Exercice 1. Une puce se déplace à chaque unité de temps sur les quatre sommets, numérotés 1, 2, 3 et 4, d'un carré selon le protocole suivant :

- À l'instant 0, la puce se trouve sur le sommet 1.
- Si à l'instant n ($n \ge 0$) la puce se trouve sur le sommet 1, elle sera à l'instant n+1 sur le sommet 1 avec la probabilité $\frac{2}{3}$ et sur le sommet 3 avec la probabilité $\frac{1}{3}$.
- Si à l'instant n $(n \ge 1)$ la puce se trouve sur le sommet 2, elle sera à l'instant n+1 sur le sommet 1 avec la probabilité $\frac{1}{2}$ et sur le sommet 3 avec la probabilité $\frac{1}{2}$.
- Si à l'instant n ($n \ge 1$) la puce se trouve sur le sommet 3, elle sera à l'instant n+1 sur le sommet 2 avec la probabilité $\frac{1}{2}$ et sur le sommet 4 avec la probabilité $\frac{1}{2}$.
- Si à l'instant n ($n \ge 1$) la puce se trouve sur le sommet 4, elle sera à l'instant n+1 sur le sommet 2 avec la probabilité $\frac{1}{3}$ et sur le sommet 4 avec la probabilité $\frac{2}{3}$.

Pour tout entier naturel n, on note X_n la variable aléatoire égale au numéro du sommet occupé par la puce à l'instant n et on a donc $\mathbf{P}([X_0=1])=1$.

- **1. a)** Déterminer la loi de X_1 .
 - **b)** Calculer l'espérance et la variance de X_1 .
- **2.** Déterminer la loi de X_2 .
- **3. a)** En utilisant la formule des probabilités totales, montrer que pour tout entier n supérieur ou égal à 2, on a :

$$\mathbf{P}([X_{n+1}=1]) = \frac{2}{3}\mathbf{P}([X_n=1]) + \frac{1}{2}\mathbf{P}([X_n=2]).$$

- **b)** Exprimer de même, pour tout entier n supérieur ou égal à 2, $\mathbf{P}([X_{n+1}=2])$, $\mathbf{P}([X_{n+1}=3])$ et $\mathbf{P}([X_{n+1}=4])$ en fonction de $\mathbf{P}([X_n=1])$, $\mathbf{P}([X_n=2])$, $\mathbf{P}([X_n=3])$ et $\mathbf{P}([X_n=4])$.
 - c) Vérifier que les relations précédentes sont encore valables pour n=1 et n=0.
 - **d**) Que vaut pour tout n de \mathbb{N} , la somme : $\mathbf{P}([X_n=1]) + \mathbf{P}([X_n=2]) + \mathbf{P}([X_n=3]) + \mathbf{P}([X_n=4])$?
- **4.** On pose $U_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ et pour tout n de \mathbb{N} , on note U_n la matrice à trois lignes et une colonne définie par :

$$U_n = \begin{pmatrix} \mathbf{P}([X_n = 1]) \\ \mathbf{P}([X_n = 2]) \\ \mathbf{P}([X_n = 3]) \end{pmatrix}.$$

De plus, on pose
$$A = \frac{1}{6} \begin{pmatrix} 4 & 3 & 0 \\ -2 & -2 & 1 \\ 2 & 3 & 0 \end{pmatrix}$$
 et $B = \frac{1}{3} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

En utilisant les relations trouvées précédemment, établir pour tout n de \mathbb{N} , la relation $U_{n+1} = AU_n + B$.

- **5. a**) Déterminer une matrice L à trois lignes et une colonne vérifiant : L = AL + B.
 - **b)** Établir pour tout entier naturel n, la relation suivante : $U_n = A^n(U_0 L) + L$.
- **6.** On pose C = 6A. Soit R, D et Q les matrices d'ordre 3 définies par :

$$R = \begin{pmatrix} 1 & 1 & 3 \\ -1 & -2 & -1 \\ -1 & 2 & 1 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \text{ et } Q = \begin{pmatrix} 0 & -5 & -5 \\ -2 & -4 & 2 \\ 4 & 3 & 1 \end{pmatrix}.$$

- a) Calculer RQ. En déduire que R est inversible et donner R^{-1} , où R^{-1} désigne la matrice inverse de la matrice R.
 - **b)** Calculer CR RD.
 - c) En déduire pour tout entier naturel n, la relation suivante : $A^n = \left(\frac{1}{6}\right)^n RD^nR^{-1}$.
- 7. On admet que la limite de la matrice U_n lorsque n tend vers $+\infty$, est une matrice U dont les coefficients sont obtenus en prenant la limite des coefficients de U_n lorsque n tend vers $+\infty$. Déterminer U et préciser $\lim_{n\to+\infty} \mathbf{P}([X_n=4])$.