НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

Факультет физики

Экзамен

«Введение в молекулярную биологию»

Москва 2021

Содержание

1.	фи	29 DNA polymerase	4
	1.1.	Нормальное название	4
	1.2.	Абстракт	4
	1.3.	Картинки	4
2.	PN.	A-DNAdC5 structure 2017	8
		Нормальное название	
		Абстракт	
		Картинки	
9	Rec	A	14
o .		А Нормальное название	
		Абстракт	
		Картинки	
	0.0.	Trapininin	11
4.			18
	4.1.		
	4.3.		18
5.			19
	5.1.		
6.			20
	6.1.		
	6.3.		20
7.			21
	7.1.		21
	7.2.		21
	7.3.		21
8.			22
ο.	8.1.		
	8.2.		
	8.3.		
	· · · · ·		<u></u>
9.			23
	9.1.		
	9.2.		
	9.3.		23

10																																														24
	10.1.																																									 				24
	10.2.																																									 				24
	10.3.																																									 				24
11																																														25
	• 11.1.																																													
	11.2.																																													
	11.3.																																													
12																																														2 6
	12.1.																																													
	12.2.																																													
	12.3.		•	•	•	•	•		•	•	•	•	•		•			•		•	•	•		•		•		•		•	•	•			•	•	•					 			•	26
13																																														27
	13.1.																																									 				27
	13.2.																																													27
	13.3.																																									 				27
14																																														28
14	14.1.																																													
	14.1. 14.2.																																													
	14.2.																																													
	11.0.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		 • •	•	•	•	
1 5	•																																													2 9
	15.1.																																									 				29
	15.2.																																									 				
	15.3.		•	•		•					•				•					•				•						•												 				29
16																																														30
10	16.1.																																													
	16.2.																																													
	16.3.																																													
17																																														31
	17.1.																																													
	17.2.																																													
	17.3.		•	•	•	•	•				•	•	•		•			•	•	•	•			•	٠	•		•		•	•			•	•	•	•					 	•	•	•	31
18	i.																																													32
	18.1.																																													32
	18.2.																																									 				32
	18.3.																																									 				32
1 9	,																																													วา
т9	19.1.																																													33
	19.1. 19.2.																																													
	19.2. 19.3.										•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	 •	•	•	٠	აა 33

Зачет по статьям. Введение в молекулярную биологию

20	•																									;	34
	20.1.																										34
	20.2.																										34
	20.3.																										34
21																											35
	21.1.																										_
	21.2.																										35
	21.3.																										35

1. фи 29 DNA polymerase

1.1. Нормальное название

Специфический субдомен ДНК-полимеразы Φ 29(фермент вируса Φ 29) обеспечивает процессивность и способность замещения цепи.

1.2. Абстракт

Недавние кристаллографические исследования ДНК-полимеразы Ф29 обеспечили понимание процессивности и замещения цепи. (Здесь, процессивность ДНК полимеразы – среднее число нукелеотидов, присоединяемых ферментом за один акт связывания.) Специфическая вставка ТРR2(названная так по концевой области белка) вместе с доменами, образует два тора, способных связываться с ДНК. Для анализа функциональной роли ТРR2 была сконструирована мутантная версия с делецией аминокислот от 398 до 420. В результате биохимического анализа было выявлено, что снижается ДНК-связывающая способность, следовательно процессивность. Также удаление участка ТРR2 лишает ДНК-полимеразу возможности выполнять замещение цепи, необходимое для синтеза ДНК.

1.3. Картинки

Рис. 1. 1A: структура днк полимеразы, показана локализация вставки TPR2; 1B: выравнивание структур мутантного варианта и дикого типа; 1C: выравнивание последовательностей нескольких бактерий и мутантной версии с делецией, выделены консервативные мотивы.

Рис. 2. Электрофорез, показывающий высокую процессивность/возможность замещения цепи. Здесь надо обратить внимание на оси, в зависимости от концентрации pol/dNTP показано преимущество дикого типа перед мутантным вариантом с делецией.

Рис. 3. Электрофорез, показывающий высокую процессивность/возможность замещения цепи. Здесь надо обратить внимание на оси, в зависимости от концентрации pol/dNTP показано преимущество дикого типа перед мутантным вариантом с делецией.

