DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat

(c) 2002 EPO. All rts. reserv.

11758020

Basic Patent (No, Kind, Date): JP 5275336 A2 19931022 <No. of Patents: 016>

MANUFACTURE OF POLYCRYSTALLINE SEMICONDUCTOR THIN FILM AND

LASER ANNEAL DEVICE (English)

Patent Assignee: TOKYO ELECTRON LTD

Author (Inventor): IMAHASHI KAZUNARI; HAMA KIICHI

IPC: *H01L-021/20; H01L-021/268; H01L-021/324; H01L-021/336; H01L-029/784;

H01L-027/12

CA Abstract No: 120(16)205193H
Derwent WPI Acc No: C 93-372216
JAPIO Reference No: 180049E000072
Language of Document: Japanese

Patent Family:

Patent No	Kind I	Date A ₁	pplic No Kind	Date		
CN 1088002	Α	19940615	CN 93114676	6 A	19931116	
EP 598394	A2	19940525	EP 93118519	Α	19931116	
EP 0598394	A2	19940525	EP 93118519	Α	19931116	
EP 598394	A3	19970716	EP 93118519	Α	19931116	
JP 5275336	A2	19931022	JP 92102012	Α	19920327	(BASIC)
JP 6208133	A2	19940726	JP 92330073	Α	19921116	
JP 6224276	A2	19940812	JP 9329975	Α	19930125	
JP 8129189	A2	19960521	JP 93311138	Α	19931116	
JP 2986132	B2	19991206	JP 92102012	Α	19920327	
JP 3196132	B2	20010806	JP 93311138	Α	19931116	
KR 196196	B1	19990615	KR 934900	Α	19930327	
SG 4600344	A 1	19980220	SG 9603224	Α	19931116	
US 5372836	Α	19941213	US 38621	Α	19930326	
US 5413958	Α	19950509	US 153376	Α	19931116	
US 5529630	Α	19960625	US 385929	Α	19950209	
US RE36371	E	19991102	US 764205	Α	19961213	

Priority Data (No,Kind,Date):

JP 9329975 A 19930125

JP 92330073 A 19921116

JP 92102012 A 19920327

JP 93311138 A 19931116

US 385929 A 19950209

US 153376 A3 19931116

US 764205 A 19961213

US 38621 A5 19930326

DIALOG(R)File 347:JAPIO

(c) 2002 JPO & JAPIO. All rts. reserv.

04283636 **Image available**

MANUFACTURE OF POLYCRYSTALLINE SEMICONDUCTOR THIN FILM AND LASER ANNEAL DEVICE

PUB. NO.:

05-275336 [JP 5275336 A]

PUBLISHED:

October 22, 1993 (19931022)

INVENTOR(s): IMAHASHI KAZUNARI

HAMA KIICHI

APPLICANT(s): TOKYO ELECTRON LTD [367410] (A Japanese Company or

Corporation), JP (Japan)

APPL. NO.:

04-102012 [JP 92102012]

FILED:

March 27, 1992 (19920327)

INTL CLASS:

[5] H01L-021/20; H01L-021/268; H01L-021/324; H01L-021/336;

H01L-029/784; H01L-027/12

JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components)

JAPIO KEYWORD:R002 (LASERS); R011 (LIQUID CRYSTALS); R020 (VACUUM

TECHNIQUES)

JOURNAL:

Section: E, Section No. 1497, Vol. 18, No. 49, Pg. 72,

January 26, 1994 (19940126)

ABSTRACT

PURPOSE: To prevent damage of a film due to emission of hydrogen at the time of polycrystallization of an amorphous silicon film by the use of laser light.

CONSTITUTION: Along with providing a vacuum chamber 3 on a supporting plate through a supporting stand 22 and forming a window 33 on the bottom of the vacuum chamber 3, a laser light irradiation part 6 is set up on the lower side of this window 33 and on the supporting plate 21 by a transfer mechanism 73 freely movably in the X, Y directions. An LCD substrate 4 is arranged inside the vacuum chamber 3 so that the face, where an a-Si: H film is formed, may turn downward so as to stepwise enlarge energy by a laser light irradiation part 6 and to irradiate the a-Si: H film a plurality of times while watching a hydrogen emission amount by means of a mass spectrograph. Thereby, hydrogen in the a-Si: H film gradually emitted so as to be polycrystallized.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-275336

