2021年11月3日

近世代数

吴天阳 2204210460

习题 1.5

2. 设 $G = \langle a \rangle$ 是 6 阶循环群, 把 G 分解成它的两个非平凡子群的内直积。

解答. 由 Lagrange 定理 知,子群的阶一定是群的阶的因数,且 $|G| = 6 = 1 \cdot 6 = 2 \cdot 3$,所以 G 只能分解为两个阶分别为 2,3 的非平凡子群。

又由于 $\langle a^3 \rangle = \{e, a^3\}, \langle a^2 \rangle = \{e, a^2, a^4\}, \ \mathbb{A} \langle a^3 \rangle \cap \langle a^2 \rangle = \{e\}, G = \langle a^3 \rangle \langle a^2 \rangle, \$ 由循环群的性质知,G 是 Abel 群,群中元素两两可交换,则

$$G = \langle a^2 \rangle \times \langle a^3 \rangle$$

5. 设 $G \neq p^m$ 阶循环群,其中 p 为素数,m 为正整数,证明: G 不能分解成它的一些非平凡子群的内直和。

证明. 若 G 能分解成它的一些非平凡子群的内直和,则

$$G = H_1 \oplus H_2 \oplus \cdots \oplus H_n = H_1 \oplus K, \ (K = H_2 \oplus \cdots \oplus H_n)$$

所以 G 至少能被分解为它的两个非平凡子群的内直和。

反设 G 可以分解为它的两个非平凡子群的内直和,由于 $p^m=p^n\cdot p^{m-n}$,由循环群子群的性质,设 $G=\langle a\rangle$,令

$$G = \langle a^{p^n} \rangle \times \langle a^{p^{m-n}} \rangle, \ (n = 1, 2, \dots m - 1)$$

不妨令 n < m - n,则 $a^{p^n} \in \langle a^{p^{m-n}} \rangle$,与 $\langle a^{p^n} \rangle \cap \langle a^{p^{m-n}} \rangle = \{e\}$ 矛盾。

故 G 不能分解为它的两个非平凡子群的内直和,由上述讨论知,G 更不能分解为它的一些非平凡子群的内直和。

8. 证明: $U_1 \cong SO_2$ 。

证明. 设 $z \in U_1$,由 U_1 的定义知, $\bar{z} \cdot z = 1$,则 z 在复平面的单位圆上,由 Euler 公式 知

$$U_1 = \{e^{i\theta} : \theta \in [0, 2\pi)\}$$

由于 2 阶特殊正交阵都可以写成

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

所以

$$SO_2 = \left\{ \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} : \theta \in [0, 2\pi) \right\}$$

构造 U_1 到 SO_2 上的映射:

$$\sigma: U_1 \to SO_2$$

$$e^{i\theta} \mapsto \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

下证 σ 保运算

$$\sigma(e^{i\theta_1})\sigma(e^{i\theta_2}) = \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 \\ \sin\theta_1 & \cos\theta_1 \end{bmatrix} \begin{bmatrix} \cos\theta_2 & -\sin\theta_2 \\ \sin\theta_2 & \cos\theta_2 \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{bmatrix}$$
$$= \sigma(e^{i(\theta_1 + \theta_2)})$$
$$= \sigma(e^{i\theta_1} \cdot e^{i\theta_2})$$

由 σ 的定义看出, σ 是满同态, 所以 $\text{Im}\sigma = SO_2$, $\text{Ker}\sigma = \{1\}$.

由群同态基本定理,知

$$U_1 \cong U_1/\{1\} \cong SO_2$$

习题 1.6

1. 设 f 是实数加法群 (\mathbb{R} , +) 到非零复数乘法群 \mathbb{C}^* 的一个映射:

$$f(x) = e^{2\pi ix}$$

(1). 证明: f 是一个同态。

(2). 求 Kerf 和 Imf。

解答.

(1). $\forall x, y \in \mathbb{R}$,有

$$f(x) \cdot f(y) = e^{2\pi ix} \cdot e^{2\pi iy} = e^{2\pi i(x+y)} = f(x+y)$$

则 f 是一个 $(\mathbb{R},+) \to (\mathbb{C}^*,\cdot)$ 上的同态。

(2). \mathbb{C}^* 中的幺元为 1,由 Euler 公式知: $e^{2\pi ix} = \cos(2\pi x) + i \cdot \sin(2\pi x)$,则

$$1 = \cos(2\pi x) + i \cdot \sin(2\pi x)$$

$$\Rightarrow \begin{cases} \cos(2\pi x) = 1 \\ \sin(2\pi x) = 0 \end{cases} \Rightarrow x \in \mathbb{Z}$$

