An Introduction to Manifold

Chapter 2 Manifolds
5. Smooth Functions on a Euclidean Space
5.1. Topological Manifolds
5.2. Compatible Charts
5.3. Smooth Manifolds
5.4. Examples of Smooth Manifolds
6. Smooth Maps on a Manifold 7
6.1. Smooth Functions on a Manifold
6.2. Smooth Maps Between Manifolds
6.3. Diffeomorphisms
6.4. Smoothness in Terms of Components
6.5. Examples of Smooth Maps
6.6. Partial Derivatives
6.7. The Inverse Function Theorem
7. Quotients
7.1. The Quotient Topology
7.2. Continuity of a Map on a Quotient
7.3. Identification of a Subset to a Point
7.4. A Necessary Condition for a Hausdorff Quotient
7.5. Open Equivalence Relations
7.6. Real Projective Space
7.7. The Standard C^{∞} Atlas on a Real Projective Space

We are concerned mainly with smooth manifolds.

5. Smooth Functions on a Euclidean Space

5.1. Topological Manifolds

Definition 5.1 A topological space is **second countable** if it has a countable base.

Definition 5.2 A **neighborhood** of a point p in a topological space M is any open set $U \subset M$ such that $p \in U$.

Definition 5.3 An **open cover** of a topological space M is a collection $\{U_{\alpha}\}_{\alpha \in A}$ of open sets such that $M = \bigcup_{\alpha \in A} U_{\alpha}$.

Definition 5.4 A topological space M is **locally Euclidean of dimension** n if every point $p \in M$ has a neighborhood U such that there is a homeomorphism ϕ from U to an open subset of \mathbb{R}^n .

The pair $(U, \phi : U \to \mathbb{R}^n)$ is called a **chart** of M at p, U is called the **coordinate neighborhood** or **coordinate open set** of p, and ϕ is called the **coordinate map** or **coordinate system** on U. A chart (U, ϕ) is **centered** at $p \in U$ if $\phi(p) = 0$.

Definition 5.5 A **topological manifold** is a Hausdorff, second countable, locally Euclidean space. It is of **dimension** n if it is locally Euclidean of dimension n.

Corollary 5.6 (invarience of dimension) An open subset of \mathbb{R}^n is not homeomorphic to an open subset of \mathbb{R}^m if $n \neq m$.

If a topological space has several connected components, it is possible for each component to have a different dimension.

Example 5.7 The Euclidean space \mathbb{R}^n is covered by a single chart $(\mathbb{R}^n, \mathbb{1}_{\mathbb{R}^n})$, where $\mathbb{1}_{\mathbb{R}^n} : \mathbb{R}^n \to \mathbb{R}^n$ is the identity map. Every open subset of \mathbb{R}^n is also a topological manifold, with chart $(U, \mathbb{1}_U)$.

Proposition 5.8 The Hausdorff condition and second countability are "hereditary" properties, i.e.,

- (i) A subspace of a Hausdorff space is Hausdorff,
- (ii) A subspace of a second-countable space is second countable.

Example 5.9 (A cusp) The graph of $y = x^{\frac{2}{3}}$ in \mathbb{R}^2 is a topological manifold. By virtue of being a subspace of \mathbb{R}^2 , it is Hausdorff and second countable. It is locally Euclidean of dimension 1, since it is homeomorphic to \mathbb{R} via $(x, x^{\frac{2}{3}}) \mapsto x$

Example 5.10 (A cross) The cross in \mathbb{R}^2 with subspace topology is not locally Euclidean at the intersection p, and so cannot be a topological manifold.

Solution. Suppose the cross is locally Euclidean of dimension n at p. Then there is a neighborhood U of p homeomorphic to an open ball $B := B(0, \varepsilon) \subset \mathbb{R}^n$ with p mapping to 0. Then $U - \{p\}$ is homeomorphic to $B - \{0\}$. Since $B - \{0\}$ is connected if $n \ge 2$ or has two connected components if n = 1, but $U - \{p\}$ has 4 connected components, $U - \{p\}$ cannot be homeomorphic to $B - \{0\}$, contradicting the assumption that U is homeomorphic to B.

5.2. Compatible Charts

Suppose $(U, \phi: U \to \mathbb{R}^n)$ and $(V, \psi: V \to \mathbb{R}^n)$ are two charts of a topological manifold. Since $U \cap V$ is open in U, the image $\phi(U \cap V)$ is open in \mathbb{R}^n . Similarly, $\psi(U \cap V)$ is open in \mathbb{R}^n .

Definition 5.11 Two charts $(U, \phi : U \to \mathbb{R}^n), (V, \psi : V \to \mathbb{R}^n)$ of a topological manifold are \mathbb{C}^{∞} -compatible if the two maps

$$\phi \circ \psi^{-1} : \psi(U \cap V) \to \phi(U \cap V), \quad \psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V) \tag{1}$$

are C^{∞} . These two maps are called the **transition functions** between the charts (U, ϕ) and (V, ψ) . If $U \cap V$ is empty, then the two charts are automatically C^{∞} -compatible. To simplify the notation, we will write $U_{\alpha\beta}$ for $U_{\alpha} \cap U_{\beta}$ and $U_{\alpha\beta\gamma}$ for $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$. Since we are interested only in C^{∞} -compatible charts, we often omit mention of " C^{∞} " and speak simply of "compatible charts".

Definition 5.12 A C^{∞} atlas or simply an atlas on a locally Euclidean space M is a collection $\mathfrak{U} = \{(U_{\alpha}, \phi_{\alpha})\}$ of pairwise C^{∞} -compatible charts that cover M, i.e., $M = \bigcup_{\alpha} U_{\alpha}$.

Example 5.13 The Unit circle S^1 in the complex plane $\mathbb C$ may by described as the set of points $\{e^{it}\in\mathbb C\mid 0\le t\le 2\pi\}$. Let U_1 and U_2 be the open sets of S^1 defined by

$$\begin{split} &U_1 = \big\{ e^{it} \in \mathbb{C} \mid -\pi < t < \pi \big\}, \\ &U_2 = \big\{ e^{it} \in \mathbb{C} \mid 0 < t < 2\pi \big\}, \end{split} \tag{2}$$

and $\phi_{\alpha}: U_{\alpha} \to \mathbb{R}$ for $\alpha = 1, 2$ by

$$\phi_1(e^{it}) = t, \quad -\pi < t < \pi,$$

 $\phi_2(e^{it}) = t, \quad 0 < t < 2\pi,$
(3)

where ϕ_1 and ϕ_2 are both homeomorphisms from U_1 and U_2 to open subsets of \mathbb{R} . Thus, (U_1, ϕ_1) and (U_2, ϕ_2) are charts on S^1 . The intersection $U_1 \cap U_2$ consists of two connected components,

$$A = \{e^{it} \mid -\pi < t < 0\},\$$

$$B = \{e^{it} \mid 0 < t < \pi\},\$$
(4)

with

$$\begin{split} \phi_1(U_1 \cap U_2) &= \phi_1(A \sqcup B) = \phi_1(A) \sqcup \phi_1(B) = (-\pi, 0) \sqcup (0, \pi), \\ \phi_2(U_1 \cap U_2) &= \phi_2(A \sqcup B) = \phi_2(A) \sqcup \phi_2(B) = (\pi, 2\pi) \sqcup (0, \pi), \end{split} \tag{5}$$

where \sqcup denotes the disjoint union. The transition functions are given by

$$(\phi_2 \circ \phi_1^{-1})(t) = \begin{cases} t + 2\pi & \text{for } t \in (-\pi, 0) \\ t & \text{for } t \in (0, \pi) \end{cases},$$

$$(\phi_1 \circ \phi_2^{-1})(t) = \begin{cases} t - 2\pi & \text{for } t \in (\pi, 2\pi) \\ t & \text{for } t \in (0, \pi) \end{cases},$$

$$(6)$$

which means that the charts (U_1, ϕ_1) and (U_2, ϕ_2) are C^{∞} -compatible and then form a C^{∞} atlas.

Remark 5.14 Although the C^{∞} compatibility of charts is clearly reflexive and symmetric, it is not transitive. For example, Suppose (U_1, ϕ_1) is C^{∞} -compatible with (U_2, ϕ_2) and (U_2, ϕ_2) is C^{∞} -compatible with (U_3, ϕ_3) . Then the composite

$$\phi_3 \circ \phi_1^{-1} = (\phi_3 \circ \phi_2^{-1}) \circ (\phi_2 \circ \phi_1^{-1}) \tag{7}$$

is C^{∞} , but only on $\phi_1(U_{123})$, not necessarily on $\phi_1(U_{13})$.

Definition 5.15 A chart (V, ψ) is **compatible** with an atlas $\{(U_{\alpha}, \phi_{\alpha})\}$ if it is compatible with all the charts $(U_{\alpha}, \phi_{\alpha})$ of the atlas.

Lemma 5.16 Let $\{(U_{\alpha}, \phi_{\alpha})\}$ be an atlas on a locally Euclidean space M. If two charts (V, ψ) and (W, σ) are both compatible with the atlas $\{(U_{\alpha}, \phi_{\alpha})\}$, then they are compatible with each other.

Proof. Let $p \in V \cap W$. Since $\{(U_{\alpha}, \phi_{\alpha})\}$ is an atlas for M, $p \in U_{\alpha}$ for some α , then $p \in V \cap W \cap U_{\alpha}$. The composite

$$\sigma \circ \psi^{-1} = \left(\sigma \circ \phi_{\alpha}^{-1}\right) \circ \left(\phi_{\alpha} \circ \psi^{-1}\right) \tag{8}$$

is C^{∞} on $\psi(V \cap W \cap U_{\alpha})$, hence at $\psi(p)$. Since p is arbitrary, the composite $\sigma \circ \psi^{-1}$ is C^{∞} on $\psi(V \cap W)$. Similarly, $\psi \circ \sigma^{-1}$ is C^{∞} on $\psi(V \cap W)$. Thus, the charts (V, ψ) and (W, σ) are compatible.

