(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-110093

(43)公開日 平成10年(1998) 4月28日

(51) Int.Cl. ⁶		識別記号	FΙ	
COSL	75/04		C08L	75/04
C08G	18/12		C08G	18/12
	18/76			18/76
C 0 9 D	5/08		C09D	5/08

		家查蕾	未請求 請求項の数9 OL (全 15 頁)
(21)出願番号	特顧平9-75646	(71)出順人	
(22)出廣日	平成9年(1997)3月27日	(71)出躓人	日本パーカライジング株式会社 東京都中央区日本橋1丁目15番1号 000000887
(31)優先権主張番号	特願平8-216379 平8 (1996) 8 月16日	(1)	旭電化工業株式会社 東京都荒川区東尾久7丁目2番35号
32)優先日 33)優先権主張国		(72)発明者	本下 康弘 東京都中央区日本橋1丁目15番1号 日本
			パーカライジング株式会社内
		(72)発明者	森田 良治 東京都中央区日本橋1丁目15番1号 日本 パーカライジング株式会社内
		(74)代理人	弁理士 石田 敬 (外3名) 最終頁に続く

(54) 【発明の名称】 水系ウレタン樹脂組成物及びそれを含む水系金属表面処理組成物

(57)【要約】

【課題】 耐食性と塗装密着性に優れた水系金属表面処理組成物の提供。

【解決手段】 MW>300のポリオール、ジメチロールアルカン酸、3個以上の活性水素を有する化合物および有機ポリイソシアネートの反応により得られ、イソシアネート末端基を有するウレタンプレポリマーと2個以上の一級アミノ基含有ポリアミンとを、前記の一級アミノ基の過剰比率で反応させて得られる一級アミノ末端基

含有ウレタン樹脂の水性乳化分散液、(但し、前記ポリオール化合物が①脂肪族多価アルコールと多価カルボン酸から得られた末端〇H基含有ポリエステルポリオール及び②下記一般式(I)のビスフェノール骨格含有ジオールを含み、全固形分に対し(a)+(b)の固形分重量%が50~97%(c)の固形分重量%が3~50%である。)に、硬化剤およびシリカを配合する。 【化1】

$$H \longrightarrow 0 - A \xrightarrow{A} 0 \longrightarrow 0 \xrightarrow{R} (1)$$

$$C \longrightarrow C \longrightarrow 0 \longrightarrow A - 0 \xrightarrow{a} H \qquad (1)$$

 $(R^1$, R^2 =H又は低級アルキル基、 $A=C_{z\sim c}$ アルキレン基、 $m,\ n=1\sim 2$ 0 の整数)

【特許請求の範囲】

【請求項1】 (I) 平均分子量300以上のポリオール化合物と、ジメチロールアルカン酸と、3個以上の活性水素を有する化合物と、有機ポリイソシアネート化合物との反応により得られ、かつ末端にイソシアネート基を有するウレタンプレポリマーと、(II) 2個以上の一級アミノ基を有するポリアミン化合物とを、前記ウレタンプレポリマー(I)のイソシアネート基のモル量に対して前記ポリアミン化合物(II)の一級アミノ基のモル

れるビスフェノール骨格含有ジオール化合物;

量が過剰となる比率で反応させることによって得られ、

かつ末端に一級アミノ基を有するウレタン樹脂、並びに

それを分散する水性媒体とを含み、

【化1】

$$H \longrightarrow 0 - A \xrightarrow{\lambda_{n}} 0 \longrightarrow 0 \xrightarrow{R'} C \longrightarrow 0 \longrightarrow A - 0 \xrightarrow{\lambda_{n}} H \qquad (1)$$

〔但し、上記式(I)中の、 R^1 および R^2 は、それぞれ互いに独立に、水素原子又は低級アルキル基を表し、Aは、 $2\sim4$ 個の炭素原子を有するアルキレン基を表し、mおよびnは、それぞれ互いに独立に $1\sim20$ の整数を表す。〕を必須成分として含むものであることを特徴とする水系ウレタン樹脂組成物。

【請求項2】 前記ウレタンプレポリマー(I)の調製に用いられる前記3個以上の活性化水素を有する化合物がメラミンである、請求項1に記載の水系ウレタン樹脂組成物。

【請求項3】 前記ウレタンプレポリマー(I)調製用ポリオール化合物に含まれる前記ポリエステルポリオールの含有量が、前記ポリオール化合物の合計量に対して25~95重量%である、請求項1に記載の水系ウレタン樹脂組成物。

【請求項4】 前記ウレタンプレポリマー(I)調製用ポリオール化合物に含まれるビスフェノール骨格含有ジオール②の含有量が、ポリオール化合物の合計量に対して5~75重量%である、請求項1に記載の水系ウレタン樹脂組成物。

【請求項5】 前記ウレタンプレポリマー(I)調製用 有機ポリイソシアネートが、脂肪族および脂環式イソシ アネートから選ばれる、請求項1に記載の水系ウレタン 樹脂組成物。

【請求項6】 前記ポリアミン化合物(II)が二塩基酸 ジヒドラジドから選ばれる、請求項1に記載の水系ウレ タン樹脂組成物。

【請求項7】 (a)請求項1~6の何れか1項に記載の水系ウレタン樹脂組成物と、(b)硬化剤と、(c)シリカとを含み、前記成分(a)および(b)の合計固形分含有量が前記成分(a),(b)および(c)の合計固形分重量に対して、50~97%であり、かつ前記成分(c)の固形分含有量が前記成分(a),(b)および(c)の合計固形分重量に対して3~50%であることを特徴とする、耐食性及び塗装密着性に優れた水系金属表面処理組成物。

【請求項8】 前記硬化剤(b)が、エポキシ基、オキ

サゾリン基、アルコキシシリル基、イソシアネート基、 及びアジリジニル基から選ばれる少なくとも1種以上の 官能基を有する有機化合物を含む、請求項7に記載の水 系金属表面処理組成物。

【請求項9】 追加成分として、(d)ケン化価が0又は30以下のポリオレフィンワックスを、前記成分(a)~(d)の合計固形分重量に対して1~30重量%の割合で含有している請求項7に記載の水系金属表面

【発明の詳細な説明】

[0001]

処理組成物。

【発明の属する技術分野】本発明は水系ウレタン樹脂組成物、並びにそれを含有し、耐食性及び塗装密着性に優れている金属表面処理組成物に関するものである。

[0002]

【従来の技術】従来、家庭電化製品や建材等には、亜鉛 又は亜鉛系合金メッキ鋼板が広く用いられている。これ らの鋼板は、そのままでは、耐食性や塗装性が不十分で あるために、従来クロメート化成処理やリン酸塩化成処 理が施され、その後に、プレス加工や折り曲げ加工など の成形加工および塗装などが施されることが多いが、用 途および使用目的によっては、塗装を行わないで用いら れる場合も少なくない。クロメート処理鋼板において は、鋼板を被覆しているクロメート皮膜の耐食性、色 調、指紋付着性などが重要視される。また、塗装される 用途によっては、上記要求性能に加えて、上塗り塗料に 対する高い塗装密着性が高いことが要求される。これら の要求性能のうち、例えば、耐食性の改善には、クロメ ート皮膜の厚膜化によって対応可能であるが、このよう にして得られた厚膜化クロメート皮膜は、クロメート皮 膜独特の黄色を呈しているため、色調の点で問題とな る。

【0003】これらの問題点を解消するために、近年においては、特開昭63-143265号、特開平3-17189号、特開平4-71840号、特開平5-161874号、特開平6-145559号および、特開平6-166735号公報に各種手段が開示されている。

【0004】特開昭63-143265号には、鋼板表面に形成される亜鉛系合金メッキ層上に、メタノール、エチレングリコール等のCrO3 還元剤、及びリン酸、ホウ酸等の酸根、アクリル樹脂等の樹脂、コロイダルシリカ等のシリカの内少なくとも1種を含有する、クロメート処理液を用いてクロメート処理を施し、その後、このクロメート皮膜上に、アクリル、ポリエチレン、又はエボキシ等の樹脂を150℃以下の焼き付け温度で0.5~3μmの厚さで焼き付ける方法が開示されている。しかし、この方法により得られる表面被覆層の耐食性向上効果は不満足なものであった。

【0005】特開平3-17189号には、ウレタン変性ポリオレフィン系樹脂にフッ素系樹脂粒子及びシリカ粒子を配合した樹脂皮膜が開示されている。しかし、この樹脂皮膜には架橋剤が使用されていないため、その耐食性は不十分なものであった。

