Nekyuz № 14:

(4.1) Работа векторного пом

Пусть в области $G \subset \mathbb{R}^n$ задано непрерывное векторное поле F(x), в области G переменуется по гладной кривой $\chi\colon I \to \chi(I) \subset G$ тастиза, (Наполиши, типо в постоянном поле F переменуеми на вентор ξ связано с работой, равной $\chi \in G$, $\chi \in G$)

Lem of gagena reagnor naparempuzaquer x=x(t), x = x(t), x =

(c moreocase go becaperro manax boses boseners $\underline{}$ no pagua). Toega bearopy $T_i = t_{i+1} - t_i$ coorberesbyem neperacyenue us torce $x_i = x(t_i)$ na bearop $\Delta x_i := x_{i+1} - x_i$, how smou $\Delta x_i \approx \hat{\xi}_i^* := \hat{x}(t_i)T_i$, age $\hat{\xi}_i^* \in T_x X$.

Takuu oбразон, т.к. F кепрерывио то работу ΔA_i , свозаницю е перененующем гастицы за прометутом времени I_i , можно записать в виде $\Delta A_i \approx \langle F(x_i), \xi_i \rangle$ или $\Delta A_i \approx \langle F(x(t_i)), \dot{x}(t_i) \rangle \Delta t_i$

Ho rorga $\Delta A \approx \sum_{i} \Delta A_{i} \approx \sum_{i} \langle F(z(t_{i})), \dot{x}(t_{i}) \rangle \Delta t_{i}$. Yempeussa napaverp paylienus ompeysa $[a; 6]_{g} \times m_{g}$ now now ω_{F} : $A = \int_{a} \langle F(x(t)), \dot{x}(t) \rangle dt =: \int_{x} F^{1} dx^{1} + ... + F^{n} dx^{n}.$

Liegobareno, un respect no expubori y om guopopepenyuantori gropun $\omega_f^1 = \langle F(z), dz \rangle$

bupamaem basory: $A = \int_{\delta} \omega_F^f$

Еаш кривае у заихиута $(m.e.\ Y(a) = Y(b))_{\gamma}$ то работу поле F вдель у натванот упрацией поля вдель у. Интеграл по заихиутый кривый (кончуру) обично обозначают через $g_{\gamma}^{(C)}$.

Πρише 14.1: Рассиотрим в $\mathbb{R}^5 \setminus \{(0,0,0)\}$ центрамное пом F = f(r)(x,y,2), где $r = \sqrt{x^2 + y^2 + z^2}$ — расстояние от нагала координат до точи (x,y,2) Найдей работу этого пама вдом $g \in [0,1] \to \mathbb{R}^3 \setminus \{(0,0)\}$, $g(0) = (x_0,y_0,2_0)$, $g(t) = (x_1,y_1,z_1)$: $\int_0^t f(r) \left(x \, dx + y \, dy + z \, dz\right) = \frac{1}{d} \int_0^t f(r) \, d\left(x^2 + y^2 + z^2\right) = \frac{1}{d} \int_0^t f(r) \, dr^4(t) = \frac{1}{d} \int_0^t f(\sqrt{u(t)}) \, du(t) = \frac{1}{d} \int_0^t f(\sqrt{u}) \, du = \Phi(r_0, r_2),$ $r_0^2 = r(t) = x^4(t) + y^2(t) + z^2(t), \quad r_0 = r(0), \quad r_1 = r(1).$ Pa607a Jahueut Tolkho om pacconstitui r_0, r_1 .

 D_{LQ} гравичационного пома $\frac{1}{r^3}(x,y,z)$ единигной точегной массоп помещённой в начало координат $r_{c_2}^2$ $\frac{du}{r_{c_3}} = \frac{1}{r_{c_3}} \int_{C_2}^{r_{c_3}} \frac{du}{u^{s_{t_3}}} = \frac{1}{r_{c_3}} - \frac{1}{r_{c_3}}$.

$$\varphi(r_{0}, r_{2}) = \frac{1}{a} \int_{c_{1}}^{c_{2}} \frac{du}{u^{3/2}} = \frac{1}{r_{0}} - \frac{1}{r_{2}}.$$

(4.2) Потог векторного поля через повержность.

