

4.7117

81 10 27 006

Papers in this series have resulted from technical activities of The Hydrologic Engineering Center. Versions of some of these have been published in technical journals or in conference proceedings. The purpose of this series is to make the information available for use in the Center's training program and for distribution within the Corps of Engineers.

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Baleroe

SECURITY CEASUPICATION OF THIS PAGE (SILL SEE		
REPORT DOCUMENTATION I		READ MISTRUCTIONS REPORT COMPLETING FORM
Technical Paper No. 41	AD-A10624	1. RECIPIENT'S CATALOG NUMBER
A. TITLE (and Babado) HEC-5C, A SIMULATION MODEL FOR SYS FORMULATION AND EVALUATION	STEM	S. TYPE OF REPORT & PERIOD COVERED
		6. PERFORMING ORG. REPORT NUMBER
9. Authora Bill Eichert		6. CONTRACT OR GRANT NUMBER(4)
U.S. Army Corps of Engineers The Hydrologic Engineering Center 609 Second Street. Davis. Californ	nia 95616	16. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT HUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS	H.G	12. REPORT DATE March 1974
		13. NUMBER OF PAGES 29
14. MONITORING AGENCY HAME & ADDRESS(II dillorent	from Controlling Office)	18. SECURITY CLASS. (of this report) Unclassified
		18a, DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		<u> </u>

Distribution of this publication is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Presented at The Hydrologic Engineering Center, Seminar on Analytical Methods in Planning, 26-28 March 1974 at Davis, California.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Simulation, Flood Control, System Analysis, Computer Modeling, Hydropower, Reservoir Regulation, Flood Damage Reduction, Multipurpose Reservoirs, Water Resources Projects

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Overview of generalized computer model (HEC-5) for simulating operation of multipurpose reservoir system and evaluating economic consequences for flood control and hydropower purposes.

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(Then Date Entered)	
•	
	•
	·
	·

HEC-5C, A SIMULATION MODEL FOR SYSTEM FORMULATION AND EVALUATION

by Bill S. Eichert²

1. Need for Hydrologic and Economic Simulation Model

Because of the great expenditure of funds required to construct structures to reduce flooding in a river basin, it is important to make sure that each project built is justified and is more desirable than any other alternative. In a complex river basin where numerous system components exist or are required to reduce flooding, the evaluation of each alternative requires a large number of calculations. Until recently all such evaluations had to be done by rather crude techniques or by laborious manual procedures, although a few simple computer models could be used on parts of the study. For example, a study made 10 years ago, required that 10 flood control reservoirs be considered in firming up the design of a few new reservoirs in a flood control system. The hydrology required in operating the system (after the historical flows throughout the basin were known) for several historical floods required three men working full time for about 4 months at a cost of about \$25,000. In spite of the large time and cost, many simplifying assumptions had to be made, no economic evaluation was made and no alternative solutions were investigated because of the manpower, funds, and time limitations. The same job can be done today with greater detail and accuracy with a simulation model such as HEC-5C with less cost and manpower and, in addition, each alternative can be studied with a few hours of work and a \$20 computer run which will show the average annual damages at all damage centers and the net system flood benefits. The initial work in assembling the reservoir data in the required computer format for the system requires about one man-week of work. The determination of the historical flows for all major floods of record throughout the system is the major task and has to be done by either manual or computer techniques, but could be done with about 3-man months of effort for this basin. The verification of the model on historical floods can be done in a couple of man months. Once the above tasks are completed, detailed simulations can be made easily and with little expense for numerous combinations of reservoirs, and other alternatives including nonstructural alternatives.

Presented at The Hydrologic Engineering Center, Seminar on Analytical Methods in Planning, 26-28 March 1974 at Davis, California.

²Bill S. Eichert, Director, The Hydrologic Engineering Center, 609 Second Street, Suite I, Davis, California 95616.

2. Purpose of Water Resources System Simulation Model - HEC-5C

This program was developed to assist in planning studies required for the evaluation of proposed changes to a system and to assist in sizing the system components for flood control and conservation requirements for each component recommended for the system. The program can be used in studies made immediately after a flood to calculate the preproject conditions and to show the effects of existing and/or proposed reservoirs on flows and damages in the system. The program should also be useful in selecting the proper reservoir releases throughout the system during flood emergencies in order to minimize flooding as much as possible and yet empty the system as quickly as possible while maintaining the proper balance of flood control storage among the reservoirs.

The above purposes are accomplished by simulating the sequential operation of various system components of any configuration for short interval historical or synthetic floods or for long duration nonflood periods, or for combinations of the two. Specifically the program may be used to determine:

- a. Flood control and conservation storage requirements of each reservoir in the system.
- b. The influence of a system of reservoirs, or other structures on the spatial and temporal distribution of runoff in a basin.
- c. The evaluation of operational criteria for both flood control and conservation for a system of reservoirs.
- d. The average annual flood damages, system costs, and excess flood benefits over costs.
- e. The determination of the system of existing and proposed reservoirs or other structural or nonstructural alternatives that results in the maximum net benefit for flood control for the system by making simulation runs for selected alternative systems.

3. Computer Requirements

The program, written in FORTRAN IV, was developed on a UNIVAC 1108 computer with 64,000 words of storage. The UNIVAC version can simulate the operation of 15 reservoirs, 25 control points, 5 diversions, and 9 power plants, using up to 50 time periods in each flood or nonflood event. Dimension limits have been increased for a CDC 7600 computer which allows the simulation of 35 reservoirs, 75 control points, 11 diversions, and 9 power plants for up to 100 time periods for each runoff event.

4. General Capabilities of Program

- a. Configuration of system any system configuration may be used as long as dimension limits are not exceeded for number of reservoirs, number of control points, number of diversions, etc.
- (1) Reservoirs which have flood control storage may be operated to minimize flooding at any number of downstream control points.
- (2) Reservoirs with conservation storage will be operated for their own requirements (power or low flow) and can be operated for any number of downstream control points.
 - (3) Reservoirs may be easily deleted from the system.
- (4) Reservoirs in system are kept in balance (in the same degree of trouble) as much as possible.
- b. Outflows can be specified for any number of reservoirs for any or all time periods and program will adjust other reservoir releases as necessary; otherwise program will determine all reservoir releases.
- c. Effects of forecast errors can be evaluated by specifying the number of forecast periods and a corresponding contingency allowance (i.e., error in forecasting).
- d. Local flows can be calculated from observed discharges and reservoir releases; system operation can be performed or omitted after flows are determined.
- e. The multiflood option may be used to operate the system for a continuous period of record (for example, 5 events each containing 4 years of monthly data may be used for a total of 20 years). Also a mixture of computational intervals may be used such as running a monthly operation for a few years (assuming no routing if desired) and then operating for daily or hourly flows during a major flood (with detailed flood routing) and then back to a weekly or monthly routing interval, etc. An unlimited number of events can be simulated in this manner.
- f. Evaporation and a monthly variation in reservoir operating levels can be considered in the routings if desired.
- g. Voluminous output can be suppressed by requesting only a summary output. Detailed output for a few selected control points can also be obtained.

