Supplement to: Algorithms for Automatized Detection of Hook Effect-bearing Amplification Curves

Stefan Rödiger, Michał Burdukiewicz, Konstantin A. Blagodatskikh, Werner Lehmann, Peter Schierack, Andrej-Nikolai Spiess

2017-11-20

Contents

1	Inti	roduction	1
	1.1	Results for the analysis of the hookreg.rdml data set by human rater	1
	1.2	Results for the analysis of the hookreg.rdml data set with hookreg	6
	1.3	Results for the analysis of the hookreg.rdml data set with hookregNL	8
	1.4	Comparison of the methods	10
2	Per	formance analysis	14
3	Hoo	ok effect analysis with rdmlEdit GUI	14
Re	efere	nces	15

1 Introduction

This is a supplement document for the study Algorithms for Automatized Detection of Hook Effect-bearing Amplification Curves. The functions and data presented in the paper are available from https://github.com/devSJR/PCRedux. The data, including the RDML file are part of the PCRedux package and are made available in the CSV or RDML format (Rödiger et al. 2017) for a vendor independent analysis.

All analysis were implemented and done with the \mathbf{R} statistical computing language (R Core Team 2017, Rödiger et al. (2015)) and dedicated integrated development environments such as \mathbf{RKWard} (Rödiger et al. 2012). Further documentation can be found in the help files of the \mathbf{R} packages.

We added the source code for the generation of the figures in the main text at the end of the document.

Note: Some rows in the tables below appear to be empty. This expected behaviour may occur in cases where the corresponding functions were not able to calculate the coefficients due to a failed model fit or violation of truncation criterion.

1.1 Results for the analysis of the hookreg.rdml data set by human rater

All calculations in the following sections were done with hookreg.rdml data set, which is part of the PCRedux package. The data were transferred to the R environment by the RDML package (Rödiger et al. 2017).

```
# Load the RDML package for reading of the hookreg.rdml-file from the PCRedux
# package. The magrittr package is used for pipes.

library(RDML)
library(PCRedux)
library(magrittr)
```

```
# A comprehensive description of the RDML-file import can be found in Rödiger
# et al. (2017) Bioinformatics

raw_data <- RDML$new(filename=system.file("hookreg.rdml", package="PCRedux"))

##
## Loading experiment: exp1
## run: run1

raw_data_tab <- raw_data$AsTable(name.pattern=paste(
    react$position,
    react$sample$id,
    # run id added to names
    sep="-"))
data <- as.data.frame(raw_data$GetFData(raw_data_tab, long.table=FALSE))

# Plot all data of the hookreg.rdml-file
matplot(data[, 1], data[, -1], type="l", lty=1, lwd=2, ylab="RFU", xlab="Cycle")</pre>
```


Give the first three and last three entires of the data for data evaluation

```
library(xtable)
options(xtable.comment=FALSE)
print(xtable(t(rbind(head(data, 10), tail(data, 10)))), scalebox='0.55', floating=FALSE)
```

