Claims

1. Method for reducing echo signals in telecommunications systems for the transmission of wanted acoustic signals, particularly human speech, in which the presence of echo signals is detected and/or predicted and the detected and/or predicted echo signals are subsequently suppressed or reduced,

[]10 characterized in that

5

1

Ē

M

P. H.

25

30

the power value of the noise level N in the currently used telecommunications channel is continuously measured and/or estimated, and that the degree of reduction of the echo signals to be currently effected is set continuously and automatically, in dependence on the current noise level N, according to a predefined function $h\left(N\right)$.

- 20 2. Method according to Claim 1, characterized in that the function h(N) increases as N increases, whereby $h(N << 0 \text{ dB}_m) = h_{\text{min}} = \text{const.}$ and $h(N \approx 0 \text{ dB}_m) = h_{\text{max}} > h_{\text{min}}$.
 - 3. Method according to Claim 2, characterized in that:

-50 dB < h_{min} < -20 dB, preferably -45 dB \leq h_{min} \leq -35 dB and

- -20 dB < h_{max} < 0 dB, preferably -12 dB \leq h_{max} \leq -6 dB.
- 4. Method according to Claim 1, characterized in that the predefined function $h\left(N\right)$ is a function $k\left(S/N\right)$ which

depends on the signal-to-noise ratio, i.e., the quotient S/N from the power value of the signal level S of the wanted signals to be transmitted and the power value of the noise level N, or that the predefined function h(N) is a function k'(N/S) which depends on the reciprocal N/S of this quotient, preferably on N/(N+S).

- 5. Method according to Claim 1, characterized in that, in addition to the recognition and reduction of echo signals, noise signals are also suppressed or reduced.
 - Method according to Claim 5, characterized in that the 6. degree of reduction of the noise level N to be currently effected is set continuously and automatically, in dependence on the current noise level N, according to a predefined function f(N) or g(S/N) or g'(N/S), preferably g'(N/[N+S]).
- 20 7. Method according to Claim 6, characterized in that, for N << 0 dB_m, the functions f(N), g(S/N), g'(N/S) or g'([N/N+S]) each begin, respectively, with a constant maximum value f_{max} or g_{max} or $g'_{max} \approx 0$, fall to, in particular, a settable value, preferably a minimum 25 value f_{min} or g_{min} or g'_{min} respectively in the range between N = -15 dB_m to -10 dB_m, preferably for N or S/N \approx -12 dB_m, and then rise, to N \approx 0 dB_m, to a constant value $f_0 > f_{min}$ or $g_0 > g_{min}$ or $g'_0 > g'_{min}$, wherein f_0 , $q_0, q'_0 < 0.$
 - 8. Method according to Claim 7, characterized in that:

5

F 15 -IJ

1.5

30

 $f_0 \le -5$ dB, $g_0 \ge -10$ dB, preferably $f_0 \le -6$ dB, $g_0 \ge -8$ dB, and

 $f_{min} \le -20$ dB, $g_{min} \ge -30$ dB, preferably f_{min} , $g_{min} \approx -25$ dB.

5

9. Method according to Claim 1, characterized in that the function h(N), at least partially, and preferably in all sub-sections, runs linearly with N.

 10. Method according to Claim 4, characterized in the functions k(S/N) and k'(N/S), at least partially, and preferably in all sub-sections, run linearly with S/N and N/S or N/(N+S) respectively.

15 15

F. E.J. **

11. Method according to Claim 1, characterized in that the function $h\left(N\right)$ is constructed of polynomials and runs over N as an asymmetric bell-shaped curve.

20

12. Method according to Claim 4, characterized in that the functions k(S/N) and k'(N/S) are constructed of polynomials and run over S/N and N/S respectively as asymmetric bell-shaped curves.

25

13. Method according to Claim 1, characterized in that the function k(N) is selected so that the reduction of the noise level N is auditorially adapted according to the psychoacoustic mean values of the human auditory spectrum.

30

14. Method according to Claim 4, characterized in that the functions k(S/N) and k'(N/S) are each respectively selected so that the reduction of the noise level N is

auditorially adapted according to the psychoacoustic mean values of the human auditory spectrum.

- 15. Method according to Claim 1, characterized in that a speech pause detector (SPD) is used for recognition of the noise level N.
 - 16. Method according to Claim 15, characterized in that the power value of the signal to be transmitted is reduced during the speech pauses according to an exponential function.
 - 17. Method according to Claim 5, characterized in that the reduction of noise signals and the reduction of echo signals are controlled separately.
 - 18. Method according to Claim 1, characterized in that an artificial noise signal is also added to the wanted signal during an echo reduction period.
 - 19. Method according to Claim 18, characterized in that the artificial noise signal comprises a signal sequence which is perceived psychoacoustically as an acoustically comfortable noise (= comfort noise).
 - 20. Method according to Claim 18, characterized in that the artificial noise signal comprises a noise signal recorded previously during the current telecommunications connection.

30

<u>1</u>0

and the trans are the same of the same are and the same are are as a same are as a same are as a same are as a

14

U

15

20

25