CSCI2100B Assignment 4

Due: 23:59, April 20, 2022

1 Submission

Please submit your code on https://vjudge.net/contest/487464, as well as a simple report on Blackboard. Make sure to include your SID in your report names.

The grading scheme of this assignment is as follows. [0,5] is the score of your report. Note that partial marks for unsolved problems will only be given if you solve 0 problems.

#Solved Problems	Score
0	[0,30]+[0,5]
1	40+[0,5]
2	60+[0,5]
3	90+[0,5]
4	95+[0,5]

2 Problem 1

2.1 Statement

A graph of n vertices and n-1 directed edges is given. The i-th edge is from vertex i to vertex $i+a_i$. You need to determine whether it is possible to arrive at vertex t starting from vertex 1.

2.2 Input

Two numbers n $(3 \le n \le 3 \times 10^4)$ and t $(2 \le t \le n)$ in the first line. n-1 numbers $a_1,...,a_{n-1}(1 \le a_i \le n-i)$ in the second line.

2.3 Output

"YES" or "NO".

2.4 Example

3 Problem 2

3.1 Statement

You are asked to build the **minimum** number of roads between n cities so that you can travel from every city to any other city by **at most two** roads. There are also m roads that are not allowed to build. It is guaranteed that a solution exists under the given constraints.

3.2 Input

 $n\ (1 \le n \le 10^3)$ and $m\ (0 \le m < n/2)$ in the first line. m pairs of integers $a_i, b_i\ (1 \le a_i, b_i \le n, a_i \ne b_i)$ in the following m lines. Roads cannot be built between city a_i and city b_i .

3.3 Output

One integer s in the first line denoting the number of roads. Each of the following s lines describes a road by two city numbers. If there are multiple solutions, you can print any of them.

3.4 Example

23

4 Problem 3

4.1 Statement

Can you find a path of minimum cost from vertex 1 to vertex n in a weighted undirected graph of n vertices and m edges?

4.2 Input

Two numbers in the first line: n and m $(2 \le 10^5, 0 \le m \le 10^5)$. Each of the following m lines contains three integers u_i, v_i, w_i $(1 \le u_i, v_i \le n, 1 \le w_i \le 10^6)$, which describes an edge between vertex u_i and vertex v_i with a cost of w_i .

4.3 Output

Output "-1" if such path does not exist. Otherwise, please output any path of minimum cost.

4.4 Example

Input:

5 6

1 2 2

255

2 3 4

1 4 1

4 3 3

 $3\ 5\ 1$

Output:

1435

5 Problem 4

5.1 Statement

You are given a graph of n+1 vertices and 2n-1 directed edges.

- n-1 edges are from vertex i to vertex i+1 for i=1,...,n-1.
- n numbers a_i describe the remaining n edges. The i-th edge is going from vertex i to vertex n+1 if $a_i=0$, or from vertex n+1 to vertex i if $a_i=1$.

Can you find a path visiting each vertex exactly once? You can start and end at any vertices.

5.2 Input

A number t $(1 \le t \le 20)$ denoting the number of testcases. In each testcase, the first line has one integer n $(1 \le n \le 10^4)$. The second line contains n integers a_i $(a_i \in \{0,1\})$.

5.3 Output

For each test case, print a line of n+1 integers denoting a path you find, or "-1" if there are no such paths.

If there are multiple correct paths, you can print any of them.

5.4 Example

The Chinese University of Hong Kong places very high importance on honesty in academic work submitted by students, and adopts a policy of zero tolerance on academic dishonesty. Any related offence will lead to disciplinary action including termination of studies at the University. Please refer to https://www.erg.cuhk.edu.hk/erg/sites/default/files/Guidelines_to_Academic_Honesty.pdf and https://www.erg.cuhk.edu.hk/erg/sites/default/files/AcademicHonesty.pdf for how to do programming assignments.