Hands-on Activity 6.1 Introduction to Data Analysis and Tools

CPE311 Computational Thinking with Python

Name: Corpuz, Micki Laurren B.

Section: CPE22S3

Performed on: 04/05/2024 **Submitted on:** 04/05/2024

Submitted to: Engr. Roman M. Richard

6.1 Intended Learning Outcomes

- · Use pandas and numpy data analysis tools.
- · Demonstrate how to analyze data using numpy and pandas

6.2 Resources:

- Personal Computer
- Jupyter Notebook (Colab)
- nternet Connection

6.3 Supplementary Activities:

Excercise 1

908000.0. 505000.0, 282000.0, 756000.0, 618000.0, 251000.0, 910000.0, 983000.0. 810000.0, 902000.0, 310000.0, 730000.0, 899000.0, 684000.0, 472000.0, 101000.0, 434000.0, 611000.0, 913000.0,

Run the given code below for exercises 1 and 2, perform the given tasks without using any Python modules.

```
import random
random.seed(0)
salaries = [round(random.random()*1000000, -3) for _ in range(100)]

salaries

[844000.0,
    758000.0,
    421000.0,
    259000.0,
    511000.0,
    405000.0,
    303000.0,
    477000.0,
    583000.0,
```

https://colab.research.google.com/drive/1kCoGKaxbL5MKeTavBU6KhhCJ9s2A3NRl#scrollTo=cb0NXqy9DLdZ&printMode=truecklines. The action of the control of the co

```
477000.0,
865000.0,
260000.0,
805000.0,
549000.0,
14000.0,
720000.0,
399000.0.
825000.0,
668000.0,
1000.0,
494000.0,
868000.0,
244000.0,
325000.0.
870000.0,
191000.0,
568000.0,
239000.0,
968000.0,
803000.0,
448000.0,
80000.0,
320000.0,
508000.0.
933000.0,
109000.0,
```

Using the data generated above, calculate the following statistics without importing anything from the statistics module in the standard library (https://docs.python.org/3/library/statistics.html) and then confirm your results match up to those that are obtained when using the statistics module (where possible):

- Mean
- Median
- Mode (hint: check out the Counter in the collections module of the standard library at https://docs.python.org/3/library/collections.html#collections.Counter)
- · Sample variance
- · Sample standard deviation

✓ Mean

a. Finding the mean without using statistics module

```
def mean(dataset):
    return sum(salaries) / len(salaries)

mean_wo = mean(salaries)
print(f"Mean of salaries (w/o statistics module): {mean_wo}.")

The mean of salaries (w/o statistics module): 585690.0.
```

b. Finding the mean using statistics module

Median

a. Finding the median without using the statistics module

```
# Sort the list first
def median(dataset):
    x = salaries.copy()
```

```
x.sort()
    q = len(x) // 2
    if len(x) % 2 != 0:
        return x[q]
    else:
        return (x[q - 1] + x[q]) / 2
median_wo = median(salaries)
print(f"Median of salaries (w/o statistics module): {median_wo}")
→ Median of salaries (w/o statistics module): 589000.0
    b. Fiding the median using the imported module
from statistics import median
median_w = median(salaries)
print(f"Median of salaries (w/ statistics module): {median_w}.")
→ Median of salaries (w/ statistics module): 589000.0.
  Mode
    a. Finding the mode without using the statistics module
import collections
def mode(dataset):
 # Make a dictionary-like object to keep track of how many times each unique item appears in the dataset.
 # The .most_common() method then sorts these items by how often they appear, from most to least frequent,
 # and gives you the results as a list of tuples.
 mode = collections.Counter(dataset).most_common()
 #the indexing retrieves the most common element(mode) from the sorted list
 return mode[0][0]
mode_wo = mode(salaries)
print(f"Mode of salaries (w/o statistics module): {mode_wo}")
→ Mode of salaries (w/o statistics module): 477000.0
    b. Finding the mode using the imported module
from statistics import mode
mode_w = mode(salaries)
print(f"Mode of salaries (w/ statistics module): {mode_w}")
→ Mode of salaries (w/ statistics module): 477000.0
   Sample Variance
    a. Finding the sample variance without using the statistics module.
def sample_variance(dataset):
    n = len(dataset)
    mean = sum(dataset) / n
    # Calculate the squared deviations
    squared_deviations = [(x - mean) ** 2 for x in dataset]
    # Sum up the squared deviations
    sum_squared_deviations = sum(squared_deviations)
```

```
# Compute sample variance
sample_variance = sum_squared_deviations / (n - 1)
return sample_variance

var_wo = sample_variance(salaries)

print(f"Sample variance of salaries (w/o statistics module): {var_wo:.4f}")

$\sum_{\text{3}}$ Sample variance of salaries (w/o statistics module): 70664054444.4444
```

b. Finding the sample variance using the imported module

```
from statistics import variance
var_w = variance(salaries)
print(f"Sample variance of salaries (w/ statistics module): {var_w}")

>>> Sample variance of salaries (w/ statistics module): 70664054444.44444
```