	1	2	3	4	5	6	7	8	9	10	41	42	43	44	45	46	47	48	49	50
cyc	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	41.00	42.00	43.00	44.00	45.00	46.00	47.00	48.00	49.00	50.00
A01~F1.1	1.70	1.69	1.69	1.69	1.72	1.78	1.89	2.14	2.59	3.42										
A02~F1.2 A03~F2.1	1.74 1.72	1.74 1.69	1.75 1.69	1.76 1.69	1.80 1.69	1.84 1.67	1.99 1.70	$\frac{2.26}{1.72}$	2.79 1.77	3.72 1.87										
A04~F2.2	1.66	1.65	1.65	1.62	1.64	1.63	1.65	1.66	1.72	1.80										
A05~F3.1	1.67	1.69	1.67	1.65	1.64	1.65	1.64	1.65	1.63	1.64										
A06~F3.2 A07~F4.1	1.68 1.72	1.67 1.71	1.66 1.68	1.65 1.69	1.64 1.69	1.65 1.67	1.65 1.67	1.62 1.67	1.63 1.68	1.65 1.68										
A08~F4.2	1.71	1.71	1.68	1.68	1.67	1.68	1.67	1.66	1.67	1.66										
A09~F5.1	1.69	1.69	1.69	1.66	1.66	1.66	1.67	1.66	1.65	1.65										
A10~F5.2 A11~F6.1	1.73 1.72	1.73 1.68	1.70 1.66	1.68 1.66	1.68 1.66	1.69 1.66	1.68 1.64	1.66 1.65	1.68 1.65	1.68 1.66										
A12~F6.2	1.66	1.65	1.62	1.61	1.63	1.62	1.60	1.60	1.60	1.60										
B01~HP1	0.24	0.13	0.00	0.02	-0.04	-0.12	-0.12	-0.09	-0.06	-0.04										
B02~HP2 B03~HP3	0.29 0.25	0.25 0.24	0.01 0.04	-0.00 -0.02	-0.08 -0.09	-0.17 -0.18	-0.19 -0.23	-0.22 -0.28	-0.12 -0.23	-0.09 -0.20										
B04~HP4	0.28	0.21	0.02	0.00	-0.08	-0.15	-0.23	-0.23	-0.21	-0.17										
B05~HP5	0.18	0.20	0.03	-0.01	-0.04	-0.17	-0.21	-0.21	-0.18	-0.14										
B06~HP6 B07~HP7	0.15 0.35	0.15 0.31	0.01	-0.01 -0.04	-0.06 -0.12	-0.09 -0.24	-0.16 -0.29	-0.16 -0.32	-0.14 -0.35	-0.11 -0.33										
B08~HP8	0.09	0.13	-0.01	-0.01	-0.06	-0.06	-0.12	-0.15	-0.10	-0.08										
B09~HP9 B10~HP10	0.10	0.14	0.01	-0.04 -0.03	-0.04 -0.06	-0.06 -0.16	-0.14 -0.27	-0.14 -0.29	-0.06 -0.27	-0.06 -0.21										
B10 HF10 B11~HP11	-0.00	0.23	0.02	-0.03	-0.07	-0.16	-0.27	-0.29	-0.27	-0.21										
B12~HP12	0.08	0.15	0.04	-0.00	-0.07	-0.12	-0.13	-0.19	-0.13	-0.08										
C01~HP13 C02~HP14	0.13 0.26	0.22	0.02 0.11	-0.01 0.03	-0.10 -0.18	-0.14 -0.24	-0.21 -0.32	-0.23 -0.44	-0.21 -0.38	-0.14 -0.38										
C02 HF14 C03~HP15	0.20	0.27	0.11	-0.02	-0.13	-0.24	-0.32	-0.44	-0.36	-0.08										
C04~HP16	0.03	0.16	0.03	-0.01	-0.04	-0.14	-0.23	-0.30	-0.26	-0.22										
C05~HP17 C06~HP18	0.19 -0.07	0.21	0.03	-0.02 -0.00	-0.08 -0.04	-0.14 -0.11	-0.14 -0.15	-0.26 -0.24	-0.25 -0.24	-0.17 -0.16										
C07~HP19	0.04	0.14 0.11	0.01 0.04	0.03	-0.04	-0.11	-0.15	-0.24	-0.24	-0.16										
C08~HP20	-0.04	0.10	0.02	-0.03	-0.03	-0.06	-0.08	-0.10	-0.04	0.02										
C09~HP21 C10~HP22	0.23 -0.04	0.24 0.13	0.04 -0.01	-0.03 0.00	-0.10 -0.05	-0.15 -0.07	-0.18 -0.12	-0.26 -0.20	-0.22 -0.18	-0.11 -0.09										
C10 Hr 22 C11~HP23	0.44	0.13	0.01	0.03	-0.03	-0.16	-0.12	-0.27	-0.15	-0.03										
C12~HP24	0.07	0.17	0.01	0.01	-0.10	-0.09	-0.16	-0.20	-0.20	-0.05										
D01~HP25 D02~HP26	-0.01 0.08	0.08 0.17	-0.03 0.03	-0.01 -0.01	0.01 -0.07	-0.05 -0.12	-0.03 -0.12	-0.09 -0.18	-0.07 -0.20	0.09 -0.05										
D02 H1 20 D03~HP27	0.12	0.16	0.01	-0.01	-0.06	-0.12	-0.09	-0.13	-0.02	0.07										
D04~HP28	0.17	0.21	0.03	0.01	-0.09	-0.16	-0.17	-0.25	-0.22	-0.10										
D05~HP29 D06~HP30	0.29 0.42	0.20 0.24	0.04 0.03	-0.02 -0.01	-0.06 -0.09	-0.16 -0.16	-0.20 -0.24	-0.30 -0.22	-0.24 -0.22	-0.16 -0.14										
D07~HP31	0.21	0.18	0.04	-0.02	-0.07	-0.13	-0.16	-0.20	-0.18	-0.09										
D08~HP32	0.25	0.11	-0.01	0.02	-0.06	-0.05	-0.08	-0.08	0.03	0.11										
D09~F1.1_td D10~F1.2_td	-0.51 -0.49	-0.32 -0.30	-0.13 -0.16	-0.01 -0.03	0.19	0.27 0.30	0.43 0.45	0.52 0.59	0.71 0.77	1.01 1.12										
D11~F1.3_td	-0.04	0.13	0.11	-0.02	-0.11	-0.11	-0.09	0.09	0.04	-0.19										
D12~F1.4_td E01~F2.1_td	0.06 -0.23	0.03 -0.16	0.25 -0.08	0.01 -0.01	0.08 0.12	-0.01	0.01 0.22	-0.05 0.24	0.00 0.32	-0.04 0.38										
E02~F2.2_td	-0.23	-0.16	-0.03	-0.01	0.12	0.13 0.14	0.22	0.24	0.32	0.38										
E03~F2.3_td	-0.06	-0.04	0.12	0.04	0.12	-0.09	-0.13	-0.01	-0.08	-0.02										
E04~F2.4_td E05~F3.1_td	0.04 -0.18	0.05 -0.13	-0.03 -0.08	-0.12 -0.00	0.15	0.13 0.11	-0.06 0.19	-0.14 0.21	-0.01 0.25	-0.06 0.30										
E06~F3.2_td	-0.10	-0.13	-0.06	-0.02	0.09	0.11	0.16	0.19	0.23	0.26										
E07~F3.3_td	0.01	-0.13	0.01	0.09	-0.03	-0.12	0.07	0.01	0.00	-0.10										
E08~F3.4_td E09~F4.1_td	-0.07 -0.18	0.01 -0.10	0.12 -0.06	-0.00 -0.00	0.10 0.08	-0.04 0.09	0.03 0.17	-0.06 0.19	0.04 0.24	0.08										
