Package 'HodgesTools'

December 8, 2022

Title Common Use Tools for Genomic Analysis

Version 1.0.0

uals are welcome to use as well. Provides useful functions that the lab uses everyday to ana-
lyze various genomic datasets. Critically, only general use functions are provided; functions spe
cific to a given technique are reserved for a separate package. As the lab grows, we ex-
pect to continue adding functions to the package to build on previous lab members code.
Depends R (>= 3.6)
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.1.2
Imports dplyr, ggplot2, magrittr, RColorBrewer, readr, ini, qqman, data.table, RecordLinkage
NeedsCompilation no
Author Tyler Hansen [aut, cre, cph], Tim Scott [aut, ctb, cph], Lindsey Guerin [aut, ctb, cph], Verda Agan [aut, ctb, cph], Emily Hodges [aut, fnd, cph]
Maintainer Tyler Hansen <tyler.j.hansen@vanderbilt.edu></tyler.j.hansen@vanderbilt.edu>
Repository CRAN
Date/Publication 2022-12-08 13:52:36 UTC
R topics documented:
append_section_to_ini

helper_collapseTableByLevenSim
helper_getMaxLevenSimCol
helper_makeBigTableFromListOfStandardTables
plot_HOMERTFs
read_bed

Index 10

```
append_section_to_ini Append section to ini file
```

Description

Takes a new section in ini format and adds to existing ini.

Usage

```
append_section_to_ini(ini_file, new_section)
```

Arguments

```
ini_file file location of config.ini file
new_section named list of the section list
```

Details

The new_section must be a named list of the section list. See examples.

Value

No return value. Edits and overwrites input config.ini file.

Author(s)

Tyler Hansen

Examples

cpg_analysis 3

cpg_analysis	CpG Analysis
--------------	--------------

Description

Compute observed/expected CpG ratio and GC% for regions of interest

Usage

```
cpg_analysis(
  list = FALSE,
  count,
  cpg_file,
  nuc_file,
  palette = "Set3",
  plot = "none"
)
```

Arguments

list	"boolean of whether input is a list of groups. Default = FALSE."
count	"numeric value for the number of files included in your list
cpg_file	"file names or list of files names for your CpGcount.txt files. This is defined in cpg_analysis.sh"
nuc_file	"file names or list of files names for your nucOutput_gc.txt files. This is defined in cpg_analysis.sh"
palette	"if choosing to plot, the RColorBrewer palette you would like to be applied to your plot"
plot	"one of three choices depending on what output you would like: 'none' for no plot, 'ratio' for observed/expected ratios, 'gc_percent' for GC%"

Details

The function reads in a nucOutput_gc and CpGcount text file The function uses the nucOutput_gc and CpGcount file to calculates observed/expected ratio and GC%. The function allows the option to plot the distribution of these values in ggplot2

Value

```
ggplot object or tibble if plot="none"
```

Author(s)

Lindsey Guerin

createManhattandQQ

Examples

createManhattandQQ

Creating a Manhattan Plot and QQ plot

Description

Creates a Manhattan plot and QQ plot using GWAS results output from PLINK

Usage

```
createManhattandQQ(
  gwas_results,
  highlights_file = NULL,
  suggestive_line = -log10(0.05),
  set_color_vector = c("gray10", "gray60"),
  genomewide_line = -log10(5e-08),
  annotate_Pval = 0.05,
  y_lim = c(0, 8)
)
```

Arguments

```
gwas_results output file listing SNP-trait association values for GWAS run using PLINK highlights_file

a text file with a 'snp' column listing the SNPs to annotate/color on the Manhattan plot

suggestive_line

where to draw a "suggestive" line; default -log10(1e-5).
```

```
set_color_vector

a character vector listing colors in palette of interest (you must create this chr object before calling the createManhattanandQQ function and assign it to set_color_vector)

genomewide_line

where to draw a "genome-wide significant" line; default -log10(5e-8)

annotate_Pval if set, SNPs below this p-value will be annotated on the plot; default is 0.05

y_lim set the y-axis limits; default is c(0,8)
```

Details

This function reads in a GWAS result file output from plink2 listing the coordinates, ids, and associated p-values for SNPs under study This function also has the option of reading in a "highlights" file listing the IDs of SNPs to annotate/color on the Manhattan plot

Value

a Manhattan plot of SNP-trait associations and QQ plot

Author(s)

