Independent set vs Vertex Cover
Reduce one to the other

FACT: let G=(V,E) be a graph, then 5 in an indep set iff its complement (V-5) in a vertex cover.
Proof A) First suppose that S is an indeptet
1- U is in S & V in not >> V-5 will have V and not U

2 - V is in S & U in not => V-S will have U and not V
3. Neither V nor U is in S >> V-S will have both U & V

B) Suppose V-5 is a vertex coverset prove that 5 is an indepset.
· · · · · · · · · · · · · · · · · · ·
Claim: Indep set & vertex Cover
Proof: If we have a black to x to So he vertex cover, we can
decide if G has an indep set

2	decide of G has an indep set
	of sing at least k, by
	asking the blackbox it a
	of size at least k, by asking the blackhox if G has a vertex cover of size
	at most n-k.
cleui:	vertex Cover (p Indepset
	**P
hoot:	Similar
,1	-

Set cover froblem

Given a set U of n elements, a

Collection S, ... Sm of subsets of U,

and a no. k, does There exist

a Collection of at most k of these

sets whose union in equal to

all of U.

Proof: A) If I have a vertex cours of

Siz. kin G., I can find
a collection of k sets

whose union is equal to

all of U.

B) If I have k sets whose union
is equal to all of U

I can find a vertex cover

of Size k in G.