VALEA.7274

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

ICANT:

Eva Röjer

GROUP:

1643

SERIAL NO:

10/661,742

EXAMINER: Hong Sang

FILED:

September 12, 2003

FOR:

REARRANGED SQUAMOUS CELL CARCINOMA ANTIGEN GENES II

Commissioner of Patents P. O. Box 1450 Alexandria, VA 22313-1450

Sir:

TRANSMITTAL OF CERTIFIED COPY

Attached please find the certified copy of the foreign application from which priority is claimed for this case:

Country:

Sweden

Appln No.:

0100938-0

Filing Date:

March 15, 2001

Respectfully submitted,

Matthew E. Connors

Registration No. 33,298

Gauthier & Connors LLP

225 Franklin Street, Suite 2300

Boston, Massachusetts 02110

Telephone: (617) 426-9180

Extension 112

I hereby certify that this paper (along with any paper referred to as being attached or enclosed) is being deposited with the United States Postal Service on the date shown below with sufficient postage as first class mail in an envelope addressed to the: Commissioner of Patents and Trademarks, P.O. Box 1450, Alexandria, VA 22313-050.

Prioritetsbevis Certificate of priority

Svensk patentansökan Swedish Patent Application

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen har ingivits till Patent- och registreringsverket i nedan nämnda ansökan.

This is to certify that the annexed is a true copy of the documents as originally filed with the Swedish Patent and Registration Office in connection with the following patent application.

(71) Sökande CanAg Diagnostics AB, Göteborg, SE Applicant

(21) Patentansökningsnummer 0100938-0 Patent application number

(86) Ingivningsdag 2001-03-15 Filing date

Patent- och registreringsverket 2008-09-18

Swedish Patent and Registration Office

Juris Rozitis

I

TITLE

REARRANGED SQUAMOUS CELL CARCINOMA ANTIGEN GENES

Ink, t. Patent- och reg.verket

DESCRIPTION

2001-03-15

FIELD OF THE INVENTION

Huvudfaxen Kassan

The present invention relates to a fusion gene found in squamous cell carcinomas, detection of the rearrangement and monoclonal antibodies specific for SCCA1, SCCA1/A2 and SCCA2.

10

15

5

BACKGROUND OF THE INVENTION

Squamous cell carcinoma antigen (SCCA) is a serological marker for squamous cell carcinomas (SCC) of the uterine cervix, lung, head and neck, vulva, and esophagus (1, 2). It was originally purified from the TA-4 complex from human cervical squamous cell carcinoma, with a molecular weight of 42-48 kDa (1, 3). The antigen consists of more than 10 proteins and iso-electric focusing of the antigen reveals two subfractions, an acidic (p1<6.25) and a neutral $(p1\ge6.25)$ isoform (4). The difference in molecular weight is probably due to modification (5).

Cloning of the cDNA of SCCA shows that it belongs to the family of serine protease inhibitors (serpins) (6). Further cloning of the genomic region on chromosome 18q21.3 reveals two tandemly arrayed genes (7). The more telomeric one, the original SCCA, was designated SCCA1, whereas the more centromeric one was designated SCCA2 (Figure 1A-C). They both contain eight exons and the putative intron-exon boundaries, splice sites, initiation codons, and terminal codons are identical. They are 98% identical at the nucleotide level (Figure 2) and 92% identical at the amino acid level (Figure 3). The deduced pI value shows that the neutral isoform is coded by SCCA1, and the acidic isoform by SCCA2. Alternatively spliced variant mRNA from both the genes have been found resulting in proteins 50 and 21 amino acids shorter (5).

30

In humans the serpins map to one of two chromosomal clusters. PI6, PI9 and ELNAH2 map to 6p25, whereas PI8, Bomapin, PAI2, SCCA1, SCCA2, Headpin and Maspin map to 18q21.3 (Figure 1B)(7-12). These clusters are supposed to have arisen via two independent interchromosomal duplications and several rounds of intrachromosomal duplications (9). The

S. 004

2001 -03- 15

2

Huvudfaxen Kassan

chromosome region 18q has often been reported as a region with high frequency of rearrangements (9, 13-16). The targets and functions of serpins are not fully understood. For most, the primary functions are regulation of proteolytic events associated with coagulation, fibrinolysis, apoptosis and inflammation, but alternative functions such as hormone transport and blood pressure regulation have been reported (17-24).

Although SCCA1 and SCCA2 are nearly identical they differ in their reactive site loops (Figure 2 and 3). SCCA1 inhibits the papain-like cystein proteinases cathepsin S, K, and L (25, 26) while SCCA2 inhibits the chymotrypsin-like serine proteinases cathepsin G and mast cell chymase (27). Studies of the reactive site loop (RSL) of SCCA1 show that the RSL is essential for cystein proteinase inhibition (28). The variable portion of the RSL dictates the specificity of the target proteinases shown by RSL swap mutants of SCCA1 and SCCA2 and single mutants (28, 29). It is likely that serpins utilize a common RSL-dependent mechanism to inhibit both serine and cystein proteinases.

15

20

10

The biological role of SCCA1 and SCCA2 are not fully understood. They are considered to be inhibitory serpins. Data suggest that SCCA1 is involved in apoptosis and expression makes cancer cells resistant to several killing mechanisms by inhibition of apoptosis (30). The role of SCCA2 expression in cancer cells is still unclear. In normal tissue SCCA antigen may have some specific role during epidermal maturation (5).

25

30

Recent studies using discriminatory monoclonal antibodies and polymerase chain reaction (PCR) have shown that both SCCA1 and SCCA2 are expressed in the suprabasal layers of the stratified squamous epithelium of the tongue, tonsil, esophagus, uterine cervix and vagina, Hassall's corpuscles of the thymus, some area of the skin and in the stratified columnar epithelium of the conducting airways (31). In squamous cell carcinomas of the lung and head and neck, SCCA1 and SCCA2 were co-expressed in moderately and well-differentiated tumors. In contrast to previous studies using nondiscriminatory antibodies, these data show that there were no differential expression between SCCA1 and SCCA2 in normal and malignant tissue. Previous results have shown that SCCA2 was only detected at the peripheral parts of the tumor (32). This discrepancy may be due to differences between immunohistochemical techniques and antibody specificities (31). It has been reported that false positive results may often be caused by contamination with saliva or sweat during assay

2001 -03- 1 5

FAX: 46k 31 7 7 66 600 req. verket

3

Huvudfaxen Kassan

procedure (1). Cataltepe et al. suggest that the SCCAs in saliva are derived from the squamous epithelial cells lining mucosal surfaces of the upper digestive tract (31).

Normally, SCCA1 and SCCA2 are detected in the cytoplasm of squamous epithelial cells (31), but not in the circulation (33). The antigen, which appears in the serum of patients with SCC, may be a function of SCCA-over-production by tumor cells and their normal turn over (34). It has been reported that the SCCA detected in serum by using antibody radioimmuno-assay or RT-PCR is mainly SCCA2 (1, 35, 36) but other studies using PCR indicate that both antigens can be amplified and detected in patient samples (37).

10

15

5

Serum concentrations present in patients with SCC are correlated to the clinical stage and to the degree of histological differentiation of the tumor (1). For cervical cancer several studies show a correlation between the pretreatment values and the clinical outcome (1, 38-43). Studies also show a correlation between high SCCA levels and tumor volume. Recurrence or progressive disease could be detected several months before clinical evidence (39). Similar results are seen for squamous cell carcinomas of the lung, vulva, head and neck and esophagus (1, 2, 44, and 45). In all these studies, they have measured the total SCCA level. Recently a new sELISA was developed using discriminating antibodies for SCCA1 and SCCA2 (33).

20

25

SUMMARY OF THE INVENTION

The present invention provides the detection of a fusion gene consisting of SCCA1 and SCCA2. This fusion gene has now been found in SCC cell-lines of different origin (cervix, lung and pharynx). The invention also provides methods for establishment of specific immunological reagents for determination/detection of the fusion protein.

