

生物种群模型

——差分形式的人口增长模型

北京邮电大学

人口指数增长模型

$$\begin{cases} \frac{dP}{dt} = r \cdot P_{0} \\ P(0) = P_{0} \end{cases}$$

人口阻滞增长模型

$$\begin{cases} \frac{dP}{dt} = r^* \cdot P \cdot (1 - P/P^*) \\ P(0) = P_0 \end{cases}$$

时刻 *t* 人口增长的速率(即单位时间人口的增长量)与当时人口数成正比,即人口的相对增长率为常数 *r* 。

在时刻t,人口增长的速率与当时人口数成正比(比例系数r*表示人口的固有增长率);也与当时的剩余资源量S=1-P/P*成正比。

→ 阻滞增长模型描述了受到环境约束的所谓"阻滞增长"的规律,这种约束随着对象本身数量x的增加而加剧。

人口或者其它生物在有限资源环境下的增长

传染病在封闭地区的传播

耐用消费品在有限市场上的销售

x(t) ~某种群 t 时刻的数量(人口)

$$\dot{x}(t) = rx(1 - \frac{x}{N})$$

 $t\to\infty$, $x\to N$, x=N是稳定平衡点(与r大小无关)

差分形式的阻滞增长模型

$$\dot{x}(t) = rx(1 - \frac{x}{N})$$

现实对象有时用离散化的时间研究起来比较方便

离散形式

 $y_k ~ \text{某种群第k代的数量(人口)}$

将阻滞增长微分方程中的微分用差分形式表示

$$y_{k+1} - y_k = ry_k (1 - \frac{y_k}{N}), k = 1, 2, \cdots$$

讨论平衡点的稳定性,即 $k\to\infty$, $y_k\to N$?

离散形式阻滞增长模型的平衡点及其稳定性

$$y_{k+1} = (r+1)y_k \left[1 - \frac{r}{(r+1)N} y_k \right]$$

 $x_k = \frac{r}{(r+1)N} y_k$ 代换 $i \exists b = r+1$

$$x_{k+1} = bx_k (1 - x_k) \quad (B)$$

一阶(非线性)差分方程

(A)的平衡点
$$y^*=N$$
 (B) 的平衡点 $x^*=\frac{r}{r+1}=1-\frac{1}{b}$

讨论 x^* 的稳定性

补充知识

- 一阶非线性差分方程 $x_{k+1} = f(x_k)$ (1) 的平衡点及稳定性
 - (1)的平衡点 x^* ——代数方程x=f(x)的根
 - (1)的近似线性方程 $x_{k+1} = f(x^*) + f'(x^*)(x_k x^*)$ (2)

稳定性判断

x*也是(2)的平衡点

$$\left|f'(x^*)\right| < 1$$

x*是(2)和(1)的稳定平衡点

$$\left|f'(x^*)\right| > 1$$

x*是(2)和(1)的不稳定平衡点

$$x_{k+1} = bx_k(1-x_k)$$
 的平衡点及其稳定性

平衡点

$$x = f(x) = bx(1-x)$$

另一平衡点为x=0;

