$DSC520_Week3_Assignement01_CHRISTUDASS_REENIE$

Reenie Christudass

2022-06-24

```
survey_df <- read.csv("C:/Users/chris/dsc520/data/acs-14-1yr-s0201.csv")
print(survey_df)</pre>
```

##		Id	Id2	Geography	PopGroupID
##	1	0500000US01073	1073	Jefferson County, Alabama	1
##	2	0500000US04013	4013	Maricopa County, Arizona	1
##	3	0500000US04019	4019	Pima County, Arizona	1
##	4	0500000US06001	6001	Alameda County, California	1
##	5	0500000US06013	6013	Contra Costa County, California	1
##	6	0500000US06019	6019	Fresno County, California	1
##	7	0500000US06029	6029	Kern County, California	1
##	8	0500000US06037	6037	Los Angeles County, California	1
##	9	0500000US06059	6059	Orange County, California	1
##	10	0500000US06065	6065	Riverside County, California	1
##	11	0500000US06067	6067	Sacramento County, California	1
##	12	0500000US06071	6071	San Bernardino County, California	1
##	13	0500000US06073	6073	San Diego County, California	1
##	14	0500000US06075	6075	San Francisco County, California	1
##	15	0500000US06077	6077	San Joaquin County, California	1
##	16	0500000US06081	6081	San Mateo County, California	1
##	17	0500000US06085	6085	Santa Clara County, California	1
##	18	0500000US06097	6097	Sonoma County, California	1
##	19	0500000US06099	6099	Stanislaus County, California	1
##	20	0500000US06111	6111	Ventura County, California	1
##	21	0500000US08005	8005	Arapahoe County, Colorado	1
##	22	0500000US08031	8031	Denver County, Colorado	1
##	23	0500000US08041	8041	El Paso County, Colorado	1
	24	0500000US08059	8059	Jefferson County, Colorado	1
##		0500000US09001	9001	Fairfield County, Connecticut	1
##		0500000US09003	9003	Hartford County, Connecticut	1
##		0500000US09009	9009	New Haven County, Connecticut	1
	28	0500000US10003		New Castle County, Delaware	1
	29			${\tt District\ of\ Columbia},\ {\tt District\ of\ Columbia}$	1
	30	0500000US12009		Brevard County, Florida	1
	31	0500000US12011		Broward County, Florida	1
	32	0500000US12031		Duval County, Florida	1
	33	0500000US12057		Hillsborough County, Florida	1
	34	0500000US12071		Lee County, Florida	1
##		0500000US12086		Miami-Dade County, Florida	1
	36	0500000US12095		Orange County, Florida	1
##	37	0500000US12099	12099	Palm Beach County, Florida	1

```
0500000US12103 12103
                                               Pinellas County, Florida
## 39
       0500000US12105 12105
                                                   Polk County, Florida
                                                Volusia County, Florida
## 40
       0500000US12127 12127
       0500000US13067 13067
                                                   Cobb County, Georgia
## 41
                                                                                  1
## 42
       0500000US13089 13089
                                                 DeKalb County, Georgia
                                                                                  1
##
  43
       0500000US13121 13121
                                                 Fulton County, Georgia
                                                                                  1
       0500000US13135 13135
                                               Gwinnett County, Georgia
                                                Honolulu County, Hawaii
## 45
       0500000US15003 15003
                                                                                  1
## 46
       0500000US17031 17031
                                                  Cook County, Illinois
## 47
                                                DuPage County, Illinois
       0500000US17043 17043
                                                                                  1
       0500000US17089 17089
                                                  Kane County, Illinois
                                                                                  1
                                                  Lake County, Illinois
## 49
       0500000US17097 17097
                                                                                  1
  50
       0500000US17197 17197
                                                  Will County, Illinois
                                                                                  1
## 51
       0500000US18097 18097
                                                 Marion County, Indiana
## 52
       0500000US20091 20091
                                                 Johnson County, Kansas
                                                                                  1
## 53
       0500000US20173 20173
                                                Sedgwick County, Kansas
## 54
       0500000US21111 21111
                                             Jefferson County, Kentucky
                                                                                  1
## 55
       0500000US24003 24003
                                          Anne Arundel County, Maryland
## 56
       0500000US24005 24005
                                             Baltimore County, Maryland
                                                                                  1
                                            Montgomery County, Maryland
## 57
       0500000US24031 24031
                                                                                  1
##
  58
       0500000US24033 24033
                                       Prince George's County, Maryland
                                                                                  1
       0500000US24510 24510
                                               Baltimore city, Maryland
                                          Bristol County, Massachusetts
## 60
       0500000US25005 25005
                                                                                  1
## 61
       0500000US25009 25009
                                            Essex County, Massachusetts
## 62
       0500000US25017 25017
                                        Middlesex County, Massachusetts
                                                                                  1
       0500000US25021 25021
                                          Norfolk County, Massachusetts
                                                                                  1
