

PCT / IB 9 8 / 0 0 6 2 5 2 4. 04. 98

09/403724

SCHWEIZERISCHE EIDGENOSSENSCHAFT

CONFÉDÉRATION SUISSE CONFEDERAZIONE SVIZZERA REC'D 2 9 APR 1998
WIPO PCT

Bescheinigung

Die beiliegenden Akten stimmen mit den ursprünglichen technischen Unterlagen des auf der nächsten Seite bezeichneten Patentgesuches für die Schweiz und Liechtenstein überein. Die Schweiz und das Fürstentum Liechtenstein bilden ein einheitliches Schutzgebiet. Der Schutz kann deshalb nur für beide Länder gemeinsam beantragt werden.

Attestation

Les documents ci-joints sont conformes aux pièces techniques originales de la demande de brevet pour la Suisse et le Liechtenstein spécifiée à la page suivante. La Suisse et la Principauté de Liechtenstein constituent un territoire unitaire de protection. La protection ne peut donc être revendiquée que pour l'ensemble des deux Etats.

PRIORITY DOCUMENT

Attestazione

Gli uniti documenti sono conformi agli atti tecnici originali della domanda di brevetto per la Svizzera e il Liechtenstein specificata nella pagina seguente. La Svizzera e il Principato di Liechtenstein formano un unico territtorio di protezione. La protezione può dunque essere rivendicata solamente per l'insieme dei due Stati.

Bern, - 3. April 1998

Eidgenössisches Institut für Geistiges Eigentum Institut Fédéral de la Propriété Intellectuelle Istituto Federale della Proprietà Intellettuale

Patentgesuche Demandes de brevet Domande di brevetto

U. Kohler

la Propriété l'intellec

Patentgesuch Nr. 1997 0966/97

HINTERLEGUNGSBESCHEINIGUNG (Art. 46 Abs. 5 PatV)

Das Eidgenössische Institut für Geistiges Eigentum bescheinigt den Eingang des unten näher bezeichneten schweizerischen Patentgesuches.

Titel:

Neurotrypsin.

Patentbewerber: Prof. Dr. Peter Sonderegger Biochemisches Institut Universität Zürich Winterthurerstrasse 190 8057 Zürich

Vertreter: Patentanwaltsbüro Zink Birchlistrasse 11 8173 Riedt-Neerach

Anmeldedatum: 26.04.1997

Voraussichtliche Klassen: A61K, C07K, C12N, C12P

10

15

20

25

Neurotrypsin

Die vorliegende Erfindung betrifft Neurotrypsine und ein Medikament, welches diese Substanzen enthält oder auf diese Substanzen einwirkt

Neurotrypsin ist eine neu entdeckte Serinprotease, welche vor allem im Gehirn und in der Lunge exprimiert wird; die Expression im Gehirn findet fast ausschliesslich in Nervenzellen statt.

Neurotrypsin hat eine bisher nicht gefundene Domänenzusammensetzung: Neben der Protease-Domäne findet man 3 oder 4 SRCR (Scavenger Receptor Cysteine-Rich)-Domänen und eine Kringle-Domäne. Es ist hervorzuheben, dass die Kombination von Kringle- und SRCR-Domänen bisher noch nie in Proteinen gefunden wurde. Am Aminoterminus des Neurotrypsin-Proteins befindet sich ein Segment von über 60 Aminosäuren, welches einen ausserordentlich hohen Anteil von Prolin und basischen Aminosäuren (Arginin und Histidin) aufweist.

Die Erfindung ist durch die Merkmale in den unabhängigen Ansprüchen gekennzeichnet. Bevorzugte Ausführungsformen sind in den abhängigen Ansprüchen definiert.

Die neu gefundenen Neurotrypsine

- Neurotrypsin des Menschen (Verbindung der Formel I),
- Neurotrypsin der Maus (Verbindung der Formel II)

unterscheiden sich strukturell sehr stark von den bisher bekannten Serinproteasen.

Die bezüglich der Protease-Domäne strukturell am nächsten mit den neuen Verbindungen verwandte Serinprotease, nämlich Plasmin (des Menschen), weist eine Aminosäuresequenz-Identität von lediglich 44% auf.

Das Prolin-reiche, basische Segment am Aminoterminus weist eine gewisse Aehnlichkeit auf zu basischen Segmenten der Netrine und der Semaphorine/Collapsine. Aufgrund dieses Segmentes ist es wahrscheinlich, dass Neurotrypsin mittels Heparin-Affinitätschromatographie angereichert werden kann.

5

10

15

20

Die Neurotrypsine des Menschen (Verbindung der Formel I), und der Maus (Verbindung der Formel II) weisen unter sich eine sehr hohe strukturelle Ähnlichkeit auf.

Die Identität der Aminosäuresequenzen der nativen Proteine der Verbindungen der Formeln I oder II beträgt 81%.

Das Neurotrypsin des Menschen (Verbindung der Formel I) weist eine codierende Sequenz von 2625 Nucleotiden auf. Das codierte Peptid der Verbindung der Formel I ist 875 Aminosäuren lang und enthält ein Signalpeptid von 20 Aminosäuren. Das Neurotrypsin der Maus (Verbindung der Formel II) weist eine codierende Sequenz von 2283 Nucleotiden auf. Das codierte Protein der Verbindung der Formel II ist 761 Aminosäuren lang und enthält ein Signalpeptid von 21 Aminosäuren. Der Grund für die grössere Länge des Neurotrypsins des Menschen liegt darin, dass dieses 4-SRCR-Domänen aufweist, während das Neurotrypsin der Maus nur 3 SRCR-Domänen hat.

Die bei beiden Verbindungen (Verbindung der Formel I und Verbindung der Formel II) vorhandenen Domänen weisen einen hohen Grad von Sequenzähnlichkeit auf. Die einander entsprechenden SRCR-Domänen der Verbindungen der Formeln I und II weisen eine Aminosäuresequenzidentität von 81% bis 91% auf. Die entsprechenden Kringle-Domänen haben eine Aminosäuresequenzidentität von 75%. Ein hoher Grad von Aehnlichkeit besteht vor allem auch in der enzymatisch aktiven (d.h. proteolytischen) Domäne (90% Aminosäuresequenzidentität).

Die Proteasedomänen der Neurotrypsine des Menschen (Verbindung der Formel I) und der Maus (Verbindung der Formel II) sind im Folgenden gegeneinander aufgereiht, um den hohen Grad von Sequenzidentität zu illustrieren.

CGLRLLHRRQKRIIGGKNSLRGGWPWQVSLRLKSSHGDGRLLCGATLLSS	50
CWVLTAAHCFKRYGNSTRSYAVRVGDYHTLVPEEFEEEIGVQQIVIHREY	100
RPDRSDYDIALVRLQGPEEQCARFSSHVLPACLPLWRERPQKTASNCYIT	150
GWGDTGRAYSRTLQQAAIPLLPKRFCEERYKGRFTGRMLCAGNLHEHKRV	200
DSCQGDSGGPLMCERPGESWVVYGVTSWGYGCGVKDSPGVYTKVSAFVPW	250
IKSVTKL . IKSVTSL	258

Von den in den Vergleich einbezogenen 258 Aminosäuresequenzpositionen sind 233 in beiden Verbindungen (Verbindung der Formel I und Verbindung der Formel II) mit der gleichen Aminosäure besetzt (markiert mit senkrechten Strichen).

Verglichen mit den bekannten Serinproteasen ist für die erfindungsgemässen Neurotrypsine einzigartig, dass sie gemäss bisherigen Erkenntnissen in ausgeprägtem Masse von Nervenzellen exprimiert werden. Ein anderes Organ mit starker Expression von Neurotrypsin ist die Lunge (siehe Gschwend et al., Mol. Cell. Neurosci., in press, 1997).

5

10

15

25

30

Die den Strukturen der Verbindungen der Formeln I oder II am stärksten gleichenden Proteine sind Serin-Proteasen, wie Gewebe-Plasminogenaktivator (tPA), Urokinase-Plasminogenaktivator (uPA), Plasmin, Trypsin, Apolipoprotein (a), Coagulation-Factor XI, Neuropsin, und Acrosin.

Im erwachsenen Gehirn werden die erfindungsgemässen Verbindungen vorwiegend in der Grosshirnrinde, dem Hippocampus und der Amygdala exprimiert.

Im erwachsenen Hirnstamm und Rückenmark werden die erfindungsgemässen Verbindungen vorwiegend in den motorischen Nervenzellen exprimiert. Eine etwas schwächere Expression ist in den Nervenzellen der oberflächlichen Schichten des Hinterhorns des Rückenmarks zu finden.

Im erwachsenen peripheren Nervensystem werden die erfindungsgemässen Verbindungen in einer Subpopulation der Spinalganglienneurone exprimiert.

Das Gen-Expressionsmuster der erfindungsgemässen Verbindungen im Gehirn ist äusserst interessant, weil diese Moleküle im adulten Nervensystem vor allem in Nervenzellen derjenigen Regionen exprimiert werden, denen eine wichtige Rolle bei Lern- und Gedächtnisfunktionen zugeschrieben wird.

Das Gen-Expressionsmuster der erfindungsgemässen Verbindungen in der Grosshirnrinde (vor allem Schicht V und VI) ist äusserst interessant, weil eine Reduktion der zellulären Differenzierung in der Grosshirnrinde in Assoziation mit Schizophrenie gefunden wurde.

Eine andere hervorzuhebende Eigenschaft der erfindungsgemässen Verbindungen besteht darin, dass sie von den Nervenzellen sezerniert werden.

Diese Tatsache - zusammen mit der Funktion als Protease und dem Expressionsmuster im sich entwickelnden und adulten Gehirn - lassen eine Rolle der erfindungsgemässen Verbindungen bei der Regulation der extrazellulären Proteolyse in Gehirnarealen vermuten, welche an der Verarbeitung und Speicherung von erlernten Verhaltensweisen, erlernten Gefühlen oder von Gedächtnisinhalten beteiligt sind.

10

15

20

25

5

Zusammen mit kürzlich gefundener Evidenz für eine Rolle von extrazellulären Proteasen bei der neuralen Plastizität, lässt das Expressionsmuster vermuten, dass die proteolytische Wirkung von Neurotrypsin eine Rolle innehat bei strukturellen Reorganisationen im Rahmen von Lern- und Gedächtnis-Operationen, zum Beispiel Operationen, welche der Verarbeitung und Speicherung von erlernten Verhaltensweisen, erlernten Gefühlen oder von Gedächtnisinhalten beteiligt sind.

Das Gen-Expressionsmuster der erfindungsgemässen Verbindungen im Rückenmark und in den Spinalganglien ist interessant, weil diese Moleküle im adulten Nervensystem in Nervenzellen derjenigen Zellgruppierungen exprimiert werden, denen eine Rolle bei der Verarbeitung von Schmerz, sowie bei der Entstehung pathologischer Schmerzzustände zugeschrieben wird.

Die erfindungsgemässen Verbindungen wurden im Rahmen einer Studie gefunden, welche zum Ziel hatte, Trypsin-ähnliche Serinproteasen im Nervensystem aufzuspüren.

Als erste wurde die Verbindung der Formel II entdeckt und charakterisiert (siehe Gschwend et al., Mol. Cell. Neurosci., in press, 1997).

