Preparation for Vega-Quantathon: set 1

Contents

	Yield from maturity and discount factor
	Yield curve computed from discount curve
	Yield shape curve 1
	Yield shape curve 2
	The Nelson-Siegel yield curve
	The Nelson-Siegel discount curve
	Forward exchange rate from domestic and foreign discount factors . 5
	Forward price curve for a cash flow
	Forward price curve for a coupon bond
	Discount curve obtained by linear interpolation of yields
	While implementing the functions below, you need to account for the
in	gularities of the type $0/0$.

Yield from maturity and discount factor

Input:

 t_0 : the initial time given as year fraction.

Output: continuously compounded yield surface $\gamma = (\gamma(t, D(t)))_{t>t_0}$, where t is the maturity and D(t) is the discount factor.

We recall that

$$D(t) = e^{-\gamma(t)(t-t_0)}, \quad t > t_0.$$

Yield curve computed from discount curve

Input:

 $D = (D(t))_{t \ge t_0}$: the discount curve.

 t_0 : the initial time given as year fraction.

Output: continuously compounded yield curve $\gamma = (\gamma(t))_{t>t_0}$.

We recall that

$$D(t) = e^{-\gamma(t)(t-t_0)}, \quad t \ge t_0.$$

Algorithm. To handle the singularity at $t \approx t_0$, $t \geq t_0$, we take sufficiently small ϵ (say, $\epsilon = 10^{-10}$) and consider two cases:

1. If $t_0 < t < t_0 + \epsilon$, then

$$\gamma(t) = -\frac{1}{t - t_0} \log D(t) \approx -\frac{1}{\epsilon} \log D(t_0 + \epsilon) \approx \frac{1 - D(t_0 + \epsilon)}{\epsilon}.$$

Effectively, we return the interest rate for period ϵ .

2. If $t \ge t_0 + \epsilon$, then

$$\gamma(t) = -\frac{1}{t - t_0} \log D(t).$$

Yield shape curve 1

Input:

 $\lambda \geq 0$: the mean-reversion rate.

 t_0 : the initial time given as year fraction.

Output: function

$$\Gamma(t) = \frac{1 - e^{-\lambda(t - t_0)}}{\lambda(t - t_0)}, \quad t \ge t_0,$$

appearing in the descriptions of yield curves for various financial models (Hull-White, Nelson-Siegel, Svensson, Vasicek).

Algorithm. To handle the singularity at $\lambda(t-t_0) \approx 0$, we introduce function

$$x(t) = \lambda(t - t_0), \quad t \ge t_0,$$

We have Taylor's expansion:

$$f(x) \triangleq \frac{1}{x} (1 - e^{-x}) = \frac{1}{x} \left(1 - \sum_{k=0}^{\infty} \frac{(-x)^k}{k!} \right) = \sum_{k=0}^{\infty} \frac{(-x)^k}{(k+1)!}.$$

For small values of x we get the quadratic approximation:

$$f(x) \approx g(x) \triangleq 1 - \frac{x}{2} + \frac{x^2}{6}, \quad x \to 0.$$

Thus, we can approximate $\Gamma = \Gamma(t)$ as

$$\Gamma(t) \approx f(x(t)) \mathbb{1}_{\{x(t) > \epsilon\}} + g(x(t)) \mathbb{1}_{\{x(t) < \epsilon\}}, \quad t \ge t_0.$$

where ϵ is a sufficiently small number (say, $\epsilon = 10^{-10}$).

Yield shape curve 2

Input:

 $\lambda \geq 0$: the mean-reversion rate.

 t_0 : the initial time given as year fraction.

Output: function

$$\Gamma(t) = \frac{1 - \exp(-\lambda(t - t_0))}{\lambda(t - t_0)} - \exp(-\lambda(t - t_0)), \quad t \ge t_0,$$

appearing in the descriptions of yield curves for various financial models (Nelson-Siegel, Svensson).

Algorithm. To handle the singularity at $\lambda(t-t_0)\approx 0$, we introduce function

$$x(t) = \lambda(t - t_0), \quad t \ge t_0,$$

We have Taylor's expansion:

$$f(x) \triangleq \frac{1}{x} \left(1 - e^{-x} \right) - e^{-x} = \frac{1}{x} \left(1 - \sum_{k=0}^{\infty} \frac{(-x)^k}{k!} \right) - \sum_{k=0}^{\infty} \frac{(-x)^k}{k!}$$
$$= \sum_{k=0}^{\infty} (-x)^k \left(\frac{1}{(k+1)!} - \frac{1}{k!} \right) = \sum_{k=1}^{\infty} (-x)^k \left(\frac{1}{(k+1)!} - \frac{1}{k!} \right).$$

For small values of x we get the quadratic approximation:

$$f(x) \approx g(x) \triangleq \frac{x}{2} - \frac{x^2}{3}, \quad x \to 0.$$

Thus, we can approximate $\Gamma = \Gamma(t)$ as

$$\Gamma(t) \approx f(x(t)) 1_{\{x(t) > \epsilon\}} + g(x(t)) 1_{\{x(t) \le \epsilon\}}, \quad t \ge t_0.$$

where ϵ is a sufficiently small number (say, $\epsilon = 10^{-10}$).

The Nelson-Siegel yield curve

Input:

 $(c_i)_{i=0,1,2}$: the constant coefficients of the Nelson-Siegel model of interest rates.

 $\lambda > 0$: the mean-reversion rate.

 t_0 : the initial time given as year fraction.

Output: the Nelson-Siegel yield curve $\gamma = (\gamma(t))_{t \geq t_0}$. It has the form:

$$\gamma(t) = c_0 + c_1 \frac{1 - e^{-\lambda(t - t_0)}}{\lambda(t - t_0)} + c_2 \left(\frac{1 - e^{-\lambda(t - t_0)}}{\lambda(t - t_0)} - e^{-\lambda(t - t_0)} \right), \quad t \ge t_0.$$

The Nelson-Siegel discount curve

Input:

 $(c_i)_{i=0,1,2}$: the constant coefficients of the Nelson-Siegel model of interest rates.

 $\lambda > 0$: the mean-reversion rate.

 t_0 : the initial time given as year fraction.

Output: the discount curve

$$D(t) = e^{-\gamma(t)(t-t_0)}, \quad t \ge t_0,$$

where the yield curve has the Nelson-Siegel form:

$$\gamma(t) = c_0 + c_1 \frac{1 - e^{-\lambda(t - t_0)}}{\lambda(t - t_0)} + c_2 \left(\frac{1 - e^{-\lambda(t - t_0)}}{\lambda(t - t_0)} - e^{-\lambda(t - t_0)} \right), \quad t \ge t_0.$$

Forward exchange rate from domestic and foreign discount factors

Input:

 $S(t_0)$: the spot exchange rate (the number of units of domestic currency per one unit of foreign currency).

Output:

 $F = F(D^d, D^f)$: the forward FX rates. Here D^d and D^f are domestic and foreign discount factors.

Algorithm. The value of the long position at expiration date t is

V(t) = 1 unit of foreign currency -F(t) units of domestic currency.

By the financial meaning of forward contract, the value at initial time t_0 is zero: $V(t_0) = 0$. On the other hand, by replication,

$$V(t_0) = S(t_0)D^f(t) - D^d(t)F(t).$$

It follows that

$$F(t) = S(t_0) \frac{D^f(t)}{D^d(t)}, \quad t \ge t_0.$$

Forward price curve for a cash flow

Input:

 $(P_i)_{i=1,\dots,M}$: the cash payments.

 $(t_i)_{i=1,\dots,M}$: the payment times, $t_1 > t_0$.

 $D = (D(t))_{t > t_0}$: the discount curve.

 t_0 : the initial time.

Output:

 $F = (F(t))_{t \in [t_0, t_M]}$: the forward prices for the cash flow.

The buyer pays forward price F(t) at delivery time t and then receives payments P_i at payment times t_i , i = 1, ..., M, such that $t_i > t$. The forward price F(t) is set at t_0 to make the value of the forward contract to be zero.

Forward price curve for a coupon bond

Input:

q: the coupon rate.

 δt : the time interval between coupon payments.

T: the maturity.

 $D = (D(t))_{t \ge t_0}$: the discount curve.

 t_0 : the initial time = the issue time for the forward.

bClean: the boolean parameter specifying the type of the prices: "clean" or "dirty". The dirty price is the actual amount paid in a transaction. The clean price is the difference between the dirty price and the accrued interest. If t is the settlement time and t_i is the previous coupon time (or the issue time if no coupons were paid before t), then the accrued interest is given by

$$A(t) = q(t - t_i).$$

Output:

 $F = (F(t))_{t \in [t_0,T]}$: the forward prices for the bond.

The bond pays coupons $q\delta t$ at times $(t_i)_{i=1,\dots,M}$ such that

$$t_0 < t_1 \le t_0 + \delta t$$
, $t_{i+1} - t_i = \delta t$, $t_M = T$.

The bond also pays notional N=1 at maturity T. The buyer of the forward contract pays "dirty" forward price F(t) (bClean = false) at delivery time t and receives the bond, that is, gets the notional N=1 at maturity T and coupons $q\delta t$ at times t_i , $i=1,\ldots,M$, such that $t_i > t$.

Discount curve obtained by linear interpolation of yields Input:

 $(t_i)_{i=1,\ldots,M}$: the strictly increasing vector of maturities, $t_1 > t_0$.

 $(d_i)_{i=1,\dots,M}$: the market discount factors.

 r_0 : the initial short-term interest rate.

 t_0 : the initial time given as year fraction.

Output: the discount curve

$$d(t) = \exp(-\gamma(t)(t - t_0)), \quad t \in [t_0, t_M],$$

where yield curve $\gamma = \gamma(t)$ is obtained by the linear interpolation of the market yields to maturity:

$$\gamma(t) = LinInterp((t_i)_{i=0,1,...,M}, (\gamma_i)_{i=0,...,M}), \quad t \in [t_0, t_M],$$

$$\gamma_0 = r_0, \quad \gamma_i = -\frac{\log(d_i)}{t_i - t_0}, \quad i = 1,..., M,$$