## 64
       0500000US25023 25023
                                         Plymouth County, Massachusetts
                                                                                  1
                                          Suffolk County, Massachusetts
       0500000US25025 25025
                                                                                  1
  66
                                        Worcester County, Massachusetts
##
       0500000US25027 25027
                                                                                  1
                                                  Kent County, Michigan
  67
       0500000US26081 26081
                                                Macomb County, Michigan
## 68
       0500000US26099 26099
  69
       0500000US26125 26125
                                               Oakland County, Michigan
                                                                                  1
##
  70
       0500000US26163 26163
                                                 Wayne County, Michigan
## 71
       0500000US27053 27053
                                             Hennepin County, Minnesota
                                                                                  1
## 72
       0500000US27123 27123
                                               Ramsey County, Minnesota
                                                                                  1
  73
       0500000US29095 29095
                                               Jackson County, Missouri
                                                                                  1
## 74
       0500000US29189 29189
                                             St. Louis County, Missouri
## 75
       0500000US31055 31055
                                               Douglas County, Nebraska
                                                                                  1
## 76
       0500000US32003 32003
                                                   Clark County, Nevada
## 77
       0500000US34003 34003
                                              Bergen County, New Jersey
                                                                                  1
       0500000US34007 34007
                                              Camden County, New Jersey
                                               Essex County, New Jersey
## 79
       0500000US34013 34013
                                                                                  1
       0500000US34017 34017
                                              Hudson County, New Jersey
## 80
                                                                                  1
## 81
                                           Middlesex County, New Jersey
       0500000US34023 34023
                                                                                  1
## 82
       0500000US34025 34025
                                            Monmouth County, New Jersey
                                               Ocean County, New Jersey
## 83
       0500000US34029 34029
                                                                                  1
                                             Passaic County, New Jersey
## 84
       0500000US34031 34031
                                                                                  1
## 85
       0500000US34039 34039
                                               Union County, New Jersey
## 86
       0500000US35001 35001
                                          Bernalillo County, New Mexico
                                                                                  1
                                                 Bronx County, New York
## 87
       0500000US36005 36005
                                                                                  1
##
  88
       0500000US36029 36029
                                                  Erie County, New York
                                                                                  1
## 89
       0500000US36047 36047
                                                 Kings County, New York
                                                                                  1
## 90
       0500000US36055 36055
                                                Monroe County, New York
                                                                                  1
## 91 0500000US36059 36059
                                                Nassau County, New York
```

```
0500000US36061 36061
                                              New York County, New York
       0500000US36081 36081
                                                Queens County, New York
## 94
       0500000US36103 36103
                                               Suffolk County, New York
## 95
     0500000US36119 36119
                                           Westchester County, New York
                                                                                  1
## 96
       0500000US37081 37081
                                        Guilford County, North Carolina
##
  97
       0500000US37119 37119
                                     Mecklenburg County, North Carolina
                                                                                  1
       0500000US37183 37183
                                            Wake County, North Carolina
## 99
       0500000US39035 39035
                                                  Cuyahoga County, Ohio
                                                                                  1
## 100 0500000US39049 39049
                                                  Franklin County, Ohio
## 101 0500000US39061 39061
                                                  Hamilton County, Ohio
## 102 0500000US39113 39113
                                                Montgomery County, Ohio
## 103 0500000US39153 39153
                                                    Summit County, Ohio
                                                                                  1
                                              Oklahoma County, Oklahoma
