Fiber Optic Cabling

- Glass or plastic fiber that carries light (photons)
 - High Bandwidth: Photons travel faster than electrons.
 - Long Distances: Less attenuation.
 - Immune to Electromagnetic Interference (EMI)
 - Doesn't Emanate Signals
- Two Types
 - Multi-mode Fiber (MMF)
 - Shorter Distances (LAN / Building-to-Building)
 - Up to 2 Kilometers
 - Single-mode Fiber (SMF)
 - More expensive than multi-mode
 - Longer Distances (WAN / Across Town)
 - Up to 200 Kilometers

Informational Note: 9-micron Single-Mode Fiber can travel 75 miles at 400 Gbps

MMF versus SMF

Multi-Mode Fiber (MMF)

- Many photons of light travel through the cable at once, and bounce off the walls, which reduces the distance and speed.
- Larger Core: 50 to 62.5 microns

Single-Mode Fiber (SMF)

- A single direct photon of light travels through the cable, which allows greater distances and speed.
- **Smaller Core**: 8 to 10 microns

Fiber Optic Cable Connectors

Lucent Connector (LC)

- Small form-factor design that has a flange on the top, similar to an RJ-45 connector.
- Commonly used in MMF & SMF gigabit and 10-gigabit Ethernet networks.

Straight Tip (ST)

- BNC style connector with a half-twist bayonet locking mechanism.
- Was used in MMF networks but not commonly used anymore.

Subscriber Connector (SC)

- Square connector that uses a push-pull connector similar to A/V equipment.
- Commonly used in MMF & SMF gigabit Ethernet networks.

- Similar to the RJ-45 connector, and houses two fiber optics cables.
- Designed for MMF networks.

Why use Fiber?

- Fiber cable is more expensive than twisted pair, as is the equipment
- But you can perform much longer network cable runs with fiber.
 - o 100m versus up to 200 Kilometers
- So you have decreased network equipment costs
 - o Switches, routers, etc.
- Plus fiber is:
 - Immune to EMI and signal emanations
 - Has lower signal attenuation
 - Making it more reliable and secure
- Costs are steadily decreasing as more people adopt fiber

Cable Selection Criteria

Cost Constraints

What is your budget?

Transmission Speed Requirements

- How fast does your network need to be?
- 10Mbps, 100Mbps, 1Gbps, 10Gbps?

Distance Requirements

- Electrical signals degrade relatively quickly (100 meters)
- Fiber can transmit over long distances

Noise & Interference Immunity (Crosstalk, EMI, Security)

• Interference is all around us: power cables, microwaves, mobile phones, motors, etc.

Layer 7 - Application Layer

- Where users interact with the computer.
- Acts as an interface between an application and end-user protocols.
- Provides an interface to communicate with the network (Outlook, Chrome, etc.).
- Applications don't reside in the application layer but instead interfaces with applicationlayer protocols.
- Example Application Layer Protocols:
 - o **E-Mail**: IMAP4, POP3, SMTP
 - Web Browsers: HTTP, HTTPS
 - Remote Access: SSH, Telnet

Layer 6 - Presentation Layer

- Ensures that data transferred from one system's Application Layer can be read by the Application Layer on another one.
- Provides character code conversion, data compression, and data encryption/decryption.
- Example: Google Chrome HTML converted to ASCII Format.

Layer 6 - Presentation Layer

Example Layer 6 File Formats:

Web Browser: HTML, XML, JavaScript

o **Graphics Files**: JPEG, GIF, PNG

Audio/Video: MPEG, MP3

Encryption: TLS, SSL

Text/Data: ASCII, EBCDIC

Layer 5 - Session Layer

- Responsible for setting up, managing, and then tearing down sessions between network devices.
- Ensures data from different application sessions are kept separate.
- Utilizes Application Program Interfaces (APIs) to communicate with TCP/IP protocols.
- Coordinates communication between systems.
 - o Start, Stop, Restart

Layer 5 - Session Layer

Can provide three different methods of communication between devices:

- **Simplex**: One-way communication between two devices, like listening to a radio station.
- Half Duplex: Two-way communication between two devices, but only one device can communicate at a time.
- **Full Duplex**: Two-way communication between two devices, where both sides can communicate at the same time.

Layer 4 - Transport Layer

- Ensures data is delivered error-free and in sequence.
- Segments data and reassembles correctly.
- Can be connection-oriented or connectionless.
- Considered the "Post Office" Layer
 - o **TCP** (Transmission Control Protocol)
 - o **UDP** (User Datagram Protocol)
 - o Covered in detail in the next section.

Layer 4 - Transport Layer

Responsible for two data flow control measures:

Buffering

 Stores data in memory buffers until destination device is available.

Windowing

 Allows devices in session to determine the "window" size of data segments sent.

Layer 3 - Network Layer

- The "Routing" Layer
- Provides logical addressing (IP Addressing) and routing services.
- Places two IP addresses into a packet:
 - Source Address & Destination IP Address
- Internet Protocol (IP)
 - The primary network protocol used on the Internet, IPv4, IPv6 Logical Addresses

Layer 3 - Network Layer

Types of Packets at Network Layer:

- Data Packets
 - Routed Internet Protocol (IP) data packets.
 - IPv4 & IPv6
- Route-Update Packets
 - Routing protocols designed to update neighboring routers with router information for path determination.
 - RIP, OSPF, EIGRP, etc.

Layer 3 Devices & Protocols:

- Routers & Multi-Layer Switches
- IPv4 & IPv6
- Internet Control Message Protocol (ICMP), i.e., Ping

Layer 2 – Data Link Layer

- The "Switching" Layer
- Ensures that messages are delivered to the proper device on a LAN using hardware addresses.
 - MAC (Media Access Control) Address
 - Only concerned with the local delivery of frames on the same network.
- Responsible for packaging the data into frames for the physical layer.
- Translates messages from the Network layer into bits for the Physical layer.

Layer 2 - Data Link Layer

Has two Sub-Layers

- Logical Link Control (LLC) Layer
 - Error Control and Flow Control
 - Detect and correct corrupted data frames.
 - Limits amount of data sent so devices aren't overwhelmed.
- Media Access Control (MAC) Layer
 - Physical Addressing (MAC Address)
 - 48-Bit MAC Address burned on NIC.
 - Logical Topology and Media Access
 - Ethernet, Token Ring, etc.
 - o CSMA/CD & CSMA/CA

Layer I - Physical Layer

Defines the physical and electrical medium for network communication:

- Sending and receiving bits (1 or 0)
- Encoding Signal Types
 - Electricity, radio waves, light
- Network Cabling, Jacks, Patch Panels, etc.
 - Copper or Fiber
- Physical Network Topology
 - o Star, Mesh, Ring, etc.
- Ethernet IEEE 802.3 Standard
- Layer 1 Equipment
 - o Hubs, Media Converters, Modems

It's responsible for the network hardware and physical topology.

OSI Encapsulation & De-Encapsulation

OSI Encapsulation & De-Encapsulation

What is TCP/IP?

- Transmission Control Protocol/Internet Protocol
- Commonly called the Internet Protocol suite because it was designed for the Internet, but LANs use it too.
- First Two Protocols Defined in the Suite Were:
 - o TCP & IP, hence TCP/IP
- Similar to the OSI Model, but Simpler:
 - o OSI is Conceptual
 - TCP/IP was Implemented

