2

યાદેચ્છિક ચલ અને અસતત સંભાવના-વિતરણ (Random Variable and Discrete Probability Distribution)

विषयवस्तुः

- 2.1 યાદચ્છિક ચલ
 - 2.1.1 અસતત યાદેચ્છિક ચલ
 - 2.1.2 સતત યાદચ્છિક ચલ
- 2.2 અસતત સંભાવના-વિતરણ
 - 2.2.1 અસતત ચલના સંભાવના-વિતરણનાં ઉદાહરણો
 - 2.2.2 મધ્યક અને વિચરણ
- 2.3 દ્વિપદી સંભાવના-વિતરણ
 - 2.3.1 દ્વિપદી વિતરણનાં ગુણધર્મો
 - 2.3.2 દ્વિપદી વિતરણનાં ઉદાહરણો

2.1 યાદચ્છિક ચલ (Random Variable)

આપણે સંભાવનાના પ્રકરણમાં યાદચ્છિક પ્રયોગ, નિદર્શ અવકાશ તથા સંભાવનાનો અભ્યાસ કર્યો. આ પ્રકરણમાં આપણે યાદચ્છિક ચલ અને અસતત સંભાવના-વિતરણોનો અભ્યાસ કરીશું.

સૌપ્રથમ આપણે યાદચ્છિક ચલને વ્યાખ્યાયિત કરીશું અને ત્યાર બાદ તેને ઉદાહરણ દ્વારા સમજીશું.

યાદચ્છિક ચલ : ધારો કે એક યાદચ્છિક પ્રયોગનો નિદર્શ અવકાશ U છે. Uના દરેક ઘટક હંમેશાં સંખ્યાત્મક હોવા % (G, U) જરૂરી નથી. છતાં પણ આપણે દરેક ઘટના માટે કોઈ ચોક્ક્સ સંખ્યા ફાળવવા ઇચ્છીએ છીએ.

Uના દરેક ઘટકને વાસ્તવિક સંખ્યા સાથે સાંકળતા વિધેયને યાદચ્છિક ચલ કહેવામાં આવે છે. તેને સંકેતમાં X વડે દર્શાવવામાં આવે છે. એટલે કે નિદર્શ અવકાશ U પર આધારિત યાદચ્છિક ચલ Xને સંકેતમાં $X:U\to R$ વડે દર્શાવવામાં આવે છે.

દાખલા તરીકે

- (i) એક અનિભનત સિક્કાને 3 વખત ઉછાળતા મળતી છાપ (H)ની સંખ્યા
- (ii) કોઈ એક શહેરમાં એક અઠવાડિયા દરમિયાન થતા અકસ્માતની સંખ્યા
- (iii) કોઈ એક વ્યક્તિનું વજન (કિલોગ્રામમાં)
- (iv) કોઈ એક ચોક્કસ સ્થળનું દિવસ દરમિયાનનું મહત્તમ તાપમાન (અંશ સેલ્શિયસમાં)
- હવે આપણે યાદચ્છિક ચલ વિશેનો ખ્યાલ કેટલાંક ઉદાહરણો દ્વારા સમજીએ.
- (1) એક સમતોલ પાસાને એક વખત ઉછાળવામાં આવે છે. જો પાસા પર મળતા અંકને u' વડે દર્શાવીએ, તો આ પ્રયોગના નિદર્શ અવકાશ Uના ઘટકોને ગણના સંકેતમાં નીચે પ્રમાણે દર્શાવાય :

$$U = \{ u \mid u = 1, 2, 3, 4, 5, 6 \}$$

એટલે કે
$$U = \{1, 2, 3, 4, 5, 6\}$$

જો નિદર્શ અવકાશના ઘટક u પર વાસ્તવિક સંખ્યા Xને

X(u) = પાસા પર મળતા અંક દ્વારા વ્યાખ્યાયિત કરીએ તો અહીં

$$X(u) = u, u = 1, 2, 3, 4, 5, 6$$

લખી શકાય. આમ ચલ Xએ યાદેચ્છિક ચલ થશે જે 1, 2, 3, 4, 5 અને 6 કિંમતો ધારણ કરી શકે છે. ઉપરના ઉદાહરણમાં Uના ઘટકો સંખ્યાત્મક છે. હવે આપણે Uના ઘટકો સંખ્યાત્મક ન હોય તેવું ઉદાહરણ જોઈએ.

(2) ધારો કે એક પેટીમાં એક લાલ રંગનો, એક વાદળી રંગનો, એક પીળા રંગનો અને એક સફેદ રંગનો એમ ચાર દડા છે. ધારો કે લાલ રંગના દડાને R, વાદળી રંગના દડાને B, પીળા રંગના દડાને Y અને સફેદ રંગના દડાને W વડે દર્શાવવામાં આવે છે. એક વ્યક્તિ આ પેટીમાંથી ત્રણ દડા એક સાથે યાદચ્છિક રીતે પસંદ કરે છે. આ પ્રયોગ માટેનો નિદર્શ અવકાશ

 $U = \{RBY, RBW, BYW, WYR\}$ બનશે.

ધારો કે Uના ઘટક u માટે

 $X\left(u\right)=u$ માં સફેદ દડાની સંખ્યા લઈએ, તો $X\left(RBY\right)=0,\ X\left(RBW\right)=1,\ X\left(BYW\right)=1,\ X\left(WYR\right)=1$ મળે.

આમ, યાદ્દચ્છિક ચલ X ગણ $\{0, 1\}$ માંની કિંમત ધારણ કરે છે. અહીં નિદર્શ અવકાશના ઘટકો સંખ્યાત્મક નથી પરંતુ તેને આપણે યાદ્દચ્છિક ચલ દ્વારા વાસ્તવિક સંખ્યા સાથે સાંકળીએ છીએ.

(3) ધારો કે એક વર્ગના વિદ્યાર્થીઓની ઊંચાઈ 120 સેમીથી 180 સેમી સુધીની જ છે. જો આપણે આ વર્ગના કોઈ પણ વિદ્યાર્થીની ઊંચાઈ માપીએ, તો તે 120 સેમીથી 180 સેમી વચ્ચેની કોઈ પણ કિંમત ધારણ કરશે. $\text{અહીં } \text{ નિદર્શ અવકાશ } U = \left\{ u \, \middle| \, 120 \leq u \leq 180 \right\} \text{ બનશે.}$

જો પસંદ કરેલા વિદ્યાર્થીની ઊંચાઈને X વડે દર્શાવીએ તો Xએ X(u)=u= પસંદ કરેલ વિદ્યાર્થીની ઊંચાઈ (સેમીમાં) થાય. આમ X એ યાદસ્છિક ચલ બનશે તથા $X=x,120 \le x \le 180$ વડે દર્શાવીશું.

ઉપરના ઉદાહરણ (1) તથા ઉદાહરણ (2)માં યાદચ્છિક ચલ X ગણી શકાય તેટલી ચોક્કસ કિંમતો ધારણ કરે છે. જ્યારે ઉદાહરણ (3)માં યાદચ્છિક ચલ X એ અંતરાલ [120, 180]માંથી કોઈ પણ કિંમત ધારણ કરી શકે છે. આ યાદચ્છિક ચલ એ અગાઉનાં બે ઉદાહરણમાંના યાદચ્છિક ચલ કરતાં જુદો પડે છે.

આ યાદચ્છિક ચલો વચ્ચેનો તફાવત આપણે હવે નીચેના વિભાગમાં સમજીએ :

2.1.1 અસતત યાદચ્છિક ચલ (Discrete Random Variable)

જે યાદ્દચ્છિક ચલ X વાસ્તવિક સંખ્યા ગણ R ની સાન્ત સંખ્યામાં અથવા ગણ્ય અનન્ત કિંમતો ધારણ કરી શકે તેમ હોય તો તેવા ચલ X ને અસતત યાદચ્છિક ચલ કહેવાય.

દાખલા તરીકે (i) યાદચ્છિક રીતે પસંદ કરેલ વિદ્યાર્થીનું જન્મ વર્ષ

- (ii) 6 ઇંડાંઓવાળા એક બૉક્સમાં ભાંગી ગયેલાં ઇંડાંઓની સંખ્યા.
- હવે આપણે અસતત યાદચ્છિક ચલને વિશે કેટલાંક વિશેષ ઉદાહરણો દ્વારા સમજીએ.
- (1) ધારો કે એક બૉક્સમાં એક કાળા રંગનો અને બે સફ્રેદ રંગના દડા છે. ધારો કે કાળા રંગના દડાને B અને બે સફ્રેદ રંગના દડાને W_1 તથા W_2 વડે દર્શાવવામાં આવે છે. કોઈ એક વ્યક્તિ રૂપિયા 15 આપીને નીચેની ૨મત ૨મી શકે છે :

રમત રમનાર વ્યક્તિને આ બૉક્સમાંથી બે દડા યાદચ્છિક રીતે પુરવણી સહિત પસંદ કરવાનું કહેવામાં આવે છે. તેણે પસંદ કરેલ દડાના રંગ પ્રમાણે તેને નીચે પ્રમાણે નક્કી કરેલ રૂપિયા ચૂકવવામાં આવે છે :

જો સફ્રેદ રંગનો દડો પસંદ થાય તો પ્રત્યેક સફ્રેદ રંગના દડા દીઠ તેને ₹ 5 ચૂકવવામાં આવે છે અને જો કાળા રંગનો દડો પસંદ થાય તો કાળા રંગના દડા દીઠ રૂ. 15 ચૂકવવામાં આવે છે.

જો પ્રત્યેક ઘટનાને અનુરૂપ રમત રમનાર વ્યક્તિને રમત દ્વારા મળતી ચોખ્ખી રકમ (મેળવેલ રકમ - રમત માટે યૂકવેલ રકમ) ને આપણે X વડે દર્શાવીએ, તો X એ અસતત યાદૈચ્છિક ચલ બનશે. X એ ધારણ કરેલ કિંમતો નીચેના કોષ્ટકમાં દર્શાવી છે :

પ્રયોગનું પરિણામ (ઘટના)	રમત દ્વારા વ્યક્તિને મળતી રકમ	રમત રમવા માટે ચૂકવેલ રકમ	<i>X</i> ની કિંમત (રૂપિયા)
W_1W_1	5 + 5 = 10	15	$X(W_1W_1) = 10 - 15 = -5$
W_1W_2	5 + 5 = 10	15	$X(W_1W_2) = 10 - 15 = -5$
W_1B_1	5 + 15 = 20	15	$X(W_1B_1) = 20 - 15 = 5$
W_2W_1	5 + 5 = 10	15	$X(W_2W_1) = 10 - 15 = -5$
W_2W_2	5 + 5 = 10	15	$X(W_2W_2) = 10 - 15 = -5$
W_2B_1	5 + 15 = 20	15	$X(W_2B_1) = 20 - 15 = 5$
B_1W_1	15 + 5 = 20	15	$X(B_1W_1) = 20 - 15 = 5$
B_1W_2	15 + 5 = 20	15	$X(B_1W_2) = 20 - 15 = 5$
B_1B_1	15 + 15 = 30	15	$X(B_1B_1) = 30 - 15 = 15$

આમ, યાદ્દચ્છિક ચલ X એ ફકત -5, 5 અને 15 કિંમતો જ ધારણ કરે છે. એટલે કે Xની કુલ શક્ય કિંમતોની સંખ્યા સાન્ત છે.

(2) ધારો કે એક સિક્કો જ્યાં સુધી કાંટો (T) અથવા ચાર છાપ (H) મળે ત્યાં સુધી ઉછાળવામાં આવે છે. ધારો કે X એ સિક્કો ઉછાળવા માટેની જરૂરી પ્રયત્નોની સંખ્યા દર્શાવે છે.

અહીં યાદચ્છિક પ્રયોગ સાથે સંકળાયેલો નિદર્શ અવકાશ

 $U = \{T, HT, HHT, HHHT, HHHH\}$ બનશે.

અહીં યાદ્ય િછક ચલ X એ પ્રયોગ સાથે સંકળાયેલ સિક્કો ઉછાળવાની જરૂરી સંખ્યા દર્શાવે છે અને તે નિદર્શ અવકાશના ઘટકો માટે નીચે મુજબ 1, 2, 3 અને 4 કિંમતોમાંથી કોઈ એક કિંમત ધારણ કરે છે.

$$X(T) = 1, X(HT) = 2, X(HHT) = 3$$

$$X(HHHT) = 4, X(HHHHH) = 4$$

અહીં, અસતત યાદેચ્છિક ચલ *X*ની કુલ શક્ય કિંમતોની સંખ્યા સાન્ત છે.

(3) જ્યાં સુધી પ્રથમ વખત છાપ મળે ત્યાં સુધી સિક્કો ઉછાળવાનું ચાલુ રાખવાના પ્રયોગમાં પ્રથમ વખત છાપ મળતા પહેલાં મળતા કાંટાની સંખ્યાને યાદસ્છિક ચલ X લઈએ.

આ પ્રયોગમાં છાપ પ્રથમ પ્રયત્ને અથવા બીજા પ્રયત્ને અથવા ત્રીજા પ્રયત્ને.... આ જ રીતે પ્રથમ વખતે છાપ મેળવવા માટે અનન્ત વખત પ્રયત્ન કર્યા પછી પણ મળી શકે. એટલે કે આ પ્રયોગનો નિદર્શ અવકાશ

$$U = \{H, TH, TTH, TTTH, TTTTH, \dots\}$$
 થાય.

તેથી પ્રથમ વખત છાપ મેળવતા પહેલાં મળેલ કાંટાની સંખ્યા 0, 1, 2, 3, 4.... થશે.

આમ, યાદ્દચ્છિક ચલ X કુલ શક્ય ગણ્ય અનંત કિંમતો 0, 1, 2, 3, 4... માંથી કોઈ એક કિંમત ધારણ કરશે.

2.1.2 સતત યાદચ્છિક ચલ (Continuous Random Variable)

જે યાદેચ્છિક ચલ X વાસ્તવિક સંખ્યા ગણ R માં અથવા R ના કોઈ અંતરાલમાં કોઈ પણ કિંમત ધારણ કરી શકે તેવા ચલને સતત યાદેચ્છિક ચલ કહેવાય.

