Boundary

RAW SEQUENCE LISTING ERROR REPORT

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) detected errors when processing the following CRF diskette:

Application Serial Number:

08/836.734

Art Unit / Team No.:

1634

Date Processed by STIC:

THE ATTACHED PRINTOUT EXPLAINS THE ERRORS DETECTED.

PLEASE BE SURE TO FORWARD THIS INFORMATION TO THE APPLICANTS BY EITHER:

- 1) INCLUDING A COPY OF THIS PRINTOUT IN YOUR NEXT COMMUNICATION TO THE APPLICANTS ALONG WITH A NOTICE TO COMPLY or,
- 2) CALLING APPLICANTS AND FAXING THEM A COPY OF THE PRINTOUT WITH A NOTICE TO COMPLY

THIS WILL INSURE THAT THE NEXT SUBMISSION RECEIVED FROM THEM WILL BE ERROR FREE.

IF YOU HAVE ANY FURTHER QUESTIONS, PLEASE CALL:

ARTI SHAH 703-308-4212

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:21

INPUT SET: S26725.raw

This Raw Listing contains the General Information Section and those Sequences containing ERRORS.

```
1
                                       SEQUENCE LISTING
 2
                                                                  Does Not Comply
 3
     (1)
            General Information:
                                                              Corrected Diskette Needed
                                                        See enewally pp. 2,23,31
          (i) APPLICANT: BECKMANN, JACQUES
                          RICHARD, ISABELLE
         (ii) TITLE OF INVENTION: LGMD GENE CODING FOR A CALCIUM DEPENDENT PROTEASE
 9
10
        (iii) NUMBER OF SEQUENCES: 67
11
12
         (iv) CORRESPONDENCE ADDRESS:
13
               (A) ADDRESSEE: NIXON & VANDERHYE P.C.
14
               (B) STREET: 1100 NORTH GLEBE ROAD
15
               (C) CITY: ARLINGTON
16
               (D) STATE: VIRGINIA
17
               (E) COUNTRY: U.S.A.
18
               (F) ZIP: 22201-4714
19
20
          (V) COMPUTER READABLE FORM:
21
               (A) MEDIUM TYPE: Floppy disk
22
               (B) COMPUTER: IBM PC compatible
23
               (C) OPERATING SYSTEM: PC-DOS/MS-DOS
24
               (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
25
26
         (vi) CURRENT APPLICATION DATA:
27
               (A) APPLICATION NUMBER: US 08/836,734
28
               (B) FILING DATE: 02-JUL-1997
29
               (C) CLASSIFICATION:
30
31
        (vii) PRIOR APPLICATION DATA:
32
              (A) APPLICATION NUMBER: EP 94402668.1
33
              (B) FILING DATE: 22-NOV-1994
34
35
      (Viii) ATTORNEY/AGENT INFORMATION:
36
               (A) NAME: WILSON, MARY J.
               (B) REGISTRATION NUMBER: 32,955
37
38
               (C) REFERENCE/DOCKET NUMBER: 960-29
39
40
        (ix) TELECOMMUNICATION INFORMATION:
41
               (A) TELEPHONE: (703) 816-4000
42
               (B) TELEFAX: (703) 816-4100
43
44
```

ERRORED SEQUENCES FOLLOW:

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:23

INPUT SET: S26725.raw

45 (2) INFORMATION FOR SEO ID NO: 1: 46 47 (i) SEQUENCE CHARACTERISTICS: 48 (A) LENGTH: 3018 base pairs 49 (B) TYPE: nucleic acid 50 (C) STRANDEDNESS: double 51 (D) TOPOLOGY: linear 52 53 (ii) MOLECULE TYPE: genomic DNA 54 55 (ix) FEATURE: 56 (A) NAME/KEY: misc feature 57 (D) OTHER INFORMATION:/label= FIGURE 8a 58 59 (Xi) SEQUENCE DESCRIPTION: SEO ID NO: 1: TGATAGGTGC TTGTAAACTÇ TGCTTAACGA AAACATACCG TGTGCTGTAG GGACTTAACT 60 Cumulah 60 61 CTTGTTTATA TCAGTTAGCC TGGTTTCGCT AACAGTACAT CATTTTGCTT AAAGTCACAG 1204 base 62 63 64 65 CTTACGAGAA CCTATCGATG ATGTTAAGTG AGGATTTTCT CTGCTCAGGT GCACTTTTTT 66 67 TTTTTTTTAA GACGGAGTCT CTTTCTGTCA CCTGGGCTGG AGTGCAGTGG CGTGATCTGG 68 69 GTTCACTACA ACCTCTCCCT CCTGGGTTCA AGCAATTCTT CTGTCTCAGC CTCCCAAGTA 70 71 GCTGGGATTA CAGGCACCCC CCGCCACACC CGGCTTATTT TTGTATTTTT AGTAGAGACA 72 73 GGGTTTCACT ATTGTTGTCC ATGCTGGTCT CGAACTCGTG ACCTCATGTG ATCCACCCGC 74 75 CTCGGCCTCC CAAAGTGCAG AGATTAGAGA CGTGATCCAC ATGGCCCAGC AGGACCACTT 76 77 TTTAGCAGAT TCAGTCCCAG TGTTCATTTT GTGGATGGGG AGAGACAAGA GGTGCAAGGT 78 79 CAAGTGTGCA GGTAGAGACA GGGATTTTCT CAAATGAGGA CTCTGCTGAG TAGCATTTTC 80 81 CATGCAGACA TTTCCAATGA GCGCTGACCC AAGAACATTC TAAAAAGATA CCAAATCTAA 82 83 CATTGAATAA TGTTCTGATA TCCTAAAATT TTAGGACTAA AAATCATGTT CTCTAAAATT 84 85 CACAGAATAT TTTTGTAGAA TTCAGTACCT CCCGTTCACC CTAACTAGCT TTTTTGCAAT 86 87 ATTGTTTTCC ATTCATTTGA TGGCCAGTAG TTGGGTGGTC TGTATAACTG CCTACTCAAT 88 89 AACATGTCAG CAGTTCTCAG CTTCTTTCCA GTGTTCACCT TACTCAGATA CTCCCTTTTC 90 91 ATTTTCTGGC AACACCAGCA CTTCATGGCA ACAGAAATGT CCCTAGCCAG GTTCTCTCTC 92 TACCATGCAG TCTCTCTGC TCTCATACTC ACAGTGTTTC TTCACATCTA TTTTTAGTTT 93 94 95 TCCTGGCTCA AGCATCTTCA GGCCACTGAA ACACAACCCT CACTCTCTTT CTCTCTCCCT 96 97 CTGGCATGCA TGCTGCTGGT AGGAGACCCC CAAGTCAACA TTGCTTCAGA AATCCTTTAG

Per 1822 (1) of Sequence Ruly insert. cumulative base Adala at end of each line

98

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:24

INPUT SET: S26725.raw

99 100	CACTCATTT	TCAGGAGAAC	TTATGGCTTC	AGAATCACAG	CTCGGTTTT1	AAGATGGACA
101 102	TAACCTGTC	GACCTTCTGA	TGGGCTTTCA	ACTTTGAACT	GGATGTGGAC	ACTTTTCTCT
103 104	CAGATGACAC	AATTACTCCA	ACTTCCCCTT	TGCAGTTGCT	ТССТТТССТТ	GAAGGTAGCT
105 106	GTATCTTATT	TTCTTTAAAA	AGCTTTTTCT	TCCAAAGCCA	CTTGCCATGC	CGACCGTCAT
107 108	TAGCGCATCT	GTGGCTCCAA	GGACAGCGGC	TGAGCCCCGG	TCCCCAGGGC	CAGTTCCTCA
109 110	CCCGGCCCAG	AGCAAGGCCA	CTGAGGCTGG	GGGTGGAAAC	CCAAGTGGCA	TCTATTCAGC
111 112	CATCATCAGO	CGCAATTTTC	CTATTATCGG	AGTGAAAGAG	AAGACATTCG	AGCAACTTCA
113 114	CAAGAAATGT	CTAGAAAAGA	AAGTTCTTTA	TGTGGACCCT	GAGTTCCCAC	CGGATGAGAC
115 116	CTCTCTCTT	TATAGCCAGA	AGTTCCCCAT	CCAGTTCGTC	TGGAAGAGAC	TCCGGTGAGT
117 118	AGCTTCCTGC	TTGCTGGCTG	GGTTTCCCCC	CCACGGAGGA	GTCCTCTCAC	TCAGCACCTC
119 120	CGGCAGCTCA	GCTGTGCACA	TGGGCACTGG	GGGAAGGATC	CTGGCAGCAG	CTCTGCTGGG
121 122	CTCTGTCTTT	AAGTGTGAAG	CAGGGAGGAG	AGGAACAGGT	CTCAGATATT	TCACCAAATC
123 124	TCAGCAAAAT	CCAGAGGGAG	AGCGCAGGAG	GTGGGGTGAT	TCTTATGCTC	TGGCTCTTTC
125 126	TCTCTGAAAA	AAAAAAAAA	ATCTTGCTTT	TTATAAAAGT	GGGTGGAACT	CAGTTTAATT
127 128	CATCCTGTAA	AAATAAATAT	TCCTTTCTCA	GAACAAATTC	CAGACAGCCC	AGATGTACCT
129 130	GTTCGTTTTA	ATATTATTCA	TCTTGGTAAG	ATTATTTCAG	TTTCTCTGGC	TAAAATCATG
131 132	ATGTTATTCT	TCTTTAATTT	ACCAATGGCC	ATTCTTTCTG	AAACACAGAA	ACCCTAGAAA
133 134	GAGAAGAGTC	ATAGGCAAGG	AATTTTTTC	ATGCATAAAA	TGTTGGGGTT	AAAGAGAGAG
135 136	AGACCTAGCA	ATCGCTTTGG	TCCACCTACC	TCACCTCATA	AGTGAGGAGT	CAAGGCACAC
137 138	TAGAGTGAAA	TATATCTAGT	GGGCACATGA	CAGAGCCCGG	ATTAAAACTT	TGTTTTAGGA
139 140	AACTCTCCCA	GCCTCTGGGT	TTCATTTACA	GTGATCGCCA	GGAGGGAAAT	CACATTCCCC
141 142	TGGCTCACCT	CTCTGATCAT	CCCTCCAGTG	TGACTCTTGT	TCTTAATTCG	AGAAATATTT
143 144	ATTGAGCATC	TACTAGTGCC	AGCACTGGGC	AAGCAACTGG	GGGGACAGCA	GTGAGTAAGA
145 146	AAGACCAAAA	TTCCAGCTGT	CTTGGAACCT	AGGGTCCTGA	AGGGAAGATG	GGCATTGAAC
147 148	AAGAGTGACA	TTGTCAGGAG	ACGATGTTCT	GGGTGCCACA	GGATCATGTG	GCAAGGAGAG
149 150	CTAACCTGGT	CCAGGGAGAC	AAACCCTCTC	TGAGGAAATG	ATGACAAGCT	GAGACCCAAT

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:26

	151 152	INPUT SET: S267. ACTATTGATT AGCCATGGTT TTCTTTAACC TAAGGTGGGC CAGGCATGGT GGCTCATGCC	25.raw
	153 154	TOTAL TOTAL TOTAL TOTAL TOTAL CONTROL TOTAL AGAIN AGAI	sam
	155 156	ACCAGCCTGG GCAACAGGGT GAAAACCTAT CTCTTTTGTA CTAAAAATTC AAAAAATTAT	san
	157 158	CCAGGCATGG TGGCACATGC CTGTGGTCCT AGCTACTCAG AGGCTGAGGT GGGAAGATCA	
	159 160	CTTGAACTCG GGGAGTTTGA GGCAGCAGTG AGCCGAGATC ATGCCACTGC ACTCCAGGCT	
	161 162 163	GGGTGACAGG AGTGAGAC	
	164 165	(2) INFORMATION FOR SEQ ID NO: 2:	
		(i) appropriate the second sec	
	166	(i) SEQUENCE CHARACTERISTICS:	,
>	167	(A) LENGTH: 11451 base pairs	1
	168	(B) TYPE: nucleic acid	/
	169	(C) STRANDEDNESS: double	/
	170	(D) TOPOLOGY: linear	^/
	171		
	172	(ii) MOLECULE TYPE: genomic DNA	
	173	, , , , , , , , , , , , , , , , , , ,	
	174	(ix) FEATURE:	
	175	(A) NAME/KEY: misc feature	
	176	(D) OTHER INFORMATION:/label= FIGURE 8b	
	177	(b) OTHER INFORMATION:/label= FIGURE 8b	
	178		
	179		
	180	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
	181		
	182 183	GATCCACCCG CCTTGGCCTC CCAAAGTGCT GAGATTACAG GTGTGAGCCA CCACGCCCAG	
	184 185	CCGACACTGC CCTAACTCTC AAGTTGCATC CTTACTCGAA TAGTATGACA GTGTGGGAAG	
	186 187	CAGCATGGGA CAATGTAAAA AGGAGGCATG TTTCTGGCTT CTGCTACTTA CTAGCTGTGT	
	188 189	GTCTTTGCAC GAGTTTCTTA ACCTCTCTGG GCCTCAGTTT CCTTATCTGA AAAATAACAA	
	190 191	TGATAGTATT CCCTTCACAG GGCCAAATGG AATACTATCA GGAACACTAC ATAATGGAAC	
	192 193	TCAATAAATA ATAGCTACTG CGGCCGGCCG CGGTGGCTCA CATCTGTAAT CCCAGCACTT	
	194 195	TGGGAGGCCG AGGCGGGTGG ATCACAAGGT CAAGAGATGG AGACCATCCT GGCCAACATG	
	196 197	GTGAAACCGT ATCTCTACTA AAGATACAAA AATTAGCTGG GCATGGTGGC GCATGCCTAT	
	198 199	AGTCCCAGCT ACTCGAGAGG CTGAGGCAGG AGAATCACTT GAACCCCGGA GGCAGAGGTT	
	200 201	TCAGTGAGCC AAGATTGCAC CAGTGCACTG CAGCCTGGCG ACAGAGTGAG ACTCCGTCTC	
	202	AAAAAAATAC CTATCTATCT ATCTGTCTAT CTACTGTTAT TCTTACCTGG TCATTTCCTT	

1

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

TIME: 13:36:28

INPUT SET: S26725, raw

TTTGTTTCAC AGGAAATTTG CGAGAATCCC CGATTTATCA TTGATGGAGC CAACAGAACT GACATCTGTC AAGGAGAGCT AGGTAGGAAA GTGCCTCAGG TCAGATCCTG CCAGATGATC AAGGGGTGAT TACAAGGTGT GATCCCCTTC CAGGAGGTAA AGGGACAATC TGTGCTTGCT TCCAGTAACT TTTTGGAAGA TTTTTTATAA CAGTTGCTTT ATGGTCGTTT ATCTACATGC TGGCGATTGC TTCATTTCCT CCTACATGCC TCTTTAGCAC TCTGCCATGC ATCACAGGGG GTATCTGCAT CCTGTGGCCT CCTCTCCAGT ATCTCAAGGA CACTTACATA CCCCACTCAG CATGACAAAA GCCCTGCTTT TCACTGTATC GTCTTTCTTG GAAGACAGCT CTGTGACTGT GCACCAAGCA TGCCCCTTGG GCATGGAGAT TCTAGATACA CACACAAAAG GCATCGCCAA GGAAAGCACT TGTAACTGGA ACCCTTGGTT TAAATTGGCC CAGCATAGCT CCATCTTTAA AAGAGTCTTT CCACAAAGAT GGCATCCGCC ATGTGGATGA GCATCCAATT TTCTCTTTGA TTGGTTAGCT TGACTGCTCC ATCTGATCTT CCTCTCTCT GACCTCTTGT TCAGAAAGTA TTGTCTTTGG TGTGGACTAT AAGCAAGCTC TGTGAAGTAA AATTGGAGAG AACACCAACA GAAACAATTT AAATTTGAGG AAAAGGGGGC ACCTAAGACC AAAGGAATTT GGCTTATTTC ATTCCAGAAG GGGAGGCTGA GAATAAATCA GATGAATATC TGGGTTCCTG CACCTGAGGG AAGGCTTCCT GCAGAGCCCT GGGCATAATA ATCTGGGACC TTCAAACCAA TAACCTCTTT TCCAAGGAAA GACTGGCTGC TTCCAAGGAG GGTAGGGGAG AGTCGGGCTG CAGGCAGCTC TCAAGTCTCC CCTTGCACAC TCTCAGGTTG GCATTTTCAC TTTAACCCAT CCTCCCTTAA GAAGGCAGTT CTTTGTGACC AGGGTACACC CCCTATTATA TATATATATA CACACAGA GAGAGAGAG GAGAGAGAGA GAGCAAAGTG TTACCTCCAA CTACATACAG TACTCTGTCA GAAAAGAGT TCAGAGAATA AGAAAACGTC CCGAGCTCAT TCCGTTGCCA GCAATGTCTT ACTGCCCCCT ATAGACGGGT TCCAGGGCAG CTGCCTACCT GGCCTTCCTT CCAATACAAA TCATCTTGGT GGATGGTTCT CTGAGGCTCA GTCTTCGCTG AAGTCAGAAG AGAACAACCC AGTTATGATC ACCTACTGCT CTGTCTCCAT TGAGGCCTAA AAAGGAAGTG AGTTTATACT GCAGTTGGAG GAACTGCCTG CAGCCTTGAG GAAAATGTCT AGTCACAAGG GAGTAAGTTA CCTGTTGATC ATATTGTCAA GGAATTCCTG TCCAATTCTC CTTCCCTGGG

