MATRIX THEORY: RANK OF MATRIX SYSTEM OF LINEAR EQUATIONS

FY BTECH SEM-I
MODULE-2
SUB-MODULE 2.4

2	Matri	Matrix Theory: Rank of Matrix		CO 2
	2.1	Types of matrices: Hermitian, Skew-Hermitian, Unitary		
		and Orthogonal matrix		
	2.2	Rank of a matrix using row echelon forms, reduction to		
		normal form, and PAQ form		
	2.3	System of homogeneous and non-homogeneous		
		equations, their consistency and solutions		
	2.4	Linearly dependent and independent vectors		
	2.5	Solution of system of linear algebraic equations by		
		(a) Gauss Seidal method (b) Jacobi iteration method		
		#Self-learning topics: Symmetric, Skew-symmetric		
		matrices and properties, Properties of adjoint and inverse		
		of a matrix		

VECTORS

- **Definition:** An ordered set of n elements x_i is called n dimensional vector or a vector of order n denoted by X.
- $X = [x_1 \ x_2 \ x_3 \x_n]$ The elements $x_1, x_2, x_3,, x_n$ are called components of X.
- X is denoted by row matrix or column matrix.
- It is more convenient to denote it as column matrix

•
$$X = [x_1 \ x_2 \ x_3 \dots x_n]^T = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{bmatrix}$$

 The vector, all of whose components are zero, is called a zero or null vector and is denoted by 0.

VECTORS

LINEARLY DEPENDENT VECTORS

- **Definition:** The set of vectors X_1 , X_2 , X_3 , X_m is said to be **Linearly Dependent** if there exist m scalars k_1 , k_2 , k_3 k_m , not all zero, such that $k_1X_1 + k_2X_2 + k_3X_3 + \cdots + k_mX_m = 0$
- If $k_1 \neq 0$, then
- $-k_1X_1 = k_2X_2 + k_3X_3 + \cdots + k_mX_m$
- $: X_1 = \mu_2 X_2 + \mu_3 X_3 + \dots + \mu_m X_m$
- where $\mu_i = -\frac{k_i}{k_1}$; i = 2,3,4,...,m
- X_1 is expressed as linear combination of X_2 , ..., X_m
- **Note:** if the set of vectors $X_1, X_2, \dots X_m$ is linearly dependent then any one vectors can be expressed as the linear combination of other vectors. LINEARLY INDEPENDENT VECTORS

• **Definition:** The set of vectors X_1, X_2, X_3, X_m is said to be **Linearly Independent** if they are not dependent.

- i.e., if $k_1X_1 + k_2X_2 + k_3X_3 + \cdots + k_mX_m = 0$
- $\Rightarrow k_i = 0$ for all i = 1, 2, ..., m
- then $X_1, X_2, X_3 \dots X_m$ are said to be Linearly Independent.

VECTORS

- For any given set of vectors $X_1, X_2, \dots X_m$,
- $k_1X_1 + k_2X_2 + k_3X_3 + \cdots + k_mX_m = 0$ will form a homogeneous system of equation, say AX = 0. Here unknowns are k_1, k_2, \dots, k_m and coefficient matrix is made up of vectors X_1, X_2, \dots, X_m as columns.
- Apply row transformations only on A and reduce the coefficient matrix A
 to row echelon form. Then find the rank A (r)
- Case(i): when rank A (r) is equal to number of variables then system has only trivial solution and vectors are independent.
- Case(ii): when rank A (r) is less than number of variables then system has infinite non-trivial solutions and they can be obtained by assigning n-r variables as parameter and vectors are dependent.

• Are the vector $X_1 = \begin{bmatrix} 1 & 3 & 4 & 2 \end{bmatrix}$, $X_2 = \begin{bmatrix} 3 & -5 & 2 & 6 \end{bmatrix}$, $X_3 = \begin{bmatrix} 2 & -1 & 3 & 4 \end{bmatrix}$ linearly dependent? If so, express X_1 as a linear combination of the others.

- Solution: Consider the matrix equation $k_1X_1 + k_2X_2 + k_3X_3 = 0$ (i)
- $k_1[1\ 3\ 4\ 2] + k_2[3\ -5\ 2\ 6] + k_3[2\ -1\ 3\ 4] = [0\ 0\ 0\ 0]$
- $k_1 + 3k_2 + 2k_3 = 0$, $3k_1 5k_2 k_3 = 0$,
- $4k_1 + 2k_2 + 3k_3 = 0$, $2k_1 + 6k_2 + 4k_3 = 0$
- which can be written in matrix form as

$$\begin{bmatrix} 1 & 3 & 2 \\ 3 & -5 & -1 \\ 4 & 2 & 3 \\ 2 & 6 & 4 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Example 1

• Applying $R_2 - 3R_1$, $R_3 - 4R_1$, $R_4 - 2R_1$, we get

$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & -14 & -7 \\ 0 & -10 & -5 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

• Applying $(-1/7)R_2$, $(-1/5)R_3$, we get

$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

• Applying $R_3 - R_2$, we get

$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Example 1 (contd..)

