INTEGRATED CIRCUITS

DATA SHEET

74HC154; 74HCT154 4-to-16 line decoder/demultiplexer

Product specification Supersedes data of 2004 Oct 05 2004 Oct 12

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

FEATURES

- 16-line demultiplexing capability
- Decodes 4 binary-coded inputs into one 16 mutually exclusive outputs
- Complies with JEDEC standard no. 8-1 B
- ESD protection: HBM EIA/JESD22-A114-B exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V.
- Specified from -40 °C to +85 °C and -40 °C to +125 °C.

DESCRIPTION

The 74HC154; 74HCT154 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC154; 74HCT154 decoders accept four active HIGH binary address inputs and provide 16 mutually exclusive active LOW outputs. The two-input enable gate can be used to strobe the decoder to eliminate the normal decoding "glitches" on the outputs, or can be used for the expansion of the decoder.

The enable gate has two ANDed inputs which must be LOW to enable the outputs.

The 74HC154; 74HCT154 can be used as a 1-to-16 demultiplexer by using one of the enable inputs as the multiplexed data input.

When the other enable input is LOW, the addressed output will follow the state of the applied data.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$.

SYMBOL	PARAMETER	CONDITIONS	TYP	ICAL	UNIT
STWIBOL	FARAWETER	CONDITIONS	74HC154	74HCT154	UNII
t _{PHL} /t _{PLH}	propagation delay An, En to Yn	$C_L = 15 \text{ pF}; R_L = 1 \text{ k}\Omega;$ $V_{CC} = 5 \text{ V}$	11	13	ns
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per gate	notes 1 and 2	60	60	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

fo = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in Volts;

N = total load switching outputs;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

2. For 74HC154 the condition is $V_I = GND$ to V_{CC}

For 74HCT154 the condition is $V_I = GND$ to $V_{CC} - 1.5 V$.

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

FUNCTION TABLE

See note 1.

		INF	UT										Ol	JTPU	IT						
E0	E1	A0	A1	A2	А3	<u>Y0</u>	<u>Y1</u>	<u>Y2</u>	<u></u> 73	Y4	<u>¥6</u>	Y7	<u>78</u>	<u>Y2</u>	<u>Y9</u>	<u>Y10</u>	<u>Y11</u>	<u>Y12</u>	<u>Y13</u>	<u>Y14</u>	Y15
Н	Н	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	X	X	Х	Χ	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	Н	Х	Х	Х	Χ	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	L	Г	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		Н	L	L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		L	Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		Н	Н	L	L	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		L	L	Н	L	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		Н	L	Н	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
		L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
		Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н
		L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н
		Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н
		L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н
		Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
		L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н
		Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н
		L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	н
		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

Note

1. H = HIGH voltage level

L = LOW voltage level

X = don't care.

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

ORDERING INFORMATION

TYPE NUMBER	TEMPERATURE		PAC	KAGE	
I TPE NUMBER	RANGE	PINS	PACKAGE	MATERIAL	CODE
74HC154N	-40 °C to +125 °C	24	DIP24	plastic	SOT101-1
74HCT154N	-40 °C to +125 °C	24	DIP24	plastic	SOT101-1
74HC154D	-40 °C to +125 °C	24	SO24	plastic	SOT137-1
74HCT154D	-40 °C to +125 °C	24	SO24	plastic	SOT137-1
74HC154DB	-40 °C to +125 °C	24	SSOP24	plastic	SOT340-1
74HCT154DB	-40 °C to +125 °C	24	SSOP24	plastic	SOT340-1
74HC154PW	-40 °C to +125 °C	24	TSSOP24	plastic	SOT355-1
74HCT154PW	-40 °C to +125 °C	24	TSSOP24	plastic	SOT355-1
74HC154BQ	-40 °C to +125 °C	24	DHVQFN24	plastic	SOT815-1
74HCT154BQ	-40 °C to +125 °C	24	DHVQFN24	plastic	SOT815-1

