

STAT604

Lesson SAS 10

Portions Copyright © 2009 SAS Institute Inc., Cary, NC, USA. All rights reserved. Reproduced with permission of SAS Institute Inc., Cary, NC, USA. SAS Institute Inc. makes no warranties with respect to these materials and disclaims all liability therefor.

Assigning Initial Values to an ARRAY

The ARRAY statement has an option to assign initial values to the array elements.

General form of an ARRAY statement:

```
ARRAY array-name {subscript} <$> <length> <array-elements> <(initial-value-list)>;
```

Example:

```
array Target{5} (50,100,125,150,200);
```

Use commas or spaces to separate values in the list.

Assigning Initial Values to an ARRAY

When an *initial-value-list* is specified, all elements behave as if they were named in a RETAIN statement. This is often used to create a *lookup table*, that is, a list of values to refer to during DATA step processing.

```
array Target{5} (50,100,125,150,200);
```

PDV

,	Ta	[arget1		Target2 N 8		Target3		Target4		Target5					
		N	8		N	8		N	8		N	8		N	8
			50			100			125			150			200

Business Scenario

Read **orion.employee_donations** to determine the difference between employee contributions and the quarterly goals of \$10, \$20, \$20, and \$15. Use a lookup table to store the quarterly goals.

```
data compare(drop=i Goal1-Goal4);
   set orion.employee_donations;
   array Contrib{4} Qtr1-Qtr4;
   array Diff{4};
   array Goal{4} (10,20,20,15);
   do i=1 to 4;
     Diff{i}=Contrib{i}-Goal{i};
   end;
run;
```

```
data compare(drop=i Goal1-Goal4);
    set orion.employee_donations;
    array Contrib{4} Qtr1-Qtr4;
    array Diff{4};
    array Goal{4} (10,20,20,15);
    do i=1 to 4;
        Diff{i}=Contrib{i}-Goal{i};
    end;
run;
```

Employee_ ID	Qtr1	Qtr2	Qtr3	Qtr4

```
data compare(drop=i Goal1-Goal4);
   set orion.employee_donations;
   array Contrib{4} Qtr1-Qtr4;
   array Diff{4};
   array Goal{4} (10,20,20,15);
   do i=1 to 4;
     Diff{i}=Contrib{i}-Goal{i};
   end;
run;
```

Employee_ ID	Qtr1	Qtr2	Qtr3	Qtr4

```
data compare(drop=i Goal1-Goal4);
   set orion.employee_donations;
   array Contrib{4} Qtr1-Qtr4;
   array Diff{4};
   array Goal{4} (10,20,20,15);
   do i=1 to 4;
      Diff{i}=Contrib{i}-Goal{i};
   end;
run;
```

Employee_ ID	Qtr1	Qtr2	Qtr3	Qtr4	Diff1

Diff2	Diff3	Diff4

```
data compare(drop=i Goal1-Goal4);
   set orion.employee_donations;
   array Contrib{4} Qtr1-Qtr4;
   array Diff{4};
   array Goal{4} (10,20,20,15);
   do i=1 to 4;
      Diff{i}=Contrib{i}-Goal{i};
   end;
run;
```

Employee_ ID	Qtr1	Qtr2	Qtr3	Qtr4	Diff1

Diff2	Diff3	Diff4	Goal1	Goal2	Goal3	Goal4

```
data compare(drop=i Goal1-Goal4);
   set orion.employee_donations;
   array Contrib{4} Qtr1-Qtr4;
   array Diff{4};
   array Goal{4} (10,20,20,15);
   do i=1 to 4;
     Diff{i}=Contrib{i}-Goal{i};
   end;
run;
```

Employee_ ID	Qtr1	Qtr2	Qtr3	Qtr4	Diff1

Diff2	Diff3	Diff4	Goal1	Goal2	Goal3	Goal4	i

Compilation: Drop Flags Are Set

```
data compare (drop=i Goal1-Goal4);
   set orion.employee_donations;
   array Contrib{4} Qtr1-Qtr4;
   array Diff{4};
   array Goal{4} (10,20,20,15);
   do i=1 to 4;
      Diff{i}=Contrib{i}-Goal{i};
   end;
run;
```

Employee_ ID	Qtr1	Qtr2	Qtr3	Qtr4	Diff1

Diff2	Diff3	Diff4	Goal1	Goal2	Goal3	Goal4	i

Compilation: Retain Flags Are Set

```
data compare(drop=i Goal1-Goal4);
   set orion.employee_donations;
   array Contrib{4} Qtr1-Qtr4;
   array Diff{4};
   array Goal{4} (10,20,20,15);
   do i=1 to 4;
      Diff{i}=Contrib{i}-Goal{i};
   end;
run;
```

