

#### 第四讲 乘除法器设计

- 常用的机器编码格式
- 定点乘法器的原理及实现
  - ▶原码一位乘法设计
  - ▶补码一位乘法设计
  - ▶阵列乘法器设计
- 定点除法器原理及实现
  - ▶原码除法器设计
  - ▶补码除法器设计
  - > 阵列除法器设计





- ▶原码表示法
- ▶反码表示法
- ▶补码表示法





- 4.1.1 原码表示法
- 》原码表示法是一种最简单的机器数表示法, 其最高位为符号位, 符号位为0时表示该数为正, 符号位为1时表示该数为负, 数值部分与真值相同。
- ightharpoonup 原码形式为 $X_S$ .  $X_1X_2\cdots X_n$ , 其中 $X_S$ 表示符号位。 纯小数原码的定义为:

[X]<sub>$$\mathbb{R}$$</sub> = 
$$\begin{cases} X & 0 \le X < 1 \\ 1 - X = 1 + |X| & -1 < X \le 0 \end{cases}$$

#### 纯整数原码的定义为:

[X]<sub>E</sub> = 
$$\begin{cases} X, & 0 \le X < 2^{n} \\ 2^{n} - X = 2^{n} + |X|, & -2^{n} < X \le 0 \end{cases}$$



- ►原码的优点是直观易懂, 机器数和真值间的转换很容易,用原码实现乘、除运算的规则简单。
- ▶缺点是加、减运算规则较复杂。





- 4.1.2 反码表示法
- > 反码是对一个数的各位求反。
- 正数的反码和原码的形式相同;
- 负数的反码是符号位为1,数值部分等于其各位的绝对值求反。





#### ● 4.1.3 补码表示法

- ▶补码的符号位表示方法与原码相同(即正数为0,负数为1),其数值部分的表示与数的正负有关:
- 正数: 数值部分与真值形式相同;
- 负数: 将真值的数值部分按位取反, 且在最低位加1

0





 $\rightarrow$  补码形式为 $X_S$ .  $X_1X_2\cdots X_n$ , 其中 $X_S$ 表示符号位。 纯小数补码的定义为:

[X]<sub>\*</sub> = 
$$\begin{cases} X, & 0 \le X < 1 \\ 2 + X = 2 - |X|, -1 < X \le 0 \end{cases}$$

#### 纯整数补码的定义为:

$$[X]_{\stackrel{*}{\not=}} = \begin{cases} X, & 0 \le X < 2^n \\ 2^{n+1} + X = 2^{n+1} - |X|, -2^n < X \le 0 \end{cases}$$

> 在补码表示中, 真值0的表示形式是唯一的:

$$[+0]_{3} = [-0]_{3} = 00000$$



## 4.2 定点乘法器的原理及实现

- 乘法运算是计算机中一种重要的基本运算,实现方法包括以下几种。
  - (1) 用软件实现乘法运算。
  - (2) 在加法器基础上增加一些硬件实现乘法运算。
  - (3) 设置专用硬件乘法器实现乘法运算。使用该方法会使计算机结构复杂,成本增加,但能使运算速度大大提高。



## 4.2 定点乘法器的原理及实现

- 乘法运算是计算机中一种重要的基本运算,实现方法包括以下几种。
  - (1) 用软件实现乘法运算。
  - (2) 在加法器基础上增加一些硬件实现乘法运算。
  - (3) 设置专用硬件乘法器实现乘法运算。使用该方法会使计算机结构复杂,成本增加,但能使运算速度大大提高。



# 4.2 定点乘法器的原理及实现

- ▶原码一位乘法设计
- ▶原码二位乘法设计
- ▶补码一位乘法设计
- > 阵列乘法器设计





#### 设计方法

- 模块功能与原理分析
- 模块结构与电路模型
- VHDL语言设计实现
- FPGA验证





- 原码一位乘法的法则是:
  - ①乘积的符号为被乘数的符号位与乘数的符号位相异或;
  - ②乘积的绝对值为被乘数的绝对值与乘数的绝对值之积。即

$$[X]_{\mathbb{R}} \times [Y]_{\mathbb{R}} = (X0 \oplus Y0)(|X| \times |Y|)$$





• 手工乘法运算

例:若[X]<sub>原</sub>=0.1101,[Y]<sub>原</sub>=1.1011,求两者之积。

解: 乘积的符号为0 ⊕1 = 1

手算过程如下:







