SfePy Documentation

April 3, 2008

Contents

1	Not	ation	3
2	List	of all terms	4
3	Intr	roduction	6
	3.1	Term call syntax	6
4	Teri	ms in termsMass	6
	4.1	dw_mass	6
	4.2	dw_mass_scalar	7
	4.3	dw_mass_scalar_fine_coarse	7
	4.4	dw_mass_scalar_r	7
	4.5	dw_mass_scalar_variable	7
	4.6	dw_mass_vector	7
5	Teri	ms in termsBasic	7
	5.1	d_surface_dot	7
	5.2	d_surface_integrate	8
	5.3	d_volume	8
	5.4	d_volume_dot	8
	5.5	d_volume_integrate	8
	5.6	d_volume_wdot	8
	5.7	di_volume_integrate_mat	8
	5.8	dw_volume_integrate	9
	5.9	dw_volume_wdot	9
	0.0	dw_volume_wdot_dt	9
		dw_volume_wdot_r	10
		dw_volume_wdot_th	10
6	Teri	ms in termsLaplace	10
Ū	6.1		10
	6.2	de_diffusion_velocity	10
	6.3	dw_diffusion	11
	6.4	dw_diffusion_r	11
	6.5	dw_laplace	11
	6.6	dw_permeability_r	11

	Terms in termsNavierStokes	
	.1 d_div	
	.2 dq-grad	
	.3 dq_lin_convect	
	.4 dw_convect	
	.5 dw_div	
	'.6 dw_div_grad	
	7.7 dw_div_r	
	.8 dw_grad	
	.9 dw_grad_dt	
	.10 dw_lin_convect	
	.11 dw_st_grad_div	
	.12 dw_st_pspg_c	
	.13 dw_st_pspg_p	
	.14 dw_st_supg_c	
	.15 dw_st_supg_p	
8	Terms in termsPoint	
	.1 dw_point_lspring	
9	Terms in termsVolume	
	.1 dw_volume_lvf	
10	Terms in termsSurface	
10	0.1 dw_surface_ltr	
	0.1 4.1.241.4.00_101	
11	Terms in termsLinElasticity	
	1.1 d_lin_elastic	
	1.2 de_cauchy_strain	
	1.2 de_cauchy_strain	
	v .	
	1.3 de_cauchy_stress	
	1.3 de_cauchy_stress	
	1.3 de_cauchy_stress	
	1.3 de_cauchy_stress	· · · · · ·
12	1.3 de_cauchy_stress 1.4 dw_lin_elastic 1.5 dw_lin_elastic_r 1.6 dw_lin_elastic_r 1.7 dw_lin_viscous	· · · · · ·
12	1.3 de_cauchy_stress 1.4 dw_lin_elastic 1.5 dw_lin_elastic_iso 1.6 dw_lin_elastic_r 1.7 dw_lin_viscous 1.8 dw_lin_viscous_th Cerms in termsBiot	
12	1.3 de_cauchy_stress 1.4 dw_lin_elastic 1.5 dw_lin_elastic_iso 1.6 dw_lin_elastic_r 1.7 dw_lin_viscous 1.8 dw_lin_viscous_th Cerms in termsBiot 2.1 d_biot_div	
12	1.3 de_cauchy_stress 1.4 dw_lin_elastic 1.5 dw_lin_elastic_iso 1.6 dw_lin_elastic_r 1.7 dw_lin_viscous 1.8 dw_lin_viscous_th Cerms in termsBiot 2.1 d_biot_div 2.2 dw_biot_div	
12	1.3 de_cauchy_stress 1.4 dw_lin_elastic 1.5 dw_lin_elastic_iso 1.6 dw_lin_elastic_r 1.7 dw_lin_viscous 1.8 dw_lin_viscous_th Cerms in termsBiot 2.1 d_biot_div 2.2 dw_biot_div 2.3 dw_biot_div_dt	
12	1.3 de_cauchy_stress 1.4 dw_lin_elastic 1.5 dw_lin_elastic_iso 1.6 dw_lin_elastic_r 1.7 dw_lin_viscous 1.8 dw_lin_viscous_th Cerms in termsBiot 2.1 d_biot_div 2.2 dw_biot_div 2.3 dw_biot_div_dt 2.4 dw_biot_div_r	
12	1.3 de_cauchy_stress 1.4 dw_lin_elastic 1.5 dw_lin_elastic_iso 1.6 dw_lin_elastic_r 1.7 dw_lin_viscous 1.8 dw_lin_viscous_th Perms in termsBiot 2.1 d_biot_div 2.2 dw_biot_div 2.3 dw_biot_div_dt 2.4 dw_biot_div_r 2.5 dw_biot_div_th	
12	1.3 de_cauchy_stress 1.4 dw_lin_elastic 1.5 dw_lin_elastic_iso 1.6 dw_lin_elastic_r 1.7 dw_lin_viscous 1.8 dw_lin_viscous_th Cerms in termsBiot 2.1 d_biot_div 2.2 dw_biot_div 2.3 dw_biot_div_dt 2.4 dw_biot_div_dt 2.5 dw_biot_div_th 2.6 dw_biot_grad	
