Logik und Komplexität ÜBUNG 7

Denis Erfurt, 532437 HU Berlin

Aufgabe 1)

Abbildung 1: Strukturen

- a) $b_1, b_2 \in \mathfrak{B}$ so wie in Abbildung 1 angegeben.
- **b)** Das größte m, so dass es $b_1, b_2 \in B$ gibt mit $(A, a_1, a_2) \cong_m (B, b_1, b_2)$ ist m = 1.

zeige dass $(I_j)_{j\leq 1}:(A,a_1,a_2)\cong_1(B,b_1,b_2)$ ein Hin-und-Her-System ist.

1) $I_1 \neq \emptyset$

Sei $p = \mathscr{O}$ die Abbildung, deren Definitionsberreich leer ist. $I_1 = \{p\}$ Sei $q: a_3 \mapsto b_3$. Klar ist, dass $q \supseteq p$ sowie $p, q \ne \varnothing$ und $q \in Part((A, a_1, a_2), (B, b_1, b_2))$

- **2)** Wähle für jedes $a_i \in A$ ein $b_i \in B$ wie in Abbildung 1. Klar ist: $a_i \mapsto b_i \in Part((A, a_1, a_2), (B, b_1, b_2))$ sowie $a_i \mapsto b_i \supseteq p$
- **3)** Wähle für jedes $b_i \in B$ ein $a_i \in A$ wie in Abbildung 1. Klar ist: $a_i \mapsto b_i \in Part((A, a_1, a_2), (B, b_1, b_2))$ sowie $a_i \mapsto b_i \supseteq p$ Somit ist $(I_j)_{j \le 1} : (A, a_1, a_2) \cong_m (B, b_1, b_2)$ ein Hin-und-Her-System.

c) Angenommen $(I_j)_{j\leq 2}: (A,a_1,a_2)\cong_m (B,b_1,b_2)$ ist ein Hin-und-Her-System. aus b) wissen wir, dass $p=a_3\mapsto b_3\in I_1$ Nach der "Hin-Eigenschaft" müsste für p und a_4 ein $q\in I_0$ geben, so dass $q\supseteq p$ und $a_4\in Def(q)$.

Jedoch ist für jedes $b_i \in B: a_3, a_4 \mapsto b_3, b_i \notin Part((A, a_1, a_2), (B, b_1, b_2))$ Somit folgt, dass $(I_j)_{j \leq 2}: (A, a_1, a_2) \cong_m (B, b_1, b_2)$ kein Hin-und-Her-System ist.

Aufgabe 2)

Sei $GG \subseteq UGraph$ die Klasse der Strukturen, bei denen jeder Knoten einen Geraden Grad besitzt.

zeige GG ist nicht EMSO-definierbar in UGraph.

Laut dem Satz von Ajtai und Fagin genügt es zu zeigen, dass Duplicator eine Gewinnstrategie im (l,m)-Ajtai-Fagin-Spiel besitzt.

Phase 1. Duplicator wählt einen vollständigen-Graphen $\mathfrak{A}=K_{2^{l+m}+1}$. Beobachtung: für einen vollständigen-Graphen gilt:

n ist ungerade
$$\Leftrightarrow K_n \in GG$$

Spoiler wählt hiernach die Mengen $X_1^{\mathfrak{A}},...,X_l^{\mathfrak{A}}\subseteq V$ Sei $c^{\mathfrak{A}}(a):=\{X_i^{\mathfrak{A}}:a\in X_i^{\mathfrak{A}}\}$ die Farbe eines Knotens a. Für jede Farbe $f\subseteq\{X_1^{\mathfrak{A}},...,X_l^{\mathfrak{A}}\}$ sei

$$M_f^{\mathfrak{A}} := \{ a \in A : c^{\mathfrak{A}}(a) = f \}$$

zeige: nach l Mengen exestiert exestiert ein $M_f^{\mathfrak{A}}$ so dass $|M_f^{\mathfrak{A}}| \geq 2^m$ Beweis durch vollständige Induktion:

Induktionsannahme: nach der i-ten Menge $X_i^{\mathfrak{A}}$ exestiert ein f mit $|M_f^{\mathfrak{A}}| \geq 2^{l-i+m}$

Induktionsanfang: i=0 Wir wissen dass $|A|=2^{l+m}$. Für $f=\{\}$ ist $M_f^{\mathfrak{A}}=A\Rightarrow |M_f^{\mathfrak{A}}|\geq 2^{l+m}$

Induktionsschritt: $i \to i+1$ Nach IA exestiert ein f mit $|M_f^{\mathfrak{A}}| \ge 2^{l-i+m}$ Spoiler wählt ein $X_{i+1}^{\mathfrak{A}}$.

