データマイニング 3班

184528D 下地 剛史 185761E 多和田 真都 185767D 藤渕 はな

目的 · 目標

画像に描かれている文字を一つ一つ手で打ち込むのは、少ない文字であれば簡単であるが、文字数が増えれば仕事量は増加してしまう

画像に描かれている文字を認識できるツールを作成したい!!

アプローチの全体像

1.文字を画像に描く

2.プログラムで読み込み、判断

3.判断した結果を出力

・画像にjpg形式で文字を描いて保存

- ・ツール自体をPython(keras)で実装
- ・使用したデータベースは"mnist"(数字認識のテストに利用),"手書き教育漢字データベースETL8"
- ・モデルに<mark>畳み込み層</mark>を用いる事で 認識率を高める
- ・モデルの最適化の手法としてAdamを 用いる事でETLの認識率を高める

最終的にETLを用いて文字認識の精度を 99%まで高める事ができた

予定していた実験計画

1.文字を画像に描く

2.プログラムで読み込み、判断

3.判断した結果を出力

・文字を一文字ずつでなく、複数文字の画 像を読み込み、判断をする(未実装) →mserを利用し、文字領域の抽出を 行うが、ひらがなの認識が難しく断念

データセットの構築方法

ひらがな文字に関するデータを用意し、画像に変換する

MNISTと同じデータ型になるように画像データを修正する

ETL文字データベース

ひらがな、カタカナ、漢字など、約120万の文字画像データが収集されている

あ愛委壱雲円王何火会階革官館希い記 最在殺酸子私事耳舎取問週述しゆ諸承 お暗移引泳遠恩夏貨改各活歓顔帰っ疑 雨益応化歌芽絵覚勧間基紀む逆給供業 坂山司思視寺識謝酒修従順び除焼場信

ETL8...教育漢字881種、ひらがな75種

1文字につき161個の画像データ ★75種類 = 12075個

mnistのデータの内容

それぞれの画像に正解を示すラベルデータがある

12075個の手書きひらがな画像データ

11325個の学習用データ

750個の検証用データ

機械学習の進め方

使用した学習機

- CNN
- LeNet(プーリング層、畳み込み層が二つづつ)

Max Pooling

引用:https://deepage.net/deep_learning/2016/11/07/convolutional_neural_network.html

機械学習の進め方

パラメータの調整

- ・数字認識からひらがな認識に移行した際に、入力画像サイズを 28x28から40x40に増加させた。
- 畳み込み層のカーネルサイズは3x3。
- プーリング層のプーリングサイズはそれぞれ2x2と4x4。

実験

• 実験設計

- 1. ひらがな1文字を1つの画像に描く(250×255)
- 2. ETL8をロードする
- 3. 畳み込みニューラルネットワーク(CNN)を構築
- 4. Python上で画像を読み込む
- 5. 画像を判断する

実験結果

1			
士	予測文字	あ	ね
α	確率	99.9%	0.01%
	予測文字	い	Ø
ζ,	確率	約100%	0.01%以下
$\hat{}$	予測文字	う	の
/	確率	99.6%	0.21%
7	予測文字	え	み
	確率	77.9%	11.9%
ti	予測文字	お	わ
()	確率	98.9%	0.85%

\wedge°	予測文字	~	~
	確率	97.3%	1.9%
^''	予測文字	ベ	~
	確率	99.5%	0.4%

1 10	予測文字	ば	ぱ
(2	確率	94.7%	5.2%
1 41	予測文字	ば	ぱ
1	確率	53.9%	46.0%

考察

半濁音を濁音と誤認識する割合が高い。

学習データに似せた半濁音文字は正しく認識することから、学習データの数が少ない事や多様性が低い事が考えられる。

入力データの前処理(2値化、サイズ)によって学習速度や予測精度に大きな影響が出たため、モデルの構成の他にも入力データの質の高さが予測精度を上げる要因となっている。