30

Durch ein "Alignment" der Proteasedomänen von 7 bekannten Serinproteasen (tissue-type Plasminogenaktivator, urokinase-type Plasminogenaktivator, Thrombin, Plasmin, Trypsin, Chymotrypsin und pankreatische Elastase) in den

Regionen des Histidins und des Serins der katalytischen Triade der aktiven Stelle wurden die Sequenzen von sogenannten "Primer-Oligonucleotiden" für die Polymerasen-Kettenreaktion ermittelt.

Die Primer-Oligonucleotide wurden in einer Polymerasen-Kettenreaktion (PCR) zusammen mit ss-cDNA aus Total-RNA aus Gehirnen von 10 Tage alten Mäusen eingesetzt und führten zur Amplifizierung eines cDNA-Fragments mit einer Länge von ungefähr 500 Basenpaaren.

5

10

15

20

25

30

Dieses cDNA-Fragment wurde erfolgreich zur Isolierung von weiteren cDNA-Fragmenten aus im Handel erhältlichen cDNA-Bibliotheken eingesetzt. Zusammen erstreckten sich die isolierten cDNA-Fragmente über die volle Länge des codierten Teils der Verbindung der Formel II.

Durch herkömmliche DNA-Sequenzierung wurde die vollständige Nucleotidsequenz und die davon abgeleitete Aminosäuresequenz der Verbindung der Formel II erhalten.

Die Verbindung der Formeln I wurde aufgrund ihrer ausgeprägten Ähnlichkeit mit der Verbindung der Formel II mittels herkömmlicher PCR kloniert.

Die eingesetzten Primer-Oligonucleotide wurden gemäss der bekannten Sequenz der Verbindung der Formel II synthetisiert.

Die Klonierung der Verbindung der Formel I wurde mittels zwei im Handel erhältlichen cDNA-Bibliotheken aus fötalem menschlichen Gehirn durchgeführt.

Diese Art der Klonierung kann auch zur Isolierung der homologen Verbindung anderer Spezies, wie Ratte, Kaninchen, Meerschweinchen, Rind, Schaf, Schwein, Primaten, Vögel, Zebrafisch (Brachydanio rerio), Drosophila melanogaster, Caenorhabditis elegans etc. verwendet werden.

Die codierenden Nucleotidsequenzen können eingesetzt werden zur Erzeugung von Proteinen mit den codierten Aminosäuresequenzen der Verbindungen der Formeln I oder II. Ein in unserem Labor praktiziertes Verfahren erlaubt die Produktion von recombinanten Proteinen in Myelomazellen als Fusionsprotein mit einer Immunoglobulin-Domäne (konstante Domäne der Leichten-Kette-Kappa). Das Konstruktionsprinzip ist im Detail beschrieben durch Rader et al. (Rader et al., Eur. J. Biochem. 215, Seiten 133-141, 1993). Das so von den Myelomazellen synthetisierte Fusionsprotein wurde durch Immunoaffinitätschromatographie mittels eines monoklonalen Antikörpers gegen die Ig-Domäne der Leichten-Kette-Kappa isoliert. Mit der gleichen Expressionsmethode kann auch das native Protein einer Verbindung, ausgehend von der codierenden Sequenz, produziert werden.

5

10

15

20

25

Die codierenden Sequenzen der Verbindungen der Formeln I oder II können als Ausgangsverbindungen dienen für das Aufspüren und die Isolierung von Allelen der Verbindungen der Formeln I oder II. Sowohl die Polymerasen-Kettenreaktion, als auch die Nucleinsäure-Hybridisierung können zu diesem Zweck eingesetzt werden.

Die codierenden Sequenzen der Verbindungen der Formeln I oder II können als Ausgangsverbindungen dienen für sogenannte "site-directed mutagenesis", um Nucleotidsequenzen zu generieren, welche die durch die Verbindungen der Formeln I oder II codierten Proteine, oder Teile davon, codieren, aber als Resultat unterschiedlicher Verwendung alternativer Codons, degeneriert sind bezüglich der als Verbindungen der Formel I oder II definierten Nucleotidsequenzen.

Die codierenden Sequenzen der Verbindungen der Formeln I oder II können als Ausgangsverbindungen dienen für die Herstellung von Sequenzvarianten durch sogenannte "site-directed mutagenesis".

Die nachfolgenden Beispiele illustrieren die vorliegende Erfindung.

Beispiel 1:

5

10

15

20

cDNA-Klonierung der Verbindung der Formel II (Neurotrypsin der Maus)

Totale RNA wurde aus dem Gehirn von 10 Tage alten Mäusen (ICR-ZUR) gemäss der Methode von Chomczynski und Sacchi (1987) isoliert. Herstellung von einzelsträngiger cDNA erfolgte unter Benützung von Oligo(dT)-"Primer" und einer RNA-abhängigen DNA-Polymerase (SuperScript RNase H-Reverse Transcriptase; Gibco-BRL, Gaithersburg, MD) gemäss den Instruktionen des Herstellers. Für die Durchführung der Polymerasen-Kettenreaktion wurden ein "Primer" in Leserichtung gemäss einem Aminosäuresequenzabschnitt aus der Region des konservierten Histidins der katalytischen Triade und ein "Primer" in entgegengesetzter Richtung gemäss einem Aminosäuresequenzabschnitt aus der Region des konservierten Serins der katalytischen Triade der Serinproteasen synthetisiert. Die für die Bestimmung der Oligonucleotid-Primer eingesetzten Aminosäuresequenzen und deren Ermittlung durch den Vergleich der Sequenzen von 7 bekannten Serinproteasen ist im folgenden dargestellt.

Die Proteasen-Domänen von 7 bekannten Serinproteasen (tissue-type-Plasminogenaktivator, Urokinase-type Plasminogenaktivator, Thrombin, Plasmin, Trypsin, Chymotrypsin und pankreatische Elastase) wurden im Bereich des konservierten Histidins und Serins der katalytischen Triade der aktiven Stelle gegeneinander aufgereiht. Die in diesen Regionen konservierten Aminosäuren wurden als Ausgangssequenz für die Bestimmung von degenerierten Primern

benutzt. Die Primersequenzen sind nach der Empfehlung der IUB-Nomenklatur (Nomenclature Committee, 1985) angegeben.

Die in der PCR eingesetzten Primer trugen zur Erleichterung einer späteren Klonierung zusätzlich die Restriktionsstellen *Eco*RI und *Bam*HI am 5'-Ende.

Folgende Primer wurden eingesetzt:

In Leserichtung (sense primers):

5

10

15

20

25

30

5'-GGGGAATTCTGGGTI(C/G)(T/C)I(T/A)(G/C)IGCIGCICA(T/C)TG-3' In Gegenrichtung (antisense primers):

5'-GGGGGATCCCCICCI(G/C)(A/T)(A/G)TCICC(C/T)T(G/C/T)(G/A)CA-3'.

Die Polymerasen-Kettenreaktion wurde unter Standard-Bedingungen mittels der DNA-Polymerase AmpliTaq (Perkin Elmer) gemäss den Empfehlungen des Produzenten durchgeführt. Das folgende PCR-Profil wurde eingesetzt: 93°C für 3 Minuten, gefolgt von 35 Zyklen von 93°C für 1 Minute, 48°C für 2 Minuten und 72°C für 2 Minuten. Im Anschluss an den letzten Zyklus wurde die Inkubation bei 72°C während weiteren 10 Minuten fortgesetzt.

Die amplifizierten Fragmente hatten eine Länge von ungefähr 500 Basenpaaren. Sie wurden mit *Eco*RI und *Bam*HI geschnitten und in einen Bluescript-Vektor eingefügt (Bluescript SK(-), Stratagene). Die resultierenden Klone wurden durch DNA-Sequenzbestimmung mittels der Dideoxy-Kettenterminations-Methode (Sanger et al., Proc. Natl. Acad. Sci. USA <u>77</u>, 2163-2167, 1977) auf einem automatisierten DNA-Sequenziergerät (LI-COR, Modell 4000L; Lincoln, NE) unter Benützung eines kommerziellen Sequenzierkits (SequiTherm long-read cycle sequencing kit-LC; Epicentre Technologies, Madison, WI) analysiert. Die Analyse führte zu einer 474 Basenpaare umfassenden Sequenz aus dem katalytischen Bereich der Serinproteasedomäne der Verbindung der Formel II.

Das 474 Basenpaar lange PCR-Fragment wurde zum Absuchen einer Oligo(dT)-"primed" Uni-ZAP-XR-cDNA-Bibliothek aus Gehirn von 20 Tage alten Mäusen (Stratagene; Cat. No. 937 319) eingesetzt. Es wurden 3x10⁶ Lambda-

Plaques mittels des radioaktiv markierten PCR-Fragments unter hochstringenten Bedingungen (Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1989) abgesucht und 24 positive Klone gefunden und isoliert.

5

Aus den positiven Lambda-Uni-ZAP-XR-Phagemid-Klonen wurde das entsprechende Bluescript-Plasmid nach der Standardmethode gemäss den Empfehlungen des Herstellers (Stratagene) durch *in vivo*-Exzision herausgeschnitten. Um die Länge der eingefügten Fragmente zu bestimmen, wurden die entsprechenden Bluescript-Plasmid-Klone mit *Sac*l und *Kpn*l verdaut. Die Klone, welche die längsten Fragmente enthielten, wurden mittels DNA-Sequenzierung (wie oben beschrieben) und anschliessender Auswertung mittels der GCG-Software (Version 8.1, Unix; Silicon Graphics, Inc.) analysiert.

15

20

10

Da keiner der Klone die codierende Sequenz in voller Länge enthielt, wurde eine zweite cDNA-Bibliothek abgesucht. Die hierfür eingesetzte Bibliothek war eine Oligo(dT)- und "Random-Primed" cDNA Bibliothek in Lambda-Phagen (Lambda gt10), welche auf mRNA aus 15 Tage alten Maus-Embryonen basierte (oligo(dT)- and random-primed Lambda gt10 cDNA library; Clontech, Palo Alto, CA; Kat. No. ML 3002a). Als Sonde wurde ein radioaktiv markiertes DNA-Fragment (Aval/AatlI) vom 5'-Ende des längsten Klones der ersten Suche eingesetzt, und es wurden ungefähr 2x10⁶ Plaques abgesucht. Dabei wurden 14 positive Klone gefunden. Die cDNA-Fragmente wurden mittels *Eco*RI herausgeschnitten und in den Bluescript-Vektor (KS(+); Stratagene) kloniert. Die Sequenzanalyse erfolgte wie oben beschrieben.

25

30

Man erhielt so die Nucleotidsequenz über die volle Länge der cDNA von 2361 resp. 2376 Basenpaaren der Verbindung der Formel II. Mit dem beschriebenen Verfahren der PCR-Klonierung können auch Varianten-Formen der Verbindungen der Formeln I und II gefunden und isoliert werden, beispielsweise deren Allele, oder deren Splice-Varianten. Das beschriebene Verfahren des Absuchens einer cDNA-Bibliothek ermöglicht auch das Auffinden und die Isolierung von Verbindungen, welche unter stringenten Verbindungen an die codierenden Sequenzen der Formeln I und II hybridisieren.

