第9章 圆锥曲线

§ 9.1 椭圆的定义及标准方程

9.1.1 相关概念

学习目标

- 1、了解曲线方程的概念,能解决常规的轨迹问题
- 2、了解椭圆的定义、标准方程及相关概念
- 3、掌握椭圆的基本性质(一级结论)
- 1. 曲线方程

在直角坐标系中,如果某条曲线C上的点与一个二元二次方程f(x,y)=0的实数解建立了如下的关系

- (1) 曲线上点的坐标都是这个方程的解;
- (2) 以这个方程的解为坐标的点都在这条曲线上,那么,这个方程就称为这条**曲线的方程,** 这条曲线称为这个**方程的曲线**。

若曲线方程是 f(x,y)=0, 我们也经常说成曲线 f(x,y)=0。

2. 椭圆的概念

第一定义: 在平面内,到两定点 F_1 , F_2 的距离之和等于定长(大于 $|F_1F_2|$)的点的轨迹(或集合) 叫椭圆. 这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.

对于集合 $P = \{M \mid MF_1 \mid + \mid MF_2 \mid = 2a\}$, $\mid F_1F_2 \mid = 2c$, 其中 a > 0, c > 0 , 且 a, c 为常数: 则 (1)若 a > c ,集合 P 为椭圆 ;

- (2)若a=c,集合P为线段;
- (3)若a < c,集合P为空集.

第二定义:平面上,到一定点的距离与其到一条定直线的距离之比为常数 $e \in (0,1)$ 的点的轨迹。定点称为椭圆的焦点,定直线称为椭圆的准线,常数e为椭圆的离心率。

椭圆的标准方程: 以椭圆的第一定义为例,以 F_1F_2 所在直线为x 轴,以 F_1F_2 的垂直平分线为y 轴建立如图所示的平面直角坐标系,设 $|F_1F_2|$ = 2c ,则 $F_1(-c,0)$, $F_2(c,0)$,设定长为2a ,且令 $a^2-c^2=b^2$, P(x,y) 为椭圆上任意一点,由椭圆的定义知: $|PF_1|+|PF_2|=2a$,即 $\sqrt{(x+c)^2+y^2}+\sqrt{(x-c)^2+y^2}=2a$,化简即得

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$

此即为椭圆的标准方程。

易知:如果焦点在y轴上,则椭圆的标准方程为:

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$$

对于 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$,如图所示。我们称 A_1A_2, B_1B_2 分别为椭圆的长轴和短轴,其中

 $A_1(-a,0), A_2(a,0)$ 分别称为椭圆的**左、右顶点**(长轴端点), $B_1(0,b), B_2(0,-b)$ 分别称为椭圆的上、下顶点(短轴端点), $F_1(-c,0), F_2(c,0)$ 分别为椭圆的**左、右焦点**; 2a 称为长轴长,2b 称为短轴长; 直线 $x=-\frac{a^2}{c}$, $x=\frac{a^2}{c}$ 分别称为椭圆的**左、右准线**。

【注意】跟椭圆相关的三个参数 a,b,c ,不管椭圆的焦点在 x 轴上,还是在 y 轴上,始终满足:

$$a^2 = b^2 + c^2$$

如 P 为椭圆上任意一点,则称 $F_1P_1F_2P$ 分别为椭圆的**左、右焦半径**,并定义 $e=\frac{c}{a}$ 为椭圆的

离心率。图中的 $\Delta F_1 P F_2$ 称为椭圆的焦点三角形。

3、椭圆
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$
的基本性质

- (1)**椭圆的通径长为**: $\frac{2b^2}{a}$ (注:过焦点且垂直于 F_1F_2 的弦,如下图中的AB称为椭圆的通径)。
 - (2) 焦半径: 设P(x,y) 为椭圆上任意一点,则

$$PF_1 = a + ex$$
, $PF_2 = a - ex$.