E10~F4.2_td	-0.21	-0.13	-0.06	-0.03	0.09	0.12	0.18	0.21	0.25	0.30										
E11~F4.3_td	0.06	0.06	0.08	-0.10	-0.06	-0.09	0.00	-0.04	0.14	0.19										
E12~F4.4_td F01~F5.1_td	-0.05 -0.18	-0.04 -0.14	0.05 -0.06	0.03 -0.01	0.04	0.11	-0.12 0.17	0.03	0.09 0.24	-0.06 0.26										
$F02^{\sim}F5.2_td$	-0.20	-0.12	-0.06	-0.03	0.08	0.13	0.17	0.20	0.22	0.26										
F03~F5.3_td F04~F5.4_td	-0.09 -0.08	-0.03 -0.03	-0.01 -0.07	-0.06 0.11	-0.04 -0.09	0.03 -0.03	0.09	-0.00 -0.08	0.06 0.07	0.05										
F05~F6.1_td	-0.08	-0.03	-0.05	-0.02	0.08	0.12	0.18	0.18	0.23	0.03										
F06~F6.2_td	-0.22	-0.13	-0.06	-0.01	0.08	0.12	0.19	0.22	0.25	0.29										
F07~F6.3_td F08~F6.4_td	0.03 -0.08	-0.14 0.07	0.05 0.01	-0.04 0.19	-0.06 -0.02	-0.06 -0.15	0.09	0.03 -0.07	0.05 -0.06	$0.05 \\ 0.07$										
F09~WGA	2.07	2.04	2.17	2.53	3.23	4.18	5.27	8.52	13.81	22.77										
F10~WGA	2.35	2.29	2.38	2.72	3.53	4.56	6.57	9.56	15.25	25.23	F 15	4.05	4.00	4.50	4.00	4.05	9.00	9.00	9.00	4.07
F11~1ng/mkl F12~1ng/mkl	-9.69 -5.83	-3.48 -1.24	-0.93 -0.58	-0.28 0.36	0.04 -0.18	0.32 -0.12	0.03 -0.08	0.12 0.30	0.19 -0.28	0.12	5.17 5.13	4.97 4.69	4.68 4.46	4.56 4.00	4.26 3.97	$\frac{4.07}{3.90}$	3.93 3.91	$\frac{3.80}{3.85}$	$\frac{3.90}{3.72}$	$\frac{4.07}{3.64}$
G01~100 ng/mkl	-5.30	0.73	0.38	0.37	-0.25	-0.05	-0.39	-0.35	0.33	0.07	3.52	3.47	3.55	3.58	3.41	3.32	3.24	3.38	3.47	3.67
G02~100 ng/mkl G03~1ng/mkl	2.08 -3.15	1.41 0.13	-0.05 0.25	0.11 0.77	-0.24 0.63	0.02 -0.18	-0.28 -0.20	0.22 -0.18	0.32 -0.01	0.09 -0.25	3.40 33.08	3.38	3.19 37.98	3.01 39.55	$\frac{2.73}{40.70}$	$\frac{2.73}{41.78}$	$\frac{2.92}{42.61}$	3.19 43.57	$\frac{2.99}{44.27}$	$\frac{2.51}{44.95}$
G04~1ng/mkl	-3.15	1.06	0.25	0.77	-0.10	0.05	0.06	0.14	-0.01	-0.25	29.44	35.84 31.48	33.10	34.28	35.43	36.48	37.37	37.85	38.30	38.66
G05~100 ng/mkl	-3.89	0.03	-0.06	-0.15	0.33	-0.00	0.09	0.21	-0.31	-0.08	54.33	55.24	56.27	56.94	57.54	57.95	58.26	58.65	59.11	59.78
G06~100 ng/mkl G07~1ng/mkl	1.14 -13.06	5.95 -6.09	5.03 -1.82	1.33 -0.66	-0.93 -0.45	-1.42 -0.12	-0.96 0.03	-1.06 0.20	-0.99 0.20	-0.42 0.40	56.05 27.73	56.92 25.30	57.93 22.76	58.62 20.66	59.34 18.77	59.89 17.01	60.68 15.44	61.15 14.52	61.71 13.79	61.93 12.90
G08~1ng/mkl	-12.37	-4.51	-0.46	-0.38	-0.58	-0.08	0.29	-0.11	-0.09	0.19	29.86	27.49	25.07	22.50	20.20	18.29	16.91	15.85	14.96	14.26
G09~100 ng/mkl	-11.54	-2.08	0.48	0.73	0.15	-0.31	-0.14	-0.02	0.27	-0.09	26.88	24.58	22.69	20.93	19.49	18.21	16.99	16.14	15.44	15.08
G10~100 ng/mkl G11~1ng/mkl	-10.43 -8.02	-1.72 -0.61	0.77 0.12	-0.08 0.04	-0.02 -0.75	-0.27 -0.05	-0.11 -0.01	0.35 -0.02	0.04 0.37	0.32 -0.19	25.75 75.63	23.63 79.88	21.66 83.18	19.89 85.59	18.35 87.26	17.04 88.88	16.09 90.08	15.04 91.05	14.20 91.92	13.33 93.02
G12~1ng/mkl	-1.57	1.20	0.30	0.43	0.18	0.17	-0.13	0.25	0.21	-0.16	69.08	72.91	75.94	78.47	80.38	81.99	83.52	84.84	86.00	86.88
H01~100 ng/mkl H02~100 ng/mkl	3.01 -1.97	2.14 5.01	-0.30 4.66	0.40 2.37	0.38 -1.53	-0.39 -1.31	-0.14 -1.11	0.35 -0.85	0.22	-0.04 -1.00	88.33 91.09	89.85 92.77	90.92 94.18	91.77 95.33	92.80 96.21	93.77 97.21	94.77 97.79	95.14 98.54	95.57 99.17	96.02 100.00
H02 100 ng/mki H03~s1	-1.97 -9.68	-2.16	-0.04	-1.52	-0.61	-0.26	0.64	3.88	-1.18 -0.26	0.29	10.47	92.77	7.58	95.33 5.40	3.52	2.60	2.68	2.10	1.64	1.23
$\mathrm{H}04\mathrm{\tilde{s}}2$	-4.61	0.75	-1.59	0.78	2.69	-2.51	1.27	3.16	2.36	0.05	9.87	7.11	5.65	5.42	5.32	4.27	2.89	1.47	1.19	1.12
H05~s3 H06~s4	-2.40 7.22	-0.32 0.26	-0.94 0.86	0.37 1.10	-0.12 0.56	-0.13 2.69	-1.57 -3.01	0.27 1.52	1.64 0.55	1.11 -0.15	90.47 94.82	71.57 75.19	49.81 52.09	35.28 35.02	29.68 26.07	26.99 18.63	27.04 15.83	24.12 14.30	23.04 14.73	19.67 13.59
H07~s5	-1.10	0.20	0.59	0.78	0.04	0.21	0.24	-0.03	-0.49	0.47	34.14	33.45	33.43	33.39	33.10	32.88	32.64	32.49	32.22	32.00
H08~s6	2.78	1.73	1.47	0.77	0.49	0.52	-0.01	0.11	-0.56	-0.61	99.20	100.00	99.93	99.12	97.15	95.36	92.91	90.75	87.92	85.20
H09~s7 H10~s8	0.70 2.51	1.27 1.27	0.96 1.53	1.55 0.79	0.95 0.08	0.15 0.83	-0.57 -0.33	-0.25 -0.54	-1.05 -0.72	-1.25 -0.02	38.91 52.22	38.57 57.73	38.63 58.59	39.02 56.83	38.77 55.11	38.91 54.27	38.94 54.25	39.18 54.15	39.37 53.90	39.91 53.08
H11~NTC	-78.32	-39.71	-23.30	-9.87	-8.05	-6.83	-2.73	1.25	-1.12	0.62		,0								
H12~NTC	-47.02	-30.47	-20.59	-13.65	-6.74	-7.18	-2.64	-4.76	3.15	-1.36										