sine

DATE: 06/16/98

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:30

INPUT SET: S26725.raw

TTGACACCTC TGTAAGGTCA GATCTGGAAG TAGGAGAGTG GGCACCAAGG GAGTCCCCGT TCAGGGAAGT GGAGTGGCTG GCTGGGATTG GGGCTTTTTC TTCCCAGGAG GAGCAGGAGT GCTCACGATC TGTGCCCTGT GTCTGCCTGC AGGGGACTGC TGGTTTCTCG CAGCCATTGC CTGCCTGACC CTGAACCAGC ACCTTCTTTT CCGAGTCATA CCCCATGATC AAAGTTTCAT CGAAAACTAC GCAGGGATCT TCCACTTCCA GGTGAGGTAA TGAGAGTGTA GTTAAGAGGG CCAGCGGCAG GCCACCCACC GCTGGTCTCC TGGCCTTGAC TTCCCAGAAG CTGGAGGAAA CTTCCCACCC ATCTACCCGC AGCGGCAACA GTCGGCATGG ACCCCCTTAA GGCTTCAAGC CTGGGAGGAA GCAGTTGCTT ATCTCTGGCT CCCTAATCCC TCCCCCACCA CCTTCCACTA TGTCCCAGAA AGACAGGAAG ACATCCTGTT TACTGTGGGT CTATTTTTGT CTTTGCAGCT GTCTGGCTGC TTTTATTGCC TGCAGCCCTT CTCAAGTAGG TCCCTAAGAT ATTAGCACTG 275 . TGACACCACA GGACCCTTCA GGTTGTACAG GAACCCCTGT CCAGGGCTCC TGTATACTTC TTCCTCTCTA AGGCATGGCG GTACCAAGGC TATCACTCCT CTCTTCCAAG CCCTGGAAGA AGAGTCTGCT TAACCTGGGG ATCAGGCTTC TTGTTTGCCC TAGAACTGAA TCTGATGGTT CTAGAATCCA TCCAGCTACT GGAAATTTTC TGGGTCCCAG TCACCTTGGC ATAGAGCTGG TGCTAGAGCA GAACCAAACT GAATTCTACC TGTGAGGGTC TCGTAGCTTC CGGGATGCTG GGGAGTCAGC CTGTCTCCAG CTTCAAAGGC TCCCTCATGT CCCAGGATGA CCCACATTAT CAGTTCTTGC TCCCCGGGTC TTGCACCTCA GCACGGAAGG CCTCAGAAAA GGTCTGTCTC CAGGCTCAGA CTCCCCCTCC TGCCGCCTTG GGAACATGGC ATATTTAAAG GGTCTCAGAT CTAAAGGGCC TTACATACAA ATATCAGATA GATTTCTGTT CTCATTTCAA TGAGGGAGAA AGTGCCATTG AAAAGGAGAC TAAACCACAT TTGGCCCTTT TCAGTTCAAA CTGATTCATT CAAAAAAGAG CGACATCCAA ACTTGAAATG ATTGAACAAT GTTCCTGCTA CAGCTAGAAT AGATTCTGGG TCACTTTGTT CCTCCGTTTC AATCCTTGTT CTTCAGTTTG GCATCAAGAA ATACCTAAAT CAGCACAGTG CCTTCACTGC ATAGTTCCCA ATCCTGGCCA CATTGAATCA GCTGGGGGCA CCTGAGAGTG CTGACACCCA GGCCCTGCCC CAGACCTGCT GAGCAGGAGA ATGAAAATCT TACATCCTAA GACACTCATG GAGCACCTAC TCTACCCATT ACTGGGCTGG ACTCTGTGGA AGACATGAAG TATATGTAAC TCACTTCCAG CTCTCAAAAA GCACCCAGTC CAGTTAGAGA CAGATTTACA CACCCCAAAC ACAAAATAGG ATGAACAGGC ACCCAGATGC

some

309

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:31

INPUT SET: S26725.raw

303						
310 311	AGAGTCCAGG	AAATGATGCT	GCTTTGGGAT	TCAAGAACCC	CCTGAGGAAT	GTGGAGGAAG
312	GACACATTTC	CTAACAGTAA	TTTGAGTATG	TGACTCTGTG	CGTGACGCTT	CTGTGCAGTT
313 314	CTGGCGCTAT	GGAGAGTGGG	TGGACGTGGT	TATAGATGAC	TGCCTGCCAA	CGTACAACAA
315						
316 317	TCAACTGGTT	TTCACCAAGT	CCAACCACCG	CAATGAGTTC	TGGAGTGCTC	TGCTGGAGAA
317	СССТТАТССТ	AAGTAAGCAA	Cacmmmacaa	поповодно	GGGT1 G1 GGT	
319	COCTIATOCI	ANGTANGCAA	CACTITAGAA	TGTGAGGTGG	GGCTAGAGGT	GAGAAAGTGG
320	GTTGCAAAAT	CCAGCCGAGA	CCTCACTCAC	AGGAAGAGGC	ATGTGCCTCT	ATACGTGCAT
321						
322	ATGTGTGGGC	ATGCAAGTCC	AACTGTGACC	CAAAGTTAGA	GATCAGTTCC	AGGCAACAAC
323 324	A C C M C M A A C M					
325	AGCTCTAACT	AAAAACATTA	AATTTTAAGAG	TAGAAATGAA	GATTTGCATA	GAAGACCTTT
326	AGCTTTAGCT	CACCATAGCG	ል ርጥጥርጥጥጥር ል	ጥጥ ርር እርርጥርር	እ <i>ሞሮሮ</i> ሞሮሮሮ እጠ	MCCA & CMCMM
327			MOTICITION	TIGCACCICC	AIGGIGGCAI	TGCAAGTCTT
328	GGGATCAGAG	CATTGTCCCA	GGGTCTCGAT	TGGCTCAACC	TCATGTGCTT	ATAGAAGATT
329						
330	TATAAAGACA	TGTTGTCTCT	CAACTTAAAA	GCTCCACCCC	AGATGATAAT	AATGGATTTT
331 332	CARAMMUM CO	116116686	anana			
333	CAAATTTTGG	AACAAGGTCA	CTCTGTAATG	CAGGCTGGAG	TGCAGTGGTG	CAGTCACGGA
334	TCACTGTAGA	TTGACCTCCT	GGGTTCAAGG	тестестесе	አ ሮርሞር አ ሮርርሞ	CCCAACMACC
335			OGGIIGMAGG	1001001000	ACCICAGCCI	CCCAAGTAGC
336	TGGGACTACA	TGCGGGCATC	ACCATGGCCC	TTTTATTTT	GTATTTTTT	GTAGAGCGGG
337						
338	GTTTTCCCAT	GTTGACCCAG	ACTGTTCTCG	AACTCTTGGG	CTCATACAAT	CCACCAGCCT
339 340	TCCCCTCCC	A A COCCOMOCO	A MINICAGA CAMA	ma\aaa.		
341	1000010000	AAGCGCTGGG	ATTGCCGGTG	TGAGCCACCA	CACCGGCAGC	TGCTAATGGC
342	TTTAATGCAG	CCCTTCCTCA	ACGTTCAGGA	ТСТАСТССАА	AGAGCTCTCA	GGA AGTGGGG
343					MONOCICICA	GGAAGTGGGG
344	ATAGCTGGGT	TTCAATCCCA	GTGCTTCTGG	CTCTCTGTGG	TCTTGGGTGG	GTCACTTAGC
345	amamma, a.e.					
346 347	CTCTTGAGCT	CAGTTTCTTC	ATTATGAAGA	AAGGGAATCA	TTGTTTCCAT	CCCATGAGCT
348	САТАСССТТА	ATGTGGAATT	CATCAAACAA	CAMCACACCA	maga a gam	1116555
349		ATOTOGRATI	GAIGAAAGAA	CATCACAGCA	TCCAAGAGGT	AAAGTTCTGG
350	TGGCAGTGGT	ACCTGGGTTT	TGTTCCCTGG	AACTCTGTGA	CCCCAAATTG	GTCTTCATCC
351						
352	TCTCTCTAAG	GCTCCATGGT	TCCTACGAAG	CTCTGAAAGG	TGGGAACACC	ACAGAGGCCA
353 354	MGG 1 GG 1 GMM	21.21.22.22				
355	TGGAGGACTT	CACAGGAGGG	GTGGCAGAGT	TTTTTGAGAT	CAGGGATGCT	CCTAGTGACA
356	TGTACAAGAT	CATGAAGAAA	GCCATCGAGA	GAGGCTCCCT	CATGGCCTCC	
357			-Joniconon	CAGGCTCCCT	CAIGGGCTGC	TCCATTGATG
358	TAAGTCTGGG	GTGTGGGGCA	CAGGGTGGGG	AGCTCCAAGT	GTCAGGAAGC	CTTTTACCCA
359						
360	ATGAAGGGCA	GCATAGAGCT	TTTGTGTGGG	ACAGAGCGAA	TGTTTTGTTT	GAGGAAGCAG
361						

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:33

INPUT SET: S26725.raw

GAACTGGCTC TCAACTTTGA GGACTGGGAA TTTCTCAAGG GAGAACAGTT CTTCCGGATT TTCAATAAAG ACACTGGTCA AGGACATTTC AAGCCCTGGA ATGTCAGTGG AAATCAGTCC AGAGGCCTGT GTCAGTGGAG GCCTCCCTTG CTGGTGCTCC TCAGTCTCAG CACGCTCCCA TTAAGCTGGC CACGTACTTG GCTGTGGACC TGAGCCCACC ATTTCCCTAA GAAAGCCTCC CAGTCACTGG GCTTTCACCA CACCTCCCCG CTTGAGACGT GGGCTTTGTG TTGTTACCTG GGAGAAGCTA AGCCTGCAGC ACCTTTCAGT GCAAAGAAAT GCTGTGAACT GAGACAGGAG CCAAGGGTAG GGAGATGGCC GCCCATGGCC AGGCCTCCTT CAGGGGGCAT GCCTTCCCTG AGGGCTGCTC AGTATATTGA TATGATAATC TTAGTGGTTT CCATTGGGGA GGATGGGGCT GAAGCTGAAT TCCTGCCCCT TCTTCTCCCA ACACGCCCAA TGGACAGCTT GGAAGGTCAG TTAGCACACA ACACCATGGA TGAACTTTTT TTCTGTATCA CTTTTCTCCG TCTTTCCTCC ATTCGTGCTC TGTTGATCTC TCCTCTCTCC CTTTGTCTGT CCCATCTCTT TCTCCTCTCT CCTTCCCTTT CCACCCTTCT GTGTTTGTTC TCTCCCTCCC CTGTGTTGTT CCCTACATTC TCCATCGGGC CTCAGGATGG CACGAACATG ACCTATGGAA CCTCTCCTTC TGGTCTGAAC ATGGGGGAGT TGATTGCACG GATGGTAAGG AATATGGATA ACTCACTGCT CCAGGACTCA GACCTCGACC CCAGAGGCTC AGATGAAAGA CCGACCCGGG TGTGTACACC TCCGATTATC AGAACTGACC ATCCCTCCAA CCCACATGAC CCCGCCCTAT TAGTGTCAGA CTCCCCTCAG CAGCCAGGGC CTTACCCACA CACCCCCACC TGGCACCTCC CAAGGGTCTG GGTTGAAATA ACTTGCTCAG CCAAGGCTCC TGAAGAGGGT GCAAGAACCA GGATTTTGGA GGGAATCTCT GCTGGAGTTT CTGCATATTC CATGGTCCAG GCAGTTCCTC TCATAACGAA CTATCAGACA GAAATACTTG TAAAGATACT TCATTTATTT TGAAATATTT TTCCTCTTCT AATGTATTCA TTTATTCATT CAACACTTAT TTTTGAGCTC CTACTATGTT CCAGGCACTC CTCTAGCAAA CAAAGCAAAT TCTCTCCTCT TTTTCAATAT TTGTGGAAAA AGCAAGGTCT CCCTCTTGTA GAGTTTATAT TCTAGTATTT TCATAAGTTA TACCTGCTCA CTGGAGAATA CTGAGCCATA CAGAAAAACA CAGAGGAAAA TTTCACTTAT ATTTTTCCCC ATGTAAAGAT AACCACTCTT AACATCTAGT ATATGTTCTT CCAGGATTTT TCTATGCACA CACTGAATCT GTATTTTAT TTTTAAAATG TTATCATATT GTATGTACCT CTTTGCAGCC TGCTTTTTTC AGTTAGTTTT TTTGGTTTTT TGGTTTTTTT TTTTTTTGG AAACCAAGTC TTGCTCTATT CCCTAGGCTG

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:34

INPUT SET: S26725.raw

415						INPUT SET: S26
416 417	GAGCACAGTT	GTTGCCATCT	CGGCTCACT	G CAACCTCTGC	CTCCAAAGTT	AAACTAATTC
418 419	TCCTGCCTCA	GCCTCCCGAC	ATAGCTGGG!	A TTACAGGCAC	ACACCACCAC	ACATGGCTAA
420 421	TTTTTGTATT	TTTTAGTAGA	GACGGGGTTT	CACCATGTTG	GCTGGAATGG	TCTTGAACTC
422 423	CTGACCTCAA	GTGATCCACC	TGCCTCAGC	TCCCAAAGTG	CTGGGATTAC	AAGTGTAAGC
424 425				ATGTGCCCAA		
426 427				GATATGTTAT		
428 429				TTTGTTTTGT		
430 431				ATCTTTGTAT		
432				GTTGAATGAT		
434				TAGAACTTAA		
436 437				TCATGAGGAC		
438 439 440				CTGGCTCCAC		
441 442				GCTCCGGGAA		
443 444				TCCAGGGCTC		
445 446				ACTTGGAAAT		
446 447 448				ATCTCCTCGG		
449 450				ATTATGTTCC		
451 452				GGCGCAGTGG		
453 454				TGAGGTCAGG		
455 456				TACAAAAAAT		
457 458				AGGCAGGAGT		
459 460				TGCACTCCAG		
461 462				AAAGGAAAAG		
463 464				CCAGGAATAG		
465 466				CCTCCAACTC		
467	CATACIANUG	GGICCAGAAA	GGAGGGGCAG	GACACTGTTA	CCCACCCCAC 1	ATCCCAGCAT

Same

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:36

INPUT SET: S26725.raw CCACATTGCT CTCTGATGGT CAGGACAGAG CCTTCTCAGG GAGACCAGCC TGTCTGGAGC TGTGTCTCTT GGCACTCTTA AAGGGCCACT GAAGGTCCGT TCGTGGTCGT GAGGCACACT TTCAGGGAGC AGAGTGGTCT GTGTCTTCAC AGAGCCCGGA AAATGAACTA GTATGAACTT TGCCTCCAAG CAGCAGAACT TCTGTTCCCC CGCCCCTAAT GGGTTCTCTG GTTACTGCTC TACAGACAAT CATTCCGGTT CAGTATGAGA CAAGAATGGC CTGCGGGCTG GTCAGAGGTC ACGCCTACTC TGTCACGGGG CTGGATGAGG TAAGCCTGGT GGGGCTTGGT GGGGCAAGGG CACCCTCCTG GGTTAACCTC ATGAAGTCAG GACTTAGCTG TTGGGGCCCC TGCCCTGTCT GCAGAGCTTG CCTCCAATCA GGACATTCAG TTCAAGGTCC AAGCCACGCC TGGGAGCAGA GGGGCCTGTG AAACTGGTAG AGGTGGATCC TGCCACAGTT GGTGCACAGT TTATCTTTGC TTTTCGTGCT AAAGATGGCA ATTTTTCCAA CATTTCCAAT GAACAAATTG AAATATCACT TAACTTTGCT TTTACAAAGT TGGTTTCATG TGTTCTTGAG CTTCCTGTTC TCTCGTGTTC AGATAGCTAC AGTTGTCTCT GGGTAGCCAC GGGGACTGGT TCCAGAAGCC CCAACAGTAA CAAAATCTGC AGATGCTCAA GTCCCTTCTG TAAAATGGAG TAGTATTTGC ATATAACCTA TGCACATCCT CCCATATACT TTAAGTCATC TCTGGATTAC TTACGATACC TAACACAATG GAAATGCTAT GTAAATAGTT ATTGCACTGC ATTGGGTTTT TTTGGTATTA TTTTCTGTTG TTGTATTATT ATTTTTCTT TTTTTGAATA TTTTTGATCC ACAATTGGTT ATATGCCAAA GCCATGGATA CGAGAGGCTG ACTGTTCTGT TTTGCTCCTT CTGGGACTTC TGGGTTTTCC TGGACCATGT CTGAGACAGG AACGTTGTAA GACCTGTTGC ACACAGTTGG GCAGGTTGTG CCCTGTACAG AGGGATGGGC TGAGAGGGGC AGTTGCCTGC ATCACCCATT GCAGCAGACT GGAGGGAGTC TGCTTGTTTG TAGTTCCTCA GTCAGCAGGG GCCTTTTGTC TTTCCTTCCT TTCCTTTTTT TTTTTTTTG AGACGGAGTC TCACTCTGTT GCCCAGGCTG GAGTGTAGTG GCACAGTCTC GGCTCACTGC AATGTCCGCC TCCTGGATTC AAGCGATTTT CCTGCCTCAG CCTCCTGAGT AGCTGGGATT ACAGGCGCGT GTCACCATGC CCAGCTAATT TTTGTATTTT TAGTAGAGAT GGGGGTTTCT CCATGTTGAT CAGGCTGGTC TCGAACTCCT GACCTCGTGA TCCGCCCACC TCGGCCTCTC AAAGTGCTGG GATTACAGGC GTGAGCCACC ACGCCTGGCC AGCAGGGGCC TTTTTTCTAA TTTATATGAA GACACCTAAT TTATATGTGT TAGCAAAGCC CTCCTGTTTA TGCCTCACCT CCTCCCCGA AGCTCATACG GCAGGATGTT CCTGAGAAAA