Employee_ ID	Qtr1	Qtr2	Qtr3	Qtr4	Diff1

Diff2	Diff3	Diff4	Goal1	Goal2	Poal3	Goal4	i

PDV Is Initialized

```
data compare(drop=i Goal1-Goal4);
  set orion.employee_donations;
  array Contrib{4} Qtr1-Qtr4;
  array Diff{4};
  array Goal{4} (10,20,20,15);
  do i=1 to 4;
    Diff{i}=Contrib{i}-Goal{i};
  end;
run;
```

Employee_ ID	Qtr1	Qtr2	Qtr3	Qtr4	Diff1
•	•	•	•	•	•

Diff2	Diff3	Diff4	Goal1	Goal2	oal3	Goal4	ì
•	•	•	10	20	20	15	•

Creating a Temporary Lookup Table

You can use the keyword _TEMPORARY_ in an ARRAY statement to indicate that the elements are not needed in the output data set.

```
data compare(drop=i);
    set orion.employee_donations;
    array Contrib{4} Qtr1-Qtr4;
    array Diff{4};
    array Goal{4} _temporary_ (10,20,20,15);
    do i=1 to 4;
        Diff{i}=Contrib{i}-Goal{i};
    end;
run;
```

Output: Creating a Temporary Lookup Table

```
proc print data=compare noobs;
   var employee_id diff1-diff4;
run;
```

Partial PROC PRINT Output

Employee_ID	Diff1	Diff2	Diff3	Diff4
120265				10
120267	5	-5	-5	0
120269	10	0	0	5
120270	10	-10	- 15	
120271	10	0	0	5
120272	0	-10	-10	-5
120275	5	-5	-5	0

What can be done to ignore missing values?

The SUM Function Ignores Missing Values

The SUM function ignores missing values. It can be used to calculate the difference between the quarterly contribution and the corresponding goal.

```
data compare(drop=i);
    set orion.employee_donations;
    array Contrib{4} Qtr1-Qtr4;
    array Diff{4};
    array Goal{4} _temporary_ (10,20,20,15);
    do i=1 to 4;
        Diff{i}=sum(Contrib{i},-Goal{i});
    end;
run;
```

Output: Lookup Table Application

```
proc print data=compare noobs;
   var employee_id diff1-diff4;
run;
```

Partial PROC PRINT Output

Employee_ID	Diff1	Diff2	Diff3	Diff4
120265 120267 120269 120270 120271 120272	-10 5 10 10 10	-20 -5 0 -10 0 -10	-20 -5 0 -15 0 -10	10 0 5 -15 5
120272	5	- 10 -5	- 10 -5	0

The missing values were handled as if no contribution were made for that quarter.

7.09 **Quiz**

Write an ARRAY statement to define a temporary lookup table named **Country** with three elements, each two characters long. Initialize the elements to AU, NZ, and US. Refer to the syntax below.

ARRAY array-name {subscript} <\$> <length> <array-elements> <(initial-value-list)>;

7.09 Quiz – Correct Answer

Write an ARRAY statement to define a temporary lookup table named **Country** with three elements, each two characters long. Initialize the elements to AU, NZ, and US. Refer to the syntax below.

```
ARRAY array-name {subscript} <$> <length> <array-elements> <(initial-value-list)>;
```

```
array Country{3} $ 2 _temporary_ ('AU','NZ','US');
```

Chapter 8: Restructuring a Data Set

Chapter 8: Restructuring a Data Set

8.1 Rotating with the DATA Step **8.2** Using the TRANSPOSE Procedure

Objectives

 Use a DATA step with arrays and DO loop processing to restructure a data set.

Data Set Structure

Some data sets store all the information about one entity in a single observation. This data set structure is useful for data mining and generating reports. For convenience this is referred to as a *wide* data set.

Customer_ID 134391	Qtr1	Qtr2 125	Qtr3	Qtr4	Method Cash
143561	150	79	67	15	Credit
158913	208	22	•	33	Credit

✓ All information for Customer 143561 is in a single observation.

Data Set Structure

Other data sets have multiple observations per entity. Each observation typically contains a small amount of data, and missing values might or might not be stored. For convenience, this is referred to as a *narrow* data set.

Customer_ID 134391	Period Qtr2	Amount 125
143561	Qtr1	150
143561	Qtr2	79
143561	Qtr3	67
143561	Qtr4	15
158913	Qtr1	208
158913	Qtr2	22

The information for Customer 143561 is stored in four observations.

Why Restructure a Data Set?

Before writing a program, you need to consider the data available, the desired output, and the processing required. Sometimes restructuring the data can simplify a task.

The Sales Manager requested the following report showing customer information:

Sketch of desired report:

Customer_ID	Qtr1	Qtr2	Qtr3	Qtr4	Total
134391	•	125	•	•	125
143561	150	79	67	15	311
158913	208	22	•	33	263

Why Restructure a Data Set?