Printout of all measured samples, their rating by two humans (rater 1 and rater 2) with their dichotomous ratings (0, no hook; 1, hook) and their sources.

- The boggy data (qpcR::boggy) set was taken from the qpcR package (Ritz and Spiess 2008, Spiess, Feig, and Ritz (2008)).
- The C127EGHP data (chipPCR::C127EGHP) set was taken from the chipPCR package (Rödiger, Burdukiewicz, and Schierack 2015).
- The testdat data (qpcR::testdat) set was taken from the qpcR package (Ritz and Spiess 2008, Spiess, Feig, and Ritz (2008)).
- Other data were prepared by Evrogen laboratory experiments.

1.1.2 Sept. Design Constitute Sept. Design	#	Sample	Data Source	Target	Chemistry	Hook effect-like Rater 1	Hook effect-like Rater 2	Rating Conformity
2 2 2 3 0 0 1 1 1 1 1 1 1 1						1 1	1100K CHCCU-HKC 1686C1 2	
\$222				synthetic template				
5 7.1								
\$12.2 opti-loogy symbols samples Syb-1 0 0 1 1 1 1 1 1 1	-							
7 \$1.3								
\$4.2.3 gelt-leogy synthet template \$9.0.11 0 0 1 1 1 1 1 1 1								
10 F. 12				synthetic template	Syto-13	0		
15 P.1.					b c			
18 HP2								
13 101								
14 112								
15 1873								
17	15					0		
18 1876								
19 197								
188								
1999								
1979								
1811	22	HP10	chipPCR::C127EGHP	MLC-2v	TaqMan (Cy5/BHQ2)	0) (1
1913								
1911								
1915 chipPCE-C12FGHP MLC-2v								
18 18								
1919								
31 HP9		HP17	chipPCR::C127EGHP	MLC-2v	TaqMan (Cy5/BHQ2)		(1
18								
HP2 chipPCR-C12FEGHP MLC-2v								
14 HP22								
1872								
1872								
18								
1987								
10 HPS								
HP29								
1890 chipPCR:C12FGCHP MLC-2v								
Heart Hear	42		chipPCR::C127EGHP			0) (1
45 F.11_tol								
46 F1.2_td qpcR:testdat S27a housekeeping gene SphrGreen I 0 0 1								
47 F.1.3, t.t.d. qopR:testedat S27a housekeeping gene SybrGreen I 0 0 0 1								
18 F1.4_td qupR.testdat S27a housekeeping gene SybrGreen I 0 0 1								
19 F2-1, td qopR-testdat S27a housekeeping gene SybrGreen 0								
52 F2-3. tot qpcRt:testdat S27a housekeeping gene SpbrGreen I 0 0 1								
F2 F2.4 Ltd	50	F2.2_td	qpcR::testdat	S27a housekeeping gene				
53 F3.1 td								
54 F3.2 1.0 qpcR:restdat S27a housekeeping gene SybrGreen I 0 0 0 1								
55 F3.3_td								
55 F4.4_td								
Section Sect	56				SybrGreen I	0	(1
59 F4.3_t.d qpcRt:testdat S27a housekeeping gene SybrGreen I 0 0 0 1								
F4.4 td								
F5.1_td								
F5.2_td								
F5.3_td					b c			
F6-1_td	63					0	(1
F6.2 _ td								
F63. td qpcR::testdat S27a housekeeping gene SybrGreen I 0 0 0 1								
F64_td						~		
F09 WGA Evrogen lab experiment Whole genome amplification EvaGreen 1 1 1 1 1 1 1 1 1								
F10 WGA Evrogen lab experiment F11 Ing/mkl Evrogen lab experiment Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 1 1 1 1 1 1 1 1 1			Evrogen lab experiment	Whole genome amplification	EvaGreen			
F12 Ing/mkl		F10~WGA	Evrogen lab experiment	Whole genome amplification	EvaGreen			
TagMan (HEX/BHQ1) 1								
TaqMan (HEX/BHQ1) 1								
TagMan (HEX/BHQ1) TagM								
Fig.								
TagMan (HEX/BHQ1) 0 0 0 1		G04~1ng/mkl	Evrogen lab experiment	BRCA1 gene	TaqMan (HEX/BHQ1)	0	(1
TagMan (HEX/BHQ1) 1 1 1 1 1 1 1 1 1					TaqMan (HEX/BHQ1)			
Signature Sign								
81 G09-100ng/mkl Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 1 1 1 82 G10-100ng/mkl Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 0 0 1 83 G11-1ng/mkl Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 0 0 0 1 84 G12-1ng/mkl Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 0 0 0 1 85 H01-100ng/mkl Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 0 0 0 1 86 H02-100ng/mkl Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 0 0 0 1 87 s1 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1								
82 G10 100ng/mkl Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 1 1 1 84 G12 1ng/mkl Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 0 0 1 85 H01 100ng/mkl Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 0 0 0 1 86 H02 100ng/mkl Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 0 0 0 1 87 s1 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 89 s3 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 90 s4 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1								
83 G11^1ng/mkl Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 0 0 1 84 G12^1ng/mkl Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 0 0 1 85 H01*100ng/mkl Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 0 0 1 86 H02*100ng/mkl Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 0 0 1 87 s1 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1								
85 H01 ⁻ 100ng/mkl Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 0 0 1 86 H02 ⁻ 100ng/mkl Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 0 0 1 87 s1 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 88 s2 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 90 s4 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 91 s5 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 1 92 s6 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1	83	G11~1ng/mkl	Evrogen lab experiment	BRCA1 gene	TaqMan (HEX/BHQ1)			
86 H02 100ng/mkl Evrogen lab experiment BRCA1 gene TaqMan (HEX/BHQ1) 0 0 1 87 s1 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 88 s2 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 89 s3 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 90 s4 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 92 s6 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 93 s7 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 0 0 0 1 95 NTC Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 0 0 0 1								
87 s1 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 88 s2 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 89 s3 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 90 s4 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 91 s5 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 92 s6 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 93 s7 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 0 0 0 1 94 s8 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 95 NTC Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
88 s2 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 89 s3 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 90 s4 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 91 s5 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 92 s6 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 93 s7 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 0 0 0 1 94 s8 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 95 NTC Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 0 0 0 1								
89 s3 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 90 s4 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 91 s5 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 92 s6 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 93 s7 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 0 0 0 1 94 s8 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 95 NTC Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 0 0 0 1						-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
92 s6 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 93 s7 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 0 0 1 94 s8 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 95 NTC Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 0 0 1	90	s4	Evrogen lab experiment	NRAS gene	TaqMan (FAM/BHQ1)			
93 s7 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 0 0 1 94 s8 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 95 NTC Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 0 0 1								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
95 NTC Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 0 0 1								

