

ModelarDB: Modular Model-Based Time Series Management with Spark and Cassandra

Søren Kejser Jensen (Aalborg University)
Torben Bach Pedersen (Aalborg University)
Christian Thomsen (Aalborg University)

Center for Data-intensive Systems

Motivation

- Large industrial systems produce big amounts of high quality sensor data
- Data is collected as regular time series with only a few gaps without values
- High frequency could benefit analysis but:
 - High frequency data requires very fast ingestion
 - High query processing time limits use of historical data
 - Unfeasible high amounts of storage are required
- Storage of real-life wind turbine data:

Storage Method	Size (GiB)	Storage Method	Size (GiB)
PostgreSQL 10.1	782.87	CSV Files	582.68
RDBMS-X - Row	367.89	Apache Parquet Files	106.94
RDBMS-X - Column	166.83	Apache ORC Files	13.50
InfluxDB 1.4.2 - Tags	4.33	Apache Cassandra 3.9	111.89
InfluxDB 1.4.2 - Measurements	4.33	ModelarDB	2.41 - 2.84

Currently simple aggregates are stored with outliers and fluctuations lost!

Model-based storage of time series

- A model is a lossy or lossless representation of a time series
- E.g., a linear function reduces the values of N data points to a * x + b

- Benefits from model-based storage:
 - The storage needed for a model can be constant
 - The structure of a time series is preserved intactly
 - Queries can be answered directly from models
- Problems with model-based storage:
 - The best model for a time series changes over time
 - Long models for high compression increase latency
- Our contributions remove both of these problems

Contributions

- A general-purpose architecture for a modular model-based time series management system (TSMS)
- An adaptive online algorithm for multi-model compression of time series
 - It is model-agnostic, extensible, allows gaps, and offers low latency and high compression
- A set of methods and optimizations for a model-based TSMS:
 - A database schema to store multiple time series as models
 - Methods to push-down predicates to a key-value store storing models
 - Methods to execute optimized aggregate functions directly on models
 - Use of static code-generation to optimize projections
 - Dynamic extensibility for addding models without recompiling the TSMS
- ModelarDB an open-source implementation of our architecture
 - Available at github.com/skejserjensen/ModelarDB under version 2.0 of the Apache License

Architecture

- All portable functionality is part of a separate library named ModelarDB Core
- Our implementation interfaces ModelarDB Core with Spark and Cassandra
 - ModelarDB can be deployed on unmodified instances of Spark and Cassandra

Ingestion

- Models are incrementally fitted and emitted as part of segments with metadata:
 - Temporary Segment: Holds an unfinished model cached in memory for low latency
 - Finalized Segment: Holds a finished model cached in memory and persisted to disk
- Models are fitted in sequence until all would exceed the error bound:

error >
$$\epsilon$$

$$S = (t_s, t_e, SI, G_{ts}, M, \epsilon)$$

- ModelarDB Core includes four model types, users can optionally add more:
 - PMC-MR (Constant), Swing (Linear), Facebook (Lossless), Uncompressed (None)

Query Processing

- ModelarDB uses SQL for queries to provide a familiar interface
- Two views are provided to allow for queries at different granularities:
 - DataPoint View: executes queries on data points reconstructed from segments
 - Segment View: efficiently executes aggregate queries directly on segments

Predicate Push-Down

ModelarDB uses a three table schema for storing time series as segments

				_	_			_
Tid (PK)	SI	Tid (PK)	StartTime (PK)	EndTime	Mid	Parameters	Mid (PK)	Name
1	60000	1	1460442200000	1460442620000	1	0x3f50cfc0	1	PMC-MR
2	120000	3	1460642900000	1460645060000	2	0x3f1e	2	Swing
3	30000	•••					3	Facebook
Time S	eries		•	Segment			Mo	del

- ModelarDB performs predicate push-down as a multi-step procedure:
 - Data Point View: Predicates are rewritten and pushed to the Segment View
 - Segment View: Predicates are pushed without changes to the Storage Interface
 - Storage Interface: Predicates are rewritten and pushed to the Segment Store
 - The Segment Store can have imprecise evaluation of the predicates (i.e., with false positives)

Tid	Timestamp	Tid	Timestamp
Tid IN ?	Timestamp IN ?	Tid IN ?	No Pushdown
Tid > ?	Timestamp > ?	Tid > ?	EndTime > ?
Tid >= ?	Timestamp >= ?	 Tid >= ?	EndTime >= ?
Tid < ?	Timestamp < ?	Tid < ?	StartTime < ?
Tid <= ?	Timestamp <= ?	Tid <= ?	StartTime <= ?
Tid = ?	Timestamp = ?	Tid = ?	StartTime <= ? AND EndTime >= ?

