OPERATIONS RESEARCH

Dynamic Programming (DP)

By: Dr. Hakeem–Ur–Rehman
FAST, Lahore

Dynamic Programming (DP): An Overview

- Developed by R. Bellman in 1950 (USA)
- DP is used when problem can be divided into "STAGES"

Multi-stage Decision Problem

- Here the decisions made in a stage will affect the decisions at the subsequent stages because they are dependent on each other.
- DP also know as "Multi-Stage Optimization Problem or Recursive Optimization Problem".

Dynamic Programming (DP): An Overview...

- The problem can be divided into stages
 - \circ Stage: 1, 2, ..., N; Label of stage: n (n=1, 2, ..., N) \rightarrow Stages are NOT independent
- At the beginning of each stage: a number of states \rightarrow Current state for stage 'n': S_n
- At each stage: a decision is to be made \rightarrow Decision variable for stage 'n': $x_n \in D_n(s_n)$
 - o A policy decision: transforming the current state to a state of the next stage
 - Deterministic: $S_{n+1} = f(s_n, x_n)$
 - Probabilistic: $S_{n+1} = f_k(s_n, x_n)$ with probability p_k
- Dynamic Programming: Basic Principles
 - Divided and Conquer
 - Bottom up Computation ———

"BACKWARD RECURSIVE APPROACH" where the decisions are made at the end stages rather than from the beginning stages.

Deterministic or Probabilistic Dynamic Programming

Dynamic Programming (DP): An Overview...

Principle of Optimality

- o Given the current state of the system, the optimal policy (sequence of decisions) for the remaining stages is independent of the policy adopted in the previous stage
- The principle implies that, given the state S_i of the system at a stage i, one must proceed optimally till the last stage, irrespective of how one arrived at the state S_i .

Markovian Property:

• Knowledge of the current state of the system conveys all the information about its previous behavior necessary for determining the optimal policy henceforth

Dynamic Programming (DP):

A recursive relationship

An Overview...

Obetermining the optimal decision for stage n, given optimal decision for stage n+1

Value functions

- $f_n(s_n, x_n)$: contribution of stages $n, n+1, \ldots, N$ to objective function if the system starts in state s_n at stage n, immediate decision is x_n , and optimal decisions are made thereafter
- $f_n^*(s_n) = f_n(s_n, x_n^*)$

o Recursive relationship:

$$f_{n}(s_{n}) = opt_{xn \in Dn(sn)} \phi[s_{n}, x_{n}, f_{n+1}(s_{n+1})]$$

- Boundary Condition
- \circ Optimal objective: $f_1^*(s_1)$

s_n	$f_n(s_n, x_n)$	f* _n (s _n)	x _n *

Deterministic Vs Probabilistic DP

Stage Coach Problem

(Shortest Route Problem)

Consider the following example. Joe Cougar needs to travel from Nashville to Los Angeles. In order to minimize his total travel cost, he decided to spend each night at a friend's house living in each of the following cities: Kansas City, Omaha, Dallas, San Antonio and Denver. Joe knows that after one day of driving he can reach Kansas City, Omaha or Dallas and after 2 days he can arrive at San Antonio or Denver. Finally, after 3 days he can be at Los Angeles. Joe has to decide at which cities he should stay in order to minimize the total distance travelled. The corresponding network is shown on the following figure.

Each stage i contains the set of cities Joe can reach at the beginning of day i.

DP: Important Elements

Stage:

 Place / position of decision making (each stage contains set of alternatives)

State:

City at which the person is presently available

Decision Variable:

Next destination

Criterion of effectiveness:

Minimize the total distance

Stage Coach Problem

(Shortest Route Problem)...

Forward Recursion Approach:

Suppose:

- $c_{i,i}$ = Distance between city 'i' & city 'j'
- $f_t(j)$ = Length of the shortest route from city 'i' to city 'j', given that city 'j' is at stage 't'
- Stage 1: $f_1(1) = 0$
- Stage 2: $f_2(2) = 580$; $f_2(3) = 760$; $f_2(4) = 660$