Пуст $G = \mathbb{R}^3$ — област, V — нем скоростей установившего тигения тидкост в области G, $S \subset \mathbb{R}^3$ — гладкая ориентированная повержност. Буден решат задачу о нахождении потока У писуковы через поверхного В. т.в. объежа жидиости, протекающиго через 5 в единицу времени в указанную оригитерующем полем нормалый сторону этой повержности.

Для постоянного пеня скоростей V поток через парамелограми Π_{γ} натанутый на пару векторы в. Ег, равен объему парамененинеда, nocompoentiony на венгорах V, \$1, \$2. Если 7 - норман к П, а поток Я шуется

в сторону, указпраемую этой нормалью,

opouy, grognbaeryro eman propriareto,
$$\mathcal{F} = (V, \xi_1, \xi_2) = \begin{vmatrix} V^1 & V^1 & V^3 \\ \xi_1^1 & \xi_2^1 & \xi_3^1 \\ \xi_2^1 & \xi_2^2 & \xi_2^3 \end{vmatrix}$$

b cyrae, rorga q n penep \$1, \$2 jagarom одинановую ориентацию Π . В протвном ещегае $\mathcal{F} = -(V, \frac{1}{2}, \frac{1}{2})$.

Вернёния к основному смугаю. Пуст повержност в задаётия riaquoi napauempujayuei $\varphi: I \rightarrow S \subset G$, rge $I - \partial b$ yuepuoi npoueпидток, летанций в плосности R. Рассивтрим резбиения Р прошенутия I на манивние прометутки Ті

 0 броз $^{4}(I_{i})$ аппрокимируетог нарамемерами, натанутый на векторы ξ_{i}, ξ_{z} , явияющиеся образами касатемних венюров $v_1, v_2 \in T_t; I_i$ (т.е. выполняется соemnomenue (4)). Torga nomou repez 4(Ii) noménuo palen

$$\Delta \mathcal{F}_i \approx (V(x_i), \xi_1, \xi_2),$$

ECLLL CRUMATE. TO V(z) by where is a regranization of noegener $\psi(I_z)$, is two perep f_i, f_2 gagain by the opposition of hopesis of .

Значит суммарный поток через S

$$\mathcal{J} = \sum_{i} \Delta \mathcal{F}_{i} \approx \sum_{i} \omega_{V}^{2}(\mathbf{z}_{i}) (\mathbf{I}_{i}, \mathbf{I}_{2})$$

Mu

$$\mathcal{F} \approx \sum_{i} \omega_{V}^{2} \left(\varphi(t_{i}) \right) \left(\varphi'(t_{i}) \chi_{1}, \varphi'(t_{i}) \chi_{2} \right) = \sum_{i} \varphi^{*} \left(\omega_{V}^{2} \right) (t_{i}) (\gamma_{1}, \gamma_{2})$$

 V_V^2 — дифференцияльная форма помока векторного поле V_V . Ференода в последнем ровенсове к пределу по параменту $\lambda(P) = 0$, помучим

$$\vec{J} = \iint \psi^*(\omega_v^2) = \int \psi^*(\omega_v^2) \quad \text{(zge nepbru-unserposi-prompting I)}$$

$$= \iint \psi^*(\omega_v^2) = \int \psi^*(\omega_v^2) \quad \text{(zge nepbru-unserposi-prompting I)}$$

Но тогда ил приходии к соотношению

$$\mathcal{J} = \lim_{\lambda(p) \neq 0} \sum_{i} \omega_{p'}^{2}(x_{i}) \left(\frac{1}{k_{i}}, \frac{1}{k_{2}} \right) = \int_{0}^{\infty} \omega_{p'}^{2}.$$

