Contributors

Zhirong Chen (zhirong4)

Ziyuan Chen (ziyuanc3)

Problem 4

Let $T=ig\{\langle M
angle\mid ext{ M is a TM that accepts }w^R ext{ whenever it accepts }wig\}.$ Show that T is undecidable.

Solution

Suppose there is an algorithm $\mathbf{DecideT}$ that correctly decides the language T. Then we can solve the halting problem as follows:

```
\begin{array}{c} \operatorname{DecideHalt}(\langle M,w\rangle) \\ \operatorname{Encode\ the\ following\ Turing\ machine\ } M'(x) \\ \operatorname{if\ } x=01 \\ \operatorname{return\ True} \\ \operatorname{run\ } M \text{ on\ input\ } w \\ \operatorname{return\ True} \\ \operatorname{if\ DecideT}(\langle M'\rangle) \\ \operatorname{return\ True} \\ \operatorname{else} \\ \operatorname{return\ False} \end{array}
```

We prove this reduction correct as follows.

If. Suppose M halts on input w.

- Then M' accepts every input string x.
- In particular, M' accepts w^R whenever it accepts w.
- So $\operatorname{DecideT}(\langle M' \rangle)$ accepts the encoding $\langle M' \rangle$.
- So DecideHalt correctly accepts the encoding $\langle M, w \rangle$.

Only if. Suppose M does not halt on input w.

- Then M' diverges on every input string x except 01.
- ullet In particular, M' does not accept w^R whenever it accepts w -- a counterexample is w=01 and $w^R=10$.
- So $\operatorname{DecideT}(\langle M' \rangle)$ rejects the encoding $\langle M' \rangle$.
- So DecideHalt correctly rejects the encoding $\langle M, w \rangle$.

Therefore, DecideHalt is correct. But this contradicts the fact that the halting problem is undecidable. Thus, DecideT is incorrect, and T is undecidable.