12	1.3 de_cauchy_stress 1.4 dw_lin_elastic 1.5 dw_lin_elastic_iso 1.6 dw_lin_elastic_r 1.7 dw_lin_viscous 1.8 dw_lin_viscous_th Perms in termsBiot 2.1 d_biot_div 2.2 dw_biot_div 2.3 dw_biot_div_dt 2.4 dw_biot_div_r 2.5 dw_biot_div_th 2.6 dw_biot_grad 2.7 dw_biot_grad_r	
12	1.3 de_cauchy_stress 1.4 dw_lin_elastic 1.5 dw_lin_elastic_iso 1.6 dw_lin_elastic_r 1.7 dw_lin_viscous 1.8 dw_lin_viscous_th Cerms in termsBiot 2.1 d_biot_div 2.2 dw_biot_div 2.3 dw_biot_div_dt 2.4 dw_biot_div_dt 2.5 dw_biot_div_th 2.6 dw_biot_grad	
	1.3 de_cauchy_stress 1.4 dw_lin_elastic 1.5 dw_lin_elastic_iso 1.6 dw_lin_elastic_r 1.7 dw_lin_viscous 1.8 dw_lin_viscous_th Perms in termsBiot 2.1 d_biot_div 2.2 dw_biot_div 2.2 dw_biot_div 2.3 dw_biot_div_dt 2.4 dw_biot_div_r 2.5 dw_biot_div_th 2.6 dw_biot_grad 2.7 dw_biot_grad_r 2.8 dw_biot_grad_th Perm caches in cachesBasic	
	1.3 de_cauchy_stress 1.4 dw_lin_elastic 1.5 dw_lin_elastic_iso 1.6 dw_lin_elastic_r 1.7 dw_lin_viscous 1.8 dw_lin_viscous_th Cerms in termsBiot 2.1 d_biot_div 2.2 dw_biot_div 2.3 dw_biot_div_dt 2.4 dw_biot_div_dt 2.5 dw_biot_div_th 2.6 dw_biot_grad 2.7 dw_biot_grad_r 2.8 dw_biot_grad_th Cerm caches in cachesBasic 3.1 cauchy_strain	
	1.3 de_cauchy_stress 1.4 dw_lin_elastic 1.5 dw_lin_elastic_iso 1.6 dw_lin_elastic_r 1.7 dw_lin_viscous 1.8 dw_lin_viscous_th Cerms in termsBiot 2.1 d_biot_div 2.2 dw_biot_div 2.3 dw_biot_div_dt 2.4 dw_biot_div_r 2.5 dw_biot_div_th 2.6 dw_biot_grad 2.7 dw_biot_grad_r 2.8 dw_biot_grad_th Cerm caches in cachesBasic 3.1 cauchy_strain 3.2 div_vector	
	1.3 de_cauchy_stress 1.4 dw_lin_elastic 1.5 dw_lin_elastic_iso 1.6 dw_lin_elastic_r 1.7 dw_lin_viscous 1.8 dw_lin_viscous_th Perms in termsBiot 2.1 d_biot_div 2.2 dw_biot_div 2.3 dw_biot_div_dt 2.4 dw_biot_div_t 2.5 dw_biot_div_th 2.6 dw_biot_grad 2.7 dw_biot_grad_r 2.8 dw_biot_grad_th Perm caches in cachesBasic 3.1 cauchy_strain 3.2 div_vector 3.3 grad_scalar	
	1.3 de_cauchy_stress 1.4 dw_lin_elastic 1.5 dw_lin_elastic_iso 1.6 dw_lin_elastic_r 1.7 dw_lin_viscous 1.8 dw_lin_viscous_th Perms in termsBiot 2.1 d_biot_div 2.2 dw_biot_div 2.3 dw_biot_div_dt 2.4 dw_biot_div_r 2.5 dw_biot_div_th 2.6 dw_biot_grad 2.7 dw_biot_grad_r 2.8 dw_biot_grad_th Perm caches in cachesBasic 3.1 cauchy_strain 3.2 div_vector 3.3 grad_scalar 3.4 mat_in_qp	
	1.3 de_cauchy_stress 1.4 dw_lin_elastic 1.5 dw_lin_elastic_r 1.6 dw_lin_elastic_r 1.7 dw_lin_viscous 1.8 dw_lin_viscous_th Perms in termsBiot 2.1 d_biot_div 2.2 dw_biot_div 2.2 dw_biot_div_dt 2.3 dw_biot_div_dt 2.4 dw_biot_div_r 2.5 dw_biot_div_th 2.6 dw_biot_grad 2.7 dw_biot_grad_r 2.8 dw_biot_grad_th Perm caches in cachesBasic 3.1 cauchy_strain 3.2 div_vector 3.3 grad_scalar 3.4 mat_in_qp 3.5 state_in_surface_qp	
	1.3 de_cauchy_stress 1.4 dw_lin_elastic 1.5 dw_lin_elastic_iso 1.6 dw_lin_elastic_r 1.7 dw_lin_viscous 1.8 dw_lin_viscous_th Perms in termsBiot 2.1 d_biot_div 2.2 dw_biot_div 2.3 dw_biot_div_dt 2.4 dw_biot_div_r 2.5 dw_biot_div_th 2.6 dw_biot_grad 2.7 dw_biot_grad_r 2.8 dw_biot_grad_th Perm caches in cachesBasic 3.1 cauchy_strain 3.2 div_vector 3.3 grad_scalar 3.4 mat_in_qp	

