<u>פרויקט סופי – גנטיקה בעידן הרפואה האישית</u>

יהלי בן דוד 315639898 ניר בורגר 313580920

חלק 2 – עיבוד מקדים:

בחרנו לעבוד עם הפנוטיפים שעוסקים בהשפעת הזרקת מורפיום בטווחים של 45-60 דקות מההזרקה על זכרים, נקבות, וזכרים ונקבות:

Morphine response (50 mg/kg ip), locomotion (open field) from 45-60 min after injection in an activity chamber for males [cm] (970)

Morphine response (50 mg/kg ip), locomotion (open field) from 45-60 min after injection in an activity chamber for females [cm] (1224)

Morphine response (50 mg/kg ip), locomotion (open field) from 45-60 min after injection in an activity chamber for males and females [cm] (1478)

נבחן את הביטוי הפנוטיפי על מסדי נתונים הלקוחים מההיפותלמוס (מוח) והכבד, מהמאגרים שסופקו.

בחרנו בהיפותלמוס משום שלמורפיום יש השפעה ישירה על המוח, ובכבד משום שהוא מהווה גורם מרכזי בפירוק החומר בגוף.

נצפה לראות השפעה של האזורים הללו על הביטוי הפנוטיפי. כמו כן, מעניין יהיה לגלות אם יש קשר בין הביטוי הפנוטיפי לגנים למין הנבדק.

בתהליך העיבוד המקדים נירמלנו את הנתונים על ההיפותלמוס משום שלהם תוחלת 8 ושונות 4. החלטנו לנרמל להתפלגות נורמלית סטנדרטית.

את הטבלה בנינו כך ששורות הן גנים ועמודות הן BXD כנדרש והורדנו שורות ללא מזהה גנטי, כנדרש. החלטנו לסנן 50% מהגנים שיש להם ביטוי מקסימלי נמוך. ומתוכם נשארנו עם 1500 גנים בעלי שונות מקסימלית. סה"כ נשארנו עם 3000 גנים, 1500 מכל מסד נתונים.

מספר ה- Strains שנשארו בסוף הסינון	מספר הגנים שנשארו לאחר הוצאת גנים עם שונות נמוכה	מספר הגנים שמהווה 50% מהגנים עם הביטוי המקסימלי הגבוה ביותר	מספר הגנים לאחר הסינון הראשוני	
46	1500	12098	24197	היפותלמוס
40	1500	8936	17872	כבד

<u>חלק 3 – ניתוח eQTL:</u>

בדומה למטלה 3, ספרנו את מספר הזוגות של (גן, סניפ) שלהם היה P-value מובהק (שאינו גדול מ-0.05). ביניהם ספרנו את אלה שמתנהגים כציס וכטראנס, כאשר ההגדרה לציס נשארה כשהייתה מהמטלה הקודמת – על אותו הכרומוזום ובמרחק שאינו עולה על 2Mbp.

בהתאם לתוצאות שקיבלנו, ראינו כי יש יותר צמדים מובהקים מ-eQTLs ייחודיים. על כן המסקנה היא שיש כמה סניפים שמתנהגים גם כציס וגם כטראנס (להלן דואלים), ו hts on Hypothalamus Dataset ...____

ירא פי פינווי פנים פינוויננווא ביאב עם אום פפראינפיק כתלות בגן, ואין הצדקה להחשיבם כאחד או כשני בלבד.

בהיפותלמוס:

קיבלנו סה"כ eQTLs 1041 שונים, ו-3001 זוגות מובהקים. מתוך 1041 ה-307 השונים, 1742 ההם בצורת ציס, 562 בצורת טראנס, ו-307 בשתי הצורות.

התפלגות מובאת בגרף הבא:

רכרדי

קיבלנו סה"כ eQTLs 1070 שונים, ו-3473 זוגות מובהקים. מתוך 1070 ה-241 השונים, 132 מהם הם בצורת ציס, 597 בצורת טראנס, ו-341 בשתי הצורות.

התפלגות מובאת בגרף הבא:

ניתן לראות הבדלים בכמויות בין ציס, טראנס ודואלים.

