Homework No.1

Meiyu Zhang July 2022

1 Question One

A. Converting the following numbers to their decimal representation. Show your work.

1.
$$10011011_2 = 1 \times 2^7 + 0 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 128 + 16 + 8 + 2 + 1 = 155_{10}$$

2.
$$456_7 = 4 \times 7^2 + 5 \times 7 + 6 \times 7^0 = 4 \times 49 + 5 \times 7 + 6 \times 1 = 196 + 35 + 6 = 237_{10}$$

3.
$$38A_{16} = 3 \times 16^2 + 8 \times 16 + 10 \times 16^0 = 768 + 128 + 10 = 906_{10}$$

4.
$$2214_5 = 2 \times 5^3 + 2 \times 5^2 + 1 \times 5 + 4 \times 5^0 = 250 + 50 + 5 + 4 = 309_{10}$$

B. Converting the following numbers to their binary representation.

1. $69_{10} = 1000101_2$

$$69 \div 2 = 34 R 1$$

$$34 \div 2 = 17 \ R \ 0$$

$$17 \div 2 = 8 \ R \ 1$$

$$8 \div 2 = 4 R 0$$

$$4 \div 2 = 2 R 0$$

$$2 \div 2 = 1 \ R \ 0$$

$$1 \div 2 = 0 R 1$$

$$69_{10} = 1000101_2$$

2.
$$485_{10} = 111100101_2$$

$$485 \div 2 = 242 \ R \ 1$$

$$242 \div 2 = 121 \ R \ 0$$

$$121 \div 2 = 60 \ R \ 1$$

$$60 \div 2 = 30 \ R \ 0$$

$$30 \div 2 = 15 \ R \ 0$$

 $15 \div 2 = 7 \ R \ 1$

$$7 \div 2 = 3 R 1$$

$$3 \div 2 = 1 R 1$$

$$1 \div 2 = 0 \ R \ 1$$

$$485_{10} = 111100101_2$$

3.
$$6D1A_{16} = 110110100011010_2$$

 $6_{16} = 110_2$
 $D_{16} = 1101_2$
 $1_{16} = 1_2 = 0001_2$
 $A_{16} = 1010_2$
 $6D1A_{16} = 110110100011010_2$

- C. Converting the following numbers to their hexadecimal representation:
 - 1. $1101011_2 = 6B_{16}$ $110_2 = 6_{16}$ $1011_2 = B_{16}$ $1101011_2 = 6B_{16}$
 - 2. 895_{10} $895 \div 16 = 55 \ R \ 15(F)$ $55 \div 16 = 3 \ R \ 7$ $3 \div 16 = 0 \ R \ 3$ $895_{10} = 37F_{16}$

2 Question Two

Solve the following, do all calculation in the given base. Show your work.

1.
$$7566_8 + 4515_8 =$$
 $6 \times 8^0 + 5 \times 8^0 = 1 \times 8^1 + 3 \times 8^0$
 $6 \times 8^1 + 1 \times 8^1 + 1 \times 8^1 = 1 \times 8^2$
 $5 \times 8^2 + 5 \times 8^2 + 1 \times 8^2 = 1 \times 8^3 + 3 \times 8^2$
 $7 \times 8^3 + 4 \times 8^3 + 1 \times 8^3 = 1 \times 8^4 + 4 \times 8^3$
 $7566_8 + 4515_8 = 1 \times 8^4 + 4 \times 8^3 + 3 \times 8^2 + 3 \times 8^0 = 14303_8$

2.
$$10110011_2 + 1101_2 = \frac{2^8 \begin{vmatrix} 2^7 \end{vmatrix} 2^6 \begin{vmatrix} 2^5 \end{vmatrix} 2^4 \begin{vmatrix} 2^3 \end{vmatrix} 2^2 \begin{vmatrix} 2^1 \end{vmatrix} 2^0}{1 \begin{vmatrix} 0 \end{vmatrix} 1 \begin{vmatrix} 0 \end{vmatrix} 1 \begin{vmatrix} 1 \end{vmatrix} 1 \begin{vmatrix} 0 \end{vmatrix} 1 \end{vmatrix} 1 \begin{vmatrix} 0 \end{vmatrix}$$

3 Question Three

A.Convert the following numbers to their 8-bits two's complement representation. Show your work.

