Livrable sur le deploiement et implementation de la solution Projet reseau :
Simulation de la consomation des nœuds et classification du traffic dans un reseau mailé sans fil programmable .
Nom participants
Sous la supervision de : Pr Djotio, Mlle Nouhou, Mr bessala
Administration reseau 4Gi Enspy 2023 2024

Introduction

Ce document presente la procedure d'utilisation de la classification en temps reel des trafic généner par l'outil D_itg dans une architecture SDN.

I) Predisposition

Nous utiliserons le système d'exploitation Linux ubuntu dont les caracteristiques sont les suivants

Distribution ID: ubuntu

Description: ubuntu 18.04.6 LTS

Relase: 18.04

Codename: bionic

Nous devons avoir python2, python3, ryu, D_itg, mininet, mininet_wifi installer sur notre ubuntu

II) Structuration du dossier

Le dossier s'appelle : PROJET_RESEAU

Il est constitué de 5 dossiers :

binary : comporte le fichier binaire du modèle de machine Learning utilisé

dataset : comporte tous les datasets utilisés pour l'entrainement du modèle

Documents: comporte tous les documents important relatif au projet (rapports, livres utiles etc.)

Notebook : comporte les différents notebook utilisés lors de la phase d'entrainement des algorithmes de machine Learning.

src : comporte les fichiers de lancement du projet (Le wifi_AP_ST_Topo.py , wifi_classifier2.py,wifi_monitor_v2.py)

III) configuration du fichier wifi_classifier2.py

Avant de lancer le projet , il faut déjà copier le dossier et le coller dans Document de votre machine ubuntu .

```
proj_location_Src = "/home/bessala/PROJET_RESEAU/src/"
proj_location_dataset = "/home/bessala/PROJET_RESEAU/dataset/"
proj_location_Binary = "/home/bessala/PROJET_RESEAU/binary/"
```

Ensuite aller dans /PROJET_RESEAU/src/wifi_classifier2.py, modifier : « bessala » par le nom de votre machine.

IV) lancement du projet

Ouvrez deux terminaux ubuntu avec la commande : crtl+alt+t

Passez en mode sudo : sudo su , puis entrez votre mot de passe .

Dans chacun des terminaux, naviguez : cd Document/PROJET RESEAU/src

Dans le terminal 1 , lancez le classifier : python3 wifi_classifier2.py « unsupervised » ou « supervised » , selon votre model de classification choisi.

Puis Dans le terminal 2, lancez la topologie mininet : python2 wifi_AP_ST_TOPO.py

Nb: servez-vous de la tabulation pour aller plus vite.

Une fois le reseau virtuel mis en place avec mininet , on peut commencer à generer le trafic grâce à d_itg.

Enter dans le terminal 2 , taper « xterm h1 h2 » .vous pouvez changer d'hote ou de station à votre convenance en entrant la commande « dump » dans mininet pour visualiser tous les equipements créer par notre topologie . pour une bonne prise en main de mininet ,ryu , openflow, ouvrez le document:/PROJET_RESEAU/documents/TP_4GI_SD_WMN.pdf

Une fois les deux invites de commandes ouverts , on va generer un trafic de h1(10.0.0.1) vers h2(10.0.0.2) . h1 sera l'emetteur , et h2 le recepteur .

Par exemple on veut generer le trafic DNS,

Dans le xterm de h2 entrez la commande : ITGRecv -l recv.log

Dans le xterm de h1 entrez la commande : ITGSend -t 15000 -a 10.0.0.2 -rp 10003 DNS

Dans nos travaux, nous nous sommes focalisés sur les trafic que D_itg permet de générer simplement .

Nom trafic	Code emetteur	Code recepteur	Commentaire
Ping	Ping « ip machine à ping »	Ping « ip machine à ping »	Il suffit de lancer un ping all dans la console de mininet_wifi
Dns	ITGSend –t 15000 –a 10.0.0.2 –rp 10003 DNS	ITGRecv –l recv.log	L'emeteur envois pendant 15000 mili secondes des paquets DNS au recepteur d'adresse ip 10.0.0.2
telnet	ITGSend –t 15000 –a 10.0.0.2 –rp 10002 Telnet	ITGRecv –l recv.log	
Quake			
VoIP	ITGSend –t 15000 –a 10.0.0.2 –rp 10001 VoIP –x G.711.2 –h RTP -VAD	ITGRecv –l recv.log	
CSI			
CSA			

Pour en savoir plus sur ces trafic voir le document : D_ITG-2.8.1-manual.pdf dans PROJET_RESEAU/documents/

Une fois le trafic lancé, on observe sur le terminal où on a lancer la wifi_classifier2.py supervised une classification en temps réel .

```
Fichier Édition Affichage Rechercher Terminal Aide

[-952630682837242029, '10.0.0.1', '10.0.0.2', array(['TELNET'], dtype=object), 'INACTIVE', 'INACTIVE']

[-TELNET']
[-4068018769424495448, '10.0.0.2', '10.0.0.1', array(['TELNET'], dtype=object), 'INACTIVE', 'INACTIVE']

[-PING': 0, 'DNS': 0, 'TELNET': 772, 'VOICE': 0, 'CSI': 0, 'CSA': 3, 'QUAKE3': 3

56, 'unknown trafic': 0}

['Shared services': 0, 'dedicated services': 3, 'realtime services': 1128, 'unknown services': 0}

['TELNET']
[-952630682837242029, '10.0.0.1', '10.0.0.2', array(['TELNET'], dtype=object), 'INACTIVE', 'INACTIVE']

['TELNET']
[-4068018769424495448, '10.0.0.2', '10.0.0.1', array(['TELNET'], dtype=object), 'INACTIVE', 'INACTIVE']

['PING': 0, 'DNS': 0, 'TELNET': 774, 'VOICE': 0, 'CSI': 0, 'CSA': 3, 'QUAKE3': 3

56, 'unknown trafic': 0}
['shared services': 0, 'dedicated services': 3, 'realtime services': 1130, 'unkn
```

Une fois le trafic terminer, on prend on observe le tableau qui nous donne aussi la classification du nombre de service dédier rencontrer. (shared services etc) .
Une fois fini , on ferme mininet_wifi avec la commande « quit » , on ferme le classifier avec crtl+c
Conclusion
; Dans le but d'améliorer nos travaux , vous pouvez nous contacter à