Rask bruksanvisning til regnearket Kanalkalk

Grensesnittet

- Inndata skrives i de hvite cellene. Grå celler viser beregningsresultater eller overskrifter.
- Alle kolonner har gule «pop-up» merknader som beskriver verdiene i kolonnen. Dette gjør programmet ganske selvforklarende.
- For å utføre beregning, tast CTRL+B. Dette vil kjøre en makro beregning.
- Hver rad i regnearket gjelder for en kanalstrekk med en gitt luftmengde. Dersom du
 ønsker å beregne et helt ventilasjonsanlegg må du derfor dele anlegget opp i ulike
 kanalstrekk og beregne trykkfall over hver av disse. Et eksempel på fremgangsmåten er
 gitt i Leif Stensaas' bok, "Ventilasjonsteknikk I", sider 146-148.

Støttapskoeffisienter

I inndatakolonnen med tittel «*Støttapskoef. kanaldeler*» oppgir du summen av støttapskoeffisientene til kanaldelene (f.eks. bend, T-stykke, diameter-reduksjon) på gjeldende kanalstrekk. Denne kolonnen kan også benyttes til systemeffekt, dvs. støttapskoeffisient pga. turbulens ved ugunstig utformet vifteinnløp eller vifteutløp.

Trykkfall pga. støttap i kanalstrekket beregnes av makroen med følgende formel:

$$\Delta p_{st \phi t} = \sum(\zeta) \cdot p_{dyn} = \sum(\zeta) \cdot \frac{1}{2} \rho v^2$$

hvor:

 $\Sigma(\zeta)$ er summen av støttapskoeffisienter (zeta-verdier) for alle komponentene på kanalstrekket

 $p_{\rm dyn}$ er dynamisk trykk i kanalen [Pa], hvor $p_{dyn}=\frac{1}{2}\rho\,\nu^2$ ρ er luftens tetthet [kg/m³] v er nominell lufthastighet i kanalen [m/s]

Denne kolonnen er valgfri. Den kan stå tom hvis du heller vil spesifisere komponentene som k-faktor og/eller kjent trykkfall, eller hvis kanalstrekket ikke har komponenter med støttap.

Støttap alternativ 1: Manuell input

Summert støttapskoeffisient kan skrives inn for hånd. For eksempel, dersom et kanalstrekk har både avgrening (ζ =1) og to bend (hver med ζ =0,5), kan du skrive «=1+0,5*2» i cellen.

Det finnes zeta-verdier for forskjellige kanaldeler i flere HVAC håndbøker, eller produsentdata, f.eks:

- Web: Google søk etter "Minor Loss Coefficients for Air Duct Components"
- ASHRAE "Duct Fitting Database" (2006), CD-ROM, \$186
- ASHRAE "Fundamentals Handbook" (2005), CD-ROM, \$155
- CIBSE "Guide C" (2001), CD-ROM, \$180
- SMACNA "HVAC Systems Duct Design", PDF, \$106
- Leif Stensaas, "Ventilasjonsteknikk I", sider 130-145

De fleste kildene ovenfor gir zeta verdier som er uavhengig av lufthastighet og eller kanaldiameter. Zeta verdier er egentlig ikke konstant; de er faktisk avhengig av hastighet og kanaldiameter (dvs. avhengig av Reynolds tallet). Alternativ 2, under, er en måte å beregne mer zeta-verdier som er avhengig av Reynolds-tallet.

Støttap alternativ 2: Innebygde funksjoner for beregning av støttapskoeffisienter Regnearket har følgende innebygde funksjoner for å automatisk beregne zeta verdi:

Regnearket har tølgende innebygde funksjoner for a automatisk beregne zeta verdi:		
T-gren (tilluft)	$\begin{array}{c c} \longrightarrow k & a \longrightarrow \Delta p \\ \hline & \downarrow & \end{array}$	=zeta_TgrenTilluft_Gjennom (Luftmengdebrøk, Diameterbrøk_over_rett *)
		=zeta_TgrenTilluft_tilGren (Luftmengdebrøk, Diameterbrøk_over_rett)
	$ \begin{array}{c c} \hline & a \rightarrow \\ \hline & k \\ \hline & \uparrow \end{array} $	=zeta_TgrenTilluft_fraGren (Luftmengdebrøk, Diameterbrøk_over_avgrening)
T-gren (avtrekk)	$ \begin{array}{c c} & a \leftarrow \\ & &$	=zeta_TgrenAvtrekk_Gjennom (Luftmengdebrøk, Diameterbrøk_over_gjennomstrøm *)
	$\frac{\mathbf{k}}{\mathbf{k}} \leftarrow \mathbf{k}$ $\uparrow \uparrow \uparrow \downarrow \Delta p$	= zeta_TgrenAvtrekk_fraGren (Luftmengdebrøk, Diameterbrøk_over_gjennomstrøm)
	$\xrightarrow{k} \stackrel{a \leftarrow}{\bigvee} \Delta p$	=zeta_TgrenAvtrekk_tilGren (Luftmengdebrøk, Diameterbrøk_over_avgrening)
	$\longrightarrow \Delta p$	= zeta_Reduksjon45grader_litenKanal (Stor_diameter_mm, Liten_diameter_mm, Luftmengde_m3h)
	$\Delta p \longrightarrow$	= zeta_Ekspansjon45grader_litenKanal (Liten_diameter_mm, Stor_diameter_mm, Luftmengde_m3h)
	$\longrightarrow \Delta p$	= zeta_Reduksjon18grader_litenKanal (Stor_diameter_mm, Liten_diameter_mm, Luftmengde_m3h)
	$\Delta p \longrightarrow$	= zeta_Ekspansjon18grader_litenKanal (Liten_diameter_mm, Stor_diameter_mm, Luftmengde_m3h)
		=zeta_Bend90grader_Kort (Diameter_mm, Luftmengde_m3h)
		=zeta_Bend90grader_Vanlig (Diameter_mm, Luftmengde_m3h)
		=zeta_Bend90grader_Lang (Diameter_mm, Luftmengde_m3h)

^{*} Vanligvis = 1 for normale T-stykker og alle påstikk

Forklaring:

- Luftmengdebrøk = q_a/q_k = Luftmengde i luftstrøm a / Luftmengde i kombinert luftstrøm
- Diameterbrøk_over_rett = D_a/D_k = Kanaldiameter luftstrøm a / Kanaldiameter kombinert luftstrøm
- Diameterbrøk_over_gjennomstrøm = D_a/D_k = Kanaldiameter luftstrøm a / Kanaldiameter kombinert luftstrøm
- Diameterbrøk_over_avgrening = D_a/D_k = Kanaldiameter luftstrøm a / Kanaldiameter kombinert luftstrøm
- Diameter_mm = Kanaldiameter, målt i mm
- Liten_diameter_mm = Den miste av de to diameter i konisk ekspansjon eller reduksjon
- Stor_diameter_mm = Den største av de to diameter i konisk ekspansjon eller reduksjon
- Luftmengde_m3h = Luftmengde gjennom kanal, målt i m³/h

En lettvint måte å benytte formlene på er som følger:

Trinn 1: Klikk på «*fx*» knappen på Excels «Formula bar». Vindet «Insert function» dukker opp.

Trinn 2: Velg kategori «User defined» fra listen over typer funksjoner. Veg ønsket funksjon fra listen over de innebygde støttapsfunksjoner som vises.

Trinn 3: Bruk musen til å klikke på cellene med inndata for funksjonen.

Hvor nøyaktig er Kanalkalk?

Kanalkalk beregner friksjon (trykktap i rette kanaler) veldig nøyaktig med Colebrook-White formelen, for alle lufthastigheter, også laminær strømning.

Den største usikkerheten ved bruk av Kanalkalk er derfor støttap (trykkfall over kanaldeler som avgreninger og bend), og ventiltrykkfall. De innebygde funksjoner som du kan bruke for å beregne støttapskoeffisienter for ulike kanaldeler forutsetter gode strømningsforhold, dvs. minst 6 kanaldiameter avstand mellom kanaldeler. I virkelige kanalanlegg er det gjerne kortere avstander mellom kanaldeler, noe som skaper ekstra turbulens og trykkfall.

Størst usikkerhet er knyttet til beregning av trykkfall i avgreninger, bl.a. på grunn av ulik utforming. Påstikk kan ha noe høyere trykkfall enn ordentlige T-stykker, avhengig av utførelse.

Alle de innebygde funksjoner som du kan bruke for å beregne støttapskoeffisienter som funksjon av lufthastighet (Reynolds-tallet), bortsett for funksjonene for T-stykker, som er noe mindre nøyaktige.

Peter Schild OsloMet/SINTEF Byggforsk