Lecture 15

Electromagnetic waves in linear, isotropic and homogeneous materials

Summary

Electric current is a source of magnetic fields.

The magnetic dipole moment is current times area: $m = I \times (area)$

The magnetisation is the magnetic dipole moment per unit volume: $\vec{M} = \frac{\sum m}{V}$

When an external magnetic field is applied to a magnetic dipole moment, the torque acts to bring \vec{m} parallel to \vec{B} .

The magnetisation induces a surface current density $\vec{k}_b = \vec{M} \times \hat{n}$ and bound current density $\vec{j}_b = \nabla \times \vec{M}$.

The magnetic flux density results from adding up the magnetic field strength and the magnetisation: $\vec{B} = \mu_0 (\vec{H} + \vec{M})$

The magnetic field strength is defined as $\vec{H} = \frac{1}{\mu}\vec{B}$.

In LIH materials: $\vec{M} = \chi_m \vec{H}$

Examples of magnetic order in magnetic materials include: diamagnetic, paramagnetic and ferromagnetic.

Summary

In diamagnetic materials, the magnetic dipole moment \vec{m} is opposite to the direction of \vec{B} .

The energy stored in a magnetic material is $W = \frac{1}{2}\vec{H} \cdot \vec{B}$.

Units: B is in Tesla; M is in A/m; H is in A/m.

Overview

In this Lecture we will look at:

- Maxwell's equations in vacuum and in LIH materials
- The wave equation in an ideal LIH dielectric
- Phase velocity in an ideal LIH dielectric
- Intrinsic impedance in an ideal LIH dielectric
- Conducting materials: Ohm's law and the current density
- ☐ The modified wave equation
- Solving the modified wave equation
- The dielectric function
- Intrinsic impedance in a conducting medium
- ☐ The complex refractive index

EM waves in LIH materials

- How do EM waves propagate through materials?
- How can we understand an EM wave propagating through air (a mostly lossless dielectric), or thick glass (a more lossy dielectric), or a thin layer of gold (a good conductor)?

What is the difference between dielectric and conducting materials for EM propagation?

Let's look at Maxwell's equations!

Maxwell's equations in vacuum and in LIH materials

Maxwell's equations in vacuum

Maxwell's equations in LIH materials:

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$$

$$\nabla \cdot \vec{D} = \rho_f$$

$$\nabla \cdot \vec{B} = 0$$

$$abla imes ec{E} = -rac{\partial ec{B}}{\partial t}$$

$$\nabla \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$$

We know more equations.

Maxwell's equations in vacuum and in LIH materials

Further equations in LIH materials:

Maxwell's equations in LIH materials :

$$\vec{D} = \varepsilon_0 \varepsilon_r \vec{E} = \varepsilon \vec{E}$$

$$\vec{P} = \varepsilon_0 \chi_e \vec{E}$$

$$\vec{H} = \frac{1}{\mu_0 \mu_r} \vec{B} = \frac{1}{\mu} \vec{B}$$

$$\vec{M} = \chi_m \vec{H}$$

$$\nabla \cdot \vec{D} = \rho_f$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$$

How about the wave equation?

The wave equation in an ideal LIH dielectric

Taking the curl of:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

we obtain:

$$\nabla \times \left(\nabla \times \vec{E} \right) = \nabla \times \left(-\frac{\partial \vec{B}}{\partial t} \right)$$

On the left hand side:

$$\nabla \times (\nabla \times \vec{E}) = \nabla (\nabla \cdot \vec{E}) - \nabla^2 \vec{E}$$

But without free charges $\rho_f = 0$

$$\nabla \cdot \vec{D} = \varepsilon \nabla \cdot \vec{E} = 0$$

It follows that

$$\nabla \times \left(\nabla \times \vec{E} \right) = -\nabla^2 \vec{E}$$

On the right hand side

$$\nabla \times \left(-\frac{\partial \vec{B}}{\partial t} \right) = \nabla \times \left(-\frac{\partial \left(\mu \vec{H} \right)}{\partial t} \right) =$$

$$= -\mu \frac{\partial}{\partial t} \left(\nabla \times \vec{H} \right) = -\mu \frac{\partial}{\partial t} \left(\vec{J}_f + \frac{\partial \vec{D}}{\partial t} \right)$$

But without free current: $\vec{J}_f = 0$

$$\nabla \times \left(-\frac{\partial \vec{B}}{\partial t} \right) = -\mu \frac{\partial^2 \vec{D}}{\partial t^2} = -\mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2}$$

Combining left and right hand sides:

$$\nabla^2 \vec{E} = \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2}$$

How about the phase velocity?

