Дискретная математика, Коллоквиум

Балюк Игорь @lodthe, GitHub

2019 - 2020

Содержание

1	Опр	ределения 2					
	1.1	Логические операции: конъюнкция, дизъюнкция и отрицание	2				
	1.2	Логические операции: импликация, XOR (исключающее или) и эквивалентность	2				
	1.3	Булевы функции. Задание таблицей истинности и вектором значений	2				
	1.4	Существенные и фиктивные переменные булевой функции	2				
	1.5	Множество, подмножество, равенство множеств	2				
1.6 Операции с множествами: объединение, пересечение, разность, симметрическая разно							
	Диаграммы Эйлера-Венна						
	1.7	Законы Моргана (с обобщением на произвольное семейство множеств)	3				
	1.8	Закон контралозиции	3				
	1.9	Метод математической индукции	3				
	1.10	Графы. Основные определения: ребра, вершины, степени вершин.	3				
	1.11	Базовые графы: граф-путь, граф-цикл, полный граф, граф-звезда	3				
	1.12	Подграфы. Путь, цикл, клика и независимое множество	4				
	1.13	Компонента связности. Индуцированный подграф.	4				
	1.14	Деревья. Полные бинарные деревья (см. ДЗ 7)	4				
	1.15	Правильные раскраски графов. Формулировка критерия 2-раскрашиваемости	4				
	1.16	Двудольные графы. Двудольные и двураскрашиваемые графы	4				
	1.17	Эйлеровы циклы	4				
	1.18	Функции. Область определения и множество значений.	5				
	1.19	Образ множества и полный прообраз	5				
	1.20	Отображения (всюду определённые функции). Инъекции, сюръекции и биекции	5				
	1.21	Правило суммы	5				
	1.22	Правило произведения	5				
	1.23						
		мно жества					
	1.24	Характеристическая функция и её использование при подсчёте числа элементов множества.	6				
	1.25	Формула включений и исключений	6				
	1.26	Биномиальные коэффициенты, основные свойства. Бином Ньютона	6				
	1.27	Треугольник Паскаля. Рекуррентное соотношение.	7				
	1.28	Бинарные отношения. Транзитивность, симметричность, рефлексивность	7				
	1.29	Теоретико-множественные операции с отношениями. Операция обращения	7				
	1.30	Композиция бинарных отношений	7				
	1.31	Отношения эквивалентности	7				
	1.32	Ориентированные графы, основные определения	8				
	1.33	Компоненты сильной связности ориентированного графа	8				
	1.34	Отношения (частичного) порядка (строгие и нестрогие), линейные порядки	8				
	1.35	Отношение непосредственного следования (см. листок недели 11)	8				
	1.36	Изоморфизм графов и (частичных) порядков (см. листок недели 11)	8				
2	Примерные задачи на понимание материала курса						

3	Вопросы	на знание доказательств
	3.0.1	Обобщённый закон Моргана
	3.0.2	Иррациональность числа $\sqrt{2}$. Существуют такие иррациональные числа a и b , что число a^b рационально
	3.0.3	Нижняя оценка числа связных компонент в неориентированном графе
	3.0.4	Если G — минимально связный граф (удаление любого ребра приводит к несвязности), то G не содержит циклов
	3.0.5	Если G — связный ациклический граф, то между любыми двумя вершинами G существует единственный путь.
	3.0.6	Если между любыми двумя вершинами G существует единственный путь, то G — связный граф с $ V 1$ ребром
	3.0.7	Критерия 2-раскрашиваемости неориентированного графа
	3.0.8	Критерий существования эйлерова цикла в неориентированном графе
	3.0.9	Явная формула для числа сочетаний $\binom{n}{k}$: числа k -элементных подмножеств n -элементного множества
	3.0.10	
	3.0.11	
	3.0.12	Основные свойства треугольника Паскаля: формула для суммы чисел в строке, нижняя оценка на центральный коэффициент
	3.0.13	
	3.0.14	
	3.0.15	Число отображений, функций, инъекций, биекций из m -элементного множества в n -элементное множество
	3.0.16	
	3.0.17	
	3.0.18	

