Intervalos baseados em amostragem simples IC para a média e proporção de uma população

Intervalos de confiança

tradução do Jay Davore

índice

- Intervalos baseados em amostragem simples
 - Intervalos de confiança
 - Propriedades dos intervalos de confiança
 - Tamanho amostral
- 2 IC para a média e proporção de uma população
 - IC para a média
 - IC para a p ao nível $100(1-\alpha)\%$
 - Intervalos baseados na distribuição populacional normal
 - a distribuição t
 - IC para a variância e do DP de uma população normal

definição

- Um enfoque alternativo ao de fornecer apenas um valor para o parâmetro sendo estimado consiste no cálculo de um intervalo de valores plausíveis: o intervalo de confiança.
- o nível de confiança é uma medida do grau de confiabilidade do intervalo

IC 95%

- Suponha que queiramos estimar a média μ de uma população qualquer.
- Se após observar $X_1 = x_1, ..., X_n = x_n$, calcularmos a média da amostra observada \bar{x} .
- Pelo TLC, $e=(\bar{X}-\mu)\sim N(0,\sigma_{\bar{X}}^2)$ com $Var(\bar{X})=\sigma^2/n$.
- ullet então um IC de 95% para μ pode ser construido:

$$P(|e| < 1, 96\sigma_{\bar{X}}) = 0,95$$

$$P(-1, 96\sigma_{\bar{X}} < \bar{X} - \mu < 1, 96\sigma_{\bar{X}}) = 0,95$$

• de onde:

$$\left(\bar{x}-1,96.\frac{\sigma}{\sqrt{n}},\bar{x}+1,96.\frac{\sigma}{\sqrt{n}}\right)$$

Outros niveis de confiança

Figura: nível de confiança

outros niveis de confiança

Um IC de $100(1-\alpha)\%$ de confiança para a média μ de uma população normal, quando o valor de α é conhecido, é dado por:

$$\left(\bar{x}-z_{\alpha/2}.\frac{\sigma}{\sqrt{n}},\bar{x}+z_{\alpha/2}.\frac{\sigma}{\sqrt{n}}\right)$$

Representação de um IC para μ com $\gamma=0,95$ e σ^2 conhecido

Figura 11.3: Significado de um IC para μ , com γ = 0,95 e σ^2 conhecido.

Intervalos de Confiança

Figura 11.4: Intervalos de confiança para a média de uma N(5, 9), para 20 amostras de tamanho n = 25.

Exemplo

Uma maquina enche pacotes de café com variância igual a 100 g^2 . Ela estava regulada para encher os pacotes com 500 g. em média. Se a máquina se desregulou, queremos saber a nova média μ . Uma amostra de n=25 apresentou $\bar{X}=485$ g. Podemos então construir um IC para μ de 95% de confiança.

Sabemos que $\sigma_{\bar{X}} = \sigma/\sqrt{n} = 10/5 = 2$ g.

$$IC(\mu; 0, 95) = 485 \pm 1, 96 \times 2$$

Exemplo

Uma maquina enche pacotes de café com variância igual a 100 g^2 . Ela estava regulada para encher os pacotes com 500 g. em média. Se a máquina se desregulou, queremos saber a nova média μ . Uma amostra de n=25 apresentou $\bar{X}=485$ g. Podemos então construir um IC para μ de 95% de confiança.

Sabemos que $\sigma_{\bar{X}} = \sigma/\sqrt{n} = 10/5 = 2$ g.

$$IC(\mu; 0, 95) = 485 \pm 1, 96 \times 2$$

tamanho amostral

A forma geral para o tamanho da amostra n necessária para ter um intervalo com amplitude ω é:

$$n = \left(2z_{\alpha/2}.\frac{\sigma}{\omega}\right)^2$$

como criar um IC

Seja T um estimador de um parâmetro θ , e seja também conhecida a distribuição amostral de T, é possível achar dois valores t_1 e t_2 tais que

$$P(t_1 < \theta < t_2) = \gamma$$

onde $0 < \gamma < 1$ é um valor fixo.

