## Midterm Exam (part 1) - Computational Physics I

| NAME: Alan Palma Travez SCORE:                                                                                                                                                                                 |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Date: Friday 18 October 2024 Duration: 45 minutes                                                                                                                                                              |    |
| Credits: 8 points (4 questions) Type of evaluation: LAB                                                                                                                                                        |    |
| Part 1 is closed-book, in-class, and contains short-answer questions. Please provide concise answers to the following items:                                                                                   |    |
| 1 (2 points) Programming Languages                                                                                                                                                                             |    |
| <ol> <li>(2 points) Programming Languages</li> <li>a. Explain the difference between low-level and high-level programming languages.</li> </ol>                                                                |    |
| b. Provide 1 example of a low-level programming language and 1 of a high-level language.                                                                                                                       |    |
| The Now level programming language is more doser to the hordword (machine                                                                                                                                      |    |
| - (ade) while the high programming is closer to the user larguage                                                                                                                                              |    |
| .25 wde) while the high programming is closer to the user language.  High-level programming language only needs an complex to work while love level tanguage need a interpreter. However, the high level       |    |
| compiler land discourses need a sold while                                                                                                                                                                     |    |
| larguage is slower than the high level langule sine the last one                                                                                                                                               |    |
| is more close to the machine larguage.                                                                                                                                                                         |    |
| · Nost of programmers use kingh level largale because is more foster and easie                                                                                                                                 |    |
| to write whill low level language is used for more specific jobs.                                                                                                                                              | A  |
| ) Lowel level: Fortian/c                                                                                                                                                                                       |    |
|                                                                                                                                                                                                                |    |
| High level: Pythin / Mathematica.                                                                                                                                                                              |    |
| 2. (2 points) Systems of linear equations                                                                                                                                                                      |    |
| <ul><li>a. Explain how the Gauss elimination method for solving systems of linear equations work.</li><li>b. List the main steps for solving such systems via symbolic algebra with SymPy in python.</li></ul> |    |
| ) The Gauss clinination method consist on diogonalize our matrix at elements rela                                                                                                                              | 49 |
| with the system linear equations, This via file/column operations in the                                                                                                                                       |    |
| expanded matrix. Finally make a backward sustitution to get the x                                                                                                                                              |    |
| vector solution.                                                                                                                                                                                               |    |
| Exin 3x3:                                                                                                                                                                                                      |    |
| Ax=b > A = ( an an an bi                                                                                                                                                   |    |
| (a) 21 des (a) 1 pes)                                                                                                                                                                                          |    |
| 1) Import third porty libriarie Sympy                                                                                                                                                                          |    |
| 2) Dedurcas symbols our variables x = (x1, x2, x3). (Important).                                                                                                                                               |    |
|                                                                                                                                                                                                                |    |
| 3) Carry out the respective operation to solve the system.                                                                                                                                                     |    |
| I don't remember but I think that There is some specific de pendency                                                                                                                                           |    |

## 3. (2 points) Interpolation Methods

- a. When do we use data interpolation methods?
- b. Name 2 types of interpolation methods in python.

a)-we use duta interpolation in especific cases us we don't want a project from 7.5. the data or the data does not represent a physical behaviour to be modeled.?

- "Join points in cinterpolation would work to only see a trend grafically on a

specific data. When we don't have a physical motivated model.

But when do we suse interpolation? L Filling missing data

b) 1. Logrange interpolation

L Resampling data.

2. Using Scipy library, where we can setup the interpolation degree", I mean

## 4. (2 points) Regression algorithm



Imagine you are given the energy-frequency data shown on the left figure from a photoelectric effect experiment using Caesium (Cs), and you are asked to carry out a regression to estimate the Planck constant. Design and sketch a suitable algorithm workflow to achieve this goal in python.

Photoelectric effect:

Ex = Ø + Ke

hf = Ø + Ke

Ne = hf - Ø

Physical motivated

mode.

Third party libraries of Through
a fast
plot should should

Inspect the data into/IO?

Auta = put the data into/IO?

Pred data and put in python

The modulation

Objects:

The modulation

The modulation

and the data

should be presented in a plot

Create a ten ction according

to the physical motivated

model: (E=ht-Ø) > model()

Carry out a regression with two

free parameters using model () it

and E with scipy optimize

One of the two tree parameters should be the planch wastant value (the slope). Present the result with this respective uncertainty).

What about the goodness-of-fit test to assess the regression?

-0.25