CS2102 AY21/22 SEM 1

github/jovyntls

01. DBMS: DATABASE MANAGEMENT SYSTEMS

- · set of universal and powerful functionalities for data management
- database system: DBMS (functionality) supporting several databases
 DBS = DMBS + n*DB
- · data model: framework to specify the structure of a DB
- schema: describes the DB structure using concepts provided by the data model
- · schema instance: content of a DB at a particular time

Transactions

- transaction, T: a finite sequence of database operations
 - · smallest logical unit of work from an application perspective
- · guarantees the ACID properties

ACID properties

- 1. **Atomicity** \rightarrow either all effects of T are reflected in the database, or none
- 2. Consistency \rightarrow the execution of T guarantees to yield a *correct state* of the DB
- 3. Isolation \rightarrow execution of T is isolated from the effects of concurrent transactions
- 4. **Durability** \rightarrow after the commit of T, its effects are *permanent* in case of failures

Serial vs Concurrent Execution

Serial Execution

- ✓ correct final result
- × less (unoptimised) resource utilisation; low throughput

Serializability

- Requirement for Concurrent Execution: serializable transaction execution
- (concurrent execution of a set of transactions is) **serializable** \rightarrow execution is equivalent to some serial execution of the same set of transactions
- ullet equivalent o they have the same *effect* on the data

Core tasks of DBMS

- Support concurrent executions of transactions to optimise performance
- · enforce serializability of concurrent executions to ensure integrity of data

01-1. RELATIONAL MODEL

- relation schema → defines a relation
 - specifies the attributes (columns) and data constraints
 - data constraints → limits the kind of data you can put into the database
- relational database schema → set of relation schemas + data constraints
- TableName(col 1, col 2, col 3) with dom(col 1) = {x, y, z}, ...
- relational database → collection of tables
- domain → a set of atomic values
 - domain of attribute A_i , $dom(A_i) =$ set of possible values for A_i
 - for each value v of attribute $A_i, v \in dom(A_i)$ or v = null

- ullet null: special value indicating that v is not known or specified
- e.g. dom(course) = {cs2102, cs2030, cs2040}
- relation → a set of tuples
 - $R(A_1,A_2,\ldots,A_n)$: relation schema with name R and n attributes A_1,A_2,\ldots,A_n
 - each instance of schema R is a relation which is a subset of $\{(a_1,a_2,\ldots,a_n)\mid a_i\in dom(A_i)\cup \{null\}\}$

01-2. ENSURING DATA INTEGRITY

- integrity constraint → condition that restricts what constitutes valid data
 - · DBMS will check that tables only ever contain valid data
- structural → (integrity) inherent to the data model
- 3 main strucutral integrity constraints of the Relation Model
 - 1. Domain constraints
 - 2. Key constraints
 - 3. Foreign key constraints

Key Constraints

- superkey

 → subset of attributes that uniquely identifies a tuple in a relation
- key → superkey that is also minimal
 - · no proper subset of the key is a superkey
 - e.a. {id}
- candidate keys
 → set of all keys for a relation
- primary key → selected candidate key for a relation
 - cannot be null ⇒ entity integrity constraint

Foreign Key Constraints

- foreign key \to subset of attributes of relation A if it refers to the *primary key* in a relation B
- each foreign key in a relation must:
 - 1. appear as a primary key in the referenced relation, OR:
 - 2. be a null value

01-3. SUMMARY

02. RELATIONAL ALGEBRA

- algebra → mathematical system of operands and operators
 - operands: variables or values from which new values can be constructed
 - operators: symbols denoting procedures that construct new values from given values
- relation algebra → procedural query language
 - operands: relations or variables representing relations
 - operators: transform one or more input relations into one output relation

Closure Property

- closure → relations are closed under relational algebra
 - · all input operands and outputs of all operators are relations
- the output of one operator can serve as input for subsequent operators
- allows for nesting of relational operators ⇒ relational algebra expressions

