

BC1: For $0 \le x < 5$, the function f is continuous and differentiable. A portion of the graph of

f(x) is obscured by a Tony Record coffee stain. It is known that $\int_0^4 f(x)dx = 8$

and $\int_4^3 f(x)dx = -3$ and f(x) is linear on the intervals (0,1) and (4,5). For $x \ge 5$,

 $f(x) = \frac{4}{(x-a)^2}$, where a is a positive real number.

(a) Find $\int_0^4 2x f'(x) dx$.

(b) Find $\int_{1}^{2} xf(x^2-1)dx$.

(c) Find $\int_0^{\pi/2} \cos(x) f'(\sin(x)) dx.$

(**d**) It is known that $\int_3^\infty f(x)dx = 9$, find the value of a.

BC2: Consider the function $g(x) = \frac{h(x)}{(x+2c)(x-c)}$ where c is a constant with c < 0.

(a) Find
$$\int_{4c}^{7c} g(x) dx$$
 where $h(x) = 6c$.

(b) Find
$$\int_{1-2c}^{\infty} g(x) dx$$
 in terms of *c* where $h(x) = 6c$.

(c) Find
$$\int_0^{-3} g(x) dx$$
 where $h(x) = 2x + c$.

x	1	2	3	4	6	8
f(x)	2	1	?	3	4	3
f'(x)	4	2	1	2	-1	10
g(x)	1	-4	0	0	8	-2

BC3: The function f is twice differentiable with domain $x \ge -10$. It is known that f(x) > 0 for all x values in its domain and has the horizontal asymptote y = 1. The function g is twice differentiable for all values of x.

(a) If
$$\int_{1}^{3} f'(x)g(x)dx = 2\int_{1}^{3} f(x)g'(x)dx$$
, find $\int_{1}^{3} f(x)g'(x)dx$

(b) If
$$\int_{2}^{6} f'(g(x))g'(x)dx = -11$$
, find $f(-4)$.

The problem is restated.

x	1	2	3	4	6	8
f(x)	2	1	?	3	4	3
f'(x)	4	2	1	2	-1	10
g(x)	1	-4	0	0	8	-2

BC3: The function f is twice differentiable with domain $x \ge -10$. It is known that f(x) > 0 for all x values in its domain and has the horizontal asymptote y = 1. The function g is twice differentiable for all values of x.

(c) If
$$\int_{3}^{\infty} \frac{f'(x)}{[f(x)]^2} = 7$$
, find $f(3)$.

(**d**) Find
$$\int_{1}^{2} 2x^{2} f''(x^{3}) dx$$

(e) Find
$$\int_1^2 2x^3 f''(x^2) dx$$

BC4: A portion of the graphs for f and g are shown above where g is linear with x and y intercepts labeled in the figure. The regions bounded by the graph of f(x) and the x axis have areas of 8 and 3 respectively as labeled.

- (a) Find $\int_a^0 g(x)f'(x)dx$ in terms of a and b.
- **(b)** Find $\int_0^{2a} \left[f'\left(\frac{x}{2}\right) 3 \right] dx$ in terms of a.
- (c) Find $\int_0^{2a} \left[f\left(\frac{x}{2}\right) 3 \right] dx$ in terms of a.

BC5: A portion of the continuous function h(x) is given above on the interval $0 \le x \le 4$.

The function h can also be defined by the equation $h(x) = 3 + \int_{2}^{2x} f(t)dt$.

(a) Find
$$\int_2^6 x f'(x) dx$$
.

BC 6: The functions f and g are continuous and differentiable. A portion of the graph of g is given above. The areas of the bounded regions R and S are 5 and 2 respectively. The function f is defined by $f(x) = \frac{1}{r^2 + k}$ where k is constant.

(a) Find
$$\int x f(x) dx$$
 in terms of x and k .

(b) Let
$$k = 9$$
, find $\int_{\sqrt{3}}^{\infty} f(x) dx$.

(c) Let
$$k = -9$$
, find $\int (5x + 3)f(x)dx$.

(**d**) Find
$$\int_{1}^{4} x g'(x) dx$$
.