2. kérdés	1 pont
Legyen A = $(x:\mathbb{Z}, y:\mathbb{Z}, z:\mathbb{Z})$, és tekintsük a következő két feladatot:	
$F_1 = \{ (a,b) \in A \times A \mid x(a) = x(b) \text{ és } y(a) = y(b) \text{ és } z(b) = x(a) + y(a) \}$	
$F_1 = \{ (a,b) \in A \times A \mid z(b) = x(a) + y(a) \}$	
Melyik állítás NEM igaz az alábbiak közül?	
Az első feladat az állapottér {x:2,y:5,z:7} eleméhez önmagát rendeli, mert 2 és 5 összege 7, és a felnegy az x és y változók értékei ne változzanak meg.	eladat kiköti
Az második feladat az állapottér {x:2,y:5,z:7} eleméhez végtelen sok olyan állapotot rendel, ahol z tartozó érték 7. Azért van végtelen sok ilyen állapot, mert x és y változók értékei a célállapotokba megegyezzenek a kiindulási állapotban szereplő értékekkel.	
Az első feladatban több pár van mint a másodikban.	
Mindkét feladat arról szól, hogy határozzuk meg két egész szám összegét.	

2. kérdés1 pontVálasszuk az $A=(x:\mathbb{N}^+, y:\mathbb{N}^+, p:\mathbb{N}^+)$ halmazt a következő feladat állapotterének:
Adjunk meg egy p prímszámot az x és y pozitív egészek között.A következő kifejezések közül melyik illik leginkább erre a feladatra? \bigcirc { ((a,b,c), (d,e,f)) \in A×A | x(a)=x(d) és y(b)=y(e) és prim(p(f)) és x(a)<p(f) és p(f)<p(x) } \bigcirc { (a,b) \in A×A | x(a)=x(b) és p(y) és prim(b(p)) és p(x) \bigcirc { (a,b) \in A×A | p(a)=p(b) és p(a)=p(b) és prim(p(b)) és p(b) \bigcirc { (a,b,c) \in A | prim(c) és a<c és c
b}

	alábbi fogalmak közül hány olyan van ami egy függvény?
•	állapot
•	változó
•	feladat
0	3
0	1
0	0
0	2

4. kérdés	1 pont
Az alábbiak közül melyik igaz leginkább a feladatra?	
A feladat	
O olyan állapotok halmaza, melyeket a program megoldásnak fog	ad el.
 egy állapottérről ugyanarra az állapottérre történő leképezés, n állapotból mely célállapot(ok)ba szeretnénk eljutni. 	sellyel azt irjuk le hogy egy adott kiinduläsi

5. kérdés	1 pont
Az alábbiak közül melyik igaz leginkább az állapotra?	
 Az összes lehetséges érték halmaza amiket a program egy változója értékül felveh 	et a végrehajtás során.
Cimkézett értékek halmaza.	
Egy függvény ami a program végrehajtásának egy pontján megadja a használt adal	tok értékét.
○ Egy (v ₁ :A ₁ ,,v _n :A _n) alakú struktúra, ahol az A _i halmazok ún. típusérték halmazok.	

pon

7. kérdés	1 pont
Az alábbi fogalmak közül hány olyan van ami egy halmaz?	
 állapottér állapot feladat 	
O 1	
00	
© 3	
O 2	

Válasszuk az $A=(x:\mathbb{N}^+, y:\mathbb{N}^+, p:\mathbb{N}^+)$ halmazt a következő feladat állapotterének: Adjunk meg egy p prímszámot az x és y pozitív egészek között. Jelölje F a feladatot. Melyik állítás igaz az alábbiak közül? $F(\{x:10, y:20, p:15\}) = \{11,13,17,19\}$ $Az(\{x:10, y:20, p:15\}, \{x:10, y:20, p:17\})$ pár eleme F-nek A feladat nem rendel semmit a $\{x:10, y:20, p:15\}$ állapothoz. A feladat a fail állapotot rendeli az $\{x:10, y:20, p:15\}$ állapothoz.

10. kérdés	1 pont
Legyen A = $(v_1:A_1,,v_n:A_n)$.	
a∈A esetén hány elemű a v₁(a) halmaz?	
\bigcirc bármennyi, de legfeljebb A_1 elemszáma	
1	
ovégtelen sok	
0 0	

Az S(a) elemei olyan sorozatok, amiknek minden eleme A-beli, de ha végesek akkor utolsó elemük csak A-beli

Az S(a) elemei olyan sorozatok, amik ha végesek akkor utolsó elemük csak a fail lehet.