3

Accession For

NTIS CT 1

DTIC T 2

Unamage 63

Justified 4.7

Availed 1: C458

Availed 1: C458

Dist 2page 2

- h. Stream routing may be accomplished by the following methods:
- (1) Modified Puls, Working R/D, Muskingum, Straddle Stagger, and Tatum.
 - (2) Each routing method may be used several times for each reach.
- (3) Actual releases that are routed by nonlinear (storage-outflow is not a straight line) methods (Modified Puls or Working R/D) use a linear approximation for determining reservoir releases.
 - (4) Natural and cumulative local flows are calculated.
 - i. Reservoir routing is based on:
- (1) Accounting methods (release is determined based on desired operation, storage is equal to inflow less outflow plus previous storage).
- (2) Surcharge routing when desired release is greater than physical outlet capacity, the arithmetical method, which is a trial and error method, is used which will provide the same results as the Modified Puls method.
- (3) Emergency releases when desired release for current period plus channel capacity releases for future periods (up to limit of foresight specified) would cause reservoir to exceed maximum flood storage in current or future periods, a release is made for the current period (up to channel capacity or the outlet capacity) so that the reservoir does not exceed top of flood pool in future period.

j. Multifloods

- (1) Read and operate an unlimited number of floods for a reservoir system.
- (2) The series of floods can each start at different reservoir storages or from same storages or can be continued using the storages from the previous flood.
 - (3) Operate up to 9 ratios of any or all floods read.
- (4) Long floods may be routed by dividing the flood into flow events which are each less than the dimension limit of the time array. This may be done by manually setting in several sets of flow data (with each less than the dimension limit) or by allowing the computer to generate separate floods (when the data read exceeded the dimension limit). A minimum of a 10 period overlap between floods is used to preserve continuity.

(5) Period of record analysis may be made by analyzing a series of floods consisting of monthly or weekly data during nonflood periods and daily or multihourly data during flood periods.

k. Diversions

- (1) Diversions can be made from any reservoir or control point. Only one diversion from each control point or reservoir is allowed.
- (2) Diversions can be made to any downstream control point or reservoir or out of the system.
- (3) viversions may be routed using any linear method allowed and multiplied by a constant representing the percent of return flow.

(4) Types of diversions

- (a) Diversions can be a function of inflows.
- (b) Diversions can be functions of reservoir storages.
- (c) Diversions can be constant.
- (d) Diversions can be constant for certain periods such as 50 cfs for January, 40 cfs for February, etc.
- (e) Diversions can be made for all excess water above the top of conservation pool up to the diversion pipe capacity.

5. Reservoir Operational Criteria

- a. Reservoirs are operated to satisfy constraints at individual reservoirs, to maintain specified flows at downstream control points, and to keep the system in balance. Constraints at individual reservoirs are as follows:
- (1) When the level of a reservoir is between the top of conservation pool and the top of flood pool, releases are made to attempt to draw the reservoir to the top of conservation pool without exceeding the designated channel capacity at the reservoir or at downstream control points for which the reservoir is being operated.
- (2) Releases are made equal to or greater than the minimum desired flows when the reservoir storage is greater than the top of buffer storage, and or equal to the required flow if between level one and the top of buffer pool. No releases are made when the reservoir is below

level one (top of inactive pool). Releases calculated for hydropower requirements will override minimum flows if they are greater than the controlling desired or required flows.

- (3) Releases are made equal to or less than the designated channel capacity at the reservoir until the top of flood pool is exceeded, then all excess flood water is dumped if sufficient outlet capacity is available. If insufficient capacity exists, a surcharge routing is made. Input options permit channel capacity releases (or greater) to be made prior to the time that the reservoir level reaches the top of the flood pool if forecasted inflows are excessive.
- (4) The reservoir release is never greater (or less) than the previous period release plus (or minus) a percentage of the channel capacity at the dam site unless the reservoir is in surcharge operation.
- b. Operational criteria for specified downstream control points are as follows:
- (1) Releases are not made (as long as flood storage remains) which would contribute to flooding at one or more specified downstream locations during a predetermined number of future periods except to satisfy minimum flow and rate-of-change of release criteria. The number of future periods considered is the lesser of the number of reservoir release routing coefficients or the number of local flow forecast periods.
- (2) Releases are made, where possible, to exactly maintain downstream flows at channel capcity (for flood operation) or for minimum desired or required flows (for conservation operation). In making a release determination, local (intervening area) flows can be multiplied by a contingency allowance (greater than 1 for flood control and less than 1 for conservation) to account for uncertainty in forecasting these flows.
- c. Operational criteria for keeping a reservoir system in balance are as follows:
- (1) Where two or more reservoirs are in parallel operation above a common control point, the reservoir that is at the highest index level, assuming no releases for the current time period, will be operated first to try to increase the flows in the downstream channel to the target flow. Then the remaining reservoirs will be operated in a priority established by index levels to attempt to fill any remaining space in the downstream channel without causing flooding during any of a specified number of future periods.

- (2) If one of two parallel reservoirs has one or more reservoirs upstream whose storage should be considered in determining the priority of releases from the two parallel reservoirs, then an equivalent index level is determined for the tandem reservoirs based on the combined storage in the tandem reservoirs.
- (3) If two reservoirs are in tandem (one above the other), the upstream reservoir can be operated for control points between the two reservoirs. In addition, when the downstream reservoir is being operated for control points, an attempt is made to bring the upper reservoir to the same index level as the lower reservoir based on index levels at the end of the previous time period.
- 6. Average Annual Flood Damage Evaluation

Average annual damages (AAD) or damages for specific floods can be computed for up to 9 different categories for any or all control points (nonreservoirs) using one or more ratios for each of several historical or synthetic floods. They will be computed for the following three conditions:

- a. Natural or unregulated conditions.
- b. Regulated conditions due to the reservoir system assumed.
- c. Full regulation at those reservoir sites (uncontrolled local flows).

Damages calculated for base conditions (normally natural flows) using selected floods and ratios are adjusted to average annual damages, computed by integrating the base conditions damage frequency curve or by using a predetermined average annual damage. The corresponding adjustment is printed out to help verify the appropriateness of the floods and ratios selected in integrating the damage curve for base conditions. Damages for modified conditions are based on the cumulative product of the damages associated with the modified peak flow for each flood (for a certain damage center) times the probability interval assigned to each flood from the base condition integration. See figure 1 for an example of the AAD integration. The damage for the uncontrolled local flows are also calculated in a similar manner to the modified conditions.

