

CERN/LHC/CMS, LIGO, Astro---Misc

Bill Gabella

Monday 22 June 2020

Vanderbilt-QuarkNet Workshop

Ref: https://gracedb.ligo.org/

Start the protons out here

Large Hadron Collider (LHC)

2

LHCParameters

Circumference	26659 m
Dipole operating temp	1.9 deg K
Main RF frequency	400.8 MHz
"Bucket," 1/frequency	2.5 ns
Energy per beam	6.5 TeV, operating
Dipole Magnetic Field	7.7 T
Ions Energy per nucleon	2.56 TeV/n = 6.5*82/208 (Pb-208)
no. of protons	1.2e11 per bunch
no. of bunches	<= 2604/2748
bunch length, 4sigma	1-1.25 ns
bunch size, x & y at IP, 1 sigma	52 x 66 microns

Ref: www.cern.ch

Current Status Op Vistar – Long Shudown 2

https://op-webtools.web.cern.ch/vistar/vistars.php?usr=LHC1

Long Shutdown 2 Goals...

- Upgrade the whole LHC injector chain;
- Energy to 7 TeV? 20% higher luminosity?
- Maintenance on the LHC and the Detectors;
- Start on aspects of the *Accelerator Consolidation Project* and
- the HL-LHC, aka the High-Luminosity LHC (even more protons per bunch and/or more bunches.
- LS2 runs to Spring 2021 (see next slide, Will's talk)
- LS3 starts (maybe) 2024 and runs 2.5 years until mid-2026.

LHC Long-term Schedule 2019-2036

Proton Collisions Start, "LHC Start May 2021"

2019	2020	2021	2022	2023	2024	2025	2026	2027
	tdown 2 (LS2)	J FMAMJ J ASOND		J FMAMJ J ASOND	J FMAMJ JASOND		nutdown 3 (LS3	B)
2028	2029	2030	2031	2032	2033	2034	2035	2036
J FMAMJ J ASOND	Run 4	J FMAM J J A S ON D	JFMAMJJASOND LS4	J F M A M J J A S O N D	Run 5	J F M A M J J A S O N D	JFMAMJJASOND LS5	J FMAMJ J ASOND

Long Shutdown 2, started Dec2018 to May 2021, main purpose isLHC Injectors Upgrade

LHC Status

LHC Schedule, 13 Dec 19

Long term schedule

https://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC-long-term.htm

Gravitational Waves – the whole shebang

Gravitational Waves – aLIGO & VIRGO

VIRGO, Cascina, Italy

LIGO, Hanford, WA

Gravitational Waves – aLIGO & VIRGO

- Karan Jani is a member of LIGO and LIGO Scientific Collaboration, talks tomorrow morning.
- aLIGO = Advanced Laser Interferometer Gravitational-Wave Observatory, https://www.ligo.org/ and https://www.ligo.caltech.edu/
- Virgo, http://www.virgo-gw.eu/, in Cascina, Italy, in a network with Hanford and Livingston Observatories in LIGO
- Restarted observations on 1 April 2019, so-called "O3" run.
 Paused in March 2020 for covid-19.
- Seeing a binary black hole merger every week, more or less, https://gracedb.ligo.org/latest/
- Continuing evidence of "unexpected" black hole masses, and caught a large mass ratio event GW190412, 30 and 8 Msol.

Gravitational Waves – In a Picture

- Source of Gravitational Waves is mass-energy motion that is not spherically symmetric.
- Strong GW sources have small sizes, high mass, and fast motion.
- The first "order" in the expansion is quadrupole radiation.
 - In Electricity and Magnetism the first "order" is dipole radiation.

Gravitational Waves – In a Picture

- Two modes, + and X
- Dots are masses hanging out in space with little self-attraction.
 They are NOT a metal ring! That is bound by atomic forces and the effect of the GW is miniscule.

Big Michelson Interferometer, 4 km arms

YouTube link https://youtu.be/tQ_teIUb3tE

Pulsar Timing Arrays, ex. Nanograv

- Steve Taylor recently joined Vanderbilt's Physics and Astronomy Department and with the Nanograv collaboration will talk at 11:10am today!
- Looking at the lowest frequency (longest timescale sources) gravitational waves.
- Collection of fast millisecond pulsars as good clocks and look for a delay or advance of a pulse relative to another pulsar in a different place in the sky (Hellings Downs curve).
- Links:
 - NANOGrav collaboration
 - International PTA
 - Pulsar Search Collaboratory
 - ATNF Pulsar Catalog

Pulsars

• Pulsars are Neturon Stars "aimed" at us; lighthouse effect

Timing Array

- Collect the best (stable and predictable), fastest pulsars into a network of "clocks."
- How look for a hiccup of a passing gravitational wave.

Clocks at different angles are correlated in timing, Hellings Downs curve.

Goals

- Steve knows better...
- Discover the stochastic background gravitational waves of the universe in their frequency band, ~1 nHz (or once per 31.7 years, or sizes using the speed-of-light of L~9.7 pc NOW, much smaller in the past)
- When that is understood start looking for new things.

Laser Interferometric Space Antenna (LISA)

- Space-based mission, in the R&D and building phase.
 - Trio of spacecraft with laser links
 - 2.5 billion meter arm length (1 AU is 150 billion meters)
 - Orbits the sun slightly behind Earth in about the same orbit
 - Lifetime 4 years, can be extended to 10 years
- European Space Agency mission with significant effort and money from NASA.
- Launches in 2034, or thereabouts.
- Looking at the "middle" frequency (mid-range timescale sources) gravitational waves, 10⁻⁴ to 1 Hz
- Sources: medium size binary black hole mergers, stellar size BHs orbiting, small objects orbiting and merging with supermassive BHs (so-called EMRIs)

LISA

Orbit

LISA

- Two bi-directional lasers on each spacecraft
- Timing delays are the signal
 - Lots of interesting algebraic relations among the different times

LISA

- Links:
 - LISA Mission
 - ESA LISA site
 - NASA LISA site

Links

aa

Backup

SI Prefixes

Factor	Name	Symbol	Factor	Name	Symbol
10 ²⁴	yotta	Υ	10 ⁻¹	deci	d
10 ²¹	zetta	Z	10 ⁻²	centi	С
10 ¹⁸	exa	E	10 ⁻³	milli	m
10 ¹⁵	peta	Р	10 ⁻⁶	micro	μ
10 ¹²	tera	T	10 ⁻⁹	nano	n
10 ⁹	giga	G	10 ⁻¹²	pico	р
10 ⁶	mega	М	10 ⁻¹⁵	femto	f
10 ³	kilo	k	10 ⁻¹⁸	atto	а
10 ²	hecto	h	10 ⁻²¹	zepto	z
10 ¹	deka	da	10 ⁻²⁴	yocto	у

Units?

- Proton,heavy, +e
- Electron,light, –e

Speed of Light

Fastest possible speed is the speed of light in vacuum.

Defined as

$$299792458 \,\mathrm{m/s}$$

$$3.0 \times 10^8 \, \text{m/s}$$

$$30\,cm/ns$$

$$300\,m/\mu s$$

$$300\,\mu m/ps$$

Large Hadron Collider (LHC)

LIGO GraceDB Latest

Gracedb Latest at https://gracedb.ligo.org/latest/

GraceDB — **Gravitational-Wave Candidate Event Database**

LIGO GraceDB Latest – S190521r

FAR 1/146yrs https://gracedb.ligo.org/superevents/S200316bj/view/

LIGO GraceDB Latest – S190521r

