

MG32F103xx

MCU based on high-performance 32-bit ARMCortex™-M3 core, up to 128KBFlash space and 28KBSRAM,

1 full-speed USB, 7 timers, 12-bit ADC, 11 communication interfaces

Features	input channel, a total of 16 independent channels
ÿ High-performance 32-bit ARM Cortex™-M3 core	ÿ LED driver module
ÿ Up to 72MHz system frequency ÿ Built-	ÿ Can drive 56 LEDs or 8 seven-segment numbers at the same time
in dedicated instruction and data cache	Code tube
ÿ Single-cycle 32-bit hardware multiplier and hardware divide	ÿ General-purpose input and output IO
ÿ AHB, APB1 and APB2 clocks are independent of each other	ÿ The 64-pin product has 51 GPIO pins, 48 pins
stand	Pin products have 37 GPIO pins
ÿ Storage space	ÿ All GPIO pins can be configured as external interrupt input
ÿ 96 or 128K bytes Flash	ÿ Debug interface
ÿ 28K bytes SRAM	ÿ Serial Single Wire Debug (SWD) ÿ 7
ÿ Power supply	timers/counters
ÿ Dual power domains: main power VDD2.0V~3.6V, backup power	ÿ 3 basic timers/counters and 1 enhanced timer
Battery power supply VBAT1.8V~3.6V	timer/counter
ÿ Power-on reset and configurable voltage detection module	ÿ 20-bit PWM timer (enhanced timer
ÿ Clock	Channels 1-3 support dead-time complementary output)
ÿ Support 4~16MHz crystal oscillator	ÿ Enhanced timer/counter supports edge counting, gate
ÿ Built-in 8MHz RC oscillator with calibration	Control count, quadrature count, trigger count, symbol count
ÿ Built-in 48MHz RC oscillator with calibration	number
ÿ Embedded 32KHz watchdog oscillator	ÿ Independent watchdog timer and window watchdog timer ÿ 24-
ÿ PLL clock	bit SystemTick timer ÿ 11 communication interfaces
ÿ External LSE: 32.768KHz crystal oscillator	
ÿ Power management	ÿ 2 I2C interfaces, support Smbus protocol
ÿ Three power saving modes: sleep mode, stop mode,	ÿ 3 UART interfaces ÿ 3 SPI
Standby mode	interfaces, 1 QSPI interface
ÿ Dynamic power consumption: ~160uA/MHz@3.3V	ÿ 1 I2S interface
ÿ Stop standby power consumption: ~18.5uA @ 3.3V	ÿ 1 USB 2.0 full-speed device interface
ÿ Standby standby power consumption: ~4.5uA@3.3V ÿ	ÿ Two multi-channel DMA controllers supporting Timers, ADC,
VBAT RTC power consumption: ~1.1uA@3.3V ÿ When	SPIs, I2Cs, UARTs and other peripherals trigger ÿ
main When the power supply is powered down, 84	RTC clock counter, record the year, month, day, hour, minute and second
Byte-sized backup register	ÿ CRC calculation module
ÿ Operating temperature range	ÿ RNG module
ÿ Industrial grade (-40°C~+85°C)	ÿ ECOPACK® package
ÿ 12-bit SAR ADC converter	
ÿ Maximum converter frequency: 1Msps ÿ	
Supports up to 16 channels	
ÿ Support a variety of automatic continuous conversion, scan conversion	
ÿ Temperature sensor connected to AD converter 16 channels	
ÿ Voltage comparator	
ÿ 2 independent voltage comparators	

 $\ddot{\text{y}}$ The positive and negative ends of each comparator support 4 outputs.

Table of contents

Chapter 1	4
Introduction	
1.1 Overview. 1.2 Main Features. · · · · · · · · · · · · · · · · · · ·	
Chapter 2 Package	7
pins 2.1 LQFP64 package.	
2.2 LQFP48 package.	
2.3 Pin function description: · · · · · · · · · · · · · · · · · · ·	
Chapter 3 System Block Diagram	13
Chapter 4 System	14
Description 4.1 Overview.	
4.2 ARM Cortex [™] -M3 Core. 4.3 · · · · · · · · · · · · · · · · · · ·	
Memory Map. 4.4 System Reset. 4.5 · · · · · · · · · · · · · · · · · · ·	
Nested Vectored Interrupt Controller · · · · · · · · · · · · · · · · · · ·	
(14410).	
0.001.	
2001	
Power Supply Scheme.	
Independent watchdog. 4:13 Window · · · · · · · · · · · · · · · · · · ·	
watchdog.	
4.14 System Tick. 4.15	20
General Timer. 4.16	
Advanced Timer.	20
4.17 I2C bus.	
4.18 I2S bus.	
4.19 UART	
4.20 SPI	
4.21 USB	
4.22 GPIO	. twenty one

MG32F103xx Data Sheet

4.23 ADCs		ty tw
4.24 Comparator. · · · · · · · · · · · · · · · · · · ·		ty tw
4.25 RNG		ty tw
4.26 LED driver		ty tw
4.27 CRC Calculation Unit.		ty tw
4.28 Memory and		ty tw
Programming. 4.29 Power · · · · · · · · · · · · · · · · · · ·		ty tw
Monitor. 4.30 Low Power · · · · · · · · · · · · · · · · · · ·		y thre
Mode. 4.30.1 Sleep	· · · · · · · · · · · · · · · · · · ·	y thre
Mode. 4.30.2 Shutdown		y thre
Mode. 4.30.3 Standby Mode. · · · · · · · · · · · · · · · · · · ·		y thre
4.31 SWD debug port.	· · · · · · · · · · · · · · · · · · ·	y thre
Chapter 5 Electrical	•	twenty f
Specifications 5.1 Absolute Maximum · · · · · · · · · · · · · · · · · ·	twenty	•
Ratings. 5.1.1 Limiting Voltage		
Characteristics. 5.1.2 Limiting Current		
Characteristics. 5.1.3 Limiting		
Temperature Characteristics. 5.2 Operating · · · · · · · · · · · · · · · · · · ·		
Parameters. 5.2.1 Recommended		
Operating Conditions. 5.2.2 Reset and		
Low Voltage Detection . 5.2.3 Operating • • • • • • • • • • • • • • • • • • •		
current characteristics. 5.2.4 External		
clock characteristics. 5.2.5 Internal clock characteristics. • • • • • • • • • • • • • • • • • • •		
5.2.6 PLL Characteristics.		
5.2.7 Memory Characteristics.		
5.2.8 Absolute Maximum Values (Electrical Sensitivity): • • • • • • • • • • • • • • • • • • •		
5.2.9 EFT characteristics.		
5.2.10 IO pin characteristics.		
5.2.11 TIM counting characteristics. • • • • • • • • • • • • • • • • • • •		
5.2.12 CMP Features. · · · · · · · · · · · · · · · · · · ·		
5.2.13 ADC characteristics.		
Olivers O Death and District Control		34
Chapter 6 Package Dimensions 6.1 LQFP64 10X10mm.		
6.3 LQFP48 7X7mm		
Chapter 7 Product Selection Table	:	39
Chapter VIII Product Code Information		41
•		
Chapter IX Revised Version		42

Chapter 1 Introduction

1.1 Overview

The MG32F103 series uses a high-performance ARM®Cortex™-M3 32-bit RISC core, with a maximum operating frequency of 72MHz, built-in up to 128KB FLASH, 28KB SRAM, 1 enhanced timer, 3 general-purpose timers, and two watchdogs WWDG and IWDG, 3 SPI serial synchronous communication interfaces, 1 QSPI serial synchronous communication interfaces, 1 USB2.0 Full Speed communication interface, 1 12-bit SAR analog-to-digital converter, 1 LED driver module, 2 voltage comparators, real-time clock module RTC.

