

CS182: Introduction to Machine Learning – Ensemble Methods: Boosting & Bagging + Kmeans

Yujiao Shi SIST, ShanghaiTech Spring, 2025

ADABOOST

Comparison

Weighted Majority Algorithm

- an example of an ensemble method
- assumes the classifiers are learned ahead of time
- only learns (majority vote) weight for each classifiers

AdaBoost

- an example of a boosting method
- simultaneously learns:
 - the classifiers themselves
 - (majority vote) weight for each classifiers

AdaBoost

Definitions

- Def: a weak learner is one that returns a hypothesis that is not much better than random guessing
- Def: a strong learner is one that returns a hypothesis of arbitrarily low error

- AdaBoost answers the following question:
 - Does that exist an efficient learning algorithm that can combine weak learners to obtain a strong learner?

AdaBoost

- Input: $\mathcal{D}(y^{(n)} \in \{-1, +1\}), T$
- Initialize data point weights: $\omega_0^{(1)}, ..., \omega_0^{(N)} = \frac{1}{N}$
- For t = 1, ..., T
 - 1. Train a weak learner, h_t , by minimizing the weighted training error
 - 2. Compute the weighted training error of h_t :

$$\epsilon_t = \sum_{n=1}^N \omega_{t-1}^{(n)} \mathbb{1}\left(y^{(n)} \neq h_t(\boldsymbol{x}^{(n)})\right)$$

3. Compute the **importance** of h_t :

$$\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

4. Update the data point weights:

$$\omega_t^{(n)} = \frac{\omega_{t-1}^{(n)}}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(\boldsymbol{x}^{(n)}) = y^{(n)} \\ e^{\alpha_t} & \text{if } h_t(\boldsymbol{x}^{(n)}) \neq y^{(n)} \end{cases}$$

Output: an aggregated hypothesis

$$g_T(\mathbf{x}) = \operatorname{sign}(H_T(\mathbf{x}))$$

$$= \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\boldsymbol{x})\right)$$

Setting α_t

 α_t determines the contribution of h_t to the final, aggregated hypothesis:

$$g(\mathbf{x}) = \text{sign}\left(\sum_{1=t}^{T} t h_t \alpha(\mathbf{x})\right)$$

Intuition: we want good weak learners to have high importances

$$\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

$$g(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x)) = sign(h(x))$$

Setting α_t

 α_t determines the contribution of h_t to the final, aggregated hypothesis:

$$g(x) = \text{sign}\left(\sum_{1=t}^{T} th_t \alpha(x)\right)$$

Intuition: we want good weak learners to have high importances

$$\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

■ How does the importance of a very bad/mostly incorrect weak learner compare to the importance of a very good/mostly correct weak learner?

- A Similar magnitude, same sign **(TOXIC)**
- B. Similar magnitude, different sign
- c. Different magnitude, same sign
- Different magnitude, different sign

AdaBoost: Example

$$\epsilon_1 = 0.3$$

$$\alpha_1 = 0.42$$

$$h_1$$

$$+ - -$$

$$\epsilon_3 = 0.14$$

 $\alpha_3 = 0.92$

AdaBoost: Example

Why AdaBoost?

- 1. If you want to use weak learners ...
- 2 ...and want your final hypothesis to be a weighted combination of weak learners, ...
- 3 ...then Adaboost greedily minimizes the exponential loss:

$$e(h(\mathbf{x}), y) = e^{-yh(\mathbf{x})}$$

$$h(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

- 上海科技大学
- Because they're low variance / computational constraints
- Because weak learners are not great on their own

3. Because the exponential loss upper bounds binary error

Exponential Loss

$$e(h(\mathbf{x}), y) = e^{-(yh(\mathbf{x}))}$$

The more h(x) "agrees with" y, the smaller the loss and the more h(x) "disagrees with" y, the greater the loss

Margins

• The margin of training point $(x^{(i)}, y^{(i)})$ is defined as:

$$m(\boldsymbol{x}^{(i)}, y^{(i)}) = \frac{y^{(i)} \sum_{t=1}^{T} \alpha_t h_t(\boldsymbol{x}^{(i)})}{\sum_{t=1}^{T} \alpha_t}$$

• The margin can be interpreted as how confident g_T is in its prediction: the bigger the margin, the more confident.