- (3) 焦点弦长: $|P_1P_2| = 2a \pm (x_1 + x_2)$ (过左焦点取加,过右焦点取减)
- (4) 设P(x,y) 为椭圆上任意一点,则焦点三角形面积: $S_{\Delta F_1 P F_2} = b^2 \tan \frac{\angle F_1 P F_2}{2}$

(5) 点
$$P(x_0, y_0)$$
 在椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的内部 $\Leftrightarrow \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} < 1$

(6) 点
$$P(x_0, y_0)$$
 在椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的外部 $\Leftrightarrow \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} > 1$

(7) 椭圆
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 $(a > b > 0)$ 上一点 $P(x_0, y_0)$ 处的切线方程: $\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$

(8) 过
$$P(x_0, y_0)$$
 引椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 的两条切线,则切点弦方程: $\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$

(9) 椭圆
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$
 与直线 $Ax + By + C = 0$ 相切 $\Leftrightarrow (Aa)^2 + (Bb)^2 = C^2$

9.1.2 典型例题

例 1.如图,已知点C的坐标是(2,2),过点C的直线CA与x轴交于点A,过点C且与直线CA垂直的直线CB与y轴交于点B,设点M是线段AB的中点,求点M的轨迹方程。

【解】: 设 M(x,y) , 因 A,B 分别在 x 轴和 y 上 , 且 M 是线段 AB 的中点 , 故 A(2x,0),B(0,2y) , 故 $\overrightarrow{CA}=(2x-2,-2),\overrightarrow{CB}=(-2,2y-2)$, 由题意知: $\overrightarrow{CA}\cdot\overrightarrow{CB}=0$, 从而得 -2(2x-2)-2(2y-2)=0 , 即 x+y-2=0 , 此即为 M 的轨迹方程 , 它表示一条直线。

例 2.过原点的直线与圆 $x^2 + y^2 - 6x + 5 = 0$ 交于 A, B 两点,求弦 AB 的中点 M 的轨迹方程。

【解】: 设 $A(x_1, y_1), B(x_2, y_2), M(x, y)$, 易知题中的直线斜率存在,设其方程为: y = kx,

与圆的方程联立
$$\begin{cases} y = kx \\ x^2 + y^2 - 6x + 5 = 0 \end{cases}, \text{ 消去 } y \text{ , 化简得 } (1 + k^2) x^2 - 6x + 5 = 0 \text{ ,}$$

当 $\Delta = 36 - 20(1 + k^2) \ge 0$,也即 $k^2 \le \frac{4}{5}$ 时,上述方程有解,且由韦达定理得

由于
$$k^2 \le \frac{4}{5}$$
, 由 $x = \frac{3}{1+k^2}$ 知 $\frac{5}{3} \le x \le 3$,

故,M的轨迹方程为 $x^2 + y^2 - 3x = 0$ ($\frac{5}{3} \le x \le 3$)。

例 3.过点 P(3,4) 的动直线与两坐标轴的交点分别为 A,B ,过 A,B 分别作两轴的垂线交于点 M ,求点 M 的轨迹方程。

【解】当过点P(3,4)的动直线不经过原点时,设其方程为 $\frac{x}{a} + \frac{y}{b} = 1$,则M(a,b),

又
$$P(3,4)$$
 在直线 $\frac{x}{a} + \frac{y}{b} = 1$ 上,则 $\frac{3}{a} + \frac{4}{b} = 1$,化简得 $ab - 4a - 3b = 0$

也即此时M的轨迹方程为xy-4x-3y=0;

如动直线过原点,此时M为原点,仍在xy-4x-3y=0上;

综上, M 的轨迹方程为 xy-4x-3y=0。

例 4.一动圆截直线 3x - y = 0 和 3x + y = 0 所得弦长分别为 8, 4, 求动圆圆心 M 的轨迹方程。

【解】: 如图, 过M 分别作AB,CD的垂线, 垂足分别为E,F, 设M(x,y), 由

$$|ME|^2 + |AE|^2 = R^2 = |MF|^2 + |CF|^2 = 4^2 + \left(\frac{|3x - y|}{\sqrt{3^2 + 1^2}}\right)^2 = 2^2 + \left(\frac{|3x + y|}{\sqrt{3^2 + 1^2}}\right)^2$$

