

Systèmes d'Exploitation

Didier Verna EPITA

Théorie

Matériel

Logiciel Sémaphores Moniteurs

Applications

Systèmes d'Exploitation Synchronisation des processus

Didier Verna

didier@lrde.epita.fr http://www.lrde.epita.fr/~didier

Table des matières

Systèmes d'Exploitation

Didier Verna EPITA

Théorie

Matériel

Logiciel Sémaphores Moniteurs

Applications

- 1 Théorie
- 2 Synchronisation matérielle
- 3 Synchronisation logicielle
 - Sémaphores
 - Moniteurs
- 4 Applications classiques

Nécessité de la synchronisation

Systèmes d'Exploitation

Lr

Théorie

Matériel

Logiciel Sémaphore

Applications

Problématiques

- Communication (IPC, pipes etc.): gestion des dépendances, séquençage
- Concurrence d'accès aux données : risque de corruption

Remarques

- Problématique nº 2 identique au niveau intra-processus (threads)
- ▶ temps partagé ⇒ concurrence au niveau système

Mise en évidence

Problème du « buffer limité »

Systèmes d'Exploitation

Didier Verna EPITA

Théorie

Matériel

Logiciel Sémaphores Moniteurs

Applications

Description

- Stockage d'information dans un tableau de taille fixe
- Un « producteur » d'information rempli le tableau
- Un « consommateur » d'information le vide
- Exemple typique : le pipe d'UNIX
- Schéma de type producteur / consommateur

Problèmes

- Synchronisation : garantir l'atomicité de certaines opérations
- ► Niveaux d'atomicité : matérielle, logicielle, logique

Notion de section Critique

Systèmes d'Exploitation

Théorie Matériel

Materie

Logiciel Sémaphores Moniteurs

Applications

 Un seul processus à la fois peut exécuter sa section critique (exclusion mutuelle).

 Un processus candidat ne doit pas être bloqué par un processus non demandeur.

Repeat

Section d'entrée Section critique Section de sortie

Section restante
Until false

Un processus ne doit pas attendre indéfiniment de pouvoir rentrer dans sa section critique.

Algorithme du boulanger

Solution correcte pour N processus

Systèmes d'Exploitation

Didier Verna EPITA

Théorie

Matériel

Logiciel Sémaphores Moniteurs

Applications

```
(1) enchoix [ i ] \leftarrow vrai.
```

- (2) numéro [i] ← max (numéro [x ≠ i]) + 1.
- (3) enchoix [i] \leftarrow faux.
- (4) pour $j \leftarrow 0 \rightarrow N 1$:
- (5) tant que enchoix [j]:
- (6) Ne rien faire.
- (7) tant que numéro $[j] \neq 0$ et $P_j < P_i$:
- (8) Ne rien faire.

(1) numéro [i] ← 0.

Solutions matérielles

Systèmes d'Exploitation

Didier Verna EPITA

Théorie

Matériel

Logiciel Sémaphore:

Applications

- Interdire les interruptions pendant une section critique
 - Outil dangereux aux mains des utilisateurs
 - Ne marche pas sur des systèmes multiprocesseurs
 - Impossible pour des horloges mises à jour par interruption
- Disposer d'instructions matérielles donc atomiques

Solution avec TAS

Systèmes d'Exploitation

Didier Verna EPITA

Théorie

Matériel

Logiciel Sémaphore: Moniteurs

Applications

```
(1)
      attends [i] \leftarrow vrai.
                                            (1)
                                                   i \leftarrow i + 1 \mod N.
(2)
      clé ← vrai.
                                            (2)
                                                   tant que j \neq i et! attends [j]:
(3)
                                            (3)
      tant que attends [ i ] et clé:
                                                       i \leftarrow i + 1 \mod N.
(4)
           clé ← TAS (verrou).
                                            (4)
                                                   si i = j:
(5)
      attends [i] \leftarrow faux.
                                            (5)
                                                       verrou ← faux.
```

(6)

(7)

sinon:

attends [j] = faux.

Problèmes

- Attente active (« busy waiting »)
 Verrou actif (« spin lock »)
- Inversion de priorités : un processus prioritaire bloqué derrière un processus standard

Sémaphores Dijkstra (1965) ⇒ Algol 68

Systèmes d'Exploitation

Didier Verna EPITA

Théorie

Matériel Logiciel

Sémaphore Moniteurs

Applications

```
Extension du schéma sleep / wakeup :
mémoriser le nombre de réveils en attente
```

Compteur associé à une file d'attente de processus

```
P / wait (proberen)
tant que S.cnt <= 0, attendre;
S.cnt -= 1;
S.cnt -= 1;
if (S.cnt < 0)
  push (P, S.fifo);</pre>
```

```
V / signal (verhogen)
S.cnt += 1;
```

```
S.cnt += 1;
if (S.cnt <= 0)
pop (S.fifo);
```

- Le système d'exploitation garanti l'atomicité du point de vue des processus utilisateurs.
- La file d'attente n'a pas besoin d'être FIFO, tant qu'une stratégie correcte d'ordonnancement est utilisée.

Moniteurs Hoare (1974) / Hansen (1975)

Systèmes d'Exploitation Didier Verna

ЕP

Théorie Matériel

Logiciel

Sémaphore Moniteurs

Applications

Principe

- Module de procédures et variables
- Accès externe aux variables interdit
- Exclusion mutuelle sur les procédures

Implémentation

- Construction langagière
- Le compilateur garanti l'exclusion mutuelle
- Exemple: Java + classes + synchronized
- Outil annexe « variable conditionnelle »
 - Opérations wait et signal
 - Pas de mémorisation (signal peut être sans effet)

Solution avec moniteur

Systèmes d'Exploitation Didier Verna

Théorie

Matériel Logiciel

Sémaphores

Applications

ProdCons→produire

- si C = N: (1)
- (2)wait (room)
 - (3)buf [in] ← elt (4)
 - $in \leftarrow in + 1 \mod N$
 - (5) $C \leftarrow C + 1$
 - siC = 1: (6)
- (7)signal (info)

${\tt ProdCons}{\rightarrow} {\tt consommer}$

- si C = 0: (1)
- (2)wait (info)
- (3)elt ← buf [out]
- (4) out \leftarrow out + 1 **mod** N
- (5) $C \leftarrow C - 1$
- si C = N 1: (6)
- (7)signal (room)

Applications classiques

Systèmes d'Exploitation Didier Verna

Théorie

Matériel

Logiciel Sémaphore Moniteurs

Applications

- Problème du buffer limité
- Implémentation des sémaphores de comptage à partir de sémaphores binaires
- Problème des lecteurs / rédacteurs :
 - Premier problème : priorité aux lecteurs
 - Deuxième problème : priorité aux rédacteurs

Note : risque de famine

- Problème du dîner des philosophes
- Problème du barbier endormi
- etc.