4/14/25

True Error (Freund & Schapire, 1995)

For AdaBoost, with high probability:

$$\left(\sqrt{\frac{d_{vc}(\mathcal{H})T}{N}}\right)$$

where $d_{vc}(\mathcal{H})$ is the VC-dimension of the weak learners and T is the number of weak learners.

• Empirical results indicate that increasing *T* does not lead to overfitting as this bound would suggest!

Test Error (Schapire, 1989)

- The training error often drops to zero quickly — but even after that, the test error continues to improve!
- Adaboost aims to maximize the margin, i.e., minimize the exponential loss

$$e(h(\mathbf{x}), y) = e^{-(yh(\mathbf{x}))}$$
$$h(\mathbf{x}) = \sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})$$

Why Adaboost Minimizes the Exponential Loss?技大学

$$\mathcal{L} = \sum_{i=1}^{n} e^{(-y_i F(x_i))} \quad \text{where} \quad F(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

At step *t*:

$$F_t(x) = F_{t-1}(x) + \alpha_t h_t(x)$$

$$\mathcal{L} = \sum_{i=1}^{n} e^{\left(-y_{i}F_{t}(x)\right)}$$

$$= \sum_{i=1}^{n} e^{\left(-y_{i}(F_{t-1}(x) + \alpha_{t}h_{t}(x))\right)}$$

$$= \sum_{i=1}^{n} e^{\left(-y_{i}(F_{t-1}(x) + \alpha_{t}h_{t}(x))\right)}$$

$$= \sum_{i=1}^{n} e^{\left(-y_{i}F_{t-1}(x)\right)}e^{\left(-y_{i}\alpha_{t}h_{t}(x)\right)}$$

$$= \sum_{i=1}^{n} w_{i}e^{\left(-\alpha_{t}\right)} \text{ if correct}$$

$$= \sum_{i=1}^{n} w_{i}e^{\left(\alpha_{t}\right)} \text{ if wrong}$$

$$= \sum_{i=1}^{n} w_{i}e^{\left(-y_{i}\alpha_{t}h_{t}(x)\right)}$$

$$\mathcal{L} = \sum_{i=1}^{n} w_i e^{(-y_i \alpha_t h_t(x))}$$

$$= \begin{cases} \sum_{i=1}^{n} w_i e^{(-\alpha_t)} & \text{if correct} \\ \sum_{i=1}^{n} w_i e^{(\alpha_t)} & \text{if wrong} \end{cases}$$

Why Adaboost Minimizes the Exponential Loss?技大学

$$\mathcal{L} = \sum_{i=1}^{n} e^{\left(-y_i F(x_i)\right)}$$

where
$$F(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

At step *t*:

$$\mathcal{L} = \sum_{i=1}^{n} w_{i} e^{(-y_{i}\alpha_{t}h_{t}(x))}$$

$$= \begin{cases} \sum_{i=1}^{n} w_{i} e^{(-\alpha_{t})} & \text{if correct} \\ \sum_{i=1}^{n} w_{i} e^{(\alpha_{t})} & \text{if wrong} \end{cases}$$

$$= \sum_{i=1}^{n} w_{i} e^{(-\alpha_{t})} + \sum_{i=1}^{n} w_{i} e^{(\alpha_{t})}$$

$$-\sum_{i=0}^{\infty}w_{i}e^{(-\alpha_{t})}+\sum_{i=0}^{\infty}w_{i}e^{(\alpha_{t})}=0$$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{\sum_{correct} w_i}{\sum_{wrong} w_i} \right)$$

Learning Objectives

Ensemble Methods: Boosting

You should be able to...

- Explain how a weighted majority vote over linear classifiers can lead to a non-linear decision boundary
- 2. Implement AdaBoost
- 3. Describe a surprisingly common empirical result regarding Adaboost train/test curves

Ensemble Methods

Ensemble methods learn a collection of models (i.e. the **ensemble**) and combine their predictions on a test instance.

