Python. Семинар 1

Преподаватели: Дмитрий Косицин, Светлана Боярович и Анастасия Мицкевич

Задание 0. Установите и настройте Python.

Задание 1. Напишите программу, которая будет выводить все четные числа от 1 до 50, попутно заменяя числа, которые делятся на 3, на **Fizz**, делящиеся на 5 — на **Bazz**, а делящиеся и на 3, и на 5 — на **FizzBuzz**.

Замечание. Программу сохраните в файле fizzbuzz.py.

Задание 2. Реализуйте три простые функции: set_bit (устанавливает k-тый бит в переданном числе), $clear_bit$ (сбрасывает k-тый бит) и $test_bit$ (проверяет, установлен ли k-тый бит). Значения всех аргументов предполагайте допустимыми.

Замечание. Функции сохраните в файле bits.py и назовите их именно так, как указано в задании.

Задание 3. Напишите функцию, возвращающую число, битовое представление которого является k-тым членом последовательности Mopca—Туэ (https://en.wikipedia.org/wiki/Thue-Morse_sequence). Значение k полагайте допустимым целым числом больше нуля.

Замечание. Программу сохраните в файле thue morse.py, функцию назовите get sequence item.

Задание 4. Билетик называется счастливым, если сумма первых трех цифр его номера равна сумме последних цифр. Найдите ближайший счастливый билет к введенному пользователем. Номер введенного билета полагайте допустимым целым шестизначным числом.

Замечание. Программу сохраните в файле ticket.py, функцию назовите is_lucky_ticket.

Задание 5. Напишите функцию из не более чем двух строк, которая реализует стандартный алгоритм Евклида поиска НОД (https://en.wikipedia.org/wiki/Greatest_common_divisor). Значения аргументов функции полагайте допустимыми целыми числами.

Замечание. Программу сохраните в файле gcd.py, функцию назовите calculate gcd.