2 Binary Operations

- 2.1 Binary Images
- 2.2 Morphological Filters
 - Dilation
 - Erosion
- 2.3 Opening & Closing
- 2.4 Morphological Filtering of Gray-Scale Images

2.1 Binary Images

Binary images are very common

- Document image processing (texts, forms)
- Image analysis
 - Thresholding, segmentation, foreground/background
 - Presence/absence of some image property

Processing by logical functions is simple and fast

Morphological image processing

- Modifies the shape of regions
- It has been extended to gray level images

P. Dong et al., "Foreground Detection with Simultaneous Dictionary Learning and Historical Pixel Maintenance", Trans. On Imag. Proc., Nov. 2016

2.2 Morphological Filters

Morphology

Study of forms and structure (originally for animals and plants)

In the context of image processing

 Tool for extracting image components to study structure and shape of objects (regions)

Morphological filtering

- operations where an object is "hit" with a structuring element and thereby reduced/expanded to a more revealing shape
- · originally aimed at binary signals; extension for non-binary signals

Structuring Element

Binary structuring element $b[m,n] \triangleq 20$ signal

- A mask used to probe ("hit") an image under study for properties of interest
- b[m-k, n-l] denotes translation of b[m, n] so its origin is centered at position [k, l]

Examples for b[m, n]:

Dilation

Dilation of binary signal s by b is defined as set of all points (k, l) such that b[m - k, n - l] hits s[m, n], i.e. they have non-empty intersection

Dilation

Effects of dilation

- Expands the size of 1-valued objects
- Smooths object boundaries
- Closes holes and gaps

Original image

<u>Dilation</u> with <u>3x3</u> structuring element

Dilation with 9x9 structuring element

Dilation

Effects of dilation

- Expands the size of 1-valued objects
- Smooths object boundaries
- Closes holes and gaps

Original image

Dilation with 3x3 structuring element

Dilation with 9x9 structuring element

Erosion

Erosion of binary signal s by b is defined as the set of all points (k, l) such that b[m - k, n - l] is (entirely) **included** in s[m, n]

$$s \ominus b := \{(k,l)|b[m-k,n-l] \subset s[m,n]\}$$
and by richards in

Erosion

Effects of erosion

- Shrinks the size of 1-valued objects
- Smooths object boundaries
- Removes peninsulas, fingers and small objects 🧘 💤 🛰 🛰 🛰 🛰

Original image

Erosion with 5x5 structuring element

Erosion with 27x27 structuring element

Erosion

Effects of erosion

- Shrinks the size of 1-valued objects
- Smooths object boundaries
- Removes peninsulas, fingers and small objects

Original image

Erosion with 3x3 structuring element

Erosion with 5x5 structuring element

Properties of Erosion and Dilation

SIMIN] [b[min] y[min]

Translational invariance

• Translation of an object causes the same shift in the result d. LSI (linear shift invariant) systems -> Chep. 4

lan: not himser but shift invariant

Reversibility

- Erosion and dilation are <u>not</u> reversible in general, specifically they are not inverses of each other
- Example: closing holes

Properties of Erosion and Dilation

Translational invariance

Translation of an object causes the same shift in the result

Reversibility

- Erosion and dilation are not reversible in general, specifically they are not inverses of each other
- Example: erosion of tiny objects/contours

Properties of Erosion and Dilation

Distribuitivity

Consecutive dilation or erosion by different structuring elements b and b

$$s \bigoplus (b \cup b') = (s \bigoplus b) \cup (s \bigoplus b')$$

$$s \bigoplus (b \cup b') = (s \bigoplus b) \cap (s \bigoplus b')$$

Duality

• Erosion (dilation) of an object by b is equivalent to dilation (erosion) of its background by the reflection of b, i.e.,

background
$$\frac{\overline{s} \oplus \overline{b}}{\overline{s} \oplus \overline{b}} = \overline{s} \oplus \widehat{b}$$
The center pixel

• For symmetric structuring elements $b = \hat{b}$

2.3 Opening and Closing

Combination of basic morphological operations (dilation and erosion)

Goal: smoothing without size change

Opening: erosion followed by dilation

$$s \circ b = (s \ominus b) \ominus b$$

Removes small regions (islands) of s

Closing: dilation followed by erosion

$$s \cdot b = (s \oplus b) \ominus b$$

Removes small holes and narrow structures within s

Noise Removal by **Opening**

Hole Removal by Closing

Boundary Extraction

Morphological edge detectors

S

only boundaries remain

 $s - (s \ominus b)$

 $(s \oplus b) - s$

more from our ced

 $(s \oplus b) - (s \ominus b)$

Let r denote an 8-connected boundary of an object

Iterative hole filling:

ng:
$$s_k = (s_{k-1} \oplus b) \cap \overline{r} \qquad k = 1, 2, 3, ...$$
 only used, shop at boundary

Seed defines the concept of inside (hole) vs. outside

It is dilated until it hits the boundary: conditional dilation

Object depends on placement of startering point 50 -> viside / outside

2.4 Morphological Filtering of Gray-Scale Images

Idea: Extension of morphological operations to gray-scale images using binary (flat) structuring element

· Gray-scale structuring elements are rarely used

Output: Minimum value (erosion) or maximum value (dilation) of grayscale image within structuring element

2.4 Morphological Filtering of Gray-Scale Images

Idea: Extension of morphological operations to gray-scale images using binary (flat) structuring element

· Gray-scale structuring elements are rarely used

Output: Minimum value (erosion) or maximum value (dilation) of grayscale image within structuring element

