Révisions et compléments d'analyse

Cornou Jean Louis

10 septembre 2025

1 Manipulations d'inégalités dans \mathbb{R} .

1.1 La relation d'ordre \leq sur \mathbb{R} .

Le théorème qui suit rappelle (de manière formalisée) des propriétés que vous connaissez depuis longtemps sur les inégalités entre nombres réels.

Théorème 1 (admis) L'ensemble des réels $\mathbb R$ est muni d'une relation d'ordre \leq qui vérifie les propriétés suivantes :

- $\forall x \in \mathbb{R}, x \leq x$ (réflexivité).
- $\forall (x,y) \in \mathbb{R}^2$, $[(x \le y) \land (y \le x) \Rightarrow x = y]$ (antisymétrie).
- $\forall (x, y, z) \in \mathbb{R}^3$, $[(x \le y) \land (y \le z) \Rightarrow x \le z]$ (transitivité).
- $\forall (x, y) \in \mathbb{R}^2$, $[(x \le y) \lor (y \le x)]$ (totalité).
- $\forall (x, y, z) \in \mathbb{R}^3$, $[x \le y \Rightarrow x + z \le y + z]$ (compatibilité avec l'addition).
- $\forall (x,y,z) \in \mathbb{R}^3$, $[(x \le y) \land (0 \le z) \Rightarrow xz \le yz]$ (compatibilité avec la multiplication par un réel positif).

Lorsque deux réels x et y vérifient $x \le y$, on dit que x est inférieur ou égal à y.

Remarque

La compatibilité avec l'addition ne présume pas du signe du réel z, tandis que la multiplication requiert IMPÉRATIVEMENT le contrôle du signe du réel z.

∧ Attention

La soustraction d'inégalités est BANNIE!

Définition 1 Pour tous réels x, y, on écrit

- x < y lorsque $x \le y \land x \ne y$.
- $x \ge y$ lorsque $y \le x$.
- x > y lorsque $x \ge y \land x \ne y$.

Propriété 1 (Multiplication par -1)

$$\forall (x, y) \in \mathbb{R}^2, x \le y \Rightarrow -y \le -x$$

Démonstration. Soit $(x,y) \in \mathbb{R}^2$. On suppose que $x \le y$. Montrons que $-y \le -x$. D'après la compatibilité avec l'addition, en additionnant le réel -x de part et d'autre, on obtient $x-x \le y-x$, soit encore $0 \le y-x$. Toujours d'après la compatibilité avec l'addition, en additionnant le réel -y de part et d'autre, on obtient $0-y \le y-x-y$, soit encore $-y \le -x$.

Corollaire (Multiplication par un réel négatif)

$$\forall (x, y, z) \in \mathbb{R}^3, [(x \le y) \land (z \le 0) \Rightarrow zy \le zx]$$

Démonstration. Soit $(x,y,z) \in \mathbb{R}^3$. On suppose $x \le y$ et $z \le 0$. D'après la propriété précédente, $-0 \le -z$, soit encore $0 \le -z$. D'après la compatibilité avec la multiplication par un réel positif, exploitée à l'aide du réel positif -z. On obtient $x(-z) \le y(-z)$ soit encore $-xz \le -yz$. Mais alors d'après la propriété précédente appliquée aux réels -xz et -yz, $-(-yz) \le -(-xz)$, i.e $zy \le zx$.

Propriété 2 (Fonction inverse et inégalités) Soit $(x, y) \in (\mathbb{R}^*)^2$.

- Si x > 0, alors $\frac{1}{x} > 0$.
- Si x < 0, alors $\frac{1}{x} < 0$.

Autrement dit, la fonction inverse conserve le signe des réels non nuls. D'autre part,

- Si $0 < x \le y$, alors $\frac{1}{y} \le \frac{1}{x}$.
- Si $x \le y < 0$, alors $\frac{1}{y} \le \frac{1}{x}$.

Démonstration. • Supposons x > 0. Comme $x \frac{1}{x} = 1 \neq 0$, 1/x n'est pas nul. Donc 1/x > 0 ou 1/x < 0. Si 1/x < 0, alors x1/x < 0 puisque x > 0. Cela donne 1 < 0 qui est absurde. Donc 1/x > 0.

- Supposons x < 0. Alors -x > 0. On applique ce qui précède au réel -x, ce qui donne 1/(-x) > 0. Or 1/(-x) = -1/x, donc -1/x > 0, donc 1/x < 0.
- Supposons $0 < x \le y$. D'après ce qui précède, on sait que 1/x > 0, Ainsi, $x \frac{1}{x} \le y \frac{1}{x}$, i.e $1 \le y \frac{1}{x}$. De même, 1/y > 0 puisque y > 0, donc $1 \frac{1}{y} \le y \frac{1}{x} \frac{1}{y}$, soit encore $\frac{1}{y} \le \frac{1}{x}$.
- Suppsosons $x \le y < 0$. Alors $-x \ge -y > 0$. On applique ce qui précède aux réels -x et -y, ce qui donne $\frac{1}{-y} \ge \frac{1}{-x}$, soit encore $-\frac{1}{y} \ge -\frac{1}{x}$. On en déduit par multiplication par -1 que $\frac{1}{y} \le \frac{1}{x}$.

