Tarea 4

Jonathan Andrés Niño Cortés

7 de marzo de 2016

(1.) Sea \mathfrak{m} una medida exterior de Carathéodory sobre X. Si para todo $A \subseteq X$ existe $B \in M_{\mathfrak{m}}$ con $A \subseteq B$ y $\mathfrak{m}(A) = \mathfrak{m}(B)$ la medida exterior se llama regular. Muestre que si \mathfrak{m} es una medida de Carathéodory regular y $\mathfrak{m}(A) < \infty$, entonces $A \in M_{\mathfrak{m}}$ si y sólo si

$$\mathfrak{m}(A) + \mathfrak{m}(X \backslash A) = \mathfrak{m}(X) \tag{1.1}$$

Demostración. Si suponemos que A es \mathfrak{m} —medible entonces por la definición de medibilidad de Carathéodory tenemos que $\mathfrak{m}(X) = \mathfrak{m}(A) + \mathfrak{m}(X \setminus A)$. Para la otra implicación tómese A tal que cumple la expresión (1.1). Por regularidad, tenemos que existe $B \subseteq X$ tal que

$$B \in \mathfrak{M}_{\mathfrak{m}}, A \subseteq B \text{ y } \mathfrak{m}(A) = \mathfrak{m}(B)$$
 (1.2)

.

Puesto que B es \mathfrak{m} -medible tenemos en particular que

$$\mathfrak{m}(X) = \mathfrak{m}(B) + \mathfrak{m}(X \backslash B). \tag{1.3}$$

Utilizando (1.1), (1.2), (1.3) concluimos que

$$\mathfrak{m}(X\backslash A) = \mathfrak{m}(X) - \mathfrak{m}(A) = \mathfrak{m}(X) - \mathfrak{m}(B) = \mathfrak{m}(X\backslash B). \tag{1.4}$$

Ahora tenemos de nuevo por medibilidad de B que

$$\mathfrak{m}(X\backslash A) = \mathfrak{m}([X\backslash A]\cap B) + \mathfrak{m}([X\backslash A]\cap [X\backslash B]). \tag{1.5}$$

Puesto que $A \subseteq B$ tenemos que $X \setminus B \subseteq X \setminus A$ y por lo tanto $[X \setminus A] \cap [X \setminus B] = [X \setminus B]$, es decir que

$$\mathfrak{m}([X\backslash A]\cap [X\backslash B]) = \mathfrak{m}(X\backslash B) \tag{1.6}$$

.

Utilizando (1.4) (1.5) y (1.6) deducimos que

$$\mathfrak{m}([X\backslash A]\cap B)=\mathfrak{m}(X\backslash A)-\mathfrak{m}([X\backslash A]\cap [X\backslash B])=\mathfrak{m}(X\backslash A)-\mathfrak{m}(X\backslash B)=0. \ \ (1.7)$$

Así, concluimos que el conjunto $[X \setminus A] \cap B$ tiene medida 0 y por lo tanto es \mathfrak{m} -medible. Ver [HS75, Teorema 10.7]. Por ultimo, puesto que podemos escribir A como intersección de \mathfrak{m} -medibles, valiendonos de la siguiente expresión,

$$A = B \cap ([X \backslash A] \cap B)^C \tag{1.8}$$

concluimos que A es medible.

(ii.) Muestre que aunque se tenga $\mathfrak{m}(X) < \infty$ en general pueden existir conjuntos $A \subseteq X$ no medibles según Carathéodory tales que

$$\mathfrak{m}(A) + \mathfrak{m}(X \backslash A) = \mathfrak{m}(X)$$

(Sugerencia: Existe un ejemplo con |X| = 3.)

Demostración. Sea $X = \{a, b, c\}$, y definamos una medida externa de Carathéodory $\mathfrak{m} : \mathcal{P}(X) \to \mathbb{R}$ de la siguiente manera:

$$\mathfrak{m}(\emptyset) = 0$$
 $\mathfrak{m}(\{a\}) = \mathfrak{m}(\{b\}) = \mathfrak{m}(\{c\}) = 2$
 $\mathfrak{m}(\{a,b\}) = \mathfrak{m}(\{a,c\}) = \mathfrak{m}(\{b,c\}) = 3$
 $\mathfrak{m}(X) = 5.$

Vemos que se cumple las condiciones de que el vacío es igual a 0 y que la función es positiva. También es facil ver que si $A \subseteq B$ entonces $\mathfrak{m}(A) \leq \mathfrak{m}(B)$.