Stage 3

Stage 4

$$0.1 \rightarrow 2 \rightarrow 5$$

Distance =
$$c_{25} + f_2(2) = 610 + 580 = 1190$$

$$0.1 \rightarrow 3 \rightarrow 5$$

Distance =
$$c_{35} + f_2(3) = 540 + 760 = 1300$$

Stage 1

Stage 2

$$\circ \quad 1 \rightarrow 4 \rightarrow 5$$

Distance =
$$c_{45} + f_2(4) = 790 + 660 = 1450$$

Shortest route from city '1' and city '5' is $1 \rightarrow 2 \rightarrow 5$ with $f_3(5) = 1190$

$$0.1 \rightarrow 2 \rightarrow 6$$

Distance =
$$c_{26} + f_2(2) = 790 + 580 = 1370$$

$$0.1 \rightarrow 3 \rightarrow 6$$

Distance =
$$c_{36} + f_2(3) = 940 + 760 = 1700$$

$$0.1 \rightarrow 4 \rightarrow 6$$

Distance =
$$c_{36} + f_2(4) = 270 + 660 = 930$$

Shortest route from city '1' and city '6' is $1 \rightarrow 4 \rightarrow 6$ with $f_3(6) = 930$

■ Stage – 4:

$$f_4(7) = Min\{c_{57} + f_3(5) = 1030 + 1190 = 2220; c_{67} + f_3(6) = 1390 + 930 = 2320\}$$

Shortest route from city '1' and city '7' is $1 \rightarrow 2 \rightarrow 5 \rightarrow 7$ with $f_4(7) = 2220$

General Forward formulation

Let $f_k(s_k)$ be the value of an optimal sequence of decisions that takes the system from state ' s_i ' till state ' s_k '.

The DP forward recursive formulation would be:

- $f_k(s_k) = Max/Min_{xk} \{g_k(s_k, x_k) + f_{k-1}(s_{k-1})\}$
- Boundary Conditions: s_1 given
- Objective: find $f_{T+1}(s_{T+1})$

Applying this formulation to the shortest route example gives the following:

- $f_t(j) = Min_i\{f_{t-1}(i) + c_{ij}\}$ Where 'i' is a state at stage 't-1'
- Boundary Conditions: $f_1(1) = 0$
- Objective: find $f_4(7)$
 - \circ In this case, $f_t(j)$ is the length of the shortest path from city '1' to city '7'.

Stage Coach Problem

(Shortest Route Problem)

A Person want to go from city-1 to city-10. The various possibilities and the distances are given in the following table:

ARC	Distance	ARC	Distance
1-2	5	4-6	5
1-3	5	4-7	7
1-4	6	5-8	6
2-5	4	5-9	8
2-6	7	6-8	9
2-7	8	6-9	7
3-5	8	7-8	5
3-6	10	7-9	7
3-7	5	8-10	8
4-5	4	9-10	9

Stage Coach Problem...

EXAMPLE: (Shortest Route Problem)

DP: Important Elements

Stage:

 Place / position of decision making (each stage contains set of alternatives)

State:

City at which the person is presently available

Decision Variable:

Next destination

Criterion of effectiveness:

Minimize the total distance

Stage Coach Problem...

EXAMPLE: (Shortest Route Problem)

Backward Recursive Approach

n = 1 (One more stage to go)

- $f_1(s, x_1) = d_{s, x_1}$
- $f_1^*(s) = Minimze f_1(s, x_1)$
- $x_1^* = Corresponding value$

S	x_1	$f_1^*(s)$	x_1^*
8	10	8	10
9	10	9	10

n = 2 (Two more stages to go)

- $f_2(s, x_2) = d_{s,x_2} + f_1^*(x_2)$
- $f_2^*(s) = Minimze f_2(s, x_2)$
- $x_2^* = Corresponding value$

	x	2	f*(a)	*	
S	8	9	$f_2^*(s)$	x_2^*	
5	6 + 8 = 14	8 + 9 = 17	14	8	
6	9 + 8 = 17	7 + 9 = 16	16	9	
7	5 + 8 = 13	7 + 9 = 16	13	8	

n = 3 (Three more stages to go)

- $f_3(s, x_3) = d_{s,x_3} + f_2^*(x_3)$
- $f_3^*(s) = Minimze f_3(s, x_3)$
- $x_3^* = Corresponding value$

		x_3					
S	5	6	7	$f_3^*(s)$	x_3^*		
2	4 +14 = 18	7 + 16 = 23	8 + 13 = 21	18	5		
3	8 + 14 = 22	10 + 16 = 26	5 + 13 = 18	18	7		
4	4 + 14 = 18	5 + 16 = 21	7 + 13 = 20	18	5		

Stage Coach Problem...