Beispiel 2:

5

10

15

25

30

Klonierung der cDNA der Verbindung der Formel I (Neurotrypsin des Menschen)

Die Klonierung der cDNA der Verbindung der Formel I wurde auf der Grundlage der Nucleotid-Sequenz der Verbindung der Formel II durchgeführt. Als erster Schritt wurde ein Fragment der Verbindung der Formel I mittels Polymerasenkettenreaktion (PCR) amplifiziert. Als Matrize diente die DNA aus einer cDNA-Bibliothek vom Gehirn eines menschlichen Foetus (17. - 18. Schwangerschaftswoche), welche auf dem Markt (Oligo(dT)- and random-primed, human fetal brain cDNA library in the Lambda ZAP II vector, Cat. No. 936206, Stratagene) erhältlich ist. Die synthetischen PCR-Primer enthielten, zur Erleichterung der nachfolgenden Klonierung, die Restriktionsstellen Hind III und Xho I am 5'-Ende.

In Leserichtung (sense primers):

5'-GGGAAGCTTGGICA(A/G)TGGGGIACI(A/G)TITG(C/T)GA(C/T)-3'

20 In Gegenrichtung (antisense primer):

5'-GGGCTCGAGCCCCAICCTGTTATGTAAIAGTTG-3'

Die PCR wurde unter Standard-Bedingungen mittels der DNA-Polymerase Amplitaq (Perkin Elmer) gemäss den Empfehlungen des Produzenten durchgeführt. Das entstandene Fragment von 1116 Basenpaaren wurde in einen Bluescript-Vektor eingefügt (Bluescript SK(-), Stratagene). Ein 600 Basenpaare langes Hind III/Stu I-Fragment, entsprechend der 5'-Hälfte des 1116 Basenpaare langen PCR-Fragments, wurde zum Absuchen einer Lambda-cDNA-Bibliothek aus menschlichem foetalem Gehirn (Human Fetal Brain 5'-STRETCH PLUS cDNA library; Lambda gt10; Cat. No. HL3003a; Clontech) eingesetzt. Es wurden 2x10⁶ Lambda-Plaques mittels des radioaktiv markierten PCR-Fragments unter hochstringenten Bedingungen

(Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1989) abgesucht und 23 positive Klone gefunden und isoliert.

Aus den positiven Lambda-gt10-Klonen wurden die entsprechenden cDNA-Fragmente mit *Eco*RI herausgeschnitten und in einen Bluescript-Vektor eingefügt (Bluescript KS(+), Stratagene). Die Sequenzierung erfolgte mittels der Dideoxy-Kettenterminations-Methode (Sanger et al., Proc. Natl. Acad. Sci. USA <u>77</u>, Seiten 2163-2167, 1977), unter Verwendung eines kommerziellen Sequenzierkits (Sequi Therm long-read cycle sequencing kit-LC; Epicentre Technologies, Madison, WI) und Bluescript-spezifischen Primern.

5

10

15

20

25

In einer alternativen Sequenzier-Strategie wurden die cDNA-Fragmente der positiven Lambda-gt10-Klone, unter Verwendung Lambda-spezifischer Primer, mittels PCR amplifiziert. Die Sequenzierung wurde wie oben beschrieben durchgeführt.

Die computerisierte Analyse der Sequenzen wurde mittels des Programmpakets GCG (Version 8.1, Unix; Silicon Graphics Inc.) durchgeführt.

Man erhielt so die Nucleotid-Sequenz über die volle Länge der cDNA von 3350 Basenpaaren. Mit dem beschriebenen Verfahren der PCR-Klonierung können auch Varianten-Formen der Verbindungen der Formeln I oder II gefunden und isoliert werden, beispielsweise deren Allele, oder deren Splice-Varianten. Das beschriebene Verfahren des Absuchens einer cDNA-Bibliothek ermöglicht auch das Auffinden und die Isolierung von Verbindungen, welche unter stringenten Bedingungen an die codierenden Sequenzen der Formeln I oder II hybridisieren.

Beispiel 3:

Nachweis der codierten Sequenzen der Verbindungen I oder II mittels Antikörpern

5

10

Das mehr als 60 Aminosäuren lange Prolin-reiche, basische Segment am Aminoterminus der codierten Sequenz der Verbindungen der Formeln I oder II eignet sich gut für die Herstellung von Antikörpern mittels der Synthese von Peptiden und deren Einsatz zur Immunisierung. Wir haben aus dem Prolin-reichen, basischen Segment am Aminoterminus der codierten Sequenz der Verbindung der Formel II zwei Peptidsequenzen mit einer Länge von 19, respektive 13, Aminosäuren zur Erzeugung von Antikörpern ausgewählt. Die Peptide hatten folgen Sequenzen:

Peptid 1: H2N-SRS PLH RPH PSP PRS QX-CONH,

Peptid 2: H₂N-LPS SRR PPR TPR F-COOH

15

20

Die beiden Peptide wurden chemisch synthetisiert, an eine makromolekulare Trägersubstanz (Keyhole Limpet Hemacyanin) gekoppelt, und zur Immunisierung von 2 Kaninchen injiziert. Die erzeugten Antiseren wiesen einen hohen Antikörper-Titer auf und konnten erfolgreich sowohl zur Identifizierung von nativem Neurotrypsin aus Gehirnextrakt der Maus als auch zur Identifizierung von recombinantem Neurotrypsin eingesetzt werden. Das angewandte Verfahren zur Erzeugung von Antikörpern kann auch zur Erzeugung von Antikörpern gegen die codierte Sequenz der Verbindung der Formel I angewendet werden.

25

30

Die erzeugten Antikörper gegen die Teilsequenzen der codierten Sequenzen der Formeln I oder II können zur Aufspürung und zur Isolierung von Varianten-Formen der Verbindungen der Formeln I oder II, wie beispielsweise Allele oder Splice-Varianten, eingesetzt werden. Auch gentechnisch erzeugte Varianten der Verbindungen der Formeln I oder II können mit solchen Antikörpern aufgespürt und isoliert werden.

Beispiel 4:

5

10

15

20

Reinigung der codierten Sequenzen der Verbindungen der Formeln I oder II

Zur Reinigung der codierten Sequenzen der Verbindungen der Formeln I oder II können, neben konventionellen chromatographischen Methoden, wie beispielsweise Ionenaustauscher-Chromatograpohie, zwei affinitätschromatographischen Methoden eingesetzt werden. Eine der affinitätschromatographischen Reinigungsprozeduren basiert auf der Verfügbarkeit von Antikörpern. Durch Kopplung der Antikörper an eine chromatographische Matrix kann ein Reinigungsverfahren erzeugt werden, das in einem Schritt einen sehr hohen Grad an Reinheit der entsprechenden Verbindung verspricht.

Ein für die Reinigung der codierten Sequenzen der Verbindungen der Formeln I und II ebenfalls wichtiges Merkmal ist das Prolin-reiche, basische Segment am Aminoterminus. Es ist zu erwarten, dass, aufgrund der hohen Dichte an positiven Ladungen, dieses Segment die Bindung der codierten Sequenzen der Verbindungen der Formeln I oder II an Heparin und Heparin-ähnliche Affinitätsmatrices vermittelt. Dieses Prinzip ermöglicht auch die Isolierung, oder zumindest die Anreicherung von Varianten-Formen der codierten Sequenzen der Formeln I oder II, beispielsweise deren Allele oder Splice-Varianten. Gleichermassen kann die Heparin-Affinitätschromatographie auch zur Isolierung, oder zumindest zur Anreicherung, von spezieshomologen Proteinen der Verbindungen der Formeln I oder II eingesetzt werden.

25

Nachfolgend werden Angaben zu den Verbindungen der Formeln I oder II gemacht.

10

15

20

25

(B)

CLONE: cDNA-Klone No.:

3-1, 3-2, 3-6, 3-7, 3-8, 3-10, 3-11, 3-12

(1)	ANGABEN ZUR VERBINDUNG DER FORMEL I (Neurotrypsin des Menschen)						
(i)	SEQUENZKENNZEICHEN:						
(A)	LÄNGE: 3350 Basenpaare						
(B)	ART: Nucleinsäure						
(C)	STRANGFORM: Einzelstrang						
(D)	TOPOLOGIE: linear						
(D)	TOT OLOGIC. IIIIeai						
(ii)	ART DES MOLEKÜLS: c-DNA zu m-RNA						
(vi)	URSPRÜNGLICHE HERKUNKFT:						
(A)	ORGANISMUS: Homo sapiens						
(D)	ENTWICKLUNGSSTADIUM: Foetalstadium						
(F)	GEWEBETYP: Gehirn						
(,	5=V===V.V. 55						
(vii)	UNMITTELBARE HERKUNFT:						
(A)	BIBLIOTHEK: human fetal brain 5'-stretch plus cDNA library in the lambda gt10 vector; catalog No. HL 3003a; clontech, Palo Alto, CA, USA.						

	(ix)	MERKMAL:
	(A)	NAME/SCHLÜSSEL: Signalpeptid
	(B)	
5		
	(ix)	MERKMAL:
	(A)	NAME/SCHLÜSSEL: reifes Peptid
10	(B)	LAGE: 104 2668
	(ix)	MERKMAL:
15	(A)	NAME/SCHLÜSSEL: codierende Sequenz
	(B)	
	(ix)	MERKMAL:
20		
	(A)	NAME/SCHLÜSSEL: Protein-reiches basisches Segment
	(B)	LAGE: 104 319
25	(ix)	MERKMAL:
	(4)	NAME/OOU "OOT
	(A) (B)	NAME/SCHLÜSSEL: Kringle-Domäne LAGE: 320 538
	(5)	- Cal. 020 000

		(12)	MET HAMPE.
			NAME/SCHLÜSSEL: SRCR-Domäne 1
		(B)	LAGE: 551 856
	5		
		(ix)	MERKMAL:
_		(A)	NAME/SCHLÜSSEL: SRCR-Domäne 2
	10		LAGE: 881 1186
		(ix)	MERKMAL:
		(IX)	WERKWAL.
	15	(A)	NAME/SCHLÜSSEL: SRCR-Domäne 3
		(B)	LAGE: 1202 1504
		(ix)	MERKMAL:
	20	()	
		(A)	NAME/SCHLÜSSEL: SRCR-Domäne 4
		(B)	LAGE: 1541 1846
	25	(ix)	MERKMAL:
			NAME/SCHLÜSSEL: proteolytische Domäne
		(B)	LAGE: 1898 2668

	(ix)	MERKMAL:
	(A) (B)	NAME/SCHLÜSSEL: Histidin der katalytischen Triade LAGE: 2069 - 2071
5		
	(ix)	MERKMAL:
10	(A)	NAME/SCHLÜSSEL: Asparaginsäure der katalytischen Triade
10	(B)	LAGE: 2219 - 2221
	(ix)	MERKMAL:
15	(A)	NAME/SCHLÜSSEL: Serin der katalytischen Triade
	(B)	LAGE: 2516 2518
20	(ix)	MERKMAL:
	(A)	NAME/SCHLÜSSEL: PolyA-Signal
	(B)	LAGE: 2873 2878
25	C. A	
25	(ix)	MERKMAL
	(A)	NAME/SCHLÜSSEL: PolyA-Signal
	(B)	LAGE: 3034 3039
30		
	(ix)	MERKMAL:

- (A) NAME/SCHLÜSSEL: PolyA-Signal
- (B) LAGE: 3215 .. 3220
- 5 (ix) MERKMAL
 - (A) NAME/SCHLÜSSEL: 3'UTR
 - (B) LAGE: 2669 .. 3350

- (ix) MERKMAL
- (A) NAME/SCHLÜSSEL: 5'UTR
- (B) LAGE: 1 .. 43

Verbindung der Formel I (Neurotrypsin des Menschen)

