

Ceri Nunn

Geophysical Data Analysis

L09 – Correlation

Scope

Scope: Understand how the correlation gives us information about how similar signals are, and where. ...

What is a correlation?

What is a correlation?

Scope

- > Correlation of time series
 - > Similarity
 - > Time shifts

Example Applications

Brainstorming ...

... on the board.

Correlation Applications

- > Applications
 - > Correlation of rotations/strains and translations
 - > Ambient noise correlations
 - > Accurate phase picking
 - > Searching for signals (using a template)
 - > Autocorrelations

Correlation

Convolution:

$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau$$

Cross-correlation:

$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau \qquad (f * g)(\tau) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f^*(t) g(t + \tau) dt,$$

where *f** denotes the complex conjugate of f, t is the time and τ is the lag.

Correlation

Convolution:

Cross-correlation:

$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau \qquad (f * g)(\tau) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f^*(t) g(t + \tau) dt,$$

$$(f \star g)(\tau) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f^*(t) \ g(t+\tau) \ dt,$$

The cross-correlation of functions f(t) and g(t) is equivalent to the convolution of $f^*(-t)$ and g(t):

$$f \star g = f^*(-t) * g.$$

For discrete signals:

$$(f * g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f[m] g[n-m]$$

$$(f * g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f[m] g[n-m] \qquad (f \star g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] g[m+n].$$

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Correlation

1.0 1.0 0.8 0.6 0.4 0.2 0.2 0.0 0.0 8 10 12 14 -4-20time [s] 120 100 80 60 40 20 5 10

Similarity between two functions

time [s]

Cross-correlation:

$$(f \star g)(\tau) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f^*(t) \ g(t+\tau) \ dt,$$

cross correlation * (star!)

$$(f \star g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] \ g[m+n].$$

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Correlation

1.2 1.0 0.8 0.6 0.6

$(f \star g)(\tau) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f^*(t) \ g(t+\tau) \ dt,$

Cross-correlation:

cross correlation * (star!)

$$(f \star g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] \ g[m+n].$$

Lag between two functions

Correlation

Convolution:

$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau \qquad (f * g)(\tau) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f^*(t) g(t + \tau) dt,$$

Cross-correlation:

$$(f \star g)(\tau) \stackrel{\mathrm{def}}{=} \int_{-\infty} f^*(t) \ g(t+\tau) \ dt,$$

For discrete signals: :

$$(f * g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f[m] g[n-m]$$

$$(f*g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f[m] g[n-m] \qquad (f*g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] g[m+n].$$

So how would you calculate the cross correlation?

Correlation

Convolution:

$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau \qquad (f * g)(\tau) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f^*(t) g(t + \tau) dt,$$

For discrete signals: :

$$(f * g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f[m] g[n-m]$$

-: Flip, shift, sum.

Cross-correlation:

$$(f \star g)(\tau) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f^*(t) \ g(t+\tau) \ dt,$$

$$(f * g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f[m] g[n-m] \qquad (f * g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] g[m+n].$$

+! : don't flip, shift, sum.

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

Correlation

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Pictoral representation

$y_{k} = \sum_{i=0}^{m} g_{i} f_{k-i}$ $k = 0, 1, 2,, m+n$		X					y		x*y
			0	1	0	0			0
						1	2	1	
k=0,1,2,	•, /// //		0	1	0	0			0
					1	2	1		U
			0	1	0	0			1
				1	2	1			1
			0	1	0	0			2
			1	2	1	U			
		1	0 2	1	0	0			1
		1	L	1					
			0	1	0	0			0
	1	2	1						U

Correlation

$$(f \star g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] \ g[m+n].$$

+! : don't flip, shift, sum.

$$a = [0, 1, 0, 3, -2, 0]$$
 $b = [0, 3, -2, 0, 2, 0]$

Correlation

$$(f \star g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] \ g[m+n].$$

+! : don't flip, shift, sum.

$$a = [0, 1, 0, 3, -2, 0]$$

$$a = [0, 1, 0, 3, -2, 0]$$
 $b = [0, 3, -2, 0, 2, 0]$

Total: 6

corr(a,b) = [0, 0, 2, 0, 4, -1, -6, 13, -6, 0, 0]

Correlation

Cross-correlation: commutative?

$$a = [0, 1, 0, 3, -2, 0]$$
 $b = [0, 3, -2, 0, 2, 0]$

corr(a,b):

