```
import pandas as pd

df=pd.read_csv('/content/car data.csv')

df.shape

(301, 9)

print(df['Seller_Type'].unique())

print(df['Transmission'].unique())

print(df['Owner'].unique())

['Dealer' 'Individual']
['Manual' 'Automatic']
[0 1 3]
```

df.isnull().sum()

```
Car_Name 0
Year 0
Selling_Price 0
Present_Price 0
Kms_Driven 0
Fuel_Type 0
Seller_Type 0
Transmission 0
Owner 0
dtype: int64
```

df.describe()

	Year	Selling_Price	Present_Price	Kms_Driven	Owner
count	301.000000	301.000000	301.000000	301.000000	301.000000
mean	2013.627907	4.661296	7.628472	36947.205980	0.043189
std	2.891554	5.082812	8.644115	38886.883882	0.247915
min	2003.000000	0.100000	0.320000	500.000000	0.000000
25%	2012.000000	0.900000	1.200000	15000.000000	0.000000
50%	2014.000000	3.600000	6.400000	32000.000000	0.000000
75%	2016.000000	6.000000	9.900000	48767.000000	0.000000
max	2018.000000	35.000000	92.600000	500000.000000	3.000000

df.columns

final_dataset=df[['Year','Selling_Price','Present_Price','Kms_Driven','Fuel_Type','Seller_Type','Transmission','Owner']
]

#creating new feature bcz we need no of years for a car and not just year , this feature will help us find out the same by = current year-year

final_dataset['Current_Year']=2022

 $final_dataset['no_of_year'] = final_dataset['Current_Year'] - final_dataset['Year']$

final_dataset.head()

	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	Owner	Current_Year	no_of_year
0	2014	3.35	5.59	27000	Petrol	Dealer	Manual	0	2022	8
1	2013	4.75	9.54	43000	Diesel	Dealer	Manual	0	2022	9
2	2017	7.25	9.85	6900	Petrol	Dealer	Manual	0	2022	5
3	2011	2.85	4.15	5200	Petrol	Dealer	Manual	0	2022	11
4	2014	4.60	6.87	42450	Diesel	Dealer	Manual	0	2022	8
100										

#now year and current year is not required, therefore dropping it

final_dataset.drop(['Year'],axis=1,inplace=True)

final_dataset.drop(['Current_Year'],axis=1,inplace=True) #inplace because we need operation to take place like a permanent one

final_dataset=pd.get_dummies(final_dataset,drop_first=True)

final_dataset

	Selling_Price	Present_Price	Kms_Driven	Owner	no_of_year	Fuel_Type_Diesel	Fuel_Type_Petrol	Seller_Type_Individual	Transmission_Manual
0	3.35	5.59	27000		8				1
1	4.75	9.54	43000		9				*1
2	7.25	9.85	6900		5				°1
3	2.85	4.15	5200	0	11			0	*1
4	4.60	6.87	42450		8				·1
296	9.50	11.60	33988		6				
297	4.00	5.90	60000	0	7	0			
298	3.35	11.00	87934		13				"1
299	11.50	12.50	9000	0	5				1
300	5.30	5.90	5464		6				1
301 rd	ows × 9 columns								

#finding correlation

final_dataset.corr()

	Selling_Price	Present_Price	Kms_Driven	Owner	no_of_year	Fuel_Type_Diesel	Fuel_Type_Petrol	Seller_Type_Individual	Transmission_Manual
Selling_Price	1.000000	0.878983	0.029187	-0.088344	-0.236141	0.552339	-0.540571	-0.550724	-0.367128
Present_Price	0.878983	1.000000	0.203647	0.008057	0.047584	0.473306	-0.465244	-0.512030	-0.348715
Kms_Driven	0.029187	0.203647	1.000000	0.089216	0.524342	0.172515	-0.172874	-0.101419	-0.162510
Owner	-0.088344	0.008057	0.089216	1.000000	0.182104	-0.053469	0.055687	0.124269	-0.050316
no_of_year	-0.236141	0.047584	0.524342	0.182104	1.000000	-0.064315	0.059959	0.039896	-0.000394
Fuel_Type_Diesel	0.552339	0.473306	0.172515	-0.053469	-0.064315	1.000000	-0.979648	-0.350467	-0.098643
Fuel_Type_Petrol	-0.540571	-0.465244	-0.172874	0.055687	0.059959	-0.979648	1.000000	0.358321	0.091013
Seller_Type_Individual	-0.550724	-0.512030	-0.101419	0.124269	0.039896	-0.350467	0.358321	1.000000	0.063240
Transmission_Manual	-0.367128	-0.348715	-0.162510	-0.050316	-0.000394	-0.098643	0.091013	0.063240	1.000000

import seaborn as sns

#plotting in form of pairplot using seaborn

sns.pairplot(final_dataset)

#independent and dependent feautre
x=final_dataset.iloc[:,1:] #from 1st col = independent
y=final_dataset.iloc[:,0] #first as dependent

x.head()

	Present_ Price	Kms_Dr iven	Own er	no_of_y ear	Fuel_Type_ Diesel	Fuel_Type_ Petrol	Seller_Type_Ind ividual	Transmission_ Manual
0	5.59	27000	0	8	0	1	0	1
1	9.54	43000	0	9	1	0	0	1
2	9.85	6900	0	5	0	1	0	1
3	4.15	5200	0	11	0	1	0	1
4	6.87	42450	0	8	1	0	0	1

y.head()

```
1 4.75
2 7.25
3 2.85
4 4.60
Name: Selling Price, dtype: float6
```

#feature importance

from sklearn.ensemble import ExtraTreesRegressor

model=ExtraTreesRegressor()

model.fit(x,y)

ExtraTreesRegressor()

#train test split

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

x_train.shape

(240, 8)

from sklearn.ensemble import RandomForestRegressor

rf_random=RandomForestRegressor()

import numpy as np

#hypeparametes

n_estimators=[int(x) for x in np.linspace(start=100, stop = 1200, num = 12)]

print(n_estimators)

[100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200]

#first create the base model to tune

rf=RandomForestRegressor()

#applying randimize search cv

rf_random = RandomizedSearchCV(estimator=rf, param_distributions = random_grid, scoring='neg_mean_squared_error',n_iter=10, cv=5, verbose=2, random_state=42,n_jobs=1)

rf_random.fit(x_train,y_train)

RandomForestRegressor()

prediction=rf_random.predict(x_test)

prediction

```
5.2288,
                            8.6604,
                                      1.555 ,
                                                1.1764,
array([
        4.7845,
                                                0.8053, 10.2285,
                  4.219 ,
                            2.6015,
        0.4249,
                  0.2142,
                                      6.037
                                                          4.0639,
                            0.2457,
                                      7.8805,
                                                4.1935,
                                                          4.3345,
                  7.3655,
                                                0.2714,
                            5.1415,
                            3.1537,
                            0.4153,
```

import seaborn as sns

sns.distplot(y_test-prediction)

plt.scatter(y_test,prediction)

from sklearn import metrics

print('MAE:', metrics.mean_absolute_error(y_test, prediction))

print('MSE:', metrics.mean_squared_error(y_test, prediction))

print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, prediction)))

MAE: 0.7062967213114754 MSE: 4.574107365737702 RMSE: 2.138716289211288