Содержание

1.	Определенный интеграл	3
	1.1. Задача и определение	. 3
	1.2. Свойства	
	1.3. Вычисление определенного интеграла	
	1.3.1. Интеграл с переменным верхним пределом	
	1.3.2. Методы интегрирования	
	1.4. Приложения определенного интеграла	
	1.4.1. Площади	. 9
	1.4.2. Площадь в ПСК	. 10
	1.4.3. Длина кривой дуги	. 11
	1.4.4. Объемы тел	. 12
2.	Несобственные интегралы	14
	2.1. Определения	. 14
	2.1.1 Интегралы на неограниченном промежутке	. 14
	2.1.2 Интеграл от неограниченной на отрезке функции	. 16
	2.2 Свойства	. 17
	2.3 Сходимость несобственных интегралов	. 18
3.	Интегралы зависящие от параметра	21
4.	Функция нескольких переменных (ФНП)	23
	4.1. Определение	. 23
	4.2. Производные функции двух переменных	. 24
	4.3. Правила дифференцирования	. 26
	4.4. Производная высших порядков	. 27
	4.5. Дифференциалы	. 28
	4.6. Формула Тейлора	. 29
	4.7. Геометрия ФНП	. 31
	4.7.1. Линии и поверхности уровня	. 31
	4.7.2. Производная по направлению, градиент	. 32
	4.7.3. Касательная и нормаль к поверхности	
	4.7.4. Экстремумы ФНП ($\Phi_2\Pi$)	. 36
5 .	Интеграл ФНП	39
	5.1. Общая схема интегрирования	. 39

	5.2. Классификация интегралов	40
	5.3. Двойной и тройной интегралы	40
	5.4. Замена переменной в двойном и тройном интегралах	43
	5.5. Криволинейные интегралы	45
	5.6. Поверхностные интегралы	50
	5.7. Связь поверхностных интегралов с другими	53
6.	Теория поля	56
	6.1. Определения	56
	6.2. Геометрические характеристики полей	56
	6.3. Дифференциальные характеристики	56
	6.4. Интегральные характеристики. Теоремы теории поля	58
	6.5. Механический смысл	59
	6.6. Приложения к физике	61
\mathbf{X}	. Программа экзамена в $2023/2024$	63
	Х.1. Определенный интеграл функции одной переменной	63
	Х.2. Функции нескольких переменных.	64
	Х.3. Интегрирование функции нескольких переменных	66

1. Определенный интеграл

1.1. Задача и определение

Задача. Дана криволинейная фигура:

Надо найти ее площадь S

Произведем ее дробление на маленькие элементарные фигуры, площадь которых мы можем посчитать:

Уменьшаем дробление, чтобы свести погрешность к 0 (погрешность между истинной площадью и суммарной площадью прямоугольников)

Сведем задачу к простейшей в ДПСК:

- 1. Вводим разбиение отрезка [a;b] (a < b) точками $a < x_0 < \cdots < x_n < b$ $T = \{x_i\}_{i=0}^n$
- 2. Выбираем средние точки на частичных отрезках $[x_{i-1}, x_i]_{i=1}^n$ $\{\xi_i\}_{i=1}^n$ набор средних точек $\Delta x_i \stackrel{\text{обозн.}}{=} x_i x_{i-1}$ длина отрезка
- 3. Строим элементарные прямоугольники
- 4. Составляем сумму площадей всех таких прямоугольников:

$$\sigma_n = \sum_{i=1}^n \Delta x_i f(\xi_i)$$

Такая сумма называется интегральной суммой Римана

- 5. Заменяя разбиение, выбор ξ_i при каждом n, получаем последовательность $\{\sigma_n\}$ При этом следим, чтобы ранг разбиения $\tau = \max_{1 \le i \le n} \Delta x_i \to 0$ при $n \to \infty$ Иначе получим неуничтожаемую погрешность
- 6. **Def.** Если существует конечный предел интегральной суммы и он не зависит от типа, ранга дробления и выбора средних точек, то он называется определенным интегралом

$$\lim_{\substack{n\to\infty\\ \tau\to 0}} \sigma_n = \lim_{\substack{n\to\infty\\ \tau\to 0}} \sum_{i=1}^n \Delta x_i f(\xi_i) \stackrel{\text{def}}{=} \int_a^b f(x) dx$$

Nota. Независимость от дробления и выбора средних точек существенна

$$Ex. \ \mathcal{D} = \begin{cases} 1, \ x \in [0, 1], x \notin \mathbb{Q} \\ 0, \ x \in [0, 1], x \in \mathbb{Q} \end{cases}$$

Сумма Римана для этой функции неопределенна, так как все зависит от выбора средних точек:

- если средние точки иррациональные, то сумма равна единице
- иначе сумма равна нулю

В обозначении определенного интеграла a и b называют нижним и верхним пределами интегрирования соответственно

Дифференциал dx имеет смысл Δx , понимается как бесконечно малая, то есть f(x)dx – площадь элементарных прямоугольников, тогда $\int_a^b f(x)dx$ – сумма этих прямоугольников

1.
$$\int_{a}^{a} f(x)dx \stackrel{\text{def}}{=} 0$$
2.
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

Можно доказать, что определенный интеграл существует для всякой непрерывной на отрезке функции

<u>Геометрический смысл</u>: Заметим, что в определении интеграл – площадь подграфика функции $(f(x) \ge 0)$

Заметим, что для
$$f(x) \le 0$$

$$\int_a^b f(x) dx = -S$$

1.2. Свойства

1. Линейность пределов \Longrightarrow линейность интегралов

$$\lambda \int_{a}^{b} f(x)dx + \mu \int_{a}^{b} g(x)dx = \int_{a}^{b} (\lambda f(x) + \mu g(x))dx \quad (\lambda, \mu \in \mathbb{R})$$

2. Аддитивность (часто для кусочно-непрерывных функций с конечным числом точек разбивается на участки непрерывности)

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

Доказательства строятся на свойствах конечных сумм и пределов

3. Оценка определенного интеграла

f(x) непрерывна на $[a;b],\,f(x)$ имеет наименьшее (m) и наибольшее (M) значения. Тогда: $m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$

Доказательство: по теореме Вейерштрасса 2 f(x) принимает наименьшее и наибольшее значения и для всякого x из [a;b]: $m \le f(x) \le M$

Так как все средние точки принадлежат [a;b], то

$$m \le f(\xi_i) \le M \quad \forall \xi_i$$

$$m\Delta_i \le f(\xi_i)\Delta_i \le M\Delta_i$$

$$m\sum_{i=1}^n \Delta x_i \le f(\xi_i)\sum_{i=1}^n \Delta x_i \le M\sum_{i=1}^n \Delta x_i$$

Предельный переход:

$$\lim_{\substack{n \to \infty \\ \tau \to 0}} m \sum_{i=1}^n \Delta x_i \le \int_a^b f(x) dx \le \lim_{\substack{n \to \infty \\ \tau \to 0}} M \sum_{i=1}^n \Delta x_i$$

$$m \lim_{\substack{n \to \infty \\ \tau \to 0}} \sum_{i=1}^{n} \Delta x_{i} \le \int_{a}^{b} f(x) dx \le M \lim_{\substack{n \to \infty \\ \tau \to 0}} \sum_{i=1}^{n} \Delta x_{i}$$
$$m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a)$$

4. Мет. Теорема Лагранжа о среднем: $f(x) \in C'_{[a,b]} \Longrightarrow \exists \xi \in (a,b) \ f'(\xi) = \frac{f(b) - f(a)}{b-a}$

Тh. Лагранжа о среднем в интегральной форме

$$f(x) \in C_{[a,b]} \Longrightarrow \exists \xi \in (a,b) \ f(\xi)(b-a) = \int_a^b f(x) dx$$

$$m \leq \underbrace{\frac{1}{b-a} \int_a^b f(x) dx} \leq M$$
 по свойству выше

некоторое число По теореме Больцано-Коши f(x) непрерывна, поэтому пробегает все значения от m до M

Значит найдется такая точка ξ , что $f(\xi) = \frac{1}{b-a} \int_a^b f(x) dx$

5. Сравнение интегралов

$$f(x),g(x)\in C_{[a,b]} \quad \forall x\in [a,b] \quad f(x)\geq g(x)$$
 Тогда $\int_a^b f(x)dx\geq \int_a^b g(x)dx$

$$\int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx = \int_{a}^{b} (f(x) - g(x))dx = \lim_{\substack{n \to \infty \\ \tau \to 0}} \sum_{i=1}^{n} \underbrace{(f(\xi_{i}) - g(\xi_{i}))}_{\geq 0} \underbrace{\Delta x_{i}}_{\geq 0} \geq 0$$

6. Интеграл и модуль

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

$$\int_{a}^{b} f(x)dx = \lim_{\substack{n \to \infty \\ \tau \to 0}} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i} = \lim_{\substack{n \to \infty \\ \tau \to 0}} \sigma_{n}$$

$$\int_{a}^{b} |f(x)| dx = \lim_{\substack{n \to \infty \\ \tau \to 0}} \sum_{i=1}^{n} |f(\xi_{i})| \Delta x_{i}$$
Докажем, что
$$\lim_{\substack{n \to \infty \\ n \to \infty}} |\sigma_{n}| = |\lim_{\substack{n \to \infty \\ n \to \infty}} \sigma_{n}|$$

Так как определен $\int_a^b f(x)dx = \lim_{n\to\infty} \sigma_n = S \in \mathbb{R}$, то можно рассмотреть случаи

$$S>0: \quad \exists n_0 \ \forall n>n_0 \ \sigma_n>0 \ (\text{вблизи } S)$$
 $\lim_{n\to\infty} |\sigma_n|=|\lim_{n\to\infty} \sigma_n|$ $S>0: \quad \exists n_0 \ \forall n>n_0 \ \sigma_n<0 \ (\text{вблизи } S)$ $\lim_{n\to\infty} |\sigma_n|=-\lim_{n\to\infty} \sigma_n=|\lim_{n\to\infty} \sigma_n|$ $S=0:\lim_{n\to\infty} |\sigma_n|=|\lim_{n\to\infty} \sigma_n|=0$ $\left|\int_a^b f(x)dx\right|=|\lim_{n\to\infty} \sigma_n|=\lim_{n\to\infty} |\sigma_n|=\lim_{n\to\infty} \left|\sum_{i=1}^n f(\xi_i)\Delta x_i\right| \leq \lim_{n\to\infty} \sum_{i=1}^n |f(\xi_i)|\Delta x_i \$ суммы меньше или равен сумме модулей)

Nota. Интеграл и разрыв: изъятие из отрезка не более, чем счетного числа точек, не меняет значение интеграла, что позволяет считать интеграл на интервале

Nota. Сходимость интеграла в определении интеграла подчеркивает, что это число. Если предел интегральных сумм не существует или бесконечен, говорят, что интеграл расходится

Nota. Вычисления. Определение дает способ вычисления и его можно упростить:

$$\forall i \; \Delta x_i = \Delta x, \quad \xi_i = \begin{bmatrix} x_{i-1} \\ x_i \end{bmatrix}$$
 - концы отрезка

Так вычисляют «неберущиеся интегралы»

Для функций, у которых первообразные выражаются в элементарных функциях используется не этот метод, а формула Ньютона-Лейбница

1.3. Вычисление определенного интеграла

1.3.1. Интеграл с переменным верхним пределом

Дана
$$f(x):[a;+\infty), f(x) \in C_{[a;+\infty)}$$
 $\forall x \in [a;+\infty)$ определен $\int_a^x f(x) dx$

Таким образом определена функция $S(x) = \int_{0}^{x} f(x) dx$ — переменная площадь

В общем случае обозначим $\Phi(x) = \int_{a}^{x} f(t)dt$ $t \in [a,x]$

Итак, различают три объекта:

1. Семейство функций:
$$\int f(x)dx = F(x) + C$$

2. Функция
$$\int_a^x f(t)dt = \Phi(x)$$
3. Число
$$\int_a^b f(x)dx = \lambda \in \mathbb{R}$$

3. Число
$$\int_a^b f(x)dx = \lambda \in \mathbb{R}$$

Выявим связь между ними.

Th. Об интеграле с переменным верхним пределом (Барроу)

$$f(x): [a; +\infty) \to \mathbb{R}$$
 $f(x) \in C_{[a; +\infty]}$

Тогда
$$\Phi(x) = \int_a^x f(t)dt$$
 – первообразная для $f(x)$, то есть $\Phi(x) = F(x)$

Докажем по определению

$$\Phi'(x) = \lim_{\Delta x \to 0} \frac{\Delta \Phi}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Phi(x + \Delta x) - \Phi(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_a^{x + \Delta x} f(t) dt - \int_a^x f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_a^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(\xi) \Delta x}{\Delta x} = \lim_{\Delta x \to 0} f(\xi) = f(x)$$

Th. Основная теорема математического анализа (формула Ньютона-Лейбница, N-L)

 $f(x) \in C_{[a;b]}, F(x)$ — какая-либо первообразная f(x)

Тогда
$$\left| \int_a^b f(x) dx = F(x) \right|_a^b = F(b) - F(a)$$

Для
$$f(x)$$
 определена $\Phi(x) = \int_a^x f(t)dt = F(x) + C$

Найдем значения $\Phi(a)$ и $\Phi(b)$

$$\Phi(a) = F(a) + C = \int_{a}^{a} f(t)dt = 0 \Longrightarrow F(a) + C = 0 \Longrightarrow F(a) = -C$$

$$\Phi(b) = F(b) + C = F(b) - F(a) = \int_{a}^{b} f(t)dt$$

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

1.3.2. Методы интегрирования

1* Замена переменной в определенном интеграле

Th.
$$f(x) \in C_{[a;b]}$$
 $x = \varphi(t) \in C'_{[\alpha;\beta]}, \varphi(\alpha) = a, \varphi(\beta) = b$

$$\int_{-b}^{b} f(x)dx = \int_{-b}^{\beta} f(\varphi(t))\varphi'(t)dt$$

N-L:
$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b}$$

Докажем, что
$$F(x) = F(\varphi(t))$$
 – первообразная для $f(\varphi(t))\varphi'(t)$
$$\frac{dF(\varphi(t))}{dt} = F'(\varphi(t))\varphi'(t)$$

$$\frac{dF(\varphi(t))}{d\varphi(t)}\frac{d\varphi(t)}{dt} = \frac{dF(x)}{dx}\varphi'(t) = f(x)\varphi'(t)$$

$$Ex. \int_0^{\frac{1}{2}} \frac{dx}{\sqrt{1-x^2}} = \begin{bmatrix} x = \sin t \\ x \uparrow_0^{\frac{1}{2}} & t \uparrow_0^{\frac{\pi}{6}} \end{bmatrix} = \int_0^{\frac{\pi}{6}} \frac{dt}{\sqrt{1-\sin^2 t}} \cos t = \int_0^{\frac{\pi}{6}} \frac{dt}{|\cos t|} \cos t = \int_0^{\frac{\pi}{6}} dt = t \Big|_0^{\frac{\pi}{6}} = \frac{\pi}{6}$$

2* По частям

$$ext{Th. } u,v \in C_{[a;b]}' \quad uv \Big|_a^b = u(b)v(b) - u(a)v(a)$$
 Тогда: $\int_a^b u dv = uv \Big|_a^b - \int_a^b v du$

$$u(x)v(x)$$
 — первообразная для $u'(x)v(x)+v'(x)u(x)$ Или $d(uv)=udv+vdu$ По формуле N-L $\int_a^b (udv+vdu)=\int_a^b d(uv)=u(x)v(x)\Big|_a^b$ $\int_a^b udv=uv\Big|_a^b-\int_a^b vdu$

$$Ex. \int_{1}^{e} \ln x dx = x \ln x \Big|_{1}^{e} - \int_{1}^{e} x d \ln x = e \ln e - 1 \ln 1 - \int_{1}^{e} dx = e - x \Big|_{1}^{e} = 1$$

Nota. Не всякий интеграл вида $\int_a^b f(x) dx$ является определенным

$$Ex.$$
 $\int_0^e \ln x dx = x \ln x \Big|_0^e - x \Big|_0^e = e \ln e - \underbrace{0 \ln 0}_{0 \cdot \infty} - e$ — несобственный интеграл

1.4. Приложения определенного интеграла

1.4.1. Площади

1* Мет. Значение интеграла - площадь фигуры под графиком

Геом. смысл.
$$S = \int_a^b f(x) dx$$
 $S' = -\int_b^c f(x) dx$

Площадь фигуры, окруженной графиками функций $S = \int_a^b |f(x) - g(x)| dx$, a, b - абсциссы точек пересечения

Nota. Симметрия

Если
$$f(x)$$
 – четная функция, то $\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$

Если
$$f(x)$$
 – нечетная функция, то $\int_{-a}^{a} f(x)dx = 0$

1.4.2. Площадь в ПСК

В ДПСК мы производили дробление фигуры на элементарные прямоугольники. Сделаем подобное в ПСК для $\rho(\varphi)$:

- 1. Дробление $[\alpha;\beta]$ на угловые сектора $[\varphi_{i-1};\varphi_i]$ $\Delta\varphi_i$ угол сектора
- 2. Выбор средней точки $\psi_i \in [\varphi_{i-1}; \varphi_i]$, площадь сектора $S_i = \frac{1}{2} \Delta \varphi_i \rho^2(\psi_i)$

3. Интегральная сумма $\sigma_n = \frac{1}{2} \sum_{i=1}^n \rho^2(\varphi_i) \Delta \varphi_i$

4. Предел
$$\lim_{n\to\infty}\frac{1}{2}\sum_{i=1}^n\rho^2(\varphi_i)\Delta\varphi_i=\frac{1}{2}\int_{\alpha}^{\beta}\rho^2(\varphi)d\varphi$$

Ех. Кардиоида:

$$\rho = 1 + \cos \varphi \\ S = \frac{1}{2} \int_{-\pi}^{\pi} \rho^{2}(\varphi) \Delta \varphi = \int_{0}^{\pi} \rho^{2}(\varphi) \Delta \varphi = \int_{0}^{\pi} (1 + \cos \varphi)^{2} \Delta \varphi = \int_{0}^{\pi} (1 + 2 \cos \varphi + \cos^{2} \varphi) \Delta \varphi = \varphi \Big|_{0}^{\pi} + \int_{0}^{\pi} \frac{1 + \cos 2\varphi}{2} \Delta \varphi = \pi + \frac{1}{2}\pi = \frac{3}{2}\pi$$

Nota. Если фигура задана параметрическими уравнениями:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} \quad \alpha \le t \le \beta$$

то площадь будет равна $S=\int_a^b y(x)dx=\int_{lpha}^{eta} y(t)x'(t)dt$

1.4.3. Длина кривой дуги

Пусть дуга AB задана уравнением y = f(x) $x \in [a; b]$

- 1. Производим дробление дуги на элементарные дуги точками $A=M_0 < M_1 < \cdots < M_n = B$ Здесь порядок M_i таков, что их абсциссы $a=x_0 < x_1 < \cdots < x_n = b$ $\Delta x_i > 0$
- 2. Стягиваем сумму элементарными хордами. Сумма длин этих хорд при уменьшении их длин будет приближать длину этой дуги

$$\Delta s_i = \sqrt{\Delta y_i^2 + \Delta x_i^2}$$

По **Th.** Лагранжа существует такая точка $\xi_i \in [x_{i-1}; x_i]$, что значение производной в этой точке равно наклону отрезка: $f'(\xi_i) = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$

- 3. Интегральная сумма $\sigma_n = \sum_{i=1}^n \Delta s_i = \sum_{i=1}^n \sqrt{1 + (y'(\xi_i))^2} \Delta x_i$
- 4. Предельный переход $\lim_{\substack{n\to\infty\\ \tau\to 0}}\sigma_n=\int_a^b\sqrt{1+(y'(x))^2}dx=l_{\rm дуги}$

Nota. Очевидно, что требуется гладкость дуги, то есть ее спрямляемость. Только при этом условии $\Delta l_i \approx \Delta s_i$, и работает **Th.** Лагранжа

Параметрическое задание:

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$

$$\Delta s_{i} = \sqrt{(\Delta x_{i})^{2} + (\Delta y_{i})^{2}} = \sqrt{(\varphi'(\theta_{i})\Delta t)^{2} + (\psi'(\theta_{i})\Delta t)^{2}} = |\Delta t| \sqrt{(\varphi'(\theta_{i}))^{2} + (\psi'(\theta_{i}))^{2}}$$

$$l = \int_{\alpha}^{\beta} \sqrt{(\varphi'(t))^{2} + (\psi'(t))^{2}} |dt|$$

Ех. Длина эллипса

$$L = 4l = 4\int_0^{\frac{\pi}{2}} \sqrt{a^2\sin^2t + b^2\cos^2t} dt = 4\int_0^{\frac{\pi}{2}} \sqrt{(a^2-b^2)\sin^2t + b^2} dt = 4\int_0^{\frac{\pi}{2}} \sqrt{c^2\sin^2t + b^2} dt = 4\int_0^{\frac{\pi}{2}} \sqrt{1 + k^2\sin^2t} dt$$
 - эллиптический интеграл

1.4.4. Объемы тел

1* Объемы тел с известными площадями сечений

Для тела известна площадь сечения перпендикулярной Ox плоскости S(x)

Аналогично обычному дроблению
$$\lim_{\substack{n \to \infty \\ \tau \to 0}} v_n = \int_a^b S(x) dx = V_{\text{тела}}$$

Ex. Тело отсечено от I октанта плоскостью $\frac{x}{a} + \frac{y}{a} + \frac{z}{a} = 1$

$$S(x) = S_{DBC} = \frac{(a-x)^2}{2}$$
 Тогда $V = \int_0^a \frac{1}{2} (a-x)^2 dx = \frac{1}{2} \int_0^a (x-a)^2 dx = \frac{1}{2} \int_0^a (x-a)^2 d(x-a) = \frac{1}{6} (x-a)^3 \Big|_0^a = \frac{a^3}{6}$

Nota. Объем тела вращения

Пусть дана функция r(x), задающая радиус тела вращения на уровне x, тогда объем тела вращения будет равен $\int_a^b \pi r^2(x) dx$

2. Несобственные интегралы

2.1. Определения

2.1.1 Интегралы на неограниченном промежутке

Геометрический смысл: пусть $f(x):[a;+\infty]\to\mathbb{R},\, f(x)\in C_{[a;+\infty]}$

Тогда определенный интеграл имеет смысл – это площадь под графиком функции:

$$\int_{a}^{b} f(x)dx = S$$

Имеет ли смысл площадь неограниченной фигуры под графиком функции? Предел функции $\Phi(b) = \int_a^b f(x) dx$ при $b \to +\infty$ может быть конечным или бесконечным

Def. 1. Определим несобственный интеграл первого рода (на неограниченном промежутке) (f(x) любого знака):

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx$$

Nota. Если этот предел существует и конечен, то говорят, что интеграл сходится. В противном случае — расходится

Def. 2. Пусть функция f(x) определена на полуинтервале $[-\infty; b]$ и непрерывна. Тогда определен:

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$

Def. 3.
$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$$

Nota. Этот интеграл сходится, если сходятся оба интеграла справа, и расходится, если расходится хотя бы один из них (в том числе если возникает неопределенность $\infty - \infty$)

$$Ex. \ f(x) = \frac{1}{x}$$

Сделаем ее непрерывной в окрестности нуля:

$$S_1=S_2$$
, но $I_1=-I_2$. Суммарный интеграл $\int_{-\infty}^{+\infty}f(x)dx$ должен быть равен нулю.

