

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

Chemotropism of roots.—In a preliminary paper, Porodko⁸ reports upon the chemotropism of the roots of Lupinus albus and Helianthus annuus. Roots 20-35 mm. long were placed in a lamella of agar varying in thickness from 6 to 60 mm., which separated the solution used from water. In all, 50 chemical substances were used, the concentration of which varied from 0.1n to 0.001n. As a rule, the roots did not remain straight, but bent against or with the diffusion stream. The range of concentration between maximum and minimum depended upon the substance used and the thickness of the agar lamella. Concentrations close to the maximum caused bending against the diffusion stream or positive response, which effect was observed with both electrolytes and non-electrolytes. PORODKO considers this a traumatropic response, due to the inhibition of growth on the up-stream side of the root. With lower concentrations, electrolytes and nonelectrolytes affect the roots differently. The former cause great regularity as regards the direction of bending of the root, while the latter produce positive, negative, and intermediate responses. Acids, alkalies, and carbonates cause positive, and neutral salts negative bendings. The responses due to H and OH ions are considered to be traumatropic. The amount of negative response seems to depend upon the cation, being greater in the presence of one with a double charge than in the presence of one with a single charge. In many cases the responses are not all of one kind. Nevertheless, it is necessary to explain the cause of all. From his experiments, PORODKO concludes that positive but not negative responses can take place in decapitated roots, and that the latter, but not the former, show up as after-effects, although only on the clinostat. The two reactions are different in nature, the positive being passive and caused by the inhibitory effect of the greater concentration on the growing region on the up-stream side of the root, the negative being active and due to the chemotropic effect of the diffusion stream, which tends to accelerate the growth on the up-stream side. Hence, upon the growing region of a root of Lupinus albus subjected to the influence of the diffusion stream of a chemical substance, two antagonistic tendencies are at work, the direction of bending of the root being dependent upon the relative strengths of the two tendencies. Roots of Helianthus annuus act differently from those of Lupinus albus, in that they show only traumatropic response, but why this is true is not known.—R. CATLIN ROSE.

National Academy of Sciences.—At the annual session of 1910 two botanical papers were presented (April 19), which may be outlined as follows:

"The distribution of Agave in the West Indies," by WILLIAM TRELEASE.—
Three main types of Agave are recognized in the West Indies: one confined to the southwestern Cuban region, another to the Inaguas, and the third ranging through the entire archipelago. Subtypes of the latter are limited respectively to the Greater Antilles, the Bahamas, the Caribbees and the Leeward Islands, and the

⁸ Рокорко, Тнеодок, Ueber den Chemotropismus der Wurzel. Ber. Deutsch. Bot. Gesell. 28:50–57. 1910.