# AA: TP2

Rémy Sun Rémi Hutin

December 4, 2016

A global amelioration of results under constraints of TP (as opposed to TP1) is noticeable (some results of TP1 are marginally better though). In particular, rexation of i,s,v make the wheel problem too long to solve online.

A version working on full matrixes (and not sets) is prepared for SF and MTZ. Translation has been made from models prepared for TP1 mechanically and might contain mistakes (though it seems to compile fine).

# 1 Initial model

- 1 Cf Vanilla
- 2 We compute



Figure 1: G1 vanilla

```
Presolve eliminates 1 constraint.

Adjusted problem:
25 variables, all binary
15 constraints, all linear; 67 nonzeros
9 equality constraints
6 inequality constraints
1 linear objective; 11 nonzeros.

LP_SOLVE 4.0.1.0: optimal, objective 26
21 simplex iterations
```

## 3 Cf Vanilla

totallength = 26

```
Presolve eliminates 1 constraint.

Adjusted problem:
25 variables, all linear
15 constraints, all linear; 67 nonzeros
9 equality constraints
6 inequality constraints
1 linear objective; 11 nonzeros.

LP_SOLVE 4.0.1.0: optimal, objective 26
21 simplex iterations
totallength = 26
```

Same result. The constraint matrix is the node arc matrix of a directed graph which means it is TUM, therefore, the LP problem gives an integer solution.

### 5 We compute



Figure 2: G2 vanilla

```
Presolve eliminates 1 constraint.

Adjusted problem:
25 variables, all binary
15 constraints, all linear; 67 nonzeros
9 equality constraints
6 inequality constraints
1 linear objective; 11 nonzeros.

LP_SOLVE 4.0.1.0: optimal, objective 27
22 simplex iterations
totallength = 27
```

## 1.1 MTZ

- 1 Cf MTZ
- 2 We compute



Figure 3: MTZ G2

```
Presolve eliminates 1 constraint.

Adjusted problem:

32 variables:

25 binary variables

7 integer variables

26 constraints, all linear; 100 nonzeros

9 equality constraints

17 inequality constraints

1 linear objective; 11 nonzeros.

LP_SOLVE 4.0.1.0: optimal, objective 26

94 simplex iterations

9 branch & bound nodes: depth 4

totallength = 26
```

### 3 Cf MTZ

```
Presolve eliminates 1 constraint.

Adjusted problem:

32 variables:

7 integer variables

25 linear variables

26 constraints, all linear; 100 nonzeros

9 equality constraints

17 inequality constraints

1 linear objective; 11 nonzeros.

LP_SOLVE 4.0.1.0: optimal, objective 26.625

29 simplex iterations

totallength = 26.625
```

Non-integer solution, the matrix is not TUM anymore. Therefore we have no guarantee the solution will be integer. On the plus side, it is much faster.

**5** There should be |E| + 2|V| binary variables (arc matrix) and |V| integer variables (indexes). Moreover, there should be |V| + 2 equalities and |E| + |V| inequalities.

This fits with what AMPL computes, though 1 inequalities seems to be eliminated by presolve.

## 1.2 SF

## 1 Cf SF

```
Presolve eliminates 1 constraint.

Adjusted problem:

57 variables:

32 binary variables

25 linear variables

57 constraints, all linear; 213 nonzeros

26 equality constraints

31 inequality constraints

1 linear objective; 11 nonzeros.

LP_SOLVE 4.0.1.0: optimal, objective 26

120 simplex iterations

7 branch & bound nodes: depth 4

totallength = 26
```

same result, more constraints and variables but faster somehow

**3** There should be |E|+3|V| binary variables (arc matrix and indexes), and |E|+2|V| real variables (flow). Moreover, there should be 3|V|+5 equalities and |E|+3|V| inequalities.

This fits with what AMPL computes, though 1 inequalities seems to be eliminated by presolve.

