Théorie des langages rationnels : THLR CM 8

Uli Fahrenberg

EPITA Rennes

S3 2022

Aperçu

Programme du cours

- Mots, langages
- Langages rationnels, expressions rationnelles
- Automates finis
- 4 Langages non-rationnels
- Langages reconnaissables, minimisation

Langages reconnaissables

Définition

Un langage L est reconnaissable si \exists un automate fini A t.q. L = L(A).

syntaxe

automates finis

aut. finis à trans. spontanées

expressions rationnelles

sémantique

langages reconnaissables

|| 🗸

langages reconnaissables

|| 🗸

langages reconnaissables

| /

langages reconnaissables

langages rationnelles

La dernière fois : Déterminisation par automates des parties

L'automate des parties d'un automate fini $A = (\Sigma, Q, Q_0, F, \delta)$:

- $A' = (\Sigma, Q', q'_0, F', \delta')$
- $Q' = \mathcal{P}(Q)$, l'ensemble des parties de Q
- $q_0' = Q_0$
- $F' = \{ P \subseteq Q \mid P \cap F \neq \emptyset \}$
- $\delta'(P, a) = \{ q \in Q \mid \exists p \in P : (p, a, q) \in \delta \}$
- \Rightarrow un automate fini déterministe complet avec L(A') = L(A)
 - si A a n états, alors A' a 2^n états

Il existe des langages rationnelles L qui

- sont reconnus par un automate fini de taille n,
- mais l'automate fini déterministe minimal pour reconnaître L a 2ⁿ états.

Langages non-rationnels

Motifs répétitifs

- Existent-ils des langages non-rationnels?
- Le langage $\{a^nb^n \mid n \ge 0\}$ est-il rationnel?
- Le langage des expressions arithmétiques est-il rationnel?

Lemme de l'étoile

- Soit $A = (\Sigma, Q, Q_0, F, \delta)$ un automate fini avec k états.
- ② Soit $x \in L(A)$ un mot de longueur |x| = k (si il existe); écrivons $x = a_1 \dots a_k$.
- **3** Alors on a un calcul réussi $s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \cdots \xrightarrow{a_k} s_{k+1}$ dans A.
- Ce calcul utilise k+1 états, alors un état de A a été utilisé deux fois. (Principe des tiroirs.)
- Soient donc i < j tel que $s_i = s_j$: la chaîne $s_i \rightsquigarrow s_j$ est une boucle.
- **3** Alors $s_1 \xrightarrow{a_1} \cdots \xrightarrow{a_{i-1}} s_i \xrightarrow{a_j} s_{j+1} \rightarrow \cdots \rightarrow s_{k+1}$ est aussi un calcul réussi, avec étiquette $a_1 \ldots a_{i-1} a_j \ldots a_k$.
- **②** En écrivant $u = a_1 ... a_{i-1}$, $v = a_i ... a_{j-1}$ et $w = a_j ... a_k$ on trouve que $L(uv^*w) ⊆ L(A)$.

Lemme de l'étoile

Théorème (4.25)

Soit L un langage rationnel. Il existe $k \ge 0$ tel que tout $x \in L$ avec longueur $|x| \ge k$ peut s'écrire x = uvw avec $|uv| \le k$, $|v| \ge 1$ et $L(uv^*w) \subseteq L$.

- aussi lemme de pompage
- note $\exists k : \forall x : \exists u, v, w$
- démonstration par quelques petites modifications de l'argument précédent

Corollaire

Théorème (rappel)

Soit L un langage rationnel. Il existe $k \ge 0$ tel que tout $x \in L$ avec longueur $|x| \ge k$ peut s'écrire x = uvw avec $|uv| \le k$, $|v| \ge 1$ et $L(uv^*w) \subseteq L$.

Corollaire

Le langage $L = \{a^n b^n \mid n \ge 0\}$ n'est pas rationnel.

Démonstration.

- Supposons par l'absurde que L soit rationnel.
- 2 Soit k comme fourni par la lemme d'étoile.
- Soit $x = a^k b^k$, alors x = uvw avec $|uv| \le k$ et $|v| \ge 1$.
- Onc $u = a^i$, $v = a^j$ et $w = a^{k-i-j}b^k$ pour un $j \ge 1$.
- **⑤** On a $uw \in L(uv^*w)$ mais $uw \notin L$, contradiction!

Exercice

Théorème (rappel)

Soit L un langage rationnel. Il existe $k \ge 0$ tel que tout $x \in L$ avec longueur $|x| \ge k$ peut s'écrire x = uvw avec $|uv| \le k$, $|v| \ge 1$ et $L(uv^*w) \subseteq L$.

Montrer que le langage $L = \{ww \mid w \in \{a, b\}^*\}$ n'est pas rationnel.

Les automates finis sont décidables

Théorème (4.27)

Il existe un algorithme qui, pour A un automate fini, décide si L(A) est vide, fini ou infini.

Démonstration.

Soit k le nombre d'états de A.

- **1** L(A) est non-vide ssi il existe $w \in L(A)$ avec longueur |w| < k.
- ② L(A) est infini ssi il existe $w \in L(A)$ avec $k \le |w| < 2k$.

(le reste sur tableau)

