

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2013 /2014 – 1st Year Examination – Semester 2

IT2105 - Mathematics for Computing I

26th July 2014
(TWO HOURS)

Important Instructions:

- The duration of the paper is 2 (two) hours.
- The medium of instruction and questions is English.
- The paper has 43 questions and 09 pages.
- All questions are of the MCQ (Multiple Choice Questions) type.
- · All questions should be answered.
- Each question will have 5 (five) choices with **one or more** correct answers.
- All questions will carry equal marks.
- There will be a penalty for incorrect responses to discourage guessing.
- The mark given for a question will vary from 0 (no correct choices are marked) to +1 (All the correct choices are marked & no incorrect choices are marked).
- Answers should be marked on the special answer sheet provided.
- Note that guestions appear on both sides of the paper.
- If a page is not printed, please inform the supervisor immediately.
- Mark the correct choices on the question paper first and then transfer them to the given answer sheet which will be machine marked. Please completely read and follow the instructions given on the other side of the answer sheet before you shade your correct choices.

Notations:

Z – set of integers

N – set of positive integers

R – set of real numbers

 \emptyset - (null) empty set

U – Universal set

R⁺ - set of positive real numbers

Which of the following is/are equal to $x^{\frac{2}{3}}$

1)

(b) $\left(x^{\frac{1}{3}}\right)^{\frac{1}{2}}$.

(c) $\left(x^{\frac{1}{2}}\right)^{\frac{1}{3}}$. (d) $\sqrt[3]{x^2}$. (e) $\left(x^{\frac{4}{3}}\right)^{\frac{1}{2}}$.

2)

is equal to

(b) xyz^{-2}

(c) $x^5y^3z^4$

3)

log₄ 8 is equal to

(a) 1.5.

(b) $\log_2 4 - \log_2 8$.

(d) $\frac{2}{3}$.

Which of the following is(are) correct? 4)

(a) $\forall a, u, v \in N \text{ and } a \neq 1, \log_a uv = \log_a u + \log_a v$.

(b) $\forall a, u, v \in N \text{ and } a \neq 1 \log_a uv = \log_a u - \log_a v$.

(c) $\forall a \in \{N \setminus 1\}, \log_a 1 = 0$.

(d) $\forall a \in \{N \setminus 1\}, \log_a 1 = 1$.

(e) $\forall a, u, v \in N \text{ and } a \neq 1 \log_a uv = (\log_a u) (\log_a v)$.

5) Let $A = \{x \mid x \in R \text{ and } x^2-3x+2=0 \}$ and $B = \{x \mid x \in R \text{ and } x^2-5x+6=0 \}$.

 $A \cap B$ is equal to

(a) {1}.

(b) {2}.

(c) $\{3\}$.

(d) $\{1,2\}$.

(e) $\{1,2,3\}$.

6) Let $A = \{0\} \cup N$ and $B = \{0\} \cup \{-n \mid n \in N\}$.

 $A \cup B$ is equal to

(a) N.

(b) Z.

(c) A.

(d) B.

(e) $N \cup \{-n \mid n \in N\}$.

and B be any two non- ving(s) must be true?	-empty sets. If A i		
	1 7	s a proper sub	set of B, which of the
$A \subseteq B$.	(b) A ≠ B		(c) $B \subset A$.
$A \cap B \neq B$.	(e) $A \cap B \neq \emptyset$		
B, and C be three non-	empty sets. Which	of the follow	ing is(are) correct?
	· ·	` '	$\bigcup (B \cap C) = (A \cap B) \cup (A$
		(d) A ∪	$V(B \cap C) = (B \cap A) \cup (C$
$A \cap (B \cup C) = A \cup (B \cap C)$	J C).		
$A \cup B = \{x \mid x \in A \land x \in A \}$		ng 1s(are) cor	rect'?
$A \cap B = \{x \mid x \in A \land x \in A \cap B\}^c = \{x \mid x \notin A \land A\}$	B}.		
$A \cap B = \{x \mid x \in A \land x \in A \cap B\}^{c} = \{x \mid x \notin A \land A \cap B\}$ $(A \cup B)^{c} = \{x \mid x \notin A \land A \cap B\}$ $(B \cap B) \text{ is equal to}$	B}.		
$(A \cup B)^c = \{x \mid x \notin A \land A \in A \}$	B}.	(d) A	
	A \cap B \neq B. B and C be three non- A \cup (B \cap C) = (A \cup B) A A \cup (B \cap C) = (B \cup A) A A \cup (B \cap C) = A \cap (B \cup A) A and B be two sets. Wh	A \cap B \neq B. (e) A \cap B \neq \emptyset B and C be three non-empty sets. Which A \cup (B \cap C) = (A \cup B) \cap (A \cup C). A \cup (B \cap C) = (B \cup A) \cap (C \cup A). A \cup (B \cap C) = A \cap (B \cup C).	A \cap B \neq B. (e) A \cap B \neq Ø. B and C be three non-empty sets. Which of the follows A \cup (B \cap C) = (A \cup B) \cap (A \cup C). (b) A \cup A \cup (B \cap C) = (B \cup A) \cap (C \cup A). (d) A \cup

14) Which of the following propositions are/is logically equivalent to $\sim (p \leftrightarrow q)$?