You explore the available data and locate the following data set:

Customer_ID	Period	Amount
-{ 134 3 91	Qtr2	125
143561	Qtr1	150
143561	Qtr2	79
143561	Qtr3	67
L 143561	Qtr4	15
158913	Qtr1	208
158913	Qtr2	22
158913	Qtr4	33

This data set has the required data, but the current structure would require a DATA step with First. and Last. processing.

Why Restructure a Data Set?

If the data set were in this form, a simple assignment statement is all that would be needed to create the new variable, **Total**.

Qtr1	Qtr2	Qtr3	Qtr4
	125	•	
150	79	67	15
208	22	•	33
	150	. 125 150 79	. 125 . 150 79 67

Restructuring from a narrow to a wide data set simplifies the processing.

8.01 Quiz

Which data set structure is more appropriate for using PROC FREQ to determine the number of charitable donations made in each of the four quarters (Qtr1-Qtr4)?

a.

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4
120265	•			25
120267	15	15	15	15
120269	20	20	20	20

b.

Employee_ID	Period	Amount
120265	Qtr4	25
120267	Qtr1	15
120267	Qtr2	15
120267	Qtr3	15
120267	Qtr4	15

8.01 Quiz – Correct Answer

Which data set structure is more appropriate for using PROC FREQ to determine the number of charitable donations made in each of the 4 quarters (Qtr1-Qtr4)?

Proposed SAS program

```
proc freq data=b;
   tables Period /nocum nopct;
run;
```

Employee ID Period **Amount** 120265 Qtr4 25 120267 Qtr1 15 120267 15 Qtr2 120267 Qtr3 15 15 120267 Qtr4 120269 20 Qtr1 120269 Qtr2 20

PROC FREQ Output

The FREQ	The FREQ Procedure					
Period	Frequency					
Qtr1	2					
Qtr2	2					
Qtr3	1					
Qtr4	2					

Business Scenario – A Frequency Report

The Orion Payroll Manager asked for a report showing the number of Orion Star employees who made charitable donations in each quarter.

Sketch of the Desired Report

Period	Frequency
Qtr1	56
Qtr2	99
Qtr3	24
Qtr4	75

The FREQ procedure can be used to generate the desired report.

Business Scenario Considerations

The orion.employee_donations data set contains the needed information, but is not in the form to be easily analyzed using the FREQ procedure.

Partial Listing of orion.employee_donations

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	Paid_By
120265		•	•	25	Cash or Check
120267	15	15	15	15	Payroll Deduction
120269	20	20	20	20	Payroll Deduction

Changing the data set from a wide to a narrow structure can simplify this task.

Business Scenario Considerations

Restructure the input data set, and create a separate observation for each nonmissing quarterly contribution. The output data set, **rotate**, should contain only

Employee_ID, Period, and Amount.

Rotating a SAS Data Set

The DATA step below rotates the input data set. An output observation will be written if a contribution was made in a given quarter.

Compilation: Rotating a SAS Data Set

PDV > > >

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount

work.rotate

Employee_ID	Period	Amount
-------------	--------	--------

Execution: Rotating a SAS Data Set

```
data rotate (keep=Employee Id Period Amount);
   set orion.employee donations
                                            Initialize PDV
            (drop=recipients paid by);
   array contrib{4} qtr1-qtr4;
   do i=1 to 4;
       if contrib{i} ne . then do;
          Period=cats("Qtr",i);
          Amount=contrib(i);
          output;
       end;
   end;
run;
```

PDV					
-----	--	--	--	--	--

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
		•	•	•			•

work.rotate

Employee_ID	Period	Amount
-------------	--------	--------

PDV > > >

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120265	•	•	•	25	•		•

Employee ID	Period	Amount
-------------	--------	--------

	PDV					
--	-----	--	--	--	--	--

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120265	•	•	•	25	1		•

Employee ID	Period	Amount
-------------	--------	--------

PDV					
-----	--	--	--	--	--

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120265		•	•	25	1		•

Employee_ID	Period	Amount
-------------	--------	--------

Period

```
data rotate (keep=Employee Id Period Amount);
   set orion.employee donations
             (drop=recipients paid by);
   array contrib{4} qtr1-qtr4;
   do i=1 to 4;
       if contrib{i} ne . then do;
           Period=cats("Qtr",i);
          Amount=contrib(i);
          output;
       end;
   end;
run;
PDV
             Qtr1
                   Qtr2
                        Qtr3
                              Otr4
Employee ID
                                         Period
                                                  Amount
     120265
                                 25
  work.rotate
```

