Package 'CGGP'

January 23, 2024

Type Package

Title Composite Grid Gaussian Processes

Version 1.0.4

Description Run computer experiments using the adaptive composite grid algorithm with a Gaussian process model.

The algorithm works best when running an experiment that can evaluate thousands of points from a deterministic computer simulation.

This package is an implementation of a forthcoming paper by Plumlee,

Erickson, Ankenman, et al. For a preprint of the paper, contact the maintainer of this package.

License GPL-3

Imports Rcpp (>= 0.12.18)

LinkingTo Rcpp, RcppArmadillo

Suggests testthat, covr, ggplot2, reshape2, plyr, MASS, rmarkdown, knitr

URL https://github.com/CollinErickson/CGGP

BugReports https://github.com/CollinErickson/CGGP/issues

Encoding UTF-8

RoxygenNote 7.2.3

VignetteBuilder knitr

NeedsCompilation yes

Author Collin Erickson [aut, cre],

Matthew Plumlee [aut]

Maintainer Collin Erickson < collinberickson@gmail.com>

Repository CRAN

Date/Publication 2024-01-23 03:22:57 UTC

40

Index

R topics documented:

CGGP	3
CGGPappend	3
CGGPcreate	4
CGGPfit	5
CGGPplotblocks	6
CGGPplotblockselection	7
CGGPplotcorr	8
CGGPplotheat	9
CGGPplothist	0
1 1 6 61	1
1	1
1	3
1 6	3
1	4
	5
	6
	7
– – 1	7
1 1	8
	9
	0
	1
	2
	3
	4
	5
CGGP_internal_CorrMatWendland0	
	7
	8
= <i>-e e e e</i>	9
CGGP_internal_MSEpredcalc	0
CGGP_internal_neglogpost	1
CGGP_internal_set_corr	
plot.CGGP	2
predict.CGGP	3
print.CGGP	4
rcpp_fastmatcler	5
rcpp_fastmatclcranddclcr	5
11-6	6
	6
1	7
valstats	8

CGGP 3

CGGP

CGGP: A package for running sparse grid computer experiments

Description

The CGGP package implements the method presented in Plumlee et al. (2019).

CGGP functions

The CGGP functions: CGGPcreate, CGGPfit, CGGPappend, and CGGPpred

CGGPappend

Add points to CGGP

Description

Add 'batchsize' points to 'SG' using 'theta'.

Usage

```
CGGPappend(CGGP, batchsize, selectionmethod = "MAP")
```

Arguments

CGGP Sparse grid object

batchsize Number of points to add

selectionmethod

How points will be selected: one of 'UCB', 'TS', 'MAP', 'Oldest', 'Random', or 'Lowest'. 'UCB' uses Upper Confidence Bound estimates for the parameters. 'TS' uses Thompson sampling, a random sample from the posterior. 'MAP' uses maximum a posteriori parameter estimates. 'Oldest' adds the block that has been available the longest. 'Random' adds a random block. 'Lowest' adds the block with the lowest sum of index levels. 'UCB' and 'TS' are based on bandit algorithms and account for uncertainty in the parameter estimates, but are the slowest. 'MAP' is fast but doesn't account for parameter uncertainty. The other three are naive methods that are not adaptive and won't perform well.

Value

SG with new points added.

See Also

```
Other CGGP core functions: CGGPcreate(), CGGPfit(), predict.CGGP()
```

4 CGGPcreate

Examples

```
SG <- CGGPcreate(d=3, batchsize=100)
y <- apply(SG$design, 1, function(x){x[1]+x[2]^2})
SG <- CGGPfit(SG, Y=y)
SG <- CGGPappend(CGGP=SG, batchsize=20, selectionmethod="MAP")</pre>
```

CGGPcreate

Create sparse grid GP

Description

Create sparse grid GP

Usage

```
CGGPcreate(
   d,
   batchsize,
   corr = "PowerExponential",
   grid_sizes = c(1, 2, 4, 4, 8, 12, 20, 28, 32),
   Xs = NULL,
   Ys = NULL,
   HandlingSuppData = "Correct",
   supp_args = list()
)
```

Arguments

d Input dimension

batchsize Number added to design each batch for now only on predictions

corr Name of correlation function to use. Must be one of "CauchySQT", "CauchySQ",

"Cauchy", "Gaussian", "PowerExp", "Matern32", "Matern52".

grid_sizes Size of grid refinements.

Xs Supplemental X data

Ys Supplemental Y data

 ${\it HandlingSuppData}$

How should supplementary data be handled? * Correct: full likelihood with grid and supplemental data * Only: only use supplemental data * Ignore: ignore

supplemental data

supp_args Arguments used to fit if Xs and Ys are given

Value

CGGP

CGGPfit 5

See Also

```
Other CGGP core functions: CGGPappend(), CGGPfit(), predict.CGGP()
```

Examples

```
CGGPcreate(d=8,200)
```

CGGPfit

Update CGGP model given data

Description

This function will update the GP parameters for a CGGP design.

Usage

```
CGGPfit(
  CGGP,
  Y,
  Xs = NULL,
  Ys = NULL,
  theta0 = pmax(pmin(CGGP$thetaMAP, 0.8), -0.8),
  HandlingSuppData = CGGP$HandlingSuppData,
  separateoutputparameterdimensions = is.matrix(CGGP$thetaMAP),
  set_thetaMAP_to,
  corr,
  Ynew
)
```

Arguments

CGGP Sparse grid objects

Y Output values calculated at CGGP\$design

Xs Supplemental X matrix Ys Supplemental Y values

theta0 Initial theta

HandlingSuppData

How should supplementary data be handled? * Correct: full likelihood with grid and supplemental data * Only: only use supplemental data * Ignore: ignore

supplemental data separateoutputparameterdimensions

If multiple output dimensions, should separate parameters be fit to each dimen-

set_thetaMAP_to

Value for thetaMAP to be set to

corr Will update correlation function, if left missing it will be same as last time.

