Testes de hipóteses

1. Sobre o valor esperado, μ , de uma população Normal, com σ conhecido:

Hipótese nula: H_0 : $\mu = \mu_0$, sendo μ_0 o valor em teste

Estatística de Teste:
$$Z = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$$
 $\bigcap_{H_0} N(0,1)$

Tabela 1

Hipótese alternativa	Região de Rejeição	p-value
$H_1: \mu > \mu_0$	$[z_{1-\alpha}, +\infty)$	$P(Z \ge z_0)$
H ₁ : $\mu < \mu_0$	$(-\infty$, $-z_{1-\alpha}]$	$P(Z \leq z_0)$
H_1 : $μ ≠ μ_0$	$(-\infty, -z_{1-\alpha/2}] \cup [z_{1-\alpha/2}, +\infty)$	$2 \times P(Z \ge z_0)$

2. Sobre o valor esperado, μ , de uma população Normal, com σ desconhecido:

Hipótese nula: H_0 : $\mu = \mu_0$, sendo μ_0 o valor em teste

Estatística de Teste:
$$T = \frac{\overline{X} - \mu_0}{S} \sqrt{n}$$
 $\bigcap_{H_0} t_{(n-1)}$

Tabela 2

	Hipótese alternativa	Região de Rejeição	p-value
Ī	H_1 : $\mu > \mu_0$	$[t_{n-1;1-lpha},+\infty)$	$P(T \ge t_0)$
Ī	H_1 : $\mu < \mu_0$	$(-\infty$, $-t_{n-1;1-\alpha}$]	$P(T \le t_0)$
	H_1 : $\mu \neq \mu_0$	$(-\infty, -t_{n-1;1-\alpha/2}] \cup [t_{n-1;1-\alpha/2}, +\infty)$	$2 \times P(T \ge t_0)$

3. Sobre o valor esperado, μ , de uma população não Normal, com σ conhecido e sendo n "grande":

Hipótese nula: H_0 : μ = μ_0 , sendo μ_0 o valor em teste

Estatística de Teste:
$$Z = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$$
 $\stackrel{a}{\cap}$ $N(0,1)$

Decisão como na Tabela 1.

4. Sobre a variância, σ^2 , de uma população Normal, com μ conhecido:

Hipótese nula: H_0 : $\sigma^2 = \sigma_0^2$, sendo σ_0^2 o valor em teste

Estatística de Teste:
$$X^2 = \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sigma_0^2} \cap_{H_0} \chi_{(n)}^2$$

Tabela 4

Hipótese alternativa	Região de Rejeição	p-value
$H_1: \sigma^2 > \sigma_0^2$	$[\chi^2_{n;1-\alpha},+\infty)$	$P(T \ge t_0)$
$H_1: \sigma^2 < \sigma_0^2$	$[0,\chi^2_{n;\alpha}]$	$P(T \le t_0)$
$H_1: \sigma^2 \neq \sigma_0^2$	$[0, \chi^2_{n;\alpha/2}] \cup [\chi^2_{n;1-\alpha/2}, +\infty)$	$2 \times \min\{P(X^2 \le x^2_0), P(X^2 \ge x^2_0)\}$

5. Sobre a variância, σ^2 , de uma população Normal, com μ desconhecido:

Hipótese nula: H_0 : $\sigma^2 = \sigma^2_0$, sendo σ^2_0 o valor em teste

Estatística de Teste:
$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$
 $\bigcap_{H_0} \chi_{(n-1)}^2$

Tabela 5

140-140			
Hipótese alternativa	Região de Rejeição	p-value	
$H_1: \sigma^2 > \sigma_0^2$	$[\chi^2_{n-1;1-\alpha},+\infty)$	$P(T \ge t_0)$	
$H_1: \sigma^2 < \sigma_0^2$	$[0$, $\chi^2_{n-1;\alpha}]$	$P(T \le t_0)$	
$H_1: \sigma^2 \neq \sigma_0^2$	$[0,\chi^2_{n-1;lpha/2}]\cup[\chi^2_{n-1;1-lpha/2},+\infty)$	$2 \times \min\{P(X^2 \le x^2_0), P(X^2 \ge x^2_0)\}$	

Testes de hipóteses

6. Sobre a diferença de valores esperados, $\mu_1 - \mu_2$, de populações Normais independentes, com σ_1 e σ_2 conhecidos:

Hipótese nula: H_0 : $\mu_1 - \mu_2 = d_0$, sendo d_0 o valor em teste

Estatística de Teste:
$$Z = \frac{\overline{X}_1 - \overline{X}_2 - d_0}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}} \cap N(0,1)$$

Tabela 6

Hipótese alternativa	Região de Rejeição	p-value
H_1 : $\mu_1 - \mu_2 > d_0$	$[z_{1-\alpha}, +\infty)$	$P(Z \ge z_0)$
H_1 : $\mu_1 - \mu_2 < d_0$	$(-\infty$, $-z_{1-\alpha}]$	$P(Z \leq z_0)$
$H_1: \mu_1 - \mu_2 \neq d_0$	$(-\infty, -z_{1-\alpha/2}] \cup [z_{1-\alpha/2}, +\infty)$	$2 \times P(Z \ge z_0)$