The fusion protein is defined by the following amino acid sequence

MNSLSEANTK **FMFDLFQQFR** KSKENNIFYS **PISITSALGM VLLGAKDNTA** QQIKKVLHFD OVTENTTOKA ATYHVDRSGN VHHOFOKLLTE **FNKSTDAYE** LKIANKLFGE KTYLFLQEYL DAIKKFYOTS VESVDFANAP EESRKKINSW VESQTNEKIK NLIPEGNIGS NTTLVLVNAI YFKGOWEKKF NKEDTKEEKF WPNKNTYKSI **QMMRQYTSFH** FASLEDVQAK VLEIPYKGKD LSMIVLLPNE IDGLQKLEEK SLQNMRETCV LTAEKLMEWT DLHLPRFKME **ESYDLKDTLR**

2001-03- 1 5

4

TMGMVNIFNG DADLSGMTWS HGLSVSKVLH KAFVEVTEEG VEAAAATAVV
VVELSSPSTN EEFCCNHPFL FFIRONKTNS ILFYGRFSSP

based upon the DNA sequence

5

ATGAATTCAC TCAGTGAAGC CAACACCAAG TTCATGTTCG ACCTGTTCCA ACAGTTCAGA AAATCAAAAG AGAACAACAT CTTCTATTCC CCTATCAGCA TCACATCAGC ATTAGGGATG GTCCTCTTAG GAGCCAAAGA CAACACTGCA CAACAGATTA AGAAGGTTCT TCACTTTGAT CAAGTCACAG AGAACACCAC 10 AGGAAAAGCT GCAACATATC ATGTTGATAG GTCAGGAAAT GTTCATCACC AGTTTCAAAA GCTTCTGACT GAATTCAACA AATTCCACTGA TGCATATGAG CTGAAGATCG CCAACAAGCT CTTCGGAGAA AAAACGTATC TATTTTTACA GGAATATTTA GATGCCATCA AGAAATTTTA CCAGACCAGT GTGGAATCTG TTGATTTTGC AAATGCTCCA GAAGAAGTC GAAAGAAGAT TAACTCCTGG 15 GTGGAAAGTC AAACGAATGA AAAAATTAAA AACCTAATTC CTGAAGGTAA TATTGGCAGC AATACCACAT TGGTTCTTGT GAACGCAATC TATTTCAAAG GGCAGTGGGA GAAGAAATTT AATAAAGAAG ATACTAAAGA GGAAAAATTT TGGCCAAACA AGAATACATA CAAGTCCATA CAGATGATGA GGCAATACAC ATCTTTCAT TTTGCCTCGC TGGAGGATGT ACAGGCCAAG GTCCTGGAAA 20 TACCATACAA AGGCAAAGAT CTAAGCATGA TTGTGTTGCT GCCAAATGAA ATCGATGGTC TCCAGAAGCT TGAAGAGAAA CTCACTGCTG AGAAATTGAT GGAATGGACA AGTTTGCAGA ATATGAGAGA GACATGTGTC GATTTACACT TACCTCGGTT CAAAATGGAA GAGAGCTATG ACCTCAAGGA CACGTTGAGA ACCATGGGAA TGGTGAATAT CTTCAATGGG GATGCAGACC TCTCAGGCAT 25 GACCTGGAGC CACGGTCTCT CAGTATCTAA AGTCCTACAC AAGGCCTTTG TGGAGGTCAC TGAGGAGGGA GTGGAAGCTG CAGCTGCCAC CGCTGTAGTA GTAGTCGAAT TATCATCTCC TTCAACTAAT GAAGAGTTCT GTTGTAATCA CCCTTTCCTA TTCTTCATAA GGCAAAATAA GACCAACAGC ATCCTCTTCT ATGGCAGATT CTCATCCCCA TAGATGCAAT TAGTGTGTCA CT

DESCRIPTION OF SPECIFIC EMBODIMENTS

The fusion gene (Figure 4) was found by sequencing cDNA from SCC cell lines.

1

Ink. t. Patent- och reg.verket

2001-03- 1 5

Huvudfaxen Kassan

	Cell line	Origin	SCCA1	SCCA2
	CaSki	Cervix	normal	A1/A2
	C4I	Cervix	normal	normal
5	A549	Lung	N.A.	A1/A2
	CaLu3	Lung	normal	normal
	Skmes	Lung	normal	normal
	RPMI2650	Pharynx	N.A.	A1/A2

According to the sequence swift from SCCA1 to SCCA2, the DNA breakpoint would be in intron 7 (Figure 2). The gene should consequently be controlled via the promoter region of SCCA1 but producing a protein with SCCA2-specificity.

The fusion genes are cloned and kept as plasmid-constructs as well as transformed into different E. coli strains.

A plasmid, pGEX6P-3 SCCA1/A2, containing the fusion gene has been deposited with European Collection of Cell Cultures on the 14th of March, 2001, under deposition number ECACC 01031315.

Fusion protein has been produced and complex binding studies show substrate binding of the fusion gene to Cathepsin G but not to Cathepsin L (Figure 9).

The fusion gene can be detected by Southern blot analysis of tumor DNA (Figure 8). The fusion gene can also be detected by PCR analysis as well as by cDNA cloning and sequencing.

EXAMPLE 1

20

Cloning of SCCA

30 1. 1. PCR amplification

mRNA from the cell-lines Caski (cervix), C4-I (cervix), A549 (lung), CaLu3 (lung), SkMes (lung), and RPMI2650 (pharynx) was prepared using QuickPrep Micro mRNA Purification kit (Pharmacia) and cDNA was prepared using First-Strand cDNA Synthesis kit (Pharmacia). A 1218bp DNA fragment covering the coding sequence of SCCA was amplified by PCR in a

2001 -03- 1 5

6

100 μl reaction containing 10 mM Tris-HCl pH 8.85, 25 mM KCl, 5 mM (NH₄)₂SO₄, 2 mM MgSO₄ (Boehringer), 0.2mM dNTP (Pharmacia), 10 μM SCCA 1-7F (DNA sequences for all primers are shown in Table 1), 10 μM SCCA 391-397B, 2 μl cDNA and 2.5 U Pwopolymerase (Boehringer). After denaturing samples for 5 min at 96°C a total of 30 cycles were performed, each consisting of denaturation for 15 sec at 96°C, annealing for 15 sec at 60°C, and extension for 30 sec at 72°C. The PCR reaction was completed by a final extension for 10 min at 72°C.

TABLE 1, PCR-primers

10

5

	Primer name	Sequence			
	1. SCCA 1-7F	5'-CGGGATCCATGAATTCACTCAGTGAAGCC-3'			
	2. SCCA 391-397B 5'-GAGCTCGAGTCTCATCAGTGACAGACTAATTGCATCTA-3'				
	3. SCCA 266-273F	5'-TGGAATGGACAAGTTTGCAG-3'			
15	4. SCCA1 323-329B	5'-GTAGGACTCCAGATAGCAC-3'			
	5. SCCA2 319-324F	5'-TGGAGCCACGGTCTCTCAG-3'			
	6. SCCA2 357-363B	5'-ATTAGTTGAAGGAGATGATAATTC-3'			
	7. SCCA1 ex7	5'-AATACATACAAGTCCA-3'			
	8. SCCA2 ex8	5'-GGACTTTAGATACTGA-3'			

20

25

1. 2. Detection of SCCA1 and SCCA2

Presence of SCCA1 in PCR products were detected by cleavage with restriction enzyme SacII, resulting in two fragments, 245 and 973 bp, respectively, or by SCCA1-specific PCR using the primers SCCA1-7F and SCCA1 323-329B in a standard PCR reaction (75 mM Tris-HCl pH 8.8, 20 mM (NH₄)₂SO₄, 0.01% Tween 20, 2 mM MgCl₂, 0.2 mM dNTP, 10 µM of each primer, template, and 0.025 U/µl reaction Taq Polymerase; after denaturing samples for 5 min at 96°C a total of 30 cycles were performed, each consisting of denaturation for 15 sec at 96°C, annealing for 15 sec at optimal annealing temperature, and extension for 30 sec at 72°C. The PCR reaction was completed by a final extension for 10 min at 72°C.), Ta=50°C, resulting in a 997 bp fragment. Presence of SCCA2 were detected by standard PCR using SCCA 1-7F and an SCCA2-specific primer, SCCA2 357-363B, Ta=60°C, giving a 1090 bp fragment.

