大连理工大学

院系: 级 班 课程名称: 线性代数__

A 卷 考试形式: 闭卷

授课院(系): 数学科学学院 考试日期: 2017年6月2日 试卷共6页

	1	1 1	111	四	五	六	乜	八	九	总分
标准分	30	10	8	10	8	10	12	6	6	100
得 分										

一、填空题(每小题3分,共30分)

1. 设
$$\alpha$$
, β 为三元列向量, $\alpha\beta^T = \begin{bmatrix} 1 & 2 & 3 \\ -1 & -2 & -3 \\ 2 & 4 & 6 \end{bmatrix}$,则 $\alpha^T\beta =$ _____

2. 设 $\alpha_1, \alpha_2, \alpha_3$ 都是三元列向量, $\mathbf{A} = (\alpha_1, \alpha_2, \alpha_3), \mathbf{B} = (\alpha_1, 2\alpha_3, \alpha_1 + \alpha_2),$ $|\boldsymbol{A}|=1$,则 $|\boldsymbol{B}|=$

3. 设方阵
$$A$$
 满足 $A^2 - A = 0$, 则 $(A - 2E)^{-1} =$

4. 设 $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 2 & 1 & 0 & 1 \\ 3 & 0 & 1 & 1 \\ 4 & 0 & 0 \end{bmatrix}$, $r(\mathbf{A}) = 3$, 则a 需满足______

5. 设 $\alpha_1, \alpha_2, \alpha_3$ 为Ax = 0的基础解系, $\beta_1 = \alpha_1 + k\alpha_2$, $\beta_2 = \alpha_2 + k\alpha_3$, $\beta_3 = \alpha_1 - \alpha_3$, 则 $\beta_1, \beta_2, \beta_3$ 也是 Ax = 0 的基础解系的条件是 k 满足

6.设A 为三阶方阵,r(A)=2, u_1,u_2,u_3 都是方程组Ax=b 的解, $u_1+u_2=(2,2,-2)^T$,

$$\boldsymbol{u}_2 + \boldsymbol{u}_3 = (2,0,0)^T$$
, $\emptyset A \boldsymbol{x} = \boldsymbol{b}$ 的通解为

7. 设
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & x \\ 0 & 1 & y \end{pmatrix}$$
与 $\mathbf{B} = \begin{pmatrix} 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & z \end{pmatrix}$ 相似,则 $x = \underline{\hspace{1cm}}, y = \underline{\hspace{1cm}}, z = \underline{\hspace{1cm}}$

8. 设
$$f(x_1, x_2, x_3) = kx_1^2 + kx_2^2 + kx_3^2 - (x_1 + x_2 + x_3)^2$$
为正定二次型,

则 k 需满足 ____

9. 设
$$A$$
 为三阶实对称阵, $r(A) = 2, |2E - A| = 0, tr(A) = 4$,

装

订

线

则A的相似标准形为

10. 设三阶方阵
$$\boldsymbol{A}$$
 既是正交阵又是正定阵,则 $\left|\boldsymbol{A}^3 + 2\boldsymbol{E}\right| =$ ____

二、选择题(每小题2分,共10分)

1.
$$\begin{aligned} \mathcal{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \begin{aligned} \boldsymbol{B} = \begin{bmatrix} a_{21} & a_{22} + a_{23} & a_{23} \\ a_{11} & a_{12} + a_{13} & a_{13} \\ a_{31} & a_{32} + a_{33} & a_{33} \end{bmatrix}, \begin{aligned} \boldsymbol{P}_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \end{aligned}$$

