Machine Learning

Lecture 1.2: Supervised Learning

Sami S. Brandt

Department of Computer Science IT University of Copenhagen

29 August 2019

IT UNIVERSITY OF COPENHAGEN

Intended Learning Outcome of this Lecture

- Recognise a supervised learning problem and select a principle for its solution
- Explain the fundamentals of classification problem from training examples
- Explain the concept of VC dimension
- Solve simple least squares regression problems
- Outline the principles applied in model selection
- Apply validation set for selecting model complexity
- Summarise the steps in supervised learning algorithm

Outline of lecture

Classification

Regression

Model Complexity

Fundamentals of a Supervised Machine Learning Algorithm

Learning a Class from Examples

- Class C of a "family car"
 - **Prediction:** is car *x* a family car?
 - Knowledge extraction: What do people expect from a family car?
- Training data:
 Positive (+) and negative (-) examples
- Features:

 x_1 : price, x_2 : engine power.

Learning a Class from Examples

- Class C of a "family car"
 - **Prediction:** is car *x* a family car?
 - Knowledge extraction: What do people expect from a family car?
- Training data:

Positive (+) and negative (-) examples

Features:

 x_1 : price, x_2 : engine power.

 The trained classifier takes the features as the input and returns the class label as the output.

Training Set

Hypothesis Class

• Let us assume that there is a reason to believe the family car is defined by certain (unknown) closed intervals in the feature space

$$p_1 \le \text{Price} \le p_2 \quad \land \quad e_1 \le \text{Engine Power} \le e_2$$

- ullet Let ${\cal H}$ be the set of all hypotheses, here, the set of all rectangles in the feature space.
- \mathcal{H} is referred to as the **hypothesis class**

True Class ${\cal C}$

A Hypothesis vs. True Class

$$h(\mathbf{x}) = \begin{cases} 1 \text{ if } h \text{ suggests } \mathbf{x} \text{ is positive} \\ 0 \text{ if } h \text{ suggests } \mathbf{x} \text{ is negative.} \end{cases}$$

Error of h on the hypothesis class \mathcal{H} yields

$$E(h|\mathcal{X}) = \sum_{n=1}^{N} I(h(\mathbf{x}^n) - r^n)$$

where I is the indicator function, for which I(0) = 0 and I(x) = 1, $x \neq 0$.

Most Specific (S) vs. Most General (G) Hypothesis

- Any hypothesis between S and G yields zero error, hence, is consistent with the training set
- They form the version space.

Hypothesis with the Largest Margin

Hypothesis with the Largest Margin

We intend to minimise the error and maximise the margin

PAC Learning

For how many training examples N should we have so that, with probability at least $1-\delta$, the hypothesis h has the error at most ϵ ? (Blumer et al., 1989)

• Imprecision in recording, shifting the values

- Imprecision in recording, shifting the values
- Errors in labelling

- Imprecision in recording, shifting the values
- Errors in labelling
- Imperfections in the modelling, e.g., missing attributes

- Impred Noise removal is an ill-posed problem!
- Errors
- In general, it is impossible to, without an uncertainty, to separate noise from data.
- Imperf
- It is an interesting philosophical question, what the noise is
 - An information theoretic definition for noise is that it the part of the signal that does is not compressible, i.e., it is maximally random

Noise: The Realisations are Distorted From the True Class

Simple Hypothesis is Favourable (why)?

Simple Hypothesis is Favourable

- Lower Computational Complexity
- Easier to Train
- Easier to Explain
- Better generalisation Occam's razor.

How to Characterise the Complexity of the Hypothesis Class: Vapnik–Chervonenkis Dimension

 N points can be labelled in 2^N ways to two classes (+/-)

Shattering of Points

We say, \mathcal{H} shatters the N points iff for any fixed classification of the points, there is a hypothesis h in \mathcal{H} that separates the positive examples from the negative.

• This property is used to define

VC Dimension

The maximum number of points that can be shattered by \mathcal{H} is called the Vapnik–Chervonenkis dimension or VC dimension of \mathcal{H} .

 Finding the Hypothesis class (VC dimension matched with the data), is the model selection problem

VC Dimension

Example

What is the VC Dimension a half plane in two-dimensions, i.e., when the class boundary is determined by a line? How about the VC dimension of a half space in N-dimensions, i.e, where the class boundary is a hyperplane?

Multiple Classes, C_k , $k = 1, 2, \dots, K$

• The hypothesis set

$$\mathcal{X} = \{\mathbf{x}^n, r^n\}_{n=1}^N$$

Ground truth, extended to the multiclass setup

$$r_k^n = \begin{cases} 1 \text{ if } \mathbf{x}^n \text{ belongs to the class } C_k, \\ 0 \text{ otherwise.} \end{cases}$$

- The hypotheses $h_k(\mathbf{x})$ should be learnt so that they match with r_k^n , $k = 1, \dots, K$.
- Achieved by minimising the total empirical error

$$E_{\rm emp} = \sum_{n,k} I(h_k(\mathbf{x}^n) - r_k^n)$$

where *I* is the **indicator function** for which I(0) = 0 and I(x) = 1, $x \neq 0$.

