Coloração de Grafos

Helton Hideraldo Bíscaro

8 de setembro de 2009

Apresentação

Problema

Quantas cores são necessárias para colorir o mapa do Brasil, sendo que estados adjacentes não podem ter a mesma cor?

Teorema das quatro cores

Provado em 1976, se constitui em um dos resultados mais importantes da matemática no Século XX, permaneceu sem solução desde 1852 e possui aplicação em muitos problemas práticos.

Teorema das quatro cores

Provado em 1976, se constitui em um dos resultados mais importantes da matemática no Século XX, permaneceu sem solução desde 1852 e possui aplicação em muitos problemas práticos.

Definição

Uma **coloração** de um grafo é uma atribuição de cores aos vértices, de modo que vértices adjacentes tenham cores distintas.

- Um grafo G tem k-coloração se ele pode ser colorido com k cores.
- Se G tem k-coloração mas não pode ter (k-1)- coloração:
 - O número cromático de G é k.
 - G é k-cromático.
 - $\chi(G) = k$.

Teorema²

Um grafo G é bipartido se e somente se todo ciclo de G possuir comprimento par.

Para alguns tipos de grafos, o número cromático é facil de determinar (C_i representa um grafo cíclico de i vértices):

- C_{2p} : número cromático = 2
- C_{2p+1} : número cromático = 3
- K_p : número cromático = p
- Grafo bipartido número cromático = 2

Teorema

O número cromático de um grafo é 2 se e somente se ele é bipartido.

Demonstração Ida:

Suponhamos que duas cores são suficientes para colorir o grafo G. Seja agora um ciclo de G de comprimento ímpar. Ja sabemos que o número cromático de um grafo cíclico de comprimento ímpar é G0. Portanto G0 não pode conter tal ciclo. Como todo ciclo de G0 dever ser par, podemos concluir, o grafo é bipartido.

Demonstração Volta:

Seja G um grafo bipartido, e X e Y os dois conjuntos de vértices que formam esse grafo bipartido. Como nenhum vértice de X é adjacente a outro vértice do mesmo conjunto, todos podem receber a mesma cor. Da mesma maneira, atribuimos a outra cor aos vértices de Y. Como todas as arestas do grafo ligam um vértices de X com um vértice de Y, não temos vértices adjacentes com a mesma cor.

Alguns teoremas úteis

- Se G e um grafo e k e o maior grau de seus vértices, entao G tem (k+1)-coloração.
- Se G e um grafo conectado que nao e completo, e se o maior grau de seus vértices e k, ($k \ge 3$), entao G tem (k)-coloração.
- Appel e Hasken provaram em 1976 que todo grafo planar admite 4-coloração.
- Como determinar o número cromático de um grafo?

Algoritmos gulosos com heurísticas

Utilizaremos a seguinte convenção: cada cor é identificada por um número inteiro.

```
Algoritmo 1: Algoritmo Ingênuo
```

Entrada: Um Grafo G

```
Saída: Grafo G colorido
1 i := 1;
2 enquanto G Contém vértices não coloridos faça
3 para cada vértive v não colorido faça
4 se Nenhum vértice adjacente a v possui a cor i então
5 Atribuir a cor i ao vértice v;
6 i := i + 1;
```

7 retorna G

Resultado

Resultado

Grafos: Usaremos (-1) para representar ausência de cor.

Algoritmo 2: Algoritmo Ingênuo Alterado

```
Entrada: Um Grafo G
   Saída: Grafo G colorido
 1 para i := 1 até n faca
   Cor[i] := -1
   c := 1; (primeira cor usada)
   para v := 1 até n faca
        ok := TRUE:
 6
        para k := 1 até c faca
             para cada vértice u adjacente a v faça
 8
                 se Cor[u] então
 9
                      ok := FALSE; (v já tem um vértice adjacente com essa cor)
10
                      sair:
             se ok = TRUE então
11
12
                 Cor[v] := k; sair;
13
        se ok = FALSE então
14
             c := c + 1; (Todas as cores atuais são usadas pelos vértice adjacentes)
             Cor[v] := c:
```

15 retorna G

Quanto maior o grau de um vértice, mais difícil será colorir esse vértice

```
Algoritmo 3: Algoritmo Maior Grau Primeiro
  Entrada: Um Grafo G
  Saída: Grafo G colorido
1 Ordenar os vértices de G em ordem não crescente de grau;
2 i := 1;
 enquanto G Contém vértices não coloridos faça
     para cada vértive v não colorido faça
         se Nenhum vértice adjacente a v possui a cor i então
            Atribuir a cor i ao vértice v;
         i := i + 1;
```

retorna G

5

6

a)

Resultado

Figura: Coloração a) Ordem 4, 5, 3, 6, 2, 1; b) Ordem 4, 6, 2, 5, 3, 1

Exercício

- 1. Analise o custo de execução dos algoritmos de coloração apresenados.
- 2. Uma companhia manufatura os produtos químicos C_1, C_2, \ldots, C_n . Alguns destes produtos podem explodir se colocados em contato com outros. Como precaução contra acidentes, a companhia quer construir k armazéns para armazenar os produtos químicos de tal forma que produtos incompatíveis fiquem em armazéns diferentes. Qual é o menor número k de armazéns que devem ser construídos? Como resolver este problema com a ajuda da teoria dos Grafos?

Teorema*: Prova:

Ida: Seja X e Y as duas partições de G. Todo caminho em G alterna um vértice de X com um vertice de Y. Isso é a conseqüência da definição de grafo bipartido. Supondo que um ciclo contém um vértice vi em uma das duas partições. Para voltar a esse vértice, é preciso ir na outra partição e voltar um número par de vezes.

Volta: Seja *G* um grafo onde todo ciclo é de comprimento par. Seja um vértice vi de G. Colocamos num conjunto X o vértice vi e todos os outros que são a uma distância par de vi. Os outros vértices formam o conjunto Y. Se não tivesse nenhuma aresta ligando dois vértices de X ou dois vértices de Y, respeitariamos as condições para que o grafo seja bipartido. Suponha que existe uma outra aresta entre dois vértices a e b de X (ou Y). Já temos um caminho par entre a e b. Acrescentando a nova aresta, obteriamos um ciclo de comprimento ímpar, o que contradiz a hipótese. Portanto, não pode existir outra aresta entre qualquer par de vértices que já está em X e o grafo é bipartido.

