FINAL REPORT

NATIONAL MARINE FISHERIES SERVICE CONTRACT NO. NA82-GA-C-00023

ATLANTIC BOTTLENOSE DOLPHIN, <u>Tursiops Truncatus</u> HERD STUDIES IN THE MISSISSIPPI SOUND, U.S.A.: CAPTURE, FREEZE MARKING AND BIOLOGICAL SAMPLING

BY

MOBASHIR A. SOLANGI, Ph.D. Curator Director of Research

AND

GERALD E. DUKES, D.V.M. Staff Veterinarian

MARINE ANIMAL PRODUCTIONS, INC. 150 Debuys Road Biloxi, Mississippi 39531

MAY 1983

CONTENTS

	Page
Abstract	i
List of Tables	ii
List of Figures	v
List of Appendices	хi
Introduction	1
Objectives	3
Capture and Handling	4
Morphometrics	8
Freeze Marking	10
Hematology and Serum Chemistry	12
Tissue Biopsies	80
Microbiology by Dr. Bob Middlebrooks	84
Biochemical Genetics by Dr. Paul Toom	102
Age Estimation and Endocrinology by Dr. Dan Odell	131
Follow-up Observations	153
Conclusions and Recommendations	17 3
Acknowledgements	174
Literature Cited	17:6

ABSTRACT

A study, was conducted between June and August, 1982 to collect, freeze mark, obtain biological data from and release 50 Atlantic bottlenose dolphins, <u>Tursiops truncatus</u>, in the Mississippi Sound, U.S.A. The purpose of the study was 1) To establish a data base for blood chemistry, microbiology, age, genetics, endocrinology, and morphometrics for dolphins inhabiting the Sound, and 2) To determine herd discreteness, social dynamics, and movements in the Mississippi Sound of selected herds.

Results from the sampling indicate that all the above mentioned parameters tested fall within the ranges established for <u>Tursiops</u> truncatus. We observed several herds in the Mississippi Sound that frequently intermingled amongst each other. There appears to be a seasonal abundance (April through September) of these mammals in the Sound. In the winter months (October through March) most of the animals leave the defined boundaries of the Sound and presumably stay a few miles south of the barrier islands that delineate the southern margin of the Mississippi Sound. Resighting studies are currently in progress to further study the movements and migrations patterns of these marine mammals.

LIST OF TABLES

CAPTURE AND	HANDY TAY	Page
CAPTORE AND	TIPNOTITING	
Table 1:	Summary of Capture Events for Tursiops truncatus collected from the Mississippi Sound	15
Table 2:	Summary of types of data collected from each dolphin processed in 1982	17
Table 3:	Summary of environmental data at the site of collection	19
MORPHOMETRIC	<u> </u>	
Table 4:	Morphometric data—base for dolphins collected from the Mississippi Sound. All measurements are in centimeters	20 _
Table 5:	Comparison of mean morphometric values between males and females. Measurements are in centimeters	25
Table 6:	Mean values of various body measurements of all the dolphins processed during the study. Measurements are in centimeters	26
Table 7:	Morphometric measurements of the 53 dolphins studied expressed as a fraction of the total length	27
Table 8:	Mean values of the body measurements for all animals after they were converted to a fraction of the total length.	32
Table 9:	Comparison of mean body measurements of male and female dolphins. All measurements are expressed as fractions of the total length	33
Table 10:	Average length and weight for males, females and both sexes combined. Measurements are in kg. and cm	34

		Page
HEMATOLOGY A	ND SERUM CHEMISTRY	
Table 11:	Hematological analyses for the 53 dolphins sampled from the Mississippi Sound	3 5
Table 12:	Mean values for hematological parameters for all the dolphins sampled during the study	40
Table 13:	Comparison of hematological parameters for male and female dolphins	41
Table 14:	Serum chemistry and enzyme analyses for the 53 dolphins sampled from the Mississippi Sound	42
Table 15:	Mean values for serum chemistry parameters for all dolphins sampled during the study	46
Table 16:	Comparison of mean serum-chemistry parameters for male and female dolphins	47
Table 17:	Comparison of serum analyses procedures/results between Sea World Laboratory, Florida and Gulfport Memorial Hospital, Mississippi	48
TISSUE BIOPS	IES	
Table 1:	Skin, blubber, and liver biopsies of bottlenose dolphins sampled from the Mississippi Sound	82
MICROBIOLOGY		
Table l:	Results of bacterial cultures from 50 bottlenose dolphins	90
Table 2:	Uncertain isolates	97
Table 3:	Yeast and molds isolated from Mycosel or Mycophil with tentative identification	98

		Page
BIOCHEMICAL	GENETICS	
Table 1:	Summary of enzyme/proteins examined	120
Table 2:	Summary of phenotypes and allele frequencies	121
AGE ESTIMATION	ON AND ENDOCRINOLOGY	
Table 1:	Summary of age estimates and hormone analyses for bottlenose dolphins from Mississippi	138
FOLLOW-UP OB	SERVATIONS	
Table 1:	Resighting frequency of marked animals	155

LIST OF FIGURES

		Page
CAPTURE AND H	ANDLING	_
Figure 1:	Data sheet used to record information on capture events and environmental conditions at the collection site	. 49
Figure 2:	Map showing the boundaries for the Mississippi Sound, Mississippi	. 50
Figure 3:	Data sheet used to record biological data for each animal collected	. 51
Figure 4:	Form used to log morphometric data for each captured individual	. 52
Figure 5:	Length-weight relationship of male Atlantic bottlenose dolphins sampled from the Mississippi Sound in 1982	. 53
Figure 6:	Length-weight relationship of female Tursiops truncatus collected from the Mississippi Sound in 1982	. 54
Figure 7:	Scattergram of lengths and weights of all (male and female) dolphins sampled in 1982	. 55
Figure 8:	Photographic profile of dorsal fin and fluke of animal no. 601 on the left and animal no. 602 on the right	. 56
Figure 9:	Photographic profile of dorsal fin and fluke of animal no. 603 on the left and animal no. 604 on the right	. 57
Figure 10:	Photographic profile of dorsal fin and fluke of animal no. 605 on the left and animal no. 606 on the right	. 58
Figure 11:	Photographic profile of dorsal fin and fluke of animal no. 607 on the left and animal no. 608 on the right	. 59
Figure 12:	Photographic profile of dorsal fin and fluke of animal no. 609 on the left and animal no. 610 on the right	. 60

Figure:13:	Photographic profile of dorsal fin and fluke of animal no. 611 on the left and animal no. 612 on the right	61
Figure 14:	Photographic profile of dorsal fin and fluke of animal no. 613 on the left and animal no. 614 on the right	62
Figure 15:	Photographic profile of dorsal fin and fluke of animal no. 615 on the left and animal no. 618 on the right	63
Figure 16:	Photographic profile of dorsal fin and fluke of animal no. 619 on the left and only the dorsal fin of animal no. 620 on the right	64
Figure 17:	Photographic profile of dorsal fin and fluke of animal no. 621 on the left and animal no. 622 on the right	65
Figure 18:	Photographic profile of dorsal fin and fluke of animal no. 623 on the left and animal no. 624 on the right	66
Figure 19:	Photographic profile of dorsal fin and fluke of animal no. 626 on the left and animal no. 627 on the right	67
Figure 20:	Photographic profile of dorsal fin and fluke of animal no. 628 on the left and animal no. 629 on the right	68
Figure 21:	Photographic profile of dorsal fin and fluke of animal no. 630 on the left and animal no. 631 on the right	69
Figure 22:	Photographic profile of dorsal fin and fluke of animal no. 632 on the left and animal no. 633 on the right	70
Figure 23:	Photographic profile of dorsal fin and fluke of animal no. 634 on the left and animal no. 635 on the right	71
Figure 24:	Photographic profile of dorsal fin and fluke of animal no. 636 on the left and animal no. 637 on the right	72

			Page
	Figure 25:	Photographic profile of dorsal fin and fluke of animal no. 638 on the left and animal no. 639 on the right	73
	Figure 26:	Photographic profile of dorsal fin and fluke of animal no. 640 on the left and animal no. 641 on the right	74
	Figure 27:	Photographic profile of dorsal fin and fluke of animal no. 642 on the left and animal no. 643 on the right	75
	Figure 28:	Photographic profile of dorsal fin and fluke of animal no. 644 on the left and animal no. 645 on the right	76
	Figure 29:	Photographic profile of dorsal fin and fluke of animal no. 646 on the left and animal no. 647 on the right	77
	Figure 30:	Photographic profile of dorsal fin and fluke of animal no. 648 on the left and animal no. 649 on the right	- 78
	Figure 31:	Photographic profile of dorsal fin and fluke of animal no. 650 on the left and the dorsal fin and side of animal no. 608 recaptured 21 days after processing on the right	79
ΤI	SSUE BIOPSIE	<u>s</u>	
	Figure 1:	Tool used to gouge skin/blubber samples from dolphins	83
ΒI	OCHEMICAL GE	NETICS	
	Figure 1:	Hemoglobin separation by Isoelectric focusing	122
	Figure 2:	Lactate dehydrogenase isoenzyme profiles	123
	Figure 3:	Glucose - 6 - phosphate dehydrogenase phenotypes	124
	Figure 4:	Esterase D phenotypes	125
	Figure 5:	6-Phosphogluconate dehydrogenase phenotypes	126

				Page
	Figure	6:	Malate dehydrogenase phenotypes	127
	Figure	7:	Glyoxalase I phenotypes	128
	Figure	8:	Haptoglobin phenotypes	129
	Figure	9:	Plasma protein electrophoresis profiles	130
AGE	E ESTIM	TIOI	N AND ENDOCRINOLOGY	
	Figure	1:	Length-age relationship for bottlenose dolphins captured in Mississippi Sound	140
	Figure	2:	Length-age relationship for male bottlenose dolphins captured in Mississippi Sound	141
	Figure	3:	Length-age relationship for female dolphins collected from Mississippi Sound	142
	Figure	4:	Serum testosterone concentration as a function of age for male bottlenose dolphins from the Mississippi Sound	143
	Figure	5:	Serum Estradiol concentration as a function of age for female bottlenose dolphins from the Mississippi Sound	144
	Figure	6:	Serum progesterone concentration as a function of age for female bottlenose dolphins from the Mississippi Sound	145
	Figure	7:	Standard curve generated from the testosterone RIA	146
	Figure	8:	Standard curve generated from the Estradiol RIA	147
	Figure	9:	Standard curve generated from the progesterone RIA	148
FOI	LOW-UP	OBS	ERVATIONS	
	Figure	1:	Posters distributed to the general public to	350
	_		solicit resightings for marked dolphins	T26

			Page
Figure	2:	Self-addressed pre-paid post cards used in acquiring resighting information from the public	157
Figure	3:	Approximate geographical location for individual resighting and frequency of observation for each animal. animal no. 601, 603, 604	158
Figure	4:	Approximate geographical location for individual resighting and frequency of observation for each animal animal nos. 605, 606, 607	159
Figure	5:	Approximate geographical location for individual resighting and frequency of observation for each animal. Animal no. 608, 609, 610	160
Figure	6:	Approximate geographical location for individual resighting and frequency of observation for each animal. Animal nos. 611, 612, 613	161
Figure	7:	Approximate geographical location for individual resighting and frequency of observation for each animal. Animal Nos. 614, 616, 617	162
Figure	8:	Approximate geographical location for individual resighting and frequency of observation for each animal. Animal Nos. 618, 619, 620	163
Figure	9:	Approximate geographical location for individual resighting and frequency of observation for each animal. Animal nos. 621, 622, 623	164
Figure	10:	Approximate geographical location for individual resighting and frequency of observation for each animal. Animal Nos. 624, 626, 627	165
Figure	11:	Approximate geographical location for individual resighting and frequency of observation for each animal. Animal nos. 629, 630, 631	166

		Page
Figure 12:	Approximate geographical location for individual resignting and frequency of observation for each animal. Animal nos. 632, 633, 634	167
Figure 13:	Approximate geographical location for individual resighting and frequency of observation for each animal. Animal nos. 635, 636, 637	168
Figure 14:	Approximate geographical location for individual resighting and frequency of observation for each animal. Animal nos. 638, 639, 640	169
Figure 15:	Approximate geographical location for individual resighting and frequency of observation for each animal. Animal nos. 642, 643, 645	170
Figure 16:	Approximate geographical location for individual resighting and frequency of observation for each animal. Animal nos. 647, 648, 649	171
Figure 17:	Approximate geographical location for individual resighting and frequency of observation for each animal. Animal no. 650	172

LIST OF APPENDICES

MICROBIOLOGY		F	?age
Appendix A	: Code for identify isolates	ying 	101
AGE ESTIMATIO	N AND ENDOCRINOLOGY		
Appendix E	: Assay procedures	for Endocrinology	149
COST ANALYSIS	<u> </u>		
Appendix (: Cost Analysis of	the Study	177

TNTRODUCTION

The Atlantic bottlenose dolphin, (<u>Tursiops truncatus</u>) is one of the most common cetaceans inhabiting the southeastern United States Coastal waters. Because of its ability to adapt to captivity, training, and experimentation it is frequently displayed by oceanaria and used in research.

