

PCB Design Rules for Manufacturability, Serviceability and Testability

of

600 W AC-DC Converter

for

BoseResearch INNOVATIVE TECHNOLOGY THROUGH RESEARCH		PCB Design Rules		Customer	HUNTING
PROJECT CODE	PDL1704		PROJECT NAME	600 W AC-DC	Converter
PROJECT MANAGER	Debrupo	a C.B	DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	2 OF 24		STATUS	Sent for Custor	ner Review

Revision History

Ver. Rev	Date	Revision details	Done by	Checked by	Approved by
1.0	9 Apr 2010	First Release	GHR	AMM	SB
2.0	10 Aug 2016	Updated with latest changes in IPC Standards	GHR	AC	DCB

© 2017 Bose Research P Ltd.

ALL RIGHTS RESERVED. COPYRIGHTED AND CONFIDENTIAL.

BoseResearch INNOVATIVE TECHNOLOGY THROUGH RESEARCH		PCB Design Rules		Customer	HUNTING
PROJECT CODE	PDL1704		PROJECT NAME	600 W AC-DC	Converter
PROJECT MANAGER	Debrupa C	:.В	DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9 th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	3 OF 24		STATUS	Sent for Custor	ner Review

CONTENTS

1.	INTRODUCTION	4
	1.1 Purpose	
	1.2 Scope	
	1.3 Intended Audience	
	1.4 References	
2.	FORMING AND MOUNTING OF THROUGH HOLE COMPONENTS:	5
	2.1 Standard pad assignment for through hole components	5
	2.2 Special Forming and mounting of Horizontal & Vertical through hole resistor Forming a	
	mounting	5
	2.3 Special Forming and mounting of Horizontal & Vertical through hole Diodes forming an	nd
	mounting	6
3.	FORMING AND MOUNTING OF DEVICES:	7
4.	MOUNTING OF SMD COMPONENTS:	10
5.	Table.2: PCB Outlines of SMD Components for Different Soldering Processes IPC-73	5111
6.	Mounting Holes	11
7.	Solder Thieves	12
8.	Fiducials	12
9.	STANDARD RULES FOR PCB DESIGN:	14
	9.1 Clearance between PCB edge and the nearest Component or copper trace:	14
	9.2 Component placement in rows / columns	15
10.	Placement of Vias and their dimension:	16
11.	Test Points	
12.	High Current Reinforcements	
13.	Thermal Relief:	18
14.	Standard Clearances	19

© 2017 Bose Research P Ltd.

BoseResearch INNOVATIVE TECHNOLOGY THROUGH RESEARCH		PCB Design Rules		Customer	HUNTING
PROJECT CODE	PDL1704		PROJECT NAME	600 W AC-DC Converter	
PROJECT MANAGER	Debrupa	C.B	DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	4 OF 24		STATUS	Sent for Custor	ner Review

1. INTRODUCTION

1.1 Purpose

This document lists the Printed Circuit Board (PCB) Layout design considerations to be followed for the project. These design considerations draw reference to **IPC** (Association Connecting Electronic Industries) Reference Standards for producing <u>Rigid Printed Board Assemblies</u> and adopting Customer's manufacturing practices while also suggesting improvements towards achieving smaller, cost effective, faster and better quality products. with an aim to achieve with the pictures, 3D pictorial representation.

1.2 <u>Scope</u>

The scope of this document is limited to the requirements of this project in particular. For improved clarity, pictures and pictorial representation have been used.

1.3 Intended Audience

Customer's Design, Purchase and Production team, Project Manager, Test Engineers and Design Engineers at Bose.

1.4 References

SI. No.	Description	IPC Ref. No. with Release		
1	Generic Standard on Printed Board Design	IPC-2221B		
2	Generic Requirements for Through-Hole Design and Land Pattern Standard	IPC-7251		
3	Generic Requirements for Surface Mount Design and Land Pattern Standard	IPC-7351		
4	Stencil Design Guidelines	IPC-7525		
5	Surface Mount Design and Land Pattern Standard	IPC-SM-782		
6	Acceptability of Electronic Assemblies	IPC-A-610D		

© 2017 Bose Research P Ltd.