## 104 0500000US40109 40109
                                                                                  1
## 105 0500000US40143 40143
                                                 Tulsa County, Oklahoma
## 106 0500000US41051 41051
                                               Multnomah County, Oregon
                                                                                  1
## 107 0500000US41067 41067
                                              Washington County, Oregon
## 108 0500000US42003 42003
                                         Allegheny County, Pennsylvania
                                                                                  1
                                             Bucks County, Pennsylvania
## 109 0500000US42017 42017
## 110 0500000US42029 42029
                                           Chester County, Pennsylvania
                                                                                  1
                                          Delaware County, Pennsylvania
## 111 0500000US42045 42045
## 112 0500000US42071 42071
                                         Lancaster County, Pennsylvania
                                                                                  1
## 113 0500000US42091 42091
                                        Montgomery County, Pennsylvania
                                      Philadelphia County, Pennsylvania
## 114 0500000US42101 42101
                                                                                  1
                                        Providence County, Rhode Island
## 115 0500000US44007 44007
                                             Davidson County, Tennessee
## 116 0500000US47037 47037
                                                                                  1
## 117 0500000US47157 47157
                                               Shelby County, Tennessee
## 118 0500000US48029 48029
                                                    Bexar County, Texas
                                                                                  1
## 119 0500000US48085 48085
                                                   Collin County, Texas
                                                                                  1
## 120 0500000US48113 48113
                                                   Dallas County, Texas
## 121 0500000US48121 48121
                                                   Denton County, Texas
                                                  El Paso County, Texas
## 122 0500000US48141 48141
## 123 0500000US48157 48157
                                               Fort Bend County, Texas
                                                                                  1
                                                   Harris County, Texas
## 124 0500000US48201 48201
## 125 0500000US48215 48215
                                                  Hidalgo County, Texas
                                                                                  1
                                               Montgomery County, Texas
## 126 0500000US48339 48339
## 127 0500000US48439 48439
                                                  Tarrant County, Texas
                                                                                  1
## 128 0500000US48453 48453
                                                   Travis County, Texas
## 129 0500000US49035 49035
                                                 Salt Lake County, Utah
                                                                                  1
## 130 0500000US49049 49049
                                                      Utah County, Utah
                                               Fairfax County, Virginia
## 131 0500000US51059 51059
                                                                                  1
## 132 0500000US53033 53033
                                                King County, Washington
                                              Pierce County, Washington
## 133 0500000US53053 53053
                                                                                  1
## 134 0500000US53061 53061
                                           Snohomish County, Washington
                                                                                  1
## 135 0500000US55025 55025
                                                 Dane County, Wisconsin
                                                                                  1
## 136 0500000US55079 55079
                                            Milwaukee County, Wisconsin
##
       POPGROUP.display.label RacesReported HSDegree BachDegree
             Total population
                                                 89.1
                                                            30.5
## 1
                                      660793
## 2
             Total population
                                                 86.8
                                                            30.2
                                     4087191
## 3
             Total population
                                     1004516
                                                 88.0
                                                            30.8
## 4
             Total population
                                                            42.8
                                     1610921
                                                 86.9
## 5
             Total population
                                                 88.88
                                                            39.7
                                     1111339
## 6
             Total population
                                                 73.6
                                                            19.7
                                      965974
## 7
             Total population
                                      874589
                                                 74.5
                                                            15.4
             Total population
                                                 77.5
## 8
                                    10116705
                                                            30.3
```