5.3. Smooth Manifolds

Definition 5.17 An atlas \mathfrak{M} on a locally Euclidean space M is **maximal** if it is not contained in a larger atlas, i.e., if $\mathfrak{M} \subseteq \mathfrak{U}$, then $\mathfrak{M} = \mathfrak{U}$.

Definition 5.18 A smooth manifold or C^{∞} manifold is a topological manifold M together with a maximal atlas \mathfrak{M} . The maximal atlas \mathfrak{M} is called the **differential** structure on M. A manifold is said to have dimension n if all of its connected components have dimension n. A 1-dimensional manifold is called a **curve**, a 2-dimensional manifold is called a **surface**, and an n-dimensional manifold is called an n-manifold.

In parctice, to check that a topological manifold M is a smooth manifold, it is not necessary to exhibit a maximal atlas. The existence of any atlas on M will do.

Proposition 5.19 Any atlas $\mathfrak{U} = \{(U_{\alpha}, \phi_{\alpha})\}$ on a locally Euclidean space M is contained in a unique maximal atlas.

Proof. Adjoin to the atlas $\mathfrak U$ all charts (V_i, ψ_i) that are compatible with $\mathfrak U$. By Lemma 5.16 the charts (V_i, ψ_i) are compatible with each other. So the enlarged collection $\mathfrak U \cup \{(V_i, \psi_i)\}$ is an atlas on M. Any chart compatible with the new atlas is compatible with $\mathfrak U$, and so is contained in the new atlas. Thus, the new atlas is maximal.

Let $\mathfrak{M}_1, \mathfrak{M}_2$ be two maximal atlases containing \mathfrak{U} . Then all the charts of \mathfrak{M}_1 are compatible with \mathfrak{U} , then must belong to \mathfrak{M}_2 , i.e., $\mathfrak{M}_1 \subseteq \mathfrak{M}_2$. Similarly, $\mathfrak{M}_2 \subseteq \mathfrak{M}_1$. Thus, $\mathfrak{M}_1 = \mathfrak{M}_2$, i.e., the maximal atlas containing \mathfrak{U} is unique.

In summary, to show that a topological manifold M is a C^{∞} manifold, it is sufficient to check that

- (i) M is Hausdorff and second countable,
- (ii) M has a C^{∞} atlas (not necessarily maximal).

From now on, a "manifold" will mean a C^{∞} manifold, with the terms "smooth" and " C^{∞} " used interchangeably.

Definition 5.20 In the context of manifolds, we denote the standard coordinates on \mathbb{R}^n by r^1, \dots, r^n . If $(U, \phi : U \to \mathbb{R}^n)$ is a chart of a manifold, we let $x^i = r^i \circ \phi$ be the *i*th component of ϕ and write $\phi = (x^1, \dots, x^n)$ and $(U, \phi) = (U, x^1, \dots, x^n)$. For $p \in U$, $x^1(p), \dots, x^n(p)$ is a point in \mathbb{R}^n . The functions x^1, \dots, x^n are called **coordinates** or **local coordinates** on U. By abuse of notation, we sometimes omit the p. So the notation

 (x^1, \dots, x^n) stands alternately for local coordinates on U or for a point in \mathbb{R}^n . A chart (U, ϕ) about $p \in M$ is a chart in the differential structure of M such that $p \in U$.

5.4. Examples of Smooth Manifolds

Example 5.21 (Euclidean space) The Euclidean space \mathbb{R}^n is a smooth manifold with a single chart $(\mathbb{R}^n, r^1, \dots, r^n)$, where r^1, \dots, r^n are the standard coordinates on \mathbb{R}^n .

Example 5.22 (Open subsets of a manifold) Any open subset $V \subset M$ of a manifold M is also a manifold. If $\{(U_{\alpha}, \phi_{\alpha})\}$ is an atlas on M, then $\{(U_{\alpha} \cap V, \phi_{\alpha}|_{U_{\alpha} \cap V})\}$ is an atlas on V, where $\phi_{\alpha}|_{U_{\alpha} \cap V} : U_{\alpha} \cap V \to \mathbb{R}^n$ denotes the restriction of ϕ_{α} to $U_{\alpha} \cap V$.

Example 5.23 (Manifolds of dimension zero) In a manifold of dimension zero, every singleton subset is homeomorphic to \mathbb{R}^0 and so is open. Thus, a zero-dimensional manifold is a discrete set. By second countability, this discrete set is countable.

Example 5.24 (Graph of a smooth function) For a subset $A \in \mathbb{R}^n$ and a function $f: A \to \mathbb{R}^m$, the **graph** of f is defined to be the subset

$$\Gamma(f) = \{(x, f(x)) \in A \times \mathbb{R}^m\}. \tag{9}$$

If U is an open subset of \mathbb{R}^n and $f:U\to\mathbb{R}^m$ is C^∞ , then the two maps

$$\phi: \Gamma(f) \to U$$

$$(x, f(x)) \mapsto x,$$
(10)

and

$$(1,f): U \to \Gamma(f)$$
$$x \mapsto (x, f(x)), \tag{11}$$

are continuous and inverse to each other, and so are homeomorphisms. The graph $\Gamma(f)$ of $f: U \to \mathbb{R}^m$ has an atlas with a single chart $(\Gamma(f), \phi)$, and is therefore a C^{∞} manifold.

Example 5.25 (General linear group) For any two positive integers m, n, let $\mathbb{R}^{m \times n}$ be the vector space of all $m \times n$ matrices. The **general linear group** $\mathrm{GL}(n,\mathbb{R})$ is defined by

$$GL(n, \mathbb{R}) = \{ A \in \mathbb{R}^{n \times n} \mid \det A \neq 0 \} = \det^{-1}(\mathbb{R} - \{0\}).$$
 (12)

Since the determinant function is continuous, $\mathrm{GL}(n,\mathbb{R})$ is an open subset of $\mathbb{R}^{n\times n}\simeq\mathbb{R}^{n^2}$ and is therefore a manifold of dimension n^2 .

The **complex general linear group** $\mathrm{GL}(n,\mathbb{C})$ is defined to be the group of nonsingular $n \times n$ complex matrices. Since an $n \times n$ matrix A is nonsingular if and only if $\det A \neq 0$, $\mathrm{GL}(n,\mathbb{C})$ is an open subset of $\mathbb{C}^{n \times n} \simeq \mathbb{R}^{2n^2}$ and is therefore a manifold of dimension $2n^2$.

Example 5.26 (Unit circle in the (x, y)-plane) We now view S^1 as the unit circle in the real plane \mathbb{R}^2 with defining equation

$$x^2 + y^2 = 1. (13)$$

We can cover S^1 with four open sets

$$\begin{split} &U_1 = \left\{ \left(x, \sqrt{1 - x^2} \right) \mid -1 < x < 1 \right\}, \\ &U_2 = \left\{ \left(x, -\sqrt{1 - x^2} \right) \mid -1 < x < 1 \right\}, \\ &U_3 = \left\{ \left(\sqrt{1 - y^2}, y \right) \mid -1 < y < 1 \right\}, \\ &U_4 = \left\{ \left(-\sqrt{1 - y^2}, y \right) \mid -1 < y < 1 \right\}, \end{split} \tag{14}$$

with maps

$$\begin{aligned} \phi_1(x,y) &= \phi_2(x,y) = x, \\ \phi_3(x,y) &= \phi_4(x,y) = y. \end{aligned} \tag{15}$$

The transition functions are given by

$$(\phi_3 \circ \phi_1^{-1})(x) = \phi_3(x, \sqrt{1 - x^2}) = \sqrt{1 - x^2},$$

$$(\phi_4 \circ \phi_1^{-1})(x) = \phi_4(x, \sqrt{1 - x^2}) = \sqrt{1 - x^2},$$

$$(\phi_3 \circ \phi_2^{-1})(x) = \phi_3(x, -\sqrt{1 - x^2}) = -\sqrt{1 - x^2},$$

$$(\phi_4 \circ \phi_2^{-1})(x) = \phi_4(x, -\sqrt{1 - x^2}) = -\sqrt{1 - x^2},$$
(16)

etc. which are all C^{∞} . Thus $\{(U_i, \phi_i)\}_{i=1}^4$ is a C^{∞} atlas on S^1 .

Proposition 5.27 (An atlas for a product manifold) If $\{(U_{\alpha}, \phi_{\alpha})\}$ and $\{(V_i, \psi_i)\}$ are C^{∞} atlases for the manifolds M and N of dimensions m and n, respectively, then the collection

$$\{(U_{\alpha} \times V_i, \phi_{\alpha} \times \psi_i : U_{\alpha} \times V_i \to \mathbb{R}^m \times \mathbb{R}^n)\}$$
 (17)

of charts is a C^{∞} at las on $M \times N$. Therefore $M \times N$ is a C^{∞} manifold of dimension m+n.

Proof. Since $\{(U_{\alpha},\phi_{\alpha})\}$ and $\{(V_i,\psi_i)\}$ are C^{∞} at lases for the manifolds M and N, respectively, the charts $(U_{\alpha},\phi_{\alpha})$ and (V_i,ψ_i) are C^{∞} -compatible and cover M and N, respectively, i.e., $M=\bigcup_{\alpha}U_{\alpha}$ and $N=\bigcup_{i}V_i$. For any $p\times q\in M\times N$, there are $p\in U_{\alpha}$ and $q\in V_i$, then $p\times q\in U_{\alpha}\times V_i$, i.e., $M\times V_i$

For any $p \times q \in M \times N$, there are $p \in U_{\alpha}$ and $q \in V_i$, then $p \times q \in U_{\alpha} \times V_i$, i.e., $M \times N = \bigcup_{\alpha,i} (U_{\alpha} \times V_i)$.

For $(U_{\alpha}, \phi_{\alpha}: U_{\alpha} \to \tilde{U}_{\alpha} \subset \mathbb{R}^{m})$ and $(V_{i}, \psi_{i}: V_{i} \to \tilde{V}_{i} \subset \mathbb{R}^{n})$, the product map $\phi_{\alpha} \times \psi_{i}: U_{\alpha} \times V_{i} \to \tilde{U}_{\alpha} \times \tilde{V}_{i} \subset \mathbb{R}^{m} \times \mathbb{R}^{n} \simeq \mathbb{R}^{m+n}$ is a homeomorphism as the product of homeomorphisms.

