Análise descritiva de uma base de dados

Otto Tavares

2023-02-13

Introdução

##

Na Aula 7, temos o objetivo de abrir uma base de dados e dar os primeiros passos em análise estatística dessa base.

Como sempre, o primeiro passo é importar as bibliotecas que serão utilizadas para análise, como tydiverse, summarytools e dlookr.

```
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr
             1.1.4
                       v readr
                                    2.1.5
## v forcats 1.0.0
                                    1.5.1
                        v stringr
## v ggplot2 3.4.4
                        v tibble
                                    3.2.1
## v lubridate 1.9.3
                        v tidyr
                                    1.3.1
## v purrr
              1.0.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(dlookr)
## Registered S3 methods overwritten by 'dlookr':
    method
##
                    from
##
    plot.transform scales
##
    print.transform scales
##
## Attaching package: 'dlookr'
## The following object is masked from 'package:tidyr':
##
##
       extract
## The following object is masked from 'package:base':
##
##
       transform
library(summarytools)
##
## Attaching package: 'summarytools'
## The following object is masked from 'package:tibble':
```

view library(readxl) library(knitr) #crimes.furtos %>% dplyr::filter(mes_ano == "2022m12") %>% diagnose()

#crimes.furtos %>% dplyr::filter(mes_ano == "2022m12") %>% dfSummary() %>% view()

A base trabalhada nesta aula, será a base de dados hipotética disponbilizada no livro texto dos autores Bussab e Moretim. Vamos importá-la e imprimir as primeiras observações para conhecimento das variáveis. kable(salarios)

n	estado_civil	Grau_de_instrucao	n_filhos	salario	idade_anos	idade_meses	regiao
1	solteiro	ensino fundamental	NA	4.00	26	3	interior
2	casado	ensino fundamental	1	4.56	32	10	capital
3	casado	ensino fundamental	2	5.25	36	5	capital
4	solteiro	ensino médio	NA	5.73	20	10	outra
5	solteiro	ensino fundamental	NA	6.26	40	7	outra
6	casado	ensino fundamental	0	6.66	28	0	interior
7	solteiro	ensino fundamental	NA	6.86	41	0	interior
8	solteiro	ensino fundamental	NA	7.39	43	4	capital
9	casado	ensino médio	1	7.59	34	10	capital
10	solteiro	ensino médio	NA	7.44	23	6	outra
11	casado	ensino médio	2	8.12	33	6	interior
12	solteiro	ensino fundamental	NA	8.46	27	11	capital
13	solteiro	ensino médio	NA	8.74	37	5	outra
14	casado	ensino fundamental	3	8.95	44	2	outra
15	casado	ensino médio	0	9.13	30	5	interior
16	solteiro	ensino médio	NA	9.35	38	8	outra
17	casado	ensino médio	1	9.77	31	7	capital
18	casado	ensino fundamental	2	9.80	39	7	outra
19	solteiro	superior	NA	10.53	25	8	interior
20	solteiro	ensino médio	NA	10.76	37	4	interior
21	casado	ensino médio	1	11.06	30	9	outra
22	solteiro	ensino médio	NA	11.59	34	2	capital
23	solteiro	ensino fundamental	NA	12.00	41	0	outra
24	casado	superior	0	12.79	26	1	outra
25	casado	ensino médio	2	13.23	32	5	interior
26	casado	ensino médio	2	13.60	35	0	outra
27	solteiro	ensino fundamental	NA	13.85	46	7	outra
28	casado	ensino médio	0	14.69	29	8	interior
29	casado	ensino médio	5	14.71	40	6	interior
30	casado	ensino médio	2	15.99	35	10	capital
31	solteiro	superior	NA	16.22	31	5	outra
32	casado	ensino médio	1	16.61	36	4	interior
33	casado	superior	3	17.26	43	7	capital
34	solteiro	superior	NA	18.75	33	7	capital
35	casado	ensino médio	2	19.40	48	11	capital
36	casado	superior	3	23.30	42	2	interior

###Identificando os tipos de cada variável na base

Para identificar os tipos de cada variável na base, vamos utilizar a função diagnose do pacote dlookr e reportar o tipo de cada um para melhor trabalharmos os dados.

```
salarios %>% dlookr::diagnose()
```

```
## # A tibble: 8 x 6
##
     variables
                         types missing_count missing_percent unique_count unique_rate
##
     <chr>>
                         <chr>
                                         <int>
                                                          <dbl>
                                                                         <int>
                                                                                      <dbl>
## 1 n
                         nume~
                                             0
                                                             0
                                                                            36
                                                                                     1
                         char~
                                             0
                                                             0
                                                                             2
                                                                                     0.0556
## 2 estado_civil
                                                                             3
## 3 Grau de instrucao char~
                                             0
                                                             0
                                                                                     0.0833
                                                           44.4
## 4 n_filhos
                         nume~
                                            16
                                                                             6
                                                                                     0.167
## 5 salario
                                                             0
                                                                            36
                         nume~
                                             0
                                             0
                                                             0
                                                                            24
                                                                                     0.667
## 6 idade_anos
                         nume~
## 7 idade_meses
                                             0
                                                             0
                                                                            12
                                                                                     0.333
                         nume~
## 8 regiao
                                             0
                                                                             3
                                                                                     0.0833
                         char~
```

É fácil ver que na base há três variáveis qualitativas, sendo as variáveis Estado Civil e região nominais, enquanto a variável Grau de Instrução é ordinal.