Inverser des inégalités sans contrôler le signe des réels manipulés est une faute GRAVE!

1.2 Fonctions et inégalités

Définition 2 Soit A une partie de \mathbb{R} et $f: A \to \mathbb{R}$ une fonction de la variable réelle à valeurs réelles. On dit que f est

- croissante lorsque $\forall (x, y) \in A^2, x \le y \Rightarrow f(x) \le f(y)$.
- strictement croissante lorsque $\forall (x, y) \in A^2, x < y \Rightarrow f(x) < f(y)$.
- décroissante lorsque $\forall (x,y) \in A^2, x \le y \Rightarrow f(x) \ge f(y)$.
- strictement décroissante lorsque $\forall (x, y) \in A^2, x < y \Rightarrow f(x) > f(y)$.
- monotone lorsque f est croissante ou décroissante.
- strictement monotone lorsque f est strictement croissante ou strictement décroissante.

Exemple 1 Pour tout réel a, $T_a: \mathbb{R} \to \mathbb{R}$, $x \mapsto x + a$ est strictement croissante. Pour tout réel strictement positif a, $M_a: \mathbb{R} \to \mathbb{R}$, $x \mapsto ax$ est strictement positif. Pour tout réel strictement négatif, M_a est strictement décroissante. La fonction inverse $\mathbb{R}^* \to \mathbb{R}$, $x \mapsto 1/x$ est strictement décroissante sur $]0,+\infty[$, strictement décroissante sur $]-\infty,0[$, mais n'est pas strictement décroissante sur \mathbb{R}^* .

Exemple 2 On considère la fonction carrée $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$. Soit $(x,y) \in \mathbb{R}^2$ tels que $0 \le x < y$. Alors $f(y) - (x) = y^2 - x^2 = (y - x)(y + x)$. Or y - x > 0 et y + x > 0, donc f(y) - f(x) > 0. Ainsi, f est strictement croissante sur \mathbb{R}_+ . Si l'on suppose $x < y \le 0$. Alors y - x > 0 mais y + x < 0, donc f(y) < f(x). On en déduit que f est strictement décroissante sur \mathbb{R}_- . Cette fonction n'est ni croissante ni décroissante sur \mathbb{R} . En effet, $-2 \le 1$, pourtant $4 = (-2)^2 \ge 1^2 = 1$. De même $-1 \le 2$, mais $1 = (-1)^2 \le 2^2 = 4$.

Exemple 3 Montrons que la fonction racine carrée est strictement croissante. Soit $(x,y) \in \mathbb{R}^2_+$ tel que x < y. Montrons que $\sqrt{x} < \sqrt{y}$. Comme \leq est totale, $\sqrt{x} \leq \sqrt{y}$ ou $\sqrt{x} \geq \sqrt{y}$. Supposons que $\sqrt{x} \geq \sqrt{y}$. Alors la croissance de la fonction carrée donne $\sqrt{x}^2 \geq \sqrt{y}^2$, i.e $x \geq y$, ce qui est contraire à l'hypothèse x < y. Ainsi, $\sqrt{x} < \sqrt{y}$ et la fonction racine carrée est strictement croissante.

Propriété 3 Soit A une partie de \mathbb{R} et $f: A \to \mathbb{R}$ une fonction.

• On suppose que f est strictement croissante. Alors

$$\forall (x, y) \in A^2, (x < y \iff f(x) < f(y))$$

• On suppose que f est strictement décroissante. Alors

$$\forall (x, y) \in A^2, (x < y \iff f(y) < f(x))$$

Démonstration. Prenons le cas où f est strictement croissante. L'autre cas est laissé à votre sagacité. Soit $(x,y) \in \mathbb{R}^2$. Si x < y, alors f(x) < f(y) par stricte croissance de f. D'autre part, si $x \ge y$, alors par croissance de f (car la stricte croissance implique la croissance), $f(x) \ge f(y)$. Par contraposition, $f(x) < f(y) \Rightarrow x < y$, D'où l'équivalence.

∧ Attention

Cette équivalence est fausse lorsqu'on suppose f uniquement croissante ou décroissante.

Exemple 4 Soit $x \in \mathbb{R}_+^*$. Comme le logarithme népérien est strictement croissant, on peut désormais écrire $x > 1 \iff \ln(x) > 0$ sans que je vous demande 2 justifications.

Définition 3 Pour tout réel x, on appelle valeur absolue de x la quantité x si $x \ge 0$ et -x sinon. Elle est notée |x|.

Propriété 4 La fonction valeur absolue $\mathbb{R} \to \mathbb{R}$, $x \mapsto |x|$ est strictement croissante sur $[0, +\infty[$ et strictement décroissante sur $]-\infty, 0]$.

Démonstration. Soit $(x,y) \in \mathbb{R}^2$ tel que $0 \le x < y$. Alors |x| = x < y = |y|, donc la fonction valeur absolue est strictement croissante sur $[0,+\infty[$. Soit $(x,y) \in \mathbb{R}^2$ tel que $x < y \le 0$. Alors |x| = -x > -y = |y|. Donc la fonction valeur absolue est strictement décroissante sur $]-\infty,0]$.