EXAMPLE: (Shortest Route Problem)

Backward Recursive Approach

n = 4 (Four more stages to go)

- $f_4(s, x_4) = d_{s,x_4} + f_3^*(x_4)$
- $f_4^*(s) = Minimze f_4(s, x_4)$
- $x_4^* = Corresponding value$

	2	x_4				*
	S	2	3	4	$f_4^*(s)$	x_4^*
	1	5 + 18 = 23	5 + 18 = 23	6 + 18 = 24	23	2, 3

Shortest Distance = 23

Paths:

$$1-2-5-8-10$$

$$1-3-7-8-10$$

General Recursive Relationship:

- $f_n(s, x_n) = d_{s,x_n} + f_{(n-1)}^*(x_n)$
- $f_n^*(s) = minimize f_n(s, x_n)$
- $x_n^* = Corresponding \ value \ 'x_n'$

Resource allocation Problem

Problem description: resource allocation

- o A resource: total number 'm' used for 'N' periods
- \circ If 'x_i' is allocated for period 'i', then profit is $g_i(x_i)$
- How to allocate the resource to maximize the total profit over the 'N' periods?

Problem formulation

- \circ Let $f_i(s_i)$ be maximal profit if the amount of s_i is allocated to the periods i, ..., N
- \circ **Recursive relationship:** decision variable x_i
 - $f_i(s_i) = \max_{0 \le x_i \le s_i} \{g_i(x_i) + f_{i+1}(s_i x_i)\}$
- O Boundary condition: $f_N(s_N) = \max_{x_N = s_N} g_N(s_N)$
- \circ **Objective value:** $f_1(m)$

Reliability Problem

Consider an equipment that functions using four components connected in series:

Each component has a certain reliability of the equipment is the product of the individual reliabilities. In order to increase the reliability of the equipment, we can have some additional components in standby units for the four components are shown below:

Number	Compon	ent A	Compon	ent B	Compone	ent C	Component D		
of Units	Reliability	Cost	Reliability	Cost	Reliability	Cost	Reliability	Cost	
1	0.6	100	0.7	80	0.7	75	0.8	60	
2	0.7	130	0.75	100	0.8	80	0.85	70	
3	0.8	150	0.8	120	0.9	85	0.88	75	
4	0.9	170	0.85	140	0.95	90	0.90	80	

We want to maximize the reliability of the system with the budget constraint of Rupees 400.

Reliability Problem...

- Stage: Components
- State: Amount of money available
- Decision Variable: How many Units are we going to have for each one of these components
- Criterion of effectiveness: Maximize the Reliability of the System

For at least one component of 'A, B & C'; then upper limit must be 400 - (100+80+75) = 145

$$f_1(s, x_D) = R_{x_D}$$

•
$$f_1^*(s) = Maximize f_1(s, x_D)$$

Subject to: $cx_D \le s$

• $x_D^* = Corresponding value$

Reliability Problem...

n = 2 (Two more stages to go)

$$f_2(s, x_c) = R_{x_c} * f_1^*(s - c_{x_c})$$

2		x_c					
S	1	2	3	4	$f_2^*(s)$	x_c^*	
135 – 139	.7 * .8 = 0.56	_	_	_	0.56	1	
140 – 144	.7 * .8 = 0.56	.8 * .8 = 0.64	-	_	0.64	2	
145 – 149	.7 * .85 = 0.595	.8 * .8 = 0.64	.9 * .8 = 0.72	_	0.72	3	
150 – 154	.7 * .88 = 0.616	.8 * .85 = 0.68	.9 * .8 = 0.72	.95 * .8 = 0.76	0.76	4	
155 – 159	.7 * .9 = 0.63	.8 * .88 = 0.704	.9 * .85 = 0.765	.95 * .8 = 0.76	0.765	3	
160 – 164	.7 * .9 = 0.63	.8 * .9 = 0.72	.9 * .88 = 0.792	.95 * .85 = 0.8075	.8075	4	
165 – 169	.7 * .9 = 0.63	.8 * .9 = 0.72	.9 * .9 = 0.81	.95 * .88 = 0.836	0.836	4	
170 – 220	.7 * .9 = 0.63	.8 * .9 = 0.72	.9 * .9 = 0.81	.95 * .9 = 0.855	0.855	4	

For at least one component of 'C & D' we must start from it's cost "60+75=135"

For at least one component of 'A & B'; then upper limit must be 400 - (100+80) = 220

For at least one component of 'B,C & D' we must start from it's cost "80+60+75=215"

Reliability Problem...

