# **Heart Disease Prediction**

1 0

1 0

1 0

1 0

```
In [1]: #Import Libraries
         import numpy as np
         import pandas as pd
In [2]: #Load Dataset
         df=pd.read csv('/home/student/Downloads/heart.csv')
Out[2]:
               age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
               52
                              125
                                  212
                                                                   1.0
                                                     168
                                                                             2
                                                                                 3
                                                                                       0
                                  203
               53
                        0
                              140
                                               0
                                                     155
                                                                   3.1
                                                                          0
                                                                             0
                                                                                 3
                                                                                       0
```

2.6

0.0

1.9

0.0

2.8

1.0

0.0

1 1

1 1

2 0

cess

```
In [3]: df.columns
```

## In [4]: df.head()

#### Out[4]:

|   | age | sex | ср | trestbps | chol | fbs | restecg | thalach | exang | oldpeak | slope | ca | thal | target |
|---|-----|-----|----|----------|------|-----|---------|---------|-------|---------|-------|----|------|--------|
| 0 | 52  | 1   | 0  | 125      | 212  | 0   | 1       | 168     | 0     | 1.0     | 2     | 2  | 3    | 0      |
| 1 | 53  | 1   | 0  | 140      | 203  | 1   | 0       | 155     | 1     | 3.1     | 0     | 0  | 3    | 0      |
| 2 | 70  | 1   | 0  | 145      | 174  | 0   | 1       | 125     | 1     | 2.6     | 0     | 0  | 3    | 0      |
| 3 | 61  | 1   | 0  | 148      | 203  | 0   | 1       | 161     | 0     | 0.0     | 2     | 1  | 3    | 0      |
| 4 | 62  | 0   | 0  | 138      | 294  | 1   | 1       | 106     | 0     | 1.9     | 1     | 3  | 2    | 0      |

# In [5]: df.tail()

## Out[5]:

|      | age | sex | ср | trestbps | chol | fbs | restecg | thalach | exang | oldpeak | slope | ca | thal | target |
|------|-----|-----|----|----------|------|-----|---------|---------|-------|---------|-------|----|------|--------|
| 1020 | 59  | 1   | 1  | 140      | 221  | 0   | 1       | 164     | 1     | 0.0     | 2     | 0  | 2    | 1      |
| 1021 | 60  | 1   | 0  | 125      | 258  | 0   | 0       | 141     | 1     | 2.8     | 1     | 1  | 3    | 0      |
| 1022 | 47  | 1   | 0  | 110      | 275  | 0   | 0       | 118     | 1     | 1.0     | 1     | 1  | 2    | 0      |
| 1023 | 50  | 0   | 0  | 110      | 254  | 0   | 0       | 159     | 0     | 0.0     | 2     | 0  | 2    | 1      |
| 1024 | 54  | 1   | 0  | 120      | 188  | 0   | 1       | 113     | 0     | 1.4     | 1     | 1  | 3    | 0      |

```
In [7]: #Checking for Null values
        df.isna().sum()
Out[7]: age
        sex
        CD
        trestbps
        chol
        fbs
        restecq
        thalach
                    Θ
        exang
        oldpeak
        slope
        ca
        thal
        target
        dtype: int64
In [15]: #Input Data
        x=df.iloc[:,:-1].values
Out[15]: array([[52., 1., 0., ..., 2., 2., 3.],
               [53., 1., 0., ..., 0., 0., 3.],
               [70., 1., 0., ..., 0., 0., 3.],
               . . . ,
               [47., 1., 0., ..., 1., 1., 2.],
               [50., 0., 0., ..., 2., 0., 2.],
               [54., 1., 0., ..., 1., 1., 3.]])
```

```
In [16]: #Output Data
        y=df.iloc[:,-1].values
Out[16]: array([0, 0, 0, ..., 0, 1, 0])
In [17]: #Split Dataset into Train & Test Datasets
        from sklearn.model selection import train test split
        x train,x test,y train,y test=train test split(x,y,test size=0.30)
In [18]: #Feature Scaling- Standard Scaler
        from sklearn.preprocessing import StandardScaler
        scaler=StandardScaler()
        scaler.fit(x train)
        x train=scaler.transform(x train)
        x test=scaler.transform(x test)
In [19]: #KNN model
        from sklearn.neighbors import KNeighborsClassifier
        classifier=KNeighborsClassifier(n neighbors=5)
        classifier.fit(x train,y train)
        y pred=classifier.predict(x test)
        y pred
0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1,
               0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
               1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1,
               0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0,
```

1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1,

```
0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0,
                1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1,
                0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0,
                0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0,
                1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
                0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1,
                0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1,
                0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0,
                1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1,
                0. 0. 1. 1. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 01)
In [20]: print(classifier.predict([[50,0,0,110,254,0,0,159,0,0.0,2,0,2]]))
         [1]
In [21]: #Evaluating Model -Accuracy Score, Confusion Matrix and ConfusionMatrixDisplay
         from sklearn.metrics. plot.confusion matrix import confusion matrix
         from sklearn.metrics import classification report, accuracy score, ConfusionMatrixDisplay
         labels=[ 'heart-patient', 'not heart patient']
         result=confusion matrix(y test,y pred)
         cm=ConfusionMatrixDisplay(result, display labels=labels)
         cm.plot()
         score=accuracy score(y test,y pred)
         print(result)
         print(score)
         [[131 23]
          [ 23 131]]
```

0.8506493506493507

