SEQUENCE LISTING

```
<110> Stephen Alister Locarnini, et al
       Biological compositions, components thereof and uses therefor
<120>
<130>
      43232-1
<140> US 09/831,686
<141>
<150> EP 99957236.5
<151> 1999-11-10
<150> PCT/AU99/00993
<151> 1999-11-10
<160> 16
<170> PatentIn version 3.0
<210> 1
<211> 226
<212> PRT
<213> synthetic
<220>
<221> variant
<222> (2)..(2)
\langle 223 \rangle Xaa = E or G or D
<220>
<221> variant
      (3)..(3)
<222>
\langle 223 \rangle Xaa = N or S or K
<220>
<221> variant
<222>
      (4)..(4)
\langle 223 \rangle Xaa = I or T
<220>
<221> variant
<222> (5)..(5)
\langle 223 \rangle Xaa = T or A
<220>
<221> variant
       (8)..(8)
<222>
\langle 223 \rangle Xaa = F or L
<220>
<221> variant
<222>
       (10)..(10)
\langle 223 \rangle Xaa = G or R
```

<220>

<221> variant

```
<222> (13)..(13)
\langle 223 \rangle Xaa = L or R
<220>
<221> variant
<222> (18)..(18)
\langle 223 \rangle Xaa = G or V
<220>
<221> variant
<222> (19)..(19)
\langle 223 \rangle Xaa = F or C
<220>
<221> variant
<222> (21)..(21)
<223> Xaa = L or S or W
<220>
<221> variant
<222> (24)..(24)
\langle 223 \rangle Xaa = R or K
<220>
<221> variant
<222> (25)..(25)
\langle 223 \rangle Xaa = L or R
<220>
<221> variant
<222> (26)..(26)
\langle 223 \rangle Xaa = T or K
<220>
<221> variant
<222> (30)..(30)
\langle 223 \rangle Xaa = Q or K
<220>
<221> variant
<222> (33)..(33)
\langle 223 \rangle Xaa = D or H
<220>
<221> variant
<222> (44)..(44)
<223> Xaa = G or E or A
<220>
<221> variant
<222> (45)..(45)
<223> Xaa = S or A or V or T or L
<220>
<221> variant
<222> (46)..(46)
\langle 223 \rangle Xaa = P or T
```

```
<220>
<221> variant
<222> (47)..(47)
<223> Xaa = V or R or T or K or G
<220>
<221> variant
<222> (49)..(49)
\langle 223 \rangle Xaa = L or P
<220>
<221> variant
<222> (51)..(51)
\langle 223 \rangle Xaa = Q or L or K
<220>
<221> variant
<222> (53)..(53)
\langle 223 \rangle Xaa = S or L
<220>
<221> variant
<222> (56)..(56)
\langle 223 \rangle Xaa = P or Q
<220>
<221> variant
<222> (57)..(57)
\langle 223 \rangle Xaa = T or I
<220>
<221> variant
<222> (59)..(59)
\langle 223 \rangle Xaa = N or S
<220>
<221> variant
<222> (61)..(61)
\langle 223 \rangle Xaa = S or L
<220>
<221> variant
<222> (63)..(63)
\langle 223 \rangle Xaa = T or I
<220>
<221> variant
<222> (64)..(64)
\langle 223 \rangle Xaa = S or C
<220>
<221> variant
<222> (68)..(68)
\langle 223 \rangle Xaa = I or T
<220>
```

```
<221> variant
<222> (70)..(70)
\langle 223 \rangle Xaa = P or A
<220>
<221> variant
<222> (78)..(78)
\langle 223 \rangle Xaa = R or Q
<220>
<221> variant
<222>
       (85)..(85)
\langle 223 \rangle Xaa = F or C
<220>
<221> variant
<222> (100)..(100)
\langle 223 \rangle Xaa = Y or C
<220>
<221> variant
<222> (105)..(105)
\langle 223 \rangle Xaa = P or H or S
<220>
<221> variant
.<222> (110)..(110)
\langle 223 \rangle Xaa = I or L
<220>
<221> variant
<222> (112)..(112)
<223> Xaa = G or R