PINNING

PIN	SYMBOL	DESCRIPTION
1	<u>Y0</u>	data output (active LOW)
2	<u>Y1</u>	data output (active LOW)
3	Y2	data output (active LOW)
4	<u>Y3</u>	data output (active LOW)
5	<u>Y4</u>	data output (active LOW)
6	<u>Y5</u>	data output (active LOW)
7	<u>Y6</u>	data output (active LOW)
8	<u>Y7</u>	data output (active LOW)
9	<u>Y8</u>	data output (active LOW)
10	<u>Y9</u>	data output (active LOW)
11	<u>Y10</u>	data output (active LOW)
12	GND	ground (0 V)
13	<u>Y11</u>	data output (active LOW)
14	<u>Y12</u>	data output (active LOW)
15	<u>Y13</u>	data output (active LOW)
16	<u>Y14</u>	data output (active LOW)
17	<u>Y15</u>	data output (active LOW)
18	E0	enable input
19	E1	enable input
20	A3	data input
21	A2	data input
22	A1	data input
23	A0	data input
24	V _{CC}	positive supply voltage

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS		74HC15	4	7	'4HCT15	4	UNIT
STWIBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNIT
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	_	V _{CC}	0	_	V _{CC}	V
Vo	output voltage		0	_	V _{CC}	0	_	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
t _r , t _f	input rise and fall times	V _{CC} = 2.0 V	_	_	1000	_	_	_	ns
		V _{CC} = 4.5 V	_	6.0	500	_	6.0	500	ns
		V _{CC} = 6.0 V	_	_	400	_	_	_	ns

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input diode current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}; \text{ note 1}$	_	±20	mA
I _{OK}	output diode current	$V_{O} < -0.5 \text{ V or } V_{O} > V_{CC} + 0.5 \text{ V}; \text{ note 1}$	-	±20	mA
Io	output source or sink current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$; note 1	_	±25	mA
I _{CC} , I _{GND}	V _{CC} or GND current	note 1	_	±50	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}; \text{ note } 2$	_	300	mW

Notes

- 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
- 2. For DIP24 packages: above 70 °C the value of Ptot derates linearly with 12 mW/K.
 - For SO24 packages: above 70 °C the value of Ptot derates linearly with 8 mW/K.
 - For SSOP24 and TSSOP24 packages: above 60 °C the value of Ptot derates linearly with 5.5 mW/K.

For DHVQFN24 packages: above 60 $^{\circ}\text{C}$ the value of P $_{tot}$ derates linearly with 4.5 mW/K.

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

DC CHARACTERISTICS

Type 74HC154

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

CVMDOL	DADAMETED	CONDITION	S	nain.	TVD	MAY	LINUT
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = 25 °C							
V _{IH}	HIGH-level input voltage		2.0	1.5	1.2	_	V
			4.5	3.15	2.4	_	V
			6.0	4.2	3.2	_	V
V _{IL}	LOW-level input voltage		2.0	_	0.8	0.5	V
			4.5	_	2.1	1.35	V
			6.0	_	2.8	1.8	V
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	$I_{O} = -20 \mu A$	2.0	1.9	2.0	_	V
		$I_{O} = -20 \mu A$	4.5	4.4	4.5	_	V
		$I_{O} = -20 \mu A$	6.0	5.9	6.0	_	V
		$I_{O} = -4.0 \text{ mA}$	4.5	3.98	4.32	_	V
		$I_{O} = -5.2 \text{ mA}$	6.0	5.48	5.81	_	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}					
		I _O = 20 μA	2.0	_	0	0.1	V
		I _O = 20 μA	4.5	_	0	0.1	V
		I _O = 20 μA	6.0	_	0	0.1	V
		$I_{O} = 4.0 \text{ mA}$	4.5	_	0.15	0.26	V
		I _O = 5.2 mA	6.0	_	0.16	0.26	V
ILI	input leakage current	$V_I = V_{CC}$ or GND	6.0	_	_	±0.1	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A	6.0	_	_	8.0	μΑ

