Analyse Mathématique et principes de la méthode

1 Introduction

1.1 ModIA 4 : Différences finies

(P)
$$\begin{cases} -u''(x) + c(x)u(x) = f(x) & \text{sur } \Omega =]0, 1[\\ u(0) = u(1) = 0 \end{cases}$$
 (1)

Depuis une grille régulière homogène de pas h, on cherche une approximation de la solution u de (P) en les noeuds de maillage :

$$x_0$$
 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10}

 $(x_i)_{i \in \llbracket 0, N+1 \rrbracket}$, coordonnées des noeuds de maillage.

On cherche $u_h \in \mathbb{R}^{N+2}$, approximation de u en $(x_i)_{i \in \llbracket 0, N+1 \rrbracket}$. Les conditions aux limites donnent : $u_0 = u_{N+1} = 0$

Il nous reste à trouver $(u_i)_{i \in [1,N]}$ avec $u_h = (u_i)_{i \in [0,N+1]}$.

On approxime
$$u''(x_i) \forall i \in [1, N]$$
 par : $u''(x_i) \approx \frac{u(x_{i+1}) - 2u(x_i) + u(x_{i-1})}{h^2}$. (Hypothèse que $u \in \mathcal{C}^4(]0, 1[)$)

D'où la résolution de (P) revient à résoudre :

$$(P_h) \qquad \begin{cases} -\frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} + c(x_i)u_i = f(x_i) & \forall i \in [1, N] \\ u_0 = u_{N+1} = 0 \end{cases}$$
 (2)

Remarque : Etude de la consistence, stabilité (instationnaire) et convergence du schéma numérique.

Remarque: Limitations:

- u supposé "suffisamment régulière" pour que l'approximation de u'' soit correcte. (Est-on contraint apr une telle hypothèse pour la résolution numérique?)
- Grille régulière : problème d'adéquation entre la grille spatiale et la frontière du domaine.

1.2 ModIA 5 : Formulation variationnelle et méthode des éléments finis

1.2.1 Construction d'un "nouveau" problème

Trouver $u \in V$ tel que :

$$(P_{FV}) \qquad \forall v \in V, \quad -\int_{\Omega} u''(x)v(x)dx + \int_{\Omega} c(x)u(x)v(x)dx = \int_{\Omega} f(x)v(x)dx$$
(3)

Questions:

- Dans quel espace choisir u et v pour que les intégrales soient bien définies ?
- Condition d'existence et unicité de la solution de ce problème
- Lien entre la solution de (P_{FV}) et celle de (P) ?

1.2.2 Résolution numérique de (P_{FV})

Recherche d'une solution à (P_{FV}) sur un sous-espace de dimension finie.

Questions:

- Comment construire ce sous-espace?
- Convergence de la méthode?

2 Espace $L^2(\Omega)$ et dérivée faible

2.1 Espace des fonctions tests

Définition - Espace des fonctions tests

On note $D(\Omega)$ l'espace des fonctions "tests", définiés sur Ω , \mathcal{C}^{∞} et à support compact K inclus dans Ω .

 $D(\Omega)$ est un espace vectoriel.

Remarque:

- i) Support d'une fonction $\psi: \Omega \to \mathbb{R}: \text{supp}(\psi) = \overline{\{x \in \Omega, \psi(x) \neq 0\}}$.
- ii) Soit $\psi \in D(\Omega)$, alors toutes ses dérivées sont des fonctions tests.

Définition - Convergence dans $D(\Omega)$

Soient $\psi \in D(\Omega)$ et $(\psi_p) \in D(\Omega)^{\mathbb{N}}$.