סיבה אפשרית לכך היא שלעיתים, סניפים הקשורים לגנים שרחוקים מהם (כלומר, זוג שבמצב טראנס) הם לעיתים סניפים שלמעשה משפיעים על חלבוני שיעתוק שמבקרים מספר גנים שעשויים להיות גם קרובים וגם רחוקים מאותו הסניפ. על כן, נקבל יותר גנים שבאסוציאציה לאותו הסניפ, חלקם קרובים (ציס) וחלקם רחוקים (טראנס), ומספר כולל גבוה יותר של eQTLs בסופו של דבר. בנוסף, נזכור שיש יותר גנים רחוקים מסניפ נתון מאשר גנים קרובים, שכן יש מספר סופי ומוגבל מאוד של גנים הקרובים לאותו סניפ נתון.

מספר הגנים שבאסוציאציה עם כל eQTL מספר הגנים שבאסוציאציה עם

היפותלמוס:

ניתן לראות שבכרומוזום 17 נמצא הסניפ שבאסוציאציה עם הכי הרבה גנים (קרוב ל-25), כלומר ייתכן שבכרומוזום זה נמצא סניפ המהווה נקודה חמה (hotspot).

ניתן אמנם לראות סניפים שבאסוציאציה עם 15-20 גנים בכרומוזומים 2, 4, 7 ו-12, אך אלה לא בהכרח ייחשבו לנקודות חמות, משום שהן מצריכות אסוציאציה עם הרבה גנים – מעל 20 לפחות.

<u>כבד:</u>

ניתן לראות שבכרומוזום 12 נמצא הסניפ שבאסוציאציה עם הכי הרבה גנים (מעל 30), כלומר ייתכן שבכרומוזום זה נמצא סניפ המהווה נקודה חמה (hotspot). שבכרומוזום זה נמצא סניפ המהווה נקודה חמה (hotspot). ניתן אמנם לראות סניפים שבאסוציאציה עם 10-15 גנים במספר כרומוזומים (למשל 1, 8, 17 ועוד), אך אלה לא בהכרח ייחשבו לנקודות חמות, משום שהן מצריכות אסוציאציה עם הרבה גנים – מעל 20 לפחות.

שבציס ובטראנס eQTLs עבור P-values התפלגות כל ערכי

Distribution of all genome eQTLs P-values in Hypothalamus Dataset

Distribution of all genome eQTLs P-values in Liver Dataset

נדגיש כי הגרפים הבאים מציגים את ההתפלגות של ערכי P-value לאחר שהופעלה עליהם טרנספורמציית log- בבסיס 10.

נבחין כי בשתי הסביבות, הן בהיפותלמוס והן בכבד, ל-eQTLs שבצורת טראנס יש ערכי $\log_{10}(P_{value})$ נמוכים יותר, כלומר ערכי P-value גבוהים יותר מאשר אלה שבציס. יתרה מזו, $\log_{10}(P_{value})$ בוהים (ערכי ה- $\log_{10}(P_{value})$ שבצורת טראנס יש ערכי P-value גבוהים (ערכי ה- $\exp(P_{value})$ נמוכים (ערכי מאוד ל-0), בעוד שעבור P-value שבצורת ציס יש ערכי $\exp(P_{value})$ נמוכים (ערכי $\exp(P_{value})$).

בנוסף, אחוז ה-eQTLs המובהקים (שעבורם מתקיים $(P_{value} \leq 0.05)$ גבוה יותר בקרב אלה שבצורת ציס.

שבציס ובטראנס eQTLs <u>התפלגות ערכי P-values התפלגות ערכי</u>

נדגיש כי הגרפים הבאים מציגים את ההתפלגות של ערכי P-value לאחר שהופעלה עליהם טרנספורמציית log. בבסיס 10. נבחין כי בשתי הסביבות, ההיפותלמוס והכבד, בדומה להתפלגות על פני כל הצימודים של גן-סניפ (משמעותיים או לא), גם עבור הצימודים המשמעותיים נבחין כי על פני כל הצימודים של גן-סניפ (משמעותיים או לא) שבצורת טראנס יש ערכי -log₁₀(P_{value})- בשתי הסביבות, הן בהיפותלמוס והן בכבד, ל-eQTLs

נמוכים יותר, כלומר ערכי P-value גבוהים יותר מאשר אלה שבציס. עם זאת עבור הצימודים נמוכים יותר, כלומר ערכי p-value גבוהים של צימודים עבורם החוץ יחסית.

