Accelerated intersection of geometric objects *

Alberto Paoluzzi

February 11, 2015

Abstract

This module contains the first experiments of a parallel implementation of the intersection of (multidimensional) geometric objects. The first installment is being oriented to the intersection of line segment in the 2D plane. A generalization of the algorithm, based on the classification of the containment boxes of the geometric values, will follow quickly.

Contents

1	Introduction	1	-
2	Implementation	2	2
	2.1 Construction of independent buckets	2)
	2.2 Brute force intersection within the buckets	4	Ŀ
	2.3 Generation of LAR representation of split segments	. 6)
	2.4 Biconnected components of a 1-complex	. 7	7
	2.5 2D cells from biconnected components)
3	Exporting the module	14	Ę
4	Examples	14	Ę
\mathbf{A}	Code utilities	23	;

1 Introduction

An easily parallelizable implementation of the accelerated intersection of geometric objects is given in this module. Our first aim is to implement a specialized version for simplices, that

^{*}This document is part of the *Linear Algebraic Representation with CoChains* (LAR-CC) framework [CL13]. February 11, 2015

generalizes the nD-trees of points (that are 0-simplices), to (d-1)-dimensional simplices in d-space, starting with the intersection of line segments in the plane. Our plan is to follow with an implementation for intersection of general convex sets.

2 Implementation

Macro referenced in 13b.

The first implementation of this module concerns the computation of the intersection points among a set of line segment in the 2D plane. The containment boxes of the input segments are iteratively classified against the 1-dimensional centroid of smaller and smaller buckets of data

At the end of the classification, where the same geometric object may be inserted in several different buckets, a *brute-force* intersection is applied to each final subset. Finally, the duplicated intersection points are removed, and a 1-dimensional LAR data structure is generated, with 1-cells given by the split line segments.

A complete LAR of the plane partition generated by the arrangment of lines is then computed by: (a) generating the maximal 2-connected components of such 1-dimensional graph; and (b) by traversing in counter-clockwise order the generated subgraphs to report the 2-dimensional cells of the plane partition.

The splitting algorithm may be easily parallelized, since both during their generation and at the end of this one, the various buckets of data can be dispatched to different processors for independent computation, followed by elimination of duplicates. In particular, a standard *map-reduce* software infrastructure may be used for this parallelization purpose.

2.1 Construction of independent buckets

Containment boxes Given as input a list randomLineArray of pairs of 2D points, the function containmentBoxes returns, in the same order, the list of containment boxes of the input lines. A containment box of a geometric object of dimension d is defined as the minimal d-cuboid, equioriented with the reference frame, that contains the object. For a 2D line it is given by the tuple (x1, y1, x2, y2), where (x1, y1) is the point of minimal coordinates, and (x2, y2) is the point of maximal coordinates.

Splitting the input above and below a threshold

```
\langle Splitting the input above and below a threshold 2b\rangle \equiv
     """ Splitting the input above and below a threshold """
     def splitOnThreshold(boxes, subset, xy='x'):
          theBoxes = [boxes[k] for k in subset]
          threshold = centroid(theBoxes,xy)
          if xy=='x': a=0;b=2;
          elif xy=='y': a=1;b=3;
          below, above = [],[]
          for k in subset:
              if boxes[k][a] <= threshold: below += [k]</pre>
          for k in subset:
              if boxes[k][b] >= threshold: above += [k]
          return below, above
Macro referenced in 13b.
```

Iterative splitting of box buckets

```
\langle Iterative splitting of box buckets 3a \rangle \equiv
     """ Iterative splitting of box buckets """
     def boxBuckets(boxes):
         bucket = range(len(boxes))
         splittingStack = [bucket]
         finalBuckets = []
         while splittingStack != []:
             bucket = splittingStack.pop()
             below,above = splitOnThreshold(boxes,bucket,'x')
             below1,above1 = splitOnThreshold(boxes,above,'y')
             below2,above2 = splitOnThreshold(boxes,below,'y')
             if (len(below1)<4 and len(above1)<4) or len(set(bucket).difference(below1))<7 \
                  or len(set(bucket).difference(above1))<7:</pre>
                  finalBuckets.append(below1)
                  finalBuckets.append(above1)
             else:
                  splittingStack.append(below1)
                  splittingStack.append(above1)
              if (len(below2)<4 and len(above2)<4) or len(set(bucket).difference(below2))<7 \
                  or len(set(bucket).difference(above2))<7:
                  finalBuckets.append(below2)
                  finalBuckets.append(above2)
             else:
                  splittingStack.append(below2)
```