On dit que (ψ_p) converge vers ψ dans $D(\Omega)$ si :

- i) $\exists K \subset \Omega$ compact tel que $\forall p \in \mathbb{N}$, supp $(\psi_p) \subset K$ et supp $(\psi) \subset K$.
- ii) $\forall \alpha \in \mathbb{N}^n$, $(D^{\alpha}\psi_p)$ converge uniformément vers $D^{\alpha}\psi$ sur K.

$$\Leftrightarrow \forall \alpha \in \mathbb{N}^n, \forall \varepsilon > 0, \exists p_0 \in \mathbb{N} \text{ tel que } \forall p \geq p_0, \\ \forall x \in \Omega, |D^{\alpha}\psi_p(x) - D^{\alpha}\psi(x)| < \varepsilon.$$

avec
$$D^{\alpha}\psi = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1}...\partial x_n^{\alpha_n}}\psi$$
.

Exemple: n=2

- $\alpha = (1,0), D^{\alpha}\psi = \frac{\partial \psi}{\partial x_1}$.
- $\alpha = (1,1), D^{\alpha}\psi = \frac{\partial^2 \psi}{\partial x_1 \partial x_2}$
- $\alpha = (0,2), D^{\alpha}\psi = \frac{\partial^2 \psi}{\partial x_2^2}.$

Espace $L^2(\Omega)$ 2.2

Définition

Soit Ω ouvert de \mathbb{R}^n muni de la mesure de Lebesgue.

On pose $\mathcal{L}^2(\Omega)$ l'ensemble des fonctions mesurables sur Ω :

$$\mathcal{L}^2(\Omega) = \{v : \Omega \to \mathbb{R} \text{ tel que } \int_{\Omega} |v(x)|^2 dx < +\infty\}.$$

On introduit la relation d'équivalence $\sim \text{sur } \mathcal{L}^2(\Omega)$, définie par :

$$\forall (f,g) \in (\mathcal{L}^2(\Omega))^2, f \sim g \Leftrightarrow f = g \text{ p.p. sur } \Omega$$

On définit $L^2(\Omega) := \mathcal{L}^2(\Omega) / \sim$.

$$\forall f \in L^2(\Omega), f = \{g \in \mathcal{L}^2(\Omega) \text{ tel que } g = f \text{ p.p. sur } \Omega\}$$

On identifie $f \in L^2(\Omega)$ avec son représentant f sur $\mathcal{L}^2(\Omega)$.

Remarque:

- $\int_{\Omega} |f(x)|^2 dx = 0$ avec $f \in \mathcal{L}^2(\Omega) \Leftrightarrow f = 0$ p.p. sur Ω . $\int_{\Omega} |f(x)|^2 dx = 0$ avec $f \in L^2(\Omega) \Leftrightarrow f = 0$ sur $L^2(\Omega)$.

Félix de Brandois

3

Théorème

 $L^2(\Omega)$ muni du produit scalaire $\langle\cdot,\cdot\rangle$ défini par :

$$\forall (f,g) \in (L^2(\Omega))^2, \langle f,g \rangle_{L^2(\Omega)} = \int_{\Omega} f(x)g(x)dx$$

est un espace de Hilbert.

On notera $||f||_{L^2(\Omega)} = \sqrt{\int_{\Omega} |f(x)|^2 dx}$ la norme associée.

Propriété - Fonctions "tests" et $L^2(\Omega)$

- i) $D(\Omega) \subset L^2(\Omega)$.
- ii) Soit $(\psi_p) \in D(\Omega)^{\mathbb{N}}$ qui converge (au sens de la convergence dans $D(\Omega)$) vers $\psi \in D(\Omega)$. Alors (ψ_p) converge vers $\psi \in L^2(\Omega)$.
- iii) $D(\Omega)$ est dense dans $L^2(\Omega)$: $\forall f \in L^2(\Omega), \exists (f_p) \in D(\Omega)^{\mathbb{N}} \text{ tel que } \lim_{p \to \infty} ||f_p f||_{L^2(\Omega)} = 0.$
- iv) Soit $f \in L^2(\Omega)$ telle que $\forall \psi \in D(\Omega), \int_{\Omega} f(x)\psi(x)dx = 0$. Alors f = 0 sur $L^2(\Omega)$.

