P8131 hw2

Apoorva Srinivasan 2/19/2019

```
library(broom)
library(tidyverse)
## -- Attaching packages -----
                                               ----- tidyverse 1.2.1 --
## v ggplot2 3.0.0
                      v purrr
                               0.2.5
## v tibble 1.4.2
                               0.7.8
                      v dplyr
## v tidyr
            0.8.1
                     v stringr 1.3.1
## v readr
            1.1.1
                      v forcats 0.3.0
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
Problem 1
dose = c(0,1,2,3,4)
number = c(30,30,30,30,30)
dead = c(2,8,15,23,27)
data = data.frame(dose, number, dead)
plot(data$dose,data$dead/data$number,xlab='Dose',ylab='Proportion Dead',cex=1.5,pch=19,cex.lab=1.6,cex.
Proportion Dead
     9.0
                                            2
                                                            3
                            1
                                                                            4
                                         Dose
x=data$dose
```

y=data\$dead m = data\$number

response = cbind(y,m-y)

```
glm_logit=glm(response~x, family=binomial(link='logit'))
summary(glm_logit) # wald test of coefficients
##
## Call:
## glm(formula = response ~ x, family = binomial(link = "logit"))
##
## Deviance Residuals:
                 2
        1
## -0.4510 0.3597 0.0000 0.0643 -0.2045
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -2.3238
                           0.4179 -5.561 2.69e-08 ***
## x
                           0.1814 6.405 1.51e-10 ***
                1.1619
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 64.76327 on 4 degrees of freedom
## Residual deviance: 0.37875 on 3 degrees of freedom
## AIC: 20.854
## Number of Fisher Scoring iterations: 4
glm_probit=glm(response~x, family=binomial(link='probit'))
summary(glm_probit)
##
## Call:
## glm(formula = response ~ x, family = binomial(link = "probit"))
## Deviance Residuals:
                             3
## -0.35863
            0.27493
                       0.01893
                               0.18230 -0.27545
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.37709
                          0.22781 -6.045 1.49e-09 ***
## x
               0.68638
                          0.09677 7.093 1.31e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 64.76327 on 4 degrees of freedom
## Residual deviance: 0.31367 on 3 degrees of freedom
## AIC: 20.789
##
## Number of Fisher Scoring iterations: 4
glm_cloglog = glm(response~x, family=binomial(link='cloglog'))
summary(glm_cloglog)
```

```
##
## Call:
## glm(formula = response ~ x, family = binomial(link = "cloglog"))
## Deviance Residuals:
##
        1
## -1.0831
           0.2132 0.4985 0.5588 -0.6716
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -1.9942
                           0.3126 -6.378 1.79e-10 ***
                 0.7468
                            0.1094 6.824 8.86e-12 ***
## x
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 64.7633 on 4 degrees of freedom
## Residual deviance: 2.2305 on 3 degrees of freedom
## AIC: 22.706
##
## Number of Fisher Scoring iterations: 5
deviance =sum(residuals(glm_logit,type='deviance')^2)
vcov(glm_logit)
##
               (Intercept)
## (Intercept) 0.17463024 -0.06582336
## x
               -0.06582336 0.03291168
beta =glm_logit$coefficients[2]
se=sqrt(vcov(glm_logit)[2,2])
CI = beta+c(qnorm(0.025),-qnorm(0.025))*se
pi_hat = predict(glm_logit, data.frame(x=0.01), se.fit=TRUE, type = 'response')
p_hat = pi_hat[[1]]
glm_table <- function(fit){</pre>
  beta = fit %>%
    broom::tidy() %>%
    filter(term == 'x') %>%
    pull(estimate)
  deviance = deviance(fit)
  se = fit %>%
    broom::tidy() %>%
    pull(std.error) %>% .[2]
  CI_high = beta - se * qnorm(0.025)
CI low = beta + se * qnorm(0.025)
 pi_hat = predict(fit, data.frame(x = 0.01), se.fit = TRUE, type = 'response')
```

```
p_hat = pi_hat[[1]]

tibble(beta, CI_low, CI_high, deviance, p_hat)
}

bind_rows(
    glm_table(glm_logit),
    glm_table(glm_probit),
    glm_table(glm_cloglog)
    ) %>%

mutate(model = c('logit', 'probit', 'c-loglog')) %>%
select(model, everything()) %>%
knitr::kable(digits = 4)
```

model	beta	CI_low	CI_high	deviance	p_hat
logit	1.1619	0.8063	1.5175	0.3787	$0.0901 \\ 0.0853 \\ 0.1282$
probit	0.6864	0.4967	0.8760	0.3137	
c-loglog	0.7468	0.5323	0.9613	2.2305	

Comments: We observe three different estimates for the 3 models with different link functions. Probit and logit have lower comparable deviances while cloglog has a much higher deviance indicating a poorer fit.

