Colour

Deepayan Bhowmik

Colour

Colour

RGB colour representation:

- Red, Green and Blue light.
- Each (x,y) pixel = {r,g,b} integer vector.
- Colour image = 3-channel.
- Image: (x,y,i) for i={0,1,2}.

Colour Spaces: RGB

Colours represented as R,G,B intensities:

- 3D colour space (cube) with axes R, G and B.
- Each axis $0 \rightarrow 255$ (8-bit colour).
- Black = (0,0,0) (origin); White = (255,255,255) (opposite corner).

Key problem for image processing tasks: RGB is perceptually non-linear.

Colour Spaces: RGB

What do we mean by perceptually non-linear?

- Starting at white and subtracting the blue component produces yellow!
- Starting at white and subtracting the red component produces blue!
- Starting at red and adding the blue component produces pink!

RGB representation does not follow a natural representation of colours (as humans would reason about them).

Colour Spaces: why use RGB?

Based on human perception of visible spectrum

- Human eye has R, G and B receptors
 - Limited, non-uniform absorbance.
- Computer science simplified and standardised RGB model.

Colour represented in H,S,V parameterized space:

- Commonly modelled as a cone.
- "Perceptual colour space"
 - more closely follows how we reason about colour.

H (Hue) = dominant wavelength of colour:

• Colour type {e.g. red, blue, green...}.

S (Saturation) = amount of Hue present:

• "Vibrancy" or purity of colour.

V (Value) = brightness of colour:

Brightness of the colour.

HSV Component / Channel Ranges:

- Hue = $0 \rightarrow 360^{\circ}$ (0-1 in some imp.).
- Saturation = $0 \rightarrow 1$:
 - o E.g. for Hue ≈ blue.
 - o 0.5 = sky colour; 1.0 = primary blue.
- Value = $0 \rightarrow 1$ (amount of light):
 - E.g. 0 = black, 1 = bright.

Bright colours (value = 1) with decreasing values of saturation for all values of Hue.

Pure colours (saturation = 1) with decreasing values of "value" (brightness) for all values of Hue.

The R,G,B values are divided by 255 to change the range from 0..255 to 0..1:

R' = R/255

G' = G/255

B' = B/255

Cmax = max(R', G', B')

Cmin = min(R', G', B')

 $\Delta = \text{Cmax} - \text{Cmin}$

Hue calculation:

$$H = \begin{cases} 60^{\circ} \times \left(\frac{G' - B'}{\Delta} mod6\right) &, Cmax = R' \\ 60^{\circ} \times \left(\frac{B' - R'}{\Delta} + 2\right) &, Cmax = G' \\ 60^{\circ} \times \left(\frac{R' - G'}{\Delta} + 4\right) &, Cmax = B' \end{cases}$$

Saturation calculation:

$$S = \begin{cases} 0 & , C_{max} = 0 \\ \frac{\Delta}{C_{max}} & , C_{max} \neq 0 \end{cases}$$

Value calculation: V = Cmax

$$h_{i} = \left\lfloor \frac{h}{60} \right\rfloor \mod 6$$

$$f = \frac{h}{60} - h_{i}$$

$$p = v \times (1 - s),$$

$$q = v \times (1 - f \times s),$$

$$t = v \times (1 - (1 - f) \times s),$$

$$(r, g, b) = \begin{cases} (v, t, p), & \text{if } h_{i} = 0 \\ (q, v, p), & \text{if } h_{i} = 1 \\ (p, v, t), & \text{if } h_{i} = 2 \\ (p, q, v), & \text{if } h_{i} = 3 \\ (t, p, v), & \text{if } h_{i} = 4 \\ (v, p, q), & \text{if } h_{i} = 5, \end{cases}$$

Colour Spaces: CIE Lab

Perceptual Uniformity:

- Change in human perception of colour
 == change in colour space values.
- Euclidean distance between colour parameterization.

Extends RGB (!):

- L*a*b covers all visible colours, RGB does not.
- L*a*b parameter space can specify imaginary (non-visible colours!).

Device independent.