【0006】特開平4-71840号に開示されている 樹脂皮膜層は、亜鉛メッキまたは亜鉛系合金メッキ鋼板 上に、特定付着量のクロメート皮膜層と、Ni粉を含む 有機樹脂皮膜層とをこの順序で被覆したものである。こ の樹脂皮膜層は、その中に樹脂皮膜厚さの0.5~1. 5倍の粒径のNi粉を10~80 vol%の含有量で含有 しているため、その溶接性は優れているが、樹脂とNi 粉との界面から水分が侵入しやすく、このため得られた 製品の耐食性および塗装密着性は不満足なものであっ た。

【0007】特開平5-161874号には、亜鉛メッキ鋼板のクロメート皮膜の上に溶剤系熱硬化型樹脂が鋼板片面当たり0.3~3.0μmの厚さで形成されている鋼板が開示されている。この溶剤系熱硬化型樹脂にはボリエーテルボリオール、ボリエステルボリオール、ボリエーテルボリエステルボリオールから選ばれた少なくとも1種のボリオールを使用して得られるヒドロキシル基含有ウレタンプレボリマーが使用されている。この場合、用いられる樹脂が溶剤系であるため、本発明の水系金属表面処理組成物とは構成において明確に異なり、また溶剤に伴う種々の問題(例えば環境問題、排液処理問題、コスト問題など)がある。

【0008】特開平6-145559号には、水系ウレタン樹脂を主成分とする水系塗料組成物が開示されている。この水系塗料組成物に使用される水系ウレタン樹脂は、ビスフェノール型骨格、エステル骨格およびカルボキシル基を有する平均分子量3000以上の水分散型のエーテル・エステル型ウレタン樹脂であるが、それから形成される樹脂皮膜の耐食性および樹脂密着性は、必ずしも満足できるものではなかった。

【0009】特開平6-166735号には、末端に一級アミノ基を有するポリウレタンエマルジョンを水溶性エポキシ架橋剤で架橋させて得られる水系塗料組成物が開示されているが、この塗料組成物中に防錆顔料として

シリカが配合されていないため、得られる樹脂皮膜の耐食性は不満足なものであった。

【0010】一般に、上記従来の表面処理鋼板の耐食性は、有機樹脂皮膜の耐水性や密着性に大きく依存するので、樹脂皮膜の耐水性を向上させる為には、樹脂中の疎水性部分の含有比率を増大させるか、または架橋剤を用いて親水性部分の影響を極力低下させる必要がある。しかし、疎水性部分を増やす場合には、水系化する段階で樹脂がゲル化してしまい使用不可となる傾向がある。一方、架橋剤を用いる場合には、十分な架橋を行うためには長い時間と高い反応温度が必要であるが、多くの場合、表面処理鋼板用塗料の焼付け時間は30秒以下であるため、このような短時間内の架橋処理では、当該樹脂が本来持っている性能を十分に引き出すことは困難である。

[0011]

【発明が解決しようとする課題】前記従来の技術の概説で示したように、30秒以下の短い焼付け時間内に、優れた耐食性および耐溶剤性の両方を同時に満足する金属表面処理組成物は未だ得られていない。また、塗料塗布作業環境改善のため、溶剤ベースの処理剤の水系化の要望が非常に強い。本発明は、これらの問題点を解決し、優れた耐食性と塗装密着性とを有する水系ウレタン樹脂組成物、およびそれを含む金属表面処理組成物を提供しようとするものである。

[0012]

【課題を解決するための手段】本発明者らは、耐食性と **塗装密着性の双方の性能を同時に満足する水系ポリウレ** タン組成物、およびそれを含む金属表面処理組成物につ いて、鋭意研究を重ねた結果、主としてウレタン樹脂の 骨格を特定することにより上記問題点が解決できること を見い出して本発明を完成するに至った。すなわち、本 発明の水系ウレタン樹脂組成物は、(I)平均分子量3 00以上のポリオール化合物と、ジメチロールアルカン 酸と、3個以上の活性水素を有する化合物と、有機ポリ イソシアネート化合物との反応により得られ、かつ末端 にイソシアネート基を有するウレタンプレポリマーと、 (II) 2個以上の一級アミノ基を有するポリアミン化合 物とを、前記ウレタンプレポリマー(I)のイソシアネ ート基のモル量に対して前記ポリアミン化合物(II)の 一級アミノ基のモル量が過剰となる比率で反応させるこ とによって得られ、かつ末端に一級アミノ基を有するウ レタン樹脂、並びにそれを分散する水性媒体とを含み、 前記ウレタンプレポリマー(I)の調製に用いられるポ リオール化合物が、①脂肪族多価アルコールと多価カル ボン酸から得られ、かつ末端に水酸基を有するポリエス テルポリオール、および**②**下記一般式(I)により表さ れるビスフェノール骨格を含有するジオール化合物:

【化2】

$$H \longrightarrow O \longrightarrow A \longrightarrow O \longrightarrow C \longrightarrow C \longrightarrow O \longrightarrow A \longrightarrow D \longrightarrow H \qquad (1)$$

〔但し、上記式(I)中、R¹ およびR² は、それぞれ 互いに独立に、水素原子または低級アルキル基を表し、 Aは、2~4個の炭素原子を有するアルキレン基を表 し、mおよびnは、それぞれ互いに独立に1~20の整 数を表す。〕を必須成分として含むものであることを特 徴とするものである。また、本発明の耐食性および塗装 密着性に優れた水系金属表面処理組成物は、(a)前記 本発明の水系ウレタン樹脂組成物と、(b)硬化剤と、 (c)シリカとを含み、前記成分(a)および(b)の 合計固形分含有量が、前記成分(a),(b)および (c)の合計固形分重量に対して50~97%であり、 かつ、前記成分(c)の固形分含有量が、前記成分 (a), (b)および (c)の合計固形分重量に対して 3~50%であることを特徴とするものである。さら に、本発明の水系金属表面処理組成物は、さらに、 (a)ケン化価がO又は3O以下のポリオレフィンワッ クスを、前記成分(a)~(d)の合計固形分重量に対 し、1~30重量%の割合で含有することができる。 【0013】下記に本発明の構成を詳細に説明する。本 発明の水系金属表面処理組成物は、それに含まれるベー ス樹脂、すなわち本発明の水系ウレタン樹脂組成物中の ウレタン樹脂が側鎖を有する骨格構造を有し、このよう な骨格構造が特定種類の反応成分を一定重量比で配合反 応させて得られたものであることを特徴とするものであ る。本発明の水系金属表面処理組成物に用いられる樹脂 成分としては、耐食性、塗装密着性、耐溶剤性、耐薬品

(a)を選択する必要がある。またこれらの性能を満足するためには、本発明の水系ウレタン樹脂組成物(a)に、他の特定成分(b),(c)および必要により(d)を組合せ使用することが必要である。

性のバランスの取れた水系ウレタン樹脂組成物成分

【0014】高耐食性と高塗装密着性を有する皮膜を得るためには、塗膜が均一でかつ金属表面との密着性に優れていることが必要であり、かつ得られる皮膜中に十分な網目構造が形成されていることが重要である。このためには、特定構造の樹脂と、硬化剤とを併用する必要がある。ベースとなる水系ウレタン樹脂組成物は、①脂肪族多価アルコールと多価カルボン酸から得られる末端に水酸基を有するポリエステルポリオール、および②一般式(I)により表されるビスフェノール骨格含有ジオール化合物、を必須成分として含有平均分子量300以上のポリオール化合物、ジメチロールアルカン酸、活性水素を3個以上有する化合物および有機ポリイソシアネート化合物から製造されるものである。この水素ウレタンプトボリマー(I)と、少なくとも2個の一級ウレタンプレボリマー(I)と、少なくとも2個の一級

アミノ基を有するポリアミン化合物 (II) とを、前記ウレタンプレポリマー (I) の前記末端イソシアネート基のモル量に対して、前記ポリアミン化合物 (II) の一級アミノ基のモル量が過剰となる比率で反応させることによって得られ、かつ末端に一級アミノ基を有するウレタン樹脂が、水性媒体中に乳化分散されているものである。

【0015】本発明に使用される水系ウレタン樹脂組成 物を製造するために用いられるポリエステルポリオール 化合物のは、例えば、エチレングリコール、ジエチレン グリコール、トリエチレングリコール、1,2-プロピ レングリコール、1,3-プロピレングリコール、ネオ ペンチルグリコール、1,2-ブチレングリコール、 1,3-ブチレングリコール、1,4-ブチレングリコ ール、3-メチルペンタンジオール、ヘキサメチレング リコール、水添ビスフェノールA、トリメチロールプロ パン、およびグリセリン等の低分子量ポリオールと、例 えばコハク酸、グルタル酸、アジピン酸、セバチン酸、 フタル酸、イソフタル酸、テレフタル酸、トリメリット 酸、テトラヒドロフタル酸、エンドメチレンテトラヒド ロフタル酸、およびヘキサヒドロフタル酸等の多塩基酸 との反応によって得られるものであって、その末端にヒ ドロキシル基を有するものから選ばれる。

