Topic: Bank Customer Churn Prediction

- Churn prediction means detecting which customers are likely to leave a service or to cancel a subscription to a service. It is a critical prediction for many businesses because acquiring new clients often costs more than retaining existing ones.
- Dataset : https://www.kaggle.com/datasets/shantanudhakadd/bank-customer-churn-prediction
- About the Dataset :
- It is the dataset of a U.S. bank customer for getting the information that, this particular customer will leave bank or not. The dataset contains 10,000 rows and 14 columns.

df.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0

41.1110()									
Rang	ss 'pandas.core.f eIndex: 10000 ent columns (total 1 Column	ries, 0 to 9999							
0	RowNumber	10000 non-null int64							
1	CustomerId	10000 non-null int64							
2	Surname	10000 non-null object							
	CreditScore	10000 non-null int64							
4	Geography	10000 non-null object							
5	Gender	10000 non-null object							
	Age	10000 non-null int64							
7	Tenure	10000 non-null int64							
8	Balance	10000 non-null float64							
	NumOfProducts	10000 non-null int64							
10	HasCrCard	10000 non-null int64							
11	IsActiveMember	10000 non-null int64							
12	EstimatedSalary	10000 non-null float64							
13	Exited	10000 non-null int64							
dtypes: float64(2), int64(9), object(3)									

df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

Data Visualization

Customer Churn based on Gender

Customer Churn Based on Age

Customer Churn based on Geography

Correlation Heatmap

Data Cleaning

- Removed 'RowNumber', 'CustomerID' and 'Surname' columns from the dataset.
- Data does not contain any missing values
- Encoded categorical columns: 'Gender' and 'Geography'


```
x = clean data.drop('Exited', axis=1)
y = clean data['Exited']
x.head()
   CreditScore Geography Gender Age Tenure
                                                 Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary
           619
                                                    0.00
                                                                                                          101348.88
           608
                                                83807.86
                                                                                                          112542.58
                                             8 159660.80
                                                                                                          113931.57
                                                    0.00
                                                                                                           93826.63
           850
                                0 43
                                            2 125510.82
                                                                                                           79084.10
train-test split
```

x train, x test, y train, y test = train test split(x,y, test size=0.2, cv=5)

from sklearn.model selection import train test split

Models Used

K Nearest Neighbours:

Mean cross validation

score: 0.7963

Recall: 0.0

Logistic Regression:

mean cross validation

score: 0.7904 Recall: 0.063

Support Vector Machine:

Mean cross validation

score: 0.7963

Recall: 0.0

Decision Tree:

Mean cross validation score: 0.854

Recall: 0.4370

Hyper-parameter tuning:

On reducing max_depth of tree from 27 to 5 accuracy on testing data increased from 0.79 to 0.86.

Random Forest:

Mean cross validation score: 0.7804

Recall: 0.766

Hyper-parameter tuning:

Improved recall from 0.41 to 0.766 by assigning class weights 0.1 to exited and 0.9 to not exited classes since the dataset contained greater proportion of not-exited class.

Also max depth = 10 and n iterations = 18 gave greater accuracy.

Comparison Between Models

Recall and accuracy have been used to evaluate the models. Since predicting exiting customers accurately is more important than predicting not exiting customers, we would select the model that provides greater recall and satisfactory accuracy. As Random Forest provides greater recall i.e. 0.766, it predicts customer churn more accurately than other models.

Managerial Implications

- Churn prediction means detecting which customers are likely to leave a service or to cancel a subscription to a service. It is a critical prediction for many businesses because acquiring new clients often costs more than retaining existing ones. The model helps predict exiting customers accurately with a greater recall.
- It has been observed that German customers, women and people in age group 40-50 have a higher percentage of exiting customers. Actions can be taken to increase their retention.

Novelty

Many churn models prioritize accuracy, but in this case, finding as many at-risk customers as possible (high recall) is crucial. Therefore more importance has been given to higher recall along with obtaining a satisfactory accuracy.

References

References:

- 1) https://www.analyticsvidhya.com/blog/2021/07/metrics-to-evaluate-your-classification-model-to-tak
 e-the-right-decisions/
- 2) https://medium.com/@rithpansanga/improving-precision-and-recall-in-machine-learning-tips-and-te-chniques-acb5a5fd27a6#:~:text=Implementing%20class%20weights%20