• 原码一位乘法器框图





## 原码一位乘法器功能模块





### (1)控制器设计

- 控制器功能: 控制移位寄存器和16位寄存器。
- 端口定义:

```
PORT (CLK, START : IN STD_LOGIC; CLKOUT,RSTALL,DONE: OUT STD_LOGIC );
```





## (1)控制器设计

#### • 输入端口

- ➤ CLK: 乘法时钟信号
- ➤ START: 乘法器启动信号。信号的上跳沿及其高电平有两个功能,即16位寄存器清零和被乘数 A[7..0]向移位寄存器加载; 低电平则作为乘法使能信号。

#### 输出端口

- ➤ CLKOUT:时钟控制端
- ➤ RSTALL: 清零端口
- ➤ DONE: 乘法完成标志位



## (1)控制器设计

```
LIBRARY IEEE:
USE IEEE.STD LOGIC 1164.ALL;
USE IEEE.STD LOGIC UNSIGNED.ALL;
ENTITY ARICTL IS
   PORT (CLK, START : IN STD LOGIC;
       CLKOUT, RSTALL, DONE: OUT STD LOGIC );
END ARICTL:
ARCHITECTURE behav OF ARICTL IS
                                                    计数器
   SIGNAL CNT4B : STD LOGIC VECTOR(3 DOWNTO 0);
BEGIN
   PROCESS(CLK, START)
   BEGIN
       RSTALL <= START:
       IF START = '1' THEN CNT4B <= "0000":
       ELSIF CLK'EVENT AND CLK ='1' THEN
        IF CNT4B < 8 THEN CNT4B <= CNT4B + 1; END IF;
       END IF:
                                                 端口输出控
   END PROCESS:
   PROCESS(CLK, CNT4B, START)
                                                    制信号
   BEGIN
       IF START = 'O' THEN
           IF CNT4B < 8 THEN CLKOUT <= CLK;
           ELSE CLKOUT <= 'O'; DONE<='1'; END IF;
       ELSE CLKOUT <= CLK; DONE<='0'; END IF;
   END PROCESS:
END behav:
```



### (2)16位锁存器设计

- 16位锁存器功能: 存储部分积及部分积移位
- 端口定义

```
PORT (
   CLK: IN STD LOGIC;
   CLR: IN STD LOGIC;
   D: IN STD LOGIC VECTOR(8 DOWNTO 0);
   Q: OUT STD LOGIC VECTOR(15
 DOWNTO 0)
```



## (2)16位锁存器设计

```
LIBRARY IEEE:
USE IEEE.STD LOGIC 1164.ALL;
                                                 -- 16位锁存器
ENTITY REG16B IS
   PORT (
       CLK : IN STD LOGIC;
       CLR : IN STD LOGIC;
       D : IN STD LOGIC VECTOR(8 DOWNTO 0);
       Q : OUT STD LOGIC VECTOR(15 DOWNTO 0)
   );
END REG16B:
                                           移位及锁存
ARCHITECTURE behav OF REG16B IS
   SIGNAL R16S : STD LOGIC VECTOR(15 DOWNTO 0);
                                               功能
BEGIN
   PROCESS (CLK, CLR)
   BEGIN
                                                    -- 潜零信号
    IF CLR = '1' THEN
    R16S <= "0000000000000000";-- 时钟到来时,锁存输入值,并右移低8位
       ELSIF CLK'EVENT AND CLK = '1' THEN
           R16S(6 DOWNTO 0) <= R16S(7 DOWNTO 1); -- 右移低8位
                                               -- 将输入锁到高8位
           R16S(15 DOWNTO 7) <= D;
       END IF:
   END PROCESS:
   Q <= R16S;
END behav;
```



## (3)移位寄存器

- 移位寄存器功能是右移一位操作。
- 端口定义

```
PORT (
    CLK: IN STD LOGIC;
    LOAD: IN STD LOGIC;
  DIN: IN STD LOGIC VECTOR(7 DOWNTO
 0);
  QB: OUT STD LOGIC
```



## (3)移位寄存器设计

```
LIBRARY IEEE:
USE IEEE.STD LOGIC 1164.ALL;
                                                         -- 8位右移寄存器
ENTITY SREG8B IS
   PORT ( CLK : IN STD LOGIC; LOAD : IN STD LOGIC;
            DIN : IN STD LOGIC VECTOR (7 DOWNTO 0);
             QB : OUT STD LOGIC );
                                                        移位功能
END SREG8B:
ARCHITECTURE behav OF SREG8B IS
   SIGNAL REG8 : STD LOGIC VECTOR (7 DOWNTO 0);
BEGIN
   PROCESS (CLK, LOAD)
   BEGIN
        IF CLK'EVENT AND CLK = '1' THEN
                                                        装载新数据
           IE LOAD = '1' THEN
               REG8 <= DIN;
              ELSE
                                                    数据右移
               REG8(6 DOWNTO 0) <= REG8(7 DOWNTO 1);
           END IF:
       END IF:
   END PROCESS:
                                                      -- 输出最低位
   QB <= REG8(0);
END behav:
```



