Lecture 2 Part B: Loss functions

Pranabendu Misra Chennai Mathematical Institute

Advanced Machine Learning 2022

(based on slides by Madhavan Mukund)

Supervised learning estimates parameters for a model based on training data

Pranabendu Misra Lecture 2 Part B: Loss functions AML 2022

- Supervised learning estimates parameters for a model based on training data
- Parameter estimate is through gradient descent
 - Define a loss function measuring the error with respect to training data
 - Compute gradients with respect to each parameter
 - Adjust parameters by a small step in direction opposite to gradients

- Supervised learning estimates parameters for a model based on training data
- Parameter estimate is through gradient descent
 - Define a loss function measuring the error with respect to training data
 - Compute gradients with respect to each parameter
 - Adjust parameters by a small step in direction opposite to gradients
- Typical loss functions include mean squared error (MSE) and cross entropy

- Supervised learning estimates parameters for a model based on training data
- Parameter estimate is through gradient descent
 - Define a loss function measuring the error with respect to training data
 - Compute gradients with respect to each parameter
 - Adjust parameters by a small step in direction opposite to gradients
- Typical loss functions include mean squared error (MSE) and cross entropy
- How do arrive at these loss functions?

■ Build a model M from training data $D = \{(x_1, y_1,), (x_2, y_2,), \dots, (x_n, y_n)\}$

Pranabendu Misra Lecture 2 Part B: Loss functions AML 2022 3 / 11

- Build a model M from training data $D = \{(x_1, y_1,), (x_2, y_2,), \dots, (x_n, y_n)\}$
- Learning define M by computing parameters θ

3/11

- Build a model M from training data $D = \{(x_1, y_1,), (x_2, y_2,), \dots, (x_n, y_n)\}$
- Learning define M by computing parameters θ
- Model predicts value \hat{y} on input x_i with probability $P_{\text{model}}(\hat{y} \mid x_i, \theta)$

3/11

- Build a model M from training data $\overline{D} = \{(x_1, y_1,), (x_2, y_2,), \dots, (x_n, y_n)\}$
- Learning define M by computing parameters θ
- Model predicts value \hat{y} on input x_i with probability $P_{\text{model}}(\hat{y} \mid x_i, \theta)$ $\mathcal{A} \cap \mathcal{A}$
- Probability of predicting correct value is $P_{\text{model}}(y_i \mid x_i, \theta)$

- Build a model M from training data $D = \{(x_1, y_1,), (x_2, y_2,), \dots, (x_n, y_n)\}$
- Learning define M by computing parameters θ
- Model predicts value \hat{y} on input x_i with probability $P_{\text{model}}(\hat{y} \mid x_i, \theta)$
- Probability of predicting correct value is $P_{\text{model}}(y_i \mid x_i, \theta)$
- Likelihood is $\prod_{i=1}^{n} P_{\text{model}}(y_i \mid x_i, \theta)$

- Build a model M from training data $D = \{(x_1, y_1,), (x_2, y_2,), \dots, (x_n, y_n)\}$
- Learning define M by computing parameters θ
- Model predicts value \hat{y} on input x_i with probability $P_{\text{model}}(\hat{y} \mid x_i, \theta)$
- Probability of predicting correct value is $P_{\text{model}}(y_i \mid x_i, \theta)$
- Likelihood is $\prod_{i=1}^{n} P_{\text{model}}(y_i \mid x_i, \theta)$
- Find *M* that maximizes the likelihood

Log likelihood

■ Maximize the likelihood $\prod_{i=1} P_{\text{model}}(y_i \mid x_i, \theta)$

Pranabendu Misra Lecture 2 Part B: Loss functions AML 2022

Log likelihood

- Maximize the likelihood $\prod_{i=1}^{n} P_{\text{model}}(y_i \mid x_i, \theta)$
- log is an increasing function, so we can equivalently maximize log likelihood

$$\log \left(\prod_{i=1}^n P_{\mathsf{model}}(y_i \mid x_i, \theta) \right)$$

Log likelihood

- Maximize the likelihood $\prod P_{\text{model}}(y_i \mid x_i, \theta)$
- log is an increasing function, so we can equivalently maximize log likelihood

$$\log \left(\prod_{i=1}^n P_{\mathsf{model}}(y_i \mid x_i, \theta) \right)$$

Rewrite log likelihood as a sum

kelihood as a sum
$$\log \left(\prod_{i=1}^{n} P_{\text{model}}(y_i \mid x_i, \theta) \right) = \sum_{i=1}^{n} \log(P_{\text{model}}(y_i \mid x_i, \theta))$$

