Amrithya Balaji

Laboratoire Hubert Curien

Supervisor: Benjamin Girault

- 2 Coordinate Minimization
- Region-Free Screening
- 4 Results
- 6 References

- Represent real-world datasets as graphs, which connect entities (nodes) via relationships (edges).
- Graph learning enables us model complex relationships and dependencies.

Figure. 1: Temperature variations in January 2014 in Brittany. Average temperature at every location(left). Three stations circled in (right) with respect to time variations.(left) [Gir15]

0000000

- To create a graph with the important connections between data points.
- The graph should be sparse.
- To implement screening in graph learning algorithm

Background on Graphs

Graphs

- versatile data representation.
- useful for modeling high-dimensional data.
- can be represented as a set of vertices V, edge set \mathcal{E} , and an edge weight function w, as shown below.

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{w})$$

with
$$w: \mathcal{E} \to \mathbb{R}$$
, $e \mapsto w(e)$

Background on Graphs

Laplacian of a Graph

- Represent the structure of the graph.
- The eigenvalues and eigenvectors of the Laplacian matrix are used to understand the properties of the graph, such as connectivity.

$$L := D - W$$

Figure. 2: Calculating the Laplacian of a graph

0000000

Laplacian of a Graph

Let the unweighted incidence matrix of a graph with m edges and n vertices be $B = [\mathbf{b}_1 \cdots \mathbf{b}_n]$ and $W = diag(\mathbf{w}_1 \cdots \mathbf{w}_n)$, the Laplacian also verifies,

$$L = \sum_{e} (w_e b_e b_e^{\mathsf{T}}). \tag{1}$$

Sparse vs Well connected

The main goal of this paper is to model the statistical relations between vertices while remaining sparse.

- Sparse graph Number of edges is significantly smaller compared to the maximum possible number of edges.
- Well-connected graph higher edge density, larger proportion of possible edges.

Figure. 3: A well connected graph (Left) and a sparse graph(right) [BSS19]

- 4 ロ > 4 間 > 4 差 > 4 差 > - 差 - 夕 Q G

- 2 Coordinate Minimization
- 3 Region-Free Screening
- 4 Results
- 6 References

Coordinate Minimization Optimization algorithm used in machine learning

Coordinate Minimization

Input: objective function $f: \mathbb{R}^n \to \mathbb{R}$ while not converged do

Choose coordinate x_i Compute $\min_{x_i} f(x)$ end while

Data model

We use the inverse covariance estimation approach.

Covariance Matrix of a Graph Signal [GPO23]:

Theorem 1 [GPO23] With the power spectrum $\gamma(\lambda)=(1+\lambda)^{-1}$ where γ is the the variance of spectral component of the signal, the covariance matrix of a graph signal can be written using the (L,Q)-GFT as:

$$\Sigma = [Q + L]^{-1}. (2)$$

where Q = diag(q) and q is the vertex importance vector

For a random vector $x \in \mathbb{R}^N$ following a multivariate Gaussian distribution with mean vector μ and covariance matrix Σ , the probability density function (PDF) is given by:

$$p(x) = \frac{1}{(2\pi)^{N/2} \det(\Sigma)^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

When the mean vector $\mu = 0$, this simplifies to:

$$p(x) = \frac{1}{(2\pi)^{N/2} \det(\Sigma)^{1/2}} \exp\left(-\frac{1}{2} x^{T} \Sigma^{-1} x\right)$$

Cost function of our graph learning:

With the negative log-likelihood of our PDF and Theorem 1, we have the cost function as:

$$F(L) = -\log \det \left(L + \frac{1}{N}J\right) + \operatorname{tr}(LS) \tag{3}$$

where J is the all-one matrix.

$$F(L,Q) = -\log \det(Q+L) + \operatorname{tr}((Q+L)S) \tag{4}$$

where S is the empirical covariance matrix.

The trace term in the cost function (4) can be written as a sum tr(LS) + tr(QS). Further more, the terms can be written as:

$$tr(LS)$$
 can be written as $tr(B^T w_e BS) = \sum_{i=1}^{n} (w_e B^T SB)$

where $(B^T w_e BS) = h_e$ (edge cost) and w_e = edge weight.

$$\operatorname{tr}(QS)$$
 can be written as $\operatorname{tr}(q_i\delta_i^t\delta_iS) = \sum_{i=1}^m (q_i\delta_i^TS\delta_i)$

where $(\delta_i^T S \delta_i) = p_i$ (vertex cost) and q_i = vertex importance and with δ_i as a kronecker vector.

$$F(q, w) = -\log \det \left(\sum_{i=1}^{n} \delta_{i} \delta_{i}^{T} q_{i} + \sum_{e=1}^{m} \mathbf{b}_{e} \mathbf{b}_{e}^{T} w_{e} \right)$$

$$+ \operatorname{tr} \left(\left(\sum_{i=1}^{n} \delta_{i} \delta_{i}^{T} q_{i} + \sum_{e=1}^{m} \mathbf{b}_{e} \mathbf{b}_{e}^{T} w_{e} \right) \Sigma \right)$$

$$(5)$$

Coordinate minimization iterates through all edges and vertices, updating their weights. Updates can be calculated with the introduced hyperparameter q_{min} where $q_{min} > 0$.

