

ECE571 MicroFab

Yinglai Yang, March 2015

1 Miscellaneous

$$\begin{array}{lll} \text{Si atom density} & 5\times 10^{22} \text{cm}^{-3} \\ \text{Boltzmann constant} & \kappa_B = 8.62\times 10^{-5} \text{eV/K} \\ \text{Vacuum permittivity} & \epsilon_0 = 8.854\times 10^{-12} \text{F/m} \\ & ^{\circ}C \rightarrow ^{\circ}K & +273^{\circ} \\ & \text{Capacity} & C = \frac{\epsilon_r \epsilon_0 A}{d} \\ & \text{Diffusivity} & D = D_0 \cdot \exp(-E_a/k_BT) \end{array}$$

2 Ingot

2.1 Czochralski

Crystalgrowth process:

- Polyxtals melted in a Qz crucible (>1500°C)
- 2. Seedxtal put in contact with surface (seed determines orientation)
- 3. Si atoms nucleate; ingot grows while being pulled up out of melt

2.2 Ingot Dopant Profile

Czochralski - CZ

Segregation coefficient $k_0 = \frac{C_s}{C_l}$ (solid side / liquid side concentration)

Dopant concentration profile: $C_s(x) = C_0 k_0 (1-x)^{k_0-1}$

Higher $k_0 < 1$ are often preferable \leadsto flatter profile = more wafers with uniform dopant concentration

Floating Zone - FZ

A ring heats up a small section of ingot and goes through ingot in one direction. Impurities move towards current liquid section. Used to clean ingot of impurities if a high ρ ingot is wanted. Process drives impurities to one end of ingot. Repeat process to get better results.

Dopant concentration profile:

$$C_s(x) = C_0[1 - (1 - k_0)exp(-\frac{-k_0x}{L})]$$

3 Wafer

Crystal Orientation and Flats

TODO better image with same orientations as in lecture

3.1 Electrical Characterization

Dopant type – Dopant type of wafer can be determined using a hot probe. This is a setup with two connected probes on surface of wafer. One probe is heated and drives majority carriers away of itself. Direction of the resulting current tells the carrier type (e^- or hole).

Impurity concentration – Impurity concentration can be inferred from resistivity. Use four-point-probe to measure resistivity. Outer probes enforce I, inner probes measure V. This setup prevents contanct resitance to distort result (contact resitance only at outer probes).

$$R = \frac{V}{I}$$

4 Silicon Oxide

4.1 Oxide Growth - Deal-Grove Model

Oxide thickness
$$d_{ox} = rac{A}{2} \left(\sqrt{1 + rac{t+ au}{A^2/4B}} - 1
ight)$$

$$au = rac{d_i^2 + Ad_i}{B}$$
; d_i is initial thickness

Standard Simplifications

1.
$$t\gg A^2/4B \leadsto$$
 "Thicker" oxides (parabolic growth): $d_{ox}=\sqrt{Bt}$

2.
$$t + \tau \ll A^2/4B \Rightarrow$$
 "Thinner" oxides (linear growth): $d_{ox} = \frac{B}{A}(t + \tau)$

n):
$$d_{ox} = \frac{B}{A}(t+\tau)$$

Also, note
$$\left(\frac{B}{A}\right)_{(111)} = 1.68 \left(\frac{B}{A}\right)_{(100)}$$

4.2 Oxide to Silicon Relationship

A unit cube of Si will become SiO_2 with a volume that is 2.24 times bigger. If the growth is constrained to one dimension, this is the relationship of thickness.

Using this relationship: Of 100

4.3 Electrical Characterization of Oxide

C-V profile – The capacity of the wafer can be measured. When the MOS structure is in accumulation or inversion at low frequency, the measured capacity $C=C_{ox}$. For depletion or inversion at high frequency, the measured capacity is smaller (capacitances in series).