- 1. $124_{10} =$ $124 \div 2 = 62 R 0$ $62 \div 2 = 31 R 0$ $31 \div 2 = 15 R 1$ $15 \div 2 = 7 R 1$ $7 \div 2 = 3 R 1$ $3 \div 2 = 1 R 1$ $1 \div 2 = 0 R 1$ $124_{10} = 1111100_2 = 01111100_8 \ bit \ 2's \ comp$
- 2. -124_{10}

from (1) we know:

3. 109₁₀

$$109 \div 2 = 54 R 1$$

$$54 \div 2 = 27 R 0$$

$$27 \div 2 = 13 R 1$$

$$13 \div 2 = 6 R 1$$

$$6 \div 2 = 3 R 0$$

$$3 \div 2 = 1 R 1$$

$$1 \div 2 = 0 R 1$$

$$109_{10} = 1101101_2 = 01101101_{8 \ bit \ 2's \ comp}$$

4. -79_{10}

First find out the binary number of 79_{10} :

$$79 \div 2 = 39 R 1$$

$$39 \div 2 = 19 R 1$$

$$19 \div 2 = 9 R 1$$

$$9 \div 2 = 4 R 1$$

$$4 \div 2 = 2 R 0$$

$$2 \div 2 = 1 R 0$$

$$1 \div 2 = 0 R 1$$

$$79_{10} = 1001111_2$$

$$79_{10} = 01001111_{8\ bit\ 2's\ comp}$$

Then find -79_{10} to their 8-bits two's complement representation:

$$-79_{10} = 10110001_{8 \ bit \ 2's \ comp}$$

B. Convert the following numbers (represented as 8-bit two's complement) to their decimal representation. Show your work.

1. $000111110_{8 \ bit \ 2's \ comp} =$

Form the first number, we know that it is a positive integer.

$$1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 = 30_{10}$$

00011110_{8 bit 2's comp} = 30_{10}

2. $11100110_{8 \ bit \ 2's \ comp} =$

Form the first number, we know that it is a negative integer.

$$1 \times 2^4 + 1 \times 2^3 + 1 \times 2^1 = 26_{10}$$

 $11100110_{8 \ bit \ 2's \ comp} = -26_{10}$

3. $00101101_{8 \ bit \ 2's \ comp} =$

Form the first number, we know that it is a positive integer.

$$1 \times 2^5 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0 = 45_{10}$$

$$00101101_{8\ bit\ 2's\ comp} = 45_{10}$$

4. $100111110_{8\ bit\ 2's\ comp} =$

Form the first number, we know that it is a negative integer.

1	0	0	0	0	0	0	0	0	
-	1	0	0	1	1	1	1	0	
	0	1	1	0	0	0	1	0	

$$\begin{aligned} 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^1 &= 98_{10} \\ 100111110_{8 \ bit \ 2's \ comp} &= -98_{10} \end{aligned}$$

4 Question Four

- 1. Exercise 1.2.4, sections b, c
 - (a) section b: write a truth table for $\neg(p \lor q)$

p	q	$(p \lor q)$	$\neg (p \lor q)$
\mathbf{T}	\mathbf{T}	${f T}$	\mathbf{F}
\mathbf{T}	F	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}
F	F	F	\mathbf{T}

(b) section c: write a truth table for $r \lor (p \land \neg q)$

p	q	r	$\neg q$	$p \land \neg q$	$r \vee (p \wedge \neg q)$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	${f T}$
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	F	\mathbf{T}	\mathbf{T}	T	T
T	F	F	\mathbf{T}	T	T
F	\mathbf{T}	\mathbf{T}	F	F	T
F	\mathbf{T}	F	F	F	F
F	F	\mathbf{T}	\mathbf{T}	F	T
F	F	F	\mathbf{T}	F	F

- 2. Exercise 1.3.4, sections b,d
 - (a) section b

p	q	$p \rightarrow q$	$q \rightarrow p$	$(p \to q) \to (q \to p)$
\mathbf{T}	\mathbf{T}	${f T}$	${f T}$	${f T}$
\mathbf{T}	F	\mathbf{F}	\mathbf{T}	T
F	\mathbf{T}	T	F	F
F	F	T	T	T

(b) section d

\mathbf{p}	\mathbf{q}	$\neg p$	$p \leftrightarrow q$	$p \leftrightarrow \neg q$	$(p \leftrightarrow q) \oplus (p \leftrightarrow \neg q)$
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	${f T}$
\mathbf{T}	F	\mathbf{T}	F	T	T
F	\mathbf{T}	\mathbf{F}	F	T	T
F	F	\mathbf{T}	\mathbf{T}	F	T

5 Question Five

- 1. Exercise 1.2.7, section b,c
 - (a) section b $(B \wedge D) \vee (B \wedge M) \vee (D \wedge M) \vee (B \wedge D \wedge M)$
 - (b) section c $B \vee (D \wedge M)$
- 2. Exercise 1.3.7, sections b-e
 - **b.** $(s \lor y) \to p$
 - c. $p \rightarrow y$
 - **d.** $p \leftrightarrow (s \land y)$
 - **e.** $p \rightarrow (s \lor y)$
- 3. Exercise 1.3.9, sections c,d
 - $c. c \rightarrow p$
 - **d.** $c \rightarrow p$