Total: 6

$$corr(a,b) = [0, 0, 2, 0, 4, -1, -6, 13, -6, 0, 0]$$

Correlation

Cross-correlation: commutative?

$$a = [0, 1, 0, 3, -2, 0]$$
 $b = [0, 3, -2, 0, 2, 0]$

corr(a,b)

Total: 6

$$corr(a,b) = [0, 0, 2, 0, 4, -1, -6, 13, -6, 0, 0]$$

Correlation

Cross-correlation: commutative?

$$a = [0, 1, 0, 3, -2, 0]$$
 $b = [0, 3, -2, 0, 2, 0]$

corr(b,a) =/= corr(a,b)

Total: 6

$$corr(a,b) = [0, 0, 2, 0, 4, -1, -6, 13, -6, 0, 0]$$

Correlation

$$(f \star g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] \ g[m+n].$$

+! : don't flip, shift, sum.

$$a = [0, 1, 0, 3, -2, 0]$$
 $b = [0, 3, -2, 0, 2, 0]$ $c = [0, 1, 1, 0, 0, 0]$

$$b = [0, 3, -2, 0, 2, 0]$$

$$c = [0, 1, 1, 0, 0, 0]$$

Total: 4

Correlation

$$(f \star g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] \ g[m+n].$$

+! : don't flip, shift, sum.

$$a = [0, 1, 0, 3, -2, 0]$$

$$b = [0, 3, -2, 0, 2, 0]$$

$$a = [0, 1, 0, 3, -2, 0]$$
 $b = [0, 3, -2, 0, 2, 0]$ $c * 10 = [0, 10, 10, 0, 0, 0]$

Total: 40

corr(a, c*10) = [0, 0, 0, 10, 10, 30, 10, -20, 0, 0]

Correlation

$$(f \star g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] \ g[m+n].$$

+! : don't flip, shift, sum.

$$a = [0, 1, 0, 3, -2, 0]$$

$$b = [0, 3, -2, 0, 2, 0]$$

$$a = [0, 1, 0, 3, -2, 0]$$
 $b = [0, 3, -2, 0, 2, 0]$ $c * 10 = [0, 10, 10, 0, 0, 0]$

$$\mathrm{CC} = \frac{\sum\limits_{m=-\infty}^{\infty} f_m^* g_{m+n}}{\sqrt{\sum f_m^2 \sum g_m^2}}$$

Normalized according to energy contained in both signals

CC can have values from [-1:1]

sum corr(a,b): 6

sum corr(b,a): 6

sum corr(a,-b): -6

sum corr(a,c): 4

sum corr(a,c*10): 40

Correlation Coefficient

$$(f \star g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] \ g[m+n].$$

+! : don't flip, shift, sum.

$$a = [0, 1, 0, 3, -2, 0]$$

$$b = [0, 3, -2, 0, 2, 0]$$

$$a = [0, 1, 0, 3, -2, 0]$$
 $b = [0, 3, -2, 0, 2, 0]$ $c * 10 = [0, 10, 10, 0, 0, 0]$

$$CC = \frac{\sum\limits_{m=-\infty}^{\infty} f_m^* g_{m+n}}{\sqrt{\sum f_m^2 \sum g_m^2}}$$

Normalized according to energy contained in both signals

CC can have values from [-1:1]

sum corr(a,b): 6

sum corr(b,a): 6

sum corr(a,-b): -6

sum corr(a,c): 4

sum corr(a,c*10): 40

corrcoef: -0.14

corrcoef: -0.14

corrcoef: 0.14

corrcoef: 0.08

corrcoef: 0.08

Correlation Coefficient

$$(f \star g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] \ g[m+n].$$

+! : don't flip, shift, sum.

$$a = [0, 1, 0, 3, -2, 0]$$

$$b = [0, 3, -2, 0, 2, 0]$$

$$a = [0, 1, 0, 3, -2, 0]$$
 $b = [0, 3, -2, 0, 2, 0]$ $c * 10 = [0, 10, 10, 0, 0, 0]$

$$CC = \frac{\sum\limits_{m=-\infty}^{\infty} f_m^* g_{m+n}}{\sqrt{\sum f_m^2 \sum g_m^2}}$$

Normalized according to energy contained in both signals

CC can have values from [-1:1]

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Correlation

Correlation ... faster??