1.2 Main Features

- Voltage operating range
 - Dual power domains: main power VDD 2.0V ÿ 3.6V, backup battery power VBAT 1.8V ÿ 3.6V
 - When the main power is lost, the RTC module can continue to operate on VBAT power
 - When the main power is powered off, the VBAT power supply provides a backup register with a capacity of 84Bytes
- Power management
 - Three power saving modes: Sleep Mode, Stop Mode, Standby Mode
 - Dynamic power consumption: ÿ 160uA/MHz@3.3V
 - Stop standby power consumption: ÿ 18.5uA@3.3V
 - Standby power consumption: ÿ 4.5uA@3.3V
 - VBAT RTC power consumption: ÿ 1.1uA@3.3V
- range of working temperature
 - Industrial Grade (-40°C ÿ +85°C)
- reset
 - External pin reset
 - Power on reset
 - software reset
 - Watchdog (IWDT and WWDT) timer reset

	MG32F103xx Data Sheet
- Low power mode reset	
• Low Voltage Detection (PVD)	
- 8-level detection threshold adjustable	
- Rising edge/falling edge can be configured	
Clock unit	
- External HSE: Support 4 ÿ 16MHz crystal oscillator, typical 8MHz crystal oscillator	
- External LSE: 32.768KHz crystal oscillator	
- Embedded factory-trimmed 8MHz RC oscillator (MHSI)	
-Built- in 48MHz RC oscillator with calibration (FHSI)	
- Embedded 32KHz watchdog oscillator (LSI)	
– PLL clock	
High-performance 32-bit ARM CPU core	
 – ARM Cortex[™]-M3 processor up to 72MHz 	
- Built-in dedicated instruction and data cache	
- Support frequency configurable	
- Nestable Vectored Interrupt Controller (NVIC)	
- Single-cycle 32-bit hardware multiplier	
– 24-bit System Tick Timer	
• Flash memory	
– 96KB ÿ 128KB Flash	
• SRAM memory	
– 28KB SRAM	
• 12-bit SAR ADC converter	
- Supports up to 16 channels	
- Maximum converter frequency: 1Msps	
- Support automatic continuous conversion, scan conversion	
- Support software and hardware AD conversion trigger mode	
- Temperature sensor connected to AD converter independent channel 16	
Voltage Comparator	
 2 independent voltage comparators 	

- Each comparator supports 4 input channels on the positive and negative sides, for a total of 16 independent channels

• Debug interface

- Serial Single Wire Debug (SWD)
- Cortex-M3 Measurement Tracking Macrocell (ITM)

Communication Interface

- 3 UART ports
- 3 SPI interfaces, 1 QSPI interface
- 2 I2C interfaces, support Smbus protocol
- 1 USB2.0 Full Speed device port
- 1 I2S interface

• Timer/Counter

- 3 basic timers/counters and 1 enhanced timer/counter
- 20-bit PWM timer (channels 1 to 3 of the enhanced timer support complementary dead-time outputs)
- Enhanced timer/counter supports edge count, gate count, AB phase quadrature count, trigger count, symbol count
- Can generate ADC trigger events
- General purpose input and output IO
 - 51 GPIO pins for 64-pin products and 37 GPIO pins for 48-pin products
 - All GPIO pins can be configured as external interrupt inputs
 - Provides up to 16mA drive current
- Multi-channel DMA controller, supports various peripheral triggers such as Timers, ADC, SPIs, I2Cs, UARTs, etc.
- CRC calculation module, supports multiple 8/16/32-bit CRC algorithms.
- RNG module for generating random numbers
- LED driver module, can drive 56 LEDs or 8 seven-segment digital tubes at the same time
- RTC clock counter, cooperate with software to record year, month, day, hour, minute and second
- Support secondary development of user programs
- Support LQFP64, LQFP48 packages

Chapter 2 Package Pins

2.1 LQFP64 Package

2.2 LQFP48 Package

2.3 Pin Function Description

Table 2.1: Pin Function Description

Pin	No.					
		Pin Name	Туре	Main Function	Alternate Function	Analog Function
1	1 V	BAT S		VBAT		
2 2 PC13 I/O PC13 TAMPE		TAMPER/RTC				
3 3	3 3 PC14 I/O PC14		PC14		OSC32_IN	
4 4	PC1	5 I/O		PC15		OSC32_OU
5 5	PD0		I/O	PD0		OSC_IN
6 6	PD1		I/O	PD1		OSC_OUT
77	NRS.	T I/O NRS	T			
-	8 P	C0	I/O	PC0	I2S_WS/SPIM2_NSS0/SPIS2_NSS	ADC_IN10
-	9 P	C1	I/O	PC1	I2S_SCLK/SPIM2_SCK/SPIS2_SCK	ADC_IN11
- 1	0 PC2	2	I/O	PC2	I2S_SD0/SPIM2_MI/SPIS2_SO	ADC_IN12
-]	11 F	PC3	I/O	PC3	I2S_SD1/SPIM2_MO/SPIS2_SI	ADC_IN13
8 1	2 VS	SA S VSS	A			
9 1	3 VD[DA S VDE	А			
10	14 PA	0	I/O P	A0/WKUP	TIM2_CH1_ETR/UART2_CTS/WKUP	ADC_IN0
11 15 PA1 I/O PA1		PA1	TIM2_CH2/UART2_RTS	ADC_IN1		
12	12 16 PA2 I/O PA2		I/O PA2 TIM2_CH3/UART2_TX			
13	17 PA	3	I/O	PA3	TIM2_CH4/UART2_RX	ADC_IN3
- 1	8 VS	S_4 S VS	\$_4			
- 1	9 VD	0_4 S VD	D_4			
14 2	20 PA	4	I/O	PA4	QSPI_NSS0/SPIS1_NSS/UART2_CK	ADC_IN4
15 2	21 PA	5	I/O	PA5	QSPI_SCK/SPIS1_SCK	ADC_IN5
16 2	22 PA	6	I/O	PA6	TIM1_BKIN/TIM3_CH1/QSPI_MI_IO1/SPIS1_SO	ADC_IN6
17 2	23 PA	7	I/O	PA7	TIM1_CH1N/TIM3_CH2/QSPI_MO_IO0/SPIS1_SI	ADC_IN7
- 2	4 PC4	ļ	I/O	PC4	TRACECK	ADC_IN14
- 2	5 PC	5 I/O		PC5	SPIM2_NSS2/TRACED0	ADC_IN15
18 2	26 PB	0	I/O	PB0	TIM1_CH2N/TIM3_CH3/I2S_MCLK/QSPI_IO2	ADC_IN8
19 2	27 PB	1	I/O	PB1	TIM1_CH3N/TIM3_CH4/QSPI_IO3	ADC_IN9
20 2	28 PB	2	I/O P	B2/BOOT1		
21 2	29 PB	10 I/O		PB10	TIM2_CH3/TIM4_CH1/I2C2_SCL/QSPI_NSS2/UART3_TX	
22 3	80 PB	11	I/O	PB11	TIM2_CH4/I2C2_SDA/SPIM2_NSS1/UART3_RX	
23 3	31 VS	S_1 S		VSS_1		
24 3	32 VD	D_1 S		VDD_1		
25 3	3 PB	12 I/O		PB12	TIM1_BKIN/I2S_WS/LED4/SPIM2_NSS0/SPIS2_NSS/UART3_CK	
26 3	34 PB	13 I/O		PB13	TIM1_CH1N/I2S_SCLK/LED5/SPIM2_SCK/SPIS2_SCK/UART3_CTS	
27 3	35 PB	14 I/O		PB14	TIM1_CH2N/LED6/SPIM2_MI/SPIS2_SO/UART3_RTS	
28 3	6 PB	15 I/O		PB15	TIM1_CH3N/LED7/SPIM2_MO/SPIS2_SI/I2S_SD0	
- 3	7 PC	5	I/O	PC6	TIM3_CH1/I2S_MCLK/LED0	
- 3	B PC7	,	I/O	PC7	TIM3_CH2/I2S_MCLK/LED1	
- 3	9 PC	3	I/O	PC8	TIM3_CH3/LED2	
- 4) PC)	I/O	PC9	TIM3_CH4/LED3/TRACED1	