Sobre as variáveis quantitativas, temos número de filhos e idade com variáveis discretas, equanto a variável salário é contínua.

##Análise de frequências de variáveis qualitativas

0 |

36 I

100.00 |

\<NA\> |

Total |

|

|

A variável região é uma das variáveis qualitativas nominais da base, sendo uma variável interessante para extraírmos as frequências. Para esse caso, vamos utilizar a função freq() do pacote summarytools

```
salarios %>% dplyr::select(regiao) %>% summarytools::freq(., style = 'rmarkdown')
## setting plain.ascii to FALSE
## ### Frequencies
## #### salarios$regiao
## **Type:** Character
##
##
             | Freq | % Valid | % Valid Cum. | % Total | % Total Cum. |
                                             -----: | -----
      **capital**
                       11 |
                              30.56 |
                                              30.56
                                                        30.56 |
                                                                        30.56 |
##
##
     **interior** |
                       12 |
                              33.33 I
                                              63.89 |
                                                        33.33 |
                                                                        63.89 I
        **outra** |
                       13 |
                              36.11 |
                                             100.00 |
                                                        36.11 |
                                                                       100.00 |
```

Nas colunas Freq, temos a frequência absoluta, mostrando um grau de bastante homogeneidade entre as classes. Padrão esse, que é confirmado com a coluna Valid, que apresenta as frequências relativas de cada opção de região.

100.00 |

0.00 |

100.00 |

100.00 |

100.00 |

Podemos fazer a mesma análise para os dados de estado civil, os quais podemos estar interessados em buscar evidência se há mais funcionários casados ou solteiros na empresa. A seguir, temos a tabela destas proporções, onde é perceptível que há maior proporção de funcionários casados.

```
salarios %>% dplyr::select(estado_civil) %>% summarytools::freq(., style = 'rmarkdown')

## setting plain.ascii to FALSE

## ### Frequencies

## #### salarios$estado_civil

## **Type:** Character

##
```

```
  | Freq | % Valid | % Valid Cum. | % Total | % Total Cum. |
   ##
                       55.56 |
##
     **casado** |
                  20 |
                                    55.56
                                            55.56 |
                       44.44 I
                                   100.00 |
                                            44.44 |
                                                       100.00 |
##
    **solteiro** |
                  16 |
##
     **\<NA\>** |
                  0 |
                                             0.00 |
                                                       100.00 |
## |
      **Total** |
                  36 |
                                   100.00 |
                                           100.00 |
                                                       100.00 |
                      100.00 |
```

É importante destacar, que lemos a coluna Valid sem nos preocupar nestes casos, pois não há dados faltantes para nenhumas das duas variáveis.

Por fim, podemos criar tabelas de frequências para uma variável quantitativa discreta, como é o caso do número de filhos dos funcionários da empresa.

```
salarios %>% dplyr::select(n_filhos) %>% summarytools::freq(., style = 'rmarkdown')
## setting plain.ascii to FALSE
## ### Frequencies
## #### salarios$n_filhos
## **Type:** Numeric
##
##
          | Freq | % Valid | % Valid Cum. | % Total | % Total Cum. |
                   ##
                   4 |
                         20.00 |
                                       20.00
                                                11.11 |
##
         **0** |
                                                              11.11
##
                   5 |
                         25.00 |
                                       45.00 |
                                                13.89 l
                                                               25.00 l
                   7 |
                         35.00 |
                                       80.00 |
                                                              44.44 |
## |
                                                 19.44
## |
                   3 |
                         15.00
                                       95.00 |
                                                 8.33 |
                                                              52.78
         **3**
                          5.00 |
                                      100.00 |
##
         **5**
                   1 |
                                                 2.78 |
                                                              55.56
##
    **\<NA\>** |
                  16 l
                                                44.44 l
                                                             100.00 I
                                      100.00 | 100.00 |
     **Total** |
                  36 | 100.00 |
                                                             100.00 I
```

Como há dados faltantes para essa variável, é importante o analista determinar qual o espaço amostral está interessado em focar sua análise.

A fim de ser comparável às análises pregressas, é importante que as frequências absoluta e relativa do total de dados seja considerada, isto é, leitura da coluna Total, a fim de manter o mesmo espaço amostral.

Caso, ele esteja interessado em analisar apenas os dados válidos, ele pode redefinir o espaço amostral, ler apenas a coluna Valid, porém recalculando as tabelas anteriores, considerando os indivíduos apenas com dados preenchidos para a variável filhos.

##Análise descritiva e de histogramas de uma variável contínua

Já para a variável salários, podemos analisar a centralidade dos dados, dipersão, assimetria, bem como suas estatísticas de ordem, a fim de checar se há presença de outliers.