Standard deviation

a. Finding the standard deviation without using statistics module.

```
def sample_std(dataset):
    n = len(dataset)
    mean = sum(dataset)/n

# Calculate the squared deviations
    squared_deviations = [(x - mean) ** 2 for x in dataset]

# Sum up the squared deviations
    sum_squared_deviations = sum(squared_deviations)

# Compute sample variance
    std = (sum_squared_deviations / (n - 1))**0.5
    return std

sd_wo = sample_std(salaries)

print(f"Standard deviation of salaries (w/o using statistics module): {sd_wo:.4f}")

$\int \text{Standard deviation of salaries (w/o using statistics module): 265827.1138}
```

b. Finding the standard deviation using the imported module.

```
from statistics import stdev

sd_w = stdev(salaries)

print(f"Standard deviation of salaries (w/ statistics module): {sd_w}")

$\infty$ Standard deviation of salaries (w/ statistics module): 265827.11382484
```

Excercise 2

Using the same data, calculate the following statistics using the functions in the statistics module where appropriate:

- Range
- · Coefficient of variation
- · interquartile range
- · Quartile coefficient of dispersion

✓ Range

```
import statistics
def range(dataset):
 # Check if the dataset contains at least two values
  if len(dataset)< 2:</pre>
   raise ValueError("The data must contain at least two values.")
 # Compute the range by subtracting the maximum and minimum value of the dataset.
 return max(dataset)- min(dataset)
range = range(salaries)
print(f" The range value is {range:.2f}")
The range value is 995000.00

    Coefficient of variation

from statistics import stdev, mean
def COV(dataset):
 # Calculate the coefficient of variation
 # by dividing the standard deviation by the mean of the dataset.
 COV = stdev(dataset)/mean(dataset)
 # Convert the COV in percentage
 pCOV = COV * 100
 calc_COV = print(f" Coeff. of variation: {COV}\n Coeff. of variation in Percentage : {pCOV:.2f}")
 return calc_COV
COV(salaries)
Goeff. of variation: 0.45386998894439035
      Coeff. of variation in Percentage : 45.39

✓ Interguartile range

from statistics import quantiles
def IQR(dataset):
 # Assign a variable for the quartile list.
 Qlist = quantiles(dataset)
 # Compute for Interquartile Range where IQR = Q3 -Q1
 IQR = Qlist[-1]- Qlist[0]
 return IQR
iqr = IQR(salaries)
print(f"The dataset's Interquartile Range: {iqr}")
→ The dataset's Interquartile Range: 421750.0
```

Quartile coefficient of dispersion

```
def calc_QCD(dataset):
    qlist = quantiles(dataset)

# QCD = (Q3-Q1)/(Q3+Q1) * 100

# Use the calc_IQR for the numerator
    QCD = IQR(dataset)/(qlist[-1]+ qlist[0])

#Convert the QCD in percentage
    pQCD = QCD * 100

#Display the value of QCD
    calc_QCD = print(f"Quartile Coefficient of Dispersion: {QCD} \nQCD in Percentage: {pQCD:.6f} %")

return calc_QCD

print(f"The dataset's Interquartile Range: {iqr}")

    Quartile Coefficient of Dispersion: 0.34491923941934166
    QCD in Percentage: 34.491924 %
```

Excercise 3

Load the diabetes.csv file. Convert the diabetes.csv into dataframe

Perform the following tasks in the diabetes dataframe:

```
file_path = "/content/diabetes.csv"
import numpy as np
import pandas as pd
diabetes = pd.read_csv(file_path)
```

diabetes

<u>-</u>	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
763	10	101	76	48	180	32.9	0.171	63	0
764	2	122	70	27	0	36.8	0.340	27	0
765	5	121	72	23	112	26.2	0.245	30	0
766	1	126	60	0	0	30.1	0.349	47	1
767	1	93	70	31	0	30.4	0.315	23	0
768 rc	ows × 9 columns								

