

Data Mining for NBA Shot Predictions

Emma Pullen, Matthew Byam, & Matthew Spirio

Introduction- Sports & Analytics

- Analytics have played a massive role in professional sports in the last two decades
 - Moneyball (2002 Oakland Athletics)
- Allows teams to put their players in situations where statistically they are more likely to succeed
- Raises the level of competition; sports are being played at a higher level, attracting more fans to support and attend games
- Rise of Legal Sports betting→S

- 128,070 records
- 2016-2017 Shot Logs
- Important Fields:
 - Shot Number
 - Shot Clock
 - Dribbles
 - Touch Time
 - Shot Distance
 - Points Type
 - Shot Result
 - Closest DefenderDistance
 - FGM

Field ─	Measurement	Values	Missing	Check	Role
GAME_ID	Continuous	[21400001,21400908]		None	➤ Input
A MATCHUP	Typeless			None	○ None
LOCATION	8 Flag	H/A		None	➤ Input
A W	8 Flag	W/L		None	➤ Input
> FINAL_MARGIN	Continuous	[-53,53]		None	➤ Input
SHOT_NUMBER	Continuous	[1,38]		None	➤ Input
> PERIOD	Continuous	[1,7]		None	➤ Input
GAME_CLOCK	Continuous	[00:00:00,12:00:00]		None	➤ Input
SHOT_CLOCK	Continuous	[0.0,24.0]		None	➤ Input
DRIBBLES	Continuous	[0,32]		None	➤ Input
TOUCH_TIME		<current> V</current>		None	➤ Input
SHOT_DIST	Continuous	[0.0,47.2]		None	➤ Input
> PTS_TYPE	Continuous	[2,3]		None	➤ Input
SHOT_RESULT	8 Flag	missed/made		None	➤ Input
CLOSEST_DEFENDER	Typeless			None	○ None
CLOSEST_DEFENDER_PLAYER	. Continuous	[708,530027]		None	nput Input
CLOSE_DEF_DIST	Continuous	[0.0,53.2]		None	➤ Input
> FGM	Continuous	[0,1]		None	➤ Input
> PTS	Continuous	[0,3]		None	➤ Input
player_name	Typeless			None	○ None
> player_id	Continuous	[708,204060]		None	➤ Input

Process

- Explore Data→ Missing Values
- 10% Sample
- Partition into 70% Training &30% Testing Data
- FGM Stepwise LinearRegression
- Shot Result KNN
- Shot Result Decision Tree

Linear Regression

- Shot Distance is leading Predictor
- Then, Shot Clock, Closest Defender Distance, and Touch

Time

KNN

- 57.3% Model Accuracy
 - Seems low?
 - "Good" shooting percentage is around 50%
 - Average of top 50 shooters this season was 0.509
 - 450 players in NBA
- Performance Metrics:

Recall: 31.9%

Precision: 56.42%

FP Rate: 78.96%

Specificity: 21.04%

Results for output field SHOT_RESULT

Comparing \$KNN-SHOT_RESULT with SHOT_RESULT

'Partition'	1_Training		2_Testing	
Correct	5,336	59.64%	2,246	57.3%
Wrong	3,611	40.36%	1,674	42.7%
Total	8,947		3,920	

Coincidence Matrix for \$KNN-SHOT_RESULT (rows show actuals)

'Partition' = 1_Training	made	missed
made	1,378	2,663
missed	948	3,958
'Partition' = 2_Testing	made	missed
made	576	1,229
missed	445	1,670

Performance Evaluation

'Partition' = 1_Training	
made	0.271
missed	0.086
'Partition' = 2_Testing	
made	0.203
missed	0.065

