MATH 690: Topics in Probablity Theory	September 21, 2017
Dimension Reduction	
Lecturer: Xiuyuan Cheng	Scribe: Oscar Li

1 Introduction

In this lecture, we will

- continue our discussion of Laplacian Eigenmap from last time;
- introduce a similar dimensionality reduction algorithm *Diffusion Map*;
- discuss some convergence results of eigenvalues and eigenvectors of the graph Laplacian L
 to the eigenvalues and eigenfunctions of the Laplace-Beltrami operator when the data points
 are sampled according to some distribution on the embedded manifold;
- introduce our last dimensionality reduction algorithm for this topic *tSNE*.

2 Laplacian Eigenmap

We recall from last time that given a point cloud $\{\mathbf{x}_i\}_{i=1}^n$, the Laplacian Eigenmap algorithm first constructs a heat kernel $W \in \mathbb{R}^{n \times n}$, where $W_{ij} = \begin{cases} e^{-\frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{\epsilon}} & \text{if } i \text{ and } j \text{ are connected} \\ 0 & \text{otherwise.} \end{cases}$. The

connectedness between \mathbf{x}_i and \mathbf{x}_j is defined on the knn graph or ϵ graph (notice here this ϵ need not be the same ϵ used in w_{ij} 's computation) induced by the pairwise distances between the points. A simpler alternative is to use the adjacency matrix A_{ij} of the knn or ϵ graph as the W_{ij} .

Then we create a diagonal "degree" matrix $D \in \mathbb{R}^{n \times n}$, where $D_{ii} = \sum_{j=1}^{n} W_{ij}$. For simplicity, we will use di in place of D_{ii} for the following discussion. For practical cases, we will assume D has full rank, i.e. no $d_i = 0$, from here.

The graph Laplacian is then defined as L = D - W, and the normalized graph Laplacian defined as $L_{rw} = D^{-1}L = D^{-1}(D - W) = I - D^{-1}W$. We define matrix $P = D^{-1}W$ and we can think of P as the probability transition matrix of a random walk on the graph $Pr[X_{t+1} = j | X_t = i] = P_{ij} = W_{ij}/d_i$, $\forall t$. So the transition probability is affected by the proximity of neighbors: the closer you are to your neighbor, the more probable you'll transition to it in the next state. We also see now $L_{rw} = I - P$.

Before we dive more into the dimensionality reduction algorithm, let's look into some properties and relationships of the matrices we just defined.

Proposition 1. L is positive semidefinite.

Proof.

$$\forall \mathbf{f} \in \mathbb{R}^n$$
, $\mathbf{f}^T L \mathbf{f} = \frac{1}{2} \sum_{i,j} W_{ij} (f_i - f_j)^2 \ge 0$, where f_i is the ith coordinate of \mathbf{f} .

Proposition 2. For any eigenvalue λ of P, λ is real and $|\lambda| \leq 1$.

Proof. Let $A_s = D^{-1/2}WD^{-1/2}$. We see A_s is a symmetric matrix because $D^{-1/2}$ and W are symmetric. Thus by spectral theorem, A_s has all real eigenvalues. We also observe that $P = D^{-1}W = D^{-1/2}D^{-1/2}WD^{-1/2}D^{1/2} = D^{-1/2}A_sD^{1/2}$, so P is similar to A_s . Because similar matrices have the exact same set of eigenvalues, all the eigenvalues of P must also be real.

Suppose ψ is an eigenvector of P with eigenvalue λ . We choose i s.t. $|\psi_i| \ge |\psi_j|$, $\forall j = 1, ..., n$. Here ψ_i means the ith coordinate of vector ψ .

 $\lambda \psi_i = (P\psi)_i = \sum_{j=1}^n P_{ij}\psi_j$. Taking the absolute value of both sides and using triangle inequality, we have $|\lambda||\psi_i| = |\sum_j P_{ij}\psi_j| \leq \sum_j P_{ij}|\psi_j| \leq \sum_j P_{ij}|\psi_i| = |\psi_i|$. Since ψ_i is the largest in absolute value, $\psi_i \neq 0$. Thus $|\lambda| \leq 1$.