Phase velocity in an ideal LIH dielectric

The **phase velocity** is:

$$V_p = \frac{\omega}{k} = \frac{1}{\sqrt{\mu \varepsilon}} = \frac{1}{\sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}}$$

Therefore:

$$V_p = \frac{C}{\sqrt{\mu_r \varepsilon_r}} \qquad C = \frac{1}{\sqrt{\mu_e \varepsilon_e}}$$

This means that in an ideal LIH dielectric, the electromagnetic wave propagates similarly to the way it does in free space – it remains a plane wave but its phase velocity is lowered.

We now introduce the **refractive index**:

$$n = \frac{c}{v_p} = \sqrt{\mu_r \varepsilon_r}$$

So the phase velocity is:

$$V_{p} = \frac{c}{\sqrt{\mu_{r}\varepsilon_{r}}} = \frac{1}{\sqrt{\mu_{0}\varepsilon_{0}}\sqrt{\mu_{r}\varepsilon_{r}}} = \frac{1}{\sqrt{\mu\varepsilon}} = \frac{1}{\sqrt{\mu\varepsilon}}$$

$$= \frac{c}{n}$$

Note: The Maxwell relation is

$$n=\sqrt{\mu_r \varepsilon_r} \approx \sqrt{\varepsilon_r}$$
 , since for most materials we have $\mu_r \approx 1$. I may make the materials

The impedance then?

Consider a plane wave:

$$\vec{E} = E_0 e^{i(kx - \omega t)} \hat{y}$$

Take the curl:

$$\nabla \times \vec{E} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & E_0 e^{i(kx - \omega t)} & 0 \end{vmatrix} =$$

$$= \frac{\partial}{\partial x} \left[E_0 e^{i(kx - \omega t)} \right] \hat{z} = ik E_0 e^{i(kx - \omega t)} \hat{z}$$

Consider a plane wave:

$$\vec{E} = E_0 e^{i(kx - \omega t)} \hat{y}$$

Take the curl:

$$\nabla \times \vec{E} = ikE_0 e^{i(kx - \omega t)} \hat{z}$$

Then we use Maxwell's equation:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

and write:

$$ikE_0e^{i(kx-\omega t)}\hat{z} = -\frac{\partial \vec{B}}{\partial t}$$

Consider a plane wave:

$$\vec{E} = E_0 e^{i(kx - \omega t)} \hat{y}$$

Take the curl:

$$\nabla \times \vec{E} = ikE_0 e^{i(kx - \omega t)} \hat{z}$$

Then we use Maxwell's equation:

$$ikE_0e^{i(kx-\omega t)}\hat{z} = -\frac{\partial \vec{B}}{\partial t}$$

We can integrate with respect to time:

$$\int \left(-\frac{\partial \vec{B}}{\partial t}\right) dt = -\vec{B} = \int \left(ikE_0 e^{i(kx - \omega t)}\hat{z}\right) dt = -\frac{ik}{-i\omega} E_0 e^{i(kx - \omega t)}\hat{z} + C$$

The constant is 0 because we are only interested in the oscillating field.