Tid	StartTime	EndTime	
Tid IN ?	StartTime IN ?	EndTime IN ?	
Tid > ?	StartTime > ?	EndTime > ?	
Tid >= ?	StartTime >= ?	EndTime >= ?	
Tid < ?	StartTime < ?	EndTime < ?	
Tid <= ?	StartTime <= ?	EndTime <= ?	
Tid = ?	StartTime = ?	EndTime = ?	

	Tid StartTime		EndTime
	Tid IN ?	No Pushdown	No Pushdown
	Tid IN (?+1n)	No Pushdown	EndTime > ?
/	Tid IN (?n)	No Pushdown	EndTime >= ?
	Tid IN (1?-1)	Spark takeWhile	EndTime < ?
	Tid IN (1?)	Spark takeWhile	EndTime <= ?
	Tid = ?	No Pushdown	EndTime = ?

Data Point View

Segment View

Segment View

Casandra Segment Storage

Code Generation for Projection

- The overhead of projections are reduced using optimized lambda functions
- As the columns are known, the projection code is generated at compile time
- The correct function is found using a key created from the requested columns

```
def getDataPointGridFunction
      (columns: Array[String]): (DataPoint => Row) = {
      val target = getTarget(columns, dataPointView)
      (target: @switch) match {
        //Permutations of ('tid')
6
        case 1 => (dp: DataPoint) => Row(dp.tid)
        //Permutations of ('tid', 'ts', 'value')
10
        case 321 => (dp: DataPoint) => Row(dp.value,
11
          new Timestamp(dp.timestamp), dp.tid)
12
13
```

Model-based aggregation

- Queries on the Segment View are executed directly on segments if possible
- Segments can implement optimized methods for aggregate queries
 - E.g., **sum for Swing** can be computed in **constant time** as shown below
- Aggregates are computed from reconstructed data points as a fallback

```
public double sum() {
   int timespan = this.endTime - this.startTime;
   int size = (timespan / this.SI) + 1;
   double first = this.a * this.startTime + this.b;
   double last = this.a * this.endTime + this.b;
   double average = (first + last) / 2;
   return average * size;
}
```

Evaluation - Storage

Figure: Storage, EH

Figure: Storage, ER

Figure: Storage, EP

ModelarDB provides better compression using model-based storage

- The best compression ratio is for high frequency data (EH, ER) and increases with error bound
- Average error is 0.005% (EH), 2.5% (ER) and 0.73% (EP) for a 10% error bound
- The paper shows ModelarDB degrades gracefully as outliers increase in number

Evaluation - Adaptability

Figure: Adaptability, EH

Figure: Adaptability, ER

Figure: Adaptability, EP

ModelarDB chooses an appropriate model for each part of a series

- Different models are used for each data set and linear models are used with 0% error bound
- The system is extensible and users can implement other models to increase adaptability

Evaluation – Ingestion and Query Processing

Figure: Ingestion, ER

Figure: Aggregate Queries, ER

Figure: Scalability (Azure), ER

- ModelarDB has fast ingestion, fast large aggregates and linear scalability
 - Only InfluxDB, Cassandra, and ModelarDB can answer queries while ingesting data points
 - The paper shows ModelarDB is competitive with other systems for small scale queries

Summary and Future Work

Summary:

- Storing sensor data as simple aggregates discards valuable information
- Model-based compression provides multiple benefits over simple aggregates
- Proposed the model-based TSMS ModelarDB based on:
 - A general architecture for a modular model-based TSMS
 - An algorithm for online multi-model compression of time series
 - A set of methods and optimizations for a model-based TSMS
- Evaluation showed that ModelarDB hits a sweet spot by providing:
 - Fast ingestion
 - Good compression
 - Fast, scalable online aggregate query processing

Future Work:

- Reduce storage required by storing correlated time series as one stream of segments
- Increase query performance though new methods that operate on time series as segments