Sheaves on Manifolds Exercise II.11 の解答

ゆじとも

2021年2月9日

Sheaves on Manifolds [Exercise II.11, KS02] の解答です。

II Sheaves

本文では、局所コンパクト空間であるという場合には、ハウスドルフ性を常に仮定していることに注意しておく (cf. 本文 [Proposition 2.5.1, KS02] 直前の記述)。

問題 II.11. $f:Y\to X$ を局所コンパクトハウスドルフ空間の間の連続写像、G を Y 上の層とする。以下の主張が同値であることを示せ:

- (1) 任意の $x \in X$ に対して $G|_{f^{-1}(x)}$ は c-soft である。
- (2) 任意の開集合 $V \subset Y$ と任意の j > 0 に対して $R^j f_! G_V = 0$ である。

証明・(1) ⇒ (2) を示す。任意の $x \in X$ に対して $G|_{f^{-1}(x)}$ は c-soft であると仮定する。開集合 $V \subset Y$ と 点 $x \in X$ を任意にとる。本文 [Proposition 2.6.7, KS02] より、各点 $x \in X$ に対して自然に $(R^j f_! G_V)_x \cong H^j_c(f^{-1}(x) \cap V, G|_{f^{-1}(x)})$ が成り立つ。ここで $G|_{f^{-1}(x)}$ は c-soft であるので、[Exercise 2.6 (1), KS02] より、j > 0 に対して $H^j_c(f^{-1}(x) \cap V, G|_{f^{-1}(x)}) = 0$ が成り立つ。よって層 $R^j f_! G_V$ の各点での stalk は 0 であり、従って $R^j f_! G_V = 0$ である。

(2) ⇒ (1) を示す。任意の開集合 $V\subset Y$ と任意の j>0 に対して $R^jf_!G_V=0$ であると仮定する。点 $x\in X$ と開集合 $V_x\subset f^{-1}(x)$ を任意にとる。このとき、ある開集合 $V\subset Y$ が存在して $V_x=V\cap f^{-1}(x)$ が成り立つ。本文 [Proposition 2.6.7, KS02] より、各 j>0 に対して自然に $H^j_c(V_x,G|_{f^{-1}(x)})\cong (R^jf_!G_V)_x=0$ が成り立つ。よって [Exercise 2.6 (1), KS02] より、 $G|_{f^{-1}(x)}$ は c-soft である。以上で問題 II.11 の解答を完了する。

References

[KS02] M. Kashiwara and P. Schapira. Sheaves on Manifolds. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2002. ISBN: 9783540518617. URL: https://www.springer.com/jp/book/9783540518617.