Scilab Textbook Companion for Semiconductor Physics And Devices by D. A. Neamen¹

Created by
Kriti Suneja
ELECTRONICS AND COMMUNICATION
Electronics Engineering
LNMIIT, JAIPUR
College Teacher
Prof. R.Sharan
Cross-Checked by

May 19, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Semiconductor Physics And Devices

Author: D. A. Neamen

Publisher: Tata McGraw - Hill Education

Edition: 3

Year: 2007

ISBN: 978-0-07-061712-4

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Introduction to Quantum Mechanics	5
2	Introduction to the quantum theory of solids	9
3	The Semiconductor in Equilibrium	13
4	Carrier Transport Phenomenon	21
5	Non Equilibrium excess careers in semiconductors	26
6	The pn junction	28
7	The pn junction diode	32
8	Metal semiconductors and semiconductor heterojunctions	37
9	The Bipolar transistor	43
10	Fundamentals of the Metal Oxide semiconductor Field Effect Transistor	50
11	Metal semiconductors and semiconductor heterojunctions Additional concepts	57
12	The junction field effect transistor	62
13	Optical devices	69

List of Scilab Codes

Exa 1.1	Photon energy	5
Exa 1.2	Broglie wavelength	5
Exa 1.3	Electron in infinite potential well	6
Exa 1.4	Penetration depth of a particle impinging on a potential	
	barrier	7
Exa 1.5	Probability of an electron tunneling through a potential	
	barrier	7
Exa 2.1	Change in kinetic energy	9
Exa 2.2	Lowest allowed energy bandwidth	9
Exa 2.3	Density of States	10
Exa 2.4	The Fermi Dirac Probability Function	10
Exa 2.5	The Fermi Dirac Probability Function	11
Exa 2.6	The Distribution function and the Fermi Energy	11
Exa 2.7	The Distribution function and the Fermi Energy	12
Exa 3.1	Equilibrium Distribution of Electrons and holes	13
Exa 3.2	Equilibrium Distribution of Electrons and holes	13
Exa 3.3	Intrinsic carrier concentration	14
Exa 3.4	Intrinsic fermi level position	14
Exa 3.5	Extrinsic Semiconductor	15
Exa 3.6	Extrinsic Semiconductor	15
Exa 3.7	Statistics of acceptors and donors	16
Exa 3.8	Statistics of acceptors and donors	16
Exa 3.9	Charge Neutrality	17
Exa 3.10	Charge Neutrality	17
Exa 3.11	Charge Neutrality	18
Exa 3.12	Charge Neutrality	18
Exa 3.13	Position of Fermi Energy level	19
Eva 3 14	Position of Fermi Energy level	19

Exa 4.1	Carrier drift	21
Exa 4.2	Carrier drift	21
Exa 4.3	Conductivity	22
Exa 4.4	Carrier diffusion	23
Exa 4.5	Graded impurity distribution	23
Exa 4.6	The Einstein relation	24
Exa 4.7	The hall effect	24
Exa 5.5	Relaxation time	26
Exa 5.6	Quasi Energy Fermi levels	27
Exa 5.10	Surface effects	27
Exa 6.1	Zero applied bias	28
Exa 6.2	Space charge width	28
Exa 6.3	Space charge width	29
Exa 6.4	Space charge width	29
Exa 6.5	Junction capacitance	30
Exa 6.6	Junction capacitance	30
Exa 7.1	pn junction current	32
Exa 7.2	pn junction current	32
Exa 7.3	pn junction current	33
Exa 7.4	pn junction current	34
Exa 7.5	Temperature effects on pn junction	34
Exa 7.6	small signal admittance	35
Exa 7.7	Generation recombination currents	35
Exa 8.1	Shottky barrier diode	37
Exa 8.2	Non ideal effects on barrier height	38
Exa 8.3	Non ideal effects on barrier height	38
Exa 8.4	Current voltage relationship	39
Exa 8.5	Comparison of the schottky barrier diode and the pn	
	junction diode	39
Exa 8.6	Shottky barrier diode and pn junction	40
Exa 8.7	Tunnelling barrier	40
Exa 8.8	Equilibrium electrostatics	41
Exa 9.1	Gain factors	43
Exa 9.2	Gain factors	43
Exa 9.3	Gain factors	44
Exa 9.4	Gain factors	44
Exa 9.5	Non ideal effects	45
Exa 9.6	Non ideal effects	46

Exa 9.7	Non ideal effects
Exa 9.8	Breakdown voltage
Exa 9.9	Breakdown voltage
Exa 9.10	Ebers moll model
Exa 9.12	Transistor cut off frequency
Exa 10.1	The two terminal MOS structure
Exa 10.2	Work function
Exa 10.3	Flat band voltage 51
Exa 10.4	Flat band voltage
Exa 10.5	Threshold voltage
Exa 10.6	Threshold voltage
Exa 10.7	Capacitance Voltage characteristics
Exa 10.8	Current voltage relationship
Exa 10.9	Threshold voltage
Exa 10.10	Substrate bias effects
Exa 10.11	Cut off frequency
Exa 11.1	Mobility variation
Exa 11.2	Mobility variation
Exa 11.3	narrow channel effects
Exa 11.4	Breakdown voltage
Exa 11.5	Lightly doped drain transistor
Exa 11.6	Radiation and hot electron effect 60
Exa 12.1	Device characteristics
Exa 12.2	Device characteristics
Exa 12.3	Depletion mode JFET
Exa 12.4	Transconductance
Exa 12.5	The MESFET
Exa 12.6	The MESFET
Exa 12.7	The MESFET
Exa 12.8	The MESFET channel length modulation 66
Exa 12.9	cut off frequency
Exa 12.10	High electron mobility transistor 67
Exa 13.1	Optical absorption
Exa 13.2	Electron hole pair generation rate 69
Exa 13.3	Solar cells
Exa 13.4	Solar concentration
Exa 14.4	Heat sinks and junction temperature
Exa 13.5	Photo conductor

Exa 13.6	Photo diode	
Exa 13.7	PIN Photodiode	
Exa 13.8	Materials	
Exa 13.9	Quantum efficiency	
Exa 13.10	Quantum efficiency	
Exa 14.1	Power transistor characteristics	
Exa 14.2	Power MOSFET characteristics	
Exa 14.3	Heat sinks and junction temperature	

Introduction to Quantum Mechanics

Scilab code Exa 1.1 Photon energy

```
// Chapter 1_Principles of Quantum Mechanics
//Caption_Photon Energy
//Ex_1//page 3
disp("X-Rays wavelength lambda=0.708*10^-8 cm");
lambda=0.708*(10^-10);//Wavelength
h=6.625*(10^-34);// Plank's constant
c=3*10^8 //speed of light

E=(h*c)/lambda;
printf('The photon energy corresponding to given wavelength is %fd J\n',E)
Evv=E/(1.6*(10^-19));
printf('Energy in the units of ev is %fd eV \n',Evv)
```

Scilab code Exa 1.2 Broglie wavelength

```
// Chapter 1_Principles of Quantum Mechanics
// Caption_Broglie wavelength
// Ex_2//page 5
disp("Velocity of electron is 10^7 cm/s");
h=6.625*(10^-34);// Plank's constant
m=9.11*(10^-31); //Mass of electron
v=10^5; // Velocity of electron

p=m*v; //Momentum
printf('Momentum is %fd \n',p)
lambda=(h/p)*10^10; //De Broglie's wavelength in angstorm
printf('The De Broglie wavelength is %fd Angstorm\n', lambda);
```

Scilab code Exa 1.3 Electron in infinite potential well

```
1 // Chapter 1_Principles of Quantum Mechanics
2 // Caption_Electron in an infinite potential well
3 / Ex_3 / page 14
4 disp("Width of electrons infinite potential well is
     5 Angstorm");
5 h=1.054*(10^-34);// Plank's constant
6 m=9.11*(10^-31); //Mass of electron
7 v=10<sup>5</sup>; // Velocity of electron
8 a=5*(10^-10);
9 c=1.6*(10^-19);
10 n1=1; // assume
11 En1=((h^2)*(n1^2)*(\%pi^2)/(2*m*a^2))/c
12 printf ('Energy in first energy level is %fd eV\n',
     En1)
13 n2=2; .....//assume
14 En2=((h^2)*(n2^2)*(\%pi^2)/(2*m*a^2))/c
15 printf ('Energy in first energy level is %fd eV\n',
     En2)
```

Scilab code Exa 1.4 Penetration depth of a particle impinging on a potential barrier

```
1 // Chapter 1_Principles of Quantum Mechanics
2 //Caption_Penetration depth of a particle impinging
     on a potential barrier
3 / Ex_4 / page 18
                      // Given velocity of electron
4 v = 10^5;
                    // mass of electron
5 m=9.11*(10^-31);
6 c=1.6*(10^-19)
7 E=((1/2)*m*(v^2))/c;
8 V0 = 2 * E;
           //Assume that the potential barrier at x
     =0 is twice as large as total energy of the
     incident particle
9 printf('Energy of the particle is %fd eV\n', E)
10 h=1.054*(10^-34)
11 d=((h^2)/(2*m*E*c))^(1/2)*10^10;
12 printf ('The distance at which the wave function
     magnitude has decayed to e^-1 of its value at x=0
      is \%2.1 f Angstrom \n',d)
```