Remark 1. (by the Scriber) P is a right stochastic matrix. The right spectral radius of any right stochastic matrix is at most 1. But a matrix being right stochastic does not always imply all its

eigenvalues are real. For example, $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. P has all eigenvalues real specifically because of the symmetricity of W.

After obtaining the normalized graph Laplacian L_{rw} , we compute its eigendecomposition. This is achievable because we have just proved that P is similar to a symmetric matrix A_s that is eigendecomposable by the spectral theorem. Since $L_{rw} = I - P$, we know L_{rw} is decomposable. Let $\psi_1, \psi_2, ..., \psi_n$ be the n eigenvectors of L_{rw} with their corresponding eigenvalues $0 = \lambda_1 \le \lambda_2 \le ... \le \lambda_n$. Then to compress the point clouds $\{\mathbf{x}_i\}_{i=1}^n$ into d-dimension, the eigenmap is defined as $\Psi(x_i) = (\psi_2(i), \psi_3(i), ..., \psi_{d+1}(i)) \in \mathbb{R}^d$, where $\psi_i(i)$ means the ith coordinate of the vector ψ_i .

One way to find the eigenvectors for L_{rw} is to find the eigenvectors of P (P and L_{rw} have the same eigenvectors) through the eigendecomposition of A_s . Because A_s is symmetric and have the same eigenvalues as P due to similarity, we can find an orthonormal basis of eigenvectors $u_1, u_2, ..., u_n$ with corresponding eigenvalues $1 = \lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n \ge -1$. We write this succinctly as $A_s = U \Lambda U^T$, where U is an orthogonal square matrix whose ith column is u_i and Λ is a diagonal matrix with decreasing eigenvalues on the diagonal. We let matrix $\Psi = D^{-1/2}U$ and see that

$$P\Psi = D^{-1/2}A_sD^{1/2}D^{-1/2}U = D^{-1/2}U\Lambda U^TU = D^{-1/2}U\Lambda = \Psi\Lambda$$
 (1)

We see from Equation 1 that every column of Ψ must be an eigenvector of P and the set of all column vectors forms an eigenbasis of P.

$$L_{rw}\Psi = (I - P)\Psi = (I - \Lambda)\Psi \tag{2}$$

shows that the columns of Ψ are already sorted increasingly according to their corresponding eigenvalues in L_{rw} . So Ψ gives us the eigenvectors we want in the algorithm.

Remark 2. We can similarly define a matrix $\Phi = D^{1/2}U$ and see that the following is true:

$$\Phi = D\Psi \tag{3}$$

$$\Phi^T \Psi = I \tag{4}$$

$$\Phi \Psi^T = I \tag{5}$$

$$P = \Psi \Lambda \Phi^T \tag{6}$$

$$\Psi^T D \Psi = I \tag{7}$$

$$P^{T}\Phi = \Phi\Lambda \tag{8}$$

We see from Equation 8 that the columns of Φ are the eigenvectors of P^T . Then the first column of Φ , ϕ_1 , is an eigenvector of P^T with eigenvalue 1. From Equation 3 we see that $\phi_1 = D\psi_1$. Because P is a right stochastic matrix, the first eigenvector of P, ψ_1 , must have all the coordinates the same, i.e.

 π of the random walk specified by P satisfies that $\pi_j = \frac{d_j}{\sum_{i=1}^n d_i}$ due to a normalization of ϕ_1 .

3 Diffusion Map

Diffusion Map [CLL+05][CL06] is a similar dimensionality reduction algorithm as Laplacian Eigenmap. For some fixed t>0, the diffusion map $\Psi^d_t(x_i)=(\lambda_2{}^t\pmb{\phi}_2(i),...,(\lambda_{d+1}){}^t\pmb{\phi}_{d+1}(i))$ compresses every x_i to a d-dimensional vector. $\pmb{\phi}_j$ denotes the same vector as in the previous section, and λ_j is the jth largest eigenvalues of P, i.e. $1=\lambda_1\geq\lambda_2\geq...\geq\lambda_n$.

