EI 10c M

2009-10

MATHEMATIK

Lösungen der 5. Aufgabe

Es geht um die 5. Aufgabe des Übungsblattes vom 23.04.2010!

Aufgabe 5

Überlege dir für Buch S.63, Aufgaben 1 und 2, wie sich die Funktionswerte verhalten. Damit ist gemeint: Wachsen sie für "sehr große" Zahlen, die du für x einsetzt? Schrumpfen sie gegen Null? Oder werden sie vom Betrag sehr groß, aber negativ? Wie ist es mit "sehr großen" negativen Zahlen für x? Auch hier wieder die Aufgabe:

Gegeben ist eine Funktion f. Überlege, welches Vorzeichen f(100 000) und f(-100 000) haben.

Überprüfe deine Ergebnisse mit dem GTR.

a)
$$f(x) = -100 x^2 + 0.01 x^5$$

c)
$$f(x) = x^3 - 0.25x^4$$

e)
$$f(x) = -\frac{3}{x^{10}} + x$$

b)
$$f(x) = x^2 - \frac{3}{x}$$

d) $f(x) = 250 - x^3$

d)
$$f(x) = 250 - x^3$$

f)
$$f(x) = x^4 - \frac{1}{x^4}$$

Untersuche das Verhalten der Funktionswerte von f für $x \to \pm \infty$.

a)
$$f(x) = -2x^2 + 4x$$

c)
$$f(x) = 0.5x^2 - 0.5x^4$$

e)
$$f(x) = 10^{10} \cdot x^6 - 7x^7 + 25x$$

b)
$$f(x) = -3x^5 + 3x^2 - x^3$$

d)
$$f(x) = 5 - 7x^2 + 2x^3$$

f)
$$f(x) = x^{10} - 2^{25} \cdot x^9$$

Lösungen zu 1:

a) Der höchste Exponent in diesem Beispiel ist 5 bei x⁵. Damit wachsen nach unserem Merksatz mit wachsendem x die Funktionswerte über alle Grenzen, wir sagen auch: f(x) geht gegen unendlich, oder kurz:

$$\lim_{x\to\infty}f(x)=\infty$$

Für den Fall, dass x immer kleiner wird und gegen minus unendlich (-∞) geht, bestimmt auch hier wieder der Summand +0,01x5 das Geschehen. Wegen der ungeraden Hochzahl wird der gesamte Summand negativ, wenn wir für x eine negative Zahl einsetzen: Wir multiplizieren ja fünfmal negative Zahlen miteinander, insgesamt erhalten wir ein negatives Ergebnis.

b) x^2 gewinnt gegen $1/x=x^{-1}$ und so haben wir auch hier für x gegen unendlich f(x) gegen unendlich. Für negatives x gilt genau das gleiche, den hier "löscht" das Quadrieren das negative Vorzeichen. Kleiner Zusatz: Nur für Werte in der Nähe der Null gewinnt der Summand 1/x.

- c) x^4 gewinnt, da vornedran ein Minus steht, geht f(x) für x gegen unendlich gegen minus unendlich. Gleiches gilt für x gegen minus unendlich, da auch hier die gerade Hochzahl das Vorzeichen löscht.
- d) $-x^3$ bestimmt das Geschehen: x gegen unendlich folgt f(x) gegen minus unendlich und x gegen minus unendlich folgt f(x) gegen plus unendlich, da hier einerseits das Vorzeichen erhalten bleibt, andererseits aber noch ein Minus für dem x^3 steht und so erhält man eben insgesamt ein Plus.
- e) x gewinnt!
- f) x⁴ gewinnt.

Lösungen zu 2:

Hier ganz kurz die "Sieger", denn das Verhalten sollte dann klar sein!

- a) $-2x^2$ und damit folgt aus $x \to \infty$ einfach $f(x) \to -\infty$. Für $x \to -\infty$ folgt auch $f(x) \to -\infty$.
- b) $-3x^5$ gewinnt und damit folgt aus $x \to \infty$ einfach $f(x) \to -\infty$. Für $x \to -\infty$ folgt $f(x) \to \infty$.
- c) $-0.5x^4$ gewinnt und damit wie in a).
- d) $+2x^3$ gewinnt und damit aus $x \to \infty$ einfach $f(x) \to \infty$. Für $x \to -\infty$ folgt $f(x) \to -\infty$.
- e) $-7x^7$ gewinnt (trotz riesigem Faktor vor dem x^6) und damit ist es wie in b).
- f) haben wir in der Schule besprochen. Auch hier macht der höchste Exponent das Rennen; x^{10} . Und damit folgt aus $x \to \infty$ einfach $f(x) \to \infty$. Gleiches gilt für $x \to -\infty$: $f(x) \to -\infty$, denn hier löscht der gerade Exponent ein etwaiges Vorzeichen.