521

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:37

INPUT SET: S26725.raw

	521	
	522	TTGCCTCTTA GAAGATAGAG AGGAGATGCC AAGCCTAAGT TAGGCAGACT CAGGAGGATA
	523	
	524	GGTCTGACCC ACCCCCTGCC ATTCCCCAGC ACACTTGTGA TTAATCTCCT TGGCCAGAGC
	525 526	CACCCACAAC ACCCMCCCCC AACAACAACAACAACAACAACAACAACAACAACA
	527	CAGGCAGAAC ACCCTCGCGT AAGAGATTTG CCCCCCAGCC CCGTCCCAGC CCTCAGCTAG
	528	ACAGAAGATT CCCTTTCCAG AGAGGCTGCA GAGCATGAGA GCTCTTTCTG TGTGCTTAAG
	529	TOTAL MONOGOTOCA GROCKIGAGA GCICITICIG TGTGCTTAAG
	530	GTCCCGTTCA AAGGTGAGAA AGTGAAGCTG GTGCGGCTGC GGAATCCGTG GGGCCAGGTG
	531	
	532 533	GAGTAGAACA GTTCTTGGAG TGATAGGTAG GTGAGGGGAC CCCACGGGAT TGGCGGTGGC
	533 534	GGGGAACAGG GTGGGGGAGA AGGGTGTTTTTTTTTTTT
	535	GGGGAACAGG GTCCGGGACA AGGCTGTGTT GGGAACTGAG CCATGAGAGT ATTGAAGATG
	536	CTTGGTATAA AATCACCCTC AAAACCAATG ATCCGCAGAG AAGAGGGGCA CAGGTGTTGG
	537	THE PROPERTY OF THE PROPERTY O
	538	CTCCAGGGAA GGGCCAGGAG TGGAAGCGGG GTGCTGGGGA CCCAGAGAGG TTGCTGACAA
	539 540	CCAMMCCCMC CARACTER TO THE CONTRACT OF THE CON
	541	CCATTGGCTG GAAAGGAAGG ATTCCAGAAA GCGTGGGGAA GGTCCAGGCA GGAAAAGCGT
	542	ATGAATGCAG GGTTCTGGGC TAGAGAAGTG ACTTCCCTTC TTGGGGTCTT GTGTTGCCTT
	543	THE STATE OF THE S
	544	TCCTGTGAAA TGGGAACAGT ATTATTAGCA CTTACCTTGT GGGCTGATAT TGAGGAGTAA
	545	
	546 547	CTGGGACTTG TTTTTGGGCA AGTGCTGAGC CATTGCTAAG ATTCCCCTTA CCCGTGCTTG
	548	TCCCTTGTAT TAAGGCACAA GGGCCCTTTG AAAAGAATTT TACCTGCTTT ATCAATTGAA
	549	TOOUTIOTAT TARGGEREAR GGGCCCTTTG ARAAGAATTT TACCTGCTTT ATCAATTGAA
	550	AGGGATTAAG ACCTTGGGGG CCAACCCAAA ATAAACATGC GAACTTATTA TTTATAGGCT
	551	
	552	CCATGCACAC TTCGTAAAAC CTCCATGGTC CTACTGGTTC CTGATTACCT CCACTCAATG
	553 554	ACACCCAAMM CAMMACMCAA MAACCCAAMAA AAAAAAAA
	555	AGAGGCAATT CATTACTGAA TGAGCCATAA GCGCCTCTTA TTTCGAGAGG GGGATGGCAG
	556	GACTCAGTCG AGGAGAAGGA CCGCACCCAG GCAGCCTGGG CCCCTCGGCT CCTGTACTTA
	557	The second consistence of the second consist
	558	TTTACTGCTG GGTACTTCCT AGCCCAGCAT GTAATTACTG GTTCGTTCAG TCATTCGTTT
	559	
	560 561	AGTAAATGTT TCTTGGGCAC CTACTACATA GGAGGCACAG GTCAAGGCAC TGGGGATATT
	562	CTTTCTACCC ACCCCCTCCC TTGATACACT GTGATTAGGG ACTGACCGAT C
	563	OTTOTAGGG ACCCCCCCC TIGATACACT GTGATTAGGG ACTGACCGAT C
	564	(2) INFORMATION FOR SEQ ID NO: 3:
	565 566	(i) GEOVERNOR GWARAGER GWARAGER
>	567	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1834 base pairs
	568	(B) TYPE: nucleic acid
	569	(C) STRANDEDNESS: double
	570	(D) TOPOLOGY: linear
	571	
	572	(ii) MOLECULE TYPE: genomic DNA

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:39

INPUT SET: S26725, raw

(ix) FEATURE: (A) NAME/KEY: misc feature (D) OTHER INFORMATION:/label= FIGURE 8c (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: ATTTTTTTT TTTTTTGA GACGGAGTCT CACTCTGCCA CCCAGGCTGG AGTGCAATGG CGCGATCTTG GCTCACTGCA ACCTCCGCCT CCCGGGTTCA AGTGATTCTT CTGCCTTAGC CTCCTGAGTA GCTGAGACTA TAGGTGCCCG CCACCACGCC CAGCTAATTT TTGTATTTTT ATTAGGACGG GGTTTCACCA TATTGGCCAG GCTGGTCTCG AAATCCTGAC CTTGTGATCC GCCCACCTCG GCCTCCCAAA GTGCTGGGAT TACAGGTGTG AGCCATTGCG AGCAGCCCAG AACTCAATTC TTAACCTTTA AAGTATGATG AGAAGAAGGA TCAAGCCCTC ACCAGCCCAT TTAAGGAGTT TAGGCTCAGT CTTGAGGATG TGAGAAGTCA TTGCTATTGG GTTTCACACT GAGGTTAACA GGTGAAGTCA GCATTTTGGT AGTTCACAGC AGCTGCAACT CTTTGTATTT CTCTGATACC TCCTGTCCCA ACCTACATCA GGCCTTCCCT TCTTCCTGCT TCCTTAATTC CTCCATTTTC CCACCAGATG GAAGGACTGG AGCTTTGTGG ACAAAGATGA GAAGGCCCGT CTGCAGCACC AGGTCACTGA GGATGGAGAG TTCTGGTGAG TCCAGAACCC AGGAAGACCC AGAAGGGTAA GGGTGGGGAA GAGAGGGGAA ATCTCAGACC TCAGTCCCCA GCTAAGGTTA TCAGATTCCA GCCCTTGGGA GATCTTGGCT GTGTTCTCCT CCAGCCCAAG GCCCAGCAAG GATGAGGTTC TGAGAGGAGC CTTCCAGGCC ACAGGGACAA TGAGCCCAGG ACCAGGCCAA CATGACATGG CTCTTGCCTC CTGTGTGCCC CTCCGCCACA CACTCTATTC CAGCCACAGG CACCCTGGCC TTAGCACAAT TCTTTTCTGA GCCTAGGAAG CTCCACTTAC CCTGATCTTC CAACGTCAAC CTCACCCTCT CTCAGGTTGT TTCTATTCAG GCTTCAAGTC TCAGCTTAAG GAGAATTTTC AAGTCTCAGC TTAAGGAGAG CCCCCTAAGT TCCCCGAGGA CTGGGATTAA TTTATGATGC TCATCACCCT TAAAATTGTT TGCTTAAGCC GGGCGCGGTG GCTCACGCCT GTAATCCCAG CACTTTGGGA GGCCGAGGTG AACGGATCAC GAGGTCAGGA GATCGAGAAC ATCTTGGCTA ACACGGTGAA ACCCTGTCTG TACTAAAAAT ACACAAAAAA AGTAGCCGGG CGTGGCAGCG TGCGCCTGTA GTCCTAGCTG CTGGGGAGGC TGAGGCAGGA GAATCACTTG AACCTGGGAG GCAGAGGTTA CAGTGAGCCC AGATTGCGCC ACTGCACTCC AGCCTGGGCG

Some

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:41

		INPUT SET: S26725.raw
	626	ACAAGAGAG CTCTGTCTTG GAAAAAAAA AAAAAATGTG GTCTTAGTTT AATGTCAAGG
	627	
	628 629	TALLET TO THE STATE OF THE STAT
	630	
	631	CCTCGCTATA TTTCTCGGGC TGGTCTCAAA CTCCTGGGCT CAAGCGGTCC TCCCACCTTG
	632	CCTCGCTATA TTTCTCGGGC TGGTCTCAAA CTCCTGGGCT CAAGCGGTCC TCCCACCTTG GCCTCCCAAA ATGCTGGCAT GTGGGCCTGG TCAACATATG GGACCCCAAC TCTACAAAAA ATTTTAAAAT TAGCCAGATG TGGTGGCGTG TGCCTGTAGT CCCAGCTACT TGGGAGGCTG
	633	TOTAL
	634	ATTTTAAAAT TAGCCAGATG TGGTGGCGTG TGCCTGTAGT CCCAGCTACT TGGGAGGCTG
	635	
	636	AAGCAGGGGG TCACTTGAGC CCAGGAGGTT GAGGCTGCAG TGAACTATGA TTGTCGTTCA
	637 638	COMMUNICATION CAN COMMON CONTRACTOR OF THE CONTR
	639	CTTTTCTTCT GAACGTGAGA TTAAGTGTAG TCAGCAATTT GGCTTAGGAT TATTTATTCA
	640	GAATTTTTAA CCGTCACGTT GCGGCAAACC AGGT
	641	JULIAN COGTOROGIT GOGGORARCO AGGT
	642	(2) INFORMATION FOR SEQ ID NO: 4:
	643	
_	644	(i) SEQUENCE CHARACTERISTICS:
>	645	(A) LENGTH: 14664 base pairs
	646 647	(B) TYPE: nucleic acid
	648	(C) STRANDEDNESS: double
	649	(D) TOPOLOGY: linear
	650	(ii) MOLECULE TYPE: genomic DNA
	651	(11) Moddeodd IIIH. Genomic DWA
	652	(ix) FEATURE:
	653	(A) NAME/KEY: misc feature
	654	(D) OTHER INFORMATION:/label= FIGURE 8d
	655	
	656	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:
	657 658	ACCACCINGO COMPOSA CITA A CONTRACTOR A CONTR
	659	AGGAGGTGGA GGTTGCAGTG AGCCAAGATC ATGCCACTGC ACTCTAGCCT GGGCAACAGA
	660	GCGAGACTCT GTCTCAAAAA ATACACACAC ACACACACAC ACACACAC
	661	TOTOTARARA RIRCACACAC ACACACACAC ACACACACACAC
	662	ACACACATAT ATATACACAC ATATATAC ACACACATAT ACACACAC
	663	
	664	ATATATGTGT GTGTGTATAT ATACACACAC ACACTATTCT ATATATTCTT GTAGAGCTAT
	665	
	666 667	GTGTGTCTCC TGTGCTATTG AGCATGAGCC CTTTTTTTTT TTTTTTTTTT
	668	CTCTCACTT CTCCCCCACC CTCCCATACA ATTCCCCCATACA
	669	GTCTCACTTT GTCGCCCAGG CTGGCATACA ATGGCGCAAT ATCGGCTCAC TGCAACCTCC
	670	GCCTCCTGGG TTCAAGTGAT TCTCCTGCCT CAGCCTCCCA AGTAACTAGG ATTACAAGTG
	671	TOTAL
	672	CCCGCCATAA TGCTCAGCTA ATTTTTGTAT TTTCAGTAGA GATGGGGTTT CACCATGTTG
	673	
	674	GCCAAGCTGG TCTCAAACTC CTAGCCTCAG GTGATCCACC TGCCTCAGCC TCCCAAAGTG
	675	
	676	CTGGGATTAC AGGCATGAGC CACAGCACCC TGGTGAGCAC TAGAGCTTAT TTCTTCTATC
	677	

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:42

INPUT SET: S26725.raw

						UVPU1 3E1; 320.
678 679	TAACTGTATI	TTTGTATCCA	TTAGCCACCC	TCTTTTCATC	СТССССТСТС	CTTCCCTTCC
680 681	CAGCCTCTGG	TAACCACTGT	CTGCTCTCTA	CTTCCATGAC	ATATGCTTTG	TTTTAGCTCT
682 683	CACATATGAG	TGAGAGCATG	CGACATTTAT	CTTTCTGGCC	CTGGCACATT	TTTGAATCAT
684 685	TGTTAGAAAA	GATGATGGTT	TGGAGTAGAT	ACATCAGAAG	TGACAGCGTT	TGCCCTAAAA
686 687	AGGAAAGACA	GGCTCCTCTG	GGACCCTGAC	CAAGTTCCTG	TGAACTATTT	TATTATTGTG
688 689	CTGTGTTAGT	CCTGGGGTCT	TCCGTTCCCA	GCCCTCCTCA	CCTGCTCCCA	TATGGCTCTC
690 691	TCTCTTCTTC	CAACCTCTCA	GGATGTCCTA	TGAGGATTTC	ATCTACCATT	TCACAAAGTT
692 693	GGAGATCTGC	AACCTCACGG	CCGATGCTCT	GCAGTCTGAC	AAGCTTCAGA	CCTGGACAGT
69 4 695	GTCTGTGAAC	GAGGGCCGCT	GGGTACGGGG	TTGCTCTGCC	GGAGGCTGCC	GCAACTTCCC
696 697	AGGTGGGAGA	TGCTCTTGAT	GGGGGGAGGG	TCTAAGCCGA	AAAAGTTCCA	GGCAGAAGAA
698 699	GCCTAACTAG	TGCTTATTAA	GTCTCTCTGT	TCCAGACGTC	CACTATCTTA	TTAAACCTTC
700 701				TGAGAAGTTT		
702 703				TGCAGATGCT		
704 705				AAATACCCTA		
706 707				CTGGCCTACC		
708 709				CATCTAACTC		
710 711				TTAATACTTG		
712 713				TTTCTACTGA		
714 715				CTAAGTCAGG		
716 717				TTAGCAGCTG		
718 719				AGCAGAGATG		
720 721				AAGAAGAATG .		
722 723				CAAGAAGATC		
724 725				GAGGATCACT '		
726 727				TTACCCAAAA 1		
728 729				TACAATAAAC 1		
730	CCTGCCTGGG	TGACAGAGTG	AGACCCTGCC	TCAAAAAAA	AAGACACACA	AGAGAAAAT

731

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:44

INPUT SET: S26725.raw

731 732	ATCAGCGTG	r TGTTTGTTT	' ТССТССАСТТ	A ATTCTCCC		AGGAATTTAG
733						
73 4 735	CTTGGGACA	GGAAAGTTTG	AGGTTCCTGT	AGAGTGTCCC	AGTGAAGATT	TGTAATAGAG
736	CATCGGATG	C GCATATTAGA	TGGCACTTGG	TGATATGATA	AGAACTCAAA	AAATATTTGA
737 738						
739	CORRIARGO	AAAGAAGAGG	CCAGACGTGG	TGGCTTATGC	CTGTAATCCC	AGCACTTTGG
740 741	GAGGCTGAGG	CAGGCGGATC	ACTTGTGGTC	AGGAGTTCGA	GACCAGCTTG	GCTAACATGG
742	TGAAAACCCA	TCTCTACTAA	AGATACAAAA	ATTAACCGGG	САТСАТССТС	GGTGCCTGTA
743						
744 745	ATCCCAGCTA	CTTGGGAGGC	TCAGTCAGAA	GAATCGCTTG	AACCCAGGAG	GCGGAGGCTG
746	CAGTGAGCCG	AGATCGCGCC	ACTGCACTCT	AGCCTGGGCA	ACAGAGCCAG	ACTCCGTCTC
747 748						
749	AAAAAAAA	AAGTGAGAGA	GATTGAGGCT	GGGATATATG	GCTCAGGCAT	CATGCGCGTG
750 751	TAGGGGGCAG	TTAAAAAGCA	GAAGTAAGAA	AGATTGCCTA	GGGAGGCAGG	AAGGGTGAGG
752	TGAGAGGAGA	AGAGGCCCAG	GACCAGATTC	TAGTCACCAA	САСССТТТАА	GGGGCAGGTA
753						
754 755	AGGAAAACAA	AACCATCAGC	AAAGACTGAG	AATGAAAGCC	CAGAGAGGAA	GGAAAAGCCA
756	CACATACAAT	CAGTACAGCT	CCATCTGAAT	AAAGGTAGCG	cccccccc	CCCAAATCAT
757 758	TAGAGAAATG	CCTGATTCGG	ጥጥጥጥርጥርምርር	A TEMPERATURE A COM A	1011000101	
759						
760 761	AGAAATAAAT	GGTTCCCTCT	GTCTCATCCC	CTCCCTGCCC	TCTGAGAGGA	AGCTGTGATT
762	GCGTGCTCCC	TTTCTGGGGG	TGCAGATACT	TTCTGGACCA	ACCCTCAGTA	CCGTCCGAAG
763 764						
76 1 765	CTCCTGGAGG	AGGACGATGA	CCCTGATGAC	TCGGAGGTGA	TTTGCAGCTT	CCTGGTGGCC
766	CTGATGCAGA	AGAACCGGCG	GAAGGACCGG	AAGCTAGGGG	CCAGTCTCTT	CACCATTGCC
767 768	TTCGCCATCT	ACGAGGTGTG	ጥል ርጥሮርጥርልጥ	ТСССТССАС С	COLCOLANA	TI COMPAGA
769						
770 771	GAGAGGACGC	TTCCAGGGGC	TTCTAGAGGG	GCCCTCTGCT	TCCTCAATAC	CAGTGACCCA
772	CAGAGCTCCT	GGTATCAGGA	CCACTTGTGT	TTGTAACAAG	CAAAAAATAC	CAGGGGGGGC
773 774						
775	ATTAGAGAGG	CAGTGGAGCG	GGCCTGGCAG	AACAGGTGCC	TGGGGGTCAG	GCTTCCGCAT
776 777	GCGGGCTGCA	GTTGCTGGCA	TTGCCTTCCG	CAGGCTCCTC	ATCCTCATTC	ACATCTGAAG
777 778	CATCTTCCTT	TCTGTTTCTT	СТСААССТТС	CCAAAGACCT	ATTA COA COA C	GAGGGGGAAG
779						
780 781	CAGTTGTGTG	CAGCACTACC	CAGGGGGCC	CGAGTCTGTC	TGTGGCTCGT	CGAGAAGCTT
782	CCTGGTGGG	TTTGTGGGCA	GGACTTGTGA	TAGGAGAGGG	CCTTGCCTGT	ТСТТАТТТСС
783						

