This week

Next week

- Audio Classification
- Fine tuning in previous work
- Tune dropout rate in best case
- Visualize filter

- Audio Classification
- To visualize 1D-CNN
- Understanding 1D-CNN model.
- Mapping our brain data
- To investigate 1D model more specific

Interesting and new finding

- Fine Tuning
- Filter in DSP (Digital Signal Processing)

The aim of this month / Discussion

• The aim of this month: To study the brain and GLM, To investigate about CNN.

Few days ago...

- So I try the experiment as much as possible.
- A lot of experiment was tried.

And few hours later.....

- Some server were downed due to overload.
- I say "Don't take a break", But he understand only "Don't take a break"
- So, I felt the need to monitor the server status in real time.

- Frankly, many people are afraid of new things.
- So if we develop new things, Do not make new one, improve the old one.
- A. What is the old one?
 - → We always check google-spreadsheets for using server
- B. What do we need?
 - → Check server status in realtime
- So I add new feature to check server status in realtime in google-sheet.

Now we can check server status in realtime ©

- Data is low-waveform.
 - sec: 1, sampling rate: 16000, type: float32, channel: mono
- 16 class data.
 - 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'bed', 'bird', 'tree', 'cat', 'house', 'dog'
- Train: 40851(≒80%), Validation: 4796(≒10%), Test: 5297(≒10%)

- For example, '5Conv, 2FC' baseline model's detail.
- It just flatten 2D model. (5X5 filter->1X25 filter, 2X2 stride->1X4 stride)
- Input: 16000X1 low waveform.
- Output:1x16 labeled one hot vector. ('zero', ..., 'eight', ..., 'house', 'dog')
- Loss: cross entropy loss
- Obtimizer: Adam

[Baseline Architecture]

Fine tuning task in 1D-CNN

• This is SOTA(State Of The Art) in previous research.

	Architecture (i = 0,1,2)	1D DO(0.5)	1D BN	1D DO+BN	Params								
	baseline												
base model	5 Conv(25, 8*2 ⁱ), 5 Pool(4), 2 FC	0.9090	0.9072	0.9240	1,855,056								
	Accuracy and Number of parameters												
Custom channel 32	8 CONV(5, 64)	0.9477	0.9285	0.9391	94,768								
Custom channel 64 DO(0.75)	8 CONV(5, 128)	0.9589	X	0.9497	363,600								
Custom VGG style DO(0.75)	16 CONV(3, 128), 8 Pool	0.9620	0.9423	0.9136	470,736								
20(0.73)		Only Ac	curacy										
Custom channel 128	9 CONV(5, 512)	0.9396	0.9632	0.9674	2,071,184								

Fine tuning task in 1D-CNN

Added Work

- I tune the dropout's rate in 'custom ch32' model
- The accuracy was exceeded 0.95

Architecture	DO(0.25)	DO(0.25)+BN	DO(0.75)	DO(0.75)+BN
1 CONV(5, 32)	X	X	X	X
2 CONV(5, 32)	X	X	X	X
3 CONV(5, 32)	0.5034	0.5277	0.6260	0.6816
4 CONV(5, 32)	0.6395	0.6712	0.7983	0.8019
5 CONV(5, 64)	0.7248	0.7458	0.8432	0.8461
6 CONV(5, 64)	0.8650	0.8536	0.9101	0.8951
7 CONV(5, 64)	0.9267	0.9215	0.9425	0.9252
8 CONV(5, 64)	0.9452	0.9369	0.9533	0.9458
9 CONV(5, 128)	0.9362	0.9385	0.9506	0.9491

- This is SOTA(State Of The Art) in current research.
- Despite less than 100,000 parameters, it was exceeded 0.95.

