Procesorul MIPS, ciclu unic – versiune pe 16 biți –

Student: Marcu Ariana-Mălina

Grupa: 30222

1. Instrucțiuni alese suplimentar

- **↓** <u>Instrucțiunea xor(Bitwise Exclusive OR)</u>
 - instrucțiune de tip R
 - realizează operația de sau-exclusiv între conținutul a două registre
 - xor \$d, \$s, \$t
- _
- ♣ Instrucţiunea slt (Set on Less Than)
 - instrucțiune de tip R
 - setează registrul destinație atunci când conținutul primului registru sursă este mai mic decât conținutul celui de-al doilea registru sursă
 - slt \$d, \$s, \$t
- Instrucţiunea bgez (Branch on Greater Than or Equal to Zero)
 - instrucțiune de tip I
 - efectuează un salt condiționat la o adresă relativă la adresa instrucțiunii următoare dacă registrul sursă are conținutul mai mare sau egal cu 0
 - sintaxa: bgez \$s, offset
- **↓** *Instructiunea bne (Branch on not equal)*
 - instrucțiune de tip I
 - efectuează un salt condiționat la o adresă relativă la adresa instrucțiunii următoare dacă două registre sunt diferite
 - sintaxa: bne \$s, \$t, offset

2. Tabel cu valorile semnalelor de control pentru setul de instrucțiuni selectat

TOP	Instructione	Instr (15-13) Opcode	Reg Dst	Extop	ALU SPC	Branch	BrGez	BrNe	Jump	Mem Wh	MemtoReg	Reg Wr	func	Alustrl	Alua
	ADD	000	1	any	0	0	0	0	0	0	O	1	011	011	000
1	SUB	000	1	any	0	0	0	0	0	0	0	1	000	000	000
	SLL	000	1	any	0	0	0	0	0	0	0	1	010	010	000
K	SRL	000	1	any	0	0	0	0	0	0	0	1	100	100	000
	AND	000	1	any	0	0	0	0	0	0	-0	1	110	110	000
	OR	000	1	any	0	0	0	0	0	0	0	1	111	111	000
	SLT	000	1	any	0	0	0	0	0	0	0	1	101	101	000
	XOR	000	1	any	0	0	0	0	0	0	0	1	001	001	000
	+ ADDI	001	0	1	1	0	0	0	0	0	0	1	X	01	001
	LLW	101	any	1	1	0		0	0	0	1	1	X	011	101
	SW	010	any	1	1	0	0	0	0	1	any		X	1	010
	BEQ	110	any	1	0	1	0	0	0	10	any	0	X	000	110
	BNE	100	any	1	0	0	0	1	0	0	any	0	X		100
	BGEZ	011	any	1	0	0	1	0	0	0	0	0	X	000	011
J	JUMP	111	any	any	any	0	any	any	1	0	any	9	X	X	X

3. Descrierea în cuvinte, cod $\mathbf C$ și cod mașină a programului încărcat în memoria $\mathbf R\mathbf O\mathbf M$

	Coolul	n c	aire x	exor I scr	ice	n-i	r	mi	me	nie		u un	, 110	ww	W	our	, ,	
	jon sca	t a = r (in ang (it i=, a=, "o/od"	x = 3, x; i a+i; ", 8 b	y= ==y);	7, 6	<i>j</i> -1+)										
	ne	hile ij	la la ese	/ = >6)	b) a b	! = a - b	-b	5 - 5										
				a=2			6	=5	-	:) (mn	ndc =	= 5					
0 1 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15	000 101 101 101 100 110 000 110 000 110 000 111 1	0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	J 000 01 01 100 00 01 01 01 00 00		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100001001001000000000000000000000000000		0000	R, O A O O A A O O O O O O O O	1		A A A O C O 2 E D 1 9 O E 1 E	exa 0 1 0 0 5 1 8 0 0 5 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3012333156520909		ADD LW + LW + ADD BEQ ADD J BEQ SLT BNE SUB J SUB J SW	
-	buton cu sus cu sus (ms (0) A (1) -	placed face to set blust	jum the	iter	iām x"(valu rea	PC-	PC to 1 to 1	nition he se S	ul bran 5D	nch	addr	us >	("00	004"			

