Chavarría-Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitecturas Paralelas y Flynn

SISD SIMD MISD

MIME

Love

Amda

Speedup

¿Cómo se ve la ley de Amdahl?

de procesamiento simétricas y

Unidades de procesamient simétricas y

Tendencias

Confiabilidad

Arquitectura de Computadores I

Luis Alberto Chavarría Zamora

ITCR

lachavarria@tec.ac.cr

3 de agosto de 2023

Chavarría-Zamora, Luis Alberto

Contenido

1 Lección Anterior

2 Paralelismo, Arquitecturas Paralelas y Flynn

SISD

SIMD

MISD

MIMD

3 Ley de Amdahl

Speedup

Speedup Overall

¿Cómo se ve la ley de Amdahl?

Amdahl con unidades de procesamiento simétricas y no-simétricas

Unidades de procesamiento simétricas y asimétricas

4 Tendencias

Confiabilidad y Mantenibilidad

Benchmarking

Referencias

Chavarría-Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitecturas Paralelas y

SISD

SIMD

MIME

.

Amdal

Speedup

Speedup Over

¿Cómo se ve la ley

de procesamiento simétricas y

Unidades de procesamient simétricas y

Tendencia

Confiabilidad

Lección Anterior

¿Qué vimos?

Aplicación de software
Sistema operativo

Lógica
Circuitos Digitales
Circuitos Analógicos

Elementos Discretos

Ffectos Físicos

Efectos Fisicos

Chavarría-Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitectura Paralelas y

SISD

SIMD

MIMD

Amda

Speedup

Speedup Ove

¿Cómo se ve la ley

de procesamiento simétricas y

Unidades de procesamien simétricas y

Tendencia

Confiabilida y Mantenibi

Lección Anterior

¿Qué vimos?

Aplicación de software
Sistema operativo
Lógica
Circuitos Digitales
Circuitos Analógicos
Elementos Discretos
Efectos Físicos

Arquitectura	Micro-arquitectura
Micro-arquitectura	Arquitectura
1	2

Chavarría-Zamora, Luis Alberto

Lección Anterior

Cómo se ve la lev

Lección Anterior

¿ Qué vimos?

Aplicación de software Sistema operativo

Lógica

Circuitos Digitales

Circuitos Analógicos

Elementos Discretos

Efectos Físicos

Arquitectura

Micro-arquitectura

Chavarría-Zamora, Luis Alberto

Paralelismo. Arquitecturas Paralelas y

Flynn

Cómo se ve la lev

Paralelismo, Arquitecturas Paralelas y Flynn

- ¿Qué es paralelismo?
- ; Hay un solo tipo de paralelismo?
- ¿Que tipos de paralelismo hay?

Chavarría-Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitecturas Paralelas y Flynn

SISD SIMD MISD

MIMI

Amda

Speedup Overall

¿Cómo se ve la lev

de Amdahl?

Amdahl con unida

simétricas y no-simétricas

procesamien simétricas y

Tendencia:

Confiabilida y Mantenibi

Paralelismo, Arquitecturas Paralelas y Flynn

Parallel Architectures by Flynn

- "...Parallel or concurrent operation has many different forms within a computer system..."
- "... A stream is a sequence of objects such as data, or of actions such as instructions. Each stream is independent of all other streams, and each element of a stream can consist of one or more objects or actions..."

Chavarría-Zamora, Luis Alberto

Paralelismo. Arquitecturas Paralelas y Flynn

Cómo se ve la lev

Paralelismo, Arquitecturas Paralelas y Flynn

Parallel Architectures by Flynn

Las arquitecturas más comúnes según la cantidad de streams son:

- SISD.
- SIMD.
- MISD.
- MIMD.

Chavarría-Zamora, Luis Alberto

SISD

Cómo se ve la lev

Paralelismo, Arquitecturas Paralelas y Flynn SISD

- Significa Single Instruction Single Data.
- Arquitectura tradicional de un único procesador.
- Utiliza *pipelining*, realizando concurrentemente diferentes fases de procesamiento de una instrucción.
- Implementa instruction level parallelism (ILP) como superescalar o very long instruction word (VLIW).
- No se obtiene concurrencia de ejecución, pero si de procesos.

