Physics Informed Machine Learning for Solving PDEs

Ming Zhong

Department of Applied Mathematics Illinois Institute of Technology

December 1, 2022

Numerical PDE Lecture 02

1/41

Table of Contents

- Recap
- Physics Informed Machine Learning
- Software Package
- 4 Conclusion

Last time

Last time

How to solve a simple Heat Equation with Dirichlet BC

Separation of Variables (Heavy dependence of IC/BC)

Last time

- Separation of Variables (Heavy dependence of IC/BC)
 - Fourier expansion of the IC

Last time

- Separation of Variables (Heavy dependence of IC/BC)
 - Fourier expansion of the IC
 - Other BC (Neumann, Robin, Periodic) give different expression

Last time

- Separation of Variables (Heavy dependence of IC/BC)
 - Fourier expansion of the IC
 - Other BC (Neumann, Robin, Periodic) give different expression
- Finite Difference

Last time

- Separation of Variables (Heavy dependence of IC/BC)
 - Fourier expansion of the IC
 - Other BC (Neumann, Robin, Periodic) give different expression
- Finite Difference
 - Regular domain, exponential growth for dimension

Last time

- Separation of Variables (Heavy dependence of IC/BC)
 - Fourier expansion of the IC
 - Other BC (Neumann, Robin, Periodic) give different expression
- Finite Difference
 - Regular domain, exponential growth for dimension
 - Interpolation for inter-grid values, CFL condition

Last time

- Separation of Variables (Heavy dependence of IC/BC)
 - Fourier expansion of the IC
 - Other BC (Neumann, Robin, Periodic) give different expression
- Finite Difference
 - Regular domain, exponential growth for dimension
 - Interpolation for inter-grid values, CFL condition
- Physics Informed Neural Networks

Table of Contents

- Recap
- Physics Informed Machine Learning
 - The Strength and Weakness of PINN
 - Physics Informed Gaussian Process
- Software Package
- 4 Conclusion

Overview

Overview

Hybrid method

Traditional Methods

Overview

- Traditional Methods
 - Speed and/or accuracy

Overview

- Traditional Methods
 - Speed and/or accuracy
 - Convergence

Overview

- Traditional Methods
 - Speed and/or accuracy
 - Convergence
 - Special Properties (Conservation, TVD, shock detection, etc.)

Overview

- Traditional Methods
 - Speed and/or accuracy
 - Convergence
 - Special Properties (Conservation, TVD, shock detection, etc.)
- Machine Learning

Overview

- Traditional Methods
 - Speed and/or accuracy
 - Convergence
 - Special Properties (Conservation, TVD, shock detection, etc.)
- Machine Learning
 - Mesh-free, no time integration

Overview

- Traditional Methods
 - Speed and/or accuracy
 - Convergence
 - Special Properties (Conservation, TVD, shock detection, etc.)
- Machine Learning
 - Mesh-free, no time integration
 - Auto-interpolation, auto-differentiation

Overview

- Traditional Methods
 - Speed and/or accuracy
 - Convergence
 - Special Properties (Conservation, TVD, shock detection, etc.)
- Machine Learning
 - Mesh-free, no time integration
 - Auto-interpolation, auto-differentiation
 - Data assimilation

Data Assimilation

Missing IC/BC¹

Figure: 2D Flow Past a Circular Cylinder.

Ming Zhong (IIT) PIML NPDE 2022 6 / 41

¹ "Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data", 2020.

Data Assimilation

HFM, cont.

$$c_{t} + uc_{x} + vc_{y} + wc_{z} - \operatorname{Pec}^{-1}(c_{xx} + c_{yy} + c_{zz}) = 0,$$

$$d_{t} + ud_{x} + vd_{y} + wd_{z} - \operatorname{Pec}^{-1}(d_{xx} + d_{yy} + d_{zz}) = 0,$$

$$u_{t} + uu_{x} + vu_{y} + wu_{z} + p_{x} + \operatorname{Re}^{-1}(u_{xx} + u_{yy} + u_{zz}) = 0,$$

$$v_{t} + uv_{x} + vv_{y} + wv_{z} + p_{y} + \operatorname{Re}^{-1}(v_{xx} + v_{yy} + v_{zz}) = 0,$$

$$w_{t} + uw_{x} + vw_{y} + ww_{z} + p_{z} + \operatorname{Re}^{-1}(w_{xx} + w_{yy} + w_{zz}) = 0,$$

$$u_{x} + v_{y} + w_{z} = 0$$

With observation of c, d.

Ming Zhong (IIT) PIML NPDE 2022 7/41

Other Forms of NN Solver

References

 DeepONet: "Learning Nonlinear Operators for Identifying Differential Equations based on the Universal Approximation Theorem of Operators", 2020.

Ming Zhong (IIT) PIML NPDE 2022 8 / 41

Other Forms of NN Solver

References

- DeepONet: "Learning Nonlinear Operators for Identifying Differential Equations based on the Universal Approximation Theorem of Operators", 2020.
- LSNN: "Deep Least-squares Methods: an Unsupervied Learning-based Numerical Methods for Solving Elliptic PDEs", 2020.

