Statistical Inference: matched pairs

Matched pairs

Some data:

subject	druga	drugb
1	2.0	3.5
2	3.6	5.7
3	2.6	2.9
4	2.6	2.4
5	7.3	9.9
6	3.4	3.3
1 2 3 4 5 6 7 8 9	14.9	16.7
8	6.6	6.0
9	2.3	3.8
10	2.0	4.0
11	6.8	9.1
12	8.5	20.9

Matched pairs data

- Data are comparison of 2 drugs for effectiveness at reducing pain.
 - 12 subjects (cases) were arthritis sufferers
 - ullet Response is #hours of pain relief from each drug.
- In reading example, each child tried only one reading method.
- But here, each subject tried out both drugs, giving us two measurements.
 - Possible because, if you wait long enough, one drug has no influence over effect of other.
 - Advantage: focused comparison of drugs. Compare one drug with another on same person, removes a lot of variability due to differences between people.
 - Matched pairs, requires different analysis.
- Design: randomly choose 6 of 12 subjects to get drug A first, other 6 get drug B first.

Paired t test: reading the data

Values aligned in columns:

```
my url <-
  "http://ritsokiguess.site/datafiles/analgesic.txt"
pain <- read table(my url)</pre>
##
## -- Column specification
## cols(
     subject = col_double(),
##
     druga = col double(),
##
     drugb = col_double()
##
## )
```

The data

pain

subject	druga	drugb
1	2.0	3.5
2	3.6	5.7
3	2.6	2.9
4	2.6	2.4
5	7.3	9.9
6	3.4	3.3
7	14.9	16.7
8	6.6	6.0
9	2.3	3.8
10	2.0	4.0
11	6.8	9.1
12	8.5	20.9

Paired *t*-test

```
with(pain, t.test(druga, drugb, paired = T))
##
##
   Paired t-test
##
## data: druga and drugb
## t = -2.1677, df = 11, p-value = 0.05299
## alternative hypothesis: true difference in means is not equal to
## 95 percent confidence interval:
## -4.29941513 0.03274847
## sample estimates:
## mean of the differences
##
                 -2.133333
```

- P-value is 0.053.
- Not quite evidence of difference between drugs.

t-testing the differences

- Likewise, you can calculate the differences yourself and do a 1-sample t-test on them.
- First calculate a column of differences:

(pain %>% mutate(diff=druga-drugb) -> pain)

subject	druga	drugb	diff
1	2.0	3.5	-1.5
2	3.6	5.7	-2.1
3	2.6	2.9	-0.3
4	2.6	2.4	0.2
5	7.3	9.9	-2.6
6	3.4	3.3	0.1
7	14.9	16.7	-1.8
8	6.6	6.0	0.6
9	2.3	3.8	-1.5
10	2.0	4.0	-2.0
11	6.8	9.1	-2.3
12	8.5	20.9	-12.4

t-test on the differences

• then throw them into t.test, testing that the mean is zero, with same result as before:

```
with(pain, t.test(diff, mu=0))
##
   One Sample t-test
##
##
## data: diff
## t = -2.1677, df = 11, p-value = 0.05299
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -4.29941513 0.03274847
## sample estimates:
## mean of x
## -2.133333
```

Assessing normality

- 1-sample and 2-sample t-tests assume (each) group normally distributed.
- Matched pairs analyses assume (theoretically) that differences normally distributed.
- How to assess normality? A normal quantile plot.

The normal quantile plot (of differences)

ggplot(pain,aes(sample=diff))+stat_qq()+stat_qq_line()

 Points should follow the straight line. Bottom left one way off, so normality questionable here: outlier.

What to do instead?

- Matched pairs t-test based on one sample of differences
- the differences not normal (enough)
- so do sign test on differences, null median 0:

```
## $above_below
## below above
## 9 3
##
## $p_values
## alternative p_value
## 1 lower 0.07299805
## 2 upper 0.98071289
## 3 two-sided 0.14599609
```

sign test(pain, diff, 0)

Comments

- no evidence of any difference between drugs (P-value 0.1460)
- in *t*-test, the low outlier difference pulled mean difference downward and made it look more negative than it should have been
- therefore, there really isn't any difference between the drugs.