A Mathematical Introduction to Data Science

October 14, 2014

Homework 3. Stein's Phenomenon

Instructor: Yuan Yao Due: Tuesday October 21, 2014

The problem below marked by * is optional with bonus credits.

- 1. Maximum Likelihood Method: consider n random samples from a multivariate normal distribution, $X_i \in \mathbb{R}^p \sim \mathcal{N}(\mu, \Sigma)$ with $i = 1, \ldots, n$.
 - (a) Show the log-likelihood function

$$l_n(\mu, \Sigma) = -\frac{n}{2} \operatorname{trace}(\Sigma^{-1} S_n) - \frac{n}{2} \log \det(\Sigma) + C,$$

where $S_n = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)(X_i - \mu)^T$, and some constant C does not depend on μ and Σ :

(b) Show that $f(X) = \operatorname{trace}(AX^{-1})$ with $A, X \succeq 0$ has a first-order approximation,

$$f(X + \Delta) \approx f(X) - \operatorname{trace}(X^{-1}A'X^{-1}\Delta)$$

hence formally $df(X)/dX = -X^{-1}AX^{-1}$ (note $(I+X)^{-1} \approx I - X$. A typo in previous version missed '-' sign here.);

(c) Show that $g(X) = \log \det(X)$ with $A, X \succeq 0$ has a first-order approximation,

$$g(X + \Delta) \approx g(X) + \operatorname{trace}(X^{-1}\Delta)$$

hence $dg(X)/dX = X^{-1}$ (note: consider eigenvalues of $X^{-1/2}\Delta X^{-1/2}$);

(d) Use these formal derivatives with respect to positive semi-definite matrix variables to show that the maximum likelihood estimator of Σ is

$$\hat{\Sigma}_n^{MLE} = S_n.$$

A reference for (b) and (c) can be found in Convex Optimization, by Boyd and Vandenbergh, examples in Appendix A.4.1 and A.4.3:

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

- 2. Shrinkage: Suppose $y \sim \mathcal{N}(\mu, I_p)$.
 - (a) Consider the Ridge regression

$$\min_{\mu} \frac{1}{2} \|y - \mu\|_2^2 + \frac{\lambda}{2} \|\mu\|_2^2.$$

Show that the solution is given by

$$\hat{\mu}_i^{ridge} = \frac{1}{1+\lambda} y_i.$$

Compute the risk (mean square error) of this estimator. The risk of MLE is given when C = I.

(b) Consider the LASSO problem,

$$\min_{\mu} \frac{1}{2} \|y - \mu\|_2^2 + \lambda \|\mu\|_1.$$

Show that the solution is given by Soft-Thresholding

$$\hat{\mu}_i^{soft} = \mu_{soft}(y_i; \lambda) := \operatorname{sign}(y_i)(|y_i| - \lambda)_+.$$

For the choice $\lambda = \sqrt{2 \log p}$, show that the risk is bounded by

$$\mathbb{E}\|\hat{\mu}^{soft}(y) - \mu\|^2 \le 1 + (2\log p + 1)\sum_{i=1}^{p} \min(\mu_i^2, 1).$$

Under what conditions on μ , such a risk is smaller than that of MLE? Note: see Gaussian Estimation by Iain Johnstone, Lemma 2.9 and the reasoning before it.

(c) Consider the l_0 regularization

$$\min_{\mu} \|y - \mu\|_2^2 + \lambda^2 \|\mu\|_0,$$

where $\|\mu\|_0 := \sum_{i=1}^p I(\mu_i \neq 0)$. Show that the solution is given by Hard-Thresholding

$$\hat{\mu}_i^{hard} = \mu_{hard}(y_i; \lambda) := y_i I(|y_i| > \lambda).$$

Rewriting $\hat{\mu}^{hard}(y) = (1 - g(y))y$, is g(y) weakly differentiable? Why?

(d) Consider the James-Stein Estimator

$$\hat{\mu}^{JS}(y) = \left(1 - \frac{\alpha}{\|y\|^2}\right) y.$$

Show that the risk is

$$\mathbb{E}\|\hat{\mu}^{JS}(y) - \mu\|^2 = \mathbb{E}U_{\alpha}(y)$$

where $U_{\alpha}(y) = p - (2\alpha(p-2) - \alpha^2)/\|y\|^2$. Find the optimal $\alpha^* = \arg\min_{\alpha} U_{\alpha}(y)$. Show that for p > 2, the risk of James-Stein Estimator is smaller than that of MLE for all $\mu \in \mathbb{R}^p$.

(e) In general, an odd monotone unbounded function $\Theta : \mathbb{R} \to \mathbb{R}$ defined by $\Theta_{\lambda}(t)$ with parameter $\lambda \geq 0$ is called *shrinkage* rule, if it satisfies

[shrinkage]
$$0 \le \Theta_{\lambda}(|t|) \le |t|;$$

[odd]
$$\Theta_{\lambda}(-t) = -\Theta_{\lambda}(t)$$
;

[monotone]
$$\Theta_{\lambda}(t) \leq \Theta_{\lambda}(t')$$
 for $t \leq t'$;

[unbounded]
$$\lim_{t\to\infty} \Theta_{\lambda}(t) = \infty$$
.

Which rules above are shrinkage rules?

3. *Necessary Condition for Admissibility of Linear Estimators. Consider linear estimator for $y \sim \mathcal{N}(\mu, \sigma^2 I_p)$

$$\hat{\mu}_C(y) = Cy.$$

Show that $\hat{\mu}_C$ is admissible only if

- (a) C is symmetric;
- (b) $0 \le \rho_i(C) \le 1$ (where $\rho_i(C)$ are eigenvalues of C);
- (c) $\rho_i(C) = 1$ for at most two i.

These conditions are satisfied for MLE estimator when p=1 and p=2.

Reference: Theorem 2.3 in Gaussian Estimation by Iain Johnstone, $\,$

http://statweb.stanford.edu/~imj/Book100611.pdf