【0016】これらのポリエステルポリオール化合物のは、ポリオール化合物成分中に、その合計量に対して25~95重量%、特に、50~90重量%となる比率で含まれていることが好ましく、その含有比率が上記範囲以外の場合は、得られる樹脂皮膜の耐食性及び密着性が不十分になることがある。

【0017】また、本発明の水系ウレタン樹脂組成物を製造するために用いられる一般式(I)のビスフェノール骨格含有グリコール②は、メチレンビスフェノール、エチリデンビスフェノール、ブチリデンビスフェノール、イソプロピリデンビスフェノール等のように、式(I)におけるR¹ およびR² 基が低級アルキル基であるビスフェノールに、炭素原子数2~4のアルキレンオキサイド(例えばエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド)を付加する周知の方法により製造されるものであり、mおよびnで表されるアルキレンオキサイドの付加モル数が1~20、好ましくは1~10のものを用いる必要がある。mおよびnが20を超える場合は、アルキレンオキサイド成分の含有割合が過大となり、得られる樹脂皮膜の防食性の改善効果が不十分となるため好ましくない。

【0018】式(I)のビスフェノール骨格含有グリコール②は、ポリオール化合物成分の合計量に対して5~

75重量%、好ましくは10~50重量%となる比率で 用いることが好ましい。上記比率が上記範囲以外の場合 は、得られる樹脂皮膜の耐食性および密着性が不十分に なることがある。

【0019】また、ポリオール化合物成分中に、上記ポリエステルポリオールのおよびビスフェノール骨格含有ポリオールのと共に、他のポリオール化合物を併用することも可能であり、場合によってはこのような他のポリオールを併用することによって得られる樹脂皮膜の密着性、耐食性などが更に改善されることもある。

【0020】これら他のボリオール化合物としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2ープロピレングリコール、1,3ープロピレングリコール、ネオペンチルグリコール、1,3ープチレングリコール、1,4ーブチレングリコール、3ーメチルペンタンジオール、ヘキサメチレングリコール、3ーメチルペンタンジオール、ヘキサメチレングリコール、およびグリセリン等の低分子量ボリオール、化合物およびこれらのポリエチレン化合物のエチレンオキシド高付加物、ボリエチレングリコール、ボリプロピレングリコール、ポリエチレン/プロピレングリコール、ボリエチレン/プロピレングリコール等のポリエーテルポリオール、ポリカプロラクトンボリオール、ボリオレフィンボリオール、並びにボリブタジエンボリオール等があげられる。

【0021】これらの他のポリオール化合物は、ポリオール化合物成分の合計量に対して40重量%未満、特に、30重量%未満の比率で使用することができる。

【0022】ウレタンプレポリマー(I)調製用ジメチロールアルカン酸としては、例えば、2,2ージメチロールプロピオン酸、2,2ージメチロール酪酸、および2,2ージメチロール吉草酸等があげられ、これらのジメチロールアルカン酸を用い、中和剤で中和することによって自己乳化型の水系樹脂乳化分散液を調製することができる。これらのジメチロールアルカン酸は、ウレタンプレポリマー(I)の固形分に対して1~30重量%の使用量で用いられる。それが1重量%未満の場合はウレタン樹脂の自己乳化性が不十分となることがあり、また、それが30重量%を超えると、得られる樹脂皮膜の伸び率等の物性が不十分になることがある。

【0023】また、上記ジメチロールアルカン酸用中和 剤としては、例えば、トリメチルアミン、トリエチルア ミン、トリプロピルアミン、トリブチルアミン、N-メ チルジエタノールアミン、およびトリエタノールアミン 等の有機アミン、並びに水酸化ナトリウム、水酸化カリ ウム、およびアンモニア等の無機塩基があげられ、これ らはカルボキシル基を中和するに十分な量で用いられ る。

【0024】本発明において、ウレタンプレポリマー (1)の調製に用いられる少なくとも3個の活性水素を 有する化合物は、ウレタン樹脂の側鎖を持たせ、塗膜の 強度、密着性、耐食性などを向上させるために用いられ るものであり、例えば、メラミン、ジエチレントリアミ ン、トリメチロールプロパン、ペンタエリスリトール、 グリセリン、あるいはこれらのエチレンオキシド、また は/およびプロピレンオキシド低付加物等であって、分 子量300未満のものなどがあげられ、特に、メラミン を用いた場合に、得られる樹脂皮膜の性能に対する改善 効果が著しい。

【0025】これらの少なくとも3個の活性水素を有する化合物は、ウレタンプレポリマー(I)の固形分重量に対して0.1~10重量%の割合で用いられる。これが0.1重量%未満の場合には、得られる樹脂皮膜の性能に対する改善効果がほとんど認められず、また、それが10重量%を超えて用いると、得られる樹脂皮膜の伸びなどの物性を低下させるおそれがある。

【0026】また、ウレタンプレポリマー(1)の製造 時に、必要により、通常用いられている活性水素を2個 有する低分子量化合物(鎖延長剤)をさらに添加するこ とも当然可能であり、例えば、このような鎖延長剤とし ては、エチレングリコール、プロピレングリコール、ネ オペンチルグリコール、ヘキサメチレングリコールある いはこれらのエチレンオキシドまたは/およびプロピレ ンオキシド低付加物などのポリオール類:エチレンジア ミン、プロピレンジアミン、ヘキサメチレンジアミン、 トリレンジアミン、キシリレンジアミン、ジアミノジフ ェニルメタン、ジアミノシクロヘキシルメタン、ピペラ ジン、2-メチルピペラジン、イソホロンジアミン、コ ハク酸ジヒドラジド、アジピン酸ジヒドラジド、フタル 酸ジヒドラジドなどのアミン類などの分子量300未満 のものがあげられる。これらの鎖延長剤の使用量は、目 的とするポリウレタン樹脂の分子量により変化するが、 通常は、プレポリマー(I)の重量に対して10重量% 以下の割合で用いられる。

【0027】本発明において、ウレタンプレポリマー (1)を製造するために使用される有機ポリイソシアネ ート化合物としては、脂肪族、脂環式および芳香族ポリ イソシアネートがあげられ、好ましくは、テトラメチレ ンジイソシアネート、ヘキサメチレンジイソシアネー ト、リジンジイソシアネートエステル、水素添加キシリ レンジイソシアネート、1,4-シクロヘキシレンジイ ソシアネート、4,4'ージシクロヘキシルメタンジイ ソシアネート、2,4′ージシクロヘキシルメタンジイ ソシアネート、イソホロンジイソシアネート、3,31 ージメトキシー4,4'ービフェニレンジイソシアネー ト、1,5-ネフタレンジイソシアネート、1,5-テ トラヒドロナフタレンジイソシアネート、2,4-トリ レンジイソシアネート、2,6-トリレンジイソシアネ -N、4, 4' -ジフェニルメタンジイソシアネート、 2, 4′ -ジフェニルメタンジイソシアネート、フェニ

レンジイソシアネート、キシリレンジイソシアネート、およびテトラメチルキシレリンジイソシアネート等があげられる。これらの中でも、テトラメチレンジイソシアネート、リジンジイソシアネート、ハキサメチレンジイソシアネート、リジンジイソシアネート、オーシクロヘキシレンジイソシアネート、4、4′ージシクロヘキシルメタンジイソシアネート、およびイソホロンジイソシアネート、等の脂肪族または脂環式のポリイソシアネート化合物を用いた場合に、耐薬品性、防食性等だけではなく、耐候性に優れた樹脂皮膜が得られる。

【0028】これらの有機ポリイソシアネート化合物は、ウレタンプレポリマー(I)の製造に用いられるポリオール化合物、ジメチロールアルカン酸、少なくとも3個の活性水素を有する化合物、および必要に応じて用いられる鎖延長剤に含まれる活性水素の合計量に対し、当量以上、好ましくは1.1~2倍当量になるように使用される。有機イソシアネート化合物の使用量が、1当量未満の場合には、得られるウレタンプレポリマー

