

Jack Kelley & Tom Braswell

jkelley@arl.army.mil & thomas.e.braswell@arl.army.mil

U.S. Army Research Laboratory
BLDG 4600, Deer Creek Loop
APG MD 21005

Luwam Hagos & Amy Fowler

luwam.hagos@navy.mil & amy.fowler1@navy.mil

U.S. Naval Air Warfare Center
NAVAIR, Code 4.3.4.2
48066 Shaw Road, Bldg. 2188
Patuxent River, MD 20670-1906

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

**Non-chromate, Zero-VOC Coatings for Steel Substrates on
Army and Navy Aircraft and Ground Vehicles**

SAN DIEGO CA
August 28-30 2012

UNCLASSIFIED: Approved for public release; distribution unlimited.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Report Documentation Page			<i>Form Approved OMB No. 0704-0188</i>	
<p>Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p>				
1. REPORT DATE AUG 2012	2. REPORT TYPE	3. DATES COVERED 00-00-2012 to 00-00-2012		
4. TITLE AND SUBTITLE Non-chromate, Zero-VOC Coatings for Steel Substrates on Army and Navy Aircraft and Ground Vehicles			5a. CONTRACT NUMBER	
			5b. GRANT NUMBER	
			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT NUMBER	
			5e. TASK NUMBER	
			5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Research Laboratory, BLDG 4600, Deer Creek Loop, APG, MD, 21005			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited				
13. SUPPLEMENTARY NOTES Presented at the ASETSDDefense 2012: Workshop on Sustainable Surface Engineering for Aerospace and Defense August 27-30, 2012, San Diego, CA				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE unclassified unclassified unclassified			17. LIMITATION OF ABSTRACT Same as Report (SAR)	18. NUMBER OF PAGES 28
				19a. NAME OF RESPONSIBLE PERSON

Project Team Acknowledgements

Name	Organization	Contribution
Jack Kelley--PI Tom Braswell	ARL; Aberdeen, MD	Principal Investigator. Lead coating evaluations and specification testing. Primary POCs for Army demonstration efforts.
Luwam Hagos--PI Amy Fowler	NAVAIR Materials Engineering Pax River, MD	Principal Investigator. Lead coating evaluations and specification testing. Primary POCs for Navy demonstration efforts.
Tom Considine	ARL, Aberdeen	Corrosion Testing
John A. Escarcega	DoD CARC Commodity Manager	Organic Coatings
Patricia Dodson Austin Minter	Anniston Army Depot Anniston AL	Department of Engineering Quality. Coordinate processing of Stryker Demonstrations, and phosphate sealer demonstration
James Swann	PM SBCT Reset ANAD	Reset Coordinator at Stryker Brigade Combat Team. Coordinate Stryker dem/val
Stephen Bails	PM SBCT EMT	Coordination of Stryker demonstration site
Todd Weimer	PMO-MRAP Warren MI	Develop performance requirements for MRAP
Daniel (Dusty) Cooper	Camp Lejeune NC	Coordination of MRAP vehicles and facilities at Camp Lejeune
Jacob Waller	FRC Cherry Point, NC	Depot lead for NAVAIR phosphate sealing
Keith Legg	Rowan Technology Group	Economic and Environmental Impact

Total of 3 Technology Areas Being Demonstrated

ESTCP WP 200906
Evaluate Commercially
Available Pretreatments and
Coatings for Steel Substrates

**1) Demonstration of
Conversion Coatings
for Armor Steel**

**2) Demonstration of
Phosphate Sealers**

**3) Demonstration of
Non-chromate primer
and ZVOC Topcoat**

**Stryker (ANAD)-
Jim Swann/Patty
Dodson**

**Anniston Army
Depot – Patty
Dodson**

**Cherry Point –
Jacob Waller**

**MRAP (Camp
Lejeune)- Daniel
Cooper CWO5 (ret)**

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Overall Project Objectives

Demonstrate and validate non-chromate, zero-voc coatings on Army and Navy systems and recommend for implementation proven alternatives at military and OEM facilities:

