

ICPC

Graphen 3

Tobias, Julian, Jakob, Tobias | 6. Juni 2018

Outline/Gliederung

- 1 Tobias
- Max-Flow Algorithmen
 - Ford-Fulkerson
 - Edmonds-Karp
- Julian
- Tobias T

Definiton Netzwerk

- Quell- und Senk- Knoten
- Knoten haben Kapazität

Fluesse

- fkt F:E->R weist jeder Kante einen Flusswert zu
- Kapazitätskonfirmation
- Flusserhalt
- Wert eines Flusses
- Exzes
- je definiton, kurze erkläreung ggf. an einem Bild

Probleme zu Flüssen

- Schwierigeit im Erkennen der Aufgaben
- tauchen seit 2013 wieder auf, zhlen zu "decider" Problemen
- eine beilspielaufgabe vorstellen, erklären warum das eine Flussaufgabe ist

Bestimmung des maximalen Flusses

Idee:

- Starte mit dem leeren Fluss
- Bestimme erweiternden Pfad (augmenting path) P, auf dem der Fluss von s nach t vergrößerbar ist
- Erweitere die Lösung um Pfad P
- Wiederhole so oft, wie es einen passenden Pfad P gibt

Frage: Wie kann P gefunden werden?

Tobias, Julian, Jakob, Tobias - Graphen 3

Ford-Fulkerson Algorithmus

- Greedy Algorithmus veröffentlicht in 1956 von L. R. Ford, Jr. und D. R. Fulkerson
- Verwendet Tiefensuche um den erweiternden Pfad P zu bestimmen
- Die Lösung wird um P erweitert indem,
 - die geringste Kapazität f der Kanten in P bestimmt wird
 - die Kapazitäten aller Kanten in P um f verringert werden
 - die Kapazitäten aller Gegenkanten um f erhöht werden
 - der maximale Fluss um f erhöht wird

Ford-Fulkerson Algorithmus

Tobias T

Ford-Fulkerson Algorithmus

- Im Worst-Case wird der maximale Fluss pro Iteration nur um 1 erhöht
- \Rightarrow Laufzeit in $\mathcal{O}(|f^*|\cdot|E|)$, wobei $|f^*|$ der Wert des maximalen Flusses beschreibt
 - Deshalb nicht für ICPC-Aufgaben geeignet!

Edmonds-Karp Algorithmus

- 1972 von J. Edmonds und R. M. Karp veröffentlicht
- Verwendet Breitensuche um den k\u00fcrzesten erweiternden Pfad P zu bestimmen
- Erweiterung der Lösung um P analog zu Ford-Fulkerson
- Die Länge des erweiternden Pfades ist monoton steigend
- Es sind maximal $|V| \cdot |E|$ Iterationen notwendig
- \Rightarrow Laufzeit in $\mathcal{O}(|V| \cdot |E|^2)$

Edmonds-Karp Implementierung

Algorithm 1: Edmonds-Karp

```
Function Max-Flow (G = (V, E), s, t \in V, c : E \to \mathbb{R}^+)
    maxFlow = 0
   dο
       find augmenting path P using BFS
       f = min\{c(u, v)|(u, v) \in P\}
       foreach (u, v) \in P do
           c(u,v) = f
           c(v,u) += f
       end
       maxFlow += f
   while P exists
   return maxFlow
```


Edmonds-Karp Algorithmus

Edmonds-Karp Implementierungsdetails

- In Adjazenzliste neben Zielknoten auch Kapazität und Verweis auf die Rückkante speichern
- Nicht vorhandene Rückkanten mit 0 initialisieren und dem Graphen hinzufügen
- Bei der Breitensuche nur Kanten mit positiver Kapazität berücksichtigen
- Breitensuche abbrechen, sobald t erreicht wurde

Min-Cut

Min-Cut

- Definiere Schnitt C = (S Komponente, T Komponente) als Partition von $V \in G$, wobei $s \in S Komponente$ und $t \in T Komponente$
- Weiter sei die Schnittmenge $c = \{(u, v) \in E | u \in S Komponente \land v \in T Komponente\}$
- Wähle c so, dass Max Flow von s nach t 0 ist, für $E' = E \setminus c$

Max-Flow-Min-Cut-Theorem

Max-Flow-Min-Cut-Theorem

 Ein maximaler Fluss im Netzwerk hat genau den Wert eines minimalen Schnitts.