6 Question Six

- 1. Exercise 1.3.6, sections b-d
 - b. If Joe is eligible for the honors program, then he maintained a B average.
 - c. If Rajiv can go on the roller coaster, then he is at least four feet tall.
 - d. If Rajiv is at least four feet tall, then he can go on the roller coaster.
- 2. Exercise 1.3.10, sections c-f

```
c. p \lor r = \text{True} q \land r = \text{unknown} (p \lor r) \leftrightarrow (q \land r) = \text{unknown} d. p \land r = \text{unknown} q \land r = \text{unknown} (p \land r) \leftrightarrow (q \land r) = \text{unknown} e. \mathbf{p} = \text{True} r \lor q = \text{unknown} p \rightarrow (r \lor q) = \text{unknown} f. p \land q = \text{False}
```

 $(p \wedge q) \rightarrow r =$ True

7 Question Seven

Solve Exercise 1.4.5, sections b-d

b.

1. Logical Expressions:

$$\neg j \to (l \lor \neg r)$$
$$(r \land \neg l) \to j$$

2. Truth table for $\neg j \rightarrow (l \lor \neg r)$

ſ	1	r	j	$\neg j$	$\neg r$	$l \vee \neg r$	$\neg j \to (l \vee \neg r)$
ſ	\mathbf{T}	\mathbf{T}	\mathbf{T}	F	\mathbf{F}	${f T}$	${f T}$
	\mathbf{T}	\mathbf{T}	F	\mathbf{T}	\mathbf{F}	${f T}$	${f T}$
ſ	\mathbf{T}	F	Т	F	\mathbf{T}	\mathbf{T}	${f T}$
	\mathbf{T}	F	F	\mathbf{T}	\mathbf{T}	\mathbf{T}	${f T}$
Ī	F	\mathbf{T}	\mathbf{T}	F	F	\mathbf{T}	${f T}$
	F	\mathbf{T}	F	\mathbf{T}	F	\mathbf{F}	F
ſ	F	F	Т	F	\mathbf{T}	\mathbf{T}	${f T}$
	F	F	F	\mathbf{T}	\mathbf{T}	T	T

	\mathbf{T}	\mathbf{T}	F	F	F	${f T}$
	\mathbf{T}	F	\mathbf{T}	\mathbf{F}	\mathbf{F}	${f T}$
Truth Table for $(r \land \neg l) \to j$	\mathbf{T}	F	F	\mathbf{F}	\mathbf{F}	${f T}$
	F	\mathbf{T}	\mathbf{T}	\mathbf{T}	T	T
	F	\mathbf{T}	F	\mathbf{T}	T	F
	173	173	m	m	173	TD.

 \mathbf{F}

 \mathbf{F}

 \mathbf{T}

 \mathbf{F}

4. According to the tables, these two expressions are logically equivalent.

 \mathbf{F}

c.

3.

1. Logical Expressions:

$$\begin{aligned} j &\to \neg l \\ \neg j &\to l \end{aligned}$$

2. Truth table for
$$j \rightarrow \neg l$$

	j	1	$\neg l$	$j \to \neg l$
	\mathbf{T}	\mathbf{T}	F	\mathbf{F}
l	\mathbf{T}	F	\mathbf{T}	\mathbf{T}
	F	\mathbf{T}	F	T
	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}

3. Truth table for $\neg j \rightarrow$

	J	1	IJ	$J \rightarrow \iota$
	\mathbf{T}	${f T}$	\mathbf{F}	${f T}$
l	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
	F	\mathbf{T}	\mathbf{T}	T
	F	F	\mathbf{T}	F

4. According to the tables, these two expressions are not logically equivalent.

d. Logical Expressions:

$$(r \vee \neg l) \to j$$

$$j \to (r \land \neg l)$$

These two are not logically equivalent.

When r = T, l = T, j = F, the first expression = False But, the second expression = True.

Therefore, these two are not logically equivalent.