Ming Zhong (IIT) PIML NPDE 2022 8/41

Other Forms of NN Solver

References

- DeepONet: "Learning Nonlinear Operators for Identifying Differential Equations based on the Universal Approximation Theorem of Operators". 2020
- LSNN: "Deep Least-squares Methods: an Unsupervied Learning-based Numerical Methods for Solving Elliptic PDEs", 2020.
- CVPINN: "Thermodynamically Consistent Physics-informed Neural Networks for Hyperbolic Systems", 2020.

Ming Zhong (IIT) PIML **NPDE 2022** 8 / 41

Weaknesses

Multi-Object Losses²

Figure: 1D Wave Equation $(u_{tt} = ku_{xx})$.

Ming Zhong (IIT) PIML NPDE 2022 9 / 41

² "When and Why PINNs Fail to Train: a Neural Tanget Kernel Perspective", 2020.

Weaknesses

No Time Marching³

Figure: 1D Allen-Chan Equation.

Ming Zhong (IIT) PIML NPDE 2022 10 / 41

³ "Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive Physics Informed Neural Networks", 2020.

Weakness

No Time Marching⁴

Figure: 1D Transport Equation.

Ming Zhong (IIT) PIML NPDE 2022 11 / 41

⁴ "Characterizing Possible Failure Modes in Physics-informed Neural Networks", 2021.

Weaknesses

No Time Marching⁵

Figure: 1D Transport Equation.

Ming Zhong (IIT) PIML NPDE 2022 12 / 41

⁵ "Improved Training of Physics-informed Neural Networks with Model Ensembles", 2022.

Weaknesses

Shock Capturing⁶

Figure: 1D Buckey-Leverett Equation.

Ming Zhong (IIT) PIML NPDE 2022 13 / 41

⁶ "Physics-informed Neural Networks with Adaptive Localized Artificial Viscosity", 2022.

Important References

Gaussian Processes for Machine Learning

Two books

- Gaussian Processes for Machine Learning, Rasmussen and Williams, 2006
- Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization: from a Game Theory Approach to Numerical Approximation and Algorithm Design, Owhadi, 2019.

Many Kinds

1 : "Machine Learning of Linear Differential Equations using Gaussian Processes", 2017.

Ming Zhong (IIT) PIML NPDE 2022 15 / 41

Many Kinds

- 1 : "Machine Learning of Linear Differential Equations using Gaussian Processes", 2017.
- 2: "Numerical Gaussian Processes for Time-Dependent and Nonlinear Partial Differential Equations", 2018.

Ming Zhong (IIT) PIML NPDE 2022 15 / 41

Many Kinds

- 1 : "Machine Learning of Linear Differential Equations using Gaussian Processes", 2017.
- 2: "Numerical Gaussian Processes for Time-Dependent and Nonlinear Partial Differential Equations", 2018.
- 3: "Solving and Learning Nonlinear PDEs with Gaussian Processes". 2021.

Ming Zhong (IIT) PIML NPDE 2022 15 / 41

Many Kinds

- 1 : "Machine Learning of Linear Differential Equations using Gaussian Processes", 2017.
- 2 : "Numerical Gaussian Processes for Time-Dependent and Nonlinear Partial Differential Equations", 2018.
- 3: "Solving and Learning Nonlinear PDEs with Gaussian Processes", 2021.
- 4: "AutoIP: A United Framework to Integrate Physics into Gaussian Processes", 2022.

Many Kinds

- 1 : "Machine Learning of Linear Differential Equations using Gaussian Processes", 2017.
- 2: "Numerical Gaussian Processes for Time-Dependent and Nonlinear Partial Differential Equations", 2018.
- 3: "Solving and Learning Nonlinear PDEs with Gaussian Processes", 2021.
- 4: "AutoIP: A United Framework to Integrate Physics into Gaussian Processes", 2022.
- 5: Bayesian Numerical PDE, 2023.

Approach One⁷

Consider

$$\mathcal{L}_{\mathbf{x}}u(\mathbf{x}) = f(\mathbf{x}), \quad \mathcal{L}_{\mathbf{x}}$$
 is a linear differential operator.

16 / 41

GP for Linear PDEs

Approach One⁷

Consider

$$\mathcal{L}_{\mathbf{x}}u(\mathbf{x}) = f(\mathbf{x}), \quad \mathcal{L}_{\mathbf{x}}$$
 is a linear differential operator.

Examples

Approach One⁷

Consider

$$\mathcal{L}_{\mathbf{x}}u(\mathbf{x}) = f(\mathbf{x}), \quad \mathcal{L}_{\mathbf{x}}$$
 is a linear differential operator.

Examples

• For $\Delta_{\mathbf{x}} u(\mathbf{x}) = f(\mathbf{x})$ (Laplace Equation), $\mathcal{L}_{\mathbf{x}} = \Delta_{\mathbf{x}}$.

