LP Homework 5

吴嘉骜 21307130203

2023年5月5日

3.19

While solving a standard form problem, we arrive at the following tableau, with x_3, x_4 and x_5 being the basic variables:

The entries $\alpha, \beta, \gamma, \delta, \eta$ in the tableau are unknown parameters. For each one of the following statements, find some parameter values that will make the statement true.

- (a) The current solution is optimal and there are multiple optimal solutions.
- (b) The optimal cost is $-\infty$.
- (c) The current solution is feasible but not optimal. Solution.
- (a) Since the current solution is optimal, yet the reduced cost \overline{c}_2 is negative, the current solution must be degenerate, indicating $\beta=0$. In the next iteration, we will choose the x_2 to enter the basis and x_5 to exit. Let $\beta+\frac{2}{3}\gamma\geq 0$ and then the next tableau will be optimal. For the optimal solutions to be multiple, we may set $\delta=0$ and $\alpha>0$. Then we can make x_4 an exiting variable and x_1 an entering variable without changing the

optimal cost since $\delta = 0$. The following tableau could be a possible choice:

The next tableau will be:

Adding x_1 to the basis and removing x_4 from the basis, we get the following tableau:

Both $\mathbf{x} = (0, 0, 4, 1, 0)^T$ and $\mathbf{x} = (1, 0, 5, 0, 0)^T$ are optimal.

(b) For feasibility, we must demand $\beta \geq 0$. Since the problem is unbounded if no components of an exiting column are positive; by setting $\delta < 0$ and $\alpha, \gamma \leq 0$, we can make x_1 an exiting variable and the optimal cost $-\infty$. The following tableau could be a possible choice:

(c) For feasibility, we must demand $\beta \geq 0$. Since the current solution is not optimal, we may set $\beta > 0$ and then move in the direction of x_2 to get a lower cost. The following tableau could be a possible choice:

In the next iteration, we will choose the x_2 to enter the basis and x_5 to exit. The next tableau will be:

which is the optimal situation.

3.22

Consider the following linear programming problem with a single constraint:

maximize
$$\sum_{i=1}^{n} c_i x_i$$
 subject to
$$\sum_{i=1}^{n} a_i x_i = b$$

$$x_i \ge 0, \quad i = 1, \dots, n.$$

- (a) Derive a simple test for checking the feasibility of this problem.
- (b) Assuming that the optimal cost is finite, develop a simple method for obtaining an optimal solution directly.

Solution.

(a)

- 1. If b = 0, then the problem is feasible because $\mathbf{x} = \mathbf{0}$ is feasible.
- 2. If b > 0, then we assert that the problem is feasible if and only if there exists $a_j > 0$ for some $j \in [1, n]$.

Proof.

 \Rightarrow If the problem is feasible, then there exists $\mathbf{x} \geq 0$ such that $\sum_{i=1}^{n} a_i x_i = b$.

If $a_j \leq 0$ for all $j \in [1, n]$, then $\sum_{i=1}^n a_i x_i \leq 0 < b$, which is a contradiction. \Leftarrow If there exists $a_j > 0$ for some $j \in [1, n]$, then we can set $x_j = b/a_j$ and

- $x_i = 0$ for all $i \neq j$. Then **x** is feasible.
- 3. If b < 0, then we assert that the problem is feasible if and only if there exists $a_j < 0$ for some $j \in [1, n]$.

The proof is similar to the case b > 0.

(b)

Since the optimal cost is finite and the constraint set is a standard form polyhedron, there exists an optimal solution that is a basic feasible solution. By m=1, we know that every BFS has at most one nonzero component.

1. If b = 0, then we assert that the optimal cost is 0. Proof.

Let $\mathbf{x} = \mathbf{0}$, we obtain a cost of 0. If the optimal cost is not 0, then there exists a BFS \mathbf{x}^* such that $\sum_{i=1}^n c_i x_i^* < 0$. Since \mathbf{x}^* has at most one nonzero component, it then has exactly one nonzero component, say $x_k^* > 0$ for some $k \in [1, n]$. Then we have $a_k = 0$ and $c_k < 0$. Consider $\mathbf{x} = \alpha \mathbf{e}_k$, $\alpha > 0$, where \mathbf{e}_k is the kth unit vector and feasibility satisfies. For α sufficiently large, the optimal cost $\sum_{i=1}^n c_i x_i = \alpha c_k$ is unbounded from below, which is a contradiction.

2. If b>0, then every BFS has exactly one nonzero component. Let $k:=\underset{i=1,\ldots,n}{\arg\min\{\frac{c_ib}{a_i}\,|\,a_i>0\}}$, then an optimal solution is $\mathbf{x}=(0,\ldots,0,b/a_k,0,\ldots,0)$. 3. If b<0, then every BFS has exactly one nonzero component. Let $k:=\underset{i=1,\ldots,n}{\arg\min\{\frac{c_ib}{a_i}\,|\,a_i<0\}}$, then an optimal solution is $\mathbf{x}=(0,\ldots,0,b/a_k,0,\ldots,0)$.

