

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁷ : B01L 7/00, 3/00, C12Q 1/68	A1	(11) Numéro de publication internationale: WO 00/23190 (43) Date de publication internationale: 27 avril 2000 (27.04.00)
---	----	---

(21) Numéro de la demande internationale: PCT/FR99/02499 (22) Date de dépôt international: 14 octobre 1999 (14.10.99) (30) Données relatives à la priorité: 98/13012 16 octobre 1998 (16.10.98) FR (71) Déposant (<i>pour tous les Etats désignés sauf US</i>): COMMIS- SARIAT A L'ENERGIE ATOMIQUE [FR/FR]; 31-33, rue de la Fédération, F-75752 Paris 15ème (FR). (72) Inventeurs; et (75) Inventeurs/Déposants (<i>US seulement</i>): FOUILLET, Yves [FR/FR]; 17, chemin des Carrières, Le Chevalon de Voreppe, F-38340 Voreppe (FR). CLERC, Jean-Frédéric [FR/FR]; 8, rue du Mont Perthuis, F-38120 Le Fontanil (FR). THERME, Jean [FR/FR]; Le Thicaud, F-38320 Herbeys (FR). (74) Mandataire: LEHU, Jean; Brevatome, 3, rue du Docteur Lancereaux, F-75008 Paris (FR).	(81) Etats désignés: JP, US, brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). Publiée Avec rapport de recherche internationale.
--	--

(54) Title: DEVICE FOR CHEMICAL AND/OR BIOLOGICAL ANALYSIS WITH ANALYSIS SUPPORT

(54) Titre: DISPOSITIF D'ANALYSE CHIMIQUE ET/OU BIOCHIMIQUE AVEC UN SUPPORT D'ANALYSE

(57) Abstract

The invention concerns a device for chemical and/or biological analysis comprising an analysis support (100) having at least an input well (102) for receiving a sample, and an output well (104) for delivering said sample, at least an internal passage passing through the support to connect the input well to the output well, and at least a reagent reservoir (120a, 120b, 120c) connected to each passage (108) between the input well and the output well, wherein the input well, the output well and the reservoir emerge on a first surface (106) of the analysis support.

(57) Abrégé

Dispositif d'analyse chimique et/ou biologique comprenant un support d'analyse (100) avec au moins une cuvette d'entrée (102) pour recueillir un échantillon, au moins une cuvette de sortie (104) pour délivrer ledit échantillon, au moins un canal interne (108) traversant le support pour relier la cuvette d'entrée et la cuvette de sortie, et au moins un réservoir à réactif (120a, 120b, 120c) relié à chaque canal (108) entre la cuvette d'entrée et la cuvette de sortie, dans lequel la cuvette d'entrée, la cuvette de sortie et le réservoir débouchent sur une première face (106) du support d'analyse.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaïdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave de Macédoine	TM	Turkménistan
BF	Burkina Faso	GR	Grèce	ML	Mali	TR	Turquie
BG	Bulgarie	IU	Hongrie	MN	Mongolie	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MR	Mauritanie	UA	Ukraine
BR	Brésil	IL	Israël	MW	Malawi	UG	Ouganda
BY	Bélarus	IS	Islande	MX	Mexique	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	NE	Niger	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NL	Pays-Bas	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norvège	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NZ	Nouvelle-Zélande	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire démocratique de Corée	PL	Pologne		
CM	Cameroun	KR	République de Corée	PT	Portugal		
CN	Chine	KZ	Kazakhstan	RO	Roumanie		
CU	Cuba	LC	Sainte-Lucie	RU	Fédération de Russie		
CZ	République tchèque	LI	Liechtenstein	SD	Soudan		
DE	Allemagne	LK	Sri Lanka	SE	Suède		
DK	Danemark	LR	Libéria	SG	Singapour		

**DISPOSITIF D'ANALYSE CHIMIQUE ET/OU BIOCHIMIQUE AVEC UN
SUPPORT D'ANALYSE**

Domaine technique

5 La présente invention concerne un dispositif d'analyse chimique et/ou biologique, équipé d'un support d'analyse pouvant être du type à usage unique.

10 L'invention trouve des applications dans les domaines de la chimie et de la biologie. En particulier, le dispositif peut être mis à profit dans des procédés d'amplification chimique ou de réaction de polymérase de type PCR (Polymerase Chain Reaction) pour l'analyse de matériau génétique (ADN).

15 Etat de la technique antérieure

On connaît actuellement des systèmes macroscopiques d'analyse chimique ou biologique utilisant des plaques de titrage. Ces plaques comportent des cuvettes dans lesquelles on mélange des échantillons et des réactifs par pipetage (à la pipette). Pour permettre les réactions chimiques ou biologiques, les plaques sont successivement chauffées à des températures de consigne par des étuvages successifs, puis sont refroidies.

25 Avec de tels systèmes, l'apport des réactifs est une opération longue et complexe, notamment en raison d'un apport successif de chaque réactif. De plus, l'inertie thermique de chauffage et de refroidissement des plaques de titrage s'avère trop importante et allonge le temps d'analyse.

30 On connaît par ailleurs, des équipements d'analyse chimique et/ou biochimique qui se présentent sous forme de structures complètes incorporant les

moyens de chauffage nécessaires à l'analyse. Des systèmes de connexion par tuyauterie permettent d'amener les échantillons et les réactifs dans la structure.

5 L'utilisation de ces équipements implique cependant des opérations complexes et fastidieuses de connexion pour l'amenée des fluides, analytes et réactifs, ainsi que des opérations de connexion électrique pour l'alimentation en énergie des moyens de
10 chauffage. En raison de la spécificité des analyses, il est nécessaire de renouveler les opérations de connexion lors de chaque nouvelle utilisation de l'équipement.

15 Les équipements présentent en outre un coût de fabrication élevé.

Une illustration plus complète des techniques et équipements dans le domaine de l'analyse biochimique est donnée par les documents (1) et (2) dont les références sont précisées à la fin de la présente
20 description.

Exposé de l'invention

L'invention a pour but de proposer un dispositif d'analyse biologique et/ou chimique ne présentant pas les limitations évoquées ci-dessus.

25 Un autre but est de réduire les temps de chauffage, de refroidissement et de permettre un contrôle en température précis et sélectif des composants à analyser au cours des différentes phases
30 de réaction.

Un but de l'invention est encore de proposer un tel dispositif pouvant être adapté rapidement à

différents types de produits à analyser et ne nécessitant pas d'opérations de connexion complexes.

L'invention a aussi pour but de proposer un dispositif avec un support d'analyse, de très faible 5 coût, pouvant être à usage unique, qui peut être jeté et remplacé après chaque utilisation, ou après un nombre limité d'utilisations. On envisage par exemple d'effectuer un millier d'analyses séquentielles avec un dispositif avant de le jeter.

10 Pour atteindre ces buts, l'invention a plus précisément pour objet un dispositif d'analyse chimique et/ou biologique comprenant un support d'analyse avec au moins une cuvette d'entrée pour recueillir un échantillon, au moins une cuvette de sortie pour délivrer ledit échantillon, au moins un canal interne traversant le support pour relier la cuvette d'entrée à la cuvette de sortie, et au moins un réservoir à réactif, relié à chaque canal respectivement entre une cuvette d'entrée et une cuvette de sortie, dans lequel 15 la cuvette d'entrée, la cuvette de sortie et le réservoir débouchent sur une première face du support 20 d'analyse.

Le dispositif peut en particulier comporter une pluralité de cuvettes d'entrée et une pluralité correspondante de cuvettes de sortie, chaque cuvette d'entrée étant respectivement reliée à une cuvette de sortie associée, au moyen d'un canal.

25 La mise en place des liquides à analyser dans les cuvettes d'entrée et/ou des réactifs dans les 30 réservoirs correspondants peut avoir lieu par micropipetage (à la micropipette).

Selon un autre mode d'utilisation, la mise en place des liquides à analyser dans les cuvettes

d'entrée et/ou des réactifs dans les réservoirs correspondants peut avoir lieu par des moyens étanches d'aménée de fluides tels qu'un bouchon déposé sur le réservoir ou la cuvette et relié à une seringue ou à 5 une citerne sous pression.

La mise en place des liquides et/ou des réactifs peut être obtenue par une combinaison des deux modes décrits précédemment.

Pour des supports avec un grand nombre de 10 cuvettes et/ou de réservoirs, l'apport des liquides à analyser et/ou des réactifs peut être automatisé au moyen d'un robot de distribution (dispense) à haute résolution. Par ailleurs, les analyses séquentielles supposant le remplacement dans le temps d'au moins un 15 réactif par un autre peuvent être automatisées par l'introduction séquentielle dans le réservoir correspondant de plusieurs réactifs distincts. Entre deux réactifs distincts un liquide tampon neutre peut, ou non, être introduit dans le réservoir.

Selon un aspect particulier de l'invention, le 20 ou les canaux internes peu(ven)t être prévu(s) pour s'étendre à proximité d'au moins une deuxième face du support d'analyse de façon à n'être séparé de ladite deuxième face que par une paroi mince. Dans une 25 réalisation particulière la paroi mince peut présenter une épaisseur inférieure à 100 µm.

De façon plus précise, la paroi est choisie suffisamment mince pour permettre un échange thermique avec des sources thermiques externes au support 30 d'analyse.

En particulier, la paroi séparant les canaux de la deuxième face peut être choisie plus mince qu'une paroi séparant les canaux entre eux ou des cuvettes.

Selon un autre aspect de l'invention, la face des canaux opposée à la paroi mince peut présenter une barrière thermique, celle-ci pouvant être réalisée par une couche de matériau peu conducteur thermique et/ou 5 une structuration du substrat permettant de localiser sur les canaux une cavité remplie d'air ou d'un gaz peu caloporteur.

Cette barrière thermique permet d'uniformiser la température dans les canaux.

10 Selon un autre aspect de l'invention, le dispositif peut comporter en outre un support thermique indépendant du support d'analyse, le support thermique présentant une face d'échange thermique avec au moins une source thermique, et ledit support thermique 15 pouvant être rapporté de façon amovible sur le support d'analyse afin de mettre en contact la face d'échange thermique avec la deuxième face du support d'analyse.

Le caractère séparé du support d'analyse et du support thermique permet de concevoir des supports 20 d'analyse sans propres moyens de chauffage ou de refroidissement. Cette caractéristique permet de réduire par conséquent dans des proportions importantes le coût du support d'analyse. Ainsi, ce support peut être du type à utilisation unique ou à plusieurs 25 utilisations, c'est-à-dire être jeté après une ou plusieurs utilisations. On entend par utilisation la réalisation séquentielle d'un nombre d'analyses voisin par exemple de 1000.

La face d'échange thermique peut comporter une 30 ou plusieurs zones thermostatées équipées chacune d'au moins une source thermique. Les zones thermostatées coïncident avec au moins une zone du support d'analyse

située en aval d'un raccord entre un réservoir à réactif et un canal.

En associant une zone thermostatée du support thermique avec une zone correspondante du support 5 d'analyse située respectivement au voisinage, par exemple en aval, de chaque réservoir à réactif, il est possible de contrôler et d'adapter sélectivement la température du liquide à analyser en fonction de chaque réactif utilisé.

10 Le terme aval utilisé ici s'entend par rapport à une direction d'écoulement des liquides à analyser depuis les cuvettes d'entrée jusqu'aux cuvettes de sortie.

15 Les sources thermiques peuvent comporter une ou plusieurs résistances électriques chauffantes thermostatées.

A titre alternatif ou complémentaire les sources thermiques peuvent comporter également un ou plusieurs canaux traversés par un fluide caloporteur. 20 Ce fluide peut être utilisé pour chauffer ou refroidir localement le support d'analyse.

Dans une réalisation particulière du support 25 d'analyse, celui-ci peut comporter un premier substrat présentant des ouvertures traversantes qui forment respectivement les cuvettes et réservoirs, et un deuxième substrat, collé au premier substrat, le deuxième substrat présentant des rainures, recouvertes par le premier substrat pour former des canaux, et coïncidant respectivement avec les ouvertures 30 traversantes.

Cette structure particulièrement simple permet de réduire les coûts de fabrication des supports d'analyse.

La fabrication du support peut avoir lieu, conformément à l'invention, selon un procédé comprenant les étapes successives suivantes :

- formation, dans un premier substrat, d'ouvertures traversantes, lesdites ouvertures correspondant respectivement à des cuvettes d'entrée ou de sortie, ou à des réservoirs de réactif,
- formation dans un deuxième substrat de rainures selon un motif permettant de relier entre elles au moins deux ouvertures du premier substrat,
- collage du premier substrat sur le deuxième substrat de façon à recouvrir les rainures,
- amincissement du deuxième substrat, après le collage, en préservant une épaisseur de substrat supérieure à une profondeur maximale des rainures.

Selon un mode de réalisation particulier, le premier substrat peut présenter deux couches thermiquement peu conductrices, épaisses par exemple de quelques microns.

Selon un second mode particulier de réalisation, le premier substrat peut présenter au moins une ouverture non traversante de façon à créer au moins une cavité d'isolation thermique.

L'invention concerne également un procédé de mise en oeuvre d'un dispositif d'analyse tel que décrit ci-dessus, selon lequel on met en contact le support d'analyse avec le support thermique pendant une phase d'analyse de durée déterminée, au moins un échantillon à analyser et au moins un réactif étant introduits dans le support d'analyse préalablement à la phase d'analyse ou pendant la phase d'analyse, puis, après la phase d'analyse, on retire le support d'analyse du support thermique.

Au terme de l'analyse, le support d'analyse peut être réutilisé.

D'autres caractéristiques et avantages de la présente invention ressortiront mieux de la description 5 qui va suivre, en référence aux figures des dessins annexés. Cette description est donnée à titre purement illustratif et non limitatif.

Brève description des figures

10 - La figure 1A est une coupe schématique simplifiée d'un support d'analyse conforme à l'invention.

15 - La figure 1B montre le support d'analyse de la figure 1A équipé de moyens de remplissage de réservoirs à réactifs.

20 - La figure 2 est un éclaté en perspective montrant de façon plus précise la structure du support d'analyse.

25 - La figure 3 est une vue en perspective simplifiée d'un support d'analyse conforme à la figure 2 et d'un support thermique.

- La figure 4 est une coupe longitudinale schématique du support d'analyse mis en place sur le support thermique.

30 - La figure 5 est une vue en plan d'une partie d'un support d'analyse conforme à l'invention, constituant une variante par rapport aux figures 1 à 4.

- La figure 6 est une coupe transversale simplifiée d'un support d'analyse incluant une partie conforme à la figure 5.

- La figure 7 est une coupe transversale simplifiée d'un support d'analyse incluant une partie

conforme à la figure 5 et constituant une variante par rapport à la figure 6.

- Les figures 8, 9, 10 et 11 sont des coupes longitudinales schématiques de substrats lors d'étapes 5 successives de fabrication d'un support d'analyse conforme à l'invention.

- La figure 12 est une coupe transversale d'un support d'analyse et d'un support thermique conforme à l'invention et illustrant une réalisation particulière 10 du support thermique.

Description détaillée de modes de mise en œuvre de l'invention

Dans la description qui suit, des parties 15 identiques, similaires ou équivalentes des figures sont repérées avec les mêmes références numériques afin d'en faciliter la lecture.

La figure 1 est une coupe d'un support d'analyse 100 conforme à l'invention.

Sur cette figure, est représentée une cuvette 20 d'entrée 102 formée pour l'essentiel par une ouverture traversante pratiquée dans un substrat 100a du support, au voisinage de l'une de ses extrémités. De la même façon, une cuvette de sortie 104 est pratiquée au voisinage d'une deuxième extrémité. Les cuvettes 102, 25 104 débouchent en une première face 106 du support 100. Un canal interne 108 relie les cuvettes d'entrée et de sortie.

Le canal 108 se présente sous la forme d'une 30 rainure gravée dans un second substrat 100b collé au premier substrat de sorte que ce dernier recouvre la rainure.

On observe que la profondeur de la rainure est pratiquement égale à l'épaisseur du deuxième substrat 100b, de sorte que seul une mince paroi 110 sépare le canal 108 d'une deuxième face 112 du support d'analyse 5 100.

Dans l'exemple illustré, le support 100 est de forme générale parallélépipédique et les première et deuxième faces sont les faces principales opposées et parallèles.

10 La figure représente également en coupe des réservoirs de réactif 120a, 120b, 120c agencés entre les cuvettes d'entrée 102 et de sortie 104. Les réservoirs débouchent également sur la première face 106 du support d'analyse 100. Des raccords ou passages 15 122a sont prévus pour relier chacun des réservoirs au canal 108.

Pour des raisons de simplification, les passages 122a sont représentés dans le plan de la figure, de sorte que les réservoirs ne se distinguent 20 pas des cuvettes d'entrée et de sortie sur la figure 1.

Le liquide à analyser peut être introduit dans les cuvettes d'entrée au moyen d'une pipette.

Les réservoirs des réactifs peuvent être remplis de la même façon.

25 Dans le cas de l'analyse séquentielle mettant en oeuvre de façon successive des réactifs différents, dans le cas également où les réactifs doivent être conservés à une température bien contrôlée avant usage, il est préférable d'utiliser des réservoirs de petits 30 volumes alimentés par un système de type pousse-seringue tel que représenté à la figure 1B.

La figure 1B montre un support d'analyse conforme à la figure 1A dont les réservoirs 120a, 120b

et 120c sont respectivement associés à des moyens d'amenée de fluide 150a, 150b et 150c.

Ces moyens comportent des bouchons, ou capuchons d'alimentation 152a, 152b, 152c appliqués de façon étanche au-dessus des réservoirs et reliés à des pousse-seringues 154a, 154b et 154c qui contiennent des réactifs. Les capuchons peuvent être collés à la surface du support d'analyse ou serrés contre la surface, en utilisant un joint d'étanchéité.

10 Les références 156a, 156b et 156c désignent respectivement des capteurs de pressions ménagés sur des conduites reliant les pousse-seringues aux capuchons 152a, 152b et 152c, de façon à contrôler la pression et/ou le débit des réactifs.

15 Bien que non représenté, un système d'alimentation semblable peut également équiper les cuvettes d'entrée.

Comme le montrent les figures 1A et 1B, les cuvettes d'entrée et les réservoirs sont soumis à la 20 pression atmosphérique, ou à une pression fixée par le système d'alimentation, tandis qu'une ligne à vide 124 est appliquée aux cuvettes de sortie.

Un premier remplissage spontané du support d'analyse peut être effectué avec un solvant polaire 25 (tel que de l'alcool) suivi d'un solvant nominal afin d'éviter la formation de bulles. Ce remplissage met à profit un effet de capillarité dans les canaux.

Après ce premier remplissage, les analytes et réactifs sont ajoutés.

30 Le produit d'analyse arrivant aux cuvettes de sortie peut y être prélevé également au moyen de pipettes.

La figure 2 montre de façon plus précise et de façon séparée les deux substrats 100a et 100b qui forment le support d'analyse.

On observe que le support d'analyse comporte 5 une pluralité de cuvettes d'entrée 102 et une pluralité de cuvettes de sortie 104.

Les cuvettes ont la forme d'ouvertures traversantes pratiquées dans le premier substrat 100a. Ces ouvertures présentent une forme évasée en V, 10 formant un entonnoir.

Par ailleurs, dans l'exemple de la figure 2, chaque cuvette d'entrée 102 est individuellement reliée à une cuvette de sortie 104 par un canal 108.

Le support d'analyse comprend trois réservoirs 15 à réactif 120a, 120b, 120c.

Dans cet exemple, chaque réservoir est commun à plusieurs canaux 108 auxquels il est relié au moyen de raccords 122a, 122b. La référence 122a désigne plus précisément des perçages du premier substrat 110a 20 reliant un réservoir à des embranchements 122b correspondants, pratiqués dans le deuxième substrat 110b et connectés respectivement aux canaux. (Bien entendu, des réservoirs peuvent également être individualisés pour les différents canaux).

25 Les quantités de liquides (liquides à analyser, et réactifs) qui se mélangent au croisement des embranchements 122b et des canaux 108 dépendent de la taille respective de ces embranchements et des canaux 108.

30 La figure 3 montre un support d'analyse 100, conforme à celui de la figure 2, dont les substrats 100a et 100b sont définitivement collés.

Le support d'analyse est représenté au-dessus d'un support thermique 200 correspondant.

Le support thermique 200 présente une face d'échange thermique 212 tournée vers la deuxième face 5 112 du support d'analyse 100, au voisinage de laquelle se trouvent les canaux. La face d'échange thermique 212 du support thermique 200 et la deuxième face 112 du support d'analyse sont destinées à être mises en contact.

10 La face d'échange thermique 212 présente trois zones thermostatées 220a, 220b, 220c équipées chacune d'une ou de plusieurs sources thermiques (non représentées).

15 Les trois zones thermostatées 220a, 220b, 220c sont disposées de façon à coïncider avec des portions de canaux du support d'analyse situés au voisinage respectivement des réservoirs 120a, 120b, 120c, ou plus précisément des embranchements apportant les réactifs.

20 Le fluide dans le canal 122b peut traverser une seule fois chaque zone thermique ou plusieurs fois grâce à des motifs de canal adaptés comme représenté figure 5 décrite ultérieurement.

25 La figure 4 est une coupe schématique du support d'analyse reporté sur le support thermique permettant de représenter de façon plus détaillée les zones thermostatées.

30 Pour des raisons de clarté de la figure, le support d'analyse et le support thermique sont représentés avec un léger espace. Ces supports sont cependant en contact.

Comme indiqué ci-dessus, les zones thermostatées peuvent comporter plusieurs sources thermiques. Ceci est le cas de la zone thermostatée

220a. Celle-ci comporte une première source thermique
230 formée de résistances électriques, telles que par
exemple des microrésistances en platine. Elle comporte
également deux sources 232 et 234 sous la forme de
5 canaux traversés par des fluides caloporteurs.

Dans le cas d'une analyse de type PCR, les
résistances électriques de la première source 230
peuvent être portées à une température de 94°C, le
fluide caloporteur de la deuxième source thermique 232
10 à une température de 55°C et le fluide caloporteur de
la troisième source thermique 234 à une température de
72°C.

Ces températures correspondent respectivement à
des étapes de dénaturation, d'hybridation et
15 d'elongation d'ADN (cf. document (1))

Les sources thermiques peuvent être
miniaturisées de sorte que le support thermique
présente une résolution thermique submillimétrique
(inférieure au millimètre).

20 La figure 5 est une vue de dessus d'une partie
d'un premier substrat 100a d'un support d'analyse et
montre une variante de réalisation d'un canal 108.

Le canal 108 est replié selon un motif
géométrique répété.

