5. Normalizace návrhu databáze

Ing. Vladimír Bartík, Ph.D.

RNDr. Marek Rychlý, Ph.D.

Osnova

- 5.1. Úvod do teorie závislostí
 - 5.1.1. Funkční závislost
- 5.2. Využití teorie závislostí při návrhu databáze
 - 5.2.1. Normalizace
 - 5.2.2. Normální formy
 - 5.2.3. Obecný postup odstranění částečných a tranzitivních závislostí
 - 5.2.4. Příklad na normalizaci tabulky

5.1. Úvod do teorie závislostí

- Normalizace schématu databáze
 - druhá významná teoretická podpora relačních databází
 - je založena na třech typech závislostí mezi atributy relace:
 - funkční závislosti
 - vícehodnotové závislosti (multizávislosti)
 - závislosti na spojení

- Hodnota atributu relace určuje jednoznačně hodnotu jiného atributu téže relace
- Zapisujeme $X \rightarrow Y$
- Vyplývá z významu atributů, představuje integritní omezení

```
Př.) Klient(r_číslo, jméno, ulice, město)
```

Hodnota rodného čísla jednoznačně určuje hodnoty ostatních atributů.

```
r_číslo → jméno
```

 \rightarrow ulice

→ město

r_číslo → (jméno, ulice, město)

jméno → (ulice, město)

Nechť X a Y jsou atributy relace R. Řekneme, že Y funkčně závisí na X, zapisujeme $X \rightarrow Y$,

právě když pro libovolné dvě n-tice t_1 a t_2 každého přípustného stavu relace R platí, že je-li x_1 , resp. y_1 hodnota atributu X, resp. Y v n-tici t_1 a x_2 , resp. y_2 hodnota atributu X, resp. Y v n-tici t_2 a $x_1=x_2$, potom i $y_1=y_2$.

Diagram funkčních závislostí

Praktický důsledek (integritní omezení): Opakuje-li se v relaci stejná hodnota determinantu, musí se opakovat i odpovídající stejné hodnoty závislého atributu.

Triviální funkční závislost

$$X \rightarrow Y$$
 platí pro každý atribut $Y \subseteq X$.

- Plná funkční závislost
 - atribut je funkčně závislý na celém složeném atributu a není funkčně závislý jen na některé jeho části
 - Př) Disponuje(r_číslo, jméno, město, č_účtu, stav, limit)

Plná funkční závislost (pokračování)

Nechť X a Y jsou atributy relace R. Řekneme, že atribut Y je plně funkčně závislý na atributu X, právě když je funkčně závislý na X a není funkčně závislý na žádném atributu $Z \subset X$.

 Praktický důsledek: je-li kandidátní klíč relace složený, stejné hodnoty složek se mohou opakovat ⇒ musí se opakovat i hodnoty atributů, které jsou částečně (ne plně) závislé.

č_účtu	r_číslo	stav	jméno	limit	město
100	600528/0275	100000	Novák	10000	Praha
100	581015/9327	100000	Malá	3000	Brno
130	600528/0275	50000	Novák	5000	Praha
150	450205/3419	150000	Veselý	5000	Ostrava

- Tranzitivní závislost
 - atribut je funkčně závislý na jiném funkčně závislém atributu
 - Př) Účet(č_účtu, stav, r_číslo, jméno)

Nechť X a Y jsou atributy relace R a nechť platí X \rightarrow Y, avšak neplatí Y \rightarrow X, a nechť existuje atribut Z relace R, který není v X, ani Y, a platí Y \rightarrow Z. Potom říkáme, že Z je *tranzitivně závislý* na X.

Tranzitivní závislost (pokračování)

Praktický důsledek: existuje-li funkční závislost na atributu, který není kandidátním klíčem, hodnota se může opakovat ⇒ musí se opakovat i hodnoty závislého atributu.

Př.)

č_účtu	stav	r_číslo	jméno
100	100000	600528/0275	Novák
120	135000	581015/9327	Malá
130	50000	600528/0275	Novák
150	150000	450205/3419	Veselý

5.2. Využití teorie závislostí při návrhu databáze

- Proces návrhu založený na teorii závislostí se nazývá normalizace.
- Postup návrhu
 - seznam atributů (univerzální relace) → postupná dekompozice na schéma v dostatečně vysoké normální formě
- Praktický postup
 - datový model (ER diagram) → transformace na schéma relační databáze → zjemnění využitím normalizace resp. normalizace ER modelu před transformací.

