Assertional Logic

Yi Zhou

Western Sydney University y.zhou@uws.edu.au

- Motivation
- Syntax and semantics
- Extensions by definition
- Incorporating FOL, probability and time
- AL vs FOL
- Potential applications
- Conclusion

- Motivation
- Syntax and semantics
- Extensions by definition
- Incorporating FOL, probability and time
- AL vs FOL
- Potential applications
- Conclusion

Symbolic Al

Р	Q	PΛQ	PvQ	P→Q
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	F	Т	Т
F	F	F	F	Т

But ...

Representation

Problem: one more building block, much more effort

Challenge: how to make them living happily ever after

Reasoning

Problem: more expressive less efficient, more efficient less expressive

Challenge: both are needed but there is no free lunch

Learning

Problem: KR reasoners are algorithm based, little power to learn

Challenge: learnable reasoning

6E: What we need

Elegant

Extensible

Expressive

Efficient

Educable

Evolvable

Representation – a case study

Situation calculus (FOL + action)

- \checkmark \forall a,v,w,s: affects(a, on(v,w), s) $\rightarrow \exists$ x,y: a=move(v,x,y)
- \checkmark $\forall a,v,s$: affects(a, clear(v), s) \rightarrow ($\exists x,z$: a=move(x,v,z)) \lor ($\exists x,y$: a=move(x,y,v))
- \checkmark ∀a,v,w,s: affects(a, colour(v,w), s) \rightarrow ∃x: a=paint(v,x)

Advantages

- clear, no ambiguity
- doable, e.g., Golog

Issues

- needs to define a completely new syntax and semantics
- too complicate no outsider can understand it
- > still has problems, e.g., the frame problem, the ramification problem
- not that expressive cannot quantifier over predicates, formulas
- not efficient at all
- too many more building blocks to be incorporated, e.g., plan, probability, time.

Representation

Problem: one more building block, much more effort

Challenge: how to make them living happily ever after

Solution: assertional logic

Elegant

Extensible

Expressive

- Motivation
- Syntax and semantics
- Extensions by definition
- Incorporating FOL, probability and time
- AL vs FOL
- Potential applications
- Conclusion

Assertional Logic

- Motivation
- Syntax and semantics
- Extensions by definition
- Incorporating FOL, probability and time
- AL vs FOL
- Potential applications
- Conclusion

Definition - Individual

i=a

1=Succ(0)

Definition - Operator

$$Op(C_1,...,C_n)=T(C_1,...,C_n)$$

Definition - Concept

```
Enumeration
      C=\{i1,...,in\}
      Digit=\{1,2...,9\}
Operation
      C=C1∩C2
      Man=Human∩Male
Comprehension
      C'=C|A(C)
      Male=Animal|Sex(Animal)=Male
Replacement
      C'=Op(C)
```

Parent=ParentOf(Human)

Multi-Assertions

$$M_n(a_1=b_1,...,a_n=b_n)::=(a_1,...,a_n)=(b_1,...,b_n)$$

$$\mathsf{M-A} ::= \bigcup_{1 \leq i \leq \infty} M_i(\mathcal{A}^1, \dots, \mathcal{A}^i)$$

Nested Assertions

 $Nested-Term := Term \cup Op(Nested-Term)$

Nested-Assertion ::= Nested-Term = Nested-Term.

- Motivation
- Syntax and semantics
- Extensions by definition
- Incorporating FOL, probability and time
- AL vs FOL
- Potential applications
- Conclusion

Propositional Connectives

$$\neg(a = a') ::= \{a\} \cap \{a'\} = \emptyset$$

$$\land(a = a', b = b') ::= (\{a\} \cap \{a'\}) \cup (\{b\} \cap \{b'\}) = \{a, a', b, b'\}$$

$$\lor(a = a', b = b') ::= (\{a\} \cap \{a'\}) \cup (\{b\} \cap \{b'\}) \neq \emptyset$$

$$\to (a = a', b = b') ::= (\{a, a'\} \setminus \{a\} \cap \{a'\}) \cup (\{b\} \cap \{b'\}) \neq \emptyset$$

$$\equiv (a = a', b = b') ::= \land (\to (a = a', b = b'), \to (b = b', a = a')).$$