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

OVIADO	DADAMETED	CONDITIC	NS		T)/D		
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = -40 °	C to +85 °C		<u>'</u>		•		!
V _{IH}	HIGH-level input voltage		2.0	1.5	_	_	V
			4.5	3.15	_	_	V
			6.0	4.2	_	_	V
V _{IL}	LOW-level input voltage		2.0	_	_	0.5	V
			4.5	_	_	1.35	V
			6.0	_	_	1.8	V
V_{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	$I_{O} = -20 \mu A$	2.0	1.9	_	_	V
		$I_{O} = -20 \mu A$	4.5	4.4	_	_	V
		$I_{O} = -20 \mu A$	6.0	5.9	_	_	V
		$I_{O} = -4.0 \text{ mA}$	4.5	3.84	_	_	V
		$I_{O} = -5.2 \text{ mA}$	6.0	5.34	_	_	V
V_{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}					
		I _O = 20 μA	2.0	_	_	0.1	V
		I _O = 20 μA	4.5	_	_	0.1	V
		I _O = 20 μA	6.0	_	_	0.1	V
		$I_{O} = 4.0 \text{ mA}$	4.5	_	_	0.33	V
		I _O = 5.2 mA	6.0	_	_	0.33	V
ILI	input leakage current	$V_I = V_{CC}$ or GND	6.0	_	_	±1.0	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A	6.0	_	_	80	μΑ

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

OVMDOL	DADAMETED	CONDITIO	NS		TVD	BA A V	
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = -40 °	C to +125 °C			•		•	•
V _{IH}	HIGH-level input voltage		2.0	1.5	_	_	V
			4.5	3.15	_	_	V
			6.0	4.2	_	_	V
V _{IL}	LOW-level input voltage		2.0	_	_	0.5	V
			4.5	Ī-	_	1.35	V
			6.0	_	_	1.8	V
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	$I_{O} = -20 \mu A$	2.0	1.9	_	_	V
		$I_{O} = -20 \mu A$	4.5	4.4	_	-	V
		$I_{O} = -20 \mu A$	6.0	5.9	_	_	V
		$I_{O} = -4.0 \text{ mA}$	4.5	3.7	_	_	V
		$I_{O} = -5.2 \text{ mA}$	6.0	5.2	_	_	V
V_{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}					
		I _O = 20 μA	2.0	_	_	0.1	V
		I _O = 20 μA	4.5	_	_	0.1	V
		I _O = 20 μA	6.0	_	_	0.1	V
		$I_{O} = 4.0 \text{ mA}$	4.5	_	_	0.4	V
		I _O = 5.2 mA	6.0	_	_	0.4	V
ILI	input leakage current	$V_I = V_{CC}$ or GND	6.0	_	_	±0.1	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A	6.0	_	_	160	μΑ

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

Type 74HCT154At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

CVMDOL	DADAMETED	CONDITIO	NS	MINI	TYP.	MAY	LIMIT
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	MIN.	I TYP.	MAX.	UNIT
T _{amb} = 25 °C		1	•	'	1	1	1
V _{IH}	HIGH-level input voltage		4.5 to 5.5	2.0	1.6	_	V
V _{IL}	LOW-level input voltage		4.5 to 5.5	_	1.2	0.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}$ $I_O = -20 \mu A$	4.5	4.4	4.5	_	V
		$I_O = -4 \text{ mA}$	4.5	3.98	4.32	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}$ $I_O = 20 \mu\text{A}$ $I_O = 4 \text{ mA}$	4.5 4.5	 - -	0 0.15	0.1 0.25	V V
ILI	input leakage current	$V_I = V_{CC}$ or GND	5.5	_	_	±0.1	μА
Icc	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A	5.5	_	_	8.0	μΑ
Δl _{CC}	additional quiescent supply current per input	$V_I = V_{CC} - 2.1 \text{ V};$ $I_O = 0 \text{ A}$	4.5 to 5.5	_	_	360	μΑ
$T_{amb} = -40$ °C	C to +85 °C						
V _{IH}	HIGH-level input voltage		4.5 to 5.5	2.0	_	_	V
V _{IL}	LOW-level input voltage		4.5 to 5.5	_	_	0.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL} $I_O = -20 \mu A$ $I_O = -4 m A$	4.5 4.5	4.4 3.84			V
V _{OL}	LOW-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}$ $I_O = 20 \mu\text{A}$ $I_O = 4 \text{ mA}$	4.5 4.5	_	-	0.1 0.33	V
ILI	input leakage current	$V_I = V_{CC}$ or GND	5.5	_	-	±1.0	μΑ
Icc	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A	5.5	_	_	80	μΑ
Δl _{CC}	additional quiescent supply current per input	$V_I = V_{CC} - 2.1 \text{ V};$ $I_O = 0 \text{ A}$	4.5 to 5.5	_	_	450	μΑ

