a PGLz(Fg) Consider action of GL2 (IFq) on M2 (IFq) For matrices, $x = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \leftarrow \text{Rational Consider}$ $y = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \leftarrow \text{with min poly } X^2$ $x = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \leftarrow \text{with min poly } X^2$ want to compute size of their orbits using extent correspondence theorem IGX = G A = GL2 (IFq): A = x = x } == q = - 2 g +1 = { A ∈ GL2(Fq): A(O1)A-1=(O1)} Charly, 5X + tI commutes with x for all $5, t \in IF_g$, so if $5x + tI \in GL_2(IF_g)$, then $5x + tI \in G_x$ So, when is det (SU+(I)=0 $\det(sx+ti) = (ts) = t^2-s^2$ O when {2=52 , so when t= ±5. So we have found $q^2 - 2q + 1$ elements of G_{χ} . If these are all of them, then $[G:G_{\chi}] = (q^2 - 1)(q^2 - q) = q(q + 1)$ => # orbit(x) = q(9+1)

Similarly, we can compute

Gy = 3 BEGL (Fg): ByB-1= y}

Now, = 5 y + + I commutes with y \f s, telfq,
50 if sy++I & GLz(IFq), then sy++I&Gx

det $(sy+tI)=det(t0)=t^2$, which is 0 iff t=0.

We have therefore found $q^2-q=q(q-1)$ elements of Gy. If these are all of them, then $[G:Gy] = (q^2-1)(q^2-q) = q^2-1$

=> # orbit (x) = q2-1