Anatomy of a CIE Chromaticity Diagram

Colour Spaces: CIE Lab

Colour Spaces: CIE Lab

 $Z_{\rm n} = 108.8840$

Colour Spaces: CMY & CMYK

The CMY colour space is also represented by a unit cube. The white is the (0,0,0) and the black is the (1,1,1).

Colour Spaces: CMY & CMYK

The CMY colour space is also represented by a unit cube. The white is the (0,0,0) and the black is the (1,1,1).

Colour Spaces: Others

Colour Mapping

Map scalar value to colour range for display:

- Scalar value = grayscale image value.
- Colour range = purple → yellow.
- Set H channel to grayscale image.
- Set V and S to fixed values.

Colour Look-up Tables (LUT):

- Provide scalar to colour conversion.
- Scalar values = indices into LUT.
- Define colour transfer function.

Colour Mapping

Assume

- Scalar (image) values S_i in range {min \rightarrow max}.
- n unique colours, {colour₀,...,colour_{n-1}} in LUT.

Define mapped colour C:

- If S_i < min then $C = colour_{min}$.
- If $S_i > \max$ then $C = colour_{max}$.
- Else $C = colour((S_i min) / (max min)).$

Quantising values into given colour range.

Colour Mapping

Colour Spaces: RGB Histogram

Extend to each R, G, B colour channel (separately).

Colour Spaces: RGB Histogram

Extend to each R, G, B colour channel (separately).

Colour Spaces: RGB Histogram

Extend to each R, G, B colour channel (separately).

Colour Spaces: Histogram

Histogram = statistical distribution of image content:

- No structural representation.
- Different images have very different histograms.
- Similar images have similar histograms.

Histogram Comparison:

- Compare stat. dist. of images.
- Use normalised histograms.
- E.g. chi-squared, Euclidean,

Colour Spaces: Histogram Similarity Distances

Correlation:

$$d(H_1, H_2) = \frac{\sum_{i=1}^{N} H_1'(i) - H_2'(i)}{\sqrt{\sum_{i=1}^{N} [H_1'(i)]^2 \sum_{i=1}^{N} [H_2'(i)]^2}} \qquad H_k' = \frac{\frac{H_k(i) - 1}{N \sum_{i=1}^{N} H_k(i)}}{\sqrt{\sum_{i=1}^{N} [H_1'(i)]^2 \sum_{i=1}^{N} [H_2'(i)]^2}}$$

Chi-squared:

$$d(H_1, H_2) = \sum_{i=1}^{N} \frac{H_1(i) - H_2(i)}{H_1(i) + H_2(i)}$$

Intersection:

$$d(H_1, H_2) = \sum_{i=1}^{N} \min(H_1(i), H_2(i))$$

Bhattacharyya:

$$d(H_1, H_2) = \sqrt{1 - \sqrt{\sum_{i=1}^{N} H_1(i) - H_2(i)}}$$

Colour Spaces: Histogram Similarity Distances

Intersection:

0.649

0.707

0.846

Colour Spaces: Image Processing

- Contrast Enhancement.
- Histogram Based Transforms.

For processes altering the dynamic range of the image, in order to preserve the relative weights of the colour information in the image, we first convert to a perceptual colour space that isolates the scene illumination in a single channel (e.g. V of HSV or L of L*a*b).

We subsequently perform enhancement on this channel in isolation, add it back to the other channels that contain the image colour (chromatic) information and transform back to RGB.

Colour Spaces: Histogram Similarity Distances

- Logical ArithmeticSpatial Filtering.
- Fourier Filtering + Correlation.

We can just apply these operations to individual colour channels in any colour space representation.

Often we convert to grayscale to reduce computation if colour output is not required.

Colour Spaces: Histogram Equalisation

Histogram equalisation on each RGB channel (gives strange results).

Colour Spaces: Histogram Equalisation

- 1. RGB \rightarrow HSV.
- Histogram Equalize V channel.
- 3. $HSV \rightarrow RGB$.

Applications

Akbulut Y, Guo Y, Şengür A, Aslan M (2018) An effective color texture image segmentation algorithm based on hermite transform. Appl Soft Comput 67:494–504