化简得: xy = 10, 此即为M的轨迹方程。

例 5.一动圆与圆 $x^2 + y^2 + 6x + 5 = 0$ 外切,与 $x^2 + y^2 - 6x - 91 = 0$ 内切,求动圆圆心的轨迹方程,并说明它是什么曲线。

【解】令题中二圆分别为 $\bigcirc C_1$ 和 $\bigcirc C_2$, 动圆为 $\bigcirc C$

易知 $\odot C_1$: 圆心 $C_1(-3,0)$, 半径为 2; $\odot C_2$: 圆心 $C_2(3,0)$, 半径为 10; $|C_1C_2|=6$ 令 $\odot C$ 半径为 r, 易知 $|CC_1|=2+r$, $|CC_2|=10-r$,

故| CC_1 |+| CC_2 |=12>| C_1C_2 |,

故,C的轨迹是:以 C_1, C_2 为左右焦点,2a = 12为定长的椭圆,其方程为: $\frac{x^2}{36} + \frac{y^2}{27} = 1$ 。

例 6.点 M 与定点 F(2,0) 的距离和它到定直线 x=8 的距离之比为1:2 ,求 M 的轨迹方程,并说明它是什么图形。

【解】: 令
$$M(x,y)$$
 , 由题意得 $\frac{\sqrt{(x-2)^2+y^2}}{|x-8|} = \frac{1}{2}$, 两边平方并化简得

 $\frac{x^2}{16} + \frac{y^2}{12} = 1$,此即为*M* 的轨迹方程,其图形为椭圆。

例 7.如点 M(x,y) 在运动过程中,始终满足关系式: $\sqrt{x^2 + (y+3)^2} + \sqrt{x^2 + (y-3)^2} = 10$,点 M 的轨迹是什么曲线? 为什么? 写出它的方程。

【解】.令
$$F_1(0,3), F_2(0,-3)$$
,则 $\sqrt{x^2 + (y+3)^2} + \sqrt{x^2 + (y-3)^2} = |MF_1| + |MF_2|$,

从而得 $|MF_1| + |MF_2| = 10$,

又因 $|F_1F_2|=6$,故 $|MF_1|+|MF_2|>|F_1F_2|$,

由椭圆的定义知:点M的轨迹是以 F_1,F_2 为上、下焦点,2a=10为定长的椭圆;

考虑到c=3, a=5,且焦点在y轴上,故其方程为 $\frac{y^2}{25} + \frac{x^2}{16} = 1$ 。

例 8.如图,圆O的半径为定长r,A是圆O内一个定点,P是圆上任意一点,线段AP的垂直平分线l与半径OP相交于Q,当点P在圆上运动时,点Q的轨迹是什么?为什么?

【解】如图,由题意有|QO|+|QA|=|QO|+|QP|=r,

因A是圆O内,故|OA| < r,

故Q的轨迹是:以O, A为焦点, 2a=r为定长的椭圆。

例9.如图, $DP \perp x$ 轴,点 $M \in DP$ 的延长线上,且 $\frac{DM}{DP} = \frac{3}{2}$,当点 $P \in \mathbb{R}$ 在圆 $x^2 + y^2 = 4$ 上 运动时,求点M的轨迹方程,并说明轨迹的形状。

【解】令M(x,y),则 $P(x,\frac{2}{3}y)$,因P在圆 $x^2+y^2=4$ 上,故P的坐标满足圆的方程,即

$$x^2 + (\frac{2}{3}y)^2 = 4$$
, 化简得: $\frac{x^2}{4} + \frac{y^2}{9} = 1(x \neq \pm 2)$,

其图形为椭圆,焦点在 y 上 (不含短轴顶点)。

例 10 (1) "
$$-3 < m < 5$$
" 是"方程 $\frac{x^2}{5-m} + \frac{y^2}{m+3} = 1$ 表示椭圆"的 ().