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:45

						_	
784 785	CACTTGCAG	A GCAGGTTGC	C TCAGGGCAT	r gcatgaccc	A TGACTACCA	INPUT SET: S26 C CCCCAGGATG	725.raw
786 787	TGCACTTTC	CCCTCGCAC	C AGACACTGC	A CGTCACACAC	ATGCCTTTG	C ACACTCACCC	
788 789	TCCTCCACGO	C TTACAGCCAC	CACACACAGTO	C ACACAGACGO	GTTCTGAGG	TGGCTGCCCG	
790 791	CTTGGGATG	G AGGAATCACT	TCCCTCAGA	CCCAGCCAAG	TCCTCTAGG	CTCCTTGGGG	
792 793	GTCCTTCCAC	CCTGAGGGG	TTCGGAGCTC	G AGGACAGCTG	TTCTGGTAAC	F TGTCCCTGAG	
794 795	TGTGGGGATG	ACACATTTCC	ATTCACTCTC	S AATCACAACA	GAAAAGGGA	GAGGAATTGA	
796 797	GGTAGGGAGC	CTATTTAACC	CTTGGGAGTC	GGGAAGTAGG	GAGGTTGAA	CTGTGACATG	
798 799	GGTGACCAGG	GAGTTGGGAA	GGGACCCTTG	GAGGTGGCTG	TGGCAGGACA	GGACGTTCCT	130
800 801	CCCGAGGGG	TCATGTGCCC	TGGGCTCTCC	CCATCTCTCA	GATGCACGGG	AACAAGCAGC	/
802 803	ACCTGCAGAA	GGACTTCTTC	CTGTACAACG	CCTCCAAGGC	CAGGAGCAAA	ACCTACATCA	
804 805	ACATGCGGGA	GGTGTCCCAG	CGCTTCCGCC	TGCCTCCCAG	CGAGTACGTC	ATCGTGCCCT	
806 807	CCACCTACGA	GCCCCACCAG	GAGGGGGAAT	TCATCCTCCG	GGTCTTCTCT	GAAAAGAGGA	
808 809	ACCTCTCTGA	GTGAGTGCTG	GCCCAGCTTT	CCCACGTGTT	TCTAAAAGCT	CACATGGCCC	
810 811	ACTCCAGAGG	TTGAAGGCAT	GAGGCAGCTA	GACACGTCTC	CTCCAGGGTC	CTTCTGCTGC	
812	TCCTGAGCCA	CTGGCCACAT	TACCCCCATT	CATTCATTCA	TCCATTCTGT	GATATTTATT	
813 814 815	GAGCACCTAC	TATGTTCCAG	GCACTGTCCT	AGGCACTAAG	GATAGAGTAG	TGAAGTAAAC	
816	AGAAAGAAAT	CCCTGCCTTC	ATGGAGCTTA	ATATTCTAAC	ATGAGACAAT	AATGGATAGG	
817 818						AAAGTAGGGA	
819 820						AGGAAAGCCA	
821 822			CAGATGAGCT				
823 824	TGGAAGATGC	ACCAGGTCCA	TGGGTAGGTG	GCTGGGTCAT	GCCTTTGGGG	GGCTCTGAGC	
825 826			TGCCTGGGCT				
827 828			TTCCAGGGGT				
829 830			AAACCGTCCA				
831 832			CCTCACAGGG				
833 834			CTTCTGTGCG				
835 836			GGGGAGAATG				

837

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:47

INPUT SET: S26725.raw

838 839	TGTGCTGAG	C AGTCCCTCC	T TGGCACTGCA	AATCCTACTT	TGGCATGGC	CAGAAGTAATC
840 841	GGCCTTAAG	C ACCGGGGGC	CATTGAGGCAG	TTCAGGGGCT	' GGGAAATATG	G GAAGAGGGTC
842 843	CTGGAAAGG	A GAAGCAATT	F GAACAATCGG	AGGGAACAAG	GCCACAGGA	GGGATGACAA
844 845	GAGCCGCAG	C GAACACTGG	A TTCTGAGACT	GGATAACATT	GGATTTCACA	CATAGAGAAA
846 847	AGAAAGTAA	G CTGGTGCCG	ACCTGGTGTT	GACACTTGGA	TCCTCCACTT	ACCAGCGGGG
848 849	TGACCTGGA	C AATTTCTGT#	ATCCCTCTCA	CTCAGTTTCC	TACTCAGTAA	AACGGGGATG
850 851	ATAATGTGC	TTGCAAGGCT	TTTGTGAGGC	TTCATCAATG	AGGTGATGTA	TGTGAAGTGT
852 853			AAACAGAGGT			
85 4 855			GATACTTGCA			
856 857			AGCAGAGGCT			
858 859			GGTTTGGAAC			
860 861			CTGAGGCCAG			
862 863			GGCTCTGTGT			
86 <u>4</u> 865		•	AGTCCTTTGT			
866 867			TGTCTTCTGG			
868 869			CAAGTGCCTT			
870 871			TCTGGTCATC			
872 873			GCTTATGGGA			
87 <u>4</u> 875			CTGCACTGAC			
876 877	TTGGGCTCCA	GTGTCGAGGG	TCAAACAAGG	AATTTTGGGG	CGTGGGCCAA	ATCTGGGAAG
878 879	ACACAGGGAG	CAGGGCCCTT	TGGCTCAAGC	TGATAGTTGC	CGCAGGGATT	ACCAGGCCCA
880 881	GGGCAGCCTG	CCACAAGCTG	GGGCTTTTAC	CAAAGAAAAT	CTCCCTATGT	TAAATGCTTG
882 883	CTCAAAAATT	TTTAAAAAAT	ATTCTGTAAG	TCAAAATCCA	TTGTTAGGTC	AGTTTGAGAG
884 885	AGCCATGTTT	TTGGTGTTTT	AGTAACCAAT	PTCATTTTTT T	TATTATTAT	TTATTTGTTT
886 887	ATTTTTGAGA	CGGAGTTTCA	CTCTTGTCAC	CCAGGCTGGA	GTGCAATGGC	ATGATCTCAG
888 889	CTCACTGCAA	CCTCCGCCTC	CCGGGTTCAA (GCAATTCTCC '	rgcctcagcc	TCCTGAGTAG

sare

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:48

890 891	CTGAGATTAC	C AGGTGCCCAC	CATCACGCC	r ggataattt	TGTATTTTT	INPUT SET: S2672. F AGTCGAGATG	5.raw
892 893	GGGTTTCACC	ATGTTGGCC	A GGATAGTCC	GAACTACTG	CCTCAGATA	A TCCGCCCACC	
894 895	TCAGCCTCCC	C AAAGTGCTGG	GATTACAGG	CATGAGCCAG	C ACGCCCGGC	C ACCAATTTCA	
896 897	TTTTTTAAAA	AAGGAAGAA	GAAAACCTT!	A GCCAGAAGAT	CTTTTTCCTT	GCCATATGCA	
898 899	GTAAGAGTAG	S ATTATAAAAA	CAAAGTCAG	GCAGTCACTO	GTGTCTGGG	CATGGAGGAGA	
900 901	AAGAAGAATT	стсттстссс	TTCACCCTCC	ATGCCCCTTT	TTGGCTCCAT	GTGATTCAGA	
902 903	TTTCTGGACC	CTGGAGCCC	ACCCCAAGCT	AAAGACCAGG	ATACAGGGAA	GCCACAACCA	11
904 905	CTGGCGGTTC	TGAGAACTTA	CTTTTCACTI	' ATTCTGCATT	' TACTGTTTCC	TTTTCTTATG	
906 907	CAGAAAAAGA	AAAAAACCAA	GGTAGGTGTG	TGGGTAGAGA	GCATGAAGTG	TGTGTACTCA	
908 909	TGCATATGTA	TGTGCATGCA	TGTGAAGTGT	GCATGTGTGA	GCTCATATGC	ATCCATGCAC	
910 911	CAGACTTGCC	TCTTCCTCCC	CCTCCTTCCT	GAGCTTCTGC	TGGGGCCGAG	CGTGCAGTAA	
912 913	TGACAACTAC	GATTTGCTGG	GGGAAGGCTA	CGTGCCAAGC	ACTCTTTAG	GTGCTTTCCA	
914	TGATTAATTC	CTTCCTCACA	ACAGCCCTAT	GAGATTAGTA	СТАТААСТАТ	CCCCATTTTC	
915 916 917	AGAGGGAGAA	AAGGTACAGA	CTTGACTAAC	TTGCCCAAGG	CCACACAGCC	AGAGAGGGC	
917 918 919	AGAGCCAGTA	CTTAGAGCCA	GGCAGTCTGG	GTCCAGAGTC	CGTGTCCTGA	ACCACAAGAG	
920	GCCATCATAC	GCCATCAGAT	TTGGTGCTAG	CATTTCTGGT	GGTGCCTGGT	GGTGATGGAT	
921 922	CCATCACAGG	GGTCCTCCAG	GTACTGGTGC	TGGCCCAGAC	CAGAGCTGAC	ACTCCTCAGG	
923 924		TTCCAGGCAC					
925 926		ATCTACAAAG					
927 928		GAACTTGCCC				·	
929 930		TTACTCCAAA					
931 932		GCCTGTGTTG					
933 934		TGGCCACACC					
935 936		GATCCCCACA					
937 938		GCCTCTGGGG					
939 940	TATCTGCTTG						
941 942	GGGCTGCTTT						
				_ _			

some

943

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:50

INPUT SET: S26725.raw

240						
944 945	AATCCCCACA	A GCCTTGCCTT	CCCCCGGCTT	TCCCTACAGO	G TGCACCGCAT	CCACAGTGTT
946 947	GGCACCATG	C AGCAGCCGCT	CTCCGTCCTI	TTCATATCCT	TGTCACTTGC	ACGAGCATGT
948 949	CTTGAAAATA	A TCCCTTGTTT	GTGTAGCATC	TTAAATGTT1	TTGCAGTATG	ATTTTGCATT
950 951	CAGTATCTC	A TTTGATCCC	ACAAGAGCCC	TATGAGGAGG	GAAAGCAGAT	' TTTACCATTA
952 953	AAGGATGAGT	T AAACTGAGGC	CAGAGAGGAT	' ATTTTTGGTT	TTTTTTGAGA	CAGTCTCACT
954 955	CTGTCACCCA	GCCTGGAGTG	CAGTGGCTTG	ATCTTGGCTC	ACTGCAAGCT	CCACCTCCCA
956 957	TGTTCACACC	ATTTTCCTGC	CTCAGCCTCC	CAAGTAGCTG	GGACTACAGG	CACCCACCAC
958 959	CACACCCAGC	TAATTTTTTT	GTATCTTTAG	TAGAGATGGG	GTTTCACCCA	GTTAGCCAGG
960	ATGGTCTTGA	TCTCCTGACC	TTGTGATCTG	CCTGCTTCGG	CCTCCTAAAG	TGCTGGGATT
961 962	ACAGGCGTGA	ACCCCCCTGC	CCGGCCAGAG	AGGATATTTC	TTAATGAGGG	GCAGGGCTGG
963 964	GATTCCAGCC	CAGTGTTCTG	ATGGCTCACC	CACTGACCAT	TCCACTAATC	CGTGTCCTTT
965 966	ТТСААТСТАА	ACTTTCAGGG	TTGTAGAGGT	TCCTTTGAGG	TGCCTCAGTA	CTTCCATGGT
967 968	GATGTGGGGT	CTGAGGGCCA	AGAGCTCTGT	TCTCATTAAT	CAGAGAAGCT	TGTGTTTTTA
969 970 971	AAAACACCAT	GTTTACTGCA	GGAAATTTAA	TTGGACAGTG	TTTCCATCTG	GAAAAAAAA
972 973	AGTCTACAAA	ATACTTGACA	ATCACTGCAC	TAGATCATGC	TGCTTTTAGC	ATTCTTAGCA
974	TTTCACGTGC	TGAGCTCTCA	ATACTCTACC	ATGAGGAGGG	ATGGAGTGGG	TATGAAAAGA
975 976	TAAAGAACTG	AAGTCACACG	GCTTGTCAGT	GGCAGAGATA	GAGCTTGAAC	CGAGGTTGAA
977 978	GAGCTCCCGC	CTATTCCTTT	CCTCTTCTCA	CTGGATAAAG	CTGCTCCAAG	AGAGGTGCTG
979 980	CCTCAGTGTG	CCTGTTCAGA	CTGTAATCCT	CCCTTCCTTC	CTGCCTCCTC	CCTCCTCTCT
981 982	CCAGCCCATC	ATCTTCGTTT	CGGACAGAGC	AAACAGCAAC	AAGGAGCTGG	GTGTGGACCA
983 984	GGAGTCAGAG	GAGGGCAAAG	GCAAAACAAG	CCCTGATAAG	CAAAAGCAGT	CCCCACAGGT
985 986	GTCTGGGCAT	GTGGCATGGG	TGGGGTGGCC	AGCACGCTAC	AGGGGCTTCC	TATGCGCTTG
987 988	GGATACACAG	GGGCTGGAGG	CTTCCCAGGA	GTTTGTCTTG	AACATCTGGA	GGTTTGAATT
989 990	TGTCCCACTG	ACCTTTTCTT	TCAGCAAGTT	CCCCTGAAAT	TTGGGCTGCT	GCTTGGGTGA
991 992		ATGGGGGTTC				
993 994		CAGGATACAG				
995						· ·

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:52

996 997	CGGAGGCGC	A ACTCTTGTCT	CCTGGTGGCC	TTGAGCATT	T CACAATAGG	INPUT SET: S26725.raw G GGATAAAGGA	
998 999	TAGGAGCAG	A AAAGTGGGGC	TGACTTCAGA	AATGGGGTC	C TCTAGAGCT	C ACGGGAGGGT	
1000	GTTAGATTG	G AGTGGGAGCT	TAGTGGAGGT	GAGCCTTAG	A GGCAAAAGT	C TCCAGACCAA	
1002	TCCAGGCCC	CTCTTCTATC	: ceeeeeccc	TCTTCTATC	C AGGGCCCCT	C TTCTGTCTGG	
1004 1005	GAGCCCCTC	TCTATCTGGG	GCCTCATGCA	GTGGGGCCT	A GGGGAGGTT	CTCTGAGGACT	
1006 1007	TGGCCTTGAT	GACAGGGTGG	CTGGAGGAAT	CAGAACGGTC	AGACCTTCT	T TGACCTGCGG	
1008 1009	GCACCTTTAC	TTGGAATGCT	CAGGCCTGGG	ATGGTGGAG	GGGCTCTTG	C AGGTGGGGAC	/
1010 1011						G GGCGTCAGGG	
1012 1013						CACCAGGTCT	
1014						TTGGCTCCCT	
1016		GAGCTTGCCT					
1018						AACAGCAACA	
1020 1021		ATTTTCAAGC				1	
1022 1023 1024		TCCTTCTCTC					
1024 1025 1026		TCACTTTGGA					
1027 1028		TGAGTTTTGG					
1029 1030		ACGGTGGTCC					
1031 1032		AGCTTCCCAT					
1033		TTTTGCAAAG					
1035 1036		TCCTCCTCAG					
1037 1038		GAACAAACGT CAAAGCAGCT					
1039 1040		ACACTGGAGT					
1041 1042		CCCGACCCTC					
1043 1044		AAAGGCCCT					
1045 1046		TACTCGTCTG					
1047 1048		AACCCCTGTG					
				GCCIGGGATC	CIGCCCAAGC	AAAAGTGGTC	