દાખલા તરીકે (i) એક 250 મિલિલીટરના કદવાળા કૉફી મગમાં ભરેલ કોફીનું ખરેખરું માપ.

(ii) બહુમાળી ઑફિસના બિલ્ડિંગમાં કોઈ પણ એક માળ પર લિફ્ટ માટેનો પ્રતીક્ષા-સમય.

સતત યાદચ્છિક ચલ વિશેનો વિશેષ ખ્યાલ આપણે નીચેનાં ઉદાહરણો દ્વારા મેળવીએ.

(1) 3 કલાકના સમયવાળી એક પરીક્ષા માટે કોઈ વિદ્યાર્થી દ્વારા લેવાતા સમયને યાદચ્છિક ચલ X વડે દર્શાવીએ તો અહીં નિદર્શ અવકાશ એ

$$U = \{u \mid 0 \le u \le 3\}$$
 બનશે.

કારણ કે કોઈ પણ વિદ્યાર્થી દ્વારા પરીક્ષા માટે લેવાતો સમય 0 થી 3 સુધીની કોઈ પણ વાસ્તવિક કિંમત બનશે. તથા યાદેચ્છિક ચલ X એ કોઈ વિદ્યાર્થી દ્વારા લેવાતો પરીક્ષા માટેનો ખરેખરો સમય એ પણ 0 થી 3 સુધીની કોઈ પણ વાસ્તવિક સંખ્યા જ બનશે.

આમ, અહીં

$$X(u) = u, 0 \le u \le 3$$
 થાય.

એટલે કે
$$X = x$$
, $0 \le x \le 3$

અહીં યાદચ્છિક ચલ X એ 0થી 3 સુધીની કોઈ પણ વાસ્તિવિક કિંમત ધારણ કરતો હોવાથી તે R નો ઘટક બને છે અને તેથી X એ સતત યાદચ્છિક ચલ બનશે.

(2) ધારો કે એક એક્સપ્રેસ હાઇવે ઉપર બે સ્ટેશનો A અને B આવેલાં છે. સ્ટેશન Aનું સ્ટેશન Bથી અંતર 200 કિમી છે. આ હાઇવે ઉપર સ્ટેશનો A અને B વચ્ચે બનતા અક્સ્માતનું સ્થાન સ્ટેશન A થી કેટલું દૂર છે તે જાણવાનો પ્રયોગ હાથ ધરીએ. સરળતા ખાતર ધારો કે Aનું સ્થાન 0 કિમી પર અને Bનું સ્થળ 200 કિમી પર છે. આ પ્રયોગ માટેનો નિદર્શ અવકાશ એ 0 અને 200 વચ્ચેની કોઈ પણ વાસ્તવિક સંખ્યા બનશે. તેથી આ પ્રયોગનો નિદર્શ અવકાશ નીચે મુજબ લખી શકાય.

$$U = \{ u \mid 0 \le u \le 200 \}$$

ધારો કે યાદચ્છિક ચલ X એ સ્ટેશન A અને સ્ટેશન B વચ્ચે કોઈ પણ સ્થળે બનતા અકસ્માતનું સ્ટેશન Aથી અંતર કિલોમીટરમાં દર્શાવે છે, તો યાદચ્છિક ચલ X નીચે મુજબ વ્યાખ્યાયિત થાય :

X(u) = સ્ટેશન <math>Aથી અકસ્માત સ્થળનું અંતર = u

ટૂંકમાં આપણે યાદચ્છિક ચલ X ને $X=x,\ 0\leq x\leq 200$ વડે દર્શાવી શકીએ.

અહીં યાદચ્છિક ચલ X એ 0 થી 200 સુધી કોઈ પણ વાસ્તવિક કિંમત ધારણ કરે છે, જે વાસ્તવિક સંખ્યાના ગણ R નો ઘટક બને છે અને તેથી X એ સતત યાદચ્છિક ચલ બનશે.

2.2 અસતત સંભાવના-વિતરણ (Discrete Probability Distribution)

ધારો કે $X:U\to R$ એ એક યાદચ્છિક ચલ છે, જે R ના ઉપગણ $(x_1,x_2,...,x_n)$ માંથી જ કોઈ એક કિંમત ધારણ કરી શકે છે. વળી, ધારો કે X એ ધારણ કરેલ કિંમત x_i ની સંભાવના $P(X=x_i)=p(x_i)$ છે. જો $p(x_i)>0$, i=1,2,...,n અને $\sum p(x_i)=1$ હોય, તો વાસ્તવિક કિંમતોના ગણ $\{x_1,x_2,...,x_n\}$ અને $\{p(x_1),p(x_2),....,p(x_n)\}$ ને યાદચ્છિક ચલ Xનું અસતત સંભાવના-વિતરણ કહે છે. યાદચ્છિક ચલ X ના અસતત સંભાવના-વિતરણને કોષ્ટકના રૂપમાં નીચે પ્રમાણે લખવામાં આવે છે.

X = x	x_1	x_2	****	x_i	•••	x_n
p(x)	$p(x_1)$	$p(x_2)$	****	$p(x_i)$		$p(x_n)$

અહીં $0 < p(x_i) < 1, i = 1, 2, ..., n$ અને $\sum p(x_i) = 1$

2.2.1 અસતત ચલના સંભાવના-વિતરણનાં ઉદાહરણો

ઉદાહરણ 1 : નીચે આપેલ કિંમતો એ અસતત ચલના સંભાવના–વિતરણ માટેની યોગ્ય કિંમતો છે કે નહિ તે નક્કી કરો :

અહીં અસતત ચલ X એ 1, 2, 3 કે 4 કિંમત જ ધારણ કરી શકે છે.

(i)
$$p(1) = 0.25$$
, $p(2) = 0.75$, $p(3) = 0.25$, $p(4) = -0.25$

(ii)
$$p(1) = 0.15$$
, $p(2) = 0.27$, $p(3) = 0.29$, $p(4) = 0.29$

(iii)
$$p(1) = \frac{1}{19}$$
, $p(2) = \frac{9}{19}$, $p(3) = \frac{3}{19}$, $p(4) = \frac{4}{19}$

- (i) અહીં P(4)ની કિંમત -0.25 એટલે ઋણ છે. જે અસતત સંભાવના-વિતરણની શરત $p(x_i) > 0$, i = 1, 2, 3, 4 નું સમાધાન કરતી નથી. તેથી આપેલ કિંમતો એ અસતત ચલના સંભાવના-વિતરણ માટે યોગ્ય નથી અને આમ આપેલ વિતરણ એ અસતત ચલનું સંભાવના-વિતરણ ન કહેવાય.
 - (ii) અહીં x ની દરેક કિંમતો 1, 2, 3 અને 4 માટે p(x) > 0 છે તથા p(1) + p(2) + p(3) + p(4) = 1 છે.

આમ અસતત ચલના સંભાવના-વિતરણની બંને શરતોનું પાલન થાય છે તેથી આપેલ કિંમતો યોગ્ય છે અને આપેલ વિતરણ એ અસતત ચલનું સંભાવના-વિતરણ છે.

(iii) અહીં $p(x_i) > 0, i = 1, 2, 3, 4$ માટે થાય છે. પરંતુ સંભાવનાનો સરવાળો એટલે કે

 $p(1) + p(2) + p(3) + p(4) = \frac{17}{19}$ થાય છે, જે 1 થતો ન હોવાથી આપેલ કિંમતો સંભાવના-વિતરણ માટે યોગ્ય નથી અને આમ આપેલ વિતરણ એ અસતત ચલનું સંભાવના-વિતરણ ન કહેવાય.

ઉદાહરણ 2 : નીચે આપેલ વિતરણ એ અસતત ચલનું સંભાવના-વિતરણ ક્યારે બને તે નક્કી કરો. તે પરથી x=2 માટેની સંભાવના મેળવો :

$$p(x) = c\left(\frac{1}{4}\right)^x$$
, $x = 1, 2, 3, 4$

અહીં
$$p(1) = c\left(\frac{1}{4}\right)$$
, $p(2) = c\left(\frac{1}{4}\right)^2 = c\left(\frac{1}{16}\right)$, $p(3) = c\left(\frac{1}{4}\right)^3 = c\left(\frac{1}{64}\right)$, $p(4) = c\left(\frac{1}{4}\right)^4 = c\left(\frac{1}{256}\right)$ થાય.

આંકડાશાસ્ત્ર : ભાગ 2 : ધો. 12

હવે અસતત સંભાવના-વિતરણ માટે સંભાવનાનો કુલ સરવાળો 1 થવો જોઈએ. એટલે કે

$$p(1) + p(2) + p(3) + p(4) = 1$$
 થવું જોઈએ.

$$\therefore c\left(\frac{1}{4}\right) + c\left(\frac{1}{16}\right) + c\left(\frac{1}{64}\right) + c\left(\frac{1}{256}\right) = 1$$

$$\therefore c \left[\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \frac{1}{256} \right] = 1$$

$$\therefore c \left\lceil \frac{85}{256} \right\rceil = 1$$

$$c = \frac{256}{85}$$

તેથી જ્યારે $c=\frac{256}{85}$ હોય ત્યારે આપેલ વિતરણ એ અસતત ચલનું સંભાવના-વિતરણ થાય.

હવે
$$P(X=2)=c\left(\frac{1}{4}\right)^2$$
$$=\frac{256}{85} \times \frac{1}{16}$$
$$=\frac{16}{85}$$
 મળે.

∴x=2 માટેની સંભાવના $\frac{16}{85}$ થાય.

ઉદાહરણ 3 : યાદચ્છિક ચલ X એ એક કંપનીમાં થતા વાર્ષિક અકસ્માતની સંખ્યા દર્શાવે છે. તેનું સંભાવના વિતરણ નીચે મુજબ આપેલ છે :

X = x	0	1	2	3	4
p(x)	4 K	15 <i>K</i>	25 K	5 K	K

- (i) અચળાંક K શોધો અને સંભાવના-વિતરણ ફરીથી લખો.
- (ii) આ કંપનીમાં વાર્ષિક એક અથવા બે અકસ્માત બને તે ઘટનાની સંભાવના શોધો.
- (iii) આ કંપનીમાં વર્ષ દરમિયાન એક પણ અકસ્માત ન બને તે ઘટનાની સંભાવના શોધો.
- (i) અસતત સંભાવના-વિતરણની વ્યાખ્યા મુજબ

$$p(0) + p(1) + p(2) + p(3) + p(4) = 1$$
 થવું જોઈએ એટલે કે

$$4K + 15K + 25K + 5K + K = 1$$

$$\therefore 50 K = 1$$

$$\therefore K = \frac{1}{50}$$

$$= 0.02$$

આમ, K=0.02 હોય તો આપેલ વિતરણ એ અસતત ચલનું સંભાવના-વિતરણ બને જે નીચે પ્રમાણે મળે છે:

X = x	0	1	2	3	4	કુલ
p(x)	0.08	0.30	0.50	0.10	0.02	1

(ii) એક અથવા બે અકસ્માત બને તે ઘટનાની સંભાવના

$$= P(X=1) + P(X=2)$$

$$= 0.30 + 0.50$$

$$= 0.80$$

(iii) એક પણ અકસ્માત ન બને તે ઘટનાની સંભાવના

$$= P(X=0)$$

= 0.08

ઉદાહરણ 4 : એક ફેક્ટરીમાં ઉત્પાદિત થયેલ બ્લેડ્સમાંથી 50 બ્લેડ્સના એક એવા પૅકેટેસ બનાવવામાં આવે છે. ગુણવત્તા નિયંત્રણ ઇજનેર આવા તૈયાર થયેલા પૅકેટ્સમાંથી યાદચ્છિક રીતે એક પૅકેટ પસંદ કરે છે અને તેમાંની બધી જ બ્લેડની તપાસ કરે છે. જો પસંદ કરેલા પૅકેટમાંથી 4 કે તેથી વધુ ખામીવાળી બ્લેડ્સ મળી આવે તો તે પૅકેટને અસ્વીકાર્ય ગણવામાં આવે છે. પૅકેટમાંથી મળતી ખામીવાળી બ્લેડ્સની સંખ્યાનું સંભાવના-વિતરણ નીચે મુજબ આપેલ છે.

પૅકેટમાં ખામીવાળી બ્લેડ્સની સંખ્યા	0	1	2	3	4	5	6 કે તેથી વધુ
સંભાવના	9 K	3 <i>K</i>	3 <i>K</i>	2 K	2 K	K - 0.02	0.02

આપેલ સંભાવના-વિતરણ પરથી

- (i) અચળાંક K શોધો.
- (ii) યાદચ્છિક રીતે પસંદ કરેલ પૅકેટ ગુણવત્તા-નિયંત્રણ ઇજનેર દ્વારા સ્વીકાર્ય બને તે ઘટનાની સંભાવના શોધો.
- (i) અહીં X = તપાસ દરમિયાન પસંદ કરેલ પૅકેટમાંથી મળતી ખામીવાળી બ્લેડની સંખ્યા લઈએ. અસતત સંભાવના-વિતરણની વ્યાખ્યા મુજબ

$$\therefore$$
 9K + 3K + 3K + 2K + 2K + K - 0.02 + 0.02 = 1

$$\therefore 20 K = 1$$

$$K = \frac{1}{20} = 0.05$$

(ii) યાદચ્છિક રીતે પસંદ કરેલ પૅકેટ ગુણવત્તા નિયંત્રણ ઇજનેર દ્વારા ત્યારે જ સ્વીકાર્ય બને જ્યારે તે પૅકેટમાં 3 કે તેથી ઓછી ખામીવાળી બ્લેડ્સ મળે.

$$\therefore P(X \leq 3)$$

$$= p(0) + p(1) + p(2) + p(3)$$

$$=9 K + 3 K + 3 K + 2 K$$

$$=17 K$$

$$= 0.85 \quad (:: K = 0.05)$$

ઉદાહરણ 5 : એક બૉક્સમાં 4 લાલ અને 2 સફેદ દડા છે. તેમાંથી 2 દડા યાદચ્છિક રીતે પુરવણી વગર પસંદ કરવામાં આવે છે. પસંદ કરેલ દડામાં મળતા સફેદ દડાની સંખ્યાનું સંભાવના-વિતરણ મેળવો.