1 Определения

1. Логические операции: конъюнкция, дизъюнкция и отрицание

Обозначение	Смысл	Название
$A \wedge B$	АиВ	Конъюнкция
$A \vee B$	A или B	Дизъюнкция
$\neg A$	He A	Отрицание

A	В	$A \wedge B$	$A \lor B$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

A	$\neg A$
0	1
1	0

2. Логические операции: импликация, ХОК (исключающее или) и эквивалентность

Обозначение	Смысл	Название
$A \oplus B$	либо A , либо B	XOR
$A \rightarrow B$	из A следует B	Импликация
$A \leftrightarrow B$	A равносильно B	Эквивалентность

A	В	$A \oplus B$	$A \rightarrow B$	$A \leftrightarrow B$
0	0	0	1	1
0	1	1	1	0
1	0	1	0	0
1	1	0	1	1

3. Булевы функции. Задание таблицей истинности и вектором значений

Логические связки — это функции, которые зависят от набора переменных, принимающих значения 0 или 1 (от набора высказываний). Такие переменные называют булевыми переменными, а функции — булевыми функциями.

Запись таблицей

Α	В	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

Первым идёт набор из одних нулей, а дальше i-ый набор является двоичной записью числа i-1. Таким образом, всего в таблице истинности 2k строк (именно столько чисел имеют двоичную запись длины k). Благодаря стандартному порядку можно просто задать булеву функцию столбцом её значений:

$$f(x_1) = 10 = \neg x_1, \quad g(x_1, x_2) = 0001 = x_1 \land x_2$$

Говорят, что функция задана вектором значений

4. Существенные и фиктивные переменные булевой функции

Если для булевой функции $f(x_1, x_2, \dots, x_n)$ справедливо равенство

$$f(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n)=f(x_1,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n),$$

переменная x_i называется фиктивной; в случае, если равенство не выполняется для переменной x_i , то она называется существенной.

5. Множество, подмножество, равенство множеств

Когда говорят, что задано множество A, под этим понимают, что A представляет собой совокупность объектов, игнорируя при этом какие либо отношения между этими объектами, в частности порядок; кроме того, один объект не может входить в множество более одного раза.

Два множества равны друг другу, если их элементы совпадают.

 $\forall x \in B \implies x \in A \implies B \subseteq A$ (каждый элемент из множества B принадлежит множеству A означает, что B — подмножество множества A)

6. Операции с множествами: объединение, пересечение, разность, симметрическая разность. Диаграммы Эйлера-Венна

• Объединение

$$A \cup B = \{x \mid (x \in A) \lor (x \in B)\}$$

• Пересечение

$$A \cap B = \{x \mid (x \in A) \land (x \in B)\}\$$

• Разность

$$A \setminus B = \{x \mid (x \in A) \land (x \notin B)\}\$$

• Симметрическая разность

$$A\triangle B = \{x \mid ((x \in A) \land (x \notin B)) \lor ((x \notin A) \land (x \in B))\}$$

• Диаграмма Эйлера-Венна — наглядное средство для работы со множествами. На этих диаграммах изображаются все возможные варианты пересечения множеств.

7. Законы Моргана (с обобщением на произвольное семейство множеств)

С помощью диаграмм легко проверить, что $A \cap B = \overline{\overline{A} \cup \overline{B}}, A \cup B = \overline{\overline{A} \cap \overline{B}}$. Из связи с таблицами истинности получаем, что $a \wedge b = \neg(\overline{a} \vee \overline{b})$ и $a \vee b = \neg(\overline{a} \wedge \overline{b})$

Эти формулы можно обобщить:

$$A_1 \cup A_2 \cup \cdots \cup A_n \cup \cdots = \overline{\overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_n} \cap \cdots}$$

8. Закон контрапозиции

Логический закон контрапозиции $A \to B = \neg B \to \neg A$ при переводе на язык множеств гласит $A \subset B \iff \overline{B} \subseteq \overline{A}$

9. Метод математической индукции

Доказательство по индукции возможно только тогда, когда доказываемое утверждение зависит от натурального параметра. То есть доказывается утверждение

$$\forall n \in N : A(n)$$

С помощью правил вывода схему доказательства по индукции можно описать так:

$$\frac{A(0), \quad \forall n: \ A(n) \to A(n+1)}{\forall n: \ A(n)}$$

Первая посылка называется базой, а вторая — шагом индукции или переходом.

