BİÇİMSEL DİLLER VE OTOMATLAR UYGULAMA-1

Soru 1) Sekiz bitlik A, B ve C saklayıcılarında birbirinden farklı 3 adet pozitif tamsayı bulunmaktadır. Bu 3 sayıdan oluşan dizinin medyan değerini bulan bir algoritmik durum makinası tasarlanacaktır. Devre bir başlama işareti (S) ile başlayacak ve önyükleme değerleri saklayıcılara yüklenecektir. Çalışma bittikten sonra, medyan değeri bir D saklayıcısında bulunacaktır. Karşılaştırma işlemleri için bir adet kombinezonsal çıkarma devresi ve karşılaştırma sonucu için bir adet elde bayrağı (E) kullanılacaktır. Bunlar dışında eğer başka bir eleman kullanılırsa,belirtilmelidir.

- a. Devrenin ASM diyagramını çiziniz.
- b. Denetim birimini, her bir duruma D flip-flop'u karşı düşürecek şekilde çiziniz.
- **c.** Veri makinesini çizerek denetim girişlerinin lojik ifadelerini belirtiniz.

NOT: Bir dizideki tüm sayıları sıraya dizdiğimizde ortada kalan değer, bu sıralı dizinin medyan değeridir.

Soru 2) Aşağıdaki durum tablosunu indirgeyin, Mealy modeline çevirin, bağlantı grafını çizin ve eşdeğerlik sınıflarını belirleyin.

	0	1	Çıkış
So	S ₄	S ₂	1
S ₁	S ₄	S ₂	1
S ₂	S ₅	S_0	0
S ₃	S ₇	S_6	0
S ₄	S_1	S ₄	0
S ₅	S_0	S_4	0
S ₆	S_3	S ₂	1
S ₇	S_1	S ₅	0

CEVAPLAR

b) Denetim Birimi:

c) Veri Makinası:

$$\begin{split} L_A &= L_B = L_C = sT_0 \\ L_D &= T_3E' + T_4 \\ L_E &= T_1 + T_2 + T_3E \\ J_F &= ET_2 \\ K_F &= sT_0 \end{split}$$

$$K_1 = T_1$$

 $K_2 = T_2E' + T_3EF$
 $K_3 = T_3E'F' + T_4EF$
 $K_4 = T_1 + T_2E + T_3EF'$

$$K_5 = T_3E'F + T_4EF'$$

 $K_6 = T_2 + T_3E$
 $K_7 = T_4E'$

2) Bu sorunun çözümünde kullanılabilecek 2 yol var!

1.yol: Moore → Mealy → İndirgeme

	0	1	Çıkış
So	S_4	S_2	1
S ₁	S_4	S ₂	1
S ₂	S ₅	S_0	0
S ₃	S ₇	S_6	0
S ₄	S_1	S_4	0
S ₅	S_0	S_4	0
S ₆	S ₃	S ₂	1
S ₇	S_1	S_5	0

Moore

	0	1
So	S ₄ /0	S ₂ /0
S ₁	S ₄ /0	S ₂ /0
S ₂	S ₅ /0	$S_0/1$
S ₃	S ₇ /0	S ₆ /1
S ₄	S ₁ /1	S ₄ /0
S ₅	$S_0/1$	S ₄ /0
S ₆	S ₃ /0	S ₂ /0
S ₇	S ₁ /1	S ₅ /0

Mealy

Gerektirme Merdiveni:

S_0							
ОК	S ₁						
Х	Х	S ₂					
Х	Х	(5,7) (0,6) X	S ₃				
Х	Х	Х	Х	S ₄			
Х	Х	Х	Х	(0,1) OK	S ₅		
(3,4) X	(3,4) X	Х	Х	Х	Х	S ₆	
Х	Х	Х	Х	(4,5) OK	(0,1) (4,5) OK	Х	S ₇

	0	1
Α	D/0	B/0
В	D/0	A/1
С	D/0	E/1
D	A/1	D/0
E	C/0	B/0

$A=\{S_0,S_1\}$
$B=\{S_2\}$
$C=\{S_3\}$
$D=\{S_4,S_5,S_7\}$
$E = \{S_6\}$

2.yol: Moore → İndirgeme → Mealy (→ bazı örneklerde tekrar indirgeme gerekebilir, bu örnekte her iki yol da aynı sonuca çıkıyor)

	0	1	Çıkış
So	S ₄	S ₂	1
S ₁	S ₄	S ₂	1
S ₂	S_5	S_0	0
S ₃	S ₇	S ₆	0
S ₄	S_1	S_4	0
S ₅	S ₀	S ₄	0
S ₆	S ₃	S ₂	1
S ₇	S_1	S ₅	0

S_0							
ОК	S ₁						
Х	Х	S ₂					
Х	Х	(5,7) (0,6) X	S ₃				
Х	Х	(1,5) (0,4) X	(1,7) (4,6) X	S ₄			
Х	Х	(0,5) (0,4) X	(0,7) (4,6) X	(0,1) OK	S ₅		
(3,4) X	(3,4) X	Х	Х	Х	Х	S ₆	
Х	Х	(1,5) (0,5) X	(1,7) (5,6) X	(4,5) OK	(0,1) (4,5) OK	Х	S ₇

	0	1			
Α	Δ	В	1		Α
В	D	Α	0		В
С	D	Ε	0		С
D	Α	D	0		D
Ε	С	В	1		Ε
Moore					

	0	1		
Α	D/0	B/0		
В	D/0	A/1		
C	D/0	E/1		
D	A/1	D/0		
E	C/0	B/0		
Mealv				

 $A=\{S_0,S_1\}\ B=\{S_2\}\ C=\{S_3\}$

 $D={S_4,S_5,S_7} E={S_6}$