Stenio Garcia Federal University of Minas Gerais Theoretical Guide

Marcos Paulo, Lucas Vazek & Thiago Silva

Series

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

Geometric Series:

$$a_n = a_1 * c^{n-1}$$

$$\sum_{i=0}^n c^i = \frac{c^{n+1} - 1}{c - 1}, \quad c \neq 1$$

$$\sum_{i=0}^{\infty} c^i = \frac{1}{1-c}, \quad \sum_{i=1}^{\infty} c^i = \frac{c}{1-c}, \quad |c| < 1$$

$$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, \quad c \neq 1$$

$$\sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, \quad |c| < 1$$

Identities

$\binom{n}{k} = \frac{n!}{(n-k)!k!}$	$\sum_{k=0}^{n} \binom{n}{k} = 2^n$
$\binom{n}{k} = \binom{n}{n-k}$	$\binom{n}{k} = \frac{n}{k} \binom{n-k}{m-k}$
$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$	$\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n-k}{m-k}$
$\sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}$	$\sum_{k=0}^{n} \binom{k}{k} = \binom{n+1}{m+1}$
$\sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n}$	

Newton's Binomial

$$(x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k} = \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}$$
$$(1+x)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{k}$$

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

2.3 Catalan Numbers

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152, 69533550916004, 263747951750360, 1002242216651368.

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!} = \prod_{k=2}^n \frac{n+k}{k}, \quad n \ge 0$$

Applications:

• C_n is the number of Dyck words of length 2n. A Dyck word is a string consisting of n Xs and n Ys such that no initial segment of the string has more Ys than Xs. For example, the following are the Dyck words of length 6.

XXXYYY XYXXYY XYXYXY XXYYXY XXYXYY

• Re-interpreting the symbol X as an open parenthesis and Y as a close parenthesis, Cn counts the number of expressions containing n pairs of parentheses which are correctly matched.

((())) ()(()) ()()() (())() ...

• Successive applications of a binary operator can be represented in terms of a full binary tree. (A rooted binary tree is full if every vertex has either two children or no children.) It follows that C_n is the number of full binary trees with n+1 leaves:

• C_n is the number of monotonic lattice paths along the edges of a grid with n x n square cells, which do not pass above the diagonal. A monotonic path is one which starts in the lower left corner, finishes in the upper right corner, and consists entirely of edges pointing rightwards or upwards. Counting such paths is equivalent to counting Dyck words: X stands for "move right" and Y stands for "move up". The following diagrams show the case n = 4:

• C_n is the number of different ways a convex polygon with n + 2 sides can be cut into triangles by connecting vertices with straight lines (a form of Polygon triangulation). The following hexagons illustrate the case n = 4:

• C_n is the number of rooted binary trees with n internal nodes (n + 1 leaves or external nodes). Illustrated in following Figure are the trees corresponding to n = 0,1,2 and 3. There are 1, 1, 2, and 5 respectively. Here, we consider as binary trees those in which each node has zero or two children, and the internal nodes are those that have children.

• C_n is the number of different ways n + 1 factors can be completely parenthesized (or the number of ways of associating n applications of a binary operator). For n = 3, for example, we have the following five different parenthesizations of four factors:

((ab)c)d (a(bc))d (ab)(cd) a((bc)d) a(b(cd))

3 Number Theory

Maximal Prime Gaps:

For numbers until 10^9 the maximal gap is 400. For numbers until 10^{18} the maximal gap is 1500.

Number of prime numbers in intervals:

There is aprox. $8 * 10^4$ primes between 1 e 10^6 .

There is aprox. $6 * 10^5$ primes between 1 e 10^7 .

There is aprox. $5 * 10^6$ primes between 1 e 10^8 .

There is aprox. $5 * 10^7$ primes between 1 e 10^9 .

