

基本计数原理

- 加法原理
- 乘法原理
- (你们应该都学过)

排列组合

- 组合:
- An个元素中选取r个元素,当不计顺序时,其方案数为:

•
$$C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

- 排列:
- 从*n*个元素中选取*r*个元素,当考虑顺序时,其方案数为:
- $P(n,r) = \frac{n!}{(n-r)!}$

- 有n个不同元素
- 从中选r个,但是每个可以选多次(可重)
- 求证: 其方案数为C(n+r-1,r)

- 假设选 $a_1 \leq \cdots \leq a_r$
- 转化为 $a_1, a_2 + 1, \dots, a_r + r 1$

- 有n个不同元素
- 从中选r个,但是选择的元素不能相邻
- 求证: 其方案数为C(n-r+1,r)

组合数极其相关性质

- C(n+m,n) = C(n+m,m)
- C(n,m) = C(n-1,m-1) + C(n-1,m)
- $C(n+r+1,r) = C(n+r,r) + C(n+r-1,r-1) + \cdots + C(n,0)$
- C(n,l)C(l,r) = C(n,r)C(n-r,l-r)
- $C(n,0) + C(n,1) + \cdots + C(n,n) = 2^n$
- $C(n,0) C(n,1) + C(n,2) \cdots = 0$
- $C(r,r) + C(r+1,r) + \cdots + C(n,r) = C(n+1,r+1)$
- $(1+x)^n = \sum_{k=0}^n C(n,k) x^{n-k} = \sum_{k=0}^n C(n,k) x^k$

• 计算 $\sum_{k=1}^{n} k^2 C(n,k)$

- 二项式求导
- $n(1+x)^{n-1} = \sum_{k=0}^{n} kC(n,k)x^{k-1}$
- $nx(1+x)^{n-1} = \sum_{k=0}^{n} kC(n,k)x^k$
- $n((1+x)^{n-1} + (n-1)x(1+x)^{n-2}) = \sum_{k=0}^{n} k^2 C(n,k) x^{k-1}$
- $\mathfrak{P}x = 1$
- $\sum_{k=1}^{n} k^2 C(n,k) = n(n+1)2^{n-2}$

• $\Re \sum_{k=0}^n C(n,k)^2$

• 目标: C(n,m) mod k

• 情况一: *k* = 1, 过于麻烦, 跳过

• 目标: C(n,m) mod k

• 情况二: $k > 1, nm \le 10^7$

• 目标: C(n,m) mod k

• 情况三: $n \le 10^9$, $m \le 10^4$, $k \le 10^9$

• 目标: *C*(*n*, *m*) *mod k*

- 情况三: $n \le 10^9$, $m \le 10^4$, $k \le 10^9$
- 核心要点:上下相除至多只需要计算O(m)项
- 方法一: 对每一项分解质因数, 快速幂合并
- 方法二: 逆元做除法, 中国剩余定理合并

• 目标: *C*(*n*, *m*) *mod k*

• 情况四: $n,m \leq 10^{10}$, k为小质数

• 目标: *C*(*n*, *m*) *mod k*

• 情况四: $n,m \leq 10^{10}$, k为小质数

• 卢卡斯定理

• 目标: C(n,m) mod k

• 情况五: $n, m \le 10^9, k \le 10^5$

- 质因数分解+中国剩余定理合并
- 对于单个质因子,设为 p^k
- •则我们可以把n!拆分成 p^k 的循环节,顺便统计p的因子个数
- 再对p, 2p, …单独处理
- $O(\log_p n)$

- 要求你把x拆成k个不同的组合数之和
- 只要n1 n2或者m1 m2不同 就叫做不同的组合数
- 输出任意一种方案
- $x < = 10^9 k < = 10^3$

https://noip.ac/show_problem/3168

• 比较 C(n1,m1) 和 C(n2,m2) 的大小关系

• C(n,m)=n!/m!/(n-m)!

