Changes are like Cherries after all

We like them
We wait the next season
And they appear in pairs

Silvio Ravaioli

November 19, 2019

Motivation

- ▶ **Observation 1** (inertia): changes are difficult to generate
- ▶ **Observation 2** (bundles): many simultaneous choices
- ► Main Hypothesis (+ correlation): Changes occur more often together than in isolation
- ► **Opposite Hypothesis** (- correlation): Changes occur more often in isolation than together
- Framework: price adjustments
- ► Empirical motivation: sticky prices over time (Bils and Klenow 2004 JPE), but also uniform prices across stores (Della Vigna and Gentzkow 2019 QJE)

Motivation

- ▶ **Observation 1** (inertia): changes are difficult to generate
- Observation 2 (bundles): many simultaneous choices
- ► Main Hypothesis (+ correlation): Changes occur more often together than in isolation
- Opposite Hypothesis (- correlation): Changes occur more often in isolation than together
- Framework: price adjustments
- ► Empirical motivation: sticky prices over time (Bils and Klenow 2004 JPE), but also uniform prices across stores (Della Vigna and Gentzkow 2019 QJE)

Motivation

- ▶ **Observation 1** (inertia): changes are difficult to generate
- ▶ Observation 2 (bundles): many simultaneous choices
- ► Main Hypothesis (+ correlation): Changes occur more often together than in isolation
- Opposite Hypothesis (- correlation): Changes occur more often in isolation than together
- Framework: price adjustments
- ➤ Empirical motivation: sticky prices over time (Bils and Klenow 2004 JPE), but also uniform prices across stores (Della Vigna and Gentzkow 2019 QJE)

Lab experiment - Old vs New

Khaw et al. 2017 - Discrete adjustment to a changing environment

Lab experiment - Old vs New

Adapted task with two independent states

Collected Data - Time Series

Collected Data - Time Series

Collected Data - Time Series

Preliminary results

- ▶ Inertia: no change in 51% of the rounds
- Correlated changes: a change in p1 increases the likelihood of changing p2 from 1/4 to 1/2

	All	Conditional on	Conditional on
		p1 changed	p1 unchanged
Pr(p2 change)	32%	49%	24%
Avg p2 change	3.44%	4.25%	3.05%
Avg p2 c (cond.)	10.73%	8.68%	12.71%

Implications/Applications

- ▶ **Descriptive**: the uniform pricing pattern is recent and poorly understood. Similar scenarios?
- Normative: inertia and correlated changes are possibly optimal under a "menu-cost" model with cognitive costs
- ► **Behavioral**: use small changes to prepare for bigger ones (possibly consistent with baby-steps approach)
- ➤ **Strategic**: predict competitor's behavior (phase transition), avoid or facilitate further changes

Changes are like Cherries after all

We like them
We wait the next season
And they appear in pairs

Silvio Ravaioli

November 19, 2019