则 $\operatorname{Ker} f = \mathbb{Z}_{\circ}$

由 Euler 公式知, $e^{2\pi ix} = cos(2\pi x) + i \cdot \sin(2\pi x)$ 的周期为 1,故 Imf 为复平面上的单位元,Im $f = \{\cos(2\pi x) + i \cdot \sin(2\pi x) : 0 \le x < 1\}$ 。

- 5. 设 F 是一个域, σ 是 $GL_n(F)$ 到 F^* 的行列式映射, 即 $\sigma(A) = |A|$ 。
 - (1). 证明: σ 是 $GL_n(F)$ 到 F^* 的一个群同态;
 - (2). 求 $\operatorname{Ker}\sigma$ 和 $\operatorname{Im}\sigma$;
 - (3). 证明: $SL_n(F) \triangleleft GL_n(F)$;
 - (4). 证明: $GL_n(F)/SL_n(F) \cong F^*$ 。

解答.

(1). $\forall A, B \in \mathrm{GL}_n(F)$,有

$$\sigma(A)\sigma(B) = |A| \cdot |B| = |AB| = \sigma(AB)$$

则 σ 是一个同态。

(2). |A| = 1,则 $\{A \in GL_n(F) : |A| = 1\} = SL_n(F)$,则 $Ker \sigma = SL_n(F)$ 。 对 $\forall a \in F^*$,则

$$\sigma\left(\begin{bmatrix} a & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix}\right) = \begin{vmatrix} \begin{bmatrix} a & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix} \end{vmatrix} = a$$

则 $\text{Im}\sigma = F^*$ 。

- (3). 由 (2) 和**群同态基本定理**知: $SL_n(F) = Ker \sigma \triangleleft GL_n(F)$ 。
- (4). 由 (2) 和**群同态基本定理**知: $GL_n(F)/SL_n(F) \cong F^*$ 。
- **10.** 设 G 是一个群, $N \triangleleft G$,H < G,如果 G = NH,且 $N \cap H = \{e\}$,那么称 G 可分解成它的正规子群 N 与子群 H 的**半直积**,记做 $G = N \rtimes H$,证明:如果 $G = N \rtimes H$,那么

$$G/H \cong H$$

证明. 由于 $N \triangleleft G$ 且 $H \triangleleft G$, 由第一群同构定理知:

$$H/H \cap N \cong HN/N \Rightarrow H/\{e\} \cong G/N$$

下证 $H \cong H/\{e\}$ 。

 $H/\{e\} = \{h\{e\}: h \in H\} = \{\{h\}: h \in H\}$, 构造映射:

$$\sigma: H/\{e\} \to H$$

$$\{h\} \mapsto h$$

由于

$$\sigma(\{h_1\}) = \sigma(\{h_2\}) \iff h_1 = h_2 \iff \{h_1\} = \{h_2\}$$

则 σ 是单射,从 σ 定义看出它是满射,所以 σ 是双射,又由于

$$\sigma(\{h_1\})\sigma(\{h_2\}) = h_1h_2 = \sigma(\{h_1h_2\}) = \sigma(\{h_1\}\{h_2\})$$

则 $\sigma \in H/\{e\}$ 到 H 的群同构映射,所以

$$H \cong H/\{e\} \cong G/N$$

11. 证明: S_n 可分解成 A_n 与 $\langle (12) \rangle$ 的半直积, 其中 $n \geq 3$ 。

证明. 由于 $A_n \triangleleft S_n, \langle (12) \rangle < S_n, A_n \cap \langle (12) \rangle = \{(1)\}, 且$

$$A_n \langle (12) \rangle = A_n \sqcup A_n(12)$$

 $A_n(12)$ 表示 S_n 中的所有奇置换组成的集合,由于 S_n 中的置换要么是偶置换要么是奇置换,所以 $S_n \subset A_n \langle (12) \rangle$,又因为 $A_n \langle (12) \rangle < S_n$,所以 $S_n = A_n \langle (12) \rangle$,由半直积定义知

$$S_n = A_n \rtimes \langle (12) \rangle$$

12. 证明:如果置换群 G 含有奇置换,那么 G 必有指数为 2 的子群。

证明. 由于 G 可能为无限群,所以不能直接使用 11 题结论,模仿**例**一,构造 G 到 $\{-1,1\}$ 对于复数乘法构成的群上的一个映射:

$$\sigma: G \to \{-1, 1\}$$
 奇置换 $\mapsto -1$ 偶置换 $\mapsto 1$

由**例一**知, σ 是 G 到 $\{-1,1\}$ 上的满同态,且 $\mathrm{Ker}\sigma=\{\mathbb{A}\}=A$ 由**群同态基本定理**知

$$G/A \cong \{-1,1\}$$

所以, $|G/A| = [G:A] = |\{-1,1\}| = 2$,G上的所有偶置换构成的集合指数为 2。 \square

习题 1.7

1. 分别求 D_3 , D_4 的换位子群。

解答.

