

Winning Space Race with Data Science

George Patsias 28-09-2025

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion

Executive Summary

Objective

probability to support pricing / bid risk.

Top Findings

Success improved post-2017; payload / orbit matter; site differences narrowed.

Headline Metric

Model achieves ~83% accuracy on held-out data.

Business Impact

Enables sharper pricing while reducing downside risk on challenging profiles.

So What?

Supports risk-aware, competitive proposals.

Introduction

Why: First-stage landing underpins SpaceX's cost advantage; forecasting success supports better pricing and risk.

Questions:

- 1. How has success changed over time/sites?
- 2. Which factors matter most?
- 3. Can we predict success reliably?

Scope: Falcon 9 orbital launches, 2010–2020; focus on pre-launch factors (orbit, payload, site, reuse).

Deliverables: Clear EDA, interactive map/dashboard, and a predictive baseline for landing probability.

Data Collection Methodology

Sources

SpaceX REST API
(launches/rockets/payloads)
+ Wikipedia pages (launch
sites/orbit context).

Scope

Falcon 9 orbital launches, 2010–2020; exclude Falcon 1 and tests without usable metadata.

Access Pattern

requests → JSON →
pandas.json_normalize →
tabular; Wikipedia via
requests + BeautifulSoup.

Reproducibility

Parameterized notebooks + cached raw JSON; deterministic seeds and version-pinned libs.

Quality Checks

Record counts by year/site, null-rate audit per field, cross-check site/orbit text vs API.

Keys Used to Join

flight_number, rocket.id, payloads[].id, launchpad.id.

Data Wrangling & Feature Engineering Methodology

Cleaning: Drop Falcon 1; coerce types (dates → datetime, masses → numeric); trim/standardize categorical text.

Target: Class $\in \{0,1\}$ (landing outcome consolidated from outcome strings).

Core Features: Orbit, LaunchSite, PayloadMass, FlightNumber, Flights, GridFins, Legs, Reused, ReusedCount, LandingPad, Block, Year.

Derivations: Orbit grouping (e.g., LEO/GTO/ISS), payload bands, year/month, reuse indicators from booster history.

Missing & Outliers: Impute rare categorical levels as "Other"; keep payload outliers (true missions) but cap for EDA visuals.

Model Matrix: One-hot encode (Orbit, LaunchSite, LandingPad, Serial); scale numerics for LR/SVM; export dataset_part_3.csv.

EDA Methodology

- Questions framed (trends, drivers, site/orbit differences)
- Groupby/pivot/value_counts + SQL cross-checks
- Key visuals (scatter, bar, yearly trend)
- Minimal imputation; outliers kept (cap only for display)
- Reproducibility notes (notebook sections, saved figures)

Predictive Analysis Methodology

- ☐ Target and Features (landing success; payload, orbit, site, reuse, etc.)
 ☐ Train (Tast Split (00/20, stratified fixed acad))
- ☐ Train/Test Split (80/20, stratified, fixed seed)
- Preprocessing (standardize numerics for LR/SVM; one-hot categoricals)
- Models Compared (LogReg, SVM, Decision Tree, k-NN)
- ☐ **Hyperparameter Tuning** with GridSearchCV (cv=10)
- **Evaluation** (CV accuracy, test accuracy, confusion matrix)
- ☐ Sanity Checks (CV vs test consistency; feature effects)

Launch Success Trend by Year

Key Takeaway: Success rates climbed sharply after 2017, stabilizing around 80–90% by 2019–2020.

Risk dropped after 2017; newer missions priced confidently.

Average success rate by year—clear post-2017 inflection.

Success Rate by Orbit (mission profile risk)

Key Takeaway: Risk varies by orbit: GTO and ISS historically lower; ES-L1/GEO/HEO near perfect in this sample.

Risk dropped after 2017; newer missions priced confidently.

Mean success rate by orbit - mission profile matters

Payload Mass vs Orbit (colored by outcome)

Key Takeaway: Heavier payloads in tougher orbits (e.g., GTO/VLEO bands here) correlate with lower success.