##	۵	To+al	population	3145515	84.6	38.0
	10		population	2329271	80.6	20.7
##	11		population	1482026	86.8	28.9
##	12		population	2112619	78.6	18.9
	13		population	3263431	86.6	37.1
	14		population	852469	88.1	54.2
##	15		population	715597	77.6	18.3
##	16		population	758581	88.1	47.5
	17		population	1894605	87.4	48.4
##	18		population	500292	87.6	34.8
	19		population	531997	78.4	17.0
	20		population	846178	83.6	31.6
	21		population	618821	91.9	40.9
	22		population	663862	85.5	44.3
	23		population	663519	92.8	36.5
	24		population	558503	94.1	42.0
	25		population	945438	89.8	46.7
	26		population	897985	89.3	36.8
##			population	861277	89.5	34.5
	28		population	552778	90.1	35.8
##	29		population	658893	90.2	55.0
##	30		population	556885	91.6	27.2
##	31	Total	population	1869235	88.4	30.5
##	32	Total	population	897698	89.0	26.1
##	33	Total	population	1316298	87.3	29.8
##	34	Total	population	679513	86.3	26.5
##	35	Total	population	2662874	80.9	26.6
##	36	Total	population	1253001	87.9	31.4
##	37	Total	population	1397710	87.7	33.0
##	38	${\tt Total}$	population	938098	90.1	29.5
##	39	${\tt Total}$	population	634638	84.9	19.7
##	40	Total	population	507531	88.9	22.5
##	41	${\tt Total}$	population	730981	90.3	43.7
##	42	${\tt Total}$	population	722161	88.4	41.7
##	43	${\tt Total}$	population	996319	91.3	49.2
##	44	Total	population	877922	88.0	35.4
##	45	${\tt Total}$	population	991788	91.8	32.6
##	46	${\tt Total}$	population	5246456	85.5	36.2
##	47	${\tt Total}$	population	932708	92.3	48.0
##	48	${\tt Total}$	population	527306	82.9	32.6
##	49	${\tt Total}$	population	705186	90.3	44.0
##	50	Total	population	685419	90.7	33.1
##	51	Total	population	934243	85.0	28.8
##	52	Total	population	574272	95.5	52.8
##	53	Total	population	508803	88.8	30.7
##	54	Total	population	760026	88.5	31.6
##	55	Total	population	560133	91.9	38.8
##	56		population	826925	90.4	37.2
##	57		population	1030447	90.9	58.5
##	58		population	904430	85.5	31.0
##	59		population	622793	84.4	30.0
##	60		population	554194	82.5	25.7
##	61		population	769091	89.1	38.9
##	62		population	1570315	92.3	52.3