1.2 Results for the analysis of the hookreg.rdml data set with hookreg

```
library(PCRedux)
library(magrittr)
suppressMessages(library(qpcR))
res hookreg <- sapply(2L:ncol(data), function(i) {
 hookreg(x=data[, 1], y=data[, i])
}) %>% t %>% data.frame(sample=colnames(data)[-1],.)
res_hookreg_table <- data.frame(sample=as.character(res_hookreg[["sample"]]),</pre>
                                intercept=signif(res_hookreg[["intercept"]], 2),
                                slope=signif(res_hookreg[["slope"]], 1),
                                hook.start=signif(res_hookreg[["hook.start"]], 0),
                                hook.delta=signif(res_hookreg[["hook.delta"]], 0),
                                p.value=signif(res_hookreg[["p.value"]], 4),
                                CI.low=signif(res_hookreg[["CI.low"]], 2),
                                CI.up=signif(res hookreg[["CI.up"]], 2),
                                hook.fit=res_hookreg[["hook.fit"]],
                                hook.CI=res_hookreg[["hook.CI"]],
                                hook=res_hookreg[["hook"]]
```

Printout of all measured samples and their sources.

sample	intercept	slope	hook.start	hook.delta	p.value	CI.low	CI.up	hook.fit	hook.CI	hook
A01~F1.1	1.20	-0.01	30.00	20.00	0.00	1.20	-0.01	1.00	1.00	1.00
A02~F1.2	1.20 1.20	-0.01 -0.01	30.00 30.00	20.00 9.00	0.00	1.20 1.20	-0.01 -0.00	1.00 1.00	1.00 1.00	1.00 1.00
A03~F2.1 A04~F2.2	1.20	-0.01	30.00	9.00	0.00	1.20	-0.00	1.00	1.00	1.00
A05~F3.1	1.10	-0.00	40.00	6.00	0.05	1.20	0.00	0.00	0.00	0.00
A06~F3.2	1.10	-0.00	40.00	6.00	0.02	1.20	0.00	0.00	0.00	0.00
A07~F4.1 A08~F4.2								0.00	0.00	0.00
A09 F 4.2 A09 F 5.1								0.00	0.00	0.00 0.00
A10~F5.2								0.00	0.00	0.00
A11~F6.1								0.00	0.00	0.00
A12~F6.2 B01~HP1								0.00	0.00	0.00
B02~HP2								0.00	0.00	0.00
B03~HP3								0.00	0.00	0.00
B04~HP4								0.00	0.00	0.00
B05~HP5 B06~HP6								0.00	0.00	0.00 0.00
B07~HP7								0.00	0.00	0.00
B08~HP8								0.00	0.00	0.00
B09~HP9								0.00	0.00	0.00
B10~HP10 B11~HP11								0.00	0.00	0.00
B12~HP12								0.00	0.00	0.00
C01~HP13								0.00	0.00	0.00
C02~HP14								0.00	0.00	0.00
C03~HP15 C04~HP16								0.00	0.00	0.00 0.00
C05~HP17								0.00	0.00	0.00
C06~HP18								0.00	0.00	0.00
C07~HP19								0.00	0.00	0.00
C08~HP20 C09~HP21								0.00	0.00	0.00
C10~HP22								0.00	0.00	0.00
C11~HP23								0.00	0.00	0.00
C12~HP24 D01~HP25								0.00	0.00	0.00 0.00
D01 HF 25 D02~HP26								0.00	0.00	0.00
D03~HP27								0.00	0.00	0.00
D04~HP28								0.00	0.00	0.00
D05~HP29 D06~HP30								0.00	0.00	0.00
D07~HP31								0.00	0.00	0.00
D08~HP32								0.00	0.00	0.00
D09~F1.1_td	1.00	-0.00	30.00	7.00	0.01	1.10	0.00	0.00	0.00	0.00
D10~F1.2_td D11~F1.3 td	1.10 0.73	-0.00 -0.02	30.00 10.00	10.00 30.00	0.00	1.10 1.50	-0.00 0.01	1.00 0.00	1.00 0.00	1.00 0.00
D12~F1.4_td	0.08	-0.00	3.00	40.00	0.42	0.40	0.01	0.00	0.00	0.00
E01~F2.1_td	1.00	-0.00	30.00	7.00	0.04	1.10	0.00	0.00	0.00	0.00
E02~F2.2_td E03~F2.3_td	1.10	-0.00	40.00	5.00	0.15	1.30	0.00	0.00	0.00	0.00
E04~F2.4_td	-0.13 3.10	0.00	20.00 30.00	20.00 8.00	0.90 0.24	1.40 12.00	$0.06 \\ 0.17$	0.00	0.00	0.00 0.00
E05~F3.1_td								0.00	0.00	0.00
E06~F3.2_td								0.00	0.00	0.00
E07~F3.3_td E08~F3.4_td	0.55 0.11	-0.02 -0.00	10.00 10.00	30.00 30.00	0.09 0.84	1.40 1.00	0.01 0.03	0.00	0.00	0.00 0.00
E09~F4.1_td	0.11	0.00	10.00	00.00	0.01	1.00	0.00	0.00	0.00	0.00
$E10^F4.2_td$								0.00	0.00	0.00
E11~F4.3_td	2.90	-0.08	30.00	10.00 40.00	0.14	9.50	0.11	0.00	0.00	0.00
E12~F4.4_td F01~F5.1_td	0.26	-0.02	6.00	40.00	0.08	1.20	0.01	0.00	0.00	0.00 0.00
F02~F5.2_td								0.00	0.00	0.00
F03~F5.3_td	2.20	-0.06	30.00	10.00	0.06	5.60	0.04	0.00	0.00	0.00
F04~F5.4_td F05~F6.1_td	-0.08	0.00	20.00	20.00	0.89	1.50	0.06	0.00	0.00	0.00
F06~F6.2 td								0.00	0.00	0.00
F07~F6.3_td	0.67	-0.02	20.00	20.00	0.24	2.20	0.03	0.00	0.00	0.00
F08~F6.4_td F09~WGA	0.09	-0.00	4.00	40.00	0.73	0.62	0.02	0.00	0.00	0.00
F10°WGA								0.00	0.00	0.00
F11~1ng/mkl	2.40	-0.04	40.00	20.00	0.00	3.20	-0.02	1.00	1.00	1.00
F12~1ng/mkl	2.30	-0.04	40.00	20.00	0.00	3.30	-0.02	1.00	1.00	1.00
G01~100 ng/mkl G02~100 ng/mkl	1.60 1.70	-0.03 -0.03	30.00 30.00	20.00 20.00	0.00	2.10 2.20	-0.02 -0.02	1.00 1.00	1.00 1.00	1.00 1.00
G03~1ng/mkl	1.70	-0.03	30.00	20.00	0.00	2.20	-0.02	0.00	0.00	0.00
G04~1ng/mkl								0.00	0.00	0.00
G05~100 ng/mkl								0.00	0.00	0.00
G06~100 ng/mkl G07~1ng/mkl	3.00	-0.05	40.00	10.00	0.00	3.30	-0.05	0.00 1.00	0.00 1.00	0.00 1.00
G08~1ng/mkl	3.00	-0.05	40.00	10.00	0.00	3.30	-0.04	1.00	1.00	1.00
$G09^{\sim}100 \text{ ng/mkl}$	2.50	-0.04	30.00	20.00	0.00	2.70	-0.04	1.00	1.00	1.00
G10~100 ng/mkl G11~1ng/mkl	2.60	-0.05	30.00	20.00	0.00	2.80	-0.04	1.00 0.00	1.00 0.00	1.00 0.00
G11 Ing/mkl G12~1ng/mkl								0.00	0.00	0.00
H01~100 ng/mkl								0.00	0.00	0.00
H02~100 ng/mkl	0.40	0.05	90.00	00.00	0.00	9.00	0.00	0.00	0.00	0.00
H03~s1 H04~s2	2.40 2.20	-0.05 -0.05	30.00 30.00	20.00 20.00	0.00	3.30 3.20	-0.03 -0.02	1.00 1.00	1.00 1.00	1.00 1.00
H05~s3	4.10	-0.08	40.00	10.00	0.00	6.20	-0.02	1.00	1.00	1.00
H06~s4	4.60	-0.09	40.00	10.00	0.00	6.80	-0.04	1.00	1.00	1.00
H07~s5 H08~s6	1.60 1.80	-0.02 -0.02	30.00 40.00	20.00 9.00	0.00	2.10 2.10	-0.01	1.00 1.00	1.00 1.00	1.00 1.00
H09~s6 H09~s7	1.50	-0.02	40.00	9.00	0.00	2.10	-0.01	0.00	0.00	0.00
H10~s8	1.50	-0.01	40.00	8.00	0.00	1.90	-0.00	1.00	1.00	1.00
H11°NTC	0.92	-0.03	10.00	30.00	0.00	1.50	-0.01	1.00	1.00	1.00
H12~NTC	0.50	-0.01	10.00	30.00	0.19	1.50	0.02	0.00	0.00	0.00