Таким образам, интеграл от дъорим потока по ориентированной повержность S воражает поток через V:

$$\mathcal{F} = \int_{\mathcal{S}} \omega_V^2$$

Для практических вышлений удобно использовай дормульт

$$\begin{split} \overline{\mathcal{F}} &= \int\limits_{I} \left(V^{1}(\varphi(t)) \right) \begin{vmatrix} \frac{\partial x^{2}}{\partial t^{1}} & \frac{\partial x^{3}}{\partial t^{1}} \\ \frac{\partial x^{2}}{\partial t^{2}} & \frac{\partial x^{3}}{\partial t^{1}} \end{vmatrix} + V^{2}(\varphi(t)) \begin{vmatrix} \frac{\partial x}{\partial t^{1}} & \frac{\partial x^{4}}{\partial t^{1}} \\ \frac{\partial x}{\partial t^{2}} & \frac{\partial x^{1}}{\partial t^{2}} \end{vmatrix} + V^{3}(\varphi(t)) \begin{vmatrix} \frac{\partial x}{\partial t^{2}} & \frac{\partial x^{4}}{\partial t^{1}} \\ \frac{\partial x}{\partial t^{2}} & \frac{\partial x^{2}}{\partial t^{2}} \end{vmatrix} + V^{3}(\varphi(t)) \begin{vmatrix} \frac{\partial x}{\partial t^{2}} & \frac{\partial x^{4}}{\partial t^{2}} \\ \frac{\partial x^{2}}{\partial t^{2}} & \frac{\partial x^{2}}{\partial t^{2}} \end{vmatrix} \right) dt^{4} \wedge dt^{2}, \\ \overline{\mathcal{F}} &= \int\limits_{I} \begin{vmatrix} V^{1}(\varphi(t)) & V^{2}(\varphi(t)) & V^{3}(\varphi(t)) \\ \frac{\partial x^{2}}{\partial t^{2}} & \frac{\partial x^{2}}{\partial t^{2}} & \frac{\partial x^{3}}{\partial t^{2}} \end{vmatrix} dt^{4} dt^{2}, \\ \frac{\partial x^{2}}{\partial t^{2}} &= \frac{\partial x^{2}}{\partial t^{2}} \begin{pmatrix} \frac{\partial x^{2}}{\partial t^{2}} & \frac{\partial x^{3}}{\partial t^{2}} \\ \frac{\partial x^{2}}{\partial t^{2}} & \frac{\partial x^{2}}{\partial t^{2}} \end{pmatrix} dt^{4} dt^{2}, \\ \frac{\partial x^{3}}{\partial t^{2}} &= \frac{\partial x^{3}}{\partial t^{2}} \begin{pmatrix} \frac{\partial x^{3}}{\partial t^{2}} & \frac{\partial x^{3}}{\partial t^{2}} \\ \frac{\partial x^{3}}{\partial t^{2}} & \frac{\partial x^{3}}{\partial t^{2}} \end{pmatrix} dt^{4} dt^{2}, \\ \frac{\partial x^{3}}{\partial t^{2}} &= \frac{\partial x^{3}}{\partial t^{2}} \begin{pmatrix} \frac{\partial x^{3}}{\partial t^{2}} & \frac{\partial x^{3}}{\partial t^{2}} \\ \frac{\partial x^{3}}{\partial t^{2}} & \frac{\partial x^{3}}{\partial t^{2}} \end{pmatrix} dt^{4} dt^{2}, \\ \frac{\partial x^{3}}{\partial t^{2}} &= \frac{\partial x^{3}}{\partial t^{2}} \begin{pmatrix} \frac{\partial x^{3}}{\partial t^{2}} & \frac{\partial x^{3}}{\partial t^{2}} \\ \frac{\partial x^{3}}{\partial t^{2}} & \frac{\partial x^{3}}{\partial t^{2}} \end{pmatrix} dt^{4} dt^{2}, \\ \frac{\partial x^{3}}{\partial t^{2}} &= \frac{\partial x^{3}}{\partial t^{2}} \begin{pmatrix} \frac{\partial x^{3}}{\partial t^{2}} & \frac{\partial x^{3}}{\partial t^{2}} \end{pmatrix} dt^{2} dt^{2} \end{pmatrix}$$

в последний дорицие карта $\mathcal{X}=\psi(1)$ должна задавая ту те ориеняющию повержност S, что и ориентирующее ей семейство нормолей. В противным случае поток \mathcal{G} будет отметояся от значения имбеграле значам.