Questions | Chapter 3

- 1. Uniform-cost search expands the node n with the lowest path cost g(n). What is g(n)?
- 2. What data structures do BFS, Uniform-cost search, and DFS use?
- 3. What is the difference between Uniform-cost Search and Greedy Best-first Search?
- 4. Discuss the two commonly used heuristics for the 8-puzzle game. Use the following diagrams for your calculations.

Start State

Goal State

5. Discuss the "Manhattan distance" heuristic for the 8-puzzle game. Use the following diagrams for your calculations.

7	2	4
5		6
8	3	1

	1	2
3	4	5
6	7	8

Start State

Goal State

- 6. What are the advantages of DFS over BFS? Explain in the context of space complexity.
- 7. Write the DFS algorithm.
- 8. If g(n) is the cost to reach the node, and h(n) is the cost to get from the node to the goal, what is the difference between Uniform Cost search and A* search?
- 9. Given the following map (with the path costs shown) and the table with the heuristic function, we are interested in the stages of the A* search algorithm. Arad is the starting state and Bucharest is the goal state. As the A* search is executed, after Sibiu, the next node to be expanded is Rimnicu Vilcea. With calculations explain why.

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Values of h_{SLD} —straight-line distances to Bucharest.

10. Given node A, having child nodes B, C, D with associated costs of (10, 5, 7). After expanding C, we see nodes E, F, G with costs of (40, 50, 60). Which node will be chosen by Uniform-cost search and Greedy best-first search? Explain with the following diagram as reference.

11. For the 8-puzzle game, what actions are possible in a given random state?

7	2	4
5		6
8	3	1

12. What will be the contents of the priority queue, as the UCS algorithm proceeds on the following graph? Show the contents of the priority queue, step-by-step.

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

 $node \leftarrow$ a node with STATE = problem.INITIAL-STATE, PATH-COST = 0 $frontier \leftarrow$ a priority queue ordered by PATH-COST, with node as the only element $explored \leftarrow$ an empty set

loop do

if EMPTY?(frontier) then return failure

 $node \leftarrow \mathsf{POP}(frontier)$ /* chooses the lowest-cost node in frontier */
if $problem.\mathsf{GOAL-TEST}(node.\mathsf{STATE})$ then return $\mathsf{SOLUTION}(node)$ add $node.\mathsf{STATE}$ to explored

// Print the contents of the Priority Queue (frontier)

for each action in problem.ACTIONS(node.STATE) do $child \leftarrow CHILD\text{-NODE}(problem, node, action)$

if child.STATE is not in explored or frontier then

if child. STATE is not in explored or frontier their frontier \leftarrow INSERT(child, frontier)

else if *child*.STATE is in *frontier* with higher PATH-COST **then** replace that *frontier* node with *child*

