Explainable Al

Winter School on
Deep Learning For Vision and Language Modelling
Indian Institute of Technology Guwahati
6th - 13th January, 2025

Challenges in Black-box Al

- If a model fails due to a hidden bias, who is responsible developers or the model itself?
- Would you trust an AI system to make critical decisions without understanding how it works?
- Can interpretability compromise AI's performance, or can they coexist?

What is Explainable AI (XAI)?

Interpretability:

What does the model learn, and how can we understand its decision-making process?

Transparency:

Does the model reveal its internal workings clearly, or is it a black box?

Fairness:

Are the model's predictions free from bias and equitable across all demographic groups?

Trust:

Can users rely on the AI's outputs, and how does understanding the model foster confidence in its decisions?

Robustness:

How well does the model maintain performance and explainability under adversarial attacks or input perturbations?

Privacy:

Does the model protect sensitive information and ensure explainability without exposing private data?

Techniques of Explainable Al

- Local vs. Global
- Model-Specific vs. Model-Agnostic

Types of Explanations:

- **Feature Importance:** Identifying which input features influenced the decision most.
- Counterfactuals: Showing how small changes in the input could alter the output.
- **Visualizations:** Representing activations, heatmaps, or decision boundaries for interpretability.

XAI Techniques

Algorithm	Type	Description					
LIME (Local Interpretable Modelagnostic Explanations)	Model-Agnostic	Approximates local behavior of any model with an interpretable surrogate model.					
SHAP (SHapley Additive ExPlanations)	Model-Agnostic	Uses Shapley values to explain predictions for any type of model.					
Grad-CAM (Gradient-weighted Class Activation Mapping)	Model-Specific (CNN)	Visualizes important regions for predictions by analyzing CNN					

LIME

Work Principle:

- Input instance: x_0
- Perturbations: Generate $Z = \{x_1, x_2, ..., x_n\}$ by sampling around x_0
- Black-box model predictions: $f(Z) = \{y_1, y_2, ..., y_n\}$
- Define locality weights:

$$w(x,x_0)=\exp\left(-rac{\|x-x_0\|^2}{2\sigma^2}
ight)$$

where σ controls the width of the neighborhood.

$$L(g,f,w) = \sum_{x \in Z} w(x,x_0) \cdot \left(f(x) - g(x)
ight)^2$$

subject to g being interpretable.

Output:

Coefficients of g(x) are used as feature attributions for the prediction of x_0

A Case-Study: LIME on 'UCI adult income' dataset with logistic regression Classifier

https://drive.google.com/file/d/1A4fsMSy9miM5W9Q_Gu9z1E-1LkBUHbt_/view?usp=sharing

	age	workclass	fnlwgt	education	educational-num	marital-status	occupation	relationship	race	gender	capital-gain	capital-loss	hours-per-week	native-country	income
0	25	Private	226802	11th	7	Never-married	Machine-op-inspct	Own-child	Black	Male	0	0	40	United-States	<=50K
1	38	Private	89814	HS-grad	9	Married-civ-spouse	Farming-fishing	Husband	White	Male	0	0	50	United-States	<=50K
2	28	Local-gov	336951	Assoc-acdm	12	Married-civ-spouse	Protective-serv	Husband	White	Male	0	0	40	United-States	>50K
3	44	Private	160323	Some-college	10	Married-civ-spouse	Machine-op-inspct	Husband	Black	Male	7688	0	40	United-States	>50K
4	18	?	103497	Some-college	10	Never-married	?	Own-child	White	Female	0	0	30	United-States	<=50K

GRAD-CAM

Work Principle:

- Input image: I
- Feature map from the final convolutional layer: $A^k \in \mathbb{R}^{H \times W \times DA}$, where H is height, W is width, and D is depth (number of filters).
- Class score: y_c for class c from the final softmax layer.
- Gradient of the class score with respect to the feature map activations at the last convolutional layer: $\frac{\partial y_c}{\partial A^k}$

This gradient measures how much the class score y_c changes with respect to the activations in each feature map.

• Global average pooling: Compute the average gradient across spatial dimensions (height and width):

$$lpha_k^c = rac{1}{H imes W} \sum_{i,j} rac{\partial y_c}{\partial A_{ij}^k}$$

This is a scalar weight for each filter k.

• Relu over Weighted sum of feature maps:

$$\operatorname{Grad-CAM}^c(\mathbf{I}) = \operatorname{ReLU}\left(\sum_k lpha_k^c A^k
ight)$$

The sum of the weighted feature maps gives the class activation map for class c. The ReLU operation ensures that only positive activations are considered, focusing on the regions that contribute to the class prediction.

A Case-Study : GRAD-CAM on 'cifar-10' dataset with CNN

https://colab.research.google.com/drive/1XizujmYpMoiJRCW87geIVAYOJCJ7qfsl?usp=sharing

A Case-Study: Improving classifier's performance using discriminator with GRAD-CAM based loss

GRAD-CAM Heatmap Generation:

- Generate heatmaps of the classifier predictions
- Normalize the heatmaps

Discriminator Role

- A lightweight neural network trained to classify heatmaps as **correct or incorrect (if classified correctly or incorrectly)**.
- Provides feedback to guide the classifier via discriminator loss.

Combined Loss Function:

• Total Loss = Classifier Loss + λ * Discriminator Loss.

https://colab.research.google.com/drive/1XizujmYpMoiJRCW 87geIVAYOJCJ7qfsl?usp=sharing