16 / 41

Approach One⁷

Consider

$$\mathcal{L}_{\mathbf{x}}u(\mathbf{x}) = f(\mathbf{x}), \quad \mathcal{L}_{\mathbf{x}}$$
 is a linear differential operator.

Examples

- For $\Delta_{\mathbf{x}} u(\mathbf{x}) = f(\mathbf{x})$ (Laplace Equation), $\mathcal{L}_{\mathbf{x}} = \Delta_{\mathbf{x}}$.
- For $\partial_t u(\mathbf{x}) + c \partial_x u(\mathbf{x}) = f(\mathbf{x})$ (Linear Advection), $\mathcal{L}_{\mathbf{x}} = \partial_{x_1} + c \partial_{x_2}$ where $x_1 = t$ and $x_2 = x$ and $\mathbf{x} = (x_1, x_2)$.

⁷Reference [1].

Approach One⁷

Consider

$$\mathcal{L}_{\mathbf{x}}u(\mathbf{x}) = f(\mathbf{x}), \quad \mathcal{L}_{\mathbf{x}}$$
 is a linear differential operator.

Examples

- For $\Delta_{\mathbf{x}} u(\mathbf{x}) = f(\mathbf{x})$ (Laplace Equation), $\mathcal{L}_{\mathbf{x}} = \Delta_{\mathbf{x}}$.
- For $\partial_t u(\mathbf{x}) + c \partial_x u(\mathbf{x}) = f(\mathbf{x})$ (Linear Advection), $\mathcal{L}_{\mathbf{x}} = \partial_{x_1} + c \partial_{x_2}$ where $x_1 = t$ and $x_2 = x$ and $\mathbf{x} = (x_1, x_2)$.
- For $\partial_t u(\mathbf{x}) k \partial_x^2 u(\mathbf{x}) = f(\mathbf{x})$ (Heat Equation), $\mathcal{L}_{\mathbf{x}} = \partial_{x_1} k \partial_{x_2}^2$.

⁷Reference [1].

Approach One, cont.

GP Prior

If
$$u(\mathbf{x}) \sim \mathcal{N}(0, K_{uu}(\mathbf{x}, \mathbf{x}'; \theta))$$
, then

$$f(\mathbf{x}) \sim \mathcal{N}(0, K_{\mathit{ff}}(\mathbf{x}, \mathbf{x}'; \theta))$$

and

$$K_{ff}(\mathbf{x}, \mathbf{x}'; \theta) = \mathcal{L}_{\mathbf{x}} \mathcal{L}_{\mathbf{x}'} K_{uu}(\mathbf{x}, \mathbf{x}'; \theta).$$

Here θ is the hyper-parameter for the GP.

Approach One, cont.

Problem Statement

Given

$$\mathbf{y}_u = u(\mathbf{X}_u) + \epsilon_u$$
 and $\mathbf{y}_f = f(\mathbf{X}_f) + \epsilon_f$

where $\epsilon_u \sim \mathcal{N}(0, \sigma_u^2 \mathrm{Id}_u)$ and $\epsilon_f \sim \mathcal{N}(0, \sigma_f^2 \mathrm{Id}_f)$, how can we find the θ ?

Approach One, cont.

Problem Statement

Given

$$\mathbf{y}_u = u(\mathbf{X}_u) + \epsilon_u$$
 and $\mathbf{y}_f = f(\mathbf{X}_f) + \epsilon_f$

where $\epsilon_u \sim \mathcal{N}(0, \sigma_u^2 \mathrm{Id}_u)$ and $\epsilon_f \sim \mathcal{N}(0, \sigma_f^2 \mathrm{Id}_f)$, how can we find the θ ?

Find θ such that $-\log(P(\mathbf{y}|\theta,\sigma_u^2,\sigma_f^2))$ is minimized

Approach One, cont.

Here

$$\begin{aligned} &-\log(P(\mathbf{y}\Big|\theta,\sigma_u^2,\sigma_f^2))\\ &=\frac{1}{2}\log(|K|)+\frac{1}{2}\mathbf{y}^{\top}K^{-1}\mathbf{y}+\frac{N}{2}\log(2\pi),\end{aligned}$$

where

$$\mathbf{y} = egin{bmatrix} \mathbf{y}_u \ \mathbf{y}_f \end{bmatrix} \quad ext{and} \quad \mathbf{y} \Big| heta, \sigma_u^2, \sigma_f^2 \sim \mathcal{N}(0, K),$$

Approach One, cont.

$$K = \begin{bmatrix} K_{uu}(\mathbf{X}_u, \mathbf{X}_u; \theta) + \sigma_u^2 \mathsf{Id}_u & K_{uf}(\mathbf{X}_u, \mathbf{X}_f; \theta) \\ K_{fu}(\mathbf{X}_f, \mathbf{X}_u; \theta) & K_{ff}(\mathbf{X}_f, \mathbf{X}_f; \theta) + \sigma_f^2 \mathsf{Id}_f \end{bmatrix}.$$

Moreover

$$K_{uf}(\mathbf{x}, \mathbf{x}'; \theta) = \mathcal{L}_{\mathbf{x}'} K_{uu}(\mathbf{x}, \mathbf{x}'; \theta)$$
 and θ)

and

$$K_{fu}(\mathbf{x}, \mathbf{x}'; \theta) = \mathcal{L}_{\mathbf{x}} K_{uu}(\mathbf{x}, \mathbf{x}').$$

The minimizater is found using L-BFGS.