For $U_{\alpha} \times V_i, U_{\beta} \times V_j \subset M \times N$, and suppose $(U_{\alpha} \times V_i) \cap (U_{\beta} \times V_j) \neq \emptyset$. The transition functions

$$(\phi_{\beta} \times \psi_{j}) \circ (\phi_{\alpha} \times \psi_{i})^{-1} = (\phi_{\beta} \circ \phi_{\alpha}^{-1}) \times (\psi_{j} \circ \psi_{i}^{-1}),$$

$$(\phi_{\alpha} \times \psi_{i}) \circ (\phi_{\beta} \times \psi_{j})^{-1} = (\phi_{\alpha} \circ \phi_{\beta}^{-1}) \times (\psi_{i} \circ \psi_{j}^{-1}),$$

$$(18)$$

are C^{∞} because the compositions are C^{∞} and the products of C^{∞} functions are C^{∞} . Thus, the collection $\{(U_{\alpha} \times V_i, \phi_{\alpha} \times \psi_i)\}$ is a C^{∞} atlas on $M \times N$. The dimension of $M \times N$ is m + n.

Example 5.28 The infinite cylinder $S^1 \times \mathbb{R}$ and the torus $S^1 \times S^1$ are smooth manifolds of dimensions 2.

Since $M \times N \times P = (M \times N) \times P$ is the successive product of spaces, if M, N, P are manifolds, then so is $M \times N \times P$. Thus, the n- dimensional torus $S^1 \times \cdots \times S^1$ is a manifold of dimension n.

Remark 5.29 Let S^n be the unit sphere

$$(x^{1})^{2} + (x^{2})^{2} + \dots + (x^{n+1})^{2} = 1$$
(19)

in \mathbb{R}^{n+1} . Using Example 5.26, it is easy to write down a C^{∞} atlas for S^n , showing that S^n has a differential structure. The manifold S^n with this differential structure is called the **standard** n-sphere.

6. Smooth Maps on a Manifold

By the C^{∞} compatibility of charts in an atlas, the smoothness of a map between two manifolds is independent of the choice of charts and is therefore well defined.

6.1. Smooth Functions on a Manifold

Definition 6.1 Let M be a smooth manifold of dimension n. A function $f: M \to \mathbb{R}$ is said to be **smooth** or \mathbb{C}^{∞} at a point $p \in M$ if there is a chart (U, ϕ) about p such that the composite

$$f \circ \phi^{-1} : \phi(U) \to \mathbb{R} \tag{20}$$

is C^{∞} at $\phi(p)$. The function f is said to be C^{∞} on M if it is C^{∞} at every point of M.

Remark 6.2 The definition of smoothness of a function f at a point is independent of the chart (U, ϕ) , for if $f \circ \phi^{-1}$ is C^{∞} at $\phi(p)$, and (V, ψ) any other chart about p, then on $\psi(U \cap V)$, the composite

$$f \circ \psi^{-1} = (f \circ \phi^{-1}) \circ (\phi \circ \psi^{-1}) \tag{21}$$

is C^{∞} at $\psi(p)$.

In Definition 6.1, $f: M \to \mathbb{R}$ is not assumed to be continuous. However, if f is C^{∞} at $p \in M$, then $f \circ \phi^{-1} : \phi(U) \to \mathbb{R}$, being a C^{∞} function at $\phi(p)$ in an open subset of \mathbb{R}^n , is continuous at $\phi(p)$. As a composite of continuous functions, $f = (f \circ \phi^{-1}) \circ \phi$ is continuous at p. Since we are interested only in functions that are C^{∞} on an open set, there is no loss of generality in assuming at the outset that f is continuous.

Proposition 6.3 (Smoothness of a real-valued function) Let M be a smooth manifold of dimension n and $f: M \to \mathbb{R}$ a real-valued function on M. The following are equivalent:

(i) The function $f: M \to \mathbb{R}$ is C^{∞} .

(ii) The manifold M has an atlas such that for every chart (U,ϕ) in the atlas, the composite

$$f \circ \phi^{-1} : \mathbb{R}^n \supset \phi(U) \to \mathbb{R} \tag{22}$$

is C^{∞} .

(iii) For every chart (V, ψ) on M, the composite

$$f \circ \psi^{-1} : \mathbb{R}^n \supset \psi(U) \to \mathbb{R}$$
 (23)

is C^{∞} .

Proof. We can prove the proposition as a cycle chain of implications.

- (ii) \Rightarrow (i): This follows directly from the definition of a C^{∞} function, since by (ii) every point $p \in M$ has a chart (U, ϕ) about it such that $f \circ \phi^{-1}$ is C^{∞} at $\phi(p)$.
- (i) \Rightarrow (iii): Let $p \in M$ and (V, ψ) be a chart about p. By Remark 6.2, $f \circ \psi^{-1}$ is C^{∞} at $\psi(p)$. Since p is arbitrary, $f \circ \psi^{-1}$ is C^{∞} on $\psi(V)$.

$$(iii) \Rightarrow (ii)$$
: Obvious.

Definition 6.4 Let $F: N \to M$ be a map and h a function on M. The **pullback** of h by F, denoted by F^*h , is the composite function

$$F^*h = h \circ F : N \to \mathbb{R}. \tag{24}$$

In this terminology, a function f on M is C^{∞} on a chart (U, ϕ) if and only if its pullback $(\phi^{-1})^* f$ is C^{∞} on the subset $\phi(U) \subset \mathbb{R}^n$.

6.2. Smooth Maps Between Manifolds

Definition 6.5 Let N and M be manifolds of dimensions n and m, respectively. A continuous map $F: N \to M$ is C^{∞} at a point $p \in N$ if there are charts (V, ψ) about $F(p) \in M$ and (U, ϕ) about $p \in N$ such that the composite

$$\psi \circ F \circ \phi^{-1} : \mathbb{R}^n \supset \phi(F^{-1}(V) \cap U) \to \mathbb{R}^m \tag{25}$$

is C^{∞} at $\phi(p)$. The continuous map $F: N \to M$ is said to be C^{∞} on N if it is C^{∞} at every point of N.

In Definition 6.5, we assume $F: N \to M$ is continuous to ensure that $F^{-1}(V)$ is open in N. Thus, C^{∞} maps are by definition continuous.

Remark 6.6 (Smooth maps into \mathbb{R}^m) In case $M = \mathbb{R}^m$, we can take $(\mathbb{R}^m, \mathbb{1}_{\mathbb{R}^m})$ as a chart about F(p) in M. According to Definition 6.5, $F: N \to \mathbb{R}^m$ is C^{∞} at $p \in N$ if and only if there is a chart (U, ϕ) about $p \in N$ such that the composite

$$F \circ \phi^{-1} : \mathbb{R}^n \supset \phi(U) \to \mathbb{R}^m \tag{26}$$

is C^{∞} at $\phi(p)$. Letting m=1, we recover the definition of a function being C^{∞} at a point in Definition 6.1.

Proposition 6.7 Suppose $F: N \to M$ is C^{∞} at $p \in N$. If (U, ϕ) is any chart about $p \in N$ and (V, ψ) is any chart about $F(p) \in M$, then $\psi \circ F \circ \phi^{-1}$ is C^{∞} at $\phi(p)$.

Proof. Since F is C^{∞} at p, there are charts $(U_{\alpha}, \phi_{\alpha})$ about $p \in N$ and (V_i, ψ_i) about $F(p) \in M$ such that $V_i \circ F \circ \phi_{\alpha}^{-1}$ is C^{∞} at $\phi_{\alpha}(p)$. By the C^{∞} compatibility of charts in a differential structure, both $\phi_{\alpha} \circ \phi^{-1}$ and $\psi \circ \psi_i^{-1}$ are C^{∞} . Hence, the composite

$$\psi \circ F \circ \phi^{-1} = (\psi \circ \psi_i^{-1}) \circ (V_i \circ F \circ \phi_\alpha^{-1}) \circ (\phi_\alpha \circ \phi^{-1}) \tag{27}$$

is
$$C^{\infty}$$
 at $\phi(p)$.

Proposition 6.8 (Smoothness of a map in terms of charts) Let N and M be manifolds of dimensions n and m, respectively and $F: N \to M$ a continuous map. The following are equivalent:

- (i) The map $F: N \to M$ is C^{∞} .
- (ii) There are at lases $\mathfrak U$ for N and $\mathfrak V$ for M such that for every chart $(U,\phi)\in\mathfrak U$ and $(V,\psi)\in\mathfrak V$, the composite

$$\psi \circ F \circ \phi^{-1} : \mathbb{R}^n \supset \phi(U \cap F^{-1}(V)) \to \mathbb{R}^m \tag{28}$$

is C^{∞} .

(iii) For every chart (U, ϕ) on N and (V, ψ) on M, the composite

$$\psi \circ F \circ \phi^{-1} : \mathbb{R}^n \supset \phi(U \cap F^{-1}(V)) \to \mathbb{R}^m \tag{29}$$

is C^{∞} .

Proof. We can prove the proposition as a cycle chain of implications.

- (ii) \Rightarrow (i): Let $p \in N$ and $(U, \phi) \in \mathfrak{U}$ be a chart about p and $(V, \psi) \in \mathfrak{V}$ a chart about F(p), then $\psi \circ F \circ \phi^{-1}$ is C^{∞} at $\phi(p)$. By Definition 6.5, $F: N \to M$ is C^{∞} at p. Since p is arbitrary, $F: N \to M$ is C^{∞} on N.
- (i) \Rightarrow (iii): Let (U, ϕ) be a chart on N and (V, ψ) a chart on M such that $U \cap F^{-1}(V) \neq \emptyset$. Let $p \in U \cap F^{-1}(V)$, then (U, ϕ) is a chart about p and (V, ψ) is a chart about F(p). By Proposition 6.7, $\psi \circ F \circ \phi^{-1}$ is C^{∞} at $\phi(p)$. Since p is arbitrary, $\phi(p)$ is arbitrary, $\psi \circ F \circ \phi^{-1}$ is C^{∞} on $\phi(U \cap F^{-1}(V))$.

$$(iii) \Rightarrow (ii)$$
: Obvious.