Amount

Employee ID

|--|

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120265	•	•	•	25	2		•

Employee_ID	Period	Amount
-------------	--------	--------

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120265	•		•	25	2		

Employee_ID	Period	Amount
-------------	--------	--------

Period

```
data rotate (keep=Employee Id Period Amount);
   set orion.employee donations
             (drop=recipients paid by);
   array contrib{4} qtr1-qtr4;
   do i=1 to 4;
       if contrib{i} ne . then do;
           Period=cats("Qtr",i);
          Amount=contrib(i);
          output;
       end;
   end;
run;
PDV
             Qtr1
                   Qtr2
                        Qtr3
                              Otr4
Employee ID
                                         Period
                                                   Amount
     120265
                                     3
                                 25
  work.rotate
```

Amount

Employee ID

|--|

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120265	•	•	•	25	3		•

Employee ID	Period	Amount
-------------	--------	--------

PDV			

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120265	•	•		25	3		•

Employee_ID	Period	Amount
-------------	--------	--------

Period

```
data rotate (keep=Employee Id Period Amount);
   set orion.employee donations
             (drop=recipients paid by);
   array contrib{4} qtr1-qtr4;
   do i=1 to 4;
       if contrib{i} ne . then do;
           Period=cats("Qtr",i);
          Amount=contrib(i);
           output;
       end;
   end;
                                               i+1
run;
PDV
             Qtr1
                   Qtr2
                         Qtr3
                              Otr4
Employee ID
                                         Period
                                                   Amount
     120265
                                 25
  work.rotate
```

Amount

Employee ID

	PDV					
--	-----	--	--	--	--	--

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120265	•	•	•	25	4		•

Employee ID	Period	Amount
-------------	--------	--------

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120265	•	•	•	25	4		•

Employee_ID	Period	Amount
-------------	--------	--------

PDV			>

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120265	•	•	•	25	4	Qtr4	•

Employee ID	Period	Amount
-------------	--------	--------

|--|

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120265	•	•	•	25	4	Qtr4	25

Employee ID	Period	Amount
-------------	--------	--------

PDV							
Employee_ID	FF	ET	ET?	A FI	F	Period	Amount
120265		V.	V.	V	V	Qtr4	25

Employee_ID	Period	Amount
120265	Qtr4	25

```
data rotate (keep=Employee Id Period Amount);
   set orion.employee donations
             (drop=recipients paid by);
   array contrib{4} qtr1-qtr4;
   do i=1 to 4;
       if contrib{i} ne . then do;
           Period=cats("Qtr",i);
          Amount=contrib{i};
           output;
       end;
   end;
run;
PDV
                   Qtr2
                         Qtr3
                              Otr4
                                         Period
Employee ID
             Qtr1
                                                   Amount
     120265
                                 25
                                                         25
                                        Qtr4
```

Employee_ID	Period	Amount
120265	Qtr4	25

PDV > > >

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120265	•	•	•	25	5	Qtr4	25

Employee_ID	Period	Amount
120265	Qtr4	25

```
data rotate (keep=Employee Id Period Amount);
   set orion.employee donations
             (drop=recipients paid by);
   array contrib{4} qtr1-qtr4;
   do i=1 to 4;
        if contrib{i} ne . then do;
           Period=cats("Qtr",i);
           Amount=contrib{i};
           output;
       end;
                     No Implicit OUTPUT;
   end;
                     Implicit RETURN;
run;
PDV
             Qtr1
                   Qtr2
                         Qtr3
                               Otr4
Employee ID
                                         Period
                                                   Amount
     120265
                                 25
                                                         25
                                        Qtr4
```

Employee_ID	Period	Amount
120265	Qtr4	25

PDV > > >

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120265	•	•	•	25	•		•

Employee_ID	Period	Amount
120265	Qtr4	25

	PDV					
--	-----	--	--	--	--	--

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120267	15	15	15	15	•		•

Employee_ID	Period	Amount
120265	Qtr4	25

	PDV					
--	-----	--	--	--	--	--

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120267	15	15	15	15	1		•

Employee_ID	Period	Amount
120265	Qtr4	25

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120267	15	15	15	15	1		•

Employee_ID	Period	Amount
120265	Qtr4	25

	PDV					
--	-----	--	--	--	--	--

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120267	15	15	15	15	1	Qtr1	•

Employee_ID	Period	Amount
120265	Qtr4	25

PDV			>

Employee_ID							Amount
120267	15	15	15	15	1	Qtr1	15

Employee_ID	Period	Amount
120265	Qtr4	25

PDV							
Employee_ID	FF	FI	A EFF	A FI	P	Period	Amount
120267	V	V	V	V	V	Qtr1	15

Employee_ID	Period	Amount
120265	Qtr4	25
120267	Qtr1	15

PDV							
Elemen I company	TD	O+1	0+0	0+2	0+4	<u>.</u>	Domin

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	i	Period	Amount
120267	15	15	15	15	1	Qtr1	15