By the authority of the Marine Mammal Protection Act of
1972 and Endangered Species Act of 1973, the National Marine
Fisheries Service (NMFS) is responsible for conserving and
protecting the Atlantic bottlenose dolphin in U. S. waters.

This is done by regulating the collection from United States
waters through the issuance of permits. However, in order to
properly manage the stock and set take-quotas, the National
Marine Fisheries Service requests information on the abundance
and discreteness of local herds. To fulfill these goals the

NMFS conducts aerial surveys and herd studies. Asper and Odell
(1980) and Odell and Asper (1982) using mark-recapture techniques
were very successful in studying the social dynamics and movements
of herds in the Indian-Banana River Complex, Florida, U.S.A.

Although much is known about the behavior, reurobiology, and pathology of <u>Tursiops truncatus</u> in captivity, very little is known about their biology in the wild (Asper & Odell, 1980).

This is especially true for these dolphins inhabiting the Mississippi Sound. For prudent management of <u>Tursiop</u> stocks it is essential

to have information on their natural history, biology, social dynamics, abundance and movement in their natural habitat.

It has also been suggested that in-shore populations of

Tursiops may be used as indicators for the health of an ecosystem

(Asper & Odell, 1980; Dudok van Heel, 1973). Since the dolphin

is on top of the food chain, it would, presumably through

bicaccumulation, concentrate pollutants such as hydrocarbons,

pesticides, and heavy metals in its tissues (Geraci and St. Aubin),

1980; St. Aubin & Solangi, 1983). Detrimental effects associated with the above mentioned pollutants would be reflected in

subtle changes in selected tissues and blood parameters (St. Aubin & Solangi, 1983). Therefore, information and comparison of

background levels of the listed pollutants from dolphins inhabiting pristine and contaminated areas would be vital to both

industry and governmental agencies interested in developing or

managing coastal areas.

OBJECTIVES

The purpose of the study was to (1) collect, mark, obtain biological data from and release 50 Atlantic bottlenose dolphins in the Mississippi Sound, U.S.A., (2) to establish a data-base for blood chemistry, microbiology, age, genetics, endocrinology, and morphometrics for dolphins inhabiting the Sound.

CAPTURE & HANDLING

Materials and Methods

Four boats and one surveillance/observation aircraft were used in the collection effort. The "Sawfish", a 10 m wooden vessel, served as the work-boat and command center for the whole operation. The "Sawfish" is specially designed to collect and handle dolphins. It has a low free-board, making it easy to bring the animals on board, and is equipped with a 115 h.p. outboard in its anterior section, allowing easy maneuvering and quick access to captured animals. The "Sawfish" has several wells that can be used to accommodate and process four to five animals at one time. The second boat, a 7 m V-hull, the "North American" equipped with a 200 h.p. Johnson outboard was used to carry portions of the net and four to five divers. The third boat, the "Four M's", a 5 m Sabre with a 100 h.p. outboard was used to carry five to six divers. The Johnson fourth boat, "The Malissa &", an 8 m Rienell cabin cruiser served as a laboratory, observation, and dive boat. This vessel had a refrigerator, desk space, and bathroom facilities and was used to accommodate the accompanying NMFS and APHIS (Animal and Plant Health Inspection Service) staff and other researchers that participated in the effort.

A Cessna 172 served as a spotter aircraft. Mr. Walter Vick, a 25 year veteran dolphin observer, was our scout in the air.

Prior to the departure of the boats from the port, the aircraft would be in the air surveying the Mississippi Sound and guiding

the ground crew to the whereabouts of the dolphin herds. The use of a surveillance aircraft undoubtedly saved the group a lot of time and effort on the water in finding dolphins.

Approximately 25 to 27 people participated in the collection effort during any given day. Out of these 15 to 18 were divers experienced in handling dolphins, four boat captains, the principal investigators (curator and staff veterinarian of Marine Animal Productions), and one to two representatives from both APHIS and NMFS. From time to time researchers from other institutions interested in the biology and natural history of these mammals were accommodated.

As soon as a herd was sighted, the Sawfish maneuvered in its vicinity to evaluate the number in the herd and size of the animals in the group. A set was usually made on a herd containing four to five animals and without any nursing calves.

Two boats were used to make the set. The Sawfish always initiated the set dropping the net in the clockwise direction traveling at approximately 20 knots. The North American maneuvered counter clockwise at approximately 35 to 40 knots.

A 457 m long, 5 m deep net with a mesh size of 15 cm. was used. Three hundred and five meters (305 m) of this netwere placed on the Sawfish while the remaining 152 m on the North American. As soon as the set was completed all the boats would position themselves equi-distance from each other around the perimeter of the net. If no animal entered the net at this time, the

circumference of the net was tightened gradually to induce the animals to hit. When an animal hit the net, divers from nearby boats responded immediately. The captured animal was kept above the water by the divers until the Sawfish was maneuvered to the site of the animals and the dolphin brought aboard, usually within minutes.

Data on the location of the set, number of animals per set, animals processed and released, processing time, environmental conditions and other related data were recorded in the Capture Event Data Sheet for lab analysis (Figure 1).

Results and Discussion:

A total of 53 dolphins, 20 males and 33 females, were processed and released into the Mississippi Sound. Out of these, 50 were marked between June 28 to August 2, 1982, as part of the contract. The additional three (1 male and 2 females) were processed between October 27 to November 2, 1982 at no cost to the NMFS. Twenty-two complete sets were made to obtain the 53 specimens. Our capture success-rate was approximately 90%. Figure 2 shows the boundaries for the Mississippi Sound where the study was conducted. Table 1 provides the summary of the capture events, location, number of animals handled, processed and released. Table 2 lists the different types of data collected and Table 3 the environmental data at the collection site.

The average time required to process an animal was 54.08 minutes (N=50; SD=19.93; SE=2.82). Processing time is defined

as the interval between the time an animal was brought on board and when it was released. In most cases we were able to process animals in 30 minutes or less. However, because we worked with 3 to 4 animals at any given time, the cumulative average time tended to be in the higher range. The average time per set, that is from commencement of the set to the release of the last dolphin on board, was 128.8 minutes (N = 19; SD = 47.9; SE = 10.9).

During the collection period from June to August 1982 we encountered two very sick dolphins that died during the capture effort. Both animals were males, between two to three years of age, and were collected from the same area but on separate dates. The first animal died within seconds after entering the net. A necropsy was performed within three hours of its death which revealed acute pneumonia in both lungs. The second animal died within three to five minutes after it had been on board. The necropsy showed severe fibrosis and necrosis in the liver and slight pneumonia in one lung. Complete necropsy reports were filed with the National Marine Fisheries Service. In both cases the cause of death was suggested to be "capture shock with predisposing illness". As for the remaining 110 animals handled during the study we did not observe any adverse effect related to the capture, handling, or processing; especially during liver and blubber biopsy procedures.

The cost analyses for the project are provided in Appendix C. Because of rising costs of such operations, NMFS should try to work with collectors of record in study areas in acquiring information from their incidental catch. This could considerably reduce the cost for such studies.

MORPHOMETRICS

Materials and Methods:

As soon as the animal was on board and stabilized, a suite of morphometric data based on (Asper and Odell, 1980 and Odell and Asper, 1982) were taken. These data were recorded in the Captured Individual Data Sheet and Morphometric Data Sheet (see Figures 3 and 4). The reasons for choosing the outlined body measurements were because their acquisition required the least amount of time and manipulation of the animal. In addition to the various measurements, a photographic profile of the dorsal fin and fluke was compiled for future reference and identification of these animals.

Results and Discussion:

The various measurements taken from each animal, and the averages for males, females and combined are listed in Tables 4, 5, and 6. However, for comparative purposes, each measurement was converted to represent a ratio of the total length of each animal. These data are presented in Table 7 and 8. Morphometric data for males was compared with those of females. Results of this analyses are provided in Table 9. There did not appear to be any significant difference (total) between males and females in any of the parameters tested.

The length-weight relationship and averages for the animals processed are presented in Table 10. Linear regression analysis was performed on the length-weight data for males, females and

both sexes combined. Scattergrams for males, females and all animals combined are provided in Figures 5, 6 and 7 respectively. Using the formula $y = a x^b$ to fit a curvilinear growth curve (where y = weight in kg, b = intercept, a = slope of the line, and x = length in cm.), the relationship to estimate weight of an animal given the length or vice-versa for males is weight (kg) = $1.4445^{-05} \times length$ (cm) 2.9671, r = 0.9086; for females weight (kg) = $7.3647^{-05} \times length$ (cm) 2.6643, r = 0.8280; and for combined weight (kg) = $3.8023^{-05} \times length$ (cm) 2.7871, r = 0.8623. These estimates are based on data from 52 animals, 20 males and 32 females. Based on the length-weight data obtained from the animals processed during the study we did not observe any statistically significant difference between males and females. However, the small sample size may be the cause for the lack of difference.

During the study, several methods for obtaining total length of an animal were tried. The method giving consistent results was when the animal was placed on its belly on a flat board fitted with a measuring tape. The use of this procedure usually resulted in the total length of 5 to 10 cm less than that obtained by other methods.

Both color (110 Kodacolor ASA 100) and black and white (Kodak panatomic x ASA 125) photographs were taken of the dorsal fin and the fluke. Profiles of both extremities are provided in Figures 8 through 31.

FREEZE MARKING

Materials and Methods:

Numerical cryogenic marks, starting with 601 to 653, were placed on each of the 53 animals. Two-digit freeze marks (i.e. 01, 02, 03, etc.) were placed on both sides of the dorsal fin; whereas, 3 digit marks(i.e. 601, 602, 603, etc.) were placed on both sides of the animal. Freeze marks were applied with the aid of branding irons fitted with 5 cm high brass numbers. Prior to application of the freeze mark, the branding irons were super-cooled in liquid nitrogen. The skin surface of each animal was towel dried before applying the brand, and, as soon as the branding irons were removed from the skin, the branded site was brought to ambient temperature by pouring sea water. The amount of time it took to apply an individual number was recorded.

Results and Discussion:

The average time required to apply each number on the dorsal fin was 23.8 seconds (N = 53; SD = 4.7; SE = 0.3), whereas, those on the side took 19.6 seconds (N = 53; SD = 4.7; SE = 0.2).

There were several factors that affected the quality and appearance of the freeze mark. Some of these include the flatness and size of the dorsal fin, application pressure, and the shape of the number being applied. Numbers 2, 4, 5, and 8 usually took longer and more manipulation to obtain a good freeze mark. Another important factor was the condition of the skin prior to the application of the freeze mark. If the skin was not completely dried, icing would occur between the brand and the skin, resulting in

subcutaneous herrorhaging and a poor brand. Based on limited sightings during the study of previously marked animals, it appears that the pigmented epidermis at the brand site is sloughed off in about 5 to 10 days to reveal a recognizable number. Our observations on the appearance of the freeze mark agree with the findings of Odell and Asper (1982). Animal No. 608 was recaptured after 21 days of processing and brought on board for reexamination. The freeze marks at reexamination were clear (see figure 31) and visible from 91 to 152 meters.

HEMATOLOGY AND CHEMISTRY

Materials & Methods:

Blood was obtained through puncture of blood vessels draining the flukes. After disinfecting the site with 70% alcohol and iodine, a 20 gauge 1½ inch needle and 20 ml syringe were used to draw blood. Five ml of blood were placed in an EDTA coated vacutainer tube (Terumo Medical Elkton, Maryland) for hematology and 10 ml of blood in each of the three heparinized vacutainer tubes for serum chemistry and enzymes, endocrinology, and biochemical genetics. Two ml of blood were placed in a 10 ml vacutainer culture tube (Becton-Dickinson, Rutherford, New Jersey) containing supplemented peptone broth for microbiology. All tubes were marked with the animal number and date, put in a rack, and kept on ice until processed. The hematology and chemistry were conducted by the Pathology Laboratory of the Gulfport Memorial Hospital as soon as the specimens were delivered to them; in all cases at the end of each day. The hematology was done with the aid of Coulter Counter S+ and serum chemistry and enzymes on a Technicon SMA-1260, Lietz-Beckman Astra-8, and a Dupont ACA2. The refrigerated blood for biochemical genetics was sent by courier within 24 hours after its collection to Dr. Paul Toom, Department of Chemistry, University of Southern Mississippi, Hattiesburg, Mississippi. The blood culture tubes along with the culturettes were sent to Dr. Bob Middlebrooks, Department of Microbiology, University of Southern Mississippi, Hattiesburg, Mississippi for analysis. Plasma from 10 ml of blood was separated for endocrinology and immediately frozen and kept at -70° C. at

Gulfport Memorial Hospital. After all 50 samples were collected, they were dispatched to Dr. Daniel Odell, University of Miami, Miami, Florida. In addition to the above samples, 5 tubes each with 10 ml of blood from dolphins, numbers 641 to 645 were sent to Dr. Deborah Duffield, Portland State University, Oregon, via Federal Express for biochemical genetical analysis and comparison.

