COMP 353 Databases Assignment no.2

Duc Nguyen

Gina Cody School of Computer Science and Software Engineering Concordia University, Montreal, QC, Canada

Summer 2020

Contents

1	Que	${ m estion} 1 \colon [10 { m marks}]$	3
	1.1	Problem Description:	3
	1.2	A	3
	1.3	B	3
	1.4	C	3
2	Que	estion 2: [10 marks]	4
	2.1	Problem Description	4
	2.2	$\{B \rightarrow C, D \rightarrow A\}$: decompose into BC and AD	5
		2.2.1 Find the candidate $key(s)$:	5
		2.2.2 Evaluate the decomposition	5
	2.3	$\{AB \rightarrow C, C\rightarrow A, C\rightarrow D\}$: decompose into ACD and BC	6
		2.3.1 Find the candidate key(s):	6
		2.3.2 Evaluate the decomposition	6
	2.4	$\{A \rightarrow BC, C \rightarrow AD\}$: decompose into ABC and AD	7
		2.4.1 Find the candidate key(s):	7
		2.4.2 Evaluate the decomposition	7
	2.5	$\{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$: decompose into AB and ACD	7
		2.5.1 Find the candidate $key(s)$:	7
		2.5.2 Evaluate the decomposition	8
	2.6	$\{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$: decompose into AB, AD and CD	9
		2.6.1 Find the candidate $key(s)$:	9
		2.6.2 Evaluate the decomposition	9
3	Que	estion 3: [10 marks]	10
	3.1	• •	10
	3.2	1	11
	3.3	· · ·	12
		3.3.1 Make every function dependency X in G determine only	
		v i	12
	3.4		$\frac{12}{12}$
	3.5		$\frac{12}{12}$
	3.6		13

1 Question 1: [10 marks]

1.1 Problem Description:

Prove or disprove the following statements. To prove a statement is true, give a formal argument (in cases involving implications among FDs, use Armstrongs Axioms). To disprove falsity, give a counterexample.

1.2 A.

$$\{A \rightarrow B, C \rightarrow AB\} \Rightarrow \{C \rightarrow B\}$$

 $C \to AB \Rightarrow C \to AANDC \to B(Decomposition/Splitting$ rule) With:

- A -> B
- C -> A

=> C -> B

Conclusion: The statement is true

1.3 B.

$$\{KL \to M, L \to N\} \Rightarrow \{KN \to M\}$$

Based on pseudo transitivity rule => Conclusion: The statement is true

1.4 C.

$$\{A \rightarrow C, BD \rightarrow A, C \rightarrow D\} \Rightarrow \{AB \rightarrow CD\}$$

- A -> C => AB -> C
- AB -> C, C -> D => AB -> D
- AB -> C, AB -> D => AB -> CD

Conclusion: The statement is true

2 Question 2: [10 marks]

2.1 Problem Description

Suppose you are given a relation scheme R=A,B,C,D. For each of the following sets of functional dependencies, assuming those are the only dependencies that hold for R, do the following:

- Identify the candidate key(s) for R.
- State whether or not the proposed decomposition of R into smaller relations is a good decomposition, briefly explaining why or why not.

The super key with all they keys in it: $\{A,B,C,D\}$ $\{A,B,C,D\}^+ = \{A,B,C,D\}$

2.2 $\{B \rightarrow C, D \rightarrow A\}$: decompose into BC and AD.

2.2.1 Find the candidate key(s):

From the set of function dependencies:

- C is redundant if there is B in the key
- A is redundant if there is D in the key

The keys left are: $\{B,D\}$ $\{B,D\}^+ = \{A,B,C,D\} => \{B,D\}$ is a super key. Proper subsets of $\{B,D\}$ are:

- $\{B\}$. $\{B\}^+ = \{B, C\} => \text{ not a super key.}$
- $\{D\}$. $\{D\}^+ = \{D, A\} => \text{ not a super key.}$

No proper subsets of $\{B, D\}$ are super keys $=>\{B,D\}$ is a candidate key. Moreover, there is no function dependencies in F that determine the keys B or D (prime keys). hence, it is the only candidate key of the relation.

Conclusion: Candidate key: { B, D }

2.2.2 Evaluate the decomposition

- $R_1(BC) \cup R_2(AD) = R(ABCD)$
- $R_1(BC) \cap R_2(AD) = \emptyset$
- => The decomposition is lossy.
- => The decomposition is not good.

2.3 {AB -> C, C-> A, C -> D}: decompose into ACD and BC.