02-1. BASIC OPERATORS

UNARY OPERATORS

Selection, σ_c

- σ_c(R) → selects all tuples from a relation R (i.e. rows from a table) that satisfy condition c.
 - for each tuple $t \in R, t \in \sigma_c(R) \iff c$ evaluates to true on t
 - input and output relation have the same schema
- selection condition →
- a boolean expression of one of the following forms:
 - · constant selection attribute op constant
 - attribute selection attribute₁ op attribute₂
 - $expr_1 \land expr_2$; $expr_1 \lor expr_2$; item $\neg expr$; (expr)
- with op $\in \{=, <>, <, <, >, >\}$
 - operator precedence: (), op, ¬, ∧, ∨
- handling null values
 - comparison operation with null ⇒ unknown
 - arithmetic operation with $null \Rightarrow null$

Projection, π_{ℓ}

- $\pi_{\ell}(R) \to \text{ projects all attributes of a given relation specified in list } \ell$
 - relation = set of tuples ⇒ duplicates removed from output relation!
 - · order of attributes matters!
 - ullet i.e. projects all columns of a table specified in list ℓ

Renaming, ρ_{ℓ}

- $\rho_{\ell}(R) \to \text{ renames the attributes of a relation } R$ R is a relation with schema $R(A_1, A_2, \dots, A_n)$
- 2 possible formats for ℓ
 - ℓ is the new *schema* in terms of the new attribute names
 - $\ell = (B_1, B_2, \dots, B_n)$; $B_i = A_i$ if attribute A_i does not get renamed
 - ℓ is a list of attribute renamings of the form: $B_i \leftarrow A_i, \ldots, B_k \leftarrow A_k$
 - each renaming $B_i \leftarrow A_i$ renames attribute A_i to attribute B_i
 - · order of renaming doesn't matter

SET OPERATORS

- union $\to R \cup S$ returns a relation with all tuples that are in both R or S
- intersection $\rightarrow R \cap S$... all tuples that are in both R and S
- set difference $\rightarrow R-S$... all the tuples that are in R but not in S
- ! requirement for all set operators: R and S must be **union-compatible**

Union Compatibility

- two relations R and S are union-compatible \rightarrow if
 - ullet R and S have the same number of attributes and
 - the corresponding attributes have the same or compatible domains
 - BUT *B* and *S* do not have to use the same attribute names.

 $R \times S = \{(a, b, c, x, y) \mid (a, b, c) \in R, (x, y) \in S\}$

CROSS PRODUCT

- ${\bf cross\ product} o {\bf combines\ two\ relations}\ R$ and S by forming all pairs of tuples from the two relations
 - given two relations R(A,B,C) and $S(X,Y),R\times S$ returns a relation with schema (A,B,C,X,Y) defined as
- size of cross product = |R| * |S|

02-2. JOIN OPERATORS

Inner Joins θ -join

- eliminate all tuples that do not satisfy a matching criteria (i.e. attribute selection) $\theta\text{-join}$
- the θ -join $R\bowtie_{\theta} S$ of two relations R and S is defined as

$$R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$$

Equi Join 🖂

- special case of θ -join defined over the **equality** operator (=) only
- the **natural join** \rightarrow (of two relations R and S) is defined as

$$R \bowtie S = \pi_{\ell}(R \bowtie_{c} \rho_{b_{i} \leftarrow a_{i}, \dots, b_{k} \leftarrow a_{k}}(S))$$

- $A = \{a_i, \dots, a_k\}$ is the set of attributes that R and S have in common
- $c = ((a_i = b_i) \land \cdots \land (a_k = b_k))$
- $\ell =$ list of all attributes of R + list of all attributes in S that are **not in** A
- ullet performed over all attributes that R and S have in common
- · no explicit matching criteria has to be specified
- ullet output relation contains the common attributes of R and S only *once*

Outer Joins

- dangling tuples \rightarrow tuples in R or S that do not match with tuples in the other relation
 - $\operatorname{dangle}(R \bowtie_{\theta} S) \rightarrow \operatorname{set}$ of dangling tuples in R wrt to $R \bowtie_{\theta} S$ • $\operatorname{dangle}(R \bowtie_{\theta} S) \subseteq R$
 - · always removed by inner joins, kept by outer joins
- missing attribute values are padded with null
- $null(R) \rightarrow n$ -component **tuple** of null values where n is the number of attributes of R

