TD 1

FONCTIONS DE PLUSIEURS VARIABLES

Exercice 1. Dérivées partielles

Après avoir écrit leur domaine de définition, déterminer les dérivées partielles premières et secondes, quand elles existent, et donner la matrice Hessienne des fonctions suivantes:

1.
$$f(x,y) = xy^2 + 3x^2$$

2.
$$f(x,y) = \frac{x}{y} + y$$

3.
$$f(x, y) = e^{xy}$$

4.
$$f(x,y) = \sqrt{xy}$$

5.
$$f(x,y) = x^3 e^y + \ln(xy) + y^2 \ln(x)$$

6.
$$f(x, y, z) = x^2yz$$

7.
$$f(x, y, z) = x^3 + xy + y^2 + 3z^2x$$

Exercice 2. Mineurs principaux

Pour les matrices suivantes, donner les mineurs principaux, ainsi que les mineurs principaux diagonaux. Puis dire si ces matrices sont définies ou semie-définies, positives ou négatives.

$$1. \ A = \begin{bmatrix} 2 & -1 \\ 0 & 2 \end{bmatrix}$$

$$2. \ B = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

$$3. \ C = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 6 & 4 \\ -1 & 0 & 2 \end{bmatrix}$$

$$4. \ D = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$

Exercice 3. Optimisation

Résoudre le programme d'optimisation \mathcal{P} : $\max_{x,y} f(x,y)$

1. avec
$$f(x,y) = xy$$

2. avec
$$f(x, y) = 3xy - x^3 - y^3$$

MARIE TAHON

$$\frac{\partial f(x,y)}{\partial x} = y^2 + 6x$$

$$\frac{9x_5}{9_5 f(x^{1A})} = 6$$

$$\frac{\partial f(x,y)}{\partial y} = 1 - \frac{2}{y^2}$$

$$\frac{\partial^2 \beta(x,y)}{\partial y^2} = \frac{2x}{y^3}$$

3 f(x,y) = 2xy

3/3/2 5x

$$\frac{3f(x)}{3x\partial y} = -\frac{1}{y^2}$$

four upon

$$\frac{3x}{3f(x,y)} = yexy$$

Def = (R+xR+) U (R-xR-)

$$\frac{\partial f}{\partial x} \{x,y\} = \frac{y}{2\sqrt{xy'}} \qquad \frac{\partial f}{\partial y} (x,y) = \frac{x}{2\sqrt{xy'}}$$

$$\frac{\partial f}{\partial y}(x,y) = \frac{x}{x_1 x_2 y}$$

$$H(x,y) = \begin{bmatrix} -\frac{y}{y} & 1 \\ 1 & -\frac{x}{y} \end{bmatrix} \times \left(-\frac{1}{4\sqrt{2xy}} \right)$$

$$\frac{\partial f}{\partial x}(x,y) = 3x^{1}e^{y} + \frac{1}{x} + \frac{y^{2}}{x}$$

$$\frac{\partial f(x,y)}{\partial y} = x^3 e^y + \frac{1}{y} + 2y \ln(x)$$

$$\frac{\partial f(x,y)}{\partial x^{L}} = 6xe^{\frac{1}{2}} - \frac{y^{L}}{x^{L}} - \frac{y^{L}}{y^{L}}$$

$$\frac{\partial \beta(x,y)}{\partial y^2}$$
: $z^3e^{\frac{1}{2}} \cdot \frac{1}{y^2} + 2lm(x)$

Df= (Rtkur) u (Rxx) n Rt d Pour 52470 26 Rts et 2 > 0 26 Rt

$$\frac{\partial f}{\partial x^{2} y} (x,y) = 3x^{1}e^{y} + \frac{2y}{2x}$$

$$\theta(x)\hat{a}(3) = x_{3}\hat{a}\hat{b}(x)\hat{a}(3) = x_{3}\hat{a}\hat{b}(x)\hat{a}(3) = x_{3}\hat{b}(x)\hat{a}(3) = x_{3}\hat{a}\hat{b}(x)\hat{a}(3) = x_{3}\hat{a}\hat{b}(x)\hat{$$

 $H\left(x_{1}y_{1}\right) = \begin{bmatrix} 2y_{3} & 2x_{2} & 2x_{3} \\ x^{2} & 0 & x^{2} \end{bmatrix}$ $2xy \quad 0$ $2xy \quad 0$