Para realizar essa análise, podemos utilizar a função descr do pacote summarytools, e posteriormente realizar a leitura desses dados.

```
4.00 l
## |
             **Min** |
## |
              **Q1** |
                           7.52 |
                          10.16 |
## |
          **Median** |
## |
              **Q3** |
                          14.27 |
## |
             **Max** |
                          23.30 |
             **MAD** |
                           4.72 |
## |
             **IQR** |
                           6.51 |
## |
              **CV** |
                           0.41 |
## |
                           0.60 |
## |
        **Skewness** |
                           0.39 |
## | **SE.Skewness** |
        **Kurtosis** |
                          -0.33 |
## |
         **N.Valid** |
                          36.00 |
       **Pct.Valid** | 100.00 |
salarios %>% summarytools::dfSummary()
## Data Frame Summary
```

salarios

Dimensions: 36×8 ## Duplicates: 0

##

##

‡ No		Stats / Values			Valid
‡ ‡ 1	n	Mean (sd) : 18.5 (10.5)			36
‡	[numeric]	min < med < max:		::::::	(100.0
‡		1 < 18.5 < 36		: : : : : :	
‡		IQR (CV) : 17.5 (0.6)		: : : : : :	
ŧ				: : : : : : :	
2	estado_civil		20 (55.6%)	IIIIIIIII	36
	[character]	solteiro	16 (44.4%)	IIIIIIII	(100.0)
_					
3		1. ensino fundamental		IIIIII	36
	[character]	2. ensino médio		IIIIIIIII	(100.0)
		3. superior	6 (16.7%)	III	
4	n filhag	Mean (sd) : 1.6 (1.3)	0 . 4 (20 0%)	IIII	20
4	n_filhos [numeric]			IIIII	20 (55.6%)
	[Humeric]	min < med < max: 0 < 2 < 5	2 : 7 (35.0%)	IIIIIII	(33.0%)
		IQR (CV) : 1 (0.8)		III	
		1410 (00) . 1 (0.0)	5 : 1 (5.0%)	I	
			0 . 1 (0.0%)	-	
5	salario	Mean (sd) : 11.1 (4.6)	36 distinct values	. :	36
	[numeric]	min < med < max:		: : .	(100.09
		4 < 10.2 < 23.3		:::::::	
		IQR (CV) : 6.5 (0.4)		:::::::	
				:::::::	
6	-	Mean (sd) : 34.6 (6.7)	24 distinct values	:	36
	[numeric]	min < med < max:		. : :	(100.0
		20 < 34.5 < 48		: : : :	
		IQR (CV) : 10 (0.2)		. : : : :	
				: : : : :	

## 7	idade_meses	Mean (sd) : 5.6 (3.3)	12 distinct values	:	36
##	[numeric]	min < med < max:		: ::	(100.0
##		0 < 6 < 11		: :::	
##		IQR (CV) : 4.2 (0.6)		: : : : :	
##				: : : : : :	
##					
## 8	regiao	1. capital	11 (30.6%)	IIIIII	36
##	[character]	2. interior	12 (33.3%)	IIIIII	(100.0)
##		3. outra	13 (36.1%)	IIIIIII	
##					

Análise visual da distribuição dos indivíduos por idade

$\mathbf{Com}\ \mathbf{o}\ \mathbf{boxplot}$

Com o violino

salarios %>% dplyr::select(Grau_de_instrucao, salario) %>% ggplot(aes(x=Grau_de_instrucao, y = salario)

Com o dotplot

```
salarios %>% dplyr::select(Grau_de_instrucao, salario) %>% ggplot(aes(x=Grau_de_instrucao, y = salario)
```

Bin width defaults to 1/30 of the range of the data. Pick better value with ## `binwidth`.

Unindo o dotplot com o box ou violin para melhor ilustrar a análise

```
salarios %>% dplyr::select(Grau_de_instrucao, salario) %>% ggplot(aes(x=Grau_de_instrucao, y = salario))
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.
```


Análise visual da variável salário

Utilizando o número de bins indicado pelos autores do livro, bins igual a 5.

```
salarios %>% dplyr::select(salario) %>% ggplot(aes(x=salario))+geom_histogram(aes(y = after_stat(density))
```


salarios %>% dplyr::select(salario) %>% ggplot(aes(x=salario))+geom_histogram(aes(y = after_stat(densit

##Análise visual da variável salário, utilizando a binarização a partir de uma função customizada

Definindo as funções gerais para criação de bins

```
#Freedman-Diaconis
fd_bins <- function(x)
{
    bins <- 2*IQR(x)/((length(x))^(1/3))
    return(bins)
}

#Sturge
s_bins <- function(x)
{
    bins <- 3.49*sd(x)/((length(x))^(1/3))
    return(bins)
}</pre>
```

Cálculo do número de bins a partir da função de Freedman-Diaconis

```
salarios %>% dplyr::select(salario) %>% ggplot(aes(x=salario))+geom_histogram(aes(y = after_stat(densit
```