Definitions

- left outer join $\to R \bowtie_{\theta} S = R \bowtie_{\theta} S \cup (dangle(R \bowtie_{\theta} S) \times \{null(S)\})$
- right outer join $\to R \bowtie_{\theta} S = R \bowtie_{\theta} S \cup (\{null(R)\} \times dangle(S \bowtie_{\theta} R))$
- full outer join $\rightarrow R \bowtie_{\theta} S$
- $= R \bowtie_{\theta} S \cup (\mathsf{dangle}(R \bowtie_{\theta} S) \times \{\mathsf{null}(S)\}) \cup (\{\mathsf{null}(R)\} \times \mathsf{dangle}(S \bowtie_{\theta} R))$

Natural Outer Joins

- only equality operator is used for the join condition
- join is performed over all attributes that R and S have in common
- output relation contains the common attributes of R and S only once

03. SQL

Overview

- domain-specific language used for relational databases
- declarative language focuses on what to compute, not how to compute
- built on top of RA
- query = SELECT statement

Data Types (psql)

- · user-defined types
- · basic data types

type	description
boolean	logical Boolean
integer	signed 4-byte integer
float8	double precision floating point number (8 bytes)
numeric[(p, s)]	exact numeric of selectable preciison
char(n)	fixed-length character string
varchar(n)	variable-length character string
text	variable-length character string
date	calendar date (year month day)
timestamp	date and time

- · char, varchar, text: different sizes to optimise storage
 - varchar(n) n is the maximum length
 - char(n) storage size = maximum size = n (will be padded up to n bytes)
 - text usually for very long strings

Types of Commands/Statements

DDL (Data Definition)

Create Tables

```
CREATE TABLE Employees (
id INTEGER,
name VARCHAR(50),
age INTEGER,
role VARCHAR(50)
);
```

Insert Data

```
-- specifying all attribute values
INSERT INTO Employees VALUES (101, 'John', 25, 'developer');
-- specifying selected attribute values
INSERT INTO Employees (id, name) VALUES (102, 'Smith');
```

Modify Schema

```
-- change data type
ALTER TABLE Projects ALTER COLUMN name TYPE VARCHAR(200);
-- set default value
ALTER TABLE Projects ALTER COLUMN start_year SET DEFAULT 2021;
-- drop default value
ALTER TABLE Projects ALTER COLUMN start_year DROP DEFAULT;
-- add new column with a default value
ALTER TABLE Projects ADD COLUMN budget NUMERIC DEFAULT 0.0;
-- drop column from table
ALTER TABLE Projects DROP COLUMN budget;
-- add constraint
ALTER TABLE Teams ADD CONSTRAINT eid_fkey FOREIGN KEY (eid)
    REFERENCES Employees (id);
-- drop constraint
ALTER TABLE Teams DROP CONSTRAINT eid_fkey; /* eid_fkey = name
of constraint */
```

Drop Tables

```
DROP TABLE Projects;
-- check first if table exists; avoids throwing an error
DROP TABLE IF EXISTS Projects;
-- will also delete FK constraint (but not referencing tables)
DROP TABLE Projects CASCADE;
```

DML (Data Manipulation)

Delete Data

```
-- deletes all tuples
DELETE FROM Employees;
-- deletes selected tuples
DELETE FROM Employees WHERE role='developer';
```

Update Data

```
UPDATE Employees
SET age = age + 1
WHERE name = 'John';

UPDATE Employees
SET name=UPPER(name),
    job=UPPER(job);
-- updates all values
UPDATE Employees
SET age = 0;
```

Handling NULLs

- · prerequisite for integrity constraints
- comparison operation with null ⇒ unknown
- arithmetic operation with null ⇒ null

IS (NOT) NULL comparison predicate

- · checks if values are equal to null
 - evaluates to true iff x is null
- x IS NOT NULL

 NOT (x IS NULL)

IS (NOT) NOT DISTINCT comparison predicate

- equivalent to x <> y if x and y are non-null values
 - x and y both null \Rightarrow false
 - only one value is $null \Rightarrow true$
- x IS NOT DISTINCT FROM $y \equiv NOT (x IS DISTINCT FROM y)$