Propriété 5 *Pour tout réel x,* $\sqrt{x^2} = |x|$.

Démonstration. Soit $x \in \mathbb{R}$. Premier cas : $x \ge 0$. Alors $|x|^2 = x^2$. Deuxième cas : $x \le 0$. Alors $|x|^2 = (-x)^2 = x^2$. Dans tous les cas $|x|^2 = x^2$. De plus, $|x| \ge 0$. Comme $\sqrt{x^2}$ est l'unique réel positif dont le carré vaut x^2 , c'est |x|.

Propriété 6 (Multiplicativité de la valeur absolue)

$$\forall (x, y) \in \mathbb{R}^2, |xy| = |x||y|$$

Démonstration. On utilise la multiplicativité de la racine carrée et du carré. Soit $(x,y) \in \mathbb{R}^2$. Alors

$$|xy| = \sqrt{(xy)^2} = \sqrt{x^2y^2} = \sqrt{x^2}\sqrt{y^2} = |x||y|$$

Autre possibilité, distinguer les quatre cas possibles.

Propriété 7 Soit a, x deux réels. On a l'équivalence

$$|x| \le a \iff -a \le x \le a$$

En particulier, $-|x| \le x \le |x|$.

Démonstration. Laissée à titre d'exercice.

Théorème 2 (Inégalité triangulaire)

$$\forall (x, y) \in \mathbb{R}^2, |x + y| \le |x| + |y|$$

Il y a égalité si et seulement x et y ont même signe (au sens large).

Démonstration. Soit $(x,y) \in \mathbb{R}^2$. Si $xy \ge 0$, alors $xy = |xy| \le |xy|$. Si $xy \le 0$, alors $xy = -|xy| \le 0 \le |xy|$. Dans tous les cas, $xy \le |xy|$, donc $2xy \le 2|xy|$. Donc $x^2 + 2xy + y^2 \le x^2 + 2|xy| + y^2 = |x|^2 + 2|x||y| + |y|^2$, soit encore $(x+y)^2 \le (|x|+|y|)^2$. Comme la racine carrée est croissante, on en déduit $\sqrt{(x+y)^2} \le \sqrt{(|x|+|y|)^2}$, i.e $|x+y| \le |x| + |y| = |x| + |y|$. Supposons qu'il y a égalité |x+y| = |x| + |y|. Avec les mêmes calculs que précédemment, on obtient $xy = |xy| \ge 0$. Cela signifie qu'on a seulement deux cas $(x \ge 0 \land y \ge 0) \lor (x \le 0 \land y \le 0)$, i.e x et y de même signe. Réciproquement, supposons que x et y ont même signe. Premier cas : $x \ge 0$ et $y \ge 0$. Alors $x + y \ge 0$, |x+y| = x + y = |x| + |y|. Il y a donc égalité. Deuxième cas $x \le 0$ et $y \le 0$. Alors $x + y \le 0$, donc |x+y| = -(x+y) = -x + (-y) = |x| + |y|. Il y a encore égalité.

Théorème 3 (Inégalité triangulaire inverse)

$$\forall (x, y) \in \mathbb{R}^2, ||x| - |y|| \le |x - y|$$

Démonstration. Soit $(x,y) \in \mathbb{R}^2$. On applique l'inégalité triangulaire aux réels y-x et x, ce qui donne $|y-x+x| \le |y-x|+|x|$, soit encore $|y|-|x| \le |y-x|$. On refait de même avec les réels x-y et y, ce qui donne $|x|-|y| \le |x-y| = |y-x|$. En disjoignant selon le signede |y|-|x|, on obtient

$$||x| - |y|| \le |x - y|$$

Exemple 5 Pour majorer une fraction à termes positifs, on majore le numérateur et on minore le dénominateur. Soit $(t,a,b) \in \mathbb{R}^3$ tel que |a| > |b|. On souhaite encadrer la quantité $\frac{a+b\sin(t)}{a(t^2+1)+b}$ indépendamment de t. Le signe est pénible à détailler et on travaille plutôt en valeur absolue. D'une part,

damment de t. Le signe est pénible à détailler et on travaille plutôt en valeur absolue. D'une part, $|a+b\sin(t)| \le |a|+|b\sin(t)| = |a|+|b||\sin(t)|$. Or $|\sin(t)| \le 1$ et $|b| \ge 0$, donc $|a+b\sin(t)| \le |a|+|b|$. D'autre part, $|a(t^2+1)+b| \ge |a(t^2+1)-(-b)| \ge |a||t^2+1|-|b||$. Or $t^2+1 \ge 1 > 0$ et $|a| \ge 0$, donc $|a||t^2+1| \ge |a|$. Donc $|a||t^2+1|-|b| \ge |a|-|b| > 0$. Alors $||a||t^2+1|-|b|| \ge |a|-|b| > 0$, donc