Ynew Values of 'CGGP\$design_unevaluated'

6 CGGPplotblocks

Value

Updated CGGP object fit to data given

See Also

```
Other CGGP core functions: CGGPappend(), CGGPcreate(), predict.CGGP()
```

Examples

```
cg <- CGGPcreate(d=3, batchsize=100) y <- apply(cg$design, 1, function(x)\{x[1]+x[2]^2\}) cg <- CGGPfit(CGGP=cg, Y=y)
```

CGGPplotblocks

CGGP block plot

Description

Plot the 2D projections of the blocks of an CGGP object.

Usage

```
CGGPplotblocks(CGGP, singleplot = TRUE)
```

Arguments

CGGP CGGP object

singleplot If only two dimensions, should a single plot be made?

Value

ggplot2 plot

See Also

```
Other CGGP plot functions: CGGPplotcorr(), CGGPplotheat(), CGGPplothist(), CGGPplotsamplesneglogpost(), CGGPplotslice(), CGGPplottheta(), CGGPplotvariogram(), CGGPvalplot()
```

```
# The first and fourth dimensions are most active and will have greater depth
ss <- CGGPcreate(d=5, batchsize=50)
f <- function(x) {cos(2*pi*x[1]*3) + x[3]*exp(4*x[4])}
ss <- CGGPfit(ss, Y=apply(ss$design, 1, f))
ss <- CGGPappend(CGGP=ss, batchsize=100)
CGGPplotblocks(ss)</pre>
```

```
mat <- matrix(c(1,1,1,2,2,1,2,2,1,3), ncol=2, byrow=TRUE)
CGGPplotblocks(mat)</pre>
```

 ${\tt CGGPplotblockselection}$

Plot CGGP block selection over time

Description

Shows the order in which blocks were selected for each dimension. Gives an idea of how the selections change over time.

Usage

```
CGGPplotblockselection(CGGP, indims)
```

Arguments

CGGP CGGP object

indims Which input dimensions should be shown?

Value

ggplot2 object

```
gs <- CGGPcreate(d=3, batchsize=100)
# All dimensions will look similar
CGGPplotblockselection(gs)

# You need to append with CGGPappend after fitting to see a difference
f <- function(x){x[1]^1.2}
y <- apply(gs$design, 1, f)
gs <- CGGPfit(gs, Y=y)
gs <- CGGPappend(gs, 100)
# Now you will see higher for X1 from 100 to 200 while others remain low.
CGGPplotblockselection(gs)</pre>
```

8 CGGPplotcorr

	-		
CGGP	p⊥d	tc	orr

Plot correlation samples

Description

Plot samples for a given correlation function and parameters. Useful for getting an idea of what the correlation parameters mean in terms of smoothness.

Usage

```
CGGPplotcorr(
  Corr = CGGP_internal_CorrMatGaussian,
  theta = NULL,
  numlines = 20,
  outdims = NULL,
  zero = TRUE
)
```

Arguments

Corr Correlation function or CGGP object. If CGGP object, it will make plots for

thetaMAP, the max a posteriori theta.

theta Parameters for Corr

numlines Number of sample paths to draw

outdims Which output dimensions should be used? zero Should the sample paths start at y=0?

Value

Plot

See Also

```
Other CGGP plot functions: CGGPplotblocks(), CGGPplotheat(), CGGPplothist(), CGGPplotsamplesneglogpost(), CGGPplotslice(), CGGPplottheta(), CGGPplotvariogram(), CGGPvalplot()
```

```
CGGPplotcorr()
CGGPplotcorr(theta=c(-2,-1,0,1))
SG <- CGGPcreate(d=3, batchsize=100)
f <- function(x){x[1]^1.2+sin(2*pi*x[2]*3)}
y <- apply(SG$design, 1, f)
SG <- CGGPfit(SG, Y=y)
CGGPplotcorr(SG)</pre>
```

CGGPplotheat 9

CGGPplotheat

Heatmap of SG design depth

Description

The values on the diagonal are largest design depth for that dimension. The off-diagonal values are the largest design depth that both dimensions have been measured at simultaneously. A greater depth means that more points have been measured along that dimension or two-dimensional subspace.

Usage

```
CGGPplotheat(CGGP)
```

Arguments

CGGP

CGGP object

Value

A heat map made from ggplot2

References

https://stackoverflow.com/questions/14290364/heatmap-with-values-ggplot2

See Also

```
Other CGGP plot functions: CGGPplotblocks(), CGGPplotcorr(), CGGPplothist(), CGGPplotsamplesneglogpost(), CGGPplotslice(), CGGPplottheta(), CGGPplotvariogram(), CGGPvalplot()
```

```
# All dimensions should look similar
d <- 8
SG = CGGPcreate(d,201)
CGGPplotheat(SG)

# The first and fourth dimensions are most active and will have greater depth
SG <- CGGPcreate(d=5, batchsize=50)
f <- function(x) {cos(2*pi*x[1]*3) + exp(4*x[4])}
for (i in 1:1) {
    SG <- CGGPfit(SG, Y=apply(SG$design, 1, f))
    SG <- CGGPappend(CGGP=SG, batchsize=200)
}
# SG <- CGGPfit(SG, Y=apply(SG$design, 1, f))
CGGPplotheat(SG)</pre>
```

10 CGGPplothist

CGGPplothist	Histogram of measurements at each design depth of each input dimension

Description

A greater design depth signifies a more important dimension. Thus a larger right tail on the histogram are more important variables.

Usage

```
CGGPplothist(CGGP, ylog = TRUE)
```

Arguments

CGGP CGGP object

ylog Should the y axis be put on a log scale?