X	У	xy	x IS DISTINCT FROM y
1	1	FALSE	FALSE
1	2	TRUE	TRUE
null	1	null	TRUE
null	null	null	FALSE

03-1. CONSTRAINTS

- · named: name assigned by DBMS
- · unnamed: name is specified easier bookkeeping
- all column constraints can be specified as table constraints, except NOT NULL
- table constraints referring to a single column can be writen as column constraints
- column and table constraints can be combined

```
... id INTEGER NOT NULL,
...
UNIQUE(id)
```

Not-Null Constraints

```
CREATE TABLE Employees (
id INTEGER NOT NULL, /* unnamed */
name VARCHAR(50) CONSTRAINT nn_name NOT NULL, /* named */
age INTEGER,
job VARCHAR(50),
);
```

Unique Constraints

- violation (of a unique constraint defined on attributes A and B):
 - For any two tuples $t_i, t_k \in R$, $(t_i \cdot A <> t_k \cdot A)$ or $(t_i \cdot B <> t_k \cdot B)$ evaluates to **false**
 - !!! null rows will NOT violate unique key constraints
- · (un)named column constraint

```
CREATE TABLE Employees (
 id INTEGER UNIQUE, /* unnamed */
 pid INTEGER CONSTRAINT u_id UNIQUE, /* named */
 name VARCHAR (50), age INTEGER,
 role VARCHAR(50)
```

· (un)named table constraint

```
CREATE TABLE Employees (
 id INTEGER,
  name VARCHAR (50),
  UNIQUE(id), /* unnamed */,
 CONTRAINT u_name UNIQUE (name) /* named */
```

· unique constraints for multiple attributes: can only be specified using table constraints

```
CREATE TABLE Employees (
 id INTEGER,
  name VARCHAR (50),
  UNIQUE (id, name), /* unnamed */
  CONSTRAINT u_allocation (id, name) /* named */
```

Primary Key Constraints

- prime attributes → attributes of the primary key
 - · cannot be null
- primary key vs UNIQUE NOT NULL
 - UNIQUE NOT NULL is a candidate key
 - · max 1 primary key, but any number of UNIQUE NOT NULL constraints
 - FK constraints are only applicable to PKs in referenced table
- · PK contraint for one attribute:

```
CREATE TABLE Teams (
  eid INTEGER PRIMARY KEY.
```

· PK constraint for multiple attributes:

```
CREATE TABLE Teams (
  eid INTEGER,
  pname VARCHAR (100),
  PRIMARY KEY (ename, pname), /* unnamed */
  CONSTRAINT pk_alloc PRIMARY KEY (eid, pname) /* named */
```

Foreign Key Constraints

- · each FK in the referencing relation must:
- · appear as a PK in the referenced relation, OR
- · be a null value

```
CREATE TABLE Teams (
  eid INTEGER,
  pname VARCHAR (100),
  hours INTEGER,
  PRIMARY KEY (ename, pname),
  /* Teams.eid -> Employees.id */
  FOREIGN KEY (eid) REFERENCES Employees (id),
  /* Teams.pname -> Projects.name */
 FOREIGN KEY (pname) REFERENCES Projects (name)
```

specifications for table changes

- ON DELETE/UPDATE: Specify action in case of the violation of a foreign key constraint
 - attempting to delete primary key will throw error if ON DELETE not specified
 - specify behavior when data in referenced table changes
- · possible actions:
 - NO ACTION: (default value) rejects the delete/update if it violates constraint
 - · RESTRICT: similar to NO ACTION; checks that constraint cannot be deferred
 - CASCADE: propagates delete/update to referencing tuples
 - SET DEFAULT: updates FKs of referencing tuples to a specified default value
 - !! default value must be a PK in the referenced table !!
 - SET NULL: update FKs of referencing tuples to null
 - · be careful for primary attributes
 - · corresponding column must be allowed to contain null values!

```
CREATE TABLE Teams (
 eid INTEGER,
 pname VARCHAR (100)
 hours INTEGER,
 PRIMARY KEY (ename, pname),
 FOREIGN KEY (eid) REFERENCES Employees (id) ON DELETE <action>
       ON UPDATE <action>,
 FOREIGN KEY (pname) REFERENCES Projects (name) ON DELETE NO
      ACTION ON UPDATE CASCADE
 /* 'NO ACTION' is optional since it's default */
```