Scilab code Exa 1.5 Probability of an electron tunneling through a potential barrier

```
    1 // Chapter 1_Principles of Quantum Mechanics
    2 // Caption_Probability of an electron tunneling through a potential barrier
    3 //Ex_5//page 21
```

```
//energy of electron in eV
4 E=2;
            //potential barrier in eV
5 \text{ Vo} = 20;
        //width of potential barrier in angstrom
6 \text{ w=3};
7 m=9*(10^-31)
8 h=1.054*(10^-34)
9 c=1.6*(10^-19)
10 K = ((2*m)*(Vo-E)*c/(h^2))^(1/2)
11 printf('Factor K is %fd m^-1 n',K)
12 1 = (-2*K*w*(10^-10))
13 a=%e^1
14 x=E/Vo;
15 T=16*x*(1-x)*a;
16 printf('Transmission coefficient i.e. the
      probability of electron to tunnel through the
      potential barrier is %fd \ n',T)
```

Introduction to the quantum theory of solids

Scilab code Exa 2.1 Change in kinetic energy

Scilab code Exa 2.2 Lowest allowed energy bandwidth

```
1 // Chapter 2_Introduction to the quantum theory of solids
```

```
2 // Caption_Lowest allowed energy bandwidth
3 / Ex_2 / page 46
5 m=9.11*(10^-31)
                        //mass of electron
6 h=1.054*(10^-34)
7 a=5*(10^-10)
8 c=1.6*(10^-19)
                      //electron charge
9 E=((\%pi^2)*(h^2))/(2*m*(a)^2)
10 E2=E/c;
11 E1= 1.053
                 // For alpha a=2.628, energy is given
     in eV
12 delE=E2-E1
13 printf('The allowed energy bandwidth is \%fd eV\n',
     delE)
```

Scilab code Exa 2.3 Density of States

Scilab code Exa 2.4 The Fermi Dirac Probability Function

```
1 // Chapter 2_Introduction to the quantum theory of solids
```

Scilab code Exa 2.5 The Fermi Dirac Probability Function

```
// Chapter 2_Introduction to the quantum theory of
    solids
//Caption_The Fermi Dirac Probability Function
//Ex_5//page 68
Ni=9 //given no. of particles
gi=10 //given no. of quantum states
P=factorial(gi)/(factorial(Ni)*(factorial(gi-Ni)))
    //Possible no of ways of relizing this
    distribution
printf('This distribution can be realized in %i ways
    \n',P)
```

Scilab code Exa 2.6 The Distribution function and the Fermi Energy

Scilab code Exa 2.7 The Distribution function and the Fermi Energy

The Semiconductor in Equilibrium

Scilab code Exa 3.1 Equilibrium Distribution of Electrons and holes

```
1 // Chapter 3_The Semiconductor in Equilibrium
2 //Caption_Equilibrium Distribution of Electrons and
     holes
3 // Ex_1 // page 85
4 T=300 // Temperatire in kelvin
5 Nc=2.8*(10^19) // Effective density of states
     function in the conduction band in per cm cube
                //Fermi energy is 0.25eV below the
6 \text{ delE=0.25}
     conduction band
7 k=1.389*(10^-23)
                        //Boltzmann constant
8 kT = 0.0259
9 fF = %e^(-delE/(kT))
10 no=Nc*fF
11 printf('The thermal equilibrium electron
     concentration in siliconn is %1.2fd per cm^3',no)
```

Scilab code Exa 3.2 Equilibrium Distribution of Electrons and holes

```
1 // Chapter 3_The Semiconductor in Equilibrium
2 // Caption_Equilibrium Distribution of Electrons and holes
3 // Ex_2// page 87
4 T=400;
5 N=1.04*(10^19)
6 kT=0.0259*(T/300);
7 Nv=N*(T/300)^(1.5)
8 po=Nv*(%e^(-0.27/kT))
9 printf('The thermal equilibrium hole concentration in silicon at T=400K ==%fd per cm^3 \n',po)
```

Scilab code Exa 3.3 Intrinsic carrier concentration

```
1 // Chapter 3_The Semiconductor in Equilibrium
2 // Caption_Intrinsic carrier concentration
3 / Ex_3 / page 90
4 T1 = 300;
                //Given temperature in kelvin
5 T2 = 450;
6 Nc1=4.7*(10^17) //effective density of state
      function in cm^-3
7 \text{ Nv1} = 7 * (10^{18})
                   //bandgap energy in eV
8 \text{ Eg} = 1.42
9 kT=0.0259*(T2/T1);
10 \text{ni1} = (\text{Nc1} * \text{Nv1} * \exp((-\text{Eg})/0.0259))^0.5
11 ni2=(Nc1*Nv1*(T2/T1)^3*exp(-Eg/kT))^0.5
12 printf ('The intrinsic carrier concentration in
      gallium arsenide at T=300k is %fd per cm cube and
        at 450 \,\mathrm{k} is \% \,\mathrm{fd} //cm<sup>3</sup> ', ni1, ni2)
```

Scilab code Exa 3.4 Intrinsic fermi level position

```
1 // Chapter 3_The Semiconductor in Equilibrium
2 // Caption_Intrinsic fermi level position
3 / Ex_4 / page 92
4 T=300; //temperature in kelvin
5 \text{ mnr} = 1.08
               //relative effective mass of negative
     charge carrier
  mpr=0.56
            //relative effective mass of positive
     charge carrier
7 kT = 0.0259
8 Efm=(3/4)*kT*log(mpr/mnr) //The intrinsic fermi
     level with respect to the center of bandgap
9 EfmF=-(Efm) *1000
10 printf ('The intrinsic feremi level in silicon is %1
     .1 fd meV below the midgap energy', EfmF)
```

Scilab code Exa 3.5 Extrinsic Semiconductor

```
1 // Chapter 3_The Semiconductor in Equilibrium
2 // Caption_Extrinsic Semiconductor
3 / Ex_{-5} / page 101
4 T=300
           //temperature in kelvin
5 \text{ Nc} = 2.8 * (10^19);
6 Nv=1.04*(10^19);
                        //
7 Fe=0.25 //Fermi energy is FeeV below the
      conduction band
8 Eg=1.12 // Bandgap energy of silicon is Eg in eV
9 no=Nc*exp(-Fe/0.0259);
10 po=Nv*exp(-(Eg-Fe)/0.0259);
11 printf ('Thermal equilibrium concentration of
      electrons is \%1.2\,\mathrm{fd} cm ^-3 and of holes is \%1.2\,\mathrm{fd}
      cm^--3 ',no,po)
```

Scilab code Exa 3.6 Extrinsic Semiconductor

```
// Chapter 3_The Semiconductor in Equilibrium
// Caption_Extrinsic Semiconductor
// Ex_6//page 104
ff=2 //nf=(Ef-Ec)/kT
Fe=52 //Fermi energy is above the conduction band by Fe meV
T=300;
Nc=2.8*(10^19);
F(nf)=2.3 // Value of fermi dirac integral from the graph
no=(2/((%pi)^0.5))*Nc*F(nf)
printf('Electron concentration using fermi dirac integral is %fd per cm cube ',no)
```

Scilab code Exa 3.7 Statistics of acceptors and donors

```
// Chapter 3_The Semiconductor in Equilibrium
// Caption_Statistics of acceptors and donors
// Ex_7//page 108
T=300;
Nd=10^16 // donor concentration per cm cube
kT=0.0259
Ecd=0.045 //Ec-Ed
Nc=2.8*(10^19);
x=1/(1+(Nc/(2*Nd))*exp(-(Ecd)/kT))
printf('Fraction of total electrons still in the donor state is %fd ',x)
```

Scilab code Exa 3.8 Statistics of acceptors and donors

```
1 // Chapter 3_The Semiconductor in Equilibrium
2 // Caption_Statistics of acceptors and donors
3 // Ex_8 // page 110
```

```
4 Na=10^16  // Acceptor concentration
5 kT=0.0259
6 Nv=1.04*(10^19);
7 Eav=0.045
8 x=0.1  //90%of acceptor atoms are ionized
9 y=(((1/x)-1)*4*Na/Nv);
10 //(T/300)^1.5*exp(-Eav/kT*(T/300))=y
11 //By trial and error
12 printf('Required temperature is 193 K')
```