	Architecture (i = 0,1,2)	1D DO(0.5)	1D BN	1D DO+BN	Params									
	baseline													
base model	5 Conv(25, 8*2 ⁱ), 5 Pool(4), 2 FC	0.9090	0.9072	0.9240	1,855,056									
	Accuracy and Number of parameters													
Custom channel 32	8 CONV(5, 64)	0.9477	0.9285	0.9391	94,768									
Custom channel 64 DO(0.75)	8 CONV(5, 128)	0.9589	X	0.9497	363,600									
Custom VGG style DO(0.75)	16 CONV(3, 128), 8 Pool	0.9620	0.9423	0.9136	470,736									
20(0.10)		Only Acc	curacy											
Custom channel 128	9 CONV(5, 512)	0.9396	0.9632	0.9674	2,071,184									
	Aı	nd, here is ne	w challenge	er										
Custom channel 32 DO(0.75)	8 CONV(5, 64)	0.9533	X	0.9458	94,768									

- Confusion matrix
- Compare 'baseline' and this model
- In 'Three' and 'Tree' case, it is around two times better.

Actual class

Actual class

Zero [[367	7 0	8	0	5	0	0	0	1	1	1	1	0	0	0	1]		[[369	0) 5	1	3	0	1	4	. 0	1	0	0	1	0	0	0]
One	[1:	344	0	0	3	7	0	1	0	6	1	0	0	0	0	1]		[1:	347	C	C	4	- 1	1	0	0	7	2	0	0	1	0	0]
Two	[5	0 3	359	0	7	0	0	2	1	1	1	1	1	4	1	1]		[8	0 3	369	2	: C	0	0	0	1	0	0	0	2	2	0	0]
Three	[1	0	53	333	0	4	2	3	5	1	1	2	0	0	0	20]	<u> </u>	Ŧ	1	0	2	356	- 0	1	-1	-2	6	0	0	0	0	0	×	8]
Fore	[3	2	3	23	344	3	0	2	0	0	2	1	0	6	0	O	•	[2	2	1	1 :	359	2	0	0	0	0	0	0	1	0	0	ण
Five	[1	4	0	4	03	888	1	0	1	4	0	1	1	2	1	0]		[0	6	0	3	4	386	0	2	1	3	0	1	2	0	0	0]
Six	0]	0	0	1	0	13	367	1	2	1	0	0	1	0	0	0]		[0	0	0	3	1	0 3	366	1	2	0	1	0	0	0	0	0]
Seven	[4	1	0	1	1	0	53	355	0	4	0	1	4	0	0	0]		[3	0	0	0	1	0	23	367	0	0	3	0	0	0	0	0]
Eight	0]	1	0	5	2	1	3	13	49	4	5	2	3	0	0	0]		[1	0	1	2	1	0	0	03	367	0	2	0	1	0	0	1]
Nine	0]	2	0	1	0	3	0	0	03	64	2	1	0	4	0	0]		[0	6	0	0	0	3	0	0	0.3	64	3	1	0	0	0	0]
Bed	[2	3	1	1	0	1	4	3	4	0 1	53	3	8	0	0	0]		[1	0	2	0	0	0	0	0	6	0 1	66	5	2	1	0	0]
Bird	[1	2	0	2	1	3	0	0	0	5	4 1	33	1	0	0	1]		[0	1	1	1	0	0	2	0	0	2	7 1	37	0	2	0	0]
Cat	0]	0	3	0	1	1	0	1	0	1	1	0 1	57	1	2	0]		[0	0	0	0	0	0	0	1	0	0	1	0 1	61	4	1	0]
Dog	[1	1	2	0	0	1	0	0	1	4	1	5	0 1	76	0	0]		[0	1	5	0	0	0	0	0	0	1	1	0	2 1	82	0	0]
House	0]	0	0	0	0	2	1	0	0	1	0	0	3	0 1	59	1]		[0	0	2	0	0	1	1	0	0	1	0	0	5	1 1	56	0]
Tree	[1	0	4	32	0	0	0	0	3	1	0	0	0	0	0 1	122]	}	ſ	2	0	2	15	0	0	1	0	4	1	0	0	0	0	0 1	38]]

base model (Acc: 0.9090)

Custom channel 32 (AC DO(0.75)

(Acc: 0.9533)

- I tune the dropout's rate in 'custom ch128' model
- 0.97....!?