n = 3 (Three more stages to go)

$$f_3(s, x_B) = R_{x_B} * f_2^*(s - c_{x_B})$$

		x_B			$f^*(g)$	*
S	1	2	3	4	$f_3^*(s)$	x_B^*
215 – 219	.7 * .56 = 0.392	-	_	_	0.392	1
220 – 224	.7 * .64 = 0.448	-	_	_	0.448	1
225 – 229	.7 * .72 = 0.504	ı	_	Ι	0.504	1
230 – 234	.7 * .76 = 0.532		_		0.532	1
235 – 239	.7 * .765 = 0.5355	.75 * .56 = 0.42	_		0.5355	1
240 – 244	.7 * .8075 = .5653	.75 * .64 = .48	_		0.5653	1
245 – 249	.7 * .836 = .5852	.75 * .72 = 0.54	_	_	0.5852	1
250 – 254	.7 * .855 = 0.5985	.75 * .76 = 0.57	_		0.5985	1
255 – 259	.7 * .855 = .5985	.75 * .765 = .5738	.8 * .56 = 0.448	ı	0.5985	1
260 – 264	.7 * .855 = 0.5985	.75 * .8075 = .6056	.8 * .64 = 0.512	ı	0.6056	2
265 – 269	.7 * .855 = 0.5985	.75 * .836 = 0.627	.8 * .72 = 0.576	_	0.627	2
270 – 274	.7 * .855 = 0.5985	.75 * .855 = .64125	.8 * .76 = 0.608	_	0.64125	2
275 – 279	.7 * .855 = 0.5985	75 * .855 = .64125	.8 * .765 = .612	.8 * .56 = .476	0.64125	2

For at least one component of 'A'; then upper limit must be 400 - 100 = 300

Reliability Problem...

n = 3 (Three more stages to go)

$$f_3(s, x_B) = R_{x_B} * f_2^*(s - c_{x_B})$$

	2	x_B					
	S	1	2	3	4	$f_3^*(s)$	x_B^*
2	0 - 284	7 * .855 = 0.5985	75 * .855 = .64125	.8 * .8075 = .646	.85 * .64 = .544	.646	3
2	85 – 289	7 * .855 = 0.5985	75 * .855 = .64125	.8 * .836 = .6688	.85 * .72 = .612	.6688	3
2	90 – 294	7 * .855 = 0.5985	75 * .855 = .64125	.8 * .855 = 0.684	.85 * .76 = .646	.684	3
2	95 – 299	7 * .855 = 0.5985	75 * .855 = .64125	.8 * .855 = 0.684	.85 * .765 = .650	.684	3
	300	7 * .855 = 0.5985	75 * .855 = .64125	.8 * .855 = 0.684	.85 *.8075 = .686	.686	4

n = 4 (Four more stages to go)

$$f_4(s, x_A) = R_{x_A} * f_3^*(s - c_{x_A})$$

		x_A			f*(a)	24*
S	1	2	3	4	$f_4^*(s)$	X_A^*
400	.6 * .686 = 0.4116	.7 * .64125 = .4489	.8 * .5985 = .4788	.9 * .532 = 0.4788	0.4788	3, 4

Alternative Optimum Solution:

$$x_A = 3, x_B = 1, x_C = 4, x_D = 4 \text{ Or } x_A = 4, x_B = 1, x_C = 4, x_D = 1$$

• An equipment: when to replace?

- $p_i(t)$: the profit in year 'i' generated by a machine aging 't'
- $m_i(t)$: the maintenance (or running) cost in year 'i' for a machine aging 't'
- $c_i(t)$: the replacement cost in year 'i' for a machine aging 't'
 - $c_i(t) = Salvage \ value \ s_i(t) Buying \ new \ equipment \ cost \ (c)$
- T: the age of the machine in year 1
- Planning horizon: 'n'

Value functions

- \circ The maximal profit from year 'i' to 'n' generated by a machine aging 't'
- The decision in year 'i': $x_i = 1$ or 0 (Replace or not)

- o Stage: Year
- State: Age of the equipment
- Decision Variable: Keep (K) / Replace (R)
- Criterion of effectiveness: Maximize Revenue

EXAMPLE

Age	0	1	2	3	4	5	6	7	8
$p_i(t)$	200	180	160	150	130	120	100	90	80
$m_i(t)$	10	15	20	27	35	45	55	65	75
$s_i(t)$	800	700	650	600	550	500	500	400	400

Recursive Relationship for Keeping the machine (i.e. Equipment):

$$f_n(i,k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1)$$

Recursive Relationship for <u>Replacing the machine</u> (i.e. Equipment):

$$f_n(i,R) = c_i(t) + p_i(0) - m_i(0) + f_{(n-1)}^*(1)$$

$$f_n(i,R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1)$$

Age (i)	0	1	2	3	4	5	6	7	8
$p_i(t)$	200	180	160	150	130	120	100	90	80
$m_i(t)$	10	15	20	27	35	45	55	65	75
$s_i(t)$	800	700	650	600	550	500	500	400	400

Keep:

•
$$i = 0$$
: $f_n(i, k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 200 - 10 + 0 = 190$

