Private Data Aggregation on a Budget

Morten Dahl Snips Valerio Pastro Yale University

Mathieu Poumeyrol
Snips

Context

Snips

Machine learning SDK for mobile devices and IoT

Private by Design

Algorithms run locally

Rich local data sets

Context awareness etc.

Learning from Distributed Data Sets

Aggregation of Distributed Data Sets

analytics

discovery

$$x = \sum x_i$$

$$dim(x_i) \ge 10k$$

Constraints

no individual user data

limited computation

limited connectivity

sporadic behaviour

minimise device processing

minimise session count + length

minimise coordination

Solutions

sensor networks

local DP

server-aided MPC

high performance

high performance

flexible

coordination

signal-to-noise

no one to play with

address problem of only one powerful server

Community

Packed Secret Sharing

Result

lightweight MPC protocol for linear functions, tailored for large-scale high-dimension aggregation

Users	Clerks	Server	DP		
single message	easy setup	most of the work	one extra round		
passive security	work distribution	output only	passive security		
	level of resilience				

some active security

Implementation and Experimentation

Rust

Secret sharing

Encryption

Laptops

Additive

NaCl/Sodium

iPhone/Android

Packed Shamir

Paillier (packed)

Raspberry Pi

(web)

	clerks	threshold	packing	
small	26	5	10	
medium	80	16	47	
large	728	145	366	

Communication

dimension 100

non-homomorphic

Analytics

download	small	medium	large
25 000	977KB		
80 000		938KB	
250 000			977KB

Averages

Computation

dimension 35k

homomorphic

unlimited users

decrypt	small	medium	large		
RP	21.6s	4.6s	0.6s		
iPhone	6.2s	1.3s	0.2s		
MBP	0.9s	0.2s	0.03s		

share	small	medium	large		
RP	0.3s	0.2s	0.2s		
iPhone	0.3s	0.3s	0.3s		
MBP	0.06s	0.03s	0.03s		

Discover Popular Places

Approximating

dimension 160k (20k)

mix with tools from big data

Min-Count Sketch

$$h_i(x) \mapsto [1, w]$$

$h_1(x)$		+1					
$h_2(x)$			+1				
$h_3(x)$	+1						
$h_4(x)$						+1	
$h_5(x)$				+1			

Approximated Popular Places

Busy Hours

Several Rounds

approximate top 1,000 places (dimension 80k/10k)

time and duration for these (dimension 1,000 * 12 * 4)

Learn from distributed data sets (on mobile phones)

MPC for single company

Community of volunteers

Outsource and distribute work load

Thank you!

https://github.com/snipsco/sda

https://github.com/snipsco/rust-paillier

https://github.com/snipsco/rust-threshold-secret-sharing

https://project.inria.fr/pamela/