

CS 554 Computer Vision

Camera Geometry,
Calibration, and Multiple View

Hamdi Dibeklioğlu

Slide Credits: P. Duygulu Sahin, T. Darrell, O. Camps, D. Forsyth, and J. Ponce

Coordinate systems

WORLD, CAMERA and Image Coordinate Systems

Geometric Camera Models

Issue

- camera may not be at the origin, looking down the z-axis extrinsic parameters
- one unit in camera coordinates may not be the same as one unit in world coordinates intrinsic parameters

Intrinsic parameters

- Do not depend on the camera location
 - Focal length, CCD dimensions, lens distortion

Extrinsic parameters

- Depend on the camera location
 - Translation, and Rotation parameters

Notions of Geometry

- Homogeneous coordinates
- Matrix representation of geometric transformations
- Extrinsic and intrinsic parameters that relate the world and the camera coordinate frames

Reminder

Dot product

$$egin{aligned} oldsymbol{u} &= (u_1, \dots, u_n)^T \ oldsymbol{v} &= (v_1, \dots, v_n) \end{aligned}$$

Cross product

$$\mathbf{u} = (u_1, u_2, u_3)^T$$

 $\mathbf{v} = (v_1, v_2, v_3)^T$

$$(\boldsymbol{u} \cdot \boldsymbol{v})^2 = |\boldsymbol{u}|^2 |\boldsymbol{v}|^2 \cos^2 \theta,$$

$$|\boldsymbol{v} \times \boldsymbol{v}|^2 = |\boldsymbol{u}|^2 |\boldsymbol{v}|^2 \sin^2 \theta$$

$$\boldsymbol{u}\cdot\boldsymbol{v}=u_1v_1+\ldots+u_nv_n,$$

$$u \cdot v = u^T v = v^T u$$

When u has unit norm u.v is sign length of projection of v onto u

$$oldsymbol{u} imesoldsymbol{v}\overset{ ext{def}}{=}egin{pmatrix} u_2v_3-u_3v_2\ u_3v_1-u_1v_3\ u_1v_2-u_2v_1 \end{pmatrix}$$

u x v is orthogonal to these two
If u and v have same direction u x v = 0

Recap: Homogeneous coordinates

- Add an extra coordinate and use an equivalence relation
- for 3D
 - equivalence relationk*(X,Y,Z,T) is the same as(X,Y,Z,T)

- Motivation
 - Possible to write the action of a perspective camera as a matrix

Recap: Homogeneous coordinates

We are used to describing a location in Cartesian coordinates:

$$\mathbf{x} = [x \ y]^{\mathrm{T}} \qquad \mathbf{x} = [x \ y \ z]^{\mathrm{T}}$$

Alternatively, we can describe locations in homogeneous coordinates:

$$\tilde{\mathbf{x}} = [\tilde{x} \ \tilde{y} \ \tilde{w}]^{\mathrm{T}} \qquad \tilde{\mathbf{x}} = [\tilde{x} \ \tilde{y} \ \tilde{z} \ \tilde{w}]^{\mathrm{T}}$$

The corresponding Cartesian coordinates are given by:

$$\mathbf{x} = [\tilde{x}/\tilde{w} \ \tilde{y}/\tilde{w}]^{\mathrm{T}} \quad \mathbf{x} = [\tilde{x}/\tilde{w} \ \tilde{y}/\tilde{w} \ \tilde{z}/\tilde{w}]^{\mathrm{T}}$$

- ullet Essentially, you can think of $ilde{w}$ as a way to deal with object scale ("disparity")
- Homogeneous coordinates are very useful when working with *perspective transformations* (*homographies*)

Recap: Pinhole Camera Model

Perspective Projection Matrix

Projection is a matrix multiplication using homogeneous coordinates: $(x, y, z) \rightarrow (x \frac{f}{z}, y \frac{f}{z})$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z/f \end{bmatrix} \implies (x\frac{f}{z}, y\frac{f}{z})$$

Weak Perspective Projection

$$x = f \, \frac{X}{Z_0}$$

$$y = f \frac{Y}{Z_0}$$

- Object depth δ << Camera distance Zo
- Linear equations !!!

