Generarea variabilelor neuniforme Curs 7

January 26, 2014

Generarea unor variabile discrete

1. Probe Bernoulli

- Fie A un eveniment aleator observabil cu probabilitatea de realizare constantă p = P(A) > 0.
- În urma unui experiment fie se realizează A, fie se realizează evenimentul contrar lui A, \bar{A} .
- ▶ Un astfel de experiment se numește probă Bernoulli.
- Presupunem că atunci când se realizează A are loc un succes, iar când se realizează Ā are loc un eșec.
- Asociem unei probe Bernoulli variabila aleatoare Z a.î Z=1 în caz de succes și Z=0 în caz de eșec:

$$Z: \left(\begin{array}{cc} 0 & 1\\ q & p \end{array}\right) \tag{1}$$

unde q = 1 - p. Observăm că

$$E[Z] = p$$
, $Var[Z] = pq = p(1 - p)$.

Funcția de repartiție a variabilei Z este:

$$F(x) = egin{cases} 0 ext{ adcă } x < 0 \ q ext{ adcă } x \in [0,1] \ 1 ext{ adcă } x > 1 \end{cases}$$

De aici rezultă următorul algoritm de generare a variabilei aleatoare Z prin metoda inversă, cazul discret.

Algoritm Bernoulli

Intrare: p, q = 1 - p;

P1: Se generează $U \sim U(0,1)$;

P2: Dacă $U \leq q$ atunci Z = 0, altfel Z = 1;

leşire: Variabila aleatoare Z.

2. Repartiția binomială

Fie X o variabilă aleatoare discretă, $n \in \mathbb{N}^*$, $p \in [0,1]$. Atunci X are o repartiție binomială Binom(n,p) dacă

X = nr. de succese în n probe Bernoulli independente

Observăm că:

$$X = \sum_{i=1}^{n} Z_i, \tag{2}$$

unde Z_i , i = 1, ..., n sunt variabile Bernoulli independente.

Funcția de probabilitate a repartiției binomiale este:

$$P(X = x) = \binom{n}{x} p^{x} q^{n-x}, \quad x = 0, 1, ..., n.$$

Adică P(X = x) este termenul general al dezvoltării binomului $(p+q)^n$ de unde derivă și denumirea de repartiție binomială.

Funcția caracteristică a variabilei binomiale este:

$$\varphi_X(t) = E[e^{itX}] = E[e^{it\sum_{j=1}^n Z_j}] = (q + pe^{it})^n.$$

de unde rezultă că:

$$E[X] = np, \quad Var[X] = npq$$

Din (2) rezultă următorul algoritm de generare a variabilei X:

Algoritm Binom1

Intrare: n, p

P1: i = 1, X = 0;

P2: Se generează $Z_i \sim Bern(p)$, $X := X + Z_i$;

P3: Dacă i = n stop, altfel i := i + 1, mergi la P2;

leșire: Variabila aleatoare X.

O altă metodă de generare a variabilei binomiale rezultă din teorema limită centrală: pentru $n \to \infty$ variabila:

$$W_n = \frac{X - np}{\sqrt{npq}}$$

este repartizată normal N(0,1). De aici se deduce următorul algoritm pentru n mare:

Algoritm Binom2

Intrare: n, p

P1: Se generează $W \sim N(0,1)$;

P2: Se ia X= cel mai apropiat nr. întreg de

 $np + W\sqrt{npq}$;

leșire: Variabila aleatoare X.

3. Repartiția Pascal

Fie X o variabilă aleatoare discretă, $k \in \mathbb{N}^*$, $p \in [0,1]$. Atunci X are repartiția Pascal(k,p) dacă:

X = nr. de eșecuri până la apariția a k succese dintr-un șir oarecare de probe Bernoulli independente.

Observație

$$P(X = x) = {x+k-1 \choose k-1} p^k q^x, \quad x = 0, 1, 2, 3, ...$$

este termenul general al dezvoltării în serie al expresiei $p^k(1-q)^{-k}$ (de aceea repartiția Pascal se mai numește și repartiția binomială cu exponent negativ).

