

Distributed Training

02476 Machine Learning Operations
Nicki Skafte Detlefsen,
Postdoc
DTU Compute

What is distributed computations?

Computing on multiple threads/devices/nodes in parallel

We focus on training as it is the most computationally expensive part but doing testing or inference can also be done in distributed manner

Distributed computing is not always beneficial:

Devices

- Three types of devices
 - CPU
 - General compute unit
 - 2-128 threads
 - GPU
 - Rendering unit
 - 1000-10000 threads
 - TPU
 - Specialized unit
 - 8-2048 threads

vector

scalar

tensor

Memory

Equally important to what device you are using, is the amount of memory that you have available

With more memory

- Faster data transfer
- Higher data modality
- Larger models

	СРИ	GPU	TPU
Standard	32-64 GiB	12 GiB	64 GiB
Maximum	256 GiB	24 GiB	32 TiB

Time to train an Xception model (minutes)

Figure 3: CPUs vs GPUs vs TPUs for training an Xception model for 12 epochs. Y-Axis labels indicate the choice of model, hardware, and batch size for each experiment. Increasing the batch size to 128 for TPUs resulted in an additional ~2x speedup.

https://towardsdatascience.com/when-to-use-cpus-vs-gpus-vs-tpus-in-a-kaggle-competition-9af708a8c3eb

Many layers of distributed computations

The six imporatnt communication types

MLOps

Rank 0: master/main

Rank > 0: slave/spawed

Data Parallel: one process controls all

Simple as parallel_model = torch.nn.DataParallel(model)

Note that only GPU-1 parameters are updated, the replicas are destroyed after backward

Distributed Data Parallel

In Distributed Data Parallel (DDP) all processes gets equal workload

Model paralliseme

When your model is too big for one device

Data Parallelism

Machine 4

Machine 3

Model Parallelism

How to do this in practise

DataParallel

parallel_model = torch.nn.DataParallel(model)

Distributed Data Parallel

- Set a environment MASTER_ADDR and MASTER_PORT
- Init a process group
- parallel_model = nn.parallel.DistributedDataParallel(model, device_ids=[gpu]
- Use mp.spawn to spawn multiple processes
- •

Model parallizeme

A shit ton of tensor.to('cuda:x') calls

Seperating engineering and research code

Getting code to run in parallel has somewhat become a research task!

However maybe it should not be like that?

Research Code

```
11 = nn.Linear(...)
12 = nn.Linear(...)
decoder = Decoder()

x1 = 11(x)
x2 = 12(x2)
out = decoder(features, x)

loss = perceptual_loss(x1, x2, x) + CE(out, x)
```

Engineering code

```
model.cuda(0)
x = x.cuda(0)

distributed = DistributedParallel(model)

with gpu_zero:
    download_data()

dist.barrier()
```

Spend time on research code and not engineering code!

Why using a training framework

Spend time on research code and not engineering code

→ Why training frameworks exist!

- Reduce boilerplate = increase turn-around time
- Focus on what is important
- Reproducibility
- Shareability
- Consistency
- Scalability

Training Fremworks

Many frameworks exist for reducing boilerplate

Many frameworks for accelerating training

Pytorch Lightning

PyTorch

```
class MNISTClassifier(nn.Module):
  def __init__(self):
      self.layer 1 = torch.nn.Linear(28 * 28, 128)
      self.layer_2 = torch.nn.Linear(128, 10)
  def forward(self, x):
   x = x.view(x.size(0), -1)
   x = self.layer_1(x)
   x = F.relu(x)
   x = self.layer_2(x)
    return x
# download data
if global rank == 0:
 mnist_train = MNIST(os.getcwd(), train=True, download=True)
 mnist_test = MNIST(os.getcwd(), train=False, download=True)
dist.barrier()
# transforms
transform=transforms.Compose([transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))])
mnist_train = MNIST(os.getcwd(), train=True, transform=transform)
mnist_test = MNIST(os.getcwd(), train=False, transform=transform)
mnist_train, mnist_val = random_split(mnist_train, [55000, 5000])
mnist_test = MNIST(os.getcwd(), train=False, download=True)
# build dataloaders
mnist_train = DataLoader(mnist_train, batch_size=64)
mnist_val = DataLoader(mnist_val, batch_size=64)
mnist_test = DataLoader(mnist_test, batch_size=64)
optimizer = torch.optim.Adam(pytorch_model.parameters(), lr=1e-3)
def cross_entropy_loss(logits, labels):
 return F.nll_loss(logits, labels)
num_epochs = 1
for epoch in range(num_epochs):
  for train_batch in mnist_train:
    x, y = train_batch
    logits = pytorch_model(x)
    loss = cross_entropy_loss(logits, y)
    print('train loss: ', loss.item())
    loss.backward()
    optimizer.step()
   optimizer.zero_grad()
  model.eval()
  with torch.no_grad():
    val_loss = []
    for val_batch in mnist_val:
      x, y = val batch
      logits = pytorch_model(x)
      val_loss.append(cross_entropy_loss(logits, y).item())
    avg_val_loss = torch.stack(val_loss).mean()
  model.train()
```

Its just reorganized Pytorch code!

Two core objects

- Lightning Module
 - Training, validation, test logic
 - Optimizer
- Trainer
 - The "rest"

trainer.fit(model) does the heavy lifting

What you get for free

Multi-GPU, multi-node

```
# 8 GPUs
# no code changes needed
trainer = Trainer(max_epochs=1, gpus=8)
# 256 GPUs
trainer = Trainer(max_epochs=1, gpus=8, num_nodes=32)
```

16 bit precision

```
# no code changes needed
trainer = Trainer(precision=16)
```

TPU training

```
# no code changes needed
trainer = Trainer(tpu_cores=8)
```

Experiment managers

```
from pytorch_lightning import loggers

logger = loggers.TensorBoardLogger('logs/')
logger = loggers.WandbLogger()
logger = loggers.CometLogger()
logger = loggers.MLFlowLogger()
logger = loggers.NeptuneLogger()
# ... and many more

trainer = Trainer(logger=logger)
```

What you get for free

Early stopping

```
es = EarlyStopping(monitor='val_loss')
trainer = Trainer(callbacks=[es])
```

```
trainer = Trainer(
    max_epochs=10,
    auto_lr_find=True,
    gradient_clip_val=1.0,
    accumulate_grad_batches=10,
    max_steps=1000
    #... 40+ tricks and extensions
)
```

40+ tricks and extensions

Model Checkpoint

```
checkpointing = ModelCheckpoint(monitor='val_loss')
trainer = Trainer(callbacks=[checkpointing])
```

Arbitrary functionality

```
# add arbitrary functionality
class MyNotifier(pl.Callback):

    def on_train_epoch_start(trainer, pl_module):
        slack.post('training started!')

notifier = MyNotifier()
trainer = Trainer(callbacks=[notifier])
```

What else do we offer?

All the metrics you need to measure the quality of your ML model in Pytorch

SOTA implementation of selected models

Easy-to-get-started tasks and models for fast prototyping

Transformer models in Lightning (for all NLP lovers)

Todays exercises

Try out distributed data loading (requires only CPU)

- Distributed training with Pytorch-lightning
 - https://pytorch-lightning.readthedocs.io/en/latest/
 - https://pytorch-lightning.readthedocs.io/en/latest/starter/converting.html
 - Make it run on multi-gpu
- Inference tricks of the trade

Meme of the day