BoseResea INNOVATIVE TECHNOLOGY THROUGH		CB Design Rules	Customer	HUNTING
PROJECT CODE	PDL1704	PROJECT NAME	600 W AC-DC	Converter
PROJECT MANAGER	Debrupa C.B	DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9 th Aug 2017
PREPARED BY	AC	REVIEWED BY	DCB	
SHEET NO	5 OF 24	STATUS	Sent for Custor	ner Review

2. FORMING AND MOUNTING OF THROUGH HOLE COMPONENTS:

2.1 Standard pad assignment for through hole components

2.2 Special Forming and mounting of Horizontal & Vertical through hole resistors

- ❖ L = Depends on Wattage
- ♣ L1 = 2 mm (Level B) (as per IPC 7251)
- ♦ H = 0.7 mm minimum and 1.5 mm maximum (for air flow to dissipate heat as recommended by IPC-A-610D
- ❖ P = Pitch = L + L1+L1 Round off to Multiple of 2.54 mm
- ❖ W = As per The Manufacturer data sheet including maximum tolerance

© 2017 Bose Research P Ltd.

ALL RIGHTS RESERVED. COPYRIGHTED AND CONFIDENTIAL.

BoseResearch INNOVATIVE TECHNOLOGY THROUGH RESEARCH		PCB Design Rules		Customer	HUNTING
PROJECT CODE	PDL1704		PROJECT NAME	600 W AC-DC Converter	
PROJECT MANAGER	Debrupa C.B		DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	6 OF 24		STATUS	Sent for Custon	ner Review

- ❖ L = Depends on Wattage
- + H1 = 0.25 mm minimum and 2 mm maximum (as recommended by IPC-2221B)
- ❖ H2 = 2 mm (Level B) (as per IPC 7251)
- ❖ H = 15 mm Maximum Height of vertical Mounting from the Board (as per IPC 2221B)
- Arr P = Pitch = D /2 + Multiple of 2.54 mm (As per IPC 7251)
- ❖ D = Depends on Wattage
- Check that when pushed with 10N force, the component in this position does not violate any clearance and creepage distance required as per safety standard IEC 60950-1 or other applicable standard

2.3 Special Forming and mounting of Horizontal & Vertical through hole Diodes

- ❖ L = Depends on Packages
- ♣ L1 = 2 mm (Level B) (as per IPC 7251)
- H = 0.7 mm minimum and 1.5 mm maximum (for air flow to dissipate heat as recommended by IPC-A-610D
- ❖ P = Pitch = L + L1+L1 Round off to Multiple of 2.54 mm
- ❖ W = As per The Manufacturer data sheet including maximum tolerance

© 2017 Bose Research P Ltd.

ALL RIGHTS RESERVED. COPYRIGHTED AND CONFIDENTIAL.

BoseResearch INNOVATIVE TECHNOLOGY THROUGH RESEARCH		PCB Design Rules		Customer	HUNTING
PROJECT CODE	PDL1704		PROJECT NAME	600 W AC-DC	Converter
PROJECT MANAGER	Debrupo	1 C.B	DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9 th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	7 OF 24		STATUS	Sent for Custor	ner Review

- ❖ L = Depends on Package
- ❖ H1 = 0.25 mm minimum and 2 mm maximum (as recommended by IPC-2221B)
- ❖ H2 = 2 mm (Level B) (as per IPC 7251)
- ❖ H = 15 mm Maximum Height of vertical Mounting from the Board (as per IPC 2221B)
- Arr P = Pitch = W /2 + Multiple of 2.54 mm (As per IPC 7251)
- ❖ W = Depends on Package
- Check that when pushed with 10N force, the component in this position does not violate any clearance and creepage distance required as per safety standard IEC 60950-1 or other applicable standard

3. FORMING AND MOUNTING OF DEVICES:

© 2017 Bose Research P Ltd.

ALL RIGHTS RESERVED. COPYRIGHTED AND CONFIDENTIAL.

BoseResearch INNOVATIVE TECHNOLOGY THROUGH RESEARCH		PCB Design Rules		Customer	HUNTING
PROJECT CODE	PDL1704		PROJECT NAME	600 W AC-DC Converter	
PROJECT MANAGER	Debrupa C.B		DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9 th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	8 OF 24		STATUS	Sent for Custon	ner Review

© 2017 Bose Research P Ltd.

