

	_	Cen	tre N	Jur	hei
		Cen	LIC I	Yun	100
	5	stud	ent N	Jun	be

SCEGGS Darlinghurst

2010
HIGHER SCHOOL CERTIFICATE
TRIAL EXAMINATION

Mathematics Extension I

This is a TRIAL PAPER only and does not necessarily reflect the content or format of the Higher School Certificate Examination for this subject.

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- · Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 84

- Attempt Questions 1-7
- · All questions are of equal value

Total marks – 84 Attempt Questions 1–7 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Que	stion 1 (12 marks) Use a SEPARATE writing booklet.	Marks
(a)	Evaluate $\lim_{x \to 0} \frac{\sin 5x}{2x}$	1
(b)	Solve the inequality $\frac{2x-3}{x} \ge 1$	3
(c)	Find the coordinates of $P(x, y)$, the point that divides the interval joining $A(4,3)$ and $B(1,-1)$ externally in the ratio 3:2.	2
(d)	Evaluate $\int_0^1 \frac{dx}{\sqrt{2-x^2}}$	2
(e)	(i) Show that $\tan x = \frac{\sin 2x}{1 + \cos 2x}$.	2
	(ii) Hence evaluate $\tan \frac{\pi}{12}$ in simplest exact form.	2

End of Question 1

Higher School Certificate Trial Examination, 2010 Mathematics Extension 1

page 2

Marks

Question 3 (12 marks) Use a SEPARATE writing booklet.

(a) $P(2t, t^2)$ is a point on the parabola $x^2 = 4y$ where t > 0. The tangent to the parabola at P cuts the x-axis at T. $\angle OPT = \theta$

(i) Find the gradients of OP and PT.

2

(ii) Show that
$$\tan \theta = \frac{t}{t^2 + 2}$$
.

2

- (b) (i) Show that the function $f(x) = \frac{x-4}{x-2}$, $x \ne 2$ is increasing for all values of x in its domain.
 - (ii) Sketch the graph of the function, showing clearly the coordinates of any points of intersection with the x-axis and y-axis, and the equations of any asymptotes.
 - (iii) Find the inverse function, $f^{-1}(x)$, and state its range.

2

2

Question 3 continues on page 5

Higher School Certificate Trial Examination, 2010 Mathematics Extension 1

page 4

Question 3 (continued)

(c) Let each different arrangement of all the letters of GOOGLEPLEX be called a word.

(i) How many words are possible?

- 1

2

Marks

(ii) If one of these words is chosen at random, what is the probability that all the vowels are together?

End of Question 3

3

- (a) Find the term independent of x in the expression $\left(\frac{1}{3x} \frac{3}{2}x^2\right)^9$.
- (b) Given that a root of the equation $e^x x 2 = 0$ is close to $x = 1 \cdot 2$, use one application of Newton's Method of Approximation to find a second approximation of this root. (Answer to 2 decimal places.)
- (c) Find the exact volume of the solid formed when the region bounded by the x-axis and the curve $y = x(8 x^3)^3$ between x = 0 and x = 2 is rotated about the x-axis. (You may need to use the substitution $u = 8 x^3$.)
- (d) At a factory that produces Ipads it was found that on average 5% of Ipads produced have a fault. A batch of 15 Ipads is tested.
 - (i) What is the probability that there are exactly 2 Ipads containing faults in the batch of 15? (Answer to 2 decimal places.)
 - (ii) What is the probability that at least 1 Ipad contains a fault? 2
 (Answer to 2 decimal places.)

End of Question 4

Question 5 (12 marks) Use a SEPARATE writing booklet.

- a) On old 727 jet planes there are 56 rows of seats. Each row has three seats on each side of a central aisle. Three friends took a flight on a 727 jet plane with random seat allocation. Find the number of seating arrangements possible for the three friends if:
 - (i) all three friends must sit together on one side of the aisle.

1

Marks

(ii) all three must sit in separate rows.(iii) no more than two can sit together.

