Permit Number 5144A

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission Rates	
			lbs/hour	TPY (4)
1	Amine Regenerator Heater	СО	2.81	12.31
		NO _x	3.34	14.65
		PM	0.25	1.11
		PM ₁₀	0.25	1.11
		PM _{2.5}	0.25	1.11
		SO ₂	0.02	0.09
		VOC	0.18	0.81
ЗА	Glycol Regenerator Heater No. 1	СО	0.14	0.63
		NO _x	0.17	0.75
		PM	0.01	0.06
		PM ₁₀	0.01	0.06
		PM _{2.5}	0.01	0.06
		SO ₂	0.01	0.01
		VOC	0.01	0.04
4	Boiler	СО	1.03	4.53
		NO _x	1.23	5.39
		PM	0.09	0.41
		PM ₁₀	0.09	0.41
		PM _{2.5}	0.09	0.41
		SO ₂	0.01	0.03
		VOC	0.07	0.30

5	Tail Gas Incinerator	СО	1.60	5.83
		H ₂ S	0.62	0.59
		NO _x	1.90	6.94
		PM	0.15	0.53
		PM ₁₀	0.15	0.53
		PM _{2.5}	0.15	0.53
		SO ₂	1164.11	1116.03
		VOC	0.08	0.34
6	Flare	СО	0.21	0.91
		H ₂ S	0.01	0.01
		NO _x	0.02	0.11
		SO ₂	0.01	0.01
		VOC	0.01	0.03
7A	Waukesha L7042G	СО	6.60	28.89
	748-Horsepower Generator No. 1	NO _x	3.30	14.45
		PM	0.11	0.48
		PM ₁₀	0.11	0.48
		PM _{2.5}	0.11	0.48
		SO ₂	0.01	0.01
		VOC	0.28	1.23
		HAPs (6)	0.03	0.14
7B	Waukesha L7042G 748-Horsepower	СО	6.60	28.89
	Generator No. 2	NO _x	3.30	14.45

		PM	0.11	0.48
		PM ₁₀	0.11	0.48
		PM _{2.5}	0.11	0.48
		SO ₂	0.01	0.01
		VOC	0.28	1.23
		HAPs (6)	0.03	0.14
7C	Waukesha L5790G	СО	5.41	23.68
	613-Horsepower Generator No. 3	NO _x	2.70	11.84
		PM	0.09	0.39
		PM ₁₀	0.09	0.39
		PM _{2.5}	0.09	0.39
		SO ₂	0.01	0.01
		VOC	0.23	1.01
		HAPs (6)	0.03	0.12
9A	Glycol Regeneration Heater No. 2	СО	0.08	0.36
		NO _x	0.10	0.43
		PM	0.01	0.03
		PM ₁₀	0.01	0.03
		PM _{2.5}	0.01	0.03
		SO ₂	0.01	0.01
		VOC	0.01	0.02
32	Waukesha F1197G 162-Horsepower	СО	5.00	21.90
	Gas Compressor	NO _x	5.00	21.90
		PM	0.02	0.10
		PM ₁₀	0.02	0.10

		PM _{2.5}	0.02	0.10
		SO ₂	0.01	0.01
		VOC	0.13	0.55
		HAPs (6)	0.02	0.08
33	Ajax DPC-230	СО	1.22	5.33
	230-Horsepower Gas Compressor	NO _x	2.23	9.77
		PM	0.10	0.42
		PM ₁₀	0.10	0.42
		PM _{2.5}	0.10	0.42
		SO ₂	0.01	0.01
		VOC	0.91	4.00
		HAPs (6)	0.15	0.67
34	Ajax DPC-360 360-Horsepower	СО	1.11	4.87
	Gas Compressor	NO _x	5.00	21.90
		PM	0.15	0.64
		PM ₁₀	0.15	0.64
		PM _{2.5}	0.15	0.64
		SO ₂	0.01	0.01
		VOC	1.67	7.30
		HAPs (6)	0.24	1.04
35	Waukesha L7042G	СО	6.60	28.89
	748-Horsepower Gas Compressor	NO _x	3.30	14.45
	·	PM	0.11	0.48
		PM ₁₀	0.11	0.48
		PM _{2.5}	0.11	0.48
		SO ₂	0.01	0.01

		VOC	0.28	1.23
		HAPs (6)	0.03	0.14
36	Caterpillar G3516LE	СО	8.86	38.82
	1,340-Horsepower Gas Compressor	NO _x	5.91	25.88
		PM	0.11	0.47
		PM ₁₀	0.11	0.47
		PM _{2.5}	0.11	0.47
		SO ₂	0.01	0.03
		VOC	1.54	6.73
		HAPs (6)	0.77	3.36
V-21	Amine Tank	VOC	0.01	0.01
V-27	Slop Oil Tank	VOC	0.01	0.01
S-PIT	Solution Pit	VOC	0.01	0.01
8	Process Fugitives (5)	H ₂ S	0.01	0.01
		VOC	0.20	0.86
TURB1	Microturbines Set 1	СО	1.20	5.27
		NO _x	0.46	1.99
		PM	0.08	0.33
		PM ₁₀	0.08	0.33
		PM _{2.5}	0.08	0.33
		SO ₂	0.01	0.02
		VOC	0.11	0.48
TURB3	Microturbines Set 3	СО	1.20	5.27

		NO _x	0.46	1.99
		PM	0.08	0.33
		PM ₁₀	0.08	0.33
		PM _{2.5}	0.08	0.33
		SO ₂	0.01	0.02
		VOC	0.11	0.48
V-30	Produced Water Tank	H ₂ S	0.13	0.12
		VOC	0.02	0.09
L-1	Slop Oil Truck Loading	VOC	0.01	0.01
L-2	Produced Water Truck Loading	H ₂ S	0.04	0.01
		VOC	0.01	0.01

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) CO carbon monoxide

HAP - hazardous air pollutants

H₂S - hydrogen sulfide

NO_x - total oxides of nitrogen

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as

represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5},

as represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

SO₂ - sulfur dioxide

VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

- (4) Compliance with annual emission limits (tons per year) is based on a 12-month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) HAP emission rates are included in the VOC emission rates.

Permit Number 5144A Page 7			
	Emission Sources - Maximum Allowable Emission	on Rates	
		Date:	November 16, 2015