بسم تعالى

آزمایشگاه الکترونیک ۲ پیش گزارش ازمایش ۵

امیرحسین زاهدی ۹۹۱۰۱۷۰۵

تابستان ۱۴۰۲

بخش اول:

محاسبه دستی:

شکل ۱: شماتیک مدار کلکتور مشترک با منبع جریان

$$I_{C_1} = \beta I_{B_1} = I_{C_1} = \beta I_{B_1} \Rightarrow I_{C_2} = (\Delta_0 I_B)$$

$$\frac{V_{B_1} + \Delta - NV}{Ih} = I_C \Rightarrow V_{B_1} = I_{C_2} = I_{C_1}$$

$$\frac{\Delta - V_{B_1}}{II/\Delta h} - I_B = \frac{V_{B_1} + \Delta}{V_{A_1} h} \Rightarrow \frac{\Delta - V_{B_2}}{II/\Delta} - \frac{V_{B_1} + V_{A_2}}{I\Delta_0} = \frac{V_{B_1} + \Delta}{V_{A_1} h}$$

$$\Rightarrow I_{C_2} = \frac{V_{A_1} + \Delta}{V_{A_1} h} \Rightarrow \frac{V_{B_1} + \Delta}{V_{A_2} h} \Rightarrow \frac{V_{A_1} + \Delta}{V_{A_2} h} \Rightarrow \frac{V_{B_1} + \Delta}{V_{A_2} h} \Rightarrow \frac{V_{B_2} + V_{A_2} + \Delta}{V_{A_2} h} \Rightarrow \frac{V_{B_1} + \Delta}{V_{A_2} h} \Rightarrow \frac{V_{B_2} + V_{A_2} + \Delta}{V_{A_2} h}$$

شبیه سازی:

ابتدا بایاس مدار را بدست می آوریم.

--- Operating Point ---

V(5v):	5	voltage
V(n001):	0.487711	voltage
V(n003):	-0.206055	voltage
V(n005):	0.452053	voltage
V(n006):	-0.253924	voltage
V(-5 v):	-5	voltage
V(n004):	-9.68458e-016	voltage
V(n002):	0	voltage
Ic(Q2):	0.00449221	device_current
Ib(Q2):	0.000253862	device_current
Ie(Q2):	-0.00474608	device_current
Ic(Q1):	0.00447778	device_current
Ib(Q1):	1.44345e-005	device_current
Ie(Q1):	-0.00449221	device_current
I(C2):	2.06055e-018	device_current
I(C1):	4.87711e-019	device_current
I(R6):	-2.06055e-018	device_current
I(R5):	0.00474608	device_current
I(R4):	0.000395474	device_current
I(R3):	0.000141612	device_current
I(R2):	0.000192551	device_current
I(R1):	0.000206986	device_current
I(V3):	4.87711e-019	device_current
I(V2):	0.00508024	device_current
I(V1):	-0.00508024	device_current

مقاومت خروجی را برابر ۱ کیلو هرتز قرار می دهیم و به ورودی ولتاژ سینوسی با دامنه ۵ ولت و فرکانس ۲۰ کیلو هرتز اعمال می کنیم. خروجی در تحلیل transient به شکل زیر است:

برای بدست آوردن بیشینه سویینگ، ورودی با دامنه ۱۰ ولت اعمال می کنیم.

همان روندی که در بالا برای مقاومت ۱ کیلو اهم اجرا شد را برای مقاومت ۴۷۰ اهمی نیز انجام می دهیم.

مجدد ورودی با دامنه ۱۰ ولتی اعمال می کنیم.

Parameter	Ic (mA)	RL	Vout max	Vout min
Calc	۶.۶	١k	۵	-٢
		۴٧٠	۵	-1.0
Simu	۴.۴	١k	۵.۲	-۲.1
		۴۷۰	۵.۲	-1.۴

بخش دوم:

شببه سازی:

--- Operating Point ---

V(5v):	5	voltage
V(n001):	0.58834	voltage
V(n003):	-0.0835156	voltage
V(-5v):	-5	voltage
V(n004):	-3.92524e-016	voltage
V(n002):	0	voltage
Ic(Q1):	0.00196031	device_current
Ib(Q1):	6.28764e-006	device_current
Ie(Q1):	-0.00196659	device_current
I(C2):	8.35156e-019	device_current
I(C1):	5.8834e-019	device_current
I(R6):	-8.35156e-019	device_current
I(R5):	0.00196659	device_current
I(R2):	0.000196082	device_current
I(R1):	0.00020237	device_current
I(V3):	5.8834e-019	device_current
I(V2):	0.00216268	device_current
I(V1):	-0.00216268	device_current

مقاومت خروجی را برابر ۱ کیلو هرتز قرار می دهیم و به ورودی ولتاژ سینوسی با دامنه ۵ ولت و فرکانس ۲۰ کیلو هرتز اعمال مي كنيم. خروجي در تحليل transient به شكل زير است:

برای بدست آوردن بیشینه سویینگ، ورودی با دامنه ۱۰ ولت اعمال می کنیم.

همان روندی که در بالا برای مقاومت ۱ کیلو اهم اجرا شد را برای مقاومت ۴۷۰ اهمی نیز انجام می دهیم.

مجدد ورودی با دامنه ۱۰ ولتی اعمال می کنیم.

Parameter	Ic (mA)	RL	Vout max	Vout min
Sim	1.98	١k	۵.۱	-1.۴
		۴۷۰	۵.۱	-·.A

مشاهده می شود که جریان اندازه گیری شده نزدیک به مقدار محاسبه شده است.

محاسبه دستی:

بخش سوم:

محاسبه دستی:

شکل ۳: شماتیک مدار طبقه خروجی Push-Pull کلاس B

شبیه سازی:

مدار شبیه سازی شده:

بیشینه سویینگ به ورودی با دامنه ۱۰ ولت و فرکانس ۱۰ کیلو هرتز:

توان خروجی:

توان مصرفی از منابع:

Parameter	Pdc(mW)	Po(mW)	بازده	Vp-p(v)
Calc	•	74.01	٧۵.٣٩	٩.۶
Sim	~ •	۲۵.۲	۸۰	9.9

مقادیر توان ها با استفاده از قابلیت میانگین گیری در نرم افزار به دست آمده است و سپس بازده محاسبه شده است.

شکل موج های بالا صرفا برای نمایش توان لحظه ای خروجی و مصرفی هستند.

بخش چهارم:

محاسبه دستی:

شکل ٤: شماتيک مدار طبقه خروجي

Push-pull کلاس AB

شبیه سازی:

بیشینه سویینگ به ورودی با دامنه ۱۰ ولت و فرکانس ۱۰ کیلو هرتز:

توان خروجی:

توان مصرفی از منابع:

Parameter	Pdc(mW)	Po(mW)	بازده	Vp-p(v)
Calc	45.0	74.01	71.07	9.8
Sim	45.1	7T.V	٣٠	9.6

مقادیر توان ها با استفاده از قابلیت میانگین گیری در نرم افزار به دست آمده است و سپس بازده محاسبه شده است.

شکل موج های بالا صرفا برای نمایش توان لحظه ای خروجی و مصرفی هستند.