1

1

(b)

In the diagram above the tangent at T on the circle meets a chord AB produced to P. The bisector of $\angle TPA$ meets TA and TB at X and Y respectively.

(i) Give a reason why $\angle PTB = \angle TAB$.

.

(ii) Prove TX = TY.

2

(iii) Prove $\frac{TX}{AX} = \frac{TP}{AP}$.

2

Question 5 continues on page 8

Question 5 (continued)

- (c) (i) Differentiate $y = \tan^{-1} \frac{1}{x}$, $x \neq 0$ and hence show that $\frac{d}{dx} \left(\tan^{-1} x + \tan^{-1} \frac{1}{x} \right) = 0$
 - (ii) Sketch the curve $y = \tan^{-1} x + \tan^{-1} \frac{1}{x}$

End of Question 5

Higher School Certificate Trial Examination, 2010 Mathematics Extension 1 page 8

Marks

2

Question 6 (12 marks) Use a SEPARATE writing booklet.

(a) Consider the binomial expansion

$$1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + \binom{n}{n}x^n = (1+x)^n$$

(i) Show that
$$1 - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n} = 0$$

(ii) Show that
$$1 - \frac{1}{2} \binom{n}{1} + \frac{1}{3} \binom{n}{2} - \dots + (-1)^n \frac{1}{n+1} \binom{n}{n} = \frac{1}{n+1}$$

- (b) $P(2at, at^2)$ is a point on the parabola $x^2 = 4ay$ with focus S(0, a).
 - Derive the equation of the normal to the parabola at P.
 - (ii) The normal meets the y-axis at G. Show that the coordinates of G are $(0, 2a + at^2)$.
 - (iii) Find the length of GP and PS in terms of a and t.
 - (iv) Given that ΔSPG is equilateral, prove there are two positions of P and give the coordinates of these points in terms of a.

End of Question 6

Marks

Question 7 (12 marks) Use a SEPARATE writing booklet.

(a) Suppose
$$(5+2x)^{12} = \sum_{k=0}^{12} t_k x^k$$
.

- (i) Use the binomial theorem to write an expression for t_k where $0 \le k \le 12$.
- (ii) Show that $\frac{t_{k+1}}{t_k} = \frac{2(12-k)}{5(k+1)}$.
- (iii) Hence or otherwise, find the greatest coefficient.
- (b) Find the general solution to $\sin 2\theta + \sqrt{3}\cos 2\theta = 0$.
- (c) (i) Show that $\sin A + \cos A = \sqrt{2} \sin \left(A + \frac{\pi}{4} \right)$.
 - (ii) Prove that the derivative of $y = e^x \sin x$ is given by $\frac{dy}{dx} = \sqrt{2} e^x \sin \left(x + \frac{\pi}{4}\right).$
 - (iii) Given the function $y = e^x \sin x$, prove by mathematical induction that the *n*th derivative of y for a positive integer n is:

$$\frac{d^n y}{dx^n} = \left(\sqrt{2}\right)^n e^x \sin\left(x + \frac{n\pi}{4}\right)$$

$$\left(Note: \frac{d}{dx} \left(\frac{d^k y}{dx^k} \right) = \frac{d^{k+1} y}{dx^{k+1}} \right)$$

End of paper

3

a)
$$\lim_{n\to 0} \frac{\sin 5n}{5n} \times \frac{5}{2}$$

b)
$$n(2n-3) > n^{2}$$

 $2n^{2}-3n > n^{2}$
 $n^{2}-3n > 0$
 $n(n-3) > 0$

$$A(4,3) \qquad B(1,-1)$$

$$-3:2$$

$$x = \frac{-3 \times 1 + 2 \times 4}{-3 + 2}$$

$$y = \frac{-3 \times -1 + 2 \times 3}{-3 + 2}$$

$$x = -5$$

$$y = -9$$

$$d) \int_{0}^{1} \frac{dx}{\sqrt{2-x^{2}}} = \left[sin^{-1} \frac{x}{\sqrt{2}} \right]_{0}^{1}$$

