Equipo 4 Titanic - Machine Learning from Disaster

Introducción y Objetivos

Contexto

El desafío "Titanic - Machine Learning from Disaster" es un problema el cual estamos tratando de superar, la cual busca predecir la supervivencia de los pasajeros a bordo del Titanic.

Problematica

El problema se adentra en el aprendizaje supervisado, donde la meta es, entrenar un modelo a partir de datos etiquetados para que pueda hacer predicciones sobre datos no vistos previamente.

Google colab

Recursos y herramientas

kaggle

Base de Datos del Titanic disponible en Kaggle

Analisis de los datos

Limpieza de datos

Durante el desarrollo del reto observaron que habían muchos datos faltantes y en blanco, por lo que se decidió hacer una limpieza de los mismos, para eliminar espacios en blanco, tales como "Cabin" y datos inecesarios como "Ticket" y "Fare".

Para las columnas necesarias pero con datos en blanco tales como "Age" se decidio rellenar los datos usando vecinos y la columna de "embarked" decidimos llenar los datos faltantes con el valor de la embarcación "S".

Transformacion

Para mejorar la predicción decidimos transformar la columna de embarcación separándolo en 3 columnas, además de escalar la edad para que estuvieran en un rango más limitado de valores.

Survived	Pclass	Sex	Age	SibSp	Parch	С	Q	S
0	3	0	-0.891171	1	0	0.0	0.0	1.0
0	3	0	-0.386324	0	0	1.0	0.0	0.0
0	2	0	-0.450577	0	0	1.0	0.0	0.0
0	1	0	2.266420	0	0	0.0	0.0	1.0
0	2	0	0.650908	0	0	0.0	0.0	1.0

Entrenamiento de modelos

Regresión Logistica

Mejor calificación Kaggle: 77.9

Bosque Aleatorio.

Parámetro	Valor
max_depth_list	[4]
n_estimators_list	[150]

Mejor calificación Kaggle: 78.9

Árbol de Decisión

Parámetro	Valor
max_depth_list	[4]
min_samples_leaf_list	[1]

Mejor calificación Kaggle: 77.5

Redes Neuronales

Parámetro	Valor
hidden_layer_sizes	(6, 2, 2, 1)
max_iter	2000
solver	Ibfgs
activation	relu

(Los demás parámetros de la función quedaron como default)

→ F1 Score: 0.7669172932330827 Precision: 0.7727272727272727 - 90 - 80 97 15 - 70 True label - 60 50 40 51 16 30 20 Predicted label

Mejor calificación Kaggle: 75.6

Resultados

El Bosque Aleatorio destacó como el modelo más prometedor. Se realizaron ajustes adicionales optimizando sus parámetros para encontrar la configuración ideal.

Conclusiones

El Bosque Aleatorio ha demostrado ser la opción más efectiva, combinando precisión y generalización. Aunque las redes neuronales podrían ofrecer mejoras en el futuro, el Bosque Aleatorio se posiciona actualmente como la solución más sólida para este contexto.

Gracias por su atencion!