Computer Organization and Design

Arithmetic for Computers Part II Division

Jiang Zhong zhongjiang@cqu.edu.cn

MIPS Arithmetic Logic Unit (ALU)

Must support the Arithmetic/Logic zero ovf operations of the ISA

```
add, addi, addiu, addu sub, subu mult, multu, div, divu sqrt and, andi, nor, or, ori, xor, xori B 32 m (operation)
```

- With special handling for
 - sign extend addi, addiu, slti, sltiu
 - zero extend andi, ori, xori
 - overflow detection add, addi, sub

Review Appendix C (from CD or lecture page) for more details on ALU design

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is set to the largest representable value
 - c.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video

10000000

10000000

100000000

- 1. 补码的加法
 - 10010010 + 10011010
- 2.补码减法
 - 10010010 10011010

Multiplication

- 先回顾二进制乘法的人工计算
- 在计算机中实现面临哪些问题?

```
\begin{array}{r}
1000 \\
\times 1001 \\
\hline
1000 \\
0000 \\
1000 \\
\hline
1001000
\end{array}
```


Length of product is the sum of operand lengths

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication Hardware

Chapter 3 — Arithmetic for Computers — 7

定点小数的乘法计算过程(与定点整数的结论一致)

Let x, y are fractional fixed-point both x and y less then 1.

$$x=0. x_1x_2.....x_n < 1$$

 $y=0. y_1y_2.....y_n < 1$

The product of x and y is

$$x \cdot y = x (0. y_1 y_2 \cdot \dots y_n)$$

= $x (y_1 2^{-1} + y_2 2^{-2} + \dots + y_n 2^{-n})$
= $2^{-1} (y_1 x + 2^{-1} (y_2 x + 2^{-1} (\dots + 2^{-1} (y_{n-1} x + 2^{-1} (y_n x + 0)) \dots)))$

the recurrence formula for product

let \mathbf{z}_i denotes the ith product, we could get the recurrence formula

$$z_0 = 0,$$
 $z_1 = 2^{-1} (y_n x + z_0)$
 $z_2 = 2^{-1} (y_{n-1} x + z_1)$
 $z_1 = 2^{-1} (y_{n-1} x + z_1)$
 $z_1 = 2^{-1} (y_{n-1} x + z_{1-1})$
 $z_1 = x \cdot y = 2^{-1} (y_1 x + z_{1-1})$

特点:每次只需要相加两个数,然后右移一位。且相加的两个数(部分积和位积)都只有n位,因而不需要2n位的加法器。

例: x=0.1101, y=0.1011, 求 x·y。

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low
 - ~32 cycles for multiplying 2 32-bit values

计算:
$$1.110_{10} * 10^{10} * 9.200_{10} * 10^{-5}$$

| Even Faster Multiplier

Even Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff
 - 31 adders $\rightarrow \log_2(31) = \sim 5$ cycles for multiplying 2 32-bit values

- Can be pipelined
 - Several multiplication performed in parallel

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product —> rd

请计算 0.1011 *0.1101

3.4 Division

- 十进制整数除法回顾
- 二进制整数除法
- 原码1位除法思想
- 恢复余数除法及其优化
- 加减交替除法
- 定点小数除法
- 快速除法概况

3.4 Division Decimal Division

$$\begin{array}{c|cccc}
0 & 2 & 1 \\
\hline
1 & 2 & 8 \\
\hline
0 & & & \\
1 & 2 & & \\
\hline
1 & 2 & & \\
\hline
0 & & & \\
0 & & & \\
& & & 6 \\
\hline
& & & 2
\end{array}$$

Division -- Binary Division

n-bit operands yield *n*-bit quotient and remainder

计算机实现n位二进制除需解决的问题:

1) 余数 (部分余数) 与除数如何对齐?

固定的位数2*n(n)位

2) 如何进行试商?

通过比较余数和除数大小(减法)

3) 计算 (次数?) 结束的条件?

设置固定n+1次迭代

4) 如何处理符号位?

单独处理符号位

3.4 Division

- 十进制整数除法回顾
- 二进制整数除法
- 原码1位除法思想
- 恢复余数除法及其优化
- 加减交替除法
- 定点小数除法
- 快速除法概况

(1) 原码1位除法

设有两个n位定点整(小)数:

被除数: X, 其原码为 $[x]_{\mathbb{R}} = x_f \cdot x_{n-1} \cdot x_1 x_0$

除数 : Y, 其原码为 [y]_原 = y_f · y_{n - 1} ··· y₁ y₀

商 : Q = X/Y,其原码为

 $[Q]_{f} = (x_f \oplus y_f) \cdot (x_{n-1}...x_1x_0 / y_{n-1}... y_1y_0)$

原码1位除的思想为:

- 商的符号运算 q_f = x_f ⊕ y_f
- 2) 商的数值运算,实质是两个正整数求商(余)的过程 恢复余数法和加减交替法

设计二进制正整数求商和余数的算法

假设X= x_{n-1}...x₁x₀, Y= y_{n-1}... y₁y₀,

X/Y的商为 Q= q_{n-1}... q_i...q₁q₀

请同学们设计一个算法来计算商Q中的每一位取值qi?