Check Constraint

- · specify that column values must satisfy a boolean expression
- scope: one table, single row
- · not a structural integrity constraint
- · column constraint:

```
CREATE TABLE Teams (
  eid INTEGER.
  hours INTEGER check (hours > 0), /* unnamed */
  minutes INTEGER constraint positive_hours check (hours > 0)
      /* named */
);
```

· table constraint:

```
CREATE TABLE Teams (
  eid INTEGER,
  CHECK (hours <= end_year), /* unnamed table */</pre>
  CONSTRAINT valid_lifetime CHECK (start_year <= end_year) /*</pre>
       named table */
);
```

· CHECK constraints can be complex boolean expressions:

```
CREATE TABLE Teams (
    (pname = 'Hello' AND hours >= 30)
    (panme <> 'Hello' AND hours > 0)
 )
);
```

Deferrable Constraints

- · default behaviour for constraints: checked immediately at the end of SQL statement execution
 - · violation causes statement to be rolled back
- · deferrable constraints: relaxed constraint checks
 - check will be deferred to the end of the transaction

- available for: UNIQUE, PRIMARY KEY, FOREIGN KEY
- no need to care about order of SQL statements within a transaction
- · allows for cyclic FK constraints
- performance boost (when constraint checks are bottleneck)
- disadvantages
- harder to troubleshoot
- · data definition is no longer unambiguous
- · performance penalty when performing queries

04. ENTITY RELATIONSHIP MODEL

- all data is described in terms of entities and their relationships
- entity → objects that are distinguishable from other objects
 - **entity set** \rightarrow collection of entities of the same type
- attribute → specific information describing an entity
 - kev attribute → uniquely identiifes each entity (underline)

 - **composite attribute** → composed of multiple other attributes (oval of ovals)
 - multivalued attribute → may comprise more than one value for a given entity (double-lined oval)
 - derived attribute → derived from other attributes dashed oval)
- relationship → association among two or more entities
 - relationship set → collection of relationships of the same type
 - · may have their own attributes that describe the relationship

relationship sets

- role → descriptor of an entity set's participation in a relationship
 - explicit role labels

- **degree** → number of entity roles participating in a relationship
 - an n-ary relationship set involves n entity roles (where n is the degree of the relationship set)
 - · binary/ternary relationship set
 - general *n*-ary relation:
 - n participating entity sets E_1, E_2, \ldots, E_n
 - k relationship attributes A_1, A_2, \ldots, A_k
 - $Key(E_i) \rightarrow$ the attribtues of the selected key of entity set E_i

Cardinality Constraints

- describes how often an entity can participate in a relationship at most
- · 3 basic cardinality constraints:
 - · many-to-many
 - · many-to-one
 - · one-to-one

Participation Constraints

- · specifies if an entity has to participate in a relationship (lower bound)
- partial participation constraint → participation (of an entity in a relationship) is not mandatory (0 or more)
- total participation constraint → participation is mandatory (1 or more)

each instance of E participates in exactly one instance of R

E is a **weak entity set** with identifying owner E' & identifying relationship set R.

Dependency Constraints

- weak entity sets → entity set that does not have its own key
 - · can only be uniquely identified through the primary key of its owner entity
 - · existence depends on the existence of its owner entity

Alternative Representations

04-1. RELATIONAL MAPPING

- entity set \rightarrow table
- · handling composite/multivalued attributes
 - 1. convert to a set of single-valued attributes (e.g. phone \rightarrow phone 1, phone 2)
 - 2. additional table with FK constraint (e.g. PhoneNumbers with user_id, phone)
 - 3. convert to one single-valued attribute (e.g. string containing everything)

