Tokenization in Natural Language Processing

2/2565: FRA501 Introduction to Natural Language Processing with Deep learning
Week 02

Paisit Khanarsa, Ph.D.

Institute of Field Robotics (FIBO), King Mongkut's University of Technology Thonburi

Outlines

- Why we do tokenization?
- Tokenization approaches
 - Dictionary-based
 - Longest matching
 - Maximal matching
 - Machine learning and deep learning-based
- Demo

Why we do tokenization?

Text as a steam of characters

"Once upon a time a Tortoise and a Rabbit had an faster.

They decided to settle the argument with a race. T Rabbit and tortoise. Story and started off the race. The rabbit shot ahead and continues. time. Then seeing that he was far ahead of the tortoise, he thought he a sit under a tree for some time and relax before continuing the race. He sat under the tree and soon fell asleep. The tortoise plodding on overtook him

soon finished the race, emerging as the undisputed champ. The rabbit woke up and realized that he'd lost the race."

The moral of the story is that slow and steady wins the race. This is the version of the story that we've all grown up with.

But then recently, the story still continues:

- How to understand the meaning of texts
 - Break into words (assign meaning to words) ---> Word tokenization
 - Break into sentences (put word meaning back to sentence meaning)

and

Level of understand in NLP

Lexical Analysis: Text / Paragraphs, sentences, and words

Syntactic Analysis (Parsing): Grammar / Relationship between words

Semantic Analysis: Exact meaning of the sentence

Discourse Integration: Meaning of the sentences (based on the previous sentence pronouns)

Pragmatic Analysis: Actual meaning based on the context and real-world knowledge

Tokenization — Thai (cont.)

- Thai has no space between words
- Thai has no clear sentence boundaries

Tokenization – Thai (cont.)

Social media texts

Tokenization — Thai (cont.)

Many word boundaries depend on the context (meaning)

ตา กลม **VS** ตาก ลม

- Even amongst Thais the definition of word boundary is unclear
 - Needs a consensus when designing a corpus
 - Sometimes depends on the application

Tokenization - English

- Space is usually not enough
 - aren't
 - are + n't
 - aren't
 - arent
 - aren + t
 - are + not
 - San Francisco
 - San + Francisco
 - San Francisco

- Hyphens
 - The New York-based co-operation was finetuning forty-two K-9-like models
- Social media texts
 - @SentimentSymp: can't wait for the Nov 9 #Sentiment talks! YAAAAAY!!! >:-D http://sentimentsymposium.com/.

Tokenization – English (cont.)

Social media texts

 @SentimentSymp: can't wait for the Nov 9 #Sentiment talks! YAAAAAY!!! >:-D http://sentimentsymposium.com/.

Hand-crafted for tweets

@sentimentsymp : can't wait for the Nov_09 #sentiment talks ! YAAAY ! ! ! ! ! ! !

http://sentimentsymposium.com/

```
SentimentSymp
       Standard tokenizer
n't
       (Stanford tokenizer)
wait
for
the
Nov
Sentiment
talks
YAAAAAAY
>
-D
http
//sentimentsymposium.com/
```

Tokenization approaches

- Dictionary-based ---> Perform by scanning a string and match each sub string against words from <u>dictionary</u>.
 - Longest matching
 - Maximal matching
- Machine learning and deep learning-based ---> Change word to latent vector

by training word features

http://web.archive.org/web/201810051014 42/https://sertiscorp.com/thai-wordsegmentation-with-bi-directional_rnn/

Longest Matching

- Scan a sentence from left to right
- Keep finding a word from the starting point, <u>until no word matched</u> (<u>longest</u>), then move to the next point
- Backtrack if current segmentation leads to an un-segmentable chunk

Example	Steps			
ป้ายกลับรถ	Star scanning with "1" as the starting point			
ป้ายกลับรถ	Keep scanning			
ป้าย / กลับรถ	No more words start with "ป้าย", move to the next point			
••••	••••			
ป้าย / กลับ / รถ	Finish			

Maximal Matching

- Generate all possible segmentations
- Select the segmentations with the fewest words