ALL RIGHTS RESERVED. COPYRIGHTED AND CONFIDENTIAL.

BoseResearch INNOVATIVE TECHNOLOGY THROUGH RESEARCH		PC	B Design Rules	Customer	HUNTING
PROJECT CODE	PDL1704		PROJECT NAME	600 W AC-DC	Converter
PROJECT MANAGER	Debrupa C.B		DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9 th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	9 OF 24		STATUS	Sent for Custor	ner Review

© 2017 Bose Research P Ltd.

ALL RIGHTS RESERVED. COPYRIGHTED AND CONFIDENTIAL.

BoseResearch INNOVATIVE TECHNOLOGY THROUGH RESEARCH		PCB Design Rules		Customer	HUNTING
PROJECT CODE	PDL1704		PROJECT NAME	600 W AC-DC	Converter
PROJECT MANAGER	Debrupa C.B		DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	10 OF 24		STATUS	Sent for Custor	ner Review

4. MOUNTING OF SMD COMPONENTS:

- A. SMD components would be preferably placed on the solder side of the printed circuit board (PCB) provided these are suitable for wave soldering. Most of the SMD packages (0805, 1206, 1210, 2010, 2512, SOT-23, SMA, SMB, SMC, SO-IC, TSSOP) are suitable for wave soldering except 1812, DPACK, D2PACK, MLP, QFN. SOT-223 packages of some manufacturers are not recommended for wave soldering.
- B. It is also possible to place SMD components on the component side of the PCB due to paucity of space or if component manufacturer does not recommend wave soldering of a particular type of SMD component like the 1812 capacitors of some values/ vendors or © 2017 Bose Research P Ltd.

ALL RIGHTS RESERVED. COPYRIGHTED AND CONFIDENTIAL.

BoseResearch PCE		CB Design Rules	Customer	Hunting
PROJECT CODE	PDL1704	PROJECT NAME	600 W AC-DC	Converter
PROJECT MANAGER	Debrupa C.B	DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9 th Aug 2017
PREPARED BY	AC	REVIEWED BY	DCB	
SHEET NO	11 OF 24	STATUS	Sent for Custor	mer Review

SOT 223 devices. Also, DPACK, D2PACK, MLP and QFN packages will be placed on component side of the PCB as they need to be Reflow soldered.

C. The PCB decal and dimension used for different SMD packages for both Reflow and Wave soldering processes are shown in **Table.2** below.

5. Table.2: PCB Outlines of SMD Components for Different Soldering Processes IPC-7351

6. Mounting Holes

- A. Minimum of four mounting holes will be placed on the PCB for Mechanical Stability. The maximum count of these mounting holes will depend on design requirements.
- B. PCB Mounting Hole: 3.5 mm-plated hole, 6 mm pad dia, 8 mm OD

© 2017 Bose Research P Ltd.

ALL RIGHTS RESERVED. COPYRIGHTED AND CONFIDENTIAL.

BoseResearch INNOVATIVE TECHNOLOGY THROUGH RESEARCH		B Design Rules	Customer	HUNTING	
PROJECT CODE	PDL1704		PROJECT NAME	600 W AC-DC	Converter
PROJECT MANAGER	Debrupa C.B		DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9 th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	12 OF 24		STATUS	Sent for Custor	mer Review

7. Solder Thieves

The use of solder thieves (areas of metallization in addition to, or attached to, the downstream pair of solder lands of the IC footprint) is recommended for wave soldering as they reduce the likelihood of solder bridging on these lands. This is a L-Shaped pad of size equal to the length of other pads.

8. Fiducials

- A. The edge of the fiducial should be no closer to the board edge than the sum of 4.75 mm and the minimum fiducial clearance required. If less than this sum, a board handling fixture may be required.
- B. Fiducials are needed for an auto placement machine to reference a particular point on a PCB.
- C. A Fiducial is defined as a 1.5mm Pad with a 3.0mm solder mask opening around it. Two types of Fiducials that could be used are shown below As per IPC-7351
- D. At least Three Fiducials shall be placed near the mounting holes for PCB of any Dimensions.

