以 Python 進行 K-means、階層式分群與 DBSCAN 進行 文件分群預測及分群結果品質

> B10423004 蔡宗穎,國立雲林科技大學 B10423013 曾鈺雯,國立雲林科技大學 B10423044 王彥淇,國立雲林科技大學

摘要

本團隊使用 K-means、階層式分群與 DBSCAN,針對文件進行分群,並比較分群所花費的時間,使用 SSE(Sum of Squared Error)、Purity 比較分群結果品質,及劃出階層式分群的階層數,最後評估結果為花費時間排序:DBSCAN > K-means > Hierarchical, Purity 排序:Hierarchical > K-means > DBSCAN。

演算法:K-means、階層式分群(hierarchical clustering)、 BSCAN(Density-based spatial clustering of applications with noise)

一、緒論

1.1 動機

本實驗欲研究新聞文章分群,此數據集(mini_newsgroups)包含了來自 20 個新聞組的 20000 條訊息。我們不確定每種新聞文章的結構,希望可以透過分群法來區分出這 20 種新聞文章。

1.2 目的

本實驗目標希望根據 K-means、階層式分群、DBSCAN 三種分群法,來 比較三種分群法的時間效率及分群結果品質,藉此了解文章與文章之間的關聯 性,達成自動分群新聞文章。

二、方法

2.1 程式架構

- 1. 將檔案解壓縮,並轉碼,方便讀取資料集
- 2. 對文字出現頻率進行預先處理
- 3. 紀錄開始時間
- 4. 使用 K-means 套件建立模型
- 5. 用現在時間減去開始時間
- 6. 驗證輪廓係數、SSE、purity
- 7. 使用 DBSCAN 套件建立模型
- 8. 用現在時間減去開始時間
- 9. 驗證 purity
- 10. 使用階層式分群套件建立模型
- 11. 用現在時間減去開始時間
- 12. 驗證 purity

2.2 執行程式的方式

透過 Spyder 執行 main.py 檔,使用 python3.6 版本,注意 matplotlib(畫樹狀圖套件)須為 2.2.3 版,其他需安裝的套件為 sklearn(演算法套件)、nltk(語言分析套件)、numpy(科學計算套件)。

三、實驗

3.1 資料集

使用 mini_newsgroups 資料集是用於文本分群、文本探勘和信息檢索研究的國際標準數據集之一,此資料集被分為 6 個類別,分別為 :

● 表1資料集

名稱	筆數	型態
alt.atheism	100	字串
comp.graphics	100	字串
misc.forsale	100	字串
rec.autos	100	字串
sci.crypt	100	字串
talk.politics.guns	100	字串

comp.* - 關於電腦的相關話題

SCi.* - 關於科學方面的討論

rec.* - 關於娛樂活動的討論(遊戲、愛好等等)

talk.* - 關於社會及宗教熱點話題的討論

misc.*-其他無法歸入現有層級的討論

alt.* - 無法歸於其他類別或不願歸入其他類別的話題

3.2 前置處理

利用亂數來打亂原本資料集的順序,藉此來達到每次執行所抓取的資料集 不一樣。

TFIDF: 用來衡量文字字詞出現的頻率,並降低停用詞的權重

$$w_t = tf_t \times idf_t = tf_t \times \log \frac{N}{df_t}$$

● 表2輸入資料

名稱	型態	次數
test	int32	45731
Z00	int32	50608
ask	int32	13047
seem	int32	42228
respect	int32	40574

3.3 實驗設計

3.3.1 K-means: 是訊號處理中的一種向量量化方法,現在則更多地作為一種聚類分析方法流行於資料探勘領域。功用為把個點劃分到 k 個聚類中,使得每個點都屬於離他最近的均值對應的聚類,以之作為聚類的標準。

● 表 3 K-mean 參數定義

名稱	定義
n_clusters	簇的個數,即你想聚成幾類
init	初始簇中心的獲取方法
n_init	獲取初始簇中心的更迭次數,為了彌
	補初始質心的影響,算法默認會初始
	10 次質心,實現算法,然後返回最
	好的結果
max_iter	最大迭代次數
tol	容忍度,即 kmeans 運行準則收斂的
	條件
precompute_distances	是否需要提前計算距離,這個參數會
	在空間和時間之間做權衡
verbose	冗長模式
random_state	隨機生成簇中心的狀態條件
copy_x	對是否修改數據的一個標記,如果
	True,即復制了就不會修改數據。
	bool 在 scikit-learn 很多接口中都
	會有這個參數的,就是是否對輸入數
	據繼續 copy 操作,以便不修改用戶
	的輸入數據
n_jobs	並行設置
algorithm	kmeans 的實現算法,有:'auto',
	'full', 'elkan', 其中'full'表示
	用EM方式實現