Pranabendu Misra Lecture 2 Part B: Loss functions AML 2022

■ Define
$$P_{\text{data}}(y \mid x_i)$$
 as follows: $P_{\text{data}}(y \mid x_i) = \begin{cases} 1 & \text{if } y = y_i \\ 0 & \text{otherwise} \end{cases}$

Pranabendu Misra Lecture 2 Part B: Loss functions AML 2022 5 / 11

■ Define $P_{\text{data}}(y \mid x_i)$ as follows: $P_{\text{data}}(y \mid x_i) = \begin{cases} 1 & \text{if } y = y_i \\ 0 & \text{otherwise} \end{cases}$

5/11 Pranabendu Misra Lecture 2 Part B: Loss functions AML 2022

- Define $P_{\text{data}}(y \mid x_i)$ as follows: $P_{\text{data}}(y \mid x_i) = \begin{cases} 1 & \text{if } y = y_i \\ 0 & \text{otherwise} \end{cases}$
- For each x_i , $P_{\text{data}}(y_i \mid x_i) = 1$, so rewrite log likelihood as

$$\sum_{i=1}^{n} \log(P_{\text{model}}(y_i \mid x_i, \theta)) = \sum_{i=1}^{n} P_{\text{data}}(y_i \mid x_i) \cdot \log(P_{\text{model}}(y_i \mid x_i, \theta))$$

 $lue{}$ Log likelihood is a function of the learned parameters heta

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} P_{\mathsf{data}}(y_i \mid x_i) \log(P_{\mathsf{model}}(y_i \mid x_i, \theta))$$

Pranabendu Misra Lecture 2 Part B: Loss functions AML 2022 5 / 11

- Define $P_{\text{data}}(y \mid x_i)$ as follows: $P_{\text{data}}(y \mid x_i) = \begin{cases} 1 & \text{if } y = y_i \\ 0 & \text{otherwise} \end{cases}$

■ For each
$$x_i$$
, $P_{\text{data}}(y_i \mid x_i) = 1$, so rewrite log likelihood as
$$\sum_{i=1}^n \log(P_{\text{model}}(y_i \mid x_i, \theta)) = \sum_{i=1}^n P_{\text{data}}(y_i \mid x_i) \cdot \log(P_{\text{model}}(y_i \mid x_i, \theta))$$

Log likelihood is a function of the learned parameters θ

$$\mathcal{L}(\theta) \neq \sum_{i=1}^{n} P_{\text{data}}(y_i \mid x_i) \log(P_{\text{model}}(y_i \mid x_i, \theta))$$

■ To maximize, find an optimum value of $\theta \left(\frac{\partial \mathcal{L}(\theta)}{\partial \theta} = 0 \right)$

5/11

Pranabendu Misra Lecture 2 Part B: Loss functions AML 2022

■ Let $X = \{x_1, x_2, ..., x_k\}$ with a probability distribution P

Pranabendu Misra Lecture 2 Part B: Loss functions AML 2022 6

- Let $X = \{x_1, x_2, \dots, x_k\}$ with a probability distribution $P(x_1, x_2, \dots, x_k)$
- Entropy is defined as $H(P) = -\sum_{i=1}^{k} P(x_i) \log P(x_i)$
 - Average number of bits to encode each element of X

- Let $X = \{x_1, x_2, ..., x_k\}$ with a probability distribution P
- Entropy is defined as $H(P) = -\sum_{i=1}^{k} P(x_i) \log P(x_i)$
 - Average number of bits to encode each element of X
- Given two distributions P and Q over X, cross entropy is defined as

$$H(P,Q) = -\sum_{i=1}^{k} P(x_i) \log Q(x_i)$$

Pranabendu Misra

- Let $X = \{x_1, x_2, ..., x_k\}$ with a probability distribution P
- Entropy is defined as $H(P) = -\sum_{i=1}^{k} P(x_i) \log P(x_i)$
 - Average number of bits to encode each element of X
- Given two distributions P and Q over X, cross entropy is defined as

$$H(P,Q) = -\sum_{i=1}^{k} P(x_i) \log Q(x_i)$$

- Imagine an encoding based on Q where true distribution is P
- Again, average number of bits to encode each element of X