10. Графы. Основные определения: ребра, вершины, степени вершин.

Зафиксируем граф G(V, E). Вершины u и v называются **смежными** или **соседями**, если они образуют ребро: $u, v \in E$. Рёбра e и f называются **смежными**, если они имеют общую вершину: $e \cap f \neq \emptyset$. Вершина v **инцидента** ребру e, если $v \in e$. Вершины u и v, инцидентные ребру e, называются его концами; говорят, что e соединяет u и v. Рёбра часто записывают сокращённо: uv вместо $\{u, v\}$. Степенью вершины v называется число смежных с v рёбер и обозначается d(v).

$$\sum_{u \in V} d(u) = 2|E|$$

11. Базовые графы: граф-путь, граф-цикл, полный граф, граф-звезда

- Граф-путь $P_n, n \ge 0$ состоит из вершин $\{v_0, v_1, \dots, v_n\}$ и рёбер $\{v_i, v_{i+1}\}, i < n$.
- Граф-цикл $C_n, n \geqslant 3$ состоит из вершин $\{v_1, \dots, v_n\}$ и рёбер $\{v_i, v_{i+1}\}, i < n$, а также $\{v_n, v_1\}$. Как и в случае пути, длина цикла количество рёбер в цикле.
- Полный граф $K_n(V,E), n\geqslant 1$ состоит из n вершин и имеет всевозможные рёбра: $E=\binom{V}{2}$

• Граф-звезда состоит из выделенной вершины, соединённой рёбрами со всеми остальными вершинами (больше рёбер в этом графе нет).

12. Подграфы. Путь, цикл, клика и независимое множество.

Граф H(W,I) называется подграфом графа G(V,E), если $W\subseteq V$ и $I\subseteq E$. Другими словами, граф H получается из графа G удалением рёбер и вершин (вместе со смежными рёбрами). Это обозначают $H\subseteq G$.

Подграф H графа G называется

- $\bullet\,$ путём из вершины u в вершину v, если H это граф-путь P_n с началом в u и концом в v
- ullet циклом, если H это граф-цикл C_n
- кликой, если H это полный граф K_n

13. Компонента связности. Индуцированный подграф.

Пусть $U \in V$; подграф H графа G(V, E), состоящий из вершин U и содержащий все рёбра, которые есть в G называется **индуцированным** (множеством U); формально $H = (U, E \cap \binom{U}{2})$.

Вершина u называется **достижимой** из v, если есть путь из v в u. Граф G называется **связным**, если любая его вершина достижима из любой другой.

H — компонента связности графа G, если $H \in G$, H — связный граф и не существует связного подграфа $H' \in G$, такого что $H \subsetneq H'$.

14. Деревья. Полные бинарные деревья (см. ДЗ 7).

Будем называть граф деревом, если он удовлетворяет любому из следующих свойств:

- (1) Минимально связный граф (т. е. при удалении любого ребра граф становится несвязным).
- (2) Связный граф, в котором |E| = |V|1.
- (3) Ациклический связный граф (связный граф без циклов).
- (4) Граф, любая пара вершин которого связана единственным путём.

Вершинами полного бинарного дерева ранга n являются двоичные слова длины не больше n (включая пустое слово длины 0). Два слова соединены ребром в полном бинарном дереве, если одно получается из другого приписыванием одной цифры справа (нуля или единицы).

15. Правильные раскраски графов. Формулировка критерия 2-раскрашиваемости.

