Solution

Section 4.3 - Logarithmic Functions

Exercise

Find $\log_{8} 14$

Solution

$$\log_8 14 = \frac{\log 14}{\log 8}$$
$$\approx 1.2691$$

Exercise

Write the equation in its equivalent logarithmic form $2^6 = 64$

Solution

$$6 = \log_2 64$$

Exercise

Write the equation in its equivalent exponential form $2 = log_9 x$

Solution

$$\Rightarrow$$
 9² = x

Exercise

Write the equation in its equivalent logarithmic form $5^4 = 625$

Solution

$$\Rightarrow$$
 4 = log_5 625

Exercise

Write the equation in its equivalent logarithmic form $5^{-3} = \frac{1}{125}$

$$-3 = log_5 \frac{1}{125}$$

Write the equation in its equivalent logarithmic form $\sqrt[3]{64} = 4$

Solution

$$64^{1/3} = 4$$

$$\Rightarrow \log_{64} = \frac{1}{3}$$

Exercise

Write the equation in its equivalent logarithmic form $b^3 = 343$

Solution

$$\Rightarrow log_b 343 = 3$$

Exercise

Write the equation in its equivalent logarithmic form $8^y = 300$

Solution

$$\Rightarrow log_8 300 = y$$

Exercise

Write the equation in its equivalent logarithmic form: $\left(\frac{2}{3}\right)^{-3} = \frac{27}{8}$

Solution

$$\log_{\frac{2}{3}}\left(\frac{27}{8}\right) = -3$$

Exercise

Write the equation in its equivalent exponential form $log_5 125 = y$

Solution

$$\Rightarrow$$
 5^y = 125

Exercise

Write the equation in its equivalent exponential form $\log_4 16 = x$

$$16 = 4^{x}$$

Write the equation in its equivalent exponential form $\log_5 \frac{1}{5} = x$

Solution

$$\frac{1}{5} = 5^{x}$$

Exercise

Write the equation in its equivalent exponential form $\log_2 \frac{1}{8} = x$

Solution

$$\frac{1}{2^3} = 2^x$$

$$2^{-3} = 2^x$$

Exercise

Write the equation in its equivalent exponential form $\log_6 \sqrt{6} = x$

Solution

$$6^{1/2} = 6^x$$

Exercise

Write the equation in its equivalent exponential form $\log_3 \frac{1}{\sqrt{3}} = x$

Solution

$$3^{-1/2} = 3^x$$

Exercise

Write the equation in its equivalent exponential form: $6 = \log_2 64$

Solution

$$6 = \log_2 \frac{64}{} \Leftrightarrow 2^6 = \frac{64}{}$$

Exercise

Write the equation in its equivalent exponential form: $2 = \log_9 x$

25

$$2 = \log_9 x \Leftrightarrow x = 2^9$$

Write the equation in its equivalent exponential form: $log_{\sqrt{3}} 81 = 8$

Solution

$$\log_{\sqrt{3}} 81 = 8 \iff 81 = \left(\sqrt{3}\right)^8$$

Exercise

Write the equation in its equivalent exponential form: $log_4 \frac{1}{64} = -3$

Solution

$$\log_4 \frac{1}{64} = -3 \iff \frac{1}{64} = x^{-3}$$

Exercise

Evaluate the expression without using a calculator: $\log_4 16$

Solution

$$\log_4 16 = \log_4 4^2 = 2$$

$$\log_b b^x = x$$

Exercise

Evaluate the expression without using a calculator: $\log_2 \frac{1}{8}$

Solution

$$\log_2 \frac{1}{8} = \log_2 \frac{1}{2^3}$$

$$= \log_2 2^{-3}$$

$$= -3$$

Exercise

Evaluate the expression without using a calculator: $\log_6 \sqrt{6}$

$$\log_6 \sqrt{6} = \log_6 6^{1/2} = \frac{1}{2}$$

Evaluate the expression without using a calculator: $\log_3 \frac{1}{\sqrt{3}}$

Solution

$$\log_3 \frac{1}{\sqrt{3}} = \log_3 \frac{1}{3^{1/2}}$$

$$= \log_3 3^{-1/2} \qquad \log_b b^x = x$$

$$= -\frac{1}{2}$$

Exercise

Evaluate the expression without using a calculator: $\log_3 \sqrt[7]{3}$

Solution

$$\Rightarrow \log_3 3^{1/7} = x \qquad \text{Converts to exponential}$$

$$3^{1/7} = 3^x$$

$$x = \frac{1}{7}$$

$$\Rightarrow \log_3 \sqrt[7]{3} = \frac{1}{7}$$

Exercise

Find $\log_5 8$ using common logarithms

Solution

$$\log_{\frac{5}{8}} = \frac{\ln \frac{8}{\ln 5}}{\ln \frac{5}{8}} \approx 1.292$$

