Take-Heme Quiz #1 SOLUTIONS

Math 235 (Calc I) Fall 2017

1	(n)		n		
1	planet)	d	Τ	$\log_d(T)$	d ⁿ
	Mercury	0.387	0.241	1.498907089	0.24076
	Venus	0.723	0.615	1.498809685	0.614771
	Earth	1	1		1
	Mars	1.523	1.881	1.501855176	1.879499
	Jupiter	5.203	11.861	1.499637792	11.86725
	Saturn	9.541	29.547	1.501145932	29.46789
	Uranus	19.19	84.008	1.499772565	84.05386
	Neptune	30.086	164.784	1.499572747	164.9998
			average ->	1.499957284	<- n

(b) Yes. In the model, $T(d) \approx d^{1.5}$ $\Rightarrow T^2 \approx (d^{1.5})^2 = (d^{3/2})^2 = d^3$.

2. The brightness is periodic, so should be of the form

B(+)=c, sin(c2(+-c3))+C4.

The average brightness is the midline of the Sine Function, so Used Cy=H. For a ±0.35 variation in magnitude we must scale the function, so set Cy=0.35. The period of Delta Ceghei is 5.4 days instead of the usual period of 211 radiand for e sine function, so set Co=27 5.4.

Finally, assume Delta Cephei is at overage brightness and increesing at time t=0 Udays, so JC=0.

 $B(t) = 0.35 \sin(2t + 1.0)$ 4.05 + 1.0 3.65 + 1.0

t (days)

Context of the problem, so that there is non-negative voltage.

The Graphs interdect when ct H(+) = H(+)

and they intersect everywhere where

(c)
$$120^{-120}$$

$$V(t) = 2tH(t) \quad t \leq 60$$

60 + (sec)

$$V(t) = H(t-7)H(N-7) + 4 = 32$$

$$= \begin{cases} 0 & t \leq 7 \\ 4(t-7) = 4t-28 & 72t \leq 32 \end{cases}$$

4.
$$A \circ A = 1.04(1.04x) \leftarrow investment after 2 years$$

$$A \circ A \circ A = 1.04(1.04(1.04x)) \leftarrow " 3 years$$

$$A \circ A \circ A \circ A = 1.04(1.04(1.04(1.04x))) \leftarrow " 4 years$$

$$A \circ A \circ ... \circ A = 1.04 x = investment after n years$$

5. For gof=h, let
$$q = h \cdot f^{-1}$$

 $J = h(x-4) = H(x-4) - 1 = Hx - 17$
Check: $g = f = H(x+4) - 17 = Hx + 16 - 17 = Hx - 1 = h$.