Act report

In this report we will try to show the final results of the project, and some basic visualizations on the data worked

Sample twitter_archive_master.csv

```
In [10]: twitter archive master.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1365 entries, 0 to 1364
Data columns (total 18 columns):
   Column
                       Non-Null Count Dtype
                      1365 non-null int64
0 tweet id
1 timestamp
                      1365 non-null datetime64[ns, UTC]
2 source
                      1365 non-null object
                      1365 non-null object
3 text
  expanded_urls
                      1365 non-null object
4
5
  name
                      1365 non-null object
6 ratings
                      1365 non-null float64
                                    object
7
  dog_stages
                      182 non-null
                      1365 non-null int64
8 hour
                     1365 non-null object
9 full_week
                      1365 non-null object
10 jpg url
11 favorite_count
                      1365 non-null float64
                      1365 non-null float64
12 retweet count
13 tweet_length
                      1365 non-null int64
14 language
                      1365 non-null object
15 predicted dog 1365 non-null object
16 predicted_precision 1365 non-null float64
17 is dog
                       1365 non-null object
dtypes: datetime64[ns, UTC](1), float64(4), int64(3), object(10)
memory usage: 202.6+ KB
```

As we can see, new columns were created, of which we will make a general explanation below.

ratings

This column was created from the rating_numerator and denominator columns. First, it was checked that there were no zeros in the denominator. After this step, the numerator was divided by the denominator.

dog_stages

This column is the union of the columns doggo, pupper, puppo, and floof(er), the value "None" was also changed to None to have a more congruent structure.

hour

we get the tweet time with the timestamp column

full week

We get the days from the timestamp column and create a function to get weekday and weekend.

predicted_dog and predicted_precision

When we merge between the 3 dataframes, we create a new column for the first value in the prediction column that is True

is_dog

When we merge between the 3 dataframes, we create a new column that checks if any result in the prediction column was True (It is a dog) or False (It is not a dog)

Visualizing data

full week

Here we can see that the sample we have, people always take time to tweet on business days.

hours

In this graph we can see that the hours of most tweets are at dawn, insomnia?

id_dog

Here it is observed that the predictions are quite accurate with almost 12% failures to recognize dogs.

source

Overwhelming difference between tweet sources, iphone above by far.

dog_stages

In this graph we observe that small dogs are mostly followed by larger ones.

Top 10 favorite dogs

Top 10 retweets dogs

As we observe in the tops, a relationship between favorites and retweets is almost always maintained.

Ratings

In this graph there is an unusual value, but it is the fun of @weratedogs, right? But otherwise, we note that they remain almost at the same rating