Exercise

Find the number $\log_{5} 1$

$$\log_5 1 = 0$$

Find the number $\log_{7} 7^2$

Solution

$$\log_{7} 7^2 = 2$$

Exercise

Find the number $3^{\log_3 8}$

Solution

$$3^{\log_3 8} = 8$$

Exercise

Find the number $10^{\log 3}$

Solution

$$10^{\log 3} = 3$$

Exercise

Find the number $e^{2+\ln 3}$

Solution

$$e^{2+\ln 3} = 22.1672$$

Exercise

Find the number $\ln e^{-3}$

Solution

$$\ln e^{-3} = -3$$

Exercise

Find the domain of $\log_5(x+4)$

$$x > -4 \rightarrow (-4, \infty)$$

Find the domain of $\log_5(x+6)$

Solution

$$x > -6 \rightarrow (-6, \infty)$$

Exercise

Find the domain of log(2-x)

Solution

$$2-x>0
-x>-2
x<2 \rightarrow (-\infty,2)$$

Exercise

Find the domain of log(7-x)

Solution

$$7-x>0$$

$$-x>-7$$

$$x<7 \rightarrow (-\infty,7)$$

Exercise

Find the domain of $ln(x-2)^2$

Solution

$$x-2 \neq 0 \implies x \neq 2$$

 $(-\infty,2) \cup (2,\infty)$

Exercise

Find the domain of $ln(x-7)^2$

$$x-7 \neq 0 \implies x \neq 7$$

 $(-\infty,7) \cup (7,\infty)$

Find the domain of $\log(x^2 - 4x - 12)$

Solution

$$x^{2} - 4x - 12 \neq 0 \Rightarrow x \neq -2, 6$$
$$(-\infty, -2) \cup (-2, 6) \cup (6, \infty)$$

Exercise

Find the domain of $\log\left(\frac{x-2}{x+5}\right)$

Solution

$$\begin{cases} x \neq 2 \\ x \neq -5 \end{cases}$$
$$(-\infty, -5) \cup (2, \infty)$$

	-5	0	2		
+		-		+	

Exercise

Sketch the graph of $f(x) = \log_4(x-2)$

Solution

Asymptote: x = 2

Domain: $(2, \infty)$

Range: $(-\infty,\infty)$

x	f(x)
-2	
2.5	5
3	0
4	.5

Sketch the graph of $f(x) = \log_4 |x|$

Solution

Asymptote: x = 0

Domain: $(-\infty, 0) \cup (0, \infty)$

Range: $(-\infty, \infty)$

x	f(x)
-0-	
±.5	5
±1	0
±2	.5

Exercise

Sketch the graph of $f(x) = \left(\log_4 x\right) - 2$

Solution

Asymptote: x = 0

Domain: $(0, \infty)$

Range: $(-\infty,\infty)$

x	f(x)
-0-	
0.5	-2.5
1	0
2	1.5

On a study by psychologists Bornstein and Bornstein, it was found that the average walking speed w, in feet per second, of a person living in a city of population P, in *thousands*, is given by the function

$$w(P) = 0.37 \ln P + 0.05$$

- a) The population is 124,848. Find the average walking speed of people living in Hartford.
- b) The population is 1,236,249. Find the average walking speed of people living in San Antonio.

Solution

124,848 = 124.848 thousand

- a) $w(P=124.848) = 0.37 \ln(124.848) + 0.05 \approx 1.8 \text{ ft/sec}$
- **b**) $w(P=1,236,249) = 0.37 \ln(1,236,249) + 0.05 \approx 2.7 \text{ ft/sec}$

Exercise

The loudness of sounds is measured in a unit called a decibel. To measure with this unit, we first assign an intensity of I_0 to a very faint sound, called the threshold sound. If a particular sound has intensity I, then the decibel rating of this louder sound is

$$d = 10\log \frac{I}{I_0}$$

Find the exact decibel rating of a sound with intensity $10,000I_0$

Solution

$$d = 10\log \frac{10000I_0}{I_0}$$
= 10\log 10000
= 40

Exercise

A model for advertising response is given by the function

$$N(a) = 1000 + 200 \ln a, \qquad a \ge 1$$

Where N(a) is the number of units sold when a is the amount spent on advertising, in thousands of dollars.

- *a*) N(a = 1)
- *b*) N(a = 5)

a)
$$N(a=1) = 1000 + 200 \ln 1 = 1000 \text{ units}$$

b)
$$N(a=5) = 1000 + 200 \ ln5 = 1322 \ units$$

Students in an accounting class took a final exam and then took equivalent forms of the exam at monthly intervals thereafter. The average score S(t), as a percent, after t months was found to be given by the function

$$S(t) = 78 - 15 \log(t+1), \quad t \ge 0$$

- a) What was the average score when the students initially took the test, t = 0?
- b) What was the average score after 4 months? 24 months?

Solution

a) What was the average score when the students initially took the test, t = 0?

$$t = 0 \rightarrow S(t) = 78 - 15 \log(0 + 1) = 78\%$$

b) What was the average score after 4 months? 24 months?

After 4 months
$$\rightarrow S(t=4) = 78 - 15 \log(4+1) = 67.5\%$$

24 months
$$\rightarrow S(t = 24) = 78 - 15 \log(24 + 1) = 57\%$$