7-) Def =
$$R^3$$

$$\frac{\partial f(x_1y_3)}{\partial x} = 3x^1 + y + 3z^2 \qquad \frac{\partial f}{\partial x}(x_1y_3) = x_1 \partial y$$

3f (1,4,3) = 62x

 $A \cdot A = \begin{bmatrix} 2 - 1 \\ 0 & 2 \end{bmatrix}$ Poit A une matrice carré nymétrique (on appliquera les méthodes des muneus nu les Hencentes.

mégative (=> 01<0, 02>0, 03 <0

A semi-définie pritive (=> sitous les mineus principaux (diaginclus) > 0

A semi-dépenie négative (=> lous les mp ordre 1 <0 (Parfois c'est 2 >0 a megatues)

· mineurs d'ordre 1: 2,-1 (4-2) + (4-2) 1- 1-1 =

D1 2 ; D150

· mineurs d'adre 2 |2-1 |= 4 D4>0 A est définie positive.

2.) B= [13]

mineur p. adred: 1,3.

D1: 1 D1>0

mp none 2 :

Dz = - 2 < 0

12 y = 4-6 = -2 <0 B est quelconque n'appartient aix aucuns des

3-) C= [130] = mo vide 1 mp vide 1: 1,3,0

- On when he had more of the standard of the s 16 4 = 12/ 2 4 = 8: |26 | 26 ; De= |2 6 = 6-6=0

$$\begin{vmatrix} \lambda & 3 & 0 \\ 1 & 0 & 2 \end{vmatrix} = -\lambda \lambda \quad B_3 = -\lambda 2 < 0$$

$$| A & 3 & 0 \\ 2 & 6 & 4 \end{vmatrix} = 0 \quad | A & 0 \\ -1 & 1 \end{vmatrix} = 2 \quad | \begin{bmatrix} 0 & 4 & 1 \\ 0 & 2 \end{bmatrix} = 2$$

$$| Matrice & d & aucus & Az & Cas$$

$$| A & 2 & 3 \\ 1 & 2 & 4 \end{vmatrix}$$

$$| mp \text{ and } u \geq \lambda$$

$$| A & 2 & 3 \\ 1 & 2 & 4 \end{vmatrix}$$

$$| mp \text{ and } u \geq \lambda$$

$$| A & 2 & 2 \\ 1 & 2 & 1 \end{vmatrix} = 0 \quad | A & 2 \\ | A & 2 & 3 \\ | A & 2 & 4 \end{vmatrix} = -4 \quad | A & 2 \\ | A & 2 & 3 \\ | A & 2 & 4 \end{vmatrix} = -4 \quad | A & 2 \\ | A & 2 & 3 \\ | A & 2 & 4 \end{vmatrix} = -4 \quad | A & 2 \\ | A & 2 & 3 \\ | A & 3 & 3 \\ | A & 2$$

- On cherche les mineurs.

Scanné avec CamScanner

des cas, pas de mare ou de

mp2 = - 1 DD DD & a aucum des

(To,

elle m'admet donc par d'optimum: Justificat parler des mineurs diagonaux.

2-) fay) = 3xy-23-43

$$\frac{\partial \lambda}{\partial \left((u^{2} \lambda) \right)} = 3d^{2} - 3\lambda_{5}$$

$$\frac{\partial f(x,y)}{\partial y^2} = -6y$$

L'il y a un optimum, il vénifie le \(\frac{1}{3\pi - 3\pi^2 = 0}\)

$$\begin{cases} -x^2 + y = 0 \\ x - y^2 = 0 \end{cases}$$

2 notations posithes (0,0)

$$H = \begin{bmatrix} -6x & 3 \\ 3 & -6y \end{bmatrix} \qquad H(0,0) = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}$$

· Pao' d'optimum en 0,0 E

$$H(1,1) = \begin{bmatrix} -6 & 3 \\ 3 & -6 \end{bmatrix}$$

$$H(1,1) = \begin{bmatrix} -6 & 3 \\ 3 & -6 \end{bmatrix}$$

$$mp_1 = \frac{-6,3}{|D_1 = -6|} < 0$$

$$mp_2 = \frac{27}{|D_2 = 27|} > 0$$

$$mp_3 = \frac{27}{|D_3 = 27|} > 0$$

H(1,1) définie mégative, felle admet un mosimum local; global si

Honsieme est définie mégative pour tout x, y

beund c'est l'ocale, c'est maximum sur l'intervalle mais pos sur l'ens die domaine de dé femle