Scilab code Exa 3.9 Charge Neutrality

Scilab code Exa 3.10 Charge Neutrality

```
1 // Chapter 3_The Semiconductor in Equilibrium
2 //Caption_Charge Neutrality
3 //Ex_10//page 114
4 T=300 //temperature in kelvin
5 Nd=5*(10^13)
6 Na=0
```

```
7 ni=2.4*(10^13)
8 no=((Nd-Na)/2)+(((Nd-Na)/2)^2+ni^2)^0.5
9 po=ni^2/no;
10 printf('The majority carrier electron concentration
    is %fd per cm cube while the minority carrier
    hole concentration is %fd per cm cube',no,po)
```

Scilab code Exa 3.11 Charge Neutrality

Scilab code Exa 3.12 Charge Neutrality

```
1 // Chapter 3_The Semiconductor in Equilibrium
2 //Caption_Charge Neutrality
3 //Ex_12//page 116
4 T=550 //temperature in kelvin
5 Nc=2.8*(10^19)
6 Nv=1.04*(10^19)
7 Eg=1.12 // band gap energy in eV
8 ni=(Nc*Nv*(T/300)^3*exp(-Eg/0.0259 *(300/T)))^0.5
```

Scilab code Exa 3.13 Position of Fermi Energy level

Scilab code Exa 3.14 Position of Fermi Energy level

```
1 // Chapter 3_The Semiconductor in Equilibrium
2 //Caption_Position of Fermi Energy level
3 //Ex_14//page 121
4 T=300 //temperature in kelvin
5 kT=0.0259
6 ni=1.5*(10^10) //intrinsic carrier concentration
7 Efa=3*kT //Ef-Ea=3kT
8 Eav=0.045
```

```
9 Efif=Eg/2-(Eav)-(Efa) //The position of fermi
level at the maximum doping
10 Na=exp(Efif/kT)*ni
11 printf('Maximum doping is %fd per cm cube', Na)
```

Carrier Transport Phenomenon

Scilab code Exa 4.1 Carrier drift

```
1 // Chapter 4_Carrier Transport Phenomenon
2 // Caption_Carrier drift
3 // Ex_1 // page 134
          //temperature in kelvin
4 T=300
5 \text{ Na=0}
6 \text{ e=1.6*(10^--19)}
7 Nd=10^16 //donor concentration in per cm cube
        //Applied electric field in V/cm
9 ni=1.8*(10^6)
10 n=(Nd-Na)/2+(((Nd-Na)/2)^2+ni^2)^0.5
11 p=ni^2/n
12 muN=8500
             //mobility of electron in gallium
      arsenide in cm<sup>2</sup>/V-s
13 \text{ mup} = 400
14 J=e*(muN*n+mup*p)*E
15 printf ('The drift current density for this electric
      field is \%1.2 \, \text{fd A/cm}^2',J)
```

Scilab code Exa 4.2 Carrier drift

```
// Chapter 4_Carrier Transport Phenomenon
// Caption_Carrier drift
// Ex_2//page 143
T=300
sig=16 //CONDUCTIVITY IN (OHM-CM)^-1
Na=10^16 //acceptor doping concentration
e=1.6*(10^-19)
// sig=e*muN*(Nd-Na)
//By trial and error
printf('Doping concentration is 3.5*10^17 cm^-3 and mobilityis 400 cm^2/V-S')
```

Scilab code Exa 4.3 Conductivity

```
1 // Chapter 4_Carrier Transport Phenomenon
2 // Caption_Conductivity
3 / Ex_2 / page 144
4 T = 300
5 Nd=5*(10^15) //donor concentration
6 R=10 //resistance in kohm
7 J=50
          //current density in A/cm<sup>2</sup>
8 V=5 //voltage in volts
9 i = V/R
            //current
10 \quad A=i/J
            //cross sectional area
11 E=100
12 L=V/E
         //length of the resistor
13 pho=L/(V*A)
14 // The conductivity of a compensated p-type
      semiconductor is
15 / pho = e * muP * (Na-Nd)
16 //where the mobilty is a function of the total
     ionized impurity concentration Na+Nd
17 //Using trial and error, if
18
    Na=1.25*(10^16)
19
    muP = 410
```

```
20  e=1.6*(10^-19)
21  sig=e*muP*(Na-Nd)
22  printf('Conductivity obtained is %1.2 fd which is
    very close to the value we need', sig)
```

Scilab code Exa 4.4 Carrier diffusion

Scilab code Exa 4.5 Graded impurity distribution

```
1 // Chapter 4_Carrier Transport Phenomenon
2 //Caption_Graded impurity distribution
3 //Ex_5//page 153
4 T=300
5 x=0 //given 0<x<1 micrometer
6 Nd=10^16-10^19*x
7 //Taking the derivative of donor concentration , we have d(ND)/dx=-10^19
8 e=1.6*(10^-19)
9 Ex=-(0.0259)*(-10^19)/Nd</pre>
```

```
10 printf('The induced electric field is \%1.1\,\mathrm{fd} V/cm', Ex)
```

Scilab code Exa 4.6 The Einstein relation

Scilab code Exa 4.7 The hall effect

```
1 // Chapter 4_Carrier Transport Phenomenon
2 //Caption_The Hall Effect
3 / Ex_{-7} / page 158
4 L=10^-3 //LENGTH IN M
5 W = 10^{-2}
             //WIDTH IN CM
6 d=10^-5
7 Ix = 10^{-3}
            //current in Amp
8 \ Vx = 12.5
9 e=1.6*(10^-19)
10 Bz = 500
          //magnetic field in gauss
11 Vh = -6.25*10^{-3} // hall voltage
12
13 //A negative hall voltage for this geometry implies
     that we have an n-type semiconductor
14 BzT=Bz*10^-4 //magnetic field in tesla
15 n=-(Ix*BzT)/(e*d*Vh*10^6)
```

```
16 mun = (Ix*L)/(e*n*Vx*W*d)
```

17 printf('Majority carrier concentration is %1.1fd cm $^-3$ and mobility is %1.1fd cm^2/V-s ',n,mun)

Non Equilibrium excess careers in semiconductors

Scilab code Exa 5.5 Relaxation time

```
1 // Chapter 5_Non equilibrium excess carriers in
     semiconductors
2 // Caption_Relaxation time
3 / Ex_5 / page 190
4 Nd=10^16 //donor concentration
5 e=1.6*(10^-19) //electronic charge
6 mun=1200 // mobility
7 sig=e*mun*Nd
8 epsR=11.7 //dielectric constant for silicon
9 \text{ epso} = 8.85 * (10^-14)
10 eps=epso*epsR //permitivity of silicon
11 taud=eps/sig //dielectric relaxation time
     constant
12 tau=taud*10^12
13 printf ('The dielectric relaxation time constant for
     this semiconductor is %1.2 f ps', tau)
```

Scilab code Exa 5.6 Quasi Energy Fermi levels

```
1 // Chapter 5_Non equilibrium excess carriers in
      semiconductors
2 // Caption_Quasi Energy Fermi Levels
3 / Ex_6 / page 194
4 T=300
            //temperature in kelvin
            //carrier concentration
5 no=10<sup>15</sup>
              //intrinsic concentration
6 ni=10<sup>10</sup>
7 po=10^5
8 deln=10^13
                 //excess carrier concentration
9 delp=10<sup>13</sup>
10 EfFi=0.0259*log(no/ni)
                               //fermi level for thermal
      equilibrium
11 EfnEfi=0.0259*\log((no+deln)/ni)
12 EfiEfp=0.0259*log((po+delp)/ni)
13 printf('Quasi fermi level for electrons in non
      equilibrium is %1.4 f eV and for hholes is %1.3 f
      eV ', EfnEfi, EfiEfp)
```

Scilab code Exa 5.10 Surface effects

```
// Chapter 5_Non equilibrium excess carriers in
    semiconductors
//Caption_Surface effects
//Ex_10//page 206
gtaupo=10^14

pp=10
Lp=31.6*(10^-4)
delpo=10^13
s=(Dp/Lp)*((gtaupo/delpo)-1)
printf('Surface recombination velocity is %1.2fd cm/s',s)
```

The pn junction

Scilab code Exa 6.1 Zero applied bias

```
// Chapter 6_The pn junction
// Caption_Zero applied bias
// Ex_1//page 220
Na=10^18 // acceptor ion concentration
T=300 // temperature in kelvin
Nd=10^15
ni=1.5*(10^10) // intrinsic ion concentration
Vbi=(0.0259)*log(Na*Nd/(ni^2))
printf('The built in potential barrier is %1.3f V', Vbi)
```

Scilab code Exa 6.2 Space charge width

```
1 // Chapter 6_The pn junction
2 // Caption_Space charge width
3 // Ex_2 // page 224
4 T=300
5 Na=10^16 // acceptor ion concentration
```

```
6 Nd=10^15  //donor ion concentration
7 eps=11.7*8.85*(10^-14)
8 e=1.6*(10^-19)
9 Vbi=0.635  //built in potential barrier
10 W=(2*eps*Vbi/e*(Na+Nd)/(Na*Nd))^0.5
11 Emax=-e*Nd*W/eps
12 printf('The space charge width is %f cm and the electric field is %f V/cm', W, Emax)
```