Но по определению
$$\int_{-\infty}^{+\infty} f(x)dx$$
 расходится

Чтобы учесть обнуление интеграла в ситуации взаимного погашения площадей S_1 и S_2 (а это происходит тогда, когда левый и правый концы промежутка синхронно стремятся к $+\infty$) используют понятие интеграла в смысле главного значения (v. p. - от французского valeur principale):

v. p.
$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{\delta \to -\infty} \int_{-\delta}^{\delta} f(x)dx$$

Разложение по формуле Ньютона-Лейбница

$$Ex. \ 1. \int_{-\infty}^{+\infty} \frac{dx}{1+x^2} = \operatorname{arctg} x \Big|_{-\infty}^{+\infty} = \operatorname{arctg} x \Big|_{-\infty}^{c=0} + \operatorname{arctg} x \Big|_{c=0}^{+\infty} = \lim_{x \to +\infty} \operatorname{arctg} x - \operatorname{arctg}(0) + \operatorname{arctg}(0) - \lim_{x \to -\infty} \operatorname{arctg} x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$

$$Ex. \ 2. \int_{1}^{+\infty} \frac{dx}{x \ln x} = \int_{1}^{+\infty} \frac{d \ln x}{\ln x} = \int_{0}^{+\infty} \frac{dt}{t} = \ln t \Big|_{0}^{+\infty} = \ln \ln x \Big|_{1}^{+\infty} = \lim_{x \to +\infty} \ln \ln x - \lim_{x \to 1} \ln \ln x = \infty - \infty - \infty$$
расходится

Заметим нарушение непрерывности функции $\frac{1}{x}$ в x=1, что привело к $\ln \ln x \to -\infty$ при $x \to 1$ Это не интеграл первого рода, а комбинация интегралов первого и второго рода

2.1.2 Интеграл от неограниченной на отрезке функции

Пусть дана $f(x):[a;b) \to \mathbb{R},$ где b — точка разрыва второго рода, а именно бесконечного

Def. 1. Интеграл второго рода (несобственный)

$$\int_{a}^{b} f(x)dx = \lim_{\beta \to b} \int_{a}^{\beta} f(x)dx$$

Этот интеграл сходится, если предел существует и конечен

 ${f Def.}\ {f 2.}\$ Аналогично для случая, в которой нижний предел a — точка бесконечного разрыва:

$$\int_{a}^{b} f(x)dx = \lim_{\alpha \to a} \int_{\alpha}^{b} f(x)dx$$

Def. 3. Для $c \in [a;b]$ – точка бесконечного разрыва:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Интеграл сходится, если оба интеграла сходятся

 $Ex.\ 1.\ \int_{-1}^{1} \frac{dx}{x} = \int_{-1}^{0} \frac{dx}{x} + \int_{0}^{1} \frac{dx}{x} = \ln|x|\Big|_{-1}^{0} + \ln|x|\Big|_{0}^{1}$ – интеграл расходится Однако без разбиения в точке 0 интеграл легко считается по формуле N-L, что приводит к опибке: $\int_{-1}^{1} \frac{dx}{x} = \ln|x|\Big|_{-1}^{1} = 0$

$$Ex. \ \mathcal{Z}. \ \int_{-1}^{1} \frac{dx}{x^2} = -\frac{1}{x}\Big|_{-1}^{1} = -2 - \text{неверно}$$

$$\int_{-1}^{1} \frac{dx}{x^2} = \int_{-1}^{0} \frac{dx}{x^2} + \int_{0}^{1} \frac{dx}{x^2} = -\frac{1}{x}\Big|_{-1}^{0} + -\frac{1}{x}\Big|_{0}^{1} - \text{расходится}$$

Nota. Если нет разбиения [a;b] по аддитивности, то неопределенности раскрываются

$$Ex. \int_{1}^{2} \frac{dx}{x^{2} - 1} = \frac{1}{2} \int_{1}^{2} \left(\frac{1}{x - 1} - \frac{1}{x + 1} \right) dx = \frac{1}{2} (\ln|x - 1| - \ln|x + 1|) \Big|_{1}^{2} =$$

$$= \frac{1}{2} (\ln|x - 1| - \ln|x + 1|) \Big|_{1}^{2} = \infty, \text{ т. к. разбивается отрезок}$$

$$= \frac{1}{2} \left(\ln\left| \frac{x - 1}{x + 1} \right| \right) \Big|_{1}^{2} = \frac{1}{2} \left(\ln\frac{1}{3} - \ln(0) \right) = \infty - \text{теперь точно } \infty$$

2.2 Свойства

- 1. Линейность: $\int_a^{+\infty} (\lambda f(x) + \mu g(x)) dx = \lambda \int_a^{+\infty} f(x) dx + \mu \int_a^{+\infty} g(x) dx$ если интегралы сходятся (иначе исследуем по определению через предел)
- сходятся (иначе исследуем по определению через предел) 2. Аддитивность: $I = \int_a^{+\infty} f(x) dx = \int_a^c f(x) dx + \int_c^{+\infty} f(x) dx$ — отсечение любого конечного интеграла $\int_a^c f(x) dx$ не влияет на сходимость

3. Знаки интегралов:

$$\int_{a}^{+\infty} f(x)dx \leq \int_{a}^{+\infty} g(x)dx$$
 при $f(x) \leq g(x)$. Если $g(x)$ сходится, то $f(x)$ тоже сходится В частности
$$\int_{a}^{+\infty} f(x)dx \leq 0$$
 при $f(x) \leq 0$ на $[a; +\infty]$

Nota. Исследование интегралов двух функций используется для определения их сходимости

2.3 Сходимость несобственных интегралов

Задача: Часто нужно исследовать интеграл на сходимость без или до его вычисления (обычно приближенного для неберущихся интегралов)

Требуются признаки сходимости интегралов, часто использующие сравнение с эталонными интегралами (вычисляемые по формуле Ньютона-Лейбница)

1* Признак сравнения в неравенствах (далее только для интегралов $\int_a^{+\infty} f(x) dx$, для остальных аналогично)

$$f(x),g(x):[a;+\infty)\to\mathbb{R}^+$$
, непрерывны на $[a;+\infty)$ и $\forall x\in[a;+\infty)$ $f(x)\leq g(x)$ Тогда, если сходится $\int_a^{+\infty}g(x)dx=I\in\mathbb{R}$, то $J=\int_a^{+\infty}f(x)dx$ сходится, причем $0\leq \int_a^{+\infty}f(x)dx\leq \int_a^{+\infty}g(x)dx$

Прежде чем использовать свойство определенного интеграла и предельный переход в неравенствах, нужно доказать, что интеграл $J=\lim_{b\to +\infty} \int_a^b f(x) dx$ сходится

Так как $f(x) \ge 0$, то $\Phi(x) = \int_a^b f(x) dx$ при $b \to \infty$ – монотонно возрастающая функция

При этом:

$$0 \le \int_a^b f(x)dx \le \int_a^b g(x)dx \le \lim_{b \to +\infty} \int_a^b g(x)dx = I \in \mathbb{R}$$

Поэтому $J(b) = \int_a^b f(x) dx$ ограничена и по признаку Вейерштрасса сходится Можно использовать предельный переход

$$0 \le \int_a^b f(x)dx \le \int_a^b g(x)dx \quad \Big| \lim_{b \to +\infty}$$

$$0 \leq J \leq I$$

Nota. Можно аналогично сравнить функции отрицательного знака

Если сходится
$$\int_a^{+\infty} g(x) dx$$
 при $g(x) \le f(x) \le 0$, то сходится $\int_a^{+\infty} f(x) dx$ Интегралы от функций разных знаков этим методов не сравниваются

 $f(x) \le g(x) \ \forall x \in [a; +\infty)$, но функции разных знаков, и нижняя площадь, т. е. $\int_{-\sigma}^{\sigma} |f(x)| dx$, больше верхней

$$f(x),g(x)\in C_{[a;+\infty)},\ 0\leq f(x)\leq g(x)\ \forall x\in [a;+\infty)$$
 $J=\int_a^{+\infty}f(x)dx$ расходится. Тогда $I=\int_a^{+\infty}g(x)dx$ расходится

Lab. (от противного)

Nota. Отметим, что если f(x) не является убывающей к нулю, т. е. бесконечно малой на $+\infty$, то $\int_{-\infty}^{+\infty} f(x)dx$ разойдется

Таким образом, если сравнить бесконечно малую $\frac{f(x)}{g(x)}$, то можно исследовать их интегралы на сходимость

Предельный признак сравнения

$$f(x),g(x)\in C_{[a;+\infty)},\ f(x),g(x)>0$$
 $\exists\lim_{x\to +\infty} \frac{f(x)}{g(x)}=k\in\mathbb{R}\setminus\{0\}.$ Тогда $I=\int_a^{+\infty}g(x)dx$ и $J=\int_a^{+\infty}f(x)dx$ одновременно сходятся или расходятся

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = k \iff \forall \varepsilon > 0 \ \exists \delta > 0 \ | \ \forall x > \delta \ \left| \frac{f(x)}{g(x)} - k \right| < \varepsilon$$
$$-\varepsilon + k < \frac{f(x)}{g(x)} < \varepsilon + k \quad \left| \cdot g(x) > 0 \right|$$
$$(k - \varepsilon)g(x) < f(x) < (\varepsilon + k)g(x)$$

Т. к. k > 0 $\left(\frac{f(x)}{g(x)} > 0\right)$ и ε – сколь угодно мало, то $k \pm \varepsilon$ – положительное и не близкое

По свойству определенного интеграла: $\int_a^b (k-\varepsilon)g(x)dx < \int_a^b f(x)dx < \int_a^b (k+\varepsilon)g(x)dx$

В пределе
$$\lim_{b\to +\infty}$$
: $(k-\varepsilon)\int_a^{+\infty}g(x)dx<\int_a^{+\infty}f(x)dx<(k+\varepsilon)\int_a^{+\infty}g(x)dx$

Если $I = \infty$ (но $k - \varepsilon \neq 0$), то по первому признаку (линейность) J расходится, что следует из правого неравенства

Если $I \in \mathbb{R}$ $(k + \varepsilon \neq \infty)$, то по первому признаку (линейность) J сходится, что следует из левого неравенства

3* Абсолютная сходимость

$$\int_{a}^{+\infty} |f(x)| dx = I \in \mathbb{R} \Longrightarrow \int_{a}^{+\infty} f(x) dx = J \in \mathbb{R}$$

Nota. Обратное неверно

По условию определенного интеграла:

$$\int_a^b f(x)dx \leq \left| \int_a^b f(x)dx \right| \leq \int_a^b |f(x)|dx$$
 Очевидно, что $0 \leq \left| \int_a^b f(x)dx \right| \leq \int_a^b |f(x)|dx \leq \lim_{b \to \infty} \int_a^b |f(x)|dx = I$
$$-I \leq \int_a^b f(x)dx \leq I$$

$$0 \leq \lim_{b \to \infty} \left| \int_a^b f(x)dx \right| = \left| \lim_{b \to \infty} \int_a^b f(x)dx \right| \leq \int_a^b |f(x)|dx = I$$

Nota. Если $I=\int_a^{+\infty}f(x)dx$ сходится, но $\int_a^{+\infty}|f(x)|dx$ расходится, то I называют условно сходящимся

$$Ex. \ I = \int_{a}^{+\infty} \frac{\sin x}{8x^2 + 3} dx$$

$$\int_{a}^{+\infty} \left| \frac{\sin x}{8x^2 + 3} \right| dx = \int_{a}^{+\infty} \frac{|\sin x|}{8x^2 + 3} dx \le \int_{a}^{+\infty} \frac{dx}{8x^2 + 3} dx = \frac{1}{k} \operatorname{arctg} \frac{x}{k} \Big|_{1}^{+\infty} \in \mathbb{R}$$

В качестве эталонных интегралов удобно использовать:

I рода:
$$\int_{a}^{+\infty} \frac{dx}{x^{n}}$$
II рода:
$$\int_{a}^{b} \frac{dx}{(b-x)^{n}}$$

<u>Lab.</u> Исследовать на сходимость в зависимости от $n \in \mathbb{Z}(\mathbb{Q})$

3. Интегралы зависящие от параметра

Задача.
$$Ex.\ (\alpha \neq 0).\ \int_0^1 \cos\alpha x dx = \frac{1}{\alpha} \int_0^1 \cos\alpha x d\alpha x = \frac{1}{\alpha} \sin\alpha x \Big|_0^1 = \frac{\sin\alpha}{\alpha} = \phi(\alpha)$$
 $J(\alpha) = \int_a^b f(x,\alpha) dx$ - интеграл, зависящий от параметра

 $f(x,\alpha)$ непрерывна в $a\leq x\leq b,\ c\leq \alpha\leq d$ и существует непрерывная производная f'_{α} Тогда на [c;d] определена $J'_{\alpha}(\alpha)=\left(\int_a^b f(x,\alpha)dx\right)'_{\alpha}=\int_a^b f'_{\alpha}dx$

Если последний интеграл берется лучше, чем исходный, то теорема полезна

$$J_{\alpha}'(\alpha) = \lim_{\Delta\alpha \to 0} \frac{J(\alpha + \Delta\alpha) - J(\alpha)}{\Delta\alpha} = \lim_{\Delta\alpha \to 0} \frac{1}{\Delta\alpha} \left(\int_a^b f(x, \alpha + \Delta\alpha) dx - \int_a^b f(x, \alpha) dx \right) =$$

$$= \lim_{\Delta\alpha \to 0} \frac{1}{\Delta\alpha} \left(\int_a^b (f(x, \alpha + \Delta\alpha) - f(x, \alpha)) dx \right)$$
По теореме Лагранжа о среднем $\exists \xi \in [\alpha; \alpha + \Delta\alpha]$

$$= \lim_{\Delta\alpha \to 0} \int_a^b f(x, \xi) dx$$
Т. к. f_{α}' непрерывна, то $f_{\alpha}'(x, \xi) = \lim_{\xi \to \alpha} f_{\alpha}'(x, \xi) + \varepsilon = f_{\alpha}'(x, \alpha) + \varepsilon$
Таким образом, $J_{\alpha}'(\alpha) = \lim_{\Delta\alpha \to 0} \int_a^b f_{\alpha}'(x, \alpha) dx + \lim_{\Delta\alpha \to 0} \int_a^b \varepsilon dx = \lim_{\Delta\alpha \to 0} \int_a^b f_{\alpha}'(x, \xi) dx$

$$Ex. \ I(\alpha) = \int_0^{+\infty} e^{-x} \frac{\sin \alpha x}{x} dx$$

$$I'_{\alpha}(\alpha) = \int_0^{+\infty} \left(e^{-x} \frac{\sin \alpha x}{x} \right)'_{\alpha} dx = \int_0^{+\infty} e^{-x} \frac{1}{x} x \cos \alpha x dx = \int_0^{+\infty} e^{-x} \cos \alpha x dx = e^{-x} \frac{\alpha \sin \alpha x - \cos \alpha x}{\alpha^2 + 1} \Big|_0^{+\infty} = \frac{1}{1 + \alpha^2}$$
 Из этого следует, что $I(\alpha) = \int_0^{+\infty} \frac{1}{1 + \alpha^2} dx = \operatorname{arct} g(\alpha) + C$ Так как $I(\alpha)$ — несобственный интеграл, это функция, а не семейство функций. Найдем C .
$$I(0) = \int_0^{+\infty} e^{-x} \frac{\sin 0 \cdot x}{x} dx = 0 \Longrightarrow C = 0 \text{ Таким образом, } I(\alpha) = \left(\int_0^{+\infty} e^{-x} \frac{\sin \alpha x}{x} dx \right)'_{\alpha} = \operatorname{arct} g(\alpha)$$

Ех. Гамма-функция

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx \quad (\alpha > 0)$$

Исследуем на сходимость:

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx = \int_0^1 x^{\alpha - 1} e^{-x} dx + \int_1^{+\infty} x^{\alpha - 1} e^{-x} dx$$

На отрезке [0;1] $e^{-x} \in [0;1]$. Тогда $0 \le \int_0^1 x^{\alpha-1} e^{-x} dx \le \int_0^1 x^{\alpha-1} dx \Longrightarrow$ интеграл сходится

Пусть $n>\alpha-1, n\in\mathbb{N}$, тогда: $\int_{1}^{+\infty}x^{\alpha-1}e^{-x}dx\leq \int_{1}^{+\infty}x^{n}e^{-x}dx$ — по частям, появятся $x^{k}e^{-x}\Big|_{1}^{+\infty}\to 0$ и $\int_{1}^{+\infty}e^{-x}dx$ сходится

Найдем формулу для $\Gamma(\alpha)$: $\alpha \in \mathbb{N} \quad \Gamma(1) = \int_0^{+\infty} e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = 1$ $\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx = -\int_0^{+\infty} x^{\alpha-1} de^{-x} = -x^{\alpha-1} e^{-x} \Big|_1^{+\infty} + \int_0^{+\infty} x^{\alpha-2} (\alpha-1) e^{-x} dx = (\alpha-1) \Gamma(\alpha-1) = (\alpha-1)! \Gamma(1) = (\alpha-1)!$ $\Gamma(n+1) = n!$

<u>Lab.</u> Посмотреть, как обобщается понятие факториала на вещественные числа:

4. Функция нескольких переменных (ФНП)

4.1. Определение

Nota. Дадим определение функции нескольких переменных

 $\forall M(x,y) \; \exists ! z \in \mathbb{R} : z = f(x,y) \Longleftrightarrow z = f(x,y)$ — функция двух переменных

Def. Окрестность точки $M_0(x_0, y_0)$

$$U_{\delta}(M_0) = \{(x,y) \in Oxy : (x-x_0)^2 + (y-y_0)^2 < \delta^2, \delta > 0 - \text{радиус}\}$$
 о $U_{\delta}(M_0) = U_{\delta}(M_0) \setminus \{M_0\}$ — выколотая окрестность

Nota. $\Delta x = x - x_0, \Delta y = y - y_0$, одновременное стремление $\Delta x, \Delta y \to 0$ можно заменить $\Delta \rho = \sqrt{(x - x_0)^2 + (y - y_0)^2} \to 0$

Def.
$$\lim_{M\to M_0}z(x,y)=L\in\mathbb{R}\Longleftrightarrow \forall \varepsilon>0$$
 $\exists \delta>0\atop \delta=\delta(\varepsilon)}\mid \forall M\in \overset{\circ}{U}_{\delta}(M_0)\mid z(x,y)-L\mid<\varepsilon$ Здесь M_0 — точка сгущения, и $x_0,y_0\in\mathbb{R}$

Nota. На плоскости Oxy возможно стремление $M \to M_0$ по разным путям F(x,y) = 0 (уравнение кривой)

При этом значение предела вдоль разных путей могут отличаться (аналог односторонних пределов)

Предел в определении – предел в общем смысле: его существование и значение не зависит от пути

Def. z = f(x,y) называется непрерывной в точке $M(x_0,y_0)$, если $z = f(x_0,y_0) = \lim_{M \to M_0} z(x,y)$ z непрерывна на D, если z непрерывна $\forall (x,y) \in D$

Nota. Справедливы теоремы Вейерштрасса и Больцано-Коши для функции, непрерывной в заданной области

z=f(x,y)непрерывна на $\overline{D}=D\cup\Gamma_{\!\!D},$ где \overline{D} - закрытая область, D - открытая область, $\Gamma_{\!\!D}$ - граница

Th. W1.
$$z = f(x, y)$$
 ограничена на \overline{D}

Th. W2. Для функции z = f(x, y) существуют наибольшее и наименьшее z для $(x, y) \in \overline{D}$

Th. B-C1. На границе Γ_D z принимает значения разных знаков $\Longrightarrow \exists M \in \overline{D} : z(M) = 0$

Th. B-C1. z(x,y) принимает все значения от $z_{\mathrm{наим}}$ до $z_{\mathrm{наиб}}$

4.2. Производные функции двух переменных

Путям l_1, l_2 соответствуют кривые L_1, L_2 на поверхности z = f(x, y).

Пользуясь геометрическим смыслом производной, заметим, что касательные к L_1, L_2 могут быть различными.

Поэтому для определения производной выберем координатные направления $x = \mathrm{const}$ и $y = \mathrm{const}$

$$z = f(x = c, y)$$

$$\frac{\partial z}{\partial y} \stackrel{def}{=} \lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y}, \text{ где } \Delta_y z = z(x, y + \Delta y) - z(x, y)$$

 ${f Def.}$ Частной производной z=f(x,y) по y называется $\dfrac{\partial z}{\partial y}\stackrel{def}{=}\lim_{\Delta y \to 0}\dfrac{\Delta_y z}{\Delta y}$

<u>Lab.</u> Аналогично дать определение $\frac{\partial z}{\partial x}$

Nota. $\Delta_y z = z(x, y + \Delta y) - z(x, y)$ и $\Delta_y z$ называют частным приращением

Def. Полное приращение $\Delta z \stackrel{def}{=} z(x + \Delta x, y + \Delta y) - z(x, y)$

Nota. При этом $\Delta z \neq \Delta_x z + \Delta_y z$!!!

Обозначение:
$$\frac{\partial z}{\partial x} = z_x' = z_x$$
, $\frac{\partial z}{\partial y} = z_y' = z_y$

Как определить функцию, дифференцируемую в точке?