Az S(a) elemei olyan sorozatok, amiknek minden eleme vagy A-beli vagy a fail állapot.

1 pont

kérdés

Az S(a) halmaz nem üres.

lehet.

2. kérdés	1 pont
A = (x:Z,y:Z) Az alábbiak közül hányat tekintünk elemi programnak az A állapottér felett?	
 ABORT x :∈ [110] x,y := x-y,x 	
O 2	
3	
O 1	
O 0	

5. kérdés	1 pont
A = (x:N)	
Az alábbi programok közül hány olyan van ahol az {x:0} állapothoz fail-b tartozik?	oen végződő végrehajtás
 ABORT x := x-1 	
 Az x 10 ciklusfeltételű, x:= x+1 ciklusmagú ciklus. 	
O 1	
O 0	
3	
○ 2	

5. kérdés 1 po	n
A következő állítások közül melyik igaz (de nem a teljes definíciója a programnak) egy tetszőleges S programra?	250
Az S program egy halmaz, ami értékadásokat és egyéb elemi utasításokat tartalmaz.	
S egy végrehajtási sorozatokat tartalmazó halmaz.	
 S egy reláció ami egy halmaz elemeihez sorozatokat (legalább egyet) rendel. 	
 S egy állapotpárokat tartalmazó halmaz, azt adjuk meg vele hogy milyen input esetén milyen állapot lesz az output. 	

Legyen S tetszőleges program, alap-állapotterét jelölje A. Legyen a∈A tetszőleges.

 ∩ Ã azon állapotok halmaza, amelyekhez semmit nem rendel a program.

- Az A állapottér altere önmagának, ezért egy S(a)-beli sorozatnak egy közbülső b∈A állapota esetén b∈Ã is teliesül.
- Egy a∈A állapothoz rendelt sorozat bármilyen Ā-beli állapottal kezdődhet, de a sorozat utolsó eleme csak a fail vagy egy A-beli állapot lehet.
- S az A elemeihez pontosan egy sorozatot rendel.

Melyik állítás igaz a felsoroltak közül?

8. kérdés	1 pon
Az alábbi párok közül hány olyan van, ami eleme lehet egy A = (x:{1,2,3,4}) alap programnak?	-állapottér feletti
 ([x:1], < [x:2], [x:2], >) ([x:1], < [x:1], [x:2], fail, [x:4] >) ([x:1], < [x:1], [x:4,y:hamis] >) 	
O 2	
0 1	
• 0	
O 3	

[({x:1},<[x:1],{x:2},[x:4}»), ([x:2],<{x:1}»), ({x:3},<[x:3],fail,[x:1}»), ({x:4},<[x:4],[x:1]») }

10. kérdés	1 pont
A [*] jelöli	
az A halmaz komplementerének elemeit vagy a fail állapotot tartalmazó sorozatok halmazát.	
az A-beli elemeket tartalmazó véges sorozatok halmazát.	
o az A-beli elemeket tartalmazó, segédváltozók értékeinek nyilvántartására is képes sorozatok halm	nazát.

az A-beli elemeket tartalmazó hibás állapotban végződő sorozatok halmazát.

Egy végtelen sorozatot, melynek b állapot az első eleme.	

Egy állapotot, ami egy adott állapothoz rendelt véges és hibátlan sorozatok valamelyikének végpontja.

Egy állapotot, amihez a program csak véges és nem a fail-ben végződő sorozatokat rendel.

Egy sorozatot, amelyet a program adott állapothoz rendel.

4. kérdés	1 pont
A = { 1,2 } alap-állapottere az S programnak.	
$S = \{1 \rightarrow <1,2>, 2 \rightarrow <2,2,2,>\}$	
F1 = { (1,1), (1,2) }	
F2 = { }	
Melyik feladatot oldja meg az S program?	
○ Csak az F1 feladatot oldja meg S.	
O Egyik feladatot sem oldja meg S.	
O Csak az F2 feladatot oldja meg S.	
 Mindkét feladatot megoldja S. 	

A = [1..4] alap-állapottere az S programnak.

$$2 \rightarrow <2,1,4,2>, 2 \rightarrow <2,2,2,2,...>,$$

 $3 \rightarrow \bigcirc ,2,1,4,2,3>$

 $4 \rightarrow \langle 4, 1 \rangle$, $4 \rightarrow \langle 4, \text{fail} \rangle$

Válaszd ki a felsoroltak közül mindet, ami eleme p(S)-nek!

