Other Regression Models

Prof. Daniel A. Menasce Dept. of Computer Science George Mason University

© 2001. D. A. Menascé. All Rights Reserved.

Multiple Linear Regression

• Use to predict the value of the response variable as function of k predictor variables $x_1, ..., x_n$.

$$\hat{Y}_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + \dots + b_x X_{ki}$$

- Similar to simple linear regression.
- MS Excel can be used to do multiple linear regression.

2

CPU Time (yi)	I/O Time (x1i)	Memory Requirement (x2i)
2	14	70
5	16	75
7	27	144
9	42	190
10	39	210
13	50	235
20	83	400

Want do find:

 $CPUTime = b_0 + b_1 * I/OTime + b_2 * MemoryRequirement$

3

© 2001. D. A. Menascé. All Rights Reserved.

SUMMARY OUTPUT

Regression S		ъ	
Multiple R	0.9870		K
R Square	0.9742		
Adjusted R Square	0.9614		
Standard Error	1.1511		
Observations	7		
		,	

	Coefficients	Standard Error	t Stat	Lower 95%	Upper 95%	Lower 90.0%	Upper 90.0%
Intercept (b0)	-0.16145	0.91345	-0.17674	-2.69759	2.37470	-2.10878	1.78589
X Variable 1 (b1)	0.11824	0.19260	0.61389	-0.41652	0.65299	-0.29236	0.52884
X Variable 2 (b2)	0.02650	0.04045	0.65519	-0.08580	0.13881	-0.05973	0.11273
1 -	•	•	•	•	-		

© 2001. D. A. Menascé. All Rights Reserved.

4

Curvilinear Regression

• Approach: plot a scatter plot. If it does not look linear, try non-linear models:

Non-linear	Linear
y = a + b / x	y = a + b(1/x)
y = 1/(a+bx)	(1/y) = a + bx
y = x/(a+bx)	(x/y) = a + bx
$y = a \times b^x$	$\ln y = \ln a + x \ln b$
$y = a + bx^n$	$y = a + b(x^n)$

5

© 2001. D. A. Menascé. All Rights Reserved.