Value

Histogram plot made using ggplot2

See Also

```
Other CGGP plot functions: CGGPplotblocks(), CGGPplotcorr(), CGGPplotheat(), CGGPplotsamplesneglogpost(), CGGPplotslice(), CGGPplottheta(), CGGPplotvariogram(), CGGPvalplot()
```

```
# All dimensions should look similar
d <- 8
SG = CGGPcreate(d,201)
CGGPplothist(SG)
CGGPplothist(SG, ylog=FALSE)

# The first dimension is more active and will have greater depth
f <- function(x) {sin(x[1]^.6*5)}
SG <- CGGPcreate(d=5, batchsize=100)
SG <- CGGPfit(SG, apply(SG$design, 1, f))
SG <- CGGPappend(CGGP=SG, batchsize=1000)
CGGPplothist(SG)</pre>
```

 ${\tt CGGPplotsamplesneglogpost}$

Plot negative log posterior likelihood of samples

Description

Plot negative log posterior likelihood of samples

Usage

```
CGGPplotsamplesneglogpost(CGGP)
```

Arguments

CGGP

CGGP object

Value

ggplot2 object

See Also

```
Other CGGP plot functions: CGGPplotblocks(), CGGPplotcorr(), CGGPplotheat(), CGGPplothist(), CGGPplotslice(), CGGPplottheta(), CGGPplotvariogram(), CGGPvalplot()
```

Examples

```
gs <- CGGPcreate(d=3, batchsize=100)
f <- function(x){x[1]^1.2+x[3]^.4*sin(2*pi*x[2]^2*3) + .1*exp(3*x[3])}
y <- apply(gs$design, 1, f)
gs <- CGGPfit(gs, Y=y)
CGGPplotsamplesneglogpost(gs)</pre>
```

 ${\tt CGGPplotslice}$

CGGP slice plot

Description

Show prediction plots when varying over only one dimension. Most useful when setting all values to 0.5 because it will have the most points.

12 CGGPplotslice

Usage

```
CGGPplotslice(
   CGGP,
   proj = 0.5,
   np = 300,
   color = "pink",
   outdims,
   scales = "free_y",
   facet = "grid"
)
```

Arguments

CGGP	CGGP object
proj	Point to project onto
np	Number of points to use along each dimension
color	Color to make error region
outdims	If multiple outputs, which of them should be plotted?
scales	Parameter passed to ggplot2::facet_grid()
facet	If "grid", will use ggplot2::facet_grid(), if "wrap" will use ggplot2::facet_wrap(). Only applicable for a single output dimension.

Value

ggplot2 object

See Also

```
Other\ CGGP\ plot\ functions:\ CGGP\ plotblocks(),\ CGGP\ plotcorr(),\ CGGP\ plotheat(),\ CGGP\ plothist(),\ CGGP\ plots\ amples\ neg\ logpost(),\ CGGP\ plottheta(),\ CGGP\ plotvariog\ ram(),\ CGGP\ val\ plot()
```

```
d <- 5
f1 <- function(x){x[1]+x[2]^2 + cos(x[3]^2*2*pi*4) - 3.3}
s1 <- CGGPcreate(d, 200)
s1 <- CGGPfit(s1, apply(s1$design, 1, f1))
#s1 <- CGGPappend(s1, 200)
#s1 <- CGGPfit(s1, apply(s1$design, 1, f1))
CGGPplotslice(s1)
CGGPplotslice(s1)
CGGPplotslice(s1, 0.)
CGGPplotslice(s1, s1$design[nrow(s1$design),])</pre>
```

CGGPplottheta 13

CGGPplottheta

Plot theta samples

Description

Plot theta samples

Usage

```
CGGPplottheta(CGGP)
```

Arguments

CGGP

CGGP object

Value

ggplot2 object

See Also

```
Other CGGP plot functions: CGGPplotblocks(), CGGPplotcorr(), CGGPplotheat(), CGGPplothist(), CGGPplotsamplesneglogpost(), CGGPplotslice(), CGGPplotvariogram(), CGGPvalplot()
```

Examples

```
gs <- CGGPcreate(d=3, batchsize=100) 
f <- function(x)\{x[1]^1.2+x[3]^4.4+\sin(2*pi*x[2]^2*3) + .1+\exp(3*x[3])\} 
y <- apply(gs$design, 1, f) 
gs <- CGGPfit(gs, Y=y) 
CGGPplottheta(gs)
```

CGGPplotvariogram

Plot something similar to a semivariogram

Description

It's not actually a variogram or semivariogram. It shows how the correlation function falls off as distance increases.

Usage

```
CGGPplotvariogram(CGGP, facet = 1, outdims = NULL)
```

14 CGGPvalplot

Arguments

CGGP CGGP object

facet How should the plots be faceted? If 1, in a row, if 2, in a column, if 3, wrapped

around.

outdims Which output dimensions should be shown.

Value

ggplot2 object

See Also

```
Other CGGP plot functions: CGGPplotblocks(), CGGPplotcorr(), CGGPplotheat(), CGGPplothist(), CGGPplotsamplesneglogpost(), CGGPplotslice(), CGGPplottheta(), CGGPvalplot()
```

Examples

```
SG <- CGGPcreate(d=3, batchsize=100)
f <- function(x){x[1]^1.2+x[3]^.4*sin(2*pi*x[2]^2*3) + .1*exp(3*x[3])}
y <- apply(SG$design, 1, f)
SG <- CGGPfit(SG, Y=y)
CGGPplotvariogram(SG)</pre>
```

CGGPvalplot

Plot validation prediction errors for CGGP object

Description

Plot validation prediction errors for CGGP object

Usage

```
CGGPvalplot(CGGP, Xval, Yval, d = NULL)
```

Arguments

CGGP CGGP object that has been fitted

Xval X validation data
Yval Y validation data

d If output is multivariate, which column to use. Will do all if left as NULL.

Value

None, makes a plot

CGGPvalstats 15

See Also

Other CGGP plot functions: CGGPplotblocks(), CGGPplotcorr(), CGGPplotheat(), CGGPplothist(), CGGPplotsamplesneglogpost(), CGGPplotslice(), CGGPplottheta(), CGGPplotvariogram()

Examples

```
SG <- CGGPcreate(d=3, batchsize=100)
f1 <- function(x){x[1]+x[2]^2}
y <- apply(SG$design, 1, f1)
SG <- CGGPfit(SG, y)
Xval <- matrix(runif(3*100), ncol=3)
Yval <- apply(Xval, 1, f1)
CGGPvalplot(CGGP=SG, Xval=Xval, Yval=Yval)</pre>
```

CGGPvalstats

Calculate stats for CGGP prediction on validation data

Description

Calculate stats for CGGP prediction on validation data

Usage

```
CGGPvalstats(CGGP, Xval, Yval, bydim = TRUE, ...)
```

Arguments

CGGP	CGGP object
Xval	X validation matrix
Yval	Y validation data
bydim	If multiple outputs, should it be done separately by dimension?
	Passed to valstats, such as which stats to calculate

Value

data frame

```
SG <- CGGPcreate(d=3, batchsize=100)
f1 <- function(x){x[1]+x[2]^2}
y <- apply(SG$design, 1, f1)
SG <- CGGPfit(SG, y)
Xval <- matrix(runif(3*100), ncol=3)
Yval <- apply(Xval, 1, f1)
CGGPvalstats(CGGP=SG, Xval=Xval, Yval=Yval)
```

Description

Calculated using grid of integration points. Can be calculated exactly, but not much reason in 1D.