2.3.1 Find the candidate key(s):

From the set of function dependencies:

- A is redundant if there is C in the key
- D is redundant if there is C in the key

The keys left are: $\{B,C\}$

 $\{B,C\}^+=\{A,B,C,D\}=>\{B,C\}$ is a super key. Proper subsets of $\{B,C\}$ are:

- $\{B\}$. $\{B\}^+ = \{B\} => \text{ not a super key.}$
- $\{C\}$. $\{C\}^+ = \{C, D, A\} => \text{ not a super key.}$

No proper subsets of $\{B, C\}$ are super keys => $\{B,C\}$ is a candidate key. **Prime keys:** B, C

The prime key C can be determined by AB in F => try replacing C with AB => Key: $\{A,B\}$

 $\{A,B\}^+ = \{A,B,C,D\} => \{A,B\}$ is a super key. Proper subsets of $\{A,B\}$ are:

- $\{A\}$. $\{A\}^+ = \{A\} => \text{ not a super key.}$
- $\{B\}$. $\{B\}^+ = \{B\} => \text{ not a super key.}$

No proper subsets of $\{A, B\}$ are super keys => $\{A,B\}$ is a candidate key. **Prime keys:** A, B, C

Finished checking all the FD's in which the right hand side is a prime key Conclusion: Candidate keys: {B,C}, {A,B}

2.3.2 Evaluate the decomposition

- $R_1(ACD) \cup R_2(BC) = R(ABCD)$
- $R_1(ACD) \cap R_2(BC) = C \neq \emptyset$
- $C^+ = \{C, A, D\} = C$ is super key of R_1
- => The decomposition is lossless.
- => The decomposition is good.

2.4 $\{A \rightarrow BC, C \rightarrow AD\}$: decompose into ABC and AD.

2.4.1 Find the candidate key(s):

Splitting the FD's in F:

- $\{A->BC\} => \{A->B\} \text{ AND } \{A->C\} \text{ (Splitting rule)}$
- $\{C->AD\} => \{C->A\} AND \{C->D\} (Splitting rule)$
- $\{A->C\}, \{C->D\} => \{A->D\}$ (Transitivity)

F would be transformed to: {A->B, A->C, A->D, C->A, C->D}

From the set of function dependencies:

- B,D is redundant if there is A in the key
- D is redundant if there is C in the key

The key left is $\{A\}$

 ${A}^+ = {A, B, C, D} => {A}$ is a super key.

There are no proper subsets of $\{A\} => \{A\}$ is a candidate key. **Prime keys:** A

The prime key A can be determined by C in F => try replacing A with C => Key: $\{C\}$

 $\{C\}^+ = \{A, B, C, D\} = > \{C\}$ is a super key.

There are no proper subsets of $\{C\} => \{C\}$ is a candidate key.

Prime keys: A, C

Finished checking all the FD's in which the right hand side is a prime key

Conclusion: Candidate keys: $\{A\}$, $\{C\}$

2.4.2 Evaluate the decomposition

- $R_1(ABC) \cup R_2(AD) = R(ABCD)$
- $R_1(ABC) \cap R_2(AD) = A \neq \emptyset$
- $A^+ = \{A, B, C, D\} => A$ is super key of both R_1 and R_2
- => The decomposition is lossless.
- => The decomposition is good.

2.5 $\{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$: decompose into AB and ACD.

2.5.1 Find the candidate key(s):

Extend the FD's in F:

- $\{A->B\}, \{B->C\} => \{A->C\} (Transitivity)$
- $\{A->C\}, \{C->D\} => \{A->D\}$ (Transitivity)

F would be transformed to: {A->B, B->C, C->D, A->C, A->D}

From the set of function dependencies:

• B,C, D is redundant if there is A in the key

The key left is $\{A\}$

$$\{A\}^+ = \{A, B, C, D\} => \{A\}$$
 is a super key.

There are no proper subsets of $\{A\} => \{A\}$ is a candidate key. Finished checking all the FD's in which the right hand side is a prime key

Conclusion: Candidate key: $\{A\}$

2.5.2 Evaluate the decomposition

- $R_1(AB) \cup R_2(ACD) = R(ABCD)$
- $R_1(AB) \cap R_2(ACD) = A \neq \emptyset$
- $A^+ = \{A, B, C, D\} => A$ is super key of both R_1 and R_2
- => The decomposition is lossless.
- => The decomposition is good.

2.6 {A -> B, B -> C, C -> D}: decompose into AB, AD and CD.

2.6.1 Find the candidate key(s):

The relation and the function dependencies are exactly the same as in question d => Candidate key: $\{A\}$

2.6.2 Evaluate the decomposition

$$\begin{array}{cccccccc} & A & B & C & D \\ R1(AB) & \alpha & \alpha & \beta & \beta \\ R2(AD) & \alpha & \beta & \alpha & \beta \\ R3(CD) & \beta & \beta & \alpha & \alpha \end{array}$$

Use function dependencies to transform the table

$$\begin{array}{cccccccc} & A & B & C & D \\ R1(AB) & \alpha & \alpha & \beta & \beta \\ R2(AD) & \alpha & \alpha & \alpha & \alpha \\ R3(CD) & \beta & \beta & \alpha & \alpha \end{array}$$

The second row of R2 is full of α

- => The decomposition is lossless.
- => The decomposition is good.

