Lecture - 22A & 22B

Energy Resources, Economics and Environment

Net Energy Analysis

Rangan Banerjee
Department of Energy Science and Engineering

IIT Bombay

Energy Analysis – Hydrogen Storage

Comparison of different stora	ge options for 1 km	ride		0.00	
	Compressed tank	Cryogenic tank	FeTi hydride	Mg hydride	
H2 consumption (gms)	6.24	6.4	8.04	9.7	
Direct energy required to travel (kJ)	749	768	965.4	1164	
Energy required to produce and store H2 (kJ)	1260.7	2172.7	1473.7	1777	
Energy required to produce tank(kJ)	34.2	15.6	177.3	60	
Total energy required (kJ)	2043.9	2956.3	2616.4	3001.5	

Solar Thermal Power – Energy Analysis

Solar Thermal Power - Energy Analysis (Contd)

Energy Analysis Of Buildings

Cradle to Gate model structure of a lead acid battery

160.5

31.8

Virgin Aluminium

Recycled Aluminium

Life Cycle Energy Analysis Flow diagram

Cradle to grave Cradle to gate Manufacturing Material Production Transportation Transportation Energy System components Electricity and heat Raw material Battery production Consumable production PV module Electrical and thermal energy Production Decommissioning Component and recycling of Balance of Manufacturing Recycling the system System Energy External Scrap supply

Fig. 4 Life cycle energy and environmental analysis boundary of the proposed microgrid

Table 3 Embodied energy of Pb and Al in Indian conditions and comparison with existing literature values

Material	Source	Production energy (MJ/ kg)	References		
Pb	Ore	22.3	Sullivan et al. (2011)		
Pb	Ore	27.2	Larcher and Tarascon (2014)		
Pb	Ore	28.7	Alsema (2000a)		
Pb	Ore	31.2	Gaines and Singh (1995)		
Pb	Ore	39.1	This work		
Pb	Scrap	4.2	Sullivan et al. (2011)		
Pb	Scrap	5.3	Larcher and Tarascon (2014)		
Pb	Scrap	11.2	Alsema (2000a)		
Pb	Scrap	7.2	Gaines and Singh (1995)		
Pb	Scrap	24.74	This work		
PbO	Pb	12.7	Gaines and Singh (1995)		
PbO	Pb (scrap)	19.94	This work		
Al	Ore	204	Sullivan et al. (2011)		
Al	Ore	160.54	This work		
Al	Scrap	31.8	This work		

Table 5 Battery embodied energy values in Indian context

Battery configuration	Material production energy $E_{\rm mp}$				Recycling energy $E_{\rm rec}$		Transportation Energy–E _{tr} for fin- ished product import		$E_{\text{tot}} = E_{\text{ctg}} + E_{\text{rec}} + E_{\text{tr}} \text{ (MJ}_{\text{pf}} \text{/Wh)}$
	MJ _{pf} /kg (Recycled materials)	MJ _{pf} /Wh (Recycled materials)	MJ _{pf} /kg	MJ _{pf} /Wh	MJ _{pf} /kg	MJ _{pf} /Wh	(MJ _{pf} /kg)	(MJ _{pf} /Wh)	
VRLA	21.87	0.681	11.6	0.39	2.4	0.08	=	-	1.14
LFP-G	96.27	1.05	30	0.33	3.6	0.04	2.9	0.03	1.46
Nickel metal hydride (AB ₂)	41.99	0.76	75	1.36	19.6	0.36	0.99	0.02	2.5
Nickel-metal hydride (AB ₅)	33.12	0.60	75	1.36	19.6	0.36	0.99	0.018	2.34
Nickel cadmium	64.72	1.58	46	1.15	4.85	0.12	0.99	0.025	2.88
Sodium sulphur	128.31	0.86	56	0.38	-	-	1.34	0.009	1.24
Lithium sulphur	242.06	1.59	172	1.13	51.2	0.34	1.61	0.01	3.07

