Term 3 Week 8 Handout Solutions

Problems: functions and functional equations

- 1. For f to be invertible, we need g(f(x)) = x for all x in the domain of f. But $g(f(x)) = \sqrt{x} = |x|$, which is not equal to x when x is negative. Also, f is not injective because f(a) = f(-a) and so the inverse does not exist.
- 2. Let y = 0, then we have f(x) = x + f(0) = x + 2. Hence f(1998) = 1998 + 2 = 2000.
- 3. To prove injectivity, if f(x) = f(y) then clearly f(f(x)) = f(f(y)), and hence x = y from the definition of an involution.

To prove surjectivity, take z to be a real number in the co-domain of f. It suffices to show there exists x such that f(x) = z. From f(x) = z we have f(f(x)) = f(z) or f(z) = x. Thus, the x we needed to show that exists is f(z).

- 4. Subbing in y = 0 yields $f(x) = x^2$. Thus $f(x) = x^2$ is the only possible solution. Trying this solution in the original equation, we have $f(x+y) + f(x-y) = 2x^2 + 2y^2$, not $2x^2 2y^2$. Thus the only possible candidate fails the test, hence there are no solutions.
- 5. Subbing in y = 0 we get

$$-2f(0) = -2$$

$$f(0) = 1$$

Subbing in x = 0 we obtain

$$f(y) + 2f(-y) = 3 - y$$

and by replacing y with -y we obtain

$$f(-y) + 2f(y) = 3 + y$$

Solving the system of equations, treating f(y) and f(-y) as variables, we get f(y) = y+1. It is easy to verify f(x) = x+1 satisfies the conditions of the problem, thus it is the only solution.