Remarque: On notera $\psi_p \xrightarrow[p \to \infty]{D(\Omega)} \psi \Rightarrow \psi_p \xrightarrow[p \to \infty]{L^2(\Omega)} \psi$.

2.3 Dérivée faible et divergence faible dans $L^2(\Omega)$

Définition - Dérivée faible

Soit $v \in L^2(\Omega)$.

On dit que v admet une dérivée faible dans $L^2(\Omega)$ si :

$$\forall i \in [\![1,n]\!], \exists w_i \in L^2(\Omega) \text{ tel que } \forall \psi \in D(\Omega), \int_{\Omega} v(x) \frac{\partial \psi}{\partial x_i} dx = -\int_{\Omega} w_i(x) \psi(x) dx$$

 $\forall i \in [1, n], w_i$ ainsi défini est appelé la *i-ème dérivée partielle première faible* de v. On la notera $w_i := \frac{\partial v}{\partial x_i}$.

Remarque:

- i) $\forall v \in L^2(\Omega), \frac{\partial v}{\partial x_i}$ est un abus de langage renvoyant à la i-ème dérivée partielle faible.
- ii) Si $v \in L^2(\Omega)$ est dérivable et $\forall i \in [1, n], \frac{\partial v}{\partial x_i} \in L^2(\Omega)$, alors les dérivées partielles faibles et classiques coïncident.

Propriété

Soit $v \in L^2(\Omega)$.

v admet une dérivée faible dans $L^2(\Omega)$ si

$$\exists c>0 \text{ tel que } \forall \psi \in D(\Omega), \forall i \in [\![1,n]\!], \left|\int_{\Omega} v(x) \frac{\partial \psi}{\partial x_i} dx\right| \leq c \|\psi\|_{L^2(\Omega)}$$

Définition - Divergence faible

Soit $\sigma: \Omega \to \mathbb{R}^n$ telle que $\forall i \in [1, n], \sigma_i \in L^2(\Omega)$.

On notera également $\sigma \in [L^2(\Omega)]^n$.

On dit que σ admet une divergence faible dans $L^2(\Omega)$ si :

$$\exists w \in L^2(\Omega) \text{ tel que } \forall \psi \in D(\Omega), \int_{\Omega} \sigma(x) \cdot \nabla \psi(x) dx = -\int_{\Omega} w(x) \psi(x) dx$$

avec
$$\sigma \cdot \nabla \psi = \sum_{i=1}^n \sigma_i \frac{\partial \psi}{\partial x_i}$$
.

 $w\in L^2(\Omega)$ ainsi défini est appelé la divergence faible de σ . On la notera $w:=\mathrm{div}(\sigma)$. $(\mathrm{div}(v)=\sum_{i=1}^n\frac{\partial v}{\partial x_i})$

Propriété

Soit $\sigma \in [L^2(\Omega)]^n$.

 σ admet une divergence faible si

$$\exists c>0 \text{ tel que } \forall \psi \in D(\Omega), \left|\int_{\Omega} \sigma(x) \cdot \nabla \psi(x) dx\right| \leq c \|\psi\|_{L^2(\Omega)}$$

3 Espaces de Sobolev

3.1 Espace $H^1(\Omega)$ et ses généralisations

Définition

Soit Ω ouvert de \mathbb{R}^n .

On appelle $H^1(\Omega)$ l'ensemble des éléments de $L^2(\Omega)$ qui admettent une dérivée faible dans $L^2(\Omega)$.

On notera : $H^1(\Omega) = \{v \in L^2(\Omega) \text{ tel que } \forall i \in [1, n], \frac{\partial v}{\partial x_i} \in L^2(\Omega)\}.$

Remarque : La notation $\frac{\partial v}{\partial x_i} \in L^2(\Omega)$ renvoie à l'existence d'une i-ème dérivée partielle faible de v.