Energy Flow diagram of the PV panel for India

Battery Technology	Cycle Life @ 80% DoD (Manufacture)	Maximum Service Life in years (Manufacture r)	Life in years calculated assuming 1 cycle /day	Efficiency #1	Specific Energy (Wh/kg)	Weight of battery cell (kg)	Energy Rating of battery (Wh)
VRLA	700#1-1800#2	10#2	2-5	84%	32	157	5024
Li ion	5000-7000#1	15 ^{#4}	13-15	92%	91	19	1729
NiCd	1000-1500#1	10#1	3-4	80%	40	69	2745
NiMH	1500-2000#1	8#1	4-6	85%	55	10	360
NaS	5625 (4500 ^{#3} @ 100% DoD)	15 ^{#3}	15	90%	150	5.5	825
LiS	1400@80% #5 DoD	5	3.5	97%	152	0.138	20.97

- #1. Carl Johan Rydh, Energy analysis of batteries in photovoltaic systems. Part I:. Energy Conservation and Management,
- *46*, 1980-2000, 2005
- #2. Tubular gel 2V VRLA battery Technical Manual, http://www.exide4u.com/solatron-tubular-gel-vrla-2v-cell
- #3. NGK Insulators NaS Battery, https://www.ngk.co.jp/nas/specs/
- #4. Castillo, "Grid-scale energy storage applications in renewable energy integration: A survey", 2014
- #5 http://oxisenergy.com/wp-content/uploads/2016/10/OXIS-Li-S-Long-Life-Cell-v4.01.pdf

PV Battery Grid Backup System Components

Component		Specifications							
104 x250 Wp PV				Mass = 2	2620.8 kg				
Polycrystalline			Recy	clable mass of t	he frame = 192	2.42 kg			
module				Sensing Area	a=153.34 m ²				
				Frame area	a =21.38 m ²				
				Efficiency	y =15.4 %				
1 x solar battery charger				30 kW,I	Eff=97%				
1 x Inverter				50 kW,208 V AC	,28 A ,Eff=96.3	3%			
Array support				Roo	f top			/	
Battery	Pb-Acid								
Storage Capacity(kWh)	150	149.88	136.8	148.11	148.11	139.89	157.37	129.8	

Component	Material Production Energy	Manufacturing Energy of PV panel, frame and BOS (MJ _{pf} /m²)	Material Production Energy (MJ _{pf} /kW _e)	Recycled Material Production Energy (MJ _{pf} /Wh)	Virgin Material Production Energy (MJ _{pf} /Wh)	Manufacturin g Energy (MJ _{pf} /Wh)	Recycling Energy (MJ _{pf} /Wh)	Transportation Energy (MJ _{pf} /Wh)
PV system (polyc-	3107.14MJ _{pf} /m ² of	49.9 m ² of panel					0, =	0.34 (MJ _{pf} /kg)
Si)	sensing area	area						
Frame	422.22 MJ _{pf} /m ² of panel area						037	
Balance of System(BOS)	507.7 MJ _{pf} /m ² of panel area							1//////////////////////////////////////
Electrical	149.17 MJ _{nf} /kWp							001 06
Installation								0.0
Charge controller			1074.11					
BATTERY								
VRLA				0.681	1.12	0.385	0.075	-
LFP-G				1.05	1.088	0.33	0.04	0.031
NiMH				0.763	1.55	1.36	0.36	0.018
(AB2)								
NiMH				0.602	1.498	1.36	0.36	0.018
(AB5)								1 1 1
NiCd				1.58	3.205	1.15	0.121	- -
NaS@300 °C				0.855	1.04	0.373	-	0.0089
LiS				-	1.59	1.13	0.34	- V
Inverter			1074.11					***************************************

Energy requirement comparison(expressed per mass)