1 Notation

Ω	volume (sub)domain
Γ	surface (sub)domain
t	time
y	any function
\underline{y}	any vector function
<u>n</u>	unit outward normal
q, s	scalar test function
p, r	scalar unknown or parameter function
\bar{p}	scalar parameter function
\underline{v}	vector test function
w, \underline{u}	vector unknown or parameter function
\underline{b}	vector parameter function
$\underline{\underline{e}}(\underline{u})$	Cauchy strain tensor $(\frac{1}{2}((\nabla u) + (\nabla u)^T))$
\underline{f}	vector volume forces
ρ	density
ν	kinematic viscosity
c	any constant
$\delta_{ij}, \underline{\underline{I}}$	Kronecker delta, identity matrix

The suffix $"_0"$ denotes a quatity related to a previous time step. Term names are prefixed according to the following conventions:

dw	discrete weak	terms having a virtual (test) argument and zero or more unknown arguments, used for FE assembling	
d	discrete	terms having all arguments known, the result is the scalar value of the integral	
di	discrete integrated	like 'd' but the result is not a scalar (e.g. a vector)	
dq	discrete quadrature	terms having all arguments known, the result are the values in quadrature points of elements	
	$continued\dots$		

	$\dots continued$		
de	discrete element	terms having all arguments known, the result is a vector of integral averages over elements (element average of 'dq')	

2 List of all terms

d_biot_div	$\int_{\Omega} r \alpha_{ij} e_{ij}(\underline{w})$
d_diffusion	$\int_{\Omega} K_{ij} \nabla_i \bar{p} \nabla_j r$
d_div	$\int_{\Omega} \bar{p} \nabla \cdot \underline{w}$
d_lin_elastic	$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{b}) e_{kl}(\underline{w})$
d_surface_dot	$\int_{\Gamma} pr, \int_{\Gamma} \underline{u} \cdot \underline{w}$
d_surface_integrate	$\int_{\Gamma} y$, for vectors: $\int_{\Gamma} \underline{y} \cdot \underline{n}$
d_{-} volume	$\int_{\Omega} 1$
d_{volume_dot}	$\int_{\Omega} pr, \int_{\Omega} \underline{u} \cdot \underline{w}$
$d_{\text{-}}$ volume_integrate	$\int_{\Omega} y$
$d_{volume_{wdot}}$	$\int_{\Omega} y p r, \int_{\Omega} y \underline{u} \cdot \underline{w}$
de_cauchy_strain	vector of $\forall K \in \mathcal{T}_h : \int_{T_K} \underline{\underline{e}}(\underline{w})$
de_cauchy_stress	
de_diffusion_velocity	vector of $\forall K \in \mathcal{T}_h : \int_{T_K} K_{ij} \nabla_j r$
di_volume_integrate_mat	$\int_{\Omega} m$
dq_grad	$(\nabla p) _{qp}$
dq_lin_convect	$((\underline{b}\cdot abla)\underline{u}) _{qp}$
dw_biot_div	$\int_{\Omega} q \; lpha_{ij} e_{ij}(\underline{u})$
$dw_biot_div_dt$	$\int_{\Omega} q \alpha_{ij} \frac{e_{ij}(\underline{u}) - e_{ij}(\underline{u}_0)}{\Delta t}$
$dw_biot_div_r$	$\int_{\Omega} q \alpha_{ij} e_{ij}(\underline{w})$
$dw_biot_div_th$	$\int_{\Omega} \left[\int_{0}^{t} \alpha_{ij}(t-\tau) \frac{\mathrm{d}e_{kl}(\underline{u}(\tau))}{\mathrm{d}\tau} \mathrm{d}\tau \right] q$
dw_biot_grad	$\int_{\Omega} p \; lpha_{ij} e_{ij}(\underline{v})$
dw_biot_grad_r	$\int_{\Omega} r \alpha_{ij} e_{ij}(\underline{v})$
$dw_biot_grad_th$	$\int_{\Omega} \left[\int_{0}^{t} \alpha_{ij}(t-\tau) p(\tau) \right) d\tau \right] e_{ij}(\underline{v})$
dw_convect	$\int_{\Omega} ((\underline{u} \cdot \nabla)\underline{u}) \cdot \underline{v}$
dw_diffusion	$\int_{\Omega} K_{ij} abla_i q abla_j p$
dw_diffusion_r	$\int_{\Omega} K_{ij} \nabla_i q \nabla_j r$
dw_div	$\int_{\Omega} q \nabla \cdot \underline{u}$
dw_div_grad	$\int_{\Omega} \nu \nabla \underline{v} : \nabla \underline{u}$
con	tinued

