Алгебра

Мастера конспектов 22 января 2020 г.

Честно говоря, ненависть к этой вашей топологии просто невообразимая.

Содержание

1	Бил	
	1.1	Определение кольца. Простейшие следствия из аксиом. Примеры. Области
		целостности
	1.2	Евклидовы кольца. Евклидовость $\mathbb Z$. Неприводимые и простые элементы
	1.3	Идеалы, главные идеалы. Евклидово кольцо как кольцо главных идеалов
	1.4	Основная теорема арифметики
	1.5	Кольцо вычетов $\mathbb{Z}/_{n\mathbb{Z}}$. Китайская теорема об остатках
	1.6	Определение поля. $\mathbb{Z}/_{p\mathbb{Z}}$ как поле. Поле частных целостного кольца
	1.7	Определение гомоморфизма и изоморфизма колец. Фактор-кольцо
	1.8	Теорема о гомоморфизме
	1.9	Кольцо многочленов. Целостность и евклидовость кольца многочленов над
		полем
	1.10	Лемма Гаусса
		Факториальность кольца многочленов
	1.12	Теорема Безу. Производная многочлена и кратные корни
		Интерполяция Лагранжа
		Интерполяция Эрмита
	1.15	Поле разложение многочлена
		Комплексные числа. Решение квадратных уравнений в
		Основная теорема алгебры
		Разложение рациональной функции в простейшие дроби над $\mathbb C$ и над $\mathbb R$
		Определение векторного пространства. Линейная зависимость. Существова-
		ние базиса
	1.20	Размерность векторного пространства
		Линейные отображения векторных пространств. Подпространство, фактор-
		пространство. Ранг линейного отображения
	1.22	Матрица линейного отображения. Композиция линейных отображений и про-
	1,11	изведение матриц. Кольцо матриц
	1.23	Элементарные преобразования. Метод Гаусса. Системы линейных уравнений
		Теорема Кронекера-Капелли
		Определение группы. Циклическая группа. Порядок элемента
		Группа перестановок. Циклы, транспозиции. Знак перестановки
		Действие группы на множестве. Орбиты. Классы сопряженности
		Группа обратимых элементов кольца. Вычисление обратимых элементов $\mathbb{Z}/n\mathbb{Z}$.
	1.20	Трунна обратимых элементов кольца. Вы исмение обратимых элементов $\omega_{/n\mathbb{Z}}$. Функция Эйлера
	1 20	Гомоморфизмы и изоморфизмы групп. Смежные классы, теорема Лагранжа.
	1.20	Теорема Эйлера
	1.30	Многочлены деления круга
		Конечные поля (существование, единственность, цикличность мультиплика-
	1.01	тивной группы)
	1 99	
		Фактор-группа, теорема о гомоморфизме
	1.55	Определитель матрицы. Инвариантность при элементарных преобразовани-
		ях, разложение по строчке и столбцу

	.34 Присоединенная матрица. Формула Крамера. Определитель транспонирован-	
	ной матрицы	8
	.35 Вычисление определителя методом Гаусса	8
	.36 Принцип продолжения алгебраических тождеств. Определитель произведе-	
	ния матриц	8
${f 2}$	Іофамильный указатель всех мразей	9

1 Билеты

1.1 Определение кольца. Простейшие следствия из аксиом. Примеры. Области целостности

Определение 1. *Кольцом* называется множество R вместе с бинарными операциями + и \cdot (которые называются сложением и умножением соответственно), удовлетворяющим аксиомам:

- операция сложения ассоциативна;
- по отношению к сложению существует нейтральный элемент;
- у каждого элемента есть обратный по сложению
- операция сложения коммутативна;
- умножение ассоциативно;
- умножение дистрибутивно по сложеиню.

Также можно добавить, что если на множестве выполныны три первые аксиомы, то оно будет называться $\mathit{группой}$, а если выполнены первые четыре, то это уже $\mathit{абелева}$ $\mathit{группа}$. Нейтральный по сложению элемент кольца называют $\mathit{нулём}$.