(I)の分子の末端に残存するイソシアネート基がほとんど無くなるために、分子末端にアミノ基を導入することが不可能になり、また、それが2倍当量より多い場合には、得られるウレタンプレポリマー(I)の分子内に、未反応のポリイソシアネート基が残存するために、水を加えたときに尿素結合が過大に生成したり、或は低分子量の生成物が多量に生成するため、得られるウレタンプレポリマー(I)の特性を低下させるおそれがある。

【0029】本発明に使用される水系ウレタン樹脂組成物を製造するために用いられるウレタンプレポリマー

(I)は、上記の原料成分を溶媒中で周知の方法で反応させることによって製造することができる。またこれらの原料成分の仕込順序を適宜変更したり、あるいは分割して仕込むことも可能である。

【0030】また、ウレタンプレポリマー(I)を製造する際に用いられる溶媒としては、反応に不活性で水との親和力の大きい有機溶媒が好ましく、例えば、アセトン、メチルエチルケトン、ジオキサン、テトラヒドロフラン、Nーメチルー2ーピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、および酢酸エチルなどがあげられ、これらの溶媒は、通常、ウレタンプレポリマー(I)を製造するために用いられる上記原料成分重量に対して、10~100重量%の割合で用いられる。

【0031】さらに、本発明において、上記の方法で製造されたウレタンプレポリマー(I)とポリアミン化合物(II)とを反応させて、得られるウレタン樹脂分子の末端に一級アミノ基を導入する。ポリアミン化合物(II)としては、例えば、エチレンジアミン、プロピレン

ジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、キシリレンジアミン、ジアミノジフェニルメタン、ジアミノシクロヘキシルメタン、ピペラジン、2-メチルピペラジン、イソホロンジアミン、メラミン、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、およびフタル酸ジヒドラジドなどがあげられ、特に、二塩基酸のジヒドラジド化合物を用いた場合に、密着性、防食性、強度等の特性に優れた樹脂皮膜が得られる。

【0032】上記ポリアミン化合物(II)は、ウレタンプレポリマー(I)の鎖延長およびアミノ基の導入の2つの効果を奏するものであり、このようなポリアミン化合物(II)は、ウレタンプレポリマー(I)に残存しているイソシアネート基に対して、当量以上、好ましくは1.05~2倍当量の割合で用いられる。その使用量が1当量未満の場合には、得られるポリウレタンに遊離のアミノ基がほとんど導入されず、また、それを2倍当量を超えて用いると、未反応のポリアミン化合物が残存するために、得られるボリウレタンの性能に悪影響を及ばすおそれがある。

【0033】また、ウレタンプレポリマー(I)とポリアミン化合物(II)とを反応させる方法としては、水系ウレタン樹脂を製造するための周知の方法を使用することができ、例えば、ウレタンプレポリマー(I)を水に分散させた後、これにポリアミン化合物を加えて反応させる方法、およびポリアミン化合物(II)の水溶液にウレタンプレポリマー(I)を添加してこれを分散させながら両者を反応させる方法などのいずれでもよく、また、ポリアミン化合物(II)を一度に全量加えてもよく、あるいはそれを分割して加えてもよい。

【0034】このようにして得られる本発明の水系ウレタン樹脂乳化分散液は、通常、樹脂固形分の含有量が5~80重量%、好ましくは10~70重量%になるように調整される。樹脂固形分の含有量が5重量%未満の場合には、当該樹脂組成物は水分を大量に含有するため得られる塗膜の乾燥に長時間を要することとなり、また、それが80重量%を超えると得られる組成物が高粘度となりその取扱いが困難となる傾向がある。

【0035】また、本発明に使用される水系ウレタン樹脂組成物には、必要に応じてチオエーテル系の抗酸化剤、及び/又はベンゾトリアゾール系またはベンゾフェノン系の紫外線吸収剤を加えることができる。

【0036】本発明に使用される水系ウレタン樹脂組成物(a)は、加熱により若干自己架橋するが、架橋が十分でないため得られる樹脂皮膜の耐食性及び耐溶剤性が不十分である。このため、本発明の水系金属表面処理組成物においては、これに硬化剤(b)を配合している。硬化剤(b)は、エボキシ化合物、アミン類、多価アルコール、多塩基酸、イソシアネート化合物等から選ばれる。しかし、より優れた耐食性と耐溶剤性を有する樹脂

皮膜を得るためには、硬化剤として、エボキシ基、オキサゾリン基、アルコキシシリル基、イソシアネート基及びアジリジニル基から選ばれた少なくとも1種以上の官能基を有する架橋性化合物を用いることがより好ましい。上記以外の硬化剤化合物、例えばアミン類、多価アルコール、多塩基酸等は親水性の強い官能基(アミノ基、水酸基、カルボキシル基等)を有しているため、得られる樹脂皮膜の耐水性が不十分になる。硬化剤として、エポキシ樹脂を用いた場合、エボキシ樹脂自体の耐薬品性と接着性のため、得られる皮膜の耐薬品性と強等容着性が向上する。また、オキサゾリン系、アルコキシシリル系、イソシアネート系、及びアジリジニル系の化合物を含む硬化剤を用いた場合も、エボキシ樹脂と同様の効果が期待できる。

【0037】硬化剤(b)の配合量は、ウレタン樹脂乳 化分散液(a)中のウレタン樹脂の官能基(アミノ基、 カルボキシル基、ヒドロキシル基等)と硬化剤の官能基 との当量比 (硬化剤の官能基の当量/ウレタン樹脂の官 能基の当量)が1/10~1/1であり、かつ全固形分 重量((a)+(b)+(c))に対する硬化剤(b) の固形分重量%が2~30%であることが好ましい。上 記当量比が1/10未満、または硬化剤(b)の含有量 が全固形分重量((a)+(b)+(c))の2%未満 では、硬化剤(b)配合効果が乏しく、また上記当量比 が1/1を超え、又は硬化剤(b)の含有量が全固形分 ((a)+(b)+(c))の30%を超える場合は、 本発明の水系ウレタン樹脂組成物(a)の特性を十分に 発揮することができず、また、ウレタン樹脂と未反応の 過剰硬化剤が残存してそれがウレタン樹脂に対し可塑剤 的役割をするため、得られる樹脂皮膜の耐食性および塗 装密着性が不十分になる。

【0038】水系金属表面処理組成物の合計固形分重量(a)+(b)+(c)に対する成分(a)+(b)の合計固形分含有率は50~97%であることが好ましい。この合計含有率が50%未満では、得られる樹脂皮膜の耐食性と塗装密着性とが不十分となる。また、それが97%を超える場合も、高い耐食性を有する樹脂皮膜を得ることができない。

【0039】本発明の水系金属表面処理組成物中には、得られる樹脂皮膜の耐食性の向上のために、シリカ(SiO_2)(c)を全固形分重量((a)+(b)+(c))に対して $3\sim50$ %の割合で含有している。全固形分重量((a)+(b)+(c))に対するシリカ(c)の固形分重量%が3%未満では得られる樹脂皮膜に対する耐食性向上効果が不十分になり、またそれが50%を超える場合には、樹脂成分(a)および硬化剤成分(b)のバインダー効果が不十分になり得られる樹脂皮膜の耐食性が不十分になる。なお、シリカ粒子の粒径および種類については、本発明では特に限定はないが、粒径は $2\sim50nm$ であることが好ましく、またその種

類は気相シリカ、シリカゾルなどから選ばれることが好ましい。

【0040】本発明の水系金属表面処理組成物は、被塗面に均一な皮膜を得るための濡れ性向上剤と呼ばれる界面活性剤、増粘剤、溶接性の向上の為の導電性物質、および意匠性向上の為の着色顔料等を含有することもできる。

【0041】更に、本発明の水系金属表面処理組成物に 潤滑添加物を添加することにより、得られる表面処理さ れた金属材料は、プレス油等を使用せずに成形加工がで きるようになる。またこのような処理組成物は、脱脂工 程及び塗装下地処理が不要な表面処理鋼板に好適に適用 できる。このような効果を奏する潤滑添加剤としては、 黒鉛や二硫化モリブデンなどの無機固体潤滑剤、または 天然ワックス、合成ワックスなど有機潤滑剤などが挙げ られる。本発明の水系金属表面処理組成物において、前 記成分(a)、(b)および(c)に、さらに追加成分 (d)として、ケン化価が0又は30以下で、好ましく は分岐構造を有するポリオレフィンワックスを、成分 (a)~(d)の合計固形分重量に対して1~30重量 %の割合で含有させることができる。ケン化価が30を 超える場合は、得られるポリオレフィンワックスは、極 性が大きく前記ウレタン樹脂成分(a)に相溶し易いた め、成膜時に樹脂表面に分布し難くなるため、高度な加 工性能レベルが必要な場合には所望性能を達成すること ができないことがある。また、得られる樹脂皮膜の耐水 性や塗装密着性が不十分になるため、上記用途に適切で あるとは言えない。潤滑添加物としてより好ましいもの は、樹脂成分との相溶性の低いエステル結合を持たず、 ケン化価が0のポリオレフィンワックスである。上記ポ リオレフィンワックス (d) の配合量が、1重量%未満 では、それを添加することによる樹脂皮膜の成型加工性 向上効果が小さく、またそれが30重量%を超える場合 には、組成物中のワックスが成型加工時にプレス装置や その周辺に飛散するため、作業環境上好ましくなく、ま た得られる樹脂皮膜の耐食性も不十分になる。ポリオレ フィンワックス(d)の平均粒径は、0.1~7.0 μ mであることが好ましい。この平均粒径が0.1μm未 満の場合は、得られる樹脂皮膜の加工性が不十分とな り、またそれが7. 0μmを超える場合は、得られる樹 脂皮膜中の固体化したポリオレフィンワックス(d)の 分布が不均一となるため好ましくない。ワックス粒子の 形状としては、真球状のものが高度の加工性を得るため に好ましい。

【0042】本発明の水系金属表面処理組成物が塗布される金属材料としては、冷延鋼板、亜鉛系めっき鋼板又はアルミニウム系板などが挙げられる。また、耐食性を向上させるために、上記金属材料表面に下地処理を行うことが有効である。このような下地処理としては公知のクロメート処理又はリン酸塩処理が適切である。これら

の下地皮膜の上に、本発明の水系金属表面処理組成物を含む塗料を塗布して0.3~6g/m²の皮膜を形成させ、耐食性、耐溶剤性などの性能を付与することが好ましい。塗料の塗布方法としては、ロールコーター法、浸漬法、静電塗布法などがあるが、本発明では特にこれらに限定されない。

[0043]

【実施例】本発明を、下記実施例、比較例により、さら に説明する。下記実施例および比較例に用いた水系ウレ タン樹脂組成物を下記のようにして製造した。

【0044】1. 実施例用水系ウレタン樹脂組成物の製造例

製造例1

二塩基酸成分としてイソフタル酸/アジピン酸(モル比 1/1) 混合物を用い、グリコール成分として1, 6-ヘキサンジオールを用いて得られ、かつ末端ヒドロキシ ル基を有する平均分子量2000のポリエステルポリオ ール100部、平均分子量660のビスフェノールAプ ロピレンオキサイド付加物50部、2,2ービス(ヒド ロキシメチル) プロピオン酸15部およびメラミン5部 を混合し、この混合物を90℃に加熱してこれらから溶 液を調製した。次に、この溶液にジシクロヘキシルメタ ンジイソシアネート110部、およびN-メチル-2-ピロリドン110部を混合し、この混合物を最高120 ℃まで加温しながら5時間攪拌して、イソシアネート基 含有率2.6%のプレポリマーを製造し、これにトリエ チルアミン14部を加えて中和した。別に、エチレンジ アミン5部、およびアジピン酸ジヒドラジド20部を脱 イオン水580部に溶解し、この溶液を40℃に加温し た。この溶液に、前記温度を保ちながら、上記の中和プ レポリマーを滴下し、それによって、固形分濃度31% の水系ウレタン樹脂乳化液を得た。

【0045】製造例2

二塩基酸成分としてイソフタル酸/アジピン酸(モル比 1/1) の混合物を用い、グリコール成分として1,6ーヘキサンジオールを用いて得られ、かつ末端ヒドロキ シル基を有する平均分子量2000のポリエステルポリ オール30部、平均分子量800のビスフェノールAの プロピレンオキサイド付加物100部、2,2-ビス (ヒドロキシメチル) プロピオン酸12部、メラミン5 部を混合し、90℃に昇温してこれらから溶液を形成さ せた。次に、この溶液にジシクロヘキシルメタンジイソ シアネート110部、およびN-メチル-2-ピロリド ン100部を添加し、最高120℃まで加熱しながら5 時間攪拌して、イソシアネート含有率3.0%のプレポ リマーを製造し、これにトリエチルアミン10部を加え て中和した。別にエチレンジアミン5部、ジエチレント リアミン2部、アジピン酸ジヒドラジド17部を脱イオ ン水620部に溶解した。この溶液を40℃に加温し、 この温度を保ちながら前記溶液に、上記中和プレポリマ ー/トリエチルアミン混合液を滴下し、それによって、 固形分濃度29%の水系ウレタン樹脂乳化液を得た。 【0046】製造例3

二塩基酸成分としてイソフタル酸/アジピン酸(モル比 1/1)の混合物を用い、グリコール成分として1.6 ーヘキサンジオールを用いて得られ、かつ末端ヒドロキ シル基を有する平均分子量2000のポリエステルポリ オール100部、平均分子量1000のビスフェノール Aのプロピレンオキサイド付加物70部、2,2ービス (ヒドロキシメチル) プロピオン酸11部、およびメラ ミン4部を混合し、これを90℃に昇温して溶解させ た。次に、この溶液にイソホロンジイソシアネート85 部、およびN-メチルー2-ピロリドン100部を添加 し、最高120℃まで加熱しながら5時間撹拌してイソ シアネート含有率2.9%のプレポリマーを製造し、こ れにトリエチルアミン10部を加えて中和した。別にエ チレンジアミン6部、アジピン酸ジヒドラジド25部を 脱イオン水640部に溶解した。この溶液を40℃に加 温し、この温度を保ちながらこの溶液に上記中和プレポ リマー/トリエチルアミン混合液を滴下し、それによっ て、固形分濃度30%の水系ウレタン樹脂乳化液を得 た。

【0047】製造例4

二塩基酸成分としてイソフタル酸/アジピン酸(モル比 1/1) の混合物を用い、グリコール成分として1,6 -ヘキサンジオールを用いて得られ、かつ末端ヒドロキ シル基を有する平均分子量1500のポリエステルポリ オール100部、平均分子量580のビスフェノールA のプロピレンオキサイド付加物50部、2,2-ビス (ヒドロキシメチル) プロピオン酸16部、メラミン4 部を混合し、90℃に昇温して溶解させた。次に、この 溶液にイソホロンジイソシアネート100部、およびN ーメチルー2-ピロリドン110部を添加し、最高12 0℃まで加熱しながら5時間攪拌してイソシアネート含 有率3.4%のプレポリマーを製造し、これにトリエチ ルアミン13部を加えて中和した。別にエチレンジアミ ン3部、アジピン酸ジヒドラジド20部を脱イオン水5 50部に溶解した。この溶液を40℃に加温し、この温 度を保ちながらこの溶液中に上記中和プレポリマー/ト リエチルアミン混合液を滴下し、それによって、固形分 濃度31%の水系ウレタン樹脂乳化液を得た。

【0048】製造例5

二塩基酸成分としてイソフタル酸/アジピン酸(モル比 1/1)混合物を用い、グリコール成分として1、6-ヘキサンジオールを用いて得られ、かつ末端ヒドロキシル基を有する平均分子量2000のポリエステルポリオール100部、平均分子量580のビスフェノールAのプロピレンオキサイド付加物60部、2、2ービス(ヒドロキシメチル)プロピオン酸16部、およびメラミン4部を混合し、90℃に昇温して溶解させた。次に、こ

の溶液にイソホロンジイソシアネート100部、および N-メチルー2ーピロリドン100部を添加し、最高120℃まで加熱して5時間攪拌してイソシアネート含有率2.4%のプレポリマーを製造し、これにトリエチルアミン13部を加えて中和した。別にエチレンジアミン3部、ジエチレントリアミン1部、アジピン酸ジヒドラジド18部を脱イオン水500部に溶解した。この溶液を40℃に加温し、この温度を保ちながら、前記溶液中に、上記中和プレポリマー/トリエチルアミン混合液を滴下し、それによって、固形分濃度34%の水系ウレタン樹脂乳化液を得た。

【0049】製造例6

二塩基酸成分としてイソフタル酸/アジピン酸 (モル比 1/1) 混合物を用い、グリコール成分として1,6-ヘキサンジオールを用いて得られ、かつ末端ヒドロキシ ル基を有する平均分子量1000のポリエステルポリオ ール50部、平均分子量660のビスフェノールAのプ ロピレンオキサイド付加物50部、2,2-ビス(ヒド ロキシメチル)プロピオン酸15部およびメラミン5部 を混合し、この混合物を90℃に加熱してこれらの溶液 を調製した。次に、この溶液にジシクロヘキシルメタン ジイソシアネート110部およびN-メチル-2-ピロ リドン110部を添加し、この混合物を最高120℃ま で加熱しながら5時間攪拌して、イソシアネート含有率 2.8%のプレポリマーを製造し、これにトリエチルア ミン14部を加えて中和した。別にエチレンジアミン5 部、アジピン酸ジヒドラジド20部を脱イオン水480 部に溶解した。この溶液を40℃に加温し、この溶液 に、前記温度を保ちながら前記の中和プレポリマー/ト リエチルアミン混合液を滴下し、それによって、固形分 濃度31重量%の水系ウレタン樹脂乳化液を得た。

【0050】製造例7

二塩基酸成分としてイソフタル酸/アジピン酸 (モル比 8/2)混合物を用い、グリコール成分として1,6-ヘキサンジオールを用いて得られ、かつ末端ヒドロキシ ル基を有する平均分子量2000のポリエステルポリオ ール100部、平均分子量660のビスフェノールAの プロピレンオキサイド付加物50部、2,2ービス(ヒ ドロキシメチル)プロピオン酸15部およびメラミン5 部を混合し、この混合物を90℃に昇温して、これらの 溶液を調製した。次に、この溶液にジシクロヘキシルメ タンジイソシアネート110部およびN-メチル-2-ピロリドン110部を添加し、この混合物を最高120 ℃まで加熱しながら5時間攪拌して、イソシアネート含 有率2.6%のプレポリマーを製造し、これにトリエチ ルアミン14部を加えて中和した。別にエチレンジアミ ン5部、アジピン酸ジヒドラジド20部を脱イオン水5 80部に溶解した。この溶液を40℃に加温し、この溶 液に、前記温度を保ちながら前記の中和プレポリマー/ トリエチルアミン混合液を滴下し、それによって、固形 分濃度31重量%の水系ウレタン樹脂乳化液を得た。 【0051】製造例8

二塩基酸成分としてイソフタル酸/アジピン酸 (モル比 1/1)混合物を用い、グリコール成分として1,6-ヘキサンジオールを用いて得られ、かつ末端ヒドロキシ ル基を有する平均分子量2000のポリエステルポリオ ール150部、平均分子量660のビスフェノールAの プロピレンオキサイド付加物33部、2,2-ビス(ヒ ドロキシメチル) プロピオン酸15部およびメラミン5 部を混合し、この混合物を90℃に昇温してこれらの溶 液を調製した。次に、この溶液にジシクロヘキシルメタ ンジイソシアネート110部およびN-メチル-2-ピ ロリドン110部をとり、混合し、この混合物を最高1 20℃まで加熱しながら5時間攪拌して、イソシアネー ト含有率2.4%のプレポリマーを製造し、これにトリ エチルアミン14部を加えて中和した。別にエチレンジ アミン5部、アジピン酸ジヒドラジド20部を脱イオン 水580部に溶解した。この溶液を40℃に加温し、こ の溶液に、前記温度を保ちながら、前記の中和プレポリ マー/トリエチルアミン混合液を滴下し、それによっ て、固形分濃度32重量%の水系ウレタン樹脂乳化液を 得た。

【0052】製造例9

二塩基酸成分としてイソフタル酸/アジピン酸(モル比 1/1) 混合物を用い、かつグリコール成分として1, 6-ヘキサンジオールを用いて得られかつ末端ヒドロキ シル基を有する平均分子量2000のポリエステルポリ オール100部、平均分子量660のビスフェノールA のプロピレンオキサイド付加物50部、2,2-ビス (ヒドロキシメチル)プロピオン酸15部およびトリメ チロールプロパン5部を混合し、この混合物を90℃に 昇温してこれらの溶液を調製した。次に、この溶液にジ シクロヘキシルメタンジイソシアネート110部および Nーメチルー2ーピロリドン110部を混合し、この混 合物を最高120℃まで加熱しながら5時間攪拌して、 イソシアネート含有率2.6%のプレポリマーを製造 し、これにトリエチルアミン14部を加えて中和した。 別にエチレンジアミン5部、アジピン酸ジヒドラジド2 0部を脱イオン水580部に溶解した。この溶液を40 ℃に加温し、この溶液に、前記温度を保ちながら、前記 の中和プレポリマー/トリエチルアミン混合液を滴下 し、それによって、固形分濃度31%の水系ウレタン樹 脂乳化液を得た。

【0053】2.比較例用水系ウレタン樹脂組成物の製造

製造例10(比較)

二塩基酸成分としてイソフタル酸/アジピン酸(モル比1/1)の混合物を用い、グリコール成分として1,6 一ヘキサンジオールを用いて得られ、末端ヒドロキシル基を有する平均分子量1500のポリエステルボリオー ル229部、2,2ービス(ヒドロキシメチル)プロピオン酸16部、およびメラミン4部を混合し、90℃に昇温して溶解させた。次に、この溶液にイソホロンジイソシアネート120部、およびNーメチルー2ーピロリドン110部を添加し、最高120℃まで加熱して5時間攪拌してイソシアネート含有率3.8%のプレボリマーを製造し、これにトリエチルアミン13部を加えて中和した。別にエチレンジアミン9部、ジエチレントリアミン2部を脱イオン水660部に溶解した。この溶液を40℃に加温し、この温度を保ちながら前記溶液に上記中和プレポリマー/トリエチルアミン混合液を滴下し、それによって、固形分濃度33%の水系ウレタン樹脂乳化液を得た。

【0054】製造例11(比較)

平均分子量1000のビスフェノールAのプロピレンオキサイド付加物150部、2,2ービス(ヒドロキシメチル)プロピオン酸16部、トリメチロールプロパン5部を混合し、90℃に昇温して溶解させた。次に前記溶液にイソホロンジイソシアネート120部、およびNーメチルー2ーピロリドン100部を添加し、最高120℃まで加熱しながら5時間攪拌してイソシアネート含有率4.5%のプレポリマーを製造し、これにトリエチルアミン13部を加えて中和した。別にエチレンジアミン9部、ジエチレントリアミン2部を脱イオン水500部に溶解した。この溶液を40℃に加温し、この温度を保ちながらこの溶液に上記中和プレポリマー/トリエチルアミン混合液を滴下し、それによって、固形分濃度33%の水系ウレタン樹脂乳化液を得た。

【0055】製造例12(比較)

平均分子量2000のビスフェノールAのプロピレンオキサイド付加物220部、2,2ービス(ヒドロキシメチル)プロピオン酸20部、およびメラミン2部を混合し、90℃に昇温して溶解させた。次に、この溶液にイソホロンジイソシアネート120部、およびNーメチルー2ーピロリドン130部を添加し、最高120℃まで加熱しながら5時間攪拌してイソシアネート含有率4.2%のプレポリマーを製造し、これにトリエチルアミン18部を加えて中和した。別にエチレンジアミン9部を脱イオン水640部に溶解した。この溶液を40℃に加温し、この温度を保ちながらこの溶液に上記中和プレポリマー/トリエチルアミン混合液を滴下し、それによって、固形分濃度32%の水系ウレタン樹脂乳化液を得た。

【0056】製造例13(比較)

二塩基酸成分としてイソフタル酸/アジピン酸(モル比1/1)混合物を用い、グリコール成分として1,6-ヘキサンジオールを用いて得られ、末端ヒドロキシル基を有する平均分子量2000のポリエステルポリオール100部、平均分子量1000のプロピレングリコールのプロピレンオキサイド付加物70部、2,2-ビス

(ヒドロキシメチル)プロピオン酸11部、メラミン4部を混合し、90℃に昇温してこれを溶解させた。次に、この溶液にイソホロンジイソシアネート85部、およびNーメチルー2ーピロリドン100部を添加し、最高120℃まで加熱しながら5時間攪拌して、イソシアネート含有率2.9%のプレポリマーを製造し、これにトリエチルアミン10部を加えて中和した。エチレンジアミン6部を脱イオン水483部に溶解した。この溶液を40℃に加温し、この温度を保ちながらこの溶液中に、上記中和プレポリマー/トリエチルアミン混合液を滴下し、それによって、固形分濃度32%の水系ウレタン樹脂乳化液を得た。

【0057】製造例14(比較)

