conexp-clj Exploratory Programming for FCA Exercise Sheet

Daniel Borchmann

May 2, 2013

The mathematical background of these exercises is described in [1].

Exercise 1 Given $n \in \mathbb{N}$, compute a contextual representation of the closure system of all closure systems on $\{1, \ldots, n\}$. For $n \in \{1, 2, 3, 4\}$, compute the number of formal concepts of these formal contexts.

Hint:

• A contextual representation of the lattice of closure systems on $M = \{1, ..., n\}$ is given by

$$(\mathfrak{P}(M), \{A \rightarrow \{x\} \mid A \subseteq M, x \in M \setminus A\}, \models),$$

where $N \models (A \rightarrow \{x\})$ if and only if N respects $A \rightarrow \{x\}$.

- (set-of-range 1 n) yields the set $\#\{1, \ldots, n\}$
- (subsets M) yields a lazy sequence of all subsets of the set *M*.
- (respects? M implication) returns true if and only if Mrespects implication.

Exercise 2 Given $n \in \mathbb{N}$, compute a contextual representation of the Tamari lattice on n symbols. Draw the concept lattice of these formal contexts for suitable (i. e. not too large) values of n.

Hint: Such a contextual representation can be obtained as

$$(P, P, \{ ((i, j), (p, q)) \mid (i, j), (p, q) \in P, i = q \text{ or not } (p \le i \le q \le j) \})$$

where
$$P = \{ (a, b) \mid a, b \in \{1, ..., n\}, a < b \}.$$

Exercise 3 Given $n \in \mathbb{N}$, compute a contextual representation of the lattice of all permutations on $\{1, \ldots, n\}$.

Hint: If \mathbb{K}_n is such a contextual representation, then it can be obtained by

$$\mathbb{K}_0 := \mathbb{L}_0 := \boxed{\times}$$

$$\mathbb{L}_{n+1} := \frac{\varnothing \mid \mathbb{L}_n}{\mid \mathbb{L}_n \mid \mid \mathbb{L}_n}$$

$$\mathbb{K}_{n+1} := \frac{\mid \mathbb{K}_n \mid \mid \mathbb{K}_n}{\mid \mathbb{K}_n \mid \mid \mathbb{L}_n}$$

Contextual apposition and subposition are implemented in context-apposition and context-subposition, respectively.

Exercise 4 Compute the number of linear extensions of the free distributive lattice on 3 generators.

Hint:

 A contextual representation of the free distributive lattice on 3 generators can be obtained by

where \times denotes the contextual product, which is implemented in conexp-clj as context-product.

• Let \mathbb{K} be the contraordinal scale of an ordered set (S, \leq) , i. e. $\mathbb{K} = (S, S, \leq)$. The number of linear extensions of (S, \leq) is then the value $\mu_{\mathfrak{B}(\mathbb{K})}(\emptyset, \emptyset'')$, where

$$\mu_{\mathfrak{B}(\mathbb{K})}(A,B) := \begin{cases} 1 & \text{if } A = S, \\ \sum_{(C,D) > (A,B)} \mu_{\mathfrak{B}(\mathbb{K})}(C,D) & \text{otherwise} \end{cases}$$

where > denotes the neighborhood relation in $(\mathfrak{B}(\mathbb{K}), \leq)$. Direct upper neighbors can be obtained by means of the function direct-upper-concepts.

References

[1] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foundations. Berlin-Heidelberg: Springer, 1999.