Infinitesimal Calculus

Paul Schulze

History

- Newton & Leibniz formulated calculus using the idea of infinitesimals
- Infinitesimals are really really small, but not 0
- ▶ Considered nonsensical, replaced with δ - ϵ
- Early 1960's: Abraham Robinson formalizes Nonstandard Analysis
- Our formulation of infinitesimals is based off work by Jerzy Łoś

(a) Abraham Robinson

(b) Jerzy Łoś

Basic Idea

- ▶ We construct a set of *hyperreals*, denoted ${}^*\mathbb{R}$.
- $ightharpoonup *\mathbb{R}$ includes \mathbb{R} , along with (a lot of) hyperreals.
- We construct a language of mathematical logic, using symbols like \neg , \wedge , \vee , \forall , etc.
- ▶ We show that any sentence of that language is true in \mathbb{R} iff it is true in \mathbb{R} (transfer principle).
- ightharpoonup We use transfer to prove things about \mathbb{R} .

Constructing ${}^*\mathbb{R}$

- ightharpoonup We start with the ring \mathbb{R}^{∞} .
- ▶ Identify sequences that are the same "almost everywhere," like $\langle 0,1,1,\ldots \rangle \sim \langle 1,1,1,\ldots \rangle$.
- Sequences are the same almost everywhere if the set of indices at which they are the same is "big."
- ▶ The set of "big" sets of natural numbers is an *ultrafilter* $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$.

Constructing ${}^*\mathbb{R}$

- Now we can define our equivalence relation \sim by saying that $\langle r_1, r_2, r_3, \ldots \rangle \sim \langle s_1, s_2, s_3, \ldots \rangle$ iff $\{n \in \mathbb{N} \mid r_n = s_n\} \in \mathcal{F}$.
- ▶ Write the equivalence class $[\langle r_1, r_2, r_3, \ldots \rangle]$.
- ▶ Define * \mathbb{R} as the quotient ring of \mathbb{R}^{∞} under \sim , i.e. * $\mathbb{R} = \{ [\langle r_1, r_2, r_3, \ldots \rangle] | \langle r_1, r_2, \ldots \rangle \in \mathbb{R}^{\infty} \}.$
- Extend any function $f: \mathbb{R} \to \mathbb{R}$ to a new $f: \mathbb{R} \to \mathbb{R}$. $f([\langle r_1, r_2, r_3, \ldots \rangle]) = [\langle f(r_1), f(r_2), f(r_3), \ldots \rangle].$
- ▶ We can also extend relations, like "≤." $\langle r_1, r_2, r_3, \ldots \rangle \leq \langle s_1, s_2, s_3, \ldots \rangle$ iff $\{n \in \mathbb{N} \mid r_n \leq s_n\} \in \mathcal{F}$.
- ▶ For any $x \in \mathbb{R}$, we can take $x \in {}^*\mathbb{R}$ to mean $[\langle x, x, x, \ldots \rangle]$.

Transfer Principle

- Our language is made up of:
 - ▶ logical connectives \land , \lor , \rightarrow , \leftrightarrow , and \neg ,
 - ightharpoonup quantifiers \forall , \exists ,
 - parenthesis (and),
 - \triangleright variables x, y, z, \ldots , and
 - ightharpoonup symbols for every element of \mathbb{R} , every relation on \mathbb{R} , and every function on \mathbb{R} .
- Sentences are defined recursively. $(\forall x \in \mathbb{R})(x < x + 1) \text{ vs. }))5+ \leq v_1 \leftrightarrow \neg \land 64$
- ▶ If φ is a sentence that "talks about" \mathbb{R} , we can obtain φ by replacing each function and relation with its extension in \mathbb{R} .
- ▶ **Transfer Principle:** Any sentence φ is true iff $^*\varphi$ is true.

Structure of ${}^*\mathbb{R}$

- ▶ We call an element $x \in {}^*\mathbb{R}$:
 - ▶ infinitesimal if |x| < r for any $r \in \mathbb{R}^+$,
 - unbounded if r < |x| for any $r \in \mathbb{R}^+$, and
 - appreciable if it is neither infinitesimal nor unbounded.
- Arithmetic properties of hyperreals are mostly intuitive.
- We say two elements $x, y \in {}^*\mathbb{R}$ are *infinitely close*, and write $x \simeq y$, if |x y| is infinitesimal. \simeq is an equivalence relation.
- Any bounded hyperreal x is infinitely close to a unique real number, called its *standard part* and denoted st (x).
- st has most of the nice properties you'd like it to: st(x + y) = st(x) + st(y), etc.