## (4)1位乘法器设计

• 1位乘法器功能: 当前数据位与另外一个操作数进行与运算。

```
LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
                                                 -- 选通与门模块
ENTITY ANDARITH IS
   PORT ( ABIN : IN STD LOGIC;
        DIN : IN STD LOGIC VECTOR (7 DOWNTO 0);
       DOUT : OUT STD LOGIC VECTOR (7 DOWNTO 0) );
                                                   1位乘法运算
END ANDARITH:
ARCHITECTURE behav OF ANDARITH IS
BEGIN
   PROCESS (ABIN, DIN)
    BEGIN
                                         -- 循环,完成8位与1位运算
       FOR I IN O TO 7 LOOP
           DOUT(I) <= DIN(I) AND ABIN;
       END LOOP:
   END PROCESS:
END behav;
```



## (5)加法器设计

• 8位并行加法器设计







# (6)仿真结果







#### ・原码二位乘法

| $Y_{i+1}$ | Y <sub>i</sub> | С | 操作                   |
|-----------|----------------|---|----------------------|
| 0         | 0              | 0 | +0, 右移2次, C=0        |
| 0         | 0              | 1 | +   X   , 右移2次, C=0  |
| 0         | 1              | 0 | +   X   , 右移2次, C=0  |
| 0         | 1              | 1 | +2   X   , 右移2次, C=0 |
| 1         | 0              | 0 | +2   X   ,右移2次,C=0   |
| 1         | 0              | 1 | - X ,右移2次,C=1        |
| 1         | 1              | 0 | - X ,右移2次,C=1        |
| 1         | 1              | 1 | +0, 右移2次, C=1        |

原码二位乘法的法则表



• 例: 设X = + 0.100111, Y = - 0.100111, 利用原码求积。

| 符号位     | D           | A                                                                 | 操作       |
|---------|-------------|-------------------------------------------------------------------|----------|
| 0 0 0   | 0 0 0 0 0 0 | 1 0 0 1 1 1                                                       | C=0      |
| 1 1 1   | 0 1 1 0 0 1 | i                                                                 | —X       |
| 1 1 1   | 0 1 1 0 0 1 |                                                                   | C=1      |
| 1 1 1   | 1 1 0 1 1 0 | $\begin{bmatrix} 0 & 1 & 1 & 0 & \underline{0} & 1 \end{bmatrix}$ | →右移二次    |
| 0 0 1   | 0 0 1 1 1 0 | :                                                                 | C=1, +2X |
| 0 0 1   | 0 0 0 1 0 0 |                                                                   | C=0      |
| 0  0  0 | 0 1 0 0 0 1 | $\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$             | →右移二次    |
| 0 0 1   | 0 0 1 1 1 0 |                                                                   | C=0, +2X |
| 0 0 1   | 0 1 1 1 1 1 |                                                                   | C=0      |
| 0 0 0   |             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$              | →右移二次    |

乘积之符号=0 ⊕ 1=1



 $Y_{i+1}=Y_i=$ 

| $Y_{i+1}$ | Y <sub>i</sub> | C | 操作                    |
|-----------|----------------|---|-----------------------|
| 0         | 0              | 0 | +0, 右移2次, C=0         |
| 0         | 0              | 1 | +   X   , 右移2次,C=0    |
| 0         | 1              | 0 | +   X   , 右移2次,C=0    |
| 0         | 1              | 1 | +2   X   ,右移2次,C=0    |
| 1         | 0              | 0 | +2   X   ,右移2次,C=0    |
| 1         | 0              | 1 | -   X   , 右移2次, C=1   |
| 1         | 1              | 0 | -   X   , 右移2次, C=1   |
|           | 1              | 1 | +0, 右移2次, C≡ <b>→</b> |





