Analysis I

Homework 2

Nutan Nepal

September 13, 2022

Pack Pledge: I have neither given nor received unauthorized aid on this test or assignment.

- Let (X, ρ) and (Y, σ) be metric spaces, and let f: (X, ρ) → (Y, σ) be a map such that f⁻¹(V) is open in X, for all V open in Y. Show that f is continuous on X.
 (Continuous mapping) Show that a mapping T: X → Y is continuous if and only if the inverse image of any closed set M ⊂ Y is a closed set in X.
 Assume that f: (ℝ², d₁ = Euclidean metric) → ℝ is continuous at x ∈ ℝ². Show that f: (ℝ², d₂ = taxicab metric) → ℝ is also continuous at x.
 Show that the discrete metric space (X, d) is separable iff X is countable.
- 5. Show that l^p , with $1 \le p < \infty$ is separable.

	Show that l^{∞} is not separable.
7.	Let $\{x_n\}_{n\geq 1}$ be a sequence in a m.s. (X,d) which converges to x . Show that $\{x_n\}_{n\geq 1}$ is a bounded sequence. Then let $\{y_n\}_{n\geq 1}$ be a sequence in (X,d) which converges to y . Show that $\lim_{n\to\infty} d(x_n,y_n) = d(x,y)$.
8.	Show that any nonempty set $A \subset (X, d)$ is open if and only if it is a union of open balls.
9.	Let (X, ρ) be a metric space, $E \subset X$, and $x \in X$. Prove that the following are equivalent: (a) $x \in \overline{E}$ (b) $B(x,r) \cap E \neq \emptyset$, $\forall r > 0$
	(c) $\exists \{x_n\} \in E \text{ s.t. } x_n \to x$
10.	If d_1 and d_2 are metrics on the same set X and there are positive numbers a and b such that for all $x, y \in X$,
	$ad_1(x,y) \leq d_2(x,y) \leq bd_1(x,y),$ show that the Cauchy sequences in (X,d_1) and (X,d_2) are the same.

11.	Show that l^p , with $1 \le p < \infty$ is complete.
	Prove that $(\mathbb{R}, d(x, y) = x - y)$ is complete. Hint: Follow the steps provided in class. You can use Bolzano-Weierstrass Theorem without proving it.
13.	Prove that $(\mathbb{Q}, d(x, y) = x - y)$ is incomplete.
	Prove that $\left(\mathbb{C}[-1,1],d(f,g)=\int_{-1}^{1} f(t)-g(t) \ dt\right)$ is incomplete. Hint: Follow the steps provided in class.
15.	Determine whether or not the discrete metric space is complete. Justify your answer.
16.	Prove the Completion of a Metric Space Theorem.