(a) $(p \rightarrow q) \land (q \rightarrow p)$.

(b) $(p \land \sim q) \lor (\sim p \land \sim q)$.

(c) $(p \rightarrow q) \lor (q \rightarrow p)$.

(d) \sim (p \rightarrow q) $\land \sim$ (q \rightarrow p).

(e) \sim (p \rightarrow q) \vee \sim (q \rightarrow p).

15) Let p and q be two propositions. Which of the following are tautologies?

(a) $(\sim p \vee q) \leftrightarrow \sim (p \wedge \sim q)$.

(b) $(p \rightarrow q) \leftrightarrow \sim (p \land q)$.

(c) $(\sim p \lor q) \leftrightarrow (p \to q)$.

(d) $(\sim p \land q) \leftrightarrow \sim (p \land \sim q)$.

(e) $(p \rightarrow q) \leftrightarrow (\sim p \land q)$

(16)Which of the following arguments is/are valid?

(a) $p \vee q$, $\sim p + q$

(b) $p \lor q$, $\sim p \vdash \sim q$ (c) $p \Rightarrow q$, $\sim q \vdash p$

(d) $\sim p \vee q$, p $\vdash \sim q$

(e) $p \Rightarrow q, p + q$

(17)Which set(s) of the following statements is/are consistent?

(a) $p \wedge q$, $p \vee q$, $\sim p$

(b) $p \vee q$, $\sim p$, q

(c) \sim (q \rightarrow p), q, \sim p

(d) \sim (q \rightarrow p), q, p

(e) \sim (q \rightarrow p), \sim q, \sim p

Consider the following truth tables for two different non-equivalent propositions of one 18) variable p.

p	P1	P2
Т	Т	F
F	T	F

Find two such propositions **P1**, **P2** in the given order.

(a) $p \vee \sim p$, $\sim (p \vee \sim p)$

(b) $p \vee \sim p$, $p \wedge p$

(c) $p \vee p$, $p \wedge p$

(d) $p \vee \sim p$, $p \wedge \sim p$

(e) \sim (p $\vee \sim$ p), p $\wedge \sim$ p

19)	Let D= $\{x_1, x_2, x_3, \dots, x_n \text{ of the following are/is true}\}$		ned on D. If $\forall x \ p(x)$ is true, which
	(a) n(y) + n(y) must be s	folio (h) Tr. mi	(v) moust be folse
	(a) $p(x_1) \wedge p(x_2)$ must be a (c) $p(x_1) \vee p(x_2)$ must be f		(x) must be false) must be true
	(e) $p(x_1) \wedge p(x_2)$ must be 1) must be true
	$(c) p(x_1) \wedge p(x_2) \text{ must be}$	itue.	
20)	Let p(x) be a predicate define MUST be true?	ed on a domain D. If $\forall x \ p(x) \ i$	s false, which of the following
	 (a) There is x₀ in D for w (b) For every x in D, p(x) (c) For every x in D, ~p(x) (d) There are no elements (e) ∃x p(x) is false. 	is false.	
21)	Let $p(x)$: $x < 2$ and $q(x)$: $x < 3$	\geq 2 be two predicates of the v	ariable x defined on N
21)	Let p(n). n < 2 and q(n). n	<u>> 2 00 two predicates of the v</u>	ariable A defined on 1
	Which of the following pro	opositions is(are) true?	
	(a) $\forall x (p(x) \land q(x))$	(b) $\forall x (p(x) \lor q(x))$	(c) $\forall x p(x)$
		(e) $\exists x (p(x) \land q(x))$	
22)	Suppose $x \in \{10, 20, 30, 40\}$ true?	and $y \in \{6, 12, 16, 24, 25\}$. Which	ch of the following propositions is(are)
	(a) $\forall x \exists y \ x < y$.	(b) $\forall y \exists x \ x < y$.	(c) $\exists x \ \forall y \ x < y$.
	$(d) \exists x \exists y \ x < y.$	(e) $\forall x \ \forall y \ x < y$.	
23)			ne following is/are equivalent to
	(a) $\forall x p(x)$. (b) $\exists x \sim p(x)$. (c) $\forall x \sim p(x)$. (d) $\sim \forall x \sim p(x)$. (e) $\sim \exists x \sim p(x)$.		
24)	Let $X = \{3, 4, 6\}$, $Y = \{1, 2\}$	$\{a, 8, 9\}, \alpha = \{(a,b) a \in X, b \in Y, a\}$	>b}.
	Which of the following belon	g to α?	
	(a) (6,3).	(b) (6,2).	(c) (6,9).
	(d) (2,1).	(e) (7,3).	(-) (-)-/-