Chavarría-Zamora, Luis Alberto

SISD

Cómo se ve la lev

Paralelismo, Arquitecturas Paralelas y Flynn **SISD**

Chavarría-Zamora, Luis Alberto

Lección Anterio

Paralelismo, Arquitectura Paralelas y Flynn

SISD

SIMD

MIM

Ley a

Speedup

¿Cómo se ve la ley

de procesamient simétricas y no-simétricas

Unidades de procesamient simétricas y

Tendencia

y Mantenibi

Paralelismo, Arquitecturas Paralelas y Flynn SIMD

- Significa Single Instruction Multiple Data.
- Incluye procesadores de arreglo (array) y vectoriales.
 - Procesadores de arreglo: Instrucciones operan en múltiples elementos al mismo tiempo. Se conocen como massively parallel processor.
 - Procesadores vectoriales: Instrucciones operan en múltiples elementos en tiempos consecutivos.

LD VR
$$\leftarrow$$
 A[3:0]
ADD VR \leftarrow VR,1
MUL VR \leftarrow VR,2
ST A[3:0] \leftarrow VR

Chavarría-Zamora, Luis Alberto

Lección Anterio

Paralelismo, Arquitectura Paralelas y Flynn

SISD

SIMD

MISE

MIMI

Ley de Amdah

Speedup

Speedup O

¿Cómo se ve la ley de Amdahl?

de procesamiento simétricas y

Unidades de procesamiento simétricas y

Tendencia:

Confiabilidad y Mantenibili

Paralelismo, Arquitecturas Paralelas y Flynn SIMD (Tiempo vs Espacio)

LD0	LD1	LD2	LD3
AD0	AD1	AD2	AD3
MU0	MU1	MU2	MU3
ST0	ST1	ST2	ST3

LD0			
LD1	AD0		
LD2	AD1	MU1	
LD3	AD2	MU2	ST0
	AD3	MU3	ST1
		MU4	ST2
			ST3

Chavarría-Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitectura Paralelas y

CICD

SIMD

MISD

MIME

Amda

Speedup

эрссиир

¿Cómo se ve la ley

Amdahl con unio

simétricas y no-simétricas

Unidades de procesamiento simétricas y

Tondoncias

Confiabilidad

Paralelismo, Arquitecturas Paralelas y Flynn SIMD

Chavarría-Zamora, Luis Alberto

MISD

Cómo se ve la lev

Paralelismo, Arquitecturas Paralelas y Flynn MISD

- Significa Multiple Instruction, Single Data.
- Se usa en sistemas aeroespaciales y arreglos sistólicos.
- También se puede usar para detectar y enmascarar errores

Chavarría-Zamora, Luis Alberto

Lección Anterio

Paralelismo, Arquitectura Paralelas y Flynn

SISD SIMD MISD MIMD

Ley d Amda

Speedup Overall ¿Cómo se ve la ley

Amdahl con unidad de procesamiento simétricas y no-simétricas

Unidades de procesamien simétricas y

Tendencias

Confiabilida y Mantenibi

Paralelismo, Arquitecturas Paralelas y Flynn MIMD

- Significa Multiple Instruction, Multiple Data.
- No necesariamente todos los procesadores deben ser idénticos, cada uno opera independientemente.
- Son: procesadores multinúcleo y superescalares.
- Cuando usan memoria compartida en este tipo de sistemas hay dos problemas:
 - Consistencia de memoria (se resuelve a través de combinación de técnicas de hardware y software).
 - Mantener la coherencia de caché (se resuelve mediante técnicas de hardware).

Chavarría-Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitectura Paralelas y Flynn

SISD

SIME

MIMD

MIML

Amda

Speedup

¿Cómo se ve la ley

de Amdahl?

de procesamiento simétricas y no-simétricas

procesamiento simétricas y

Tandancia

Confiabilidad y Mantenibili-

Paralelismo, Arquitecturas Paralelas y Flynn MIMD

Chavarría-Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitectura Paralelas y Flynn

SISD

MISD

MIME

Ley

Ailiuai

Speedup

¿Cómo se ve la ley

Amdahl con unio de procesamient simétricas y

Unidades de procesamiento simétricas y

Tendencias

Confiabilidad

Paralelismo, Arquitecturas Paralelas y Flynn

Breakout Room: Pregunta de examen

Según Flynn cómo se catalogan:

$$[f(x),g(y),h(z)] = \left[\frac{x+1}{2},\frac{\sin y}{y},e^{z}\right]$$
 (1)

$$[h(x,y)] = \left[e^{x+y}\right] \tag{2}$$

$$[f(x)] = a_o + x(a_1 + x(a_2 + a_3x)) = a_0 + a_1x^2 + a_2x^3$$
 (3)

$$[g(x,y,z)] = x^{a_0} + y^{a_1} + z^{a_2}$$
 (4)

Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitectura Paralelas y Flynn

SISD SIMD MISD

MIME

Ley de Amdahl

Speedup

Speedup Overall ¿Cómo se ve la ley de Amdahl?

