A Book of Abstract Algebra (2nd Edition)

Chapter 17, Problem 1EG

Bookmark

Show all steps: ON

Problem

If A and B are rings, their direct product is a new ring, denoted by $A \times B$, and defined as follows: $A \times B$ consists of all the ordered pairs (x, y) where x is in A and y is in B. Addition in $A \times B$ consists of adding corresponding components:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

Multiplication in $A \times B$ consists of multiplying corresponding components:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

If A and B are rings, verify that $A \times B$ is a ring.

Step-by-step solution

Step 1 of 5

Consider the direct product $A \times B$ of two rings A and B with the following addition and multiplication:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2),$$

 $(x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2, y_1 y_2),$

where $x_1, x_2 \in A, y_1, y_2 \in B$.

Objective is to show that $A \times B$ satisfies all the axioms to be a ring.

Comment

Step 2 of 5

First show that $((A \times B), +)$ is an abelian group.

(1) The $A \times B$ is closed under addition because $x_1 + x_2 \in A$, $y_1 + y_2 \in B$ so:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) \in A \times B$$

(2) Associative: Let $(a, b), (c, d), (e, f) \in A \times B$. Then

$$((a,b)+(c,d))+(e,f)=(a,b)+((c,d)+(e,f))$$
$$(a+c,b+d)+(e,f)=(a,b)+(c+e,d+f)$$
$$(a+c+e,b+d+f)=(a+c+e,b+d+f).$$

Since both the sides are equals, so addition is associative in $A \times B$.

(3) The identity on addition is (0,0) where first 0 is the identity of ring A and second 0 is the identity of ring B:

$$(a,b)+(0,0)=(a+0,b+0)$$

= (a,b)
 $(0,0)+(a,b)=(a,b).$

(4) For every $(a, b) \in A \times B$, the negative of it will be (-a, -b) where $-a \in A$ is the negative of a and $-b \in B$ is negative of b:

$$(a,b)+(-a,-b)=(a-a,b-b)$$

= $(0,0)$
 $(-a,-b)+(a,b)=(0,0).$

(5) Also,

$$(a,b)+(c,d)=(a+c,b+d)$$

= $(c+a,d+b)$
= $(c,d)+(a,b)$

So, addition is commutative.

And from here it conclude that, $A \times B$ is an abelian group.

Comment

Step 3 of 5

Now, show that product is associative. So,

$$((a,b)\cdot(c,d))\cdot(e,f) = (a,b)\cdot((c,d)\cdot(e,f))$$
$$(ac,bd)\cdot(e,f) = (a,b)\cdot(ce,df)$$
$$(ace,bdf) = (ace,bdf).$$

Since both the sides are equals, so multiplication is associative in $A \times B$.

Comment

Step 4 of 5

Next is distributive law:

$$(a,b) \cdot ((c,d) + (e,f)) = (a,b) \cdot (c+e,d+f)$$

$$= (ac+ae,bd+bf)$$

$$(a,b) \cdot (c,d) + (a,b) \cdot (e,f) = (ac,bd) + (ae,bf)$$

$$= (ac+ae,bd+bf).$$
Thus, $(a,b) \cdot ((c,d) + (p,q)) = ((a,b) \cdot (c,d)) + ((a,b) \cdot (p,q))$. Similarly, $((c,d) + (p,q)) \cdot (a,b) = ((c,d) \cdot (a,b)) + ((p,q) \cdot (a,b))$.

Comment

Step 5 of 5

Hence, $(A \times B, +, \cdot)$ satisfies all the axioms to be a ring.

Comment