The optimal updates are:

$$\begin{split} \delta_{e}^{(t)} &= \max \left(-w_{e}^{(t)}, \frac{1}{h_{e}} - \frac{1}{r_{e}} \right), \\ \delta_{i}^{(t)} &= \max \left(q_{\min} - q_{i}^{(t)}, \frac{1}{p_{i}} - \frac{1}{u_{i}} \right). \end{split}$$

where

Introduction

$$r_e=b_e(Q+L)^{-1}b_e=$$
 effective resistance and $u_i=(Q+L)_{ii}^{-1}=\Sigma_{ii}=$ vertex effective resistance.

- 2 Coordinate Minimization
- 3 Region-Free Screening
- 4 Results
- 6 References

- To simplify a problem by identifying and removing redundant variables.
- In our problem, only a few are non-zero and have an impact on the final result.

We have our cost function (4) in the form of

$$x \mapsto f(Ax) + g(x)$$

With reparametrization term $r=q-q_{\min}1$ and our primal problem $({\bf r}^*,{\bf w}^*)$, we have:

$$\underset{\mathbf{r}, \mathbf{w} \geq 0}{\min} - \log \det(\sum_{i=1}^{n} r_{i} \delta_{i} \delta_{i}^{T} + \sum_{e=1}^{m} w_{e} \mathbf{b}_{e} \mathbf{b}_{e}^{T} + q_{min} \mathbf{I}) + \mathbf{p}^{T} \mathbf{r} + \mathbf{h}^{T} \mathbf{w}$$

Duality: Fenchel conjugate

Since

$$f(P) = -\log \det(P). \tag{6}$$

(6) is assumed to be convex, closed, and proper. We compute the Fenchel conjugate f^* of (6).

$$f^*(U) = \sup_{P} (\operatorname{tr}(P^T U) + \log \det(P)) \tag{7}$$

With Maximization Condition $\frac{\partial}{\partial P}(\operatorname{tr}(P^T U) + \log \det(P)) = 0$:

$$U + P^{-1} = 0 \implies P = -U^{-1}$$
 (8)

Fenchel Conjugate $f^*(U)$:

Substituting (8) in (7) [HED22]:

$$f^*(U) = -\operatorname{tr}(U^{-1}U) + \log \det(-U^{-1}) + \mathbb{I}(U \in \mathbb{S}_n^-)$$

From the computed Fenchel conjugate, the dual problem on U:

$$d(U) = -q_{\min} \operatorname{tr}(U) + n + \log \det(U) + \mathbb{I}(U \in \mathbb{S}_n^-)$$

Dual Constraints:

Derived from the primal constraints, we have:

$$\delta_i^T U \delta_i \leq p_i, \quad \forall i \in \{1, \dots, n\}$$

$$b_e^T U b_e \le h_e, \quad \forall e \in \{1, \dots, m\}$$

Dual Cost:

$$U^* = \arg\max_{U \in S_n} d(U)$$

$$d(U) := -q_{\min} \operatorname{tr}(U) + n + \log \det(U) \tag{9}$$

Screening approach:

- Update the relaxed primal cost = cost_function + the primal cost update without the non-negative constraints.
- Primal cost update =

Primal cost update =
$$\begin{cases} -\log(1 + \delta_e r_e) - \delta_e h_e & \text{when } I = \text{edge}, \\ -\log(1 + \delta_i u_i) - \delta_i p_i & \text{when } I = \text{vertex}. \end{cases}$$

Compute a dual admissible solution

$$\bar{U} = \min\left\{ \left(\frac{p_i}{u_i}\right)_i, \left(\frac{h_e}{r_e}\right)_e \right\} \times \Sigma$$

- Compute the dual cost $d(\bar{U})$ according to (9)
- If dual cost $d(\bar{U}) >$ primal cost $p_l(r_l, w_l)$ set the variable to zero or update the w_e or q_i

Amrithya Balaji

- 4 Results

Results

Constraints		Without Q		With Q	
Range	Screening	Avg run time in sec	Sparsity	Avg run time in sec	Sparsity
1	√	10.3	90.6%	13.1	90.9%
1	X	11.1		13.7	
0.1	√	117.6	9.8%	45.0	85.3%
0.1	X	104.4		39.0	
0.01	√	120.0	0%	3.4	79.5%
0.01	X	108.0		2.9	

1: Comparison of Average Run Time in Seconds with and without Q

(a) Initial graph

(b) Best graph

Figure. 4: Comparison of initial and best graphs

- Introduction
- 2 Coordinate Minimization
- Region-Free Screening
- 4 Results
- **5** References

- [Gir15] Benjamin Girault.
 Stationary graph signals using an isometric graph translation.
 - In 2015 23rd European Signal Processing Conference (EUSIPCO), pages 1516–1520, 2015.
- [GPO23] Benjamin Girault, Eduardo Pavez, and Antonio Ortega. Joint graph and vertex importance learning, 2023.

In Eusipco 2022 - 30th European Signal Processing Conference, pages 1–5, Belgrade, Serbia, August 2022.

[PO20] Eduardo Pavez and Antonio Ortega. An efficient algorithm for graph laplacian optimization based on effective resistances, 2020.

Introduction