Beispiele

Eingangsgröße

Zahnradgetriebe

Institut für Technische Inform

Sprungantwort

·输入-输出是曲线

 $S_2 = K_p \cdot [1 - \exp(-t/T)]$ 

Zeit Zeitkonstante





Ausgangssignal S2 ist proportional zum Eingangssignal S1

输入信号经过 P-Glied 后得到输出答

Zahnradgetriebe mit z<sub>1</sub> = 200 Zähnen und  $z_2 = 100$  Zähnen

 $K_P = \frac{z_1}{z_2} = 2$ 

Abstandssensor laut Kennlinie

 $K_{P} = \frac{\Delta U}{\Delta d} = \frac{-3.2 \text{ V}}{1 \text{mm}} = -3.2$ 

negative Verstärkung, da Spannung mit Abstand abnimmt 反向增强

# P11-GG现3. 斑幽教的拖延

PT<sub>1</sub>-Glied reagiert auf Sprungfunktion mit Verzögerung, d.h. es folgt dem Ausgangssignal erst nach einiger Zeit 比值不提常数

Beschreibung durch Differenzialgleichung **1. Ordnung** ( $y = S_1, x = S_2$ )

 $T \cdot x' + x = K \cdot y$ 

Lösung für Sprungfunktion der Höhe y:



K = K<sub>o</sub> ist der Proportionalbeiwert, d.h. die Höhe der Sprungantwort

Endwert ist lineare Funktion des Eingangswerts

des Endwertes

Sprungfunktion

 $\exp(-t/T) = e^{-t/T}$ 

Ausgangsgröße Proportionalbeiwert

3 · T: 95% und 5 · T: 99%

Symbol

Institut für Technische Informa

Punkt bestimmt werden (Ableitung für t = 0);

theoretisch wird der Endwert erst für t → ∞

erreicht, aber bereits nach 2 · T: 87%,

Einf. in die Robotik und Automation

# PT2-Glied (Proportionalglied mit Verzögerung 2. Ordnung)

Abstandssensor









PI2-Glied 英砜了电压比数的"双拖延 PT2-Glied reagiert auf Sprungfunktion mit "doppelter" Verzögerung (S-Kurve) im aperiodischen Fall 度上版为非同构性的 S动纹 oder mit **Schwingungen** (Schwingglied)

Beschreibung mit Differenzialgleichung **2. Ordnung**  $(y = S_1, x = S_2)$ 

 $T_1 \cdot T_2 \cdot x'' + (T_1 + T_2)x' + x = K \cdot y$ 

Lösung für Sprungfunktion der Höhe y:

$$x = K \cdot y \left( 1 - \frac{T_1}{T_1 - T_2} e^{\frac{-t}{T_1}} + \frac{T_2}{T_1 - T_2} e^{\frac{-t}{T_2}} \right)$$

Proportionalbeiwert (Verstärkung) T<sub>1</sub>, T<sub>2</sub>: Zeitkonstanten (der Teilstrecken)

Kurve hat einen Wendepunkt mittels Wendetangente Definition von

Verzugszeit (nicht gleich T1) Totzeit Ausgleichszeit (nicht gleich T<sub>2</sub>)

### periodisches Verhalten - Schwingglied





# Beispiel: Spannungsmesswerk



bei 2 physikalisch verschiedenen Energiespeichern kann es durch periodischen Energieaustausch zu Schwingungen kommen

PT2-Glied reagiert auf Sprungfunktion der Höhe 1 mit Einschwingen auf den neuen Wert K<sub>P</sub>, der erst nach Abklingen der Schwingung erreicht wird;

bei sprunghafter Änderung des Spulenstroms I (Stellgröße y) ändert sich der Hub H (Regelgröße x) um den Weg h; der Übergang in die neue Lage H + h erfolgt in schwingender Form (mechanische Energie in Feder und Bewegungsenergie im Eisenkern)



# Totzeitglied (Tt-Glied) 和区时间

Sprungantwort

Sprungantwort

Sprungfunktion



Eingangsgröße  $S_2$  ebenfalls mit einer sprunghaften Änderung der Ausgangsgröße,

eine sprunghafte Änderung der

aber um die Totzeit T, später

Totzeit (Laufzeit) oft abhängig von einer Weglänge I und Geschwindigkeit des Signalträgers v. d.h.



immer Totzeiten durch zyklische Abtastung, Analog-Digitalwandlung etc.