ไปหามเหสื

```
Longest Matching ----> ไป | หาม | เห | สี 4 words

Maximal Matching ----> ไป | หา | มเหสี 3 words
```

Maximal Matching

- Generate all possible segmentations
- Select the segmentations with the fewest words
 - Maximal matching can be done using dynamic programming.
 - Let d(i,j) be the function which returns number of the fewest word possible with the last word starts with ith character (row) and ends with jth character (column). It can be defined as:

$$d(i,j) = \begin{cases} 1 & \text{if } i=1 \text{ and } c[1,j] \text{ is in the dictionary.} \\ 1+min_{k=1...i-1}d(k,i-1) & \text{if } c[i..j] \text{ is in the dictionary.} \\ \infty, & \text{otherwise.} \end{cases}$$

when c[i..j] is a string of word in the sentence (assume it is started at index 1) and the base case is d(1,1) = 1.

Input: ไปหามเหลื

Dict: ไ, ป, ห, า, ม, เ, ส, ี,ไป, หา, หาม, เห, สี, มเหสี

	l	ป	ч	า	ม	l	ч	ส	ី
	1	2	3	4	5	6	7	8	9
1	1	1	∞						
2		2	∞						
3			2	2	2	∞	∞	∞	∞
4				3	∞	∞	∞	∞	∞
5					3	∞	∞	∞	3
6						3	3	∞	∞
7							4	∞	∞
8								4	4
9									5

Input: ไปหามเหลื

Dict: ไ, ป, ห, า, ม, เ, ส, ี,ไป, หา, หาม, เห, สี, มเหสี

		ľ	ป	и	า	ม	l	ч	র	ै
		1	2	3	4	5	6	7	8	9
	1	_1	1	∞						
	2		2	∞						
ГИЗ	3			2	2	2	∞	∞	∞	∞
	4_1	ไป]			3	∞	∞	∞	∞	∞
	5					3	∞	∞	∞	3
	6						3	3	∞	∞
	7							4	∞	∞
	8								4	4
	9									5

Input: ไปหามเหลื

Dict: ไ, ป, ห, า, ม, เ, ส, ี,ไป, หา, หาม, เห, สี, มเหสี

		l	ป	и	1	ม	l	ч	ଶ	ី
		1	2	3	4	5	6	7	8	9
	1	_1	1	∞						
	2		2	∞						
[H]	3		1	2	2	2	∞	∞	∞	∞
	4_1	<u>[1]</u>			3	∞	∞	∞	∞	∞
	5	[ไ, ป]			3	∞	∞	∞	3
	6						3	3	∞	∞
	7							4	∞	∞
	8								4	4
	9									5

Input: ไปหามเหลื

Dict: ไ, ป, ห, า, ม, เ, ส, ี,ไป, หา, หาม, เห, สี, มเหสี

		ኒ	ป	и	า	ม	l	и	ଶ	ី
		1	2	3	4	5	6	7	8	9
	1	_1	1	∞						
	2		2	∞						
[4]	3		1	2	2	2	∞	∞	∞	∞
	4_1	11]			3	∞	∞	∞	∞	∞
	5		ไ, ป]			3	∞	∞	∞	3
	6		[¹	โป, ห]	[ไป, หา]		3	3	∞	∞
	7					•		4	∞	∞
	8								4	4
	9									5

Input: ไปหามเหลื

Dict: ไ, ป, ห, า, ม, เ, ส, ี่,ไป, หา, หาม, เห, สี, มเหสี

Input: ไปหามเหลื

Dict: ไ, ป, ห, า, ม, เ, ส, ี,ไป, หา, หาม, เห, สี, มเหสี

Input: ไปหามเหลื

Dict: ไ, ป, ห, า, ม, เ, ส, ี่,ไป, หา, หาม, เห, สี, มเหสี

Machine learning and deep learning-based

- Can represent the meaning of characters, words, sentences, etc. by training data.
- Thai-Tokenization