Рис. 4. Электрофорез, показывающий высокую процессивность/возможность замещения цепи. Здесь надо обратить внимание на оси, в зависимости от концентрации pol/dNTP показано преимущество дикого типа перед мутантным вариантом с делецией.

Рис. 5. Электрофорез, показывающий высокую процессивность/возможность замещения цепи. Здесь надо обратить внимание на оси, в зависимости от концентрации pol/dNTP показано преимущество дикого типа перед мутантным вариантом с делецией.

Рис. 6. Моделирование высокой процессивности и замещения цепи.

2. PNA-DNAdC5 structure 2017

2.1. Нормальное название

Гибридный ДНК и-мотив*: аминоэтилпролил-ПНК** (pC5***) повышает стабильность имотива ДНК (dC5).

*"и"от "интеркалированный". И-мотив - это одна из структур, держащихся на водородных связях, которые, наравне с двухцепочечной структурой, могут образовывать нити ДНК (также РНК, ПНК).

**пептидно-нуклеиновая кислота - это как ДНК, только вместо дезоксирибозы вставлен пептид. В данном случае это аминоэтилпролил.

***pC5 имеется в виду кусочек из 5 цитозинов в Π HK, которые соединяются водородными связями при образовании и-мотива. То же касательно dC5.

2.2. Абстракт

Этот отчет описывает синтез богатых цитозином последовательностей, а именно пентамеров цитозина в аминоэтилпролиловом ПНК, и их биофизическое исследование для формирования смешанных ДНК-аэпПНК и-мотивных комплексов с пентамерами цитозина в кислотной среде. Приведенные здесь исследования кругового дихроизма (КД), облучения в УФ, ЯМР, электроспрей масс-спектрометрии подтверждают образование стабильных гибридных ДНК-аэпПНК и-мотивов в кислотной среде. Следовательно, аэп-ПНК цитозин-богатые последовательности могут рассматриваться как потенциальные агенты для стабилизации ДНК и-мотива в живом организме (in vivo).

2.3. Картинки

Рис. 7. Образование водородных связей между цитозинами ДНК в кислотной среде и формирование структуры под названием и-мотив.

Рис. 8. Предполагаемая схема образования гибридного и-мотива.

Про картинку 8. Что нужно заметить (про это спросили при обсуждении статьи): гибридный и-мотив в теории более устойчивый за счет того, что сцеплен не только водородными связями, но и электростатически.

Рис. 9. Синтез цитозинового мономера аэп-ПНК и пентамера из цитозинов аэп-ПНК.

Рис. 10. КД-спектр (круговой дихроизм) цитозин-пентамеров аэп-ПНК (45 мМ), ДНК (45 мМ), смеси аэп-ПНК и ДНК 1:1 (по 22.5 мМ каждый) при 10 градусах Цельсия, рН 4.5.

Про картинку 10. Что на графике: эллиптичность от длины волны.

Что нужно заметить: графики для гибрида и ДНК похожи, а вот ПНК принципиально отличается, так как имеет только минимум. Это означает, что тетраплексы (и-мотивы) из аэм-ПНК не образовывались за счет слишком сильного взаимного отталкивания заряженных нитей аэп-ПНК. Максимум на графике гибрида сдвинут относительно максимума для ДНК. В целом, график подтверждает образование гибридного тетраплекса в растворе ДНК с аэп-ПНК.

Рис. 11. КД-спектры при различных рН цитозин-пентамеров ДНК (45мМ) (на рис. А), смеси ДНК/аэп-ПНК (22.5 мМ каждый) (на рис. Б)

Про картинку 11. На что обратить внимание: эти спектры снимали, чтобы выявить оптимальный рН для образования и-мотивов из ДНК и гибрида аэп- Π HK/ДНК соответственно. Оптимально оказалось 4-6 рН (кислая-слабокислая среда).

Рис. 12. Температурные профили плавления при различных рН при облучении УФ на длине волны 295 нм: цитозин-пентамеры ДНК (45.0 мМ), (В) цитозин пентамеры ДНК:аэп-ПНК (1:1) (22.5 мМ каждый).

