

## Technische Grundlagen: Übungssatz 6

## Aufgabe 6.1

Gegeben ist die nachstehende, aus 2 spannungsgesteuerten Widerständen bestehende Schaltung.



Für die Widerstände gilt: 
$$\begin{array}{c|cc} u_e/V & R_1/\Omega & R_2/\Omega \\ \hline 0 & \infty & 600 \\ \hline 5 & 300 & \infty \end{array}$$

- (a) Zeichnen Sie den ungefähren Verlauf der Ausgangsspannung  $u_a(t)$ , wenn am Eingang die angegebene Impulsfolge liegt, für
  - i.  $f = 5 \,\mathrm{MHz}$
  - ii.  $f = 25 \,\mathrm{MHz}$
- (b) Berechnen Sie die Größe der Energie, die bei einem Auflade und einem Entladevorgang des Kondensators in der Schaltung umgesetzt wird!
- (c) Wie groß darf die Frequenz der Impulsfolge maximal sein, wenn die thermische Belastbarkeit der Schaltung maximal eine Verlustleistung von 2,5 mW zulässt?
- (d) Welche Wirkung hat ein Widerstand  $R_a$  parallel zum Kondensator?
- (e) Skizzieren Sie den ungefähren Verlauf der Ausgangsspannung bei  $f=25\,\mathrm{MHz}$  und  $R_a=50\,\Omega!$

**Hinweis:** Zur näherungsweisen Ermittlung des Verlaufs der Ausgangsspannung brauchen Auflade- und Entladefunktionen nicht genau berechnet zu werden. Es genügt, den ungefähren Verlauf einer Exponentialfunktion zu kennen. Beispielsweise ist  $e^{-3}=5\%$ .

## Aufgabe 6.2

Ein Dreipol sei wie folgt beschaltet, der Ausgang ist dabei durch die Kapazität C belastet. Für den Dreipol DP gilt die rechts angegebene stückweise lineare Kennlinie.



- (a) Zeichnen Sie den Verlauf der Dreipolkennlinie in ein U-I-Diagramm für  $U_A$  und  $I_D$ .
- (b) Zum Zeitpunkt  $t_0 = 0$  gelte  $u_E(t_0) = 0$ V. Berechnen Sie  $u_A(t_0)$  im eingeschwungenen Zustand  $(\frac{d}{dt} = 0)$ .
- (c) Beschreiben Sie qualtitativ den Verlauf von  $u_A(t)$  wenn der Eingang von  $u_E(t_0) = 0$ V auf  $u_E(t > t_0) = U_B$  sofort umschaltet.
- (d) Welcher Ausgangsspannung  $u_A$  wird nach unendlicher Zeit erreicht?
- (e) **Zusatzaufgabe:** Bestimmen Sie den Verlauf von  $u_A(t)$  wenn der Eingang von  $u_E(t_0) = 0$ V auf  $u_E(t > t_0) = U_B$  sofort umschaltet. Sie können dabei sinnvolle Schaltungsvereinfachungen vornehmen.