## เอาชีวิตรอดในคืนแรก (Survival Ep.1)

นักศึกษาได้หลุดเข้าไปอยู่ในโลกของมายคราฟโดยไม่ทันตั้งตัว และเพื่อเอาชีวิตรอดในคืนแรก นักศึกษาจำ เป็นต้องหาทรัพยากรต่างๆ มาใช้ในการประดิษฐ์เครื่องมือและอาวุธ หนึ่งในทรัพยากรที่สำคัญที่สุดคือ "เหล็ก" ซึ่งมักจะพบได้ในถ้ำลึก ในโลกของมายคราฟนี้ระบบถ้ำถูกจำลองเป็นแบบกราฟแบบมีทิศทาง (Directed Graph)

#### โดย:

- จุดยอด (Node) แทนแต่ละถ้ำ ที่สามารถเข้าไปสำรวจได้
- เส้นเชื่อม (Edge) แทนทางเดินระหว่างถ้ำ ซึ่งสามารถเดินทางได้ในทิศทางเดียวเท่านั้น
- การสำรวจเริ่มจากถ้ำใดถ้ำหนึ่ง และนักศึกษาสามารถเดินไปยังถ้ำอื่นได้ตามทางที่เชื่อมไว้เท่านั้น



จงเขียนโปรแกรมที่รับข้อมูลระบบถ้ำ และตรวจสอบว่า จากแต่ละถ้ำ นักศึกษาสามารถเดินทางไปยังถ้ำใด ได้บ้าง? โดยให้พิมพ์รายงานผลลัพธ์ออกมาในรูปแบบ:

From Cave X, reachable caves: [list of caves in ascending order]

### ข้อมูลนำเข้า (Input)

| บรรทัดที่ 1           | จำนวนเต็ม $n$ แทนจำนวนถ้ำที่สามารถสำรวจได้                                                                                                 |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| บรรทัดที่ 2 ถึง $n+1$ | ข้อมูลอยู่ในรูปของ source destination distance แทนถ้ำ<br>ที่เชื่อมกัน และ ระยะ ทางการ เดินในการสำรวจถ้ำ โดย ทั้งหมด อยู่ในรูป<br>จำนวนเต็ม |

### ข้อมูลส่งออก (Output)

| บรรทัดที่ 1 ถึง $n$ | ผลลัพธ์การสำรวจถ้ำตามรูปแบบที่กำหนด |  |
|---------------------|-------------------------------------|--|
|---------------------|-------------------------------------|--|

KM COC

## ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

| Input | Output                              |
|-------|-------------------------------------|
| 5     | From Cave 0, reachable caves:       |
| 0 1 4 | [0, 1, 2, 3, 4]                     |
| 0 2 7 | From Cave 1, reachable caves:       |
| 1 3 2 | [1, 3, 4]                           |
| 2 3 5 | From Cave 2, reachable caves:       |
| 3 4 9 | [2, 3, 4]                           |
|       | From Cave 3, reachable caves:       |
|       | [3, 4]                              |
|       | From Cave 4, reachable caves:       |
|       | [4]                                 |
|       | Frances Cours O management a course |
| 6     | From Cave 0, reachable caves:       |
| 0 1 3 | [0, 1, 2, 3, 4, 5]                  |
| 1 2 8 | From Cave 1, reachable caves:       |
| 2 0 6 | [0, 1, 2, 3, 4, 5]                  |
| 1 3 2 | From Cave 2, reachable caves:       |
| 3 4 7 | [0, 1, 2, 3, 4, 5]                  |
| 4 5 1 | From Cave 3, reachable caves:       |
| 5 3 4 | [3, 4, 5]                           |
| 2 4 9 | From Cave 4, reachable caves:       |
|       | [3, 4, 5]                           |
|       | From Cave 5, reachable caves:       |
|       | [3, 4, 5]                           |
|       |                                     |



# เอาชีวิตรอดในคืนที่สอง (Survival Ep.2)

หลังจากนักศึกษาได้สำรวจถ้ำแล้ว ได้พบกับหมู่บ้านของชาวบ้าน ในขณะที่นักศึกษาสำรวจอยู่ได้มีซอมบื้ เข้ามาบุกหมู่บ้านทำให้นักศึกษาต้องรีบเข้าช่วยเหลือชาวบ้าน