1. Identify the column names

2. Identify the data types of the data

```
data_types = diabetes.dtypes
print("\nData Types:\n", data_types)
    Data Types:
     Pregnancies
                                 int64
    Glucose
                                int64
    BloodPressure
                                 int64
                                int64
    SkinThickness
    Insulin
                                 int64
    BMI
                               float64
    DiabetesPedigreeFunction
                              float64
                                 int64
    Outcome
                                 int64
    dtype: object
```

3. Display the total number of records

```
total_records = len(diabetes)-1 # First row is header
print("Total Number of Records:", total_records)
diabetes.shape[0]

Total Number of Records: 767
768
```

4. Display the first 20 records

print("First 20 Records:")
diabetes.head(20)

→ First 20 Records:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
5	5	116	74	0	0	25.6	0.201	30	0
6	3	78	50	32	88	31.0	0.248	26	1
7	10	115	0	0	0	35.3	0.134	29	0
8	2	197	70	45	543	30.5	0.158	53	1
9	8	125	96	0	0	0.0	0.232	54	1
10	4	110	92	0	0	37.6	0.191	30	0
11	10	168	74	0	0	38.0	0.537	34	1
12	10	139	80	0	0	27.1	1.441	57	0
13	1	189	60	23	846	30.1	0.398	59	1
14	5	166	72	19	175	25.8	0.587	51	1
15	7	100	0	0	0	30.0	0.484	32	1
16	0	118	84	47	230	45.8	0.551	31	1
17	7	107	74	0	0	29.6	0.254	31	1
18	1	103	30	38	83	43.3	0.183	33	0
19	1	115	70	30	96	34.6	0.529	32	1
7									

5. Display the last 20 records

print("Last 20 Records:")
diabetes.tail(20)

→ Last 20 Records:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
748	3	187	70	22	200	36.4	0.408	36	1
749	6	162	62	0	0	24.3	0.178	50	1
750	4	136	70	0	0	31.2	1.182	22	1
751	1	121	78	39	74	39.0	0.261	28	0
752	3	108	62	24	0	26.0	0.223	25	0
753	0	181	88	44	510	43.3	0.222	26	1
754	8	154	78	32	0	32.4	0.443	45	1
755	1	128	88	39	110	36.5	1.057	37	1
756	7	137	90	41	0	32.0	0.391	39	0
757	0	123	72	0	0	36.3	0.258	52	1
758	1	106	76	0	0	37.5	0.197	26	0
759	6	190	92	0	0	35.5	0.278	66	1
760	2	88	58	26	16	28.4	0.766	22	0
761	9	170	74	31	0	44.0	0.403	43	1
762	9	89	62	0	0	22.5	0.142	33	0
763	10	101	76	48	180	32.9	0.171	63	0
764	2	122	70	27	0	36.8	0.340	27	0
765	5	121	72	23	112	26.2	0.245	30	0
766	1	126	60	0	0	30.1	0.349	47	1
767	1	93	70	31	0	30.4	0.315	23	0

6. Change the Outcome column to Diagnosis

 $\label{limits} \mbox{diabetes.rename(columns={'Outcome': 'Diagnosis'}, inplace=True)} \\ \mbox{diabetes}$

7	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Diagnosis
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
763	10	101	76	48	180	32.9	0.171	63	0
764	2	122	70	27	0	36.8	0.340	27	0
765	5	121	72	23	112	26.2	0.245	30	0
766	1	126	60	0	0	30.1	0.349	47	1
767	1	93	70	31	0	30.4	0.315	23	0
768 rd	ows × 9 columns	;							

7. Create a new column Classification

diabetes['Classification'] = np.where(diabetes['Diagnosis'] == 1, 'Diabetes', 'No Diabetes')
diabetes

_											
		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Diagnosis	Classification
	0	6	148	72	35	0	33.6	0.627	50	1	Diabetes
	1	1	85	66	29	0	26.6	0.351	31	0	No Diabetes
	2	8	183	64	0	0	23.3	0.672	32	1	Diabetes
	3	1	89	66	23	94	28.1	0.167	21	0	No Diabetes
	4	0	137	40	35	168	43.1	2.288	33	1	Diabetes
	763	10	101	76	48	180	32.9	0.171	63	0	No Diabetes
	764	2	122	70	27	0	36.8	0.340	27	0	No Diabetes
	765	5	121	72	23	112	26.2	0.245	30	0	No Diabetes
	766	1	126	60	0	0	30.1	0.349	47	1	Diabetes
	767	1	93	70	31	0	30.4	0.315	23	0	No Diabetes