- A. 充分不必要条件 B. 必要不充分条件
- C. 充要条件
- D. 既不充分也不必要条件

(2) 椭圆
$$\frac{x^2}{9} + \frac{y^2}{4+k} = 1$$
 的离心率为 $\frac{4}{5}$, 则 k 的值为().

- A. -21
- B. 21
- C. $-\frac{19}{25}$ 或 21 $\frac{19}{25}$ 或 21

【解】(1) 要使方程
$$\frac{x^2}{5-m} + \frac{y^2}{m+3} = 1$$
 表示椭圆,应满足
$$\begin{cases} 5-m > 0 \\ m+3 > 0 \end{cases}$$
 解得 $-3 < m < 5$ 且 $5-m \neq m+3$

 $m \neq 1$,

因此"-3 < m < 5"是"方程 $\frac{x^2}{5-m} + \frac{y^2}{m+3} = 1$ 表示椭圆"的必要不充分条件. 选 B。

若
$$a^2 = 4 + k, b^2 = 9$$
 , 则 $c = \sqrt{k-5}$, 由 $\frac{c}{a} = \frac{\sqrt{k-5}}{\sqrt{4+k}} = \frac{4}{5}$, 解得 $k = 21$ 。

综上,选C。

例 11.在平面直角坐标系 xOy 中,椭圆 C 的中心为原点,焦点 F_1 , F_2 在 x 轴上,离心率为 $\frac{\sqrt{2}}{2}$ 。过 F_1 的直线 l 交 C 于 A, B 两点,且 $\triangle ABF_2$ 的周长为 16,那么 C 的方程为______.

【解】根据椭圆焦点在x轴上,可设椭圆方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$,

由题意知
$$\begin{cases} \frac{c}{a} = \frac{\sqrt{2}}{2} \\ 4a = 16 \end{cases}$$
,解得 $a = 4, b = 2\sqrt{2}$,所以椭圆方程为 $\frac{x^2}{16} + \frac{y^2}{8} = 1$

例 12.已知 F_1 , F_2 是椭圆 C : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的两个焦点,P 为椭圆 C 上的一点,且 $\overrightarrow{PF_1} \perp \overrightarrow{PF_2}$,若 $\triangle PF_1F_2$ 的面积为 9,则 b =_____.

【解】 因
$$\overrightarrow{PF_1} \perp \overrightarrow{PF_2}$$
, $\therefore |PF_1|^2 + |PF_2|^2 = |F_1F_2|^2$

$$\therefore (|PF_1| + |PF_2|)^2 - 2|PF_1| \cdot |PF_2| = |F_1F_2|^2$$

故,
$$2|PF_1| \cdot |PF_2| = 4a^2 - 4c^2 = 4b^2$$
, $|PF_1| \cdot |PF_2| = 2b^2$

由题意:
$$S_{\triangle PF_1F_2} = \frac{1}{2} |PF_1| \cdot |PF_2| = \frac{1}{2} \times 2b^2 = 9$$
, 故 $b = 3$

【法二】: 直接利用焦点三角形的面积公式, 由题意知

$$S_{\Delta F_1 P F_2} = b^2 \tan \frac{\angle F_1 P F_2}{2} = b^2 \tan 45^\circ = 9$$
, $\Leftrightarrow b^2 = 9$, $\Leftrightarrow b = 3$

例 13.如图,在矩形 ABCD中,|AB|=8,|BC|=6,E,F,G,H 分别是矩形四条边的中点,R,S,T 是线段 OF 的四等分点,R',S',T' 是线段 CF 的四等分点,请证明:直线 ER 与 GR',ES 与 GS',ET 与 GT'的交点 L,M,N 在椭圆 $\frac{x^2}{16} + \frac{y^2}{9} = 1$ 上。