Architecture	DO(0.25)	DO(0.25)+BN	DO(0.75)	DO(0.75)+BN
1 CONV(5, 128)	X	X	X	X
2 CONV(5, 128)	Χ	X	X	X
3 CONV(5, 128)	0.5522	0.5124	0.6476	0.6457
4 CONV(5, 128)	0.6768	0.6866	0.7803	0.7867
5 CONV(5, 256)	0.7601	0.7445	0.8386	0.8449
6 CONV(5, 256)	0.8906	0.8789	0.9130	0.8970
7 CONV(5, 256)	0.9369	0.9171	0.9576	0.9302
8 CONV(5, 256)	0.9570	0.9547	0.9618	0.9580
9 CONV(5, 512)	0.9535	0.9701	0.9645	0.9595

- This is SOTA(State Of The Art) in current research.
- The accuracy achieve 0.97

	Architecture (i = 0,1,2)	1D DO(0.5)	1D BN	1D DO+BN	Params								
	baseline												
base model	5 Conv(25, 8*2 ⁱ), 5 Pool(4), 2 FC	0.9090	0.9072	0.9240	1,855,056								
	Accurac	Accuracy and Number of parameters											
Custom channel 32 DO(0.75)	8 CONV(5, 64)	0.9533	0.9285	0.9391	94,768								
Custom channel 64 DO(0.75)	8 CONV(5, 128)	0.9589	X	0.9497	363,600								
Custom VGG style DO(0.75)	16 CONV(3, 128), 8 Pool	0.9620	0.9423	0.9136	470,736								
		Only Accuracy											
Custom channel 128	9 CONV(5, 512)	0.9396	0.9632	0.9674	2,071,184								
	Aı	nd, here is ne	ew challenge	er									
Custom channel 128 DO(0.25)+BN	9 CONV(5, 512)	0.9535	X	0.9701	2,071,184								

- Confusion matrix
- Compare 'baseline' and this model
- In 'Three' and 'Tree' case, it is around two or three times better.

Actual class

Actual class

One Two Three Fore Five Six Seven Eight Nine Bed Bird Cat Dog	[1 0 [3 2 [1 4 1] [0 0 1 1] [0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 0 0 359 0 5 3 1 0 0 0 0 0 0 2 0 3 1 2 0 3 2	0 0 0 3333 2 3 4 1 1 5 1 1 2 0 0	3 7 0 44 0 38 0 1 1 2 0 1 1 1 1 1	7 0 4 3 88 1 36 0 5 1 3 3 0	0 1 0 2 2 3 0 2 1 0 57 1 5 355 3 1 3 0 0 1 3 0 0	0 1 5 0 1 2 0 349 0 3 4 0	6 1 0 4 1 4 64 0 1 5 1	1 1 2 0 0 5 2 53 4 1; 1	0 1 2 1 1 0 1 2 1 3 3 3 0 1 5 0 1 5	0 1 0 0 1 1 4 3 0 8 1 57	0 4 0 6 2 0 0 0 4 0 0 1 76	0 1 0 0 1 0 0 0 0 0 0 0 0	0] 0] 0] 0] 0] 0] 1]]	375 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0	348 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 375 0 0 0 0 4 0 1 0 0 2	0 2 356 0 1 0 2 0 0 0 0	364 50 0 0 0 0 0 0	0 399 0 3 0 0 0 0 0 0	0 0 2 0 0 371 1 3 0 0 1 0 0	1 0 0 0 1 373 0 3 1 0 0 0	1 0 1 0 1 662 0 3 1 0 0	6 0 0 2 0 0 4 63 0 1 1 0	1 0 0 1 0 0 2 78 3 1 0	0 0 0 1 0 0 0 2 3 1 47 0 10	0 0 1 1 0 0 1 0 0 0 66 0 18	0 2 0 0 0 0 0 0 0 0 1 1 86	0 0 0 0 0 0 0	1] 2] 8] 1] 0] 0] 0] 1] 0] 1] 0] 2]
	[1 1	2	_	_				4							į	0	0	2	0	_	_	_	_							0	2]
House Tree	[0 0 [1 0	0 4	0 32	١ _	2 1 0 (0	0 3	٠.	_	_	_	0 18 0	59 0-1	1] 22]]	[0	0		0 10	0	0	0	0	2 4	0 1	0 0	1 0	3 (0	0 16 0		0] 47]]

base model (Acc: 0.9090)