Results and Discussion:

A complete hematological analysis including differential counts for the dolphins processed are provided in Tables 11 and 12. Comparisons of blood data between males and females are given in Table 13. The values for RBC, MCV, MCH, and MCHC were significantly different between males and females at tal.05; however, only MCH and MCHC were different at tal.01. The clinical significance of this difference between males and females in MCH and MCHC are not known.

Results of the serum chemistry and enzymes are listed in Tables 14, 15, and 16. Comparisons between males and females showed a significant difference in the values for calcium and total protein at tow.05 but not at tow.01. Values for several enzymes such as A-phos, LDH, SGOT, SGPT, CPK, and Amylase were higher for Mississippi dolphins than those from dolphins collected from the Indian/Banana River area (Odell and Asper, 1982) A comparison of serum analysis between the Sea World Laboratory and Gulfport Memorial Hospital, Mississippi was conducted on sera from four dolphins. Results of this test are shown in Table 17. The above mentioned parameters

were consistently higher with approximately the same ratio between the four dolphins for the same tests. This would suggest a difference in testing procedures between laboratories rather than in the actual values. Laboratory supervisors from both institutions are currently evaluating their respective procedures.

SUMMARY OF CAPTURE EVENTS FOR TWESTOPS truncatus COLLECTED FROM THE MISSISSIPPI SOUND.

	BRAND NO.	601–602	64T-603-605	/09-909	609-809	019	×	611-613	×	614-617	618-621	622-625	626–628		629-631	630	633-635	659-959	030-037	040	047-740	644-645	⋈;	×	646-647	648-650		651	652	653			
1	ANIMALS PROCESSED	2	4	7	7	~ 1	×	ო	×	4	4	4	~	ל א	4 ~) r	م ⊢	∩ ≂	7' r	→ (7	7	×	×	7	ന	50	•	ı 1		۰ ۳	n L	רר
ENG. THE	ANIMALS BROUGHT ABOARD	2	D.	m	7	7	×	ო	×	4	4	4	' ₹	r >	4 ر	ሳ -	- 1 Ŀ	റെ	ഹ •	4	4	7	×	×	ო	m	99	,-	1 4	٠, ٢	1 [7 '	?
_	ESCAPED/ RELEASED	3-A	1-B	.	×	H	<u>4</u>	×	မှ	×	×	\ 	-، ۱	۲ ۲	7-0T	≺ ¦	× (י ניו	9	ო	ო	-	10-E	ည	[[-	· ×	55	>	۰ ۲-	4 C	٦ - ا	4, C	60
Tursiops remicating solutions.	ANIMALS SET ON	ιΩ	Ŋ	m	7	7	4	m	m	□ 4 *	4	ч ц	٦ <	- -	OT	m ·	⊢ 1 '	9	10	4	5	ო	10	m	m) (°	105	3	₁ <	. (7 [/	711
	LONGITUDE	89° 05 . 72'	0	05	_	05.	90	89° 08 • 121	201		ا	000 51 601	. 70	90		01	88° 50 · 55'	57.	07.		88° 34 . 45'		07 - 5	04.	04		50						•
TABLE 1. SUMMARY OF CAPTURE EVENTS FOR	LATITUDE	30° 14.• 11'		ά	30° 14 · 19°	! \	֓֞֝֝֝֝֓֜֜֝֝֝֓֓֓֓֓֓֓֜֝֝֓֓֓֓֓֓֜֝֡֜֝֝֓֓֓֓֜֝֡֡֝֡֡֝֡֡֝֝֡֡֜֝֡֡֡֡֝֡	30° 19° 90'	20	30° 18° 48°	֝֝֞֜֝֝֜֝֝֜֝֝֓֜֝֝֓֜֝֝֓֓֓֝֝֟֜֝֓֓֓֓֝֝֡֜֝֝֡֓֜֝֡֝֡֝֡֝֝֡֡֝֝֡֜֝֡֡֝֡	7 6	· ?	19		30°22·31'	21 •	21.	12.	13.	30° 16 · 951	17.	19.	7) [14 •					Subtotal	Totals
1. SUMMARY (DATE	6-28-82	28-82-9	20 07 0	0130-02	0-20-02	7010010	/-b-82	70-01/	7010-/	70101	78-/-/	7-7-82	7-13-82	7-13-82	7-20-82	7-20-82	7-20-82	7-21-82	7-21-82	7-27-82	20 /2-/	8-7-82	20 7 0	70-7-0	78-7-8	8-2-82		10-27-82	10-27-82	11-2-82		
TABLE	CAPTURE EVENT		٦ ،	4 C	Λ «	4, Ր	n (o 1	~ (3 0	, ע	10	11	12	13	14	15	16	17	ά	0 0) C	20 10	1 (77	23	24		25	26	27		

(CONTINUED) SUMMARY OF CAPTURE EVENTS . TABLE 1.

REMARKS:

Two animals taken to Marine Life

One animal taken to Marine Life and released on 7-25-82 as 641.

Escaped before circle was completed.

Large number of calves in group.

Too many in set; all released.

One taken to Marine Life.

One taken to Marine Life and released 11-6-82; pregnant. K m U L H H U

SUMMARY OF TYPES OF DATA COLLECTED FROM EACH DOLPHIN PROCESSED IN 1982 TABLE 2.

																															mistry logy Time	
l B.T.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ ·	+	+ ·	+ -	+	+			. ∆b 0.	Cheminolo inolo ing Ti	1
TOOTH	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	H	+	+	+	+	+	1	+	+	+	+			Vaginal Hematoloq	Serum Chem Endocrinol Branding 7	
BIOPSY :	+	+	+	+	+	+	+	+	+	+	+	+	+	1	I	+	+	+	I	I	+	I	}	+	I	ı	1			Vax	S E E	
BIO	I	I	1	ľ	I	ŀ	I	1	t	I	+	+	+	I	I	1	+	+	I	3	+	1	ı	+		ŀ				C B B	AND IN	
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+					
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			cics	Ë	
BLOOD 3C SWA	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			ometo	blubl n	
E E	+	+	+	+	+	+	+	+	+	+	+	+	+	+	ı	+	+	+	+	+	+	+	+	+	+	+	+			Morphometrics Blowhole	Anal Skin/blubber Broken	
\$	+	+	ı	ı	+	+	}	ı	ı	+	+	ı	ı	+	ŀ	+	+	+	ı	+	ı	ı	+	1	+	+	+					
RES AN.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			五四	# # # # # # # # # # # # # # # # # # #	
CULTURES BH AN.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+					
									,				1.				_	_	_	4	+	+	+	+	+	+	+				syd	
×	+	+-	+	+	+	+	+	+	т	_	т	т	_		_	•	•	•	•		·				·					节节	Photographs Liver	
Д	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+			Weight Length	Photo Liver	
H.	247	221	208	208	244	212	207	247	214	246	237	233	255	217	212	216	249	232	221	220	214	218	222	239	208	193	222			· 4		
	_			_	~	- H	_	ω	_	m	~	0	2	ဖ	0	_	0	—	7	œ	7	36	و م	Ŋ	2	<u>-</u>	2			rt.	F. E.	
F. P.	140	136	104	100	149	104	111	159	13	16	15	17	22	13	12	11	14	16	122	118	12	13	12	15	10	OI	15					
ഗ	Γtη	ഥ	Ø	М	ſΞŧ	ſΞŧ	Σ	Z	Z	ഥ	ഥ	Z	Z	ſΞţ	M	ഥ	ᄄ	ᄄ	Z	Γ±ι	Ø	Z	ഥ	Σ	ഥ	Ŀ	ĮΉ			No.		
	/82	/82	/82	/82	/82	82	82	82	82	82	7	7	7	7	2	7	2	2	/82	2	2	22	ಜ	32	/82	/82	3/82			Branding No. Capture Event		
DATE	6/28/	6/28/	28	/28	/28/	6/30/82	6/30/82	6/30/82	6/30/82	/08/9	2/9/1	8/9//	8/9/1	8/9//	7/6/82	8/9//	8/9//	7/7/82	3/1/2	7/7/82	7/7/82	7/7/82	7/7/82	7/7/82	3/1/1	7/13/	7/13,			ling re E	tics	
																										_				Branding No. Capture Even	Sex Genetics	
뜅	Н	~	2	7	7	m	m	4	4	5	9	9	9	7	7	7	7	8	∞	∞	œ	ഗ	oı			• •	10	PEWADKC.				
E E	601	602	603	604	605	909	607	809	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	DEW	7.7	G BN	S	

TABLE 2. (CONTINUED) SUMMARY OF DATA TYPES COLLECTED.

H										L_	L -	L -	↓ -	L -	. .	- -	-	L -	⊢ →	- 4	1	- +	- 1	ı	1	
TOOTH AGE B	+ -	⊦ - ⊹ -			} - -	+ - + -	⊦ - ⊦ -	+ - + -	⊦ - + -	r - + -	r = =	r - - -					+ -								1	ı
SY TO	ı		+	i	ı -	1-	ı -	 -	i	۱ -	+	ì	ı	-	+ -	⊹ -	+ -	-	+	} -	- 1	l	I	I	ì	i
BIOPSY IR SB	ı	ı ·	+	ı	ı -	+	ı -	 -	ı	1 -	+	l	ı	ι.	+ -	 -	 	- -	+	រ -	 -	1.	I	l	ì	ŀ
ູ ່	+	+	+	+	+	+ ·	+	+	+	+	+	+ -	+	+	+	+	+	+ ·	+ -	+ -	+ -	+ -	+	ŀ	!	j
	+	+	+	+	+	+	+	1-	+	+	+	+	+	+	+	+	+	+	+ -	+	+ -	+	+	ı	1	+
BLOOD C SWA	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+	+	1	1	+
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	ı	į	+
W.	+	+	j	ı	+	ı	+	ì	1	+	+	+	+	+	ı	ŀ	+	+	+	+	+	ı	+	ı	ı	+
JRES AN.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	ı	ı	+
CULTURES BH. AN.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1	ì	+
																						т.	4-	_	4	4
×																	+						+	+	+	+
Б													+				+		+		+	+	+	+	+ I	+ I
	+	+	+	+	+	+	+	+	+	+	+	+	+	I	+	+		+	+	+	+	+	+	ı 9	241 - +	+ 1
<u>α</u>	230 +	216 +	232 +	215 +	229 +	246 +	224 +	257 +	216 +	248 +	254 +	248 +	236 +	235 -	222 +	221 +	232 +	239 +	230 +	215 +	232 +	208 +	216 +	- 226		159 +
. Ith am. P	230 +	116 216 +	143 232 +	120 215 +	136 229 +	204 246 +	165 224 +	220 257 +	116 216 +	222 248 +	193 254 +	204 248 +	174 236 +	132 235 -	131 222 +	136 221 +	152 232 +	177 239 +	145 230 +	116 215 +	170 232 +	116 208 +	129 216 +	122 226 -	132	
Wt. Lth. kg. cm. P	F 140 230 +	F 116 216 +	M 143 232 +	M 120 215 +	F 136 229 +	M 204 246 +	F 165 224 +	M 220 257 +	M 116 216 +	F 222 248 +	F 193 254 +	F 204 248 +	F 174 236 +	F 132 235 -	M 131 222 +	M 136 221 +	F 152 232 +	F 177 239 +	F 145 230 +	F 116 215 +	F 170 232 +	F 116 208 +	F 129 216 +	2 F 122 226 -	132	2 FJ
Wt. Lth. S kg. cm. P	3/82 F 140 230 +	0/82 F 116 216 +	0/82 M 143 232 +	0/82 M 120 215 +	0/82 F 136 229 +	0/82 M 204 246 +	0/82 F 165 224 +	0/82 M 220 257 +	1/82 M 116 216 +	1/82 F 222 248 +	1/82 F 193 254 +	11/82 F 204 248 +	1/82 F 174 236 +	8/82 F 132 235 -	7/82 M 131 222 +	7/82 M 136 221 +	7/82 F 152 232 +	7/82 F 177 239 +	2/82 F 145 230 +	2/82 F 116 215 +	2/82 F 170 232 +	2/82 F 116 208 +	2/82 F 129 216 +	/27/82 F 122 226 -	/27/82 M 132	/6/82 F
Wt. Lth. kg. cm. P	F 140 230 +	0/82 F 116 216 +	0/82 M 143 232 +	0/82 M 120 215 +	0/82 F 136 229 +	0/82 M 204 246 +	0/82 F 165 224 +	0/82 M 220 257 +	1/82 M 116 216 +	1/82 F 222 248 +	1/82 F 193 254 +	11/82 F 204 248 +	1/82 F 174 236 +	8/82 F 132 235 -	7/82 M 131 222 +	7/82 M 136 221 +	F 152 232 +	7/82 F 177 239 +	2/82 F 145 230 +	2/82 F 116 215 +	2/82 F 170 232 +	2/82 F 116 208 +	2/82 F 129 216 +	/27/82 F 122 226 -	/27/82 M 132	/6/82 F
Wt. Lth. S kg. cm. P	7/13/82 F 140 230 +	7/20/82 F 116 216 +	7/20/82 M 143 232 +	7/20/82 M 120 215 +	7/20/82 F 136 229 +	7/20/82 M 204 246 +	7/20/82 F 165 224 +	7/20/82 M 220 257 +	7/21/82 M 116 216 +	6/21/82 F 222 248 +	7/21/82 F 193 254 +	7/21/82 F 204 248 +	7/21/82 F 174 236 +	6/28/82 F 132 235 -	7/27/82 M 131 222 +	7/27/82 M 136 221 +	7/82 F 152 232 +	7/27/82 F 177 239 +	8/2/82 F 145 230 +	8/2/82 F 116 215 +	8/2/82 F 170 232 +	8/2/82 F 116 208 +	8/2/82 F 129 216 +	10/27/82 F 122 226 -	10/27/82 M 132	11/6/82 F
Wt. Lth. DATE S kg. cm. P	10 7/13/82 F 140 230 +	11 7/20/82 F 116 216 +	11 7/20/82 M 143 232 +	11 7/20/82 M 120 215 +	12 7/20/82 F 136 229 +	13 7/20/82 M 204 246 +	13 7/20/82 F 165 224 +	13 7/20/82 M 220 257 +	14 7/21/82 M 116 216 +	14 6/21/82 F 222 248 +	14 7/21/82 F 193 254 +	14 7/21/82 F 204 248 +	15 7/21/82 F 174 236 +	2 6/28/82 F 132 235 -	16 7/27/82 M 131 222 +	16 7/27/82 M 136 221 +	7/27/82 F 152 232 +	17 7/27/82 F 177 239 +	18 8/2/82 F 145 230 +	18 8/2/82 F 116 215 +	19 8/2/82 F 170 232 +	19 8/2/82 F 116 208 +	19 8/2/82 F 129 216 +	20 10/27/82 F 122 226 -	21 10/27/82 M 132	22 11/6/82 F