Risk dropped after 2017; newer missions priced confidently.

Within-orbit weight pockets show outcome shifts.

Site Patterns: Volume vs. Payload Mix

Key Takeaway: SSite differences narrow over time; CCAFS SLC-40 carries the most volume; KSC handles heavier payloads with mixed outcomes.

Mix > site: 40 volume, 39A heavy, 4E mid/few

Payload mix by site explains outcome patterns

SQL Data Model & Staging

How many records did we analyse?

SELECT COUNT(*) AS n_rows,

MIN(date) AS min_date,

MAX(date) AS max_date

FROM launches;

We analyse N flights, from min_date to max_date.

Data Quality Checks

Basic Data Quality (SQL)

```
SELECT
```

SUM(CASE WHEN orbit IS NULL THEN 1 ELSE 0 END) AS null_orbit,

SUM(CASE WHEN launch_site IS NULL THEN 1 ELSE 0 END) AS null_site,

SUM(CASE WHEN payload_mass_kg IS NULL THEN 1 ELSE 0 END) AS null_payload

FROM launches;

SELECT flight_number, COUNT(*)

FROM launches

GROUP BY flight_number

HAVING COUNT(*) > 1;

No/limited nulls; no duplicate flight numbers found (or removed X duplicates).

Yearly Launches & Success Rate

```
Yearly Activity & Success (SQL aggregation)

SELECT year,

COUNT(*) AS launches,

SUM(class) * 1.0 / COUNT(*) AS success_rate

FROM launches

GROUP BY year

ORDER BY year;
```

Success rose sharply after 2017, reaching ~0.8–0.9

Impact of Reuse

Reuse & Learning Effects

SELECT reused,

reusedcount,

COUNT(*) AS launches,

ROUND(AVG(class), 3) AS success_rate

FROM launches

GROUP BY reused, reusedcount

ORDER BY reused, reusedcount;

	Reused	ReusedCount	launches	success_rate
0	0	0	30	0.267
1	0	1	14	1.000
2	0	2	3	1.000
3	0	3	3	1.000
4	0	4	1	1.000
5	0	5	2	1.000
6	1	1	10	0.600
7	1	2	6	0.833
8	1	3	9	0.778
9	1	4	3	0.667
10	1	5	9	1.000

Higher reuse counts tend to track with higher success - evidence of learning & hardware maturity.

Yearly Launches & Success Rate (SQL)

Falcon 9 Landings: Scale & Reliability (2010–2020)

```
SELECT year,

COUNT(*) AS launches,

ROUND(SUM(class) * 1.0 / COUNT(*), 3) AS success_rate

FROM launches

GROUP BY year

ORDER BY year;
```

- Scope: 101 Falcon 9 launches analyzed (2010–2020).
- Cadence: Annual launches grew 1 → 19 (~19× in a decade).
- Reliability: Landing success rose 0.00 → 0.84, peaking at 0.90 in 2019.

	year	launches	success_rate
0	2010	1	0.000
1	2012	1	0.000
2	2013	3	0.000
3	2014	6	0.333
4	2015	6	0.333
5	2016	8	0.625
6	2017	18	0.833
7	2018	18	0.611
8	2019	10	0.900
9	2020	19	0.842

Year vs. Success Rate)

Heaviest Failures (Top 10)

LIMIT 10;

Where failures were most costly (mass proxy)

```
SELECT date, launch_site, orbit, payload_mass_kg
FROM launches
WHERE class = 0
ORDER BY payload_mass_kg DESC
```

		year	launches	success_rate	avg_payload_kg
	0	2010	1	0.000	6104.959412
	1	2012	1	0.000	525.000000
	2	2013	3	0.000	1449.000000
	3	2014	6	0.333	3019.333333
	4	2015	6	0.333	2346.833333
	5	2016	8	0.625	3639.125000
	6	2017	18	0.833	5365.719967
	7	2018	18	0.611	4832.767190
	8	2019	10	0.900	7551.370000
	9	2020	19	0.842	11477.522043

A few heavy-payload failures cluster in GTO/upper bands.