ધારો કે X એ પસંદ કરેલા બે દડામાં મળતા સફેદ દડાની સંખ્યા દર્શાવે છે. અહીં X એ 0, 1 અને 2 કિંમતો ધારણ કરી શકે છે.

અહીં X=0 એટલે કે પસંદ કરેલા બે દડામાં એક પણ દડો સફેદ ન હોય, એટલે કે બંને દડા લાલ રંગના હોય.

$$P(X=0) = P(2 \text{ ele } \epsilon sl) = \frac{{}^{4}C_{2}}{{}^{6}C_{2}} = \frac{6}{15}$$

હવે x=1 એટલે કે પસંદ કરેલા બે દડામાં એક દડો સદ રંગનો અને એક દડો લાલ રંગનો હોય.

$$\therefore P(X=1) = P(1) + \Re \varepsilon$$
, 1 લાલ)

$$= \frac{{}^{2}C_{1} \times {}^{4}C_{1}}{{}^{6}C_{2}}$$

$$=\frac{2\times4}{15}=\frac{8}{15}$$

અને X=2 એટલે કે પસંદ કરેલા બંને દડા સફેદ રંગના હોય.

$$\therefore P(X=2) = P(2 + 3)$$

$$=\frac{{}^{2}C_{2}}{{}^{6}C_{2}}$$

$$=\frac{1}{15}$$

આમ, યાદેચ્છિક ચલ Xનું સંભાવના-વિતરણ નીચે મુજબ લખી શકાય :

X = x	0	1	2
p(x)	<u>6</u> 15	$\frac{8}{15}$	1 15

$$p(x) > 0$$
 અને $\sum p(x) = 1$

2.2.2 મધ્યક અને વિચરણ

હવે આપણે અસતત યાદ્યચ્છિક ચલના સંભાવના-વિતરણ પર આધારિત અગત્યના બે પરિણામોની ચર્ચા કરીશું. જેમાંનું એક પરિણામ છે યાદ્યચ્છિક ચલનો મધ્યક (સરેરાશ કિંમત) અને બીજું છે યાદ્યચ્છિક ચલનું વિચરણ.

ધારો કે X એ અસતત યાદચ્છિક ચલ છે જે $x_1, x_2,, x_n$ કિંમતોમાંથી જ કોઈ એક કિંમત ધારણ કરે છે અને તેનું સંભાવના-વિતરણ નીચે પ્રમાણે છે :

X = x	x_1	x_2	 x_i	 x_n
p(x)	$p(x_1)$	$p(x_2)$	 $p(x_i)$	 $p(x_n)$

જ્યાં
$$0 < p(x_i) < 1, i = 1, 2, ..., n$$
 તથા $\sum p(x_i) = 1$

અસતત યાદ્દચ્છિક ચલ X ના મધ્યકને μ અથવા E(X) વડે દર્શાવવામાં આવે છે, જે નીચે પ્રમાણે વ્યાખ્યાયિત થાય છે :

$$\mu = E(X) = \sum x_i p(x_i)$$

આ કિંમતને અસતત ચલ X ની અપેક્ષિત કિંમત પણ કહેવામાં આવે છે.

અસતત યાદેચ્છિક ચલ X નું વિચરણને σ^2 અથવા V(X) વડે દર્શાવવામાં આવે છે, જે નીચે પ્રમાણે વ્યાખ્યાયિત થાય છે.

$$\sigma^{2} = V(X) = E(X - \mu)^{2}$$
$$= E(X^{2}) - (\mu)^{2}$$
$$= E(X^{2}) - (E(X))^{2}$$

જ્યાં $E(X^2) = \sum x_i^2 p(x_i)$ છે.

નોંધ : (i) અહીં આપણે સરળતા ખાતર નીચે મુજબના સંકેતો વાપરીશું :

$$\sum x_i p(x_i)$$
ને બદલે $\sum x p(x)$

તથા

$$\sum x_i^2 p(x_i)$$
 ને બદલે $\sum x^2 p(x)$

- (ii) અહીં ચલ X ના મધ્યક અને વિચરણને અનુક્રમે X ના વિતરણના પણ મધ્યક અને વિચરણ કહે છે.
- (iii) ચલ X ના વિચરણનું મૂલ્ય હંમેશાં ધન હોય છે.

અસતત સંભાવના-વિતરણના મધ્યક અને વિચરણ શોધવાના નીચેનાં ઉદાહરણો જોઈએ.

ઉદાહરણ 6 : નીચે આપેલ અસતત સંભાવના-વિતરણ માટે અચળ C શોધી આ વિતરણના મધ્યક અને વિચરણ મેળવો.

$$p(x) = C \cdot {}^{4}P_{x}, x = 0, 1, 2, 3, 4$$

અસતત સંભાવના-વિતરણના ગુણધર્મ પરથી

$$p(0) + p(1) + p(2) + p(3) + p(4) = 1$$
 થવું જોઈએ.

$$\therefore C \cdot {}^{4}P_{0} + C \cdot {}^{4}P_{1} + C \cdot {}^{4}P_{2} + C \cdot {}^{4}P_{3} + C \cdot {}^{4}P_{4} = 1$$

$$\therefore C\left[\frac{4!}{4!} + \frac{4!}{3!} + \frac{4!}{2!} + \frac{4!}{1!} + \frac{4!}{0!}\right] = 1$$

$$\therefore C[1+4+12+24+24] = 1$$

$$\therefore C[65] = 1$$

$$\therefore C = \frac{1}{65}$$

આમ સંભાવના-વિતરણ કોષ્ટક સ્વરૂપે નીચે મુજબ લખી શકાય.

X = x	0	1	2	3	4	કુલ
p(x)	<u>1</u> 65	<u>4</u> 65	12 65	<u>24</u> 65	<u>24</u> 65	1

હવે વિતરણનો મધ્યક $=\mu = \sum xp(x)$

$$=0\left(\frac{1}{65}\right)+1\left(\frac{4}{65}\right)+2\left(\frac{12}{65}\right)+3\left(\frac{24}{65}\right)+4\left(\frac{24}{65}\right)$$

$$=\frac{0+4+24+72+96}{65}$$

$$=\frac{196}{65}$$

હવે આપણે $E\left(X^{2}\right)$ શોધીશું.

$$E(X^2) = \sum x^2 p(x)$$

$$= \left(0\right)^{2} \left(\frac{1}{65}\right) + \left(1\right)^{2} \left(\frac{4}{65}\right) + \left(2\right)^{2} \left(\frac{12}{65}\right) + \left(3\right)^{2} \left(\frac{24}{65}\right) + \left(4\right)^{2} \left(\frac{24}{65}\right)$$

$$=0+\frac{4}{65}+\frac{48}{65}+\frac{216}{65}+\frac{384}{65}$$

$$=\frac{652}{65}$$

તેથી વિતરણનું વિચરણ =V(X)

$$= E(X^2) - (E(X))^2$$

$$=\frac{652}{65}$$
 - $\left(\frac{196}{65}\right)^2$

$$=\frac{42380 - 38416}{4225} = \frac{3964}{4225}$$

ઉદાહરણ 7 : એક બૉક્સમાં એક લીલો અને બે લાલ રંગના દડા છે. તેમાંથી બે દડા યાદચ્છિક રીતે પુરવણી સહિત પસંદ કરવામાં આવે છે. પસંદ કરેલા બે દડામાં મળતા લાલ રંગના દડાનું સંભાવના-વિતરણ મેળવો તથા તેના મધ્યક અને વિચરણ પણ મેળવો.

પસંદ કરેલા બે દડાઓમાં મળતા લાલ રંગના દડાની સંખ્યાને આપણે X વડે દર્શાવીએ, તો Xનું સંભાવના-વિતરણ નીચે મુજબ મેળવીએ.

બૉક્સમાંના બે લાલ દડાને આપણે R_1 અને R_2 સંજ્ઞા વડે દર્શાવીએ તથા એક લીલા રંગના દડાને G વડે દર્શાવીએ.

હવે પસંદ કરેલા બે દડાઓમાં મળતા લાલ રંગના દડાની સંખ્યા અને તેની સંભાવના નીચેના કોષ્ટક મુજબ મેળવી શકાય:

પસંદ થયેલ બે દડા	ઘટનાની સંભાવના	X = x
(ઘટના)		
(40.11)		
R_1R_1	$\frac{1}{9}$	2
	9	
R_1R_2	$\frac{1}{9}$	2
	9	
R_1G	$\frac{1}{9}$	1
	9	·
R_2R_1	$\frac{1}{9}$	2
2 1	9	-
R_2R_2	$\frac{1}{9}$	2
2 2	9	2
R_2G	1	1
	$\frac{1}{9}$	1
GR_1	1	,
	$\frac{1}{9}$	1
GR_2	1	
	$\frac{1}{9}$	1
GG	1	
	$\frac{1}{9}$	0

ઉપરના કોષ્ટક પરથી કહી શકાય કે, આપણે પસંદ કરેલા બે દડામાં

(i) 0 લાલ દડા મળે તે ઘટનાની સંભાવના

$$=P(X=0)$$

$$=\frac{1}{9}$$

(ii) 1 લાલ દડો મળે તે ઘટનાની સંભાવના

$$= P(X=1)$$

$$= \frac{1}{9} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9}$$

$$=\frac{4}{9}$$

(iii) 2 લાલ દડો મળે તે ઘટનાની સંભાવના

$$= P(X=2)$$

$$= \frac{1}{9} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9}$$

$$=\frac{4}{9}$$

આમ, X સંભાવના-વિતરણ કોષ્ટક સ્વરૂપે નીચે મુજબ લખાય

X = x	0	1	2	કુલ.
p(x)	<u>1</u>	<u>4</u> 9	<u>4</u> 9	1

હવે વિતરણનો મધ્યક
$$=\mu=E(X)$$
 $=\Sigma\,x\,p(x)$ $=0\left(\frac{1}{9}\right)+1\left(\frac{4}{9}\right)+2\left(\frac{4}{9}\right)$ $=\frac{0+4+8}{9}$ $=\frac{12}{9}$

હવે વિચરણ શોધવા માટે આપણે પહેલાં $Eig(X^2ig)$ મેળવીએ.

$$E(X^{2}) = \sum x^{2} p(x)$$

$$= 0^{2} \left(\frac{1}{9}\right) + 1^{2} \left(\frac{4}{9}\right) + 2^{2} \left(\frac{4}{9}\right)$$

$$= \frac{0 + 4 + 16}{9}$$

$$= \frac{20}{9}$$

તેથી, $V(X) = E(X^2) - (E(X))^2$ સૂત્ર પરથી

$$V(X) = \frac{20}{9} - \left(\frac{12}{9}\right)^2$$
$$= \frac{20}{9} - \frac{144}{81}$$
$$= \frac{180 - 144}{81}$$
$$= \frac{36}{81}$$

ઉદાહરણ 8 ઃ એક બૉક્સમાં 2 કાળા અને 2 સફેદ દડા છે. તેમાંથી 2 દડા યાદચ્છિક રીતે પુરવણી વગર પસંદ કરવામાં આવે છે, તો પસંદ કરેલ દડામાં સફેદ રંગના દડાની સંખ્યાનું સંભાવના-વિતરણ મેળવો. તે પરથી તેના મધ્યક અને વિચરણ મેળવો.

ધારો કે X= પસંદ કરેલા બે દડામાં મળતા સફેદ રંગના દડાની સંખ્યા લઈએ, તો સંભાવનાના સૂત્ર મુજબ (i) X=0 થાય, તેની સંભાવના

$$=P(X=0)=P$$
 (0 સફેદ દડા મળે) $=\frac{{}^{2}C_{0}}{{}^{4}C_{2}}=\frac{1}{6}$

(ii)
$$X=1$$
 થાય. તે ઘટનાની સંભાવના
$$=P\big(X=1\big)=P\,\big(1\ \ \text{સફેદ દડો અને }1\ \text{ કાળો દડો}\big)$$

$$=\ \frac{{}^2C_1\times{}^2C_1}{{}^4C_2}$$

$$=\ \frac{2\times 2}{6}$$

$$=\ \frac{4}{6}$$

(iii)
$$X=2$$
 થાય. તે ઘટનાની સંભાવના $=P\big(X=2\big)=P\big(2\,$ સફેદ દડા $\big)=\frac{{}^2C_2}{{}^4C_2}$

આમ યાદચ્છિક ચલ Xનું સંભાવના-વિતરણ નીચે મુજબ કોષ્ટક સ્વરૂપે લખાય.

X = x	0	1	2	કુલ,
p(x)	$\frac{1}{6}$	$\frac{4}{6}$	$\frac{1}{6}$	1

હવે સંભાવના-વિતરણનો મધ્યક =E(X)

$$= \sum x p(x)$$

$$= 0 \left(\frac{1}{6}\right) + 1\left(\frac{4}{6}\right) + 2\left(\frac{1}{6}\right)$$

$$= \frac{0+4+2}{6}$$

$$= 1$$

હવે સંભાવના-વિતરણનું વિચરણ શોધવા માટે આપણે $E\left(X^{2}\right)$ શોધીએ.

$$E(X^{2}) = \sum x^{2} p(x)$$

$$= 0^{2} \left(\frac{1}{6}\right) + 1^{2} \left(\frac{4}{6}\right) + 2^{2} \left(\frac{1}{6}\right)$$

$$= \frac{0 + 4 + 4}{6}$$

$$= \frac{8}{6}$$

$$\therefore V(X) = E(X^2) - (E(X))^2$$

$$= \frac{8}{6} - (1)^2 \qquad (\because E(X) = 1)$$

$$= \frac{8 - 6}{6}$$

$$= \frac{2}{6}$$

$$= \frac{1}{3}$$

ઉદાહરણ 9 : ધારો કે X એ એક સાથે બે પાસાઓને ઉછાળતા મળતાં પરિણામો પૈકી મહત્તમ અંક દર્શાવે છે. તો ચલ X નું સંભાવના–વિતરણ મેળવો તથા તેનો મધ્યક અને વિચરણ શોધો.