	continued
dw_div_r	$\int_{\Omega} q \nabla \cdot \underline{w}$
dw_grad	$\int_{\Omega} p \ \nabla \cdot \underline{v}$
dw_grad_dt	$\int_{\Omega} rac{p-p_0}{\Delta t} abla \cdot \underline{v}$
dw_laplace	$ \begin{array}{c cccc} c \int_{\Omega} \nabla s & \cdot & \nabla r & \text{or} \\ \sum_{K \in \mathcal{T}_h} \int_{T_K} c_K & \nabla s \cdot \nabla r & & \end{array} $
dw_lin_convect	$\int_{\Omega} ((\underline{b} \cdot \nabla)\underline{u}) \cdot \underline{v}$
dw_lin_elastic	$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u})$
dw_lin_elastic_iso	$ \begin{vmatrix} \int_{\Omega} D_{ijkl} & e_{ij}(\underline{v})e_{kl}(\underline{u}) & \text{with} \\ D_{ijkl} &= \mu(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + \\ \lambda \delta_{ij}\delta_{kl} \end{vmatrix} $
$dw_{lin_elastic_r}$	$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{w})$
dw_lin_viscous	$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) \frac{e_{kl}(\underline{u}) - e_{kl}(\underline{u}_0)}{\Delta t}$
dw_lin_viscous_th	$\int_{\Omega} \left[\int_{0}^{t} \mathcal{H}_{ijkl}(t-\tau) \frac{\mathrm{d}e_{kl}(\underline{u}(\tau))}{\mathrm{d}\tau} \mathrm{d}\tau \right] e_{ij}(\underline{v})$
dw_mass	$\int_{\Omega} \rho \underline{v} \cdot \frac{\underline{u} - \underline{u}_0}{\Delta t}$
dw_mass_scalar	$\int_{\Omega}qp$
dw_mass_scalar_fine_coarse	$\int_{\Omega}q_{h}p_{H}$
dw_mass_scalar_r	$\int_{\Omega}qr$
dw_mass_scalar_variable	$\int_{\Omega} cqp$
dw_mass_vector	$\int_{\Omega} ho \ \underline{v} \cdot \underline{u}$
dw_permeability_r	$\int_{\Omega} K_{ij} \nabla_j q$
dw_point_lspring	$ \frac{\underline{f}^{i}}{-k\underline{u}^{i}} \forall \text{ FE node } i \text{ in region} \\ \gamma \int_{\Omega} (\nabla \cdot u) \cdot (\nabla \cdot v) $
$dw_st_grad_div$	$\gamma \int_{\Omega} (\nabla \cdot \underline{u}) \cdot (\nabla \cdot \underline{v})$
$dw_st_pspg_c$	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot \nabla q$
$dw_st_pspg_p$	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ \nabla p \cdot \nabla q$
$dw_st_supg_c$	
dw_st_supg_p	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \ \nabla p \cdot ((\underline{b} \cdot \nabla) \underline{v})$
dw_surface_ltr	$\int_{\Gamma} \underline{v} \cdot \underline{\underline{\sigma}} \cdot \underline{n}$
$dw_volume_integrate$	$\int_\Omega q$
dw_volume_lvf	$\int_{\Omega} \underline{v} \cdot \underline{f}$
dw_volume_wdot	$\int_{\Omega} yqp, \int_{\Omega} y\underline{v} \cdot \underline{u}$
$dw_volume_wdot_dt$	$\int_{\Omega} yq^{\frac{p-p_0}{\Delta t}}, \int_{\Omega} y\underline{v} \cdot \frac{\underline{u}-\underline{u}_0}{\Delta t}$
$dw_volume_wdot_r$	$\int_{\Omega} yqr, \int_{\Omega} y\underline{v} \cdot \underline{w}$
dw_volume_wdot_th	$\int_{\Omega} \left[\int_{0}^{t} \mathcal{G}(t-\tau) p(\tau) d\tau \right] q$

3 Introduction

Equations in SfePy are built using terms, which correspond directly to the integral forms of weak formulation of a problem to be solved. As an example, let us consider the Laplace equation:

$$c\Delta t = 0 \text{ in } \Omega, \quad t = \bar{t} \text{ on } \Gamma.$$
 (1)

The weak formulation of (1) is: Find $t \in V$, such that

$$\int_{\Omega} c \, \nabla t : \nabla s = 0, \quad \forall s \in V_0 \,. \tag{2}$$

In the syntax used in SfePy input files, this can be written as

$$dw_laplace.i1.0mega(coef, s, t) = 0,$$
 (3)

which directly corresponds to the discrete version of (2): Find $t \in V_h$, such that

$$oldsymbol{s}^T(\int_{\Omega_h} c \ oldsymbol{G}^T oldsymbol{G}) oldsymbol{t} = 0, \quad orall oldsymbol{s} \in V_{h0} \ ,$$

where $\nabla u \approx \mathbf{G}\mathbf{u}$. The integral over the discrete domain Ω_h is approximated by a numerical quadrature, that is named i1 in our case.

3.1 Term call syntax

In general, the syntax of a term call in SfePy is:

where <i> denotes an integral name (i.e. a name of numerical quadrature to use) and <r> marks a region (domain of the integral). In the following, <virtual> corresponds to a test function, <state> to a unknown function and describe all the terms available in SfePv to date.

4 Terms in termsMass

4.1 dw_mass

Class: MassTerm

Description: Inertial forces term (constant density).

Definition:

$$\int_{\Omega} \rho \underline{v} \cdot \frac{\underline{u} - \underline{u}_0}{\Delta t}$$

Arguments:

material.rho	ρ
ts.dt	Δt
parameter	\underline{u}_0

Syntax: dw_mass.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

4.2 dw_mass_scalar

Class: MassScalarTerm

Description: Scalar field mass matrix/rezidual.

Definition:

 $\int_{\Omega} qp$

 $Syntax: dw_mass_scalar.<i>.<r>(<virtual>, <state>)$

4.3 dw_mass_scalar_fine_coarse

Class: MassScalarFineCoarseTerm

Description: Scalar field mass matrix/rezidual for coarse to fine grid interpolation. Field p_H

belong to the coarse grid, test field q_h to the fine grid.