The damage reduction due to the proposed system is based on the difference between the AAD for the base conditions and the modified conditions. If an existing reservoir system exists the damage reduction can be based on the difference between the base conditions and the modified conditions where the base conditions were determined from another simulation run (existing reservoirs only).

A separate set of damage data can be used if the modified condition damages do not follow the base condition discharge-damage curves as would be the case for a levee, channel improvement or nonstructural alternative such as flood proofing, relocation, purchase, flood plain zoning, etc.

7. Multiflood Selection and Operation

The selection of the floods used in operating the system, is of paramount importance in the determination of the average annual damages. The floods selected must generate the peak flows at the damage centers (particularly the key ones) which represent the full range of the flow-frequency-damage relationship for base conditions as well as for modified conditions.

Even using all historical floods of record may introduce some bias in the average annual damage if most historical floods centered over a certain part of the basin by chance and not over other areas. For instance one dam site may have several severe historical floods while another dam site immediately adjacent to that area may, due to chance, not have had any severe floods.

While it is possible in the program, HEC-5C, to use only a single flood and several ratios of that flood in computing average annual damages, this procedure could introduce considerable bias in the results. It would be far better to use several historical floods with storm centerings throughout the basin and to use several ratios of those floods to obtain flows at the damage centers representing the full range of the flow-frequency-damage relationship for base conditions and for regulated conditions. A good idea of the adequacy of the selected floods and ratios for reproducing base conditions can be obtained by looking at the correction factor printed out at each damage center for each damage category. This correction factor is the ratio of average annual damage computed by integrating the input frequency-damage curve (or from input on DA card) to the average annual damage computed by assigning probability intervals to the system flows computed by HEC-5C. When the correction factor is close to 1.0, it represents the base conditions very well, but may not represent the modified condition if only one or two regulated floods cause damage. It is desirable to have one flood that does not cause damages so that the smallest flood with damage doesn't receive too large a probability interval. It is also necessary to have several modified historical floods produce damages spread out over the modified frequency curve since the integration of the damage-frequency curve is based on rectangular blocks for each flood using the probabilities from the base condition curve.

Studies are currently being made at The Hydrologic Engineering Center to help establish criteria for the selection of the floods and ratios to use.

8. Evaluation of Alternative Reservoir Systems

If this computer program is to be used to evaluate proposed reservoirs, then the data cards should be assembled so that all proposed reservoirs are included, even if some of them would serve as alternatives of others. Control points should be selected and coded for all damage centers, control points for reservoir operation, and information points. Once the entire system is coded, a single card can be used to delete reservoirs from the system for each alternative system selected. This card can be used to delete any reservoir in the system except for downstream tandem reservoirs (these reservoirs can be deleted by removing the reservoir cards). Flood damages for a single flood (or average annual flood damages) can be evaluated at any number of control points. Reservoir costs can also be evaluated by showing how the costs vary with reservoir storage based on the top of flood control storage. If costs and average annual flood damages are calculated, the net system flood benefits will be printed out for each alternative system operated. By careful selection of alternative systems, the system that produces the maximum net flood benefits can be determined by a reasonable number of separate computer runs.

9. Evaluation of Nonreservoir Alternatives

Structural and nonstructural alternatives to certain reservoirs can also be evaluated in the system simulation with or without reservoirs in the system. The existence of a levee or channel improvement can be reflected in the reservoir system operation by changing the channel capacity if appropriate. At the present time only one set of routing criteria can be read for each reach and thus the natural and modified routings use the same criteria. This limitation requires that when the routing criteria is different between natural and modified conditions, the natural flows must be calculated by a separate computer run and entered on cards for modified conditions. Costs of nonreservoir alternatives can be shown as functions of the channel discharges. For a given design discharge an interpolation is made to determine the capital cost applicable to the control point. The average annual flood damages can be evaluated in the same manner as for reservoir alternatives. However, the zero damage point can be automatically changed to the design discharge for modified conditions if a control point cost card is read. Two sets of damage cards can be read as an alternative to the above procedure, in representing natural and regulated conditions, so that the entire damage curve can be changed for regulated conditions.

Nonstructural alternatives (flood proofing, flood plain zoning, etc.) can be handled in the same manner as structural alternatives (usually by using two sets of damage cards), however the nonstructural alternative will require defining the upper limit of the flood proofing, zoning, etc. as a channel capacity or design discharge.

10. Use of HEC-5C in Flood Control System Selection

As can be seen in table 1, quite a few reservoir systems have been simulated using HEC-5. Most of these systems have used the flood control version which was released in May 1973. The version which also includes conservation operation (HEC-5C) has not been officially released yet, but it has been used for flood control simulation and average annual damages have been calculated for the Susquehanna, Red River of the North, and the Grand (Neosho) River basins. Monthly conservation operation has been used on the Pajaro River, the Red River of the North, the Hudson River Basin and several hypothetical systems. Of the studies conducted to date by HEC using this model, five of them have been for preliminary planning studies and have been used for the sole purpose of determining the regulated flows throughout the basin for various historical and synthetic floods. Each one of these basins also had a HEC-1 rainfall runoff data model developed in order to calculate the runoff from synthetic floods and to use rainfall to get a better distribution of runoff for historical floods. The study of the 15 reservoir system for the Trinity River was made in connection with Design Memorandum studies for the Tennessee Colony reservoir in order to determine the flood control storage in that downstream project (14 reservoirs above it) and to evaluate various alternative plans of channel improvements below the project. The work on the existing five reservoir Merrimack basin is expected to use HEC-5 in a real-time operation mode using forecasting routines and automatic data collection by July of 1975.

The Susquehanna River Basin has 12 reservoirs existing or under construction, and another 22 potential reservoir sites are being investigated along with other structural and nonstructural alternatives in a preliminary planning study being conducted by the Baltimore District office of the Corps, the HEC and a private consulting firm Anderson-Nichols of Boston, Massachusetts. The decision for selection of the desired system will make important use of the average annual damage reduction and net benefits of the alternative systems which will be printed out for each alternative evaluated by HEC-5C.

11. Model Data Requirements and Output

The input data requirements for HEC-5C can be minimal for very preliminary planning studies or it can be very detailed for modeling existing systems. The minimum data requirements are as follows:

- a. General Information (4 cards)
 - (1) Title cards for Job (3 cards)
- (2) Six miscellaneous items including the number of periods of flow data, time interval of flows, etc.
 - b. Reservoir Data (4 cards per reservoir)
- (1) Reservoir capacities for top of conservation and top of flood control elevations.
 - (2) Downstream control points for which reservoir is operated
 - (3) Reservoir storage/outflow tables
 - c. Control Point (including reservoirs) Data (3 cards per control point)
 - (1) Identification number and title
 - (2) Channel capacity
 - (3) Channel routing criteria
 - d. Flow Data

Inflow or local flow data for each control point for one or more historical or synthetic floods.

