Problem 3

```
Refs:

[1] https://stackoverflow.com/a/53256925/14977283

[2] https://cs.stackexchange.com/a/108793

[3] Tarjan, R.E., & van Leeuwen, J. (1984). Worst-Case Analysis of Set Union Algorithm. Journal of the ACM, (31).

[4] Disjoint set lecture slide

[5] https://stackoverflow.com/a/12690210/14977283

[6] Kaplan, H., & Shafrir, N., & Tarjan, R.E. (2002). Union-find with Deletions.
```

1.

```
bipartite = True
first_neighbor = NIL
function INIT(N)
    for i=0 to N-1
        MAKE_SET(i)
    first_neighbor = array[N] filled with -1
function ADD_EDGE(x, y)
   if not bipartite
        return
    if FIND_SET(x) == FIND_SET(y)
        bipartite = False
        return
    if first_neighbor[x] == -1
        first_neighbor[x] = y
        UNION(y, first_neighbor[x])
    if first_neighbor[y] == -1
        first_neighbor[y] = x
        UNION(x, first_neighbor[y])
    return
function IS_BIPARTITE()
    return bipartite
```

Explanation

Main Idea

Maintain this property: If the graph is still bipartite, nodes in the same set have the same "color".

INIT()

Do MAKE_SET() for each vertex and initialize an array first_neighbor[N] filled with -1.

ADD_EDGE()

- · If bipartite is false, adding any edge won't make it bipartite, therefore do nothing and return.
- Check if x and y are in the same set.
 - If true, it means that the edge have both vertices with the same color, which isn't bipartite.

 Therefore set bipartite = False and return.
 - If false, do the following
 - Set first_neighbor[x] if it's not set yet. Else, UNION(y, first_neighbor[x]).
 - Set first_neighbor[y] if it's not set yet. Else, UNION(x, first_neighbor[y]).
 - This works because $FIND_SET[x] \neq FIND_SET[y]$ happens only in these two cases
 - 1. x and y are not connected.

Therefore we associate the two subgraph's color by the operations above.

2. x and y are connected.

Then x and y must be different color, and the operations above changes nothing because the two vertices being unioned are already in the same set.

IS_BIPARTITE()

Return bipartite.

Time Complexity

INIT()

for loop runs N times, and initializing first_neighbor takes O(n) time. Total time complexity is O(N).

ADD_EDGE()

Total time complexity = $O(1) + 2 \cdot FIND_SET() + 2 \cdot UNION()$

IS_BIPARTITE()

Returning a stored value is O(1).

INIT() + (ADD_EDGE() and IS_BIPARTITE() for M times combined)

For linked list + union by size implementation, FIND_SET() takes O(1) time and UNION() takes $O(\log N)$ time on average. Therefore total time complexity is

$$O(N) + M(O(1) + 2 \cdot O(1) + 2 \cdot O(\log N)) = O(N + M \log N)$$

```
contradict = False
W = NIL
L = NIL
function INIT(N)
   for i=0 to N-1
      MAKE_SET(i)
   W = array[N] filled with -1
   L = array[N] filled with -1
function WIN(a, b)
    if contradict
       return
   if FIND_SET(a) == FIND_SET(L[b])
   if FIND_SET(a) == FIND_SET(b) or FIND_SET(W[b])
       contradict = True
       return
   if W[a] == -1: W[a] = b
                 UNION(b, W[a])
   if L[b] == -1: L[b] = a
                  UNION(a, L[b])
   if L[a] == -1
       if W[b] == -1: return
               L[a] = W[b]
       if W[b] == -1: W[b] = L[a]
       else: UNION(L[a], W[b])
    return
function TIE(a, b)
   if contradict
       return
   if FIND_SET(a) == FIND_SET(b)
    if FIND_SET(a) == FIND_SET(W[b]) or FIND_SET(L[b])
       contradict = True
       return
   UNION(a, b)
    if W[a] == -1
       if W[b] == -1: pass
                  W[a] = W[b]
       if W[b] == -1: W[b] = W[a]
                      UNION(W[a], W[b])
    if L[a] == -1
       if L[b] == -1: pass
                     L[a] = L[b]
```

```
if L[b] == -1: L[b] = L[a]
  else: UNION(L[a], L[b])

function IS_CONTRADICT()
  return contradict
```

Explanation

Main Idea

We can think of people as vertices of a graph, and a winning b as a directed edge from a to b. Then a non-contradicting result should yield a graph such that:

- 1. Vertices can be separated into three disjoint sets.
- 2. Every edge into set X should come from set Y and every edge from set X should go into set Z.