Amdahl con unida de procesamiento simétricas y

Unidades de procesamien simétricas y

Tendencias

Confiabilidad

Ley de Amdahl ¿Qué es?

- Permite obtener la ganancia en el desempeño debido a la mejora en una característica determinada.
- La ley de Amdahl puede servir como una guía para determinar la mejora real y como distribuir los recursos para tener mejor relación costo-desempeño.
- Gene Amdahl establece que todo programa se divide en:
 - Partes paralelizable.
 - Partes no paralelizables.

Chavarría-Zamora, Luis Alberto

MIMD

Ley de

Amdahl

¿Cómo se ve la lev

de procesamiento

Ley de Amdahl

¿Qué es?

1 - B = Parallelizable

Chavarría-Zamora, Luis Alberto

Lección

Paralelismo, Arquitectura

Arquitectura Paralelas y

SISD

SIME

MIMD

Ley de Amdahl

Amdal

Speedup O

¿Cómo se ve la ley de Amdahl?

de procesamiento simétricas y

no-simétricas

procesamient simétricas y

Tendencias

Confiabilidad

Ley de Amdahl ; Qué es?

Chavarría-Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitectura: Paralelas v

Paralelas y Flynn

SISD

MISD

MIME

Ley de Amdahl

Caradaa

Speedup Or

¿Cómo se ve la ley de Amdahl?

de procesamient simétricas y

no-simétricas

procesamiento simétricas y

Tendencias

Tendencias

y Manteni

¿Existe un límite de ganancia?

Ley de Amdahl ; Qué es?

Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitecturas Paralelas y Flynn

Flynn

SIMD

MIM

Ley de Amdahl

Speedup

Speedup Overall ¿Cómo se ve la ley

Amdahl con unida de procesamiento simétricas y

Unidades de procesamient simétricas y

Tendencia

Confiabilidad

Ley de Amdahl ¿Qué es?

B T-B

Donde:

- B: es la parte no paralelizable.
- T: es el tiempo de duración de una tarea.

La fracción paralelizable está dada por un factor N:

$$\frac{T-B}{N}$$

Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitecturas Paralelas y

Flynn

SIME

MIM

Ley de Amdahl

Speedup

¿Cómo se ve la ley

Amdahl con unida de procesamiento simétricas y

Unidades de procesamient

Tondonciae

Confiabilidad

Confiabilidad y Mantenibil

Ley de Amdahl ¿Qué es?

В	T - B	
---	-------	--

Donde:

- B: es la parte no paralelizable.
- T: es el tiempo de duración de una tarea.

La fracción paralelizable está dada por un factor N:

$$\frac{T-B}{N}$$

$$T(N) = B + \frac{(T-B)}{N}$$

Lección 1 -Semana 2 Chavarría-Zamora, Luis

Alberto

Lección

Paralelismo, Arquitecturas Paralelas y Flynn

SISD SIMD MISD

MIME

Ley o

Amda

Speedup

¿Cómo se ve la ley de Amdahl?

de procesamiento simétricas y

Unidades de procesamient simétricas y

Tendencias

Confiabilidad

Ley de Amdahl

$$\begin{aligned} \text{Speedup} &= \frac{\text{Tiempo de ejecución de una tarea sin mejora}}{\text{Tiempo de ejecución de una tarea con mejora}} \\ \text{Speedup} &= \frac{T(1)}{T(N)} = \frac{T(1)}{B + \frac{(T(1) - B)}{N}} \end{aligned}$$

Con T(1) = 1 (sin mejora):

$$\mathsf{Speedup} = \frac{1}{B + \frac{(1 - B)}{N}}$$

Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitectura Paralelas y Flynn

SISD SIMD MISD

Ley d

Speedup

Speedup Overall

¿Cómo se ve la lev

de Amdahl? Amdahl con unid

de procesamiento simétricas y no-simétricas

procesamient simétricas y

Tendencias

Confiabilidad

Ley de Amdahl Speedup Overall

$$\mathsf{Speedup}_\mathsf{overall} = \frac{\mathsf{Execution}\;\mathsf{time}_\mathsf{old}}{\mathsf{Execution}\;\mathsf{time}_\mathsf{new}} = \frac{1}{(1 - \mathsf{Fraction}_\mathsf{enhanced}) + \frac{\mathsf{Fraction}_\mathsf{enhanced}}{\mathsf{Speedup}_\mathsf{enhanced}}}$$