Neste caso,
$$IC(\theta; \gamma) = [t_1, t_2]$$
.

como criar um IC

Seja T um estimador de um parâmetro θ , e seja também conhecida a distribuição amostral de T, é possível achar dois valores t_1 e t_2 tais que

$$P(t_1 < \theta < t_2) = \gamma$$

onde $0<\gamma<1$ é um valor fixo.

Neste caso,
$$IC(\theta; \gamma) = [t_1, t_2]$$
.

Como criar um IC

- Se σ^2 não for conhecida, podemos substituir $\sigma_{\bar{X}}$ por S/\sqrt{n} .
- Para n não muito grande, a distribuição normal não pode ser usada e terá de ser substituida pela distribuição t de student.
- No caso de n grande, com coeficiente de confiança γ , $P(-z(\gamma) < Z < z(\gamma)) = \gamma$, com $Z \sim N(0,1)$ O intervalo fica:

$$IC(\mu;\gamma) = [\bar{X} - z(\gamma)\sigma_{\bar{X}}; \bar{X} + z(\gamma)\sigma_{\bar{X}}]$$

• A amplitude do intervalo fica

$$L = 2z(\gamma)\sigma/\sqrt{n}$$

que não depende de \bar{X}

como criar um IC

Seja $X_1, ..., X_n$ uma a.a. no qual o IC para o parâmetro θ estará baseado. Suponha também uma v.a. que satisfaz as seguintes propriedades:

- 1. A variável depende funcionalmente de ambos: $X_1, ..., X_n$ e de θ .
- 2. A a f.d.p (f.m.p) não depende de θ ou algum parâmetro desconhecido.

Como criar um IC

Seja $h(X_1,...,X_n;\theta)$ esta v.a.

Em geral, a forma de h é usualmente sugerida ao examinar uma distribuição apropriada de $\hat{\theta}$.

Para qualquer α entre 0 e 1, constantes a e b podem ser encontradas tal que:

$$P(a < h(X_1, ..., X_n; \theta) < b) = 1 - \alpha$$

 $P(l(X_1, ..., X_n)) < \theta < u(X_1, ..., X : n)$

Como criar um IC

Agora suponha que as desigualdades podem ser manipuladas de forma a isolar θ :

$$P(l(X_1,...,X_n)) < \theta < u(X_1,...,X:n))$$

 $l(X_1,...,X_n)$ é o limite inferior de confiança e $u(X_1,...,X:n)$ o limite superior, para um IC de $100(1-\alpha)\%$

IC para a média

IC para a p ao nível $100(1-\alpha)\%$

Intervalos baseados na distribuição populacional normal a distribuição t IC para a variância e do DP de uma popu<u>lação normal</u>

IC para a média (amostras grandes)

Se n é suficientemente grande, a variável padronizada:

$$z = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

tem aproximadamente uma distribuição normal padrão. Isto implica que

$$\bar{x} \pm z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

é um IC para μ ao nivel 100(1 - α)%.

IC para a média
IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal

a distribuição t
IC para a variância e do DP de uma população normal

IC para a p de uma binomial(n,p)

É conhecido que X=número de sucessos em n ensaios, então $X \sim bin(n,p)$, onde $\mu=np$ e $\sigma^2=npq$, com q=1-p. Temos então:

$$Z = \frac{X - np}{\sqrt{npq}} \sim N(0, 1)$$

ΟU

$$Z = \frac{X/n - p}{\sqrt{pq/n}} = \frac{\sqrt{n}(\hat{p} - p)}{\sqrt{pq}} \sim N(0, 1)$$

IC para a média

IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal

a distribuição t

IC para a variância e do DP de uma população normal

IC para a variância e do DP de uma população norm

IC para a p de uma binomial(n,p)