【解】 易知 E(0,-3), R(1,0), G(0,3), $R'(4,\frac{9}{4})$,

因此得直线 ER 的方程为: $x-\frac{y}{3}=1$,

直线 *GR*'的方程为: $y = -\frac{3}{16}x + 3$

联立上述两个方程,解得 $L(\frac{32}{17},\frac{45}{17})$

易验证L的坐标满足方程 $\frac{x^2}{16} + \frac{y^2}{9} = 1$,即L在该椭圆上;

同理可求出M,N的坐标,并验证其在椭圆 $\frac{x^2}{16} + \frac{y^2}{9} = 1$ 上,证毕。

例 14(1)求与椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 有相同的离心率且经过点 $(2, -\sqrt{3})$ 的椭圆方程.

(2)已知点 P 在以坐标轴为对称轴的椭圆上,且 P 到两焦点的距离分别为 5、3,过 P 且与长轴垂直的直线恰过椭圆的一个焦点,求椭圆的方程.

【解】(1)由题意,设所求椭圆的方程为 $\frac{x^2}{4} + \frac{y^2}{3} = t(t > 0)$,

∵椭圆过点(2,
$$-\sqrt{3}$$
), ∴ $t = \frac{2^2}{4} + \frac{(-\sqrt{3})^2}{3} = 2$

故所求椭圆标准方程为 $\frac{x^2}{8} + \frac{y^2}{6} = 1$

(2) 由题意得
$$\begin{cases} 2a = 5 + 3 \\ \frac{b^2}{a} = 3 \end{cases}, \quad \text{解得 } a = 4, b^2 = 12$$

故所求方程为
$$\frac{x^2}{16} + \frac{y^2}{12} = 1$$
或 $\frac{y^2}{16} + \frac{x^2}{12} = 1$

例 15.已知点P 是椭圆 $\frac{x^2}{5} + \frac{y^2}{4} = 1$ 上的一点,且以点P 及焦点 F_1, F_2 为顶点的三角形的面积为 1,求P 的坐标。

【解】由题意知:
$$a = \sqrt{5}, b = 2$$
, 故 $c = 1$

令
$$P(x_0, y_0)$$
 ,因 $|F_1F_2| = 2c = 2$,由题意得 $\frac{1}{2} \times |F_1F_2| \times |y_0| = 1$

即| $y_0 = 1$,解得 $y_0 = \pm 1$

将
$$y_0^2 = 1$$
 带入 $\frac{{x_0}^2}{5} + \frac{{y_0}^2}{4} = 1$, 得 $x_0 = \pm \frac{\sqrt{15}}{2}$

故,
$$P$$
 的坐标为($\frac{\sqrt{15}}{2}$,1),($-\frac{\sqrt{15}}{2}$,1),($\frac{\sqrt{15}}{2}$,-1) 或($-\frac{\sqrt{15}}{2}$,-1)

例 16.已知椭圆
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$
,一组平行线的斜率为 $\frac{3}{2}$,

(1) 这组直线何时与椭圆相交?

(2) 当它们与椭圆相交时,证明这些直线被椭圆截得的线段的中点在一条直线上。

【解】(1) 设这组直线的方程为:
$$y = \frac{3}{2}x + m$$

将其带入
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$
, 化简得 $9x^2 + 6mx + 2m^2 - 18 = 0$,

由
$$\Delta = 36m^2 - 36(2m^2 - 18) \ge 0$$
, 解得 $-3\sqrt{2} \le m \le 3\sqrt{2}$

也即:这组平行直线在y轴上的截距位于 $[-3\sqrt{2},3\sqrt{2}]$ 区间内时与椭圆相交。

(2) 设
$$y = \frac{3}{2}x + m$$
 与椭圆交于 $A(x_1, y_1), B(x_2, y_2)$, 由 (1) 及韦达定理得:

$$x_1 + x_2 = -\frac{2m}{3}$$
, $to y_1 + y_2 = \frac{3}{2}(-\frac{2m}{3}) + 2m = m$

