

HPM09S005N

N-Channel Enhancement-Mode MOSFET

Designed for handheld two-way radio applications with frequencies from 136 to 941 MHz. The high gain, ruggedness and Broadband performance of this device make it ideal for large-signal, common-source amplifier applications in handheld radio equipment.

136-941 MHz, 5.0W, 7.5 V BROADBAND RF POWER TRANSISTOR

Typical Broadband EVB Performance (I_{DQ}=300mA, T_A = 25°C, CW)

V DD	Freq.	Gmax	Pou	PAE	
[V]	[MHz]	[dB]	[dBm]	[Watts]	[%]
	400	20.4	38.0	6.3	56.9
	430	20.9	38.9	7.7	60.1
7.5	440	21.5	39.3	8.5	63.4
	460	21.8	39.2	8.3	67.8
	480	20.9	38.0	6.3	67.2

Capable of Handling 20:1 VSWR @7.5Vdc, 5.0Watts, CW

Features

Characterized for Operation from 136 to 941 MHz

Unmatched Input and Output Allowing Broad Frequency Range Utilization

Integrated ESD Protection

Broadband - Full Power Across the Band

Exceptional Thermal Performance

Extreme Ruggedness

Source 2 2 1 2 3 Gate Source Drain

Figure 1. Pin Connections

Typical Applications

Output Stage VHF Band Handheld Radio

Output Stage UHF Band Handheld Radio

Output Stage for 700-800 MHz Handheld Radio

Driver for 10-1000 MHz Applications

Table1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	DSS	-0.5, +20	Vdc
Gate-Source Voltage	GS	-5.0, +8	Vdc
Operating Voltage	DD	0, +12	Vdc
Storage Temperature Range	I stg	-65 to +150	°C
Case Operating Temperature	Tc	-40 to +150	°C
Operating Junction Temperature	Tı	-40 to +150	°C
Power Dissipation @TC=25°C	PD	20	W

Table2. ESD Protection Characteristic

Test Methodology	Class
Human Body Model (per JESD22A114)	2, passes 2500 V
Machine Model (per EIA/JESD22A115)	A, passes 100 V
Charge Device Model (per JESD22C101)	IV, passes 2000 V

Table3. Electrical Characteristics (T_A=25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур.	Max	Unit	
Off Characteristics						
Gate-Source Leakage Current (Vgs=5Vdc, Vds=0Vdc)	I	-	-	1	uAdc	
Zero Gate Voltage Drain Leakage Current (VDS=20Vdc, VGS=0Vdc)	I	-	-	1	μAdc	
Zero Gate Voltage Drain Leakage Current (VDS=7.5Vdc, VGS=0Vdc)	I	-	-	1	μAdc	
On Characteristics						
Gate Threshold Voltage (V _{DS} =7.5Vdc, I _D =1mA)	V GS(th)	1.4	1.9	2.5	Vdc	
Gate Quiescent Voltage (VDD=7.5Vdc, ID=300mA Measured in Functional Test)	V GS(Q)	1.6	2.3	3.0	Vdc	
Drain-Source On-Voltage (Vgs=5Vdc, Ip=100mA)	V DS(ON)	-	0.05	-	Vdc	
Dynamic Characteristics						
Reverse Transfer Capacitance (V _{DG} =7.5V, Level=30mVac@1MHz)	Crss	-	2.1	-	pF	
Output Capacitance (V _{DS} =7.5V, Level=30mVac@1MHz)	Coss	-	15.1	-	pF	
Input Capacitance (V _{GS} =5V, Level=30mVac@1MHz)	Ciss	-	76	-	pF	

Typical Performances (In DuSemi Narrowband Test DEMO, 50 Ohm system)

 $Frequency\!=\!460MHz,\,V_{DD}\!=\!7.5Vdc,\,I_{DQ}\!=\!300mA,T_{A}\!=\!25^{\circ}\!C$

Output Power	P out	ı	7.0	-	Watts
Power Gain	PS		21	-	dB
Drain Efficiency	ηD	-	67	-	%

Test Circuit Component Layout

Table 4. Test Circuit Component Designations and Value

Part	Description	Part Number	Manufacturer
R1	1KOhm	_	_
L2,L3	1nH	_	_
L1	8 Turns D: 0.5 mm, φ 2.4 mm Enamel Wire		
C1, C3,C4,C6,C9	100pF Chip Capacitors	GQM21P5C1H101JB01	Murata
C2, C5	39pF Chip Capacitors	GRM1885C1H201JA01	Murata
C7,C10	1000pF Chip Capacitors	GRM1885C1H102JA01	Murata
C8,C11	10uF,10VChip Capacitors		
C12	10pF Chip Capacitors	_	Murata
PCB	FR-4 ,0.030",E _r 4.5	_	

TYPICAL CHARACTERISTICS

freq (100.0MHz to 2.500GHz)

S Parameter Graph S11 vs. Frequency S21 vs. Frequency freq (100.0MHz to 2.500GHz) S12 vs. Frequency S22 vs. Frequency S22 vs. Frequency

Test condition: V_{DS} = 7.5 V, I_{DQ} = 300 mA, Z_{O} = 50 Ω , 100 to 2500 MHz (50 MHz step).

