieder ansteigt und die Reglabweichung e zum Zeitpunkt t_3 das Band \pm e $_0$ überschreitet, so 65 daß der Motor zur Zeit t_3 wieder eingeschaltet beziehungsweise bestromt wird und anläuft.

Ein wesentlicher Vorteil dieser Stillstandsabschaltung be-

steht darin, daß keine Kenntnis der im System vorhandenen Reibkräfte und Reibverhältnisse erforderlich ist. Deshalb schützt die Stillstandsabschaltung Motor, Leistungselektronik und Bordnetz vor hohen Langzeitbelastungen auch im Fehlerfall, wenn der Motor oder das Getriebe klemmen.

Zusätzlich kann die beschriebene Stillstandsüberwachung 57 auch zur Fehlerdetektion verwendet werden. Nimmt die Schwelle e₀ ungewöhnlich große Werte an, so ist dies ein Zeichen für eine erhöhte Reibung oder ein Klemmen im Motor oder Getriebe oder für Fehler im Stromregler, der Leistungselektronik oder der Energieversorgung. In der Stillstandsüberwachung 57 kann also vorgesehen sein, daß der Wert e₀ mit einer weiteren Schwelle verglichen wird. Überschreitet e₀ die Schwelle, so wird über die Fehlererkennung 501 bzw. die Signallampe 502 ein Fehler angezeigt.

Ändert sich der gemessene Wert δ_M des Motorwinkels, während der Motor abgeschaltet ist, so deutet dies auf einen Fehler des Sensors hin, der den Motorwinkel δ_M als $\delta_{M,ist}$ sensiert oder auf einen schwerwiegenden Fehler im Motor oder Getriebe wie z. B. auf das Versagen der Selbsthemmung hin. Solche Anomalien kann die Stillstandsabschaltung 57 an eine Sicherheitsüberwachung 501 melden, die dann geeignete Notmaßnahmen, beispielsweise Ansteuerung der Signallampe 502, einleitet.

Die Verwendung des PD-Reglers 42a mit der Stillstandsabschaltung 57 setzt die Verwendung eines unterlagerten Stromreglers 43, wie in Fig. 3 gezeigt, nicht zwingend voraus. Die Anordnung kann auch direkt eine Motorspannung u bestimmen. Obige Ausführungen gelten dann sinngemäß.

Zusammenfassend sind als Kern und Vorteile der Erfindung folgende Punkte zu nennen:

- Abschaltung des Stellmotors, wenn er zum Stillstand kommt und die Lageregelabweichung e so klein ist, daß der vom Lageregler eingestellte Motorstrom zum Wiederanlaufen des Motors nicht ausreicht.
- Wiedereinschalten des Motors bei größerer Regelabweichung e.
- Verhinderung zu großer Motorerwärmung.
- Einsparung elektrischer Energie.
- Die erfindungsgemäße Funktion wird allein auf Basis der im Lageregler **42**a vorhandenen Signale erfüllt.
- Die erfindungsgemäße Funktion wird autonom vom um die Stillstandsabschaltung 57 erweiterten Lageregler 42a ausgeführt; übergeordnete Funktionseinheiten wie z. B. Fahrzeugregler 44 müssen nicht eingreifen. Dies erleichtert eine modulare Strukturierung der Funktionen.
- Die erfindungsgemäße Funktion wird ohne Vorkenntnis der Reibungsverhältnisse erfüllt.
- Die erfindungsgemäße Funktion wird auch im Fehlerfall wie erhöhter Reibung oder Klemmen im Motor oder Getriebe erfüllt. Damit ergibt sich in diesem Fall ein wirksamer Schutz von Motor, Leistungselektronik und Bordnetz.

Die Stillstandabschaltung 57 kann bestimmte Fehler in Motor, Getriebe, Stromregler, Leistungselektronik, Energieversorgung oder Motorwinkelsensor erkennen und an eine Sicherheitsüberwachung 501, 502 melden.

Die in dem Ausführungsbeispiel anhand eines Lenksystems beschriebene Stillstandsabschaltung kann nicht nur für das beschrieben Lenksystem Verwendung finden sondern für alle Steller und Antriebe mit Selbsthemmung verwendet werden, bei denen die Ausgangsgröße (Winkel, Position) für längere Zeiten konstante Werte annehmen soll.

Patentansprüche

- 1. Verfahren zum Betrieb eines Überlagerungssystems mit einem Stellantrieb (13; 23) und einem Überlagerungsgetriebe (12; 22), wobei durch das Überlagerungsgetriebe eine erste Bewegung (δ_L) und eine durch den Stellantrieb (13; 23) durch eine Energiezufuhr (I_{soll} , u) zu dem Stellantrieb initiierte zweite Bewegung (δ_M) überlagert werden und die von dem Stellantrieb initiierte Bewegung über einen selbsthemmenden Mechanismus dem Überlagerungsgetriebe zugeführt wird, dadurch gekennzeichnet, daß ein Stillstand des Stellantriebs erkannt wird und in Reaktion auf einen erkannten Stillstand die Energiezufuhr (I_{soll} , u) zu dem Stellantrieb zumindest reduziert wird.
- 2. Verfahren zum Betrieb eines Lenksystems für ein Kraftfahrzeug mit wenigstens einem lenkbaren Rad (15), einem Stellantrieb (13; 23) und einem Überlagerungsgetriebe (12; 22), wobei durch das Überlagerungsgetriebe die durch den Fahrer des Fahrzeugs initi- 20 ierte Lenkbewegung (δ_I) und die durch den Stellantrieb (13; 23) durch eine Energiezufuhr (Isoll, u) zu dem Stellantrieb initiierte Bewegung (δ_M) zur Erzeugung der Lenkbewegung des lenkbaren Rades überlagert werden und die von dem Stellantrieb initiierte Bewe- 25 gung über einen selbsthemmenden Mechanismus dem Überlagerungsgetriebe zugeführt wird, dadurch gekennzeichnet, daß ein Stillstand des Stellantriebs erkannt wird und in Reaktion auf einen erkannten Stillstand die Energiezufuhr (I_{soll}, u) zu dem Stellantrieb 30 zumindest reduziert wird.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in Reaktion auf einen erkannten Stillstand des Stellantriebs die Energiezufuhr (I_{soll}, u) zu dem Stellantrieb auf Null reduziert oder unterbrochen 35 oder abgeschaltet wird.
- 4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die zeitliche Änderung