פיזור של תוצאות משמעותיות לפי מיקום הSNP ומיקום הגן

כל נקודה מייצגות eQTL משמעותי, כאשר נקודות כתומות מייצגות eQTL ונקודות כחולות מייצגות cis cis. כדי שהמיקום יהיה רציף, הגדרנו את המיקום בתור המיקום על הכרומוזום הרלוונטי בתוספת המיקום האחרון על הכרומוזום הקודם.

Visualization of cis and trans genes and SNPs locations in Hypothalamus Dataset

Visualization of cis and trans genes and SNPs locations in Liver Dataset

נשים לב לאלכסונים ברורים בשני הגרפים, שמייצגים את הצימודים בציס או הצימודים בטראנס, עבורם ה-QTL וה-SNP קרובים יחסית. תוצאות אלה תואמות את הממצא לפיו מרבית ה-QTL עבורם ה-EQTL קרובים יחסית. תוצאות אלה תואמות את הממצא לפיו מרבית הכספר גנים המשמעותיים היו בcis. בנוסף לאלכסון נחפש Hotspots כלומר SNP ים בצימוד טראנס למספר גנים גדול שמיוצגים בגרף ע"י "עמודה מלאה". עבור ההיפותלמוס אין "עמודות" מלאות, בכרומוזום 17 נבחין בכמה נקודות, ואכן בגרף קודם הראנו שמספר הגנים המקסימלי שהיו באסוציאציה משמעותית נבחין בכמה נקודות, ואכן בגרף קודם הראנו שמספר הגנים המקסימלי שהיו באסוציאציה משמעותית אתו היה בערך 25, כלומר לא מעט אבל לא מוגדר כ-Hotspot. לעומת זאת בכבד נראה עמודה מלאה יחסית בכרומוזום 1. בנוסף קיימות נקודות גם לאורך כרומוזום 1 ו-8. התוצאות הנ"ל הן

בהלימה לגרף הקודם בו ראינו בכרומוזום Hotspot 12 של מעל 30 גנים, וכ-15 גנים באסוציאציה לכרומוזומים 1.78 גנים באסוציאציה לכרומוזומים 1,8.

<u>חלק 4 – ניתוח QTL:</u>

נסכם את ממצאי הניתוח:

כמות	מספר הכרומוזום	מספר ה- QTLים	פנוטיפ
14	10	14	Morphine response (50 mg/kg ip), locomotion (open field) from 45-60 min after injection in an activity chamber for males [cm]
1	5	16	Morphine response (50 mg/kg ip), locomotion (open
14	10		field) from 45-60 min after injection in an activity
1	11		chamber for females [cm]
4	5	19	Morphine response (50 mg/kg ip), locomotion (open
14	10		field) from 45-60 min after injection in an activity
1	11		chamber for males and females [cm]

ניתן לראות שרוב ה-QTL נמצאים על כרומוזום מספר 10.

נבחן את תרשימי מנהטן של כל אחד מהפנוטיפים:

Morphine response (50 mg/kg ip), locomotion (open field) from 45-60 min - בזכרים :after injection in an activity chamber for males [cm]

ניתן לראות שבדומה לניתוח מהטבלה, בכרומוזום 10 קיימים סניפים שעבורם ערך ה-P-value נמוך (משום ש—log(P-value) גבוה מאוד), בניגוד לשאר הכרומוזומים, בהם הערכים הנ"ל מראים על noj(P-value) וווווי ששום ש—log(P-value) גבוה מאוד), בניגוד לשאר הכרומוזומים, בהם הערכים המסקנה היא שכנראה יש קשר בין קבוצת סניפים שנמצאת על כרומוזום 10 ובין הפנוטיפ שבדקנו – השפעה של מורפיום על עכברים זכרים 45-60 דקות מרגע ההזרקה.

בטבלה משמאל מובאים כל הלוקוסים שקיבלו ערכים מובהקים, ממוינים בסדר עולה.

