`E0 217 Project Report (Aug 2023)

Project Title: Design, Implementation and Simulation of an 8-point FFT Circuit in 45nm CMOS

TABLE OF CONTENTS:

S.NO	TITLE	PAGE NUMBER
1	Introduction about group members and individual	2
	Contributions	
2	Number of clock cycles for FFT computation	2
3	Area of synthesized design	3
4	Analysis of max clock frequency	3
5	Power Consumption analysis	5
6	Energy Consumption analysis	6
7	Error Computation	6
8	Modification of FFT circuit to compute inverse FFT	8
9 Design Details and explanation of implementation		8
10	Architectural Trade-offs	11
11	References	11

E0 217 Project Report (Aug 2023)

Names and IISc Email IDs of Group Members:

Ī		Name	SR No.	IISc Email ID
Ī	1.	Guhan Rajasekar	22410	guhanr@iisc.ac.in
	2.	Ujjwal Chaudhary	22577	ujjwalc@iisc.ac.in

Individual Contributions

	Name	Contributions	
1.	Guhan Rajasekar	 Implementation of FFT code (without control signals) Error computation between obtained and desired results Report compilation 	
2.	Ujjwal Chaudhary	 Optimization of code (changing combinational blocks to sequential blocks) and making the code compatible with CLK signal and control signals like RST, WRITE, START, READY Creation of test bench and simulation of design in GTK Wave. Performed area, power and speed analysis. 	

Number of clock cycles per FFT computation:

Number of clock cycles between beginning of start and beginning of ready signal = 4.75

2

Area of synthesized design:

Area of synthesized design is 13367.298 μm².

Max clock frequency supported by the synthesized design:

• Typical corner, 25°C and 1V

- This result is for typical corner, 25°C and 1V.
- Input clock signal period is 5ns.
- Here the slack period is 0.26ns.
- Supported clock period is 5ns 0.26ns = 4.74ns
- Operating frequency is 210.97 MHz.

• SS corner, 25°C, 1V

- ➤ This is for SS corner, 25°C and 1V.
- > Input clock period is 20ns. (because this case does not support clock signal of 5ns)
- ➤ Slack period is 0.66 ns.
- ➤ Supported clock signal period is 20ns 0.66ns = **19.34ns**
- > Operating frequency = **51.706MHz**.

• FF corner, 25°C, 1V

- Input clock signal period = 5ns.
- Slack period = 2.54 ns.
- Clock period supported by the design = 2.46ns.
- Max operating frequency at FF corner = 406.504MHz

Power Consumption of the synthesized design:

• Power Consumption in typical corner, 25°C and 1V:

- ➤ The total power consumed at typical corner, 25°C and 1V is **15.1mW**.
- Power Consumption in SS corner,25°C and 1V.

- Power consumed at SS corner, 25°C and 1V is 2.45mW
- Power Consumption in FF corner,25°C and 1V.

Total power consumption at FF corner, 25°C and 1V is **27.2mW**.

Energy Consumption of synthesized design:

- Typical, 25°C, 1V, T=5ns (Image attached above)
- Typical, 25°C, 1V, T=10ns

Typical, 25°C, 1V, T=20ns

Corner Case	Power Consumption (mW)	Frequency (MHz)	Energy Consumption (pJ)
Typical, 25°C, 1V	15.1	200	75.5
Typical, 25°C, 1V	7.68	100	76.8
Typical, 25°C, 1V	3.98	50	79.6

Dependence of Energy Consumption of the synthesized design on the clock frequency:

• From above mentioned table, we conclude that **energy consumption reduces as clock frequency increases.**

Maximum absolute error when computing FFT of {0, 1, 2, 3, 4, 5, 6, 7}

- Let the 8-point FFT result be denoted as X(0), X(1), X(2), X(3), X(4), X(5), X(6) and X(7)
- Here a decimal point has been added in the obtained results to indicate there are 8 bits for the fractional part, 7 bits for the decimal part and MSB is the sign bit. This holds true for both real and imaginary parts.
- In the following calculations, $\sqrt{2}$ is considered as **1.414**.

1. X(0):

- ➤ Expected = 28 + j0
- \rightarrow Obtained = $(1c.00 + j00.00)_H = 28 + j0$
- ➤ Absolute Error = 0

2. <u>X(1)</u>

- \triangleright Expected = -4.0 + j 9.656
- \triangleright Obtained = $(fc.00 + j09.a0)_H = -4 + j9.625$
- \rightarrow Absolute Error = $|(-4.0 + j \cdot 9.656) (-4 + j \cdot 9.625)| = 0.031$

3. <u>X(2)</u>

- \triangleright Expected = -4 + j4
- \triangleright Obtained = $(fc.00 + j04.00)_H = (-4 + j4)$
- ➤ Absolute Error = 0

4. <u>X(3)</u>

- \triangleright Expected = -4 + j1.656
- \triangleright Obtained = (fc.00 + j01.a0)_H = -4 + j1.625
- \rightarrow Absolute Error = |(-4 + j1.656) (-4 + j1.625)| = 0.031

5. X(4)

- \triangleright Expected = -4 + j0
- \triangleright Obtained = (fc.00 + j00.00)_H = -4 + j0
- ➤ Absolute Error = 0

