Universidade Federal do Espírito Santo Departamento de Informática

André Barreto Silveira

Equação do Calor Unidimensional Transiente

Exercício 3 de Algoritmos Numéricos 2

Vitória

2016

1 Introdução

Neste documento serão apresentados os testes numéricos dos algoritmos explícito, implícito e de Crank-Nicolson para resolver a equação de calor unidimensional pelo método das diferenças finitas. Ou seja, desejamos encontrar u(x,t) que satisfaça a equação diferencial:

$$\frac{\partial u}{\partial t} - a(x,t)\frac{\partial^2 u}{\partial x^2} = f(x,t) \tag{1}$$

onde $0 < x < l, \ a(x,t) > 0$ e t > 0. A equação 1 satisfaz condições iniciais e de contorno.

2 Testes Numéricos

Para avaliar os algoritmos em questão de eficiência, acuidade da solução e tempo computacional ao resolver a equação 1, serão realizados três testes práticos nesta seção.

Para cada um dos testes, por questões de simplicidade e eficiência, existe um arquivo de código em octave com para realizá-lo. Para o teste 1, temos o implicito T1.m, explicito T1.m e cranknicolson T1.m, e assim por diante.

2.1 Teste 1

Equação do calor com condutividade térmica $a(x,t)=0.835cm^2/s$ e fonte de calor nula:

- Parâmetros básicos: a(x,t) = 0.835, f(x,t) = 0, (0,l) = (0,10) e número de passos no tempo igual a 60.
- Condições de contorno e iniciais: $u(0,t)=100^{\rm o}C,\ u(10,t)=50^{\rm o}C$ e $u(x,0)=0,\ {\rm para}\ x\in(0,10]$
- Parâmetros dos métodos de aproximação:

-
$$h = 1$$
 e $\Delta t_1 < \frac{h^2}{2a}$, $\Delta t_2 = \frac{h^2}{2a}$, $\Delta t_3 > \frac{h^2}{2a}$
- $h = 0.1$ e $\Delta t_1 < \frac{h^2}{2a}$, $\Delta t_2 = \frac{h^2}{2a}$, $\Delta t_3 > \frac{h^2}{2a}$

Na figura 1, vemos o gráfico da solução obtida pelo algoritmo implícito, com $\Delta t = 0.4$. Podemos observar que, aparentemente, o algoritmo ainda

Figura 1: Teste 1 - Alg. Implícito e $\Delta t = 0.4$

estava em processo de convergência quando interrompido com os parâmetros utilizados.

Na figura 2, vemos o gráfico da solução obtida pelo algoritmo explícito, com $\Delta t=0.8$. Vemos que o algoritmo implícito e este possuem gráficos muito díspares. O algoritmo Explícito, neste caso, apresentou este resultado devido à divergência. Com os parâmetros utilizados, não foi possível convergir, uma vez que o mesmo possui condições de estabilidade. Porém, reduzindo o delta, podemos alcançar a convergência.

E na figura 3, vemos o gráfico da solução obtida pelo algoritmo de Crank-Nicolson, com $\Delta t=0.8$. Ao contrário do algoritmo explícito, o de Crank-Nicolson convergiu com os mesmo parâmetros. Além disto, vemos que obtemos uma convergência mais aparente. Podemos inferir que a solução é uma reta.

2.2 Teste 2

Equação do calor com condutividade térmica $a(x,t)=0.835cm^2/s$ e fonte de calor nula:

- Parâmetros básicos: a(x,t)=0.835, f(x,t)=0, (0,l)=(0,10) e número de passos no tempo igual a 60.
- Condições de contorno e iniciais: $u(0,t)=100^{\rm o}C, \ \frac{\partial u(10,t)}{\partial x}=0$ e u(x,0)=0, para $x\in(0,10]$

Figura 2: Teste 1 - Alg. Explícito e $\Delta t = 0.8$

• Parâmetros dos métodos de aproximação:

$$-h = 1 e \Delta t_1 < \frac{h^2}{2a}, \Delta t_2 = \frac{h^2}{2a}, \Delta t_3 > \frac{h^2}{2a}$$
$$-h = 0.1 e \Delta t_1 < \frac{h^2}{2a}, \Delta t_2 = \frac{h^2}{2a}, \Delta t_3 > \frac{h^2}{2a}$$

Este teste é bastante similar ao primeiro, com a diferença que o extremo final do domínio não possui uma condição de contorno de valor prescrito, e sim com uma derivada conhecida.

