• • • • • •

인공지능수학

(확률과 통계1)

학습내용

■ 학습할 내용

- 1. 모집단과 표본집단의 평균
- 2. 산포도

1. 평균, 분산, 확률

■ 각 개념의 의미

- ⇒ 평균 은 산술평균 또는 기대값
- lacktriangle 분산 σ^2 은 평균 m 으로 부터 평균 제곱거리를 측정
- \bigcirc n 개의 서로 다른 사건의 확률은 그 합이 1이 되는 양수

■ 집단

- ⇒ 모집단
 - ◆ 연구 또는 관찰의 대상이 되는 총체
 - ◆ 연구자가 알고 싶어 하는 대상 그 자체
 - ◆ 집단 전부
- ➡ 표본집단
 - ◆ 모집단에서 추출한 일부 (부분집합)
 - ◆ 모집단의 특성을 반영할 수 있는 표본 추출이 중요

🕠 표본평균(sample mean)

- 변량 X에 대한 n 개의 자료가 x_1, x_2, \dots, x_n 으로 주어질 때, 변량 X 의 산술평균을 표본평균이라 하고 다음과 같이 정의된다.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$

🔾 모평균(population mean)

- 변량 X가 모집단에서 얻은 관측 값이 x_1, x_2, \dots, x_N 으로 주어질 때, 변량 X의 산술평균을 모평균 이라 하고 다음과 같이 정의된다.

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{1}{N} (x_1 + x_2 + \dots + x_N)$$

○ 가중산술평균

- 변량 X의 자료가 범구형 도수분포표로 주어질 때,
- 전체 도수를 n, i번째 범주에 속한 도수를 f_i 라 할 때 다음과 같이 계산한다.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^k f_i x_i = \frac{1}{n} (f_1 x_1 + f_2 x_2 + \dots + f_k x_k)$$

$$(k : 범주의 수, \sum_{i=1}^k f_i = n)$$

예제 1

다음 범주형 도수분포표를 보고 표본평균을 구하라.

이때의 표본평균은 가중산술평균이 된다.

변량 (x_i)	도수 (f_i)
5	5
15	8
25	3
35	2
45	2
합계	20

풀이

범주형 도수분포표로 정리된 경우 표본평균 x 는 가중산술평균으로 구한다. 이때 k=5이고 $n=\sum_{i=1}^k f_i=\sum_{i=1}^5 f_i=20$ 이므로 표본평균을 구하면 다음과 같다.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{5} f_i x_i = \frac{1}{n} (f_1 x_1 + f_2 x_2 + f_3 x_3 + f_4 x_4 + f_5 x_5)$$
$$= \frac{1}{20} (5 \times 5 + 8 \times 15 + 3 \times 25 + 2 \times 35 + 2 \times 45) = 19$$

인공지능을 위한 수학

예제 2

다음은 예제는 청소년의 일주일 동안 스마트폰 사용 시간에 대한 계급형 도수분포표의 일부이다. 이 도수분포표를 이용하여 표본평균을 구하라.

계급(시간)	계급값 $(m_{_{\! i}})$	도수 (f_i)
$10^{ m olb}\sim 17^{ m olb}$	13,5	7
17 ^{이상} ~ 24 ^{미만}	20,5	24
24 ^{이상} ~ 31 ^{미만}	27.5	13
31 ^{이상} ~ 38 ^{미만}	34,5	4
38 ^{이상} ~ 45 ^{미만}	41.5	1
45 ^{이상} ~ 52 ^{미만}	48,5	1
합계	-	50

$$n = \sum_{i=1}^{6} f_i = 50$$

$$\overline{x} = \sum_{i=1}^{6} f_i x_i = \frac{1}{n} (f_1 x_1 + f_2 x_2 + f_3 x_3 + f_4 x_4 + f_5 x_5 + f_6 x_6)$$

$$= \frac{1}{50} (13.5 \times 7 + 20.5 \times 24 + 27.5 \times 13 + 34.5 \times 4 + 41.5 \times 1 + 48.5 \times 1) = 23.44$$

