TODO NOTES

1. Linear systems

Goal: solve Ax = b with $A \in \mathbb{R}^{n \times n}$ (possibly psd A), $b \in \mathbb{R}^n$. A fixed point equation that corresponds to the linear system is

$$x = x - M^{-1}(Ax - b) (1.1)$$

for any regular matrix $M \in \mathbb{R}^{n \times n}$. This equation suggests a successive iteration method

$$x_{k+1} = x_k - M^{-1}(Ax_k - b) (1.2)$$

It converges whenever $\rho(I - M^{-1}A) < 1$.

Y: Explain why and explain connection of (1.2) to gradient descent.

If we represent $A = A_L + A_D + A_U$ as a sum of lower triangular, diagonal and upper triangular matrices and take $M = A_D + A_L$, we obtain the Gauss-Seidel method:

$$x_{k+1} = (A_D + A_L)^{-1} (b - A_U x_k)$$
(1.3)

Let in (1.1) $M = A_D$. Then we will arrive at the Jacobi method:

$$x_{k+1} = A_D^{-1}(b - (A_L + A_U)x_k)$$
(1.4)

You can read more on such and similar methods, for instance in this book, Chapter 4 or any other online material you will find

2. Adaptive stepsizes

- (1) Read the paper (the first 6 pages) and understand its analysis.
- (2) Improve its analysis for a convex quadratic function $f(x) = \frac{1}{2} \langle Ax, x \rangle \langle b, x \rangle$.
- (3) Use these new stepsize in the setting of Section 1.