También tenemos subadtividad, observemos que esto es así para algunos casos especificos.

$$5 = \mathfrak{m}(\{a\}) + \mathfrak{m}(\{b,c\}) \ge \mathfrak{m}(X) = 5$$

$$4 = \mathfrak{m}(\{a\}) + \mathfrak{m}(\{b\}) \ge \mathfrak{m}(\{a,b\}) = 3$$

$$6 = \mathfrak{m}(\{a\}) + \mathfrak{m}(\{b\}) + \mathfrak{m}(\{c\}) \ge \mathfrak{m}(X) = 5$$

$$6 = \mathfrak{m}(\{a,b\}) + \mathfrak{m}(\{b,c\}) \ge \mathfrak{m}(X) = 5$$

Los demás casos son triviales o analogos a los mostrados anteriormente, por lo que podemos concluir que se tiene subaditividad.

Ahora nótese que $A = \{a\}$ cumple la propiedad (1.1), pues

$$2+3=\mathfrak{m}(\{a\})+\mathfrak{m}(\{b,c\})=\mathfrak{m}(X)=5$$

Pero A no es medible pues si tomamos $B = \{a, b\}$ tenemos que

$$3 = \mathfrak{m}(B) \lneq \mathfrak{m}(B \cap A) + \mathfrak{m}(B \cap [X \setminus A]) = \mathfrak{m}(\{a\}) + \mathfrak{m}(\{b\}) = 2 + 2 = 4.$$

(2.) (i.) Denote por \mathbb{R}_d la recta real con la topología discreta. Muestre que el espacio $\mathbb{R}_d \times \mathbb{R}$ con la topología producto es localmente compacto.

Demostración. Para demostrar esto primero probamos tres lemas sencillos de topología general.

Lema 2.1. Cualquier espacio X con la topología discreta es compacto.

Demostración. Tómese cualquier $x \in X$. Si tomamos el singleton $\{x\}$ tenemos que es abierto porque en la topología discreta todo subconjunto de X es abierto y adicionalmente es compacto porque es finito. Por lo tanto $\{x\}$ es una vecindad compacta de X. Puesto que x es arbitrario concluimos que X es localmente compacto.

Lema 2.2. El espacio \mathbb{R} es localmente compacto.

Demostración. Tómese cualquier $x \in \mathbb{R}$. Sabemos que existe algún intervalo abierto (a,b) tal que $x \in (a,b)$ y puesto que tenemos que [a,b] es compacto concluimos que [a,b] es una vecindad compacta de x. Ver $[Mun00, \S 29, Ejemplo 1]$.

Lema 2.3. Sean X y Y dos espacio topológicos localmente compactos. Entonces tenemos que el espacio $X \times Y$ con la topología producto es localmente compacto.

Demostración. Tómese un punto cualquiera (x,y) en el producto. Puesto que X y Y son localmente compactos tenemos que existen conjuntos abiertos U,V y conjuntos compactos J,K tales que $x \in U \subseteq J \subseteq X$ y $y \in V \subseteq K \subseteq Y$. Puesto que el producto de compactos es compacto (ver [Mun00, Teorema 26.7]) y el producto de abiertos es abierto (ver [Mun00, § 15, La topología producto de $X \times Y$]), concluimos que

$$(x,y) \in U \times V \subseteq J \times K$$

por lo que concluimos que el espacio es localmente compacto.

Por el lema 2.1 y el lema 2.2 tenemos que \mathbb{R}_d y \mathbb{R} son localmente compactos. Finalmente por el lema 2.3 concluimos que el producto entre ellos $\mathbb{R}_d \times \mathbb{R}$ es localmente compacto.