По аналогии $\Delta z = A\Delta x + B\Delta y + \alpha \Delta x + \beta \Delta y$, где $A, B \in \mathbb{R}$, α, β – бесконечно малые

Th.
$$z: D \to \mathbb{R}, \ D \subset \mathbb{R}^2, \ \exists$$
 непрерывные $\frac{\partial z}{\partial x}, \ \frac{\partial z}{\partial y}$

Тогда дифференциал функции представим как $\Delta z = Adx + Bdy + \alpha \Delta x + \beta \Delta y$, где $A, B \in \mathbb{R}, \ \alpha, \beta$

– бесконечно малые

$$\Delta z = z(x + \Delta x, y + \Delta y) - z(x, y) = z(x + \Delta x, y + \Delta y) - z(x + \Delta x, y) + z(x + \Delta x, y) - z(x, y)$$

По теореме Лагранжа:

$$z(x + \Delta x, y + \Delta y) - z(x + \Delta x, y) = z'_{y}(\eta)\Delta y$$

$$z(x + \Delta x, y) - z(x, y) = z'_{x}(\xi)\Delta x$$

По теореме о представлении функции ее пределом:

$$z'_x(\xi) = \lim_{\xi \to x} z'_x(\xi) + \alpha$$

$$z_y'(\eta) = \lim_{\eta \to y} z_y'(\eta) + \beta$$

Так как
$$z_x'(\xi), z_y'(\eta)$$
 непрерывны, то $\lim_{\xi \to x} z_x'(\xi) = \frac{\partial z}{\partial x}, \lim_{\eta \to y} z_y'(\eta) = \frac{\partial z}{\partial y}$

Тогда
$$\Delta z = \left(\frac{\partial z}{\partial x} + \alpha\right) \Delta x + \left(\frac{\partial z}{\partial y} + \beta\right) \Delta y = \Delta z = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y + \alpha \Delta x + \beta \Delta y$$

Заметим, что $\alpha \Delta x$ и $\beta \Delta y$ — бесконечно малые порядка выше, чем $\Delta \rho = \sqrt{(\Delta x)^2 + (\Delta y)^2} \Longleftrightarrow$

$$1 = \sqrt{\left(\frac{\Delta x}{\Delta \rho}\right)^2 + \left(\frac{\Delta y}{\Delta \rho}\right)^2} \quad \left|\frac{\Delta x}{\Delta \rho}\right| \le 1, \left|\frac{\Delta y}{\Delta \rho}\right| \le 1$$

Сравним
$$\alpha \frac{\Delta x}{\Delta \rho} = \text{б.м.} \cdot \text{огран.} \stackrel{\Delta \rho \to 0}{\longrightarrow} 0, \ \frac{\beta \Delta y}{\Delta \rho} \stackrel{\Delta \rho \to 0}{\longrightarrow} 0$$

Функция, приращение которой представимо $\Delta z = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y + o(\Delta \rho)$, называется дифференцируемой в точке (x,y), линейная часть приращения называется полным дифференциалом Обозначение: $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$

Ex.
$$z = 3xy^2 + 4\cos xy$$

$$\frac{\partial z}{\partial x} \stackrel{y=\text{const}}{=} 3y^2 - 4\sin xy \cdot y$$

$$\frac{\partial z}{\partial y} \stackrel{x=\text{const}}{=} 6xy - 4\sin xy \cdot x$$

$$dz = (3y^2 - 4y\sin xy)dx + (6xy - 4x\sin xy)dy$$

4.3. Правила дифференцирования

Nota. При нахождении $\frac{\partial z}{\partial x_i}$ (x_i - какая-либо переменная) дифференцирование проводится по правилам для функции одной переменной ($x_j \neq x_i$ считаются константами) Выпишем более сложные правила

1* Сложная функция

Mem.
$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$

 ${f Def.}$ Сложная функция двух переменных — z=z(u,v), где u=u(x,y), v=v(x,y) Формула: Найдем $\dfrac{\partial z(u,v)}{\partial x}$ и $\dfrac{\partial z(u,v)}{\partial y}$

$$\begin{aligned} \mathbf{Th.} \ & z = z(u,v), \ u(x,y), v(x,y) \ \text{непрерывно дифференцируемы по } x,y \\ & \text{Тогда} \ \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} \\ & \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} \end{aligned}$$

$$z$$
 дифференцируема $\iff \Delta z = \frac{\partial z}{\partial u} \Delta u + \frac{\partial z}{\partial v} \Delta v + \alpha \Delta u + \beta \Delta v$ Зададим приращение Δx (представление Δz не должно измениться)
$$\Delta_x z = \frac{\partial z}{\partial u} \Delta_x u + \frac{\partial z}{\partial v} \Delta_x v + \alpha \Delta_x u + \beta \Delta_x + v \quad \middle| \cdot \Delta x$$

$$\frac{\Delta_x z}{\Delta x} = \frac{\partial z}{\partial u} \frac{\Delta_x u}{\Delta x} + \frac{\partial z}{\partial v} \frac{\Delta_x v}{\Delta x} + \alpha \frac{\Delta_x u}{\Delta x} + \beta \frac{\Delta_x v}{\Delta x}$$
 По теореме Лагранжа: $\frac{\Delta_x u}{\Delta x} (\xi) \stackrel{\Delta x \to 0}{\to} \frac{\partial u}{\partial x}$

В пределе:
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x}$$
 Аналогично для $\frac{\partial z}{\partial y}$

Nota. Интересен случай z = z(x, u, v), где u = u(x), v = v(x)

Здесь z является функцией одной переменной x

Обобщая правило на случай трех переменных, можем записать формулу полной произ-

водной, которая имеет смысл

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial x} + \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial u} \cdot \frac{du}{dx} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dx}$$

Ex. Пусть w = w(x, y, z) — функция координат, x = x(t), y = y(t), z = z(t) — функции времени w явно не зависит от времени, тогда $\frac{\overline{d}w}{dt}=w_x'v_x+w_y'v_y+w_z'v_z$, где v_x — проекция скорости

Если
$$w = w(x, y, z, t)$$
, то $\frac{dw}{dt} = \frac{\partial w}{\partial t}(w'_x v_x + w'_y v_y + w'_z v_z)$
2* Неявная функция одной переменной: пусть $F(x, y(x)) = 0$ — неявное задание $y = y(x)$

Найдем
$$dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy = 0$$

Отсюда
$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$$

ными

4.4. Производная высших порядков

Nota. Пусть z=z(x,y) дифференцируема, $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ также дифференцируемы, при этом в общем случае $\frac{\partial z}{\partial x} = f(x, y), \frac{\partial z}{\partial y} = g(x, y)$

Тогда определены вторые частные производные

Def. Функция $\frac{\partial^2 z}{\partial x^2} \stackrel{def}{=} \frac{\partial}{\partial x} \frac{\partial z}{\partial x}$ называется второй частной производной Функции $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y^2}$ называются чистыми производными, а $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial x} \frac{\partial z}{\partial y}$ – смешан-

Th. z=z(x,y), функции $z(x,y),z_x',z_y',z_{xy}',z_{yx}''$ определены и непрерывны в $\overset{\circ}{U}(M(x,y))$ Тогда $z''_{xy} = z''_{yx}$

Введем вспомогательную величину

$$\Phi = (z(x + \Delta x, y + \Delta y) - z(x + \Delta x, y)) - (z(x, y + \Delta y) - z(x, y))$$

Обозначим $\phi(x) = z(x, y + \Delta y) - z(x, y)$

Тогда $\Phi = \phi(x + \Delta x) - \phi(x)$ — дифференцируема, непрерывна, как комбинация

По теореме Лагранжа $\phi(x+\Delta x)-\phi(x)=\phi'(\xi)\Delta x=(z'_x(\xi,y+\Delta y)-z'_x(\xi,y))\Delta x$, где $\xi\in(x;x+\Delta x)$

Здесь z_x' дифференцируема также на $[y, y + \Delta y]$

Тогда по теореме Лагранжа $\exists \eta \in (y,y+\Delta y) \mid z_x'(\xi,y+\Delta y) - z_x'(\xi,y) = z_{xy}''(\xi,\eta)\Delta y$

Таким образом $\Phi = z_{xy}''(\xi, \eta) \Delta x \Delta y$

Перегруппируем Ф, далее аналогично для z''_{ux}

Тогда $z''_{xy}(\xi,\eta)\Delta x\Delta y=\Phi=z''_{yx}(\xi',\eta')\Delta x\Delta y$

4.5. Дифференциалы

Mem.~1.~ Полный дифференциал (1-ого порядка) функции z = z(x,y) $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$ — сумма частных дифференциалов

 $Mem.\ 2.$ Инвариантность формы первого дифференциала функции одной переменной $dy(x)=y'(x)dx\stackrel{x=\phi(t)}{=}y'(t)dt$

Тh. Инвариантность полного дифференциала первого порядка.

$$z=z(u,v), \quad u=u(x,y), \quad v=v(x,y)$$
 - дифференциалы
 Тогда $dz=rac{\partial z}{\partial u}du+rac{\partial z}{\partial v}dv=rac{\partial z}{\partial x}dx+rac{\partial z}{\partial y}dy$

$$dz = \frac{\partial z}{\partial u} \left(\frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy \right) + \frac{\partial z}{\partial v} \left(\frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy \right) = \left(\frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x} \right) dx + \left(\frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} \right) dy = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

Mem. $d^2y(x) \stackrel{def}{=} d(dy(x)) = y''(x)dx^2 \neq y''(t)dt^2$

 $\mathbf{Def.}: z = z(x,y)$ — дифференцируема и $dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$ — дифференцируемая функция

Тогда второй полный дифференциал равен $d^2z\stackrel{def}{=}d(dz)$

Формула: $d^2z = d\left(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy\right) = (z_x'dx + z_y'dy)_x'dx + (z_x'dx + z_y'dy)_y'dy = (z_x'dx)_x'dx + (z_y'dy)_x'dx + (z_y$

$$(z_x'dx)_y'dy + (z_y'dy)_y'dy = (z_x')_x'(dx)^2 + (z_y')_x'dxdy + (z_x')_y'dydx + (z_y')_y'(dy)^2 = \frac{\partial^2 z}{\partial x^2}(dx)^2 + 2\frac{\partial^2 z}{\partial x \partial y}dxdy + \frac{\partial^2 z}{\partial y^2}(dy)^2$$

 $\stackrel{\circ}{Nota}$: Заметим формальное сходство с биномом Ньютона: $a^2 + 2ab + b^2 = (a+b)^2$ Введем условное обозначение $\frac{\partial^2}{\partial x^2} + 2\frac{\partial^2}{\partial x \partial y} + \frac{\partial^2}{\partial y^2} = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2$

Тогда $d^2z = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial u}\right)^2 z$, здесь $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial u}\right)^2$ – оператор второго полного дифференцирования

 $d^n z = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial u}\right)^n z$ — дифференциал *n*-ого порядка

Nota: Можно ли утверждать, что $d^2z(x,y) = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2 z \stackrel{x=x(u,v),y=y(u,v)}{=} \left(\frac{\partial}{\partial y} + \frac{\partial}{\partial y}\right)^2 z$?

Нет, нельзя (d^2z не инвариантен при замене)

Покажем, что не выполняется в простом случае: z = z(x, y) = z(x(t), y(t)) – параметризация.

Геометрически, это выбор пути в области D от точки $M_0(x_0,y_0)$ до точки M(x,y)

Итак:

$$d(dz) \stackrel{z-\Phi_1\Pi}{=} (dz)_t'dt = \left(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy\right)_t'dt = \left[\frac{dx(t) = \frac{dx}{dt}dt}{dy(t) = \frac{dy}{dt}dt}\right] = \left(\frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}\right)_t'dt^2 = \\ = \left(\frac{\partial z}{\partial x}\frac{dx}{dt}\right)_t'dt^2 + \left(\frac{\partial z}{\partial y}\frac{dy}{dt}\right)_t'dt^2 = \left(\left(\frac{\partial z}{\partial x}\right)_t'\frac{dx}{dt} + \frac{\partial z}{\partial x}\left(\frac{dx}{dt}\right)_t'\right)dt^2 + \left(\left(\frac{\partial z}{\partial y}\right)_t'\frac{dy}{dt} + \frac{\partial z}{\partial y}\left(\frac{dy}{dt}\right)_t'\right)dt^2 = \\ = \left(\frac{\partial^2 z}{\partial x^2}\left(\frac{dx}{dt}\right)^2 + \frac{\partial^2 z}{\partial x\partial y}\frac{dy}{dt}\frac{dx}{dt} + \frac{\partial z}{\partial x}\frac{d^2x}{dt^2}\right)dt^2 + \left(\frac{\partial^2 z}{\partial y^2}\left(\frac{dy}{dt}\right)^2 + \frac{\partial^2 z}{\partial y\partial x}\frac{dx}{dt}\frac{dy}{dt} + \frac{\partial z}{\partial y}\frac{d^2y}{dt^2}\right)dt^2 = \\ = \frac{\partial^2 z}{\partial x^2}dx^2 + \frac{\partial z}{\partial x}d^2x + \frac{\partial^2 z}{\partial y^2}dy^2 + \frac{\partial z}{\partial y}d^2y + 2\frac{\partial^2 z}{\partial x\partial y}dydx = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2z + \frac{\partial z}{\partial x}d^2x + \frac{\partial z}{\partial y}d^2y \\ \begin{cases} x = mt + x_0 \\ y = nt + y_0 \end{cases}$$
— линейная параметризация

<u>Lab.</u> Дать инвариантность при линейной параметризации

Причем, это свойство верно для d^nz , то есть если $\begin{cases} x=mt+x_0\\ u=nt+u_0 \end{cases}$ (например), то $d^nz\stackrel{z=z(t)}{=}z^{(n)}(t)dt$

4.6. Формула Тейлора

$$\textit{Mem. } f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + \begin{bmatrix} o((x-x_0)^n) & -\text{ ост. в форме Пеано} \\ \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} & -\text{ ост. в форме Лагранжа} \end{bmatrix}$$

В дифференциалах

$$f(x) = f(x_0) + \frac{df(x_0)}{1!} + \frac{d^2f(x_0)}{2!} + \dots + \frac{d^nf(x_0)}{n!} + \text{остаток}$$

Формула Тейлора для z=z(x,y) в окрестности $M_0(x_0,y_0)$ (как раньше $\Delta \rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$)

$$z(M \in \overset{\circ}{U}_{\delta}(M_0)) = z(M_0) + \frac{dz(M_0)}{1!} + \dots + \frac{d^n z(M_0)}{n!} + o((\Delta \rho)^n)$$

Nota. Формула выше верна, если z = z(x, y) непрерывна со своими частными производными до n+1 порядка включительно в некоторой окрестности $U_{\delta}(M_0(x_0,y_0))$, где $M(x,y) \in U_{\delta}(M_0)$

Для линейной параметризации форма дифференциала сохраняется

$$d^{2}z = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^{2}z \stackrel{\text{инвариант}}{=} z_{t}^{(n)}dt^{n}$$

Введем функцию: $z(x(t),y(t))\stackrel{\text{обозн}}{=} \varphi(t)$ – она (n+1) раз дифференцируема (композиция (n+1)дифференцируемых и линейных функций)

Заметим, что
$$x=x_0+\Delta xt\stackrel{t_0=0}{=}x_0,\;y=y_0+\Delta yt\stackrel{t_0=0}{=}y_0,\;$$
тогда $M\stackrel{t\to t_0=0}{\to}M_0$

То есть
$$z(M_0) = z(x_0, y_0) = z(x(t_0), y(t_0)) = \varphi(t_0) = \varphi(0)$$

Таким образом $\varphi(t)$ как функция одной переменной может быть разложена в окрестности $t_0 = 0$ по формуле Маклорена

$$\varphi(t) = \varphi(0) + \frac{d\varphi(0)}{1!} \Delta t + \dots + \frac{d^n \varphi(0)}{n!} \Delta t^n + o((\Delta t)^n)$$

Вернемся к z(x, y) ($\Delta t = t - t_0 = 1$):

$$z(x,y) = z(M) = z(M_0) + \frac{dz(M_0)}{1!} + \frac{d^2z(M_0)}{2!} + \dots + \frac{d^nz(M_0)}{n!} + r_n(x,y)$$

где остаток в форме Лагранжа $r_n(x,y)=r_n(t)=rac{arphi^{(n+1)}(\theta\Delta t)}{(n+1)!}\Delta t=rac{arphi^{(n+1)}(\theta\Delta t)}{(n+1)!}$

Остаток $r_n(x,y)$ должен быть бесконечно малым по отношению к $(\Delta \rho)^n$, то есть $r_n(x,y) =$ $o((\Delta \rho)^n)$

 $(r_n(t)\overset{n\to\infty}{\longrightarrow}0,$ если $\varphi(t)$ нужное число раз дифференцируема \Rightarrow ограничена, $r_n(t)$ – ограниченная бесконечно малая)

Nota. В дальнейшем для исследования z(x,y) на экстремум достаточно разложения по формуле Тейлора до 2-ого порядка включительно. Покажем сходимость $r_n(x,y) \stackrel{(\Delta \rho)^n \to 0}{\longrightarrow} 0$ на примере $r_2(x,y) = \frac{d^3z(M_{\text{сред.}})}{2!}$

$$r_{2}(x,y) = \frac{1}{3!} \left(\frac{\partial}{\partial x} \Delta x + \frac{\partial}{\partial y} \Delta y \right)^{3} z = \frac{1}{3!} \left(\frac{\partial^{3} z}{\partial x^{3}} (\Delta x)^{3} + 3 \frac{\partial^{3} z}{\partial x^{2} \partial y} (\Delta x)^{2} \Delta y + 3 \frac{\partial^{3} z}{\partial x \partial y^{2}} (\Delta y)^{2} \Delta x \frac{\partial^{3} z}{\partial y^{3}} (\Delta y)^{3} \right)$$

Вообще говоря, значения частных производных берутся в различных средних т

$$r_2(x,y) = \frac{1}{3!} (z_{xxx}(\mu_1)(\Delta x)^3 + 3z_{xxy}(\mu_2)(\Delta x)^2 \Delta y + z_{xyy}(\mu_3)(\Delta y)^2 \Delta x + 3z_{yyy}(\mu_4)(\Delta y)^3) = \left[\text{вынесем } (\Delta \rho)^3 \right] = \frac{(\Delta \rho)^3}{3!} \left(\text{огран.} : \frac{(\Delta x)^3}{3!} + \text{огран.} : \frac{(\Delta x)^2 \Delta y}{3!} + \text{огран.} : \frac{(\Delta y)^2 \Delta x}{3!} + \text{огран.} : \frac{(\Delta y)^3}{3!} \right)$$

$$\frac{(\Delta \rho)^3}{3!} \left(\text{огран.} \cdot \frac{(\Delta x)^3}{(\Delta \rho)^3} + \text{огран.} \cdot \frac{(\Delta x)^2 \Delta y}{(\Delta \rho)^3} + \text{огран.} \cdot \frac{(\Delta y)^2 \Delta x}{(\Delta \rho)^3} + \text{огран.} \cdot \frac{(\Delta y)^3}{(\Delta \rho)^3} \right)$$

$$\frac{(\Delta x)^3}{(\Delta \rho)^3} = \frac{(\Delta x)^3}{\sqrt{(\Delta x)^2 + (\Delta y)^2}^3} \xrightarrow{\Delta x \to 0} 0, \text{ то есть дробь и выражение выше ограничены}$$

$$\frac{r_2(x,y)}{(\Delta \rho)^2} = \frac{1}{3!} \frac{(\Delta \rho)^3 \cdot \text{orp.}}{(\Delta \rho)^2} = \frac{1}{3!} \Delta \rho \cdot \text{orp.} \stackrel{\Delta \rho \to 0}{\to} 0$$

4.7. Геометрия Φ НП

4.7.1. Линии и поверхности уровня

Положим z = const.

В сечении плоскостью z=c образуется кривая l с уравнением $\begin{cases} z=c \\ \varphi(x,y)=0 \leftarrow \text{ уравнение } l_{\text{проек}} \text{ на } Oxy \end{cases}$ Кривая l с уравнением z(x,y)=c называется линией уровня функции двух переменных z=z(x,y)

Def. Поверхность уровня \mathcal{P} – это поверхность с уровнем u(x,y,z)=c Физический смысл: Пусть $u:\mathbb{R}^3\to\mathbb{R}$ (значения функции u(x,y,z) – скаляры). Тогда говорят, что в \mathbb{R}^3 задано скалярное поле. Например, поле температур, давления, плотности и т. д. Тогда u=c – поверхности постоянных температур, давления и т. п. (изотермические, изобарные, эквипотенциальные)

$$Ex.$$
 Koнуc: $z = -\sqrt{x^2 + y^2}$

Линии уровня z = c:

- 1. c > 0 Ø
- 2. c = 0 x = y = 0 точка (0, 0)
- 3. c < 0 $-|c| = -\sqrt{x^2 + y^2}$ или $c^2 = x^2 + y^2$

4.7.2. Производная по направлению, градиент

Задача. Дано скалярное поле u = u(x, y, z) (например, давления). Как меняется давление при перемещении в заданном направлении?

Это задача о нахождении скорости изменения u(x,y,z) в заданном направлении \vec{s}

Из $M_0(x_0,y_0,z_0)$ движемся в M(x,y,z) в направлении $\vec{s},\ x=x_0+\Delta x,\ y=y_0+\Delta y,\ z=z_0+\Delta z$

$$\Delta s = \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2} \quad \left| \cdot \frac{1}{\Delta s} \right|$$

$$\Delta s = \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2} \left[\cdot \frac{1}{\Delta s} \right]$$

$$1 = \sqrt{\left(\frac{\Delta x}{\Delta s}\right)^2 + \left(\frac{\Delta y}{\Delta s}\right)^2 + \left(\frac{\Delta z}{\Delta s}\right)^2}$$

$$\left(\frac{\Delta x}{\Delta s}, \frac{\Delta y}{\Delta s}, \frac{\Delta z}{\Delta s}\right) = (\cos \alpha, \cos \beta, \cos \gamma) = \vec{s^0}$$

 Π отребуем, чтобы u(x,y,z) имела непрерывность u_x,u_y,u_z в D

To есть u(x,y,z) дифференцируема и $\Delta u = du + o(\Delta s) = u_x \Delta x + u_y \Delta y + u_z \Delta x + o(\Delta s)$

$$\frac{\Delta u}{\Delta s} = u_x \cos \alpha + u_y \cos \beta + u_z \cos \gamma + \frac{o(\Delta s)}{\Delta s}$$

В предельном переходе получаем: $\frac{\partial u}{\partial s} = \frac{\partial u}{\partial r} \cos \alpha + \frac{\partial u}{\partial u} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma$

Nota. Изначально $\Delta u = du + (6. \text{ м.})\Delta x + (6. \text{ м.})\Delta y + (6. \text{ м.})\Delta z$ $\left| \cdot \frac{1}{\Delta s} \right|$

$$\frac{\Delta u}{\Delta s} = \frac{du}{\Delta s} + (\text{б. M.}) \cos \alpha, (\text{б. M.}) \cos \alpha \rightarrow 0$$

Def. Производной функции u=u(x,y,z) в направлении \vec{s} называют величину $\frac{\partial u}{\partial s} = \frac{\partial u}{\partial r}\cos\alpha +$ $\frac{\partial u}{\partial u}\cos\beta + \frac{\partial u}{\partial z}\cos\gamma$, где α, β, γ - направления \vec{s}

Nota. Производная в определении — число, но $\frac{\partial u}{\partial s}\vec{s^0}$ — вектор скорости

Nota. Заметим, что если $\vec{i}, \vec{j}, \vec{k}$ – декартовы орты, то $\frac{\partial u}{\partial i} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{\partial u}{\partial x}$

И аналогично в других направлениях: $\frac{\partial u}{\partial i} = \frac{\partial u}{\partial v}, \frac{\partial u}{\partial k} = \frac{\partial u}{\partial z}$

Составим вектор $\frac{\partial u}{\partial x}\vec{i} + \frac{\partial u}{\partial y}\vec{j} + \frac{\partial u}{\partial z}\vec{k} \stackrel{\text{обозн}}{=} \vec{\nabla} u$

 $\vec{\nabla}$ — набла-оператор (оператор Гамильтона); $\vec{\nabla} = \left(\frac{\partial}{\partial x}; \frac{\partial}{\partial u}; \frac{\partial}{\partial z}\right)$ — условный вектор

 $\overrightarrow{\mathrm{Def.}} \ \overrightarrow{\mathrm{grad}} \ u \stackrel{def}{=} \vec{\nabla} u$ — называют градиентом функции u(x,y,z)

Свойства градиентов:

Th. 1.
$$\frac{\partial u}{\partial s} = \text{проек.}_{\vec{s}} \vec{\nabla} u$$

В любом заданном направлении \overrightarrow{s} производная $\frac{\partial u}{\partial s}|_{M}$ равна проекции градиента в M

Th. 2. $\vec{\nabla} u$ – направление наибольшего значения $\frac{\partial u}{\partial s}$

Th. 3.
$$\vec{s} \perp \vec{\nabla} u \Longrightarrow \frac{\partial u}{\partial s} = 0$$

Th. 4. u=u(x,y), u=c — линии уровня l. Тогда $\vec{\nabla} u \perp l$

Прямая, содержащая $\vec{\nabla} u$ (т. е. перпендикулярная касательной к l), называется нормалью к l а тогда $\vec{\nabla} u$ — вектор нормали

Доказательства:

1

$$\frac{\partial u}{\partial s} = \left(\left(\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z} \right) \cdot \vec{s^0} \right) u = \left(\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z} \right) u \cdot \vec{s^0} = \vec{\nabla} u \cdot \vec{s^0}
|\vec{\nabla} u \cdot \vec{s^0}| = |\vec{\nabla} u| |\vec{s^0}| \cos(\vec{\nabla} u, \vec{s^0}) = |\vec{\nabla} u| \cos(\vec{\nabla} u, \vec{s^0}) = \text{проек.}_{\vec{s}} \vec{\nabla} u$$

2.

$$\frac{\partial u}{\partial s} = |\vec{\nabla} u| \cos \varphi$$
, где φ - угол между \vec{s} и $\vec{\nabla} u$

Косинус принимает наибольшее значение, если угол между \vec{s} и $\vec{\nabla} u$ равен нулю, то есть направления векторов совпадает. Значит, при $\vec{s} = \vec{\nabla} u$ производная принимает наибольшее значение

3.