We consider two types:

- Bagging: learns models in parallel by taking many subsets of the training data
- Boosting: learns models serially by reweighting the training data

BAGGING

Bagging

"BAGGing" is also called Boostrap AGGregretion

Bagging answers the question:

How can I obtain many classifiers/regressors to ensemble together?

We'll consider three possible answers:

- 1. (sample) bagging
- **2. feature bagging** (aka. random subspace method)
- 3. random forests (which combine sample bagging and feature bagging to train a "forest" of decision trees)

(Sample) Bagging

Key idea: Repeatedly sample with replacement a collection of training examples and train a model on that sample.

Return an ensemble of the trained models; combine predictions by majority vote for classification and by averaging for regression.

Algorithm 1(Sample) Bagging

for classification:
$$\hat{h}(\mathbf{x}) = \operatorname{argmax}_{y \in Y} \sum_{t=1}^{T} I[y = h_t(\mathbf{x})] \triangleleft Majority vote$$

for regression:
$$\hat{h}(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} h_t(\mathbf{x})$$

(Sample) Bagging

test instance

training data D

i	X ₁	X ₂	X ₃	y
1	1	0	1	+
2	0	1	1	-
3	1	1	0	+
4	0	1	0	+
5	1	0	0	-

bootstrap sample S₁

i	X ₁	X ₂	X ₃	у
3	1	1	0	+
5	1	0	0	-
3	1	1	0	+

bootstrap sample S₂

i	X ₁	X ₂	X ₃	у
2	0	1	1	-
5	1	0	0	-
1	1	0	1	+

bootstrap sample S₃

i	X ₁	X ₂	X ₃	у
2	0	1	1	-
4	0	1	0	+
1	1	0	1	+

l→classifier h₁

classifier h₂ majority vote

classifier h₃

.....

Feature Bagging

Key idea: Repeatedly sample with replacement a subset of the features, create a copy of the training data with only those features, and train a model on the copy.

Return an ensemble of the trained models; combine predictions by majority vote for classification and by averaging for regression.

Algorithm 2 Feature Bagging

```
1: procedure SampleBagging(D, T, S)
         for t = 1, ..., T do
2:
              for s = 1, ..., S do
3:
                   m_s \sim Uniform(1,..., M)
4:
              for i = 1, \ldots, N do
5:
                   \tilde{\mathbf{X}}^{(i)} = [\mathbf{X}_{m_1}^{(i)}, \mathbf{X}_{m_2}^{(i)}, \dots, \mathbf{X}_{m_s}^{(i)}]^T
6:
              D_t = \{(\tilde{\mathbf{x}}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^N
                                                                           7:
              h_t = train(D_t)
                                                                                          Classifier
8:
         return \hat{h}(\mathbf{x}) = \operatorname{aggregate}(h_1, \dots, h_T)
```

Feature Bagging

test instance

X ₁	X ₂	X ₃	X ₄
0	1	0	0

majority

bootstrap sample S_1

i	X ₄	X ₂	у
1	0	0	+
2	1	1	-

llocal control co

training data D

i	X ₁	X ₂	X ₃	X ₄	у
1	1	0	1	0	+
2	0	1	1	1	-
3	1	1	0	0	+

bootstrap sample S₂

i	X ₂	X ₃	y
1	0	1	+
2	1	1	-
3	1	0	+

classifier h₂

bootstrap sample S₃

i	X ₁	X ₃	y
 1	1	1	+
2	0	1	-
3	1	0	+

classifier h₃

RANDOM FORESTS

Decision Trees: Pros & Cons

- Pros
 - Interpretable
 - Efficient (computational cost and storage)
 - Can be used for classification and regression tasks
 - Compatible with categorical and real-valued features
- Cons
 - Learned greedily: each split only considers the immediate impact on the splitting criterion
 - Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0.
 - Prone to overfit
 - Limited expressivity (especially short trees, i.e., stumps)
 - Can be addressed via boosting
 - Highly variable
 - Can be addressed via bagging → random forests