Consider a plane wave:

$$\vec{E} = E_0 e^{i(kx - \omega t)} \hat{y}$$

Take the curl:

$$\nabla \times \vec{E} = ikE_0 e^{i(kx - \omega t)} \hat{z}$$

Then we use Maxwell's equation:

$$ikE_0e^{i(kx-\omega t)}\hat{z} = -\frac{\partial \vec{B}}{\partial t}$$

We can integrate with respect to time:

$$-\vec{B} = \frac{ik}{-i\omega} E_0 e^{i(kx - \omega t)} \hat{z}$$

Therefore:

$$\vec{B} = \frac{k}{\omega} E_0 e^{i(kx - \omega t)} \hat{z}$$

We also have $\vec{B} = \mu \vec{H}$ so

$$\vec{H} = \frac{k}{\mu \omega} E_0 e^{i(kx - \omega t)} \hat{z} = H_0 e^{i(kx - \omega t)} \hat{z}$$

We then calculate the **intrinsic impedance**:

$$Z = \frac{E_0}{H_0} = \frac{E_0}{\frac{k}{\mu\omega}} = \frac{\mu\omega}{k} = \mu V_p = \mu \frac{1}{\sqrt{\mu\varepsilon}} = \frac{1}{\sqrt{\mu\varepsilon}}$$

$$= \sqrt{\frac{\mu}{\varepsilon}} = \sqrt{\frac{\mu_r}{\varepsilon_r}} \sqrt{\frac{\mu_0}{\varepsilon_0}} = \sqrt{\frac{\mu_r}{\varepsilon_r}} Z_0$$

Consider a plane wave:

$$\vec{E} = E_0 e^{i(kx - \omega t)} \hat{y}$$

Take the curl:

$$\nabla \times \vec{E} = ikE_0 e^{i(kx - \omega t)} \hat{z}$$

Then we use Maxwell's equation:

$$ikE_0e^{i(kx-\omega t)}\hat{z} = -\frac{\partial \vec{B}}{\partial t}$$

We can integrate with respect to time:

$$-\vec{B} = \frac{ik}{-i\omega} E_0 e^{i(kx - \omega t)} \hat{z}$$

Therefore:

$$\vec{B} = \frac{k}{\omega} E_0 e^{i(kx - \omega t)} \hat{z}$$

We also have $\vec{B} = \mu \vec{H}$ so

$$\vec{H} = \frac{k}{\mu\omega} E_0 e^{i(kx - \omega t)} \hat{z} = H_0 e^{i(kx - \omega t)} \hat{z}$$

We then calculate the **intrinsic impedance**:

$$Z = \sqrt{\frac{\mu_r}{\varepsilon_r}} Z_0$$

Where the wave impedance in vacuum is:

$$Z_0 \approx 377 \Omega$$

In a perfect dielectric, an EM wave propagates in the same way as in vacuum but with scaled impedance:

$$Z = \sqrt{\frac{\mu_r}{\varepsilon_r}} Z_0$$

in toinsic meterials 1

Conducting materials: Ohm's law and the current density

We know that Ohm's law is:

$$V = R \cdot I$$

which we can write as:

$$I = V/R$$

So we need the voltage and the resistance.

Note: Pouillet's law is

$$R = \rho \frac{L}{A}$$
, where L: length, A: area

and ρ is the electric resistivity.

= density of charge

We can also use E = V/L

$$V = L \cdot E$$

Now we substitute:

$$I = \frac{V}{R} = \frac{L \cdot E}{\rho \frac{L}{A}} = \frac{1}{\rho} A \cdot E$$

Which leads to:

$$\frac{I}{A} = \frac{1}{\rho}E = J = \sigma E$$

And generally: $\vec{j} = \sigma \vec{E}$

The vector J is the current density (the amount of charge per unit time that flows through a unit area of a chosen cross section) and σ is the conductivity (the inverse of the resistivity).

How about the phase velocity?

= som dentivity = somple density of chape

The modified wave equation

We start with Maxwell's equation:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

and we take the curl.

$$\nabla \times \left(\nabla \times \vec{E} \right) = \nabla \times \left(-\frac{\partial \vec{B}}{\partial t} \right)$$

We can apply a maths formula:

$$\nabla \times \left(\nabla \times \vec{E} \right) = \nabla \left(\nabla \cdot \vec{E} \right) - \nabla^2 \vec{E}$$

