NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER 2 EXAMINATION 2018-2019

EE2007 / IM2007 - ENGINEERING MATHEMATICS II

April / May 2019

Time Allowed: 2½ hours

INSTRUCTIONS

- This paper contains 4 questions and comprises 4 pages. 1.
- 2. Answer ALL questions.
- 3. All questions carry equal marks.
- 4. This is a closed book examination.
- 5. Unless specifically stated, all symbols have their usual meanings.
- 6. A list of useful formulae is given in the Appendix A on page 4.
- Consider the following system of equations: 1. (a)

$$(1+\lambda)x_1 + x_2 + x_3 = 0$$

$$x_1 + (1 + \lambda)x_2 + x_3 = 3$$

$$x_1 + x_2 + (1 + \lambda)x_3 = \lambda.$$

Determine the values of λ such that the system has

- (i) a unique solution,
- (ii) no solution,
- many solutions. Also, find these solutions in this case. (iii)

(12 Marks)

Suppose that matrices A, B and C satisfy $[I_3 - C^{-1}B]^T C^T A = I_3$, where (b)

$$B = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

 $B = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$

Note: Question 1 continues on page 2.

and I_3 stands for a 3×3 identity matrix. Without calculating the inverse of C, show how A can be determined. Hence determine A.

(8 Marks)

(c) Given that

$$\mathbf{a} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix} \quad \text{and} \quad A = \mathbf{a}\mathbf{b}^T,$$

determine A^{2000} .

(5 Marks)

2. A linear system is given as

$$A\mathbf{x} = \mathbf{b}$$

where

$$A = \begin{bmatrix} 2 & 1 & 0 \\ a^2 & 4 & 3a \\ 0 & 0 & 2 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

- (a) Use elementary row operations to determine the rank of the matrix A if
 - (i) $a = 2\sqrt{2}$
 - (ii) a = 4

Hence, determine the condition imposed on a so that a unique solution can be obtained for any vector \mathbf{b} .

(10 Marks)

- (b) (i) Determine the eigenvalues of matrix A in terms of a.
 - (ii) Determine the eigenvectors for the case of $a = \sqrt{3}$.

(11 Marks)

(c) Consider the linear system described by Bx = b, where

$$B = \begin{bmatrix} -5 & 1 & 0 \\ a^2 & -3 & 3a \\ 0 & 0 & -5 \end{bmatrix}.$$

Note: Question 2 continues on page 3.

By using the results in part (b)(i), determine the values of a so that a unique solution can be obtained.

Hint: First determine the relationship between A and B by subtracting the matrices.

(4 Marks)

- 3. (a) Using the Cauchy-Riemann equations, comment on the differentiability and analyticity of $f(z) = \cos^2 z$.
 - (ii) Hence, or otherwise, evaluate $\int_{i}^{2\pi} \cos^{2} z \, dz$ along the straight-line path from z = i to $z = 2\pi$.

(12 Marks)

(b) Evaluate $\int_{0}^{\pi} \frac{\sin 2\theta}{2 + \cos 2\theta} d\theta.$

(13 Marks)

- 4. (a) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ for $\mathbf{F}(x, y, z) = xy \, \mathbf{i} + \cos y \, \mathbf{j} + e^z \, \mathbf{k}$, along the straight-line path C from (3, 0, -2) to (4, 2, -1).
 - (b) Using a suitable spherical surface parameterization, evaluate $\iint_S curl \mathbf{F} \cdot d\mathbf{A}$ for surface $S: x^2 + y^2 + z^2 = a^2$, $x \ge 0$, and $\mathbf{F}(x, y, z) = -z \mathbf{j} + y \mathbf{k}$. (10 Marks)
 - (c) Using Stokes' Theorem, evaluate $\iint_{S} curl \mathbf{F} \cdot d\mathbf{A}$ for surface $S: x^2 + y^2 + z^2 = a^2$, $x \ge 0$, and $\mathbf{F}(x, y, z) = -z \mathbf{j} + y \mathbf{k}$.

b)
$$Y = 0$$
 and $Si V$ $1 - \frac{1}{2} \frac{1}{4} \frac{$

V/= ((do) - dob) - 3 (do - do) + 1 + 4

29

Appendix A

- 1. Complex Analysis
 - (a) Complex Power: $z^c = e^{c \ln z}$
 - (b) De Moivre's Formula: $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$
 - (c) Cauchy-Riemann equations: $u_x = v_y, \ v_x = -u_y, \text{ or } u_r = \frac{1}{r}v_\theta, \ v_r = \frac{-1}{r}u_\theta$
 - (d) Cauchy Integral Formula: $\int_{C} \frac{f(z)}{(z-z_{o})^{m}} dz = \frac{2\pi i}{(m-1)!} \frac{d^{(m-1)}}{dz^{(m-1)}} f(z) \Big|_{z=z_{o}}$
- 2. Vector Analysis. Let $\mathbf{F} = F_1 \mathbf{i} + F_2 \mathbf{j} + F_3 \mathbf{k}$.
 - (a) Scalar Triple Product: $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a})$
 - (b) Gradient: $\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$
 - (c) Divergence: $\nabla \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$
 - (d) Curl: $\nabla \times \mathbf{F} = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$
 - (e) Divergence Theorem: $\iiint_T \nabla \cdot \mathbf{F} dv = \oiint_S \mathbf{F} \cdot \mathbf{n} dA$
 - (f) Stokes Theorem: $\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dA = \oint_{C} \mathbf{F} \cdot \mathbf{dr}$