CGG	GAAGO	CTGG	GGA	GCATO	GGA (CCAG	, ACCC(CG C#	AGCG	CTGG(C ACC	ATC Met	Thr	G CTC	C GCC	55
•••	-15	5	т пес	, HIC	. Let	-10	Let	ı Gly	r Ala	ı Let	Pro	Glu	ı Val	. Val	GGC Gly -1	103
1	. Ast	, ser	. vai	. <u>ге</u> и	. Asn	Asp	Ser	Leu	His 10	His	Ser	His	Arg	His 15		151
110		ALC	20	PIO	nis	Tyr	Pro	25	Tyr	. Leu	CCC Pro	Thr	Gln 30	Gln	Arg	199
FIO	FIO	35	1111	Arg	Pro	Pro	Pro 40	Pro	Leu	Pro	CGC Arg	Phe 45	Pro	Arg	Pro	247
110	50	Aia	Deu	FLO	Ala	55	Arg	Pro	His	Ala	CTC Leu 60	Gln	Ala	Gly	His	295
65	FIO	Arg	PIO	HIS	70	Trp	GIY	Cys	Pro	Ala 75	GGC Gly	Glu	Pro	Trp	Val 80	343
DCI	vai	****	nsp	85	GIY	Ala	Pro	Cys	Leu 90	Arg	TGG Trp	Ala	Glu	Val 95	Pro	391
110	7 116	Deu	100	Arg	ser	Pro	Pro	A1a 105	Ser	Trp	GCT Ala	Gln	Leu 110	Arg	Gly	439
GIII	nrg	115	ASII	rne	cys	Arg	Ser 120	Pro	Asp	Gly	GCG Ala	Gly 125	Arg	Pro	Trp	487
Cys	130	ıyı	GIY	ASP	Ala	Arg 135	GIÀ	Lys	Val	Asp	TGG Trp 140	Gly	Tyr	Cys	Asp	535
145	nig	1113	GIY	ser	150	Arg	ren	Arg	Gly	Gly 155	AAA Lys	Asn	Glu	Phe	Glu 160	583
Uly	1111	vai	GIU	165	Tyr	Ala	Ser	Gly	Val 170	Trp		Thr	Val	Cys 175	Ser	631
AGC Ser	CAC His	TGG Trp	GAT Asp 180	GAT Asp	TCT Ser	GAT (Asp .	мта	TCA Ser 185	GTC Val	ATT Ile	TGT Cys	CAC His	CAG Gln 190	CTG Leu	CAG Gln	679

GGA Gly								727
ATT Ile 210								775
ATA Ile								823
AAG Lys								871
CCC Pro								919
GAG Glu		_						967
GAT Asp 290								1015
ATT Ile								1063
GTT Val								1111
CAG Gln								1159
GAT Asp								1207
GCA Ala 370								1255
GGC Gly								1303
TAC Tyr								1351
GCC Ala								1399

GTC Val	C AGC . Ser	TGC Cys 435	TCA Ser	GGA Gly	AAG Lys	GAA Glu	ACC Thr 440	Arg	TTT Phe	CTI Leu	' CAG	TGT Cys 445	Ser	AGG Arg	CGA Arg	1447
CAG Gln	TGG Trp 450	GGA Gly	AGG Arg	CAT	'GAC	TGC Cys 455	AGC Ser	CAC His	CGC Arg	GAA Glu	GAT Asp 460	GTT Val	AGC Ser	ATT Ile	GCC Ala	1495
TGC Cys 465	Tyr	CCT Pro	GGC Gly	GGC Gly	GAG Glu 470	GGA Gly	CAC His	AGG Arg	CTC Leu	TCT Ser 475	Leu	GGT Gly	TTT Phe	CCT Pro	GTC Val 480	1543
AGA Arg	CTG Leu	ATG Met	GAT Asp	GGA Gly 485	GAA Glu	AAT Asn	AAG Lys	AAA Lys	GAA Glu 490	GGA Gly	CGA Arg	GTG Val	GAG Glu	GTT Val 495	TTT Phe	1591
ATC Ile	AAT Asn	GGC	CAG Gln 500	TGG Trp	GGA Gly	ACA Thr	ATC Ile	TGT Cys 505	GAT Asp	GAT Asp	GGA Gly	TGG Trp	ACT Thr 510	GAT Asp	AAG Lys	1639
GAT Asp	GCA Ala	GCT Ala 515	GTG Val	ATC Ile	TGT Cys	CGT Arg	CAG Gln 520	CTT Leu	GGC Gly	TAC Tyr	AAG Lys	GGT Gly 525	CCT Pro	GCC Ala	AGA Arg	1687
GCA Ala	AGA Arg 530	ACC Thr	ATG Met	GCT Ala	TAC Tyr	TTT Phe 535	GGA Gly	GAA Glu	GGA Gly	AAA Lys	GGA Gly 540	CCC Pro	ATC Ile	CAT His	GTG Val	1735
GAT Asp 545	AAT Asn	GTG Val	AAG Lys	TGC Cys	ACA Thr 550	GGA Gly	AAT Asn	GAG Glu	AGG Arg	TCC Ser 555	TTG Leu	GCT Ala	GAC Asp	TGT Cys	ATC Ile 560	1783
AAG Lys	CAA Gln	GAT Asp	ATT Ile	GGA Gly 565	AGA Arg	CAC His	AAC Asn	TGC Cys	CGC Arg 570	CAC His	AGT Ser	GAA Glu	GAT Asp	GCA Ala 575	GGA Gly	1831
GTT Val	ATT Ile	TGT Cys	GAT Asp 580	TAT Tyr	TTT Phe	GGC Gly	AAG Lys	AAG Lys 585	GCC Ala	TCA Ser	GGT Gly	AAC Asn	AGT Ser 590	AAT Asn	AAA Lys	1879
GAG Glu	TCC Ser	CTC Leu 595	TCA Ser	TCT Ser	GTT Val	TGT Cys	GGC Gly 600	TTG Leu	AGA Arg	TTA Leu	CTG Leu	CAC His 605	CGT Arg	CGG Arg	CAG Gln	1927
AAG Lys	CGG Arg 610	ATC Ile	ATT Ile	GGT Gly	GGG Gly	AAA Lys 615	AAT Asn	TCT Ser	TTA Leu	AGG Arg	GGT Gly 620	GGT Gly	TGG Trp	CCT Pro	TGG Trp	1975
CAG Gln 625	GTT Val	TCC Ser	CTC Leu	CGG Arg	CTG Leu 630	AAG Lys	TCA Ser	TCC Ser	CAT His	GGA Gly 635	GAT Asp	GGC Gly	AGG Arg	CTC Leu	CTC Leu 640	2023
Cys	GIY	Ala		Leu 645	Leu	Ser	Ser	Cys	Trp 650	Val	Leu	Thr	Ala	Ala 655	His	2071
TGT Cys	TTC Phe	AAG Lys	AGG Arg 660	TAT Tyr	GGC Gly	AAC Asn	Ser	ACT Thr 665	AGG Arg	AGC Ser	TAT Tyr	GCT Ala	GTT Val 670	AGG Arg	GTT Val	2119

GGA GAT TAT CAT ACT CTG GTA CCA GAG GAG TTT GAG GAA GAA ATT GGA Gly Asp Tyr His Thr Leu Val Pro Glu Glu Phe Glu Glu Glu Ile Gly 675 680 685	2167
GTT CAA CAG ATT GTG ATT CAT CGG GAG TAT CGA CCC GAC CGC AGT GAT Val Gln Gln Ile Val Ile His Arg Glu Tyr Arg Pro Asp Arg Ser Asp 690 695 700	2215
TAT GAC ATA GCC CTG GTT AGA TTA CAA GGA CCA GAA GAG CAA TGT GCC Tyr Asp Ile Ala Leu Val Arg Leu Gln Gly Pro Glu Glu Gln Cys Ala 705 710 715 720	2263
AGA TTC AGC AGC CAT GTT TTG CCA GCC TGT TTA CCA CTC TGG AGA GAG Arg Phe Ser Ser His Val Leu Pro Ala Cys Leu Pro Leu Trp Arg Glu 725 730 735	2311
AGG CCA CAG AAA ACA GCA TCC AAC TGT TAC ATA ACA GGA TGG GGT GAC Arg Pro Gln Lys Thr Ala Ser Asn Cys Tyr Ile Thr Gly Trp Gly Asp 740 745 750	2359
ACA GGA CGA GCC TAT TCA AGA ACA CTA CAA CAA GCA GCC ATT CCC TTA Thr Gly Arg Ala Tyr Ser Arg Thr Leu Gln Gln Ala Ala Ile Pro Leu 755 760 765	2407
CTT CCT AAA AGG TTT TGT GAA GAA CGT TAT AAG GGT CGG TTT ACA GGG Leu Pro Lys Arg Phe Cys Glu Glu Arg Tyr Lys Gly Arg Phe Thr Gly 770 775 780	2455
AGA ATG CTT TGT GCT GGA AAC CTC CAT GAA CAC AAA CGC GTG GAC AGC Arg Met Leu Cys Ala Gly Asn Leu His Glu His Lys Arg Val Asp Ser 785	2503
TGC CAG GGA GAC AGC GGA GGA CCA CTC ATG TGT GAA CGG CCC GGA GAG Cys Gln Gly Asp Ser Gly Gly Pro Leu Met Cys Glu Arg Pro Gly Glu 805	2551
AGC TGG GTG GTG TAT GGG GTG ACC TCC TGG GGG TAT GGC TGT GGA GTC Ser Trp Val Val Tyr Gly Val Thr Ser Trp Gly Tyr Gly Cys Gly Val 820 825 830	2599
AAG GAT TCT CCT GGT GTT TAT ACC AAA GTC TCA GCC TTT GTA CCT TGG Lys Asp Ser Pro Gly Val Tyr Thr Lys Val Ser Ala Phe Val Pro Trp 835 840 845	2647
ATA AAA AGT GTC ACC AAA CTG TAA TTCTTCATGG AAACTTCAAA GCAGCATTT Ile Lys Ser Val Thr Lys Leu * 850	2700
AAACAAATGG AAAACTTTGA ACCCCCACTA TTAGCACTCA GCAGAGATGA CAACAAATGG	G 2760
CAAGATCTGT TTTTGCTTTG TGTTGTGGTA AAAAATTGTG TACCCCCTGC TGCTTTTGAG	G 2820
AAATTTGTGA ACATTTTCAG AGGCCTCAGT GTAGTGGAAG TGATAATCCT TAAATGAAC.	A 2880
TTTTCTACCC TAATTTCACT GGAGTGACTT ATTCTAAGCC TCATCTATCC CCTACCTAT	r 2940

TCTCAAAATC	ATTCTATGCT	GATTTTACAA	AAGATCATTT	TTACATTTGA	ACTGAGAACC	3000
ССТТТТААТТ	GAATCAGTGG	TGTCTGAAAT	САТАТТАААТ	ACCCACATTT	GACATAAATG	3060
CGGTACCCTT	TACTACACTC	ATGAGTGGCA	TATTTATGCT	TAGGTCTTTT	CAAAAGACTT	3120
GACAAGAAAT	CTTCATATTC	TCTGTAGCCT	TTGTCAAGTG	AGGAAATCAG	TGGTTAAAGA	3180
ATTCCACTAT	AAACTTTTAG	GCCTGAATAG	GAGTAGTAAA	GCCTCAAGGA	CATCTGCCTG	3240
TCACAATATA	TTCTCAAAGT	GATCTGATAT	TTGGAAACAA	GTATCCTTGT	TGAGTACCAA	3300
GTGCTACAGA	AACCATAAGA	ТАААААТАСТ	TTCTACCTAC	AGCGTGCCCG		3350