4. Trasarea execuției programului

		% %,	TO ON	(O.	[3,8)
3 .		100		3+4+5+6+7	
	suma = a + (a + 1	11 (012)	1 1/4-1)	. suma = 25	
3			T 7 (D 1)	115	x . h)
0	add \$1, 50	80 ->	\$1 Numa 1	or din intervalul [drana
1	add \$1, 50, lw \$2,0%	40) — -	52 = a (a s	e aflà inmemorie la aco (60)	Nav-
				e afa inmentation (50))	Json
2	· lw \$3, 11	50)	\$3 = 6 (6 sea	gla in memorie la a 1 (\$0)	nau.
3			0	e se na face emmo de de mai (si se aflà în mem 2 (50)) st verificase dacă sum se decet mr sau inveri	intro el
3	. lue 54,21	50) ->	\$4 = mr cu care	se va face emmac a	asio la
3			sisu	ma la se afta in mond	gae ac
3 4	11 45 42 11		adresa.	2 (50))	ne mai
4	add \$5, \$0, \$0		V5 se jorosesie	a decit no can inven	5
3 5	hea 62 42 2		maile sa daca	a = h	
3 6	02/ 51, 41 4	2	adus es elemen	nt din interval la suma	
7	addi \$2, \$2	~	100 - 401		
3 8.	beg \$2, \$3, 2 and \$1, \$1, \$ addi \$2, \$2, \$2		jums la lini	a 5 (la inceputul buc	lei) pana
3	9		gand aign	g la finalul intervalu	clui (lab)
→ 9.	beg 54, 51, 6		daca \$4 = \$1	se sare la lenia 16	
3 1			6 /30	alware in memorie)	
1 / 10	slt \$5, \$4, \$1	1 ->	\$5 = 1 dacă	a 5 (la începutul buc go la finalul intervalul se sare la linua 16 illuare în membre) \$4 4 \$1 (casă sin \$4 \$ \$1 as face sac	m cum
3			10 daca		
3 1 11				din mr mal	mare)
11.	bne \$5,50,2	>	dacă \$5 !=0,	se executa ramura 2	(the
3	BULKI		5. 5. 6	actresa 14)
12		4)	\$1 = \$1-54		
13	17 11 61 0		Jump linia 9 \$4 = \$4 - \$1		
14	· xuo J+, J4, 5	1	34 = 34-31	1 100	
			intoarcere in	oucla (401 0
16	· NO UT, 51 UV,		EL CAT IN THE	emmde (care se afte of \$1, se poste pune su	mus in
			adresa 3/2	in memolic	CONS. 200
				THE CHIOMOGE	
3 0	add \$1,50	, 80			1
	lu \$2, 50	, addr-a	(50)	Lin asamplare	
1 2	lu \$3. \$0	addr-6	30)		
3 3	lu \$4, 50	, addi mr	(\$0)	In cod masin	na –
4	add \$5, \$0	, addr_ mr			
4 begin	-loop: beg \$2, \$3 add \$1, \$1,	, end _ loop			
6	add 51, 51,	92			
	man 71. 5/.	1			
8 ,	loop: j begin - le	90P			
9 lnd-	LOOD:		1		
3 10 cmm	ac: beg 34, 31,	cmmdc_end	X		
3 11	St \$5, \$4,	cmmdc_end			
13	bme \$5, \$0, sub \$1, \$1,	umia _ 14			
15	Sub \$1, \$1,	74			
is limia	1 cmmac	41			
16	1 Pmm NP				
If commod	c_end: Sue \$4,50	amanda	adda (50)		
3	C - JAC - SUF DT , 30	, chumae -	UCAUC (JU)		
	9. PC+1 1ca =	theora la m	breno urmatano	das munos de	
4	((() 0	Lara Ja an	- wood milliand	outa mundeplus	neste
4	Dara ne Indeal	mento: PC+	1+6 -> 911	+6-(16)	1.1
4 4	9. PC+1 (ca sã Dacã se Indepli			+6=(16)	condition
9 lmd 10 mmm 11 12 13 13 15 limba 16 lit ommod	Daca se Indeple M . $PC+1+2 =$			+6 =(16)	condition

5. RTL schematic – in PDF-ul ataşat + imaginea alaturata

6. Trasarea execuției programului de test pentru MIPS16

- sw(7:5) = 000 se afișează instrucțiunea pe SSD
- sw(7:5) = 001 se afișează următoare valoare secvențială a PC (PC + 1), pe SSD
- sw(7:5) = 010 se afișează RD1 pe SSD
- sw(7:5) = 011 se afișează RD2 pe SSD
- sw(7:5) = 100 se afișează Ext_Imm pe SSD
- sw(7:5) = 101 se afișează ALURes pe SSD
- sw(7:5) = 110 se afișează MemData pe SSD
- sw(7:5) = 111 se afișează WD pe SSD.