- 找到k个不同的组合数
- 使得这k个组合数的和最大
- 要求你找的组合数 C(a,b) 满足 0<=b<=a<=n
- 求最大的和
- $n < = 10^6 k < = 10^5$

- Problem2+加上一个堆
- https://noip.ac/show_problem/3169

小葱在 NOIP 的时候学习了 C_i^j 和 k 的倍数关系,现在他想更进一步,研究更多关于组合数的性质。小葱发现, C_i^j 是否是 k 的倍数,取决于 C_i^j mod k 是否等于 0 ,这个神奇的性质引发了小葱对 mod 运算(取余数运算)的兴趣。现在小葱选择了是四个整数 n,p,k,r ,他希望知道

$$\left(\sum_{i=0}^{\infty} C_{nk}^{ik+r}
ight) mod p,$$

即

$$\left(C_{nk}^r + C_{nk}^{k+r} + C_{nk}^{2k+r} + \cdots + C_{nk}^{(n-1)k+r} + C_{nk}^{nk+r} + \cdots\right) \bmod p$$

的值。

https://noip.ac/show_problem/3170

- 组合数C(n,m)表示的是从n个物品中选出m个物品的方案数。举个例子,从(1,2,3)三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法。根据组合数的定义,我们可以给出计算组合数C(n,m)的一般公式:
- C(n,m)=n!/m!*(n?m)!
- 其中n!=1×2×···×n。(额外的, 当n=0时, n!=1)
- 小葱想知道如果给定n,m和k,对于所有的0≤i≤n,0≤j≤min(i,m)有多少对(i,j)满足C(i,j)是k的倍数。
- 1≤n,m≤10^18, 1≤t,k≤100, 且 k 是一个质数

- 数位dp
- https://noip.ac/show_problem/3171

抽屉原理

• 把n + 1个物品放到n个抽屉里,则至少有一个抽屉含有两个或两个以上物品

- 给定N个数
- 要求从中选出任意多个数
- 使得他们和为c的倍数
- $c \le N \le 10^5$

- 随便找 c 个数
- 前缀和+抽屉原理

https://noip.ac/show_problem/3172

- N种糖,第i种有 a_i 个
- 要求把所有糖吃光
- 相邻两颗糖不一样
- 能否吃光所有糖
- $N \le 10^5$, $a_i \le 10^5$

• 只需要检查最多的糖能否被剩下的糖隔开

- 平面上有个N个点 (x_i, y_i)
- 用三个 $L \times L$ 的正方形覆盖所有点(平行于坐标轴)
- 问最小的L

• $N \le 5 \times 10^4$

•二分答案

- 矩形四个角一定有一个地方需要一个矩形
- 以此类推

https://noip.ac/show_problem/3173

容斥原理

- 现有 $\{A_1, A_2, \cdots, A_n\}$ 总共n个集合
- 现在已知任意多个子集交集的大小
- 则所有集合并集的大小为

•
$$\sum_{B\subseteq\{A_1,A_2,\cdots,A_n\}} (-1)^{|B|+1} \cdot \left| \bigcap_{A_i\in B} A_i \right|$$

• 此即为容斥原理

- N个元素构成 2^N 个不同的子集
- 求选出若干个集合使得他们的交集大小为 K的方案数
- $N \le 10^6$

- *C*(*n*, *k*)选*k*个元素
- 再对剩下的集合进行容斥

https://noip.ac/show_problem/3174

- 网格中每步可以走(0·····Mx,0·····My)中任意非零向量
- 有K种向量不能走
- 分别是(ki,ki) ki一定是10的倍数
- 求从(0,0)走到(Tx,Ty)走R步的方案数
- Tx,Ty,Mx,My<=800,R<=1600,K<=50

- f[i][x][y]表示走i步到xy方案数
- g[i][z]表示走i步到10z 10z方案数
- 答案可容斥
- x与y无关,可分割
- https://noip.ac/show_problem/3175

• 有一个长度为n的排列a,其中有一些位置被替换成了-1。你需要尝试恢 复这个排列,将-1替换回数字。 求有多少种可行的替换方法,满足得到的是一个排列,且不存在ai = i的 位置。n ≤ 2000。

- •我们用一个n×n的棋盘来表示一个排列,第i行第i列如果被标记,则代表数字i填在了第i个位置(aj = i)。对于给定的排列,不为-1的位置已经被标记在棋盘上,而棋盘的主对角线上(ai = i)不可以被标记。
- 从棋盘中删去不为-1的位置的列,以及已经出现了的数字的行,记此时 棋盘大小为N。不难发现,每列不可被标记的位置至多只有1个,每行也是同样。记这种位置的数量为M。
- 令f[N,M]表示,在这样的棋盘上标记N个格子的方案数。转移方程为:f[n,m] = f[n,m 1] f[n 1,m 1] 边界为f[i,0] = i!。
- 转移方程的含义为,__相比起f[n,m 1]的状态,__f[n,m]的状态要多一个不可标记的位置,__而标记了这个位置的方案数为f[n 1,m 1],__因此从中减去。
- https://noip.ac/show_problem/3176

