Thermodynamik und Statistische Physik

Übungen - Serie 7

Ausgabe: 1. Dezember 2015, Abgabe: 8. Dezember 2015 in der Vorlesung

1. Van-der-Waals-Gas

4 Punkte

Thermische und kalorische Zustandsgleichungen des Van-der-Waals-Gases lauten

$$p = \frac{nRT}{V - nb} - \frac{a n^2}{V^2}, \qquad E = \frac{3}{2}nRT - \frac{a n^2}{V}.$$

- (a) Nehmen Sie nur die Gültigkeit der thermischen Zustandsgleichung an und folgern Sie daraus alle mit der Gibbsschen Fundamentalgleichung verträglichen Formen der kalorischen Zustandsgleichung.
- (b) Nehmen Sie nur die Gültigkeit der kalorischen Zustandsgleichung an und folgern Sie daraus alle mit der Gibbsschen Fundamentalgleichung verträglichen Formen der thermischen Zustandsgleichung.
- (c) Berechnen Sie das Entropiepotential S = S(E, V, n) für das Van-der-Waals-Gas.
- (d) Berechnen Sie die Funktion S=S(T,V,n). Welche Schlüsse über thermische und kalorische Zustandsgleichungen lassen sich bei Kenntnis lediglich der Funktion S=S(T,V,n) ziehen?

2. Thermodynamisches Potential

3 Punkte

Gehen Sie von der für das Entropie-Potential dS formulierten Gibbsschen Fundamentalgleichung aus und leiten Sie für ein pVT-System ein thermodynamisches Potential ab, das die Eigenschaft hat, bei reversibel isotherm und isobar geführten Prozessen konstant zu bleiben. Geben Sie das vollständige Differential für dieses Potential an.

bitte wenden!

3. Relation zwischen Potentialen

4 Punkte

Beweisen Sie die folgende Formel:

$$\left(\frac{\partial H}{\partial T}\right)_{p} - \left(\frac{\partial E}{\partial T}\right)_{V} = -T\left(\frac{\partial p}{\partial T}\right)_{V}^{2} \left(\frac{\partial p}{\partial V}\right)_{T}^{-1}.$$

4. Beweis thermodynamischer Relationen

4 Punkte

Für ein pVT-System mit der Stoffmenge n, der inneren Energie E, der Temperatur T, dem Volumen V und dem chemischen Potential μ ist zu zeigen, daß die folgenden Relationen gelten:

$$a) \quad \left(\frac{\partial E}{\partial n}\right)_{T,V} - \mu = -T\left(\frac{\partial \mu}{\partial T}\right)_{V,n}$$

$$b) \quad \left(\frac{\partial n}{\partial T}\right)_{V,\frac{\mu}{T}} \, = \, \frac{1}{T} \Big(\frac{\partial n}{\partial \mu}\Big)_{T,V} \Big(\frac{\partial E}{\partial n}\Big)_{T,V}$$