√ (1,2)

(4,1)

V (1,4)

√ (3,3)

8. kérdés 1 pont

A = (x:[6..20])

Jelölje S azt a programot, ami egy ciklus amelynek

ciklusfeltétele: x>7ciklusmagja: x:=x-4

Válaszd ki az összes igaz állítást a felsoroltak közül! (Figyelj az állapottérre!)

- A p(S)({x:8}) halmaznak pontosan egy eleme van.
- A többi felsorolt állítás egyike sem igaz.
- Az {x:20} állapot eleme a p(S) értelmezési tartományának mert hozzá csak véges és hibátlan végrehajtások tartoznak.
- O Az ({x:14}, {x:10}) pár eleme S programfüggvényének.

 $4 \rightarrow <4,1>$, $4 \rightarrow <4,fail>$, $5 \rightarrow <5,2,3>$, $5 \rightarrow <5,1>$ }

1

Legyen S program és F feladat tetszőlegesek egy A állapottér felett.

Az alábbi feltételek közül, melyik teljesülése szükséges ahhoz hogy az S program megoldja az F feladatot?

Az S program az F értelmezési tartományában lévő állapotokhoz nem rendelhet végtelen sorozatot.

- Az S program az F értelmezési tartományában lévő állapotokhoz nem rendelhet fail-ben végződő sorozatot.
- A felsorolt feltételek mindegyike szükséges.
- Az S program az F értelmezési tartományában lévő bármely x állapotból elindulva olyan állapotban kell megálljon ami az F(x) halmazon belül van.

7. kérdés	1 pont
Az S programról tudjuk, hogy	
$S(2) = \{ <2,1,3>,<2> \}.$	
Válaszd ki az összes igaz állítást!	
☑ A 2 eleme a programfüggvény értelmezési tartományának.	
☑ A (2,2) pár eleme S programfüggvényének.	
☐ A felsoroltak egyike sem igaz.	

8. kérdés	1 pont
A = (x:[110])	
Tekintsük ezen állapottér felett a következő programot: x:= x-6	
Hány elemű a megadott program programfüggvényének értelm rá? (Figyelj az állapottérre!)	ezési tartománya, melyik állítás igaz
○ 6, vagy annál több	
O 5	
○ 5● 4	

10. kérdés 1 pont

Legyen S program tetszőleges egy A állapottér felett.

Melyik állítás igaz a felsoroltak közül?

- \bigcirc Ha egy állapot nem eleme a $D_{p(S)}$ halmaznak, akkor hozzá az S program legalább egy végtelen sorozatot hozzárendel.
- Ha egy állapot nem eleme a D_{p(S)} halmaznak, akkor az ebből az állapotból induló valamely végrehajtás a fail állapotban végződik.
- Ha egy állapot nem eleme a D_{p(S)} halmaznak, akkor ehhez az állapothoz az S program csak olyan sorozatokat rendel amik vagy végtelenek - vagy végesek de a fail állapotban végződnek.
- Ha egy állapot eleme a D_{p(S)} halmaznak, akkor hozzá az S program nem rendel végtelen sorozatot.

2. kérdés	1 pont
A = [13] alap-állapottere az S programnak.	
$S = \{1 \rightarrow <1,2>, 1 \rightarrow <1,3,2,1,3,1>,$	
2→<2,3,1>, 2→<2,2,2,2,>,	
3→<3>, 3→<3,1,2> }	
R = { (1,igaz), (2,igaz), (3,hamis) } egy logikai függvény.	
Mi az If(S,R) igazsághalmaza?	
○ [1]	
O [1,2,3]	
011	
O {1,2}	

4. kérdés	1 pont
$A = (x:\mathbb{Z})$ állapottér.	
Igaz-e a következő:	
$x>10 \Rightarrow If(x:=x-7,x>8)$	
○ Igaz	

5. kérdés	1 pont
Legyen S program, míg R logikai függvény tetszőlegesek egy A állapottér felett.	
Ha egy állapot nincs az If(S,R) igazsághalmazában,	
O akkor ehhez az állapothoz nem tartozik olyan véges végrehajtás aminek végpontjában R teljesül.	
 akkor abban az esetben ha ebből az állapotból elindulva a program biztos hogy helyesen terminál, van oly végrehajtási sorozat aminek utolsó állapotában R hamis. 	yan
akkor ehhez az állapothoz van olyan végrehajtás ami a fail állapotban végződik.	
 akkor ehhez az állapothoz az S program csak olyan sorozatokat rendel amik vagy végtelenek vagy a fail állapotban végződnek. 	