•
$$i = 1$$
: $f_n(i, k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 180 - 15 + 0 = 165$

•
$$i = 2$$
: $f_n(i, k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 160 - 20 + 0 = 140$

Replace:

•
$$i = 0$$
: $f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = 800 - 800 + 200 - 10 + 0 = 190$

•
$$i = 1$$
: $f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = 700 - 800 + 200 - 10 + 0 = 90$

•
$$i = 2$$
: $f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = 650 - 800 + 200 - 10 + 0 = 40$

n = 1 (One more stage to go)

Age 'i'	0	1	2	3	4	5	6	7	8
Keep	190	165	140	123	95	75	45	25	5
Replace	190	90	40	-10	-60	-110	-110	-210	-210

Age 'i'	0	1	2	3	4	5	6	7	8
Keep	190	165	140	123	95	75	45	25	5
Replace	<u>190</u>	90	40	-10	-60	-110	-110	-210	-210
Age 'i'	0	1	2	3	4	5	6	7	8
Keep	190	165	140	123	95	75	45	25	5
Replace	190	90	40	-10	-60	-110	-110	-210	-210

Keep:

•
$$i = 0$$
: $f_n(i, k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 190 + 165 = 355$

•
$$i = 1$$
: $f_n(i, k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 165 + 140 = 305$

•
$$i = 2$$
: $f_n(i, k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 140 + 123 = 263$

Replace:

•
$$i = 0$$
: $f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = \underline{190} + \underline{165} = 355$

•
$$i = 1$$
: $f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = \underline{90} + 165 = 255$

•
$$i = 2$$
: $f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = 40 + 165 = 205$

n = 2 (Two more stages to go)

Age 'i'	0	1	2	3	4	5	6	7
Keep	355	305	263	218	170	120	70	30
Replace	355	255	205	155	105	55	55	-45

Age 'i'	0	1	2	3	4	5	6	7	8
Keep	190 \	165\	140\	123	95	75	45	25	5
Replace	<u>190</u>	90	40	-10	-60	-110	-110	-210	-210
Age 'i'	0	1	2	3	4	5	6	7	
Keep	355	305	263	218	170	120	70	30	
Replace	355	255	205	155	105	55	55	-45	1

Keep:

•
$$i = 0$$
: $f_n(i,k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 190 + 305 = 495$

•
$$i = 1$$
: $f_n(i,k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 165 + 263 = 428$

•
$$i = 2$$
: $f_n(i,k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 140 + 218 = 358$

Replace:

•
$$i = 0$$
: $f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = \underline{190} + 305 = 495$

•
$$i = 1: f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = \underline{90} + 305 = 395$$

•
$$i = 2$$
: $f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = \underline{40} + 305 = 345$

n = 3 (Three more stages to go)

Age 'i'	0	1	2	3	4	5	6
Keep	495	428	358	293	215	145	75
Replace	495	395	345	295	245	195	195

Age 'i'	0	1	2	3	4	5	6	7	8
Keep	190 \	165\	140 \	123	95	75	45	25	5
Replace	<u>190</u>	90	<u>40</u> \	-10	-60	-110	-110	-210	-210
Age 'i'	0	1	2	3	4	5	6		
Keep	495	428	358	293	215	145	75		
Replace	495	395	345	295	245	195	195		

Keep:

•
$$i = 0$$
: $f_n(i,k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 190 + 428 = 618$

•
$$i = 1$$
: $f_n(i, k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 165 + 358 = 523$

•
$$i = 2$$
: $f_n(i,k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 140 + 295 = 435$

Replace:

•
$$i = 0$$
: $f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = \underline{190} + 428 = 618$

•
$$i = 1: f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = \underline{90} + 428 = 518$$

•
$$i = 2$$
: $f_n(i,R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = 40 + 428 = 468$

n = 4 (Four more stages to go)

Age 'i'	0	1	2	3	4	5
Keep	618	523	435	368	290	270
Replace	618	518	468	418	368	318

Age 'i'	0	1	2	3	4	5	6	7	8
Keep	190 \	165 \	140 \	123	95	75	45	25	5
Replace	<u>190</u>	90	<u>40</u> \	-10	-60	-110	-110	-210	-210
Age 'i'	0	1	2	3	4	5			
Keep	618	523	435	368	290	270			
Replace	618	518	468	418	368	318			

Keep:

•
$$i = 0$$
: $f_n(i,k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 190 + 523 = 713$

•
$$i = 1$$
: $f_n(i,k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 165 + 468 = 633$

•
$$i = 2$$
: $f_n(i,k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 140 + 418 = 558$