	60	m		600054	04.4	54 0
	63		population	692254	94.1	51.9
	64		population	507022	92.2	34.1
##	65	Total	population	767254	83.9	42.3
##	66	Total	population	813475	90.1	34.6
##	67	Total	population	629237	89.1	33.7
##	68	Total	population	860112	89.3	23.9
##	69	Total	population	1237868	93.6	44.8
##	70		population	1764804	84.9	22.1
##	71		population	1212064	93.2	47.3
	72		population	532655	89.9	40.9
	73		population	683191	90.0	29.5
	74		population	1001876	93.2	42.8
	75			543244	88.2	36.3
			population			
	76		population	2069681	84.5	22.7
	77		population	933572	91.5	46.2
	78		population	511038	88.3	31.3
	79		population	795723	85.5	32.7
##	80		population	669115	83.4	38.2
##	81	Total	population	836297	89.1	41.0
##	82	Total	population	629279	93.1	43.7
##	83	Total	population	586301	91.7	28.6
##	84	Total	population	508856	83.8	28.6
##	85	Total	population	552939	86.2	33.0
##	86		population	675551	88.0	32.7
##	87		population	1438159	70.5	19.3
	88		population	922835	90.6	31.3
	89		population	2621793	80.0	34.3
	90		population	749857	90.3	35.9
##			population	1358627	90.7	43.2
	92			1636268	86.8	59.9
			population			
	93		population	2321580	80.4	29.8
	94		population	1502968	89.8	34.0
##			population	972634	87.4	47.1
##	96		population	512119	89.0	33.3
##	97	Total	population	1012539	89.5	43.0
##	98	Total	population	998691	92.4	49.2
##	99	Total	population	1259828	88.1	31.0
##	100	${\tt Total}$	population	1231393	90.0	38.0
##	101	Total	population	806631	90.5	35.6
##	102	Total	population	533116	89.7	25.7
##	103	Total	population	541943	91.1	30.3
##	104		population	766215	86.8	30.6
##	105		population	629598	88.6	30.7
##	106		population	776712	91.1	41.6
##	107		population	562998	90.2	39.7
##	108		population	1231255	93.9	37.7
##	109		population	626685	93.9	37.7
##						
	110		population	512784	92.3	49.3
##	111		population	562960	91.5	36.3
##	112		population	533320	84.9	26.0
##	113		population	816857	93.7	47.3
##	114		population	1560297	82.6	26.0
##	115		population	631974	82.0	25.2
##	116	Total	population	668347	86.7	37.3

```
87.4
                                                            29.9
## 117
             Total population
                                     938803
## 118
             Total population
                                    1855866
                                                83.0
                                                            26.3
## 119
             Total population
                                                93.7
                                                            50.0
                                     885241
## 120
             Total population
                                                77.6
                                                            29.1
                                    2518638
## 121
             Total population
                                     753363
                                                91.9
                                                            41.5
             Total population
## 122
                                     833487
                                                75.8
                                                            21.1
## 123
             Total population
                                     685345
                                                88.6
                                                            44.1
                                                79.8
## 124
             Total population
                                                            29.7
                                    4441370
## 125
             Total population
                                     831073
                                                62.2
                                                            17.9
## 126
             Total population
                                                85.9
                                                            34.1
                                     518947
## 127
             Total population
                                    1945360
                                                84.9
                                                            30.0
## 128
             Total population
                                                88.6
                                                            45.6
                                    1151145
             Total population
                                                89.5
## 129
                                    1091742
                                                            31.9
## 130
             Total population
                                     560974
                                                93.7
                                                            37.5
## 131
             Total population
                                    1137538
                                                91.5
                                                            60.3
## 132
             Total population
                                    2079967
                                                92.3
                                                            48.6
## 133
             Total population
                                     831928
                                                90.3
                                                            24.6
## 134
             Total population
                                     759583
                                                92.0
                                                            29.1
## 135
             Total population
                                     516284
                                                94.9
                                                            49.8
## 136
             Total population
                                     956406
                                                86.9
                                                            29.5
survey_df <- read.csv("C:/Users/chris/dsc520/data/acs-14-1yr-s0201.csv")</pre>
##print(survey df)
##What are the elements in your data (including the categories and data types)?
print(sapply(survey_df, class))
##
                       Id
                                             Id2
                                                               Geography
##
              "character"
                                       "integer"
                                                             "character"
##
               PopGroupID POPGROUP.display.label
                                                           RacesReported
                                     "character"
                                                               "integer"
##
                "integer"
##
                 HSDegree
                                      BachDegree
                "numeric"
##
                                       "numeric"
##print(survey_df)
##Please provide the output from the following functions: str(); nrow(); ncol()
print(paste("Structure of the dataset is:",str(survey_df)))
## 'data.frame':
                    136 obs. of 8 variables:
                            : chr "0500000US01073" "0500000US04013" "0500000US04019" "0500000US06001"
## $ Id
## $ Id2
                            : int 1073 4013 4019 6001 6013 6019 6029 6037 6059 6065 ...
## $ Geography
                                   "Jefferson County, Alabama" "Maricopa County, Arizona" "Pima County,
                            : chr
## $ PopGroupID
                                   1 1 1 1 1 1 1 1 1 1 ...
                            : int
## $ POPGROUP.display.label: chr "Total population" "Total population" "Total population" "Total popu
## $ RacesReported
                                   660793 4087191 1004516 1610921 1111339 965974 874589 10116705 314551
                            : int
                            : num 89.1 86.8 88 86.9 88.8 73.6 74.5 77.5 84.6 80.6 ...
## $ HSDegree
## $ BachDegree
                                   30.5 30.2 30.8 42.8 39.7 19.7 15.4 30.3 38 20.7 ...
                            : num
## [1] "Structure of the dataset is: "
print(paste("Number of rows is:",nrow(survey_df)))
```