In short, it's kinda like a directed tripartite graph. So operations are similar to the previous subproblem.

INIT()

MAKE_SET() for each player, then initialize array W and L with value -1 . W[a] and L[a] stores a player that player a wins / loses to.

WIN()

- If contradict == True , newer game results won't make it valid. Therefore we return.
- If FIND_SET(a) == FIND_SET(L[b]), then nothing needs be done. Therefore we return.
- If FIND_SET(a) == FIND_SET(b) or FIND_SET(W[b]), previous results suggests a should tie or lose to b, meaning it's contradicting. Therefore set contradict = True and return.
- The only case left is a and b are not connected. Therefore associate those two subgraphs in the following steps.
- Set W[a] = b if it's not set yet. Else UNION(b, W[a]).
- Set L[b] = a if it's not set yet. Else UNION(a, L[b]).
- Check L[a] and W[b]:
 - If both are not set yet, do nothing.
 - If one is set and the other isn't, assign the set value to the not set one.
 - If both are set, UNION(L[a], W[b]).
- · Return.

TIE()

- If contradict == True , newer game results won't make it valid. Therefore we return.
- If FIND_SET(a) == FIND_SET(b), then nothing needs be done. Therefore we return.
- If FIND_SET(a) == FIND_SET(W[b]) or FIND_SET(L[b]), then previous results suggests a won't tie with b, meaning it's contradicting. Therefore set contradict = True and return.
- The only case left is a and b are not connected. Therefore associate those two subgraphs in the following steps.
- UNION(a, b)
- Check W[a] and W[b]:

- If both are not set yet, do nothing.
- If one is set and the other isn't, assign the set value to the not set one.
- If both are set, UNION(W[a], W[b]).
- Check L[a] and L[b]:
 - If both are not set yet, do nothing.
 - If one is set and the other isn't, assign the set value to the not set one.
 - If both are set, UNION(L[a], L[b]).
- Return.

IS_CONTRADICT()

Return contradict.

Time Complexity

FIND_SET() : O(1)

UNION(): $O(\log N)$

INIT()

for loops runs N times and initializing W and L takes O(N) time. Total time complexity = O(N).

WIN()

Total time complexity = O(1) + 4 FIND_SET() + 3 UNION() = $O(\log N)$ at worst case.

TIE()

Total time complexity = O(1) + 4 FIND_SET() + 3 UNION() = $O(\log N)$ at worst case.

IS_CONTRADICT()

Total time complexity = O(1).

```
INIT() + ( WIN() , TIE() , IS_CONTRADICT() for M times combined)
```

Total time complexity = $O(N) + M \cdot O(\log N) = O(N + M \log N)$

3.

init()

This function simply calls <code>djs_init()</code> , so we can just look at <code>djs_init()</code> .

The for loop runs n times, and all other operations take only O(1) time, therefore total time complexity is O(N).

show_cc()

This function only prints a single stored value, so it takes O(1) time.

add_edge()

This function just calls djs_save() and djs_union(). We will look at these two functions.

djs_save()

Only doing a $stack_push()$, so it's O(1) time.

djs_union()

This function calls two djs_find() and two djs_assign(). djs_assign() takes only O(1) time. djs_find() however is more complicated and we will dive into that later, let's just say it's some f(N). Therefore djs_union() should take O(f(N)).

Then the total time complexity of $\ \ \, \text{add_edge()} \ \ \, \text{is } O(f(N)).$

undo()

Since this is reversing the change done by $add_edge()$, undo() at worst case should have the exact same time complexity O(f(N)).

$init() + (add_edge(), undo(), show_cc() for M times combined)$

Previous analysis yields total complexity $= O(N) + M \cdot O(f(N))$ According to the work by Tarjan and van Leeuwen (Ref [3]), on p.259-260

LEMMA 7. Suppose $m \geq n$. In any sequence of set operations implemented using any form of compaction and naive linking, the total number of nodes on find paths is at most $(4m+n)\lceil \log_{1+\lfloor m/n\rfloor} n \rceil$. With halving and naive linking, the total number of nodes on find paths is at most $(8m+2n)\lceil \log_{1+\lfloor m/n\rfloor} n \rceil$.

LEMMA 9. Suppose m < n. In any sequence of set operations implemented using compression and naive linking, the total number of nodes on find paths is at most $n + 2m\lceil \log n \rceil + m$.

Where m is the number of FIND_SET() and n is the number of MAKE_SET(). These two lemmas combined tells us that $M \cdot f(n) = O(M \log N)$.

Using this result, the total time complexity $O(N) + M \cdot O(f(N)) = O(N + M \log N)$.