*Captured on 6/28/82 and released on 7/25/82.

Ų

SUMMARY OF ENVIRONMENTAL DATA AT THE SITE OF COLLECTION. TABLE 3.

WATER TEMP C°	×	×	×	31°	31°	28°	31°	30。	31°	29°	29°	32°	32°	30°	35°	32°	35°	33°	28°	×	×	×
AIR TEMP C°	×	×	×	36°	36°	28°	32°	28°	33°	27°	29°	33°	32°	33°	36°	31°	34°	32°	29°	×	×	×
SALINITY, ppt.	20	×	×	15	15	20	21	22	24	22	18	20	20	24	23	15	15	22	28	×	×	×
DEPTH METERS	1.8	0.0	2.7	8.0	3.4	1.5	2.6	1.5	3.0	2.6	6.0	1.2	2.7	1.5	6.0	2.4	2.4	3.4	8.0	0.5	1.5	2.9
ANIMAL NO.	601, 602	641, 603, 604, 605	607	608, 609	610	612.	615, 616.	619, 620.	623,	627, 628	630		634.	636, 637, 638, 639		642, 643	644, 645	646. 647	648, 649, 650	•	652	653
CAPTURE EVENT	1	2	ım	· 4	יור) (c	, [· œ	, o	10	11	12	۱ ۱ ۳	14	. E	16	17	18	19	20	21	22

MORPHOMETRIC DATA-BASE FOR DOLPHINS COLLECTED FROM THE MISSISSIPPI SOUND. ALL MEASUREMENTS ARE IN CENTIMETERS TABLE 4.

612 M	30.0	35.5	48.5	11.0	25.5	29.0	0.90	42.0	17.5	64.0	21.5	42.0	.27.0
611 F													
610 F													
609 M													
809 ¥	35.5	42.0	46.0	11.5	25.5	32.5	107.5	42.0	17.5	66.5	23.5	138.0	122.0
607 M	28.5	35.0	45.5	10.5	23.5	28.5	91.5	37.5	15.0	58.5	19.5	128.0	115.0
606 H	31.5	37.5	57.0	11.0	27.5	32.5	94.5	38.0	14.5	60.5	23.5	123.0	103.0
605													
604 M													
603 M													
602 F													
601 F													
ANIMAL NO.	S-Eye	S-Ear	S-0. of Flipper	S-Melon	S-A of Jaw	S-Blowhole	S-Dorsal	Pec (0. to T.)	Pec (Width)	Fluke (Width)	Ht. of Dorsal	Girth (Dorsal)	Girth (Umbilicus)

REMARKS:

S-Snout O-Origin A-Angle T-Tip Ht-Height

(CONTINUED) MORPHOMETRIC DATA-BASE, MEASUREMENTS IN CENTIMETERS. TABLE 4

ANIMAL NO.	613	614	615	616		618	619	620		622	623	624
SEX	M	ΓΉ	¤	[±4		Ŀ	Z	ָ ו ו		Σ) [, , , ,
S-Eye	32.5	30.0	30.5	32.5	31.0	32.0	30.5	28.5	34.5	30.0	30.0	31.5
S-Ear	40.0	35.5	36.5	39.5		39.0	36.0	35.0		36.5	36.5	39.0
S-Pec	51.0	48.5	51.5	50.0		51.0	45.5	45.5		49.5	45.0	54.5
S-Melon	11.0	10.5	10.0	10.0		12.0	11.0	10.0		12.0	10.5	11,0
S-A of Jaw	25.5	25.5	25.0	27.7		26.0	25.5	24.5		26.0	24.0	25.5
S-Blowhole	36.0	28.0	26.5	28.5		31.5	28.5	31.5		35.5	30.0	33,5
S-Dorsal	120.5	97.5	96.0	96.0		110.0	110.0	104.0		98.0	103.5	113.0
Pec (0. to T.)	45.5	38.5	38.0	36.5		39.5	39.5	37.5		37.5	40.5	42.0
Pec (Width)	19.0	15.5	15.0	15.5		16.0	15.5	15.0		15.5	15.5	17.0
Fluke (Width)	63.5	60.5	59.0	62.5		57.5	55.5	57.0		62.0	63.0	61.5
Ht. of Dorsal	23.5	22.0	18,5	22.0		20.5	19.5	19.5		20.5	21,5	23.5
Girth (Dorsal)	170.0	134.0	130.0	120.0		140.0	127.0	129.0		129.0	128.0	140.0
Girth (Umbilicus)	148.0	105.0	108.0	100.0		122.0	111.0	110.0		111.0	108.0	110.0

(CONTINUED) MORPHOMETRIC DATA-BASE, MEASUREMENTS IN CENTIMETERS. TABLE 4.

ANIMAL NO.	625	626	627	628	629	630	631	632		634	635	989
SEX	ഥ	ഥ	ĹŦ,	ഥ	ഥ	Z	Σ	Γ×		<u></u>	Σ) > \S
S-Eye	29.5	30.0	31.5	30.0	28.0	33.0	32.5	33.5	29.5	32.0	31.0	31.5
S-Ear	37.0	35.5	38.0	35.5	34.0	35,5	38.0	38,5		37.5	39.0	35.0
S-Pec	51.0	45.5	47.0	47.0	45.5	54.5	45.0	50.0		53.0	50.5	49.5
S-Melon	11.0	10.0	11.5	11.5	10.0	10.5	10.0	10.5		11.0	10.5	0.6
S-Jaw	24.5	23.0	24.5	25.5	24.0	27.0	28.5	28.5		26.0	26.5	25.5
S-B. Hole	31.5	32.0	28.5	32.5	28.5	28.0	29.5	29.5		30.5	28.5	28.5
S-Dorsal	97.5	92.0	103.5	101.5	91.0	100.5	94.5	101.0		104.5	108.5	97.0
Pec (0. to tip)	35.0	37.0	37.5	43.0	39.5	43.0	38.0	40.0		39.5	45.5	38.0
Pec (Width)	14.0	13.5	15.5	17.0	15.5	17.5	14.5	15.5		17.0	18.5	16.5
Fluke (Width)	50.0	49.5	61.5	63.5	59.5	0.99	55.5	57.5		65.0	62.5	58.0
Ht. of Dorsal	19.5	16.5	20.5	22.0	21.0	22.0	19.0	19.5		21.5	19.5	19.5
Girth (Dorsal)	119.0	117.0	139.0	134.0	128.0	134.0	130.0	124.0		144.0	158.0	127.0
Girth (Umbilicus)	0.96	0.66	124.0	110.0	103.0	115.0	109.0	105.0		130.0	134.0	108.0

(CONTINUED) MORPHOMETRIC DATA-BASE. MEASUREMENTS IN CENTIMETERS. TABLE 4.

647	<u> </u>	30.0	37.0	49.0	11.5	25.0	29.5	91.5	37.0	14.5	56.5	20.5	126.0	108.0
646	_ 	30.5	39.0	49.0	11.5	27.0	34.5	100.0	37.0	16.0	64.5	19.5	134.0	124.0
645	Ēų	30.5	37.0	55.5	10.5	24.5	25.5	101,5	39.5	16.0	63.5	19.5	151.0	131.0
644	[- -1	32.0	37.5	43.5	12.0	27.5	28.0	100.5	40.5	16.5	64.5	18.5	144.0	131.0
643	Z	32.0	38.5	49.5	13.0	23.0	28.5	0.96	40.5	15.5	65.5	19.5	130.0	113.0
					11.0									
641	ഥ	31.5	37.5	51.0	12.0	26.5	29.5	106.0	40.5	16.5	61.5	20.5	132.0	114.0
			_	_	10.5		_	_	_	_	_			
639	ĺΞą	31.5	38.5	52.5	11.0	28.0	30.0	113.0	40.5	17.5	60.5	18.5	156.0	136.0
					11.0									
637	ഥ	32.0	38.0	51.5	11.5	25.0	33.0	116.0	40.0	17.5	70.0	20.0	160.0	150.0
ANIMAL NO.	SEX	S-Eye	S-Ear	S-Pec	S-Melon	S-Jaw	S-B. Hole	S-Dorsal	Pec (0. to Tip)	Pec (Width)	Fluke (Width)	Ht. Dorsal	Girth (Dorsal)	Girth (Umbilicus)

TABLE 4. (CONTINUED) MORPHOMETRIC DATA-BASE. MEASUREMENTS IN CENTIMETERS.

653) } }	36.0	41.0	ייני טייני טייני	11.0	20.62	34.0	0.88	43.0	17.0	72.0	23.0	150.0	58.0
652	 \S	31.0	38.5	50.0	0.6	26.5	28.0	93.5	38.0	15.5	59.0	23.5	134.0	107.0
651	ſ±,	33.0	41.0	44.0	13.0	28.5	31.0	97.5	40.0	16.0	59.5	20.0	158.0	122.0
650	ſΞŧ	30.0	36.0	45.0	10.5	26.5	28.5	99.5	38.5	16.0	60.5	19,5	131.0	114.0
649	দ	32.0	37.0	50.5	9.5	23.5	30.5	0.06	35.0	14.0	57.5	19.0	112.0	102.0
648	Ξij	28.5	35.0	47.5	0°0	26.5	28.0	103.0	36.5	16.0	64.5	17.5	146.0	130.0
ANIMAL NO.	SEX	Snout - Eye	Snout - Ear	Snout - Pec	Snout - Melon	Srout - Jaw	Snout - Blowhole	Snout - Dorsal	Pec (Origin to Tip)	Pec (Width)	Fluke (Width)	Ht. Dorsal	Girth (Dorsal)	Girth (Umbilicus)

COMPARISON OF MEAN MORPHOMETRIC VALUES BETWEEN MALES AND FEMALES. MEASUREMENTS ARE IN CENTIMETERS TABLE 5.