Na figura 4, vemos o gráfico da solução obtida pelo algoritmo implícito, com $\Delta t = 0.4$.

Na figura 5, vemos o gráfico da solução obtida pelo algoritmo explícito, com $\Delta t = 0.5$. Este é muito similar ao do algoritmo implícito, e desta vez vemos que ele está convergindo, assim como o implícito.

Até este momento, com estas soluções obtidas, não conseguimos dizer qual é a solução exata, uma vez que é possível observar que as curvas apresentadas não demonstram convergência. Isto se deve ao fato de que o número de passo 60 é muito pequeno para este caso.

Portanto, na figura 6, vemos o gráfico da solução obtida pelo algoritmo de Crank-Nicolson, com $\Delta t=0.4$ e o número de passo igual a 600. Desta forma, é notável que a solução tende à constante 100. Isto era esperado pois temos a derivada conhecida $\frac{\partial u(10,t)}{\partial x}=0$ e u(0,t)=100. Ou seja, a função deve começar em 100 e terminar com derivada em x nula, que é um reta horizontal.

Figura 3: Teste 1 - Alg. Crank-Nicolson e $\Delta t = 0.8$

2.3 Teste 3

Equação do calor com condutividade térmica $a(x,t)=0.835cm^2/s$ e fonte de calor unitária:

- Parâmetros básicos: a(x,t) = 0.835, f(x,t) = 1, (0,l) = (0,10) e número de passos no tempo igual a 60.
- \bullet Condições de contorno e iniciais: $u(0,t)=100^{\rm o}C, \; \frac{\partial u(10,t)}{\partial x}=0$ e u(x,0)=0, para $x\in(0,10]$
- Parâmetros dos métodos de aproximação:

-
$$h = 1$$
 e $\Delta t_1 < \frac{h^2}{2a}$, $\Delta t_2 = \frac{h^2}{2a}$, $\Delta t_3 > \frac{h^2}{2a}$
- $h = 0.1$ e $\Delta t_1 < \frac{h^2}{2a}$, $\Delta t_2 = \frac{h^2}{2a}$, $\Delta t_3 > \frac{h^2}{2a}$

Este teste é similar ao segundo, com a diferença que agora temos fonte de calor igual à 1, que antes era nula.

Na figura 7, vemos o gráfico da solução obtida pelo algoritmo implícito, com $\Delta t = 0.8$.

Na figura 8, vemos o gráfico da solução obtida pelo algoritmo explícito, com $\Delta t = 0.5$.

Mais uma vez não conseguimos dizer qual é a solução exata. devido ao fato de que o número de passo 60 é muito pequeno.

Figura 4: Teste 2 - Alg. Implícito e $\Delta t = 0.4$

Portanto, na figura 9, vemos o gráfico da solução obtida pelo algoritmo de Crank-Nicolson, com $\Delta t=0.4$ e o número de passo igual a 600. Com isto, podemos observar que o comportamento da solução é bem diferente do aparente até então. O que acontece de fato é que a curva tende à uma parábola.

3 Conclusão

Os algoritmos apresentados são todos passíveis de uso, devendo apenas considerar algumas questões específicas. O algoritmo Explícito possui o limitador de caracterizar-se como um procedimento condicionalmente estável. Ou seja, existem restrições a serem atendidas para que o processo seja convergente. Logo, não é sempre viável escolher este método para a solução.

Tanto o método Implícito quando o de Crank-Nicolson são incondicionalmente estáveis. Isto que dizer que não apresentam restrições como o Explícito. Portanto seu uso é mais plausível quando não temos um problema específico conhecido.

Em relação ao valor de Δt , nota-se que existe um intervalo indicado para a sua escolha. Caso seja atribuindo um valor grande, teremos soluções incoerentes. E caso seja um valor muito pequeno, a convergência será muito lenta. Os valores "ideais" estariam entre 0.5 e 1, onde apresentam uma boa taxa de convergência.

Figura 5: Teste 2 - Alg. Explícito e $\Delta t = 0.5$

Figura 6: Teste 2 - Alg. Crank-Nicolson e $\Delta t = 0.4$

Figura 7: Teste 2 - Alg. Implícito e $\Delta t = 0.8$

Figura 8: Teste 2 - Alg. Explícito e $\Delta t = 0.5$

Figura 9: Teste 2 - Alg. Crank-Nicolson e $\Delta t = 0.4$