Théorème

 $H^1(\Omega)$ muni du produit scalaire $\langle \cdot, \cdot \rangle$ défini par :

$$\forall (f,g) \in (H^1(\Omega))^2, \langle f,g \rangle_{H^1(\Omega)} = \int_{\Omega} f(x)g(x)dx + \sum_{i=1}^n \int_{\Omega} \frac{\partial f}{\partial x_i}(x)\frac{\partial g}{\partial x_i}(x)dx$$

est un espace de Hilbert.

Remarque: $\langle f, g \rangle_{H^1(\Omega)} = \langle f, g \rangle_{L^2(\Omega)} + \sum_{i=1}^n \langle \frac{\partial f}{\partial x_i}, \frac{\partial g}{\partial x_i} \rangle_{L^2(\Omega)}$.

Remarque: On note $\langle f, g \rangle_{1,\Omega} := \sum_{i=1}^n \langle \frac{\partial f}{\partial x_i}, \frac{\partial g}{\partial x_i} \rangle_{L^2(\Omega)}$.

Cependant, $\langle f,g\rangle_{1,\Omega}$ n'est pas un produit scalaire sans autres hypothèses : $\langle f, f \rangle_{1,\Omega} = 0 \Rightarrow f = 0.$

- $H^1(\Omega)$ muni de $\langle \cdot, \cdot \rangle_{H^1(\Omega)}$ est un espace préhilbertien. (admis)
- $H^1(\Omega)$ muni de $\|\cdot\|_{H^1(\Omega)}$ défini par $\forall f \in H^1(\Omega), \|f\|_{H^1(\Omega)} = \sqrt{\|f\|_{L^2(\Omega)}^2 + \sum_{i=1}^n \|\frac{\partial f}{\partial x_i}\|_{L^2(\Omega)}^2}$ est complet:

Soit $(u_p) \in H^1(\Omega)^{\mathbb{N}}$ une suite de Cauchy pour $\|\cdot\|_{H^1(\Omega)}$.

 $\forall \varepsilon > 0, \exists p_0 \in \mathbb{N} \text{ tel que } \forall (p,q) \in \mathbb{N}^2, p,q \geq p_0 \Rightarrow \|u_p - u_q\|_{H^1(\Omega)} < \varepsilon$

Par définition de $\|\cdot\|_{H^1(\Omega)}$,

 $\forall \varepsilon > 0, \exists p_0 \in \mathbb{N} \text{ tel que } \forall (p,q) \in \mathbb{N}^2, p,q \geq p_0 \Rightarrow \|u_p - u_q\|_{L^2(\Omega)} < \varepsilon$ et $\|\frac{\partial u_p}{\partial x_i} - \frac{\partial u_q}{\partial x_i}\|_{L^2(\Omega)} < \varepsilon$ pour $i \in [1, n]$.

Donc (u_p) est une suite de Cauchy dans $L^2(\Omega)$ muni de $\|\cdot\|_{L^2(\Omega)}$ et ainsi converge dans $L^2(\Omega)$. On note $u \in L^2(\Omega)$ sa limite.

De même, $\forall i \in [1, n], (\frac{\partial u_p}{\partial x_i})$ est une suite de Cauchy dans $L^2(\Omega)$ et converge dans $L^2(\Omega)$.

$$\forall i \in [1, n], \exists w_i \in L^2(\Omega) \text{ tel que } \xrightarrow[p \to +\infty]{L^2(\Omega)} w_i.$$

Soit $p \in \mathbb{N}$.

$$\forall i \in [1, n], \text{ par definition de } \frac{\partial u_p}{\partial x_i}, \\ \forall \psi \in D(\Omega), \int_{\Omega} u_p(x) \frac{\partial \psi}{\partial x_i} dx = -\int_{\Omega} \frac{\partial u_p}{\partial x_i}(x) \psi(x) dx.$$