© 2017 Bose Research P Ltd.

ALL RIGHTS RESERVED. COPYRIGHTED AND CONFIDENTIAL.

BoseResearch PC		B Design Rules	Customer	HUNTING	
PROJECT CODE	PDL1704		PROJECT NAME	600 W AC-DC	Converter
PROJECT MANAGER	Debrupa C.B		DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	13 OF 24		STATUS	Sent for Custor	ner Review

© 2017 Bose Research P Ltd.

ALL RIGHTS RESERVED. COPYRIGHTED AND CONFIDENTIAL.

BoseResearch PC		B Design Rules	Customer	HUNTING	
PROJECT CODE	PDL1704		PROJECT NAME	600 W AC-DC Converter	
PROJECT MANAGER	Debrupo	a C.B	DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9 th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	14 OF 24		STATUS	Sent for Custor	mer Review

The keepout zone defined in this illustration is typical for in-line assembly automation using reflow and wave solder processes.

9. STANDARD RULES FOR PCB DESIGN:

9.1 Clearance between PCB edge and the nearest Component or copper trace:

- Min. distance from PCB edge to Copper = 0.3 mm or as given by Customer. Α.
- B. Min. Distance from PCB edge to component Pad For soldering testing should be atleast 1.5mm.

© 2017 Bose Research P Ltd.

ALL RIGHTS RESERVED. COPYRIGHTED AND CONFIDENTIAL.

BoseResearch PCE		CB Design Rules	Customer	HUNTING
PROJECT CODE	PDL1704	PROJECT NAME	600 W AC-DC Converter	
PROJECT MANAGER	Debrupa C.B	DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9 th Aug 2017
PREPARED BY	AC	REVIEWED BY	DCB	
SHEET NO	15 OF 24	STATUS	Sent for Custor	ner Review

9.2 Component placement in rows / columns

For improved aesthetics of the finished PCB, components must be preferably arranged neatly in rows / columns with same orientation where possible. A suitable grid will depend on the density of the PCB.

A. Through Hole Components:

All electrolytic capacitors on the PCB shall be placed with the same orientation as shown below.

B. Diodes and Zeners:

All through hole diodes and Zeners shall be placed with same orientation or mutually perpendicular orientation. SMD diodes and Zeners shall be placed in only one direction.

C. SMD Components:

All SMD components with same package shall have the same orientation for the entire PCB. As Per IPC-2221B

© 2017 Bose Research P Ltd.

ALL RIGHTS RESERVED. COPYRIGHTED AND CONFIDENTIAL.

BoseResearch PCE		B Design Rules	Customer	HUNTING	
PROJECT CODE	PDL1704		PROJECT NAME 600 W AC-DC Converter		Converter
PROJECT MANAGER	Debrupa C.B		DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9 th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	16 OF 24		STATUS	Sent for Custor	ner Review

D. Grid spacing for SMD Components placement and Alignment:

The SMD components of same package will be aligned as grids in rows and columns with fixed distance between them. This would ensure good wave soldering. The possible alignment patterns are shown below:

As per IPC 7351

Placement Grid 0.635 mm As per IPC-2221

10. Placement of Vias and their dimension:

© 2017 Bose Research P Ltd.

ALL RIGHTS RESERVED. COPYRIGHTED AND CONFIDENTIAL.

BoseResearch INNOVATIVE TECHNOLOGY THROUGH RESEARCH		PCB Design Rules		Customer	HUNTING
PROJECT CODE	PDL1704		PROJECT NAME	600 W AC-DC Converter	
PROJECT MANAGER	Debrupa C.B		DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9 th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	17 OF 24		STATUS	Sent for Custor	ner Review

- A. Via dimension 0.6/1.2 mm Via Tented A via with a dry film mask material applied bridging over the via as per IPC-4761
- B. All multiple PTHs on power trace for current reinforcements 2/1 Via masked with opening of 0.25 mm for Via filling while wave solder.

11. Test Points

Test points shall be provided based on the importance of a particular signal that would help in debugging and troubleshooting. The number of test points shall be provided on the above consideration on a best effort basis and not for every net on the PCB.