Max-Flow-Min-Cut

Bsp.:

- Hier
 - $C = (\{s, q_1\}, \{t, q_0\})$
 - $c = \{(s, q_0), (q_1, q_0), (q_1, t)\}$

Multi-Quelle/Multi-Abfluss

Gegeben sei folgende Situation:

- Problem: Max-Flow Algorithmus kann nur mit einer Quelle und einer Senke arbeiten.
- Lösung: Ertelle Super-Quelle und Super-Senke und verbinde alle Quellen und Senken mit Kantengewicht ∞

Multi-Quelle/Multi-Abfluss Lösung

Tobias Max-Flow Algorithmen

Knotenkapazität

- Gegeben sind Knoten mit Kapazität.
- Bsp.:

Knotenkapazität

- Gegeben sind Knoten mit Kapazität.
- Bsp.:

Modellierung

- Erkennen eines Netzwerkfluss-Problems nicht immer einfach
- Was hilft?
 - Übung
 - Übung
 - ...

Modellierung

- Erkennen eines Netzwerkfluss-Problems nicht immer einfach
- Was hilft?
 - Übung
 - Übung
 - ...

Modellierung

- Erkennen eines Netzwerkfluss-Problems nicht immer einfach
- Was hilft?
 - Übung
 - Übung
 - · ...

- Situation: Die Titanic ist gesunken. Es soll ermittelt werden wie viele Menschen gerettet werden k\u00f6nnen.
- Eingabe: X, Y, P mit X,Y Dimension der Fläche ($1 \le X, Y \le 30$) und P ($P \le 10$) die Anzahl von Personen, welche gleichzeitig auf ein Holzbrett können.

Symbol	Bedeutung
*	Menschen auf Treibeis
\sim	Eiskaltes Wasser
	Treibeis
@	Großer Eisberg
#	Großes Holzbrett

• Gegeben sei nun folgende Eingabe:

```
* ~ ~ #
. . . @
. ~ . *
```

Wandle in Graphen um...

• Gegeben sei nun folgende Eingabe:

```
* ~ ~ #
. . . @
. ~ . *
```

Wandle in Graphen um...

Tobias, Julian, Jakob, Tobias - Graphen 3

Verbinde alle Knoten, über die ein Weg möglich ist...

Tobias, Julian, Jakob, Tobias - Graphen 3

Verbinde alle Knoten, über die ein Weg möglich ist...

■ Füge Knotengewichte hinzu...

Max-Flow Algorithmen

Julian

Tobias

■ Füge Knotengewichte hinzu...

Tobias, Julian, Jakob, Tobias - Graphen 3

Verbinde alle Menschen mit s und alle Holzbretter mit t...

Bem.: Knotengewichte müssen noch aufgelöst werden

Bipartiter Graph

Bipartiter Graph

Matching

 Definitionen: Matching, maximales Matching, kardinalitätsmaximales Matching, perfektes Matching

Laufzeit

- Kurz auf Laufzeit eingehen
- Beispiel: Primzahlen (Competitive Programming 3, Seite 180)
- Definitionen: Max Independent Set, Min Vertex Cover, Königs
 Theorem: —Min Vertex Cover— = —grtes Matching—

Modelierung

- Beispiel: Guardian of Decency (Competitive Programming 3, Seite 182)
- (Je nach verbleibender Zeit:) noch mehr Graphentheorie: bipartit
 keine ungeraden Kreise, ...