[1] "Number of rows is: 136"

```
print(paste("Number of coloumns is:",ncol(survey_df)))

## [1] "Number of coloumns is: 8"

##Create a Probability Plot of the HSDegree variable.
install.packages("ggplot2", repos="http://cran.us.r-project.org")

## Installing package into 'C:/Users/chris/AppData/Local/R/win-library/4.2'

## (as 'lib' is unspecified)

## package 'ggplot2' successfully unpacked and MD5 sums checked

##
## The downloaded binary packages are in

## C:\Users\chris\AppData\Local\Temp\RtmpYvVKEu\downloaded_packages

library(ggplot2)
```

High School Degree


```
##Based on what you see in this histogram, is the data distribution unimodal?
print("The distribution has only one peak, its Unimodal")
```

[1] "The distribution has only one peak, its Unimodal"

```
##Is it approximately symmetrical?
print("The peak are not symmetrical")
```

[1] "The peak are not symmetrical"

```
##Is it approximately normal?
print("The peak are skewed so its not normal")
```

[1] "The peak are skewed so its not normal"

```
##If not normal, is the distribution skewed? If so, in which direction?
print("The peak are left skewed")
```

[1] "The peak are left skewed"

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

##Explain whether a normal distribution can accurately be used as a model for this data.

```
##creating random data
print(head(survey_df))
```

```
Geography PopGroupID
##
                 Id Id2
## 1 0500000US01073 1073
                                Jefferson County, Alabama
## 2 0500000US04013 4013
                                Maricopa County, Arizona
## 3 0500000US04019 4019
                                     Pima County, Arizona
                                                                    1
## 4 0500000US06001 6001
                               Alameda County, California
                                                                    1
## 5 0500000US06013 6013 Contra Costa County, California
                                                                    1
## 6 0500000US06019 6019
                                Fresno County, California
##
     POPGROUP.display.label RacesReported HSDegree BachDegree
                                               89.1
## 1
           Total population
                                    660793
                                                           30.5
## 2
           Total population
                                               86.8
                                                           30.2
                                   4087191
## 3
           Total population
                                   1004516
                                               88.0
                                                           30.8
                                                           42.8
## 4
           Total population
                                               86.9
                                   1610921
## 5
           Total population
                                   1111339
                                               88.8
                                                           39.7
## 6
           Total population
                                    965974
                                               73.6
                                                           19.7
```

```
p <- ggplot(survey_df, aes(sample=HSDegree))
##+ stat_qq_point(size = 2,color = "red")
##+ stat_qq_line(color="green")</pre>
```

```
##+ xlab("x-axis") + ylab("y-axis")
p + stat_qq(color="blue") + stat_qq_line(color="green")+ xlab("x-axis") + ylab("y-axis")
```


##Based on what you see in this probability plot, is the distribution approximately normal? Explain how print("Its approximately normal - The given data resides in a shape like a straight line.")

[1] "Its approximately normal - The given data resides in a shape like a straight line."

##If not normal, is the distribution skewed? If so, in which direction? Explain how you know.
print("It is normal and not skewed")

[1] "It is normal and not skewed"

```
install.packages("pastecs", repos="http://cran.us.r-project.org")
```

Installing package into 'C:/Users/chris/AppData/Local/R/win-library/4.2'
(as 'lib' is unspecified)

package 'pastecs' successfully unpacked and MD5 sums checked

##

The downloaded binary packages are in

C:\Users\chris\AppData\Local\Temp\RtmpYvVKEu\downloaded_packages

library(pastecs) ##Now that you have looked at this data visually for normality, you will now quantify normality with nu data <- data.frame(survey_df)</pre> stat.desc(data) Id2 Geography PopGroupID POPGROUP.display.label ## nbr.val NA 1.360000e+02 NA136 ## nbr.null NA 0.000000e+00 0 NA ## nbr.na NA 0.00000e+00 NA0 NA ## min NA 1.073000e+03 NA1 NA NA 5.507900e+04 ## max NA1 NA ## range NA 5.400600e+04 NA0 NA ## sum NA 3.649306e+06 NA136 NA ## median NA 2.611200e+04 NANΔ 1 ## mean NA 2.683313e+04 NA 1 NA 0 NA ## SE.mean NA 1.323036e+03 NA## CI.mean NA 2.616557e+03 NA0 NA0 ## var NA 2.380576e+08 NANA## std.dev NA 1.542911e+04 NA0 NA ## coef.var NA 5.750024e-01 NA0 NARacesReported BachDegree **HSDegree** ## nbr.val 1.360000e+02 1.360000e+02 136.0000000 ## nbr.null 0.000000e+00 0.000000e+00 0.0000000 ## nbr.na 0.000000e+00 0.000000e+00 0.0000000 ## min 5.002920e+05 6.220000e+01 15.4000000 1.011671e+07 9.550000e+01 60.3000000 ## max ## range 9.616413e+06 3.330000e+01 44.9000000 1.556385e+08 1.191800e+04 4822.7000000 ## sum ## median 8.327075e+05 8.870000e+01 34.1000000 1.144401e+06 8.763235e+01 35.4610294 ## mean ## SE.mean 9.351028e+04 4.388598e-01 0.8154527 ## CI.mean 1.849346e+05 8.679296e-01 1.6127146 ## var 1.189207e+12 2.619332e+01 90.4349886 ## std.dev 1.090508e+06 5.117941e+00 9.5097313 ## coef.var 9.529072e-01 5.840241e-02 0.2681741 install.packages("psych", repos="http://cran.us.r-project.org") ## Installing package into 'C:/Users/chris/AppData/Local/R/win-library/4.2' ## (as 'lib' is unspecified) ## package 'psych' successfully unpacked and MD5 sums checked ## The downloaded binary packages are in C:\Users\chris\AppData\Local\Temp\RtmpYvVKEu\downloaded_packages

