INFS 519 – Fall 2015 Program Design and Data Structures Lecture 7

Instructor: James Pope

Email: jpope8@gmu.edu

Today

- Last Class
 - Heaps, Tree Traversals, Unit Testing
- Today
 - Midterm Feedback
 - Assignment Reviews
 - Binary Search Trees
 - Balancing & AVLs

Grading & Contesting

- Grade explanations
 - you must come to office hours or make an appointment
- Grades may be contested
 - you must justify your change request
 - any request should be made this week

Feedback

- Textbook
- Weekly Assignments
- Lecture Format
 - Reviews?
- Lecture Content
 - More from the book?
 - Less from the book?
 - Pace?
- Instruction

Last Class: Heaps

- Relationship maintained between...
 - parent and child
- Removing items
 - removes the root ("top" item)
- Common uses
 - priority queue
 - sorting

Priority Queue Summary

 Binary heap supports insertion and deletion of the max (min) item in logarithmic worstcase time. Uses an array, easy to implement, and elegant. Often best choice.

Operation Implementation	insert	delMax	findMax
Unordered Array	1	N	N
Ordered Array	N	1	1
Binary Heap	lg(N)	lg(N)	1
???*	1	1	1

Impossible: Lower bounds (omega) for compare sorting is N lg N. If O(1), then heap sort O(N).

Sorting Summary

- Heap sort is in place and guarantees N lg N performance, so why not used more?
- Heap sort poor cache relative to merge/quick (compares with values far apart).

Operation Implementation	worst	average	best	in place O(1)	stable	remarks
Selection Sort	N^2	N^2	N^2	yes	no	never use
Insertion Sort	N^2	N^2	N	yes	yes	small n
Merge Sort	N lg N	N lg N	N lg N	no	yes	extra memory
Quick Sort	N^2	N lg N	N lg N	yes*	no	fast practice
Heap Sort	N lg N	N lg N	N lg N	yes	no	poor cache
???	N lg N	N lg N	N lg N	yes	yes	Unknown

^{*} Depending on variant, will assume $O(lg(N)) \sim O(1)$

Tree Traversals: Pre Order

- process order 55, 42, 27, 6, 37, 50, 67, 59, 87, 78
 - self
 - left children
 - right children

Tree Traversals: Post Order

- process order 6, 37, 27, 50, 42, 59, 78, 87, 67, 55
 - left children
 - right children

Tree Traversals: In Order

- process order 6, 27, 37, 42, 50, 55, 59, 67, 78, 87
 - left children
 - self

If tree satisfies search order property, Let gravity generate sorted items

Immediate Predecessor/Ancestor

- Immediate Predecessor
 - Left once, right until null
- Immediate Ancestor
 - Right once, left until null
- Max/Min?

Symbol Tables

Sedgewick/Wayne 3.1

- Primary purpose is to associate a value with a key (a.k.a. "associative array", "dictionaries", "maps"). Key and value are separate objects.
- Can insert key/value and later search for the value by the key
- If the key is ordered (i.e. Comparable) then other convenient operations are possible
- Historically, inserting into the symbol table is called put(key,value) and searching is called get(key)

Key'ed Data Structures

- So far the object stored in the data structure is the key.
 - Requiring the object to adhere to key operations (e.g. compareTo, equals, hashCode) is not always desirable or possible
- Need way to store analogous to arrays with the key as the index and value as object in that position.
- The key is typically an attribute (or can be derived from the attributes) of the value object.

Basic Symbol Table Operations

- The get operation would be similar to accessing an array at an index position.
 - Object value = items[key];
 - Object value = symbolTable.get(key);
- The put operation would be similar to setting the value for an index position.
 - items[key] = value;
 - symbolTable.put(key, value);
- This is why this data structure is commonly called an "associative array".

Basic Symbol Table Operations

Sedgewick/Wayne 3.1

```
public interface BasicSymbolTable <Key, Value>
   //Gets the number of elements currently in the queue
    public int size();
    //Determines if there are not elements in the queue.
    public boolean isEmpty();
    //Inserts the value into the table using specified key.
    public void put( Key key, Value value );
    //Finds Value for the given Key.
    public Value get( Key key );
    //Removes the Value for the given Key from the table.
    public Value delete( Key key );
    //Iterable that enumerates each key in the table.
    public Iterable<Key> keys();
```

Ordered Symbol Table Operations

- Floor and ceiling.
 - Floor(Key key) largest key <= key</p>
 - Ceiling(Key key) smallest key >= key
- Rank of a key
 - Rank(Key key) number of keys less than key
- Select the k'th key
 - Select(int k) returns key that is the k'th element
- Iterate
 - Iterable<Key> keys(Key lo, Key hi)

