Two Level Logic Optimization: Heuristic Minimization

Two-Level Logic Minimization

- Exact minimization
 - problem: very large number of prime
 (3ⁿ/n) and very large number of minterms
- Heuristic minimization
 - avoid computing all primes
 - successively modify a given initial cover of the function until a suitable stopping (local search) criterion is met

Local Search

A Pictorial Representation of Local Search

• Distance: the difference of two solutions

Ex: For two sets of columns in a covering problem, the distance is the number of columns that appears in the first set but not in the second set.

Neighborhood of a point, s, of radius, r:
 The set of points in the search space whose distance from s is less than r

Local Search

A Convex Optimization Problem

A Non-Convex Optimization Problem

Heuristic Minimization of Two-Level Logic

- Espresso
 - near optimal solution
 - fast

Expand Input, Reduce Output (Single Output)

_xyz	f
000	1
01-	1
-11	1

Expand Output, Reduce Input (Multiple Output)

Reduce Input, Expand Output (Multiple Output)

XVZ	f_1f_2
1	10
1	10
0-1	01
-10	01

$$\begin{array}{c|cc} xyz & f_1f_2 \\ \hline 1-- & 10 \\ 0-1 & 11 \\ -10 & 01 \\ \end{array}$$

Simple Minization Loop

```
F = EXPAND(F,D);
F = IRREDUNDANT(F,D);
do \{
cost = |F|;
F = REDUCE(F,D);
F = EXPAND(F,D);
F = IRREDUNDANT(F,D);
\} while (|F| < cost);
F = MAKE\_SPARSE(F,D);
```

Expand

- Expand
 - Carry out one cube at a time
 - Expand cubes to prime and delete those cubes of F contained in the prime

Irredundant Cover

- After performing *Expand*, we have a prime cover without single cube containment now
- Find a proper subset which is also a cover (irredundant)

Reduce

Reduce:

Replace each prime by a smaller cube contained in it.

- $|\underline{F}| = |F|$ after reduce
- Since some of cubes of <u>F</u> are not prime, *Expand* can be applied to <u>F</u> to yield a different cover that may have fewer cubes
- $|\underline{F}| \leq |F|$ after *Expand*
- Move from locally optimal solution to a better one

Heuristic Minimization of Two-level Logic

- (a) Initial cover
- (b) After Reduction
- (c) After Expansion in the right direction
- (d) Irredundant cover

Two Principles for the Espresso

- 1. Decomposition
 - recursive divide and conquer by cofactor operation
 - the shannon expansion

$$f = x_i f_{x_i} + \overline{x_i} f_{\overline{x_i}}$$

- 2. Unate function
 - tautology checking
 - covering
 - essential prime

Example of Decomposition by Cofactor

Ex:

$$G = x_1x_2x_3' + x_1'x_2x_4' + x_1x_2x_3x_4$$

$$G = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ 1 & 1 & 0 & 2 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$Gx_4' = \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & 2 & 2 \end{bmatrix}$$

$$Gx_4 = \begin{bmatrix} 1 & 1 & 0 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

$$x_{4}'Gx_{4}'+x_{4}Gx_{4} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Divide & Conquer by Cofactor Op.

Tautology

$$f = x_i \cdot f_{x_i} + \overline{x}_i \cdot f_{\overline{x}_i}$$
$$f \equiv 1 \iff f_{\overline{x}_i} \equiv 1 \text{ and } f_{x_i} \equiv 1$$

Unate Function

 A logic function is monotone increasing (decreasing) in a variable x_j if changing x_j from 0 to 1 causes all the outputs that change, to increase from 0 to 1 (from 1 to 0).

Ex:
$$f = x_1 x_2' + x_2' x_3$$

• A function is unate if it is unate in all its variables.

Unate Function

 A logic function is monotone increasing (decreasing) in a variable x_j if changing x_j from 0 to 1 causes all the outputs that change, to increase from 0 to 1 (from 1 to 0).

Ex:
$$f = x_1 x_2' + x_2' x_3$$

• A function is unate if it is unate in all its variables.

Unate Function

 A logic function is monotone increasing (decreasing) in a variable x_j if changing x_j from 0 to 1 causes all the outputs that change, to increase from 0 to 1 (from 1 to 0).

Ex:
$$f = x_1 x_2' + x_2' x_3$$

• A function is unate if it is unate in all its variables.

Unate Cover

- A cover C is said to be monotone increasing (decreasing) in the variable x_j if all the cubes in C have either 1(0) or 2 in variable x_i .
- Proposition:

A cover is unate if it is monotone in all its variables.

•
$$\begin{vmatrix} 1 & 0 & 1 \\ 2 & 0 & 1 \\ 2 & 2 & 1 \\ 1 & 0 & 2 \end{vmatrix}$$
 => unate cover => unate function

not unate cover => not unate function

$$F = \left| \begin{array}{ccc} 1 & 1 & 0 \\ 2 & 0 & 2 \\ 1 & 0 & 0 \end{array} \right| \quad \Longrightarrow \left| \begin{array}{ccc} 1 & 2 & 0 \\ 2 & 0 & 2 \end{array} \right|$$

• Proposition:

A logic function f is monotone increasing (decreasing) in x_j if and only if no prime implicant of f has a 0(1) in the jth position,

Property of Unate Function

• Proposition:

A unate cover is a tautology if and only if it contains a row of 2's.

pf:

(<=) trivial

(=>) Assume the cover represent a monotone increasing function. Then, the function contains 1's and 2's of the components of all cubes.