Definition:

 $\int_{\Omega} q_h p_H$

Syntax: dw_mass_scalar_fine_coarse.<i>.<r>(<virtual>, <state>, <iemaps>, <pbase>)

4.4 dw_mass_scalar_r

Class: MassScalarRTerm

Description: Scalar field mass rezidual — r is assumed to be known.

Definition:

 $\int_{\Omega} qr$

 $Syntax: \ \, dw_mass_scalar_r. < i>. < r>(< virtual>, < parameter>)$

4.5 dw_mass_scalar_variable

Class: MassScalarVariableTerm

Description: Scalar field mass matrix/rezidual with coefficient c defined in nodes.

Definition:

 $\int_{\Omega} cqp$

 $Syntax: \ dw_mass_scalar_variable. <i>.<r>(<material>, <virtual>, <state>)$

4.6 dw_mass_vector

Class: MassVectorTerm

Description: Vector field mass matrix/rezidual.

Definition:

 $\int_{\Omega} \rho \ \underline{v} \cdot \underline{u}$

Syntax: dw_mass_vector.<i>.<r>(<material>, <virtual>, <state>)

5 Terms in termsBasic

5.1 d_surface_dot

 ${\bf Class:}\ {\bf DotProductSurfaceTerm}$

Description: Surface $L^2(\Gamma)$ dot product for both scalar and vector fields.

Definition:

 $\int_{\Gamma} pr, \int_{\Gamma} \underline{u} \cdot \underline{w}$

Syntax: d_surface_dot.<i>.<r>(<parameter_1>, <parameter_2>)

5.2 d_surface_integrate

Class: IntegrateSurfaceTerm

Definition:

 $\int_{\Gamma} y$, for vectors: $\int_{\Gamma} y \cdot \underline{n}$

Syntax: d_surface_integrate.<i>.<r>(<parameter>)

5.3 d_volume

Class: VolumeTerm

Description: Volume of a domain. Uses approximation of the parameter variable.

Definition:

 $\int_{\Omega} 1$

5.4 d_volume_dot

 ${\bf Class:}\ {\bf DotProductVolumeTerm}$

Description: Volume $L^2(\Omega)$ dot product for both scalar and vector fields.

Definition:

 $\int_{\Omega} pr, \int_{\Omega} \underline{u} \cdot \underline{w}$

Syntax: d_volume_dot.<i>.<r>(<parameter_1>, <parameter_2>)

5.5 d_volume_integrate

Class: IntegrateVolumeTerm

Definition:

 $\int_{\Omega} y$

Syntax: d_volume_integrate.<i>.<r>(

5.6 d_volume_wdot

Class: WDotProductVolumeTerm

Description: Volume $L^2(\Omega)$ weighted dot product for both scalar and vector fields.

Definition:

 $\int_{\Omega} ypr, \int_{\Omega} y\underline{u} \cdot \underline{w}$

Arguments:

material weight function y

Syntax: d_volume_wdot.<i>.<r>(<material>, <parameter_1>, <parameter_2>)

5.7 di_volume_integrate_mat

 ${\bf Class:}\ {\bf IntegrateVolumeMatTerm}$

Description: Integrate material parameter m over a domain. Uses approximation of y variable. **Definition**:

$$\int_{\Omega} m$$

Arguments:

material	m (can have up to two dimensions)		
parameter	y		
shape	shape of material parameter		
mode	'const' or 'vertex' or 'ele- ment_avg'		

Syntax: di_volume_integrate_mat.<i>.<r>(<material>, <parameter>, <shape>, <mode>)

5.8 dw_volume_integrate

Class: IntegrateVolumeOperatorTerm

Definition:

 $\int_{\Omega} q$

Syntax: dw_volume_integrate.<i>.<r>>(<virtual>)

$5.9 \quad dw_volume_wdot$

 ${\bf Class:}\ {\bf WDotProductVolumeOperatorTerm}$

Description: Volume $L^2(\Omega)$ weighted dot product operator for scalar and vector (not implemented!) fields.

Definition:

$$\int_{\Omega} yqp, \int_{\Omega} y\underline{v} \cdot \underline{u}$$

Arguments:

material	weight function y
----------	-------------------

Syntax: dw_volume_wdot.<i>.<r>(<material>, <virtual>, <state>)

$5.10 dw_volume_wdot_dt$

 ${\bf Class:}\ {\bf WDotProductVolumeOperatorDtTerm}$

Description: Volume $L^2(\Omega)$ weighted dot product operator for scalar and vector (not implemented!) fields.

Definition:

$$\int_{\Omega} y q \frac{p-p_0}{\Delta t}, \; \int_{\Omega} y \underline{v} \cdot \frac{\underline{u}-\underline{u}_0}{\Delta t}$$

Arguments:

material weight function y

Syntax: dw_volume_wdot_dt.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

$5.11 dw_volume_wdot_r$

 ${\bf Class:}\ {\bf WDotProductVolumeOperatorRTerm}$

Description: Volume $L^2(\Omega)$ weighted dot product operator for scalar and vector (not imple-

mented!) fields (to use on a right-hand side).