Morphine response (50 mg/kg ip), locomotion (open field) from 45-60 min - בנקבות after injection in an activity chamber for females [cm]

2146

24421090

rs4228121

rs13481186

rs6404215 0.036457

0.009714

0.014941

Morphine response (50 mg/kg ip), locomotion (open field) from 45-60 - בזכרים ונקבות min after injection in an activity chamber for males and females [cm]

בדומה לזכרים ולנקבות – גם כאן, בזכרים ובנקבות יחד, יש מובהקות גדולה בכרומוזום מספר 10, וכן סימנים של מובהקות בכרומוזומים 11 ו-5, כאשר יש יותר ב-5 מאשר בשני הפנוטיפים האחרים בנפרד.

בטבלה משמאל מוצגים הלוקוסים שקיבלו ערכים מובהקים, ממוינים בסדר עולה מהנמוך לגבוה.

המסקנה המתבקשת היא שיש קשר כלשהו בין הלוקוסים שבכרומוזומים 5, 10 ו-11 לבין הפנוטיפים שבחרנו.

זאת ועוד, ובמיוחד בכרומוזום 10, יש קשר בין הלוקוסים שבו לבין עיבוד ופירוק מורפיום בעכברים משני המינים. אפשר גם לשער שבעיקר בנקבות יש השפעה גם ללוקוסים בכרומוזומים 5 ו-11.

	Locus	r_value
2134	rs3721803	0.000001
2137	rs3695003	0.000001
2139	D10Mit28	0.000003
2136	rs6185923	0.000004
2140	rs3664101	0.000445
2150	CEL-10_14286032	0.002021
2156	rs13480527	0.002973
2157	rs3688363	0.004875
2146	rs4228121	0.005939
2144	rs4228112	0.006259
2155	rs13480526	0.006957
2152	rs3712394	0.006957
2154	rs13480525	0.007272
2159	rs13459119	0.009130
2442	rs13481186	0.028714
1098	rs13478117	0.034030
1099	mCV22832219	0.036457
1089	mCV23582150	0.037544
1090	rs6404215	0.046437

Locus

P value

חלק 5 – שילוב התוצאות

בחלק זה נשווה בין תוצאות ה-QTL לתוצאות ה-QTL. נבדוק אילו סניפים נמצאים באסוציאציה משמעותית גם עם הפנוטיפים וגם עם הביטוי הגנטי. באמצעות הסניפים הללו נייצר שלשות של (גן, סניפ וביטוי פנוטיפי). בנוסף נתייחס אך ורק לשלשות בהן הגן והSNP נמצאות על אותו כרומוזום. סידרנו את השלשות בטבלאות לכל רקמה והן מובאות מטה. ננתח אותן כעת. כבד: נבחין כי קיים קשר בין הגן Aig1 שנמצא על כרומוזום 10 לבין כל שלושת הפנוטיפים. בנוסף כבחין כי קיימים קשרים בין גנים על כרומוזום 11 ובין הפנוטיפים 1224 (נקבות) ו-1478(זכרים ונקבות), ובין גננים על כרומוזום 5 לפנוטיפ 1478(זכרים ונקבות) מה שתואם את הממצאים בחלק 4. לעומת זאת נשים לב כי לא התקבלו כלל שלשות של גנים מכרומוזום 12, על אף שבחלק שלוש מצאנו כי כרומוזום נמצא הSNP עם מספר הבTL פותר. היפותלמוס: נבחין כי קיימים קשר בין קבוצת גנים על כרומוזום 10 ובין שלושת הפנוטיפים. בנוסף כמעט לא קיימים קשרים בין הפנוטיפים הללו לגנים וSNPים על כרומוזומים אחרים (שלשות בודדות על כרומוזום 11).

ניתן לשער כי אם היינו מגבילים את בדיקת הQTLים רק עבור גנוטיפים שקיימת אסוציאציה שלהם עם גן אחד לפחות, היינו מקטינים משמעותית את מספר הSNPים. כך התיקון היה פחות "דרסטי" והיינו מקבלים יותר QTLים ייחודיים, ואסוציאציות לגנים על כרומוזומים נוספים (למשל כרומוזום 12).