$$= sin^{-1} \frac{1}{\sqrt{2}} - sin^{-1} 0$$

e) i) Show
$$tan x = \frac{\sin 2x}{1 + \cos 2x}$$

RHS = $\frac{2\sin x \cos x}{1 + 2\cos^2 x - 1}$

= $\frac{2\sin x}{2\cos x}$

= $tan x$

= LHS

ii)
$$tan \frac{\pi}{12} = \frac{Sin \frac{\pi}{6}}{1 + cos \frac{\pi}{6}}$$

$$= \frac{1}{2} \div \left(1 + \frac{\sqrt{3}}{2}\right)$$

$$= \frac{1}{2} \times \frac{2}{2 + \sqrt{3}}$$

$$= \frac{1}{2 + \sqrt{3}}$$

Question 2.

b)
$$P(-1) = -a + b + 19 - 15$$
 $P(3) = 27a + 9b - 57 - 15$
 $0 = -a + b + 4$ $0 = 27a + 9b - 72$
 $a = b + 4$ $0 = 3a + b - 8$ 2

$$0 = 3(b+4)+b-8$$

 $0 = 3b+12+b-8$
 $4b = -4$

c)
$$3^{2n}-1$$

for $n=1$

$$3^{2n}-1=9-1$$
= 8 which is divisible by 8: frue for $n=1$

assume true for
$$n=k$$

ie $3^{2k}-1=8p$ (p being some positive integer)

 $3^{2k}=8p+1$

$$\begin{array}{rcl}
RTP & f_{ar} & n = k+1 \\
3^{2n} - 1 & = 3^{2k+2} - 1 \\
& = 3^{2k}, 3^2 - 1
\end{array}$$

$$= (8p+1) \times 9 - 1$$

$$= 72p + 9 - 1$$

$$= 72p + 8$$

$$= 8 (9p+1)$$
divisible by 8 since p is an integer

true for n= k and for n= k+1, since also true for n=1
it follows that it is true for n=2, 3 etc :- true for
all positive integers

Question 3

a)
$$P(2t, t^2)$$
 $x^2 = 4y$ $t > 0$

i)
$$M_{OP} = \frac{t^2}{2t}$$

$$= \frac{t}{2}$$

$$= \frac{2\pi}{4}$$

$$= \frac{\pi}{2} \quad \text{at } n=2t$$

$$= \frac{t}{2}$$

ii)
$$\angle$$
 between two lines: $\tan \alpha = \frac{m_2 - m_1}{1 + m_2 m_1}$

$$\frac{t \cdot t \cdot t}{1 + t \cdot t^{\frac{1}{2}}} \qquad t > 0$$

$$= \frac{2t - t}{2} \quad \vdots \quad \frac{2 + t^{2}}{2} \quad \checkmark$$

$$= \frac{2t - t}{2 + t^{2}}$$

$$= \frac{t}{t^{2} + 2}$$

(b):)
$$f(n) = \frac{x-4}{x-2}$$
, $n \neq 2$

$$f'(n) = (n-2) - (n-4) \qquad u = n-4 \qquad v = n-2$$

$$f'(n) = \frac{2}{(n-2)^2} \qquad u' = 1 \qquad v' = 1$$

Since $\frac{2}{(n-2)^4} > 0 \qquad f'(n) > 0 \qquad \text{i. } f(n) \text{ is increasing}$

asymptotes: vertical when n=2

horizontal when
$$n \rightarrow \infty$$

lim

 $n \rightarrow \infty$
 $n \rightarrow \infty$

iii)
$$f^{-1}(x)$$
: $x = y - 4$
 $y - 2$
 $xy - 2x = y - 4$
 $xy - y = 2x - 4$
 $y(x - 1) = 2(x - 2)$
 $y = \frac{2(x - 2)}{x - 1}$