Scilab code Exa 6.3 Space charge width

Scilab code Exa 6.4 Space charge width

```
1 // Chapter 6_The pn junction
2 //Caption_Space charge width
3 //Ex_4//page 228
4 T=300
5 Na=10^18 //acceptor ion concentration
6 Emax=3*10^5 //Max electric field
7 Vr=25 //Reverse bias voltage
```

```
8 eps=11.7*8.85*(10^-14)
9 e=1.6*(10^-19)
10 x=eps*(Emax^2)/(2*e*Vr);
11 Nd=Na*x/(Na-x)
12 printf('The ntype doping concentration such that the maximum electric field is obtained is %f /cm^3', Nd)
```

Scilab code Exa 6.5 Junction capacitance

```
1 // Chapter 6_The pn junction
2 // Caption_Junction capacitance
3 / Ex_{5} / page 230
4 Na=10^16 //acceptor ion concentration
5 T=300
         //temperature in kelvin
6 \text{ Nd} = 10^{15}
7 ni=1.5*(10^10)
                    //intrinsic ion concentration
8 Vr=5
          //Reverse applied voltage
9 \text{ Vbi} = 0.635
10 V = Vr + Vbi
11 C=(e*eps*Na*Nd/(2*(V)*(Na+Nd)))^0.5
12 A=10^-4 //Area of the pn junction
13 Ca=A*C*10^12
14 printf ('The junction capacitance for the given
      semiconductor is %1.3 f pF', Ca)
```

Scilab code Exa 6.6 Junction capacitance

```
1 // Chapter 6_The pn junction
2 // Caption_Junction capacitance
3 // Ex_6 // page 232
4 T=300 // temperature in kelvin
```

Chapter 7

The pn junction diode

Scilab code Exa 7.1 pn junction current

Scilab code Exa 7.2 pn junction current

```
1 // Chapter 7_The pn junction Diode
2 //Caption_pn Junction current
3 //Ex_2//page 258
```

Scilab code Exa 7.3 pn junction current

```
1 // Chapter 7_The pn junction Diode
2 // Caption_pn Junction current
3 / Ex_3 / page 258
             //electron current density
4 Jn = 20
5 Jp=5
             //hole current density
6 T=300
7 Va=0.65
8 \text{ ni} = 1.5 * 10^{10}
                     //intrinsic concentration
9 \, \text{Dn} = 25
10 \, \text{Dp} = 10
11 e=1.6*10^-19
12 tau_po=5*10^-7
13 tau_no=5*10^-7
14 \text{ epsr} = 11.7
15 Na=1/(Jn/((e*(Dn/tau_no)^0.5)*(ni^2*(exp(Va/0.0259))))
      -1))))
16 Nd=1/(Jp/((e*(Dp/tau_po)^0.5)*(ni^2*(exp(Va/0.0259)))
      -1))))
17 printf('The design parameters for this semiconductor
       are Na=\%f cm^-3 and Nd=\%f cm^-3', Na, Nd)
```

Scilab code Exa 7.4 pn junction current

```
1 // Chapter 7.The pn junction Diode
2 //Caption_pn Junction current
3 //Ex_4//page 261
4 T=300
5 Va=0.65
6 Js=4.15*10^-11
7 e=1.6*10^-19
8 J=Js*(exp(Va/0.0259)-1)
9 mun=1350
10 Nd=10^16
11
12 E=J/(e*mun*Nd)
13 printf('The electric field required to produce a given majority carrier drift is %f V/cm',E)
```

Scilab code Exa 7.5 Temperature effects on pn junction

Scilab code Exa 7.6 small signal admittance

```
// Chapter 7_The pn junction Diode
//Caption_Small signal admittance
//Ex_6//page 272

T=300

tau_po=10^-7

Ipo=0.001

Idq=0.001

Cd=10^9*(1/(2*0.0259))*(Ipo*tau_po)

rd=0.0259/(Idq) //diffusion resistance
printf('Diffusion capacitance is %1.2 f nF and diffusion resistance is %1.2 f ohm', Cd, rd)
```

Scilab code Exa 7.7 Generation recombination currents

17 printf('The ideal reverse saturation current density was calculated in example 2 and it was 4.15810^-11 A/cm^2 and the generation current density calculated here is %f nA/cm^2', Jgen)

Chapter 8

Metal semiconductors and semiconductor heterojunctions

Scilab code Exa 8.1 Shottky barrier diode

```
1 // Chapter 8_Metal Semiconductor and Semiconductor
      heterojunctions
2 // Caption_Shottky barrier diode
3 / Ex_1 / page 308
4 T=300
         //temperature in kelvin
              //donor impurity
5 Nd=10^16
6 \text{ phi}_m=4.55
               //metal work function for tungsten
                 //electron affinity for silicon
7 \text{ xi} = 4.01
8 phi_bo=phi_m-xi
9 phi_n=0.0259*\log(2.8*10^19/Nd)
10 Vbi=phi_bo-phi_n
11 xn = (2 \cdot eps \cdot Vbi/(e \cdot Nd))^0.5 // space charge width
      at zero bias
12 Emax=e*Nd*xn/eps //maximum electric field
13 printf ('Theoritical barrier height is %f V, built-in
       potential barrier is %f V and maximium electric
      field is %f V/cm', phi_bo,phi_n,Emax)
```

Scilab code Exa 8.2 Non ideal effects on barrier height

```
// Chapter 8_Metal Semiconductor and Semiconductor
heterojunctions
//Caption_Non ideal effects on the barrier height
//Ex_3//page 312
E=6.8*10^4
T=300
e=1.6*10^-19
eps=13.1*8.85*10^-14
delphi=(e*E/(4*%pi*eps))^0.5
xm=(e/(16*%pi*eps*E))^0.5*10^8
printf('Position of the maximum barrier height is %1
.0 f Angstorm',xm)
```

Scilab code Exa 8.3 Non ideal effects on barrier height

```
// Chapter 8_Metal Semiconductor and Semiconductor
heterojunctions
//Caption_Non ideal effects on the barrier height
//Ex_3//page 312
E=6.8*10^4
T=300
e=1.6*10^-19
eps=13.1*8.85*10^-14
delphi=(e*E/(4*%pi*eps))^0.5
xm=(e/(16*%pi*eps*E))^0.5*(10^8)
printf('Position of maximum barrier height is %fA',
xm)
```

Scilab code Exa 8.4 Current voltage relationship

```
// Chapter 8_Metal Semiconductor and Semiconductor
heterojunctions
//Caption_Current voltage relationship
//Ex_4/page 318
phi_bn=0.67 //barrier height
Jst=6*10^-5 //reverse saturation current density
T=300
e=1.6*10^-19
A=Jst/(T^2)*exp(phi_bn/0.0259)
printf('The effective Richardson constant is %1.0f A /K^2-cm^2',A)
```

Scilab code Exa 8.5 Comparison of the schottky barrier diode and the pn junction diode

```
1 // Chapter 8-Metal Semiconductor and Semiconductor
      heterojunctions
2 //Caption_Comparison of the schottky barrier diode
      and the pn junction diode
3 / Ex_{5}/page 319
4 \text{ e_phi_bn=0.67}
5 A = 114
              //effective richardson constant
6 T = 300
7 Jst=A*T^2*exp(-e_phi_bn/0.0259)
8 //if we neglect the barrier lowering effect, we have
       for the schottky barrier diode
9 //for a pn junction
10 Na=10<sup>18</sup>
11 Nd=10<sup>16</sup>
12 \, \text{Dp} = 10
13 \, \text{Dn} = 25
14 tau_po=10^-7
15 tau_no=10^-7
```

```
Lp=(Dp*tau_po)^0.5
Ln=(Dn*tau_no)^0.5
pno=2.25*10^4
pno=2.25*10^2
//the ideal reverse saturation current density of
the pn junction diode can be determined as
Js=e*Dn*npo/Ln+(e*Dp*pno/Lp)
J=10^9*(Js+5.7*10^-13)
printf('Reverse saturation current density for
schottky baarier diode is %f A/cm^2 and for pn
junction is %f nA/cm^2', Jst, J)
```

Scilab code Exa 8.6 Shottky barrier diode and pn junction

```
// Chapter 8_Metal Semiconductor and Semiconductor
heterojunctions
//Caption_Shottky barrier diode and pn junction
//Ex_6//page 308
Jf=10 //forward biased current density

Jst=5.98*10^-5
Va=(0.0259*log(Jf/Jst))
//for pn junction diode
Js=3.66*10^-11 //reverse saturation current
density
Va_pn=0.0259*log(Jf/Js)
printf('Forward bised voltage required for schottky
is %1.3 f V and for pn junction is %1.3 fV', Va,
Va_pn)
```

