4.1)
$$f(-3)=19$$
, $f'(-3)=0$
 $f(-3)=19$, $f'(-3)=0$
 $f(-3)=19$, $f'(-3)=0$

$$f'(3)=0 \Rightarrow 27-6a+b=0$$

$$b=6a-27$$

$$f'(1)=0 \Rightarrow 3+2a+b=0$$

$$b=-3-2a$$

So,
$$6a-27=-3-2a$$
 $b=19-27$

$$8a=24$$

$$a=3$$

f(x)=ax2+bx+4 a>0

$$f'(x) = 2ax+b$$

 $f'(x) = 0$ when $x = \frac{-b}{2a}$
Clearly $f'(x) = 2ax+b$
is an increasing
function
(i.e. $f''(x) = 2a > 0$)

Thus F(x) is docreasing when x2 b and increasing when x>= ba

Fand g are both increasing on (a,b) f(x) > 0, g(x) > 0 on (a,b)Thus, whenever $(x_2 > x_1)$ on (a,b) $f(x_1) < f(x_2)$ and $f(x_1) < f(x_2)$ $f(x_2) < f(x_3) < f(x_4) < f(x_5)$

Thus $\mathcal{F}(x_1)g(x_1) < \mathcal{F}(x_2)g(x_2)$ \vdots $\mathcal{F}(x)g(x)$ is increasing on [a,b] too.

OR Let h=fg h'=f'g+fg' $= \oplus \oplus + \oplus \oplus$ $= \bigoplus Ca,b7$ $= \bigoplus Ca,b7$

 \mathcal{L} f and g are both increasing on \mathcal{L} and \mathcal{L} and \mathcal{L} \mathcal{L} and \mathcal{L} \mathcal{L} \mathcal{L} and \mathcal{L} $\mathcal{$

Thus whenever $x_2>x_1$ on Ca,bIThen $f(x_1) < f(x_2) < 0$

g(x1) < g(x2) < 0

Thus $f(x_1)g(x_1) > f(x_2)g(x_2) > 0$ So, f(x)g(x) must be decreasing on [r,b].

OR Let h = 5g h' = 5'g + 5g' $= \oplus \ominus + \ominus \oplus \ominus$ $= \ominus + \ominus \ominus$ $= \ominus + \ominus$ $= \ominus + \ominus$ $= \ominus + \ominus$ $= \ominus$ $= \ominus$