Employee_ID	Period	Amount
120265	Qtr4	25
120267	Qtr1	15

Output: The Rotate Data Set

```
proc print data=rotate;
run;
```

Partial PROC PRINT Output

		<u>-</u>		
0bs	Employee_ID	Period	Amount	
1	120265	Qtr4	25	
2	120267	Qtr1	15	
3	120267	Qtr2	15	
4	120267	Qtr3	15	
5	120267	Qtr4	15	
6	120269	Qtr1	20	
7	120269	Qtr2	20	
8	120269	Qtr3	20	
9	120269	Qtr4	20	
10	120270	Qtr1	20	
11	120270	Qtr2	10	
12	120270	Qtr3	5	

Analyzing the Rotated SAS Data Set

```
proc freq data=rotate;
   tables Period /nocum nopct;
run;
```

PROC FREQ Output

Period	Frequency	
Qtr1	110	
Qtr2 Qtr3	98 107	
Qtr4	102	

Chapter 8: Restructuring a Data Set

8.1 Rotating with the DATA Step **8.2 Using the TRANSPOSE Procedure**

Objectives

 Use the TRANSPOSE procedure to restructure a data set.

Business Scenario (Review)

The Orion Payroll Manager asked for a report showing the number of Orion Star employees who made charitable donations in each quarter.

Sketch of the Desired Report

Period	Frequency
Qtr1	56
Qtr2	99
Qtr3	24
Qtr4	75

Business Scenario – Review

The data set **orion.employee_donations** has a wide structure with one observation per employee (124 total observations).

Partial Listing of orion.employee_donations

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	Paid_By
120265			•	25	Cash or Check
120267	15	15	15	15	Payroll Deduction
120269	20	20	20	20	Payroll Deduction

With a restructured, narrow data set, the FREQ procedure can be used to generate the desired output.

This example uses PROC TRANSPOSE to restructure the data.

Setup for the Poll

Open SAS Help and navigate to the PROC TRANSPOSE section:

```
SAS Products 
Base SAS 
Base SAS 9.4 Procedures Guide 
Procedures 
Procedures 
Transpose Procedure 
Overview: Transpose Procedure
```

Review the Overview section.

8.02 Multiple Answer Poll

Which of the following statements are true of the TRANSPOSE procedure?

- a. It produces printed output.
- b. It creates a new data set.
- c. It often eliminates the need for a complex DATA step.
- d. It transposes selected variables into observations.

8.02 Multiple Answer Poll – Correct Answers

Which of the following statements are true of the TRANSPOSE procedure?

- a. It produces printed output.
- b. It creates a new data set.
- c.) It often eliminates the need for a complex DATA step.
- d.) It transposes selected variables into observations.

The TRANSPOSE Procedure

General form of a PROC TRANSPOSE step:

NAME specifies a new name for the _NAME_ column. The values in this column identify the variable that supplied the values in the row.

specifies the variable(s) to use to form BY groups.

VAR specifies the variable(s) to transpose.

ID

specifies the variable whose values will become the new variables.

The TRANSPOSE Procedure

The TRANSPOSE procedure

- transposes selected variables into observations
- transposes numeric variables by default
- transposes character variables only if explicitly listed in a VAR statement.

Using the Transpose Procedure

Start with a simple PROC TRANSPOSE step:

```
proc transpose
    data=orion.employee_donations
    out=rotate2;
run;
```

Partial Listing of rotate2

NAME	_LABEL_	COL1	COL2	COL3	 COL124
Employee_ID	Employee ID	120265	120267	120269	121147
Qtr1		•	15	20	10
Qtr2		•	15	20	10
Qtr3		•	15	20	10
Qtr4		25	15	20	10

The output is very different from the desired results. A row was created for each variable. A column was created for each of the 124 observations.

Results of a Simple Transposition

Compare PROC TRANSPOSE output to the original data:

Partial Listing of orion.employee donations

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	Paid_By
120265				25	Cash or Check
120267	15	15	15	15	Payroll Deduction
120269	20	20	20	20	Payroll Deduction

Partial Listing of rotate2

NAME	_LABEL_	COL1	COL2	COL3	 C0L124
Employee_ID	Employee ID	120265	120267	120269	121147
Qtr1		•	15	20	10
Qtr2		•	15	20	10
Qtr3		•	15	20	10
Qtr4		25	15	20	10

All the numeric variables were transposed by default.

Paid_By, a character variable, was not transposed.

Results of a Simple Transposition

Partial Listing of orion.employee_donations

Employee_ID	Qtr1	Qtr2	Qtr3	Qtr4	Paid_By
120265				25	Cash or Check
120267	15	15	15	15	Payroll Deduction
120269	20	20	20	20	Payroll Deduction
120270	20	10	5	•	Cash or Check
120271	20	20	20	20	Payroll Deduction

Partial Listing of rotate2

NAME	_LABEL_	COL1	COL2	COL3		C0L124
Employee_ID	Employee ID	120265	120267	120269		121147
Qtr1			15	20		10
Qtr2			15	20		10
Qtr3			15	20		10
Qtr4		25	15	20	•	10

Each observation (row) in the input data set becomes a variable (column) in the output data set.

