Naturality of the duality map

In this section we verify that the duality maps for oriented manifold are natural for open embeddings. If U is an open subset of the n-manifold M, then U is itself an n-manifold. Moreover, if $\mu = \{\mu_x\}_{x \in M}$ is an orientation of M, then by simply forgetting the local orientations for points not in U, we obtain a 'restricted' orientation

$$\mu|_U = \{\mu_x\}_{x \in U}$$

for U. Compactly supported cohomology and singular homology are both covariantly functorial for the open inclusion $U \longrightarrow M$, and we now show that the duality maps are compatible with the functoriality.

Proposition 1. Let (M, μ) be an oriented n-manifold, and let U be an open subset of M, endowed with the restricted orientation $\mu|_U$. Then the following square of group homomorphisms commutes for all i > 0:

$$H^{i}_{\text{comp}}(U; \mathbb{Z}) \xrightarrow{D_{U}} H_{n-i}(U; \mathbb{Z})$$

$$\downarrow^{i}_{U} \downarrow \text{incl}_{*}$$

$$H^{i}_{\text{comp}}(M; \mathbb{Z}) \xrightarrow{D_{M}} H_{n-i}(M; \mathbb{Z})$$

Proof. We start by recording that for all compact subsets K of U, the two orientation classes $(\mu|_U)_K$ and μ_K of K match up under the homomorphism

$$\operatorname{incl}_*: H_n(U, U \setminus K; \mathbb{Z}) \longrightarrow H_n(M, M \setminus K; \mathbb{Z})$$

induced by the inclusion $U \longrightarrow M$. Indeed, for every point $x \in K$ we have

$$r_x^M(\text{incl}_*((\mu|_U)|_K)) = r_x^U(\mu|_U) = \mu_x$$

in the group $H^n(M|x;\mathbb{Z})$; the first equation is functoriality of relative singular homology, and the second equation is the definition of the restricted orientation $\mu|_U$. So the class $\inf(\mu|_U)$ enjoys the property that characterizes the class μ_K , and hence

$$(2) \qquad \operatorname{incl}_*((\mu|_U)_K) = \mu_K .$$

To keep track of the following calculation, the reader might want to refer to the following diagram:

$$H^{i}(U, U \setminus K; \mathbb{Z}) \xrightarrow{\lambda_{K}} H^{i}_{\text{comp}}(U; \mathbb{Z}) \xrightarrow{D_{U}} H_{n-i}(U; \mathbb{Z})$$

$$\downarrow_{\text{incl}^{*}} \cong \downarrow_{U} \downarrow_{\text{comp}} \downarrow_{\text{incl}_{*}} \downarrow_{\text{incl}_{*}} \downarrow_{\text{incl}_{*}} \downarrow_{\text{incl}_{*}} \downarrow_{H^{i}(M, M \setminus K; \mathbb{Z})} \xrightarrow{\lambda_{K}} H^{i}_{\text{comp}}(M; \mathbb{Z}) \xrightarrow{D_{M}} H_{n-i}(M; \mathbb{Z})$$

The left square commutes by the defining property of the homomorphism ι_U^M . The commutativity of the right square is what we aim to show.

Every class in $H^i_{\text{comp}}(U;\mathbb{Z})$ is of the form $\lambda_K(\alpha)$ for some compact subset K of U and some relative cohomology class $\alpha \in H^i(U, U \setminus K; \mathbb{Z})$. By excision, $\alpha = \text{incl}^*(\beta)$ for a unique class $\beta \in H^i(M, M \setminus K; \mathbb{Z})$.

So

$$\operatorname{incl}_*(D_U(\lambda_K(\alpha))) = \operatorname{incl}_*((\mu|_U)_K \cap \alpha)$$

$$= \operatorname{incl}_*((\mu|_U)_K \cap \operatorname{incl}^*(\beta))$$

$$= \operatorname{incl}_*((\mu|_U)_K) \cap \beta$$

$$(2) = \mu_K \cap \beta$$

$$= D_M(\lambda_K(\beta))$$

$$= D_M(\iota_U^M(\lambda_K(\operatorname{incl}^*(\beta))))$$

$$= D_M(\iota_U^M(\lambda_K(\alpha))).$$

Since the classes $\lambda_K(\alpha)$ account for all classes in $H^i_{\text{comp}}(U;\mathbb{Z})$, this proves the claim.