	Sistami Oparativ	i DDIMO COMDITINO Vor
Cognome e nome:	Matricola:	ri – PRIMO COMPITINO – Ver. A Posto:
Università degli Studi di Pado	va - Corso di Laurea in Inf	formatica
Regole	e dell'esame	
Il presente esame scritto deve essere svolto in forma individu	ale in un tempo massimo di 60	
Non è consentita la consultazione di libri o appunti in forma		
La correzione avverrà in data e ora comunicate dal docente; i Il candidato riporti generalità e matricola negli spazi indicati		
Per avere accesso al secondo compitino il candidato deve acc	<u>juisire almeno 2 punti nel Quesi</u>	ito 1 e almeno 16 punti in totale.
Quesito 1: 0,5 punti per risposta giusta, <u>diminuzione</u> di 0,2	5 punti per ogni sbaglio, 0 punt	ti per risposta vuota
DOMANDA		Vero/Falso
Una system call dà sempre luogo ad un mode switch tra m		!
Se un processo è in blocco da 10 ms significa che 10 ms f		
Ogni <i>interrupt</i> può essere associato ad un processo che ha		,
Un processo per lanciare un nuovo processo deve fare una L'algoritmo di scheduling Shortest Remaining Time Next	•	rignogta
La possibilità di effettuare prerilascio è necessaria al funzi		
Con scheduling First Come First Served (FCFS) senza val		
di attesa è sempre uguale al tempo di risposta	iutazione den attributo di priorit	a, ii tempo
Un semaforo binario può gestire le richieste di accesso sol	lo se provenienti da massimo du	ie processi
L'inversione di priorità è una tecnica utilizzata per evitare		
Gli interrupt sono asincroni mentre le chiamate di sistema		
Quesito 2: Si consideri la politica di <i>scheduling Round Robin</i> di quanto tutti con lo stesso comportamento. Ciascuna interazione dà lu		
[2.A] Se $c < q$ quanto tempo aspetta al più un processo in coo	da <i>ready</i> prima di ottenere la CF	PU?
[2.B] Se $c < q$ quanto tempo aspetta al più l'utente prima che	la CPII finisca di elaborare l'in	terazione?
[2.1] Se $c < q$ quanto tempo aspetta ai più i utente prima che	ia Cr O iiiiisca ui eiauorale liiii	CI aziOlic (

[2.C] Se c > q quanto tempo aspetta l'utente prima di iniziare l'ultimo quanto di interazione per l'ultimo processo rimasto ancora attivo? (Si consideri che c può essere espresso come c = aq + b; ovvero a quanti di tempo + b < c tempo nell'ultimo quanto)

	Sistemi Operativi – PRIMO COMPITINO – Ver. A		
Cognome e nome:	Matricola:	Posto:	
Quesito 3:			
Lo studente riporti le 4 condizioni necessarie e si	ufficienti affinché possa verificarsi lo stallo (deadlock) di un sistema	

Lo studente riporti le 4 condizioni necessarie e sufficienti affinché possa verificarsi lo stallo (deadlock) di un sistema.

Quesito 4:

Un sistema è composto da sette processi P1... P7 e da sei risorse condivise R1... R6 ciascuna diversa dalle altre, presente in singola istanza e ad accesso mutuamente esclusivo. La situazione corrente del sistema è la seguente:

- P1 occupa R1 e richiede R2;
- P2 non occupa risorse e richiede R3;
- P3 non occupa risorse e richiede R2;
- P4 occupa R4 e richiede sia R2 sia R3;
- P5 occupa R3 e richiede R5;
- P6 occupa R6 e richiede R2;
- P7 occupa R5 e richiede R4;

Si determini, utilizzando il grafo di allocazione delle risorse, se il sistema sia in stallo (deadlock) e, in caso affermativo, quali siano i processi e le risorse coinvolti.

Cognome e nome: _____ Matricola: ____ Posto: ____

Quesito 5:

Un sistema ha 4 processi (A, B, C, D) e 5 risorse (R1, R2, R3, R4, R5) da ripartire. L'attuale allocazione e i bisogni massimi sono i seguenti:

Processo	Allocate	Massimo
\boldsymbol{A}	10211	11214
B	20111	3 3 4 2 1
C	11010	2 1 4 1 0
D	11110	1 1 3 2 1

[5.A] Considerando il vettore delle risorse disponibili uguale a [0 0 3 1 2], si discuta se il sistema sia in uno stato sicuro.