Ink. t. Patent- och reg.verket

7

2001 -03- 1 5

1. 3. Cloning

Huvudfaxen Kassan

PCR-products were cloned using PCR-Script Amp cloning kit (Stratagene). Colony screening were performed by PCR as described in 1.2 above. Plasmid-DNA was prepared from selected clones containing SCCA1 or SCCA2 using Wizard Plus Minipreps DNA Purification System (Promega).

1. 4. DNA sequencing

Clones were sequenced using ARI Prism BigDye Terminator Cycle Sequencing (PE Biosystems). Samples were run on an ABI Prism 310.

10

5

1. 5. Recloning

Selected clones were recloned into the expression vector pGEX-6P-3 (Pharmacia). Fragments were excised from the PCR-Script Amp vector using BamHI and XhoI and ligated into the expression vector in a 10 µI reaction containing 1xOPA, 1 mM ATP, 50 ng cleaved vector, SCCA insert corresponding to a moles-of-ends vector: insert ratio of 1:5-1:8, and 7.5-10 U T4DNAligase (all from Pharmacia). Reaction tubes were incubated at 10°C overnight and inactivated for 10 min at 65°C. 2-4 µI of the reaction was transformed into E.coli JM109 (46). Plasmid-DNA from selected clones were then transformed into E.coli BL21 for protein expression.

20

1. 6. Maintenance of cloned gene

Plasmid-DNA (pGEX-6P-3 containing the SCCA1/A2 fusion gene) in a 10 mM Tris-HCL pH 8.0 buffer solution is stored in -80°C. For resuming protein expression, plasmid-DNA are transformed into competent E.Coli BL21 according to Sambrook et al. (p 1.82-1.84 in ref.

25 45). For preparation of more plasmid-DNA, transformation into E. Coli JM109 is preferred.

EXAMPLE 2

Protein expression and purification

JU

2. 1. Protein Expression

Expression conditions were determined by small-scale preparations. For large scale expression 500 ml cultures of 2xYT and $100 \mu g/ml$ ampicillin were inoculated with 5 ml over-night culture and grown at 37° C. Protein expression was induced at $OD_{600}=0.5-1.3$ by adding IPTG to a final concentration of 0.1 mM. Cultures producing SCC1 were grown for 4-

2001 -03- 1 5

8

Huvudfaxen Kassan

16 b, SCCA1/A2 for 16-18 h. Cultures producing the SCCA2 protein were induced at OD_{600} = 1.2-1.4 and were grown for 2-3 h.

2. 2. Protein Purification

Cells were harvested by centrifugation for 10 min at 2000 g, washed with 50 ml TE pH 8.0, and dissolved in 3 ml TE/g bacterial pellet. Lysozyme was added to a final concentration of 800 μg/g pellet and the mixtures were incubated on ice for 30-60 min and then frozen over night at -70°C. Magnesium chloride and DNase were added to a final concentration of 12 mM and 20 μg/g pellet, respectively. After incubation on ice for 30 min, samples were centrifuged for 30 min at 40000 g. To each supernatant 0.5 ml of 50% Glutathione Sepharose (Pharmacia) was added and incubated for 30 min-2 h at room temperature with gentle agitation. The slurry was washed 5-7 times using 1xPBS. GST-SCCA fusion protein was eluted using 0.5-1 ml Reduced Glutathione (Pharmacia) and incubated for 30-60 min at room temperature or over-night at 4°C, all with gentle agitation. SCCA protein was eluted by cleavage in between GST and SCCA, 0.48 ml cleavage buffer (50 mM Ins-HCl pH 7.0, 150 mM NaCl, 1 mM EDTA, 1 mM DTT) and 20ul PreScission protease were added and samples

mM NaCl, 1 mM EDTA, 1 mM DTT) and 20μl PreScission protease were added and samples were incubated at 4°C with gentle agitation for 4 h or over-night. Proteins were analyzed on SDS-PAGE by Phast-system (Pharmacia).

20 2 3. Complex binding

Complex binding of SCCA to substrates was performed by mixing 2 µg of SCCA-protein with 0.5 µg of Cathepsin G (Biodesign Int.) or 0.5 µg of 0.9 µg Cathepsin L (Calbiochem) in 1xPBS buffer in a total volume of 4.5 µl. Samples were incubated at 37°C for 30 minutes. To each sample, 0.5 µl of 10xComplex-buffer (20% SDS, 140 mM Mercaptoethanol, bromophenolblue) was added. Samples were incubated for 3 minutes at 95°C and analyzed on a 12.5% SDS-PAGE-gel. The SCCA1/A2 fusion protein forms a complex with Cathepsin G but not with Cathepsin L showing that the fusion protein is functional and has the substrate specificity of SCCA2 (Figure 8).

30 EXAMPLE 3

DNA analysis

25

3. 1. Southern Blot Analysis

10

15

20

25

9

Huvudfaxen Kassan

2001 -03- 1 5

Approximately 10 µg of DNA prepared from SCC cell-lines as well as from blood samples from normal healthy volunteers, were digested with restriction endonucleases PstI or BamHI. Digested DNA were separated on 0.8 % agarose and transferred to membranes (Hybond N+, Pharmacia). Filters were prehybridized for 1 h and hybridized over night at 60°C in 20 ml of a solution containing 5xSSC, 0.1% SDS, 5% Dextrane sulfate, Liquid block (Pharmacia) diluted 1:20 and salmon sperm DNA 100µg/ml. Probe concentration during hybridization was 10 ng/ml. After hybridization filters were stringency washed for 15 min in 1xSSC/0.1%SDS and for 15 min in 0.2xSSC/1%SDS, both at 60°C. Probe hybridization was detected using Gene Images CDP-Star detection module (Pharmacia) with minor modifications. Filters were blocked for 1 hour at room temperature in a solution containing liquid block diluted 1:7.5. Then they were incubated in buffer A (0.1M Tris, 0:3M NaCl, pH 9.5) / 0.5% BSA for 15 min before adding the anti-fluorescein HRP conjugate diluted 1:6800 and then incubated for another 45 min. Filters were washed for 3x10 min in buffer A/0.3% Tween 20 before adding detection reagent. Filters were incubated for 2 min, washed briefly in 2xSCC and wrapped in plastic film. Hyperfilm MP was exposed for 35 min.

3. 2. Hybridization probes

Probes were generated and labeled by PCR in a reaction containing 60 μm each of dATP, dCTP, and dGTP, 24 μM dTTP, 40 μM Fluorescein-11-dUTP, 2 mM MgCl₂, 3μM forward primer, 3 μM backward primer, 15 ng DNA template (SCCA2-containing plasmid), 1 U Taq polymerase and 1xPCR buffer (Advanced Biotechnologies). Probe I: A 393 bp fragment of exon 8 (nucleotide 802-1194), primers SCCA 266-273F and SCCA 391-397B, Ta=50°C; Probe II: A 126 bp fragment of exon 8 (nucleotide 957-1082), primers SCCA2 319-324F and SCCA2 357-363B, Ta=50°C; probe III: A 1194 bp fragment covering the coding sequence and 22 nucleotides in the 3°-end of the gene, primers SCCA 1-7F and SCCA 391-397B, Ta=60°C.

