Álgebra Relacional

anthony@computacao.cua.ufmt

Álgebra Relacional

- Formalização matemática de operações em BD relacionais
- Baseada na Teoria dos Conjuntos
- Define as operações sobre o BD relacional
- Deu origins as Querys (Buscas)
- Subsidiam a otimização de consulta
- Sustentação formal para a disciplina de BD
- Serve como referência para outros modelos de BD que surgiram depois

Estudo de Caso - Taxi

Este é um subconjunto do Estudo de Caso proposto "Despacho e controle de Táxis via terminais móveis ligados on-line com um sistema

Estudo de Caso - Taxi

Para ilustrar o tema apresentado, foram acrescentadas duas entidades que são especialização de Cliente. A primeira representa um indivíduo que irá pagar a conta, a segunda representa um funcionário de uma empresa conveniada, para a qual a conta será enviada. Um cliente pode pertencer a ambas especializações.

Estudo de Caso - Taxi

Tabelas do Estudo de Caso - Taxi

Cliente Particular (CP)

CliId	Nome	CPF
1532	Asdrúbal	448.754.253-65
1755	Doriana	567.387.387-44
1780	Quincas	546.373.762-02

Cliente Empresa (CE)

CliId	Nome	CGC
1532	Asdrúbal	754.856.965/0001-54
1644	Jepeto	478.652.635/0001-75
1780	Quincas	554.663.996/0001-87
1982	Zandor	736.952.369/0001-23

Táxi (TX)

Placa	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Corrida (R1)

ClId	Placa	DataPedido
1755	DAE6534	15/02/2003
1982	JDM8776	18/02/2003

Operações Básicas

- Operações unárias
 - Projeção (π) e Seleção (σ)
- Operações de conjuntos
 - União (∪), Intersecção (∩) e Diferença (−)
 - Produto cartesiano (x)
- Operações binárias
 - Junção (⋈) e Divisão (/)
- Outras operações
 - Renomeamento (ρ)

$\pi_{\text{Marca},\text{Modelo}}(TX)$

D

Placa	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

π _{Marca,Modelo} (TX)				
Placa	Marca	Modelo	AnoFab	
DAE6534	Ford	Fiesta	1999	
DKL4598	Wolksvagen	Gol	2001	
DKL7878	Ford	Fiesta	2001	
JDM8776	Wolksvagen	Santana	2002	
JJM3692	Chevrolet	Corsa	1999	

 $\pi_{\text{Marca},\text{Modelo}}(TX)$

Marca	Modelo	
Ford	Fiesta	
Wolksvagen	Gol	
Ford	Fiesta	
Wolksvagen	Santana	
Chevrolet	Corsa	

 $\pi_{\text{Marca}, \text{Modelo}}(\text{TX})$

Marca	Modelo	
Ford	Fiesta	
Wolksvagen	Gol	
Ford	Fiesta	
Wolksvagen	Santana	
Chevrolet	Corsa	

 $\pi_{\text{Marca},\text{Modelo}}(TX)$

Marca	Modelo	
Ford	Fiesta	
Wolksvagen	Gol	
Wolksvagen	Santana	
Chevrolet	Corsa	

$\sigma_{AnoFab>2000}(TX)$

D

Placa	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

$$\sigma_{AnoFab>2000}(TX)$$

D

Placa	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

$$\sigma_{AnoFab>2000}(TX)$$

b

Placa	Marca	Modelo	AnoFab
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002

Sinais possíveis na Seleção

- _ =
- **—** >
- **<**
- **->=**
- **-<=**
- **—** !=

Conectivos

- _ ^
- V

Questão

 Quero a marca e o modelos dos carros que foram fabricados a partir do ano de 2000!

