MPM Problem Research Report Juan Liu

Date: 07/24/2015

1 Problem Statement

This research aims to simulate the MPM challenge problem which has been proposed on the 8th MPM Workshop[1], and try to investigate the possible source for this kind of unstable fluid. In this 2D plane-strain problem, an initially stationary column of fluid is subject to gravity at T=0 and allowed to slosh down into the initially empty portion of the two-dimensional computational domain. All particles start with zero stress and the gravitational load jumps from zero to $9.81m/s^2$ at time zero. The computational domain is $1m \times 2m$. Grid cell size is $1cm \times 1cm$, and 4 particles per cell (2×2) are used to describe the initial geometry. All domain boundaries are treated as planes of symmetry.

Figure 1: Schematic of the initial condition.

The pressure in the water is given by the following equation,

$$P = K \times (J^{-\gamma} - 1)$$

where K is the low-pressure bulk modulus of the fluid, and J is the determinant of the deformation gradient, while $\gamma = 7$ was used throughout these simulations.

2 Simulation Environment Setup

This simulation is implemented on Ubuntu 14.04 LTS OS, computing using Uintah 1.6.0 and visualizing the result data by VisIt 2.9.2.

2.1 Uintah Installation and Configuration

Uintah is a set of software components and libraries that facilitate the solution of partial differential equations on structured adaptive mesh refinement grids using hundreds to thousands processors[4]. To install and configure Uintah software, follow the instruction step by step according to the Uintah Installation Guide[2].

2.2 VisIt Installation and Configuration

VisIt is a free interactive parallel visualization and graphical analysis tool for viewing scientific data on Unix and PC platforms[6]. Download the VisIt source code and build it following the instruction[5]. Here is some configuration code:

```
sudo env PAR_INCLUDE=-I/usr/local/include PAR_COMPILER=/usr/local/bin/mpic++ PAR_COMPILER_CXX=/usr/local/bin/mipcxx ../src/svn_bin/build_visit -console -thirdparty-path ~/Projects/visit-2.9.2/thirdparty -no-visit -icet -parallel -fortran -alt-uintah-dir ~/Projects/uintah-1.6.0/dbg
```

3 Simulation Specifics

Component used: MPM

Input file name: mpmproblem.ups

Command used to run input file: sus /path/to/mpmproblem.ups

Simulation Domain: $1.0m \times 2.0m \times axisymmetric$

Cell Size: $1.0cm \times 1.0cm$ Particles per Cell: 2×2 Bulk Modulus: 15000.0Pa

Viscosity: 500cP CFL number: 0.2

Physical time simulated: 0.321004 seconds

4 Uintah Code

```
<Grid>
<BoundaryConditions>
<Face side="x-">
<BCType id="all" var="symmetry" label="Symmetric"></BCType>
</Face>
<Face side="x+">
<BCType id="all" var="symmetry" label="Symmetric"></BCType>
</Face>
<Face side="y-">
<BCType id="all" var="symmetry" label="Symmetric"></BCType>
</Face>
<Face side="y+">
<BCType id="all" var="symmetry" label="Symmetric"></BCType>
</Face>
<Face side="z-">
<BCType id="all" var="symmetry" label="Symmetric"></BCType>
</Face>
<Face side="z+">
<BCType id="all" var="symmetry" label="Symmetric"></BCType>
</Face>
</BoundaryConditions>
<Level>
<Box label = "domain">
<lower>[0.0, 0.0, 0.0]</lower>
<upper>[1.0, 2.0, 0.1]</upper>
<extraCells > [1,1,1] </extraCells >
<patches>[1,1,1]</patches>
<spacing>[0.01, 0.01, 0.01]
</Level>
</Grid>
<DataArchiver>
        <filebase>problem.uda</filebase>
        <outputInterval > .001
        <save label="p.x"/>
        <save label="p.velocity"/>
        <save label="p.volume"/>
        <save label="p.size"/>
        <save label="p.temperature"/>
        <save label="p.deformationMeasure"/>
        <save label="p.stress"/>
        <save label="g.mass"/>
        <save label="g.stressFS"/>
        <save label="g.velocity"/>
        <save label="g.velocity_star"/>
</DataArchiver>
```

```
<MPM>
                 <time_integrator>explicit</time_integrator>
                 <interpolator>gimp</interpolator>
        </MPM>
        <PhysicalConstants>
                 <gravity>[0,-9.81,0]</gravity>
        </PhysicalConstants>
        <MaterialProperties>
                 < MPM >
                 <material>
                 <density > 1000.0 </density >
                 <constitutive_model type="water">
                 <bul><br/><bulk_modulus>15000.0</bulk_modulus></br/></br/>
                 <viscosity>0.5
                 < gamma > 7.0 < / gamma >
                 </constitutive_model>
                 <thermal_conductivity > 0.0 </ thermal_conductivity >
                 <specific_heat >5</specific_heat >
                 <geom_object>
                 <box label = "particles">
                 \min [0.6, 0.0, 0.0] </\min >
                 \max > [1.0, 0.4, 0.1] < \max >
                 </box>
                 <res>[2,2,2]</res>
                 <velocity>[0.0, -9.81, 0.0]
                 <temperature > 12 </temperature >
                 </geom_object>
                 </material>
                 </MPM>
        </MaterialProperties>
</Uintah_specification>
```