Totzeitalieder meist kombiniert mit Verzögerungsgliedern

### Regelstrecke höherer Ordnung





Ersatz-Sprungantwort

### mehr als zwei Zeitkonstanten (mehrere hintereinander geschaltete Energiespeicher); ähnlicher Verlauf wie aperiodische PT2-Glieder,

# nur Anfangsverlauf flacher

Charakterisierung mit Tu Verzugszeit > 拖延时间 "在区时间" Tg: Ausgleichszeit → 变化时间

ermittelbar anhand Wendetangente

bei sehr hoher Ordnung vereinfachte Ersatz-Sprungantwort mit Totzeit T<sub>t</sub> = T<sub>u</sub> und PT<sub>1</sub>-Glied  $mit T = T_a$ 

Abschätzung des Regelverhaltens aus Ersatz-Sprungantwort





### 死区时间 Beispiele: Dickenmessung von Walzgut, Mischung von Flüssigkeiten



bei Regelung mit Computern (SPS)

Achtung: Totzeit ≠ Verzögerungszeit

Institut für Technische Informatik

### Regelstrecken ohne Ausgleich 无差控制系统





Beispiele: 瑜/凝 Eingangsgröße Durchfluss Q ≘ S₁ ngsgröße ndshöhe h ≘ S₂海和高度 Füllstandsbehälter

weiteres Beispiel: Kursregelung bei Fahrzeugen

Institut für Technische Informati

Ausgangssignal S2 (Regelgröße x) steigt nicht nur proportional zur Eingangsgröße S<sub>1</sub> (Stellgröße y), sondern auch mit der Zeit t an; Integrationszeitkonstante  $\mathsf{T}_\mathsf{l}$  : 时间橡

Sprungantwort:  $S_2 = \frac{1}{T_1} \cdot t = K_1 \cdot t$ 

Zeit bis zum Anstieg auf Sprunghöhe 1

Integrationsbeiwert: K<sub>I</sub> =

allgemein:  $S_2 = K_1 \cdot \int S_1 \cdot dt$ 

Regelstrecke ohne Ausgleich, da die Regelgröße keinem festen Endwert zustrebt, sondern ständig weiter wächst schwieriger zu regeln als Strecken mit Ausgleich

Einf. in die Robotik und Automation

# Regelstrecken mit Ausgleich 有差越制系统



Regelstrecken mit Ausgleich besitzen eine gewisse Selbstregeleigenschaft, d.h. sie geraten bei einer Änderung der Stellgröße y oder Störgröße z nicht aus dem Gleichgewicht, sondern die Regelgröße strebt einem neuen Endwert zu (bei den meisten praktisch relevanten Strecken der Fall)

Beispiel: Elektromotor mit Last erhöht bei Änderung der Spannung die Drehzahl auf einen neuen Endwert 电机点改变接数向电压



Proportionalbeiwert K<sub>P</sub> gibt an, wie stark sich die Ausgangsgröße x (Endwert) in Abhängigkeit der Eingangsgröße y ändert 納比強 x (Verstärkung der Strecke)

Ausgleichsbeiwert  $Q = \frac{1}{K_P} = \frac{\Delta y}{\Delta x}$  輸入後 y

Strecke mit Ausgleich: Q > 0, d.h. K<sub>P</sub> endlich

Strecke ohne Ausgleich: Q = 0, d.h. K<sub>P</sub> unendlich

je größer Q, umso leichter ist die Regelaufgabe

Einf. in die Robotik und Automation

### 3.2 Regelstrecken 超氧系统





**Annahme:** zeitinvariant, d.h. Verhalten der Regelstrecke ändert sich nicht mit der Zeit

- (2) bei Erregung mit y = f(t) + g(t) ist die Antwort  $x = F_S(f(t)) + F_S(g(t)) = F_S(f(t)) + g(t)$

系族計算量 lineare und zeitinvariante Regelstrecken lassen sich durch ihre *Sprungantwort* vollständig charakterisieren, d.h. durch ihre Reaktion am Ausgang x auf einen **Sprung** am Eingang y auf 1 zum Zeitpunkt t = 0; entsprechend **Sprungantwort** für Störgröße z



Institut für Technische Informatik