04-2. EXTENDED CONCEPTS

ISA Hierarchy

- "is a" relationship used to model generalisation/specialisation of entity sets
- every entity in a subclass is an entity in its superclass
 - each subclass has specific attributes and/or relationships

constraints

- overlap contraint → a superclass entity can belong to multiple subclasses
- covering constraint → a superclass entity has to belong to a subclass

Aggregation

- abstraction that treats relationships as higher-level entities
 - e.g. treating 2 entities + 1 relationship as an entity set

05. SQL (QUERYING A DATABASE)

- DQL → data guery language
- · duplicate tuples are allowed!
 - use DISTINCT to eliminate duplicates

SELECT clause

- wildcard * include all attributes
- expr BETWEEN <lower> AND <upper> basic value range conditions

```
SELECT * FROM countries
WHERE (continent = 'Asia' OR continent = 'Europe')
AND (population BETWEEN 500 AND 600);
```

• | | - concatenate strings

```
SELECT name, '$$' || ROUND((gdp/population) * 1.35) AS
    gdp_per_capita
FROM countries;
```

- SELECT DISTINCT remove duplicates
 - ullet tuples (n_1,c_1) and (n_2,c_2) are considered distinct
 - $\iff n_1$ IS DISTINCT FROM $n_2 \ \lor \ c_1$ IS DISTINCT FROM c_2

WHERE clause

- IS (NOT) NULL
 - evaluates to true: null IS NULL
 - evaluates false: null = NULL (unknown), null \Leftrightarrow NULL
- (NOT) LIKE pattern matching
 - _ match any single character
 - % match any sequence of zero or more characters

SET Operations

- UNION, INTERSECT, EXCEPT
 - · will eliminate duplicate tuples from result
- UNION ALL, INTERSECT ALL, EXCEPT ALL
 - will NOT eliminate duplicate tuples from result
- no ordering of tuples

JOIN Queries

- JOIN interpreted as INNER JOIN by default
- NATURAL JOIN identical attribute names can be reinforced with renaming
 - · joins based on attribute names
- LEFT OUTER JOIN same as LEFT JOIN
 - keep only dangling tuples: ... WHERE c.country_iso2 IS NULL;
- · complex join queries
- equivalent queries:

```
SELECT c.name, n.name
FROM cities AS c, countries AS n
WHERE c.country_iso2 = n.iso2;

SELECT c.name, n.name
FROM cities c INNER JOIN countries n
    ON c.country_iso2 = n.iso2;

SELECT c.name, n.name
FROM cities c JOIN countries n
    ON c.country_iso2 = n.iso2;
```

Subqueries

- (NOT) IN returns true if expr matches any subquery row
- syntax: expr IN (subquery), expr NOT IN (subquery)
- · subquery must return exactly one column
- IN can typically be replaced with (inner) joins
- · NOT IN can typically be replaced with (outer) joins

```
SELECT name FROM COUNTRIES
WHERE name IN (SELECT name FROM cities)
OR name IN ('Singapore', 'Hong_Kong');
```

- · ANY returns true if comparison evaluates to true for at least one subquery row
 - syntax: expr op ANY (subquery)
 - subquery must return exactly one column
 - expression is compared to each subquery row using op

```
SELECT name, population FROM countries
WHERE population < ANY (SELECT population FROM cities
WHERE country = 'GB');
```

- ALL returns true if comparison evaluates to true for all subquery rows
 - syntax: expr op ALL subquery

```
SELECT name, continent, gdp FROM countries c1
WHERE gdp >= ALL(SELECT gdp FROM countries c2
WHERE c2.continent = c1.continent);
-- c1 from outer guery
```

