Where should we take the kids?

Capstone Presentation August 5, 2020 Michelle Levine

Main Objective

Exploratory analysis of family-friendly businesses using Yelp dataset.

Guiding Questions

What are the characteristics of family-friendly businesses?

Are there combinations of business features related to good ratings?

What matters most to customers that are satisfied or dissatisfied with their experience?

Load & Exploratory Data Analysis

- 26% of all businesses were "Good for Kids" (N=55,527)
- 78% were restaurants (N=43,368)
- Las Vegas, Toronto, Phoenix and surrounding areas
- Star reviews were positively skewed
- Many outliers in review counts

Number of businesses per category

Note: there is double counting of businesses as they can select more than 1 category.

Revised question 1 and methods

What are the characteristics of family-friendly **restaurants**?

- Univariate analysis of Yelp categories and subcategories
- Bigram analysis of Yelp subcategories
- Bigram analysis of restaurant titles
- Topic modelling of restaurant titles

Top subcategory combinations

Network diagram of restaurant title bigram frequency

Latent Dirichlet Allocation

- Unsupervised machine learning algorithm used to infer latent or underlying themes in restaurant titles
- Gibbs Sampling
 - 6000 total iterations
 - 4000 burnin
 - Sample every 500th of the remaining 2000 iterations
- Tested k values from 5 to 20
- Analysis of β and γ did not add clear or useful information to the exploratory analysis.

Revised question 2 and methods

Are there combinations of **restaurant** features related to good ratings?

- Dimensionality reduction (incl. feature selection)
- Apriori Association analysis for feature sets related to high star ratings

Dimensionality reduction

- 70 total features
- 42 removed due to more than 30% NAs
- "Good for kids" feature removed due to low variance
- 27 remaining features
 - Ordinal features converted to rank
 - Nominal features converted to dummy variables
 - Star rating converted to 2 categories ('3.5 or less' & '4 or more')

Top features by feature selection method

Information Gain	Chi-square	Stepwise Regression
Business Parking Street †	Business Parking Street †	Noise Level 2 †
Noise Level †	Noise Level †	Noise Level 3 †
Ambience Trendy †	Ambience Trendy †	Noise Level 4 †
Ambience Classy †	Has TV †	Has TV †
Ambience Hipster ◆	Ambience Classy †	Ambience Casual †
Ambience Casual †	Ambience Hipster ◆	Ambience Classy †
Has TV †	Ambience Casual †	Ambience Trendy †
Bike Parking ◆	Bike Parking ◆	Business Parking Street †
WiFi Free	Alcohol Full Bar ◆	Alcohol Full Bar ◆
WiFi No	Ambience Intimate	

† 3 feature selection techniques;

◆ 2 feature selection techniques

Apriori Association Rules Analysis

Support = 0.05; Confidence = 0.40; and RHS = '4 or more' stars

Limited LHS to have at least one feature present

{Street Parking = 1} → {4+ stars} {Ambience casual = 1} → {4+ stars} {Bike Parking = 1} → {4+ stars} {Noise Level = 1, Has TV = 1} → {4+stars}

Revised question 3 and methods

What matters most to customers that are satisfied or dissatisfied with their experience?

- Sentiment analysis of customer reviews
- Develop classification models

Data Preparation for Sentiment Analysis

- 1. Select a random sample (25%) of the 4M reviews for family-friendly restaurants
- 2. 95% of restaurants are represented in the 993,038 sampled reviews
- 3. Remove outliers
 - a. 10% of businesses with high review counts
 - b. 554,103 of reviews were for outliers
- 4. Identify child- or family-specific reviews
 - a. Custom lexicon (e.g., kids, daughter, niece, grandson, baby, family, mom)
 - b. 64,806 reviews (14.76%) mentioned children or families
- 5. Text cleaning and normalization
 - a. Remove numbers, special characters, words less than 2 characters long, stopwords
 - b. Lemmatize
 - c. Remove most (10) and least frequent words (27,869 that appear once)

Comparison of Sentiment Analysis Lexicons

Sentiment Score by Star Rating and Lexicon

Classification Models to Predict Star Ratings

- Total records 22,319
- Train/Test split of 75/25 used for both models
- Binary dependent class split 63% (3.5 or less stars) and 37% (4 or more stars)
- Independent variables included those from feature selection and sentiment analysis using Bing lexicon
- k-Nearest Neighbors used to impute one or more missing values for 6,651 records
- Compared binary logistic regression and C5.0 decision tree
- Models were trained using 10-fold cross validation

Logistic Regression Results

	Estimate	Odds Ratio	z Value	p Value
Sentiment	0.05	1.05	33.551	< 2e-16***
Bike Parking	0.14	1.16	3.374	0.000741
Noise Level 2	-0.41	0.66	-10.049	< 2e-16***
Noise Level 3	-1.23	0.29	-12.619	< 2e-16***
Noise Level 4	-1.55	0.21	-8.70	< 2e-16***
TV	-0.20	0.82	-4.807	1.53e-6***
Ambience Casual	-0.7	0.93	-1.837	0.066161.
Ambience Classy	0.22	1.25	3.255	0.001136**
Ambience Hipster	0.98	2.67	6.462	1.04e-10***
Ambience Trendy	0.34	1.41	3.41	0.000647***
Street Parking	0.61	1.84	13.60	< 2e-16***
Full Bar	-0.64	0.53	-15.09	< 2e-16***

Signif. codes:

*** 0.001

** 0.01

* 0.05

. 0.1

Logistic Regression

	Reference		
Prediction	3.5 or less	4 or more	
3.5 or less	3090	1339	
4 or more	441	709	

Accuracy: 68%

ROC Curve

Decision Tree

	Reference		
Prediction	3.5 or less	4 or more	
3.5 or less	3061	1239	
4 or more	470	809	

Accuracy: 69%

ROC Curve

Conclusions

- Identified restaurants types and cuisines popular at family friendly restaurants
 - o Breakfast & brunch, Burgers, Fast food, Mexican, Pizza, and Sandwiches.
 - o Sushi, Indian, Thai and Chinese
- Found restaurant features related to star ratings
 - O Bike parking, Noise level, Has a TV, Ambience (casual, classy, hipster, trendy), Parking (street, bike), and Has a full bar.
- Found 4 feature sets related to high star ratings
- Reviews were overwhelmingly positive and related to star ratings
- Classification models that correctly classified two-thirds of restaurants as having high or low star ratings

Limitations

- Analysis focused exclusively on family-friendly restaurants
- Additional text cleaning for topic modelling and sentiment analysis
- LDA is better to suited to sparse vectors, try Word2Vec instead
- Spurious association rules
- Feature selection separate from association rules
- User reviews likely violate assumption of document-level sentiment analysis
- Imbalanced dependent class for modelling