Additional input information useful for planning studies:

- a. Average Annual Damage Data (a minimum of 4 cards per damage center)

 Peak discharge-damage-frequencies tables
- b. Cost Data (1 card per control point)
 - (1) Reservoir capital costs vs storage or
 - (2) Control point capital costs vs channel discharge and
 - (3) Capital recovery factor
 - (4) Annual operation and maintenance costs

The output available from the program includes

a. Listing of input data

- b. Results of system operation arranged by downstream sequence of control points.
 - c. Results of system operation arranged by sequence of time periods
 - d. Summary of flooding for system
 - e. Summary of reservoir releases and control point flows by period
 - f. Summary of conservation operation if monthly routing was made
 - q. Summary of maximum flows, storages, etc., for each flood event
 - h. Summary of maximum and minimum data for all floods
 - i. Summary of average annual damages
- j. Summary of system costs (annual and capital) and net benefits. Examples of some of the summaries are shown as figures 2-12.

12. Strategy for Selection of Alternative Systems

For systems with only a few possible components the strategy for determining the best alternatives can be quite simple since each possible alternative can be evaluated. For systems with a large number of possible alternatives, the strategy can be difficult to predetermine and the best available procedure to follow may be to simply select alternatives to be evaluated one at a time following a careful review of information obtained from previous runs.

Certain economic criteria must be observed for the final system selected. The incremental cost of the new components of the proposed system must be less than the damage reduction accomplished by the new components. In addition, each project must be justified on the basis of the last increment added. That is to say, the cost of each project must be less than the difference between the average annual damages of the proposed system with and without that project.

A certain minimum performance criteria is also necessary. This philosophy says that if a certain level of protection can not be provided by the system then it would be better not to build any structures than to give the public a sense of false security.

With the above ideas in mind it seems necessary to first determine a minimum system that will provide an acceptable level of protection. Next see if various alternatives can be used to get a larger value of the maximum net benefits. When the maximum net benefits appears to be obtained (and it is positive) then each project should be deleted in

turn to see if that project prevented more damages than it cost to build. The process of maximizing the net benefits by selecting alternatives and evaluating using HEC-5C, at present, can only be based on good engineering judgment. After a few studies are completed using this new tool, perhaps more definite guidance will be available.

13. Future Use of Model for Multipurpose Systems

The current version of the program does have capabilities for multipurpose operation of reservoir systems, but does not have multipurpose economic evaluation routines. While the program can operate for low flows at one or more downstream points, for flood control operation and for individual hydropower requirements, the conservation capabilities have not been tested on a sufficient number of systems to provide the necessary confidence. When a few more systems have been successfully operated for conservation and flood control together, that confidence will be obtained.

The major additions necessary for the future are in the area of hydropower systems, multipurpose benefit evaluation and extensive testing.

14. Conclusions

It appears that the HEC-5C simulation model should be a useful tool for planners to evaluate the effects of water resource projects and nonstructural alternatives in most river basins because it can accurately, quickly, and inexpensively simulate the hydrologic and economic responses of the system. While much of the detailed analysis of hydrology, reservoir regulations, and economics can be accomplished by the model, considerable engineering ingenuity will be required to insure that the proper data is used in the model, that the model is giving valid results, and that the proper sequence of alternatives are evaluated in order to determine the best plan for the reduction of damages in a basin.

It also seems probable that the model will be useful for simulating multipurpose reservoir operation. In this connection considerable work will be required to develop economic and social parameters to allow multipurpose evaluation of the system alternatives similar to flood control.

Considerable experience and research will be required to develop procedures, techniques and/or optimization subroutines which will enable the program to be used in the most efficient manner in the selection of the best multipurpose alternatives for the basin.

TABLE 1

SYSTEMS SIMULATED BY HEC-5

	River Basin	Location	llumber Reservoirs	!!umber Control Points (including res)	Time Increment (hrs)	Approximate Drainage Area square miles
<u></u>	Trinity	Texas	15	28	24	18,000
2.	Herrimack	ilew England	വ	7	m	4,400
<u>ب</u>	Susquehanna	Pennsylvanía	34	75	4	24,000
4.	Schulkill	Pennsylvania	12	26	က	1,900
۶.	Potomac	Virginia Maryland Pennsylvania	56	39	2	12,000
•	Red Kiver of North	Hinnesota	13	59	24 720	40,000
	Feather	California	m	4	2	2,900
ઝં	Pajaro	California	ю	9	1 720	400
ઝં	brand (ideosho)	Oklahoma	24	98	2	2,900
.0.	James	Virginia	22	35	ų	008*9
<u>=</u>	Red River 1st Phase	Texas Arkansas	4	58	9	12,000
12.	hudson	iew York Pennsylvania	က	بم	720	200

DAMAGE - FREQUENCY CURVES A AD CALCULATIONS

EXCEEDENCE FREQUENCY

FIGURE 1. EXAMPLE OF AAD INTEGRATION FOR MULTIPLE FLOODS

(Important values for flood 4 are indicated)

Note: This figure is not for same example as figures 2-12.