1. Pretreatments for armor steel for more robust paint systems
2. Eliminate chromic acid rinses in zinc phosphate operations
3. Expand the use of zero-voc topcoats on ground support equipment

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Total of 3 Technology Areas Being Demonstrated

ESTCP WP 200906
Evaluate Commercially
Available Pretreatments and
Coatings for Steel Substrates

**1) Demonstration of
Conversion Coatings
for Armor Steel**

**2) Demonstration of
Phosphate Sealers**

**3) Demonstration of
Non-chromate primer
and ZVOC Topcoat**

Stryker (ANAD)-
Jim Swann/Patty
Dodson

Anniston Army
Depot – Patty
Dodson

Cherry Point –
Jacob Waller

MRAP (Camp
Lejeune)- Daniel
Cooper CWO5 (ret)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Chromic Acid Usage at Anniston Army Depot

8oz (1/2 pound) per 100 gallons.

Total chromic acid is 6862 lbs issued in 2011

1 pound = 200 gallons of solution

6862 pounds x 200 gallons = **1,372,400** gallons of solution annually

Objective: Eliminate chromic acid rinses in zinc phosphate operations

MIL-DTL-16232: Zinc Phosphate

❖ Baseline Sealer:

- Chromic acid rinse
- (1 pound = 200 gallons of solution)

❖ “Drop in” Replacement Candidates:

PPG Chemseal 100

- Non-chrome post-rinse with an inorganic hexafluorometalate component and an organic resin component.
- Makes the phosphate layer less susceptible to alkaline dissolution and promotes adhesion.

SurTec 580 ChromiPhos

- Trivalent chrome passivation for phosphating
- Forms protective layer of metal, complex oxides and hydroxides on exposed surface

❖ Tested under three paint systems:

- MIL-DTL-53022/ MIL-DTL-53039
- MIL-DTL-53022/MIL-DTL-64159
- MIL-DTL-23377/MIL-PRF-85285 ZVOC

Substrates:

- Low Carbon Steel A366 (Milled Finish)
- High Hard Armor MIL-A-46100 (Abrasive Blasted)
 - Charpys
- All pretreatments applied by manufacturer

Adhesion Test:

- Pull-Off Adhesion – ASTM D 4541
- Wet Adhesion – ASTM D 3359 Method A

Paint Adhesion

Corrosion Tests:

- Neutral Salt Fog – B117
- Cyclic Corrosion – GM9540P
- Outdoor Exposure (Cape Canaveral)

Chip Resistance:

- Gravelometer – SAE-J400

Stress Corrosion Cracking:

- Rising Step Load – ASTM F 1624-95

Rising Step Load

Quantitative Performance Objectives

Performance Objective	Data Requirements	Success Criteria
Adhesion Test	ASTM-4541 Pull-off Adhesion ASTM- D3359 Dry Adhesion ASTM- D3359 Wet Adhesion	Minimum average 30 events rating of 1200 PSI on 1.5 mil profile surface Adhesion rating (steel) > 4B; adhesion rating Scribed area rating (steel) \geq 3A after 24 hours at ambient;
Chip Resistance	SAE-J400	NLT 5B
Accelerated corrosion	ASTM-B117 Salt Fog	After 500 hours of exposure: steel substrate rating \geq6 scribed
	GM-9540P Cyclic Corrosion ASTM D 1654	After 60 cycles: steel substrate rating \geq 4
Outdoor Exposure	Tropical climate exposure at Kennedy Space Center Outdoor Site. ASTM D 1654 ASTM G50	Three years of exposure: Equivalent or less average creepage from scribe than current corrosion protection system
Processing time	TT-C-490	Equivalent or less than existing process
Field Testing	SSPC-VIS-2 (more details in section 5.0)	Equivalent or less than existing process
Hydrogen Embrittlement	ASTM F 1624-09 ASTM E 399-97	No detrimental effect to K1c of substrate. High Hard K1c @ 48-51Rc shall maintain K1eac \geq 19 (ksi \sqrt{in})