5.2. Využití teorie závislostí při návrhu databáze

- Hlavní problémy špatného návrhu
 - opakující se informace (redundance)
 - nemožnost reprezentovat určitou informaci
 - ztráta informace
 - složitá kontrola integritních omezení

Př) Účet1(č_účtu, r_číslo, stav, pobočka, jmění)
Předpokládejme, že s účtem může disponovat více osob.

č_účtu	r_číslo	stav	pobočka	jmění
100	600528/0275	100000	Jánská	1000000
100	581015/9327	100000	Jánská	10000000
130	600528/0275	50000	Palackého	500000
150	450205/3419	150000	Palackého	500000

 Postupná transformace tabulky do vhodnějšího tvaru (postupná dekompozice).

Nechť R(A) je schéma relace R. Množina schémat $\{R_1(A_1), R_2(A_2), \dots, R_n(A_n)\}$ je dekompozicí schématu R(A), jestliže $A = A_1 \cup A_2 \cup \dots \cup A_n$.

- Žádoucí vlastnosti dekompozice:
 - bezeztrátovost při zpětném spojení
 - zachování závislostí
 - odstranění opakování informace (redundance)
- Bezeztrátová dekompozice (Lossless-Join /Nonloss decomp.)
 - spojení tabulek, které vzniknou dekompozicí musí dát přesně původní tabulku

Př) Účet1(č_účtu, r_číslo, stav, pobočka, jmění)
– viz předchozí

č_účtu	r číslo	stav	pobočka	jmění
100	600528/0275	100000	Jánská	10000000
100	581015/9327	100000	Jánská	10000000
130	600528/0275	50000	Palackého	5000000
150	450205/3419	150000	Palackého	5000000

Účet_v_pob

č_účtu	r_číslo	pobočka	jmění
100	600528/0275	Jánská	10000000
100	581015/9327	Jánská	10000000
130	600528/0275	Palackého	5000000
150	450205/3419	Palackého	5000000

Stav

r_číslo	stav
600528/0275	100000
581015/9327	100000
600528/0275	50000
450205/3419	150000

Tabulka Účet1 po zpětném spojení

č_účtu	r_číslo	stav	pobočka	jmění
100	600528/0275	100000	Jánská	10000000
<mark>100</mark>	600528/0275	50000	<mark>Jánská</mark>	<mark>10000000</mark>
100	581015/9327	100000	Jánská	10000000
130	600528/0275	50000	Palackého	5000000
<mark>130</mark>	600528/0275	100000	Palackého	5000000
150	450205/3419	150000	Palackého	5000000

Podmínka bezeztrátové dekompozice:

Pro dekompozici se schématy R1(A1) a R2(A2) musí platit: $A1 \cap A2 \rightarrow A1$ nebo $A1 \cap A2 \rightarrow A2$, tj. společný atribut musí být kandidátním klíčem alespoň jedné z tabulek.

Př.)

č_účtu	Stav	pobočka	jmění
100	100000	Jánská	10000000
130	50000	Palackého	500000
150	150000	Palackého	5000000

č_účtu	r_číslo
100	600528/0275
100	581015/9327
130	600528/0275
150	450205/3419

- Zachování závislostí
 - všechny původní závislosti musí být zachovány a snadno kontrolovatelné (v rámci jedné tabulky)

• Odstranění opakování informace

Př.)

