演習1

PK/PD解析を用いた用法・用量設定

- 解答編 -

解答例

課題1

- ・PK/PDモデリング
 - NONMEM コントロールファイルを完成させる

```
run001.mod
$DES
IL6 = A(11); IL6 concentration
IL6AUC = A(4); cumulative IL6AUC
RL = EMAX*(CP**HILL)/(EC50**HILL + CP**HILL); Stimulation effect on IL6 release
IH = IMAX * IL6AUC / ((IC50/(KPRIM**(NDOSE-1))) + IL6AUC); Inhibition effect
(negative feedback) on IL6 release
DADT(4) = IL6; cumulative IL6 AUC
DADT(5) = KDEG*IL6BASE + RL*(1-IH) - KTR*A(5); IL6 release
DADT(6) = KTR*A(5) - KTR*A(6); Transit compartment 1
DADT(7) = KTR*A(6) - KTR*A(7); Transit compartment 2
DADT(8) = KTR*A(7) - KTR*A(8); Transit compartment 3
DADT(9) = KTR*A(8) - KTR*A(9); Transit compartment 4
DADT(10) = KTR*A(9) - KTR*A(10); Transit compartment 5
DADT(11) = KTR*A(10) - KDEG*A(11); Plasma IL6
```

解答例

課題1の結果

• PK/PDモデルのパラメータ推定値及びGOFプロット

Fatimata	DOE
Estimate	RSE
261.6	0.178
3.83	0.151
1.60	0.0078
0.743	0.0066
9261	0.0469
0.297	0.0268
4.90	0.0844
0.467	0.0200
0.138	0.0292
0.292	0.950
0.081	0.630
	3.83 1.60 0.743 9261 0.297 4.90 0.467 0.138 0.292

OFV = 1332.847

※ FO法で推定

課題1の結果

・Q3W投与時のDrug X濃度、IL6濃度、各パラメータの推移

課題1のモデル構築手順

詳細は講義資料 「PK/PDモデル」 を参照

- 薬効モデル: Sigmoid Emax model を選択
- PK/PDモデルの構築手順:段階的アプローチ(IPP)を選択
- ベースライン値のモデル: B2 method を選択

NONMEMコントロールファイル (一部抜粋)

\$INPUT ID DOSE ... ICL IV1 IQ IV2 \$DATA pkpd02.csv IGNORE=@ IGNORE(DVID.EQ.1) IGNORE(BSLFL.EQ.1)

\$PK

CL = ICLV1 = IV1

. . .

; Assume baseline deviates from observed value by the same variability of residual error REWT = SQRT(ADDERR**2 + (PROPERR**2)*(IL6BSL**2))
IL6BASE = IL6BSL + REWT*ETA(9)

\$DES

RL = EMAX*(CP**HILL)/(EC50**HILL + CP**HILL)

薬効モデルの検討

Sigmoid Emax model
OFV = 1333

Emax model OFV = 2166

Linear model OFV = 3134

 ϵ -shrinkage : Sigmoid Emax model =-0.1%, Emax mode = -2%, Linear model = -0.5%

- Sigmoid Emax modelのOFVが最も小さい
- Emax model, Linear modelでは高濃度域を過小予測

同時・段階的アプローチ

approach	runtime
IPP	00:03:06
SIM	00:19:45
PPP&D	00:11:21
IPPSE	00:12:12

※ runtimeは環境により変わります

Bias = $|(\theta_{est} - \theta_{true})/\theta_{true}| \times 100$

θ_{est}:推定値 θ_{true}:真値

- ・ 計算時間はIPP < PPP&D ≒ IPPSE < SIM
- (今回は)SIMとPPP&Dの方がPDパラメータの推定値は正確で、 モデルの予測性も高かった
- ※ FO法で推定(FOCE-I法ではIPPSEの推定値はIPPよりも正確だった)

解答例

ベースライン値のモデル

method	runtime
B2	00:03:06
B1	00:03:55

※ runtimeは環境により変わります

- 計算時間はB2 > B1
- B1モデルからのシミュレーション値と観測値の分布は一致しなかった
- ※ FO法で推定

Step-up dose regimen提案の方針

- Target dose: 10 mg (DE part stage 1で経験した最大用量かつ非臨床データから有効性が期待される)
- 1回目のstep-up dose: 3 mg以下? (G2以上のCRSが発現していない)
- IL6の目標値:およそ200 pg/mL(各サイクルのCRS発現とIL6の関係は同じ と仮定)

固定用量(0.15~10 mg) Q3W投与時の血中濃度

点線:非臨床データから推定されたDrug X目標濃度(0.3 μg/mL)

DE part stage 1の結果

• Step-up dose 1回の場合(IL6濃度予測)

Step-up doseが低すぎてtarget doseでIL6が上昇すると予測

• Step-up dose 1回の場合 (Drug X濃度推移)

• Step-up dose 2回の場合(IL6濃度推移)

IL6を目標値(200 pg/mL)以下に抑えることができると予測

• Step-up dose 2回の場合(Drug X濃度推移)

Drug X目標濃度(0.3 µg/mL)到達までに時間がかかる

Step-up dosingをQWに変更? - PK/PDモデルの限界(IL6放出のnegative feedback は経験的なモデル)から、投与間隔の変更提案は難しいか

まとめ:演習1で学んだこと

- PK/PDモデル構築の手法を体験した
- シミュレーションに基づく用法・用量設定を 体験した