y or z (x_1, y_1)

Sum of Squared errors

$$d_1^2 + d_2^2 + \cdots + d_k^2 =$$
a minimum

$$\sum_{i=1}^{K} (y_i - f(x_i))^2 \longrightarrow \text{minimize}$$

Deviation - error

- Given, x_i and y_i
- K number of data points
- Error = $y_i f(x_i)$
- How many errors?
- K errors

Root mean square error

$$RMSE = \sqrt{\frac{1}{K} \sum_{i=1}^{K} (y_i - f(x_i))^2}$$

X	У
1	у 2
2	4
3	6
4	8
5	10
6	12
7	14
8	16
9	18
10	20
11	22
12	24
13	26
14	28

Data points generated: t=2x

Х	У
15	30
16	32
17	34
18	36
19	38
20	40
21	42
22	44
23	46
24	48
25	50

t=2x points plotted

$t=2x + Gaussian noise (\sigma=2)$

All the points are disturbed

Algorithm

- We have decided to fit using y=m.x
- X=[---, ---, ---,, ---]
- t=[---, ---, ---,, ---]
- Choose m
- 1. Predict y=[---, ---, ---,, ---]
- 2. Find out error
- 3. e=[---, ---, ---,, ---]
- 4. Generate squared error by squaring the elements of e
- 5. se=[---, ---, ---,, ---]
- 6. Compute the mean of se (MSE)
- Change m; repeat 1 to 6
- Plot MSE versus m; choose the m corresponding to minimum MSE

Graph: MSE versus m

Data points t=2x + noise

Х	У
1	2
2	4
3	6
4	8
5	10
6	12
7	14
8	16
9	-65
10	20
11	22
12	24
13	26
14	28

Х	у
15	30
16	32
17	34
18	36
19	38
20	40
21	42
22	200
23	46
24	48
25	50

Noise: Two points are disturbed

t=2x points plotted with 2 points disturbed

Plot: MSE versus m

Observation

- All the points disturbed by noise (Gaussian)
- MSE works
- Just two points disturbed by noise (extreme values)
- MSE fails

How does the Arithmetic mean handle Outlier?¹

- Consider a 1000 marks test.
- 10 students taking up the test.
- Their marks are
- 100, 120, 90, 110, 115, 125, 95, 105, 110, 100
 Arithmetic mean = Sum of above numbers/10 = 107

How does the Arithmetic mean handle Outlier?²

- Consider a 1000 marks test.
- 10 students taking up the test.
- Their marks are
- <u>900</u>, 120, 90, 110, 115, 125, 95, 105, 110, 100
 Arithmetic mean = Sum of above numbers/10 = 187

Arithmetic mean after removing outlier

- Consider a 1000 marks test.
- 10 students taking up the test.
- Their marks are

–900, 120, 90, 110, 115, 125, 95, 105, 110, 100

Arithmetic mean = Sum of above numbers/9 = 107.8

How does the SM handle Outlier?

- Consider a 1000 marks test.
- 10 students taking up the test.
- Their marks are
 - 100, 120, 90, 110, 115, 125, 95, 105, 110, 100
- AM = Sum of above numbers/10 = 107
- SM = sum of the squared numbers \Rightarrow taking root = 107.5

Squared mean

AM: Sum and divide

SM: Square, sum and divide

How does the SM handle Outlier?

- Consider a 1000 marks test.
- 10 students taking up the test.
- Their marks are
 - **900**, 120, 90, 110, 115, 125, 95, 105, 110, 100
- AM = Sum of above numbers/10 = 187
- SM = sum of the squared numbers/10 \Rightarrow taking root = 302.6

SM after removing outlier

- Consider a 1000 marks test.
- 10 students taking up the test.
- Their marks are

–900, 120, 90, 110, 115, 125, 95, 105, 110, 100

AM = Sum of above numbers/9 = 107.8

SM = sum of the squared numbers/9 \Rightarrow taking root = 108.3

AM and SM without outlier

Data = { 100, 120, 90, 110, 115, 125, 95, 105, 110, 100}

AM (107) (without outlier)

SM (107.5) (without outlier)