some

1049

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:53

INPUT SET: S26725.raw

1047						
1050	CTTAGGAGAG	CGGCTCCTGG	GTTACAGAGI	AGGCGCAATC	TCTGACTGGT	GGTGGAGTGG
1051 1052	AGGGGAGGGT	' ጥልልልጥአርጥአር	· AACACGGGAG	I Magamagaa		CTCCTAGACC
1053		· · · · · · · · · · · · · · · · · · ·	AACAGGGCAG	IGGGTAGGAC	AGCCCGGAGT	CTCCTAGACC
1054	CTCCCTCCAA	ATCCAGGGG	ATTTTGCTGT	GTGCTGTGTA	GCCCTGACCT	CCCTCCTCCA
1055						
1056 1057	GACAGATGGC	TCTGGAAAGC	TCAACCTGCA	GGAGTTCCAC	CACCTCTGGA	ACAAGATTAA
1057	GGCCTGGCAG	CTCCCAACAC	1111555			
1059	GGCCIGGCAG	GTGGGAAGAG	AAAATGAAGC	GTGGGAGTCA	AGAATGGGGT	TGATTTGGAG
1060	ATTCAGTGTG	TGACCTCCAT	ССТСАААТТТ	ጥሮጥ እ ጥጥሮሮር እ	CAAAAmmma	AAACACTATG
1061			0010111111	ICIAIIGCCA	GAAAATTTTC	AAACACTATG
1062	ACACAGACCA	GTCCGGCACC	ATCAACAGCT	ACGAGATGCG	AAATGCAGTC	AACGACGCAG
1063						
1064 1065	GTGCTGAGAA	GGAAGGGGTG	TCAGGGATGT	GGACCCGAGA	CGGTGGGAGC	AGGAATGGGA
1066	GGGGACTAGG	TA CTA CCCC	0010m10101			
1067	COGGACIAGC	IACIAGGGCC	CCACTAGAGA	AGGAGAGGGA	AAGGGCTTCT	CACTTTCCCT
1068	TCCCAGGTCA	CAGAGTGTCC	GAGAGGCAGG	GAAAATAGAA	GACACCCCCA	A G G G G T G G A G
1069				OMMATAGAA	GACAGGCCCA	AGGCCTCCAG
1070	CTCCACGTCC	ACCTCTAACA	TGGTCCCCTC	CACAGGATTC	CACCTCAACA	ACCAGCTCTA
1071						
1072 1073	TGACATCATT	ACCATGCGGT	ACGCAGACAA	ACACATGAAC	ATCGACTTTG	ACAGTTTCAT
1074	СТССТССТТС	GTTAGGCTGG	A CCCC A TCCTT	GA CMA A CMCC	61616666	
1075	0100100110	GIIAGGCIGG	AGGGCATGTT	CAGTAAGTGG	GAGAGGGGG	CTGCCCTCTG
1076	CTCTCTTGCA	GGGGCAGTTG	TGGCAACAGG	CATCTCACCT	GATAATCTCC	Δαπαπααπαα
1077						
1078	ATCCAGGCTG	AACAAGGGCC	AATGACCTCT	TTAGGCCCAG	AATGGGATGG	CAAAGGGAGG
1079 1080						
1081	GITACIGGIG	ATTCTCTGCC	TGCACATCTT	TGTGCTGATG	AGGGACAGCA	CTGGGCACAC
1082	GGTCCTCTGA	GGGGAAGTTA	САСТАСТАСА	GGCGGAGTGC	CCCMCM3 3 CM	CCCCCCCCCC
1083			one incinor	COCGOAGIGC	GCCIGIAACT	GGCCTCTGGC
1084	CTGTGCATTC	TTTCACAGGA	GCTTCTCATG	CATTTGACAA	GGATGGAGAT	GGTATCATCA
1085						
1086 1087	AGCTCAACGT	TCTGGAGGTA	AAGCATAGGC	ACAGCACATT	CCCCCTACAC	ATTAAAACTC
1088	AAGGTGGAGG	GGTCAACGCC	CCCCACTICCA	0001000mem		
1089	ILIOOTOCACO	GGTCAACGGG	GCGGACTGGA	CCCAGGGTGT	GCTCCTCATT	TCCACACAGT
1090	GGTGGAGGGA	AGGGATAGGA	ACAGAACATG	GAGGGAGGCT	CAGCAGGCTC	CCAGGACACA
1091						
1092	TGCACTTGAG	GCCCAAAAGG	ACCTCTGCTC	CCCCAGTCAC	TTGATGCGGG	AAAACATGCA
1093 1094						
1094	CCTTCTTAGG	GAAGATCTAG	GAGAAAGGAA	ACAGTAAGCC	ACTGCTTCTT	GGAAAATCTT
1096	CTGGGGGTCT	GACCTGCTGG	CACTCTTCCC	ТТТССТСТО	00000mm.	
1097			CHOIGITCCC	TITCCTCTTG	CCCCGTAAGA	TTCCTAGGGC
1098	GGGGGGGG	GGGGGTCACT	CTTTTCTGAT	CTACATTCTG	ATCTTGGGAC	ምጥርጥጥጥር ል ርጥ
1099						
1100	GGCTGCAGCT	CACCATGTAT	GCCTGAACCA	GGCTGGCCTC .	ATCCAAAGCC .	ATGCAGGATC
1101						

--> 1152

1153

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:55

1102 1103	ACTCAGGATT	TCAGTTTCAC	CCTCTATTTC	CAAAGCCATT	TACCTCAAAC	INPUT SET: S20 GACCCAGCAG	5725.raw
1104 1105	CTACACCCCT	ACAGGCTTCC	AGGCACCTCA	TCAGTCATGT	TCCTCCTCC	TTTTACCCC	
1105 1106 1107	TACCCATCCT	' TGATCGGTCA	TGCCTAGCCT	GACCCTTTAG	TAAAGCAATG	AGGTAGGAAG	
1108	AACAAACCCT	TGTCCCTTTG	CCATGTGGAG	GAAAGTGCCT	GCCTCTGGTC	CGAGCCGCCT	
1109 1110 1111	CGGTTCTGAA	GCGAGTGCTC	CTGCTTACCT	TGCTCTAGGC	TGTCTGCAGA	AGCACCTGCC	
1112	GGTGGCACTC	AGCACCTCCT	TGTGCTAGAG	CCCTCCATCA	CCTTCACGCT	GTCCCACCAT	
1113 1114 1115	GGGCCAGGAA	CCAAACCAGC	ACTGGGTTCT	ACTGCTGTGG	GGTAAACTAA	CTCAGTGGAA	
1115 1116 1117	TAGGGCTGGT	TACTTTGGGC	TGTCCAACTC	ATAAGTTTGG	CTGCATTTTG	AAAAAAGCTG	Sa
1117	АТСТАААТАА	AGGCATGTGT	ATGGCTGGTC	CCCTTGTGTT	TTGTTGTCTC	ACATTTAGAT	18
1120 1121	ATCAGCCATG	CATGACTGAA	TGGCTTCCAA	TCATATACTC	ACCTATCACC	TACAAGAGAA	
1122 1122 1123	CAATGAAAA	CACACACAAA	AACAAAATCT	TGAATTTTGT	AATCATGCCT	ATTGCTATTT	
1124 1125	CTTGAGCATA	AGAATGGCTC	AGATACTTTC	CAAGACATAA	AAGGAAGGCA	GAGGAATAGT	
1126 1127	TGTTGCTGTA	AAAGACATCA	AGAATAAATG	GGGTCATGTA	CAACGGGAGG	GGCCGGTTAC	
1128 1129	CTGAATAATG	GAGTGGAGAT	TGAGCTATCC	TAGCTCCTCT	GCTCACTAAC	TGACCTGTCG	
1130 1131	CATGACCGTG	GACAAAACCC	TGAACGCAGC	TGTTTGTTTG	CTAAACTTCT	CTGGACCATG	
1132 1133	GCCTGCGGCA	TATCTATAGG	CATCCTGTGT	TTTCCACCCA	GTTTCCTTCT	TCCTCGCTAA	
1134 1135	GCCAACGTGG	AAAGGGCTGG	CCGTGAATAT	GCAGACAAGG	TAACGAAAGT	AAACCGTCAA	
1136 1137	TTAGTAAAAG	TACTTCATTT	TCCTCTTGTA	TTTGCTTCAT	TCTTGCTTCA	CAAAGTTACG	
1138 1139	AAGTCCACAG	CTTTATACCA	AAATGTAAGA	AGGCTATTTG	CTTATAAACA	TTTTGAGTCA	
1140 1141	GGTGTCATCT	GATTTCATTC	TTCTAATCCA	TATTCAATAT	ТААААААТСА	GAAACCAAGG	
1142 1143	GTGCTGGAGC	AGCTCTAGGG	CATATATTTC	TCTTAAATAG	GAGAAAGATT	TTCAACAGCT	
1144 1145	TTTCCTCCTT	GACCCCCTCC	TTTCCCAATT	TATTTGGGTC	ACTACCTTGA	ATTTAGAGTG	
1146 1147	AATCTGGGAA	ATGTAGTCAC	CAGG				
1148							
1149	(2) INFORMA	TION FOR SE	O ID NO: 5:	· · · · · · · · · · · · · · · · · · ·			
1150	-	· ~ -					
1151		QUENCE CHAR		:			
1152	,	A) TEMOTES.	C140 hama -	_ 4			

(A) LENGTH: 5149 base pairs
(B) TYPE: nucleic acid

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:36:56

INPUT SET: S26725.raw 1154 (C) STRANDEDNESS: double 1155 (D) TOPOLOGY: linear 1156 1157 (ii) MOLECULE TYPE: genomic DNA 1158 1159 (ix) FEATURE: 1160 (A) NAME/KEY: misc feature 1161 (D) OTHER INFORMATION:/label= FIGURE 2 1162 -) G/obally change this do "LOCATION: 1163 (ix) FEATURE: 1164 (A) NAME/KEY: misc feature 1165 (B) POSITION: 1303..3764 (D) OTHER INFORMATION:/note=CDS 1166 1167 1168 (ix) FEATURE: 1169 (A) NAME/KEY: misc_feature 1170 (B) POSITION) 1631 (D) OTHER INFORMATION:/note= CGA->TGA; nCL1 mutation in one 1171 1172 LGMD2A family 1173 1174 (ix) FEATURE: 1175 (A) NAME/KEY: misc_feature --> 1176 (B) POSITION 1848 (D) OTHER INFORMATION:/note= CTG->CAG; nCL1 mutation in one 1177 1178 LGMD2A family 1179 1180 (ix) FEATURE: 1181 (A) NAME/KEY: misc feature --> 1182 (B) (POSITION): 1853 1183 (D) OTHER INFORMATION:/note= CAA->CA; nCL1 mutation in one 1184 LGMD2A family 1185 1186 (ix) FEATURE: 1187 (A) NAME/KEY: misc_feature --> 1188 (B) **POSITION**: 2004 (D) OTHER INFORMATION:/note= GGG->GAG; nCL1 mutation in one 1189 1190 LGMD2A family 1191 1192 (ix) FEATURE: 1193 (A) NAME/KEY: misc_feature --> 1194 (B) POSITION: 2248 1195 (D) OTHER INFORMATION:/note= CGG->CG; nCL1 mutation in one 1196 LGMD2A family 1197 1198 (ix) FEATURE: 1199 (A) NAME/KEY: misc_feature --> 1200 (B) POSITION: 2364 1201 (D) OTHER INFORMATION:/note= GTG->GGG; nCL1 mutation in one 1202 LGMD2A family 1203 (ix) FEATURE: 1204 1205 (A) NAME/KEY: misc feature 1206 (B) POSITION : 2382

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

```
INPUT SET: S26725.raw
      1207
                       (D) OTHER INFORMATION:/note= TGG->TAG ; nCL1 mutation in one
      1208
             LGMD2A family
      1209
      1210
                (ix) FEATURE:
      1211
                       (A) NAME/KEY: misc feature
     1212
                       (B) POSITION: 2771
     1213
                       (D) OTHER INFORMATION:/note= CGG->TGG; nCL1 mutation in one
      1214
             LGMD2A family
     1215
     1216
                (ix) FEATURE:
     1217
                       (A) NAME/KEY: misc_feature
-->
     1218
                       (B)(POSITION): 3018
     1219
                      (D) OTHER INFORMATION:/note= GGG->CAG; nCL1 mutation in one
     1220
             LGMD2A family
     1221
     1222
                (ix) FEATURE:
     1223
                      (A) NAME/KEY: misc feature
-->
     1224
                      (B) POSITION 3 3372..3373
     1225
                      (D) OTHER INFORMATION:/note= Deletion AC; nCLl mutation in one
     1226
            LGMD2A family
     1227
     1228
                (ix) FEATURE:
     1229
                      (A) NAME/KEY: misc_feature
-->
     1230
                      (B) POSITION : 3533
     1231
                      (D) OTHER INFORMATION:/note= AGC->GGC; nCL1 mutation in one
     1232
            LGMD2A family
     1233
     1234
                (ix) FEATURE:
     1235
                      (A) NAME/KEY: misc_feature
-->
     1236
                      (B) POSITION & 3609
     1237
                      (D) OTHER INFORMATION:/note= CGG->CAG; nCL1 mutation in one
     1238
            LGMD2A family
     1239
     1240
                (ix) FEATURE:
     1241
                      (A) NAME/KEY: misc_feature
    1242
                      (B) (POSITION): 3616...3619
     1243
                      (D) OTHER INFORMATION:/note= Deletion AGAC; nCL1 mutation in one
     1244
            LGMD2A family
    1245
    1246
               (ix) FEATURE:
    1247
                      (A) NAME/KEY: misc_feature
    1248
                      (B) POSITION): 3665..3666
    1249
                      (D) OTHER INFORMATION:/note= AG->TCATCT; nCL1 mutation in one
    1250
            LGMD2A family
    1251
    1252
    1253
    1254
    1255
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
    1256
    1257
           ATATCAGTTA GCCTGGTTTC ACTATACAGT ACATCATTTT GCTTAAAGTC ACAGCTTACG
    1258
    1259
           AGAACCTATC GATGATGTTA AGTGAGGATT TTCTCTGCTC AGGTGCACTT TTTTTTTTT
```

1260

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:37:00

INPUT SET: S26725.raw

1260						
1261	TTAAGACGG#	GTCTCTTTCT	GTCACCTGGG	CTGGAGTGCA	GTGGCGTGAT	CTGGGTTCAC
1262 1263		. СССТССТВВ	! ጥጥሮልልፎሮልልጥ		. araaamaaa	AGTAGCTGGG
1264			TICARGUARI	refreigrei	CAGCCTCCCA	AGTAGCTGGG
1265	ATTACAGGCA	CCCCCCCCCA	CACCCGGCTT	ATTTTTGTAT	TTTTAGTAGA	GACAGGGTTT
1266 1267		'	CTCTCCAACT	Camar camar		
1268	CACIAIIGII	GICCAIGCIG	GICICGAACT	CGTGACCTCA	TGTGATCCAC	CCGCCTCGGC
1269	CTCCCAAAGT	GCAGAGATTA	GAGACGTGAT	CCACATGGCC	CAGCAGGACC	ACTTTTTAGC
1270						
1271 1272	AGATTCAGTC	CCAGTGTTCA	TTTTGTGGAT	GGGGAGAGAC	AAGAGGTGGC	AAGGTCAAGT
1273	GTGCAGGTAG	AGACAGGGAT	ТТТСТСАААТ	GAGGACTCTG	СТСАСТАССА	TTTTCCATGC
1274						
1275	AGACATTTCC	AATGAGCGCT	GACCCAAGAA	CATTCTAAAA	AAGATACCAA	ATCTAACATT
1276 1277	ሮልልጥልልጥ ሮጥጥ		A A A A MIRIMINA CI	G1-GT1-1-1-T		AAAATTCACA
1278	OARIARIGII	CIGATATCCI	AAAATTTTAG	GACTAAAAAT	CATGTTCTCT	AAAATTCACA
. 1279	GAATATTTT	GTAGAATTCA	GTACCTCCCG	TTCACCCTAA	CTAGCTTTTT	TGCAATATTG
1280						
1281 1282	TTTTCCATTC	ATTTGATGGC	CAGTAGTTGG	GTGGTCTGTA	TAACTGCCTA	CTCAATAACA
1283	TGTCAGCAGT	TCTCAGCTTC	TTTCCAGTGT	TCACCTTACT	САСАТАСТСС	ርጥጥጥጥር እ ጥጥጥ
1284						
1285 1286	TCTGGCAACA	CCAGCACTTC	ATGGCAACAG	AAATGTCCCT	AGCCAGGTTC	TCTCTCTACC
1287	ATGCAGTCTC	TCTTGCTCTC	ል ሞል ሮሞር አርአር	TOTTO TOTO	C & TICH & THOUTH	m) ammma am
1288		1011001010	ATACTOACAG	IGITICITCA	CATCTATTT	TAGTTTTCCT
1289	GGCTCAAGCA	TCTTCAGGCC	ACTGAAACAC	AACCCTCACT	CTCTTTCTCT	CTCCCTCTGG
1290 1291	CATCCATCCT	CCTCCTTACCA	C) CCCCCC)	Mallanes		
1292	CAIGCAIGCI	GCTGGTAGGA	GACCCCCAAG	TCAACATTGC	TTCAGAAATC	CTTTAGCACT
1293	CATTTCTCAG	GAGAACTTAT	GGCTTCAGAA	TCACAGCTCG	GTTTTTAAGA	TGGACATAAC
1294						
1295 1296	CTGTCCGACC	TTCTGATGGG	CTTTCAACTT	TGAACTGGAT	GTGGACACTT	TTCTCTCAGA
1297	TGACAGAATT	ACTCCAACTT	CCCCTTTGCA	GTTGCTTCCT	TTCCTTGAAG	СТАССТСТАТ
1298						
1299 1300	CTTATTTTCT	TTAAAAAGCT	TTTTCTTCCA	AAGCCACTTG	CCATGCCGAC	CGTCATTAGC
1300	GCATCTGTGG	CTCCAAGGAC	AGCGGCTGAG	CCCCGGTCCC	CACCCCCACM	ПОСТО В СОСС
1302						
1303	GCCCAGAGCA	AGGCCACTGA	GGCTGGGGGT	GGAAACCCAA	GTGGCATCTA	TTCAGCCATC
1304 1305	ATCAGCCGCA	A TOTO TOTO A TO	Mamagaa ama			
1306	HICHOCOGCA	ATTTTCCTAT	TATCGGAGTG	AAAGAGAAGA	CATTCGAGCA	ACTTCACAAG
1307	AAATGTCTAG	AAAAGAAAGT	TCTTTATGTG	GACCCTGAGT	TCCCACCGGA	TGAGACCTCT
1308						
1309 1310	CTCTTTTATA	GCCAGAAGTT	CCCCATCCAG	TTCGTCTGGA	AGAGACCTCC	GGAAATTTGC
1311	GAGAATCCCC	GATTTATCAT	TGATGGAGCC	AACAGA ACTIC	Δ . Ζ. Δ. Τ. Ο	AGGAGAGGTA
1312				onno16	AICIGICA	AGGAGAGCIA