Y<sub>i+1</sub>=0 && Y<sub>i</sub>⊕C=1

| $Y_{i+1}$ | Y <sub>i</sub> | C | 操作                   |
|-----------|----------------|---|----------------------|
| 0         | 0              | 0 | +0, 右移2次, C=0        |
| 0         | 0              | 1 | +   X   , 右移2次,C=0   |
| 0         | 1              | 0 | +   X   , 右移2次,C=0   |
| 0         | 1              | 1 | +2   X   , 右移2次, C=0 |
| 1         | 0              | 0 | +2   X   ,右移2次,C=0   |
| 1         | 0              | 1 | -   X   , 右移2次, C=1  |
| 1         | 1              | 0 | -   X   , 右移2次, C=1  |
| 1         | 1              | 1 | +0, 右移2次, C=1        |





| $Y_{i+1}$ | Y <sub>i</sub> | C | 操作                  |
|-----------|----------------|---|---------------------|
| 0         | 0              | 0 | +0, 右移2次, C=0       |
| 0         | 0              | 1 | +   X   , 右移2次,C=0  |
| 0         | 1              | 0 | +   X   , 右移2次,C=0  |
| 0         | 1              | 1 | +2   X   ,右移2次,C=0  |
| 1         | 0              | 0 | +2   X   ,右移2次,C=0  |
| 1         | 0              | 1 | - X ,右移2次,C=1       |
| 1         | 1              | 0 | -   X   , 右移2次, C=1 |
| 1         | 1              | 1 | +0, 右移2次, C=1       |





| $Y_{i+1}$ | Y <sub>i</sub> | С | 操作                  |
|-----------|----------------|---|---------------------|
| 0         | 0              | 0 | +0, 右移2次, C=0       |
| 0         | 0              | 1 | +   X   , 右移2次,C=0  |
| 0         | 1              | 0 | +   X   , 右移2次,C=0  |
| 0         | 1              | 1 | +2   X   ,右移2次,C=0  |
| 1         | 0              | 0 | +2   X   ,右移2次,C=0  |
| 1         | 0              | 1 | -   X   , 右移2次, C=1 |
| 1         | 1              | 0 | -   X   ,右移2次,C=1   |
| 1         | 1              | 1 | +0, 右移2次, C=1       |







### 4.2.3 补码一位乘法运算

- · 布斯 (Booth) 法
- ➤ 假定被乘数X和乘数Y均为用补码表示的纯小数, 其中X0、Y0是它们的符号位:

[X] 
$$_{\frac{1}{N}} = X0 . X_{-1}X_{-2}...X_{-(n-1)}$$
  
[Y]  $_{\frac{1}{N}} = Y0 . Y_{-1}Y_{-2...}Y_{-(n-1)}$ 

▶ 布斯法补码一位乘法的算法公式为:

$$\begin{bmatrix} X \cdot Y \end{bmatrix}_{\stackrel{?}{\uparrow} \stackrel{?}{\uparrow}} = \begin{bmatrix} X \end{bmatrix}_{\stackrel{?}{\uparrow} \stackrel{?}{\uparrow}} \begin{bmatrix} (Y_{-1} - Y_0) & 2^0 + (Y_{-2} - Y_{-1}) \\ 2^{-1} + (Y_{-3} - Y_{-2}) & 2^{-2} + \dots + (Y_{-(n-1)}) & 2^{-(n-1)} \\ - Y_{-(n-2)} & 2^{-(n-2)} + (0 - Y_{-(n-1)}) & 2^{-(n-1)} \end{bmatrix}$$



# 4.2.3 布斯补码一位乘法运算

#### ◆乘数的相邻两位的操作规律

| $Y_i$ $Y_{i-1}$ | $Y_{i-1}-Y_i$ | 操作                       |
|-----------------|---------------|--------------------------|
| 0 0             | 0             | +0,右移一次                  |
| 0 1             | 1             | + [X] <sub>补</sub> ,右移一次 |
| 1 0             | -1            | +[-X] <sub>补</sub> ,右移一次 |
| 1 1             | 0             | +0,右移一次                  |