Из доказательства **Th. 2.** следует, что если \vec{s} сонаправлен с $\vec{\nabla} u$, то производная принимает наибольшее значение. Следовательно, если $\vec{s} \perp \vec{\nabla} s$, то $\cos \varphi = 0$, $\frac{\partial u}{\partial s} = 0$

4.

u=c — уравнение $l_{\rm пp}$ в плоскости Oxy, то есть u(x,y)=c мы можем рассмотреть как неявную функцию u(x,y(x))-c=0

Производная неявной функции: $\frac{dy}{dx} = -\frac{u_x}{u_y} = k_l$ – угловой коэффициент касательной к l

$$ec{
abla}u=(u_x,u_y)$$
 $\dfrac{u_y}{u_x}=k_{
m rpag.}$ — наклон вектора градиента.
 Очевидно $k_l\cdot k_{
m rpag.}=-1\Longrightarrow ec{
abla}u\perp l$

4.7.3. Касательная и нормаль к поверхности

Будем исследовать поверхность π с уравнением F(x, y, z(x, y)) = 0 (неявное задание)

Def. Прямая τ называется касательной прямой к поверхности π в точке P(x,y,z), если эта прямая касается какой-либо кривой, лежащей на π и проходящей через P

Nota. Кривая получается (обычно) сечением π какой-либо плоскостью

Nota. В одной точке может быть множество касательных, но это не всегда так

Nota. Договоримся различать два типа точек поверхности: обыкновенные и особые

Def. Поверхность π задана F(x, y, z(x, y)) = 0. Точка M называется обыкновенной, если существуют все $\frac{\partial F}{\partial x}$, $\frac{\partial F}{\partial u}$, $\frac{\partial F}{\partial z}$, они непрерывны и не все равны нулю

Def. Точка M называется особой, если $\frac{\partial F}{\partial x} = \frac{\partial F}{\partial y} = \frac{\partial F}{\partial z} = 0$ или хотя бы одна из производных не существует

Th. Все касательные прямые к π в обыкновенной точке M_0 лежат в одной плоскости

 \vec{s} – направляющий вектор касательной au, проведенной к кривой l в некоторой секущей плоскости

 $d\vec{s}$ – вектор малых приращений, то есть $d\vec{s} = (dx, dy, dz)$

 $d\vec{p}$ – проекция $d\vec{s}$ на Oxy, то есть $d\vec{p} = (dx, dy)$

Кривую l можно задать параметрическими уравнениями $\begin{cases} x = \varphi(t) \\ y = \xi(t) \end{cases}$ Примеже

Прямая τ имеет уравнение

$$\frac{x - x_0}{dx} = \frac{y - y_0}{dy} = \frac{z - z_0}{dz}$$

При отходе от M_0 на малое расстояние по поверхности (точнее по кривой l) задаем приращение $dt \neq 0$

Домножим уравнение на dt

$$\frac{x - x_0}{\frac{dx}{dt}} = \frac{y - y_0}{\frac{dy}{dt}} = \frac{z - z_0}{\frac{dz}{dt}}$$

Из условия обыкновенности точки M_0 следует дифференцируемость функции F. Кроме того, уравнение можно преобразовать к виду F(x(t),y(t),z(t))=0, где x(t),y(t),z(t) тоже дифференцируемы в точке M_0

Запишем F'_t , как вложенную:

$$F'_t = \frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt} + \frac{\partial F}{\partial z}\frac{dz}{dt} = 0$$

Или
$$\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right) \cdot \left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}\right) = 0$$

Таким образом, $\vec{N} \cdot \frac{d\vec{s}}{dt} = 0$. То есть $\vec{N} \perp \frac{d\vec{s}}{dt}$, при том, что $d\vec{s}$ выбран произвольно (кривая l – кривая произвольного сечения)

Итак, вектор \vec{N} перпендикулярен любой касательной τ к поверхности π в точке M_0 . Следовательно, все касательные лежат в плоскости κ такой, что $\vec{N} \perp \kappa$

Def. Плоскость κ (содержащая все касательные прямые τ к π в точке M_0) называется касательной плоскостью к π в M_0

Def. Прямая в направлении \vec{N} через точку M_0 называется нормалью к π в M_0 \vec{N} – вектор нормали к поверхности в точке

Уравнение
$$(\pi)$$

$$F(x,y,z) = 0, \ \vec{N} = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right), \ M_0(x_0,y_0,z_0) \in \pi, \kappa, n$$
 Касательная плоскость (κ)
$$\frac{\partial F}{\partial x}(x-x_0) + \frac{\partial F}{\partial y}(y-y_0) + \frac{\partial F}{\partial z}(z-z_0) = 0$$
 Hopмаль (n)
$$\frac{\partial F}{\partial x} = \frac{y-y_0}{\frac{\partial F}{\partial y}} = \frac{z-z_0}{\frac{\partial F}{\partial z}}$$

Nota. Получим вектор нормали в случае явного задания π z=z(x,y)

Пересечем π в точке M_0 плоскостями $x=x_0,y=y_0,$ в сечении получим кривые с касательными векторами \vec{m} и \vec{p} в точке M_0

Вектор нормали к π в M_0 $\vec{n} = \vec{m} \times \vec{p}$

Найдем \vec{m}, \vec{p} . В сечении $x = x_0$ введем вектор $d\vec{p}||\vec{p}$:

$$d\vec{p} = \left(0, dy, \frac{\partial z}{\partial y} dy\right) = \left(0, 1, \frac{\partial z}{\partial y}\right) dy$$

Аналогично найдем \vec{m} в сечении $y=y_0$:

$$\vec{m}||d\vec{m} = \left(dx, 0, \frac{\partial z}{\partial x}dx\right) = \left(1, 0, \frac{\partial z}{\partial x}\right)dx$$

Так как модуль \vec{n} не важен, а только направление,

то будем искать
$$\vec{n} = \left(1,0,\frac{\partial z}{\partial x}\right) \times \left(0,1,\frac{\partial z}{\partial y}\right)$$

$$\vec{n} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & \frac{\partial z}{\partial x} \\ 0 & 1 & \frac{\partial z}{\partial y} \end{vmatrix} = \vec{i} \left(-\frac{\partial z}{\partial x}\right) - \vec{j} \frac{\partial z}{\partial y} + \vec{k} =$$
$$= \left(-\frac{\partial z}{\partial x}; -\frac{\partial z}{\partial y}; 1\right)$$

Тогда уравнение κ :

$$z - z_0 = \frac{\partial z}{\partial x}(x - x_0) + \frac{\partial z}{\partial y}(y - y_0) = dz$$

Уравнение нормали n: $\frac{x-x_0}{-\frac{\partial z}{\partial x}} = \frac{y-y_0}{-\frac{\partial z}{\partial y}} = \frac{z-z_0}{1}$

Nota. Последние уравнения можно получить проще, если свести уравнение z = f(x,y) к уравнению z - f(x,y) = F(x,y,z) = 0

<u>Lab.</u> Вывести уравнение κ и n, пользуясь предыдущим замечанием

Nota. Если найти $\vec{n} = \vec{p} \times \vec{m} = -(\vec{m} \times \vec{p})$, то получим также вектор нормали, но обращенный в противоположную сторону

Будем говорить, что $\vec{n^+}$ - положительный вектор нормали, если угол $\angle \gamma = \angle (\vec{n^+}, Oz) \in \left[0; \frac{\pi}{2}\right)$ $\vec{n^-}$ - отрицательный, если угол $\angle \gamma = \angle (\vec{n^+}, Oz) \in \left(\frac{\pi}{2}; \pi\right)$

Соответственно этому верхней стороной π называется та, у которой аппликата вектора нормали положительна

Нижней стороне соответствует \overrightarrow{n}^2 . Если $\overrightarrow{n} \perp Oz$, то это боковая сторона

4.7.4. Экстремумы ФНП ($\Phi_2\Pi$)

Def. Точка $M_0(x_0, y_0)$ называется точкой максимума (минимума) функции z = z(x, y), если $\forall M \in U_\delta(M_0) \quad z(M_0) \geq z(M)$ (для минимума $z(M_0) \leq z(M)$)

Nota. То же, что
$$z(M) - z(M_0) = z - z_0 = \Delta z \le 0 \text{ (max)}, \quad \Delta z \ge 0 \text{ (min)}$$

Мет. Для функции одной переменной формулировали необходимое условие экстремума (лемма Ферма), из этого условия получали точки, подозрительные на экстремум: критические $-f'(x_0) = 0$ или $\nexists f'(x_0)$ (для острого экстремума); стационарные $-\exists f'(x_0) = 0$ (частный случай критич.)

Далее при помощи достаточных условий (признаков) проверяли наличие экстремума в критических точках

Nota. Все термины переносятся на функции нескольких переменных. Необходимое условие и достаточное условие аналогичны

Th. Необходимое условие экстремума (гладкого): $z = z(x,y) : \mathbb{R}^2 \to \mathbb{R}; \quad z_0 \text{ - точка гладкого экстремума, то есть } \exists \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} \text{ в } M_0 \text{ и } \forall M \in U_\delta(M_0) \ z_0 \leq z(M) \text{ или } z_0 \geq z(M)$ Тогда $\begin{cases} \frac{\partial z}{\partial x}\Big|_{M_0} = 0 \\ \frac{\partial z}{\partial y}\Big|_{M_0} = 0 \end{cases}$

Аналогично лемме Ферма в сечениях $x = x_0$, $y = y_0$

Для существования острого экстремума нужно рассмотреть не существование или бесконечность $\frac{\partial z}{\partial x}$ или $\frac{\partial z}{\partial y}$

Если же функция трижды дифференцируема исследования на характер экстремума можно проводить с помощью вторых производных

Тh. Достаточное условие (гладкого) экстремума

Пусть z = z(x, y) непрерывна в окрестности M_0 (критическая точка $\frac{\partial z}{\partial x}\Big|_{M_0} = 0, \frac{\partial z}{\partial y}\Big|_{M_0} = 0$) вместе со своими первыми и вторыми производными (можно потребовать трижды дифференцируемость)

Тогда, если $\frac{\partial^2 z}{\partial x^2} \stackrel{\text{обозн}}{=} A$, $\frac{\partial^2 z}{\partial x \partial y} \stackrel{\text{обозн}}{=} B$, $\frac{\partial^2 z}{\partial y^2} \stackrel{\text{обозн}}{=} C$, то

- 1. $AC B^2 > 0, A > 0 \Longrightarrow M_0$ точка минимума
- 2. $AC B^2 > 0, A < 0 \Longrightarrow M_0$ точка максимума
- 3. $AC B^2 < 0 \Longrightarrow$ в точке M_0 нет экстремума
- 4. $AC B^2 = 0 \Longrightarrow$ нельзя утверждать наличие или отсутствие экстремума в точке (требуются дополнительные исследования)

Функция z дважды дифференцируема, тогда ($z_0 = z(M_0)$)

Функция z дважды дифференцируема, тогда (20 – 2(M0))
$$\Delta z = z - z_0 = \frac{dz}{1!} \Big|_{M_0} + \frac{d^2z}{2!} \Big|_{M_0} + o((\Delta \rho)^2)$$

$$\Delta \rho = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(dx)^2 + (dy)^2}, \ dx = \Delta \rho \cos \alpha, dy = \Delta \rho \sin \alpha$$

$$o((\Delta \rho)^2) = \lambda (\Delta \rho)^3$$

Заметим, что $dz\Big|_{M_0} = 0$, так как M_0 – критическая

$$d^2z = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2 z = \left(\frac{\partial^2}{\partial x^2} + 2\frac{\partial^2}{\partial x \partial y} + \frac{\partial^2}{\partial y^2}\right) z = \frac{\partial^2 z}{\partial x^2} (dx)^2 + 2\frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} (dy)^2 = A(dx)^2 + 2\frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} (dy)^2 = A(dx)^2 + 2\frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} (dy)^2 = A(dx)^2 + 2\frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} (dy)^2 = A(dx)^2 + 2\frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} (dy)^2 = A(dx)^2 + 2\frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} (dy)^2 = A(dx)^2 + 2\frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} (dy)^2 = A(dx)^2 + 2\frac{\partial^2 z}{\partial y^2} (dy)^2 + 2\frac{\partial^2$$

$$2Bdxdy + C(dy)^2 = A(\Delta\rho)^2\cos^2\alpha + 2B(\Delta\rho)^2\cos\alpha\sin\alpha + C(\Delta\rho)^2\sin^2\alpha$$

Тогда $\Delta z = \frac{1}{2} (\Delta \rho)^2 (A \cos^2 \alpha + 2B \cos \alpha \sin \alpha + C \sin^2 \alpha + 2\lambda \Delta \rho)$

Далее рассмотрим отдельно случаи $A \neq 0$ и A = 0 $A \neq 0: A \cos^2 \alpha + 2B \cos \alpha \sin \alpha + C \sin^2 \alpha = \frac{A^2 \cos^2 \alpha + 2AB \cos \alpha \sin \alpha + B^2 \sin^2 \alpha + (AC - B^2) \sin^2 \alpha}{A}$

 $(A\cos\alpha+B\sin\alpha)^2+(AC-B^2)\sin^2\alpha$

1. Пусть $AC - B^2 > 0$ (A > 0): Числитель неотрицательный и не равен нулю (иначе $\sin \alpha = 0$, то тогда $A \cos \alpha \neq 0$)

Итак, числитель и знаменатель больше нуля. Обозначим всю дробь за $k^2>0$ Вернемся к $\Delta z = \frac{1}{2}(\Delta \rho)^2 (k^2 + 2\lambda \Delta \rho)$

Устремим $\Delta \rho \to 0$, начиная с какого-то $\delta \ \forall M \in U_{\delta}(M_0) \ k^2 + \lambda \Delta \rho > 0$

То есть $\Delta z > 0$ в $U_{\delta}(M_0) \Longrightarrow M_0$ – точка минимума (локально в $U_{\delta}(M_0)$)

2. Пусть $AC - B^2 > 0$ (A < 0), тогда $\Delta z = \frac{1}{2} (\Delta \rho)^2 (-k^2 + 2\lambda \Delta \rho) < 0$ при достаточно малом

Аналогично $\Delta z < 0 \Longrightarrow M_0$ – точка максимума

3. Пусть $AC-B^2<0$ (A>0), тогда фиксируем направления $\alpha=0\Longrightarrow\sin\alpha=0$ $\Delta z = \frac{1}{2} (\Delta \rho)^2 (A + 2\lambda \Delta \rho) > 0$

$$\operatorname{tg} \alpha = -\frac{A}{B} \Longrightarrow \frac{(AC - B^2)\sin^2 \alpha}{A} = -k^2, \Delta z = \frac{(\Delta \rho)^2}{2}(-k^2 + 2\lambda \Delta \rho) < 0$$

Вдоль разных путей $\alpha=0,\ {\rm tg}\ \alpha=-\frac{A}{B},$ разный знак $\Delta z \Longrightarrow$ нет экстремума Nota. Можно аналогично рассмотреть A < 0

4. A = 0, вернемся к выражению $\Delta z = \frac{1}{2} (\Delta \rho)^2 (\sin \alpha (2B \cos \alpha + C \sin \alpha) + 2\lambda \Delta \rho)$ Пусть α — бесконечно малая, тогда $\sin \alpha \approx 0$, $C \sin \alpha \approx 0$, $2B \cos \alpha \approx 2B$. Тогда знак $\sin \alpha \cdot 2B$ зависит от α

То есть Δz колеблется вместе с α по знаку \Longrightarrow нет экстремума

Можно доказать при $A \neq 0$, например, выбрав $\operatorname{tg} \alpha = -\frac{A}{R}$, что знак Δz зависит от α

5. Интеграл ФНП

5.1. Общая схема интегрирования

Постановка задачи.

В некоторой области Ω (дуга кривой, участок поверхности, тело и т. д.) распределена или действует непрерывно некоторая функция скалярная g или векторная \vec{G} , то есть определены g(M) или \vec{G} $\forall M \in \Omega$

Ex. Область Ω — дуга кривой l: y = y(x). Тогда скалярная функция g(M) — плотность в точке M

Ex. Область Ω — трубка в \mathbb{R}^3 . Тогда векторная величина $\vec{G}(M)$ — скорость жидкой частицы, движущейся по трубке

Из всех векторов \vec{v} (для всех $M \in \Omega$) складывается «поле жидких скоростей»

Ex. Область Ω – кривая, по которой движется точка M под действием силы $\vec{G}(M)$

Задача интегрирования – найти суммарное содержание скалярной величины или действие векторной величины в области Ω

Схема: величины g(M) и $\vec{G}(M)$, меняясь от точки к точке заменяются на квазипостоянные на малых (элементарных) участках $d\omega$

Так как g(M) или $\vec{G}(M)$ должны быть непрерывны на Ω , то на малом участке $d\omega$ их изменение незначительно и значение функции можно считать почти постоянным, приняв за это значение какое-либо среднее $g_{\text{CD}}(M)$, $\vec{G}_{\text{CD}}(M)$

Тогда элементарное содержание g(M) в $d\omega$ будет отличаться от среднего содержания, то есть $g_{\rm cp.}d\omega$ на бесконечно малую большего порядка

 $\mathit{Ex.}$ Проиллюстрируем на примере $\int_a^b f(x) dx$

S — площадь по наибольшей границе, σ — площадь по наименьшей границе, $S_{
m Tpanequu}$ — «истинная» площадь

Так как f(x) непрерывна $\forall x \in [a, b]$, то $\Delta f \xrightarrow{\Delta x \to 0} 0$

Для простоты рассмотрим монотонно возрастающую f(x)

Хотим доказать, что $S-S_{\mathrm{трапеции}}$ – бесконечно малая большего порядка, чем $S_{\mathrm{трапеции}}$ или S

$$0 \le S - S_{\text{трапеции}} \le dx \Delta y$$

Сравним
$$\frac{dx\Delta y}{S} = \frac{dx\Delta y}{dxf(x+\Delta x)} = \frac{\Delta y}{\text{огран.}} \xrightarrow{\Delta x \to 0} 0$$
, таким образом $S - S_{\text{трапеции}} = o(S_{\text{трапеции}})$

Смысл интеграла в случае векторной функции $\overrightarrow{G}(M)$: будем интегрировать только скалярные выражения вида $\overrightarrow{G}(M) \cdot d\vec{\omega}$ – скалярное произведение векторов, где $d\vec{\omega}$ - ориентированный

элемент $d\omega$

Ex. Сила $\vec{F}(M)$ перемещает точку M вдоль плоской кривой l. При этом сила совершает работу по перемещению (работа A – скалярная величина)

Известна формула для $\vec{F}=\mathrm{const}$ и перемещения \vec{s} по прямой: $A=\vec{F}\cdot\vec{s}$

Разобьем дугу на элементы $dl \approx ds$ и ориентируем их (зададим направление перемещению ds) dl = ds + o(dl), $d\vec{s}$ — вектор элементарного перемещения, как правило, ds направлен согласовано с Ox

Элемент работы $dA = \vec{F} \cdot d\vec{s} = (F_x, F_y) \cdot (dx, dy) \stackrel{\text{обозн.}}{=} (P, Q) \cdot (dx, dy) = Pdx + Qdy$ — скаляр. Вся работа равна $A = \int dA$

Nota. Ориентированный участок поверхности $d\vec{\sigma}$ – это размер участка $d\sigma$, умноженный на вектор нормали к участку \vec{n} , то есть $d\vec{\sigma} = \vec{n} d\sigma$

Итак, схема интегрирования:

- $\mathbf{1^*}$ Дробление области Ω на элементы $d\omega$
- $\mathbf{2}^*$ Выбор постоянного значения функции на $d\omega,$ то есть $g_{\mathrm{cp.}}$ или $\vec{G}_{\mathrm{cp.}}$
- ${\bf 3^*}$ Составление подынтегрального выражения $g_{\rm cp.} d\omega$ или $\vec{G}_{\rm cp.} d\vec{\omega}$
- ${f 4}^*$ «Суммирование» элементарных величин $\int {f g} d\omega$ или $\int {f \vec G} d{ec \omega}$

5.2. Классификация интегралов

1* По размерности Ω

n=1: прямая (определенный интеграл \int_a^b)

n = 2: плоскость (двойной интеграл \iint_D)

n=3: пространство \mathbb{R}^3 (тройной \iiint_V или \iiint_T)

2* По виду функции

Скалярная g(M) (І рода)

n = 1: определенный, криволинейный I рода

n = 2: двойной, поверхностный I рода

n = 3: тройной

кривая (криволинейный интеграл \int_A^B) поверхность, криволинейная (поверхностный интеграл \iint_S)

