1

Discrete Assignment

Shravya Kantayapalam EE23BTECH11030

1) **Question 11.9.4.9**: Find the sum to *n* terms of the series whose *n*th term is given by $n^2 + 2^n$? **Solution**:

TABLE I Input Parameters

Variable	Description	Value
x(n)	<i>n</i> -th term of sequence	$(n^2 + 2^n)u(n)$

$$x(n) = (n^2 + 2^n)u(n) (1)$$

$$2^n \cdot u(n) \stackrel{Z}{\longleftrightarrow} \frac{1}{1 - 2z^{-1}} \tag{2}$$

(3)

$$n^2 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3} \quad |z| > 1$$
 (4)

$$X(z) = \frac{z^{-1}(z^{-1} + 1)}{(1 - z^{-1})^3} + \frac{1}{1 - 2z^{-1}}$$
 (5)

$$Y(z) = X(z)U(z) \tag{6}$$

$$Y(z) = \left(\frac{z^{-1}(z^{-1}+1)}{(1-z^{-1})^3} + \frac{1}{1-2z^{-1}}\right) \left(\frac{1}{1-z^{-1}}\right)$$
(7)

$$Y(z) = \frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^4} + \frac{2}{1-2z^{-1}} - \frac{1}{1-z^{-1}}$$
(8)

$$y(n) = \frac{n^2(n^2 - 1)}{3}u(n) + 2.2^n u(n) - u(n)$$
(9)

$$y(n) = \left(\frac{n^2(n^2 - 1)}{3} + 2^{n+1} - 1\right)u(n) \tag{10}$$

Fig. 1. Graph of y(n)