🕠 산술평균의 성질

(1) 산술평균에 대한 편차⁵의 합은 0 이다.

$$\sum_{i=1}^{n} (x_i - \overline{x}) = (x_1 - \overline{x}) + (x_2 - \overline{x}) + \dots + (x_n - \overline{x}) = 0$$

(2) 산술평균은 편차의 제곱의 합을 최소로 한다. 즉, 산술평균에 대한 편차의 제곱의 합은 임의의 수에 대한 편차의 제곱의 합보다 크지 않다.

$$\sum_{i=1}^{n} (x_i - \overline{x})^2 \le \sum_{i=1}^{n} (x_i - a)^2$$
 (단, a는 상수)

- (3) 산술평균은 주어진 자료를 모두 사용하므로 정보 손실이 없고, 특히 표본들의 평균 인 표본평균은 모집단을 추론할 때 유용하게 사용된다.
- (4) 산술평균은 양적자료에 대해서만 구할 수 있으며, 대다수의 자료와 멀리 떨어져 있는 값인 **극단값**(outlier)에 매우 민감하게 작용한다(극단값은 **이상점**이라고도 한다).

인공지능을 위한 수학

중앙값 (Median)

① 변량 X의 n 개의 자료 x_1, x_2, \cdots, x_n 을 작은 값부터 크기 순으로 배열했을 때, 한가운데에 위치한 값을 중앙값(median) 또는 중위수 라고 Mel,

로 나타내다

n	중앙값	설명
홀수	$Me = x\left(\frac{n+1}{2}\right)$	$\frac{n+1}{2}$ 번째 값
짝수	$Me = \frac{x\left(\frac{n}{2}\right) + x\left(\frac{n}{2} + 1\right)}{2}$	$\displaystyle rac{n}{2}$ 번째 값과 $\displaystyle rac{n}{2} + 1$ 번째 값의 평균

- 중앙값은 다음과 같이 <mark>편차의 절댓값의 합</mark>을 최소로 하는 성질이 있다.

$$\sum_{i=1}^n \mid x_i - Me \mid \ \leq \sum_{i=1}^n \mid x_i - a \mid \quad (단, \ a 는 상수)$$

중앙값

예제 3

다음 표는 A공장의 작업자 5명이 하루 동안 제작하는 물품 수량을 나타낸다. 이때 중앙값을 구하라.

작업자	1	2	3	4	5	6
물품 수량	250	285	230	265	290	800

풀이

먼저 자료(물품 수량)를 크기순으로 배열하면 230, 250, 265, 285, 290, 800이다. n=6, 즉 자료의 수가 짝수이므로 3번째와 4번째 자료의 값의 평균이 중앙값이다. 따라서 중앙값은 다음과 같이 구할 수 있다.

$$Me = \frac{1}{2}(x_3 + x_4) = \frac{1}{2}(265 + 285) = \frac{550}{2} = 275$$

중앙값

() [예제 3] 에서 극단값 800을 제외하고 중앙값을 구하면 n=5, 즉 자료의 수가 홀수이므로 3번째 자료의 값이 중앙값이다.

따라서 중앙값은 다음과 같이 구할 수 있다.

$$Me = x_3 = 265$$

최빈값

 \bigcirc 변량 X의 자료 중에서 가장 많이 나타나는 값을 <mark>최빈값 (mode)</mark>이라 하고, Mo 로 나타낸다. 즉, 빈도수가 가장 많은 값을 나타낸다.

[그림 1-11] 도수분포곡선에서의 최빈값

♣ 값이 하나로 정해지는 평균이나 중앙값과는 달리 최빈값은 자료에 따라 두 개 이상일 수도 있고, 없을 수도 있다.

최빈값

예제 4

다음 50명의 통계학 성적에 대해 표본평균, 중앙값, 최빈값을 각각 구하라.

