Summary: Logarithm

Introduction:

Every continuous function should have an antiderivative function.

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$
, where $n \neq -1$; What about $\int x^{-1} dx = \int \frac{1}{x} dx$?

Logarithm function:

The **logarithm** function, denoted by $\ln x$, is an **antiderivative** of $\frac{1}{x}$ over $]0; +\infty[$.

Domain of definition of Logarithm:

- If $f(x) = \ln x$, then f is **defined** for x > 0, therefore $D_f =]0; +\infty[$.
- If $f(x) = \ln u$, then f is defined for u > 0.

Particular points for Logarithm:

 $\ln 1 = 0$ and $\ln e = 1$, where $e \simeq 2.71$... (irrational number called exponential number).

Limits of Logarithm:

$$\lim_{x\to 0^+} \ln x = -\infty \; ; \; \lim_{x\to +\infty} \ln x = +\infty \; ; \; \lim_{x\to +\infty} \frac{\ln x}{x^\alpha} = \mathbf{0}^+ \; (\alpha>0) \; ; \; \lim_{x\to +\infty} \frac{x^\alpha}{\ln x} = +\infty \; (\alpha>0).$$

Note that $\ln x$ is weaker than x (polynomial).

$$\lim_{x\to 0^+} x^{\alpha} \cdot \ln x = 0^- \ (\alpha > 0).$$

Derivative of Logarithm:

- If $f(x) = \ln x$; $f'(x) = (\ln x)' = \frac{1}{x} > 0 \ \forall x > 0$, then f is strictly increasing over $]0; +\infty[$.

- If $f(x) = \ln u$, then $f'(x) = (\ln u)' = \frac{u'}{u}$.

The representative curve of Ln(x):

$$\lim_{x\to 0^+} \ln x = -\infty, \text{ then V.A: } x = 0 \text{ (y-axis)}.$$

ln 1 = 0, then the point A(1; 0) belongs to (C).

 $\ln e = 1$, then the point B(e; 1) belongs to (C).

- For 0 < x < 1; $\ln x < 0$.
- For x > 1; $\ln x > 0$.
- For x = 1; $\ln x = 0$.

Properties of Logarithm:

Let a and b be two real numbers such that a > 0 and b > 0:

- $\ln(ab) = \ln a + \ln b.$
- $\ln\left(\frac{a}{b}\right) = \ln a \ln b.$

In particular: $\ln\left(\frac{1}{a}\right) = -\ln a$ and $\ln\left(\frac{a}{b}\right) = -\ln\left(\frac{b}{a}\right)$.

 $- \ln(a^n) = n \ln a.$

In particular: $\ln e^n = n$.

Equation and inequation with Logarithm:

- $\ln x = \ln y$ is equivalent to x = y for x > 0 and y > 0.
- $\ln x > \ln y$ is equivalent to x > y for x > 0 and y > 0.
- $\ln x < \ln y$ is equivalent to x < y for x > 0 and y > 0.
- $\ln x = a$ is equivalent to $x = e^a$ for every real number a. Proof: $\ln x = a = a$. $1 = a \ln e = \ln e^a$, then $x = e^a$.
- $\ln x > a$ is equivalent to $x > e^a$ for every real number a.
- $\ln x < a$ is equivalent to $x < e^a$ for every real number a.

Remark:

The function $f(x) = \ln|x| = \begin{cases} \ln x & \text{for } x > 0 \\ \ln(-x) & \text{for } x < 0 \end{cases}$ is defined over \mathbb{R}^* and $f'(x) = \frac{1}{x}$.

Antiderivative using logarithm function:

- $-\int \frac{dx}{x} = \ln|x| + C \ (x \neq 0).$
- $\int \frac{dx}{x+a} = \ln|x+a| + C \ (x \neq -a).$
- $\int \frac{u'dx}{u} = \ln|u| + C$ (change of variable, $u \neq 0$).

Remark:

In an antiderivative using change of variable, any integral containing $\ln x$, take $u = \ln x$.

Integration by parts:

Let *u* and *v* be two functions of *x*. We have: $\int uv' dx = uv - \int u'v dx$.

Proof:

$$\overline{(uv)'} = u'v + v'u$$
; $uv' = (uv)' - u'v$, then: $\int uv' dx = \int (uv)' dx - \int u'v dx = uv - \int u'v dx$.

Remarks:

- We use an integration by parts when we have two functions of different types.
- In the integral $\int P(x) \cdot \ln x \, dx$, take $u = \ln x$ and v' = P(x), where P is a polynomial.

2

- In the integral $\int P(x) \cdot e^x dx$, take u = P(x) and $v' = e^x$.

Log function (not required, just for entrance exam in university):

The function $\log_a x$ of base a > 0 and $a \ne 1$ is defined as $\log_a x = \frac{\ln x}{\ln a}$.