Векторная $\vec{G}(M)$ (II рода)

криволинейный II рода (интегралы в проекциях)

поверхностный II рода

5.3. Двойной и тройной интегралы

Nota. Дадим строгое определение

Def. z = z(x, y) $z : D \subset \mathbb{R}^2 \to \mathbb{R}$

- 1. Дробление на $[x_{i-1}, x_i]$ длиной Δx
- 2. Выбор средней точки $M_i(\xi_i, \eta_i)$, по значению $z(M_i)$ строим элемент. параллелепипед объемом

 $v_i = z(M_i) \Delta x_i \Delta y_i \approx V_{\text{малого пилиндра}}$

- 3. Интеграл суммы $v_i = \sum_{i=1}^{n} v_i = \sum_{i=1}^{n} z(M_i) \Delta x_i \Delta y_i$
- 4. Если $\exists \lim v_n \in \mathbb{R}$, не зависящий от типа дробления и т.д. при $n \to \infty$ и $\tau = \max(\Delta x_i, \Delta y_i) \to 0$, то $\lim_{n \to \infty} v_n \stackrel{def}{=} \iint_D z(x,y) dx dy$ - двойной интеграл от z(x,y) на области D

Мет. Определение определенного интеграла:

$$\int_{a}^{b} f(x)dx \qquad f(x): [a,b] \to \mathbb{R}^{+}$$

- 1. Дробление на элементы P_i прямыми $x = \text{const}, y = \text{const}, S_{P_i} = \Delta x_i \Delta y_i$ (дали dx, dy
- 2. Выбор $\xi_i \in [x_{i-1}, x_i]$, площадь элементарных прямоугольников $f(\xi_i)\Delta x_i \approx S_{\text{полоски}}$
- 3. Интеграл суммы $\sigma_n = \sum_{i=1}^n f(\xi_i) \Delta x_i$
- $4. \lim_{\substack{n \to \infty \\ \tau \to 0}} \sigma_n = \int_a^b f(x) dx$

Nota. Об области D: в простейшем случае рассматривают выпуклую, односвязную \mathbb{R}^2 -область

- а) Выпуклость: $\exists M_1, M_2 \in D \mid \overline{M_1 M_2} \notin D$ — не выпуклая, где $\overline{M_1 M_2}$ — прямой отрезок $\forall M_1, M_2 \in D \mid \overline{M_1 M_2} \in D$ – выпуклая
- б) Связность: $D = D' \cup D''$ – несвязная, если $\exists M_1, M_2 \in D \mid M_1M_2 \notin D$, где M_1M_2 – непрерывная кривая, соединяющая M_1 и M_2 D – связная, если $\forall M_1, M_2 \in D \mid M_1 M_2 \in D$

Обычно область открытая (то есть без границы), дальше будем рассматривать в том числе области с границей

Добавим к определению $\iint_{\partial D} z(x,y) dx dy$

Геометрический смысл: в определении при $z(x,y) \geq 0$ интегральная сумма $v_n = \sum_{i=1}^n v_i$ была суммой объемов элементарных параллелепипедов и приближала объем подповерхности

Тогда $\iint_D z(x,y) dxdy \stackrel{z\geq 0}{=} V_{\text{цилиндра с осн. } D}$, а при z=1 $\iint_D dxdy = S_D$

Вычисление: по геометрическому смыслу найти $\iint_{\mathbb{R}} z(x,y) dx dy$ — значит найти объем подповерхности

Можно найти $S(x)=\int_{y_1(x)}^{y_2(x)}z(x=c,y)dy$ — площадь поперечного сечения

Найдем
$$V$$
 как объем тела с известными площадями сечений
$$V = \int_a^b S(x) dx = \int_a^b \left(\int_{y_1(x)}^{y_2(x)} z(x=c,y) dy \right) dx$$

Nota. Кратный

Если найдена первообразная для z(x=c,y) (обозначим F(x,y(x))), то по формуле N-L:

$$\int_{y_1(x)}^{y_2(x)} z(x=c,y)dy = F(x,y(x)) \Big|_{y_1(x)}^{y_2(x)} = F(x,y_2(x)) - F(x,y_1(x))$$

Тогда $\int_a^b \overline{(F(x,y_2)-F(x,y_1))} \, dx$ — обычный определенный интеграл

Пределы интегрирования во внутреннем интеграле – функции, во внешнем – точки

Можно ли вычислить V, рассекая тело сечениями y = const? Верно ли, что $\int_a^b \left(\int_{y_1(x)}^{y_2(x)} z(x,y) dy \right) dx =$

$$\int_{\alpha}^{\beta} \left(\int_{x_1(y)}^{x_2(y)} z(x, y) dx \right) dy?$$

Верно: V не зависит от порядка сечения

Таким образом, двойной интеграл $\iint_D z(x,y) dx dy = \int_a^b \int_{y_1}^{y_2} z(x,y) dy dx = \int_\alpha^\beta \int_{x_1}^{x_2} z(x,y) dx dy$

Но при другом порядке интегрирования область D может оказаться неправильной

Def. При проходе области D в направлении $Oy \uparrow$ граница области (верхняя) меняет аналитическое задание. Такая область называется неправильной в направлении Oy Выгодно выбирать правильное направление, чтобы не делить интеграл по аддитивности

$$Ex. \iint_{D} xy dx dy, D: x^{2} + y^{2} \le 1$$

$$\iint_{D} xy dx dy = \int_{-1}^{1} \left(\int_{y_{1} = -\sqrt{1 - x^{2}}}^{y_{2} = \sqrt{1 - x^{2}}} xy dy \right) dx = \int_{-1}^{1} \left(\frac{x}{2} y^{2} \Big|_{-\sqrt{1 - x^{2}}}^{\sqrt{1 - x^{2}}} \right) dx = \int_{-1}^{1} \left(\frac{x}{2} ((1 - x^{2}) - (1 - x^{2})) \right) dx = 0$$

Def. Тройной интеграл: пусть дана функция $u(x,y,z): T \subset \mathbb{R}^3 \to \mathbb{R}$

- 1. Дробление на элементы объема dv = dxdydz
- 2. Вычисление среднего содержания u(x,y,z) в dv: $u(\xi_i,\eta_i,\zeta_i)dv$
- 3. Интегральная сумма $\sigma_n = \sum u(M_i) dv$

4.
$$\lim_{\substack{n \to \infty \\ \tau = \max(dv) \to 0}} \stackrel{\text{def}}{=} \iiint_T u(x, y, z) dv = \iiint_T u(x, y, z) dx dy dz$$

Физический смысл: пусть u(x,y,z) – плотность в каждой точке T, тогда $\iiint_T u(x,y,z) dx dy dz = m_T$ – масса

Тройной интеграл можно вычислить через кратный: $\iiint_T u(x,y,z) dx dy dz \stackrel{\text{кратный}}{=} \int_a^b \int_{y_1(x)}^{y_2(x)} \int_{z_1(x,y)}^{z_2(x,y)} u(x,y,z) dx dy dz$

5.4. Замена переменной в двойном и тройном интегралах

Проблема: для $S = \iint_D dx dy$, если $S_{D'} = \int_0^{2\pi} d\varphi \int_0^R d\rho = \iint_{D'} d\rho d\varphi$, то это не площадь круга, а площадь прямоугольника S в распрямленных координатах

Введем Δs_i – площадь кольцевого сектора в полярных координатах, а $\Delta s_i'$ – площадь прямоугольника, причем $\Delta s_i \neq \Delta s_i'$

Nota. Будем искать поправочный коэффициент так, чтобы $\Delta s_i \approx \text{коэфф.} \cdot \Delta s_i'$ Дроблению будем подвергать область D' в распрямленной системе координат

x=arphi(u,v) , где функции $arphi(u,v),\psi(u,v)$ непре-Введем новые криволинейные координаты: рывно дифференцируемы по обоим аргументам

Заменим криволинейный параллелограмм АВСО на обычный, стянув вершины хордами (погрешность в площади – бесконечно малая более высокого порядка, чем площадь)

$$A = (x_A, y_A) = (\varphi(u, v), \psi(u, v))$$

$$B = (x_B, y_B) = (\varphi(u, v + \Delta v), \psi(u, v + \Delta v))$$

$$C = (x_C, y_C) = (\varphi(u + \Delta u, v + \Delta v), \psi(u + \Delta u, v + \Delta v))$$

$$D = (x_D, y_D) = (\varphi(u + \Delta u, v), \psi(u + \Delta u, v))$$

Площадь параллелограмма $S_{ABCD} = AB \cdot AD \cdot \sin \theta = |\overrightarrow{AB} \times \overrightarrow{AD}|$

$$\Delta s = S_{ABCD} = |\overrightarrow{AB} \times \overrightarrow{AD}| = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{J} & \overrightarrow{k} \\ x_B - x_A & y_B - y_A & 0 \\ x_D - x_A & y_D - y_A & 0 \end{vmatrix} = |\overrightarrow{k}| \begin{vmatrix} x_B - x_A & y_B - y_A \\ x_D - x_A & y_D - y_A \end{vmatrix}$$

$$x_B - x_A = \varphi(u, v + \Delta v) - \varphi(u, v) = \Delta_v \varphi \approx \frac{\partial \varphi}{\partial v} \Delta v$$

$$x_B - x_A = \varphi(u, v + \Delta v) - \varphi(u, v) = \Delta_v \varphi \approx \frac{\partial \varphi}{\partial v} \Delta v$$

$$y_B - y_A = \psi(u, v + \Delta v) - \psi(u, v) = \Delta_v \psi \approx \frac{\partial \psi}{\partial v} \Delta v$$

$$x_D - x_A = \varphi(u + \Delta u, v) - \varphi(u, v) = \Delta_u \varphi \approx \frac{\partial \varphi}{\partial u} \Delta u$$

$$\begin{aligned} y_D - y_A &= \psi(u + \Delta u, v) - \psi(u, v) = \Delta_u \psi \approx \frac{\partial \psi}{\partial u} \Delta u \\ \begin{vmatrix} \vec{k} & x_B - x_A & y_B - y_A \\ x_D - x_A & y_D - y_A \end{vmatrix} &= \begin{vmatrix} \frac{\partial \varphi}{\partial v} \Delta v & \frac{\partial \psi}{\partial v} \Delta v \\ \frac{\partial \varphi}{\partial u} \Delta u & \frac{\partial \psi}{\partial u} \Delta u \end{vmatrix} = \begin{vmatrix} \frac{\partial \varphi}{\partial u} & \frac{\partial \varphi}{\partial u} \\ \frac{\partial \psi}{\partial v} & \frac{\partial \psi}{\partial u} \end{vmatrix} \begin{vmatrix} \Delta s' \\ \frac{\partial \psi}{\partial v} & \frac{\partial \psi}{\partial u} \end{vmatrix} \begin{vmatrix} \Delta s' \\ \frac{\partial \psi}{\partial v} & \frac{\partial \psi}{\partial u} \end{vmatrix} \Delta s \approx |J| \Delta s' \end{aligned}$$

Nota. В пределе это точное равенство: $|J| = \lim_{\Delta x \to 0} \frac{\Delta s}{\Delta s'}$

Это легко понять, если считать частные приращения по теореме Лагранжа $\Delta_u \varphi = \frac{\partial \varphi}{\partial u}(\xi, \eta) \Delta u \to \frac{\partial \varphi}{\partial u}(u, v) \Delta u$

Def. Определитель
$$J = \begin{vmatrix} \frac{\partial x_1}{\partial \xi_1} & \dots & \frac{\partial x_1}{\partial \xi_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial \xi_1} & \dots & \frac{\partial x_n}{\partial \xi_n} \end{vmatrix}$$
, где $\begin{cases} x_1 = f_1(\xi_1, \dots, \xi_n) \\ \dots & - \text{преобразование координат} \\ x_n = f_n(\xi_1, \dots, \xi_n) \end{cases}$

 $Ox_i \to O\xi_i \ (f_k \in C_D^1)$, называется определителем Якоби или якобиан

Построение интеграла:

- 1. Дробление D' в распрямленной Ouv
- 2. Выбор средней точки, поиск значения $f(\xi_i, \eta_i)$ Значение величины на элементе $f(\xi_i, \eta_i)|J|dudv$
- 3. Интегральная сумма $\sigma_n = \sum f(\xi_i, \eta_i) |J| du dv$
- 4. В пределе интеграл $\iint_D f(x,y) dx dy = \iint_{D'} f(u,v) |J| du dv$

Якобианы в ПСК, ЦСК, СфСК

1. IICK:
$$\begin{cases} x = \rho \cos \varphi & \frac{\partial x}{\partial \rho} = \cos \varphi & \frac{\partial x}{\partial \varphi} = -\rho \sin \varphi \\ y = \rho \sin \varphi & \frac{\partial y}{\partial \rho} = \sin \varphi & \frac{\partial y}{\partial \varphi} = \rho \cos \varphi \end{cases}$$
$$J = \begin{vmatrix} \cos \varphi & -\rho \sin \varphi \\ \sin \varphi & \rho \cos \varphi \end{vmatrix} = \rho \begin{vmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{vmatrix} = \rho$$

2. ЦСК:
$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases} \qquad J = \begin{vmatrix} \cos \varphi & -\rho \sin \varphi & 0 \\ \sin \varphi & \rho \cos \varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = \rho$$

3. C\phiCK:
$$\begin{cases} x = \rho \cos \varphi \sin \theta \\ y = \rho \sin \varphi \sin \theta \end{cases} J = \begin{vmatrix} \cos \varphi \sin \theta & -\rho \sin \varphi \sin \theta & \rho \cos \varphi \cos \theta \\ \sin \varphi \sin \theta & \rho \cos \varphi \sin \theta & \rho \sin \varphi \cos \theta \\ \cos \theta & 0 & -\rho \sin \theta \end{vmatrix} = -\rho^2 \cos^2 \varphi \sin^3 \theta + \phi \cos^2 \theta \cos^2$$

 $\rho \sin \varphi \sin \theta (-\rho \sin \varphi \sin^2 \theta - \rho \sin \varphi \cos^2 \theta) - \rho^2 \cos^2 \varphi \cos^2 \theta \sin \theta = -\rho^2 (\cos^2 \varphi \sin \theta + \sin^2 \varphi \sin \theta) = -\rho^2 \sin \theta$ $|J| = \rho^2 \sin \theta$

 $\mathit{Ex.}$ Тело T, ограниченное уравнениями $x^2 + y^2 = z^2$ $x^2 + y^2 = z$

Конус в ЦСК: $\rho = z, z > 0$

Параболоид в ЦСК: $\rho = \sqrt{z}, z > 0$

$$V_{T} = \iiint_{T} dx dy dz = \iiint_{T'} \rho d\rho d\varphi dz = \int_{0}^{2\pi} d\varphi \int_{0}^{1} d\rho \int_{z_{1}=\rho^{2}}^{z_{2}=\rho} \rho dz = 2\pi \int_{0}^{1} \rho z \Big|_{z_{1}=\rho^{2}}^{z_{2}=\rho} d\rho = 2\pi \int_{0}^{1} (\rho^{2} - \rho^{3}) d\rho = 2\pi \left(\frac{\rho^{3}}{3} - \frac{\rho^{4}}{4}\right) \Big|_{0}^{1} = 2\pi \left(\frac{1}{3} - \frac{1}{4}\right) = \frac{\pi}{6}$$

<u>Lab.</u> Тело T, ограниченное уравнениями $\frac{x^2+y^2+z^2=1}{\sqrt{x^2+y^2}=z}$ – «мороженка», считать в СфСК

5.5. Криволинейные интегралы

Для криволинейных интегралов I рода область интегрирования — кривая $l=\widehat{AB}$ (дуга). Для простоты начнем с плоской дуги

На l действует скалярная функция f(x,y) (физический смысл – плотность, то есть имеем неоднородный кривой стержень)

Задача в нахождении «суммарной» величины f(x,y), то есть интеграла: «складываем» элементы $f_{\rm CD}(x,y)dl$

Получаем
$$\int_{l} f(x,y)dl = \int_{AB} f(x,y)dl$$

Nota. В строгом определении интегральная сумма строится так:

 $M_{i-1}M_i$ – элементарная дуга

 Δl_i – длина элемента

 Δs_i — длина стягивающей дуги

 $\Delta l_i \approx \Delta s_i$

 $M_{\mathrm{cp.}}(\xi_i,\eta_i)$ — средняя точка элемента

$$\sigma_n = \sum_{i=1}^n f(\xi_i, \eta_i) \Delta s_i$$

Определим криволинейный интеграл II рода. Задача (вычисление работы силы вдоль пути): вдоль пути $\stackrel{\frown}{AB}$ действует сила $\stackrel{\frown}{F}=(P(x,y),Q(x,y))$. Найдем элементарную работу $dA=\vec{F}_{\rm cp.}d\vec{s}$, где $d\vec{s}$ – элементарное приращение

 $d\vec{s} = (dx, dy) = (\cos \alpha ds, \sin \alpha ds)$

 $\vec{F}_{\mathrm{cp.}}$ – значение силы на элементарном участке в какой-либо его точке

Тогда $dA = (P(x,y),Q(x,y))\cdot (dx,dy) = P(x,y)dx + Q(x,y)dy$, а по всей кривой $A = \int_{AB} dA = \int_{AB} Pdx + Qdy$ — интеграл II рода (в проекциях)

Nota. В проекциях, потому что $F_x = P, F_y = Q$, таким образом скалярное произведение записано в проекциях

При этом часто рассматривают по отдельности: $\int_{AB} f(x,y)dx$ и $\int_{AB} g(x,y)dy$

Nota. Связь интегралов I и II рода:

$$\int_{L} P dx + Q dy = \int_{L} (P,Q)(dx,dy) = \int_{L} (P,Q)(\cos\alpha,\cos\beta) \underbrace{ds}_{\approx dl} = \int_{L} (P\cos\alpha + Q\cos\beta) dl$$
 Обозначим $\vec{\tau} = (\cos\alpha,\cos\beta)$

По теореме Лагранжа $\exists (\xi, \eta) \in$ элементарной дуге, касательная которой параллельна ds

Тогда $d\vec{s} = \vec{\tau} ds \approx \vec{\tau} dl$, где $\vec{\tau}$ — единичный вектор, касательной в (ξ, η)

Тогда
$$\int_{L} P dx + Q dy$$
 пред. в вект. форме $\int_{L} \overrightarrow{F} \overrightarrow{\tau} dl = \int_{L} \overrightarrow{F} \underbrace{\overrightarrow{dl}}_{\text{ориент. эл. дуги}}$

Свойства:

Nota. Свойства, не зависящие от прохода дуги, аналогичны свойствам определенного интеграла

• Направление обхода:

I рода:

$$\int_{AB} f(x,y)dl = \int_{BA} f(x,y)dl \qquad \qquad \int_{AB} Pdx + Qdy = -\int_{BA} Pdx + Qdy$$

Def. Часто рассматривают замкнутую дугу, называемую контур. Тогда интегралы обозначаются так: $\oint_K f dl$ и $\oint_K P dx + Q dy$.

Если K (контур) обходят против часовой стрелки, то обозначают \oint_{K^+} , иначе \oint_{K^-}

Вычисление сводится к $\int_a^b dx$ или $\int_{lpha}^{eta} dy$ или $\int_{ au}^T dt$

1. Параметризация дуги *L*:

$$\begin{cases} x = \varphi(t) & A(x_A, y_A) = (\varphi(\tau), \psi(\tau)) \\ y = \psi(t) & B(x_B, y_B) = (\varphi(T), \psi(T)) \end{cases}$$

2. І рода:
$$\int_{L} f(x,y) dl = \left[dl = \sqrt{\varphi_t'^2 + \psi_t'^2} | dt | \right] = \int_{T}^{T} f(t) \sqrt{\varphi_t'^2 + \psi_t'^2} | dt |$$
 II рода:
$$\int_{L = \widehat{AB}} P dx + Q dy = \left[dx = \varphi_t' dt, dy = \psi_t' dt \right] =$$

$$= \int_{T}^{T} (P \varphi' + Q \psi') dt$$

Ex. Дуга L — отрезок прямой от A(1,1) до B(3,5). Вычислим $\int_{AB} (x+y) dl$ двумя способами:

1.
$$\int_{AB} (x+y)dl = \begin{bmatrix} AB : \frac{x-1}{2} = \frac{y-1}{4} \\ \text{или } y = 2x - 1, x \in [1,3] \\ f(x,y) = x + 2x - 1 = 3x - 1 \\ dl = \sqrt{1 + y'^2} dx = \sqrt{5} dx \end{bmatrix} = \int_{1}^{3} (3x - 1)\sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5}(12 - 1) \sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}^{3} = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_{1}$$

Th. Формула Грина

Пусть дана область $D \subset \mathbb{R}^2$, которая обходится в правильном направлении $(\uparrow Ox, \uparrow Oy)$

K – гладкая замкнутая кривая (контур), которая ограничивает D

В области D действует $\vec{F} = (P(x,y),Q(x,y))$ – непрерывные дифференциалы

Тогда
$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{K^{+}} P dx + Q dy$$

$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint_{D} \frac{\partial Q}{\partial x} dx dy - \iint_{D} \frac{\partial P}{\partial y} dx dy = \int_{\alpha}^{\beta} dy \int_{x=x_{1}(y)}^{x=x_{2}(y)} \frac{\partial Q}{\partial x} dx - \int_{a}^{b} dx \int_{y=y_{1}(x)}^{y=y_{2}(x)} \frac{\partial P}{\partial y} dy = \int_{\alpha}^{\beta} \left(Q(x,y) \Big|_{x=x_{1}(y)}^{x=x_{2}(y)} \right) dy - \int_{a}^{b} \left(P(x,y) \Big|_{y=y_{1}(x)}^{y=y_{2}(x)} \right) dx = \int_{A}^{\beta} \left(Q(x_{2}(y),y) - Q(x_{1}(y),y) \right) dy - \int_{a}^{b} \left(P(x,y_{2}(x)) - P(x,y_{1}(x)) \right) dx = \int_{A}^{\beta} Q dy - \int_{A}^{\beta} Q dy$$

$$\frac{\text{Следствие}}{\frac{\partial P}{\partial y}} \bigoplus_{i=0}^{n} \frac{\partial Q}{\partial y} \left(-\frac{y}{2}\right) = -\frac{1}{2}, \frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \left(\frac{x}{2}\right) = \frac{1}{2}$$
Формула Грина:
$$\iint_{D} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) dx dy = \iint_{D} \left(\frac{1}{2} - \left(\frac{1}{2}\right)\right) dx dy = \iint_{D} dx dy = S_{D} \stackrel{\Phi. \ \Gammap.}{=} \oint_{K^{+}} \left(-\frac{y}{2}\right) dx + \frac{x}{2} dy$$

Def. Пусть даны $P,Q:D\subset\mathbb{R}^2\to\mathbb{R}$, непрерывно дифференцируемы по 2-м переменным А также кривая $\stackrel{\frown}{AB}$, соединяющая любые две точки области, $\stackrel{\frown}{AB}:\begin{cases} x=\varphi(t)\\ y=\psi(t) \end{cases}$, φ,ψ – непрерывно дифференцируемы (кусочно)

$$I = \int_{AB} Pdx + Qdy \text{ называется интегралом, не зависящим от пути интегрирования (НЗП), если
$$\forall M,N \in D \int_{AMB} Pdx + Qdy = \int_{ANB} Pdx + Qdy$$$$

$$Nota.$$
 Обозначают $\int_A^B Pdx + Qdy$ или $\int_{(x_2,y_2)}^{(x_1,y_1)} Pdx + Qdy$

Тh. Об интеграле НЗП. В условиях определения

I.
$$\int_{AB} Pdx + Qdy$$
 — интеграл, не зависящий от пути

II.
$$\oint_V Pdx + Qdy = 0 \quad \forall K \subset D$$

III.
$$\frac{\partial \tilde{P}}{\partial y} = \frac{\partial Q}{\partial x} \ \forall M(x, y) \in D$$

IV.
$$\exists \Phi(x,y) \mid d\Phi = P(x,y)dx + Q(x,y)dy$$
 в области D

Причем
$$\Phi(x,y) = \int_{(x_0,y_0)}^{(x,y)} Pdx + Qdy$$
, где $(x_0,y_0), (x,y) \in D$

Тогда $I \iff II \iff III \iff$

1. $I \iff II$

Тассмотрим
$$\int_{AMB} - \int_{ANB} - \int_{AMB} + \int_{BNA} - \psi = 0$$
 VK С

2. II
$$\iff$$
 III $? \partial P \partial O$

$$\implies \oint_{K} = 0 \stackrel{?}{\Longrightarrow} \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \ \forall M(x, y) \in D$$

От противного
$$\exists M_0(x_0, y_0) \in D \mid \frac{\partial P}{\partial y} \Big|_{M_0} \neq \frac{\partial Q}{\partial x} \Big|_{M_0} \Longleftrightarrow \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) \Big|_{M_0} \neq 0$$

Для определенности пусть
$$\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right)\Big|_{M_0} > 0$$

Тогда
$$\exists \delta > 0 \mid \left. \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) \right|_{M_0} > \delta > 0$$

Выберем малую окрестность в точке M_0 $(U(M_0))$ и обозначим ее контур Γ

Так как P и Q непрерывно дифференцируемы, $\left(\frac{\partial P}{\partial u} - \frac{\partial Q}{\partial x}\right)\Big|_{M_0} > 0$ в $U(M_0)$

Формула Грина:
$$\iint_{U(M_0)} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) dx dy > \iint_{U(M_0)} \delta dx dy = \delta S_{U(M_0)} > 0$$

С другой стороны
$$\iint_{U(M_0)} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{\Gamma^+} P dx + Q dy = 0$$

Nota. Φ – первообразная для Pdx + Qdy

Th. Ньютона-Лейбница.