Let α and β be two relations defined by $\alpha = \{(x,y) \mid x \in \mathbb{Z}, y \in \mathbb{Z}, x \leq y \}$ and $\beta = \{(x,y) \mid x \in \mathbb{Z}, y \in \mathbb{Z}, x > y \}$.

Which of the following is/are true?

- (a) α and β are not symmetric.
- (b) α and β are reflexive.
- (c) α is symmetric and β is not symmetric.
- (d) α is reflexive and β is not reflexive.
- (e) α is transitive and β is not transitive.
- Let α be a relation defined on Z by $\alpha = \{(x,y) \mid x \in Z, y \in Z, x \le y\}$.

What is α^{-1} ?

(a)
$$\alpha^{-1} = \{(x,y) \mid x \in \mathbb{Z}, y \in \mathbb{Z}, y > x \}.$$

(b)
$$\alpha^{-1} = \{(x,y) \mid (y,x) \in \alpha\}.$$

(c)
$$\alpha^{-1} = \{(x,y) \mid x \in \mathbb{Z}, y \in \mathbb{Z}, x > y \}.$$

(d)
$$\alpha^{-1} = \{(x,y) \mid x \in \mathbb{Z}, y \in \mathbb{Z}, \sim (x < y) \}.$$

(e)
$$\alpha^{-1} = \{(x,y) \mid x \in \mathbb{Z}, y \in \mathbb{Z}, x \ge y \}.$$

Let α be a relation defined on a non-empty set D by $\alpha = \{(x,y) \mid x,y \in D\}$. Then α is said to be symmetric if and only if

(a)
$$\forall x (x,x) \in \alpha$$
.

(b)
$$\forall x \forall y \forall z (x,y) \in \alpha \land (z,y) \in \alpha \rightarrow (x,z) \in \alpha$$
.

(c)
$$\forall x \forall y (x,y) \in \alpha \rightarrow (y,x) \in \alpha$$
.

(d)
$$\exists x, x \in D(\rho) \land (x,x) \in \rho$$
.

(e)
$$\forall x \forall y (x,y) \notin \alpha \lor (y,x) \in \alpha$$
.

28) Suppose $A = \{10,15,20\}.$

If $\alpha = \{(x,y) \mid x,y \in A \ , \ x < y\}$ and $\beta = \{(x,y) \mid x,y \in A \ , \ n \in N, \ x = ny\},$ which of the following is/are true?

(a)
$$\alpha \circ \beta = \{(10,10), (10,15), (10,20), (15,10), (15,20)\}.$$

- (b) $\alpha \mathbf{o} \beta = \alpha$.
- (c) $\alpha \circ \beta = \{(10,15),(10,20),(15,20),(20,15),(20,20)\}.$
- (d) $\alpha \mathbf{o} \beta = \beta \mathbf{o} \alpha$.
- (e) $\alpha \mathbf{o} \beta = \beta$.

29) Let ρ be the relation defined on A={a,b,c} by

 $\rho = \{(a,a),(b,b),(c,c),(a,b),(b,a),(b,c),(c,b),(a,c),(c,a)\}.$

Find [a] $_{\rho} \cap [b]_{\rho}$.

(a) {a,b}. (b) {a}. (d) $\{c\}$. (c) Ø. (e) A.

Which of the following is not a proper representation of a function f on $A=\{1,2,3\}$? 30)

```
(a) f(1)=10, f(2)=10, f(3)=10.
                                              (b) f(1)=8, f(2)=8, f(3)=10.
(c) f(1)=7, f(1)=8, f(2)=9, f(3)=10.
                                             (d) f(1)=8, f(2)=9.
(e) f(1)=1, f(2)=2, f(3)=3.
```

Suppose f is a 1-1 function and $x,y \in D(f)$. Which of the following are(is) correct about f?

31) (a) $\forall x \forall y \ x \neq y \Rightarrow f(x) = f(y)$.