<u>שלשות כבד:</u>

Locus	jene name	snp name	Chr	nenotypnotype na	P_value	-log(P_value)
D10Mit28	Aig1	2139	10	970 M	2.695E-06	5.56950561
rs3664101		2140	10	970 M	0.0003187	3.496661343
rs4228112	Aig1	2144	10	970 M	0.0209649	1.678507087
rs4228121	-	2146	10	970 M	0.0106533	1.972515388
CEL-10_1	Aig1	2150	10	970 M	0.0055001	2.259630964
rs3712394	Aig1	2152	10	970 M	0.0164914	1.782742869
rs1348052	Aig1	2154	10	970 M	0.0255251	1.593032858
rs1348052	Aig1	2155	10	970 M	0.0224222	1.649321598
rs3688363	Aig1	2157	10	970 M	0.0119482	1.922698627
rs1345911	Aig1	2159	10	970 M	0.0364569	1.438220288
rs1348118	Med1	2442	11	1224 F	0.0149408	1.825625307
rs1348118	Lsm12	2442	11	1224 F	0.0149408	1.825625307
D10Mit28	Aig1	2139	10	1224 F	4.576E-05	4.339484075
rs3664101	Aig1	2140	10	1224 F	0.0036689	2.435463847
rs4228112	Aig1	2144	10	1224 F	0.0069567	2.157598644
rs4228121		2146	10	1224 F	0.0097141	2.012595348
CEL-10_1	Aig1	2150	10	1224 F	0.0037066	2.431022152
rs3712394	Aig1	2152	10	1224 F	0.0096736	2.01440983
rs1348052	Aig1	2154	10	1224 F	0.0072717	2.13836415
rs1348052	: Aig1	2155	10	1224 F	0.0069567	2.157598644
rs3688363	Aig1	2157	10	1224 F	0.0055001	2.259630964
rs1345911	Aig1	2159	10	1224 F	0.0072717	2.13836415
rs1348118	Med1	2442	11	1478 M & F	0.028714	1.541905592
rs1348118	Lsm12	2442	11	1478 M & F	0.028714	1.541905592
D10Mit28	Aig1	2139	10	1478 M & F	2.931E-06	5.532925562
rs3664101	Aig1	2140	10	1478 M & F	0.0004454	3.35128877
rs4228112	Aig1	2144	10	1478 M & F	0.0062594	2.203470054
rs4228121	Aig1	2146	10	1478 M & F	0.0059391	2.226283003
CEL-10_1	_	2150	10	1478 M & F	0.0020208	2.694487287
rs3712394		2152	10	1478 M & F	0.0069567	2.157598644
rs1348052	-	2154	10	1478 M & F	0.0072717	2.13836415
rs1348052	: Aig1	2155	10	1478 M & F	0.0069567	2.157598644
rs3688363	Aig1	2157	10	1478 M & F	0.0048755	2.311982198
rs1345911		2159	10	1478 M & F	0.0091297	2.039541532
rs1347811	Wdr86	1098	5	1478 M & F	0.0340301	1.468136211
rs1347811		1098	5	1478 M & F	0.0340301	1.468136211
mCV22832	Wdr86	1099	5	1478 M & F	0.0364569	1.438220288
mCV22832	Pion	1099	5	1478 M & F	0.0364569	1.438220288

