Problem 1. Prove that $(\mathbb{R}^n, d_{\infty})$ is complete.

Proof. Let $(\vec{x_k})$ be a Cauchy sequence in \mathbb{R}^n . By a result found in quiz 1, it follows that (x_{ik}) for $1 \leq i \leq n$ is also Cauchy. Since \mathbb{R} is a complete metric space with respect to the standard metric on \mathbb{R} , we find that each x_{ik} is also a convergent sequence. By another result in quiz 1, it follows that $(\vec{x_k})$ is a convergent sequence. Hence, \mathbb{R}^n with respect to the d_{∞} metric is complete.

Problem 2. (i) Let $\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. Prove that $\pi_i : \mathbb{R}^n \to \mathbb{R}$ defined by $\pi_i(\vec{x}) = x_i$ are continuous

- (ii) Prove that π_i in (i) are continuous maps with respect to d_{euclid} on \mathbb{R}^n and the standard metric on \mathbb{R} .
- **Proof.** (i) Our goal is to show that π_i is a continuous map with respect to d_{∞} on \mathbb{R}^n ; we will do this via the sequential criterion of continuity. Suppose $\vec{x_k} \to \vec{x}$ for some \vec{x} in \mathbb{R}^n . By a result found in quiz 1, we can see that $x_{ik} \to x_i$ for $1 \le i \le n$. By definition of π_i , we find that as $n \to \infty$, we get

$$\pi_i(\vec{x_k}) = x_{ik} \to x_i = \pi_i(\vec{x}).$$

Hence, we have that π_i is a continuous map with respect to d_{∞} and the standard metric on \mathbb{R} .

(ii) Our goal is to show that $\pi_i : \mathbb{R}^n \to \mathbb{R}$ is continuous with respect to d_{euclid} . Let $(\vec{x_k})$ be a sequence in \mathbb{R}^n such that $\vec{x_k} \to \vec{x}$. Since π_i is continuous on \mathbb{R}^n with respect to the d_{∞} metric, we have $d_{\infty}(\vec{x_k}, \vec{x}) \to 0$. Notice that

$$0 \le d_{\text{euclid}}(\vec{x_k}, \vec{x}) \le (n)^{1/2} d_{\infty}(\vec{x_k}, \vec{x}). \tag{1}$$

Now, $d_{\infty}(\vec{x_k}, \vec{x}) \to 0$ implies that $d_{\text{euclid}}(\vec{x_k}, \vec{x}) \to 0$ by applying the squeeze theorem to (1). Thus, we can see that

$$|\pi_{i}(\vec{x_{k}}) - \pi_{i}(\vec{x})| = \left(|\pi_{i}(\vec{x_{k}}) - \pi_{i}(\vec{x})|^{2}\right)^{1/2}$$

$$= \left(|x_{ik} - x_{i}|^{2}\right)^{1/2}$$

$$\leq \left(\sum_{i=1}^{n} |x_{ik} - x_{i}|^{2}\right)^{1/2}$$

$$= d_{\infty}(\vec{x_{k}}, \vec{x}) \to 0.$$

Hence, we conclude that

$$|\pi_i(\vec{x_k}) - \pi_i(\vec{x})| \to 0$$

and so π_i is continuous map with respect to d_{∞} and the standard metric on \mathbb{R} .

Problem 3. (i) Define $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by $d(x,y) = |e^x - e^y|$. Prove that d is a metric on \mathbb{R} .

(ii) Prove or disprove: (\mathbb{R}, d) is complete.

Proof. (i)

Problem 4. Let $X = \mathbb{N}$ be the set of positive integers.

- (i) Let d(m, n) = |m n|. Prove that (X, d) is complete.
- (ii) Let $d(m,n) = \left| \frac{1}{m} \frac{1}{n} \right|$. Prove that (X,d) is not complete.

Problem 5. Let $X = \{f : [0,1] \to \mathbb{R} : f \text{ is continuous}\}.$

- (i) Define $d(f,g)=\int_0^1|f(t)-g(t)|\ dt.$ Prove that d is a metric on X. Prove that d is a metric on X.
- (ii) Prove that (X, d) is not complete.