Usage

```
CGGP_internal_calcMSE(x1, theta, CorrMat)
```

Arguments

xl Vector of points in 1D theta Correlation parameters

CorrMat Function that gives correlation matrix for vectors of 1D points.

Value

MSE value

```
 \begin{split} \text{CGGP\_internal\_calcMSE}(xl=&c(\emptyset,.5,.9), \text{ theta=}c(1,2,3), \\ \text{CorrMat=}CGGP\_internal\_CorrMatCauchySQT}) \end{split}
```

```
{\tt CGGP\_internal\_calcMSEde}
```

Calculate MSE over blocks

Description

Delta of adding block is product over i=1..d of IMSE(i,j-1) - IMSE(i,j)

Usage

```
CGGP_internal_calcMSEde(valsinds, MSE_MAP)
```

Arguments

valsinds Block levels to calculate MSEs for

MSE_MAP Matrix of MSE values

Value

All MSE values

Examples

CGGP_internal_calcpw Calculate predictive weights for CGGP

Description

Predictive weights are Sigma^(-1)*y in standard GP. This calculation is much faster since we don't need to solve the full system of equations.

Usage

```
CGGP_internal_calcpw(CGGP, y, theta, return_lS = FALSE)
```

Arguments

CGGP CGGP object

y Measured values for CGGP\$design

theta Correlation parameters return_1S Should IS be returned?

Value

Vector with predictive weights

Examples

CGGP_internal_calcpwanddpw

Calculate derivative of pw

Description

Calculate derivative of pw

Usage

```
CGGP_internal_calcpwanddpw(CGGP, y, theta, return_lS = FALSE)
```

Arguments

CGGP CGGP object

y Measured values for CGGP\$design

theta Correlation parameters

return_1S Should IS and dIS be returned?

Value

derivative matrix of pw with respect to logtheta

```
CGGP_internal_CorrMatCauchy
```

Cauchy correlation function

Description

Calculate correlation matrix for two sets of points in one dimension. Note that this is not the correlation between two vectors.

Usage

```
CGGP_internal_CorrMatCauchy(
   x1,
   x2,
   theta,
   return_dCdtheta = FALSE,
   return_numpara = FALSE,
   returnlogs = FALSE
)
```

Arguments

v2 Vector of coordinates from same dimension
 v2 Vector of coordinates from same dimension
 theta Correlation parameters:

 LS Log of parameter that controls lengthscale
 FD Logit of 0.5*parameter that controls the fractal dimension
 HE Log of parameter that controls the hurst effect

 return_dCdtheta

 Should dCdtheta be returned?

return_numpara Should it just return the number of parameters? returnlogs Should log of correlation be returned?

Value

Matrix of correlation values between x1 and x2

See Also

```
Other correlation functions: CGGP_internal_CorrMatCauchySQT(), CGGP_internal_CorrMatCauchySQ(), CGGP_internal_CorrMatGaussian(), CGGP_internal_CorrMatMatern32(), CGGP_internal_CorrMatMatern52(), CGGP_internal_CorrMatPowerExp(), CGGP_internal_CorrMatWendland0(), CGGP_internal_CorrMatWendland1(), CGGP_internal_CorrMatWendland2()
```

```
CGGP_internal_CorrMatCauchy(c(0,.2,.4),c(.1,.3,.5), theta=c(-1,.9,.1))
```

```
CGGP_internal_CorrMatCauchySQ

CauchySO correlation function
```

Description

Calculate correlation matrix for two sets of points in one dimension Note that this is not the correlation between two vectors.

Usage

```
CGGP_internal_CorrMatCauchySQ(
   x1,
   x2,
   theta,
   return_dCdtheta = FALSE,
   return_numpara = FALSE,
   returnlogs = FALSE
)
```

Arguments

x1 Vector of coordinates from same dimension
 x2 Vector of coordinates from same dimension
 theta Correlation parameters:

 LS Log of parameter that controls lengthscale
 FD Logit of 0.5*parameter that controls the fractal dimension
 HE Log of parameter that controls the hurst effect

 return_dCdtheta

 Should dCdtheta be returned?

 return_numpara Should it just return the number of parameters?

Should log of correlation be returned?

Value

returnlogs

Matrix of correlation values between x1 and x2

See Also

```
Other correlation functions: CGGP_internal_CorrMatCauchySQT(), CGGP_internal_CorrMatCauchy(), CGGP_internal_CorrMatGaussian(), CGGP_internal_CorrMatMatern32(), CGGP_internal_CorrMatMatern52(), CGGP_internal_CorrMatPowerExp(), CGGP_internal_CorrMatWendland0(), CGGP_internal_CorrMatWendland1(), CGGP_internal_CorrMatWendland2()
```

```
\label{eq:corrMatCauchySQ} CGGP\_internal\_CorrMatCauchySQ(c(0,.2,.4),c(.1,.3,.5),\ theta=c(-.7,-.5))
```

```
CGGP_internal_CorrMatCauchySQT

CauchySQT correlation function
```

Description

Calculate correlation matrix for two sets of points in one dimension. Note that this is not the correlation between two vectors.

Usage

```
CGGP_internal_CorrMatCauchySQT(
   x1,
   x2,
   theta,
   return_dCdtheta = FALSE,
   return_numpara = FALSE,
   returnlogs = FALSE
)
```

Arguments

x1 Vector of coordinates from same dimension
 x2 Vector of coordinates from same dimension
 theta Correlation parameters:

 LS Log of parameter that controls lengthscale
 FD Logit of 0.5*parameter that controls the fractal dimension
 HE Log of parameter that controls the hurst effect

 return_dCdtheta

 Should dCdtheta be returned?

 returnlogs Should log of correlation be returned?