To measure the capacity, a small alternating voltage is added to the DC voltage at the wafer. The resulting current will have a part that is phase-shifted compared to the voltage ($+90^{\circ}$ or $+\pi/2leadsto$ current precedes voltage).

Calculate C using
$$i(t) = C \frac{dv(t)}{dt}$$

4.4 High-k Dielectric Materials

Recall $C=\frac{\epsilon A}{d}$. "High k" materials with ϵ_r greater than SiOx allow to get the same electrical behavior (capacity C) for the gate oxide with thicker spacing. More space between channel and gate electrode \leadsto smaller leakage current!

5 Lithography

5.1 System Parameters

Rayleigh criterion/limit $R = \frac{1.22\lambda}{d}f$; d: aperture diameter

$$ightarrow$$
 for lithography, resolution $R=W_{min}=k_1rac{\lambda}{NA}$; k_1 : process parameter

Numerical aperture $NA = n \cdot \sin(\alpha)$: n: refractive index of medium between objective - wafer; α : objective lens acceptance angle

Depth of focus (DOF)
$$DOF = \frac{n\lambda}{NA^2}$$

Strive for: $R \downarrow, DOF \uparrow, MTF \rightarrow 1$

5.2 Photoresist

Contrast
$$\gamma = \frac{1}{\log(D_{100}/D_0)}$$

$$CMTF = \frac{D_{100} - D_0}{D_{100} + D_0} = \frac{10^{-\gamma} - 1}{10^{-\gamma} + 1}$$

CMTF < MTF must hold for the image to resolve!

5.3 Improving Resolution

Methods without reducing λ :

- Immersion lithography Add a liquid (DI water) between lens and PR $\rightsquigarrow NA \uparrow$
- Off-axis illumination
- Phase shift mask
- Optical proximity correction
- Double/multi patterning

Reducing λ :

- Extreme ultraviolet (EUV) $\lambda=13\mathrm{nm}$ or lower. At these wavelengths there is no material that can act as a lens (it will all be absorbed). System of mirrors used instead (compare to astronomy).
- X-ray

Alternative: Nano imprint lithography uses a mold to print pattern into resist.

6 Doping

6.1 Thermal Diffusion

Typically, source on wafer surface. Drive-in by thermal diffusion. Two different cases:

Unlimited/constant source, predeposition – Dopant concentration at wafer surface held constant over whole diffusion process (normally solid solubility!).

$$\begin{split} C(z,t) &= C_S \mathrm{erfc}\left(\frac{z}{2\sqrt{Dt}}\right) \\ Q_T(t) &= \frac{2}{\pi}C(0,t)\sqrt{Dt} \\ x_j &= 2\sqrt{Dt} \mathrm{erfc}^{-1}\left(\frac{C_S}{C_B}\right) \end{split}$$

Limited source, drive-in – A fixed amount of dopant Q_T is applied to wafer surface. Amount given as surface concentration (cm $^{-2}$).

$$C(z,t) = \frac{Q_T}{\sqrt{\pi Dt}} e^{-z^2/4Dt}$$
$$x_j = \sqrt{4Dt \ln\left(\frac{Q_T}{C_B \sqrt{\pi Dt}}\right)}$$

A case that often appears is a predeposition step followed by drive-ins (normally parasitic thermal processes). If $\sqrt{Dt_p redep} \ll \sqrt{Dt_d rive} - in$, then the dose is given by the predeposition, while the resulting concentration profile and junction depth can be approximated using the drive-in model.

To combine multiple diffusion steps in a sequence use the sum of all Dt's: $Dt_{eff} = Dt_1 + Dt_2 + \dots$

6.2 Ion Implantation

Impurity concentration
$$N(x) = N_p e^{-(x-R_p)^2/2\Delta R_p^2}$$

 R_p : projected range ΔR_p : projected straggle

For implant completely in silicon $Q = \sqrt{2\pi} N_p \Delta R_p$

Junction depth $x_j = R_p \pm \Delta R_p \sqrt{2 \ln(N_p/N_B)}$