Range: all real y, y = 2

c)
$$C \times 2$$

 $O \times 2$
 $L \times 2$
 $E \times 2$
 P
10 letters ii) $\frac{7!}{2 \times 2} \times \frac{4!}{2 \times 2}$
 $= 1260 \times 6$
 $= 7560$

Question 4

a)
$$\left(\frac{1}{3x} - \frac{3}{2}x^{2}\right)^{9}$$

Cheneral Term: $\binom{9}{k} \left(\frac{1}{3}x^{-1}\right)^{9-k} \left(-\frac{1}{2}x^{2}\right)^{k}$

Find $k: x^{-9+k} \times x^{2k} = x^{\circ}$
 $-9+k+2k=0$
 $3k=9$
 $k=3$
 $k=3$

Adependent Term: $\binom{9}{3} \left(\frac{1}{3}x^{-1}\right)^{6} \left(-\frac{3}{2}x^{2}\right)^{3}$
 $= 84 \times \frac{1}{729} \times -\frac{27}{8}$
 $= -7$

b)
$$e^{x} - x - 2 = 0$$
 $x = 1 - 2$ $f'(x) = e^{x} - 1$
 $f(1-2) = e^{x^{2}} - 1 - 2 - 2$ $f'(1-2) = e^{x^{2}} - 1$
 $= 0 \cdot 1201$ $= 2 \cdot 3201$

$$\chi_1 = 1.2 - 0.1201$$
2.3201

= 1.15

$$= 1.15$$
c) $V = \pi \int_{0}^{2} y^{2} dx$ $y = \pi (8 - \pi^{3})^{3}$

$$= \pi \int_{0}^{2} \pi^{2} (8 - \pi^{3})^{6} dx$$
 $u = 8 - \pi^{3}$ when $\pi = 0$, $u = 8$

$$= \pi \int_{0}^{2} u^{6} \pi^{2} \times du$$
 $d\pi = -3\pi^{2}$ $\pi = 2$, $u = 0$

$$= \pi \int_{0}^{\infty} u^{6} \pi^{2} \times du$$
 $d\pi = -3\pi^{2}$ $d\pi = -3\pi^{2}$

$$= -\frac{\pi}{3} \int_{0}^{\infty} u^{6} du$$

$$= -\frac{\pi}{3} \left(\frac{u^{2}}{7} \right)^{0}_{8}$$

$$= -\frac{\pi}{3} \left(0 - \frac{8^{2}}{7} \right)$$

$$= \frac{8^{2}\pi}{21} \quad \text{or} \quad \frac{2097152\pi}{21}$$

a) Good Faulty
$$n=15$$

 0.95 0.05
i) $2 f_{ab}/t_{3} = \binom{15}{2} 0.95^{13} \times 0.05^{2}$
 $= 0.13$

ii) at least 1 fault =
$$1 - no faults$$

= $1 - {15 \choose 0} 0.95^{15}$
= 6.54

Question 5

a)
$$56 \times 6 = 336$$
 seats
i) $336 \times 2 \times 1 = 672$

iii) in
$$\triangle TYP$$
 and $\triangle AXP$
 $\angle TPY = \angle APX$ (given)

 $\angle PTY = \angle PAX$ (proven in (i))

 $\therefore \triangle TYP \parallel \Delta AXP$ (equiangular)

since corresponding sides in similar $\triangle s$ are in proportion

 $\frac{TX}{AX} = \frac{TP}{AX}$

c) i)
$$y = ton^{-1} \pi$$
 $y = tan^{-1} \pi$
 $y = tan^{-1} \pi$
 $dy = \frac{1}{1 + \pi^{2}}$
 $dy = \frac{1}{1 + \pi^$

