Analyse de variance avec interaction

F. Husson husson@agrocampus-ouest.fr

Données - notations

Séance	Juge	Produit	Sucre	Acide	Amer	Cacao	Lait
S1	J1	P6	4	3	2	5,5	7,5
S1	J1	P4	1,2	4,4	6	7,6	5,5
S1	J1	P2	1,8	3	2,6	5	2,4
S1	J1	P5	1,5	3,5	7,1	7,5	7,3
S1	J1	P1	1	5,5	9,3	8,6	8,1
S1	J1	P3	9	1	0	0,5	3,7
:		::	:	:	:	:	:
S1	J2	P5	3,9	2	2,4	5,6	4,8
S1	J2	P6	2,4	4	4,9	5,3	5,8

Questions

Y a-t-il des différences d'amertume entre chocolats ?

Les juges utilisent-ils l'échelle de note de la même façon ?

L'amertume des chocolats estelle évaluée de la même façon d'une séance à l'autre ?

Les juges évaluent-ils les chocolats de la même façon ?

Données - exemple

Exemple : 2 produits ; 3 juges; 2 répétitions

	Juge 1	Juge 2	Juge 3	Moy	
Produit 1	1	1	2	2	
Froduit 1	3	1	4	۷	
Produit 2	2	4	4	1	
Produit 2	2	6	6	4	
Moy	2	3	4	3	

Prod	Juge	Note	
P1	J1	1	
P1	J1	3	
P1	J2	1	
P1	J2	1	
P1	J3	2	
P1	J3	4	
P2	J3	6	

Données - notations

- Y variable quantitative
- F1, F2, ... variables qualitatives à *I*, *J*, ... modalités
- n_{ij} répétitions pour le couple (i,j)

obs	F1	F2	y
1	1	1	y_{111}
•	÷	:	:
1	1	$y_{11n_{11}}$	
•	i	ŧ	:
i	j	y_{ijk}	
i	÷	i	:
n	I	J	$y_{IJn_{IJ}}$

$$y_{ij\bullet} = \frac{1}{n_{ij}} \sum_{k=1}^{n_{ij}} y_{ijk}$$
$$y_{i\bullet\bullet} = \frac{1}{n_i} \sum_{j,k} y_{ijk}$$
$$y_{\bullet j\bullet} = \frac{1}{n_j} \sum_{i,k} y_{ijk}$$

$$y_{\bullet \bullet \bullet} = \frac{1}{n} \sum_{i,j,k} y_{ijk}$$

Questions

- Y a-t-il un effet « produit » sur la note ?
- Y a-t-il un effet « juge » sur la note ?
- Y a-t-il une interaction entre les deux facteurs?

Tests

Décision dans l'incertain : notion de test

Définition de l'interaction

Interaction:

l'effet d'un facteur sur Y diffère selon les modalités de l'autre

Illustration de l'interaction

Y : Nombre de bulles

2 facteurs : Boisson (eau / coca), Mentos (présence / absence)

Interaction : effet du mentos sur le nombre de bulles dépend de la boisson

i=1,...,2 j=1,...,3 k=1,2

$$\forall i, j, k \qquad Y_{ijk} = \mu$$

On ne dispose que de l'info suivante : la taille de chaque fleur, sa variété et la parcelle dans laquelle elle est cultivée

Et on cherche à estimer :

 μ : la taille moyenne des fleurs (quelle que soit la parcelle et la variété)

 α_i : l'effet de la parcelle i

 β_j : l'effet de la variété j

 $\alpha\beta_{ij}$: l'effet de l'interaction variété - parcelle

Définition du modèle à 2 facteurs

Écriture du modèle sous forme indicée
$$\begin{cases} \forall i,j,k & Y_{ijk} = \mu + \alpha_i + \beta_j + \alpha\beta_{ij} + \varepsilon_{ijk} \\ \forall i,j,k & \mathcal{L}(\varepsilon_{ijk}) = \mathcal{N}(\mathbf{0},\sigma) \\ \forall (i',j',k') \neq (i,j,k) & cov(\varepsilon_{ijk},\varepsilon_{i'j'k'}) = \mathbf{0} \end{cases}$$

effet moyen

 α_i effet principal du niveau *i* du facteur 1

effet principal du niveau j du facteur 2

 $lphaeta_{ij}$ effet de l'interaction des facteurs 1 et 2 pour les niveaux i et jrésiduelle