3.26

(The big-M method) Consider the variant of the big-M method in which M is treated as an undetermined large parameter. Prove the following.

- (a) If the simplex method terminates with a solution (\mathbf{x}, \mathbf{y}) for which $\mathbf{y} = \mathbf{0}$, then \mathbf{x} is an optimal solution to the original problem.
- (b) If the simplex method terminates with a solution (\mathbf{x}, \mathbf{y}) for which $\mathbf{y} \neq \mathbf{0}$, then the original problem is infeasible.
- (c) If the simplex method terminates with an indication that the optimal cost in the auxiliary problem is $-\infty$, show that the original problem is either infeasible or its optimal cost is $-\infty$. *Hint*: When the simplex method terminates, it has discovered a feasible direction $\mathbf{d} = (\mathbf{d}_x, \mathbf{d}_y)$ of cost decrease. Show that $\mathbf{d}_y = \mathbf{0}$.
- (d) Provide examples to show that both alternatives in part (c) are possible.

Proof.

The original problem can be written as:

$$minimize \quad \mathbf{c}^T \mathbf{x}$$

$$subject to \quad \mathbf{A}\mathbf{x} = \mathbf{b}$$

$$\mathbf{x} \ge 0.$$

The auxiliary problem can be written as:

minimize
$$\mathbf{c}^T \mathbf{x} + M \sum_{i=1}^n y_i$$

subject to $\mathbf{A}\mathbf{x} + \mathbf{y} = \mathbf{b}$
 $\mathbf{x} \ge 0$.
 $\mathbf{y} \ge 0$.

- (a) Assume that there exists a feasible primal solution \mathbf{z} such that $\mathbf{c}^T \mathbf{z} < \mathbf{c}^T \mathbf{x}$. It is obvious that $(\mathbf{z}, \mathbf{0})$ is also feasible for the auxiliary problem. Then we have $\mathbf{c}^T \mathbf{z} + M \cdot 0 < \mathbf{c}^T \mathbf{x} + M \cdot 0$, which is a contradiction to the fact that $(\mathbf{x}, \mathbf{0})$ is optimal to the auxiliary problem.
- (b) Assume that the big-M method terminates with a solution (\mathbf{x}, \mathbf{y}) with $\mathbf{y} \neq \mathbf{0}$, whereas the original problem has a feasible point \mathbf{z} . It is obvious that $(\mathbf{z}, \mathbf{0})$ is also feasible for the auxiliary problem. Then we have $\mathbf{c}^T \mathbf{z} + M \cdot 0 < \mathbf{c}^T \mathbf{x} + M \cdot \sum_{i=1}^n y_i$ for M sufficiently large and $\mathbf{y} \neq \mathbf{0}$, which is a contradiction to the fact that (\mathbf{x}, \mathbf{y}) is optimal to the auxiliary problem.
- (c) Assume that the original problem has an optimal solution $\mathbf{z} \in \mathbb{R}^n$. When the big-M method terminates with an indication that the optimal cost is $-\infty$, it has discovered a feasible direction $\mathbf{d} = (\mathbf{d}_x, \mathbf{d}_y)$ of cost decrease

$$\mathbf{c}^T \mathbf{d}_x + M \sum_{i=1}^n d_{yi} < 0$$

such that $(\mathbf{x}, \mathbf{y}) + \theta(\mathbf{d}_x, \mathbf{d}_y)$ can be feasible for the auxiliary problem for any $\theta > 0$, which indicates that $\mathbf{d} \geq \mathbf{0}$ with at least one nonzero component. We assert that \mathbf{d}_y must be $\mathbf{0}$, otherwise we could take M large enough to make $\mathbf{c}^T \mathbf{d}_x + M \sum_{i=1}^n d_{yi} > 0$. Then we immediately have $\mathbf{c}^T \mathbf{d}_x < 0$. Notice that \mathbf{d}_x is a feasible direction of cost decrease for the original problem,

because $\mathbf{A}(\mathbf{x} + \mathbf{d}_x) + (\mathbf{y} + \mathbf{d}_y) = \mathbf{b} \Rightarrow \mathbf{A}\mathbf{d}_x = \mathbf{b} - (\mathbf{A}\mathbf{x} + \mathbf{y}) = \mathbf{0}$. Then we have $\mathbf{c}^T \mathbf{d}_x < 0$, which is a contradiction to the fact that \mathbf{z} is an optimal solution. (d) First consider an infeasible original problem:

minimize
$$x_1 - 2x_2$$

subject to $-x_1 - x_3 = 1$
 $-x_1 + x_3 = 1$.
 $\mathbf{x} > 0$.