	Energy Density(Wh/kg)	•	Cycle life(80% DOD)	Emp(MJ/kg)	Emnf(MJ/kg)	Erec(MJ/kg)
LEAD ACID	30	3.14	500	18.78	11.55	2.4
VRLA	32	157	700-1800	21.8	11.55	2.4
LFP-G	91	19	5000-7000	96.27	30	3.6
NiMH(AB2)	55	10	1500-2000	41.99	75	19.6
NiMH(AB5)	55	10	1500-2000	33.12	75	19.6
NaS(@ 300 °C)	150	5.5	5625	128.32	56	0
NiCd	40	69	1000-1500	64.8	46	4.85
LiS	152	0.138	1400	242.06	172	51.2

Embodied energy per unit generation of the system

Energy requirement for different components

Component	Production Energy	Material Production Energy (MJ _{pf} /kW _e)	Recycled Material Production Energy (MJ _{pf} /Wh)	Virgin Material Production Energy (MJ _{pf} /Wh)	Manufacturing Energy (MJ _{pf} /Wh)	Transportation Energy (MJ _{pf} /Wh)
PV system (mc-Si)	4200		·	·		
Balance of System(BOS)	2300					
Charge controller		1000				
BATTERY OPTIONS						
VRLA			0.68	1.12	0.39	-
LFP-G			1.05	1.09	0.33	0.07
NiMH			0.76	1.55	1.36	0.03
(AB ₂)						
NiMH			0.60	1.5	1.36	0.03
(AB ₅)						
NiCd			1.58	3.21	1.15	-
NaS			0.86	1.04	0	0.02
Inverter		1000				

Comparison of Energy Pay Back Time & Net Energy Ratio

Table 6 Embodied carbon of batteries in Indian conditions							
Battery	Material produc- tion	Manufactur- ing	Recycling	Transportation			
9	kgCO ₂ /sto	orage capacity (V	Vh)				
VRLA	0.18	0.04	0.02	# == #			
LFP-G	0.21	0.05	0.01	0.002			
NiMH (AB ₂)	0.09	0.25	0.02	0.001			
NiMH (AB ₅)	0.09	0.25	0.02	0.001			
NiCd	0.03	0.07	0.0025	0.001			
NaS	0.11	0.32	177 5	0.0024			
LiS	0.26	0.11	0.0044	7.89×10^{-4}			

Renewable Hydrogen

- Current methods of hydrogen production
 - –Steam methane reforming (SMR)
 - Coal gasification
 - Electrolysis
- Based on fossil fuels, Not sustainable
- Need for hydrogen production from renewable energy sources like wind, solar, biomass etc.

Biological methods of hydrogen production

- Operates at ambient temperature and pressure
 - expected to be less energy intensive.
- Variety of feedstocks as carbon source like sugars, lignocellulosic material, wastewater etc.
- Several reactions substrate, bacteria

$$C_6H_{12}O_6 + 2H_2O \longrightarrow 4H_2 + 2CO_2 + 2CH_3COOH_3$$

Available online at www.sciencedirect.com

International Journal of Hydrogen Energy 33 (2008) 279-286

www.elsevier.com/locate/ijhydene

Comparison of biohydrogen production processes

S. Manish, Rangan Banerjee*

Energy Systems Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

Received 20 June 2007; accepted 9 July 2007 Available online 10 September 2007

Biohydrogen - Issues

- Production at commercial level is not reported.
- Pretreatment methods and hydrogen production depends on feedstock
 - -Which feedstock is viable, which is not?
- Analysis of different feedstocks/processes is necessary before scaling up the process.

Biomass to Hydrogen Conversion

Biomass to hydrogen conversion routes

Processes compared

- #1 Dark Fermentation
- #2 Photo Fermentation
- #3 Two- stage fermentation process
- #4 Biocatalysed Electrolysis

Input feedstock – Sugarcane juice

Net energy analysis

- Functional unit 1 kg hydrogen at 25°C temperature and 1 atm pressure.
- Base case steam methane reforming
- Criteria
 - Net energy ratio (output/non-renewable energy input)NER> 1
 - Greenhouse gases (GHG) emissions (kg CO₂ eq / kg H₂)
 - Energy Efficiency
- LCA software SimaPro 6

