

Course Name and Number: Fundamentals of Computational Math IS 605 Fall 2018

Credits: 3

Prerequisites: None

Course Description:

The course will provide an overview of the commonly used mathematical techniques in Data Analytics & Statistics. A lot of emphasis will be given to computational techniques and implementing math in programs. Students will be expected to do a fair bit of hands-on programming. We'll be primarily using R as our programming environment. All assignments will need to be submitted in as R-Markdown documents. Students can expect to walk away with a good under- standing of the kinds of math they'll need to be successful in the exciting area of Data Analytics.

Program Learning Outcomes/Competencies addressed by the course:

- 1. Business Understanding. Apply frameworks and processes to build data-analytic solutions from an understanding of business goals.
- 2. Data Programming. Use industry standard statistical tools and simulation packages.
- 3. Foundational Math and Statistics. Emphasis on probability, statistics, and computational methods.
- 4. Data Understanding. Collect, describe, model, explore and verify data.
- 5. Prescriptive Modeling. Selecting prescriptive modeling techniques, generating test designs, building and assessing models.
- 6. Model Implementation and Deployment. Students will learn to implement mathematical models.
- 7. Presentation. Students will deliver presentations of their project results.

Learning Objectives

- 1. Apply linear algebra to solve data science problems.
- 2. Apply probability and statistics to solve data science problems.
- 3. Apply univariate and multivariate calculus to solve data science problems.

Assignments and grading:

- **1. Assignments:** During the course, you will be completing a series of individual assignments, participating in forum discussions, and completing a final examination.
- **2. Examinations:** This course has a single examination, a comprehensive final.
- 3. Grade Evaluation: Grades in this course are determined by the percentage of points obtained.

Assignment	Percentage		
Homework	15 x 3% = 45%		
Discussion Contribution	15 x 1% = 15%		
Examination	1 x 40%=40%		
Total	100%		

- **4. Grading Rubric:** The grading rubrics follow.
 - a) Each homework will be graded as {zero, check minus, check, and check plus}. The associated grades are {0%, 1%, 2%, 3%}.
 - b) Discussions are applied analysis from the texts. You must post a response by Wednesday at midnight (ET) and respond to at least one of your colleagues' contributions by Saturday at midnight (ET), providing meaningful feedback on the analysis.
- **5.** Late Policy for Homework: Late work is penalized 20% per day. All assignment due dates and times are shown in Blackboard.

6. Grades: I assign grades based on the following table.

Quality of Performance	Letter Grade	Range %	GPA/ Quality Pts.
Excellent, work is of exceptional quality	Α	93 - 100	4
Excellent - work is of exceptional quality	A-	90 - 92.9	3.7
Good - work is above average	B+	87 - 89.9	3.3
Satisfactory	В	83 - 86.9	3
Below Average	B-	80 - 82.9	2.7
Poor	C+	77 - 79.9	2.3
	С	70 - 76.9	2
Failure	F	< 70	0

Course Materials (All Open Source)

https://open.umn.edu/opentextbooks/BookDetail.aspx?bookId=21 Introduction to Probability, Grinstead, C. Snell, J., 1997

https://open.umn.edu/opentextbooks/BookDetail.aspx?bookId=5

A First Course in Linear Algebra, Beezer, R., 2008

https://open.umn.edu/opentextbooks/BookDetail.aspx?bookId=399
Linear Regression Using R: An Introduction to Data Modeling, Lilja, D., 2016

https://open.umn.edu/opentextbooks/BookDetail.aspx?bookId=198 APEX Calculus, Hartman, G. 2014

Relevant Software and Other Tools:

Students should have R Studio & R installed in their computers. Relevant libraries that are re-quired will be posted in the assignments and course materials. Students are expected to submit R-Markdown files for their assignments.

Course Meeting Time:

See the course website.

The Course schedule follows. (L=Linear Algebra text, P=Probability Text, C=Calculus Text, R=Regression)

Week of	Topics	Reading	Assignment (due Sunday at 11:59 PM ET)
27 Aug	Vectors, Matrices & Systems of Equations	L, Chapters SLE, V, M	HW1
3 Sep	Trace, Determinant, Factorization of Matrices	L, Chapters T, VS, D	HW2
10 Sep	Eigenvalues & Eigenvectors	L, Chapters E	HW3

17 Sep	Linear Transformations, Representations	L, Chapter s LT, R	HW4
24 Sep	Discrete and Continuous Probability Distributions	P, Chapters 1 and 2	HW5
1 Oct	Combinatorics and Conditional Probability	P, Chapters 3 and 4	HW6
8 Oct	Important Distributions / Densities, Expected Value & Variance	P, Chapters 5 and 6	HW7
15 Oct	Sums of Random Variables, Law of Large Numbers	P, Chapters 7 and 8	HW8
22 Oct	Central Limit Theorem & Generating Functions	P, Chapters 9 and 10	HW9
	Markov Chains & Random Walks	P, Chapters 11 and 12	HW10
5 Nov	Regression Analysis in R	R, Chapters 1-3	HW11
12 Nov	Regression Analysis in R	R, Chapters 4-6	HW12
19 Nov	Univariate & Multivariate Calculus	C, As Needed	HW13
26 Nov	Taylor Series Approximations	C, Chapter 8	HW14
3 Dec	Functions of Several Variables	C, Chapter 12	HW15
3 Dec	Final Examination	All	Final Exam: Due 5 Dec

Quality of Performance	Letter Grade	Range %	GPA
Excellent - work is above and beyond class expectations	A	93-100	4
Excellent - work is above and beyond class expectations	A-	90-92.9	3.7
Good - work is above average	B+	87 - 89.9	3.3
Satisfactory	В	83 - 86.9	3
Below Average	В-	80 - 82.9	2.7
Poor	C+	77 - 79.9	2.3
Poor	C+	70 - 76.9	2
Failure	F	< 70	0