Про картинку 12. На что обратить внимание: профили плавления на 300 нм в виде негативных сигмоид (общий вид кривых, которые мы видим на графиках) в целом характерны для тетраплексов ДНК (и-мотив - частный случай тетраплекса). Беря производную от данных кривых, можно обнаружить температуру плавления. Именно эти температуры выписаны в табл. 1.

Table 1 pH dependent UV- $T_m/\Delta T_m$ of dC₅/Hybrid dC₅:pC₅.

Entry	pН	Tm (°C) of dC ₅	Tm (°C) of dC ₅ :pC ₅ (1:1)	ΔT (°C) [*]
1	4.5	46.73	62.00	15.27
2	5.0	36.13	54.06	17.93
3	5.5	31.26	40.11	8.85
4	6.0	22.66	35.82	13.16

 $^{^*}$ ΔT_m is difference in T_m of dC₅ and dC₅:pC₅ (1:1).

Рис. 13. Зависимость температуры плавления T_m при облучении УФ при различных рН для ДНК и для гибрида ДНК/аэп-ПНК

Про картинку 13. Мы видим тенденцию, что при всех рН температура плавления для гибридного и-мотива выше, чем для ДНК и-мотива, что говорит о большей устойчивости гибрида.

Рис. 14. Протонный магнитный резонанс водорода в связи H-N в протонированном цитозине при рН 4.5 при 25С (700 МГц) А) ДНК и-мотив (300 мМ), Б) гибрид ДНК/аэп-ПНК 1:1 (200 мМ каждый)

Про картинку 14. Что по осям совершенно неясно :) Но форма графиков характерна для тетраплексных структур из ДНК

Table 2 ESI-Mass analysis of pC₅/dC₅/hybrid dC₅:pC₅.

Entry	pC ₅ /hybrid pC ₅ :dC ₅ (calculated Mass)	Mass (Observed)*
1	dC ₅ (M _d) 1383.2760	$1382.05 (M_d - H)^{-*}$
2	pC ₅ (M _p) 1375.6900	1376.71 (Mp+H) ⁺
3	Annealed-pC5:dC5	1104.98
	(1:1); (pH 4.5)	$(2M_p + 2M_d + 10H)^{5+}$;
		$1036.80 (2M_d + M_p + 5H)^{4+}$;
		$1382.39(2M_d+M_p+5H)^{3+}$;
		1384.75 (2M _d +5H) ²⁺

^{*} M_d: Molecular mass of DNA dC₅; Mp: Molecular mass of pC₅.

Рис. 15. Масс-спектрометрия электроспреевой ионизации цитозин-пентамеров аэп-ПНК, ДНК, гибрида ДНК/аэп-ПНК

Про картинку 15. Собственно, есть три "входа" (соответственно, ПНК, ДНК и гибрид), обозначенных в первом столбце. Во втором - расчетная масса, в третьем - результаты измерений. Данные в третьем столбце - это интерпретация пиков с 7 картинки.

Рис. 16. Масс-спектр цитозин-пентамерного и-мотива ДНК/аэп-ПНК, полученный методом электроспреевой ионизации.

Про картинку 16. Мы видим гребенку с шагом меньше 1 аем из-за изотопов.

3. RecA

3.1. Нормальное название

Выравнивание последовательности ДНК во время гомологической рекомбинации.

3.2. Абстракт

Гомологическая рекомбинация участвует в регуляризованном обмене генетической информацией между двумя различными молекулами ДНК, который идентичны или почти идентичны по своей последовательности, а также играет основную роль в восстановлении разрывов двухнитевой молекулы ДНК. Основной аспект гомологической рекомбинации - это способность белков, учавствующих в рекомбинации, идеально выравнивать поврежденную ДНК с гомологичной (очень похожей) последовательностью, находящейся где угодно в геноме. Эта реакция известна как гомологический поиск и она похожа на таргетные поиски проводимые множеством других днк-связывающих белков. Здесь я коротко прохожусь по ранним исследованиям по механизму гомологического поиска и описываю более современные иссследования. Основываясь на них, я подвожу итог, что эта модель включает в себя комбинацию межсегментального перехода, близко-действенного одномерного слайдинга (потом поясню за базар) и длино-зависящого микрогомологического распознавания чтобы эффективно выравнивать последовательности ДНК во время гомологического поиска . Также я предлагаю несколько будущих направлений для помощи в нашем понимании гомологического поиска.

