Home Assignment 1

- 1. Let $\Omega = \mathbb{R}$. Explicitly find the sigma-algebras $\mathcal{F}_1 = \sigma(A)$, $\mathcal{F}_2 = \sigma(B)$, $\mathcal{F}_3 = \sigma(A,B)$ where A = [-10;5] and B = (0;10).
- 2. I throw a die once. Let X be the result of the toss. Count the number of events in sigma-algebras $\mathcal{F}_1 = \sigma(X)$, $\mathcal{F}_2 = \sigma(\{X > 3\})$, $\mathcal{F}_3 = \sigma(\{X > 3\})$, $\{X < 5\}$).
- 3. Let $\Omega = \mathbb{R}$. The sigma-algebra \mathcal{F} is generated by all the sets of the form $(-\infty, t]$,

$$\mathcal{F} = \sigma\left(\left\{\left(-\infty; t\right) \mid t \in \mathbb{R}\right\}\right)$$

Check whether $A_1 = (0; 10) \in \mathcal{F}$, $A_2 = \{5\} \in \mathcal{F}$, $A_3 = \mathbb{N} \in \mathcal{F}$.

- 4. Prove the following statements or provide a counter-example:
 - (a) If \mathcal{F}_1 and \mathcal{F}_2 are sigma-algebras then $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$ is sigma-algebra.
 - (b) If X and Y are independent random variables then card $\sigma(X,Y) = \operatorname{card} \sigma(X) + \operatorname{card} \sigma(Y)$.

For finite sets card denotes just the number of elements.

- 5. I throw a die infinite number of times. Let the random variable X_n be equal to 1 if the n-th toss is head and 0 otherwise. Consider a pack of sigma-algebras: $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ and $\mathcal{H}_n = \sigma(X_n, X_{n+1}, X_{n+2}, \dots)$. Where possible provide and example of a non-trivial event (neither Ω nor \emptyset) such that
 - (a) $A_1 \in \mathcal{F}_{2020}$;
 - (b) $A_2 \in \mathcal{H}_{2020}$;
 - (c) $A_3 \in \mathcal{F}_{2020}$ and $A_3 \in \mathcal{H}_{2020}$;
 - (d) $A_4 \in \mathcal{F}_n$ for all n;
 - (e) $A_5 \in \mathcal{H}_n$ for all n.

Deadline: 25 September 2020, 21:00 MSK.

2020-2021 1/4

Home Assignment 2

1. Consider the Markov chain with the transition matrix:

- (a) Draw the most beautiful graph for this chain. A fox or a cat is ok:)
- (b) Classify the states of the Markov chain.
- 2. The Lonely Knight is standing on the A1 field of the chessboard. She starts moving randomly according to chess rules.
 - (a) How many moves on average will it take to go back to A1?
 - (b) What proportion of her eternal life will she spend on every field?
- 3. Donald Trump throws a die until one appears or until he says «Stop». The payoff is equal to the last thrown number. Donald maximizes the expected payoff.
 - (a) What is the best strategy and the corresponding expected payoff?

How do the answers change in the following modifications of the original game?

- (b) Donald is also required to stop at 3 and to continue on 4.
- (c) Donald should pay 0.3 for every throw.
- 4. Ilya Muromets stands before the first stone. There are three roads behind the stone. And every road ends with a new stone. And there are three new roads behind every new stone. And so on. Every road is guarded with one-third probability by a three headed Zmei Gorynich. Yes, there are infinitely many Zmei Gorynich.

What is the probability that there is an Eternal Peaceful Journey?

- 5. Ilya and Zmei finally met and play with a coin. They throw a coin until the sequence HTT or TTH appears. Ilya wins if HTT appears and Zmei wins if TTH appears.
 - (a) What is the probability that Ilya wins?
 - (b) What is the expected number of throws?
 - (c) What is the expected number of throws given that Ilya won?

Deadline: 9 October 2020, 21:00 MSK.

2020-2021 2/4

Home Assignment 3

1. Consider the Vasicek interest rate model,

$$dR_t = a(b - R_t) dt + \sigma dW_t.$$

Here R_t is the interest rate and a, b and σ are positive constants.

- (a) Using the substitution $Y_t = e^{at}R_t$ find the solution of the stochastic differential equation;
- (b) Find $\mathbb{E}(R_t)$ and $\mathbb{V}ar(R_t)$.
- (c) Which value in this model would you call long-term equilibrium rate and why?
- 2. Let X_t be the exchange rate measured in roubles per dollar. We suppose that $dX_t = \mu X_t dt + \sigma X_t dW_t$. Consider the inverse exchange rate $Y_t = 1/X_t$ measured in dollars per rouble.