Pin	Pin No.					
		Pin Name	Туре	Main Function	Alternate Function	Analog Function
29 4	11 PA	.8	I/O	PA8	TIM1_CH1/LED0/UART1_CK/MCO	CMPA_P0
30 4	12 PA	.9	I/O	PA9	TIM1_CH2/LED1/UART1_TX	CMPA_N0
31 4	13 PA	10 I/O		PA10	TIM1_CH3/LED2/UART1_RX	
32 4	14 PA	.11	I/O IS	OCLK	TIM1_CH4/LED3/UART1_CTS	USBDM
33 4	15 PA	.12 I/O ISC	DIO		TIM1_ETR/UART1_RTS	USBDP
34 4	16 PA	.13 I/O SV	/DIO		QSPI_NSS1	CMPA_P3
35 4	17 VS	S_2 S VS	S_2			
36 4	18 VE	D_2 S VD	D_2			
37 4	19 PA	14 I/O SV	/DCLK		QSPI_NSS2	CMPA_N3
38 5	0 PA	15 I/O		PA15	TIM2_CH1_ETR/I2S_WS/I2C1_SMBAI/QSPI_NSS0/SPIS1_NSS	CMPB_P3
- 5	1 PC	10 I/O		PC10	LED4/UART3_TX/TRACED2	CMPB_P1
- 5	2 PC	11	I/O	PC11	LED5/UART3_RX/TRACED3	CMPB_P2
- 5	3 РС	12 I/O		PC12	TIM4_ETR/LED6/UART3_CK	CMPB_N0
- 5	4 PD	2	I/O	PD2	TIM3_ETR/LED7	CMPB_P0
39 5	5 PE	3	I/O	PB3	SWO/TIM2_CH2/I2S_SCLK/QSPI_SCK/SPIS1_SCK	CMPB_N3
40 5	6 PB	4	I/O	PB4	TIM3_CH1/QSPI_MI_IO1/SPIS1_SO	CMPA_P1
41 5	7 PB	5	I/O	PB5	TIM3_CH2/I2S_SD1/I2C1_SMBAI/QSPI_MO_IO0/SPIS1_SI	CMPA_P2
42 5	8 PB	6	I/O	PB6	TIM4_CH1/I2C1_SCL/QSPI_NSS1/UART1_TX	CMPA_N1
43 5	9 PB	57	I/O	PB7	TIM4_CH2/I2C1_SDA/SPIM2_NSS1/UART1_RX	CMPA_N2
44 6	0 BC	OT0 I		воото		
45 6	1 PB	8	I/O	PB8	TIM4_CH3/I2C1_SCL/SPIM2_NSS2/UART1_CTS	CMPB_N1
46 6	2 PB	9	I/O	PB9	TIM4_CH4/I2C1_SDA/UART1_RTS	CMPB_N2
47 6	3 VS	S_3 S VS	S_3			
48 6	4 VE	D_3 S VD	D_3			

MG32F103xx GPIO function selection:

Table 2.2: Pin Function Selection

AFR[3:0]	0	1	2	3	4	5	6	7
PORT	PA0 W	KUP TIM2_CH	1_ETR						UART2_CTS
Α	PA1		TIM2_CH2						UART2_RTS
	PA2		TIM2_CH3						UART2_TX
	PA3		TIM2_CH4						UART2_RX
	PA4	,					QSPI_NSS0 SF	PIS1 NSS UAR	
	PA5						QSPI_SCK SP		_
	PA6		TIM1_BKIN TIM	//3_CH1			QSPI_MI_IO1 S		
	PA7		TIM1_CH1N TII				QSPI_MO_IO0 S		
	PA8 M	CO TIM1_CH1				LED0			UART1_CK
	PA9		TIM1_CH2			LED1			UART1_TX
	PA10		TIM1_CH3			LED2			UART1_RX
	PA11		TIM1_CH4			LED3			UART1_CTS
	PA12		TIM1_ETR						UART1_RTS
	PA13 S	WD_DIO					QSPI_NSS1		
	PA14 S	WD_CLK					QSPI_NSS2		
	PA15		TIM2_CH1_ETR		12S_WS 120	1_SMBAI QSF	I_NSS0 SPIS1_I	vss	
PORT B	PB0		TIM1_CH2N TII	M3_CH3 I2S_	MCLK		QSPI_IO2		
	PB1		TIM1_CH3N TII	M3_CH4			QSPI_IO3		
	PB2 B	OOT1							
	PB3 SV	NO TIM2_CH2			I2S_SCLK		QSPI_SCK SP	IS1_SCK	
	PB4			TIM3_CH1			QSPI_MI_IO1 S	PIS1_SO	
	PB5			TIM3_CH2 I2	S_SD1 I2C1_	SMBAI QSPI_N	SMBAI QSPI_MO_IO0 SPIS1_S		
	PB6			TIM4_CH1		I2C1_SCL Q	SPI_NSS1		UART1_TX
	PB7			TIM4_CH2		I2C1_SDA SI	IM2_NSS1		UART1_RX
	PB8			TIM4_CH3		I2C1_SCL SF	IM2_NSS2		UART1_CTS
	PB9			TIM4_CH4		I2C1_SDA			UART1_RTS
	PB10		TIM2_CH3 TIN	14_CH1		I2C2_SCL Q	SPI_NSS2		UART3_TX
	PB11		TIM2_CH4			I2C2_SDA SI	IM2_NSS1		UART3_RX
	PB12		TIM1_BKIN		I2S_WS	LED4 SPI	M2_NSS0 SPIS2_	NSS UART3_C	K
	PB13		TIM1_CH1N		I2S_SCLK L	ED5 SPIM2_SC	K SPIS2_SCK U	ART3_CTS	
	PB14		TIM1_CH2N			LED6	SPIM2_MI SP	S2_SO UART3	_RTS
PORT	PB15		TIM1_CH3N		I2S_SD0	LED7 SPI	M2_MO SPIS2_S	l	
C	PC0				I2S_WS		SPIM2_NSS0 S	PIS2_NSS	
	PC1				I2S_SCLK		SPIM2_SCK SF	IS2_SCK	
	PC2				I2S_SD0		SPIM2_MI SP	S2_SO	
	PC3				I2S_SD1		SPIM2_MO SP	IS2_SI	
	PC4 T	RACECK							
	PC5 T	RACED0					SPIM2_NSS2		
	PC6			TIM3_CH1 I2	S_MCLK LED	0			
	PC7			TIM3_CH2 I2	S_MCLK LED	1			
	PC8			TIM3_CH3		LED2			
	PC9 T	RACED1		TIM3_CH4		LED3			
	PC10 T	RACED2				LED4			UART3_TX
	PC11 T	RACED3				LED5			UART3_RX