(43)公開日 平成5年(1993)10月22日

(51) Int.Cl. ⁵ H 0 1 L		識別記号 Z D	庁内整理番号 9171-4M 8617-4M 8617-4M	FI	技術表示箇所
			9056-4M		29/78 311 Y 計求項の数4(全 10 頁) 最終頁に続く
(21)出願番号	}	特顧平4-102012		(71)出願人	000219967 東京エレクトロン株式会社
(22)出顧日		平成4年(1992)3月	127日	(72)発明者	東京都新宿区西新宿2丁目3番1号 今橋 一成 東京都新宿区西新宿2丁目3番1号 東京 エレクトロン株式会社内
				(72)発明者	浜 貴一 東京都新宿区西新宿2丁目3番1号 東京 エレクトロン株式会社内
				(74)代理人	弁理士 井上 俊夫

(54) 【発明の名称】 多結晶半導体薄膜の製造方法及びレーザアニール装置

(57)【要約】

【目的】 例えばアモルファスシリコン膜をレーザ光により多結晶化するにあたって、水素の放出による膜の損傷を防止すること。

【構成】 支持プレート21上に支持台22を介して真空チャンパ3を設け、真空チャンパ3の底面に窓33を形成すると共に、この窓33の下方側にて支持プレート21上にレーザ光照射部6を移動機構73によりX、Y方向に移動自在に設置する。真空チャンパ3内にa-Si:H膜を形成した面が下向きとなるようにLCD基板4を配置し、レーザ光照射部6によりエネルギーを段階的に大きくすると共に質量分析器で水素の放出量を監視しながらa-Si:H膜を複数回照射する。これによりa-Si:H膜中の水素が徐々に放出され、多結晶化する。

【特許請求の範囲】

水素化非晶質半導体薄膜をレーザ光の照 【請求項1】 射により多結晶化し製造する方法において、

レーザ光の照射エネルギーを順次大きくして水素化非晶 質半導体薄膜中の水素を段階的に放出させることを特徴 とする多結晶半導体薄膜の製造方法。

【請求項2】 水素化非晶質半導体薄膜をレーザ光の照 射により多結晶化し製造する方法において、

水素化非晶質半導体薄膜から放出される水素の量を監視 しながら、レーザ光の照射エネルギーを順次大きくして 10 水素化非晶質半導体薄膜中の水素を段階的に放出させる ことを特徴とする多結晶半導体薄膜の製造方法。

【請求項3】 水素化非晶質半導体薄膜をレーザ光の照 射により多結晶化し製造する方法において、

水素化非晶質半導体薄膜を多結晶化するために必要な照 射エネルギーよりも小さい照射エネルギーで、レーザー 光を水素化非晶質半導体薄膜に照射すると共に、レーザ 光の照射エネルギーを順次大きくして前記薄膜中の水素 を段階的に放出させる工程と、前記水素化非晶質半導体 **藤膜を多結晶化するために必要な照射エネルギーのレー 20** ザ光を前記薄膜に照射する工程とを具備してなることを 特徴とする多結晶半導体薄膜の製造方法。

【請求項4】 被処理体の表面の薄膜をレーザアニール する装置において、レーザ光を透過するための窓が形成 された処理室と、

この処理室の下方側に設けられ、前記窓を介して被処理 体の被処理面にレーザ光を照射するためのレーザ光照射 部と、

このレーザ光照射部と前記被処理体とを相対的に移動さ せるための移動機構と、

を備えてなることを特徴とするレーザアニール装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、多結晶半導体薄膜の製 造方法及びレーザアニール装置に関する。

[0002]

【従来の技術】TFT(薄膜トランシジスタ)を用いた LCD(液晶ディスプレイ)は非常に優れた高画質を提 供してくれるものとして注目されている。

【0003】この種のLCD基板は、図13に模式的に 40 示すようにガラス基板1a上にTFT1bを形成すると 共に、例えばそのドレイン電極に電気的に接続した画素 電極1cを、当該TFT1bと隙間を介して配置し、こ のように組み合わされた画素ユニットUを多数配列して なるものであり、例えば一辺が数百μm程度の角形の画 索ユニットUが数十万個配列されている。そしてこのよ うなLCD基板上に間隙を介して各画素ユニットUに共 通な透明電極1 dを対向して配列し、前記間隙に液晶1 e を封入することによって図14の模式図に示すように **画素部10が形成される。更にこの画素部10の外側の 50 処理、即ちレーザアニールは瞬間的に非晶質シリコン膜**