- 给定三视图的左视图和正视图的情况
- 求有多少种可能的情况

• $N, M \le 100$

• 排序后对同高度进行容斥

https://noip.ac/show_problem/3177

- 询问1 N中有多少个数可以表示成 x^y , y > 1的形式
- $N \le 10^{18}$

- 可能的y的量非常非常少
- 直接枚举容斥
- https://noip.ac/show_problem/3178

- $n \times m$ 的棋盘
- 要求有至少r行c列染成了黑色
- 剩下格子随意黑白
- 问方案数
- $n, m \le 3000$

- 只考虑行则答案为
- $\sum_{j=r}^{n} rongchi[j] \times C(n,j) \times 2^{(n-j)m}$
- 容斥系数怎么算?

https://noip.ac/show_problem/3179

群论基础

- •满足四个条件的集合称为一个群:
- 封闭律: $a,b \in S, ab \in S$
- 结合律: a(bc) = (ab)c
- 幺元: $\exists e \in S, \forall b \in S, eb = be = b$
- 逆元: $\forall a \in S, \exists b \in S, s.t. ab = e$
- 阿贝尔群(交换群)
- 交换律: *ab* = *ba*

置换群

- 将元素进行交换的群
- 如
- $\{e, (1,2), (1,3), (1,2,3), (1,3,2), (2,3)\}$

Burnside引理

- 设要对n个元素用m种颜色染色
- 对应置换群为S,在该置换群下任意一种置换得到的相同方案只算一种
- 则本质不同的染色方案数为:
- $\bullet \ \frac{\sum_{s \in S} m^{\eta(s)}}{|S|}$
- 其中η为置换的轨道数量

• (Polya不用管)

例子

• 六个点排成一圈,用三种颜色染色

例子

- 六种置换:
- 不动: 6
- 转1、5: 1
- 转2、4: 2
- 转3: 3
- 方案数

$$\cdot \frac{3^6 + 2 \times 3^1 + 2 \times 3^2 + 3^3}{6} = 130$$

Question 5

• 对n个排成一圈的点用m种颜色染色

立体图形旋转置换

- 置换群
- 点染色
- 边染色
- 面染色

正十二面体

- 20个点
- 12个面
- 30条棱
- 外角和公式
- 点数*(360-角度)=720

足球

- N个人坐成一圈
- 不能有超过 化个女生相邻
- 问方案数

• $N, K \le 2000$

• 首先枚举置换长度

- 对一个长度内进行dp
- f[i][j]表示不考虑循环的情况下,考虑到前i个人,最后j个人是女生的方案数。
- g[i][j]表示不考虑循环的情况下,考虑到前i个人,保证第一个人是男生,最后j个人是女生的方案数。
- https://noip.ac/show_problem/3180

众所周知,小葱同学擅长计算,尤其擅长计算组合数,但这个题和组合数没什么关系。

现在有一个迷宫,这个迷宫是由若干个正n(= 4,6)边形组成的k层迷宫。如果k = 1,那么该迷宫就由单独一个正n边形组成;如果k > 1,则在k - 1层的基础上,沿着所有最外层的边增加一个正n边形,新增加的正n边形若有重叠,则保留其中一个即可。具体可以参考下图:

现在为了打破迷宫的结界,你需要在迷宫的某些边上开一扇门。你总共需要开r扇门,每条边最多打开一扇门。但是如果两种开门的方案通过旋转相同,那么视为同一种方案。以及由于是死亡迷宫,所以死了也是可以的,所以你并不需要保证你开门的方案能够让你走出去。求总共的方案数。

https://noip.ac/show_problem/3181

众所周知,小葱同学擅长计算,尤其擅长计算组合数,但这个题和组合数没 什么关系。

正六面体,是一个六个面都是正方形的多面体。

正八面体,是一个八个面都是三角形的多面体。

如果我们的问题只是在正六面体或者正八面体上来做就太简单了,所以我们现在定义一种新的多面体:符文多面体。符文多面体由若干正三角形和正方形组成,正三角形边长和正方形边长一样。对于符文多面体的每个顶点,都与两个正三角形和两个正方形相连,且三角形和正方形交错排列。

有了符文多面体后,我们希望用*a*种颜色对正方形染色,用另外*b*种颜色对正 三角形染色。但是如果两种染色方案可以通过旋转之后相同,则视为一种染色方案。问有多少种不同的染色方案?

https://noip.ac/show_problem/3182

整数拆分

• 将n拆分为若干个不为0的数的和的方案数称作整数拆分

- 证明:
- 整数n拆分成最大数为k的拆分数,和数n拆分成k个数的和的拆分数相等。

整数拆分

生成函数与母函数

- 数列 $\{a_0, a_1, \cdots\}$
- 对应的生成函数为
- $G(x) = a_0 + a_1 x + a_2 x^2 + \cdots$
- 比如 $A(x) = (1 + x)^n$
- 对应的数列为
- $C(n, 0), C(n, 1), \dots, C(n, n)$

• 有1克、2克、3克、4克的砝码各一枚,能称出哪几种重量? 每种重量各有几种可能方案?