Custom channel 128 (Acc: 0.9701) DO(0.25)+BN

- Confusion matrix
- Compare two best model.
- Not much different, but the right model is a little better.

Actual class

Actual class

Zero [[369 0 5 1 3 0 1 4 0 1 0 0 1 0 0 0]	
One [1 347 0 0 4 1 1 0 0 7 2 0 0 1 0 0]	
Two [8 0369 2 0 0 0 0 1 0 0 0 2 2 0 0]	
Three [1 0 2 356 0 1 1 2 6 0 0 0 0 0 8]	
Fore [2 2 1 1 359 2 0 0 0 0 0 0 1 0 0 0]	
Five [0 6 0 3 4386 0 2 1 3 0 1 2 0 0 0]	
Six [0 0 0 3 1 0 366 1 2 0 1 0 0 0 0 0]	
Seven [3 0 0 0 1 0 2367 0 0 3 0 0 0 0 0]	
Eight [1 0 1 2 1 0 0 0367 0 2 0 1 0 0 1]	
Nine [0 6 0 0 0 3 0 0 0364 3 1 0 0 0 0]	
Bed [1 0 2 0 0 0 0 0 6 0,166, 5 2 1 0 0]	
Bird [0 1 1 1 0 0 2 0 0 2 7 1 3 7 0 2 0 0]	
Cat [0 0 0 0 0 0 0 1 0 0 1 0 161 4 1 0]	
Dog [0 1 5 0 0 0 0 0 1 1 0 2 182 0 0]	
House [0 0 2 0 0 1 1 0 0 1 0 0 5 1156 0]	
Tree [2 0 2 15 0 0 1 0 4 1 0 0 0 0 138]]	

```
[[375 0 3 0 2 0 0 3 0 1 0 0 0 0 0 1]
[ 0 348 0 0 4 1 0 1 1 6 1 0 0 0 1 1]
[ 1 0 375 2 1 0 0 0 0 0 0 0 0 0 2 1 2]
[ 1 0 5 356 0 0 2 3 1 0 1 0 0 0 0 8]
[ 0 0 0 0 364 1 0 0 0 0 0 1 1 0 0 0 1]
[ 0 0 0 0 5 399 0 0 1 2 0 0 1 0 0 0 0]
[ 0 0 0 1 0 0 371 1 0 0 1 0 0 0 0 0]
[ 1 0 0 0 0 0 1 373 1 0 0 0 0 0 0 0]
[ 1 0 0 4 2 0 0 0 0 362 4 0 2 1 0 0 1]
[ 0 0 4 2 0 0 0 362 4 0 2 1 0 0 1]
[ 0 0 0 1 0 0 0 1 0 1 0 178 1 0 0 0 1]
[ 0 0 0 1 0 0 0 1 0 1 0 178 1 0 0 0 1]
[ 0 0 0 0 0 0 0 0 0 0 0 1 1 0 186 0 2]
[ 0 0 0 1 10 0 0 0 0 0 0 0 1 3 0 161 0]
[ 0 0 1 10 0 0 0 0 0 0 0 0 1 3 0 161 0]
```

Custom channel 32 (Acc: 0.9533) DO(0.75)

Custom channel 128 (Acc: 0.9701) DO(0.25)+BN

- Visualize the filter map. (Custom channel 32 DO(0.75) Model)
- Of course, Small number of parameters is easy to analyze
- There was a shape to know, but most of the shape was hard to understand.
- Next time, I will prepare the feature map and analyze it more detail.

First layer's filter

Second layer's filter

Any Question?

Thank you