2.2 Brute force intersection within the buckets

Intersection of two line segments

```
\langle Intersection of two line segments 3b \rangle \equiv
     """ Intersection of two line segments """
     def segmentIntersect(pointStorage):
         def segmentIntersect0(segment1):
              p1,p2 = segment1
              line1 = '['+ vcode(p1) +','+ vcode(p2) +']'
              (x1,y1),(x2,y2) = p1,p2
              #B1,B2,B3,B4 = eval(vcode([min(x1,x2),min(y1,y2),max(x1,x2),max(y1,y2)]))
              def segmentIntersect1(segment2):
                  p3,p4 = segment2
                  line2 = '['+ vcode(p3) +','+ vcode(p4) +']'
                  (x3,y3),(x4,y4) = p3,p4
                  \#b1,b2,b3,b4 = eval(vcode([min(x3,x4),min(y3,y4),max(x3,x4),max(y3,y4)]))
                  #if ((B1<=b1<=B3) \text{ or } (B1<=b3<=B3)) \text{ and } ((B2<=b2<=B4) \text{ or } (B2<=b4<=B4)):
                  if True:
                      m23 = mat([p2,p3])
                      m14 = mat([p1,p4])
                      m = m23 - m14
                      v3 = mat([p3])
                      v1 = mat([p1])
                      v = v3-v1
                      a=m[0,0]; b=m[0,1]; c=m[1,0]; d=m[1,1];
                      det = a*d-b*c
                      if det != 0:
                           m_{inv} = mat([[d,-b],[-c,a]])*(1./det)
                           alpha, beta = (v*m_inv).tolist()[0]
                           #alpha, beta = (v*m.I).tolist()[0]
                           if 0 \le alpha \le 1 and 0 \le beta \le 1:
                               pointStorage[line1] += [alpha]
                               pointStorage[line2] += [beta]
                               return list(array(p1)+alpha*(array(p2)-array(p1)))
                  return None
              return segmentIntersect1
         return segmentIntersect0
```

Macro referenced in 13b.

Brute force bucket intersection

```
\langle Brute force bucket intersection 4\rangle \equiv
     """ Brute force bucket intersection """
     def lineBucketIntersect(lines,pointStorage):
         intersect0 = segmentIntersect(pointStorage)
         intersectionPoints = []
         n = len(lines)
         for k,line in enumerate(lines):
              intersect1 = intersect0(line)
             for h in range(k+1,n):
                  line1 = lines[h]
                  point = intersect1(line1)
                  if point != None:
                      intersectionPoints.append(eval(vcode(point)))
         return intersectionPoints
Macro referenced in 13b.
Accelerate intersection of lines
\langle Accelerate intersection of lines 5\rangle \equiv
     """ Accelerate intersection of lines """
     def lineIntersection(lineArray):
         from collections import defaultdict
         pointStorage = defaultdict(list)
         for line in lineArray:
             p1,p2 = line
             key = '['+ vcode(p1) +','+ vcode(p2) +']'
             pointStorage[key] = []
         boxes = containmentBoxes(lineArray)
         buckets = boxBuckets(boxes)
         intersectionPoints = set()
         for bucket in buckets:
             lines = [lineArray[k] for k in bucket]
             pointBucket = lineBucketIntersect(lines,pointStorage)
              intersectionPoints = intersectionPoints.union(AA(tuple)(pointBucket))
         frags = AA(eval)(pointStorage.keys())
         params = AA(COMP([sorted,list,set,tuple,eval,vcode]))(pointStorage.values())
         return intersectionPoints, params, frags ### GOOD: 1, WRONG: 2 !!!
```

5

Macro referenced in 13b.

2.3 Generation of LAR representation of split segments

The function lines2lar is used to generate a 1-dimensional LAR complex from an array of lines, i.e. of pairs of 2D points. For every *line* in frags is computed an *ordered* list outline of *symbolic* intersection points, including the first and last vertex of the line, and every interior point generated by the list params[k].

Then, for every symbolic representation **key** of a point in **outline**, a dictionary vertex is either created or retrieved, and a corresponding edge is orderly created, using the index of the point. At the same time, the vertices created in this way are accumulated within the V array. Finally, each edge in EV is extended to contain a second vertex index using the subsequent edge.

The third stage finalizes the vertex set of the output LAR, by identifying the closest vertices, i.e. those at distance less or equal to the current resolution, set to 10**(-PRECISION), by searching via the scipy.spatialKDTree the pairs of vertices at less than this distance.

A fourth stage identifies the possibly duplicated edges. Some of these could appear, e.g., when importing a set of adjacent boxes from some drawing program, to generate an array of lines, to be mutually intersected and transformed into a LAR data structure.