Question 6
a)
$$1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + \binom{n}{n}x^n = (1+x)^n$$
i) substitute $x = -1$

$$1 + -\binom{n}{1} + \binom{n}{2} + -\binom{n}{3} + \dots + \binom{n}{n} \binom{n}{n} = (1-1)^n$$

$$1 - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \dots + (-1)^n \binom{n}{n} = 0$$
ii) Integrate arrainal
$$x + \frac{1}{2}\binom{n}{1}x^2 + \frac{1}{3}\binom{n}{2}x^2 + \dots + \frac{1}{n+1}\binom{n}{n}x^{n+1} = \frac{1}{n+1}\binom{1+x}{n+1} + C$$

$$ket \quad x = 0 \quad , \quad 0 = \frac{1}{n+1} + C$$

$$C = -\frac{1}{n+1}$$

$$5ub \quad x = -1$$

$$-1 + \frac{1}{2}\binom{n}{1} - \frac{1}{3}\binom{n}{2} + \dots + \frac{1}{n+1}\binom{n}{n}(-1)^n + (-1)^n = 0 - \frac{1}{n+1}$$

$$1 - \frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} - \dots + (-1)^n \frac{1}{n+1}\binom{n}{n} \times (-1)^n \sqrt{-1} = -\frac{1}{n+1}$$
b) $P(2at, at^2) \quad x^2 = tay \quad S(0, a)$

$$y = x^2$$

$$y' = x$$

$$y'$$

yt-at' = -n + 2at n+yt = 2at +at3

ii)
$$\alpha$$
 lies on y-axis $\therefore x=0$

$$0+yt=2at+at^{2}$$

$$y=2a+at^{2} \qquad \therefore \alpha(0,2a+at^{2})$$

iii)
$$GP = \sqrt{(2at)^2 + (at^2 - 2a - at^2)^2}$$

= $\sqrt{4a^2t^2 + 4a^2}$
= $2a\sqrt{t^2 + 1}$

$$PS = \sqrt{(2at)^{2} + (at^{2} - a)^{2}}$$

$$= \sqrt{4a^{2}t^{2} + a^{2}t^{4} - 2a^{2}t^{2} + a^{2}}$$

$$= a \sqrt{2t^{2} + t^{4} + 1}$$

$$= a \sqrt{(t^{2} + t)^{2}}$$

$$= a (t^{2} + t)$$

$$2a\sqrt{t^{2}+1} = a\left(t^{2}+1\right)$$

$$4\left(t^{2}+1\right) = \left(t^{2}+1\right)^{2}$$

$$0 = \left(t^{2}+1\right)^{2} - 4\left(t^{2}+1\right)$$

$$0 = \left(t^{2}+1\right)\left(t^{2}+1-4\right)$$

$$0 = \left(t^{2}+1\right)\left(t^{2}-3\right)$$

$$\vdots \quad t^{2} = -1, \quad t^{2} = 3$$

$$no sola. \quad t = \pm \sqrt{3}$$

Question 7.

a)
$$\left(5 + 2\chi\right)^{12} = \sum_{k=0}^{12} T_k$$

i)
$$t_k = \binom{12}{k} 5^{12-k} 2^k x^k$$

ii)
$$t_{k+1} = \binom{12}{k+1} 5^{11-k} 2^{k+1} \chi^{k+1}$$

$$\frac{t_{k+1}}{t_k} = \left(\frac{12!}{(k+1)!(11-k)!} \times 5^{11-k} \times 2^{k+1}\right) \div \frac{12!}{k!(12-k)!} \times 5^{12-k} \times 2^k$$

$$= \frac{2(12-k)}{5(k+1)}$$

ii)
$$\frac{2(12-k)}{5(k+1)} > 1$$
 $0 \le k \le 12$
 $\frac{5(k+1)}{5(k+1)} > 1$ $0 \le k \le 12$
 $24-2k > 5k+5$
 $19 > 7k$
 $2\cdot 7 > k$
 $2\cdot 7 > k$
 $2\cdot 7 > k$
 $3\cdot k = 2$
 $3 + 37 = 500 = 000$

b)
$$\sin 20 + \sqrt{3} \cos 20 = 0$$

 $\tan 20 + \sqrt{3} = 0$
 $\tan 20 = -\sqrt{3}$ Q2,Q4
related angle = $\frac{1}{3}$

