December 2020

IoT Product Solution to Solve the Problem of Shared Bicycles Falling Down

Research & Problem

Primary Research

Secondary Research Patent

A shared bicycle damage detection device

Date: 2017.10.19

Author: Hong Jin, Xiao Jin

3 sensors:

Accelerometer, Gravity sensor,

Deformation sensor

Flow chart:

Sensors detect changes && CPU

determines abnormal state \rightarrow Obtain time, loction by GPS/BDS \rightarrow Server retrieves time, location, abnormal bike image \rightarrow Trace bike damage, retain evidence.

Problem statement

The fallen shared-bikes are in the corner of the city. People are coming and going. But they are still on the ground no matter they are broken or not. Some are lying in a remote corner of the city, some shared-bikes are hidden in the grass. The reasons for this phenomenon may be human factors or natural factors. Some people throw bike sharing into the corner for their own benefit. Of course, natural factors such as strong winds can also cause bicycle fallen.

Sensors

Detect whether the shared bicycle has fallen down

Accelerometer

AC-response

DC-response

Gyroscope

Rotary type big, hard to get

Vibrating type small. MEMS device

Optical type big, expensive, more acurrate,

Proposal

Unlocked Bike

Interface Design for Staff

6-DoF motion tracking module ≈ \$11

VINI GND LSM6DS032

3 axis capacitive Accelerometer 3 axis vibrating Gyroscope

Detect changes: motion, orientation, angles

Lock structure and IoT connection

Detection and transmission of bike status

Experiment and Tools

Sensor

Triple Axis Acceleromter

Actuator

Red LED Light:

Light on simulate that server has received bike falling down information.

Processor

DFRobot UNO R3 (Arduino board)
Adobe I/O Expansion Shield

Other

USB data cable PH2.0 Jumper Wire

Experiment and Arduino Code

When accelerometer detects that bicycle tilt angle > 45 degrees, the system judges it fell down.

Annotaate:

//normal x≈330, y≈345, z≈420 //x -90°≈165; 90°≈490; -45°≈200; 45°≈435 //y -90°≈185; 90°≈505; -45°≈220; 45°≈465 //z ±180°≈100; ±90°≈260; ±45°≈360

Entire Code

```
A2 Accelerometer
 // digital pin 13 has a red led light attached to it. Give it a name:
  int light = 13;
 // the setup routine runs once when you press reset:
□ void setup() {
   // initialize serial communication at 9600 bits per second:
   Serial.begin(9600);
   // make the light's pin an input:
   pinMode(light, INPUT);
 // the loop routine runs over and over again forever:
□ void loop() {
  // red the analog pin:
   int x=analogRead(A0);
   int y=analogRead(A2);
   int z=analogRead(A4);
  // print out the state of accelerometer
   Serial.print("x="); Serial.print(x); Serial.print(",");
   Serial.print("y=");Serial.print(y);Serial.print(",");
   Serial.print("z=");Serial.println(z);
                      // delay in between reads for stability
 //when tilt degree is larger than 45 in x axis
☐ if((x<200)||(x>435)){
     digitalWrite(light, HIGH);
     Serial.println("I'm fall down in x axis, sos!");
 //when tilt degree is larger than 45 in y axis
□ else if((y<220)||(y>465)){
     digitalWrite(light, HIGH);
     Serial.println("I'm fall down in y axis, sos!");
 //when tilt degree is larger than 45 in z axis
⊟ else if(z<260){</p>
     digitalWrite(light, HIGH);
     Serial.println("I'm fall down in z axis, sos!");
 //when the bike is normal
     digitalWrite(light,LOW);
     Serial.println("I'm OK now!");
```

Experiment and Proof

A2 Accelerometer | Arduino 1.8.13 File Edit Sketch Tools Help A2 Accelerometer 7 VOIG 100p() (// red the accelerometer analog pin: int x=analogRead(A0); COM8 int y=analogRead(A2); int z=analogRead(A4); // print out the state of accelerometer x=317, y=387, z=330 Serial.print("x="); Serial.print(x); Serial.print(","); I'm OK now! x=396, y=373, z=126 Serial.print("y=");Serial.print(y);Serial.print(","); Serial.print("z=");Serial.println(z); I'm fall down in z axis, sos! x=386, y=296, z=125 delay(200); // delay in between reads for stability I'm fall down in z axis, sos! //when tilt degree is larger than 45 in x axis x=217, v=254, z=310 I'm OK now! if((x<200)||(x>435)){ digitalWrite (light, HIGH); x=246, y=295, z=0 I'm fall down in z axis, Serial.println("I'm fall down in x axis, sos!"); x=503, y=415, z=69 //when tilt degree is larger than 45 in y axis I'm fall down in x axis, sos x=55, v=492, z=398 else if((y<220)||(y>465)){ I'm fall down in x axis, sos! digitalWrite (light, HIGH); Serial.println("I'm fall down in y axis, sos!"); x=297, y=619, z=366 I'm fall down in y axis, sos! //when tilt degree is larger than 45 in z axis x=326, y=376, z=142 I'm fall down in z axis, sos! else if(z<260){ x=312.v=211.z=128 digitalWrite (light, HIGH); Serial.println("I'm fall down in z axis, sos!"); I'm fall down in y axis, sos! x=249, y=416, z=439 //when the bike is normal ✓ Autoscroll Show timestamp Newline ∨ 9600 baud digitalWrite (light, LOW); Serial.println("I'm OK now!"); Sketch uses 2584 bytes (8%) of program storage space. Maximum is 32256 bytes. Global variables use 300 bytes (14%) of dynamic memory, leaving 1748 bytes for local variables. Maximum is 2048 bytes.