(단위:점)

83	90	60	25	50	94	60	62	97	43	67	84	79
62	78	48	85	52	77	90	25	84	41	65	58	75
83	71	74	68	89	88	76	69	77	89	73	98	77
58	77	69	75	69	65	67	69	79	85	45		

- ♣ 표본평균 =
- ♣ 최빈값 =
- ♣ 중앙값 =

산술평균, 중앙값, 최빈값 사이의 관계

 \square 피어슨의 실험 공식: $\overline{x}-Mo\approx 3(\overline{x}-Me)$

[표 1] 도수분포곡선 모양에 따른 산술평균, 중앙값, 최빈값 사이의 관계

분류	도수분포곡선	관계
도수분포가 완전히 대칭인 경우	$\overline{x} = Me = Mo$	$\overline{x} = Me = Mo$
도수분포가 오른쪽으로 치우친 경우	\overline{x} Me Mo	$\overline{x} < Me < Mo$
도수분포가 왼쪽으로 치우친 경우	Mo Me \overline{x}	$Mo < Me < \overline{x}$

산술평균, 중앙값, 최빈값 사이의 관계

예제 5

벤처기업에 근무하는 직원 30명의 연령 자료에 대한 산술평균, 중앙값, 최빈값 사이의 관계를 설명하라.

풀이

먼저 직원의 연령에 대한 히스토그램을 그리면 다음과 같다.

이 히스토그램을 보면 약간 왼쪽으로 치우쳤음을 확인할 수 있다. 이 자료의 산술평균, 중앙값, 최빈값은 각각 x=29.5, Me=28.5, Mo=26이다. 따라서 Mo < Me < x이고 피어슨의 실험 공식을 어느 정도 따른다고 볼 수 있다.

인공지능을 위한 수학

백분위수와 사분위수

- \bigcirc 제100p 백분위수
- 변랑X의 n 개의 자료를 작은 값부터 크기 순으로 배열했을 때 $0 \le p \le 1$ 에 대하여 전체 자료를 100p% 와 100(1-p)% 로 나누는 값을 제 100p 백분위수(100pth percentile)라 한다.
 - 1 자료를 작은 값부터 크기순으로 배열한다.
 - ② 자료 수 n에 p를 곱하여 다음과 같은 기준으로 제100p 백분위수를 결정한다.
 - np가 정수이면, np번째로 큰 자료와 (np+1)번째로 큰 자료의 평균을 택한다.
 - np가 정수가 아니면, np의 정수 부분에 1을 더한 값 m을 구하고 m번째로 큰 자료를 택한다. 자료와 멀리 떨어진 값인 극단값에 매우 민감하게 작용한다.

백분위수와 사분위수

특히 제25, 50, 75백분위수는 자료를 4등분하는 위치에 있는 값으로, 이 값을 **사분위수** (quartile)라고 한다. 이를 각각 Q_1 , Q_2 , Q_3 로 표시하며, Q_1 을 제1사분위수, Q_2 를 제2사 분위수(중앙값), Q_3 를 제3사분위수라고 한다.

예제 6

다음 자료에서 제50 백분위수와 제25 백분위수를 구하라.

16, 25, 4, 18, 11, 13, 20, 8, 11, 9

인공지능을 위한 수학

절사평균

- 절사평균(trimmed mean)은 평균의 장점과 중앙값의 장점을 모두 고려한 대푯값으로 극단값을 제외하고 구한 평균이다.
 - 1 자료를 작은 값부터 크기순으로 배열한다.
 - ② $0 \le \alpha \le 0.5$ 인 α 에 대하여 자료 수 n에 α 를 곱하여 다음과 같은 기준으로 자료수를 제거한다.
 - αn 이 정수이면, 이 정수에 해당하는 자료 수만큼 양 끝에서 제거한다.
 - αn 이 정수가 아니면, αn 을 넘지 않는 최대 정수에 해당하는 자료 수만큼 양 끝에서 제거한다.
 - ③ 제거하고 남은 자료에 대하여 산술평균을 구한다.

- 절사평균을 계산하려면 <mark>절사비율(%)</mark>을 결정해야 하는데, 절사비율은 전체 데이터 개수에 대하여 상위 몇 퍼센트의 데이터와 하위 몇 퍼센트의 데이터를 배제할 것인가로 결정한다.