<220>
<221> variant
<222> (113)..(113)
\langle 223 \rangle Xaa = S or T
<220>
<221> variant
<222> (114)..(114)
\langle 223 \rangle Xaa = T or S
<220>
<221> variant
       (118)..(118)
<222>
<223> Xaa = T or V or A
<220>
<221> variant
<222> (119)..(119)
<223> Xaa = G or E or Q
<220>
<221> variant
<222> (120)..(120)
```

```
\langle 223 \rangle Xaa = P or A or S
<220>
<221> variant <222> (122)..(122)
\langle 223 \rangle Xaa = K or R
<220>
<221> variant
<222> (125)..(125)
\langle 223 \rangle Xaa = T or M
<220>
<221> variant
<222> (126)..(126)
<223> Xaa = T or I or S or A
<220>
<221> variant
<222> (127)..(127)
<223> Xaa = P or T or A or I or L
<220>
<221> variant
       (128)..(128)
<222>
\langle 223 \rangle Xaa = A or V
<220>
<221> variant
<222> (131)..(131)
<223> Xaa = N or T
<220>
<221> variant
<222> (133)..(133)
<223> Xaa = M or K or L
<220>
<221> variant
<222>
       (134)..(134)
\langle 223 \rangle Xaa = F or Y or I
<220>
<221> variant
<222> (136)..(136)
\langle 223 \rangle Xaa = S or Y
<220>
<221> variant
<222> (137)..(137)
\langle 223 \rangle Xaa = C or S
<220>
<221> variant
<222> (140)..(140)
\langle 223 \rangle Xaa = T or I or S
```

```
<220>
<221> variant
       (143)..(143)
<222>
\langle 223 \rangle Xaa = T or S
<220>
<221> variant
<222> (144)..(144)
\langle 223 \rangle Xaa = D or A
<220>
<221> variant
<222> (155)..(155)
\langle 223 \rangle Xaa = S or T
<220>
<221> variant
       (158)..(158)
<222>
\langle 223 \rangle Xaa = F or L
<220>
<221> variant
<222> (159)..(159)
<223> Xaa = A or G or V
<220>
<221> variant
<222> (160)..(160)
\langle 223 \rangle Xaa = K or R or T
<220>
<221> variant
<222>
       (161)..(161)
\langle 223 \rangle Xaa = Y or F
<220>
<221> variant
<222>
       (165)..(165)
<223> Xaa = W or G
<220>
<221> variant
<222> (166)..(166)
\langle 223 \rangle Xaa = A or G
<220>
<221> variant
<222>
       (168)..(168)
\langle 223 \rangle Xaa = V or A
<220>
<221> variant
<222>
       (170)..(170)
\langle 223 \rangle Xaa = F or L
<220>
<221> variant
```

```
<222> (174)..(174)
\langle 223 \rangle Xaa = S or N
<220>
<221> variant
<222> (177)..(177)
\langle 223 \rangle Xaa = V or A
<220>
<221> variant
<222> (178)..(178)
\langle 223 \rangle Xaa = P or Q
<220>
<221> variant
<222> (182)..(182)
<223> Xaa = W or C or S
<220>
<221> variant
<222> (183)..(183)
\langle 223 \rangle Xaa = F or C
<220>
<221> variant
<222> (184)..(184)
\langle 223 \rangle Xaa = V or D or A
<220>
<221> variant
<222> (185)..(185)
\langle 223 \rangle Xaa = G or E
<220>
<221> variant
<222> (187)..(187)
\langle 223 \rangle Xaa = S or F
<220>
<221> variant
<222>
       (189)..(189)
\langle 223 \rangle Xaa = T or I
<220>
<221> variant
<222> (192)..(192)
\langle 223 \rangle Xaa = L or P
<220>
<221> variant
<222> (193)..(193)
\langle 223 \rangle Xaa = S or L
<220>
<221> variant
<222> (194)..(194)
```

 $\langle 223 \rangle$ Xaa = A or V

```
<220>
<221> variant