(ii.) Para f definida sobre $\mathbb{R}_d \times \mathbb{R}$ y $x \in \mathbb{R}$ fijo, sea $f_{[x]}$ la función definida sobre \mathbb{R} por:

$$f_{[x]}(y) := f(x, y).$$

Muestre que si $f \in C_{00}(\mathbb{R}_d \times \mathbb{R})$ se tiene que $f_{[x]}$ es idénticamente cero excepto que para un número finito de elementos $x \in \mathbb{R}$.

Demostración. Vamos a demostrar otro lema sencillo de topología

Lema 2.4. Sea X un espacio con la topología discreta. Tenemos que K es compacto si y sólo si K tiene cardinalidad finita.

Demostración. Si K es finito entonces para cualquier cobertura abierta de K puedo seleccionar por cada elemento un conjunto de la cobertura que lo contenga. La colección de estos conjuntos sería una subcobertura finita que contiene a K y por lo tanto K es compacto.

Para la otra implicación tómese un conjunto $A \subseteq X$ de cardinalidad infinita. La colección de singletons de los elementos de A es una cobertura abierta de A que no tiene subcobertura finita pues si retiramos un solo singleton de la colección dejaríamos de cubrir el elemento correspondiente. Por lo tanto la condición que K sea finito es necesaria para que K sea compacto.

Tómese cualquier función f con soporte compacto y sea K el conjunto compacto correspondiente. Por un teorema de topología (ver [Mun00, Teorema 26.5]) tenemos que la imagen de K bajo una función continua es compacta. Por lo tanto, si π_1 y π_2 son las proyecciones de $\mathbb{R}_d \times \mathbb{R}$ a \mathbb{R}_d y \mathbb{R} respectivamente tenemos que $\pi_1(K)$ y $\pi_2(K)$ son compactos y por lo tanto $\pi_1(K) \times \pi_2(K)$ (ver nuevamente [Mun00, Teorema 26.7]). Adicionalmente por el **lema 2.4** sabemos que $\pi_1(K)$ es finito. Tenemos que $K \subseteq \pi_1(K) \times \pi_2(K)$. Luego como f es de soporte compacto tenemos que para cualquier $x \notin \pi_1(K)$, $f_{[x]}(y) = f(x,y) = 0$ para cualquier $y \in \mathbb{R}$. Así que probamos que $f_{[x]}$ es idénticamente 0 para cofinitos $x \in \mathbb{R}$.

(iii.) Sea S la integral de Riemann y defina I sobre $C_{00}(\mathbb{R}_d \times \mathbb{R})$ por:

$$I(f) := \sum_{x \in \mathbb{R}} S(f_{[x]}).$$

Muestre que I es un funcional lineal positivo sobre $C_{00}(\mathbb{R}_d \times \mathbb{R})$.

Demostración. Tenemos que S es un funcional lineal, por lo que tenemos que sí f es idénticamente 0 entonces S(f)=0 y además S(f+g)=S(f)+S(g). Además por el punto anterior tenemos que $f_{[x]}$ es 0 en todos excepto finitos $x\in\mathbb{R}$. Sean $\{x_1,x_2,\cdots,x_n\}$ los elementos donde $f_{[x]}\neq 0$. Tenemos entonces que

$$I(f) = \sum_{x \in \mathbb{R}} S(f_{[x]}) = \sum_{i=1}^{n} S(f_{[x_i]}) = S(\sum_{i=1}^{n} f_{[x_i]}).$$

Es fácil ver que para $f, g \in C_{00}(\mathbb{R}_d \times \mathbb{R}), \alpha, \beta \in \mathbb{C}$

$$(\alpha f + \beta g)_{[x]} = \alpha f_{[x]} + \beta g_{[x]}.$$

Luego

$$I(\alpha f + \beta g) = S(\sum_{i=1}^{n} \alpha f_{[x]} + \beta g_{[x]}) = S(\alpha \sum_{i=1}^{n} f_{[x]} + \beta \sum_{i=1}^{n} g_{[x]})$$
$$= \alpha S(\sum_{i=1}^{n} f_{[x]}) + \beta S(\sum_{i=1}^{n} g_{[x]}) = \alpha I(f) + \beta I(g)$$

por lo cual concluimos que I es un funcional lineal.

(iv.) Sea $\iota(A) := \overline{\overline{I}}(\chi_A)$, muestre que el conjunto $A = \{(x,0) : x \in \mathbb{R}\}$ es localmente ι -nulo, sin embargo no es ι -nulo.

