以下での(*)とは,次のもの:

- integral,
- separated,
- noetherian, and
- regular in codimention one.

また, (†) は次のもの: X :: noetherian scheme, S :: graded \mathcal{O}_X -algebra となっている. また, $d \in \mathbb{Z}, d \geq 0$ について, \mathcal{S}_d :: homogeneous part of S を $U \mapsto \mathcal{S}(U)_d$. X, S は次をすべて満たす.

- S :: quasi-coherent.
- $S = \bigoplus_{d>0} S_d$.
- $S_0 = \mathcal{O}_X$.
- S_1 :: coherent \mathcal{O}_X -module.
- S :: locally generated by S_1 as \mathcal{O}_X -algebra.

Ex7.1 Surjective Mophism between Invertible Sheaves is Isomorphic.

X:: locally ringed space, \mathcal{L} , \mathcal{M} :: invertible sheaves on X, $f:\mathcal{L} \to \mathcal{M}$:: surjective mophism, とする.

■Proof 1. 任意の点 $x \in X$ をとり, $A = \mathcal{O}_{X,x}$ とおく. $f_x : \mathcal{L}_x \to \mathcal{M}_x$ は同型写像を合成することで $\phi : A \to A$:: surjective A-morphism と同一視出来る. ϕ :: surjective より, $\phi(\alpha) = 1 \in A$ となる $\alpha \in A$ がとれる.また ϕ は A-module morphism だから, $\alpha\phi(1) = 1$.そこで $\psi : A \to A$ を $a \mapsto \alpha a$ と 定義すれば,これが ϕ の逆写像になる.よって ϕ , f_x は同型.Prop1.1 から,f :: iso.

■Proof 2. Matsumura, Thm2.4 から分かる. これは NAK (or Nakayama's Lemma) からの帰結である.

注意 Ex7.1.1

k(x) :: residue field と $f_x: \mathcal{L}_x \to \mathcal{M}_x$ をテンソルすると, $f_x \otimes \operatorname{id}_{k(x)}$:: surjective k(x)-module morphism が得られる.よって $\ker(f_x \otimes \operatorname{id}_{k(x)}) = 0$. しかし,ここから NAK をつかって $\ker f_x = 0$ を 導くことは出来ない.k(x) が flat $\mathcal{O}_{X,x}$ -module でなく,したがって $\ker(f_x \otimes \operatorname{id}_{k(x)})$ と $(\ker f_x) \otimes k(x)$ の間に同型があることが言えないからである.このことは flat \implies torsion-free に気をつければすぐ に分かる.同様の議論が f_x :: injective(と $\operatorname{coker} f_x$)の場合に出来ることにも気づくが,このときは $\mathbb{Z}_2 \to \mathbb{Z}_2; 1 \mapsto 3$ という反例がある.

Ex7.2 Two Sets of Global Generators and Corresponding Morphisms.

k:: field, X:: scheme /k, \mathcal{L} :: invertible sheaf on X, $S = \{s_0, \ldots, s_m\}$, $T = \{t_0, \ldots, t_n\}$:: global generators of \mathcal{L} . とする.ここで S, T は同じ線形(部分)空間 $V \subseteq \Gamma(X, \mathcal{L})$ を張るとする.また $n \leq m, d = \dim_k V$ とする.

S,T からそれぞれ Thm7.1 のように定まる morphism を ϕ_S,ϕ_T とする. ϕ_S が次のように分解できる

ことを示す.

$$X \xrightarrow{\phi_T} \operatorname{im} \phi_T \xrightarrow{} \mathbb{P}^m - L \xrightarrow{\pi} \mathbb{P}^n \xrightarrow{\alpha} \mathbb{P}^n$$

 $22 \text{ T} = \pi$, α is the linear projection is automorphism of α .

