Semaine du 21/03 au 25/03

1 Cours

Polynômes

Polynômes à une indéterminée à coefficients dans \mathbb{K} Définitions : polynôme à coefficients dans \mathbb{K} , ensemble $\mathbb{K}[X]$. Deux polynômes sont égaux si et seulement si leurs coefficients sont égaux. Polynômes pairs, impairs. $(K[X], +, \times)$ est un anneau intègre commutatif. $(\mathbb{K}[X], +, \cdot)$ est un \mathbb{K} -espace vectoriel. Base canonique de $\mathbb{K}[X]$. Degré d'un polynôme. Degré d'une combinaison linéaire, d'un produit. Définition de $\mathbb{K}_n[X]$. $\mathbb{K}_n[X]$ est un sous-espace vectoriel de $\mathbb{K}[X]$. Base canonique de $\mathbb{K}_n[X]$. Famille de polynômes à degrés échelonnés. Fonction polynomiale associée à un polynôme. Racine d'un polynôme. Cas des polynômes pairs/impairs et des polynômes à coefficients réels. Polynôme dérivé. La dérivation est linéaire. Formule de Leibniz. Formule de Taylor.

Arithmétique de K[X] Relation de divisibilité. Division euclidienne. Algorithme de division euclidienne. Un polynôme P admet a pour racine si et seulement si il est divisible par X−a. Existence et unicité d'un PGCD unitaire ou nul. Algorithme d'Euclide pour les polynômes. Théorème de Bézout. Polynômes premiers entre eux. Lemme de Gauss. Un polynôme de degré n admet au plus n racines. Polynômes interpolateurs de Lagrange. Existence et unicité d'un PPCM unitaire ou nul.

Racines multiples Définition. Un polynôme de degré n admet au plus n racines comptées avec multiplicité. Caractérisation de la multiplicité d'une racine par les dérivées successives.

Factorisation Polynômes irréductibles. Définition et décomposition en facteurs irréductibles. Théorème de d'Alembert-Gauss. Polynômes irréductibles de $\mathbb{C}[X]$ et $\mathbb{R}[X]$. Polynôme scindé. Un polynôme est scindé si et seulement si il possède autant de racines comptées avec multiplicité que son degré. Lien coefficients/racines.

Fractions rationnelles

Corps des fractions rationnelles Définition. Opérations. Degré. Dérivation. $\mathbb{K}(X)$ est un \mathbb{K} -espace vectoriel et un corps. Fonctions rationnelles, zéros et pôles Fonction rationnelle associée à une fraction rationnelle. Zéros et pôles d'une fraction rationnelle. Multiplicité d'un zéro ou d'un pôle.

Décomposition en éléments simples Partie entière. Décomposition en éléments simples sur \mathbb{C} et sur \mathbb{R} . Décomposition en éléments simples de $\frac{\mathsf{P}'}{\mathsf{P}}$ où P est scindé.

Sous-espaces affines

Sous-espaces affines Définition. Intersection de sous-espaces affines.

Équations linéaires Description de l'ensemble des solutions de f(x) = b d'inconnue $x \in E$ où $f \in \mathcal{L}(E, F)$ et $b \in F$.

2 Méthodes à maîtriser

- ▶ Pour résoudre des équations d'inconnue polynomiale, chercher dans un premier temps à déterminer le degré du polynôme inconnu.
- ▶ Déterminer le reste d'une division euclidienne (utiliser les racines du diviseur).
- ▶ Montrer qu'un polynôme est nul en montrant qu'il admet une infinité de racines.
- ▶ Caractériser la multiplicité d'une racine via les dérivées successives.
- \blacktriangleright Passer de la décomposition en facteurs irréductibles sur $\mathbb{C}[X]$ à celle sur $\mathbb{R}[X]$.
- ▶ Utiliser la parité et le fait qu'un polynôme est à coefficients réels pour obtenir des racines à partir d'une racine donnée.
- ▶ Résoudre des systèmes polynomiaux symétriques en les inconnues.
- ▶ Exprimer une somme et un produit de racines à l'aide des coefficients du polynôme.
- ▶ Déterminer une partie polaire d'une fraction rationnelle relative à un pôle simple ou double.
- ▶ Accélérer la décomposition en éléments simples en utilisant :
 - le fait que des pôles soient conjugués;
 - la parité éventuelle de la fraction rationnelle;
 - la limite de xF(x) quand x tend vers $+\infty$;
 - des valeurs particulières.
- ▶ Calculer des intégrales de fractions rationnelles ou de fractions rationnelles trigonométriques.

3 Questions de cours

- $\textbf{Soit } n \in \mathbb{N}^*. \text{ Déterminer les racines de } P_n = (X+\mathfrak{i})^n (X-\mathfrak{i})^n. \text{ En déduire les valeurs de } A_n = \sum_{k=1}^{n-1} \cot n \, \frac{k\pi}{n} \text{ et } \\ B_n = \prod_{k=1}^{n-1} \cot n \, \frac{k\pi}{n}.$
- $\blacktriangleright \ \, \mathrm{Soit} \,\, \mathfrak{n} \in \mathbb{N}^*. \,\, \mathrm{D\acute{e}terminer} \,\, \mathrm{la} \,\, \mathrm{d\acute{e}composition} \,\, \mathrm{en} \,\, \acute{\mathrm{e}l\acute{e}ments} \,\, \mathrm{simples} \,\, \mathrm{de} \,\, \frac{1}{X^n-1} \,\, \mathrm{dans} \,\, \mathbb{C}(X).$
- $\blacktriangleright \ \mathrm{Soit} \ P = \prod_{k=1}^n (X \alpha_k)^{r_k}. \ \mathrm{Montrer \ que} \ \frac{P'}{P} = \sum_{k=1}^n \frac{r_k}{X \alpha_k}.$