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

CVMDOL	DADAMETED	CONDITION	S	MIN.	TYP.	MAY	LINUT
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	WIIIN.	I TP.	MAX.	UNIT
T _{amb} = -40 °C	to +125 °C			•	•	•	
V _{IH}	HIGH-level input voltage		4.5 to 5.5	2.0	_	_	V
V _{IL}	LOW-level input voltage		4.5 to 5.5	_	_	0.8	V
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	$I_{O} = -20 \mu A$	4.5	4.4	_	-	V
		$I_O = -4 \text{ mA}$	4.5	3.7	_	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}					
		I _O = 20 μA	4.5	_	_	0.1	V
		$I_O = 4 \text{ mA}$	4.5	_	_	0.4	V
ILI	input leakage current	$V_I = V_{CC}$ or GND	5.5	_	_	±1.0	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A	5.5	_	_	160	μΑ
Δl _{CC}	additional quiescent supply current per input	$V_I = V_{CC} - 2.1 \text{ V};$ $I_O = 0 \text{ A}$	4.5 to 5.5	-	_	490	μΑ

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

AC CHARACTERISTICS

Type 74HC154

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF.

OVMDOL	DADAMETED	TEST CONDIT	TONS		TVD	BAAV	
SYMBOL	PARAMETER	WAVEFORMS	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = 25 °C		-	1	•	'		•
t _{PHL} /t _{PLH}	propagation delay An to Yn	see Figs 7 and 9	2.0	_	36	150	ns
			4.5	_	13	30	ns
			6.0	_	10	26	ns
	propagation delay En to Yn	see Figs 8 and 9	2.0	_	39	150	ns
			4.5	Ī-	14	30	ns
			6.0	_	11	26	ns
t _{THL} /t _{TLH}	output transition time	see Figs 7, 8 and 9	2.0	_	19	75	ns
			4.5	Ī-	7	15	ns
			6.0	_	6	13	ns
T _{amb} = -40 °	C to +85 °C						
t _{PHL} /t _{PLH}	propagation delay An to Yn	see Figs 7 and 9	2.0	_	_	190	ns
			4.5	_	_	38	ns
			6.0	-	_	33	ns
	propagation delay En to Yn	see Figs 8 and 9	2.0	_	_	190	ns
			4.5	_	_	38	ns
			6.0	Ī-	_	33	ns
t _{THL} /t _{TLH}	output transition time	see Figs 7, 8 and 9	2.0	Ī-	Ī-	95	ns
			4.5	_	_	19	ns
			6.0	_	_	16	ns
T _{amb} = -40 °	C to +125 °C			•	•	•	
t _{PHL} /t _{PLH}	propagation delay An to Yn	see Figs 7 and 9	2.0	_	_	225	ns
			4.5	-	_	45	ns
			6.0	-	_	38	ns
	propagation delay En to Yn	see Figs 8 and 9	2.0	_	_	225	ns
			4.5	-	-	45	ns
			6.0	-	-	38	ns
t _{THL} /t _{TLH}	output transition time	see Figs 7, 8 and 9	2.0	-	-	110	ns
			4.5	-	-	22	ns
			6.0	-	_	19	ns

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

Type 74HCT154

 $\mathsf{GND} = 0 \; \mathsf{V}; \; t_{\mathsf{f}} = t_{\mathsf{f}} = 6 \; \mathsf{ns}; \; \mathsf{C_L} = \mathsf{50} \; \mathsf{pF}.$