- EXISTS returns true if the subquery returns at least one tuple
 - syntax: EXISTS (subquery), NOT EXISTS (subquery)
 - (NOT) EXISTS subqueries are generally correlated
 - uncorrelated ⇒ will always give the same result ⇒ redundant

correlated subquery

- correlated subquery → relies on value(s) from outer query
- result of subquery depends on value of outer query
 - potential performance issues
 - potential naming ambiguity use table aliases
- scoping rules
 - a table alias declared in subquery ${\cal Q}$ can only be used in ${\cal Q}$ or subqueries nested within ${\cal Q}$
 - if the same table alias is declared both in Q and in an outer query (or undeclared), the declaration in Q is applied.
 - aka when unsure, apply the smallest scope ("inner to outer")

scalar subqueries

- scalar subquery → returns a single value (1 row 1 column)
- can be used as an expression in queries

row constructors

- · allow subqueries to return more than one attribute/column
- e.g. find all countries with higher population or gdp than France or Germany

equivalent subqueries

```
    expr IN (subquery) = expr = ANY (subquery)
    expr1 op ANY (SELECT expr2 FROM ... WHERE ...)
    EXISTS (SELECT * FROM ... WHERE ... AND expr1 op expr2)
```

Sorting

- ORDER BY sort by attribute(s), ASC/DESC
- e.g. ORDER BY n.name ASC, c.population DESC
 - · second criteria only affects result if first criteria has ambiguity

Rank-based Selection

- LIMIT k return the first k tuples of the result table
- OFFSET i specify the position of the "first" tuple to be considered

```
-- e.g. find the "second" top 5 countries by GDP per capita
SELECT name, (gdp/population) AS gdp_per_capita FROM countries
ORDER BY gdp_per_capita DESC
OFFSET 5 LIMIT 5;
```

06-1. SQL (AGGREGATION)

- · compute a single value from a set of tuples
- e.g. MIN(), MAX(), AVG(), COUNT(), SUM()

```
SELECT MIN(population) as lowest,

MAX(population) as highest,

SUM(population) as world

FROM countries;
```

handling null values

Query	Interpretation
SELECT MIN(A) FROM R;	Minimum non-null value in A
SELECT MAX(A) FROM R;	Maximum non-null value in A
SELECT AVG(A) FROM R;	Average of non-null values in A
SELECT SUM(A) FROM R;	Sum of non-null values in A
SELECT COUNT(A) FROM R;	Count of non-null values in A
SELECT COUNT(*) FROM R;	Count of rows in R
SELECT AVG(DISTINCT A) FROM R;	Average of distinct non-null values in A
SELECT SUM(DISTINCT A) FROM R;	Sum of distinct non-null values in A
SELECT COUNT(DISTINCT A) FROM R;	Count of distinct non-null values in A

Let R be an empty relation; let S be a non-empty relation with n tuples but ONLY null values for A.

alues ioi A.	
Query	Result
SELECT MIN(A) FROM R;	null
SELECT MAX(A) FROM R;	null
SELECT AVG(A) FROM R;	null
SELECT SUM(A) FROM R;	null
SELECT COUNT(A) FROM R;	0
SELECT COUNT(*) FROM R;	0

Query	Result
SELECT MIN(A) FROM S;	null
SELECT MAX(A) FROM S;	null
SELECT AVG(A) FROM S;	null
SELECT SUM(A) FROM S;	null
SELECT COUNT(A) FROM S;	0
SELECT COUNT(*) FROM S;	n

signatures

- MIN, MAX: defined for all data types, returns same data type as input
- COUNT: defined for all numeric data types
 - SUM(INTEGER) -> BIGINT, SUM(REAL) -> REAL
- COUNT: defined for all datatypes; COUNT(...) -> BIGINT

GROUP BY

- given GROUP BY a_1, a_2, \ldots, a_n , 2 tuples t and t' belong to the same group if $\forall k \in (1, n)$, (t.a_k IS NOT DISTINCT FROM t'.a_k) evaluates to TRUE.
- logical partition of relation into groups based on values for specified attributes
- one result tuple for each group
- ullet if column A_i or table R appears in the SELECT clause, one of the following conditions must hold:
 - 1. A_i appears in the GROUP BY clause
 - 2. A_i appears as input of an aggregation function in the SELECT clause
 - 3. the primary key of R appears in the GROUP BY clause

```
-- for each continent, find the lowest, highest and total country population and number of countries

SELECT continent,

MIN(population) AS lowest,

MAX(population) AS highest,

SUM(population) AS overall,

COUNT(*)

AS number_of_countries,

FROM countries

GROUP BY continent;
```

