

TFG del Grado en Ingeniería Informática

Clasificadores multi-label en Scikit Learn Documentación Técnica

Presentado por Eduardo Tubilleja Calvo en Universidad de Burgos — 3 de enero de 2018

Tutor: Dr. Álvar Arnaiz González y Dr. Juan José Rodríguez Díez

Índice general

Índice general	I
Índice de figuras	III
Índice de tablas	IV
Apéndice A Plan de Proyecto Software	1
A.1. Introducción	1
A.2. Planificación temporal	1
A.3. Estudio de viabilidad	10
Apéndice B Especificación de Requisitos	11
B.1. Introducción	11
B.2. Objetivos generales	11
B.3. Catalogo de requisitos	11
B.4. Especificación de requisitos	11
Apéndice C Especificación de diseño	13
C.1. Introducción	13
C.2. Diseño de datos	13
C.3. Diseño procedimental	13
C.4. Diseño arquitectónico	13
Apéndice D Documentación técnica de programación	15
D.1. Introducción	15
D.2. Estructura de directorios	15
D 3 Manual del programador	15

D.4. Compilación, instalación y ejecución del proyecto	15
D.5. Pruebas del sistema	15
Apéndice E Documentación de usuario	17
E.1. Introducción	17
E.2. Requisitos de usuarios	17
E.3. Instalación	17
E.4. Manual del usuario	17
Bibliografía	19

Índice de figuras

A.1.	Burndown del sprint 3												4
A.2.	Burndown del sprint 4												5
A.3.	Burndown del sprint 5												6
A.4.	Burndown del sprint 6												8
A.5.	Burndown del sprint 7												Ö
A.6.	Burndown del sprint 8												10

Índice de tablas

Apéndice A

Plan de Proyecto Software

A.1. Introducción

La planificación es una parte importante de un proyecto. En esta parte se estima el trabajo, el tiempo y el dinero necesario para realizar el proyecto. Hay que analizar todas las partes que forman el proyecto, con esto sabemos los recursos que necesitaremos. Podemos dividir la planificación en planificación temporal y estudio de la viabilidad.

- Planificación temporal: Se elabora un calendario en el que se estima el tiempo que tardaremos en realizar cada una de las tareas del proyecto.
- Estudio de viabilidad: Si el proyecto es viable o no. Podemos dividirlo en dos:
 - Viabilidad económica: Se calculan los beneficios y costes del proyecto.
 - Viabilidad legal: Hay que ver si cumple todas las leyes, y en el software que tiene las licencias y la ley de protección de datos.

A.2. Planificación temporal

Para la planificación del proyecto hemos utilizado la metodología Scrum, aunque esta metodología está pensaba para trabajar en equipo, consiste en realizar unas entregas parciales y regulares del producto final, es recomendable para proyectos en entornos complejos, donde se necesitan obtener

resultados pronto, y la innovación, la competitividad, la flexibilidad y la productividad son fundamentales. En nuestro caso a través de GitHub:

- Creamos un Milestone correspondiente a la semana que estamos.
- Creamos las tareas que realizaremos esa semana habladas en la reunión semanal.
- Para gestionar el tiempo de las tareas lo llevamos a cabo mediante
 ZenHub, que es una herramienta que incluye el navegador.
- Según vamos realizando las tareas las vamos cerrando, y así podremos observar el gráfico que nos muestra en burn down chart, en el que podremos ver el progreso.

A continuación los sprints que se han realizado.

Sprint 0 (18/09/17 - 25/09/17)

En la reunión para planificar este sprint es cuando comenzó el proyecto. En ella se concreta por encima en que consiste el problema que vamos a llevar a cabo. En esta primera semana, se ha dedicado a la documentación de las herramientas que se van a usar y de distintos artículos, las tareas son:

- Refrescar los conocimientos de GitHub.
- Documentación sobre LaTeX, y su posterior instalación y configuración.
- Leer artículo Disturbing Neighbors.
- Documentación sobre Bagging.

Esta semana se han cumplido todas las tareas, aunque como todavía no sabía utilizar correctamente GitHub, no creé bien el Milestone por lo que esta semana no tenemos burndown, ya que este no refleja nada.

Sprint 1 (26/09/17 - 02/10/17)

Esta semana, se ha dedicado a la documentación del funcionamiento de bagging y empezar con el primer clasificador Disturbing Neighbors, las tareas son:

- Reducir el conjunto de datos. Reducimos el conjunto de datos para quedarnos sólo con los datos que valoraremos para entrenar, estos datos se eligen mediante un subespacio aleatorio (un array aleatorio de 0 y 1).
- Calculamos las distancias al vecino más cercano para ello en nuestro caso utilizaremos la distancia de euclides. Los vecinos sobre los que calculamos dichas distancias son unas instancias del conjunto elegidas al azar.
- Funcionamiento del BaggingClassifier. Como nosotros también vamos a hacer un clasificador, entender como se ysa el fit, predict y precict proba.
- Entrenamiento. Entrenamos los datos mediante el método fit que tenemos que programar.
- Crear la clase Disturbing Neighbors. Es la clase en la que programaremos nuestro clasificador.