END OF PAPER

₩DS0

```
(1a) \nabla \times F = i(\frac{d(e^2)}{dy} - \frac{d(cosy)}{dz}) + (j)(-\frac{d(xy)}{dz} + \frac{de^2}{dx}) + k(\frac{d(cosy)}{dx} - \frac{d(xy)}{dy})
               Z
                    -XK
    X = 3+8
     y= 2t
                       06t61
    Z = -2+6
      1= r= (3+t) i + 2+j + (-2+6) k
           dr= (i + 2j + k )d+
       os[(3+6)zti+ cosztj+ e2+k]. (i+2j+k) dt
        of 1 (3+t) 26 + 2 Goszó + e-2+t /dt
           362+363+ Sin 2+ et - e-2
                   t Sin 2 t
          X= a cosu· siov; -1 x 6 U 6 27
           9= a sin U - SinV; O 4 VET
           Z= a cos V
            ruz a cos U. Sin V. 6 + a cos U Sin V J
             TV= a Coru corvi + a sin u corv - a sin v k
                   + 02 50 V ( cory sin v i+ sin v sin v j + corv k)
                    i(1-(-1))-j(0-0)+k(0-0)
                _ 2i
                AXE 94= 22-AXE-M(n'A)gaga
                                                       Scn2V Cos U du dV
                                ( SON SINV) dU dV=20
                      = 20° (+1+1) S Sun2 V dv = 20° (2) · 127 = 2702
      C) X=0; y= a cos 6; MM Z= a sin 6; 0 4 8 4 27
                        (- a sin & k; dr2 - a sin & j + a cor & k

(- a sin & ) · (-a sin & ) dez [ sin 2 & + Cor & ) de
                             <u>介</u>
ド (メ,ツ,る)
```

		Date No.
. (c)(i)		(ii) Counter for outer lopp:
	ENTRY	(۱) م
······································	MOV ro, #10 ⇒ MOV ro, #3	Counter for inner loop
	Mov r2, #o	ر (غ)
	ADD 14, #0 X MOV 14, #0 (?)	i= W
	Coopl	. \$ = l
	MOV 13, #0	for (i=10; i>3; i)
	ADD 12, 12, #1	for (à = 1; à 75; à +
	MOV rl,#1	Outer loop = 7x
	(00p Z	Inner loop 25x
	CMPS rl, #5 X CMP rl, #5	Total loop = 7x5
	BGT somewhere	= 35 times
	MUL 13, 12, 1	(Not Sure)
	ADD 14,14,13	(iii) book at the lines with
	ADD rl, rl, #1	" -> "
	B Loop2	(Not sure)
	somewhere.	
	SNB 10,10, #1 → ADD 10,10,#1	
	CMPS ro, #3 × CMP ro, #3 → CMP ro, #1	O §4
	BGT Loop! => BLT: Loop!	
S	itop B stop	
	ËND	
(a) (i)	56 bytes = 28 half words	
	12 ×4 bytes + 4×2 bytes = 56 bytes	
(ii)	if RZ7R3 -7 update RZ if R4 LR3 -7	update R4
	RZ -7 Store the smallest number R4 -1 Store the	
	PZ = 0x88991122 P4 = 0x765432	10
(iii) J	RO -> loop counter RI -> pointer which points to	· · · · · · · · · · · · · · · · · · ·
	memory address	•
(lu) t	DCD 0x2001, 0x0010, 0x3210 (V) Total memory = 10	store data from memory
	DCD 0x 0019, 0x 1122, 0x5648	0 M(R)
	OCD 0x1122, 0x100, 0x1100	
	CD 0x6633, 0x763, 0x646	
	Lh 32000, 123, -654, 888	35

	**************************************	Date No.	
3. (b)	Starting address of FIQ: 0x0000001C		
	Starting address of IRD: (32MB (Unsure)	.s 	
	Modification of the link register!		
	For flq: Ir= Ir-4 (it also holds for IRQ.). Ir = PC-4	
3. (c)	R3 -> 0x7FFFFFFF R2 -> 0x88779955 R1 -> 0x6	1000 OFF8 RD → 0x2323888	
	sp → 0x4000 o FF0		
4. (a)	Assembly code .		
	AREA anthmetic, CODE, READONLY		
	ENTRY : Quint to the address of the full days a		
	ADR R4, table ; point to the address of the first element of 'table'		
	LOR RO, [R4]; load value of b		
	LDR R2, [R4, #8]; load value of c		
	ADD RS, RO, RI		
	SUB PS, RS, P2		
	STR RS, [R4, #12]; to store the value of x in memory		
	Stop B Stop		
	SPACE	4. (b) MOV r7, r1	
	table DCD 10,20,6	(SR 17, #4 4 (i)	
	END	ADD 13,14,17	
	Inline Assembly Function	Push fro-ry, r8, pc y (ii)	
· · · · · · · · · · · · · · · · · · ·	inline int arithmetic (int a int b, int c) 1	MOV 17, 14 7	
	int x, temp;	LSL 17,#2 ((lii)	
341	asm {	LDR ro,[r3, r7]	
	ADD temp, a,b	STR ro, [rz], #2 (iv)	
	SUB x, temp, c 3;	bop SUB 13,15	
	return x;	CMP 13, #0	
	3	BLT Stop (V)	
		Greater ADD rZ, #1	
		B Loop	
		Stop B Stop	