<222> (197)..(197)
\langle 223 \rangle Xaa = M or I
<220>
<221> variant
<222>
       (198)..(198)
<223> Xaa = M or I
<220>
<221> variant
<222> (200)..(200)
<223> Xaa = Y or' F '
<220>
<221> variant
<222>
       (202)..(202)
\langle 223 \rangle Xaa = G or E
<220>
<221> variant
<222> (204)..(204)
\langle 223 \rangle Xaa = S or N or K
<220>
<221> variant
<222> (205)..(205)
\langle 223 \rangle Xaa = L or Q
<220>
<221> variant
<222>
       (206)..(206)
<223> Xaa = Y or F or H or C
<220>
<221> variant
<222> (207)..(207)
\langle 223 \rangle Xaa = S or G or N or D or T
<220>
<221> variant
<222> (209)..(209)
\langle 223 \rangle Xaa = V or L
<220>
<221> variant
<222> (210)..(210)
\langle 223 \rangle Xaa = S or N
<220>
<221> variant
<222>
       (213)..(213)
<223> Xaa = I or M or L
<220>
```

```
<221> variant
<222> (220)..(220)
\langle 223 \rangle Xaa = F or C
<220>
<221>
      variant
<222>
      (221)..(221)
\langle 223 \rangle Xaa = C or Y
<220>
<221>
      variant
<222>
      (223)..(223)
\langle 223 \rangle Xaa = W or R
<220>
<221> variant
<222>
      (224)..(224)
\langle 223 \rangle Xaa = V or A
<220>
<221> variant
<222> (225)..(225)
\langle 223 \rangle Xaa = Y or I or S
<400> 1
Met Xaa Xaa Xaa Ser Gly Xaa Leu Xaa Pro Leu Xaa Val Leu Gln
                                     10
Ala Xaa Xaa Phe Xaa Leu Thr Xaa Ile Xaa Xaa Ile Pro Xaa Ser Leu
                                25
Xaa Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Xaa Xaa Xaa Cys
                            40
                                                  4.5
Xaa Gly Xaa Asn Xaa Gln Ser Xaa Xaa Ser Xaa His Xaa Pro Xaa Xaa
Cys Pro Pro Xaa Cys Xaa Gly Tyr Arg Trp Met Cys Leu Xaa Arg Phe
                    70
                                         75
Ile Ile Phe Leu Xaa Ile Leu Leu Cys Leu Ile Phe Leu Leu Val
Leu Leu Asp Xaa Gln Gly Met Leu Xaa Val Cys Pro Leu Xaa Pro Xaa
            100
Xaa Xaa Thr Thr Ser Xaa Xaa Cys Xaa Thr Cys Xaa Xaa Xaa Xaa
                             120
                                                 125
Gln Gly Xaa Ser Xaa Xaa Pro Xaa Xaa Cys Cys Xaa Lys Pro Xaa Xaa
                        135
                                             140
Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Xaa Trp Ala Xaa Xaa
                    150
                                         155
Xaa Leu Trp Glu Xaa Xaa Ser Xaa Arg Xaa Ser Trp Leu Xaa Leu Leu
                                    170
                165
Xaa Xaa Phe Val Gln Xaa Xaa Xaa Leu Xaa Pro Xaa Val Trp Xaa
            180
                                 185
Xaa Xaa Ile Trp Xaa Xaa Trp Xaa Trp Xaa Pro Xaa Xaa Xaa Ile
                            200
Xaa Xaa Pro Phe Xaa Pro Leu Leu Pro Ile Phe Xaa Xaa Leu Xaa Xaa
    210
                        215
                                             220
Xaa Ile
225
<210> 2
```

-9-

```
<211> 181
<212> PRT
<213> synthetic
<220>
<221> variant
<222> (2)..(2)
<223> Z = N or D
