Diszkrét matematika 2.C szakirány

8. előadás

Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/~nagy

Komputeralgebra Tanszék

2016. ősz

2016. ősz

Polinomok felbonthatósága

Tétel (Schönemann-Eisenstein)

Legyen $f(x) = f_n x^n + f_{n-1} x^{n-1} + \ldots + f_1 x + f_0 \in \mathbb{Z}[x], f_n \neq 0$ legalább elsőfokú primitív polinom. Ha található olyan $p \in \mathbb{Z}$ prím, melyre

- $p \nmid f_n$,
- $p|f_j$, ha $0 \le j < n$,
- p^2 / f_0 ,

akkor f felbonthatatlan \mathbb{Z} fölött.

Bizonyítás

Tfh. f=gh. Mivel p nem osztja f főegyütthatóját, ezért sem a g, sem a h főegyütthatóját nem osztja (Miért?). Legyen m a legkisebb olyan index, amelyre $p \not| g_m$, és o a legkisebb olyan index, amelyre $p \not| h_o$. Ha k=m+o, akkor

$$p / f_k = \sum_{i+j-k} g_i h_j,$$

mivel p osztja az összeg minden tagját, kivéve azt, amelyben i = m és j = o.

Polinomok felbonthatósága

Bizonyítás folyt.

Így m+o=deg(f), ahonnan m=deg(g) és o=deg(h). Viszont m és o nem lehet egyszerre pozitív, mert akkor $p^2|f_0=g_0h_0$ teljesülne. Így az egyik polinom konstans, és ha nem lenne egység, akkor f nem lenne primitív.

Megjegyzés

A feltételben f_n és f_0 szerepe felcserélhető.

Megjegyzés

A tétel nem használható test fölötti polinom irreducibilitásának bizonyítására, mert testben nem léteznek prímek, hiszen minden nem-nulla elem egység.

Racionális gyökteszt

Tétel

Legyen $f(x) = f_n x^n + f_{n-1} x^{n-1} + \ldots + f_1 x + f_0 \in \mathbb{Z}[x], f_n \neq 0$ primitív polinom. Ha $f\left(\frac{p}{q}\right) = 0$, $p, q \in \mathbb{Z}$, (p, q) = 1, akkor $p|f_0$ és $q|f_n$.

Bizonyítás

$$0 = f\left(\frac{p}{q}\right) = f_n\left(\frac{p}{q}\right)^n + f_{n-1}\left(\frac{p}{q}\right)^{n-1} + \ldots + f_1\left(\frac{p}{q}\right) + f_0 \quad / \cdot q^n$$

$$0 = f_n p^n + f_{n-1} q p^{n-1} + \ldots + f_1 q^{n-1} p + f_0 q^n$$

$$p|f_0 q^n, \text{ mivel az \"osszes t\"obbi tagnak oszt\'oja } p, \'es \'(gy (p,q) = 1 \text{ miatt } p|f_0.$$

$$q|f_n p^n, \text{ mivel az \"osszes t\"obbi tagnak oszt\'oja } q, \'es \'(gy (p,q) = 1 \text{ miatt } q|f_n.$$

A racionális gyökteszt alkalmazása

Állítás

 $\sqrt{2} \notin \mathbb{Q}$.

Bizonyítás

Tekintsük az $x^2 - 2 \in \mathbb{Z}[x]$ polinomot.

Ennek a $\frac{p}{q}$ alakú gyökeire $(p, q \in \mathbb{Z}, (p, q) = 1)$ teljesül, hogy p|2 és q|1, így a lehetséges racionális gyökei ± 1 és ± 2 .

Tekintsük valamely p prímre a \mathbb{Z}_p testet, továbbá egy $f(x) \in \mathbb{Z}_p[x]$ felbonthatatlan főpolinomot. Vezessük be a $g(x) \equiv h(x) \pmod{f(x)}$, ha f(x)|g(x)-h(x) relációt. Ez ekvivalenciareláció, ezért meghatároz egy osztályozást $\mathbb{Z}_p[x]$ -en.

Minden osztálynak van deg(f)-nél alacsonyabb fokú reprezentánsa (Miért?), és ha deg(g), deg(h) < deg(f), továbbá g és h ugyanabban az osztályban van, akkor egyenlőek (Miért?). Tehát deg(f) = n esetén bijekciót létesíthetünk az n-nél kisebb fokú polinomok és az osztályok között, így p^n darab osztály van.

Az osztályok között értelmezhetjük a természetes módon a műveleteket. Ezeket végezhetjük az n-nél alacsonyabb fokú reprezentánsokkal: ha a szorzat foka nem kisebb, mint n, akkor az f(x)-szel vett osztási maradékot vesszük.

f //g esetén a bővített euklideszi algoritmus alapján d(x) = u(x)f(x) + v(x)g(x).

Mivel f(x) felbonthatatlan, ezért d(x) = d konstans polinom, így $\frac{v(x)}{d}$ multiplikatív inverze lesz g(x)-nek.

