Network Graphs and the PageRank Algorithm

- Introduce matrix representations for network graphs
- Define transition probability matrix and paths on graph
- Illustrate PageRank algorithm concepts

Transition probability matrix predicts "paths" Start at node 1: Po=[10000] $A = \begin{bmatrix} 1/4 & 0 & 0 & 0 & 0 \\ 3/4 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/8 & 0 & 1/2 \\ 0 & 0 & 1/8 & 1 & 0 \end{bmatrix}$ After 1 move: $p_1 = Ap_0 = \begin{bmatrix} 0 \\ 0.25 \\ 47 \end{bmatrix}$ $0.75 \\ 0.$ 0.0469 After 2 moves: P=HP= After 3 moves: P3=Hp 5 0, 0938 6,0312 0.125 0,0938 0.6562 0.1562 0.0938] 9.6562 Markov chain: next 0.0312 state depends only on current state

PageRank algorithm ranks web pages

Transition mutrix: Q=(1-a)A+ x

= random jump probability

Eigenvector of Q ranks pages

Q is irreducible (no traps) column stochastic (cols

sum to 1), with non negative entries =>

(Perron-Frobenius) Largest eval is 1, evect p=[p: PN]

satisfies p; >0, Epi = 1

Steady-State
Distribution QP = P

Pranks importance of pages

Example:

$$\begin{array}{c}
A = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}$$

$$\begin{array}{c}
Q = \begin{bmatrix}
.802 & .332 & .662 & .602 & .602 \\
.497 & .602 & .602 & .602 \\
.602 & .532 & .602 & .497 & .602 \\
.602 & .532 & .602 & .497 & .602
\end{array}$$

$$\begin{array}{c}
0.02 \\
0.02 \\
0.02 \\
0.02 \\
0.02 \\
0.02 \\
0.02 \\
0.02 \\
0.03 \\
0.04 \\
0.04 \\
0.05 \\
0.04 \\
0.062 \\
0.063 \\
0.064 \\
0.064 \\
0.062 \\
0.063 \\
0.064 \\
0.062 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.062 \\
0.063 \\
0.064 \\
0.062 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.062 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.063 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.064 \\
0.06$$

$$P = \begin{bmatrix} 0.0032 & 0.0036 & 0.2211 & 0.4401 & 0.3320 \end{bmatrix}$$

Copyright 2019 Barry Van Veen