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

1313 1314	GGGGACTGC'	T GGTTTCTCGC	C AGCCATTGCC	TGCCTGACC	C TGAACCAGCA	INPUT SET: S20	5725.raw
1315	CGAGTCATA	C CCCATGATCA	AAGTTTCATC	GAAAACTAC	G CAGGGATCTT	' CCACTTCCAG	
1316 1317					ACTGCCTGCC		
1318 1319					TCTGGAGTGC		
1320 1321	•				AAGGTGGGAA		
1322 1323					AGATCAGGGA		
1324 1325							
1326					CCCTCATGGG		
1327 1328	GATGATGGCA	CGAACATGAC	CTATGGAACC	TCTCCTTCTG	GTCTGAACAT	GGGGGAGTTG	sa
1329 1330	ATTGCACGGA	TGGTAAGGAA	TATGGATAAC	TCACTGCTCC	AGGACTCAGA	CCTCGACCCC	18
1331 1332	AGAGGCTCAG	ATGAAAGACC	GACCCGGACA	ATCATTCCGG	TTCAGTATGA	GACAAGAATG	
1333 1334	GCCTGCGGGC	TGGTCAGAGG	TCACGCCTAC	TCTGTCACGG	GGCTGGATGA	GGTCCCGTTC	
1335 1336	AAAGGTGAGA	AAGTGAAGCT	GGTGCGGCTG	CGGAATCCGT	GGGGCCAGGT	GGAGTGGAAC	
1337 1338	GGTTCTTGGA	GTGATAGATG	GAAGGACTGG	AGCTTTGTGG	ACAAAGATGA	GAAGGCCCGT	
1339	CTGCAGCACC	AGGTCACTGA	GGATGGAGAG	TTCTGGATGT	CCTATGAGGA	TTTCATCTAC	
1340 1341	CATTTCACAA	AGTTGGAGAT	CTGCAACCTC	ACGGCCGATG	CTCTGCAGTC	TGACAAGCTT	
1342 1343					GGGGTTGCTC		
1344 1345					ACCGTCTGAA		
1346 1347					TCCTGGTGGC		
1348 1349							
1350 1351					TCACCATTGG		
1352					TGCAGAAGGA		
1353 1354	TACAACGCCT	CCAAGGCCAG	GAGCAAAACC	TACATCAACA	TGCGGGAGGT	GTCCCAGCGC	
1355 1356	TTCCGCCTGC	CTCCCAGCGA	GTACGTCATC	GTGCCCTCCA	CCTACGAGCC	CCACCAGGAG	
1357 1358	GGGGAATTCA	TCCTCCGGGT	CTTCTCTGAA	AAGAGGAACC	TCTCTGAGGA	AGTTGAAAAT	
1359 1360	ACCATCTCCG	TGGATCGGCC	AGTGAAAAAG	AAAAAAACCA	AGCCCATCAT	CTTCGTTTCG	
1361	GACAGAGCAA	ACAGCAACAA	GGAGCTGGGT	GTGGACCAGG	AGTCAGAGGA	GGGCAAAGGC	
1362 1363					AGCCTGGCAG		
1364 1365					AGATAGCAGG A		

1366

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:37:03

INPUT SET: S26725.raw

1367 1368	GAGATCTGT	CAGATGAGC	CAAGAAGGT	CTTAACACA	G TCGTGAACA	A ACACAAGGAC
1369	CTGAAGACA	CACGGGTTCAC	CACTGGAGTC	TGCCGTAGC	A TGATTGCGC	r catggataca
1370 1371	GATGGCTCTC	GAAAGCTCA	A CCTGCAGGA	TTCCACCAC	TCTGGAACA	A GATTAAGGCC
1372 1373						A CAGCTACGAG
1374 1375						A TGACATCATT
1376 1377						CTGCTGCTTC
1378 1379				`		
1380						G AGATGGTATC
1382						CAGGCTGGCC
1383 1384						TCCAAAGCCA
1385 1386	TTTACCTCAA	AGGACCCAGC	AGCTACACCC	CTACAGGCTT	CCAGGCACCT	CATCAGTCAT
1387 1388	GTTCCTCCTC	CATTTTACCC	CCTACCCATC	CTTGATCGGT	CATGCCTAGC	CTGACCCTTT
1389 1390	AGTAAAGCAA	TGAGGTAGGA	AGAACAAACC	CTTGTCCCTT	TGCCATGTGG	AGGAAAGTGC
1391 1392	CTGCCTCTGG	TCCGAGCCGC	CTCGGTTCTG	AAGCGAGTGC	TCCTGCTTAC	CTTGCTCTAG
1393 1394	GCTGTCTGCA	GAAGCACCTG	CCGGTGGCAC	TCAGCACCTC	CTTGTGCTAG	AGCCCTCCAT
1395 1396	CACCTTCACG	CTGTCCCACC	ATGGGCCAGG	AACCAAACCA	GCACTGGGTT	CTACTGCTGT
1397	GGGGTAAACT	AACTCAGTGG	AATAGGGCTG	GTTACTTTGG	GCTGTCCAAC	TCATAAGTTT
1398 1399	GGCTGCATTT	TGAAAAAAGC	TGATCTAAAT	AAAGGCATGT	GTATGGCTGG	TCCCCTTGTG
1400 1401			ATATCAGCCA			
1402 1403			AACAATGAAA			
1404 1405			TTCTTGAGCA			
1406 1407						
1408 1409			GTTGTTGCTG			
1410			CCTGAATAAT			
1411 1412			GCATGACCGT			
1413 1414	GCTAAACTTC	TCTGGACCAT	GGCCTGCGGC	ATATCTATAG	GCATCCTGTG	TTTTCCACCC
1415 1416	AGTTTCCTTC	TTCCTCGCTA	AGCCAACGTG	GAAAGGGCTG	GCCGTGAATA	TGCAGACAAG
1417 1418	GTAACGAAAG	TAAACCGTCA	ATTAGTAAAA	GTACTTCATT	TTCCTCTTGT	ATTTGCTTCA

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

	1419	INPUT SET: S26725.raw TATCTTGCTT CACAAAGTTA CGAAGTTCAC AGCTTTATAC CAAAATGTAA GAAGGCTATT
	1420	THE CHARACTER CORRELIER ROCTITATAC CARRATGTAR GARGGCTATT
	1421	TGCTTATAAA CATTTTTGCA GTCAGGTGTC ATCTGATTTC ATTCTTCTAA TCCATATTCA
	1422	TGCTTATAAA CATTTTTGCA GTCAGGTGTC ATCTGATTTC ATTCTTCTAA TCCATATTCA ATATTANAAA AATCAGAAAC CAAGGGTGCT GGAGCAGCTC TAGGGCATAT ATTTCTCTTA
	1423	ATATTANAAA AATCAGAAAC CAAGGGTGCT GGAGCAGCTC TAGGGCATAT ATTTCTCTTA
	1424	TAILANA ARTENGRARE CARGOSTGET GGAGCAGCTC TAGGGCATAT ATTTCTCTTA
	1425	AATAGGAGAA AGATTTTTCAA GAGGTTTTTCA TOOTTTTTCA TOOTTTCA TOOTTTCA TOOTTTCA
	1426	AATAGGAGAA AGATTTTCAA CAGCTTTTCC TCCTTGACCC CCTCCTTTCC CAATTTATTT
	1427	GGGTCACTAC CTTGAATTTA GAGTGAATCT GGGAAATGTA GTCACCAGG
	1428	GGGTCACTAC CITGAATTTA GAGTGAATCT GGGAAATGTA GTCACCAGG
	1429	
	1427	
	2232	(2) INFORMATION FOR SEQ ID NO: 10:
	2233	- '''
	2234	(i) SEQUENCE CHARACTERISTICS:
>	2235	(A) LENGTH: 20 base pairs
	2236	(B) TYPE: nucleic acid
	2237	(C) STRANDEDNESS: double
	2238	(D) TOPOLOGY: linear
	2239	
	2240	(ii) MOLECULE TYPE: cDNA
	2241	, , , , , , , , , , , , , , , , , , , ,
	2242	(ix) FEATURE:
	2243	(A) NAME/KEY: misc feature
	2244	(D) OTHER INFORMATION:/label= Table 1
	2245	Table 1
	2246	(A) NAME/KEY: misc_feature (D) OTHER INFORMATION:/label= Table 1 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:
	2247	
	2248	ATGGAGCCAA CAGAACTGAC
	2249	
_	2250	(2) INFORMATION FOR SEQ ID NO: 11:
	2251	
	2252	(i) SEQUENCE CHARACTERISTICS:
>	2253	(A) LENGTH: 21 base pairs
	2254	(B) TYPE: nucleic acid
	2255	(C) STRANDEDNESS: double
	2256	(D) TOPOLOGY: linear
	2257	
	2258	(ii) MOLECULE TYPE: Primer
	2259	
	2260	(ix) FEATURE:
	2261	(A) NAME/KEY: misc_feature
	2262	(D) OTHER INFORMATION:/label= Table 1
	2263	
	2264	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:
	2265	\mathcal{L}
	2266 2267	GTATGACTCG GAAAAGAAGGT
	2268	(2) INFORMATION FOR SEQ ID NO: 12:
	2269	
	2270	(i) SEQUENCE CHARACTERISTICS:

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

			INPUT SET: S26725.raw
>	2271	(A) LENGTH: 20 base pairs	
	2272	(B) TYPE: nucleic acid	
	2273	(C) STRANDEDNESS: double	
	2274	(D) TOPOLOGY: linear	
	2275		
	2276	(ii) MOLECULE TYPE: Primer	
	2277		
	2278	(ix) FEATURE:	
	2279	<pre>(A) NAME/KEY: misc_feature</pre>	
	2280	(D) OTHER INFORMATION:/label= Table 1	1 -11
	2281		TOIM
	2282	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	1014
	2283		
	2284	TAAGCAAAAG CAGTCCCCAC	(,
	2285		•
	2286	(2) INFORMATION FOR SEQ ID NO: 13:	
	2287		
	2288	(i) SEQUENCE CHARACTERISTICS:	
>	2289	(A) LENGTH: 21 base pairs	
	2290	(B) TYPE: nucleic acid	
	2291	(C) STRANDEDNESS: double	
	2292	(D) TOPOLOGY: linear	
	2293		
	2294	(ii) MOLECULE TYPE: primer	
	2295	<u>-</u>	
	2296	(ix) FEATURE:	
	2297	<pre>(A) NAME/KEY: misc_feature</pre>	
	2298	(D) OTHER INFORMATION:/label= Table 1	
	2299		
	2300	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
	2301		
	2302	TTGCTGTTCC TCACTTTCCTG	√.
	2303		•
	2304	(2) INFORMATION FOR SEQ ID NO: 14:	
	2305		
	2306	(i) SEQUENCE CHARACTERISTICS:	
>	2307	(A) LENGTH: 20 base pairs	
	2308	(B) TYPE: nucleic acid	
	2309	(C) STRANDEDNESS: double	
	2310	(D) TOPOLOGY: linear	
	2311		
	2312	(ii) MOLECULE TYPE: primer	
	2313	•	
	2314	(ix) FEATURE:	
	2315	(A) NAME/KEY: misc_feature	
	2316	(D) OTHER INFORMATION:/label= Table 1	
	2317	(-) VIIII INICIANTION./IADEL= IADIE I	
	2318	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
	2319	(, objectivition: SEQ ID NO: 14:	
	2320	GTTTCATCTG CTGCTTCGTT	,
	2321		<i>(</i> ,
	2021		U

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:37:08

INPUT SET: S26725.raw

			HVF 01 SE1: S20/25.raw
	2322	(2) INFORMATION FOR SEQ ID NO: 15:	
	2323		
	2324	(i) SEQUENCE CHARACTERISTICS:	
>	2325	(A) LENGTH: 20 base pairs	
	2326	(B) TYPE: nucleic acid	
	2327	(C) STRANDEDNESS: double	
	2328	(D) TOPOLOGY: linear	
	2329		
	2330	(ii) MOLECULE TYPE: primer	
	2331		141
	2332	(ix) FEATURE:	fotel
	2333	(A) NAME/KEY: misc feature	, ,
	2334	(D) OTHER INFORMATION:/label= Table 1	
	2335		
	2336	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	-/
	2337	•	
	2338	CTGGTTCAGG CATACATGGT	(
	2339		-
	2240	(2) INDODYSTAN TOP CTO	
	2340 2341	(2) INFORMATION FOR SEQ ID NO: 16:	
	2342	(i) SEQUENCE CHARACTERISTICS:	
>	2343		
	2344	(A) LENGTH: 22 base pairs	
	2345	(B) TYPE: nucleic acid	
	2345	(C) STRANDEDNESS: double	•
	2347	(D) TOPOLOGY: linear	
	2347	(ii) NOTESTITE THE	
	2349	(ii) MOLECULE TYPE: primer	
	2349	Admin Spanish	
	2350	(ix) FEATURE:	
	2351	(A) NAME/KEY: misc_feature	
	2352	(D) OTHER INFORMATION:/label= Table 1	
	2353	(ui) groupus parameter	
	2354	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
			/
	2356 2357	THOUTH AND COLORS OF THE	%
	2357	TTCTTTATGT GGACCCTGAG TT	•
			•
	2359	(2) INFORMATION FOR SEQ ID NO: 17:	
	2360	_	
	2361	(i) SEQUENCE CHARACTERISTICS:	
>	2362	(A) LENGTH: 19 base pairs	
	2363	(B) TYPE: nucleic acid	
	2364	(C) STRANDEDNESS: double	
	2365	(D) TOPOLOGY: linear	
	2366		
	2367	(ii) MOLECULE TYPE: primer	
	2368	, ,	
	2369	(ix) FEATURE:	
	2370	(A) NAME/KEY: misc_feature	
	2371	(D) OTHER INFORMATION:/label= Table 1	
		(b) OTHER INCOMMATION:/IdDel= Table 1	

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

			INPUT SET: S26725.raw
	2372		/ / /
	2373	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	total
	2374		
	2375	ACGAACTGGA TGGGGAACT	\mathcal{U}
	2376		
	2377	(2) INFORMATION FOR SEQ ID NO:18:	
	2378		
	2379	(i) SEQUENCE CHARACTERISTICS:	
>	2380	(A) LENGTH: 20 base pairs	
	2381	(B) TYPE: nucleic acid	
	2382	(C) STRANDEDNESS: double	
	2383	(D) TOPOLOGY: linear	
	2384		
	2385	(ii) MOLECULE TYPE: primer	
	2386		
	2387	(ix) FEATURE:	
	2388	(A) NAME/KEY: misc_feature	
	2389	(D) OTHER INFORMATION:/label= Table 3	fold
	2390		10 41
	2391	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18: (TTEAGTACCTCCCGTTCACC) four loss (non-coding)	en en Rober
	2392 2393	mrobid - pul. 822 of A	gran 1
	2393	TTCAGTACCTCCCGTTCACC	inter 10%
	2374	They was (non-cons)	
	2395	(2) INFORMATION FOR SEQ ID NO:19:	,
	2396	(),	his typed ever pream in all subsequent suclui reid sequence
	2397	(i) SEQUENCE CHARACTERISTICS:	
>	2398	(A) LENGTH: 20 base pairs	in ear in all
	2399	(B) TYPE: nucleic acid	1
	2400	(C) STRANDEDNESS: double	subsequent swelle
	2401	(D) TOPOLOGY: linear	
	2402		vera seguiror
	2403	(ii) MOLECULE TYPE: primer	V
	2404		
	2405	(ix) FEATURE:	
	2406	<pre>(A) NAME/KEY: misc_feature</pre>	
	2407	(D) OTHER INFORMATION:/label= Table 3	
	2408	(-i) gravena com	
	2409	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	/
	2410	GAMCGUMGA GGGAGGAAAAG	\mathcal{L}
	2411 2412	GATGCTTGAGCCAGGAAAAC	_
	2 4 1 2		
	2413	(2) INFORMATION FOR SEQ ID NO:20:	
	2414	/-/ TON DAY ID NO! 20!	
	2415	(i) SEQUENCE CHARACTERISTICS:	
>	2416	(A) LENGTH: 22 base pairs	
	2417	(B) TYPE: nucleic acid	
	2418	(C) STRANDEDNESS: double	
	2419	(D) TOPOLOGY: linear	
	2420	• • • • • • • • • • • • • • • • • • • •	
	2421	(ii) MOLECULE TYPE: primer	
		• ======	

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

```
INPUT SET: S26725.raw
 2422
 2423
            (ix) FEATURE:
 2424
                  (A) NAME/KEY: misc feature
 2425
                  (D) OTHER INFORMATION:/label= Table 3
 2426
 2427
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
 2428
 2429
      (CTTTCCTTGAAGGTAGCTGTAT
 2430
 2431
       (2) INFORMATION FOR SEQ ID NO:21:
 2432
             (i) SEQUENCE CHARACTERISTICS:
 2433
                  (A) LENGTH: 20 base pairs
2434
 2435
                  (B) TYPE: nucleic acid
2436
                  (C) STRANDEDNESS: double
2437
                  (D) TOPOLOGY: linear
2438
2439
           (ii) MOLECULE TYPE: primer
2440
2441
           (ix) FEATURE:
2442
                  (A) NAME/KEY: misc_feature
2443
                  (D) OTHER INFORMATION:/label= Table 3
2444
2445
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
2446
2447
      ( GAGGTGCTGAGTGAGAGGAC
2448
2449
       (2) INFORMATION FOR SEQ ID NO:22:
2450
2451
            (i) SEQUENCE CHARACTERISTICS:
2452
                  (A) LENGTH: 22 base pairs
2453
                  (B) TYPE: nucleic acid
2454
                  (C) STRANDEDNESS: double
2455
                 (D) TOPOLOGY: linear
2456
2457
           (ii) MOLECULE TYPE: primer
2458
2459
           (ix) FEATURE:
2460
                 (A) NAME/KEY: misc feature
2461
                 (D) OTHER INFORMATION:/label= Table 3
2462
2463
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:
2464
2465
      ACTCCGTCTCAAAAAAAATACCT
2466
2467
       (2) INFORMATION FOR SEQ ID NO:23:
2468
2469
            (i) SEQUENCE CHARACTERISTICS:
2470
                 (A) LENGTH: 20 base pairs
2471
                 (B) TYPE: nucleic acid
```