Donde

- Fraction_{enhanced} es la fracción del tiempo de computación original que se puede ver beneficiado por la mejora.
- Speed_{enhanced} es la ganancia del producto de la ejecución en modo "mejorado". Esto es, qué tan rápido ejecutaría la tarea si la mejora se aplicara a todo el programa.

Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitectura Paralelas y

SISD SIMD MISD

MIM

Amda

Speedup Overall

¿Cómo se ve la ley

Amdahl con unidad de procesamiento simétricas y

Unidades de procesamient simétricas y

Tendencias

Confiabilida y Mantenibi

Ley de Amdahl Ejemplo

Ejemplo: Ley de Amdahl

Supongamos que se desea mejorar un procesador utilizado para un servidor Web. El nuevo procesador es **10 veces más rápido** en tiempo de computación para la aplicación de servidor Web que el procesador antiguo. Asumiendo que el procesador original está **ocupado** un **40 %** del tiempo y el **60 %** del tiempo **esperando** por dispositivos de Entrada/Salida. ¿Cuál es la ganancia total producto de incorporar la mejora?

$$\mathsf{Speedup}_\mathsf{overall} = \frac{\mathsf{Execution\ time}_\mathsf{old}}{\mathsf{Execution\ time}_\mathsf{new}} = \frac{1}{(1 - \mathsf{Fraction}_\mathsf{enhanced}) + \frac{\mathsf{Fraction}_\mathsf{enhanced}}{\mathsf{Speedup}_\mathsf{enhanced}}}$$

Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitectura Paralelas y

SISD SIMD MISD

Ley d

Speedup Overall

Cómo se ve la lev

Amdahl con unidade de procesamiento simétricas y no-simétricas

Unidades de procesamiento simétricas y asimétricas

Tendencias

rendencias

y Mante

Ley de Amdahl Ejemplo

Ejemplo: Ley de Amdahl

Supongamos que se desea mejorar un procesador utilizado para un servidor Web. El nuevo procesador es **10 veces más rápido** en tiempo de computación para la aplicación de servidor Web que el procesador antiguo. Asumiendo que el procesador original está **ocupado** un **40 %** del tiempo y el **60 %** del tiempo **esperando** por dispositivos de Entrada/Salida. ¿Cuál es la ganancia total producto de incorporar la mejora?

$$\mathsf{Speedup}_{\mathsf{overall}} = \frac{\mathsf{Execution}\;\mathsf{time}_{\mathsf{old}}}{\mathsf{Execution}\;\mathsf{time}_{\mathsf{new}}} = \frac{1}{(1 - \mathsf{Fraction}_{\mathsf{enhanced}}) + \frac{\mathsf{Fraction}_{\mathsf{enhanced}}}{\mathsf{Speedup}_{\mathsf{enhanced}}}}$$

$$Fraction_{enhanced} = 40 \% = 0.4 \text{ Speedup}_{enhanced} = 10$$

$$Speedup_{overall} = 1,56$$

Chavarría-Zamora, Luis Alberto

Lección

Paralelismo, Arquitectura Paralelas y Flynn

SISD

MISD

MIMI

Ley o

Speedup O

¿Cómo se ve la ley

Amdahl con unida de procesamiento simétricas y

Unidades de procesamiento simétricas y

Tendencias

Confiabilidad v Mantenibili

Ley de Amdahl

¿Cómo se ve la ley de Amdahl?

Chavarría-Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitectura Paralelas y Flynn

SISD SIMD MISD

Ley d Amda

Speedup Overall ¿Cómo se ve la ley

Amdahl con unidades de procesamiento simétricas y

no-simétricas Unidades de procesamient simétricas y

Tendencias

Confiabilidae y Mantenibi

Ley de Amdahl

Amdahl con unidades de procesamiento simétricas y no-simétricas

- La paralelización es uniformemente distribuida en las unidades de ejecución (procesadores).
- No aplica en sistemas heterogéneos y multicore (simétricos y no simétricos).
- Supone que no hay conflictos de recursos.

