

# Image Processing and Computer Vision – Fall 2021

Feature detection and descriptors

**Ahmed Dallal** 

# Quiz 4 - Reminder

- Wed, 11/3
- Stereo geometry, camera calibration, and multiple views

# Reading

- Forsyth and Ponce: 5.3-5.4
  - Szeliski also covers this well Section 4 4.1
- Paper: Distinctive Image Features from Scale-Invariant Keypoints (on Canvas)

Introduction to "features"

# The basic image point matchingproblem

- Suppose I have two images related by some transformation. Or have two images of the same object in different positions.
- How to find the transformation of image 1 that would align it with image 2?



# We want Local<sup>(1)</sup> Features<sup>(2)</sup>

- Goal: Find points in an image that can be:
  - Found in other images
  - Found precisely well localized
  - Found reliably well matched

# We want Local<sup>(1)</sup> Features<sup>(2)</sup>

#### Why?

- Want to compute a fundamental matrix to recover geometry
- Robotics/Vision: See how a bunch of points move from one frame to another. Allows computation of how camera moved -> depth -> moving objects
- · Build a panorama...

# Suppose you want to build a panorama



M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003

How do we build panorama?

We need to match (align) images





# Matching with Features

Detect features (feature points) in both images





# Matching with Features

- Detect features (feature points) in both images
- Match features find corresponding pairs



### Matching with Features

- Detect features (feature points) in both images
- Match features find corresponding pairs
- Use these pairs to align images



# Matching with Features

- Problem 1:
  - Detect the same point independently in both images





no chance to match!

We need a repeatable detector

# Matching with Features

- Problem 2:
  - For each point correctly recognize the corresponding one



We need a reliable and distinctive descriptor

#### More motivation...

- Feature points are used also for:
  - Image alignment (e.g. homography or fundamental matrix)
  - 3D reconstruction
  - Motion tracking
  - Object recognition
  - Indexing and database retrieval
  - Robot navigation
  - · ...other

# Characteristics of good features





# Characteristics of good features





# Repeatability/Precision

 The same feature can be found in several images despite geometric and photometric transformations

# Characteristics of good features





# Saliency/Matchability

Each feature has a distinctive description

# Characteristics of good features





# Compactness and efficiency

Many fewer features than image pixels

# Characteristics of good features





# Locality

 Afeature occupies a relatively small area of the image; robust to clutter and occlusion

# **Good Features**



Finding corners

#### Comer Detection: BasicIdea



"flat" region: no change in all directions



"edge": no change along the edge direction



"corner": significant change in all directions with small shift

Source: A. Efros

#### Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity



"flat" region: no change in all directions



"edge": no change along the edge direction



"corner": significant change in all directions with small shift

Source: A. Efros

# Finding Corners

 Key property: in the region around a corner, image gradient has two or more dominant directions





# **Finding Comers**

C. Harris and M. Stephens. "A Combined Corner and Edge Detector," Proceedings of the 4th Alvey Vision Conference: 1988





Change in appearance for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]$$

Window function

Shifted intensity

Intensity

Window function w(x,y) =





1 in window, 0 outside

Gaussian

Source: R. Szeliski

#### **Corner Detection: Mathematics**

Change in appearance for the shift [u,v]:



Window function w(x,y) =





1 in window, 0 outside

Gaussian

Source: R. Szeliski

Change in appearance for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$





#### Corner Detection: Mathematics

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{-2}$$





Change in appearance for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

We want to find out how this function behaves for *small* shifts (u,v near 0,0)

#### **Corner Detection: Mathematics**

Change in appearance for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

We want to find out how this function behaves for **small** shifts (u,v near 0,0)

Change in appearance for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Second-order Taylor expansion of E(u,v) about (0,0) (local quadratic approximation for small u,v):

#### **Corner Detection: Mathematics**

Change in appearance for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

$$F(\delta x) \approx F(0) + \delta x \cdot \frac{dF(0)}{dx} + \frac{1}{2} \delta x^2 \cdot \frac{d^2 F(0)}{dx^2}$$

Change in appearance for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

$$F(\delta x) \approx F(0) + \delta x$$
 
$$\frac{dF(0)}{dx} + \frac{1}{2} \delta x^{2} \cdot \frac{d^{2}F(0)}{dx^{2}}$$

$$E(u,v) \approx E(0,0) + [u \quad v] \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} [u \quad v] \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Second-order Taylor expansion of E(u,v) about (0,0):

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{u}(0,0) \\ \lfloor E_{v}(0,0) \rfloor \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ \lfloor E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{u}(0,0) \\ E_{v}(0,0) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{vv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

Need these derivatives...