Écriture matricielle du modèle :

$$Y = X\beta + E$$
 avec $\mathbb{E}(E) = 0$ et $\mathbb{V}(E) = \sigma^2 Id$

Contraintes

1 + I + J + IJ paramètres mais IJ paramètres indépendants modèle sur-paramétré besoin de contraintes

Contraintes:

$$\alpha_1 = 0$$

$$\beta_1 = 0$$

$$\begin{cases} \forall i, \alpha \beta_{i1} = 0 \\ \forall j, \alpha \beta_{1j} = 0 \end{cases}$$

La modalité 1 du 1^{er} facteur sert de référence

La modalité 1 du 2^{ème} facteur sert de référence

Les interactions avec les modalités 1 du 1^{er} et du 2^{ème} facteur servent de référence

Il est extrêmement difficile d'interpréter les coefficients estimés avec ces contraintes pour des modèles avec interactions (l'interprétation d'un coefficient dépend du modèle)

ATTENTION : ces contraintes sont utilisées par défaut dans R

→ ne pas utiliser les fonctions par défaut

Contraintes

1 + I + J + IJ paramètres mais IJ paramètres indépendants modèle sur-paramétré besoin de contraintes

Contraintes:

$$\sum_{i=1}^{I} \alpha_i = 0$$

$$\sum_{j=1}^{J} \beta_j = 0$$

$$\forall i, \sum_{j=1}^{J} \alpha \beta_{ij} = 0$$

$$\forall j, \sum_{j=1}^{I} \alpha \beta_{ij} = 0$$

Exemple:

$$\alpha_{1} + \alpha_{2} = 0 \Rightarrow \alpha_{2} = -\alpha_{1}$$

$$\beta_{1} + \beta_{2} + \beta_{3} = 0 \Rightarrow \beta_{3} = -\beta_{1} - \beta_{2}$$

$$\alpha\beta_{11} + \alpha\beta_{12} + \alpha\beta_{13} = 0$$

$$+ + + +$$

$$\alpha\beta_{21} + \alpha\beta_{22} + \alpha\beta_{23} = 0$$

$$= = =$$

$$0 \qquad 0$$

$$\alpha\beta_{13} = -\alpha\beta_{11} - \alpha\beta_{12}$$

$$\Rightarrow \begin{cases} \alpha\beta_{13} = -\alpha\beta_{11} - \alpha\beta_{12} \\ \alpha\beta_{21} = -\alpha\beta_{11} \\ \alpha\beta_{22} = -\alpha\beta_{12} \\ \alpha\beta_{23} = -\alpha\beta_{21} - \alpha\beta_{22} \\ \Rightarrow \alpha\beta_{23} = \alpha\beta_{11} + \alpha\beta_{12} \end{cases}$$