Write the stochastic differential equation for dY_t . The equation may contain Y_t and constants, but not X_t .

- 3. Let W_t^a and W_t^b be two independent Wiener processes. Consider the process $Q_t = \alpha W_t^a + \beta W_t^b$, where $\alpha^2 + \beta^2 = 1$.
 - (a) Is Q_t a Wiener process? Carefully check all the assumptions.
 - (b) Find the limit in L^2 for $n \to \infty$ of

$$A_n = \sum_{i=1}^n \left(W^a(it/n) - W^a((i-1)t/n) \right) \left(W^b(it/n) - W^b((i-1)t/n) \right)$$

(c) Find the limit in L^2 for $n \to \infty$ of

$$B_n = \sum_{i=1}^n (Q(it/n) - Q((i-1)t/n)) \left(W^b(it/n) - W^b((i-1)t/n) \right)$$

- (d) Find $\mathbb{C}orr(Q_t, W_t^b)$.
- (e) Without formal proof guess the value of $dQ_t dW_b^t$ in the Ito's lemma for correlated Wiener processes.
- 4. Consider the Cox-Ingersoll-Ross interest rate model

$$dR_t = a(b - R_t) dt + \sigma \sqrt{R_t} dW_t.$$

Here R_t is the interest rate and a, b and σ are positive constants.

Find $\mathbb{E}(R_t)$ and $\mathbb{V}ar(R_t)$.

Publication: 2020-11-04, 21:40:00

5. The share price S_t satisfies the Black and Scholes model and $dX_t = tdS_t$. Find $\mathbb{E}(X_t)$ and $\mathbb{V}ar(X_t)$. 1. Consider the Black and Scholes model. At time T>1 the asset pays you

$$X_T = \begin{cases} \ln S_T, & \text{if } S_T > 1; \\ 0, & \text{otherwise.} \end{cases}$$

Today is t = 1. Find the current price X_1 of this asset.

- 2. Пусть y_t стационарный процесс. Проверьте стационарность процессов:
 - (a) $a_t = \Delta^2 y_t$;
 - (b) $b_t = 2y_t + 3y_{t-1} + 18$.
- 3. Правильный кубик подбрасывают три раза, обозначим результаты подбрасываний $X_1,\,X_2$ и $X_3.$ Также ввёдем обозначения для сумм $L=X_1+X_2,\,R=X_2+X_3$ и $S=X_1+X_2+X_3.$
 - (а) С помощью качественных рассуждений (без вычислений) определите знаки частных корреляций $p\mathbb{C}\mathrm{orr}(L,R;S)$, $p\mathbb{C}\mathrm{orr}(L,S;R)$, $p\mathbb{C}\mathrm{orr}(X_1,R;S)$.
 - (b) Найдите точное значение каждой частной корреляции.
- 4. У эконометрессы Ефросиньи был стационарный ряд (y_t) , $t \ge 1$ с $\mathbb{E}(y_t) = 5$. $\mathbb{V}\mathrm{ar}(y_t) = 16$ и $\mathbb{C}\mathrm{ov}(y_t,y_{t-1}) = 4$.

Ефросинье было скучно и она подбрасывала неправильную монетку, выпадающую орлом с вероятностью 0.7. Если выпадал орёл, она оставляла очередной y_t , если решка — то зачёркивала.

Обозначим полученную новую последовательность (z_t) .

- (a) Является ли (z_t) стационарным?
- (b) Найдите $\mathbb{E}(z_t)$, $\mathbb{V}\mathrm{ar}(z_t)$ и $\mathbb{C}\mathrm{ov}(z_t,z_{t-1})$.
- 5. Рассмотрим стационарное решение (y_t) уравнения $y_t = 6 + 0.5y_{t-1} + u_t 0.3u_{t-1}$, где (u_t) белый шум.
 - (a) Найдите $\mathbb{E}(y_t)$ и $\mathbb{V}\mathrm{ar}(y_t)$.
 - (b) Найдите первые три значения автокорреляционной функции.
 - (с) Найдите первые три значения частной автокорреляционной функции.

Hint: для данного случая есть теорема, которая гарантирует, что у стационарного решения $\mathbb{C}\text{ov}(y_t, u_{t+k}) = 0$ при k > 0.

Publication: 2020-11-21, 20:20:20 https://forms.gle/LivmsZfFmgSuB6eY6

 $^{^1}$ Запись р $\mathbb{C}\mathrm{orr}(X,Y;Z)$ означает частную корреляцию между X и Y, «очищенных» от эффекта Z.