Attaching package: 'psych'

library(psych)

```
## The following objects are masked from 'package:ggplot2':
##
##
       %+%, alpha
##Now that you have looked at this data visually for normality, you will now quantify normality with nu
##In several sentences provide an explanation of the result produced for skew, kurtosis, and z-scores.
#take the whole population of the dataframe
data <- data.frame(survey_df)</pre>
print(stat.desc(data$HSDegree))
##
       nbr.val
                    nbr.null
                                   nbr.na
## 1.360000e+02 0.000000e+00 0.000000e+00 6.220000e+01 9.550000e+01 3.330000e+01
                      median
                                     mean
                                               SE.mean CI.mean.0.95
## 1.191800e+04 8.870000e+01 8.763235e+01 4.388598e-01 8.679296e-01 2.619332e+01
        std.dev
                    coef.var
## 5.117941e+00 5.840241e-02
psych::describe(data$HSDegree)
                       sd median trimmed mad min max range skew kurtosis
           n mean
## X1
         1 136 87.63 5.12
                            88.7
                                   88.28 3.78 62.2 95.5 33.3 -1.67
# take a small population from the dataframe
survey_df1 <- read.csv("C:/Users/chris/dsc520/data/acs-14-1yr-s0201.csv", nrow=50)</pre>
data1 <- data.frame(survey_df1)</pre>
print(stat.desc(data1$HSDegree))
##
                   nbr.null
        nbr.val
                                   nbr.na
                                                   min
                                                                           range
                   0.0000000
##
     50.0000000
                                0.0000000
                                            73.6000000
                                                         94.1000000
                                                                       20.5000000
                                               SE.mean CI.mean.0.95
                      median
                                     mean
            sum
                              86.8180000
## 4340.9000000
                  88.0000000
                                             0.6663620
                                                          1.3391045
                                                                       22.2019143
                   coef.var
##
        std.dev
                   0.0542732
##
      4.7118907
psych::describe(data1$HSDegree)
      vars n mean
                      sd median trimmed mad min max range skew kurtosis
         1 50 86.82 4.71
                             88
                                  87.41 3.19 73.6 94.1 20.5 -1.13
                                                                        0.63 0.67
print("Skew and Kurtosis is dependent on the size of the data when compared to population vs sample. Sm
## [1] "Skew and Kurtosis is dependent on the size of the data when compared to population vs sample. S
##Z-score comparison
## population
data <- data.frame(survey_df)</pre>
```

sample

data1 <- data.frame(survey_df1)</pre>

```
x <- data[['HSDegree']]
x1 <- data1[['HSDegree']]
zscore <- (x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
zscore1 <- (x1 - mean(x1, na.rm = TRUE)) / sd(x1, na.rm = TRUE)
plot(zscore, type="o", col="green")</pre>
```


plot(zscore1, type="o", col="blue")

##print(zscore)

print("Z-Score represent how many SD you are away from mean. This has got nothing to do with population

[1] "Z-Score represent how many SD you are away from mean. This has got nothing to do with population