THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Assignment 2

MATH2021 Vector Calculus and Differential Equations

Semester 1, 2020

Lecturer: Zhou Zhang

- Due on Sunday, 24 May 2020 at 11:50PM, Sydney Time, which is the deadline.
- Format: hand-written on physical paper and scanned for submission. It's fine to take pictures for pages of solution paper separately and compile them into one file for submission.
- We **DON'T** accept writing on iPad or tablet, or submission in any other form.
- Submit your assignment through *turnitin* on Canvas. **Double check** the status of paper after submission.
- DON'T include NAME in the title of the submission line for anonymous marking.
- MUST include SID on paper.
- **1.** We have the unit ball $B = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$ in \mathbb{R}^3 with the unit sphere $S = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$ as its boundary. S is the union of hemispheres $S_1 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1, z \ge 0\}$ and $S_2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1, z \le 0\}$. Consider the vector field $V = (x, y, z^2)$.
 - 1) S is a level surface. Explain that n = (x, y, z) is its unit outward normal vector field.
 - 2) Write down the surface integral $\iint_{S_1} V \cdot n \ dS$ as a double integral by considering S_1 as a graph over xy-plane. You are NOT asked to calculate this double integral.
 - 3) Apply Gauss' Theorem to calculate $\iint_S V \cdot n \ dS$.

Hint: cylindrical coordinates and/or symmetry might be helpful.

2. In the xy-plane \mathbb{R}^2 , we have the unit disk centred at origin, $D = \{(x,y) \mid x^2 + y^2 \leq 1\}$, and its boundary circle C in the counter-clockwise direction. In the xyz-space \mathbb{R}^3 where the xy-plane is the plane $\{z=0\}$, we have the unit upper hemisphere $S_1 = \{(x,y,z) \mid x^2 + y^2 + z^2 \leq 1, z \geq 0\}$ with the same boundary C.

Consider the vector field $F(x, y, z) = (y, -x, xy \sin z)$ over \mathbb{R}^3 .

- 1) Apply Green's Formula/Theorem to calculate $\oint_C F \cdot dr$.
- 2) Calculate $(\nabla \times F) \cdot n$ over S_1 , where n is the unit normal of S_1 , pointing out of the unit ball centred at origin. The answer should be a function with only variables x and y.
- 3) Apply Stokes' Theorem to calculate $\iint_{S_1} (\nabla \times F) \cdot n \ dS$.
- **3.** Find the particular solution for the following ODEs with unknown function y(x).
 - 1) y' + y = 0, y(0) = 1.
 - 2) y' + y = x, y'(0) = 0.
 - 3) y'' + 2y' + 2y = 0, $y(0) = y'(\pi) = 0$.