12. <u>High Current Reinforcements</u>

A. Multiple plated through holes (PTH) of 1.25 mm pad Diameter and additional VIA for Power Traces of 1.25 mm pad Diameter shall be placed surrounding the Pads of the components carrying high currents where reinforcements are essential. The PTHs along with the pad will be covered with copper.

© 2017 Bose Research P Ltd.

ALL RIGHTS RESERVED. COPYRIGHTED AND CONFIDENTIAL.

BoseResearch INNOVATIVE TECHNOLOGY THROUGH RESEARCH		B Design Rules	Customer	HUNTING	
PROJECT CODE	PDL1704		PROJECT NAME	600 W AC-DC	Converter
PROJECT MANAGER	Debrupa C.B		DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9 th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	18 OF 24		STATUS	Sent for Custor	ner Review

Fig.8a. Placement of Multiple PTHs

B. Copper Rods shall be soldered on solder side of the PCB traces where high current reinforcements are required as shown in the picture below.

Fig.8b. Copper rods are soldered on power traces carrying high currents

13. Thermal Relief:

Thermal Relief in Conductor Planes The relationship between the hole size, land and web area is critical. Typically, divide 60% of the minimum land area diameter by the number of webs desired to obtain the width of each web in accordance with the following example:

© 2017 Bose Research P Ltd.

ALL RIGHTS RESERVED. COPYRIGHTED AND CONFIDENTIAL.

BoseResearch PCE		B Design Rules	Customer	HUNTING	
PROJECT CODE	PDL1704		PROJECT NAME 600 W AC-I		Converter
PROJECT MANAGER	Debrupa C	C.B	DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9 th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	19 OF 24		STATUS	Sent for Custor	ner Review

Thermal Relief Calculation Total thermal width = 60% of land size

For example Land size 2 mm

= 0.6 x 2 mm = 1.2 mm

Original Web Size Calculation

4-web width = 1/4 of total thermal width x Thermal Width

=1.2÷4 = 0.3 mm = 0.3 x 1.2 mm

Each Web is =0.36 mm

14. Standard Clearances

A. Standard minimum clearances:

The standard minimum clearances shall be as tabulated below:

Table 3. Standard minimum clearances

Clearance items	Minimum clearance
PAD to PCB edge	1.5 mm or 60mils
Comp to PCB edge	1 mm or 40mils
Copper to PCB edge	0.3mm or 12mils
Copper to Copper	0.5mm or 20mils
Pad to Copper	0.5mm or 20mils
Route to Copper	0.5mm or 20mils
Via to Copper	0.5mm or 20mils
Route to Pad	0.3mm or 12mils
Route to Route	0.3mm or 12mils
Test point to Via	0.5mm or 20mils
Via to Via	0.5mm or 20mils
Via to SMD Pad	0.5mm or 20mils

© 2017 Bose Research P Ltd.

BoseResearch PCE		B Design Rules	Customer	HUNTING	
PROJECT CODE	PDL1704	PROJECT NAME		600 W AC-DC Converter	
PROJECT MANAGER	Debrupa C	:.В	DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	20 OF 24		STATUS	Sent for Custor	ner Review

a) Applicable Safety Clearance and Creepage Distances on PCB:

Table .4. Applicable Safety Clearance and Creepage Distances on PCB as per IEC 62368-1

			C 62368-1 & IEC-	60950-1
Circuit	Clearance between	Insulation	Clearance (mm)	Creepage Distance (mm)
Primary Circuit	Line and Ground	Functional	1.5	3.2
from Input (with transients) to	Line and Earth	Basic/ Supplementary	2.0	3.2
MOV	Ground and Earth	Basic/ Supplementary	2.0	3.2
	Line and Ground	Functional	0.8	3.2
Primary Circuit after MOV upto Bridge	Line and Earth	Basic/ Supplementary	1.5	3.2
	Ground and Earth	Basic/ Supplementary	1.5	3.2
Primary Circuit	Line and Ground	Functional	3.0	-
after Bridge upto	Line and Earth	Basic/ Supplementary	-	3.2
Transformer	Ground and Earth	Basic/ Supplementary	-	3.2
Across Transformer	Primary and Secondary	Reinforced	6.4	6.4
	Line and Ground	Basic/ Supplementary	0.8	5.0
Secondary Circuit 500 V DC	Line and Earth	Basic/ Supplementary	0.8	5.0
	Ground and Earth	Basic/ Supplementary	0.8	5.0

© 2017 Bose Research P Ltd.