(1)	ANGABEN ZUR VERBINDUNG DER FORMEL II (Neurotrypsin der Maus)									
(i)	SEQUENZKENNZEICHEN:									
(A)	LÄNGE: 2376	LÄNGE: 2376 Basenpaare								
(B)	ART: Nucleins	äure								
(C)	STRANGFOR	M: Einzelstrang								
(D)	TOPOLOGIE: linear									
(ii)	ART DES MOLEKÜLS: c-DNA zu m-RNA									
(vi)	URSPRÜNGLICHE HERKUNKFT:									
(A)	ORGANISMUS: Mus musculus									
(D)	ENTWICKLUNGSSTADIUM: Postnatal-Tag 10									
(F)	GEWEBETYP: Gehirn									
(G)	ZELLTYP: Neuronen									
(vii)	UNMITTELBA	RE HERKUNFT:								
(A)	BIBLIOTHEK:	mouse brain cDNA library in the lambda Uni-ZAP-XR vector, oligo (dT)-primed, from Balb c mice, postnatal day 20, Cat. No 937 319; Stratagene, La Jolla, CA, USA								
(B)	CLONE: cDNA	clone no. 16								
(vii)	UNMITTELBAI	RE HERKUNFT:								
(A)	BIBLIOTHEK:	mouse brain cDNA library in the Lambda gt10 vector, oligo(dT)- and random-primed, embryonic day 15, Cat. No. ML 3002a; Clontech, Palo Alto, CA, USA								

	(B)	CLONE: cDNA clone #25
5 [.]	(ix)	MERKMAL:
3	(A)	NAME/SCHLÜSSEL: Signalpeptid
	(B)	LAGE: 24 86
10	(ix)	MERKMAL:
	(A)	NAME/SCHLÜSSEL: reifes Peptid
	(B)	LAGE: 87 2306
15		
	(ix)	MERKMAL:
	(A)	NAME/SCHLÜSSEL: codierende Sequenz
•	(B)	
20		
	(ix)	MERKMAL:
	(A)	NAME/SCHLÜSSEL: Protein-reiches basisches Segment
25	(B)	LAGE: 90 275
	(i.e.)	MEDIA
	(ix)	MERKMAL:
30	(A)	NAME/SCHLÜSSEL: Kringle-Domäne
	(B)	LAGE: 276 494

	(ix)	MERKMAL:
5	(A) (B)	NAME/SCHLÜSSEL: SRCR-Domäne 1 LAGE: 519 824
	(ix)	MERKMAL:
10	(A) (B)	NAME/SCHLÜSSEL: SRCR-Domäne 2 LAGE: 840 1142
15		MERKMAL: NAME/SCHLÜSSEL: SRCR-Domäne 3
	(B)	LAGE: 1179 1484
20	(ix)	MERKMAL:
	(A) (B)	NAME/SCHLÜSSEL: proteolytische Domäne LAGE: 1536 2306
25	(ix)	MERKMAL:
	(A)	NAME/SCHLÜSSEL: Histidin der katalytischen Triade

(B)

LAGE: 1707 .. 1709

	(ix)	MERKMAL:
	(A)	NAME/SCHLÜSSEL: Asparaginsäure der katalytischen Triade
5	(B)	LAGE: 1857 1859
	(ix)	MERKMAL:
10	(A)	NAME/SCHLÜSSEL: Serin der katalytischen Triade
	(B)	LAGE: 2154 2156
	(ix)	MERKMAL:
15	(A)	NAME/SCHLÜSSEL: PolyA-Signal
	(B)	LAGE: 2324 2329 und 2331 2336
	(ix)	MERKMAL:
20	(A)	NAME/SCHLÜSSEL: PolyA-Bereich
	(B)	LAGE: 2357 2376
	(ix)	MERKMAL:
25	(A)	NAME/SCHLÜSSEL: 3'UTR
	(B)	LAGE: 2307 2341 oder 2307 2356

(ix) MERKMAL:

(A) NAME/SCHLÜSSEL: 5'UTR

5 (B) LAGE: 1 .. 23

Verbindung der Formel II (Neurotrypsin der Maus)

GGACCACACT CGGCGCCGCA GCC ATG GCG CTC GCC CGC TGC GTG GCT GTG Met Ala Leu Ala Arg Cys Val Leu Ala Val -20 -15													53				
AT:	TTA Lev -10	7 677	G GCA 7 Ala	A CTO	TC1	r GTA Val	. Val	G GCC L Ala	C CGC	C GCT J Ala	GAT A Asr	CCC Pro	GTC Val	TCG Ser	G CGC Arg 5		101
TC1 Ser	CCC Pro	CTI Lev	CAC His	C CGC Arg	PIC	G CAT	CCG Pro	TCC Ser	CCA Pro	Pro	G CGT	TCC Ser	CAA Gln	CAC His	GCG Ala		149
1112	, IXI	neu	25	ser	ser	Arg	Arg	Pro 30	Pro	Arg	Thr	Pro	Arg 35	Phe	CCG Pro		197
Dea	110	40	AIG	116	PIO	Ala	A1a 45	Gin	Arg	Pro	Gln	Val 50	Leu	Ser	ACC Thr		245
Gly	55	1111	PIO	PIO	Thr	60 11e	Pro	Arg	Arg	Cys	Gly 65	Ala	Gly	Glu			293
70	GGC Gly	ASII	AIG	1111	75	reu	GIÀ	Val	Pro	Cys 80	Leu	His	Trp	Asp	Glu 85		341
vai	CCG Pro	PIO	Pne	90	Glu	Arg	Ser	Pro	Pro 95	Ala	Ser	Trp	Ala	Glu 100	Leu		389
	GGG Gly	GIII	105	nis	ASII	Pne	Cys	Arg 110	Ser	Pro	Asp	Gly	Ser 115	Gly	Arg		437
110	TGG Trp	120	rne	TYE	Arg	Asn	Ala 125	Gln	Gly	Lys	Val	Asp 130	Trp	Gly	Tyr		485
C _f S	GAT Asp 135	Cys	GIY	GIII	GTÀ	140	Ala	Leu	Pro	Val	11e 145	Arg	Leu	Val	Gly		533
GGG Gly 150	AAC Asn	AGT Ser	GGG Gly	CAT His	GAA Glu 155	GGT Gly	CGA Arg	GTG Val	GAG Glu	CTG Leu 160	TAC Tyr	CAC His	GCT Ala	GGC Gly	CAG Gln 165		581
115	GGG Gly	1111	116	170	Asp	Asp	GIn	Trp	Asp 175	Asn	Ala	qaA	Ala	Asp 180	Val		629
ATC Ile	TGT Cys	••• 9	CAG Gln 185	CTG Leu	GGG Gly	CTC Leu	AGT Ser	GGC Gly 190	ATT Ile	GCC Ala	AAA Lys	GCA Ala	TGG Trp 195	CAT His	CAG Gln		677

GCA Ala	CAT His	TTT Phe 200	GGG Gly	GAA Glu	GGA Gly	TCT Ser	GGC Gly 205	Pro	ATA Ile	TTG Leu	TTG Leu	GAT Asp 210	GAA Glu	GTA Val	CGC Arg	725
TGC Cys	ACC Thr 215	GGA Gly	AAC Asn	GAG Glu	CTG Leu	TCA Ser 220	ATT Ile	GAG Glu	CAA Gln	TGT Cys	CCA Pro 225	AAG Lys	AGT Ser	TCC Ser	TGG Trp	773
GGC Gly 230	Glu	CAT His	AAC Asn	TGT Cys	GGC Gly 235	CAT His	AAA Lys	GAA Glu	GAT Asp	GCT Ala 240	GGA Gly	GTG Val	TCT Ser	TGT Cys	GTT Val 245	821
CCT Pro	CTA Leu	ACA Thr	GÁT Asp	GGT Gly 250	GTC Val	ATC Ile	AGA Arg	CTG Leu	GCA Ala 255	GGA Gly	GGA Gly	AAA Lys	AGT Ser	ACC Thr 260	CAT His	869
GAA Glu	GGT Gly	CGC Arg	CTG Leu 265	GAG Glu	GTC Val	TAC Tyr	TAC Tyr	AAG Lys 270	GGG Gly	CAG Gln	TGG Trp	GGG Gly	ACA Thr 275	GTC Val	TGT Cys	917
GAT Asp	GAT Asp	GGC Gly 280	TGG Trp	ACT Thr	GAG Glu	ATG Met	AAC Asn 285	ACA Thr	TAC Tyr	GTG Val	GCT Ala	TGT Cys 290	CGA Arg	CTG Leu	CTG Leu	965
GGA Gly	TTT Phe 295	AAA Lys	TAC Tyr	GGC Gly	AAA Lys	CAG Gln 300	TCC Ser	TCT Ser	GTG Val	AAC Asn	CAT His 305	TTT Phe	GAT Asp	GGC Gly	AGC Ser	1013
AAC Asn 310	AGG Arg	CCC Pro	ATA Ile	TGG Trp	CTG Leu 315	GAT Asp	GAC Asp	GTC Val	AGC Ser	TGC Cys 320	TCA Ser	GGA Gly	AAA Lys	GAA Glu	GTC Val 325	1061
AGC Ser	TTC Phe	ATT Ile	CAG Gln	TGT Cys 330	TCC Ser	AGG Arg	AGA Arg	CAG Gln	TGG Trp 335	GGA Gly	AGG Arg	CAT His	GAC Asp	TGC Cys 340	AGC Ser	1109
CAT	AGA Arg	GAA Glu	GAT Asp 345	GTG Val	GGC Gly	CTC Leu	ACC Thr	TGC Cys 350	TAT Tyr	CCT Pro	GAC Asp	AGC Ser	GAT Asp 355	GGA Gly	CAT His	1157
Arg	Leu	Ser 360	CCA Pro	Gly	Phe	Pro	Ile 365	Arg	Leu	Val	Asp	Gly 370	Glu	Asn	Lys	1205
AAG Lys	GAA Glu 375	GGA Gly	CGA Arg	GTG Val	GAG Glu	GTT Val 380	TTT Phe	GTC Val	AAT Asn	GGC Gly	CAA Gln 385	TGG Trp	GGA Gly	ACA Thr	ATC Ile	1253
Cys 390	Asp	Asp	GGA Gly	Trp	Thr 395	Asp	Lys	His	Ala	Ala 400	Val	Ile	Cys	Arg	Gln 405	1301
Leu	Gly	Tyr		Gly 410	Pro	Ala	Arg	Ala	Arg 415	Thr	Met	Ala	Tyr	Phe 420	Gly	1349
GAA Glu	GGA Gly	AAA Lys	GGC Gly 425	CCC Pro	ATC Ile	CAC His	ATG Met	GAT Asp 430	AAT Asn	GTG Val	AAG Lys	TGC Cys	ACA Thr 435	GGA Gly	AAT Asn	1397