$$|f'(x^*)| < 1$$
, x^* 是(2)和(1)的稳定平衡点

$$|f'(x^*)| > 1, x*是(2)和(1)的不稳定平衡点$$

$$x_{k+1} = bx_k(1-x_k) = f(x_k)$$

$$x^* = 1 - \frac{1}{h}$$

稳定性

$$f'(x^*) = b(1-2x^*) = 2-b$$

$$b>3(|f'(x^*)|>1)$$
 \ x^* 不稳定

$$f'(0) = b > 1$$
 不稳定

(1) 1 < b < 2

$$| x^* = 1 - 1/b < 1/2$$

$$x_{\iota}$$
(单调增) $\rightarrow x^*$

 $x_{\iota}(振荡地) \rightarrow x^*$

$$x_{k}(\overline{\wedge}) \rightarrow x^{*}$$

k	b=1.7	b=2.6	b=3.3	b=3.45	b=3.55
0	0.2000	0.2000	0.2000	0.2000	0.2000
1	0.2720	0.4160	0.5280	0.5520	0.5680
2	0.3366	0.6317	0.8224	0.8532	0.8711
3	0.3796	0.6049	0.4820	0.4322	0.3987
•••	•••	•••	•••	• • •	•••
91	0.4118	0.6154	0.4794	0.4327	0.3548
92	0.4118	0.6154	0.8236	0.8469	0.8127
93	0.4118	0.6154	0.4794	0.4474	0.5405
94	0.4118	0.6154	0.8236	0.8530	0.8817
95	0.4118	0.6154	0.4794	0.4327	0.3703
96	0.4118	0.6154	0.8236	0.8469	0.8278
97	0.4118	0.6154	0.4794	0.4474	0.5060
98	0.4118	0.6154	0.8236	0.8530	0.8874
99	0.4118	0.6154	0.4794	0.4327	0.3548
100	0.4118	0.6154	0.8236	0.8469	0.8127

数值计算结果

$$x_{k+1} = bx_k(1 - x_k)$$

初值 $x_0=0.2$

$$b < 3, x \rightarrow x^* = 1 - \frac{1}{b}$$

b=3.3, *x*→两个极限点

b=3.45, *x*→4个 极限点

b=3.55, *x*→8个 极限点

倍周期收敛——x*不稳定情况的进一步讨论

$$b=3.3$$
 $x_{k}(不) \to x^{*}$ 子序列 $x_{2k} \to x_{1}^{*}, x_{2k+1} \to x_{2}^{*}$

单周期不收敛

2倍周期收敛

$$x_{k+1} = f(x_k)$$
 $x_{k+2} = f(x_{k+1}) = f(f(x_k)) = f^{(2)}(x_k)$ (*)

$$x = f(f(x)) = b \cdot bx(1-x)[1-bx(1-x)] \quad f(x) = bx(1-x)$$

(*)的平衡点
$$x^* = 1 - \frac{1}{b}$$
 $x_{1,2}^* = \frac{b + 1 \mp \sqrt{b^2 - 2b - 3}}{2b}$

$$x_1^* = f(x_2^*), \quad x_2^* = f(x_1^*) \quad 0 < x_1^* < x^* < x_2^* < 1$$

 x^* 不稳定,研究 x_1^*, x_2^* 的稳定性

倍周期收敛

$$x_{1,2}^* = \frac{b+1\mp\sqrt{b^2-2b-3}}{2b}$$
 的稳定性

$$f'(x) = b(1-2x)$$
 $(f^{(2)}(x))'\Big|_{x=x_1^*,x_2^*} = b^2(1-2x_1^*)(1-2x_2^*)$

$$|(f^{(2)}(x_{1,2}^*))'| < 1$$

$$b < 1 + \sqrt{6} \doteq 3.449$$

$$X_{2k} \to X_1^*, \ X_{2k+1} \to X_2^*$$

倍周期收敛的进一步讨论

$$b > 3.45 \Rightarrow |(f^{(2)}(x_{1,2}^*))| > 1 \quad || x_1^*, x_2^* (\mathcal{D}x^*)$$
不稳定
出现4个收敛子序列 $x_{4k}, x_{4k+1}, x_{4k+2}, x_{4k+3}$

平衡点及其稳定性需研究 $x_{k+4} = f^{(4)}(x_k)$

 2^n 倍周期收敛, n=1,2,... $b_n \sim 2^n$ 倍周期收敛的上界

$$b_0=3, b_1=3.449, b_2=3.544, \dots \qquad n\to\infty, b_n\to3.57$$

b>3.57,不存在任何收敛子序列 \square 混沌现象

$X_{k+1} = bX_k(1-X_k)$ 的收敛、分岔及混沌现象

前方有作业卷来

根据上面的分析,取b=[2.5,3.5],间隔0.01取值,计算差分方程的收敛点。

要求 (在一页A4纸内完成):

- 1. 程序源代码
- 2. 列表记录对应b的不同取值的收敛点
- 3.作出收敛点关于b的取值图 (类似上页的图)

按年龄分组的种群增长模型(人口模型)

- 不同年龄组的繁殖率和死亡率不同
- 以雌性个体数量为对象

建立差分方程模型,讨论稳定状况下种群的增长规律

假设与建模

•种群按年龄大小等分为n个年龄组,记 $i=1,2,\ldots,n$

•时间离散为时段,长度与年龄组区间相等,记k=1,2,...