Valorile se completează în hexazecimal așa cum trebuie să apară pe SSD. Succesiunea pașilor reprezintă ordinea de execuție în timp la apăsarea butonului ENable. Pasul 0 corespunde stării inițiale a circuitului (PC = 0), iar pasul N caracterizează starea după apăsarea de N ori a butonului ENable. Inițial registrele vor avea valoarea 0 (care se atribuie automat în lipsa unei inițializări explicite a RF), iar memoria de date RAM poate fi inițializată cu valori dorite. Tabelul se completează pentru tot programul sau dacă are buclă până la finalul primei iterații.

Pas	SW(7:5)	"000"	"001"	"010" "011"		"100"	"101"	"110"	"111"	De completat numai pentru instrucțiuni de salt	
l as	Instr (în asamblare)	Instr (hexa)	PC+1	RD1(rs)	RD2(rt)	Ext_Imm	ALURes	MemData	WD	BranchAddr	JumpAddr
0	add \$1, \$0, \$0	X"0013"	X"0001"	X"0000"	X"0000"	-	X"0000"	X"0000"	X"0000"		
1	lw \$2, 0(\$0)	X"A100"	X"0002"	X"0000"	X"0000"	X"0000"	X"0000"	X"0000"	X"0000"		
2	lw \$3, 1(\$0)	X"A181"	X"0003"	X"0000"	X"0000"	X"0001"	X"0001"	X"0000"	X"0000"		
3	lw \$4, 2(\$0)	X"A202"	X"0004"	X"0000"	X"0000"	X"0002"	X"0002"	X"0003"	X"0003"		
4	add \$5, \$0, \$0	X"0053"	X"0005"	X"0000"	X"0000"	-	X"0000"	X"0000"	X"0000"		
5	beq \$2, \$3, 3	X"C983"	X"0006"	X"0003"	X"0008"	X"0003"	X"0003"	X"0008"	X"0003"	X"0009"	
6	add \$1, \$1, \$2	X"0513"	X"0007"	X"0000"	X"0003"	-	X"0003"	X"0008"	X"0003"		
7	addi \$2, \$2, 1	X"2901"	X"0008"	X"0003"	X"0004"	X"0001"	X"0003"	X"0008"	X"0003"		
8	j 5	X"E005"	X"0009"	X"0000"	X"0000"	-	-	-	-		X"0005"

9	beq \$4, \$1, 6	X"D086"	X"000A"	X"0005"	X"0019"(25)	X"0006"	X"0005"	X"0000"	X"0005"	X"0010"	
10	slt \$5, \$4, \$1	X"10D5"	X"000B"	X"0001"	X"0005"	-	X"0006"	-	X"0006"		
11	bne \$5, \$0, 2	X"9402"	X"000C"	X"0001"	X"0000"	X"0002"	X"0003"	X"0008"	X"0003"	X"000E"	
12	sub \$1, \$1, \$4	X"0610"	X"000D"	X"0019"	X"0005"	-	X"0014"	-	X"0014"		
13	j 9	X"E009"	X"000E"	X"0000"	X"0000"	-	-	-	1		X"0009"
14	sub \$4, \$4, \$1	X"10C0"	X"000F"	X"0005"	X"0019"	X"0000"	X"0014"	-	X"0014"		
15	j 9	X"E009"	X"0010"	X"0000"	X"0000"	-	-	-	-		X"0009"
16	sw \$4, 3(\$0)	X"4203"	X"0011"	X"0000"	X"0005"(rez	X"0003"	X"0005"	X"0001"	X"0001"		

Programul a fost testat si functioneaza bine totul pana la InstructionDecode inclusiv, insa la testarea finala, de la primul beq, nu mai functioneaza corect, doar partial.