提示1: 令 $X=Y*Q+R=Y*(q_{n-1}...q_1q_0)+R$,R为余数

$$X = q_{n-1} * Y * 2^{n-1} + ... q_i * Y * 2^i + ... q_1 * Y * 2 + q_0 * Y + R$$

提示2: 如果 $X >= Y * 2^{n-1}$,那么 $q_{n-1} = 1$, 否则为 $q_{n-1} = 0$

正常使用主观题需2.0以上版本雨课堂

正整数求商算法

```
假设X=Y*Q+R,其中Q为商,R为余数
算法: 正整数求商和余数算法
输入: n位的二进制被除数X和除数Y
输出:商Q和余数R
step 0: \Leftrightarrow t = n-1, Q =0; R=X
step 1. R=R- Y * 2<sup>†</sup>
       if R>=0
          q_{+}=1;
        else q_{+}=0; R=R + Y * 2<sup>†</sup>
step 2. t=t-1
step 3 if t>=0 goto step1
step 4 R=X
step 5 输出R, Q
```

Chapter 3 — Arithmetic for Computers — 23

Integer Division Hardware

计算机中恢复余数算法流程

恢复余数法的基本特点

- 对齐方式:除数和被除(余数)均为2*n位除数左移n位扩展到2n位,被除数则通过无符号扩展
- 用1试商:每次试商1,即采用余数-除数根据余数符号位判断是否有错。若有错误需要恢复余数。
- 移位处理:除数右移1位,商左移1位置最低位值
- 运算次数: n位运算需要执行n+1次计算

Demo

Step 1.1 余数-除数,试商

Step 2.1余数-除数 试商

Step 3.1 余数-除数 试商

Step3.2 余数<0,商左移1位,置0

Step 3.3 恢复余数,除数右移1位

Step 4.1 余数-除数 试商

Step4.2 余数>0,商左移1位,置1

Step 4.4 除数右移1位

Step 5.1余数-除数 试商

Step5.2 余数>0,商左移1位,置1

Step 5.3 除数右移1位(可选)

请同学们再观察一遍 |x|/|y|的过程 X= [0111]₂ Y=[0010]₂

迭代次数	步骤	商	除数	余数
0	初始化	0000	0010 0000	0 0000 0111
1 比较余数与 Y * 2 ⁴	余数=余数-除数 试商,余数<0 恢复余数 商左移 1位, 最低位置 0 除数右移	0000 000 0	0010 0000 0010 0000 000 1 0000	1 1110 0111 0 0000 0111 0 0000 0111
`~2	余数=余数-除数 试商,余数<0 恢复余数 商左移 1位, 最低位置 0 除数右移	0000 00 00 00 00	0001 0000 0001 0000 0000 1 000	1 1 111 0111 0 0000 0111 0 0000 0111
3	余数=余数-除数 试商,余数<0 恢复余数 商左移 1位, 最低位置 0 除数右移	0000 0 000 0 000	0000 1000 0000 1000 0000 0 1 00	1 1111 1111 0 0000 0111 0 0000 0111
4	余数=余数-除数 试商1,余数>=0 商左移1位, 最低置1 除数右移	0000 0001 0001	0000 0100 0000 0100 0000 0010	0 0000 0011 0 0000 0011 0 0000 0011
5 比较余数与 Y * 2 ⁰	余数=余数-除数 试商1,余数>=0 商左移1位, 最低置1 除数右移	0000 0010 0011	0000 0010 0000 0010 0000 0001	0 0000 0001 0 0000 0001 0 0000 0001