二塩基酸成分としてイソフタル酸/アジピン酸(モル比 1/1) 混合物を用い、グリコール成分として1,6-ヘキサンジオールを用いて得られ、末端ヒドロキシル基 を有する平均分子量2000のポリエステルポリオール 160部、平均分子量660のビスフェノールAのプロ ピレンオキサイド付加物67部、2,2~ビス(ヒドロ キシメチル)プロピオン酸15部を混合し、90℃に昇 温して溶解させた。次に、この溶液に、イソホロンジイ ソシアネート93部、およびN-メチル-2-ピロリド ン130部を添加し、最高120℃まで加熱しながら5 時間攪拌して、イソシアネート含有率2.2%のプレポ リマーを製造し、これにトリエチルアミン13部を加え て中和した。別にエチレンジアミン5部、ジエチレント リアミン1部を脱イオン水587部中に溶解した。この 溶液を40℃に加温し、この温度を保ちながらこの溶液 中に、上記プレポリマー/トリエチルアミン混合液を滴 下し、それによって、固形分濃度32%の水系ウレタン 樹脂乳化液を得た。

【0058】製造例15(比較)_

二塩基酸成分としてイソフタル酸/アジピン酸(モル比 1/1)混合物を用い、グリコール成分として1,6~ ヘキサンジオールを用いて得られ、末端ヒドロキシル基 を有する平均分子量2000のポリエステルポリオール 212部、平均分子量660のビスフェノールAのプロ ピレンオキサイド付加物87部、メラミン5部を混合 し、90℃に昇温して溶解させた。次に、この溶液に 4,4-ジシクロヘキシルメタンジイソシアネート11 0部、およびN-メチル-2-ピロリドン160部を添 加し、最高120℃まで加熱しながら5時間攪拌して、 イソシアネート含有率1.7%のプレポリマーを製造 し、これにトリエチルアミン14部を加えて中和した。 別にエチレンジアミン6部を脱イオン水720部中に溶 解した。この溶液を40℃に加温し、この温度を保ちな がらこの溶液中に上記中和プレポリマー/トリエチルア ミン混合液を滴下したが、前記中和プレポリマー/トリ エチルアミン混合液は水中に分散せず樹脂は得られなか った。

【0059】製造例16 (比較)

二塩基酸成分としてイソフタル酸/アジピン酸(モル比 1/1)混合物を用い、グリコール成分として1,6-ヘキサンジオールを用いて得られ、末端ヒドロキシル基 を有する平均分子量2000のポリエステルポリオール 100部、平均分子量660の、ビスフェノールAのプ ロピレンオキサイド付加物50部、2,2-ビス(ヒド ロキシメチル) プロピオン酸15部、およびメラミン5 部を混合し、90℃に昇温して溶解させた。次に、この 溶液にイソホロンジイソシアネート37部、およびN-メチルー2-ピロリドン75部を添加し、最高120℃ まで加熱しながら5時間撹拌して、イソシアネート含有 率0%のプレポリマーを製造し、これにトリエチルアミ ン14部を加えて中和した。別に脱イオン水350部を 40℃に加温し、これにこの温度う保ちながら上記中和 プレポリマー/トリエチルアミン混合液を滴下すること によって、固形分濃度32%の水系ウレタン樹脂乳化液 を得た。

【0060】製造例17(比較)

二塩基酸成分としてイソフタル酸/アジピン酸(モル比

(イ) 両面電気亜鉛めっき鋼板(EG):板厚=0.8mm

(目付け量=20/20(g/m²))

(ロ)アルミニウム板(A1)

(ハ)冷延鋼板(SPCC)

(1-2) 脱脂処理

供試材の脱脂処理には、ファインクリーナー4336 (登録商標:日本パーカライジング(株)製)を用い た。(濃度=20g/1、温度=60℃、2分スプレ 一)。この脱脂処理後、直ちに供試材を水洗し、下記下 地クロメート処理、又は下地リン酸亜鉛処理に供した。 (1-3-1)下地クロメート処理

上記EG材に対するクロメート皮膜形成には、ジンクロ ム357(登録商標:日本パーカライジング(株)製) を用い、またA1板に対する皮膜形成には、アルクロム 712 (登録商標:日本パーカライジング (株) 製) に よるスプレー処理(浴温度=50℃、時間=5秒)を施 し、形成された下地皮膜を水洗後220℃の雰囲気温度 (鋼板到達板温=100℃)で10秒間乾燥した。クロ ム付着量はいずれも10mg/m²である。

(1-3-2)下地リン酸亜鉛処理

1/1) 混合物を用い、グリコール成分として1, 6-ヘキサンジオールを用いて得られ、末端ヒドロキシル基 を有する平均分子量1500のポリエステルポリオール 229部、2, 2-ビス(ヒドロキシメチル)プロピオ ン酸16部、およびメラミン4部を混合し、90℃に昇 温して溶解させた。次に、この溶液にイソホロンジイソ シアネート120部、およびN-メチル-2-ピロリド ン110部を添加し、最高120℃まで加熱しながら5 時間攪拌して、イソシアネート含有率3.8%のプレポ リマーを製造し、これにトリエチルアミン13部を加え て中和した。別にエチレンジアミン9部、ジエチレント リアミン12部を脱イオン水693部中に溶解した。こ の溶液を40℃に加温し、この温度を保ちながらこの溶 液中に上記中和プレポリマー/トリエチルアミン混合液 を滴下し、それによって、固形分濃度32%の水系ウレ タン樹脂乳化液を得た。

【0061】実施例1~19および比較例1~15

1. 前処理 (1-1)供試材

下記に示した市販の金属材料を供試材として使用した。

:JIS5052材、板厚=1.0

:SPCC材、板厚=0.8mm

リン酸亜鉛皮膜形成には、供試材にパルボンドL302 0 (登録商標:日本パーカライジング(株)製)による 浸漬処理(45℃、2分浸漬)を施し、水洗後風乾し た。皮膜重量は2.0g/m² である。

【0062】2. 添加成分

(2-1)硬化剤

実施例1~13および比較例1~15において用いられ た硬化剤を表1に示す。

(2-2)シリ<u>カ</u>

実施例および比較例において用いられたシリカを表2に 示す。

(2-3) ポリオレフィンワックス

実施例および比較例において用いられたポリオレフィン ワックスを表3に示す。

[0063]

【表1】

〔表1、〕実施例および比較例で用いた硬化剤

記号	官能基	種類
a	エポキシ基	ソルビタンポリグリシジルエーテル
b	オキサゾリン基	ビニルオキサゾリンースチレン共重合体
С	アルコキシシリル基	γーアミノプロピルトリメトキシシラン
d	イソシアネート基	トリレンジイソシアネートのオキシムブロック体
е	アジリジニル基	トリス-2, 4, 6-(1-アジリジニル)-1, 3, 5-トリアジン

[0064]

【表2】

〔表2.〕 実施例および比較例で用いたシリカ

配号	種 類	SiOz 濃度
1	旭電化工業(株)製、アデライトAT-20N	2 0 wt %
ם	日本アエロジル(株)製、アエロジル#200水分散液	1 0 wt %

[0065]

【表3】

〔表3.〕実施例および比較例で用いたポリオレフィンワックス

記号	種類	備考
1	ポリエチレンワックス	ケン化価 0
2	ポリエチレンワックス	ケン化価 4 0

【0066】3. 樹脂組成物の塗布 (3-1) 樹脂組成物の組成

実施例用組成物15種(No.1~15)および比較例 用樹脂組成物13種(No.16~28)を調製した。 その組成を表4および表5に示す。

[0067]

【表4】

実施例1~19用水系金属表面処理組成物の組成

		水系金属表面処理	里組成物の固形分	組成 *1	
水	準	ウレタン樹脂	硬化剤	シリカ	ワックス
		製造例 No. (重量%)	種類(重量%)	種類(重量%)	種類(重量%)
	1	製造例1 (70)	a (10)	1 (20)	-
	2	製造例2 (60)	a (10)	p (30)	-
実	3	製造例3 (70)	a (10)	イ (20)	_
*	4	製造例4 (65)	a (10)	□ (25)	-
	5	製造例 5 (70)	a (10)	1 (20)	-
旌	6	製造例 6 (70)	a (10)	1 (20)	-
	7	製造例7 (70)	a (10)	イ (20)	-
<i>6</i> 91	8	製造例8 (70)	a (10)	イ (20)	-
ניס	9	製造例 9 (70)	a (10)	イ (20)	-
	10	製造例1 (60)	b (20)	D (20)	_
用	11	製造例1 (60)	c (10)	イ (30)	-
	12	製造例 1 (70)	d (10)	II (20)	-
	13	製造例1 (70)	e (5)	1 (25)	-
	14	製造例2 (60)	a (10)	□ (30)	_
	15	製造例3 (55)	a (10)	イ(20)	1 (15)

[0068]

