_____ Classe: ____ Data: ____ Griglia Nome e cognome: _

Risposte (variante 34)

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20

- 1. Cosa dimostra in modo sorprendente l'esperimento della doppia fenditura con elettroni singoli?
 - (a) Che la luce è composta da particelle (fotoni).
 - (b) Che gli elettroni sono particelle classiche che seguono traiettorie ben definite.
 - (c) Che anche le singole particelle (elettroni) esibiscono un comportamento ondulatorio (interferenza), suggerendo che ogni elettrone "passa attraverso entrambe le fenditure" in senso quantistico.
 - (d) Che il principio di indeterminazione non è valido.
- In un esperimento Compton, un fotone X incide su un elettrone a riposo. La variazione della lunghezza d'onda $(\Delta \lambda = \lambda' \lambda)$ del fotone diffuso dipende dall'angolo di diffusione θ . Quando è massima questa variazione?
 - (a) Quando l'angolo di diffusione è $\theta = 0^{\circ}$ (nessuna diffusione).
 - (b) La variazione è indipendente dall'angolo θ .
 - (c) Quando l'angolo di diffusione è $\theta = 90^{\circ}$.
 - (d) Quando l'angolo di diffusione è $\theta = 180^{\circ}$ (diffusione all'indietro).
- Il nucleo di Deuterio (${}_{1}^{2}$ H) è formato da 1 protone ($m_{p} \approx 1.0073$ u) e 1 neutrone ($m_{n} \approx 1.0087$ u). La sua massa misurata è $m_D \approx 2.0141$ u. Qual è approssimativamente il difetto di massa Δm ?
 - (a) $\Delta m \approx (1.0073 + 1.0087) 2.0141 = 0.0019 \,\mathrm{u}$
- (c) $\Delta m \approx 2.0141 (1.0073 + 1.0087) = -0.0019 \,\mathrm{u}$
- (b) $\Delta m \approx 1.0073 + 1.0087 + 2.0141 \approx 4.0301 \,\mathrm{u}$
- (d) $\Delta m \approx 2.0141 \,\mathrm{u}$
- Nel paradosso del gatto di Schrödinger, cosa rappresenta lo stato del gatto PRIMA che la scatola venga aperta, secondo un'interpretazione strettamente quantistica?
 - (a) Uno stato indeterminato che non è né vivo né morto.
 - (b) Lo stato "gatto morto".
 - (c) Lo stato "gatto vivo".
 - (d) Una sovrapposizione quantistica degli stati "gatto vivo" e "gatto morto".
- Come si calcola l'energia di legame (E_B) di un nucleo, noto il difetto di massa Δm ?
 - (a) $E_B = m_{nucleo}c^2$. (b) $E_B = m_{nucleo}c^2$. (c) $E_B = (\Delta m)/c^2$. (d) $E_B = (\Delta m)c^2$.

- Come spiega il modello di Bohr l'emissione di luce a frequenze discrete (spettro a righe) da parte degli atomi?
 - (a) L'elettrone emette luce continuamente mentre orbita, ma solo a certe frequenze.
 - (b) L'elettrone emette un fotone di energia definita (E = hf) quando salta da un'orbita permessa a energia superiore a una a energia inferiore.
 - (c) Il nucleo atomico vibra emettendo fotoni.
 - (d) Gli urti tra atomi eccitati producono lo spettro.
- 7. Nell'effetto Compton, un fotone X interagisce con un elettrone libero (o debolmente legato). Cosa succede al fotone?
 - (a) Viene diffuso con una frequenza maggiore (lunghezza d'onda minore).
 - (b) Passa attraverso l'elettrone senza interagire.
 - (c) Viene diffuso (scatterato) con una frequenza minore (lunghezza d'onda maggiore).
 - (d) Viene assorbito completamente dall'elettrone.
- Completare la seguente reazione di decadimento beta più (β^+) o cattura elettronica (EC), sapendo che il Fluoro-18 $\binom{18}{0}$ F) può decadere β^+ : ${}^{18}_{9}F \rightarrow ? + e^+ + \nu_e$