### 4.2.3 布斯补码一位乘法运算

 例:已知X=0.1010,Y=-0.1101。利用布斯法 补码─位乘法求积。

解: 首先将两数用补码表示: [X] 补=00.1010, [Y] 补=11.0011, 而 [-X] 补=11.0110。





# 4.2.3 布斯补码一位乘法运算

| 符   | 号 |   | I | ) |   | A |   |    |   |          | $A_{-1}$ | 操 作                  |
|-----|---|---|---|---|---|---|---|----|---|----------|----------|----------------------|
| O   | О | О | О | О | О | 1 | О | О  | 1 | 1        | 0        |                      |
| _ 1 | 1 | О | 1 | 1 | О |   | : |    |   |          |          | + [—X] <sub>*h</sub> |
| 1   | 1 | О | 1 | 1 | О |   |   |    |   |          |          |                      |
| 1   | 1 | 1 | O | 1 | 1 | О | 1 | O  | O | 1        | 1        | 右移一位                 |
| O   | O | О | О | O | О |   |   |    |   |          |          | +0                   |
| 1   | 1 | 1 | О | 1 | 1 |   |   | ·: |   |          |          |                      |
| 1   | 1 | 1 | 1 | Ο | 1 | 1 | Ο | 1  | Ο | <u>O</u> | 1        | 右移一位                 |
| O   | О | 1 | О | 1 | О |   |   |    |   |          |          | + [X] <sub>补</sub>   |
| O   | Ο | О | 1 | 1 | 1 |   |   | ļ  |   |          |          |                      |
| O   | Ο | О | Ο | 1 | 1 | 1 | 1 | О  | 1 | <u>O</u> | <u>O</u> | 右移一位                 |
| 0   | О | О | О | О | О |   |   |    |   |          |          | +0                   |
| O   | Ο | О | О | 1 | 1 |   |   |    |   |          |          |                      |
| O   | Ο | О | Ο | Ο | 1 | 1 | 1 | 1  | Ο | 1        | О        | 右移一位                 |
| _1  | 1 | О | 1 | 1 | О |   |   |    |   |          |          | + [-X] *\            |
| 1   | 1 | О | 1 | 1 | 1 |   |   |    |   |          |          |                      |
| 1   | 1 | 1 | О | 1 | 1 | 1 | 1 | 1  | 1 | О        |          | 右移一位                 |

 $[X \cdot Y] \neq 1.011111110$ 



# 4.2.3 布斯补码一位乘法运算





# 4.2.3 布斯补码一位乘法运算





### 4.2.4 阵列乘法器设计

设 $X=X_3X_2X_1X_0$ , $Y=Y_3Y_2Y_1Y_0$ ,计算 $X\cdot Y=?$ 

|                |           |                | X3                            | $X_2$                         | $X_1$    | $X_0 \leftarrow$              |  |
|----------------|-----------|----------------|-------------------------------|-------------------------------|----------|-------------------------------|--|
|                |           | ×              | Y <sub>3</sub>                | $Y_2$                         | $Y_1$    | $Y_0 \!\!\leftarrow\!\!\!\!-$ |  |
|                |           |                | X <sub>3</sub> Y <sub>0</sub> | X <sub>2</sub> Y <sub>0</sub> | $X_1Y_0$ | X <sub>0</sub> Y <sub>0</sub> |  |
|                |           | $X_3 Y_1$      | $X_2 Y_1$                     | $X_1Y_1$                      | $X_0Y_1$ | ę.                            |  |
|                | $X_3 Y_2$ | $X_2 Y_2$      | $X_1Y_2$                      | $X_0Y_2$ +                    | J        |                               |  |
| X3 Y3          | $X_2 Y_3$ | $X_1Y_3$       | $X_0 Y_3$                     | ę.                            |          |                               |  |
| Z <sub>6</sub> | $Z_5$     | Z <sub>4</sub> | $Z_3$                         | $Z_2$                         | $Z_1$    | Z <sub>0</sub> ₽              |  |





# (1)基本乘加单元





# (2)定点无符号数阵列乘法器





# (2)定点无符号数阵列乘法器





# (3)TOP\_ROW功能实现

```
-----top_row.vhd(component): ----
  LIBRARY ieee;
  USE ieee.std_logic_1164.all;
  USE work.my_components.all;
  ENTITY top_row IS
     PORT (a: IN STD_LOGIC;
           b: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
8
9
            sout, cout: OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
10
           p: OUT STD_LOGIC);
11 END top_row;
13 ARCHITECTURE structural OF top_row IS
14 BEGIN
15
      U1: COMPONENT and 2 PORT MAP(a, b(3), sout(2));
16
     U2: COMPONENT and 2 PORT MAP(a, b(2), sout(1));
17
     U3: COMPONENT and 2 PORT MAP(a, b(1), sout(0));
18
     U4: COMPONENT and 2 PORT MAP(a, b(0), p);
      cout(2) <= '0'; cout(1) <= '0'; cout(0) <= '0';
19
20 END structural;
```