PROC TRANSPOSE Results

The data should be grouped by **Employee_ID** with a separate observation for each transposed variable.

Partial Listing of rotate2

78

Partial Listi	ing of roca	itez				
NAME	_LABEL_	COL1	COL2	COL3	COL124	
Employee_ID	Employee ID	120265	120267	120269	120271	
Qtr1			15	20	20)
Qtr2			15	20	20)
Qtr3			15	20	20)
Qtr4		25	15	20	20)
	Employee _ID	_NAME_	COL1			
	120265	Qtr1				
	120265	Qtr2				
	120265	Qtr3				
	120265	Qtr4	25			
	120267 120267	Qtr1 Qtr2	15 15			

The BY Statement

Use a BY statement to group the output by **Employee_ID**.

```
proc transpose
          data=orion.employee_donations
          out=rotate2;
          by Employee_ID;
run;
proc print data=rotate2 noobs;
run;
```

All numeric variables other than the BY variable are transposed.

Improved PROC TRANSPOSE Results

Use of the BY statement results in one observation for each transposed variable per **Employee_ID**, and includes missing values.

Partial PROC PRINT Output

Employee_ID	_NAME_	COL1	
120265 120265	Qtr1		
120265	Qtr2 Qtr3	•	
120265 120267	Qtr4 Qtr1	25 15	
120267	Qtr2	15	
120267 120267	Qtr3 Qtr4	15 15	

If there were additional numeric variables, an observation would be created for each.

The VAR Statement

The VAR statement is used to specify which variables to transpose. It can include character and numeric variables.

```
proc transpose
          data=orion.employee_donations
          out=rotate2;
        by Employee_ID;
        var Qtr1-Qtr4;
run;
proc print data=rotate2 noobs;
run;
```

The VAR statement has no effect in this example because Qtr1-Qtr4 will be transposed by default.

Enhancing PROC TRANSPOSE Results

The final step is to change the default names of the new variables.

Partial PROC PRINT Output

Employee_ID	_NAME_	COL1	
120265	Qtr1		
120265	Qtr2	•	
120265	Qtr3	•	
120265	Qtr4	25	
120267	Qtr1	15	
120267	Qtr2	15	
120267	Qtr3	15	
120267	Qtr4	15	

- Change _NAME_ to Period.
- Change COL1 to Amount.

Renaming Variables in PROC TRANSPOSE

The PROC TRANSPOSE option, NAME=, is used to rename _NAME_.

Partial Listing of rotate2

Employee_ID	Period	COL1
120265	Qtr1	
120265	Qtr2	-
120265	Qtr3	•
120265	Qtr4	25
120267	Qtr1	15
120267	Qtr2	15

Renaming Variables in PROC TRANSPOSE

The RENAME= data set option is used to change the name of COL1.

Partial Listing of rotate2

Employee_ID	Period	Amount
120265	Qtr1	
120265	Qtr2	•
120265	Qtr3	
120265	Qtr4	25
120267	Qtr1	15
120267	Qtr2	15

Analyze the Restructured Data Set

The FREQ procedure generates the report below. The frequency is 124 for all four variables.

```
proc freq data=rotate2;
    tables Period /nocum nopct;
run;
```


8.03 **Quiz**

Open **p208a01** and submit it. A LABEL statement was already added to suppress the label. Add a WHERE statement to select only observations with nonmissing **Amount** values.

```
proc freq data=rotate2;
    tables Period/nocum nopct;
    label Period=" ";
run;
```

8.03 Quiz – Correct Answer

Any of the following WHERE statements can be used to select observations with nonmissing **Amount** values.

```
where Amount ne .;
where Amount is not missing;
where not missing(amount);
where Amount is not null;
FREQ Output
```

```
proc freq data=rotate2;
    where Amount ne .;
    tables Period/nocum nopct;
    label Period=" ";
run;
```

The FREQ	Procedure
Period	Frequency
Qtr1	110
Qtr2	98
Qtr3	107
Qtr4	102

The WHERE= Data Set Option

The WHERE= data set option specifies conditions to use to subset a SAS data set.

General form of the WHERE= option:

SAS-data-set(WHERE=(where-expression))

The WHERE= option

- can be used on both input and output data sets
- applies only to the data set for which it is specified.