CUM LUCAL 0 188419 188289 11852 117942 17719 17505 17662 17662 17662 18870 266872 2668	A.
1979 1979 67416 13567 16657 16527 22161 24016 2409 22631 22717 22631 22631 22717 22631 22631 22717 22631 22717 22631 22631 22717 22631 22631 22717 22631 22631 22717 22631 22631 22717 22631 22631 22631 22631 22717 22631	
### FLDM 20096 200409 333804 34004 170730 24408 22611 153614 25010 20174 41354 200407 186405 166747 186748 13527 1118361 105642 20154 200407 20040 20174 200407 200	
FLOW 20038 260407 180030 180591 180748 192671 181816 195842 18330 200405 35501 200703 137040 170730 20040 22035 46672 43330 20033 36670 20040 20033 46672 43330 20033 36670 20040 20033 46672 43330 20033 36670 20040 20033 46670 20070 20040 20033 46670 20070 20040 20033 46670 20070 20040 20033 46670 20070 20	2/2002
FLOW 20045 20000 20040 2013 20200 20134 20020 20174 43350 20045 20050 20174 43350 20135 20040 20040 20040 20040 20040 20040 20040 20174 20040 20040 20040 20040 20174 20040 20040 20040 20174 20170 20	2 4008/2
FLOW 20045 20006 2017 2050 2040 2026 2002 20174 8135	37676 Z
FLOW 20039 2000 20007 2000 20040 20036 20020 20174 81336 50030 100203 137040 17730 200135 226671 251379 32139 134332 119952 888139 60030 219375 193384 177716 151139 134332 119952 888139 60030 219375 193384 177716 151139 134332 119952 888139 60030 20040 20039	0 402*1
FLOW 20959 20000 20607 20650 20960 20236 20020 20174 81356 50659 100053 35250 40559 100053 35250 40559 100053 35250 40559 100053 35250 40559 100053 35250 40559 100053 35250 40559 100053 35250 40559	7 19830
FLOW 20045 20006 20807 20650 20450 20526 20020 20174 32136 60529 100203 32136 405113 407645 397506 376471 251378 38134 405113 407645 397506 376471 251378 38134 40513 407645 397506 376472 376472 397506 376472 376472 397506 376472 3764	AVGE 14168R MA
FLOW 20045	1750 1750
### ### ### ### #### #################	21900
20036 2010 2010 2010 2010 2010 2010 2010 201	274625
200730 24078 19334 170716 151139 13432 19952 80134 37030 25613 6770 62491 57836 53633 49634 80178 37430 34676 35763 362491 57836 53633 49634 20470 20761 20761 19630 36260 20640 20236 201020 20174 20524 27511 13741 13610 13626 36266 20706 20177 36036 20176 20174 20524 21274 32741 36260 36264 37434 36207 20176 20176 20176 20176 20176 20176 20176 20176 20176 20176 20176 20176 20176 20176 20177 20176 20176 20176 20177 20176 20176 20176 20176 20176 20176 20176 20176 20176 20176 20176 20176 20176 20176 20176	347512
### ### ### ##########################	10765
2093A 20906 2040 20460 20236 26234 26174 30724 136194 136194 20174 30724 13619 14049 223496 241745 30724 30724 30724 30724 20177 30724 30727 30724 30724 30727 30727 30724 30727 30727 30724 30727 30727 30724 30727 30724 30727 307	444
2003A 20906 20907 2060 20960 2025 20020 20174 30234 523496 247465 300234 32323 35741 342890 342854 334934 320072 300345 233496 24765 300234 233496 24765 300345 233496 24765 300345 233496 24765 300345 233496 24761 33934 13040 113764 13040 113764 113940 113764 11	
2003A 20906 20451 35119 169101 197693 223496 247455 30234 32521 335741 35119 169101 197693 223496 247455 233396 212573 193123 175129 158701 143941 35072 300346 233396 212573 193123 175129 158701 143941 35080 46620 50408 57508 55684 53943 52160 50294 46303 46203 113042 1:3794 1:3193 1:3350 1:3764 1:3764 1:3060 1:3620	
20036 2000 20460 20460 2036 20020 20174	STORES BASE OUTSEL BOAS
2003A 2000b 20361 13610 197693 223496 247465 30724 35724 135741 342854 135761 197693 223496 247465 30724 357249 13572 13	
# 1293 65903 00781 135118 169101 197693 223496 24765 # 233196 212573 193123 175129 158701 143941 130860 119473 # 233196 212573 193123 175129 158701 143941 130860 119473 # 24201 86203 7510 55684 53943 52160 50294 48303 46203 # 22707 66107 76107 76107 13350 113540 113764 113980 113826 # 32707 66107 76107 76107 -2610 -261034 -16072 -160346 # 32709 45707 67104 -261690 -2616934 -2610934 -16072 -160346 # 32709 45707 67104 -261690 -2616934 -2610934 -16072 -160346 # 32709 45707 67104 -26169 -2616934 -2610934 -16072 -160346 # 32709 45707 67104 -26169 -2616934 -2610934 -16072 -160346 # 32709 45707 67104 -26169 -26169 -2610934 -160346 -113465 # 32709 45707 67104 -26169 -26169 -26104 -261049 # 32709 45707 -2616 -2616 -26104 -26104 -261049 # 32709 4610 -2616 -2616 -2616 -261049 # 32709 -2616 -2616 -2616 -2616 -2616 -2616 # 32709 -2616 -2616 -2616 -2616 -2616 # 32709 -2616 -2616 -2616 -2616 -2616 # 32709 -2616 -2616 -2616 -2616 -2616 # 32709 -2616 -2616 -2616 -2616 -2616 # 32709 -2616 -2616 -2616 -2616 -2616 # 32709 -2616 -2616 -2616 -2616 -2616 # 32709 -2616 -2616 -2616 -2616 # 32709 -2616 -2616 -2616 -2616 # 32709 -2616 -2616 -2616 # 32709 -2616 -2616 -2616 # 32709 -2616 -2616 # 32709 -2616 -2616 # 32709 -2616 -2616 # 32709 -2616 -2616 # 32709 -2616 -2616 # 32709 -2616 -2616 # 32709 -2616 -2616 # 32709 -2616 -2616 # 32709 -2616 -2616 # 32709 -2616 -2616 # 32709 -2616 #	0.00
205254 32721 335741 342801 143941 15080 113026 253594 252573 193123 174129 158701 143941 150800 113026 253595 250408 57548 57542 17550 72158 65296 66629 59408 57548 57548 53943 52160 50294 150800 113026 113026 113074 120800 113040 113764 113080 113026 113026 113074 120800 113040 113764 113080 113026 113026 113074 120801 120801 120801 113080 113026 113080 113026 11	
233506 212573 17579 158701 18394 13000 113020 113020 113020 123520 175100 158701 169473 13000 1130200 113020 113020 113020 113020 113020 113020 113020 113020 11302020 113020 113020 113020 113020 113020 113020 113020 113020 113	
### 1300 BV AS ### 1510 11340 113764 46620 SQUAR S7506 55884 53913 52160 50294 46303 46203 SQUAR S7506 55884 53913 52160 50294 46303 46203 1347002CC	2 (6141
### 57506 55664 51973 52160 76264 48303 46203	1 25 9601
### 1300 ### 57506 55884 53913 \$2160 56894 46303 46203 ###################################	10079
### 13000###############################	##053 41034
### 13500 ### 1310 ### 1310 ### 1350 #### 11300 #### 11300 ################	AVGR 152261 MAXE 342990
1340002C) 92707 115103 115350 115340 115704 115400 115850 15400 115850 15400 15400 115850 15400 15400 15400 15400 15400 1540002C) 92707 14101 1 1500 115940 1500024 1500034 16400 115400 1540034 16400 15400	
### 1972 1972 1972 1972 1973	112100
## US RES	- 2777
39799	101010
## JS RES 2518 2518 60057 81840 83706 85897 87371 ## JS RES 2518 2518 2517 2515 2512 ## JS RES 2518 2518 2517 2515 2512 ## JS RES 2500 2347 2440 2352 2157 2517 2517 2517 ### JS RES 2500 2340 2352 2157 2518 2517 2517 2517 2517 2517 2517 2517 2517	K 6 5 7 F
BY JS RES 2518 2518 2518 2517 2515 2512 D D148 2500 2 3 47 24 6 2 42 2 42 6 2 43 6 2 4 4 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6	10121 00000 11
BY JS RES 251F 2518 2519 2515 2515 2515 2515 2515 2515 2515	400-7 92066
BY JS RES 251F 2518 2519 2518 2517 2515 2515 2515 2515 2517 2515 2515	R1008
DOUGH WES 0 0 0 0 533 2157 5215 5215 5215 5215 5215 5215 5215	TOTAL VLES 270809
20175 2700 2707 2464 74427 2427 2436 2436 2436 2436 2436 2436 2436 2436	24.39 250
2440 7332 2157 1947 1750 1411 1590 4211 5507 7093 6558 9953 11.70 12499 19576 15676 15469 19576 25624 284602 25077 25405 25771 25971 25795 25624 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2474 247
#211 5507 7093 8568 9953 11270 12499 1 16776 17645 18894 1991 20871 21795 22624 2 24602 25007 25405 25721 25871 25795 25624 2 BV MES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2212 305
16776 17445 16894 19951 20871 21795 22624 2 24602 25007 25405 25721 25871 25795 25472 2 BV RES 0 0 0 0 0 0 0 0 0 0 0 2427 2426 2436 2436 2441 1590 2511 5507 7093 8558 9953 9941 0	146.4 1572
84602 25077 25405 25721 25871 25795 25472 2 87 MES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23P10 2421
BY RES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26 24223 23452
BY MES 0 0 0 0 0 0 0 0 0 0 0 0 245 245 245 245 245 245 245 176 2427 2426 2436 245 245 1947 1750 1611 1590 176 421 5607 7093 8558 9953 9941 0	
0 0 7118 2427 2426 2436 245 0 2332 2157 1947 1750 1611 1590 176 1 5607 7093 8558 9953 9941 0	
0 2332 2157 1947 1750 1611 1590 176 1 5607 7093 8558 9953 9941 0	2474 247
1 5407 7093 8558 9953 9941 0	6 2232 305
	•