Create the LAR of fragmented lines

```
\langle Create the LAR of fragmented lines 6 \rangle \equiv
     """ Create the LAR of fragmented lines """
     from scipy import spatial
     def lines2lar(lineArray):
         _,params,frags = lineIntersection(lineArray)
         vertDict = dict()
         index, defaultValue, V, EV = -1, -1, [], []
         for k,(p1,p2) in enumerate(frags):
              outline = [vcode(p1)]
              if params[k] != []:
                  for alpha in params[k]:
                      if alpha != 0.0 and alpha != 1.0:
                           p = list(array(p1)+alpha*(array(p2)-array(p1)))
                           outline += [vcode(p)]
              outline += [vcode(p2)]
              edge = []
              for key in outline:
                  if vertDict.get(key,defaultValue) == defaultValue:
                      index += 1
                      vertDict[key] = index
                      edge += [index]
```

```
V += [eval(key)]
        else:
            edge += [vertDict[key]]
        EV.extend([[edge[k],edge[k+1]] for k,v in enumerate(edge[:-1])])
# identification of close vertices
closePairs = scipy.spatial.KDTree(V).query_pairs(10**(-PRECISION))
if closePairs != []:
    EV_ = []
    for v1, v2 in EV:
        for v,w in closePairs:
            if v1 == w: v1 = v
            elif v2 == w: v2 = v
        EV_{-} += [[v1, v2]]
    EV = EV_{-}
    print "\nclosePairs =",closePairs
# Remove double edges
EV = list(set(AA(tuple)(AA(sorted)(EV))))
return V,EV
```

Macro referenced in 13b.

2.4 Biconnected components of a 1-complex

An implementation of the Hopcroft-Tarjan algorithm [HT73] for computation of the biconnected components of a graph is given here.

Biconnected components

```
⟨Biconnected components 7a⟩ ≡

""" Biconnected components """

⟨Adjacency lists of 1-complex vertices 7b⟩

⟨Main procedure for biconnected components 7c⟩

⟨Hopcroft-Tarjan algorithm 8⟩

⟨Output of biconnected components 9a⟩

⋄
```

Macro referenced in 13b.

```
Adjacency lists of 1-complex vertices
```

```
\langle Adjacency lists of 1-complex vertices 7b\rangle \equiv
```

```
""" Adjacency lists of 1-complex vertices """

def vertices2vertices(model):
    V,EV = model
    csrEV = csrCreate(EV)
    csrVE = csrTranspose(csrEV)
    csrVV = matrixProduct(csrVE,csrEV)
    cooVV = csrVV.tocoo()
    data,rows,cols = AA(list)([cooVV.data, cooVV.row, cooVV.col])
    triples = zip(data,rows,cols)
    VV = [[] for k in range(len(V))]
    for datum,row,col in triples:
        if row != col: VV[col] += [row]
    return AA(sorted)(VV)
```

Macro referenced in 7a.

Main procedure for biconnected components

```
\langle Main procedure for biconnected components 7c \rangle \equiv
     """ Main procedure for biconnected components """
     def biconnectedComponent(model):
         W_{,-} = model
         V = range(len(W))
         count = 0
         stack, out = [],[]
         visited = [None for v in V]
         parent = [None for v in V]
         d = [None for v in V]
         low = [None for v in V]
         for u in V: visited[u] = False
         for u in V: parent[u] = []
         VV = vertices2vertices(model)
         for u in V:
              if not visited[u]:
                  DFV_visit( VV,out,count,visited,parent,d,low,stack, u )
         return W, [component for component in out if len(component) > 1]
```

Macro referenced in 7a.

Hopcroft-Tarjan algorithm

```
⟨Hopcroft-Tarjan algorithm 8⟩ ≡

""" Hopcroft-Tarjan algorithm """

def DFV_visit( VV,out,count,visited,parent,d,low,stack,u ):
    visited[u] = True
```

```
count += 1
d[u] = count
low[u] = d[u]
for v in VV[u]:
    if not visited[v]:
        stack += [(u,v)]
        parent[v] = u
        DFV_visit( VV,out,count,visited,parent,d,low,stack, v )
        if low[v] >= d[u]:
            out += [outputComp(stack,u,v)]
        low[u] = min( low[u], low[v] )
    else:
        if not (parent[u]==v) and (d[v] < d[u]):
            stack += [(u,v)]
            low[u] = min( low[u], d[v] )</pre>
```

Macro referenced in 7a.

Output of biconnected components

```
⟨Output of biconnected components 9a⟩ ≡
    """ Output of biconnected components """

def outputComp(stack,u,v):
    out = []
    while True:
        e = stack.pop()
        out += [list(e)]
        if e == (u,v): break
        return list(set(AA(tuple)(AA(sorted)(out))))
```

Macro referenced in 7a.

2.5 2D cells from biconnected components

It is very easy, using the LAR representation of topology, to compute the 2-cells of the plane partitions (see Figures 1b and 1c) induced by the biconnected components extracted from a graph (1-complex).

In particular, let us consider the CSR (Compressed Sparse Row) representation of the characteristic matrix M_1 , here usually denoted as EV, in order to remark that we represent the edges on the rows, and the vertices on the columns of the matrix. As such it is a binary matrix. So, we can readily reconstruct the topology of 2-cells by associating to each non-zero (sparse) matrix element $angle_{\cdot}EV(h,k)$ the angle in radians that the edge e_h forms with the orizontal line, when it incides on the vertex v_k .

Figure 1: Two random line arrangements, and the biconnected components extracted by their LAR 1-complexes.

```
Of course, if e_h=(v_{k_1},v_{k_2}), then it will be {\tt angle\_EV}(h,k_2)={\tt angle\_EV}(h,k_1)+\pi=-{\tt angle\_EV}(h,k_1)
```

Therefore, the columns of angle_EV, i.e. the rows of angle_VE := angle_EV^t, after being sorted on their angles α , and associated with the angle differences $\Delta \alpha$, will provide a basis of elementary 1 - cochains that evaluate to zero for each closed 1-cochain, i.e. for every cycle supported by the linear space of 1-chains on the given line arrangement.

Slope of edges

Circular ordering of edges around vertices

```
\langle Slope of edges 9b \rangle \equiv
     """ Circular ordering of edges around vertices """
     def edgeSlopeOrdering(model):
         V, EV = model
         from bool1 import invertRelation
         VE, VE_angle = invertRelation(EV),[]
         for v,ve in enumerate(VE):
             ve_angle = []
             if ve != []:
                  for edge in ve:
                      v0,v1 = EV[edge]
                      if v == v0: x,y = list(array(V[v1]) - array(V[v0]))
                      elif v == v1:
                                     x,y = list(array(V[v0]) - array(V[v1]))
                      angle = math.atan2(y,x)
                      ve_angle += [180*angle/PI]
             pairs = sorted(zip(ve_angle,ve))
             #VE_angle += [TRANS(pairs)[1]]
             VE_angle += [[pair[1] for pair in pairs]]
         return VE_angle
```

Macro referenced in 13b.

Ordered incidence relationship vertices to edges. As we have seen, the VE_angle list of lists reports, for every vertex in V, the list of incident edges, counterclockwise ordered around the vertex. Therefore the ordered_csrVE function, given below, returns the "compressed sparse row" matrix, row-indexed by vertices and column-indexed by edges, and such that in position (v, e) contains the index ℓ of the next edge (after e, say) in the counterclockwise ordering of edges around v.

 \langle Ordered incidence relationship of vertices and edges 11a $\rangle \equiv$

```
""" Ordered incidence relationship of vertices and edges """
def ordered_csrVE(VE_angle):
    triples = []
    for v,ve in enumerate(VE_angle):
        n = len(ve)
        for k,edge in enumerate(ve):
            triples += [[v, ve[k], ve[ (k+1)%n ]]]
    csrVE = triples2mat(triples,shape="csr")
    return csrVE
```

Macro referenced in 13b.

Faces from biconnected components Since edges in the plane partition induced by a line arrangement are (d-1)-cells, they are located on the boundary of $two\ d$ -cells (faces) of the partition. Hence, the traversal algorithm of the data structure storing the relevant information may be driven by signing the two extremes (vertices) of each edge as either already visited or not.

```
\langle Faces from biconnected components 11b\rangle \equiv
     """ Faces from biconnected components """
     def firstSearch(visited):
         for edge,vertices in enumerate(visited):
              for v,vertex in enumerate(vertices):
                  if visited[edge,v] == 0.0:
                      visited[edge,v] = 1.0
                      return edge, v
         return -1,-1
     def facesFromComponents(model):
         V, EV = model
         FV = []
         VE_angle = edgeSlopeOrdering(model)
         csrEV = ordered_csrVE(VE_angle).T
         visited = zeros((len(EV),2))
         edge,v = firstSearch(visited)
         vertex = EV[edge][v]
         fv = []
         while True:
              if (edge,v) == (-1,-1):
                  return [face for face in FV if face != None]
              elif (fv == []) or (fv[0] != vertex):
                  fv += [vertex]
                  nextEdge = csrEV[edge,vertex]
```

```
v0, v1 = EV[nextEdge]
        try:
            vertex, = set([v0,v1]).difference([vertex])
        except ValueError:
            print 'ValueError: too many values to unpack'
            break
        if v0==vertex: pos=0
        elif v1==vertex: pos=1
        if visited[nextEdge, pos] == 0:
            visited[nextEdge, pos] = 1
            edge = nextEdge
    else:
        FV += [fv]
        fv = []
        edge,v = firstSearch(visited)
        vertex = EV[edge][v]
    #print "fv =",fv
    #print "edge,vertex =",edge,vertex
return [face for face in FV if face != None]
```

Macro referenced in 13b.

 \Diamond

Txample The *ordered* csrVE (vertex-edge) matrix generated by the example of file test/py/inters/test07.py is shown in dense format in the example script below. Let us notice the each non-zero element csrVE(k,h) stores the index of the previous edge inciding on the vertex v_k before the edge e_h . The traversal of the data structure is made accordingly, in order to extract the vertices of all the faces (minimal edge cycles) generated by a line arrangement in the plane.

