

مشروع مادة بنية الحاسب المتقدمة

معالج 8 بت

إعداد الطلاب:

عبد الحميد سيد عبد الكريم المكتبي محمد حمزة مشهدي محمد يمان قلعه جي

> تحت إشراف: م.تولاي شاهين

مقدمة عن المشروع:

يهدف المشروع إلى تصميم معالج ذو بنية 8 بت حقيقي وذو خطوط عنونة ومعطيات 8 بت. بنية المعالج هي خليط من CISC و RISC . يتألف المعالج من الأجزاء الرئيسية التالية:

- 1– وحدة الحساب والمنطق Arithmetic and Logic Unit) ALU).
 - -2 وحدة التحكم Control Unit) CU).
 - **3**− مسجلات عدد (9):
 - **Program counter Register (PC)**
 - **Instruction Register (IR)**
 - **Accumulator Register (AC)**
 - **Temporary Register (TEMP)**
 - Common Registers (AX & BX & CX & DX)
 - Flags Register (FLAGS)
- 4– ذاكرة RAM للتخزين العشوائي و ذاكرة ROM للقراءة فقط.
- 5– وحدات ملائمة Memory Data Register (MDR) و Memory Data Register (MDR) . .
 - 6- مولد نبضات ساعة (دارة 555).

التعليمات التى ينفذها المعالج:

ينفذ المعالج 26 تعليمة عبر 16 Opcode أساسي:

التعليمة	عمل التعليمة
MOV R,R	نقل محتوی مسجل عام إلى مسجل عام آخر
MOV Acc,R	نقل محتوى مسجل عام إلى المراكم
MOV R,Acc	نقل محتوى المراكم إلى مسجل عام
MOV Acc,Immediate	نقل قيمة عددية مباشرة إلى المراكم
MOV Acc,[Memory] MOV [Memory], Acc	نقل محتوى حجرة ذاكرية إلى المراكم نقل محتوى المراكم إلى حجرة ذاكرية
ADD Acc,R	جمع محتوى مسجل عام إلى المراكم
SUB Acc,R	طرح محتوى مسجل عام من المراكم
ADC Acc,R	جمع محتوى مسجل عام إلى المراكم مع الحمل
AND Acc,R	تطبيق عملية AND المنطقية بين مسجل عام و المراكم و وضعها في المراكم
OR Acc,R	تطبيق عملية OR المنطقية بين مسجل عام و المراكم و وضعها في المراكم

NOT	تطبيق عملية NOT المنطقية على المراكم
XOR Acc,R	تطبيق عملية XOR المنطقية بين مسجل عام و المراكم و وضعها في المراكم
STC	تغییر قیمة Carry Flag إلى واحد منطقي
CLC	تغيير قيمة Carry Flag إلى صفر منطقي
STZ	تغيير قيمة Zero Flag إلى واحد منطقي
CLZ	تغيير قيمة Zero Flag إلى صفر منطقي
JMP [Memory]	القفز إلى حجرة تعليمة في الذاكرة
JS [Memory]	القفز إلى حجرة تعليمة في الذاكرة في حال كان العدد الناتج سالب
JNS [Memory]	القفز إلى حجرة تعليمة في الذاكرة في حال كان العدد الناتج موجب
JZ [Memory]	القفز إلى حجرة تعليمة في الذاكرة في حال كان العدد الناتج يساوى الصفر
JNZ [Memory]	القفز إلى حجرة تعليمة في الذاكرة في حال كان العدد الناتج لا يساوى الصفر
JC [Memory]	القفز إلى حجرة تعليمة في الذاكرة في حال وجود حمل
JNC [Memory]	القفز إلى حجرة تعليمة في الذاكرة في حال عدم وجود حمل
CALL [Memory] RET	استدعاء تابع فرعي في الذاكرة العودة إلى مكان الاستدعاء المحفوظ في الحجرة FB

آلية العمل:

يقوم المعالج بجلب وتنفيذ التعليمة عبر 12 نبضة على الأكثر، حيث تكون النبضات الثلاث الأولى مخصصة لجلب وفك تشفير التعليمة :

T0: PC-RD, MAR-WR

T1: Memory-OE, MDR-EX.WR, PC-Inc

T2: MDR-RD, IR-WR

والنبضة الأخيرة تكون دائماً نبضة Reset .

