Supplemental Slides of Ch24

Sungjin Im 4/20/2023

Supplemental Slides of Ch24

Sungjin Im 4/20/2023

Green edges encode shortest paths we've seen so far. Orange edges mean we've relaxed them (in this round)

Orange edges mean the second of the second o

Green edges encode shortest paths we've seen so far; in implementation we use $v.\pi$ Orange edges mean we've relaxed them (in this round)

$$|V| = 7.$$
 $(M-1=6 rounds.)$

We relaxed each edge exactly once;

This is the end of Round 1

We repeat up to Round |V| - 1

(Then, we check relaxing an edge gives an improvement. If so, we say the graph has a negative weight cycle reachable from s)

Try Round 2
Do you see any changes?

Try Round 2
Do you see any changes?
No.

Try Round 3
Will you see any changes?
No.

Do we really need V-1 rounds?
Say we relax in lexicographic order (including s)

After round 1

After round 2

After round 3

After round 4 So we did |V| - 1 = r rounds.

After round 4 So we did |V| - 1 = r rounds.

This example is actually easy because it is DAG However, if there are "backward" edges of high weight, we can't assume it's a DAG.

Why Bellman-Ford Works

Let's consider two cases:

- True case: there is no negative weight cycle reachable from s
 - We compute a shortest path tree rooted at s
- False case: there is a negative weight cycle reachable from s
 - We are supposed to declare that it has a negative weight cycle.

Why Bellman-Ford Works (true case)

- We know
 - \bullet (v.d) ≥ δ (s, v) and once v.d = δ (s, v), it remains so (Lemma 24.11)
 - If there's no path from s to v, then v.d = $\delta(s, v) = \infty$ always (Lemma 24.12)
- So, it suffices to show that we have v.d = $\delta(s, v)$ at the end.

Why Bellman-Ford Works (true case)

Due to path relaxation property

- It suffices to show that we have v.d = $\delta(\overline{s}, v)$ at the end.
 - v.d never increases
 - Say $\langle s = v_0, v_1, ..., v \neq v_k \rangle$ is a shortest path from s to v. $(k \leq V 1)$
 - In round 1, we relax edge $(s = v_0, v_1)$, so, $v_1 \le \delta(s, v_1)$ We relax every edge in each round $= 0 + \omega(s, v_1)$
 - In round 2, we relax edge (v_1, v_2) , so, $v_2 d \le \delta(s, v_1) + w(v_1, v_2) = \delta(s, v_2)$
 - Due to optimality of subpaths of a shortest path
 - In round k, we relax edge (v_{k-1}, v_k) , so, $v_k d \le \delta(s, v_{k-1}) + w(v_{k-1}, v_k) = \delta(s, v = v_k)$
 - $k \le V -1$; there is a shortest path that is simple

Why Bellman-Ford Works (false case)

Due to path relaxation property

- False case: there is a negative weight cycle reachable from s
 - Let $c = \langle v_0, v_1, ..., v_k = v_0 \rangle$ be such a cycle
- Suppose BF returned true, which means no edge relaxation changed v.d.

So, we have $0 \le w(v_0, v_1) + w(v_1, v_2) + ... + w(v_k, v_0)$, a contradiction.

• Can be used when edges have non-negative weights

In each iteration, consider v with min v.d, and relax its out-going edges

Color v blue

Green edges encode shortest paths

Orange edges mean we relaxed them

In each iteration, consider v with min v.d, and relax its out-going edges
Color v blue
Green edges encode shortest paths
Orange edges mean we relaxed them

In each iteration, consider v with min v.d, and relax its out-going edges Color v blue Green edges encode shortest paths (in implementation we use v. π) Orange edges mean we relaxed them

Why Dijkstra Algorithm Works

Blue vertex means we've found its shortest path from s

Once a vertex become blue, it remains blue

Why can't the following happen?

What if there is a shorter path using non-blue vertices?

- v :First vertex that became blue, but v.d > $\delta(s, v)$
- Red path is a shortest path to v
- u is the first non-blue vertex on the red path
- u.d $<= \delta(s, a) + w(a, u)$
 - a.d = δ (s, a), and we relaxed (a,u) when a became blue
- u.d = $\delta(s, u)$; due to optimality of subpaths
- We had v.d > $\delta(s, v)$ >= $\delta(s, u)$ = u.d just before coloring v blue. We must have chosen u over v.

Comparison of Algorithms

- Bellman ford:
 - Can handle negative weight edges
 - RT: O(EV)
- Dijkstra:
 - Can only handle non-negative weight edges
 - RT: O(E log V)
- DAG
 - Must have no cycle; can have negative weight edges
 - RT: O(E + V)