Assignment 3

Vibhavasu Pasumarti - EP20BTECH11015

Download all python codes from

https://github.com/VIB2020/AI1103/blob/main/ Assignment%203/code/Assignment%203.py

and latex-tikz codes from

https://github.com/VIB2020/AI1103/blob/main/ Assignment%203/Assignment%203.pdf

1 GATE 2015 (EE PAPER 01 NEW 2), Q 27 (ELECTRICAL ENGG SECTION)

Two players A, and B alternately keep rolling a fair dice. The person to get a six first wins the game. Given that player A starts the game, the probability that A wins the game is:

A
$$\frac{5}{11}$$

$$B \frac{1}{2}$$

B
$$\frac{1}{2}$$
 C $\frac{7}{13}$ D $\frac{6}{11}$

$$D \frac{6}{11}$$

2 Solution

- Given the die is fair.
- So, for any given throw by A or B: The probability of getting $6 = \frac{1}{6} = p$ (say)

The probability of NOT getting $6 = \frac{5}{6} = q$ (say)

Markov chain for the given problem:

Definition 2.1. Transition/Stochastic matrix corresponding to each throw of dice:

$$X = \begin{bmatrix} A & B & Winner \\ A & \begin{bmatrix} 0 & q & p \\ q & 0 & p \\ 0 & 0 & 0 \end{bmatrix}$$

$$\implies p_{AW}(i) = (X^i)_{13}$$

1

Lemma 2.1.

$$\lim_{n\to\infty} p_{AW}(n) = 0$$

Proof.

$$p, q < 1 \implies X$$
 is reducible.

$$\implies \lim_{n \to \infty} (X)^n \to 0$$

$$\lim_{n \to \infty} (X)^n_{13} = 0 \therefore \lim_{n \to \infty} p_{AW}(n) = 0$$

Given: A throws first.

$$\implies p_{AW}(1) = X_{13} = p$$

Second throw: (by B)

$$X^{2} = \begin{pmatrix} 0 & q & p \\ q & 0 & p \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & q & p \\ q & 0 & p \\ 0 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & q^{2} & qp \\ 0 & 0 & 0 \end{pmatrix} \Longrightarrow (X^{2})_{13} = 0$$
$$X^{3} = \begin{pmatrix} 0 & q & p \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & q^{2} & qp \\ 0 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & q^{3} & q^{2}p \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Longrightarrow (X^{3})_{13} = q^{2}p$$

$p_{AW}(i)$	X	No.of Turns	Probability
$p_{AW}(1)$	$(X^1)_{13}$	1	p = 1/6
$p_{AW}(2)$	$(X^2)_{13}$	2	0
$p_{AW}(3)$	$(X^3)_{13}$	3	q^2p
:	:	:	:
$p_{AW}(2n)$	$(X^{2n})_{13}$	2n	0
$p_{AW}(2n+1)$	$(X^{2n+1})_{13}$	2n + 1	$q^{2n}p$

Table:1 Summary of Probabilities

$$\Pr(A \text{ wins}) = \sum_{n=1}^{\infty} p_{AW}(n) = \sum_{n=1}^{\infty} (X^n)_{13}$$

$$= p + 0 + q^2 p + 0 + q^4 p + \dots$$

$$= \sum_{k=1}^{\infty} (q^2)^k p = p \sum_{k=1}^{\infty} (q^2)^k \quad \text{But } |q| < 1$$

$$= p \left(\frac{1}{1 - q^2}\right) = \frac{\frac{1}{6}}{1 - \frac{25}{36}} = \frac{6}{11}$$

$$\Pr(A \text{ wins the game}) = \frac{6}{11}$$

Option D is correct