Replace:

•
$$i = 0$$
: $f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = \underline{190} + 523 = 713$

•
$$i = 1: f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = \underline{90} + 523 = 613$$

•
$$i = 2$$
: $f_n(i,R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = 40 + 523 = 563$

n = 5 (Five more stages to go)

Age 'i'	0	1	2	3	4
Keep	713	633	558	491	413
Replace	713	613	563	513	463

Age 'i'	0	1	2	3	4	5	6	7	8
Keep	190 \	165\	140 \	123	95	75	45	25	5
Replace	<u>190</u>	90	40	-10	-60	-110	-110	-210	-210
Age 'i'	0	1	2	3	4				
Keep	713	633	558	491	413				
Replace	713	613	563	513	463				

Keep:

•
$$i = 0$$
: $f_n(i,k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 190 + 633 = 823$

•
$$i = 1$$
: $f_n(i,k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 165 + 563 = 728$

•
$$i = 2$$
: $f_n(i,k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 140 + 513 = 653$

Replace:

•
$$i = 0$$
: $f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = \underline{190} + 633 = 823$

•
$$i = 1: f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = \underline{90} + 633 = 723$$

•
$$i = 2$$
: $f_n(i,R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = \underline{40} + 633 = 673$

n = 6 (Six more stages to go)

Age 'i'	0	1	2	3
Keep	823	728	653	586
Replace	823	723	673	623

Age 'i'	0	1	2	3	4	5	6	7	8
Keep	190 \	165\	140\	123	95	75	45	25	5
Replace	<u>190</u>	90	40	-10	-60	-110	-110	-210	-210
Ago 6i?	0	1	2	3]				

Age 'i'	0	1	2	3
Keep	823	728	653	586
Replace	823	723	673	623

Keep:

•
$$i = 0$$
: $f_n(i,k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 190 + 728 = 918$

•
$$i = 1$$
: $f_n(i,k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 165 + 673 = 838$

•
$$i = 2$$
: $f_n(i,k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 140 + 623 = 763$

Replace:

•
$$i = 0$$
: $f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = \underline{190} + 728 = 918$

•
$$i = 1: f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = \underline{90} + 728 = 818$$

•
$$i = 2$$
: $f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = \underline{40} + 728 = 768$

n = 7 (Seven more stages to go)

Age 'i'	0	1	2
Keep	918	838	763
Replace	918	818	768

Age 'i'	0	1	2	3	4	5	6	7	8
Keep	190 \	165\	140	123	95	75	45	25	5
Replace	<u>190</u>	90	40	-10	-60	-110	-110	-210	-210

Age 'i'	0	1	2
Keep	918	838	763
Replace	918	818	768

Keep:

•
$$i = 0$$
: $f_n(i,k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 190 + 838 = 1028$

•
$$i = 1$$
: $f_n(i,k) = p_i(t) - m_i(t) + f_{(n-1)}^*(i+1) = 165 + 768 = 933$

Replace:

•
$$i = 0$$
: $f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = \underline{190} + 838 = 1028$

•
$$i = 1: f_n(i, R) = s_i(t) - c + p_i(0) - m_i(0) + f_{(n-1)}^*(1) = \underline{90} + 838 = 928$$

n = 8 (Eight more stages to go)

Age 'i'	0	1	
Keep	1028	933	
Replace	1028	928	

- Decision is Keep \rightarrow Look at 'i + 1' in the next year (Previous row)
- Decision is Replace \rightarrow Look at 'i = 1' in the previous row.
- For Example:
 - (when n = 3 (i.e. 3 more years to go) & i = 1 (i.e. Age of Equipment = 1)
 - At $n = 3 \& i = 1 \rightarrow Keep$, Keep, Keep
 - (when n = 7 (i.e. 7 more years to go) & i = 2 (i.e. Age of Equipment = 2)
 - At $n = 7 \& i = 2 \rightarrow Replace$, Keep, Keep, Keep, Keep, Keep

DP: Continuous Variables

Minimize
$$z = x_1 + x_2 + x_3$$

Subject to:
$$x_1x_2x_3 = 27$$
$$x_1, x_2, x_3 \ge 0$$

- Stage: Each Variable
- State: Resource available for allocation
- o Decision Variable: Values of x_1, x_2, x_3
- o Criterion of effectiveness: Maximize 'z'

$$Minimize \ z = x_1 + x_2 + x_3$$

DP: Continuous Variables

Subject to:

$$x_1 x_2 x_3 = 27 x_1, x_2, x_3 \ge 0$$

n = 1 (One stage to go)

$$f_1(s_1, x_3) = x_3$$

 $f_1^*(s_1) = Minimize$ x_3 $x_3^* = s_1 \rightarrow f_1^*(s_1) = s_1$ $x_3^* = s_1 = 3$