Produto Cartesiano

C1 × R1

D

CliId	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

ClId	Placa	DataPedido
1755	DAE6534	15/02/2003
1982	JDM8776	18/02/2003

Produto Cartesiano

C1 × R1

1

CliId	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

ClId	Placa	DataPedido
1755	DAE6534	15/02/2003
1982	JDM8776	18/02/2003

(CliId)	Nome	(ClId)	Placa	DataPedido
1532	Asdrúbal	1755	DAE6534	15/02/2003
1532	Asdrúbal	1982	JDM8776	18/02/2003
1755	Doriana	1755	DAE6534	15/02/2003
1755	Doriana	1982	JDM8776	18/02/2003
1780	Quincas	1755	DAE6534	15/02/2003
1780	Quincas	1982	JDM8776	18/02/2003

Exercícios

Considere os seguintes esquemas de relação:

- Professor (prof-numero, prof-nome, prof-rua, prof-cidade, prof-telefone)
- Aluno (alu-numero, alu-nome, alu-rua, alu-cidade)
- Disciplina (disc-codigo, disc-nome, disc-quant-aulas-semana)
- Matricula(alu-numero, disc-codigo, ano, semestre, nota, frequencia)
- ProfessorDisciplina (prof-numero, disc-codigo)

Usando os conceitos de Algebra Relacional, encontre:

- Todos alunos que chamam Carlos. Mostrar número, nome e endereço.
- Todos os nomes e telefones de professores que moram na cidade de São Paulo
- Os números dos professores que dão aula da disciplina que tem código 48.
- Os números de todos os professores que dão aula de Matemática.
- Os nomes de todos os professores que d\u00e3o aula de Matem\u00e1tica.
- Os nomes de todas as disciplinas que têm mais de 3 aulas por semana.
- Os números de todos os alunos que têm aula com o professor de número 25.
- Os nomes de todos os alunos que têm aula com o professor que tem código 78.
- Os nomes de todos os alunos que têm aula com o professor Edmundo.

Exercícios

- ✓ Considere os seguintes esquemas de relação:
 - Professor (prof-numero, prof-nome, prof-rua, prof-cidade, prof-telefone)
 - Aluno (alu-numero, alu-nome, alu-rua, alu-cidade)
 - Disciplina (disc-codigo, disc-nome, disc-quant-aulas-semana)
 - Matricula(alu-numero, disc-codigo, ano, semestre, nota, frequencia)
 - ProfessorDisciplina (prof-numero, disc-codigo)
- Os nomes de todos os alunos que moram em São Paulo e estão matriculados na disciplina 60.
- 11. Os nomes de todos os alunos que moram fora de Marilia e estão matriculados na disciplina "Desenvolvimento de Algoritmos".
- Os nomes de todos os alunos que moram em Marília e têm aula de Banco de Dados com o professor Antonio.
- Os números e nomes de todos os alunos que tiveram nota menor que 5 e freqüência menor que 75 na disciplina "Sistemas Operacionais".
- 15. Os números e nomes de todos os alunos que fizeram a disciplina "Arquitetura de Computadores" com o professor Eduardo no ano de 2005.

Junção

 $C1 \bowtie_{C1.Clild < R1.Clild} R1$

Ŋ

(CliId)	Nome	(Clld)	Placa	DataPedido
1532	Asdrúbal	1755	DAE6534	15/02/2003
1532	Asdrúbal	1982	JDM8776	18/02/2003
1755	Doriana	1755	DAE6534	15/02/2003
1755	Doriana	1982	JDM8776	18/02/2003
1780	Quincas	1755	DAE6534	15/02/2003
1780	Quincas	1982	JDM8776	18/02/2003

Junção

$$C1 \bowtie_{c1.clild < R1.clild} R1$$

(CliId)	Nome	(ClId)	Placa	DataPedido
1532	Asdrúbal	1755	DAE6534	15/02/2003
1532	Asdrúbal	1982	JDM8776	18/02/2003
1755	Doriana	1755	DAE6534	15/02/2003
1755	Doriana	1982	JDM8776	18/02/2003
1780	Quincas	1755	DAE6534	15/02/2003
1780	Quincas	1982	JDM8776	18/02/2003

Equi-Junção

D

(CliId)	Nome	(Clld)	Placa	DataPedido
1532	Asdrúbal	1755	DAE6534	15/02/2003
1532	Asdrúbal	1982	JDM8776	18/02/2003
1755	Doriana	1755	DAE6534	15/02/2003
1755	Doriana	1982	JDM8776	18/02/2003
1780	Quincas	1755	DAE6534	15/02/2003
1780	Quincas	1982	JDM8776	18/02/2003

Junção Natural

C1 * R1

equivalente a

C1 × Clild R1

(CliId)	Nome	(Clld)	Placa	DataPedido
1755	Doriana	1755	DAE6534	15/02/2003

Questão

 Quero o nome de todos os clientes e os modelos de carros que eles já fizeram corridas!