توصيف التعليمات:

Opcode0 : Mov R ,R T3: R-RD , R-WR

T4: Reset

Opcode1: Mov Acc, R

T3: R-RD, Acc-WR

T4: Reset

Opcode2: Mov R, Acc

T3: Acc-RD, R-WR

T4: Reset

Opcode3: Mov Acc, Immediate

T3: PC-RD, MAR-WR

T4: (Memory-OE), MDR-EX.WR, PC-Inc

T5: MDR-RD, Acc-WR

T6: Reset

Opcode4:

1- Mov Acc, [Memory]

T3: PC-RD, MAR-WR

T4: (Memory-OE), MDR-EX.WR, PC-Inc

T5: MDR-RD, MAR-WR

T6: (Memory-OE), MDR-EX.WR

T7: MDR-RD, Acc-WR

T8: Reset

2- Mov [Memory], Acc

T3: PC-RD, MAR-WR

T4: (Memory-OE), MDR-EX.WR, PC-Inc

T5: MDR-RD, MAR-WR

T6: Acc-RD, MDR-WR

T7: MDR-EX.RD , (Memory-WR)

T8: Reset

Opcode5: ADD Acc, R

T3: R-RD, Temp-WR

T4: AlU-ADD, WR-Flags

T5: (Latch-OE), ACC WR

T6: Reset

Opcode6: SUB Acc, R

T3: R-RD, Temp-WR

T4: Alu-SUB, WR-Flags

T5: (Latch -OE), ACC WR

T6: Reset

Opcode7: ADC Acc, R

T3: R-RD, Temp-WR

T4: AIU-ADC, WR-Flags

T5: (Latch -OE), ACC WR

T6: Reset

Opcode8: AND Acc, R

T3: R-RD, Temp-WR

T4: AIU-AND , WR-Flags

T5: (Latch -OE), ACC WR

T6: Reset

Opcode9: OR Acc, R

T3: R-RD, Temp-WR

T4: AIU-OR, WR-Flags

T5: (Latch -OE), ACC WR

T6: Reset

Opcode10: NOT

T3: AlU-NOT

T4: (Latch -OE), Acc-WR

T5: Reset

Opcode11: XOR Acc, R

T3: R-RD, Temp-WR

T4: AlU-XOR, WR-Flags

T5: (Latch -OE), ACC WR

T6: Reset

Opcode12:

1- STC

T3: STC, WR-Flags

T4: Reset

2- CLC

T3: CLC, WR-Flags

T4: Reset

3- STZ

T3: STZ, WR-Flags

T4: Reset

4- CLZ

T3: CLZ, WR-Flags

T4: Reset

Opcode13: JMP [Memory]

T3: PC-RD, MAR-WR

T4: (Memory-OE), MDR-EX.WR

T5: MDR-RD, PC-WR

T6: Reset

Opcode14 : JPX (CF,SF,ZF)

TRUE:

T3: Inc-PC

T4: Reset

FALSE:

T3: PC-RD, MAR-WR

T4: (Memory-OE), MDR-EX.WR

T5: MDR-RD, PC-WR

Opcode15:

1- CALL

T3: PC-RD, MAR-WR

T4: PC-Inc, (Memory-OE), MDR-EX.WR

T5: MDR-RD, MAR-WR

T6: PC-RD, MDR-WR

T7: MDR-EX.RD , (Memory-WR)

T8: PC-RD, MAR-WR

T9: Memory-OE, MDR-EX.WR

T10: MDR-RD, PC-WR

T11: Reset

2- RET

T3: PC-RD, MAR-WR

T4: (Memory-OE), MDR-EX.WR

T5: MDR RD, MAR WR

T6: (Memory-OE), MDR-EX.WR

T7: MDR-RD, PC-WR

T8: Reset, Inc-PC

المعادلات المنطقية:

PC-INC = T1 + T4 (Op4+ Op3+ Op15.IR0) + T3. Op14 JX + T5. Op15.IR1

T1	Х
T4	Op3
T4	Op4
Т3	Op14 <u>JX</u>
T4	Op15IR0
T5	Op15IR1

PC-RD = T0 + T3. (Op3 + Op4 + Op14 JX + Op13 + Op15) + T6.Op15 + T8.Op15

T0	X
Т3	Op3
Т3	Op4
Т3	Op13
Т3	Op14 JX
Т3	Op15IR0
T6	Op15
Т8	Op15
Т3	Op15IR1

PC-WR = T4. Op15.IR1+ T5. (Op13+ Op14) + T9.Op15

T4	Op15IR1
Т5	Op13
Т5	Op14
T9	Op15

MAR-WR = T0 + T3 (Op3 + Op4 + Op13 + Op14 JX + Op15) + T5 (Op4 + Op15IR0) + T8.Op15

