AP Calculus Homework 20

Please write your answer on a separate piece of paper and submit it on Classkick or write your answer directly on Classkick.

Please write all answers in exact forms. For example, write π instead of 3.14.

Questions with a * are optional. Questions with ** are optional and more challenging.

1. Eliminate the parameter to find a Cartesian equation of the curve

a)
$$x = t^2 - 2$$
, $y = 5 - 2t$, $-3 \le x \le 4$

b)
$$x = \sqrt{t}, y = 1 - t$$

c)
$$x = 4\cos\theta$$
, $y = 5\sin\theta$, $-\pi/2 \leqslant \theta \leqslant \pi/2$

d)
$$x = e^{2t}, y = t + 1$$

2. Find an equation of the tangent to the curve at the given point.

a)
$$x = 1 + \ln t$$
, $y = t^2 + 2$; $(1,3)$

b)
$$x = 6\sin t$$
, $y = t^2 + t$; $(0,0)$

- 3. Find the area enclosed by the x-axis and the curve $x = 1 + e^t$, $y = t t^2$.
- 4. Set up an integral that represents the length of the curve. Then use a calculator or online integrator to find the length correct to four decimal places.

a)
$$x = t - t^2$$
, $y = \frac{4}{3}t^{3/2}$, $1 \le t \le 2$

b)
$$x = t + \cos t$$
, $y = t - \sin t$, $0 \le t \le 2\pi$

5. Find the exact length of the curve.

a)
$$x = 1 + 3t^2$$
, $y = 4 + 2t^3$, $0 \le t \le 1$

b)
$$x = \frac{t}{1+t}$$
, $y = \ln(1+t)$, $0 \le t \le 2$

6. A curve in the plane is defined parametrically by the equations $x=t^3+t$ and $y=t^4+2t^2$. An equation of the line tangent to the curve at t=1 is

(A)
$$y = 2x$$
 (B) $y = 8x$ (C) $y = 2x - 1$

(D)
$$y = 4x - 5$$
 (E) $y = 8x + 13$

- 7. For what values of t does the curve given by the parametric equations $x = t^3 t^2 1$ and $y = t^4 + 2t^2 8t$ have a vertical tangent?
- (A) 0 only
- (B) 1 only (C) 0 and $\frac{2}{3}$ only
- (D) $0, \frac{2}{3}$, and 1 (E) No value
- 8. In the xy-plane, the graph of the parametric equations x=5t+2 and y=3t, for $-3 \le t \le 3$, is a line segment with slope

- (A) $\frac{3}{5}$ (B) $\frac{5}{3}$ (C) 3 (D) 5 (E) 13
- 9. The length of the path described by the parametric equations $x = \frac{1}{3}t^3$ and $y = \frac{1}{2}t^2$, where $0 \le t \le 1$, is given by

- (A) $\int_0^1 \sqrt{t^2 + 1} dt$ (B) $\int_0^1 \sqrt{t^2 + t} dt$ (C) $\int_0^1 \sqrt{t^4 + t^2} dt$
- (D) $\frac{1}{2} \int_0^1 \sqrt{4 + t^4} dt$ (E) $\frac{1}{6} \int_0^1 t^2 \sqrt{4t^2 + 9} dt$