EL2520 - Control Theory and Practice - Advanced Course

Preliminary Solution/Answers – 220531 (Partly only answers, i.e., motivation as required not given)

- 1. (a) The minors are the elements and the LCD is (s+1)(s-1), hence poles in s=-1, s=1. The maximal minors are the elements and the GCD is empty, thus no zeros. The input direction of the pole at s=1 is $u_p=\begin{bmatrix}0&1\end{bmatrix}$.
 - (b) The delay $\theta=5$ gives an upper limit for the bandwidth of the sensitivity function at approx. $\omega=2/5$. At this frequency $|G_d(i0.4)|=1.94>1$. Thus, it is not possible to achieve $|SG_d|<1$ $\forall \omega$.
 - (c) Writing out the objective function

$$J(U) = Q_1 x_0^2 + Q_2 u_0^2 + 0.25 Q_1 x_0^2 + Q_1 x_0 u_0 + Q_1 u_0^2 + Q_2 u_1^2$$

Taking the derivative with respect to U we get

$$dJ = (2Q_2u_0 + Q_1x_0 + 2Q_1u_0)du_0 + 2Q_2u_1du_1$$

and setting this to zero we get $u_0 = -\frac{Q_1}{2(Q_1 + Q_2)}x_0$ and $u_1 = 0$. With $Q_2 = 0$ we get $u_0 = -0.5x_0$ and $x_1 = 0$, i.e., steady-state reached in one sample.

- 2. (a) G has a RHP zero at s=1 and a RHP pole at s=0. To ensure internal stability none of these should be cancelled by the controller and hence S(0)=0 and T(1)=0, or S(1)=1. We have S(0)=0, S(1)=1 and no RHP poles in S, hence the closed-loop is internally stable.
 - (b) The system has a RHP zero at s = 2 and $|W_p(2)| = 2.4 > 1$ and the norm-bound is not feasible. As for the 2-norm it is not defined for this system since W_pS is semi-proper only.
 - (c) We check the diagonal elements of the RGA. $\lambda_{11}(0) = 1.6$ and $|\lambda_{11}(i1)| = 1.02$. Hence the suggested pairing corresponds to pairing on positive RGA-elements at steady-state and RGA-elements with absolute value close to 1 around expected crossover and hence reasonable.
- 3. (a) G(s) has a RHP zero at $s=\sqrt{2}$ with output zero direction $y_z^H=\begin{bmatrix} -0.51 & 0.86 \end{bmatrix}$. The scaled $G_d=10/(s+1)\begin{bmatrix} 5 & 3 \end{bmatrix}^T$ and $|y_z^HG_d(\sqrt(2))|=0.025<1$ and hence acceptable disturbance attenuation is not prevented by the RHP zero. Also, the uncertainty in the control input exceeds 100% at a frequency where $|G_d|<<1$ and hence this should not pose a severe problem.

- (b) Yes, no control, i.e., ${\cal F}_y=0,$ will provide robust stability since the open-loop is stable.
- (c) The RS condition with input uncertainty is $||W_IT_I||_{\infty} < 1$ where W_I is the uncertainty weight. An uncertainty weight fitting the given input uncertainty is $W_I(s) = 2\frac{s+20}{s+200}$. The requirement for disturbance attenuation is $||SG_d||_{\infty} < 1$. We stack the objectives into one matrix

$$J = \left\| \frac{SG_d}{W_I T_I} \right\|_{\infty}$$

- (d) For SG_d we choose d as the input and z as the output. For W_IT_I we choose a disturbance at the input as input and the weighted controller output W_Iu as the output. For the norm minimization we should use 2-norm for the signals and then minimize the worst case amplification from input to output to reflect the \mathcal{H}_{∞} -norm in (c).
- 4. (a) Since all matrices A,B,M,Q_1,Q_2 diagonal, we solve Riccati equation for diagonal P>0

$$2AP + Q_1 - P^2 = 0$$

For the diagonal elements

$$p_1^2 + 4p_1 - q_1 = 0$$
; $p_2^2 + 8p_2 - q_2 = 0$

and positive definite solution

$$p_1 = -2 + \sqrt{4 + q_1}$$
; $p_2 = -4 + \sqrt{16 + q_2}$

The optimal feedback u = -Lx, $L = Q_2^{-1}B^TP = P$ and we get the closed-loop poles in $-2 - p_1$ and $-4 - p_2$. Thus, $p_1 = 3$ and $p_2 = 1$ which corresponds to $q_1 = 21$ and $q_2 = 9$.