Proposition 6.9 (Composition of C^{∞} maps) If $F: N \to M$ and $G: M \to P$ are C^{∞} maps between manifolds, then the composite $G \circ F: N \to P$ is C^{∞} .

Proof. Let $(U,\phi),(V,\psi),(W,\sigma)$ be charts on N,M,P, respectively. Then

$$\sigma \circ (G \circ F) \circ \phi^{-1} = (\sigma \circ G \circ \psi^{-1}) \circ (\psi \circ F \circ \phi^{-1}). \tag{30}$$

Since F and G are C^{∞} , by Proposition 6.8(i) \Rightarrow (iii), $\sigma \circ G \circ \psi^{-1}$ and $\psi \circ F \circ \phi^{-1}$ are C^{∞} . As a composite of C^{∞} maps of open subsets of Euclidean spaces, $\sigma \circ (G \circ F) \circ \phi^{-1}$ is C^{∞} . By Proposition 6.8(iii) \Rightarrow (i), $G \circ F : N \to P$ is C^{∞} .

6.3. Diffeomorphisms

Definition 6.10 A **diffeomorphism** of manifolds is a bijective C^{∞} map $F: N \to M$ whose inverse F^{-1} is also C^{∞} .

According to the next two propositions, coordinate maps are diffeomorphisms, and conversely, every diffeomorphism of an open subset of a manifold with an open subset of Euclidean space can serve as a coordinate map.

Proposition 6.11 If (U, ϕ) is a chart on a manifold M of dimension n, then the coordinate map $\phi: U \to \phi(U) \subset \mathbb{R}^n$ is a diffeomorphism.

Proof. By definition, ϕ is a homeomorphism, so it suffices to check that both ϕ and ϕ^{-1} are C^{∞} .

We use the atlas $\{(U,\phi)\}$ with a single chart on U and atlas $\{(\phi(U),\mathbb{1}_{\phi(U)})\}$ with a single chart on $\phi(U)$. Since

$$\mathbb{1}_{\phi(U)} = \mathbb{1}_{\phi(U)} \circ \phi \circ \phi^{-1} : \phi(U) \to \phi(U) \tag{31}$$

is the identity map, it is C^{∞} . By Proposition 6.8(ii) \Rightarrow (i), ϕ is C^{∞} . Similarly, ϕ^{-1} is C^{∞} because

$$\mathbb{1}_U = \phi \circ \phi^{-1} \circ \mathbb{1}_{\phi(U)} : U \to U \tag{32}$$

is
$$C^{\infty}$$
.

Proposition 6.12 Let U be an open subset of a manifold M of dimension n. If $F: U \to F(U) \subset \mathbb{R}^n$ is a diffeomorphism onto an open subset of \mathbb{R}^n , then (U, F) is a chart in the differential structure of M.

Proof. For any chart $(U_{\alpha}, \phi_{\alpha})$ in the maximal atlas of M, both ϕ_{α} and ϕ_{α}^{-1} are C^{∞} by Proposition 6.11. As composites of C^{∞} maps, $F \circ \phi_{\alpha}^{-1}$ and $\phi_{\alpha} \circ F^{-1}$ are C^{∞} . Hence, (U, F) is compatible with the maximal atlas, i.e., (U, F) is a chart in the differential structure of M.

6.4. Smoothness in Terms of Components

Proposition 6.13 (Smoothness of a vector-valued function) Let N be a manifold and $F: N \to \mathbb{R}^m$ a continuous map. The following are equivalent:

- (i) The map $F: N \to \mathbb{R}^m$ is C^{∞} .
- (ii) The manifold N has an atlas such that for every chart (U, ϕ) in the atlas, the composite

$$F \circ \phi^{-1} : \phi(U) \to \mathbb{R}^m \tag{33}$$

is C^{∞} .

(iii) For every chart (U, ϕ) on N, the composite

$$F \circ \phi^{-1} : \phi(U) \to \mathbb{R}^m \tag{34}$$

is C^{∞} .

Proof. We can prove the proposition as a cycle chain of implications.

(ii) \Rightarrow (i): Let $\{(\mathbb{R}^m, \mathbb{1}_{\mathbb{R}^m})\}$ be the atlas on \mathbb{R}^m with a single chart, then

$$F \circ \phi^{-1} = \mathbb{1}_{\mathbb{R}^m} \circ F \circ \phi^{-1} : \phi(U) \to \mathbb{R}^m$$
 (35)

is C^{∞} . By Proposition 6.8(ii) \Rightarrow (i), $F: N \to \mathbb{R}^m$ is C^{∞} .

(i) \Rightarrow (iii): Let $\{(\mathbb{R}^m, \mathbb{1}_{\mathbb{R}^m})\}$ be the atlas on \mathbb{R}^m with a single chart, then by Proposition $6.8(i) \Rightarrow$ (iii),

$$\mathbb{1}_{\mathbb{R}^m} \circ F \circ \phi^{-1} = F \circ \phi^{-1} : \phi(U) \to \mathbb{R}^m \tag{36}$$

is C^{∞} .

$$(iii) \Rightarrow (ii)$$
: Obvious.

Proposition 6.14 (Smoothness in terms of components) Let N be a manifold. A vector-valued function $F: N \to \mathbb{R}^m$ is C^{∞} if and only if its components functions $F^1, \dots, F^m: N \to \mathbb{R}$ are all C^{∞} .

Proof. The map $F: N \to \mathbb{R}^m$ is C^{∞} .

- \iff For every chart (U, ϕ) on $N, F \circ \phi^{-1} : \phi(U) \to \mathbb{R}^m$ is C^{∞} .
- \iff For every chart (U,ϕ) on N, the functions $F^i \circ \phi^{-1} : \phi(U) \to \mathbb{R}$ are C^{∞} .

$$\iff$$
 The functions $F^i: N \to \mathbb{R}$ are C^{∞} .

Example 6.15 (Smoothness of a map to a circle).

Prove the map $F: \mathbb{R} \to S^1, F(t) = (\cos t, \sin t)$ is C^{∞} .

Solution. Let $\{(U_i, \phi_i) | i = 1, \dots, 4\}$ be the atlas on S^1 . On $F^{-1}(U_1)$,

$$(\phi_1 \circ F)(t) = \cos t \tag{37}$$

is C^{∞} . Similar computations show that $\phi_i \circ F$ is C^{∞} .

Proposition 6.16 (Smoothness of a map in terms of vector-valued functions) Let $F: N \to M$ be a continuous map between manifolds of dimensions n and m, respectively. The following are equivalent:

- (i) The map $F: N \to M$ is C^{∞} .
- (ii) The manifold M has an atlas such that for every chart $(V, \psi) = (V, y^1, \dots, y^m)$ in the atlas, the vector-valued function

$$\psi \circ F : F^{-1}(V) \to \mathbb{R}^m \tag{38}$$

is C^{∞} .

(iii) For every chart $(V, \psi) = (V, y^1, \dots, y^m)$ on M, the vector-valued function

$$\psi \circ F : F^{-1}(V) \to \mathbb{R}^m \tag{39}$$

is C^{∞} .

Proof. We can prove the proposition as a cycle chain of implications.

(ii) \Rightarrow (i): Let \mathfrak{V} be the atlas for M and $\mathfrak{U} = \{(U, \phi)\}$ any arbitrary atlas for N. Then for each chart $(V, \psi) \in \mathfrak{V}$, the collection

$$\{(U \cap F^{-1}(V), \phi|_{U \cap F^{-1}(V)})\}$$
 (40)

is an atlas for $F^{-1}(V)$. Since $\psi \circ F$ is C^{∞} , by Proposition 6.13(i) \Rightarrow (iii),

$$\psi \circ F \circ \phi^{-1} : \phi(U \cap F^{-1}(V)) \to \mathbb{R}^m \tag{41}$$

is C^{∞} . It then follows from Proposition 6.8(ii) \Rightarrow (i) that $F: N \to M$ is C^{∞} .

(i) \Rightarrow (iii): Being a coordinate map, ψ is C^{∞} . As a composite of C^{∞} maps, $\psi \circ F$ is C^{∞} .

$$(iii) \Rightarrow (ii)$$
: Obvious.

Combining Proposition 6.16 and Proposition 6.14, the smoothness of a map $F: N \to M$ can be expressed in terms of the smoothness of its components.

Proposition 6.17 (Smoothness of a map in terms of components) Let $F: N \to M$ be a continuous map between manifolds of dimensions n and m, respectively. The following are equivalent:

- (i) The map $F: N \to M$ is C^{∞} .
- (ii) The manifold M has an atlas such that for every chart $(V, \psi) = (V, y^1, \dots, y^m)$ in the atlas, the components

$$y^i \circ F : F^{-1}(V) \to \mathbb{R} \tag{42}$$

of F relative to the chart are all C^{∞} .

(iii) For every chart $(V, \psi) = (V, y^1, \dots, y^m)$ on M, the components

$$y^i \circ F : F^{-1}(V) \to \mathbb{R} \tag{43}$$

of F relative to the chart are all C^{∞} .

6.5. Examples of Smooth Maps

Example 6.18 (Smoothness of a projection map) Let M and N be manifolds and

$$\pi: M \times N \to M$$
$$(p,q) \mapsto p \tag{44}$$

the projection to the first factor. Prove that π is a C^{∞} map.