Scilab code Exa 8.7 Tunnelling barrier

1 // Chapter 8_Metal Semiconductor and Semiconductor heterojunctions

Scilab code Exa 8.8 Equilibrium electrostatics

```
1 // Chapter 8-Metal Semiconductor and Semiconductor
      heterojunctions
2 // Caption_Equilibrium electrostatics
3 / Ex_8 / page 333
4 Nd=10^16 //donor impurity
5 \text{ Na=} 10^{16}
               //acceptor impurity
6 ni=2.4*10^13 //intrinsic ion concentration
7 T = 300
8 e=1.6*10^-19
                 //electron affinity
9 xi_n=4.13
10 \, \text{xi_p=} 4.07
11 del_Ec=(xi_n-xi_p)
                         //difference between two
      conduction band energies
12 del_Eg=1.43-0.67
13
14 del_Ev=del_Eg-del_Ec //difference between two
      valence band energies
15 pno=ni^2/Nd
16 \text{ Ncp=}6*10^{18}
17 \text{ Ncn} = 7 * 10^{18}
```

```
18 Vbi=del_Ev+(0.0259*log(Na*Ncp/(pno*Ncn)))
```

19 printf('Difference between two conduction band
 energies is %1.2 f eV , difference between two
 valence band energies is %f eV and Vbi=%fV',
 del_Ec,del_Ev,Vbi)

Chapter 9

The Bipolar transistor

Scilab code Exa 9.1 Gain factors

Scilab code Exa 9.2 Gain factors

```
1 // Chapter 9_The bipolar transistor
2 //Caption_Gain factors
3 //Ex_2//page 372
4 alpha_T=0.9967
5 Db=10
```

```
6 tau_bo=10^-7
7 xbLb=abs(acosh(alpha_T)) //xB/Lb where LB is the
    length
8 Lb=(Db*tau_bo)^0.5
9 xb=xbLb*Lb*10^4
10 printf('Base width required to achieve the given
    base transport factor is %1.3 f micrometer',xb)
```

Scilab code Exa 9.3 Gain factors

```
// Chapter 9_The bipolar transistor
//Caption_Gain factors
//Ex_3//page 373
delta=0.9967 //recombination favtor
T=300
Jro=10^-8
Jso=10^-11
delta-1
x=del*Jso/Jro
Vbe=-2*0.0259*log(x)
printf('Forward biased BE voltage required to achieve the given delta is %1.3f V', Vbe)
```

Scilab code Exa 9.4 Gain factors

```
1 // Chapter 9_The bipolar transistor
2 //Caption_Gain factors
3 //Ex_4//page 373
4 DE=10
5 DB=25
6 XB=0.70*10^-4 //width of base
7 XE=0.50*10^-4 //width of emitter
8 NE=10^18 //doping concentration in emitter
```

```
//doping concentration in base
9 \text{ NB} = 10^{16}
10 VBE=0.65
11 e=1.6*10^-19
12 tau_eo=10^-7
                  //minority carrier lifetime in
      emitter
13 tau_bo=5*10^-7
                     //minority carrier lifetime in base
14 Jro=5*10^-8
15 T=300
16 peo=(1.5*10^10)^2/NE
17 nbo = (1.5*10^10)^2/NB
18 Le=(DE*tau_eo)^0.5
19 Lb=(DB*tau_bo)^0.5
20 gamma_i=1/(1+((peo*DE*Lb*tanh(0.0198)))/(nbo*DB*Le*
     tanh(0.050)))
21 alpha_T=1/(cosh(XB/Lb))
22 Jso=e*DB*nbo/(Lb*tanh(XB/Lb))
23 delta=1/1+(Jro*exp(-VBE/(2*0.0259)/Jso))
24 delta=0.99986
25 alpha=gamma_i*alpha_T*delta
26 beta_i=alpha/(1-alpha)
27 printf ('Common emitter current gain is %1.0 f', beta_i
```

Scilab code Exa 9.5 Non ideal effects

Scilab code Exa 9.6 Non ideal effects

```
1 // Chapter 9_The bipolar transistor
2 //Caption_Non ideal effects
3 / Ex_{-6} / page 377
4 DB = 25
5 \text{ VBE} = 0.60
6 T = 300
7 e=1.6*10^-19
8 \text{ NB} = 5 * 10^{16}
                   //doping concentration in base
9 NC=2*10^15 //doping concentration in collecor
10 XB=0.70*10^-4 // mettulurgical base width
11 ni=1.5*10<sup>10</sup>
                     //intrinsic ion concentration
12 \text{ nBO=ni}^2/NB
13 \text{ xb1} = 0.648 * 10^{-4}
14 Jc1=e*DB*nBO*exp(VBE/0.0259)/xb1
15 \text{ xb2=0.597*10}^-4
16 \text{ Jc2=e*DB*nB0*exp(VBE/0.0259)/xb2}
17 VCE1=2.6
18 VCE2=10.6
19 del_JC_VCE=(Jc2-Jc1)/(VCE2-VCE1)
20 Va=3.20/del_JC_VCE-2.6
21 printf('The early voltage is %1.0 f V', Va)
```

Scilab code Exa 9.7 Non ideal effects

```
1 // Chapter 9_The bipolar transistor
2 //Caption_Non ideal effects
3 / Ex_{-7} / page 382
4 T=300
5 NE1=10<sup>18</sup>
               //emitter doping
6 NE2=10<sup>19</sup>
7 \text{ ni}=1.5*10^10
                     //intrinsic ion concentration
8 pE01=ni^2/NE1
9 pE02=ni^2/NE2
10 //This we did by neglecting bandgap narrowing, if
      we consider it, we get
11 pE011 = pE01 * exp(0.030/0.0259)
12 pE021=pE02*exp(0.1/0.0259)
13 printf ('The thermal equilibrium minority carrier
      concentration increases by a factor of 1.5
      instead of decreasing by a factor of 9. This
      effect is due to bandgap narrowing')
```

Scilab code Exa 9.8 Breakdown voltage

```
// Chapter 9_The bipolar transistor
// Caption_Breakdown voltage
// Ex_8//page 387
Wb=0.5*10^-4 // metallurgical base width
NB=10^16
eps=11.7*8.85*10^-14
e=1.6*10^-19
Vpt=25 // punch through voltage
x=Vpt*2*eps/(e*Wb^2*NB)
```

```
10 y=x-1
11 NC=NB/y
12 xn=(2*eps*(Vpt)*NB/(e*NC*(NB+NC)))^0.5*10000
13 printf('The collector doping is %1.2 f per cm^3 and collector widt is %1.2 f micrometer', NC, xn)
```

Scilab code Exa 9.9 Breakdown voltage

```
1 // Chapter 9_The bipolar transistor
2 //Caption_Breakdown voltage
3 //Ex_9//page 390
4 bet=100 //common emitter current gain
5 NB=10^17 //base doping concentration
6 vmin=15 //minimum open base breakdown voltage
7 BVcbo=(bet)^(1/3)*vmin
8 printf('To achieve this breakdown voltage, the maximum collector doping concentration should be 7*10^15 cm^-3 from the figure')
```

Scilab code Exa 9.10 Ebers moll model

```
1 // Chapter 9_The bipolar transistor
2 //Caption_Ebers Moll model
3 //Ex_10//page 394
4 T=300
5 alpha_f=0.99
6 alpha_r=0.20
7 Ic=.001
8 Ib=50*10^-6
9 Vt=0.0259
10 x=Ic*(1-alpha_r)+Ib
11 y=alpha_f*Ib-((1-alpha_f)*Ic)
12 z=alpha_f/alpha_r
```

```
13 VCEsat=Vt*log(x*z/y)
14 printf('The collector emitter saturation voltage is
%1.3 f V', VCEsat)
```

Scilab code Exa 9.12 Transistor cut off frequency

```
1 // Chapter 9_The bipolar transistor
2 // Caption_Transistor cut off frequency
3 / Ex_12 / page 403
4 Ie=0.001
              //emitter current
5 Cje=10^-12
6 \text{ xb} = 0.5 * 10^{-4}
7 \text{ vs} = 10^7
8 \quad Dn = 25
9 \text{ xdc} = 2.4 * 10^{-4}
10 \text{ rc} = 20
11 Cu = 0.1 * 10^- - 12
                      //B-C junction capacitance
                      //collector to substrate
12 \quad Cs = 0.1*10^-12
      capacitance
13 re=0.0259/Ie
14 tau_e=re*Cje*10^12 //emitter base junction
      charging time
15 tau_b = (xb^2)/(2*Dn) *10^12
                                 //base transit time
16 tau=xdc/vs*10^12
17 tau_c=rc*(Cu+Cs)*10^12
18 tau_ec=(tau_e+tau_b+tau+tau_c) //total emitter to
      collector time delay
19 fT = (10^3)/(2*\%pi*tau_ec)
20 \text{ bet} = 100
                    //beta cutoff frrequency
21 fB=fT/bet
22 printf ('Emitter to collector transit time is %1.1 f
      psec and cut off frequency is %1.2f GHz',tau_ec,
      fT)
```

