Metody rozpoznawania obrazów i podstawy uczenia maszynowego

Zadanie: Metody inicjalizacji k-means

Wykonanie: Kamil Kurp

Zbiór wejściowy - bitmapa:

1. Inicjalizacja random

Pierwsza iteracja:

Piąta iteracja:

Dziesiąta iteracja:

Metryka jakości Adjusted Mutual Information (AMI):

Miara Silhouette:

2. Inicjalizacja random partition

Pierwsza iteracja:

Piąta iteracja:

Dziesiąta iteracja:

Metryka jakości Adjusted Mutual Information (AMI):

Miara Silhouette:

3. Inicjalizacja Forgy

Pierwsza iteracja:

Piąta iteracja:

Dziesiąta iteracja:

Metryka jakości Adjusted Mutual Information (AMI):

Miara Silhouette:

4. Inicializacja k-means++

Pierwsza iteracja:

Piąta iteracja:

Miara Silhouette:

5. Wnioski

Inicjalizacja random nie jest w stanie rozróżnić dwóch klastrów, które są bardzo blisko (algorytm wpada w lokalne minimum) ze względu na to, że początkowe punkty centralne klastrów zostały niefortunnie wylosowane. W random partition występuje podobny problem. Skutkuje to tym, że te metody inicjalizacji nie są w stanie osiągnąć 100% w punktacji metryki jakości. Inicjalizacja Forgy osiąga dla takich danych wejściowych maksymalną punktację w najmniejszej ilości iteracji ze wszystkich zastosowanych metod. K-means++ osiąga podobnie dobry wynik, jednak nie dla wszystkich prób inicjalizacji jest osiągnięte 100%.