Definition:

$$\int_{\Omega} yqr, \int_{\Omega} y\underline{v} \cdot \underline{w}$$

Arguments:

material weight function y

Syntax: dw_volume_wdot_r.<i>.<r>(<material>, <virtual>, <parameter>)

5.12 dw_volume_wdot_th

 ${\bf Class:}\ {\bf WDotProductVolumeOperatorTHTerm}$

Definition:

$$\int_{\Omega} \left[\int_0^t \mathcal{G}(t-\tau) p(\tau) \, d\tau \right] q$$

Syntax: dw_volume_wdot_th.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

6 Terms in termsLaplace

6.1 d_diffusion

Class: DiffusionIntegratedTerm

Description: Integrated general diffusion term with permeability K_{ij} constant or given in mesh

vertices. **Definition**:

$$\int_{\Omega} K_{ij} \nabla_i \bar{p} \nabla_j r$$

Syntax: d_diffusion.<i>.<r>(<material>, <parameter_1>, <parameter_2>)

6.2 de_diffusion_velocity

Class: DiffusionVelocityTerm

Description: Diffusion velocity averaged in elements.

Definition: vector of

$$\forall K \in \mathcal{T}_h : \int_{T_K} K_{ij} \nabla_j r$$

 $Syntax: \ \, \texttt{de_diffusion_velocity.} < \texttt{i>.} < \texttt{r>} (\ \, \texttt{<material>},\ \, \texttt{<parameter>}\)$

6.3 dw_diffusion

Class: DiffusionTerm

Description: General diffusion term with permeability K_{ij} constant or given in mesh vertices.

Definition:

$$\int_{\Omega} K_{ij} \nabla_i q \nabla_j p$$

Syntax: dw_diffusion.<i>.<r>(<material>, <virtual>, <state>)

6.4 dw_diffusion_r

Class: DiffusionRTerm

Description: General diffusion term with permeability K_{ij} constant or given in mesh vertices.

The argument r is a known field (to use on a right-hand side).

Definition:

$$\int_{\Omega} K_{ij} \nabla_i q \nabla_j r$$

 $Syntax: \ \, dw_diffusion_r. <i>.<r>(<material>, <virtual>, <parameter>)$

6.5 dw_laplace

Class: LaplaceTerm

Description: Laplace term with c constant or constant per element.

Definition:

$$c \int_{\Omega} \nabla s \cdot \nabla r$$
 or $\sum_{K \in \mathcal{T}_h} \int_{T_K} c_K \ \nabla s \cdot \nabla r$

Syntax: dw_laplace.<i>.<r>(<material>, <virtual>, <state>)

6.6 dw_permeability_r

Class: PermeabilityRTerm

Description: Special-purpose diffusion-like term with permeability K_{ij} constant or given in mesh

vertices (to use on a right-hand side).

Definition:

$$\int_{\Omega} K_{ij} \nabla_{i} q$$

Syntax: dw_permeability_r.<i>.<r>(<material>, <virtual>, <index>)

7 Terms in termsNavierStokes

$7.1 d_{div}$

Class: DivIntegratedTerm

Description: Integrated divergence term (weak form).

Definition:

$$\int_{\Omega} \bar{p} \, \nabla \cdot \underline{w}$$

Syntax: d_div.<i>.<r>(<parameter_1>, <parameter_2>)

7.2 dq_grad

Class: GradQTerm

Description: Gradient term (weak form) in quadrature points.

Definition:

$$(\nabla p)|_{qp}$$

Syntax: dq_grad.<i>.<r>(<state>)

7.3 dq_lin_convect

Class: LinearConvectQTerm

Description: Linearized convective term evaluated in quadrature points.

Definition:

$$((\underline{b} \cdot \nabla)\underline{u})|_{qp}$$

Syntax: dq_lin_convect.<i>.<r>(<parameter>, <state>)

7.4 dw_convect

Class: ConvectTerm

Description: Nonlinear convective term.

Definition:

$$\int_{\Omega} ((\underline{u} \cdot \nabla)\underline{u}) \cdot \underline{v}$$

Syntax: dw_convect.<i>.<r>(<virtual>, <state>)

$7.5 \, dw_{div}$

Class: DivTerm

Description: Divergence term (weak form).

Definition:

$$\int_{\Omega} q \nabla \cdot \underline{u}$$

 $Syntax: dw_div.<i>.<r>(<virtual>, <state>)$

7.6 dw_div_grad

Class: DivGradTerm

Description: Diffusion term.

Definition:

$$\int_{\Omega} \nu \ \nabla \underline{v} : \nabla \underline{u}$$

Syntax: dw_div_grad.<i>.<r>(<material>, <virtual>, <state>)

$7.7 \, dw_div_r$

Class: DivRTerm

Description: Divergence term (weak form) with a known field (to use on a right-hand side).

Definition:

$$\int_{\Omega} q \nabla \cdot \underline{w}$$

Syntax: dw_div_r.<i>.<r>(<virtual>, <parameter>)

7.8 dw_grad

Class: GradTerm

Description: Gradient term (weak form).

Definition:

$$\int_{\Omega} p \, \nabla \cdot \underline{v}$$

Syntax: dw_grad.<i>.<r>(<virtual>, <state>)

$7.9 \, dw_grad_dt$

Class: GradDtTerm

Description: Gradient term (weak form) with time-discretized \dot{p} .

Definition:

$$\int_{\Omega} \frac{p - p_0}{\Delta t} \nabla \cdot \underline{v}$$

Arguments:

ts.dt	Δt
parameter	p_0

Syntax: dw_grad_dt.<i>.<r>(<ts>, <virtual>, <state>, <parameter>)

7.10 dw_lin_convect

Class: LinearConvectTerm

Description: Linearized convective term.