•
$$(1+x)(1+x^2)(1+x^3)(1+x^4)$$

• 求用1分、2分、3分的邮票贴出不同数值的方案数?

•
$$(1+x+x^2+\cdots)(1+x^2+x^4+\cdots)(1+x^3+x^6+\cdots)$$

• 设有n个标志为1,2,…,n的网袋,第i个网袋里放有 n_i 个球。不同网袋里的球是不同的,而同一网袋里的球则是没有差别的,认为是相同的。询问从中取r个球的方案数。

•
$$(1 + x + x^2 + \dots + x^{n_1})(1 + x + x^2 + \dots + x^{n_2})\dots$$

•
$$f(x) = 1 + x + x^2 + \cdots$$

- $\bullet f(x) xf(x) = 1$
- $\bullet f(x) = \frac{1}{1-x}$
- 同理
- $1 + x^k + x^{2k} + \dots = \frac{1}{1 x^k}$

• 用生成函数求斐波那契数列通项公式

- $f(x) = x + x^2 + 2x^3 + \cdots$
- $f(x) xf(x) = x + x^2 f(x)$
- $f(x) = \frac{x}{1 x x^2}$
- $f(x) = -\frac{1}{\sqrt{5}} \times \frac{1}{1 \frac{1 \sqrt{5}}{2}x} + \frac{1}{\sqrt{5}} \times \frac{1}{1 \frac{1 + \sqrt{5}}{2}x}$
- $f_n = -\frac{1}{\sqrt{5}} \left(\frac{1 \sqrt{5}}{2} \right)^n + \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n$

线性常系数齐次递推关系

- 定义: 如果序列 $\{a_n\}$ 满足
- $a_n + C_1 a_{n-1} + \dots + C_k a_{n-k} = 0$
- $a_0 = d_0$, $a_1 = d_1$, \cdots , $a_{k-1} = d_{k-1}$
- 则特征多项式 $C(x) = x^k + C_1 x^{k-1} + \dots + C_{k-1} x + C_k$
- 情况1:
- 如果C(x)有n个不重复的根,则
- $a_n = l_1 a_1^n + l_2 a_2^n + \dots + l_n a_n^n$
- (三种情况的证明均比较复杂,需要的前置知识过多)

线性常系数齐次递推关系

- 情况2:
- 有一对共轭复根 $\alpha_1 = \rho e^{i\theta}$, $\alpha_2 = \rho e^{-i\theta}$

线性常系数齐次递推关系

- 情况3:
- 有一个k重根 α_1
- 则

•
$$a_n = (A_0 + A_1 n + \dots + A_{k-1} n^{k-1}) \alpha_1^n$$

仰观咕咕之鸽, 俯察米饭甚香。

众所周知,小葱同学擅长计算,尤其擅长计算组合数,但这个题和组合数没什么关系。

现在你有一个大小为3×N的路面,以及三种不同大小的砖块:1×1,2×2以及两个直角边都为2的直角三角形砖。现在问有多少种不同的方案,能够使用这三种转铺满整个路面且使用了偶数个2×2的砖?

https://noip.ac/show_problem/3183

- 有n种糖果,每种mi个,至少吃掉a个,至多b个,求吃掉糖果的 方案数
- $N \le 10$
- $a, b \le 10^7$

•
$$\prod_{i=1}^{n} \left(1 + x + x^2 + \dots + x^{m_i}\right) = \prod_{i=1}^{n} \frac{1 - x^{m_i + 1}}{1 - x} = \frac{\prod_{i=1}^{n} 1 - x^{m_i + 1}}{(1 - x)^n}$$

- 直接暴力展开分子即可
- https://noip.ac/show_problem/3184

为了提高智商,ZJY开始学习概率论。有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的叶子节点数的期望是多少呢?