ガラス基板 1 a上に、パッケージ化された I Cチップ 1 1を画素部10の周縁に沿って複数配列してドライバ部

12が形成されると共に、各ICチップ11の端子を画 素部10の各画素ユニットUに対応する走査電極配線で あるゲート配線及びドレイン配線に接続することにより LCDが構成される。

2

[0004]

【発明が解決しようとする課題】ところで上述のような TFT-LCDは大面積化、高カラー表示品質が強く望 まれており、例えばゲートドライバからの配線、ソース ドライパからの配線が夫々400本、1920本に及ぶ ものもあり、このためドライバ部11とTFT液晶画素 部の各走査電板各走査電板配線との配線作業が非常に工 数を要し、LCDの髙価格化の要因の一つになってい る。

【0005】そこで同一の基板において、ガラス基板上 に成膜処理を行ってドライバ部のスイッチング素子を形 成またドライバ部と画素部の配線も同時に行うことが技 術的に解決されれば、ドライバ部を形成する工程にて同 時にドライバ部と走査電極配線との接続を行うことがで きるので、ICチップをガラス基板上に貼り付ける場合 のような煩わしい配線作業が不要になり、非常に有効な 方法である。

【0006】ここで画素ユニットのTFTについては、 その画素を映像として表示するという機能上から、それ 程髙速性が要求されないので、半導体層として非晶質シ リコンを用いることができるが、ドライバ部について は、髙速スイッチング動作を要求される回路を搭載する という必要上から動作速度が前記TFTよりも可なり早 30 くなければならないので、半導体層としては非晶質シリ コンよりも電界効果移動度の大きい多結晶シリコンを用 いることが必要である。一方多結晶シリコン(ポリシリ コン)を得るためには例えば減圧CVDにより600℃ 程度以上に加熱して成膜処理を行わなければならない が、低価格のガラス基板は熱歪点が600℃程度であっ て、600℃程度もの高温に耐え得るガラス基板は高価 格であることから、結局LCDの価格が高くなってしま い、低ガラス基板は熱歪点が600程度である。

【0007】このようなことから先ずプラズマCVDに より温度約300℃の雰囲気でガラス基板上に大面積の 水素化非晶質(アモルファス)シリコン膜を形成し、次 いでこの非晶質シリコン膜に対してレーザ光を照射して 局部的に例えば表面温度が1200℃程度となるように 加熱し、これにより非晶質シリコン膜を多結晶化して多 結晶シリコン膜を生成し、これを半導体層としてスイッ チング索子を形成する多結晶半導体薄膜の製造方法が求 められていた。この方法によれば非晶質シリコン膜の形 成工程時の加熱温度が低いので低温による品質の良い大 型ガラス基板上の膜が得られ、またレーザ光による加熱

を加熱して多結晶化するので、ガラス基板はそれ程高温 にならず、従ってガラス基板としては大きな耐熱性が要 求されないので安価な材質を使用することができ、大面 積透過形液晶ディスプレイの製造が可能となる。

【0008】しかしながらプラズマCVDにより生成さ れた水素化非晶質シリコン膜中には可成り多くの水素が 含まれているため、レーザ光により非晶質シリコンを多 結晶化するために必要なエネルギーを加えると、水素が 非晶質シリコン膜から一気に噴出してこの膜が損傷して まう。このようなことから耐熱性の小さい安価なガラス 10 基板を用い、このガラス基板上に非晶質シリコン膜を形 成した後多結晶化する技術は、実用化に至っておらず、 結局LCDのドライパ部は、パッケージ化されたICを LCD基板上に貼り付ける形で実装し、面倒なドライバ 部と画素部の配線作業を行っているのが実情である。

【0009】本発明は、このような事情のもとになされ たものであり、その目的は、水素を含む非晶質半導体薄 膜を損傷することなく前記薄膜中の水素を放出すること のできる多結晶半導体薄膜の製造方法を提供することに ある。

【0010】本発明の他の目的は、このような方法を実 施するのに好適なレーザアニール装置を提供することに ある。

[0011]

