

Universidade Federal de Minas Gerais

Exercício 1 - Unidade 1

Redes Neurais Artificiais

Daniel Nogueira Junqueira - 2021072244

danijnog@ufmg.br

1. A seguir são apresentados os gráficos de aproximações polinomiais da função geradora f(x) = 1/2x^2 + 3x + 10, juntamente com seu ruído gaussiano amostradas entre x = -15 e x = 10, com o número de amostras N = 10 pedido, considerando a variação do grau do polinômio variando entre p = 1 a p = 8.

Polinômio de grau 2.

Polinômio de grau 3.

Polinômio de grau 4.

Polinômio de grau 5.

Polinômio de grau 7.

2. Analisando cada caso da aproximação

Vamos analisar cada gráfico para responder se ocorreu overfitting ou underfitting de acordo com o grau do polinômio gerado.

p = 1: nesse caso ocorreu underfitting, pois o modelo de aproximação não conseguiu se adaptar aos dados de treinamento. O modelo ficou muito simples em relação ao número de amostras que foi fornecido.

p = 1 até p = 6: nesses casos o modelo se comportou bem em relação a aproximação da função geradora, não ocorrendo nem overfitting e nem underfitting, apresentando um bom resultado.

p = 7 e p = 8: nos dois últimos casos, ocorreu overfitting, pois o modelo se ajustou muito bem em relação as amostras de entrada, porém é ineficaz para prever novos resultados.

3. Alterando o número de amostras para 100

Ao aumentarmos o número de amostras para 100, a função polinomial aproximada que calculamos se aproxima ainda mais da função geradora que foi usada para criar as amostras.

O polinômio com seus graus variando de 2 a 5 projetou funções polinomiais que mais conseguiu se aproximar da função geradora.

Ou seja, o aumento no número de amostras contribuiu para o polinômio se aproximar ainda mais da função geradora.

No gráfico abaixo, é mostrado a aproximação de um polinômio de grau 3 com o número de amostras = 100.

4. Semelhanças e diferenças de aproximadores polinomiais e Redes Neurais Artificiais

O aproximador polinomial, assim como as Redes Neurais, envolve estimar uma aproximação de um modelo matemático a partir das amostras de dados relacionados a esse modelo. Além disso, ambos os métodos podem ser ajustados e treinados para se adequarem aos dados amostrados.

Uma coisa que os diferencia é que as Redes Neurais podem ser usadas de forma mais genérica e com dados mais complexos do que o aproximador polinomial, que fica restringido apenas ao seu modelo de polinômio.

No geral, as RNAs geralmente são utilizadas para problemas mais complexos e com um maior volume de dados, enquanto os aproximadores polinomiais podem ser usados para problemas mais simples.