Bell's theorem

Consider two observers A and B. Each observer has an apparatus for measuring spin. Each apparatus can be set in one of two orientations, 0 or 1. For independent expectation values we have

$$\langle A \rangle \langle B \rangle = \langle AB \rangle$$

Now consider all minimum and maximum expectation values along with a special formula.

$\langle A_0 \rangle$	$\langle A_1 \rangle$	$\langle B_0 \rangle$	$\langle B_1 \rangle$	$\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle$
1	1	1	1	2
1	1	1	-1	2
1	1	-1	1	-2
1	1	-1	-1	-2
1	-1	1	1	2
1	-1	1	-1	-2
1	-1	-1	1	2
1	-1	-1	-1	-2
-1	1	1	1	-2
-1	1	1	-1	2
-1	1	-1	1	-2
-1	1	-1	-1	2
-1	-1	1	1	-2
-1	-1	1	-1	-2
-1	-1	-1	1	2
-1	-1	-1	-1	2

Since the table is for all minimum and maximum values we have by inspection the range

$$-2 \le \langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle \le 2 \tag{1}$$

Now suppose a third apparatus generates two spins in the following singlet state.

$$|s\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\-1\\0 \end{pmatrix}$$

One spin is sent to A and the other is sent to B.

Let

$$A_0 = \sigma_z$$
, $A_1 = \sigma_x$, $B_0 = -\frac{\sigma_x + \sigma_z}{\sqrt{2}}$, $B_1 = \frac{\sigma_x - \sigma_z}{\sqrt{2}}$

Then for the singlet state we have

$$\langle A_0 B_0 \rangle = \frac{1}{\sqrt{2}}, \quad \langle A_0 B_1 \rangle = \frac{1}{\sqrt{2}}, \quad \langle A_1 B_0 \rangle = \frac{1}{\sqrt{2}}, \quad \langle A_1 B_1 \rangle = -\frac{1}{\sqrt{2}}$$

Hence

$$\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle = 2\sqrt{2}$$
 (2)

The result in (2) conflicts with (1) because for the singlet state

$$\langle A \rangle \langle B \rangle \neq \langle AB \rangle \tag{3}$$

Hence no theory that rejects (3) can explain quantum entanglement.

Exercises

- 1. Verify equation (2).
- 2. Verify that for the singlet state

$$\langle A_0 \rangle = 0, \quad \langle A_1 \rangle = 0, \quad \langle B_0 \rangle = 0, \quad \langle B_1 \rangle = 0$$

Hence $\langle A \rangle \langle B \rangle \neq \langle AB \rangle$ for the singlet state.