TABLE II								
RESULTS OF THE SIX BEST TEAMS								
Type of participants	F-Measure (%)	Time (mm:ss)						
Non-Students ^a	97.94937	00:47						
Non-Students	97.84097	02:46						
Non-Students	97.18822	00:26						
Bachelor Students ^b	95.78162	01:08						
Master Students	95.56670	12:14						
PhD+Master Students	92.02067	02:28						
^a Best of the BEST 2009	^a Best of the BEST 2009 Award Winner							

BEST 2009 : Thai word segmentation software contest

^bBEST Student 2009 Award Winner

DeepCut (Thai-Tokenization)

SERTIS (Thai-Tokenization)

Thai word segmentation with bi-directional RNN

https://www.sertiscorp.com/th/november-20-2017

AttaCut (Thai-Tokenization)

TL;DR: 3-Layer Dilated CNN on syllable and character features. It's **6x faster** than DeepCut (SOTA) while its WL-f1 on BEST is **91%**, only 2% lower.

Thai-Tokenization Quality

			Others	Ours		
Last Updated: 29/08	Last Updated: 29/08/2019		Sertis Bi-GRU	DeepCut	AttaCut-C	AttaCut-SC
BEST Validation Set						
	precision	0.94±0.11	0.95±0.10	0.99±0.05	0.97±0.07	0.98±0.05
Character-Level	recall	0.83±0.09	0.99±0.02	0.99±0.03	0.98±0.04	0.99±0.03
	f1	0.88±0.08	0.97±0.07	0.99±0.04	0.98±0.05	0.99±0.04
	precision	0.73±0.16	0.91±0.14	0.97±0.07	0.94±0.10	0.96±0.08
Word-Level	recall	0.65±0.16	0.94±0.10	0.97±0.07	0.94±0.09	0.97±0.08
	f1	0.68±0.15	0.93±0.12	0.97±0.07	0.94±0.10	0.97±0.08
BEST Test Set						
	precision	0.91±0.15	0.92±0.11	0.96±0.08	0.94±0.10	0.95±0.09
Character-Level	recall	0.85±0.09	0.98±0.04	0.98±0.04	0.98±0.04	0.98±0.04
	f1	0.86±0.11	0.95±0.08	0.97±0.06	0.96±0.07	0.96±0.07
	precision	0.70±0.19	0.85±0.18	0.92±0.14	0.88±0.17	0.91±0.15
Word-Level	recall	0.64±0.18	0.90±0.14	0.93±0.12	0.91±0.14	0.92±0.13
	f1	0.67±0.19	0.87±0.16	0.93±0.13	0.89±0.16	0.91±0.14

Thai-Tokenization Quality

Word of caution

 A tokenizer trained on social text might not be able to cut simple words like

	WS160	TNHC
Deepcut	93.8	93.5
Attacut	93.5	80.8

https://www.aclweb.org/anthology/2020.emnlp-main.315/

Examples

- มะม่วง มะละกอ ---> มะ | ม่วง | มะ | ละ | กอ
- หมูกรอบ ---> หมู | กรอบ
- ข้าวผัดคะน้ำหมูกรอบหนึ่งจาน ---> ข้าว | ผัด | คะน้ำ | หมูก | รอบ | หนึ่ง | จาน

Effect downstream task

Word of caution

 A tokenizer trained on social text might not be able to cut simple words like

	WS160	TNHC
Deepcut	93.8	93.5
Attacut	93.5	80.8

https://www.aclweb.org/anthology/2020.emnlp-main.315/

Examples

- มะม่วง มะละกอ ---> มะ | ม่วง | มะ |ละ |กอ
- หมูกรอบ ---> หมู | กรอบ
- ข้าวผัดคะน้ำหมูกรอบหนึ่งจาน ---> ข้าว | ผัด | คะน้ำ | หมูก | รอบ | หนึ่ง | จาน
- Effect downstream task

Might need Dictionary-based!

NLP tools

https://towardsdatascience.com/battle-of-the-deep-learning-frameworks-part-i-cff0e3841750

NLP Library for Thai

https://pythainlp.github.io/ https://pythainlp.github.io/docs/2.0/index.html

Demo: Word tokenization in Thai

https://drive.google.com/file/d/1oes0gZeddFbbsV4ymgDv4 WyFDzreVqY9/view?usp=share link