Esta semana se han cumplido todas las tareas.

Sprint 2 (02/10/17 - 10/10/17)

Esta semana, se ha dedicado a la corrección de errores de la semana pasada y a seguir avanzando con la clase, las tareas son:

- Corregir errores. En la reunión los tutores vieron algunos fallos que hay que corregir del método fit, en el que entrenamos nuestro conjunto de datos.
- Función predict. Empezamos con el siguiente método de la clase, en el que después de haber entrenado los datos ahora podemos predecir con ellos.
- Mostrar árbol de decisión. Como hemos entrenado nuestros datos podemos mostrar gráficamente los resultados para que sean más apreciables.
- Estructurar bien el código. Esto lo hacemos para que en un futuro sea más fácil trabajar.

Esta semana se han cumplido todas las tareas, esta semana termine de entender como utilizar bien github, por lo que no creé bien el Milestone por lo que esta semana no tenemos burndown, ya que este no refleja nada.

Sprint 3 (10/10/17 - 15/10/17)

Esta semana, se ha dedicado a la corrección de errores de la semana pasada y a mostrar los resultados en un notebook, las tareas son:

- Corregir errores. La clase no funciona correctamente, ya que algunos de los métodos no hace lo que tienen que hacer, esta tarea no la conseguiremos acabar esta semana, tendremos que dedicar tiempo la próxima semana.
- Mostrar árbol en un notebook. Una vez conseguido que la primera versión del clasificador funcione correctamente, mostraremos un árbol de decisión en un notebook para poder observar mejor los resultados.

Esta semana se han cumplido todas las tareas, aunque una de las tareas estaba particionada entre esa semana y la siguiente.

En la figura A.1 se muestra el gráfico del Sprint 3.

Figura A.1: Burndown del sprint 3

Sprint 4 (17/10/17 - 23/10/17)

Esta semana, se ha dedicado a corregir algún error más, a comentar el código y añadir algún nuevo método para que el clasificador funcione mejor:

- Comentar los métodos. Comentamos los diferentes métodos según el formato de python [1].
- Semilla. Creamos una semilla, esto lo hacemos para inicializar los valores aleatorios y así conseguir que siempre empiece por el mismo, esto lo hacemos para cuando hacemos pruebas siempre las haga con los mismos datos.
- Vecinos molestones. No están calculados correctamente.
- Corregir fallos. Sigue dándome algún fallo, no hace lo que debería.
- Método calculate features. Creamos un método en el que si recibe un numero menor de 1, es el porcentaje de las características con las que nos quedaremos, mientras que si lo que recibe es un número mayor de 1 es un número entero, que índica el valor exacto de las características que escogemos.

Esta semana se han cumplido todas las tareas, terminamos de corregir los fallos, aunque posteriormente iremos mejorando el clasificador.

En la figura A.2 se muestra el gráfico del Sprint 4.

Figura A.2: Burndown del sprint 4

Sprint 5 (24/10/17 - 30/10/17)

Esta semana, se ha dedicado mayormente a empezar a documentar en la memoria, a parte de alguna otra tarea:

- Semilla. No estaba hecha correctamente, hay que hacer alguna modificación.
- Subir estructura de proyecto a GitHub. Organizamos y estructuramos bien la estructura del proyecto en GitHub.
- Partición de entrenamiento. Dividimos el conjunto de entrenamiento para pasar una parte al fit y otra parte al predict.
- Memoria: Introducción. Sobre que va ir nuestro proyecto, una breve explicación.
- Memoria: Objetivos del proyecto. Los objetivos que cumpliremos en el proyecto.
- Memoria: Conceptos teóricos. Los conceptos necesarios para poder entender y trabajar en el proyecto.
- Anexo: Manual del programador. La información que necesitara un programador que quiera seguir con el proyecto.
- Anexo: Manual del usuario. Información que necesitará un usuario para poder usar las funcionalidad del proyecto.

Esta semana no se han cumplido todas las tareas, las partes del anexo de manual de programador y usuario no han podido llegar a realizar, aunque en el burndown muestre que están realizadas no es así.

En la figura A.3 se muestra el gráfico del Sprint 5.

Figura A.3: Burndown del sprint 5

Sprint 6 (31/10/17 - 05/11/17)

Esta semana, se ha dedicado mayormente a empezar a documentar en la memoria, a parte de alguna otra tarea:

- Clase funcional. Hacemos la clase funcional, como puede ser cambiar los for por map, para que luego se más rápido en la ejecución.
- Probar clase en Spyder. Para ver que todo la clase funciona correctamente la probamos.
- Función predecir probabilidades. Creamos un nuevo método llamado predict_proba que nos devolverá las probabilidades.
- Memoria: Técnicas y herramientas. Añadiremos técnicas y herramientas necesarias para entender y poder trabajar con el proyecto.
- train_test_split: Usaremos el método train_test_split para dividir nuestro conjunto de datos, dicho método es más eficaz que como lo estábamos haciendo la semana pasada.
- Correcciones de estilo y mejoras al código DN: Cambiaremos algunas variables a privadas, los comentarios los ponemos en inglés, y utilizaremos el chequeador de sintaxis http://pep8online.com/ para tener un estilo adecuado.

