Ime in priimek: Liva Jurhovič

	_
- 5	-
9)	-
3/	3/
-	

dosežene točke	možne točke	odstotki	ocena
dosežene tocke	mozne cooke	0,0	5
30	40	18	

ČAS PISANJA: 45 minut

- 1. Funkcija f je podana s predpisom f(x)=(3-2b)x-b+3. Graf funkcije g je premica p, ki poteka skozi točki A(0,3) in B(2,7).
 - a) Zapiši enačbo premice p v eksplicitni in odsekovni obliki.

[4t] 4 t

,			
A(0,3) B(27)	y=lx+n n=3/ 24+n=7/	※+ 会= Λ 2m+ 書= Λ /3m	$\frac{\times}{-\frac{3}{2}} + \frac{5}{3} = 1$
	Zh+3=7m	6+ Fm=3m	
h= Ax = 1	$\frac{1}{2} = 2$	-4m=6 m=-6=-3	
y= 2	x+3/		

b) Določi vrednost b, da bo graf funkcije f pravokoten na graf funkcije g. [3t] $2\pm$

c) Določi vrednost b, da bo f(x) > 0 za x > -8 in f(x) < 0 za x < -8. [3t] 3t

$$\begin{array}{c} x=-8 \\ f(x)=0 \\ -8(3-2b)-b+3=0 \\ -2h+16b-b+3=0 \\ b=\frac{2h}{16}=\frac{7}{16}=\frac{7}{16} \end{array}$$

hx+n=10 ax+by+c=0 xm+ 2n=1 h= Ax y-yn=h(x-xn) 2. Z uporabo determinant obravnavaj sistem enačb, glede na vrednost parametra a. [5t] 5t

2. Z uporabo determinant obravnavaj sistem enačb, glede na vrednost parametra d. [51]
$$\frac{1}{3}$$

$$ax + 2y = 3$$

$$8x + ay = 6$$

$$D = \begin{vmatrix} a & 2 \\ 8 & 1 \end{vmatrix} = 2 - 16 = (a+b)(a-b)$$

$$Dx = \begin{vmatrix} a & 3 \\ 6 & 1 \end{vmatrix} = 3a - 12 = 3(a-b)$$

$$Dy = \begin{vmatrix} a & 3 \\ 8 & 1 \end{vmatrix} = 6a - 2b = 6(a-b)$$

$$D = 0$$

$$x = \frac{Dx}{D} = \frac{3}{(a+b)(a-b)} = \frac{3}{a+b}$$

$$x \in \mathbb{R}$$

$$y = \frac{Dy}{D} = \frac{6(a-b)}{(a+b)(a-b)} = \frac{6}{a+b}$$

$$y = \frac{3}{2} - 1x$$

3. V laboratoriju so izvajali raziskavo, v kateri so 160 miši postavili v labirint in nato za vsako posebej merili čas, v katerem je našla pot iz labirinta. Rezultati so prikazani s kumulativno krivuljo.

b) Podatki raziskave so prikazani tudi v tabeli. Izračunaj aritmetično sredino, standardni odklon podatkov in koeficient variacije. [6t] 6t

čas [s]	število miši
0-40	18
40-80	38
80-120	48
120-160	36
160-200	20

Me =

$$\sigma^{2} = \frac{\Lambda}{\Lambda60} \cdot \left(18.20^{2} + 38.60^{2} + 48.100^{2} + 36.140^{2} + 20.180^{2}\right) - 100,5^{2}$$

$$\sigma^{2} = \frac{\Lambda}{\Lambda60} \cdot 1077600 - 100,5^{2}$$

$$\sigma^{2} = 12360 - 10100,75 = 2250,75$$

$$\sigma = 147,545$$

- 4. Šest oseb so vprašali, koliko tujih držav so v svojem življenju že obiskali. Za podatke, ki so jih na ta način dobili, velja: Me = 5,5, $Mo_1 = 4$, $Mo_2 = 6$, aritmetična sredina je 7.
 - a) Zapiši zgoraj opisane podatke od najmanjšega do največjega.

b) Zgornje podatke združimo s še petimi podatki, katerih aritmetična sredina je 18. Kolikšna je aritmetična sredina vseh podatkov? [3t] 3t

$$\frac{6.7 + 18.5}{6+5} = \frac{132}{11} = 12$$

$$d = \frac{n(n-3)}{2}$$

$$n+33 = \frac{n(n-3)}{2}$$
 /.2

$$2n+66 = n \cdot (n-3)$$
 $2n+66 = n^2-3n$

$$2n+66=n^{2}-3n$$

 $n^{2}-5n=66$ $n=M$
 $M^{2}-5M=1/2A-55=66$

$$d = \frac{M \cdot 8}{2} = hh$$

6. Dokaži, da sta v enakokrakem trikotniku težiščnici na kraka enako dolgi.

težiščnica. razpolovi stranico

enabeliralii Δ ... enabe hota pri osnovnici (d) $\Rightarrow \frac{\Delta}{2} = \frac{b}{2}$ c... shupna stranica $\alpha = \beta$ $\Delta ABE \cong \Delta ABE$ po SUS: $C = \beta$ $\alpha = \beta$ $\alpha = \beta$

· 2= b2 (x=b)

Obravnavaj število presečišč grafov funkcij f in g, danih s predpisom f(x) = |x-3|in g(x) = ax + 2, v odvisnosti od a. [3t] Ot

ac-2, preserve

