UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE ENGENHARIA ELÉTRICA

Professor: William Caires Silva Amorim Monitor II: João Marcus Soares Callegari

ELT 226 - Laboratório de Circuitos Elétricos I

Nome:	Mat.:	Data:	/ /	/

Teorema da Superposição

Introdução:

 O Teorema da Superposição possibilita a análise de circuitos elétricos lineares que possuem mais de uma fonte. Um sistema ou circuito elétrico é considerado linear se este satisfizer o Teorema da Superposição.

Figura 1 — Características de um sistema linear.

Objetivos:

• Verificação prática do Teorema da Superposição.

Material utilizado:

- 3 resistores $1k\Omega 1/4W$;
- Fios;
- Fonte c.c;
- Multímetro;
- Protoboard;

Parte teórica:

Seja o circuito dado na Figura 2. Considere as entradas V₁ = 10 V e V₂ = -5V. Determine a saída I₃, utilizando o Teorema da Superposição.

Figura 2 – Circuito linear resistivo, com duas entradas e uma saída.

Parte prática:

- Antes de ligar a fonte c.c variável, girar os potenciômetros no sentido anti-horário para que a tensão seja mínima (0 V);
- Selecionar o modo independente de operação da fonte c.c e ajustá-la conforme a Figura 3.

Figura 3 – Esquema de configuração da fonte c.c no modo independente.

• Realizar a montagem, conforme a Figura 4(a);

Figura 4 — Esquema de ligação: (a) Fonte de 10V ativada e -5V desativada. (b) Fonte de -5V ativada e 10V desativada.

• Realize as medições e preencha a Tabela 1.

Tabela 1 – Grandezas medidas, fonte de 10V ativada e fonte de -5V desativada.

Grandezas	Valor medido
Tensão da fonte	10V (verificar!)
Corrente no resistor 3 (I' ₃)	

Fonte de -5V ativada e fonte de 10V desativada

- Realizar a montagem, conforme a Figura 4(b);
- Realize as medições e preencha a Tabela 2.

Tabela 2 – Grandezas medidas, fonte de -5V ativada e fonte de 10V desativada.

Grandezas	Valor medido
Tensão da fonte	-5V (verificar!)
Corrente no resistor 3 (I" ₃)	

• Calcule a corrente I₃, considerando os dados medidos nas Tabelas 1 e 2.

$$I_3 = I_3' + I_3'' \tag{1}$$

Fontes de 10V e -5V ativadas

- Realize a montagem, conforme Figura 2;
- Efetue as medições e preencha a Tabela 3;

Tabela 3 – Grandezas medidas, fontes de 10V e -5V ativadas.

Grandezas	Valor medido
Tensão da fonte 1	10V (verificar!)
Tensão da fonte 2	-5V (verificar!)
Corrente no resistor 3 (I ₃)	

Superposição das tensões no resistor R2

- Repita os procedimentos anteriores para validar a superposição das tensões no resistor R₂ (defina um sentido para a tensão em todas as medições);
- Efetue as medições e preencha a Tabela 4;

Tabela 4 – Grandezas medidas.

Grandezas	Teste 1	Teste 2	Teste 3
Tensão no Resistor R ₂			

Inserção de resistor $1k\Omega$ em série

• Insira um resistor de $1k\Omega$ em série com R_3 e repita os passos anteriores.

Tabela 5 – Grandezas medidas, com inserção de um resistor de $1k\Omega$.

Grandezas	Teste 1	Teste 2	Teste 3
Tensão da fonte 1	10V		10V
Tensão da fonte 2		-5V	-5V
Corrente no resistor 3 (I' ₃)			
Corrente no resistor 3 (I" ₃)			
Corrente no resistor 3 (I ₃)			

Discussões:

- O Teorema da Superposição foi satisfeito em ambos os casos?
- Calcule o erro [%] relativo entre a corrente no resistor 3 medida e calculada (Seção teórica).
- Calcule o erro [%] relativo entre a corrente medida e calculada em $R_3 + 1k\Omega$.