Dem:

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^k x^k + \dots$$

$$\left(\frac{1}{1+x}\right)^{(r)} = \sum_{k=r}^{\infty} (-1)^k k(k-1) \dots (k-r+1) x^{k-r} =$$

$$= \sum_{j=0}^{\infty} (-1)^{r+j} \frac{(r+j)!}{j!} x^j$$
(3)

Dar

$$\left(\frac{1}{1+x}\right)^{(r)} = \frac{(-1)^r r!}{(1+x)^{r+1}} \tag{4}$$

Din (3) și (4) rezultă că:

$$\frac{(-1)^r r!}{(1+x)^{r+1}} = \sum_{i=0}^{\infty} (-1)^{r+i} \frac{(r+j)!}{j!} x^j$$

Notând r + 1 cu n avem:

$$(1+x)^{-n} = \sum_{j=0}^{\infty} (-1)^j \binom{n+j-1}{j} x^j$$
 (5)

Notând

$$(-1)^{j} \binom{n+j-1}{j} = \binom{-n}{j}$$

avem următoarea dezvoltare în serie a binomului cu exponent întreg negativ:

$$(1+x)^{-n} = \sum_{j=0}^{\infty} {\binom{-n}{j}} x^j.$$

Acum aplicăm (5) pentru $p^k(1-q)^{-k}$:

$$p^{k}(1-q)^{-k} = p^{k} \sum_{j=0}^{\infty} (-1)^{j} {k+j-1 \choose j} (-q)^{j} = \sum_{j=0}^{\infty} {k+j-1 \choose j} p^{k} q^{j}.$$

Observăm că termenul j al acestei dezvoltări în serie este tocmai funcția de probabilitate a unei variabile Pascal(k, p), calculată în punctul j.

Repartiția Pascal este stabilă și:

$$E[X] = \frac{kq}{p}, \quad Var[X] = \frac{kq}{p^2}.$$

Din definiție rezultă următorul algoritm de generare al unei variabile *Pascal*:

Algoritm Pascal

Intrare: k, p, j=0.

P1: Se generează $Y \sim Bernoulli(p)$;

P2: Dacă Y = 0 atunci X := X + 1, altfel j := j + 1;

P3: Dacă j=k stop, altfel mergi la P1.

leşire: Variabila aleatoare X.

4. Repartiția geometrică

Este un caz particular de repariție *Pascal*: k=1. Atunci funcția de probabilitate devine pentru k=1:

$$P(X = x) = pq^{x}, \quad x = 0, 1, 2, ...$$
 (6)

care este termenul unei progresii geometrice (de aici provine și denumirea acestei distribuții). Observăm că:

$$F(x) = P(X \le x) = \sum_{i=0}^{x} pq^{i} = 1 - q^{x+1}, x = 0, 1, 2, ...$$

şi

$$E[X] = \frac{q}{p}, \quad Var[X] = \frac{q}{p^2}.$$

Simularea variabilei geometrice se poate realiza fie prin aplicarea algoritmului de generare a variabilei Pascal, fie prin metoda inversă astfel:

Algoritm Geometrică

Intrare: p, q = 1 - p;

P1: Se generează $U \sim U(0,1)$;

P2: $X := \left\lceil \frac{\log U}{\log q} \right\rceil - 1$.

leşire: Variabila aleatoare X.

unde [a] reprezintă partea întreagă a lui a.

5. Repartiția hipergeometrică

Considerăm următorul experiment aleator: fie o urnă care conține A bile albe și B bile negre, cu A+B=N. Presupunem că se realizează n extracții, fără întoarcerea bilei extrase în urnă. Atunci:

X = numărul de bile albe extrase

este o variabilă hipergeometrică.

Fie E_A evenimentul care constă în extragerea unei bile albe, iar E_B evenimentul care constă în extragerea unei bile negre. Atunci la prima extragere avem:

$$p = P(E_A) = \frac{A}{N}, \quad P(E_B) = \frac{B}{N}$$

Probabilitățile de extragere a unei bile albe sau negre la a doua extragere sunt condiționate de rezultatele primei extrageri:

$$P(E_A|E_A) = \frac{A-1}{N-1}, \quad P(E_A|E_B) = \frac{A}{N-1}$$

 $P(E_B|E_A) = \frac{B}{N-1}, \quad P(E_B|E_B) = \frac{B-1}{N-1}$

La fiecare extragere compoziția urnei se modifică și probabilitatea de a extrage o bilă albă sau neagră depinde de extragerile anterioare.

Variabila hipergeometrică se notează cu H(N,p,n) cu 0 , <math>n < N. Atunci A poate fi considerat cel mai apropiat nr. întreg de Np, B = N - A. Probabilitatea ca în extrageri succesive fără întoarcere să se extragă x bile albe este:

$$P(X=x) = \frac{\binom{A}{x} \binom{B}{n-x}}{\binom{N}{n}}, \quad 0 \le a \le n, \quad n < N.$$
 (7)

Media și dispersia variabilei hipergeometrice sunt:

$$E[X] = np$$
, $Var[X] = np(1-p)\frac{N-n}{N-1}$.

