西安电子科技大学

考试时间 120 分钟

总分

试

题号

题

	分数								
			 试日期: 20 2	 20年8月	 日; 3.本·	 试卷共 3 大	 :题,:	满分 100	」 分。
		学号_							
									•
	NOIE: Writ	te all answers	on the answe	er sneet.					
	Q.1: Multiple	Choice. (20)	points)						
	1. A system	is usually	has the high	her priority	on key de	ecisions in	inforr	nation sy	stem
	development.	,							
	A. owner	/		B.	designer				
	C. user			D.	analyst				
	2 syste	ms are front-	office inform	ation syste	ms which s	upport bus	iness	functions	that
extend out to the organization's customers.									
	A. Inventor	y control		Ъ.	Human res	ources			
	C. Custome	er managemen	t	D.	Manufactu	ring			
	3. "A standard s	ystem develoj	oment proces	ss ('method	ology') pur	chased or d	levelo	ped", whi	ich is
	belongs to CMM	1 level							
_	A. 1			B.	2				
1~	C. 3			D.	4				
	4. A is tl	he activity of	documenting	, managing	, and contir	nually impr	oving	the proce	ss of
	systems develop	ment.							
	A. project			В	project mar	nagement			
	C. system d	evelopment		D.	process ma	nagement			
	5 integra	tes various ap	proaches of s	ystems ana	lysis and de	sign for app	olicati	ons as de	emed
	appropriate to t	he problem be	ing solved ar	nd the syste	m being dev	veloped.			
	A. Informat	ion engineerii	ng	B.	Structured	analysis			
	C. Agile me				Rapid anal	•			
	6. When perform	ning "observa	tion" fact-fin	ding metho	od, i	s NOT app	ropria	te?	
	A. obtain pe	ermission fron	n appropriate	e supervisor	rs or manage	ers			
	B. make some assumptions								
	C. keep a lo	w profile							
	D. don't foc	cus heavily on	trivial activit	ries					

/ is a §	is a graphical tool used to identify, explore, and depict problems and the causes and				
effects of those	problems.				
A. Ishikaw	a (Fishbone) diagram	B. PERT chart			
C. Gantt c	hart	D. Workflow diagram			
8 def	ines the minimum and maximum	number of occurrences of one entity that may			
be related to a s	single occurrence of the other entit	y.			
A. Subsetti	ng criteria	B. Generalization			
C. Cardina	lity	D Degree			
9 is a p	is a process model used to depict the flow of data through a system and the work or				
processing perf	ormed by the system.				
A. Flow ch	art	B. Data flow diagram			
C. Activity	diagram	D. E-R diagram			
10 is a	measure of how well the solutio	n will work in the organization. It is also a			
measure of how	people feel about the system/proje	ect			
A. Operation	onal feasibility	B. Economic feasibility			
C. Schedul	e feasibility	D. Technical feasibility			
ll. A(n)	relationship is used to model the	e association between two classes: To indicate			
that when a cha	ange occurs in one class, it may aff	ect the other class. To indicate the association			
between a persi	istent class and a transient class.				
A. inherita	nce	B. dependency			
C. aggregat	tion	D. composition			
12. The	12. The approach is an iterative process involving a close working relationship				
the designer a	the designer and the users, to generate a small-scale, incomplete, but working sample of a				
desired system.					
A. informa	tion engineering	B. prototype			
C. object-o	oriented design	D. rapid application development			
3. Data partiti	oning truly distributes rows and	columns of tables to specific database servers			
	duplication assigns differ	ent columns to different servers.			
A. Vertical	partitioning	B. Horizontal partitioning			
C. Orthogo	onal partitioning	D. Top-down partitioning			
14 is t	he process of translating the source	ce data or document into a computer readable			
format.					
A. Data ent	try	B. Data mining			
C. Data pro	ocess	D. Data capture			
15 is an	internal output that presents infor	rmation with little or no filtering.			
A. Daily re	port	B. Summary report			
C. Exception	on report	D. Detailed report			
16. In pro	ocessing, the entered data is collect	ted into files called batches and processed as a			
complete batch					
A. batch		B. on-line			
C. interact	ive	D. remote batch			

Q.2: For each of the tasks listed below, draw a PERT chart and determine the critical path. (20 points)

D. Collaboration diagram

Activity ID	Activity Description	Duration (Weeks)	Predecessor
A	Preliminary investigation	1	None
В	Problem analysis	2	A
С	Data requirement analysis	3	В
D	Process requirement analysis	5	В
E	Logical database design	6	С
F	Normalized form analysis	4	С
G	Physical database design	3	E, F
Н	Dataflow design	6	D, F
I	Interface design	4	G, H
J	System implementation	30	Ι
K	System testing	10	J
L	Installation	5	K

USE THE FOLLOWING NOTATION WHEN DRAWING THE PERT CHART.

Activity ID				
Early Start	Duration			
Late Start	Slack Time			

C. Sequence diagram

Q.3: Given the narrative description, answer the questions. (60 points)

The Xidian University Libraries is affiliated to Xidian University with 17 lending rooms (借阅室) in the two campuses. The manager has decided to redesign its collection material database named XLD. Currently, the database holds information on:

- ♦ Books, videos and CDs available for borrowing;
- ❖ Every item (book, video, CD) has a unique collection ID, a title, and an ISBN which is unique for every publication; every item may be in good order or damaged; note that if there are 10 copies of a single book, they have distinct collection ID, but identical ISBN;
- ♦ Books can be in Chinese, English, or another language; in either case, the database stores the language the book is written in;
- ♦ Books have a publisher and one or more authors; CDs and videos have a unique producer, and one or more artists.

In addition, the database maintains data on library users and their borrowed material:

- ♦ Each user has a unique userID, address, phone; users can be teachers, postgraduate or undergraduate students; each user can borrow material for 45 days;
- ♦ When a user selects an item to be borrowed, the library clerk updates the database, recording userID, collection, and date of borrowing;
- ♦ When a user returns an item, the library clerk updates the database, recording the date when the item was returned; if the item is overdue, the clerk also collects a fine calculated as DaysLate * fine/day; the fine per day amount is ¥0.10 for every user; the clerk also records the fine collected, if any; in addition, the clerk checks if the returned item is damaged, and if so, records this information;
- ◆ When a new material is purchased, it is catalogued (归类) (i.e., an entry is added to the database) and it is made available in some lending rooms. Damaged and unused material is removed from the collection. This is done once every six months.
- (1) Draw the <u>Context Data Flow Diagram</u> and <u>Functional Decomposition Diagram</u> for XLD. (15 points)
- (2) Produce an <u>Entity Relationship Diagram</u> (Logical Data Model) and a set of <u>Normalized</u> <u>Tables</u> for the scenario. (20 points)

Sample table: Tblname (primarykey#, foreignkey#, attrl, attr2)

- (3) It has been decided that the database will be developed using object oriented analysis and design (OOA/OOD) methodology.
 - a) Draw a <u>UML Use Case diagram</u> for XLD and write the expanded description of <u>ONE</u> primary use case (表格形式). (15 points)
 - b) Design an initial <u>Analysis Class Model</u> that shows the process and data required to support XLD. (10 points)