 $D_3 = \{I, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau\}, |D_3| = 6, 其非平凡子群的阶数只能为 2,3。$

设 $H = \{I, \sigma, \sigma^2\} = \langle \sigma \rangle$,则 $\forall \tau \in D_3$,有 $\tau \sigma \tau^{-1} = \sigma^{-1} = \sigma^2 \in H$,则 $H \triangleleft D_3$,且 $|D_3/H| = |D_3|/|H| = 6/3 = 2$,则 $D_3/H \cong \mathbb{Z}_2$ 为 Abel 群,于是 $D_3' \subset H$,又由于 $|H| = 3 = 1 \cdot 3$,则 H 没有非平凡正规子群,故 $D_3' = H$ 。

 $D_4 = \{ I, \sigma, \sigma^2, \sigma^3, \tau, \sigma\tau, \sigma^2\tau, \sigma^3\tau \} = \langle \sigma \rangle, |D_4| = 8, 其非平凡子群的阶数只能为 2, 4。$ 设 $H = \{ I, \sigma, \sigma^2, \sigma^3 \}, 则 \forall \tau \in D_4, 有 \tau\sigma\tau^{-1} = \sigma^{-1} = \sigma^3, 则 H \triangleleft D_4, 且 |D_4/H| = |D_4|/|H| = 8/4 = 2, 则 <math>D_4/H \cong \mathbb{Z}_2$ 为 Abel 群,于是 $D_4' \subset H$ 。

又由于 $|H|=4=2\cdot 2$,则 H 的非平凡子群的阶数只能为 2,设 $N=\{I,\sigma^2\}=\langle 2\rangle$,则 N 是 H 的唯一的非平凡子群,由于

$$\sigma\sigma^2\sigma^{-1} = \sigma^3\sigma^2\sigma^{-3} = \sigma^2 \in N$$
$$\tau\sigma^2\tau^{-1} = \sigma^{-2} = \sigma^2 \in N$$

则 $N \triangleleft D_4$,且 $|D_4/H| = |D_4|/|H| = 8/2 = 4$,由于 4 阶群只能为 Abel 群,故 D_4/H 为 Abel 群,又由于 N 是 D_4 中最小的正规子群,所以 $D_4' = N$ 。

3. 求 S_n 的换位子群,其中 $n \ge 3$ 。

解答.

由于 $A_n \triangleleft S_n$,且 $|S_n/A_n| = |S_n|/|A_n| = 2$,则 $S_n/A_n \cong \mathbb{Z}_2$ 为 Abel 群,则 $S'_n \subset A_n$,由于 A_n 中的元素可以由 3 — 轮换 生成,设 $(ijk) \in A_n$,则

$$(ijk) = (ikj)^{-1} = (ikj)^2 = ((ij)(ik))^2 = (ij)(ik)(ij)(ik) = (ij)(ik)(ij)^{-1}(ik)^{-1} \subset S'_n$$

则 $A_n \subset S'_n$,综上 $S'_n = A_n$ 。

5. S_4 是不是可解群?

解答. S_4 是可解群。

因为
$$S_4' = A_4, S_4'' = V_4, S_4^{(3)} = \{(1)\}$$
,所以 S_4 是可解群。

6. $n \ge 5$ 时, S_n 是不可解群么?

解答. 是的。

因为 $S'_n = A_n$,下面证明,当 $n \ge 5$ 时, $A'_n = A_n$ 。

由于 $A'_n \triangleleft A_n$,只需证明 $A_n \subset A'_n$,由于 A_n 可以由 3- 轮换 生成,所以只需证明 3- 轮换 都属于 A'_n 。

设 $(a_1a_2a_3) \in A_n$,则

$$(a_1 a_2 a_3) = (a_1 a_4 a_3)(a_1 a_2 a_4) = (a_1 a_4 a_3)(a_1 a_4 a_2)^{-1} = (a_1 a_4 a_3)(a_2 a_1 a_4)^{-1}$$
$$= (a_5 a_2 a_1 a_4 a_3)(a_2 a_1 a_4)(a_5 a_2 a_1 a_4 a_3)^{-1}(a_2 a_1 a_4)^{-1} \in A'_n$$

所以 $A'_n = A_n$, 则 $S_n^{(m)} = A_n$ $(m \in \mathbb{Z}_{\geq 1})$, 故 $n \geq 5$ 时, S_n 是不可解群。