MovielD	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	18M	1980	8.7	PG	Υ
2	105	Action	30M	1984	7.8	PG	Υ
3	103	Comedy	6M	1986	7.8	PG-13	N
4	98	Adventure	16M	1987	8.1	PG	Υ
5	128	Comedy	16.4M	1989	8.1	PG	Y
6	120	Comedy	11 M	1992	7.6	R	N
7	120	Drama	14.5M	1996	6.7	PG-13	N
8	136	Action	115M	1999	6.5	PG	Υ
9	90	Action	90M	2001	6.6	PG-13	Y
10	161	Adventure	100M	2002	7.4	PG	N
11	201	Action	94M	2003	8.9	PG-13	Y
12	94	Comedy	26M	2004	7.2	PG-13	Υ
13	157	Biography	100M	2007	7.8	R	N
14	128	Action	110M	2007	7.1	PG-13	N
15	107	Drama	39M	2009	7.1	PG-13	N
16	158	Drama	61M	2012	7.6	PG-13	N
17	169	Adventure	165M	2014	8.6	PG-13	Y
18	100	Biography	9M	2016	6.7	R	N
19	130	Action	180M	2017	7.9	PG-13	Y
20	141	Action	275M	2019	6.5	PG-13	Υ

Decision Trees

MovielD	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	18M	1980	8.7	PG	Υ
2	105	Action	30M	1984	7.8	PG	Υ
3	103	Comedy	6M	1986	7.8	PG-13	N
4	98	Adventure	16M	1987	8.1	PG	Υ
5	128	Comedy	16.4M	1989	8.1	PG	Υ
6	120	Comedy	11M	1992	7.6	R	N
7	120	Drama	14.5M	1996	6.7	PG-13	N
8	136	Action	115M	1999	6.5	PG	Υ
9	90	Action	90M	2001	6.6	PG-13	Υ
10	161	Adventure	100M	2002	7.4	PG	N
11	201	Action	94M	2003	8.9	PG-13	Υ
12	94	Comedy	26M	2004	7.2	PG-13	Υ
13	157	Biography	100M	2007	7.8	R	N
14	128	Action	110M	2007	7.1	PG-13	N
15	107	Drama	39M	2009	7.1	PG-13	N
16	158	Drama	61M	2012	7.6	PG-13	Y
17	169	Adventure	165M	2014	8.6	PG-13	Υ
18	100	Biography	9M	2016	6.7	R	N
19	130	Action	180M	2017	7.9	PG-13	Υ
20	141	Action	275M	2019	6.5	PG-13	Υ

Decision Trees

Decision Trees

Random Forests

- Combines the prediction of many diverse decision trees to reduce their variability
- If B independent random variables $x^{(1)}$, $x^{(2)}$, ..., $x^{(B)}$ all have variance σ^2 , then the variance of $\frac{1}{B}\sum_{b=1}^B x^{(b)}$ is $\frac{\sigma^2}{B}$
- Random forests = sample bagging + feature bagging
 - = **b**ootstrap **agg**regat**ing** + split-feature randomization

Random Forests

Key idea: Combine (sample) bagging and a specific variant of feature bagging to train decision trees.

Repeat the following to train many decision trees:

- draw a sample with replacement from the training examples,
- recursively learn the decision tree
- but at each node when choosing a feature on which to split, first randomly sample a subset of the features, then pick the best feature from among that subset.

Return an ensemble of the trained decision trees.

Bootstrapping

- Insight: one way of generating different decision trees is by changing the training data set
- Issue: often, we only have one fixed set of training data
- Idea: resample the data multiple times with replacement

MovielD	•••
1	•••
2	•••
3	•••
:	÷
19	•••
20	•••

_					4
	rai	nı	na	α	ata
	ıaı	1 11	IЦ	Q.	ala
			\cup		

MovielD	•••
1	•••
1	•••
1	•••
:	:
14	•••
19	•••

Bootstrapped Sample 1

MovieID	•••	
4	•••	
4	•••	
5	•••	•
:	:	
16	•••	
16	•••	

Bootstrapped Sample 2

4/14/25

• • •

Bootstrapping

- Idea: resample the data multiple times with replacement
 - Each bootstrapped sample has the same number of data points as the original data set
 - Duplicated points cause different decision trees to focus on different parts of the input space