(b) $\forall x \forall y \sim (x = y) \Rightarrow \sim (f(x) = f(y)).$

(c) $\forall x \forall y \ f(x) = f(y) \Rightarrow x = y$.

(d) $\forall x \forall y \sim (f(x) = f(y)) \Rightarrow x \neq y$.

(e) ~ ($\exists x \exists y ~(x = y) \land f(x) = f(y)$).

Let the functions f and g be defined by f(x) = 2x-1 and g(x) = 3x where $x \in \mathbb{R}$.

32) Then (f o g)(x) is equal to

- (a) 6x-3.
- (b) 6x-1.
- (c) 6x.
- (d) 3x-2.
- (e) 2x-3.

Let $A = \{1,2,3\}$ and $B = \{1,4,9\}$ and f and g be bijections from A to B. Which of the following functions are/is bijections from A to B? 33)

- (b) $g^{-1} \circ f^{-1}$. (a) $\forall x \in A \ h(x) = x^2 + 5$.
- (d) $g \circ f^{-1}$. (c) f^{-1} .
- (e) $\forall x \in A \ h(x) = x^2$.

Let the 6-tuple <B,+,*, c,0,1> be a Boolean algebra where B is a set, + and * the sum and the product operators respectively, 0 and 1 the zero and the unit elements respectively and c the complement operator.

If b is an element of the set B, what is the dual of the Boolean expression b + 1 = 1?

(a) b * 1 = 1.

(b) b * 0 = 0.

(c) b + 0 = 0.

(d) b * A = A.

(e) b * 1 = 1.

Find the number of arrangements that can be made by taking all the letters in the word "PROPOSITION" if the three letters "O" are together?

(a) $\frac{11!}{(2!)(2!)(3!)}$

(b) $\frac{9!}{(2!)(2!)}$

(c) $\frac{9!}{4}$

(d) $\frac{11!}{4!}$

(e) (2!)(2!)(3!)

There are 6 boys and 4 girls. Find the number of ways in which they can be arranged in a line such that no two girls are together.

(a) $\frac{7!}{4!}$

(b) 15

(c) $\frac{6!}{(4!)(2!)}$

(d) $\frac{7!}{(4!)(3!)}$

(e) 35

A coin is tossed three times in a succession, and the total number of times heads comes up is noted. The sample space is,

(a) {0, 1, 2, 3}.

(b) {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.

(c) $\{HHH, HHT, HTH, HTT, THH, THT, TTH\}.$

(d) $\{H, T\}$.

(e) {1,2,3}.

In an experiment, a pair of dice (one red, one green) is thrown and the number facing up on each die is noted. Let E be the event that the sum of the numbers is 4, and F be the event that the sum is an odd number. E'UF is the event

(a) that the sum of the numbers is an odd number.

(b) that the sum of the numbers is any number.

(c) that the sum of the numbers is any even number other than 4.

(d) that the sum of the numbers is any number other than 4.

(e) which is the null set.,

(a) 0.8	(b) 0.3	(c) 0.2
(d) 0.7	* *	nation is not sufficient
n the following funct	tions, which constitute S={a,l	o,c} as a probability space:
(a) $P(a) = 0.5 P(b)$	= 0.3 $P(c) = 0.3$	
(b) $P(a) = 0.5 P(b)$	= 0.2 $P(c) = 0.3$	
(c) $P(a) = 0.5 P(b)$	` '	
(d) $P(a) = 0.5 P(b)$	` /	
(e) $P(a) = 0.5 P(b)$	= 0.7 $P(c) = 0.2$	
() 0.7	4) 62	() 0.25
` '	(b) 0.2 (e) 0.28	(c) 0.35
(d) 0.9 Bag A contains 10 m which 4 are red and probability that at lea	(e) 0.28 arbles of which 2 are red and 8 are black. A ball is draw	8 are black. Bag B contains 12 on at random from each bag. V
(d) 0.9 Bag A contains 10 m which 4 are red and probability that at lea (a) 8	(e) 0.28 arbles of which 2 are red and 8 are black. A ball is draw st one is red?	8 are black. Bag B contains 12 on at random from each bag. V
(d) 0.9 Bag A contains 10 m which 4 are red and probability that at lea	(e) 0.28 Earbles of which 2 are red and 8 are black. A ball is draw st one is red? (b) $\frac{7}{15}$	8 are black. Bag B contains 12
which 4 are red and probability that at lea $ \frac{8}{(a)} = \frac{8}{a} $	(e) 0.28 arbles of which 2 are red and 8 are black. A ball is draw st one is red?	8 are black. Bag B contains 12 on at random from each bag. V
