Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №7 "Анализ точности систем управления" Вариант - 02

Выполнил			(подпись)
	(фамили	я, и.о.)	
Проверил			(подпись)
	(фамилия	і, и.о.)	
""20г.	Санкт-Пете	ербург,	20г.
Работа выполнена с	оценкой		

Дата защиты "__" _____ 20__г.

Цель работы.

Исследование точностных свойств систем управления.

Исходные данные

Исследование системы с астатизмом нулевого порядка.

Стационарный режим работы системы. На рисунке 1 представлена схема моделирования системы с астатизмом нулевого порядка при входном воздействии g=2, также на рисунках 2 и 3 представлены графики переходного процесса и ошибки при разных коэффициентах.

Рис. 1: Система с астатизмом нулевого порядка.

Рис. 2: График переходного процесса

Рис. 3: График ошибки переходного процесса

Предельное значение ошибки рассчитывается по формуле:

$$\varepsilon = \lim_{s \to 0} \Phi_e(s)g = \frac{A}{1 + 3k} \tag{1}$$

На таблице 1 рассчитаны аналитическим методом ошибки переходного процесса.

Таблица 1: Зависимость коэффициента от ошибки

K	1	5	10
ε	0.5	0.125	0.064

Значения ε полученные аналитическим методом полностью совпадают с установившимися значениями ошибки на графике.

Работа с постоянной скоростью. g(t) = Vt – движение с постоянной скоростью. V = 2 На рисунках 4 и 5 представлены гафики переходного процесса сигнала и ошибки.

Рис. 4: График переходного процесса

Рис. 5: График ошибки переходного процесса

$$\varepsilon_y(t) = \lim_{s \to 0} s \frac{1}{1 + W(s)} \frac{V}{s^2} = \lim_{s \to 0} \frac{1}{1 + k} \frac{V}{s} = \infty$$
 (2)

Bo всех случаях $\varepsilon \to \infty$

Исследование системы с астатизмом первого порядка.

Стационарный режим работы. На рисунке 6 представлена схема моделирования системы с астатизмом первого порядка при входном воздействии g=2, также на рисунках 7 и 8 представлены графики переходного процесса и ошибки при разных коэффициентах.

Исследуемая система: $W(s) = \frac{3}{2.5s+1}$

Рис. 6: Система с астатизмом первого порядка.

Рис. 7: График переходного процесса

Рис. 8: График ошибки переходного процесса

Из графика видно, что предельное значение установившихся ошибок $\varepsilon_y(t)=0$. Это значение подтверждается аналитическим расчетом: $\varepsilon_y(t)=\lim_{s\to 0}\frac{s}{s+k}A=0$

Работа с постоянной скоростью. g(t) = Vt – движение с постоянной скоростью. V = 2. На рисунках 9 и 10 представлены гафики переходного процесса сигнала и ошибки.

Рис. 9: График переходного процесса

Рис. 10: График ошибки переходного процесса

$$\varepsilon_y(t) = \lim_{s \to 0} \frac{s}{s+k} V = \frac{V}{3k} \tag{3}$$

На таблице 1 рассчитаны аналитическим методом ошибки переходного процесса.

Таблица 2: Зависимость коэффициента от ошибки

K	1	5	10
ε	0.666	0.133	0.066

Значения ε полученные аналитическим методом почти совпадают с установившимися значениями ошибки на графике.

Движение с постоянным искорением. $g(t) = at^2/2$ – движение с постоянным ускорением. a = 0.5. На рисунках 11 и 12 представлены гафики переходного процесса сигнала и ошибки.

Рис. 11: График переходного процесса

Рис. 12: График ошибки переходного процесса

Исследование влияния внешних возмущений.

На рисунке 13 представлена схема моделирования влияния внешних возмущений, также на рисунках 14, 15, 16 и 17 представлены графики переходного процесса и ошибки при различных значениях шумов $f_1=0.5, f_2=0.5$

Рис. 13: Схема моделирования влияния внешних возмущений.

Зададим
$$f_2(t) = 0, g(t) = 1(t)$$

Рис. 14: График переходного процесса при $f_2(t)=0$

Рис. 15: График ошибки переходного процесса при $f_2(t)=0$

Зададим $f_1(t) = 0, g(t) = 1(t)$

Рис. 16: График переходного процесса при $f_1(t)=0$

Рис. 17: График ошибки переходного процесса при $f_1(t)=0$

Из графика видно, что предельное значение установившейся ошибки $e_y(t)=-0.5$. Это значение подтверждается аналитическим расчетом:

$$\varepsilon = \lim_{s \to 0} e(s) = -f1 \tag{4}$$

Исследование установившейся ошибки при произвольном входном воздействии.

На рисунке 18 представлена схема моделирования произвольного входного воздействия, также на рисунках 19 и 20 представлены графики переходного процесса и ошибки.

Рассмотрим систему при:

$$H(s) = 1;$$

$$W(s) = \frac{3}{2.5s+1};$$

$$g(t) = 0.2t^2 + sin(0.5t);$$

Рис. 18: Схема моделирования произвольного входного воздействия.

Рис. 19: График переходного процесса.

Рис. 20: График ошибки переходного процесса.

 $e_y(t) \to \infty$, т.к. СУ с астатизмом нулевого порядка не может отработать линейно нарастающее задающее воздействие.

Разложим уравнение ошибки в ряд Тейлора: $e_y(t)=c_0g(t)+c_1\frac{d}{dt}g(t)+\frac{c_2}{2!}\frac{d^2}{dt^2}g(t)+\dots$, где постоянные c_i - коэффициенты ошибок.

 $\Phi_e(s) = \frac{1}{1+W(s)}$, где W(s) – передаточная функция разомкнутой системы, $\Phi(s)$ – передаточная функция замкнутой системы по ошибке слежения (относительно задающего воздействия).

$$W(s) = \frac{3}{2.5s+1};$$

$$\Phi_e(s) = \frac{2.5s + 1}{2.5s + 4};$$

$$c_0 = \Phi_e(s)|_{s=0} = 0.25$$

$$c_1 = \frac{1.2}{2.56}$$

$$c_2 = -\frac{2.4}{4.096}$$

$$e_y(t) = 0.25(0.2t^2 + sin(0.5t)) + \frac{1.2}{2.56}(0.4t + 0.5cos(0.5t)) - \frac{2.4}{4.096}(0.4 - 0.25sin(0.5t))$$

Смоделируем получивийся ряд в матлабе. На 21 представлена схема моделирования функции ошибки, также на рисунке 22 предсавлен получившийся график ошибки.

Рис. 21: Схема моделирование. Ряд Тейлора.

Рис. 22: График ошибки переходного процесса.

Вывод.

В данной работе мы исследовали передаточные функции с различным остатизмом, при наличии внешних возмущений и без них. Проведенные исследования показали, что, когда сигнал стационарный (g = A), при увеличении коэффициента усиления (K), ошибка стремится к нулю. Также выяснилось, что на наличие или отсутствие установившейся ошибки влияет порядок астатизма: при увеличении порядка астатизма ошибка исчезает, становится равной нулю. Большое влияние оказывают и внешние возмущения: при их наличии входной сигнал увеличивается, и появляется ошибка.