Primes less than 1000:

11 13 19 23 29 31 37 17475359 61 67 71737983 97 101 103 107 109 113 127 131 137 139 149151193197223 $167 ext{ } 173$ 179181 191229233239 241251257263269271281 359 311313317331337347349353 $373 \quad 379$ 383 389 397 401 409 419 421431 433

439	443	449	457	461	463	467	479	487	491	499	503
509	521	523	541	547	557	563	569	571	577	587	593
599	601	607	613	617	619	631	641	643	647	653	659
661	673	677	683	691	701	709	719	727	733	739	743
751	757	761	769	773	787	797	809	811	821	823	827
829	839	853	857	859	863	877	881	883	887	907	911
919	929	937	941	947	953	967	971	977	983	991	997

Other primes:

The largest prime smaller than 10 is 7

The largest prime smaller than 10^2 is 97.

The largest prime smaller than 10^3 is 997.

The largest prime smaller than 10^4 is 9973.

The largest prime smaller than 10^5 is 99991.

The largest prime smaller than 10^6 is 999983.

The largest prime smaller than 10^7 is 9999991.

The largest prime smaller than 10 is 9999991.

The largest prime smaller than 10^8 is 99999989.

The largest prime smaller than 10^9 is 999999937.

The largest prime smaller than 10^{10} is 9999999967.

The largest prime smaller than 10^{11} is 9999999977.

The largest prime smaller than 10^{12} is 999999999989.

The largest prime smaller than 10^{13} is 999999999971.

The largest prime smaller than 10^{14} is 99999999999973. The largest prime smaller than 10^{15} is 999999999999999.

The largest prime smaller than 10^{16} is 9999999999937.

The largest prime smaller than 10¹⁷ is 999999999999997.

Random Primes

1000000009	1000000021	1000000033	1000000087	1000000093
1000000097	1000000103	1000000123	1000000181	1000000207
1000000223	1000000241	1000000271	1000000289	1000000297
1000000321	1000000349	1000000363	1000000403	1000000409
2000003273	2000003281	2000003293	2000003303	2000003333
2000003351	2000003353	2000003359		

Metodo de Newton

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

• O numero de casas decimais corretas, em media, dobra a cada iteracao. (Em caso de duvida, default=30).

Metodo dos Quadrados Minimos

Queremos estimar valores de determinada variável y. Para isso, consideramos os valores de outra variavel x que acreditamos ter poder de explicação sobre yconforme a fórmula:

$$y = \alpha + \beta x + \epsilon$$

- α : Parametro do modelo chamado de constante (porque não depende de x).
- β : Parametro do modelo chamado de coeficiente da variavel x.
- \bullet ϵ : Erro representa a variação de y que nao en explicada pelo modelo.

Temos tambem uma base de dados com n valores observados de y e x. Ao fazer a estimativa de α , β , e ϵ , mudamos a notação de algumas variáveis:

 $\alpha \to a$.

 $\beta \rightarrow b$.

 $\epsilon \to e$.

Desse modo, ao estimar o modelo usando a base de dados, estamos estimando. na verdade:

$$y_i = a + bx_i + e_i$$

onde i indica cada uma das n observações da base de dados e e passa a ser chamado de residuo, ao inves de erro. O metodo dos minimos quadrados minimiza a soma dos quadrado dos residuos, ou seja, minimiza $\sum_{i=1}^{n} e_i^2$. Minimizando S(a, b) = $\sum_{i=1}^{n} (y_i - a - bx_i)^2$ temos que:

$$a = \bar{y} - b\bar{x}$$

$$b = \frac{\sum_{i=1}^{n} x_i (y_i - \bar{y})}{\sum_{i=1}^{n} x_i (x_i - \bar{x})} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

onde \bar{y} eh a media amostral de y e \bar{x} eh a media amostral de x.

