Topologia Algebrica

Zitto e studia.

Parigi 1905 H. Poincarè

Professore: Gilberto Bini

Scriba: Gabriele Bozzola

Lezione 1: 29 Settembre

Agomenti: General introduction. Homology of a complex. Singular homology.

1.1 Introduzione

1.1.1 Richiami di geometria

Definitione 1.1 Un anello è un insieme \mathcal{R} dotato di due operazioni $+ e \cdot tali$ che \mathcal{R} sia un gruppo abeliano con l'addizione, sia un monoide con la moltiplicazione (ovvero la moltiplicazione è associativa e possiede un elemento neutro) e goda della proprietà distributiva rispetto all'addizione.

Definitione 1.2 Sia \mathcal{R} un anello commutativo¹ si definisce l' \mathcal{R} -modulo il gruppo abeliano \mathcal{M} equipaggiato con un'operazione di somma tale che $\forall v, w \in \mathcal{M}$ e $\forall a, b \in \mathcal{R}$ vale che:

- a(v+w) = av + aw
- (a+b)v = av + bv
- (ab)v = a(bv)

Osservazione 1.3 Se \mathcal{R} è un campo allora l' \mathcal{R} -modulo è uno spazio vettoriale.

Osservazione 1.4 Ogni gruppo abeliano è uno \mathbb{Z} -modulo in modo univoco.

Definitione 1.5 Siano (X, \cdot) e (Y, \star) due gruppi, un **omomorfismo** è un'applicazione f tra X e Y che preserva la struttura di gruppo, cioè:

$$\forall u, v \in X \quad f(u \cdot v) = f(u) \star f(v)$$

Osservazione 1.6 Da questa definizione si trova immediatamente che gli omomorfismi si comportano bene nei confronti dell'inverso, cioè $\forall v \in X$ vale che $f(v^{-1}) = f(v)^{-1}$.

Voglio studiare gli omomorfismi tra Z-moduli.

Definitione 1.7 Sia $\varphi : \mathcal{M} \to \mathcal{N}$ un omomorfismo tra gli \mathcal{R} -moduli \mathcal{M} e \mathcal{N} , allora si definisce il **nucleo** e l'**immagine**:

$$\operatorname{Ker}(\varphi) := \{ \, m \in \mathcal{M} \mid \varphi(m) = 0 \, \} \qquad \operatorname{Im}(\varphi) := \{ \, m \in \mathcal{M} \mid \varphi(m) = 0 \, \}$$

 $^{^1\}mathrm{Si}$ può rilassare questa ipotesi e costruire moduli destri e sinistri.

Osservazione 1.8 $Ker(\varphi)$ $e Im(\varphi)$ sono \mathcal{R} -sottomoduli.

Posso fare composizioni di omomorfismi, come:

$$\mathcal{M}_1 \xrightarrow{\varphi_1} \mathcal{M}_2 \xrightarrow{\varphi_2} \mathcal{M}_3$$

Se vale $\varphi_2 \circ \varphi_1 = 0$ allora $\operatorname{Im}(\varphi_1) \subseteq \operatorname{Ker}(\varphi_2)$.

Dimostrazione: Se $u \in \text{Im}\varphi_2$ allora $\exists v \in \mathcal{M}_2$ tale che $\varphi_1(v) = u$, ma $\varphi_2(u) = \varphi_2(\varphi_1(v)) = (\varphi_2 \circ \varphi_1)(v) = 0$ quindi $u \in \text{Ker}(\varphi_2)$.

Definitione 1.9 Siano \mathcal{M} un \mathcal{R} -modulo e \mathcal{N} un suo sottomodulo, allora il modulo quozionete di \mathcal{M} con \mathcal{N} e definito da:

$$\mathcal{M}/_{\mathcal{N}} := \mathcal{M}/_{\sim}$$
 dove \sim è definita da: $x \sim y \Leftrightarrow x - y \in \mathcal{N}$

Siccome $\mathrm{Im}(\varphi)$ è sottomodulo di $\mathrm{Ker}(\varphi)$ allora posso prendere il quoziente:

$$\operatorname{Ker}(\varphi_2)/\operatorname{Im}(\varphi_1)$$

Questo è un sottomodulo.

A questo punto ci sono due possibilità:

- 1. $\operatorname{Ker}(\varphi_2)/\operatorname{Im}(\varphi_1)=0$, che significa che $\operatorname{Ker}(\varphi_2)=\operatorname{Im}(\varphi_1)$ in quanto non ci sono elementi di $\operatorname{Ker}(\varphi_2)$ fuori da $\operatorname{Im}(\varphi_1)$.
- 2. $\operatorname{Ker}(\varphi_2)/\operatorname{Im}(\varphi_1) \neq 0$, cioè $\exists v \in \operatorname{Ker}(\varphi_2)$ tale che $v \notin \operatorname{Im}(\varphi_1)$ e quindi $\operatorname{Im}(\varphi_1) \subsetneq \operatorname{Ker}(\varphi_2)$.

Nel primo caso si dice che la successione dei moduli \mathcal{M} e delle applicazioni φ è esatta in \mathcal{M}_2 , nel secondo caso la successione è detta complesso di moduli.

Sostanzialmente il modulo quoziente quantifica la non esattazza nel punto \mathcal{M}_2 della successione.

Definitione 1.10 $H(\mathcal{M}_{\bullet}) = \text{Ker}(\varphi_2)/\text{Im}(\varphi_1)$ è detto modulo di omologia del complesso $M_{\bullet} = M_1 \longrightarrow M_2 \longrightarrow M_3$ con le applicazioni φ_1 e φ_2 .

Per questo $H(\mathcal{M}_{\bullet})$ quantifica quanto il complesso \mathcal{M} . non è esatto. Questo deriva da un problema topologico concreto.

Definitione 1.11 La coppia (X, \mathcal{T}) è detta spazio topologico (generalmente si omette la \mathcal{T}) se \mathcal{T} è una topologia, cioè se è una collezione di insiemi di X tali che:

- 1. $\emptyset, X \in \mathcal{T}$
- 2. $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{T} \text{ se } A_n \in \mathcal{T} \forall n \in \mathbb{N}$
- 3. $A \cap B \in \mathcal{T}$ se $A, B \in \mathcal{T}$

1.1.2 Omomorfismo tra \mathbb{R} e \mathbb{R}^N

È noto che $\mathbb{R} \not\simeq \mathbb{R}^N$ per $n \ge 2$, infatti basta che tolgo un punto a \mathbb{R} che diventa sconnesso mentre \mathbb{R}^N rimane connesso anche togliendogli un punto.

Tuttavia vale anche che $\mathbb{R}^2 \not\simeq \mathbb{R}^N$ per $n \geq 3$, infatti:

Dimostrazione: Per assurdo $f: \mathbb{R}^2 \stackrel{\sim}{\sim} \mathbb{R}^N$ è un omomorfismo con $n \geq 3$, tolgo un punto da \mathbb{R}^2 :

$$\forall p \in \mathbb{R}^2 \quad f : \mathbb{R}^2 \setminus \{p\} \stackrel{\rightarrow}{\sim} \mathbb{R}^N \setminus \{f(p)\}$$

Ma: $\mathbb{R}^2 \setminus \{p\} \simeq \mathbb{R} \times \mathcal{S}^1$ con la mappa che manda $\underline{x} \mapsto \left(||\underline{x}||, \frac{\underline{x}}{||\underline{x}||}\right)$. Ma quindi il gruppo fondamentale deve essere isomorfo: $\pi_1(\mathbb{R} \times \mathcal{S}^1) \simeq \pi_1(\mathbb{R} \times \mathcal{S}^{n-1})$ ma $\pi_1(\mathbb{R} \times \mathcal{S}^1) = \mathbb{Z}$ e $\pi_1(\mathbb{R} \times \mathcal{S}^{n-1}) = \{1\}$ quindi non possono essere isomorfi. \blacksquare Ho quindi dedotto proprietà geometriche a partire da considerazioni algebriche.

Definitione 1.12 Si definisce il gruppo fondamentale di uno spazio topologico X connesso per archi attorno al punto $x_0 \in X$

$$\pi_1(X, x_0) = \{g : \mathcal{S}^1 \to X \mid g \text{ continua}, g(1) = x_0\}/_{\sim}$$

 $e \sim \grave{e}$ la relazione di omotopia: $g_1 \sim g_2$ se $\exists G : \mathcal{S}^1 \times I \to X$ tale che $G(z,0) = g_1(z), G(z,1) = g_2(z), G(1,t) = x_o$.

Ora voglio mostrare per assurdo che non esiste omomorfismo tra \mathbb{R}^3 e \mathbb{R}^N .

Dimostrazione: Come nel caso precedente tolgo q da \mathbb{R}^3 e f(q) da \mathbb{R}^3 , quindi ottengo l'omomorfismo tra $\mathbb{R} \times \mathcal{S}^2 \simeq \mathbb{R} \times \mathcal{S}^{n-1}$, ma i gruppi fondamentali associati sono banali, quindi sono isomorfi, e non è posisbile replicare il ragionamento utilizzato sopra.

Poincaré introdusse i gruppi di omotopia superiore.

Definitione 1.13 Si definiscono i gruppi di omotopia superiore di uno spazio topologico X attorno al punto x_0 per $k \geq 2$:

$$\pi_k(X)(X, x_0) = \{ g : S^k \to X \mid g(p_0) = x_0, p_o \in S^k \} /_{\sim}$$

Studiare i gruppi di omotopia superiore è un problema aperto della topologia moderna. Tuttavia si sa che:

- 1. $\pi_k(S^m) = 1$ per $1 \le k < m$
- 2. $\pi_m(\mathcal{S}^m) \simeq \mathbb{Z}$ per k = m
- 3. $\pi_1(S^2) = 1$
- 4. $\pi_2(S^2) \simeq 1$

Anche se non so calcolare i gruppi di omotopia superiore non vorrei buttarli via. . .

1.1.3 Omologia

Uso la teoria dell'omologia che mi permette di semplificare i problemi. Ci sono varie possibilità:

- Omologia simpliciale
- Omologia cellulare
- Omologia singolare
- Omologia persistente¹

Ma cosa è l'omologia?

Definitione 1.14 In \mathbb{R}^{k+1} si definisce il **simplesso standard** Δ_k l'insieme:

$$\Delta_k = \{ (x_1, x_2, \dots) \in \mathbb{R}^{k+1} \mid \forall i \quad 0 \le x_i \le 1 \ e \sum_{i=1}^{k+1} x_i = 1 \}$$

Osservazione 1.15 Alcuni esempi sono:

- Δ_0 è un punto.
- Δ_1 è un segmento omeomorfo a [0,1]. [FIGURA]

Definitione 1.16 Dato uno spazio topologico X si definisce il k-simplesso singolare in X come un'applicazione continua $g: \Delta_k \to X$.

Spesso conviene identificare il k-simplesso con la sua immagine in X. In quesot modo uno 0-simplesso è un punto in X, mentre un 1-simplesso singolare potrebbe essere sia un segmento che un punto (se la mappa è costante). Siccome il simplesso deforma è detto singolare.

Voglio costruire un complesso di gruppi abeliani e definire l'omologia singolare come l'omologia di tale complesso.

S. è il compesso, cioè:
$$\cdots \to S_{k+1}(X) \to S_k() \to S_{k-1} \to \cdots \to S_0(X)$$
, dove

$$S_k(X) = \{\text{combinazioni lineari finite a coefficienti interi:} \\ \sum_g n_g g \mid n_g \in \mathbb{Z}, g \ k - \text{simplessi singolari di } X\}$$

 $S_k(X)$ è un gruppo abeliano con l'operazione somma definita naturalmente:

$$\sum_{q} n_{g}g + \sum_{h} n_{h} = \sum_{q} n_{g}g + \sum_{q} n_{g}^{\star} = \sum_{q} (n_{g} + n_{g}^{\star})g$$

Ad esempio:

$$(n_1g_1 + n_2g_2 + 2n_3g_3) + (m_1g_1 + m_4g_4) = (n_1 + m_1)g_1 + n_2g_2 + 2n_3g_3 + m_4g_4$$

 $^{^1\}mathrm{Questa}$ ha numerose applicazioni pratiche.

Questa è una somma con tutte le giuste proprietà. Lo zero è la catena con tutti i coefficienti nulli, mentre l'inverso è la catena con i coefficienti opposti. Queste catene sono chiamate k-catene singolari.

Ad esempio: Se k = 0 $S_0(X)$ sono catene di punti $(g_0 : \Delta_0 \to X)$

$$S_0(X) = \{ \sum n_i p_i \mid n_i \in \mathbb{Z}, \ p_i \in X \}$$

Ora devo introdurre le applicazioni tra i vari S_k , queste applicazioni saranno il bordo

Definisco $h:\Delta_1\to X$ in modo tale che $h(\Delta)=\alpha$ dove α è un arco, ovvero una funzione da un intervallo I=[0,1] a X tale che $\alpha(0)=x_0$ e y_0 .

[FIGURA]

Posso ottenere una 0-catena prendendo i punti estremi dell'arco.

Definitione 1.17 Sia Δ_k un k-simplesso standard con $k \geq 0$ si definisce l'operatore **faccia** come la mappa F_i^k da Δ_{k-1} a Δ_k tale che $F_i^k(\Delta_{k-1})$ è una faccia di Δ_k .

Ad esempio per k=2 $\Delta_2=\{(x_1,x_2,x_3)\in\mathbb{R}^3\mid x_1+x_2+x_3=1,\ 0\leq x_i\leq 1\ \forall i\}$, si definisce la base $e_0=(1,0,0)$ $e_1=(0,1,0)$ $e_2=(0,0,1)$, voglio vedere il bordo del triangolo come facce. [FIGURA, CONSIDERAZIONI]

Esercizio 1 Dimostrare che se $[\cdot,\cdot]$ indica l'inviluppo convesso allora:

- 1. Per j > i vale che $F_i^{k+1} \circ F_i^{k} = [e_0, \dots, e_i, \dots, e_j, \dots, e_k]$.
- 2. Per $j \le i$ vale che $F_i^{k+1} \circ F_i^k = [e_0, \dots, e_j, \dots, e_{i+1}, \dots, e_k]$.