8 Question Eight

- 1. Exercise 1.5.2, sections c,f,i
 - c. Use the laws of propositional logic to prove

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to q) \land (p \to r)$$

$$\equiv (\neg p \lor q) \land (\neg p \land r)$$

$$\equiv \neg p \lor (q \land r)$$

$$\equiv p \to (q \land r)$$

Therefore
$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

• f. Use the laws of propositional logic to prove

$$\neg(p \lor (\neg p \land q)) \equiv \neg p \land \neg q$$

$$\neg(p \lor (\neg p \land q))$$

$$\equiv \neg p \wedge \neg (\neg p \wedge q)$$

$$\equiv \neg p \land (\neg \neg p \lor \neg q)$$

$$\equiv \neg p \land (p \lor \neg q)$$

$$\equiv (\neg p \land p) \lor (\neg p \land \neg q)$$

$$\equiv F \vee (\neg p \wedge \neg q)$$

$$\equiv \neg p \wedge \neg q$$

• i. Use the laws of propositional logic to prove

$$(p \land q) \to r \equiv (p \land \neg r) \to \neg q$$

$$(p \wedge q) \to r$$

$$\equiv \neg(p \land q) \lor r$$

$$\equiv (\neg p \vee \neg q) \vee r$$

$$\equiv \neg p \lor r \lor \neg q$$

$$\equiv \neg(p \vee \neg r) \vee \neg q$$

$$\equiv (p \land \neg r) \rightarrow \neg q$$

2. Exercise 1.5.3, sections c, d

- c. $\neg r \lor (\neg r \to p)$ $\equiv \neg r \lor (\neg \neg r \lor p)$ $\equiv \neg r \vee (r \vee p)$
 - $\equiv (\neg r \vee r) \vee p$
 - $\equiv T \vee p$
 - $\equiv T$

Therefore, $\neg r \lor (\neg r \to p)$ is a tautology.

- d. Use the laws of propositional logic to prove that $\neg(p \rightarrow$ $q) \rightarrow \neg q$ is a tautology.

- $\neg(p \to q) \to \neg q$
- $\equiv \neg(\neg p \lor q) \to \neg q$
- $\equiv (\neg \neg (\neg p \lor q)) \lor \neg q$
- $\equiv (\neg p \lor q) \lor \neg q$
- $\equiv \neg p \lor (q \lor \neg q)$
- $\equiv \neg p \vee T$
- $\equiv T$

Therefore, $\neg(p \to q) \to \neg q$ is a tautology.

9 Question Nine

- 1. Exercise 1.6.3, sections c,d
 - **c.** $\exists x \in R(x = x^2)$
 - **d.** $\forall x \in R(x \le (x^2 + 1))$
- 2. Exercise 1.7.4, sections b-d
 - **b.** $\forall x(\neg S(x) \land W(x))$
 - c. $\forall x(S(x) \rightarrow \neg W(x))$
 - d. $\exists x (S(x) \land W(x))$

10 Question Ten

- 1. Exercise 1.7.9, sections c-i
 - c. True When $\mathbf{x}=\mathbf{a},\ \mathbf{P(x)}=\mathbf{True}.\ \exists x((x=c)\to P(x))$ Therefore, the whole expression evaluates to True.
 - d. True $\begin{aligned} &\text{When } x=e,\, Q(x)=R(x)=\text{True.} \\ &Q(x)\wedge R(x)=\text{True.} \end{aligned}$ Therefore, the whole expression evaluates to true.
 - e. True according to the table, $Q(a) \wedge P(d) = True$.
 - f. True When $x \neq b$, all Q(x) = True.
 - g False When x = c, P(x) = R(x) = False. P(x)eeR(x) = False.
 - h. True $\mbox{No matter what value is } \mathbf{x}, \, R(x) \to P(x) = \mbox{True.}$ Therefore, the whole expression evaluates to true.
 - i. True $\label{eq:continuous} \mbox{When } x=e, \, Q(x)=R(x)=\mbox{True. } Q(x) \, \vee \, R(x)=\mbox{True.}$
- 2. Exercise 1.9.2, sections b-i
 - b. True $\label{eq:when x = 2, Q(x,y) always equal to True.}$ When x = 2, Q(x,y) always equal to True.
 - c. True

 When y = 1, P(x,y) always equal to True.
 - d. False For all x and y, S(x,y) = False.
 - e. False $\label{eq:when x = 1, Q(x,y) always equal to False} When x = 1, Q(x,y) always equal to False.$

• f. True

When
$$x = 1$$
, $P(1,1) = True$; When $x = 2$, $P(2,3) = True$; when $x = 3$, $P(3,1) = True$.

• g. False

When
$$x = y = 2$$
, $P(x,y) = False$.

• h. True

When
$$x = y = 2$$
, $Q(x,y) = True$.

• i. True

For all x and y,
$$S(x,y) = False$$
. $\neg S(x,y) = True$.