4.

init() , add_edge() , undo() , show_cc() is basically the same from previous subproblem, except
that a new variable sz is maintained for each set, but the analysis remains valid. So I will continue from the
last part.

$init() + (add_edge(), undo(), show_cc() for <math>M$ times combined)

Total time complexity we now have is $O(N)+M\cdot O(f(N))$, where f(N) is the time complexity of FIND_SET() .

From p18 of the lecture slide (Ref [4]), since this implementation matches 方法二: tree法+Weighted Union, $f(N) = \log N$ amortized.

5.

N: total number of MAKE_SET()

```
nodes = array()
sets = array()
function MAKE_SET(x)
    ptr = allocate_node()
    ptr.p = ptr
    ptr.delete = False
    ptr.rank = 0
    ptr.size = 0
    ptr.empty = 0
    nodes[x] = ptr
    sets[x] = new_linked_list(ptr)
function FIND_SET(x)
   if x.p == x
        return x
    x.p = FIND_SET(x.p)
    return x.p
function SAME_SET(x, y)
    if FIND_SET(x) == FIND_SET(y)
        return True
        return False
function UNION(x, y)
    x = FIND_SET(nodes[x])
    y = FIND_SET(nodes[y])
    if x == y
    if x.rank < y.rank</pre>
        swap(x, y)
    if x.rank == y.rank
        x.rank += 1
    x.size += y.size
    x.empty += y.empty
   y.p = x
    sets[x].connect_tail(sets[y])
function REBUILD(root)
    live_nodes = array()
    for i in sets[root]
```

```
if i.deleted == False
            live_nodes.append(i)
    new_root = live_nodes[1]
    new_root.p = new_root
    new_root.delete = False
    new_root.rank = 0
    new_root.size = 1
    new_root.empty = 0
    sets[new_root] = new_linked_list(new_root)
    for i in live_nodes[2..]
       i.p = new_root
       new_root.rank = 1
       new_root.size += 1
        sets[new_root].append(i)
function DELETE(x)
    root = FIND_SET(nodes[x])
   nodes[x].delete = True
   root.empty += 1
    if root.empty ≥ floor(root.size/2)
        REBUILD(root)
function ISOLATE(x)
   DELETE(x)
    MAKE_SET(x)
```

For a node a

- a.p is a pointer to its parent. If this points to a itself, it means a is the root.
- a.delete is a flag to track if it's deleted.
- a.rank tracks the rank of a . It's only maintained for roots.
- a.size tracks how many nodes are there.
- a. empty tracks the number of children that is deleted but the node is still there.

MAKE_SET() , FIND_SET() , and UNION() are basically the same as the tree implementation with union-by-rank and path compression. Except that three more attributes (a.delete , a.size , and a.empty) are maintained (all in O(1) time) and an array of linked lists (sets) is maintained. Therefore time complexity of these three functions are the same as those on the slide p.18 (Ref [4]).

SAME_SET(x, y) is just calling two FIND_SET() s and compare, therefore has the same time complexity as FIND_SET().

DELETE(x) is done by

- FIND_SET(nodes[x]) to get the root root.
- Mark nodes[x].deleted.
- Increment root.empty.
- Check if over half of the nodes are empty nodes. If true, do REBUILD(root) .

- Traverse sets[root], which stores a linked list containing all nodes in this tree.
 - If this node is not marked as deleted, append it to an array live_nodes .
- Make live_nodes[1] be the new root of live nodes. Change its attribute accordingly.
- Traverse live_nodes[2..]
 - Change a.p to live_nodes[1] for each node.
 - Increment live_nodes[1].size.

One REBUILD() clearly takes O(n), where n is the number of nodes in the set. But since it's only executed when over half of the nodes are deleted. Thus, we can amortize this O(n) costs to $\frac{n}{2}$ DELETE() s, making it O(1) for each DELETE(). Then, the time complexity for DELETE() becomes FIND_SET() + O(1).

ISOLATE(k) is done with a DELETE(k) and MAKE_SET(k), therefore the time complexity for it is also the same as FIND_SET() + MAKE_SET().

In short, time complexity of these functions can be mapped to the three elementary functions using this table:

New function	Time complexity
SAME_SET()	$\texttt{FIND_SET()} + O(1)$
REBUILD()	O(1) amortized
DELETE()	FIND_SET() + $O(1)$
ISOLATE()	FIND_SET() + MAKE_SET() + $O(1)$

Finally, (MAKE_SET() , UNION() , SAME_SET() , ISOLATE() for M times combined) will have the same time complexity as (MAKE_SET() , UNION() , FIND_SET() for M times combined), which is $O(M\alpha(N)) = O(M\alpha(M))$.