 \langle Example of VE matrix with nextEdge indices 13a $\rangle \equiv$

```
csr2DenseMatrix(csrVE)
>>> array([
    [12, 0,
                      0,
                           0,
                               0,
                                   Ο,
                                       0,
                                           0,
                                                0,
                                                    0, 11,
                                                            0,
                                                                    0],
                  0,
              Ο,
                  Ο,
    [ 1, 2,
                      0,
                           0,
                               0,
                                   0,
                                       0,
                                           0,
                                                Ο,
                                                    Ο,
                                                        0,
                                                            0,
                                                                Ο,
                                                                    0],
                      Ο,
                                   Ο,
                                       Ο,
    [ 0, 14,
              0,
                               0,
                                                                    0],
                  Ο,
                           0,
                                           0,
                                                0,
                                                    0,
                                                        0,
                                                            0,
                                                                1,
                 5,
                                                   Ο,
    [ 0,
         0,
              6,
                      Ο,
                           2,
                               3,
                                   0,
                                       0,
                                           0,
                                               0,
                                                        0,
                                                            0,
                                                                0,
                                                                    0],
    [ 0,
         Ο,
              0, 10,
                      Ο,
                           Ο,
                               Ο,
                                   Ο,
                                       Ο,
                                           3,
                                                9,
                                                    0,
                                                            0,
                                                                Ο,
                                                                    0],
                                                        Ο,
                                   Ο,
                                                    Ο,
    [ 0,
          Ο,
              Ο,
                  0, 15,
                           Ο,
                               Ο,
                                       0,
                                           Ο,
                                                0,
                                                        0,
                                                            Ο,
                                                                Ο,
                                                                    4],
          Ο,
                  0, 12,
                               Ο,
                                   Ο,
                                       0,
                                           Ο,
    [ 0,
              0,
                           4,
                                                0,
                                                    0,
                                                        5,
                                                            0,
                                                                0,
                                                                    0],
         Ο,
             Ο,
                  0, 0,
                                       6,
                                                    0,
    [ 0,
                           0,
                              7,
                                   8,
                                           0,
                                               0,
                                                            0,
                                                                0,
                                                        0,
                                                                    0],
    7, 0,
                                           0, 0,
                                                    0, 0,
```

Macro never referenced.

3 Exporting the module

```
"lib/py/inters.py" 13b \equiv
     """ Module for pipelined intersection of geometric objects """
     from pyplasm import *
     """ import modules from larcc/lib """
     import sys
     sys.path.insert(0, 'lib/py/')
     from larcc import *
     DEBUG = True
      ⟨ Coding utilities 22⟩
      (Generation of random lines 23a)
      (Containment boxes 2a)
      (Splitting the input above and below a threshold 2b)
      Box metadata computation?
      (Iterative splitting of box buckets 3a)
      (Intersection of two line segments 3b)
      (Brute force bucket intersection 4)
      (Accelerate intersection of lines 5)
      (Create the LAR of fragmented lines 6)
      (Biconnected components 7a)
      (Slope of edges 9b)
      (Ordered incidence relationship of vertices and edges 11a)
      (Faces from biconnected components 11b)
      (SVG input parsing and transformation 20)
```

4 Examples

Generation of random line segments and their boxes

```
"test/py/inters/test01.py" 14a =
    """ Generation of random line segments and their boxes """
    import sys
    sys.path.insert(0, 'lib/py/')
    from inters import *
```

```
randomLineArray = randomLines(200,0.3)
VIEW(STRUCT(AA(POLYLINE)(randomLineArray)))
boxes = containmentBoxes(randomLineArray)
rects= AA(box2rect)(boxes)
cyan = COLOR(CYAN)(STRUCT(AA(POLYLINE)(randomLineArray)))
yellow = COLOR(YELLOW)(STRUCT(AA(POLYLINE)(rects)))
VIEW(STRUCT([cyan,yellow]))
```

Split segment array in four independent buckets

```
"test/py/inters/test02.py" 14b \equiv
     """ Split segment array in four independent buckets """
     import sys
     sys.path.insert(0, 'lib/py/')
     from inters import *
     randomLineArray = randomLines(200,0.3)
     VIEW(STRUCT(AA(POLYLINE)(randomLineArray)))
     boxes = containmentBoxes(randomLineArray)
     bucket = range(len(boxes))
     below,above = splitOnThreshold(boxes,bucket,'x')
     below1,above1 = splitOnThreshold(boxes,above,'y')
     below2,above2 = splitOnThreshold(boxes,below,'y')
     cyan = COLOR(CYAN)(STRUCT(AA(POLYLINE)(randomLineArray[k] for k in below1)))
     yellow = COLOR(YELLOW)(STRUCT(AA(POLYLINE)(randomLineArray[k] for k in above1)))
     red = COLOR(RED)(STRUCT(AA(POLYLINE)(randomLineArray[k] for k in below2)))
     green = COLOR(GREEN)(STRUCT(AA(POLYLINE)(randomLineArray[k] for k in above2)))
     VIEW(STRUCT([cyan, yellow, red, green]))
```

