浙江理工大学 2015—2016 学年第二学期 《概率论与数理统计》期末试卷(A)卷

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反,自愿按《浙江理工大学学生违纪处分规定》有关条款接受处理。

承诺人签名:	学号:	班级:
一、填空题(满分 21 分	•)	
1. $\c P(A) = 0.5, P(B) = 0.6$	$5, P(B \overline{A}) = 0.8, \emptyset A, A$	3至少发生一个的概率为
2. 设 $X \sim N(2, \sigma^2)$,且 P	$\{2 < x < 4\} = 0.3, \text{M} P\{x\}$	< 0} =
3. 设二维随机变量 (X,Y)	的概率密度函数为 $f(x, y)$	$) = \begin{cases} 1, & -1 \le x \le 0, -1 \le y \le 0; \\ 0, & 其他, \end{cases} $
则 $P(X+Y>-1/2)=$	···	
		N (0, 1) 的简单随机样本,令
$Y_{n} = a(X_{1} + X_{2} + \dots + X_{m})$	$(a)^{2} + b(X_{m+1} + \dots + X_{n})^{2}$	$(m < n)$ 为使 Y_n 服从 χ^2 分布,则
4.5		(μ, σ^2) ,今随机地测量 16 个零件,得 0.95 下, μ 的置信区间为
$(t_{0.95} = 1.7531, t_{0.975})$	= 2.1315)	
6. 设随机变量 X 服从	人泊松分布 $P(\lambda)$,贝	$Y = aX + b(a \neq 0)$ 的特征函数为
$\varphi_{Y}(t) = \underline{\hspace{1cm}}$.		
7. 设总体 X 服从正态分布 I	N (μ, σ²), 其中μ未知	X_1 , X_2 , …, X_n 为其样本。若假设检
验问题为 H_0 : $\sigma^2 = 1 \leftrightarrow H_1$: $\sigma^2 \neq 1$,则采用的检验	统计量应
二、单项选择题(满分:	21分)	
1.、已知 $P(A) = 0.8, P(B)$	$= 0.7, P(A B) = 0.8, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$]下列结论正确的是()
(A) 事件 A和	B 互斥 (B)	事件 A和B 相互独立

三、解答题(满分58分)

- 1. 设某地区成年居民中肥胖者占 10%,不胖不瘦者占 82%,瘦者占 8%,又知肥胖者患高血压的概率为 20%,不胖不瘦者患高血压病的概率为 10%,瘦者患高血压病的概率为 5%,试求:
- (1) 该地区居民患高血压病的概率;
- (2) 若知某人患高血压,则他属于肥胖者的概率有多大? (9分)

2.已知随机变量 X 和 Y 的分布列分别为:

X	-1	0	1	Y	0	1
p	$\frac{1}{4}$	$\frac{1}{2}$	1/4	p	$\frac{1}{2}$	1/2

且已知 P(XY=0)=1,试求: (1) X与Y 的联合分布列; (2) X与Y 的协方差 Cov(X,Y). (12 分)

3. 己知随机变量 X 和 Y 相互独立,且 X \sim N (0, 2), Y \sim U (0, 2), 求 E(X-3Y),

Var(X-3Y)和 $E[(X+Y)^2]$. (10 分)

4. 设总体 X 的分布列为

X	0	1	2	3
p	θ^2	$2\theta(1-\theta)$	θ^2	$(1-2\theta)$

其中 θ (0< θ < $\frac{1}{2}$)是未知参数,利用总体的如下样本值:

3, 1, 3, 0, 3, 1, 2, 3

求 θ 的矩估计值和最大似然估计值.(10分)

- 5. 已知总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 为从总体 X 抽取的一个简单随机样本,
- (1) 对给定的置信度 $1-\alpha$,请写出在总体方差 σ^2 已知和未知两种情形下总体均值 μ 的双侧置信区间;(2)简述对总体均值 μ 的假设检验与区间估计的异同.(9分)

6. 某种动物的体重服从正态分布 $N(\mu,9)$,今抽取 9 个动物考察,测得平均体重为 51.3 公斤,问:能否认为该动物的体重平均值为 52 公斤。($\alpha=0.05$)(8 分)

(参考数据 $u_{0.95} = 1.645$ $u_{0.975} = 1.96$)