Math40003 Linear Algebra and Groups

Problem Sheet 6

- 1.* (a) Which of the following functions $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ are linear transformations?
 - i. $T(x_1, x_2, x_3) = (x_1 + x_2 x_3, 2x_1 + x_2)$
 - ii. $T(x_1, x_2, x_3) = (0, \sqrt{2}x_3)$
 - iii. $T(x_1, x_2, x_3) = (x_1x_2, x_3)$
 - (b) Let V be the vector space of all 2×2 matrices over \mathbb{R} . Which of the following functions $T: V \longrightarrow V$ are linear transformations?
 - i. $T(A) = A^2$ for all $A \in V$
 - ii. $T(A) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} A$ for all $A \in V$
 - (c) i. Find a linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ which sends (1,0) to (1,1,0) and (1,1) to (1,0,-1).
 - ii. Find two different linear transformations $\mathbb{R}^3 \longrightarrow \mathbb{R}^2$ which send (1,1,0) to (1,1) and (0,1,1) to (0,1).
 - (d) Let V be the vector space (over \mathbb{R}) of all functions $f : \mathbb{R} \to \mathbb{R}$. Which of the following are linear transformations (thinking of \mathbb{R} as \mathbb{R}^1 in parts (i) and (iii))?
 - i. $T_1: V \to \mathbb{R}$ where $T_1(f) = f(1)$ (for $f \in V$).
 - ii. $T_2: V \to V$ where $T_2(f) = f \circ f$ (for $f \in V$).
 - iii. $T_3: \mathbb{R} \to V$ where $T_3(\mu)$ is the function $f_{\mu} \in V$ given by $f_{\mu}(x) = \mu x$ (for $\mu, x \in \mathbb{R}$).
 - (a) i. Yes, since $T(x) = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \end{pmatrix} x$ (where x is written as a column vector).
 - ii. Yes, since $T(x) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} x$.
 - iii. No, since e.g. $T(1,0,0) + T(0,1,0) \neq T(1,1,0)$.
 - (b) i. No, since $T(2I) = 4I \neq 2T(I)$.
 - ii. Yes; writing $M = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$, we have

$$T(A_1 + A_2) = M(A_1 + A_2) = MA_1 + MA_2 = T(A_1) + T(A_2)$$
, and $T(\lambda A) = M(\lambda A) = \lambda MA = \lambda T(A)$.

(c) i. Since (0,1) = (1,1) - (1,0), we must have

$$T(0,1) = T(1,1) - T(1,0) = (1,0,-1) - (1,1,0) = (0,-1,-1).$$

Now we get

$$T(x_1, x_2) = x_1(1, 1, 0) + x_2(0, -1, -1) = (x_1, x_1 - x_2, -x_2).$$

ii. Let $v_1=(1,1,0), v_2=(0,1,1)$ and $v_3=(0,1,0)$. Then $\{v_1,v_2,v_3\}$ is a basis for \mathbb{R}^3 . (The vector v_3 here has been chosen arbitrarily from many possibilities.) Now let $w_1=(1,1), w_2=(0,1),$ and let w_3 be any vector in \mathbb{R}^2 . Then there is a unique linear transformation T such that $T(v_i)=w_i$ for i=1,2,3. Then we have $T(1,0,0)=T(v_1-v_3)=w_1-w_3,$ and $T(0,0,1)=T(v_2-v_3)=w_2-w_3.$ So

$$T(x_1, x_2, x_3) = T(x_1(1, 0, 0) + x_2v_3 + x_3(0, 0, 1))$$

= $x_1(w_1 - w_3) + x_2w_3 + x_3(w_2 - w_3)$
= $(x_1, x_1 + x_3) + (-x_1 + x_2 - x_3)w_3$.

Taking $w_3 = (0,0)$ gives the transformation $T_1 : (x_1, x_2, x_3) \mapsto (x_1, x_1 + x_3)$. Taking $w_3 = (0,1)$ gives the transformation $T_1 : (x_1, x_2, x_3) \mapsto (x_1, x_2)$. So these are two transformations taking v_1 to v_1 and v_2 to v_2 as required. (There are infinitely many more, corresponding to different choices of v_3 .)

