# Sistemas Operativos 2022 / 2023

## Licenciatura em Engenharia Informática

Trabalho Prático #2

## Introdução

O problema do *Knapsack*, ou da mochila, é um problema de optimização combinatória. O seu nome tem a ver com o problema de alguém que é limitado por uma mochila de tamanho limitado e deve preenchê-la com os itens mais valiosos (<a href="https://en.wikipedia.org/wiki/Knapsack\_problem">https://en.wikipedia.org/wiki/Knapsack\_problem</a>).



De uma forma simples, dado um conjunto de vários itens, cada um com um determinado peso e valor, o objectivo é determinar quais os itens que devem ser incluídos numa coleção de modo a que o peso total seja menor ou igual a um determinado limite e o valor total seja o maior possível.

O problema mais comum é o 0-1 Knapsack que restringe o número de cópias  $\mathbf{x_i}$  de cada item aos valores **zero** e **um**. Dado um conjunto de  $\mathbf{n}$  itens, cada um com um peso  $\mathbf{w_i}$  e um valor  $\mathbf{v_i}$ , juntamente com a capacidade máxima da mochila  $\mathbf{W}$ , o objectivo é:

Portanto o objectivo é maximizar a soma dos valores dos itens que estão dentro da mochila de modo a que a soma dos seus pesos seja menor ou igual à capacidade da mochila.

## Algoritmos de resolução

No trabalho prático anterior foi apresentado o algoritmo **AJ-KPA** que apresentou, em geral, bons resultados em tempo útil para o número de items n < 25. Neste trabalho propomos o algoritmo **AJ-KP-BS** que pretende melhorar significativamente o desempenho do algoritmo anterior.

O algoritmo **AJ-KP-BS**, que usa em cada iteração o algoritmo **Beam Search** (em anexo), funciona da seguinte forma:

- 1. Ordena-se os itens de acordo com o critério definido no anexo.
- 2. Calcula-se a solução de *Lower Bound* e define-se essa solução como a melhor solução até o momento.
- 3. Aplica-se o algoritmo *Beam Search* (BS), obtendo-se a melhor solução possível. Este algoritmo deve receber como entrada a solução de *Lower Bound* inicial.
- 4. Se a solução obtida no ponto 2 for melhor que a melhor solução actual, deve-se actualizar a solução actual.
- 5. O algoritmo volta ao ponto 2 enquanto não houver uma condição de término dada pelo tempo ou pelo número de iterações máxima.

No fim, o algoritmo deverá ser capaz de retornar o máximo valor da função de avaliação encontrado durante a sua execução. Note que a melhor solução encontrada pelo algoritmo pode ou não ser a melhor solução em termos globais.

### Implementação concorrencial do algoritmo AJ-KPA

Dado que o algoritmo AJ-KP-BS terá uma forte componente aleatória, um dos grandes factores que pode influenciar a solução é o número de iterações realizadas pelo algoritmo (ou de forma indirecta, o tempo que se dá ao algoritmo para tentar encontrar a melhor solução).

Desta forma, propomos a implementação paralela e concorrencial do algoritmo nas suas versões *Base e Avançada*.

#### Versão Base

- 1. Criar *m threads* (número parametrizável) em que cada *thread* corre o algoritmo AJ-KP-BS.
- 2. Após um tempo de execução, as *threads* são interrompidas e cada uma delas actualiza a memória central com a sua melhor solução. Dado que duas ou mais *threads* podem aceder simultaneamente à memória central e corrompê-la, a actualização desta deve ser feita de forma controlada.
- 3. Informa-se o utilizador da melhor solução encontrada. Esta informação deve ser feita logo que **todas** as *threads* actualizem a sua melhor solução na memória central. Para garantir que

esta actualização seja feita de forma adequada, deve ser feita a correcta sincronização na actualização e leitura dos resultados.