MG32F103xx Data Sheet

AFR[[3:0]	0	1	2	3	4	5	6	7
	PC12			TIM4_ETR		LED6			UART3_CK
	PC13 T	AMPER_RTC							
	PC14 (SC32_IN							
	PC15 (SC32_OUT							
PORT	PD0 C	SC_IN							
	PD1 C	SC_OUT							
	PD2			TIM3_ETR		LED7			

Chapter 3 System Block Diagram

The following figure is the system block diagram of MG32F103xx series products:

Figure 3.1: MG32F103xx System Block Diagram

Chapter 4 System Description

4.1 Overview

The table below shows the MG32F103xx series product features and peripheral counts.

Table 4.1: MG32F103xx device features and peripheral function numbers

Table 4.1: MG32F103xx device features and peripheral function numbers					
	Peripheral functions	MG32F10)3Cx	MG32F103RBT6	
	Flash memory (KB)	96	128	128	
	SRAM(KB)	28	28	28	
convier	Universal	3	3	3	
	advanced	1	1	1	
	QSPI(Master)	1	1	1	
	SPIM	1	1	1	
	SPIS	2	2	2	
	12C _	2	2	2	
	UART	3	3	3	
	USB	1	1	1	
	128_	0	1	1	
	Number of GPIOs	37	37	51	
ADC	Number of 12-bit converters	1	1	1	
Suv	Number of channels	10	10	16	
sunseedurery	quantity	2	2	2	
	Number of channels	12	12	16	
	CPU frequency	72MHz			
	Operating Voltage			2.0V ÿ 3.6V	
	Operating temperature	Industrial tem	perature: -40°C	C ÿ +85°C Junction temperature: -40°C ÿ +125°C	
	package	LQFF	248	LQFP64	

4.2 ARM Cortex[™]-M3 core

The Cortex™ M3 processor is a 32-bit configurable multi-stage pipelined RISC processor with embedded AMBA-Lite interface and nested vectored interrupts Controller (NVIC), is a low-cost, high-performance MCU platform. With optional hardware debug function, Thumb-2 instruction can be executed order and compatible with other Cortex-M series. The MG32F103xx series has a built-in Cortex™-M3 core, so it is compatible with all

ARM tools and software are compatible.

4.3 Memory mapping

MG32F103xx memory address space supports 4GB size. Divided into: Boot area, Flash memory area, SRAM area, system own peripheral area, APB peripheral area and AHB peripheral area. The system's own peripheral area is reserved for the M3 core.

The AHB peripheral area occupies a 64KB space and can support up to 64 peripherals. The APB peripheral area is a 64KB space, and each APB peripheral is allocated 1KB space. All control registers in the APB peripheral area are written and read using word address addressing, and the user cannot access the high-order byte or low-order byte of the register independently.

The boot area has a 4KB space for storing boot programs and ISP functions. Both Flash and SRAM data buses use 32-bit operation. The following figure is the allocation diagram of MG32F103xx memory address space:

4.4 System reset

The following events can trigger a system reset:

• Power on reset (POR)

- External pin reset signal (low level)
- Watchdog Timeout Reset (IWDG and WWDG)
- Software reset
- Low power mode reset

A reset can be caused by any reset source, and the internal MHSI is activated and remains active as long as the operating voltage is at a usable level. When the external reset is deasserted, the oscillator is running and the flash controller is initialized.

4.5 Nested Vectored Interrupt Controller (NVIC)

The Nested Vectored Interrupt Controller (NVIC) is part of the Cortex[™]-M3 core. It allows the CPU to respond to interrupts in the shortest possible time. The main features are: • Short interrupt latency.

- · Handling system exceptions and peripheral interrupts.
- · Supports 43 interrupt vectors.
- Four programmable interrupt response priority levels.
- Generate a software interrupt.
- Configurable non-maskable interrupt sources (NMI).

4.6 EXTI

The external interrupt/event controller contains 19 edge detectors for generating interrupt/event requests. Each interrupt line can be independently configured for its trigger event (rising or falling or both edges) and can be individually masked. Having a pending register maintains the status of all interrupt requests.

4.7 Clock

The selection of the system clock is made at startup, the internal 8MHz RC oscillator (MHSI) is selected as the default CPU clock at reset, and then the external 4 ~ 16MHz clock (HSE), the internal 48Mhz RC oscillator (FHSI) or the frequency obtained by dividing the output of the PLL. When the external clock fails, it will be isolated and the corresponding interrupt will be generated. Has multiple prescalers for configuring AHB,

Frequency of APB1 and APB2 regions. The highest frequency of AHB, APB1 and APB2 area can reach 72MHz, and the configuration frequency of AHB, APB1 and APB2 can be independent of each other.

4.8 Boot Mode

At startup, the bootstrap pins are used to select one of three bootstrap modes

- Bootstrapping from user flash
- · Bootstrapping from system memory
- Bootstrapping from internal SRAM

4.9 Power supply scheme

- VDD = 2.0ÿ3.6V: VDD pin powers I/O pins and internal LDO
- VDDA = 2.4ÿ3.6V: supply power for ADC analog part.
- VBAT = 1.8~3.6V: When VDD is turned off, the internal power switching circuit will use VBAT for RTC, external 32kHz oscillator and Backup registers are powered.

Note: The voltages of VDD and VDDA need to be the same, it is recommended to use the same power supply to power VDD and VDDA.

4.10 DMAC

Two general-purpose DMAC controllers, each with 3 channels and up to 16 sets of hardware handshake interfaces (16 sets of DMAC0, 12 sets of DMAC1, a total of 28 sets of hardware handshake interfaces), manage various types of memory to Memory, device-to-memory, and memory-to-device data transfers. There is also an arbiter inside each DMAC to coordinate the priority of each DMA request.

The hardware handshake interface can be configured individually for each channel, or the software handshake interface can trigger each channel; the transmission length, transmission source address and destination address can be individually set by software. DMAC can be used for major peripherals: SPI, I2C, I2S, UART, timers TIMx and ADC.

