A flexible and extensible modelling framework for the simulation of vascular tumour growth: an extension to the CHASTE open source C++ library for computational physiology and biology

Anthony J Connor^{1,2}, James Grogan¹, Joe Pitt-Francis², Philip K Maini¹, and Helen M Byrne^{1,2}

¹Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.

²Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK.

Abstract

CHASTE Cancer, Heart And Soft Tissue Environment is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. ... [Note: This is to be completed ...]

 $\textbf{Keywords:} \ \ \textbf{CHASTE-agent-based simulation-multi-scale model-vascular tumour growth-on-lattice model-off-lattice model}$

AUTHOR SUMMARY:

• Insert a few bullets in here explaining major contributions of paper.

Contents

L .	Introduction			
]	Des	ign an	d implementation	
		esults and exemplar simulations		
,	3.1		ılar tumour spheroid growth	
			On-lattice	
			Off-lattice	
3.2	3.2	Vascul	ar tumour growth	
		3.2.1	On-lattice	
			Off-lattice	
	3.3	An off	lattice model of corneal angiogenesis on a complex domain	

- 1 Introduction
- 2 Design and implementation
- 3 Results and exemplar simulations
- 3.1 Avascular tumour spheroid growth
- 3.1.1 On-lattice
- 3.1.2 Off-lattice
- 3.2 Vascular tumour growth
- 3.2.1 On-lattice
- 3.2.2 Off-lattice
- 3.3 An off-lattice model of corneal angiogenesis on a complex domain
- 4 Discussion and future work