The WHERE= Data Set Option

There is no option or statement in PROC TRANSPOSE to eliminate observations with missing values for the transposed variable. However, this can be achieved using a WHERE= data set option in the output data set.

```
proc transpose
        data=orion.employee donations
        out=rotate2(rename=(col1=Amount)
                     where=(Amount ne .)
        name=Period;
   by employee id;
run;
proc print data=rotate2 noobs;
run;
proc freq data=rotate2;
   tables Period/nocum nopct;
   label Period=" ";
run;
```

No Missing Values

Partial PROC PRINT Output

		•
Employee_ID	Period	Amount
120265	Qtr4	25
120267	Qtr1	15
120267	Qtr2	15
120267	Qtr3	15
120267	Qtr4	15
120269	Qtr1	20
120269	Qtr2	20
120269	Qtr3	20
120269	Qtr4	20
120270	Qtr1	20
120270	Qtr2	10
120270	Qtr3	5

PROC FREQ Output

The FREQ Procedure					
Period	Frequency				
Qtr1	110				
Qtr2	98				
Qtr3	107				
Qtr4	102				

The resulting data set has no missing values. Now PROC FREQ produces the desired results.

Business Scenario

The manager of Sales asked for a report showing monthly sales and a total for each customer.

Sketch of the Desired Report

Monthly Sales by Customer							
Customer_ID	Month1	Month2	•••	Month12	Total		
1 2	1000	•		500 200	2000 750		
3 4	1200 500	150		350	2200 1000		
5	•	1000		•	2500		

Business Scenario Considerations

The data set **orion.order_summary** contains an observation for each month in which a customer placed an order (101 total observations). The data set is sorted by **Customer ID** and has no missing values.

Partial Listing of orion.order_summary

Customer_ID	Order_ Month	Sale_Amt	The number of
5	5	478.00	observations per customer varies.
5	6	126.80	
5	9	52.50	
5	12	33.80	
10	3	32.60	
10	4	250.80	
10	5	79.80	
10	6	12.20	
10	7	163.29	

Business Scenario Considerations

The report requires rotating the columns into rows. Use PROC TRANSPOSE again to restructure the data set, and this time from narrow to wide.

Customer _ID	Order_ Month	Sale_Amt
C 5	5	478.00
5	6	126.80
5	9	52.50
5	12	33.80
10	3	32.60

Desired Output

```
      Customer_
      ID
      Month1 ... Month5
      Month6 ... Month9 ... Month12

      →5
      . 478.00
      126.80
      52.50
      33.80
```

Using PROC TRANSPOSE

Start with a simple PROC TRANSPOSE.

Partial Listing of orion.order summary

Γ	Customer_ID	Order_ Month	Sale_Amt		
	5 5	5 6	478.00 126.80	•	101 observations
	5 5 10	9 12 3	52.50 33.80 32.60		
	10 10	4 5	250.80 79.80		

Using PROC TRANSPOSE

The resulting data set has three observations, one for each numeric variable in the input data set: Customer_ID, Order Month, and Sale Amt.

The variables **COL1-COL101** represent the 101 observations in the input data set.

Group the output by **Customer_ID**.

The BY Statement

The BY statement groups by **Customer_ID** and produces an observation for each transposed variable, **Order_Month** and **Sale_Amt**.

```
proc transpose data=orion.order summary
                                 out=annual orders;
          by Customer ID;
                                                     Notice the varying number of
     run;
                                                     columns for each customer.
Customer
                       COL<sub>1</sub>
                              COL2
                                      COL3
                                             COL<sub>4</sub>
                                                    COL<sub>5</sub>
                                                            COL6
                                                                     COL7
                                                                            COL8
                                                                                  COL9
    ID
           NAME
         Order Month
                        5.0
                               6.0
                                      9.0
                                             12.0
         Sale Amt
                                             33.8
                      478.0
                             126.8
                                      52.5
         Order Month
                        3.0
                                                     7.00
                                                             8.0
                                                                     11.0
                                                                            12.0
                               4.0
                                       5.0
                                              6.0
         Sale Amt
                       32.6
                             250.8
                                      79.8
                                             12.2
                                                   163.29
                                                           902.5
                                                                   1894.6
                                                                           143.3
         Order Month
                        9.0
         Sale Amt
                       78.2
```

Creating Columns Based on a Variable

Instead of transposing **Order_Month**, use its values to create new variables. A value of 5.0 represents orders placed in May, 6.0 represents orders placed in June, and so on.

Customer _ID	_NAME_	COL1	COL2	COL3	COL4	COL5	COL6	COL7	COL8	COL9
5	Order_Month	5.0	6.0	9.0	12.0				•	•
5	Sale_Amt	478.0	126.8	52.5	33.8		•	•		
10	Order_Month	3.0	4.0	5.0	6.0	7.00	8.0	11.0	12.0	•
10	Sale_Amt	32.6	250.8	79.8	12.2	163.29	902.5	1894.6	143.3	•
11	Order Month	9.0					•	•	•	•
11	Sale_Amt	78.2	•	•	•	•	•	•	•	•

Add an ID statement.

The ID Statement

The ID statement identifies the variable whose values will become the names of the new columns.