બે પાસાઓને એક સાથે ઉછાળવાથી તેના નિદર્શ અવકાશ Uમાં આપણને 36 ઘટકો મળે તથા મળતા દરેક પરિણામમાં મહત્તમ પૂર્ણાંક 1, 2, 3, 4, 5 અથવા 6માંથી કોઈ એક અંક આવી શકે.

નીચેનું કોષ્ટક ચલ X માટેની બનતી શક્ય ઘટના તથા તેની સંભાવના આપે છે :

<i>U</i> નો ઘટક <i>u</i>	મહત્તમ પૂર્ણાંક	P(X=x)
	X(u)=x	
(1, 1)	1	$\frac{1}{36}$
(1, 2), (2, 1), (2, 2)	2	$\frac{3}{36}$
(1, 3), (2, 3), (3, 3) (3, 2), (3, 1)	3	$\frac{5}{36}$
(1, 4), (2, 4), (3, 4), (4, 4)		
(4, 3), (4, 2), (4, 1)	4	$\frac{7}{36}$
(1, 5), (2, 5), (3, 5), (4, 5), (5, 5)		
(5, 4), (5, 3), (5, 2), (5, 1)	5	$\frac{9}{36}$
(1, 6), (2, 6), (3, 6), (4, 6), (5, 6)		
(6, 6), (6, 5), (6, 4), (6, 3), (6, 2)	6	$\frac{11}{36}$
(6, 1)		
		કુલ 1

હવે
$$X$$
નો મધ્યક = $E(X)$
= $\Sigma x p(x)$
= $1\left(\frac{1}{36}\right) + 2\left(\frac{3}{36}\right) + 3\left(\frac{5}{36}\right) + 4\left(\frac{7}{36}\right) + 5\left(\frac{9}{36}\right) + 6\left(\frac{11}{36}\right)$
= $\frac{161}{36}$
હવે $E(X^2) = \Sigma x^2 p(x)$
= $1^2\left(\frac{1}{36}\right) + 2^2\left(\frac{3}{36}\right) + 3^2\left(\frac{5}{36}\right) + 4^2\left(\frac{7}{36}\right) + 5^2\left(\frac{9}{36}\right) + 6^2\left(\frac{11}{36}\right)$
= $\frac{791}{36}$
 X મું વિચરણ = $V(X)$
= $E(X^2) - (E(X))^2$

$$= \frac{791}{36} - \left(\frac{161}{36}\right)^2$$

$$= \frac{791}{36} - \frac{25921}{1296}$$

$$= \frac{28476 - 25921}{1296}$$

$$= \frac{2555}{1296}$$

ઉદાહરણ 10 : એક આયુષ્ય કોષ્ટક પરથી માલૂમ પડે છે કે, 40 વર્ષની ઉંમરની એક વ્યક્તિ વધુ એક વર્ષ જીવે તેની સંભાવના 0.95 છે. જીવન વીમાકંપની એક વર્ષ માટે રૂ. 10,000ની પૉલિસી આવી વ્યક્તિને વેચવા ઇચ્છે છે. આ પૉલિસીનું વાર્ષિક પ્રીમિયમ કેટલું રાખવું જોઈએ કે જેથી કંપનીને થતો અપેક્ષિત લાભ ઓછામાં ઓછી ધન સંખ્યામાં આવે ?

ધારો કે X એ કંપનીનો લાભ દર્શાવે છે તથા પૉલિસીનું વાર્ષિક પ્રીમિયમ \mathbf{T} \mathbf{K} છે, $\mathbf{K} > 0$ તેથી જો 40 વર્ષની એક વ્યક્તિ વધુ એક વર્ષ જીવે, તો કંપનીને થતો લાભ X = K બને.

અને જો 40 વર્ષની વ્યક્તિ એક વર્ષ દરિમયાન મૃત્યુ પામે તો કંપનીને થતો લાભ $X\!=\!K\!-\!10,\!000$ બને. આમ, કંપનીને થતા લાભનું સંભાવના-વિતરણ નીચે પ્રમાણે મળે :

X = x	K	K-10000
p(x)	0.95	0.05

તેથી કંપનીને થતો અપેક્ષિત લાભ

$$= E(X)$$

$$= \sum x p(x)$$

$$= K(0.95) + (K-10,000)(0.05)$$

$$= K(0.95) + K(0.05) - 500$$

$$= K(0.95 + 0.05) - 500$$

$$= K - 500$$

હવે અપેક્ષિત લાભ ધન થવા માટે

$$K - 500 > 0$$
 થવું જોઈએ.

$$\therefore K > 500$$

તેથી કંપનીએ વાર્ષિક પ્રીમિયમ ₹ 500થી વધુ રાખવું જોઈએ. જેથી કંપનીને થતો અપેક્ષિત લાભ હંમેશાં ધન સંખ્યામાં આવે.

સ્વાધ્યાય 2.1

1. નીચે આપેલ વિતરણ એ અસતત ચલ X માટેનું સંભાવના-વિતરણ છે કે નહિ તે ચકાસો.

$$p(x) = \frac{x+2}{25}$$
, $x=1, 2, 3, 4, 5$

2. નીચે આપેલ વિતરણ એ ચલ X નું સંભાવના-વિતરણ હોય, તો અચળાંક K શોધો.

$$p(x) = \frac{6 - |x - 7|}{K}, \quad x = 4, 5, 6, 7, 8, 9, 10$$

3. એક યાદચ્છિક ચલ X નું સંભાવના-વિતરણ નીચે મુજબ વ્યાખ્યાયિત છે.

$$p(x) = \frac{K}{(x+1)!}$$
, $x = 1, 2, 3$; $K =$ અચળાંક,

તો તે પરથી (i) અચળાંક K શોધો (ii) P(1 < X < 4) મેળવો.

4. એક યાદચ્છિક ચલ X નું સંભાવના-વિતરણ નીચે મુજબ છે.

X = x	-2	-1	0	1	2
p(x)	<u>K</u> 3	<u>K</u> 3	<u>K</u> 3	2 <i>K</i>	4 <i>K</i>

તો (i) અચલ Kની સ્વીકાર્ય કિંમત નક્કી કરો. (ii) વિતરણનો મધ્યક શોધો.

5. એક યાદેચ્છિક ચલ X નું સંભાવના-વિતરણ P(x) છે. ચલ X એ $x_1 = -2$, $x_2 = -1$, $x_3 = 1$ અને $x_4 = 2$ કિંમતો ધારણ કરી શકે છે તથા જો

$$4p(x_1) = 2p(x_2) = 3p(x_3) = 4p(x_4)$$
 હોય તો આ સંભાવના-વિતરણનો મધ્યક અને વિચરણ મેળવો.

- 6. એક પાસાને બે વખત યાદચ્છિક રીતે ઉછાળવામાં આવે છે. બંને વખતે પાસા પર મળતા અંકના સરવાળા માટેનું સંભાવના-વિતરણ મેળવો તથા તે સરવાળાની અપેક્ષિત કિંમત મેળવો.
- 7. એક પેટીમાં 4 લાલ અને 2 વાદળી દડા છે. એક સાથે યાદ્દચ્છિક રીતે 3 દડા પસંદ કરવામાં આવે છે. જો X એ પસંદ કરેલ દડામાં મળતા લાલ રંગના દડાની સંખ્યા દર્શાવે, તો Xનું સંભાવના-વિતરણ મેળવો તથા પસંદગી પામેલ દડામાં લાલ રંગના દડાની અપેક્ષિત સંખ્યા શોધો.
- 8. એક સિક્કો જ્યાં સુધી છાપ મળે ત્યાં સુધી અથવા તો 5 કાંટા મળે ત્યાં સુધી ઉછાળવામાં આવે છે. જો યાદચ્છિક યલ X એ સિક્કાને કેટલી વખત ઉછાળવાની જરૂર પડશે તે દર્શાવે તો યાદચ્છિક ચલ X નું સંભાવના-વિતરણ મેળવો અને તેના મધ્યક તથા વિચરણની ગણતરી કરો.
- 9. એક દુકાનદાર પાસે એક પેટીમાં 6 ટિકિટો છે. તેમાંથી બે ટિકિટો 10 રૂપિયાના ઇનામવાળી છે અને બાકીની ટિકિટો 5 રૂપિયાના ઇનામવાળી છે. જો પેટીમાંથી એક ટિકિટ યાદચ્છિક રીતે પસંદ કરવામાં આવે, તો ઇનામનું અપેક્ષિત મૂલ્ય શોધો.

79

2.3 દ્વિપદી સંભાવના-વિતરણ (Binomial Probability Distribution)

અગાઉના પરિચ્છેદોમાં આપણે સતત તથા અસતત યાદ્દચ્છિક ચલ અને અસતત યાદ્દચ્છિક ચલના સંભાવના-વિતરણ વિશે જોઈ ગયાં. હવે આપણે અસતત યાદ્દચ્છિક ચલના એક અગત્યના સંભાવના-વિતરણનો અભ્યાસ કરીશું.

કેટલાક યાદેચ્છિક પ્રયોગનાં પરિણામોમાં બે જ વિકલ્પ હોય છે. આ પરિણામોને આપણે સફળતા અને નિષ્ફળતા કહીશું. આ પરિણામો પરસ્પર નિવારક હોય છે. આવા પ્રયોગને આપણે દ્વિવિધ વિકલ્પના પ્રયોગો કહીશું. આવી કેટલીક પરિસ્થિતિઓના દેષ્ટાંત નીચેના કોષ્ટકમાં આપેલ છે :

	પ્રયોગ	શક્ય	પરિશામો	
	પ્રયાગ	સફળતા	નિષ્ફળતા	
(i)	ઉત્પાદિત એકમોનું વેચાણ વધારવા માટે આપેલ જાહેરાતની અસર જાણવી	વેચાણ વધ્યું	વેચાણ ન વધ્યું	
(ii)	ટાઇપ રાઇટરે ટાઇપ કરેલ પત્રમાં ભૂલ શોધવી.	ભૂલ મળે	ભૂલ ન મળે	
(iii)	ઊંચા લોહીના દબાણવાળા દર્દીને આપેલ દવાની તેના લોહીના દબાણ ઉપર થતી અસર જાણવી.	લોહીનું દબાણ ઘ <i>ટ</i> ચું	લોહીનું દબાણ ન ઘટ્યું	
(iv)	કોઈ ઉત્પાદિત એકમ ખામીવાળો છે કે નહિ તે તપાસવું.	એકમ ખામીવાળો છે	એકમ ખામીવાળો નથી	

આવા દ્વિવિધ વિકલ્પવાળા પ્રયોગ માટે આપણે સફળતાને S અને નિષ્ફળતાને F સંજ્ઞા વડે દર્શાવીએ તથા તે ઘટનાઓ માટેની સંભાવનાને અનુક્રમે p અને q વડે દર્શાવીએ તો

$$p\left(S\right) = p \quad \text{den} \quad p\left(F\right) = q, \ 0$$

આવા પ્રયોગનાં પરિણામો ફક્ત બે જ હોવાથી અને બંને પરસ્પર નિવારક હોવાથી p+q=1 થાય અને તેથી q=1-p થશે.

આવા દ્વિવિધ વિકલ્પવાળા યાદેચ્છિક પ્રયોગનું n વખત પુનરાવર્તન શક્ય બનતું હોય અને દરેક પુનરાવર્તન લગભગ સમાન પરિબળો હેઠળ થતું હોય તો દરેક પ્રયત્ને સફળતાની સંભાવના p અચળ રહેશે. આવા પ્રયત્નોને આપણે બર્નોલી પ્રયત્નો (Bernoulli Trials) કહીશું. જેની સ્પષ્ટ વ્યાખ્યા નીચે મુજબ આપી શકાય :

બર્નોલી પ્રયત્નો : ધારો કે એક દ્વિવિધ વિકલ્પવાળા યાદચ્છિક પ્રયોગનાં બે શક્ય પરિણામો સફળતા (S) અને નિષ્ફળતા (F) છે. જો આ પ્રયોગનું સમાન પરિસ્થિતિ હેઠળ પુનરાવર્તન કરવામાં આવે અને દરેક પ્રયત્ને સફળતાની સંભાવના p(0 અચળ હોય તો આવા પ્રયત્નોને બર્નોલી પ્રયત્નો કહેવામાં આવે છે.

બર્નોલી પ્રયત્નોના ગુણધર્મો

- (1) દરેક બર્નોલી પ્રયત્ને મળતી સફળતાની સંભાવના અચળ હોય છે.
- (2) બર્નોલી પ્રયત્નો પરસ્પર નિરપેક્ષ છે. એટલે કે કોઈ પણ પ્રયત્ને મળતી સફળતા કે નિષ્ફળતા તેની અગાઉના પ્રયત્ને મળેલ સફળતા કે નિષ્ફળતા પર આધારિત નથી.
- (3) સફળતા અને નિષ્ફળતા બંને પરસ્પર નિવારક અને નિઃશેષ ઘટનાઓ છે એટલે q=1-p થાય.

80

દ્વિપદી સંભાવના-વિતરણ :

ધારો કે n બર્નોલી પ્રયત્નોમાં મળતી સફળતા (S) અને નિષ્ફળતા (F)ની શ્રેણીમાં મળતી સફળતાની સંખ્યાને X વડે દર્શાવીએ, તો Xને દ્વિપદી યાદેચ્છિક ચલ (Binomial Random Variable) કહેવામાં આવે છે તથા X એ સાન્ત ગણ $\{0, 1, 2,, n\}$ માંથી કોઈ પણ એક કિંમત ધારણ કરી શકે છે. દ્વિપદી યાદેચ્છિક ચલ Xનું સંભાવના-વિતરણ નીચેના સૂત્ર દ્વારા વ્યાખ્યાયિત થાય છે :

$$P(X = x) = p(x) = {}^{n}C_{x}p^{x}q^{n-x}, x = 0, 1, 2, ..., n, 0$$

આ સંભાવના-વિતરણને દ્વિપદી સંભાવના-વિતરણ (Binomial Probability Distribution) કહેવામાં આવે છે. આપણે આ વિતરણને ટૂંકમાં દ્વિપદી વિતરણ કહીશું.