EXAMPLE SEQUENTIAL OUTPUT

FIGURE 3

SESTE FLUOD NUMBER & SESTE

TI BUSDUEMANNA RIVER BASIN - MUD CHELK AND TRUXTON RESERVOIRS The Average annual Damage Heduction Evaluation - existing < Study Reservoirs To using multiples of Danville SPF Damage Data in 1963 Dollars

2	-	MAX PEG O M	MAX NAT HAX	UNC G BY RES	NO FLOODS VOL TOTAL		FLOODS NO FLOODS TOTAL FROM B	VUL FLOODS RED FROM F	PER	FL0003 FROM FE	•	
140	LINDLEY	12544	A2252	12534	6030	c	•	•	•	ė	c	
1321	HCBNELL	11128	20644	10513	919	•	17014	•	4453	10.	-	
1352	CANISTED	34539	42457	33997	242	-	25826		1636	=	_	
1353	M. CAMERON	39261	47169	38718	543	~	76297	•	2652	: =	<u>.</u>	
137	ADDISON	67310	70350	67000	310	~	236555	. 2	5404	•	. ~	
7	97	90106	154438	89743	362	_	237519		2697	-	4	
-	214G	16703	16703	16703	•	•	24058	· c		ċ	, C	
45	۰.	22322	24768	22322	•	~	94166	• •	•	c	c	
7:1	CORNING	122243	195288	121048	202	•	186964	• •	5213	-	0	
6 T	ELHIRA	124290	194700	123979	310	~	16945	۸.	706	-01	~	
121	CHEMUNG	146152		145799	352		716554	. ~	18590	=	7	
-	ONEDNIA	29051		29051	•	-	158189		•	ء :		
101	UNADILLA	36833	40500	36433	•	E	237569		684	-17	-	
2 .	BAINBRIDGE	78741	87877	78741	•	50	572778	9	2331	10-		
771	CONKLIN	107753	115306	107645	106	2	011750	01	2505	~	-	
121	CONTLAND	9605	15710	5096	•	~	21035		•	ė	0	
1531	MARATION	15378	20502	15378	•	~ ^	7677	•	•	ċ	c	
1232	ITASKA	17619	40511	17619	•	_	32367	~	•	-	4	
-		34734	34734	34734	•	5	213271	•	•	ė	•	
125	CHENANGO FORKS	63957	P6044	93629	-	15	396787	01	8008	=	2	
127	VE STAL	170875	16861	170667	502	7	1381039	212	13000	=	31	
121	FAVERLY	190767	216500	190513	250	20	160500	20	13361	7	7	
726	TORANDA	325815	40704	324669	1146	24	2689751	2	116410	=	75	
591	ARCHBALD	3761	6812	3761	•	_	661	•	•	•	0	
171	OLD FORGE	23076	25798	23076	•	•	30702	~	•	=	~	
173	WILKES-BARRE	341301	409570	339472	1829	52	3164548	\$ 2	111001	-	74	
D 0 7	DANVILLE	242690	407645	341104	1786	2	2708091	2	83028	=	;	

EXAMPLE FLOOD SUMMARY

FIGURE 4

j
•
•
9
\mathbf{a}
=
0
3
٥
w
u
×

CHAN CAP.	12500	9090		2007	900	0002	000	000	2000	000	2002	0000	2000				999	004	;
CHAN			_																
MAX REL.	12500	9009	787	7044	9.78	8988	0002	11536	8758	388	38807	106201	0002	1601		10545	60#22	0.00	
INFLOR		39822	2368	7843	000	4243	5169	11556	9595	9639	36667	106263	6433	18551	4323	10525	22409	3784	•
XAM .		c	33	•	•		•		•	c	0	•	•	•		. 0	0	•	
BT PER			-																
PER, LAST PER,	•	•	•	•	•	•	•	•	•	•	0	•	•	0	•	•	0	0	
19T PE										,									
	1,654	1,716	2,163	1,401	1,000	1.000	1,730	1,000	1,000	1,588	1,000	1.030	1,480	1,539	1.000	000	000.1	1.421	
HAX LI	-	••	~	-	•	=	-		-	-	-	<u> </u>	=	••		<u>۔</u>	_	-	
HAX STG HAX LEVEL	63472	64329	1769	13353	•	•	40804	•	•	20401		•	39958	48932	•	S	0	5545	
STORI	5000	1000	10	190	•		38000	•	0	1700		•	27000	2000	•	c	0	. 343	
	S EX	ĘX	Ä	×	S	S	80	ŝ	ŝ	EX	S	5	80	EX	60	80	SD:	Ä	
RESERVOIRS	TIOGA-HAMHOND RE	139 COMANESQUE RES	ARKPOAT RES	ALMOND RES	1341 BENNETTS CK RES	FIVEMILE CK RES	MUD CK RES	CHARLOTTE RES	M. ONEDNTA RES	196 E. SIDNEY RES	112 E. GUILFORD RES	1141 GREAT BEND RES	TRUXTON RES	WHITNEY PT RES	8, PLYMOUTH NES	GENEGANTSLET RES	155 TOWANDA RES	163 STILLWATER RES	3
RE	136 11	39 68	132 AF	133 AL	10 1	142 F1	148 HL	102 CH	105 W.	3 6.	12 E.	7 C.	114 18	122 HH	116 8,	124 GE	55 TC	18 . 81	
	5	701	3.	3.	: רפנ	Š	201	5	101	507	700	Š	Ď	רסנ -	20	רַסְכֹ	Š	ğ	