Solution. Let $(p,q) \in M \times N$. Suppose $(U,\phi) = (U,x^1,\dots,x^m)$ and $(V,\psi) = (V,y^1,\dots,y^n)$ are charts about $p \in M$ and $q \in N$, respectively. Then

$$(U\times V,\phi\times\psi)=\left(U\times V,x^1,\cdots,x^m,y^1,\cdots,y^n\right) \tag{45}$$

is a chart about $(p,q) \in M \times N$. Then

$$(\phi \circ \pi \circ (\phi \times \psi)^{-1})(a^1, \dots, a^m, b^1, \dots, b^n) = (a^1, \dots, a^m)$$

$$(46)$$

is a C^{∞} map from $\phi(U \times V) \in \mathbb{R}^{m+n}$ to $\phi(U) \in \mathbb{R}^m$. So π is C^{∞} at (p,q). Since (p,q) is arbitrary, $\pi: M \times N \to M$ is C^{∞} .

Example 6.19 (Smoothness of a map to a Cartesian Product) Let M_1, M_2 and N be manifolds of dimensions m_1, m_2 and n, respectively. Prove that the map

$$(f_1,f_2):N\to M_1\times M_2 \tag{47}$$

is C^{∞} if and only if $f_i: N \to M_i, i=1,2,$ are both C^{∞} .

Solution. Let $p \in N$ and (U, ϕ) be a chart about p. Let (V_1, ψ_1) and (V_2, ψ_2) be charts about $f_1(p) \in M_1$ and $f_2(p) \in M_2$, respectively.

(i) Assuming both f_1 and f_2 are C^{∞} , then they are both continuous. Then

$$\begin{split} (\psi_1 \times \psi_2) \circ (f_1, f_2) \circ \phi^{-1} &= \left(\psi_1 \circ f_1 \circ \phi^{-1}, \psi_2 \circ f_2 \circ \phi^{-1} \right) \\ &: \phi(U \cap f_1^{-1}(V_1) \cap f_2^{-1}(V_2)) \to \mathbb{R}^{m_1 + m_2} \end{split} \tag{48}$$

is C^{∞} . Thus (f_1, f_2) is C^{∞} at p. Since p is arbitrary, (f_1, f_2) is C^{∞} on N.

(ii) Conversely, if (f_1, f_2) is C^{∞} , then

$$(\psi_1 \times \psi_2) \circ (f_1, f_2) \circ \phi^{-1} = (\psi_1 \circ f_1 \circ \phi^{-1}, \psi_2 \circ f_2 \circ \phi^{-1}) \tag{49}$$

is C^{∞} . Thus, $\psi_1 \circ f_1 \circ \phi^{-1}$ and $\psi_2 \circ f_2 \circ \phi^{-1}$ are both C^{∞} , then f_1 and f_2 are both C^{∞} at p. Since p is arbitrary, f_1 and f_2 are both C^{∞} on N.

Example 6.20 Prove that a C^{∞} function f(x,y) on \mathbb{R}^2 restricts to a C^{∞} function S^1 .

Solution. We denote a point on S^1 as p = (a, b) and x, y as the standard coordinate functions on \mathbb{R}^2 , i.e., x(a, b) = a and y(a, b) = b. Suppose we can show that x and y restrict to C^{∞} functions on S^1 , then the inclusion map

$$i: S^1 \to \mathbb{R}^2$$

 $p \mapsto (x(p), y(p))$ (50)

is C^{∞} on S^1 . Therefore the restriction of f to S^1 , $f|_{S^1} = f \circ i$, is C^{∞} on S^1 .

Consider the first function X, we use the atlas

$$\begin{split} &(U_1,\phi_1) = \left(\left\{ \left(x, \sqrt{1-x^2} \right) \mid -1 < x < 1 \right\}, x \right) \\ &(U_2,\phi_2) = \left(\left\{ \left(x, -\sqrt{1-x^2} \right) \mid -1 < x < 1 \right\}, x \right) \\ &(U_3,\phi_3) = \left(\left\{ \left(\sqrt{1-y^2}, y \right) \mid -1 < y < 1 \right\}, y \right) \\ &(U_4,\phi_4) = \left(\left\{ \left(-\sqrt{1-y^2}, y \right) \mid -1 < y < 1 \right\}, y \right). \end{split} \tag{51}$$

Since x is a coordinate function on U_1 and U_2 , x is C^{∞} on $U_1 \cup U_2$. The composite

$$(x \circ \phi_3^{-1})(b) = x(\sqrt{1 - b^2}, b) = \sqrt{1 - b^2}$$
(52)

is C^{∞} on U_3 , thus x is C^{∞} on U_3 .

Similarly, the composite

is C^{∞} on U_4 , thus x is C^{∞} on U_4 .

Since x is C^{∞} on $U_1,U_2,U_3,U_4,$ and $S^1=U_1\cup U_2\cup U_3\cup U_4,$ x is C^{∞} on $S^1.$

The same argument shows that y is C^{∞} on S^1 .

Armed with the definition of a smooth map between manifolds, we can define a Lie group.

Definition 6.21 A Lie group is a C^{∞} manifold G having a group structure such that the multiplication map

$$\mu: G \times G \to G \tag{54}$$

and the inverse map

$$\iota: G \to G, \quad \iota(x) = x^{-1}, \tag{55}$$

are both C^{∞} .

Similarly, A **topological group** is a topological space having a group structure such that the multiplication map and the inverse map are both continuous. Noting that a topological group is required to be a topological space, but not a topological manifold.

Example 6.22

- (i) The Euclidean space \mathbb{R}^n is a Lie group under addition.
- (ii) The set C^{\times} of nonzero complex numbers is a Lie group under multiplication.
- (iii) The unit circle S^1 in C^{\times} is a Lie group under multiplication.
- (iv) The Cartesian product $G_1 \times G_2$ of two Lie groups (G_1, μ_1) and (G_2, μ_2) is a Lie group under coordinatewise multiplication $\mu_1 \times \mu_2$.

Example 6.23 (General linear group) The general linear group

$$GL(n, \mathbb{R}) = \left\{ A \in \left[a_{ij} \right] \in \mathbb{R}^{n \times n} \mid \det(A) \neq 0 \right\}$$
 (56)

is a manifold, as an open subset of $\mathbb{R}^{n\times n}$. Since the (i,j)-entry of the product of two matrices $A,B\in \mathrm{GL}(n,\mathbb{R})$,

$$(A \times B)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \tag{57}$$

is a polynomial in the coordinates of A and B, matrix multiplication

$$\mu: \mathrm{GL}(n,\mathbb{R}) \times \mathrm{GL}(n,\mathbb{R}) \to \mathrm{GL}(n,\mathbb{R})$$
 (58)

is a C^{∞} map.

By Cramer's rule from linear algebra, the (i, j)-entry of A^{-1} is

$$(A^{-1})_{ij} = \frac{1}{\det A} \cdot (-1)^{i+j} ((j,i) - \text{minor of } A), \tag{59}$$

which is a C^{∞} function provided det $A \neq 0$. Thus, the inverse map

$$\iota: \mathrm{GL}(n,\mathbb{R}) \to \mathrm{GL}(n,\mathbb{R})$$
 (60)

is also C^{∞} . Therefore, $\mathrm{GL}(n,\mathbb{R})$ is a Lie group.

6.6. Partial Derivatives

Definition 6.24 On a manifold M of dimension n, let $(U, \phi) = (U, x^1, \dots, x^n) = (U, r^1 \circ \phi, \dots, r^n \circ \phi)$ be a chart and $f: M \to \mathbb{R}^n$ a C^{∞} function, where r^1, \dots, r^n are the standard coordinates on \mathbb{R}^n . For $p \in U$, the **partial derivative** $\frac{\partial f}{\partial x^i}$ of f with respect to x^i at p is defined as

$$\begin{split} \frac{\partial}{\partial x^{i}} \bigg|_{p} f &\coloneqq \frac{\partial f}{\partial x^{i}}(p) \\ &\coloneqq \frac{\partial (f \circ \phi^{-1})}{\partial r^{i}}(\phi(p)) \\ &\coloneqq \frac{\partial}{\partial r^{i}} \bigg|_{\phi(p)} (f \circ \phi^{-1}). \end{split} \tag{61}$$

Since $p = \phi^{-1}(\phi(p))$, this equation can rewritten as

$$\frac{\partial f}{\partial x^{i}}(\phi^{-1}(\phi(p))) = \frac{\partial (f \circ \phi^{-1})}{\partial r^{i}}(\phi(p)). \tag{62}$$

Thus, as functions on $\phi(U)$,

$$\frac{\partial f}{\partial x^i} \circ \phi^{-1} = \frac{\partial (f \circ \phi^{-1})}{\partial r^i}.$$
 (63)

The partial derivative $\frac{\partial f}{\partial x^i}$ is C^{∞} on U because its pullback by ϕ^{-1} , $\frac{\partial f}{\partial x^i} \circ \phi^{-1}$ is C^{∞} on $\phi(U)$.

Proposition 6.25 Suppose (U, x^1, \dots, x^n) is a chart on a manifold. Then $\frac{\partial x^i}{\partial x^j} = \delta^i_j$.

Proof. At a point
$$p \in U$$
, by the definition of $\frac{\partial}{\partial x^j}|_p$,

$$\frac{\partial x^{i}}{\partial x^{j}}(p) = \frac{\partial (x^{i} \circ \phi^{-1})}{\partial r^{j}}(\phi(p))$$

$$= \frac{\partial (r^{i} \circ \phi \circ \phi^{-1})}{\partial r^{j}}(\phi(p))$$

$$= \frac{\partial r^{i}}{\partial r^{j}}(\phi(p))$$

$$= \delta^{i}_{j}.$$
(64)

Definition 6.26 Let $F: N \to M$ be a C^{∞} map, and let $(U, \phi) = (U, x^1, \dots, x^n)$ and $(V, \psi) = (V, y^1, \dots, y^m)$ be charts on N and M respectively such that $F(U) \subset V$. Denote by

$$F^{i} := y^{i} \circ F$$

$$= r^{i} \circ \psi \circ F : U \to \mathbb{R}$$
(65)

the *i*th component of F in the chart (V, ψ) . Then the matrix $\left[\frac{\partial F^i}{\partial x^j}\right]$ is called the **Jacobian matrix** of F relative to the charts (U, ϕ) and (V, ψ) . In case N and M have the same dimension, the determinant $\det\left[\frac{\partial F^i}{\partial x^j}\right]$ is called the **Jacobian determinant** of F relative to the two charts. The Jacobian determinant also written as

$$\frac{\partial(F^1, \dots, \partial F^n)}{\partial(x^1, \dots, \partial x^n)} \tag{66}$$

When N and M are open subsets of Euclidean spaces and the charts are (U, r^1, \dots, r^n) and (V, r^1, \dots, r^m) , the Jacobian matrix $\left[\frac{\partial F^i}{\partial r^j}\right]$, where $F^i = r^i \circ F$, is the usual Jacobian matrix from calculus.

