

Name: Solution

Habib University

Hectrical Engineering Department

Dhanani School of Science & Engineering

EE – 211 – Basic Electronics	
Fall 2022	a) /
Section L2	
Midterm Exam – 1	A
Dr. Ahmad Usman	- 1
25	
	Section L2 Midterm Exam – 1 Dr. Ahmad Usman

Student ID:

Question # 1 (CLO -1 – Points: 5, 2.5 + 2.5)	
A pn junction is operating in forward bias.	
(a) To obtain a current of 1 mA with an applied voltage of should it be chosen? $I_{D} = I_{S} (exp = \frac{\sqrt{D}}{\sqrt{2}} - 1)$	750mV, what should I _s be and how $I_s = A_2 n_i^2 \left[\frac{D_n}{N_A L_n} + \frac{D_p}{N_D L_p} \right]$
$I_{m} = I_{s} \left(\exp \frac{750m}{26m} - 1 \right)$ $I_{s} = 2.9667 \times 10^{-16} A$	$I_s \propto A$
The Is can be chosen by con area of the diode.	stroking the cross-sectional

(b) If the diode cross section area is doubled, what voltage yields a current of 1mA?

$$I_{s} \propto A$$

$$2A \propto 2I_{s}$$

$$I_{s} = 2 (2.9667 \times 10^{-16})$$

$$I_{D} = 1 \text{ mA}$$

$$V_{D} = 0.7319 \text{ V}$$

$$V_{D} = 731.9 \text{ m V}$$

Question #2 (CLO - 1 - Points: 5)

In the figure shown below, the diodes are carrying a 5mA current and the load draws 20 mA of current. If the load current increases by 1 mA, what is the change in the total voltage across the three diodes? Assume that the three diodes are similar diodes, having resistance of r_d . Assume R_1 to be greater that $3r_d$. Remember $r_d = V_T / I_D$.

Question #3 (CLO -2 – Points: 7.5, 5 + 2.5)

An oscillator application requires a variable capacitance with the characteristic shown in the figure.

Assume the area of the device as $1000 \mu m^2$.

Hint: You have to assume a value of N_A (say $2x10^{18}$ cm⁻³) after calculating the ratio of (N_AN_D/N_A+N_D) .

(a) Determine N_A and N_D .

$$2.2 fF/pm^{2} = \frac{C_{jo}}{\sqrt{1 + 0.5}}$$

$$1.3 fF/pm^{2} = \frac{C_{jo}}{\sqrt{1 + 1.5}}$$

$$\sqrt{1 + 1.5}$$
From Eq (1), we get
$$4.84 (fF)^{2} = \frac{C_{jo}^{2}}{1 + 0.5}$$

$$4.84 + \frac{C_{jo}^{2}}{\sqrt{1 + 0.5}}$$

(b) Calculate the value of inductance required to oscillate this device a 5 GHz (at $V_R = 0V$).

$$\frac{C_{jo}}{\sqrt{2}} = \sqrt{\frac{8_{i} \cdot 9}{2}} \left(\frac{N_{A} \cdot N_{D}}{N_{A} + N_{D}} \right) \left(\frac{1}{V_{o}} \right)$$

$$\frac{N_{A} \cdot N_{D}}{N_{A} + N_{D}} = 3.1343 \times 10^{17} \text{ cm}^{-3}$$

$$\frac{N_{A} + N_{D}}{N_{A} + N_{D}} = 3.1343 \times 10^{17} \text{ cm}^{-3}$$

$$\frac{N_{A} + N_{D}}{N_{D}} = 3.71 \times 10^{17} \text{ cm}^{-3}$$

$$\frac{N_{A} \cdot N_{D}}{N_{D}} = 3.71 \times 10^{17} \text{ cm}^{-3}$$

Question # 4 (CLO -3 - Points: 7.5, 2 + 1.5 + 4)

Design a dc power supply using a bridge-rectifier to develop a certain dc voltage across the load R_L. The current through the load is 500 mA. Use a stepdown transformer whose primary side is connected to 240 V (RMS) at a mains frequency of 50 Hz.

(a) Draw the circuit diagram.

$$V_0^{(DC)} = \frac{2 V_{O(max)}}{\Lambda}$$

(b) Draw the input and output voltage waveforms of the designed dc power supply.

(c) Specify the PIV-rating, I_{d,max} ating, and the power-rating of the diodes. Assume practical silicon diodes ($V_{D,ON} = 0.7V$), safety factor of 1.5, and $R_L = 15 \Omega$. Show all your working properly.

Note: You don't need to derive the formulas. Just use them for your calculations.

don't need to derive the formulas. Just use them for your calculations.

$$V_{dc} = I_{L} R_{L} = (500 \, \text{m}) (15) = 7.5 \, \text{V}$$

$$V_{0(may)} = \frac{\pi}{2} \frac{V_{dc}}{2} = \frac{7.5 \, \text{y}}{3.142} = \frac{11.7825 \, \text{V}}{2}$$

$$V_{S} = V_{0(may)} + V_{drap} \quad \text{or} \quad V_{S} = V_{0(may)} + \frac{2}{2} V_{grap} \quad \text{diadle}$$

$$V_{S} = 11.7825 + 0.7 \quad V_{S} = 12.4825 \, \text{V} \quad \text{ems} \quad V_{S} = 13.7825 \, \text{V}$$

$$V_{S} = \sqrt{2} V_{S} \quad V_{S} = \sqrt{2} V_{S} \quad V_{S} = \sqrt{2} V_{S} \quad V_{S} = 17.6529 \, \text{V}$$

$$V_{S} = 17.6529 \, \text{V}$$

$$V_{S} = 17.6529 \, \text{V}$$

$$V_{S} = 17.6529 \, \text{V}$$

$$\frac{P_{d(max)}}{P_{d(max)}^{dc}} = \frac{I_{d(max)}}{I_{d(max)}} \quad \forall diode = 785.5 \times 0.7$$

$$\frac{P_{d(max)}}{P_{d(max)}} = 549.85 \text{ m W}$$

$$\frac{P_{d(max)}}{P_{d(max)}} > 824.775 \text{ m W}$$