Renomear

$$\rho(FR, \sigma_{Marca='Ford'}, TX)$$

N

TX

Placa	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Renomear

$$\rho(FR, \sigma_{Marca='Ford'}, TX)$$

D

FR

Placa	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL7878	Ford	Fiesta	2001

Renomear

Exemplo

- Cliente (número-cliente, nome-cliente, rua, cidade)
- ✓ Para encontrar outros clientes que moram na mesma rua e cidade:
 - devemos nos referir à relação cliente mais de uma vez.

```
\pi_{\text{nome-cliente}}(\sigma_{\text{cliente2.rua}} = \text{cliente.rua} \wedge \text{cliente2.cidade} = \text{cliente.cidade}(\sigma_{\text{nome-cliente}}(\tau_{\text{rua,cidade}}, \sigma_{\text{nome-cliente}})))))
```

✓ Fazemos referência a cliente2 quando desejamos nos referir à rua e à cidade de Maria.

Exercícios

Considere os seguintes esquemas de relação:

- Professor (prof-numero, prof-nome, prof-rua, prof-cidade, prof-telefone)
- Aluno (alu-numero, alu-nome, alu-rua, alu-cidade)
- Disciplina (disc-codigo, disc-nome, disc-quant-aulas-semana)
- Matricula(alu-numero, disc-codigo, ano, semestre, nota, frequencia)
- ProfessorDisciplina (prof-numero, disc-codigo)

Usando os conceitos de Álgebra Relacional, encontre:

- Os nomes de todos os <u>professores</u> que moram na mesma cidade que a professora Rita.
- Os nomes de todos os <u>alunos</u> que moram na mesma cidade que a professora.
 Rita.
- Os nomes de todas as disciplinas que têm a quantidade de aulas maior que a quantidade de aulas da disciplina "Banco de Dados".
- Os nomes de todos os alunos que tiraram nota maior que o aluno 'Marcos
 Torres" na disciplina 986.
- Os nomes de todos os alunos que tiraram nota maior que o aluno 'Marcos Torres" na disciplina "Álgebra Linear".

Corrida (R2)

ClId	Placa	DataPedido
1532	DAE6534	15/02/2003
1532	DKL4586	17/02/2003
1644	DKL7878	10/01/2003
1644	JDM8776	18/02/2003
1780	JJM3692	08/01/2003
1982	DAE6534	15/01/2003
1982	DKL4598	26/01/2003
1982	DKL7878	01/02/2003

D.

Táxi (FR)

Placa	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL7878	Ford	Fiesta	2001

 Encontre os clientes que tenham andado com todos os taxis da marca Ford

ClId	Placa
1532	DAE6534
1532	DKL4586
1644	DKL7878
1644	JDM8776
1780	JJM3692
1982	DAE6534
1982	DKL4598
1982	DKL7878

b

Placa DAE6534 DKL7878

SR2

ClId	Placa
1532	DAE6534
1532	DKL4586
1644	DKL7878
1644	JDM8776
1780	JJM3692
1982	DAE6534
1982	DKL4598
1982	DKL7878

SFR

Placa
DAE6534
DKL7878

SR2/SFR

SR2

Clld	Placa
1532	DAE6534
1532	DKL4586
1644	DKL7878
1644	JD M 8776
1780	JJ M 3692
1982	DAE6534
1982	D K L 4598
1982	DKL7878

SFR

Placa DAE6534 DKL7878 **ClId** 1982

Divisão

✓ Exemplo:

- Agência (número-agência, nome-agência, cidade-agência)
- Conta (número-conta, número-cliente, saldo,número-agência)

