Машинное обучение ФКН ВШЭ

Теоретическое домашнее задание №3

Задача 1. Пусть даны выборка X, состоящая из 8 объектов, и классификатор b(x), предсказывающий оценку принадлежности объекта положительному классу. Предсказания b(x) и реальные метки объектов приведены ниже:

$$b(x_1) = 0.1, \quad y_1 = +1,$$

$$b(x_2) = 0.8, \quad y_2 = +1,$$

$$b(x_3) = 0.2, \quad y_3 = -1,$$

$$b(x_4) = 0.25, \quad y_4 = -1,$$

$$b(x_5) = 0.9, \quad y_5 = +1,$$

$$b(x_6) = 0.3, \quad y_6 = +1,$$

$$b(x_7) = 0.6, \quad y_7 = -1,$$

$$b(x_8) = 0.95, \quad y_8 = +1.$$

Постройте ROC-кривую и вычислите AUC-ROC для множества классификаторов a(x;t), порожденных b(x), на выборке X.

Задача 2. Пусть дан классификатор b(x), который возвращает оценку принадлежности объекта x положительному классу. Отсортируем все объекты по неубыванию ответа классификатора: $b(x_{(1)}) \leq \cdots \leq b(x_{(\ell)})$. Обозначим истинные ответы на этих объектах через $y_{(1)}, \ldots, y_{(\ell)}$.

Покажите, что AUC-ROC для данной выборки будет равен вероятности того, что случайно выбранный положительный объект окажется в отсортированном списке не раньше случайно выбранного отрицательного объекта.

- Задача 3. Пусть дана некоторая выборка X и классификатор b(x), возвращающий в качестве оценки принадлежности объекта x положительному классу 0 или 1 (а не некоторое вещественное число, как предполагалось на семинарах).
 - 1. Постройте ROC-кривую для классификатора b(x) на выборке X.
 - 2. Покажите, что AUC-ROC классификатора b(x) на выборке X может быть выражен через долю правильных ответов и полноту классификатора a(x;t), получающегося при выборе некоторого порога $t \in (0;1)$. Помимо указанных величин в формулу могут входить только величины ℓ_- , ℓ_+ , ℓ (количество отрицательных, положительных и общее количество объектов в выборке X соответственно).

3. Покажите, что в случае сбалансированной выборки $(\ell_- = \ell_+)$ AUC-ROC классификатора b(x) на выборке X совпадает с долей правильных ответов классификатора при выборе некоторого порога $t \in (0;1)$.

Задача 4. В анализе данных для сравнения среднего значения некоторой величины у объектов двух выборок часто используется критерий Манна–Уитни–Уилкоксона¹, основанный на вычислении U-статистики.

Пусть у нас имеется выборка X и классификатор b(x), возвращающий оценку принадлежности объекта x положительному классу. Тогда вычисление U-статистики для подвыборки X, состоящей из объектов положительного класса, производится следующим образом: объекты обеих выборок сортируются по неубыванию значения b(x), после чего каждому объекту в полученном упорядоченном ряду $x_{(1)}, \ldots, x_{(\ell)}$ присваивается ранг — номер позиции $r_{(i)}$ в ряду (начиная с 1, при этом для объектов с одинаковыми значением b(x) в качестве ранга присваивается среднее значение ранга для таких объектов). Тогда U-статистика для объектов положительного класса равна:

$$U_{+} = \sum_{\substack{i=1\\y_{(i)}=+1}}^{\ell} r_{(i)} - \frac{\ell_{+}(\ell_{+}+1)}{2}.$$

Покажите, что для значения AUC-ROC классификатора b(x) на выборке X и U-статистики верно следующее соотношение:

$$AUC = \frac{U_+}{\ell_-\ell_+}.$$

Задача 5. Позволяет ли предсказывать корректные вероятности экспоненциальная функция потерь $L(y,z) = \exp(-yz)$?

Задача 6. Рассмотрим постановку оптимизационной задачи метода опорных векторов для линейно разделимой выборки:

$$\begin{cases} \frac{1}{2} ||w||^2 \to \min_{w,b}, \\ y_i(\langle w, x \rangle + b) \ge 1, \quad i = \overline{1, \ell}, \end{cases}$$

а также её видоизменёный вариант для некоторого значения t > 0:

$$\begin{cases} \frac{1}{2} ||w||^2 \to \min_{w,b}, \\ y_i(\langle w, x \rangle + b) \ge t, \quad i = \overline{1, \ell}. \end{cases}$$

Покажите, что разделяющие гиперплоскости, получающиеся в результате решения каждой из этих задач, совпадают.

Задача 7. Вычислите градиент $\frac{\partial}{\partial w}L(x,y;w)$ логистической функции потерь для случая линейного классификатора

$$L(x, y; w) = \log(1 + \exp(-y \langle w, x \rangle))$$

¹https://en.wikipedia.org/wiki/Mann-Whitney U test

и упростите итоговое выражение таким образом, чтобы в нём участвовала сигмоидная функция

$$\sigma(z) = \frac{1}{1 + \exp(-z)}.$$

При решении данной задачи вам может понадобиться следующий факт (убедитесь, что он действительно выполняется):

$$\sigma'(z) = \sigma(z)(1 - \sigma(z)).$$

Задача 8. Ответьте на следующие вопросы:

- 1. Почему в общем случае распределение p(y|x) для некоторого объекта $x \in \mathbb{X}$ отличается от вырожденного $(p(y|x) \in \{0,1\})$?
- 2. Почему логистическая регрессия позволяет предсказывать корректные вероятности принадлежности объекта классам?
- 3. Рассмотрим оптимизационную задачу из варианта SVM для линейно разделимых выборок. Всегда ли в обучающей выборке существует объект x_i , для которого выполнено $y_i(\langle w, x_i \rangle + b) = 1$? Почему?
- 4. С какой целью в постановке оптимизационной задачи SVM для линейно неразделимых выборок вводятся переменные $\xi_i, i = \overline{1, \ell}$?