Раскраска графа — это функция f, которая ставит в соответствие каждой вершине графа некоторый цвет, т. е. $f(u) \in 1, ..., k$. Раскраска f называется **правильной**, если концы всех рёбер покрашены в разные цвета, т. е. для каждого ребра $\{u,v\}$ справедливо $f(u) \neq f(v)$

Минимальное число цветов, в который можно правильно раскрасить граф G называется **хроматическим числом** и обозначается через $\chi(G)$.

Граф G является **двураскрашиваемым** тогда и только тогда, когда в нём нет циклов нечётной длины.

16. Двудольные графы. Двудольные и двураскрашиваемые графы.

Граф G(V,E) называется **двудольным**, если существует разбиение множества V на подмножества L и R ($V=L\cup R, L\cap R=\varnothing$), такие что у каждого ребра один конец лежит в L, а другой в R, т. е. между вершинами из L нет рёбер, как и между вершинами из R. Множества L и R называют **долями** графа.

Граф двудольный тогда и только тогда, когда он двураскрашиваемый.

17. Эйлеровы циклы.

Маршрутом в графе G называется последовательность вершин v_0, v_1, \dots, v_n , такая что $n \geqslant 0$ и $\{v_i, v_{i+1}\} \in E(G), 0 \leqslant i \leqslant n-1$.

Маршрут, который содержит все рёбра графа ровно один раз назовём эйлеровым маршрутом.

Связный граф G содержит замкнутый эйлеров маршрут (эйлеров цикл) тогда и только тогда, когда степень каждой вершины чётна.

18. Функции. Область определения и множество значений.

Неформально, функция — это закон, который ставит в соответствие элементам множества X элементы множества Y; каждому элементу $x \in X$ поставлен в соответствие не более, чем один элемент из множества y.

Введём понятия степени вершин и (множества) соседей для ориентированного графа. Поскольку рёбра имеют направление, то мы разделяем исходящую степень $d_+(v)$ (число вершин достижимых из v по одному ребру) и входящую степень $d_-(v)$ (числу вершин, из которых за один шаг по ребру можно добраться до v).

Обозначим через f множество рёбер графа, задающего функцию f из X в Y; тогда $(x,y) \in f$ означает, что f(x) = y. Пусть $G(X \cup Y, f)$ — граф, для функции f.

- Областью определения $Dom(f) \in X$ называют подмножество вершин с исходящей степенью 1 (подмножество X, на котором определена функция f).
- Множеством значений $Range(f) \in Y$ называется подмножество вершин с входящей степенью больше 0 (подмножество Y всевозможных значений f).

19. Образ множества и полный прообраз.

• Образом f(A) множества $A \in X$ называют множество значений, которые принимает f на подмножестве A; на языке графов — это множество правых соседей $N_+(A)$

$$f(A) = \{ y \mid \exists x \in A : f(x) = y \} = N_{+}(A)$$

• Полным прообразом $f^{-1}(B)$ множества $B \in Y$ называют множество элементов X, значение функции на которых лежит в B; на языке графов — это множество левых соседей $N_{-}(B)$:

$$f^{-1}(B) = \{x \mid \exists y \in B : f(x) = y\} = N_{-}(B)$$

Рассмотрим на примере:

$$f: 1 \mapsto a, \quad 2 \mapsto b, \quad 4 \mapsto b, \quad 5 \mapsto d, \quad 6 \mapsto d, \quad 7 \mapsto d$$

Тогда

$$Dom(f) = \{1, 2, 4, 5, 6, 7\}, Range(f) = \{a, b, d\}$$
$$f(\{1, 3, 5, 7\}) = \{a, d\}, f^{-1}(\{a, b, c\}) = \{1, 2, 4\}$$

20. Отображения (всюду определённые функции). Инъекции, сюръекции и биекции.

В случае Dom(f)=X, функция f называется всюду определённой или отображением . Запись $f:X\mapsto Y$ означает, что f всюду определена.

