C. An Easy Problem

Score: 1

CPU: 2.5s

Memory: 512MB

A tree is a connected acyclic graph. A simple path on a tree is a path that doesn't visit any vertex more than once.

You're given a tree which has a decimal digit written on each of its edges. Lets call a simple path on this tree from $\bf u$ to $\bf v$ good if $\bf u < \bf v$ and the digits written on it can be **rearranged** to form a palindrome. For example, if the digits written on the path are 1, 1 and 0, then they can be rearranged as 101 which is a palindrome.

You have to count the number of good paths in this tree.

Input

Input starts with an integer t ($1 \le t \le 200$), denoting the number of test cases. Each case begins with an integer $n \le 10^5$) representing the number of nodes in tree. Next n-1 lines will each contain three integers $n \le 10^5$ 0, which means there is an edge between $n \le 10^5$ 1 and $n \le 10^5$ 2. Which has the digit $n \le 10^5$ 3 written on it.

Summation of **n** over all testcases doesn't exceed **10**⁶.

Output

For each test case print the number of good paths in a single line. See the sample output for details.

Sample

Input	Output	
2	5	
4	16	
1 2 0		
2 3 0		
3 4 1		
7		
1 2 9		
1 3 1		
1 4 9		
1 5 0		
3 6 1		
2 7 9		