【課題を解決するための手段】請求項1の発明は、水素 化非晶質半導体薄膜をレーザ光の照射により多結晶化し 製造する方法において、レーザ光の照射エネルギーを順 次大きくして水素化非晶質半導体薄膜中の水素を段階的 に放出させることを特徴とする。

膜をレーザ光の照射により多結晶化し製造する方法にお いて、薄膜から放出される水素の量を監視しながら、レ ーザ光の照射エネルギーを順次大きくして水素化非晶質 半導体薄膜中の水素を段階的に放出させることを特徴と する。

【0013】請求項3の発明は、水素化非晶質半導体薄 膜をレーザ光の照射により多結晶化し製造する方法にお いて、水素化非晶質半導体薄膜を多結晶化するために必 要な照射エネルギーよりも小さい照射エネルギーで、レ ーザー光を水素化非晶質半導体薄膜に照射すると共に、 レーザ光の照射エネルギーを順次大きくして前記薄膜中 の水素を段階的に放出させる工程と、前記水素化非晶質 半導体薄膜を多結晶化するために必要な照射エネルギー のレーザ光を前記薄膜に照射する工程とを具備してなる ことを特徴とする。

【0014】請求項4の発明は、被処理体の表面の薄膜 をレーザアニールする装置において、 レーザ光を透過 するための窓が形成された処理室と、この処理室の下方 側に設けられ、前配窓を介して被処理体の被処理面にレ ーザ光を照射するためのレーザ光照射部と、このレーザ 50 レーザ光照射部6が搭載されている。

光照射部と前記被処理体とを相対的に移動させるための 移動機構と、を備えてなることを特徴とする。

[0015]

【作用】レーザ光の照射エネルギーを順次大きくしてい くことにより水素化非晶質半導体薄膜中の水素が一気に 噴き出すことなく段階的に放出される。従って例えば水 素化非晶質半導体薄膜に対して多結晶化に必要なエネル ギーよりも小さい照射エネルギーでレーザ光を照射し、 水素の放出量を監視しながら、照射エネルギーを順次大 きくしていくことにより前記薄膜を損傷させることなく 多結晶化することができる。

【0016】またこのような多結晶半導体製造を行う場 合に処理室の下方側からレーザ光を照射するようにすれ は、照射レーザ光と被処理体とを相対的に移動せしめる 移動機構を支面に固定できるので、その移動精度を高く 保つことができる。

[0017]

【実施例】図1、図2は夫々本発明の実施例に係る多結 晶半導体薄膜の製造装置の縦断側面図及び一部を切欠し 20 た外観斜視図である。この実施例では、空気圧を利用し た空気支持機構2を装置の基台として用いており、この 空気支持機構2は、剛性のある材質例えば金属よりなる 支持プレート21が空気圧により浮上した状態でエアー サスペンションにより支持され、常に水平になるように 空気圧が制御されている。 前記支持プレート21上に は、支持台22を介して、処理室、例えばアルミニウム 製の気密な円筒状の真空チャンパ3が載置して固定され ており、この真空チャンパ3内には、被処理体例えばガ ラス基板上に水素化非晶質シリコン(以下「a-Si: 【0012】請求項2の発明は、水素化非晶質半導体薄 30 H」という。)膜を付けた基板4を、被処理面が下向き になるように保持するための、載置台31が配置されて いる。更にこの真空チャンパ3には、例えば図示しない 真空ポンプに接続された排気管32が連結されると共 に、後述するように前記基板4上のa-Si:H膜から 発生した水素の発生量を測定するための質量分析計5が 設置されており、更に基板4を真空チャンパ3と外部 (大気雰囲気)との間で搬出入するためのゲートバルブ G(図2では図示せず)が設けられている。そして前記 真空チャンパ3の底壁には後述のレーザ光が透過できる ように例えば合成石英ガラス製の窓33が形成されてい る。

> 【0018】前記真空チャンバ3の下方側における支持 プレート21上には、レーザ光照射部6及びこのレーザ 光照射部6を水平方向例えばX方向、Y方向に移動させ るための移動機構7が配置されている。この移動機構7 は、例えば支持プレート21にX方向に設置されたレー ル71に沿って移動するX移動部72と、このX移動部 72上に Y方向に設置されたレール 73に沿って移動す るY移動部74とから構成され、Y移動部74上に前記