Southern blot of PstI digested DNA hybridized with probe I show a different band pattern of DNA from a SCC-cell line compared to that of normal control DNA (Figure 9). DNA digested with BamHI also shows aberrant bands compared to normal control DNA.

25

: 35

FAX:46 317790640

S. 012

Ink. t. Patent- och reg.verket

10

2001 -03- 1 5

3. 3. PCR analysis

Huvudfaxen Kassan

DNA isolated by routine procedures from samles analysed by PCR using primers 7 and 8 (see Table 1) in a standard PCR-reaction show only product in samples containing the fusion gene.

5 EXAMPLE 4

Hybridomas and monoclonal antibodies

4. 1. Establishment of hybridomas and production of monoclonal antibodies reactive with SCCA1/A2, SCCA2 and SCCA1

Polyclonal antisera reactive with SCC antigen was obtained by subcutaneous immunization of Rabbits with recombinant SCC antigen and collection of immune sera according to standard procedures. The titer of the polyclonal antisera was tested by determination of the reactivity of the antisera with biotinylated SCCA1/A2 and SCCA1 immobilized in streptavidin plates (Labsystems Oy, Helsinki, Finland), Figure 6. The recombinant SCCA1/A2 and SCCA1 were biotinylated with Biotin-N-succinimide caproate ester according to standard procedures.

Monoclonal antibodies reactive with SCCA1/A2 and SCCA2 were established by immunization of Balb/c mice intra peritoneally with 10 - 50 µg of recombinant SCCA1/A2 in Ribi adjuvant. After the immunization and 2 - 4 booster doses during 60 - 90 days spleen cells from the immunized mice were fused with P3 x 63Ag 8 myeloma cells as described (47).

Hybridomas producing antibodies reacting with SCCA1/A2 were selected by ELISA screening of hybridoma supernatants in microtiter wells coated with affinity purified polyclonal antiserum against mouse IgG + M, (Jackson Immuno Res Lab, US). The wells were then incubated with SCCA1/A2 antigen, and after washing the bound antigen was detected by incubation with polyclonal Rabbit Anti SCC and HRP labeled Swine Anti Rabbit Ig (Dako AS, Copenhagen, Denmark).

4. 2. Reactivity of selected hybridomas with SCC antigens

The reactivity of the established hybridomas was tested in an ELISA similar to the ELISA screening procedure. Briefly the monoclonal antibodies produced by the hybridomas were immobilized in microtiter plates coated with polyclonal antiserum against mouse IgG+M (Jackson Immuno Res Lab, US). The wells were then incubated with 50 μ L of the different recombinant SCC antigens in PBS 1% BSA for 1 h, after washing the plates were incubated with 100 μ L Rabbit antiSCC diluted 1/5000 in PBS-1%BSA and incubated for additional 1h.

2001 -03- 15

Init 4. Valent - 3er reg Verket

11

Huvudfaxen Kassan

The bound Rabbit Anti-SCC was then detected by incubation with HRP - Swine anti Rabbit Ig and visualized with OPD substrate and determination of OD at 450 nm.

In figure 7 the reactivity of selected hybridomas are shown. The SCC106, SCC114, SCC115 reacted only with SCCA1/A2, which indicate that they are specific for the SCCA1/A2 fusion protein. The SCC100, SCC103 and SCC109 reacted with SCCA2 and SCCA1/A2 but not with SCCA1 indicating that they are specific for SCCA2. The SCC110, SCC111 and SCC124 reacted with SCCA1 and SCCA1/A2 but not with SCCA2 suggesting that they are specific for SCCA1.

10

15

20

25

The SCC107, SCC119 and SCC128 reacted with all SCC antigens suggesting that they recognize a common epitope in SVVA1 and SCCA2.

Twice limiting dilution cloned clones producing antibodies reacting with SCCA1/A2, but negative for SCCA1 were produced.

Monoclonal antibodies were produced by in vitro cultivation of the hybridoma clones by inoculation of 10⁴ cells/mL in DMEM, 5 % Fetal Calf Serum in roller bottles and allowed to grow for 10 - 14 days. The monoclonal antibodies were then purified from the culture medium by Protein A (Bioprocessing Ltd, Durham, UK) affinity chromatography according to the manufacturers recommendation.

EXAMPLE 5

Using the established monoclonal antibodies and recombinant proteins it was possible to develop immunoassays for specific determination of SCCA1/A2 fusion protein and assays specific for SCCA2 and SCCA1 respectively.

5. 1 Immunoassays for determination of SCCA1/A2 fusion protein

Assays specific for SCCA1/A" fusion protein but essentially negative for SCCA1 and SCCA2 were designed by using antibodies among SCC106, SCCC114 or SCC115 in combination with antibodies among SCC107, SCC119 or SCC128, see figure.

In the preferred configuration antibody SCC107 was used as catching antibody and SCC106 as detecting antibody.

2001 -03- 1 5

12

Huvudfaxen Kassan

SCC107 MAb was biotinylated with BiotinNHRS caproate ester, Sigma Chemical Co, US, using standard procedures, and used as catching antibody. SCC106 MAb were conjugated with HRP according to a modification of the Nakone procedure.

The biotinylated SCC107 MAb and HRP conjugated SCC106 MAb were used in two-site EIA according to the following protocol.

Assay procedure

20

25

2001-03-15

13

Huvudfaxen Kassan

- 1. Add 50 µL of SCCA recombinant antigen (0 100 µg/L in PBS, 60 g/L BSA, pH 7.2)
- + 100 μL of Biotin SCC107 MAb, 2 μg/mL, in Assay Buffer in Streptavidin coated microtiter plates, Labsystems Oy, Helsinki, Finland.
- 2. Incubate for 1 h ± 10 min with shaking
- 5 3. Wash 3 times with 5 mM Tris buffer, 0.05 % Tween 40, pH 7.75.
 - 4. Add 100 μL HRP SCC106 MAb, 2 μg/mL, in Assay Buffer.
 - 5. Incubate for 1 h \pm 10 min with shaking.
 - 6. Wash 6 times with 5 mM Tris buffer, 0.05 % Tween 40, pH 7.75.
 - 7. Add 100 µL TMB, ELISA Technology, US.
- 10 8. Incubate 30 min± 5 min
 - 9. Determine OD 620 nm in ELISA reader.

Dose-response curves for SCCA1, SCCA2 and SCCA1/A2 antigens revealed that the assay was specific for the SCCA1/A2 recombinant antigen with < 5 % cross reactivity with SCCA1 or SCCA2.

5. 2 Assays for specific determination of SCCA2

Assays specific for SCCA2 without significant reactivity with SCCA1/A2 and SCCA1 were designed by using antibodies among SCCC100, SCC103 or SCC109 in combination with antibodies among SCC107, SCC119 or SCC128. In the preferred configuration SCC107 MAb was used as catching antibody and the SCC103 was used as detecting antibody.

SCC107 MAb was biotinylated with BiotinNHRS caproate ester (Sigma Chemical Co, US) using standard procedures, and used as catching antibody. SCC103 MAb was conjugated with HRP, Type V (Sigma Chemical Co, US), according to a modification of the Nakone procedure.

The biotinylated SCC107 MAb and HRP conjugated SCC103 MAb were used in two-site EIA according to the following protocol.

- 30 Assay procedure:
 - 1. Add 50 μ L of SCC recombinant antigen (0 100 μ g/L in PBS, 60 g/L BSA, pH 7.2) + 100 μ
 - 2. Incubate for $1 h \pm 10 min$ with shaking
 - 3. Wash 3 times with 5 mM Tris buffer, 0.05 % Tween 40, pH 7.75.
 - Add 100 μL HRP SCC103 MAb 2 μg/mL, in Assay Buffer.

