

K-NEAREST NEIGHBOR ALGORITHM

INDICE

01 NN ALGORITHM

- SIMPLE AND SUPERVISED ALGORITHM
- USED IN CLASSIFICATION AND REGRESSION PROBLEMS
- EUCLIDEAN, MANHATTAN, MINKOWSKY, HAMMING DISTANCE
- USES PROXIMITY/SIMILARITY TO MAKE CLASSIFICATIONS

COMPUTATION

Class 1 We choose a point Class 2

Calculate distances

EUCLIDEAN DISTANCE

We choose the k

We choose the k

We choose the k

We choose the k

03 OOSING THE PARAMETER K

O3 OSING THE PARAMETER K

PARAMETER THAT REFERS TO THE NUMBER OF NEAREST NEIGHBOR TO INCLUDE

POSSIBILITIES:

- + $K \approx 1$, unstable predictions
- + Odd value to avoid confusion

K = 1

O3 OSING THE PARAMETER K

PARAMETER THAT REFERS TO THE NUMBER OF NEAREST NEIGHBOR TO INCLUDE

POSSIBILITIES:

- + $K \approx 1$, unstable predictions
- + Odd value to avoid confusion

Advantages

- Simple and easy to implement
- Fast: No training
- Versatile and adaptable

Disadvantages

- Slower when high dimensions or large datasets
- Need more storage
- Need to rescale dataset (normalization)
- Sensible to noise.

05 Biomedical applications

05

Genetics

01

Microarray gene expression analysis and clinical outcome prediction

https://www.nature.com/articles/tpj201056

Neural Networks

Classification of MRI brain images using k-nearest neighbor and artificial neural network https://ieeexplore.ieee.org/abstract/document/5972341?casa_token=TwngIWiRiroAAAAA:qtRpoQV_h7-eLLZTHxWoyjaywwJHtOYEqpVrKRdxiPfJhAmJeu1MuLMt7aolMgEROdm-5_VdlVw

02

Cancer predictions

03

Lymph Node Metastasis in Gastric
Cancerhttps://www.ncbi.nlm
.nih.gov/pmc/articles/PMC3
488413/

Cell Classification

Decide which type of cell a given feature is

https://www.youtube.com/watch?v=HVXime0nQeI

Heart Disease 04

Diagnosing Heart Disease

Patients
http://www.ijiet.org/papers/114-K0009.pdf

05 Cla

Biomedical applications:

Classification of Lymph Node Metastasis in Gastric Cancer

OBJECTIVE

classify lymph node metastasis from nonlymph node metastasis using KNN algorithm

Li, C., Zhang, S., Zhang, H., Pang, L., Lam, K., Hui, C., & Zhang, S. (2012). Using the K-nearest neighbor algorithm for the classification of lymph node metastasis in gastric cancer. *Computational and mathematical methods in medicine*, 2012, 876545. https://doi.org/10.1155/2012/876545

 $\label{thm:continuous} \begin{tabular}{ll} Table 4 \\ Classification performance of the SFS-KNN algorithm with different neighborhood sizes. \\ \end{tabular}$

Neighborhood size		<i>K</i> = 1	K = 3	<i>K</i> = 5	<i>K</i> = 7	K = 9	
Pre-	Selected	14, 16	14, 31, 5, 15,	14, 31,	12, 31, 8, 29,	12, 31, 23, 26,	
norm	features		26, 4, 27, 21,	10, 36, 3,	3, 15, 33, 1	3, 24, 30, 16	
			24, 9, 32, 2, 25,	25, 2			
			8, 28, 3, 16				
	Accuracy	88.29%	93.68%	93.29%	91.71%	92.24%	
Norm	Selected	12, 30	20, 15, 11, 30,	12, 30,	12, 19, 20,	12, 19, 29, 30,	
	features		5	31, 33, 14	30, 5, 18, 25,	8, 34, 33, 25,	
					17, 34, 3, 32,	15, 6, 24, 7,	
					15, 24	10, 20, 17	
	Accuracy	93.95%	96.45%	96.58%	96.18%	97.89%	

Table 5

Classification performance of mRMR-KNN (MIQ) with different neighborhood sizes.

	Neighorhood size	K = 1	<i>K</i> = 3	<i>K</i> = 5	<i>K</i> = 7	K = 9			
Prenorm	Sequence	14, 19, 5, 1	7, 23, 12, 3, 1	.6, 18, 22, 1, 1	15, 4, 2, 30, 13	3, 21, 32, 10			
		33, 11,	34, 20, 35, 31	, 25, 9, 29, 24	, 8, 7, 26, 36,	27, 28, 6			
	Length	1	28	28	35	1			
	Accuracy	87.50%	89.74%	89.08%	87.24%	81.71%			
Norm	Sequence	15, 21, 3, 3	0, 17, 24, 12,	14, 23, 5, 16,	22, 2, 18, 27,	1, 20, 4, 33			
	25, 13, 19, 6, 28, 35, 26, 32, 7, 29, 34, 8, 31, 9, 11, 10, 36								
	Length	4	2	2	2	10			
	Accuracy	90.00%	94.87%	94.87%	94.74%	95.66%			

K=5 is the optimal neighborhood

06

Code Example

```
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.datasets import load breast cancer
from sklearn.metrics import confusion matrix
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model selection import train test split
import seaborn as sns
sns.set()
#BREAST CANCER DATASET 30 features
##The dataset classifies tumors into two categories (malignant, 0, and benign, 1).
# We must encode categorical data for it to be interpreted by the model.
breast cancer = load breast cancer()
X = pd.DataFrame(breast cancer.data, columns=breast cancer.feature names)
X = X[['mean area', 'mean compactness']]
y = pd.Categorical.from_codes(breast_cancer.target, breast_cancer.target_names)
y = pd.get_dummies(y, drop_first=True)
#We need to put aside data to verify whether our model does a good job at classifying the data.
# By default, train test split sets aside 25% of the samples in the original dataset for testing.
X train, X test, y train, y test = train test split(X, y, random state=1)
#The sklearn library has provided a layer of abstraction on top of Python.
# Therefore, it's sufficient to create an instance of KNeighborsClassifier.
#Set at k=5 nearest neighbors. We chose Euclidean distance for determining
#the proximity between neighboring points.
knn = KNeighborsClassifier(n neighbors=5, metric='euclidean')
knn.fit(X train, y train)
#Using our newly trained model, we predict whether a tumor is benign or not given its
#mean compactness and area.
v pred = knn.predict(X test)
#We visually compare the predictions made by our model with the samples inside the testing set.
```

```
sns.scatterplot(
    x='mean area',
    y='mean compactness',
    hue='benian',
    data=X test.join(y test, how='outer')
plt.scatterplot(
    X test['mean area'],
    X_test['mean compactness'],
    c=v pred.
    cmap='coolwarm',
    alpha=0.7
#Another way of evaluating our model is to compute the confusion matrix.
#The numbers on the diagonal of the confusion matrix correspond to correct predictions whereas
#the others imply false positives and false negatives.
foraccuracy=confusion matrix(y test, y pred)
print(foraccuracy)
```

https://towardsdatascience.com/k-nearest-neighbor-python-2fccc47d2a55

06 Code Example

K=5

Samples inside the testing set

https://towardsdatascience.com/k-nearest-neighbor-python-2fccc47d2a55

06 Code Example

$$Accuracy = rac{TP + TN}{TP + TN + FP + FN}$$

[[TP FP], [FN TN]]

https://towardsdatascience.com/k-nearest-neighbor-python-2fccc47d2a55