Impact Assessment

- SimaPro 6 Life Cycle Analysis (LCA) software
- Assumptions
 - Heat derived from diesel with 90% combustion efficiency
 - Indian electricity mix (60% coal, 12% gas and oil, 25% hydropower, 3% nuclear)
 - 100% carbon closure for biomass derived CO₂
 - Methane (Natural gas), Ligneous residue (Bagasse)

Electricity Supply Mix

Steam methane reforming

Parameter	Value	Unit (/kg H ₂)/
Resource consumption		0 1 1 1 1 1
Natural gas (in ground), input	3.64	kg
Coal (in ground), input	159.2	8
Iron (Fe, ore), input	10.3	ို့သို့
Iron scrap, input	11.2	g
Limestone (CaCO ₃ , in ground)	16.0	g
Oil (in ground)	16.4	g
Average air emissions		
Benzene	1.4	g
Carbon dioxide	10.62	kg
Carbon monoxide	5.7	g
Methane	59.8	g
Nitrogen oxides (as NO ₂)	12.3	g
Nitrous oxide (N ₂ O)	0.04	g
Non-methane hydrocarbons (NMHCs)	16.8	g
Particulates	2.0	g
Sulfur oxides (as SO ₂)	9.5	g

#2 Photo fermentation

#3 Two- stage fermentation process

#4 Biocatalysed Electrolysis

#4 Biocatalysed Electrolysis

Input data used in the analysis

			4 -
Input variable	Value	Unit	Ref.
Electricity use in sugarcane crushing	37.8	kJ/kg of sugarcane	[20]
Sucrose output	10.45	% of sugarcane	[21]
Dry bagasse output	17.34	% of sugarcane	[21]
Optimum sugar concentration in fermentation	2	%	- 05 T
Optimum C/N ratio	47	_	[22]
H ₂ production in dark-fermentation	3.4	mol/mol C ₆	[23]
CO ₂ production in dark-fermentation	1.7	mol/mol C ₆	- 1
H ₂ production in photo-fermentation	9.6	mol/mol C ₆	[11]
CO ₂ production in photo-fermentation	4.8	mol/mol C ₆	· · ///
Methane/CO ₂ molar ratio in biogas	60/40	_	- //
Hydrogen recovery in PSA	90	%	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Isothermal efficiency of compressor	65	%	
Electricity requirement in biocatalyzed electrolysis	0.6	kWh/m3 H2	[16]
Platinum loading in biocatalyzed electrolysis	0.5	mg/cm ₂	[16]

Results of mass and energy balance

Particular	Unit (/kg H2)	Dark-fermentation	Photo- fermentation	Two-stage process	Electrochemi cally assisted process
<u>Input</u>					
Sugarcane input	kg	281.45	99.68	93.09	90.56
Electricite discussion	1-10/1-	5.0	2.00	2.00	
Electricity input	kWh	5.8	3.89	3.82	6.42
Ammonia	kg	0.35	0.13	0.12	0.11
Platinum	mg	-	-	-	0.23
<u>Output</u>					
Bagasse (dry)	kg	46.06	16.31	15.23	14.82
Carbon dioxide	kg	24.59	13.44	13.04	12.39
Methane	kg	6.75	0.67	0.45	0.54

Results (without by product use)

Process	Case 1: Without by-products						
	GHG (kg CO ₂)	Non-renewable energy use (MJ)	Energy efficiency (%)				
Steam methane reforming	12.8	188	64				
Dark-fermentation	5.5	61.7	9.6				
Photo-fermentation	3.5	40.1	25.6				
Two-stage process	3.4	39.3	27.2				
Biocatalyzed electrolysis	5.3	64.8	25.7				

Material Choice

Material Choice

Sustainability Analysis

Why Sustainability Analysis?