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

- Second-order Taylor expansion of E(u,v) about (0,0):
- $E_u(u,v) = \sum_{x,y} 2w(x,y) [I(x+u,y+v) I(x,y)] I_x(x+u,y+v)$

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

$$E_{uu}(u,v) = \sum_{x,y} 2 w(x,y) I_{x}(x+u,y+v) I_{x}(x+u,y+v)$$
$$+ \sum_{x,y} 2 w(x,y) [I(x+u,y+v) - I(x,y)] I_{xx}(x+u,y+v)$$

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

# Second-order Taylor expansion of E(u,v) about (0,0):

$$\begin{split} E_{uv}(u,v) &= \sum_{x,y} 2 \, w(x,y) \, I_y(x+u,y+v) \, I_x(x+u,y+v) \\ &+ \sum_{x,y} 2 \, w(x,y) \, \big[ I(x+u,y+v) - I(x,y) \, \big] I_{xy}(x+u,y+v) \end{split}$$

$$E(u,v) \approx E(0,0) + [u \quad v] \begin{bmatrix} E_{u}(0,0) \\ E_{v}(0,0) \end{bmatrix} + \frac{1}{2} [u \quad v] \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E_{u}(u,v) = \sum_{x,y} 2w(x,y) [I(x+u,y+v) - I(x,y)] I_{x}(x+u,y+v)$$

$$E_{uu}(u,v) = \sum_{x,y} 2w(x,y) I_{x}(x+u,y+v) I_{x}(x+u,y+v)$$

$$+ \sum_{x,y} 2w(x,y) [I(x+u,y+v) - I(x,y)] I_{xx}(x+u,y+v)$$

$$E_{uv}(u,v) = \sum_{x,y} 2w(x,y) I_{y}(x+u,y+v) - I(x,y) [I(x+u,y+v) + v)$$

$$+ \sum_{x,y} 2w(x,y) [I(x+u,y+v) - I(x,y)] I_{xy}(x+u,y+v)$$

#### Evaluate Eand its derivatives at (0,0):

$$E(u,v) \approx E(0,0) + [u \quad v] \begin{bmatrix} E_{u}(0,0) \\ E_{v}(0,0) \end{bmatrix} + \frac{1}{2} [u \quad v] \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E_{u}(0,0) = \sum_{x,y} 2w(x,y) \begin{bmatrix} I(x,y) - I(x,y) \\ I(x,y) - I(x,y) \end{bmatrix} I_{x}(x,y)$$

$$= 0$$

$$+ \sum_{x,y} 2w(x,y) \begin{bmatrix} I(x,y) - I(x,y) \end{bmatrix} I_{xx}(x,y)$$

$$E_{uv}(0,0) = \sum_{x,y} 2w(x,y) I_{y}(x,y) I_{x}(x,y)$$

$$= 0$$

$$+ \sum_{x,y} 2w(x,y) [I(x,y) - I(x,y)] I_{xy}(x,y)$$

$$= 0$$

$$+ \sum_{x,y} 2w(x,y) [I(x,y) - I(x,y)] I_{xy}(x,y)$$

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{u}(0,0) \\ [E_{v}(0,0) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ [E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E(0,0) = 0$$
  $E_{uu}(0,0) = \sum_{x,y} 2w(x,y)I_{x}(x,y)I_{x}(x,y)$ 

$$E_{u}(0,0) = 0$$
  $E_{vv}(0,0) = \sum_{x,y} 2w(x,y)I_{y}(x,y)I_{y}(x,y)$ 

$$E_{v}(0,0) = 0$$
  $E_{uv}(0,0) = \sum_{x,y} 2w(x,y)I_{x}(x,y)I_{y}(x,y)$ 

#### Second-order Taylor expansion of E(u,v) about (0,0):

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} \sum_{x,y} w(x,y) I_{x}^{2}(x,y) & \sum_{x,y} w(x,y) I_{x}(x,y) I_{y}(x,y) \\ \sum_{x,y} w(x,y) I_{x}(x,y) I_{y}(x,y) & \sum_{x,y} w(x,y) I_{y}^{2}(x,y) \end{bmatrix} \begin{bmatrix} u \\ \|v\| \| \end{bmatrix}$$

