

Llamamos una órbita periodica, γ, estable si para cada barrio U que contiene γ , existe un barrio V de γ para que cualquier solución x(t) con $x(0) \in V$ queda en U por todo el tiempo.

donde $M = pr(Y(T)|_{\Sigma}) : \Sigma \to \Sigma$.

De misma manera uno puede definir órbitas periodicas que son: estable en el futuro (o pasado), asintóticamente estable en el futuro (o pasado).

Si algún autovalor, λ , de M = dP tiene $|\lambda| \neq 1$ entonces las soluciones asintoticamente estable en el futuro o pasado de la sistema lineal, continuan existir para la sistema verdadero.

Digamos γ es linealmente estable si M = dP es diagonalizable y los autovalores tienen $|\lambda| = 1$.