Value

Matrix of correlation values between x1 and x2

See Also

```
Other correlation functions: CGGP_internal_CorrMatCauchySQ(), CGGP_internal_CorrMatCauchy(), CGGP_internal_CorrMatGaussian(), CGGP_internal_CorrMatMatern32(), CGGP_internal_CorrMatMatern52(), CGGP_internal_CorrMatPowerExp(), CGGP_internal_CorrMatWendland0(), CGGP_internal_CorrMatWendland1(), CGGP_internal_CorrMatWendland2()
```

```
CGGP\_internal\_CorrMatCauchySQT(c(0,.2,.4),c(.1,.3,.5),\ theta=c(-.1,.3,-.7))
```

```
CGGP_internal_CorrMatGaussian
```

Gaussian correlation function

Description

Calculate correlation matrix for two sets of points in one dimension Note that this is not the correlation between two vectors.

Usage

```
CGGP_internal_CorrMatGaussian(
    x1,
    x2,
    theta,
    return_dCdtheta = FALSE,
    return_numpara = FALSE,
    returnlogs = FALSE
)
```

Arguments

Vector of coordinates from same dimension
 Vector of coordinates from same dimension
 theta Correlation parameters:

 LS Log of parameter that controls lengthscale
 FD Logit of 0.5*parameter that controls the fractal dimension
 HE Log of parameter that controls the hurst effect

 return_dCdtheta

 Should dCdtheta be returned?

 return_numpara Should it just return the number of parameters?

Should log of correlation be returned?

Details

returnlogs

WE HIGHLY ADVISE NOT USING THIS CORRELATION FUNCTION. Try Power Exponential, CauchySQT, Cauchy, or Matern 3/2 instead.

Value

```
Other correlation functions: CGGP_internal_CorrMatCauchySQT(), CGGP_internal_CorrMatCauchySQ(), CGGP_internal_CorrMatCauchy(), CGGP_internal_CorrMatMatern32(), CGGP_internal_CorrMatMatern52(), CGGP_internal_CorrMatPowerExp(), CGGP_internal_CorrMatWendland0(), CGGP_internal_CorrMatWendland1(), CGGP_internal_CorrMatWendland2()
```

Examples

```
CGGP_internal_CorrMatGaussian(c(0,.2,.4),c(.1,.3,.5), theta=c(-.7))

CGGP_internal_CorrMatMatern32

Matern 3/2 correlation function
```

Description

Calculate correlation matrix for two sets of points in one dimension. Note that this is not the correlation between two vectors.

Usage

```
CGGP_internal_CorrMatMatern32(
   x1,
   x2,
   theta,
   return_dCdtheta = FALSE,
   return_numpara = FALSE,
   returnlogs = FALSE
)
```

Arguments

vector of coordinates from same dimension
 Vector of coordinates from same dimension
 theta Correlation parameters:

 LS Log of parameter that controls lengthscale
 FD Logit of 0.5*parameter that controls the fractal dimension
 HE Log of parameter that controls the hurst effect

 return_dCdtheta

 Should dCdtheta be returned?

 return_numpara Should it just return the number of parameters?
 returnlogs Should log of correlation be returned?

Value

```
Other correlation functions: CGGP_internal_CorrMatCauchySQT(), CGGP_internal_CorrMatCauchySQ(), CGGP_internal_CorrMatCauchy(), CGGP_internal_CorrMatGaussian(), CGGP_internal_CorrMatMatern52(), CGGP_internal_CorrMatPowerExp(), CGGP_internal_CorrMatWendland0(), CGGP_internal_CorrMatWendland1(), CGGP_internal_CorrMatWendland2()
```

Examples

```
CGGP_internal_CorrMatMatern32(c(0,.2,.4),c(.1,.3,.5), theta=c(-.7))

CGGP_internal_CorrMatMatern52

Matern 5/2 correlation function
```

Description

Calculate correlation matrix for two sets of points in one dimension. Note that this is not the correlation between two vectors.

Usage

```
CGGP_internal_CorrMatMatern52(
   x1,
   x2,
   theta,
   return_dCdtheta = FALSE,
   return_numpara = FALSE,
   returnlogs = FALSE
)
```

Arguments

vector of coordinates from same dimension
 Vector of coordinates from same dimension
 theta Correlation parameters:

 LS Log of parameter that controls lengthscale
 FD Logit of 0.5*parameter that controls the fractal dimension
 HE Log of parameter that controls the hurst effect

 return_dCdtheta

 Should dCdtheta be returned?

 return_numpara Should it just return the number of parameters?
 returnlogs Should log of correlation be returned?

Value

```
Other correlation functions: CGGP_internal_CorrMatCauchySQT(), CGGP_internal_CorrMatCauchySQ(), CGGP_internal_CorrMatCauchy(), CGGP_internal_CorrMatGaussian(), CGGP_internal_CorrMatMatern32(), CGGP_internal_CorrMatPowerExp(), CGGP_internal_CorrMatWendland0(), CGGP_internal_CorrMatWendland1(), CGGP_internal_CorrMatWendland2()
```

Examples

```
CGGP_internal_CorrMatMatern52(c(\emptyset,.2,.4),c(.1,.3,.5), theta=c(-.7))

CGGP_internal_CorrMatPowerExp

Power exponential correlation function
```

Description

Calculate correlation matrix for two sets of points in one dimension. Note that this is not the correlation between two vectors.