Quantifiers

$$\forall (C, A(C))$$
 ::= $C|A(C) = C$
 $\exists (C, A(C))$::= $C|A(C) \neq \emptyset$

(Conditional) Probability

$$Pr(A) = \frac{\sum_{w,w \models A} W_w}{\sum_w W_w}.$$

$$Pr(A_1|A_2) = \frac{\sum_{w,w \models A_1,w \models A_2} W_w}{\sum_{w,w \models A_2} W_w}.$$

Time (Point)

$$T(a = b, tp) ::= \mathbf{t}(a, tp) = \mathbf{t}(b, tp).$$

- Motivation
- Syntax and semantics
- Extensions by definition
- Incorporating FOL, probability and time
- AL vs FOL
- Potential applications
- Conclusion

AL vs High-Order Logic

$$\forall (C, A(C)) ::= C|A(C) = C$$

 $\exists (C, A(C)) ::= C|A(C) \neq \emptyset$

C Concept of	HOL
Same individuals	FOL
Different individuals	Many sorted FOL
Concepts	Monadic SOL
Operators	SOL
Operators of operators	HOL
Assertions	???

Elegant
Expressive
Extensible

AL for knowledge representation

Advantages

- clear, no ambiguity
- doable

Issues

- needs to define a completely new syntax and semantics
- too complicated no outsider can understand it
- not that expressive
- too many more building blocks to be incorporated
- > not efficient at all

extensible

AL vs Description Logic

Constructs	Description logic	Our approach
individual	individual	individual
concept	concept	concept
role	Role	binary Boolean operator
intersection	$C \sqcap D$	$C \cap D$
union	$C \sqcup D$	$C \cup D$
complement	$\neg C$	$\mathcal{I} \setminus C$
reverse role	R^-	$R^-(C,D) ::= R(D,C)$
existential restriction	$\exists R.C$	$\mathcal{I} \widehat{R}^-(\mathcal{I})\cap C\neq\emptyset$
universal restriction	$\forall R.C$	$\mathcal{I} \widehat{R}^-(\mathcal{I}) \subseteq C$
at least restriction	$\geq nR.C$	$\mathcal{I} (\widehat{R}^-(\mathcal{I})\cap C)^C\geq n$
nominal	$\{a\}$	$\{a\}$
concept assertion	C(a)	$a \in C$
role assertion	R(a,b)	R(a,b)
individual equality	$a \approx b$	a = b
concept inclusion	$C \sqsubseteq D$	$C \subseteq D$

AL vs Description Logic |

\mathbf{AL}	Description Logic	
n-ary operators	Binary relations	
Comprehension/Replacement	Role Restriction	
Complex assertions/quantifiers	Fragment of FOL	
a=b	Different kinds	
Extensibility by definition	Extensibility by new components	

- Motivation
- Syntax and semantics
- Extensions by definition
- Incorporating FOL, probability and time
- AL vs FOL
- Potential applications
- Conclusion

Mathematics test

Natural language formalization

Noun: Concept

Adjective: unary Boolean operator

From database to knowledge base

- Motivation
- Syntax and semantics
- Extensions by definition
- Incorporating FOL, probability and time
- AL vs FOL
- Potential applications
- Conclusion

Concluding Remarks

- Knowledge representation: from FOL to AL
- Why FOL is not perfect?
- Elegancy, Extensibility and Expressivity
- ➤ AL syntax and semantics
- ➤ AL extensibility via definitions
- Why AL is better than FOL?

More on AL representation

- actions and their effects
- plans, method and hints
- incomplete information and null

Reasoning

Problem: more expressive less efficient, more efficient less expressive

Challenge: both are needed but there is no free lunch

Solution: reasoning by knowledge

Efficient

Learning

Problem: KR reasoners are algorithm based, little power to learn

Challenge: learnable reasoning

Solution: learnable knowledge

Educable **Evolvable**

Thank you!