7. Sobre a diferença de valores esperados, μ_1 – μ_2 , de populações Normais independentes, homocedásticas, com σ desconhecido:

Hipótese nula: H_0 : $\mu_1 - \mu_2 = d_0$, sendo d_0 o valor em teste

Estatística de Teste:
$$Z = \frac{\overline{X}_1 - \overline{X}_2 - d_0}{\sqrt{S_p^2 (1/n_1 + 1/n_2)}} \cap_{H_0} t_{(n_1 + n_2 - 2)}$$

onde
$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$
 (pooled variance)

Tabela 7

Hipótese alternativa	Região de Rejeição	p-value
$H_1: \mu_1 - \mu_2 > d_0$	$[t_{n_1+n_2-2;1-\alpha},+\infty)$	$P(T \ge t_0)$
$H_1: \mu_1 - \mu_2 < d_0$	$(-\infty, -t_{n_1+n_2-2;1-\alpha}]$	$P(T \le t_0)$
$H_1: \mu_1 - \mu_2 \neq d_0$	$(-\infty, t_{n_1+n_2-2;1-\alpha/2}] \cup [t_{n_1+n_2-2;1-\alpha/2}, +\infty)$	$2 \times P(T \ge t_0)$

8. Sobre a diferença de valores esperados, $\mu_1 - \mu_2$, de populações independentes não Normais, com σ_1 e σ_2 desconhecidos, sendo n_1 e n_2 "grandes":

Hipótese nula: H₀: $\mu_1 - \mu_2 = d_0$, sendo d_0 o valor em teste

Estatística de Teste:
$$Z = \frac{\overline{X}_1 - \overline{X}_2 - d_0}{\sqrt{S_1^2/n_1 + S_2^2/n_2}} \cap_{H_0}^a N(0,1)$$

Decisão como na Tabela 8.

9. Sobre a razão de variâncias, σ_1^2/σ_2^2 , de populações Normais independentes, com μ_1 e μ_2 desconhecidos:

Hipótese nula: H_0 : $\sigma_1^2 = \sigma_2^2$

Estatística de Teste: $X^2 = S_1^2 / S_2^2$ $\bigcap_{H_0} F_{(n_1-1, n_2-1)}$

Tabela 9

Tubela 5			
Hipótese alternativa	Região de Rejeição	p-value	
$H_1: \sigma_1^2 > \sigma_2^2$	$[F_{n_1-1, n_2-1; 1-\alpha}, +\infty)$	$P(F \ge f_0)$	
$H_1: \sigma_1^2 < \sigma_2^2$	$[0, F_{n_1-1, n_2-1; \alpha}]$	P(<i>F</i> ≤ <i>f</i> ₀)	
$H_1: \sigma_1^2 \neq \sigma_2^2$	$[0, F_{n_1-1, n_2-1; \alpha/2}] \cup [F_{n_1-1, n_2-1; 1-\alpha/2}, +\infty)$	$2 \times \min\{P(F \leq f_0), P(F \geq f_0)\}$	

ELEMENTOS DE PROBABILIDADES E ESTATÍSTICA

Ano Letivo 2018/2019

Testes de hipóteses

10. Sobre a proporção, *p*, de indivíduos de uma população com uma certa característica de interesse e sendo *n* "grande":

Hipótese nula: H_0 : $p = p_0$, sendo p_0 o valor em teste

Estatística de Teste:
$$Z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} \cap_{H_0}^a N(0,1)$$

Tabela 10

Hipótese alternativa	Região de Rejeição	p-value
$H_1: p > p_0$	$[z_{1-\alpha}, +\infty)$	$P(Z \ge z_0)$
$H_1: p < p_0$	$(-\infty$, $-z_{1-\alpha}]$	$P(Z \le z_0)$
$H_1: p \neq p_0$	$(-\infty, -z_{1-\alpha/2}] \cup [z_{1-\alpha/2}, +\infty)$	$2 \times P(Z \ge z_0)$

11. Sobre a diferença de proporções, $p_1 - p_2$, em populações independentes, sendo n_1 e n_2 "grandes": Hipótese nula: H_0 : $p_1 - p_2 = p_0$, sendo p_0 o valor em teste

Estatística de Teste:
$$Z = \frac{\hat{\rho}_1 - \hat{\rho}_2 - \rho_0}{\sqrt{\overline{\rho}(1-\overline{\rho})\big(1/n_1 + 1/n_2\big)}} \quad \stackrel{a}{\cap} \quad N(0,1)$$
 onde
$$\overline{\rho} = \frac{x_1 + x_2}{n_1 + n_2} \, ,$$

 x_1 é o n.º de sucessos na amostra (de dimensão n_1) associada à População 1; x_2 é o n.º de sucessos na amostra (de dimensão n_2) associada à População 2.

Tabela 11

Hipótese alternativa	Região de Rejeição	p-value
$H_1: p_1 - p_2 > p_0$	$[z_{1-\alpha}, +\infty)$	$P(Z \ge z_0)$
$H_1: p_1 - p_2 < p_0$	$(-\infty, -z_{1-\alpha}]$	$P(Z \leq z_0)$
$H_1: p_1 - p_2 \neq p_0$	$(-\infty, -z_{1-\alpha/2}] \cup [z_{1-\alpha/2}, +\infty)$	$2 \times P(Z \ge z_0)$