

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 27 Dec 2023 1 of 5

Sample Information

Patient Name: 郭淑月 Gender: Female ID No.: Q200356067 History No.: 2795633

Age: 82

Ordering Doctor: DOC3160J 羅永鴻

Ordering REQ.: C32GFNH Signing in Date: 2023/12/27

Path No.: M112-00338 **MP No.:** F23097

Assay: Oncomine Focus Assay Sample Type: FFPE Block No.: S112-62171A+B Percentage of tumor cells: 40%

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Table of Contents Variant Details Biomarker Descriptions	Page 2 2	Report Highlights 0 Relevant Biomarkers 0 Therapies Available 0 Clinical Trials
		0 Clinical Trials

Relevant Non-Small Cell Lung Cancer Variants

Gene	Finding	Gene	Finding	
ALK	None detected	NTRK1	None detected	
BRAF	None detected	NTRK2	None detected	
EGFR	None detected	NTRK3	None detected	
ERBB2	None detected	RET	None detected	
KRAS	KRAS amplification	ROS1	None detected	
MET	None detected			

Relevant Biomarkers

No relevant biomarkers found in this sample.

Prevalent cancer biomarkers without relevant evidence based on included data sources

CDK4 amplification, KRAS amplification

Variant Details

DNA Sequence Variants

					Allele			
Gene	Amino Acid Change	Coding	Variant ID	Locus	Frequency	Transcript	Variant Effect	Coverage
ALK	p.(A1200=)	c.3600G>C		chr2:29443617	50.61%	NM_004304.5	synonymous	1974
FGFR4	p.(P136L)	c.407C>T		chr5:176517797	99.55%	NM_213647.3	missense	2000
EGFR	p.(Q787=)	c.2361G>A		chr7:55249063	98.80%	NM_005228.5	synonymous	1997
RET	p.(S904=)	c.2712C>G		chr10:43615633	36.65%	NM_020975.6	synonymous	1997

Copy Number Variations				
Gene	Locus	Copy Number		
KRAS	chr12:25364761	6.53		
CDK4	chr12:58142052	6.68		

Biomarker Descriptions

CDK4 (cyclin dependent kinase 4)

Background: The CDK4 gene encodes the cyclin-dependent kinase 4 protein, a homologue of CDK6. Both proteins are serine/threonine protein kinases that are involved in the regulation of the G1/S phase transition of the mitotic cell cycle^{1,2}. CDK4 kinase is activated by complex formation with D-type cyclins (e.g., CCND1, CCND2, or CCND3), which leads to the phosphorylation of retinoblastoma protein (RB), followed by E2F activation, DNA replication, and cell-cycle progression³. Germline mutations in CDK4 are associated with familial melanoma^{4,5,6}.

Alterations and prevalence: Recurrent somatic mutations of CDK4 codon K22 and R24 are observed in melanoma (1-2%) and lung cancer (approximately 0.1%). Codons K22 and R24 are necessary for binding and inhibition by p16/CDKN2A^{7,8,9}. CDK4 is recurrently amplified in several cancer types, most notably in sarcomas (15-20%), glioma (10-15%), adrenocortical carcinoma (5%), lung adenocarcinoma (5%), and melanoma (3%)^{10,11,12,13}.

Potential relevance: Currently, no therapies are approved for CDK4 aberrations. Amplification of region 12q14-15, which includes CDK4, is useful as an ancillary diagnostic marker of atypical lipomatous tumor/welldifferentiated liposarcoma (ALT/WDLS)¹⁴. Small molecule inhibitors targeting CDK4/6 including palbociclib (2015), abemaciclib (2017), and ribociclib (2017), are FDA approved in combination with an aromatase inhibitor or fulvestrant for the treatment of hormone receptor-positive, HER2-negative advanced or metastatic breast cancer.

KRAS (KRAS proto-oncogene, GTPase)

<u>Background:</u> The KRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes NRAS and HRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival^{15,16,17}.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers. KRAS mutations are observed in up to 10-20% of uterine cancer, 30-35% of lung adenocarcinoma and colorectal cancer, and about 60% of pancreatic cancer¹¹. The majority of KRAS mutations consist of point mutations occurring at G12, G13, and Q61^{11,18,19}. Mutations at A59, K117, and A146 have also been observed but are less frequent^{10,20}.