ii) Estimate LD50 with 90% CI based on the THREE models.

```
ld50_ci = function(fit, alpha=0.1){
  beta0 = fit$coefficients[1]
  beta1 = fit$coefficients[2]
  betacov = vcov(fit)
  x0fit = -beta0/beta1
  varx0 = betacov[1,1]/(beta1^2) + betacov[2,2]*(beta0^2)/(beta1^4) - 2*betacov[1,2]*beta0/(beta1^3)
  tibble(estiamte = exp(x0fit),
      CI_low = exp(x0fit + qnorm(alpha/2) * sqrt(varx0)),
     CI_high = exp(x0fit - qnorm(alpha/2) * sqrt(varx0))
}
probit =
  ld50_ci(glm_probit) %>% mutate(model = 'probit') %>%
  select(model, everything())
probit
## # A tibble: 1 x 4
    model estiamte CI_low CI_high
               <dbl> <dbl>
##
    <chr>
                             <dbl>
## 1 probit
                7.44
                       5.58
                               9.90
logit =
  ld50_ci(glm_logit) %>% mutate(model = 'logit') %>%
  select(model, everything())
logit
```

```
## # A tibble: 1 x 4
##
             model estiamte CI_low CI_high
                                        <dbl> <dbl>
            <chr>
## 1 logit
                                          7.39
                                                               5.51
                                                                                      9.91
# c-log-log model
log(-log(0.5))
## [1] -0.3665129
alpha = 0.1
fit = glm_cloglog
beta0 = fit$coefficients[1]
beta1 = fit$coefficients[2]
betacov = vcov(fit)
x0fit = (-beta0 + log(-log(0.5))) / beta1
varx0 = betacov[1,1]/(beta1^2) + betacov[2,2]*((-log(-log(0.5))+beta0)^2)/(beta1^4) - 2*betacov[1,2]*(-log(-log(0.5))+beta0)^2)/(beta1^4) - 2*betacov[1,2]*(-log(0.5))+beta0)^2)/(beta1^4) - 2*betacov[1,2]*(-log(0.5))+beta0)^2
cloglog =
     tibble(estiamte = exp(x0fit),
                 CI_low = exp(x0fit + qnorm(alpha/2) * sqrt(varx0)),
                 CI_high = exp(x0fit - qnorm(alpha/2) * sqrt(varx0))
                 ) %>%
     mutate(model = 'cloglog') %>% select(model, everything())
cloglog
## # A tibble: 1 x 4
              model
                                     estiamte CI_low CI_high
##
##
              <chr>>
                                              <dbl> <dbl>
                                                                                        <dbl>
                                                 8.84
                                                                                            12.0
## 1 cloglog
                                                                     6.53
rbind(logit, probit, cloglog) %>%
knitr::kable()
```

model	estiamte	CI_low	CI_high
logit	7.389056	5.509632	9.909583
probit	7.435830	5.582588	9.904289
cloglog	8.841249	6.526261	11.977407

Problem 2

```
amount = c(10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, 55000, 60000, 65000,70000, 75
offers = c(4,6,10,12, 39, 36, 22, 14, 10, 12, 8,9, 3, 1, 5, 2, 1)
enrolls = c(0,2,4,2, 12, 14, 10, 7, 5, 5, 3, 5, 2, 0,4,2,1)
mph_data = data.frame(amount, offers, enrolls)

plot( mph_data$amount,mph_data$enrolls/mph_data$offers, xlab='amount',ylab='proportion enrolled',cex=1.
```



```
## [1] 0.7795345
```

dev = deviance(fit_glm)

AIC: 51.078

##

##

i) Since p value is much greater than 0.05, we conclude that it fits the data well

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 21.617 on 16 degrees of freedom

Residual deviance: 10.613 on 15 degrees of freedom

Number of Fisher Scoring iterations: 4

pval = 1 - pchisq(dev, 15); pval

```
beta1 = fit_glm %>% broom::tidy() %>% filter(term == 'amount') %>% pull(estimate)
beta0 = fit_glm %>% broom::tidy() %>% filter(term == '(Intercept)') %>% pull(estimate)
std_error = fit_glm %>% broom::tidy() %>% filter(term == 'amount') %>% pull(std.error)
std_error1 = fit_glm %>% vcov %>% .[2,2] %>% sqrt
std_error == std_error1
## [1] TRUE
# 95% CI for beta_1
beta1_result =
  tibble(term = 'beta1',
         estimate = beta1,
         CI_{low} = beta1 - std_{error1} * qnorm(1-0.05/2),
        CI_high = beta1 + std_error1 * qnorm(1-0.05/2)
# 95% CI for beta 0
std_error0 = fit_glm %>% broom::tidy() %>% filter(term == '(Intercept)') %>% pull(std.error)
beta0 result =
  tibble(term = 'beta0',
        estimate = beta0,
        CI_{low} = beta0 - std_error0 * qnorm(1-0.05/2),
        CI_high = beta0 + std_error0 * qnorm(1-0.05/2)
rbind(beta0_result, beta1_result) %>% knitr::kable()
```

term	estimate	CI_low	CI_high
beta0	-1.647638	-2.473645	-0.8216318
beta1	0.000031	0.000012	0.0000499

ii) The estimated beta_1 is 0.031, and the predictor (Amount) was fitted on the scale of thousand dollars. Therefore, the log odds of enrollment would increase by 0.031 with 1,000 dollars' increase in the scholarship.

estimate	CIL	CIR
40134.29	30583.04	49685.53

iii)	From th	e results	above, w	re can see	that we sh	nould provi	ide \$40,134	for 40% yie	ld rate	