Sensorimotor Predictors: Examining the Relationship Between Measures of Post-landing Sensorimotor Functional Task Performance

KBR, Houston

Yiri De Dios

Nichole Beltran

Erin Caldwell

Tim Macaulay

Brian Peters

Marissa Rosenberg

NASA Johnson Space Center

Jacob Bloomberg

Al Feiveson

Mill Reschke

Scott Wood

U of Utah, Salt Lake City Vincent Koppelmans

U of Colorado, Boulder Torin Clark

U of Florida, Gainesville Rachael Seidler

U of Minnesota, Minneapolis Lars Oddsson

UTMB, GalvestonCorey Theriot

Study Status Overview

- Purpose: Identify a set of behavioral, neuroimaging and genetic measures that can potentially be used to predict and better explain early performance following G-transitions such as return to Earth on a set of sensorimotor tasks
- Recruiting ISS astronauts who previously participated in sensorimotor field tests and/or dynamic posturography (MedB) within R+1 day following long-duration spaceflight
- Status: 15 of 30 crewmembers recruited
- This presentation will focus on three quantitative post-flight functional task outcomes and a *new* subjective self-rating of post-flight decrements and recovery

Post-Flight Outcomes

Recovery from fall / prone-to-stand

Posture (5/5M)

Time to stability (s) 0 0 0 15 Preflight Postflight (hrs)

Relationships between Post-flight Outcomes

Eyes open

Eyes closed

Ratio score (Post/Pre)
Higher -> Closer to preflight levels

Subjective Self-Ratings

- Initiated a subjective survey to ask crewmember to rate *severity* and *time to recover* for functional tasks impacts, e.g.:
 - 4 Severe impacts, tasks not attempted, deliberate restriction of motion
 - 3 Moderate impacts requiring extended time to complete tasks
 - 2 Mild or transient impacts, worse during or following certain motions
 - 1 Functioning nominally but with increased effort
 - 0 No impact or restriction of movements
- Ratings also allow for comparison of in-flight and post-flight severity and time to recover, as well as across missions
- Open ended question requests crew recommendations, e.g.:
 - Medications help, best to pre-medicate prior to deorbit
 - Limit head movements
 - Close eyes during chute opening

Preliminary Findings

- There is considerable variability among the post-flight performance outcomes for the 15 participants to date
- While there is a strong association within tests obtained at different R+0 timepoints, by R+24 hr performance on one postflight test does not necessarily correlate with performance on other post-flight tests
- Subjective reporting can provide insight into the individual variability, especially steps taken to mitigate impacts to performance
- These results underscore the importance of a clinical assessments utilizing surrogate measures that allow the sensory cues (e.g., vision) anticipated during operational tasks