Definition:

$$\int_{\Omega} ((\underline{b} \cdot \nabla)\underline{u}) \cdot \underline{v}$$

Syntax: dw_lin_convect.<i>.<r>(<virtual>, <parameter>, <state>)

7.11 dw_st_grad_div

Class: GradDivStabilizationTerm

Description: Grad-div stabilization term (γ is a global stabilization parameter).

Definition:

$$\gamma \int_{\Omega} (\nabla \cdot \underline{u}) \cdot (\nabla \cdot \underline{v})$$

Syntax: dw_st_grad_div.<i>.<r>(<material>, <virtual>, <state>)

7.12 dw_st_pspg_c

Class: PSPGCStabilizationTerm

Description: PSPG stabilization term, convective part (τ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot \nabla q$$

Syntax: dw_st_pspg_c.<i>.<r>(<material>, <virtual>, <parameter>, <state>)

$7.13 \quad dw_st_pspg_p$

Class: PSPGPStabilizationTerm

Description: PSPG stabilization term, pressure part (τ is a local stabilization parameter), alias

to Laplace term dw_laplace.

Definition:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ \nabla p \cdot \nabla q$$

Syntax: dw_st_pspg_p.<i>.<r>(<material>, <virtual>, <state>)

7.14 dw_st_supg_c

Class: SUPGCStabilizationTerm

Description: SUPG stabilization term, convective part (δ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot ((\underline{b} \cdot \nabla)\underline{v})$$

 $Syntax: \ dw_st_supg_c. <i>.<r>(<material>, <virtual>, <parameter>, <state>)$

$7.15 \quad dw_st_supg_p$

Class: SUPGPStabilizationTerm

Description: SUPG stabilization term, pressure part (δ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \ \nabla p \cdot ((\underline{b} \cdot \nabla) \underline{v})$$

Syntax: dw_st_supg_p.<i>.<r>(<material>, <virtual>, <parameter>, <state>)

8 Terms in termsPoint

8.1 dw_point_lspring

Class: LinearPointSpringTerm

Description: Linear springs constraining movement of FE nodes in a reagion; use as a relaxed

Dirichlet boundary conditions.

Definition:

$$f^i = -k\underline{u}^i \quad \forall \text{ FE node } i \text{ in region}$$

Syntax: dw_point_lspring.<i>.<r>(<material>, <virtual>, <state>)

9 Terms in termsVolume

9.1 dw_volume_lvf

 ${\bf Class:}\ {\bf Linear Volume Force Term}$

Description: Linear volume forces (weak form).

Definition:

$$\int_{\Omega} \underline{v} \cdot f$$

Syntax: dw_volume_lvf.<i>.<r>(<material>, <virtual>)

10 Terms in termsSurface

10.1 dw_surface_ltr

Class: LinearTractionTerm

Description: Linear traction forces (weak form), where, depending on dimension of 'material' argument, $\underline{\underline{\sigma}} \cdot \underline{\underline{n}}$ is $\underline{\bar{p}}\underline{\underline{I}} \cdot \underline{\underline{n}}$ for a given scalar pressure, $\underline{\underline{f}}$ for a traction vector, and itself for a stress tensor.

Definition:

$$\int_{\Gamma} \underline{v} \cdot \underline{\underline{\sigma}} \cdot \underline{n}$$

Syntax: dw_surface_ltr.<i>.<r>(<material>, <virtual>)

11 Terms in termsLinElasticity

11.1 d_lin_elastic

Class: LinearElasticIntegratedTerm

Description: Integrated general linear elasticity term.

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{b}) e_{kl}(\underline{w})$$

Syntax: d_lin_elastic.<i>.<r>(<material>, <parameter_1>, <parameter_2>)

11.2 de_cauchy_strain

Class: CauchyStrainTerm

Description: Cauchy strain tensor averaged in elements.

Definition: vector of

$$\forall K \in \mathcal{T}_h : \int_{T_K} \underline{\underline{e}}(\underline{w})$$

Syntax: de_cauchy_strain.<i>.<r>(

11.3 de_cauchy_stress

Class: CauchyStressTerm

Description: Cauchy stress tensor averaged in elements.

Definition: vector of

$$\forall K \in \mathcal{T}_h : \int_{\mathcal{T}_K} D_{ijkl} e_k l(\underline{w})$$

Syntax: de_cauchy_stress.<i>.<r>(<material>, <parameter>)

11.4 dw_lin_elastic

Class: LinearElasticTerm

Description: General linear elasticity term, with D_{ijkl} given in the usual matrix form exploiting symmetry: in 3D it is 6×6 with the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it is 3×3 with the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u})$$

Syntax: dw_lin_elastic.<i>.<r>(<material>, <virtual>, <state>)

11.5 dw_lin_elastic_iso

 ${\bf Class:}\ {\bf Linear Elastic Isotropic Term}$

Description: Isotropic linear elasticity term.

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u}) \text{ with } D_{ijkl} = \mu(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + \lambda \ \delta_{ij}\delta_{kl}$$

Syntax: dw_lin_elastic_iso.<i>.<r>(<material>, <virtual>, <state>)

11.6 dw_lin_elastic_r

Class: LinearElasticRTerm

Description: General linear elasticity term with a known field (to use on a right-hand side).