Usage

```
CGGP_internal_CorrMatPowerExp(
   x1,
   x2,
   theta,
   return_dCdtheta = FALSE,
   return_numpara = FALSE,
   returnlogs = FALSE
)
```

Arguments

```
    vector of coordinates from same dimension
    Vector of coordinates from same dimension
    theta Correlation parameters:

            LS Log of parameter that controls lengthscale
            FD Logit of 0.5*parameter that controls the fractal dimension
            HE Log of parameter that controls the hurst effect

    return_dCdtheta

            Should dCdtheta be returned?

    return_numpara Should it just return the number of parameters?
    returnlogs Should log of correlation be returned?
```

Value

```
Other correlation functions: CGGP_internal_CorrMatCauchySQT(), CGGP_internal_CorrMatCauchySQ(), CGGP_internal_CorrMatCauchy(), CGGP_internal_CorrMatGaussian(), CGGP_internal_CorrMatMatern32(), CGGP_internal_CorrMatMatern52(), CGGP_internal_CorrMatWendland0(), CGGP_internal_CorrMatWendland1(), CGGP_internal_CorrMatWendland2()
```

Examples

```
CGGP_internal_CorrMatPowerExp(c(\emptyset, .2, .4), c(.1, .3, .5), theta=c(-.7, .2))

CGGP_internal_CorrMatWendland0

Wendland0 (Triangle) correlation function
```

Description

Calculate correlation matrix for two sets of points in one dimension. Note that this is not the correlation between two vectors.

Usage

```
CGGP_internal_CorrMatWendland0(
    x1,
    x2,
    theta,
    return_dCdtheta = FALSE,
    return_numpara = FALSE,
    returnlogs = FALSE
)
```

Arguments

vector of coordinates from same dimension
 Vector of coordinates from same dimension
 theta Correlation parameters:

 LS Log of parameter that controls lengthscale
 FD Logit of 0.5*parameter that controls the fractal dimension
 HE Log of parameter that controls the hurst effect

 return_dCdtheta

 Should dCdtheta be returned?

 return_numpara Should it just return the number of parameters?
 returnlogs Should log of correlation be returned?

Value

```
Other correlation functions: CGGP_internal_CorrMatCauchySQT(), CGGP_internal_CorrMatCauchySQ(), CGGP_internal_CorrMatCauchy(), CGGP_internal_CorrMatGaussian(), CGGP_internal_CorrMatMatern32(), CGGP_internal_CorrMatMatern52(), CGGP_internal_CorrMatPowerExp(), CGGP_internal_CorrMatWendland1(), CGGP_internal_CorrMatWendland2()
```

Examples

```
CGGP_internal_CorrMatWendland0(c(0,.2,.4),c(.1,.3,.5), theta=-.7)

CGGP_internal_CorrMatWendland1

Wendland1 1 correlation function
```

Description

Calculate correlation matrix for two sets of points in one dimension. Note that this is not the correlation between two vectors.

Usage

```
CGGP_internal_CorrMatWendland1(
   x1,
   x2,
   theta,
   return_dCdtheta = FALSE,
   return_numpara = FALSE,
   returnlogs = FALSE
)
```

Arguments

```
    vector of coordinates from same dimension
    Vector of coordinates from same dimension
    theta Correlation parameters:

            LS Log of parameter that controls lengthscale
            FD Logit of 0.5*parameter that controls the fractal dimension
            HE Log of parameter that controls the hurst effect

    return_dCdtheta

            Should dCdtheta be returned?

    return_numpara Should it just return the number of parameters?
    returnlogs Should log of correlation be returned?
```

Value

```
Other correlation functions: CGGP_internal_CorrMatCauchySQT(), CGGP_internal_CorrMatCauchySQ(), CGGP_internal_CorrMatCauchy(), CGGP_internal_CorrMatGaussian(), CGGP_internal_CorrMatMatern32(), CGGP_internal_CorrMatMatern52(), CGGP_internal_CorrMatPowerExp(), CGGP_internal_CorrMatWendland0(), CGGP_internal_CorrMatWendland2()
```

Examples

```
CGGP_internal_CorrMatWendland1(c(\emptyset, .2, .4), c(.1, .3, .5), theta=-.7)

CGGP_internal_CorrMatWendland2

Wendland2 2 correlation function
```

Description

Calculate correlation matrix for two sets of points in one dimension. Note that this is not the correlation between two vectors.

Usage

```
CGGP_internal_CorrMatWendland2(
   x1,
   x2,
   theta,
   return_dCdtheta = FALSE,
   return_numpara = FALSE,
   returnlogs = FALSE
)
```

Arguments

```
    vector of coordinates from same dimension
    Vector of coordinates from same dimension
    theta Correlation parameters:

            LS Log of parameter that controls lengthscale
            FD Logit of 0.5*parameter that controls the fractal dimension
            HE Log of parameter that controls the hurst effect

    return_dCdtheta

            Should dCdtheta be returned?

    return_numpara Should it just return the number of parameters?
    returnlogs Should log of correlation be returned?
```

Value

```
Other correlation functions: CGGP_internal_CorrMatCauchySQT(), CGGP_internal_CorrMatCauchySQ(), CGGP_internal_CorrMatCauchy(), CGGP_internal_CorrMatGaussian(), CGGP_internal_CorrMatMatern32(), CGGP_internal_CorrMatMatern52(), CGGP_internal_CorrMatPowerExp(), CGGP_internal_CorrMatWendland0(), CGGP_internal_CorrMatWendland1()
```

Examples

```
CGGP\_internal\_CorrMatWendland2(c(\emptyset,.2,.4),c(.1,.3,.5), theta=-.7) CGGP\_internal\_gneglogpost
```

__ Cr

Gradient of negative log likelihood posterior

Description

Gradient of negative log likelihood posterior

Usage

```
CGGP_internal_gneglogpost(
    theta,
    CGGP,
    y,
    ...,
    return_lik = FALSE,
    ys = NULL,
    Xs = NULL,
    HandlingSuppData = "Correct"
)
```

Arguments

theta Log of correlation parameters

CGGP CGGP object

y CGGP\$design measured values

... Forces you to name remaining arguments

return_lik If yes, it returns a list with lik and glik

ys Supplementary output data

Xs Supplementary input data

HandlingSuppData

How should supplementary data be handled? * Correct: full likelihood with grid and supplemental data * Only: only use supplemental data * Ignore: ignore supplemental data

Value

Vector for gradient of likelihood w.r.t. x (theta)

Examples

```
cg <- CGGPcreate(d=3, batchsize=20)
Y <- apply(cg$design, 1, function(x){x[1]+x[2]^2})
cg <- CGGPfit(cg, Y)
CGGP_internal_gneglogpost(cg$thetaMAP, CGGP=cg, y=cg$y)</pre>
```

```
CGGP_internal_MSEpredcalc
```

Calculate MSE prediction along a single dimension

Description

Calculate MSE prediction along a single dimension

Usage

```
CGGP_internal_MSEpredcalc(xp, xl, theta, CorrMat)
```

Arguments

xp Points at which to calculate MSE x1 Levels along dimension, vector???

theta Correlation parameters

CorrMat Function that gives correlation matrix for vectors of 1D points.