_

GAG Glu	AAG Lys	GCC Ala 440	CTG Leu	GCT Ala	'GAC Asp	TGT Cys	GTC Val 445	Lys	CAA Gln	GAC Asp	ATT Ile	GGA Gly 450	AGG Arg	CAC His	AAC Asn	1445
TGC Cys	CGC Arg 455	Hls	AGT Ser	GAG Glu	GAT Asp	GCA Ala 460	GGA Gly	GTC Val	ATC Ile	TGT Cys	GAC Asp 465	тат Туг	TTA Leu	GAG Glu	AAG Lys	1493
AAA Lys 470	Ala	TCA Ser	AGT Ser	AGT Ser	GGT Gly 475	AAT Asn	AAA Lys	GAG Glu	ATG Met	CTC Leu 480	TCA Ser	TCT Ser	GGA Gly	TGT Cys	GGA Gly 485	1541
CTG Leu	AGG Arg	TTA Leu	CTG Leu	CAC His 490	CGT Arg	CGG Arg	CAG Gln	AAA Lys	CGG Arg 495	Ile	ATT Ile	GGT Gly	GGG Gly	AAC Asn 500	AAT Asn	1589
TCT Ser	TTA Leu	AGG Arg	GGT Gly 505	GCC Ala	TGG Trp	CCT Pro	TGG Trp	CAG Gln 510	GCT Ala	TCC Ser	CTC Leu	AGG Arg	CTG Leu 515	AGG Arg	TCG Ser	1637
GCC Ala	CAT His	GGA Gly 520	GAC Asp	GGC Gly	AGG Arg	CTG Leu	CTT Leu 525	TGT Cys	GGA Gly	GCT Ala	ACC Thr	CTT Leu 530	CTG Leu	AGT Ser	AGC Ser	1685
Cys	Trp 535	Val	CTG Leu	Thr	Ala	Ala 540	His	Cys	Phe	Lys	Arg 545	Tyr	Gly	Asn	Asn	1733
Ser 550	Arg	Ser	тат Туг	Ala	Val 555	Arg	Val	Gly	Asp	Tyr 560	His	Thr	Leu	Val	Pro 565	1781
GIu	Glu	Phe	GAA Glu	Gln 570	Glu	Ile	Gly	Val	Gln 575	Gln	Ile	Val	Ile	His 580	Arg	1829
Asn	Tyr	Arg	CCA Pro 585	Asp	Arg	Ser	Asp	Туr 590	Asp	Ile	Ala	Leu	Val 595	Arg	Leu	1877
GIn	Gly	Pro 600	GGG Gly	Glu	Gln	Cys	Ala 605	Arg	Leu	Ser	Thr	His 610	Val	Leu	Pro	1925
GCC Ala	TGT Cys 615	TTA Leu	CCT Pro	CTA Leu	TGG Trp	AGA Arg 620	GAG Glu	AGG Arg	CCA Pro	CAG Gln	AAA Lys 625	ACA Thr	GCC Ala	TCC Ser	AAC Asn	1973
Cys 630	His	Ile	ACA Thr	Gly	Trp 635	Gly	Asp	Thr	Gly	Arg 640	Ala	Tyr	Ser	Arg	Thr 645	2021
Leu	Gln	Gln		Ala 650	Val	Pro	Leu	Leu	Pro 655	Lys	Arg	Phe	Cys	Lys 660	Glu	2069
AGG Arg	TAC Tyr	AAG Lys	GGA Gly 665	CTA Leu	TTT Phe	ACT Thr	Gly	AGA Arg 670	ATG Met	CTC Leu	TGT Cys	GCT Ala	GGG Gly 675	AAC Asn	CTC Leu	2117

							Ser 685									2165
							GAG Glu									2213
							GTC Val									2261
							TGG Trp									2306
TAAC	TAACTTATGG AAAGCTCAAG AAATAGTAAA ACAGTAACTA TTCAGTCTTC AAAAAAAAA														2366	
AAA	AAAA	AA														2376

<u>Patentansprüche</u>

1. Neurotrypsine der Formeln I und II

5

10

15

20

25

30

I: Neurotrypsin des Menschen

II: Neurotrypsin der Maus

einschliesslich der separaten, codierenden und codierten Sequenzen dieser Verbindungen der Formeln I oder II, einschliesslich der separaten Teilsequenzen der codierenden und codierten Sequenzen dieser Verbindungen der Formeln I oder II, wie zum Beispiel die codierenden und codierten Sequenzen der katalytischen Domänen der Verbindungen der Formeln I oder II, einschliesslich der codierenden oder codierten Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Splice-Varianten, einschliesslich der codierenden oder codierten Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Allele, einschliesslich aller Sequenzvarianten der codierenden oder codierten Sequenzen, oder Teilen davon, der Verbindungen der Formeln I oder II, deren biologische Aktivität derjenigen der Verbindungen der Formeln I oder II gleich oder ähnlich ist, beispielsweise Sequenzvarianten der Verbindungen der Formeln I oder II, welche an den nicht konservierten Aminosäuresequenzpositionen von der Sequenz der Formeln I oder II abweichen, einschliesslich der an die codierenden Sequenzen, oder Teile davon, unter stringenten Bedingungen hybridisierenden Sequenzen. einschliesslich Translationsprodukte der an die codierenden Sequenzen der Verbindungen der Formeln I oder II, oder an Teile davon, unter stringenten Bedingungen hybridisierenden Sequenzen, einschliesslich der Nucleotidsequenzen, welche die durch die Verbindungen der Formeln I oder II codierten Proteine, oder Teile davon, codieren, aber, als Resultat unterschiedlicher Verwendung alternativer Codons, degeneriert sind bezüglich der als Verbindungen der Formel I oder II definierten Nucleotidsequenzen.

2. Medikament, dadurch gekennzeichnet, dass es als wenigstens eine

10

15

20

25

30

aktive Verbindung entweder die codierte Sequenz oder die codierende Sequenz der Verbindung der Formel I oder der Formel II, oder die separaten Teilsequenzen der codierten und codierenden Sequenzen dieser Verbindungen der Formel I oder II, wie zum Beispiel die codierenden oder codierten Sequenzen der katalytischen Domänen, enthält, einschliesslich der codierenden oder codierten Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Splice-Varianten, einschliesslich der codierenden oder codierten Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Allele, einschliesslich aller Sequenzvarianten, der codierenden oder codierten Sequenzen, oder Teilen davon, der Verbindungen der Formeln I oder II, deren biologische Aktivität derjenigen der Verbindungen der Formeln I oder II gleich oder ähnlich ist, beispielsweise Sequenzvarianten der Verbindungen der Formeln I oder II, welche an den nicht konservierten Aminosäuresequenzpositionen von der Sequenz der Formeln I oder II abweichen, einschliesslich der an die codierenden Sequenzen, oder Teile davon. unter stringenten Bedingungen hybridisierenden Sequenzen, einschliesslich der Translationsprodukte der an die codierenden Sequenzen der Verbindungen der Formeln I oder II, oder an Teile davon, unter stringenten Bedingungen hybridisierenden Sequenzen, einschliesslich der Nucleotidsequenzen, welche die durch die Verbindungen der Formeln I oder II codierten Proteine, oder Teile davon, codieren, aber, als Resultat unterschiedlicher Verwendung alternativer Codons, degeneriert sind bezüglich der als Verbindungen der Formel I oder II definierten Nucleotidseguenzen.

3. Medikament, dadurch gekennzeichnet, dass es als wenigstens eine aktive Verbindung eine Substanz enthält, welche die Funktion der codierten Sequenz der Verbindungen der Formeln I oder II verändert, zum Beispiel, indem es die katalytische Wirkung des codierten Proteins, oder eines Teils davon, vermindert oder verstärkt, oder indem es die Verweildauer des codierten Proteins an dessen Wirkungsort im Körper verkürzt oder verlängert.

4. Medikament, dadurch gekennzeichnet, dass es als wenigstens eine aktive Verbindung eine Substanz enthält, welche die Expression der codierenden

oder codierten Sequenzen der Verbindungen der Formel I oder II verändert, zum

Beispiel indem es die Transkription der mRNA fördert oder hemmt, oder indem es die Translation der codierten Sequenzen der Formeln I oder II fördert oder hemmt.

- 5. Medikament nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass
 5 es die Apoptose von Zellen des Nervensystems verhindert.
 - 6. Medikament nach Anspruch 5, dadurch gekennzeichnet, dass es sich bei der Apoptose um Apoptose im Zusammenhang mit Schädigungen des Nervengewebes handelt, wie beispielsweise Gehirninfarkt, oder Gehirnblutung, oder Gehirntrauma.

10

15

20

- 7. Medikament nach Anspruch 5, dadurch gekennzeichnet, dass es sich bei der Apoptose um Apoptose im Zusammenhang mit Schädigungen des Nervengewebes handelt, welche auf Grund von Sauerstoffmangel oder von Vergiftungen auftreten.
- 8. Medikament nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass es die Regeneration von verletztem, beschädigtem, unterentwickeltem, oder fehlentwickeltem Gehirn- und/oder Nervengewebe beeinflusst.
- 9. Medikament nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass es nach Gehirn- und/oder Nervenverletzungen oder nach der Zerstörung oder Beschädigung von Gehirnarealen die Reorganisation von intakt gebliebenen Gehirn-, respektive Nervenarealen fördert.
- 10. Medikament nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass es pathologische Schmerzzustände verhindert, lindert oder behebt.
- 11. Medikament nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass
 30 es zur Förderung der Gehirnleistung bei gesunden Personen, sowie bei Personen mit reduzierter Gehirnleistung beiträgt.
 - 12. Medikament nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass

es Lern- und Gedächtnisfunktionen bei gesunden Personen, sowie bei Personen mit reduzierten Lern- und Gedächtnisfunktionen verbessert.

- 13. Medikament nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass es Störungen aus dem Formenkreis der Störungen des psychischen Wohlbefindens, oder der psychosomatischen Befindlichkeit, wie beispielsweise Nervosität oder "Innere Unruhe", lindert oder behebt.
- 14. Medikament nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass
 10 es Störungen im Bereich der emotionellen Funktionen, wie zum Beispiel Angstzustände, lindert oder behebt.
 - 15. Medikament nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass es psychiatrische Störungen lindert oder behebt.

15

20

- 16. Medikament nach Anspruch 15, dadurch gekennzeichnet, dass es sich um eine Störung aus dem Formenkreis der Schizophrenie und schizophrenieartiger Störungen handelt, einschliesslich chronischer Schizophrenie, chronischer schizoaffektiver Störungen, unspezifischer Störungen, einschliesslich akuter und chronischer Schizophrenie verschiedener Ausprägung, wie beispielsweise schwere, nicht-remittierende "Kraepelinsche" Schizophrenie, oder wie beispielsweise der DSM-III-R-Prototyp der schizophrenieartigen Störungen, einschliesslich episodischer schizophrener Störungen, einschliesslich wahnhafter schizophrenieartiger Störungen, einschliesslich Schizophrenie-ähnlicher Persönlichkeitsstörungen, wie beispielsweise schizophrenieartiger Perönlichkeitsstörungen mit milderer Symptomatik, einschliesslich schizotypischer Persönlichkeitsstörungen, einschliesslich der latenten Formen schizophrener oder schizophrenieartiger Störungen, einschliesslich nichtorganischer psychotischer Störungen.
- 17. Medikament nach Anspruch 15, dadurch gekennzeichnet, dass es sich um Störungen aus dem Formenkreis der endogenen Depressionen oder aus dem Formenkreis der manischen und manisch-depressiven Störungen handelt.