2001 -03- 1 5

- 5. Incubate for 1 h ± 10 min with shaking.
- 6. Wash 6 times with 5 mM Tris buffer, 0.05 % Tween 40, pH 7.75.

Huvudfaxen Kassan

Ink. t. Patent- och reg verket

- 7. Add 100 µL TMB, ELISA Technology, US
- 8. Incubate 30 min± 5 min
- 5 9. Determine OD 620 nm in ELISA reader.

Based on the dose-response curves for SCCA2, SCCA1 and SCCA1/A2 fusion protein it was concluded that the assay according to example 5.2 was specific for SCCA2 with a cross-reactivity of < 5 % for SCCA1 and SCCA1/A2.

10

15

5. 3. Assays for specific determination of SCCA1

Assays specific for SCCA1 without significant reactivity with SCCA2 and SCCA1/A2 were designed by using antibodies among SCC110, SCC111 or SCC124 in combination with antibodies of among SCC107, SCC119 or SCC128. In the preferred configurations SCC107MAb was used as catching antibody and SCC124 MAb was used as detecting antibody.

SCC107 MAb was biotinylated with BiotinNHRS caproate ester (Sigma Chemical Co, US) using standard procedures, and used as catching antibody. SCC124 MAb was conjugated with HRP, Type V, (Sigma Chemical Co., US) according to a modification of the Nakone procedure.

The biotinylated SCC107 MAb and HRP conjugated SCC124 MAb were used in two-site EIA according to the following protocol.

25 Assay procedure:

S. 017

Ink. t. Patent- och reg.verke

15

7001 -03- 1 5

Add 50 µL of SCC antigen (0 - 100 µg/L in PBS, 60 g/L BSA, pH 7.2) Huvudiaxen Kassan + 100 μL of Biotin SCC107 MAb, 2 μg/mL, in Assay Buffer in Streptavidin coated

mici

- 2. Incubate for $1 h \pm 10$ min with shaking
- 3. Wash 3 times with 5 mM Tris buffer, 0.05 % Tween 40, pH 7.75.
- 4. Add 100 μL HRP SCC124 MAb, 2 μg/mL, in Assay Buffer. 5
 - 5. Incubate for $1 h \pm 10$ min with shaking.
 - 6. Wash 6 times with 5 mM Tris buffer, 0.05 % Tween 40, pH 7.75.
 - 7. Add 100 µL TMB, (ELISA Technology, US).
 - 8. Incubate 30 min± 5 min
- 10 9. Determine OD 620 nm in ELISA reader.

Based on the antibodies according to 5.3 immunoassays specific for SCCA1 with < 10 % cross-reactivity for SCCA2 or SCCA1/A2 antigen may be designed.

S. 018

10

15

20

25

16

Ink. t. Patent- och reo verket

.2001 -03- 1 5

FIGURE LEGENDS 20

1. Chromosome 18 rearrangement

Huvudfaxen Kassan

- Alignment of the coding DNA regions, exon 2-8 of SCCA1 and SCCA2. Intron positions
 indicated -Ix-. Differences between the genes are indicated in grey. Italic letters show the regions coding for reactive site loops. Arrows show primer (Table 1) positions.
 - 3. Alignment of protein sequences of SCCA1 and SCCA2. Intron positions are indicated with dotted lines. Differences between the proteins are indicated in grey tone. Boxes show the reactive site loops.
 - 4. Nucleotide coding DNA region, exon 2-8 of the rearranged SCCA1/SCCA2. Sequences derived from SCCA1 are shown in normal style while sequences derived from SCCA2 are shown in bold. Intron positions are indicated in -Ix-. Differences between the genes are indicated in grey. Italic letters show the region coding for reactive site loop.
 - 5. Protein sequence of the SCCA1/SCCA2 fusion protein. Amino acids derived from SCCA1 are shown in normal letters. Amino acids derived from SCCA2 are shown in bold letters. Intron positions are indicated with dotted lines. Differences between the proteins are indicated in grey. The reactive site loop is marked with a box.
 - 6. Titer of PABan to SCC antigen.
 - 7. Reactivity of established hybridomas with different SCC antigens.
 - 8. Complex-binding analysis of SCCA1/A2 fusion protein. Lane A: SCCA1/A2, Lane B: SCCA1/A2 incubated with Cathepsin G, Lane C: SCCA1/A2 incubated with Cathepsin L. The complex of SCCA1/A2 and Cathepsin G is indicated by an arrow. Molecular weight marker is indicated.
 - 9. Southern blot analysis of genomic DNA digested with PstI and hybridized with probe I. Lane A: RPMI2650 containing the SCCA1/SCCA2 fusion gene, Lane B:Normal DNA. Aberrant bands are indicated with arrows. Molecular weight marker is indicated.

Ink. t. Patent- nch req.verket

S. 019

2001-08-15

REFERENCES

Huvudlaxen Kassan

- 1.Kato, H. (1992) in Serological Cancer Markers, ed. Sell, S. (The Humana Press, Totowa,
- 5 NJ), pp. 437-451.
 - 2. Yamawaki, T., Takeshima, N., Shimizu, Y., Teshima, H. & Hasumi, K. (1996) J Obstet Gynaecol Res 22, 341-6.
 - 3.Kato, H. & Torigoe, T. (1977) Cancer 40, 1621-8.
 - 4.Kato, H., Nagaya, T. & Torigoe, T. (1984) Gann 75, 433-5.
- 10 5.Suminami, Y., Nawata, S. & Kato, H. (1998) Tumour Biol 19, 488-93.
 - 6. Suminami, Y., Kishi, F., Sekiguchi, K. & Kato, H. (1991) Biochem Biophys Res Commun 181, 51-8.
 - 7. Schneider, S. S., Schick, C., Fish, K. E., Miller, E., Pena, J. C., Treter, S. D., Hui, S. M. & Silverman, G. A. (1995) Proc Natl Acad Sci USA 92, 3147-51.
- 8. Bartuski, A. J., Kamachi, Y., Schick, C., Overhauser, J. & Silverman, G. A. (1997)

 Genomics 43, 321-8.
 - 9. Scott, F. L., Eyre, H. J., Lioumi, M., Ragoussis, J., Irving, J. A., Sutherland, G. A. & Bird, P. I. (1999) Genomics 62, 490-9.
 - 10. Abts, H. F., Welss, T., Mirmohammadsadegh, A., Kohrer, K., Michel, G. & Ruzicka, T.
- 20 (1999) J Mol Biol 293, 29-39.

30

- 11. Spring, P., Nakashima, T., Frederick, M., Henderson, Y. & Clayman, G. (1999) Biochem Biophys Res Commun 264, 299-304.
- 12. Nakashimaa, T., Pakb, S. C., Silvermanb, G. A., Springa, P. M., Fredericka, M. J. & Claymana, G. L. (2000) Biochim Biophys Acta 1492, 441-446.
- 13.Silverman, G. A., Bartuski, A. J., Catalterie, S., Gornstein, E. R., Kamachi, Y., Schick, C.
 & Uemura, Y. (1998) Tumour Biol 19, 480-7.
 - 14.Katz, S. G., Schneider, S. S., Bartuski, A., Trask, B. J., Massa, H., Overhauser, J., Lalande, M., Lansdorp, P. M. & Silverman, G. A. (1999) Hum Mol Genet 8, 87-92.
 - 15. Gotte, K., Riedel, F., Coy, J. F., Spahn, V. & Hormann, K. (2006) Oral Oncol 36, 360-364.
 - 16. Takebayashi, S., Ogawa, T., Jung, K. Y., Muallem, A., Mineta, H., Fisher, S. G., Grenman, R. & Carey, T. E. (2000) Cancer Res 60, 3397-403.
 - 17. Carrell, R. W. & Evans, D. L. I. (1992) Current Opinion in Structural Biology 2, 438-446.
 - 18. Potempa, J., Korzus, E. & Travis, J. (1994) J Biol Chem 269, 15957-60.