【0019】前記レーザ光照射部6は、図示しない例え ばエキシマレーザ光発振源より光学系ピームホモナイザ -を介して伝送された波長248nmのレーザ光をZ方 向に即ち真空チャンパ3の底面に向けて照射するための ものであり、移動機構7によりX方向、Y方向に移動し て例えば前記基板4の被処理面を走査照射する。前記光 学系ピームホモナイザーを経由したレーザ光は、レーザ ビーム内の強度分布を走査方向に対しては均一に、かつ それと直行する方向に対しては台形状とし、このレーザ 光を用いて前記被処理面を走査しながらレーザ照射する 10 ことができる。この方法により大面積の前記基板4に対 して均一なレーザ照射の走査を行うことができる。

【0020】次に上述の装置を用いて被処理体に対して 多結晶半導体薄膜の製造を行う方法について述べる。先 ず被処理体として、LCDの製造プロセス途中の水素化 非晶質半導体薄膜を付けたガラス基板を用い、この基板 は、画素部の領域においては、非晶質シリコンTFT生 成のためにプラズマCVDによりa-Si:H膜が表面 に形成され、またドライバ部の領域においては、同じプ ラズマCVDにより所定のパターンでa-Si:H膜が 20 表面に形成されている。

【0021】先ずゲートバルブGを開いて図示しない搬 送機構により前記基板4を真空チャンパ3内の載置台3 1に、被処理面を下側に向けて載置し、その後ゲートバ ルブGを閉じてから図示しない真空ポンプにより排気管 32を介して真空チャンパ3内を例えば圧力2.5×1 0-7 Torrの真空雰囲気まで真空引きする。しかる 後図示しないエキシマレーザ光発振源より伝送されたレ ーザ光をレーザ光照射部6を介して、前記基板4上のド ライバ部の領域におけるa-Si:H膜に、移動機構6 を駆動して走査照射する。

【0022】レーザ光をa-Si:H膜に照射する方法 については、レーザ光の出力エネルギーを、a-Si: H膜が多結晶化するに必要なエネルギー以下のエネルギ ーではじめは小さくしておいて、一定のエネルギーで例 えば160mJ(ただしビームサイズが0.9cm× 0.9 cm、全光学系の透過率が70%であるから膜表 面のエネルギー密度は138mJ/cm²である。)で 複数回走査照射すると共に、質量分析計で水素の量を監 視し、水素の量が1回前の走査時における量とあまり変 40 わらなくなった後、出力エネルギーを例えば200mJ (エネルギー密度は173mJ/cm²である。) と少 し大きくしてそのエネルギーで複数回走査照射して同様 に水素の量を監視し、更にエネルギーを例えば240m J (エネルギー密度は207mJ/cm² である。) と より大きくして同様の工程を行い、順次エネルギーを大 きくしてこのような工程を繰り返し、これによりa-S i:H膜中の水素を徐々に放出させ、その後レーザ光を 多結晶化するに十分なエネルギーでa-Si:H膜に照

る。なおこの場合レーザ光の出力エネルギーを変えずに ピームを絞ってレーザ光の照射エネルギー(被処理面の 単位面積あたりのエネルギー)を変えてもよい。

【0023】図3はこのようなレーザアニールの様子を 模式的に示す模式図であり、81はガラス基板(ただし TFTの一部が膜付けされている。)、82は画素部に おけるTFTを形成するためのa-Si:H膜、83は ドライバ部を形成するためのa-Si:H膜である。

【0024】このような実施例によれば、先ずレーザ光 により小さいエネルギーをa-Si:H膜に照射するこ とによりそのエネルギーに見合った水素が放出し、同じ エネルギーのレーザ光により複数回走査照射することに より、当該エネルギーに見合った水素が走査回数に応じ て段階的に少なくなっていき、やがてほとんどが放出さ れてしまう。そしてレーザ光のエネルギーを前回の照射 エネルギーよりも少し高くして同様の工程を行うことに より更に高いエネルギーに見合った水素が走査照射の回 数に応じて段階的に発生すると共に少なくなっていき、 こうしてレーザ光の照射エネルギーを大きくしていくこ とにより、小さいエネルギーに対応した水素から大きい エネルギーに対応した水素へと順次放出されていく。