Its big-M problem:

$$\begin{aligned} & minimize & & x_1 - 2x_2 + M(y_1 + y_2) \\ & subject \, to & & -x_1 - x_3 + y_1 = 1 \\ & & & -x_1 + x_3 + y_2 = 1. \\ & & & \mathbf{x} \geq 0. \\ & & & \mathbf{y} \geq 0. \end{aligned}$$

The initial tableau of the big-M problem is:

The second column is cost-reducing while none of its components is positive; thus, the $\operatorname{big-}M$ problem is unbounded.

Then consider an unbounded original problem:

minimize
$$-x_1 - x_2$$

subject to $x_1 - x_2 = 1$
 $x_1, x_2 \ge 0$.

Its big-M problem:

$$\begin{aligned} & minimize & & -x_1-x_2+My_1\\ & subject\,to & & x_1-x_2+y_1=1\\ & & & x_1,x_2,y_1\geq 0. \end{aligned}$$

The initial tableau of the big-M problem is:

Let y_1 exit the basis and x_1 enter the basis, we have:

The second column is cost-reducing while none of its components is positive; thus, the $\operatorname{big-}M$ problem is unbounded.

3.28

Consider a linear programming problem in standard form with a bounded feasible set. Furthermore, suppose that we know the value of a scalar U such that any feasible solution satisfies $x_i \leq U$, for all i. Show that the problem can be transformed into an equivalent one that contains the constraint $\sum_{i=1}^{n} x_i = 1.$

The original problem can be written as:

$$minimize \quad \mathbf{c}^T \mathbf{x}$$

$$subject to \quad \mathbf{A}\mathbf{x} = \mathbf{b}$$

$$\mathbf{x} \ge 0$$

Notice that from $x_i \leq U$ for all i we have $\frac{1}{nU} \sum_{i=1}^n x_i \leq 1$. Introduce the new variable x_{n+1} and the constraint turns into an equation $\sum_{i=1}^n \frac{1}{nU} x_i + x_{n+1} = 1$. We now show that the following problem with n+1 variables is equivalent

to the original problem:

minimize
$$\tilde{\mathbf{c}}^T \tilde{\mathbf{x}}$$

subject to $\tilde{\mathbf{A}} \tilde{\mathbf{x}} = \tilde{\mathbf{b}}$
 $\tilde{\mathbf{x}} \geq 0$

$$\sum_{i=1}^{n+1} \tilde{x}_i = 1.$$

where $\tilde{\mathbf{c}} = [nU \cdot \mathbf{c}, 0]^T$, $\tilde{\mathbf{A}} = [\mathbf{A}, \mathbf{0}]$, $\tilde{\mathbf{b}} = \frac{1}{nU}\mathbf{b}$.

1. If **x** is optimal to the original problem, then $\tilde{\mathbf{x}} = \left[\frac{1}{nU}\mathbf{x}, 1 - \frac{1}{nU}\sum_{i=1}^{n}x_i\right]^T$ is optimal to the new problem.

It is easy to verify that $\tilde{\mathbf{x}}$ is feasible for the new problem. Suppose that there exists another feasible solution $\tilde{\mathbf{x}} = [\tilde{\mathbf{x}}_1', \tilde{x}_{n+1}]^T, \tilde{\mathbf{x}}_1' \in \mathbb{R}^n$ such that $\tilde{\mathbf{c}}^T \tilde{\mathbf{x}}' < \tilde{\mathbf{c}}^T \tilde{\mathbf{x}}$. Then let $\mathbf{x}' = nU \cdot \tilde{\mathbf{x}}_1'$ which is feasible to the original problem, we have $\mathbf{c}^T \mathbf{x}' = \tilde{\mathbf{c}}^T \tilde{\mathbf{x}}' < \tilde{\mathbf{c}}^T \tilde{\mathbf{x}} = \mathbf{c}^T \mathbf{x}$, which contradicts the optimality of \mathbf{x} .

2. If $\tilde{\mathbf{x}} = [\tilde{\mathbf{x}}_1, \tilde{x}_{n+1}]^T, \tilde{\mathbf{x}}_1 \in \mathbb{R}^n$ is optimal to the new problem, then $\mathbf{x} = nU \cdot \tilde{\mathbf{x}}_1$ is optimal to the original problem. Suppose that there exists another feasible solution \mathbf{x}' to the original problem such that $\mathbf{c}^T \mathbf{x}' < \mathbf{c}^T \mathbf{x}$. Then let $\tilde{\mathbf{x}}' = [\frac{1}{nU}\mathbf{x}', 1 - \frac{1}{nU}\sum_{i=1}^n x_i']^T$ which is feasible to the new problem, we have $\tilde{\mathbf{c}}^T \tilde{\mathbf{x}}' = \mathbf{c}^T \mathbf{x}' < \mathbf{c}^T \mathbf{x} = \tilde{\mathbf{c}}^T \tilde{\mathbf{x}}$, which contradicts the optimality of $\tilde{\mathbf{x}}$.

Hence, the two problems are equivalent.