Tópicos Avançados 1

SISTEMA DE RECOMENDAÇÃO DE CORES COM NAIVE BAYES

João Viana, Matheus Lopes e Nicolas Amaral

OBJETIVOS DO PROJETO

Teorema de Naive Bayes

Classificação e ajuste de paletas de cores

INTRODUÇÃO AO TEOREMA DE NAIVE BAYES

- O Naive Bayes é um classificador probabilístico baseado no teorema de Bayes.
- Ele usa a probabilidade condicional para classificar os dados, assumindo que as variáveis são independentes.
- Aprende, com os dados de treino, a probabilidade de cada atributo em cada classe.
- Usa essas probabilidades para calcular a chance de um novo exemplo pertencer a cada classe.
- Classifica na classe com maior probabilidade.
- Independência das Características: No seu caso, as cores podem ser tratadas como independentes, facilitando a análise.
- Simplicidade e Eficiência: O modelo é simples, rápido e adequado para problemas com múltiplas características (como cores) e muitas amostras.

INTRODUÇÃO AO TEOREMA DE NAIVE BAYES

FÓRMULA DE BAYES:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- P(B | A)P(B|A)P(B | A) é a probabilidade de uma classe BBB dado um conjunto de características AAA.
- P(A | B)P(A|B)P(A | B) é a probabilidade de observar AAA dado BBB.
- P(B)P(B)P(B) é a probabilidade a priori da classe BBB.
- P(A)P(A)P(A) é a probabilidade a priori das características AAA.

INTRODUÇÃO AO TEOREMA DE NAIVE BAYES

EXEMPLO DE USO

- Com a analise do algoritmo você consegue saber se uma paleta de cores é harmônica ou não.
- O Naive Bayes analisa os atributos (ex: média, desvio e distância entre cores).

Com base nas probabilidades aprendidas, ele estima:

- "Qual a chance dessa combinação ser harmônica?"
- "Qual a chance de não ser?"
- E escolhe a classe com maior chance.

IMPORT USO DE BIBLIOTECAS

seaborn sklearn (scikit-learn) joblib Pillow (PIL) itertools numpy pandas re matplotlib tkinter

scikit-image

ESTRUTURA DA PASTA DO PROJETO

ETAPAS DO SISTEMA

LEITURA E AGRUPAMENTO DOS DADOS

HARMÔNICO X NÃO HARMÔNICO

CONVERSÃO DE RGB PARA LAB

EXTRAÇÃO DAS CARACTERÍSTICAS

APLICAÇÃO DO NAIVE BAYES

40

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Aplicação do Naive Bayes O modelo Naive Bayes é treinado com as características extraídas (médias, desvios padrões, distâncias) e os rótulos ("harmônico" ou "não harmônico").

A validação cruzada e a validação de desempenho com a curva de aprendizado ajudam a avaliar a eficácia do modelo.

VALIDAÇÃO CRUZADA

Validação Cruzada:

É uma técnica para avaliar a performance do modelo de forma mais confiável, dividindo o conjunto de dados em várias partes (ou "folds").

- 1. Divide-se o dataset em 5 partes (folds).
- 2.0 modelo é treinado 5 vezes:
- Em cada rodada, 1 parte é usada como teste, e as outras 4 como treino.
- 3. Mede-se a acurácia/precisão em cada rodada.
- 4. No fim, calcula-se a média e o desvio padrão dos resultados.
- Evita resultados enganosos que podem ocorrer ao treinar e testar no mesmo conjunto.
- Garante que **todo o conjunto de dados foi usado** para treino e teste, mas em momentos diferentes.

CURVA DE APRENDIZADO

É um gráfico que mostra como a performance do modelo muda com a quantidade de dados de treino.

Mede-se o desempenho em:

Dados de treinamento (quão bem ele aprende)

Dados de validação (quão bem ele generaliza)

MATRIZ DE CONFUSÃO

Valor Predito
Sim Não
Sim Verdadeiro Positivo Falso Negativo
(TP)
Não Falso Positivo Verdadeiro Negativo
(FP) (TN)

Matriz de Confusão

É uma tabela que resume as previsões do modelo comparadas com os valores reais. Ela mostra onde o modelo acertou e onde errou. Usada para

visualizar a precisão do modelo nas classificações.

A acurácia do modelo é medida usando a validação cruzada e a curva de aprendizado.

AVALIAÇÃO FINAL DO MODELO

CONCLUSÃO RESULTADOS E MELHORIAS