Potential relevance: The FDA has approved the small molecule inhibitors, sotorasib²¹ (2021) and adagrasib²² (2022), for the treatment of adult patients with KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). The FDA has also granted breakthrough therapy designation (2022) to the KRAS G12C inhibitor, GDC-6036²³, for KRAS G12C mutation in non-small cell lung cancer. The small molecular inhibitor, RO-5126766, was granted breakthrough designation (2021) alone for KRAS G12V mutant non-small cell lung cancer or in combination with defactinib, for KRAS mutant endometrial carcinoma and KRAS G12V mutant non-small cell lung cancer²⁴. The PLK1 inhibitor, onvansertib²⁵, was granted fast track designation (2020) in combination with bevacizumab and FOLFIRI for second-line treatment of patients with KRAS-mutated metastatic colorectal cancer (mCRC). Additionally, the SHP2 inhibitor, BBP-398²⁶ was granted fast track designation (2022) in combination with sotorasib for previously treated patients with KRAS G12C-mutated metastatic NSCLC.The EGFR antagonists, cetuximab²⁷ and panitumumab²⁸, are contraindicated for treatment of

Date: 27 Dec 2023

Biomarker Descriptions (continued)

colorectal cancer patients with KRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)²⁰. Additionally, KRAS mutations are associated with poor prognosis in NSCLC²⁹.

Date: 27 Dec 2023

Clinical Trials in Taiwan region:

References

- 1. Malumbres et al. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer. 2009 Mar;9(3):153-66. PMID: 19238148
- 2. Sherr et al. Targeting CDK4 and CDK6: From Discovery to Therapy. Cancer Discov. 2016 Apr;6(4):353-67. PMID: 26658964
- 3. Weinberg. The retinoblastoma protein and cell cycle control. Cell. 1995 May 5;81(3):323-30. PMID: 7736585
- 4. Rane et al. Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence. Mol. Cell. Biol. 2002 Jan;22(2):644-56. PMID: 11756559
- 5. Zuo et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat. Genet. 1996 Jan;12(1):97-9. PMID: 8528263
- 6. Molven et al. A large Norwegian family with inherited malignant melanoma, multiple atypical nevi, and CDK4 mutation. Genes Chromosomes Cancer. 2005 Sep;44(1):10-8. PMID: 15880589
- 7. Ceha et al. Several noncontiguous domains of CDK4 are involved in binding to the P16 tumor suppressor protein. Biochem. Biophys. Res. Commun. 1998 Aug 19;249(2):550-5. PMID: 9712735
- 8. Tsao et al. Novel mutations in the p16/CDKN2A binding region of the cyclin-dependent kinase-4 gene. Cancer Res. 1998 Jan 1;58(1):109-13. PMID: 9426066
- 9. Sotillo et al. Invasive melanoma in Cdk4-targeted mice. Proc. Natl. Acad. Sci. U.S.A. 2001 Nov 6;98(23):13312-7. PMID: 11606789
- 10. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 11. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 12. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 13. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 14. NCCN Guidelines® NCCN-Soft Tissue Sarcoma [Version 2.2023]
- 15. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer. 2011 Oct 13;11(11):761-74. PMID: 21993244
- 16. Karnoub et al. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 2008 Jul;9(7):517-31. PMID: 18568040
- Scott et al. Therapeutic Approaches to RAS Mutation. Cancer J. 2016 May-Jun;22(3):165-74. doi: 10.1097/ PPO.00000000000187. PMID: 27341593
- 18. Román et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer. 2018 Feb 19;17(1):33. doi: 10.1186/s12943-018-0789-x. PMID: 29455666
- 19. Dinu et al. Prognostic significance of KRAS gene mutations in colorectal cancer–preliminary study. J Med Life. 2014 Oct-Dec;7(4):581-7. PMID: 25713627
- 20. Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J. Clin. Oncol. 2016 Jan 10;34(2):179-85. PMID: 26438111
- 21. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/214665s004lbl.pdf
- 22. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/216340Orig1s000Corrected_lbl.pdf
- 23. https://assets.cwp.roche.com/f/126832/x/5738a7538b/irp230202.pdf
- 24. https://investor.verastem.com//news-releases/news-release-details/verastem-oncology-reports-third-quarter-2022-financial-results
- 25. https://cardiffoncology.investorroom.com/2020-05-28-Cardiff-Oncology-Announces-Fast-Track-Designation-Granted-by-the-FDA-to-Onvansertib-for-Second-Line-Treatment-of-KRAS-Mutated-Colorectal-Cancer
- 26. https://bridgebio.com/news/bridgebio-pharma-announces-first-lung-cancer-patient-dosed-in-phase-1-2-trial-and-us-fda-fast-track-designation-for-shp2-inhibitor-bbp-398-in-combination-with-amgens-lumakras-sotorasib/
- 27. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
- 28. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125147s210lbl.pdf
- 29. Slebos et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N. Engl. J. Med. 1990 Aug 30;323(9):561-5. PMID: 2199829