25 Sur la figure, on a représenté également en
trait discontinu la position de sources thermiques
d'une zone thermostatée 200, d'un support thermique
pouvant être associé au support d'analyse. On observe
que, grâce au motif géométrique du canal, un liquide à
30 analyser peut, en parcourant différents tronçons du
motif, être mis en contact thermique de façon
séquentielle avec différentes sources thermiques de la
zone thermostatée.

Les figure 6 et 7 présentent deux variantes de réalisation du dispositif permettant d'améliorer l'uniformité de la température dans les canaux en isolant leur face supérieure, c'est-à-dire la face 5 opposée à ladite deuxième face 112 du support d'analyse. Une première solution représentée à la figure 6 consiste à réaliser dans la partie supérieure 100a du support d'hybridation une cavité 160 (débouchante ou non). Cette cavité coïncide avec au 10 moins une partie de canal 108. Une seconde solution, représentée à la figure 7, consiste à mettre en place entre les parties supérieure et inférieure 100a, 100b du support d'analyse une couche 100c de matériau faiblement conducteur de la chaleur. Il est possible 15 également d'utiliser un substrat supérieur équipé d'une couche 100c d'un matériau isolant thermique.

Les figures 8 à 11, décrites ci-après, donnent un exemple de procédé de réalisation d'un support d'analyse tel que décrit précédemment.

Dans une première plaque de substrat 100a, par 20 exemple en silicium, on pratique, comme le montre la figure 8, des ouvertures traversantes. Ces ouvertures constituent les cuvettes ou les réservoirs 102, 104, 120a, 120b, 120c. Les ouvertures gravées par voie 25 chimique sont réalisées avec des flancs inclinés par gravure chimique anisotrope par exemple (KOH) de façon à leur conférer une forme évasée. L'emplacement des ouvertures est défini par un masque de gravure (non représenté) en coïncidence avec le motif des rainures. 30 Le perçage de la couche 100c de matériau isolant thermique, par exemple SiO₂ dans le cas de la variante proposée figure 7, peut être effectué, par exemple, par gravure CHF₃ par voie sèche, la dimension de la

perforation étant définie par un masque de gravure ou en utilisant les parois du trou créé par voie chimique comme masque.

La figure 9 montre la gravure de rainures, 5 formant les canaux 108, dans un deuxième substrat 100b par exemple de silicium. La gravure est effectuée à travers un masque de gravure (non représenté) présentant un motif correspondant aux canaux souhaités. Il s'agit, par exemple, d'une gravure chimique (KOH). 10 La profondeur des rainures est par exemple de l'ordre de 100 μm pour un substrat 100b d'une épaisseur de 250 à 450 μm .

Il peut s'agir aussi d'une gravure sèche SG6 permettant de réaliser des rainures plus profondes que 15 larges par exemple 100 $\mu\text{m} \times 20\mu\text{m}$.

Une troisième étape représentée à la figure 10 comprend le scellement des premier et deuxième substrats 100a et 100b, de manière à mettre en communication les cuvettes ou réservoirs 102, 104, 20 120a, 120b, 120c, avec les canaux (rainures) 108 correspondants. Le scellement a lieu, par exemple, par collage direct (moléculaire) des deux substrats.

Lors de cette opération, les rainures 108 du deuxième substrat 100b sont recouvertes par le premier substrat 100a pour former les canaux. 25

Une dernière étape, représentée à la figure 11, comprend l'amincissemement du deuxième substrat 100b de façon à ne préserver entre le canal 108 et la surface extérieure 112 qu'une mince paroi 110.

Cette paroi 110 présente une épaisseur de 30 l'ordre de 10 μm de façon à favoriser les échanges thermiques.

L'amincissement est réalisé par gravure et/ou par polissage mécanochimique.

Une pluralité de supports d'analyse conformes à l'invention peuvent être fabriqués simultanément et 5 collectivement selon le procédé ci-dessus dans deux tranches de silicium (correspondant aux premier et deuxième substrats).

Dans ce cas, le procédé est complété par un découpage des tranches à la scie pour individualiser 10 les supports d'analyse.

La figure 12 montre une réalisation particulière du support thermique 200 d'un dispositif d'analyse conforme à l'invention.

Le support thermique 200 comprend pour 15 l'essentiel un socle 202 sur lequel sont disposés un ou plusieurs barreaux thermostatés. Dans l'exemple de la figure, le support thermique comprend trois barreaux thermostatés 320a, 320b, 320c qui forment respectivement trois zones thermostatées.

Tout ou partie des barreaux peuvent être noyés 20 dans un matériau isolant thermique. Dans l'exemple de la figure deux barreaux 320b et 320c sont entourés par un matériau isolant thermique solide, tandis que le premier barreau 320a est laissé en contact libre avec 25 l'air ambiant sur ses faces latérales.

Chaque barreau est équipé de moyens de chauffage et/ou de refroidissement.

Le premier barreau 320a est équipé d'un canal 322a qui le parcourt et qui permet de le thermostatier 30 par circulation d'un fluide caloporteur.

Les autres barreaux 320b et 320c sont également équipés de tels canaux 322b et 322c. Les canaux sont respectivement reliés à des bains thermostatés avec des

systèmes de pompage (non représentés) pour faire circuler le fluide caloporteur.

La liaison entre les bains et les barreaux peut avoir lieu au moyen de connexion hydrauliques non 5 représentées.

Les canaux peuvent être du type circulaire, comme le montrent les figures, mais peuvent également être pourvus de systèmes d'ailettes pour optimiser les échanges thermiques.

10 Des éléments chauffants complémentaires peuvent être intégrés dans les barreaux. A titre d'illustration, le troisième barreau 320c est équipé d'une résistance électrique 330. La résistance électrique est utilisée ici comme "source chaude" 15 tandis que le fluide caloporteur est utilisé comme "source froide".

Le deuxième barreau 320b comporte un élément 340 de mesure de la température, tel qu'une résistance, utilisé pour asservir, par exemple, la température du 20 bain thermostaté associé.