Definition 1. The diffusion distance between x_i and x_j is defined as $D_t(x_i, x_j)$, where $D_t^2(x_i, x_j) = ||\Psi_t^{n-1}(x_i) - \Psi_t^{n-1}(x_i)||^2$

Remark 3. Suppose $|\lambda_k| \searrow 0$ as $k \uparrow$, then when t is large, $D_t^2(x_i, x_j) \approx ||\Psi_t^d(x_i) - \Psi_t^d(x_j)||^2$

Proposition 3. If we think of P as the transition probability matrix for the random walk $\{X_t\}_{t=1}^{\infty}$ on the graph indices, meaning $(P^t)_{ij} = Pr[X_{s+t} = j | X_s = i]$, $\forall s$, then $D_t^2(\mathbf{x}_i, \mathbf{x}_j) = ||(P^t)_{i,:} - (P^t)_{j,:}||_{w}^2$, where $(P^t)_{i,:}$ means the ith row vector of P^t and the squared norm on the right hand side is a weighted L^2 norm where $w_k = \frac{\sum_{i=1}^n d_i}{d_k}$, $\forall k$.

Remark 4. When the graph is connected, $\lambda=1$ is of multiplicity 1. From Equation 6 and 4, we know $P^t=\Psi\Lambda^t\Phi^T$. As $t\to\infty$, only the first eigenvalue which is equal to 1 survives in Λ^t . As a result, $\lim_{t\to\infty}P^t=\psi_1\phi_1^T$. Because every coordinate in ψ_1 is the same, by the Proposition above, the diffusion distance would become zero for any pair of x_i and x_j as $t\to\infty$.

Proof of Proposition 3.

$$(P^t)_{il} = \sum_{k=1}^n \lambda_k^t \boldsymbol{\psi}_k(i) \boldsymbol{\phi}_k(l) = \sum_{k=1}^n \lambda_k^t \boldsymbol{\psi}_k(i) \boldsymbol{\psi}_k(l) d_l$$
 (9)

Dimension Reduction-3

$$\sum_{l=1}^{n} ((P^{t})_{il} - (P^{t})_{jl})^{2} w_{l} = \dots = \sum_{l,l'} [\lambda_{l}^{t} \lambda_{l'}^{t} (\boldsymbol{\psi}_{l}(i) - \boldsymbol{\psi}_{l}(j)) (\boldsymbol{\psi}_{l'}(i) - \boldsymbol{\psi}_{l'}(j)) \sum_{k} \boldsymbol{\psi}_{l}(k) \boldsymbol{\psi}_{l'}(k) d_{k}]$$
(10)

We see from Equation 7 that $\psi_l^T D \psi_{l'} = \delta_{ll'}$. Therefore,

$$\sum_{l=1}^{n} ((P^{t})_{il} - (P^{t})_{jl})^{2} w_{l} = \sum_{l=1}^{n} \lambda_{l}^{2t} (\boldsymbol{\psi}_{l}(is) - \boldsymbol{\psi}_{l}(j))^{2} = D_{t}^{2}(\boldsymbol{x}_{i}, \boldsymbol{x}_{j})$$
(11)

4 Convergence of Eigenmap

Definition 2. Let (M, g) be a compact Riemannian manifold with no boundary, the *Laplace-Beltrami* operator on M is defined as: $\Delta_M : C^2(M) \to L^2(M)$, $\Delta_M(f) = -div(\nabla f)$.

Remark 5. We state some properties of the Laplace-Beltrami operator:

- Δ_M is a linear operator that is positive semidefinite with a discrete spectrum of eigenvalues $\{\lambda_k\}, 0 \leq \lambda_1 \leq \lambda_2 \leq ...;$
- all eigenfunctions of Δ_M are in $C^{\infty}(M)$.
- the operator is "intrinsic" it only sees the Riemannian metric tensor *g* but not the specific embedding in the high-dimensional ambient space.