Approach One, cont.

Next?

How to predict?

21 / 41

GP for Linear PDEs

Approach One, cont.

Next?

How to predict?

Use the fact that

$$u(\mathbf{x}) | \mathbf{y} \sim \mathcal{N}(\bar{u}(\mathbf{x}), s_u^2(\mathbf{x}))$$

and

$$f(\mathbf{x}) | \mathbf{y} \sim \mathcal{N}(\bar{f}(\mathbf{x}), s_f^2(\mathbf{x})),$$

Ming Zhong (IIT) PIML NPDE 2022

Approach One, cont.

Where

$$ar{u}(\mathbf{x}) = \mathbf{q}_u^{\top} K^{-1} \mathbf{y}, \quad s_u^2(\mathbf{x}) = K_{uu}(\mathbf{x}, \mathbf{x}) - \mathbf{q}_u^{\top} K^{-1} \mathbf{q}_u,$$
 $\mathbf{q}_u^{\top}(\mathbf{x}) = \begin{bmatrix} K_{uu}(\mathbf{x}, \mathbf{X}_u) & K_{uf}(\mathbf{x}, \mathbf{X}_f) \end{bmatrix}.$

and

$$\begin{split} & \bar{f}(\mathbf{x}) = \mathbf{q}_f^{\top} K^{-1} \mathbf{y}, \quad s_f^2(\mathbf{x}) = K_{ff}(\mathbf{x}, \mathbf{x}) - \mathbf{q}_f^{\top} K^{-1} \mathbf{q}_f, \\ & \mathbf{q}_f^{\top}(\mathbf{x}) = \begin{bmatrix} K_{fu}(\mathbf{x}, \mathbf{X}_u) & K_{ff}(\mathbf{x}, \mathbf{X}_f) \end{bmatrix}. \end{split}$$

Conclusion

Summary

Conclusion

Summary

• Clean implementation.

Conclusion

Summary

- Clean implementation.
- Easy to train.

Conclusion

Summary

- Clean implementation.
- Easy to train.
- Uncertainty quantification.

Conclusion

Summary

- Clean implementation.
- Easy to train.
- Uncertainty quantification.
- Differentiation is done on the kernel function.

Conclusion

Summary

- Clean implementation.
- Easy to train.
- Uncertainty quantification.
- Differentiation is done on the kernel function.

But

- Only for linear PDEs.
- Application when there are data for u and f.

Approach Two⁸

Consider

$$u_t = \mathcal{L}_{\mathbf{x}} u, \quad \mathbf{x} \in \Omega, \quad t \in [0, T].$$

Approach Two⁸

Consider

$$u_t = \mathcal{L}_{\mathbf{x}} u, \quad \mathbf{x} \in \Omega, \quad t \in [0, T].$$

Via the explicit Euler scheme for u_t , we end up with

$$u^{n} = u^{n-1} + \Delta t \mathcal{L}_{\mathbf{x}} u^{n-1} = \mathcal{B}_{\mathbf{x}}(\Delta t) u^{n-1},$$

Here

$$u^n(\mathbf{x}) = u(t_n, \mathbf{x}).$$

⁸Reference [2].

Approach Two, cont.

Put on a Gaussian Process prior on u^{n-1} , i.e.

$$u(t_{n-1},\mathbf{x}) \sim \mathcal{N}(0,K_{uu}^{n-1,n-1}(\mathbf{x},\mathbf{x}';\theta)),$$

Approach Two, cont.

Put on a Gaussian Process prior on u^{n-1} , i.e.

$$u(t_{n-1},\mathbf{x}) \sim \mathcal{N}(0,K_{uu}^{n-1,n-1}(\mathbf{x},\mathbf{x}';\theta)),$$

then

$$\begin{bmatrix} u(t_n, \mathbf{x}) \\ u(t_{n-1}, \mathbf{x}) \end{bmatrix} \sim \mathcal{N}(0, \begin{bmatrix} K_{uu}^{n,n} & K_{uu}^{n,n-1} \\ k_{uu}^{n-1,n} & K_{uu}^{n-1,n-1} \end{bmatrix}).$$

Conclusion

Summary

Conclusion

Summary

Able to handle time-dependent PDE.

Conclusion

Summary

- Able to handle time-dependent PDE.
- No need to have observation data inside the computational domain (start out from IC/BC).