CENTIMETERS	Š							
		MALES				FEMALES	ES	
MEASUREMENT	Z	ĺΧ	S	SE	Z	I×	SD	SE
Snout - Eye	20	31.08	1,98	0.44	33	31.10	1.67	0.29
Snout - Ear	20	37.40	1.94	0.43	33	37,59	1.71	0.29
Snout - Pec	20	49.10	2.71	0.60	33	49.69	3.60	0.62
Snout - Melon	20	10.90	0.95	0.21	33	10.91	0.82	0.14
Snout - Jaw	20	25.95	1.81	0.40	33	25.90	1.69	0.29
Snout - Blowhole	20	30.77	2.97	99.0	33	29.98	3.63	0.63
Snout - Dorsal	20	100.87	8.22	1.83	33	101.62	7,17	1.24
Pec 0 to T	20	39.97	2.91	0.65	33	38.97	2.02	0.35
Pec Width	20	16.27	1.40	0.31	33	15.92	1.07	0.18
Fluke Width	20	60.47	4.91	1.09	33	62.06	4.97	0.86
Ht. of Dorsal	20	21.02	2.08	0.46	33	20,59	1.84	0.32
Girth-Dorsal	20	134.72	13,65	3.05	33	135.66	12.21	2.12
Girth-Umbilicus	20	114.77	13.99	3.12	33	115.45	17.60	3.06

MEAN VALUES OF VARIOUS BODY MEASUREMENTS OF ALL THE DOLPHINS PROCESSED DURING THE STUDY. MEASUREMENTS IN CENTIMETERS TABLE 6.

MEASUREMENT	Z	۱×	S	83
Snout - Eye	53	31.09	1.77	0.24
Snout - Ear	53	37,51	1.78	0.24
Snout - Pec	53	49.47	3,28	0.45
Snout - Melon	53	10.90	0.86	0.11
Snout - Jaw	53	25.91	1.72	0.23
Snout - Blowhole	53	30.28	3,39	0.46
Snout - Dorsal	53	101.34	7.51	1.03
Pec - O to T	53	39,34	2.42	0.33
Pec Width	53	16.05	1.20	0.16
Fluke Width	53	61.46	4.96	0.68
Ht Dorsal	53	20.75	1,93	0.26
Girth Dorsal	53	135,31	12.65	1.73
Girth Umbilicus	53	115,19	16.19	2.22

MORPHOMETRIC MEASUREMENTS OF THE 53 DOLPHINS STUDIED EXPRESSED AS A FRACTION OF THE TOTAL LENGTH. TABLE 7.

ANIMAL 601 602 603 604 605 606 607 608 609 610 611 612 SEX F R M M F F F M M M F F F M M M F F F M M M F F F M M M F F F M M M F F F M M M F F F M M M F F F M M M F F F M M M F F F M M M F F F M M M F F F M M M F F F M M M F F F M M M F F F M M M F F F M M M F F F M M M F F F M M M F F F M M M F F F F M M M F F F M M M F F F M M M F F F M M M M F F F M M M M F F F M M M M F F F M M M M F F F M M M M F F F M M M M M F F F M M M M M F F F M M M M F F F M M M M M F F F M M M M M F F F M M M M M F F F M M M M M F F F M M M M M F F F M M M M M F F F M M M M M F F F M M M M M F F F M M M M M F F F M M M M M F F F M M M M M F F F M M M M M M F F F M M M M M M F F F M		7	28	52	508	747	601	124	154	180	075	274	392	609	545
601 602 603 604 605 606 607 608 609 610 F F M M M M F F F M M M M F F F M M M M F F F M M M M F F F M M M M M F F F M M M M M M F F F M		¥ ₩													
601 602 603 604 605 606 607 608 609 609 F F M M M M M M F F F M M M M M M M M		611 F	.137	.164	.227	.044	.113	.056	451	.170	.073	.280	.080	.569	.510
601 602 603 604 605 606 607 608 F F M M M F F F M M M M F F F M M M M		610 F	.123	.152	.184	.048	660	.130	.439	.164	.065	.272	.093	.569	.626
601 602 603 604 605 606 607 F F F M I I I E F M I I I E I I I I I I I I I I I I I I I		609 M	.140	165	.233	.051	.123	.158	.453	.175	.077	.299	100	.621	.537
601 602 603 604 605 606 F F M M F F F I 127 .126 .146 .144 .133 .148 .162 .165 .173 .175 .153 .176 .211 .217 .225 .230 .215 .268 .042 .045 .057 .055 .049 .051 .091 .115 .110 .117 .108 .129 .136 .131 .165 .149 .139 .153 .435 .450 .442 .451 .459 .445 .072 .072 .072 .069 .067 .068 .283 .282 .245 .269 .264 .285 .093 .095 .103 .093 .104 .110 .542 .610 .576 .538 .565 .580		608 M	.143	.170	.190	.046	.103	.131	.435	.170	.070	.269	.095	.558	.493
601 602 603 604 605 F F M M F 127 .126 .146 .144 .133 .162 .045 .057 .055 .049 .091 .115 .110 .117 .108 .136 .131 .165 .149 .139 .435 .450 .442 .451 .459 .093 .095 .103 .093 .104 .542 .610 .576 .538 .565 .457 .502 .495 .456 .504		607 M	.137	.169	.219	.050	.113	.137	:442	.181	.072	.282	.094	.618	.555
601 602 603 604 F F M M 127 .126 .146 .144 .162 .165 .173 .175 .211 .217 .225 .230 .042 .045 .057 .055 .091 .115 .110 .117 .136 .131 .165 .149 .435 .450 .442 .451 .072 .072 .072 .069 .283 .282 .245 .269 .093 .095 .103 .093 .457 .502 .495 .456		606 F	.148	.176	.268	.051	.129	.153	.445	.179	.068	.285	.110	.580	.485
601 602 603 F F M I .127 .126 .146 .162 .165 .173 .211 .217 .225 .042 .045 .057 .091 .115 .110 .136 .131 .165 .435 .450 .442 .168 .178 .170 .072 .072 .072 .283 .282 .245 .093 .095 .103 .542 .610 .576 .457 .502 .495		605 F	.133	.153	.215	.049	.108	.139	.459	.159	.067	.264	.104	.565	.504
601 602 F. 1.27 .126 .162 .165 .211 .217 .042 .045 .091 .115 .136 .131 .435 .450 .168 .178 .072 .072 .283 .282 .093 .095 .457 .502		604 M	.144	.175	.230	.055	.117	.149	.451	.175	690.	.269	.093	.538	.456
601 F		603 M	.146	.173	. 225	.057	.110	.165	.442	.170	.072	.245	.103	.576	.495
		602 F	.126	.165	.217	.045	.115	.131	.450	.178	.072	.282	.095	.610	.502
ANIMAL SEX Snout-Eye Snout-O. Flipper Snout-A. Jaw Snout-A. Jaw Snout-Blowhole Snout-Dorsal Pec (0. to tip) Pec (Width) Ht. of Dorsal Girth (Unbilicus)	WGIII.	601 F	.127	.162	.211	.042	.091	.136	.435	.168	.072	.283	.093	.542	.457
		ANIMAL SEX	Snout-Eye	Snout-Ear	Snout-O. Flipper	Snout-Melon	Snout-A. Jaw	Snout-Blowhole	Snout-Dorsal	Pec (0. to tip)	Pec (Width)	Fluke (Width)	Ht. of Dorsal	Girth (Dorsal)	Girth (Umbilicus)

(CONTINUED) MORPHOMETRIC MEASUREMENTS-EXPRESSED AS A FRACTION OF THE TOTAL LENGTH. TABLE 7.

624 M	.131 .163 .228 .046 .140 .472 .175 .071	o r
623 F	.135 .164 .202 .047 .108 .135 .466 .182 .069 .283 .096	
622 M	.137 .227 .055 .119 .162 .172 .071 .284 .094	.000
621 M	.161 .186 .235 .051 .137 .142 .450 .186 .072 .086	.407
620 F	.129 .159 .206 .045 .111 .143 .472 .170 .068 .259	200.
619 M	.138 .205 .205 .049 .115 .128 .497 .178 .070 .251	700.
618 F	.137 .168 .219 .051 .112 .135 .474 .170 .068	. 525
617 F	.124 .150 .204 .042 .104 .126 .381 .148 .060 .248	.40T
616 F	.150 .231 .046 .128 .131 .444 .168 .071 .289	705.
615 M	.143 .172 .242 .047 .117 .125 .452 .179 .070 .278 .087	, DOW
614 F	.138 .163 .223 .048 .117 .129 .449 .177 .071	.483
613 M	.127 .156 .200 .043 .100 .141 .472 .074 .074	. 280
ANIMAL	Snout-Eye Snout-Ear Snout-O. Flipper Snout-A. Jaw Snout-Blowhole Snout-Dorsal Pec (O. to tip) Pec (Width) Fluke (Width) Ht. of Dorsal Girth (Dorsal)	Girth (umpilicus)

(CONTINUED) MORPHOMETRIC MEASUREMENTS-EXPRESSED AS A FRACTION OF THE TOTAL LENGTH. TABLE 7.

ANIMAL SEX	625 F	626 F	627 F	628 F	629 F	630 M	631 M	632 F	633 M	634 F	635 M	636 M
	.141	.155	.141	.130	.129	.142	.151	.146	.119	.142	.120	.145
	.177	.183	.171	.154	.157	.153	.176	.168	.150	.167	.151	.162
1pper	.245	.235	.211	.204	.210	.234	.209	.218	.199	.236	.196	.229
1	.052	.051	.051	.050	.046	.045	.046	.045	.046	.049	.040	.041
×	.117	.119	.110	.110	.111	.116	.132	.124	.109	.116	.103	.118
ole	.151	.165	.128	.141	.131	.120	.137	.128	.142	.136	.110	.131
_	.468	476	.466	441	.421	.433	.439	.441	449	.466	.422	.449
tip)	.168	.191	.168	.186	.182	.185	.176	.174	.176	.176	.177	.175
ı	.067	690.	690.	.073	.071	.075	.067	.067	.075	.075	.071	•016
h)	.240	.256	.277	.276	.275	.284	.258	.251	.270	.290	.243	.268
al	.093	.085	.092	.095	.097	.094	.088	.085	.105	.095	.075	060.
al)	.572	909.	.626	.582	. 592	.577	.604	.541	.642	.642	.614	.587
Girth (Umbilicus)	.461	.512	.558	.478	476	.495	.506	.458	. 585	.580	.521	.500

(CONTINUED) MORPHOMETRIC MEASUREMENTS-EXPRESSED AS A FRACTION OF THE TOTAL LENGTH. TABLE 7.

ANIMAL	637	638	639	640	64 1	642	643	644	645	646	647	
SEX	F	F	F	F	F	M	M	F	F	F	F	
Shout-Eye Shout-O. Flipper Shout-O. Flipper Shout-Melon Shout-A. Jaw Shout-Blowhole Shout-Dorsal Pec (O. to tip) Pec (Width) Fluke (Width) Ht. of Dorsal Girth (Umbilicus)	.129 .153 .207 .046 .100 .133 .467 .161 .070 .282 .080	.125 .153 .210 .043 .112 .145 .064 .261 .076	.127 .155 .211 .044 .1120 .120 .070 .070 .074	.135 .169 .226 .044 .108 .129 .466 .173 .069 .093	.134 .159 .217 .051 .112 .125 .451 .070 .087 .561	.119 .204 .049 .132 .427 .177 .069 .092	.144 .174 .223 .058 .104 .128 .434 .183 .070 .088 .088	.137 .161 .187 .051 .118 .120 .433 .174 .071	127 154 232 043 102 106 424 165 066 081 631	.132 .169 .213 .050 .117 .150 .160 .069 .280 .084 .539	.139 .172 .227 .053 .116 .137 .425 .067 .067 .085	

TABLE 7. (CONTINUED) MORPHOMETRIC MEASUREMENTS-EXPRESSED AS A FRACTION OF THE TOTAL LENGTH.

653 F	*	*	*	*	*	*	*	*	*	*	*	*	×
652 M	.128	.159	.207	.037	.109	.116	.387	.157	.064	.244	.097	.556	.443
651 F	.146	.181	.194	.057	.126	.137	.431	.176	.070	.263	.088	669.	.539
650 F	.138	.166	.208	.048	.122	.131	.460	.178	.074	.280	060.	909.	.527
649 F	.153	.177	.242	.045	.112	.146	.432	.168	.067	.276	.091	.538	.490
648 F	.122	.150	.204	.040	.114	.120	.443	,157	.068	.278	.075	.629	.560
ANIMAL SEX	Snout-Eye	Snout-Ear	Snout-O. Flipper	Snout-Melon	Snout-A. Jaw	Snout-Blowhole	Snout-Dorsal	Pec (0. to tip)	Pec (Width)	Fluke (Width)	Ht. of Dorsal	Girth (Dorsal)	Girth (Umbilicus)

Remarks:

*Length on animal no. 653 not available.

