

MF2070 Workshop 1

An Introduction to **Theories** of Science

Outline

- Paradigms, Scientific Theories and the Scientific Community
- The Scientific Method

The Purpose?

What is the purpose of a theory of science?

1. What is the goal of science?

2. What is the nature of scientific change?

Paradigm...

(or "Philosophical Worldview")

Contemporary Definition

- "Universally recognized scientific achievements that, for a time, provide model problems and solutions for a community of practitioners"
 - What is to be observed and scrutinized.
 - The kind of questions to be asked and probed for answers.
 - The structure of these questions.
 - Interpretation of results.
 - Experiment setup, equipment use, etc.

A Vague Term

- Kuhn, and others, have used different definitions.
- A very vague term, but useful in that it points out that beliefs, attitudes, procedures and techniques of the scientific community are important.
- To highlight the very real influence by these we only have to look at a few different philosophical standpoints that underpin different research fields.

Logical Positivism

- Ontology: There is a single reality.
- Epistemology: Knower and known are independent.
- Axiology: Inquiry is value-free.
- Generalizations: Time- and Context-free generalizations are possible.
- Causal Linkage: There are real causes that are temporally precedent to or simultaneous with effects.
- Deductive Logic: Emphasis on arguing from the general to the particular.
- "Choice" of Methods: Quantitative

Postpositivism

- Arose during the 1950s and 1960s (Popper, Kuhn, Hanson, etc.).
- Value-ladenness of Inquiry: Research is influenced by the values of investigators.
- Theory-ladenness of Facts: Research is influenced by the theory, hypotheses or framework that an investigator uses.
- Nature of Reality: Our understanding of reality is constructed.
- Choice of Methods: Primarily quantitative
- Focus: Theory verification

Constructivism

- Various schools of though, here gathered under one name. Important in regard to social phenomena. Example standpoints include:
- Ontology: There are multiple, constructed realities.
- Epistemology: Knower and known are inseparable.
- Axiology: Inquiry is value-bound.
- Generalizations: Time- and Context-free generalizations are not possible.
- Causal Linkage: It is impossible to distinguish causes from effects.
- Inductive Logic: Emphasis on arguing from the particular to the general.
- "Choice" of Methods: Qualitative
- Focus: Theory generation

Pragmatism

- Arose after the paradigm wars between postpositivists and constructivists. Either provides more nuanced view or just compromises between paradigms (depends on who you speak to).
- Ontology: There is an external reality, but it can never be completely defined.
- Epistemology: Knower and known may be independent, it depends.
- Axiology: Values play a large role in interpreting results.
- Causal Linkage: There may be real causes that are temporally precedent to or simultaneous with effects, but we will never be able to completely pin them down.
- Inductive + Deductive Logic
- Choice of Methods: Quantitative + Qualitative
- Focus: Real-world practice

Why are Paradigms important (in practice)?

To publish

To get grants

 In other words, the research community enforces compliance to the paradigm

So, how is this related to

scientific change?

Through the anomalies...

Paradigm A

to

Paradigm B

An Example of Paradigm Shifts (by Kuhn): The Copernican Revolution

So, is "The Scientific Endeavor" relative?

Is there No Good and Bad Science?

Thomas Kuhn

A Scientific Theory:

- should provide accurate predictions.
- should permit puzzle-formulation and solution.
- should be simple.
- should be self-consistent.
- should be compatible with other theories currently deployed.

So, is "The Scientific Endeavor" non-rational?

Is there no possibility to differ objectively between Good and Bad Science?

Karl Popper

- Defines another, rational perspective on scientific change.
- Focused on what is different between scientific theories and non-scientific theories.
- Chose falsification as the answer, and the empirical method as a way of forcing a choice between scientific systems.

Popper vs. Kuhn?

 There is, unfortunately for the rationalist, no question regarding whose theory is closest to the history of the scientific endeavor.

Enter Imre Lakatos

Enter Imre Lakatos

Competing Theories – It is easy

"A theory (T) ought to be rejected (falsified) if and only if:

- 1. Another theory T' has excess empirical content over T: that is, it predicts novel facts, that is, facts improbable in the light of, or even forbidden by, T;
- 2. T' explains the previous success of T, that is, all the unrefuted content of T is included (within the limits of observational error) in the content of T'; and
- 3. some of the excess content of T' is corroborated."

So...

- Yes, we only abandon theories in favor of better theories.
- But, we first explore modifications in theories which might make them better able to cope with anomalies.
- Hence we should not consider single theories but a sequence of theories in which each theory is generated by modifying its predecessor (a "Scientific Research Programme").

The auxiliary belt

And this is an answer to Good versus Bad...

Progressive

Versus

Degenerative

And Then What?

 Lakatos views have also been criticized by other theorists.