<u>שלשות היפותלמוס:</u>

Locus	gene name	snp name	Chr	phenotype	phenotype name	P_value	-log(P_value)
rs3664101		2140	10	970		0.0003187	3.496661343
rs3664101	Nmbr	2140	10	970		0.0003187	3.496661343
rs3664101	Hebp2	2140	10	970	М	0.0003187	3.496661343
rs3664101	Adat2	2140	10	970	M	0.0003187	3.496661343
rs3664101	Ppil4	2140	10	970	М	0.0003187	3.496661343
rs4228121	Nhsl1	2146	10	970	M	0.0106533	1.972515388
rs4228121	Nmbr	2146	10	970	M	0.0106533	1.972515388
rs4228121	Hebp2	2146	10	970	M	0.0106533	1.972515388
rs4228121	Adat2	2146	10	970	M	0.0106533	1.972515388
rs4228121	Ppil4	2146	10	970	M	0.0106533	1.972515388
CEL-10_1	Nhsl1	2150	10	970	M	0.0055001	2.259630964
CEL-10_1	Nmbr	2150	10	970	M	0.0055001	2.259630964
CEL-10_1	Hebp2	2150	10	970	M	0.0055001	2.259630964
CEL-10_1	Adat2	2150	10	970	M	0.0055001	2.259630964
CEL-10_1	Ppil4	2150	10	970	M	0.0055001	2.259630964
rs3721803		2134	10	970		1.095E-06	5.960620122
rs3721803		2134	10	970		1.095E-06	5.960620122
rs3721803	Ppil4	2134	10	970	M	1.095E-06	5.960620122
rs3695003		2137	10	970		1.095E-06	5.960620122
rs3695003		2137	10	970		1.095E-06	5.960620122
rs3695003		2137	10	970		1.095E-06	5.960620122
rs4228112		2144	10	970		0.0209649	1.678507087
rs4228112		2144	10	970		0.0209649	1.678507087
rs4228112		2144	10	970		0.0209649	1.678507087
rs4228112		2144	10	970		0.0209649	1.678507087
rs1348052	Hebp2	2154	10	970	M	0.0255251	1.593032858
rs1348052		2154	10	970		0.0255251	1.593032858
rs1348052		2155	10	970		0.0224222	1.649321598
rs1348052		2155	10	970		0.0224222	1.649321598
rs1345911		2159	10	970		0.0364569	1.438220288
rs1345911		2159	10	970		0.0364569	1.438220288
rs6185923		2136	10	970		6.583E-06	5.181603074
rs6185923		2136	10	970		6.583E-06	5.181603074
rs3664101		2140	10	1224		0.0036689	2.43546384
rs3664101		2140	10	1224		0.0036689	2.435463847
rs3664101	1	2140	10	1224		0.0036689	2.435463847
rs3664101		2140	10	1224		0.0036689	2.435463847
rs3664101	Ppil4	2140	10	1224	F	0.0036689	2.435463847
rs4228121		2146	10	1224		0.0097141	2.012595348
rs4228121		2146	10	1224		0.0097141	2.012595348
rs4228121	•	2146	10	1224		0.0097141	2.012595348
rs4228121		2146	10	1224		0.0097141	2.012595348
rs4228121		2146	10	1224		0.0097141	2.012595348
CEL-10_1		2150	10	1224		0.0037066	2.431022152
CEL-10_1		2150	10	1224		0.0037066	2.431022152
CEL-10_1		2150	10	1224		0.0037066	2.431022152
CEL-10_1		2150	10	1224		0.0037066	2.431022152
CEL-10_1		2150	10	1224		0.0037066	2.431022152
rs3721803		2134	10	1224		1.982E-05	4.70278817
rs3721803		2134	10	1224		1.982E-05	4.70278817
rs3721803		2134	10	1224		1.982E-05	4.70278817
rs3695003		2137	10	1224 1224		1.982E-05	4.70278817
rs3695003 rs3695003		2137 2137	10			1.982E-05	4.70278817
rs4228112		2137	10 10	1224		1.982E-05 0.0069567	4.70278817
rs4228112		2144	10	1224 1224			2.157598644 2.157598644
rs4228112		2144	10	1224		0.0069567 0.0069567	2.157598644
rs4228112		2144	10	1224		0.0069567	2.157598644
rs1348052		2154	10	1224		0.0003307	2.1383641
rs1348052	•	2154	10	1224		0.0072717	2.13836415
rs1348052		2155	10	1224		0.0072717	
rs1348052		2155	10	1224		0.0069567	2.15759864
rs1345911		2159	10	1224		0.0003307	2.1383641
rs1345911		2159	10	1224		0.0072717	2.13836415
rs6185923		2136	10	1224		3.456E-05	4.46143574
rs6185923		2136	10	1224		3.456E-05	4.46143574
rs1348118		2442	11	1224		0.0149408	1.825625307
rs3664101		2140	10		М&F	0.0004454	3.3512887
rs3664101		2140	10		M&F	0.0004454	
rs3664101		2140	10		M & F	0.0004454	3.3512887
rs3664101		2140	10		M&F	0.0004454	3.3512887
rs3664101		2140	10		M & F	0.0004454	3.3512887
rs4228121		2146	10		M&F	0.0059391	2.226283003
rs4228121		2146	10		M & F	0.0059391	2.226283003
rs4228121		2146	10		M & F	0.0059391	2.226283003
rs4228121		2146	10		M&F	0.0059391	2.22628300
rs4228121		2146	10		M & F	0.0059391	2.22628300
CEL-10_1	•	2150	10		M&F	0.0020208	2.69448728
CEL-10_1		2150	10		M & F	0.0020208	2.69448728
CEL-10_1		2150	10		M&F	0.0020208	2.69448728
CEL-10_1		2150	10		M&F	0.0020208	2.69448728
CEL-10_1		2150	10		M & F	0.0020208	2.69448728
s3721803		2134	10		M & F	1.095E-06	5.96062012
rs3721803		2134	10		M&F	1.095E-06	5.96062012
rs3721803	Ppil4	2134	10	1478	M&F	1.095E-06	5.96062012
rs3695003		2137	10		M & F	1.095E-06	5.96062012
rs3695003		2137	10		M&F	1.095E-06	5.96062012
rs3695003		2137	10		M & F	1.095E-06	5.96062012
rs4228112		2144	10		M&F	0.0062594	2.20347005
rs4228112		2144	10		M&F	0.0062594	2.20347005
rs4228112		2144	10		M&F	0.0062594	2.20347005
rs4228112		2144	10		M&F	0.0062594	2.20347005
rs1348052		2154	10		M&F	0.0072717	
rs1348052		2154	10		M & F	0.0072717	2.1383641
rs1348052		2155	10		M&F	0.0069567	2.15759864
		2155	10		M&F	0.0069567	2.15759864
rs1348052		2159	10		M&F	0.0091297	
					M&F	0.0091297	2.039541532
rs1345911	Adat2	2159	1()	14/8			
rs1345911 rs1345911		2159 2136	10 10				
rs1348052 rs1345911 rs1345911 rs6185923 rs6185923	Adat2	2159 2136 2136	10 10 10	1478	M & F M & F	3.587E-06 3.587E-06	5.445246636 5.445246636