Funcao de Ackermann-Peter

$$A(m,n) = \begin{cases} n+1 & se & m=0 \\ A(m-1,1) & se & m>0 & e & n=0. \\ A(m-1,A(m,n-1)) & se & m>0 & e & n>0. \end{cases}$$

• A(4, 2) tem 19729 digitos.

m\n	0		1	2	
0	1		2	3	
1	2		3	4	
2	3		5	7	
3	5	1	.3	29	
4	$13 = 2^{2^2} - 3$	65533 =	2**3 - 3	$2^{65536} - 3 = 2^{**4} - 3$	
m n	3		4	n	
0	4		5	n+1	
1	5		6	n+2 = 2 + (n+3) - 3	3
2	9		11	2n+3 = 2(n+3) - 3	
3	61		125	$2^{n+3}-3$	
4	$2^{2^{2^6 5536}} - 3 =$	2**5 - 3	2**6 - 3	2**(n+ 2) - 3	

Obs.: $2^{**}n = 2^{2^{**}}$ 2, elevado a 2, elevado a 2... n vezes. Ex.: $2^{**}1 = 2^2$; $2^{**}2 = 2^{2^2}$

Numeros de Mersenne

$$\mathcal{M}(n) = 2^n - 1$$

onde n en um inteiro nao-negativo. Os numeros da forma $\mathcal{M}(n)$ sao conhecidos como numeros de Mersenne.

Um numero en chamado de perfeito se en igual a metade da soma de todos os seus divisores positivos. Por exemplo, os divisores de 6 sao 1, 2, 3 e 6. Somando estes numeros obtemos:

$$1 + 2 + 3 + 6 = 12 = 2 * 6$$

Logo 6 en perfeito. Em comparação, nenhum primo en perfeito. Todos os perfeitos pares sao da forma $2^{n-1}2(2^n-1)$ com 2^n-1 primo. Assim, para achar os perfeitos pares basta achar os primos de Mersenne. Ninguem sabe se existem ou nao numeros perfeitos impares.

• Se n eh um inteiro composto, entao $\mathcal{M}(n)$ eh composto.

Teoremas de Fermat

Seja P um numero primo e a um numero inteiro, entao:

$$a^p \equiv a \; (mod \; p)$$

$$a^{p-1} \equiv 1 \pmod{p}$$

Lema: Seja p um numero primo e a e b inteiros. Entao:

$$(a+b)^p = a^p + b^p \pmod{p}$$

Lema: Seja p um numero primo e a inteiro. Entao, O inverso de a mod p eh a^{p-2} :

$$inv(a) \equiv a^{p-2} \pmod{p}$$

4 Geometry

Conversao - angulos:

De radiano para grau:

grau = radiano*(180/PI)

De grau para radiano:

radiano = grau*(PI/180)

Teorema de Herao

A area de um triângulo pode ser dada por: $A = \sqrt{s(s-a)(s-b)(s-c)}$ em que s representa o semi-perimetro do triângulo e a, b e c são os comprimentos de seus tres lados.

Central Angle

Let ϕ_1 , λ_1 and ϕ_2 , λ_2 be the geographical latitude and longitude of two points 1 and 2, and $\Delta\phi$, $\Delta\lambda$ their absolute differences; then $\Delta\sigma$, the central angle between them, is given by the spherical law of cosines:

 $\Delta \sigma = arccos(sin\phi_1 sin\phi_2 + cos\phi_1 cos\phi_2 cos\Delta\lambda)$. The distance d, i.e. the arc-length, for a sphere of radius r and $\Delta \sigma$ given in $d = r\Delta \sigma$.

Condicao de Existencia de Poligonos

- Generalizacao da desigualdade triangular
- Given a collection of positive numbers $r_1,...,r_n$, there exists a polygon in \mathbb{R}^2 with the side-lengths $r_1,...,r_n$ if and only if for every $i, r_i < 1/2 * (r_1 + ... + r_n)$

$$a^{2} = b^{2} - c^{2} - 2b c \cos A$$
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

5 Probability

Expectation

$$E[X] = \sum_{i=1}^{\infty} x_i$$

Bayes Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

5.1 Distributions

5.1.1 Binomial

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$
 $E[X] = n * p$

ullet Calcula a probabilidade de ter K sucessos em n tentativas.