BoseResea INNOVATIVE TECHNOLOGY THROUGH		PCB Design Rules		Customer	HUNTING
PROJECT CODE	PDL1704		PROJECT NAME	600 W AC-DC	Converter
PROJECT MANAGER	Debrupa C.B		DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9 th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	21 OF 24		STATUS	Sent for Custor	ner Review

PCB REQUIREMENT SPECIFICATION

Item	Description	Reference
Product	AC to DC switch mode converter	
Dimension	PCB dimensions of 153 mm x 68 mm mounted on an aluminum L Bracket as per Customer drawing Sk56394.pdf. Maximum component height above PCB shall be 30 mm and no components on bottom side. TH Component pin to sheet metal distance > 3.2 mm	
Laminate	Double Sided, 1.6 mm thick FR4/94V-0 Tg 150 ⁰ C glass epoxy 17.5 μ Base	IPC 2221B
Material	Copper thickness of laminate material meeting IPC Class-2.	IPC 2221B
Track width	Min 0.254 mm / 10 Mils	
Spacing	Min 0.304 mm / 12 Mils	
Drill Size	Min 0.6 mm / 23.67 Mils	
Signal Via	Finished hole dimension after min. 20-25 μ copper buildup shall be 0.6	IPC 2221B
dimension	mm ± 0.1 mm as per Customer standard.	11 C 22210
Signal Via filling non-conductive	Vias can be plugged with non-conductive UL approved material (Flammability class V-2 & RTI atleast 130°C) as per type IIIb of IPC 4761	IPC 4761
Multiple PTH dimension	Finished hole dimension after min. 25 μ copper buildup shall be 1.0 mm \pm 0.1 mm as per Customer requirement.	IPC 2221
Multiple PTH filling conductive	Vias can be plugged with conductive material similar to CB100 from Dupont as per type xx of IPC 4761 as per Customer requirement.	IPC 4761
Non Plated Cutouts	Dimension as per Top silk Gerber with corner radius 0.5 mm, must have smooth finish	
Solder Mask	SMOBC, PISM with green color masking	
Legend	White colour legend (sharpness required) 1.5 mm line Thickness. No printing on production PCBs as per Customer requirement.	
Finish	$35~\mu$ finished copper with Lead free HASL shinning finish with tin layer of minimum thickness 1 μm	
Checking	FPT , Complete with Optical and ICT testing	
UL Marking	Yes	

© 2017 Bose Research P Ltd.

BoseResea INNOVATIVE TECHNOLOGY THROUGH		PCB Design Rules		Customer	HUNTING
PROJECT CODE	PDL1704		PROJECT NAME	600 W AC-DC	Converter
PROJECT MANAGER	Debrupo	a C.B	DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9 th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	22 OF 24		STATUS	Sent for Custor	mer Review

15. FABRICATION: CAM OUTPUT FILE Name

15.1 BOSE Fabrication CAM

Gerber / CAM	Layers in PCB	Items	Remarks
		Board Outline	
		2D Line	any drafting item drawn
Ton Cille	Top Silk	Ref Des	
Top Silk		Text	any drafting item drawn
		Outlines	Component outlines
	Top Code	Text	Project Code
		Board Outline	
		2D Line	any drafting item drawn
Bottom Silk	Bottom Silk	Ref Des	
BULLUIII SIIK		Text	any drafting item drawn
		Outlines	Component outlines
	Bottom Code	Text	Project Code
		Pads	Pads, Fiducials, Badmarker
	Top Solder Resist		Optional for copper reinforcement
		2D Line	soldering on traces
		Vias	
Top Mask		Text	Layer Name outside the board
		Test Points	
	Top Isolation	2D Lines	Optional used in Bose gerbers only
	Corner	2D Lines	Board corners
	Top Code	Text	Project Code (Optional)
		Pads	
Bottom Mask		2D Line	Optional for copper reinforcement
	Bottom Solder	ZD LITIC	soldering on traces
	Resist	Vias	
		Text	Layer Name outside the board
		Test Points	
	Bottom Isolation	2D Lines	Optional used in Bose gerbers only
	Corner	2D Lines	Board corners

© 2017 Bose Research P Ltd.