Conclusion

Summary

- Able to handle time-dependent PDE.
- No need to have observation data inside the computational domain (start out from IC/BC).
- Applicable to other numerical integration schemes (even implicit).

Conclusion

Summary

- Able to handle time-dependent PDE.
- No need to have observation data inside the computational domain (start out from IC/BC).
- Applicable to other numerical integration schemes (even implicit).

But

- Different numerical integration schemes would require different $\mathcal{B}_{x}(\Delta t)$.
- For nonlinear PDEs, need to linearize it using u^{n-1} .

Approach Three⁹

A Simple Nonlinear Elliptic PDE Problem

Consider $\Omega \subset \mathbb{R}^d$ ($d \geq 1$, open and bounded) with Lipshitz boundary $\partial \Omega$, and for $u^* : \Omega \to \mathbb{R}$ satisfying

$$-\Delta u^*(\mathbf{x}) + \tau(u^*(\mathbf{x})) = f(\mathbf{x}), \quad \mathbf{x} \in \Omega$$

 $u^*(\mathbf{x}) = g(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega.$

Here $f: \Omega \to \mathbb{R}$, $g: \partial \Omega \to \mathbb{R}$, and $\tau: \mathbb{R} \to \mathbb{R}$ are given continuous functions.

⁹Reference [3].

Approach Three, cont.

The PIGP method finds the approximation to u^* from the following

$$\min_{u \in \mathcal{U}} |u|_{K}, \quad \text{s.t.}$$

$$-\Delta u(\mathbf{x}_{m}) + \tau(u(\mathbf{x}_{m})) = f(\mathbf{x}_{m}), \quad m = 1, \dots, M_{\Omega}$$

$$u(\mathbf{x}_{m}) = g(\mathbf{x}_{m}), \quad m = M_{\Omega} + 1, \dots, M.$$

Approach Three, cont.

The PIGP method finds the approximation to u^* from the following

$$\begin{split} \min_{u \in \mathcal{U}} & |u|_K, \quad \text{s.t.} \\ & - \Delta u(\mathbf{x}_m) + \tau(u(\mathbf{x}_m)) = f(\mathbf{x}_m), \quad m = 1, \dots, M_{\Omega} \\ & u(\mathbf{x}_m) = g(\mathbf{x}_m), \quad m = M_{\Omega} + 1, \dots, M. \end{split}$$

Here

• \mathcal{U} is a RKHS (Reproducing Kernel Hilbert Space) associated with K and the RKHS norm is $|\cdot|_{K}$.

Nonlinear Elliptic PDEs, cont.

Moreover

Nonlinear Elliptic PDEs, cont.

Moreover

• A non-degenerate, symmetric, and positive definite kernel function $K: \bar{\Omega} \times \bar{\Omega} \to \mathbb{R}$.

Nonlinear Elliptic PDEs, cont.

Moreover

- A non-degenerate, symmetric, and positive definite kernel function $K: \bar{\Omega} \times \bar{\Omega} \to \mathbb{R}$.
- K is chosen so that $\mathcal{U} \in C^2(\Omega) \cap C(\bar{\Omega})$.

Nonlinear Elliptic PDEs, cont.

Moreover

- A non-degenerate, symmetric, and positive definite kernel function $K: \bar{\Omega} \times \bar{\Omega} \to \mathbb{R}$.
- K is chosen so that $\mathcal{U} \in C^2(\Omega) \cap C(\bar{\Omega})$.
- $1 \leq M_{\Omega} < M < \infty$ with $\mathbf{x}_1, \dots, \mathbf{x}_{M_{\Omega}} \in \Omega$ and $\mathbf{x}_{M_{\Omega}+1}, \dots, \mathbf{x}_{M} \in \partial \Omega$.

Nonlinear Elliptic PDEs, cont.

Moreover

- A non-degenerate, symmetric, and positive definite kernel function $K: \bar{\Omega} \times \bar{\Omega} \to \mathbb{R}$.
- K is chosen so that $\mathcal{U} \in C^2(\Omega) \cap C(\bar{\Omega})$.
- $1 \leq M_{\Omega} < M < \infty$ with $\mathbf{x}_1, \dots, \mathbf{x}_{M_{\Omega}} \in \Omega$ and $\mathbf{x}_{M_{\Omega}+1}, \dots, \mathbf{x}_{M} \in \partial \Omega$.
- A minimier u^{\dagger} can be interpreted as a MAP estimator of a GP $\xi \sim \mathcal{N}(0, \mathcal{K})$ (\mathcal{K} is the integral operator with kernel \mathcal{K}).

Nonlinear Elliptic PDEs, cont.

Finite Dimensional Representation

$$z_m^{(1)} = u(\mathbf{x}_m)$$
 and $z_m^{(2)} = -\Delta u(\mathbf{x}_m)$,

Nonlinear Elliptic PDEs, cont.

Finite Dimensional Representation

$$z_m^{(1)} = u(\mathbf{x}_m)$$
 and $z_m^{(2)} = -\Delta u(\mathbf{x}_m)$,

Define

Nonlinear Elliptic PDEs, cont.