ในหมู่บ้านแห่งนี้จะถูกจำลองโดยกราฟที่ไม่มีน้ำหนักและไม่มีทิศทางโดย:

- จุดยอด (Node) แทนบ้านในหมู่บ้านแต่ละหลัง
- เส้นเชื่อม (Edge) แทนทางที่สามารถไปได้ระหว่างบ้านในหมู่บ้านแต่ละหลัง

โดยที่การเดินทางระหว่างบ้านแต่ละหลังจะใช้เวลา 1 นาทีเสมอ โดยซอมบี้เริ่มต้นจากบ้าน **Z** ขณะที่นักศึกษา เริ่มจากบ้าน **S** และต้องรีบไปช่วยชาวบ้านที่บ้าน **V** ก่อนที่ซอมบี้จะมาถึง

นักศึกษาต้องหาวิธีที่เร็วที่สุดในการไปถึงบ้านของชาวบ้านและช่วยเหลือเขาก่อนที่ซอมบี้จะมาถึง หรือหาก ซอมบี้ไปถึงก่อน นักศึกษาก็ไม่สามารถช่วยเหลือชาวบ้านได้ทัน



### คำอธิบายรูป

มีบ้านในหมู่บ้านทั้งหมด 6 หลัง ตั้งแต่หมายเลข Ø ถึง 5 โดยมีรายละเอียดดังนี้:

- ชาวบ้านอยู่ที่บ้านหมายเลข 5
- นักศึกษาอยู่ที่บ้านหมายเลข 0
- ซอมบื้อยู่ที่บ้านหมายเลข 2



Practice Exercise: Tree & Graph หน้าที่ | 4

นักศึกษาสามารถเดินทางตามเส้นทาง:

$$0 
ightarrow 1 
ightarrow 2 
ightarrow 5$$
 (รวมเวลา 3 นาที)

ขณะที่ซอมบี้สามารถเดินทางจาก:

$$2 \rightarrow 5$$
 (ใช้เวลา 1 นาที)

ดังนั้นผลลัพธ์ที่ได้คือ TOO LATE เนื่องจากซอมบี้ไปถึงบ้านของชาวบ้านก่อนนักศึกษา

จงเขียนโปรแกรมเพื่อคำนวณว่านักศึกษาสามารถเข้าช่วยเหลือชาวบ้านทันหรือไม่

## ข้อมูลนำเข้า (Input)

| บรรทัดที่ 1           | จำนวนเต็ม $n$ และ $m$ แทนจำนวนบ้านในหมู่บ้าน และจำนวนเส้นทาง ระหว่างบ้านตามลำดับ                  |
|-----------------------|---------------------------------------------------------------------------------------------------|
| บรรทัดที่ 2 ถึง $m+1$ | แต่ละบรรทัดประกอบด้วยจำนวนเต็มสองจำนวน $u$ และ $v$ แสดงถึงทาง เชื่อมระหว่างบ้าน $u$ กับบ้าน $v$   |
| บรรทัดที่ $m+2$       | จำนวนเต็ม $s\ v\ z$ แทนบ้านของนักศึกษา (Steve), บ้านของชาวบ้าน, และ บ้านที่ซอมบี้เริ่มต้นตามลำดับ |

## ข้อมูลส่งออก (Output)

| บรรทัดที่ 1 | แสดง SAFE หากนักศึกษาไปถึงก่อนหรือพร้อมกับซอมบี้ หรือ TOO | LATE |
|-------------|-----------------------------------------------------------|------|
|             | หากซอมบี้ไปถึงก่อน                                        |      |

KM COC

## ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

| Input | Output   |
|-------|----------|
| 4 3   | TOO LATE |
| 0 1   |          |
| 1 2   |          |
| 2 3   |          |
| 0 3 1 |          |
| 4 3   | SAFE     |
| 0 1   |          |
| 1 2   |          |
| 2 3   |          |
| 0 3 0 |          |
| 6 7   | TOO LATE |
| 0 1   |          |
| 1 2   |          |
| 1 3   |          |
| 2 4   |          |
| 3 4   |          |
| 4 5   |          |
| 2 5   |          |
| 0 5 2 |          |