Verda Agan

Examples

```
#' #load external data.
gwas_results <- system.file(package = "HodgesTools", "extdata",
   "createManhattandQQ_example_sum_stats.txt")
snps_to_annotate <- system.file(package = "HodgesTools", "extdata",
   "createManhattandQQ_example_highlights_file.txt")

#Make a Manhattan plot that highlights a select list of SNPs subset from GWAS results
createManhattandQQ(gwas_results, highlights_file=snps_to_annotate,
suggestive_line = -log10(0.001), set_color_vector = c("gray10", "gray60"),
genomewide_line = -log10(5e-8), annotate_Pval = 0.001, y_lim =c(0,8))

#Make a Manhattan plot that doesn't highlight a select list of SNPs subset from GWAS results
createManhattandQQ(gwas_results, suggestive_line = -log10(0.001),
set_color_vector = c("gray10", "gray60"), genomewide_line = -log10(5e-8),
annotate_Pval = 0.001, y_lim =c(0,8))</pre>
```

helper_collapseTableByLevenSim

helper_collapseTableByLevenSim

Description

Reads in a table and value for Levenshtein threshold and returns a table collapsed by threshold (highest p-value for each group)

Usage

helper_collapseTableByLevenSim(inputTable, levenSimThresholdVal)

Arguments

inputTable

dataframe. HOMER output table modified in the parent script—ready for filtering by Levenshtein similarity.

levenSimThresholdVal

float. Value for thresholding TFs. For groups of TFs with similar consensus sequences, the TF with the lowest p-value by HOMER will be retained.

Value

tibble

Author(s)

Tim Scott

helper_getMaxLevenSimCol

helper_getMaxLevenSimCol

Description

Reads in a vector of motifs and returns a

Usage

helper_getMaxLevenSimCol(vectorOfMotifs)

Arguments

vectorOfMotifs vector of char. Vector of motifs to filter through.

Value

data.frame

Author(s)

Tim Scott

 $\label{lem:makeBigTableFromListOfStandardTables} make Big Table From List of Tables$

Description

Reads in a list of tables and return list of tables with percent Fold Change (enrichment)

Usage

```
helper\_makeBigTableFromListOfStandardTables (inputListOfTables)
```

Arguments

```
inputListOfTables list of dataframe. List of HOMER TF knownResults Tables.
```

Value

list of tibble

Author(s)

Tim Scott

plot_HOMERTFs

Plot HOMER TF enrichment results

Description

Plot HOMER TF enrichment results

Usage

```
plot_HOMERTFs(
    dir = "/directory/of/results/",
    show = 3,
    qThreshold = 0.05,
    levenSimThreshold = 1
)
```

8 read_bed

Arguments

dir string. Input directory containing HOMER findMotifsGenome.pl output files in

format: *knownResults.txt

show int. Number of rows to show per input file, ranked by p-value.

qThreshold int. Value for thresholding HOMER enrichment results by q-value.

levenSimThreshold

float. Value for thresholding TFs. For groups of TFs with similar consensus

sequences, the TF with the lowest p-value by HOMER will be retained.

Details

Make bigTable of all TFs to pull from so a single TF can have data from different input Files (e.g. across CTs):

(5) Create bigTable of all q-value TF results concatenated together (6) Filter by consensus list (4)and make a gg-plot appropriate table and Plot (7-8) Order factors and plot

Value

ggplot object

Strategy:

Find motifs to extract:

(1) Filter each element table by q-value. Should basically chop off the bottom portion of list, making the rest of the script less computationally cumbersome (2) Collapse each element table by by Levenshtein Similarity (3) Filter each element table (in my case: cell type-specific results file) to top X rows (4) Extract consensus columns from each element table and store as a variable]

Author(s)

Tim Scott

read_bed Read bed file

Description

Reads in a tab-delimited BED formatted file into R.

Usage

```
read_bed(file, extra_col_names = c(), length = FALSE, verbose = TRUE)
```

read_bed 9

Arguments

```
file bed file
extra_col_names
list of strings specifying extra column names

boolean of whether to add length column
verbose boolean set to see function behavior
```

Details

First three columns of file must be the genomic coordinates of the regions (i.e. chr start end). read_bed will auto-detect BED3 and BED6 formats. It will also detect BED3+ and BED6+ formats assigning generic or user-defined col_names to the additional column(s).

Value

tibble

Author(s)

Tyler Hansen & Tim Scott

Examples

```
#load external data.
BED3 <- system.file(package = "HodgesTools", "extdata", "test_BED3.bed")</pre>
BED6 <- system.file(package = "HodgesTools", "extdata", "test_BED6.bed")</pre>
BED4 <- system.file(package = "HodgesTools", "extdata", "test_BED4.bed")</pre>
BED8 <- system.file(package = "HodgesTools", "extdata", "test_BED8.bed")
# Read 3-column BED file.
read_bed(BED3)
# Read 6-column BED file.
read_bed(BED6)
# Read 3-column BED file and add length column.
read_bed(BED3, length = TRUE)
# Read 3 column format BED file with additional fourth column. Add generic column names.
read_bed(BED4)
# Read 3 column format BED file with additional fourth column. Specify additional column names.
read_bed(BED4, extra_col_names = c("fourthColumn"))
# Read 6 column format BED file with additional columns. Specify additional column names.
read_bed(BED8, extra_col_names = c("seventhColumn", "eigthColumn"))
```

Index