$$\begin{array}{c} Y_{111} = \mu + \alpha_1 + \beta_1 + \beta_1 + \alpha\beta_{11} + \varepsilon_{111} \\ Y_{112} = \mu + \alpha_1 + \beta_1 + \beta_1 + \alpha\beta_{11} + \varepsilon_{112} \\ Y_{121} = \mu + \alpha_1 + \beta_2 + \alpha\beta_{12} + \varepsilon_{121} \\ Y_{122} = \mu + \alpha_1 + \beta_2 + \alpha\beta_{12} + \varepsilon_{122} \\ Y_{131} = \mu + \alpha_1 - \beta_1 - \beta_2 - \alpha\beta_{11} - \alpha\beta_{12} + \varepsilon_{132} \\ Y_{132} = \mu + \alpha_1 - \beta_1 - \beta_2 - \alpha\beta_{11} - \alpha\beta_{12} + \varepsilon_{132} \\ Y_{211} = \mu - \alpha_1 + \beta_1 - \alpha\beta_{11} + \varepsilon_{211} \\ Y_{212} = \mu - \alpha_1 + \beta_1 - \alpha\beta_{11} + \varepsilon_{212} \\ Y_{221} = \mu - \alpha_1 + \beta_2 - \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{221} \\ Y_{222} = \mu - \alpha_1 + \beta_2 - \alpha\beta_{12} + \varepsilon_{222} \\ Y_{231} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{232} \\ Y_{232} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{232} \\ Y_{232} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{232} \\ Y_{231} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{232} \\ Y_{231} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{232} \\ Y_{231} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{232} \\ Y_{231} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{232} \\ Y_{231} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{232} \\ Y_{231} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{232} \\ Y_{231} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{232} \\ Y_{231} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{232} \\ Y_{231} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{232} \\ Y_{231} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{232} \\ Y_{231} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{232} \\ Y_{231} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{232} \\ Y_{231} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{232} \\ Y_{231} = \mu - \alpha_1 - \beta_1 - \beta_1 - \beta_1 - \beta_1 - \beta_1 - \beta_1 \\ Y_{232} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_{12} + \varepsilon_{231} \\ Y_{232} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_{11} + \alpha\beta_1 + \varepsilon_{232} \\ Y_{231} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_1 + \alpha\beta_1 + \alpha\beta_1 + \varepsilon_{232} \\ Y_{231} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_1 + \alpha\beta_1 + \alpha\beta_1 + \varepsilon_{232} \\ Y_{232} = \mu - \alpha_1 - \beta_1 - \beta_2 + \alpha\beta_1 + \alpha\beta$$

Estimation des paramètres du modèle

par la méthode des moindres carrés

Minimiser
$$\sum_{i,j,k} \varepsilon_{ijk}^2$$
 revient à minimiser $E^2 = (Y - X\beta)'(Y - X\beta)$
 $E^2 = Y'Y - Y'X\beta - \beta'X'Y + \beta'X'X\beta$

Annulons la dérivée par rapport à β pour trouver le minimum

$$\frac{\partial(E^2)}{\partial \beta} = \frac{\partial(Y'Y)}{\partial \beta} - \frac{\partial(Y'X\beta)}{\partial \beta} - \frac{\partial(\beta'X'Y)}{\partial \beta} + \frac{\partial(\beta'X'X\beta)}{\partial \beta} = 0$$

$$0 - (X'Y) - (X'Y) + X'X\beta + X'X\beta = 0$$

$$X'Y = X'X\beta$$

Règles de calcul pour dérivation matricielle
$$\frac{\partial (X'A)}{\partial A} = \frac{\partial (A'X)}{\partial A} = X$$
$$\frac{\partial (A'X')}{\partial A} = \frac{\partial (AX)}{\partial A} = X'$$

X'X non inversible : sur-paramétrisation (besoin de contraintes)

X'X inversible: l'estimateur de β est: $\widehat{\beta} = (X'X)^{-1}X'Y$

Propriétés :
$$\mathbb{E}(\widehat{\beta})=\beta$$
 $\mathbb{V}(\widehat{\beta})=\sigma^2\;(X'X)^{-1}$ $\widehat{\beta}-\beta\sim N(0,\sigma^2\;(X'X)^{-1})$ 19

Estimation des paramètres du modèle

Prédiction et résidus

Valeurs prédites :
$$\widehat{Y} = X\widehat{\beta}$$

$$\widehat{y}_{ijk} = \widehat{\mu} + \widehat{\alpha}_i + \widehat{\beta}_j + \widehat{\alpha\beta}_{ij} = y_{ij} \bullet$$