Pranabendu Misra

- Let $X = \{x_1, x_2, ..., x_k\}$ with a probability distribution P
- Entropy is defined as $H(P) = -\sum_{i=1}^{k} P(x_i) \log P(x_i)$
 - Average number of bits to encode each element of X
- Given two distributions *P* and *Q* over *X*, cross entropy is defined as

$$H(P,Q) = -\sum_{i=1}^{k} P(x_i) \log Q(x_i)$$

- Imagine an encoding based on Q where true distribution is P
- Again, average number of bits to encode each element of X
- Note that cross entropy is not symmetric: $H(P,Q) \neq H(Q,P)$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

■ Maximum likelihood estimator (MLE) — maximize

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} P_{\text{data}}(y_i \mid x_i) \log(P_{\text{model}}(y_i \mid x_i, \theta))$$

Pranabendu Misra Lecture 2 Part B: Loss functions AML 2022 7/

■ Maximum likelihood estimator (MLE) — maximize

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} P_{\mathsf{data}}(y_i \mid x_i) \log(P_{\mathsf{model}}(y_i \mid x_i, \theta))$$

 $ightharpoonup P_{\text{model}}$ is an estimate for the true distribution P_{data}

Pranabendu Misra Lecture 2 Part B: Loss functions AML 2022 7

Maximum likelihood estimator (MLE) — maximize

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} P_{\mathsf{data}}(y_i \mid x_i) \log(P_{\mathsf{model}}(y_i \mid x_i, \theta))$$

 $ightharpoonup P_{\text{model}}$ is an estimate for the true distribution P_{data}

$$\blacksquare \ H(P_{\mathsf{data}}, P_{\mathsf{model}}) = -\sum_{i=1}^{\kappa} P_{\mathsf{data}}(y \mid x_i) \log(P_{\mathsf{model}}(y \mid x_i, \theta))$$

Pranabendu Misra Lecture 2 Part B: Loss functions AML 2022

Maximum likelihood estimator (MLE) — maximize

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} P_{\mathsf{data}}(y_i \mid x_i) \log(P_{\mathsf{model}}(y_i \mid x_i, \theta))$$

 $ightharpoonup P_{\text{model}}$ is an estimate for the true distribution P_{data}

$$\blacksquare \ H(P_{\mathsf{data}}, P_{\mathsf{model}}) = -\sum_{i=1}^{\kappa} P_{\mathsf{data}}(y \mid x_i) \log(P_{\mathsf{model}}(y \mid x_i, \theta))$$

$$\blacksquare \ H(P_{\mathsf{data}}, P_{\mathsf{model}}) = -\mathcal{L}(\theta)$$

Pranabendu Misra Lecture 2 Part B: Loss functions

Maximum likelihood estimator (MLE) — maximize

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} P_{\mathsf{data}}(y_i \mid x_i) \log(P_{\mathsf{model}}(y_i \mid x_i, \theta))$$

 $ightharpoonup P_{\text{model}}$ is an estimate for the true distribution P_{data}

$$\blacksquare \ H(P_{\mathsf{data}}, P_{\mathsf{model}}) = -\sum_{i=1}^k P_{\mathsf{data}}(y \mid x_i) \log(P_{\mathsf{model}}(y \mid x_i, \theta))$$

- $\blacksquare \ H(P_{\mathsf{data}}, P_{\mathsf{model}}) = -\mathcal{L}(\theta)$
- Minimizing cross entropy is the same as maximizing likelihood

Pranabendu Misra

Maximum likelihood estimator (MLE) — maximize

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} P_{\mathsf{data}}(y_i \mid x_i) \log(P_{\mathsf{model}}(y_i \mid x_i, \theta))$$

 $ightharpoonup P_{\text{model}}$ is an estimate for the true distribution P_{data}

$$H(P_{\text{data}}, P_{\text{model}}) = -\sum_{i=1}^{k} P_{\text{data}}(y \mid x_i) \log(P_{\text{model}}(y \mid x_i, \theta))$$

- $\blacksquare \ H(P_{\mathsf{data}}, P_{\mathsf{model}}) = -\mathcal{L}(\theta)$
- Minimizing cross entropy is the same as maximizing likelihood
- The "cross entropy loss function" is a special form of this generic observation

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = w^T x_i + \epsilon$
 - ullet $\epsilon \sim \mathcal{N}(0,\sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = w^T x_i$

8/11

AML 2022

Pranabendu Misra Lecture 2 Part B: Loss functions

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = w^T x_i + \epsilon$
 - ullet $\epsilon \sim \mathcal{N}(0,\sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = w^T x_i$
- Model gives us an estimate for w, so regression learns μ_i for each x_i