Different philosophical standpoints abound.

 However, the structure of the scientific community still reflects at least a hope that scientific change is rational and objective.

The Structure of the Scientific Community?

- Science as "Organized Scepticism"
- Everything can be doubted, but scientists should provide:
 - Proof of expertise within the area
 - Transparency with regard to method use and study execution
 - A consideration of alternative explanations and opinions based on available evidence (even scepticism does not imply that all theories are of equal value)

Outline

- Introduction to the Course
- Paradigms, Scientific Theories and the Scientific Community
- The Scientific Method

Good or Bad Methods?

Theory

Method

Good or Bad Methods?

Theory

Method

Method...

Described in many ways

A Deceptively Straight-Forward Simplification...

Research Question

Hypothesis

Conclusions

Observation

Prediction

Study

Where to Start?

Research Question

Hypothesis

Conclusions

Observation

Prediction

Study

Where to Start?

Research Question

Hypothesis

Where to Start?

Where to Start?

So, is there a solution to this

Chicken

Or

Egg Dilemma?

Regardless – The key parts

Research Question

Data Gathering

Data Analysis

Regardless – The key parts

Research Question

Data Gathering

Methods

Data Analysis

 Methodologies (Research Designs)

Quantitative - Qualitative

"Quantitative methods have been evolved within the positivist paradigm."

"Qualitative methods have been evolved within the constructivist paradigm."

Pure Quantitative

Investigation

Qualitative

Mixed Methods

Exploratory Investigation **Data/Operations**

Qualitative Data/Operations **Statistical Analysis** nference

Qualitative Analysis & Inference

Statistical Analysis & Inference

Qualitative Analysis & Inference

Satistical Analysis

& Inference

Qualitative Analysis & Inference

Statistical Analysis & Inference

Qualitative Analysis & Inference

Pure Quantitative

Investigation

Qualitative

Mixed Methods

Data/Operations

Exploratory

Pure Qualitative Statistical Analysis

Inference

Qualitative Analysis & Inference

Statistical Analysis & Inference

Qualitative Analysis & Inference

atistical Analysis& Inference

Qualitative Analysis & Inference

Statistical Analysis & Inference

alitative Analysis
nference

The Quantitative Extreme

- Design Quality:
 - Generalizations are possible!
 - Focus on Deductive Logic
 - There is a objectively understandable reality!
 - Results makes sense to Independent Experts
- Information/Data Quality:
 - Separate Concern

The Quantitative Extreme

Inferences to be evaluated by other experts

Question to (try to) answer objectively

Data to (try to) evaluate objectively

Surveys

- Scientific Theories arise as generalizations from observable data, specifically through studying samples of populations.
- Typical Methods, Data Gathering: Questionnaires
- Typical Methods, Data Analysis: Statistics

The Hypothetico-Deductive Model (Experiments)

- Scientific Theories arise as generalizations from observable data, specifically through trying to falsify hypotheses.
- These generalizations remain "hypotheses" in the general sense, which are not conclusively established until all their consequences have been verified through relevant tests.
- Typical Methods, Data Gathering: Non-participant Observations
- Typical Methods, Data Analysis: Statistics

The Qualitative Extreme

- Design Quality:
 - Generalizations are not possible!
 - Focus on Inductive Logic (if any)
 - There are multiple realities!
 - Results makes sense to those whose realities are reconstructed/described
- Information/Data Quality:
 - Intrinsically linked to inferences

The Qualitative Extreme

Other experts as an audience

Data and Inferences that makes sense in subjective reality Analysis and Detailing of questions

Broad, subjective questions

Ethnography

- The study of an intact cultural group in a natural setting over a prolonged period of time.
- Typical Methods, Data Gathering: Observations and Interviews.
- Typical Methods, Data Analysis: Various, but tries to be "emic".

Grounded Theory

- The derivation of a general, abstract theory of a process, action, or interaction grounded in the views of participants in a study.
- Typical Methods, Data Gathering: "All is Data" (Observations, Interviews, Content Analysis...)
- Typical Methods, Data Analysis: The Constant Comparative Analytical Scheme

Case Studies

- The in-depth exploration of an individual unit (person, community, project, etc.). Difference lies in the characteristic of the individual case (generic, critical, oddity, etc.).
- Typical Methods, Data Gathering: Various.
- Typical Methods, Data Analysis: Various.

Phenomenology

- The identification of the "essence" of human experiences concerning a phenomenon, as described by participants in a study.
- Typical Methods, Data Gathering: Lengthy observation or interviews.
- Typical Methods, Data Analysis: Various.

Narrative Inquiry

- The researcher retells or "restories" data into a narrative chronology.
- Typical Methods, Data Gathering: Various.
- Typical Methods, Data Analysis: Various.