Subject to: $x_3 = s_1 \& x_3 \ge 0$

$$n = 2$$
 (Two stages to go)

$$f_{2}(s_{2}, x_{2}) = x_{2} + f_{1}^{*}(s_{1}) = x_{2} + f_{1}^{*}(\frac{s_{2}}{x_{2}})$$

$$f_{2}^{*}(s_{2}) = Minimize \ x_{2} + \frac{s_{2}}{x_{2}}$$
Subject to: $x_{2} \ge 0$

$$x_{2}^{*} = \sqrt{\frac{dx_{2}}{dx_{2}}}$$

$$\frac{df_2}{dx_2} = 0 \Rightarrow 1 + \frac{s_2}{x_2^2} = 0 \Rightarrow x_2 = +\sqrt{s_2}$$

$$x_2^* = \sqrt{s_2} \Rightarrow f_2^*(s_2) = \sqrt{s_2} + \frac{s_2}{\sqrt{s_2}} = 2\sqrt{s_2}$$

$$x_2^* = \sqrt{s_2} = \sqrt{9} = 3 \qquad \frac{d^2 f_2}{dx^2} > 0 \text{ Minimize}$$

$$n = 3$$
 (Three stages to go)

$$f_3(27, x_1) = x_1 + f_2^*(s_2) = x_1 + f_2^*(\frac{27}{x_1})$$

$$f_3^*(27) = Minimize \ x_1 + 2\sqrt{\frac{27}{x_1}}$$

$$\frac{df_3}{dx_1} = 0 \to 1 + 2\sqrt{27}(-\frac{1}{2}x_1^{-\frac{3}{2}}) = 0 \to x_1^* = 3$$

$$f_3^*(27) = 3 + 2\sqrt{\frac{27}{3}} = 9 \to s_2 = 9$$

$$\frac{d^2f_3}{dx_2^2} > 0 \text{ Minimize}$$

DP: Integer Programming – Knapsack Problem

The Model

Max.
$$\sum_{j=1}^{n} v_j x_j$$

Subject to:
 $\sum_{j=1}^{n} w_j x_j \leq W$
 x_i : Non – negative integers $(j = 1, 2, ..., n)$

Example:

Max.
$$7y_1 + 8y_2 + 4y_3 + 9y_4$$

Subject to:
 $3y_1 + 2y_2 + y_3 + 2y_4 \le 15$
 $y_j \ge 0 \& Integer$

While solving these problems we have to simplify the problem in such a way that there is at least one variable with a coefficient of '+1' in the constraint.

So, here Variable ' y_3 ' satisfies the condition & we solve for this variable first always.

The Problem is rewritten as:

Max.
$$7x_1 + 8x_2 + 9x_3 + 4x_4$$

Subject to:
 $3x_1 + 2x_2 + 2x_3 + x_4 \le 15$
 $x_i \ge 0 \& Integer$

Stage: Each Variable

State: Resource available for allocation

Decision Variable: Values of x_i

Criterion of effectiveness: Maximize 'z'

DP: Integer Programming – Knapsack Problem...

The Problem is rewritten as:

Max.
$$7x_1 + 8x_2 + 9x_3 + 4x_4$$

Subject to:
 $3x_1 + 2x_2 + 2x_3 + x_4 \le 15$
 $x_j \ge 0 \& Integer$

n = 2 (Two more stages to go)

$$f_2(s_2, x_3) = 9x_3 + f_1^*(s_1)$$

 $f_2^*(s_2) = Maximize 9x_3 + f_1^*(s_2 - 2x_3)$

Subject to: $2x_3 \le s_2 \& x_3$ Integer

$$f_2^*(s_2) = Maximize \ 9x_3 + 4(s_2 - 2x_3) = Max. \ 4s_2 + x_3$$

Assuming that ' s_2 ' is a non–negative integer

$$x_3^* = \left[\frac{s_2}{2}\right] \& f_2^*(s_2) = 4s_2 + \left[\frac{s_2}{2}\right]$$

n = 3 (Three more stages to go)

$$f_3(s_3, x_2) = 8x_2 + f_2^*(s_2)$$

 $f_3^*(s_3) = Maximize \ 8x_2 + f_2^*(s_3 - 2x_2)$

Subject to: $2x_2 \le s_3 \& x_2$ Integer

$$f_3^*(s_3) = Maximize \ 8x_2 + 4(s_3 - 2x_2) + \left| \frac{(s_3 - 2x_2)}{2} \right| = Max. \ 4s_3 + \left| \frac{(s_3 - 2x_2)}{2} \right|$$