Orthographic Projection

Assume f is at infinity

$$v = v$$

Orthographic Projection Matrix

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

$$= \begin{pmatrix} X \\ Y \\ T \end{pmatrix} \rightarrow \frac{1}{T} \begin{pmatrix} X \\ Y \end{pmatrix}$$

HC Non-HC

Weak Perspective vs Orthographic Projection

Weak perspective = Orthographic projection + Isotropic Scaling

Camera parameters

- Intrinsic parameters
 - Focal length, principal point, aspect ratio, angle between axes
- Extrinsic parameters
 - Translation, and Rotation parameters

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} Transformation \\ representing \\ intrinsic parameters \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} Transformation \\ representing \\ extrinsic parameters \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

Intrinsic parameters

Forsyth&Ponce

Perspective projection
$$u = f \frac{x}{z}$$

$$v = f \frac{y}{z}$$

Intrinsic parameters: focal length

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f &$$

$$p = M_{int} \cdot P$$

Intrinsic parameters: aspect ratio

- The CCD sensor is made of a rectangular grid $n \times m$ of photosensors.
- Each photosensor generates an analog signal that is digitized by a frame grabber into an array of $N \times M$ pixels.

Pixels may not be square

VS

$$u = \alpha \frac{\lambda}{z}$$

$$v = \beta \frac{y}{z}$$

$$M_{int} = \begin{bmatrix} \alpha & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \end{bmatrix}$$

$$0 & 0 & 1/f & 0$$

Intrinsic parameters: origin

origin of our camera pixel coordinates

We don't know the origin of our camera pixel coordinates
$$u = \alpha \frac{x}{z} + u_0$$
$$v = \beta \frac{y}{z} + v_0$$

$$\mathbf{M}_{int} = \begin{bmatrix} \alpha & 0 & uo & 0 \\ 0 & \beta & vo & 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 0 & 1/f & 0 \end{bmatrix}$$

Intrinsic parameters: angle between axes

Intrinsic parameters

Using homogenous coordinates,

we can write this as:

$$\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \frac{1}{z} \begin{pmatrix} \alpha & -\alpha \cot(\theta) & u_0 & 0 \\ 0 & \frac{\beta}{\sin(\theta)} & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

or:

$$\vec{p} = \frac{1}{z} \qquad (K \quad \vec{0}) \qquad \vec{I}$$

Extrinsic parameters

Translation and rotation of camera frame

$$^{C}P=_{W}^{C}R^{W}P+_{C}O_{W}$$

$$\begin{pmatrix} C_X \\ C_Y \\ C_Z \\ 1 \end{pmatrix} = \begin{pmatrix} - & - & - & | \\ - & {}^C_W R & - & {}^C_{O_W} \\ - & - & - & | \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} W_X \\ W_Y \\ W_Z \\ 1 \end{pmatrix}$$

Non-homogeneous coordinates

Homogeneous coordinates

$$\begin{pmatrix} {}^{C}P\\1 \end{pmatrix} = \begin{pmatrix} {}^{C}_{W}\mathcal{R} & {}^{C}O_{W}\\\mathbf{0}^{T} & 1 \end{pmatrix} \begin{pmatrix} {}^{W}P\\1 \end{pmatrix}$$

Block matrix form

3D Rotation of Coordinates Systems

Rotation around the coordinate axes, counter-clockwise (right hand rule):

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0\\ \sin \gamma & \cos \gamma & 0\\ 0 & 0 & 1 \end{bmatrix}$$

3D Translation of Coordinate Systems

Translate by a vector $t=(t_x,t_y,t_x)^T$:

Combining Extrinsic and Intrinsic Parameters

Combining Extrinsic and Intrinsic Parameters

$$\vec{p} = \frac{1}{z} \begin{pmatrix} K & \vec{0} \end{pmatrix} \vec{P}$$
 Intrinsic

$$^{C}P=_{W}^{C}R^{W}P+^{C}O_{W}$$

Extrinsic

$$\vec{p} = \frac{1}{z} K \begin{pmatrix} {}^{C}_{W} R & {}^{C} O_{W} \end{pmatrix} \vec{P}$$

$$\vec{p} = \frac{1}{z} M \vec{P}$$

Combining Extrinsic and Intrinsic Parameters

$$p = \frac{1}{Z} \mathcal{M}^{p}$$
, where $\mathcal{M} = \mathcal{K}(\mathcal{R} \ t)$, (2.15)

 $p = \bigcup_{z=0}^{1} P$, where $\mathcal{M} = \mathcal{K}(\mathcal{R} \ t)$, (2.15) $\mathcal{R} = \bigcup_{w=0}^{C} \mathcal{R}$ is a rotation matrix, $t = \bigcup_{w=0}^{C} O_w$ is a translation vector, and $P = (\bigcup_{w=0}^{W} x, \bigcup_{w=0}^{W} y, \bigcup_{w=0}^{W} z, 1)^T$ denotes the *homogeneous* coordinate vector of P in the frame (W).