Demostración. Considere los subespacios de la forma ($\{a\} \times \mathbb{R}$) con $a \in \mathbb{R}_d$. Por un lado tenemos que este subespacio es abierto (de hecho también es un subespacio cerrado) por lo que todo conjunto abierto en el subespacio también es abierto en $\mathbb{R}_d \times \mathbb{R}$. Por otra parte este espacio es isomorfo a \mathbb{R} tomando como isomorfismo la proyección sobre \mathbb{R} .

Por ultimo, notese que las funciones f con soporte compacto definidas en este conjunto también son de soporte compacto en todo el espacio si extendemos la función a una función f' que valga 0 en el complemento del subespacio. Esto se da puesto que un compacto en un subespacio también es compacto en el espacio originalm por lo tanto el mismo K se puede usar satisfactoriamente para subespacio y espacio. También se preserva la continuidad por el lema del pegamiento [Mun00, Teorema 18.3].

Entonces es fácil ver que para dicho f'

$$I(f') = I(f) = S(f)$$

Así que en este subespacio el funcional I coincide con el funcional S que origina la medida de Lebesgue. Puesto que tenemos la misma medida sobre un espacio que es isomorfo a \mathbb{R} concluimos que para cualquier función $f \in \mathfrak{F}^+$

$$\overline{\overline{I}}(f') = \overline{\overline{S}}(f)$$

En particular tenemos que para cualquier conjunto $B \subseteq \mathbb{R}_d \times \mathbb{R}$ y cualquier $a \in \mathbb{R}_d$,

$$\iota(B \cap (\{a\}) \times \mathbb{R})) = \lambda(\pi_2(B \cap (\{a\}) \times \mathbb{R})).$$

También tenemos por σ -aditividad que si un conjunto B es tal que $\pi_1(B)$ es a lo sumo enumerable entonces

$$\iota(B) = \sum_{i=0}^{\infty} \iota(B \cap (\{a_n\}) \times \mathbb{R})) = \sum_{i=0}^{\infty} \lambda(\pi_2(B \cap (\{a_n\}) \times \mathbb{R}))), \tag{2.1}$$

donde $\{a_n\}$ es una enumeración de $\pi_1(B)$.

Con esto podemos demostrar que A es localmete ι -nulo, pues para cualquier F compacto se tiene que

$$\iota(A \cap F) = \sum_{x:(x,0) \in F} \overline{\overline{I}}((\chi_A)_{[x]}) = \sum_{x:(x,0) \in F} \overline{\overline{S}}(\chi_{\{0\}}) = \sum_{x:(x,0) \in F} \lambda(\{0\}) = 0$$

Observese que las sumatorias anteriores son finitas, pues solo finitos x cumplen que $(x,0) \in F$. Esto se debe a que estos puntos están contenidos en $\pi_1(F) \subseteq \mathbb{R}_d$

que es compacto y por lo tanto finito por el lema 2.4. Por lo tanto las sumatorias estan bien definidas.

Ahora vamos a demostrar que $\iota(A) = \infty$.

Recuérdese que

$$\iota(A) = \inf\{\iota(U) : U \text{ es abierto y } A \subseteq U\}. \tag{2.2}$$

Ver [HS75, Teorema 9.24]. Por lo tanto, sea U un abierto cualquiera tal que $A \subseteq U$. Ahora definamos U_x como $(U \cap (\{x\} \times \mathbb{R}))$. Es fácil ver que cada U_x es un abierto y adicionalmente tenemos que

$$\iota(U_x) = \lambda(\pi_2(U_x)) > 0,$$

pues la proyección envía abiertos en abiertos y para la medida de Lebesgue tenemos que la medida de cualquier abierto siempre es mayor a cero (esto es fácil de ver pues cualquier abierto contiene algún intervalo (a, b) y por lo tanto su medida es mayor a b - a).

