

TARGET DATA ANALYSIS USING SQL

For Brazil

What 'good' looks like?

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
 - 1. Data type of columns in a table

Field name	Туре	Mode
customer_id	STRING	NULLABLE
customer_unique_id	STRING	NULLABLE
customer_zip_code_prefix	INTEGER	NULLABLE
customer_city	STRING	NULLABLE
customer_state	STRING	NULLABLE

ilter order_items

Field name	Туре	Mode
order_id	STRING	NULLABLE
order_item_id	INTEGER	NULLABLE
product_id	STRING	NULLABLE
seller_id	STRING	NULLABLE
shipping_limit_date	TIMESTAMP	NULLABLE
price	FLOAT	NULLABLE
freight_value	FLOAT	NULLABLE

Filter orders

Field name	Туре	Mode
order_id	STRING	NULLABLE
customer_id	STRING	NULLABLE
order_status	STRING	NULLABLE
order_purchase_timestamp	TIMESTAMP	NULLABLE
order_approved_at	TIMESTAMP	NULLABLE
order_delivered_carrier_date	TIMESTAMP	NULLABLE
order_delivered_customer_date	TIMESTAMP	NULLABLE
order estimated delivery date	TIMESTAMP	NULLABLE

Filter payments

Field name	Туре	Mode
order_id	STRING	NULLABLE
payment_sequential	INTEGER	NULLABLE
payment_type	STRING	NULLABLE
payment_installments	INTEGER	NULLABLE
payment_value	FLOAT	NULLABLE

Filter Enter property name or value

Field name	Туре	Mode
product_id	STRING	NULLABLE
product_category	STRING	NULLABLE
product_name_length	INTEGER	NULLABLE
product_description_length	INTEGER	NULLABLE
product_photos_qty	INTEGER	NULLABLE
product_weight_g	INTEGER	NULLABLE
product_length_cm	INTEGER	NULLABLE
product_height_cm	INTEGER	NULLABLE
product_width_cm	INTEGER	NULLABLE

Filter seller

Field name	Туре	Mode
seller_id	STRING	NULLABLE
seller_zip_code_prefix	INTEGER	NULLABLE
seller_city	STRING	NULLABLE
seller_state	STRING	NULLABLE

2. Time period for which the data is given

3. Cities and States covered in dataset

1 SELECT count(distinct(customer_city)) city_count FROM <u>`target-dataset-368418.target.customers`</u>

Query results

1 SELECT distinct(customer_city) city_count FROM <u>`target-dataset-368418.target.customers`</u>

Query results

1 SELECT distinct(customer_state) city_count FROM <u>`target-dataset-368418.target.customers`</u>

Query results

 $1 \quad {\tt SELECT\ COUNT(distinct(customer_state))\ as\ number_of_States\ from\ \underline{{\tt `target.customers'}}}$

2. In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

YOY growth

2017

Year_of_purchace

2018

```
select

FORMAT_DATE('%B , %Y', datetime(order_purchase_timestamp)) AS month_year_of_purchace, count(order_id) as num_orders, 
EXTRACT(YEAR FROM DATETIME(order_purchase_timestamp)) as YEAR, 
EXTRACT(MONTH FROM DATETIME(order_purchase_timestamp)) as Month

FROM target-dataset-368418.target.orders 
group by month_year_of_purchace, YEAR, Month

order by YEAR, Month asc
```

IN	FORMATION RESULTS	JSON	EXECUTION DET	TAILS EXE	ECUTION GRAPH PREV
10	month_year_of_purchace	num_orders //	YEAR //	Month //	
	September , 2016	4	2016	9	
	October , 2016	324	2016	10	
	December , 2016	1	2016	12	
	January , 2017	800	2017	1	
	February , 2017	1780	2017	2	
	March , 2017	2682	2017	3	
	April , 2017	2404	2017	4	
	May , 2017	3700	2017	5	

2. What time do Brazilian customers tend to buy (Dawn,

Morning, Afternoon or Night)?

```
EXTRACT (HOUR FROM DATETIME (order_purchase_timestamp)) as hour_of_purchace,
count(*) as num_orders

FROM target-dataset-368418.target.orders

group by hour_of_purchace

order by hour_of_purchace asc
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PE
w /	hour_of_pur	num_orders			
1	0	2394			
2	1	1170			
3	2	510			
4	3	272			
5	4	206			
6	5	188			
7	6	502			
8	7	1231			

3. Evolution of E-commerce orders in the Brazil region:

1. Get month on month orders by region, states