Chavarría-Zamora, Luis Alberto

Tarea Moral

Lección

Paralelismo, Arquitectura: Paralelas y Flynn

SISD SIMD MISD

MIMI

Lev c

Amdah

Speedup

Speedup Overall

Cómo se ve la lev

¿Cómo se ve la de Amdahl?

Amdahl con unidades de procesamiento simétricas y no-simétricas

Unidades de procesamien simétricas y

Tendencia

Confiabilidad

- Investigue la ley Gustafson–Barsis.
- Lectura Recomendada.

Chavarría-Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitectura Paralelas y Flynn

SISD SIMD MISD

Levic

Speedup Speedup Overal

Speedup Overall ¿Cómo se ve la ley de Amdahl?

Amdahl con unidad de procesamiento simétricas y no-simétricas

Unidades de procesamiento simétricas y

Tendencia

Confiabilida y Mantenib

Ley de Amdahl

Amdahl con unidades de procesamiento simétricas y no-simétricas

- La paralelización es uniformemente distribuida en las unidades de ejecución (procesadores).
- No aplica en sistemas heterogéneos y multicore (simétricos y no simétricos).
- Supone que no hay conflictos de recursos.

Chavarría-Zamora, Luis Alberto

MIMD

¿Cómo se ve la lev

Unidades de procesamiento simétricas y asimétricas

Ley de Amdahl

Unidades simétricas

Sixteen 1-BCE cores

Four 4-BCE cores

Chavarría-Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitectura Paralelas y

SISD

MISD

MIM

Amd

Speedup

Cómo se ve la ley

de Amdahl?

de procesamiento simétricas y no-simétricas

Unidades de procesamiento simétricas y

Tendencias

Confiabilidad

y Mantenibili-Chavarría-Zamora, Luis Alberto

Ley de Amdahl

Unidades simétricas

 $\mathsf{Donde}\;\mathsf{F}=\mathsf{Fracci\'{o}n}\;\mathsf{paralelizable}$

Chavarría-Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitectura Paralelas y

Flynn SISD

SIMD

MIMD

Amd

Speedup

Speedup C

¿Cómo se ve la ley de Amdahl?

de procesamiento simétricas y

Unidades de procesamiento simétricas y

Tendencias

Confiabilidad

Ley de Amdahl

Unidades simétricas: Ejemplo Intel Core i9

Chavarría-Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitectura Paralelas y

Paralelas y Flynn

SISD

MICE

MIME

Ley o

Amda

Speedup Overall

Cómo se ve la lev

de Amdahl?

Amdahl con unida

de procesamiento simétricas y no-simétricas

Unidades de procesamiento simétricas y asimétricas

Tendencia

Confiabilida y Mantenibi

Ley de Amdahl

Unidades asimétricas

Symmetric: Four 4-BCE cores

Asymmetric: One 4-BCE core & Twelve 1-BCE base cores

Chavarría-Zamora, Luis Alberto

Cómo se ve la lev

Unidades de procesamiento simétricas y asimétricas

Ley de Amdahl

Unidades asimétricas

Chavarría-Zamora, Luis Alberto

Lección

Paralelismo, Arquitectura: Paralelas y

Paralelas y Flynn

SISD

MIME

.

Amda

Speedup

¿Cómo se ve la ley

de procesamiento simétricas y

Unidades de procesamiento simétricas y

Tendencias

Confiabilidad

Ley de Amdahl

Unidades asimétricas: Ejemplo arm big.LITTLE

Zamora, Luis Alberto

Cómo se ve la lev

Tendencias

Tendencias Tecnológicas

Tendencias de la industria

Investiguen cuales son las tendencias de la industria en computadores respecto:

- Tecnologías de memoria.
- Manejo de potencia.
- Niveles de integración.
- Sistemas operativos.

Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitectura Paralelas y Flynn

SISD SIMD MISD MIMD

MIM

Amda

Speedup Ov

¿Cómo se ve la ley de Amdahl?

de procesamiento simétricas y no-simétricas

Unidades de procesamient simétricas y

Tendencias

rendencias

Confiabilidad y Mantenibili-

Confiabilidad y Mantenibilidad

Probabilidad de que el sistema esté funcionando en el instante t dado que funcionaba en el instante t_0 . Se tiene:

- Tiempo medio para una falla (MTTF).
- Fallos por tiempo (λ): $\lambda = \frac{1}{\text{MTFF}}$

R(t): probabilidad de que un sistema falle en t unidades de tiempo después de la última falla.

$$R(t) = e^{-\lambda(t-t_0)}$$

Zamora, Luis Alberto

SISD SIMD MISD MIMD

Ley de Amdal

Speedup Overall

Amdahl con unidad de procesamiento simétricas y no-simétricas

Unidades de procesamient simétricas y

Tendencias

Confiabilidad y Mantenibili-

Confiabilidad y Mantenibilidad

Tiempo requerido para que el sistema este funcionando luego de que se dio una falla.