- Sustainability Life cycle analysis, Thermodynamic analysis, Techno-economic analysis.
- Screening of technologies Setting technology development targets
- Comparative analysis Prospects of technology, conditions for viability
- Decide on investments

Criteria for assessment

1.Life cycle assessment

- a) Cumulative energy demand (CED)
- b) Carbon emission footprint (CEF)

2. Thermodynamic analysis

- a) Energy efficiency
- b) Exergy efficiency
- c) Primary energy consumption per kg product

3. Economic analysis

- a) Current costs
- b) Future costs
- c) Bottom-up costs

Concept for solar carbothermal reduction process

Framework for assessment of solar thermochemical zinc production

Research question:

Keep current process (hydrometallurgy) intact by greening the electricity mix

OR

Develop novel alternative like solar carbothermal process

Yadav D, Banerjee R. A comparative life cycle energy and carbon emission analysis of the solar carbothermal and hydrometallurgy routes for zinc production. Appl Energy 2018;229:577–602. doi:10.1016/j.apenergy.2018.08.001.

Thermodynamic efficiencies

Life Cycle Assessment - Pilot Scale

Yadav D, Banerjee R. A comparative life cycle energy and carbon emission analysis of the solar carbothermal and hydrometallurgy routes for zinc production. Appl Energy 2018;229:577–602. doi:10.1016/j.apenergy.2018.08.001.

3000 On-site Off-site Indirect 2500 Solar equipment cost cost **Plant** Component 2000 operation LCOZ (\$/ton) Finance cost 1500 and insurance 500 Solar Thermochemical - Pilot Plant Moderne Capital Insurance Engliceting Construction nen pipine 180, ric Starting costs Civil Structure Continuency Electrical

Economic Comparison

Hydrometallurgy systems - Pilot, Demonstration and Commercial scale

Yadav D, "Assessment of Solar Zinc and Hydrogen Production Processes", Ph.D. Thesis, Department of Energy Science and Engineering, IIT Bombay.

Levelized cost of Zinc (\$/ton)

	Pilot		Demonstration			Commercial			
Process / Year	2018	2030	Bottom-	2018	2030	Bottom-	2018	2030	Bottom-up
			up			up			
Solar carbothermal (Grid	2658	2145	950	527	420	285	261	217	184
power + Coal)									
Solar carbothermal (Solar	2685	2172	977	553	447	312	288	243	210
power + Biomass)									
Renewable tariff	827	786	-	505	464	-	479	437	-
hydrometallurgy									
Grid Hydrometallurgy	677	677	-	354	354	-	328	328	> -

Yadav D, "Assessment of Solar Zinc and Hydrogen Production Processes", Ph.D. Thesis, Department of Energy Science and Engineering, IIT Bombay.

References

- Spath PL, Mann MK. Life cycle assessment of hydrogen production via natural gas steam reforming. USA, NREL/TP-570-27637, 2001.
- Varadharajan, A., Venkateshwaran W. S., Banerjee, R., "Energy analysis of biodiesel from Jatropha." In Proceedings of 10th World Renewable Energy Congress (WRECX), Glasgow, Scotland, United Kingdom, July 19-25, 2008.
- Sarkar, A., Banerjee, R., "Net energy analysis of hydrogen storage options," International Journal of Hydrogen Energy,
 (30)8, 867-877, July 2005.
- Yadav D, "Assessment of Solar Zinc and Hydrogen Production Processes", Ph.D. Thesis, Department of Energy Science and Engineering, IIT Bombay.
- Yadav D, Banerjee R. A comparative life cycle energy and carbon emission analysis of the solar carbothermal and hydrometallurgy routes for zinc production. Appl Energy 2018;229:577–602. doi:10.1016/j.apenergy.2018.08.001
- Julian M. Allwood, Michael F. Ashby, Timothy G. Gutowski, Ernst Worrell, Material efficiency: A white paper, Resources, Conservation and Recycling, Volume 55, Issue 3, January 2011, Pages 362-381, January, 2011.
- Wieckert C, Frommherz U, Kräupl S, Guillot E, Olalde G, Epstein M, et al. A 300 kW Solar Chemical Pilot Plant for the Carbothermic Production of Zinc. J Sol Energy Eng 2007;129:190. doi:10.1115/1.2711471.