Examen « Compilation I » Enseignant : Karim Baïna Durée = 1H30

(Seuls les documents de Cours et de TD sont autorisés !!)
NB : les **réponses directes** et **synthétiques** seront appréciées

Nom :	
Prénom :	

Exercice I: QCM 5 pts (à rendre avec votre copie!!)

Pour chaque concept/question, remplissez la case de la colonne des choix uniques correspondante par un choix qui soit le plus adéquat :

Concept/Question	Choix unique	Choix possibles
(1) $A = \langle S, \Sigma, \delta, s_0, F \rangle \circ S \cap F \neq \emptyset$	I	(a) Assembleurs
(2) Automate à Piles	E	(b) Analyse syntaxique
(3) Grammaire régulière	F	(c) Pompage
(4) card(ϵ -fermeture(ϵ 0)) > 1	J	(d) Analyse lexicale
(5) typedef void * Vector;	K	(e) Langage irrégulier
(6) Erreur de parenthésage non équilibré	В	(f) Grammaire linéaire
(7) Automate d'état finis	G	(g) Langage régulier
(8) Identificateur erroné	D	(h) Lexème
(9) Lemme de l'étoile	С	(i) ε ∈ L
(10) Token	Н	(j) $\delta(s_0, \varepsilon) = s_1$, $O\grave{\cup} s_0 \neq s_1$
(11) L2G	(a) « Question résolue »	(k) fermeture de Kleene

Exercice II: Expressions régulières 5pts

- 1. Soit L un langage fini, démontrez que L est régulier. (1pt)
- 2. Est-ce la réciproque est vraie ? Justifiez! (1pt)
- 3. Est-ce que l'intersection de deux langages réguliers est un langage régulier ? Justifiez ! (1pt)
- 4. Est-ce que le complémentaire d'un langage régulier L ($\Sigma^* \setminus L$) est un langage régulier ? Justifiez ! ($\mathbf{1pt}$)
- 5. Est-ce que le langage L= $\{n \in \mathbb{N} \mid n = 0 \text{ [16]}\}\$ est régulier ? Justifiez ! (1pt)

Exercice III: Programmation d'automates 10pts

- 1. Si un automate A(L) reconnaît le langage L en n états et p transitions. Quelle est la complexité en temps de la fonction indicatrice $P_L: \Sigma^* \to \{0,1\}$ où $P_L(w \in L)=1$ et $P_L(w \notin L)=0$. (1pt)
- 2. Quel est l'intérêt pratique de minimiser un automate A(L) (i.e. trouver un automate A'(L) équivalent à A(L) avec n et p minimaux) ? Donner des exemples de systèmes pour lesquels cette technique est incontournable (1pt)
- 3. Transformez le NFA suivant à un DFA (2pt)

- 4. Trouvez l'expression régulière équivalente à l'automate résultant de III.2. (a) intuitivement et (b) en utilisant l'algorithme vu en cours (2pt)
- 5. Donnez la grammaire linéaire équivalente à l'automate résultant de III.3. (1pt)
- 1. Donner deux manières en langage C de programmer l'expression régulière résultant de III.4 (a) l'une à base de l'automate DFA et (b) l'autre à base de la grammaire de V.1. (3pt)