<220>
<221> variant
<222> (17)..(17)
\langle 223 \rangle Z = I or P
<220>
<221> variant
<222> (29)..(29)
\langle 223 \rangle Z = I or V
<220>
<221> variant
<222> (35)..(35)
\langle 223 \rangle Z = S or D
<220>
<221> variant
<222> (44)..(44)
\langle 223 \rangle Z = T or N
<220>
<221> variant
       (46)..(46)
<222>
<223> Z = R or N
<220>
<221> variant
<222> (47)..(47)
\langle 223 \rangle Z = N or I
<220>
<221> variant
<222>
       (48)..(48)
<223> Xaa = any amino acid
<220>
<221> variant
      (50)..(50)
<222>
\langle 223 \rangle Z = N or Y or H
<220>
<221> variant
<222> (52)..(52)
\langle 223 \rangle Z = H or Y
<220>
<221> variant
<222> (53)..(53)
```

```
\langle 223 \rangle Z = G or R
<220>
<221> variant
<222>
       (54)..(56)
<223> Xaa = any amino acid
<220>
<221> variant
<222> (57)..(57)
\langle 223 \rangle Z = D or N
<220>
<221> variant
<222> (60)..(60)
\langle 223 \rangle Z = D or N
<220>
<221> variant
<222> (61)..(61)
\langle 223 \rangle Z = S or Y
<220>
<221> variant
<222>
       (65)..(65)
\langle 223 \rangle Z = N or Q
<220>
<221> variant
<222> (71)..(71)
\langle 223 \rangle Z = L or M
<220>
<221> variant
<222> (75)..(75)
<223> Z = K or Q
<220>
<221> variant
<222>
       (77)..(77)
\langle 223 \rangle Z = Y or F
<220>
<221> variant
<222> (79)..(79)
\langle 223 \rangle Z = R or W
<220>
<221> variant
<222> (84)..(84)
\langle 223 \rangle Z = Y or L
<220>
<221> variant
<222> (85)..(85)
<223> Z = S or A
```

```
<220>
<221> variant
<222>
      (89)..(89)
<223> Z = I or V
<220>
<221> variant
<222> (95)..(95)
<223> Z = I or L
<220>
<221> variant
<222> (99)..(99)
<223> Z = V \text{ or } G
<220>
<221> variant
<222> (114)..(114)
\langle 223 \rangle Z = C or L
<220>
<221> variant
<222> (115)..(115)
<223> Z = A or S
<220>
<221> variant
<222> (116)..(116)
<223> Z = V \text{ or } M
<220>
<221> variant
<222> (117)..(117)
\langle 223 \rangle Z = V or T
<220>
<221> variant
<222> (118)..(118)
<223> Z = R or C
<220>
<221> variant
<222> (122)..(122)
\langle 223 \rangle Z = F or P
<220>
<221> variant
<222> (125)..(125)
<223> Z = L or V
<220>
<221> variant
<222>
       (126)..(126)
\langle 223 \rangle Z = A or V
<220>
```

<221> variant

```
<222> (128)..(128)
<223> Z = S or A
<220>
<221> variant
<222> (130)..(130)
\langle 223 \rangle M = amino acid 550
<220>
<221> variant
<222> (133)..(133)
\langle 223 \rangle Z = V or L or M
<220>
<221> variant
<222> (138)..(138)
\langle 223 \rangle Z = K or R
<220>
<221> variant
<222> (139)..(139)
\langle 223 \rangle Z = S or T
<220>
<221> variant
<222> (140)..(140)
<223> Z = V \text{ or } G
<220>
<221> variant
<222> (141)..(141)
\langle 223 \rangle Z = Q or E
<220>
<221> variant
<222> (143)..(143)
\langle 223 \rangle Z = L or S or R
<220>
<221> variant
<222> (145)..(145)
\langle 223 \rangle Z = S or F
<220>
<221> variant
<222> (147)..(147)
\langle 223 \rangle Z = F or Y
<220>
<221> variant
<222> (148)..(148)