અહીં ધન પૂર્શાંક n તથા સફળતાની સંભાવના p જ્ઞાત હોય, તો સમગ્ર સંભાવના-વિતરણ એટલે કે Xની પ્રત્યેક શક્ય કિંમતની સંભાવનાને જાણી શકાય. તેથી n અને p ને દ્વિપદી વિતરણના પ્રાચલ કહેવામાં આવે છે. આપણે n અને p પ્રાચલોવાળા દ્વિપદી વિતરણને સંજ્ઞામાં $b(n,\ p)$ વડે દર્શાવીશું.

નોંધ : જો આવા જ બર્નોલી પ્રયત્નો વાળા પ્રયોગને N વખત પુનરાવર્તિત કરીએ અને પ્રયોગમાં મળતી સફળતાની સંખ્યા x ની સંભાવના p(x) હોય તો N પુનરાવર્તનોમાં મળતી સફળતાની સંખ્યાની અપેક્ષિત આવૃત્તિ $= N \cdot p(x)$

2.3.1 દ્વિપદી વિતરણના ગુણધર્મો

- (1) દ્વિપદી વિતરણ એ અસતત વિતરણ છે.
- (2) તેના પ્રાચલો n અને p છે.
- (3) આ વિતરણનો મધ્યક np છે જે n બર્નોલી પ્રયત્નોમાં મળતી સફળતાની સરેરાશ (અપેક્ષિત) સંખ્યા દર્શાવે છે.
- (4) આ વિતરણનું વિચરણ npq અને પ્રમાણિત વિચલન \sqrt{npq} છે.
- (5) દ્વિપદી વિતરણ માટે હંમેશાં મધ્યક એ વિચરણ કરતા મોટો હોય છે, તથા $\frac{\hat{A}^{245}}{11845} = q =$ નિષ્ફળતાની સંભાવના છે.
- (6) nની કોઈ પણ કિંમત માટે જો $p < \frac{1}{2}$ હોય, તો આ વિતરણની વિષમતા ધન હોય છે.
- (7) nની કોઈ પણ કિંમત માટે જો $p=\frac{1}{2}$ હોય, તો આ વિતરણ સંમિત થાય છે, એટલે કે તેની વિષમતા શૂન્ય હોય છે.
- (8) nની કોઈ પણ કિંમત માટે જો $p > \frac{1}{2}$ હોય, તો આ વિતરણની વિષમતા ઋણ હોય છે. ગુણધર્મ (6), (7) અને (8) નીચેના આલેખો દ્વારા સ્પષ્ટ જોઈ શકાય છે.

2.3.2 દ્વિપદી વિતરણનાં ઉદાહરણો (Illustrations of Binomial Distribution)

ઉદાહરણ 11 : એક ફેક્ટરીમાં ઉત્પાદિત થયેલા એકમોમાં 3 % એકમો ખામીવાળા હોય છે. આ ઉત્પાદિત થયેલ એકમોમાંથી યાદચ્છિક રીતે 4 એકમો પસંદ કરવામાં આવે છે, તેમાંથી એક પણ એકમ ખામીવાળો ન મળે તેની સંભાવના કેટલી થશે ?

પસંદ કરેલ એકમ ખામીવાળો હોય તે ઘટનાને સફળતા ગણીએ તો સફળતાની સંભાવના p=0.03 તથા અહીં n=4 થશે. એક પણ એકમ ખામીવાળો ન મળે એટલે X=0 થાય.

હવે

$$p(x) = {}^{n}C_{x}p^{x}q^{n-x}$$
, $x = 0, 1, 2,...., n$
આ સૂત્રમાં n , p , $q = 1-p$ તથા x ની કિંમત મૂકતા,
$$P(X = 0) = {}^{4}C_{0}(0.03)^{0}(0.97)^{4-0}$$
$$= (0.97)^{4}$$

આમ, પસંદ કરેલ 4 એકમોમાં એક પણ એકમ ખામીવાળો ન હોય તેની સંભાવના 0.8853 થાય.

ઉદાહરણ 12 : એક શહેરમાં રહેતી વ્યક્તિ માંસાહારી હોય તેની સંભાવના 0.20 છે. આ વિસ્તારમાંથી યાદચ્છિક રીતે પસંદ કરેલ 6 વ્યક્તિઓમાંથી વધુમાં વધુ બે વ્યક્તિઓ માંસાહારી હોય તેની સંભાવના શોધો. વ્યક્તિ માંસાહારી હોય તે ઘટનાને સફળતા કહીએ, તો સફળતાની સંભાવના p=0.20 તથા n=6 આપેલ છે. હવે X= પસંદ કરેલ વ્યક્તિઓમાંથી મળતી માંસાહારી વ્યક્તિઓની સંખ્યા લઈએ, તો અહીં $X\leq 2$ માટેની સંભાવના માટે દ્વિપદી વિતરણના સંભાવનાના સૂત્ર

$$p(x) = {}^{n}C_{x}p^{x}q^{n-x}, x = 0, 1, 2,...., n$$

માં n, p તથા x નાં મૂક્યો મૂકતાં,
$$p(X \le 2) = p(X = 0 \text{ અથવા } X = 1 \text{ અથવા } X = 2)$$
$$= p(0) + p(1) + p(2)$$
$$= {}^{6}C_{0}(0.20)^{0}(0.80)^{6} + {}^{6}C_{1}(0.20)^{1}(0.80)^{6-1} + {}^{6}C_{2}(0.20)^{2}(0.80)^{6.2}$$
$$= 0.2621 + 6(0.20)(0.3277) + 15(0.04)(0.4096)$$
$$= 0.2621 + 0.3932 + 0.2458$$
$$= 0.9011$$

ઉદાહરણ 13 : એક દ્વિપદી વિતરણ માટે મધ્યક અને વિચરણ અનુક્રમે 3.9 તથા 2.73 છે, તો આ વિતરણમાં કરેલ બર્નોલી પ્રયત્નોની સંખ્યા શોધો તથા p(x) લખો.

અહીં વિચરણ
$$=npq=2.73$$
 તથા મધ્યક $=np=3.9$ છે.

$$\therefore q = \frac{\text{વિયરણ}}{\frac{1}{2} \text{પાત }} = \frac{2.73}{3.9} = 0.7$$
 તથા $p = 1 - q = 0.3$

હવે
$$n = \frac{np}{p} = \frac{4 \log p}{p} = \frac{3.9}{0.3} = 13$$

આ પ્રયોગમાં બર્નોલી પ્રયત્નોની સંખ્યા 13 છે. આ વિતરણમાં $n=13,\ p=0.3,\ q=0.7$ હોવાથી તેનું $p\left(x\right)$ નીચે મુજબ થાય :

$$p(x) = {}^{13}C_x(0.3)^x (0.7)^{13-x}, x = 0, 1, 2,...., 13.$$

ઉદાહરણ 14 : યુદ્ધ દરમિયાન દરિયાઈ સફરમાં સરેરાશ 9 માંથી એક જહાજ ડૂબી જાય છે, તો 6 જહાજના કાફલામાંથી 5 જહાજ દરિયાઈ સફર કરી સલામત રીતે પાછા આવે તે ઘટનાની સંભાવના શોધો. ધારો કે X= યુદ્ધ દરમ્યાન દરિયાઈ સફર કરનાર 6 જહાજમાંથી સલામત પાછા આવતા જહાજની સંખ્યા n= કાફલામાં રહેલ કુલ જહાજની સંખ્યા =6

p= કોઈ એક જહાજ દરિયાઈ સફર કરી સલામત રીતે પરત આવે તે ઘટનાની સંભાવના $= \frac{8}{9}$

∴ 6 જહાજના કાફલામાંથી 5 જહાજ દરિયાઈ સફર કરી પાછા સલામત રીતે આવે તે ઘટનાની સંભાવના સૂત્ર

$$p(x) = {}^{n}C_{x}p^{x}q^{n-x}, x = 0, 1, 2,...., n$$

માં અનુરૂપ કિંમતો મૂકતાં,

$$p(5) = {}^{6}C_{5} \left(\frac{8}{9}\right)^{5} \left(\frac{1}{9}\right)^{1}$$

$$= 6\left(\frac{32768}{59049}\right)\left(\frac{1}{9}\right)$$

 $=\frac{196608}{531441}$

= 0.3700

ઉદાહરણ 15 : ધારો કે અઠવાડિયાના દિવસો દરમિયાન બપોરે 2 થી 3 વાગ્યા સુધીમાં સરેરાશ 4 ટેલિફોન લાઈનમાંથી એક લાઈન વ્યસ્ત હોય છે. યાદચ્છિક રીતે પસંદ કરેલા 6 ટેલિફોન લાઈનમાંથી આ સમય દરમિયાન (i) 3 કરતાં વધુ ટેલિફોન લાઈન વ્યસ્ત ન આવે. (ii) ઓછામાં ઓછા 3 ટેલિફોન લાઈન વ્યસ્ત આવે તે ઘટનાની સંભાવના શોધો.

ધારો કે p= પસંદ કરેલ ટેલિફોન લાઈન બપોરે 2 થી 3 દરમિયાનના સમય ગાળા દરમિયાન વ્યસ્ત આવે તે ઘટનાની સંભાવના $=\frac{1}{4}$

તથા X= બપોરે 2 થી 3 વાગ્યા સુધીના સમયગાળા દરિમયાન 6 ટેલિફોન લાઈનમાંથી વ્યસ્ત આવતી ટેલિફોન લાઈનની સંખ્યા લઈએ.

અહીં n=6 આપેલ છે.

(i) યાદચ્છિક રીતે પસંદ કરેલા 6 ટેલિફોન લાઈનમાંથી 3 કરતા વધુ ટેલિફોન લાઈન વ્યસ્ત ન આવે તે ઘટના એટલે કે 3 કે તેથી ઓછી ટેલિફોન લાઈન વ્યસ્ત આવે તે ઘટના.

એટલે કે $X \leq 3$ થાય.

∴ આ ઘટનાની સંભાવના માટે દ્વિપદી સંભાવના-વિતરણના સૂત્ર

$$p(x) = {}^{n}C_{x}p^{x}q^{n-x}, x = 0, 1, 2,...,n$$

નો ઉપયોગ કરતા માંગેલ સંભાવના = $p(X \le 3)$

$$= p(X = 0 \text{ wad} 1 \text{ wad} 2 \text{ wad} 3)$$

$$=1-p (x=4)$$
 અથવા 5 અથવા 6)

$$=1-[p(4)+p(5)+p(6)]$$

$$=1-\left[{}^{6}C_{4}\left(\frac{1}{4}\right)^{4}\left(\frac{3}{4}\right)^{2}+{}^{6}C_{5}\left(\frac{1}{4}\right)^{5}\left(\frac{3}{4}\right)^{1}+{}^{6}C_{6}\left(\frac{1}{4}\right)^{6}\left(\frac{3}{4}\right)^{0}\right]$$

$$=1-\left[15\left(\frac{1}{256}\right)\left(\frac{9}{16}\right)+6\left(\frac{1}{1024}\right)\left(\frac{3}{4}\right)+\left(\frac{1}{4096}\right)\right]$$

$$=1-\left[\frac{135}{4096}+\frac{18}{4096}+\frac{1}{4096}\right]$$

$$= 1 - \frac{154}{4096} = \frac{3942}{4096} = 0.9624$$

(ii) ઓછામાં ઓછી 3 ટેલિફ્રોન લાઈન વ્યસ્ત આવે તે ઘટનાની સંભાવના = $p(X \ge 3)$

$$= p(X = 3)$$
 અથવા 4 અથવા 5 અથવા 6)

$$= p(3) + p(4) + p(5) + p(6)$$

હવે ઉપરની ગણતરીમાંથી p(4), p(5) અને p(6)ની કિંમતો આપણને મળશે તેથી આપણે સૌ પ્રથમ p(3)ની ગણતરી કરીએ.

$$p(3) = {}^{6}C_{3} \left(\frac{1}{4}\right)^{3} \left(\frac{3}{4}\right)^{3} = 20 \left(\frac{1}{64}\right) \left(\frac{27}{64}\right)$$

$$=\frac{540}{4096}$$

હવે પ્રશ્ન (i) માંથી p(4), p(5) તથા p(6)ની કિંમતો અને શોધેલ p(3)ની કિંમતો પરથી

$$p(X \ge 3) = \frac{540}{4096} + \frac{135}{4096} + \frac{18}{4096} + \frac{1}{4096}$$
$$= \frac{694}{4096} = 0.1694$$

ઉદાહરણ 16 : એક યાદચ્છિક ચલ Xના દ્વિપદી વિતરણના પ્રાચલ n=4 અને $p=\frac{1}{3}$ છે, તો Xનું સંભાવના-વિતરણ કોષ્ટક સ્વરૂપે રજૂ કરો તે પરથી $P\big(X \leq 2\big)$ નું મૂલ્ય મેળવો.

અહીં પ્રાચલ n=4 તથા $p=\frac{1}{3}$ છે. $\therefore q=1-p=1-\frac{1}{3}=\frac{2}{3}$ થાય.

દ્વિપદી વિતરણના સૂત્ર

$$p(x) = {}^{n}C_{x} p^{x} q^{n-x}, x = 0, 1, 2, ..., n$$
માં પ્રાચલની કિંમતો મૂકતાં $p(x) = {}^{4}C_{x} \left(\frac{1}{3}\right)^{x} \left(\frac{2}{3}\right)^{4-x}, x = 0, 1, 2, 3, 4$ મળે.