Obter todos os clientes que têm uma conta em todas as agências da cidade de Fortaleza

Divisão

- 1 Encontrar todos os pares número-cliente e número-agência para todos os clientes que possuem alguma conta em qualquer agência
- 2 Obter todas as agências de fortaleza

Divisão

π_{número-cliente,número-agência}(Conta)

π_{número-agência} (σ_{cidade-agência = "Fortaleza"} (Agência))

- ✓ Considere os seguintes esquemas de relação:
 - Disciplina (código-disc, nome-disc, curso, série)
 - Aluno (<u>número-aluno</u>, nome, rua, <u>código-disc</u>)
 - AlunoRegular(número-aluno)
 - AlunoDP (<u>número-aluno</u>, dia-semana)
 - Bolsista(<u>número-aluno</u>,tipo bolsa, porcentagem)
- Operação Divisão
- Mostrar números e nome dos alunos que fazem todas as DPs que acontecem de sexta-feira.
- Mostrar nome dos alunos que fazem todas as disciplinas do 3o. Ano do curso de Ciência da Computação.
- Mostrar nome, curso e série dos alunos bolsistas que fazem todas DPs ministradas de terçafeira.

Compatibilidade de Relações

✓ Duas relações A(a₁, a₂, .. aₙ) e B(b₁, b₂, ..bₙ) são ditas compatíveis em domínio se ambas têm o mesmo grau n e se:

Dom (a_i) = Dom (b_i) , $1 \le i \le n$.

Exemplo:

Aluno (nome, idade, curso)

Professor (nome, idade, depto)

Funcionario (nome, depto, idade)

Dom(nome) = char(30)

Dom(idade) = int

Dom(curso) = char(5)

Dom(depto) = char(5)

Aluno é compatível com Professor, mas não é com Funcionário.

União

- ✓ Reúne resultados de duas ou mais consultas.
- ✓ Representação:

- √ Exemplo:
 - Conta (número-conta, número-cliente, saldo, agência)
 - Empréstimo (número-empréstimo, número-cliente, valor, agência)

Obter todos os clientes da agência "Centro"

União

π número-cliente (σ agência = "Centro" (Empréstimo))

União

```
π<sub>número-cliente</sub>(σ<sub>agência="Centro"</sub> (Conta)) U
π<sub>número-cliente</sub>(σ<sub>agência="Centro"</sub> Empréstimo))
```

Intersecção

- ✓ Conjunto de tuplas que pertencem a duas relações
- ✓ Representação:

- ✓ Exemplo:
 - Conta (<u>número-conta</u>, número-cliente, saldo,agência)
 - Empréstimo (<u>número-empréstimo</u>, número-cliente, valor, agência)

Obter todos os clientes que tenham conta e também empréstimo na agência "Centro"

Intersecção

```
π<sub>número-cliente</sub>(σ <sub>agência ="Centro"</sub> (Conta)) ∩ 
π<sub>número-cliente</sub>(σ <sub>agência ="Centro"</sub> (Empréstimo))
```

Diferença

- ✓ Permite encontrar tuplas que estão em uma relação e não estão em outra.
- ✓ Representação:

- ✓ Exemplo:
 - Conta (<u>número-conta</u>, número-cliente, saldo,agência)
 - Empréstimo (número-empréstimo, número-cliente, valor, agência)

Obter todos os clientes da agência "Centro" que tenham uma conta, mas não tenham empréstimo

Diferença

```
π<sub>número-cliente</sub>(σ <sub>agência ="Centro"</sub> (Conta)) – 
π<sub>número-cliente</sub>(σ <sub>agência ="Centro"</sub> (Empréstimo))
```

- Considere os seguintes esquemas de relação:
 - Disciplina (código-disc, nome-disc, curso, série)
 - Aluno (<u>número-aluno</u>, nome, rua. cidade<u>código-disc</u>)
 - AlunoRegular(<u>número-aluno</u>)
 - AlunoDP (número-aluno, dia-semana)
 - Bolsista(<u>número-aluno</u>,tipo bolsa, porcentagem)
- Todos os números de alunos que cursam a disciplina de código 35 como dependência.
- Todos os números de alunos que cursam a disciplina de código 35 como aluno regular.
- Todos os números de alunos que cursam a disciplina de código 35 como aluno regular ou dependência.
- Todos os números de alunos que cursam a disciplina "Compiladores" como dependência.
- Todos os números de alunos que cursam a disciplina "Sistemas Operacionais" como aluno regular ou dependência.
- Todos os números de alunos que fazem disciplinas regulares e também fazem DP.