\langle 223 \rangle Z = T or A
<220>
<221> variant
<222> (149)..(149)
```

<223> Z = V or I

```
<220>
<221> variant
<222>
      (151)..(151)
<223> Z = T or C
<220>
<221> variant
<222> (152)..(152)
<223> Z = N or S
<220>
<221> variant
<222> (153)..(153)
<223> Z = F or V
<220>
<221> variant
<222> (156)..(156)
<223> Z = S \text{ or } D
<220>
<221> variant
<222>
      (157)..(157)
<223> Z = L or V
<220>
<221> variant
<222> (164)..(164)
<223> Z = N or Q
<220>
<221> variant
<222> (179)..(179)
<223> Z = V \text{ or } I
<400> 2
Ser Glx Leu Ser Trp Leu Ser Leu Asp Val Ser Ala Ala Phe Tyr His
                5
                                    10
                                                        15
Glx Pro Leu His Pro Ala Ala Met Pro His Leu Leu Glx Gly Ser Ser
                                25
Gly Leu Glx Arg Tyr Val Ala Arg Leu Ser Ser Glx Ser Glx Kaa
                            40
Asn Glx Gln Glx Glx Xaa Xaa Xaa Glx Leu His Glx Glx Cys Ser Arg
                        55
                                            60
Glx Leu Tyr Val Ser Leu Glx Leu Leu Tyr Glx Thr Glx Gly Glx Lys
                   70
                                        75
Leu His Leu Glx Glx His Pro Ile Glx Leu Gly Phe Arg Lys Glx Pro
               85
                                    90
Met Gly Glx Gly Leu Ser Pro Phe Leu Leu Ala Gln Phe Thr Ser Ala
           100
                                105
Ile Glx Glx Glx Glx Arg Ala Phe Glx His Cys Glx Glx Phe Glx
                            120
Tyr Met Asp Asp Glx Val Leu Gly Ala Glx Glx Glx His Glx Glu
                       135
                                            140
Glx Leu Glx Glx Glx Glx Glx Glx Leu Leu Glx Glx Gly Ile His
                    150
```


Leu Asn Pro Glx Lys Thr Lys Arg Trp Gly Tyr Ser Leu Asn Phe Met 165 170 Gly Tyr Glx Ile Gly 180 <210> 3 <211> 261 <212> DNA <213> synthetic <220> <221> variant <222> (3)..(3) <223> N = A or C <220> <221> variant <222> (10)..(10) $\langle 223 \rangle$ N = T or A <220> <221> variant <222> (11)..(11) <223> N = C or T <220> <221> variant <222> (15)..(15) $\langle 223 \rangle$ N = C or T <220> <221> variant <222> (21)..(21) $\langle 223 \rangle$ N = C or T <220> <221> variant <222> (27)..(27) $\langle 223 \rangle$ N = C or T <220> <221> variant <222> (45)..(45) <223> N = A or G <220> <221> variant <222> (48)..(48) $\langle 223 \rangle$ N = T or C <220> <221> variant <222> (59)..(59)<223> N = C or G <220>

<221> variant

<222> (62)..(62) $\langle 223 \rangle$ N = G or A <220> <221> variant <222> (65)..(65) $\langle 223 \rangle$ N = T or A <220> <221> variant <222> (76)..(76) $\langle 223 \rangle$ N = T or G <220> <221> variant <222> (86)..(86) $\langle 223 \rangle$ N = T or C <220> <221> variant <222> (96)..(96) $\langle 223 \rangle$ N = C or T <220> <221> variant <222> (134)..(134) $\langle 223 \rangle$ N = T or C <220> <221> variant <222> (153)..(153) <223> N = T or C <220> <221> variant <222> (164)..(164) $\langle 223 \rangle$ N = T or C <220> <221> variant <222> (182)..(182) $\langle 223 \rangle$ N = A or T <220> <221> variant <222> (203)..(203) <223> N = A or G <220> <221> variant <222> (208)..(208) $\langle 223 \rangle$ N = T or G <220> <221> variant