### (4)MID\_ROW功能实现

```
LIBRARY ieee;
  USE ieee.std_logic_1164.all;
   USE work.my_components.all;
5
   ENTITY mid_row IS
      PORT (a: IN STD_LOGIC;
           b: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
           sin, cin: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
            sout, cout: OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
10
11
           p: OUT STD_LOGIC);
12 END mid_row;
14 ARCHITECTURE structural OF mid_row IS
15
      SIGNAL and_out: STD_LOGIC_VECTOR(2 DOWNTO 0);
16 BEGIN
17
     U1: COMPONENT and 2 PORT MAP(a, b(3), sout(2))
18
      U2: COMPONENT and 2 PORT MAP(a, b(2), and out(2));
     U3: COMPONENT and 2 PORT MAP(a, b(1), and out(1));
20
     U4: COMPONENT and_2 PORT MAP(a, b(0), and_out(0));
21
     U5: COMPONENT fau PORT MAP(sin(2), cin(2), and_out(2)
22
        sout(1), cout(2));
     U6: COMPONENT fau PORT MAP(sin(1), cin(1), and out(1)
23
24
         sout(0), cout(1));
25
      W7: COMPONENT fau PORT MAP(sin(0), cin(0), and out(0)
26
        p, cout(0));
```

END structural:



# (5)LOW\_ROW功能实现

```
-----lower_row.vhd(component): -----
  LIBRARY ieee;
  USE ieee.std_logic_1164.all;
  USE work.my_components.all;
  ENTITY lower_row IS
     PORT (sin, cin: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
8
           p: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
  END lower_row;
11 ARCHITECTURE structural OF lower_row IS
12
      SIGNAL local: STD_LOGIC_VECTOR(2 DOWNTO 0);
13 BEGIN
     local(0) <= '0';
14
      U1: COMPONENT fau PORT MAP(sin(0), cin(0), local(0),
        p(0), local(1));
17
     U2: COMPONENT fau PORT MAP(sin(1), cin(1), local(1),
18
        p(1), local(2));
19
     U3: COMPONENT fau PORT MAP(sin(2), cin(2), local(2),
20
        p(2), p(3));
21 END structural;
```

西安电子科技大学



# (6)阵列乘法器结构描述实现



西安电子科技大学



### 4.3 定点数除法运算

- ◆定点数除法分为原码除法和补码除法两类。
- ◆除法实现方法
- ①双操作数加法器将除法分为若干次"加减与移位"的循环,由时序控制部分实现;
- ②采用迭代除法,将除法转换为乘法处理,可以利用快速乘法器实现除法器;
- ③阵列除法器,一次求得商与余数,实现快速除法 的基本途径。





### 4.3.1 原码除法运算

- 原码除法的法则应包括:
- ①除数≠0; 定点纯小数时, |被除数 | < |除数 |; 定点纯整数时, |被除数 | > |除数 |。
- ②与原码乘法类似的是原码除法商的符号和商的值 也是分别处理的,商的符号等于被除数的符号与 除数的符号相异或。
- ③商的值等于被除数的绝对值除以除数的绝对值。
- ④将商的符号与商的值拼接在一起就得到原码除法的商。





# 4.3.2 定点除法器的原理及实现

- ◆恢复余数法: 先减后判, 如果减后发现不够减,则上商0, 并加上除数, 即恢复到减操作之前的余数(第一步的余数即被除数)。
- ◆其缺点是即增加了一些不必要的操作,又使操作 步数随着不够减情况发生的次数而变。



# 4.3.2 定点除法器的原理及实现

- ◆不恢复余数除法 (加减交替除法)
- ▶ 先减后判,如果发现不够减,则上商0,并将下一步的减除数操作改为加除数操作。
- ▶ 这样可使操作步数固定,只与所需商的位数有关, 而与是否够减无关,因此能减少运算时间。





#### 4.3.3 原码加减交替除法器

- 原码加减交替除法器的运算法则:
- 1.除法运算前,应满足条件: X\*<Y\*,且Y\*≠0,否则, 按溢出或非法除数处理;
- 2.符号位不参与运算,单独处理:  $q_f = x_f \oplus y_f$ ;
- 3.部分余数采用单符号位或双符号位;
- 4.每步部分余数运算规则:
  - ①若余数R≥0,则商上1,左移一次,减除数;
  - ②若余数R < 0,则商上0,左移一次,加除数。





