

Probabilidades e Estatística

TODOS OS CURSOS

2º semestre – 2015/2016 29/06/2016 – **11:30**

(1.5)

(2.0)

(2.0)

Duração: 90 minutos

Justifique convenientemente todas as respostas!

Grupo I 10 valores

- 1. Um sistema de medição é composto por duas componentes eletrónicas cujas probabilidades de avaria são respetivamente 0.12 e 0.15. Se nenhuma das componentes estiver avariada o sistema funciona sempre; se apenas uma das componentes estiver avariada a probabilidade do sistema funcionar é de 0.8; se ambas as componentes estiverem avariadas o sistema não funciona. Admita que as componentes avariam independentemente uma da outra.
 - (a) Obtenha a probabilidade de nenhuma das componentes eletrónicas estar avariada.

Solução: 0.7480.

(b) Calcule a probabilidade de o sistema estar a funcionar.

Solução: 0.9352.

(c) Sabendo que o sistema está a funcionar, determine a probabilidade de nenhuma das componentes eletrónicas estar avariada.

Nota: Se não resolveu a alínea (b), assuma que a probabilidade de o sistema estar a funcionar é 0.9352.

Solução: 0.7998

- 2. Do histórico de vendas de um quiosque, sabe-se que o número de baralhos de cartas vendidos diariamente pelo quiosque possui distribuição de Poisson de parâmetro 1 e que os números de baralhos de cartas vendidos pelo quiosque em diferentes dias são variáveis aleatórias independentes.
 - (a) Obtenha o valor esperado e a variância do número de dias de um mês (30 dias) em que o quiosque (3.0 vende pelo menos um baralho de cartas.

Solução: $Y \sim \text{Binomial}(30, 1 - e^{-1}), E(Y) = 18.9636 \text{ e } V(Y) = 6.9763$

(b) Calcule a probabilidade de o quiosque vender pelo menos 12 baralhos de cartas num conjunto de 10 dias consecutivos.

Solução: 0.3032

Grupo II 10 valores

- 1. Considere que X é uma variável aleatória com distribuição uniforme contínua no intervalo [0,2].
 - (a) Determine o valor do quantil de probabilidade 0.9 da variável aleatória *X*.

Solução: 1.8

(b) Sabendo que $X_1, X_2, ..., X_{50}$ são variáveis aleatórias independentes e identicamente distribuídas a (3.0) X, calcule um valor aproximado para a probabilidade de $Y = \sum_{i=1}^{50} X_i$ ser superior a 55.

Solução: 0.1112.

2. Seja X (resp. Y) o lucro do jogador A (resp. B) num dado jogo. As variáveis aleatórias X e Y são identicamente distribuídas e o par aleatório (X,Y) possui função de probabilidade conjunta:

$X \setminus Y$	-2	0	2
-2	0	1/6	1/6
0	1/6	0	1/6
2	1/6	1/6	0

(a) Determine o valor esperado e a variância do lucro de cada um dos jogadores no jogo.

Solução: E(Y) = E(X) = 0, $V(X) = V(Y) = \frac{8}{3}$

(b) Calcule o valor esperado do lucro do jogador B no jogo sabendo que o jogador A teve lucro igual a (2.0) 2 no mesmo.

(2.0)

(1.0)

Solução: E(Y | X = 2) = -1

(c) Averigúe se os lucros dos jogadores A e B no jogo são variáveis aleatórias independentes.

Solução: X e Y são v.a. dependentes