אלגברה: תהא $\mathcal{F}\subseteq 2^\Omega$ אזי קבוצה Ω המקיימת

- $\Omega \in \mathcal{F}$ •
- $\forall E \in \mathcal{F}.E^{\mathcal{C}} \in \mathcal{F} \bullet$
- .
 $U \in \mathcal{F}$ לכל מתקיים סופית סופית $E \subseteq \mathcal{F}$

 $.\emptyset \in \mathcal{F}$ אלגברה אזי \mathcal{F} אלגברה

 $A \cap E \in \mathcal{F}$ אוי אוי $E \subseteq \mathcal{F}$ אלגברה ותהא אלגברה ותהא למה: תהא

המקיימת $\mathcal{F}\subseteq 2^\Omega$ אזי קבוצה Ω תהא המקיימת σ

- $\Omega \in \mathcal{F}$ •
- $\forall E \in \mathcal{F}.E^{\mathcal{C}} \in \mathcal{F} \bullet$
- . | או בת מניים מתקיים ב
 $E\subseteq\mathcal{F}$ לכל לכל

 $.\emptyset\in\mathcal{F}$ אזי אזי σ אלגברה אזי למה: תהא

 $A \cap E \in \mathcal{F}$ אזי אזי $E \subseteq \mathcal{F}$ ותהא למה: תהא σ

 Ω משפט: תהא $\mathcal F$ הינה מעל Ω אזי $\mathcal F$ הינה אלגברה מעל משפט

 $\mu\left(igcup_{i=1}^nB_i
ight)=\sum_{i=1}^n\mu\left(B_i
ight)$ מתקיים $B_1\dots B_n\in\mathcal{A}$ המקיימת לכל $\mu:\mathcal{A} o\mathbb{R}$ המקיים פונקציה אדטיבית: פונקציה אלגברה אזי $\mu:\mathcal{F} o[0,\infty]$ אדטיבית.

 $\mu\left(igcup_{i=1}^\infty B_i
ight) = \alpha$ מתקיים $\{B_i\}_{i=1}^\infty \subseteq \mathcal{A}$ מתקיים לכל $\mu:\mathcal{A} \to \mathbb{R}$ מתקיים פונקציה $\sum_{i=1}^\infty \mu\left(B_i
ight)$

. אדטיבית: תהא σ $\mu:\mathcal{F} \to [0,\infty]$ אזי תהא σ אלגברה: תהא σ

 (Ω,\mathcal{F}) אזי אזי Ω מרחב מדיד: תהא σ אלגברה מעל

 $E\in\mathcal{F}$ אזי Ω אזי אלגברה מעל σ אזי תהא קבוצה מדידה:

 $\mu\left(\emptyset
ight)=0$ אזי $\exists E\in\mathcal{F}.\mu\left(E
ight)<0$ המקיימת \mathcal{F} המקיימת על אלגברה/ σ ־אלגברה על אלגברה למה:

. אדטיבית μ אזי \mathcal{F} אזי מעל σ ־אלגברה מעל מידה μ אזי למה: