Undergraduate Complexity Theory Lecture 17: Savitch's Theorem & NL

Marcythm

July 20, 2022

1 Lecture Notes

Theorem 1.1 (Savitch's Theorem). For any function $f: \mathbb{N} \to \mathbb{R}^+$, where $f(n) \geq n$,

$$\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$$

idea of Savitch's Theorem: "Middle-first search".

```
procedure Path?(x,y,k) 
ho whether there is a path from x to y within 2^k steps if k=0 then return truth value of x=y else for w \in V do
if Path?(x,w,k-1) && Path?(w,y,k-1) then return true return false
```

need to store $\log n$ stack variables (the depth of recursion), each with $O(\log n)$ space, so $O(\log^2 n)$ space in total. time complexity: $O(n^k)$.

Definition 1.2 (Nondeterminism-based definition of NL). $NL = NSPACE(\log n)$.

Proposition 1.3. $ST-PATH \in NL$.

Proof. Nondeterministically choose each step, and maintain a counter for length.

Theorem 1.4. $NL \subseteq P$, $NL \subseteq SPACE(\log^2 n)$.

Proof. see reading section.

2 Reading

2.1 sipser 8.4 (The Classes L and NL)

If M is a TM that has a separate read-only input tape and w is an input, a configuration of M on w is a setting of the state, the work tape, and the positions of the two tape heads. The input w is not a part of the configuration of M on w.

Thus total number of configurations of M on w is $|Q|nf(n)|\Gamma|^{f(n)}$, i.e. $n2^{O(f(n))}$, can extend Savitch's Theorem to $f(n) \ge \log n$.