#### 4.3.3 原码加减交替除法器

例:若X = -0.10001011, Y = 0.1110 试利用原码加减交替除法器求商及余数。

解:写出 [X] 原=1.10001011, [Y] 原=0.1110。商符=1⊕0=1;

| 符号  被除数(余数 |   |   |   |   |   |   | 数) |   |   | 商 | 操作      |
|------------|---|---|---|---|---|---|----|---|---|---|---------|
| 0          | 0 | 1 | 0 | 0 | 0 | 1 | 0  | 1 | 1 | 0 |         |
| 0          | 1 | 0 | 0 | 0 | 1 | 0 | 1  | 1 | 0 |   | 左移一位    |
| 1          | 1 | 0 | 0 | 1 | 0 |   |    |   |   |   | -   Y   |
| 0          | 0 | 0 | 0 | 1 | 1 | 0 | 1  | 1 | 0 | 1 | R≥0,商为1 |
| 0          | 0 | 0 | 1 | 1 | 0 | 1 | 1  | 0 | 1 |   | 左移一位    |
| 1          | 1 | 0 | 0 | 1 | 0 |   |    |   |   |   | -   Y   |
| 1          | 1 | 1 | 0 | 0 | 0 | 1 | 1  | 0 | 1 | 0 | R<0,商为0 |
| 1          | 1 | 0 | 0 | 0 | 1 | 1 | 0  | 1 | 0 |   | 左移一位    |
| 0          | 0 | 1 | 1 | 1 | 0 |   |    |   |   |   | +   Y   |
| 1          | 1 | 1 | 1 | 1 | 1 | 1 | 0  | 1 | 0 | 0 | R<0,商为0 |
| 1          | 1 | 1 | 1 | 1 | 1 | 0 | 1  | 0 | 0 |   | 左移一位    |
| 0          | 0 | 1 | 1 | 1 | 0 |   |    |   |   |   | +   Y   |
| 0          | 0 | 1 | 1 | 0 | 1 | 0 | 1  | 0 | 0 | 1 | R≥0,商为1 |





### 4.3.3 原码加减交替除法器





- ①符号判断。被除数和除数同号,被除数减除数 ; 若异号则加除数。
- ②余数与除数同号,上商为1,余数左移1位,下次用余数减除数操作求商。若异号,上商为0,余数左移1位,下次用余数加除数操作求商。
- ③重复②直至除尽或达到精度要求。
- ④商修正。在除不尽时,最低位恒置1修正。









例: 若X = -0.10001011, Y =0.1110 试利用补码法求商及余数。

解:写出

[X]  $\stackrel{?}{\Rightarrow}$  = 1.01110101

1

[Y]  $\frac{1}{4} = 0.1110$ . [-Y]  $\frac{1}{4} = 1.0010$ 

| _            |   |   | 1       |   |   |   |      |    |                                              |   |   |                           |
|--------------|---|---|---------|---|---|---|------|----|----------------------------------------------|---|---|---------------------------|
| <u>1</u>     | 符 | 号 | 被除数(余数) |   |   |   |      |    |                                              |   |   | 操作                        |
| 1            |   | 1 | 0       | 1 | 1 | 1 | 0    | 1  | 0                                            | 1 |   | X,Y 异号                    |
| 0            | ) | 0 | 1       | 1 | 1 | 0 |      |    |                                              |   |   | + (Y) *                   |
| 0            | ) | 0 | 0       | 1 | 0 | 1 |      |    |                                              | : | 1 | R与Y同号,上商1                 |
| 0            |   | 0 | 1       | 0 | 1 | 0 | 1    | 0  | 1                                            | 1 |   | 左移一位                      |
| 1            | - | 1 | 0       | 0 | 1 | 0 |      |    |                                              | : |   | + (−Y) <sub>*</sub>       |
| 1            |   | 1 | 1       | 1 | 0 | 0 |      |    |                                              | • | 0 | R与Y异号,上商0                 |
| 1            |   | 1 | 1       | 0 | 0 | 1 | 0    | 1  | 1                                            | 0 |   | 左移一位<br>+〔Y〕 <sub>补</sub> |
| _0           | ) | 0 | 1       | 1 | 1 | 0 |      |    | <u>.                                    </u> |   |   | (1) 补                     |
| 0            | ) | 0 | 0       | 1 | 1 | 1 |      |    | •                                            |   | 1 | R与Y同号,上商1                 |
| 0            | ) | 0 | 1       | 1 | 1 | 0 | 1    | :1 | 0                                            | 1 |   | 左移一位                      |
| _ 1          | - | 1 | 0       | 0 | 1 | 0 |      | :  |                                              |   |   | + (-Y) *h                 |
| 0            | ) | 0 | 0       | 0 | 0 | 0 | ···· | .: |                                              |   | 1 | R与Y同号,上商1                 |
| $\mathbf{C}$ | ) | 0 | 0       | 0 | 0 | 1 | : 1  | 0  | 1                                            | 1 |   | 左移一位                      |
| 1            |   | 1 | 0       | 0 | 1 | 0 |      |    |                                              |   |   | + (−Y) <sub>*</sub>       |
| 1            |   | 1 | 0       | 0 | 1 | 1 | •    |    |                                              |   | 0 | R与Y异号,上商0                 |
| 1            |   | 1 | 0       | 0 | 1 | 1 | 1    | 0  | 1                                            | 1 |   |                           |

