Mathematical Analysis II

Indeterminate forms and l'Hospital's rule

Recall:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

If both $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist, and $\lim_{x\to a} g(x) \neq 0$, then $\lim_{x\to a} \frac{f(x)}{g(x)}$ exists. It also holds if $x\to a$ is changed to $x\to a^+$ or $x\to \pm\infty$.

If $\lim_{x\to a} g(x) = 0$ but $\lim_{x\to a} f(x) \neq 0$, then $\lim_{x\to a} \frac{f(x)}{g(x)}$ DNE.

If in $\lim_{x\to a} \frac{f(x)}{g(x)}$, $\lim_{x\to a} f(x) = 0$, $\lim_{x\to a} g(x) = 0$, then the limit may or may not exist, and we have what is called an indeterminate form of type $\frac{0}{0}$.

Similarly, if in $\lim_{x\to a} \frac{f(x)}{g(x)}$, $\lim_{x\to a} f(x) = \pm \infty$, $\lim_{x\to a} g(x) = \pm \infty$, then the limit may or may not exists, and we have what is called an indeterminate form of type $\frac{\infty}{\infty}$.

L'Hospital Rule (LR)

Supposed f and g are diffrentiable and $g'(x) \neq 0$ on an open interval that contains a (except possibly at a),

Then
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$$

Note: L'Hospital's rule is also valid if $x \to a$ is changed to $x \to a^+, x \to a^-$, or $x \to \pm \infty$

Example Evaluate $\lim_{x \to 1} \frac{\ln x}{x - 1}$

Solution. This has indeterminated form $\frac{0}{0}$, so we can apply LR:

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{1/x}{1} = 1$$

 $0 \cdot \pm \infty$ indeterminate form

Example Evaluate $\lim_{x \to -\infty} (xe^x)$.

Solution. Note that the limit has the indeterminate form $0 \cdot -\infty$. We can write xe^x as a quotient

$$\lim_{x \to -\infty} (xe^x) = \lim_{x \to -\infty} \frac{x}{e^{-x}}$$

1

RHS is now a $\frac{-\infty}{\infty}$ indeterminate form. Hence we can apply LR.

$$\lim_{x \to -\infty} (xe^x) = \lim_{x \to -\infty} \frac{x}{e^{-x}}$$
$$= \lim_{x \to -\infty} \frac{1}{-e^{-x}}$$
$$= 0$$

 $\infty-\infty$ indeterminate form

Example Evaluate
$$\lim_{x \to 1^+} \left(\frac{1}{\ln x} - \frac{1}{x-1} \right)$$

Solution: Note that we have the indeterminate form $\infty - \infty$. Here, we can write the different as a quotient.

$$\lim_{x \to 1^+} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right) = \lim_{x \to 1^+} \frac{x - 1 - \ln x}{(x - 1) \ln x}$$

Now, the new limit has indeterminate form $\frac{0}{0},$ so LR applies

$$\lim_{x \to 1^{+}} \left(\frac{x - 1 - \ln x}{(x - 1) \ln x} \right) = \lim_{x \to 1^{+}} \frac{1 - 1/x}{(x - 1)(1/x) + \ln x}$$

$$= \lim_{x \to 1^{+}} \frac{x - 1}{x - 1 + x \ln x}$$

$$= \lim_{x \to 1^{+}} \frac{1}{1 + x(1/x) + \ln x}$$

$$= \lim_{x \to 1^{+}} \frac{1}{1 + 1 + \ln x}$$

$$= \frac{1}{1 + 1 + \ln 1}$$

$$= \frac{1}{2}$$