Derivatives

- ▶ Say $f : \mathbb{R} \to \mathbb{R}$. Extend f to $f : \mathbb{R} \to \mathbb{R}$
- ▶ Fix $b \in \mathbb{R}$. Let Δx be infinitesimal, and let Δf be $^*f(b+\Delta x)-^*f(b)$.
- ▶ Then define $f'(b) = \operatorname{st}\left(\frac{\Delta f}{\Delta x}\right)$. So $f'(b) \simeq \frac{\Delta f}{\Delta x}$
- **Example:** Say $f(x) = x^2$. Then we have

$$f'(3) \simeq \frac{(3+\Delta x)^2 - 3^2}{\Delta x} = \frac{9+6\Delta x + (\Delta x)^2 - 9}{\Delta x}$$
$$= \frac{6\Delta x + (\Delta x)^2}{\Delta x} = 6 + \Delta x \simeq 6$$

So $f'(3) \simeq 6$. But these are both real numbers, so their difference is real. Hence f'(3) = 6.

Proof: Chain Rule

Let $f,g:\mathbb{R}\to\mathbb{R}$ be differentiable. Let Δx be any nonzero infinitesimal, and $\Delta g=g(x+\Delta x)-g(x)$. Then

$$(f \circ g)'(x) \simeq \frac{f(g(x + \Delta x)) - f(g(x))}{\Delta x}$$

$$= \frac{f(g(x) + \Delta g) - f(g(x))}{\Delta g} \cdot \frac{\Delta g}{\Delta x}$$

$$\simeq f'(g(x)) \cdot g'(x)$$

So $(f \circ g)'(x) \simeq f'(g(x)) \cdot g'(x)$. But since both of these numbers are real, they must be identical.

When
$$\Delta g=0$$
, $f(g(x)+\Delta g)-f(g(x))=0$ and so $(f\circ g)'(x)=0$.

Further,
$$g'(x) = \operatorname{st}\left(\frac{\Delta g}{\Delta x}\right) = 0$$
, so $f'(g(x)) \cdot g'(x) = 0$.

Series

- ▶ Recall there are unbounded hypernaturals like $[\langle 1, 2, 3, \ldots \rangle] \in {}^*\mathbb{N}.$
- We take infinite series by extending finite series.
- Say we have a sequences $\langle r_1, r_2, r_3, \ldots \rangle$, and we define $\sum_{i=0}^n r_i$ normally.
- Let $s: \mathbb{N} \to \mathbb{R}$ be defined by $s(n) = \sum_{i=0}^{n} r_i$. Extend s to $*s: *\mathbb{N} \to *\mathbb{R}$.
- ▶ For any $M \in {}^*\mathbb{N}$, write $\sum_{i=0}^M r_i = s(M)$.
- ▶ If st $\left(\sum_{i=0}^{M} r_i\right) = L$ for all unbounded M, write $\sum_{i=0}^{\infty} r_i = L$.

Geometric Series

- ▶ Say 0 < r < 1. We want to evaluate $\sum_{i=0}^{\infty} r^i$.
- ▶ By difference of powers, $1 r^{n+1} = (1 r)(1 + r^2 + \dots + r^n)$.
- ▶ So $(\forall n \in \mathbb{N})(\sum_{i=0}^{n} r^{i} = \frac{1-r^{n+1}}{1-r})$. Transfer this.
- ▶ Plug in an unbounded M. $\sum_{i=0}^{M} r^i = \frac{1-r^{M+1}}{1-r}$.
- ► So st $\left(\sum_{i=0}^{M} r^i\right) = \frac{\operatorname{st}\left(1-r^{M+1}\right)}{\operatorname{st}(1-r)} = \frac{1-\operatorname{st}\left(r^{M+1}\right)}{1-r} = \frac{1}{1-r}.$
- ► So $\sum_{i=0}^{\infty} r^i = \frac{1}{1-r}$.

- ▶ We define a function exp : $\mathbb{R} \to \mathbb{R}$ by exp $(x) = \sum_{i=0}^{\infty} \frac{x^i}{i!}$.
- We'd like to show that exp'(x) = exp(x).
- ▶ In other words, that st $\left(\frac{*\exp(x+\Delta x)-*\exp(x)}{\Delta x}\right) = \exp(x)$ for any nonzero infinitesimal Δx .
- ➤ Since both sides are real, it suffices to show they are infinitely close, i.e. that

$$\left| \frac{*\exp(x + \Delta x) - *\exp(x)}{\Delta x} - \exp(x) \right|$$
 is infinitesimal

▶ To show that, we will put a bound on

$$\left| \sum_{i=0}^{k} \frac{(x+d)^{i}}{i!} - \sum_{i=0}^{k} \frac{x^{i}}{i!} - d \cdot \sum_{i=0}^{k-1} \frac{x^{i}}{i!} \right|$$

and apply transfer several times.