Pero esto no basta para demostrar que la medida de U es infinito. Para esto vamos a probar que existe un $\alpha > 0$ para el cual existen infinitos U_x tales que $\iota(U) \ge \alpha$ Supongase por contradicción que este no es el caso. Es decir, que para cualquier α existen a lo sumo finitos $x \in \mathbb{R}_d$ tales que $\iota(U_x) \ge \alpha$. Entonces considere la sucesión de conjuntos $B_n = \{x \in \mathbb{R}_d : \iota(U_x) \ge 1/n\}$. Tenemos que

$$\bigcup_{i=1}^{\infty} B_n = \mathbb{R}_d$$

pues para todo $x \in \mathbb{R}$, existe un n tal que $\iota(U_x)$) $\geq 1/n$. Llegamos a una contradicción pues la unión de los B_n es a lo sumo enumerable mientras que \mathbb{R}_d es no enumerable. (De hecho si suponemos que hay a lo sumo enumerables x tales que $U_x \geq \alpha$ también llegamos a la misma contradicción, por lo cual hay no enumerables x's mayores a un α).

Finalmente para el α mencionado anteriormente tomamos una subcolección infinita enumerable $\{U_{x_n}\}$ tal que $\iota(U_{x_n}) \geq \alpha$. Es claro que esta subcolección es disyunta dos a dos. Definimos la sucesión creciente de conjuntos $\{V_n\}$, como

$$V_n = \bigcup_{i=1}^n U_{x_n}$$
; y tenemos por σ -aditividad que $\iota(V_n) = \iota(\bigcup_{i=1}^n U_{x_n}) = \sum_{i=0}^n \iota(U_{x_n}) \ge n\alpha$.

Finalmente es claro que $V_1 \subseteq V_2 \subseteq \cdots \subseteq V_n \subseteq \cdots \subseteq U$. Luego tenemos por el teorema 10.13 [HS75] que

$$\iota(U) \ge \iota(\bigcup_{i=1}^{\infty} V_n) = \lim_{n \to \infty} \iota(V_n) \ge \lim_{n \to \infty} \alpha n = \infty.$$

Concluimos finalmente que $\iota(U) = \infty$, y puesto que esto se hizo para U arbitrario que contuviera a A concluimos por (2.2) que $\iota(A) = \infty$ y que por lo tanto no es ι -nulo.

(3.) Sea $T \subseteq \mathbb{R}$ un conjunto λ -medible tal que $\lambda(T) > 0$. Muestre que T - T contiene un intervalo. (Ejercicio 10.43 del libro de texto, viene con sugerencia.)

Demostración. Siguiendo los hints propuestos en [HS75, Ejercicio 10.43] vamos a demostrar tres lemas intermedios para demostrar el ejercicio.

Lema 3.1. Si U = (a, b) con $a, b \in \mathbb{R}$ y V un abierto cualquiera se tiene que la función

$$x \mapsto \lambda((x+U) \cap V)$$

es continua.

Demostración. Para un $\epsilon > 0$ tómese $\delta = \min(\epsilon, b - a)/2$. Ahora tómese x, x' tales que $|x - x'| < \delta$ y asumamos sin perdida de generalidad que $x' \le x$ (El caso en que $x \le x'$ es análogo). Entonces tenemos que

$$x + a < \delta + x' + a < b - a + x' + a = b + x'$$

Y por lo tanto tengo la siguiente cadena de desigualdades.

$$x' + a \le x + a \le x' + b \le x + b$$
.

Esto me permite partir los conjuntos x+U y x'+U como unión disyunta de dos conjuntos λ -medibles de la siguiente manera:

$$x + U = (x + a, x + b) = (x + a, x' + b) \cup [x' + b, x + b)$$
$$x' + U = (x' + a, x' + b) = (x' + a, x + a] \cup (x + a, x' + b)$$

Entonces por propiedades de la medida tenemos que

$$\begin{aligned} &|\lambda((x+U)\cap V) - \lambda((x'+U)\cap V)| \\ &= &|\lambda((x+a,x'+b)\cup[x'+b,x+b)\cap V) - \lambda((x'+a,x+a]\cup(x+a,x'+b)\cap V)| \\ &= &|\lambda([x+a,x'+b)\cap V) + \lambda([x'+b,x+b)\cap V) - \lambda((x'+a,x+a]\cap V) \\ &-\lambda((x+a,x'+b)\cap V)| \\ &= &|\lambda([x'+b,x+b)\cap V) - \lambda((x'+a,x+a]\cap V)| \end{aligned}$$