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{w})$$

Syntax: dw_lin_elastic_r.<i>.<r>(<material>, <virtual>, <parameter>)

11.7 dw_lin_viscous

Class: LinearViscousTerm

Description: General linear viscosity term, with D_{ijkl} given in the usual matrix form exploiting symmetry: in 3D it is 6×6 with the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it is 3×3 with the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) \frac{e_{kl}(\underline{u}) - e_{kl}(\underline{u}_0)}{\Delta t}$$

Arguments:

ts.dt	Δt
material	D_{ijkl}
virtual	$ \underline{v} $
state	\underline{u} (displacements of current time step)
parameter	\underline{u}_0 (known displacements of previous time step)

Syntax: dw_lin_viscous.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

11.8 dw_lin_viscous_th

Class: LinearViscousTHTerm

Definition:

$$\int_{\Omega} \left[\int_{0}^{t} \mathcal{H}_{ijkl}(t-\tau) \, \frac{\mathrm{d}e_{kl}(\underline{u}(\tau))}{\mathrm{d}\tau} \, \mathrm{d}\tau \right] \, e_{ij}(\underline{v})$$

Syntax: dw_lin_viscous_th.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

12 Terms in termsBiot

12.1 d_biot_div

Class: BiotDivRIntegratedTerm

Description: Integrated Biot divergence-like term (weak form) with α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} r \, \alpha_{ij} e_{ij}(\underline{w})$$

Syntax: d_biot_div.<i>.<r>(<material>, <parameter_1>, <parameter_2>)

12.2 dw_biot_div

Class: BiotDivTerm

Description: Biot divergence-like term (weak form) with α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} q \, \alpha_{ij} e_{ij}(\underline{u})$$

Syntax: dw_biot_div.<i>.<r>(<material>, <virtual>, <state>)

12.3 dw_biot_div_dt

Class: BiotDivDtTerm

Description: Biot divergence-like rate term (weak form) with α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} q \, \alpha_{ij} \frac{e_{ij}(\underline{u}) - e_{ij}(\underline{u_0})}{\Delta t}$$

Syntax: dw_biot_div_dt.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

12.4 dw_biot_div_r

Class: BiotDivRTerm

Description: Biot divergence-like term (weak form) with α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12]. The argument \underline{w} is a known field (to use on a right-hand side).

Definition:

$$\int_{\Omega} q \, \alpha_{ij} e_{ij}(\underline{w})$$

Syntax: dw_biot_div_r.<i>.<r>(<material>, <virtual>, <parameter>)

12.5 dw_biot_div_th

Class: BiotDivTHTerm

Definition:

$$\int_{\Omega} \left[\int_{0}^{t} \alpha_{ij} (t - \tau) \frac{\mathrm{d}e_{kl}(\underline{u}(\tau))}{\mathrm{d}\tau} \, \mathrm{d}\tau \right] q$$

Syntax: dw_biot_div_th.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

12.6 dw_biot_grad

Class: BiotGradTerm

Description: Biot gradient-like term (weak form) with α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} p \ \alpha_{ij} e_{ij}(\underline{v})$$

Syntax: dw_biot_grad.<i>.<r>(<material>, <virtual>, <state>)

12.7 dw_biot_grad_r

Class: BiotGradRTerm

Description: Biot gradient-like term (weak form) with α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12]. The argument r is a known field (to use on a right-hand side).

Definition:

$$\int_{\Omega} r \, \alpha_{ij} e_{ij}(\underline{v})$$

Syntax: dw_biot_grad_r.<i>.<r>(<material>, <virtual>, <parameter>)

12.8 dw_biot_grad_th

 ${\bf Class:}\ {\bf BiotGradTHTerm}$

Definition:

$$\int_{\Omega} \left[\int_{0}^{t} \alpha_{ij}(t-\tau) p(\tau) \right) d\tau \right] e_{ij}(\underline{v})$$

Syntax: dw_biot_grad_th.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

13 Term caches in cachesBasic

13.1 cauchy_strain

Class: CauchyStrainDataCache

cache = term.getCache('cauchy_strain', <index>)
data = cache(<data name>, <ig>, <ih>, state)

13.2 div_vector

Class: DivVectorDataCache

cache = term.getCache('div_vector', <index>)
data = cache(<data name>, <ig>, <ih>, state)

13.3 grad_scalar

Class: GradScalarDataCache

cache = term.getCache('grad_scalar', <index>)
data = cache(<data name>, <ig>>, <ih>>, state)

13.4 mat_in_qp

Class: MatInQPDataCache

cache = term.getCache('mat_in_qp', <index>)
data = cache(<data name>, <ig>, <ih>, mat, ap, assumedShapes, modeIn)

13.5 state_in_surface_qp

```
Class: StateInSurfaceQPDataCache
cache = term.getCache( 'state_in_surface_qp', <index> )
data = cache( <data name>, <ig>, <ih>, state )
```

13.6 state_in_volume_qp

```
Class: StateInVolumeQPDataCache
cache = term.getCache( 'state_in_volume_qp', <index> )
data = cache( <data name>, <ig>>, <ih>>, state )
```

13.7 volume

```
Class: VolumeDataCache
cache = term.getCache( 'volume', <index> )
data = cache( <data name>, <ig>>, <ih>>, region, field )
```