Without free charges: $\rho_f = 0$

$$\nabla \cdot \vec{D} = \varepsilon \nabla \cdot \vec{E} = 0$$

It follows that:

$$\nabla \times \left(\nabla \times \vec{E} \right) = -\nabla^2 \vec{E}$$

what we saw before

On the right hand side:

$$\nabla \times \left(-\frac{\partial \vec{B}}{\partial t} \right) = \nabla \times \left(-\frac{\partial \left(\mu \vec{H} \right)}{\partial t} \right) =$$

$$= -\mu \frac{\partial}{\partial t} \left(\nabla \times \vec{H} \right) = -\mu \frac{\partial}{\partial t} \left(\vec{J}_f + \frac{\partial \vec{D}}{\partial t} \right)$$

We also have:

$$\vec{J}_{\epsilon} = \sigma \vec{E}$$
 and $\vec{D} = \varepsilon \vec{E}$

It follows that:

$$\nabla \times \left(-\frac{\partial \vec{B}}{\partial t} \right) = -\mu \sigma \frac{\partial \vec{E}}{\partial t} - \mu \frac{\partial^2 \vec{D}}{\partial t^2} =$$
$$= -\mu \sigma \frac{\partial \vec{E}}{\partial t} - \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2}$$

The modified wave equation

We start with Maxwell's equation:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

and we take the curl.

$$\nabla \times \left(\nabla \times \vec{E} \right) = \nabla \times \left(-\frac{\partial \vec{B}}{\partial t} \right)$$

We can apply a maths formula:

$$\nabla \times \left(\nabla \times \vec{E} \right) = \nabla \left(\nabla \cdot \vec{E} \right) - \nabla^2 \vec{E}$$

Without free charges: $\rho_f = 0$

$$\nabla \cdot \vec{D} = \varepsilon \nabla \cdot \vec{E} = 0$$

V. D= Pa

It follows that:

$$\nabla \times \left(\nabla \times \vec{E} \right) = -\nabla^2 \vec{E}$$

what we saw before

On the right hand side:

$$\nabla \times \left(-\frac{\partial \vec{B}}{\partial t} \right) = -\mu \frac{\partial}{\partial t} \left(\vec{J}_f + \frac{\partial \vec{D}}{\partial t} \right)$$

We also have:

$$\vec{J}_f = \sigma \vec{E}$$
 and $\vec{D} = \varepsilon \vec{E}$

It follows that:

$$\nabla \times \left(-\frac{\partial \vec{B}}{\partial t} \right) = -\mu \sigma \frac{\partial \vec{E}}{\partial t} - \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2}$$

Combining both sides we obtain the modified wave equation:

$$\nabla^2 \vec{E} = \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2} + \mu \sigma \frac{\partial \vec{E}}{\partial t}$$

Now we need to solve it...

Solving the modified wave equation

We start with the usual form:

$$\vec{E} = \vec{E}_0 e^{(\gamma x - i\omega t)}$$

$$\gamma = ik$$

On the left side of the equation
$$\nabla^2 \vec{E} = \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2} + \mu \sigma \frac{\partial \vec{E}}{\partial t}$$

$$\nabla^{2}\vec{E} \to \frac{\partial^{2}\vec{E}}{\partial x^{2}} = \frac{\partial^{2} \left(\vec{E}_{0} e^{(\gamma x - i\omega t)} \right)}{\partial x^{2}} = \gamma^{2} \vec{E}$$

On the right side of the equation $\nabla^2 \vec{E} = \mu \varepsilon \frac{\partial^2 E}{\partial t^2} + \mu \sigma \frac{\partial \vec{E}}{\partial t}$

$$\mu\varepsilon\frac{\partial^{2}\vec{E}}{\partial t^{2}} + \mu\sigma\frac{\partial\vec{E}}{\partial t} = \mu\varepsilon\left(-i\omega\right)^{2}\vec{E} + \mu\sigma\left(-i\omega\right)\vec{E}$$

Combining both sides:

$$\gamma^{2}\vec{E} = \mu\varepsilon \left(-i\omega\right)^{2}\vec{E} + \mu\sigma \left(-i\omega\right)\vec{E} =$$
$$= -\mu\varepsilon\omega^{2}\vec{E} - \mu\sigma\omega\vec{E}$$

We take gamma to be complex so,

$$\gamma = -\alpha + i\beta$$

We clear up.