- 3.3.2 階層式分群(hierarchical clustering): 透過一種階層架構的方式, 將資料層層反覆地進行分裂或聚合,以產生最後的樹狀結構,常見的方式有兩種:
 - 如果採用聚合的方式,階層式分群法可由樹狀結構的底部開始,將資料或群聚逐次合併
 - 如果採用分裂的方式,則由樹狀結構的頂端開始,將群聚逐次分裂。是一種構建分類器的簡單方法。

● 表 4 階層式分群參數定義

名稱	定義
linkage	如何衡量群與群之間的距離
n_clusters	分成幾個群
ward(single)	兩個群中最近的點
complete	
	兩個群中最遠的點
average	兩個群的重心
optimal_ordering	如果為 True,則將重新排序鏈接矩
	陣,使得連續葉之間的距離最小。當
	數據可視化時,這會產生更直觀的樹
	結構。默認為 False, 因為此算法可
	能很慢,尤其是在大型數據集上
metric	在y是觀察向量的集合的情況下使用
	的距離度量

3.3.3 DBSCAN(Density-Based Spatial Clustering of Applications with

Noise): 是一個比較有代表性的基於密度的聚類算法。與劃分和層次聚類方法不同,它將簇定義為密度相連的點的最大集合,能夠把具有足夠高密度的區域劃分為簇,並可在噪聲的空間數據庫中發現任意形狀的聚類。

● 表5 階層式分群參數定義

名稱	定義	
eps	兩個樣本之間的最大距離,以便將它	
	們視為在同一鄰域中。	
min_samples	對於要被視為核心點的點,鄰域中的	
	樣本數(或總權重)。	
metric	計算要素數組中實例之間距離時使用	
	的度量標準	
metric_params	度量函數的其他關鍵字參數	
algorithm	近鄰算法求解方式,有四種 brute 為	
	蠻力實現、kd_tree 為 KD 樹實現、	
	ball_tree 為球樹實現、auto 為上面	
	三種算法中做權衡,選擇一個擬合最	
	好的最優算法。	
leaf_size	使用 ball_tree 或 kd_tree 時, 停止	
	建子樹的葉子節點數量的值	
р	只用於閔可夫斯基距離和帶權重柴可	
	夫斯基距離中 p 值的選擇, p=1 為曼	
	哈頓距離, p=2 為歐式距離。如果使	
	用默認的歐式距離不需要管這個參數	
n_jobs	CPU 並行數,若值為 -1,則用所有的	
	CPU 進行運算	
core_sample_indices_	核心點的索引,因為 labels_不能區	
	分核心點還是邊界點,所以需要用這	
	個索引確定核心點	
components_	訓練樣本的核心點	
labels_	每個點所屬集羣的標籤,-1代表噪聲	
	點	

3.3.4 SSE (Sum of Squared Error): 是觀察每個值與其組平均值之間的平方差異的總和。它可以用作群集內變異的度量。如果群集中的所有情況都相同,則 SSE 將等於 0。

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist(m_i, x)^2$$

3.3.5 Purity(純質): 同質性越高, purity 越大。

purity Using the terminology derived for entropy, the purity of cluster j, is given by $purity_j = \max p_{ij}$ and the overall purity of a clustering by $purity = \sum_{i=1}^{K} \frac{m_i}{m} purity_j$.

3.4 實驗結果

3.4.1 K-means

● 表 6 使用 K-means,計算花費時間、SSE、purity 與側影係數

K-means

花費時間: 405.65873098373413 秒

Silhouette Coefficient: 0.012510772718172717

SSE: 1848.969212646806

purity: 0.226500000000000006

3.4.2 階層式分群(hierarchical clustering)

● 表 7 使用階層式分群,計算花費時間與 purity

hierarchical

花費時間: 12.49722146987915 秒

purity: 0.43900000000000001

3.4.3 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)

● 表 8 使用 DBSCAN,計算花費時間與 purity,半徑為 0.911,鄰域中的樣本數為 3,可以把資料分成 20 群

DBSCAN

花費時間: 652.0506982803345 秒 purity: 0.01650000000000000004

dbscan = DBSCAN(eps = 0.911, min_samples = 3).fit(trans_dataset)

四、結論

1. 花費時間排序: DBSCAN > K-means > Hierarchical

2. Purity 排序: Hierarchical > K-means > DBSCAN

3. K-means: 花費時間約為: 406 秒、purity 約為: 0.2265

4. Hierarchical: 花費時間約為:13秒、purity約為:0.439

5. DBSCAN : 花費時間約為:652 秒、purity 約為:0.0165