МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н. Э. БАУМАНА

Факультет информатики и систем управления Кафедра теоретической информатики и компьютерных технологий

Лабораторная работа №1 по курсу «Структуры и алгоритмы обработки больших данных» «Исследование изображения с помощью свертки и Фурье-анализа с использованием MATLAB»

Выполнил: студент группы ИУ9-21М Беляев А. В.

Проверила: Магазов С. С.

1 Цель работы

Научиться исследовать изображения с помощью операции свертки и Фурье анализа с использованием MatLab.

2 Ход работы. Вариант 3

2.1 Вычислить свертку на интервале [-30, 30], построить график, вычислить максимум

$$g(x) = \frac{1}{\pi(1+x^2)} f(x)$$
$$f(x) = \begin{cases} exp(-x^2) & x \in [-1,1]\\ 0 & else \end{cases}$$

Листинг 1: Вычисление свертки функций

```
clear all; % clear workspace
 2
   x = -30:0.1:30;
3
  N = length(x);
4
5
   for i = 1:N
6
        f(i) = func(x(i));
        g(i) = 1 / (pi*(1 + x(i)^2));
9
   end
10
   w = conv(f, g, 'same');
11
   fprintf('max: \%f', max(w));
12
13
14
  % draw F, G
15
   figure (1)
16
   plot(x, g);
   x \lim ([-10 \ 10]);
17
                % draw multiple plots in same window
18
   hold on
19
   plot(x, f);
   legend ('g(x)', 'f(x)');
20
21
   hold off
   saveas(gcf, 'fg.png');
22
23
24 % draw convolution
25 | figure (2)
26 | plot(x, w);
27 \mid x \lim ([-10 \ 10]);
28 | saveas (gcf, 'fg-conv.png');
```

```
29
30
   function y = func(x)
31
32
        if x >= -1 \&\& x <= 1
             y = \exp(-1 * x^2);
33
34
        else
             y = 0;
35
36
        end
37
   end
```

На Рисунке 1 изображены графики фукнций и сверки фукнций.

Рис. 1: График функций f и g, график свертки

Максимум функции: 3.995167

2.2 Свертка изображений с ядрами

2.2.1 Вычислить свертку изображения с ядрами. Построить изображение свертки и график свертки

Листинг 2: Вычисление свертки изображения

```
import Conv.*
2
3
   clear all;
4
   img = imread('BioID_0003.pgm');
5
   [img_h, img_w, dim] = size(img);
6
7
   \% imshow(img);
8
9
   % 3x3 kernels
10
   sobelm_x = [1 2 1; 0 0 0; -1 -2 -1];
11
   sobelm_y = [ -1 \ 0 \ 1; -2 \ 0 \ 2; -1 \ 0 \ 1];
12
   c1 = Conv('sobel', sobelm_x, sobelm_y);
```

```
14
    convolute (c1, img);
15
16
   prewit x = [-1 \ 1 \ 1; -1 \ -2 \ 1; -1 \ 1];
17
    prewit y = [1 \ 1 \ 1; -1 \ -2 \ 1; -1 \ -1 \ 1];
    c2 = Conv('prew', prewit_x, prewit_y);
18
    convolute (c2, img);
19
20
    kirsch_x = [ -3 -3 5; -3 0 5; -3 -3 5];
21
22
    kirsch y = \begin{bmatrix} -3 & 5 & 5; & -3 & 0 & 5; & -3 & -3 \end{bmatrix};
    c3 = Conv('kir', kirsch_x, kirsch_y);
23
24
    convolute (c3, img);
25
26
    robin3 x = [ -1 \ 0 \ 1; -1 \ 0 \ 1; -1 \ 0 \ 1];
    robin3_y = [0 1 1; -1 0 1; -1 -1 1];
27
    c4 = Conv("rob3", robin3_x, robin3_y);
28
29
    convolute (c4, img);
30
    robin5 x = [ -1 \ 0 \ 1; -2 \ 0 \ 2; -1 \ 0 \ 1];
31
   robin5_y = [0 \ 1 \ 2; -1 \ 0 \ 1; -2 \ 1 \ 0];
32
   c5 = Conv('rob5', robin5_x, robin5_y);
33
    convolute (c5, img);
34
```

Листинг 3: Conv.m

```
1
   classdef Conv
       properties (GetAccess = private)
2
3
            kernel x;
4
            kernel y;
5
       end
6
7
       properties
8
           name;
9
       end
10
11
       methods
12
            function obj = Conv(m name, m x, m y)
                obj.name = m name;
13
                obj.kernel x = m x;
14
                obj.kernel y = m y;
15
16
            end
17
            function convolute (obj, img)
18
                w x = conv2(img, obj.kernel x);
19
                w y = conv2(img, obj.kernel y);
20
21
                w = sqrt(double(w x.^2 + w y.^2)); \% wiki formula
22
```

```
23
                 % draw image
24
                 filename = [obj.name '.png'];
                 imwrite (w, gray (256), filename);
25
26
                 % draw convolution plot
27
                 figure();
28
                 \operatorname{mesh}(w);
29
                  filename = [obj.name '-plot.png'];
30
                 saveas(gcf, filename);
31
32
             end
        end
33
34
   end
```

На Рисунках $3,\,4,\,5,\,6,\,7$ представлены изображения после применения свертки и графики свертки.