- Отображение $f: X \mapsto Y$ называется **инъекцией**, если $f(x) \neq f(x')$ при $x \neq x'$. В терминах графа, это означает, что входящая степень каждого $y \in Y$ не превосходит единицу.
- Отображение $f: X \mapsto Y$ называется **сюръекцией**, если у каждого элемента y существует прообраз, т. е. Range(f) = Y или что то же самое $\forall y \in Y \exists x \in X: f(x) = y$. В терминах графа, это означает, что входящая степень каждого $y \in Y$ больше нуля.
- \bullet Отображение $f:X\mapsto Y$ называется **биекцией**, если оно является инъекцией и сюръекцией.

21. Правило суммы

Правило суммы гласит, что если конечные множества A и B не пересекаются, то мощность их объединения совпадает с суммой мощностей:

$$|A \cup B| = |A| + |B|$$
, если $A \cap B = \emptyset$

В общем случае

$$|A \cup B| = |A| + |B| - |A \cap B|$$

22. Правило произведения

Правило произведения формулируется на естественном языке следующим образом. Если есть n объектов первого типа и после выбора любого объекта первого типа можно выдрать m объектов второго типа, то всего есть $n \times m$ способов последовательно выбрать первый и второй объект.

23. Комбинаторные числа. Число перестановок, число подмножеств размера k у n-элементного мно жества

Слово — это конечная последовательность символов, которые в свою очередь определяются как элементы конечного множества — **алфавита**. Под алфавитом из k символов часто удобно понимать множество $[k]_0 = \{0, 1, \dots, k-1\}$ или $[k]_1 = \{1, 2, \dots, k\}$.

Слова над алфавитом $[n]_1$ длины n, в которых все символы разные называются **перестановками**. Число перестановок есть n!.

Если $\binom{n}{k}$ число k-элементных подмножеств n-элементного множества, то $\binom{n}{k} \times k! = \frac{n!}{(n-k)!}$, отсюда получаем, что

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Число $\binom{n}{k}$ называют числом сочетаний

Характеристическая функция и её использование при подсчёте числа элементов множества.

Зафиксируем юнивёрсум U. Функция $\chi_A(x)$ называется характеристической функцией множества $A\subseteq U$, если

$$\chi_A(x) = \begin{cases} 1, \text{ если } x \in A; \\ 0, \text{ если } x \notin A. \end{cases}$$

С помощью характеристической функции легко выразить мощность множества:

$$|A| = \sum_{x \in U} \chi_A(x)$$

25. Формула включений и исключений

Формула включений исключений устроена так (здесь $[n] = \{1, 2, \dots, n\}$)

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \dots + (-1)^{m+1} \sum_{S \subseteq [n], |S| = m} \left| \bigcap_{A \in S} A \right|$$

или более компактно

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{S \subseteq [n], S \neq \emptyset} (-1)^{|S|+1} \left| \bigcap_{A \in S} A \right|$$

26. Биномиальные коэффициенты, основные свойства. Бином Ньютона.

Число $\binom{n}{k}$ называют числом сочетаний

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Собственно говоря, сразу ясно, что после раскрытия скобок в $(a+b)(a+b)(a+b)\dots$ (n раз) получатся произведения n букв (сколько-то a, остальные b), и вопрос тольков том, какие будут коэффициенты при этих произведениях (сколько подобных членов). Так вот, формула бинома Ньютона и говорит, какие это будут коэффициенты: это числа сочетаний, и они написаны в n-й строке треугольника Паскаля. Поэтому числа сочетаний также называют биномиальными коэффициентами. Также число сочетаний из n по k соответствует количеству k-элементных подмножеств n-элементного множества.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
$$\binom{n}{k} = \binom{n}{n-k}$$

$$(1+1)^n = \sum_{k=0}^n \binom{n}{k} = 2^n$$

7

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$$

27. Треугольник Паскаля. Рекуррентное соотношение.

k-ый элемент в n-ой строке Паскаля равен $\binom{n}{k}$ и получается суммированием двух верхний соседних элементов.

k-ый элемент в n-ой строке равен (n-k)-ому, а сумма элементов равна 2^n .

