EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos Reserva 2

2000

PROVA ESCRITA DE MATEMÁTICA

Primeira Parte

- As sete questões desta primeira parte são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- Não apresente cálculos.
- **1.** Uma função f tem domínio \mathbb{R} e contradomínio \mathbb{R}^+ .

Qual das seguintes pode ser a expressão analítica da função f?

(A) sen x

(B) e^x

(C) $1 + x^2$

- **(D)** $\ln x$
- **2.** Indique o valor de $\lim_{x \to 0^+} \frac{\ln x}{\sin x}$
 - (A) $-\infty$
- **(B)** 0
- **(C)** 1
- (D) $+\infty$

- **3.** Na figura estão representados, em referencial o. n. Oxyz:
 - $\begin{tabular}{lll} \bullet & \mbox{o ponto} & A, & \mbox{de coordenadas} \\ & (0,0,4) & \end{tabular}$
 - a superfície esférica de equação $x^2+y^2+z^2=9$
 - a circunferência que resulta da intersecção dessa superfície esférica com o plano xOy

Considere a função $\,f\,$ que faz corresponder, à abcissa do ponto $\,P\,$, a distância de $\,P\,$ a $\,A\,$.

Qual dos seguintes é o gráfico da função $\,f\,$?

(A)

(B)

(C)

(D)

4. Na figura está parte da representação gráfica de uma certa função g , de domínio \mathbb{R} .

Em qual das figuras seguintes está parte da representação gráfica da função $\,h,$ definida em $\,\mathbb{R}\,$ por $\,h(x)=\,-g(x)+1$?

(A)

(B)

(C)

(D)

Quando se altera a ordem dos algarismos do número 35142, obtém-se outro número. Considere todos os números que se podem obter por alteração da ordem dos algarismos de 35142.

Quantos desses números são múltiplos de 5?

- **(A)** 12
- **(B)** 24
- **(C)** 60
- **(D)** 120
- **6.** Uma formiga desloca-se ao longo de um caminho que, como a figura mostra, vai apresentando bifurcações. A formiga nunca inverte a sua marcha. Ao chegar a uma bifurcação, opta 70% das vezes pelo caminho da esquerda.

Qual é a probabilidade de a formiga ser apanhada pela aranha?

- **(A)** 0, 14
- **(B)** 0, 21
- (C) 0,42
- **(D)** 0,49
- **7.** Considere o número complexo $z_1=3\sqrt{2}\ cis\ \frac{3\,\pi}{4}$ A imagem geométrica de z_1 pertence à região do plano complexo definida pela condição
 - **(A)** |z| > 3

(B) $0 < arg(z) < \frac{\pi}{4}$

(C) $Re(z) = 3\sqrt{2}$

(D) $Im(z) = \frac{3\pi}{4}$

Segunda Parte

Nas questões desta segunda parte apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

1. Em \mathbb{C} , conjunto dos números complexos, considere

$$z_1 = 7 + 24i$$
 (*i* designa a unidade imaginária)

- **1.1.** Um certo ponto P é a imagem geométrica, no plano complexo, de uma das raízes quadradas de $z_{\scriptscriptstyle 1}$. Sabendo que o ponto P tem abcissa 4, determine a sua ordenada.
- **1.2.** Seja $z_2=cis\,\alpha$ com $\alpha\in\left]\frac{3\,\pi}{4}\,,\,\pi\right[$ Indique, justificando, em que quadrante se situa a imagem geométrica de $z_1\times z_2$
- 2. Um recipiente contém uma certa quantidade de açúcar.

Para dissolver o açúcar, enche-se o recipiente com água.

Admita que a massa, em gramas, de açúcar ainda não dissolvido, $\,t\,$ minutos após o início do processo de dissolução, é dada por

$$M(t) = 50 e^{-0.02 t} , \quad t \ge 0$$

- **2.1.** Determine a massa de açúcar dissolvido ao longo da primeira **hora**. Apresente o resultado em gramas, arredondado às unidades.
- **2.2.** Utilizando métodos exclusivamente analíticos, estude a função M quanto à monotonia e quanto à existência de assimptotas ao seu gráfico. Interprete as conclusões a que chegou, no contexto do problema.

3. Para cada número real k, pertencente ao intervalo $\left]0, \frac{\pi}{2}\right[$, a expressão

$$f(x) = \begin{cases} 1, 2 + \operatorname{tg} x & \text{se } 0 \le x \le k \\ 2x - \ln x & \text{se } x > k \end{cases}$$

define uma função f, de domínio $[0, +\infty[$ (In designa *logaritmo* de base e).

- **3.1.** Nas duas alíneas que se seguem (3.1.1. e 3.1.2.), considere k=1.
 - **3.1.1.** Utilizando métodos exclusivamente analíticos, estude a função f quanto ao sentido da concavidade do seu gráfico, no intervalo $]\,1,\,+\infty[$
 - **3.1.2.** Recorrendo ao Teorema de Bolzano, mostre que a equação $f(x)=2+f\left(\frac{\pi}{4}\right)$ tem, no intervalo $]\,2,3[$, pelo menos uma solução.
- **3.2.** Existe um número real k para o qual a função f é contínua em $[\,0,\,+\infty\,[\,$. Recorrendo às capacidades gráficas da sua calculadora, determine um valor aproximado desse número k (arredondado às décimas).
- 4. Um saco contém seis bolas, numeradas de 1 a 6. As bolas que têm números pares estão pintadas de verde. As bolas que têm números ímpares estão pintadas de azul. Extraem-se, aleatoriamente, e de uma só vez, duas bolas do saco.

Sejam A e B os seguintes acontecimentos:

- A- As duas bolas são da mesma cor.
- $B-{\rm O}$ produto dos números das duas bolas é ímpar.
- **4.1.** Determine $P\left(A\right)$ (P designa probabilidade) Apresente o resultado na forma de fracção irredutível.
- **4.2.** Indique, justificando, o valor da probabilidade condicionada $P(A \mid B)$

5. Seja S o conjunto de resultados (com um número finito de elementos) associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos (A e B são, portanto, subconjuntos de S). Sabe-se que:

$$P\left(A\right)=2\,P\left(B\right)$$

$$P\left(A\,\cup\,B\right)=3\,P\left(B\right)$$
 (\$P\$ designa probabilidade).

Prove que os acontecimentos $\,A\,$ e $\,B\,$ são incompatíveis.

FIM

COTAÇÕES

	ada resposta certa	
	ada resposta erradaada respondida ou anulada	
No	ota: Um total negativo nesta parte da prova vale 0 (zero) pontos.	
ında	Parte	
1.		. 21
	1.1.	
2.		. 34
	2.1.	
3.		. 50
	3.1.	
	3.1.2. 17 3.2. 16	
4.		. 20
	4.1.	
5.		. 12

Formulário

Áreas de figuras planas

$$\textbf{Losango:} \ \ \frac{\textit{Diagonal maior} \times \textit{Diagonal menor}}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Círculo:
$$\pi r^2$$
 $(r-raio)$

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$
 $(r - raio da base; g - geratriz)$

Área de uma superfície esférica:
$$4\,\pi\,r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea~da~base~\times~Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$sen(a + b) = sen a . cos b + sen b . cos a$$

$$\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta) \operatorname{.} (\rho' \operatorname{cis} \theta') = \rho \operatorname{\rho'cis} (\theta + \theta')$$

$$\frac{\rho \, cis \, \theta}{\rho' \, cis \, \theta'} = \frac{\rho}{\rho'} \, cis \, (\theta - \theta')$$

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \frac{\theta + 2 k \pi}{n}, k \in \{0, ..., n - 1\}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$