AM and SM with outlier

Data = {<u>900</u>, 120, 90, 110, 115, 125, 95, 105, 110, 100}

average of
$$\{1,3,5,7,9\}$$

$$\mu = \frac{(1+3+5+7+9)}{5}$$

$$= \left(\frac{1}{5}\right)1 + \left(\frac{1}{5}\right)3 + \left(\frac{1}{5}\right)5 + \left(\frac{1}{5}\right)7 + \left(\frac{1}{5}\right)9$$

$$= w_1 * 1 + w_2 * 3 + w_3 * 5 + w_4 * 7 + w_5 * 9$$

$$\Rightarrow w_1 = w_2 = w_3 = w_4 = w_5 = \frac{1}{5}$$

mean square average of $\{1,3,5,7,9\}$

$$\mu = \left(\frac{1^2 + 2^2 + 3^2 + 4^2 + 5^2}{5}\right)$$

$$=\frac{\left(1*1+3*3+5*5+7*7+9*9\right)}{5}$$

$$= \left(\frac{1}{5}\right)1 + \left(\frac{3}{5}\right)3 + \left(\frac{5}{5}\right)5 + \left(\frac{7}{5}\right)7 + \left(\frac{9}{5}\right)9$$

$$= w_1 * 1 + w_2 * 3 + w_3 * 5 + w_4 * 7 + w_5 * 9$$

$$\Rightarrow w_1 = \frac{1}{5}; w_2 = \frac{3}{5}; w_3 = \frac{5}{5}; w_4 = \frac{7}{5}; w_5 = \frac{9}{5}$$

Weights of MSE

- Bigger numbers ⇒ bigger weights
- If outliers happen to be larger number then big weight is allotted

Limitations/characteristics of MSE

- Errors are squared and summed
- Characteristics of squaring:
 - After squaring a big number becomes a bigger number
 - Errors occur in a range
 - Big errors are given more important compared to small errors

How does the weighted AM handle Outlier?

- Data = {900, 120, 90, 110, 115, 125, 95, 105, 110, 100}
- Bin 1 9 numbers
- Bin 5 1number
- Probability of bin1=0.9 & prob of bin5=0.1

Weights

N number of data points

AM

- Weights $w_1 = w_2 = ... = w_N = 1/N$
- $W_1 + W_2 + ... + W_N = 1$

Expectation

- Weights $w_1 = p_1$; $w_2 = p_2$; ... $w_N = p_N$
- $W_1 + W_2 + ... + W_N = p_1 + p_2 + ... + p_N = 1$

Weights for this example

- Bin 1 9 numbers
- Bin 5 1number
- Weight for bin 5 = w
- Weight for bin 1 = 9w

Reduced weight for outlier

- Weight for bin1 numbers > weight for bin5 numbers
- 9 times bigger than bin5 weight
- 9 numbers in bin1 and 1 number in bin5
- $9x(9w) + w = 82w = 1 \Rightarrow 0.012$
- Data = {<u>900</u>, 120, 90, 110, 115, 125, 95, 105, 110, 100}
- =0.012*900 + 0.108*(120+90+110+115+125+95+105+110+1 00)
- =115.6

Limitation of weighted AM

- Data = {<u>900</u>, 120, 90, 110, 115, 125, 95, 105, 110, 100}
- =0.012*900 + 0.108*(120+90+110+115+125+95+105+110+100)
- =115.6
- Data = { 1800, 120, 90, 110, 115, 125, 95, 105, 110, 100}
- =0.012*1800 + 0.108*(120+90+110+115+125+95+105+110+1 00)
- =126.4

What's the problem?

$$weighted AM = \sum normal _weight X normal _data \\ + reduced _weight X outlier$$

Still it depends on outlier value

Lesson

 Our measure should not depend upon outlier

Our measure should not depend upon outlier

How do you know 'something is outlier'?

Measure should not depend on data values

Ponder over the statement

Measure should not depend on data values

- Apart from data what else we can use
- Distribution (ore frequency) of the data

Frequency distribution

Value of data in X axis & frequency of data in Y axis

Lesson

- Our measure should not depend upon outlier
- Or simply data values should not be used

No more X axis

- We'll work with Y axis
- i.e. not with data values rather with frequency of data values

If we do not use data values then...

- Use their frequency distribution
- Assume marks of 457 students given to us
- Data = {90, 12, 155, 88, 65, ...76}
- Make frequency distribution out of this data

A measure works with Y axis i.e. frequency of occurrence

- Entropy
- Frequency of occurrence closely related with probability
- Probability = normalized frequency distribution

$$\sum_{i=1}^{r} p_i \log_2 \frac{1}{p_i} = -\sum_{i=1}^{r} p_i \log_2 p_i$$

