Data Science Capstone:

The Condition of Internment Camps on Educational Attainment

--Miranda Miao

Thesis: The Evolution of the Japanese-White Real Earnings Gap

Figure I: Real Earnings of Japanese and White Men, Median

Data Source: American Community Survey

- Logistics Regression
- Internment had statistically significant and negative correlation on education using the 0.05 threshold
- The Odds ratio for internment is 0.766

Japanese Internment

- Japanese Internment: 1942 1945
 - o 110,000 Interned; 66,000 US Citizens; 1862 Deaths
 - o Forced evacuation; Property damage
 - Regional Randomized Selection of camp site
- Violence and force at Camp
 - o Deaths, fights, lack of privacy, and sexual assault
 - Definition of violence, force, and strike

Copyright © 1993 by the Japanese American National Museum.

Research Questions

Research Question: Given that if someone was interned, their internment camp site assignment is random conditional on geography, how does the condition of the assigned camp affect one's college educational attainment?

Data Exploration and Method

Data

- Japanese American Research Project
 - Socio-historical survey randomized by county across the united States
 - Randomly selected Issei (first-generation Japanese Americans)
 - Traced their children (Nisei) and grandchildren (Sansei)
- Useful Information
 - Internment status, education attainment, family ID, internment site, and property compensation, etc.
- Only Nisei and those interned and Age < 47

Modeling Assumption - Age

Average Rate of College Attainment by Age

Boxplot of Age by College Attainment

Model Assumption - Parent Income Level

Average Probability of College Attainment by Parental Income Level

Modeling - Selecting Predictor Subset

Full Model Before Predictor Selection:

Expected Log Odds of Attending College <- β_0 + β_1 *Sex + β_2 *Married + β_3 *Age + β_4 *Age_Squared + β_5 *Property_Compensation + β_6 *Parent_Income2 + β_7 *Parent_Income3 + β_8 * Parent_Income4 + β_9 * Violence + β_{10} * Strike + β_{11} * Force

AIC Criterion Model: step(k=2)

Expected Log Odds of Attending College <- β_0 + β_1 *Sex + β_2 *Married + β_3 *Age + β_4 *Property_Compensation + β_5 *Parent_Income2 + β_6 *Parent_Income3 + β_7 *Parent_Income4 + β_8 *Strike + β_9 *Force

AUC Criterion Model: AUCRF Package

Expected Log Odds of Attending College <- β_0 + β_1 *Sex + β_2 *Age + β_3 *Age_Square + β_4 *Parent_Income2 + β_5 *Parent_Income3 + β_6 * Parent_Income4 + β_7 * Strike

Modeling - Cross Validation

Implemented five-fold cross validation to determine predictive power

- Criterion: Average AUC over 5 validations
- AIC: Average AUC is 0.713
- AUCRF: Average AUC is 0.706

Regression Diagnostics

Identifying Influential Outliers

- Using the delta deviance of coefficients to identify influential outliers
- Using the distribution of delta deviance at each data points as benchmark
 - 58 is an influential due to Strike; 267 is an influential outlier due to Parent_Inc3

```
> outliers
      (Intercept)
                         SEX
                                     AGE PROPERTY COMPEN
                                                             MARRIED
                                                                      PARENT INC2
                                                                                   PARENT INC3
                                                                                                PARENT INC4
                                                                                                                STRIKE
                                                                                                                              FORCE
     0.012892375 -0.01471394 -0.01130686
                                              -0.01021479 -0.01342982 -0.009447340
                                                                                   0.005912919
                                                                                                0.005549265 0.01272637
     -0.007867528 -0.03049179
                                             -0.02429944 -0.02141389 -0.007083395 -0.020606910 -0.011279633 0.02986141 -0.066320751
                              0.03806342
1097 -0.005231070 0.03474164 0.01519625
                                             -0.07069692 0.01505501 -0.006373795 0.004550003 -0.010293221 0.06520520 -0.031160414
> threshold
                               SEX
                                          AGE PROPERTY COMPEN
                                                                  MARRIED PARENT INC2 PARENT INC3 PARENT INC4
                                                                                                                   STRTKE
                                                                                                                                FORCE
           (Intercept)
01-1.5*IOR -0.04923637 -0.09008385 -0.06061404
                                                  -0.07117123 -0.04578402 -0.02001413 -0.02028241 -0.02147511 -0.09264240
                                                                                                                          -0.07313533
03+1.5*IOR
           0.04894225 0.09390238
                                   0.05763285
                                                   0.08010332 0.04724607 0.01697499 0.02114824 0.02179442 0.08402614
```

Likelihood Ratio Test: For Nested Model Comparison

- Null Hypothesis: β For Parent Income Level 2 = 0 1-pchisq(((1396.0 -1395.7),1) \rightarrow 0.58
- Null Hypothesis: β for Force = β for Strike = 0 1-pchisq((1399.6-1396.0),2) \rightarrow 0.16
- Removal of all three variables

```
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept)
                0.02640
                           0.41649
                                     0.063 0.94947
SEX
                0.90943
                           0.13462
                                     6.756 1.42e-11 ***
AGE
               -0.05182
                           0.01086 -4.771 1.83e-06
                0.39691
                           0.14773
                                     2.687 0.00721 **
PROPERTY_COMPEN
MARRIED
               -0.57995
                           0.17800
                                    -3.258 0.00112 **
                                     7.805 5.94e-15
                1.24540
                           0.15956
PARENT_INC3
PARENT_INC4
                           0.22333
                                     6.670 2.57e-11 ***
                1.48951
                           0.13765 -1.425 0.15418
STRIKE
               -0.19614
FORCE
                           0.15317 -1.174 0.24035
               -0.17984
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```


Likelihood Ratio Test: For Final Model Fit

Final Model:

Expected Log Odds of Attending College <- β_0 + β_1 *Sex + β_2 *Married + β_3 *Age + β_4 *Property_Compensation + β_5 *Parent_Income3 + β_6 * Parent_Income4

1-pchisq(1399.6,1277) \rightarrow 0.009

```
glm(formula = COLLEGE ~ SEX + AGE + PROPERTY_COMPEN + MARRIED +
    PARENT_INC3 + PARENT_INC4, family = binomial(link = "logit"),
    data = jarp.clean)
```

Deviance Residuals:

```
Min 1Q Median 3Q Max
-1.8301 -0.8269 -0.5951 1.1470 2.2930
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept)
               -0.06728
                          0.41279 -0.163 0.87052
SEX
               0.90102
                          0.13415 6.716 1.86e-11 ***
              -0.05228
                          0.01085 -4.820 1.44e-06 ***
AGE
                          0.14730 2.658 0.00787 **
PROPERTY_COMPEN 0.39147
              -0.57786
                          0.17783 -3.250 0.00116 **
MARRIED
PARENT_INC3
              1.25177
                          0.15918
                                   7.864 3.72e-15 ***
PARENT_INC4
               1.49679
                          0.22323
                                   6.705 2.01e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1563.2 on 1283 degrees of freedom Residual deviance: 1399.6 on 1277 degrees of freedom

AIC: 1413.6

Data Ethics

- Data is anonymous and does not contain location information
- Some might argue that violent treatment doesn't matter
- It is not statistically significant, but had negative effects!
- Education could be resilient but mental health might not be