1.3 Results for the analysis of the hookreg.rdml data set with hookregNL

```
res_hookregNL <- suppressMessages(sapply(2L:ncol(data), function(i) {</pre>
  hookregNL(x=data[, 1], y=data[, i])
}) %>% t %>% data.frame(sample=colnames(data)[-1],.))
res_hookregNL_table <- data.frame(sample=as.character(res_hookregNL[["sample"]]),</pre>
                                   slope=signif(as.numeric(res_hookregNL[["slope"]]), 1),
                                   CI.low=signif(as.numeric(res_hookregNL[["CI.low"]]), 2),
                                   CI.up=signif(as.numeric(res_hookregNL[["CI.up"]]), 2),
                                   hook.CI=unlist(res_hookregNL[["hook"]])
)
library(xtable)
options(xtable.comment=FALSE)
print(xtable(res_hookregNL_table),
      size = "normalsize",
      include.rownames = FALSE,
      include.colnames = TRUE,
      caption.placement = "top",
      comment=FALSE,
      table.placement = "!ht", scalebox='0.55', floating=FALSE
```

sample	slope	CI.low	CI.up	hook.CI
A01~F1.1	-0.10	-0.16	-0.12	1.00
A02~F1.2	-0.20	-0.19	-0.15	1.00
A03~F2.1 A04~F2.2	-0.09 -0.09	-0.13 -0.12	-0.06 -0.06	1.00 1.00
A05~F3.1	-0.02	-0.05	0.00	0.00
A06~F3.2	-0.02	-0.05	0.01	0.00
A07~F4.1 A08~F4.2	0.00	-0.01	0.02	0.00
A09~F5.1	0.01			0.00
A10~F5.2	0.01			0.00
A11~F6.1 A12~F6.2	0.00			0.00
B01~HP1	0.01			0.00
B02~HP2 B03~HP3	0.08			0.00
B04~HP4	0.03			0.00
B05~HP5	0.04			0.00
B06~HP6 B07~HP7	0.02 -0.10			0.00
B08~HP8	0.03			0.00
B09~HP9	0.05			0.00
B10~HP10 B11~HP11	0.05			0.00
B12~HP12	0.07			0.00
C01~HP13	0.05			0.00
C02~HP14 C03~HP15	-0.04 0.08			0.00
C04~HP16	0.09			0.00
C05~HP17	0.05			0.00
C06~HP18 C07~HP19	0.03 0.10			0.00
C08~HP20	0.02			0.00
C09~HP21	0.06			0.00
C10~HP22 C11~HP23	0.01 0.10			0.00
C12~HP24	0.06			0.00
D01~HP25	0.09			0.00
D02~HP26 D03~HP27	0.10 0.10			0.00
$D04^{\sim}HP28$	0.10			0.00
D05~HP29 D06~HP30	0.20			0.00
D07~HP31	0.10			0.00
D08~HP32	0.04	0.00	0.40	0.00
D09~F1.1_td D10~F1.2_td	0.09 -0.05	0.02	0.16	0.00
D11~F1.3_td	-0.00			0.00
D12~F1.4_td	0.40			0.00
E01~F2.1_td E02~F2.2 td	0.10	0.07	0.22	0.00
E03~F2.3_td	-0.00			0.00
E04°F2.4_td	0.10	0.05	0.01	0.00
E05~F3.1_td E06~F3.2_td	0.10	$0.07 \\ 0.05$	0.21 0.14	0.00
E07~F3.3_td	-0.00			0.00
E08~F3.4_td E09~F4.1_td	-0.00	0.03	0.16	0.00
E10°F4.1_td E10°F4.2_td	0.10	0.03	0.16 0.13	0.00
E11~F4.3_td	-0.00			0.00
E12~F4.4_td F01~F5.1_td	0.00	0.02	0.09	0.00
F02~F5.2_td	0.05 0.05	0.02	0.09	0.00
F03~F5.3_td	-0.01			0.00
F04~F5.4_td F05~F6.1 td	0.03			0.00
F06~F6.2_td	0.03			0.00
F07~F6.3_td				0.00
F08~F6.4_td F09~WGA	-0.04 -20.00	-38.00	-9.50	0.00 1.00
$F10^{\sim}WGA$	-20.00	-32.00	-10.00	1.00
F11~1ng/mkl	-0.40			0.00
F12~1ng/mkl G01~100 ng/mkl	-0.40 -0.40			0.00
$G02^{\sim}100 \text{ ng/mkl}$	-0.40			0.00
G03~1ng/mkl G04~1ng/mkl	0.02	-0.00	0.03	0.00
G05~100 ng/mkl	-0.01 0.03			0.00
G06~100 ng/mkl	0.10			0.00
G07~1ng/mkl G08~1ng/mkl	-1.00			0.00
G09~100 ng/mkl	-1.00 -1.00			0.00
$G10^{\sim}100 \text{ ng/mkl}$	-1.00			0.00
G11~1ng/mkl G12~1ng/mkl	-0.03 -0.02			0.00
H01~100 ng/mkl	-0.02			0.00
H02~100 ng/mkl	0.01			0.00
H03~s1 H04~s2	-4.00 -4.00			0.00
H05~s3	-5.00			0.00
H06~s4	-8.00			0.00
H07~s5 H08~s6	-0.80 -0.50	-0.88	-0.13	0.00 1.00
H09~s7	0.05	0.01	0.08	0.00
H10~s8	-0.04 40.00			0.00
H11~NTC H12~NTC	40.00 40.00			0.00

1.4 Comparison of the methods

Sample	Human rater	hookreg	hookregNL
F1.1	1	1	1
F1.2 F2.1	1	1 1	1 1
F2.2	1	1	1
F3.1	0	0	0
F3.2 F4.1	0	0	0
F4.2	0	0	0
F5.1	0	0	0
F5.2	0	0	0
F6.1 F6.2	0	0	0
HP1	0	0	0
HP2	0	0	0
HP3	0	0	0
HP4 HP5	0	0	0
HP6	0	0	0
HP7	0	0	0
HP8	0	0	0
HP9 HP10	0	0	0
HP11	0	0	0
HP12	0	0	0
HP13	0	0	0
HP14 HP15	0	0	0
HP16	0	0	0
HP17	0	0	0
HP18	0	0	0
HP19	0	0	0
HP20 HP21	0	0	0
HP22	0	0	0
HP23	0	0	0
HP24	0	0	0
HP25 HP26	0	0	0
HP27	0	0	0
HP28	0	0	0
HP29	0	0	0
HP30 HP31	0	0	0
HP32	0	0	0
F1.1_td	0	0	0
F1.2_td	0	1	0
F1.3_td F1.4_td	0	0	0
F2.1_td	0	0	0
F2.2_td	0	0	0
F2.3_td	0	0	0
F2.4_td F3.1_td	0	0	0
F3.2_td	0	0	0
F3.3_td	0	0	0
F3.4_td	0	0	0
F4.1_td F4.2_td	0	0	0
F4.3_td	0	0	0
F4.4_td	0	0	0
F5.1_td	0	0	0
F5.2_td F5.3 td	0	0	0
F5.4_td	0	0	0
F6.1_td	0	0	0
F6.2_td	0	0	0
F6.3_td F6.4_td	0	0	0
F09~WGA	1	0	1
$F10^{\sim}WGA$	1	0	1
F11~1ng/mkl	1	1	0
F12~1ng/mkl G01~100ng/mkl	1	1 1	0
G02~100ng/mkl	1	1	0
G03~1ng/mkl	0	0	0
G04~1ng/mkl	0	0	0
G05~100ng/mkl G06~100ng/mkl	0	0	0
G07~1ng/mkl	1	1	0
G08~1ng/mkl	1	1	0
G09~100ng/mkl	1	1	0
G10~100ng/mkl G11~1ng/mkl	1 0	1 0	0
G12~1ng/mkl	0	0	0
H01~100ng/mkl	0	0	0
H02~100ng/mkl	0	0	0
s1 s2	1 1	1 1	0
s3	1	1	0
s4	1	1	0
s5	1	1	0
s6 s7	1 0	1 0	1 0
s8	1	1	0
NTC	0	1	0
NTC	0	0	0

```
library(xtable)
options(xtable.comment=FALSE)

print(xtable(res_out, digits=0), scalebox='0.55', floating=FALSE)
```

	Sample	Human rater	hookreg	hookregNL	hookreg and hoohkreNL combined
1	F1.1	1	1	1	1
2	F1.2	1	1	1	1
3	F2.1	1	1	1	1
4	F2.2	1	1	1	1
5	F3.1	0	0	0	0
6	F3.2 F4.1	0	0	0	0
7 8	F4.1 F4.2	0	0	0	0
9	F5.1	0	0	0	0
10	F5.2	0	0	0	0
11	F6.1	0	0	0	0
12	F6.2	0	ő	0	0
13	HP1	0	0	0	0
14	HP2	0	0	0	0
15	HP3	0	0	0	0
16	HP4	0	0	0	0
17	HP5	0	0	0	0
18	HP6	0	0	0	0
19 20	HP7	0	0	0	0
21	HP8 HP9	0	0	0	0
22	HP10	0	0	0	0
23	HP11	0	ő	0	0
24	HP12	0	0	0	0
25	HP13	0	0	0	0
26	HP14	0	0	0	0
27	HP15	0	0	0	0
28	HP16	0	0	0	0
29	HP17	0	0	0	0
30	HP18	0	0	0	0
31	HP19	0	0	0	0
32 33	HP20 HP21	0	0	0	0
34	HP22	0	0	0	0
35	HP23	0	0	0	0
36	HP24	0	0	0	0
37	HP25	0	0	0	0
38	HP26	0	0	0	0
39	HP27	0	0	0	0
40	HP28	0	0	0	0
41	HP29	0	0	0	0
42	HP30	0	0	0	0
43 44	HP31 HP32	0	0	0	0
45	F1.1_td	0	0	0	0
46	F1.2_td	0	1	0	1
47	F1.3 td	0	0	0	0
48	F1.4_td	0	0	0	0
49	F2.1_td	0	0	0	0
50	F2.2_td	0	0	0	0
51	F2.3_td	0	0	0	0
52	F2.4_td	0	0	0	0
53	F3.1_td	0	0	0	0
54 55	F3.2_td	0	0	0	0
56	F3.3_td F3.4_td	0	0	0	0
57	F4.1_td	0	0	0	0
58	F4.2_td	0	0	0	0
59	F4.3_td	0	0	0	0
60	F4.4_td	0	0	0	0
61	F5.1_td	0	0	0	0
62	F5.2_td	0	0	0	0
63	F5.3_td	0	0	0	0
64	F5.4_td	0	0	0	0
65 66	F6.1_td	0	0	0	0
67	F6.2_td F6.3_td	0	0	0	0
68	F6.4_td	0	0	0	0
69	F09~WGA	1	0	1	1
70	F10~WGA	1	0	1	1
71	$F11^{\sim}1ng/mkl$	1	1	0	1
72	$F12^{\sim}1ng/mkl$	1	1	0	1
73	G01~100ng/mkl	1	1	0	1
74	G02~100ng/mkl	1	1	0	1
75 76	G03~1ng/mkl	0	0	0	0
76 77	G04~1ng/mkl G05~100ng/mkl	0	0	0	0
77 78	G05 100ng/mkl G06~100ng/mkl	0	0	0	0
79	G07~1ng/mkl	1	1	0	1
80	G08~1ng/mkl	1	1	0	1
81	G09~100ng/mkl	1	1	0	1
82	G10~100ng/mkl	1	1	0	1
83	G11~1ng/mkl	0	0	0	0
84	G12~1ng/mkl	0	0	0	0
85	$\mathrm{H}01~100\mathrm{ng/mkl}$	0	0	0	0
86	H02~100ng/mkl	0	0	0	0
87	s1	1	1	0	1
88	s2	1	1	0	1
89	s3	1 1	1	0	1
90 91	s4 s5	1	1 1	0	1 1
91	s6	1	1	1	1
93	s7	0	0	0	0
94	s8	1	1	0	1
95	NTC	0	1	0	1
96	NTC	0	0	0	0