Generation and random coloring of independent line buckets

```
"test/py/inters/test03.py" 15a =
    """ Generation and random coloring of independent line buckets """
    import sys
    sys.path.insert(0, 'lib/py/')
    from inters import *

    lines = randomLines(200,0.3)
    VIEW(STRUCT(AA(POLYLINE)(lines)))

boxes = containmentBoxes(lines)
```

```
buckets = boxBuckets(boxes)
     colors = [CYAN, MAGENTA, WHITE, RED, YELLOW, GRAY, GREEN, ORANGE, BLACK, BLUE, PURPLE, BROWN]
     sets = [COLOR(colors[k%12])(STRUCT(AA(POLYLINE)([lines[h]
                 for h in bucket]))) for k, bucket in enumerate(buckets)]
     VIEW(STRUCT(sets))
Construction of LAR = (V,EV) of random line arrangement
"test/py/inters/test04.py" 15b \equiv
     """ LAR of random line arrangement """
     import sys
     sys.path.insert(0, 'lib/py/')
     from inters import *
     lines = randomLines(400,0.2)
     VIEW(STRUCT(AA(POLYLINE)(lines)))
     intersectionPoints,params,frags = lineIntersection(lines)
     marker = CIRCLE(.005)([4,1])
     markers = STRUCT(CONS(AA(T([1,2]))(intersectionPoints))(marker))
     VIEW(STRUCT(AA(POLYLINE)(lines)+[COLOR(RED)(markers)]))
     V,EV = lines2lar(lines)
     marker = CIRCLE(.01)([4,1])
     markers = STRUCT(CONS(AA(T([1,2]))(V))(marker))
     #markers = STRUCT(CONS(AA(T([1,2]))(intersectionPoints))(marker))
     polylines = STRUCT(MKPOLS((V,EV)))
     VIEW(STRUCT([polylines]+[COLOR(MAGENTA)(markers)]))
Splitting of othogonal lines
"test/py/inters/test05.py" 16a \equiv
     """ LAR from splitting of othogonal lines """
     import sys
     sys.path.insert(0, 'lib/py/')
     from inters import *
     (Orthogonal example 16b)
\langle \text{ Orthogonal example 16b} \rangle \equiv
```

```
lines = [[[0,0],[6,0]], [[0,4],[10,4]], [[0,0],[0,4]], [[3,0],[3,4]],
[[6,0],[6, 8]], [[3,2],[6,2]], [[10,0],[10,8]], [[0,8],[10,8]]]

VIEW(EXPLODE(1.2,1.2,1)(AA(POLYLINE)(lines)))

V,EV = lines2lar(lines)
VIEW(EXPLODE(1.2,1.2,1)(MKPOLS((V,EV))))
```

Macro referenced in 16a, 18ab.

Figure 2: Splitting of orthogonal lines: (a) exploded input; (a) exploded output; (c) biconnected components.

Random coloring of the generated 1-complex LAR

Figure 3: Splitting of intersecting lines: (a) random input; (a) splitted and colored LAR output.

Figure 4: The intersection of 5000 random lines in the unit interval, with scaling parameter equal to 0.1

Biconnected components from orthogonal LAR model

2-complex from orthogonal line segments

```
"test/py/inters/test08.py" 18b \equiv
     """ 2-complex from orthogonal line segments """
     import sys
     sys.path.insert(0, 'lib/py/')
     from inters import *
     colors = [CYAN, MAGENTA, WHITE, RED, YELLOW, GREEN, ORANGE, BLACK, BLUE, PURPLE]
     ⟨Orthogonal example 16b⟩
     model = V, EV
     V,EVs = biconnectedComponent(model)
     HPCs = [STRUCT(MKPOLS((V,EV))) for EV in EVs]
     sets = [COLOR(colors[k%10])(hpc) for k,hpc in enumerate(HPCs)]
     VIEW(STRUCT(sets))
     EV = sorted(CAT(EVs))
     VIEW(STRUCT(MKPOLS((V,EV))))
     FV = facesFromComponents((V,EV))
     from hospital import surfIntegration
     areas = surfIntegration((V,FV,EV))
```

```
boundaryArea = max(areas)
FV = [FV[f] for f,area in enumerate(areas) if area!=boundaryArea]
VIEW(EXPLODE(1.2,1.2,1)(MKPOLS((V,FV+EV)) + AA(MK)(V)))
```