D'où,
$$\int_{\Omega} \frac{\partial u_p}{\partial x_i}(x)\psi(x)dx = -\langle u_p, \frac{\partial \psi}{\partial x_i}\rangle_{L^2(\Omega)} \xrightarrow[p \to +\infty]{} -\langle u, \frac{\partial \psi}{\partial x_i}\rangle_{L^2(\Omega)}.$$

Or,
$$\langle u, \frac{\partial \psi}{\partial x_i} \rangle_{L^2(\Omega)} = \int_{\Omega} u(x) \frac{\partial \psi}{\partial x_i} dx$$
.

Or,
$$\langle u, \frac{\partial \psi}{\partial x_i} \rangle_{L^2(\Omega)} = \int_{\Omega} u(x) \frac{\partial \psi}{\partial x_i} dx$$
.
De plus, $\int_{\Omega} \frac{\partial u_p}{\partial x_i}(x) \psi(x) dx = \langle \frac{\partial u_p}{\partial x_i}, \psi \rangle_{L^2(\Omega)} \xrightarrow[r \to +\infty]{} \langle w_i, \psi \rangle_{L^2(\Omega)}$.

6

D'où,
$$\int_{\Omega} w_i \psi dx = -\int_{\Omega} u \frac{\partial \psi}{\partial x_i} dx$$
.
 $\Leftrightarrow \int_{\Omega} u \frac{\partial \psi}{\partial x_i} dx = -\int_{\Omega} w_i \psi dx$.

Texte manquant

Remarque:

- i) Si Ω est borné, alors $\mathcal{C}^1(\overline{\Omega}) \subset H^1(\Omega)$.
- ii) $H^1(\Omega) \subsetneq L^2(\Omega)$ (inclusion stricte).
- iii) $D(\Omega)$ est un sous-espace vectoriel de $H^1(\Omega)$. $D(\Omega)$ n'est pas dense dans $H^1(\Omega)$.

3.2 Espace $H_0^1(\Omega)$

Définition - Espace $H_0^1(\Omega)$

 $H_0^1(\Omega)$ est la fermeture de $D(\Omega)$ dans $H^1(\Omega)$.

$$H^1_0(\Omega) = \overline{D(\Omega)}^{H^1(\Omega)} = \{ v \in H^1(\Omega) \text{ tel que } \exists (v_p) \in D(\Omega)^{\mathbb{N}} \text{ tel que } v_p \xrightarrow[p \to +\infty]{H^1(\Omega)} v \}$$

Propriété - Inégalité de Poincarré

Soit Ω un ouvert borné de \mathbb{R}^n .

 $\exists C_{\Omega}>0 \text{ tel que } \forall v\in H^1_0(\Omega), \|v\|_{L^2(\Omega)}\leq C_{\Omega}|v|_{1,\Omega}.$

avec
$$|v|_{1,\Omega} = \sqrt{\sum_{i=1}^n \left\| \frac{\partial v}{\partial x_i} \right\|_{L^2(\Omega)}^2}$$
.

▶ admis (calcul intégral)

Remarque : Si Ω est un ouvert borné, $H_0^1(\Omega) \subsetneq H^1(\Omega)$ (exemple : fonction constante non-nulle).

De plus, l'inégalité de Poincarré n'est pas valide pour $v \in H^1(\Omega) \backslash H^1_0(\Omega)$.

Corollaire : Soit Ω un ouvert borné de \mathbb{R}^n .

La semi-norme $|\cdot|_{1,\Omega}$ est une norme sur $H_0^1(\Omega)$ équivalente à la norme induite par $\|\cdot\|_{H^1(\Omega)}$.

Théorème

Soit Ω un ouvert borné de \mathbb{R}^n .