Finite Dimensional Representation

$$z_m^{(1)} = u(\mathbf{x}_m)$$
 and $z_m^{(2)} = -\Delta u(\mathbf{x}_m)$,

Define

• $\phi_m^{(1)} = \delta_{\mathbf{x}_m}$ and $\phi_m^{(2)} = \delta_{\mathbf{x}_m} \circ (-\Delta)$ where $\delta_{\mathbf{x}}$ is the Dirac delta function centered at \mathbf{x} .

Nonlinear Elliptic PDEs, cont.

Finite Dimensional Representation

$$z_m^{(1)} = u(\mathbf{x}_m)$$
 and $z_m^{(2)} = -\Delta u(\mathbf{x}_m)$,

Define

- $\phi_m^{(1)} = \delta_{\mathbf{x}_m}$ and $\phi_m^{(2)} = \delta_{\mathbf{x}_m} \circ (-\Delta)$ where $\delta_{\mathbf{x}}$ is the Dirac delta function centered at \mathbf{x} .
- $\mathbf{z} = [(\mathbf{z}^{(1)})^{\top} \ (\mathbf{z}^{(2)})^{\top}]$ where $\mathbf{z}^{(i)}$ is the concatenation of $z_m^{(i)}$ for i = 1, 2 respectively.

Nonlinear Elliptic PDEs, cont.

Finite Dimensional Representation

$$z_m^{(1)} = u(\mathbf{x}_m)$$
 and $z_m^{(2)} = -\Delta u(\mathbf{x}_m)$,

Define

- $\phi_m^{(1)} = \delta_{\mathbf{x}_m}$ and $\phi_m^{(2)} = \delta_{\mathbf{x}_m} \circ (-\Delta)$ where $\delta_{\mathbf{x}}$ is the Dirac delta function centered at \mathbf{x} .
- $\mathbf{z} = [(\mathbf{z}^{(1)})^{\top} \ (\mathbf{z}^{(2)})^{\top}]$ where $\mathbf{z}^{(i)}$ is the concatenation of $z_m^{(i)}$ for i = 1, 2 respectively.
- $\phi = [(\phi^{(1)})^{\top} (\phi^{(2)})^{\top}]$ where $\phi^{(i)}$ is the concatenation of $\phi_m^{(i)}$ for i = 1, 2 respectively.

Nonlinear Elliptic PDEs, cont.

Furthermore

Nonlinear Elliptic PDEs, cont.

Furthermore

• $\Theta(\mathbf{x}, \phi)$ is the $(M + M_{\Omega})$ -dim vector with entries $\int K(\mathbf{x}, \mathbf{x}') \phi_m(\mathbf{x}') d\mathbf{x}'$.

Nonlinear Elliptic PDEs, cont.

Furthermore

- $\Theta(\mathbf{x}, \phi)$ is the $(M + M_{\Omega})$ -dim vector with entries $\int K(\mathbf{x}, \mathbf{x}') \phi_m(\mathbf{x}') d\mathbf{x}'$.
- $\Theta(\phi, \phi)$ is the $(M + M_{\Omega}) \times (M + M_{\Omega})$ matrix with entries $\int K(\mathbf{x}, \mathbf{x}') \phi_m(\mathbf{x}) \phi_n(\mathbf{x}') d\mathbf{x} d\mathbf{x}'$.

Nonlinear Elliptic PDEs, cont.

Furthermore

- $\Theta(\mathbf{x}, \phi)$ is the $(M + M_{\Omega})$ -dim vector with entries $\int K(\mathbf{x}, \mathbf{x}') \phi_m(\mathbf{x}') d\mathbf{x}'$.
- $\Theta(\phi, \phi)$ is the $(M + M_{\Omega}) \times (M + M_{\Omega})$ matrix with entries $\int K(\mathbf{x}, \mathbf{x}') \phi_m(\mathbf{x}) \phi_n(\mathbf{x}') d\mathbf{x} d\mathbf{x}'$.

Thus

$$u(\mathbf{x}) = \Theta(\mathbf{x}, \phi)\Theta(\phi, \phi)^{-1}\mathbf{z};$$

and

$$\left|u\right|_{K}^{2} = \mathbf{z}^{\top}\Theta(\phi,\phi)^{-1}\mathbf{z}$$

Nonlinear Elliptic PDEs, cont.

Define

$$F(\mathbf{z}) = egin{cases} z_m^{(2)} + au(z_m^{(1)}), & m = 1, \dots, M_{\Omega} \ z_m^{(1)}, & m = M_{\Omega} + 1, \dots, M \end{cases}$$

and

$$\mathbf{y} = egin{cases} f(\mathbf{x}_m), & m = 1, \dots, M_{\Omega} \\ g(\mathbf{x}_m), & m = M_{\Omega} + 1, \dots, M \end{cases}$$

Nonlinear Elliptic PDEs, cont.