$$\frac{1}{\|a\|t^2+1|-|b\|} \le \frac{1}{|a|-|b|}$$

On en déduit

$$\left| \frac{a+b\sin(t)}{a(t^2+1)+b} \right| \le \frac{|a|+|b|}{|a|-|b|}$$

1.3 Parties de \mathbb{R} .

Définition 4 Soit $(a,b) \in \mathbb{R}^2$. On pose

- $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}.$
- $[a, b[= \{x \in \mathbb{R} | a \le x < b\}.$
- $[a, b] = \{x \in \mathbb{R} | a < x \le b\}.$
- $]a, b[= \{x \in \mathbb{R} | a < x < b\}.$
- $\bullet]-\infty, b[=\{x\in\mathbb{R}|x< b\}.$
- $\bullet]-\infty,b]=\{x\in\mathbb{R}|x\leq b\}.$
- $[a, +\infty[=\{x \in \mathbb{R} | a \leq x\}.$
- $]a, +\infty[=\{x \in \mathbb{R} | a < x\}.$

Définition 5 Soit l'une partie de \mathbb{R} . On dit que l'est un intervalle de \mathbb{R} lorsqu'il existe $(a,b) \in (\mathbb{R} \cup \{-\infty,+\infty\})^2$ tels que l'est de l'une des neuf formes précédentes.

Propriété 8 Soit I un intervalle non vide de \mathbb{R} . Alors le couple (a, b) précédent est unique.

Démonstration. Reportée au chapitre sur les suites numériques et la borne supérieure.

Définition 6 Soit X une partie de \mathbb{R} .

• On dit que X est majorée lorsque

$$\exists M \in \mathbb{R}, \forall x \in X, x \leq M$$

On appelle majorant de X tout réel M vérifiant $\forall x \in X, x \leq M$.

• On dit que X admet un maximum lorsque

$$\exists M \in X, \forall x \in X, x \leq M$$

• On dit que X est minorée lorsque

$$\exists m \in \mathbb{R}, \forall x \in X, m \leq x$$

On appelle minorant de X tout réel m vérifiant $\forall x \in X, m \le x$.

• On dit que X admet un minimum lorsque

$$\exists m \in X, \forall x \in X, m \leq x$$

• On dit que X est bornée lorsque X est majorée et minorée.

Exemple 6 [1,2] est borné, [1,+ ∞ [est minoré, mais non majoré. $\{n \in \mathbb{Z}, n^2 + 1 = 0\}$ est borné (car le vide est borné).

Propriété 9 Soit X une partie de \mathbb{R} . Si X admet un maximum (respectivement un minimum), alors celuici est unique. On le note alors $\max(X)$ (respectivement $\min(X)$).

Démonstration. Soit M_1 , M_2 deux maximums de X. Comme $M_1 \in X$ et M_2 majore X, $M_1 \le M_2$. Symétriquement, $M_2 \in X$ et M_1 majore X, donc $M_2 \le M_1$. On en déduit que $M_1 = M_2$. On reprodut une démarche similiaire pour l'unicité du minimum en cas d'existence.

Exemple 7 L'intervalle [1,2] possède un maximum, à savoir 2, mais l'intervalle $]-\infty,2[$ ne possède pas de maximum. En effet, s'il en possédait un, notons-le M, alors $M < \frac{2+M}{2} < 2$, ce qui fournirait un élément de $]-\infty,2[$ strictement plus grand que M ce qui nie son caractère majorant de $]-\infty,2[$.

Exemple 8 Soit a et b deux réels . L'ensemble $\{x \in \mathbb{R} | |x - a| \le b\}$ est un intervalle, il s'agit de l'intervalle [a - b, a + b]. Notez qu'il est vide si b < 0 et réduit à un élément si b = 0.

1.4 Partie entière

Théorème 4 (admis pour l'instant) Soit $x \in \mathbb{R}$. Alors la partie $A = \{n \in \mathbb{Z} | n \le x\}$ admet un maximum. Celui-ci est appelé partie entière de x, noté |x|.

Théorème 5 Soit $x \in \mathbb{R}$ et $a \in \mathbb{Z}$. On a l'équivalence

$$a = \lfloor x \rfloor \iff a \leq x < a + 1$$

On peut reformuler cette propriété de la manière suivante : $\lfloor x \rfloor$ est l'unique entier relatif qui vérifie l'encadrement $|x| \le x < |x| + 1$.

Démonstration. Posons A = {a ∈ $\mathbb{Z}|a \le x$ }. Supposons que $a = \lfloor x \rfloor$. Alors $\lfloor x \rfloor$ appartient à l'ensemble A, donc $a \le x$. D'autre part, a+1 est strictement plus grand que a, donc ne peut appartenir à A, puisque a en est le maximum. Ainsi, a+1>x. Réciproquement, supposons que a vérifie les deux inégalités indiquées. Alors a appartient à l'ensemble A d'après la première inégalité. D'autre part, $\forall b \ge a+1, b > x$, donc $\forall b \ge a+1, b \notin A$. Par contraposition, $\forall b \in A, b < a+1$, donc $\forall b \in A, b \le a$. On en déduit que a majore A. Conclusion, a est le maximum de P_x , i.e $a = \lfloor x \rfloor$.