Example 6.27 (Jacobian matrix of a transition map) Let $(U, \phi) = (U, x^1, \dots, x^n)$ and $(V, \psi) = (V, y^1, \dots, y^n)$ be overlapping charts on a manifold M. The transition map

$$\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V) \tag{67}$$

is a diffeomorphism of open subsets of \mathbb{R}^n . Show that the Jacobian matrix $J(\psi \circ \phi^{-1})$ at $\phi(p)$ is the matrix $\left[\frac{\partial y^i}{\partial x^j}\right]$ of partial derivatives at p.

Solution. By definition, $J(\psi \circ \phi^{-1}) = \left[\frac{\partial (\psi \circ \phi^{-1})^i}{\partial r^j}\right]$, where

$$\frac{\partial(\psi \circ \phi^{-1})^{i}}{\partial r^{j}}(\phi(p)) = \frac{\partial(r^{i} \circ \psi \circ \phi^{-1})}{\partial r^{j}}(\phi(p))$$

$$= \frac{\partial(y^{i} \circ \phi^{-1})}{\partial r^{j}}(\phi(p))$$

$$= \frac{\partial y^{i}}{\partial x^{j}}(p)$$
(68)

6.7. The Inverse Function Theorem

Definition 6.28 A C^{∞} map $F: N \to M$ is **locally invertible** or a **local diffeomorphism** at $p \in N$ if p has a neighborhood U on which $F|_U: U \to F(U)$ is a diffeomorphism.

Theorem 6.29 (Inverse function theorem for \mathbb{R}^n) Let $F: W \to \mathbb{R}^n$ be a C^{∞} map defined on an open subset $W \subset \mathbb{R}^n$. For any point $p \in W$, the map F is locally invertible at p if and only if the Jacobian determinant $\det \left[\frac{\partial F^i}{\partial r^j}(p)\right] \neq 0$.

Because the inverse function theorem for \mathbb{R}^n is a local result, it easily translates to manifolds.

Theorem 6.30 (Inverse function theorem for manifolds) Let $F: N \to M$ be a C^{∞} map between two manifolds of the same dimension, say n, and $p \in N$. Suppose for some chart $(U, \phi) = (U, x^1, \dots, x^n)$ about $p \in N$ and $(V, \psi) = (V, y^1, \dots, y^n)$ about $F(p) \in M$, $F(U) \subset V$. Set $F^i = y^i \circ F$. Then F is locally invertible at p if and only if the Jacobian determinant $\det \left[\frac{\partial F^i}{\partial x^j}(p)\right] \neq 0$.

Proof.

П

$$\left[\frac{\partial F^{i}}{\partial x^{j}}(p)\right] = \left[\frac{\partial (y^{i} \circ F)}{\partial x^{j}}(p)\right]
= \left[\frac{\partial (r^{i} \circ \psi \circ F)}{\partial x^{j}}(p)\right]
= \left[\frac{\partial (r^{i} \circ \psi \circ F \circ \phi^{-1})}{\partial r^{j}}(\phi(p))\right]
= \left[\frac{\partial (\psi \circ F \circ \phi^{-1})^{i}}{\partial r^{j}}(\phi(p))\right],$$
(69)

which is the Jacobian matrix at $\phi(p)$ of the map

$$\psi \circ F \circ \phi^{-1} : \mathbb{R}^n \supset \phi(U) \to \psi(V) \subset \mathbb{R}^n \tag{70}$$

between two open subsets of \mathbb{R}^n . By the inverse function theorem for \mathbb{R}^n ,

$$\det \left[\frac{\partial F^{i}}{\partial x^{j}}(p) \right] = \det \left[\frac{\partial (\psi \circ F \circ \phi^{-1})^{i}}{\partial r^{j}}(\phi(p)) \right] \neq 0$$
 (71)

if and only if $\psi \circ F \circ \phi^{-1}$ is locally invertible at $\phi(p)$. Since ψ and ϕ are diffeomorphisms, this is equivalent to F being locally invertible at p.

We usually apply the inverse function theorem in the following form.

Corollary 6.31 Let N be a manifold of dimension n. A set of n smooth functions F^1, \dots, F^n defined on a coordinate neighborhood (U, x^1, \dots, x^n) of a point $p \in N$ forms a coordinate system about p if and only if the Jacobian determinant $\det \left[\frac{\partial F^i}{\partial x^j}(p)\right] \neq 0$.

Proof. Let
$$F=\left(F^1,\cdots,F^n\right):U\to\mathbb{R}^n.$$
 Then $\det\left[\frac{\partial F^i}{\partial x^j}(p)\right]\neq 0.$

 $\iff F: U \to \mathbb{R}^n$ is locally invertible at p. (By Theorem 6.30)

 \iff There is a neighborhood W of $p\in N$ such that $F:W\to F(W)$ is a diffeomorphism. (By Definition 6.28)

 \iff (U, F^1, \dots, F^n) is a coordinate chart about p in the differential structure of N. (By Proposition 6.12)

Example 6.32 Find all points in \mathbb{R}^2 of which the functions $x^2 + y^2 - 1, y$ can serve as a coordinate system in a neighborhood.

Solution. Define $F: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$F(x,y) = (x^2 + y^2 - 1, y). (72)$$

The map F can serve as a coordinate map in a neighborhood of p if and only if it is a local diffeomorphism at p. The Jacobian determinant of F is

$$\frac{\partial(F^1, F^2)}{\partial(x, y)} = \det\begin{bmatrix} 2x & 2y \\ 0 & 1 \end{bmatrix}$$

$$= 2x.$$
(73)

By the inverse function theorem, F is a local diffeomorphism at p = (x, y) if and only if $x \neq 0$, i.e., F can serve as a coordinate system at any point p not on the y-axis.

7. Quotients

7.1. The Quotient Topology

Definition 7.1 For an equivalence relation \sim on a set S, the **equivalence class** of $x \in S$, denoted by [x], is the set of all elements in S equivalent to x. An equivalence relation on S partitions S into disjoint equivalence classes. The **quotient** of S by the equivalence relation \sim , denoted by S/\sim , is the set of equivalence classes. There is a natural **projection map** $\pi: S \to S/\sim$ defined by

$$\pi(x) = [x], \quad x \in S. \tag{74}$$

Definition 7.2 Assume now that S is a topological space. The **quotient topology** on S/\sim is defined as follows: A subset $U\subset S/\sim$ is open if and only if $\pi^{-1}(U)$ is open in S. With this topology, S/\sim is called the **quotient space** of S by the equivalence relation \sim , and the projection map $\pi:S\to S/\sim$ is automatically continuous.

Proof.

- (i) $\emptyset = \pi^{-1}(\emptyset)$ is open in S, so \emptyset is open in S/\sim ; $S = \pi^{-1}(S/\sim)$ is open in S, so S/\sim is open in S/\sim .
- (ii) Let U_{α} be open in S/\sim , $\alpha=1,2,\cdots$. Then

$$\pi^{-1}\left(\bigcup_{\alpha} U_{\alpha}\right) = \bigcup_{\alpha} \pi^{-1}(U_{\alpha}) \tag{75}$$

is open in S, so $\bigcup_{\alpha} U_{\alpha}$ is open in S/\sim .

(iii) Let U_i be open in S/\sim , $i=1,\cdots,n$. Then

$$\pi^{-1}\left(\bigcap_{i=1}^{n} U_{i}\right) = \bigcap_{i=1}^{n} \pi^{-1}(U_{i}) \tag{76}$$

is open in S, so $\bigcap_{i=1}^{n} U_i$ is open in S/\sim .

7.2. Continuity of a Map on a Quotient

Let \sim be an equivalence relation on a topological space S and S/\sim the quotient space, with the quotient topology. Suppose a function $f:S\to Y$ from S to another topological space Y is constant on each equivalence class, i.e., f(x)=f(y) whenever $x\sim y$. Then f induces a function $\bar{f}:S/\sim\to Y$ defined by

$$\bar{f}([p]) = f(p), \quad p \in S. \tag{77}$$

Proposition 7.3 The induced map $\bar{f}: S/\sim \to Y$ is continuous if and only if the map $f: S \to Y$ is continuous.

Proof.

- (i) (\Rightarrow) If \bar{f} is continuous, then $f = \bar{f} \circ \pi$ is continuous because π is continuous.
- (ii) (\Leftarrow) Suppose f is continuous. Let $V \subset Y$ be open. Then $f^{-1}(V) = \pi^{-1}(\bar{f}^{-1}(V))$ is open in S, so $\bar{f}^{-1}(V)$ is open in S/\sim by the definition of the quotient topology. Since V is arbitrary, \bar{f} is continuous.

This proposition gives a useful criterion for checking whether a function \bar{f} on a quotient space S/\sim is continuous: simply lift the function \bar{f} to $f:=\bar{f}\circ\pi$ on S and check whether f is continuous.

7.3. Identification of a Subset to a Point

Definition 7.4 Let $A \subset S$ be a subset of a topological space S, we can define a relation \sim on S by

$$x \sim x \quad \forall x \in S \tag{78}$$

and

$$x \sim y \quad \forall x, y \in A. \tag{79}$$

We say the quotient space S/\sim is obetained from S by identifying A to a point.

Example 7.5 Let I = [0,1] and I/\sim the quotient space obtained from I by identifying the two endpoints $\{0,1\}$ to a point. Denote by S^1 the unit circle in the complex plane. The function $f: I \to S^1, f(x) = e^{2\pi i x}$, assumes the same value at 0 and 1, and so induces a function $\bar{f}: I/\sim \to S^1$.