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = w^T x_i + \epsilon$
 - ullet $\epsilon \sim \mathcal{N}(0,\sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $\mathbf{v}_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \mathbf{w}^T \mathbf{x}_i$
- Model gives us an estimate for w, so regression learns μ_i for each x_i

$$P_{\mathsf{model}}(y_i \mid x_i, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}}$$

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = w^T x_i + \epsilon$
 - ullet $\epsilon \sim \mathcal{N}(0,\sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $\mathbf{v}_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = \mathbf{w}^T \mathbf{x}_i$
- Model gives us an estimate for w, so regression learns μ_i for each x_i

$$P_{\text{model}}(y_i \mid x_i, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y - \mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y - w^T x_i)^2}{2\sigma^2}}$$

Pranabendu Misra

Lecture 2 Part B: Loss functions

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = w^T x_i + \epsilon$
 - ullet $\epsilon \sim \mathcal{N}(0, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = w^T x_i$
- Model gives us an estimate for w, so regression learns μ_i for each x_i

$$P_{\text{model}}(y_i \mid x_i, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-w^T x_i)^2}{2\sigma^2}}$$

Log likelihood

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-w^T x_i)^2}{2\sigma^2}} \right)$$

Pranabendu Misra Lecture 2 Part B: Loss functions

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = w^T x_i + \epsilon$
 - ullet $\epsilon \sim \mathcal{N}(0, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = w^T x_i$
- Model gives us an estimate for w, so regression learns μ_i for each x_i
- $P_{\text{model}}(y_i \mid x_i, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-w^Tx_i)^2}{2\sigma^2}}$
- Log likelihood (assuming natural logarithm)

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-w^T x_i)^2}{2\sigma^2}} \right) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \sum_{i=1}^{n} \frac{(y-w^T x_i)^2}{2\sigma^2}$$

■ Log likelihood:
$$\mathcal{L}(\theta) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \sum_{i=1}^n \frac{(y - w^T x_i)^2}{2\sigma^2}$$

Pranabendu Misra Lecture 2 Part B: Loss functions AML 2022 9

■ Log likelihood:
$$\mathcal{L}(\theta) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \sum_{i=1}^n \frac{(y - w^T x_i)^2}{2\sigma^2}$$

• $w^T x_i$ is predicted value \hat{y}_i

- Log likelihood: $\mathcal{L}(\theta) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) \sum_{i=1}^n \frac{(y w^T x_i)^2}{2\sigma^2}$
- $w^T x_i$ is predicted value \hat{y}_i
- To maximize $\mathcal{L}(\theta)$ with respect to w, ignore all terms that do not depend on w

- Log likelihood: $\mathcal{L}(\theta) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) \sum_{i=1}^n \frac{(y w^T x_i)^2}{2\sigma^2}$
- $w^T x_i$ is predicted value \hat{y}_i
- To maximize $\mathcal{L}(\theta)$ with respect to w, ignore all terms that do not depend on w
- \blacksquare Optimum value of w is given by

$$\hat{w}_{\mathsf{MSE}} = \underset{w}{\mathsf{arg\,max}} \left[-\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \right]$$

9/11

- Log likelihood: $\mathcal{L}(\theta) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) \sum_{i=1}^n \frac{(y w^T x_i)^2}{2\sigma^2}$
- $w^T x_i$ is predicted value \hat{y}_i
- To maximize $\mathcal{L}(\theta)$ with respect to w, ignore all terms that do not depend on w
- \blacksquare Optimum value of w is given by

$$\hat{w}_{MSE} = \arg \max_{w} \left[-\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \right] = \arg \min_{w} \left[\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \right]$$

- Log likelihood: $\mathcal{L}(\theta) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) \sum_{i=1}^n \frac{(y w^T x_i)^2}{2\sigma^2}$
- $w^T x_i$ is predicted value \hat{y}_i
- lacksquare To maximize $\mathcal{L}(heta)$ with respect to w, ignore all terms that do not depend on w
- \blacksquare Optimum value of w is given by

$$\hat{w}_{MSE} = \underset{w}{arg max} \left[-\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \right] = \underset{w}{arg min} \left[\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \right]$$

 Assuming data points are generated by linear function and then perturbed by Gaussian noise, MSE is the "correct" loss function to maximize likelihood (and minimize cross entropy)

■ Compute linear output $z_i = w^T x_i$, then apply sigmoid $\sigma(z) = \frac{1}{1 + e^{-z}}$

- Compute linear output $z_i = w^T x_i$, then apply sigmoid $\sigma(z) = \frac{1}{1 + e^{-z}}$
- Let $a_i = \sigma(z_i)$.