Define

$$F(\mathbf{z}) = egin{cases} z_m^{(2)} + au(z_m^{(1)}), & m=1,\ldots,M_\Omega \ z_m^{(1)}, & m=M_\Omega+1,\ldots,M \end{cases}$$

and

$$\mathbf{y} = egin{cases} f(\mathbf{x}_m), & m = 1, \dots, M_{\Omega} \ g(\mathbf{x}_m), & m = M_{\Omega} + 1, \dots, M \end{cases}$$

The original optimal recovery problem becomes

$$\min_{\mathbf{z} \in \mathbb{R}^{M+M_{\Omega}}} \mathbf{z}^{ op} \Theta(\phi,\phi)^{-1} \mathbf{z}, \quad ext{s.t.} \quad F(\mathbf{z}) = \mathbf{y}.$$

Nonlinear Elliptic PDEs, cont.

Or the regularized version

$$\min_{\mathbf{z} \in \mathbb{R}^{M+M_{\Omega}}} \mathbf{z}^{\top} \Theta(\phi, \phi)^{-1} \mathbf{z} + \frac{1}{\beta^{2}} \big| F(\mathbf{z}) - \mathbf{y} \big|_{\mathbb{R}^{M+M_{\Omega}}}^{2}.$$

Nonlinear Elliptic PDEs, cont.

Or the regularized version

$$\min_{\mathbf{z} \in \mathbb{R}^{M+M_{\Omega}}} \mathbf{z}^{\top} \Theta(\phi, \phi)^{-1} \mathbf{z} + \frac{1}{\beta^{2}} \big| F(\mathbf{z}) - \mathbf{y} \big|_{\mathbb{R}^{M+M_{\Omega}}}^{2}.$$

• Choosing a proper β ?

Nonlinear Elliptic PDEs, cont.

Or the regularized version

$$\min_{\mathbf{z} \in \mathbb{R}^{M+M_{\Omega}}} \mathbf{z}^{\top} \Theta(\phi, \phi)^{-1} \mathbf{z} + \frac{1}{\beta^{2}} \big| F(\mathbf{z}) - \mathbf{y} \big|_{\mathbb{R}^{M+M_{\Omega}}}^{2}.$$

- Choosing a proper β ?
- Why does β have to be a scalar?

Nonlinear Elliptic PDEs, cont.

Or the regularized version

$$\min_{\mathbf{z} \in \mathbb{R}^{M+M_{\Omega}}} \mathbf{z}^{ op} \Theta(\phi, \phi)^{-1} \mathbf{z} + rac{1}{eta^2} ig| F(\mathbf{z}) - \mathbf{y} ig|_{\mathbb{R}^{M+M_{\Omega}}}^2.$$

- Choosing a proper β ?
- Why does β have to be a scalar?
- Somewhat easier than the constrained problem

Nonlinear Elliptic PDEs, cont.

Or the regularized version

$$\min_{\mathbf{z} \in \mathbb{R}^{M+M_{\Omega}}} \mathbf{z}^{ op} \Theta(\phi, \phi)^{-1} \mathbf{z} + rac{1}{eta^2} ig| F(\mathbf{z}) - \mathbf{y} ig|_{\mathbb{R}^{M+M_{\Omega}}}^2.$$

- Choosing a proper β ?
- Why does β have to be a scalar?
- Somewhat easier than the constrained problem
- But the constrained problem can be reduced further

Numerical Tests

We take

- d = 2, $\Omega = (0,1)^2$, $\tau(u) = 0$ or u^3 , and $g(\mathbf{x}) = 0$.
- $u^*(\mathbf{x}) = \sin(\pi x_1)\sin(\pi x_2) + 4\sin(4\pi x_1)\sin(4\pi x_2)$, and find $f(\mathbf{x})$ accordingly.
- Gaussian kernel

$$K(\mathbf{x}, \mathbf{x}'; \sigma) = \exp(-\frac{\left|\mathbf{x} - \mathbf{x}'\right|_{\ell_2(\mathbb{R}^d)}^2}{2\sigma^2}).$$

- Special care of Θ .
- M=1024 and $M_{\Omega}=900$ and $\sigma=M^{-\frac{1}{4}}$.
- $\eta = 10^{-5}$ and $\beta = 10^{-5}$.

A Simple Heat Equation

Recall

$$u_t(t,x) = \lambda u_{xx}(t,x), \quad (t,x) \in (0,T] \times [0,L]$$

 $u(0,x) = f(x), \quad u(t,0) = 0, \quad u(t,L) = 0.$

so
$$(\mathbf{x} = (t, x))$$

$$z_m^{(1)} = u(\mathbf{x}_m), \quad z_m^{(2)} = u_t(\mathbf{x}_m), \quad \text{and} \quad z_m^{(3)} = u_{xx}(\mathbf{x}_m).$$

Here

$$\phi_{\mathit{m}}^{(1)} = \delta_{\mathbf{x}_{\mathit{m}}}, \quad \phi_{\mathit{m}}^{(2)} = \delta_{\mathbf{x}_{\mathit{m}}} \circ \frac{\partial}{\partial \mathit{t}}, \quad \text{and} \quad \phi_{\mathit{m}}^{(3)} = \delta_{\mathbf{x}_{\mathit{m}}} \circ \frac{\partial^{2}}{\partial \mathit{x}^{2}}.$$

A Simple Heat Equation, cont.