Propriété 10 La fonction partie entière $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto \lfloor x \rfloor$ est croissante.

Démonstration. Soit $(x, y) \in \mathbb{R}^2$ tel que $x \le y$. On sait que $\lfloor x \rfloor \le x$, donc $\lfloor x \rfloor \le y$. Donc $\lfloor x \rfloor \in \{n \in \mathbb{Z}, n \le y\}$. Or $\lfloor y \rfloor$ est le maximum de cette partie, donc $\lfloor x \rfloor \le \lfloor y \rfloor$. Conclusion, la fonction partie entière est croissante.

2 Trigonométrie réelle

2.1 Point de vue géométrique

Pour tout point P du cercle unité dans le plan \mathbb{R}^2 , il existe un réel t tel que P = $(\cos t, \sin t)$. On admet que cela définit bien deux applications réelles de la variable réelle, le cosinus et le sinus. Toutes les propriétés suivantes se justifient géométriquement.

Propriété 11 Pour tout réel a,

$$\cos^2(a) + \sin^2(a) = 1$$

Propriété 12 Pour tout réel a, on a

- cos(-a) = cos(a)
- $cos(a + 2\pi) = cos(a)$
- $cos(\pi + a) = -cos(a)$

- $cos(\pi a) = -cos(a)$
- $cos(\pi/2 a) = sin(a)$
- $\bullet \cos(\pi/2 + a) = -\sin(a)$

Propriété 13 Pour tout réel a, on a

- $\sin(-a) = -\sin(a)$
- $sin(a + 2\pi) = sin(a)$
- $sin(\pi + a) = -sin(a)$

- $sin(\pi a) = sin(a)$
- $\sin(\pi/2 a) = \cos(a)$
- $\sin(\pi/2 + a) = \cos(a)$

Propriété 14

а	0	π/6	$\pi/4$	$\pi/3$	$\pi/2$
cos(a)	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0
sin(a)	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1

Méthode

Les résolutions d'équations ou d'inéquations trigonométriques se font à l'aide de représentations géométriques et du cercle trigonométrique.

Propriété 15 (Formules d'addition) Soit a, b deux réels. Alors

cos(a-b) = cos(a)cos(b) + sin(a)sin(b)

cos(a+b) = cos(a)cos(b) - sin(a)sin(b)

sin(a-b) = sin(a)cos(b) - cos(a)sin(b)

sin(a+b) = sin(a)cos(b) + cos(a)sin(b)

Démonstration. Comme le cosinus et le sinus ont été « définis » de manière géométrique, on propose une démonstration géométrique de la formule de duplication. Soit $A = (\cos(a), \sin(a)), B = (\cos(b), \sin(b))$ deux points du cercle unité. Alors l'angle entre le vecteur \overrightarrow{OB} vaut b - a. On a alors le produit scalaire

$$\cos(b-a) = \frac{\vec{OA} \cdot \vec{OB}}{OA OB} = \cos(a)\cos(b) + \sin(a)\sin(b)$$

On en déduit par parité du cosinus et imparité du sinus que $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$, puis que $\sin(a+b) = \cos(\pi/2 - a - b) = \cos(\pi/2 - a)\cos(b) + \sin(\pi/2 - a)\sin(b) = \sin(a)\cos(b) + \cos(a)\sin(b)$. Enfin, la formule de $\sin(a-b)$ en découle par imparité du sinus.

Corollaire (Formule de duplication)

Soit a un réel. Alors

$$\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a)$$
$$\sin(2a) = 2\sin(a)\cos(a)$$

Démonstration. Il suffit de prende b = a dans les formules d'addition, ainsi que la relation de Pythagore.

Corollaire (Factorisation)

Soit $a \in \mathbb{R}$. Alors

$$1 + \cos(a) = 2\cos^2(a/2)$$
, et $1 - \cos(a) = 2\sin^2(a/2)$

Démonstration. Appliquer la duplication au réel a/2.

Remarque

Les factorisations de $\cos(p) \pm \cos(q)$, $\sin(p) \pm \sin(q)$ sont dans le formulaire de trigonométrie, mais ne seront démontrées que dans le chapitre sur les complexes.

Corollaire (Linéarisation)

Soit a, b deux réels. Alors

$$\cos(a)\cos(b) = \frac{1}{2}(\cos(a+b) + \cos(a-b))$$

$$\sin(a)\sin(b) = \frac{1}{2}(-\cos(a+b) + \cos(a-b))$$

$$\sin(a)\cos(b) = \frac{1}{2}(\sin(a+b) + \sin(a-b))$$

Démonstration. Utiliser les formules d'addition pour calculer des membres de droite.

On introduit la fonction tangente, qui aura son intérêt pour la détermination d'arguments complexes ainsi que des calculs de primitives.

Propriété 16 Soit x un réel. Alors

$$cos(x) = 0 \iff \exists k \in \mathbb{Z}, x = \frac{\pi}{2} + k\pi \iff x \equiv \frac{\pi}{2}[\pi]$$

Lorsque cela est satisfait, on dit que x est congru à $\pi/2$ modulo π .