$$(f \star g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] \ g[m+n].$$

Correlation

Correlation theorem:

$$(f \star g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] \ g[m+n].$$

$$\mathcal{F}\{f\star g\}=(\mathcal{F}\{f\})^*\cdot\mathcal{F}\{g\}$$

Convolution theorem:

$$(f * g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f[m] g[n-m]$$

$$\mathcal{F}\{f*g\}=\mathcal{F}\{f\}\cdot\mathcal{F}\{g\}$$

Correlation theorem:

Multiplying the FT of one function by the complex conjugate of the FT of the other gives the FT of their correlation

Autocorrelation

Special case: Autocorrelation

Correlation of a signal with itself:

$$f \star f$$

LUDWIG-MAXIMILIANS-UNIVERSITĀT MÜNCHEN

Autocorrelation

Special case: Autocorrelation

From Gorbatov et al., GJI, 2013

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

Autocorrelation

Autocorrelation of signal with trend:

Autocorrelation

Autocorrelation of signal with trend:

Autocorrelation

Autocorrelation of signal with periodic component:

Autocorrelation of signal with periodic component:

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Correlation ... Applications

Correlation ... Applications

Event clustering...

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

Correlation ... Applications

Sophisticated event detection...

Correlation ... Applications

Correlation .. can help identify coherent signals:

Ambient noise correlations

... creating signal from noise

ideal case: noise is a random field + average over long time

Noise sources surround the receivers

Ambient Noise Cross-correlation

ideal case: noise is a random field + average over long time

Correlation of field in A and B =

Green function between A and B

Ambient Noise Cross-correlation

Ambient Noise Cross-correlation

Ambient Noise Cross-correlation

Advantages:

Green's function anywhere

UNIVERSITÄT MÜNCHEN

Correlation ... Applications

Let's try that in California:

Figure 1: Reference map showing the locations of principal geographical and geological features discussed in the test. White triangles show the locations of the USArray stations used in this study (5 of the of 62 stations are located north of 40N and are not shown in this map). Blue and red solid lines show locations of known active faults. Yellow rectangles with digits indicate the following features: (1) Los Angeles Basin; (2) Ventura Basin; (3) San Andreas fault; (4) Garlock fault; (5) Mojave shear zone; (6) Stockton Arch.

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

Correlation ... Applications

Signal from event

Signal from noise Cross-correlation

Signal from event

Signal from noise Cross-correlation

43

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

Figure 3: Group speed curves measured in different parts of California by cross-correlating 30 days of ambient noise between USArray stations. (a) Map showing the stations locations and inter-station paths. (b) Group speed dispersion curves between periods of 6 s and 18 s.

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Figure 4: Group speed maps constructed by cross-correlating 30 days of ambient noise between USArray stations. (a) 7.5 s period Rayleigh waves. (b) 15 s period Rayleigh waves. Black solid lines show known active faults. White triangles show locations of USArray stations used in this study.

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Correlation ... Applications

Cross-correlation: commutative? No!

Relating rotation rate and transverse acceleration:

Plane transversely polarized wave propagating in x-direction with phase velocity c

$$u_{y}(x,t) = f(kx - \omega t)$$
 $c = \omega/k$

Acceleration
$$a_y(x,t) = \ddot{u}_y(x,t) = \omega^2 f''(kx - \omega t)$$

Rotation rate
$$\dot{\Omega}(x,t) = \frac{1}{2} \nabla \times \left[0, \dot{u}_y, 0\right] = \left[0, 0, -\frac{1}{2} k \omega f''(kx - \omega t)\right]$$

$$a(x,t)/\dot{\Omega}(x,t) = -2c$$

Rotation rate and acceleration should be in phase and the amplitudes scaled by two times the horizontal phase velocity

LUDWIG-

Correlation ... Applications

S-wave

Time (s)

From Igel et al., GRL, 2005

Max. cross-corr. coefficient in sliding time window transverse acceleration – rotation rate

M8.3 Tokachi-oki, 25 September 2003

phase velocities (+ observations, o theory)

Horizontal phase velocity in sliding time window

From Igel et al. (GRL, 2005)

LUDWIG-MAXIMILIANS UNIVERSITĀT MŪNCHEN

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

Correlation Summary

- Correlation plays a central role in the study of time series. In general, correlation gives a quantitative estimate of the degree of similarity between two functions, as well as their lag time.
- Correlation in the time domain is multiplication with the complex conjugate in the frequency domain

- Correlation of noisy seismograms from two stations allows in principle the reconstruction of the Green's function between the two stations
- The ideal tool to quantify similarity (e.g., frequency dependent) between various signals (e.g., rotations, strains with translations)
- Correlation has many applications in geophysics