Выполнены условия **Th.** об интеграле H3П, тогда $\int_A^B Pdx + Qdy = \Phi(B) - \Phi(A)$

$$\int_{A}^{B} P dx + Q dy \stackrel{\exists \Phi \mid d\Phi = P dx + Q dy}{=} \int_{A}^{B} d\Phi(x, y) \stackrel{\text{параметр. } AB}{=} \int_{\alpha}^{\beta} d\Phi(t) = \Phi(t) \Big|_{\alpha}^{\beta} = \Phi(\beta) - \Phi(\alpha) = \Phi(B) - \Phi(A)$$

Применение:

$$Ex$$
. Дан интеграл $\int_{AB} \left(4 - \frac{y^2}{x^2}\right) dx + \frac{2y}{x} dy$ Проверим НЗП $\left(\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}\right)$: $\frac{\partial P}{\partial y} = -\frac{2y}{x^2}$, $\frac{\partial Q}{\partial x} = -\frac{2y}{x^2} \iff \int$ НЗП Найдем первообразную $\Phi(x,y)$ на все случаи жизни: $\Phi(x,y) = \int_{M_x(x,y)}^{M(x,y)} P dx + Q dy$

Выберем путь (самый удобный):
$$\Phi(x,y) = \int_{M_0}^{N} + \int_{N}^{M}$$

$$\int_{M_0}^{N} y=0, x_0=1, dy=0 \int_{(1,0)}^{(x,0)} 4dx = 4x \Big|_{(1,0)}^{(x,0)} = 4x - 4$$

$$\int_{N}^{M} dx=0 \int_{(x,0)}^{(x,y)} \frac{2y}{x} dy = \frac{y^2}{x} \Big|_{(x,0)}^{(x,y)} = \frac{y^2}{x}$$

$$\Phi(x,y) = 4x - 4 + \frac{y^2}{x} + C = 4x + \frac{y^2}{x} + C$$

Проверим:
$$\frac{\partial \Phi}{\partial x} = 4 - \frac{y^2}{x^2} = P$$
, $\frac{\partial \Phi}{\partial y} = \frac{2y}{x} = Q$

Теперь можем искать $\int_{AB} \forall A, B \in D$ по N-L

Пусть
$$A(1,1), B(2,2),$$
 тогда $\int_{AB} P dx + Q dy = \Phi \Big|_A^B = \frac{y^2}{x} + 4x \Big|_{(1,1)}^{(2,2)} = \frac{4}{2} + 8 - 1 - 4 = 5$

Nota. Функция Ф ищется в тех случаях, когда $\int_A^B Pdx + Qdy = \int_A^B (P,Q)(dx,dy) = A$ — работа силы, которая не зависит от пути

Ex. Работа силы тяжести не зависит от пути (такие силы называются консервативными), а силы трения – зависит (такие – диссипативными)

$$Ex.$$
 Пусть $\vec{F}=(P,Q)=(0,-mg)$
$$\Phi(x,y)=\int_{O}^{M}0dx-mgdy=-\int_{0}^{y}mgdy=-mgy$$
 — потенциал гравитационного поля (или силы тяжести)

5.6. Поверхностные интегралы

1* Поверхностные интегралы I рода (по участку поверхности)

Задача: найти массу поверхности. Дана функция u = u(x, y, z) (ее физический смысл - плотность)

Элементарная масса: $dm = u_{\rm cp.}(\xi,\eta,\zeta)d\sigma,\ d\sigma$ – элемент поверхности

$$M = \iint_S dm = \iint_S u(x,y,z)$$
 — поверхностный интеграл I рода

- (a) Дробление S на элементы $\Delta \sigma_k$ координатными плоскостями $x=x_i,y=y_j$
- (b) Определение средней точки (ξ_k, η_k, ζ_k)
- (c) Интегральная сумма $v_n = \sum_{k=1}^n u(\xi_k, \eta_k, \zeta_k) \Delta \sigma_k$

(d) **Def.**
$$\iint_S u(x,y,z) \Delta \sigma = \lim_{\substack{n \to \infty \\ \tau = \max \Delta \sigma_k \to 0}} \nu_n$$
 — поверхностный интеграл первого рода

Свойства: смена обхода поверхности S не меняет знака интеграла: $\iint_{S^+} u d\sigma = \iint_{S^-} u d\sigma$

Вычисление

Mem. Криволинейный интеграл $\int_L f(x,y) dl$ мы вычисляли через параметризацию кривой одной переменной $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ $t \in [\alpha,\beta],$ замену элементарного участка dl = 0

$$\sqrt{\varphi'^2(t) + \psi'^2(t)}|dt|$$
 и функции $f(x,y)$ на $\tilde{f}(t)$. Получаем $\iint_L f(x,y)dl = \int_{\alpha}^{\beta} \tilde{f}(t)\sqrt{\varphi'^2(t) + \psi'^2(t)}|dt|$

Аналогично для поверхностного: $\iint_{S} u(x,y,z)d\sigma$

- (а) Параметризация S: самая частая $z=z(x,y), (x,y)\in D$ пределы интегрирования
- (b) $d\sigma = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} |dxdy|$, но так как в двойном интеграле договорились, что dxdy > 0 (площадь), модуль можно не ставить (область D проходится в направлении против часовой стрелки)

(c)
$$u(x, y, z) = \tilde{u}(x, y, z(x, y)) = \tilde{u}(x, y)$$

$$\iint_{S} u(x, y, z) d\sigma = \iint_{D^{+}} \tilde{u}(x, y) \sqrt{1 + z_{x}'^{2} + z_{y}'^{2}} dx dy$$

Ex. S:
$$x^2 + y^2 = z^2$$
, $z = 0$, $z = 1$

u(x, y, z) = z

$$\iint_{S} z d\sigma = \begin{bmatrix} S : z = \sqrt{x^{2} + y^{2}} \\ D : \text{круг}, x^{2} + y^{2} = 1 \\ d\sigma = \sqrt{1 + \frac{x^{2}}{x^{2} + y^{2}}} + \frac{y^{2}}{x^{2} + y^{2}} dx dy = \sqrt{2} dx dy \end{bmatrix} = \iint_{D} \sqrt{x^{2} + y^{2}} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \sqrt{2} \int_{0}^{2\pi} d\varphi \int_{0}^{\varphi} \rho \underbrace{\rho}_{|I|} d\rho = \sqrt{2} 2\pi \frac{\rho^{3}}{3} \Big|_{0}^{1} = \frac{2\sqrt{2}\pi}{3}$$

2* Поверхностный интеграл II рода.

Задача: нахождение потока

Будем говорить о потоке вектора $\vec{F} = (P, Q, R)$ через площадку S в направлении нормали $\vec{n^+}$ или $\vec{n^-}$

Если задано поле жидких скоростей, то потоком называют количество жидкости, протекающей через S за время Δt

В простой ситуации поток $\Pi = FS$ $(\vec{F} \perp S, \vec{F} = \text{const})$

В общем случаем \vec{F} – переменная, S – искривленная и $\angle \vec{F}, S \neq \frac{\pi}{2}$

Переходим к вычислению элементарного потока $d\Pi$

 $d\sigma$ – малый элемент поверхности (почти плоский)

В пределах $d\sigma$ \vec{F} меняется мало, за среднее берем $\vec{F}=(P,Q,R)$, где P=P(x,y,z),Q=Q(x,y,z),R(x,y,z)

Разберемся с наклоном: если площадка перпендикулярна, то $d\Pi = F d\sigma$, но в нашем случае высота цилиндра равна проек. $\vec{r} = (\vec{n}, \vec{F}) = F \cos \varphi$, где \vec{n} – единичный вектор нормали, φ – угол между нормалью и потоком, $d\Pi = (\vec{F}, \vec{n}) d\sigma = F_n d\sigma$

Пусть $\vec{n} = (\cos \alpha, \cos \beta, \cos \gamma)$, тогда $d\Pi = (\vec{F}, (\cos \alpha, \cos \beta, \cos \gamma)) d\sigma = (P\cos \alpha, Q\cos \beta, R\cos \gamma) d\sigma$ Итак, $\Pi = \iint_{S^{\vec{n}}} d\Pi = \iint_{S^{\vec{n}}} F_n d\sigma = \iint_{S^{\vec{n}}} (\vec{F}, \vec{n}) d\sigma = \iint_{S^{\vec{n}}} (P\cos \alpha + Q\cos \beta + R\cos \gamma) d\sigma$

Но, еще нет координатной записи подынтегрального выражения. Спроектируем $d\sigma$ на координатные плоскости: сначала разрежем поверхность S на элементы плоскостями x = const, y = const (и, таким образом, уточним форму $d\sigma$). Так как $d\sigma$ мал, то можно считать его плоским параллелограммом

Тогда $\cos \gamma d\sigma = \pm dx dy \ (\gamma$ – угол между нормалью и осью Oz)

Нашли последнее слагаемое $\iint_{S^{\vec{n}}} R\cos\gamma d\sigma$ в исходном интеграле (I рода, так как по участку $d\sigma$)

Найдем $\iint_{S^{\vec{n}}} Q \cos \beta d\sigma$, разобьем поверхность на участки $d\sigma$ плоскостями $x={\rm const},y={\rm const}$

Аналогично $\cos \beta d\sigma = \pm dxdz$

Тогда в
$$\iint_{S^{\vec{n}}} P \cos \alpha d\sigma$$
 $\cos \alpha d\sigma = \pm dy dz$

Окончательно, поток $\Pi = \iint_{S^{\vec{n}}} \pm P dy dz \pm Q dx dz \pm R dx dy = \iint_{S^{\vec{n}}} (P\cos\alpha + Q\cos\beta + R\cos\gamma) d\sigma$ связь интегралов I и II рода

Nota. Формулу интеграла можно получить еще так: $(\vec{F}, \vec{n})d\sigma = \vec{F}\vec{n}d\sigma = \vec{F}d\vec{\sigma}$, где $d\vec{\sigma} = (\pm dydz, \pm dxdz, \pm dxdy)$

$$\mathbf{Def.}\ I = \iint_{S^{\vec{n}}} \vec{F}(x,y,z) d\vec{\sigma} = \lim_{\substack{n \to \infty \\ \tau = \max \Delta s_{\nu} \to 0}} \sum_{k=1}^{n} \vec{F}(\xi_{k},\eta_{k},\zeta_{k}) \Delta s_{k}$$
 – поверхностный интеграл второго

рода ($\Delta s_k = \Delta x \Delta y$ — любого знака, согласованного с обходом)

Свойства: интеграл меняет знак при смене обхода с \vec{n}^+ на \vec{n}^-

Вычисление:

(a) Параметризация S:

• для
$$\iint Rdxdy \quad z = z(x,y)$$

• для
$$\iint Qdxdz$$
 $y = y(x,z)$

• для
$$\iint Pdydz$$
 $x = x(y, z)$

Пределы интегрирования: D_{xy} = проек. $_{Oxy}S$ для $\iint Rdxdy$, D_{xz} = проек. $_{Oxz}S$ для

$$\iint Qdxdz,\ D_{yz}$$
 = проек. $_{Oyz}S$ для $\iint Pdydz$

- (b) $dxdy \to \pm dxdy$, если обход D_{xy} в направлении против часовой стрелки ($\pm dxdy$, если угол между \vec{n} и Oz острый, иначе -dxdy, аналогично с другими в зависимости от угла между нормалью и осью)
- (c) $R(x, y, z) = \tilde{R}(x, y, z(x, y)), P(x, y, z) = \tilde{P}(x(y, z), y, z), Q(x, y, z) = \tilde{Q}(x, y(x, z), z)$

(d)
$$\iint_{S^{\overrightarrow{n}}} \vec{F}(x,y,z) d\vec{\sigma} = \iint_{D} \pm \tilde{P} dy dz \pm \tilde{Q} dx dz \pm \tilde{R} dx dy = \iint_{D_{yz}} \pm \tilde{P} dy dz + \iint_{D_{xz}} \pm \tilde{Q} dx dz + \iint_{D_{xy}} \pm \tilde{R} dx dy$$

Разберем пример поверхностного интеграла:

$$Ex. \ S_1: \ x^2+y^2=1, \quad S_2: z=0, \quad S_3: z=1$$

$$S=\bigcup_{i=1}^3 S_i - \text{ цилиндр}$$

$$\vec{F}=(P,Q,R)=(x,y,z)$$

$$\iint_{S_{\text{Виеши.}}} x dy dz + y dx dz + z dx dy = \iint_{S_1} + \iint_{S_2} + \iint_{S_3}$$

$$\text{Так как проекции } S_2 \text{ и } S_3 \text{ на } Oxz \text{ и } Oyz - \text{ отрезки, то } dx dz=0, \ dy dz=0:$$

$$\iint_{S_2} x dy dz + y dx dz + z dx dy = \iint_{S_2} z dx dy = 0$$

$$\iint_{S_3} z dx dy \stackrel{z|_{S_3}=1}{=} \iint_{S_3} dx dy \stackrel{c \text{ ***}, \text{ так как } \vec{n_3} \uparrow \cap z}{=} \iint_{D_{xy}} dx dy = \pi$$

$$\iint_{S_1} x dy dz + y dx dz = \iint_{D_{yz}^+: x=\sqrt{1-y^2}} x dy dz + \left(-\iint_{D_{yz}^-: x=-\sqrt{1-y^2}} x dy dz\right) + \iint_{D_{xz}^+} y dx dz + \left(-\iint_{D_{xz}^-} y dx dz\right) = \left(\frac{\pi}{2} + \frac{\pi}{2}\right) + \left(\frac{\pi}{2} + \frac{\pi}{2}\right) = 2\pi$$

$$\iint_{S} = 3\pi$$

5.7. Связь поверхностных интегралов с другими

Th. Гаусса-Остроградского.

 $S_1: z=z_1(x,y), \ S_3: z=z_3(x,y), \ S_2: f(x,y)=0$ (проекция на Oxy — кривая) $S=\bigcup_{i=1}^3 S_i$ — замкнута и ограничивает тело T (S_2 — цилиндр, S_1 — шапочка сверху, S_3 — шапочка снизу)

P=P(x,y,z), Q=Q(x,y,z), R=R(x,y,z) — непрерывно дифференцируемы, действуют в области $\Omega\supset T$

области $\Omega\supset T$ Тогда $\iint_{S_{\text{внешн.}}} Pdydz + Qdxdz + Rdxdy = \iiint_T \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dxdydz$

$$Mem.$$
 Формула Грина: $\oint_K Pdx + Qdy = \iint_{D_{xy}} \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial y} \right) dxdy$

Вычислим почленно
$$\iiint_T \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dv$$

$$\iiint_T \left(\frac{\partial R(x,y,z)}{\partial z} dz\right) dx dy = \iint_{D_{xy}} R(x,y,z) \Big|_{z=z_1(x,y)}^{z=z_3(x,y)} dx dy = \iint_{D_{xy}} (R(x,y,z_3(x,y)) - R(x,y,z_1(x,y))) dx dy = \iint_{D_{xy}} R(x,y,z_3) dx dy - \iint_{D_{xy}} R(x,y,z_1(x,y)) dx dy = \iint_{S_3} R(x,y,z) dx dy + \iint_{D_{xy}} R(x,y,z) dx dy = \iint_{S_1} R(x,y,z) dx dy + \iint_{S_2} R(x,y,z) dx dy = \iint_{S_{BHeiiih}} R dx dy$$
Аналогично остальные члены:
$$\iiint_T \frac{\partial Q}{\partial y} dx dy dz = \iint_{S_{BHeiiih}} Q dx dz, \iint_T \frac{\partial P}{\partial y} dx dy dz = \iint_{S_{BHeiiih}} P dx dz$$

Nota. Если считаем поток через внутреннюю поверхность, то $\iint_{S} = -\iiint_{T}$

Nota. С учетом связи поверхностных интегралов $\iiint_{\mathcal{T}} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial u} + \frac{\partial R}{\partial z} \right) dv = \iint_{\mathcal{T}} (P\cos\alpha + Q\cos\beta + Q\cos\beta) dv$ $R\cos y)dv$

Th. Стокса.

Пусть S: z = z(x, y) — незамкнутая поверхность, L — контур, на которую она опирается проек. $_{Oxy}L = K_{xy}$, проек. $_{Oxy}S = D_{xy}$

В области
$$\Omega \supset S$$
 действуют функции P,Q,R , непрерывно дифференцируемые Тогда $\oint_{L^+} P dx + Q dy + R dz = \iint_{S^+} \left(\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \cos \alpha + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \cos \beta + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cos \gamma \right) d\sigma$

Найдем слагаемое
$$\oint_L P(x,y,z) dx \stackrel{\text{на } L \ : \ z=z(x,y)}{====} \oint_{K_{xy}^+} \tilde{P}(x,y,z(x,y)) dx = \oint_{K_{xy}} \tilde{P}dx + \tilde{Q}dy = \iint_{D_{xy}} \left(\frac{\partial \tilde{Q}}{\partial x} - \frac{\partial \tilde{P}}{\partial y}\right) dx dy = -\iint_{D_{xy}} \frac{\partial \tilde{P}(x,y)}{\partial y} dx dy = -\iint_{S^+} \frac{\partial P(x,y,z)}{\partial y} dx dy = -\iint_{S^+} \left(\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial y}\right) dx dy = -\iint_{S^+} \left(\frac{\partial P}{\partial y} \cos \gamma + \frac{\partial P}{\partial z} (-\cos \beta)\right) d\sigma$$

$$\vec{n} = \left(\frac{-\frac{\partial z}{\partial x}}{\sqrt{1 + z_{x}'^2 + z_{y}'^2}}\right)$$

$$\cos \gamma = \frac{1}{\sqrt{1+z_x'^2+z_y'^2}}$$
 Аналогично
$$\oint_L Q dy = \iint_{S^+} \left(\frac{\partial Q}{\partial x}\cos \gamma - \frac{\partial Q}{\partial z}\cos \alpha\right) d\sigma, \oint_L R dz = \iint_{S^+} \left(\frac{\partial R}{\partial y}\cos \alpha - \frac{\partial R}{\partial x}\cos \beta\right) d\sigma$$
 Остается сложить интегралы

Nota. Формула Грина является частным случаем теоремы Стокса при $\cos\alpha = \cos\beta = 0$ и $\cos\gamma = 1$ – элементарная площадка на плоскости Oxy всегда сонаправлена оси Oz

Ex.~1.~ Возьмем пример выше: $S_1:~x^2+y^2=1,~~S_2:z=0,~~S_3:z=1,~S=\bigcup_{i=1}^3 S_i$ — замкнутый цилиндр, $\vec{F}=(P,Q,R)=(x,y,z).~$ Получаем по теореме Гаусса-Остроградского: $\iint_{S_{\mathrm{BHeiiii}}} x dy dz + y dx dz + z dx dy = \iiint_T \left(\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z}\right) dv = 3V_{\mathrm{цил.}} = 3 \cdot 1 \cdot \pi \cdot 1^2 = 3\pi$

 $Ex.\ 2.$ Те же P,Q,R. По теореме Стокса:

$$\oint_{L} Pdx + Qdy + Rdz = \iint_{S} \left(\frac{-0}{\left(\frac{\partial z}{\partial y} - \frac{\partial y}{\partial z} \right)} \cos \alpha + 0 + 0 \right) d\sigma = 0$$

6. Теория поля

6.1. Определения

Def. 1. Дано многомерное пространство $\Omega \subset \mathbb{R}^n$. Функция $u:\Omega \to \mathbb{R}$ называется скалярным полем в Ω

Def. 2. Функция $\vec{F} = (F_1(\vec{x}), \dots, F_n(\vec{x}))$: $\Omega \to \mathbb{R}^n$ называется векторным полем

Nota. Далее будем рассматривать функции в \mathbb{R}^3 , то есть u=u(x,y,z) и $\vec{F}=(P(x,y,z),Q(x,y,z),R(x,y,z))$ Nota. Функции u и \vec{F} могут зависеть от времени t. Тогда эти поля называются нестационарными. В противном случае стационарными