Thus

PDE :0 *
$$z_m^{(1)} + z_m^{(2)} - \lambda z_m^{(3)} = 0$$
,
BC : $z_m^{(1)} = \begin{cases} f(x_m), & \mathbf{x}_m \in \{0\} \times [0, L] \\ 0, & \mathbf{x}_m \in [0, T] \times \{0\} \\ 0, & \mathbf{x}_m \in [0, T] \times \{L\} \end{cases}$

A Simple Heat Equation, cont.

Thus

PDE :0 *
$$z_m^{(1)} + z_m^{(2)} - \lambda z_m^{(3)} = 0$$
,
BC : $z_m^{(1)} = \begin{cases} f(x_m), & \mathbf{x}_m \in \{0\} \times [0, L] \\ 0, & \mathbf{x}_m \in [0, T] \times \{0\} \\ 0, & \mathbf{x}_m \in [0, T] \times \{L\} \end{cases}$

Demo

Conclusion

PIGP can even handle

$$\left| \nabla u(\mathbf{x}) \right|^2 = f(\mathbf{x})^2 + \epsilon \Delta u(\mathbf{x}),$$
 Eikonal PDE

and

$$u_t + uu_x = \nu u_{xx}$$
, Viscous Burgers

Summary:

Conclusion

PIGP can even handle

$$\left| \nabla u(\mathbf{x}) \right|^2 = f(\mathbf{x})^2 + \epsilon \Delta u(\mathbf{x}),$$
 Eikonal PDE

and

$$u_t + uu_x = \nu u_{xx}$$
, Viscous Burgers

Summary:

Smaller number of "collocation" points

Conclusion

PIGP can even handle

$$\left| \nabla u(\mathbf{x}) \right|^2 = f(\mathbf{x})^2 + \epsilon \Delta u(\mathbf{x}),$$
 Eikonal PDE

and

$$u_t + uu_x = \nu u_{xx}$$
, Viscous Burgers

Summary:

- Smaller number of "collocation" points
- Uncertainty quantification

Conclusion

PIGP can even handle

$$\left| \nabla u(\mathbf{x}) \right|^2 = f(\mathbf{x})^2 + \epsilon \Delta u(\mathbf{x}),$$
 Eikonal PDE

and

$$u_t + uu_x = \nu u_{xx}$$
, Viscous Burgers

Summary:

- Smaller number of "collocation" points
- Uncertainty quantification
- $\Omega \subset \mathbb{R}^d$ with $d \gg 1$ and irreuglar.

Conclusion

PIGP can even handle

$$\left| \nabla u(\mathbf{x}) \right|^2 = f(\mathbf{x})^2 + \epsilon \Delta u(\mathbf{x}),$$
 Eikonal PDE

and

$$u_t + uu_x = \nu u_{xx}$$
, Viscous Burgers

Summary:

- Smaller number of "collocation" points
- Uncertainty quantification
- $\Omega \subset \mathbb{R}^d$ with $d \gg 1$ and irreuglar.
- Auto-interpolation and auto-differentiation

Conclusion

PIGP can even handle

$$\left| \nabla u(\mathbf{x}) \right|^2 = f(\mathbf{x})^2 + \epsilon \Delta u(\mathbf{x}),$$
 Eikonal PDE

and

$$u_t + uu_x = \nu u_{xx}$$
, Viscous Burgers

Summary:

- Smaller number of "collocation" points
- Uncertainty quantification
- $\Omega \subset \mathbb{R}^d$ with $d \gg 1$ and irreuglar.
- Auto-interpolation and auto-differentiation
- However, heavy dependence on kernel

Table of Contents

- Recap
- Physics Informed Machine Learning
- Software Package
- 4 Conclusion

Deep Learning Software

How to install them

- Python
 - TensorFlow: https://www.tensorflow.org/
 - PyTorch: https://pytorch.org/
 - JAX: https://jax.readthedocs.io/en/latest/
- Julia: SciML package https://sciml.ai/
- MATLAB
- Google Colab or Amazon AWS (Microsft? IBM?)

They can work with

- CPU (Slow!!)
- GPU (CUDA or M1/M2 Chips)

Table of Contents

- 1 Recap
- Physics Informed Machine Learning
- Software Package
- Conclusion

Physics Informed Machine Learning

Conclusion

We have shown

- Solving a heat equation, viscous Burgers, and RTE using PINN.
- Solving elliptic PDEs, a heat equation, viscous Burgers, Eikonal using PIGP.
- Both methods have their own strength and weaknesses: auto-interpolation, mesh-less, etc.

Thank You!