Lab 3 Worksheet

Saksham Goel January 30, 2018

The Timing of Production Runs.

We have talked about the study of production runs during the lecture. Now it is time for you to explore the data firsthand.

Download data

Download the data **production.txt** from the textbook website <www.stat.tamu.edu/~shether/book>

Read data into R.

Read the data into R by using function "read.table()" and save the data in a variable called "prod". Prod will be a type of R object called data frame.

You can provide a complete address for the file or set the working directory to the folder where you have saved the data:

```
prod = read.table('/myComputer/myFolder1/myFolder2/production.txt', header = TRUE)
Or
setwd('/myComputer/myFolder1/myFolder2')
prod = read.table('production.txt', header = TRUE)
# read data into R.
prod = read.table("production.txt", header= TRUE)
# Use function View(prod) or head(prod) to see if the data has been imported successfully.
#View(prod)
head(prod)
### Case RunTime RunSize
```

```
## 1
        1
              195
                      175
## 2
        2
              215
                       189
## 3
        3
              243
                       344
## 4
        4
                       88
              162
## 5
        5
              185
                       114
## 6
        6
              231
                      338
# Advanced: can you try importing data using "read.csv()" instead of "read.table()":
csv_type = read.csv("production.txt", header = TRUE, sep = "\t")
#View(csv_type)
head(csv_type)
```

```
## 4 4 162 88
## 5 5 185 114
## 6 6 231 338
```

Explore data

summary() is a very important function. See what happens when you apply it to a dataframe.

```
# explore data using summary()
summary(prod)
```

##	Case	RunTime	RunSize
##	Min. : 1.00	Min. :147.0	Min. : 58.0
##	1st Qu.: 5.75	1st Qu.:171.2	1st Qu.:120.8
##	Median :10.50	Median :207.5	Median :182.0
##	Mean :10.50	Mean :202.1	Mean :201.8
##	3rd Qu.:15.25	3rd Qu.:226.2	3rd Qu.:278.8
##	Max. :20.00	Max. :253.0	Max. :344.0

Now let us draw some exploratory plots.

For each variable in the data frame, we can draw a histogram. A histogram can give us an idea of the distribution of a variable.

```
# explore the data with histograms
# Hint: use hist() for histograms
hist(prod$RunTime)
```

Histogram of prod\$RunTime

Histogram of prod\$RunSize

Next we draw a scatterplot with one variable (RunSize) on the x axis and another variable (RunTime) on the y axis.

```
# explore data with scatterplot
# Hint: use plot()
plot(x = prod$RunSize, y = prod$RunTime)
```


Fit a regression model

The linear trend in the scatterplot seems strong, which means that a linear regression model is appropriate.

```
# fit a linear regression model
# Hint: use lm(). Don't forget to save the model to a variable called "mod"
mod = lm( prod$RunTime ~ prod$RunSize )
```

We have applied the function summary() to a data frame. This function can also be applied to a model.

```
# apply summary() to your model
summary(mod)
```

```
##
## Call:
## lm(formula = prod$RunTime ~ prod$RunSize)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                         Max
   -28.597 -11.079
                      3.329
                              8.302
                                     29.627
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
                                         17.98 6.00e-13 ***
## (Intercept)
                149.74770
                              8.32815
## prod$RunSize
                   0.25924
                              0.03714
                                          6.98 1.61e-06 ***
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 16.25 on 18 degrees of freedom ## Multiple R-squared: 0.7302, Adjusted R-squared: 0.7152 ## F-statistic: 48.72 on 1 and 18 DF, p-value: 1.615e-06 Please complete the following formula of the model: Fitted RunTime = 149.74770 + 0.25924 * RunSize Or we can use mathematical symbols: Let X = \text{RunSize}, Y = \text{RunTime}. \hat{Y} = \hat{\beta_0} + \hat{\beta_1} X
```

Compare the observed RunTime and the fitted RunTime

```
# Print out the observed RunTime
# prod$RunTime
# Print out the observed RunTime
# Hint: Use mod$fitted.values OR use predict(mod)
prod$RunTime
## [1] 195 215 243 162 185 231 234 166 253 196 220 168 207 225 169 215 147
## [18] 230 208 172
predict(mod)
##
                   2
                            3
                                               5
                                                        6
          1
## 195.1152 198.7447 238.9273 172.5611 179.3014 237.3719 220.0026 194.5968
                  10
                                     12
                                              13
                                                       14
                                                                15
                           11
## 223.3727 221.5580 237.1126 164.7838 187.5972 221.5580 181.6346 208.5959
##
         17
                  18
                           19
## 166.0800 237.1126 187.5972 167.3762
```

The observed RunTime is different from the fitted RunTime.

visualize the observed RunTime and the fitted RunTime

```
# Hint: first draw a scatterplot of the data
plot(x = prod$RunSize, y = prod$RunTime)
# Next add the fitted values
points(predict(mod) ~ prod$RunSize, col = 'red', pch = 4)
```


Calculating the estimated coefficients using formulas

We learnt that the following formulas during the lecture:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\beta_0} = \bar{y} - \hat{\beta_1}\bar{x}$$

Let's use these two formulas to estimate the coefficients.

```
x = prod$RunSize
y = prod$RunTime
xbar = mean(x)
ybar = mean(y)

beta1_hat = sum((x-xbar)*(y-ybar)) / sum((x-xbar)^2)
beta1_hat

## [1] 0.2592431

beta0_hat = ybar - beta1_hat*xbar
beta0_hat
```

[1] 149.7477

 $Compare\ beta 1_hat\ and\ beta 2_hat\ with\ the\ estimated\ coefficients\ obtained\ from\ the\ linear\ regression\ model.$ They should be identical!