На Рисунке 2 представлен оригинал изображения.

Рис. 2: Оригинал изображения

2.2.2 Вычислить вручную значение свертки в центральной и угловых точках

Матрица исходного изображения представлена в Таблице 1.

Значение свертки в точке вычисляется по следующей формуле:

$$z * w = \sum_{j=0}^{M-1} \sum_{j=0}^{N-1} z_{i,j} * w_{i,j}$$
$$z = \sqrt{z_x^2 + z_y^2}$$

где w — подматрица 3×3 матрицы изображения (см. Таблицу 1).

Рис. 3: Фильтр Собеля

Рис. 4: Фильтр Prewitt

Рис. 5: Фильтр Kirsch

Посчитаем одно значение свертки вручную и вычислим остальные значения по аналогии:

$$Z_x = W_{top-left} * Sobel_x = \begin{pmatrix} 62 & 77 & 68 \\ 62 & 81 & 75 \\ 63 & 82 & 77 \end{pmatrix} * \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix} =$$

Рис. 6: Фильтр Robinson 3 level

Рис. 7: Фильтр Robinson 5 level

$$= (62*1) + (77*2) + (68*1) + (-1*63) + (-2*82) + (-1*77) = -20$$

$$Z_y = W_{top-left} * Sobel_y = \begin{pmatrix} 62 & 77 & 68 \\ 62 & 81 & 75 \\ 63 & 82 & 77 \end{pmatrix} * \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} =$$

$$= (-1*62) + (1*68) + (-2*62) + (2*75) + (-1*63) + (1*77) = 46$$

$$z = \sqrt{z_x^2 + z_y^2} = \sqrt{(-20)^2 + 46^2} \approx 50$$

Листинг 4: Вычисление свертки изображения в точках вручную

Таблица 1: Матрица исходного изображения

62	77	68				57	45	17
62	81	75				55	44	17
63	82	77				57	43	16
			169	158	151			
			167	164	157			
			173	173	166			
37	37	21				51	36	14
36	36	20				48	38	15
37	37	20				48	38	15

```
5
   \% 3x3 sobel kernel
6
 7
   sob x = [1 2 1; 0 0 0; -1 -2 -1];
   sob y = [ -1 \ 0 \ 1; \ -2 \ 0 \ 2; \ -1 \ 0 \ 1];
9
10
   % image submatrices
   top left = img(1:3, 1:3);
11
   top right = img(1:3, img w-2:img w);
12
13
   bot left = img(img h-2:img h, 1:3);
   bot right = img(img h-2:img h, img w-2:img w);
14
   center = img(img h/2-1:img h/2+1, img w/2-1:img w/2+1);
15
16
17
   fprintf('top left: %f\n', convolute(top_left, sob_x, sob_y));
18
   fprintf('top rght: %f\n', convolute(top_right, sob_x, sob_y));
19
   fprintf('bot left: %f\n', convolute(bot_left, sob_x, sob_y));
20
   fprintf('bot rght: %f\n', convolute(bot_right, sob_x, sob_y));
21
   fprintf('center : %f\n', convolute(center,
                                                   sob x, sob y);
22
23
24
   function res = conv mask(m, mask)
25
       res = double(m(1,1))*mask(1,1) + double(m(1,2))*mask(1,2) +
          double(m(1,3))*mask(1,3) + double(m(2,1))*mask(2,1) +
          double(m(2,2))*mask(2,2) + double(m(2,3))*mask(2,3) +
          double(m(3,1))*mask(3,1) + double(m(3,2))*mask(3,2) +
          double (m(3,3)) * mask(3,3);
26
   end
27
   function res = convolute(m, mask x, mask y)
28
29
       z x = conv mask(m, mask x);
       z y = conv mask(m, mask y);
30
       res = sqrt(z x^2 + z y^2);
31
```

Получившиеся значения:

• сверху слева: 50.159745

• сверху справа: 157.079598

• снизу слева: 65.007692

• снизу справа: 136.014705

по центру: 66.528190

Вычислить конечную разность для изображения и выве-2.3 сти полученное изображение