$$(\frac{d\delta_{M}}{dt})$$

der durch den Stellantrieb initiierten Bewegung (δ_{M}) erfaßt wird und der Stillstand des Stellantriebs abhängig von der erfaßten zeitliche Änderung erkannt wird, 45 wobei insbesondere vorgesehen ist, daß der Stillstand des Stellantriebs dann erkannt wird, wenn die zeitliche Änderung einen bestimmten Wert, insbesondere den Wert Null, erreicht.

- 5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Energiezufuhr (I_{soll}, u) zu dem Stellantrieb dann zumindest reduziert wird, wenn der Stillstand des Stellantriebs eine wählbare Zeitdauer lang erkannt worden ist.
- 6. Verfahren nach Anspruch 1 oder 2, dadurch gekenn- 55 zeichnet, daß die Energiezufuhr (I_{soll}, u) zu dem Stellantriebs derart reduziert wird, daß der dem Stellantrieb zugeführte Strom reduziert wird, insbesondere auf den Wert Null.
- 7. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die durch den Stellantrieb initiierte Bewegung (δ_M) erfaßt wird und ein Sollwert $(\delta_{M,soll})$ für die durch den Stellantrieb initiierte Bewegung (δ_M) und die Differenz (e) zwischen dem Sollwert $(\delta_{M,soll})$ und der Bewegung (δ_M) bestimmt wird und zum Zeitpunkt (ι_1) der Reduzierung die bestimmte Differenz $[e(\iota_1)]$ gespeichert wird.
- 8. Verfahren nach Anspruch 7, dadurch gekennzeich-

- net, daß die reduzierte Energiezufuhr wieder erhöht wird, wenn die aktuell bestimmte Differenz die gespeicherte Differenz [e(t₁)] um ein vorgebbares Maß (ɛ) über- oder unterschreitet.
- 9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die gespeicherte Differenz $[e(t_1)]$ zu einer Fehlererkennung herangezogen wird, wobei insbesondere vorgesehen ist, daß die gespeicherte Differenz $[e(t_1)]$ mit wenigstens einer vorgebbaren Schwelle verglichen wird und abhängig von dem Vergleichergebnis ein Fehlersignal (F) abgegeben wird.
- 10. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die durch den Stellantrieb initiierte Bewegung (δ_M) erfaßt wird und die während der Reduzierung der Energiezufuhr erfaßte initiierte Bewegung (δ_M) zu einer Fehlererkennung herangezogen wird, wobei insbesondere vorgesehen ist, daß ein Fehlersignal (F) erzeugt wird, wenn die während der Reduzierung der Energiezufuhr erfaßte initiierte Bewegung (δ_M) sich um ein vorgebbares Maß ändert.
- 11. Vorrichtung zum Betrieb eines Überlagerungssystems mit einem Stellantrieb (13; 23) und einem Überlagerungsgetriebe (12; 22), wobei durch das Überlagerungsgetriebe eine erste Bewegung (δ_L) und eine durch den Stellantrieb (13; 23) durch eine Energiezufuhr (I_{soll} , u) zu dem Stellantrieb initiierte zweite Bewegung (δ_M) überlagert werden und die von dem Stellantrieb initiierte Bewegung über einen selbsthemmenden Mechanismus dem Überlagerungsgetriebe zugeführt wird, dadurch gekennzeichnet, daß Mittel (57) zur Erkennung eines Stillstandes des Stellantriebs vorgesehen sind, mittels der in Reaktion auf einen erkannten Stillstand die Energiezufuhr (I_{soll} , u) zu dem Stellantrieb zumindest reduziert wird.
- 12. Vorrichtung zum Betrieb eines Lenksystems für ein Kraftfahrzeug mit wenigstens einem lenkbaren Rad (15), einem Stellantrieb (13; 23) und einem Überlagerungsgetriebe (12; 22), wobei durch das Überlagerungsgetriebe die durch den Fahrer des Fahrzeugs initiierte Lenkbewegung (δ_L) und die durch den Stellantrieb (13; 23) durch eine Energiezufuhr (I_{soll} , u) zu dem Stellantrieb initiierte Bewegung ($\delta_{\rm M}$) zur Erzeugung der Lenkbewegung des lenkbaren Rades überlagert werden und die von dem Stellantrieb initiierte Bewegung über einen selbsthemmenden Mechanismus dem Überlagerungsgetriebe zugeführt wird, dadurch gekennzeichnet, daß Mittel (57) zur Erkennung eines Stillstandes des Stellantriebs vorgesehen sind, mittels der in Reaktion auf einen erkannten Stillstand die Energiezufuhr (Isoll, u) zu dem Stellantrieb zumindest reduziert wird.

Hierzu 6 Seite(n) Zeichnungen

- Leerseite -

DE 197 51 397 A1 B 62 D 5/0024. September 1998

Fig. 2
Stand der Technik

