Απαντήσεις στο πρώτο σετ εργαστηριακών ασκήσεων

Ον/μο: Μαντ Ελευθέ	AM:	1047128	Έτος:	50
-----------------------	-----	---------	-------	----

Ασκηση 1

Ερώτηση 1 (a) Τι παρατηρείτε εάν αντί για Ts=0.02s ή 0.05s θέσετε Ts=0.1s ; Αιτιολογήστε την απάντησή σας

Απάντηση:

Η συχνότητα του συνεχούς χρόνου σήματος x(t) είναι f=5Hz, άρα σε 5 ταλαντώσεις έχουμε 10 μηδενισμούς. Οι μηδενισμοί του σήματος βρίσκονται στα σημεία n/10 sec. Όταν η Ts = 0.1 sec τότε η συχνότητα δειγματοληψίας είναι fs = 10Hz = 2*f. Σύμφωνα με το θεώρημα Nyquist αυτή είναι η καλύτερη δυνατή δειγματοληψία, κατά την οποία ο όγκος των δεδομένων είναι ο ελάχιστον και άρα δεν έχουμε πλεονάζοντα δείγματα. Τα δύο σήματα (συνεχές και διακριτό) συμπίπτουν για αυτό και το γράφημα για αυτή τη περίοδο δειγματοληψίας είναι σχεδόν ευθεία στο 0.

Ερώτηση 2 (β) Πώς επηρεάζει η συχνότητα δειγματοληψίας την ποιότητα ανακατασκευής του σήματος; Για κάθε συνάρτηση ανακατασκευής χρησιμοποιήστε το μέσο τετραγωνικό σφάλμα, ανάμεσα στο αρχικό και το ανακατασκευασμένο σήμα, και την τυπική απόκλιση, ως μετρικές ποιότητας ανακατασκευής (δείτε στο m-file που σας δίνεται για τον ορισμό τους).

Απάντηση:

T_{s}	MSE_1, STD_1	MSE_2, STD_2	MSE_3, STD_3	MSE_4, STD_4
0.02s	0.0000, 0.0034	0.0006, 0.0253	0.0164, 0.1282	0.0000, 0.0002
0.05s	0.0002, 0.0151	0.0228, 0.1509	0.0997, 0.3158	0.0003, 0.0182
0.1s	0.500, 0.7071	0.500, 0.7071	0.500, 0.7071	0.500, 0.7071

Η συχνότητα της δειγματοληψίας καθορίζει το πόσο συχνά συλλέγουμε δείγματα από το αρχικό σήμα σε μία περίοδο. Σαφώς όσο μεγαλύτερη η συχνότητα δειγματοληψίας τόσο περισσότερα θα είναι τα δείγματα, και επομένως θα έχουμε περισσότερη ακρίβεια. Το νέο σήμα λοιπόν θα βασίζεται σε πολλά στιγμιότυπα του πραγματικού και η προσέγγιση θα είναι καλή σε ποιότητα. Το αντίστροφο θα ισχύει για μικρή συχνότητα δειγματοληψίας.

Με βάση το παραπάνω πίνακα, όσο αυξάνεται η περίοδος δειγματοληψίας, δηλαδή μειώνεται η συχνότητα δειγματοληψίας το σφάλμα αυξάνεται, όπως ακριβώς το περιμέναμε.

Απαντήσεις στο πρώτο σετ εργαστηριακών ασκήσεων

Ον/μο: Μαντάς Ελευθέριος	AM:	1047128	Έτος:	50
-----------------------------	-----	---------	-------	----

Ερώτηση 3 (γ) Σχολιάστε τον ρόλο της αρχικής φάσης του σήματος του ερωτήματος (γ).

Απάντηση:

Ο ρόλος της φάσης είναι να βοηθάει στο να μην γίνεται η δειγματοληψία στους μηδενισμούς, δηλαδή κάθε 0,1 sec. Βάση της αρχικής φάσης αλλάζει η απόδοση του συστήματος γενικά, καθώς και εππηρεάζεται το σφάλμα της ανακατασκευής.