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

```
INPUT SET: S26725.raw
 2472
                  (C) STRANDEDNESS: double
 2473
                  (D) TOPOLOGY: linear
 2474
            (ii) MOLECULE TYPE: primer
 2475
 2476
 2477
            (ix) FEATURE:
 2478
                  (A) NAME/KEY: misc feature
 2479
                  (D) OTHER INFORMATION:/label= Table 3
 2480
 2481
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:
2482
      (ATT@TCCCTTTACCTCCTGG
2483
2484
       (2) INFORMATION FOR SEQ ID NO:24:
2485
2486
2487
            (i) SEQUENCE CHARACTERISTICS:
2488
                  (A) LENGTH: 20 base pairs
2489
                  (B) TYPE: nucleic acid
2490
                  (C) STRANDEDNESS: double
2491
                  (D) TOPOLOGY: linear
2492
2493
           (ii) MOLECULE TYPE: primer
2494
2495
           (ix) FEATURE:
2496
                 (A) NAME/KEY: misc feature
2497
                 (D) OTHER INFORMATION:/label= Table 3
2498
2499
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:
2500
       TCCAAGTAGGAGAGTGGGCA
2501 (
2502
2503
       (2) INFORMATION FOR SEQ ID NO:25:
2504
2505
            (i) SEQUENCE CHARACTERISTICS:
2506
                 (A) LENGTH: 20 base pairs
2507
                 (B) TYPE: nucleic acid
2508
                 (C) STRANDEDNESS: double
2509
                 (D) TOPOLOGY: linear
2510
2511
           (ii) MOLECULE TYPE: primer
2512
2513
           (ix) FEATURE:
2514
                 (A) NAME/KEY: misc_feature
2515
                 (D) OTHER INFORMATION:/label= Table 3
2516
2517
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:
2518
2519
      GGGTAGATGGGTGGGAAGTT
2520
2521
      (2) INFORMATION FOR SEQ ID NO:26:
```

2571 2572

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:37:14

INPUT SET: S26725.raw 2522 2523 (i) SEQUENCE CHARACTERISTICS: 2524 (A) LENGTH: 20 base pairs 2525 (B) TYPE: nucleic acid 2526 (C) STRANDEDNESS: double 2527 (D) TOPOLOGY: linear 2528 2529 (ii) MOLECULE TYPE: primer 2530 (ix) FEATURE: 2531 2532 (A) NAME/KEY: misc_feature 2533 (D) OTHER INFORMATION:/label= Table 3 2534 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26: 2535 2536 GAGGAATGTGGAGGAAGGAC 2537 2538 2539 (2) INFORMATION FOR SEQ ID NO:27: 2540 2541 (i) SEQUENCE CHARACTERISTICS: 2542 (A) LENGTH: 20 base pairs 2543 (B) TYPE: nucleic acid 2544 (C) STRANDEDNESS: double 2545 (D) TOPOLOGY: linear 2546 2547 (ii) MOLECULE TYPE: primer 2548 2549 (ix) FEATURE: 2550 (A) NAME/KEY: misc_feature 2551 (D) OTHER INFORMATION:/label= Table 3 2552 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27: 2553 2554 TTCCTGTGAGTGAGGTCTCG 2555 2556 2557 (2) INFORMATION FOR SEQ ID NO:28: 2558 2559 (i) SEQUENCE CHARACTERISTICS: 2560 (A) LENGTH: 20 base pairs 2561 (B) TYPE: nucleic acid 2562 (C) STRANDEDNESS: double 2563 (D) TOPOLOGY: linear 2564 2565 (ii) MOLECULE TYPE: primer 2566 2567 (ix) FEATURE: 2568 (A) NAME/KEY: misc feature (D) OTHER INFORMATION:/label= Table 3 2569 2570

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

```
INPUT SET: S26725.raw
        GGAACTCTGTGACCCCAAAT
 2573
 2574
        (2) INFORMATION FOR SEQ ID NO:29:
 2575
 2576
 2577
             (i) SEQUENCE CHARACTERISTICS:
 2578
                  (A) LENGTH: 20 base pairs
 2579
                  (B) TYPE: nucleic acid
 2580
                  (C) STRANDEDNESS: double
 2581
                  (D) TOPOLOGY: linear
 2582
 2583
            (ii) MOLECULE TYPE: primer
 2584
 2585
            (ix) FEATURE:
 2586
                  (A) NAME/KEY: misc_feature
2587
                  (D) OTHER INFORMATION:/label= Table 3
2588
2589
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:
2590
2591
       TCCTCAAACAAACATTCGC
2592
2593
       (2) INFORMATION FOR SEQ ID NO:30:
2594
2595
            (i) SEQUENCE CHARACTERISTICS:
2596
                  (A) LENGTH: 20 base pairs
2597
                  (B) TYPE: nucleic acid
2598
                  (C) STRANDEDNESS: double
2599
                  (D) TOPOLOGY: linear
2600
2601
           (ii) MOLECULE TYPE: primer
2602
2603
           (ix) FEATURE:
2604
                 (A) NAME/KEY: misc feature
2605
                 (D) OTHER INFORMATION:/label= Table 3
2606
2607
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:
2608
2609
      GTTCCCTACATTCTCCATCG
2610
2611
       (2) INFORMATION FOR SEQ ID NO:31:
2612
2613
            (i) SEQUENCE CHARACTERISTICS:
2614
                 (A) LENGTH: 21 base pairs
2615
                 (B) TYPE: nucleic acid
2616
                 (C) STRANDEDNESS: double
2617
                 (D) TOPOLOGY: linear
2618
2619
           (ii) MOLECULE TYPE: primer
2620
2621
           (ix) FEATURE:
2622
                 (A) NAME/KEY: misc feature
```

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

```
INPUT SET: S26725, raw
 2623
                  (D) OTHER INFORMATION:/label= Table 3
 2624
 2625
            (xi) SEQUENCE DESCRIPTION: SEO ID NO:31:
 2626
       GTTATTTCAACCCAGACCCTT
 2627
 2628
 2629
        (2) INFORMATION FOR SEQ ID NO:32:
 2630
 2631
             (i) SEQUENCE CHARACTERISTICS:
2632
                  (A) LENGTH: 21 base pairs
2633
                  (B) TYPE: nucleic acid
                  (C) STRANDEDNESS: double
2634
2635
                  (D) TOPOLOGY: linear
2636
2637
           (ii) MOLECULE TYPE: primer
2638
2639
           (ix) FEATURE:
2640
                  (A) NAME/KEY: misc feature
2641
                  (D) OTHER INFORMATION:/label= Table 3
2642
2643
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:
2644
2645(
       AATGGGTTCTCTGGTTACTGC
2646
2647
       (2) INFORMATION FOR SEQ ID NO:33:
2648
2649
            (i) SEQUENCE CHARACTERISTICS:
2650
                  (A) LENGTH: 21 base pairs
2651
                  (B) TYPE: nucleic acid
2652
                 (C) STRANDEDNESS: double
2653
                 (D) TOPOLOGY: linear
2654
2655
           (ii) MOLECULE TYPE: primer
2656
2657
           (ix) FEATURE:
2658
                 (A) NAME/KEY: misc feature
2659
                 (D) OTHER INFORMATION:/label= Table 3
2660
2661
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:
2662
       AGCACGAÁAAGCAAAGATAAA
2663/
2664
2665
       (2) INFORMATION FOR SEQ ID NO:34:
2666
2667
            (i) SEQUENCE CHARACTERISTICS:
2668
                 (A) LENGTH: 20 base pairs
2669
                 (B) TYPE: nucleic acid
2670
                 (C) STRANDEDNESS: double
2671
                 (D) TOPOLOGY: linear
2672
```

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:37:19

INPUT SET: S26725.raw 2673 (ii) MOLECULE TYPE: primer 2674 2675 (ix) FEATURE: 2676 (A) NAME/KEY: misc feature 2677 (D) OTHER INFORMATION:/label= Table 3 2678 2679 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34: 2680 2681 GTAAGAGATTTGCCCCCCAG 2682 2683 (2) INFORMATION FOR SEQ ID NO:35: 2684 2685 (i) SEQUENCE CHARACTERISTICS: 2686 (A) LENGTH: 20 base pairs 2687 (B) TYPE: nucleic acid 2688 (C) STRANDEDNESS: double 2689 (D) TOPOLOGY: linear 2690 2691 (ii) MOLECULE TYPE: primer 2692 2693 (ix) FEATURE: 2694 (A) NAME/KEY: misc feature 2695 (D) OTHER INFORMATION:/label= Table 3 2696 2697 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35: 2698 2699 TCTGCGGATCATTGGTTTTG 2700 2701 (2) INFORMATION FOR SEQ ID NO:36: 2702 2703 (i) SEQUENCE CHARACTERISTICS: 2704 (A) LENGTH: 20 base pairs 2705 (B) TYPE: nucleic acid 2706 (C) STRANDEDNESS: double 2707 (D) TOPOLOGY: linear 2708 (ii) MOLECULE TYPE: primer 2709 2710 2711 (ix) FEATURE: 2712 (A) NAME/KEY: misc_feature 2713 (D) OTHER INFORMATION:/label= Table 3 2714 2715 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36: 2716 CCTTCCCTTCTTCCTGCTTC 2717 2718 2719 (2) INFORMATION FOR SEQ ID NO:37: 2720 2721 (i) SEQUENCE CHARACTERISTICS: 2722 (A) LENGTH: 20 base pairs

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

```
INPUT SET: S26725.raw
 2723
                  (B) TYPE: nucleic acid
 2724
                  (C) STRANDEDNESS: double
 2725
                  (D) TOPOLOGY: linear
 2726
 2727
            (ii) MOLECULE TYPE: primer
 2728
 2729
            (ix) FEATURE:
 2730
                  (A) NAME/KEY: misc_feature
 2731
                  (D) OTHER INFORMATION:/label= Table 3
 2732
 2733
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:
 2734
 2735 (
       CTCTCTTCCCCACCCTTACC
 2736
 2737
       (2) INFORMATION FOR SEQ ID NO:38:
 2738
 2739
             (i) SEQUENCE CHARACTERISTICS:
 2740
                  (A) LENGTH: 20 base pairs
 2741
                  (B) TYPE: nucleic acid
 2742
                  (C) STRANDEDNESS: double
2743
                  (D) TOPOLOGY: linear
2744
2745
           (ii) MOLECULE TYPE: primer
2746
2747
           (ix) FEATURE:
2748
                  (A) NAME/KEY: misc_feature
2749
                  (D) OTHER INFORMATION:/label= Table 3
2750
2751
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:
2752
      CCTCCTCACCTGCTCCCATA
2753
2754
2755
       (2) INFORMATION FOR SEQ ID NO:39:
2756
2757
            (i) SEQUENCE CHARACTERISTICS:
2758
                 (A) LENGTH: 20 base pairs
2759
                 (B) TYPE: nucleic acid
2760
                 (C) STRANDEDNESS: double
2761
                 (D) TOPOLOGY: linear
2762
2763
           (ii) MOLECULE TYPE: primer
2764
2765
           (ix) FEATURE:
2766
                 (A) NAME/KEY: misc_feature
2767
                 (D) OTHER INFORMATION:/label= Table 3
2768
2769
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:
2770
      TTTTTCGGCTTAGACCCTCC
2771
2772
```

2824

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:37:22

INPUT SET: S26725.raw 2774 2775 (i) SEQUENCE CHARACTERISTICS: 2776 (A) LENGTH: 22 base pairs 2777 (B) TYPE: nucleic acid 2778 (C) STRANDEDNESS: double 2779 (D) TOPOLOGY: linear 2780 2781 (ii) MOLECULE TYPE: primer 2782 2783 (ix) FEATURE: 2784 (A) NAME/KEY: misc_feature 2785 (D) OTHER INFORMATION:/label= Table 3 2786 2787 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40: 2788 2789 TGTGGGGAATAGAATAAATGG 2790 2791 (2) INFORMATION FOR SEQ ID NO:41: 2792 2793 (i) SEQUENCE CHARACTERISTICS: 2794 (A) LENGTH: 19 base pairs 2795 (B) TYPE: nucleic acid 2796 (C) STRANDEDNESS: double 2797 (D) TOPOLOGY: linear 2798 2799 (ii) MOLECULE TYPE: primer 2800 2801 (ix) FEATURE: 2802 (A) NAME/KEY: misc feature 2803 (D) OTHER INFORMATION:/label= Table 3 2804 2805 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41: 2806 2807 CCAGGAGCTCTGTGGGTCA 2808 2809 (2) INFORMATION FOR SEQ ID NO:42: 2810 2811 (i) SEQUENCE CHARACTERISTICS: 2812 (A) LENGTH: 21 base pairs 2813 (B) TYPE: nucleic acid 2814 (C) STRANDEDNESS: double 2815 (D) TOPOLOGY: linear 2816 2817 (ii) MOLECULE TYPE: primer 2818 2819 (ix) FEATURE: 2820 (A) NAME/KEY: misc feature 2821 (D) OTHER INFORMATION:/label= Table 3 2822 2823 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:37:23

INPUT SET: S26725. yaw GGCTCCTCATCCTCATTCACA 2825 2826 2827 (2) INFORMATION FOR SEQ ID NO:43: 2828 2829 (i) SEQUENCE CHARACTERISTICS: 2830 (A) LENGTH: 20 base pairs 2831 (B) TYPE: nucleic acid 2832 (C) STRANDEDNESS: double 2833 (D) TOPOLOGY: linear 2834 2835 (ii) MOLECULE TYPE: primer 2836 2837 (ix) FEATURE: 2838 (A) NAME/KEY: misc feature 2839 (D) OTHER INFORMATION:/label= Table 3 2840 2841 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43: 2842 2843 **GTGGAGGAGGGTGAGTGTGC** 2844 2845 (2) INFORMATION FOR SEQ ID NO:44: 2846 2847 (i) SEQUENCE CHARACTERISTICS: 2848 (A) LENGTH: 20 base pairs 2849 (B) TYPE: nucleic acid 2850 (C) STRANDEDNESS: double 2851 (D) TOPOLOGY: linear 2852 2853 (ii) MOLECULE TYPE: primer 2854 2855 (ix) FEATURE: 2856 (A) NAME/KEY: misc feature 2857 (D) OTHER INFORMATION:/label= Table 3 2858 2859 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44: 2860 TGTGGCAGGACAGGACGTTC 2861(2862 2863 (2) INFORMATION FOR SEQ ID NO:45: 2864 2865 (i) SEQUENCE CHARACTERISTICS: 2866 (A) LENGTH: 20 base pairs 2867 (B) TYPE: nucleic acid 2868 (C) STRANDEDNESS: double 2869 (D) TOPOLOGY: linear 2870 2871 (ii) MOLECULE TYPE: primer 2872 2873 (ix) FEATURE: 2874 (A) NAME/KEY: misc_feature

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

```
INPUT SET: S26725.raw
 2875
                  (D) OTHER INFORMATION:/label= Table 3
 2876
 2877
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:
 2878
 2879
       TTCAACCTCTGGAGTGGGCC
 2880
 2881
        (2) INFORMATION FOR SEQ ID NO:46:
 2882
 2883
             (i) SEQUENCE CHARACTERISTICS:
 2884
                  (A) LENGTH: 20 base pairs
 2885
                  (B) TYPE: nucleic acid
 2886
                  (C) STRANDEDNESS: double
 2887
                  (D) TOPOLOGY: linear
 2888
 2889
            (ii) MOLECULE TYPE: primer
 2890
 2891
            (ix) FEATURE:
 2892
                  (A) NAME/KEY: misc feature
 2893
                  (D) OTHER INFORMATION:/label= Table 3
 2894
2895
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46 :
2896
2897(
      CACCAGAGCAAACCGTCCAC
2898
2899
       (2) INFORMATION FOR SEQ ID NO:47:
2900
2901
            (i) SEQUENCE CHARACTERISTICS:
2902
                  (A) LENGTH: 20 base pairs
2903
                 (B) TYPE: nucleic acid
2904
                 (C) STRANDEDNESS: double
2905
                 (D) TOPOLOGY: linear
2906
2907
           (ii) MOLECULE TYPE: primer
2908
2909
           (ix) FEATURE:
2910
                 (A) NAME/KEY: misc feature
2911
                 (D) OTHER INFORMATION:/label= Table 3
2912
2913
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:
2914
      ACAGCCCAGACTCCCATTCC
2915
2916
2917
       (2) INFORMATION FOR SEQ ID NO:48:
2918
2919
            (i) SEQUENCE CHARACTERISTICS:
2920
                 (A) LENGTH: 20 base pairs
2921
                 (B) TYPE: nucleic acid
2922
                 (C) STRANDEDNESS: double
2923
                 (D) TOPOLOGY: linear
2924
```

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

```
INPUT SET: S26725.raw
 2925
            (ii) MOLECULE TYPE: primer
 2926
 2927
            (ix) FEATURE:
 2928
                  (A) NAME/KEY: misc_feature
 2929
                  (D) OTHER INFORMATION:/label= Table 3
 2930
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:
 2931
 2932
       TTCTCTTCTCCCTTCACCCT
 2933
 2934
       (2) INFORMATION FOR SEQ ID NO:49:
 2935
 2936
 2937
             (i) SEQUENCE CHARACTERISTICS:
 2938
                  (A) LENGTH: 22 base pairs
 2939
                  (B) TYPE: nucleic acid
2940
                  (C) STRANDEDNESS: double
2941
                  (D) TOPOLOGY: linear
2942
           (ii) MOLECULE TYPE: primer
2943
2944
2945
           (ix) FEATURE:
2946
                  (A) NAME/KEY: misc_feature
2947
                  (D) OTHER INFORMATION:/label= Table 3
2948
2949
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:
2950
2951
       ACACACTTCATGCTCTCTACCC
2952
2953
       (2) INFORMATION FOR SEQ ID NO:50:
2954
            (i) SEQUENCE CHARACTERISTICS:
2955
2956
                 (A) LENGTH: 20 base pairs
2957
                 (B) TYPE: nucleic acid
2958
                 (C) STRANDEDNESS: double
2959
                 (D) TOPOLOGY: linear
2960
2961
           (ii) MOLECULE TYPE: primer
2962
2963
           (ix) FEATURE:
2964
                 (A) NAME/KEY: misc feature
2965
                 (D) OTHER INFORMATION:/label= Table 3
2966
2967
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:
2968
      CCGCCTATTCCTTTTCCTCTT
2969(
2970
2971
       (2) INFORMATION FOR SEQ ID NO:51:
2972
2973
            (i) SEQUENCE CHARACTERISTICS:
2974
                 (A) LENGTH: 20 base pairs
```