Полученное изображение представлено на Рисунке 8

Листинг 5: Вычисление конечной разности

```
1
    clear all; % clear workspace
 2
3
   img = imread('BioID 0003.pgm');
   [img_h, img_w, dim] = size(img);
 4
 5
   for i = 1: img h
6
 7
         for j = 1:img w-1
              img(i,j) = img(i,j) - img(i,j+1);
9
         end
   end
10
11
12
    for i = 1:img h-1
         for j = 1:img w
13
              img\,(\,i\,\,,\,j\,\,)\,\,=\,\,img\,(\,i\,\,,\,j\,\,)\,\,-\,\,img\,(\,i\,+1,\,\,\,j\,\,)\,\,;
14
15
         end
16
   end
17
   imwrite(img, 'finite-difference.png');
18
```

2.4 Фурье-анализ

Разложение функции в ряд Фурье

Разложение функции $f(x)=\frac{\pi-x}{2}$ в ряд Фурье с периодом $[-\pi,\pi]$. Построить графики для n = 1, 5, 30, 100.

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{\pi nx}{l} + b_n \sin \frac{\pi nx}{l}\right)$$

Рис. 8: Конечная разность изображения

$$a_n = \frac{2}{l} \int_{-\frac{l}{2}}^{\frac{l}{2}} f(x) \cos \frac{nx}{2} dx$$
$$b_n = \frac{2}{l} \int_{-\frac{l}{2}}^{\frac{l}{2}} f(x) \sin \frac{nx}{2} dx$$

где $l=2\pi$. Подставим f(x) и посчитаем коэффициенты:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\pi - x}{2} \cos \frac{nx}{2} dx = \frac{2\sin(\frac{\pi n}{2})}{n}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\pi - x}{2} \sin \frac{nx}{2} dx = \frac{2\pi n \cos(\frac{\pi n}{2}) - 4\sin(\frac{\pi n}{2})}{\pi n^2}$$

$$a_0 = \frac{\pi x - \frac{x^2}{2}}{2\pi}$$

Листинг 6: Разложение в ряд Фурье

```
clear all;
2
   N = 100; % steps
5
   x\,=-p\,i\;;
             % from
   step = 0.01;
7
   x max = pi; \% to
9
   i = 1;
   while \ x < x\_max
10
11
       ys(i) = fourier(x, N);
       xs(i) = x;
12
13
       x = x + step;
14
```

```
15
       i = i + 1;
16
   end
17
   % draw convolution plot
18
   f = figure();
19
   plot(xs, ys);
20
   filename = ['fr-' num2str(N) '.png'];
21
22
   saveas (gcf, filename);
23
24
25
   function sum = fourier (x, N)
       sum = (pi*x - x^2 / 2) / (2*pi); % a0
26
27
       for n = 1:N
            an = (2*sin(pi*n / 2)) / n;
28
29
            bn = (2*pi*n*cos(pi*n/2) - 4*sin(pi*n/2)) / (pi*n^2);
30
            sum = sum + (an*cos(n*x) + bn*sin(n*x));
31
       end
32
   end
```

На Рисунках 9, 10 приведены получившиеся графики преобразований Фурье.

Рис. 9: N=1, N=5

2.4.2 Пострить 1D дискретный базис Фурье f^3

Листинг 7: 1D базис

```
clear all;

log clear all;

N = 3;
basis = zeros(N);

for n = 1 : N
for k = 1 : N
```


Рис. 10: N=30, N=100

Полученный базис представлен в Таблице 2

Таблица 2: 1D базис

0.577350269189626	-0,288675134594813 + 0,5i	-0,288675134594813 - 0,5i
0,577350269189626	-0,288675134594813 - 0,5i	-0,288675134594813 + 0,5i
0,577350269189626	0,577350269189626	0,577350269189626

${f 2.4.3}$ Пострить ${f 2D}$ дискретный базис Фурье $f^{3 imes 3}$

Листинг 8: 2D базис

```
clear all;
1
2
3
   N1 = 3;
   N2 = 3;
4
5
   basis2D = zeros(N1*N1*N1);
6
7
   for n = 1 : N1
          for m = 1 : N2
8
9
               for l = 1:N
                    for k = 1:N
10
                         basis2D\,(\,k\,,\ l\,,\ m,\ n\,)\,\,=\,\,\exp{(\,2\,i\ *\ pi\ *\ (\,k*(\,n-1)/N1}
11
                             + 1*(m-1)/N2)) / sqrt(N1*N2);
12
                    end
13
               end
14
          end
15
   end
```

Базис представлен в Таблице 3.

Таблица 3: 2D базис

0.33333 + 0i	0.33333 + 0i	0.33333 + 0i
0.33333 + 0i	0.33333 + 0i	0.33333 + 0i
0.33333 + 0i	0.33333 + 0i	0.33333 + 0i