Ερώτηση 4 (δ) Συμπληρώστε τον παρακάτω πίνακα με τα δικά σας γραφήματα.

Απάντηση:

Ερώτηση 5 (δ συνέχεια) Τι παρατηρείτε στις παραπάνω γραφικές παραστάσεις σας; Ποιά η συχνότητα των ανακατασκευασμένων σημάτων; Εξηγήστε.

Απάντηση:

Οι παραπάνω γραφικές παραστάσεις φαίνονται ίδιες. Αυτό συμβαίνει καθώς οι τιμές των f_0 απέχουν κατά 2κπ φορές μεταξύ τους. Η f_0 =40Hz απέχει από την f_0 =240Hz κατά 6π, πράγμα που σημαίνει πως οι δύο γραφικές παραστάσεις θα είναι ίδιες. Αντίστοιχα η f_0 =40Hz απέχει από την f_0 =4040Hz κατά 101π.

Η δειγματοληψία γίνεται με 1/Ts = 1/0.005 = 200Hz.

Πληρούνται έτσι οι προϋποθέσεις του θεωρήματος του NyQuist αφού fs>=2*fmax. Έτσι οι συχνότητα διατηρείται ίδια μετά από την ανακατασκευή του σήματος.

Απαντήσεις στο πρώτο σετ εργαστηριακών ασκήσεων

Ον/μο: Μαντάς Ελευθέριος	AM:	1047128	Έτος:	50
-----------------------------	-----	---------	-------	----

Ασκηση 2

Ερώτηση 1 (α.2) Υπολογίστε την απόκριση συχνότητας του συστήματος (μόνο θεωρητικά).

Απάντηση:

$$\begin{split} \mathbf{y}(n) &= -1/2X\left(n-2\right) + X\left(n-1\right) - 1/2X\left(n\right) \\ Y\left(e^{j\omega}\right) &= -1/2e^{-2j\omega}X\left(e^{j\omega}\right) + e^{-jw}X\left(e^{jw}\right) - 1/2X\left(e^{j\omega}\right) \\ Y\left(e^{j\omega}\right)\right) &= X\left(e^{j\omega}\right)\left(-1/2e^{-2j\omega} + e^{-j\omega} - 1/2\right) \\ H\left(e^{j\omega}\right) &= -1/2e^{-2j\omega} + e^{-j\omega} - 1/2 \end{split}$$

Ερώτηση 2 (β) Σχεδιάστε το μέτρο και τη φάση της απόκρισης συχνότητας (χρησιμοποιώντας της συνάρτηση *freqz()* της Matlab).

Απάντηση:

Ερώτηση 3 (γ) Ποιές συγνότητες του σήματος εισόδου διατηρεί το παραπάνω σύστημα;

Απάντηση:

Οι συχνότητες του συστήματος που διατηρούνται είναι οι 4000Hz και 12000Hz. Αυτό παρατηρήθηκε από την ταυτόχρονη απεικόνιση των παραστάσεων του Υ και Χ μετά την εφαρμογή του DFT.

Η παρακάτω γραφική παράσταση είναι αυτή στην οποία βασίστηκα για την αιτιολόγησή μου.

Απαντήσεις στο πρώτο σετ εργαστηριακών ασκήσεων

Ον/μο: Μαντάς Ελευθέριος	AM:	1047128	Έτος:	50
-----------------------------	-----	---------	-------	----

Ερώτηση 4 (δ) Χρησιμοποιώντας τις συναρτήσεις conv() και filter(), υπολογίστε και σχεδιάστε την έξοδο του συστήματος για την είσοδο x[n] (μόνο για τα πρώτα 100 δείγματα).

Απάντηση:

Απαντήσεις στο πρώτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Μαντάς Ελευθέριος	AM:	1047128	Έτος:	50
--------	----------------------	-----	---------	-------	----

Ερώτηση 5 (ε) Σχεδιάστε το abs (fftshift (fft (x))) και abs (fftshift (fft (y))).

Απάντηση:

