Tarea 5 - Redes neuronales

Sofía Chávez Bastidas

P1

Considere el siguiente dataset de clasificación multiclase $\{x^{(i)}, y^{(i)}\}_{i=1}^N$, con $y^{(i)} \in \{c_1, ..., c_k\}$. Dadas $p \neq q$ dos distribuciones de probabilidad discretas, la **entropía cruzada** está dada por:

$$H(p,q) = \sum_{j=1}^{K} p(c_j) \log \left(\frac{1}{q(c_j)}\right)$$
(1)

Se define entonces la función de pérdida de entropía cruzada mediante:

$$L(q,p) = \frac{1}{N} \sum_{i=1}^{N} H(p_i, q_i)$$
 (2)

Demuestre que

$$\hat{\theta} = \arg\min_{\hat{\theta}} L(p_{\theta}, p) \tag{3}$$

donde $\hat{\theta}$ es el estimador de máxima verosimilitud y p es la distribución de probabilidad empírica, es decir, la distribución que se puede "observar" en los datos, la cual, en el caso no condicional puede ser vista como:

$$p_e(y) = \frac{1}{N} \sum_{i=1}^{N} \delta(y - y^{(i)})$$
(4)

con δ la función delta de Dirac.

Consideramos un conjunto de datos de clasificación multiclase $\mathcal{D} = \{x^{(i)}, y^{(i)}\}_{i=1}^N$, donde $y^{(i)} \in \{c_1, ..., c_k\}$.

Definimos:

- p_e : La distribución empírica de las clases en los datos, dada por $p_e(y) = \frac{1}{N} \sum_{i=1}^{N} \delta(y y^{(i)})$.
- p_{θ} : La distribución predicha por el modelo parametrizado por θ .

Para encontrar el estimador de máxima verosimilitud $\hat{\theta}$, buscamos:

$$\hat{\theta} = \arg\max_{\theta} \mathcal{L}(\theta) = \arg\max_{\theta} p(\mathcal{D}|\theta)$$
 (5)

Asumiendo que los datos son iid, podemos construir $\mathcal{L}(\theta)$ como:

$$\mathcal{L}(\theta) = p(\mathcal{D}|\theta) = \prod_{i=1}^{N} p_{\theta}(y^{(i)})$$
(6)

Con lo cual podemos, equivalentemente, maximizar la log likelihood $\ell :$

$$\hat{\theta} = \arg\max_{\theta} \mathcal{L} = \arg\max_{\theta} \ell = \arg\max_{\theta} \log(\mathcal{L})$$

$$= \arg\max_{\theta} \log\left(\prod_{i=1}^{N} p_{\theta}(y^{(i)})\right) = \arg\max_{\theta} \sum_{i=1}^{N} \log(p_{\theta}(y^{(i)}))$$
(7)

Por otro lado, podemos desarrollar $L(p_{\theta}, p)$ considerando que en la entropía cruzada H, p_i es la distribución empírica p_e y q_i es la distribución predicha por el modelo con parámetro θ , es decir $p_i = p_e$ y $q_i = p_{\theta}$:

$$L(p_{\theta}, p) = \frac{1}{N} \sum_{i=1}^{N} H(p_{e}, p_{\theta})$$
 (8)

Con lo cual

$$\hat{\theta} = \arg\min_{\theta} L(p_{\theta}, p) \tag{9}$$

Para demostrar esto, consideramos la definición de la función de pérdida de entropía cruzada y la desarrollamos:

$$L(p_{\theta}, p) = \frac{1}{N} \sum_{i=1}^{N} H(p_{e}, p_{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{K} p_{e}(c_{j}) \log \left(\frac{1}{p_{\theta}(c_{j})}\right)$$
(10)

Dado que p_e es la distribución empírica y $\sum_{i=1}^{N} \sum_{j=1}^{K} p_e(c_j) \log \left(\frac{1}{p_{\theta}(c_j)}\right)$ equivale a $\sum_{i=1}^{N} \log \left(\frac{1}{p_{\theta}(c_j)}\right)$ cuando c_j es la clase real, es decir, $y^{(i)}$, podemos simplificar:

$$L(p_{\theta}, p) = \frac{1}{N} \sum_{i=1}^{N} \log \left(\frac{1}{p_{\theta}(y^{(i)})} \right) = \frac{-1}{N} \sum_{i=1}^{N} \log(p_{\theta}(y^{(i)}))$$
(11)

Con lo cual

$$\hat{\theta} = \arg\min_{\theta} L(p_{\theta}, p)$$

$$= \arg\min_{\theta} \frac{-1}{N} \sum_{i=1}^{N} \log(p_{\theta}(y^{(i)}))$$

$$= \arg\max_{\theta} \frac{1}{N} \sum_{i=1}^{N} \log(p_{\theta}(y^{(i)}))$$

$$= \arg\max_{\theta} \sum_{i=1}^{N} \log(p_{\theta}(y^{(i)}))$$

$$= \arg\max_{\theta} \sum_{i=1}^{N} \log(p_{\theta}(y^{(i)}))$$
(12)