Matematika I

05. január 2020 9:00

Meno a priezvisko: Podpis: Podpis:
Ročník: študijný program:
1. (7b) Daná je všeobecná rovnica kužeľosečky $9x^2 + 4y^2 + 18x + 8 = 0$.
Doplňte:
a) (2b) Kanonická rovnica (rovnica v štandardnom tvare) kužeľosečky je
b) (1b) Typ kužeľosečky je
c) (3b) Napíšte, ak existujú
c_1) súradnice stredu kužeľosečky:
d) (1b) Znázornite kužeľosečku a v náčrte popíšte jej charakteristické prvky.

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \frac{\ln(x^2 + y^2 - 1)}{\sqrt{4 - x^2 - y^2}}$$

b)
$$f(x,y) = \frac{\sqrt{4-x^2-y^2}}{\ln(x^2+y^2-1)}$$

c)
$$f(x,y) = \frac{\ln(4-x^2-y^2)}{\sqrt{x^2+y^2-1}}$$

d)
$$f(x,y) = \frac{\sqrt{x^2 + y^2 - 1}}{\ln(4 - x^2 - y^2)}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} x^2 y \, \, \mathrm{d}x \mathrm{d}y,$$

kde množina M je obdĺžnik s vrcholmi $A=[1,2],\,B=[2,2],\,C=[2,3]$ a D=[1,3].

Výsledok:

- **4.** (4b) Bod M má v cylindrickej súradnicovej sústave nasledujúce súradnice: $M = \left[\sqrt{2}, \frac{\pi}{4}, \sqrt{6}\right]$.
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v pravouhlej súradnicovej sústave sú:

a)
$$M = [1, -1, \sqrt{6}]$$

c)
$$M = [-1, 1, \sqrt{6}]$$

b)
$$M = [-1, -1, \sqrt{6}]$$

d)
$$M = [1, 1, \sqrt{6}]$$

b) (2b) Znázornite tento bod M v pravouhlej súradnicovej sústave.

Náčrt:

5. (8b)	Dana je linearna obycajna diferencialna rovnica (LODR) $y^*(x) + 6y^*(x) + 9y(x) = e^{-6x}$.
a) (2	b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.
\mathbf{C}^{1}	harakteristická rovnica je:
b) (2 ⁿ	b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stra- ou.
Fu	undamentálny systém riešení je
b) (2	b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.
Pa	artikulárne riešene je
c) (2	b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.
V	šeobecné riešenie danej LODR je
6. (4b)	Ukážte, že neexistuje limita funkcie
	$\lim_{[x,y]\to[0,0]} \frac{xy}{x^2+y^2}.$
V	ýsledok:
7. (6b)	Nájdite rovnicu dotykovej roviny τ ku grafu funkcie $f(x,y)=\sin\frac{x}{y}$ v bode $T=[\pi,1,z_0].$
(2)	(b) Nájdite z_0 a uvedte súradnice dotykového bodu :
(4)	b) Všeobecná rovnica dotykovej roviny τ je:
8. (6b)	Daná je funkcia $f(x,y) = \ln(2x+y)$, bod $A = [1, 1]$ a vektor $\vec{l} = (-1, 2)$.
a) (3	b) Nájdite gradient funkcie $f(x, y)$ v bode A .
\mathbf{G}	radient funkcie $f(x,y)$ v bode A je
b) (3	b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
D	erivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je

9. (9b) Toto je príklad typu D

text text text