ТО	X
Т3	Op3
Т3	Op4
Т3	Op13
Т3	Op14 JX
Т3	Op15IR0
Т3	Op15IR1
Т5	Op4
T5	Op15IR0
Т8	Op15

MDR-RD = T2 + T4.Op15IR1+ T5 (Op3 + Op4 + Op13 + Op15IR0+ Op14) + T7 Op4 IR0+ T9 Op15

X
Op15IR1
Op3
Op13
Op4
Op15IR0
Op14
Op4 IR0
Op15

MDR-WR = T6(Op4 IR1+Op15)

T6	Op4 IR1
Т6	Op15

MDR-EX.WR = MEM-OE = T1 + T4. (Op3+ Op4+ Op14 JX + Op13 + Op15) + T6. Op4 IR0 + T9.Op15

T1	X
T4	Op3
T4	Op15IR1
T4	Op4
T4	Op13
T4	Op14 JX
T4	Op15IR0
T6	Op4 IR0
Т9	Op15

MDR-EX.RD = T7. (Op4 IR1+ Op15)

T7	Op4 IR1
T7	Op15

MEM-OE = T1+ T4 (Op3 + Op15 IR1 + Op4 + Op13 + + Op14 JX + + Op15 IR0) + T6.Op4 IR0 + T9.Op15

T1	X
T4	Op3
T4	Op15IR1
T4	Op4
T4	Op13
T4	Op14 JX
T4	Op15IR0
T6	Op4 IR0
Т9	Op15
19	Op15

MEM-WR = T7 (Op4 IR1 + Op15)

T7	Op4 IR1
T7	Op15

IR-WR = T2

T2	

Rx-RD = T3 (Op0 + Op1 + Op5 + Op6 + Op7 + Op8 + Op9 + Op11)

Т3	Op0
Т3	Op1
Т3	Op5
Т3	Op6
Т3	Op7
Т3	Op8
Т3	Op9
Т3	Op11

Rx-WR = T3 (Op0 + Op2)

Т3	Op0
Т3	Op2

ACC-RD = T3.Op2+T6Op4 IR1

Т3	Op2
Т6	Op4 IR1

ACC-WR = T3.Op1+T4Op10 +T5(Op3+ Op5+ Op6+ Op7+ Op8+ Op9+ Op11)+T7. OpIR0

Т3	Op1
T4	Op10
Т5	Op3
T5	Op5
Т5	Op6
Т5	Op7
T5	Op8
Т5	Op9
T5	Op11
Т7	Op4 IR0

TEMP-WR = T3(Op5+Op6+ Op7+ Op8+ Op9+ Op11

Т3	Op5
Т3	Op6
Т3	Op7
Т3	Op8
Т3	Op9
Т3	Op11

BUF-OE = T5(Op5+Op6+ Op7+ Op8+ Op9+ Op11)+T4.Op10

Т5	Op5
T5	Op6
T5	Op7
T5	Op8
T5	Op9
T4	Op10
T5	Op11

RESET = T4(Op0+Op1+ Op2+ Op12IR0+ Op12IR1+ Op12IR2 + Op12IR3 + Op14
$$\overline{JX}$$
)
+ T5(Op10 + Op15IR1)
+ T6(Op3 + Op5 + Op6 + Op7 + Op8 + Op9 + Op11 + Op13 + Op14)
+ T8(Op4 IR0 + Op4 IR1)
+ T10 Op15

T10	Op15
T4	Op0
T4	Op1
T4	Op2
T4	Op12IR0
T4	Op12IR1
T4	Op12IR2
T4	Op12IR3
T4	Op14 JX
T5	Op10
T5	Op15IR1
T6	Op3
T6	Op5
T6	Op6
T6	Op7
Т6	Op8
Т6	Op9
Т6	Op11
T6	OP13
Т6	Op14
Т8	Op4 IR0
T8	Op4 IR1

FL-WR = T3 (Op10+ Op12IR0+ Op12IR1+ Op12IR2+ Op12IR3)+T4 (Op5 + Op6 + Op7 + Op8 + Op9 + Op11)

Т3	Op10
Т3	Op12IR0
Т3	Op12IR1
Т3	Op12IR2
Т3	Op12IR3
T4	Op5
T4	Op6
T4	Op7
T4	Op8
T4	Op9
T4	Op11