Tétel (NB)

Az ekvivalenciaosztályok halmaza a rajta értelmezett összeadással és szorzással testet alkot.

Megjegyzés

Tetszőleges p prím és n pozitív egész esetén létezik p^n elemű test, mert létezik *n*-ed fokú felbonthatatlan polinom \mathbb{Z}_p -ben.

Megjegyzés

Véges test elemszáma prímhatvány, továbbá az azonos elemszámú testek izomorfak.

Példa

Tekintsük az $x^2+1\in\mathbb{Z}_3[x]$ felbonthatatlan polinomot (Miért az?). A legfeljebb elsőfokú polinomok: 0,1,2,x,x+1,x+2,2x,2x+1,2x+2. Az összeadás műveleti táblája:

+	0	1	2	×	×+1	x+2	2x	2x+1	2x+2
0	0	1	2	X	x+1	x+2	2x	2x+1	2x+2
1	1	2	0	x+1	x+2	×	2x+1	2x+2	2x
2	2	0	1	x+2	×	x+1	2x+2	2x	2x+1
×	X	x+1	x+2	2x	2×+1	2x+2	0	1	2
x+1	x+1	x+2	×	2x+1	2x+2	2x	1	2	0
x+2	x+2	×	x+1	2x+2	2x	2x+1	2	0	1
2x	2x	2x+1	2x+2	0	1	2	Х	x+1	x+2
2×+1	2x+1	2x+2	2x	1	2	0	x+1	x+2	X
2x+2	2x+2	2x	2x+1	2	0	1	x+2	X	x+1

Például:

$$2x + 2 + 2x + 1 = 4x + 3 \stackrel{\mathbb{Z}_3}{=} x$$

Példa folyt.

	0	1	2	×	x+1	x+2	2x	2x+1	2x+2
0	0	0	0	0	0	0	0	0	0
1	0	1	2	Х	x+1	x+2	2x	2x+1	2x+2
2	0	2	1	2x	2x+2	2x+1	×	x+2	x+1
×	0	×	2x	2	x+2	2x+2	1	x+1	2×+1
×+1	0	$\times +1$	2x+2	x+2	2x	1	2x+1	2	Х
x+2	0	x+2	2x+1	2x+2	1	×	x+1	2x	2
2x	0	2x	×	1	2x+1	x+1	2	2x+2	x+2
2x+1	0	2x+1	x+2	x+1	2	2x	2x+2	х	1
2x+2	0	2x+2	x+1	2x+1	×	2	x+2	1	2x

Például:

$$(2x+2)(2x+1) = 4x^2 + 6x + 2 \stackrel{\mathbb{Z}_3}{=} x^2 + 2 = (x^2+1) + 1$$

Feladat: Legyen $\mathbb{F}_9 = \mathbb{Z}_3[x]/(x^2+1)$. Mik lesznek a $z^2+1 \in \mathbb{F}_9[z]$ polinom gyökei?

A kommunikáció során információt hordozó adatokat viszünk át egy csatornán keresztül az információforrástól, az adótól az információ címzettjéhez, a vevőhöz.

A kommunikáció vázlatos ábrája

Megjegyzés

Az információ átvitele térben és időben történik. Egyes esetekben az egyik, más esetekben a másik dimenzió a domináns (pl. telefonálás; információ rögzítése adathordozóra, majd későbbi visszaolvasása).

Definíció

Az információ új ismeret. Shannon nyomán az általa megszüntetett bizonytalansággal mérjük.

Definíció

Tegyük fel, hogy egy információforrás nagy számú, összesen n üzenetet bocsát ki. Az összes ténylegesen előforduló különböző üzenet legyen a_1, a_2, \ldots, a_k .

Ha az a_j üzenet m_j -szer fordul elő, akkor azt mondjuk, hogy a gyakorisága m_j , relatív gyakorisága pedig $p_j = \frac{m_j}{n} > 0$.

A p_1, p_2, \ldots, p_k szám k-ast az üzenetek eloszlásának nevezzük ($\sum_{j=1}^k p_j = 1$). Az a_j üzenet egyedi információtartalma $l_j = -\log_r p_j$, ahol r egy 1-nél nagyobb valós szám, ami az információ egységét határozza meg. Ha r=2, akkor az információ egysége a bit.

Az üzenetforrás által kibocsátott üzenetek átlagos információtartalma, vagyis $H_r(p_1, p_2, \ldots, p_k) = -\sum_{j=1}^k p_j \log_r p_j$ a forrás entrópiája. Ez csak az üzenetek eloszlásától függ, a tartalmuktól nem.

Egy k tagú eloszlásnak olyan pozitív valós számokból álló p_1, p_2, \ldots, p_k sorozatot nevezünk, amelyre $\sum_{j=1}^k p_j = 1$. Ennek az eloszlásnak az entrópiája $H_r(p_1, p_2, \ldots, p_k) = -\sum_{j=1}^k p_j \log_r p_j$.