故,
$$AB$$
的中点为 $P(-\frac{m}{3},\frac{m}{2})$,

显然,不管m取何值,点P均在直线 $y = -\frac{3}{2}x$ 上,证毕。

【法二】(2) 设弦中点
$$M(x,y)(x \neq 0)$$
,则 $k_{OM} = \frac{y}{x}$,由斜率积定理知: $\frac{3}{2} \times k_{OM} = -\frac{a^2}{b^2}$

得:
$$\frac{3}{2} \times \frac{y}{x} = -\frac{9}{4}$$
, 化简得 $y = -\frac{3}{2}x$,

易知: x=0时,上述结论仍成立。

综上,这组平行线截椭圆所得弦的中点在直线 $y = -\frac{3}{2}x$ 上,证毕。

附椭圆的斜率积定理如下:

对于
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$
,则 $k_{AB} \times k_{OM} = -\frac{b^2}{a^2}$ 。如下图一

对于
$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$$
,则 $k_{AB} \times k_{OM} = -\frac{a^2}{b^2}$ 。如下图二

例 17. 一个圆经过椭圆 $\frac{x^2}{16} + \frac{y^2}{4} = 1$ 的三个顶点,且圆心在x 轴正半轴上,则该圆的标准方程为____

【解】由于圆心在x轴上,所以该圆只能是经过椭圆在y轴上的两个顶点和x轴上的一个顶点,设圆心C(x,0),该圆应该经过A(4,0)、E(0,2)、F(0,-2)三点,半径为(4-x),由 $x^2+4=(4-x)^2$,解得 $x=\frac{3}{2}$,故圆的标准方程为: $\left(x-\frac{3}{2}\right)^2+y^2=\frac{25}{4}$

例 18. 设点 P 是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 上一点, F_1, F_2 分别是椭圆的左右焦点,I 为 ΔPF_1F_2 的内心,若 $S_{\Delta IPF_1} + S_{\Delta IPF_2} = 2S_{\Delta IF_1F_2}$,则该椭圆的离心率为____

【解析】设
$$_{\Delta}PF_{_{1}}F_{_{2}}$$
内切圆半径为 $_{r}$,则 $\frac{S_{_{\Delta}IF_{_{1}}F_{_{2}}}}{S_{_{\Delta}IPF_{_{1}}}+S_{_{\Delta}IPF_{_{2}}}}=\frac{\frac{1}{2}r\,|\,F_{_{1}}F_{_{2}}\,|}{\frac{1}{2}r\,|\,PF_{_{1}}\,|\,+\frac{1}{2}r\,|\,PF_{_{2}}\,|}=\frac{2c}{2a}=e\,,$

另一方面,由题意知:
$$\frac{S_{_{\triangle}IF_{1}F_{2}}}{S_{_{\triangle}IPF_{1}}+S_{_{\triangle}IPF_{2}}}=\frac{1}{2}$$
,故 $e=\frac{1}{2}$ 。

例 19 (天津高联赛) F 是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的左焦点,A 是该椭圆上位于第一象限的一点,过A 作圆 $x^2 + y^2 = b^2$ 的切线,切点为P ,则|AF| - |AP| = ()

【巧解】采用极限法,取 A 为短轴顶点(0,b) ,此时, P,A 重合,|AF|-|AP|=FA=a 。

【法二】令 $A(x_0, y_0)$, 椭圆的离心率为e, 则 $|FA|=a+ex_0$,

又,
$$|PA| = \sqrt{OA^2 - OP^2} = \sqrt{x_0^2 + y_0^2 - b^2} = \sqrt{x_0^2 + b^2(1 - \frac{x_0^2}{a^2}) - b^2} = \sqrt{x_0^2 - \frac{b^2}{a^2}x_0^2} = ex_0$$
故, $|AF| - |AP| = a + ex_0 - ex_0 = a$

