Microbundles on Topological Manifolds

Florian Burger March 28, 2024

1 Vectorbundles on Smooth Manifolds

Definition 1.1. (vector bundle)

A vector bundle ξ is a tuple $\xi := (B, E, \pi, +, \cdot)$ satisfying the following conditions:

- B is a topological space (base space)
- E is a topological space (total space)
- $(\pi^{-1}(b), +, \cdot)$ is a real vector space for every $b \in B$
- Every $b \in B$ is locally trivializable, i.e there exist neighborhoods $U \subseteq B$ of b such that the following diagram commutes

and $\phi(b,-): b \times \mathbb{R}^n \xrightarrow{\sim} \pi^{-1}(b)$ is a linear isomorphism.

We call n the rank of ξ .

Example 1.2. (tangent vector bundle)

Let M be a smooth manifold:

 $\xi: TM \xrightarrow{\pi} M$ is a vector bundle, where $\pi(p,v) := p$.

2 Introduction to Microbundles

Definition 2.1. (microbundle)

A microbundle \mathfrak{b} is a tuple $\mathfrak{b} := (B, E, i, j)$ satisfying the following properties:

- B is a topological space called the base space
- E is a topological space called the total space
- $i: B \to E$ and $j: E \to B$ are continuous maps with $id_B = j \circ i$
- Every $b \in B$ is locally trivializable, i.e there exist open neighborhoods $U \subseteq B$ of b and $V \subseteq E$ of i(U) such that the following diagram commutes:

We call n the fibre dimension of \mathfrak{b} .

Definition 2.2. (isomorphic microbundles)

Two microbundles $\mathfrak{b}_1 := (B, E_1, i_1, j_2)$ and $\mathfrak{b}_2 := (B, E_2, i_2, j_2)$ are said to be isomorphic if there exist neighborhoods $V_1 \subseteq E_1$ of $i_1(B)$ and $V_2 \subseteq E_2$ of $i_2(B)$ with an homeomorphism $\phi : V_1 \xrightarrow{\sim} V_2$ such that the following diagram commutes:

Example 2.3. (trivial microbundle)

Let B be a topological space and $n \in \mathbb{N}$:

The diagram $\mathfrak{e}_B^n: B \xrightarrow{\iota} B \times \mathbb{R}^n \xrightarrow{\pi} B$ constitutes a microbundle, where $\iota(b) := (b,0)$ and $\pi(b,x) := b$. We call \mathfrak{e}_B^n the standard microbundle and every microbundle isomorphic to \mathfrak{b}_B^n trival.

Example 2.4. (underlying microbundle)

Let $\xi: E \xrightarrow{\pi} B$ be a n-dimensional vector bundle: The microbundle $|\xi|: B \xrightarrow{i} E \xrightarrow{\pi} B$ with $i(b) := \phi_b(b,0)$, where $\phi_b: U_b \times \mathbb{R}^n \to \pi^{-1}(U_b)$ is the local trivialization over a neighborhood $U_b \subseteq B$ of b. We call $|\xi|$ the underlying microbundle of ξ

Proof.

Example 2.5. (tangent microbundle)

Let M be a topological manifold:

We can derive the tangent microbundle $t_M: M \xrightarrow{\Delta} M \times M \xrightarrow{\pi_1} M$, where Δ is the diagonal map and π_1 ist the projection map on the first component.

Proof. Let $p \in M$ and (U, ϕ) a chart over p:

 (id, ϕ) is a homeomorphism since $\phi: U \xrightarrow{\sim} \mathbb{R}^n$ is homeomorphic.

3 Induced Microbundles

Definition 3.1. (induced microbundle)

Let $\mathfrak{b}: B \xrightarrow{i} E \xrightarrow{j} B$ be a microbundle and $f: A \to B$ a continuous map. We can construct a microbundle $f^*\mathfrak{b}: A \xrightarrow{i'} E' \xrightarrow{j'} A$ defined as follows:

- $E' := \{(a, e) \in A \times E \mid f(a) = j(e)\}$
- $i': A \to E'$ with $i'(a) := (a, (i \circ f)(a))$
- $j': E' \to A \text{ with } j'(a, e) := a$

We call $f^*\mathfrak{b}$ the induced microbundle of \mathfrak{b} over f.

Proof. It is clear that i' and j' are continuous and that $id_A = j' \circ i'$. So it remains to be shown that $f^*\mathfrak{b}$ is locally trivial for every $a \in A$:

- $U' := f^{-1}(U) \subseteq A$ is an open neighborhood of a.
- $V' := j'^{-1}(U') \subseteq E'$ is an open neighborhood of i'(U').
- $\phi': V' \xrightarrow{\sim} U' \times \mathbb{R}^n, \phi'(a, e) := (a, \pi_2(\phi(e)))$ is a homeomorphism.
 - $-\phi'$ is well defined because $(a,e) \in V' : j(e) = f(a) \in U \implies e \in V$.

- $-\phi'$ is bijective with $\phi'^{-1}(a,v)=(a,\phi^{-1}(f(a),v)).$
- $-\phi'$ and ϕ'^{-1} are continuous because it's components are.

Example 3.2. (restricted microbundle)

Let $\mathfrak{b}: B \xrightarrow{i} E \xrightarrow{j} B$ be a microbundle and $A \subseteq B$:

The induced microbundle $\iota^*\mathfrak{b}$ with $\iota:A\hookrightarrow B$ being the inclusion map is called the restricted microbundle and we write $\mathfrak{b}|_A:=\iota^*\mathfrak{b}$.

Proposition 3.3. (composition)

Let $A \xrightarrow{f} B \xrightarrow{g} C$ be topological spaces and $\mathfrak{c}: C \xrightarrow{i} E \xrightarrow{j} C$ be a microbundle:

$$(g \circ f)^* \mathfrak{c} = f^*(g^* \mathfrak{c})$$

Proof.

Remark 3.4. (functor)

The induced microbundle yields a functor $f \mapsto f^*$ between topological spaces and microbundles.

4 The Whitney Sum

We can easily construct the product of two microbundles \mathfrak{b}_1 and \mathfrak{b}_2 over B:

$$\mathfrak{b}_1 \times \mathfrak{b}_2 : B \times B \xrightarrow{i_1 \times i_2} E_1 \times E_2 \xrightarrow{j_1 \times j_2} B \times B$$

However, we end up with a microbundle over $B \times B$ instead of B.

Definition 4.1. (whitney sum)

Let \mathfrak{b}_1 and \mathfrak{b}_1 be two microbundles over a topological space B. We define the whitney sum $\mathfrak{b}_1 \oplus \mathfrak{b}_2$ as the induced microbundle over the diagonal map Δ of the product microbundle $\mathfrak{b}_1 \times \mathfrak{b}_2 : B \times B \to E(\mathfrak{b}_1) \times E(\mathfrak{b}_2) \to B \times B$.

5 Normal Microbundles

Definition 5.1. (normal microbundle)

Let M and N be two topological manifolds with $N \subseteq M$. We call a microbundle of the form

$$\mathfrak{n}: N \xrightarrow{\iota} M \xrightarrow{r} N$$

a normal microbundle of M in N.