Résidus :
$$E = Y - \hat{Y}$$

$$e_{ijk} = y_{ijk} - \hat{y}_{ijk}$$

Estimateur de la variabilité résiduelle

$$\hat{\sigma}^2 = \frac{\sum_{i,j,k} e_{ijk}^2}{\sum_{i,j,k} e_{ijk}^2}$$

Propriété :
$$\mathbb{E}(\hat{\sigma}^2) = \sigma^2$$

Estimation des paramètres du modèle

Cas particulier du plan équilibré (complet équirépété) :

$$\widehat{\mu} = y_{\bullet \bullet \bullet}$$

$$\widehat{\alpha}_i = y_{i \bullet \bullet} - y_{\bullet \bullet \bullet}$$

$$\widehat{\beta}_j = y_{\bullet j \bullet} - y_{\bullet \bullet \bullet}$$

$$\widehat{\alpha \beta}_{ij} = y_{ij \bullet} - y_{i \bullet \bullet} - y_{\bullet j \bullet} + y_{\bullet \bullet \bullet}$$

Décomposition de la variabilité

Cas complet et équirépété : les SC s'additionnent

$$\sum_{i,j,k} (Y_{ijk} - Y_{\bullet \bullet \bullet})^2 = \sum_{i,j,k} (Y_{i\bullet \bullet} - Y_{\bullet \bullet \bullet})^2 \qquad I-1$$

$$+ \sum_{i,j,k} (Y_{\bullet j \bullet} - Y_{\bullet \bullet \bullet})^2 \qquad J-1$$

$$+ \sum_{i,j,k} (Y_{ij\bullet} - Y_{i\bullet \bullet} - Y_{\bullet j \bullet} + Y_{\bullet \bullet \bullet})^2 (I-1)(J-1)$$

$$+ \sum_{i,j,k} (Y_{ijk} - Y_{ij\bullet})^2 \qquad ddl_R$$

$$SC_T = SC_A + SC_B + SC_{AB} + SC_R$$

Test global d'un effet

Test du facteur A:

Hypothèses:
$$H_0: \forall i, \ \alpha_i = 0$$
 $H_1: \exists i \ / \ \alpha_i \neq 0$
$$\mathbb{E}(CM_A) = \sigma^2 + \frac{KJ}{I-1} \sum_i \alpha_i^2$$

$$\mathbb{E}(CM_B) = \sigma^2 + \frac{KI}{J-1} \sum_j \beta_j^2$$

$$\mathbb{E}(CM_{AB}) = \sigma^2 + \frac{K}{(I-1)(J-1)} \sum_{ij} \alpha \beta_{ij}^2$$

$$\mathbb{E}(CM_R) = \sigma^2$$

Idée:....

Test global d'un effet

Test du facteur A:

Hypothèses: H_0 : $\forall i, \alpha_i = 0$ H_1 : $\exists i / \alpha_i \neq 0$

Statistique de test : $F_{obs} = \frac{SC_A/(I-1)}{SC_R/ddl_R} = \frac{CM_A}{CM_R}$

Si
$$\forall i \ \alpha_i = 0 \quad F_{obs} \sim F_{ddl_R}^{I-1}$$

 $F_{obs} > F_{ddl_R}^{I-1}$ (0.95) \Longrightarrow rejet de H_0

Test global d'un effet

Test de l'interaction AB:

Hypothèses:
$$H_0$$
: $\forall (i,j), \ \alpha \beta_{ij} = 0$ H_1 : $\exists (i,j) / \alpha \beta_{ij} \neq 0$

Statistique de test :
$$F_{obs} = \frac{\frac{SC_{AB}}{(I-1)(J-1)}}{\frac{SC_R}{ddl_R}} = \frac{CM_{AB}}{CM_R}$$

