20

25

35

(

CLAIMS

- 5 1. A method for frequency correction in a multicarrier system, comprising:
 - receiving a signal $(r_s[n])$ comprising a stream of data signals $(r_{c,l}[k])$,
 - calculating an estimated phase offset $(\phi_{est}[k])$ for each data signal $(r_{c,l}[k])$ as a function of thereof,
 - calculating a predicted phase offset $(\phi_A[k])$ for each data signal as a function of the estimated phase offset $(\phi_{est}[k])$ thereof and the estimated phase offset $(\phi_{est}[k-1])$ of a preceding one of the data signals $(r_{c,l}[k-1])$, and
 - correcting the received signal ($r_s[n]$) by correcting a phase of each data signal ($r_{c,l}[k]$) as a function of the predicted phase offset ($\phi_A[k]$) thereof.
- 15 2. The method according to claim 1, comprising:
 - calculating the predicted phase offset ($\phi_A[k]$) further as a function of the predicted phase offset ($\phi_A[k-1]$) of the preceding one of the data signals ($r_{C,l}[k-1]$), or
 - calculating the predicted phase offset $(\phi_A[k])$ further as a function of the predicted phase offset $(\phi_A[k-1])$ of the preceding one of the data signals $(r_{C,I}[k-1])$ and the predicted phase offset $(\phi_A[k-2])$ of one of the data signals $(r_{C,I}[k-2])$ preceding the preceding one of the data signals $(r_{C,I}[k-1])$.
 - 3. The method according to claim 1 or 2, comprising:
 - calculating a phase correction offset $(\phi_{corr,l}[k])$ for each data signal $(r_{C,l}[k])$ as a function of the predicted phase offset $(\phi_A[k-1])$ of the preceding one of the data signals $(r_{C,l}[k])$, and
 - correcting each data signal ($r_{C,l}[k]$) as a function of the phase correction offset ($\phi_{corr,l}[k]$) thereof.
- The method according to one of the preceding claims, comprising:
 - separating each data signal $(r_{C,1}[k])$ in at least two data signal samples $(r_{C,1}[k],...,r_{C,Nm}[k])$,
 - calculating a predicted sample phase offset $(\phi_{S,1}[k],...,\phi_{S,Nfft}[k])$ for each of said data signal samples $(r_{C,1}[k],...,r_{CNfft}[k])$ as a function of the predicted phase offset $(\phi_A[k])$ of a corresponding one of the data signals $(r_{C,1}[k])$, and

15

25

35

- correcting the phase of each data signal $(r_{C,I}[k])$ further by correcting a phase of each of the data signal samples $(r_{C,1}[k],...,r_{C,Nff}[k])$ as a function of a respective one of the predected sample phase offsets $(\phi_{S,1}[k],...,\phi_{S,Nff}[k])$.
- 5 5. The method according to claim 4, comprising:
 - separating each data signal $(r_{C,l}[k])$ such that a first of the data signal samples $(r_{C,l}[k])$ represents the beginning of the corresponding one of the data signals $(r_{C,l}[k])$.
 - 6. The method of claim 4 or 5, comprising:
- calculating a sample phase correction offset $(\phi_{S,1}[k] \cdot 1,...,\phi_{S,Nfff}[k] \cdot N_{ff})$ for each of the data signal samples $(r_{C,1}[k],...,r_{C,Nfff}[k])$ as a function of the predicted sample phase offset $(\phi_{S,1}[k],...,\phi_{S,Nfff}[k])$ and the predicted phase offset $(\phi_A[k])$ of the corresponding one of the data signal $(r_{C,I}[k])$, and
 - correcting the phase of each data signal $(r_{C,I}[k])$ by correcting the phase of each of the data signal samples $(r_{C,1}[k],...,r_{C,Nfft}[k])$ thereof as a function of a corresponding one of the phase correction offsets $(\phi_{corr,I}[k])$ and a corresponding one of the sample phase correction offsets $(\phi_{S,1}[k] \cdot 1,...,\phi_{S,Nfft}[k] \cdot N_{ft})$.
 - 7. The method of one of the claims 4 to 6, comprising:
- calculating each predicted sample offset $(\phi_{S,1}[k],..., \phi_{S,Nfft}[k])$ as a function of the predicted phase offset $(\phi_A[k])$ of the corresponding one of the data signals $(r_{C,I}[k])$ and a measure being indicative of a distance (x_{k+1}) between a main phase reference point (R_{Ce}) for the received signal $(r_S[n])$ and a phase reference point (R_{Sk}, S_{Sk}) for the preceding one of the data signals $(r_{C,I}[k-1])$.
 - 8. The method of one of the preceding claims, comprising:
 - receiving a preamble signal (C64) preceding the data signals (rc.[k]),
 - calculating an estimated phase arc ($H_m[k]$) as a function of the preamble signal (C64), and
- calculating the estimated phase offset ($\varphi_{est}[1]$) of the data signal ($r_{C,I}[1]$) subsequent the preamble signal (C64) as a function thereof and the estimated phase arc ($H_m[k]$).
 - 9. The method of claim 7, comprising:
 - defining the main phase reference point (R_{Ce}) to be indicative of the middle of the preamble signal (C64) in the time domain, and/or
 - defining the phase reference points (R_{SK}) to be indicative of the beginning (S_{Sk}) of the corresponding data signal ($r_{cl}[k]$) in the time domain.