A projection matrix can be written explicitly as a function of its five intrinsic parameters (α , β , u_0 , v_0 , and θ) and its six extrinsic ones (the three angles defining \mathcal{R} and the three coordinates of t), namely,

$$\mathcal{M} = \begin{pmatrix} \alpha \boldsymbol{r}_{1}^{T} - \alpha \cot \theta \boldsymbol{r}_{2}^{T} + u_{0} \boldsymbol{r}_{3}^{T} & \alpha t_{x} - \alpha \cot \theta t_{y} + u_{0} t_{z} \\ \frac{\beta}{\sin \theta} \boldsymbol{r}_{2}^{T} + v_{0} \boldsymbol{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y} + v_{0} t_{z} \\ \boldsymbol{r}_{3}^{T} & t_{z} \end{pmatrix}, \tag{2.17}$$

where r_1^T , r_2^T , and r_3^T denote the three rows of the matrix \mathcal{R} and t_x , t_y , and t_z are the coordinates of the vector t.

Compute the camera intrinsic and extrinsic parameters using only observed camera data

Place a known object in the scene

- identify correspondence between image and scene
- compute mapping from scene to image

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

$$u_{i} = \frac{m_{00}X_{i} + m_{01}Y_{i} + m_{02}Z_{i} + m_{03}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + m_{23}}$$

$$v_{i} = \frac{m_{10}X_{i} + m_{11}Y_{i} + m_{12}Z_{i} + m_{13}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + m_{23}}$$

$$u_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}$$
$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

 $m_{00} \\ m_{01}$

$$\begin{bmatrix} X_{i} & Y_{i} & Z_{i} & 1 & 0 & 0 & 0 & -u_{i}X_{i} & -u_{i}Y_{i} & -u_{i}Z_{i} & -u_{i} \\ 0 & 0 & 0 & X_{i} & Y_{i} & Z_{i} & 1 & -v_{i}X_{i} & -v_{i}Y_{i} & -v_{i}Z_{i} & -v_{i} \end{bmatrix} \begin{bmatrix} m_{02} \\ m_{03} \\ m_{10} \\ m_{11} \\ m_{12} \\ m_{13} \\ m_{20} \\ m_{21} \\ m_{22} \\ m_{23} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Adapted from Trevor Darrell

$$\begin{bmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & -u_1X_1 & -u_1Y_1 & -u_1Z_1 & -u_1 \\ 0 & 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -v_1X_1 & -v_1Y_1 & -v_1Z_1 & -v_1 \\ \vdots & & & & & \vdots & & & & & \\ X_n & Y_n & Z_n & 1 & 0 & 0 & 0 & 0 & -u_nX_n & -u_nY_n & -u_nZ_n & -u_n \\ 0 & 0 & 0 & 0 & X_n & Y_n & Z_n & 1 & -v_nX_n & -v_nY_n & -v_nZ_n & -v_n \end{bmatrix} \begin{bmatrix} m_{00} \\ m_{01} \\ m_{02} \\ m_{13} \\ m_{12} \\ m_{20} \\ m_{21} \\ m_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

M has 12 entries
Each image point provides 2 equations
m_{ii}'s can be computed by Least Square Solution

Multiple View Geometry

Multiple Views

loss

Despite the wealth of information contained in a a photograph, the **depth** of a scene point along the corresponding projection ray **is not directly accessible in a single image**

3D Points on the same viewing line have the same 2D image:
2D imaging results in depth information

With at least two pictures, depth can be measured by triangulation.

Human/Animal Visual System

It is the reason that most animals have at least two eyes and/or move their head when looking around

Visual Robot/Vehicle Navigation

This is also the motivation for equipping autonomous robots and vehicles with a stereo or motion analysis systems.

