ROBUST FINE-TUNING OF ZERO-SHOT MODELS

Докладчик: Абрамов Арсений

Рецензент-исследователь: Клименко Злата

Хакер: Присяжнюк Артём

14 декабря, 2022

оригинал

ObjectNet (Barbu et al.)

смещённое

Zero-shot: предобученная модель; в тестовой выборке используются классы, не задействованные на обучающей выборке.

Robustness: насколько меняется качество модели при смене распределения.

он выбрал Robustness

Zero-shot:

- Robustness √
- Accuracy √

Fine tune:

- Robustness ✓
- Accuracy √

Как дообучать без потери обобщающей способности?

WiSE-FT

 $WiSE-FT := Weight-Space\ Ensembles\ for\ Fine-Tuning$

WiSE-FT

WiSE-FT:

- Robustness √
- Accuracy √

WiSE-FT

Первый шаг:

Fine-tuning zero-shot модели.

Второй шаг:

Линейная интерполяция между весами оригинальной и дообученной моделей (Weight-Space ensembling)

Псевдокод

Algorithm 1 Pytorch pseudocode for WiSE-FT

```
def wse(model, zeroshot_checkpoint, finetuned_checkpoint, alpha):
   # load state dicts from checkpoints
   theta_0 = torch.load(zeroshot_checkpoint)["state_dict"]
   theta_1 = torch.load(finetuned_checkpoint)["state_dict"]
   # make sure checkpoints are compatible
   assert set(theta 0.keys()) == set(theta 1.keys())
   # interpolate between all weights in the checkpoints
   theta = {
       key: (1-alpha) * theta_0[key] + alpha * theta_1[key]
       for key in theta_0.keys()
   1
   # update the model (in-place) according to the new weights
   model.load_state_dict(theta)
def wise_ft(model, dataset, zeroshot_checkpoint, alpha, hparams):
   # load the zero-shot weights
   theta_0 = torch.load(zeroshot_checkpoint)["state_dict"]
   model.load state dict(theta 0)
   # standard fine-tuning
   finetuned_checkpoint = finetune(model, dataset, hparams)
   # perform weight-space ensembling (in-place)
   wse(model, zeroshot_checkpoint, finetuned_checkpoint, alpha)
```

Главное

- работаем с CLIP;
- ансамблирование вычислительную сложность не увеличивает;
- α (он же *mixing coefficient*) разумно брать за 0.5;
- при дообучении только линейного классификатора эквивалентно простому ансамблированию;
- linear mode connectivity;

Ээээксперименты

	Distribution shifts						Avg	Avg
	IN (reference)	IN-V2	IN-R	IN-Sketch	ObjectNet*	IN-A	shifts	ref., shifts
CLIP ViT-L/14@336px		1					1	
Zero-shot [82]	76.2	70.1	88.9	60.2	70.0	77.2	73.3	74.8
Fine-tuned LC [82]	85.4	75.9	84.2	57.4	66.2	75.3	71.8	78.6
Zero-shot (PyTorch)	76.6	70.5	89.0	60.9	69.1	77.7	73.4	75.0
Fine-tuned LC (ours)	85.2	75.8	85.3	58.7	67.2	76.1	72.6	78.9
Fine-tuned E2E (ours)	86.2	76.8	79.8	57.9	63.3	65.4	68.6	77.4
WiSE-FT (ours)							I	
LC, $\alpha=0.5$	83.7	76.3	89.6	63.0	70.7	79.7	75.9	79.8
LC, optimal α	85.3	76.9	89.8	63.0	70.7	79.7	75.9	80.2
E2E, α =0.5	86.8	79.5	89.4	64.7	71.1	79.9	76.9	81.8
E2E, optimal α	87.1	79.5	90.3	65.0	72.1	81.0	77.4	81.9

ImageNet (Deng et al.)

ImageNet Sketch (Wang et al.)

ImageNetV2 (Recht et al.)

ObjectNet (Barbu et al.)

ImageNet-R (Hendrycks et al.)

ImageNet-A (Hendrycks et al.)

Источники

• https://arxiv.org/abs/2109.01903