 ${f 4}$  MTZ seems more interesting in terms of simplex iterations but causes more branch&bound (cf Figures 7,8,9)

To compare the three, we had to compute the corresponding graphs with script.py:



Figure 4: fast\_10



Figure 5: ladder\_8



Figure 6: wheel\_15

# **2** GST

- 1 cf GST
- **2** figure

| fast_10             | MTZ     | SF      | GST     |
|---------------------|---------|---------|---------|
| Variables           | 54      | 118     | 98      |
| Constraints         | 56      | 99      | 86      |
| Simplex iterations  | 5289    | 11419   | 10832   |
| Branch&Bound(depth) | 451(21) | 455(34) | 377(33) |

Figure 7: Results on fast\_10

| ladder_8            | MTZ      | SF       | GST      |
|---------------------|----------|----------|----------|
| Variables           | 92       | 168      | 136      |
| Constraints         | 78       | 145      | 126      |
| Simplex iterations  | 38612    | 64508    | 98867    |
| Branch&Bound(depth) | 2547(32) | 1933(42) | 2819(42) |

Figure 8: Results on ladder\_8

```
11 binary variables
28 linear variables
43 constraints, all linear; 154 nonzeros
14 equality constraints
29 inequality constraints
1 linear objective; 11 nonzeros.

LP_SOLVE 4.0.1.0: optimal, objective 26
80 simplex iterations
5 branch & bound nodes: depth 3
totallength = 26
```

**3** There should be |E| binary variables (arc matrix) and |E| + 3|V| integer variables (indexes and flow). Moreover, there should be 2|V| + 2 equalities and |E| + 3|V| inequalities.

This fits with what AMPL computes, though 2 equalities, 3 inequalities and 4 real variables seems to be eliminated by presolve.

- 4 We experimentally verify that relaxing i s v does not change results and that i s v always take integer values in the relaxed case. It seems a bit faster to take relaxed values.
- 5 GST seems inferior to either MTZ or GST on every aspect

| Wheel_15            | MTZ      | SF      | GST      |
|---------------------|----------|---------|----------|
| Variables           | 101      | 187     | 157      |
| Constraints         | 88       | 151     | 133      |
| Simplex iterations  | 24761    | 19752   | 84939    |
| Branch&Bound(depth) | 1153(32) | 413(25) | 1031(44) |

Figure 9: Results on wheel\_15

# 3 Data dump for binary/relaxed i s v comparison

binary i s v on g2

Presolve eliminates 5 constraints and 4 variables. Adjusted problem: 39 variables: 28 binary variables 11 linear variables 43 constraints, all linear; 154 nonzeros 14 equality constraints 29 inequality constraints 1 linear objective; 11 nonzeros.

LP\_SOLVE 4.0.1.0: optimal, objective 26 78 simplex iterations 5 branch & bound nodes: depth 3 totallength = 26

### relaxed on fast

98 variables: 34 binary variables 64 linear variables 86 constraints, all linear; 378 nonzeros 22 equality constraints 64 inequality constraints 1 linear objective; 32 nonzeros.

LP\_SOLVE 4.0.1.0: optimal, objective 63 10832 simplex iterations 377 branch & bound nodes: depth 33 totallength = 63

## binary on fast

98 variables: 64 binary variables 34 linear variables 86 constraints, all linear; 378 nonzeros 22 equality constraints 64 inequality constraints 1 linear objective; 32 nonzeros.

LP\_SOLVE 4.0.1.0: optimal, objective 63 10969 simplex iterations 403 branch & bound nodes: depth 34 totallength = 63

### relaxed on ladder

136 variables: 44 binary variables 92 linear variables 126 constraints, all linear; 532 nonzeros 34 equality constraints 92 inequality constraints 1 linear objective; 38 nonzeros.

LP\_SOLVE 4.0.1.0: optimal, objective 87 98867 simplex iterations 2819 branch & bound nodes: depth 42 totallength = 87

### binary on ladder

136 variables:

92 binary variables

44 linear variables

126 constraints, all linear; 532 nonzeros

34 equality constraints

92 inequality constraints

1 linear objective; 38 nonzeros.

LP\_SOLVE 4.0.1.0: optimal, objective 87 104125 simplex iterations 3081 branch & bound nodes: depth 43 totallength = 87

### relaxed on wheel

157 variables: 56 binary variables 101 linear variables 133 constraints, all

 $linear; \ 602 \ nonzeros \ 32 \ equality \ constraints \ 101 \ inequality \ constraints \ 1 \\ linear \ objective; \ 50 \ nonzeros.$ 

LP\_SOLVE 4.0.1.0: optimal, objective 91 84939 simplex iterations 1031 branch & bound nodes: depth 44 totallength = 91

## binary on wheel

 $157\ variables:\ 101\ binary\ variables\ 56\ linear\ variables\ 133\ constraints\ ,\ all\ linear;\ 602\ nonzeros\ 32\ equality\ constraints\ 101\ inequality\ constraints\ 1\ linear\ objective;\ 50\ nonzeros\ .$ 

LP\_SOLVE 4.0.1.0: optimal, objective 91 62932 simplex iterations 839 branch & bound nodes: depth 44 totallength = 91  $\,$