Customer_ID	_NAME_	_5	_6	_9	_12	
5	Sale Amt	478.0	126.80	52.5	33.80	
10	Sale Amt	79.8	12.20		143.30	
11	Sale_Amt			78.2		
12	Sale_Amt		48.40	87.2	•	
18	Sale_Amt	•	•	•	•	

The remaining variable, **Sale_Amt**, is transposed.

Enhancing PROC TRANSPOSE Results

What other changes can enhance the report?

			Month5	Month6 Mo	nth9 Month	12
Customer_ID	_NAME_	25	28	_9	_12	
5	Sal	478.0	126.80	52.5	33.80	
10	Sa (e Ar t	79.8	12.20		143.30	
11	Sal	•	-	78.2	•	
12	Sale_Amt	•	48.40	87.2		
18	Sale_Amt	•	•	•	•	

- Change the variable names from n to Monthn.
- Drop the NAME variable.

Changing the Variable Names

The PREFIX= option is used to set a prefix for each new variable name. The prefix replaces the underscore.

Customer_ID	_NAME_	Month5	Month6	Month9	
5	Sale Amt	478.0	126.80	52.5	
10	Sale_Amt	79.8	12.20	•	
11	Sale_Amt	-	•	78.2	
12	Sale_Amt	-	48.40	87.2	
18	Sale_Amt	•	•	•	

Dropping the _NAME_ Column

Use the DROP= data set option to drop the **_NAME**_ variable.

```
      Customer_ID
      Month5
      Month6
      Month9
      Month12
      Month3
      ...

      5
      478.0
      126.80
      52.5
      33.80
      .

      10
      79.8
      12.20
      .
      143.30
      32.6

      11
      .
      .
      78.2
      .
      .

      12
      .
      48.40
      87.2
      .
      .
```


8.04 Quiz

Notice the column order in the PROC PRINT output. Why are the variables out of sequence?

Customer_ID	Month5	Month6	Month9	Month12	Month3	
5	478.0	126.80	52.5	33.80	_	
10		12.20		143.30	32.6	
11	•	•	78.2	•	•	
12	•	48.40	87.2	•	•	

8.04 Quiz – Correct Answer

Notice the column order in the PROC PRINT output. Why are the variables out of sequence?

Customer_ID	Month5	Month6	Month9	Month12	Month3	
5		126.80	52.5	33.80		
10 11	79.8	12.20	78.2	143.30	32.6	
12	-	48.40	87.2	•	•	

Partial Listing of orion.order_summary

Customer_ID	Order_ Month	Sale_Amt
5	5	478.00
5	6	126.80
5	9	52.50
5	12	33.80
10	3	32.60

The variables were created in the order that they appeared in the input data set.

Print the Transposed Data Set

A VAR statement in the PRINT procedure specifies the desired order of the variables.

```
proc print data=annual_orders noobs;
    var Customer_ID Month1-Month12;
run;
```

Customer_ID	Month1	Month2	Month3	Month4	Month5	
5					478.0	
10		•	32.6	250.8	79.8	
11		•	•	-	•	
12	•	117.6	•	•	•	
18	•	29.4	•	•	•	
24	195.6	•	46.9	•	•	
27	174.4	•	140.7	205.0	•	

Reorder Data Set Variables (Self-Study)

The RETAIN statement can be used in a DATA step to permanently change the order of the variables in an existing data set.

```
data annual_orders;
    retain Customer_ID Month1-Month12;
    set annual_orders;
run;
The data set annual_orders
    is used for input and output.
```


It is recommended that no additional processing be performed in the DATA step

Examine the Resulting Data Set (Self-Study)

The variables are now in the desired order.

```
proc contents data=annual_orders varnum;
run;
```

Partial PROC CONTENTS Output

Variables in Creation Order						
#	Variable	Туре	Len	Format	Label	
1	Customer_ID	Num	8	12.	Customer ID	
2	Month1	Num	8			
3	Month2	Num	8			
4	Month3	Num	8			
5	Month4	Num	8			
6	Month5	Num	8			
7	Month6	Num	8			
8	Month7	Num	8			
9	Month8	Num	8			
10	Month9	Num	8			
11	Month10	Num	8			
12	Month11	Num	8			
13	Month12	Num	8			

Print the Resulting Data Set (Self-Study)

```
proc print data=annual_orders;
run;
```

Partial PROC PRINT Output

Customer_ID	Month1	Month2	Month3	Month4	Month5	
5					478.0	
10	•		32.6	250.8	79.8	
11	•	-	-	-	-	
12	•	117.6	-	•		
18	-	29.4	-	•		
24	195.6	•	46.9	•	•	
27	174.4	•	140.7	205.0	•	

Advantages of Each Restructuring Method

The TRANSPOSE Procedure

Might eliminate the need for a complex DATA step

Requires very little code to restructure data

The DATA Step

Can create multiple data sets

Can direct output to data sets based on data set contributors

Enables First. and Last. processing

Enables complex data manipulation