Human Vision

- Humans have two eyes, both forward facing but horizontally spaced by approximately 60mm.
- When looking at an object, each eye will produce a slightly different image, as it will be looking at a slightly different angle.
- The human brain combines both these images into one to give a perception of depth.
- This processing is so quick and seamless that the perception is that we are looking through one big eye rather than two.

Human Vision

- The brain can also determine depth and how far objects are away from each other by the amount of difference between the two images that it receives.
- The further the subject is from the eye, the less will be the difference between the two images and conversely the nearer the subject, the greater the difference.
- The left and right eyes see the sun in the same place as it is in the distance. The tree being much closer is seen in slightly different places.

Stereo vision = correspondences + reconstruction

Stereovision involves two problems:

Correspondence:

Given a point p_I in one image, find the corresponding point in the other image

Reconstruction:

Given a correspondence (p_l, p_r) compute the 3D coordinates of the corresponding point in space, P

Stereo constraints

Given p in left image, where can corresponding point p' be?

Could be anywhere! Might not be same scene!

... Assume pair of pinhole views of static scene:

Stereo constraints

Given p in left image, where can p' be?

Epipolar line

Multiple View Geometry

Relate

- 3-D points
- Camera centers
- · Camera orientation
- Camera intrinsics

Epipolar constraint

All epipolar lines contain epipole, the image of other camera center.

O, O': optical centers
p & p' are the images of P

These 5 points all belong to epipolar plane

Epipolar constraint

- Point p' lies on the line l' where epipolar plane and the retina π ' intersect.
- The line I' is the epipolar line associated with the point p
 - It passes through the point e' where the baseline joining the optical centers O and O' intersects
- The points e and e' are called the epipoles of the cameras
- If p and p' are the images of the same point P, then p' must lie on the epipolar line associated with p → Epipolar constraint

Epipolar constraint

Epipolar constraint greatly limits the search of corresponding points.

Assume that the intrinsic parameters of each camera are known

The epipolar constraint: these vectors are coplanar:

$$\overrightarrow{Op} \cdot [\overrightarrow{OO'} \times \overrightarrow{O'p'}] = 0$$

$$\overrightarrow{Op} \cdot [\overrightarrow{OO'} \times \overrightarrow{O'p'}] = 0$$

p,p' are image coordinates of P in c1 and c2...

c2 is related to c1 by rotation R and translation t

$$m{p}\cdot [m{t} imes (\mathcal{R}m{p}')]$$
 = 0

$$p = (u,v,1)^T$$
 $p' = (u',v',1)^T$

Review: matrix form of cross-product

The vector cross product also acts on two vectors and returns a third vector. Geometrically, this new vector is constructed such that its projection onto either of the two input vectors is zero.

$$\vec{a} \times \vec{b} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix}$$

$$\vec{a} \times \vec{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \vec{c} \quad \vec{a} \cdot \vec{c} = 0$$

Review: matrix form of cross-product

$$\vec{a} \times \vec{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \vec{c} \quad \vec{a} \cdot \vec{c} = 0$$

$$[a_x] = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix}$$

$$\vec{a} \times \vec{b} = [a_x]\vec{b}$$

$$\vec{a} \times \vec{b} = [a_x]\vec{b}$$

$$p \cdot [\mathbf{t} \times (\mathcal{R}p')] = 0$$

$$\vec{a} \times \vec{b} = [a_x]\vec{b}$$

$$p^T[t_x]\Re p' = 0$$

$$\varepsilon = [t_x]\Re$$

The essential matrix

Matrix that relates image of point in one camera to a second camera, given translation and rotation.

5 independent parameters (up to scale)

Assumes intrinsic parameters are known.

$$\varepsilon = [t_x]\Re$$

$$\vec{a} \times \vec{b} = [a_x]\vec{b}$$

The essential matrix

Ep' is the epipolar line corresponding to p' in the left camera. au + bv + c = 0

p lies on the epipolar line associated with the point p'

$$p = (u, v, 1)^{T}$$
$$l = (a, b, c)^{T}$$
$$l \cdot p = 0$$

$$\mathcal{E}p' \cdot p = 0$$
$$\mathbf{p}^T \mathcal{E} \mathbf{p}' = 0$$

Epipolar geometry example

What if calibration is unknown?

