Übungen zur Vorlesung Differentialgeometrie II

Blatt 10

Aufgabe 35. (4 Punkte)

Beweise das Rangtheorem, Theorem 18.16:

Sei $f:M^m\to N^n$ eine Abbildung die in jedem Punkt den Rang k hat. Dann gibt es für jeden Punkt $p\in M$ Karten (U,φ) und (V,ψ) von M bzw. N mit $p\in U,$ $f(p)\in V$ und $f(U)\to V$, so dass

$$\psi \circ f \circ \varphi^{-1}(x^1, \dots, x^m) = (x^1, \dots, x^k, 0, \dots, 0).$$

Hinweis: Benutze die Diffeomorphismen

$$\varphi(x^1,\ldots,x^m) = \Big(f^1\big(x^1,\ldots,x^m\big),\ldots,f^k\big(x^1,\ldots,x^m\big),x^{k+1},\ldots,x^m\Big)$$

und

$$\psi^{-1}(y^1, \dots, y^k, y^{k+1}, \dots, y^m) = (y^1, \dots, y^k, y^{k+1} + \bar{f}^{k+1}(y^1, \dots, y^k), \dots, y^n + \bar{f}^n(y^1, \dots, y^k))$$

für geeigntetes \bar{f} .

Aufgabe 36. (4 Punkte)

Zeige, dass das Tangentialbündel $T\mathbb{S}^3$ ein triviales Vektorbündel ist.

Aufgabe 37. (4 Punkte)

Sei $M \subset \mathbb{R}^n$ eine m-dimensionale Untermannigfaltigkeit.

- (i) Definiere Untervektorbündel.
- (ii) Zeige, dass TM ein Untervektorbündel des trivialen Bündels $M \times \mathbb{R}^n$ ist.
- (iii) Sei

$$NM := \bigcup_{x \in M} \{x\} \times (T_x M)^{\perp}$$

die disjunkte Vereinigung der Normalenräume von M.

Finde eine Unterbündelstruktur für NM bezüglich $M \times \mathbb{R}^n$.

Aufgabe 38. (4 Punkte)

Sei $\Sigma_k \subset B_R(0) \subset \mathbb{R}^2$ eine Folge von eingebetteten, geschlossenen Kurven mit gleichmäßig beschränkter Krümmung, d. h. es existiert ein C>0 sodass $|\kappa_k(p)|\leq C$ für alle $p\in\mathbb{S}^1$ und alle $k\in\mathbb{N}$.

Zeige, dass jede Limeskurve Σ_{∞} eingebettet ist.

Abgabe: Bis Donnerstag, 28.06.2018, 10.00 Uhr, in die Mappe vor Büro F 402.