(A)
$$A = P_1 B P_2$$
 (B) $A = P_2 B P_1$ (C) $A = P_1^{-1} B P_2^{-1}$ (D) $A = P_2^{-1} B P_1^{-1}$

2. 设
$$\mathbf{A}$$
和 \mathbf{B} 都是4阶方阵, $|\mathbf{A}| = |\mathbf{B}| = 1$,则 $\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{A} & \mathbf{O} \end{pmatrix}^* = (\mathbf{B})$

$$(A) \begin{bmatrix} -\mathbf{\textit{B}}^* & \mathbf{\textit{B}}^* \\ \mathbf{\textit{A}}^* & \mathbf{\textit{O}} \end{bmatrix} \quad (B) \begin{bmatrix} \mathbf{\textit{O}} & \mathbf{\textit{A}}^* \\ \mathbf{\textit{B}}^* & -\mathbf{\textit{B}}^* \end{bmatrix} \quad (C) \begin{bmatrix} -\mathbf{\textit{A}}^* & \mathbf{\textit{A}}^* \\ \mathbf{\textit{B}}^* & \mathbf{\textit{O}} \end{bmatrix} \quad (D) \begin{bmatrix} \mathbf{\textit{O}} & \mathbf{\textit{B}}^* \\ \mathbf{\textit{A}}^* & -\mathbf{\textit{A}}^* \end{bmatrix}$$

3. 设A 为 $m \times n$ 型矩阵,则 $A^T A$ 可逆的充要条件是(C)

(A) A 的行向量组线性无关

(B) **A** 的行向量组线性相关

(C) **A** 的列向量组线性无关

(D) **A** 的列向量组线性相关

4. 设
$$u$$
为 n 元单位列向量, $n>1$, $A=uu^T$, 则下列选项中不正确的是(D)

- (A) 0为A的特征值
- (B) 1为A的特征值

(C) A + E 可逆

(D) **A-E** 可逆

5. 设 \mathbf{A} 和 \mathbf{B} 都是正定阵,则下列选项中不一定是正定阵的是(B)

(A)
$$\boldsymbol{A} + \boldsymbol{B}$$

(B) **AB**

(C)
$$\begin{pmatrix} A & O \\ O & B \end{pmatrix}$$

(D)
$$A^{-1} + B^{-1}$$

三、(8分)计算行列式

$$\begin{vmatrix} 1+a_1 & a_2 & a_3 & a_4 \\ 2a_1 & 1+2a_2 & 2a_3 & 2a_4 \\ 4a_1 & 4a_2 & 1+4a_3 & 4a_4 \\ 6a_1 & 6a_2 & 6a_3 & 1+6a_4 \end{vmatrix} =$$

四、(10 分) 设**V** 是由向量组**a**₁ = $(1,0,-1,3)^T$, **a**₂ = $(2,1,0,0)^T$, **a**₃ = $(3,2,1,-3)^T$, **a**₄ = $(1,1,1,-3)^T$ 所生成的向量空间,**b** = $(4,3,2,k)^T$. (1) 求**V** 的维数和**V** 的一个基. (2) 当k满足什么条件时,**b** \in **V**?

五、(8分) 已知
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
, $2\mathbf{A}^{-1}\mathbf{B} = \mathbf{E} + \mathbf{B}$, 求 \mathbf{B} .

六、(10 分) 已知
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & k+1 & -1 \\ 1 & k+1 & -k \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}$, 方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 无解,求 k 及方程组

 $A^T A x = A^T b$ 的通解。

七、(12 分)设 $\mathbf{A} = \begin{bmatrix} 4 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 4 \end{bmatrix}$, (1) 求正交矩阵 \mathbf{Q} 和对角阵 $\mathbf{\Lambda}$, 使 $\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \mathbf{\Lambda}$.

(2) 设 $\mathbf{x} = [x_1, x_2, x_3]^T$, $\mathbf{y} = [y_1, y_2, y_3]^T$, 求出二次型 $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ 在正交变换 $\mathbf{x} = \mathbf{Q} \mathbf{y}$ 下所化成的标准形。

八、(6分) 设 α 为n元列向量, $n \ge 2$, $\alpha^T \alpha = 2$, $A = \alpha \alpha^T$, 证明: $\mathbf{r}(A - 2E) = n - 1$.

九、(6 分)设A为3阶方阵, $\alpha_1,\alpha_2,\alpha_3$ 是线性无关的三元列向量组, $A\alpha_1=\alpha_1$, $A(\alpha_1+\alpha_2)=\alpha_1-\alpha_2$, $A(\alpha_2+\alpha_3)=-\alpha_2+\alpha_3$,证明: $A^2=E$.

A6

1'