ASTM D 4541 Pull-Off Adhesion for LCS

■ MIL-DTL-53022 /
MIL-DTL-53039
■ MIL-DTL-53022 /
MIL-DTL-64159
■ MIL-PRF-23377 /
MIL-PRF-85282

ASTM D 4541 results for zinc phosphated steel panels

- Pull off values for all considered artificially low on CARC Beaded versions.
 - Suspected glue/bead interaction

ASTM D 4541 Pull-Off Adhesion for HHA

Wet Tape Adhesion Ratings on LCS

Cross-hatch tape pull

- MIL-DTL-53022 / MIL-DTL-53039
- MIL-DTL-53022 / MIL-DTL-64159
- MIL-PRF-23377 / MIL-PRF-85282

Wet tape adhesion results for pretreated steel panels

- Ratings per ASTM D 3359
- 24 hour immersion in DI water

Wet Tape Adhesion Ratings on HHA

- Phosphated low carbon steel panels
- Coatings system 53022/53039 CARC system
- ASTM-B117 results over 1000 hours of exposure
- Rated using ASTM D1654

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Phosphated HHA steel panels
- Coatings system 53022/53039 CARC system
- ASTM-B117 results over 1000 hours of exposure
- Rated using ASTM D1654

ASTM-D1654 Ratings for Low Carbon Steel (LCS) with 53022/53039						
Panel	Pretreatment	GM 9540P Cycles				
		10	20	40	60	80
1	Abrasive Blast Only	8	7	4	2	0
2		8	7	4	2	0
3		8	5	3	1	0
1	Dip Zn Phos/Cr6+ Gardobond 24T + FH-3	8	6	5	3	2
2		8	7	5	4	2
3		7	6	5	2	0
1	Spray Zn Phos + SurTec 580 Gardobond 24S + SurTec 580	7	7	6	3	3
2		7	7	5	5	4
3		7	6	5	5	5
1	Spray Zn Phos + CS100 Gardobond 24S + CS100	8	7	5	4	3
2		8	7	7	5	3
3		8	8	7	5	3

Good

Bad

LCS Panels in GM9540P

Performance Objectives
rating ≥ 4 @ 60 cycles

- ❖ Alternatives met Performance Objectives
- ❖ Chromated Zn Phosphate did not meet objectives

After 60 hours GM9540P

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Low Carbon Steel Panels Scraped after 80 Cycles GM9540P

Dip Zn Phos/Cr6+

Spray Zn Phos/SurTec 580

Spray Zn Phos/PPG Chemseal 100

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

ASTM-D1654 Ratings for High Hard Armor (HHA) with 53022/53039						
Panel	Pretreatment	GM 9540P Cycles				
		10	20	40	60	80
1	Abrasive Blast Only	7	6	4	2	0
2		8	7	4	0	0
3		8	6	5	2	0
1	Dip Zn Phos/Cr6+ Gardobond 24T + FH-3	8	8	6	6	4
2		7	7	6	6	4
3		7	7	6	6	5
1	Spray Zn Phos + SurTec 580 Gardobond 24S + SurTec 580	8	7	5	5	3
2		7	7	6	4	2
3		6	6	5	5	5
1	Spray Zn Phos + CS100 Gardobond 24S + CS100	8	7	6	6	5
2		7	7	6	5	3
3		8	8	7	6	5

Good → Bad

HHA Panels in GM9540P

Performance Objectives
rating ≥ 4 @ 60 cycles

HHA Panels after 60 hours GM9540P

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

HHA Panels Scraped after 80 Cycles GM9540P

Dip Zn Phos/Cr6+

Spray Zn Phos/SurTec 580

Spray Zn Phos/PPG
Chemseal 100

Chip Resistance SAE-J400 Gravelometer

Performance Objective NLT 5B

Milled Finish Low Carbon Steel						
	53022/53039		53022/64159		23377/85285 ZVOC	
Abrasive Blasted Only	4	B	4	B	5	B
Dip Zinc Phosphate/Cr6+	5	B	4	B	4	B
Spray Zinc Phos/Surtec 580	4	B	4	B	6	B
Spray Zinc Phos/CS100	5	B/A	5	B/A	5	B