•
$$k_1 + 3k_2 + 2k_3 = 0$$
, $2k_2 + k_3 = 0$

- if we put $k_3 = -2t$, we get $k_2 = t$, $k_1 = t$
- Now, from (i), we get, $tX_1 + tX_2 2tX_3 = 0$ $\therefore X_1 + X_2 - 2X_3 = 0$
- Since k_1, k_2, k_3 are not all zero, the vectors are linearly dependent and $X_1 = -X_2 + 2X_3$

Example 2

Examine whether the vectors

$$X_1 = \begin{bmatrix} 3 & 1 & 1 \end{bmatrix}, X_2 = \begin{bmatrix} 2 & 0 & -1 \end{bmatrix}, X_3 = \begin{bmatrix} 4 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 are linearly dependent or independent.

- **Solution:** Consider the matrix equation k_1X_1 +
- $k_1 k_2 + k_3 = 0$
- This is a homogeneous system of equations

$$\begin{bmatrix} 3 & 2 & 4 \\ 1 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} \overline{k}_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

• By R_{13} , we get

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 2 \\ 3 & 2 & 4 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

• By $R_2 - R_1$, $R_3 - 3R_1$, we get

$$\begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$k_2 X_2 + k_3 X_3 = 0.....(i)$$
• $\therefore 3k_1 + 2k_2 + 4k_3 = 0$, $k_1 + 0k_2 + 2k_3 = 0$, By $R_3 - 5R_2$, we get
$$\begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -4 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

•
$$\Rightarrow k_1 - k_2 + k_3 = 0$$
, $k_2 + k_3 = 0$, $-4k_3 = 0$

- $\Rightarrow k_3 = 0$ and hence $k_2 = 0$ and $k_1 = 0$
- Thus non zero values of k_1 , k_2 , k_3 do not exist which can satisfy equation (i).
- Hence by definition the given system of vectors is linearly independent.

Example 3

- Show that the vectors X_1, X_2, X_3 are linearly independent and vector X_4 depends upon them, where, $X_1 = \begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$, $X_2 = \begin{bmatrix} 2 & -1 & 3 \end{bmatrix}$, $X_3 = \begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$, $X_4 = \begin{bmatrix} -3 & 7 & 2 \end{bmatrix}$
- **Solution:** consider $k_1X_1 + k_2X_2 + k_3X_3 = 0$
- $k_1[1 \ 2 \ 4] + k_2[2 \ -1 \ 3] + k_3[0 \ 1 \ 2] = [0 \ 0 \ 0]$
- $k_1 + 2k_3 + 0k_3 = 0$, $2k_1 k_2 + k_3 = 0$, $4k_1 + 3k_2 + 2k_3 = 0$,

$$\cdot \quad \therefore \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 1 \\ 4 & 3 & 2 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

• Applying $R_2 - 2R_1$, $R_3 - 4R_1$, we get

- $\begin{bmatrix} 1 & 2 & 0 \\ 0 & -5 & 1 \\ 0 & -5 & 2 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
- Applying $R_3 R_2$ we get

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & -5 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

•
$$k_1 + 2k_2 = 0$$
, $-5k_2 + k_3 = 0$, $k_3 = 0$

- $k_3 = 0$, $k_2 = 0$, $k_1 = 0$.
- Since, the rank = 3 = the number of unknowns, ∴ only trivial solution is possible.
- X_1, X_2, X_3 are linearly independent.

Example 3 (contd...)

- Now, consider the matrix equation
- $k_1X_1 + k_2X_2 + k_3X_3 + k_4X_4 = 0$ (i)
- $k_1[1\ 2\ 4] + k_2[2\ -1\ 3] + k_3[0\ 1\ 2] + k_4[-3\ 7\ 2] = 0$
- $k_1 + 2k_2 + 0k_3 3k_4 = 0$, $2k_1 k_2 + k_3 + 7k_4 = 0$, $4k_1 + 3k_2 + 2k_3 + 2k_4 = 0$
- Applying $R_2 2R_1$, $R_3 4R_1$, we get

$$\begin{bmatrix} 1 & 2 & 0 & -3 \\ 0 & -5 & 1 & 13 \\ 0 & -5 & 2 & 14 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \\ k_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

• Applying $R_3 - R_2$ we get

$$\begin{bmatrix} 1 & 2 & 0 & -3 \\ 0 & -5 & 1 & 13 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \\ k_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- $\therefore k_1 + 2k_2 3k_4 = 0$, $-5k_2 + k_3 + 13k_4 = 0$, $k_3 + k_4 = 0$ Let $k_4 = t$ $\therefore k_3 = -t$
- $\therefore -5k_2 t + 13t = 0$ $\therefore k_2 = \frac{12}{5}t$
- $\therefore k_1 + \frac{24}{5}t 3t = 0$ $\therefore k_1 = -\frac{9}{5}t$
- Putting the values of k_1, k_2, k_3, k_4 in (i) we get, $-\frac{9}{5}tX_1 + \frac{12}{5}tX_2 tX_3 + tX_4 = 0$
- $\therefore 9X_1 12X_2 + 5X_3 5X_4 = 0$
- Hence, X_1, X_2, X_3, X_4 are linearly dependent and

$$X_4 = \frac{9}{5}X_1 - \frac{12}{5}X_2 + X_3$$