Proposition 7.6 The function $\bar{f}: I/\sim \to S^1$ is a homeomorphism.

7.4. A Necessary Condition for a Hausdorff Quotient

The quotient construction does not in general preserve the Hausdorff property or second countability. Indeed, since every singleton set in a Hausdorff space is closed, if $\pi: S \to S/\sim$ is the projection and the quotient S/\sim is Hausdorff, then for any $p \in S$, its image $\{\pi(p)\}$ is closed in S/\sim . By the continuity of π , the inverse image $\pi^{-1}(\{\pi(p)\}) = [p]$ is closed in S. This gives a necessary condition for a quotient space to be Hausdorff.

Proposition 7.7 If the quotient space S/\sim is Hausdorff, then the equivalence class [p] of any point $p \in S$ is closed in S.

Example 7.8 Define an equivalence relation \sim on \mathbb{R} by identifying the open interval $(0, \infty)$ to a point. Then the quotient space \mathbb{R}/\sim is not Hausdorff because the equivalence class $(0, \infty)$ of \sim in \mathbb{R} corresponding to the point $(0, \infty) \in \mathbb{R}/\sim$ is not closed in \mathbb{R} .

7.5. Open Equivalence Relations

Definition 7.9 A map $f: X \to Y$ of topological spaces is **open** if for every open set $U \subset X$, the image f(U) is open in Y.

Definition 7.10 An equivalence relation \sim on a topological space S is **open** if the projection map $\pi: S \to S/\sim$ is open.

Equivalently, \sim is open if for every open set $U \subset S$, the set

$$\pi^{-1}(\pi(U)) = \bigcup_{x \in U} [x]$$
 (80)

is open in S.

Example 7.11 The projection map ro a quotient space is in general not open. For example, let \sim be the equivalence relation on the real line \mathbb{R} that identifies the two points 1 and -1 to a point. The projection map $\pi : \mathbb{R} \to \mathbb{R}/\sim$ is not open.

Solution. Let $V=(-2,0)\subset\mathbb{R}$ be an open set in \mathbb{R} . Then

$$\pi^{-1}(\pi(V)) = (-2,0) \cup \{1\},\tag{81}$$

which is not open in \mathbb{R} . Thus, π is not open.

Definition 7.12 Given an equivalence relation \sim on S, the **graph** of \sim is the subset $R \subset S \times S$ defined by

$$R = \{(x, y) \in S \times S \mid x \sim y\} \tag{82}$$

Theorem 7.13 Suppose \sim is an open equivalence relation on a topological space S. Then the quotient space S/\sim is Hausdorff if and only if the graph R of \sim is closed in $S\times S$.

Proof. There is a sequence of equivalent statements:

R is closed in $S \times S$

- \iff $(S \times S) R$ is open in $S \times S$
- \iff For every $(x,y) \in S \times S$, there is a basic open set $U \times V$ containing (x,y) such that $(U \times V) \cap R = \emptyset$
- \iff For every pair $x \nsim y$ in S, there exists neighborhoods U of x and V of y such that no element of U is equivalent to an element of V
- \iff For any two points $[x] \neq [y]$ in S/\sim , there exists neighborhoods U of x and V of y in S such that $\pi(U) \cap \pi(V) = \emptyset$ in S/\sim

Since π is open, $\pi(U)$ and $\pi(V)$ are disjoint open sets in S/\sim containing [x] and [y], respectively. Therefore, S/\sim is Hausdorff.

Conversely, suppose S/\sim is Hausdorff. Let $[x]\neq [y]$ in S/\sim . Then there exist disjoint open sets $A,B\subset S/\sim$ such that $[x]\in A$ and $[y]\in B$. By the surjectivity of π , we have $A=\pi(\pi^{-1}(A))$ and $B=\pi(\pi^{-1}(B))$. Let $U=\pi^{-1}(A)$ and $V=\pi^{-1}(B)$. Then $x\in U,y\in V$, and $A=\pi(U),B=\pi(V)$ are disjoint open sets in S/\sim .

If the equivalence relation \sim is equality, then the quotient space S/\sim is S itself and the graph R of \sim is simply the diagonal

$$\Delta = \{(x, x) \in S \times S\},\tag{83}$$

where Theorem 7.13 becomes the following well-known characterization of a Hausdorff space by its diagonal.

Corollary 7.14 A topological space S is Hausdorff if and only if the diagonal $\Delta = \{(x, x) \mid x \in S\}$ is closed in $S \times S$.

Theorem 7.15 Let \sim be an open equivalence relation on a topological space S with projection $\pi: S \to S/\sim$. If $\mathcal{B} = \{B_{\alpha}\}$ is a basis for S, then its image $\{\pi(B_{\alpha})\}$ under π is a basis for S/\sim .

Proof. Since π is an open map, $\{\pi(B_{\alpha})\}$ is a collection of open sets in S/\sim . Let W be an open set in S/\sim and $[x]\in W, x\in S$. Then $x\in \pi^{-1}(W)$. Since $\pi^{-1}(W)$ is open in S, there exists a basic open set $B\in \mathcal{B}$ such that

$$x \in B \subset \pi^{-1}(W). \tag{84}$$

Then

$$[x] = \pi(x) \in \pi(B) \subset W, \tag{85}$$

which proves that $\{\pi(B_{\alpha})\}\$ is a basis for S/\sim .

Corollary 7.16 If \sim is an open equivalence relation on a second-countable space S, then the quotient space S/\sim is second countable.

7.6. Real Projective Space

Definition 7.17 The real projective space $\mathbb{R}P^n$ is the quotient space of \mathbb{R}^{n+1} – $\{0\}$ by the equivalence relation \sim defined by

$$x \sim y \iff y = tx \text{ for some nonzero real number } t.$$
 (86)

The **homogeneous coordinates** of a point $(a^0, \dots, a^n) \in \mathbb{R}^{n+1} - \{0\}$ are the equivalence class $[a^0, \dots, a^n]$.

Geometrically, two nonzero points in \mathbb{R}^{n+1} are equivalent if and only if they lie on the same line through the origin, so $\mathbb{R}P^n$ can be interpreted as the set of all lines through the origin in \mathbb{R}^{n+1} . Each line through the origin in \mathbb{R}^{n+1} meets the unit sphere S^n in a pair of antipodal points, and conversely, a pair of antipodal points on S^n determines a unique line through the origin. This suggests that we define an equivalence relation \sim on S^n by identifying antipodal points:

$$x \sim y \iff x = \pm y, \quad x, y \in S^n,$$
 (87)

which gives a bijection $\mathbb{R}P^n \leftrightarrow S^n/\sim$.

Example 7.18 (Real projective space as a quotient of a sphere) For $x = (x^1, \dots, x^n) \in \mathbb{R}^n$, let $||x|| = \sqrt{\sum_i (x^i)^2}$ be the module of x. Prove that the map $f : \mathbb{R}^{n+1} - \{0\} \to S^n$ given by

$$f(x) = \frac{x}{\|x\|} \tag{88}$$

introduces a homeomorphism $\bar{f}: \mathbb{R}P^n \to S^n/\sim$. (Hint: Find an inverse map

$$\bar{g}: S^n/\sim \to \mathbb{R}P^n$$
 (89)

and show that both \bar{f} and \bar{g} are continuous.)

Solution. Let \sim_1 be the equivalence relation on $\mathbb{R}^{n+1} - \{0\}$ defined by

$$x \sim y \iff y = tx \text{ for some nonzero real number } t,$$
 (90)

and the projection map $\pi_1: \mathbb{R}^{n+1} - \{0\} \to \mathbb{R}P^n$.

Let \sim_2 be the equivalence relation on S^n defined by

$$x \sim y \iff x = \pm y, \quad x, y \in S^n,$$
 (91)

and the projection map $\pi_2: S^n \to S^n/\sim_2$.

(i) \bar{f} is continuous.

For $x \sim_1 y$ in $\mathbb{R}^{n+1} - \{0\}$, i.e., y = tx for some nonzero real number t, we have

$$f(y) = \frac{y}{\|y\|}$$

$$= \frac{tx}{\|tx\|}$$

$$= \frac{tx}{|t|\|x\|}$$

$$= \operatorname{sgn}(t) f(x)$$

$$= \pm f(x), \tag{92}$$

which means $f(y) \sim_2 f(x)$ in S^n . Then the map

$$\pi_2\circ f:\mathbb{R}^{n+1}-\{0\}\to S^n/\sim_2 \eqno(93)$$

is constant on the equivalence classes of \sim_1 of $\mathbb{R}^{n+1} - \{0\}$, so it induces a map

$$\bar{f}: \mathbb{R}P^n \to S^n/\sim_2, \quad \bar{f}([x]_{\sim_1}) = \pi_2 \circ f(x),$$
 (94)

which is continuous since f and π_2 are continuous.

(ii) \bar{g} is continuous.

For $q \in S^n \subset \mathbb{R}^{n+1} - \{0\}$ with inclusion map

$$i: S^n \to \mathbb{R}^{n+1} - \{0\}, \quad i(q) = q,$$
 (95)

define

$$\bar{g}: S^n/\sim_2 \to \mathbb{R}P^n, \quad \bar{g}\left([q]_{\sim_2}\right) = [q]_{\sim_1}.$$
 (96)

For $p \sim_2 q$ in S^n , i.e., $p = \pm q$, we have

$$\bar{g}([p]_{\sim_2}) = [p]_{\sim_1}$$

$$= [\pm q]_{\sim_1}$$

$$= [q]_{\sim_1}, \tag{97}$$

so \bar{g} is well defined. Since

$$\bar{g}\circ\pi_2:S^n\to\mathbb{R}P^n,\quad \bar{g}\circ\pi_2(q)=[q]_{\sim_1}=\pi_1\circ i(q), \tag{98}$$

then

$$\bar{g}\circ\pi_2=\pi_1\circ i, \hspace{1cm} (99)$$

which shows that \bar{g} is continuous.

- (iii) \bar{f} is bijective
 - (a) \bar{f} is surjective.