Числа сначала возрастают (до середины), а потом начинают симметрично убывать. Последовательность биномиальных коэффициентов $\binom{n}{0},\binom{n}{1},\binom{n}{2},\ldots,\binom{n}{k},\ldots,\binom{n}{n}$ возрастает, если $k<\frac{n-1}{2}$, и убывает, если $r>\frac{n-1}{2}$.

Справедлива оценка

$$\binom{2n}{n} > \frac{2^{2n}}{2n+1}$$

28. Бинарные отношения. Транзитивность, симметричность, рефлексивность.

Формально **бинарное отношение** R между множествами A и B — это некоторое подмножество их декартова произведения:

$$R \subseteq A \times B$$

Если $(a,b) \in R$, говорят, что элемент a находится в отношении R с элементом b. Запись aRb. В случае, когда $R \in A \times A$, говорят, что отношение R задано на множестве A. Отношение $\subseteq A \times A$

- рефлексивно, если $\forall a \in A: \ aRa$
- симметрично, если $\forall a, b \in A: aRb \implies bRa$
- ullet транзитивно, если $\forall a,b,c\in A:\ (aRb)\wedge (bRc)\implies aRc$

29. Теоретико-множественные операции с отношениями. Операция обращения.

Обратным отношением к отношению $R \subseteq A \times B$ называют отношение

$$R^{-1} = \{(y, x) \mid xRy\} \subseteq B \times A$$

Операция обращения отношений известна также как операция транспонирования, поскольку в случае отношений между конечными множествами, обратное отношение задаётся транспонированной матрицей исходного.

30. Композиция бинарных отношений

Пусть $P \subseteq X \times Y, Q \subseteq Y \times Z$.

$$Q \circ P = \{(x, z) \mid \exists y \in Y : xPy \land yQz\}$$

31. Отношения эквивалентности.

Рефлексивное, симметричное и транзитивное отношение называют **отношением эквивалентности**.

Определим **класс эквивалентности** [a] как множество всех таких элементов множества A, которые эквивалентны элементу a:

$$[a] = \{x \mid x \in A, x \sim a\}$$

Классы эквивалентности [a] и [b] (по отношению эквивалентности \sim) либо не пересекаются 1, либо совпадают. Множество A разбивается в объединение классов эквивалентности.

Пример отношения эквивалентности из геометрии: отношение подобия треугольников.

32. Ориентированные графы, основные определения.

Формально, ориентированный граф задан парой (V, E), где множество вершин V как и раньше произвольное, а множество $E \subseteq V \times V$ — состоит из упорядоченных пар вершин. По-умолчанию, мы считаем, что в каждой паре вершины различны:

$$E \subseteq \{(u, v) \mid u, v \in V, u \neq v\}$$

рёбра вида (u,u) называются петлями и они возникают естественным образом при описании бинарных отношений с помощью ориентированных графов.

Определения, введённые нами для неориентированных графов, с поправками переносятся на ориентированные.

Исходящей степенью вершины $d_+(v)$ называется число рёбер, исходящих из вершины v, **входящей степенью** $d_-(v)$ — число рёбер, входящих в v. Вершины входящей степени 0 называют **источниками**, к таким отно сится вершина s ($d_-(s) = 0$), а вершины с нулевой исходящей степенью называют стоками: $d_+(t) = 0$. Источники и стоки часто обозначают соответственно через s и t, от слов source и target, хотя стоки на английском и называются sink.

Маршрутом в ориентированном графе называется последовательность вершин $\{v_0,v_1,\ldots,v_n\}$, такая что n>0 и $(v_i,v_{i+1})\in E(G)$ для $0\leqslant i\leqslant n-1$. Длина маршрута — это число рёбер, соединяющих вершины маршрута; оно совпадает с n. Маршрут называется замкнутым, если $v_0=v_n$.

33. Компоненты сильной связности ориентированного графа.

Вершина v достижима из u, если существует маршрут из u в v; отношение достижимости между вершинами обозначим $u \leadsto v$. Определим отношение двусторонней достижимости $u \leftrightsquigarrow v = (u \leadsto v) \land (v \leadsto u)$. Отношение двусторонней достижимости (u достижима из v и наоборот) — отношение эквивалентности.

