Question number	Scheme	Marks
7 (a)	$\frac{dy}{dx} = \frac{(x^2 + 4) - x(2x)}{(x^2 + 4)^2}$	M1
	$= \frac{4 - x^2}{\left(x^2 + 4\right)^2}$	A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow 4 - x^2 = 0$	M1
	So $\left(2,\frac{1}{4}\right)$ and $\left(-2,-\frac{1}{4}\right)$	A1 A1 (5)
(b)	$\frac{d^2 y}{dx^2} = \frac{-2x(x^2+4)^2 - 4x(4-x^2)(x^2+4)}{(x^2+4)^4}$	M1
	$\frac{d^2y}{dx^2} = \frac{-2x^3 - 8x - 16x + 4x^3}{(x^2 + 4)^3}$	M1
	$\frac{d^2y}{dx^2} = \frac{2x^3 - 24x}{(x^2 + 4)^3}$	M1
	$\frac{d^2y}{dx^2} = \frac{2x(x^2 - 12)}{(x^2 + 4)^3} $ *	A1 cso (4)
(c)	When $x = 2 \left[\frac{d^2 y}{dx^2} = -\frac{1}{16} \right]$ When $x = -2 \left[\frac{d^2 y}{dx^2} = \frac{1}{16} \right]$	
	$\frac{d^2 y}{dx^2} < 0 \text{ so maximum} \qquad \frac{d^2 y}{dx^2} > 0 \text{ so minimum}$	M1 A1ft (2)
Total 11 mark		

Part	Mark	Notes
(a)	M1	For an attempt at Quotient rule. The definition of an attempt is that there must be a minimal attempt to differentiate both terms and the denominator must be $(x^2 + 4)^2$. Allow the terms in the numerator to be the wrong way around, but the terms must be subtracted. [See General Guidance for an attempt at differentiation]. $\frac{dy}{dx} = \frac{(x^2 + 4) - x(2x)}{(x^2 + 4)^2}$
	A1	For the correct $\frac{dy}{dx}$ simplified or unsimplified. Award the mark for a correct $\frac{dy}{dx}$ seen even if there are later errors in simplification.
	M1	For setting their $\frac{dy}{dx} = 0$ which must be a quadratic equation solving to find x : $4 - x^2 = 0 \Rightarrow x = \pm 2$

	A1	For the correct coordinates of either $\left(2,\frac{1}{4}\right)$ or $\left(-2,-\frac{1}{4}\right)$
	A1	For both correct coordinates $\left(2,\frac{1}{4}\right)$ and $\left(-2,-\frac{1}{4}\right)$
(b)		For an attempt at Quotient rule on their $\frac{dy}{dx} = \frac{(x^2 + 4) - x(2x)}{(x^2 + 4)^2}$ which must be as
		a minimum: $\frac{ax^2 + bx + c}{\left(x^2 + 4\right)^2}$ where a, b and c are constants and $a, c \neq 0$
	M1	The definition of an attempt is that there must be a minimal attempt to differentiate the numerator and denominator and the correct formula applied.
		$(x^2+4)^2$ must differentiate to $ax(x^2+4)$, the denominator must be $(x^2+4)^4$
		Allow the terms in the numerator to be the wrong way around, but the terms must be subtracted.
		Apply General Guidance for an attempt at differentiation on $ax^2 + bx + c$.
		$\frac{d^2 y}{dx^2} = \frac{-2x(x^2+4)^2 - 4x(4-x^2)(x^2+4)}{(x^2+4)^4}$
	M1	For cancelling through by $(x^2 + 4)$
		$\frac{d^2y}{dx^2} = \frac{-2x(x^2+4)-4x(4-x^2)}{(x^2+4)^3}$
		For simplifying the numerator to achieve as a minimum
	M1	$\frac{d^2 y}{dx^2} = \frac{ax^3 + bx}{(x^2 + 4)^3}$ where a and b are constants
		For obtaining the answer as given with no errors.
	A1	$\frac{d^2y}{dx^2} = \frac{2x(x^2 - 12)}{(x^2 + 4)^3} *$
	cso	$\frac{dx^2}{dx^2} = \frac{(x^2+4)^3}{(x^2+4)^3}$
(c)		Substitutes either their 2 or their – 2 into their $\frac{d^2 y}{dx^2}$
	M1	Note: When $x = 2\left[\frac{d^2y}{dx^2} = -\frac{1}{16}\right]$ and when $x = -2\left[\frac{d^2y}{dx^2} = \frac{1}{16}\right]$ For the conclusion $\frac{d^2y}{dx^2} < 0$ so maximum $\frac{d^2y}{dx^2} > 0$ so minimum
	A1ft	For the conclusion $\frac{d^2y}{dx^2} < 0$ so maximum $\frac{d^2y}{dx^2} > 0$ so minimum
	ALT –	tests gradient or sight of a sketch
		Tests gradient on either side of one the turning points (their 2 or their – 2) using
		their $\frac{dy}{dx}$
	M1	
	1411	or a correct sketch
	A1ft	For the correct conclusion
	·	