6.2. Геометрические характеристики полей

u=u(x,y,z): l — линии уровня $u={\rm const}$ $\vec{F}=(P,Q,R)$: w — векторная линия, в каждой точке w вектор \vec{F} — касательная к w Векторная трубка — совокупность непересекающихся векторных линий

Nota. Отыскание векторных линий

Возьмем $\vec{\tau}$ – элементарный касательный вектор, $\vec{\tau} = (dx, dy, dz)$ Определение векторной линии: $\vec{\tau}||\vec{F}||^2$ $\frac{dx}{P} = \frac{dy}{O} = \frac{dz}{R}$ – система ДУ

Ex. $\vec{F} = y\vec{i} - x\vec{j}, M_0(1,0)$ — ищем векторную линию $w \ni M_0$

Задача Коши:

$$\begin{cases} \frac{dx}{y} = -\frac{dy}{x} \\ y(1) = 0 \end{cases} \iff \begin{cases} xdx = -ydy \\ y(1) = 0 \end{cases} \iff \begin{cases} x^2 = -y^2 + C \\ y(1) = 0 \implies C = +1 \end{cases} \iff x^2 + y^2 = 1$$

6.3. Дифференциальные характеристики

Mem. $\vec{\nabla}u = \overrightarrow{\operatorname{grad}}\ u = \left(\frac{\partial u}{\partial x}; \frac{\partial u}{\partial y}; \frac{\partial u}{\partial z}\right)$ — градиент скалярного поля $\vec{\nabla} = \left(\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z}\right)$ — набла-оператор

Nota. Так как $\vec{\nabla}$ – это вектор, то для $\vec{\nabla}$ определены действия:

•
$$\vec{\nabla} \cdot \vec{a} = \frac{\partial a_1}{\partial x} + \frac{\partial a_2}{\partial y} + \frac{\partial a_3}{\partial z}$$

$$\bullet \vec{\nabla} \times \vec{a} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_1 & a_2 & a_3 \end{vmatrix}$$

Причем:

•
$$\vec{\nabla} \cdot \vec{\nabla} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = \Delta$$
 – лапласиан, оператор Лапласа

•
$$\vec{\nabla} \times \vec{\nabla} = \begin{vmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix} = 0$$
 — повторяющиеся строки в определителе

$$Nota.$$
 $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$ — уравнение, определяющее гармоническую функцию $u(x,y,z)$,

уравнение Лапласа

- **Def. 1.** Дивергенцией поля (от divergence расхождение) называется $\operatorname{div} \vec{F} \stackrel{def}{=} \vec{\nabla} \cdot \vec{F}$
- **Def. 2.** Вихрем (ротором) поля называется \overrightarrow{r} of $\overrightarrow{F} \stackrel{def}{=} \overrightarrow{\nabla} \times \overrightarrow{F}$
- **Def. 3.** Если rot $\vec{F} = 0$, то \vec{F} называется безвихревым полем
- **Def. 4.** Если div $\vec{F} = 0$, то \vec{F} называется соленоидальным полем

Nota. Безвихревое поле имеет незамкнутые векторные линии, а вихревое – замкнутые

Th. 1. Свойство безвихревого поля:
$$\operatorname{rot} \vec{F} = 0 \Longleftrightarrow \exists u(x,y,z) \mid \vec{\nabla} u = \vec{F}$$

$$\vec{F} = (P, Q, R) = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right) = \vec{\nabla}u$$
 \longleftarrow Дана $\vec{F} = \vec{\nabla}u$

Дана
$$\vec{F} = \vec{\nabla} u$$

тот
$$\vec{F} = \vec{\nabla} \times \vec{F} = \vec{\nabla} \times (\vec{\nabla} u) = (\vec{\nabla} \times \vec{\nabla}) u = 0$$

Nota. Доказали, что если векторное поле является градиентом какого-то скалярного, то его вихрь равен нулю: rot $\overrightarrow{\mathrm{grad}}u=0$

Def. Пусть $\vec{F} = \vec{\nabla} u$. Поле u(x,y,z) называется потенциалом поля \vec{F} Таким образом, доказано, что безвихревое поле потенциально

Th. 2. Свойство соленоидального поля: если $\operatorname{div} \vec{F} = 0$, то $\operatorname{div}(\operatorname{rot} \vec{F}) = 0$

$$\operatorname{div}(\operatorname{rot}\vec{F}) = \operatorname{div}\vec{a} = \vec{\nabla}\vec{a} = \vec{\nabla}(\vec{\nabla}\times\vec{F}) = (\vec{\nabla}\times\vec{\nabla})\cdot\vec{F} = 0$$

6.4. Интегральные характеристики. Теоремы теории поля

Mem. Потоком поля \vec{F} через поверхность S называется величина $\Pi = \iint_S \vec{F} d\vec{\sigma}$

Def. Циркуляцией поля \vec{F} через контур L называется величина $\Gamma = \oint_L \vec{F} d\vec{l} = \oint_L P dx + Q dy + R dz$

Nota. Запишем **Th.** на векторном языке

1* Гаусса-Остроградского

$$\iint_{S} P dy dz + Q dx dz + R dx dy = \iiint_{T} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz$$

$$\iint_{S} (P, Q, R) (dy dz, dx dz, dx dy) = \iint_{S} (P, Q, R) (\cos \alpha d\sigma, \cos \beta d\sigma, \cos \gamma d\sigma) = \iint_{S} \vec{F} \vec{n} d\sigma = \iint_{S} \vec{F} d\vec{\sigma}$$

$$\iiint_{T} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz = \iiint_{T} (\vec{\nabla} \cdot \vec{F}) dv = \iiint_{T} \operatorname{div} \vec{F} dv$$

Th. Гаусса-Остроградского. Поток поля \vec{F} через замкнутую поверхность равен тройному интегралу дивергенции этого поля по объему внутри поверхности:

$$\iint_{S} \vec{F} d\vec{\sigma} = \iiint_{T} \operatorname{div} \vec{F} dv$$

2* Стокса

$$Pdx + Qdy + Rdz = \vec{F}d\vec{l}$$

$$\oint_{L} Pdx + Qdy + Rdz = \oint_{L} \vec{F}d\vec{l} = \iint_{S} \left(\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \cos \alpha + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \cos \beta + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cos \gamma \right) d\sigma = \iint_{S} \left(\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right), \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right), \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \right) \cdot (\cos \alpha, \cos \beta, \cos \gamma) d\sigma = \iint_{S} \operatorname{rot} \vec{F} \vec{n} d\sigma = \iint_{S} \operatorname{rot} \vec{F} d\vec{\sigma}$$

Th. Стокса. Циркуляция поля \vec{F} через контур равен интегралу ротора этого поля по поверхности внутри контура

$$\oint_L \vec{F} d\vec{l} = \iint_S \cot \vec{F} d\vec{\sigma}$$

3* Th. О потенциале

Рассмотрим **Th.** об интеграле, не зависящего от пути. Для поля $\vec{F} = (P(x,y), Q(x,y))$

третий пункт
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
 можно представить как rot $\vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & 0 \end{vmatrix} = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k} = 0$

Так как rot $\vec{F}=0$, то по свойству безвихревого поля $\exists u(x,y,z) \mid \vec{\nabla} u = \vec{F}$

Поэтому
$$\int_{(x_0,y_0)}^{(x,y)} \vec{F} d\vec{l} = \int_{(x_0,y_0)}^{(x,y)} \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, 0 \right) \cdot (dx, dy, dz) = \int_{(x_0,y_0)}^{(x,y)} \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy = \int_{(x_0,y_0)}^{(x,y)} P dx + Q dy = \Phi(x,y)$$

Th. О потенциале. Для поля $\vec{F} = (P,Q)$ и для любого контура L верно:

$$\oint_{L} \vec{F} d\vec{l} = 0 \Longleftrightarrow \operatorname{rot} \vec{F} = 0 \Longleftrightarrow \exists u(x, y, z) \ | \ \vec{\nabla} u = \vec{F}$$

$$Ex. \ \vec{F} = x\vec{\imath} + xy\vec{\jmath}, \ L: x = y, x = -y, x = 1$$
 По формуле Грина (Стокса)
$$\oint_L \vec{F} d\vec{l} = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint_D y dx dy \quad \text{rot } \vec{F} \neq 0$$

$$\oint_L x dx + xy dy = \int_{L_1} + \int_{L_2} + \int_{L_3} = \int_0^1 (x + x^2) dx + \int_{-1}^1 y dy - \int_0^1 (x + x^2) dx = \int_{-1}^1 y dy = 0$$

$$\iint_D y dx dy = \int_0^1 dx \int_{-x}^x y dy = \int_0^1 \frac{y^2}{2} \Big|_{-x}^x dx = \int_0^1 0 dx = 0$$

6.5. Механический смысл

1* Дивергенция

По **Th.** Гаусса-Остроградского поток $\Pi = \iiint_T div \vec{F} dv$

По **Th.** о среднем существует точка $M_1 \in T \mid \iiint_T \operatorname{div} \vec{F} dv = \operatorname{div} \vec{F} \Big|_{M_1} \cdot V_T = \Pi$

$$\operatorname{div} \vec{F} \Big|_{M_1} = \frac{\Pi}{V_T}$$

Выберем точку M_0 внутри произвольного объема T. Пусть $V_T \to 0$, тогда $\operatorname{div} \vec{F}\Big|_{M_1 \to M_0} =$

 $\lim_{V_T o 0} rac{\Pi}{V_T}$ — поток через границу бесконечно малого объема с центром M_0 или мощность источника в M_0

Таким образом, дивергенция поля – мощность источников

Nota. Смысл утверждения $\operatorname{div}(\operatorname{rot} \vec{F}) = 0$ – поле вихря свободно от источников

Nota. Утверждение $rot(\overrightarrow{\mathrm{grad}u}) = 0$ — поле потенциалов свободно от вихрей

2* Ротор

По **Th.** Стокса циркуляция
$$\Gamma = \iint_{S} \operatorname{rot} \vec{F} d\vec{\sigma}$$
По **Th.** о среднем существует точка $M_1 \mid \iint_{S} \operatorname{rot} \vec{F} d\vec{\sigma} = \operatorname{rot} \vec{F} \Big|_{M_1} \cdot S = \Gamma$
гот $\vec{F} \Big|_{M_1} = \frac{\Gamma}{S}$, будем стягивать поверхность S к точке M_0 , тогда гот $\vec{F} \Big|_{M_0} = \lim_{S \to 0} \frac{\Gamma}{S}$ – циркуляция по бесконечно малому контуру с центром M_0

Поток Π и циркуляцию Γ называют интегральными характеристиками поля, тогда как дивергенцию $\operatorname{div} \vec{F}$ и ротор $\operatorname{rot} \vec{F}$ – дифференциальными

Nota. Ранее выяснили, что смысл

- \bullet потока $\Pi = \iint_{S} \vec{F} d\vec{\sigma}$ количество пройденной жидкости через поверхность за единицу
- дивергенции $\operatorname{div} \vec{F} M_0 = \lim_{V \to 0} \frac{\Pi}{V}$ мощность точечного источника (сколько жидкости он «производит» или «потребляет»)
- теоремы Гаусса-Остроградского: поток через замкнутую поверхность равен суммарной мощности источников внутри

Выясним смысл ротора и циркуляции на примере конкретного поля

 $\vec{E}x$. $\vec{F} = -\omega y \vec{i} + \omega x \vec{j}$ — поле линейных скоростей вращающегося твердого тела, где $\vec{\omega} = const$ угловая скорость

Выберем контур L, ограничивающий область S

Найдем
$$\Gamma_L = \oint_L \vec{F} d\vec{l} = \oint_L (-\omega y) dx + \omega x dy$$
 Th. Стокса $\iint_S \cot \vec{F} \vec{n} d\sigma = \iint_S \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cos \gamma d\sigma = \iint_S \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cos \gamma d\sigma$

 $\iint_S 2\omega \cos \gamma d\sigma$ Так как ротор сонаправлен оси Oz, получаем $\cos \gamma = 1$

$$\iint_{S} 2\omega \cos \gamma d\sigma = 2\omega \iint_{S} d\sigma = 2\omega S$$

Раньше в интеграле видно, что rot $\vec{F}\vec{n} \Longrightarrow |\operatorname{rot}\vec{F}| = 2\omega$

То есть механический смысл ротора – удвоенная угловая скорость вращающегося тела (или диска)

Nota. Чтобы уточнить смысл Γ , рассмотрим такое же поле жидких скоростей (водоворот)

 $\vec{v} = -\omega y \vec{i} + \omega x \vec{j}$ и погруженное в него колесо с лопатками (водяная мельница)

В качестве контура L берем обод колеса, а его располагаем под углом γ к вектору $\vec{\omega}$

Все равно $\Gamma_L = \iint_S 2\omega \cos \gamma d\sigma = 2\omega \cos \gamma S$

Если $\gamma=0$ (мельница расположена в плоскости водоворота), то $\Gamma_L=2\omega S$ — максимальная мощность вращения нашей мельницы

Если, например, $\gamma = \frac{\pi}{2}$ (мельница расположена перпендикулярно водовороту), то $\Gamma_L = 0$ - колесо перпендикулярно полю, поэтому оно не вращается

6.6. Приложения к физике

1* Уравнение неразрывности (в гидромеханике)

 $Nota. \ \ \exists \mathsf{десь} \ \ \mathsf{потребуются} \ \ \mathsf{формулы} \colon \ \frac{du(x(t),y(t),z(t))}{dt} = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x}\frac{dx}{dt} + \frac{\partial u}{\partial y}\frac{dy}{dt} + \frac{\partial u}{\partial z}\frac{dz}{dt}$

 $\vec{\nabla} \cdot (f\vec{F}) = \vec{\nabla} f \cdot \vec{F} + f \cdot (\vec{\nabla} \vec{F})$, где f – скалярное поле, \vec{F} – векторное поле

Задача: дано $\vec{F}=\rho\vec{v}$ — поле скоростей жидкости с весом $\rho=\rho(x,y,z,t)$

Через площадку dS за время dt протекает $d\Pi = \rho v_n dt dS$ или за единицу времени $d\Pi = \rho v_n dS$

Приращение жидкости за единицу времени $|dm| = \left| \frac{\partial \rho}{\partial t} dV \right|$

Поток жидкости равен ее убыли в объеме V, то есть $\Pi = \iint_S \rho v_n dS = -\iiint_V \frac{\partial \rho}{\partial t} dV$

Применяя **Th.** Гаусса-Остроградского: $\Pi = \iiint_V \operatorname{div}(\rho \vec{v}) dV = - \iiint_V \frac{\partial \rho}{\partial t} dV \Longleftrightarrow$

$$\iff \iiint_V \left(\operatorname{div}(\rho \vec{v}) + \frac{\partial \rho}{\partial t} \right) dV = 0 \quad \forall V \text{ (поэтому подынтегральная функция } = 0)$$

$$\iff \vec{\nabla}(\rho\vec{v}) + \frac{\partial\rho}{\partial t} = 0$$

VHTEM:
$$\frac{d\rho}{dt} = \frac{\partial f}{\partial t} + \frac{\partial \rho}{\partial x} \frac{dx}{dt} + \frac{\partial \rho}{\partial y} \frac{dy}{dt} + \frac{\partial \rho}{\partial z} \frac{dz}{dt} = \frac{\partial \rho}{\partial t} + \vec{\nabla} \rho \vec{v}$$

$$\vec{\nabla}(\rho\vec{v}) = \vec{\nabla}\rho \cdot \vec{v} + \rho \vec{\nabla}\vec{v} \Longleftrightarrow \vec{\nabla}\rho\vec{v} = \vec{\nabla}(\rho\vec{v}) - \rho \vec{\nabla}\vec{v}$$

 $\frac{d\rho}{dt}+\rho$ div $\vec{v}=0$ — уравнение неразрывности (при несжимаемой жидкости div $\vec{v}=0)$

2* Ўравнения Максвелла

Экспериментально выяснено, что:

(a)
$$\int_{L} \vec{H} d\vec{l} = \iint_{S} \vec{r} d\vec{\sigma}$$
 — теорема о циркуляции магнитного поля

(b)
$$\int_{L} \vec{E} d\vec{l} = -\frac{\partial}{\partial t} \iint_{S} \vec{B} d\vec{\sigma}$$
 — закон Фарадея

где \vec{H} — напряженность магнитного поля, \vec{r} — полный ток, \vec{E} — напряженность электрического поля, \vec{B} — индукция магнитного поля

Максвелл узнал, что \vec{r} = ток проводимости + ток смещения = $\lambda \vec{E} + \varepsilon \frac{\partial \vec{E}}{\partial t}$, где λ – коэффициент проводимости, ε , μ – проницаемость

(a) Закон Ампера: $\oint_{L} \vec{H} d\vec{l} = \iint_{S} \left(\lambda \vec{E} + \varepsilon \frac{\partial \vec{E}}{\partial t} \right) d\vec{\sigma}$ По **Th.** Стокса: $\iint_{S} \operatorname{rot} \vec{H} d\vec{\sigma} - \iint_{S} \left(\lambda \vec{E} + \varepsilon \frac{\partial \vec{E}}{\partial t} \right) d\vec{\sigma} = 0$

В векторной форме: $\operatorname{rot} \vec{H} = \left(\lambda \vec{E} + \varepsilon \frac{\partial \vec{E}}{\partial t}\right)$ — источники магнитного поля, то есть токи проводимости и смещения

- (b) Закон Фарадея: $\oint_L \vec{E} d\vec{l} = \iint_S \operatorname{rot} \vec{E} d\vec{\sigma} = -\iint_S \frac{\partial \vec{B}}{\partial t} d\vec{\sigma} \Longleftrightarrow \operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ изменение индукции дает электрический ток в соленоиде
- (c) Теорема Гаусса: $\vec{\nabla} \varepsilon \vec{E} = \rho$ электрический заряд является источником индукции электрического поля
- (d) Теорема Гаусса для магнитного поля: $\vec{\nabla}\mu\vec{H}=0$ магнитное поле не создают «магнитные заряды»

X. Программа экзамена в 2023/2024

Определенный интеграл функции одной переменной.

1. Определенный интеграл. Определение, свойства линейности и аддитивности.

Определение:
$$\lim_{\substack{n\to\infty\\ \tau\to 0}} \sigma_n = \lim_{\substack{n\to\infty\\ \tau\to 0}} \sum_{i=1}^n \Delta x_i f(\xi_i) \stackrel{\text{def}}{=} \int_a^b f(x) dx$$

1) Линейность:
$$\lambda \int_a^b f(x)dx + \mu \int_a^b g(x)dx = \int_a^b (\lambda f(x) + \mu g(x))dx \quad (\lambda, \mu \in \mathbb{R}),$$

2) Аддитивность $\int_a^b f(x)dx + \int_b^c f(x)dx = \int_a^c f(x)dx$

2. Геометрический смысл определенного интеграла. Оценка определенного интеграла. Теорема о среднем.

Геометрический смысл: значение интеграла – площадь фигуры под графиком

Оценка: $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$, где m и M — минимум и максимум функций Теорема Лагранжа о среднем:

$$f(x) \in C_{[a,b]} \Longrightarrow \exists \xi \in (a,b) \ f(\xi)(b-a) = \int_a^b f(x)dx$$

3. Интеграл с переменным верхним пределом. Теорема Барроу.

Интеграл с переменным верхним пределом: $\Phi(x) = \int_{a}^{x} f(t)dt$

Теорема Барроу:
$$f(x):[a;+\infty)\to\mathbb{R}$$
 $f(x)\in C_{[a;+\infty)}$ Тогда $\Phi(x)=\int_a^x f(t)dt$ — первообразная для $f(x)$ - $\Phi(x)=F(x)$

4. Вычисление определенного интеграла. Формула Ньютона-Лейбница.

Формула Ньютона-Лейбница: $\int_a^b f(x)dx = F(x)\Big|_a^b = F(b) - F(a)$, где $f(x) \in C_{[a;b]}, F(x)$ какая-либо первообразная f(x)

5. Замена переменной в определенном интеграле. Интегрирование по частям.

Замена переменной: $f(x) \in C_{[a;b]}$ $x = \varphi(t) \in C'_{[\alpha;\beta]}$, $\varphi(\alpha) = a$, $\varphi(\beta) = b$

Тогда
$$\int_a^b f(x)dx = \int_a^\beta f(\varphi(t))\varphi'(t)dt$$

По частям: $u, v \in C'_{[a;b]}$ $uv\Big|_a^b = u(b)v(b) - u(a)v(a)$

Тогда:
$$\int_a^b u dv = uv \Big|_a^b - \int_a^b v du$$

6. Приложения интеграла: вычисление площадей в декартовых координатах; площади криволинейного сектора в полярных координатах.

Приложения определенного интеграла

Вычисление площади в ДПСК: $\int_{0}^{t} f(x)dx$

Вычисление площади сектора в ПСК: $\frac{1}{2} \int_{-\pi}^{\beta} \rho^2(\varphi) d\varphi$

7. Вычисление длины дуги кривой (вывод формулы).

Вычисление длины кривой дуги:
$$\int_a^b \sqrt{1+(y'(x))^2} dx$$

8. Вычисление объемов тел с известными площадями сечений и тел вращения.

Вычисление объемов тел:
$$\int_a^b S(x) dx$$

Вычисление объема тела вращения:
$$\int_a^b \pi r^2(x) dx$$

9. Несобственные интегралы 1-го рода и 2-го рода. Определение и свойства. Вычисление.

Несобственный интеграл 1-го рода —
$$\int_a^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_a^b f(x)dx$$

Несобственный интеграл 2-го рода — $\int_a^b f(x)dx = \lim_{\beta \to b} \int_a^\beta f(x)dx$

Свойства аналогичны собственному интегралу

10. Признаки сходимости несобственных интегралов: первый и второй признаки сравнения (в неравенствах и предельный).

Сходимость несобственных интегралов

Признак сходимости в неравенствах: $f(x), g(x): [a; +\infty) \to \mathbb{R}^+$, непрерывны на $[a; +\infty)$ и

$$\forall x \in [a; +\infty) f(x) \le g(x)$$
Тогда, если $\int_a^{+\infty} g(x) dx = I \in \mathbb{R}$, то $\int_a^{+\infty} f(x) dx$ сходится, причем $0 \le \int_a^{+\infty} f(x) dx \le g(x)$

$$\int_{a}^{+\infty} g(x)dx$$
Признак сходимости в пределах: $f(x)$ $g(x) \in C_{(x),\infty}$, $f(x)$ $g(x) > 0$

$$J_a$$
 Признак сходимости в пределах: $f(x), g(x) \in C_{[a;+\infty)}, f(x), g(x) > 0$ $\exists \lim_{x \to +\infty} \frac{f(x)}{g(x)} = k \in \mathbb{R} \setminus \{0\}.$ Тогда $I = \int_a^{+\infty} g(x) dx$ и $J = \int_a^{+\infty} f(x) dx$ одновременно сходятся или расходятся

11. Признак сходимости несобственных интегралов: теорема об абсолютной сходимости. Понятие условной сходимости.