- (d) i. If $f,g \in V$ and $\lambda \in \mathbb{R}$, then $T_1(f+g) = (f+g)(1) = f(1) + g(1) = T_1(f) + T_1(g)$ and $T_1(\lambda f) = \lambda f(1) = \lambda T_1(f)$. So T_1 is a linear transformation.
 - ii. Not a linear transformation. For example, consider $f \in V$ with f(x) = x. Then $T_2(2f) \neq 2T_2(f)$.
 - iii. This is a linear transformation. If $\mu_1, \mu_2, \lambda, x \in \mathbb{R}$, then $(T_3(\mu_1 + \mu_2))(x) = (\mu_1 + \mu_2)x = (T_3(\mu_1) + T_3(\mu_2))(x)$, so $T_3(\mu_1 + \mu_2) = T_3(\mu_1) + T_3(\mu_2)$. Similarly, $T_3(\lambda\mu_1)(x) = (\lambda\mu_1)x = \lambda(\mu_1x) = \lambda T_3(\mu_1)(x)$. (The difficulty here is keeping track of the notation.)
- 2. (a) Give an example of a linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ such that T(v) = (1,0,0) for exactly one vector $v \in \mathbb{R}^2$.
 - (b) Give an example of a linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ such that T(v) = (1,0,0) for no vector $v \in \mathbb{R}^2$.
 - (c) Give an example of a linear transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ such that T(v) = (1,0,0) for infinitely many vectors $v \in \mathbb{R}^2$.
 - (d) Show that there is no linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ such that T(v) = (1,0,0) for exactly two vectors $v \in \mathbb{R}^2$.
 - (a) $T(x_1, x_2) = (x_1, x_2, 0)$ is one example.
 - **(b)** $T(x_1, x_2) = (0, 0, 0)$.
 - (c) $T(x_1, x_2) = (x_1, 0)$.
 - (d) Suppose v_1 and v_2 are distinct vectors in \mathbb{R}^2 with $T(v_1) = T(v_2) = (1,0,0)$. Then

$$T(v_2 - v_1) = (1, 0, 0) - (1, 0, 0) = (0, 0, 0).$$

So for any $\lambda \in \mathbb{R}$ we have

$$T(v_1 + \lambda(v_2 - v_1)) = (1, 0, 0) + \lambda(0, 0, 0) = (1, 0, 0).$$

So we have infinitely many vectors $v = (1 - \lambda)v_1 + \lambda v_2$ such that T(v) = (1, 0, 0).

- 3. (Harder) (i) Suppose V, W are vector spaces (over a field F) and $S, T : V \to W$ are linear transformations. Prove that $S + T : V \to W$ defined by (S + T)(v) = S(v) + T(v) (for $v \in V$) is a linear transformation. If $\lambda \in F$, show that $\lambda S : V \to W$ defined by $(\lambda S)(v) = \lambda S(v)$ (for $v \in V$) is a linear transformation. Explain why the set U of all linear transformations from V to W is a vector space with these operations.
 - (ii) In the case where $V = F^2$ and $W = F^3$, what is the dimension of the vector space U? What is the dimension of U for arbitrary finite dimensional vector spaces V and W?

(Harder)

(a) If $v_1, v_2 \in V$ then

$$(S+T)(v_1+v_2) = S(v_1+v_2) + T(v_1+v_2) = Sv_1 + Sv_2 + Tv_1 + Tv_2 = (S+T)v_1 + (S+T)v_2,$$

so S+T preserves addition. And if $v \in V$ and $\lambda \in F$ then

$$(S+T)(\lambda v) = S(\lambda v) + T(\lambda v) = \lambda Sv + \lambda Tv = \lambda (Sv + Tv) = \lambda (S + T)v,$$

so λS preserves scalar multiplication.

If $v_1, v_2 \in V$ then

$$(\lambda S)(v_1 + v_2) = \lambda S(v_1 + v_2) = \lambda Sv_1 + \lambda Sv_2 = (\lambda S)v_1 + (\lambda S)v_2$$

so S+T preserves addition. And if $v \in V$ and $\mu \in F$ then

$$(\lambda S)(\mu v) = \lambda S(\mu v) = \lambda \mu S v = \mu \lambda S v = \mu (\lambda S) v.$$

so λS preserves scalar multiplication.

We have addition and scalar multiplication defined on U, so we just need to check that the vector space axioms are satisfied; this is routine. (The zero of U is the map which sends $v \mapsto 0_W$ for all $v \in V$. For $S \in U$, the negative -S is the map $v \mapsto -(Sv)$.)

(b) From Question 5(i), we know that every element S of U corresponds to a 3×2 matrix A. And it is clear that every 3×2 matrix A corresponds to an element S of U, given by S(v) = Av. So U is "essentially" just the space of 3×2 matrices, and this has dimension 6.