- 18. Medikament nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass es durch mangelhafte oder überfunktionelle Proteasen bedingte Störungen der Gehirnfunktion lindert oder behebt.
- 19. Medikament nach Anspruch 18, dadurch gekennzeichnet, dass die Protease Gewebe-Plasminogenaktivator, abgekürzt mit tPA, Urokinase-Plasminogenaktivator, abgekürzt mit uPA, oder Plasmin ist.
- 20. Medikament nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass es durch mangelhafte oder überfunktionelle Proteasen bedingte Störungen der Lungenfunktion lindert oder behebt.
 - 21. Medikament nach Anspruch 20, dadurch gekennzeichnet, dass es sich bei der Störung der Lungenfunktion um chronische Bronchitis oder Lungenemphysem handelt.

20

25

30

22. Verwendung der codierenden Nucleotidsequenzen der Verbindungen der Formeln I oder II, einschliesslich der separaten Teilsequenzen der codierenden Sequenzen der Verbindungen der Formeln I oder II, wie zum Beispiel die codierenden Sequenzen der katalytischen Domänen der Verbindungen der Formeln I oder II, einschliesslich der codierenden Nucleotidsequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Splice-Varianten, einschliesslich der codierenden Sequenzen, oder Teilsequenzen davon, der den Verbindungen der Formeln I oder II entsprechenden Allele, einschliesslich aller Sequenzvarianten der codierenden Sequenzen, oder Teilen davon, der Verbindungen der Formeln I oder II, deren Translationsprodukte bezüglich ihrer biologischen Aktivität den Translationsprodukten der Verbindungen der Formeln I oder II gleich oder ähnlich sind, beispielsweise Sequenzvarianten der Verbindungen der Formeln I oder II, welche an den nicht konservierten Aminosäuresequenzpositionen von der Sequenz der Formeln I oder II abweichen, einschliesslich der an die codierenden Sequenzen der Verbindungen der Formeln I oder II, oder an Teile davon, unter stringenten Bedingungen hybridisierenden Sequenzen, einschliesslich der Nucleotid-Sequenzen, welche die durch die Verbindungen der Formeln I oder II codierten Proteine, oder

Teile davon, codieren, aber, als Resultat unterschiedlicher Verwendung alternativer Codons, degeneriert sind bezüglich der als Verbindungen der Formel I oder II definierten Nucleotidsequenzen, für die Herstellung recombinanter Proteine.

5

10

15

20

25

30

23. Verwendung von Proteinen mit den codierten Aminosäuresequenzen der Verbindungen der Formeln I oder II, einschliesslich der Proteine mit den separaten Teilsequenzen der codierten Aminosäuresequenzen der Verbindungen der Formeln I oder II, wie beispielsweise die separaten katalytischen Domänen der Verbindungen der Formeln I oder II, einschliesslich der Proteine mit den codierten Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Splice-Varianten, einschliesslich der Proteine mit den codierten Aminosäuresequenzen, oder Teilsequenzen davon, der den Verbindungen der Formeln I oder II entsprechenden Allele, einschliesslich aller Sequenzvarianten der codierten Sequenzen, oder Teilen davon, der Verbindungen der Formeln I oder II, deren biologische Aktivität derjenigen der codierten Sequenzen der Verbindungen der Formeln I oder II gleich oder ähnlich ist, beispielsweise Sequenzvarianten der Verbindungen der Formeln I oder II, welche an den nicht konservierten Aminosäuresequenzpositionen von der Sequenz der Formeln I oder II abweichen, einschliesslich der Proteine mit den codierten Aminosäuresequenzen, oder Teilsequenzen davon, der an die codierenden Sequenzen der Verbindungen der Formeln I oder II, oder an Teile davon, unter stringenten Bedingungen hybridisierenden Sequenzen, als Zielstruktur für die

24. Verwendung der Spezies-homologen Proteine, oder Teilen davon, der Verbindungen der Formeln I oder II, wie beispielsweise die Spezies-homologen Proteine der Ratte, des Kaninchens, des Rindes, des Schafes, des Schweins, der Primaten, der Vögel, des Zebrafisches, der Taufliege (Drosophila melanogaster), etc., einschliesslich der Teilsequenzen davon, wie beispielsweise die separaten katalytischen Domänen, einschliesslich der Splice-Varianten der Spezies-homologen Proteine, einschliesslich der Allele der Spezies-homologen Proteine, einschliesslich der Translationsprodukte der an die codierenden Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Spezies-homologen

Entwicklung von Pharmaca, zum Beispiel zur Hemmung oder Förderung der

katalytischen Wirkung der codierten Proteine der Formeln I oder II.

Verbindungen, oder deren Splice-Varianten, oder deren Allele, unter stringenten Verbindungen hybridisierenden Sequenzen, als Zielstruktur für die Entwicklung von Pharmaca, zum Beispiel zur Förderung oder Hemmung der katalytischen Wirkung der codierten Proteine der Formeln I oder II.

5

10

15

20

25. Verwendung der Proteine mit den codierten Aminosäuresequenzen der Verbindungen der Formeln I oder II, einschliesslich der Proteine mit den separaten Teilsequenzen der codierten Aminosäuresequenzen der Verbindungen der Formeln I oder II, wie beispielsweise die separaten katalytischen Domänen, einschliesslich der Proteine mit den codierten Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Splice-Varianten, einschliesslich der Proteine mit den codierten Aminosäuresequenzen, oder Teilsequenzen davon, der den Verbindungen der Formeln I oder II entsprechenden Allele, einschliesslich aller Sequenzvarianten der codierten Sequenzen, oder Teilen davon, der Verbindungen der Formeln I oder II, deren biologische Aktivität derjenigen der codierten Sequenzen der Verbindungen der Formeln I oder II gleich oder ähnlich ist, beispielsweise Sequenzvarianten der Verbindungen der Formeln I oder II, welche an den nicht konservierten Aminosäuresequenzpositionen von der Sequenz der Formeln I oder II abweichen, einschliesslich der Translationsprodukte der an die codierenden Sequenzen der Verbindungen der Formel I oder II, oder an Teile davon, unter stringenten Bedingungen hybridisierenden Sequenzen, einschliesslich der Spezieshomologen Proteine der Verbindungen der Formeln I oder II, wie beispielsweise die Spezies-homologen Proteine der Ratte, des Kaninchens, des Rindes, des Schafes, des Schweins, der Primaten, der Vögel, des Zebrafisches, der Taufliege (Drosophila melanogaster), etc., einschliesslich der Teilsequenzen davon, wie beispielsweise die separaten katalytischen Domänen, für die Raumstrukturbestimmung, zum Beispiel Raumstrukturbestimmung mittels Kristallographie oder Kernresonanzspekroskopie.

30

25

26. Verwendung der codierten Aminosäuresequenzen der Verbindungen der Formeln I oder II, einschliesslich der separaten Teilsequenzen der codierten Aminosäuresequenzen der Verbindungen der Formeln I oder II, wie beispielsweise die codierten Aminosäuresequenzen der separaten katalytischen Domänen der

Verbindungen der Formeln I oder II, einschliesslich der codierten Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Splice-Varianten, einschliesslich der codierten Aminosäuresequenzen, oder Teilen davon, der den Verbindungen der Formeln I oder II entsprechenden Allele, einschliesslich aller Sequenzvarianten der codierten Sequenzen, oder von Teilen davon, der Verbindungen der Formeln I oder II, deren biologische Aktivität derjenigen der codierten Sequenzen der Verbindungen der Formeln I oder II gleich oder ähnlich ist, beispielsweise Sequenzvarianten der Verbindungen der Formeln I oder II, welche an den nicht konservierten Aminosäuresequenzpositionen von der Sequenz der Formeln I oder II abweichen, einschliesslich der Aminosäuresequenzen der Translationsprodukte der an die codierenden Sequenzen der Verbindungen der Formeln I oder II, oder an Teile davon, unter stringenten Bedingungen hybridisierenden Sequenzen, einschliesslich der Sequenzen der Spezies-homologen Verbindungen der Verbindungen der Formeln I oder II, wie beispielsweise die Sequenzen der Spezies-homologen Verbindungen der Ratte, des Kaninchens, des Rindes, des Schafes, des Schweins, der Primaten, der Vögel, des Zebrafisches, der Taufliege (Drosophila melanogaster), etc.) einschliesslich der Teilsequenzen der Spezies-homologen Verbindungen, wie beispielsweise die Sequenzen katalytischen Domäne der Spezies-homologen Verbindungen, für Vorhersagen der Proteinstruktur mittels computerisierter Proteinstruktur-Vorhersage-Verfahren.

5

10

15

20

25

30

27. Verwendung der Raumstruktur der codierten Aminosäuresequenzen der Verbindungen der Formeln I oder II, einschliesslich der Raumstrukturen der separaten Teilsequenzen der Verbindungen der Formeln I oder II, wie beispielsweise die Raumstruktur der katalytischen Domäne, einschliesslich der Raumstruktur der codierten Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Splice-Varianten, einschliesslich der Raumstruktur der codierten Sequenzen, oder Teilsequenzen, der den Verbindungen der Formeln I oder II entsprechenden Allele, einschliesslich der Raumstruktur aller Sequenzvarianten der codierten Sequenzen, oder von Teilen davon, der Verbindungen der Formeln I oder II, deren biologische Aktivität derjenigen der codierten Sequenzen der Verbindungen der Formeln I oder II gleich oder ähnlich ist, beispielsweise Sequenzvarianten der Verbindungen der Formeln I oder II, welche an den nicht konservierten

Aminosäuresequenzpositionen von der Sequenz der Formeln I oder II abweichen, einschliesslich der Raumstrukturen der Translationsprodukte der an die codierenden Sequenzen der Verbindungen der Formeln I oder II, oder an Teile davon, unter stringenten Bedingungen hybridisierenden Sequenzen, einschliesslich der Raumstrukturen der Spezies-homologen Verbindungen der Verbindungen der Formeln I oder II, wie beispielsweise die Raumstruktur der Spezies-homologen Verbindungen, oder von Teilen davon, der Ratte, des Kaninchens, des Rindes, des Schafes, des Schweins, der Primaten, der Vögel, des Zebrafisches, der Taufliege (Drosophila melanogaster), etc., als Zielstruktur für die Entwicklung von Pharmaca, zum Beispiel zur Hemmung oder Förderung der katalytischen Wirkung der codierten Proteine der Formeln I oder II.

5

10

15

20

25

30

28. Verwendung der codierenden Nucleotidsequenzen der Verbindungen der Formeln I oder II, einschliesslich der separaten Teilsequenzen der codierenden Sequenzen dieser Verbindungen der Formeln I oder II, wie zum Beispiel die codierenden Sequenzen der katalytischen Domänen der Verbindungen der Formeln I oder II, einschliesslich der codierenden Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Splice-Varianten, einschliesslich der codierenden Sequenzen, oder Teilsequenzen, der den Verbindungen der Formeln I oder II entsprechenden Allele, einschliesslich aller Sequenzvarianten der codierenden Sequenzen, oder von Teilen davon, der Verbindungen der Formeln I oder II, deren Translationsprodukte in ihrer biologischen Aktivität denjenigen der Verbindungen der Formeln I oder II gleich oder ähnlich sind, beispielsweise Sequenzvarianten der Verbindungen der Formeln I oder II, welche an den nicht konservierten Aminosäuresequenzpositionen von der Sequenz der Verbindungen der Formeln I oder II abweichen, einschliesslich der an die codierenden Sequenzen, oder an Teile davon, unter stringenten Bedingungen hybridisierenden Sequenzen, einschliesslich der Nucleotidsequenzen, welche die durch die Verbindungen der Formeln I oder II codierten Proteine, oder Teile davon, codieren, aber, als Resultat unterschiedlicher Verwendung alternativer Codons, degeneriert sind bezüglich der als Verbindungen der Formel I oder II definierten Nucleotidsequenzen, gentherapeutischen Anwendungen bei Menschen und bei Tieren, wie beispielsweise als Teile von Gentherapie-Vektoren oder wie beispielsweise als Teile von künstlichen

Chromosomen.