Value

MSE predictions

```
 \begin{split} CGGP\_internal\_MSEpredcalc(c(.4,.52),\ c(\emptyset,.25,.5,.75,1),\ theta=c(.1,.2),\\ CorrMat=CGGP\_internal\_CorrMatCauchySQ) \end{split}
```

```
{\tt CGGP\_internal\_neglogpost}
```

Calculate negative log posterior

Description

Calculate negative log posterior

Usage

```
CGGP_internal_neglogpost(
  theta,
  CGGP,
  y,
  ...,
  ys = NULL,
  Xs = NULL,
  HandlingSuppData = "Correct"
)
```

Arguments

theta	Correlation parameters	
CGGP	CGGP object	
У	Measured values of CGGP\$design	
	Forces you to name remaining arguments	
ys	Supplementary output data	
Xs	Supplementary input data	
HandlingSuppData		

How should supplementary data be handled?

- Correct: full likelihood with grid and supplemental data
- Only: only use supplemental data
- Ignore: ignore supplemental data

Value

Likelihood

```
cg <- CGGPcreate(d=3, batchsize=20)
Y <- apply(cg$design, 1, function(x){x[1]+x[2]^2})
cg <- CGGPfit(cg, Y)
CGGP_internal_neglogpost(cg$thetaMAP, CGGP=cg, y=cg$y)</pre>
```

32 plot.CGGP

```
CGGP_internal_set_corr
```

Set correlation function of CGGP object

Description

Set correlation function of CGGP object

Usage

```
CGGP_internal_set_corr(CGGP, corr)
```

Arguments

CGGP CGGP object

corr Correlation function

Value

CGGP object

Examples

```
obj <- CGGPcreate(3, 20, corr="matern52")
CGGP_internal_set_corr(obj, "gaussian")</pre>
```

plot.CGGP

S3 plot method for CGGP

Description

There are a few different plot functions for CGGP objects: 'CGGPplotblocks', 'CGGPplotblocks' selection', 'CGGPplotcorr', 'CGGPplotheat', 'CGGPplothist', 'CGGPplotblocks', 'CGGPplotslice', 'CGGPplotslice', and 'CGGPplotvariogram'. Currently 'CGGPplotblocks' is the default plot object.

Usage

```
## S3 method for class 'CGGP'
plot(x, y, ...)
```

Arguments

x CGGP object y Don't use

... Passed to CGGPplotblocks

predict.CGGP 33

Value

Either makes plot or returns plot object

Examples

```
SG = CGGPcreate(3,100)
plot(SG)
```

predict.CGGP

S3 predict method for CGGP

Description

Passes to CGGPpred

Predict using SG with y values at xp? Shouldn't y values already be stored in SG?

Usage

```
## S3 method for class 'CGGP'
predict(object, xp, ...)

CGGPpred(CGGP, xp, theta = NULL, outdims = NULL)
```

Arguments

object	CGGP object
хр	x value to predict at

... Other arguments passed to 'CGGPpred'

CGGP SG object

theta Leave as NULL unless you want to use a value other than thetaMAP. Much

slower.

dict just for certain dimensions to speed it up. Will leave other columns in the

output, but they will be wrong.

Value

Predicted mean values

See Also

```
Other CGGP core functions: CGGPappend(), CGGPcreate(), CGGPfit()
```

print.CGGP

Examples

```
 SG <- CGGPcreate(d=3, batchsize=100) \\ y <- apply(SG\$design, 1, function(x)\{x[1]+x[2]^2+rnorm(1,0,.01)\}) \\ SG <- CGGPfit(SG, Y=y) \\ CGGPpred(SG, matrix(c(.1,.1,.1),1,3)) \\ cbind(CGGPpred(SG, SG\$design)\$mean, y) \# Should be near equal
```

print.CGGP

Print CGGP object

Description

Default print as a list is bad since there's a lot of elements.

Usage

```
## S3 method for class 'CGGP'
print(x, ...)
```

Arguments

x CGGP object... Passed to print

Value

String to be printed

```
SG = CGGPcreate(3,21)
print(SG)
f <- function(x) {x[1]+exp(x[2]) + log(x[3]+4)}
y <- apply(SG$design, 1, f)
SG <- CGGPfit(SG, y)
print(SG)</pre>
```

rcpp_fastmatclcr 35

rcpp_fastmatclcr	rcpp_fastmatclcr	

Description

```
rcpp_fastmatclcr
```

Usage

```
rcpp_fastmatclcr(I, w, MSEmat, S, maxlevel)
```

Arguments

I	Matrix
W	vector
MSEmat	Matrix
S	Vector
maxlevel	Integer

Value

Nothing, void

```
rcpp_fastmatclcranddclcr
```

 $rcpp_fastmatclcranddclcr$

Description

```
repp\_fast matcle rand deler
```

Usage

```
rcpp_fastmatclcranddclcr(I, w, MSEmat, dMSEmat, S, dS, maxlevel, numpara)
```

Arguments

I	Matrix
W	vector
MSEmat	Matrix
dMSEmat	Matrix
S	Vector
dS	Matrix
maxlevel	Integer
numpara	Integer

36 rcpp_kronDBS

Value

Nothing, void

rcpp_gkronDBS

 $rcpp_kronDBS$

Description

rcpp_kronDBS

Usage

```
rcpp_gkronDBS(A, dA, B, p)
```

Arguments

A	Vector
dA	Vector
В	Vector
р	Vector

Value

kronDBS calculation

Examples

```
rcpp_gkronDBS(c(1,1), c(0,0), c(.75), c(1,1))
```

rcpp_kronDBS

 $rcpp_kronDBS$

Description

rcpp_kronDBS

Usage

```
rcpp_kronDBS(A, B, p)
```

Arguments

Α	Vector
В	Vector
n	Vector

valplot 37

Value

kronDBS calculation

valplot

Plot validation prediction errors

Description

Plot validation prediction errors

Usage

```
valplot(predmean, predvar, Yval, d = NULL)
```

Arguments

predmean Predicted mean
predvar Predicted variance
Yval Y validation data

d If output is multivariate, which column to use. Will do all if left as NULL.

