Investigación - SAI

Ismael Macareno Chouikh

2024-10-10

${\bf \acute{I}ndice}$

.1. Investiga
.3. Datos matemáticos
Realización de la práctica
2.1. Cálculos de potencia
2.2. Autonomía del SAI
2.3. Tipo de SAI escogido
2.4. Precio/valor de compra del SAI
2.5. Tipo de empresa donde se va a implementar
Referencias / Compras

1. Instrucciones

Investiga sobre que SAI implementarías en una empresa que dispone de los siguientes equipos:

- 20 ordenadores de sobremesa con sus respectivos monitores
- 1 switch
- 1 router
- 1 servidor

1.1. Investiga

- Que **potencia** debería tener el SAI
- **Tiempo** que necesitas tener los equipos en funcionamiento y en base a ese tiempo buscar un SAI. Justificar por qué ese tiempo y no más o menos
- Autonomía del SAI
- **Tipo de SAI** (offline u online), en caso de ser offline definir si es interactivo o pasivo.
- Precio/valor de compra del SAI
- Tipo de empresa donde se va a implementar (PYME, Multinacional, etc.)

1.2. Importante

- No olvidar hacer los cálculos en el documento, indicando los vatios (W) consumidos por cada componente
- Especificar los voltiamperios (VA) del SAI. Tened en cuenta que cuando no hay luz en el propio SAI también tiene asociado un consumo de energía.

1.3. Datos matemáticos

El tiempo de autonomía de los SAI se van a calcular con esta fórmula:

Tiempo en minutos de duración de un SAI/UPS = ((N x V x AH x Eff) / VA) x 60

- N: número de baterías en el SAI
- V: voltaje de las baterías
- AH: Amperios-Hora de las baterías
- Eff: eficiencia del SAI (por norma, suele oscilar entre el 90 % y el 98 % dependiendo del SAI)
- VA: Volti-Amperios del SAI

2. Realización de la práctica

2.1. Cálculos de potencia

- 20 ordenadores 300W x unidad = 6000W total
- 20 monitores 31W x unidad = 620W total
- 1 switch 384W x unidad = 384W total

- 1 router 80W x unidad = 80W total
- 1 servidor 450W + 450W + 700W + 700W = 2300W total

Total (70%) = 9384W

30% de margen = 2815,2W

Total = 12.199,2W

Total potencia aparente = 15.249 VA

2.2. Autonomía del SAI

Los PCs necesito que estén trabajando máximo 8 horas que sería la jornada laboral de los empleados. En cambio el *switch*, router y servidor necesito que estén trabajando todo el rato sin parar.

El SAI que he escogido tiene un factor de eficiencia de 0,9.

$$VA = w / f.d.p > VA = 12.199,2 / 0,9 = 13.554,66VA$$

40 baterías (N) * 12V * 9AH. Eficiencia

Tiempo de autonomía = (40*12*9*0.9) / 20000 = 0.1944 > 0.1944 * 60 = 11.664 minutos al 100 %. Al 50 % de carga sería el doble, 23,328, y al 52,13 % (10.426.67VA necesarios sobre los 20.000VA totales del SAI) sería 22,37

Autonomía actual: 22 minutos

2.3. Tipo de SAI escogido

En mi caso he escogido un SAI online ya que no he encontrado un SAI offline que me proporcione la cantidad de VA que necesito.

2.4. Precio/valor de compra del SAI

El precio del SAI es de 4.097€ y se puede comprar en este link

2.5. Tipo de empresa donde se va a implementar

En este caso he decidido hacer todo pensando en la implantación en una gran empresa más que nada por el presupuesto.

3. Referencias / Compras

- PCs
 - Fuente de alimentación de 300W (80 plus platinum)
- Monitores
 - Consumo encencido de 31W
 - Consumo de energía típico 160 vatios
 - Consumo apagado de 0.3 vatios
- Switch
 - Potencia PoE total de 384W

Router

• Consumo medio de 80W

Servidor

- $\bullet\,$ Fuente de alimentación de 450W Bronze 100-240V
- $\bullet\,$ Fuente de alimentación de 450W Platinum 100-240V
- Fuente de alimentación de 700W Titanium 100-240V
- Fuente de alimentación de 700W Titanium 100-240V