4.11 RTC Clock and Backup Register

The RTC and backup registers are powered by a switch, which selects VDD when VDD is active, otherwise it is powered by VBAT pin. Backup registers can be used to hold user application data. This register is not reset by system or power reset sources. It is also not reset when waking up from standby mode. A real-time clock has a set of continuously running counters that can provide calendar clock functionality with appropriate software, as well as alarm interrupts and periodic interrupts. The drive clock for the RTC can be a 32.768kHz oscillator using an external crystal, an internal low power RC oscillator. The typical frequency of the internal low power RC oscillator is 32kHz. In order to compensate for the deviation of the natural crystal, the clock of the RTC can be calibrated by outputting a 512Hz signal. The RTC has a 32-bit programmable counter that uses a compare register for long-term measurements. There is a 20-bit prescaler for the time base clock, which by default produces a 1 second long time base when the clock is 32.768kHz.

4.12 Independent Watchdog

The independent watchdog is based on a 12-bit down counter and an 8-bit prescaler. It is clocked by an internal independent 32kHz RC oscillator. Because this RC oscillator is independent of the main clock, it can be Operates in stop and standby modes. It can be used as a watchdog to reset the entire system in the event of a problem, or as a free timer to provide timeout management for applications. By selecting bytes

The watchdog can be configured as software or hardware to start the watchdog. In debug mode, the counters can be frozen.

4.13 Window Watchdog

The windowed watchdog has a 7-bit down-counter that can be set to free-run. It can be used as a watchdog in the event of a problem reset the entire system. It is driven by the master clock and has an early warning interrupt function. In debug mode, the counters can be frozen.

4.14 System Tick

This timer is dedicated to the operating system and can also be used as a standard down counter. It has the following properties.

- 24-bit down counter
- Reload function
- Can generate a maskable interrupt when the counter is 0
- 1/8 of the CPU clock frequency

4.15 General purpose timer

Each timer has a 20-bit auto-load up/down counter, a 16-bit prescaler and 4 independent channels. Each channel can be used for input capture, output compare, PWM, and single-pulse mode outputs, providing up to 16 input capture, output compare, or PWM channels in the largest package configuration. They can also work with advanced control timers through the timer link function, providing synchronization or event linking capabilities. In debug mode, the counter can be frozen. Any standard timer can be used to generate the PWM output. Each timer has an independent DMA request mechanism.

4.16 Advanced Timer

The Advanced Control Timer (TIM1) can be viewed as a three-phase PWM generator assigned to 6 channels, or as a complete general-purpose timer. Four independent channels can be used for: •

Input capture

- Output compare
- Generate PWM (edge or center-aligned mode)
- Single pulse output
- Complementary PWM outputs with programmable dead-time insertion

When configured as a 20-bit standard timer, it has the same functionality as the TIMx timer. When configured as a 20-bit PWM generator, it has full modulation capability (0 ÿ 100%). In debug mode, the counter can be frozen. Many functions are the same as the standard TIM timer, internal

The structure is also the same, so the advanced control timer can cooperate with the TIM timer through the timer link function to provide synchronization or event link function.

4.17 I2C bus

Up to 2 I2C bus interfaces, capable of working in multi-master and slave modes, supporting standard (<= 100Kb/s), fast (<= 400Kb/s) and high-speed (<= 3.4M b/s) modes, and supporting SMBus bus. The I2C interface supports 7-bit or 10-bit addressing, and supports dual-slave addressing in 7-bit slave mode. Built-in hardware CRC generator/checker. They can use DMA operations.

4.18 I2S bus

It has a built-in I2S bus interface, supports multiple audio transmission protocols, works in master control mode, and supports dual-channel input and output. provide master time clock (MCLK) and serial clock (SCLK) and frame clock (WS) and serial data (SD0/SD1).

4.19 UART

Built-in 3 universal synchronous/asynchronous transceivers (UART1, UART2 and UART3), these 3 interfaces provide asynchronous communication and support infrared transmission. The communication rate of UART1, UART2 and UART3 interface can reach 6MBit/s, the interface has hardware CTS and RTS signal management, all interfaces can use DMA operation.

4.20 SPI

Up to 3 SPI interfaces, and 1 QSPI interface. The communication rate in master mode can reach 24MBit/s, and the communication rate in slave mode

Up to 18MBit/s. Supports multiple frame size configurations, which can be configured to 4/8/16/32 bits per

frame. All SPI interfaces can use DMA operations.

4.21 USB

A full-speed USB-compatible device controller is embedded, following the full-speed USB device standard, and the endpoints can be configured by software, with standby/resume functions. The USB dedicated 48MHz clock is generated by dividing the system clock.

4.22 **GPIO**

Each GPIO pin can be configured by software as an output (push-pull or open-circuit), input (with or without pull-up or pull-down), or other peripheral function port.

Most GPIO pins are shared with digital or analog peripherals. All GPIO pins have high current passing capability. If desired, the peripheral functions of the I/O pins can be locked by a specific operation to avoid accidental writes to the I/O registers.

4.23 ADCs

Embedded 1 12-bit analog/digital converter (ADC), 1Msps conversion rate, supports 16 external AD channel sampling conversion, can be realized One-shot or scan conversion. In sweep mode, conversion on a selected set of analog inputs occurs automatically.

The ADC can operate using DMA. The analog watchdog function allows very precise monitoring of one, multiple or all selected channels, and will generate an interrupt when the monitored signal exceeds a preset threshold. Events generated by standard timers (TIMx) and advanced control timers (TIM1) can be internally cascaded to the ADC's start trigger and injection trigger, respectively, and the application program can synchronize AD conversion with the clock.

The ADC requires an independent power supply VDDA with a power supply range of 2.4V to 3.6V. The ADC measurement range is between 0V and VDDA. The embedded temperature sensor is internally connected to the input channel of ADC_IN16 to convert the sensor output to a digital value.

4.24 Comparator

Two analog input comparators are embedded, and the positive and negative inputs of each analog input comparator support 4 input channels, and a total of 16 external input channels are supported for comparison.

4.25 RNG

Random number generator, support to generate 8, 16, 32 bit random number sequence.

4.26 LED Driver

The built-in LED driver module can drive up to 56 LEDs or 8 seven-segment digital tubes at the same time.

4.27 CRC calculation unit

An independent CRC hardware calculation unit is integrated inside, which supports a variety of 8/16/32-bit CRC algorithms and provides the ability to accelerate processing.

4.28 Memory and Programming

It integrates 32KB ÿ 256KB Flash program memory space, 4KB system memory space, and up to 36KByte SRAM. In-system programming (ISP) programming mode is supported. The user can call the ISP function through the bootloader interface.

4.29 Power Monitor

The power-on reset (POR)/power-down reset (PDR) circuit is integrated inside, which is always in working state to ensure that the system works when the power supply exceeds 2V. When VDD is below the POR/PDR threshold, the device is placed in reset without using an external reset circuit. There is also a Programmable Voltage Monitor (PVD) in the device that monitors the VDD supply and compares it to the threshold VP VD when VDD is below or/and above the threshold VP VD

MG32F103XX Data Sneet

An interrupt will be generated and the interrupt handler can issue a warning message or put the microcontroller into safe mode. The PVD function needs to be enabled through program enable

4.30 Low Power Mode

The MG32F103xx supports various power control functions. During normal processor operating mode, power and clocking of selected peripherals can be optimized, thereby reducing system power consumption. In addition, the processor has three special low-power modes: sleep mode, shutdown mode, and standby mode.

4.30.1 Sleep Mode

In sleep mode, the clock to the ARM Cortex[™]-M3 core is turned off and all instruction execution is suspended until the system is restarted or woken up by an interrupt.