Integer Division

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Step 0 初始化

被除数= [0111]2 除数=[0010]2

Chapter 3 — Arithmetic for Computers — 47

Step 1.1 余数=余数-除数 试商

Step 1.2 余数<0 恢复余数,余数和商 左移1位

Step 1.3 商的 最低位置0

Step 2.1 余数=余数-除数 试商

Step 2.2 余数<0 恢复余数,余数和商 左移1位

Step 2.3 商的 最低位置0

Step 3.1 余数=余数-除数 试商

Step 3.2余数<0 恢复余数, 余数和商 左移1位

Step 3 余数最低位置0

Step 4.1 余数=余数-除数 试商

Step 4.2 余数>0, 余数-商左移1位

Step 4.3 余数最低位置1

Step 5.1 余数=余数-除数 试商

Step 5.2 余数>0,余数-商左移1位

Step 5.3 余数最低位置1

令X= [0111]₂ Y=[0010]₂ 优化的除法汇总

迭代次数	步骤	除数	余数 商
0	初始化	0010	0 0000 0111
1	余数=余数-除数 试商 余数<0 恢复余数并左移1位 余数最低位置0	0010	1 1 110 0111 0 0000 1110 1 0000 111 0
2	余数=余数-除数 试商 余数<0 恢复余数并左移1位 余数最低位置0	0010	1 1 110 111 0 0 0001 11 0 0 0 0001 11 00
3	余数=余数-除数 试商 余数<0 恢复余数并左移1位 余数最低位置0	0010	1 1 111 111 0 0 0011 1 00 0 0 0011 1 000
4	余数=余数-除数 试商 余数>0,余数-商 左移 1位 余数最低位置 1	0010	0 0001 1 000 0 0011 000 0 0 0011 0001
5	余数=余数-除数 试商 余数>0,余数-商左移1位 余数最低位置1	0010	0 0001 0001 0 0001 001 0 0 001 0 0011

商为= [0011] 余数为=[0000 0001]2

原码1位除法-加减交替除法

实际上常用的是加减交替法, 其运算规则:

- > **商的符号**单独处理 $q_f = x_f \oplus y_f$
- > 试商运算并左移
 - 当余数为正时,商1,余数左移一位,减除数;
 - 当余数为负时,商0,余数左移一位,加除数;
- ➤ 上述步骤重复n+1次(n位尾数,1位为符号位)得到商的绝对值,最后一步余数不左移
- ▶ 最后一步余数为负值时,需要加上|y|得到正确的余数 特点: 计算步数固定,控制简单。

加减交替除法正确性说明

对于恢复余数法,假设第i次余数为Ri

➤ 如果R_i为正数,那么R_{i+1}的值为:

$$R_{i+1} = 2R_i - |y|$$

➤ 如果Ri为负数,那么R_{i+1}的值为:

恢复余数法: 先恢复余数然后, 左移1位, 再减去|y|

$$R_{i+1}=2(R_i+|y|)-|y|=2R_i+|y|$$

加减交替法: 余数左移加上|y|

$$R_{i+1} = 2R_i + |y|$$

因此这两种算法计算结果是一样的!

Step 0 初始化

被除数= [0111]2 除数=[0010]2

Chapter 3 — Arithmetic for Computers — 66

Step 1.1 余数>0, 余数-除数 试商

Step 1.2 余数和商 左移1位

Step 1.3 余数<0,商的最低位置0

Step 2.1 余数<0, 余数+除数 试商

Step 2.2 余数和商 左移1位

Chapter 3 — Arithmetic for Computers — 71

Step 2.3 余数<0,商的最低位置0

Step 3.1 余数<0, 余数+除数 试商

Step 3.2 余数和商 左移1位

Step 3.3 余数<0,商的最低位置0

Step 4.1 余数<0, 余数+除数 试商

Step 4.2 余数和商 左移1位

Step 4.3 余数>=0, 商的 最低位置1

Step 5.1 余数>0, 余数-除数 试商

Step 5.2 余数和商 左移1位

Step 5.3 余数>=0, 商的 最低位置1

令x= [0111]₂ y=[0010]₂ 加减交替计算过程

迭代次数	步骤	除数	余数 商
0	初始化	0010	0 0000 0111
1	当前余数为正,余数=余数-除数 余数<0,左移1位 余数最低位置0	0010	1 1 110 0111 1 1100 1110 1 1100 111 0
2	当前余数<0,余数=余数+除数 余数并左移1位 余数最低位置0	0010	1 1 110 111 0 1 1101 11 0 0 1 1101 11 00
3	当前余数<0,余数=余数+除数 余数<0 恢复余数并左移1位 余数最低位置0	0010	1 1 111 11 00 1 1 111 1 00 0 1 1 111 1 000
4	当前余数<0余数=余数+除数 余数>0,余数左移1位 余数最低位置1	0010	0 0001 1 000 0 0011 000 0 0 0011 0001
5	当前余数>0,余数=余数-除数 余数>0,余数左移1位 余数最低位置1	0010	0 0001 0001 0 001 0 001 0 0 001 0 0011

商为= [0011] 余数为=[0000 0001]2

3.4 Division

- 十进制整数除法回顾
- 二进制整数除法
- 原码1位除法思想
- 恢复余数除法及其优化
- 加减交替除法
- 定点小数除法
- 快速除法概况

定点小数原码1位除法(加减交替)

算法: 小数求商和余数算法

输入: n位的二进制小数被除数X和除数Y

输出: 商Q和余数R

step 0: 初始化,R=X, t=0

step 1. if R>O R=R-X else R=R+X

step 2. left_shift(R), left_shift(Q), t=t+1

step 3 if $R \ge 0$ Q(n)=1 else Q(n)=0

step 4 if t < n goto step 1;

step 5 输出 R, Q

定点小数原码1位除法

算法推广到定点小数时需要注意:

- 被除数后面补零扩展n位 与整数除法一项,被除数的有效值保持不变。
- 参与运算的小数必须是规格化小数 绝对值>=0.5,原码表示的小数点后第一位为1
- 加法器运算时采用双符号位 这是运算结果可以是[-2,2)的值。

定点小数除法采用双符号位补码(模4补码)

定点小数的补码采用2个符号位来表示数字的符号

例如: 00.1101 或者11.1010

如果其表示范围为[-1,1) 最终的结果为 10 或则

01,则表示其结果存在溢出。

如果采用双符号位,计算结果都是正确的无需特别处理。

加减交替法推广到定点小数的除法运算

		[v] = 0.0 1001
被除数x/余数 r	商q	说明 [x] _原 = 00.1001, [y] _补 = 00.1011, [-y] _补 =11.0101
0 0.1 0 0 1		$[-v]_{2k} = 11.0101$
<u>+[-y]_ネ 11.0101</u>	0.0000	x减y
1 1.1 1 1 0		余数 r ₀ <0,
← 11.1100	0.0000	r和q左移一位,商0
$+[y]_{k}$ 0 0. 1 0 1 1		加以
0 0. 0 1 1 1		余数r ₁ >0
$\leftarrow 0.0.1110$	0.0001	r和q左移一位,商1
$+[-y]_{*}$ 1 1. 0 1 0 1		减y
0 0. 0 0 1 1	0.0011	余数r ₂ >0
$\leftarrow 0.00110$	0.0011	r和q左移一位,商1
$+[-y]_{\stackrel{?}{\nmid h}}$ 1 1. 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1		减y ◆数r ←0
← 11.1011 ← 11.0110	0 .0110	余数r ₃ <0 亲 0 rf0a左按一位
	0.0110	商0,r和q左移一位
$+[y]_{\stackrel{?}{\not=} h}$ 0 0. 1 0 1 1 0 0. 0 0 1		加y 余数r₄>0
0 0. 0 0 1	0.1101	商1,仅q左移一位
l	0.1101	וייניון אייניון אייניון

得: q = x/y = 0.1101

余数 $r = 2^{-4} r_4 = 0.00000001$

Faster Division

- 除法运算无法项乘法一样并行化
 - 因为减法操作需要根据余数的符号位条件执行
- 快速除法器 SRT division
 - 通过查表的方式来获取多位(2/3/4)的商
 - 在后续的步骤中矫正错误取值
 - 需要多次迭代
- 其它快速除法器
 - 函数迭代算法(Newton-Raphson等 近似计算)

Atkins, Daniel. (1968). Higher-Radix Division Using Estimates of the Divisor and Partial Remainders. Computers, IEEE Transactions on. C-17. 925- 934. 10.1109/TC.1968.226439.

王县,倪晓强,邢座程, 浮点除法算法的分析与研究, 第十二属计算机工程与工艺学术年会, 2008

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - Use mfhi, mflo to access result
 - No overflow or divide-by-0 checking
 - Software must perform checks if required

请采用加减交替法计算[X /Y]原的结果

15分钟完成,选择适当的算法需要给出具体的步骤

得: q = x/y = 0.1011 余

余数 r = 0.0000001

正常使用主观题需2.0以上版本雨课堂

参考答案 x=[0.1001] y= [0.1101],计算x/y的值

被除数x/余数 r	商q	说明 [x] _原 = 00.1001, [y] _补 = 00.1101, [-y] _补 =11.0011
0 0.1 0 0 1		$[-V]_{\pm k} = 11.0011$
$+[-y]_{\frac{1}{4}}$ 1 1. 0 0 1 1	0.0000	x減y
1 1.1 1 0 0		余数 r _o <0,
← 11.1000	0.0000	r和q左移一位,商0
$+[y]_{\stackrel{?}{\neq}}$ 0 0. 1 1 0 1		力Dy
0 0. 0 1 0 1	0.0004	余数r ₁ >0
← 00.1010	0.0001	r和q左移一位,商1
$+[-y]_{\stackrel{?}{\nmid h}}$ 1 1. 0 0 1 1		减y 全数r
1 1. 1 1 0 1 ← 1 1. 1 0 1 0	0.0010	余数r ₂ <0
,	0.0010	r和q左移一位,商0 减y
$+[y]_{\frac{1}{2}}$ 0 0. 1 1 0 1 0 0 0. 0 1 1 1		氽y 余数r₃>0
← 0 0. 1 1 1 0	0.0101	商1,r和q左移一位
$+[-y]_{\stackrel{?}{\neq}}$ 1 1. 0 0 1	0.0101	加y
0 0. 0 0 0 1		余数r ₄ >0
	0.1011	商1,仅q左移一位