Notation

On note D_{tan} l'ensemble

$$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi | k \in \mathbb{Z} \right\}$$

C'est l'ensemble de définition de l'application tangente.

Définition 7 Pour tout réel x non congru à $\pi/2$ modulo π , on définit

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

Représentation géométrique via Thalès : Soit t un élément de D_{tan} , B = (cos(t), 0) et A = (1, 0). Alors les droites d'équation x = 1 et x = cos(t) sont parallèles, donc le point d'intersection Q entre la droite (OP) et la droite d'équation x = 1 vérifie QA/PB = OA/OB, soit QA = sin(t)1/cos(t) = tan(t).

Propriété 17 Pour tout réel a non congru à $\pi/2$ modulo π , on a

$$tan(-a) = -tan(a)$$

$$\tan(\pi + a) = \tan(a)$$

Cette dernière égalité indique que la fonction tangente est π -périodique.

$$\tan(\pi - a) = -\tan(a)$$

Pour tout réel b non congru à 0 modulo $\pi/2$, on a

$$\tan(\pi/2 - b) = \frac{1}{\tan(b)}$$

Démonstration. Seule la dernière égalité mérite quelques détails. Soit b un tel réel, $\cos(\pi/2 - b) = \sin(b)$ n'est pas nul, ce qui implique que $\tan(b)$ est non nul et qu'on peut écrire $1/\tan(b)$. D'autre part,

$$\tan(\pi/2 - b) = \frac{\sin(\pi/2 - b)}{\cos(\pi/2 - b)} = \frac{\cos(b)}{\sin(b)}$$

De plus, cos(b) est non nul puisque b n'est pas congru à $\pi/2$ modulo π . On a ainsi

$$\tan(\pi/2 - b) = \frac{1}{\frac{\sin(b)}{\cos(b)}} = \frac{1}{\tan(b)}$$

Valeurs remarquables

Propriété 18

а	0	π/6	$\pi/4$	π/3	π/2
tan(a)	0	$\sqrt{3}/3$	1	$\sqrt{3}$	non défini

Propriété 19 (Formule d'addition et de duplication) Pour tous réels a et b tels que a, b et a+b non congrus à $\pi/2$ modulo π , on a

$$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$$

Pour tous réels a et b tels que a, b et a – b non congrus à $\pi/2$ modulo π , on a

$$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$$

En particulier, pour tout réel a tel que a et 2a non congrus à $\pi/2$ modulo π , on a

$$\tan(2a) = \frac{2\tan(a)}{1 - \tan^2(a)}$$

Démonstration. Soit a et b les réels tels qu'indiqués dans l'énoncé. Alors

$$\tan(a+b) = \frac{\sin(a+b)}{\cos(a+b)}$$
$$= \frac{\sin(a)\cos(b) + \cos(a)\sin(b)}{\cos(a)\cos(b) - \sin(a)\sin(b)}$$

Comme cos(a) et cos(b) sont non nuls, on peut écrire

$$\tan(a+b) = \frac{\sin(a)\cos(b) + \cos(a)\sin(b)}{\cos(a)\cos(b)} \frac{1}{1 - \frac{\sin(a)}{\cos(a)} \frac{\sin(b)}{\cos(b)}}$$
$$= \left(\frac{\sin(a)}{\cos(a)} + \frac{\sin(b)}{\cos(b)}\right) \frac{1}{1 - \tan(a)\tan(b)}$$
$$= \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$$

La deuxième égalité s'obtient en appliquant la première aux réels a et -b. Cela est possible puisque $b \equiv \pi/2[\pi] \iff -b \equiv \pi/2[\pi]$. Le résultat en découle via l'imparité de la fonction tangente.

Propriété 20 (Angle moitié) Soit a un réel non congru à π modulo 2π et $t = \tan(a/2)$. Alors

$$\cos(a) = \frac{1-t^2}{1+t^2}$$

$$\sin(a) = \frac{2t}{1+t^2}$$

Démonstration. On commence par remarquer que

$$1 + t^2 = 1 + \tan^2(a/2) = 1 + \frac{\sin^2(a/2)}{\cos^2(a/2)} = \frac{\cos^2(a/2) + \sin^2(a/2)}{\cos^2(a/2)} = \frac{1}{\cos^2(a/2)}$$

Mais alors la formule de duplication du cosinus donne

$$(1+t^2)\cos(a) = \frac{\cos^2(a/2) - \sin^2(a/2)}{\cos^2(a/2)} = 1 - \frac{\sin^2(a/2)}{\cos^2(a/2)} = 1 - \tan^2(a/2) = 1 - t^2$$

ce qui prouve la première égalité. D'autre part, la formule de duplication du sinus fournit

$$(1+t^2)\sin(a) = \frac{2\sin(a/2)\cos(a/2)}{\cos^2(a/2)} = \frac{2\sin(a/2)}{\cos(a/2)} = 2\tan(a/2) = 2t$$

ce qui démontre la seconde égalité.