Dato un k-simplesso singolare $\sigma: \Delta_k \to X$ si definisce la mappa $\sigma^{(i)} = \sigma \circ F_i^k$.

[FIGURA]

Definitione 1.18 Si definisce il **bordo** di un k-simplesso singolare come $\partial_k \sigma = \sum_{i=0}^k (-)^i \sigma^{(i)}$.

Per k = 1 $\partial_1 \sigma = p_1 - p_0$ infatti $\sigma^0 = \sigma \circ F_0^{\ 1} = \sigma(1) = p_1$ e $\sigma^0 = \sigma \circ F_1^{\ 1} = \sigma(0) = p_0.^2$

Allora definisco $\partial_k: S_k(X) \to S_{k-1}(X)$ infatti per linearità $\partial_k \left(\sum_g n_g g \right) = \sum_g n_g \partial_k g$.

Devo mostrare che ∂_k è un omomorfismo.

Dimostrazione:

$$\partial_k \left(\sum_g n_g g + \sum_g m_g g \right) = \partial_k \left(\sum_g (m_g + n_g) g \right) = \sum_g (m_g + n_g) \partial_k g =$$

$$= \sum_g n_g \partial_k g + \sum_g m_g \partial_k g = \partial_k \left(\sum_g n_g g \right) + \partial_k \left(\sum_g m_g g \right)$$

²Tecnicamente si intende $p_0 = \partial_1 \sigma^{(0)}(1)$ e $p_1 = \partial_0 \sigma^{(1)}(1)$.

Quindi il complesso è costituito da:

$$\dots \xrightarrow{\partial_{k+1}} S_k(X) \xrightarrow{\partial_k} S_{k-1}(X) \xrightarrow{\partial_{k-1}} \dots$$

Devo verificare che $\partial_k \circ \partial_{k+1} =$. Spesso come notazione si pone $\partial^2 = 0$. **Dimostrazione:** Se σ è un k-complesso singolare $\sigma : \Delta_k \to X$:

$$\begin{split} \partial_k \circ \partial_{k+1} \sigma &= \partial_k \left(\sum_{j=0}^{k+1} (-)^j (\sigma \circ F_j^{\ k+1}) \right) = \sum_{j=0}^{k+1} (-)^j \partial_k (\sigma \circ F_j^{\ k+1}) &= \\ &= \sum_{j=0}^{k+1} (-)^j \sum_{i=0}^k (-)^i (\sigma \circ F_j^{\ k+1}) \circ F_i^{\ k} = \sum_{j=0}^{k+1} \sum_{i=0}^k (-)^{j+i} \sigma \circ F_j^{\ k+1} \circ F_j^{\ k} &= \\ &= \sum_{0 \le i < j \le k+1} (-)^{i+j} \sigma \circ F_j^{\ k+1} \circ F_i^{\ k} + \sum_{0 \le j < i \le k} (-)^{i+j} \sigma \circ F_j^{\ k+1} \circ F_i^{\ k} &= \\ &= \sum_{0 \le i < j \le k+1} (-)^{i+j} \sigma \circ F_j^{\ k+1} \circ F_i^{\ k} + \sum_{0 \le j < i \le k} (-)^{i+j} \sigma \circ F_{i+1}^{\ k+1} \circ F_j^{\ k} &= \\ &= 0 \end{split}$$

Topologia Algebrica

2016/2017

Lezione 2: 4 Ottobre

Agomenti: Banane

Topologia Algebrica

2016/2017

Lezione 3: 6 Ottobre

Agomenti: Banane

3.1.4 Richiami sul gruppo fondamentale

Definitione 3.19 Sia X uno spazio topologico e $x_0 \in X$ un suo punto, allora la coppia (X, x_0) è detta spazio topologico puntato.

Definitione 3.20 Sia (X, x_0) uno spazio topologico puntato $e f: I \to X$ una mappa continua tale che $f(0) = f(1) = x_0 \ \forall t \in I$, si dice che una funzione continua $g \ e$ omotopicamente equivalente a $f \ (g \sim_H f)$ se esiste una funzione continua $F: I \times I \to X$ tale che;

- $F(0,x) = f(x) \ \forall x \in I$
- $F(1,x) = g(x) \ \forall x \in I$
- $F(s,0) = x_0 \ \forall s \in I$
- $F(s,1) = x_0 \ \forall s \in I$

La relazione \sim_H è detta relazione di omotopia e si dimostra essere una relazione di equivalenza.

[FIGURA]

Si definisce l'insieme;

$$\pi_i(X, x_0) = \{ f : I \to X \mid f \text{ continua}, f(0) = f(1) = x_0 \} /_{\sim_H}$$