Ordered Symbol Table Operations

Sedgewick/Wayne 3.1, Weiss 19.2

```
public interface OrderedSymbolTable <Key extends Comparable, Value>
   extends BasicSymbolTable<Key, Value>
   //... previous BasicSymbolTable operations
    public Value min();  //finds and returns minimum value
    public Value max();  //finds and returns maximum value
    public Key floor(Key key); //largest key <= key</pre>
    public Key ceiling(Key key);//smallest key >= key
    //Returns number of keys less than key.
    public int rank( Key key );
    //Finds and returns the k'th Key in the symbol table.
    public Kev select( int k );
    //Iterable keys sorted in [lo..hi].
    public Iterable<Key> keys(Key lo, Key hi);
```

Key Operations

- For basic symbol table, the key has to have the following operations.
 - Key.equals(Object o)
 - Optionally: Key.hashCode()
- For ordered symbol tables, the key must have an additional ordering operation.
 - Key.compareTo(Object o)

Symbol Tables Conventions

Sedgewick/Wayne 3.1

- Do not allow keys to be null
- No key can be associated with null value
 - If get(key) returns null, know not in table
- Do not allow duplicated values for a key
 - put(key1, val1) followed by put(key1, val2) overwrites previous val1
- Iteration allowed on the keys only
 - Can then use key to get associated value

Symbol Table Implementations

- Can we efficiently handle large number of get operations after large number of put/get operations?
- Naive
 - Unordered linked list
 - Ordered array
- Trees
 - Binary Search Trees
 - Balanced Variants (AVL, Red-Black, AA)
- Hash Tables

Binary Search Tree

- A type of binary tree!
- Relationship maintained between...
 - parent and both children
- Relationship
 - parent > elements in left sub tree
 - parent < elements in right sub tree
 - both children are binary search trees
 - no duplicates (how do we handle this?)

Binary Search Tree: Example

White board time...

insert random numbers

- insert a sorted list
 - what's the problem?

Binary Search Tree: Big-O

- Degenerate binary search trees
 - What is the height?
 - What is big-O of:
 - finding an element
 - inserting an element
 - deleting an element

Binary Search Tree: Big-O

- Balanced binary search trees
 - What is the height?
 - What is big-O of:
 - finding an element
 - inserting an element
 - deleting an element

Binary Search Tree: Big-O

- So... binary search trees
 - What is the height?
 - What is worst/best of:
 - finding an element
 - inserting an element
 - deleting an element

Binary Search Tree: Delete

- · Cases to consider.
 - No children, easy
 - 1 child, easy
 - 2 children, hard
- Can select predecessor or successor. Safe because order is maintained in both cases.
 - Hibbard deletion always selects successor
 - May consider random predecessor/successor
- Typically helper min and deleteMin methods

Binary Search Tree: Min/Max

- Can find min by continuously going left
- Can find max by continuously going right
- Easiest to do iteratively

Binary Search Tree: deleteMin/Max

Weiss Figure 19.11

- Usually recursive, keep parent in stack instead of iterative loop.
 - Min: Keep going left, if a right subtree, attach
 - Max: Keep going right, if left subtree, attach
- Seems to disconnect subtree but correctly resets as it unwinds.

How do we improve performance?

- · Balance!
 - preferably self-balancing! (balance as you add/remove/search the tree)
- How? Rotate!

How do we do this?

- Let me count the ways...
 - AVL Trees
 - Red-Black (2-3) Trees
 - AA Trees (will mention but not cover)
 - B-Trees
 - Splay Trees (will mention but not cover)
 - —
- What's the difference?
 - generally how and when to rotate

AVL Trees

- Not used much, but often taught
- Basic idea
 - Left and right subtrees shouldn't differ by a height of more than 1
- When to fix balance?
 - inserting/deleting
- Observation: Only nodes along the path from insertion point to root may need to potentially be balanced
 - Applies to many other balanced trees

Height Wrong? Fix it!

(a) Before rotation

(b) After rotation

Red-Black Trees

- Often taught, often used, more complicated
- Basic idea (two interpretations):
 - Nodes can be red or black, keep the "black height" even
 - Keep 1-to-1 correspondence with a perfectly balanced 2-3 tree, red node indicates a 3 node
- When to fix balance?
 - inserting/deleting

Red-Black is a 2-3 Tree as a BST

Sedgewick/Wayne 3.3

- 2-3 Trees are balanced but difficult to implement
- Binary Search
 Trees are easy to implement but not balanced
- Rules needed to keep 1-1

1-1 correspondence between red-black BSTs and 2-3 trees

Red-Black Tree Rules

- Nodes can be red or black
 - the root is (usually) black
 - null links are always black
- Red nodes have black node children
- All paths from a given node to its descendent leaves contains the same number of black nodes
 - if not, 6 different situations defined with specific solutions

Black height wrong? Fix it!