Note: the minus sign in front of α is just a convenience, it will become clear later why this is convenient..

Solving the modified wave equation

We start with the usual form:

$$\vec{E} = \vec{E}_0 e^{(\gamma \times -i\omega t)}$$
 $\gamma = ik$

On the left side of the equation

$$\nabla^{2}\vec{E} \to \frac{\partial^{2}\vec{E}}{\partial x^{2}} = \frac{\partial^{2} \left(\vec{E}_{0} e^{(\gamma x - i\omega t)} \right)}{\partial x^{2}} = \gamma^{2} \vec{E}$$

On the right side of the equation

$$\mu\varepsilon \frac{\partial^{2}\vec{E}}{\partial t^{2}} + \mu\sigma \frac{\partial\vec{E}}{\partial t} = \mu\varepsilon \left(-i\omega\right)^{2}\vec{E} + \mu\sigma \left(-i\omega\right)\vec{E}$$

$$= \frac{2\alpha\beta}{\beta^{2} - \alpha^{2}} = \frac{\mu\sigma\omega}{\mu\varepsilon\omega^{2}} = \frac{\sigma}{\varepsilon\omega}$$
Combining both sides:

Combining both sides:

$$\gamma^2 \vec{E} = -\mu \varepsilon \omega^2 \vec{E} - \mu \sigma \omega \vec{E}$$

We take gamma to be complex so,

$$\gamma = -\alpha + i\beta$$

We then obtain:

$$\gamma^{2} = (-\alpha + i\beta)^{2} = \alpha^{2} - \beta^{2} - i2\alpha\beta =$$
$$= -\mu\varepsilon\omega^{2} - i\mu\sigma\omega$$

Where we can ID the real and imaginary parts:

$$\begin{vmatrix} \alpha^{2} - \beta^{2} &= -\mu \varepsilon \omega^{2} \\ -2\alpha\beta &= -\mu \sigma \omega \end{vmatrix} \rightarrow \frac{-2\alpha\beta}{\alpha^{2} - \beta^{2}} = \frac{2\alpha\beta}{\beta^{2} - \alpha^{2}} = \frac{\mu \sigma \omega}{\mu \varepsilon \omega^{2}} = \frac{\sigma}{\varepsilon \omega}$$

This ratio is dimensionless:

$$\frac{\sigma}{\varepsilon\omega} = \frac{\left[s \cdot m^{-1}\right]}{\left[F \cdot m^{-1}\right]\left[s^{-1}\right]} = \frac{\left[\frac{s^3 \cdot A^2}{m^2 \cdot kg}\right]}{\left[\frac{s^4 \cdot A^2}{m^2 \cdot kg}\right]\left[s^{-1}\right]}$$

Our new ratio appears in the dielectric function

Solving the modified wave equation

Same wave but different Maxwell equation:

$$\vec{E} = \vec{E}_0 e^{(\gamma x - i\omega t)} \qquad \nabla \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$$

Here, we can use:

$$\frac{\partial \vec{E}}{\partial t} = -i\omega\vec{E} \quad \text{so} \quad \vec{E} = -\frac{1}{i\omega}\frac{\partial \vec{E}}{\partial t}$$

We can substitute into Maxwell's equation, using $\vec{J}_f = \sigma \vec{E}$ and $\vec{D} = \varepsilon \vec{E}$

$$\nabla \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t} = \sigma \vec{E} + \varepsilon \frac{\partial \vec{E}}{\partial t} = \sigma \left(-\frac{1}{i\omega} \frac{\partial \vec{E}}{\partial t} \right) + \varepsilon \frac{\partial \vec{E}}{\partial t} = \left(i \frac{\sigma}{\omega} + \varepsilon \right) \frac{\partial \vec{E}}{\partial t}$$

Therefore:

$$\nabla \times \vec{H} = \left(i\frac{\sigma}{\omega} + \varepsilon_0 \varepsilon_r\right) \frac{\partial \vec{E}}{\partial t} = \varepsilon_0 \left(\varepsilon_r + i\frac{\sigma}{\varepsilon_0 \omega}\right) \frac{\partial \vec{E}}{\partial t} = \varepsilon_0 \varepsilon \left(\omega\right) \frac{\partial \vec{E}}{\partial t}$$

We clear up.