- Compute linear output $z_i = w^T x_i$, then apply sigmoid $\sigma(z) = \frac{1}{1 + e^{-z}}$
- Let $a_i = \sigma(z_i)$. So, $P_{\text{model}}(y_i = 1) = a_i$, $P_{\text{model}}(y_i = 0) = 1 a_i$

- Compute linear output $z_i = w^T x_i$, then apply sigmoid $\sigma(z) = \frac{1}{1 + e^{-z}}$
- Let $a_i = \sigma(z_i)$. So, $P_{\text{model}}(y_i = 1) = a_i$, $P_{\text{model}}(y_i = 0) = 1 a_i$
- Cross entropy: $\sum_{i=1}^{n} \sum_{j \in \{0,1\}} P_{\text{data}}(y_i = j) \log(P_{\text{model}}(y_i = j \mid x_i, \theta))$

- Compute linear output $z_i = w^T x_i$, then apply sigmoid $\sigma(z) = \frac{1}{1 + e^{-z}}$
- Let $a_i = \sigma(z_i)$. So, $P_{\text{model}}(y_i = 1) = a_i$, $P_{\text{model}}(y_i = 0) = 1 a_i$
- Cross entropy: $\sum_{i=1}^{n} \sum_{j \in \{0,1\}} P_{\text{data}}(y_i = j) \log(P_{\text{model}}(y_i = j \mid x_i, \theta))$
- Expand:

$$\sum_{i=1}^{n} P_{\mathsf{data}}(y_{i} = 0) \log P_{\mathsf{model}}(y_{i} = 0 \mid x_{i}, \theta) + P_{\mathsf{data}}(y_{i} = 1) \log P_{\mathsf{model}}(y_{i} = 1 \mid x_{i}, \theta)$$

- Compute linear output $z_i = w^T x_i$, then apply sigmoid $\sigma(z) = \frac{1}{1 + e^{-z}}$
- Let $a_i = \sigma(z_i)$. So, $P_{\text{model}}(y_i = 1) = a_i$, $P_{\text{model}}(y_i = 0) = 1 a_i$
- Cross entropy: $\sum_{i=1}^{n} \sum_{j \in \{0,1\}} P_{\text{data}}(y_i = j) \log(P_{\text{model}}(y_i = j \mid x_i, \theta))$
- Expand:

$$\sum_{i=1}^{n} P_{\mathsf{data}}(y_i = 0) \log P_{\mathsf{model}}(y_i = 0 \mid x_i, \theta) + P_{\mathsf{data}}(y_i = 1) \log P_{\mathsf{model}}(y_i = 1 \mid x_i, \theta)$$

■ Equivalently, $\sum_{i=1}^{n} (1-y_i) \cdot \log(1-a_i) + y_i \cdot \log a_i$

- Compute linear output $z_i = w^T x_i$, then apply sigmoid $\sigma(z) = \frac{1}{1 + e^{-z}}$
- Let $a_i = \sigma(z_i)$. So, $P_{\text{model}}(y_i = 1) = a_i$, $P_{\text{model}}(y_i = 0) = 1 a_i$
- Cross entropy: $\sum_{i=1}^{n} \sum_{j \in \{0,1\}} P_{\text{data}}(y_i = j) \log(P_{\text{model}}(y_i = j \mid x_i, \theta))$
- Expand:

$$\sum_{i=1}^{n} P_{\mathsf{data}}(y_{i} = 0) \log P_{\mathsf{model}}(y_{i} = 0 \mid x_{i}, \theta) + P_{\mathsf{data}}(y_{i} = 1) \log P_{\mathsf{model}}(y_{i} = 1 \mid x_{i}, \theta)$$

- Equivalently, $\sum_{i=1}^{n} (1-y_i) \cdot \log(1-a_i) + y_i \cdot \log a_i$
- Recommended loss function, directly minimizes cross entropy

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ の♀○

Our goal is to find a maximum likelihood estimator

- Our goal is to find a maximum likelihood estimator
- Gradient descent uses a loss function to optimize parameters

- Our goal is to find a maximum likelihood estimator
- Gradient descent uses a loss function to optimize parameters
- Finding MLE is equivalent to minimizing cross entropy $H(P_{data}, P_{model})$

- Our goal is to find a maximum likelihood estimator
- Gradient descent uses a loss function to optimize parameters
- Finding MLE is equivalent to minimizing cross entropy $H(P_{data}, P_{model})$
- Applying this to a given situation, we arrive at concrete loss functions
 - Mean square error for regression
 - "Cross entropy" for binary classification

11 / 11