768 rows × 10 columns

8. Create a new dataframe "withDiabetes"

with_diabetes = diabetes[diabetes['Diagnosis'] == 1]
with_diabetes = pd.DataFrame(with_diabetes)
with_diabetes

\Rightarrow	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Diagnosis	Classification
0	6	148	72	35	0	33.6	0.627	50	1	Diabetes
2	8	183	64	0	0	23.3	0.672	32	1	Diabetes
4	0	137	40	35	168	43.1	2.288	33	1	Diabetes
6	3	78	50	32	88	31.0	0.248	26	1	Diabetes
8	2	197	70	45	543	30.5	0.158	53	1	Diabetes
755	1	128	88	39	110	36.5	1.057	37	1	Diabetes
757	0	123	72	0	0	36.3	0.258	52	1	Diabetes
759	6	190	92	0	0	35.5	0.278	66	1	Diabetes
761	9	170	74	31	0	44.0	0.403	43	1	Diabetes
766	1	126	60	0	0	30.1	0.349	47	1	Diabetes

268 rows × 10 columns

9. Create a new dataframe "noDiabetes"

no_diabetes = diabetes[diabetes['Diagnosis'] == 0]
no_diabetes = pd.DataFrame(no_diabetes)
no_diabetes

7	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Diagnosis	Classification
1	1	85	66	29	0	26.6	0.351	31	0	No Diabetes
3	1	89	66	23	94	28.1	0.167	21	0	No Diabetes
5	5	116	74	0	0	25.6	0.201	30	0	No Diabetes
7	10	115	0	0	0	35.3	0.134	29	0	No Diabetes
10	4	110	92	0	0	37.6	0.191	30	0	No Diabetes
762	9	89	62	0	0	22.5	0.142	33	0	No Diabetes
763	10	101	76	48	180	32.9	0.171	63	0	No Diabetes
764	2	122	70	27	0	36.8	0.340	27	0	No Diabetes
765	5	121	72	23	112	26.2	0.245	30	0	No Diabetes
767	1	93	70	31	0	30.4	0.315	23	0	No Diabetes
500 r	ows × 10 columr	is								

10. Create a new dataframe "Pedia"

pedia = data[data['Age'] <= 19]</pre>

11. Create a new dataframe "Adult"

adult = diabetes[diabetes['Age'] > 18]
adult = pd.DataFrame(adult)

adult

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigre	Function	Age	Diagnosis	Classification
0	6	148	72	35	0	33.6		0.627	50	1	Diabetes
1	1	85	66	29	0	26.6		0.351	31	0	No Diabetes
2	8	183	64	0	0	23.3		0.672	32	1	Diabetes
3	1	89	66	23	94	28.1		0.167	21	0	No Diabetes
4	0	137	40	35	168	43.1		2.288	33	1	Diabetes
763	10	101	76	48	180	32.9		0.171	63	0	No Diabetes
764	2	122	70	27	0	36.8		0.340	27	0	No Diabetes
765	5	121	72	23	112	26.2		0.245	30	0	No Diabetes
766	1	126	60	0	0	30.1		0.349	47	1	Diabetes
767	1	93	70	31	0	30.4		0.315	23	0	No Diabetes
768 rc	ows × 10 column	IS									

12. Use numpy to get the average age and glucose value.

13. Use numpy to get the median age and glucose value.

```
median_age = np.median(diabetes['Age'])
median_glucose = np.median(diabetes['Glucose'])
```

```
print(f"Median Age: {median_age}")
print(f"Median Glucose Value: {median_glucose}")
→ Median Age: 29.0
     Median Glucose Value: 117.0
14. Use numpy to get the middle values of glucose and age.
middle_glucose = np.median(np.sort(diabetes['Glucose']))
middle_age = np.median(np.sort(diabetes['Age']))
print(f"Middle Glucose Value: {middle_glucose}")
print(f"Middle Age: {middle_age}")
→ Middle Glucose Value: 117.0
     Middle Age: 29.0
15. Use numpy to get the standard deviation of the skinthickness
std_skinthickness = np.std(diabetes['SkinThickness'])
print(f"Standard Deviation of Skin Thickness: {std_skinthickness:.1f}")
# It's best to present fewer decimal digits to aid easy understanding.
# Use one decimal place for: Means. Standard deviations (SCribbr, n.d.).
Standard Deviation of Skin Thickness: 15.9
```

< Conclusion