5 Results

Figure 2: Initially stable fluid

Figure 2 shows the initially simulation of the fluid is stable, with particles colored by the magnitude of their velocity.

Figure 3: State of fluid after a few time steps

Figure 3 shows the fluid state becomes unstable after a few time steps.

Figure 4: Particles blow out

Figure 4 shows after 0.3 seconds simulation, most of the particles are blown out in the closed domain with an unstable fluid state.

6 Conclusion

- 1. In this problem, the pressure in the water is given by an equation of state described as $P = K \times (J^{-\gamma} 1)$, where K is the low-pressure bulk modulus of the fluid in which seems more likely a penalization term coefficient. In a small region of computational domain, any subtle difference of density would cause enormous pressure even anomaly huge ∇p depending on the k chosen. MPM[10][8] combines the algorithm of SPH[7] in which the pressure term is solved in an explicit method. A better way to avoid the numerical instability problem may include considering using an implicit pressure projection method instead.
- 2. In [9], the study employ the Chorin-style projection which are naturally done on maker and cell(MAC) grids. By introducing an intermediate velocity u*, pressure are split from the other forces, taking the divergence, the equation then reduces to a Poisson Equation to solve.
- 3. The unstable source may also occur in the information exchanged between particles and grids in MPM. Employing more smooth particle-grids information exchange algorithm should help.

References

- [1] MPM Workshop. http://www.cof.orst.edu/cof/wse/faculty/Nairn/mpm/.
- [2] Uintah Installation Guide. http://uintah-build.sci.utah.edu/trac/chrome/site/installation_guide.pdf.
- [3] Uintah User Guide. http://uintah-build.sci.utah.edu/trac/chrome/site/user_guide.pdf.

- [4] Uintah Wiki. http://uintah-build.sci.utah.edu/trac/wiki.
- [5] VisIt Build. http://uintah-build.sci.utah.edu/trac/wiki/VisitBuildInstructions.
- [6] VisIt Wiki. http://www.visitusers.org/index.php?title=Main_Page.
- [7] Matthias Müller, David Charypar, and Markus Gross. Particle-based Fluid Simulation for Interactive Applications. In *Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation*, pages 154–159. Eurographics Association, 2003.
- [8] Vinh Phu Nguyen and Cardiff University. Material Point Method: Basics and Applications.
- [9] Alexey Stomakhin, Craig Schroeder, Chenfanfu Jiang, Lawrence Chai, Joseph Teran, and Andrew Selle. Augmented MPM for Phase-change and Varied Materials. *ACM Transactions on Graphics (TOG)*, 33(4):138, 2014.
- [10] Deborah Sulsky, Zhen Chen, and Howard L Schreyer. A particle method for history-dependent materials. Computer methods in applied mechanics and engineering, 118(1):179–196, 1994.