- •第i年龄组1雌性个体在1时段内的繁殖率为 b_i
- •第i年龄组在1时段内的死亡率为 d_i ,存活率为 s_i =1- d_i

假设 与 建模

$x_i(k)$ ~时段k第i年龄组的种群数量

$$x_1(k+1) = \sum_{i=1}^{n} b_i x_i(k)$$
 (设至少1个 $b_i > 0$)

$$x_{i+1}(k+1) = s_i x_i(k), i = 1, 2, \dots, n-1$$

$$L = \begin{bmatrix} s_1 & s_2 & s_{n-1} & s_n \\ s_1 & 0 & 0 & 0 \\ & \ddots & & \\ s_2 & & 0 & \vdots \\ & & \ddots & & \\ 0 & & s_{n-1} & 0 \end{bmatrix}$$

$$x(k) = [x_1(k), x_2(k), \cdots x_n(k)]^T$$

~按年龄组的分布向量

$$x(k+1) = Lx(k)$$

$$x(k) = L^k x(0)$$

预测任意时段种群 按年龄组的分布

~Leslie矩阵(L矩阵)

稳定状态分析的数学知识

• L矩阵存在正单特征根 λ_1 , $\left|\lambda_k\right| \leq \lambda_1, k = 2, 3, \cdots n$

特征向量
$$x^* = \left[1, \frac{S_1}{\lambda_1}, \frac{S_1 S_2}{\lambda_1^2}, \cdots, \frac{S_1 S_2 \cdots S_{n-1}}{\lambda_1^{n-1}}\right]^T$$

• 若L矩阵存在 b_i , $b_{i+1}>0$, 则 $\left|\lambda_k\right|<\lambda_1$, $k=2,3,\cdots,n$

且
$$\lim_{k\to\infty}\frac{x(k)}{\lambda_1^k}=cx^*$$
,c是由 b_i , s_i , $x(0)$ 决定的常数

解释

L对角化: $L = P[diag(\lambda_1, \dots \lambda_n)]P^{-1}$

其中,设P的第1列是 \mathbf{x}^* ; P^{-1} 的第一行是 p_1^T 。

$$L^{k} = P[diag(\lambda_1^{k}, \cdots, \lambda_n^{k})]P^{-1}, \quad x(k) = L^{k}x(0)$$

稳态分析——k充分大 种群按年龄组的分布

$$\lim_{k\to\infty}\frac{x(k)}{\lambda_1^k}=cx^*$$

1)
$$x(k) \approx c\lambda^k x^*$$

~ 种群按年龄组的分布趋向稳定,x*称稳定分布,与初始分布无关。

2)
$$x(k+1) \approx \lambda x(k)$$

~ 各年龄组种群数量按同一倍数增减, *λ*称固有增长率

与基本模型 x(k+1) = Lx(k) 比较

3)
$$\lambda=1$$
时 $x(k+1)\approx x(k)\approx cx^*$

$$x^* = [1, s_1, s_1, s_2, \cdots s_1, s_2, \cdots s_{n-1}]^T$$

~ 各年龄组种群数量不变

稳态分析

3)
$$\lambda = 1$$
时 $Lx^* = x^*$

$$= \begin{bmatrix} b_1 & b_2 & \cdots & b_{n-1} & b_n \\ s_1 & 0 & & 0 & 0 \\ & & \ddots & & \\ s_2 & & 0 & \vdots \\ & & \ddots & & \\ 0 & & s & 0 \end{bmatrix}$$

$$x^* = [1, s_1, s_1 s_2, \dots s_1 s_2, \dots s_{n-1}]^T$$

$$b_1 + b_2 s_1 + \dots + b_n s_1 s_2 \dots s_{n-1} = 1$$

~1个个体在整个存活 期内的繁殖数量为1

4)
$$x(k) \approx c\lambda^k x^*$$
, $x^* = [1, s_1, s_1, s_2, \dots, s_{n-1}]^T$

~存活率 s_i 是同一时段的 x_{i+1} 与 x_i 之比

每代人在同一年龄段数目大致相同

(与
$$s_i$$
的定义 $x_{i+1}(k+1) = s_i x_i(k)$ 比较)