Biconnected components from random LAR model

```
"test/py/inters/test09.py" 19 \equiv
     """ Biconnected components from orthogonal LAR model """
     import sys
     sys.path.insert(0, 'lib/py/')
     from inters import *
     colors = [CYAN, MAGENTA, YELLOW, RED, GREEN, ORANGE, PURPLE, WHITE, BLACK, BLUE]
     lines = randomLines(800,0.2)
     V,EV = lines2lar(lines)
     model = V,EV
     VV = vertices2vertices(model)
     leaves = [k for k,vv in enumerate(VV) if len(vv)==1]
     EV_{-} = [[v1,v2] \text{ for } v1,v2 \text{ in } EV \text{ if } set(leaves).intersection([v1,v2]) == set()]
     VIEW(EXPLODE(1.2,1.2,1)(MKPOLS((V,EV_))))
     EV = AA(sorted)(EV_{-})
     from bool1 import larRemoveVertices
     V,EV = larRemoveVertices(V,EV)
     VV = AA(LIST)(range(len(V)))
     submodel = STRUCT(MKPOLS((V,EV)))
     VIEW(larModelNumbering(1,1,1)(V,[VV,EV],submodel,0.015))
```

SVG input parsing and transformation We postulate here that the input file test/py/inters/test.svg should contain only primitives, so we skip any other content. Such primitives are parsed by matching against regular expressions, and their x1,y1,x2,y2 attributes are extracted and stored into the lines variable. An isomorphic window-viewport transformation is then performed, to transform the data within the standard unit 2D square [0, 1]². The input vertices are finally set to a fixed resolution, using the vcode function.

```
⟨SVG input parsing and transformation 20⟩ ≡
    """ SVG input parsing and transformation """
    from larcc import *
    import re # regular expression

def svg2lines(filename):
```


Figure 5: LAR complex generation from SVG file. (a) the input set of lines; (b) imported in pyplasm environment; (c) the extracted regularized 2-complex, drawn exploded.

```
lines = [line.strip() for line in open(filename) if re.match("<line ",line)!=None]</pre>
for line in lines: print line
out = ""
for line in lines:
           #searchObj = re.search( r'([0-9]*\.[0-9]*)(.*?)([0-9]*\.[0-9]*\.[0-9]*\.[0-9]*\.[0-9]*\.
           searchObj = re.search( r'(< line )(.+)(" x1=")(.+)(" y1=")(.+)(" x2=")(.+)(" y2=")(.+)(" y2=")(.+)(" y1=")(.+)(" y1=")(" y1=
           if searchObj:
                      #out += "[["+searchObj.group(1)+","+searchObj.group(3)+"], ["+searchObj.group(5)+"
                      out += "[["+searchObj.group(4)+","+searchObj.group(6)+"], ["+searchObj.group(8)+",
lines = list(eval(out))
# window-viewport transformation
xs,ys = TRANS(CAT(lines))
box = [min(xs), min(ys), max(xs), max(ys)]
# viewport aspect-ratio checking, setting a computed-viewport 'b'
b = [None for k in range(4)]
if (box[2]-box[0])/(box[3]-box[1]) > 1:
           b[0]=0; b[2]=1; bm=(box[3]-box[1])/(box[2]-box[0]); b[1]=.5-bm/2; b[3]=.5+bm/2
else:
           b[1]=0; b[3]=1; bm=(box[2]-box[0])/(box[3]-box[1]); b[0]=.5-bm/2; b[2]=.5+bm/2
# isomorphic 'box -> b' transform to standard unit square
lines = [[[
((x1-box[0])*(b[2]-b[0]))/(box[2]-box[0]),
((y1-box[1])*(b[3]-b[1]))/(box[1]-box[3]) + 1], [
 ((x2-box[0])*(b[2]-b[0]))/(box[2]-box[0]),
```

Macro referenced in 13b.

2-complex extraction from svg file The input lines arrangments produces a 1-dimensional complex stored into the LAR model V, EV. Then the *dangling edges* are removed from EV_, and the whole data set is renumbered, in order to remove the unused vertices, using the larRemoveVertices function. Finally the 2-cells are computed and stored in FV, and the positive areas of every 2cells are computed, so allowing for identify and removal of the exterior face, corresponding to the boundary of the complex. The polygonal boundary of the complex is finally drawn.

```
"test/py/inters/test10.py" 21 \equiv
     """ Biconnected components from orthogonal LAR model """
     import sys
     sys.path.insert(0, 'lib/py/')
     from inters import *
     from bool1 import larRemoveVertices
     from hospital import surfIntegration
     from iot3d import polyline2lar
     filename = "test/py/inters/test1.svg"
     lines = svg2lines(filename)
     VIEW(STRUCT(AA(POLYLINE)(lines)))
     V,EV = lines2lar(lines)
     print "\nV =",V
     print "\nEV =",EV
     VIEW(EXPLODE(1.2,1.2,1)(MKPOLS((V,EV))))
     model = V,EV
     VV = vertices2vertices(model)
     leaves = [k for k,vv in enumerate(VV) if len(vv)==1]
     EV_{-} = [[v1,v2] \text{ for } v1,v2 \text{ in } EV \text{ if } set(leaves).intersection([v1,v2]) == set()]
     VIEW(EXPLODE(1.2,1.2,1)(MKPOLS((V,EV_))))
     EV = list(set(AA(tuple)(sorted(AA(sorted)(EV_)))))
     V,EV = larRemoveVertices(V,EV)
     VV = AA(LIST)(range(len(V)))
     submodel = STRUCT(MKPOLS((V,EV)))
     VIEW(larModelNumbering(1,1,1)(V,[VV,EV],submodel,0.10))
```

```
model = V,EV
FV = facesFromComponents((V,EV))
areas = surfIntegration((V,FV,EV))
boundaryArea = max(areas)
faces = [FV[f] for f,area in enumerate(areas) if area!=boundaryArea]
VIEW(EXPLODE(1.2,1.2,1)(MKPOLS((V,faces+EV)) + AA(MK)(V)))

V,FV,EV = polyline2lar([[ V[v] for v in FV[areas.index(boundaryArea)] ]])
VIEW(STRUCT(MKPOLS((V,EV))))
```


