Energy Economics

Energy market module (focus on electricity markets)

Roberto Bianchini (roberto.bianchini@polimi.it)

Textbook: Perez Arriaga, Regulation of the power sector, pp.341-379

Unconstrained market clearing

Wholesale electricity market: system marginal price auctions

- Bids and offers for each delivery period are submitted by a specified deadline
- **Each power plant** submits a bid (p, q) for each hour:
 - p: minimum price at which the power plant is willing to sell
 - q: maximum quantity the power plant is willing to sell
- **Each buyer** submits a bid (p, q) for each hour:
 - p: maximum price at which the buyer is willing to buy
 - q: maximum quantity the buyer is willing to sell
- Market administrator (MA) grades the bids according to an economic merit order (taking into account constraints)
- Matching of demand and supply establishes the winners (on the supply side, the plants that are dispatched) and the Hourly Equilibrium Market Price
- Different type of bids:
 - Simple hourly bids
 - Block bids
 - Complex bids
 -

Hypotheses:

- No transmission constraints
- Perfectly competitive market:
 - Seller offers represent marginal costs of generation (P)
 - Buyer bids represent Willingness To Pay (WTP) for energy purchased
- MA clears the market: finds price(s) and quantities ((i.e. successful offers and bids)
- Criterion: economic dispatch
 - Less costly generators first
 - Consumers with higher WTP first
- Mathematically: constrained optimization problem
- Economic objective: gain from trade maximization

System marginal price:

- Each seller receives SMP and each buyer pays SMP
- The SMP is different from the offer/bid of nearly every player

Player	Accepted quantity (MWh)	Out of merit order (MW/h)	Revenues (€)	Costs (€)
S1	700	100	5250	
S2	200	200	1500	
S 3	700	-	5250	
D1	500	-		3750
D2	400	400		3000
D3	700	-		5250
Total	1600		12000	12000

Why this equilibrium is not realistic in a «real» electricity market?

Unconstrained SMP mechanism: optimization problem

Max Total Surplus (TS) =
$$\sum_{i=1}^{n} WTP_{i}(Q_{Di}) - \sum_{j=1}^{m} P_{J}(Q_{SJ})$$

s.t.

$$\sum_{i=1}^n Q_{Di} = \sum_{j=1}^m Q_{Sj}$$

Supply-Demand balance

$$Q_{Di}^{min} < Q_{Di} < Q_{Di}^{max} \ \forall i$$

$$Q_{Si}^{min} < Q_{Si} < Q_{Si}^{max} \forall i$$

Quantity constraints

Unconstrained SMP mechanism: optimization problem

MILANO 1863

Unconstrained SMP mechanism: fixed and variable costs

SMP mechanism: pros and cons

Unconstrained SMP mechanism: example - Italian DAM

- Accepted offer quantity (28220,125 MWh)
- Accepted bid quantity (35069,125 MWh)

Day-Ahead Market-MGP

Day:	Month:	Year:		Time:
04 🛊	March	•	2019 🕏	12 🛊

Zonal Prices: **nord**

Selling Price (€/ MWh)	Purchases(MWh)	Sales (MWh)
52,46	23.557,06	16.786,40

Zonal flow

From	Max Transmission Capacity (MWh)	Flow (MWh)
AUST	10.000,00	00,00
CNOR	2.500,00	-247,34
FRAN	10.000,00	00,00
SLOV	10.000,00	00,00
SVIZ	10.000,00	00,00

Zone: nord

to	Max Transmission Capacity (MWh)	Flow (MWh)
AUST	10.000,00	-315,00
CNOR	4.000,00	00,00
FRAN	10.000,00	-3.453,00
SLOV	10.000,00	-630,00
SVIZ	10.000,00	-2.620,00

Unconstrained pay as bid mechanism

SMP: exercise

Case study:

- 5 power plants with different production costs
- 4 different demand scenarios

SMP: exercise

Compute power plants' profits in case A and B (assuming bids equal to marginal costs and unit variable costs)

Case A:

- 5 power plants, at initial stage managed by different market players (power plants E is not included in the merit order)
- System marginal price mechanism in a perfect competition market where each player bids at marginal cost
- Plants incur in fixed costs even if they are not dispatched
- Profits determined in 4 different demand scenarios (D1-D4)

Power Plant	Fixed Costs €/h	Variable Costs €/MWh	Power MW	Demand
А	5	5	15	D1: 50
В	2	8	10	D2: 40
С	3	9	15	D3: 25
D	0	10	10	D4: 15
E	4	15	15	

Profits Case A

Power Plant	Fixed Costs €/h	Variable Costs €/MWh	Power MW	Demand
А	5	5	15	D1: 50
В	2	8	10	D2: 40
С	3	9	15	D3: 25
D	0	10	10	D4: 15
E	4	15	15	

Power Plant	D1	D2	D3	D4
А				
В				
С				
D				
E				

SMP: exercise – case B

Compute power plants' profits in case A and B (assuming bids equal to marginal costs and unit variable costs)

Case B:

- Power plants A, C and E owned by the same market player
- Such player does not offer power plant C
- System marginal price mechanism in a perfect competition market where each player bids at marginal cost
- Plants incur in fixed costs even if they are not dispatched
- Profits determined strategically using demand scenario D1

How much do profits increase under the hypothesis of strategic behaviour in demand scenario D1?

Power Plant	Fixed Costs €/h	Variable Costs €/MWh	Power MW
А	5	5	15
В	2	8	10
С	3	9	15
D	0	10	10
E	4	15	15

Power Plant	Fixed Costs €/h	Variable Costs €/MWh	Power MW	Demand
А	5	5	15	D1: 50
В	2	8	10	
С	3	9	15	
D	0	10	10	
E	4	15	15	

Power Plant	D1
А	
В	
С	
D	
E	

Case B

- POLITECNICO MILANO 1863
- Profits power plants A, B D, E = ?
- Comprehensive profit of owner of plants A,C,E in cases A and B?