5

10

15

20

25

30

29. Verwendung der codierenden Nucleotidsequenzen der Verbindungen der Formeln I oder II, einschliesslich der separaten Teilsequenzen der codierenden Sequenzen dieser Verbindungen der Formeln I oder II, wie zum Beispiel die codierenden Sequenzen der katalytischen Domänen der Verbindungen der Formeln I oder II, einschliesslich der codierenden Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Splice-Varianten, einschliesslich der codierenden Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Allele, einschliesslich aller Sequenzvarianten der codierenden Sequenzen, oder von Teilen davon, der Verbindungen der Formeln I oder II, deren Translationsprodukte in ihrer biologischen Aktivität denjenigen der Verbindungen der Formeln I oder II gleich oder ähnlich sind, beispielsweise Sequenzvarianten der Verbindungen der Formeln I oder II, welche an den nicht konservierten Aminosäuresequenzpositionen von der Sequenz der Formeln I oder II abweichen, einschliesslich der an die codierenden Sequenzen, oder Teile davon, unter stringenten Bedingungen hybridisierenden Sequenzen, einschliesslich Nucleotidsequenzen, welche die durch die Verbindungen der Formeln I oder II codierten Proteine, oder Teile davon, codieren, aber, als Resultat unterschiedlicher Verwendung alternativer Codons, degeneriert sind bezüglich der als Verbindungen der Formel I oder II definierten Nucleotidsequenzen, für sogenannte Cell-Engineering-Anwendungen zur Produktion von gentechnologisch veränderten Zellen, welche die codierten Sequenzen, oder Teile davon, der Verbindungen der Formeln I oder II produzieren, zum Beispiel zum Zweck zelltherapeutischer Anwendung als Medikament nach Anspruch 2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12, 13, 14, 15, 16, 17, 18, 19, 20, oder 21.

30. Verwendung der codierten Aminosäuresequenzen der Verbindungen der Formeln I oder II, einschliesslich der separaten Teilsequenzen der codierten Aminosäuresequenzen der Verbindungen der Formeln I oder II, wie beispielsweise die codierte Aminosäuresequenz der katalytischen Domäne oder einer oder mehrerer der andern Domänen oder Segmente, einschliesslich der codierten Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Splice-Varianten, einschliesslich der codierten Sequenzen oder Teilsequenzen der den

Verbindungen der Formeln I oder II entsprechenden Allele, einschliesslich aller Sequenzvarianten der codierten Sequenzen, oder Teilen davon, der Verbindungen der Formeln I oder II, deren biologische Aktivität derjenigen der codierten Sequenzen der Verbindungen der Formeln I oder II gleich oder ähnlich ist, beispielsweise Sequenzvarianten der Verbindungen der Formeln I oder II, welche an den nicht konservierten Aminosäuresequenzpositionen von der Sequenz der Formeln I oder II abweichen, einschliesslich der Translationsprodukte, oder Teilen davon, der an die codierenden Sequenzen der Verbindungen der Formeln I oder II, oder an Teile davon, unter stringenten Bedingungen hybridisierenden Sequenzen, einschliesslich der codierten Sequenzen der Spezies-homologen Verbindungen der Verbindungen der Formeln I oder II, wie beispielsweise die codierten Sequenzen der Spezieshomologen Verbindungen der Ratte, des Kaninchens, des Rindes, des Schafes, des Schweins, der Primaten, der Vögel, des Zebrafisches, der Taufliege (Drosophila melanogaster), etc., einschliesslich der separaten Teilsequenzen der codierten Sequenzen der Spezies-homologen Verbindungen der Verbindungen der Formeln I oder II, wie beispielsweise die codierte Aminosäuresequenz der katalytischen Domäne, oder einer oder mehrerer der andern Domänen oder Segmente, als Antigene zur Herstellung von Antikörpern, wie beispielsweise Antikörper, welche die Protease-Funktion hemmen oder fördern, oder Antikörper, welche für immunohistochemische Studien eingesetzt werden können.

5

10

15

20

25

30

31. Verwendung der codierenden Nucleotidsequenzen der Verbindungen der Formeln I oder II, einschliesslich der separaten Teilsequenzen der codierenden Sequenzen dieser Verbindungen der Formeln I oder II, wie zum Beispiel die codierenden Sequenzen der katalytischen Domänen der Verbindungen der Formeln I oder II, einschliesslich der codierenden Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Splice-Varianten, einschliesslich der codierenden Sequenzen, oder Teilsequenzen, der den Verbindungen der Formeln I oder II entsprechenden Allele, einschliesslich aller Sequenzvarianten der codierenden Sequenzen, oder von Teilen davon, der Verbindungen der Formeln I oder II, deren Translationsprodukte in ihrer biologischen Aktivität denjenigen der Verbindungen der Formeln I oder II gleich oder ähnlich sind, beispielsweise Sequenzvarianten der Verbindungen der Formeln I oder II, welche an den nicht

konservierten Aminosäuresequenzpositionen von der Sequenz der Formeln I oder II abweichen, einschliesslich der an die codierenden Sequenzen, oder an Teile davon, unter stringenten Bedingungen hybridisierenden Sequenzen, einschliesslich der Nucleotidsequenzen, welche die durch die Verbindungen der Formeln I oder II codierten Proteine, oder Teile davon, codieren, aber, als Resultat unterschiedlicher Verwendung alternativer Codons, degeneriert sind bezüglich der als Verbindungen der Formel I oder II definierten Nucleotidsequenzen, für die Herstellung von transgenen Tieren, wie beispielsweise transgene Mäuse.

10

15

20

25

30

5

32. Verwendung der codierenden Nucleotidsequenzen der Verbindungen der Formeln I oder II, einschliesslich der separaten Teilsequenzen der codierenden Sequenzen dieser Verbindungen der Formeln I oder II, wie zum Beispiel die codierenden Sequenzen der katalytischen Domänen der Verbindungen der Formeln I oder II, einschliesslich der codierenden Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Splice-Varianten, einschliesslich der codierenden Sequenzen, oder Teilsequenzen, der den Verbindungen der Formeln I oder II entsprechenden Allele, einschliesslich aller Sequenzvarianten der codierenden Sequenzen, oder von Teilen davon, der Verbindungen der Formeln I oder II, deren Translationsprodukte in ihrer biologischen Aktivität denjenigen der Verbindungen der Formeln I oder II gleich oder ähnlich sind, beispielsweise Sequenzvarianten der Verbindungen der Formeln I oder II, welche an den nicht konservierten Aminosäuresequenzpositionen von der Sequenz der Formeln I oder II abweichen, einschliesslich der an die codierenden Sequenzen, oder Teile davon, unter stringenten Bedingungen hybridisierenden Sequenzen, einschliesslich der Nucleotidsequenzen, welche die durch die Verbindungen der Formeln I oder II codierten Proteine, oder Teile davon, codieren, aber, als Resultat unterschiedlicher Verwendung alternativer Codons, degeneriert sind bezüglich der als Verbindungen der Formel I oder II definierten Nucleotidsequenzen, für die Inaktivierung oder Abänderung des entsprechenden Gens mittels gezielten Eingriffen am Gen durch sogenannte "Gene Targeting"-Techniken, wie beispielsweise der Elimination des Gens bei der Maus durch homologe Rekombination.

33. Verwendung der codierenden Nucleotidsequenzen der Verbindungen der

Formeln I oder II, einschliesslich der separaten Teilsequenzen der codierenden Sequenzen dieser Verbindungen der Formeln I oder II, wie zum Beispiel die codierenden Sequenzen der katalytischen Domänen der Verbindungen der Formeln I oder II, einschliesslich der codierenden Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Splice-Varianten, einschliesslich der codierenden Sequenzen, oder Teilsequenzen, der den Verbindungen der Formeln I oder II entsprechenden Allele, einschliesslich aller Sequenzvarianten der codierenden Sequenzen, oder von Teilen davon, der Verbindungen der Formeln I oder II, deren Translationsprodukte in ihrer biologischen Aktivität denjenigen der Verbindungen der Formeln I oder II gleich oder ähnlich sind, beispielsweise Sequenzvarianten der Verbindungen der Formeln I oder II, welche an den nicht konservierten Aminosäuresequenzpositionen von der Sequenz der Formeln I oder II abweichen, einschliesslich der an die codierenden Sequenzen, oder Teile davon, unter stringenten Bedingungen hybridisierenden Sequenzen, einschliesslich der Nucleotidsequenzen, welche die durch die Verbindungen der Formeln I oder II codierten Proteine, oder Teile davon, codieren, aber, als Resultat unterschiedlicher Verwendung alternativer Codons, degeneriert sind bezüglich der als Verbindungen der Formeln I oder II definierten Nucleotidsequenzen, zur Diagnostik von Störungen im Gen, welches der Verbindung der Formel I zu Grunde liegt.

20

25

30

5

10

15

34. Verwendung der codierenden Nucleotidsequenzen der Verbindungen der Formeln I oder II, einschliesslich der separaten Teilsequenzen der codierenden Sequenzen dieser Verbindungen der Formeln I oder II, wie zum Beispiel die codierenden Sequenzen der katalytischen Domänen der Verbindungen der Formeln I oder II, einschliesslich der codierenden Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Splice-Varianten, einschliesslich der codierenden Sequenzen oder Teilsequenzen der den Verbindungen der Formeln I oder II entsprechenden Allele, einschliesslich aller Sequenzvarianten der codierenden Sequenzen, oder von Teilen davon, der Verbindungen der Formeln I oder II, deren Translationsprodukte in ihrer biologischen Aktivität denjenigen der Verbindungen der Formeln I oder II gleich oder ähnlich sind, beispielsweise Sequenzvarianten der Verbindungen der Formeln I oder II, welche an den nicht konservierten Aminosäuresequenzpositionen von der Sequenz der Formeln I oder II abweichen,

einschliesslich der an die codierenden Sequenzen, oder an Teile davon, unter stringenten Bedingungen hybridisierenden Sequenzen, einschliesslich Nucleotidsequenzen, welche die durch die Verbindungen der Formeln I oder II codierten Proteine, oder Teile davon, codieren, aber, als Resultat unterschiedlicher Verwendung alternativer Codons, degeneriert sind bezüglich der als Verbindungen der Formel I oder II definierten Nucleotidsequenzen, als Ausgangssequenz für gentechnische Modifikationen zum Zweck der Erzeugung von Medikamenten oder Gentherapie-Vektoren, welche im Vergleich zu entsprechenden Medikamenten oder Gentherapie-Vektoren, welche die codierende Nucleotidsequenz der Verbindungen der Formel I oder II enthalten, veränderte Eigenschaften haben, wie beispielsweise veränderte proteolytische Aktivität, veränderte proteolytische Spezifität, oder veränderte pharmakokinetische Eigenschaften.

5

Zusammenfassung

Es werden Neurotrypsine der Formeln I oder II, einschliesslich die separaten codierenden und codierten Sequenzen dieser Verbindungen der Formeln I oder II beschrieben.

Diese Verbindungen können als wenigstens eine aktive Verbindung in einem Medikament verwendet werden.

Die codierten Peptidsequenzen dieser Verbindungen können als Zielsubstanzen (Targets) für die Entwicklung von Pharmaca verwendet werden.