10.	. Secondo l'esperimento mentale di Schrödinger, cosa determina il passaggio del gatto da uno stato di sovrapposizione a uno stato definito (vivo o morto)?										
	(a) Il decadimento dell'atomo radioattivo all'interno della scatola.										
	(b)	(b) Il tempo trascorso dall'inizio dell'esperimento.									
	(c)	La volontà del gatto.									
	(d)	L'atto di osservazione o m	nisura	azione (apertura della scato	ola).						
11.		Un isotopo radioattivo ha un tempo di dimezzamento di $T_{1/2}=5$ giorni. Se inizialmente abbiamo 16 mg di questo isotopo quanti milligrammi rimarranno dopo 20 giorni?									
	(a)	$4\mathrm{mg}$	(b)	$2\mathrm{mg}$	(c)	8 mg	(d)	1 mg			
12.	La legge del decadimento radioattivo $N(t) = N_0 e^{-\lambda t}$ descrive:										
	(a)	Il tempo di dimezzamento	del	campione.							
	(b)	L'attività del campione al	tem	po t .							
	(c)	Il numero di nuclei decad	uti a	l tempo t .							
	(d)	Il numero $N(t)$ di nuclei ra	adioa	ttivi non ancora decaduti p	reser	nti al tempo t , partendo da	N_0 r	nuclei al tempo $t = 0$.			
13.	La "cata	astrofe ultravioletta" è un pr	oble	ma sorto nello studio della ra	adiaz	zione di corpo nero perché la	a fisic	ca classica prevedeva:			
	(a)	Un'intensità energetica nu	ılla p	oer lunghezze d'onda molto	picc	ole.					
	(b)	Un'intensità energetica in	finita	a per lunghezze d'onda mol	to pi	ccole (alte frequenze).					
	(c)	Che l'energia emessa fosse	e qua	ntizzata fin dall'inizio.							
	(d)	Che l'intensità massima s	i spo	stasse verso il rosso (freque	nze l	oasse) all'aumentare della	temp	eratura.			
14.	Comple	Completare la seguente reazione di decadimento beta meno (β^-): ${}^{14}_{6}{}^{C} \rightarrow ? + e^- + \bar{\nu}_e$									
	(a)	$^{14}_{6}\mathrm{C}$	(b)	$^{14}_{7}\mathrm{N}$	(c)	${}^{14}_{5}{}^{\rm B}$	(d)	$_{6}^{13}{ m C}$			
15.	5. Identificare il prodotto mancante nel decadimento alfa dell'Uranio-238: $^{238}_{92}\mathrm{U} \to X + \alpha$										
	(a)	$X = ^{234}_{88}$ Ra (Radio-234)	(b)	$X = ^{238}_{90}$ Th (Torio-238)	(c)	$\begin{array}{l} X=^{234}_{92}~{\rm U~(Uranio-}\\ 234) \end{array}$	(d)	$\begin{array}{l} X=^{234}_{90} \text{ Th (Torio-} \\ 234) \end{array}$			
16.	3. Una radiazione di frequenza $f=1.0\times 10^{15}\mathrm{Hz}$ colpisce un metallo con lavoro di estrazione $W=2.0\mathrm{eV}$. Sapendo che $h\approx 6.63\times 10^{-34}\mathrm{J\cdot s}$ e $1\mathrm{eV}\approx 1.6\times 10^{-19}\mathrm{J}$, qual è circa l'energia cinetica massima K_{max} degli elettroni emessi? (Suggerimento calcola prima hf in eV , $hf\approx 4.14\mathrm{eV}$)										
	(a)	$K_{max} \approx 2.14 \text{eV}$	(b)	$K_{max} \approx 6.14 \text{eV}$	(c)	$K_{max} \approx 2.0 \text{eV}$	(d)	$K_{max} \approx 4.14 \text{eV}$			
17.	 17. Il principio di indeterminazione è una conseguenza fondamentale: (a) Del modello atomico di Bohr. (b) Della natura ondulatoria della materia (dualismo onda-corpuscolo) e dei limiti intrinseci alla misurazione nel monde quantistico. (c) Della teoria della relatività di Einstein. 										
	(d)										
18.	Cosa po	ostula il modello di Bohr ri	guar	do all'emissione di radiazion	ne da	a parte di un atomo?					

(a) ${}_{9}^{17}$ F

(b) $^{18}_{10}$ Ne

Z) è generalmente dominante e più rilevante per la formazione dell'immagine?

(a) Scattering di Rayleigh (coerente).

(b) Effetto Compton.

(c) $^{18}_{8}$ O

(c) Effetto fotoelettrico.

(d) Produzione di coppie (e^+/e^-) .

Nel range di energie tipico della radiodiagnostica (es. $30-150\,\mathrm{keV}$), quale interazione tra fotoni X e tessuti biologici (a basso

(d) ${}_{9}^{19}F$

- (a) Un atomo emette radiazione (un fotone) solo quando un elettrone salta da un'orbita permessa a un'altra orbita permessa di energia inferiore.
- (b) Un atomo emette radiazione solo quando viene ionizzato.
- (c) Un atomo emette radiazione continuamente mentre l'elettrone orbita attorno al nucleo.
- (d) Un atomo emette radiazione solo se si trova in uno stato eccitato stazionario.
- 19. Quale tipo di decadimento radioattivo consiste nell'emissione di un nucleo di Elio $\binom{4}{2}$ He)?
 - (a) Emissione Gamma (γ)

(c) Decadimento Beta più (β^+)

(b) Decadimento Beta meno (β^{-})

- (d) Decadimento Alfa (α)
- 20. Secondo la spiegazione di Einstein dell'effetto fotoelettrico, perché esiste una "frequenza di soglia" al di sotto della quale non vengono emessi elettroni, indipendentemente dall'intensità della luce?
 - (a) Perché l'energia del singolo fotone (hf) deve essere almeno pari al lavoro di estrazione (W) per liberare un elettrone.
 - (b) Perché l'intensità della luce non è sufficiente a "scaldare" abbastanza gli elettroni.
 - (c) Perché a basse frequenze la luce si comporta solo come un'onda.
 - (d) Perché l'interazione tra luce e materia richiede un tempo minimo che dipende dalla frequenza.