Introducción al Machine Learning

It's tough to make predictions, especially about the future.

-Yogi Berra

¿Qué es el machine learning (ML)?

El aprendizaje automático es el proceso que le da a las computadoras la habilidad de aprender sin ser explícitamente programadas.

A.L Samuel (1959)

Se dice que un programa de computación aprende de la experiencia E con respecto a una tarea T y alguna medida de rendimiento P, si es que el rendimiento en T, medido por P, mejora con la experiencia

E.T.M Mitchell

https://www.youtube.com/watch?v= f uwKZIAeM0

¿Cómo se relacionan la IA y el ML?

Habilitación física de hardware y software

¿Qué tipos de aprendizaje automático o machine learning hay?

<u>Aprendizaje Supervisado</u>

Identificación de fraudes

Clasificación de imágenes

Clasificación

Retención de clientes

Diagnósticos médicos y/o técnicos Predicción del clima

Predicciones económicas

Regresión

Aprendizaje

Supervisado

Predicción de aceptación de publicidad

Estimación de la esperanza de vida

Crecimiento poblacional

Etapas en la aplicación del Aprendizaje Supervisado

- Definición del problema
- > Análisis detallado de los datos
- Definición de métricas de éxito y fracaso
- División del conjunto de datos (entrenamiento y test)
- Procesar los datos
- Diseñar un modelo "blando" para ver que ande

- Ajustar los parámetros del modelo a lo deseado
- > Analizar la evolución del entrenamiento
- Entrenar con los requerimientos definidos
- > Testear el sistema
- En caso de no obtener resultados aceptables, volver al principio

Descripción del problema: Aprendizaje Supervisado

Datos: Se dispone de un conjunto de registros (o ejemplos, o instancias) descritos por n atributos: A1, A2, ..., An y cada instancia está anotada con una etiqueta, pudiendo ser una clase o un valor numérico.

Objetivo: Aprender un modelo (o función) a partir de los datos, buscando predecir sus etiquetas a partir de los atributos. Este modelo puede ser utilizado para predecir las etiquetas de nuevos registros sin anotar.

¿Cómo procedemos?

Aprendizaje Supervisado

Regresión

Dados (x1,y1), (x2, y2), ..., (xn, yn) Aprender una f(x) que permita predecir y a partir de x Si y ϵ \mathbb{R} n: Es un problema de regresión.

Clasificación

Dados (x1,y1), (x2, y2), ..., (xn, yn)

Aprender una f(x) que permita predecir y a partir de x

Si y es categórica: Es un problema de clasificación.

Aprendizaje Supervisado

La variable x puede ser multidimensional.

Cada dimensión corresponde a un atributo:

- Edad del paciente
- Tamaño del tumor
- Uniformidad en la forma de la célula
- Entre otros

La regresión busca "acercar" los datos a una función (lineal, polinomial, etc.)

La clasificación busca separar los datos mediante ciertos "bordes".

Aprendizaje supervisado

Datos etiquetados

Elección de hiperparámetros

Se tiene la base de datos con toda los datos. Dividir el conjunto total de ejemplos en tres subconjuntos:

Entrenamiento: aprendizaje de variables del modelo.

Validación: ajuste/elección de hiperparámetros.

<u>Evaluación</u>: estimación <u>final</u> del desempeño del modelo entrenado (y con hiperparámetros elegidos adecuadamente).

Recordando...

Flexibility

Análisis Linear Discriminante (LDA)

PCA: LDA: component axes that maximizing the component maximize the variance axes for class-separation bad projection

good projection: separates classes well

Árboles de clasificación

Random forests

Definición simple: los Random forests construyen múltiples árboles de decisión y los fusionan para obtener una predicción más precisa y estable.

Super Vector Machines (SVM)

Es un algoritmo que busca separar los datos mediante la mejor frontera de decisión. Esta frontera de decisión es conocida como hiperplano.

• En este caso, "mejor" se refiere a aquella que esté lo más separada posible de los puntos más cercanos a ella. Estos puntos son conocidos como vectores de soporte, y el espacio entre ellos y el hiperplano se conoce como margen.

• En términos más técnicos, un algoritmo de SVM encuentra el hiperplano que devuelva el mayor margen entre sí mismo y los vectores de soporte.

• Este tipo de clasificador a veces es conocido como "clasificador por márgenes" (margin classifier).

Redes neuronales (Deep Learning)

FIN