Theorem 4. [BN07] If the point cloud $\{\mathbf{x}_i\}_{i=1}^n$ are i.i.d. sampled uniformly from manifold M and ϵ_n properly set so that $\epsilon_n \to 0$ as $n \to \infty$,

then for each k, $\widehat{\lambda_k} \to \lambda_k$ and $\widehat{\psi_k} \to \psi$ in probability as $n \to \infty$, where $\widehat{\lambda_k}$ and $\widehat{\psi_k}$ are the kth eigenvalue-eigenvector pair of the normalized graph Laplacian, while λ_k and ψ_k are the kth eigenvalue-eigenfunction pair of the Laplace-Beltrami operator. More precisely, $\widehat{\psi_k} \to \psi$ means $\widehat{\psi_k}(i) \to \psi_k(x_i)$, $\forall i = 1$, ..., n.

Remark 6. When the point cloud is not uniformly sampled from M but instead sampled from a distribution *p*, the convergence result is as follows:

$$\frac{1}{\epsilon}L_{n,\epsilon} = -\frac{1}{2}(\Delta_M + 2\frac{\nabla p}{p} \cdot \nabla) + O(\epsilon)$$
(12)

, when $n \to \infty$ and $\epsilon \to 0$.

5 tSNE

t-Distributed Stochastic Neighbor Embedding (tSNE) [MH08] is the last dimensionality reduction technique we will introduce in this topic. It can achieve good results on real-life datasets such as MNIST. However, there is not a lot of theoretical result behind this method.

tSNE works as follows: for a point cloud $\{x_i\}_{i=1}^n$,

- Step 1: For $i \neq j$, let $W_{ij} = e^{-\frac{||x_i x_j||^2}{2\sigma_i}}$, where σ_i is tuned for each x_i . For i = j, $W_{ii} = 0$. Let P be such that $P_{ij} = \frac{W_{ij}}{\sum_{j'=1}^n W_{ij'}}$, and initialize $\overline{P} = \frac{P + P^T}{2}$. Now \overline{P} is symmetric.
- Step 2: We want to fit $Y \in \mathbb{R}^{d \times n}$, whose ith column is y_i , to have the same transition probability matrix $Q_{ij}[Y]$ as \overline{P}_{ij} , where $Q_{ij}[Y] = \frac{k(||y_i y_j||)}{\sum_{i' \neq j'} k(||y_{i'} y_{j'}||)}$, $k(x) = \frac{1}{1+x^2}$.

The loss function C(Y) is formulated using KL-divergence and the optimization for Y is as follows:

$$\min_{Y} C(Y) = \sum_{i \neq j} \overline{P}_{ij} log \frac{\overline{P}_{ij}}{Q_{ij}}$$

.

The gradient of C(Y) with repect to each y_i is given by

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j=1}^n (\overline{P}_{ij} - Q_{ij}) (y_i - y_j) (1 + ||y_i - y_j||^2)^{-1}$$

The gradient descent update step introduced in [MH08] uses a momentum term to reduce the number of iterations required and works best if the momentum term is small until the map points have become moderately well organized:

$$Y^{(t+1)} = Y^{(t)} + \eta \frac{\partial C}{\partial Y} + \alpha(t)(Y^{(t)} - Y^{(t-1)})$$

, where η is the learning rate and $\alpha(t)$ is the momentum.

References

- [BN07] Mikhail Belkin and Partha Niyogi. Convergence of laplacian eigenmaps. In *Advances in Neural Information Processing Systems*, pages 129–136, 2007.
- [CL06] Ronald R Coifman and Stéphane Lafon. Diffusion maps. *Applied and computational harmonic analysis*, 21(1):5–30, 2006.
- [CLL⁺05] Ronald R Coifman, Stephane Lafon, Ann B Lee, Mauro Maggioni, Boaz Nadler, Frederick Warner, and Steven W Zucker. Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. *Proceedings of the National Academy of Sciences of the United States of America*, 102(21):7426–7431, 2005.
- [MH08] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Machine Learning Research*, 9(Nov):2579–2605, 2008.