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

```
INPUT SET: S26725.raw
 2975
                  (B) TYPE: nucleic acid
 2976
                  (C) STRANDEDNESS: double
 2977
                  (D) TOPOLOGY: linear
 2978
 2979
            (ii) MOLECULE TYPE: primer
 2980
 2981
            (ix) FEATURE:
 2982
                  (A) NAME/KEY: misc feature
 2983
                  (D) OTHER INFORMATION:/label= Table 3
 2984
2985
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:
2986
2987
       GACAAACTCCTGGGAAGCCT
2988
2989
       (2) INFORMATION FOR SEQ ID NO:52:
2990
2991
             (i) SEQUENCE CHARACTERISTICS:
2992
                  (A) LENGTH: 20 base pairs
2993
                  (B) TYPE: nucleic acid
2994
                  (C) STRANDEDNESS: double
2995
                  (D) TOPOLOGY: linear
2996
2997
           (ii) MOLECULE TYPE: primer
2998
2999
           (ix) FEATURE:
3000
                 (A) NAME/KEY: misc feature
3001
                  (D) OTHER INFORMATION:/label= Table 3
3002
3003
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:
3004
       ACCTCTGACCCCTGTGAACC
3005
3006
3007
       (2) INFORMATION FOR SEQ ID NO:53:
3008
3009
            (i) SEQUENCE CHARACTERISTICS:
3010
                 (A) LENGTH: 20 base pairs
3011
                 (B) TYPE: nucleic acid
3012
                 (C) STRANDEDNESS: double
3013
                 (D) TOPOLOGY: linear
3014
3015
           (ii) MOLECULE TYPE: primer
3016
3017
           (ix) FEATURE:
3018
                 (A) NAME/KEY: misc feature
3019
                 (D) OTHER INFORMATION:/label= Table 3
3020
3021
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:
3022
      TGTGGATTTGTGTGCTACGC
3023
3024
3025
      (2) INFORMATION FOR SEQ ID NO:54:
```

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

```
INPUT SET: S26725.raw
 3026
 3027
             (i) SEQUENCE CHARACTERISTICS:
 3028
                  (A) LENGTH: 21 base pairs
 3029
                  (B) TYPE: nucleic acid
 3030
                  (C) STRANDEDNESS: double
 3031
                  (D) TOPOLOGY: linear
 3032
 3033
            (ii) MOLECULE TYPE: primer
 3034
 3035
            (ix) FEATURE:
 3036
                  (A) NAME/KEY: misc feature
 3037
                  (D) OTHER INFORMATION:/label= Table 3
 3038
 3039
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:
 3040
3041 (CATAAATAGCACCGACAGGGA
3042
3043
       (2) INFORMATION FOR SEQ ID NO:55:
3044
3045
             (i) SEQUENCE CHARACTERISTICS:
3046
                  (A) LENGTH: 20 base pairs
3047
                  (B) TYPE: nucleic acid
3048
                  (C) STRANDEDNESS: double
3049
                  (D) TOPOLOGY: linear
3050
3051
           (ii) MOLECULE TYPE: primer
3052
3053
           (ix) FEATURE:
3054
                 (A) NAME/KEY: misc_feature
3055
                 (D) OTHER INFORMATION:/label= Table 3
3056
3057
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:
3058
       GGGATGGAGAAGAGTGAGGA
3059
3060
3061
       (2) INFORMATION FOR SEQ ID NO:56:
3062
3063
            (i) SEQUENCE CHARACTERISTICS:
3064
                 (A) LENGTH: 20 base pairs
3065
                 (B) TYPE: nucleic acid
3066
                 (C) STRANDEDNESS: double
3067
                 (D) TOPOLOGY: linear
3068
3069
           (ii) MOLECULE TYPE: primer
3070
3071
           (ix) FEATURE:
3072
                 (A) NAME/KEY: misc_feature
3073
                 (D) OTHER INFORMATION:/label= Table 3
3074
3075
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:
3076
```

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

```
INPUT SET: S26725.raw
        TCCTCACTCTTCTCCATCCC
 3077
 3078
 3079
        (2) INFORMATION FOR SEQ ID NO:57:
 3080
 3081
             (i) SEQUENCE CHARACTERISTICS:
 3082
                  (A) LENGTH: 19 base pairs
 3083
                  (B) TYPE: nucleic acid
 3084
                  (C) STRANDEDNESS: double
 3085
                  (D) TOPOLOGY: linear
 3086
 3087
            (ii) MOLECULE TYPE: primer
 3088
 3089
            (ix) FEATURE:
 3090
                  (A) NAME/KEY: misc_feature
 3091
                  (D) OTHER INFORMATION:/label= Table 3
 3092
 3093
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:
 3094
 3095
       ACCCTGTATGTTGCCTTGG
 3096
 3097
       (2) INFORMATION FOR SEQ ID NO:58:
 3098
3099
             (i) SEQUENCE CHARACTERISTICS:
3100
                  (A) LENGTH: 20 base pairs
3101
                  (B) TYPE: nucleic acid
3102
                  (C) STRANDEDNESS: double
3103
                  (D) TOPOLOGY: linear
3104
3105
           (ii) MOLECULE TYPE: primer
3106
3107
           (ix) FEATURE:
3108
                 (A) NAME/KEY: misc feature
3109
                 (D) OTHER INFORMATION:/label= Table 3
3110
3111
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:
3112
       GGGATTTTGCTGTGTGCTG
3113(
3114
3115
       (2) INFORMATION FOR SEQ ID NO:59:
3116
3117
            (i) SEQUENCE CHARACTERISTICS:
3118
                 (A) LENGTH: 20 base pairs
3119
                (B) TYPE: nucleic acid
3120
                 (C) STRANDEDNESS: double
3121
                 (D) TOPOLOGY: linear
3122
3123
           (ii) MOLECULE TYPE: primer
3124
3125
           (ix) FEATURE:
3126
                 (A) NAME/KEY: misc feature
```

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:37:33

INPUT SET: S26725.raw 3127 (D) OTHER INFORMATION:/label= Table 3 3128 3129 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59 : 3130/ ATTCCTGCTCCCACCGTCTC 3131 3132 (2) INFORMATION FOR SEQ ID NO:60: 3133 3134 3135 (i) SEQUENCE CHARACTERISTICS: 3136 (A) LENGTH: 20 base pairs 3137 (B) TYPE: nucleic acid 3138 (C) STRANDEDNESS: double 3139 (D) TOPOLOGY: linear 3140 (ii) MOLECULE TYPE: primer 3141 3142 3143 (ix) FEATURE: 3144 (A) NAME/KEY: misc_feature 3145 (D) OTHER INFORMATION:/label= Table 3 3146 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60: 3147 3148 CACAGAGTGTCCGAGAGGCA 3149 3150 3151 (2) INFORMATION FOR SEQ ID NO:61: 3152 3153 (i) SEQUENCE CHARACTERISTICS: 3154 (A) LENGTH: 22 base pairs 3155 (B) TYPE: nucleic acid 3156 (C) STRANDEDNESS: double 3157 (D) TOPOLOGY: linear 3158 3159 (ii) MOLECULE TYPE: primer 3160 3161 (ix) FEATURE: 3162 (A) NAME/KEY: misc_feature 3163 (D) OTHER INFORMATION:/label= Table 3 3164 3165 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61: 3166 (GGAGATTATCAGGTGAGATGCC 3167 3168 (2) INFORMATION FOR SEQ ID NO:62: 3169 3170 (i) SEQUENCE CHARACTERISTICS: 3171 3172 (A) LENGTH: 21 base pairs 3173 (B) TYPE: nucleic acid 3174 (C) STRANDEDNESS: double 3175 (D) TOPOLOGY: linear 3176

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:37:34

INPUT SET: S26725.raw 3177 (ii) MOLECULE TYPE: primer 3178 3179 (ix) FEATURE: 3180 (A) NAME/KEY: misc feature 3181 (D) OTHER INFORMATION:/label= Table 3 3182 3183 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62: 3184 CAGAGTGTCCGAGAGGCAGGG 3185/ 3186 3187 (2) INFORMATION FOR SEQ ID NO:63: 3188 3189 (i) SEQUENCE CHARACTERISTICS: 3190 (A) LENGTH: 20 base pairs 3191 (B) TYPE: nucleic acid 3192 (C) STRANDEDNESS: double 3193 (D) TOPOLOGY: linear 3194 3195 (ii) MOLECULE TYPE: primer 3196 3197 (ix) FEATURE: 3198 (A) NAME/KEY: misc feature 3199 (D) OTHER INFORMATION:/label= Table 3 3200 3201 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63: 3202 3203 CGTTGACCCCTCCACCTTGA 3204 3205 (2) INFORMATION FOR SEQ ID NO:64: 3206 3207 (i) SEQUENCE CHARACTERISTICS: 3208 (A) LENGTH: 20 base pairs 3209 (B) TYPE: nucleic acid 3210 (C) STRANDEDNESS: double 3211 (D) TOPOLOGY: linear 3212 3213 (ii) MOLECULE TYPE: primer 3214 3215 (ix) FEATURE: 3216 (A) NAME/KEY: misc feature 3217 (D) OTHER INFORMATION:/label= Table 3 3218 3219 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64: 3220 3221 (GGGAAAACATGCACCTTCTT 3222 3223 (2) INFORMATION FOR SEQ ID NO:65: 3224 3225 (i) SEQUENCE CHARACTERISTICS: 3226 (A) LENGTH: 20 base pairs

RAW SEQUENCE LISTING PATENT APPLICATION US/08/836,734

```
INPUT SET: S26725.raw
3227
                  (B) TYPE: nucleic acid
3228
                  (C) STRANDEDNESS: double
3229
                  (D) TOPOLOGY: linear
3230
3231
           (ii) MOLECULE TYPE: primer
3232
           (ix) FEATURE:
3233
3234
                 (A) NAME/KEY: misc_feature
3235
                 (D) OTHER INFORMATION:/label= Table 3
3236
3237
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:
3238
3239
       TAGGGGGTAAAATGGAGGAG
3240
       (2) INFORMATION FOR SEQ ID NO:66:
3241
3242
3243
            (i) SEQUENCE CHARACTERISTICS:
3244
                 (A) LENGTH: 20 base pairs
3245
                 (B) TYPE: nucleic acid
3246
                 (C) STRANDEDNESS: double
3247
                 (D) TOPOLOGY: linear
3248
3249
           (ii) MOLECULE TYPE: primer
3250
3251
           (ix) FEATURE:
3252
                 (A) NAME/KEY: misc feature
3253
                 (D) OTHER INFORMATION:/label= Table 3
3254
3255
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66 :
3256
3257(
       ACTAACTCAGTGGAATAGGG
3258
3259
       (2) INFORMATION FOR SEQ ID NO:67:
3260
3261
            (i) SEQUENCE CHARACTERISTICS:
3262
                 (A) LENGTH: 20 base pairs
3263
                 (B) TYPE: nucleic acid
3264
                 (C) STRANDEDNESS: double
3265
                 (D) TOPOLOGY: linear
3266
3267
           (ii) MOLECULE TYPE: primer
3268
3269
           (ix) FEATURE:
3270
                 (A) NAME/KEY: misc feature
3271
                 (D) OTHER INFORMATION:/label= Table 3
3272
3273
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:
3274
3275
      GGAGCTAGGATAGCTCAAT
3276
3277
```

SEQUENCE VERIFICATION REPORT PATENT APPLICATION US/08/836,734

INPUT SET: S26725.raw

Line	Error	Original Text
48	Entered (3018) and Calc. Seq. Length (0) differ	(A) I ENCTH: 2019 have:
167	Entered (11451) and Calc. Seq. Length (0) differ	(A) LENGTH: 3018 base pairs
567	Entered (1834) and Calc. Seq. Length (0) differ	(A) LENGTH: 11451 base pairs
645		(A) LENGTH: 1834 base pairs
1152	Entered (14664) and Calc. Seq. Length (0) differ	(A) LENGTH: 14664 base pairs
1165	Entered (5149) and Calc. Seq. Length (0) differ	(A) LENGTH: 5149 base pairs
1170	Unknown or Misplaced Identifier Unknown or Misplaced Identifier	(B) POSITION: 13033764
1176	Unknown or Misplaced Identifier	(B) POSITION: 1631
1182		(B) POSITION: 1848
1188	Unknown or Misplaced Identifier Unknown or Misplaced Identifier	(B) POSITION: 1853
1194		(B) POSITION: 2004
1200	Unknown or Misplaced Identifier	(B) POSITION: 2248
1206	Unknown or Misplaced Identifier	(B) POSITION: 2364
1212	Unknown or Misplaced Identifier	(B) POSITION: 2382
1218	Unknown or Misplaced Identifier	(B) POSITION: 2771
1224	Unknown or Misplaced Identifier	(B) POSITION: 3018
1230	Unknown or Misplaced Identifier	(B) POSITION: 33723373
1236	Unknown or Misplaced Identifier	(B) POSITION: 3533
1242	Unknown or Misplaced Identifier	(B) POSITION : 3609
1248	Unknown or Misplaced Identifier	(B) POSITION: 36163619
2235	Unknown or Misplaced Identifier Fintered (20) and Cala Sea Length (0) different	(B) POSITION: 36653666
2253	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2271	Entered (21) and Calc. Seq. Length (0) differ	(A) LENGTH: 21 base pairs
2289	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2307	Entered (21) and Calc. Seq. Length (0) differ	(A) LENGTH: 21 base pairs
2325	Entered (20) and Cala. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2343	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2362	Entered (22) and Calc. Seq. Length (0) differ	(A) LENGTH: 22 base pairs
2380	Entered (19) and Calc. Seq. Length (0) differ	(A) LENGTH: 19 base pairs
2398	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2416	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2434	Entered (22) and Calc. Seq. Length (0) differ	(A) LENGTH: 22 base pairs
2452	Entered (22) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2470	Entered (22) and Calc. Seq. Length (0) differ	(A) LENGTH: 22 base pairs
2488	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2506	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2524	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2542	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2560	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2578	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2596	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2614	Entered (20) and Calc. Seq. Length (0) differ Entered (21) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2632		(A) LENGTH: 21 base pairs
2650	Entered (21) and Calc. Seq. Length (0) differ	(A) LENGTH: 21 base pairs
2668	Entered (21) and Calc. Seq. Length (0) differ	(A) LENGTH: 21 base pairs
2686	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2704	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2722	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs

SEQUENCE VERIFICATION REPORT PATENT APPLICATION US/08/836,734

DATE: 06/16/98 TIME: 13:37:42

INPUT SET: S26725.raw

Line	Error	Original Text
2740	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2758	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2776	Entered (22) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2794	Entered (19) and Calc. Seq. Length (0) differ	(A) LENGTH: 22 base pairs (A) LENGTH: 19 base pairs
2812	Entered (21) and Calc. Seq. Length (0) differ	(A) LENGTH: 19 base pairs
2830	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH, 20 base pairs
2848	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2866	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs(A) LENGTH: 20 base pairs
2884	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2902	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2920	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2938	Entered (22) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2956	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 22 base pairs
2974	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
2992	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
3010	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
3028	Entered (21) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
3046	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 21 base pairs
3064	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
3082	Entered (19) and Calc. Seq. Length (0) differ	(A) LENGTH: 19 base pairs
3100	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
3118	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
3136	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
3154	Entered (22) and Calc. Seq. Length (0) differ	(A) LENGTH: 22 base pairs
3172	Entered (21) and Calc. Seq. Length (0) differ	(A) LENGTH: 21 base pairs
3190	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
3208	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
3226	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
3244	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs
3262	Entered (20) and Calc. Seq. Length (0) differ	(A) LENGTH: 20 base pairs

Notice of Availability of Checker Program

Applicant Aid for Biotechnology Computer Readable Form (CRF)
Sequence Listing Submissions

The Patent and Trademark Office (PTO) has developed a computer program, called Checker, that will aid applicants in identifying and correcting errors prior to making submissions for compliance with the Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence Disclosures (Sequence Rules: 37CRF 1.821 through 1.825).

Final rules were published in the Federal Register (55 FR18230) on May 1, 1990, and in the PTO Official Gazette (1114 Off.Gaz.PatOffice 29) on May 15, 1990.

Checker is a DOS-based software program that is intended to assist users in determining whether errors may be present in the sequence listings, and is not intended to guarantee that the submission is error-free.

The most current version of the software is available via computer downloading, details are below. Copies on diskette are also available. Updated software versions will not be automatically mailed out; any updates will be announced in the PTO Official Gazette.

The software can be accessed/requested from the following locations:

- Dial-up access through the Internet. Location is ftp://ftp.uspto.gov
 The software is in current directory: pub/checker/
 Download all the files. Cost: Free-of-charge
- 3) For diskette copies, mail to: U.S.P.T.O., OEIP, CRYSTAL PARK 3, SUITE 441 WASHINGTON DC 20231

COST FOR DISKETTE IS <u>\$ 25.00</u> METHOD OF PAYMENT:

Check payable to Commissioner of Patents and Trademarks VISA/ Mastercard/ Charge- Charges can be faxed to 703-306-2737 PTO Deposit Account

For Further Information, Contact: Arti Shah at 703-308-4212