Assuming that ' s_3 ' is a non–negative integer; the maximum occurs at

$$x_2^* = 0 \& f_3^*(s_3) = 4s_3 + \left| \frac{s_3}{2} \right|$$

$$n = 1$$
 (One more stage to go)
 $f_1(s_1, x_4) = 4x_4$
 $f_1^*(s_1) = Maximize 4x_4$
Subject to: $x_4 \le s_1 \& x_4$ Integer
Assuming that ' s_1 ' is a non-negative integer
 $f_1^*(s_1) = 4s_1 \& x_4^* = s_1$

DP: Integer Programming – Knapsack Problem...

n = 4 (Four more stages to go)

$$f_4(15, x_1) = 7x_1 + f_3^*(s_3)$$

 $f_4^*(15) = Maximize \ 7x_1 + f_1^*(15 - 3x_1)$
Subject to: $3x_1 \le 15 \& x_1$ Integer

$$f_4^*(15) = Maximize \ 7x_1 + 4(15 - 3x_1) + \left| \frac{(15 - 3x_1)}{2} \right|$$

' x_1 ' can takes values 0, 1, 2, 3, 4, & 5; we evaluate $f_4^*(15)$ for each of these values:

• At
$$x_1 = 0$$
; $f_4^*(15) = 0 + 60 + 7 = 67$

• At
$$x_1 = 1$$
; $f_4^*(15) = 7 + 48 + 6 = 61$

• At
$$x_1 = 2$$
; $f_4^*(15) = 14 + 36 + 4 = 54$

• At
$$x_1 = 3$$
; $f_4^*(15) = 21 + 24 + 3 = 48$

• At
$$x_1 = 4$$
; $f_4^*(15) = 28 + 12 + 1 = 41$

• At
$$x_1 = 5$$
; $f_4^*(15) = 35 + 0 + 0 = 35$

Z = 67; at the optimum values of:

The Solution to the original Problem is: $y_1^* = 0$; $y_2^* = 0$; $y_3^* = 1$; $y_4^* = 7 \& Z = 67$

DP: Linear Programming

Let us solve a linear programming using Dynamic Programming.

Max.
$$6x_1 + 5x_2$$

Subject to:
$$x_1 + x_2 \le 5$$
$$3x_1 + 2x_2 \le 12$$
$$x_i \ge 0$$

Here; we have two resources & Hence we have two state variables. We call them u & v respectively

Stage: Each Variable

State: Resource available for allocation (u & v)

Decision Variable: Values of x_i

Criterion of effectiveness: Maximize 'z'

$x_1 + x_2 \leq 5$ $3x_1 + 2x_2 \le 12$ $x_i \geq 0$

DP: Linear Programming Max. $6x_1 + 5x_2$ Subject to: n = 1 (One more stage to go)

$$f_1(u_1, v_1, x_2) = 5x_2$$

 $f_1^*(u_1, v_1) = Maximize \quad 5x_2$
Subject to: $0 \le x_2 \le u$; $0 \le 2x_2 \le v$

 $x_2^* = minimum (u_1, \frac{\nu_1}{2}) \&$

 $f_1^*(u_1, v_1) = 5 \ minimum \ (u_1, \frac{v_1}{2})$

We have

n = 2 (Two more stages to go) $f_2(5,12,x_1) = 6x_1 + f_1^*(5-x_1,12-3x_1)$ $f_1^*(5,12) = Maximize \ 6x_1 + 5 minimum (5 - x_1, \frac{12 - 3x_1}{2})$

Subject to: $0 \le x_1 \le 5$; $0 \le 3x_1 \le 12$

$$5 - x_1 = \frac{12 - 3x_1}{2}$$
; at $x_1 = 2$

$$f_1^*(5,12) = Maximize \quad 6x_1 + 5(5 - x_1) \quad 0 \le x_1 \le 2$$

 $f_1^*(5,12) = Maximize \quad 6x_1 + 5(\frac{12 - 3x_1}{2}) \quad 2 \le x_1 \le 4$

- At $x_1 = 0$; Z=25
- At $x_1 = 2$; Z=27
- At $x_1 = 4$; Z=24

The Optimum Solution is

$$x_1^* = 2 \& x_2^* = minimum \left(u_1, \frac{v_1}{2}\right) = minimum \left(5 - x_1, \frac{12 - 3x_1}{2}\right) = minimum \left(3, \frac{6}{2}\right) = 3$$

QUESTIONS