::::

Ink. t. Patent- och reg.verket

18

2001 -03- 1 5

- 19. Wright, H. T. (1996) Bioessays 18, 453-64.
- 20.Bird, P. I. (1998) Results Probl Cell Differ 24, 63-89.
- Huvudfaxen Kassan
- 21.Bird, C. H., Sutton, V. R., Sun, J., Hirst, C. E., Novak, A., Kumar, S., Trapani, J. A. & Bird, P. I. (1998) Mol Cell Biol 18, 6387-98.
- 5 22. Van Patten, S. M., Hanson, E., Bernasconi, R., Zhang, K., Manavalan, P., Cole, E. S., McPherson, J. M. & Edmunds, T. (1999) J Biol Chem 274, 10268-76.
 - 23. Worrall, D. M., Blacque, O. E. & Barnes, R. C. (1999) Biochem Soc Trans 27, 746-50.
 - 24.Sim, R. B. & Laich, A. (2000) Biochem Soc Trans 28, 545-550.
- 25. Takeda, A., Yamamoto, T., Nakamura, Y., Takahashi, T. & Hibino, T. (1995) FEBS Lett 10 359, 78-80.
 - 26. Schick, C., Pemberton, P. A., Shi, G. P., Kamachi, Y., Cataltepe, S., Bartuski, A. J., Gornstein, E. R., Bromme, D., Chapman, H. A. & Silverman, G. A. (1998) *Biochemistry* 37, 5258-66.
 - 27. Schick, C., Kamachi, Y., Bartuski, A. J., Cataltepe, S., Schechter, N. M., Pemberton, P. A. & Silverman, G. A. (1997) J Biol Chem 272, 1849-55.
 - 28. Schick, C., Bromme, D., Bartuski, A. J., Uemura, Y., Schechter, N. M. & Silverman, G. A. (1998) Proc Natl Acad Sci USA 95, 13465-70.
 - 29. Luke, C., Schick, C., Tsu, C., Whisstock, J. C., Irving, J. A., Bromme, D., Juliano, L., Shi, G. P., Chapman, H. A. & Silverman, G. A. (2000) Biochemistry 39, 7081-91.
- 30. Suminami, Y., Nagashima, S., Vujanovic, N. L., Hirabayashi, K., Kato, H. & Whiteside, T. L. (2000) Br J Cancer 82, 981-9.
 - 31. Cataltepe, S., Gornstein, E. R., Schick, C., Karnachi, Y., Chatson, K., Fries, J., Silverman, G. A. & Upton, M. P. (2000) J Histochem Cytochem 48, 113-22.
 - 32.Kato, H., Suehiro, Y., Morioka, H., Torigoe, T., Myoga, A., Sekiguchi, K. & Ikeda, I.
- 25 (1987) Jpn J Cancer Res 78, 1246-50.
 - 33. Cataltepe, S., Schick, C., Luke, C. J., Pak, S. C., Goldfarb, D., Chen, P., Tanasiyevic, M. J., Posner, M. R. & Silverman, G. A. (2000) Clin Chim Acta 295, 107-27.
 - 34. Uemura, Y., Pak, S. C., Luke, C., Cataltepe, S., Tsu, C., Schick, C., Kamachi, Y., Pomeroy, S. L., Perlmutter, D. H. & Silverman, G. A. (2000) Int J Cancer 89, 368-77.
- 35. Murakami, A., Suminami, Y., Sakaguchi, Y., Nawata, S., Numa, F., Kishi, F. & Kato, H.
 (2000) Tumour Biol 21, 224-34.
 36. Hamakawa, H., Fukizumi, M., Bao, Y., Sumida, T., Onishi, A., Tanioka, H., Sato, H. &
 - 36. Hamakawa, H., Fukizumi, M., Bao, Y., Sumida, T., Onishi, A., Tanioka, H., Sato, H. & Yumoto, E. (1999) Clin Exp Metastasis 17, 593-9.

2001-03-15

19

- Huvudfaxen Kassan 37. Stenman, J., Lintula, S., Hotakainen, K., Vartiainen, J., Lehvaslaiho, H. & Stenman, U. H. (1997) Int J Cancer 74, 75-80.
- 38. Crombach, G., Scharl, A., Vierbuchen, M., Wurz, H. & Bolte, A. (1989) Cancer 63, 1337-42.
- 39.Brioschi, P. A., Bischof, P., Delafosse, C. & Krauer, F. (1991) Int J Cancer 47, 376-9.
 40.Duk, J. M., Groenier, K. H., de Bruijn, H. W., Hollema, H., ten Hoor, K. A., van der Zee,
 A. G. & Aalders, J. G. (1996) J Clin Oncol 14, 111-8.
 - 41.de Bruijn, H. W., Duk, J. M., van der Zee, A. G., Pras, E., Willemse, P. H., Boonstra, H., Hollema, H., Mourits, M. J., de Vries, E. G. & Aalders, J. G. (1998) Tumour Biol 19, 505-16.
- 42. Tabata, T., Takeshima, N., Tanaka, N., Hirai, Y. & Hasumi, K. (2000) Tumour Riol 21, 375-80.
 - 43. Gaarenstroom, K. N., Kenter, G. G., Bonfrer, J. M., Korse, C. M., Van de Vijver, M. J., Fleuren, G. J. & Trimbos, J. B. (2000) Gynecol Oncol 77, 164-70.
 - 44. Mino, N., Iio, A. & Hamamoto, K. (1988). Cancer 62, 730-4.
- 45. Snyderman, C. H., D'Amico, F., Wagner, R. & Eibling, D. E. (1995) Arch Otolaryngol Head Neck Surg 121, 1294-7.
 - 46. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- 47 Lindholm, L., Holmgren, J., Svennerholm, L., Fredman, P., Nilsson, O., Persson, B.,
- 20 Myrvold, H. & Lagergard, T. (1983) Int Arch Allergy Appl Immunol 71, 178-81.

1 111.40 01///0040

Ink. t. Patent- och reg.verket

2001 -03- 1 5

CLAIMS

1.A SCCA1/SCCA2 fusion protein.

Huvudfaxen Kassan

- 2. A fusion protein according to claim 1 coded by exon 2 7 of SCCA1 gene fused to exon 8
 of SCCA2 gene.
 - 3. A fusion protein according to claim 1, wherein the protein sequence is

MNSLSEANTK **FMFDLFQQFR** KSKENNIFYS **PISITSALGM VLLGAKDNTA** QQIKKVLHFD QVTENTTGKA ATYHVDRSGN VHHQFQKLLTE **FNKSTDAYE** 10 LKIANKLFGE KTYLFLQEYL DAIKKFYQTS VESVDFANAP EESRKKINSW VESQTNEKIK NLIPEGNIGS NTTLVLVNAI YFKGQWEKKF NKEDTKEEKF WPNKNTYKSI QMMRQYTSFH **FASLEDVQAK** VLEIPYKGKD LSMIVLLPNE IDGLQKLEEK LTAEKLMEWT SLQNMRETCV DLHLPRFKME ESYDLKDTLR TMGMVNIFNG DADLSGMTWS HGLSVSKVLH KAFVEVTEEG VEAAAATAVV