$$E(0,0) = 0$$
  $E_{uu}(0,0) = \sum_{x,y} 2w(x,y)I_{x}(x,y)I_{x}(x,y)$ 

$$E_{u}(0,0) = 0$$
  $E_{vv}(0,0) = \sum_{x,y} 2w(x,y)I_{y}(x,y)I_{y}(x,y)$ 

$$E_{v}(0,0) = 0$$
  $E_{uv}(0,0) = \sum_{x,y} 2w(x,y)I_{x}(x,y)I_{y}(x,y)$ 

The quadratic approximation simplifies to

$$E(u,v) \approx [u \quad v] \quad M \quad \begin{bmatrix} u \\ \lfloor v \end{bmatrix}$$

where *M* is a *second moment matrix* computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

The second moment matrix M:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Can be written (without the weight):

$$M = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix}$$

Each product is a rank 1 2x2

# Interpreting the second momentmatrix

The surface E(u,v) is locally approximated by a quadratic form.

$$E(u,v) \approx [u \quad v] \quad M \quad \begin{bmatrix} u \\ \lfloor v \end{bmatrix}$$

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$



# Interpreting the second momentmatrix

Consider a constant "slice" of E(u, v):

$$\sum I_{x}^{2}u^{2} + 2\sum I_{x}I_{y}uv + \sum I_{y}^{2}v^{2} = k$$

This is the equation of an ellipse.



# Interpreting the second moment matrix

Diagonalization of M: 
$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by *R* 

# Interpreting the second moment matrix direction of the fastest change $(\lambda_{max})^{-1/2}$ $(\lambda_{min})^{-1/2}$ direction of the slowest change The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R

## Interpreting the second momentmatrix

First, consider the axis-aligned case where gradients are either horizontal or vertical

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I^{2} & II \\ X & I^{2} \\ II & I^{2} \end{bmatrix} = \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix}$$

If either  $\lambda$  is close to 0, then this is **not** a corner, so look for locations where both are large.

## Interpreting the eigenvalues

Classification of image points using eigenvalues of M:



# Harris corner response function

$$R = \det(M) - \alpha \operatorname{trace}(M)^{2} = \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

a: constant (0.04 to 0.06)



# Harris corner response function

$$R = \det(M) - \alpha \operatorname{trace}(M)^2 = \lambda \lambda_2 - \alpha (\lambda + \lambda_2)^2$$

R is large for a corner

*R* is negative with large magnitude for an edge

|R| is small for a flat region



# Harris corner response function

$$R = \det(M) - \alpha \operatorname{trace}(M)^{2} = \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

R depends only on eigenvalues of M, but don't compute them (no sqrt, so really fast even in the '80s).



# Low texture region







$$M = \sum \nabla I (\nabla I)^{T}$$

Gradients have small magnitude => small  $\lambda_1$ , small  $\lambda_2$ 

# Edge $M = \sum \nabla I (\nabla I)^{T}$ Large gradients, all the same => large $\lambda_{1}$ , small $\lambda_{2}$



# Harris detector: Algorithm

- 1. Compute Gaussian derivatives at each pixel
- Compute second moment matrix M in a Gaussianwindow around each pixel
- Compute corner response function R
- 4. Threshold R
- Find local maxima of response function (nonmaximum suppression)

C. Harris and M. Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

#### Harris Detector: Workflow



# Harris Detector: Workflow

Compute corner response R



# Harris Detector: Workflow

Find points with large corner response: R>threshold



# Harris Detector: Workflow

Take only the points of local maxima of  ${\it R}$ 



# Harris Detector: Workflow



#### Other corners:

Shi-Tomasi '94:

"Cornerness" = min  $(\lambda_1, \lambda_2)$  Find local maximums cvGoodFeaturesToTrack(...)

Reportedly better for region undergoing affine deformations





#### Other corners:

• Brown, M., Szeliski, R., and Winder, S. (2005):

$$\frac{\det M}{\operatorname{tr} M} = \frac{\lambda_0 \lambda_1}{\lambda_0 + \lambda_1}$$

There are others...

| Scale invariance |  |  |
|------------------|--|--|
|                  |  |  |