For a peripheral, its clock is now controlled by a register and can generate an interrupt to wake up the processor to restart executing instructions. Sleep mode can reduce system dynamic power consumption by processor, memory and internal bus. The state and registers of the processor, peripheral registers, memory data, and the logic state of the pins remain unchanged during sleep mode.

4.30.2 Stop Mode

Shutdown mode achieves the lowest power consumption without losing SRAM and register contents. In stop mode, all internal clocks are shut down and the RC oscillators for HSI and HSE are shut down. The microcontroller can be woken up from the shutdown mode by any signal configured as EXTI. The EXTI signal can be one of 16 external I/O ports, PVD output, RTC alarm clock or USB wakeup signal.

4.30.3 Standby Mode

The lowest power consumption can be achieved in standby mode. The internal LDO is turned off, so the power supply of all internal 1.2v parts is cut off; the RC oscillators of HSI and HSE are also turned off; after entering standby mode, the contents of SRAM and registers will disappear, but the contents of backup registers are still retained, and the standby circuit still work. The conditions for exiting from standby mode are: an external reset signal on NRST, IWDG reset, a rising edge on the WKUP pin, or the RTC's alarm has expired.

4.31 SWD debug port

Embedded ARM's SWJ-DP interface, which is a serial single-wire debugging interface, can realize the connection of serial single-wire debugging interface.

Chapter 5 Electrical Specifications

5.1 Absolute Maximum Ratings

Maximum ratings are only short-term pressure values. And it is not advisable for the chip to operate at this value or any other condition beyond this recommended value.

Exceeding the following maximum ratings may cause permanent damage to the chip. Exposure to maximum ratings for extended periods of time may affect the chip's reliability table.

5.1.1 Limiting voltage characteristics

Table 5.1: Limiting voltage characteristics

symbol	describe	Min Max Uni	t	
VDD-VSS	Input voltage on external main supply voltage	-0.5	3.6	V
Vin	(including VDDA and VDD) pins	V SS ÿ 0.3 V	DD + 0.5	V
ÿV DDx	Voltage difference between different supply pins	-	50	mV
[V SSx ÿ V SS]	Voltage difference between different ground pins	-	50	IIIV

5.1.2 Limiting current characteristics

Table 5.2: Limiting current characteristics

symbol	describe	Maximum ur	nit
IV DD	Total current through VDD/VDDA power lines (supply	60	
IV SS	current) Total current through VSS ground (sink	60	
110	current) Output sink current on any I/O and control pins	16	mA
IIO	Output Sourcing Current on Any I/O and Control Pins	-16	IIIA
IINJ(P IN)			
ÿIINJ(P IN)			

Note 1: All power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to an external power system within the allowable range traditionally.

Note 2: Back-injected current can interfere with the analog performance of the device.

Note 3: When VIN > VDD, there is a forward injection current; when VIN < VSS, there is a reverse injection current, the injection current is absolutely The specified range cannot be exceeded.

Note 4: When several I/O ports have injection current at the same time, the maximum value of ÿIINJ(P IN) is the instant absolute difference between the forward injection current and the reverse injection current.

5.1.3 Extreme temperature characteristics

Table 5.3: Extreme temperature characteristics

symbol	describe	parameter va	ue unit
TST G	Storage temperature range	ÿ45 ÿ +150	°Ç
TJ	Maximum Junction Temperature	100	C

5.2 Operating parameters

5.2.1 Recommended operating conditions

Table 5.4: Recommended operating conditions

symbol	describe	Min Max Unit		
fHCLK	Internal AHB clock frequency	-	72	
fP CLK1	Internal APB1 clock frequency	-	72	MHz
fP CLK2	Internal APB2 clock frequency	-	72	
VDD	Standard working voltage	2	3.6	V
VDDA	Analog working voltage	2	3.6	٧
VBAT	Spare part working voltage	1.8	3.6	V
Т	Operating temperature	-40	85	°C

Note: When the ADC is working, the working range of VDDA is 2.4Vÿ3.6V.

5.2.2 Reset and Low Voltage Detection

Table 5.5: Power-on Reset Characteristics

<u> </u>						
symbol	parameter	Conditio	n Min Typ Ma	x Units		
Tdelay	RSTN setup time	-	-	40	-	us
		rising edge)-	1.92	-	V
VP OR/PDR	reset threshold	falling edge	-	1.88	-	V

Table 5.6: PVD characteristics

symbol	parameter	/D characteristics Condition N	lin Typ Max	x Units		
		PLS[2:0] = 000	-	2.25	-	
		PLS[2:0] = 001	-	2.35	-	
		PLS[2:0] = 010	-	2.45	-	
		PLS[2:0] = 011	-	2.55	-	
	The detection level of the programmable voltage detector selects the rising edge	PLS[2:0] = 100	-	2.65	-	
		PLS[2:0] = 101	-	2.75	-	
		PLS[2:0] = 110	-	2.85	-	
VP VD		PLS[2:0] = 111	-	2.95	-	V
VP VD		PLS[2:0] = 000	-	2.14	-	V
		PLS[2:0] = 001	-	2.24	-	
		PLS[2:0] = 010	-	2.34	-	
		PLS[2:0] = 011	-	2.44	-	
	The detection level of the programmable voltage detector selects the falling edge	PLS[2:0] = 100	-	2.54	-	
		PLS[2:0] = 101	-	2.64	-	
		PLS[2:0] = 110	-	2.74	-	
		PLS[2:0] = 111	-	2.84	-	

5.2.3 Operating current characteristics

Table 5.7: Operating current characteristics

		VDD	TA@25	°C	unit
model	condition	2.0V 2	2.0V 2.5V 3.6V		
	HCLK=72MHz, execute instruction from FLASH, APB clock enable	12.43 1	2.92 12.	.3 mA	
	HCLK=72MHz, execute instruction from FLASH, APB clock is disabled	8.0 8.	22 7.73	mA	
	HCLK=48MHz(FHSI), execute instruction from FLASH, APB clock enable 9.83 9	.55 10.0	4 mA		
Run Mode1	HCLK=48MHz(FHSI), execute instruction from FLASH, APB clock disable 6.96 6	.41 6.89	mA		
ran wode i	HCLK=8MHz(HSE), execute instruction from FLASH, APB clock enable	3.35 2	78 3.41	mA	
	HCLK=8MHz(HSE), execute instruction from FLASH, APB clock is disabled	2.84 2	37 2.87	mA	
	HCLK=8MHz(MHSI), execute instruction from FLASH, APB clock enable	3.11 2	54 2.79	mA	
	HCLK=8MHz(MHSI), execute instruction from FLASH, APB clock disable 2.54 1	91 2.28	mA		
0	HCLK=72MHz, APB clock disabled	3.23 2	79 3.04	mA	
Sleep Mode	HCLK=8MHz(MHSI), APB clock disabled	1.68 0	93 1.12	mA	
o	LDO working at full speed, HSE/HSI/LSE off	240 26	4 296u	4	
Stop Mode	LDO low power state, HSE/HSI/LSE off	15.98 1	7.34 20.	8uA	
Standby Mode	LSI and IWDG work	4.29 4	52 5.14	uA	
VBAT Mode	RTC and LSE clock operation	0.78 1	05 1.25	uA	

Note 1: Cache is turned on.