હવે આપણે xની જુદી-જુદી કિંમતો 0, 1, 2, 3 અને 4 મૂકી p(x)ની કિંમતોની ગણતરી કરીએ.

$$p(0) = {}^{4}C_{0} \left(\frac{1}{3}\right)^{0} \left(\frac{2}{3}\right)^{4-0} = \frac{16}{81}$$

$$p(1) = {}^{4}C_{1} \left(\frac{1}{3}\right)^{1} \left(\frac{2}{3}\right)^{4-1} = 4\left(\frac{1}{3}\right) \left(\frac{8}{27}\right) = \frac{32}{81}$$

$$p(2) = {}^{4}C_{2}(\frac{1}{3})^{2}(\frac{2}{3})^{4-2} = 6(\frac{1}{9})(\frac{4}{9}) = \frac{24}{81}$$

$$p(3) = {}^{4}C_{3} \left(\frac{1}{3}\right)^{3} \left(\frac{2}{3}\right)^{4-3} = 4\left(\frac{1}{27}\right)\left(\frac{2}{3}\right) = \frac{8}{81}$$

$$p(4) = {}^{4}C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{4-4} = 1\left(\frac{1}{81}\right)1 = \frac{1}{81}$$

જે કોષ્ટક સ્વરૂપે નીચે મુજબ લખાય :

X = x	0	1	2	3	4	કુલ.
p(x)	16 81	32 81	<u>24</u> 81	<u>8</u> 81	1 81	1

હવે
$$P(X \le 2)$$

= $P(X = 0) + P(X = 1) + P(X = 2)$
= $\frac{16}{81} + \frac{32}{81} + \frac{24}{81}$
= $\frac{72}{81}$

ઉદાહરણ 17 : એક દ્વિપદી વિતરણ માટે P(X=x)=p(x)માં n=8 છે અને 2p(4)=5p(3) છે, તો આ વિતરણ માટેના બધા જ પ્રયત્ને સફળતા મળે તે ઘટનાની સંભાવના શોધો.

અહીં 2p(4)=5p(3) છે તથા n=8 આપેલ છે.

 \therefore દ્વિપદી વિતરણના સંભાવનાના સૂત્રમાં n=8ની કિંમત મૂકતાં

$$p(x) = {}^{8}C_{x}p^{x}q^{8-x}, x = 0, 1, 2,..., 8$$
 મળે.

આ સૂત્ર પરથી p(4) તથા p(3)ની કિંમતો આપેલ શરતમાં મૂકતાં

$$2P(4) = 5P(3)$$

 $=\frac{8}{9}$

$$2 \times {}^{8}C_{4} p^{4} q^{8-4} = 5 \times {}^{8}C_{3} p^{3} q^{8-3}$$

$$\therefore 2 \times (70) p^4 q^4 = 5 \times (56) p^3 q^5$$

$$140 p^4 q^4 = 280 p^3 q^5$$

$$\therefore p = 2q$$

$$\therefore p = 2(1-p)$$

$$\therefore p = 2 - 2p$$

$$\therefore 3p = 2$$

$$p = \frac{2}{3}$$
 થાય અને $q = 1 - p = 1 - \frac{2}{3} = \frac{1}{3}$ થાય.

હવે દરેક પ્રયત્ને સફળતા મળે એટલે કે અહીં કુલ પ્રયત્નોની સંખ્યા 8 હોવાથી 8 સફળતા મળે તે ઘટના. આ ઘટનાની સંભાવના p(8) થાય.

$$p(8) = {}^{8}C_{8} \left(\frac{2}{3}\right)^{8} \left(\frac{1}{3}\right)^{8-8}$$

$$=1 \times \left(\frac{2}{3}\right)^8 \times 1$$

$$=\frac{256}{6561}$$

આમ, બધા જ પ્રયત્ને સફળતા મળે તે ઘટનાની સંભાવના $\frac{256}{6561}$ થાય.

ઉદાહરણ 18 : એક દ્વિપદી વિતરણનો મધ્યક 18 અને વિચરણ 4.5 છે. આ વિતરણની વિષમતા ધન છે કે ઋણ તે નક્કી કરો.

અહીં મધ્યક = np = 18 અને વિચરણ = npq = 4.5 છે.

$$\therefore q = \frac{\text{વિચરણ}}{\text{મધ્યક}} = \frac{4.5}{18} = 0.25 = \frac{1}{4}$$

$$\therefore p = 1 - \frac{1}{4} = \frac{3}{4}$$

અહીં pની કિંમત $\frac{1}{2}$ કરતા મોટી હોવાથી દ્વિપદી વિતરણની વિષમતા ઋણ થશે.

ઉદાહરણ 19 : એક સમતોલ પાસાને 7 વખત ઉછાળવામાં આવે છે. દરેક પ્રયત્ને 5 કે તેથી મોટી સંખ્યા મળે તેને સફળતા ગણીએ અને 7 પ્રયત્નોમાં મળતી સફળતાની સંખ્યાને X કહીએ, તો (i) Xનું સંભાવના-વિતરણ લખો. (ii) 4 સફળતા મળે તે ઘટનાની સંભાવના શોધો. (iii) વધુમાં વધુ 6 સફળતા મળે તેની સંભાવના શોધો.

એક સમતોલ પાસાને ઉછાળવાના પ્રયોગ સાથે સંકળાયેલ નિદર્શ અવકાશ $U=\left\{1,2,3,4,5,6\right\}$ થાય અને પ્રત્યેક અંક મળવાની સંભાવના $\frac{1}{6}$ થાય.

હવે 5 કે તેથી મોટી સંખ્યા મળે તેને સફળતા કહીએ તો સફળતાની સંભાવના p=પાસા ઉપર 5 કે 6 અંક મળે તે ઘટનાની સંભાવના

$$=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}$$

$$\therefore q = 1 - p = 1 - \frac{1}{3} = \frac{2}{3}$$

હવે કુલ પ્રયત્નોની સંખ્યા 7 છે. $\therefore n=7$ થશે.

(i) તેથી Xનું સંભાવના-વિતરણ $p(x) = {}^{n}C_{x}p^{x}q^{n-x}, x = 0, 1, 2, ..., n$ પરથી

$$p(x) = {}^{7}C_{x} \left(\frac{1}{3}\right)^{x} \left(\frac{2}{3}\right)^{7-x}, \quad x = 0, 1, 2, 3, 4, 5, 6, 7$$

(ii) 4 સફળતા મળે તે ઘટનાની સંભાવના

$$p(4) = {}^{7}C_{4} \left(\frac{1}{3}\right)^{4} \left(\frac{2}{3}\right)^{7-4}$$

$$= 35 \left(\frac{1}{81}\right) \left(\frac{8}{27}\right)$$

$$=\frac{280}{2187}$$

(iii) વધુમાં વધુ 6 સફળતા મળે તેની સંભાવના

$$= P(X \le 6)$$

$$= 1 - P(X > 6)$$

$$= 1 - P(X = 7) \quad \because x = 0, 1, 2, ..., 7 \quad \Theta.$$

$$= 1 - {}^{7}C_{7} \left(\frac{1}{3}\right)^{7} \left(\frac{2}{3}\right)^{7-7}$$

$$=1-\frac{1}{2187}=\frac{2186}{2187}$$

ઉદાહરણ 20 : એક સામાજિક કાર્યકર એવો દાવો કરે છે કે એક શહેરમાં નાની ઉમરવાળાં બાળકોમાંથી 10 % બાળકોને દષ્ટિની ખામી છે. એક નિદર્શ તપાસ એજન્સી આ દાવાની ચકાસણી કરવા માટે આ શહેરમાંથી યાદચ્છિક રીતે નાની ઉંમરનાં 10 બાળકો પસંદ કરે છે. જો તેમાંથી વધુમાં વધુ એક બાળકને દષ્ટિની ખામી માલૂમ પડે તો સામાજિક કાર્યકરે કરેલ દાવો નકારી કાઢે છે, તો (i) નિદર્શ તપાસ એજન્સી સામાજિક કાર્યકરનો દાવો નકારી કાઢે તેની સંભાવના શોધો. (ii) યાદચ્છિક રીતે પસંદ કરેલાં નાની ઉંમરનાં 10 બાળકોમાં દષ્ટિની ખામીવાળા બાળકોની અપેક્ષિત સંખ્યા શોધો.

ધારો કે p= નાની ઉંમરનાં બાળકોને દષ્ટિની ખામી હોય તે ઘટનાની સંભાવના =0.10 (સામાજિક કાર્યકરનો દાવો સ્વીકારતાં)

તથા X= પસંદ કરાયેલાં નાની ઉંમરના 10 બાળકોમાંથી મળતા દેષ્ટિની ખામીવાળાં બાળકોની સંખ્યા. અહીં n=10 છે. દિપદી વિતરણના સંભાવનાના સૂત્ર

$$p(x) = {}^{n}C_{x} p^{x} q^{n-x}, x = 0, 1, 2, ..., n$$

માં n = 10 તથા p = 0.10 મૂકતાં

$$p(x) = {}^{10}C_x(0.10)^x(0.90)^{10-x}, x = 0, 1, 2,...,10$$

(i) હવે એક કે તેથી ઓછાં બાળકોને દૃષ્ટિની ખામી હોય તે ઘટનાની સંભાવના

$$= p(0) + p(1)$$

$$= {}^{10}C_0 \left(0.10\right)^0 \left(0.90\right)^{10-0} + {}^{10}C_1 \left(0.10\right)^1 \left(0.90\right)^{10-1}$$

$$= 0.3487 + 10 (0.10) (0.3874)$$

$$= 0.3487 + 0.3874$$

= 0.7361

હવે નિદર્શ તપાસ એજન્સી જો એક કે તેથી ઓછાં બાળકોને દષ્ટિની ખામી માલૂમ પડે તો સામાજિક કાર્યકરે કરેલો દાવો નકારી કાઢે છે.

- ∴ નિદર્શ તપાસ એજન્સી, સામાજિક કાર્યકરે કરેલ દાવો નકારી કાઢે તે ઘટનાની સંભાવના = 0.7361 થાય.
- (ii) યાદચ્છિક રીતે પસંદ કરેલ નાની ઉંમરનાં 10 બાળકોમાં દષ્ટિની ખામીવાળાં બાળકોની અપેક્ષિત સંખ્યા
 - = E(X) = np
 - = 10 × પસંદ કરેલ બાળકને દરિની ખામી હોવાની સંભાવના
 - $= 10 \times 0.10$

= 1

ઉદાહરણ 21 : પાંચ સમતોલ સિક્કાને એક્સાથે ઉછાળવાનો પ્રયોગ કરવામાં આવે છે. પ્રયોગ દરમિયાન સિક્કાની ઉપરની તરફ છાપ (H) આવે તે ઘટનાને સફળતા ગણીએ, તો સફળતાની સંખ્યાનું સંભાવના વિતરણ મેળવો. જો આ પ્રયોગનું 3200 વખત પુનરાવર્તન કરવામાં આવે તો સફળતાની સંખ્યાનું અપેક્ષિત આવૃત્તિ વિતરણ મેળવો. આ વિતરણ માટે સફળતાની સંખ્યાની અપેક્ષિત કિંમત તથા તેનું પ્રમાણિત વિચલન પણ મેળવો.

અહીં સિક્કા સમતોલ હોવાથી છાપ મળવાની સંભાવના $\frac{1}{2}$ થશે.

તેથી p = સફળતાની સંભાવના

= છાપ મળે તે ઘટનાની સંભાવના $\frac{1}{2}$ થાય.

$$\therefore q = 1 - p = \frac{1}{2}$$

n = સિક્કાઓની સંખ્યા = 5, x =પાંચ સિક્કાઓ ઉછાળતા મળતી સફળતાની સંખ્યા લઈએ.

હવે દ્વિપદી વિતરણના સૂત્ર

$$p(x) = {}^{n} C_{x} p^{x} q^{n-x}, x = 0, 1, 2, ..., n$$

માં n, p તથા q ની કિંમતો મૂકતાં

$$p(x) = {}^{5}C_{x} \left(\frac{1}{2}\right)^{x} \left(\frac{1}{2}\right)^{5-x}, \quad x = 0, 1, 2, ..., 5$$
 મળે

$$= {}^{5}C_{x} \left(\frac{1}{2}\right)^{x} {}^{5-x}$$

$$={}^5C_x\left(\frac{1}{2}\right)^5$$

$$=\frac{{}^{5}C_{x}}{32}, \quad x=0,1,2,...,5$$

હવે આપણે ઉપરના સૂત્રનો ઉપયોગ કરી દરેક x માટે તેની સંભાવના તથા 3200 વખત કરેલ પ્રયત્નોમાં x સફળતા મળે તેની આવૃત્તિ $= 3200 \times p(x)$ થાય. $x=0,\ 1,\ 2,\,5$

આ ગણતરી આપણે નીચેના કોષ્ટકમાં રજૂ કરીએ :

x	p(x)	અપેક્ષિત આવૃત્તિ = $\mathbf{N} imes oldsymbol{p}(x)$
0	$\frac{{}^{5}C_{0}}{32} = \frac{1}{32}$	$3200 \times \frac{1}{32} = 100$
1	$\frac{{}^{5}C_{1}}{32} = \frac{5}{32}$	$3200 \times \frac{5}{32} = 500$
2	$\frac{{}^{5}C_{2}}{32} = \frac{10}{32}$	$3200 \times \frac{10}{32} = 1000$
3	$\frac{{}^{5}C_{3}}{32} = \frac{10}{32}$	$3200 \times \frac{10}{32} = 1000$
4	$\frac{{}^{5}C_{4}}{32} = \frac{5}{32}$	$3200 \times \frac{5}{32} = 500$
5	$\frac{{}^{5}C_{5}}{32} = \frac{1}{32}$	$3200 \times \frac{1}{32} = 100$

(ii) સફળતાની સંખ્યાની અપેક્ષિત કિંમત

$$= np$$

$$=5\times\left(\frac{1}{2}\right)=2.5$$

(iii) સફળતાની સંખ્યાનું પ્રમાણિત વિચલન

$$=\sqrt{npq}$$

$$=\sqrt{5\times\left(\frac{1}{2}\right)\times\left(\frac{1}{2}\right)}\ =\ \sqrt{\frac{5}{4}}\quad =\sqrt{1.25}$$

= 1.118

ઉદાહરણ 22 : એક જાહેરાત કરતી કંપની એવો દાવો કરે છે કે 5 ગૃહિણીઓમાંથી 4 ગૃહિણીઓ માખણની બે જુદી-જુદી બ્રાન્ડ વચ્ચેનો તફાવત પારખી શકતી નથી. આ દાવાની ચકાસણી કરવા માટે 5000 ગૃહિણીઓને યાદચ્છિક રીતે 5 ગૃહિણીઓનો એક એવા સમૂહોમાં વિભાજિત કરવામાં આવે છે. જો આ દાવો સાચો હોય તો આવા બનતા સમૂહોમાંથી કેટલા સમૂહમાં (i) વધુમાં વધુ એક ગૃહિણી (ii) ફક્ત બે જ ગૃહિણીઓ માખણની બે જુદી-જુદી બ્રાન્ડ વચ્ચેનો તફાવત પારખી શકશે ? અહીં જાહેરાત કરતી કંપનીના દાવા મુજબ ગૃહિણી માખણની બે જુદી-જુદી બ્રાન્ડ વચ્ચેનો તફાવત પારખી શકે નહિ તેવી 5માંથી 4 ઘટના બને છે.