The dielectric function

Same wave but different Maxwell equation:

$$\vec{E} = \vec{E}_0 e^{(\gamma x - i\omega t)} \qquad \nabla \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$$

Here, we can use:

$$\frac{\partial \vec{E}}{\partial t} = -i\omega \vec{E} \quad \text{so} \quad \vec{E} = -\frac{1}{i\omega} \frac{\partial \vec{E}}{\partial t}$$

We can substitute

$$\nabla \times \vec{H} = \left(i\frac{\sigma}{\omega} + \varepsilon\right) \frac{\partial \vec{E}}{\partial t}$$

Therefore:

$$\nabla \times \vec{H} = \varepsilon_0 \varepsilon \left(\omega\right) \frac{\partial \vec{E}}{\partial t}$$

The last equation has a familiar mathematical shape and we have introduced a new quantity — the dielectric function:

$$\varepsilon(\omega) = \varepsilon_r(\omega) + i \frac{\sigma(\omega)}{\varepsilon_0 \omega}$$

Sometimes written as:

$$\varepsilon(\omega) = \varepsilon' + i\varepsilon''$$

The dielectric function describes the response of a material to E-fields oscillating with angular frequency ω . It captures both the 'insulating aspect', expressed by the dielectric "constant", and the conduction of a material, through the appearance of conductivity σ in the dimensionless ratio $\sigma/\varepsilon\omega$.

Intrinsic impedance in a conducting medium

For the intrinsic impedance:

$$Z = \frac{\mu\omega}{k} = \frac{\mu\omega}{\text{wave vector}}$$

Our field here is:

$$\vec{E} = \vec{E}_0 e^{(\gamma x - i\omega t)}$$
 with $\gamma = ik$

Therefore:

$$k = \frac{\gamma}{i} = -i\gamma$$

Which leads to:

$$Z = \frac{\mu\omega}{-i\gamma}$$

And we also have

$$\gamma^{2} = (-\alpha + i\beta)^{2} = \alpha^{2} - \beta^{2} - i2\alpha\beta =$$
$$= -\mu\varepsilon\omega^{2} - i\mu\sigma\omega = \mu\omega(-\varepsilon\omega - i\sigma)$$

So we can write:

$$k = -i\sqrt{\mu\omega\left(-\varepsilon\omega - i\sigma\right)} = -i\sqrt{-\left(\mu\varepsilon\omega^2 + i\mu\sigma\omega\right)}$$

Hence, we can calculate Z:

$$Z = \frac{\mu\omega}{-i\sqrt{-(\mu\varepsilon\omega^2 + i\mu\sigma\omega)}} = \frac{\mu\omega}{-i\sqrt{i^2(\mu\varepsilon\omega^2 + i\mu\sigma\omega)}}$$
$$= \frac{\sqrt{\mu^2\omega^2}}{-ii\sqrt{\mu\varepsilon\omega^2 + i\mu\sigma\omega}} = \sqrt{\frac{\mu^2\omega^2}{\mu\varepsilon\omega^2(1 + i\frac{\mu\sigma\omega}{\mu\varepsilon\omega^2})}} = \sqrt{\frac{\mu^2\omega^2}{\mu\varepsilon\omega^2}}$$

$$= \sqrt{\frac{\mu}{\varepsilon \left(1 + i \frac{\sigma}{\varepsilon \omega}\right)}}$$

We can clear up the notations.