(b) The loop-gain at the input $L_I = L(sI - A)^{-1}B$ and the complementary sensitivity function

$$T_I = L_I(I + L_I)^{-1}$$

With all matrices diagonal, T_I is also diagonal and with elements $T_{I,11} = 3/(s+5)$ and $T_{I,22} = 1/(s+5)$.

- (c) With all matrices diagonal we can analyze robustness in the two loops independently, and with the RS condition $|T_{I,ii}| < 1/|W_{I,i}| \forall \omega$, where $W_{I,i}$ is the relative input uncertainty in input i, we directly see that we can tolerate more uncertainty in input i.
- (d) Increasing the measurement noise puts more emphasis on the complementary sensitivity in the optimization, hence increase R_2 .
- 5. (a) $S = \frac{s}{s+1}I$ and $||S||_{\infty} = 1$.
 - (b) The poles are in $s=-1-\delta_1,\ s=-1-\delta_2.$ Thus, stable for all $|\delta_i|<0.2.$

- (c) We get $T_I = \frac{1}{(s+1)}I$ and a sufficient robust stability condition is then $\|\Delta_I\|_{\infty} < 1$, where Δ_I is the relative input uncertainty, assuming Δ_I a full complex matrix. The uncertainty given corresponds to a diagonal Δ_I with real elements which represents a subset of a full complex matrix. The given uncertainty corresponds to $\|\Delta_I\|_{\infty} < |\delta_i| < 0.2$ and hence robust stability (with a large margin).
- (d) The loop-gain $G_p F_y = G(1 + \Delta_I) F_y$ becomes

$$L_p = \frac{1}{s} \begin{pmatrix} 1 + 11\delta_2 - 10\delta_1 & 11(\delta_1 - \delta_2) \\ 10(\delta_2 - \delta_1) & 1 + 11\delta_1 - 10\delta_2 \end{pmatrix}$$

With $\delta_1 = \delta_2 = \delta$

$$L_p = \frac{1}{s} \begin{pmatrix} 1+\delta & 0\\ 0 & 1+\delta \end{pmatrix} \quad \Rightarrow \quad S_p = (I+L_p)^{-1} = \frac{s}{s+1+\delta}I$$

With $\delta_1 = -\delta_2 = \delta$

$$L_p = \frac{1}{s} \begin{pmatrix} 1 + 21\delta & 22\delta \\ 20\delta & 1 - 21\delta \end{pmatrix} \quad \Rightarrow \quad S_p = (I + L_p)^{-1} = \frac{s}{s^2 + 2s + 1 - \delta^2} \begin{pmatrix} s + 1 - 21\delta & 22\delta \\ -20\delta & s + 1 + 21\delta \end{pmatrix}$$

for the first case $\|S_p\|_{\infty}=1$ with peak as $\omega\to\infty$. For the second case it is more involved to find the peak value. However, we note that the poles of S_p are all close to 1 (1.2 and 0.8) and hence the peak should appear close to $\omega=1$. We find $\bar{\sigma}(S_p(i1))=\sqrt{\lambda_{max}(S_p(i1)S_p(i1)^H)}=4.32$, and hence $\|S_p\|_{\infty}\geq 4.32$ (in fact, it is 4.32). Thus, the sensitivity function is relatively unrobust to input uncertainty (20% input uncertainty gives over 300% uncertainty in the peak of the sensitivity function.

(d) With output uncertainty we get the same robust stability condition as above since $T_I = T$ in this case. As for the sensitivity we now get

$$L_p = \frac{1}{s}(I + \Delta_I) \quad \Rightarrow \quad S_p = s \begin{pmatrix} \frac{1}{s+1+\delta_1} & 0\\ 0 & \frac{1}{s+1+\delta_2} \end{pmatrix}$$

and $||S_p||_{\infty} = 1$ in both cases. Hence the sensitivity function is relative insensitive to output uncertainty.