90

 \therefore તેની સંભાવના $\frac{4}{5}$ થાય.

એટલે કે માખણની બે જુદી-જુદી બ્રાન્ડ વચ્ચેનો તફાવત ગૃહિણી પારખી શકે તે ઘટનાની સંભાવના $=\frac{1}{5}$ થાય. તેથી p= પસંદ કરેલ ગૃહિણી માખણની બે જુદી-જુદી બ્રાન્ડ વચ્ચેનો તફાવત પારખી શકે તે ઘટનાની સંભાવના $=\frac{1}{5}$ થાય.

તેથી દાવાના પરીક્ષણ માટે પસંદ કરેલ 5000 ગૃહિણીઓને યાદચ્છિક રીતે 5 ગૃહિણીઓનો એક એવા સમૂહોમાં વિભાજિત કરવામાં આવે છે, જેથી આવા 1000 સમૂહો બનશે.

હવે X= કોઈ એક સમૂહમાં માખણની બે જુદી-જુદી બ્રાન્ડ વચ્ચેનો તફાવત પારખી શકે તેવા ગૃહિણીઓની સંખ્યા લઈએ તો x=0,1,...,5 થાય.

આમ આપણી પાસે n = 5, $p = \frac{1}{5}$, $q = \frac{4}{5}$ છે.

હવે દ્વિપદી વિતરણના સૂત્ર

$$P(x) = {}^{n}C_{x} p^{x} q^{n-x}, x = 0, 1, 2, ..., n$$

માં ઉપરની કિંમતે મૂકતાં p(x)એ નીચે મુજબ બને.

$$P(x) = {}^{5}C_{x} \left(\frac{1}{5}\right)^{x} \left(\frac{4}{5}\right)^{5-x}, \quad x = 0, 1, 2, ..., 5$$

આ સૂત્રનો ઉપયોગ કરીને xની જુદી-જુદી કિંમતો માટે તેની સંભાવના ગણીએ તથા આ સંભાવનાને 1000 વડે ગુણવાથી 1000 સમૂહોમાંથી 0, 1, 2, 3, 4 કે 5 ગૃહિણીઓ બે જુદા-જુદા માખણની બ્રાન્ડ વચ્ચેનો તફાવત પારખી શકે તેવા સમૂહોની સંખ્યા મળે.

(i) 1000 સમૂહોમાં વધુમાં વધુ એક ગૃહિણી માખણની બે જુદી જુદી બ્રાન્ડ વચ્ચેનો તફાવત પારખી શકે તેવા સમૂહોની સંખ્યા

$$=1000 \times [p(0) + p(1)]$$

$$=1000 \times \left[{}^{5}C_{0} \left(\frac{1}{5} \right)^{0} \left(\frac{4}{5} \right)^{5-0} + {}^{5}C_{1} \left(\frac{1}{5} \right)^{1} \left(\frac{4}{5} \right)^{5-1} \right]$$

$$=1000 \times \left[\frac{1024}{3125} + 5 \times \left(\frac{1}{5} \right) \times \left(\frac{256}{625} \right) \right]$$

$$=1000 \times \left[\frac{1024}{3125} + \frac{256}{625} \right]$$

$$=1000 \times [0.32768 + 0.4096]$$

$$=1000 \times [0.73728]$$

$$=737.28$$

(ii) 1000 સમૂહોમાં ફક્ત બે જ ગૃહિણીઓ માખણની બે જુદી જુદી બ્રાન્ડ વચ્ચેનો તફાવત પારખી શકે તેવા સમૂહોની સંખ્યા $=1000\times p(2)$

$$=1000\times{}^{5}C_{2}\left(\frac{1}{5}\right)^{2}\left(\frac{4}{5}\right)^{5-2}$$

$$=1000\times10\times\left(\frac{1}{25}\right)\times\left(\frac{64}{125}\right)$$

$$=1000 \times \frac{640}{3125}$$

$$=1000 \times 0.2048$$

$$=204.8$$

સ્વાધ્યાય 2.2

- 1. એક સંમિત દ્વિપદી વિતરણ માટે n=8 હોય, તો $P(X \le 1)$ મેળવો.
- એક દ્વિપદી વિતરણનો મધ્યક 5 છે તથા તેનું વિચરણ એ સફળતાની સંભાવના જેટલું છે. આ વિતરણના પ્રાચલ શોધો અને તે પરથી આ વિતરણ માટે એક પણ નિષ્ફળતા ન મળે તે ઘટનાની સંભાવના શોધો.
- એક વ્યક્તિએ 4 ગાડીઓ ભાડે આપવા માટે રાખેલ છે. દિવસ દરમિયાન કોઈ પણ ગાડી ભાડે જાય તેની સંભાવના
 0.6 છે, તો કોઈ એક દિવસ દરમિયાન એકથી વધુ પરંતુ 4થી ઓછી ગાડી ભાડે જાય તેની સંભાવના શોધો.
- 4. એક તાલુકામાં 200 ખેતરો આવેલ છે. આ તાલુકાનાં 200 ખેતરોમાં બનાવેલ પાણી માટેના બોરમાંથી 20 ખેતરોમાં ખારું પાણી મળેલ છે. આ તાલુકામાંથી યાદચ્છિક રીતે પસંદ કરેલાં 5 ખેતરોમાંથી 3 ખેતરોમાં ખારું પાણી ન મળે તે ઘટનાની સંભાવના શોધો.
- 5. એક દાખલો 6 વિદ્યાર્થીઓને ઉકેલવા માટે આપવામાં આવે છે. કોઈ પણ વિદ્યાર્થી દાખલાનો સાચો ઉકેલ લાવે તેની સંભાવના 0.6 છે. વિદ્યાર્થીઓ સ્વતંત્ર રીતે દાખલાનો ઉકેલ લાવવા પ્રયત્ન કરે છે, તો 6માંથી ફક્ત 2 વિદ્યાર્થીઓ દ્વારા દાખલાનો સાચો ઉકેલ મળે તેની સંભાવના શોધો.

* 92

- **યાદચ્છિક ચલ** : એક યાદચ્છિક પ્રયોગના નિદર્શ અવકાશ Uના દરેક ઘટકને વાસ્તવિક સંખ્યા સાથે સાંકળતા વિધેયને યાદચ્છિક ચલ કહેવામાં આવે છે.
- અસતત યાદ્યારિક ચલ : જે યાદ્યારિક ચલ X વાસ્તિવિક સંખ્યાગણ Rની સાન્ત સંખ્યામાં અથવા ગણ્ય અનંત કિંમતો ધારણ કરી શકે તેમ હોય, તેવા ચલ X ને અસતત યાદ્યારિક ચલ કહેવાય.
- સતત યાદેચ્છિક ચલ : જે યાદેચ્છિક ચલ X વાસ્તવિક સંખ્યાઓના ગણ R માં અથવા R ના કોઈ પણ અંતરાલમાં કોઈ પણ કિંમત ધારણ કરી શકે તેવા ચલને સતત યાદેચ્છિક ચલ કહેવાય.
- અસતત સંભાવના-વિતરણ : ધારો કે $X:U\to R$ એ એક અસતત યાદચ્છિક ચલ છે, જે Rના ઉપગણ $\{x_1,\,x_2,....,x_n\}$ માંથી જ કોઈ એક કિંમત ધારણ કરી શકે છે. વળી, X એ કિંમત x_i ધારણ કરે તેની સંભાવના $p(x_i)$ છે. જો $p(x_i)>0$, i=1,2,...,n અને $\sum p(x_i)=1$ હોય, તો વાસ્તવિક કિંમતોના ગણ $\{x_1,\,x_2,....,x_n\}$ અને $\{p(x_1),\,p(x_2),....,p(x_n)\}$ ને યાદચ્છિક ચલ Xનું અસતત સંભાવના-વિતરણ કહે છે, જે કોષ્ટકમાં નીચે પ્રમાણે લખવામાં આવે છે :

X = x	x_1	x_2		x_i		x_n	કુલ.
p(x)	$p(x_1)$	$p(x_2)$	••••	$p(x_i)$	•••	$p(x_n)$	1

અહીં $0 < p(x_i) < 1, i = 1, 2, ..., n$

- બર્નોલી પ્રયત્નો : ધારો કે એક દ્વિધિ વિકલ્પવાળા યાદેચ્છિક પ્રયોગનાં બે શક્ય પરિણામો સફળતા (S) અને નિષ્ફળતા (F) છે. જો આ પ્રયોગનું સમાન પરિસ્થિતિ હેઠળ પુનરાવર્તન કરવામાં આવે અને દરેક પ્રયત્ને સફળતાની સંભાવના p(0 અચળ હોય, તો આવા પ્રયત્નોને બર્નોલી પ્રયત્નો કહેવામાં આવે છે.
- **દિપદી યાદચ્છિક ચલ** : ધારો કે n બર્નોલી પ્રયત્નોમાં મળતી સફળતા (S) અને નિષ્ફળતા (F)ની શ્રેણીમાં મળતી સફળતાની સંખ્યાને X વડે દર્શાવીએ તો Xને દિપદી યાદચ્છિક ચલ કહેવામાં આવે છે.
- ♦ **દ્વિપદી સંભાવના-વિતરણ** : દ્વિપદી યાદેચ્છિક ચલ *X*ના સંભાવના-વિતરણને દ્વિપદી સંભાવના-વિતરણ કહે છે.

સૂત્રોની યાદી :

- (1) અસતત સંભાવના-વિતરણનો મધ્યક $=\mu$ =E(X) $=\Sigma\,x\,p(x)$
- (2) અસતત સંભાવના-વિતરણનું વિચરણ $=\sigma^2$ =V(X) $=Eig(X^2ig)-ig(E(X)ig)^2$

જ્યાં
$$E(X^2) = \sum x^2 p(x)$$

(3) દ્વિપદી સંભાવના-વિતરણ

$$P(X = x) = p(x) = {}^{n}C_{x} p^{x}q^{n-x}, x = 0, 1, 2, ..., n, 0$$

- (4) દ્વિપદી સંભાવના-વિતરણનો મધ્યs = np
- (5) દ્વિપદી સંભાવના-વિતરણનો વિચરણ = npq
- (6) દ્વિપદી સંભાવના-વિતરણનું પ્રમાણિત વિચલન = \sqrt{npq}
- (7) જો કોઈ બર્નોલી પ્રયત્નો વાળા પ્રયોગને N વખત પુનરાવર્તિત કરીએ અને પ્રયોગમાં મળતી સફળતાની સંખ્યા x ની સંભાવના p(x) હોય તો N પુનરાવર્તનોમાં મળતી સફળતાની સંખ્યાની અપેક્ષિત આવૃત્તિ $= N \cdot p(x)$

સ્વાધ્યાય 2

વિભાગ A

નીચે આપેલ બહુવિકલ્પ પ્રશ્નો માટે સાચા વિકલ્પની પસંદગી કરો :

- 1. નીચેનામાંથી કયો ચલ એ અસતત ચલનું ઉદાહરણ બનશે ?
 - (a) વિદ્યાર્થીની ઊંચાઈ

(b) વિદ્યાર્થીનું વજન

(c) વિદ્યાર્થીનું બ્લડપ્રેશર

- (d) વિદ્યાર્થીનું જન્મ વર્ષ
- 2. નીચેનામાંથી કયો ચલ એ સતત ચલનું ઉદાહરણ છે ?
 - (a) કોઈ એક સ્થળે બનતા અકસ્માતની સંખ્યા
 - (b) વર્ષ દરમિયાન વરસાદ પડ્યો હોય તેવા દિવસોની સંખ્યા
 - (c) દિવસ દરમિયાનનું મહત્તમ તાપમાન
 - (d) કુટુંબમાં બાળકોની સંખ્યા

3.	જો યાદૈચ્છિક ચલ X એ	$-1,\; 0$ અને 1 કિંમતો ધ	ારણ કરે તેની સંભાવન	ા અનુક્રમે $\frac{1}{5}$, K તથા $\frac{1}{3}$ છે.
	જ્યાં $0 < K < 1$ અને કિંમત શું થાય ?	X એ આ કિંમતો સિવાય	અન્ય કોઈ જ કિંમતો ^હ	તારણ કરતો નથી. તો $\mathit{E}(X)$ ની
	(a) $\frac{2}{5}$	(b) $\frac{3}{5}$	(c) $\frac{2}{15}$	(d) $\frac{3}{15}$
4.	એક યાદચ્છિક ચલ ફક્ત	−2, 0 અને 2 જ કિંમતો	ધારણ કરે છે જેની સંવ	માવના અનુક્રમે $\frac{1}{5}, \frac{3}{5}$ અને K
	$\dot{\vartheta}. 0 < K < 1 \text{div } K$	<i>ડ</i> ની કિંમત શું થાય ?		
	(a) $\frac{1}{5}$	(b) $\frac{4}{5}$	(c) $\frac{2}{5}$	(d) $\frac{3}{5}$
5.	એક અસતત સંભાવના-વિ	ાતરણ માટે તેના મધ્યકની િ	કેંમત 3 છે જ્યારે તેનું	વિચરણ 7 છે તો આ વિતરણ
	માટે $E\left(X^2 ight)$ શું થાય	?		
	(a) 10	(b) 4	(c) 40	(d) 16
6.	એક અસતત ચલ X ના સં	ભાવના-વિતરણ માટે $Eig(Xig)$	$=5$ તથા $E(X^2)=35$	5 છે, તો આ વિતરણનું વિચરણ
	શું થાય ?			
	(a) 40	(b) 30	(c) 20	(d) 10
7.	n = 10 પ્રાચલવાળા ધન (વેષમ દ્વિપદી વિતરણ માટે ની	ચે આપેલ કિંમતો પૈકી ક	ઈ કિંમત મધ્યકની હોઈ શકે ?
	(a) 5	(b) 3	(c) 9	(d) 7
8.	$n=4 \text{ dul } p=\frac{1}{2} \text{ xu}$	લોવાળા દ્વિપદી વિતરણ માટે	p(x)નું મૂલ્ય x ની કા	ઈ કિંમત માટે મહત્તમ બનશે ?
	(a) 0	(b) 2	(c) 3	(d) 4
9.	એક દ્વિપદી વિતરણનો મ	મધ્યક 5 તથા વિચરણ <u>10</u> 7	છે. તો આ વિતરણ	કેવું બનશે ?
	(a) ધન વિષમ		(b) ઋણ વિષમ	
	(c) સંમિત		(d) વિતરણ વિશે કશું	ું જ કહી શકાય નહિ
10.	n અને p પ્રાચલવાળા n નીચેના પૈકી કયું છે ?	દ્વેપદી વિતરણ માટે એક પા	શ સફળતા ન મળે તે	ઘટનાની સંભાવના માટેનું સૂત્ર
	(a) ${}^{n}C_{0}p^{n}q^{0}$	(b) ${}^{n}C_{0}p^{0}q^{n}$	(c) ${}^nC_0pq^n$	(d) ${}^nC_0p^nq$

વિભાગ B

નીચેના પ્રશ્નોના એક વાક્યમાં જવાબ આપો :

1. અસતત યાદચ્છિક ચલની વ્યાખ્યા આપો.