Intrinsic impedance in a conducting medium

For the intrinsic impedance:

$$Z = \frac{\mu\omega}{k} = \frac{\mu\omega}{\text{wave vector}}$$

Our field here is:

$$\vec{E} = \vec{E}_0 e^{(\gamma x - i\omega t)}$$
 with $\gamma = ik$

Therefore:

$$k = \frac{\gamma}{i} = -i\gamma$$

Which leads to:

$$Z = \frac{\mu\omega}{-i\gamma}$$

And we also have

$$\gamma^2 = \mu\omega \left(-\varepsilon\omega - i\sigma\right)$$

So we can write:

$$k = -i\sqrt{-\left(\mu\varepsilon\omega^2 + i\,\mu\sigma\omega\right)}$$

Hence, we can calculate Z:

$$Z = \sqrt{\frac{\mu}{\varepsilon \left(1 + i \frac{\sigma}{\varepsilon \omega}\right)}}$$

The intrinsic impedance is now a complex number, where the imaginary part is present because of the dimensionless ratio: $\sigma/\varepsilon\omega$

If
$$\frac{\sigma}{\varepsilon\omega} << 1$$
 then $Z \approx \sqrt{\frac{\mu}{\varepsilon}}$

which is the expression for a lossless dielectric material. ideal dielectric

Intrinsic impedance in a conducting medium

At a given frequency, the ratio $\frac{\sigma}{\varepsilon\omega}$ quantifies how good a conductor a material is.

netio = 0 not anductor

The complex refractive index

The wave vector is complex in:

$$\vec{E} = \vec{E}_0 e^{(\gamma X - i\omega t)}$$

So, we can rewrite as:

$$\vec{E} = \vec{E}_0 e^{(-\alpha x + i\beta x - i\omega t)}$$

$$\vec{E} = \vec{E}_0 e^{-\alpha x} e^{i(\beta x - \omega t)}$$

In this form, the term $e^{-\alpha x}$ is an exponential decay with distance x and decay constant α .

Also, for the wave vector:

$$\vec{E} = \vec{E}_0 e^{\left(-\alpha x + i\beta x - i\omega t\right)} =$$

$$= \vec{E}_0 e^{i\left(-\frac{\alpha x}{i} + \beta x - \omega t\right)} = \vec{E}_0 e^{i\left(i\alpha x + \beta x - \omega t\right)} =$$

$$= \vec{E}_0 e^{i\left[\left(\beta + i\alpha\right)x - \omega t\right]}$$

where the wave vector is:

$$k \rightarrow k + i\kappa = \beta + i\alpha$$

And because we have a complex wave vector, we also have a complex refractive index:

$$\tilde{n} = n + i\eta = \sqrt{\varepsilon(\omega)} = \sqrt{\varepsilon' + i\varepsilon''}$$

where \mathbf{n} is the refractive index (describing the change in phase velocity) and η is the **extinction coefficient** (describing the attenuation/absorption of the EM wave).

Our new ratio appears in the dielectric function

[from Sadiku] An EM wave propagating in free space is described by:

$$\vec{H} = 0.1\cos(2 \times 10^8 t + kx)\vec{a}_y \text{ Am}^{-1}$$

Determine:

- (a) The direction of propagation.
- (b) The period.
- (c) The wavelength (λ) .
- (d) The wave vector magnitude.

[from Sadiku] An EM wave propagating in free space is described by:

$$\vec{H} = 0.1\cos(2 \times 10^8 t + kx)\vec{a}_y \text{ Am}^{-1}$$

Determine:

- (a) The direction of propagation.
- (b) The period.
- (c) The wavelength (λ) .
- (d) The wave vector magnitude.
- (a) The wave propagates along the negative x direction.

(b)
$$T = \frac{2\pi}{\omega} = \frac{2\pi}{2\pi \times 10^8} = \underline{31.42} \text{ ns}$$

(c)
$$\lambda = uT = 3 \times 10^8 \times 31.42 \times 10^{-9} = \underline{9.425} \text{ m}$$

(b)
$$k = \beta = \frac{2\pi}{\lambda} = \underline{0.67} \text{ rad} \cdot \text{m}^{-1}$$

[from Sadiku] An EM wave propagating in a certain medium is described by:

$$\vec{E} = 25\sin(2\pi \times 10^6 t - 6x)\vec{a}_z \text{ Vm}^{-1}$$

- (a) Determine the direction of propagation.
- (b) Compute the period (*T*).
- (c) Calculate the wavelength (λ).
- (d) Establish the velocity (u). [hint $u = \omega/\beta$]

[from Sadiku] An EM wave propagating in a certain medium is described by:

$$\vec{E} = 25\sin(2\pi \times 10^6 t - 6x)\vec{a}_z \text{ Vm}^{-1}$$

- (a) Determine the direction of propagation.
- (b) Compute the period (T).
- (c) Calculate the wavelength (λ).
- (d) Establish the velocity (u). [hint $u = \omega/\beta$]
- (a) The wave propagates along the positive x direction.