```
select
customers.customer_state,

FORMAT_DATE('%B , %Y', datetime(order_purchase_timestamp)) AS month_year_of_purchac,

count (orders.order_id) as num_orders,
EXTRACT (MONTH FROM DATETIME (order_purchase_timestamp)) as month_of_purchace,
EXTRACT (YEAR FROM DATETIME (order_purchase_timestamp)) as year_of_purchace

FROM target-dataset-368418.target.customers

LEFT JOIN target-dataset-368418.target.orders ON customers.customer_id = orders.customer_ic

group by month_of_purchace, month_year_of_purchac, customers.customer_state, year_of_purchace

order by customers.customer_state, month_of_purchace asc, year_of_purchace
```

JOB IN	IFORMATION	RESULTS J	SON EX	ECUTION DETAIL	.s EXECU	TION GRAPH PREVIEW
w /	customer_state //	month_year_of_pu	rchac	num_orders //	month_of_p	year_of_pur
1	AC	January , 2017		2	1	2017
2	AC	January , 2018		6	1	2018
3	AC	February , 2017		3	2	2017
4	AC	February , 2018		3	2	2018
5	AC	March , 2017		2	3	2017
6	AC	March , 2018		2	3	2018
7	AC	April , 2017		5	4	2017
8	AC	April , 2018		4	4	2018
9	AC	May , 2017		8	5	2017
10	AC	May , 2018		2	5	2018

2. How are customers distributed in Brazil

```
1 SELECT
   customer_state,
count(distinct(customer_unique_id)) as number_of_customers
2
5 from <u>`target-dataset-368418.target.customers`</u>
7 group by customer_state
8 order by number_of_customers desc
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS
ow /	customer_state	11	number_of	
1	SP		40302	
2	RJ		12384	
3	MG		11259	
4	RS		5277	
5	PR		4882	
6	SC		3534	
7	BA		3277	
8	DF		2075	
9	ES		1964	
10	GO		1952	

- 4. Impact on Economy: Analyze the money movemented by e-commerce by looking at order prices, freight and others.
 - 1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

```
1 WITH
      TEMP AS (
 2
 3
      SELECT
 4
        EXTRACT (YEAR
 5
        DATETIME(shipping_limit_date)) AS Year_of_purchace,
 6
 7
        EXTRACT (MONTH
 8
        FROM
 9
        DATETIME(shipping_limit_date)) AS Month_of_purchace,
10
        SUM(price) AS cost_of_sales
      FROM
11
12
       target.order_items
13
      GROUP BY
14
        Year_of_purchace,
15
        Month_of_purchace
      HAVING
16
17
        Month_of_purchace<9
18
        AND Year_of_purchace BETWEEN 2016
19
        AND 2019
20
      ORDER BY
21
        Year_of_purchace,
22
        Month_of_purchace)
23 SELECT
    ((b.cost\_of\_sales-a.cost\_of\_sales)/a.cost\_of\_sales)*100 \ AS \ Percentage\_change, a.Month\_of\_purchace,
24
25
26 FROM
27 TEMP a
28 JOIN
29
    TEMP b
30 ON
31 a.Month_of_purchace = b.Month_of_purchace
33 a.Year_of_purchace < b.Year_of_purchace</p>
```

Query results JOB INFORMATION RESULTS JSON EXECUTION DE Percentage_change Month_of_purchace 1 7 1 74.331245496013949 2 91.423040309671691 8 3 85.657759188388113 6 4 200.23308295650372 3 5 211.12605124702762 4 6 114.4461270130449 5 7 954.95403791645685 1 2 8 233.04421327399828

