自动控制理论 A—作业 1

By 22-PSP

(Due: Sept. 12, 2024)

1. (10') 请参考教材图 1.3 所示的控制框图,描述一个生活或工程中存在的闭环控制系统的例子。

生活中常用的空调是一个闭环及跨控制系统

2. (10') 试求解函数 $f(t) = 5e^{-2t} - \sin 2t$, $t \ge 0$ 的 Laplace 变换(请写出求解过程)。

解:由于1—35, Res70,
$$e^{-2t}$$
—3+1, Res7-2, sinwt—3 $\frac{W}{5^2+W^2}$, Res70
故人[f(t)] = 5人[e^{-2t}]-人[s_{11}] = $\frac{5}{5+1}$ - $\frac{2}{5+4}$, Res70

后面氣形 $f(s) = \frac{2s+2}{s^2+2s+5}$ 的 Laplace 逆变换。 $f(t-t_0)$ $f(t) = \frac{2}{s^2+2s+5}$ 的 $f(t) = \frac{2}{s^2+2s+5}$ $f(t) = \frac{2}{s^2+2s+$

4. (10') 利用定义求 $f(t) = e^{at}$ 的 Laplace 变换,并给出成立的条件。其中 a 为实数。定义: $F(s) = \int_{0}^{t\infty} f(t)e^{-st}dt$ 用作: $\mathcal{L}[f(t)] = \int_{0}^{t\infty} e^{at}e^{-st}dt = \int_{0}^{t\infty} e^{-(a-s)t}dt = \frac{1}{a-s}e^{(a-s)t}dt = \frac{1}{t-o}e^{-(a-s)t}dt = \frac{1}{s-a}e^{-(a-s)t}dt = \frac{1}{s-a}e^{-(a-s)t$

当 a - Res > O 引 积分存在 好 O F (ルフ)

- 5. (10'+10') 如下图所示,假设两个滑块都在无摩擦的表面上运动,
 - (a) 请写出系统的运动方程(微分方程)。
 - (b) 假设 r(t) 为系统的控制输入量,y 为系统的输出量,请计算系统的<u>传递函数</u> G(s) = Y(s)/R(s)。

分移项式 或 更极点增益形式

对于m: biý-x)+kiy-x)=mx---B L2) の技氏質接·bsY(s)-bsX(s)+kY(s)-kX(s)=ms*X(s)

① 乾氏变换.
$$R(s) = Ms^2Y(s) + ms^2X(s)$$

有 $R(s) = \left[Ms^2 + \frac{ms^2(bs+k)}{ms^2 + bs+k} \right] Y(s)$

行九,有去X(s)

6. (15') 下图是一个典型的运算放大器电路。假设电路是理想放大器,且各参数为 $R_1=R_2=100~{\rm km}$,

[1=10 μF, C2=5 μF,请计算电路的传递函数.利用虚交应。这作列方程

7. (25) 系统方框图下图所示,请计算系统的传递函数 $G(s) = \frac{Y(s)}{R(s)}$ 。(注意:请写出详细的化

注意区分并联故路和反馈回路

105

简步骤)

Step1化简G、反馈回路然后与G、G、串联合并

Step2同理,化简从、GG台灣回路,再将它们与GGG并

互对接触回路槽益积. Lily =GLGY

信号流图的特征式为 <u>Δ=1-(Li,+li)+Liz</u>=1+Gi+Gy+GzGy 作为P的分母 生色正负 三条前向通路

P1 = G, G, G, G, G, P2 = G6 G, Gs, P3 = G7

01-1

 $\Delta_2 = 14G_L$ $\Delta_3 = 14G_L t Gy + G_2 Gy Logo Logo$

 $P = \frac{1}{\Delta} \sum_{k=1}^{3} P_{k} \Delta_{k} = \frac{G_{1}G_{2}G_{3}G_{4}G_{5} + (HG_{2})G_{6}G_{4}G_{5} + G_{5}(HG_{2}+G_{4}+G_{2}G_{4})}{1 + G_{2} + G_{4}G_{4}}$

= Giaragayast (Har) Golayas + G7

与法-相同