Incomplete Data Analysis

Vanda Inácio

University of Edinburgh

Semester 1, 2020/2021

Context

- → We will study methods for estimation in the presence of missing data based on the principles of maximum likelihood, when it is reasonable to assume that the missing data mechanism is MAR.
- → Before moving to maximum likelihood for missing/incomplete data, we review maximum likelihood inference for complete data.

Likelihood function

- \hookrightarrow Let Y_1, \ldots, Y_n be independent and identically distributed random variables with probability mass/density function $f(y; \theta)$ depending on a vector-valued parameter $\theta = (\theta_1, \ldots, \theta_p)^T$.
- \hookrightarrow The joint density of observations $\mathbf{y} = (y_1, \dots, y_n)$ is

$$f(\mathbf{y}; \boldsymbol{\theta}) = \prod_{i=1}^{n} f(y_i; \boldsymbol{\theta}) = L(\boldsymbol{\theta}; \mathbf{y}). \tag{1}$$

 \hookrightarrow The expression in (1), when viewed as a function of the unknown parameter θ given the data \mathbf{y} , is called the likelihood function.

Likelihood function - example

- \hookrightarrow Let Y_1 , Y_2 , and Y_3 be iid from a Bernoulli distribution with parameter θ .
- \hookrightarrow The probability mass function is

$$f(y;\theta) = \theta^{y}(1-\theta)^{1-y}, y \in \{0,1\}$$

and thus the likelihood is

$$L(\theta; y_1, y_2, y_3) = \prod_{i=1}^{3} \theta^{y_i} (1 - \theta)^{1 - y_i} = \theta^{\sum_{i=1}^{3} y_i} (1 - \theta)^{3 - \sum_{i=1}^{3} y_i}$$

 \hookrightarrow If $(y_1, y_2, y_3) = (0, 0, 0)$, then, for instance,

$$L(1/2,(0,0,0)) = \left(1 - \frac{1}{2}\right)^{3-0} = \frac{1}{8} = 0.125, \quad L(1/3,(0,0,0)) = \left(1 - \frac{1}{3}\right)^{3-0} = \frac{8}{27} \approx 0.296$$

 \hookrightarrow We say that $\theta = 1/3$ has a higher likelihood than $\theta = 1/2$ for these observed data.

Maximum likelihood estimator

- \hookrightarrow The goal of statistical inference is to use the observed data **y** to estimate/infer θ .
- \hookrightarrow A sensible way to estimate the parameter θ given the data \mathbf{y} is to maximise the likelihood function, choosing the parameter value/vector that makes the data actually observed as likely as possible.
- \hookrightarrow Formally, we define the maximum likelihood estimator (mle) as that value $\widehat{\theta}_{MLE}$ such that

$$\widehat{\boldsymbol{\theta}}_{\mathsf{MLE}} = \arg\max_{\boldsymbol{\theta} \in \Theta} L(\boldsymbol{\theta}; \mathbf{y}),$$

that is, $\widehat{\theta}_{\text{MIF}}$ is the value that maximises the likelihood function.

 \hookrightarrow In other words.

$$L(\widehat{\theta}_{\mathsf{MLE}}; \mathbf{y}) > L(\boldsymbol{\theta}; \mathbf{y}), \quad \text{for all } \boldsymbol{\theta}.$$

Maximum likelihood estimator-example

 \hookrightarrow For the previous example with Bernoulli data, with $(y_1, y_2, y_3) = (0, 0, 0)$ and where θ is either 1/2 or 1/3, then

$$\Theta = \{1/3, 1/2\},$$

$$\widehat{\theta}_{\text{MLF}} = 1/3,$$

because L(1/3,(0,0,0)) > L(1/2,(0,0,0)).

Log likelihood

- \hookrightarrow It is often numerically convenient to use the log likelihood function, $\log L(\theta; \mathbf{y})$ for computation of the mle.
- \hookrightarrow The logarithm is a strictly increasing function and therefore

$$\widehat{\boldsymbol{\theta}}_{\mathsf{MLE}} = \arg\max_{\boldsymbol{\theta} \in \Theta} \log L(\boldsymbol{\theta}; \mathbf{y}).$$

The first and second derivatives of the log likelihood are important and have their own names.

Score function

→ The first derivative of the log likelihood function is called score function.

$$U(\boldsymbol{\theta}) = \frac{\partial}{\partial \boldsymbol{\theta}} \log L(\boldsymbol{\theta}; \mathbf{y}).$$

 \hookrightarrow Note that the score function is a vector of first partial derivatives, one for each element of θ , i.e.,

$$U(\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial}{\partial \theta_1} \log L(\boldsymbol{\theta}; \mathbf{y}) \\ \vdots \\ \frac{\partial}{\partial \theta_p} \log L(\boldsymbol{\theta}; \mathbf{y}) \end{bmatrix}$$

→ Computation of the mle is typically done by solving the system of equations

$$U(\boldsymbol{\theta}) = \mathbf{0}_{\mathcal{D}}.$$

Fisher information

$$I(\theta) = E\left[U(\theta)U(\theta)^T\right]$$

Under general conditions, it simplifies to

$$I(\boldsymbol{\theta}) = -E\left[\frac{\partial^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T} \log L(\boldsymbol{\theta}; \mathbf{Y})\right].$$