10

15

20

25

1

- 10 The method according to claim 9, comprising:
- defining a phase reference point (R_{S1}) for the data signal ($R_{C,I}[1]$) subsequent the preamble signal (C64) to be indicative of the middle (R_{S1}) of the subsequent data signal ($r_{C,I}[1]$) in the time domain.
- 11. The method according to one of the claims 4 to 10, comprising:
- separating each data signal $(r_{C,1}[k])$ in the data signal samples $(r_{C,1}[k],...,r_{C,Nfft}[k])$ by means of sampling the received signal $(r_{S}[n])$ or each data signal $(r_{C,1}[k])$.
- 12. The method according to one of the preceding claims, comprising:
- receiving an orthogonal frequency division multiplex (OFDM) signal as the received signal ($r_s[n]$), wherein a stream of symboles thereof represent the stream of data signals ($r_{c,l}[k]$), and at least one preamble symbol thereof represent the preamble signal (C64).
- 13. An apparatus for frequency correction in a multicarrier system, comprising:
- receiving means (2, 4) for receiving a signal comprising a stream of data signals,
- a frequency correction means (6) for frequency correction of each data signal in response to a corresponding predicted phase offset, and
- a phase locked loop means (6,... 24) for generating the predicted phase offsets, comprising
- -- a phase discrimination means (12, 14, 16) for generating an estimated phase offset for each data signal as a function thereof,
- -- a filter means (18, 20, 22) for receiving estimates phase offsets and generating the predicted phase offset for each data signal as a function of the estimated phase offset thereof and the estimated phase offset of a preceding one of the data signals.
- 14. The apparatus according to claim 13, characterized by:
- the filter means (18, 20, 22) comprising a first order loop filter means (18) for receiving the estimated phase offsets and an integrator (20) for receiving outputs of the first order loop filter means (18).
- 15. The apparatus according to claim 14, characterized by:
- a delay means (22) for receiving outputs of the integrator (20).

35

30

- 16. The apparatus according to one of the claims 13 to 15, characterized by:
- a calculation means (24) for calculating predicted sample phase offsets in response to the predicted phase offsets.
- 17. The apparatus according to claim 16, characterized by:
 - the calculation means (24) being coupled to the filter means (18, 20, 22).
- 18. The apparatus according to claim 17, characterizes by:
- the calculation means (24) being coupled to the delay means (22).
- 19. The apparatus according to one of the claims 13 to 18, characterized by:
- the frequency correction means (6) being coupled to the filter means (18, 20, 22) and the calculation means (24).
- 15 20. The apparatus according to one of the claims 13 to 19, characterized by:
 - the frequency correction means (6) and the filter means (18, 20, 22) being adapted to be operated according to the method of one of the claims 1 to 12.
 - 21. A transceiver for wireless communication, characterized by the apparatus according to one of the claims 13 to 20.
 - 22. A transceiver for wireless communication, characterized by being adapted to be operated by the method according to one of the claims 1 to 12.

20

5

10

{