Jawaharlal Nehru Technological University

Optimization
For noise reduction
In a Five-Level
Cascaded H-Bridge Inverter
Using Genetic Algorithms
for Harmonic Reduction

1. Theoretical Study and Understanding

OBJECTIVE

To understand the principles of MLIs, their advantages (e.g., reduced harmonic distortion, lower dv/dt), and the specific cascaded H-bridge topology used for generating multiple voltage levels.

KEY CONCEPTS

Multilevel inverters generate stepped waveforms using multiple voltage levels, improving power quality compared to two-level inverters.

- o The cascaded H-bridge topology uses multiple H-bridges connected in series, each with a separate DC source. For a five-level inverter, the formula for output levels is 2s+1, where s is the number of H-bridges per phase (here, s=2, yielding 5 levels: +2V_{dc}, +V_{dc}, 0, -V_{dc}, -2V_{dc}).
- Selective Harmonic Elimination (SHE) was identified as a technique to reduce specific harmonics (e.g., 5th and 7th) by determining optimal switching angles.

OUTCOME

A solid theoretical foundation was established, guiding the subsequent simulation and hardware phases.

2. Simulation Model Development

SETUP

The model included two H-bridges per phase, each fed by a separate DC source (e.g., E_{dc1}= E_{dc2} =48V), connected in series to produce the five-level output.

COMPONENTS

The simulation incorporated power switches (e.g., MOSFETs) and pulse generators to control switching.

PARAMETERS

The output frequency was set to 50 Hz
(time period = 20 ms), and initial
switching angles were chosen arbitrarily
for testing.

PURPOSE

To simulate the inverter's behavior and generate an output waveform for analysis.

SWITCHING ANGLES

 $\alpha 1=25\circ$ and $\alpha 2=70\circ$.

PULSE GENERATOR SETTINGS

Pulse width = 50% of the period (10 ms)

Phase delays calculated as:

Delay for 25° = (25×20) / 360 = 1.388ms

Delay for 70° = (70×20) / 360 = 3.88ms

ANALYSIS

The output waveform was analyzed using Fast Fourier Transform (FFT). The Total Harmonic Distortion (THD) was 27.35%, with significant 5th and 7th harmonics.

SIMULATION MODEL

OUTPUT

4. Selective Harmonic Elimination (SHE) Equation Formulation

EQUATIONS

 $\cos(\alpha_1) + \cos(\alpha_2) = 2mI$ (controls the fundamental voltage, where mI is the modulation index)

 $cos(5\alpha_1) + cos(5\alpha_2) = 0$ (eliminates the 5th harmonic)

 $cos(7\alpha_1) + cos(7\alpha_2) = 0$ (eliminates the 7th harmonic)

CONSTRAINT

 $0 < \alpha_1 < \alpha_2 \le 90^{\circ}$.

PURPOSE

To find switching angles that minimize the specified harmonics while maintaining the desired fundamental voltage.

PROCESS

Chromosome Representation Each chromosome represented a set of switching angles (α_1, α_2) .

Population Initialization
A population of 200 random solutions
was generated.

Designed to minimize the 5th and 7th harmonics and THD, e.g., $y=[10 \times (1.2738 \times \cos(\alpha_1)) + 0.254 \times \cos(5\alpha_1))]$.

Evolution
Through reproduction, crossover, and mutation, the GA evolved the population over generations to optimize the angles.

RESULT

 α_1 =36° and α_2 =72°.

SWITCHING ANGLES

 α_1 =36° and α_2 =72°.

PULSE GENERATOR SETTINGS

Pulse width = 50% (10 ms).

Phase delays:

For 36° = (36×20)/360 = 2ms

For $72 \circ$ = $(72 \times 20)/360 = 4 \text{ms}$

ANALYSIS

A Reduced THD of 21.62%, with the 5th and 7th harmonics significantly minimized.

OUTCOME

The simulation confirmed the effectiveness of the GA-optimized angles in improving waveform quality.

COMPONENTS

H-Bridges

Two H-bridges, each with four MOSFETs (IRF740) and LEDs for status indication.

Optocouplers (4N35)
For isolating the control signals from the power circuit.

Microcontroller (Arduino)
To generate firing pulses.

Power Supply
A 230/48V AC transformer, rectified to 48V
DC per H-bridge (max output = 96V).

Rectifiers and Capacitors 1000 µF, 100V capacitors to filter ripple.

Load

A 10W bulb (resistive load), though the system can drive up to 400V, 10A loads.

PURPOSE

To physically implement the simulated inverter and test real-world performance.

CONNECTIONS

Each H-bridge was powered by a 48V DC source from the transformer and rectifier circuit.

Optocouplers linked the Arduino to the MOSFET gates for safe signal transmission.

The two H-bridges were connected in series to produce the five-level output.

RESULT

A complete hardware prototype ready for testing.

SETTINGS

Frequency = 50 Hz (period = 20 ms).

Phase delays for $\alpha_1=36^\circ$ and $\alpha_2=72^\circ$: 2ms and 4ms, respectively.

PIN CONFIGURATION

First H-bridge: S11 (Pin 13), S12 (Pin 10), S13 (Pin 12), S14 (Pin 11).

Second H-bridge: S21 (Pin 13), S22 (Pin 10), S23 (Pin 12), S24 (Pin 11).

COMPLEMENTARY SWITCHING

Switches in each leg (e.g., S11 and S12) operated complementarily.

RESULT

The Arduino successfully controlled the MOSFETs to produce the desired five-level waveform.

10. Hardware Testing

INITIAL

 α_1 =25° and α_2 =70°.

OPTIMIZED TEST

 α_1 =36° and α_2 =72°.

RESULT

Optimized THD of 17.82%, lower than the simulation's 21.62%, indicating effective harmonic reduction.

11. Result Comparison and Analysis

THD COMPARISON

Initial simulation 27.35%.

Optimized simulation 21.62%.

Hardware with optimized angles 17.82%.

FINDINGS

The GA-optimized angles significantly reduced the 5th and 7th harmonics in both simulation and hardware.

The hardware THD was lower than the simulation, possibly due to real-world filtering effects.

CONCLUSION

The project successfully demonstrated the effectiveness of SHE with GA in reducing harmonics, achieving a high-quality output suitable for loads up to 400V, 10A.