EXAMPLE RESERVOIR SUMMARY FLOOD 6 (80% SPF) FIGURE 5 COPY

٠
Ξ
•
n
Δ
FL0003
×
ų
_
•
>
>
٠.
ب
_
1
•
0
FOR
_
_
•
ALUES
Э
•
_
_
× • •
•

3	ä																												
WE TENTED SHORTAGE	DE 3																				•								
	0 BY PES .	•	1762 •	592	. 00	622	000	7		7			# COC#	•	•	1364	1495	754	769	2140		2158	3224	2860	4412	1001	36.	* 5004	4784
	MAX LOC 0 #																												
	FLD. PER	7.012	7.012	7.012	7,011	7.012	10.4		7.014		4.0			C10.	1.0.7	7.0.4	7.0.7	7.013	7,013	7.015	7.014	7.015	7.017	7,019	7.014	7.012	7.013	7,022	7.025
	MAK PAM O	102A14 .	25805 ·	53571 •	58961 .	87938 ·	193047 +	20A78 .	33459 *	244110 *	243375 *	75466	4 11 14		B /8/00	104846	144133 *	19437 *	25739 *	50638 .	43418 .	107554 .	248226 *	270425 *	508A70 +	8515	32247 •	511.62 .	509556 .
	PLD. PER	2002	7.007	7,012	7.013	7.012	7.013	7,013	7,013	7.010	7,015	7.016	7.015	710		7.014	7.016	7,013	7.014	7.015	7.014	7,015	7.017	7.010	7.019	7,012	7,013	7,023	7,026
4 4 2 4 3			# () () () () () () () () () (4 30073	4 20007	84087	112572 *	20878 .	27902 *	152763 4	155322 •	182638 .	36313 *	1 10000	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		• 12451	12006	19222 +	22023 *	43416 .	19945	213692 4	238517 +	407236	* 1074	28845	426428	870304 ·
6	K 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			7.00.	7,013	7,012	7,013	7.013	7.014	7,013	4.014	7,016	7.015	7.017				5 0 0 0	7.013	510%	7.014	7.015	7,017	01017	7,014	7,012	7.013	7.022	7.024
	LINDLEY	- 1-2001		200		NO. TOLIA	DE INC.	# L 40			ELMIKA		ONECATA	UNADILLA	BATRIDGE	32 - 32 CL			- 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15	4 50 8 - 4		CIRARGO FORRO	14.07.1			4X7 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	מוני אומילים	TITUE OF THE	2117
	140	1351	1150				-	7 :	· ·	147	67	2	70	101	113	1142		122	1010	200	8 .	7	2				1 6 7		201
	רסכ	רמכ	107	2		3 :	3 6	3 6	2 6	ָ כְּבָּ) (2)	֓֞֝֞֝֜֝֞֜֝֝֓֓֓֓֓֓֓֓֜֝֓֓֓֓֓֓֡֝֓֓֓֡֓֜֝֓֓֓֡֝֡֓֡֓֡֓֡֝֡֓֡֓֡֓֡֡֝֡֡֡֓֡֓֡֡֡֡֝	201	2		רכנ			, <u>.</u>	ָ ֓֞֞֝֞֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֡֓֡֓֡֓֓֓֡֓֡֓֡֓֡) (3 6	ر ا ا	, ,		2 6	3 6	2 -	,

	œ	REGERACITAS		FLO.PER	MIN OTO MIN	IN LEVI	LEVEL .	FLO.PER	MAX STG MAX LEVEL .	IX LEVEL	* FLD.PER	MAX REL	CHAN CAP
507	138	TIDGA-HAMMOND RES EX	EX.	7,001	8000	1,000	• 00	7,026	110554	. 3.0	. 7.034	12500	12500
ŽO7	139	COMANESQUE RES	EX	7,001	1000	1.000	• 00	7,023	91061	1.954	. 7.02B	000	0004
רכנ	132	ARKPURT RES	£X	7.001	10	1.000	• 00	7.013	2387	2.220	7.014	766	000
י רפל	133	ALMOND RES	Ex	7.001	150	1.000	• 00	7.019	14800		• 6.029	4607	5200
707	1341	BENNETTS CK RES	\$	7.001	· i	1,000	• 00	7.001	0		- 7.012	10624	2000
20	142	FIVEHILE CK RES	S	7,001	0	1.000	* 00	7.001	c		. 7,013	2304	5000
207	144	144 MUD CK RES	3	7.001	38000	1.000	* 00	7.027	53197	1.950	7.030		2000
j01	102	CHARLOTTE RES	20	7.001	•	1.000	• 00	7.001		1.000	. 7,013		2000
100	105	M, ONFONTA HES	S	7.001	•	1.000	•	7.001	•	1.000	7.010		2000
FOC	106	E. SIONEY HES	EX	7,001	1700	1.000	* 0 c	7.034	25354	1.744	+ 6,053		1900
101	112	E, GUILFORD HES	8	7,001	•	1.000	• 00	7.001	c	1.000	7.013	3	2000
רַסכ	1141	GREAT BEND HES	5	7.001	•	1.000	• 00	7.001	c	1.000	7.016		00005
707	110	TRUXTON REG	9	7.001	27000	1,000	• 00	7,033	43544	1.613	3,030		0002
100	152	WHITLEY PT HES	E X	7.001	2000	1.000	• 00	7.035	61557	1.694	7,060	4217	2000
701	1.15	S. PLYMOUTH REG	Š	7.001	6	1.000	•	7.001	O		4 7.012		9002
ָר פני	124	GENEGANTSLET RES	S	7,001	6	1.000	• 00	7.001	c	1.000	7,013		3000
207	155	TOHANDA RES	8	7,001	•	1.000	• 00	7.001	0	1.000	7.012	7	000
Ď	163	STILLWATER RES EX	Ex	1000	343	1.000	• 00	7,021	0000	1.537	7.060	9	00*