AA Trees

- Seldom taught, simpler variation of a red-black tree
- · Basic idea:
 - Variation of a red-black tree
 - Red nodes only added to right sub tree
- When to fix balance?
 - inserting/deleting
- http://user.it.uu.se/~arnea/ps/simp.pdf

Red-Black hard? This is easier!

Image Source: http://web.eecs.umich.edu/~sugih/courses/eecs281/f11/lectures/12-AAtrees+Treaps.pdf (page 1)

B Trees

- Commonly taught, commonly used, easy to implement
- Basic idea:
 - Tree + List = B-Tree
 - We want a really big list...
 - but if it's too big it won't fit into memory...
 - ... so use a tree to break it up
- When to fix balance?
 - inserting/deleting

2 for 1: It's a list! In a tree!

Splay Trees

- Not really balancing, but is optimizing in a way
- Basic idea:
 - Balance so the most recently accessed item is at the root
- When to fix balance?
 - inserting/deleting/searching
- Look like binary search trees but they keep moving around
- http://www.cs.cmu.edu/~sleator/papers/selfadjusting.pdf

Are These AVL Trees?

Answers

Left 0, Right 1

Left 2, Right 0

7 Not AVL

80 not AVL

AVL Tree Balance Cases

Weiss 19.4.1

- Height imbalance means some node X whose two subtrees differ by 2
 - 1. Insertion left subtree of the left child of X
 - 2. Insertion right subtree of the left child of X
 - 3. Insertion left subtree of the right child of X
 - 4. Insertion right subtree of the right child of X
- Symmetry between 1 and 4 and 2 and 3
- Similar cases when a deletion causes an imbalance

Case 1

Single Rotation

Single Rotation Idea

Weiss 19.4.1

- Any BST can be "collapsed" to bottom to make the items in sorted order
- Pick up k1 above k2 and let gravity take effect. Thus k1 becomes subtree root and k2 drops to right of k1
- Have to move subtree B to k2 left child
- Previously subtree B held items between k1 and k2
- After rotation subtree B remains between k1 and k2 maintaining order property

Case 1 Fixed Single Rotation

(a) Before rotation

(b) After rotation

Case 2

Single Rotation Won't Fix!

What We Want

(a) Before rotation

(b) After rotation

Left-Right Double Rotation

- Left Rotate at k₁
- Right Rotate at k₃

Double Rotation Idea

Weiss 19.4.3

- Know either/both subtrees B and C is two levels deeper than D
- Rotation between X's child and grandchild
- Rotation between X and its new child
- Subtree B remains between k1 and k2
- Subtree C remains between k2 and k3

Right-Left Double Rotation

- Right Rotate at k₃
- Left Rotate at k₂

What We Did: Left-Right Rotation

Left Rotate at k₁ Right Rotate at k₃

(a) Before rotation

(b) After rotation

AVL Tree Practice

- Gnarley trees, but other resources
 - http://www.qmatica.com/DataStructures/Trees/ AVL/AVLTree.html
 - http://webdiis.unizar.es/asignaturas/EDA/AVLTr ee/avltree.html

M-ary Trees

- aka. n-ary and k-ary trees
- what is an m-ary tree?
 - m is the branching factor
- number of leaves when it's full and complete?
 - first level m⁰, second m¹, third m²... m^h
- number of nodes when it's full and complete?
 - $-(m^{h+1}-1)/(m-1)$
 - for binary trees this was m=2
 - so $2^{h+1}-1/(2-1) = 2^{h+1}-1$

Symbol Table Summary

Generally use hash table unless guaranteed performance or need ordered operations

Implementation	Worse-Case		Average-Case		Order	remarks
	Search	Insert	Search	Insert	Ops	
Unordered List	N	N	N	N	No	
Ordered Array	lg N	N	lg N	N	Yes	
BST	N	N	lg N	lg N	Yes	Easy
AVL	lg N	lg N	lg N	lg N	Yes	Easy
Red-Black	lg N	lg N	lg N	lg N	Yes	Often Used*
HT Chaining	N	N	N/M	N/M	No	Often Used*
HT Probing	N	N	1	1	No	

^{*} Good constants and relatively easy to implement, used in many libraries

Assignments: PA6

PA5

- Use Comparable[] items. The methods swap, sink, swim use integers as index into items.
- Iteration is "level order"

PA6

- Implement ordered symbol table using binary search tree.
- Iteration is sorted order
- Will use and make balanced (AVL) for next
 PA7

Free Question Time!