 $H^1_0(\Omega)$ muni du produit scalaire $\langle \cdot, \cdot \rangle_{1,\Omega}$ défini par :

$$\forall (f,g) \in (H_0^1(\Omega))^2, \langle f,g \rangle_{1,\Omega} = \sum_{i=1}^n \int_{\Omega} \frac{\partial f}{\partial x_i}(x) \frac{\partial g}{\partial x_i}(x) dx$$

est un espace de Hilbert.

Propriété

Soit Ω un ouvert borné de \mathbb{R}^n à frontière Lipschitzienne. (Ω est appelé "domaine")

Alors $D(\overline{\Omega})$ est dense dans $H^1(\Omega)$ pour la norme $\|\cdot\|_{H^1(\Omega)}$ avec $D(\Omega) = \{\text{restriction des fonctions tests de } \mathbb{R}^n \text{ à } \Omega\}.$

▶ admis

Définition

Soit $m \in \mathbb{N}$.

On appelle $H^m(\Omega) = \{v \in L^2(\Omega) \text{ tel que } \forall \alpha \in \mathbb{N}^n, |\alpha| \leq m, D^{\alpha}v \in L^2(\Omega)\}.$

Texte manquant

Théorème de Lax-Milgram et application 4

Théorème de Lax-Milgram 4.1

Théorème - Théorème de Lax-Milgram

Soit V un espace de Hilbert sur \mathbb{R} , $a:V\times V\to\mathbb{R}$ une application bilinéaire continue et coercive, $l:V\to\mathbb{R}$ une forme linéaire continue.

Alors, $\exists ! u \in V \text{ tel que}$:

$$\forall v \in V, a(u, v) = l(v)$$

▶ admis (Analyse Hilbertienne)

Remarque:

- a bilinéaire continue : $\exists M>0, \forall (u,v)\in V^2, |a(u,v)|\leq M\|u\|_V\|v\|_V.$
- a coercive : $\exists \alpha > 0, \forall v \in V, a(v, v) \geq \alpha \|v\|_V^2$. l linéaire continue : $\exists C > 0, \forall v \in V, |l(v)| \leq C \|v\|_V$.

Propriété

Sous les hypothèses du théorème de Lax-Milgram, la solution $u \in V$ du problème de Lax-Milgram dépend continûment de $l \in V'$.

 \blacktriangleright Soient l_1, l_2 , deux formes linéaires continues. On note $u_1 \in V$ et $u_2 \in V$ les solutions associées du problème de Lax-Milgram.

$$\forall v \in V, \begin{cases} a(u_1, v) = l_1(v) \\ a(u_2, v) = l_2(v) \end{cases}$$

Par coercivité de $a, \exists \alpha > 0, \forall v \in V, a(v, v) \geq \alpha ||v||_V^2$.

Texte manquant

Remarque:
$$|||l||| = \sup_{v \in V \setminus \{0\}} \frac{|l(v)|}{||v||_V} = \sup_{||v||_V = 1} |l(v)|.$$

Propriété

Sous les hypothèses du théorème de Lax-Milgram, en supposant a symétrique, les deux problèmes suivants sont équivalents :

- i) Trouver $u \in V$ tel que $\forall v \in V, a(u, v) = l(v)$.
- ii) $\min_{v \in V} \frac{1}{2} a(v, v) l(v)$.
- ► Texte manquant

4.2 Application aux équations aux dérivées partielles

Problème:

(P)
$$\begin{cases} -\Delta u + c(x)u = f(x) & \text{sur } \Omega \text{ domaine de } \mathbb{R}^n \\ u = 0 & \text{sur } \Gamma \text{ frontière de } \Omega \end{cases}$$
 (4)

avec $f \in L^2(\Omega)$, $c \in L^{\infty}(\Omega)$ tel que $c(x) \geq 0$ presque partout sur Ω .

Objectif:

- 1. Formulation variationnelle : Se ramener à un problème de Lax-Milgram.
- 2. Existence et unicité de la solution de la formulation variationnelle.
- 3. Lien avec le problème original (P).