חלק 6: ניתוח סיבתיות

את מבחן הסיבתיות נבצע עבור 10 שלשות מתוך השלשות שבחרנו.

להלן השלשות:

<u>כבד:</u>

:<u>היפותלמוס</u>

Locus	Gene	Phenotype
rs4228121	Nmbr	970
rs3721803	Nmbr	970
rs3721803	Adat2	970
rs3721803	Adat2	1224
rs3721803	Ppil4	1224
rs4228112	Adat2	1224
rs4228121	Ppil4	1478
rs3721803	Ppil4	1478
rs1345911	Adat2	1478
rs3664101	Nhsl1	1478

Locus	Gene	Phenotype
D10Mit28	Aig1	970
rs4228121		970
rs1348052	Aig1	970
rs1348118	Med1	1224
rs3712394	Aig1	1224
rs1348052	Aig1	1224
rs1348118	Lsm12	1478
rs3664101	Aig1	1478
rs4228112	Aig1	1478
rs1348052	Aig1	1478

לכל שלשה נבחנו 3 המודלים שראינו בכיתה:

- C גן, - C – גן, - C – לוקוס, - C – לוקוס, - C – גן,

נבחר את המודל הטוב ביותר באמצעות חישוב הנראות של כל מודל. במקרה שלנו חישבנו את log הנראות, וכיוון שזו פונקציה עולה, המודל שעבורו "לוג" הנראות מקסימלי הוא אותו המודל שעבורו הנראות מקסימלית.

 $L(M_1) \ge L(M_2), L(M_3)$ לאחר מכן נחשב את יחס הנראות. נניח בה"כ

$$LR = \frac{L(M_1)}{\max(L(M_2), L(M_3))} \rightarrow \log(LR) = \log(L(M_1)) - \max(\log(L(M_2)), \log(L(M_3)))$$