Remarque

Ce résultat verra tout son intérêt lors des recherches de primitives de fonctions trigonométriques, à l'aide de fractions rationnelles.

2.2 Point de vue analytique

Propriété 21 Le cosinus et le sinus sont continus sur \mathbb{R} .

Démonstration. On propose une démonstration géométrique.

Soit x un réel dans $[0,\pi/2[$. Dans le cercle unité, le secteur angulaire d'ouverture x/2 de base OA avec A = (1,0) a pour aire x/4. Si l'on note B = $(\cos(x/2),\sin(x/2))$ l'autre extrémité de ce secteur, C = $(\cos(x/2),0)$, le triangle OBC est inclus dans le précédent secteur angulaire et a pour aire $\cos(x/2)\sin(x/2)/2 = \sin(x)/4$. On en déduit par croissance des aires relativement à l'inclusion, que $\sin(x) \le x$. D'autre part, si x est négatif, on a $\sin(-x) \le -x$. On en déduit par imparité du sinus que $\sin(x) \ge x$ pour x négatif dans $]-\pi/2,0]$. Mais alors d'après les signes du sinus et de l'identité, on obtient

$$|\sin(x)| \le |x|$$

On en déduit par encadrement que $\lim_{x\to 0} \sin(x) = 0 = \sin(0)$, donc que le sinus est continu en 0. D'autre part, pour tout réel x,

$$1 - \cos(x) = 2\sin^2\left(\frac{x}{2}\right)$$

Le second membre tend vers 0 quand x tend vers 0 par continuité de la fonction carré, donc $\lim_{x\to 0} \cos(x) = 1 = \cos(0)$. Pour poursuivre, on exploite une formule d'addition. Soit h et x des réels, alors

$$\sin(x+h) = \sin(x)\cos(h) + \cos(x)\sin(h)$$

Quand h tend vers 0, on a vu que $\cos(h)$ tend vers 1 et $\sin(h)$ tend vers 0, ce qui implique que $\sin(x+h)$ tend vers $\sin(x)$, ce qui est bien la continuité du sinus en x. De même,

$$cos(x+h) = cos(x)cos(h) - sin(x)sin(h)$$

Les mêmes limites que précédemment entraînent que cos(x + h) tend vers cos(x) quand h tend vers 0.

Propriété 22 Le sinus est dérivable en 0 et vérifie sin'(0) = 1.

Démonstration. Démonstration géométrique. Soit x un réel dans $]0, \pi/2[$. Alors avec $P = (\cos(x), \sin(x)), Q = (1, \tan(x)), A = (1, 0)$. On a la figure suivante

La zone hachurée en hexagones rouges est un secteur angulaire de rayon 1 et d'angle x, d'aire $x1^2/2 = x/2$. La zone quadrillée en vert est un triangle de base 1 et de hauteur $\tan(x)$, d'aire $\tan(x)/2$. L'aire étant croissante par inclusion, on en déduit que

$$\frac{x}{2} \le \frac{\tan(x)}{2}$$

soit encore, puisque x et cos(x) sont strictement positifs

$$\cos(x) \le \frac{\sin(x)}{x}$$

D'autre part, on a déjà démontré que $\sin(x) \le x$ pour $x \in]0, \pi/2[$. Ainsi,

$$\cos(x) \le \frac{\sin(x)}{x} \le 1$$

On en déduit via la continuité du cosinus en 0 et le théorème d'encadrement que $\sin(x)/x$ tend vers 1 quand x vers 0 par valeurs supérieures. D'autre part, $x \mapsto \sin(x)/x$ est pair, donc admet la même limite quand x tend vers 0 par valeurs inférieures. En conclusion, le taux d'accroissement $x \mapsto (\sin(x) - \sin(0))/(x - 0)$ tend vers 1 quand x tend vers 0. Ainsi, le sinus est dérivable en 0 et $\sin'(0) = 1$.

Théorème 6 Le sinus et le cosinus sont dérivables sur \mathbb{R} et vérifient

$$\forall x \in \mathbb{R}, \sin'(x) = \cos(x), \cos'(x) = -\sin(x)$$

Démonstration. Commençons par démontrer que le cosinus est dérivable en 0 de dérivée nulle en 0. Pour cela, utilisons une formule d'angle moitié. Soit x un réel non nul, alors

$$\frac{\cos(x) - \cos(0)}{x - 0} = \frac{\cos(x) - 1}{x} = \frac{-2\sin^2(x/2)}{x} = -\frac{\sin(x/2)}{x/2}\sin(x/2)$$

D'après la dérivée précédemment démontrée du sinus en 0, $\sin(x/2)/(x/2)$ tend vers 1 quand x tend vers 0, tandis que $\sin(x/2)$ tend vers $\sin(0) = 0$ par continuité du sinus. Ainsi, le taux d'accroissement du cosinus en 0 tend vers 0, ce qui prouve la dérivabilité du cosinus en 0 et que $\cos'(0) = 0$.