[5.B] Il procedimento di verifica dello stato sicuro è uno dei passi ripetuti da un noto algoritmo che assegna risorse ai processi solo se l'assegnazione fa rimanere il sistema in uno stato sicuro. Come si chiama questo algoritmo?

Ouesito 6:

[6.A] La seguente soluzione del problema dei lettori-scrittori contiene alcuni errori e mancanze. Lo studente ne modifichi il codice tramite aggiunte, cancellazioni e correzioni. Il risultato dovrà rappresentare una versione corretta, realizzata apportando il minor numero possibile di modifiche all'originale qui di seguito.

(Per coloro che avessero studiato solo sul libro di testo: P, corrisponde a down, V corrisponde a up)

```
void Lettore (void) {
                                             void Scrittore (void) {
  while (true) {
                                               while (true) {
    P(mutex);
                                                 // prepara il dato da scrivere
    numeroLettori++;
                                                 V(database);
    if (numeroLettori==1) V(database);
                                                 // scrivi il dato
    V(mutex);
                                                 P(database);
    // leggi il dato
                                               }
    numeroLettori--;
    if (numeroLettori==0) V(database);
    // usa il dato letto
  }
```

[6.B] Lo studente riporti qua sotto l'indicazione del tipo e del valore iniziale di ciascuna variabile.

Cognome e nome: _____ Matricola: _____ Posto: ____

Soluzione

Soluzione al Quesito 1

DOMANDA	Vero/Falso
Una system call dà sempre luogo ad un mode switch tra modalità utente e modalità kernel	V
Se un processo è in blocco da 10 ms significa che 10 ms fa ha eseguito una system call	V
Ogni interrupt può essere associato ad un processo che ha richiesto una operazione di I/O	F
Un processo per lanciare un nuovo processo deve fare una system call	V
L'algoritmo di scheduling Shortest Remaining Time Next (SRTN) minimizza il tempo di risposta	F
La possibilità di effettuare prerilascio è necessaria al funzionamento dello scheduling Round Robin	V
Con scheduling First Come First Served (FCFS) senza valutazione dell'attributo di priorità, il tempo	V
di attesa è sempre uguale al tempo di risposta	
Un semaforo binario può gestire le richieste di accesso solo se provenienti da massimo due processi	F
L'inversione di priorità è una tecnica utilizzata per evitare la starvation dei processi a bassa priorità	F
Gli interrupt sono asincroni mentre le chiamate di sistema (trap) sono sincrone	V

Soluzione al Quesito 2

[2.A] Un processo aspetta (N-1)c per ottenere la CPU.

[2.B] L'utente aspetta (N-1)c + c = Nc

[2.C] L'utente aspetta N qa + (N-1) b oppure anche scrivibile come c(N-1) + aq

Soluzione al Quesito 3

Risposta disponibile sulle slide dell'insegnamento.

Soluzione al Quesito 4

 $P4 \rightarrow R3 \rightarrow P5 \rightarrow R5 \rightarrow P7 \rightarrow R4 \rightarrow P4$ sono in deadlock.

Soluzione al Quesito 5

[5.A] La matrice delle necessità (massimo numero di risorse richieste dal processo - risorse allocate al processo) è la seguente:

 $0 \; 1 \; 0 \; 0 \; 3$

13310

10400

00211

Il processo D può essere eseguito fino alla fine. Quando ha finito, il vettore delle risorse disponibili è [1 1 4 2 2].

Il processo C può dunque essere eseguito. Dopo il suo completamento, il vettore delle risorse disponibili diventa [2 2 4 3 2]. Purtroppo questo non questo permette di eseguire e completare né A (manca una risorsa di tipo R5), né B (manca una risorsa di tipo R2).

Il sistema NON è quindi in uno stato sicuro.

[5.B] L'Algoritmo del Banchiere (Banker's Algorithm)

Sistemi (Operativi –	PRIMO	COMPITINO -	Ver. A
-----------	-------------	--------------	-------------	--------

Cognome e nome: ______ Posto: ____ Posto: ____ ___

Soluzione al Quesito 6

[6.A]

```
void Scrittore (void) {
void Lettore (void) {
                                             while (true) {
  while (true) {
                                               // prepara il dato da scrivere
   P(mutex);
                                               P(database);
   numeroLettori++;
   if (numeroLettori==1) P(database);
                                               // scrivi il dato
   V(mutex);
                                               V(database);
    // leggi il dato
                                             }
   P(mutex);
   numeroLettori--;
    if (numeroLettori==0) V(database);
   V(mutex);
    // usa il dato letto
```

[6.B]

Non importa la sintassi...

int numeroLettori = 0 semaforo mutex = 1 semaforo database = 1