## Versão Avançada

A versão avançada é semelhante à versão base com as seguintes alterações:

- 1. De acordo com um parâmetro de entrada, que representa uma percentagem do tempo total, em cada múltiplo dessa percentagem de tempo procede-se à seguinte operação:
  - a) Actualiza-se a melhor solução na memória central, a partir das melhores soluções de cada *thread*.
  - b) Actualiza-se todas as *threads* com a nova solução obtida no ponto 1.b)
- 2. A operação anterior não deve ser efectuada no final do tempo de execução do algoritmo (último múltiplo da percentagem de tempo total).

#### **Desenvolvimento**

A aplicação deverá ser feita na linguagem de programação Java, em Windows (ou no seu sistema operativo preferido), usando as técnicas de programação paralela e concorrencial utilizadas nas aulas laboratoriais, nomeadamente *threads*, semáforos, métodos sincronizados, etc.

#### **Entradas**

A entrada de informação é feita usando ficheiros de texto, um para cada problema.

Cada ficheiro de texto está separado por linhas, em que na primeira linha é dado o número de itens n, na segunda linha a capacidade máxima W da mochila, e nas restantes n linhas é dado um par de valores que corresponde ao valor e peso de cada item. Na última linha está o valor óptimo que se pretende obter para esse problema.

| 4               |   |  |
|-----------------|---|--|
| 11<br>6 2<br>10 |   |  |
| 6 2             | 2 |  |
| 10              | 4 |  |
| 12              | 6 |  |
| 13<br>23        | 7 |  |
| 23              |   |  |

O programa deverá aceitar como parâmetros o nome do ficheiro de texto com o problema, o número de *threads* a serem criados e o tempo máximo de execução do algoritmo (em segundos). Por exemplo, o comando *kp ex23.txt 10 60* deverá executar o ficheiro de teste "ex23.txt" usando 10 *threads* em paralelo durante 60 segundos.

### Resultados

De modo a se validar a qualidade do algoritmo, deverá ser construída uma tabela com as seguintes colunas:

- a) Número do teste (de 1 a 10).
- b) Nome do teste e número de itens.
- c) Tempo total de execução.
- d) Número de *threads* usada (parâmetro *m* na descrição dos algoritmos).
- e) Melhor valor da soma dos itens encontrado.
- f) Valor da soma dos pesos da melhor solução.
- g) Número de iterações necessárias para chegar ao melhor valor encontrado.
- h) Tempo que demorou até o programa atingir o melhor valor encontrado.

Cada teste deverá ser repetido 10 vezes para os mesmos parâmetros de entrada, e deverá ser possível obter valores médios de tempo e número de iterações, assim como o número de vezes em que se encontrou o valor óptimo.

Os ficheiros de teste a utilizar serão disponibilizados no *moodle* da disciplina.

# Entrega e avaliação

Os trabalhos deverão ser realizados em grupos de 2 alunos, e deverão ser originais. Trabalhos plagiados ou cujo código tenha sido partilhado com outros serão atribuídos nota **zero**.

Todos os ficheiros deverão ser colocados num **ficheiro zip** (com o número de todos os elementos do grupo) e submetido via *moodle* **até às 23:55 do dia 20/Janeiro/2023**. Deverá também ser colocado no zip um **relatório em pdf** com a identificação dos alunos, as tabelas de resultados e a descrições das soluções que considerarem relevantes. Este documento deverá ser mantido curto e directo (2-3 páginas).

Irá considerar-se a seguinte grelha de avaliação:

| Algoritmo AJ-KP-BS                        | 4.0 val. |
|-------------------------------------------|----------|
| Algoritmo concorrencial                   |          |
| Versão Base                               | 4.0 val. |
| Versão Avançada                           | 3.0 val. |
| Outra versão original                     | 2.0 val. |
| Utilização de memória central             | 0.5 val. |
| Utilização de mecanismos de sincronização | 1.5 val. |
| Relatório com tabelas de testes           | 2.0 val. |
| Qualidade da solução e código             | 3.0 val. |

As discussões dos projectos serão realizadas na semana seguinte à entrega do projecto, no horário das aulas laboratoriais. As notas poderão ser atribuídas aos alunos de forma individual.

