Introduction Etat de l'art Méthode Présentation des données Expérimentations Conclusion

Est-ce que ce tweet est drôle ? Détection automatique des tweets humoristiques

Adeline Granet, Alexis Linard

Université de Nantes

18 avril 2014

Définition I

Twitter

- Un des leaders parmi les réseaux sociaux
- 645 millions d'utilisateurs dont 7.3 millions en France
- 58 millions de tweets par jour

Définition II

Tweet

- Limité à 140 caractères
- Auteurs (@)
- Hashtags (#)
- Retweets, Retweeté, liens...
- Contenu bruité

Problème du format

- message subjectif
- message très court
- langage utilisé SMS, fautes de frappes

Exemple de tweets

Subjectif

Quand je me moque des handicapés on me dit, mets toi à leurs places et quand je me met à leurs places on me mets une amende de 135 euros !

Court

Il court, il court le furet #Contrepeterie

Langage SMS

mr6 bcp pr vs retweet lol!

Objectifs

Détection de l'humour

- Textes courts
- Données bruitées
- En français :
 - Pas de ressources libres
 - Pas d'étiqueteurs morpho-syntaxiques libres

Sommaire

- Introduction
- Etat de l'art
- Méthode
- 4 Présentation des données
- Expérimentations
- **6** Conclusion

Automatic humor classifcation on twitter de Raz, 2012 [3] I

- méthode de classification de tweets humoristiques en anglais selon le type de l'humour;
- algorithme semi-suprevisé
- en entrée : des tweets, en sortie : des ensembles avec les même caractéristiques

Raz, 2012 Barbosa, 2010 Autres

Automatic humor classifcation on twitter de Raz, 2012 [3] II

Caractéristiques lexicales

- appartenance à des lexiques particuliers
- présence des entités nommées
- ambiguité

Caractéristiques morphologiques

- analyse du temps des verbes
- les mots existent (ou non)

Introduction Etat de l'art Méthode Présentation des données Expérimentations Conclusion

Raz, 2012 Barbosa, 2010 Autres

Automatic humor classifcation on twitter de Raz, 2012 [3] III

Exemple: Phonologie

Leonard devint Sy

Automatic humor classifcation on twitter de Raz, 2012 [3] IV

Style

- présence de smiley
- ponctuation particulière
- hashtag

Exemple: Style

- On dit que le chien est le meilleur ami de l'homme mais les chiennes c'est pas mal non plus :)
- Quelle est l'expression préférée d'un vampire ? Bon sang !!!

Raz, 2012 Barbosa, 2010 Autres

Automatic humor classifcation on twitter de Raz, 2012 [3] V

Problème de cette méthode

- necéssité d'avoir beaucoup de ressources : lexiques de mots drôles, d'homophones, mots vulgaires...
- utilisation d'un site fermé aujourd'hui pour collecter les tweets

Robust detection on twitter from biased and noisy data de Barbosa, 2010 [1] I

Détection automatique de sentiments émis dans les tweets dont les caractéristiques sont :

- POStagging;
- la polarité et la syntaxe spécifique du tweet comme les liens;
- la ponctuation, les émoticônes, la casse des mots.

Autres I

Evaluating humour features on web comments de Reyes,2010 [4]

Evaluation du modèle d'humour dans les commentaires de blog

- liste des termes exprimant des sentiments différents : les termes à caractère sexuel, à polarité négative, sémantiquement ambigus, reflètant des sentiments, et les émoticones et termes d'argot internet.
- évaluation sur un corpus de plus d'un millions de commentaires
- résultats 60% de précision

Autres II

Characterizing humour: An exploration of features in humorous texts de Mihalcea,2007 [2]

- les faiblesses de l'homme : l'alcool, bière, ignorance, stupidité
- le domaine professionnel, exemple "Le comble pour un dentiste, c'est d'habiter dans un palais."

Méthodologie

- Création de corpus d'entraînement, ainsi que de test
- Identification des traits
- Entraînement avec Weka, et phase de test
- Identification des mesures intéressantes pour notre étude
- Amélioration avec scores de confiance

Les traits

3 caractéristiques :

- Lexicales
- Stylistiques
- Contextuelles

Les traits I

Caractéristiques lexicales

Lexique de mots construit sur la base des mots racinisés du corpus

Caractéristiques stylistiques

- La présence de hashtag :
 Exemple :"#humour" "#contrepètrie"
- La présence de smiley content ou pas content : Exemple :"c'était pas moi ;)"
- Le nombre de points d'exclamation:
 Exemple :"je suis calme!" vs " je suis calme !!!!!!!!!"