The matrix of the negative observed second derivatives evaluated at the mle is called the observed Fisher information matrix

$$J(\widehat{\boldsymbol{\theta}}_{\mathsf{MLE}}) = \left. - \frac{\partial^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T} \log L(\boldsymbol{\theta}; \mathbf{y}) \right|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_{\mathsf{MLE}}}$$

Asymptotic normality of the mle

 \hookrightarrow Additionally, and under certain regularity conditions, $\widehat{\theta}_{\text{MLE}}$ has approximately, in large samples, a multivariate normal distribution with mean equal to the true parameter and covariance matrix given by the inverse of the expected Fisher information matrix, so that

$$\widehat{\theta}_{\mathsf{MLE}} \sim \mathsf{N}_{p}(\theta, I(\theta)^{-1}).$$

→ It also holds and is of more convenience

$$\widehat{\theta}_{MLE} \sim N_{\rho}(\theta, J(\widehat{\theta}_{MLE})^{-1}).$$

 \hookrightarrow The result above is used to derive approximate standard errors for $\widehat{\theta}_{\mathsf{MLE}}$ and confidence intervals for θ .

Example

- \hookrightarrow Let Y_1, \ldots, Y_n form a random sample from a Bernoulli distribution with unknown parameter $0 \le \theta \le 1$. The goal is to find the mle of θ .
- \hookrightarrow The probability mass function is

$$f(y;\theta) = \theta^{y}(1-\theta)^{1-y}, y \in \{0,1\}.$$

$$L(\theta; \mathbf{y}) = \prod_{i=1}^{n} \left\{ \theta^{y_i} (1 - \theta)^{1 - y_i} \right\}$$
$$= \theta^{\sum_{i=1}^{n} y_i} (1 - \theta)^{n - \sum_{i=1}^{n} y_i}.$$

$$\log L(\theta; \mathbf{y}) = \log \theta \sum_{i=1}^{n} y_i + \log(1-\theta) \left(n - \sum_{i=1}^{n} y_i\right).$$

Example

→ Taking the derivative and setting it to zero (i.e., equating the score function to zero)

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\log L(\theta;\mathbf{y})=0\Rightarrow\frac{1}{\theta}\sum_{i=1}^ny_i-\frac{1}{1-\theta}\left(n-\sum_{i=1}^ny_i\right)=0,$$

lead us to finally obtain

$$\widehat{\theta}_{\mathsf{MLE}} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \bar{Y}.$$

- \hookrightarrow **Remark**: formally, to be sure that we have obtained a maximum (the mle!), we would need to confirm that the derivative of the score function, evaluated at $\theta = \bar{y}$, is negative.
- We will now obtain the expected and observed Fisher information. For that, we need the second derivative:

$$\frac{d^2}{d\theta^2} \log L(\theta; \mathbf{y}) = -\frac{1}{\theta^2} \sum_{i=1}^n y_i - \frac{1}{(1-\theta)^2} \left(n - \sum_{i=1}^n y_i \right)$$

Example

 \hookrightarrow Evaluating the second derivative at $\widehat{\theta}_{MLE} = \overline{Y}$, we obtain

$$J(\widehat{\theta}_{\mathsf{MLE}}) = rac{n}{ar{Y}(1 - ar{Y})}.$$

 \hookrightarrow The expected Fisher information is (remembering that $E(Y) = \theta$)

$$I(\theta) = -E\left[\frac{d^2}{d\theta^2}\log L(\theta; \mathbf{Y})\right] = \frac{1}{\theta^2}nE[Y] + \frac{1}{(1-\theta)^2}(n - nE[Y])$$
$$= \frac{n}{\theta(1-\theta)}.$$

Example

 \hookrightarrow Suppose 5 people are infected in a sample size of 30, that is,

$$n=30, \quad \sum_{i=1}^{30} y_i = 5.$$

 \hookrightarrow We know that $\widehat{\theta}_{mle} = 5/30 \approx 0.167$.

Example

- \hookrightarrow Let Y_1, \ldots, Y_n form a random sample from a Normal distribution with unknown parameters $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. The goal is to find the mle of $\theta = (\mu, \sigma^2)$.
- \hookrightarrow The probability density function is

$$f(y; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(y-\mu)^2\right\}, \quad y \in \mathbb{R}.$$

→ The likelihood is

$$\begin{split} L(\theta; \mathbf{y}) &= \prod_{i=1}^{n} \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ -\frac{1}{2\sigma^2} (y_i - \mu)^2 \right\} \right] \\ &= (2\pi\sigma^2)^{-n/2} \exp\left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu)^2 \right\}, \end{split}$$

and then log likelihood is

$$\log L(\theta; \mathbf{y}) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu)^2.$$

Example

 \hookrightarrow The score function is given by

$$U(\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial}{\partial \mu} \log L(\boldsymbol{\theta}; \mathbf{y}) \\ \frac{\partial}{\partial \sigma^2} \log L(\boldsymbol{\theta}; \mathbf{y}) \end{bmatrix} = \begin{bmatrix} \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \mu) \\ -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (y_i - \mu)^2 \end{bmatrix}.$$

$$U(\theta) = \mathbf{0} \Rightarrow \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \mu) = 0 \quad \wedge \quad -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (y_i - \mu)^2 = 0,$$

leading to

$$\widehat{\mu} = \overline{Y}$$
, and $\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \overline{Y})^2$.