EXAMPLE RESERVOIR SUNMARY FLOCUS 1-7 FIGURE 7

·-

EXPECTED ANNUAL FLOOD DAMAGE SUMMARY CONTROL PCINT NUMBER 180

600						
C 0	108000	96.000	000.46			į
) · ·	120000	141.000	141.000			
.640	132000	145.000	185,000			
.440	145000	234.000	232.000			
.330	154000	280,000	286.000			1
.230	172060	353,000	353,000			
140	180000	440.000	420.000		!	į
.100	201000	780,000	780.000			
.070	716000	1139,000	1139,000			
270.	234000	1829,000	1669.000			
.027	250000	2781,000	2781.000			
.015	270000	6314.000	6314.000			
.012	290000	8215.000	8215.COO		į	
900.	314000	11392.000	11392.000			
500*	340000	13929.000	13929.000			
•004	360000	14466.000	19466,000			
.003	387000	18767.000	18767.000			
.003	412000	21071.000	21071.000			
- 005	000077	22404,000	22604.000	•	:	,
~	AVERAGE A	INNUAL DAMA				
			-0.00			!
۵	DNILGI	EXIOTING BYSTEM AVE	AVERAGE ANNUAL	DAMAGES BY	T TYPE	

ı						10014 FOT- TOXOD 4648	200	2
	2	F.C.	۰	エコの	TYPE	TYPE		
	-	10101		17.87	17.87			
1	~	152867	5.1	127,90	127,90			
	~	203823		125.79	125,79			
1	7	254778		130.10	130,10	•		1
	S	305734	.010	91.45	91.45			
	•	407645		116.86	116.85	!		ŧ
- 1	~ :	509556		21,33	21,33			
-		٥	DAMAGES	631,30	631,30			
1	EXST SYST	SYST D	DAMAGES	338.49	338,40			1

EXAMPLE AVERAGE ANNUAL DAMAGE EXISTING SYSTEM FIGURE 8

DAMAGES	
4,000	
CONDITIONS	
MnbyF1ED	TYPE

14PE										UNCONTROLLED LOCAL FLOW FLODO		•		ı						•	:
TIPE 1 TY	7.02	89.56	52,94	46.07	16.57	80°03	17,74		325,13	טאָ מאַ	TYPE 1 T	2.63	F3.30	51.27	38.46	33,84	79,55	17,65	106.70	31.79	
80%	7.02	89.56	52.94	40.47	36.57	80.A3	17.74		325.13 13.36		HOS	~	83.30	51.27	38.46	33.84	79.55	17.65	104.70	31.79	
FLOW PPON INT			•	215526 .040	257572 ,010			•	DAMAGE HEDUCTION		THE BOND INT	85276 .275	•	•	•	•	381104 .006	•	A M A C C C	DAMAGE REDUCTION	COARECTION FACTOR
Q.Z	-	1	~1	!		, .	~	1		į	CN	-		, ,-1	i						ا ا

DAVAGES

EXAMPLE AVERAGE AHHUAL DAMAGES
EXISTING SYSTEM PLUS
TWO PROPOSED RESERVOIRS

FIGURE 9

SUMMAPY OF SYSTEM'S EXPECTED ANNUAL FLCCO DAMAGES

					DATA TELECTION	******
CONTROL	* BASE (EXIST)	CONDITIONS	UNCONTROL	MODIFIED CONDITIONS		416
145	236,17	189,59	169,23	46.5A	46.44	20,36
147	75.05	69,66	66,33	5,36	8.89	3.34
100	00.66	84.44	63,12	14.65	15.97	1,32
151	50.05	56,25	51.60	1.77	27.0	4,45
121	20.89	7.04	6.91	13,85	14.08	.24
1232	61.83	62,15	85.02	.,32	11,25	11.56
125	87.14	94,52	74.23	2,62	12,91	10.29
127	- 305,64 -	304,70	263,46	₹ 6.	42,18	41,24
131	91.96	93,96	90.04	-2.00	7,02	9. 02
154	234,00	253,32	203,99	10.77	30,10	19.34
173	3421,04	3300,77	3231,41	120.29	169,65	69,35
180	336,49	325,13	306.70	13,36	31,79	18.43
TOTAL	* 5029.4n	4801,54	4592,40	227,84	437,00	209.16

EXAMPLE

1

i

FIG. ... 10

BUNNARY OF SYSTEM COSTS

• !	3	CONTRUL	PREJECT & TYPE &	CAPITAL * COST *		ANNUAL
; ; ;	•					
1.	• (101	RESERVUIR .	17400,00 *	• 50.69	1267,07
			RESERVOIR .	11900,00	. 40.64	946.40
	• • •	145		* 00*0	* 00.00	00.0
		183		* * 00 * 0	• 00.0-	0.00
	 	148		00.0	• 00.0•	0.00
	; • • •	121		00.0	.00.0.	0.00
! ;		2		00.0	• 00.0	00.00
	• •	1232		0.00	.0.0.	0.00
	; . .	125	. .	00.0	• 00.0-	0.00
	: • • •	127	i	00.00	0.00	00.0
		131		00.0	.00.0-	00.00
·	• •	134		00.0	00.0-	0.00
	! • • •	2		0000	00.0	00.0
	••	190		00.0	. 00.0-	00.00

EXAMPLE CAPITAL COSTS FIGURE 11

				2155,76				227.R6		-1027.90				
f scripat Doto	29300,00		134.42		•	2029.40	4401.54			BENEFITS				
BYSTEM ECCNUMIC COST AND PERFORMANCE SUPERRY (EXCLUSIVE OF EXISTING SYSTEM COSTS)	TOTAL SYSTEM CAPITAL COST	TOTAL SYSTEM ANNUAL DPENATING	RAINTERANCE, AND REPAIR COUL & & .	TOTAL SYSTEM ANNUAL COST & B & B & B & B		AVERAGE ANNUAL DAMAGES - EXISTING SYSTEM	AVERAGE ANNUAL DAMAGES - PROPOSED SYSTEM	AVEHAGE ANNUAL DAMAGE REDUCTION	:	AVERAGE ANNUAL BYBIEM NET DAMAGE, REDUCTION BENEFITS				·
	TOTAL	TOTAL	T Y	TOTAL	i .	AVERA	AVERA	AVEHA	i	AVERA			-	,
		ļ	ļ							; 		İ		1
:	1		į			İ				1		İ		

EXAMPLE NET BENEFITS

FIGURE 12