Note 2: When the voltage is lower than 2.5V , the internal boost circuit works, which will increase the current by $\ddot{y}1mA$.

Note 3: When the ADC operates in 12 -bit mode, the current will increase by $\ddot{y}0.8\text{mA}$.

5.2.4 External Clock Characteristics

Table 5.8: External high-speed clock characteristics

·	Table 5.8: External high	n-speed clock characteristics		1	i	-
symbol	parameter	Condition Mi	n Typ Max	Units		
fHSEext	Clock frequency		-	8	16MHz	
VHSEH	Input pin high		0.7VDD	-	VDD	
VHSEL	input pin low		vss	-	0.3VDD	V
TW(HSE)	Active high/low time	-	16	-	-	
Tr(HSE)	-				_	ns
Tf(HSE)	Rise/Fall Time		-	-	5	
Cin(HSE)	Input capacitive reactance	-	-	5	-	pF
DuCy(HSE)	duty cycle	-	45	-	55%	

Note: Based on design simulation and laboratory test results, not a product test item.

Table 5.9: External low-speed clock characteristics

20	lable 5.9: External lov	-speed clock characteristics		I	T-	
symbol	parameter	Condition M	n Typ Max	Units		
fLSEext	Clock frequency		-	32.768	-	KHz
VLSEH	input pin high		0.7VDD	-	VDD	
VLSEL	input pin low		VSS	-	0.3VDD	V
TW(LSE)	Active high/low time	-	450	-	-	
Tr(LSE)						ns
Tf(LSE)	Rise/Fall Time		-	-	50	
Cin(LSE)	Input capacitive reactance	-	-	5	-	pF
DuCy(LSE)	duty cycle	-	30	-	70%	
TSU(LSE)	Start Time	VDD is stable	-	2	-	s

Note: Based on design simulation and laboratory test results, not a product test item.

5.2.5 Internal Clock Characteristics

Table 5.10: Internal Fast Clock 0 Features

symbol	parameter	condition	Min Typ	Max Units		
fMHSI	Clock frequency	-	-	8	- MHz	
DuCy(MHSI)	duty cycle	-	45	-	55%	
		TA=-40 to 85°C	TBD	-	TBD %	
ACC (MHSI)	Oscillator Accuracy	TA=0 to 85°C	TBD	-	TBD %	
		TA=25°C	TBD	-	TBD %	
TSU(MHSI)	Oscillator start-up time	V SS ÿ V in ÿ V DD 1		-	2	us
IDD(MHSI)	Oscillator power consumption	-	-	25	-	uA

Table 5.11: Internal Fast Clock 1 Features

symbol	parameter	condition	Min Typ	Max Units		
fFHSI	Clock frequency	-	-	48	- MHz	_
DuCy(FHSI)	duty cycle	-	45	-	55%	
		TA=-40 to 85°C	TBD	-	TBD %	
ACC (FHSI)	Oscillator Accuracy	TA=0 to 85°C	TBD	-	TBD %	
		TA=25°C	TBD	-	TBD %	2
TSU (FHSI)	Oscillator start-up time	V SS ÿ V in ÿ V DD 200		-	500	ns
IDD(FHSI)	Oscillator power consumption	-	-	55	-	uA

Table 5.12: Internal Slow Clock Characteristics

symbol	parameter	condition	Min Typ	Max Units		
fLSI	Clock frequency	-	20	-	40KHz	
TSU (LSI)	Oscillator start-up time	-	-	-	85	us
IDD(LSI)	Oscillator power consumption	-	-	250	-	nA

Note: Based on design simulation and laboratory test results, not a product test item.

5.2.6 PLL characteristics

Table 5.13: PLL characteristics

symbol	parameter	condition	Min Typ I	Max Units		
	Input Clock Frequency	-	1	8	16MHz	
fP LLIN	Input Clock Duty Cycle	-	40	-	60%	
fP LLOUT	output clock frequency	-	-	72	- MHz	
TLOCK	Phase lock time	-	-	-	200	us
Jitter	Cyclic jitter	-	-	-	300	ps

Note: Based on design simulation and laboratory test results, not a product test item.

5.2.7 Memory Features

Table 5.14: Memory characteristics

	rusio si i i i i i i i i i i i i i i i i i				
symbol	parameter	Min Typ I	Max Units		
TP ROG	page write time	-	2.1	-	ms
TERASE	Page Erase Time	-	6.4	-	ms
TERASE	Chip Erase Time	-	25.6	-	ms
IDDP ROG	page write current	-	-	2 mA	
IDDERASE	Page/Chip Erase Current	-	-	1.5mA	
IDDREAD	Read current@48MHz	-	-	4.7 mA	
IDDREAD	Read current@24MHz	-	-	2.5mA	
NEND	Erase and write life	100	-	- thousa	nd times
tRET	data retention time	10	-	-	year

5.2.8 Absolute Maximum (Electrical Sensitivity)

Based on three different tests (ESD, LU), the chip is strength tested to determine its electrical susceptibility using specific measurement methods surface performance.

Electrostatic discharge (ESD)

Electrostatic discharge (a positive pulse followed by a negative pulse after a one second interval) was applied to all pins of all samples of the same size as

The number of power supply pins on the chip is related (3 pieces × (n+1) power supply pins). This test complies with JESD22-A114/C101.

Electrostatic Latch

To evaluate latching performance, 2 complementary static latching tests were performed on 6 samples:

- For each power supply pin, supply a supply voltage that exceeds the limit.
- Inject current on each input, output and configurable I/O pin.

This test complies with the ANSI/ESDA/JEDEC standard for latching of integrated circuits.

Table 5.15: ESD characteristics

symbol	symbol parameter condition		Maximum unit	
VESD(HBM)	Electrostatic Discharge Voltage (Human Body Model)	TA = +25 ÿC, compliant JEDEC JS-001-2017	4000	V
VESD(CDM) Electrosta	atic Discharge Voltage (Charging Device Model)	TA = +25 ÿC, compliant JEDEC JS-002-2018	500	V
ILU	Static latch class (Latch-up current)	TA = +25 ÿC, compliant JEDEC 2016	200	mA

5.2.9 EFT Characteristics

Table 5.16: EFT characteristics

symbol	standard	Voltage	level
EFT to IO	(IEC61000-4-4)	2KV	Class: 4
EFT to Power	(IEC61000-4-4)	4KV	Class: 4

software advice

The software process must include the control of the program running away, such as:

- Corrupted program counter.
- Unexpected reset.
- Critical data is corrupted (control registers, etc...)

Enhancing the driving ability of IO can improve the ability to EFT.

During the EET test, a voltage exceeding the application requirements can be directly applied to the chip. When an unexpected action is detected, the software Parts need to be hardened to prevent unrecoverable errors.

5.2.10 IO pin characteristics

Table 5.17: IO pin DC characteristics

symbol	parameter	condition	Min Typ I	lax Units			
VIH	input high level	-	0.65VDD -		VDD+0.5V		
VIL	input low level	-	-0.5	-	0.3VDD V		
Vhys Schn	nitt Trigger Voltage Hysteresis	-	5%VDD -		-	V	
ilkg	Input leakage current	V SS ÿ V in ÿ V DD -		-	±1	uA	
Rpu	Weak pull-up equivalent resistance	Vin=VSS	30	40	50	kÿ	
Rpd	Weak pull-down equivalent resistance	Vin=VDD	30	40	50	kÿ	
CIO	I/O pin capacitance	-	-	5	-	pF	

Note: Based on design simulation and laboratory test results, not a product test item.

