Source:

- 1 | new schedule today :/
- 2 | Systems of equations, matrix equations, and vectors
- 3 | in class work! See ./KBe20math530srcNull_space_and_column_space_intro.pdf

$$3.1 \mid A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

3.1.1 | How many solutions x satisfy Ax = 0?

The only solution is x=0, because Ax = x.

3.1.2 | When the answer is "infinitely many" what tools might we have to describe the size of that set?

N/A

3.1.3 | How many possible outcomes b are there for the equation Ax = b for any x.

There can be infintely many vaules of b..? The vector space is dim 2

$$3.2 \mid A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

3.2.1 | How many solutions x satisfy Ax = 0?

Infinitely many (anything of the form $\begin{pmatrix} 0 \\ 0 \\ x \end{pmatrix}$)

3.2.2 | When the answer is "infinitely many" what tools might we have to describe the size of that set?

A column in the matrix is zero? Maybe the columns are linearly dependent. Input is dim 1

3.2.3 | How many possible outcomes b are there for the equation Ax = b for any x.

Infinite with dim2?

Exr0n · **2020-2021**

$$3.3 \mid A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

3.3.1 | How many solutions x satisfy Ax = 0?

Only one value of x makes the product zero.

3.3.2 | When the answer is "infinitely many" what tools might we have to describe the size of that set?

n/a

3.3.3 | How many possible outcomes b are there for the equation Ax = b for any x.

column vector has dimension 3, but the vector space has dim 2

$$3.4 \mid A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

3.4.1 | How many solutions x satisfy Ax = 0?

infinite, same vectors as subproblem 2

3.4.2 | When the answer is "infinitely many" what tools might we have to describe the size of that set?

dimension 2? column vectors in the matrix are linearly dependent.

3.4.3 | How many possible outcomes b are there for the equation Ax = b for any x.

infinite, dim 2 (but each vector is dim 3)

$$3.5 \mid A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

3.5.1 | How many solutions x satisfy Ax = 0?

infinite, vectors of the form $\begin{pmatrix} 0 \\ a \\ -a \end{pmatrix}$ (columns linearly dependent)

3.5.2 | When the answer is "infinitely many" what tools might we have to describe the size of that set?

dimension 2 subspace of \mathbb{F}^3

Exr0n · **2020-2021**

3.5.3 | How many possible outcomes b are there for the equation Ax = b for any x. infinite, dim2 subspace of \mathbb{F}^3

$$3.6 \mid A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

3.6.1 | How many solutions x satisfy Ax = 0?

infinite, vectors of the form $\begin{pmatrix} a \\ b \\ 0 \end{pmatrix}$ (columns linearly dependent)

3.6.2 | When the answer is "infinitely many" what tools might we have to describe the size of that set?

dim 2 subspace of \mathbb{F}^3

3.6.3 | How many possible outcomes b are there for the equation Ax=b for any x. output has dim 1

$$3.7 \mid A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 0 \\ 3 & 3 & -2 \end{pmatrix}$$

3.7.1 | How many solutions x satisfy Ax = 0?

Seems like the rows are linearly independent, so it should be just 1 solution x=0? infinite, vectors of the form $\begin{pmatrix} a \\ b \\ 0 \end{pmatrix}$ (columns linearly dependent)

3.7.2 | When the answer is "infinitely many" what tools might we have to describe the size of that set?

dim 0

3.7.3 | How many possible outcomes b are there for the equation Ax = b for any x. output should be dim 3

Exr0n · 2020-2021 Page 3

- $4\mid$ Then we talked about some stuff
- 4.1 | **see** ./KBrefHomogeneousEquations.org **and** ./KBrefColumnSpace.org
- 4.2 | The null space is the stuff that gets sent to zero (responses to subpart 1) definition to expand

See Null Spaces

Exr0n · 2020-2021 Page 4