Pero por desigualdad triangular

$$|\lambda([x'+b,x+b)\cap V) - \lambda((x'+a,x+a]\cap V)|$$

$$< \lambda([x'+b,x+b)\cap V) + \lambda((x'+a,x+a]\cap V)$$

Puesto que $[x'+b,x+b)\cap V\subseteq [x'+b,x+b)$ y $(x'+a,x+a]\cap V\subseteq (x'+a,x+a]$ tenemos que

$$\lambda([x'+b,x+b)\cap V) + \lambda((x'+a,x+a]\cap V)$$

$$\leq \lambda([x'+b,x+b)) + \lambda((x'+a,x+a])$$

$$= (x+b-(x'+b)) + (x+a-(x'+a))$$

$$= 2(x-x')$$

$$< 2\delta$$

$$\leq \epsilon$$

Concluimos que para este caso la función es continua.

Ahora generalizamos este enunciado un poco más en el siguiente lema.

Lema 3.2. Para $U, V \subseteq \mathbb{R}$ dos abiertos cualquiera con $\lambda(U) < \infty$ se tiene que la función

$$x \mapsto \lambda((x+U) \cap V)$$

es continua.

Demostración. Tenemos por [HS75, Teorema 6.59] que $U = \bigcup_{n=1}^{\infty} A_n$ con $\{A_n\}$ una colección enumerable de intervalos abiertos disyuntos y por σ-aditividad tenemos que

$$\lambda((x+U)\cap V) = \sum_{n=0}^{\infty} \lambda((x+A_n)\cap V)$$
(3.1)

Si tomamos $M_n = \lambda(A_n)$ vemos por propiedades de la medida de Lebesgue que

$$\lambda((x+A_n)\cap V)\leq M_n$$

Por otro lado tenemos que

$$\sum_{n=0}^{\infty} M_n = \lambda(U) < \infty$$

Por lo tanto, podemos concluir por el test M de Weierstrass [Rud76, Teorema 7.10] que (3.1) converge uniformente y por lo demostrado anteriormente en el **lema 3.1** tenemos que $\lambda((x + A_n) \cap V)$ es continua para todo n. Esto a su vez implica que cualquier suma parcial es continua. Concluimos por lo tanto que (3.1) es continua [Rud76, Teorema 7.12].

A continuación pasamos incluso a un caso más general que el anterior.

Lema 3.3. Para $A, B \subseteq \mathbb{R}$ dos conjuntos λ -medibles con $\lambda(A), \lambda(B) < \infty$ se tiene que la función

$$x \mapsto \lambda((x+A) \cap B) \tag{3.2}$$

es continua.

Demostración. Por un teorema del libro [HS75, Teorema 9.24] podemos encontrar dos conjuntos abiertos U, V tales que $A \subseteq U$, $\lambda(U) \le \lambda(A) + \epsilon/6$, $B \subseteq V$ y $\lambda(V) \le \lambda(B) + \epsilon/6$.

Tenemos que $U = A \cup (U \cap A^c)$ y $V = B \cup (V \cap B^c)$, por lo que tenemos que

$$\lambda((x+U)\cap V) = \lambda((x+A)\cap V) + \lambda((x+((A^c\cap U)))\cap V)$$

= $\lambda((x+A)\cap B) + \lambda((x+A)\cap (B^c\cap V)) + \lambda((x+((A^c\cap U)))\cap V)$

Y por lo tanto podemos demostrar la siguiente desigualdad

$$|\lambda((x+U)\cap V) - \lambda((x+A)\cap B)| \le \lambda(U\cap A^C) + \lambda(V\cap B^C) \le \epsilon/3$$
(3.3)

pues

$$\begin{aligned} |\lambda((x+U)\cap V) - \lambda((x+A)\cap B)| &= |\lambda((x+A)\cap (B^c\cap V)) + \lambda((x+(A^c\cap U))\cap V)| \\ &\leq \lambda((x+A)\cap (B^c\cap V)) + \lambda((x+(A^c\cap U))\cap V) \\ &\leq \lambda(B^c\cap V) + \lambda(x+(A^c\cap U)) \\ &= \lambda(B^c\cap V) + \lambda(A^c\cap U) \\ &= \lambda(V) - \lambda(B) + \lambda(U) - \lambda(A). \\ &\leq \epsilon/6 + \epsilon/6 = \epsilon/3. \end{aligned}$$