6. X(5)

- \triangleright Expected = -4 j1.656
- \rightarrow Obtained = $(fc.00 + jfe.60)_{H} = (-4 j1.402)$
- \rightarrow Absolute Error = |(-4 j1.656) (-4 j1.402)| = 0.254

7. X(6)

- \triangleright Expected = -4.0 j4.0
- ightharpoonup Obtained = $(fc.00 + jfc.00)_H = -4 j4$
- ➤ Absolute Error = 0

8. X(7)

- \triangleright Expected = -4 i9.656
- \triangleright Obtained = (fc.00 + jf6.60)_H = -4 j9.625
- \rightarrow Absolute Error = |(-4 j9.656) (-4 j9.625)| = 0.031

Modifying the fft circuit to compute inverse fft

• Inverse fft can be computed using Data Swapping technique, as shown below:

- The real part of FFT input is fed as imaginary input to the circuit and the imaginary part of FFT is fed as real input to the circuit.
- The real portion of the output gives imaginary part of expected time domain sequence scaled by N and the imaginary part of the output gives the real part of the time domain sequence scaled by N. To get the desired outputs, we divide them by N.
- So, in addition to the existing hardware circuitry, extra circuitry will be required to scale by factor of (1/N) to get the desired time domain inverse FFT sequence.

Design Details:

• The entire FFT computation has been divided into five stages as follows:

- Stage 2 and Stage 3 are used for intermediate variable computations in the code.
- But the overall FFT computation can be broadly classified into stages 0, 1 and 4.
- If the RST_N signal is low, the value 0 is written in the registers i0_real, i0_imag, i1_real,i1_imag,, i7_real, i7_imag.
- The output wires out0_real,out0_imag, out1_real,out1_imag,....out7_real,out7_imag are continuously driven by the data present in the registers as shown below.

• In the above block, although only two registers are shown, there are total of 16 registers (8 for the real part and 8 for the imaginary part) and each register holds 16 bit data.

• Storing Inputs in registers:

- > The circuit stores inputs in registers when write signal is high.
- When write signal is high, the registers i0_real ,i0_imag, i1_real,i1_imag,... ,i7_real, i7_imag will store the value held by the continuously driven wires in0_real,in0_imag,in1_real,in1_imag.....,in7_real,in7_imag respectively as shown below:

- Here as well only two signals in real and in imag are shown for brevity of block diagram.
- But there are 16 wires (8 for real and 8 for imaginary parts) that are continuously driven.
- Computation commences when start signal is high.
- The value stored by 2-bit register variable named stage indicates the stage of FFT computation.

• Stage 0 computations:

- ➤ The contents in i0_real, i0_imag,......,i7_real,i7_imag act as inputs for stage 0 computations.
- The registers g_real[0], g_imag[0], g_real[1],g_imag[1]....,g_real[7],g_imag[7] store the results of stage 0.

9

- Once again for brevity, not all the registers of stage 0 are shown.
- There are 16 registers. 8 registers hold the real part of stage 0 results and 8 registers hold the imaginary part of stage 0 results.
- > Stage 0 computations is based on the formula obtained from the butterfly diagram.
- Once stage 0 computations are done, the content of stage register is incremented by 1 to go to the next stage.

• Stage 1 computations

➤ For stage 1 computations, the contents of the registers g_real[0], g_imag[0], g_real[1],g_imag[1]....,g_real[7],g_imag[7] will be the inputs and the results are stored in the registers

> The computations are based on the equations obtained from the butterfly diagram.

• Stage 2 computations

- In this stage, the registers temp0, temp1, temp2 and temp3 are populated as follows:
 - \circ temp0 = h real[5] + h imag[5]
 - o temp1 = h imag[5] h real[5]
 - o temp2 = h_imag[7] h_real[7]
 - o temp3 = -(h_imag[7] + h_real[7])
- > These calculations aid in the computation of the final result.
- Once the above calculations are done, contents of the stage register is incremented by 1 and we go to the next stage.

• Stage 3 computations

- In this stage, the contents of temp0, temp1, temp2, temp3 are multiplied with 0.707 (hardcoded in binary in the code).
- Then content of the stage register is incremented and we go to the final stage.

• Stage 4 computations:

➤ Here the contents of h_real[0],h_imag[0],h_real[1],h_imag[1]...,h_real[7],h_imag[7] act as inputs and the final output is stored in the registers i real[0],i imag[0],i real[1],i imag[1],...i real[7],i imag[7].

➤ The wires out0_real , out0_imag, out1_real, out1_imag,......out7_real,out7_imag are continuously driven by the contents in these registers. Hence at any point of time, the output at that instant is present in these output wires.

Architectural Trade-offs

- In this FFT implementation, focus is low latency.
- Hence the inbuilt multiplication function has been used with the '* 'symbol to get faster multiplication results that are required at the intermediate stages.
- This comes at the cost of more area and power consumption.
- As an addition, pipelining can be implemented if we want to improve throughput.

References

- [1] Wikipedia Fast Fourier Transform
- [2] NPTEL Hardware Modelling using Verilog by Prof. Indranil Sen Gupta
- (3) "The Fast Fourier Transform (FFT): Most Ingenious Algorithm Ever?" Youtube.com by Reducible
- [4] "DSP Tricks: Computing inverse FFTs using the forward FFT" embedded.com