Les traits II

Caractéristiques contextuelles

- Nombre de mots dans le tweet
- Nombre de retweets
- Longueur totale du tweet
- S'il s'agit d'un retweet

Environnement de travail

Weka

Université de Waikato, Nouvelle-Zélande : suite populaire de logiciels d'apprentissage automatique parmi lesquels se trouvent des programmes réalisant de la classification.

Les méthodes utilisées

Les algorithmes de classification utilisés :

- NaiveBayes
- J48
- MultilayerPerceptron
- DecisionStump
- RandomForest

Corpora d'entraînement l

Peu de ressources libres en français dans les domaines du tweets et de l'humour

- Construction :
 - 1 corpus équilibré et 1 corpus déséquilibré
- Outil: twitter4J
- Choix des comptes "Drôles": par mots clés @100_blagues,
 @BlaguesCarambar, @BlagueJour, par notoriété @VDM
- Choix des comptes "Pas Drôles" : politique *@elysee*, journalistique *@lemondefr* et commerciaux *@m6*, *@nantesfr*

Corpora d'entraînement II

	Equilibré		Deséquilibré		
	Tweets Drôle	Tweets Pas Drôles	Tweets Drôle	Tweets Pas Drôles	
ReTweets	166	1019	166	1048	
ReTweetés	2817	4009	0	0	
Non ReTweetés	2000	1273	4785	10541	
Contrepètries	200	-	200	-	
Autodérision	200	-	200	-	
Total	4817	5282	4785	10541	

Table 1 : Composition des corpus d'entraînement

Corpus de test l

- Validation croisée : problème de sur-apprentissage
- Choix des comptes : humouristes *Gad Elmaleh, Florence* Foresti et Cyprien (un youtubeur)
- Tweets du quotidien et blagues

Phase d'annotation

• Qui: 3 annotateurs

• Tache : classer le tweet comme "Drôle" ou "Pas Drôle"

• Combien: 250 tweets

ullet Mesure : le coefficient κ

Corpus de test II

Calcul centré sur les tweets annotés comme "Drôle" :

Document	κ
Fichier 1	0.978
Fichier 2	0.967
Fichier 3	0.974

Table 2: Résultat accords inter-annotateurs

Paramètres expérimentaux

Baseline

On cherche à maximiser la précision :

- Présence de smiley content/drôle vs pas content/pas drôle
- Présence de ponctuation en surnombre

Mesure d'évaluation

- La précision dans la détection des tweets drôles
- Les autres mesures sont peu importantes

Expérimentations

	Indice de confiance	sans	0.7	0.8	0.9
Normal	DecisionStump	5.5%	0%	0%	0%
	J48	9.8%	10%	10%	11.5%
	NaiveBayes	11%	11.5%	12.3%	12.5%
	RandomForest	8.1%	10.4%	10.6%	25%
Racinisation	DecisionStump	5.5%	0%	0%	0%
	J48	7.5%	7.6%	7.6%	8.2%
	NaiveBayes	9.2%	10.7%	11.1%	11.1%
	RandomForest	8.3%	7.14%	7.4%	0%
Racinisation et Déséquilibré	DecisionStump	0%	0%	0%	0%
	J48	0%	0%	0%	0%
	NaiveBayes	0%	0%	0%	0%
	RandomForest	100%	100%	100%	100%

Table 3 : Résultats : précision sur la détection des tweets drôles, sans stemming, avec stemming, et avec stemming et corpus déséquilibré

Conclusion et Discussion

Amélioration possible

- L'étude du contexte de chaque tweet serait interessante
- Privilégier les mots les plus fréquents

Limites de notre travail

- En anglais et sur des phrases complètes : résultats corrects
- Messages courts et bruités : peu de ressources

1 tweet humoristique sur 4 détecté reste satisfaisant

References I

Barbosa, L., and Feng, J.

Robust sentiment detection on twitter from biased and noisy data.

In Proceedings of the 23rd International Conference on Computational Linguistics: Posters (Stroudsburg, PA, USA, 2010), COLING '10, Association for Computational Linguistics, pp. 36–44.

MIHALCEA, R., AND PULMAN, S. G.

Characterizing humour: An exploration of features in humorous texts. In *CICLing* (2007), A. F. Gelbukh, Ed., vol. 4394 of *Lecture Notes in Computer Science*, Springer, pp. 337–347.

RAZ, Y.

Automatic humor classification on twitter.

In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop (Stroudsburg, PA, USA, 2012), NAACL HLT '12, Association for Computational Linguistics, pp. 66–70.

Introduction
Etat de l'art
Méthode
Présentation des données
Expérimentations
Conclusion

References II

REYES, A., POTTHAST, M., ROSSO, P., AND STEIN, B. Evaluating humour features on web comments.

In *LREC* (2010), N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, M. Rosner, and D. Tapias, Eds., European Language Resources Association.