Din definiție rezultă următorul algoritm de generare a variabilei hipergeometrice:

Algoritm Hipergeometrică

Intrare: A, B, n,
$$N = A + B$$
, $p = A/N$, $j := 0$, $X := 0$;

P1: Se generează $U \sim U(0,1)$;

P2: Dacă U < p (s-a extras o bilă albă) atunci mergi la P3, altfel (s-a extras o bilă neagră) mergi la P4;

P3: X := X + 1, S := 1, mergi la P5;

P4: S = 0;

P5: N := N - 1, A := A - S, $p := \frac{A}{N}$;

P6: Dacă j = n stop, altfel mergi la P1.

leşire: Variabila aleatoare X.

6. Repartiția Poisson

Variabila aleatoare discretă $X \in \mathbb{N}$ are repartiția $Poisson(\lambda)$, $\lambda > 0$, dacă:

$$P(X = x) = \frac{\lambda^x}{x!} e^{-\lambda}$$
 (8)

Funcția caracteristică a variabilei $Poisson(\lambda)$ este:

$$\varphi_X(t) = e^{\lambda(e^{it}-1)}$$

De aici rezultă că:

$$E[X] = \lambda$$
, $Var[X] = \lambda$.

Repartiția $Poisson(\lambda)$ este folosită pentru a modela numărul de evenimente care apar într-un interval de timp. Parametrul λ reprezintă numărul mediu de evenimente dintr-un anumit interval de timp.

Lemă

Dacă $E_1, E_2,...$ sunt variabile aleatoare repartizate Exp(1) și X este cel mai mic întreg astfel încât

$$\sum_{i=1}^{X+1} E_i > \lambda \tag{9}$$

atunci variabila X este repartizată Poisson (λ) .

Dem:

Din condiția care se pune asupra lui X rezultă că dacă X=k, atunci are loc $\sum_{i=1}^{k+1} E_i > \lambda$ și nu are loc $\sum_{i=1}^k E_i > \lambda$. Prin urmare:

$$P(X=k) = P(\sum_{i=1}^{k+1} E_i > \lambda) - P(\sum_{i=1}^{k} E_i > \lambda) = \int_{\lambda}^{\infty} f_{k+1}(y) dy - \int_{\lambda}^{\infty} f_k(y)$$

unde $f_k(y)$ este densitatea unei variabile aleatoare Erlang(k).

Rezultă că:

$$P(X = k) = \int_{\lambda}^{\infty} \left[\frac{1}{k!} y^k e^{-y} - \frac{1}{(k-1)!} y^{k-1} e^{-y} \right] dy =$$

$$= \frac{1}{k!} \left[\int_{\lambda}^{\infty} y^k e^{-y} dy - k \int_{\lambda}^{\infty} y^{k-1} e^{-y} dy \right].$$

Dacă integrăm prin părți prima integrală obținem:

$$P(X = k) = \frac{1}{k!} \left[\lambda^k e^{-\lambda} + k \int_{\lambda}^{\infty} y^{k-1} e^{-y} dy - k \int_{\lambda}^{\infty} y^{k-1} e^{-y} dy \right]$$
$$= \frac{\lambda^k}{k!} e^{-\lambda}$$

Tinând cont că variabilele E_i sunt exponențiale Exp(1) și ele pot fi generate prin metoda inversă cu ajutorul relației $E_i = -\log U_i$, unde $U_i \sim U(0,1)$, atunci condiția (9) se scrie:

$$\prod_{i=1}^{X+1} U_i < e^{-\lambda}$$

și rezultă următorul algoritm de generare a unei variabile $Poisson(\lambda)$:

Algoritm Poisson1

Intrare: λ , i := 0, P = 1;

P1: Se generează $U \sim U(0,1)$, i := i+1, P := P * U;

P2: Dacă $P \geq e^{-\lambda}$ atunci mergi la P1, altfel mergi la

Р3;

P3: X := i - 1.

leșire: Variabila aleatoare X.

O altă metodă de generare pentru o variabilă $Poisson(\lambda)$ se bazează pe următoarea proprietate a variabilei $Poisson(\lambda)$: dacă $Y \sim Poisson(\lambda)$ cu $\lambda = np$ și $n \to \infty$, $p \to 0$, atunci $Y \sim Binom(n,p)$.

Acest lucru se poate demonstra folosind funcția caracteristică a celor două repartiții.

Algoritm Poisson2

Intrare: λ , se alege $p \approx 0$, de exemplu p = 0.001;

P1: Se determină n= cel mai apropiat întreg de λ/p ;

P2: Se generează $X \sim Binom(n, p)$;

leşire: Variabila aleatoare X.