 $X \to \mathbb{P}^n$ の morphism を考えることは, $k[y_0,\ldots,y_n]$ の元 y_0,\ldots,n の変換を考えることと同じである.これは Thm7.1 の証明を観察すれば分かる.二つの k-linear map は ϕ_S^*,ϕ_T^* はそれぞれ, $y_i \mapsto s_i (i=0,\ldots,n), \ y_i \mapsto t_i (i=0,\ldots,m)$ で定まっている.したがって問題は, t_0,\ldots,t_m を s_0,\ldots,s_n へ変換する projection と automorphism をつくる問題,と言い換えられる.

今,次のような(m+1)×(n+1)行列Qが存在する.

$$\begin{bmatrix} s_0 \\ \vdots \\ s_n \end{bmatrix} = Q \begin{bmatrix} t_0 \\ \vdots \\ t_m \end{bmatrix}.$$

S,T が V の生成系であることから $\mathrm{rank}\,Q=\dim V=:d.$ Q は基本行列をいくつもかける(あるいは基本変形を繰り返し行う)ことにより、次の形に分解できる.

$$Q = LP_dR$$
 where $L \in PGL(m, k), R \in PGL(n, k)$

ただし行列 P_r $(r=1,\ldots,n+1)$ は $r\times r$ -identity matrix I_r をもちいて $P_r=\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ と定義される行列である.(TODO: P_d を P_{n+1} に交換しても問題ない?) L,P_{n+1},R が誘導する morphism をそれぞれ $\beta,\tilde{\pi},\alpha$ とすれば, α,β は automorphism であり, $\tilde{\pi}$ は projection である.

$$\mathbb{P}^m \xrightarrow{\beta} \mathbb{P}^m \stackrel{i}{\longrightarrow} \mathbb{P}^m - L \xrightarrow{\tilde{\pi}} \mathbb{P}^n \xrightarrow{\alpha} \mathbb{P}^n$$

求める写像はこの α と, $\pi=\beta\circ i\circ \tilde{\pi}$ である.また, $L=\mathcal{Z}_p(y_0,\ldots,y_n)\subseteq \mathbb{P}^m$ の次元は m-(n+1) である.

Ex7.3 Morphism of $\mathbb{P}^n \to \mathbb{P}^m$ can be Decomposed into Common Ones.

 $\phi: \mathbb{P}^n_k \to \mathbb{P}^m_k$ を考える. $\mathcal{O}_{\mathbb{P}^m}(1), \mathcal{O}_{\mathbb{P}^n}(1)$:: invertible sheaves の global generator をそれぞれ $\{x_0,\ldots,x_m\},\{y_0,\ldots,y_n\}$ とする.

(a) $\operatorname{im} \phi = pt$ or $m \geq n$ and $\operatorname{dim} \operatorname{im} \phi = n$.

 $s_i = \phi^*(x_i) \ (i = 0, ..., m)$ とおくと、 $s_0, ..., s_m$ は $\mathcal{L} := \phi^*(\mathcal{O}_{\mathbb{P}^m}(1))$ の global generator である。 \mathcal{L} は \mathbb{P}^n 上の invertible sheaf だから、Cor6.17 より、 $\mathcal{L} \cong \mathcal{O}_{\mathbb{P}^n}(d)$ となる $d \in \mathbb{Z}$ が存在する。Example 7.8.3 同様、 $\mathcal{O}_{\mathbb{P}^n}(d)$ は |d| 次斉次単項式で生成される。

- $\blacksquare m < n \implies \dim \operatorname{im} \phi = 0.$
- $\blacksquare m \ge n \implies \dim \operatorname{im} \phi = n.$

Ex7.4 If X Admits an Ample Invertible Sheaf, then X is Separated.

(a) Assumption of Thm7.6 $\implies X ::$ separated.