- 15 VVELSSPSTN EEPCCNHPFL FFIRQNKTNS ILFYGRFSSP
 - 4. A fusion protein sequence according to claim 3, wherein the sequence is TAVV VVELSSPST
- 20 5. A DNA sequence coding for a fusion SCCA1/SCCA2 protein.
 - 6. A DNA sequence comprising the nucleotide sequence of exon 2-7 of SCCA1 fused to the nucleotide sequence of exon 8 of SCCA2.
 - 7. A DNA sequence wherein the nucleotide sequence is
 ATGAATTCAC TCAGTGAAGC CAACACCAAG TTCATGTTCG ACCTGTTCCA
 ACAGTTCAGA AAATCAAAAG AGAACAACAT CTTCTATTCC CCTATCAGCA
 TCACATCAGC ATTAGGGATG GTCCTCTTAG GAGCCAAAGA CAACACTGCA
 CAACAGATTA AGAAGGTTCT TCACTTTGAT CAAGTCACAG AGAACACCAC
 AGGAAAAAGCT GCAACATATC ATGTTGATAG GTCAGGAAAT GTTCATCACC
 AGTTTCAAAA GCTTCTGACT GAATTCAACA AATCCACTGA TGCATATGAG
 CTGAAGATCG CCAACAAGCT CTTCGGAGAA AAAACGTATC TATTTTTACA
 GGAATATTTA GATGCCATCA AGAAATTTTA CCAGACCAGT GTGGAATCTG
 TTGATTTTGC AAATGCTCCA GAAGAAAGTC GAAAGAAGAT TAACTCCTGG

Huvudfaxen Kas

GTGGAAAGTC AAACGAATGA AAAAATTAAA AACCTAATTC CTGAAGGTAA
TATTGGCAGC AATACCACAT TGGTTCTTGT GAACGCAATC TATTTCAAAG
GGCAGTGGGA GAAGAAATTT AATAAAGAAG ATACTAAAGA GGAAAAATTT
TGGCCAAACA AGAATACATA CAAGTCCATA CAGATGATGA GGCAATACAC
ATCTTTTCAT TTTGCCTCGC TGGAGGATGT ACAGGCCAAG GTCCTGGAAA

- 5 ATCTTTCAT TTTGCCTCGC TGGAGGATGT ACAGGCCAAG GTCCTGGAAA
 TACCATACAA AGGCAAAGAT CTAAGCATGA TTGTGTTGCT GCCAAATGAA
 ATCGATGGTC TCCAGAAG CT TGAAGAGAAA CTCACTGCTG AGAAATTGAT
 GGAATGGACA AGTTTGCAGA ATATGAGAGA GACATGTGTC GATTTACACT
 TACCTCGGTT CAAAATGGAA GAGAGCTATG ACCTCAAGGA CACGTTGAGA
- ACCATGGGAA TGGTGAATAT CTTCAATGGG GATGCAGACC TCTCAGGCAT
 GACCTGGAGC CACGGTCTCT CAGTATCTAA AGTCCTACAC AAGGCCTTTG
 TGGAGGTCAC TGAGGAGGGA GTGGAAGCTG CAGCTGCCAC CGCTGTAGTA
 GTAGTCGAAT TATCATCTCC TTCAACTAAT GAAGAGTTCT GTTGTAATCA
 CCCTTTCCTA TTCTTCATAA GGCAAAATAA GACCAACAGC ATCCTCTTCT
- 15 ATGGCAGATT CTCATCCCCA
 - 8. A DNA sequence according to claim 7, wherein the DNA sequence is CGCTGTAGTA GTAGTCGAAT TATCATCTCC TTCAACT.
- 9. Plasmid comprising the nucletide sequence corresponding to exon 2 -7 of SCCA1 fused to the nucleotide sequence of exon 8 of SCCA2
 - 10. Plasmid comprising the nucleotide sequence of claim 6, and deposited at ECACC under deposition number ECACC 01031315.
 - 11. Protein expression system for production of SCCA1/SCCA2 fusion protein
 - 12. Recombinant bacteria comprising a plasmid according to claim 9.
 - 13. Recombinant bacteria comprising a plasmid according to claim 10.
 - 14. Recombinant E. coli comprising a plasmid according to claim 9.
 - 15. Recombinant B. coli comprising a plasmid according to claim 10.

15

S. 024 link t. Patent- och reg.ver

7-911-03- 1.5

Huvudfaxen Kassar

- 16. Method for detecting the gene rearrangement forming the SCCA1/SCCA2 fusion protein using a cDNA cloning and sequencing analysis of tumor DNA.
- 5 17. Method for detecting the gene rearrangement forming the SCCA1/SCCA2 fusion protein using a Southern blot-technology applied on tumor DNA.
 - 18. Method for detecting the gene rearrangement forming the SCCA1/SCCA2 fusion protein using a PCR-analysis technology.
 - 19. Method for detecting the gene rearrangement forming the SCCA1/SCCA2 fusion protein using an amino acid sequencing technology.
 - 20. Method for detection the SCCA1/A2 fusion protein using Western blotting
 - 21. Monoclonal antibody specific for SCCA1/SCCA2 fusion protein.
 - 22. Polyclonal antibody reactive with SCCA1/SCCA2 fusion protein.
- 20 23. Immunoassay using a monoclonal antibody or polyclonal antibody specific for SCCA1/SCCA2 fusion protein for detecting the presence and concentration of SCCA1/SCCA2 fusion protein.
- 24. Method for diagnosing the presence or absence of a squamous cell carcinoma by detecting the SCCA1/SCCA2 fusion protein in a human sample.
 - 25. Method according to claim 24, wherein the fusion protein is used in a histochemical analysis.
 - 26. Kit comprising a SCCA1/SCCA2 fusion protein antibody to be used in the determination of the presence or absence of squamous cell carcinoma (SCC).
 - 27. Kit according to claim 25, in that it further comprises antibodies related to SCCA1 and/or SCCA2.

::::

-:--:

FAX:46 317790640

S. 025

Ink. t. Patent- och reg.verket

2401-03-15

ABSTRACT

Huvudlaxen Kassan

The present invention relates to a SCCA1/SCCA2 fusion protein; plasmid containing the same; antibodies of said fusion protein; methods for detecting said protein; methods for diagnosing the presence or absence of SCC by determining the presence of SCCA1/SCCA2 fusion protein.

5 fusion pro

(FIG. 5)

Ink. t. Patent- och reg.verket

2001 -03- 1 5

Huvudfaxen Kassan

FIG. 1

····:

Ink. t. Patent- och reg.verket

2001 -03- 1 5

Huvudfaxen Kassan

SCCA1-I 1 - atgaatt cac teagtg aage caacaccaag t teatgit eg acetgit eea acagit eaga SCCA2-I 1 - atgaatt eac teagtg aage caacaccaag t teatgit eg atetgit eea acagit eaga

anatcanang agancancat citicitatice cetatengen tenentenge attaggg atg

giccicitag g agccaaaga caacactgca caacagatta agaag -1 2- gitcitcacttig at giccicitag g agccaaaga caacactgca caacagatta gcaag -1 2- gitcitcacttig at

caagtcacag agaacaccac aggaaaagct g caacatatc at -13 - gttg atag gtcaggaaat caagtcacag agaacaccac agaaaaagct g caacatatc at -13 - gttg atag gtcaggaaat

git catcace agiit caaaa gct tctgact gaattcaaca aatccactga tgcatatgag git catcace agiit caaaa gct tctgact gaattcaaca aatccactga tgcatatgag

ctgaagatcg ccaacaagct cttcggag aa aanacgtatc tattitt aca g -I 4 - g aatatit a ctgaagatcg ccaacaagct cttcggag aa aagacgtatc aatitt aca g -I 4 - gaatatit a

gatg ccatca agazatt tra c cagacca gt gtgg aat ctg ttg attitg c aaatg ctc ca gatg ccatca agazatt tra c cagacca gt gtgg aat cta etg attitg c aaatg ctc ca

gaagaaagtc gaaagaagattaactcctgg gtgg aaagtc aaacgaatg-I5- a aaaaattaaa gaagaaagtc gaaagaagattaactcctgg gtgg aaagtc aaacgaatg-I5- a aaaaattaaa

aacctaatte etgaagg taa tattgge age aataceaeat tggt ettgt g aaege aate aacctatt e etgatggg ac tattgg eaat gataegaeae tggt ettgt g aaege aate

tatticaaag ggcagtggg a gaagaaatti aataaagaag atactaaaga ggaaaaatti tatticaaag ggcagtggg a gaataaatti aaaaaagaaa acactaaaga gg aaaaatti

tggccaaaca ag — 6- aatacata caagtccata cagatgatga gg caatacac atcttticat tggccaaaca ag — 6- aatacata caaatctg ta cagatgatga gg caatacaa ttccttt aat

titig cettege teg aggatet acaegecaae et ceteg aaa taccatacaa aggeaaaeat titig cettege teg aggatet acaegecaae et ceteg aaa taccatacaa aggeaaaeat

ctaagcatga tig tgttgct g ccaaatgaa atcgatggt c tecagaag-I 7- ctig aagag aaa ctaagcatga tig tgetgct g ccaaatgaa atcgatggt c tgcagaag-I 7- ctig aagag aaa