SYMBOL	DADAMETED	TEST CONDIT	IONS	MIN.	TYP.	MAY	UNIT				
STWIDOL	PARAMETER	WAVEFORMS	V _{CC} (V)	ivilin.	I I I P.	MAX.	UNII				
T _{amb} = 25 °C	T _{amb} = 25 °C										
t _{PHL} /t _{PLH}	propagation delay An to Yn	see Figs 7 and 9	4.5	_	16	35	ns				
	propagation delay En to Yn	see Figs 8 and 9	4.5	_	15	32	ns				
t _{THL} /t _{TLH}	output transition time	see Figs 7, 8 and 9	4.5	_	7	15	ns				
T _{amb} = -40 °C	to +85 °C										
t _{PHL} /t _{PLH}	propagation delay An to Yn	see Figs 7 and 9	4.5	_	_	44	ns				
	propagation delay En to Yn	see Figs 8 and 9	4.5	_	_	40	ns				
t _{THL} /t _{TLH}	output transition time	see Figs 7, 8 and 9	4.5	_	_	19	ns				
T _{amb} = -40 °C	to +125 °C			•							
t _{PHL} /t _{PLH}	propagation delay An to Yn	see Figs 7 and 9	4.5	_	_	53	ns				
	propagation delay En to Yn	see Figs 8 and 9	4.5	_	_	48	ns				
t _{THL} /t _{TLH}	output transition time	see Figs 7, 8 and 9	4.5	_	_	22	ns				

AC WAVEFORMS

2004 Oct 12 14

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

TEST	S 1
t _{PLH} /t _{PHL}	open
t _{PLZ} /t _{PZL}	V _{CC}
t _{PHZ} /t _{PZH}	GND

Definitions for test circuit:

 $\ensuremath{C_L}$ = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

Fig.9 Load circuitry for switching times.

APPLICATION DATA

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

PACKAGE OUTLINES

DIP24: plastic dual in-line package; 24 leads (600 mil)

SOT101-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	e	e ₁	L	M _E	Мн	w	Z ⁽¹⁾ max.
mm	5.1	0.51	4	1.7 1.3	0.53 0.38	0.32 0.23	32.0 31.4	14.1 13.7	2.54	15.24	3.9 3.4	15.80 15.24	17.15 15.90	0.25	2.2
inches	0.2	0.02	0.16	0.066 0.051	0.021 0.015	0.013 0.009	1.26 1.24	0.56 0.54	0.1	0.6	0.15 0.13	0.62 0.60	0.68 0.63	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT101-1	051G02	MO-015	SC-509-24			99-12-27 03-02-13

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

SO24: plastic small outline package; 24 leads; body width 7.5 mm

SOT137-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

DINILIAO	\																	
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.3 0.1	2.45 2.25	0.25	0.49 0.36	0.32 0.23	15.6 15.2	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.1	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.61 0.60	0.30 0.29	0.05	0.419 0.394	0.055	0.043 0.016		0.01	0.01	0.004	0.035 0.016	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT137-1	075E05	MS-013			-99-12-27 03-02-19

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

SSOP24: plastic shrink small outline package; 24 leads; body width 5.3 mm

SOT340-1

	(-,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	8.4 8.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.8 0.4	8° 0°

Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT340-1		MO-150			99-12-27 03-02-19

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

TSSOP24: plastic thin shrink small outline package; 24 leads; body width 4.4 mm

SOT355-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	7.9 7.7	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT355-1		MO-153			99-12-27 03-02-19

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

DHVQFN24: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body 3.5 x 5.5 x 0.85 mm

SOT815-1

Note

1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT815-1					03-04-29

4-to-16 line decoder/demultiplexer

74HC154; 74HCT154

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS(2)(3)	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2004

SCA76

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

R44/05/pp22

Date of release: 2004 Oct 12

Document order number: 9397 750 14191

Let's make things better.

Philips Semiconductors

万联芯城专注电子元器件配单服务,只售原装现货库存, 万联芯城电子元器件全国供应,专为终端生产,研发企业 提供现货物料,价格优势明显,BOM 配单采购可节省逐个 搜索购买环节,只需提交 BOM 物料清单,商城即可为您报 价,电子元器件现货销售,满足客户物料需求,万联芯城 凭借丰富的电子元器件供应链体系已在业内打下良好的品 牌口碑,点击进入万联芯城。