MEAN VALUES OF THE BODY MEASUREMENTS FOR ALL ANIMALS AFTER THEY WERE CONVERTED TO A FRACTION OF THE TOTAL LENGTH. TABLE 8.

SE	.001 .002 .0006 .001 .002 .002	.005
SD	.009 .016 .009 .009 .009 .003	.036
×	.136 .217 .047 .113 .132 .172 .070	.592 .510
Z	222222222222222222222222222222222222222	52 52
TEST	Snout - Eye Snout - Ear Snout - O. of Pec Snout - Melon Snout - A. of Jaw Snout - Blowhole Snout - Dorsal Pec (O. to Tip) Pec (Width) Ht. of Dorsal	Girth (Dorsal) Girth (Umbilicus)

COMPARISON OF MEAN BODY MEASUREMENTS OF MALE AND FEMALE DOLPHINS. ALL MEASUREMENTS ARE EXPRESSED AS FRACTIONS OF THE TOTAL LENGIH. TABLE 9.

	SE SE	001	001	003	900	001	003	003	001	005	002	001	200	. 008
FEMALES	SD	800.	.009	.017	.003	008	.018	.019	600	.003	.013	.008	.040	.047
FEW	×	.135	.164	.217	.047	.112	.130	.446	.170	690.	.270	680.	. 592	.512
	z	32	32	32	32	32	32	32	32	32	32	32	32	32
	SE	.002	.002	•003	.001	.002	.003	.004	.001	.0007	.004	.001	900.	800.
	SD	.011	600.	.015	.005	.010	.014	.021	900.	.003	.018	900*	.030	.040
MALES	×	.137	.165	.217	.047	.114	.135	.445	.176	.071	.267	.092	.594	.506
	N								20					
	TEST	Snout - Eye	Snout - Ear	Snout - O. of F.	Snout - Melon	Snout - A. of Jaw	Snout - Blowhole	Snout - Dorsal	Pec (0. to T.)	Pec (Width)	Fluke (Width)	Ht. of Dorsal	Girth (Dorsal)	Girth (Umbil.)

AVERAGE LENGTH AND WEIGHT FOR MALES, FEMALES AND BOTH SEXES COMBINED. MEASUREMENTS ARE IN KG. AND CM. TABLE 10.

	Z	×	S	SE
Combined male & female weight	53	143.64	31.77	4.36
Combined male & female length	52	227.50	14.98	2.07
males weight	. 20	142,80	35.79	8.00
males length	20	226.30	16.16	3.61
females weight	33	144.15	29.64	5.16
females length	32	228.25	14.40	2.54

TABLE 11. HEMATOLOGICAL ANALYSES FOR THE 53 DOLPHINS SAMPLED FROM THE MISSISSIPPI SOUND.

611 F		13.5	3.1	12.7	38.8	125.2	41.0	32.7	162.0	47.0	1.0	10.0	1.0	41.0	×	×	×
610 F																	×
609 M		13.4	3.6	14.8	44.8	121.3	40.2	33.1	136.0	37.0	12.0	11.0	1.0	39.0	×	×	×
608 M		11.2	3.2	12.7	40.5	122.9	38.6	31.4	215.0	27.0	19.0	28.0	2.0	23.0	1.0	×	×
M M		8.0	3.3	13.8	42.7	126.3	41.1	32.5	136.0	44.0	17.0	21.0	×	18.0	×	×	2.0
606 F		7.6	3 8	15.2	50.5	129.8	39.2	30.2	229.0	41.0	9.0	28.0	1.0	19.0	2.0	×	×
605 F		10.8															
604 M		9.5	4.1	15.7	49.0	118.1	37.8	31.9	199.0	50.0	4.0	11.0	×	35.0	×	×	×
603 M		10.1	3.8	14.3	44.9	117.7	37.6	31.9	147.0	47.0	5.0	16.0	2.0	29.0	×	1.0	×
602 F		8.3		13,8	43.2	129.9	41.4	31.9	170.0	42.0	0.6	16.0	1.0	32.0	×	×	×
601 F		8.2	3.2	13.7	42.0	128.9	42.1	32.7	124.0	26.0	2.0	17.0	1.0	52.0	2.0	×	×
NUMBER SEX	TEST	MBC	SEC.	Hgb.	Het	MCV	E E	MCHC	PLT	Seg	Band	Lymph	Mono	EOS	A-typical	Baso	NRBC

WBC x 10^3 ; RBC x 10^6 ; Hgb.-gm; Hct-%; MCV- um³; MCH-uug; MCHC-g/dl; PLI-x 10^3 ; Seg.-%; Band-%; Lymph-%; Mono-%; EOS-%; Atypical-%; Baso-%; NRBC-% Units:

TABLE 11. (CONTINUED) HEMATOLOGICAL ANALYSES FOR THE 53 DOLPHINS SAMPLED FROM THE MISSISSIPPI SOUND.

620 621 622 F M M		10.9 10.7 11.9	14.4	44.7	120.9	8. 8. 9.	32.1	165.0	38.0	4.0	20.0	×	38.0	×	×	×
619 M		11.8	4. 7. O. 8.	54.0	133.4	41.5	31.1	142.0	34.0	o. 9	22.0	2.0	36.0	×	×	×
618 F		ស្ត	ω <u>Δ</u> Γ	44.9	113,3	37.4	33.0	136.0	32.0	4.0	25.0	1.0	38.0	×	×	×
617 F		0.0	3.7	48.6	128.9	44.0	34.1	167.0	40.0	3.0	28.0	×	28.0	1.0	×	×
616 F		9.1	ы. 4. ч.	46.2	133.9	44.3	33.1	149.0	38.0	1.0	24.0	1.0	36.0	×	×	×
615 M		×	××	< ⋈	×	×	×	×	×	×	×	×	×	×	×	×
614 F			₩. r.													
613 M		11.1	4.0	44.6	110.4	37.2	33.6	109.0	49.0	0.9	7.0	×	38.0) >	: ×	: ×
612 M			ກຸ ເ ຫຼື ເ		•	'		•	•							
NUMBER	TEST	WBC	RBC	HOT.	NO.	MCH	MCHC	PIJ	Sec 1	Rand	Lymph	MODO	FOCE	L	A-LYPICAL Page	NOBC

HEMATOLOGICAL ANALYSES FOR THE 53 DOLPHINS SAMPLED FROM THE MISSISSIPPI SOUND. 9.8 3.2.8 13.7 13.7 40.7 40.7 22.0 22.0 22.0 22.0 22.0 X X X X 15.8 3.5.1 15.6 49.3 37.6 43.7 31.7 26.0 1.0 1.0 1.0 631 M 18.1 3.8 16.4 49.2 42.6 33.3 164.0 26.0 40.0 3.0 X 630 M 629 F 111.3 3.7.3 115.5 115.5 115.5 115.0 628 F 627 F 626 F 111.4 3.6.1 13.8.0 13.8.0 166. 625 F 624 M (CONTINUED) 623 F TABLE 11. WBC
RBC
Hgb.
Hct
MCH
MCH
MCH
PLT
Seg
Band
Lymph
Monc
EOS
A-typical
Baso
NRBC

I SOUND.

643 M		o	ە م ە	0.0	14.0	44.7	0.47	50.2	32./	126.0	42.0	1.0	36.0) } }	210	; ×	: ×	: ×
641 F		o	, w	, <u></u>	7.0	42.0 117 5	30.7	2.60	0,00	144.0	82.0	2.0	10.0	0.0	4.0	· ×	×	×
640 F																		
639 F		7.9		14.2	43.4	130.9	42.9	32.7	0 701	0 · 1 · 1	46.0	×	38.0	1.0	15.0	×	×	×
638 F																		
637 F		6.9	3.7	16.1	49.7	131,9	42.8	32.4	116.0	0.01	03.0	×	30.0	1.0	16.0	×	×	×
636 M		12.8	3.8	14.9	44.8	117.9	39.3	33,3	190.0	100	0.70	7.0	34.0	×	26.0	1.0	×	1.0
635 M		7.0	3.4	13.5	41.2	120.4	39.6	32.9	159.0	0.00	0.00	16.0	22.0	×	26.0	×	×	×
634 F		9.5	3.4	14.6	42.6	122.2	42.0	34.4	115.0	0 13	2.70	< <	0.6	1.0	23.0	×	×	×
NUMBER SEX	TEST	WBC	RBC	Hgb.	Hct	MCV	MCH	MCHC	PLT	נים ל	. T	palia.	uduki-1	Monc	EOS	A-typical	Baso	NRBC
	634 635 636 637 638 639 640 F M M F F F F	634 635 636 637 638 639 640 641 642 F M M F F F F F M	634 635 636 637 638 639 640 641 642 F M M F F F F F M M 9.2 7.0 12.8 6.9 13.8 7.9 17.5 6.3 11.7	634 635 636 637 638 639 640 641 642 F M M F F F F F M M 9.2 7.0 12.8 6.9 13.8 7.9 17.5 9.3 11.7 3.4 3.4 3.8 3.7 3.1 3.3 3.73 2.5 2.0	634 635 636 637 638 639 640 641 642 F M M F F F F F M 9.2 7.0 12.8 6.9 13.8 7.9 17.5 9.3 11.7 3.4 3.4 3.8 3.7 3.1 3.3 3.73 3.6 3.9 14.6 13.5 14.9 16.1 13.7 14.2 14.1 14.2	634 635 636 637 638 639 640 641 642 F M M F F F F F F M 9.2 7.0 12.8 6.9 13.8 7.9 17.5 9.3 11.7 3.4 3.4 3.8 3.7 3.1 3.3 3.73 3.6 3.9 14.6 13.5 14.9 16.1 13.7 14.2 14.1 14.2 15.7 42.6 41.2 44.8 49.7 41.2 43.4 43.7 7.2 15.7	634 635 636 637 638 639 640 641 642 F M M F F F F F F M 9.2 7.0 12.8 6.9 13.8 7.9 17.5 9.3 11.7 3.4 3.4 3.8 3.7 3.1 3.3 3.73 3.6 3.9 14.6 13.5 14.9 16.1 13.7 14.2 14.1 14.2 15.7 42.6 41.2 44.8 49.7 41.2 43.4 43.7 42.8 47.4 122.2 120.4 117.9 131.9 131.6 130.9 117.1 17.5	634 635 636 637 638 639 640 641 642 F M M F F F F F M M 9.2 7.0 12.8 6.9 13.8 7.9 17.5 9.3 11.7 3.4 3.4 3.8 3.7 3.1 3.3 3.73 3.6 3.9 14.6 13.5 14.9 16.1 13.7 14.2 14.1 14.2 15.7 42.6 41.2 44.8 49.7 41.2 43.4 43.7 42.8 47.4 122.2 120.4 117.9 131.9 131.6 130.9 117.1 117.5 119.4 42.0 39.6 39.3 42.8 43.7 42.9 37.9 20.2	634 635 636 637 638 639 640 641 642 F M M F F F F F M M 9.2 7.0 12.8 6.9 13.8 7.9 17.5 9.3 11.7 3.4 3.4 3.8 3.7 3.1 3.3 3.73 3.6 3.9 14.6 13.5 14.9 16.1 13.7 14.2 14.1 14.2 15.7 42.6 41.2 44.8 49.7 41.2 43.4 43.7 42.8 47.4 122.2 120.4 117.9 131.9 131.6 130.9 117.1 117.5 119.4 42.0 39.6 39.3 42.8 43.7 42.9 37.9 39.2 39.6 34.4 32.9 33.3 32.4 33.2 32.7 32.3 32.9	634 635 636 637 638 639 640 641 642 F M M F F F F F F M 9.2 7.0 12.8 6.9 13.8 7.9 17.5 9.3 11.7 3.4 3.4 3.5 14.9 16.1 13.7 14.2 14.1 14.2 15.7 42.6 41.2 44.8 49.7 41.2 43.4 43.7 42.8 47.4 122.2 120.4 117.9 131.9 131.6 130.9 117.1 117.5 119.4 42.0 39.6 39.3 42.8 43.7 42.9 37.9 39.2 39.6 34.4 32.9 33.3 32.4 33.2 32.7 32.3 33.3 33.2	634 635 636 637 638 639 640 641 642 F M M F F F F F F M 9.2 7.0 12.8 6.9 13.8 7.9 17.5 9.3 11.7 14.6 13.5 14.9 16.1 13.7 14.2 14.1 14.2 15.7 42.0 39.6 39.3 42.8 43.7 42.9 37.9 39.2 39.6 34.4 32.9 33.3 32.4 33.2 32.7 32.3 33.3 33.2 115.0 159.0 190.0 116.0 144.0 104.0 140.0 144.0 171.0	634 635 636 637 638 639 640 641 642 F M M F F F F F F M 9.2 7.0 12.8 6.9 13.8 7.9 17.5 9.3 11.7 14.6 13.5 14.9 16.1 13.7 14.2 14.1 14.2 15.7 42.6 41.2 44.8 49.7 41.2 43.4 43.7 42.8 122.2 120.4 117.9 131.9 131.6 130.9 117.1 117.5 119.4 42.0 39.6 39.3 32.4 33.2 32.7 32.3 33.3 33.2 34.4 32.9 33.3 32.4 33.2 32.7 32.3 33.3 33.2 115.0 159.0 190.0 116.0 144.0 104.0 140.0 144.0 171.0 67.0 36.0 37.0 53.0 61.0 46.0 39.0 82.0 30.0	634 635 636 637 638 639 640 641 642 F M M F F F F F F M 9.2 7.0 12.8 6.9 13.8 7.9 17.5 9.3 11.7 14.6 13.5 14.9 16.1 13.7 14.2 14.1 14.2 15.7 42.6 41.2 44.8 49.7 41.2 43.4 43.7 42.8 47.4 122.2 120.4 117.9 131.9 131.6 130.9 117.1 117.5 119.4 42.0 39.6 39.3 32.4 33.2 32.7 32.3 33.3 33.2 115.0 159.0 190.0 116.0 144.0 104.0 140.0 144.0 171.0 67.0 36.0 37.0 53.0 61.0 46.0 39.0 82.0 30.0	634 635 636 637 638 639 640 641 642 F M M F F F F M 9.2 7.0 12.8 6.9 13.8 7.9 17.5 9.3 11.7 14.6 13.5 14.9 16.1 13.7 14.2 14.1 14.2 15.7 42.0 39.6 39.3 42.8 43.7 42.9 37.9 39.2 34.4 32.9 33.3 32.4 33.2 32.7 32.3 33.3 115.0 159.0 190.0 116.0 144.0 104.0 144.0 171.0 X 16.0 2.0 X 5.0 X 5.0 X X 2.0 34.0 30.0 14.0 38.0 11.0 10.0 31.0	634 635 636 637 638 639 640 641 642 F M M F F F F F M 9.2 7.0 12.8 6.9 13.8 7.9 17.5 9.3 11.7 14.6 13.5 14.9 16.1 13.7 14.2 14.1 14.2 15.7 42.0 39.6 39.3 42.8 49.7 41.2 43.4 43.7 42.8 115.0 159.0 190.0 116.0 144.0 104.0 144.0 171.0 X 16.0 X 53.0 61.0 46.0 39.0 82.0 30.0 X 16.0 X X 1.0 X X 1.0 X 1.0 X 1.0 1.0 2.0 X 1.0 X X 1.0 X X 1.0 X 1.0 X 1.0 1.0 1.0 2.0	634 635 636 637 638 639 640 641 642 F M M F F F F F F M 9.2 7.0 12.8 6.9 13.8 7.9 17.5 9.3 11.7 14.6 13.5 14.9 16.1 13.7 14.2 14.1 14.2 15.7 42.6 41.2 44.8 49.7 41.2 43.4 43.7 42.8 47.4 122.2 120.4 117.9 131.9 131.6 130.9 117.1 117.5 119.4 42.0 39.6 39.3 32.4 33.2 32.7 32.3 33.3 33.2 115.0 159.0 190.0 116.0 144.0 104.0 144.0 144.0 171.0 67.0 36.0 37.0 53.0 61.0 46.0 39.0 82.0 30.0 X 16.0 X 5.0 X 5.0 X 5.0 X 2.0 X 2.0 3.0 11.0 X X 1.0 X 1.0 X 1.0 1.0 1.0 2.0 X 23.0 25.0 25.0 16.0 20.0 15.0 48.0 4.0 36.0	634 635 636 637 638 639 640 641 642 F M M F F F F F F M 9.2 7.0 12.8 6.9 13.8 7.9 17.5 9.3 11.7 42.6 41.2 44.8 49.7 41.2 43.4 43.7 42.8 42.0 39.6 39.3 42.8 43.7 42.9 39.2 34.4 32.9 33.3 32.4 33.2 32.7 32.3 33.3 115.0 159.0 190.0 116.0 144.0 104.0 144.0 171.0 X 16.0 2.0 X 5.0 X 5.0 X 7 2.0 5.0 X X 1.0 X 1.0 X 1.0 X 1.0 X 1.0 X X 2.0 23.0 26.0 26.0 16.0 20.0 15.0 48.0 4.0 36.0 X X X 1.0 X X X X 1.0 X X X 1.0 X X X X X X X X X X X X X X X X X X X	635 636 637 638 639 640 641 642 M M F F F F F M TO 12.8 6.9 13.8 7.9 17.5 9.3 11.7 13.5 14.9 16.1 13.7 14.2 14.1 14.2 15.7 120.4 117.9 131.9 131.6 130.9 117.1 117.5 119.4 39.6 39.3 42.8 43.7 42.9 37.9 39.2 39.6 33.9 33.3 32.4 33.2 32.7 32.3 33.3 33.2 159.0 190.0 116.0 144.0 104.0 144.0 171.0 X X X X X X X X X X X X X X X X X X X