2. Mean & Sum of price and freight value by a customer state

```
SELECT

| c.customer_state, | AVG(op.price) mean_price, | SUM(op.price) sum_price, | AVG(op.freight_value) mean_freight_charges, | SUM(op.freight_value) sum_fright_charges | FROM | target.customers c | JOIN | target.orders o | ON | c.customer_id = o.customer_id | itarget.order_items o | ON | o.order_id= op.order_id | c.customer_id | o.order_id= op.order_id | GROUP BY | c.customer_state | c.
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXE	CUTION GRAPH
w /	customer_state	le	mean_price //	sum_price //	mean_freigh/	sum_fright
1	MT		148.297184	156453.529	28.1662843	29715.4300
2	MA		145.204150	119648.219	38.2570024	31523.7700
3	AL		180.889211	80314.81	35.8436711	15914.5899
4	SP		109.653629	5202955.05	15.1472753	718723.069
5	MG		120.748574	1585308.02	20.6301668	270853.460
6	PE		145.508322	262788.029	32.9178626	59449.6599
7	RJ		125.117818	1824092.66	20.9609239	305589.310
8	DF		125.770548	302603.939	21.0413549	50625.4999
9	RS		120.337453	750304.020	21.7358043	135522.740
10	SE		153.041168	58920.8500	36.6531688	14111.4699

5. Analysis on sales, freight and delivery time

 Calculate days between purchasing, delivering and estimated delivery

2. Create columns:

- time_to_delivery = order_purchase_timestamporder delivered customer date
- diff_estimated_delivery = order_estimated_delivery_dateorder delivered customer date

3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
SELECT

| customer_state, | AVG(DATE_DIFF( o.order_delivered_carrier_date, o.order_purchase_timestamp, DAY)) | AS mean_time_to_delivery, | AVG(DATE_DIFF( o.order_estimated_delivery_date, order_purchase_timestamp, DAY)) | AS mean_diff_estimated_delivery, | AVG(ot.freight_value) | AS mean_freight_value | AS mean_freight_value | FROM | target.customers c | LEFT_JOIN | target.orders o | ON | c.customer_id = o.customer_id | ON | c.customer_id = o.customer_id | JOIN | target.order_items ot | ON | c.order_id = ot.order_id | GROUP BY | customer_state | order_by mean_time_to_delivery_asc_,mean_diff_estimated_delivery_desc,mean_freight_value | order_by mean_time_to_delivery_asc_,mean_diff_estimated_delivery_desc_,mean_freight_value | order_by mean_time_to_delivery_asc_,mean_freight_value | o
```

JOB IN	IFORMATION	RESULTS	JSON EXECUTION	DETAILS EXECUTIO	N GRAPH PREVIEW
w /	customer_state	h	mean_time_to_delivery	mean_diff_estimated	mean_freigh/
1	AM		2.29090909090909	45.206060606060618	33.2053939
2	RO		2.3369963369963385	38.651079136690626	41.0697122
3	GO		2.6150519031141854	26.623231890270041	22.7668152
4	MT		2.720797720797727	31.521327014218059	28.1662843
5	SP		2.7224963157557447	18.898290796434139	15.1472753
6	MS		2.7248157248157283	25.700854700854684	23.3748840
7	PI		2.7654784240150079	29.922509225092249	39.1479704
8	MG		2.7894291429450639	24.308401249143134	20.6301668
9	PE		2.7946278679350898	30.8106312292359	32.9178626
10	RS		2.7996112101085453	28.30906174819571	21.7358043

- 4. Sort the data to get the following:
 - 1. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5

```
(SELECT
3 | customer_state ,
4 | AVG(ot.freight_value) AS lowest_avg_freight_value
5 FROM
6 | target.customers c
7 LEFT JOIN
8 | target.orders o
9 ON
10 | c.customer_id = o.customer_id
11 JOIN
12 | target.order_items ot
0 ON
14 | o.order_id = ot.order_id
15 GROUP BY
16 | customer_state
17 ORDER BY
```

JOB INFORMATION		RESULTS	JSON	EXECUTION
low /	customer_state	le .	lowest_avg	
1	SP		15.1472753	
2	PR		20.5316515	
3	MG		20.6301668	
4	RJ		20.9609239	
5	DF		21.0413549	

```
customer_state ,
      AVG(ot.freight_value) AS top_avg_freight_value
 3
    FROM
 4
 5
    target.customers c
 6 LEFT JOIN
      target.orders o
 9
    c.customer_id = o.customer_id
 10 JOIN
 11
   target.order_items ot
ON
 12
 13 | o.order_id = ot.order_id
    GROUP BY
 14
    customer_state
 15
    ORDER BY
    top_avg_freight_value DESC
 18
 Query results
 JOB INFORMATION
                                                EXECUTIO
                       RESULTS
                                     JSON
   customer_state
                                  top_avg_frei...
Row
   1
       RR
                                   42.9844230...
   2
                                   42.7238039...
   3
       RO
                                   41.0697122...
   4
       AC
                                   40.0733695...
```

2. Top 5 states with highest/lowest average time to delivery

39.1479704...