The minterm (0,0,....0) must be covered. Unless the cover contains (2,2,....2), the minterm (0,0,...0) will not be covered.

Other Property of Unate Function

• Proposition:

If a logic function f is monotone increasing in x_j , then the complement of f (f') is monotone decreasing in x_j .

• Proposition:

The complement of a unate function is unate.

• Proposition:

The cofactor of a unate function f is unate.

The Paradigm of Espresso

- 1. Apply the operation to cofactor
- 2. Merge the result

operate(f,g) = merge(
$$x_i$$
 operate(f_{xi} , g_{xi}),
 x_i 'operate(f_{xi} , g_{xi}))

The choice of the splitting variable?

=> Select splitting variable such that the cofactors made are as close as possible to a unate function.

Choice of Spitting Variable

- The choice of splitting variable when performing decomposition is guided by
 - => making Cx and Cx' unate, given cover C
 - Select a binate variable to split
 - Select the "most" binate variable to split to keep Cx and Cx' size small

x₄ is selected as splitting variable

$$\mathbf{C}_{\mathbf{x}4} = \left| \begin{array}{cccc} 1 & 2 & 1 & 2 \\ 0 & 2 & 2 & 2 \end{array} \right|$$

$$C_{x4'} = \begin{vmatrix} 2 & 1 & 2 & 2 \\ 2 & 2 & 1 & 2 \\ 0 & 2 & 2 & 2 \end{vmatrix}$$

Simple Minization Loop

```
F = EXPAND(F,D);
F = IRREDUNDANT(F,D);
do {
    cost = |F|;
    F = REDUCE(F,D);
    F = EXPAND(F,D);
    F = IRREDUNDANT(F,D);
} while (|F| < cost );
F = MAKE_SPARSE(F,D);</pre>
```

Irredundant Cover (Simplified Version)

Irredundant Cover

- After performing *Expand*, we have a prime cover without single cube containment now
- Find a proper subset which is also a cover (irredundant)

Irredundant Cover

• Proposition:

A set of cubes C covers a cube p if and only if C_p is a tautology.

proof:

$$\Rightarrow C \cap p = p$$

$$\Rightarrow (C \cap p)_p = p_p$$

$$\Rightarrow C_p \cap p_p = 1$$

$$\Rightarrow C_p = 1$$

$$<=$$
 $C_p = 1$
=> $C_P \cap P = P$
=> $C \cap P = P$

Example

Ex:
$$p = 1 \ 1 \ 2$$

$$C = 2 \ 1 \ 0$$
 $1 \ 2 \ 1$

$$C_{p\,=\,}\,\,2\,\,2\,\,0\\ 2\,\,2\,\,1$$

Check tautology(C_p)

If (C_p) is a tautology, C covers p.

Divide & Conquer by Cofactor Op.

Tautology

$$f = x_i \cdot f_{x_i} + \overline{x}_i \cdot f_{\overline{x}_i}$$
$$f \equiv 1 \iff f_{\overline{x}_i} \equiv 1 \text{ and } f_{x_i} \equiv 1$$

Tautology checking at terminal nodes

Tautology Check at Terminal Nodes

1. Speed-up by unate variables

Let $F(x_1,x_2,...x_n)$, x_1 : positive unate

-
$$F(x_1,x_2,...x_n) = x_1A(x_2,...x_n) + B(x_2,...x_n)$$

A: terms with x_1

B: terms without x_1

$$F_{x1} = A + B \quad F_{x1}' = B$$

- If $(F_{x1} = B)$ is tautology, $F_{x1} = A + B$ is a tautology.
- If $(F_{x1}) = B$ is not a tautology, F is not a tautology.

If x is positive unate, test if F is a tautology. $\langle = \rangle F_{x'}$ is a tautology

Tautology Check at Terminal Nodes

2. Other techniques

- a row of 2's, answer 'Yes'
- a column of all 1's or all 0's, answer 'No'
- compute an upper bound on the no. of minterms of on-set

- n \leq 7, test by truth table

A Possible Irredundant Cover Algorithm

• For each C_i in F compute $t = tautology((F \setminus C_i)_{Ci})$ if t then $F = F \setminus C_i$

An Example of Irredundant Cover

Checking Irredundant Cover

- $F \setminus C_3$ covers $C_3 = 10122?$
 - Check tautology ($F \setminus C_3$) C_3

$$16 + 8 < 32$$

- C₃ can not be removed from the cover

Checking Irredundant Cover

- $F \setminus C_7$ covers $C_7 = 1 \ 2 \ 2 \ 1 \ 0 \ ?$
 - Check tautology ($F \setminus C_7$) C_7

− C₇ can be removed from the cover

Local Minimal

- Order dependent
- •Local optimal, not a minimum subset