Week 8 Recitation Problems

MATH:114, Recitations 309 and 310

Last week, we covered **linear** and **quadratic approximations** for a given function f. These approximations lead to **Taylor's Theorem**, which says:

Theorem (Taylor). Let f be continuously differentiable N+1 times at the point a. Then, there is a function R(x) and a point c between a and x which satisfies the following equation:

$$f(x) = P_N(x) + R_N(x),$$

where

$$P_N(x) = \underbrace{f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2}_{quadratic \ approximation!} + \dots + \frac{f^N(a)}{N!}(x-a)^N,$$

and

$$R(x) = \frac{f^{N+1}(c)}{(N+1)!}(x-a)^{N+1}.$$

The function $P_N(x)$ is the N^{th} -order **Taylor polynomial** — that is, a polynomial of degree N which approximates f at a. $R_N(x)$ is the **remainder** or **error** function, and represents how far away $P_N(x)$ is from f(x).

1. Let $f(x) = \sin(x)$ and a = 0. Compute the 6^{th} -order Taylor polynomial $P_6(x)$ and the remainder function $R_6(x)$. What pattern do you see?

der function
$$R_6(x)$$
. What pattern do you see?

$$\begin{aligned}
x' &= \sin(x) \\
x' &= \sin(x) + \cos(x) + \cos(x) - x - \frac{\sin(x)}{2!} \cdot x^2 - \frac{\cos(x)}{3!} \cdot x^3 + \frac{\sin(x)}{4!} \cdot x^4 + \frac{\cos(x)}{5!} \cdot x^5 - \frac{\sin(x)}{6!} \cdot x^6 \\
&= 0 + x - 0 - \frac{x^3}{3!} + 0 + \frac{x^5}{5!} - 0 \\
&= x - \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^5}{5!} - 0
\end{aligned}$$

$$\begin{aligned}
&= x - \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^5}{5!} - 0 \\
&= x - \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^5}{5!} - 0
\end{aligned}$$

$$\begin{aligned}
&= x - \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^5}{5!} - 0 \\
&= x - \frac{x^3}{3!} + \frac{x^5}{5!} - 0
\end{aligned}$$

$$\begin{aligned}
&= x - \frac{x^3}{3!} + \frac{x^5}{5!} - 0 \\
&= x - \frac{x^3}{3!} + \frac{x^5}{5!} - 0
\end{aligned}$$

$$\begin{aligned}
&= x - \frac{x^3}{3!} + \frac{x^5}{5!} - 0 \\
&= x - \frac{x^3}{3!} + \frac{x^5}{5!} - 0
\end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned}
&= x - \frac{x^3}{3!} + \frac{x^5}{5!} - 0 \\
&= x - \frac{x^3}{3!} + \frac{x^5}{5!} - 0
\end{aligned}$$

$$\end{aligned}$$

2. Suppose $f(x) = \sin(x)$ and a = 0, and that N is an arbitrary finite number. Write an expression for the N^{th} -order Taylor polynomial $P_N(x)$ of f(x) using summation notation — that is,

$$P_N(x) = \sum_{k=1}^{N} \frac{f^k(x)}{k!} x^k$$

Also find the remainder function $R_N(x)$. Use the pattern you found in Problem 1 to help. Once you finish this question, STOP and tell one of the instructors. We'll discuss our results as a class before moving on!

$$P_{N}(x) = \chi - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots + \frac{(-1)^{k} x^{2k+1}}{(2k+1)!} + R_{2k+1}(x),$$

$$f(x) = \sum_{k=1}^{N} \frac{(-1)^{k} x^{2k+1}}{(2k+2)!} + \frac{(-1)^{k+1} \operatorname{trig}(c)}{(2k+2)!} x^{2k+2} \quad \text{with trig}(c) \text{ is one of sin(c), } \cos(c), -\cos(c), -\cos(c),$$

3. Fill out the following table. In the first column, write one of the four expressions for $R_N(x)$ that we discussed as a class. In the second column, write the maximum possible value of the $f^{N+1}(c)$ that appears in $R_N(x)$. In the third column, write the absolute value of the value in the previous column. In the fourth column, substitute the absolute value in the previous question for $f^{N+1}(c)$ in the expression of $R_N(x)$. The first row of the table is filled out for you.

$R_N(x)$	$\max f^{N+1}(c)$	$ \max f^{N+1}(c) $	$R_N(x)$ Upper Bound
$R_N(x) = \frac{\sin(c)}{(2 \operatorname{kr2})!} x^{2 \operatorname{kr2}}$	-1, 1	1	$R_N(x) \leq \frac{(1)}{(2\mathbf{k}+2)!} x^{2\mathbf{k}+2} = \frac{x^{2\mathbf{k}+2}}{(2\mathbf{k}+2)!}$
- (2k+2)! x2k+2			
= -sin(c) 2kr2 (2kr2)!			
$=\frac{-\cos(c)}{(2\pi r^2)!} \times ^{2\pi r^2}$	V		↓

What do you notice about the upper bounds of $R_N(x)$?

4. Using a a visualizer like Desmos, graph the function

Using this graph, what can you say about the function much slower than the denominator, so
$$\frac{x^{N+1}}{(N+1)!}$$
 this goes to 0 at infinity.

as N goes to infinity? Once you finish this question, STOP and tell one of the instructors. We'll discuss our results as a class!

5. Based on our discussion, what can we say about the remainder $R_N(x)$ as N goes to infinity? Use this to conclude that

$$\sin(x) = \lim_{N \to \infty} \left[\sum_{k=1}^{N} \frac{(-1)^{k} x^{2k+1}}{(2k+1)!} + R_{2k+1}(x) \right]$$

$$= \lim_{N \to \infty} \sum_{k=1}^{N} \frac{(-1)^{k} x^{2k+1}}{(2k+1)!} + \lim_{N \to \infty} R_{2k+1}(x)$$

$$= \sum_{k=1}^{\infty} \frac{(-1)^{k} x^{2k+1}}{(2k+1)!} + C$$