č účtu	stav	pobočka	jmění
100	100000	Jánská	10000000
130	50000	Palackého	5000000
150	150000	Palackého	5000000

Účet

č_účtu	stav	pobočka
100	100000	Jánská
130	50000	Palackého
150	150000	Palackého

Pobočka

pobočka	jmění
Jánská	1000000
Palackého	5000000

- Boyce-Coddova normální forma (BCNF)
 - odstraňuje opakování informace
 - všechny netriviální funkční závislosti jsou dány závislostí na kandidátních klíčích
 - □ ne každá dekompozice do BCNF zachovává závislosti ⇒ potom stačí 3NF

- Definují požadavky na vlastnosti schématu relace z pohledu závislostí mezi atributy
- Hierarchie normálních forem (Codd: 1NF až 3NF, BCNF, 4NF, 5NF), tj. n-tá normální forma musí splňovat podmínky (n-1) normální formy a něco navíc.
- Požadavky na návrh založený na normalizaci:
 - bezeztrátovost dekompozice
 - zachování závislostí
 - dosažení minimálně BCNF, resp. 3NF
- Terminologie:
 - Klíčový atribut atribut, který je součástí kandidátního klíče, ostatní neklíčové.
 - Superklíč nadmnožina kandidátního klíče (CK ⊆ SK).

První normální forma (1NF)

Relace je v *první normální formě*, právě když všechny její jednoduché domény obsahují pouze atomické hodnoty.

Př.) Účet1(č_účtu, r_číslo, stav, pobočka, jmění)

Druhá normální forma (2NF)

Schéma relace je ve druhé normální formě, právě když je v 1NF a každý její neklíčový atribut, je plně funkčně závislý na každém kandidátním klíči.

Třetí normální forma (3NF)

Schéma relace je ve třetí normální formě, právě když je ve 2NF a neexistuje žádný <u>neklíčový</u> atribut, který je tranzitivně závislý na některém kandidátním klíči.

pobočka	jmění
Jánská	10000000
Palackého	5000000

č_účtu	stav	pobočka		
1035853	100000	Jánská		
1348427	50000	Palackého		
1529054	150000	Palackého		

Boyce-Coddova normální forma (BCNF)

Př) Disponuje(r_číslo, č_zákazníka, č_účtu)

- může existovat několik kandidátních klíčů,
- kandidátní klíče mohou být složené,
- kandidátní klíče se mohou překrývat
- 3NF neřeší, tj. připouští závislosti mezi klíčovými atributy

Schéma relace je v *Boyce-Coddově normální formě*, jestliže pro každou netriviální funkční závislost $X \rightarrow Y$ je X superklíčem.

- Př) Student_předmět_učitel(student, předmět, učitel) Sémantika:
 - každého studenta učí z daného předmětu jen jeden učitel, každý učitel učí jen jeden předmět
 - jeden předmět může učit několik učitelů

student	předmět	učitel
Novák	matematika	Prof.Adam
Novák	fyzika	Doc.Kovář
Veselý	matematika	Prof.Adam
Veselý	fyzika	Doc.Zelený

- dekompozice Učí_předmět(učitel, předmět) a Učí_studenta(student, učitel)
 nezachovává závislosti v rámci relací (relace nejsou nezávislé)
- > zachování závislostí a dosažení BCNF není vždy splnitelné

Př) Zkoušky (student, předmět, pozice)

Sémantika: Dva studenti nemohou být na stejné pozici v jednom

předmětu. Předpokládáme jednoznačné jméno.

student	předmět	pozice
Novák	matematika	10
Veselý	matematika	7
Novák	fyzika	5
Veselý	fyzika	2

→ překrývající se kandidátní klíče ještě nemusí způsobovat problémy

- Čtvrtá normální forma (4NF)
 - vymezuje vlastnosti, které musí splňovat atributy relace s ohledem na vícehodnotové závislosti.
- Pátá normální forma (5NF)
 - vymezuje vlastnosti, které musí splňovat atributy relace s ohledem na závislosti na spojení.
- Normální forma schématu databáze

Návrh databáze je v *n*-té normální formě, je-li každá jeho relace (schéma) alespoň v *n*-té normální formě.

5.2.3. Obecný postup odstranění částečných a tranzitivních závislostí

Převod do 2NF

R(A, B, C, D, E)

PRIMARY KEY (A,B)

 $A \rightarrow C$

 $A \rightarrow D$

 $A \rightarrow E$

Převod do 3NF

R(A, B, C, D)

PRIMARY KEY (A)

 $C \rightarrow D$

R1(A, C, D, E)

PRIMARY KEY (A)

R2(A, B)

PRIMARY KEY(A,B)

FOREIGN KEY(A) REFERENCES R1

R1(C, D)

PRIMARY KEY (C)

R2(A, B, C)

PRIMARY KEY(A)

FOREIGN KEY(C) REFERENCES R1

Zadání

Uvažujte následující tabulku s údaji o předmětech, studentech zapsaných v
jednotlivých letech, získaném počtu bodů, počtu kreditů a garantech v
jednotlivých letech. Atribut c_stud je unikátní pro studenty, os_c_gar pro
garanta, zkratka unikátní pro předměty, název předmětu nemusí být unikátní.
Garant předmětu a kredity za předmět se mohou v jednotlivých letech lišit.

