Phasors 019

0 of 5 attempts made

The AC circuit below has $\omega = W_1$ and is in steady state. The phasor diagram shows the phasors of v_S and i_S . You are given the angle a, and vector lengths $|\mathbf{I_S}| = A_1$ and $|\mathbf{V_S}| = A_2 \sqrt{b}$. The diagram is not necessarily drawn to scale (but $\mathbf{V_S}$ is along the imaginary axis). The element in the center (rectangular box) is either an inductor or a capacitor but you are not told which.

- a. At what time does v_R reach its maximum value? Enter $k = t_0 \cdot \frac{12}{\pi}$, where t_0 is the first time that the maximum is reached, for $t_0 \ge 0$. (Hint: convert a to radians first)
- b. We select the mystery element such that $|I_a|$ is minimized (note that this is the current through the voltage source). What is the mystery element type (enter 1 for capacitor, 2 for inductor)? What is its value X (i.e., either the capacitance or the inductance value, in F or H respectively)?

Given Variables:

W1:4 rad/s

a: -30 degrees

A1:1A A2:10 V b:3

R1:1 ohm

Calculate the following:

k (s):

0.5

Type:

2

X:

5

The AC circuit below has $\omega=W_1$ and is in steady state. The phasor diagram shows the phasors of $v_{\mathcal{S}}$ and i_S . You are given the angle a_i , and vector lengths $|\mathbf{I}_S| = A_1$ and $|\mathbf{V}_S| = A_2 \sqrt{b}$. The diagram is not necessarily drawn to scale (but V_S is along the imaginary axis). The element in the center (rectangular box) is either an inductor or a capacitor but you are not told which.

- a. At what time does v_R reach its maximum value? Enter $k = t_0 \cdot \frac{12}{\pi}$, where t_0 is the first time that the maximum is reached, for $t_0 \ge 0$. (Hint: convert α to radians first)
- b. We select the mystery element such that $|I_a|$ is minimized (note that this is the current through the voltage source). What is the mystery element type (enter 1 for capacitor, 2 for inductor)? What is its value X (i.e., either the capacitance or the inductance value, in F or H respectively)?

If the mystery elevent is a capacita or inductor: It is perpendicular

Let's look at different options

$$cos(-a) = \frac{|\overline{J}b|}{|\overline{J}s|} \Rightarrow cos(\overline{J}) = \frac{\sqrt{3}}{2} = \frac{|\overline{J}b|}{2}$$

$$|I_b| = \sqrt{3}$$
 on the real axis => $I_b = \sqrt{3}$

also: Vs = Z, Ib => Z = Vs = 10/3 j = 10j

This must be an induction:
$$Z = J\omega L = 10J$$

 $\Rightarrow \omega L = 10 \Rightarrow L = \frac{10}{X = 5}$