Si
$$\forall (i,j) \ \alpha \beta_{ij} = 0 \quad F_{obs} \sim F_{ddl_R}^{(I-1)(J-1)}$$

$$F_{obs} > F_{ddl_R}^{(I-1)(J-1)}(0.95) \Longrightarrow \text{rejet de } H_0$$

Test de conformité d'un coefficient

Hypothèses : H_0 : $\alpha_i = 0$ H_1 : $\alpha_i \neq 0$

On sait que :
$$\mathcal{L}(\hat{\alpha}_i) = \mathcal{N}(\alpha_i, \sigma_{\hat{\alpha}_i})$$
 avec $\sigma_{\hat{\alpha}_i}^2 = \sigma^2 \left[(X'X)^{-1}) \right]_{ii}$

d'où :
$$rac{\widehat{lpha}_i-lpha_i}{\widehat{\sigma}_{\widehat{lpha}_i}}\sim \mathcal{T}_{
u=ddl_R}$$

Statistique de test : $T_{obs} = \frac{\widehat{\alpha}_i}{\widehat{\sigma}_{\widehat{\alpha}_i}}$

Si
$$\alpha_i = 0$$
, $T_{obs} \sim \mathcal{T}_{\nu = ddl_R}$

Décision : si $|T_{obs}| > t_{\nu = ddl_R}$ (0.975) rejet de H_0

Intervalle de confiance :

$$\alpha_i \in \left[\hat{\alpha}_i - \hat{\sigma}_{\hat{\alpha}_i} \ t_{ddl_R}(0.975) \ ; \ \hat{\alpha}_i + \hat{\sigma}_{\hat{\alpha}_i} \ t_{ddl_R}(0.975)\right]$$
 26

Exemple

library(FactoMineR) AovSum(Note~ Produit+Juge+Produit:Juge,data=donnees)

Prod	Juge	Note
P1	J1	1
P1	J1	3
P1	J2	1
P1	Ј2	1
P1	Ј3	2
P1	Ј3	4
P2	J1	2
P2	J1	2
P2	J2	4
P2	J2	6
P2	Ј3	4
P2	Ј3	6

```
Sum Sq Df
$Ftest
                         CM F value Pr(>F)
Prod
          12.0000 1 12.0000
                                 9 0.02401 *
        8.0000 2 4.0000
                                 3 0.12500
Juge
Prod:Juge 8.0000 2 4.0000
                                 3 0.12500
Residuals
          8.0000 6 1.3333
                Estimate Std.Error t value Pr(>|t|)
$Ttest
(Intercept)
                  3.0e+00
                         0.333 9.000e+00 0.000
Prod - P1
                -1.0e+00 0.333 -3.000e+00 0.024
Prod - P2
                 1.0e+00 0.333 3.000e+00 0.024
                         0.471 -2.121e+00 0.078
Juge - J1
                -1.0e+00
Juge - J2
                -1.3e-16
                         0.471 -2.809e-16 1.000
Juge - J3
             1.0e+00
                         0.471 2.121e+00 0.078
Prod-P1 : Juge-J1 1.0e+00
                         0.471 2.121e+00 0.078
Prod-P2 : Juge-J1 -1.0e+00
                         0.471 -2.121e+00 0.078
Prod-P1 : Juge-J2 -1.0e+00
                         0.471 -2.121e+00 0.078
Prod-P2 : Juge-J2 1.0e+00
                         0.471 2.121e+00 0.078
Prod-P1 : Juge-J3 -2.2e-16
                         0.471 -4.710e-16 1.000
Prod-P2 : Juge-J3 2.2e-16
                         0.471 4.710e-16 1.000
```

Extension de l'analyse de variance

Généralisation immédiate à un nombre quelconque de facteurs

Si les données sont déséquilibrées :

- les SC ne s'additionnent plus
- $\widehat{\beta} = (X'X)^{-1}X'Y$
- $\widehat{\alpha}_i$ et $\widehat{\beta}_j$ dépendent du modèle

Modèle linéaire Contextes d'application

Modèle de régression

Sources de variabilité quantitatives

Modèle d'analyse de la variance

Sources de variabilité qualitatives

Modèle d'analyse de covariance

Sources de variabilité de natures différentes

Tous ces modèles sont des modèles linéaires

Analyse des résidus

Homoscédasticité des résidus ?

Normalité des résidus ?

Tests Shapiro-Wilks, Kolmogorov, χ^2