Признак абсолютной сходимости:
$$\int_a^{+\infty} |f(x)| dx \in \mathbb{R} \Longrightarrow \int_a^{+\infty} f(x) dx \in \mathbb{R}$$

Условная сходимость: если $\int_a^{+\infty} f(x) dx$ сходится, но $\int_a^{+\infty} |f(x)| dx$ расходится, то I называют условно сходящимся

Х.2. Функции нескольких переменных.

1. Определение функции двух переменных. Предел и непрерывность функции.

Определение: $\forall M(x,y) \exists !z \in \mathbb{R} : z = f(x,y) \Longleftrightarrow z = f(x,y)$ — функция двух переменных Определение предела: $\lim_{M \to M_0} z(x,y) = L \in \mathbb{R} \Longleftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ | \ \forall M \in \overset{\circ}{U}_{\delta}(M_0) \ | z(x,y) - L | < \varepsilon$

Непрерывность: z = f(x, y) называется непрерывной в точке $M(x_0, y_0)$, если $z = f(x_0, y_0) = \lim_{x \to \infty} z(x, y)$

 $\lim_{\substack{M\to M_0}} z(x,y)$

2. Частные производные функции двух переменных.

Частная производная по
$$y$$
 $\frac{\partial z}{\partial y} \stackrel{def}{=} \lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y}$, где $\Delta_y z = z(x, y + \Delta y) - z(x, y)$

3. Производная сложной функции. Полная производная

Производная сложной функции: z = z(u, v), u(x, y), v(x, y) непрерывно дифференцируемы

по
$$x, y$$

Тогда $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$

Полная производная: пусть
$$z = z(x, u(x), v(x))$$
, тогда $\frac{dz}{dx} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial x} + \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial x} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial x} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial x} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial x} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial x} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial x} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial x} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial x} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial x} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial x} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial y} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial y} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial y} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial y} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial y} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial y} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial y} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial y} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial y} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial y} = \frac{\partial z}{\partial y} + \frac$

$$\frac{\partial z}{\partial u} \cdot \frac{du}{dx} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dx}$$

 $\frac{\partial z}{\partial u} \cdot \frac{du}{dx} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dx}$ 4. Полный дифференциал функции двух переменных. Инвариантность формы. Полный дифференциал: $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$ — сумма частных дифференциалов Инвариантность формы: z = z(u, v), u = u(x, y), v = v(x, y) — дифференциалы

Тогда
$$dz = \frac{\partial z}{\partial u}du + \frac{\partial z}{\partial v}dv = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

5. Вторые производные функции двух переменных. Равенство смешанных производных.

Вторые производные:

$$\frac{\partial^2 z}{\partial x^2} \stackrel{def}{=} \frac{\partial}{\partial x} \frac{\partial z}{\partial x} -$$
чистая производная $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \frac{\partial z}{\partial x} -$ смешанные производные

Равенство смешанных производных: z = z(x,y), функции $z(x,y), z'_x, z'_y, z''_{xy}, z''_{yx}$ определены

и непрерывны в
$$\stackrel{o}{U}(M(x,y))$$
 Тогда $z_{xy}'' = z_{yx}'' \left(\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} \right)$

6. Второй дифференциал функции двух переменных. Неинвариантность формы.

Второй дифференциал:
$$d^2z \stackrel{def}{=} d(dz) = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2 z = \frac{\partial^2 z}{\partial x^2} + 2\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2}$$
 Неинвариантность формы

7. Формула Тейлора.

Формула Тейлора:
$$z(M = \stackrel{o}{U}(M_0)) = z(M_0) + \frac{dz(M_0)}{1!} + \dots + \frac{d^n z(M_0)}{n!} + o((\Delta \rho)^n)$$
, где $\Delta \rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$

8. Производная по направлению, градиент: определения, свойства. Производная по направлению —
$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma$$
,

где α , β , γ — направления \vec{s}

$$\Gamma$$
радиент: $\vec{\nabla} = \left(\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z}\right)$ — условный вектор

$$\overrightarrow{\operatorname{grad}} \ u \overset{def}{=} \vec{\nabla} u$$
 – градиент функции $u(x,y,z)$

Свойства градиентов:

•
$$\frac{\partial u}{\partial s} = \text{проек.}_{\vec{s}} \vec{\nabla} u$$

• $\vec{\nabla} u$ — направление наибольшего значения $\frac{\partial u}{\partial s}$

•
$$\vec{s} \perp \vec{\nabla} u \Longrightarrow \frac{\partial u}{\partial s} = 0$$

- u = u(x, y), u = c линии уровня l. Тогда $\vec{\nabla} u \perp l$
- 9. Касательная плоскость и нормаль к поверхности: определения, вывод уравнений.

Касательная плоскость и нормаль к поверхности

Касательная к поверхности: Прямая τ называется касательной прямой к поверхности π в точке P(x,y,z), если эта прямая касается какой-либо кривой, лежащей на π и проходящей через P

Касательная плоскость: Плоскость κ (содержащая все касательные прямые τ к π в точке M_0) называется касательной плоскостью к π в M_0 . Плоскость κ задается как $z-z_0=\frac{\partial z}{\partial x}(x-x_0)+\frac{\partial z}{\partial y}(y-y_0)$

Нормаль к поверхности: Прямая в направлении \vec{N} , перпендикулярном касательной плоскости, через точку M_0 называется нормалью к π в M_0

Уравнение нормали
$$n$$
: $\frac{x-x_0}{-\frac{\partial z}{\partial x}} = \frac{y-y_0}{-\frac{\partial z}{\partial y}} = \frac{z-z_0}{1}$

10. Экстремумы функции двух переменных. Необходимые и достаточные условия.

Экстремумы функции двух переменных. Экстремум — такая точка M_0 , что $\forall M \in U_\delta(M_0) \ z_0 \leq z(M)$ или $z_0 \geq z(M)$

Необходимое условие: $z = z(x, y) : \mathbb{R}^2 \to \mathbb{R};$ M_0 — точка гладкого экстремума.

Тогда
$$\begin{cases} \frac{\partial z}{\partial x}|_{M_0} = 0 \\ \frac{\partial z}{\partial u}|_{M_0} = 0 \end{cases}$$

Достаточное условие: Пусть z = z(x, y) непрерывна в окрестности M_0 (критическая точка $\frac{\partial z}{\partial x}|_{M_0} = 0, \frac{\partial z}{\partial y}|_{M_0} = 0$) вместе со своими первыми и вторыми производными (можно потребовать трижды дифференцируемость)

потребовать трижды дифференцируемость)
Тогда, если
$$\frac{\partial^2 z}{\partial x^2} \stackrel{\text{обозн}}{=} A$$
, $\frac{\partial^2 z}{\partial x \partial y} \stackrel{\text{обозн}}{=} B$, $\frac{\partial^2 z}{\partial y^2} \stackrel{\text{обозн}}{=} C$, то

- (a) $AC B^2 > 0, A > 0 \Longrightarrow M_0$ точка минимума
- (b) $AC B^2 > 0, A < 0 \Longrightarrow M_0$ точка максимума
- (c) $AC B^2 < 0 \Longrightarrow$ в точке M_0 нет экстремума
- (d) $AC B^2 = 0 \Longrightarrow$ нельзя утверждать наличие или отсутствие экстремума в точке (требуются дополнительные исследования)

Х.3. Интегрирование функции нескольких переменных.

1. Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл.

Двойной интеграл: Если $\exists \lim v_n \in \mathbb{R}$, не зависящий от типа дробления и т.д. при $n \to \infty$ и $\tau = \max(\Delta x_i, \Delta y_i) \to 0$, то $\lim_{\substack{n \to \infty \\ \tau \to 0}} v_n \stackrel{def}{=} \iint_D z(x,y) dx dy$ — двойной интеграл от z(x,y) на области D

Вычисление:
$$\iint_D z(x,y) dx dy = \int_a^b \int_{y_1}^{y_2} z(x,y) dy dx = \int_\alpha^\beta \int_{x_1}^{x_2} z(x,y) dx dy$$
 Кратный интеграл

2. Определение и вычисление тройного интеграла.

Тройной интеграл:
$$\lim_{\substack{n\to\infty\\\tau=\max(dv)\to 0}} \stackrel{def}{=} \iiint_T u(x,y,z) dx dy dz$$

Геометрический смысл. Только при u=1 интеграл $\iint_T dx dy dz = V_T$ равен объему

Физический смысл. Пусть u(x,y,z) – плотность в каждой точке T. Тогда $\iiint_T u(x,y,z) dx dy dz = m_T$ – масса

Вычисление:
$$\iiint_T u(x,y,z) dx dy dz \stackrel{\text{кратный}}{=} \int_a^b \int_{y_1(x)}^{y_2(x)} \int_{z_1(x,y)}^{z_2(x,y)} u(x,y,z) dz dy dx$$

3. Замена переменных в двойном и тройном интегралах. Якобиан.

Замена переменных в двойном и тройном интегралах

- (a) Дробление D' в распрямленной Ouv
- (b) Выбор средней точки, поиск значения $f(\xi_i, \eta_i)$ Значение величины на элементе $f(\xi_i, \eta_i)|J|dudv$
- (c) Интегральная сумма $\sigma_n = \sum f(\xi_i, \eta_i) |J| du dv$
- (d) В пределе интеграл $\iint_D f(x,y)dxdy = \iint_{D'} f(u,v)|J|dudv$

Определитель
$$J=\begin{vmatrix} \frac{\partial x_1}{\partial \xi_1} & \dots & \frac{\partial x_1}{\partial \xi_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial \xi_1} & \dots & \frac{\partial x_n}{\partial \xi_n} \end{vmatrix}$$
, где $\begin{cases} x_1=f_1(\xi_1,\dots,\xi_n) \\ \dots & - \text{преобразование координат} \\ x_n=f_n(\xi_1,\dots,\xi_n) \end{cases}$

 $Ox_i \to O\xi_i(f_k \in C_D^1),$ называется определителем Якоби или якобиан

(a) Якобиан в ПСК:
$$J = \begin{vmatrix} \cos \varphi & -\rho \sin \varphi \\ \sin \varphi & \rho \cos \varphi \end{vmatrix} = \rho \begin{vmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{vmatrix} = \rho$$

(b) в ЦСК:
$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases} \qquad J = \begin{vmatrix} \cos \varphi & -\rho \sin \varphi & 0 \\ \sin \varphi & \rho \cos \varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = \rho$$

4. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл.

Криволинейный интеграл 1-го рода: Дана скалярная функция f(x,y) и кривая l, тогда суммарная величина функции на кривой равна $\int_I f(x,y) dl$

Физический смысл: пусть f(x,y) – плотность, кривая – неоднородный кривой стержень. Тогда интеграл – масса стержня

Свойства:

Свойства, не зависящие от прохода дуги, аналогичны свойствам определенного интеграла Направление обхода: $\int_{AB} f(x,y) dl = \int_{BA} f(x,y) dl$

Вычисление:

(a) Параметризация
$$\begin{cases} x = \varphi(t) & A(x_A, y_A) = (\varphi(\tau), \psi(\tau)) \\ y = \psi(t) & B(x_B, y_B) = (\varphi(T), \psi(T)) \end{cases}$$

(b)
$$\int_{L} f(x,y) dl = \left[dl = \sqrt{\varphi_{t}'^{2} + \psi_{t}'^{2}} |dt| \right] = \int_{\tau}^{T} f(t) \sqrt{\varphi_{t}'^{2} + \psi_{t}'^{2}} |dt|$$

5. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Формула связи криволинейных интегралов 1-го и 2-го рода.

Криволинейный интеграл 2-го рода: Дана векторная функция $\vec{F} = (P,Q)$ и кривая l, тогда суммарная величина скалярных произведений функции и координат на кривой равна

Физический смысл: работа сила $\vec{F} = (P,Q)$ над точкой вдоль пути, обозначенной кривой

Свойства, не зависящие от прохода дуги, аналогичны свойствам определенного интеграла Направление обхода меняет знак интеграла: $\int_{AB} Pdx + Qdy = -\int_{BA} Pdx + Qdy$

Вычисление:

(a) Параметризация
$$\begin{cases} x = \varphi(t) & \varphi, \psi \in C^1_{[\tau,T]} & A(x_A, y_A) = (\varphi(\tau), \psi(\tau)) \\ y = \psi(t) & B(x_B, y_B) = (\varphi(T), \psi(T)) \end{cases}$$
(b)
$$\int_{I = \widehat{AB}} P dx + Q dy = [dx = \varphi'_t dt, dy = \psi'_t dt] = \int_{\tau}^{T} (P \varphi' + Q \psi') dt$$

(b)
$$\int_{L=\widehat{AB}} P dx + Q dy = \left[dx = \varphi_t' dt, dy = \psi_t' dt \right] = \int_{\tau}^{T} (P \varphi' + Q \psi') dt$$

Связь между интегралами:
$$\int_{L} P dx + Q dy = \int_{L} (P,Q)(dx,dy) = \int_{L} (P,Q)(\cos\alpha,\cos\beta) \underline{ds} = \int_{\alpha} (P,Q)(\cos\alpha,\cos\beta) \underline{ds}$$

$$\int_{L} (P\cos\alpha + Q\cos\beta)dl$$

6. Теорема (формула) Грина.

Формула Грина: $D \subset \mathbb{R}^2$, обходящаяся в правильном направлении $\uparrow Ox, \uparrow Oy, K$ – гладкая замкнутая кривая (контур), которая ограничивает D

В области D действует $\vec{F} = (P(x,y),Q(x,y))$ – непрерывные дифференциалы

Тогда
$$\iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \oint_{K^+} P dx + Q dy$$

7. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла

Интеграл, не зависящий от пути (НЗП): $\int_{AB} P dx + Q dy$ называется интегралом НЗП, если

$$\forall M, N \in D$$

$$\int_{AMB} Pdx + Qdy = \int_{ANB} Pdx + Qdy$$
 Теорема об интеграле НЗП:

I.
$$\int_{AB} Pdx + Qdy$$
 – интеграл НЗП

II.
$$\oint_{\underline{K}} Pdx + Qdy = 0 \quad \forall K \subset D$$

III.
$$\frac{\partial \hat{P}}{\partial y} = \frac{\partial Q}{\partial x} \ \forall M(x, y) \in D$$

IV.
$$\exists \Phi(x,y) \mid d\Phi = P(x,y) dx + Q(x,y) dy$$
 в области D Причем $\Phi(x,y) = \int_{(x_0,y_0)}^{(x_1,y_1)} P dx + Q dy$, где $(x_0,y_0), (x_1,y_1) \in D$

Тогда І \Longleftrightarrow II \Longleftrightarrow III \Longleftrightarrow IV

8. Следствие теоремы о независимости от пути (формула Ньютона-Лейбница). Формула Ньютона-Лейбница: Выполнены условия **Th.** об интеграле НЗП Тогда $\int_A^B P dx + Q dy = \Phi(B) - \Phi(A)$

9. Поверхностный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл.

Поверхностный интеграл 1-го рода: $\iint_{S} u(x,y,z) \Delta \sigma = \lim_{\substack{n \to \infty \\ \tau = \max \Delta \sigma_k \to 0}} \sum_{k=1}^{n} u(\xi_k,\eta_k,\zeta_k) \Delta \sigma_k - \text{поверхностный интеграл первого рода}$

Свойства: смена обхода поверхности S не меняет знака интеграла, то есть $\iint_{S^+} u d\sigma =$

$$\iint_{S^-} u d\sigma$$

Вычисление: $\iint_{S} u(x, y, z) d\sigma$

(a) Параметризация S: самая частая – $z=z(x,y),(x,y)\in D$ – пределы интегрирования

(b)
$$d\sigma = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dx dy$$
,

(c) $u(x, y, z) = \tilde{u}(x, y, z(x, y)) = \tilde{u}(x, y)$ $\iint_{S} u(x, y, z) d\sigma = \iint_{D^{+}} \tilde{u}(x, y) \sqrt{1 + z_{x}'^{2} + z_{y}'^{2}} dx dy$

10. Поверхностный интеграл 2-го рода как поток жидкости через поверхность. Связь между поверхностными интегралами 1-го и 2-го рода.

Поверхностный интеграл 2-го рода — поток жидкости через площадку, направленную по вектору \vec{n}

BEKTOPY
$$n$$

$$\Pi = \iint_{S^{\vec{n}}} d\Pi = \iint_{S^{\vec{n}}} F_n d\sigma = \iint_{S^{\vec{n}}} (\vec{F}, \vec{n}) d\sigma = \iint_{S^{\vec{n}}} (P \cos \alpha + Q \cos \beta + R \cos \gamma) d\sigma$$

Связь: поток $\Pi = \iint_{S^{\vec{n}}} \pm P dy dz \pm Q dx dz \pm R dx dy = \iint_{S^{\vec{n}}} (P\cos\alpha + Q\cos\beta + R\cos\gamma) d\sigma$ — связь интегралов I и II рода

11. Поверхностный интеграл 2-го рода: математическое определение, вычисление, свойства.

Определение:
$$\iint_{S^{\vec{n}}} f(x,y,z) dx dy = \lim_{\substack{n \to \infty \\ \tau = \max \Delta s_k \to 0}} \sum_{k=1}^n f(\xi_k,\eta_k,\zeta_k) \Delta s_k - \text{поверхностный интеграл}$$

Свойства: Меняет знак при смене обхода с \vec{n}^+ на \vec{n}^-

Вычисление:

(a) Параметризация S для $\iint Rdxdy$ z=z(x,y), для $\iint Qdxdz$ y=y(x,z), для $\iint Pdydz$ x=x(y,z) Пределы интегрирования $D_{xy}=$ проек. $_{Oxy}S$ и т. д.

- (b) $dxdy \to \pm dxdy$, если обход D_{xy} в направлении против часовой стрелки (+dxdy, если угол между \vec{n} и Oz острый, иначе -dxdy)
- (c) $R(x, y, z) = \tilde{R}(x, y, z(x, y)), P(x, y, z) = \tilde{P}(y, z), Q(x, y, z) = \tilde{Q}(x, z)$

(d)
$$\iint_{S^{\vec{n}}} f(x, y, z) dx dy = \iint_{D_{xy}} \pm \tilde{P} dy dz \pm \tilde{Q} dx dz \pm \tilde{R} dx dy$$

12. Теорема Гаусса-Остроградского.

Теорема Гаусса-Остроградского: $S_1: z = z_1(x, y), S_3: z = z_3(x, y), S_2: f(x, y) = 0$ (проекция на Оху – кривая)

 $S = \bigcup_{i=1}^{3} S_i$ — замкнута и ограничивает тело T (S_2 — цилиндр, S_1 — шапочка, S_3 — шапочка

P=P(x,y,z), Q=Q(x,y,z), R=R(x,y,z) — непрерывно дифференцируемые, действуют в области $\Omega \supset T$

Тогда $\iint_{S_{\text{внешн.}}} Pdydz + Qdxdz + Rdxdy = \iiint_{T} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dxdydz$

13. Теорема Стоко

Теорема Стокса: Пусть S: z = z(x, y) — незамкнутая поверхность, L — контур, на которую она опирается

проек. $_{Oxy}L = K_{xy}$, проек. $_{Oxy}S = D_{xy}$

В области
$$\Omega \supset S$$
 действуют функции P,Q,R — непрерывно дифференцируемы Тогда $\oint_{L^+} P dx + Q dy + R dz = \iint_{S^+} \left(\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \cos \alpha + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \cos \alpha + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cos \gamma \right) d\sigma$

14. Скалярное и векторное поля: определения, геометрические характеристики. Дифференциальные и интегральные характеристики полей (определения).

Скалярное поле: $\Omega \subset \mathbb{R}^n$ Функция $u:\Omega \to \mathbb{R}$ называется скалярным полем в Ω

Векторное поле: Функция $\vec{F} = (F_1(\vec{x}), \dots, F_n(\vec{x})) : \Omega \to \mathbb{R}^n$ называется векторным полем Геометрические характеристики:

u = u(x, y, z): l - линии уровня u = const

 $\vec{F} = (P,Q,R)$: w — векторная линия, в каждой точке w вектор \vec{F} — касательная к w

Векторная трубка – совокупность непересекающихся векторных линий

Дифференциальные характеристики:

Дивергенция $\operatorname{div} \vec{F} \stackrel{def}{=} \vec{\nabla} \cdot \vec{F}$

Porop rot $\vec{F} \stackrel{def}{=} \vec{\nabla} \times \vec{F}$

Интегральные характеристики:

- (a) Поток поля $\vec{F} : \Pi = \iint_{\Omega} \vec{F} d\vec{\sigma}$
- (b) Циркуляция поля $\vec{F}: \Gamma = \oint_{\Gamma} Pdx + Qdy + Rdz$
- 15. Виды векторных полей и их свойства (теоремы о поле градиента и поле вихря).

Безвихревое поле: $rot \vec{F} = 0$

Свойство безвихревого поля: rot $\vec{F}=0 \Longleftrightarrow \exists u(x,y,z) \mid \vec{\nabla} u = \vec{F}$

Соленоидальное поле: $\operatorname{div} \vec{F} = 0$

Свойство соленоидального поля: $\operatorname{div}(\operatorname{rot} \vec{F}) = 0$

Смысл утверждения $\operatorname{div}(\operatorname{rot}\vec{F}) = 0$ – поле вихря свободно от источников

Утверждение $\operatorname{rot}(\overrightarrow{\operatorname{grad}} u) = 0$ – поле потенциалов свободно от вихрей

16. Механический смысл потока и дивергенции.

Механический смысл:

$$\operatorname{div} \vec{F}\Big|_{M_0} = \lim_{V \to 0} \frac{\Pi}{V}$$
 — мощность точечного источника Поток Π — кол-во жидкости через площадку за единицу времени

17. Механический смысл вихря и циркуляции.

Механический смысл:
$${\rm rot}\, \vec F\Big|_{M_0} = \lim_{S\to 0} \frac{\Gamma}{S}$$
 — циркуляция по бесконечно малому контуру (удвоенная угловая скорость вращающегося тела)

Циркуляция Г – максимальная мощность вращения водяной мельницы

18. Векторная запись теорем теории поля и их механический смысл.

Теорема Гаусса-Остроградского в векторной форме:
$$\iint_S \vec{F} d\vec{\sigma} = \iiint_T \operatorname{div} \vec{F}$$

Теорема Стокса в векторной форме: $Pdx + Qdy + Rdz = \vec{F}d\vec{l}$

$$\oint_{L} \vec{F} d\vec{l} = \iint_{S} \operatorname{rot} \vec{F} \vec{n} d\sigma = \iint_{S} \operatorname{rot} \vec{F} d\vec{\sigma}$$

Теорема о потенциале:
$$\forall L \oint_L \vec{F} d\vec{l} = 0 \iff \text{rot } \vec{F} = 0 \iff \exists u(x,y,z) \mid \vec{\nabla} u = \vec{F}$$