Se $\gamma=0,95$, temos que

$$P(-1,96 \le Z \le 1,96) = 0,95$$

ou seja,

$$P\left\{-1,96 \le \frac{\sqrt{n}(\hat{p}-p)}{\sqrt{pq}} \le 1,96\right\} = 0,95$$

Desta maneira, com probabilidade 0,95,

$$-1,96\sqrt{pq/n} \leq (\hat{p}-p) \leq 1,96\sqrt{pq/n}$$

o que resulta em:

$$\hat{p}-1,96\sqrt{pq/n} \leq -p \leq \hat{p}+1,96\sqrt{pq/n}$$

IC para a média IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal

IC para a variância e do DP de uma população normal

IC para a p de uma binomial(n,p)

Sendo p desconhecido, procedemos de duas maneiras:

• 1. usamos o fato que $pq \leq 1/4$ de forma que $\sqrt{pq/n} \leq 1/\sqrt{4n}$, obtendo

$$\hat{p} - \frac{1,96}{\sqrt{4n}} \le p \le \hat{p} + \frac{1,96}{\sqrt{4n}}$$

a distribuição t

• 2. para um γ qualquer, $(0 < \gamma < 1)$, o intervalo fica:

$$\hat{p} - \frac{z(\gamma)}{\sqrt{4n}} \le p \le \hat{p} + \frac{z(\gamma)}{\sqrt{4n}}$$

IC para a média IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal a distribuição t IC para a variância e do DP de uma popu<u>lação normal</u>

exemple

numa pesquisa de mercado, n=400 pessoas foram entrevistadas sobre determinado produto e 60% delas preferiram a marca A. $\hat{p}=0,6$ e um IC para p com coeficiente de confiança $\gamma=0,95$ será:

$$0,6 \pm (1,96)1/\sqrt{1600} = 0,6 \pm 0,049$$

i.e,

$$IC(p; 0, 95) =]0, 551; 0, 649[$$

Este intervalo é conservador, pois se p não for igual a 1/2, e estiver proximo de zero ou um, então o intervalo fornecido é desnecessariamente maior.

uma outra maneira de proceder é substituir pq por $\hat{p}\hat{q}$ e o intervalo fica:

$$\hat{p} - z(\gamma)\sqrt{\hat{p}\hat{q}/n} \le p \le \hat{p} + z(\gamma)\sqrt{\hat{p}\hat{q}/n}$$

IC para a média IC para a p ao nível $100(1-\alpha)\%$

Intervalos baseados na distribuição populacional normal a distribuição tIC para a variância e do DP de uma população normal

IC para a proporção

Limites inferior (-) e superior (+):

$$= \frac{\hat{p} + \frac{z_{\alpha/2}^2}{2n} \mp z_{(\alpha/2)} \sqrt{\left(\frac{\hat{p}\hat{q}}{n} + \frac{z_{\alpha/2}^2}{4n^2}\right)}}{1 + \left(z_{\alpha/2}^2\right)/n}$$

IC para a média

IC para a p ao nível $100(1-\alpha)\%$

Intervalos baseados na distribuição populacional normal a distribuição t IC para a variância e do DP de uma população normal

Limites de confiança para μ (amostras grandes)

Limite de confiança superior:

$$\mu < \bar{x} + z_{\alpha}.\frac{s}{\sqrt{n}}$$

Limite de confiança inferior:

$$\mu > \bar{x} - z_{\alpha} \cdot \frac{s}{\sqrt{n}}$$

Por notação:

$$z(\gamma) = z_{\alpha}$$

IC para a média

IC para a p ao nível $100(1-\alpha)\%$

Intervalos baseados na distribuição populacional normal a distribuição t
IC para a variância e do DP de uma população normal

Distribuição normal

A população de interés é normal, desta maneira, $X_1,...,X_n$ constitui uma a.a. de uma normal com ambos parâmetros μ e σ desconhecidos.

nles

IC para a média IC para a p ao nível $100(1-\alpha)\%$

Intervalos baseados na distribuição populacional norma a distribuição $\,t\,$

IC para a variância e do DP de uma população normal

7

Quando \bar{X} é a média de uma a.a. de tamanho n de uma distribuição normal com média μ , a v.a.

