НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Лабораторная работа 3.2.3 «Резонанс токов в параллельном контуре»

Овсянников Михаил Александрович студент группы Б01-001 2 курс ФРКТ

г. Долгопрудный 2021 г.

Цель работы: исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных характеристик, а также определение основных параметров контура.

В работе используются: генератор сигналов, источник тока, нагруженный на параллельный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

Схема экспериментального стенда для изучения резонанса токов в параллельном колебательном контуре показана на рисунке 1. Синусоидальный сигнал от генератора GFG-8255A поступает на вход источника тока, собранного на операционном усилителе ОУ с полевым транзистором ПТ, питание которых осуществляется встроенным блоком-выпрямителем от сети переменного тока 220 вольт. Источник тока, обладающий по определению бесконечным внутренним сопротивлением, фактически обеспечивает постоянство амплитуды тока I на меняющейся по величине нагрузке – параллельном контуре. у. Источник тока, колебательный контур и блок питания заключены в отдельный корпус с названием «Резонанс токов» на верхней крышке, отмеченный на рисунке штриховой линией.

На корпусе имеются коаксиальные разъёмы «Вход», « U_1 » и « U_2 », а также переключатель магазина ёмкостей C_n с указателем номера $n=1,2,\ldots 7$. Напряжение $E=E_0\cos(\omega t+\varphi_0)$ поступает на вход «+» операционного усилителя от генератора через согласующую RC-цепочку. Это же напряжение через разъём « U_1 » подаётся одновременно на канал 1 осциллографа GOS-620 и вход 1-го цифрового вольтметра GDM-8245.

Выпишем необходимые формулы. Собственная резонансная частота:

$$f_r = \frac{1}{2\pi\sqrt{LC_L}}$$

Эквивалентное последовательное сопротивление:

$$R_S = \frac{1}{\omega C} \operatorname{tg}(\delta)$$

Ёмкостный и индуктивный импедансы соответственно:

$$Z_C = R_S - \frac{i}{\omega C},$$
 $Z_L = R + R_L + i\omega L$

Амплитуда тока на конденсаторе:

Рис. 1. Схема экспериментального стенда

$$I_C = QI_0 \frac{\omega}{\omega_0} \frac{e^{i\varphi_C}}{\sqrt{1 + (\tau \Delta \omega)^2}},$$
 $\varphi_C = \frac{\pi}{2} - \frac{R + R_L}{\rho} - \arctan(\tau \Delta \omega).$

Амплитуда тока на катушке:

$$I_C = QI_0 \frac{\omega_0}{\omega} \frac{e^{i\varphi_L}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \qquad \qquad \varphi_L = -\frac{\pi}{2} + \delta - \arctan(\tau \Delta \omega).$$

Амплитуда напряжения:

$$I_C = Q\rho I_0 \frac{e^{i\varphi_U}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \qquad \qquad \varphi_U = -\frac{\omega_0}{\omega} \frac{R + R_L}{\rho} + \delta - \arctan(\tau \Delta \omega).$$

Выставим входное напряжение $U_{\rm BX}=100~{\rm MB}.$

Для контуров с пятью различными ёмкостями измерим резонансные частоты и $f_{\rm p}$ напряжения $U(f_{\rm p}).$

U_0 , MB	U_C , MB	C , н Φ	f_{p} , к Γ ц (Лиссажу)	$f_{ m p}$, к Γ ц (Развертка)	$T=2\pi\sqrt{LC},~{ m MKC}$
100	286	47,9	23,77	$23,\!56$	42
100	230	57,4	21,50	21,25	47
100	192	66,7	19,98	19,72	51
100	152	82,1	18,07	17,74	56
100	124	99,6	16,45	16,19	62

Построим график $\frac{T^2}{4\pi^2}(C)$ и по наклону найдем индуктивность L.

C , н Φ	47,9	57,4	66,7	82,1	99,6
$\frac{T^2}{4\pi^2}$, MKC ²	45	56	66	79	92

Используя МНК, получаем:

$$L=0,95$$
 м Γ н

$$\sigma_L=0,01$$
 м Γ н.

Для контуров с двумя разными ёмкостями снимем амплитудно-частотные характеристики.

1)
$$C = 47,9$$
 нФ. $f_{\rm p} = 23,56$ кГц.

U_0 , мВ	U_C , MB	$A = \sqrt{2}U_C$, MB	f , к Γ ц
100	42	59,4	14,15
100	44	62,2	16,45
100	52	73,5	18,83
100	82	116,0	21,22
100	131	185,3	22,35
100	207	292,7	23,00
100	286	404,5	23,56
100	227	321,0	24,05
100	120	169,7	24,78
100	58	82,0	25,97
100	26	36,8	28,21
100	10	14,1	31,04

Получаем следующий график:

Из него найдем добротность $Q=\frac{f_{\rm p}}{\Delta f}=\frac{23,56}{1,29}\approx 18,3~(\Delta f$ измеряется на высоте $\frac{A_{max}}{\sqrt{2}}).$

2) C=82,1 н $\Phi.\ f_{
m p}=178,0$ Гц.

U_0 , мВ	U_C , MB	$A = \sqrt{2}U_C$, MB	f , к Γ ц
100	47,9	67,7	10,68
100	47,1	66,6	12,42
100	51,6	73,0	14,20
100	71,6	101,3	16,00
100	99,8	141,1	17,80
100	36,4	51,5	19,56
100	9,7	13,7	21,30

График:

Найдем добротность $Q = \frac{f_{\rm p}}{\Delta f} \approx 12.1$ Как видим, $\frac{Q_1}{Q_2} = 1.51 \approx \sqrt{2}$.

100	51,6	14,20
100	71,6	16,00
100	99,8	17,50
100	36,4	19,5,6
100	9,7	2130
108-11		
10000	1	
	11/3/59	22.09 Q
	MALE	

Вывод: в работе было проведено исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью. Были получены амплитудно-частотные характеристики, а также определены основные параметры контура $L=(0,95\pm0,01)$ мГн. Все ошибки связаны с неточностью измерений и несовершенной техникой измерений.