The reject option

The reject option: In some applications, it may be appropriate to **avoid making a decision**, if we are **too uncertain** or have **doubt**.

Outline of lecture

Classification

Regression

Model Complexity

Fundamentals of a Supervised Machine Learning Algorithm

Regression

Assume we have the training dataset $\mathcal{X} = \{\mathbf{x}_n, r_n\}_{n=1}^N$.

Regression Problem

Find the function $r = g(\mathbf{x}, \mathbf{w})$ where g is our model depending on the parameters \mathbf{w} . Assume that the data is noisy, i.e., $r_n = g(\mathbf{x}_n, \mathbf{w}) + \epsilon_n$, where ϵ_n represents noise.

Solution: Let us form the error functional

$$E(\mathbf{w}) = \frac{1}{N} \sum (r_n - g(\mathbf{x}_n, \mathbf{w}))^2$$

and minimise it over the parameters $\mathbf{w}.$

Example: Polynomial Regression

Assume we are given a dataset $\mathcal{D} = \{(x_1, t_1), \dots, (x_N, t_N)\}$ where $x_n, t_n \in \mathbb{R}$ and N = 10.

We want to fit the data using a polynomial function

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{i=1}^M w_i x^i$$

Error function

Example: Polynomial Curve Fitting

We find w by minimising an error function that measures the misfit between $y(x, \mathbf{w})$ and \mathcal{D} .

The sum-of-squares error function is given by

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2.$$

The optimal solution $\mathbf{w}^* = \arg\min_{\mathbf{w}} E(\mathbf{w})$ can be found in closed form.

Outline of lecture

Classification

Regression

Model Complexity

Fundamentals of a Supervised Machine Learning Algorithm

Model Selection and Generalisation

- Learning is an ill-posed problem; data is not sufficient to find a unique solution
- To make learning possible, one needs to make further assumptions about H, we say, there is an inductive bias
- Generalisation: How well a model performs on new data
- Overfitting: \mathcal{H} too flexible
- Underfitting: ${\cal H}$ too rigid

Model selection: how to choose the order M?

Example: Polynomial Curve Fitting

Model selection: how to choose the order M?

Example: Polynomial Curve Fitting

Root-mean-square (RMS) error is on the same scale as t: $E_{\text{RMS}} = \sqrt{2E(\mathbf{w}^*)/N}$

How does it behave when the size of the dataset is varied?

Polynomial of order M=9

Triple Trade-Off

- There is a trade-off between three factors (Dietterich, 2003)
 - 1. Complexity of ${\cal H}$
 - 2. Training set size
 - 3. Generalisation error E
- When training set size grows error goes down.
- When complexity of ${\cal H}$ grows, the error first goes down, then up.

A Way to Control the Complexity: Regularisation

Over-fitting can be controlled using **regularisation**: add a term to the error function that penalises large values of the weights:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2 + \frac{\lambda}{2} ||\mathbf{w}||^2.$$

Polynomial of order M = 9

Regularisation and model complexity

A palatial approach to selection: partition the data into

- a training set used to learn the coefficients w
- a separate validation set used to optimise the model complexity (M or λ)

Regularisation and model complexity

A palatial approach to selection: partition the data into

- a training set used to learn the coefficients w
- a separate validation set used to optimise the model complexity (M or λ)

Cross-Validation

- How do we do modelling if the data set is small?
 - Performance on the training data is not a good indicator due over-fitting.
 - But we can compare models a validation set.
 - This suggest to use cross-validation: To estimate generalisation error, we additionally need data unseen during training.
- We could split the data as
 - Training set (50%)

 We can also use folding and resampling when there is limited data—more in Chapter 19.

run 1

run 2

Other Approaches for Model Selection

- However, cross-validation can be computationally expensive if the model has multiple parameters.
- Various information criteria have been proposed based on the energy functional defined by the model likelihood.
- In principle, the energy functional is supplemented with a model complexity term that punishes more complex models
- Examples: Akaike information criterion, Bayesian information criterion, Structural Risk Minimisation, MDL principle. . .

The curse of dimensionality

Consider the following classification problem, where we want to predict the class of 'x':

A simple solution: divided the input space into cells and assign the class of the majority to the cell:

The curse of dimensionality

Outline of lecture

Classification

Regression

Model Complexity

Fundamentals of a Supervised Machine Learning Algorithm

Supervised Machine Learning Algorithm

Fundamental Parts of a Supervised Machine Learning Algorithm

- 1. Model $g(x, \theta)$, where x is the input and θ are the parameters.
- 2. Loss function $L(r^n, g(x^n, \theta))$, quantifying the difference between the desired and modelled class label, and the (penalised) approximation error functional $E(\theta) = \sum_n L(r^n, g(x^n, \theta))$ (+possible penalty on complexity)
- 3. Optimisation procedure

$$\theta^* = \arg\min_{\theta} E(\theta)$$

Next lecture

• Bayesian Decision Theory

References I

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.