2. સતત યાદચ્છિક ચલની વ્યાખ્યા આપો.

3. અસતત સંભાવના-વિતરણની વ્યાખ્યા આપો.

4. અસતત ચલનો મધ્યક શોધવા માટેનું સૂત્ર જણાવો.

5. અસતત ચલનું વિચરણ શોધવા માટેનું સૂત્ર જણાવો.

6. એક સંમિત દ્વિપદી વિતરણનો મધ્યક 7 છે. તેના પ્રાચલ n ની કિંમત જણાવો.

7. એક દ્વિપદી વિતરણના પ્રાચલો અનુક્રમે 10 તથા $\frac{2}{5}$ છે, તો તેના વિચરણની ગણતરી કરો.

8. બર્નોલી પ્રયત્નોમાં સફળતા અને નિષ્ફળતાની સંભાવના વચ્ચેનો સંબંધ જણાવો.

9. દ્વિપદી વિતરણના મધ્યક અને વિચરણ વચ્ચેનો સંબંધ જણાવો.

10. એક દ્વિપદી વિતરણમાં નિષ્ફળતાની સંભાવના 0.6 છે તથા તેમાં કુલ પ્રયત્નોની સંખ્યા 5 છે, તો આ વિતરણ માટે સફળતાની સંભાવના શોધો.

વિભાગ C

નીચેના પ્રશ્નોના જવાબ આપો :

1. ચલ Xનું સંભાવના-વિતરણ નીચે મુજબ છે :

X	2	3	4	5
p(x)	0.2	0.3	4 <i>C</i>	C

તો અચળ *C*ની કિંમત નક્કી કરો.

2. અસતત સંભાવના-વિતરણ $p(x) = \begin{cases} \frac{x-1}{6}; & x = 2, 3 \\ \frac{1}{2}; & x = 4 \end{cases}$

માટે વિતરણના મધ્યકની ગણતરી કરો.

3. એક યાદચ્છિક ચલનું સંભાવના-વિતરણ નીચે મુજબ છે :

$$p(x) = \frac{x+3}{10}$$
, $x = -2, 1, 2$

તો તે પરથી $E(X^2)$ ની ગણતરી કરો.

- **4.** એક સંમિત દ્વિપદી વિતરણ માટે જો n=4 હોય, તો P(4) મેળવો.
- 5. બર્નોલી પ્રયત્નોની વ્યાખ્યા આપો.
- 6. એક દ્વિપદી વિતરણ માટે જો સફળતાની સંભાવના એ નિષ્ફળતાની સંભાવના કરતા બમણી હોય અને n=4 હોય, તો આ વિતરણનું વિચરણ શું થાય ?
- 7. n=8 તથા નિષ્ફળતાની સંભાવના $\frac{2}{3}$ હોય તેવા દ્વિપદી વિતરણનું પ્રમાણિત વિચલન મેળવો.
- 8. એક દ્વિપદી વિતરણના મધ્યક 4 અને વિચરણ 2 છે, તો આ વિતરણના પ્રાચલ શોધો.
- 9. એક દ્વિપદી વિતરણ માટે n=10 અને q-p=0.6 છે, તો આ વિતરણનો મધ્યક મેળવો.
- 10. એક દ્વિપદી વિતરણ માટે પ્રમાણિત વિચલન 0.8 છે, તથા નિષ્ફળતાની સંભાવના $\frac{2}{3}$ છે, તો આ વિતરણનો મધ્યક શોધો.

વિભાગ D

નીચેના પ્રશ્નોના જવાબ આપો :

1. એક યાદચ્છિક ચલ X નું સંભાવના-વિતરણ નીચે મુજબ છે :

$$p(x) = \begin{cases} K(x-1); & x = 2, 3 \\ K; & x = 4 \\ K(6-x); & x = 5 \end{cases}$$

તો અચળ Kની કિંમત શોધો તથા ચલ X એ યુગ્મ કિંમત ધારણ કરે તે ઘટનાની સંભાવના શોધો.

2. એક યાદચ્છિક ચલ Xનું સંભાવના-વિતરણ નીચે મુજબ છે :

$$p(x) = C(x^2 + x), x = -2, 1, 2$$

તો Cની કિંમત મેળવો તથા બતાવો કે P(2)=3P(-2) છે.

- **3**. એક યાદૈચ્છિક ચલ Xનું વિતરણ $P(x) = K \cdot {}^5P_x$, x = 0, 1, 2, 3, 4, 5 છે, તો અચળ <math>K શોધો તથા આ વિતરણનો મધ્યક મેળવો.
- 4. અસતત સંભાવના-વિતરણ એટલે શું ? તેના ગુણધર્મો જણાવો.
- 5. દ્વિપદી વિતરણના ગુણધર્મો જણાવો.
- 6. નિશાન તાકવાની એક રમતમાં રમેશ નિશાન તાકવામાં નિષ્ફળ જાય તેની સંભાવના $\frac{2}{5}$ છે. જો તેને નિશાન તાકવા માટે 3 પ્રયત્નો આપવામાં આવે તો તેમાંથી 2 પ્રયત્નોમાં તે નિશાન તાકવામાં સફળ થાય તે ઘટનાની સંભાવના શોધો. આ વિતરણનો મધ્યક જણાવો.

- 7. એક વ્યક્તિને ધન પૂર્ણાંક 1 થી 7 માંથી કોઈ પણ એક સંખ્યા પસંદ કરવાનું કહેવામાં આવે છે. જો તેણે પસંદ કરેલ સંખ્યા એકી સંખ્યા હોય તો તે ઇનામ મેળવવાને પાત્ર બને છે. જો આ વ્યક્તિને 5 પ્રયત્નો કરવાનું કહેવામાં આવે, તો તે ફક્ત એક પ્રયત્નમાં ઇનામ મેળવવાને પાત્ર બને તે ઘટનાની સંભાવના શોધો.
- 8. એક દ્વિપદી વિતરણના મધ્યક અને વિચરણ અનુક્રમે 2 અને $\frac{6}{5}$ છે, તો આ દ્વિપદી વિતરણ માટે p(1) અને p(2)ની ગણતરી કરો.
- 9. એક સફરજનના બૉક્સમાં 10 % સફરજન બગડેલાં છે. બૉક્સમાંથી યાદચ્છિક રીતે પુરવણી સહિત પસંદ કરેલા 6 સફરજનમાંથી બરાબર અડધા સફરજન બગડેલાં મળે તેની સંભાવના શોધો તથા બગડેલા સફરજનની સંખ્યાનું વિચરણ મેળવો.

વિભાગ E

નીચેનાના ઉકેલ મેળવો :

1. કોઈ એક સ્ટોર્સમાં લૅપટૉપની માસિક માંગનું સંભાવના-વિતરણ નીચે મુજબ છે.

લૅપટૉપની માંગ	1	2	3	4	5	6
સંભાવના	0.10	0.15	0.20	0.25	0.18	0.12

લૅપટૉપની અપેક્ષિત માસિક માંગ નક્કી કરો તથા માંગનું વિચરણ મેળવો.

- 2. બે પાસાઓને એક વખત ઉછાળવામાં આવે છે. તેમાંથી અંક '6' ઉપરની તરફ આવતા હોય તેવા પાસાની સંખ્યા માટેનું અસતત સંભાવના-વિતરણ મેળવો.
- 50 વર્ષની ઉંમરના કોઈ પણ વ્યક્તિ એક વર્ષ દરમિયાન મૃત્યુ પામે તેની સંભાવના 0.01 હોય, તો આવી
 વ્યક્તિઓના એક સમૂહમાંથી
 - (i) કોઈ પણ વ્યક્તિ એક વર્ષમાં મૃત્યુ ન પામે
 - (ii) ઓછામાં ઓછી એક વ્યક્તિ એક વર્ષમાં મૃત્યુ પામે તે ઘટનાની સંભાવના શોધો.
- 4. ધોરણ 12ના વિજ્ઞાનપ્રવાહમાં અભ્યાસ કરતો વિદ્યાર્થી ઇજનેરી શાખામાં પ્રવેશ મેળવે તેની સંભાવના 0.3 છે. આવા અભ્યાસ કરેલા વિદ્યાર્થીઓમાંથી 5 વિદ્યાર્થીઓ યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. તો તેમાંથી ઇજનેરી શાખામાં પ્રવેશ મેળવનાર વિદ્યાર્થીઓની સંખ્યા, ઇજનેરી શાખામાં પ્રવેશ ન મેળવનાર વિદ્યાર્થીઓની સંખ્યા કરતા વધુ હોય તે ઘટનાની સંભાવના શોધો.
- 5. એક બ્રિજ ઉપર વિમાનમાંથી ફેંકવામાં આવેલ બૉમ્બ બ્રિજ ઉપર જ પડે તેની સંભાવના $\frac{1}{5}$ છે. બ્રિજનો નાશ કરવા માટે બે બૉમ્બ પૂરતા છે. જો બ્રિજ ઉપર 6 બૉમ્બ ફેંકવામાં આવે, તો બ્રિજનો નાશ થવાની સંભાવના શોધો.

- 6. એક ચોક્ક્સ પરીક્ષામાં સામાન્ય રીતે 40 % વિદ્યાર્થીઓ નાપાસ થાય છે. 6 વિદ્યાર્થીઓના એક સમૂહમાંથી ઓછામાં ઓછા 4 વિદ્યાર્થીઓ આ પરીક્ષામાં પાસ થાય તેની સંભાવના શોધો.
- 7. એક બૉક્સમાં 3 લાલ અને 4 સફેદ દડાઓ છે. તેમાંથી ચાર દડા પુરવણી સહિત પસંદ કરવામાં આવે છે. આ પસંદ કરેલ દડામાં (i) 2 દડા લાલ અને 2 દડા સફેદ મળે તથા (ii) ચારેય દડા સફેદ મળે તે ઘટનાની સંભાવના દ્વિપદી વિતરણનો ઉપયોગ કરીને મેળવો.

વિભાગ F

નીચેનાના ઉકેલ મેળવો :

- 1. એક પેટીમાં એક ડઝન કેરીઓ છે. તેમાં 3 કેરીઓ બગડેલી છે. આ પેટીમાંથી યાદચ્છિક રીતે પુરવણીરહિત 3 કેરીઓ પસંદ કરવામાં આવે છે. જો X એ પસંદ કરેલ કેરીઓમાં બગડેલી કેરીઓની સંખ્યા દર્શાવે તો Xનું સંભાવના-વિતરણ મેળવો અને તે પરથી પસંદ કરેલ કેરીઓમાં બગડેલી કેરીઓની અપેક્ષિત કિંમત તથા વિચરણ મેળવો.
- 2. ધોરણ 10માં અભ્યાસ કરતા વિદ્યાર્થીઓની સમષ્ટિમાં 50 % વિદ્યાર્થીઓ ચોકલેટ ખાવાની ટેવ ધરાવે છે તેવું જાણવા મળેલ છે. આ માહિતીની ચકાસણી કરવા માટે 1024 આગણકોની નિમણૂક કરવામાં આવે છે. દરેક સંશોધન આગણકો, આ વિદ્યાર્થીઓની સમષ્ટિમાંથી યાદચ્છિક રીતે 10 વિદ્યાર્થીઓ પસંદ કરી તેમની ચોકલેટ ખાવાની ટેવ વિશે તપાસ કરે છે, તો 30 ટકાથી ઓછા વિદ્યાર્થીઓ ચોકલેટ ખાવાની ટેવ ધરાવે છે એવી જાણ કરનાર આગણકોની અંદાજિત સંખ્યા શોધો.

James Bernoulli (1654 –1705)

James (Jacob) Bernoulli was born in Basel, Switzerland. He was one of the many prominent mathematicians in the Bernoulli family. Following his father's wish, he studied theology (divinity) and entered the ministry. But contrary to the desires of his parents, he also studied mathematics and astronomy. He travelled throughout Europe from 1676 to 1682; learning about the latest discoveries in mathematics and the sciences under leading figures of the time. He was an early proponent of Leibnizian calculus and had sided with Leibniz during the Leibniz-Newton calculus controversy. He is known for his numerous contributions to calculus, and along with his brother Johann, was one of the founders of the calculus of variations. However, his most important contribution was in the field of probability, where he derived the first version of the law of large numbers. He was appointed as professor of mathematics at the University of Basel in 1687, remained in this position for the rest of his life.