But let's turn that "essentially" into something rigorous. Let $\operatorname{Mat}_{3,2}(F)$ be the vector space of 3×2 matrices with entries from F. Then the map $S \mapsto A$ gives a bijection $\Phi : U \to \operatorname{Mat}_{2,3}(F)$. It is easy to check that this map is a linear transformation. Now since $\ker \Phi = \{0\}$ and $\operatorname{im} \Phi = \operatorname{Mat}_{2,3}(F)$, Rank-Nullity tells us that $\dim U = \dim M_{2\times 3}(F)$.

In the general case, if $\dim V = m$ and $\dim W = n$, then $\dim U = mn$, by the same argument.

The following need material from the last week of term:

- 4. (a) Define $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ by $T(x_1, x_2, x_3) = (x_1 x_2, x_2 x_3, x_3 x_1)$. Find bases of Ker T and Im T. For which values of k is the vector (1, 3, k) in Ker T or Im T?
 - (b) Let V be the vector space of polynomials of degree at most 2 over \mathbb{R} . Define $T:V\longrightarrow V$ by

$$T(ax^{2} + bx + c) = (a + b + c)x^{2} + (c - a)x + (a + 3b + 5c).$$

Find bases of Ker T and Im T.

(c) Let V be as in part (b), and define $S: V \longrightarrow V$ by

$$S(p(x)) = p(1+x) - p(x) \text{ for } p(x) \in V.$$

(So for example, $S(x^2) = (x+1)^2 - x^2 = 2x + 1$.) Show that S is a linear transformation, and find bases of Ker S and Im S.

- (a) A basis for Ker(T) is $\{(1,1,1)\}$. A basis for Im(T) is $\{(1,0,-1),(1,-1,0)\}$. (There are many other possibilities.) The vector (1,3,k) is not in Ker(T) for any k, and it is in Im(T) if and only if k=-4.
- (b) We can treat this as the matrix equation

$$T\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 3 & 5 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

Now we get bases B_K for the kernel and B_I for the image of this matrix transformation:

$$B_K = \left\{ \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right\}, \quad B_I = \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \right\}.$$

We can translate these back into polynomials, getting $\{x^2 - 2x + 1\}$ as a basis for Ker(T), and $\{x^2 - x + 1, x^2 + 3\}$ as a basis for Im(T).

- (c) We have S(p(x) + q(x)) = p(1+x) + q(1+x) p(x) q(x) = S(p(x)) + S(q(x)), and $S(\lambda p(x)) = \lambda p(x+1) \lambda p(x) = \lambda S(p(x))$. So S is a linear transformation. A basis for Ker(S) is $\{1\}$. A basis for Im(S) is $\{1,x\}$.
- 5. (a) Let V be a finite-dimensional vector space, and $T:V\longrightarrow V$ a linear transformation.
 - i. Prove that T is injective if and only if Ker $T = \{0\}$.
 - ii. Prove that T is surjective if and only if Ker $T = \{0\}$.
 - (b) Find an example of a linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ such that Ker T = Im T.
 - (c) Prove that there does not exist a linear transformation $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ such that Ker $T = \operatorname{Im} T$.
 - (a) i. If T is injective, then there can be at most one solution to $T(v) = 0_V$. So $v = 0_V$ is the only solution, and so $\mathrm{Ker}(T) = \{0_V\}$. Conversely, suppose that $\mathrm{Ker}(T) = \{0_V\}$. Suppose that T(v) = T(w). Then $T(v-w) = T(v) T(w) = 0_V$, and so $v-w \in \mathrm{Ker}(T)$. But then $v-w=0_V$, and so v=w.
 - ii. Since $\dim \operatorname{Im}(T) + \dim \operatorname{Ker}(T) = \dim V$, we see that $\dim \operatorname{Im}(T) = \dim V$ if and only if $\dim \operatorname{Ker}(T) = 0$. But $\dim \operatorname{Im}(T) = \dim(V)$ if and only if T is surjective, and $\dim \operatorname{Ker}(T) = 0$ if and only if $\operatorname{Ker}(T) = \{0_V\}$.
 - (b) $T(x_1, x_2) = (x_2, 0)$ is one such transformation.
 - (c) If $\operatorname{Im}(T) = \operatorname{Ker}(T)$ then $\dim \operatorname{Im}(T) = \dim \operatorname{Ker}(T)$. But then since $\dim V = \dim \operatorname{Im}(T) + \dim \operatorname{Ker}(T)$, we have $\dim V = 2 \dim \operatorname{Im}(T)$, which is even.