- Considere os seguintes esquemas de relação:
 - Disciplina (código-disc, nome-disc, curso, série)
 - Aluno (número-aluno, nome, rua, cidade)
 - AlunoRegular(número-aluno,código-disc)
 - AlunoDP (número-aluno,código-disc, dia-semana)
 - Bolsista(número-aluno, tipo bolsa, porcentagem)
- Todos os nomes de alunos que fazem disciplinas regulares e também DP.
- Nomes dos alunos que fazem somente disciplinas como aluno regular (não fazem dependências).
- Nomes dos alunos que fazem alguma disciplina de dependência do curso de Computação de quinta-feira.
- Nomes e números dos alunos que fazem <u>alguma</u> disciplina do curso de Computação (regular ou dependência)
- Nomes dos alunos que fazem qualquer disciplina regular, fazem DP de Sistemas Operacionais, mas não fazem DP de Banco de Dados.

- Considere os seguintes esquemas de relação:
 - Disciplina (código-disc, nome-disc, curso, série)
 - Aluno (número-aluno, nome, rua, cidade)
 - AlunoRegular(número-aluno,código-disc)
 - AlunoDP (número-aluno,código-disc, dia-semana)
 - Bolsista(número-aluno, tipo bolsa, porcentagem)

Mostrar o número dos alunos com bolsa de mais de 50% que cursam "Teoria dos Graf como DP.

Mostrar o nome dos alunos que fazem a disciplina "Compiladores" como aluno regular alguma dependência de quinta-feira.

Mostrar nome, curso e série dos alunos que moram fora de Marília, são bolsistas e curs alguma DP.

Projeção Generalizada

Exemplo:

C., 4 al: 4 a

Crédito (número-cliente, limite-crédito, saldo-crédito)

Obter quanto os clientes podem gastar, de acordo com o seu crédito no banco.

π número-cliente, limite-crédito - saldo-crédito (Crédito)

Crádita

Num_Cli	Limite_Cre	Saldo_Cre
1	4000	2200
2	3200	100
3	1200	1500

Num_Cli	Limite_Cre - Saldo_Cre
1	1800
2	3100
3	-300

- ✓ Tomam uma coleção de valores e retornam um valor único como resultado.

✓ Representação: função <expressão > (relação)

- retorna a soma de um conjunto de sum valores.
- retorna a média de um conjunto de avg valores.
- retorna a quantidade de elementos da countcoleção.
- retorna o maior valor da coleção.
- retorna o menor valor da coleção.

Nome funcionário	nome agência	Salário
Ana	Centro	1500
João	Centro	2000
Roberta	Vila Verde	2500
Rodrigo	Vila Verde	3000

sum _{salário} (mensalista)

Resultado: uma relação com um atributo simples, contendo uma única linha.

9000

Nome funcionário	nome agência	Salário
Ana	Centro	1500
João	Centro	2000
Roberta	Vila Verde	2500
Rodrigo	Vila Verde	3000

min salário (mensalista)

Resultado: uma relação com um atributo simples, contendo uma única linha.