uery results

Ы

5


```
3 SELECT
4
     customer_state
5
      \frac{\text{avg}(\text{DATE\_DIFF}(\text{ o.order\_delivered\_carrier\_date,o.order\_purchase\_timestamp,DAY}))}{\text{AS higest\_avg\_time\_of\_delevery,order\_purchase\_timestamp,DAY})}
     target.customers c
8 LEFT JOIN
    target.orders o
0 ON
   c.customer_id = o.customer_id
2 JOIN
     target.order_items ot
4 ON
5
   o.order_id = ot.order_id
6 GROUP BY
     customer_state
8
      order by higest_avg_time_of_delevery desc
     LIMIT 5
```

)uery results

OB IN	OB INFORMATION RESULTS		JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
1 /1	customer_state	h	higest_avg		
1	RR		4.62745098		
2	MA		3.39682539		
3	SE		3.24999999		
4	RN		3.20075757		
5	AP		3.14814814		

3. Top 5 states where delivery is really fast/ not so fast compared to estimated date

6. Payment type analysis:

1. Month over Month count of orders for different payment types

```
1
    SELECT
      FORMAT_DATETIME("%B,%Y", DATETIME(o.order_purchase_timestamp)) AS Month_Year,
 3
      payment_type,
 4
      COUNT(payment_type) AS number_of_transaction,
 5
     EXTRACT(month
     FROM (o.order_purchase_timestamp)) AS month,
     EXTRACT (YEAR
 8 FROM (o.order_purchase_timestamp)) AS Year,
9 FROM
10 target.orders o
11
   JOIN
     TARGET-dataset-368418.target.payments p
13 ON
14
   o.order_id= p.order_id
15 GROUP BY
16
     month,
17
     Year,
18
     Month_Year,
19
     payment_type
20 ORDER BY
21
     Year,
     month ASC
```

Row /	Month_Year	payment_type	number_of_transaction
1	September,2016	credit_card	3
2	October,2016	credit_card	254
3	October,2016	UPI	63
4	October,2016	voucher	23
5	October,2016	debit_card	2
6	December,2016	credit_card	1
7	January,2017	credit_card	583
8	January,2017	UPI	197
9	January,2017	voucher	61
10	January,2017	debit_card	9

2. Distribution of payment installments and count of orders

```
1  SELECT
2     payment_installments,
3     COUNT(p.order_id) AS Number_of_orders
4  FROM
5     target.orders o
6  JOIN
7     TARGET-dataset-368418.target.payments p
8  ON
9     o.order_id= p.order_id
10  GROUP BY
11     payment_installments
12  ORDER BY
13     payment_installments ASC
```

Query results

JOB IN	FORMATION RES	SULTS	JSON	E
W /	payment_installments //	Number_	_of_orders	
1	0		2	
2	1		52546	
3	2		12413	
4	3		10461	
5	4		7098	
6	5		5239	
7	6		3920	
8	7		1626	
9	8		4268	
10	٥		644	

number of orders in payment installment

Actionable Insights:

1. Target data set is based in Brazil
2. time period of data is from 04-09-2016 to 17-10-2018
3.there are total 4119 cities and 27 states of Brazil
4. There is a year on year growth in number of customers , we can see a rise from 2016 to 2018,
As we can observe growth from 329 customer during 2016 to 54011 customers in 2018
Also, there is month on month growth of 954 $\%$ in Jan 2018 and a minimum of 91 $\%$ growth every month in 2018
5. we cannot observer any seasonal spike apart from November 2017, but that ais an independent data and cannot be compared to next year November
6.brazilian customer tends buy between 9 am to 11 pm in which between 11 am to 6PM is peak hour.
7.maximum customers are from SP, RJ, and MG
8. maximum orders are generated from SP
9. we have observed that 92 $\%$ of order reached before the estimated time of delivery
10. mean fastest time to delivery is in 2.29 days in AM state
with mean fright price of 33.20

11. lowest fright price are in SP of 15.14 highest in RR at 42.98 followed by pb with 42.72 $\,$

- 12. Top mode of payment is credit card with total of 76795 transaction.
- 13. customer prefer to pay in 1 instalment using credit. Total of 52546 payments are done for 1 instalment using credit card.

Recommendations:

- **1. Re-Calculation estimated time of delivery** As site estimates 30 to 40 days to deliver but products are getting delivered much earlier like 2 to 5 days. As so much gap may increase order cancelation.
- 2. **Re-calculate fright price-** states like AM with shortest time for delivery but average fright price is high at 33.
- 3. maximum customers are concentrated in few sates like SP, MG and RJ . So some Survey need to be conducted to understand need of the customers of other states.
- 4. Sales growth should be maintained.