6. kérdés	1 pont
Legyen R tetszőleges logikai függvény.	
Melyik NEM igaz a felsoroltak közül?	
O HAMIS⇒R	
O R⇒IGAZ	
O R⇒R	

7. kérdés	1 pont
Legyen S program tetszőleges egy A állapottér felett. Melyik állítás igaz a felsoroltak közül?	
O Az 1. és 2. állítások egyike sem igaz.	
O 2. If(S,IGAZ) = IGAZ	
O Az 1. és 2. állítás is igaz.	
● 1. If(S,HAMIS) = HAMIS	

1 pont

8. kérdés

biztos hogy helyesen terminál.

Az If(S,R) igazsághalmaza részhalmaza a D_{p(S)} halmaznak.

9. kérdés	1 pont
A = { 1, 2, 3 }	
P = { (1,igaz), (2,igaz), (3,hamis) }	
Q = { (1,igaz), (2,igaz) }	
Az A halmaz feletti P és Q logikai függvények közül melyiknek igazsághalmaza az {1,2} halma:	27 <mark>-</mark>
○ Q-nak.	
○ Sem P-nek sem Q-nak.	
○ Csak P-nek, mert Q nem is logikai függvény.	
P-nek és Q-nak is.	

10. kérdés	1 pont
A = (x:[111])	
Hány elemű If(x:=x-2, x<4) igazs	ághalmaza?
3	

Legyenek F_1 és F_2 egy A állapottér feletti tetszőleges feladatok úgy hogy F_1 szigorúbb mint F_2 .

Melyik állítás igaz a felsoroltak közül?

- Minden olyan állapot ami eleme F₂ értelmezési tartományának, az eleme F₁ értelmezési tartományának is.
- F₁ értelmezési tartománya F₂ bizonyos elemeit tartalmazza csak.
- F₁ értelmezési tartományának minden elemére az igaz, hogy amit F₂ hozzárendel annak F₁ csak egy részét rendeli hozzá.
- O F₂ értelmezési tartományának minden elemére az igaz, hogy amit F₂ hozzárendel azt F₁ is hozzárendeli.

10. kérdés	1 pon
A = (x:N, y:N, z:N)	
B = (x':N, y':N)	
$Q = (x=x' \land y=y')$	
$R = (Q \land x < z \land prim(z))$	
A prím(z) igaz ha z prímszám.	
Tekintsük az ezzel a specifikációval megadott F feladatot.	
Hány eleme van az F({x:20, y:25, z:24}) halmaznak?	
O Nincs egy eleme sem, mert a 24 nem prím.	
1, mert 20 és 25 között csak egy primszám van.	
Végtelen sok prímszám van, így végtelen sok.	
1 Table 1 Table 1 1 Table 1 Ta	

1 pont

Legyen B egy paramétertere a tetszőleges F⊆A×A feladatnak, továbbá legyen F=F2∘F1 és b∈B.

- Q_b olyan B-beli elemekre igaz, melyek benne vannak az F₁ reláció értelmezési tartományában.
- Q_h olyan A-beli állapotokra igaz, melyekhez F₁ reláció hozzárendeli b-t.
- Q_b olyan A-beli állapotokra igaz, melyekhez F₁ reláció csak b-t rendel.
- O Qb olyan B-beli elemekre igaz, melyekhez az F1 reláció ugyanazt a b-t rendeli.

A = (x:N, y:N, z:N)

B = (x':N, y':N) $Q = (x=x' \land y=y')$

 $R = (x' < z \land z < y' \land prim(z))$

A prím(z) igaz ha z prímszám.

Tekintsük az ezzel a specifikációval megadott F feladatot.

tehát [R_{ x':20, y':25 }]-nek?

O Nincs egy eleme sem, mert a 24 nem prím.

Végtelen sok, mert a célállapotban x és y értéke bármilyen természetes szám lehet.

Hány eleme van az { x':20, y':25 } paraméterhez tartozó R logikai függvény igazsághalmazának,

1, mert 20 és 25 között csak egy primszám van.

Legyen S program, R pedig logikai függvény egy A állapottér felett.

Legyen B egy paramétertere a tetszőleges F⊆A×A feladatnak, továbbá legyen F=F₂∘F₁.

Legyen b∈B olyan paraméter hogy $Q_b \Rightarrow lf(S,R_b)$ nem teljesül.

Melyik állítás igaz a felsoroltak közül?

A specifikáció tétele egy elégséges feltételt fogalmaz meg arra vonatkozóan hogy S program megoldja az F feladatot, a tétel nem mond semmit arról az esetről ha valamely B-beli b paraméterre nem igaz hogy Q_b ⇒ If(S,R_b).