A:: noetherian ring, X:: scheme of finite type /A とする。 \mathcal{L} :: ample invertible sheaf on X が存在したとする。Thm7.6 の証明(特に p.155 の第二段落)から次が分かる:十分大きい n>0 をとると, $s_1,\ldots,s_k\in\Gamma(X,\mathcal{L}^n)$ が存在し, $X_i=X_{s_i}$ ^{†1} は affine open cover を成す。 $U_i=V^c(x_i)$ とすると,これも affine open cover.Thm7.6 において引き続いて構成される immertion $\phi:X\to\mathbb{P}^N_A$ は,(証明の最終段落から) $\phi^{-1}(U_i)=X_i$ を満たす。 U_i,X_i は共に affine であるから, $\phi|_{X_i}:X_i\to U_i$ は separated (Prop4.1).Cor4.6f より $\phi:X\to\mathbb{P}^N_A$ は separated. $\mathbb{P}^N_A\to\mathrm{Spec}\,A$ は projective (Example4.8.1) なので sperated.よって separated morphism の合成 $X\to\mathbb{P}^N_A\to\mathrm{Spec}\,A$ も separated である.

k:: field, X:: affine with doubled origin /k とする. より詳細に、X は $X_1 = \operatorname{Spec} k[x], X_2 = \operatorname{Spec} k[y]$ を $U_1 = X_1 - \{O_1\}, U_2 = X_2 - \{O_2\}$ で貼りあわせたものとする. ただし $O_1 \in X_1, O_2 \in X_2$ は原点である. X_i, U_i, O_i (i=1,2) はすべて X の部分集合とみなす. X:: noetherian integral scheme は明らか. Example 6.3.1, Cor 6.16 より、 $\operatorname{Pic} X_1, \operatorname{Pic} X_2 = 0$.

まず $\operatorname{Pic} X$ を計算する. これには k[x], k[y] が UFD であることを用いる. X :: integral より $\operatorname{Pic} X \cong \operatorname{CaCl} X$ (Prop6.15). なので $\operatorname{CaCl} X$ を計算する. Example 4.0.1 にある \mathcal{O}_X の定義から計算すると, K_X :: function field of X は次のように書ける.

$$K_X = \{(f,g) \in k(x) \times k(y) \mid \phi(f|_{U_1 \cap U_2}) = g|_{U_1 \cap U_2}.\}$$

ただし ϕ は $x\mapsto y$ で定まる同型である. O_1 に対応するイデアルは単項イデアル (x) であるから,f は x^nh の様に書くことが出来る.この h は O_1 で零点も極も持たない元,すなわち $\mathcal{O}_{X_1,O_1}=k[x]_{(x)}$ の単元である.g についても同様であるから,結局次のように成る.

$$K_X = \{(x^n, y^n) \cdot (f, g) \mid n \in \mathbb{Z}, (f, g) \in \mathcal{O}_{X_1, O_1}^* \times \mathcal{O}_{X_2, O_2}^*, \phi(f|_{U_1 \cap U_2}) = g|_{U_1 \cap U_2}.\}$$

 K_X^* の元が principal divisor だから、CaCl $X \cong \{(x^n, y^n) \in k(x) \times k(y) \mid n \in \mathbb{Z}\} \cong \mathbb{Z}$.

 $^{^{\}dagger 1}~X_{s_i}$ は $\{P\in X\mid (s_i)_P\not\in\mathfrak{m}_P\mathcal{L}_P^n\}$ で定義される開集合. cf. Ex2.16.

- Ex7.5 Ample and Very Ample are Inherted by Tensor Products.
- Ex7.6 The Riemann-Roch Problem.
- Ex7.7 Some Rational Surfaces.
- Ex7.8 Sections of $\pi: \P(\mathcal{E}) \to X \leftrightarrow \text{Quotient Invertible Sheaves of } \mathcal{E}.$
- Ex7.9
- Ex7.10 P^n -Bundles Over a Scheme.
- Ex7.11 Different Sheaves of Ideals can Give Rise to Isomorphic Blown Up Schemes.
- Ex7.12
- Ex7.13 * A Complete Nonprojective Variety.
- Ex7.14