- Tiempo medio para reparar (MTTR): Tiempo de la interrupción del servicio.
- Tasa de reparación (μ): $\mu = \frac{1}{\text{MTTR}}$

M(t): probabilidad de que un sistema este funcionando en t unidades de tiempo después de que se presentó una falla.

$$M(t) = e^{-\mu t}$$

Chavarría-Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitecturas Paralelas y Flynn

SISD SIMD MISD

MIME

Ley d

Speedup

Speedup C

¿Cómo se ve la ley de Amdahl?

de procesamiento simétricas y no-simétricas

Unidades de procesamiento simétricas y asimétricas

Tendencias

Confiabilidad y Mantenibili-

Confiabilidad y Mantenibilidad

Disponibilidad

Es el porcentaje del tiempo en el que el sistema estará disponible para brindar un servicio correcto.

Tiempo medio entre fallas (MTBF): MTTF + MTTR

$$A = \frac{\mathsf{MTTF}}{\mathsf{MTBF}}$$

Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitectura Paralelas y Flynn

SISD SIMD MISD

Ley de

Speedup Speedup Ove

¿Cómo se ve la ley de Amdahl?

Amdahl con unida de procesamiento simétricas y no-simétricas

Unidades de procesamient simétricas y

Tendencias

Confiabilida y Mantenibi

Benchmarking Desempeño

Término aplica de manera diferente según el campo:

- ISP: Calidad de imagen.
- Memorias: Accesos a memoria por segundo.
- CPU's: Medida de la tasa en que los programas son ejecutados (IPC, CPI).

Punto de vista microscópico:

Latencia:

Zamora, Luis Alberto

Benchmarking Desempeño

Término aplica de manera diferente según el campo:

ISP: Calidad de imagen.

Memorias: Accesos a memoria por segundo.

 CPU's: Medida de la tasa en que los programas son ejecutados (IPC, CPI).

Punto de vista microscópico:

Latencia: Tiempo requerido para ejecutar una instrucción desde inicio hasta finalización.

Flujo de instrucciones (throughput):

Zamora, Luis Alberto

Benchmarking Desempeño

Término aplica de manera diferente según el campo:

- ISP: Calidad de imagen.
- Memorias: Accesos a memoria por segundo.
- CPU's: Medida de la tasa en que los programas son ejecutados (IPC, CPI).

Punto de vista microscópico:

- Latencia: Tiempo requerido para ejecutar una instrucción desde inicio hasta finalización.
- Flujo de instrucciones (throughput): Tasa de finalización de instrucciones.

Chavarría-Zamora, Luis Alberto

Cómo se ve la lev

de procesamiento

Benchmarking Desempeño

Zamora, Luis Alberto

Cómo se ve la lev

Benchmarking Desempeño

El benchmark es un instrumento para comparar el desempeño de varios sistemas en aplicaciones reales.

Representa un recurso de software para evaluar un sistema y discriminar la mejor opción para el diseño.

Varios tipos de benchmarks: SPEC, EEMBC, BDTi, Drystone, CoreMark.

Zamora, Luis Alberto

Cómo se ve la lev

Referencias

J. Hennesy y D. Patterson (2012)

Computer Architecture: A Quantitative Approach. 5th Edition. Elsevier - Morgan Kaufmann.

J. González y R. García (2019)

Notas de clase de los profesores: Jeferson González y Ronald García.

Chavarría-Zamora, Luis Alberto

Lección Anterior

Paralelismo, Arquitecturas Paralelas y Flynn

SISD SIMD MISD

MIME

Ley de Amdah

Speedup

Speedup Overall ¿Cómo se ve la ley

Amdahl con unida de procesamiento simétricas y

Unidades de procesamient simétricas y

Tendencias

Confiabilidad

Arquitectura de Computadores I

Luis Alberto Chavarría Zamora

ITCR

lachavarria@tec.ac.cr

3 de agosto de 2023