M6. 딥러닝 심화

더 나은 심층학습

- Activation Function
- Loss Function
- Optimizer
- Weight Initializer

Activation function

input과 weight의 가중합은 입력 받아 어떤 output은 내보낼지 결정하는 함수

cf. 어제... 이 부분은 기억하십니까..!?

Activation function

이세상엔 다양한 activation function이 있습니다..

Identity	f(x) = x	Randomized leaky rectified linear unit (RReLU) ^[13]	$f(lpha,x) = \left\{egin{array}{ll} lpha & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$
Binary step	$f(x) = \left\{ egin{array}{ll} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{array} ight.$	Exponential linear unit (ELU) ^[14]	$f(lpha,x) = egin{cases} lpha(e^x-1) & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$
Logistic (a.k.a. Sigmoid or Soft step)	 $f(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$ [1]	Scaled exponential linear unit (SELU) ^[15]	$f(\alpha, x) = \lambda \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$
TanH	$f(x) = \tanh(x) = \frac{(e^x - e^{-x})}{(e^x + e^{-x})}$	S-shaped rectified linear activation unit	with $\lambda=1.0507$ and $\alpha=1.67326$ $f_{t_l,a_l,t_r,a_r}(x)= \begin{cases} t_l+a_l(x-t_l) & \text{for } x \leq t_l \\ x & \text{for } t_l < x < t_r \\ t_r+a_r(x-t_r) & \text{for } x \geq t_r \end{cases}$
ArcTan	$f(x) = an^{-1}(x)$	(SReLU) ^[16]	$t_r + a_r(x-t_r)$ for $x \geq t_r$ t_l, a_l, t_r, a_r are parameters.
Softsign [7][8]	$f(x) = \frac{x}{1 + x }$	Inverse square root linear unit (ISRLU) ^[9]	$f(x) = \left\{ egin{array}{ll} rac{x}{\sqrt{1+lpha x^2}} & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$
Inverse square root unit (ISRU) ^[9]	$f(x) = rac{x}{\sqrt{1 + lpha x^2}}$	Adaptive piecewise linear (APL) [17]	$f(x) = \max(0,x) + \sum_{s=1}^S a_i^s \max(0,-x+b_i^s)$
Rectified linear unit (ReLU) ^[10]	$f(x) = \left\{egin{array}{ll} 0 & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$	SoftPlus ^[18]	$f(x) = \ln(1+e^x)$
Leaky rectified linear unit (Leaky ReLU) ^[11]	$f(x) = \begin{cases} 0.01x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	Bent identity	$f(x) = rac{ extstyle $
Parameteric rectified linear unit (PReLU) ^[12]	$f(lpha,x) = \left\{egin{array}{ll} lpha x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$	Sigmoid-weighted linear unit (SiLU) ^[19] (a.k.a. Swish ^[20])	f(x)=x 자세한 설명은 생략한다.
Randomized leaky rectified linear unit (RReLU) ^[13]	$f(lpha,x) = \left\{egin{array}{ll} lpha x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$	SoftExponential [21]	$f(\alpha,x) =$
			The state of the s

Activation function

자주 이용하는 activation function

Cost/Loss function

모델의 예측 결과와 실제 정답값의 차이를 정량화해주는 함수

Quadratic(MSE)

Cross Entropy

Negative Log Likelihood

$$C(w,b) = \frac{1}{2n} \sum_{i=1}^{n} (a_i - y_i)^2$$

- 전동적인 방식의 loss 계산법
- (-) 하지만 sigmoid와 같이 이용한 경우 수렴은 더디게 함
- (+) 정답이 실수형인 경우에도 사용 가능 (예: regression)

$$C(w,b) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log a_i + (1 - y_i) \log(1 - a_i)]$$

- 이진분류에서 이용되는 함수
- (+) Quadratic Cost에 비해 모델 수렴은 빠 트게 함
- 최근 DL framework에서 Multiclass NLL loss와 거의 동일하게 사용

$$C(w,b) = -\sum_{i=1}^{n} \log a_{iy}$$

- Multi-class 분류에서 이용되는 함수
- 정답에 해당하는 class만을 고려
- 이진분듀의 경우 cross-entropy loss
 와 동일
- (+) Softmax 함수와 결합하여 사용 할 때 모델 수렴을 빠르게 함

동일 모델에 다른 Cost function 적용해볼 때 수렴 속도 차이

참고: http://neuralnetworksanddeeplearning.com/chap3.html

Optimizer

Gradient 정보를 이용해 모델은 더 나은 방향으로 update하는 방법

2단원에서 배운 Gradient descent를 떠올려봅시다

$$w_{j+1} \leftarrow w_j - \alpha \frac{\partial C(w)}{\partial w_j}$$

Optimizer

왜 없습니까! 다 방법이 있지요!!

Momentum 계열 optimizer

과거의 파라미터 업데이트 내역을 누적, 진행하던 방향성을 반영하여 빠르게 최적점으로 업데이트

SGD without momentum

SGD with momentum

Adaptive 계열 optimizer

파라미터 업데이트가 진행될수독 learning rate가 점점 준 어들어 미세하게 최적점은 찾아가도독 자동 조절

대표적 optimizer

- AdaGrad
- AdaDelta
- RMSprop
- AdaM

Weight Initialization(가중치 초기화)

네트워크의 초기 weight 설정은 아무렇게나 할 경우 학습이 더디게 진행될 수 있다.

- Weight 초기값은 어떻게 초기화 하느냐에 따라 학습이 잘 되거나 잘 안 되는 경우가 많다.
- Weight 초기값은 동일한 값으로 초기화하거나 모두 0으로 초기화 해서는 안 된다.
 - 가중치 초기값이 동일한 값일 경우 모든 뉴런이 동일한 출력 값은 내보내게 된다.
 - Backpropagation 단계에서 각 뉴런이 모두 동일한 gradient 값은 가지게 되고 결과적으로 뉴런의 개수가 아무리 많아도 뉴런이 하나 뿐 인 것처럼 작동하게 되기 때문에 제대로 학습이 이루어지지 않는다.

효과적인 Weight Initialization 방법

 $** n_{in} : 이전 layer(input)의 노드 수, <math>n_{out} : 다음 layer(input)의 노드 수$

1. LeCun Normal Initialization : 가우시안 분포에서 분산을 X의 원래 분산 정도로 보정

$$W \sim N(0, Var(W))$$
 $Var(W) = \sqrt{\frac{1}{n_{in}}}$ [비교] LeCun Uniform Initialization : $W \sim U(-\sqrt{\frac{1}{n_{in}}}, +\sqrt{\frac{1}{n_{in}}})$

2. Xavier(Glorot) Initialization: 입력/출력 노드 수를 고려하여 초기값은 설정하는 방법, sigmoid/tanh를 쓰는 경우 효과적.

$$W \sim N(0, Var(W))$$

$$Var(W) = \sqrt{\frac{2}{n_{in} + n_{out}}}$$

$$[\exists | \mathbb{Z}] \text{ Xavier(Glorot) Uniform Initialization } : W \sim U(-\sqrt{\frac{6}{n_{in} + n_{out}}}, +\sqrt{\frac{6}{n_{in} + n_{out}}})$$

3. He initialization : Xavier Initialization이 ReLU에서 받생시키는 문제를 해결한 초기화방법, ReLU를 쓰는 경우 효과적.

$$W \sim N(0, Var(W))$$
 [비교] He Uniform Initialization : $W \sim U(-\sqrt{\frac{6}{n_{in}}}, +\sqrt{\frac{6}{n_{in}}})$