Mivel most nem minden B-beli b paraméterre igaz hogy $Q_b \Rightarrow lf(S,R_b)$, ezért nem állíthatjuk biztosan hogy S megoldja F-et; a specifikáció tételével nem eldönthető hogy S megoldja-e az F feladatot vagy sem.

- Az S program biztos hogy helyesen terminál egy olyan a állapotból indulva, melyhez F₁ reláció b paramétert rendel, és méghozzá olyan állapotban terminál S amit F₂ rendel b-hez.
- Az S program nem oldja meg az F feladatot.

A = (x:N, y:N, z:N)

B = (x':N, y':N)

 $Q = (x=x' \land y=y')$ R = (x'+y'=z)

Tekintsük az ezzel a specifikációval megadott F feladatot.

Hány állítás igaz az alább felsoroltak közül?

- Az F({x:2, y:4, z:0}) képhalmaz végtelen sok elemet tartalmaz.
- Q_{x':2, y':4} igazsághalmaza végtelen sok elemet tartalmaz.
- $\{x:1, y:5, z:6\} \in [R_{\{x':2, y:4\}}]$
- $\{x:2, y:4, z:10\} \in [Q_{\{x:2, y:4\}}]$

Legyen B egy paramétertere a tetszőleges F⊆A×A feladatnak, továbbá legyen F=F₂∘F₁ és b∈B.

- Q_b olyan A-beli állapotokra igaz, melyeket F₁ reláció b-hez rendel.
- Q_b olyan A-beli állapotokra igaz, melyeket F₁ reláció inverze b-hez rendel.
- O Qb olyan A-beli állapotokra igaz, melyekhez F2 reláció hozzárendeli b-t.
- O Q_b olyan A-beli állapotokra igaz, melyeket F₂ reláció b-hez rendel.

Legyen B egy paramétertere a tetszőleges F⊆A×A feladatnak, továbbá legyen F=F₂∘F₁ és a∈A.

Melyik állítás igaz a felsoroltak közül?

- Ha nincs olyan b paraméter hogy a∈[Q_b], akkor a-hoz már F₁ sem rendel semmit, így F sem, tehát a∉D_F.
- O Ha van olyan b paraméter hogy a∈[R_b], akkor F₂(a) nem üreshalmaz, így F(a) sem, tehát a∈D_F.
- \bigcirc Ha van olyan b paraméter hogy $a \in [Q_b]$, akkor $F_1(a)$ nem üreshalmaz, így F(a) sem, tehát $a \in D_F$.
- O Ha nincs olyan b paraméter hogy a∈[R_b], akkor azt mondjuk hogy a-ra nem teljesül az utófeltétel, ezért a∉D_F.

