

Model Development Phase Template

Date	15 March 2024
Team ID	SWTID1749710222
Project Title	Unlocking Silent Signals: Decoding Body Language with Mediapipe
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
data_analysis.py > ...
  1 import pandas as pd
  2 import matplotlib.pyplot as plt
    from sklearn.model_selection import train_test_split # Correct import
  4 from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
     # Load dataset
  6  df = pd.read_csv(r"Dataset\coords.csv", header=None)
  8
     # Assign column names
  9
     # Assuming first column is class label and rest are features
 10
    df.columns = ['class'] + [f'feature_{i}' for i in range(1, df.shape[1])]
 11
 12 # Display first few rows
 13 print("Head of dataset:")
     print(df.head())
 15
 16 print("\nLast 5 rows:")
 17
     print(df.tail())
 18
 19 # Show original class distribution
 20 print("\nOriginal class distribution:")
     print(df['class'].value_counts())
```



```
22
# Balance the dataset (undersample to smallest class count)
24 min_count = df['class'].value_counts().min()
25 balanced_df = df.groupby('class').apply(lambda x: x.sample(min_count)).reset_index(drop=True)
26
27
    # Show balanced class distribution
    print("\nBalanced class distribution:")
28
    print(balanced_df['class'].value_counts())
29
31 # Separate features and target
32
    X = balanced_df.drop('class', axis=1)
33
     y = balanced_df['class']
34
35 # Plot class distribution
36 y.value_counts().plot(kind='bar', title='Class Distribution After Balancing')
    plt.xlabel("Emotion")
37
     plt.ylabel("Count")
39
    plt.grid(True)
40 plt.show()
41
42 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1234)
43
```

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix			
Logistic Regression	Confusion Matrix lr [[152 0 0 0] [0 128 1 0] [1 0 143 0] [0 0 0 153]]	Accuracy 1r 0.996539792387	Classification Report lr Fight 0.99 Happy 1.00 Sad 0.99 Victorious 1.00 accuracy macro avg 1.00 weighted avg 1.00	precisi 1.00 1.00 0.99 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00	on recall f1-score support 152 129 144 153 578 578	
Ridge Classifier	Confusion Matrix rc [[152 0 0 0] [0 128 1 0] [1 0 143 0] [0 0 0 153]]	Accuracy rc 0.996539792387	Happy 1.00 Sad 0.99 Victorious 1.00 accuracy	1.00 1.00 0.99 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00	n recall fi-score support 152 129 144 153 578 578	
Random Forest Classifier	Confusion Matrix rf [[152 0 0 0] [0 129 0 0] [0 0 144 0] [0 0 0 153]]	Accuracy rf 1.0	Classification Report of Fight 1.00 Happy 1.00 Sad 1.00 Victorious 1.00 accuracy macro avg 1.00 weighted avg 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	ion recall f1-score support 152 129 144 153 578 578	
Gradient Boosting Classifier	Confusion Matrix gb [[152 0 0 0] [0 129 0 0] [0 0 144 0] [0 0 0 153]]	Accuracy gb 1.0	Classification Report gb Fight 1.00 Happy 1.00 Sad 1.00 Victorious 1.00 accuracy macro avg 1.00 weighted avg 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	sion recall f1-score support 152 129 144 153 578 578	