 $\langle 222 \rangle$ (220)..(220) $\langle 223 \rangle$ N = A or T

```
<220>
<221>
       variant
<222>
       (222)..(222)
<223>
       N = A \text{ or } G
<220>
<221>
       variant
<222>
       (225)..(225)
\langle 223 \rangle N = T or G
<220>
<221> variant
<222>
       (228)..(228)
<223> N = A or G
<220>
<221>
       variant
<222>
       (243)..(243)
<223> N = T or C
<220>
<221>
       variant
<222>
       (249)..(249)
<223>
       N = T \text{ or } C
<220>
<221> variant
<222>
      (254)..(254)
\langle 223 \rangle N = T or C
<400> 3
acnaaacctn ngganggaaa ntgcacntgt attcccatcc catcntcntg ggctttcgna
                                                                           60
anatnectat gggagnggge eteagneegt ttetentgge teagtttaet agtgeeattt
                                                                       . 120
gttcagtggt tcgnagggct ttcccccact gtntggcttt cagntatatg gatgatgtgg
                                                                          180
tnttgggggc caagtctgta cancatentg agtccetttn tncenetntt accaatttte
                                                                          240
                                                                          261
ttntgtctnt gggnatacat t
<210> 4
<211> 230
<212> PRT
<213> consensus
<220>
<221> misc
<222>
       (2)..(2)
<223>
       Xaa = N
<220>
<221> misc
       (49)..(49)
<222>
<223> Xaa = N
<220>
<221> misc
<222>
       (52)..(52)
<223> Xaa = N
```

```
<220>
<221>
      misc
<222>
      (53)..(53)
<223> Xaa = N
<220>
<221> misc
<222>
      (55)..(56)
<223> Xaa = N
<220>
<221> misc
<222>
      (65)..(65)
<223> Xaa = N
<220>
<221>
      misc
<222>
      (69)..(69)
<223> Xaa = N
<220>
<221> misc
<222>
      (75)..(75)
<223> Xaa = N
<220>
<221> misc
      (195)..(195)
<222>
<223> Xaa = N
<220>
<221> misc
<222>
      (209)..(209)
<223> Xaa = N
<220>
<221> misc
<222>
      (211)..(211)
<223> Xaa = N
<220>
<221> misc
<222>
      (222)..(222)
<223> Xaa = N
<400> 4
Ser Xaa Asp Leu Ser Trp Leu Ser Leu Asp Val Ser Ala Ala Phe Tyr
                                    10
His Ile Pro Pro Leu His Pro Ala Ala Met Pro His Leu Leu Ile Val
            20
Gly Ser Ser Gly Leu Ser Asp Arg Tyr Val Ala Arg Leu Ser Ser Thr
Xaa Ser Arg Xaa Xaa Ile Xaa Xaa Tyr His Gln His Tyr Gly Arg Asp
                        55
                                            60
Xaa Leu His Asp Xaa Ser Tyr Cys Ser Arg Xaa Gln Leu Tyr Val Ser
```


Leu Leu	Met Leu	Leu T	yr Lys	Gln	Thr	Tyr 90	Phe	Gly	Arg	Trp	Lys 95	Leu	
His Leu	Tyr Leu 100	Ser A	la His	Pro	Ile 105	Ile	Val	Leu	Gly	Phe 110		Lys	
Ile Leu	Pro Met 115	Gly V	al Gly	Gly 120	Leu	Ser	Pro	Phe	Leu 125	Leu	Ala	Gln	