【表5】

比較例 1 ~15用水系金属表面処理組成物の組成

		水系金属表面処理	系金属表面処理組成物の固形分組成 *1						
水	#	ウレタン樹脂	硬化剤	シリカ	ワックス				
		製造例 No. (重量%)	種類(重量%)	種類 (重量%)	種類(重量%)				
	16	製造例10(60)	a (10)	イ (30)	_				
	17	製造例11(60)	a (10)	□ (30)	_				
比	18	製造例12(65)	a (10)	イ (25)	-				
	19	製造例13(60)	a (10)	□ (30)	-				
	20	製造例14(60)	a (10)	イ (30)	-				
較	21	製造例15 *2	-	-	-				
	22	製造例16 (60)	a (10)	1 (30)	_				
mı	23	製造例17 (65)	a (10)	D (25)	-				
例	24	製造例 1 (80)	-	7 (20)	-				
	25	製造例1 (30)	d (40)	□ (30)	-				
	26	製造例1 (40)	d (5)	イ (55)	_				
用	27	製造例1 (90)	d (10)		-				
	28	製造例3 (55)	a (10)	イ (20)	2 (15)				

【0069】表4,表5の注

*1…括弧内の数値は、組成物全固形分重量に対する各 成分固形分重量の割合(%)を示す。

* 2…ウレタン樹脂成分が、水中に分散しなかったた め、組成物の調製不能であった。

【0070】 (3-2) 樹脂組成物の塗布

表4および表5に示す金属表面処理組成物をバーコータ

ーで供試材表面に塗布し、260℃の雰囲気温度(供試 材到達板温=160℃)で30秒間乾燥した。(付着量 $= 1.0 \text{ g/m}^2$

【0071】4.塗装板性能試験

<u>(4 – 1) 耐食性</u>

JIS-Ζ-2731による塩水噴霧試験を200時間 行い、白錆発生状況を観察した。

<評価基準> ◎=錆発生面積が全面積の3%未満

○=錆発生面積が全面積の3%以上10%未満

△=錆発生面積が全面積の10%以上30%未満

×=錆発生面積が全面積の30%以上

(4-2)耐アルカリ性

シリケート系アルカリ脱脂剤 (パルクリーンN364

S. 日本パーカライジング (株) 製、濃度=20g/

1、温度=60℃) に5分間浸漬した後、前記耐食性の 評価テストを行った。

<評価基準> ◎=錆発生面積が全面積の3%未満

○=錆発生面積が全面積の3%以上10%未満

△=錆発生面積が全面積の10%以上で性能劣化なし

×=錆発生面積が全面積の10%以上で性能劣化あり

【0072】(4-3)塗装密着性

メラミン系塗料(アミラック#1000、関西ペイント (株)製)を焼き付け乾燥後の膜厚が25μmになるよ うに塗布して、125℃で20分間焼き付け、24時間 後に沸騰水に2時間浸漬し、さらに24時間後に評価テ ストを行った。塗料密着評価方法はJIS-5400に より描画、ゴバン目エリクセン、衝撃の各試験を行い、 これらの総合評価により評価した。

<評価基準> ◎=塗膜剥離面積、0%

○=塗膜剥離面積、1%未満

△=強膜剥離面積、10%未満

×=塗膜剥離面積、10%以上

(4-4)加工性

115㎜
の直径のブランク板を使用し、ポンチ径=5 0 $m\phi$ 、しわ押え圧1 $m\phi$ 、深絞り速度3 0 m/分の条 件で高速円筒深絞り試験を実施した。尚、試験には必要 に応じてプレス油(日本工作油製、#640)を28/

m² 塗油した。この時の絞り比は2.30である。

<評価基準> ◎=塗油無し、絞り比=2.40まで絞り抜けた。

○=塗油無し、絞り比=2.30まで絞り抜けた。

△=塗油有り、絞り比=2.30まで絞り抜けた。

×=塗油有り、絞り比=2.30において絞り抜けなかった。

【0073】5.試験結果

[0074]

試験結果を表6および表7に示す。

【表6】

	項目	供	下地。	を膜	表面如	L理組成物	ğ	塗装板性能			
4	В	試	種類	付着量	種類	付着量	耐	耐ア	塗装	加	
実施例No.	\setminus	材					食	ルカ	经基份专生	I	
No.				(g/m²)		(g/m²)	性	ij	崔	性	
	1	ΕG	クロメート	0.01	1	1.0	0	0	0	Δ	
	2	EG	クロメート	0.01	2	1.0	0	0	0	Δ	
Ì	3	ΕG	クロメート	0.01	3	1. 0	0	0	0	Δ	
	4	ΕG	クロメート	0.01	4	1.0	0	0	0	Δ	
実	5	EG	クロメート	0.01	5	1.0	0	0	0	Δ	
	6	ΕG	クロメート	0.01	6	1. 0	0	0	0	Δ	
	7	EG	クロメート	0.01	7	1.0	0	0	0	Δ	
	8	ΕG	クロメート	0.01	8	1. 0	0	0	0	Δ	
施	9	EG	クロメート	0. 01	9	1. 0	0	0	0	Δ	
	10	EG	クロメード	0. 01	10	1. 0	0	0	0	Δ	
	11	EG	クロメート	0.01	11	1. 0	0	0	0	Δ	
例	12	EG	クロメート	0.01	12	1. 0	0	0	0	Δ	
1	13	E G	クロメート	0.01	13	1. 0	0	0	0	Δ	
	14	EG	クロメート	0.01	14	1. 0	0	0	0	Δ	
	15	EG	クロメート	0.01	15	1.0	0	0	0	Δ	
	16	EG	クロメート	0.01	1_1_	0. 5	0	0	0	Δ	
	17	EG	クロメート	0. 01	1	3. 0	0	0	0	Δ	
	18	EG	リン酸塩	2. 00	1	1. 0	0	0	0	Δ	
L	19	ΑJ	クロメート	0. 01	1	1. 0	0	0	0	×	

$\overline{\ }$	項目	供	下地层	皮膜	表面処理組成物			装板	姓的	ŧ
	В	試	種類	付着量	種類	付 量	耐	耐ァ	塗	加
比較例	\setminus	材					食	ルカ	塗装密着性	I
No.	\setminus			(g/m²)		(g/m²)	性	ű	世	性
	1	EG	クロメート	0.01	16	1.0	×	×	×	Δ
	2	ΕĢ	クロメート	0.01	17	1.0	Δ	Δ	Δ	Δ
比比	3	E G	クロメート	0.01	18	1. 0	Δ	Δ	Δ	Δ
L	4	ΕG	クロメート	0.01	19	1. 0	Δ	Δ	Δ	Δ
	5	ΕG	クロメート	0. 01	20	1. 0	×	×	×	Δ
	6	E G	クロメート	0. 01	21	1.0	Δ	х	×	Δ
較	7	EG	クロメート	0. 01	22	1. 0	×	×	×	×
	8	ΕG	クロメート	0.01	23	1.0	×	×	×	Δ
	9	EG	クロメート	0. 01	24	1. 0	0	0	0	Δ
<i>(</i> 81)	10	EG	クロメート	0.01	25	1. 0	Δ	×	×	Δ
ויש	11	EG	クロメート	0.01	26	1. 0	×	×	×	×
	12	E G	クロメート	0. 01	27	1. 0	×	×	×	Δ
	13	EG	クロメート	0. 01	28	1.0	0	0	0	Δ
	14	A 1	クロメート	0.01	18	1. 0	Δ	Δ	Δ	×
	15	SPCC	リン酸塩	2.00	18	1.0	Δ	Δ	Δ	Δ

【0076】表6が明らかに示すように、実施例1~1 9において、亜鉛系めっき鋼板、アルミニウム板、及び 冷延鋼板にクロメートまたはリン酸塩皮膜を形成させた 後、本発明の水系表面処理組成物を塗布後乾燥して皮膜 を形成させた場合、耐食性、耐アルカリ性、塗装密着性 の各性能はいずれも良好であった。また、潤滑剤を添加 することにより良好な加工性が得られることも確認され た。一方、本発明とは異なる比較例1~15の場合、表 7から明らかなように、得られた皮膜の耐食性、耐アルカリ性、塗装密着性は、いずれも不十分であった。

[0077]

【発明の効果】上記に説明したように、本発明の水系ウレタン樹脂組成物を含有する水系表面処理組成物を亜鉛めっき鋼板等の金属材料の表面に塗布することにより、 優れた耐食性、耐アルカリ性、耐溶剤性を有する皮膜を 形成することができる。

フロントページの続き

(72)発明者 仲田 忠洋

東京都荒川区東尾久七丁目2番35号 旭電化工業株式会社内

(72)発明者 永松 保

東京都荒川区東尾久七丁目2番35号 旭電化工業株式会社内