Компонента сильной связности ориентированного графа — класс эквивалентности по отношению достижимости. То есть множество $U \subseteq V$ — компонента сильной связности, если любые две вершины множества U достижимы друг из друга и в U нельзя добавить ещё вершины с сохранением этого свойства (множество U — максимальное по включению).

34. Отношения (частичного) порядка (строгие и нестрогие), линейные порядки.

Отношение называется антисимметричным, если из uRv и vRu следует, что u=v:

$$\forall u, v \in V : (uRv) \land (vRu) \implies u = v$$

Отношение называется **антирефлексивным**, если не содержит ни одной пары (v, v) (не содержит петлей).

Отношения, которые транзитивны и антисимметричны и либо рефлексивны, либо антирефлексивны. Такие отношения называют **отношениями (частичного) порядка** или (частичными) порядками. Например, отношения \leq , < на множествах $\mathbb{N}_0, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$. Эти символы традиционно используют для отношений порядка.

Симметричное отношение порядка традиционно обозначают символом \leq , быть может с индексом, такие порядки называют **нестрогими**, антисимметричные отношения порядка обозначают символом <, их называют **строгими**.

Отношение порядка, в котором любые два элемента сравнимы называется линейным.

35. Отношение непосредственного следования (см. листок недели 11).

Каждому отношению порядка < (\leqslant) ставят в соответствие отношение **непосредственного следования** \prec :

$$(\prec_P) = \{(x, y) \mid (x <_P y) \land (\nexists z \in V : (x <_P z) \land (z <_P y))\}$$

36. Изоморфизм графов и (частичных) порядков (см. листок недели 11).

Отношения частичного порядка $\leqslant_P \subseteq A \times A$ и $\leqslant_Q \subseteq B \times B$ называются **изоморфными**, если существует такая биекция $f: A \mapsto B$, что $x \leqslant_P y \iff f(x) \leqslant_Q f(y)$.

2 Примерные задачи на понимание материала курса

TODO()

3 Вопросы на знание доказательств

- 1. Обобщённый закон Моргана
- 2. Иррациональность числа $\sqrt{2}$. Существуют такие иррациональные числа a и b, что число a^b рационально.
- 3. Нижняя оценка числа связных компонент в неориентированном графе.
- 4. Если G минимально связный граф (удаление любого ребра приводит к несвязности), то G не содержит циклов.
- 5. Если G связный ациклический граф, то между любыми двумя вершинами G существует единственный путь.
- 6. Если между любыми двумя вершинами G существует единственный путь, то G связный граф с |V|1 ребром.
- 7. Критерия 2-раскрашиваемости неориентированного графа.
- 8. Критерий существования эйлерова цикла в неориентированном графе.
- 9. Явная формула для числа сочетаний $\binom{n}{k}$: числа k-элементных подмножеств n-элементного множества.
- 10. Бином Ньютона. Формула для биномиальных коэффициентов.
- 11. Основные свойства треугольника Паскаля: симметричность строк, возрастание чисел в первой половине строки.
- 12. Основные свойства треугольника Паскаля: формула для суммы чисел в строке, нижняя оценка на центральный коэффициент
- 13. Число решений уравнения $x_1 + x_2 + \cdots + x_n = n$ в неотрицательных целых числах. (Задача Муавра.)
- 14. Формула включений и исключений
- 15. Число отображений, функций, инъекций, биекций из m-элементного множества в n-элементное множество
- 16. Формула для числа сюръекций
- 17. Основная теорема об отношениях эквивалентности (классы эквивалентности на множестве A в точности разбиения множества A на подмножества)
- 18. Равносильность свойств ориентированных графов: (1) каждая компонента сильной связности состоит из одной вершины; (2) вершины графа возможно занумеровать так, чтобы каждое ребро вело из вершины с меньшим номером в вершину с большим номером; (3) в графе нет циклов длины больше 1.