Sei
$$f' := f \cup \{X_{i+1}^{\mathfrak{A}}\}$$

Nach **IA** wissen wir:

$$|M_{f'}^{\mathfrak{A}}| + |M_f^{\mathfrak{A}}| \ge 2^{l-i+m}$$

Falls $|M_{f'}^{\mathfrak{A}}| < 2^{l-(i+1)+m}$, dann folgt daraus $|M_f^{\mathfrak{A}}| \geq 2^{m-(i+1)+m}$ Falls $|M_f^{\mathfrak{A}}| < 2^{l-(i+1)+m}$, dann folgt daraus $|M_{f'}^{\mathfrak{A}}| \geq 2^{m-(i+1)+m}$

Indunktionsschluss: Nach l
 Mengen exestiert eine Farbe f mit $|M_f^{\mathfrak{A}}| \geq 2^m$

Phase 2. Duplicator wählt $\mathfrak{B} = K_{2^{l+m}+2}$. Nach Beobachtung ist $\mathfrak{B} \in UGraph \setminus GG$ Weiter wählt Duplicator die Mengen $X_1^{\mathfrak{B}}, ..., X_l^{\mathfrak{B}}$ so, dass für jede Farbe f gilt:

$$|M_f^{\mathfrak{B}}| = |M_f^{\mathfrak{A}}| \text{ oder } |M_f^{\mathfrak{B}}|, |M_f^{\mathfrak{A}}| \ge 2^m \tag{1}$$

Intuitiv färbt Duplicator den neuen Knoten mit der in A häufigsten Farbe.

Phase 3. Betrachte das EF-Spiel auf $\mathfrak{A}' := (\mathfrak{A}, X_1^{\mathfrak{A}}, ..., X_l^{\mathfrak{A}})$ und $\mathfrak{B}' := (\mathfrak{B}, X_1^{\mathfrak{B}}, ..., X_l^{\mathfrak{B}})$

Für jede Wahl $a_i \in A$ von Spoiler kann Dup wegen (1) ein $b_i \in B$ wählen, so dass $c(a)^{\mathfrak{A}} = c(b)^{\mathfrak{B}}$: Falls $|M_f^{\mathfrak{B}}| = |M_f^{\mathfrak{A}}|$ so hat Duplicator eine Gewinnstrategie, in dem er Spoilers züge Kopiert. Falls $|M_f^{\mathfrak{B}}|, |M_f^{\mathfrak{A}}| \geq 2^m$ so besitzt Duplicator eine Gewinnstrategie, indem er ein neues Element wählt, falls Spoiler ein neues Element mit dieser Farbe gewählt hat. Andernfalls falls Spoiler ein in Runde i gewähltes Element wählt, so wählt Duplicator in Runde i gewählte Element der anderen Struktur. Analog für Spoilers wahl aus \mathfrak{B} .

Somit ist gezeigt das Duplicator eine Gewinnstrategie im (l,m)-Ajtai-Fagin-Spiel besitzt. Somit ist nach Satz 3.44 GG nicht EMSO-definierbar in UGraph.

Aufgabe 3)

Angelehnt an Beispiel 4.6 c)

Sei k:=4. Zur Erinnerung: $EA_k = EA_{2k,k}$

Für jeden Graphen G=(V,E) mit $G\models EA_k$ und $|V|\geq 2k=4$ gilt gemäß

Beob. 4.3:

$$G \models EA_{l,m} \ f.a. \ l \geq 1, m \geq 0 \ mit \ m \leq l \leq k$$

Aus $G \models EA_{1,1}$ und |V| > 1 folgt: Es gibt Knoten a und b, s.d. diese Verbunden sind.

