

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

Вершков Станислав Александрович

Задание по курсу «Суперкомпьютерное моделирование и технологии»

Численное интегрирование многомерных функций методом Монте-Карло

ОТЧЕТ

Оглавление

1	Математическая постановка задачи	2
2	Численный метод решения задачи	2
3	Аналитическое решение	3
4	Описание алгоритма	3
5	Исследование масштабируемости программы	4

1 Математическая постановка задачи

Функция $f(y,z)=\sqrt{y^2+z^2}$ — непрерывна в ограниченной области замкнутой области $G\subset\mathbb{R}^3$, где $G=\{(x,y,z):0\leq x\leq 2,\ y^2+z^2\leq 1\}.$ Требуется вычислить определённый интеграл:

$$I = \iiint\limits_G \sqrt{y^2 + z^2} \ dx \ dy \ dz.$$

2 Численный метод решения задачи

Преобразуем искомый интеграл:

$$I = \iiint\limits_{G} \sqrt{y^2 + z^2} \ dx \ dy \ dz = 2 \iint\limits_{\{(y,z) \ : \ y^2 + z^2 \le 1\}} \sqrt{y^2 + z^2} \ dy \ dz = \\ 2 \cdot 4 \iint\limits_{\{(y,z) \ : \ y^2 + z^2 \le 1, \ y \ge 0, \ z \ge 0\}} \sqrt{y^2 + z^2} \ dy \ dz = 8 \iint\limits_{\{(y,z) \ : 0 \le y \le 1, \ 0 \le z \le 1\}} F(y,z) \ dy \ dz,$$

где

$$F(y,z) = \begin{cases} \sqrt{y^2 + z^2}, & (y,z) \in \{(y,z) : y^2 + z^2 \le 1\}, \\ 0, & (y,z) \notin \{(y,z) : y^2 + z^2 \le 1\}. \end{cases}$$

Пусть $p_1(y_1, z_1), p_2(y_2, z_2), \ldots,$ – случайные точки, равномерно распределенные в $\{(y, z): 0 \le y \le 1, \ 0 \le z \le 1\}$. Возьмем n случайных точек. В качестве приближенного значения интеграла используется выражение:

$$I \approx \frac{8}{n} \sum_{i=1}^{n} F(p_i). \tag{1}$$

3 Аналитическое решение

Найдем точное решение интеграла аналитически:

$$\begin{split} I &= \iiint\limits_{G} \sqrt{y^2 + z^2} \; dx \; dy \; dz = 2 \iint\limits_{\{(y,z) \,:\, y^2 + z^2 \leq 1\}} \sqrt{y^2 + z^2} \; dy \; dz = \\ & 2 \iint\limits_{\{(r,\phi) \,:\, 0 \leq r \leq 1,\, 0 \leq \phi \leq 2\pi\}} r \sqrt{(r\cos\phi)^2 + (r\sin\phi)^2} \; dr \; d\phi = \\ & 2 \iint\limits_{\{(r,\phi) \,:\, 0 \leq r \leq 1,\, 0 \leq \phi \leq 2\pi\}} r^2 \; dr \; d\phi = 2 \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{1} r^2 dr = \frac{4\pi}{3}. \end{split}$$

4 Описание алгоритма

На вход алгоритма подается точность ϵ . На первом шаге генерируется n случайных точек, равномерно распределенных в $\{(y,z): 0 \leq y \leq 1, \ 0 \leq z \leq 1\}$. На втором шаге вычисляется приближенное значение интеграла по форумле 1. На третьем шаге вычисляется величина $\delta = |\frac{4\pi}{3} - I|$. На четвертом шаге, если $\delta > \epsilon$, то переходим к первому шагу, генерируя при этом дополнительно n точек (не обнуляя старое значение суммы, а уточняя значение интеграла); иначе завершаем работу алгоритма.

В парадигме «мастер-рабочие»: один из процессов («мастер») генерирует слу- чайные точки и передаёт каждому из остальных процессов («рабочих») отдель- ный, предназначенный для него, набор сгенерированных случайных точек. Все процессы-рабочие вычисляют свою часть суммы по формуле 1. Затем, сумма с помощью операции редукции вычисляется на процессе-мастере. После чего вычисляется ошибка (разность между посчитанным значением и точным значением, вычисленным аналитически). В случае если ошибка вы-

ше требуемой точности, которую подали на вход программе, то генерируются дополнительные точки и расчёт продолжается.

5 Исследование масштабируемости программы

Ha момент написания отчета система Blue Gene/P не работает, а система Polus не поддерживает 64 MPI-процесса.

Как видно из таблицы 1, время последовательной программы достаточно мало, поэтому добавление распараллеливания с помощью технологии MPI только замедлит работу программы из-за накладных расходов.

Точность ϵ	Число МРІ-процессов	Время (с)	Ошибка
$3.0 \cdot 10^{-5}$	0	0.014	0.000018
	2	2.8234	0.000019
	4	4.8362	0.000022
	16	7.5734	0.000020
	32	0.1208	0.000016
	0	0.521	0.000002
	2	0.948	0.000002
$5.0 \cdot 10^{-6}$	4	5.3836	0.000003
	16	0.5686	0.000003
	32	0.6402	0.000003
$1.5\cdot 10^{-6}$	0	0.8484	0.000001
	2	5.2354	0.000001
	4	4.8646	0.000001
	16	1.5236	0.000001
	32	2.7864	0.000001

Таблица 1.

Мы видим замедление программы из-за накладных расходов. Параллельная программа для 2 MPI-процессов в парадигме "мастер-рабочий" представляет собой аналог последовательной программы в том смысле, что только один процесс вычисляет значение интеграла.

Как видно из результатов работы программы о мастшабируемости и ускорении не приходится говорить. Эта программа отлично справляется в сво-

ей последовательной версии и параллелизация её только замедляет, поэтому здесь не приведено никаких графиков.