Chapter 10

Fundamentals of the Metal Oxide semiconductor Field Effect Transistor

Scilab code Exa 10.1 The two terminal MOS structure

Scilab code Exa 10.2 Work function

```
1 // Chapter 10_Fundamentals of the Metal Oxide
      Semiconductor Field Effect Transistor
2 //Caption_Work function
3 / Ex_2 / page 437
4 \text{ phi}_m=3.2
                //work function for Al-Si junction
               //oxide electron affinity
5 \text{ xi} = 3.25
6 \text{ Eg} = 1.11
                  //intrinsic carrier concentration
7 \text{ ni} = 1.5 * 10^{10}
8 \text{ Na} = 10^14
9 phi_fp=0.0259*log(Na/ni)
10 phi_ms=phi_m-(xi+Eg/(2)+phi_fp)
11 printf('Metal semiconductor work function difference
       is \%1.2 \, \mathrm{f} \, \mathrm{V}, phi_ms)
```

Scilab code Exa 10.3 Flat band voltage

```
1 // Chapter 10_Fundamentals of the Metal Oxide
      Semiconductor Field Effect Transistor
2 //Caption_Flat band voltage
3 / Ex_3 / page 442
4 Na=10<sup>16</sup>
5 \text{ tox} = 500 * 10^{-8}
                        //oxide thickness
                     //trapped charge per unit area
6 \ Qss = 10^11
7 e=1.6*10^-19
8 \text{ eps\_ox=3.9*8.85*10^-14}
9 \text{ Cox=eps\_ox/tox}
10 QSS=Qss*e
11 phi_ms = -1.1
12 Vfb=phi_ms-(QSS/Cox)
13 printf ('Flat band voltage for this MOS capacitor is
      \%1.2 \, f \, V', Vfb)
```

Scilab code Exa 10.4 Flat band voltage

```
1 // Chapter 10_Fundamentals of the Metal Oxide
      Semiconductor Field Effect Transistor
2 // Caption_Flat band voltage
3 / Ex_4 / page 445
4 Na=3*10^16
5 \text{ eps} = 11.7*8.85*10^-14
6 eps_ox=3.9*8.85*10^-14
7 e=1.6*10^-19
8 \ Qss = 10^11
9 \text{ Vtn} = 0.65
10 ni=1.5*10^10
                      //intrinsic carrier concentration
11 phi_ms = -1.13
12 phi_fp=0.0259*log(Na/ni)
13 xdt=(4*eps*phi_fp/(e*Na))^0.5
14 \quad QSD = e * Na * xdt
15 x=Vtn-phi_ms-2*phi_fp
16 y = (QSD - Qss*e)/eps_ox
17 z=x/y*10^8
18 printf ('The oxide thickness of this MOS system is %1
      .0 f angstorm',z)
```

Scilab code Exa 10.5 Threshold voltage

Scilab code Exa 10.6 Threshold voltage

```
1 // Chapter 10_Fundamentals of the Metal Oxide
      Semiconductor Field Effect Transistor
2 //Caption_Threshold voltage voltage
3 / Ex_{-6} / page 448
4 \text{ tox} = 650 \times 10^{-8}
5 \text{ eps} = 11.7*8.85*10^-14
6 eps_ox=3.9*8.85*10^-14
7 \ Qss = 10^10
8 \text{ Vtp}=-1
9 \text{ Nd} = 2.5 * 10^14
10 ni=1.5*10^10
                       //intrinsic carrier concentration
11 phi_tn=0.0259*log(Nd/ni)
12 xdt = (4*eps*phi_tn/(e*Nd))^0.5
13 QSD_MAX=e*Nd*xdt;
14 \text{ phi}_ms = -0.35
15 Vtp2=(-QSD_MAX-Qss*e)*(tox/eps_ox)+phi_ms-2*phi_tn
16 \text{ q=abs}(Vtp2) == Vtp
17 printf('Since Vtp2=Vtp, it is essentially equal to
      the desired result')
```

Scilab code Exa 10.7 Capacitance Voltage characteristics

```
1 // Chapter 10_Fundamentals of the Metal Oxide
      Semiconductor Field Effect Transistor
2 // Caption_Capacitance Voltage characteristics
3 / Ex_7 / page 455
4 Na=10<sup>16</sup>
                    //oxide thickness
5 \text{ tox} = 550 * 10^{-8}
6 eps=11.7*8.85*10^-14
7 eps_ox=3.9*8.85*10^-14
8 \text{ Cox=eps\_ox/tox*10^9}
9 ni=1.5*10<sup>10</sup>
                      //intrinsic carrier concentration
10 phi_fp=0.0259*log(Na/ni)
11 xdt=(4*eps*phi_fp/(e*Na))^0.5
12 Cmin=eps_ox/(tox+(eps_ox/eps)*xdt)*10^9
13 r = Cmin/Cox
14 CFB=eps_ox/(tox+(eps_ox/eps)*(0.0259*eps/(e*Na))
      ^0.5) *10^9 //flat band capacitance
15 \text{ r2=CFB/Cox}
16 printf ('The value of oxide capacitance, minimum
      capacitance and flat band capacitance are %1.2 f
      nF, %1.2f nF and %1.2f nF respectively', Cox, Cmin,
      CFB)
```

Scilab code Exa 10.8 Current voltage relationship

```
6 Cox=6.9*10^-8 //oxide capacitance
7 Vt=0.65 //thermal voltage
8 Idsat=4*10^-3 //saturated current
9 VGS=5
10 W=2*L*Idsat/(mun*Cox*(VGS-Vt)^2)*10^4
11 printf('The width of MOSFET such that the specified current is induced is %1.1f micrometer', W)
```

Scilab code Exa 10.9 Threshold voltage

```
1 // Chapter 10_Fundamentals of the Metal Oxide
      Semiconductor Field Effect Transistor
2 // Caption_Current voltage relationship
3 / Ex_{9} / page 474
               //Width of MosFET
4 W = 15 * 10^{-4}
5 L=2*10^--4 //length of MOSFET
6 COX=6.9*10^-8 //oxide capacitance
7 \text{ VDS} = 0.10
8 ID1=35*10^-6 //DRAIN CURRENT
9 VGS1=1.5
10 ID2 = 75 * 10^{-6}
11 VGS2=2.5
12 mun=L*(ID2-ID1)/(W*COX*(VGS2-VGS1)*VDS)
13 printf ('The inversion carrier mobility is %1.0 f cm
      ^2/V-s', mun)
```

Scilab code Exa 10.10 Substrate bias effects

Scilab code Exa 10.11 Cut off frequency

```
// Chapter 10_Fundamentals of the Metal Oxide
    Semiconductor Field Effect Transistor
//Caption_Cut off frequency
//Ex_11//page 484
mun=400 //mobility
L=4*10^-4
VT=1
VGS=3
fT=mun*(VGS-VT)/(2*%pi*L^2)*10^-6
printf('The cut off frequency of this MOSFET with constant mobility is %1.0 f MHz', fT)
```

Chapter 11

Metal semiconductors and semiconductor heterojunctions Additional concepts

Scilab code Exa 11.1 Mobility variation

Scilab code Exa 11.2 Mobility variation

```
1 // Chapter 11 Metal-Oxide-Semiconductor Field
      Effect Transistor: Additional Concepts
2 // Caption_Mobility variation
3 / Ex_2 / page 517
4 Na=3*10^16
5 \text{ tox} = 450 * 10^{-8}
6 eps=11.7*8.85*10^-14
7 e=1.6*10^-19
8 \text{ eps_ox=} 3.9*8.85*10^-14
9 ni=1.5*10^10
                  //intrinsic carrier concentration
10 L=1.25*10^-4
11 \text{ rj} = 0.5 * 10^{-4}
12 Cox=eps_ox/tox
                    //oxide capacitance
13 phi_fp=0.0259*log(Na/ni)
14 xdt=(4*eps*phi_fp/(e*Na))^0.5
15 x=e*Na*xdt/Cox
16 y = (1 + (2 * xdt/rj))^0.5 - 1
                           //voltage shift
17 delVt=-x*(rj*y/L)
18
19 printf('Threshold voltage shift due to short channel
       effects is %1.3 f V', delVt)
```

Scilab code Exa 11.3 narrow channel effects

Scilab code Exa 11.4 Breakdown voltage

```
1 // Chapter 11 Metal-Oxide-Semiconductor Field
      Effect Transistor: Additional Concepts
2 //Caption_Breakdown voltage
3 / Ex_4 / page 527
            //donor concentration
4 Nd=10^19
5 Na=10^16 //acceptor concentration
6 L=1.2*10^-4
                 //channel length
7 \text{ ni}=1.5*10^{10}
                   //intrinsic carrier concentration
8 Vbi=0.0259*log(Na*Nd/ni^2)
9 \text{ xdo} = (2 * eps * Vbi/(e * Na))^0.5
                                 //zero biased source-
     substrate pn junction width
10 //xd = (2*eps*(VbiVDS)/(e*Na))^0.5 //reverse biased
     drain substrate pn junction width
            //at punch through
11 xd=L-xdo
12 VbiVDS=xd^2*e*Na/(2*eps) //Vbi+VDS
13 VDS=VbiVDS-Vbi
14 printf ('The punch through voltage is %1.1 f V', VDS)
```