Bom trabalho!

## Algoritmo Beam Search – versão probabilística

O algoritmo *Beam Search* é um método de resolução cujo objetivo é a obtenção de soluções aproximadas num intervalo de tempo reduzido. Este algoritmo funciona com uma pesquisa em árvore onde o número dentro de cada nó indica a ordem pela qual os nós são visitados.



Dois dos conceitos mais relevantes para este algoritmo são as funções *LowerBound* (limite inferior) e *UpperBound* (limite superior). Define-se a função *LowerBound* (LB) como sendo a melhor solução obtida até ao momento, e a função *UpperBound* (UB) como aquela que estima o maior valor possível de obter a partir de um determinado nó.

A ideia básica do algoritmo é a seguinte: se o valor de *upper bound* (UB) de um determinado nó  $\boldsymbol{u}$  for menor que o valor de *lower bound* (LB), então o nó  $\boldsymbol{u}$  e os seus sucessores podem ser eliminados da pesquisa. Dito de outra forma, se se estimar que todas as soluções a partir do nó  $\boldsymbol{u}$  nunca serão melhores que a solução actual, então não vale a pena pesquisar por soluções nessa zona.

O algoritmo *Beam Search* pode ser definido pelo seguinte pseudo-código:

```
Algoritmo: Beam Search Recebe: \alpha, LB

A = InitialSolution()
Enquanto A \neq \phi faz
A^* = GetChilds(A)
Para cada solução a \in A^* faz
ub = UpperBound(a)
Se ub >= eval(LB) então
Se \ eval(a) > eval(LB) então
LB = a
senão
A^* = A^* \setminus \{a\}
Fim Se
A = SelectSolutions(\alpha, A^*)
Devolve LB
```

A função *GetChilds* permite retornar uma lista de nós filhos a partir de uma lista de soluções *A*. No caso do *Knapsack*, um nó filho consiste numa solução à qual é adicionado um novo item.

A função *SelectSolutions* permite selecionar  $\alpha$  nós (soluções) a partir de uma lista A\* de nós. A figura seguinte mostra um exemplo onde são selecionados os  $\alpha$ =2 elementos com melhores avaliações (o número à direita de cada nó representa a sua "avaliação"). No entanto, neste trabalho prático iremos selecionar os  $\alpha$  nós de forma aleatória e aconselha-se o uso de  $\alpha$ =n/2 (n é o número de items) como valor de referência.



Um *LowerBound* com alguma qualidade pode ser obtido inicialmente da seguinte forma:

- 1. Ordenar os vários items por ordem decrescente de razão v<sub>i</sub>/w<sub>i</sub> (valor a dividir pelo peso).
- 2. Ir preenchendo a solução com todos os items, de forma ordenada, até que o peso máximo seja alcançado.
- 3. Seja *c* a posição do primeiro item que não pode ser inserido na mochila por exceder o peso.

$$LB = \sum_{i=1}^{c-1} v_i$$

Por fim, a função *UpperBound* pode ser calculada da seguinte forma:

- 1. Ordena-se os vários items por ordem decrescente de razão  $v_i/w_i$  (valor a dividir pelo peso).
- 2. Seja s uma solução (incompleta) com k items já inseridos.
- 3. Seja **c** o índice do primeiro item que não pode ser inserido na mochila por exceder o peso.
- 4. Obtenha-se  $\overline{W}(s)$  que corresponde ao peso que ficou de fora da solução s após a inserção de c-1 items (i.e, peso que corresponde ao total de items fora da solução s com mais c-1 items adicionados).
  - a)  $W_{max}$  corresponde ao peso máximo admitido no problema.
  - b) A função *sumWeigths(s)* corresponde ao somatório dos pesos dos items em *s*.
- 5. O valor de *UpperBound* é obtido através da seguinte fórmula, onde a função *eval(s)* corresponde ao somatório dos valores dos items em *s*.

