Deterministic Edge Connectivity and Max Flow using Subquadratic Cut Queries

Aditya Anand

Thatchaphol Saranurak

University of Michigan

Yunfan Wang

Tsinghua University, IIIS

Outline

Basic Definition

Cut Query Model

Q: How many query do we need to compute the global minimum cut?

Sense of the problem

"Learn the whole graph"

- A Naive Algorithm
- Learn each edge (u, v) by computing $Cut(\{u\}) + Cut(\{v\}) Cut(\{u, v\})$, which requires $O(n^2)$ queries [Nearly Optimal]
- For dense graph, one needs at least $\sim \Omega(n^2)$ query to learn the whole graph [Rubinstein, Schramm & Weinberg, ITCS 2018]
- One can use O(n²/log n) query to learn the whole graph[Grebinski & Kucherov, Algorithmica 2000]

Motivation

• Q: Can we use less information to represent the global minimum cut?

History

Edge Connectivity in Cut Query Model

	Det./ Rand.	Simple/ Weighted	Query
Rubinstein, Schramm& Weinberg[RSW18]	Rand.	Simple	$O(n\log^3 n)$
Mukhopadhyay & Nanongkai[MN20]	Rand.	Weighted	$O(n \log^{O(1)} n)$
Apers et al.[AEG ⁺ 22]	Rand.	Simple	O(n)
This paper	Det.	Simple	$ ilde{O}(n^{rac{5}{3}})$

State-of-the-Art

• Different Settings in Cut Query Model

	Connectivity		Edge Connectivity	
	Lower	Upper	Lower	Upper
Deterministic	$\Omega(n)$ [HMT88]	$O(\frac{n\log n}{\log\log n})$ [LC24]	$\Omega(n)$ [HMT88]	$ ilde{O}(n^{5/3})$ (This paper)
Zero-error, Randomized	$\frac{\Omega(\frac{n\log\log(n)}{\log n})}{[RS95]}$	O(n) [AEG ⁺ 22]	$\Omega(n)$	$ ilde{O}(n^{5/3})$ (This paper)
Bounded Error, Randomized	$\frac{\Omega(\frac{n}{\log n})}{[BFS86]}$	O(n) [AEG ⁺ 22]	$\frac{\Omega(\frac{n\log\log(n)}{\log n})}{[\text{AD21}]}$	O(n) [AEG ⁺ 22]
Quantum	$\Omega(1)$	$O(\log^5(n))$ [AL21]	$\Omega(1)$	$\tilde{O}(\sqrt{n})$ [AEG ⁺ 22]

Max Flow/Min Cut

- Max Flow Min Cut Theorem
- No Duality Gap for s t max flow and s t min cut max flow value=min cut capacity
- Q: Why should we consider Max Flow as a start point?
- Inspiration: [RSW18] shows that, for graph G with integral weights from [0, W], every s t flow of value f can be covered by edges of at most $O(n\sqrt{fW})$ total weight
- We can use $O(n\sqrt{n})$ edges to cover any s-t flow in simple graph!

BIS/Cross Query

• A BIS (Bipartite Independent Set) or Cross Query asks whether there exists an edge between two sets U and V. In other words, it checks if there is an edge (u, v) such that $u \in U, v \in V$.

• Fact: A BIS/Cross query can be replaced by O(1) Cut Query in

undirected graph.

Blocking Flow

• Theorem 1: We can use $\sim O(n^{5/3})$ BIS/Cross query to obtain an explicit s-t max flow in simple graph [Idea: Dinitz'algorithm]

From Flow to Cut

How can we guarantee that s and t are on **different** sides of the minimum cut?

"Preserve the Minimum Cut"

Contraction [e.g. Karger's Algorithm]

"Preserve the Min Cut"
[e.g. Kawarabayashi & Thorup, STOC 2015]

Dominating Set

• A Key Observation: In simple graph, a dominating set can "preserve all non-trivial minimum cut"

Special Case: Star Graph[No non-trivial minium cut]

Dominating Set

- **Theorem 2**: If the minium degree is δ , then we can find a dominating set D with size at most $O(\frac{n}{\delta}\log\frac{n}{\delta})$ with $\sim O(n)$ cut query.
- Existence: Sample each vertex with probability $\sim \frac{1}{\delta}$.
- De-randomize Idea: Finding an element above the average

Framework of Isolating Cut

• Isolating Cut[Li & Panigrahi, FOCS 2020]

Demand $d \leq \delta$ [Total Flow Size $\leq \sim O(n)$]

NOT exactly the same as [LP20], we don't compute $T_1 - T_2$ min-cut

Minimum Isolating Cut

• For any set of vertices $R \subseteq V$, $r \in R$, the minimum isolating cut of r is an $\{r\} - \{R \setminus \{r\}\}$ min-cut

Subroutine

- Let $d = \tau + 1$, we will either outputs an **isolating cut** of R of size at most τ ,
- or certifies that the **minimum isolating cut** of R has a size larger than τ .

If an edge is **saturated**, then the corresponding minimum isolating cut has size at least d.

If the minimum isolating cut of R is C_r less than d, then we must have $C_r \subseteq C_1$ or $C_r \subseteq V/C_1$

"From Global to Local"

Guarantee: each part contains at most 1 black vertex

- not saturated in all max-flow call
- saturated at least once

Discussion