(CONTINUED) HEMATOLOGICAL ANALYSES FOR THE 53 DOLPHINS SAMPLED FROM THE MISSISSIPPI SOUND. TABLE 11.

653 F	8.4 15.1 46.0 125.8 41.4 32.9 130.0 76.0 2.0 2.0 15.0
652 M	*****
651 F	*****
650 F	9.6 3.9 16.2 47.9 121.3 41.2 33.9 146.0 39.0 X X X
649 F	10.1 3.7 16.2 49.1 129.4 42.8 33.1 149.0 34.0 X 33.0 X
648 F	11.5 3.5 124.3 124.2 42.4 34.1 160.0 33.0 1.0 28.0 X
647 F	15.1 14.6 14.6 42.5 120.9 41.4 34.2 151.0 20.0 X 29.0 X 51.0
646 F	14.4 14.7 129.6 44.0 33.9 121.0 40.0 5.0 X X X X
645 F	5.8 3.2 14.2 42.8 133.4 44.4 44.4 33.3 37.0 25.0 X X X X 1.0
644 F	10.4 3.4 13.7 41.4 121.3 40.3 33.2 106.0 41.0 2.0 2.0 2.0 X X X
	, je
NUMBER SEX TEST	WBC RBC HGD. Hct MCV MCH MCH MCHC PLT Seg Band Lymph Mono BOS A-typical Baso NRBC

Remarks:

Samples for Animal Nos. 615, 651, and 652 coagulated.

TABLE 12. MEAN VALUES FOR HEMATOLOGICAL PARAMETERS FOR ALL THE DOLPHINS SAMPLED DURING THE STUDY.

	1																
	SE	.40	0.4	14	.465	8.7	.31	.13	4.11	1.66	89.	1.48	.11	1.52	80-	.03	• 05
	SD	2.84	.27	66.	3.23	6.13	2.18	68.	29.09	11.70	4.81	10.44	.79	10.76	.54	.20	•36
	I×	10.68	3,64	14.82	45.17	124.33	40.87	32,86	147.70	41.84	3.92	22.92	0.70	30.36	-20	.04	.10
	N	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	20
8	TEST	WBC	RBC	Hgb.	Hct.	MCV	MCH	MCHC	PLT.	SEGS	BANDS	LYMPH	MONO	EOS	ATYPICAL	BASO	NRBC

TABLE 13. COMPARISON OF HEMATOLOGICAL PARAMETERS FOR MALE AND FEMALE DOLPHINS

	SE	0	0.0	90.0	0.25	0.78		0 43 7	0.17	6.84	1.79	1.44	2.34	0.23	1.69	0.03	0.08	0.13
	SD	, 1,	7.7	0.24	1.04	3,29	6.72	78.	. 74	29.02	7.59	6.13	9.95	0.97	7,15	0.32	0.32	0.55
MALES	١×	11.06	100	3.75	14.81	45.73	122.03	39,57	32,42	154.89	39,44	6.67	22,33	0.67	30.67	0.11	0.11	0.22
	Z	α) C	8Τ	18	18	18	18	18	18	18	18	18	18	18	18	18	18
	SE	0 52	1 110	0.00	0.17	0.57	0.97	0.36	0.16	5.09	2.38	0.54	1.92	0.12	2.20	0.11	×	.03
FEMALES	SD	2,91	100	77.0	0.97	3.20	5.47	2.03	0.89	28.79	13.41	3.01	10.85	0.68	12.44	0.62	×	.18
	×	10.47	2 57	70.0	14.83	44.86	125.62	41.61	33.10	143.66	43.19	2.38	23.25	.719	30.19	.25	×	.031
	Z	32	33	76	32	32	32	32	32	32	32	32	32	32	32	32	32	32
																ı		
	TEST	MBC	RR	} ;	Hop.	HCT	MCV	MCH	MCHC	PLT	SEC	BANDS	LYMPH	MONO	EOS	MYPICAL	BASO	NABC

PPI SERIM CHEMISTRY AND FINZYME ANALYSES TABLE 14.

ISSIPP	613 M		с Ф	7.7	0	3 %	1.1	186	7.3	ig m	0.1	71	463	246	157	4.5	115	30	27	184	×	
FROM THE MISSISSIPP	612 M		0	4 0	27,	. 99	1.2	245	7.9	, 5	0.2	127	009	300	159	ص ص	111	30	21	224	×	
FROM TH	611 F		9 4		81	09	1.7	205	8.5	3.4	0.1	198	459	192	158	4.3	117	18	13	114	×	
SAMPLED	610 F		8	4.1	100	57	1.1	149	6.9	3.2	0.1	86	441	224	156	4.2	117	27	12	138	×	
	609 M		8.0	4.6	107	64	1.7	176	7.0	3.2	0.5	350	009	300	155	ω «	112	31	16	162	×	
DOLPHINS	608 M		9.2	4.2	85	28	1.2	129	7.4	3.1 1.	0.1	200	009	269	156	4.9	118	56	14	108	×	
理 53	607 M		4.6	9.9	128	09	8.0	169	7.5	3.4	0.1	350	009	276	154	8 .	116	23	13	156	×	
FOR	606 F		11.1	6.1	124	72	1.7	165	7.3	3.6	0.2	320	009	285	160	4.6	917	T3		238	×	
ANALYSES	605 F		7.6	4.1	139	54	0.7	192	6.9	m m	0.2	320	586	200	158	ο . Υ .	116	67	13	901	×	
	604 M		9.1	ი ი	105	29	1.2	230	6.4	Ċ, α m	7.5	16/	009	300	159	J. i	115	0 Y	16 262	897	×	
AND ENZYME	603 M		9.0	4.7	100	29	1.4	181	တ္ဖ	ກຸ	1.0	7.47 7.00 7.00	282	אל ב עיק	10g	7. 	111	ς γ	T T -	146	×	
MLSTRY A	602 F		9.8	3.4	66 6	85	L.9	772	ە. ك. د	ກຸດ	0 r	1/3	480	150	0 0	ν. υ.	717	97	111	140	×	
SOUND.	601 F		6.8	4.6	Q (52	9.0	104	0.7	υ c	7,000	74	256	150	0 0	0 0 -	27	71	15	0 ;	×	
• 5-1 CHICALI	NUMBER SEX	TEST	CA++	I-FHOS.		יאיסים בייקר) 	T.P.	ALR	7-BT.	A-PHOS	T.D.H	SGOT	e N	×	゙゙゙゙゙゙	8්	מיסיר דעזאנק	ACC NO.		Z F	

UNITS:

CA++ - mg\$; I-PHOS - mg\$; GLU. - mg\$; B.U.N. - mg\$; U-AC - mg\$; CHOL - mg\$;
T.P. - gm\$; ALB - gm\$; T-BIL - mg\$; A-PHOS - iu/L; L.D.H. - iu/L; SGOT - iu/L:
NA - Meg/L; K - meg/L: c1 - meg/L; CO2 - meg/L: AMYLASE - iu/L; CPK - iu/L;
SGPT - iu/L

TABLE 14. (CONTINUED) SERUM CHEMISTRY AND ENZYME ANALYSES.