Recall calibration eqn:

$$m{p} = \mathcal{K} \hat{m{p}}, \quad ext{where} \quad m{p} = egin{pmatrix} u \ v \ 1 \end{pmatrix} \quad ext{and} \quad \mathcal{K} \stackrel{ ext{def}}{=} egin{pmatrix} lpha & -lpha\cot heta & u_0 \ 0 & rac{eta}{\sin heta} & v_0 \ 0 & 0 & 1 \end{pmatrix}.$$

Fundamental Matrix

Essential matrix for points on normalized image plane,

$$\hat{p}^T \mathcal{E} \hat{p}' = 0$$

assume unknown calibration matrix:

$$p = K\hat{p}$$

yields:

$$\boldsymbol{p}^T \mathcal{F} \boldsymbol{p}' = 0$$
 $\mathcal{F} = \mathcal{K}^{-T} \mathcal{E} \mathcal{K}'^{-1}$

Estimation of the Fundamental Matrix

$$\boldsymbol{p}^T \mathcal{F} \boldsymbol{p}' = 0$$

Each point correspondence can be expressed as a single linear equation

$$(u, v, 1)$$
 $\begin{pmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{pmatrix} \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0$

Estimation of the Fundamental Matrix

$$\boldsymbol{p}^T \mathcal{F} \boldsymbol{p}' = 0$$

Each point correspondence can be expressed as a single linear equation

$$(u,v,1)egin{pmatrix} F_{11} & F_{12} & F_{13} \ F_{21} & F_{22} & F_{23} \ F_{31} & F_{32} & F_{33} \end{pmatrix} egin{pmatrix} u' \ v' \ 1 \end{pmatrix} = 0 \Leftrightarrow (uu',uv',u,vu',vv',v,u',v',1) egin{pmatrix} F_{11} \ F_{12} \ F_{13} \ F_{21} \ F_{22} \ F_{23} \ F_{31} \ F_{32} \ F_{33} \end{pmatrix}$$

The 8 point algorithm (Longuet-Higgins, 1981)

8 corresponding points, 8 equations.

$$\begin{pmatrix} u_1u'_1 & u_1v'_1 & u_1 & v_1u'_1 & v_1v'_1 & v_1 & u'_1 & v'_1 \\ u_2u'_2 & u_2v'_2 & u_2 & v_2u'_2 & v_2v'_2 & v_2 & u'_2 & v'_2 \\ u_3u'_3 & u_3v'_3 & u_3 & v_3u'_3 & v_3v'_3 & v_3 & u'_3 & v'_3 \\ u_4u'_4 & u_4v'_4 & u_4 & v_4u'_4 & v_4v'_4 & v_4 & u'_4 & v'_4 \\ u_5u'_5 & u_5v'_5 & u_5 & v_5u'_5 & v_5v'_5 & v_5 & u'_5 & v'_5 \\ u_6u'_6 & u_6v'_6 & u_6 & v_6u'_6 & v_6v'_6 & v_6 & u'_6 & v'_6 \\ u_7u'_7 & u_7v'_7 & u_7 & v_7u'_7 & v_7v'_7 & v_7 & u'_7 & v'_7 \\ u_8u'_8 & u_8v'_8 & u_8 & v_8u'_8 & v_8v'_8 & v_8 & u'_8 & v'_8 \end{pmatrix} \begin{pmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{31} \\ F_{32} \end{pmatrix} = - \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Invert and solve for \mathcal{F} .

under the constraint: $|F|^2 = 1$

(Use more points if available; find least-squares solution to minimize $\sum_{i=1}^{n} (\mathbf{p}_i^T \mathcal{F} \mathbf{p}_i')^2$)

The normalized 8 point algorithm (Hartley, 1995)

Hartley 1995: use SVD.

- 1. Transform to centered and scaled coordinates
- 2. Form least-squares estimate of F
- 3. Set smallest singular value to zero.

8 point algorithm

	Linear Least Squares	[Hartley, 1995]
Av. Dist. 1	2.33 pixels	0.92 pixel
Av. Dist. 2	2.18 pixels	0.85 pixel

Adapted from Trevor Darrell, MIT

8 point algorithm

8 point algorithm (Normalized)

Trifocal Geometry

Trifocal plane formed from trifocal lines

Adapted from Trevor Darrell, MIT

Quadrifocal Geometry

Can form a "quadrifocal tensor"

Faugeras and Mourrain (1995) have shown that it is algebraically dependent on associated essential/fundamental matricies and trifocal tensor: no new constraints added.

No additional independent constraints from more than 3 views.