Value

None, makes a plot

```
x <- matrix(runif(100*3), ncol=3)
f1 <- function(x){x[1]+x[2]^2}
y <- apply(x, 1, f1)
# Create a linear model on the data
mod <- lm(y ~ ., data.frame(x))
# Predict at validation data
Xval <- matrix(runif(3*100), ncol=3)
mod.pred <- predict.lm(mod, data.frame(Xval), se.fit=TRUE)
# Compare to true results
Yval <- apply(Xval, 1, f1)
valplot(mod.pred$fit, mod.pred$se.fit^2, Yval=Yval)</pre>
```

38 valstats

valstats

Calculate stats for prediction on validation data

Description

Calculate stats for prediction on validation data

Usage

```
valstats(
  predmean,
  predvar,
  Yval,
  bydim = TRUE,
 RMSE = TRUE,
  score = TRUE,
 CRPscore = TRUE,
  coverage = TRUE,
  corr = TRUE,
 R2 = TRUE,
 MAE = FALSE,
 MIS90 = FALSE,
 metrics,
 min_var = .Machine$double.eps
)
```

Arguments

predmean	Predicted mean
predvar	Predicted variance
Yval	Y validation data
bydim	If multiple outputs, should it be done separately by dimension?
RMSE	Should root mean squared error (RMSE) be included?
score	Should score be included?
CRPscore	Should CRP score be included?
coverage	Should coverage be included?
corr	Should correlation between predicted and true mean be included?
R2	Should R^2 be included?
MAE	Should mean absolute error (MAE) be included?
MIS90	Should mean interval score for 90% confidence be included? See Gneiting and Raftery (2007).
metrics	Optional additional metrics to be calculated. Should have same first three parameters as this function.
min_var	Minimum value of the predicted variance. Negative or zero variances can cause errors.

valstats 39

Value

data frame

References

Gneiting, Tilmann, and Adrian E. Raftery. "Strictly proper scoring rules, prediction, and estimation." Journal of the American Statistical Association 102.477 (2007): 359-378.

Index

* CGGP core functions	CGGP_internal_CorrMatGaussian, 19-21,
* CGGP core runctions CGGPappend, 3	22, 24–29
CGGPcreate, 4	CGGP_internal_CorrMatMatern32, 19-21,
CGGPfit, 5	23, 23, 25–29
predict.CGGP, 33	CGGP_internal_CorrMatMatern52, 19-21,
* CGGP plot functions	23, 24, 24, 26–29
CGGPplotblocks, 6	CGGP_internal_CorrMatPowerExp, 19-21,
CGGPplotcorr, 8	23–25, 25, 27–29
CGGPplotheat, 9	CGGP_internal_CorrMatWendland0, 19-21,
CGGPplothist, 10	23–26, 26, 28, 29
CGGPplotsamplesneglogpost, 11	CGGP_internal_CorrMatWendland1, 19-21,
CGGPplotslice, 11	23–27, 27, 29
CGGPplottheta, 13	CGGP_internal_CorrMatWendland2, 19-21,
CGGPplotvariogram, 13	23–28, 28
CGGPvalplot, 14	CGGP_internal_gneglogpost, 29
* correlation functions	CGGP_internal_MSEpredcalc, 30
CGGP_internal_CorrMatCauchy, 19	CGGP_internal_neglogpost, 31
CGGP_internal_CorrMatCauchySQ, 20	CGGP_internal_set_corr, 32
CGGP_internal_CorrMatCauchySQT, 21	CGGPappend, 3, 5, 6, 33
CGGP_internal_CorrMatGaussian, 22	CGGPcreate, 3, 4, 6, 33
CGGP_internal_CorrMatMatern32, 23	CGGPfit, 3, 5, 5, 33
CGGP_internal_CorrMatMatern52, 24	CGGPplotblocks, 6, 8–15
CGGP_internal_CorrMatPowerExp, 25	CGGPplotblockselection, 7
CGGP_internal_CorrMatWendland0, 26	CGGPplotcorr, $6, 8, 9-15$
CGGP_internal_CorrMatWendland1, 27	CGGPplotheat, 6, 8, 9, 10–15
CGGP_internal_CorrMatWendland2, 28	CGGPplothist, 6, 8, 9, 10, 11–15
cool_internal_corridentialata, 20	CGGPplotsamplesneglogpost, 6, 8–10, 11,
CCCD 2	12–15
CGGP, 3	CGGPplotslice, 6, 8–11, 11, 13–15
CGGP-package (CGGP), 3	CGGPplottheta, 6, 8–12, 13, 14, 15
CGGP_internal_calcMSE, 16	CGGPplotvariogram, <i>6</i> , <i>8–13</i> , 13, <i>15</i>
CGGP_internal_calcMSEde, 17	CGGPpred (predict.CGGP), 33
CGGP_internal_calcpw, 17	CGGPvalplot, <i>6</i> , <i>8</i> – <i>14</i> , 14
CGGP_internal_calcpwanddpw, 18 CGGP_internal_CorrMatCauchy, 19, 20, 21,	CGGPvalstats, 15
23–29	1 + 0000 22
CGGP_internal_CorrMatCauchySQ, 19, 20,	plot.CGGP, 32
21, 23–29	predict.CGGP, 3, 5, 6, 33
CGGP_internal_CorrMatCauchySQT, 19, 20,	print.CGGP, 34
21, 23–29	rcpp_fastmatclcr, 35
21, 23-29	r cpp_r as unaterer, 33

INDEX 41

```
rcpp_fastmatclcranddclcr, 35
rcpp_gkronDBS, 36
rcpp_kronDBS, 36
valplot, 37
valstats, 38
```