Figure 6: LAR complex generation from SVG file. (a) the input set of lines parsed from an SVG file; (b) the intersection of lines; (c) the extracted *regularized* 2-complex, drawn exploded; (d) the boundary LAR.

A Code utilities

Coding utilities Some utility functions used by the module are collected in this appendix. Their macro names can be seen in the below script.

```
⟨ Coding utilities 22⟩ ≡

""" Coding utilities """

⟨ Generation of a random point 23b⟩

⟨ Generation of a random line segment 24a⟩

⟨ Transformation of a 2D box into a closed polyline 24b⟩

⟨ Computation of the 1D centroid of a list of 2D boxes 24c⟩

♦

Macro referenced in 13b.
```

Generation of random lines The function randomLines returns the array randomLineArray with a given number of lines generated within the unit 2D interval. The scaling parameter is used to scale every such line, generated by two randow points, that could be possibly located to far from each other, even at the distance of the diagonal of the unit square.

The arrays xs and ys, that contain the x and y coordinates of line points, are used to compute the minimal translation v needed to transport the entire set of data within the positive quadrant of the 2D plane.

```
⟨Generation of random lines 23a⟩ ≡
    """ Generation of random lines """

def randomLines(numberOfLines=200,scaling=0.3):
    randomLineArray = [redge(scaling) for k in range(numberOfLines)]
    [xs,ys] = TRANS(CAT(randomLineArray))
    xmin, ymin = min(xs), min(ys)
    v = array([-xmin,-ymin])
    randomLineArray = [[list(v1+v), list(v2+v)] for v1,v2 in randomLineArray]
    return randomLineArray
```

Macro referenced in 13b.

Generation of a random point A single random point, codified in floating point format, and with a fixed (quite small) number of digits, is returned by the rpoint() function, with no input parameters.

Generation of a random line segment A single random segment, scaled about its centroid by the scaling parameter, is returned by the redge() function, as a tuple of two random points in the unit square.

```
⟨Generation of a random line segment 24a⟩ ≡
""" Generation of a random line segment """
def redge(scaling):
    v1,v2 = array(rpoint()), array(rpoint())
    c = (v1+v2)/2
    pos = rpoint()
    v1 = (v1-c)*scaling + pos
    v2 = (v2-c)*scaling + pos
    return tuple(eval(vcode(v1))), tuple(eval(vcode(v2)))
```

Macro referenced in 22.

Transformation of a 2D box into a closed polyline The transformation of a 2D box into a closed rectangular polyline, given as an ordered sequence of 2D points, is produced by the function box2rect

```
⟨Transformation of a 2D box into a closed polyline 24b⟩ ≡
    """ Transformation of a 2D box into a closed polyline """
    def box2rect(box):
        x1,y1,x2,y2 = box
        verts = [[x1,y1],[x2,y1],[x2,y2],[x1,y2],[x1,y1]]
        return verts
        ◊
```

Macro referenced in 22.

Computation of the 1D centroid of a list of 2D boxes The 1D centroid of a list of 2D boxes is computed by the function given below. The direction of computation (either x or y) is chosen depending on the value of the xy parameter.

```
⟨Computation of the 1D centroid of a list of 2D boxes 24c⟩ ≡
    """ Computation of the 1D centroid of a list of 2D boxes """
    def centroid(boxes,xy='x'):
        delta,n = 0,len(boxes)
        if xy=='x': a=0; b=2
        elif xy=='y': a=1; b=3
        for box in boxes:
            delta += (box[a] + box[b])/2
        return delta/n
    ◊
```

Macro referenced in 22.

References

- [CL13] CVD-Lab, *Linear algebraic representation*, Tech. Report 13-00, Roma Tre University, October 2013.
- [HT73] John Hopcroft and Robert Tarjan, Algorithm 447: Efficient algorithms for graph manipulation, Commun. ACM 16 (1973), no. 6, 372–378.