Pravděpodobnost a statistika - zkoušková písemka 14.6.2017 - verze A

Jméno a příjmení		2	3	4	celkem	známka

Úloha 1. Vrátný na FEL během své pracovní doby od 8:00 do 16:00 obslouží průměrně 120 lidí - studentů a pedagogů, přičemž studentů, kteří využívají služeb vrátného, je průměrně dvakrát víc než pedagogů. Předpokládejme, že časy příchodů studentů i pedagogovů jsou nezávislé a jsou v této době rozloženy rovnoměrně. Určete pravděpodobnost, že

- a) do 10:00 využijí služeb vrátného minimálně dva pedagogové, (5 bodů)
- b) po 15:00 využije služeb vrátného maximálně 5 lidí, přičemž všichni to budou studenti,
 (5 bodů)
- c) doba čekání na prvního pedagoga bude alespoň půl hodiny, (5 bodů)
- d) v daný den bude nejpozději čtvrtý příchozí člověk student, (5 bodů)
- e) v 50 příchozích lidech bude minimálně 20 pedagogů. Řešte pomocí CLV. (10 bodů)

Úloha 2. Sdružené pravděpodobnosti dvou diskrétních náhodných veličin X a Y jsou dány následující tabulkou:

	X = -1	X = 0	X = 1
Y = -1	1/12	1/4	1/12
Y = 0	1/12	0	1/12
Y=1	1/12	1/4	1/12

- a) Určete marginální rozdělení X a Y a spočtěte kovarianci cov(X,Y). (5 bodů)
- b) Co můžeme říct na základě kovariance vypočtené v bodě a) o (ne)závislostí X a Y? Jsou X a Y nezávislé? (5 bodů)
- c) Určete sdružené rozdělení náhodného vektoru (U,V), v němž náhodné veličiny U, resp. V, mají stejná marginální rozdělení jako X, resp. Y, ale přitom jsou U a V nezávislé. (7 bodů)
- d) Určete $P(X = 0, Y \ge 0)$. (3 body)

Úloha 3. Nechť X označuje platovou třídu (0 nejnižší, 2 nejvyšší) a Y schopnost splácet úvěr (1 dobrá, 0 špatná). V tabulce jsou počty klientů jisté banky spadající do příslušných skupin dvojice "platová třída - schopnost splácet".

$Y \setminus X$	0	1	2
0	12	10	8
1	8	30	52

- a) Odhadněte z dat marginální rozdělení X a Y. (5 bodů)
- b) Statisticky otestujte na hladině 1%, zda je v každé platové třídě přibližně stejný počet lidí. (7 bodů)
- c) Statisticky otestujte na hladině 5%, zda je možno považovat platovou třídu a schopnost splácet úvěr za nezávislé náhodné veličiny. (8 bodů)
- d) Definujte obecně nezávislost diskrétních náhodných veličin U, V a W. (5 bodů)

Úloha 4. Při nástupu do prvního ročníku policejní akademie byla provedena studentům zdravotní prohlídka, při které byla změřena mimo jiné výška jednotlivých studentů. Vzorek naměřených hodnot (zaokrouhlených na cm) je uveden v následující tabulce:

174	186	181	189	195	197	188	177	188	192	181	188	201	180	183	
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	--

- a) Nakreslete histogram těchto dat a odhadněte z něj, jaké rozdělení má výška studenta.
 (5 bodů)
- b) Odhadněte střední hodnotu a rozptyl tohoto rozdělení z dat. (5 bodů) (hint: $\sum x_i = 2800$, $\sum (x_i \bar{x})^2 = 797.33$)
- c) Statisticky otestujte (na libovolné hladině), zda je možné říct, že střední výška studenta je 1,9 m. (7 bodů)
- e) Odhadněte P(výška studenta < 1.9 m). (3 body)
- d) Definujte 0.8-kvantil spojité náhodné veličiny X. (5 bodů)