【0025】従ってa-Si:H膜中の水素が段階的に 放出され、しかもその水素の量を監視しながら高いエネ ルギーの照射へと移っていくので、実質的に膜を損傷さ せることがなく、含有水素の大部分を放出してしまいa - S i : H膜を多結晶化するために大きなエネルギーを 加えたときには既に膜中の水素の含有量は少ないので、 これら水素が一気に放出されても膜を損傷させることが ない。これに対し、a-Si:H膜を多結晶化するのに 十分なエネルギーを持つレーザ光をa-Si:H膜に照 射すると、一度に含有水素を放出し爆発してしまうの で、これらが一気に噴き出すことにより膜が損傷してし まう。

【0026】以上の工程においてレーザ光の照射エネル ギーを大きくしても水素発生量が予め定められた量以下 しかもはや発生しない段階に至るにあたり、始めて前記 a-Si:H膜を多結晶化するのに必要なエネルギーを 持つレーザ光の照射を行う工程を実施する。

【0027】なおレーザ光の出力エネルギーの設定の仕 方、走査照射回数などについては、例えば予め被処理体 の種類毎に種々の照射パターンを実施すると共に質量分 析器 5 により水素放出量を検出して、その結果にもとづ いて設定してもよい。なお水素ガスの量を検出するため には質量分析器以外の測定手段を用いてもよい。

【0028】こうして多結晶半導体薄膜の製造の工程が 終了すると、真空チャンパ3内を大気圧に戻した後、ゲ ートパルブGを開いて、前記基板4を図示しない搬送機 **樽により外部に取り出し、成膜処理ステーションやリン** グラフィステーションを含む半導体処理ステーションに 射して当該a-Si: H膜を多結晶化シリコン膜に変え 50 て当該基板に対して成膜処理を行う。この成膜処理にお 7

いては、同一の基板上でLCD基板の画素部領域とドラ イバ部領域にて夫々所定パターンのマスクを用い、画案 ユニットの一部をなすTFTとドライパ部のスイッチン グ素子を同時に形成する。またこの工程の中で画素部と ドライバ部とを結ぶ走査電極配線についても同時に形成 され、従ってパッケージ化されたICをドライバ部とし てガラス基板上に貼り付けていたときのような面倒な配 線作業が不要になる。

【0029】また上述実施例の装置では、真空チャンバ 3の外側でしかも下方側にレーザ光照射部6を配置し、 被処理基板の被処理面を下向きにして下方側からレーザ 光を照射するようにしているため、移動機構を空中に架 設することなく支持プレート21上に固定すればよいの で移動機構を安定して移動させることができ、レーザ光 **照射部6の移動路の精度を高く保つことができる。**

【0030】そして支持プレート21は空気圧の制御に より水平に維持されており、またこの支持プレート21 上に真空チャンパ3を支持しているため、前記移動路及 びLCD基板4を共に高い精度で水平に設定できるので 双方を正確に設定でき、レーザ光の走査照射を高精度に 20 行うことができる。また支持プレート21としては、必 ずしも空気圧などで水平に制御されていなくても、外部 からの振動が伝わらないような構造のものであってもよ かっ

【0031】ここでa-Si:H膜に対してレーザアニ ールを行うにあたり、レーザ光の照射パターンを以下の ように種々変えて、a-Si:H膜から放出された水素 の量を質量分析器5により検出し、a-Si:H膜の状 **戚を観察する試験を行った。**

【0032】(パターン1)ガラス基板上にプラズマC *30* 一が450mJのときに膜の損傷が見られた。 VDにより膜厚1000オングストロームのa-Si: H膜を形成した試験基板を、図1に示す装置の真空チャ ンパ3内に配置して真空チャンパ3内の圧力を2.5× 10~~Torrに設定し、次のようにしてレーザアニ ールを行った。

【0033】先ずa-Si:H膜の走査領域を図4 (a)に示すように5つの領域A~Eに分割し、エキシ マレーザ光発振源を用いて、その全面に120mJの出 カエネルギーで、ビームサイズを0.9cm×0.9c mとしてレーザ光を所定回数だけ重ねて照射したとこ 40 ろ、出力エネルギーと重ね回数と水素放出量との関係は 図5に示す通りであった。なおこの場合の全光学系の透 過率は70%である。ただし図5中縦軸は、質量分析器 における水素(H2)に対応した出力電流値であり、実 際には各領域毎に3分割して夫々同様の処理を行い、3 回の処理における出力電流値の平均値を求めている。ま た重ね回数とは、各領域の一端から他端まで走査照射す るプロセスを1回の走査と呼ぶとすると、同じ領域につ いて何回目の走査であるかという意味である。なおこの