1500

- ✓ Cláusula distinct → eliminação de duplicidade.
- ✓ Usada em conjunto com as funções definidas

anteriormente

√ Exemplo:

MENSALISTA

Nome funcionário	nome agência	Salário
Ana	Centro	1500
João	Centro	2000
Roberta	Vila.Verde	2500
Rodrigo	Vila.Verde	3000

count nome-agência (mensalista)

Z

 ✓ Agrupamento → divisão das tuplas em grupos para aplicação das funções agregadas

✓ Representação:

<a tributo-agrupamento> G função (relação)

Nome_funcionário	nome_agência	Salário
Ana	Centro	1500
João	Centro	2000
Roberta	Vila Verde	2500
Rodrigo	Vila Verde	3000

 $_{
m nome-agência}G {
m sum}_{
m salário} ({
m mensalista})$

RESULTADO

nome_agência	soma
Centro	3500
Vila Verde	5500

✓ Exemplo 2 (mais de uma função agregada)

Nome_funcionário	nome_agencia	Salário
Ana	Centro	1500
João	Centro	2000
Roberta.	Vila Verde	2500
Rodrigo	Vila Verde	3000

nome-agência G sum_{salário}, max_{salário} (mensalista)

RESULTADO

nome agência	soma	máximo
Centro	3500	2000
Vila Verde	5500	3000

- ✓ Considere os seguintes esquemas de relação e faça consultas em Álgebra Relacional para mostrar o que se pede:
- Cliente (<u>cli-código</u>, cli-nome, cli-endereço)
- Produto (pro-código, pro-descrição, pro-preço-compra, pro-preço-venda)
- Venda (ven-código, ven-data, cli-código)
- ItemVenda (ven-código, pro-código, vi-quantidade, vi-valor-unit)
- Clibanco (cli-código, clib-código, clib-núm-conta, clib-data-abertura)
- O valor do produto mais caro.
- A data de nascimento mais antiga dos clientes.
- O valor total de cada venda. Mostre o número da venda, a data e o valor total.
- A quantidade de clientes que compraram no mês de janeiro de 2005 (eliminar as duplicações)
- O valor médio do preço de venda dos produtos.
- O maior valor de venda de um item (preço-unitário * quantidade).
- A quantidade vendida de cada produto no mês de maio deste ano.

Operações para modificar o BD

- ✓ Utilizamos sempre a operação de atribuição, em conjunto com operações de:
 - adição
 - remoção
 - -alteração
- ✓ Representação:

relação ← <alteração>

Exclusão

- ✓ Geralmente é expressa da mesma forma que uma consulta.
- ✓ Em vez de mostrar as tuplas, essas são removidas da relação, através da operação diferença.
- ✓ Podem ser excluídas tuplas inteiras ou somente valores de um atributo.
- ✓ Representação:

- √ r é uma relação
- ✓ E é uma consulta em álgebra relacional

Exclusão

- √ Exemplos:
 - Conta (número-conta, nome-cliente, saldo, código-agência)
 - Agência (código-agência, nome, cidade)

Excluir todas as contas da cliente Luciana

Conta ← Conta - σ_{nome-cliente = "Luciana"} (Conta)

Excluir todas as contas com saldo menor que zero

Conta ← Conta - σ_{saldo < 0} (Conta)

Exclusão

✓ Exemplos:

- Conta (número-conta, nome-cliente, saldo,código-agência)
- Agência (código-agência, nome, cidade)

Excluir todas as contas das agências da cidade de Jafa

Conta-agência ← σ_{nome-cidade = "Jata"} (conta |X| agência)

Contas-exclusão ← π número-conta nome-cliente, saldo, código-agência (conta-agência)

Conta ← Conta – Contas-exclusão

Inserção

- ✓ Podemos:
 - 1. Especificar uma tupla para inserção
 - Escrever uma consulta que resulte em um conjunto de tuplas a inserir.
- Atenção à compatibilidade das relações:
 - Tuplas inseridas devem ter o mesmo grau.
 - Os valores dos atributos da(s) nova(s) tupla(s) devem ser membros do domínio dos atributos
- ✓ Representação:

- √ r é uma relação
- ✓ E é uma expressão em álgebra relacional

Inserção em uma tupla simples

✓ Representação:

- E deve ser uma relação constante contendo uma única tupla.
- ✓ Exemplo:
 - Conta (número-conta, nome-cliente, saldo, nome-agência)

Inserir a informação que o cliente Rodrigo tem um saldo de \$300,00 na agência Acapulco.