절사평균

예제 7

다음 자료에서 15% 절사평균을 구하라.

68, 70, 67, 10, 72, 68, 70, 71

물0 자료를 다음과 같이 작은 값부터 크기순으로 배열한다.

10, 67, 68, 68, 70, 70, 71, 72

자료 수가 n=8, $\alpha=0.15$ 이므로 $\alpha n=0.15\times 8=1.2$ 이다. 이때 αn 이 정수가 아니므로, 1.2를 넘지 않는 최대 정수에 해당하는 1개의 자료를 각각 양 끝에서 제거한다.

67, 68, 68, 70, 70, 71

이들의 산술평균을 구하면 $\frac{67+68+68+70+70+71}{6}=69$ 이므로, 주어진 자료에 대한 15% 절사평균은 69이다.

인공지능을 위한 수학

■ 산포도 : 자료의 흩어진 정도

(한 X의 자료가 x_1, x_2, \dots, x_n 일 때, X의 범위(range)는 이들 자료의 최댓값(x_{\max})과 최솟값 (x_{min}) 의 차를 의미하며, 보통 R로 표기한다.

$$R = x_{\text{max}} - x_{\text{min}}$$

예제 8

다음 자료의 범위를 구하라.

2, 3, 7, 12, 10, 14, 14, 9, 6

사분위수 범위

합 범위는 자료의 두 극단값의 차이만을 나타내기 때문에 자료의 산포를 나타내기에 불충분하다. 이러한 단점을 일부 보완한 산포도가 사분위수 범위(interquartile range, IQR)이다.

○ 사분위수 범위는 다음과 같이 제3 사분위수와 제1 사분위수의 차이로 정의된다.

 $IQR(사분위수 범위) = Q_3 - Q_1$

사분위수 범위

예제 9

[예제 8]를 참고하여, 다음 자료에 대한 제1 사분위수 Q_1 , 제3 사분위수 Q_3 , 사분위수 범위를 각각 구하라.

16, 25, 4, 18, 11, 13, 20, 8, 11, 9

- 평균을 중심으로 각 변량이 흩어진 정도를 알기 위하여 각 편차의 제곱의 합을 변량의 개수로 나눈 값, 즉 편차의 제곱의 평균인 분산(variance)을 이용한다.
 - 모집단의 분산인 모분산 은 σ^2 으로 나타내며, 다음과 같이 정의한다. 여기에서 μ 는 모평균이다

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

- 또한 변량 X의 자료가 n 개의 원소 x_1, x_2, \dots, x_n 으로 이루어진 모집단의 한 표는 X일 때, 의 표본 분산은 S^2 으로 나타내며, 다음과 같이 정의한다.

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

- X의 자료가 도수분포표로 주어질 때의 표본분산은 다음과 같이 구한다.

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{k} f_i (x_i - \overline{x})^2, \quad \sum_{i=1}^{k} f_i = n$$

 $(k : 계급의 수, f_i : i$ 번째 계급에 속한 도수, $\overline{x} = \frac{1}{n} \sum_{i=1}^{k} f_i x_i : 표본평균)$

🕠 모분산과 표본분산의 간편식

[표 1-8] 모분산과 표본분산의 간편식

	모분산	표본분산
정의식	$\sigma^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \mu)^2$	$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x} \)^2$
간편식	$\sigma^2 = \frac{1}{N} \sum_{i=1}^N x_i^2 - \mu^2$	$S^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2} \right)$

- 분산의 양의 제곱근을 표준편차(standard deviation)라고 한다.
 - 모분산의 양의 제곱근인 σ 를 모표준편차(population standard deviation),

S 를 표본표준편차(sample standard deviation)라 하는데, 각각 다음과 같이 정의한다.

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} , \quad S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

- X의 자료가 도수분포표로 주어질 때의 표준편차는 다음과 같다.