3 Question 3: [10 marks]

3.1 Problem Description:

You are given a relation scheme $R=B,\,N,\,S,\,T,\,A,\,R,\,C$ where $B=Building,\,N=Door\,Number,\,S=Street,\,T=Type,\,A=Architect,\,R=Subcontractor\,and\,C=Class.$ Constraints between the attributes can be expressed in the form of the following functional dependencies:

 $F = \{AB \rightarrow T, A \rightarrow B, R \rightarrow C, NS \rightarrow BT\}.$

3.2 Find all the candidate keys of F. Prove that these are the only keys

From the set F:

=>

• $\{NS \rightarrow BT\} => NS \rightarrow B \text{ AND } NS \rightarrow T \text{ (Splitting rule)}$

The first super key contains all the attributes: $\{B, N, S, T, A, R, C\}^+ = B, N, S, T, A, R, C$

From the set of function dependencies F:

- B is redundant if there are N,S in the key
- T is redundant if there are N,S in the key
- C is redundant if there is R in the key

=> The keys left are N, S, A, R $\{N,S,A,R\}^+=\{N,S,A,R,B,T,C\}$ => $\{N,S,A,R\}$ is a super key Proper subsets of N,S,A,R are:

- $\{N\}$. $\{N\}^+ = \{N\} =$ not a super key
- $\{S\}$. $\{S\}^+ = \{S\} => \text{ not a super key}$
- $\{A\}$. $\{A\}^+ = \{A, B, T\} => \text{ not a super key}$
- $\{R\}$. $\{R\}^+ = \{R, C\} => \text{ not a super key}$
- $\{N, S\}$. $\{N, S\}^+ = \{N, S, B, T\} =$ not a super key
- $\{N, A\}$. $\{N, A\}^+ = \{N, A, B, T\} => \text{not a super key}$
- $\{N, R\}$. $\{N, R\}^+ = \{N, R, C\} =$ not a super key
- $\{S, A\}$. $\{S, A\}^+ = \{S, A, B, T\} => \text{not a super key}$
- $\{S, R\}$. $\{S, R\}^+ = \{S, R, C\} => \text{ not a super key}$
- $\{A, R\}$. $\{A, R\}^+ = \{A, R, B, T, C\} => \text{not a super key}$
- $\{N, S, A\}$. $\{N, S, A\}^+ = \{N, S, A, B, T\} => \text{not a super key}$
- $\{N, S, R\}$. $\{N, S, R\}^+ = \{N, S, R, B, T, C\} => \text{not a super key}$
- $\{N, A, R\}$. $\{N, A, R\}^+ = \{N, R, A, B, C, T\} => \text{not a super key}$
- $\{S, A, R\}$. $\{S, A, R\}^+ = \{S, A, R, B, T\} => \text{ not a super key}$

No proper subsets of $\{N,S,A,R\}$ are super keys => It is candidate key.

Moreover, there is no function dependencies in F that determine any key inside {N,S,A,R}. Therefore, no key could possibly replace a key in the candidate key {N,S,A,R}; hence it is the only candidate key.

3.3 Derive a canonical cover for F in a systematic manner.

Let G be the minimal/canonical cover of F (the set of function dependencies) $G = \{AB->T, A->B, R->C, NS->BT\}$

3.3.1 Make every function dependency X in G determine only 1 attribute:

The only dependency needed to be splitted is: NS -> BT

•
$$\{NS->BT\} => NS->B \text{ AND NS-}>T$$

 $G = \{AB->T, A->B, R->C, NS->B, NS->T\}$

3.4 Minimize the left hand side X of every FD

• $\{A->B, AB->T\} => A->T \text{ AND } B->T$

$$=> G = \{A->T, B->T, A->B, R->C, NS->B, NS->T\}$$

3.5 Remove redundant FD, if any

 $G = \{A->T,\,B->T,\,A->B,\,R->C,\,NS->B,\,NS->T\}$

- A->T. $A^+ = \{A, B\}$. There're no T in the closure => the FD is not redundant.
- B->T. $B^+ = \{B\}$. There're no T in the closure => the FD is not redundant.
- A->B. $A^+ = \{A, B\}$. There is B in the closure => the FD is redundant => Remove this FD
- R->C. $R^+ = \{R\}$. There're no C in the closure => the FD is not redundant.
- NS->B. $\{N,S\}^+ = \{N,S,T\}$. There're no B in the closure => the FD is not redundant.
- NS->T. $\{N,S\}^+ = \{N,S,B,T\}$. There is T in the closure => the FD is redundant => Remove this FD

The canonical cover of F is $G = \{A->T, B->T, R->C, NS->B\}$

3.6 Does a set of FDs have a unique canonical cover? Why?

The answer is no. A set of FD's might have more than one unique canonical cover. Depending on the order of simplifying, the canonical cover might be different each time.