C_:	stud	jmeno_s	zkratka	nazev	kredity	body	os_c_gar	jmeno_g	ak_rok
		-				,	5	_0	

- 1. Určete množinu kandidátních klíčů
- 2. Nakreslete diagram funkčních závislostí
- 3. Určete, v jaké normální formě relace je
- 4. Normalizujte tabulku tak, aby výsledné schéma bylo alespoň v BCNF

c_stud jmeno_s zkratka nazev	kredity body	os_c_gar	jmeno_g	ak_rok
------------------------------	--------------	----------	---------	--------

- 1. Množina kandidátních klíčů
 - Ověření splnění podmínky 1NF: OK
 - Určení množiny kandidátních klíčů

KK = { (c_stud, zkratka, ak_rok)}, tj. 1 složený kandidátní klíč

2. Diagram funkčních závislostí

3. Normální forma tabulky

 \Rightarrow pouze 1NF

4. Normalizace (1)

4. Normalizace (2)

4. Normalizace (3)

4. Normalizace (4)

4. Normalizace (5)

5. Výsledné schéma

6. ER diagram modelující totéž

• Zadání: Uvažujte následující tabulku IS atletického klubu:

cisloA	RCA	jmenoA	sezona	disciplina	zavod	stadion	mestoS	kategorie	vykon
--------	-----	--------	--------	------------	-------	---------	--------	-----------	-------

kde cisloA je jednoznačné číslo atleta, který je členem klubu, RCA je jeho (jednoznačné) rodné číslo; jmenoA je jeho (nejednoznačné) jméno; sezona je jednoznačné označení sezony (např. 2021/2022); disciplina je název atletické disciplíny (např. hod diskem), zavod je název závodu (např. Brno Open, předpokládejte, že se pořádá pravidelně jednou za sezonu); stadion je stadion, na němž se daný závod každoročně koná (pro daný závod je vždy stejný); mestoS je město, ve kterém se daný stadion nachází; kategorie je věková kategorie, do níž atlet spadá (např. mladší žáci; atlet v čase mění své kategorie, ale během jedné sezony se nemění); vykon udává výkon atleta v určité disciplíně v jednom závodu v konkrétní sezoně (např. výkon atleta Jana Nováka na závodě Brno Open v sezoně 2022/23 ve skoku do výšky byl 215 cm). Předpokládejte, že se může atlet v rámci jednoho závodu zúčastnit i více než jedné disciplíny.

Určete množinu KK, nakreslete diagram funkčních závislostí, určete, v jaké normální formě relace je a normalizujte tabulku tak, aby výsledné schéma bylo alespoň v BCNF

cisloA	RCA	jmenoA	sezona	disciplina	zavod	stadion	mestoS	kategorie	vykon
--------	-----	--------	--------	------------	-------	---------	--------	-----------	-------

- Ověření splnění podmínky 1NF: OK
- Určení množiny kandidátních klíčů:

KK = { (RCA, sezona, zavod, disciplina), (cisloA, sezona, zavod, disciplina)}, tj. 2 složené KK

Normalizace do 2NF

Normalizace do 3NF

Normalizace do BCNF

Literatura

- 1. Silberschatz, A., Korth H.F., Sudarshan, S.: Database System Concepts. Fifth Edition. McGRAW-HILL. 2006, str. 263-310.
- 2. Lemahieu, W., Broucke, S., Baesens, B.: Principles of Database Management. The Practical Guide to Storing, Managing and Analyzing Big and Small Data. Cambridge University Press 2018, str. 111-120.
- 3. Zendulka, J., Rudolfová, I.: Databázové systémy. IDS. Studijní opora. FIT VUT v Brně. 2006, str. 86-109.