Assignment 1 - Fall 2017 Zaki G. Lindo

Assignment 1: Due Monday September 4, 2017, no later than 8pm. p.12-14~#~16,~42,~47 p.36-37~#~7,~13

$$p.12 - 14$$

#16. For the statement about nonempty sets A, B, C, either prove that the statement is true or find a counterexample with nonempty sets that make it fail.

If
$$A \subseteq (B \cap C)$$
 then $A \subseteq B$ and $A \subseteq C$.

Proof: Let A, B, and C, be nonempty sets. Let $A \subseteq (B \cap C)$. We must show that $A \subseteq B$ and $A \subseteq C$. As $A \subseteq (B \cap C)$, for all $x \in A, x \in (B \cap C)$. By definition of *intersects*, for all $x \in B \cap C, x \in B$ and $x \in C$. As we showed $x \in B, x \in C$, and x was arbitrary, $A \subseteq B$ and $A \subseteq C$. Thus, If $A \subseteq (B \cap C)$ then $A \subseteq B$ and $A \subseteq C$.

#42. Determine if the function below is injective, surjective, or bijective. Prove it is true or give a counterexample for each property.

$$h: \mathbb{Z} \to \mathbb{Z}$$
 where $h(x) = 2x - 5$.

(Injective) **Proof by Contradiction:** Let $h: \mathbb{Z} \to \mathbb{Z}$ where h(x) = 2x - 5. For a contradiction, assume h is not injective. That is, for all $m, n \in \mathbb{Z}, m \neq n$ and h(m) = h(n). As h(m) = h(n), 2m - 5 = 2n - 5. It follows that 2m = 2n. Thus, m = n. As $m \neq n$ and m = n, we have a contradiction. Therefore, h is injective.

(Surjective) Counter Example: Let h(x) = 2. Solve for x.

$$2 = 2x - 5$$
$$7 = 2x$$

7/2 = x.

As $7/2 \notin \mathbb{Z}$ There exists $y \in \mathbb{Z}$ such that for all $x \in \mathbb{Z}$, $h(x) \neq y$. Therefore, h is not surjective.

(Bijective) As h is not surjective, h is not bijective.

#47. Carefully Prove the statement below.

If f and g are functions with $f: A \to B$, $g: B \to C$ and $g \circ f$ is surjective then g is surjective.

Proof: Suppose f and g are functions with $f:A\to B, g:B\to C$ and $g\circ f$ is surjective. We want to show that g is surjective. We know $g\circ f(x)=g(f(x))$. Let $x\in A$. As g(f(x)) is surjective, there exists $y\in C$ such that g(f(x))=y. Let $z\in B$ such that f(x)=z. Now we have that there exists $y\in C$ such that g(z)=y. As x was arbitrary, we can say that z was arbitrary. As z was arbitrary, for all $z\in B$, there exists $y\in C$ such that g(z)=y. Thus, g is surjective.

$$p.36 - 37$$

#7. Determine if the rule x*y = xy is an operation on the set of negative integers.

This is not an operation on the set of negative integer. There exists $x,y\in -\mathbb{Z}$ such that $x*y\notin -\mathbb{Z}$:

Counter Example: Let x = -1. Let y = -2. This gives us $x * y = (-1)(-2) = 2 \notin -\mathbb{Z}$. As $2 \notin -\mathbb{Z}$, x * y is not an operation on the set of negative integers.

#13. Determine if the operation defined below on the set \mathbb{Z} is associative, commutative, has an identity, and if each element has an inverse. Either prove or give a counterexample for each property.

For
$$a, b \in \mathbb{Z}$$
, $a * b = a + 2b - 1$.

(Commutative): For all $a, b \in \mathbb{Z}$, a * b = b * a.

Let
$$a = 2$$
. Let $b = 4$.
 $a * b = 2 + 2(4) - 1 = 9$.
 $b * a = 4 + 2(2) - 1 = 7$.
 $9 \neq 7$.

Thus, * is not commutative on the set \mathbb{Z} .

(Associative): For all $a, b \in \mathbb{Z}$, (a * b) * c = a * (b * c).

Let
$$a=1$$
. Let $b=2$. Let $c=-3$. $(a*b)*c=(1+2(2)-1)+(2)(-3)-1=4-6-1=-3$. $a*(b*c)=1+2(2+2(-3)-1)-1)-1=1+2(-5)-1=-10$ $-10\neq -3$.

Thus, * is not associative on the set \mathbb{Z} .

(Identity): There exists $e \in \mathbb{Z}$ such that for all $a \in \mathbb{Z}$, e*a = a and a*e = a.

Let a=1.Let e be the identity for 1. Then 1*e=1. 1*e=1+2e-1=1, 2e=1, e=1/2. But $e\notin\mathbb{Z}$. Therefore, 1 does not have an identity $e\in\mathbb{Z}$.

(Inverse): There exists $i \in \mathbb{Z}$ such that for all $a \in \mathbb{Z}, a * i = e$.

If we observe the counter example we used in our (Identity) presentation we will see * does not have an inverse for that counter example, because there isn't an identity element $e \in \mathbb{Z}$ that we can say a * i = e.

Due to this, we can say not every element has an inverse under *.