University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn P. Schneider

Advanced Algorithms Sample Solution Problem Set 6

Issued: Friday, May 31, 2019

Exercise 1: Learning a Linear Classifier

Assume that we are given m feature vectors $\mathbf{a_1}, \ldots, \mathbf{a_m} \in \mathbb{R}^n$ and that each vector $\mathbf{a_i}$ has a label $\ell_i \in \{-1, +1\}$. Our goal will be to find non-negative weights $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \geq \mathbf{0}$, such that the weighted combination of the features matches the label, i.e., such that such that $\operatorname{sgn}(\mathbf{x}^{\top}\mathbf{a_i}) = \ell_i$ for all $i \in \{1, \ldots, m\}$. Alternatively, we can define vectors $\mathbf{b_i} := \ell_i \mathbf{a_i}$ and we then require that $\mathbf{x}^{\top}\mathbf{b_i} \geq 0$ for all $i \in \{1, \ldots, m\}$.

Concretely, we want to solve the following approximate version of the problem. Assume that there exists a non-negative vector \boldsymbol{x}^* such that $\boldsymbol{b}_i^{\top} \boldsymbol{x}^* \geq 0$ for all i. W.l.o.g., we can assume that \boldsymbol{x}^* is normalized such that $\mathbf{1}^{\top} \boldsymbol{x}^* = 1$, i.e., the entries of \boldsymbol{x}^* sum up to 1. For a given parameter $\delta > 0$, our goal will be to find a vector \boldsymbol{x} , which is also normalized such that $\mathbf{1}^{\top} \boldsymbol{x} = 1$ such that $\boldsymbol{b}_i^{\top} \boldsymbol{x} \geq -\delta$ for all $i \in \{1, \ldots, m\}$. In order to achieve this, we use the MWU algorithm as follows.

Assume that we have $\|\boldsymbol{b_i}\|_{\infty} \leq \rho$ for all $i \in \{1, \dots, m\}$ (i.e., all the absolute entries of the vectors $\boldsymbol{b_i}$ are upper bounded by ρ). We run the algorithm with n experts, one corresponding to each dimension. We interpret the vector \boldsymbol{x} as a probability distribution on the n experts (dimensions) and initialize $\boldsymbol{x_1} := \frac{1}{n} \cdot \mathbf{1}$ to be the uniform distribution. In each step $t \geq 1$ of the MWU algorithm, we find a feature vector $\boldsymbol{b_i}$ for which $\boldsymbol{b_i}^{\top} \boldsymbol{x_t} < -\delta$ (if no such $\boldsymbol{b_i}$ exists, we are done and output the vector $\boldsymbol{x_t}$). We define the loss of expert $j \in \{1, \dots, n\}$ as $-b_{i,j}/\rho$ (where $b_{i,j}$ is the j^{th} entry of vector $\boldsymbol{b_i}$).

Show that after at most $O(\frac{\rho^2}{\delta^2} \log n)$ steps of the MWU algorithm, we have found a vector \boldsymbol{x} for which $\boldsymbol{x}^{\top} \boldsymbol{b_i} \geq -\delta$ for all $i \in \{1, ..., m\}$.

Sample Solution

Our strategy for the proof of correctness is as follows.

- (i) As long as we find a vector $\boldsymbol{b_i}$ with $\boldsymbol{b_i}^{\top} \boldsymbol{x_t} < -\delta$ in some round t we show that we have an expected loss $L^t > \delta/\rho$ in that round (shown later).
- (ii) We choose $T = C \cdot \frac{\rho^2}{\delta^2} \log n$ for some large enough constant C.
- (iii) For a contradiction we assume that we find a vector b_i with $b_i^{\top} x_t < -\delta$ in every round $1, \ldots, T$.
- (iv) Then clearly (i), (ii) and (iii) imply that the total loss is $L = \sum_{t=1}^{T} L^t > T \cdot \frac{\delta}{\rho} = C \cdot \frac{\rho}{\delta} \log n$.
- (v) From the lecture we know that the regret R, namely the difference of L to the loss L^* of the best expert for rounds $1, \ldots, T$, is bounded by $R = L L^* \le c' \cdot \sqrt{T \log n} = c' \sqrt{C} \cdot \frac{\rho}{\delta} \log n \le c \cdot \frac{\rho}{\delta} \log n$ with c < C (if we define $c := c' \sqrt{C}$ and choose $C > c'^2$).
- (vi) Due to C>c the best expert must have a strictly positive loss: $L^*\geq L-R>(C-c)\cdot\frac{\rho}{\delta}\log n>0$.
- (vii) From the fact that a solution $x^* \ge 0$ exists with $b_i^\top x^* \ge 0$ for each i we derive that there is an expert with loss at most 0 (shown later), a contradiction to (vi).

(viii) Since assumption (iii) is wrong, in some round in 1, ..., T we have no vector $\boldsymbol{b_i}$ with $\boldsymbol{b_i}^{\top} \boldsymbol{x_t} < -\delta$ anymore.

Let us plug the holes in (i) and (vii), starting with (i). For a given round $t \in [T]$, let us define i(t) as the index of the chosen vector $\boldsymbol{b}_{i(t)}$ with $\boldsymbol{b}_{i(t)}^{\top} \boldsymbol{x}_{t} < -\delta$.

$$L^t = \boldsymbol{x}_t^{\top} \boldsymbol{f^t} = \sum_{i=1}^n x_j^t f_j^t = -\frac{1}{\rho} \sum_{i=1}^n x_i^t b_{i(t),j} = -\frac{1}{\rho} \cdot \boldsymbol{b}_{i(t)}^{\top} \boldsymbol{x_t} > \frac{\delta}{\rho}.$$

Finally we show (vii). We know that there is a solution $x^* \ge 0$ with $b_i^\top x^* \ge 0$ for all $i \in [m]$.

$$\begin{aligned} \forall i \in [m] : \boldsymbol{b}_i^\top \boldsymbol{x}^* \geq 0 & \Longrightarrow & \sum_{t=1}^T \boldsymbol{b}_{i(t)}^\top \boldsymbol{x}^* \geq 0 \\ & \iff & \sum_{t=1}^T \sum_{j=1}^n x_j^* b_{i(t),j} \geq 0 \\ & \iff & \sum_{j=1}^n \sum_{t=1}^T x_j^* b_{i(t),j} \geq 0 \\ & \Longrightarrow & \exists j \in [n] : \sum_{t=1}^T x_j^* b_{i(t),j} \geq 0 \\ & \Longrightarrow & \max_{j \in [n]} \sum_{t=1}^T x_j^* b_{i(t),j} \geq 0 \\ & \iff & \max_{j \in [n]} \sum_{t=1}^T b_{i(t),j} \geq 0 \\ & \iff & \min_{j \in [n]} \sum_{t=1}^T -\frac{b_{i(t),j}}{\rho} \leq 0 \\ & \iff & \min_{j \in [n]} \sum_{t=1}^T f_j^t \leq 0 & \iff L^* \leq 0. \end{aligned}$$