STA 303/1002-Methods of Data Analysis II Sections L0101& L0201, Winter 2018

Shivon Sue-Chee

January 23-25, 2018

- ► Hard to answer questions about the main factor effects
- ► Communicate a table of estimated means , 9 ¿
- ► Have separate models of Y against one factor for the different levels of the other factor

References:

- ► The Statistical Sleuth, 3rd edition by Ramsey and Schafer
- https://cran.r-project.org/web/packages/Sleuth3/ vignettes/chapter13-HortonMosaic.pdf

Systemadic increase in treatment effect as we increase Two-way ANOVA level of Factor 2 For small observed means, the treatment effect is smaller and vice versa

Should insignificant block effects be kept in the model?

- a lactor

- not treatment factor

- General advice is to drop insignificant terms
- ► For data from a <u>randomized block experiment</u>, block effects should be maintained
- Ensure that the control exercised by blocking is maintained in the analysis.

Case Study II-The Pygmalion Effect

- ► Pygmalion effect- high expectations of a supervisor or teacher translate to improved performance by subordinates or students
- ► Data:

T	r	e	a	tı	n	e	n	ts
	-	_		_		_		

	IICat	11101163			
Company	Pygmalion	<u>Control</u>		63.2+67.2-(
1	80.0	63.2	69.2	63,51419	
2	83.9	63.1	81.5		
3	68.2	76.2		→ 76.2	
4	76.5	59.5	73.5		
5	87.8	73.9	78.5		
6	89.8	78.9	84.7		
7	76.1	60.6	69.6		
8	71.5	67.8	73.2		
9	69.5	72.3	73.9		
10	83.7	63.7	77.7		

Case Study II: Additive model summary

Multiple R-squared: 0.5647, Adjusted R-squared: 0.3228

F-statistic: 2.335 on 10 and 18 DF, p-value: 0.0564

```
Call:
lm(formula = Score ~ company + treat)
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
               68.39316
                           3.89308 17.568 8.92e-13 ***
companyC10
                4.23333
                           5.36968
                                     0.788
                                              0.4407
                                     0.999
companyC2
                5.36667
                           5.36968
                                              0.3308
                           6.01886
                                     0.033
                                              0.9743
companyC3
                0.19658
                                     -0.180
                                              0.8591
companyC4
               -0.96667
                           5.36968
                                     1.726
                                              0.1015
companyC5
                9.26667
                           5.36968
companyC6
               13.66667
                           5.36968
                                     2.545
                                              0.0203 *
                                              0.7094
companyC7
               -2.03333
                           5.36968
                                    -0.379
                                              0.9951
companyC8
                0.03333
                           5.36968
                                     0.006
companyC9
                1.10000
                           5.36968
                                     0.205
                                              0.8400
treatPygmalion
                                     2.799
                7.22051
                           2.57951
                                              0.0119 *
Residual standard error: 6.576 on 18 degrees of freedom
```

Case Study II: Additive model summary

```
Call:
lm(formula = Score ~ treat + company)
```

Coefficients:

Estimate Std. Error t value Pr(>|t|) 3.89308 17.568 8.92e-13 *** (Intercept) 68.39316 treatPygmalion 77.22051 2.57951 2.799 0.0119 *4.23333 5.36968 0.788 companyC10 0.4407 companyC2 5.36667 5.36968 0.999 0.3308 companyC3 6.01886 0.033 0.9743 0.19658 companyC4 5.36968 -0.1800.8591 -0.96667companyC5 9.26667 5.36968 1.726 0.1015 companyC6 13.66667 5.36968 2.545 0.0203 * -0.379companyC7 -2.033335.36968 0.7094 0.03333 5.36968 0.006 0.9951 companyC8 companyC9 5.36968 0.205 0.8400 1.10000

B, ± t' se(P,).

Residual standard error: 6.576 on 18 degrees of freedom Multiple R-squared: 0.5647, Adjusted R-squared: 0.3228 F-statistic: 2.335 on 10 and 18 DF, p-value: 0.0564

Two-way ANOVA

0-way ANOVA

Ha! at least 1 \beta not 0 (P=0.0564) < \kappa = 0.10)

Estimated Mean Response from Additive Model

Estimated inteat	Tresponde nom /	a artivo moder
y/treat, (mp)	= B+ B+ +	Scarp.
Company	$Pygmalion(\mathbb{1}_{PYG,i}=1)$	$Control(\mathbb{1}_{PYG,i}=0)$
1	68.39 + 7.22 = 6	$68.39 - \beta_0$ $68.39 + 5.37$
2	68.39+7.22+5.37	68.39 +5.37
3	N	'h' P3
4	•	•
5	•	•
6		
7	•	•
8		
9		^ ^
10	68.39 + 7.22 + 4.23	68.39+4.23 - 3+6
	JB3+B,+B2	

Observ	ed Grou	p mea	ns vs Es	timate	d mear	第十分,	ß		
		Observed Means			Estimated Means				
	Company	Pyg	Control	$n_{control}$	Pyg /	Control	^		
	1	80.0	(66.2)	2	75.61	68.39 —	- β.		
	2	83.9	72.3	2	80.98	73.76	•		
	3	68.2	76.2	1	75.81	68.59			
	4	76.5	66.5	2	74.65	67.43			
	5	87.8	76.2	2	84.88	77.66			
	6	89.8	81.8	2	89.28	82.06			
	7	76.1	65.1	2	73.58	66.36			
	8	71.5	70.5	2	75.65	68.43			
	9	69.5	73.1	2	76.71	69.49			
	10	83.7	70.7	2	79.85	72.63			
	means	78.70	71.0	63	78.70	71.48			
	from to		19 1		7 rom 10		From	10 est	mated
			•	'			M	ieans	

Parameter estimation and Unbalanced design

- Estimated means for treatments are averages over 10 companies
- ▶ Observed Means vs Estimated means: Not the same because there are unequal number of control observations per company. Company 3 has 1 control platoon; other companies have 2.
- ► The design is nearly balanced.
- ► Affects constant variance assumption and variance estimate
- © Consider any evidence as exploratory
- ► Consider weighted least squares regression

Measuring treatment effect

```
cyt(1-0.05/2,df=27)
> sqrt((9*var(Score[treat=="Pygmalion"])+18*var(Score[treat=="Control"]))/27)
> t.test(Score[treat=="Pygmalion"], Score[treat=="Control"], var.equal=T)

[1] 2.051831
[1] 7.356078

Two Sample t-test

data: Score[treat == "Pygmalion"] and Score[treat == "Control"]

t = 2.4595, df = 21, p-value = 0.0206
alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval
1.171707 12.965135

sample estimates:
mean of x mean of y
78.70000 71.63158
```

Conclusions

- ► There is evidence of a difference in mean score between pygmalion and control platoons (p=0.0119). (Consider this as weak evidence since we have some concerns about variance estimates.)
- Confidence Intervals for the difference in mean score between pygmalion and control platoons:
 - ▶ Pooled 2-sample t:

$$(78.7 - 71.6) \pm 2.05(7.36)\sqrt{(1/10 + 1/19)} = (1.17, 12.96)$$

Least-squares approach (Additive model):

78.70-71.48

$$(7.22 \pm 2.101(2.5795) = (1.8, 12.6)$$

▶ On average, pygmalion platoons (mean=78.7) scored higher than control platoons (mean=71.6).