freq (100.0MHz to 2.500GHz)

S Parameter Table (V	$V_{DS} = 7.5 \text{ V}, I_{DO} = 300 \text{ mA}, Z_0 = 50\Omega$
----------------------	---

с/лп)	S	511	S	21	S12		S22	
f(MHz)	MAG	ANG(deg.)	MAG	ANG(deg.)	MAG	ANG(deg.)	MAG	ANG(deg.)
200	0.834	-152.8	6. 934	102.3	0.040	28. 5	0.471	-144. 0
250	0.835	-158.5	5. 318	87.4	0.036	19. 0	0.546	-146. 1
300	0.837	-162. 2	4. 238	76.3	0.032	14. 2	0.602	-148.6
350	0.838	-165.2	3. 459	67.6	0.029	12.7	0.647	-151.0
400	0.839	-167. 7	2.887	60.2	0.026	14. 3	0.681	-153.5
450	0.841	-170.4	2.454	53.5	0.023	18.8	0.713	-156. 0
500	0.842	-172.9	2.114	47.7	0.022	25. 5	0.738	-158. 3
550	0.843	-175.3	1.818	42.2	0.021	35. 1	0.762	-160. 7
600	0.845	-177.3	1.616	38.2	0.022	43. 5	0.780	-162.8
650	0.846	-179.6	1.433	33.9	0.024	51. 3	0. 796	-165. 1
700	0.847	178. 2	1.282	29.9	0.027	57. 4	0.812	-167. 5
750	0.848	176.0	1. 155	26.3	0.030	61.6	0.826	-169. 7
800	0.850	173. 7	1.041	22.6	0.034	64. 5	0.839	-172. 2
850	0.851	171. 7	0.946	19.4	0.038	66. 2	0.849	-174. 7
900	0.852	169. 4	0.865	16.3	0.042	66.8	0.859	-177. 3
950	0.854	167. 3	0. 797	13.4	0.046	66.8	0.870	-179. 7
1000	0.855	167. 3	0.735	10.8	0.051	66. 5	0.879	175. 8
1050	0.856	163. 2	0.680	8. 1	0.055	65. 4	0.887	175. 2
1100	0.857	161.2	0.634	5. 7	0.059	64. 3	0.893	172. 7
1150	0.859	159.0	0. 585	3. 2	0.064	63. 1	0.902	169. 8
1200	0.860	157. 0	0.545	1. 1	0.068	61.6	0.908	167. 5
1250	0.861	155. 1	0. 509	-0.8	0.072	60.2	0.916	164. 9
1300	0.863	153. 2	0.476	-2.6	0.076	58. 6	0.921	162. 3
1350	0.864	151. 1	0. 446	-4.6	0.080	56. 5	0.927	159. 7
1400	0.865	149. 2	0.419	-6.2	0.084	54. 6	0. 935	157.4
1450	0.867	147. 4	0. 393	-7.4	0.087	53. 3	0. 939	155. 3
1500	0.868	145. 4	0. 368	-8.9	0.091	51. 4	0.945	152.8
1550	0.869	143.8	0.349	-9.8	0.094	50.0	0.948	150. 9
1600	0.871	142.0	0. 329	-10. 7	0.097	48. 3	0.953	148. 9
1650	0.872	140. 4	0. 312	-11. 4	0.100	46. 7	0.957	147. 1
1700	0.873	138.8	0. 295	-11. 9	0. 103	45. 2	0.958	145. 4
1750	0.875	137. 2	0.280	-12.5	0. 105	43. 7	0.962	143. 6
1800	0.876	135. 7	0.268	-12.6	0.108	42.5	0.967	142. 3
1850	0.877	134. 2	0.257	-12.8	0.111		0.969	140.8
1900	0.878	133. 0	0. 247	-12.8	0.114	39. 9	0.972	139. 4
1950	0.880	131. 7	0. 237	-12.5	0.116	38. 9	0.971	138. 3
2000	0.881	130. 4	0. 230	-12.3	0.119	37. 9	0.970	137. 0
2050	0.882	129.3	0. 222	-11.9	0. 122	36.8	0.976	135. 8
2100	0.884	128. 2	0.218	-11.5	0. 125	35. 7	0.975	134. 7
2150	0.885	127. 4	0.213	-11.0	0. 128	34. 7	0.974	133. 5
2200	0.886	126. 2	0.209	-10.6	0.131	33.6	0.973	132. 5
2250	0.888	125. 0	0. 206	-10.2	0.135	32.4	0.973	131.1
2300	0.889	124. 3	0. 203	-9.8	0.138	31. 5	0.973	129. 8
2350	0.890	123.3	0. 201	-9.3	0.142	30. 5	0.969	128. 5
2400	0.891	122.6	0.200	-9.0	0.145	29. 4	0.965	126. 7
2450	0.893	121. 7	0. 199	-8.7	0.149	28. 3	0.961	125. 2
2500	0.894	120.6	0.200	-8.5	0.154	27. 1	0.955	123. 2

PACKAGE Unit: mm

PCB Pad Layout for SOT-89

Bottom View

PACKAGE DIMENSIONS

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description	
1	May 2018	Initial Release of Data Sheet	