Table 5.18: IO pin AC characteristics

speed syn	nbol	parameter	condition	Min Max U	Jnit	
	fmax(IO)out ma	aximum frequency		-	10MHz	
x0	tf(IO)out high	to low output time	CL=50pF,VDD=2V to 3.6V	-	125	ns
	tr(IO)out low	to high output time		-	125	ns
	fmax(IO)out ma	aximum frequency		-	50MHz	
x1	tf(IO)out high	to low output time	CL=50pF,VDD=2V to 3.6V	-	25	ns
	tr(IO)out low	to high output time		-	25	ns

Note: Based on design simulation and laboratory test results, not a product test item.

5.2.11 TIM counting characteristics

Table 5.19: TIM counting characteristics

symbol	condition		maximum value	unit
Tres(T IM)	IM) Timer Resolution Units		-	TT IMxCLK
FEXT	External frequency for channel 1 to channel 4		TT IMxCLK/2	MHz
RESTIM	Timer resolution	-	20	bit
Tcounter when	n the internal clock source is period 1 of the 16-bit o	ounter	65536	TT IMxCLK
TMAX_COUNT	maximum count	1	1048576×1048576	TT IMxCLK

Note 1: TTIMxCLK = 72MHz

5.2.12 CMP Features

Table 5.20: CMP characteristics Min Typ Max Units symbol VDD-0.3V Vin 0.6 Input voltage VHY ST 2 5mVVOF F 5 15mV offset voltage TP GD 200nS propagation delay 8.5uA Ιq Working current average

5.2.13 ADC Characteristics

Table 5.21: ADC characteristics								
symbol	parameter	condition	Min Typ	Max Units				
VDDA	ADC power supply	-	2.4	-	3.6V			
fs	Sampling Rate	-	0.05	-	1 MH:	Z		
fT RIG	External trigger frequency	fADC =14MHz	-	-	823KH:	7		
VAIN	Conversion voltage range	-	0	-	VDDA V			
RAIN	External input impedance	-	-	-	200ÿ			
CAIN	external capacitor	-	-	TBD	-	pF		
llkg analog	pin negative input leakage current	-	-	-	10uA	•		
RADC	sampling switch impedance	-	-	-	1.4	kÿ		
CADC	Internal sample and hold capacitor	-	-	15.5	-	pF		

Table 5.22: ADC conversion time								
symbol	parameter	condition	Min Typ	Max Units				
TAD	ADC clock period	-	62.5	-	-	ns		
TCONV	Conversion time	12-bit	-	13TAD	-	ns		
FCONV	Slew rate	12-bit	-	-	940 KS	PS		
TSAMP	sampling time	12-bit	3TAD	-	-	ns		
tDIS	discharge time	-	-	0.5TAD	-	ns		
tDP U	Power up time	-	-	-	20	us		

Chapter 6 Package Dimensions

6.1 LQFP64 10X10mm

Figure 6.1: LQFP64 10X10mm, 0.5mm pitch and recommended package

Note 1: Schematic diagrams are not drawn to scale

Figure 6.2: LQFP64 10X10mm, 64 pin package parameters

Unit	mm				inch	
Symbols	Min.	Nom.	Max.	Min.	Nom.	Max.
A	1		1.60			0.062
A1	0.05		0.15	0.001		0.005
A2	1.35	1.40	1.45	0.053	0.055	0.057
b	0.17	0.22	0.27	0.006	0.008	0.010
c	0.09		0.20	0.003		0.007
D	11.75	12.00	12.25	0.462	0.472	0.482
D1	9.90	10.00	10.10	0.389	0.393	0.397
E	11.75	12.00	12.25	0.462	0.472	0.482
E1	9.90	10.00	10.10	0.389	0.393	0.397
е		0.50 BSC		0.019 BSC		
L	0.45	0.6	0.75	0.017	0.023	0.029
L1		1.00 REF	3		0.039 REF.	
S		0.20 REF			0.007 REF.	
Θ		3.5° REF			0.137 REF.	
ө1		5.0° REF			0.196 REF.	
ө2	12° REF				0.472 REF.	
ө3	12° REF			0.472 REF.		
R1	0.16 REF				0.006 REF.	
R2	0.15 REF				0.005 REF.	·

	E2		E)2
PAD SIZE	Min.	Max.	Min.	Max.
165*16E	3.99	4.19	3.99	4.19
210*21E	4.27	5.33	4.27	5.33
260*26E	5.28	6.60	5.28	6.60

6.2 LQFP64 7X7mm

CALICE PLANE PLANE

Figure 6.3: LQFP64 7X7mm, 0.4mm pitch and package parameters

Note 1: Schematic diagrams are not drawn to scale

Figure 6.4: LQFP64 7X7mm, 64 pin package parameters

Unit		mm			inch	
Symbols	Min.	Nom.	Max.	Min.	Nom.	Max.
A			1.60			0.063
A1	0.05		0.15	0.002		0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
b	0.13	0.18	0.23	0.005	0.007	0.009
c	0.09		0.20	0.004		0.008
D		9.00 BSC	SC 0.354 BSC			
D1		7.00 BSC			0.276 BSC	
e		0.40 BSC			0.016 BSC	
E		9.00 BSC			0.354 BSC	
E1		7.00 BSC			0.276 BSC	
L	0.45	0.60	0.75	0.018	0.024	0.030
L1	1.00 REF				0.039 REF	
θ	0°	3.5°	7°	0°	3.5°	7°

6.3 LQFP48 7X7mm

Figure 6.5: LQFP48 7X7mm, 0.5mm pitch and package parameters

Note 1: Schematic diagrams are not drawn

to scale Note 2: Dimensions are in millimeters

Figure 6.6: LQFP48 7X7mm, 48 pin package parameters

Cumbal		millimeters	то туп, то р р		inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
Α			1.600			0.0630
A1	0.050		0.150	0.0020		0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090		0.200	0.0035		0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3		5.500			0.2165	
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3		5.500			0.2165	
е		0.500			0.0197	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1		1.000			0.0394	
k	0°	3.5°	7°	0°	3.5°	7°
ccc		0.080 0.0031				

Chapter 7 Product Selection Table

	8	8	8
Nb Segment LCD pins			
USB	3	3	3
UART		7	
I2C	0		
I2S		7	7
SPI(S)			
SPI(M)			
Quad SPI (M)			
Nb COMP Channels			
Nb COMP			
Nb ADC Channels			
Nb ADC 10/12 bit Cell			
Nb Motor Control Timer			
Nb Timer (20bit)			
Vmax			
Vmin			
IONb			
Package Name			
Ram (Kbytes)			
Flash (Kbytes)			
Core			
Frequency (MHz)			
Commercial Product Code			

COT-NCCOM

Chapter VIII Product Code Information

Chapter IX Revised Version

Revision	Date	Author	Modify
01.01	20211124	zy.yao	Add LQFP64 7X7mm
01.00	20211013	zy.yao	Draft version