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{k} f_i (x_i - \overline{x})^2}, \quad \sum_{i=1}^{k} f_i = n$$

(k : 계급의 수, f_i : i 번째 계급에 속한 도수, $\overline{x} = \frac{1}{n}\sum_{i=1}^k f_i x_i$: 표본평균)

예제 10

다음 자료에 대하여 물음에 답하라.

10, 11, 12, 13, 12, 14, 13, 11, 13, 12, 12, 11

- (a) 범위를 구하라.
- (b) 사분위수 범위를 구하라.
- (c) 표본분산과 표준편차를 각각 구하라.

변동계수

0

측정 단위가 동일하지만 평균이 큰 차이로 다른 두 자료 집단 또는 측정 단위가 서로 다른 두 자료집단에 대한 산포도의 척도로 사용하는 것은 바람직하지 않다.

이러한 경우에 평균을 중심으로 상대적으로 흩어진 정도를 측정하는 척도를 사용하는데, 이를 변동계수(coefficient of variation)라 하고 보통 CV로 표기하며 다음과 같이 정의한다.

$$CV = \frac{$$
표준편차}{평균} × 100(%)

변동계수

예제 11

다음 표는 저소득층과 고소득층의 하루 일당에 대한 변동계수를 구하고, 상대적으로 두 자료 집단의 흩어진 정도를 분석하라.

(단위: 천 원)

저소득층	11.5	12.2	12.0	12.4	13.6	10.5
고소득층	171	164	167	156	159	164

5점 요약 표시

$$[x_{\min}, Q_1, Me, Q_3, x_{\max}]$$

5점 요약 표시

예제 12

다음 자료를 5점 요약 표시로 나타내라.

60, 64, 72, 80, 92, 64, 68, 72, 76, 80, 84, 84, 76, 88, 88, 92, 96, 88, 92, 76

왜도와 첨도

의 왜도(skewness)(또는 비대칭도)

- 분포의 대칭이나 비대칭의 정도를 표시하는 척도

$$\alpha = \frac{\sum\limits_{i=1}^{n} \left\{ (x_i - \overline{x})/S \right\}^3}{n-1} = \frac{\frac{1}{n-1} \sum\limits_{i=1}^{n} (x_i - \overline{x})^3}{S^3} = \frac{\mu_3}{S^3}$$

$$(n : 표본의 수, S : 표본표준편차,$$

$$\overline{x} : 표본평균, \ \mu_k = \frac{1}{n-1} \sum\limits_{i=1}^{n} (x_i - \overline{x})^k : k차 적률^{7})$$

- 이때 lpha 값에 따라 분포 형태를 알 수 있으며, lpha 의 절댓값이 클수록 비대칭 정도가 심하다.
 - $\alpha = 0$ 이면 대칭분포이다.
 - $\alpha > 0$ 이면 왼쪽으로 치우친 분포이다.
 - $\alpha < 0$ 이면 오른쪽으로 치우친 분포이다.

왜도와 첨도

○ 첨도(kurtosis)

- 뾰족함의 정도를 나타내는 척도

$$\beta = \frac{\sum\limits_{i=1}^{n} \left\{ (x_i - \overline{x})/S \right\}^4}{n-1} = \frac{\frac{1}{n-1} \sum\limits_{i=1}^{n} (x_i - \overline{x})^4}{S^4} = \frac{\mu_4}{S^4}$$

 $(n: 표본의 수, S: 표본표준편차, <math>\overline{x}: 표본평균, \mu_4: 4$ 차 적률)

- 이때 β 값에 따라 분포 형태를 알 수 있다.
 - $\beta = 3$ 이면 뽀족한 정도가 표준정규분포와 같다.
 - β > 3이면 표준정규분포 보다 정점이 높고 뾰족하다.
 - $\beta < 3$ 이면 표준정규분포보다 정점이 낮고 완만하다.

왜도와 첨도

예제 13

다음 자료에 대하여 왜도와 첨도를 각각 구하고, 이를 통해 자료의 분포 형태를 파악하라.

1, 3, 2, 0, 1, 1, 2, 3, 2, 4, 3