Пример(**ы**) **1.** Кольцо называется:

- коммутативным, если оно коммутативно по умножению;
- кольцом с единицей, если оно содержит нейтральный элемент по умножению (единица);
- *телом*, если в нём есть 1, и для любых $a \neq 0 \rightarrow a \cdot a^{-1} = a^{-1} \cdot a = 1$;
- ullet *полем*, если это коммутативное тело;
- полукольцом, если нет требования противоположного элемента по сложению.

Следствие 1. Некоторые следствия из аксиом:

• $0 \cdot a = 0$

Доказательство.

$$0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$$

Прибавим к обеим частям $-0 \cdot a$ и получим требуемое.

• Нейтральный элемент по сложению единственный

Доказательство. Рассмотрим их сумму справа и слева.

 $\bullet \ a \cdot 0 = 0$

Доказательство.

$$a \cdot 1 = a \Longrightarrow (0+1)a = a \Longrightarrow 0 \cdot a + 1 \cdot a = a \Longrightarrow 0 \cdot a = 0$$

Определение 2. Коммутативное кольцо R с единицей, обладающее свойством

$$xy = 0 \Longrightarrow x = 0 \lor y = 0 \ (\forall x, y \in R)$$

называется областью целостности или просто областью.

Определение 3. Число $d \neq 0$ называется **делителем нуля**, если существует такое $d' \neq 0$, что dd' = 0.

Нетрудно понять, что область целостности - в точности коммутативное кольцо с единицей без делителей нуля.

1.2 Евклидовы кольца. Евклидовость \mathbb{Z} . Неприводимые и простые элементы.

Для начала, некоторые связанные понятия, не упомянутые в билетах.

Определение 4. Говорят, что d делит p и пишут d|p, если p = dq для некоторго $q \in R$.

Определение 5. Элемент ε называется *обратимым*, если он делит единицу, то есть существует такое $\varepsilon^{-1} \in R$, что $\varepsilon^{-1} \cdot \varepsilon = 1$.

Определение 6. Будем говорит, что элементы a и b ассоциированы и писать $a \sim b$, если выполнено одно из двух эквивалентных условий:

- существует обратимый элемент ε , для которого $a = \varepsilon b$;
- a|b и b|a.

Покажем, что эти условия действительно эквивалентны.

Доказательство. Докажем в обе стороны:

- \Rightarrow Если $a = \varepsilon b$, то $\varepsilon^{-1}a = b$. Это и есть второе условие.
- \Leftarrow Пусть a=bc и b=ac' для каких-то c,c'. Тогда $a=(ac')c=a(cc') \leftrightarrow a(1-cc')=0$. Тогда либо a=0, либо cc'=1, потому что делителей нуля в нашем кольце нет. В любом случае, a и b отличаются на обратимый: либо они оба равны нулю, либо c обратимый. \square

А теперь, что касается самого билета.

Определение 7. Область целостности R называется $\frac{ee\kappa_n udoeым}{ee\kappa_n udoeым}$ кольцом, если существует евклидова норма $N:R\to\mathbb{N}_0$ такая, что N(0)=0 и для любых элементов $a,b\in R$, где $b\neq 0$, существует меньший чем b по норме элемент $r\in R$ такой, что выполнено равенство a=bq+r.

Пример(ы) 1. Кольцо целых чисел \mathbb{Z} евклидово.

Доказательство. Пусть у нас имеются целое число a и ненулевое целое b. Тогда существуют такие целые числа q и r, что модуль r меньше модуля b, а также a=bq+r. Отметим на оси все ератные b. Тогда если число a попало на отрезок [kb,(k+1)b],k будет частным, а a-kb - остатком. Дальнейшую формализация можно провести индукцией.

Опять несколько небольших новых определений перед тем как перейти к последнему пункту билета (их можно упустить).

