

Multiple Data Types (3주차)

Young-Gon Kim DLI Instructor

DEEP LEARNING INSTITUTE

DLI Mission

Helping people solve challenging problems using AI and deep learning.

- Developers, data scientists and engineers
- Self-driving cars, healthcare and robotics
- Training, optimizing, and deploying deep neural networks

TOPICS

- Week 2 Review
- Image Captioning
- Video Captioning

WEEK 2 REVIEW

- Data / Network
 - Microsoft Common Object in Context (MS COCO)
 - Images
 - Five captions for each image

- VGG16 Network
 - Visual Geometry Group

- Process
 - 1. Import libraries
 - 2. Evaluate data / Pixel to Content
 - Feature vector FC7
 - 3. Align captions with images
 - Will work with a subset of the data
 - 4. Predict next word
 - Parse, tokenize, etc.

[1,0,0,0,0,0,0,0,0,0]

Output

- Process
 - 5. Architecture the network (RNN)
 - 6. Train / build model
 - 7. Evaluate a training image & captions
 - 8. Generate a caption for a validation image
 - 9. RUN LAST CODE BLOCK TO FREE GPU MEMORY

Embedded

Sentence

Generic Schematic of the Modified Reference CNN Architecture CaffeNet with two LSTM Layers

- Results

CaffeNet	A white bird standing on top of a sandy beach.
VGG	A small bird standing on the ground.

CaffeNet	A white horse standing in a lush field of grass.
VGG	A white horse standing in a field next to a fence.

CaffeNet	A white cat sitting on a chair.
VGG	A white and white cat laying on a white chair.

CaffeNet	A bunch of bananas that are on a table.
VGG	A close up of a bunch of white flowers.

- Data / Network
 - Microsoft Research Video Description Corpus (MSVD)
 - About 2,000 video clips
 - Ten captions for each video

- VGG16 Network
 - Visual Geometry Group

- Process
 - 1. Import libraries
 - 2. Evaluate videos and captions
 - Create a mean vector of a single clip
 - This will generate a high-level representation of each frame from layer fc7
 - 3. Align captions with feature maps
 - Will work with a subset of the data
 - 4. Predict next word for captions
 - Parse, tokenize, etc.

- Process
 - 5. Architect the network (RNN)
 - NOTE: Troubleshooting wording before running code block
 - 6. Train / build model
 - NOTE: Troubleshooting wording before running code block
 - 7. Evaluate a training image & captions
 - 8. Generate a caption for a validation image

Prediction

1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1

Results

A man is riding a horse

A animal is eating

A dog is standing

Reference

- https://arxiv.org/pdf/1411.4389.pdf
- https://arxiv.org/pdf/1412.4729.pdf
- https://www.aclweb.org/anthology/P11-1020.pdf