Scilab code Exa 11.5 Lightly doped drain transistor

```
6 e=1.6*10^-19
7 eps_ox=3.9*8.85*10^-14
8 ni=1.5*10^10 //intrinsic carrier concentration
9 VT = 0.70
10 \text{ Na} = 5 * 10^{15}
11 phi_fpo=0.0259*log(Na/ni)
12 xdto=(4*eps*phi_fpo/(e*Na))^0.5
13 \text{ Cox=eps\_ox/tox}
14 VTO=VFBO+2*phi_fpo+(e*Na*xdto)/Cox
15 \quad x = VT - VTO
16 Dt=Cox*x/e //implant dose
17 \text{ xt} = 0.15 * 10^{-4}
                    //depth to which uniform implant
      extends
18 Nsa=Dt/xt
19 Ns=Nsa+Na
20 printf ('The required implant dose to achieve the
      desired threshold voltage is %1.2 f per cm^2', Dt)
```

Scilab code Exa 11.6 Radiation and hot electron effect

```
1 // Chapter 11 Metal-Oxide-Semiconductor Field
      Effect Transistor: Additional Concepts
2 //Caption_Radition and hot electron effect
3 / Ex_{-6} / page 535
4 \text{ tox} = 500 * 10^{-8}
                   //oxide thickness
5 p=0.2 //20\% are trapped at oxide semiconductor
      surface
             //electron hole pair
6 N = 10^18
7 e=1.6*10^-19
8 \text{ eps_ox=} 3.9*8.85*10^-14
9 \text{ ni}=1.5*10^10
                     //intrinsic carrier concentration
10 Nh=N*tox //areal density of holes
11 Qss=Nh*p //trapped surface charge density
12 Cox=eps_ox/tox
13 delVt=-Qss*e/Cox
```

14 printf('The threshold voltage shift due to radiation induced oxide charge trapping is $\%1.2\,\mathrm{f}$ V',delVt)

Chapter 12

The junction field effect transistor

Scilab code Exa 12.1 Device characteristics

```
1 // Chapter 12-The junction field effect transistor
2 // Caption_Device characteristics
3 / Ex_1 / page 557
4 T=300
5 Na=10<sup>18</sup>
6 e=1.6*10^-19
7 eps=8.85*10^-14*11.7
8 ni=1.5*10<sup>10</sup>
              //donor concentration
9 \text{ Nd} = 10^{16}
10 \quad a=0.75*10^-4
                    //metallurgical channel thichness
11 Vpo=e*a^2*Nd/(2*eps) //internal pinch off
      voltage
12 Vbi=0.0259*log(Na*Nd/ni^2) //built in potential
      barrier
                 //pinch off voltage
13 Vp=Vbi-Vpo
14 printf('The pinch off voltage of this n-channel JFET
       is \%1.2\,\mathrm{fV}', Vp)
```

Scilab code Exa 12.2 Device characteristics

```
1 // Chapter 12_The junction field effect transistor
2 //Caption_Device characteristics
3 / Ex_2 / page 558
4 T=300
5 Nd=10^18
6 \text{ Na}=2*10^16
7 e=1.6*10^-19
8 \text{ eps} = 8.85*10^{-14*11.7}
9 ni=1.5*10<sup>10</sup>
10 \text{ Vp} = 2.25
                //pinchoff voltage
11 Vbi=0.0259*log(Na*Nd/ni^2)
12 Vpo=Vp+Vbi
13 a=(2*eps*Vpo/(e*Na))^0.5*10^4
14 printf ('Metallurgical channel thickness is %1.3 f
      micrometer',a)
```

Scilab code Exa 12.3 Depletion mode JFET

```
1 // Chapter 12_The junction field effect transistor
2 //Caption_Depletion mode JFET
3 //Ex_3//page 558
4 T=300
5 Na=10^18
6 e=1.6*10^-19
7 eps=8.85*10^-14*11.7
8 Vbi=0.814
9 Vpo=4.35
10 ni=1.5*10^10
11 Nd=10^16
12 a=0.75*10^-4 // metallurgical channel thickness
```

Scilab code Exa 12.4 Transconductance

Scilab code Exa 12.5 The MESFET

```
1 // Chapter 12_The junction field effect transistor
2 //Caption_The MESFET
3 //Ex_5//page 567
4 Nc=4.7*10^17
5 e=1.6*10^-19
6 eps=8.85*10^-14*13.1
7 T=300
8 phi_bn=0.89 //barrier height
9 Nd=2*10^15
10 Vt=0.25
```

```
11 phi_n=0.0259*log(Nc/Nd)
12 Vbi=phi_bn-phi_n //built in potential barrier
13 Vpo=Vbi-Vt
14 a=10^4*(Vpo*2*eps/(e*Nd))^0.5
15 printf('The channel thickness of GaAs is %1.3 f micrometer',a)
```

Scilab code Exa 12.6 The MESFET

```
1 // Chapter 12_The junction field effect transistor
2 // Caption_The MESFET
3 / Ex_{-6} / page 568
4 e=1.6*10^-19
5 \text{ eps} = 8.85*10^-14*13.1
6 T = 300
7 ni=1.8*10^6
8 Na=10^18
9 \text{ Nd} = 3 * 10^{15}
10 \quad a = 0.70 * 10^{-4}
11 Vbi=0.0259*log(Na*Nd/ni^2)
12 Vpo=e*a^2*Nd/(2*eps)
                               //internal pinch off
      voltage
13 Vt=Vbi-Vpo
                //threshold voltage
14 h=0.6*10^-4
15 VGS=Vbi-(e*h^2*Nd/(2*eps))
16 printf ('The forward bias voltage required in an n
      channel GaAs enhancement mode pn jfet to open up
      a channel is %1.2 f V', VGS)
```

Scilab code Exa 12.7 The MESFET

```
1 // Chapter 12_The junction field effect transistor
2 // Caption_The MESFET
```

```
3 / Ex_{-7} / page 570
4 e=1.6*10^-19
5 \text{ eps} = 8.85*10^-14*13.1
6 T = 300
7 ni=1.8*10<sup>6</sup>
8 L=1.2*10^-4
9 mun=8000
10 a=0.70*10^-4
11 Idi=75*10^-6
12 VGS=0.5
13 \text{ Vt} = 0.24
14 \text{ kn=Idi/(VGS-Vt)}^2
                            //conduction parameter
15 W=10^4*kn*2*a*L/(mun*eps)
16 printf ('The required channel width is %1.2 f
      micrometer', W)
```

Scilab code Exa 12.8 The MESFET channel length modulation

```
1 // Chapter 12_The junction field effect transistor
2 // Caption_The MESFET-Channel length modulation
3 / Ex_8 / page 573
4 \text{ Nd} = 3*10^15
5 \text{ eps} = 8.85*10^-14*11.7
6 L = 10
7 ID1 = 4
8 VDSsat=0 //assume
9 VDS1=VDSsat+2
10 VDS2=VDSsat+2.5
11
12 delL2=10^4*(2*eps*(VDS2-VDSsat)/(e*Nd))^0.5
                                                     //
      change in length
13 delL1=10^4*(2*eps*(VDS1-VDSsat)/(e*Nd))^0.5
                                                     //
      change in length
14 //drain currents are
15 ID22=ID1*(L/(L-0.5*delL2))
```

```
16 ID11=ID1*(L/(L-0.5*delL1))
17 rds=(VDS2-VDS1)/(ID22-ID11)
18 printf('The small signal output resistance at the
         drain terminal due to channel length modulation
         effects is %1.1 f kohm',rds)
```

Scilab code Exa 12.9 cut off frequency

```
// Chapter 12_The junction field effect transistor
// Caption_Cutoff frequency
// Ex_9//page 579

e=1.6*10^-19
mun=1000
L=5*10^-4
eps=8.85*10^-14*11.7
a=0.60*10^-4
Nd=10^16
fT=(e*mun*Nd*a^2)/(2*%pi*eps*L^2)*10^-9
printf('The cutoff frequency of silicon JFET with given parameters is %1.2 f GHz', fT)
```

Scilab code Exa 12.10 High electron mobility transistor

```
// Chapter 12_The junction field effect transistor
//Caption_High electron mobility transistor
//Ex_10//page 585

Md=10^18
d=20*10^-8
dd=500*10^-8 //thickness
phi_B=0.85
q=1.6*10^-19
VG=0
epsn=12.2 //relative dielectric constant
```