For any $[q]_{\sim_2}$ in S^n/\sim_2 , a presentative $q\in S^n\subset \mathbb{R}^{n+1}-\{0\}$,

$$\begin{split} \bar{f} \Big([q]_{\sim_1} \Big) &= \pi_2 \circ f(q) \\ &= \left[\frac{q}{\|q\|} \right]_{\sim_2} \\ &= [q]_{\sim_2}. \end{split} \tag{100}$$

(b) \bar{f} is injective. Suppose

$$\bar{f} \big([x]_{\sim_1} \big) = \bar{f} \big([y]_{\sim_1} \big), \quad x, y \in \mathbb{R}^{n+1} - \{ 0 \}. \tag{101}$$

Then

$$\begin{split} \left[\frac{x}{\|x\|}\right]_{\sim_{2}} &= \left[\frac{y}{\|y\|}\right]_{\sim_{2}} \\ \frac{y}{\|y\|} &= \pm \frac{x}{\|x\|} \\ y &= \pm \frac{\|y\|}{\|x\|} x, \end{split} \tag{102}$$

which means $y\sim_1 x$ in $\mathbb{R}^{n+1}-\{0\},$ i.e., $[y]_{\sim_1}=[x]_{\sim_1}.$

- (iv) \bar{g} is bijective
 - (a) \bar{g} is surjective.

For any $[x]_{\sim_1}$ in $\mathbb{R}P^n$, a presentative $x \in \mathbb{R}^{n+1} - \{0\}$,

$$\begin{split} \bar{g}\left(\left[\frac{x}{\|x\|}\right]_{\sim_{2}}\right) &= \left[\frac{x}{\|x\|}\right]_{\sim_{1}} \\ &= \left[x\right]_{\sim_{1}}. \end{split} \tag{103}$$

(b) \bar{g} is injective. Suppose

$$\bar{g}([x]_{\sim_2}) = \bar{g}([y]_{\sim_2}), \quad x, y \in S^n. \tag{104}$$

Then

$$[x]_{\sim_1} = [y]_{\sim_1} \tag{105}$$

$$x = ty$$
 for some nonzero real number t , (105)

which means $x = \pm y$, since $x, y \in S^n$. Thus, $[x]_{\sim_2} = [y]_{\sim_2}$.

(v) f and \bar{g} are mutually inverse maps.

(a) For $[x]_{\sim_1} \in \mathbb{R}P^n$,

$$\begin{split} \bar{g} \circ \bar{f} \Big([x]_{\sim_1} \Big) &= \bar{g} (\pi_2 \circ f(x)) \\ &= \bar{g} \Bigg(\left[\frac{x}{\|x\|} \right]_{\sim_2} \Bigg) \\ &= \left[\frac{x}{\|x\|} \right]_{\sim_1} \\ &= [x]_{\sim_1}. \end{split} \tag{106}$$

(b) For $[q]_{\sim_2} \in S^n / \sim_2$,

$$\begin{split} \bar{f} \circ \bar{g} \Big([q]_{\sim_2} \Big) &= \bar{f} \Big([q]_{\sim_1} \Big) \\ &= \left[\frac{q}{\|q\|} \right]_{\sim_2} \\ &= [q]_{\sim_2}. \end{split} \tag{107}$$

Example 7.19 (The real projective line $\mathbb{R}P^1$) Each line through the origin in \mathbb{R}^2 meets the unit circle S^1 in a pair of antipodal points. As we've proved, $\mathbb{R}P^n$ is homeomorphic to S^n/\sim , which is in turn homeomorphic to the closed upper semicircle with the two endpoints identified. Thus, $\mathbb{R}P^1$ is homeomorphic to the circle S^1 .

Example 7.20 (The real projective plane $\mathbb{R}P^2$) We've shown that there is a homeomorphism

$$\mathbb{R}P^2 \simeq S^2/\sim. \tag{108}$$

Let H^2 be the closed upper hemisphere

$$H^{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = 1, z \ge 0\}.$$
 (109)

and let D^2 be the closed disk

$$D^2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}. \tag{110}$$

These two spaces are homeomorphic to each other via the continuous map

$$\varphi: H^2 \to D^2,$$

$$\varphi(x, y, z) = (x, y),$$
(111)

and its inverse

$$\psi: D^2 \to H^2,$$

$$\psi(x,y) = \left(x, y, \sqrt{1 - x^2 - y^2}\right). \tag{112}$$

On H^2 , define an equivalence relation \sim by identifying the antipodal points on the equator:

$$(x, y, 0) \sim (-x, -y, 0), \quad x^2 + y^2 = 1.$$
 (113)

On D^2 , define an equivalence relation \sim by identifying the antipodal points on the boundary:

$$(x,y) \sim (-x,-y), \quad x^2 + y^2 = 1.$$
 (114)

Then φ and ψ induce homeomorphisms

$$\bar{\varphi}: H^2/\sim \to D^2/\sim, \quad \bar{\psi}: D^2/\sim \to H^2/\sim.$$
 (115)

There is a homeomorphism between S^2/\sim and H^2/\sim .

In summary, there is a sequence of homeomorphisms

$$\mathbb{R}P^2 \xrightarrow{\sim} S^2 / \sim \xrightarrow{\sim} H^2 / \sim \xrightarrow{\sim} D^2 / \sim . \tag{116}$$

Proposition 7.21 The equivalence relation \sim on $\mathbb{R}^{n+1} - \{0\}$ in the definition of $\mathbb{R}P^n$ is open.

Proof. For any open set $U \subset \mathbb{R}^{n+1} - \{0\}$, the image $\pi(U)$ is open in $\mathbb{R}P^n$ if and only if

$$\pi^{-1}(\pi(U)) = \bigcup_{t \in \mathbb{R}^{\times}} tU \tag{117}$$

is open in $\mathbb{R}^{n+1} - \{0\}$. Since tU is open in $\mathbb{R}^{n+1} - \{0\}$ for any nonzero real number t, the union $\bigcup_{t \in \mathbb{R}^{\times}} tU$ is open in $\mathbb{R}^{n+1} - \{0\}$. Thus, \sim is open.

Corollary 7.22 The real projective space $\mathbb{R}P^n$ is second countable.

Proposition 7.23 The real projective space $\mathbb{R}P^n$ is Hausdorff.

Proof. Let $S = \mathbb{R}^{n+1} - \{0\}$ and consider the set

$$R = \{(x, y) \in S \times S \mid y = tx \text{ for some } t \in \mathbb{R}^{\times}\}.$$
 (118)

As R is closed in $S \times S$, since \sim is open, the quotient space $\mathbb{R}P^n$ is Hausdorff by Theorem 7.13.

7.7. The Standard C^{∞} Atlas on a Real Projective Space

Let $[a^0, \dots, a^n]$ be homogeneous coordinates on $\mathbb{R}P^n$. Although a^0 is not a well-defined function on $\mathbb{R}P^n$, the condition $a^0 \neq 0$ is independent of the choice of a representative for $[a^0, \dots, a^n]$. Hence, the condition $a^0 \neq 0$ makes sense on $\mathbb{R}P^n$, and we may define

$$U_0 := \{ [a^0, \dots, a^n] \in \mathbb{R}P^n \mid a^0 \neq 0 \}. \tag{119}$$

Similarly, for each $i = 1, \dots, n$, we define

$$U_i := \{ [a^0, \dots, a^n] \in \mathbb{R}P^n \mid a^i \neq 0 \}.$$
 (120)

Define

$$\phi_0: U_0 \to \mathbb{R}^n$$

$$[a^0, \cdots, a^n] \mapsto \left(\frac{a^1}{a^0}, \cdots, \frac{a^n}{a^0}\right),\tag{121}$$

which has a continuous inverse

$$(b^1, \dots, b^n) \mapsto [1, b^1, \dots, b^n] \tag{122}$$

and is therefore a homeomorphism. Similarly, there are homeomorphisms

$$\phi_i: U_i \to \mathbb{R}^n$$

$$\left[a^{0},\cdots,a^{n}\right]\mapsto\left(\frac{a^{0}}{a^{i}},\cdots,\frac{\hat{a^{i}}}{a^{i}},\cdots,\frac{a^{n}}{a^{i}}\right),\tag{123}$$

where the caret sign $\hat{}$ over $\frac{a^i}{a^i}$ means that entry is to be omitted. This proves that $\mathbb{R}P^n$ is locally Euclidean with (U_i, ϕ_i) as charts. On the intersection $U_0 \cap U_1$, there are two coordinate systems

We will refer the coordinate functions on U_0 as $x^1, \cdots, x^n,$ and y^1, \cdots, y^n on $U_1.$ On $U_0,$

$$x^{i} = \frac{a^{i}}{a^{0}}, \quad i = 1, \dots, n,$$
 (124)

and on U_1 ,

$$y^1 = \frac{a^0}{a^1}, \quad y^i = \frac{a^i}{a^1}, i = 2, \dots, n.$$
 (125)

Then on $U_0 \cap U_1$,

$$y^1 = \frac{1}{x^1}, \quad y^i = \frac{x^i}{x^1}, i = 2, \dots, n,$$
 (126)

SO

$$\phi_1 \circ \phi_0^{-1}(x) = \left(\frac{1}{x^1}, \frac{x^2}{x^1}, \dots, \frac{x^n}{x^1}\right),\tag{127}$$

and

$$\phi_0 \circ \phi_1^{-1}(y) = \left(\frac{1}{y^1}, \frac{y^2}{y^1}, \dots, \frac{y^n}{y^1}\right),\tag{128}$$

which are both smooth because $x^1 \neq 0$ on $\phi_0(U_0 \cap U_1)$ and $y^1 \neq 0$ on $\phi_1(U_0 \cap U_1)$, then (U_0,ϕ_0) and (U_1,ϕ_1) are compatible. On any other intersection $U_i \cap U_j$, an analogous formula holds. Therefore, the collection $\{(U_i,\phi_i)\}_{i=0,\cdots,n}$ is a C^∞ atlas for $\mathbb{R}P^n$, called the **standard atlas**. This concludes the proof that $\mathbb{R}P^n$ is a manifold of dimension n.