Regression

Goal: predict the value of a respons variable $Y \in \mathbb{R}$ based on a feature vector / predictor $X \in \mathbb{R}^k$

- For each fixed X=x, there is a probability distribution Y | X=x
- ullet Not realistic to assume that there is a function f(x) such that Y=f(x)|X=x
- We look for an f that minimizes the expected error $\mathbb{E}\left[(Y-f(X))^2
 ight]$
 - By the tower property of conditional expectation:

$$\mathbb{E}\left[(Y-f(X))^2
ight]=\mathbb{E}\left[\mathbb{E}\left[(Y-f(X))^2|X
ight]
ight]$$

- \circ To minimize this, we can now just minimize the inner expectation for every possible X=x:
 - In other words, each f(x) will just be set to the value a that minimizes:

$$h(a) = \mathbb{E}\left[(Y-a)^2|X=x\right]$$

- lacksquare We can set the derivative to 0, which gives that $a=\mathbb{E}\left[Y|X=x
 ight]$
- lacktriangle Therefore, the minimizing function is $f(x)=\mathbb{E}\left[Y|X=x
 ight]$
 - lacktriangle This is known as the **regression function** of Y onto X
- We cannot perfectly compute this regression function
 - \circ It also does not fully capture the distribution Y|X=x since it only computes the mean
 - An alternative to vanilla regression is quantile regression, which gives aconfidence band around the mean

Linear Regression

We make the assumption that $f(x) = \mathbb{E}\left[Y|X=x\right]$ is linear in form

- $f(x) = x^T \beta$ for some ground truth $\beta = \beta^* \in \mathbb{R}^k$
- ullet To find an estimator, we need to assume a parametric form of the distribution of Y|X=x
 - We'll use the Gaussian distribution, so $Y|X=x \sim \mathcal{N}(x^T \beta^*, \sigma^2)$
 - \circ This also has the assumption that the mean function is linear and that the variance is constant across all x
- Writing out the log likelihood and maximizing it gives:
 - $\circ \;\; \hat{eta}^{ ext{MLE}} = rg \min_{eta \in \mathbb{R}^k} \sum_{i=1}^n (Y_i X_i^T eta)^2$
- If the Y_i s are put in a column vector and each X_i is a row in the matrix $X \in \mathbb{R}^{n \times k}$, then we can write the closed form solution as:
 - $\circ \ \hat{\beta} = (X^T X)^{-1} X^T Y$
 - \circ Another interpretation of this formula is to project Y onto the column space of X

Distribution of \hat{eta}

To construct confidence intervals and test hypotheses about the ground truth coefficient vector β^* , we need to know the distribution of $\hat{\beta}$

- ullet We can write $Y=Xeta^*+arepsilon$ where $arepsilon\sim\mathcal{N}(0,\sigma^2)$
 - Substituting this in, we get: $\hat{\beta} = \beta^* + (X^T X)^{-1} X^T \varepsilon$
 - We then have that the distribution of the noise term is:

$$(X^TX)^{-1}X^Tarepsilon \sim \mathcal{N}(0, \sigma^2(X^TX^{-1}))$$

• The final distribution of $\hat{\beta}$ is finally then:

$$\hat{eta} \sim \mathcal{N}(eta^*, \sigma^2(X^TX)^{-1})$$

Confidence Intervals and Hypothesis Testing

• We find the distribution of \hat{eta}_j as:

$$\hat{eta}_j \sim \mathcal{N}(eta_j^*, \sigma^2(X^TX)_{jj}^{-1})$$

- This can give rise to a confidence interval
 - $\circ \ \ X^T X$ has size n, so this takes the rule of scaling this with \sqrt{n}
- ullet However, we don't know the true variance σ
 - $\circ~$ We can estimate it by considering the residuals $arepsilon_i = Y X \hat{eta}$
 - \circ Since Y lives in dimension n and $X\hat{eta}$ has dimension k, this means arepsilon has dimension n-k
 - Then, these residuals have n-k degrees of freedom, and we have:

$$||arepsilon||^2pprox (n-k)\sigma^2$$

• We can therefore approximate σ^2 as:

$$\sigma^2 pprox rac{||arepsilon||^2}{n-k} = rac{1}{n-k} \sum_{i=1}^n arepsilon_i^2$$

• We can use these to construct both confidence intervals and hypothesis tests