Dans le cas général, soit a et h un réel non nul. La formule d'addition du sinus implique

$$\sin(a+h) = \sin(a)\cos(h) + \cos(a)\sin(h)$$

On en déduit que

$$\frac{\sin(a+h)-\sin(a)}{h}=\sin(a)\frac{\cos(h)-1}{h}+\cos(a)\frac{\sin(h)}{h}$$

On reconnaît les taux d'accroissement du cosinus et du sinus en 0, on en déduit que le taux d'accroissement du sinus en a admet une limite quand b tend vers 0 et que

$$\lim_{\begin{subarray}{c} h \to 0 \\ h \neq 0 \end{subarray}} \frac{\sin(a+h) - \sin(a)}{h} = \sin(a) \times 0 + \cos(a) \times 1 = \cos(a)$$

Ainsi, le sinus est dérivable en 0 et $\sin'(a) = \cos(a)$.

On peut reproduire la même démarche pour le cosinus à l'aide d'une formule d'addition. On peut également exploiter une composition. En effet, pour tout réel a

$$cos(a) = sin(\pi/2 - a)$$

Alors, l'application $f: a \mapsto \pi/2 - a$ est dérivable, de dérivée f' = -1. Comme on vient de démontrer que le sinus est dérivable, on en déduit que le cosinus est dérivable et que pour tout réel a,

$$\cos'(a) = f'(a)\sin'(\pi/2 - a) = -1\cos(\pi/2 - a) = -\sin(a)$$

Propriété 23 (Variations des lignes trigonométriques) Le cosinus et le sinus sont 2π -périodiques. Le cosinus est positif sur $[0,\pi/2] \cup [3\pi/2,2\pi]$, négatif sur $[\pi/2,3\pi/2]$, strictement décroissant sur $[0,\pi]$, strictement croissant sur $[\pi,2\pi]$. Son maximum vaut 1, son minimum vaut -1. Le sinus est négatif sur $[-\pi/2,0] \cup [\pi,3\pi/2]$, positif sur $[0,\pi]$, strictement croissant sur $[\pi/2,3\pi/2]$. Son maximum vaut 1, son minimum vaut 1.

Propriété 24 Soit n un entier naturel. Alors le cosinus et le sinus sont n-fois dérivables et vérifient pour tout réel x

$$\cos^{(n)}(x) = \cos\left(x + n\frac{\pi}{2}\right)$$
 et $\sin^{(n)}(x) = \sin\left(x + n\frac{\pi}{2}\right)$

Démonstration. Récurrence laissée à votre soin. Le cours contient déjà l'initialisation pour n = 1.

Propriété 25 On note $\mathcal{D}_{tan} = \mathbb{R} \setminus \{\pi/2 + k\pi | k \in \mathbb{Z}\}$ l'ensemble de définition de la fonction tangente. Alors $tan : \mathcal{D}_{tan} \to \mathbb{R}$ est dérivable et vérifie

$$\forall x \in \mathcal{D}_{tan}, \tan'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$$

Démonstration. La dérivabilité de la fonction tangente résulte de la dérivabilité des fonctions sinus et cosinus précédemment établie, ainsi que des propriétés sur les quotients de fonctions dérivables. Alors

$$\forall x \in \mathcal{D}_{tan}, \tan'(x) = \frac{\sin'(x)\cos(x) - \sin(x)\cos'(x)}{\cos^2(x)} = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$$

Propriété 26 La fonction tangente est π périodique, impaire. Elle est strictement croissante sur] – $\pi/2, \pi/2$ [. De plus,

$$\lim_{x \to -\pi/2^+} \tan(x) = -\infty \quad et \quad \lim_{x \to \pi/2^-} \tan(x) = +\infty$$

Propriété 27 (Une inégalité importante)

$$\forall x \in \mathbb{R}, |\sin(x)| \leq |x|$$

Démonstration. Démonstration géométrique comme pour la dérivabilité, ou alors étude de fonction. Soit $g: \mathbb{R}^+ \to \mathbb{R}$, $x \mapsto x - \sin(x)$. Alors g est dérivable comme somme de fonctions dérivables et vérifie

$$\forall x \in \mathbb{R}^+, g'(x) = 1 - \cos(x) \ge 0$$

d'après le maximum du cosinus. Par conséquent, g est croissante sur \mathbb{R} . En particulier, pour tout réel x positif, $g(x) \geq g(0) = 0$, ce qui implique $x \geq \sin(x)$. On pose à présent $h: \mathbb{R}^+ \to \mathbb{R}, x \mapsto x + \sin(x)$. Cette fonction est dérivable et $\forall x \in \mathbb{R}^+, h'(x) = 1 + \cos(x) \geq 0$. Comme \mathbb{R}^+ est un intervalle, h est croissante, donc $\forall x \in \mathbb{R}^+, h(x) \geq h(0) = 0$, i.e $\forall x \in \mathbb{R}^+, -x \leq \sin(x)$. Ainsi, on a l'encadrement $\forall x \in \mathbb{R}^+, -x \leq \sin(x) \leq x$ ce qui entraı̂ne $\forall x \in \mathbb{R}^+, |\sin(x)| \leq x = |x|$. On en déduit par parité que cet encadrement est encore vrai sur \mathbb{R}^- .