Worksheet 13 for December 3rd and 8th

- **1.** Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Find a diagonal matrix D and an orthogonal matrix Q such that $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.
- **2.** Find the limiting values of y_k and z_k (for $k \to \infty$) if

$$y_{k+1} = .8y_k + .3z_k$$
 $y_0 = 0$
 $z_{k+1} = .2y_k + .7z_k$ $z_0 = 5$.

$$z_{k+1} = .2y_k + .7z_k \qquad z_0 = 5$$

Also find formulas for y_k and z_k from $A^k = S\Lambda^k S^{-1}$.

- **3.** If $A = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$, find A^{100} by diagonalizing A.
- 4. Decide for or against the positive definiteness of these matrices, and write out the corresponding $f = x^T A x$:

(a)
$$\begin{bmatrix} 1 & 3 \\ 3 & 5 \end{bmatrix}$$

$$\begin{array}{ccc}
(b) \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \\
(c) \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}
\end{array}$$

(c)
$$\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$$

$$(d) \begin{bmatrix} -1 & 2 \\ 2 & -8 \end{bmatrix}.$$

The determinant in (b) is zero; along what line is f(x,y) = 0?