626 F		9.6 169 169 48 0.9 217 350 600 300 155 119 119 378	
625 F		9.1 66.1 1.50 1.2 1.64 1.54 1.54 1.54 1.11 1.11 4.2 1.28 1.28 1.11 1.11 1.28 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.3	
624 M		9.7 4.9 68 1.6 1.6 1.98 3.3 0.6 3.0 600 300 158 115 24 20 104	
623 F		10.6 5.8 134 57 0.7 206 7.3 3.7 0.7 350 600 300 112 112 12 174	
622 M		9.4 122 122 173 173 173 173 173 173 1157 1157 1150 1150	
621 M		9.1 142 181 1.2 181 181 0.0 300 300 157 115 13	
620 F		10.2 6.7 90 68 2.0 174 7.7 4.0 0.0 350 600 300 112 112 21 17	
619 M		9.6 5.4 127 127 227 7.1 350 350 350 112 112 112 128 128 128	
618 F		9.3 44.2 96.5 1.4 1.98 7.5 3.00 3.00 1.17 2.2 1.17 1.34 X	
617 F		9.7 4.5 1112 59 0.9 259 7.8 3.7 0.2 350 800 1155 116 27 27 27 27 27	
616 F		9.6 4.3 1113 63 63 0.8 189 8.1 350 350 112 32 32 112 32 13 13 188	
615 M		9.6 4.1 120 57 1.3 196 6.9 3.7 0.1 350 300 117 25 117 25 118 X	
614 F		9.5 4.6 120 120 180 7.4 7.4 80 159 80 110 110 80 80 110 80 80 80 80 80 80 80 80 80 80 80 80 80	
NUMBER SEX	TEST	CA++ I-PHOS. GLU. B.U.N. U-AC CHOL. T.P. ALB. T.P. ALB. T-BIL. A-PHOS. L.D.H. SGOT Na K Cl COL COL COL SGPT SGPT SGPT SGPT SGPT SGPT SGPT SGPT	

TABLE 14. (CONTINUED) SERUM CHEMISTRY AND ENZYME ANALYSES.

638 F		9.6 4.4 100 6.7 239 8.2 3.5 197 155 110 82 82 82 82 82 83 83 83 84 83 84 84 84 84 84 84 84 84 84 84 84 84 84
637 F		10.4 4.9 11.7 57 1.4 1.99 8.6 4.2 0.3 14.9 11.59 11.59 11.5 11.5 11.5 11.5 11.5
636 M		8.8 94.3 94.3 95.3 9.1 153 154 157 157 157 157 178 188 188 188 188 188 188 188 188 18
635 M		9.4 4.1 96 00.7 0.7 133 8.0 3.5 263 114 263 27 114 263 27 27 27 27 27 28
634 F		5.3 111 111 165 1.1 165 3.7 3.7 3.7 3.7 3.7 114 20 118 X
633 M		4.0 9.0 9.0 9.0 9.0 9.0 9.0 1114 1134 X
632 F		3.6 3.6 89 69 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.1 3.0 1.3 1.1 3.0 4.4 4.4 1.1 1.1 3.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1
631 M		9.9 6.7 119 68 1.3 145 7.3 3.7 600 600 287 161 17 17 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18
630 M		9.9 96 68 1.9 157 7.2 3.7 0.1 350 586 261 157 4.0 116 17
629 F		9.4 83.6 69 1.9 132 7.2 7.2 3.9 132 158 112 112 112 14 X
628 F		9.3 98 98 69 69 7.3 1.4 216 4442 156 4442 158 448 119 159 149 149 149 149 149 149 149 149 149 14
627 F		9.2 4.9 118 78 1.8 201 6.8 3.3 0.2 270 270 156 4.5 117 25 117 25 118
NUMBER SEX	TEST	CA++ I-PHOS. GLU. B.U.N. U-AC CHOL. T.P. ALB. T-BIL. A-PHOS. I.D.H. SGOT Na K CI CO2 AMYIASE CPK SGPT

TABLE 14. (CONTINUED) SERUM CHEMISTRY AND ENZYME ANALYSES

	653 F		9.2	0.9	128	44	0.2	190	8.2	4.5	0.2	225	009	300	156	3.4	118	24	i×	; ×	33)
	652 M		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	; ×	: ×	: ×	<u> </u>
	651 F		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	: ×	: ×	: ×	1
	650 F		6.3	5.0	118	9	1.2	193	6.7	3.4	0.2	350	520	300	155	4.6	117	27	; ;	318	14	
	649 F		10.3	5.9	121	99	1,1	239	7.3	8	0.1	247	573	300	155	5.0	113	24	16	426	12	
	648 F		9.7	5.7	93	69	6.0	216	7.6	3.57	0.1	243	456	268	152	4.1	117	19	15	134	15	
	647 F		9.4	5.5	113.	89	2.5	224	6.7	ب. 5	0.5	350	009	300	155	4.6	114	27	16	356	19	
	646 F		8.6	4.4	109	25	0.0	137	7.5	3.5	0.1	66	009	300	150	4.1	110	28	25	80	37	
	645 F		9.5	5.2	84	99	2.0	223	8.2	ج ون د	0.2	219	488	300	158	3.8	119	22	17	148	11	
	644 F		9.2	4.1	102	28	8.0	195	8.1	3.8	0.2	174	416	200	157	3.6	120	23	17	72	7	
	643 M		8.5	4.3	128	73	2.7	221	6.9	3.2	0.2	350	532	264	158	4.2	117	22	15	186	20	
	642 M		9.0	4.2	135	74	3.0	182	7.5	3.6	0.3	350	009	300	153	4.3	111	9	17	226	18	
	641 F		9.8	5.1	. 93	36	0.5	199	7.8	3.7	o•3	219	583	300	157	2.8	111	28	21	140	39	
	640 F		8.6	2. 5	98	77	2.1	159	8.1	i N	0.5	77	522	300	163	5.5	116	20	16	62	×	
•	639 F		9.6	3,0	127	26	9.0	159	8.7	თ თ	0.2	142	496	244	155	ထ	117	27	21	162	×	
	NUMBER SEX	TC*	#\$5	I-PHOS.	of In	B.U.N.	U-AC	CHOL.	T.P.	AIB.	T-BIL.	A-PHOS.	L.D.H.	GLOF	Na	X	ರ	8	AMYLASE	9 G	SCPT	

REMARKS:

Animals numbered 651 and 652 - sample coagulated. SGPT test not conducted for animals 601 to 640.

TABLE 15. MEAN VALUES FOR SERUM CHEMISTRY PARAMETERS FOR ALL DOLPHINS SAMPLED DURING THE STUDY.

50	2	:	ŧ	
TQT	N.	×	SD	SE
‡	51	9,50	. 47	0.7
-PHOS.	51	4.91	83	, c
23	51	110.04	19.45	2, 72
.u.n.	51	62,39	8, 70	1 22
-AC	51	1.29	22.0	77.1
HOL.	51	188,67	31,46	4.41
ъ.	51	7.43	.55	80.
<u>e</u>	51	3.62	. 28	0.
-BIL.	51	.19	.16	.02
-PHOS.	51	249,49	101.31	14.19
H	51	547.51	63,40	88.88
COL	51	276.20	32.06	4.49
δ !	51	156.49	2.26	.32
	51	4.11	.51	.07
	51	114.86	2.75	. 39
22	51	24.47	4.39	.61
MYLASE	20	18.04	13.95	1.98
PK	20	182.12	87.15	12,32
E.	11	20.45	10.94	3,30

TABLE 16. COMPARISON OF MEAN SERUM-CHEMISTRY PARAMETERS FOR MALE AND FEMALE DOLPHINS

	(±1)	000	, oc) <u>.</u> C	0	4			1 4	י נר	, rc	o	. 00	. 15		· (*)	ı LC	7	· o	. 0
	SE		-	4.1		, ,	7.4		C		25.65	13, 1	4	4.	. ⊷	ιΩ	1.0	6	13.2	1.0
	S	.37	. 78	17.88	5.18	. 63	32.57	.47	61.	.20	111.79	57.49	21.26	1.98	44	2.29	4.57	4.23	57.93	1.41
MALES	×	9.29	4.84	110.68	63.79	1,35	181,16	7.23	3,49	61.	266,32	564.79	281,58	156.84	4.21	114.63	25,37	16.89	185.26	19.00
	Z	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	7
	SE	60.	.15	3.64	1.81	.10	5.38	.10	.05	.02	16,79	11.56	6.54	.43	.10	.53	.75	3.14	18.30	3,30
	ß	.48	98.	20.60	10.23	.57	30.42	• 56	.30	.13	94.99	65.37	36.98	2.41	. 54	3.02	4.26	17.49	101.89	10.94
FEMALES	×	9.62	4.95	109.66	61.56	1.25	193.13	7.55	3.70	.19	239.50	537.25	273.00	156.28	4.05	115.00	23.94	18.74	180.19	20.45
	Z	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	31	31	11
	TEST	CA++	I-PHOS	CITO	BUN	U-AC	CHOL	T.P.	ALB	T-BIL	A-PHOS	IDH	SCOT	Na	×	び	83	AMYLASE	CPK CPK	SGPT

COMPARISON OF SERUM ANALYSIS PROCEDURES/RESULTS BETWEEN SEA WORLD LABORATORY, FLORIDA AND GULFPORT MEMORIAL HOSPITAL, MISSISSIPPI TABLE 17.

LEANA F	GWH	0.6	4. 5	112.0	35.0	0.1	231.0	7.6	4.6	0.2	0.699	211.0	169.0	13.0	1.1	88.0	120.0	21.0	158.0	3.6	120.0	×	×	×
LEANA F	SW	9.5	×	107.3	35.7	×	285.0	7.3	3°8	0.3	375.6	257.1	110.7	23.9	1.2	115.7	118.0	10.4	152.4	×	111.2	×	541.2	2.3
SOMSO M	GWH	0.6	6.2	42.0	10.0	0.0	182.0	7.8	5.0	0.1	1136.0	720.0	440.0	29.0	1.5	44.0	135.0	21.0	162.0	6.1	124.0	×	×	×
SOMSOO M	SW	9.4	×	96.4	32.5	×	230.2	7.4	4.2	0.3	641.6	373.8	243.8	50.5	1.7	72.3	105.0	8.0	148.4	×	111.4	×	531.3	2.2
 SILVER M	GMH	9.3	4.8	135.0	48.0	0.2	200.0	8.4	5.2	0.1	651.0	480.0	280.0	21.0	1.2	44.0	154.0	22.0	156.0	3.9	120.0	×	×	×
SILVER M	SW	9.3	×	133.7	31.4	×	253.5	7.9	4.2	0.4	375.8	290.0	153.1	18.4	1.4	79.4	76.8	12.0	151.9	×	109.8	×	740.0	2.1
BASHFUL M	GMH	9.6	ນໍາ	134.0	48.0	0.1	180.0	7.8	5.1	0.1	628.0	0.909	340.0	49.0	1.2	54.0	130.0	22.0	158.0	3.7	116.0	25.0	×	×
BASHFUL M	SW	6.6	×	133.7	32.1	×	224.0	7.5	4.1	0.3	361.6	261.4	208.1	26.8	1.5	90.1	81.2	10.2	152.4	×	109.2	×	529.6	×
NAME	TEST	CA+	I-PHOS.	GILU.	B.U.N.	U-AC	CHOL.	T.P.	AIB	T-BIL	A-PHOS	L.D.H.	SCOT	SGPT	CREAT.	TRYGLY.	G G	AMYLASE	Na	Ж	다	કુ	H-BD	Mg

SW = SEA WORLD GMH = GULFPORT MEMORIAL

CAPTURE EVENT DATA SHEET

	HEMARKS
Capture Event No.	
Date	
Time Set Made	
Time Set Terminated	
Loran Reading	
Latitude	
Longitude	
No. of Animals Set On	
No. of Animals Escaped	
No. of Animels Captured	
No. of Males Captured	
No. of Females Captured	
No. of Previously Marked Captured	
Pre-Capture Herd Behavior	
Sighting Cue	
Photographs	
Water Depth (M)	
Water Temp (^O C)	
Air Temp (^O C)	
Salinity (PPT)	
Sea State	
Comments:	

FIGURE 1: DATA SHEET USED TO RECORD INFORMATION ON CAPTURE EVENTS AND ENVIRONMENTAL CONDITIONS AT THE COLLECTION SITE.

FIGURE 2: MAP SHOWING THE BOUNDARIES FOR THE MISSISSIPPI SOUND, MISSISSIPPI.

CAPTURED INDIVIDUAL DATA SHEET

				REMARKS		
Brand No.						
Capture Event No.						
Date						
Time Brought Aboard						
Time Released						
Sex						
Length						
Weight						
Tooth Rake Marks						
Other Skin Conditions						
Pregnant						
Lactating						
Freeze Branding		Right Dorsal	Right Side	Left Dorsal	Left Side	
Summary	Brand #					
	Seconds					
Liver Biopsy (Time)						
Blubber/Skin Biopsy (Time)						
Blood Chemistry						
SMA (Vol.)						
CBC (Vol.)						
Endocrinology (Vol.)						
Genetics (Vol.)						
Culture - Blood						
Culture - Blowhole						
Culture - Anai						
Culture - Vaginal						
Tooth Extraction (Time)						
Comments						
						Ī

FIGURE 3: DATA SHEET USED TO RECORD BIOLOGICAL DATA FOR EACH ANIMAL COLLECTED.