PH126 Logic I Fast Lecture 6

Lecturer: s.butterfill@warwick.ac.uk

Quantifier Recap

Everything is broken ∀x Broken(x)

All my things are broken $\forall x \text{ (BelongsToMe}(x) \rightarrow \text{Broken}(x) \text{)}$

Something is broken ∃x Broken(x)

Something of mine is broken $\exists x \text{ (BelongsToMe}(x) \land Broken(x) \text{)}$

How to determine truth of a sentence with an existential quantifier as the main connective

- 1. Give every object a name.
- 2. For each name in turn, create a new sentence like this: delete the quantifier and replace all instances of the variable it binds with that name
- 3. If ANY OF the new sentences are true, so is the original.

How to determine truth of a sentence with a universal quantifier as the main connective

- 1. Give every object a name.
- 2. For each name in turn, create a new sentence like this: delete the quantifier and replace all instances of the variable it binds with that name
- 3. If ALL OF the new sentences are true, so is the original.

Multiple quantifiers

There is a store for everything

 $\exists y \forall x \ StoreFor(y,x)$

∀y∃x StoreFor(x,y)

Other sentences to translate:

Wikipedia has an article about everything Everyone hurts someone they love Someone hurts everyone she loves

∀Intro

∀Intro *Example proof*

Exercise

If the following is valid, give a formal proof. If it is not valid, give a counterexample.

$$\begin{array}{c}
\forall x \forall y \forall z \ ([R(x,y) \land R(y,z)] \rightarrow R(x,z)) \\
\forall x \forall y [R(x,y) \rightarrow R(y,x)] \\
\forall x R(x,x)
\end{array}$$

"Every time I go to the dentist, somebody dies."

 $\forall t ((Time(t) \land ToDentist(a,t)) \rightarrow \exists x (Person(x) \land DiesAt(x,t)))$

Truth-functional completeness (LPL §7.4)

How many truth-functions can be constructed using 2 sentence letters?

P	Q	P % Q
T	T	? 📉
Τ	F	? Each of these
F	Т	? can be T or F
F	F	? 🖍

Df. 'A set of truth-functors is said to be *expressively adequate* (or sometimes *functionally complete*) iff, for every truth-function whatever, there is a formula containing only those truth-functors which express that truth-function, i.e. which has as its truth-table the truth-table specifying that function.' (Bostock, *Intermediate Logic* p. 45)

Illustration of the proof that $\{\neg, \land, \lor\}$ is truthfunctionally complete:

Р	Q	$P \rightarrow Q$	
Т	Т	T	$[P \land Q] \lor$
Τ	F	F	
F	Т	T	$[\neg P \land Q] \lor$
F	F	T	$[\neg P \land \neg Q]$

$$[P \land Q] \lor [\neg P \land Q] \lor [\neg P \land \neg Q]$$

Exercise assuming $\{\neg, \lor, \land\}$ is truth-functionally complete, show that $\{\neg, \lor\}$ is.

Quantifier equivalences

P→Q = | = ¬Q→¬P

$$\forall x \text{ (Square(x) → Broken(x))}$$

= | = $\forall x \text{ (¬Broken(x) → ¬Square(x))}$
P→Q = | = ¬P∨Q
 $\forall x \text{ (Square(x) → Broken(x))}$
= | = $\forall x \text{ (¬Square(x) ∨ Broken(x))}$
¬P∨Q = | = ¬(P∧¬Q)
 $\exists x \neg F(x) = | = \neg \forall x F(x)$
 $\forall x \text{ (¬Square(x) ∨ Broken(x))}$
= | = $\exists \neg x \text{ (Square(x) ∧ ¬Broken(x))}$
 $\exists x \neg Created(x) = | = \neg \forall x Created(x)$

Exercises 07

For your seventh seminar Only for fast groups
11.10 (nb. especially no. 20)
11.13
13.43-45
13.49-50
14.2-3
14.10-11

Despite what book says, DON'T even THINK about using TAUT CON.