3.3. Картинки

Рис. 17. А. Схематическое изображение первых стадий гомологической рекомбинации. Б. Кристаллическая структура RecA-ssDNA, которая показывает, как они связываются с триплетами(похожими на В форму, но не такими именно), образуя пресинаптический комплекс.

Про картинку 17 (A). Там ебнешься это все расписывать, поэтому суть простая: ДНК рвется подлетаю друзья-белки образуют пресинаптический комплекс, затем появляется вторая молекула, они ищут в ней нужную гомологию и образуют D-loop(залуп), из которого и начинают синтез нужной последовательности

Рис. 18. А: График зависимости доли найденных гомологический спаренных молекул от расстояния между концами(подтверждающее, что гомологический поиск идет лучше для более спутанных молекул). Б: Картинка эксперимента по FRET (резонансная фотоскопия) исследованию гомологического поиска. В: Эксперимент показывающий, что переходное связывание найдено для ДНК с фрагментами, которые содержат меньше семи нуклеотидов в микрогомологии, а абсолютно стабильными являются фрагментами с 8ю нуклеотидами (стабильность аж до выцветания флюрофора)

Про картинку 18 (Б). Пресинпатические комплекс красились красными флюороформ, сам дуплекс красился зеленым, потом начинался процесс (запускали белок RecA) и потом запускались негомологические двунитевые молекулы ДНК. Когда два флюрофора приближались возникало свечение(он ссал в уши какой-то нефизичный бред). И дальше пихая туда разные ДНК получались зависимости частоты начала гомологической рекомбинации.

Рис. 19. А: Схематическая зависимость вероятности гомологического поиска от числа нуклеотидов внутри микрогомологии. Схематичное изображение основных принципов гомологического поиска: 1) одномерный сайдинг (скоростное (диффузионное?) скольжение в поисках нужных микрогомологий (розовый цвет), многоконтактность (синий цвет) и те самые интергементальные переходы (зеленый).

Про картинку 19 (A). Оказывается, что последовательности длинной меньше, чем 7 нуклеотидов, которые встречаются чаще (левая ось ординат), игнорируются при гомологическом поиске, а последовательность 8 и больше находятся, но очевидно, что вероятность полногот гомологического совпадения падает с увеличением длины микрогомологии.

Рис. 20. А: Схематическое изображение взаимодействий дуплетов с образованием более устойчивых, связанных конфигураций. Б: Демонстрация диффузионного характера движения хромосом. В: С помощью флюоресценции показывается, что в поврежденном ДНК образуются RecA, которые ответственны за гомологическую рекомбинацию (зеленые) ВАУ!

- 4.
- 4.1.
- 4.2.
- 4.3.

- **5.**
- 5.1.
- 5.2.
- 5.3.

- 6.
- 6.1.
- 6.2.
- 6.3.

- 7.
- 7.1.
- 7.2.
- 7.3.

- 8.
- 8.1.
- 8.2.
- 8.3.

- 9.
- 9.1.
- 9.2.
- 9.3.

- 10.
- 10.1.
- 10.2.
- 10.3.

- 11.
- 11.1.
- 11.2.
- 11.3.

- **12.**
- 12.1.
- 12.2.
- 12.3.

- 13.
- 13.1.
- 13.2.
- 13.3.

- 14.
- 14.1.
- 14.2.
- 14.3.

- **15.**
- 15.1.
- 15.2.
- 15.3.

- **16.**
- 16.1.
- 16.2.
- 16.3.

- **17.**
- 17.1.
- 17.2.
- 17.3.

- 18.
- 18.1.
- 18.2.
- 18.3.

- 19.
- 19.1.
- 19.2.
- 19.3.

- 20.
- 20.1.
- 20.2.
- 20.3.

- 21.
- 21.1.
- 21.2.
- 21.3.