February 16

- Today
 - A couple of remaining items from chapter 1, then chapter 2
 - Dataframes in R
- Practical tomorrow
 - Practice w/ dataframes
 - TAs will verify that you've worked on this activity
- Homework
 - More dataframes practice; practice with dispersion, fit, and confidence intervals
 - due next Thursday before lecture

The Dispersion: Range

- The Range
 - The smallest score subtracted from the largest
- Example
 - Number of friends of 11 Facebook users.
 - 22, 40, 53, 57, 93, 98, 103, 108, 116, 121, 252
 - Range = 252 22 = 230
 - Very biased by outliers

The Dispersion: The Interquartile range

- Quartiles (one type of quantile)
 - The three values that split the sorted data into four equal parts.
 - Second quartile = median.
 - Lower quartile = median of lower half of the data.
 - Upper quartile = median of upper half of the data.

FIGURE 1.7

Calculating quartiles and the interquartile range

Chapter 2: Everything You Ever Wanted to Know about Statistics

Aims and Objectives

- Know what a statistical model is and why we use them.
 - The mean
- Know what the 'fit' of a model is and why it is important.
 - The standard deviation
- Distinguish models for samples and populations

The Research Process

FIGURE 1.2

The research process

FIGURE 2.2

Fitting models to real-world data (see text for details)

Populations and Samples

Population

- The collection of units (be they people, plankton, plants, cities, etc.) to which we want to generalize a set of findings or a statistical model
 - usually unmeasurable

Sample

 A smaller (but hopefully representative) collection of units from a population used to determine truths about that population

Populations and Samples: Example

- 1% of general population is made up of narcissists
 - Test everyone in the population?
 - No!
 - Found a representative sample of people, tested them,
 and then generalized to the whole population

The Only Equation You Will Ever Need

$$outcome_i = (model) + error_i$$

A Simple Statistical Model

- In statistics we fit models to our sample data (i.e. we use a statistical model to represent what is happening in the real world, [the population]).
- The mean is a hypothetical value (i.e. it doesn't have to be a value that actually exists in the data set).
- As such, the mean is a simple statistical model.

The Mean: Example

Collect some data:

Add them up:

$$\sum_{i=1}^{n} x_i = 1 + 3 + 4 + 3 + 2 = 13$$

• Divide by the number of observations, n:

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{13}{5} = 2.6$$

The mean as a model

$$outcome_i = (model) + error_i$$

outcome_{lecturer1} =
$$(\bar{X})$$
 + error_{lecturer1}

$$1 = 2.6 + \text{error}_{\text{lecturer1}}$$

Measuring the 'Fit' of the Model

 How can we assess how well the mean represents reality?

A Perfect Fit

Calculating 'Error'

- A deviation (or error) is the difference between the mean and an actual data point.
- Deviations can be calculated by taking each score and subtracting the mean from it:

deviation =
$$x_i - \overline{x}$$

FIGURE 2.4

Graph showing
the difference
between the
observed number
of friends that
each statistics
lecturer had, and
the mean number
of friends

Use the Total Error?

• We could just take the error between the mean and the data and add them.

Score	Mean	Deviation	
1	2.6	-1.6	
2	2.6 -0.6		
3	2.6 0.4		
3	2.6 0.4		
4	2.6	2.6 1.4	
	Total =	0	

$$\sum (X - \overline{X}) = 0$$

Sum of Squared Errors

- We could add the deviations to find out the total error.
- Deviations cancel out because some are positive and others negative.
- Therefore, we square each deviation.
- If we add these squared deviations we get the sum of squared errors (SS).

Score	Mean	Deviation	Squared Deviation
1	2.6	-1.6	2.56
2	2.6	-0.6	0.36
3	2.6	0.4	0.16
3	2.6	0.4	0.16
4	2.6	1.4	1.96
		Total	5.20

$$SS = \sum (X - \bar{X})^2 = 5.20$$

Variance

- The sum of squares is a good measure of overall variability, but is dependent on the number of scores.
- We calculate the average variability by dividing by the number of scores (n).
- This value is called the variance (s^2) .

variance
$$(s^2) = \frac{SS}{N-1} = \frac{\sum (x_i - \overline{x})^2}{N-1} = \frac{5.20}{4} = 1.3$$

Degrees of Freedom

$$\overline{X} = 10$$

Standard Deviation

- The variance has one problem: it is measured in units squared. (1.3 friends squared???)
- This isn't a very meaningful metric so we take the square root value.
- This is the standard deviation (s).

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} = \sqrt{\frac{5.20}{4}} = 1.14$$

Important Things to Remember

- The sum of squares, variance, and standard deviation represent the same thing:
 - The 'fit' of the mean to the data
 - The variability in the data
 - How well the mean represents the observed data
 - Error

Same Mean, Different SD

FIGURE 2.5

Graphs
illustrating data
that have the
same mean but
different standard
deviations

The SD and the Shape of a Distribution

FIGURE 2.6 Two distributions with the same mean, but large and small standard deviations

Samples vs. Populations

Sample

 Mean and SD describe only the sample from which they were calculated.

Population

 Mean and SD are intended to describe the entire population.

Sample to Population:

 Mean and SD are obtained from a sample, but are used to estimate the mean and SD of the population.

Population M = 9M = 10M = 10M = 11M = 8M = 9M = 12M = 11M = 10Mean = 10 SD = 1.22 3 Frequency 1 10 11 12 13 14 6 7 8 9 Sample Mean

$$\sigma_{\bar{X}} = \frac{s}{\sqrt{N}}$$