た。各領域の間における出力電流のばらつきは実験誤差 によるものと思われる。

8

【0034】(パターン2)パターン1の実験の後、領 域A~Eに対して夫々160mJ、200mJ、240 mJ、280mJ、340mJの出力エネルギーでレー ザ光を所定回数だけ重ねて照射したところ、出力エネル ギーと重ね回数と水素放出量との関係は図6に示す通り であった。この実験においてもa-Si:H膜の損傷は 見られなかった。

【0035】(パターン3)パターン1と同様の実験を 行ったが、ここではa-Si:H膜の同じ走査領域に対 してレーザ光の出力エネルギーを120mJ、160m J, 220mJ, 280mJ, 340mJ, 450mJ と何回も重ね合わせて順次大きくしている。 結果は図7 に示す通りである。この実験においてもa-Si:H膜 の損傷は見られなかった。

【0036】(パターン4)パターン1と同様にa-S i:H膜の走査領域を5つの領域に分割し、夫々出力エ ネルギー110mJ、160mJ、200mJ、240 mJ、280mJのレーザ光を照射したところ図8に示 す結果が得られた。この実験においては、出力エネルギ -200mJ以上のレーザ光を照射した領域については 膜の損傷が見られた。

【0037】(パターン5)パターン3と同様にして、 a-Si:H膜の同じ走査領域に対してレーザ光の出力 エネルギーを120mJ、160mJ、340mJ、4 50mJと順次大きくしている。結果は図9に示す通り である。この実験においては、出力エネルギーが340 mJまでは膜の損傷は見られなかったが、出力エネルギ

【0038】(パターン6)パターン5と同様にして、 a-Si:H膜の同じ走査領域に対してレーザ光の出力 エネルギーを120mJ、450mJと順次大きくした ところ図10に示す結果が得られ、出力エネルギーが4 50mJのときに膜の損傷が見られた。

【0039】(パターン7)パターン3と同様にして、 図11に示すように120mJから480mJの間でa -Si:H膜の同じ走査領域に対してレーザ光の出力エ ネルギーを順次大きくしたところ膜の損傷は見られなか った。ただしレーザビームサイズは0.65cm×0. 65cm、全光学系の透過率は70%である。なおレー ザ光を480mJで照射することによりa-Si:H膜 は多結晶化しており、このことはX線解析装置により確 認している。レーザ光の出力エネルギーが480mJの ときには、照射エネルギー密度は781.4mJ/cm ² であり、a-Si:H膜における波長=248mでの 光吸収率が30%であるためa-Si:H膜の吸収エネ ルギー密度は234.4mJ/cm²である。

【0040】(パターン8)パターン3と同様にして、 実験においては、a-Si:H膜の損傷は見られなかっ 50 a-Si:H膜の同じ走査領域に対してレーザ光の出力 エネルギーを120mJ、220mJ、400mJ、480mJ(レーザピームサイズは0.65cm×0.65cm、全光学系の透過率は70%である。)と順次大きくし、また同様にa-Si:H膜の別の走査領域に対してレーザ光の出力エネルギーを160mJ、280mJ、380mJ、480mJと順次大きくしたところ図12に示す結果が得られた。ただし斜線をいれたポイントの出力電流値は25Aを越えている。この実験ではいずれも膜の損傷が見られた。

【0041】以上の結果から最初から大きなエネルギー 10をa-Si:H膜に与えると内部の水素が一気に噴き出して膜が損傷し、また最初に与えるエネルギーが小さくてもその後急激に大きなエネルギーを加えたときにやはり同様に膜が損傷するが、最初小さいエネルギーを与え、その後段階的にエネルギーを大きくしていけば膜が損傷しないことが理解される。このことは、レーザ光の照射エネルギーを段階的に大きくしていくことにより、膜中の水素が徐々に放出され、放出による衝撃が小さいので膜の損傷に至らないものと推察される。

