

DNA

- consists two strands coiled into
- made up of nucleotides

Structure

-double helix

Functions

-Stores genetic information for

-holds the instructions to

GENETIC **INFORMATION &** TRANSCRIPTION

RNA

- single-stranded molecule
- key role in synthesis of proteins
- convert genetic information in DNA into proteins.

Structure

-single-stranded

Functions

-as a template for protein synthesis

Significance

-facilities the expression of genetic information from DNA

mRNA

- carries genetic information from DNA
- template for protein synthesis
- act as messenger in synthesizes proteins

Structure

-single strand of RNA

Functions

-transcribes genetic information from DNA

-carries it to ribosomes

Significance

-messenger between genetic code in DNA

process

Transcription

Structure

- DNA, RNA polymerase, promoter and terminator

Functions

-Convert DNA into mRNA

Significance

-Essential for protein production

Initiation

Why Genetic Information Is

Transcribed from DNA to RNA

Elongation

Termination

Protection of DNA

Efficient Regulation

IMPORTANCE OF MRNA IN TRANSMITTING GENETIC INFORMATION

- 1. Bridge between DNA & Protein synthesis
- 2. Process of Transcription
- 3. Regulation of Gene Expression

- carries genetics intructions
- a double helix

growth

Significance

build proteins

RNA

Double-stranded, with deoxyribo

- sugar in its backbone.
- It uses the nitrogenous bases adenine (A), thymine (T), cytosine (C), and guanine (G).

DNA

- Serves as the genetic bluepring for all cellular activities. It store genetic information necessary fo growth, and reproduction
- in its backbone.
- synthesis and gene expression. It transfers genetic information from DNA to ribosomes