Esta semana se han cumplido todas las tareas, al probar la clase en spyder ha dado algunos errores, sobre todo al importar la clase DisturbingNeihgbors, y algunos errores menores.

En la figura A.4 se muestra el gráfico del Sprint 6.

Sprint 7 (07/11/17 - 20/11/17)

Esta semana, se ha dedicado mayormente a empezar a documentar en la memoria, a parte de alguna otra tarea:

- Pasarle a bagging la clase DN. Probamos a pasarle a bagging nuestra clase Disturbing Neighbors. Como bagging no soporta múltiples salidas, para ello lo solucionaremos utilizando OneVsRestClassifier, esto permitirá que bagging soporte múltiples salidas.
- Hacer funcional el método nearest_neighbor. Conseguir que el método nearest_neighbor funcione sin utilizar ningún bucle for.

Figura A.4: Burndown del sprint 6

- Memoria Conceptos teóricos. Añadir nuevos conceptos teóricos como multilabel o ensemble.
- Iteraciones sobre fit, predict y predict_proba. Hasta ahora solo se ejecutaba una vez cada método, pero para que esto sea eficaz queremos que se ejecute un número de iteraciones. El fit será el más fácil solo hay que realizar ese método el número de iteraciones requeridas. Para poder calcular el predict tenemos que ir guardando los valores del fit y calcular el promedio. Por último el predict_proba se calculará igual que el predict.
- Estructurar notebook. Estructuramos el notebook de jupyter, para que sea más fácil de entender.
- cross validation: Para crear los conjuntos de entrenamiento y test usar la validación cruzada.

Esta semana se han cumplido todas las tareas, aunque las tareas de hacer funcional el método nearest_neighbor y cross validation, me han hecho dedicar más horas de las esperadas, en el primer caso por mi poco conocimiento sobre el uso de los mapas en python y en el segundo caso por los diversos errores que me salían al intentar compilar.

En la figura A.5 se muestra el gráfico del Sprint 7.

Sprint 8 (21/11/17 - 27/11/17)

Esta semana, se ha dedicado a terminar definitivamente el Disturbing Neighbors y documentarme sobre el siguiente algoritmo Random Oracles:

Figura A.5: Burndown del sprint 7

- Comentar Notebooks. Comentamos los notebooks, para ir explicando lo que realizamos en cada paso.
- Estilo. Como hemos realizado alguna modificación volvemos a comprobar que el estilo es el correcto.
- Excepciones. Ponemos excepciones para los casos que pueda ocurrir un error.
- Artículo Random Oracles. Documentación sobre el nuevo algoritmo Random Oracles.
- Acabar predict_proba y comentar nuevos métodos. Acabamos el predict_proba para cuando hacemos iteraciones, y comentamos los nuevos métodos que hemos creado.
- Método score iteraciones. Hacer correctamente el método score cuando hacemos iteraciones.

Esta semana se han cumplido todas las tareas, ninguna de las tareas ha llevado mas tiempo del estimado, ya que ninguna de las tareas ha dado muchos problemas.

En la figura A.6 se muestra el gráfico del Sprint 8.

Figura A.6: Burndown del sprint $8\,$

A.3. Estudio de viabilidad

Viabilidad económica

Viabilidad legal

Apéndice B

Especificación de Requisitos

- B.1. Introducción
- B.2. Objetivos generales
- B.3. Catalogo de requisitos
- B.4. Especificación de requisitos

Apéndice ${\cal C}$

Especificación de diseño

- C.1. Introducción
- C.2. Diseño de datos
- C.3. Diseño procedimental
- C.4. Diseño arquitectónico

Apéndice D

Documentación técnica de programación

D.1. Introducción

Esta sección es para otros programadores, para que en un futuro puedan mejorar y realizar cambios en nuestro proyecto. Se describen con detalle el funcionamiento del proyecto, y que aspectos se pueden mejorar.

D.2. Estructura de directorios

D.3. Manual del programador

En esta sección vamos a describir como instalar las diferentes herramientas usadas para realizar el proyecto.

D.4. Compilación, instalación y ejecución del proyecto

D.5. Pruebas del sistema

Apéndice E

Documentación de usuario

- E.1. Introducción
- E.2. Requisitos de usuarios
- E.3. Instalación
- E.4. Manual del usuario

Bibliografía

[1] Nick Coghlan Guido van Rossum, Barry Warsaw. Guia para comentar código python, 2013. [Online].