Weiter folgt aus $G \models EA_{2,2}$ mit S := a, b = T, dass es einen Knoten c nicht aus der Menge gibt, s.d. c zu a und b verbunden ist. Dies ist ein Dreieck, also der vollständige Graph K_3 .

- $G \models EA_{3,3}$ mit $S := \{a, b, c\} = T$, es gibt d, s.d. d zu a,b,c verbunden ist. Dies bildet K_4 .
- $G \models EA_{4,4}$ mit $S := \{a, b, c, d\} = T$, es gibt e, s.d. e zu a,b,c,d verbunden ist. Dies bildet K_5 .

Die Menge aller nicht-planaren Graphen ist größer/gleich der Menge derer, die einen K_5 -Teilgraphen haben. Somit gilt für die planaren Graphen die Gegenwahrscheinlichkeit:

$$\mu_n(NP|UG) \ge \mu_n(EA_4|UG) \to_{n\to\infty} 1$$

 $\mu_n(P|UG) = 1 - \mu_n(NP|UG) = 0$

Aufgabe 4)

a) Sei $\leq (a, b) :=$ 'a steht vor b in w'.

Für jedes $l \in \mathbb{N}$ seien $x_1...x_{l+1}$ paarweise verschieden und sei

$$\Delta_{l+1}^{\sigma_{\{a,b\}}} := \{ \le (a, x_{l+1}) : a \in \{x_1, ..., x_{l+1}\} \}$$

(Teile das Wort in zwei Partitionen, Buchstaben kleiner bzw. größer x_{l+1})

Für
$$F\subseteq \Delta_{l+1}^{\sigma_{\{a,b\}}}$$
 sei $\bar{F}:=\Delta_{l+1}^{\sigma_{\{a,b\}}}\backslash F$

$$EA_{l,F} := \forall x_1..x_{l+1} (\bigwedge_{1 \le i < j \le l} x_i \ne x_j \to \exists x_{l+1} (\bigwedge_{i=1}^l x_{l+1} \ne x_i \land \bigwedge_{\phi \in F} \phi \land \bigwedge_{\psi \in \bar{F}} \neg \psi))$$

Bws: $\xi := \{EA_{l,F} : 0 \le l \le k = \text{'Wortlänge'}\}$

Beobachte: ξ ist endlich.

$$\eta := \bigwedge_{\phi \in F} \phi$$

Seien ALL alle Wortstrukturen.

Sollte es eine σ -Struktur geben, die η und ψ erfüllt, dann gilt f.a. $n \ge 1$: $\mu_n(\phi|ALL) \ge \mu_n(\eta|ALL) \to 1$

Ansonsten: $\mu_n(\neg \phi|ALL) \ge \mu_n(\eta|ALL) \to 1$ und somit $\mu_n(\phi|ALL) = 0$

b) Aus Beispiel 2.10 wissen wir dass es ein EMSO-Satz ϕ_{even} gibt, der genau die Strukturen Beschreibt deren Universum gerade Kardinalität haben. Außerdem wissen wir aus Beispiel 4.1 a) dass $\mu(EVEN|ALL) = undefined$ ist. Demnach besitzt $MSO[\leq]$ kein 0-1-Gesetz bzgl. der Klasse aller endlichen linearen Ordnungen.

- c) analog zu a)
- d) Sei S die Klasse der Strukturen, die einen vollständigen Graphen beinhalten, falls das Universum gerade ist. Außerdem besitz S die Graphen ohne Verbindungen falls das universum ungerade ist.

$$S:=\{(V,E):|V| \text{ ist gerade und } E=V^2\} \cup \{(V,E):|V| \text{ ist ungerade und } E=\emptyset\}$$

Daraus folgt analog zu Beispiel 4.1 a):

$$\phi := \exists x \exists y E(x, y) \Rightarrow \mu_n(\phi|S) = undefined$$

Somit beistzt FO[E] kein 0-1-Gesetz bezüglich S.