HAVING

- conditions check for each group defined by GROUP BY clause
 - cannot be used without a GROUP BY clause
- if column A_i of table R apears in hte HAVING clause, one of the following conditions must hold:
 - 1. A_i appears in the GROUP BY clause
 - 2. A_i appears as input of an aggregation function in the HAVING clause
 - 3. the primary key of R appears in the GROUP BY clause

```
-- find all routes served by >12 airlines
SELECT from_code, to_code, COUNT(*) AS num_airlines
FROM routes
GROUP BY from_code, to_code
```

06-2. SQL (CONDITIONAL EXPRESSION)

CASE

· generic conditional expression, similar to if/else

HAVING COUNT(*) > 12;

• two basic ways of formulating CASE expressions:

```
CASE
WHEN condition1 THEN result1
WHEN condition2 THEN result2
...
WHEN condition_n THEN
result_n
ELSE result0
END

CASE expression
WHEN value1 THEN result1
WHEN value2 THEN result2
...
WHEN condition_n THEN
result_n
ELSE result0
END
```

COALESCE

- COALESCE(val1, val2, ...) returns the first NON-NULL value in the list of input arguments
- · returns NULL if all values in the list of input arguments are NULL
- e.g. SELECT COALESCE(null, null, 1, null, 2) -> 1

NULLIF

• NULLIF(val1, val2) returns NULL if val1 = val2; otherwise return val1

06-3. SQL (STRUCTURING QUERIES)

Common Table Expressions (CTEs)

- general syntax
 - each C_i is the name of a temporary table defined by guery Q_i
 - ullet each C_i can reference any other C_j that has been declared *before* C_i
 - SQL statement S can reference any possible subset of all C_i

Views

- permanently named query (virtual relation)
- guery is stored (not the guery result) ⇒ re-executed whenever it is used
- can be used like normal tables
 - · no restriction when used in SELECT statements
 - restrictions when using INSERT/UPDATE/DELETE

```
CREATE VIEW ViewName AS
SELECT ...
FROM ...
WHERE ...;
```

RECURSIVE QUERIES

using CTEs and RECURSIVE

```
WITH RECURSIVE CTE_name (col_a, col_b, col_c) AS (
    SELECT ..., 0 as counter
    FROM ... WHERE ...
    UNION ALL
    SELECT ..., cte.counter + 1
    FROM CTE_name cte, ... WHERE ...
```

```
AND cte.counter < 3 /* base case */
)
SELECT DISTINCT counter, ...
FROM CTE_name
ORDER BY counter ASC;
```

UNIVERSAL QUANTIFICATION

- no direct support for universal quantification (e.g. find users who have visited all countries)
- possible workarounds:

```
SELECT n.iso2
FROM countries n
WHERE NOT EXISTS (SELECT 1
FROM visited v
WHERE v.iso2 = n.iso2
AND v.user_id = x);

SELECT u.user_id, u.name
FROM users u, visited v
WHERE u.user_id = v.user_id
GROUP BY u.user_id
HAVING COUNT(*) = (SELECT
COUNT(*) FROM countries);
```

SUMMARY: RELATIONAL MODEL

Term	Description
attribute	column of a table
domain	set of possible values for an attribute
attribute value	element of a domain
relation schema	set of attributes (with their data types + relation name)
relation	set of tuples
tuple	roles of a table
database schema	set of relation schemas
database	set of relations / tables
key	minimal set of attributes uniquely identifying a tuple in a relation
primary key	selected key (in case of multiple candidate keys)
foreign key	set of attributes that is a key in referenced relation
prime attribute	attribute of a key

CONCEPTUAL EVALUATION OF QUERIES

ilter tuples that evaluate to true on the WHERE condition(s)
ilter tuples that evaluate to true on the W/HERE condition(s)
ilter tuples that avaluate to true on the WHEDE condition(s)
iller tuples that evaluate to true on the WHERE condition(s)
artition table into groups w.r.t. to the grouping attribute(s)
ilter groups that evaluate to true on the HAVING condition(s)
temove all attributes no specified in SELECT clause
ort tables based on specified attribute(s)
ilter tuples based on their order in the table