5.1.2 Geometric

• X eh o numero de fracassos em uma sequencia de ensaios independentes de Bernoulli ate que o primeiro sucesso seja observado.

$$P(X = k) = (1 - p)^k p$$

 $\bullet\,$ Ou, se pensar que X en o numero de tentativas ate o primeiro acerto...

$$P(X = k) = (1 - p)^{k-1}p$$

Expectation: E[X] = 1/p

6 Graphs

6.1 Random Graphs

- 6.2 Graph Classes
- 6.2.1 Chordals
- 6.2.2 Line Graphs
- 6.2.3 Interval Graphs
- **6.2.4** Cactus
- 6.2.5 Perfect Graphs
- 6.2.6 Permutation Graphs
- 6.3 Theorems

7 Strings

Dec Hex	Oct	Chr	Dec	Hex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr
0 0	000	NULL	32	20	040		Space	64	40	100	@	@	96		140	`	`
1 1	001	Start of Header	33	21	041	!	1	65	41	101	A	Α	97	61	141	a	a
2 2	002	Start of Text	34	22	042	"		66	42	102	B	В	98	62	142	b	b
3 3	003	End of Text		23	043	#	#	67	43	103	C	C	99	63	143	c	С
4 4	004	End of Transmission		24	044	\$	\$	68		104	D	D	100			d	d
5 5	005	Enquiry		25	045	%	%	69	45	105	E	Е	101	65		e	е
6 6	006	Acknowledgment		26	046	&	&	70	46	106	F	F	102		146	f	f
7 7	007	Bell		27	047	'		71		107	G	G	103	67	147	g	g
8 8	010	Backspace		28	050	((72		110	H	Н	104		150	h	h
9 9	011	Horizontal Tab		29	051))	73				I	105			i	i.
10 A	012	Line feed		2A	052	*	*	74			J	J	106			j	j
11 B	013	Vertical Tab		2B	053		+	75			K	K	107			k	k
12 C	014	Form feed	44	2C	054	,	,	76	4C	114	L	L	108	6C	154	l	- 1
13 D	015	Carriage return	45	2D	055	-	-	77	4D	115	M	M	109	6D	155	m	m
14 E	016	Shift Out		2E	056	.		78		116	N	N	110	6E	156	n	n
15 F	017	Shift In	47	2F	057	/	/	79	4F	117	O	0	111	6F		o	0
16 10	020	Data Link Escape	48	30	060	0	0	80		120	P	Р	112	70		p	р
17 11	021	Device Control 1		31	061	1	1	81		121	Q	Q	113	71	161	q	q
18 12	022	Device Control 2	50	32	062	2	2	82	52	122	R	R	114	72	162	r	r
19 13	023	Device Control 3		33	063	3	3	83		123	S	S	115			s	
20 14	024	Device Control 4		34	064	4	4	84			T	Т	116			t	
21 15	025	Negative Ack.	53	35	065	5	5	85	55	125	U	U	117	75	165	u	u
22 16	026	Synchronous idle	54	36	066	6	6	86	56	126	V	٧	118	76	166	v	V
23 17	027	End of Trans. Block	55	37	067	7	7	87	57	127	W	W	119	77	167	w	w
24 18	030	Cancel	56	38	070	8	8	88	58	130	X	Χ	120	78	170	x	X
25 19	031	End of Medium	57	39	071	9	9	89	59	131	Y	Υ	121	79	171	y	У
26 1A	032	Substitute	58	3A	072	:	:	90	5A	132	Z	Z	122	7A	172	z	z
27 1B	033	Escape	59	3B	073	;	;	91	5B	133	[[123	7B	173	{	{
28 1C	034	File Separator	60	3C	074	<	<	92	5C	134	\	\	124	7C	174		
29 1D	035	Group Separator	61	3D	075	=	=	93	5D	135]]	125	7D	175	}	}
30 1E	036	Record Separator	62	3E	076	>	>	94	5E	136	^	٨	126		176	~	~
31 1F	037	Unit Separator	63	3F	077	?	?	95	5F	137	_	_	127	7F	177		De