Exercise Sheet 7

Discrete Mathematics, 2020.10.13

1. Show that for any sets A and B

$$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$$

- 2. Show that $A \times \bigcup B = \bigcup \{A \times X | X \in B\}$
- 3. Here is a proof of $C \cap (A \cup B) = (C \cap A) \cup (C \cap B)$. Show its corresponding first order logic proof.

Proof.

For any
$$x$$
, $x \in C \cap (A \cup B)$ \iff $x \in C \wedge (x \in A \vee x \in B)$ \iff $(x \in C \wedge x \in A) \vee (x \in C \wedge x \in B)$ \iff $x \in (C \cap A) \cup (C \cap B)$

Qed.

- 4. Use the language of ZF to state empty set's uniqueness and prove your statement. **Note**: you are only allow to use the predicates \in and = in your statement in this task.
- 5. We define a set A to be " \in -well-ordered" if for every nonempty subset x of A, x must have a \in -least element y. In other words,

A is
$$\in$$
-well-ordered $\leftrightarrow \forall x(x \subseteq A \land \neg x = \emptyset \rightarrow \exists y(y \in x \land \forall z(z \in x \rightarrow y \in z \lor y = z)))$

Prove that:

- a) 0 is \in -well-ordered
- b) if n is \in -well-ordered, then $n \cup \{n\}$ is \in -well-ordered.
- 6. Prove that there exists at most one "smallest inductive set", i.e. if
 - Inductive(u)
 - $\forall x (\text{Inductive}(x) \to u \subseteq x)$
 - Inductive(v)
 - $\forall x (\text{Inductive}(x) \to v \subseteq x)$

then u = v.

- 7. Suppose u and v are two inductive sets. Prove that $u \cap v$ is also inductive.
- 8. Suppose u is an inductive set.
 - a) Prove that $\{x \in u \mid \forall v (v \subseteq u \land \text{Inductive}(v) \to x \in v)\}$ is also inductive.
 - b) Prove that $\{x \in u \mid \forall v (v \subseteq u \land \text{Inductive}(v) \to x \in v)\}$ is the smallest inductive subset of u.
- 9. Prove there exists at least one "smallest inductive set". **Hint**: you can use the conclusions above.

- 10. Note: in this task, you will prove the induction principle of natural numbers. Suppose X is a set such that
 - $0 \in X$,
 - for any $n \in \mathbb{N}$, $n \in X$ implies $n \cup \{n\} \in X$.

Prove that

- a) $\mathbb{N} \cap X$ is an inductive set.
- b) for any $n \in \mathbb{N}$, $n \in X$ always holds.