La référence 100 désigne de façon générale un support d'analyse amovible disposé sur le support thermique de façon à être en contact avec les barreaux thermostatés. La description détaillée d'un tel support 25 n'est pas répétée ici. On peut se reporter à ce sujet aux explications données en référence aux figures précédentes. Le support d'analyse 100 peut être simplement posé sur le support thermique 200. Il peut également être pressé contre le support thermique au moyen d'une bride ou d'un système d'aspiration non 30 représentés.

Comme les moyens destinés au contrôle de température, c'est-à-dire en particulier les bains

thermostatés et les barreaux thermostatés, sont solidaires du support thermique ou en connexion fluidique avec le support thermique, et comme le support d'analyse est amovible, il est possible de 5 réaliser ce dernier de façon simple et peu coûteuse.

DOCUMENTS CITES

10 (1)

Martin U. Kopp, et al.,
"Chemical Amplification : continuous-Flow PCR on a
chip",
Science, vol. 280, 15 May 1998, pages 1046-1048

15

(2)

"Chip advance but cost constraints remain"
20 dans Nature Biotechnology, vol. 16, juin 1998, page
509.

REVENDICATIONS

1. Dispositif d'analyse chimique et/ou biologique comprenant :

- un support d'analyse (100) avec au moins une cuvette d'entrée (102) pour recueillir un échantillon, au moins une cuvette de sortie (104) pour délivrer ledit échantillon, au moins un canal interne (108) traversant le support pour relier la cuvette d'entrée et la cuvette de sortie, et au moins un réservoir à réactif (120a, 120b, 120c) relié à chaque canal (108) entre la cuvette d'entrée et la cuvette de sortie, dans lequel la cuvette d'entrée, la cuvette de sortie et le réservoir débouchent sur une première face (106) du support d'analyse, dans lequel le canal interne (100) s'étend à proximité d'au moins une deuxième face (112) du support d'analyse de façon à être séparé de ladite deuxième face par une paroi mince (110), et
- un support thermique (200) indépendant du support d'analyse (100), le support thermique présentant une face d'échange thermique (212) avec au moins une zone thermostatée (220a, 220b, 220c) équipé d'au moins une source thermique ;
le support d'analyse (100) pouvant être rapporté de façon amovible sur le support thermique (200) afin de mettre en contact la face d'échange thermique (212) du support thermique avec la deuxième face (112) du support d'analyse (100).

2. Dispositif selon la revendication 1, caractérisé en ce qu'une barrière thermique est disposée sur un côté des canaux opposé à une deuxième face du support.

3. Dispositif selon la revendication 2, dans lequel la barrière thermique comporte une couche (100c) d'isolation thermique au-dessus des canaux.

4. Dispositif selon la revendication 2, dans
5 lequel la barrière thermique comporte une cavité d'isolation thermique (160) au-dessus des canaux.

5. Dispositif selon la revendication 1, dans lequel la paroi mince (110) présente une épaisseur inférieure à 100 µm.

10 6. Dispositif d'analyse selon la revendication 1, dans lequel la zone thermostatée coïncide avec au moins une zone du support d'analyse (100) située au voisinage d'un raccord (122b), entre un réservoir à réactif et un canal, lorsque le support d'analyse est reporté sur le support thermique.
15

7. Dispositif selon la revendication 1, dans lequel le support thermique comprend des moyens de refroidissement et/ou des moyens de chauffage.

8. Dispositif selon la revendication 7, dans
20 lequel les moyens de chauffage comportent au moins une résistance électrique (230).

9. Dispositif selon la revendication 7, dans lequel les moyens de refroidissement et/ou les moyens de chauffage comportent au moins un canal à fluide caloporeur.
25

10. Dispositif selon la revendication 1, comprenant une pluralité de cuvettes d'entrée (102) et une pluralité correspondante de cuvettes de sortie (104), chaque cuvette d'entrée étant respectivement reliée à une cuvette de sortie associée au moyen d'un canal (108).
30

11. Dispositif selon la revendication 11, comportant une pluralité de réservoirs à réactif (120a,

120b, 120c), chaque réservoir étant relié à chacun des canaux (108).

12. Dispositif selon la revendication 11, avec des moyens externes (150a, 150b, 150c) de remplissage des réservoirs, comportant au moins un pousse-seringue (154a, 154b, 154c) avec ou sans mélangeur de réactifs, connecté de façon étanche à au moins un réservoir.

13. Dispositif selon la revendication 12, dans lequel les moyens de remplissage comportent des capuchons d'alimentation (152a, 152b, 152c) recouvrant de façon étanche les réservoirs, et équipés chacun d'au moins une conduite reliée respectivement à au moins un pousse-seringue.

14. Dispositif selon la revendication 1, dans lequel le support d'analyse (100) comprend un premier substrat (100a) présentant des ouvertures traversantes qui forment respectivement les cuvettes et réservoirs, et un deuxième substrat (100b), collé au premier substrat, le deuxième substrat présentant des rainures (108), recouvertes par le premier substrat pour former des canaux, et coïncidant avec les ouvertures traversantes.

15. Procédé de fabrication d'un support d'analyse selon la revendication 1, comprenant les étapes suivantes :

- formation dans un premier substrat (100a), des ouvertures traversantes, lesdites ouvertures correspondant respectivement à des cuvettes d'entrée ou de sortie, ou à des réservoirs de réactif,
- 30 - formation dans un deuxième substrat (100b) de rainures selon un motif permettant de relier entre elles au moins deux ouvertures du premier substrat,

- collage du premier substrat sur le deuxième substrat de façon à recouvrir les rainures,
- amincissement du deuxième substrat, après le collage, en préservant une épaisseur de substrat supérieure à 5 une profondeur maximale des rainures.

16. Procédé de mise en oeuvre d'un dispositif d'analyse selon la revendication 1, selon lequel on met en contact le support d'analyse avec le support thermique pendant une phase d'analyse de durée 10 déterminée, au moins un échantillon à analyser et au moins un réactif étant introduits dans le support d'analyse préalablement à la phase d'analyse ou pendant la phase d'analyse, puis, après la phase d'analyse, on retire le support d'analyse du support thermique.

1 / 5

FIG. 1A

FIG. 1B

FIG. 2

215

FIG. 3

FIG. 4

3 / 5

FIG. 5

FIG. 6

FIG. 7

4 / 5

FIG. 8

FIG. 9

FIG. 10

FIG. 11

5 / 5

FIG. 12

INTERNATIONAL SEARCH REPORT

International Application No

PCT/FR 99/02499

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 B01L7/00 B01L3/00 C12Q1/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 B01L B01J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 97 04297 A (UNIV NORTHEASTERN) 6 February 1997 (1997-02-06) page 1, line 10 -page 2, line 24 page 3, line 21 - line 32 page 10, line 19 -page 11, line 3; figure 1 page 13, line 17 - line 20; figure 2D ---	1-3,6-8
Y	US 5 716 825 A (HANCOCK WILLIAM S ET AL) 10 February 1998 (1998-02-10) column 4, line 44 - line 47 column 5, line 18 - line 41 column 10, line 26 - line 33 column 8, line 8 - line 18 column 11, line 55 -column 12, line 5; figures 3A,3B ---	1-3,6-8
Y	---	1-3,6-8
	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

13 December 1999

20/12/1999

Name and mailing address of the ISA
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

Authorized officer

Hocquet, A

INTERNATIONAL SEARCH REPORT

Internat'l Application No

PCT/FR 99/02499

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 195 19 015 C (INST PHYSIKALISCHE HOCHTECHNOL ; BIOMETRA BIOMEDIZINISCHE ANALY (DE) 5 September 1996 (1996-09-05) column 2, line 41 - line 58 column 3, line 19 - line 32; figure 1 column 4, line 9 - line 43; figure 3 ----	2-4
A	US 5 589 136 A (NORTHRUP M ALLEN ET AL) 31 December 1996 (1996-12-31) column 7, line 59 -column 8, line 12; figures 6-8 ----	15
A	DE 39 26 466 A (MESSERSCHMITT BOELKOW BLOHM) 14 February 1991 (1991-02-14) column 1, line 41 - line 58 ----	9
A	WO 98 32535 A (VIOVY JEAN LOUIS ; LINDBERG PETER (SE); ROERAADE JOHAN (SE); STJERN) 30 July 1998 (1998-07-30) page 3, line 6 - line 22 ----	15
A	WO 97 02357 A (AFFYMETRIX INC ; ANDERSON ROLFE C (US); LIPSHUTZ ROBERT J (US); RAV) 23 January 1997 (1997-01-23) page 40, line 3 -page 42, line 35 page 72, line 10 -page 73, line 2 page 45, line 33 - line 35; figure 5 ----	1-16
A	WO 96 15269 A (UNIV PENNSYLVANIA) 23 May 1996 (1996-05-23) page 17, line 23 - line 26 page 25, line 6 - line 32; figure 1C page 26, line 6 - line 18; figures 1C, 3A, 6A, 6B page 34, line 6 -page 36, line 14; figures 3A, 6B page 37, line 29 -page 38, line 37; figures 19-22 page 49, line 18 -page 50, line 17 ----	1-16
A	WO 94 21372 A (DU PONT) 29 September 1994 (1994-09-29) page 22, line 21 - line 35; figure 9 ----	10, 11
A	KOPP ET AL.: "chemical amplification:continuous flow PCR on a chip" SCIENCE, vol. 280, 15 May 1998 (1998-05-15), pages 1046-1048, XP002107956 us cited in the application -----	14
		4
		12
		1-16

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/FR 99/02499

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
WO 9704297	A	06-02-1997	CA 2227331 A EP 0840886 A US 5872010 A	06-02-1997 13-05-1998 16-02-1999
US 5716825	A	10-02-1998	DE 19643921 A GB 2306643 A, B	07-05-1997 07-05-1997
DE 19519015	C	05-09-1996	WO 9637303 A EP 0772494 A US 5939312 A	28-11-1996 14-05-1997 17-08-1999
US 5589136	A	31-12-1996	CA 2225390 A EP 0871545 A JP 11509136 T WO 9700726 A	09-01-1997 21-10-1998 17-08-1999 09-01-1997
DE 3926466	A	14-02-1991	NONE	
WO 9832535	A	30-07-1998	AU 5788398 A	18-08-1998
WO 9702357	A	23-01-1997	US 5856174 A AU 6404996 A EP 0843734 A JP 11509094 T US 5922591 A	05-01-1999 05-02-1997 27-05-1998 17-08-1999 13-07-1999
WO 9615269	A	23-05-1996	US 5587128 A US 5744366 A US 5726026 A AU 704277 B AU 4236996 A AU 698213 B AU 4282896 A AU 4282996 A CA 2181189 A CA 2181190 A CN 1157639 A EP 0739240 A EP 0739423 A JP 9511407 T JP 9509498 T WO 9614933 A WO 9614934 A CN 1143917 A US 5928880 A	24-12-1996 28-04-1998 10-03-1998 15-04-1999 06-06-1996 29-10-1998 06-06-1996 06-06-1996 23-05-1996 23-05-1996 20-08-1997 30-10-1996 30-10-1996 18-11-1997 22-09-1997 23-05-1996 23-05-1996 26-02-1997 27-07-1999
WO 9421372	A	29-09-1994	US 5534328 A AU 6409794 A BR 9405989 A DE 69413012 D DE 69413012 T EP 0688242 A JP 8508197 T US 5690763 A	09-07-1996 11-10-1994 26-12-1995 08-10-1998 25-03-1999 27-12-1995 03-09-1996 25-11-1997

RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale No
PCT/FR 99/02499

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 7 B01L7/00 B01L3/00 C12Q1/68

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 7 B01L B01J

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

C. DOCUMENTS CONSIDERÉS COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
Y	WO 97 04297 A (UNIV NORTHEASTERN) 6 février 1997 (1997-02-06) page 1, ligne 10 -page 2, ligne 24 page 3, ligne 21 - ligne 32 page 10, ligne 19 -page 11, ligne 3; figure 1 page 13, ligne 17 - ligne 20; figure 20 ---	1-3,6-8
Y	US 5 716 825 A (HANCOCK WILLIAM S ET AL) 10 février 1998 (1998-02-10) colonne 4, ligne 44 - ligne 47 colonne 5, ligne 18 - ligne 41 colonne 10, ligne 26 - ligne 33 colonne 8, ligne 8 - ligne 18 colonne 11, ligne 55 -colonne 12, ligne 5; figures 3A,3B ---	1-3,6-8
Y	---	1-3,6-8
	-/-	

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- "A" document déliniant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

"T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

"X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

"Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

"&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

Date d'expédition du présent rapport de recherche internationale

13 décembre 1999

20/12/1999

Nom et adresse postale de l'administration chargée de la recherche internationale
Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Hocquet, A

RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale No

PCT/FR 99/02499

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	DE 195 19 015 C (INST PHYSIKALISCHE HOCHTECHNOL ; BIOMETRA BIOMEDIZINISCHE ANALY (DE) 5 septembre 1996 (1996-09-05) colonne 2, ligne 41 - ligne 58 colonne 3, ligne 19 - ligne 32; figure 1 colonne 4, ligne 9 - ligne 43; figure 3 ---	2-4
A	US 5 589 136 A (NORTHROP M ALLEN ET AL) 31 décembre 1996 (1996-12-31) colonne 7, ligne 59 - colonne 8, ligne 12; figures 6-8 ---	15
A	DE 39 26 466 A (MESSERSCHMITT BOELKOW BLOHM) 14 février 1991 (1991-02-14) colonne 1, ligne 41 - ligne 58 ---	9
A	WO 98 32535 A (VIOVY JEAN LOUIS ; LINDBERG PETER (SE); ROERAADE JOHAN (SE); STJERN) 30 juillet 1998 (1998-07-30) page 3, ligne 6 - ligne 22 ---	15
A	WO 97 02357 A (AFFYMETRIX INC ; ANDERSON ROLFE C (US); LIPSHUTZ ROBERT J (US); RAV) 23 janvier 1997 (1997-01-23) page 40, ligne 3 - page 42, ligne 35 page 72, ligne 10 - page 73, ligne 2 page 45, ligne 33 - ligne 35; figure 5 ---	1-16
A	WO 96 15269 A (UNIV PENNSYLVANIA) 23 mai 1996 (1996-05-23)	1-16
A	page 17, ligne 23 - ligne 26	10,11
A	page 25, ligne 6 - ligne 32; figure 1C	14
A	page 26, ligne 6 - ligne 18; figures 1C, 3A, 6B	
	page 34, ligne 6 - page 36, ligne 14; figures 3A, 6B	
A	page 37, ligne 29 - page 38, ligne 37; figures 19-22	12
	page 49, ligne 18 - page 50, ligne 17 ---	
A	WO 94 21372 A (DU PONT) 29 septembre 1994 (1994-09-29) page 22, ligne 21 - ligne 35; figure 9 ---	4
A	KOPP ET AL.: "chemical amplification:continuous flow PCR on a chip" SCIENCE, vol. 280, 15 mai 1998 (1998-05-15), pages 1046-1048, XP002107956 us cité dans la demande -----	1-16

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Demande internationale No

PCT/FR 99/02499

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
WO 9704297 A	06-02-1997	CA 2227331 A EP 0840886 A US 5872010 A	06-02-1997 13-05-1998 16-02-1999
US 5716825 A	10-02-1998	DE 19643921 A GB 2306643 A, B	07-05-1997 07-05-1997
DE 19519015 C	05-09-1996	WO 9637303 A EP 0772494 A US 5939312 A	28-11-1996 14-05-1997 17-08-1999
US 5589136 A	31-12-1996	CA 2225390 A EP 0871545 A JP 11509136 T WO 9700726 A	09-01-1997 21-10-1998 17-08-1999 09-01-1997
DE 3926466 A	14-02-1991	AUCUN	
WO 9832535 A	30-07-1998	AU 5788398 A	18-08-1998
WO 9702357 A	23-01-1997	US 5856174 A AU 6404996 A EP 0843734 A JP 11509094 T US 5922591 A	05-01-1999 05-02-1997 27-05-1998 17-08-1999 13-07-1999
WO 9615269 A	23-05-1996	US 5587128 A US 5744366 A US 5726026 A AU 704277 B AU 4236996 A AU 698213 B AU 4282896 A AU 4282996 A CA 2181189 A CA 2181190 A CN 1157639 A EP 0739240 A EP 0739423 A JP 9511407 T JP 9509498 T WO 9614933 A WO 9614934 A CN 1143917 A US 5928880 A	24-12-1996 28-04-1998 10-03-1998 15-04-1999 06-06-1996 29-10-1998 06-06-1996 06-06-1996 23-05-1996 23-05-1996 20-08-1997 30-10-1996 30-10-1996 18-11-1997 22-09-1997 23-05-1996 23-05-1996 26-02-1997 27-07-1999
WO 9421372 A	29-09-1994	US 5534328 A AU 6409794 A BR 9405989 A DE 69413012 D DE 69413012 T EP 0688242 A JP 8508197 T US 5690763 A	09-07-1996 11-10-1994 26-12-1995 08-10-1998 25-03-1999 27-12-1995 03-09-1996 25-11-1997