Chapter 13

Optical devices

Scilab code Exa 13.1 Optical absorption

```
1 // Chapter 13_Optical Devices
2 // Caption_Optical absorption
3 / Ex_1 / page 598
                         //incident wavelength
4 lambdai1=1*10^-4
5 \quad lambdai2 = 0.5 * 10^- 4
6 alpha1=100 //absorption coefficient
7 d1=1*log(1/0.1)/alpha1 //If 90 percent of the
      incident flux is to be absorbed in a distance d,
       then the flux emerging at x=d will be 10% of the
       incident flux
8 alpha2=10000
9 d2=1*log(1/0.1)/alpha2*10^4
10 printf ('As the incident photon energy increases, the
       absorption coefficient increases rapidly since
     d1=\%1.4 \text{ f cm} and d2=\%1.2 \text{ f micrometer}, d1, d2)
```

Scilab code Exa 13.2 Electron hole pair generation rate

```
1 // Chapter 13_Optical Devices
2 // Caption_Electron hole pair generation rate
3 / Ex_2 / page 600
4 T=300
5 \text{ Ivx} = 0.05
               //photon intensity
6 \quad lambda=0.75 \quad // wavelength
7 \text{ alpha=0.7*10^4}
                        //absorption coefficient
8 h=1.24
9 v=1/lambda // v is the frequency
10 E=h*v //energy in eV,
11 g=alpha*Ivx/(1.6*10^-19*h*v) // generation rate of
       electron hole pair
12 tau=10^-7
                  //lifetime of minority carrier
                  //excess carrier concentration
13 deln=g*tau
14 printf ('The generation rate of electron hole pair is
       \%1.2 \text{ f cm}^-3 \text{ s}^-1',\text{g}
```

Scilab code Exa 13.3 Solar cells

```
1 // Chapter 13_Optical Devices
2 // Caption_Solar cells
3 / Ex_3 / page 602
4 Na=5*10^18
5 \text{ Nd} = 10^{16}
6 \text{ Dn} = 25
7 e=1.6*10^-19
8 ni=1.5*10<sup>10</sup>
9 \, \text{Dp} = 10
10 tau_no=5*10^-7
11 tau_po=10^-7
12 JL=15*10^-3
                   //photocurrent density
13 Ln=(Dn*tau_no)^0.5
14 Lp=(Dp*tau_po)^0.5
15 Js=e*(ni^2)*((Dn/(Ln*Na))+(Dp/(Lp*Nd)))
16 Voc = 0.0259 * log (1 + JL/Js)
```

17 printf('Open circuit voltage of SI pn juncton solar cell is %1.3 f V', Voc)

Scilab code Exa 13.4 Solar concentration

```
// Chapter 13_Optical Devices
// Caption_Solar concentration
// Ex_4//page 605

JL==150*10^-3 //PHOTOCURRENT DENSITY
Js=3.6*10^-11 //reverse saturation current density
Voc=0.0259*log(1+JL/Js)
printf('Open circuit voltage when solar concentration is used is %1.3 f V', Voc)
```

Scilab code Exa 14.4 Heat sinks and junction temperature

```
1 // Chapter 14_Semiconductor Power Devices
2 // Caption_Heat sinks and junction temperature
3 / Ex_4 / page - 663
4 P=20
          //Rated power
5 \text{ Tj_max} = 175
                 //Junction temperature
6 TOC=25
7 \quad Tamb=25
            //ambient temperature
8 Theta_case_snk=1
9 Theta_snk_amb=5
10 Theta_dev_case=(Tj_max-TOC)/P
11 PD_MAX=(Tj_max-Tamb)/(Theta_dev_case+Theta_case_snk+
      Theta_snk_amb)
12 printf ('Maximum power dissipated is %1.1 f W', PD_MAX)
```

Scilab code Exa 13.5 Photo conductor

```
// Chapter 13_Optical Devices
//Caption_Photo conductor
//Ex_5//page 611
mup=480
mun=1350
L=100*10^-4 //length of photoconductor
A=10^-7 //cross sectional area
tau_p=10^-6 //minority carrier lifetime
V=10 //applied voltage
//photoconductor gain is
G=(tau_p/tn)*(1+(mup/mun))
mrintf('The photoconductor gain is %1.2f',G)
```

Scilab code Exa 13.6 Photo diode

```
1 // Chapter 13_Optical Devices
2 // Caption_Photodiode
3 / Ex_{-6} / page 616
4 Na=10^16
5 eps=8.85*10^-14;
6 \text{ Nd} = 10^{16}
7 \, \text{Dn} = 25
8 \, \text{Dp} = 10
9 tau_no=5*10^-7
10 e=1.6*10^-19
11 ni=1.5*10<sup>10</sup>
12 tau_po=10^-7
          //reverse bias voltage
13 VR=5
14 GL=10^21 //generation rate of excess carriers
15 Ln=(Dn*tau_no)^0.5
16 Lp=(Dp*tau_po)^0.5
17 Vbi = 0.0259 * log(Na*Nd/ni^2)
```

Scilab code Exa 13.7 PIN Photodiode

```
// Chapter 13_Optical Devices
//Caption_PIN Photodiode
//Ex_7//page 618
W=20*10^-4 //intrinsic region width
phio=10^17 //photon flux
alpha=10^3 //absorption coefficient
GL1=alpha*phio //generation rate of electron hole pair at the front region
GL2=GL1*exp(-alpha*W)
JL=1000*e*phio*(1-exp(-alpha*W)) //photocurrent density
printf('The photocurrent density in PIN photodiode is %1.1 f mA/cm^2 ', JL)
```

Scilab code Exa 13.8 Materials

```
1 // Chapter 13_Optical Devices
2 //Caption_Materials
3 //Ex_8//page 625
4 Eg=1.42
5 lambda=1.24/Eg //output wavelength of photon
6 lam=0.653 //desired wavelength
7 E=1.24/lam //bandgap energy
8 printf('The band gap energy corresponding to visible given wavelength is %1.2 f eV and it would correspond to a mole fraction of x=4',E)
```

Scilab code Exa 13.9 Quantum efficiency

```
// Chapter 13_Optical Devices
//Caption_Quantum efficiency
//Ex_9//page 628
n2=3.666    //index of refraction in GaAs
n1=1    //index of refraction in air
T=((n2-n1)/(n2+n1))^2    //reflection coeffucient
printf('The reflection coefficient at semiconductor-air interface ius %1.2f',T)
```

Scilab code Exa 13.10 Quantum efficiency

```
1 // Chapter 13_Optical Devices
2 //Caption_Quantum efficiency
3 //Ex_10//page 629
4 n2=3.66 //index of refraction in GaAs
5 n1=1 //index of refraction in air
6 theta=asind(n1/n2)
7 printf('The critical angle at semiconductor-air interface is %1.1f degree',theta)
```

Chapter 14

Semiconductor Power Devices

Scilab code Exa 14.1 Power transistor characteristics

```
// Chapter 14_Semiconductor Power Devices
//Caption_Power transistor characteristics
//Ex_1//page-651

RL=10
Vcc=35
Ic_max=Vcc/RL
Ic=Vcc/(2*RL)
VCE=Vcc-Ic*RL //Collector emitter voltage at maximum power point
PT=VCE*Ic //Maximum transistor power dissipation
printf('The maximum power dissipation in transistor occurs at centre of the load line. The maximum power dissipation is therefore %1.1f W',PT)
```

Scilab code Exa 14.2 Power MOSFET characteristics

```
1 // Chapter 14_Semiconductor Power Devices2 //Caption_Power MOSFET characteristics
```

```
3 / Ex_2 / page - 658
4 VDD=24
5 PT=30
           //Maximum rated power
               //Maximum rated current
6 \quad ID1max=5
7 ID2max=4
8 RD1 = VDD/ID1max
                       //Drain resistance
9 RD2=VDD/ID2max
10 ID1=VDD/(2*RD1)
                       //Current at the maximum power
      point
11 ID2=VDD/(2*RD2)
                         //Drain to source voltage
12 VDS1=VDD-ID1*RD1
13 \text{ VDS2=VDD-ID2*RD2}
14 P1=VDS1*ID1
                  //Maximum power that may be dissipated
       in transistor
15 P2=VDS2*ID2
16 printf ('The maximum dissipated power in first case
      is %1.0 f W which corresponds to the maximum rated
       power while in second case is %1.0 f W which is
      less than the maximum rated power', P1, P2)
```

Scilab code Exa 14.3 Heat sinks and junction temperature

```
// Chapter 14_Semiconductor Power Devices
//Caption_Heat sinks and junction temperature
//Ex_3//page-662
Theta_dev_case=1.75
Theta_case_snk=1
Theta_snk_amb=5
Theta_case_amb=50
Tamb=30 //Ambient temperature
Tdev=150 //maximum junction or device temperature
PD_max=(Tdev-Tamb)/(Theta_dev_case+Theta_case_amb) //when no heat sink is used
PD_MAX2=(Tdev-Tamb)/(Theta_dev_case+Theta_case_snk+Theta_snk_amb)
```

12 printf('Maximum power dissipated when no sink was used is %1.2 f W while with the sink is %1.2 f W which is more than the previous case. Thus use of heat sink allows more power to be dissipted in the device.', PD_max, PD_MAX2)