【0042】以上において本発明は、LCD基板のドラ 20 イバ部を形成するためにa-Si:H膜を多結晶化する ことに限らず、他の基板に形成されたa-Si:H膜を 多結晶化して多結晶シリコンTFTなどを形成する場合 に適用してもよい。

【0043】更にまたレーザ光の照射エネルギーを大きくしていくにあたっては、非晶質半導体薄膜内の水素を 段階的に放出することができればよく、例えばエネルギーを 段階的に大きくしていくと共に各エネルギーの走査 回数を1回としてもよい。

【0044】本発明装置は、水素化非晶質半導体薄膜を 30 多結晶化することに限定されるものではなく、また被処理体の被処理面を上に向けて、窓を透過したレーザ光をミラーなどを用いて被処理面に導くようにしてもよいしあるいは処理室の側面に窓を配置すると共に、レーザ光照射部よりのレーザ光を当該窓に向けて反射するようにミラーを窓の横に設けてもよい。

【0045】なお、本発明の実施例において水素放出量をモニタしつつ、多結晶半導体薄膜を製造する方法について述べたが、予め同一薄膜の同一サイズの基板につき、レーザ照射強度・回数・水素放出量の関係を導き出 40 した後、水素放出量のモニタに換えて前記関係より導き出される習熟則より、水素放出量のモニタを行うことなく多結晶半導体薄膜を製造することは本発明の趣旨に沿うものである。

[0046]

【発明の効果】請求項1の発明によれば、レーザ光の照射エネルギーを順次大きくしていくため、水素化非晶質半導体薄膜に含まれる水素が多量に一度に放出されない

ので、水素の放出による前記薄膜の損傷を防止することができ、また請求項2の発明のように、水素化非晶質半 導体薄膜から放出される水素の量を監視しながらレーザ 光の照射エネルギー設定すれば、確実に水素の放出終了 時を知ることができる。

10

【0047】更に請求項3の発明では、水素化非晶質半 導体薄膜を多結晶化するにあたって水素放出量を制御で き、当該薄膜を多結晶化する場合に有効である。

【0048】請求項4の発明によれば、処理室の下方側 からレーザ光を照射するようにしているため、レーザ光 照射部の移動機構を支面に固定できるので、装置構成が 簡単な上、レーザ光照射部を精度よく移動させることが でき、結局多結晶半導体薄膜の製造を高精度で行うこと ができる。

【図面の簡単な説明】

【図1】本発明の実施例に係る装置を示す縦断側面図である。

【図2】本発明の実施例に係る装置の外観を示す斜視図である。

② 【図3】レーザアニールの一例を模式的に示す説明図である。

【図4】a-Si:H膜の走査照射領域の一例を示す説明図である。

【図 5】 レーザ光の照射設定パターンと水素の放出量との関係を示す特性図である。

【図6】レーザ光の照射設定パターンと水素の放出量との関係を示す特性図である。

【図7】レーザ光の照射設定パターンと水素の放出量との関係を示す特性図である。

② 【図8】レーザ光の照射設定パターンと水素の放出量との関係を示す特性図である。

【図9】レーザ光の照射設定パターンと水素の放出量との関係を示す特性図である。

【図10】レーザ光の照射設定パターンと水素の放出量との関係を示す特性図である。

【図11】レーザ光の照射設定パターンと水素の放出量との関係を示す特性図である。

【図12】レーザ光の照射設定パターンと水素の放出量との関係を示す特性図である。

10 【図13】LCD基板を模式的に示す説明図である。

【図14】LCDの外観を示す斜視図である。

【符号の説明】

2 空気支持機構

21 支持プレート

3 真空チャンパ

4 LCD基板

5 質量分析器

6 レーザ光照射部

【図9】

[図10]

Homogenizerからの距離340mm Beam size 0.9cm×0.9cm=0.81cm² (120mJ, 180mJは20Hz)

Homogenizeにからの距離340mm Beam size 0.9cm×0.9cm=0.81cm²

【図12】

【図11】

Homogenizerからの距離230mm Beam size 0.65cm×0.65cm=0,43cm²

Homogenizerからの距離230mm Beam size 0.65cm×0.65cm=0.43cm² (10) 特開平5-275336

フロントページの続き

H01L 29/784

// H 0 1 L 27/12 Z