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

tem uma distribuição de probabilidade chamada de $t \, {\rm com} \, n-1$ graus de liberdade (g.l)

IC para a média IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal a distribuição t IC para a variância e do DP de uma popula<u>cão normal</u>

propriedades da distribuição

Seja t_{ν} a curva da função densidade para ν graus de liberdade(g.l):

- 1. Cada curva t_{ν} tem forma de um sino centrado em 0.
- ullet 2. Cada curva $t_{
 u}$ é mais "espalhada" do que a curva z da normal padrão
- 3. Conforme ν cresce, a dispersão (espalhamento) da curva correspondente a t_{ν} diminui.
- 4. conforme $\nu \to \infty$, a sequência de t_{ν} se aproxima da curva normal padrão (a curva z é chamada de curva t com g.l= ∞).

IC para a média IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal a distribuição t IC para a variância e do DP de uma população normal

Valor crítico t

Seja $t_{\alpha,\nu}=$ o número no eixo para a qual a área abaixo da curva t com ν g.l. à direita de $t_{\alpha,\nu}$ é α : $t_{\alpha,\nu}$ é chamado de valor crítico t.

tradução do Jay Davore

IC para a média IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal a distribuição t IC para a variância e do DP de uma população normal

representação gráfica de $t_{lpha, u}$

Figura: curva $t_{\alpha,\nu}$

Intervalos baseados em amostragem simples IC para a média e proporção de uma população

IC para a média IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal a distribuição t IC para a variância e do DP de uma população normal

Tabela A.5 Valores Críticos para as Distribuições t

			α				
"	0,10	0,05	0,025	0,01	0,005	0,001	0,0005
1	3,078	6,314	12,706	31,821	63,657	318,31	636,62
2	1,886	2,920	4,303	6,965	9,925	22,326	31,598
3	1,638	2,353	3,182	4,541	5,841	10,213	12,924
4	1,533	2,132	2,776	3,747	4,604	7,173	8,610
5	1,476	2,015	2,571	3,365	4,032	5,893	6,869
6	1,440	1,943	2,447	3,143	3,707	5,208	5,959
7	1,415	1,895	2,365	2,998	3,499	4,785	5,408
8	1,397	1,860	2,306	2,896	3,355	4,501	5,041
9	1,383	1,833	2,262	2,821	3,250	4,297	4,781
10	1,372	1,812	2,228	2,764	3,169	4,144	4,587
11	1,363	1,796	2,201	2,718	3,106	4.025	4,437
12	1,356	1,782	2,179	2,681	3,055	3,930	4,318
13	1,350	1,771	2,160	2,650	3,012	3,852	4,221
14	1,345	1,761	2,145	2,624	2,977	3,787	4,140
15	1,341	1,753	2,131	2,602	2,947	3,733	4.073
16	1,337	1,746	2,120	2,583	2,921	3,686	4,015
17	1,333	1,740	2,110	2,567	2,898	3,646	3,965
18	1,330	1,734	2,101	2,552	2,878	3,610	3,922
19	1,328	1,729	2,093	2,539	2,861	3,579	3,883
20	1,325	1,725	2,086	2,528	2,845	3,552	3,850
21	1,323	1,721	2,080	2,518	2,831	3,527	3,819
22	1,321	1,717	2,074	2,508	2,819	3,505	3,792
23	1,319	1,714	2,069	2,500	2,807	3,485	3.767

IC para a média IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal a distribuição t IC para a variância e do DP de uma população normal

Intervalo de confiança

Sejam \bar{x} e s a média amostral e o desvio padrão calculados de uma a.a. de uma população normal com média μ . O IC de $100(1-\alpha)\%$ é:

$$\left(\bar{x} - t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}, \bar{x} + t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}\right)$$

IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal a distribuição tIC para a variância e do DP de uma população normal

IC para a média

Intervalo de previsão

Em algumas situações pode se desejar prever um único valor de uma variável a ser observado futuramente. Temos a seguinte configuração: Dispomos de uma a.a. $(X_1,...,X_n)$ de uma distribuição normal e queremos prever o valor de X_{n+1} .