Phe Thr 130	Ser Ala	Ile C	ys Leu 135	Ala	Ser	Val	Met	Val 140	Thr	Arg	Cys	Arg	
Ala Phe 145	Phe Pro		ys Leu 50	Val	Ala	Val	Phe 155	Ser	Ala	Tyr	Met	Asp 160	
Asp Val	Leu Met	Val L 165	eu Gly	Ala	Lys	Arg 170	Ser	Thr	Val	Gly	Gln 175	Glu	
His Leu	Ser Arg 180	Glu S	er Phe	Leu	Phe 185	Tyr	Thr	Ala	Ala	Ser 190		Ile	
Thr Cys		Phe V	al Leu	Leu 200	Ser	Asp	Leu	Val	Gly 205	Ile	His	Leu	
Xaa Pro 210		Lys T	hr Lys 215	Arg	Trp	Gly	Tyr	Ser 220	Leu	Xaa	Phe	Met	
Gly Tyr 225	Val Ile		ly 30										
<212> D <213> H <400> 5 atcctgct gtttgtcc attcctgc aactgcac gcctcagt ctttcccc tacaacat atttga <210> 6 <211> 4 <212> D <213> H <400> 6	26 NA BV gc tatg tc tact tc aagg tt gtat cc ctgt ct tgag 25 NA BV	tccaag aacctc tcccat ctcctg ttggct tccctt	aacato tatgtt cccato gctcag ttcagt tttaco	caact ttccc catct gttta ctata	acc tot tgo cta tgo tta	cagca tctt ggctt agtgo gatga accaa	acgg gct ctcg ccat atgt attt	gace gtac caac ttgt ggta tctt	catgo caaaa gatto ctcao attgo cttgt	caa acc cct gtg ggg cct	gacet ttege atgge gttee gceaa ttgge	gcacg gacgga gagtgg gtaggg agtctg gtatac	180 240 300 360 420 426
atcctgct gtttgtcc actcctgc aactgcac gcctcagt ctttcccc tacaacat attta <210> 7	tc taat tc aagg ct gtat cc gttt ca ctgt	tccagg aacctc tcccat ctcttg ctggct	atcato tatgtt cccato gctcao ttcagt	caaco tccc catct gttta tata	acc tca tgg cta tgg	cagca atgtt ggctt agtgo gatga	cag gct tcg cat	gaco gtac caaa ttgt ggtt	catgo caaaa aatao ctcag cttgo	caa icc ict jtg	aacct tacgo atggo gttco gccaa	gcacg gacgga gagtgg gtaggg agtctg	60 120 180 240 300 360 420 425

gtttgtcctc attcctgctc aactgcactt gcctcagtcc ctttcccca	tacttccagg aaggaacctc gtattcccat gtttctcctg ctgtttggct	cttcttgttg aacatcaact tatgtttccc cccatcatcc gctcagttta ttcagttata tttacctcta	accagcacgg tcttgttggt tgggctttcg ctagtgccat tggatgatgt	gaccatgcaa gtacaaaacc caagattcct ttgttcagtg ggtattgggg	gacctgcacg ttcggacgga atgggagtgg gttcgcaggg gccaagtctg	60 120 180 240 300 360 420 426
<210> 8 <211> 426 <212> DNA <213> HBV						
gtttgtcctc actcctgctc aattgcacct gcctcagccc ctttcccca	taattccagg aaggaacctc gtattcccat gtttctcctg ctgtttggct	cttcttgttg atcttcaact tatgtatccc cccatcatcc gctcagttta ttcagttata tttaccgctg	accagcacgg tcctgttgct tgggctttcg ctagtgccat tggatgatgt	gaccatgcag gtaccaaacc gaaaattcct ttgttcagtg ggtattgggg	aacctgcacg ttcggacgga atgggagtgg gttcgtaggg gccaagtctg	60 120 180 240 300 360 420 426
<210> 9 <211> 426 <212> DNA <213> HBV						
gtttgtcctc actcctgctc aattgcacct gcctcagccc ctttccccca tacagcatct atttaa <210> 10	taattccagg aaggaacctc gtattcccat gtttctcctg ctgtttggct	cttcttgttg atcttcaaca tatgtatccc cccatcatct gctcagttta ttcagttata tttaccgctg	accagcacgg tcctgttgct tgggctttcg ctagtgccat tggatgatgt	gaccatgcag gtaccaaacc gaaaattcct ttgttcagtg ggtattgggg	aacctgcacg ttcggacgga atgggagtgg gttcgtaggg gccaagtctg	60 120 180 240 300 360 420 426
<211> 426 <212> DNA <213> HBV						