$$\bar{W}(s) = W_{\text{max}} - \sum_{i=k+1}^{c-1} w_i - \text{sumWeights}(s)$$

$$\begin{aligned} \text{UB=max} \begin{cases} \text{eval}\left(s\right) + \sum\limits_{j=k+1}^{c-1} v_j + \text{ int}\left(\overline{W}\left(s\right) \frac{v_{c+1}}{w_{c+1}}\right), \\ \text{eval}\left(s\right) + \sum\limits_{j=k+1}^{c-1} v_j + \text{ int}\left(v_c - \left(w_c - \overline{W}\left(s\right)\right) \frac{v_{c-1}}{w_{c-1}}\right) \end{cases} \end{aligned}$$

## Exemplo

Considere o seguinte problema com 8 items.

```
8

102

60 30

40 40

90 20

15 2

100 20

15 30

1 10

10 60

280
```

Depois de ordenados por ordem decrescente de v<sub>i</sub>/w<sub>i</sub>, os valores e pesos ficariam na seguinte ordem:

```
v = \{15, 100, 90, 60, 40, 15, 10, 1\}

w = \{2, 20, 20, 30, 40, 30, 60, 10\}
```

### Cálculo de Lower Bound

Verifica-se que por esta ordem apenas se poderia inserir na mochila os primeiros 4 items (com peso 2+20+20+30 = 72), pois a inclusão do  $5^{\circ}$  item iria exceder o peso máximo (112 > 102). Portanto, o item na posição 5 é o primeiro a não poder ser inserido na mochila, e c=5.

Tendo em conta que o item na posição 5 (c=5) é o primeiro a não poder ser colocado na mochila, então o valor de *Lower Bound* pode ser calculado pelo seguinte somatório:

$$LB = \sum_{i=1}^{c-1} v_i = \sum_{i=1}^4 v_i = 15+100+90+60 = 265$$

A solução *S* para o *Lower Bound* é 1111 0000 na nova ordenação (ou 1011 1000 na original).

### Cálculo de um Upper Bound

Imagine-se agora que se está numa zona da árvore de procura com uma solução parcial  $\mathbf{s}$  com 2 elementos, por exemplo,  $\mathbf{s} = <10$  \_ \_ \_ \_ > na nova ordenação.

Primeiro, deve-se obter a posição do primeiro item que, ao ser colocado na mochila *s*, iria exceder o peso da mesma. Visto que em *s* o primeiro item **está** na mochila e o segundo item **não está** na mochila, a inclusão do 6º item iria exceder o peso máximo:

- s = <1 0 **1 1 1** \_ \_ \_> tem peso 92,
- s = <1 0 **1 1 1 1 1** \_ \_> já tem peso 122, superior a 102 que é o peso máximo.

Portanto, para esta mochila s, o valor de c = 6.

Assim, o valor do **Upper Bound** da solução parcial  $\mathbf{s}$  com 2 elementos  $\mathbf{s} = <10$  \_ \_ \_ \_ >, sendo que  $\mathbf{c} = \mathbf{6}$ , pode ser calculado pelas fórmulas:

$$\bar{W} = 102 - (20 + 30 + 40) - 2 = 10$$

$$\begin{aligned} &\text{UB=max}\left\{\text{eval}(s) + \sum_{j=3}^{5} v_{j} + \text{int}\left(10 * \frac{v_{7}}{w_{7}}\right), \text{eval}(s) + \sum_{j=3}^{5} v_{j} + \text{int}\left(v_{6} - \left(w_{6} - 10\right) * \frac{v_{5}}{w_{5}}\right)\right\} \\ &\text{UB=max}\left\{15 + 190 + \text{int}\left(10 * \frac{10}{60}\right), 15 + 190 + \text{int}\left(15 - \left(30 - 10\right) * \frac{40}{40}\right)\right\} \\ &\text{UB=max}\left[15 + 190 + 1, 15 + 190 - 5\right] \\ &\text{UB=max}\left[206, 200\right] \\ &\text{UB=206} \end{aligned}$$