BoseResea INNOVATIVE TECHNOLOGY THROUGH		PCB Design Rules		Customer	HUNTING
PROJECT CODE	PDL1704		PROJECT NAME	600 W AC-DC	Converter
PROJECT MANAGER	Debrupa	C.B	DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	23 OF 24		STATUS	Sent for Custor	ner Review

Gerber / CAM	Layers in PCB	Items	Remarks
		Pads	Pads, Fiducials, Badmarker
		Traces	
	Ton Floo	Vias	
Top Elec	Top Elec	Copper	
		Text	Layer Name outside the board
		Test Points	
	Corner	2D Lines	Board corners
	Top Code	Text	Project Code (Optional)
		Pads	Pads, Fiducials, Badmarker
		Traces	
	Bottom Elec	Vias	
Bottom Elec	Bottom Elec	Copper	
		Text	Layer Name outside the board
		Test Points	
	Corner	2D Lines	Board corners
		TH Vias	Board outline is selected
NCDRILL_PTH		TIT VIAS	automatically by software
		Plated pins	
NCDRILL NPTH		Non plated	Board outline is selected
Nebriel_III		pins	automatically by software
		Pads	
	Drill Drawing	Vias	
FAB		Text	Layer Name outside the board
	Dimension	2D Lines	
	2	Text	
		2D Lines	
	Cutout	Text	Dimension and any other information like PTH & NPTH

© 2017 Bose Research P Ltd.

ALL RIGHTS RESERVED. COPYRIGHTED AND CONFIDENTIAL.

BoseResea INNOVATIVE TECHNOLOGY THROUGH		PCB Design Rules		Customer	Hunting
PROJECT CODE	PDL1704		PROJECT NAME	600 W AC-DC	Converter
PROJECT MANAGER	Debrupa	C.B	DOC NO. & DATE	PDL1704PCBDF	M Ver2.0, 9 th Aug 2017
PREPARED BY	AC		REVIEWED BY	DCB	
SHEET NO	24 OF 24		STATUS	Sent for Custon	mer Review

15.2 BOSE Assembly CAM

Gerber / CAM	Layers in PCB	Items	Remarks
		Board Outline	
		2D Line	any drafting item drawn
Top Assembly	Top Assembly TH	Ref Des	
TH		Text	any drafting item drawn
		Outlines	TH Component outlines
	Top Code	Text	Project Code
		Board Outline	
	Tan Assamble	2D Line	any drafting item drawn
Top Assembly	Top Assembly SMD	Ref Des	
SMD	טואט	Text	any drafting item drawn
		Outlines	SMD Component outlines
	Top Code	Text	Project Code
		Board Outline	
		2D Line	any drafting item drawn
Bottom	Bottom Assembly	Ref Des	
Assembly		Text	any drafting item drawn
		Outlines	SMD Component outlines
	Bottom Code	Text	Project Code
	Ton Docto	Pads	
Top Dasto	Top Paste	Text	Layer Name outside the board
Top Paste	Corner	2D Lines	Board corners
	Top Code	Text	Project Code (Optional)
Bottom Paste	Bottom Paste	Pads	
	BULLUIII Paste	Text	Layer Name outside the board
	Corner	2D Lines	Board corners
	Bottom Glue	Outlines	
Bottom Glue	Bottom dide	Text	Layer Name outside the board
	Corner	2D Lines	Board corners

15.3 BOSE Assembly CAM

Pick & Place Files	Side	Parts	
	0.000	3 6.0 5.5	
Pick & Place Top_TH	Тор	Thru Pin	
Pick & Place	T	CNAT	
Top_SMD	Тор	SMT	
Pick & Place Bottom	Bottom	SMT	

© 2017 Bose Research P Ltd.

ALL RIGHTS RESERVED. COPYRIGHTED AND CONFIDENTIAL.