Example

→ The matrix of second derivatives:

$$\frac{\partial^{2}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}} \log L(\boldsymbol{\theta}; \mathbf{y}) = \begin{bmatrix} \frac{\partial^{2}}{\partial \mu^{2}} \log L(\boldsymbol{\theta}; \mathbf{y}) & \frac{\partial^{2}}{\partial \mu \partial \sigma^{2}} \log L(\boldsymbol{\theta}; \mathbf{y}) \\ \frac{\partial^{2}}{\partial \mu \partial \sigma^{2}} \log L(\boldsymbol{\theta}; \mathbf{y}) & \frac{\partial^{2}}{\partial (\sigma^{2})^{2}} \log L(\boldsymbol{\theta}; \mathbf{y}) \end{bmatrix} \\
= \begin{bmatrix} -\frac{n}{\sigma^{2}} & -\frac{1}{\sigma^{4}} \sum_{i=1}^{n} (y_{i} - \mu) \\ -\frac{1}{\sigma^{4}} \sum_{i=1}^{n} (y_{i} - \mu) & \frac{n}{2\sigma^{4}} - \frac{1}{\sigma^{6}} \sum_{i=1}^{n} (y_{i} - \mu)^{2} \end{bmatrix}.$$

→ The observed Fisher information is then

$$J(\widehat{\boldsymbol{\theta}} = (\mu, \widehat{\sigma}^2)) = \begin{bmatrix} \frac{n}{\widehat{\sigma}^2} & 0 \\ 0 & \frac{n}{2\widehat{\sigma}^4} \end{bmatrix}.$$

$$I(\mu, \sigma^2) = \begin{bmatrix} \frac{n}{\sigma^2} & 0\\ 0 & \frac{n}{2\sigma^4} \end{bmatrix}.$$

Example

 \hookrightarrow Suppose that we observe $\mathbf{y} = (1.747, 3.367, 1.329, 6.191, 3.659, 1.359)$. We have $\widehat{\mu} = 2.942$ and $\widehat{\sigma}^2 = 2.964$.

Right censored observations

 \hookrightarrow Let Y_1, \ldots, Y_n be a random sample from an Exponential distribution with parameter $\theta > 0$. Suppose that some of the Ys are right censored and let

$$X_i = \begin{cases} Y_i, & \text{if } Y_i \leq C, \\ C, & \text{if } Y_i > C, \end{cases} \qquad R_i = \begin{cases} 1, & \text{if } Y_i \leq C, \\ 0, & \text{if } Y_i > C, \end{cases}$$

be the observations and the censoring indicator, where C is a known censoring point.

$$X_i = Y_i I(Y_i \leq C) + CI(Y_i > C) = Y_i R_i + C(1 - R_i).$$

- \hookrightarrow Our observed data is of the form $\{(x_i, r_i)\}_{i=1}^n$.
- \hookrightarrow The contribution of a non censored observation to the likelihood is $f(y;\theta)$ and the contribution of a censored observation to the likelihood is $\Pr(Y > C; \theta) = S(C; \theta)$, where S here denotes the survival function.

Right censored observations

The likelihood is thus of the form

$$L(\theta) = \prod_{i=1}^{n} \left\{ f(y_i; \theta)^{r_i} S(C; \theta)^{1-r_i} \right\}.$$

For the exponential distribution we have $f(y;\theta) = \theta e^{-\theta y}$ and $S(y;\theta) = e^{-\theta y}$ and therefore

$$L(\theta) = \prod_{i=1}^{n} \left\{ [\theta e^{-\theta y_i}]^{r_i} [e^{-\theta C}]^{1-r_i} \right\}$$

$$= \theta^{\sum_{i=1}^{n} r_i} e^{-\theta \sum_{i=1}^{n} y_i r_i} e^{-\theta \sum_{i=1}^{n} C(1-r_i)}$$

$$= \theta^{\sum_{i=1}^{n} r_i} e^{-\theta \sum_{i=1}^{n} [y_i r_i + C(1-r_i)]}$$

$$= \theta^{\sum_{i=1}^{n} r_i} e^{-\theta \sum_{i=1}^{n} x_i},$$

which leads to

$$\widehat{\theta}_{\mathsf{MLE}} = \frac{\sum_{i=1}^n R_i}{\sum_{i=1}^n X_i} = \frac{\sum_{i=1}^n I(Y_i \leq C)}{\sum_{i=1}^n Y_i I(Y_i \leq C) + CI(Y_i > C)},$$

where $\sum_{i=1}^{n} R_i$ is the number of uncensored observations.