gtttgtcctc actcctgctc aattgcacct gcctcagccc ctttcccca	taattccagg aaggaacctc gtattcccat gtttctcctg ctgtttggct	cttcttgttg atcctcaacc tatgtatccc cccatcatcc gctcagttta ttcagttata tttaccgctg	accagcacgg tcctgttgct tgggctttcg ctagtgccat tggatgatgt	gaccatgccg gtaccaaacc gaaaattcct ttgttcagtg ggtattgggg	aacctgcacg ttcggacgga atgggagtgg gttcgtaggg gccaagtctg	60 120 180 240 300 360 420 426
<211> 426 <212> DNA						

<213> HBV						
gtttgtcctc actcctgctc aattgcacct gcctcagtcc ctttcccca	taattccagg aaggcaactc gtattcccat gtttctcttg ctgtttggct	atcaacaaca tatgtttccc cccatcgtcc gctcagttta ttcagctata	accagtacgg tcatgttgct tgggctttcg ctagtgccat tggatgatgt	attatcaagg gaccatgcaa gtacaaaacc caaaatacct ttgttcagtg ggtattgggg tcttttgtct	aacctgcacg tacggatgga atgggagtgg gttcgtaggg gccaagtctg	60 120 180 240 300 360 420 426
<210> 12 <211> 426 <212> DNA <213> HBV						
gtttgtcctc attcctgctc aactgcactt gcctcagtcc ctttccccca	tacttccagg aaggaacctc gtattcccat gtttctcctg ctgtttggct	aacatcaacc tatgtttccc cccatcatcc gctcagttta ttcagttata	accagcacgg tcttgttgct tgggctttcg ctagtgccat tggatgatgt	actaccaagg gaccatgcaa gtacaaaacc caagattcct ttgttcagtg ggtattgggg tcttttgtct	gacctgcacg ttcggacgga atgggaggg gttcgtaggg gccaagtctg	60 120 180 240 300 360 420 426
<210> 13 <211> 426 <212> DNA <213> HBV						
gtttgtcctc attcctgctc aactgcactt gcctcagtcc ctttccccca	tacttccagg aaggaacctc gtattcccat gtttctcctg ctgtttggct	aacatcaact tatgtttccc cccatcatcc gctcagttta ttcagttata	accagcacgg tcttgttgct tgggctttcg ctagtgccat tggatgatgt	actaccaagg gaccatgcaa gtacaaaacc caagattcct ttgttcagtg ggtattgggg tcttttgtct	gacctgcacg ttcggacgga atgggagggg gttcgtaggg gccaagtctg	60 120 180 240 300 360 420 426
<210> 14 <211> 426 <212> DNA <213> HBV						
gtttgtcctc actactgctc aattgcacct gcctcagccc ctttccccca	taattccagg aaggaacctc gtattcccat gtttctcctg ctgtttggct	atcctcaaca tatgtatccc cccatcatcc gctcagttta ttcagttata	accagcacgg tcctgttgct tgggctttcg ctagtgccat tggatgatgt	actatcaagg gaccatgccg gtaccaaacc gaaaattcct ttgttcagtg ggtattgggg tctttttgtct	gacctgcatg ttcggacgga atgggagtgg gttcgtaggg gccaagtctg	60 120 180 240 300 360 420 426

<210> <211> <212> <213>	15 426 DNA HBV						
gtttgte actccte aattgce gcctcae ctttcce	cctc gctc acct gccc ccca	taattccagg aaggcaactc gtattcccat gtttctcctg ctgtttggct	cttcttgttg atcttcaacc tatgtatccc cccatcatct gctcagttta ttcagttata tttaccgctg	accagcacgg tcctgttgct tgggctttcg ctagtgccat tggatgatgt	gaccatgcag gtaccaaacc gaaaattcct ttgttcagtg ggtattgggg	gacctgcacg ttcggacgga atgggagtgg gttcgtaggg gccaagtctg	60 120 180 240 300 360 420 426
<210> <211> <212> <213>	16 426 DNA HBV						
gtttgte actccte aactgce gcctcae ctttcce	cctc gctc acct gtcc ccca	taattccagg aaggaacctc gtattcccat gtttctcttg ctgtctggct	cttcttgttg atcatcaacc tatgtttccc cccatcatct gctcagttta ttcagttata tatgccgctg	accagcacgg tcatgttgct tgggctttcg ctagtgccat tggatgatgt	gaccatgcaa gtacaaaacc caaaatacct ttgttcagtg ggtattgggg	gacctgcaca tatggatgga atgggagtgg gttcgtaggg gccaagtctg	60 120 180 240 300 360 420 426