Similarly

$$\sup_{\substack{x \in \mathbb{R}^n \\ x \neq 0}} \frac{\|Ax\|}{\|x\|} = \sup_{\substack{x \in \mathbb{R}^n \\ \|x\| = 1}} \|Ax\|.$$

The above considerations justify the following definition.

Definition 9.7. If $\| \|$ is any norm on \mathbb{C}^n , we define the function $\| \|_{op}$ on $M_n(\mathbb{C})$ by

$$||A||_{\text{op}} = \sup_{\substack{x \in \mathbb{C}^n \\ x \neq 0}} \frac{||Ax||}{||x||} = \sup_{\substack{x \in \mathbb{C}^n \\ ||x|| = 1}} ||Ax||.$$

The function $A \mapsto ||A||_{\text{op}}$ is called the *subordinate matrix norm* or *operator norm* induced by the norm || ||.

Another notation for the operator norm of a matrix A (in particular, used by Horn and Johnson [95]), is ||A||.

It is easy to check that the function $A \mapsto ||A||_{\text{op}}$ is indeed a norm, and by definition, it satisfies the property

$$||Ax|| \le ||A||_{\text{op}} ||x||, \text{ for all } x \in \mathbb{C}^n.$$

A norm $\| \|_{\text{op}}$ on $M_n(\mathbb{C})$ satisfying the above property is said to be *subordinate* to the vector norm $\| \|$ on \mathbb{C}^n . As a consequence of the above inequality, we have

$$||ABx|| \le ||A||_{\text{op}} ||Bx|| \le ||A||_{\text{op}} ||B||_{\text{op}} ||x||,$$

for all $x \in \mathbb{C}^n$, which implies that

$$||AB||_{\text{op}} \le ||A||_{\text{op}} ||B||_{\text{op}}$$
 for all $A, B \in M_n(\mathbb{C})$,

showing that $A \mapsto ||A||_{\text{op}}$ is a matrix norm (it is submultiplicative).

Observe that the operator norm is also defined by

$$||A||_{\text{op}} = \inf\{\lambda \in \mathbb{R} \mid ||Ax|| \le \lambda ||x||, \text{ for all } x \in \mathbb{C}^n\}.$$

Since the function $x \mapsto \|Ax\|$ is continuous (because $\|Ay\| - \|Ax\|\| \le \|Ay - Ax\| \le C_A \|x - y\|$) and the unit sphere $S^{n-1} = \{x \in \mathbb{C}^n \mid \|x\| = 1\}$ is compact, there is some $x \in \mathbb{C}^n$ such that $\|x\| = 1$ and

$$||Ax|| = ||A||_{\text{op}}.$$

Equivalently, there is some $x \in \mathbb{C}^n$ such that $x \neq 0$ and

$$||Ax|| = ||A||_{\text{op}} ||x||.$$

Consequently we can replace sup by max in the definition of $||A||_{op}$ (and inf by min), namely

$$||A||_{\text{op}} = \max_{\substack{x \in \mathbb{C}^n \\ ||x|| = 1}} ||Ax||.$$