## Лабораторная работа 3

Шифрование гаммированием

Греков Максим Сергеевич 2022 Москва

RUDN University, Moscow, Russian Federation

Цель работы

#### Цель работы

- Ознакомиться с шифрованием гаммированием.
- Исследовать стойкость шифров, основанных на процедуре гаммирования.
- Реализовать алгоритм шифрования гаммированием конечной гаммой.

# Описание метода

#### Описание метода

Гаммирование – метод последовательного симметричного шифрования, суть которого состоит в том, что символы шифруемого текста последовательно складываются с символами некоторой специальной последовательности, которая называется гаммой. (рис. 1)

#### Описание метода



Figure 1: Гаммирование

#### Стойкость

Стойкость шифров, основанных на процедуре гаммирования, зависит от характеристик гаммы - длины и равномерности распределения вероятностей появления знаков гаммы.

При использовании генератора ПСП получаем бесконечную гамму.

Однако, возможен режим шифрования конечной гаммы.

#### Пример шифрования

В роли конечной гаммы может выступать фраза.

Как и ранее, используется алфавитный порядок букв, т.е. буква «а» имеет порядковый номер 1, «б» - 2 и т.д.

Например, зашифруем слово «ПРИКАЗ» (« 16 17 09 11 01 08») гаммой «ГАММА» («04 01 13 13 01»).

#### Пример шифрования

Будем использовать операцию побитового сложения по модулю 33 (mod 33). (рис. 2) Получаем:

$$c_1 = 16 + 4(mod33) = 20$$

$$c_2 = 17 + 1(mod33) = 18$$

$$c_3 = 9 + 13(mod33) = 22$$

### Пример шифрования

$$c_4 = 11 + 13(mod33) = 24$$
 
$$c_5 = 1 + 1(mod33) = 2$$
 
$$c_6 = 8 + 4(mod33) = 12$$

Криптограмма: «УСХЧБЛ» (« 20 18 22 24 02 12»).

# Реализация

#### Реализация

```
ab03.py
F: > Documents > University > 👶 lab03.py > ...
       def gamm(text, gamma):
           numbers = lambda text: [ord(i)-ord('A')+1 for i in text.upper().replace(' ','')]
           letters = lambda nums: ''.join(chr(i+ord('A')-1) for i in nums)
           text = numbers(text)
           gamma = numbers(gamma)
           gamma = gamma*(len(text)//len(gamma)+1)
           return letters([(t+g)%33 for t, g in zip(text, gamma)])
       print(gamm('ΠΡИΚΑ3', 'ΓΑΜΜΑ'))
       print(gamm('радиотехника', 'шифр'))
```

Figure 2: Реализация на Python

#### Результат

• Результат 1: УСХЧБЛ

• Результат 2: ИЙЩЩЖЫЪЕЕСЯС

# Вывод

#### Вывод

- Ознакомились с шифрованием гаммированием.
- Исследовали стойкость шифров, основанных на процедуре гаммирования.
- Реализовали алгоритм шифрования гаммированием конечной гаммой.

