Galois' Theory and the Algebraic Closedness of C

Ahaan

Outline

ullet Properties of ${f R}$

Group Theory Necessities

• C is algebraically closed

Some properties of ${f R}$

Lemma

- (i) If $y \in (0, \infty)$, then $\exists x \in \mathbf{R} : x^2 = y$.
- (ii) If $f \in \mathbf{R}[t]$ and $\deg f \equiv_2 1$, then $\exists x \in \mathbf{R} : f(x) = 0$.

Remark

Separability need not be worried about when applying Galois' fundamental theorem to finite normal extensions of \mathbf{R} : since $\mathbf{R} \leq \mathbf{C}$, every algebraic extension is separable. More generally, it suffices to note that $\operatorname{char} \mathbf{R} = 0$.

p-groups

Remark

Recall:

- (i) a finite group G is a p-group if $|G| = p^n$, for some $n \in \mathbf{N}$;
- (ii) the centre of a finite p-group is non-trivial.

Lemma (p-chain)

If
$$|G|=p^n$$
, for some $n\in\{0,1,\dots\}$, then $\exists G_0,\dots,G_n\lhd G$:

$$\forall i \in \{0,\ldots,n\} \ |G_i| = p^i \ \text{and} \ G_0 \subset \cdots \subset G_n.$$

Proof of the p-chain lemma

Proof (induction).

See that the conclusion holds if n=0. Suppose $n\in\{1,2\dots\}$ and the conclusion holds for n-1. Now $|G|=p^n\Longrightarrow |Z(G)|=p^s$, for some $1< s\le n$. So $\exists z\in Z(G): |\langle z\rangle|=p$. Since $\langle z\rangle\lhd G$, $|G/\langle z\rangle|=p^{n-1}$, and the inductive hypothesis yields a chain

$$G_1/\langle z \rangle \subset \cdots \subset G_n/\langle z \rangle$$

where $i \in \{1, ..., n\} \Longrightarrow |G_i/\langle z \rangle| = p^i$ and $G_i/\langle z \rangle \lhd G/\langle z \rangle$. But then $|G_i| = p^{i+1}$ and $G_i \lhd G$. Taking $G_0 = 1$ concludes.

The degree of a finite extension of R

Lemma

Suppose M is a non-trivial finite extension of ${\bf R}$. Then:

- (i) $[M : \mathbf{R}] \equiv_2 0;$
- (ii) if $[M:\mathbf{R}]$ is normal, then for any odd prime p, $[M:\mathbf{R}]\not\equiv_p 0$.

Proof.

- (i) Suppose not. Let $\alpha \in M \setminus \mathbf{R}$. Denote by m the minimal polynomial of α over \mathbf{R} . Then $\deg m \mid [M:\mathbf{R}]$, so $\deg m \equiv_2 1$. So $\exists x \in \mathbf{R} : m(x) = 0$, contradiction.
- (ii) By (i), $[M:\mathbf{R}] \equiv_2 0$ and by the fundamental theorem, $|\Gamma(M:\mathbf{R})| \equiv_2 0$. Let $H \in \operatorname{Syl}_2 \Gamma$. Then $[\Gamma:H] \not\equiv_2 0$ and again by the fundamental theorem, $[H^\dagger:\mathbf{R}] \not\equiv_2 0$. But by (i) $H^\dagger \neq \mathbf{R} \Longrightarrow [H^\dagger:\mathbf{R}] \equiv_2 0$. So it must be that $H^\dagger = \mathbf{R}$ and $\Gamma = H$, whence the result follows.

C is algebraically closed

Theorem

There are no non-trivial finite extensions of $\mathbf{R}(i)$.

Proof.

Suppose M is a non-trivial finite extension of $\mathbf{R}(\mathrm{i})$. WLOG assume $M:\mathbf{R}$ is normal. By the preceding lemma, $\Gamma(M:\mathbf{R})$ is a 2-group. By the p-chain lemma and the fundamental theorem, there is an extension N of $\mathbf{R}(\mathrm{i})$ such that $[N:\mathbf{R}(\mathrm{i})]=2$. Then $\exists \alpha \in \mathbf{R}(\mathrm{i}): N=\mathbf{R}(\mathrm{i})(\sqrt{\alpha}).$ Write $\alpha=a+b\mathrm{i}$, for some $a,b\in\mathbf{R}.$ Then

$$\sqrt{a+bi} = \pm \left(\sqrt{\frac{a+\sqrt{a^2+b^2}}{2}} + i\sqrt{\frac{-a+\sqrt{a^2+b^2}}{2}}\right) \in \mathbf{R}(i)$$

so $N = \mathbf{R}(i)$, contradiction.

Corollary (Fundamental Theorem of Algebra)

Let $f \in \mathbf{C}[t]$. If $\deg f \geq 1$, then f splits over \mathbf{C} .