- В папке C:\Xilinx_trn\HLS2023\lab2_z1 создать папку source
- Создать на языке C++ функцию (lab2_z1.cpp) поиска факториала (без рекурсии) ниже пример псевдо кода.
 - Сохранить ее в папку C:\Xilinx trn\HLS2023\lab2 z1\source
 - Имя функции lab2 z1
 - Обязательно наличие lab2_z1.h файла с заданием типов данных (Сохранить в папку C:\Xilinx trn\HLS2023\lab2 z1\source).
 - Базовый тип данных: n unsigned char; возвращаемое значение unsigned int (Обратите внимание на то, что n не должно быть больше 13, иначе будет переполнение результата)

Факториал		Рекурсия	без рекурсии
		<pre>unsigned int Fact(n:</pre>	<pre>unsigned int Fact(n:</pre>
	n! = n * (n-1)!, при n>0	unsigned char)	unsigned char)
		begin	<pre>var F, i: unsigned int;</pre>
	1, n=0	if n=0	begin
		then Fact:=1	F:=1;
L		else	for i:=1 to n do
		Fact:=n*Fact(n-1)	F:=F*i;
		end;	Fact:=F
			end;

- Создать на языке C++ тест (lab2_z1_test.cpp) для проверки работы функции сохранить в папку C:\Xilinx_trn\HLS2023\lab2_z1\source. Тест должен обеспечивать
 - Чтение типов данных из lab2 z1.h файла
 - о запуск функции 3 раза,
 - задание n случайным значением (новое значение для каждого запуска функции), распределенным от 5 до 13 (например так: n= (rand() %9) + 5)). Обратите внимание на то, что n не должно быть больше 13, иначе будет переполнение результата
 - о проверку правильности вычисленного результата (для проверки использовать **алгоритм с рекурсией**) и формирование признака успешного/неуспешного выполнения для каждого запуска функции,
- Отладить функцию и тест (при неправильном результате в любом из запусков функции должен сообщать об ошибке).
- Создать скрипт (сохранить в папку C:\Xilinx_trn\HLS2023\lab2_z1) автоматизирующий процесс:
 - Создания проекта lab2 z1,
 - Подключения файла lab2 z1.cpp (папка source),
 - о Подключения файла lab2_z1_test.cpp (папка source),
 - о Создания базового решения (ex sol1), для которого
 - задается микросхема: xa7a12tcsg325-1q,
 - задается clock period 4; clock_uncertainty 1,
 - выполняется Си моделирование.
 - О Исследования в объеме 3-х решений ех sol[4:2]
 - Для всех решений задается микросхема: xa7a12tcsg325-1q
 - Для каждого решения отдельное требование к периоду тактового сигнала
 - Для ex_sol2 задается clock period 8; clock_uncertainty 1
 - Для ex sol3 задается clock period 12; clock uncertainty 1
 - Для ex sol4 задается clock period 40; clock uncertainty 1
 - Для каждого решения осуществить синтез.

- Для каждого решения осуществить моделирование cosim.
- Отладить и проверить работу созданного скрипта.
- открыть GUI
- убедиться, что созданы все решения
- используя средства HLS сравнить полученные решения.
- Составить электронную таблицу для сравнения решений (перенести в нее данные из HLS) и построить график, в котором для всех решений должны быть отражены: Iteration Interval (ns) подсчитывается путем умножения Latency (cycles) на период тактового сигнала Estimated; использованные ресурсы (если значения какого-либо ресурса остаются неизменными для всех решений, то такой ресурс не следует отображать на временной диаграмме)
- Посмотреть, привести в отчете и сравнить временные диаграммы для решения ex_sol1 ... ex_sol4
- Оформить отчет, который должен включать
 - о Задание
 - Раздел с описанием исходного кода функции
 - о Раздел с описанием теста
 - о Раздел с описание созданного командного файла
 - Раздел с описанием результатов сравнения решений (со снимком экрана из vitis HLS)
 - Раздел с анализом результатов (со снимком экрана **с заполненной таблицей** и **полученным графиком**)
 - Анализ и выбор оптимального (критерий максимальная производительность) решения
 - Анализ и выбор оптимального (критерий минимальные аппаратные затраты) решения
 - Анализ и выбор оптимального (критерий максимальная производительность и минимальные аппаратные затраты) решения
 - о Выводы
- Архив должен включать всю папку C:\Xilinx_trn\HLS2023\lab2_z1, (в папке ./doc должны быть: задание, отчет и файл с электронной таблицей).