נגדיר את השערת האפס ואת האלטרנטיבה:

$$L(M_i) \ge L(M_i, M_k), i, j, k \in \{1, 2, 3\}$$
 נניח כי

$$H_0: \log L(M_1) - \max(\log L(M_j), \log L(M_k)) \le 0$$

$$H_1: \log L(M_1) - \max(\log L(M_j), \log L(M_k)) > 0$$

כדי להעריך את המובהקות של כל תוצאה נבצע מבחן פרמוטציות. במבחן נייצר 100 פרמוטציות ונחשב מחדש את כל עמודות הטבלה הנוספות. לאחר מכן נספור את הפרמוטציות שעבורן יחס הנראות (LR) גבוה מהערך שמצאנו ונחלק במספר הפרמוטציות. מטרת המבחן היא "לנתק" את הקשרים שעבורם אחד המודלים הוא הטוב ביותר (האלטרנטיבה מתקיימת). לצורך כך נבצע פרמוטציות של עמודות הגנים והפנוטיפים. כך השלשות האמיתיות ינותקו והמידע עצמו יהיה רנדומלי בפועל.

<u>סיכום התוצאות:</u>

כבד:

Locus	Gene	Phenotype	Model	p_val
D10Mit28	Aig1	970	3	0
rs4228121	Aig1	970	3	0.37
rs1348052	Aig1	970	1	0.01
rs1348118	Med1	1224	3	0
rs3712394	Aig1	1224	1	0.01
rs1348052	Aig1	1224	1	0.04
rs1348118	Lsm12	1478	3	0.01
rs3664101	Aig1	1478	3	0.09
rs4228112	Aig1	1478	1	0.05
rs1348052	Aig1	1478	1	0.01

היפותלמוס:

Locus	Gene	Phenotype	Model	p_val
rs4228121	Nmbr	970	3	0.05
rs3721803	Nmbr	970	3	0
rs3721803	Adat2	970	3	0
rs3721803	Adat2	1224	3	0
rs3721803	Ppil4	1224	3	0
rs4228112	Adat2	1224	3	0
rs4228121	Ppil4	1478	3	0.13
rs3721803	Ppil4	1478	3	0
rs1345911	Adat2	1478	3	0
rs3664101	Nhsl1	1478	3	0.

ראשית נציין כי הערך $P_{value}=0$ הוא לא אפשרי תיאורטית. בפועל, תוצאה זו התקבלה עבור שלישיות שהערך שהתקבל עבורן הוא נמוך מאוד (כלומר קרוב ל-0), וכיוון שמספר הפרמוטציות מוגבל ל-100 לא נמצאה שלשה עם יחס נראות גבוה יותר מאשר היחס שהתקבל עבורן, ולכן ערך שמופיע עבורן הוא 0. אילו היינו מבצעים פרמוטציות נוספות (מעל 10,000), היינו עשויים לקבל ערכים שאינם 0 במקרים אלה.

בחרנו להציג את עשר השלשות הנ"ל לכל רקמה כמדגם מייצג של תוצאות מבחן הסיבתיות עבור כל רקמה. נבחין כי עבור הכבד יש חלוקה כמעט שווה בין מודל 1 למודל 3, כלומר חלק מהתוצאות ניתן רקמה. נבחין כי עבור הכבד יש חלוקה כמעט שווה בין מודל 1 למודל 3, כלומר חלקן באמצעות להסביר באמצעות קשר סיבתי ישיר בין הגנוטיפ ל-פנוטיפ, אך ללא קשר מוכח בין ה-SNP לפנוטיפ. לעומת קשר בין הגנוטיפ ל-פנוטיפ שוחלט של השלשות מודל 3 היה "המוצלח" ביותר, כלומר ניתן זאת, עבור ההיפותלמוס עבור רוב מוחלט של השלשות מודל 3 היה "המוצלח" ביותר, כלומר ניתן להסביר את הרוב המוחלט באמצעות קשר ישיר בין הגנוטיפ ל-SNP ובין הגנוטיפ לפנוטיפ אך ללא קשר מוכח בין ה-SNP לפנוטיפ.

כמו כן נבחין כי אכן קיבלנו תוצאות מובהקות של קשר סיבתי תחת מודלים 1 ו-3 בין הגן Aig1 ובין הפנוטיפים שבחנו, וכן בין רוב מוחלט של הגנים שנבדקו בהיפותלמוס (שרובם בכרומוזום 10) ובין הפנוטיפים שנבדקו. ממצא זה תואם את התוצאות בחלק 4 ומהווה אישוש להשערה כי קיים קשר בין גנוטיפים בכרומוזום 10 ובין הפנוטיפים שנבדקו.