Conta ← Conta U {(4547, "Rodrigo", 300, "Acapulco")}

Inserção do resultado de uma consulta

✓ Representação:

- ✓ E é o resultado de uma consulta.
- √ Exemplo:
 - Conta (número-conta, nome-cliente, saldo, código-agência)
 - Agência (código-agência, nome-agência, cidade)
 - Poupança (número-conta, valor)

Criar uma conta de poupança com valor de \$300,00 para todas as contas da agência "Centro" com saldo > 2000.

Inserção do resultado de uma consulta

√ Exemplo:

- Conta (número-conta, nome-cliente, saldo, código-agência)
- Agência (código-agência, nome-agência, cidade)
- Poupança (número-conta, valor)

Criar uma conta de poupança com valor de \$300,00 para todas as contas da agência "Centro" com saldo > 2000.

```
Conta-centro ← σ<sub>nome-agência-"Centro" ^ saldo > 2000</sub>(Conta|X| Agência)

Nova-poupança ← π <sub>número-conta</sub>(conta-centro)

Nova-poupança-saldo ← Nova-poupança X {(300)}

Poupança ← Poupança U Nova-poupança-saldo
```

- ✓ Usada quando deseja-se mudar o valor de uma tupla sem mudar todos os seus valores.
- ✓ Utiliza-se um operador de projeção generalizada.

✓ Representação:

$$r \leftarrow \pi_{F_1,F_2,...,F_n}(\mathbf{r})$$

- ✓ Exemplo 1:
 - Conta (<u>número-conta</u>, nome-cliente, saldo)

Aumentar os saldos de todas as contas em 5% devido ao aumento da taxa de juros.

Conta ← π número-conta,nome-cliente,saldo ← saldo * 1,05 (Conta)

- ✓ Exemplo 2:
 - Conta (número-conta, nome-cliente, saldo)

Aumentar os saldos de todas as contas em 10% se o saldo for maior que \$5000 e em 5% para as demais contas.

Conta10 ← π número-conta, nome-cliente, saldo ← saldo + 1,1 (σ_{saldo > 5000} (Conta))

Conta5 ← π número-conta nome-cliente,saldo ← saldo * 1,05 (σsaldo ≤ 5000 (Conta))

Conta ← Conta10 U Conta5

- ✓ Se quisermos atualizar apenas algumas tuplas selecionadas de uma relação R:
- √ Exemplo:
 - Conta (número-conta, nome-cliente, saldo)

Aumentar o saldo da conta 256 em 25%.

```
Conta ← π número-conta, nome-cliente, saldo ← saldo + 1,25 (σημμετο-conta = 256 (Conta))

U (Conta - σημμετο-conta = 256 (Conta))
```

- ✓ Considere os seguintes esquemas de relação:
 - Professor (profnum, profnome, profrua, profcidade)
 - Aluno (alunum, alunome, alurua, alucidade)
 - Matricula (alunum, dis-código, ano-letivo)
 - Disciplina (dis-código, dis-nome, dis-quant-aulas, curso, série)
 - ProfDisc (dis-código, profnum)
- Usando os conceitos de Álgebra Relacional estudados, escreva sentenças para realizar as seguintes operações:
- Inserir no Banco de Dados o professor Mateus Barros, que mora na Rua 25, cidade de Araraquara e terá no sistema o código 456.
- Atribuir as disciplinas 498 e 1009 para o professor inserido. Considere que essas disciplinas já estão inseridas no Banco de Dados.
- Atribuir as disciplinas "Banco de Dados" e "Linguagem C" para o professor inserido. Considere que essas disciplinas já estão inseridas no Banco de Dados.
- Matricular o aluno 567 na disciplina 986 no ano letivo corrente. Considere que o aluno e as disciplinas já estão inseridos no Banco de Dados.
- Matricular a aluna Michele Silva na disciplina 986 no ano letivo corrente. Considere que la aluna e as disciplinas já estão inseridas no Banco de Dados.
- Matricular a aluna Michele Silva na disciplina "Engenharia de Software" no ano letivo corrente.
- 7. Alterar o nome da disciplina 5890 para "Prática de Banco de Dados"