Por otra parte por el **lema 3.2** sabemos que existe δ tal que si $|x-x'|<\delta$ entonces

$$|\lambda((x+U)\cap V) - \lambda((x'+U)\cap V)| \le \epsilon/3 \tag{3.4}$$

Ahora podemos usar las desigualdades (3.3) y (3.4) para demostrar que si $|x-x'|<\delta$ entonces

$$|\lambda((x+A)\cap B) - \lambda((x'+A)\cap B)| \le \epsilon$$

En efecto tenemos que

$$\begin{aligned} &|\lambda((x+A)\cap B) - \lambda((x'+A)\cap B)|\\ &\leq &|\lambda((x+A)\cap B) - \lambda((x+U)\cap V)| + |\lambda((x+U)\cap V) - \lambda((x'+A)\cap B)|\\ &\leq &|\lambda((x+A)\cap B) - \lambda((x+U)\cap V)| + |\lambda((x+U)\cap V) - \lambda((x'+U)\cap V)|\\ &+ |\lambda((x'+U)\cap V) - \lambda((x'+A)\cap B)|\\ &\leq &\epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon.\end{aligned}$$

El primer y ultimo valor absoluto se reduce por (3.3) y el valor absoluto del medio por (3.4).

Finalmente podemos demostrar el ejercicio. Primero supongase que $\lambda(T) < \infty$. Podemos usar el lema demostrado anteriormente para concluir que la función $f(x) = \lambda((x+T) \cap T)$ es continua. Adicionalmente en $x=0, \ f(x)=\lambda(T)$. Luego por continuidad en este punto existe un δ tal que si $|x|<\delta$ entonces $|f(x)-\lambda(T)|<\lambda(T)/2$ de donde concluimos que f(x)>0 pues

$$|f(x) - \lambda(T)| < \lambda(T)/2$$

$$-\lambda(T)/2 < f(x) - \lambda(T)$$

$$0 < f(x) - \lambda(T)/2 < f(x)$$

Esto implica claramente que para $x \in (-\delta, \delta)$, $(x+T) \cap T \neq \emptyset$. Es decir que existe un t tal que $t \in T$ y t = t' + x para algun $t' \in T$. Así que podemos escribir x = t - t', es decir que $x \in T - T$. Por lo tanto la bola de radio δ alrededor de 0 esta contenida en T - T y en particular si tomamos $0 < \alpha < \delta$ tenemos que $[-\alpha, \alpha] \subseteq T - T$.

Para el caso en que T tiene medida infinita seleccionamos un conjunto medible T' tal que $T' \subseteq T$ y $0 < \lambda(T) < \infty$.

Para obtenerlo tómese la secuencia de conjuntos $\{A_n\}$ donde $A_n = [-n, n] \cap T$. Claramente la secuencia es creciente y converge a T y para cualquier n tenemos que $\lambda(A_n) \leq 2n < \infty$. Por un teorema del libro [HS75, Teorema 10.13] tenemos que

$$\lim_{n \to \infty} \lambda(A_n) = \lambda(T) = \infty \tag{3.5}$$

Por lo que debe existir por lo menos algún n tal que $\lambda(A_n) > 0$.

Ahora simplemente tomamos $T' = A_n$, aplicamos lo demostrado anteriormente y puesto que por definición tenemos que $T' - T' \subseteq T - T$ concluimos que existe $\alpha > 0$ tal que $[-\alpha, \alpha] \subseteq T' - T' \subseteq T - T$.

Referencias

- [HS75] Edwin Hewitt and Karl Stromberg. Real and Abstract Analysis. Springer, New York, 1st edition edition, May 1975.
- [Mun00] James Munkres. *Topology*. Pearson, Upper Saddle River, NJ, 2 edition edition, January 2000.
- [Rud76] Walter Rudin. *Principles of Mathematical Analysis*. McGraw-Hill Education, New York, 3rd edition edition, January 1976.