1. kérdés 2. kérdés 1 pont 1 pont Legyen A tetszőleges állapottér. Legyen A tetszőleges állapottér, és x∈A állapot. Tekintsük az A állapottér feletti kétágú ($\pi_1:S_1$; $\pi_2:S_2$) elágazást. Az A állapottér feletti (S₁;S₂) szekvencia mely állapotokhoz rendel kizárólag véges és hibátlan (nem a fail-ben végződő) sorozatokat? A felsoroltak közül melyik esetben rendel az elágazás <x,fail> sorozatot (és esetleg mást is) az x-hez? Azokhoz az állapotokhoz, melyekhez S₁ csak véges és csak hibátlan sorozatokat rendel, és minden ilyen sorozat végpontjához az S2 csak véges és csak hibátlan sorozatokat rendel. \bullet 1. Ha a π_1 és π_2 feltételek valamelyike nem értelmezett (nem kiértékelhető) az x állapotban. Azokhoz az állapotokhoz, melyekhez S₁ csak véges és csak hibátlan sorozatokat rendel, továbbá azokhoz is amelyekhez S_1 nem rendel semmit de S_2 csak véges és csak hibátlan sorozatokat. \bigcirc 2. Ha a π_1 és π_2 feltétel is hamis az x állapotban. Azokhoz az állapotokhoz, melyekhez S₁ csak véges és csak hibátlan sorozatokat rendel. Az 1. és 2. esetekben is. Azokhoz az állapotokhoz, melyekhez mind S₁ és mind S₂ is csak véges és csak hibátlan sorozatokat rendel. Az 1. és 2. esetek egyikében sem. 3. kérdés 1 pont 4. kérdés 1 pont Legyen A tetszőleges állapottér, S program A felett, és x∈A állapot. Tekintsük az A állapottér feletti Legyen A tetszőleges állapottér. egyágú (HAMIS:S) elágazást. Tekintsük az A állapottér feletti $(S_1;S_2)$ szekvenciát. Az alábbiak közül, hogy rendelhet a szekvencia fail-ben végződő sorozatot egy x∈A állapothoz? Mit rendel az elágazás az x állapothoz? Az S₁ program egy olyan véges sorozatot rendel x-hez aminek utolsó eleme egy A-beli y állapot, és ugyanehhez az y állapothoz S₂ hozzárendel egy fail-ben végződő sorozatot. Ugyanazokat a sorozatokat amiket az S program, tehát az S(x) halmaz elemeit. Hiszen valamit kell rendelni xhez ha azt akarjuk hogy az elágazás teljesítse a program definíciójában megfogalmazott tulajdonságokat. Az S₁ program nem rendel semmit x-hez. Az elágazásnak egyetlen ága van, az ott lévő HAMIS logikai függvény bármely állapotban kiéértékelhető, és az Az S₁ program egy végtelen sorozatot rendel x-hez, amit így S₂ nem tud folytatni. értéke hamis. Tehát bármely állapotot is tekintjük, nem igaz hogy legalább az egyik elágazásfeltétel teljesülne rá. Az x állapotra az elágazás egyik feltétele sem teljesül. Ezt hibának tekintjük. Így x-hez az elágazás az <x,fail> A felsoroltak egyike esetén sem valósul meg az hogy a szekvencia x-hez fail-ben végződő sorozatot rendelne. sorozatot rendeli. Semmit. 6. kérdés 1 pont Az x állapotra az elágazás egyik feltétele sem teljesül (csak egy van, de az minden állapotra hamis). Ilyenkor semmi nem történik, az elágazás megegyezik a SKIP programmal. Tehát x-hez az elágazás az <x> sorozatot rendeli. Legyen A tetszőleges állapottér, S program A felett, és x∈A állapot. Tekintsük az A állapottér feletti olyan ciklust, aminek a ciklusfeltétele a HAMIS logikai függvény és a ciklusmagja az ABORT program. kérdés 1 pont Mit rendel ez a ciklus az x állapothoz? Legyen A tetszőleges állapottér, és $x \in A$ állapot. Tekintsük az A állapottér feletti kétágú ($\pi_1:S_1$; $\pi_2:S_2$) <x> elágazást. <x,x,x,...> Tudjuk hogy $\pi_1(x) \land x \notin D\pi_2$. Azaz, x állapotban igaz π_1 , viszont π_2 nem kiértékelhető. Semmit. <x,fail> Mit rendel az elágazás az x állapothoz? Azokat a sorozatokat amiket S₁ rendel x-hez, továbbá az <x,fail> sorozatot is. 8. kérdés 1 pont Semmit. Mit rendel a $(\pi:S_0)$ ciklus (azaz aminek ciklusfeltétele π és ciklusmagja S_0) az állapottér azon x Pont azokat a sorozatokat, amiket S₁ rendel x-hez. állapotához, amelyben a π ciklusfeltétel kiértékelhető, de π értéke az x állapotban hamis? Csak az <x,fail> sorozatot. <> 7. kérdés 1 pont <x,fail> O <x> Legyen A tetszőleges állapottér, és x∈A állapot. <x,x,x,...> Melyik állítás igaz a felsoroltak közül? 10. kérdés 1 pont A másik három felsorolt állítás egyike sem igaz. Az x állapothoz az A állapottér feletti (π:S₀) ciklus csak olyan sorozatokat rendelhet, amelyeket az S₀ ciklusmag Legyen A tetszőleges állapottér, és x∈A állapot. az x-hez rendel. Tekintsük az A állapottér feletti kétágú ($\pi_1:S_1$; $\pi_2:S_2$) elágazást. Az x állapothoz az A állapottér feletti kétágú (π_1 : S_1 ; π_2 : S_2) elágazás csak olyan sorozatokat rendelhet, amelyeket az S_1 és S_2 programok valamelyike az x-hez rendel. Az x állapothoz az A állapottér feletti (S₁;S₂) szekvencia csak olyan sorozatokat rendelhet, amelyeket az Melyik állítás igaz a felsoroltak közül? S₁ program az x-hez rendel. \bigcirc Ha az x állapotra igaz a $π_1$ feltétel, és x-hez S₁ program csak véges és csak hibátlan (nem a fail-ben végződő) sorozatokat rendel, akkor az elágazás is csak véges és csak hibátlan sorozatokat rendel x-hez. 9. kérdés 1 pont igoplus Ha az x állapotra igaz a π_1 feltétel, és x-hez S_1 program csak véges és csak hibátlan (nem a fail-ben végződő) sorozatokat rendel, akkor ha a π_2 feltétel nem teljesül x-re, akkor az elágazás egy fail-ben végződő sorozatot is Legyen A tetszőleges állapottér, S program az A állapottér felett, és x∈A állapot. hozzárendel x-hez. Az alábbi esetek közül mikor rendeljük x-hez az <x,fail> sorozatot (és esetleg mást is)? • Ha az x állapotra igaz a $π_1$ feltétel, és x-hez S_1 program csak véges és csak hibátlan (nem a fail-ben végződő) sorozatokat rendel, akkor ha a π₂ feltétel nem kiértékelhető x-ben, akkor az elágazás egy fail-ben végződő sorozatot is hozzárendel x-hez. A felsorolt esetek mindegyikében. igoplus Ha az x állapotra igaz a π_1 feltétel, és x-hez S_1 program csak véges és csak hibátlan (nem a fail-ben végződő) S program egy ciklus, aminek ciklusfeltétele nem kiértékelhető az x állapotban. sorozatokat rendel, akkor ha a π_2 feltétel is igaz x-re akkor az elágazás garantáltan csak véges és csak hibátlan sorozatokat rendel x-hez. S program egy (S₁;S₂) szekvencia, és S₁ program x-hez hozzárendel egy fail-ben végződő sorozatot. S program egy n-ágú elágazás, és az n feltétel közül mindegyik hamis az x állapotban.

1. kérdés 2. kérdés 1 pont 1 pont $A = (x:\mathbb{Z}^n, s:\mathbb{Z})$ $P \wedge \pi \Rightarrow If(S_0,R)$ Hogyan bizonyítjuk a Ez a kritérium nem szerepel a ciklus levezetési szabályának pontjai között. Miért nem? $P \wedge \pi \Rightarrow If(s:=x[i],P)$ feltételt? (π a ciklusfeltételt, S_0 a ciklusmagot, Q az előfeltételt, R az utófeltételt, P a ciklus invariánsát, R pedig a ciklus terminálófüggvényét jelöli.) (P és π logikai függvények.) Azért nincs felsorolva, mert ez kikövetkeztethető a 2. és 4. pontokból, azaz ha teljesülnek hogy $P \land \neg \pi \Rightarrow R \text{ \'es}$ Kiszámoljuk a jobb oldalon lévő leggyengébb előfeltételt, P-ben az s változó helyett az x[i] kifejezést írva. $P \wedge \pi \Rightarrow If(S_0,P)$ akkor Kiszámoljuk a jobb oldalon lévő leggyengébb előfeltételt, P-ben az s változó helyett az x[i] kifejezést írva. $P \wedge \pi \Rightarrow lf(S_0,R)$ is teljesül. Ugyanakkor azt is garantálnunk kell hogy az s:=x[i] értékadás helyesen terminál, ezért a következőt kell belátnunk: ○ Ez egy beugratós kérdés, a $P \land \pi \Rightarrow If(S_0,R)$ feltételt belátjuk a ciklus helyességének bizonyítása során. $P \wedge \pi \Rightarrow P^{s \leftarrow x[i]} \wedge i \in [1..n]$ \bullet P \land $\pi \Rightarrow If(S_0,R)$ A jobb oldalon P van, ami nyilvánvalóan igaz hiszen a bal oldalon is szerepel. Ez a kritérium azt jelentené, hogy a ciklusmagot végrehajtva az utófeltétel teljesül. Ez általában nem igaz a ciklusokra, hiszen ha elég lenne egyszer végrehajtani a ciklusmagot hogy a kívánt R utófeltételbe jussunk, akkor nem is írnánk ciklust, ebben az esetben a ciklus lecserélhető lenne az So ciklusmagra mint programra ami 3. kérdés 1 pont megoldja a Q előfeltételű és R utófeltételű feladatot. $A = (x:\mathbb{Z}^n, a:\mathbb{Z}, i:\mathbb{Z})$ 4. kérdés 1 pont Hogy kell kiszámolni a következő helyettesítést? (x[i] = a) a←i, i←i+1 Az alább felsorolt állítások közül melyik igaz egy ciklus terminálófüggvényére? x[i+1] = i+1Olyan függvény ami a ciklusmag minden végrehajtásakor növeli egy számláló értékét, de hogy ne kapjunk végtelen ciklust, valamikor lenullázza a számláló értékét és akkor megáll a ciklus. x[i+1] = i+1 Logikai függvény, ami igaz a ciklus megkezdésekor és a ciklus végrehajtása után is. Logikai függvény, ami pontosan azokban az állapotokban igaz ahol a ciklus terminál - ezért hívják x[i] = i terminálófüggvénynek. Az állapotokhoz egész számot rendelő függvény. A ciklusmag végrehajtásával olyan állapotba kerülünk ahol a terminálófüggvény értéke kisebb mint a ciklusmag végrehajtását megelőző állapotban volt. 5. kérdés 1 pont 6. kérdés Egy (S₁;S₂) szekvencia helyességének bizonyításakor az alábbiak közül melyiket látjuk be? 1 pont (Q az előfeltételt, R az utófeltételt, míg Q' a szekvencia közbülső állítását jelöli.) A (π,S_0) ciklus helyességének bizonyítása során melyiket látjuk be az alábbiak közül? O Q \Rightarrow If(S₁, Q') $(\pi \text{ a ciklusfeltételt}, S_0 \text{ a ciklusmagot}, Q \text{ az előfeltételt}, R \text{ az utófeltételt}, P \text{ a ciklus invariánsát}, t pedig$ a ciklus terminálófüggvényét jelöli.) \bigcirc Q' \Rightarrow If(S₁, R) \bigcirc Q \Rightarrow If(S₂, R) P ⇒ π \bigcirc Q' \Rightarrow If(S₂, Q) $\bigcirc P \Rightarrow Q$ 7. kérdés 1 pont \bigcirc P \land $\pi \Rightarrow t < t_0$ A kétágú (π_1 :S₁; π_2 :S₂) elágazás helyességének bizonyítása során baj-e ha nem tudjuk belátni hogy 8. kérdés 1 pont $Q \Rightarrow If(S_2, R)$? (Q az előfeltételt, R pedig az utófeltételt jelöli.) A = (x:N) Nem, mert nem minden Q feltételnek eleget tevő állapotra kell megmutatnunk hogy lf(S₂, R) is igaz, hanem Egy A állapottér feletti ciklusról azt tudjuk hogy ciklusmagja: csak azokra amelyekre a Q mellett a π_2 feltétel is teljesül. x:=x+1 \bigcirc Igen, mert így nem tudjuk bizonyítani hogy az elágazás π_2 feltételhez tartozó ágán "menve" az R utófeltételbe jutunk. X nem lehet a ciklus terminálófüggvénye, mert a ciklusmag ennek értékét növeli, a terminálófüggvény értékének viszont csökkenie kell a ciklusmagban. ($P \land \pi \land x = t_0 \Rightarrow If(x:=x+1, P \land x < t_0)$ kritérium nem teljesül.) 9. kérdés 1 pont -X nem lehet a ciklus terminálófüggvénye, mert ugyan ennek értéke csökken a ciklusmag végrehajtásával, nem igaz hogy a ciklusmag megkezdésekor az értéke pozitív. ($P \wedge \pi \Rightarrow -x > 0$ kritérium nem teljesül.) A kétágú ($\pi_1:S_1$; $\pi_2:S_2$) elágazás helyességének bizonyítása során melyiket látjuk be az alábbiak közül? 1/X nem lehet a ciklus terminálófüggvénye, mert ugyan ennek értéke csökken a ciklusmag végrehajtásával, nem igaz rá hogy egész értékű lenne. (Q az előfeltételt jelöli.) (At terminálófüggvény olyan függvény, melyre t: $A \rightarrow Z$, ez az 1/X függvényre nem teljesül.) • Az X, -X és 1/X függvények egyike sem megfelelő terminálófüggvény, a másik három állítás mindegyike igaz. $\bigcirc Q \Rightarrow \pi_1 \land \pi_2$ $Q \Rightarrow \pi_1 \vee \pi_2$ 10. kérdés 1 pont \bigcirc Q $\Rightarrow \neg \pi_1 \land \neg \pi_2$ \bigcirc Q $\Rightarrow \neg \pi_1 \lor \neg \pi_2$ Jelölje π a ciklusfeltételt, S₀ a ciklusmagot, Q az előfeltételt, R az utófeltételt, P a ciklus invariánsát, t pedig a ciklus terminálófüggvényét. Továbbá, tudjuk hogy $P \land \pi \land t = t_0 \Rightarrow If(S_0, P \land t < t_0)$. Igaz-e, hogy ilyenkor az S_0 ciklusmag megoldja a $P \wedge \pi \wedge t = t_0$ előfeltételű és $P \wedge t < t_0$ utófeltételű feladatot? Nem oldja meg. Az adott feladatot a ciklus oldja meg, nem annak a ciklusmagja. • Mivel $P \land \pi \land t = t_0 \Rightarrow If(S_0, P \land t < t_0)$, igen, S_0 megoldja az adott feladatot, a specifikáció tétele szerint.