Um previsor pontual de X_{n+1} é X e o erro de previsão resultante seria $\bar{X}-X_{n+1}$. O valor esperado do erro de previsão será:

$$E(\bar{X} - X_{n+1}) = E(\bar{X}) - E(X_{n+1}) = \mu - \mu = 0$$

Sabendo que X_{n+1} é independente de toda a sequência $X_1,...,X_n$, a variância do erro será:

$$var(\bar{X} - X_{n+1}) = var(\bar{X}) + var(X_{n+1}) = \frac{\sigma^2}{n} + \sigma^2 = \sigma^2(1 + \frac{1}{n})$$

IC para a média IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal a distribuição t IC para a variância e do DP de uma populacão normal

Intervalo de previsão

O Erro de previsão linear é uma C.L de v.a. Independentes normalmente distribuidas, de modo que:

$$Z = \frac{(X - X_{n+1}) - 0}{\sqrt{\sigma^2 (1 + \frac{1}{n})}} \sim N(0, 1)$$

É possível mostrar substituindo σ pelo desvio padrão amostral S que

$$T = \frac{(\bar{X} - X_{n+1}) - 0}{s \times \sqrt{(1 + \frac{1}{n})}} \sim t_{n-1}$$
 gl

IC para a média IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal a distribuição t IC para a variância e do DP de uma população normal

Intervalo de previsão

Um intervalo de previsão (IP) para uma observação particular a ser selecionada de uma população com distribuição normal é:

$$\bar{x} \pm t_{\alpha/2, n-1}.s.\sqrt{1 + \frac{1}{n}}$$

o nível de previsão é $100(1-\alpha)\%$

IC para a média IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal a distribuição t IC para a variância e do DP de uma população normal

Intervalo de tolerância

Seja k um número entre 0 e 100. Um intervalo de tolerância para capturar no mínimo k% dos valores em uma população com distribuição normal, com nível de confiança de 95% tem a forma:

 $\bar{x} \pm \text{valor crítico de tolerância.} s$

IC para a média

a distribuição t

IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal

IC para a variância e do DP de uma população normal

População normal

Seja $X_1,...,X_n$ uma a.a. de uma distribuição normal com parâmetros μ e σ^2 . Então a v.a.

$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum (X_i - \bar{X})^2}{\sigma^2}$$

tem ma distribuição de probabilidade χ^2 com n-1 graus de liberdade (g.l)

IC para a média IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal

a distribuição t

IC para a variância e do DP de uma população normal

Valor crítico Qui-quadrado

Seja $\chi^2_{\alpha,\nu}$ um valor crítico Qui-quadrado, denotará o número no eixo tal que α de área abaixo da curva Qui-quadrado com ν g.l. está à direita de $\chi^2_{\alpha,\nu}$

IC para a média IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal

IC para a variância e do DP de uma população normal

Representação gráfica de $\chi^2_{lpha, u}$

a distribuição t

Figura: curva $\chi^2_{\alpha,\nu}$

IC para a média IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal a distribuição t IC para a variância e do DP de uma população normal

IC para a média IC para a p ao nível $100(1-\alpha)\%$ Intervalos baseados na distribuição populacional normal a distribuição t IC para a variância e do DP de uma popula<u>cão normal</u>

Intervalo de confiança

Um IC de $100(1-\alpha)\%$ para a variância σ^2 de uma população normal tem: Limite Inferior:

$$(n-1)s^2/\chi^2_{\alpha/2,n-1}$$

Limite Superior:

$$(n-1)s^2/\chi^2_{1-\alpha/2,n-1}$$

para um IC para σ , tome a raiz quadrada de cada limite acima.