Abrasive Blasted High Hard Armor						
	53022/53039		53022/64159		23377/85285 ZVOC	
Abrasive Blasted Only	6	A/B	5	B/A	5	B
Dip Zinc Phosphate/Cr6+	5	B	5	B/A	5	B/A
Spray Zinc Phos/Surtec 580	5	B	4	B/A	5	B/A
Spray Zinc Phos/CS100	4	B/A	4	B	5	B

6 Months Outdoor Exposure at Cape Canaveral (December 2011)

- Shown with MIL-DTL-53022/MIL-DTL-53039 coating system
- SurTec 580 and CS100 performing well vs. chromate sealer

Low Carbon Steel

High Hard Armor

Dip Zn Phos/Cr6+	Spray Zn Phos/SurTec 580	Spray Zn Phos/CS 100
------------------	--------------------------	----------------------

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Both SurTec 580 and PPG Chemseal 100 met the JTP Screening Requirements for demonstration
- Progress towards meeting Performance Objectives are mixed:
(Field tests and outdoor exposure remaining)
 - SurTec 580 performed slightly better than Chemseal 100 on LCS in GM9540P, Chemseal better on HHA
 - Chromated Zn Phosphate failed GM9540P on LCS
- Both alternative sealers holding up well over 6 months outdoor exposure
- ***SurTec 580 selected for demonstration based on results to date and NAVAIR experience with TCP***

SurTec 580 TCP

Chromic Acid

VS.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

450 Gal vat used for SurTec 580

SurTec 580 Demonstration

- Initiated at ANAD April 23, 2012
- Trackable M1 Components:
 - Fuel Caps
 - Copula
- Other misc parts and test panels

M1 Copula during SurTec 580 process

M1 Fuel Caps and test panels

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Demonstration of Non-Chromate Sealer Samples and Parts

QTY	Substrate	Sealer	Testing Facility
4	Steel (ANAD)	SurTec 580	ANAD
4	Steel (ANAD)	Chromate	ANAD
4	Steel (ANAD)	SurTec 580	ARL
4	Steel (ANAD)	Chromate	ARL
3	HHA	SurTec 580	ARL
2	HHA	Chromate	ARL
3	LCS	SurTec 580	ARL
2	LCS	Chromate	ARL
1	Steel U-Weld	SurTec 580	ARL
1	Steel U-Weld	Chromate	ARL
1	Fuel Cap	SurTec 580	ARL
1	Fuel Cap	Chromate	ARL
5	Fuel Cap	SurTec 580	Field
5	Fuel Cap	Chromate	Field
2	Copula	SurTec 580	Field

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

SurTec 580 Demonstration

Zinc Phos/Cr6+

Demonstration Parts in GM9540P

- Parts coated with
- MIL-DTL-53022/MIL-DTL-53039
- Similar performance after 20 cycles GM9540P
- Pull off adhesion nearly identical

Zinc Phos/SurTec 580

Pull-off adhesion
(1674 psi)

Pull-off adhesion
(1672 psi)

12 Months Outdoor Exposure at Cape Canaveral (June 2012)

- SurTec 580, and CS100 continue to perform well vs. chromate sealer
- Abrasive blast only (DTM) panels beginning to tail off.

ASTM 1654 Ratings for Low Carbon Steel

ASTM 1654 Ratings for High Hard Armor

12 Months Outdoor Exposure at Cape Canaveral

Low Carbon Steel Panels

Abrasive Blast

Dip Phos/Cr6+

Spray Phos/ ST580

Spray Phos/ CS100

High Hard Armor Steel Panels

- SurTec 580 and PPG Chemseal 100 are proving to be viable alternatives to chromic acid rinse for zinc phosphate