Функциональные последовательности и ряды

1 Функциональные свойства пределов функциональных последовательностей и сумм рядов

Рассмотрим последовательность функций $\{f_n(x)\}$, определённых на X.

Теорема (о непрерывности предела функциональной последовательности). Если последовательность непрерывных на X функций сходится равномерно на этом множестве, то её предел есть функция, непрерывная на X.

Следствие. Если ряд, составленный из непрерывных на X, функций сходится равномерно на этом множестве, то его сумма непрерывна на X.

Примеры: a)
$$f_n(x) = x^n$$
, $X = (-1, 1]$; b) $f_n(x) = \frac{nx}{1 + n^2x^2}$, $X = \mathbb{R}$.

Теорема (Дини). Пусть ряд $\sum_{n=1}^{\infty} u_n(x)$, составленный из непрерывных неотрицательных на [a,b] функций, сходится к функции S(x), также непрерывной на [a,b]. Тогда этот ряд сходится на [a,b] равномерно.

Теорема (о предельном переходе в функциональной последовательности). Пусть последовательность $\{f_n(x)\}$ сходится равномерно на X (к функции f(x)). Пусть в точке $a \in X'$ каждая функция $f_n(x)$ имеет предел:

$$\exists \lim_{x \to a} f_n(x) = c_n, \quad n \in \mathbb{N}.$$

Тогда существуют предел последовательности $\{c_n\}$, предел функции f(x) в точке a, и эти пределы равны:

$$\lim_{n \to \infty} c_n = \lim_{x \to a} f(x) \quad \Leftrightarrow \quad \lim_{n \to \infty} \lim_{x \to a} f_n(x) = \lim_{n \to \infty} \lim_{x \to a} f_n(x).$$

Следствие. Пусть ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно на X (и S(x) — его сумма). Пусть в точке $a \in X'$ каждая функция $u_n(x)$ имеет предел:

$$\exists \lim_{x \to a} u_n(x) = c_n, \quad n \in \mathbb{N}.$$

Тогда ряд $\sum_{n=1}^{\infty} \mathbf{c}_n$ сходится, функция S(x) имеет предел в точке a и

$$\lim_{x \to a} S(x) = \sum_{n=1}^{\infty} c_n \quad \Leftrightarrow \quad \lim_{x \to a} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{x \to a} u_n(x).$$

Теорема 1 (об интегрируемости предела функциональной последовательности). Если последовательность $\{f_n(x)\}$ непрерывных на [a,b] функций сходится к функции f(x) равномерно на этом отрезке, то функция f(x) интегрируема на [a,b] и

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx.$$

Теорема 2 (об интегрируемости предела функциональной последовательности). Если последовательность $\{f_n(x)\}$ интегрируемых на [a,b] функций сходится к функции f(x) равномерно на этом отрезке, то функция f(x) интегрируема на [a,b] и

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx.$$

Следствие. Если ряд $\sum_{n=1}^{\infty} u_n(x)$, составленный из интегрируемых на [a,b], функций сходится на этом отрезке равномерно, то его сумма интегрируема на [a,b] и

$$\int_{a}^{b} \sum_{n=1}^{\infty} u_n(x) \, dx = \sum_{n=1}^{\infty} \int_{a}^{b} u_n(x) \, dx.$$

Теорема 1 (о дифференцируемости предела функциональной последовательности). Пусть функции $f_n(x)$ непрерывно дифференцируемы на [a,b], и на этом отрезке последовательность $\{f_n(x)\}$ сходится поточечно к f(x), а последовательность $\{f'_n(x)\}$ сходится равномерно. Тогда функция f(x) дифференцируема на [a,b] и

$$f'(x) = \lim_{n \to \infty} f'_n(x) \quad \Leftrightarrow \quad \frac{d}{dx} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{d}{dx} f_n(x).$$

Теорема 2 (о дифференцируемости предела функциональной последовательности). Пусть функции $f_n(x)$ дифференцируемы на [a,b], и на этом отрезке последовательность $\{f'_n(x)\}$ сходится равномерно, а последовательность $\{f_n(x)\}$ сходится в некоторой точке $x_0 \in [a,b]$. Тогда последовательность $\{f_n(x)\}$ сходится на [a,b], её предел f(x) — дифференцируемая функция и

$$f'(x) = \lim_{n \to \infty} f'_n(x).$$

Следствие. Пусть функции $u_n(x)$ дифференцируемы на [a,b], ряд $\sum_{n=1}^{\infty} u'_n(x)$ равномерно сходится ся на [a,b], а ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится хотя бы в одной точке $x_0 \in [a,b]$. Тогда ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится на [a,b] равномерно, его сумма дифференцируема и

$$\frac{d}{dx}\sum_{n=1}^{\infty}u_n(x) = \sum_{n=1}^{\infty}\frac{d}{dx}u_n(x).$$