Miroslav Jiřík

Katedra kybernetiky, Fakulta aplikovaných věd, Západočeská univerzita v Plzni

26. dubna 2012

Obsah

- 1 Úvod
- 2 Kriteriální funkce
- 3 Princip konstrukce a řezu grafu
- 4 Implementace
- S Aplikace metody graph-cut

Historie

- 1989 D.M.Greig, B.T Poteous a A.H.Seheult [BVZ01]
- Binární obraz
- Ford-Fulkersonův algoritmus pro nalezení maximálního toku
- 2001 Boykov, Kolmogorov, Jolly ([BJ01] [BVZ01])

Obrázek: Původní obraz, binární obraz zatížený 25% šumem, a obraz restaurovaný pomocí MAP (Maximum Aposteriori Probability), převzato z [GPS89]

Segmentační metody

- Prahování (Thresholding)
- Hrany (Edge based)
- Oblasti (Region based)
- Narůstání oblastí (Region growing)
- Deformovatelné modely (Active Contour Models)
 - Snakes
 - Geodesic Contours
 - Level-sets
 - Active Shape Model

Prahování (Thresholding

1	1	1	2	1	1	2	1
2	1	2	1	1	1	1	1
2	1	1	7	8	9	1	2
1	2	1	7	8	9	2	1
1	1	1	7	8	9	1	1
2	1	2	1	1	1	1	2

Narustání oblastí (Region Growing

0	1	2	3	4	5	6	7
0	1	2			5	6	7
0	1	2	7	8	9	6	7
0	1	2	7	8	9	6	7
0	1	2	7	8	9	6	7
0	1	2			5	6	7

Narstn oblast (Region Growing)

7	6	5	4	3	2	1	0
7	6	5			2	1	o
7	6	5					
7	6	5					
7	6	5		3			
7	6	5		3			

Vlastnosti zmíněných metod

- Závislé na počátečních podmínkách
- Často nelze vyjádřit kriteriální funkci
- Naleznou pouze lokální extrém
- Nelze vždy zobecnit do 3D

Kriteriální funkce

$$C(\mathbf{L}) = \lambda \cdot R(\mathbf{L}) + B(\mathbf{L})$$

- R(L) váží oblast (region)
- B(L) váží okraje segmentace(boundary), penalizuje samostatné pixely
- λ váží vliv oblasti a okraje na výsledné kritérium

$$R(\mathsf{L}) = \sum_{p \in P} R_p(\mathsf{L}_p)$$

$$B(\mathsf{L}) = \sum_{\{p,q\} \in \mathsf{N}} B_{\{p,q\}} \cdot \delta(\mathsf{L}_p, \mathsf{L}_q)$$

$$\delta(\mathsf{L}_p,\mathsf{L}_q) = \left\{ \begin{array}{ll} 1 & \mathsf{pokud} \ \mathsf{L}_p \neq \mathsf{L}_q \\ 0 & \mathsf{jinak} \end{array} \right.$$

Možný návrh kriteriální funkce

$$C(L) = R(L) + B(L)$$

 $R(\mathbf{L})$ je míra vzdálenosti každého pixelu k barevnému prototypu dané třídy c(k)

$$R(\mathbf{L}) = \sum_{[m,n] \in Image} \underbrace{\left(f(m,n) - c(k)\right)^{2}}_{D_{c}}$$

 $B(\mathbf{L})$ je ohodnocení sousedství třídy i a j

$$B(\mathbf{L}) = \sum S_c(i,j)$$

$$S_c(i,j) = \begin{cases} 0, & i = j \\ \gamma, & i \neq j \end{cases} \qquad S_c = \begin{bmatrix} 0 & \gamma \\ \gamma & 0 \end{bmatrix}$$

Matice *D*,

$$\lambda=1$$
 $S_c=egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$ size $(D_c)=3 imes3 imes2$

$$\lambda=1$$
 $S_c=egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$ size $(D_c)=3 imes3 imes2$

$$E(A) = \lambda R(A) + B(A)$$

$$\lambda = 1, S_c = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$R(A) = \sum \begin{bmatrix} 0 & 1 & 2 \\ 8 & 10 & 1 \\ 10 & 1 & 2 \end{bmatrix} = 35$$

$$B(A) = 3$$

$$E(A) = 35 + 3 = 38$$

$$E(A) = \lambda R(A) + B(A)$$

$$\lambda = 1, S_c = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$R(A) = \sum \begin{bmatrix} 0 & 1 & 8 \\ 2 & 10 & 9 \\ 10 & 1 & 2 \end{bmatrix} = 43$$

$$B(A) = 5$$

$$E(A) = 43 + 5 = 48$$

$$E(A) = \lambda R(A) + B(A)$$

$$\lambda = 1, S_c = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$R(A) = \sum \begin{bmatrix} 0 & 1 & 2 \\ 8 & 10 & 1 \\ 10 & 9 & 2 \end{bmatrix} = 43$$

$$B(A) = 6$$

$$E(A) = 43 + 6 = 49$$

$$E(A) = \lambda R(A) + B(A)$$

$$\lambda = 1, S_c = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$R(A) = \sum \begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} = 8$$

$$B(A) = 4$$

$$E(A) = 8 + 4 = 12$$

Konstrukce grafu

T-linky spojují (p, t) a určují oblastní část kritéria $R(\mathbf{L})$

N-linky spojují (p,q) a určují hranovou část kritéria $B(\mathbf{L})$

Interaktivita

- Neinteraktivní podoba
 - Pixely o kterých nic nevíme
- Interaktivní podoba
 - Pixely o kterých nic nevíme
 - Pixely popředí
 - Pixely pozadí

Volba vah v grafu

$$K = 1 + \max_{p \in I} \sum_{q:(p,q) \in N} B_{(p,q)}$$

Hrana	Váha	
(p,q)	$B_{(p,q)}$	$pro\;(p,q)\in N$
(s,p)	$\lambda R_p(bgd)$	pro $p \in I, P \notin (O \cup B)$
	K	pro $p \in O$
	0	pro $p \in B$
(p,t)	$\lambda R_p(obj)$	pro $p \in I, P \notin (O \cup B)$
	0	pro $p \in O$
	K	pro $p \in B$

Tabulka: Váhy jednotlivých typů hran při konstrukci grafu pro segmentaci pomocí Grap-Cut

Algoritmy pro výpočet minimálního řezu

Minimání řez / Maximální tok - (duální)

Augmenting path

- Dinic [Din70]
- "Three Indians"

Push-relabel

• Ford-Fulkerson [FF62]

Hledání minimálního řezu

[SHB07]

Pravděpodobnostní mode

$$egin{aligned} R_p(obj) &= -\ln P(I_p|O) \ R_p(bgd) &= -\ln P(I_p|B) \ B(p,q) &= \exp\left(-rac{(I_p-I_q)^2}{2\sigma^2}
ight)rac{1}{\|p,q\|} \end{aligned}$$

Kde P(I|O) a P(I|B) reprezentují míru věrohodnosti, že pixel náleží objektu, nebo pozadí. Výraz $\|p,q\|$ znamená vzdálenost mezi pixely a σ^2 představuje očekávaný rozptyl jasových hodnot.

Dostupná implementace

- Olga Veksler [Vek]
- Obecná konstrukce grafu (setDataCost, setNeighbors, setSmoothCost)
- US patent: R. Zabih, Y. Boykov, O. Veksler, "System and method for fast approximate energy minimization via graph cuts"

Matlab

- Bagon's wrapper (mex) [Bag04]
- 2D/3D

ITK

<http:
//www.insight-journal.org/browse/publication/306>

Segmentace pomocí Graph-Cut v Matlabu

```
img = [10 9 2
8 10 1
10 1 2];
lambda = 1;
Dc(:,:,1) = lambda * (img);
Dc(:,:,2) = lambda * (10 - img);
Sc = [0 1
1 0];
[gch] = GraphCut('open', Dc,Sc);
[gch L] = GraphCut('expand', gch);
[gch] = GraphCut('close',gch);
```

Výpočet hodnoty kritéria v Matlabu

```
img = [10 \ 9 \ 2]
8 10 1
10 1 21;
lambda = 1;
Dc(:,:,1) = lambda * (img);
Dc(:,:,2) = lambda * (10 - img);
Sc = [0 \ 1]
1 0];
labels = [1 \ 1 \ 0]
0 0 0
0 0 01;
[gch] = GraphCut('open', Dc,Sc);
[gch] = GraphCut('set', gch, labels)
[gch se de] = GraphCut('energy', gch);
[gch] = GraphCut('close', gch);
```

Úlohy řesené pomocí Graph-Cut

- Segmentace
- Restaurace
- Syntéza
- Stereovidění

Segmentace - Jednoduch

 Ivod
 Kriterium
 Graf
 Implementace
 Aplikace

 00000
 0000000
 000
 000
 000

$\mathsf{Segmentace}$

Restaurace

Syntéza

Stereoviděn

Interaktivní segmentace

- Interaktivní segmentace tumoru
- Interaktivní segmentace jater
- Interaktivní 3D segmentace

Matlab wrapper for graph cuts, 2004.

Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images.

Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, 1:105–112 vol.1, 2001.

Yuri Boykov, Olga Veksler, and Ramin Zabih.

Efficient approximate energy minimization via graph cuts. *IEEE transactions on Pattern Analysis and Machine*

Intelligence, 20(12):1222-1239, November 2001.

Efim A Dinic.

Algorithm for solution of a problem of maximum flow in networks with power estimation (in russian).

Flows in Networks.

Princeton University Press, 1962.

Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing, Analysis, and Machine Vision. Thomson-Engineering, 2007.

Daniel Scharstein and Richard Szeliski.

A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.

INTERNATIONAL JOURNAL OF COMPUTER VISION, 47:7–42, 2001.

Olga Veksler.
Gcoptimization library.