- Largest impact predictors
 - SHOT DIST
 - CLOSE_DEF_DIST
- Decision Tree is pruned up to SHOT_NUMBER and Dribbles due to the rest of the predictors being insignificant

```
SHOT_DIST <= 6.050 [Mode: made]
  CLOSE DEF DIST <= 3.450 [Mode: made]
     TOUCH TIME <= 1.350 [Mode: made]
         -- TOUCH TIME <= 0.050 [Mode: missed] ⇒ missed
         TOUCH TIME > 0.050 [Mode: made] ⇒ made
     TOUCH_TIME > 1.350 [ Mode: made ]
        CLOSE DEF_DIST <= 2.250 [Mode: missed]
              SHOT_CLOCK <= 8.850 [Mode: missed] | missed
           SHOT_CLOCK > 8.850 [ Mode: missed ]
               - DRIBBLES <= 2.500 [Mode: made] ⇒ made
               DRIBBLES > 2.500 [Mode: missed] ⇒ missed
        CLOSE_DEF_DIST > 2.250 [Mode: made]
              SHOT_DIST <= 4.250 [Mode: made] ⇒ made
           SHOT DIST > 4.250 [Mode: missed]
               - SHOT_NUMBER <= 11.500 [Mode: missed] ⇒ missed
               SHOT NUMBER > 11.500 [Mode: made] => made
     CLOSE_DEF_DIST > 3.450 [Mode: made] ⇒ made
  SHOT DIST > 6.050 [Mode: missed] ⇒ missed
```


Decision Tree Examples

- If shot distance ≤ 6.050 feet, touch time > 1.350 seconds, closest defender ≤ 2.250 feet,
 shot clock < 8.850 seconds → shot: MISSED
 - Support: 198/13040; Confidence: 198/321
- If shot distance ≤ 4.250 feet, touch time > 1.350 seconds, 2.25 < closest defender ≤ 3.45
 - \rightarrow shot: MADE
 - Support: 232/13040; Confidence: 232/367
- If shot distance ≤ 6.050 feet, closest defender > 3.450 feet away → shot : MADE
 - Support: 686/13040; Confidence: 686/858

Decision Tree Performance Metrics

Model Accuracy: 61.05%

Recall: 36.3%

Precision: 61.3%

FP Rate: 81.2%

Specificity: 18.8%

- Results for output field SHOT_RESULT
 - Comparing \$C-SHOT_RESULT with SHOT_RESULT

'Partition'	1_Training		2_Testing	
Correct	5,551	61.67%	2,408	61.05%
Wrong	3,450	38.33%	1,536	38.95%
Total	9,001		3,944	

Coincidence Matrix for \$C-SHOT_RESULT (rows show actuals)

'Partition' = 1_Training	made	missed
made	1,518	2,563
missed	887	4,033
'Partition' = 2_Testing	made	missed
made	645	1,130
missed	406	1,763

■ Performance Evaluation

'Partition' = 1_Training	
made	0.331
missed	0.112
'Partition' = 2_Testing	
made	0.31
missed	0.103

Player Comparison

- Applying analytic results to real world situations
- Comparing two successful teammates with similar skill sets
- Goal is to figure out the best way to use these players based on their shot making ability

Manu Ginobili

Tony Parker

Tony Parker Predictor Importance

- Relies heavily on shot distance as an indicator
 - Closer he is, the more likely he is to make shots
- Wouldn't this be true of all players?

Manu Ginobili Predictor Importance

- Biggest indicator is closest defender distance
 - Thrives on open shots away from the defense

 Confirms that not all players are created equal

Tony Parker Linear Regression

- Biggest Takeaway- Parker actually makes more shots when he takes more dribbles, the one true difference in their linear regression equations
- So what would be the best way to use these players?

Manu Ginobili Linear Regression

```
■ Analysis

SHOT_CLOCK * -0.0001422 +

DRIBBLES * -0.007893 +

TOUCH_TIME * -0.00444 +

SHOT_DIST * -0.01381 +

CLOSE_DEF_DIST * 0.01573 +

0.5931

Fields
Build Settings
Training Summary
```


Conclusion

- Shot distance, distance to closest defender, and Shot Clock are biggest influencers
- Models Created using Data Mining have a higher accuracy than most players
- The rise of Data Analytics in sports makes way for the production of curated plays
 - Both offensively and defensively → raise level game play
- Comparing individual Players performance stats tells coaches
 & fans their strengths and weaknesses

Thank you!!