Определение 8. Пусть R - область целостности; $a,b \in R$. Элемент $d \in R$ называется наибольшим общим делителем a и b, если

- d|a и d|b;
- \bullet для любого $d' \in R$, который также делит a и b, выполнено также, что он делит d.

Теорема 1. (О линейном представлении НОД в евклидовых кольцах). Пусть R - евклидово кольцо, $a, b \in R$. Тогда существуют $d := \gcd(a,b)$ и такие $x,y \in R$, что d = ax + by.

Теперь про простые и неприводимые.

Определение 9. Пусть R - область. Необратимый элемент $p \in R$ - неприводимый, если

$$\forall d \in R : d|p \Longrightarrow d \sim 1 \lor d \sim p$$

Определение 10. Пусть R - область. Ненулевой необратимый элемент $p \in R \setminus 0$ называется **простым**, если $\forall a,b \in R : p|ab \Longrightarrow p|a \lor p|b$.

Лемма 1. (Простые \subset неприводимые). Если p - простой элемент произвольного коммутативног кольцв c единицей, то p - неприводим.

Доказательство. Пусть d - какой-то делитель p, что эквивалентно равенству p=da для какого-то a. Проверим, что либо $d\sim 1$, либо $d\sim p$. Раз p - простой, то либо он делит d, либо он делит a. Если первое, что сразу $d\sim p$. Если второе, перепишем в виде da=p|a. Это то же самое, что bda=a для некоторого b. Здесь либо a=0, то тогда p=o, что невозможно по определению простого, либо мы можем сократить на a и получим bd=1, тогда d ассоциирован c 1.

- 1.3 Идеалы, главные идеалы. Евклидово кольцо как кольцо главных идеалов
- 1.4 Основная теорема арифметики
- 1.5 Кольцо вычетов $\mathbb{Z}/_{n\mathbb{Z}}$. Китайская теорема об остатках
- 1.6 Определение поля. $\mathbb{Z}/_{p\mathbb{Z}}$ как поле. Поле частных целостного кольца
- 1.7 Определение гомоморфизма и изоморфизма колец. Фактор-кольцо
- 1.8 Теорема о гомоморфизме
- 1.9 Кольцо многочленов. Целостность и евклидовость кольца многочленов над полем
- 1.10 Лемма Гаусса
- 1.11 Факториальность кольца многочленов
- 1.12 Теорема Безу. Производная многочлена и кратные корни
- 1.13 Интерполяция Лагранжа
- 1.14 Интерполяция Эрмита
- 1.15 Поле разложение многочлена
- 1.16 Комплексные числа. Решение квадратных уравнений в
- 1.17 Основная теорема алгебры
- 1.18 Разложение рациональной функции в простейшие дроби над $\mathbb C$ и над $\mathbb R$
- 1.19 Определение векторного пространства. Линейная зависимость. Существование базиса
- 1.20 Размерность векторного пространства
- 1.21 Линейные отображения векторных пространств. Подпространство, фактор-пространство. Ранг линейного отображения
- 1.22 Матрица линейного отображения. Композиция линейных отображений и произведение матриц. Кольцо матриц
- 1.23 Элементарные преобразования. Метод Гаусса. Системы линейных уравнений
- 1.24 Теорема Кронекера-Капелли
- 1.25 Определение группы. Циклическая группа. Порядок элемента
- 1.26 Группа перестановок. Циклы, транспозиции. Знак перестановки
- 1.27 Действие группы на множестве. Орбиты. Классы сопряженности
- 1.28 Группа обратимых элементов кольца. Вычисление обратимых элементов $\mathbb{Z}/_{n\mathbb{Z}}$. Функция Эйлера
- 1.29 Гомоморфизмы и изоморфизмы групп. Смежные классы, теорема Лагранжа. Теорема Эйлера
- 1.30 Многочлены деления круга

2 Пофамильный указатель всех мразей

Быстрый список для особо заебавшегося поиска.

ассоциированность делитель нуля евклидово кольцо кольцо, а также его вариации неприводимые НОД область целостности простые