11 Question Eleven

1. Exercise 1.10.4, sections c-g

- **c.** $\exists x \exists y ((x \neq y) \land (x + y = x \times y))$
- d. $\forall x \forall y ((x>0,y>0) \rightarrow (\frac{x}{y}>0))$
- **e.** $\forall x((x>0) \land (x<1) \to \frac{1}{x} > 1)$
- **f.** $\neg \exists x \forall y (x < y)$
- g. $\forall x \exists y ((x \neq 0) \land x \times y = 1)$

2. Exercise 1.10.7, sections c-f

- c. $\exists x (N(x) \land D(x))$
- **d.** $\forall x(D(x) \rightarrow P(Sam, x))$
- e. $\exists x \forall y (N(x) \land P(x,y))$
- **f.** $\exists x (N(x) \land D(x)) \land \forall y ((x \neq y) \rightarrow (\neg N(y) \lor \neg D(y))$

3. Exercise 1.10.10, sections c-f

- c. $\forall x \exists y ((y \neq Math101) \land T(x,y))$
- d. $\exists x \forall y ((y \neq Math101) \land T(x,y))$
- e. $\forall x \exists y \exists z ((x \neq Sam) \rightarrow ((y \neq z) \land T(x,y) \land T(x,z)))$
- f. $\exists x \exists y \exists z ((x \neq y) \land T(Sam, x) \land T(Sam, y) \land (((z \neq x) \land (z \neq y)) \rightarrow \neg T(Sam, z)))$

12 Question Twelve

- 1. Exercise 1.8.2, sections b-e
 - **b.** $\forall x (D(x) \lor P(x))$

Negation: $\neg \forall x (D(x) \lor P(x))$

Applying De Morgan's law: $\exists x (\neg D(x) \land \neg P(x))$

English: There is a patient that did not given the medication and not given the placebo.

• c. $\exists x(D(x) \land P(x))$ Negation: $\neg \exists x(D(x) \land P(x))$ Applying De Morgan's law: $\forall x(\neg D(x) \lor \neg P(x))$

English: Every patient was either not given the medication or not given the placebo (or both)

• **d.** $\forall x (P(x) \rightarrow M(x))$

Negation: $\neg \forall x (P(x) \rightarrow M(x))$

Applying De Morgan's law and the conditional identity:

$$\neg \forall x (P(x) \to M(x)) \equiv \neg \forall x (\neg P(x) \lor M(x)) \equiv \exists x (\neg \neg P(x) \land \neg M(x)) \equiv \exists x (P(x) \land \neg M(x))$$

English: There is a patient who was given the placebo but did not have migrains.

• e. $\exists x (M(x) \land P(x))$

Negation: $\neg \exists x (M(x) \land P(x))$

Applying De Morgan's law: $\forall x (\neg M(x) \lor \neg P(x))$

English: Every patient neither did not have migrains or was not given the placebo (or both).

- 2. Exercise 1.9.4, sections c-e
 - c. $\exists x \forall y (P(x,y) \rightarrow Q(x,y))$

Negation:

$$\neg \exists x \forall y (P(x,y) \rightarrow Q(x,y))$$

$$\equiv \forall x \exists y \neg (\neg P(x, y) \lor Q(x, y))$$

$$\equiv \forall x \exists y (\neg \neg P(x, y) \land \neg Q(x, y))$$

$$\equiv \forall x \exists y (P(x,y) \land \neg Q(x,y))$$

- d. $\exists x \forall y (P(x,y) \leftrightarrow P(y,x))$ Negation: $\neg \exists x \forall y (P(x,y) \leftrightarrow P(y,x))$ $\equiv \forall x \exists y (\neg (P(x,y) \leftrightarrow P(y,x)))$ $\equiv \neg (\exists x \forall y ((P(x,y)) \rightarrow P(y,x)) \land (P(y,x) \rightarrow P(x,y)))$ $\equiv \neg (\exists x \forall y ((\neg P(x,y) \lor P(y,x)) \land (\neg P(y,x) \lor P(x,y))))$ $\equiv \forall x \exists y (\neg (\neg P(x,y) \lor P(y,x)) \lor \neg (\neg P(y,x) \lor P(x,y)))$ $\equiv \forall x \exists y ((P(x,y) \land \neg P(y,x)) \lor (P(y,x) \land \neg P(x,y)))$
- e. $\exists x \exists y P(x,y) \land \forall x \forall y Q(x,y)$ Negation: $\neg (\exists x \exists y P(x,y) \land \forall x \forall y Q(x,y))$ $\equiv \neg (\exists x \exists y P(x,y)) \lor \neg (\forall x \forall y Q(x,y))$ $\equiv \forall x \forall y \neg P(x,y) \lor \exists x \exists y \neg Q(x,y)$