Interactive Map (Folium) - Code & Output

```
import folium, pandas as pd
sites = [
    ("SLC-40", 28.561857, -80.577366),
    ("LC-39A", 28.608389, -80.604333),
    ("SLC-4E", 34.632834, -120.610746),
df = pd.DataFrame(sites,
columns=["site","lat","lon"])
m = folium.Map(location=[30,-95],
zoom start=4, tiles="CartoDB positron")
for _, r in df.iterrows():
    folium.Marker([r.lat, r.lon],
tooltip=r.site).add to(m)
m.save("interactive launch map.html")
```


Launch pad map: SLC-40/LC-39A and SLC-4E plotted; baseline for orbit/payload layers.

Predictive Analysis Results Overview

Objective: predict booster landing; compare Logistic Regression, SVM, Decision Tree, and KNN.

Test set size: 18

Predictive Analysis Summary

Model Comparison - Key Takeaways

Top Accuracy: Logistic Regression & SVM = 0.83 (15/18 correct).

Both prioritize recall for 'landed' (Recall=1.00) but low specificity $(0.50) \rightarrow$ more false alarms. Decision Tree & KNN are more balanced (Specificity=0.67; Recall=0.83) but lower accuracy (0.78).

Business Fit: if missing a landing is costly, prefer LR/SVM; if false alarms are costly, prefer Tree/KNN or tune threshold.

Next: threshold tuning, class weights, calibration, and feature enrichment (orbit × payload, site, year).

Predictive Analysis Results 1

Logistic Regression - Confusion Matrix

Key Metrics

- Accuracy: 0.83
- Precision (landed): 0.80
- Recall (landed): 1.00
- Specificity (did not land): 0.50
- F1 (landed): 0.89

Notes: Zero missed landings (FN=0); 3 false positives on 'landed' (over-optimistic).

Predictive Analysis Results 2

SVM - Confusion Matrix

Key Metrics

• Accuracy: 0.83

Precision (landed): 0.80

Recall (landed): 1.00

Specificity: 0.50

F1 (landed): 0.89

Notes: Pattern mirrors Logistic Regression; strong recall, weaker negative class discrimination.

Predictive Analysis Results 3

Decision Tree - Confusion Matrix

Key Metrics

- Accuracy: 0.78
- Precision (landed): 0.83
- Recall (landed): 0.83
- Specificity: 0.67
- F1 (landed): 0.83

Notes: More balanced errors (FP=2, FN=2); slightly lower overall accuracy but fewer false alarms.

Predictive Analysis Results 4

KNN - Confusion Matrix

Key Metrics

- Accuracy: 0.78
- Precision (landed): 0.83
- Recall (landed): 0.83
- Specificity: 0.67
- F1 (landed): 0.83

Notes: Performance similar to Decision Tree; balanced but less accurate than LR/SVM on this split.

Conclusion

We can now quantify landing likelihood and its drivers - turning historical launch records into actionable pricing and risk insights.

Objectives Met

Built a reproducible pipeline to predict first-stage landing success and surface the drivers (orbit, payload, site, flight maturity).

Key Findings

Success climbed sharply after 2017; heavier/GTO missions are harder; site differences have narrowed; flight number (experience) matters.

Modelling Result

Simple classifiers (best = Linear SVM) achieve ~83–90% held-out accuracy with few false positives—useful for pricing & bid risk.

Business Impact

Enables evidence-based launch pricing, scenario analysis by mission type, and competitive bids for alternate providers.

Limitations

Modest sample size; public data noise; payload/mission details partially observed (e.g., exact landing method, weather).

What's Next

Add booster age/propellant margins, weather/sea-state, and landing method; calibrate probabilities; deploy a lightweight Dash app + scheduled data refresh.