2 Performance analysis

The performance of the **hookreg()** function and **hookregNL()** function was analyzed with the **performeR()** function of the PCRedux package. The methods were adopted from Brenner and Gefeller (1997) and Kuhn (2008).

```
res_performeR <- rbind(</pre>
  hookreg=performeR(res_out[["hookreg"]], res_out[["Human rater"]]),
  hookregNL=performeR(res_out[["hookregNL"]], res_out[["Human rater"]]),
  combined_hookreg=performeR(res_out[["hookreg and hookkreNL combined"]],
                                res out[["Human rater"]])
) %>% t %>% signif(4)
colnames(res_performeR) <- c("hookreg", "hookregNL", "hookreg and hookregNL")</pre>
library(xtable)
options(xtable.comment=FALSE)
print(xtable(res performeR, digits=0),
      size = "normalsize",
      include.rownames = TRUE,
      include.colnames = TRUE,
      caption.placement = "top",
      comment=FALSE,
      table.placement = "!ht", scalebox='0.75', floating=FALSE
```

	hookreg	hookregNL	hookreg and hookregNL
TPR	1	0	1
SPC	1	1	1
PPV	1	1	1
NPV	1	1	1
FPR	0	0	0
FNR	0	1	0
FDR	0	0	0
ACC	1	1	1
F1	1	0	1
MCC	1	1	1
LRp	34	Inf	38
kappa	1	0	1
TP	19	7	21
TN	73	75	73
FP	2	0	2
FN	2	14	0
counts	96	96	96

3 Hook effect analysis with rdmlEdit GUI

One can analyze data with GUI by installing RDML package and run **rdmlEdit** as local server, or open rdmlEdit app at Evrogen server. After opening **rdmlEdit** you can see several tabs at the top of the screen. Inside *Files* tab click *Browse.*.. button to select your file. After, the file is opened you can see its structure at right of the screen presented as dendrogramm.

Click to the qPCR tab to start analysis. Select a hook detection method at *Hook Detection Method* selector and wait for analysis. Results can be viewed inside the table (*hook* column) or by color and shape of PCR curves (select *Hook* at *Color by* and *Line Type by* selectors).

References

Brenner, Hermann, and Olaf Gefeller. 1997. "Variation of Sensitivity, Specificity, Likelihood Ratios and Predictive Values with Disease Prevalence." Statistics in Medicine 16 (9): 981–91. http://www.floppybunny.org/robin/web/virtualclassroom/stats/basics/articles/odds_risks/odds_sensitivity)likelihood ratios validity brenner 1997.pdf.

Kuhn, Max. 2008. "Building Predictive Models in R Using the Caret Package." *Journal of Statistical Software* 28 (5). doi:10.18637/jss.v028.i05.

R Core Team. 2017. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Ritz, Christian, and Andrej-Nikolai Spiess. 2008. "qpcR: An R Package for Sigmoidal Model Selection in Quantitative Real-Time Polymerase Chain Reaction Analysis." *Bioinformatics* 24 (13): 1549–51. doi:10.1093/bioinformatics/btn227.

Rödiger, Stefan, Michał Burdukiewicz, and Peter Schierack. 2015. "chipPCR: An R Package to Pre-Process Raw Data of Amplification Curves." *Bioinformatics* 31 (17): 2900–2902. doi:10.1093/bioinformatics/btv205.

Rödiger, Stefan, Michał Burdukiewicz, Konstantin A. Blagodatskikh, and Peter Schierack. 2015. "R as an Environment for the Reproducible Analysis of DNA Amplification Experiments." *The R Journal* 7 (2): 127–50. http://journal.r-project.org/archive/2015-1/RJ-2015-1.pdf.

Rödiger, Stefan, Michał Burdukiewicz, Andrej-Nikolai Spiess, and Konstantin Blagodatskikh. 2017. "Enabling Reproducible Real-Time Quantitative PCR Research: The RDML Package." *Bioinformatics*, August. doi:10.1093/bioinformatics/btx528.

Rödiger, Stefan, Thomas Friedrichsmeier, Prasenjit Kapat, and Meik Michalke. 2012. "RKWard: A Comprehensive Graphical User Interface and Integrated Development Environment for Statistical Analysis with R." *Journal of Statistical Software* 49 (9): 1–34. https://www.jstatsoft.org/article/view/v049i09/v49i09.pdf.

Spiess, Andrej-Nikolai, Caroline Feig, and Christian Ritz. 2008. "Highly Accurate Sigmoidal Fitting of Real-Time PCR Data by Introducing a Parameter for Asymmetry." *BMC Bioinformatics* 9 (1): 221. doi:10.1186/1471-2105-9-221.