判断两棵树是否同构的伪代码如下:

算法 1: boolCheck(T1, T2)

```
Require: 两棵树的节点T1,T2
if T1 == null \parallel T2 == null then
    return T1 == null \&\& T2 == null
else
    return Check(T1-> leftson, T2-> leftson) \&\& Check(T1-> rightson, T2-> rightson)
end if
```

- c_n 表示二叉树个数 $c_0 = 1$, $c_i = \sum_{j=0}^{i-1} c_j \times c_{i-j-1}$
- $\Diamond p_n$ 代表答案

•
$$\text{Im} p_n = \frac{\sum_{j=0}^{i-1} c_j \times c_{i-j-1} (p_i + p_{i-j-1})}{c_n}$$

- 令 t_n 代表所有方案叶子节点个数之和
- $\iiint t_n = \sum_{j=0}^{i-1} c_j t_{i-j-1} + c_{i-j-1} t_j = 2 \sum_{j=0}^{i-1} c_j t_{i-j-1}$

- 令c,t的生成函数为F,G
- $\iiint F(x) = xF(x)^2 + 1$, G(x) = 2xF(x)G(x) + 1
- $F(x) = \frac{1 \sqrt{1 4x}}{2x}$, $G(x) = \frac{x}{\sqrt{1 4x}}$
- $\bullet \left(xF(x) \right)' = G(x) \div x$
- $t_n = nc_{n-1}$
- $p_n = \frac{nc_{n-1}}{c_n} = \frac{n(n+1)}{2(2n-1)}$
- https://noip.ac/show_problem/3185

• $n \le 10^{500}$

明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西。理所当然的,你当然要帮他计算携带N件物品的方案数。他这次又准备带一些受欢迎的食物,

如: 蜜桃多啦, 鸡块啦, 承德汉堡等等当然, 他又有一些稀奇古怪的限制: 每种食物的限制如下:

承德汉堡: 偶数个

可乐: 0个或1个

鸡腿: 0个, 1个或2个

蜜桃多: 奇数个

鸡块: 4的倍数个

包子: 0个, 1个, 2个或3个

土豆片炒肉:不超过一个。

面包: 3的倍数个

注意,这里我们懒得考虑明明对于带的食物该怎么搭配着吃,也认为每种食物都是以'个'为单位(反正是幻想嘛),只要总数加起来是N就算一种方案。因此,对于给出的N,你需要计算出方案数,并对10007取模。

- 写出每一个的生成函数乘起来之后得到 $f(x) = \frac{x}{(1-x)^4}$
- $f(x) = x(1-x)^{-4} = x \sum_{i=0}^{\infty} C_{i+3}^3 x^i$
- 所以答案为C(n + 2,3)

https://noip.ac/show_problem/3186

卡特兰数

- 将凸n边形划分成三角形的方案数
- •记为*C*(*n*)
- 则
- $C(n) = C(0)C(n-1) + C(1)C(n-2) + \dots + C(n-1)C(0)$
- $C(n) = \frac{C_{2n}^n}{n+1} = C_{2n}^n C_{2n}^{n-1}$

第一类斯特灵数

• $S_1(n,k)$ 将n个不同的元素划分为k个非空圆排列的方案数

•
$$S_1(n,k) = S_1(n-1,k-1) + (n-1) \times S_1(n-1,k)$$

第二类斯特灵数

• $S_2(n,k)$ 将n个不同的元素划分为k个非空集合的方案数

•
$$S_2(n,k) = S_2(n-1,k-1) + k \times S_1(n-1,k)$$

第二类斯特灵数

•
$$S(n,0) = S(0,n) = 0$$

•
$$S(n,k) > 0$$
如果 $n \ge k \ge 1$

•
$$S(n,k) = 0$$
如果 $k > n \ge 1$

•
$$S(n, 1) = 1$$

•
$$S(n, n) = 1$$

•
$$S(n,2) = 2^{n-1} - 1$$

•
$$S(n,3) = \frac{1}{2}(3^{n-1}+1)-2^{n-1}$$

$$\bullet S(n, n-1) = C(n, 2)$$

•
$$S(n, n-2) = C(n,3) + 3C(n,4)$$

放球问题

n个球	m 个盒子	是否有空盒	方案数
有区别	有区别	可以有	
有区别	有区别	不可以	
有区别	无区别	可以有	
有区别	无区别	不可以	
无区别	有区别	可以有	
无区别	有区别	不可以	
无区别	无区别	可以有	
无区别	无区别	不可以	

放球问题

n个球	m个盒子	是否有空盒	方案数
有区别	有区别	可以有	m^n
有区别	有区别	不可以	$m! S_2(n,m)$
有区别	无区别	可以有	$\sum_{i=1}^{\min(n,m)} S_2(n,i)$
有区别	无区别	不可以	S(n,m)
无区别	有区别	可以有	C(n+m-1,n)
无区别	有区别	不可以	C(n-1,m-1)
无区别	无区别	可以有	×
无区别	无区别	不可以	×