Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Logik für Studierende der Informatik

Blatt 1

Abgabe: 6.11.2019, 14 Uhr Gruppennummer angeben!

Aufgabe 1 (6 Punkte).

Gib (ohne Wahrheitstafeln zu benutzen) aussagenlogische Formeln sowohl in KNF als auch in DNF an, welche logisch äquivalent zu den folgenden aussagenlogischen Formeln sind.

(a)
$$(P \longrightarrow Q) \longrightarrow (R \land Q)$$

(b)
$$\left(\neg(P \longrightarrow Q) \lor (P \longrightarrow R)\right)$$

Aufgabe 2 (3 Punkte).

Sind die Aussagen $\neg(P\longrightarrow Q)$ und $(\neg P\longrightarrow \neg Q)$ logisch äquivalent? (Ohne Wahrheitstafeln zu benutzen!)

Aufgabe 3 (5 Punkte).

Entscheide mit Hilfe der Tableau Methode, ob folgende Aussagen Tautologien sind.

(a)
$$(\neg (P \longrightarrow Q) \lor (Q \longrightarrow P))$$

(b)
$$((P \longrightarrow R) \land (R \longrightarrow Q)) \longrightarrow (P \longrightarrow Q)$$

(c)
$$((P \lor Q) \longrightarrow (R \land S)) \longrightarrow ((P \land Q) \longrightarrow (R \lor S))$$

(d)
$$((P \land Q) \longrightarrow R) \longrightarrow ((P \lor Q) \longrightarrow R)$$

(e)
$$(P \longrightarrow (Q \longrightarrow \neg P)) \longrightarrow (P \longrightarrow \neg Q)$$

Aufgabe 4 (6 Punkte).

- (a) In der Sprache $\mathcal{L} = \{c, <\}$ seien c ein Konstantenzeichen und < ein zweistelliges Relationszeichen. Betrachte die \mathcal{L} -Struktur \mathcal{R}_1 mit Universum \mathbb{R} und den Interpretationen $c^{\mathcal{Z}_1} = \pi$ sowie $<^{\mathcal{Z}_1}$ als die übliche lineare Ordnung. Ferner sei \mathcal{R}_2 die \mathcal{L} -Struktur mit Universum \mathbb{R} und Interpretationen $c^{\mathcal{Z}_2} = -\sqrt{2}$ sowie $<^{\mathcal{Z}_2}$ als die übliche lineare Ordnung. Zeige, dass \mathcal{R}_1 und \mathcal{R}_2 isomorphe \mathcal{L} -Strukturen sind.
- (b) Sei d ein weiteres Konstantenzeichen. Wir betrachten nun die Sprache $\mathcal{L}' = L \cup \{d\}$ und erweitern die obigen beiden Strukturen zu \mathcal{L}' -Strukturen \mathcal{R}'_1 und \mathcal{R}'_2 , indem wir d wie folgt interpretieren:

$$d^{\mathcal{R}_1'} = 0 = d^{\mathcal{R}_2'}.$$

Sind \mathcal{R}'_1 und \mathcal{R}'_2 isomorphe \mathcal{L}' -Strukturen?

DIE ÜBUNGSBLÄTTER MÜSSEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IN DEN (MIT DEN NUMMERN DER ÜBUNGSGRUPPEN GEKENNZEICHNETEN) FÄCHERN IM EG DES GEBÄUDES 51.