(b)
$$T = \frac{2\pi}{\omega} = \frac{2\pi}{2\pi \times 10^6} = \frac{1 \ \mu s}{m}$$

(c)
$$\lambda = \frac{2\pi}{\beta} = \frac{2\pi}{6} = \underline{1.047} \text{ m}$$

(b)
$$u = \frac{\omega}{\beta} = \frac{2\pi \times 10^6}{6} = \underline{1.047 \times 10^6} \text{ ms}^{-1}$$

Negative refractive index in chiral metamaterials

Constitutive relations in chiral metamaterials:

$$\mathbf{D} = \varepsilon_r \varepsilon_0 \mathbf{E} + i \xi \sqrt{\mu_0 \varepsilon_0} \mathbf{H}$$

$$\mathbf{B} = \mu_r \mu_0 \mathbf{H} - i \xi \sqrt{\mu_0 \varepsilon_0} \mathbf{E}$$

D: electric displacement field \mathcal{E}_r : the relative permittivity

B: the magnetic field

E: the electric field

H: the magnetic field

 ε_0 : the permittivity of vacuum

 μ_{r} : the relative permeability

 μ_0 : the permeability of vacuum

 ζ : the chirality parameter

The refractive index of circularly polarized light is: $n^{\pm} = n \pm \xi$, where $n = \sqrt{\varepsilon_r \mu_r}$.

Consequently, a large $|\mathcal{E}|$ leads directly to negative refractive index for one of the circularly-polarized electromagnetic waves in chiral metamaterials.

But what is chirality?

Chirality and the mirror

In his Baltimore Lectures on Molecular Dynamics and the wave theory of light, Lord Kelvin defined chirality as follows: "I call any geometric figure, or group of points, chiral, and say it has chirality if its image in a plane mirror, ideally realized, cannot be brought to coincide with itself".

Lord Kelvin, in Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light, Clay and Sons: London, 1904, p.449.

How important is chirality?

The scientist's evil image in the mirror

In the episode "Cat's in the Bag..." (S1E02) of the television show Breaking Bad, there is a good introduction to chirality.

S-methamphetamine

Chirality is used as a metaphor for the transformation that the main character Walter White undergoes.

In summary...

Summary

In LIH materials, Maxwell's equations become: $\nabla \cdot \vec{D} = \rho_f$ $\nabla \cdot \vec{B} = 0$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \quad \nabla \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$

In an ideal LIH dielectric, the electromagnetic wave propagates similarly to the way it does in free space – it remains a plane wave but its phase velocity is lowered.

$$V_p = \frac{C}{\sqrt{\mu_r \varepsilon_r}}$$

The wave equation $\nabla^2 \vec{E} = \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2}$ becomes $\nabla^2 \vec{E} = \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2} + \mu \sigma \frac{\partial \vec{E}}{\partial t}$, which is the modified wave equation.

A solution to the modified wave equation is $\vec{E} = \vec{E}_0 e^{(\gamma x - i\omega t)}$ with $\gamma = -\alpha + i\beta$

So: $\vec{E} = \vec{E}_0 e^{-\alpha x} e^{i(\beta x - \omega t)}$ Upon solving, an important ratio appears: $\sigma/\varepsilon\omega$

This ratio is part of the dielectric function of the material: $\varepsilon(\omega) = \varepsilon_r(\omega) + i \frac{\sigma(\omega)}{\varepsilon_0 \omega}$ and of its complex refractive index: $\tilde{n} = n + i \eta = \sqrt{\varepsilon(\omega)} = \sqrt{\varepsilon' + i \varepsilon''}$