(商)补 = 1.01101;余数为: (余数)补 = 1.0011×2-4



• 补码除法器框图



四女吧丁科技大学



#### 4.3.4 补码除法设计

• 端口定义

```
port(oper_a,oper_b: in std_logic_vector(7 downto 0);--被除数,除数,最高位为符号位 done: out std_logic;--完成除法操作标志 clk,rst:in std_logic;--时钟信号/复位信号 Q,R: out std_logic_vector(7 downto 0)-- 商Q最高位为符号位,余数R );
```





### 4.3.4 补码除法设计

```
architecture Behavioral of div8 c is
constant itera: integer :=7; --累加移位次数
begin
       process(clk,rst)
               variable () temp:std logic vector(7 downto ();--商
                variable count :integer range 0 to 7;--累加和移位计数器
                variable R temp, B:std logic vector(8 downto 0);--余数和除数,双符号位,运算开始时余数即为被除数
      begin
                       if(rst='1') then
                               Q temp(/ downto 0):="00000000";
                                                                                    复位赋初值
                               R temp(8 downto 0):=oper a(7)&oper a(7 downto 0);
                               B(8 \text{ downto } 0):=\text{oper } b(7) \& \text{oper } b(7 \text{ downto } 0);
                               count:=itera;
                               done<='8':
                        elsif(clk='1' and clk'event) then
                                                                                    判断余数与除数
                               if(count>0) then
                                       if(R temp(8)=B(8))then Q temp(0):='1';
                                                                                     符号是否相同
                                               else Q temp(0):='0':
                                       end if:
                                       Q temp(7 downto 0):=Q temp(6 downto 0)&'0';
                                       R temp(8 downto 0):=R temp(7 downto 0)&'0';
                                       if(R temp(8)=B(8))then R temp:=R temp-B;/
                                               else R temp:=R temp+B;
                                       end if;
                                                                                      运算结束
                                       count:=count-1;
                                end if;
                        elsif(cou<del>nt-0)</del> then
                                       Q temp(7 downto 0):=(not Q temp(7)) &Q temp(6 downto 1)&'1';
                                       done<='1';
                                       count:=itera;
                        end if;
                        Q<=Q temp;
                        R<=R temp(7 downto 0);</pre>
end process;
end Behavioral;
```





#### 4.3.5 阵列除法器

#### (1) 可控加/减法单元

(CAS —Controllable Adder Subtracter)

当P = 0 时, 做加法;

当P = 1 时,做减法,变+Y\*为+[-Y\*]补。





#### 4.3.5 阵列除法器

#### (2) 阵列除法算法流程

```
设被除数 X = 0.x_1 x_2 x_3 x_4 x_5 x_6 除数 Y = 0.y_1 y_2 y_3 则商 Q = 0.q_1 q_2 q_3 余数 R = 0.00r_3 r_4 r_5 r_6
```





#### 4.3.6 阵列除法过程

<u>第一步</u>: 试减,即P=1,实现 X +[-Y]<sub>补</sub>。 因为 $X^* < Y^*$ ,所以一定不够减,则最高位进位 $C_{i+1} = 0$ , 可利用此进位输出产生商和下一步的P。 第二步: P=0, 做 X +Y。 当最高位进位C<sub>i+1</sub> = 1时,表示够减,则 q<sub>1</sub> = 1, P = 1; 当最高位进位 $C_{i+1} = 0$ 时,表示不够减,则  $q_1 = 0$ ,P = 0。 <u>第三步和第四步</u>: P=0时,做 X +Y;P=1时,做 X + [-Y] & 。 上商和P值产生的规则与第二步相同。





#### 4.3.7 阵列除法器设计

- 根据原理说明采用VHDL进行功能设计。
- 参考阵列乘法器设计方法进行设计。