02:
$$20 = \pi - \frac{\pi}{3}$$
, $2\pi + \pi - \frac{\pi}{3}$, $4\pi + \pi - \frac{\pi}{3}$ - - -

$$Q4: 20 = 2\pi - \frac{\pi}{3}, 2\pi + 2\pi - \frac{\pi}{3}, 4\pi + 2\pi - \frac{\pi}{3}$$

OR by formula
$$20 = n\pi + tan^{-1}(-1\overline{3})$$

$$20 = n\pi - \overline{T}$$

$$0 = \frac{n}{2}\pi - \overline{T}$$

c) i)
$$\sin A + \cos A = \sqrt{2} \sin \left(A + \frac{\pi}{4}\right)$$

ii)
$$y = e^{x} \sin x$$
 $u = e^{x}$ $v = \sin x$ $u' = e^{x}$ $v' = \cos x$

$$= e^{x} \left[\sqrt{2} \sin(x + \overline{4}) \right] \left(from (i) \right)$$

iii)
$$y = e^{x} \sin x$$
 $\frac{d^{2}y}{dx^{2}} = \sqrt{2}^{2} e^{x} \sin \left(x + \frac{\pi}{4}\right)$

for
$$n=1$$
 $dy = \sqrt{2} e^{x} \sin \left(x + \frac{\pi}{4}\right)$

frue as proven in (ii)

assume true for
$$n=k$$

$$\frac{d^{k}y}{dx^{k}} = \sqrt{2}^{k} e^{\pi} \sin\left(\pi + \frac{k\pi}{4}\right)$$

RTP for
$$n = k+1$$

$$\frac{d^{k+1}y}{dx^{k+1}} = \sqrt{2}^{k+1} e^{2k} \sin\left(2k + \frac{\pi(k+1)}{4}\right)$$
since $\frac{d^{k+1}y}{dx^{k+1}} = \frac{d}{dx}\left(\frac{d^ky}{dx^{k+1}}\right)$

from assumption
$$\frac{d}{dn}\left(\frac{d^{k}y}{dn^{k}}\right) = \frac{d}{dn}\left(\sqrt{2}^{k}e^{n}\sin\left(n+\frac{k\pi}{4}\right)\right) \qquad u=e^{n} \quad v=\sin\left(n+\frac{k\pi}{4}\right)$$

$$= \sqrt{2}^{k}\left(e^{n}\sin\left(n+\frac{k\pi}{4}\right)+e^{n}\cos\left(n+\frac{k\pi}{4}\right)\right)$$

$$= \sqrt{2}^{k}e^{n}\left(\sin\left(n+\frac{k\pi}{4}\right)+cos\left(n+\frac{k\pi}{4}\right)\right)$$

$$= \sqrt{2}^{k}e^{n}\left(\sqrt{2}\sin\left(n+\frac{k\pi}{4}\right)+\frac{\pi}{4}\right)$$

$$= \sqrt{2}^{k}e^{n}\left(\sqrt{2}\sin\left(n+\frac{k\pi}{4}\right)+\frac{\pi}{4}\right)$$

$$= \sqrt{2}^{k}e^{n}\left(\sqrt{2}\sin\left(n+\frac{k\pi}{4}\right)+\frac{\pi}{4}\right)$$

$$= \sqrt{2}^{k}e^{n}\left(\sqrt{2}\sin\left(n+\frac{k\pi}{4}\right)+\frac{\pi}{4}\right)$$

$$= \sqrt{2}^{k}e^{n}\left(\sqrt{2}\sin\left(n+\frac{k\pi}{4}\right)+\frac{\pi}{4}\right)$$

$$= \sqrt{2}^{k}e^{n}\left(\sqrt{2}\sin\left(n+\frac{k\pi}{4}\right)+\frac{\pi}{4}\right)$$