Ink. t. Patent- och reg.V-

26

2001-03-15

ctcactgctg agaaattg at gg aatgga ca agit tgcaga atatgagag a gacacgigi c ctcactgctg agaaattg at gg aatgga ca agit tgcaga atatgagag a gacatgigi c

Huvudfaxen Kass

gatt acact tacctoggit caaagtggaa gagagctatg acctoaagga caogtig aga gatt acact tacctoggit caaaatggaa gagagctatg acctoaagga caogtig aga

accatege aa tegte gatat cit caatege gatecagacctctcagecat gaccegegage accatege aa tegte aatat cit caatege gatecagacctctcagecat gacctegage

cacegi cic i getatota agicotacac aaggootite teg agei tac aga geages a cacegi cic i cagitatota agicotacac aaggootite teg agei cac i gageages a

gengangetg cagetyceae egetgiagia gyatteggat cateaeetae it caacinat gygnangety cagetyceae egetgiagia gyagteguai tateatetee ii caacinat

gaagagit ce atigi aatca cectitecta ticticataa gg caaaataa gaccaacage gaagagit et giigi aatca cectitecta ticticataa gg caaaataa gaccaacage

atectettet atgge agatt eteateceeg tagatgeaat tag tetg tea et atectettet atgge agatt eteateceea tagatgeaat tag tetg tea et

FIG. 2

5

Ink. t. Patent- och reg.verket

7001-03- 1 5

Huvudiaxen Kassan

MNSLSEANTK FMFDLFQQFR KSKENNIFYS PISITS A LGM VLL GAKD NTA MNSLSEANTK FMFDLFQQFR KSKENNIFYS PISITS A LGM VLL GAKD NTA

QQIKKVLHFD QVTENTT GKA AT YHVDRSGN VHHQFQKLLTE FNKSTDA YE QQISKVLHFD QVT ENTT EKA AT YHV DRSGN VHHQFQKLLT EFNKSTDA YE

LKIANKLEGE KTYLELO EYL DAIKKEYQTS VESVDFANAP EESRKKINSW LKIANKLFGE KTYQFLQ EYL DAIKKFYQTS VESTDFANAP EESRKKINSW

VESQTNEKIK NLIPEGNIGS NTTL V LVN A I YFKGQWEKKF NKEDTKEEKF VESQTNEKIK NLFPDGTIGN DTTLVLVN AI YFKGQWENKF KKENTKEEKF

WPNINTYKSI OMMROYTSFH FASLEDVOAK VLEIPYKGKD LSMIVLLPNE WPNKNTYKSV OMMROYNSFN FALLEDVQAK VLEIPYKGKD LSMIVLLPNE

IDGLQK LEEK LTAEKLMEWT SLQNMRETRV DLHLPRFKVE ESYDLKDTLR IDGLOK LEEK LT A EKLMEWT SLONMRETCV DL HLPRFKME ESYDLKDTLR

TMGMV DIFNG DAD LSGMTGS RGLV LSGV LH KA FVEVTEEG A EAA A A TMGM/NIFNG DAD LSGMTWS HGLSVSKVLH KAFVEVTEEG VEAA AA

GFGSSPAST VV ELSSPST

N EEFHCNHPFL FFIRQNKTNS ILFYGRFSSP N EEFCCNHPFL FFIRQNIKTNS ILFYGRFSSP

FIG. 3

10

15

20

ink, t. Patent- och reg.verke

2001-03- 1 5

Huvudfaxen Kassan

-I 1 - atgaatteae teagtgaage caacaccaag tteatgiteg acetgiteea acagtteaga anatcannag agancancat citetattee cetatengen tenentenge attagggatg gtcetettag gagecaaaga caacactgca caacagatta agaag -I 2- gttet teaetttgat caagteacag agaacaccae aggaaaaget geaacatate at -I 3- gitgatag gicaggaaat gttcatcacc agtttcaaaa gcttctgact gaattcaaca aatccactga tgcatatgag ctgaagateg ccaacaaget etteggagaa aanaegtate lattittaca g -I 4- gaatalita gatgccatca agaaatttia ccagaccagt gtggaatctg ttgattitgc aaatgctcca gaagaaagte gaaagaagat taacteetgg gtggaaagte aaacgaatg -I 5- a aaaaattaaa aacctaatte etgaaggtaa tattggeage aataceacat tggttettgt gaacgcaate tatticaaag ggcagtggga gaagaaatti aataaagaag atactaaaga ggaaaaatti tggccaaaca ag -I 6- aatacata caagtceata cagatgatga ggcaatacae atctttteat tttgcctcgc tggaggatgt acaggccaag gtcctggaaa taccatacaa aggcaaagat 25 ctaagcatga tigigtiget gecaaatgaa ategatggte tecagaag-I 7- ettgaagagaaa etcactgetg agaaattgat ggaatggaca agtitgcaga atatgagaga gacatgigte 30 gatttacact taccteggtt caaaatggaa gagagetatg accteaagga caegttgaga accateggaa teeteaatat etteaatege gatecagace teteageat gacctegage caeggtetet cagtatetaa agteetacae aaggeettig iggaggteae igaggaggga 35 gtggaagetg eagetgeeae egetgtagta gtagtegaat taleatetee tteaactaat gnagagitet gitgiaatea ceciticeta tietteataa ggcaaaataa gaccaacage

atertettet atggeagatt eteateecea tagatgeaat tagtetgtea et

FIG. 4

Ink. t. Patent- och reg.ver

7667 -03- 15

MNSLSEANTK FMFDLFQQFR KSKENNIFYS PISITS A LGM VLL GAKD NTA

Huvudfaxen Kassai

QQIKKULHFD QVT ENTT GKA AT YHVDRSGN VHHQFQKLLT E FNKSTDA YE LKIANKLEGE KTYLELQ EYL DAIKKEYQTS V ESV DEANAP EESRKKINSW VESQTNEKIK NLIPEGNIGS NTTL V LVN A I YFKGQWEKKF NKEDTKEEKF WPNK NT YKSI OMMROYTSFH FASLEDVQAK VLEIPYKGKD LSMIVLLPNE IDGLQKELEEK LTAEKLMEWT SLQNMRETCV DLHLPRFKME ESYDLKDTLR TMGMVNIFNG DAD LSGMTWS HGLSVSKVLH KAFVEVTEEG VEAA AA

TA VVVV EL SSPST

N EEFCCNHPFI. FFIRQNKTNS ILFYGRFSSP

FIG. 5

Ink. t. Patent- och reg.ve

S. 032

2001 -03- 1 5

ý

Ink. t. Patant- och reg.verket

7901 -03- **15**

Huvudfaxen Kassan

FIG. 7

46 317790640 32

ink. t. Patent- och reg.verket

2001 -03- 1 5

Huvudfaxen Kassan

5

10

15

FIG. 8

Ink. t. Patent- och reg.vei

2001 -03- 1 5

Huvudfaxen Kassai

FIG. 9