MovielD	•••
1	•••
2	•••
3	•••
:	:
19	•••
20	•••

Τ	ra	in	in	q	d	a	ta
•				3	-	<u></u>	

MovielD	•••
1	•••
1	•••
1	•••
:	:
14	•••
19	•••

Bootstrapped Sample 1

MovielD	•••	
4	•••	
4	•••	
5	•••	
:	:	
16	•••	
16	•••	

Bootstrapped ... Sample 2

4/14/25

Split-feature Randomization

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

Split-feature Randomization

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

Split-feature Randomization

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

Split-feature Randomization

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

Random Forests

• Input:
$$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}, B, \rho$$

- For b = 1, 2, ..., B
 - Create a dataset, \mathcal{D}_b , by sampling N points from the original training data \mathcal{D} with replacement
 - Learn a decision tree, t_b , using \mathcal{D}_b and the ID3 algorithm with split-feature randomization, sampling ρ features for each split
- Output: $\bar{t} = f(t_1, ..., t_B)$, the aggregated hypothesis

How can we set B and ρ ?

• Input:
$$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}, B, \rho$$

- For b = 1, 2, ..., B
 - Create a dataset, \mathcal{D}_b , by sampling N points from the original training data \mathcal{D} with replacement
 - Learn a decision tree, t_b , using \mathcal{D}_b and the ID3 algorithm with split-feature randomization, sampling ρ features for each split
- Output: $\bar{t} = f(t_1, ..., t_B)$, the aggregated hypothesis

Recall: Validation Sets

Out-of-bag Error

- For each training point, $\mathbf{x}^{(n)}$, there are some decision trees which $\mathbf{x}^{(n)}$ was not used to train (roughly B/e trees or 37%)
 - Let these be $t^{(-n)} = \{t_1^{(-n)}, t_2^{(-n)}, \dots, t_{N-n}^{(-n)}\}$
- Compute an aggregated prediction for each $x^{(n)}$ using the trees in $t^{(-n)}$, $\bar{t}^{(-n)}(x^{(n)})$
- Compute the out-of-bag (OOB) error, e.g., for regression

$$E_{00B} = \frac{1}{N} \sum_{n=1}^{N} (\bar{t}^{(-n)}(\mathbf{x}^{(n)}) - y^{(n)})^{2}$$

Out-of-bag Error

- For each training point, $\mathbf{x}^{(n)}$, there are some decision trees which $\mathbf{x}^{(n)}$ was not used to train (roughly B/e trees or 37%)
 - Let these be $t^{(-n)} = \{t_1^{(-n)}, t_2^{(-n)}, ..., t_{N_{-n}}^{(-n)}\}$
- Compute an aggregated prediction for each ${m x}^{(n)}$ using the trees in $t^{(-n)}$, ${ar t}^{(-n)}({m x}^{(n)})$
- Compute the out-of-bag (OOB) error, e.g., for classification

$$E_{00B} = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}(\bar{t}^{(-n)}(\mathbf{x}^{(n)}) \neq y^{(n)})$$

• E_{00B} can be used for hyperparameter optimization!

Out-of-bag Error

Setting Hyperparameters

Feature Importance

- Some of the interpretability of decision trees gets lost when switching to random forests
- Random forests allow for the computation of "feature importance", a way of ranking features based on how useful they are at predicting the target
- Initialize each feature's importance to zero
- Each time a feature is chosen to be split on, add the reduction in entropy (weighted by the number of data points in the split) to its importance

Feature Importance

Key Takeaways

- Ensemble methods employ a "wisdom of crowds" philosophy
 - Can reduce the variance of high variance methods
- Random forests = bagging + split-feature randomization
 - Aggregate multiple decision trees together
 - Bootstrapping and split-feature randomization increase diversity in the decision trees
 - Use out-of-bag errors for hyperparameter optimization
 - Use feature importance to identify useful attributes

- What is the difference between AdaBoost and Random Forest?
- Can we design an aglorithm that combines the merits of both methods?
 - a potential suggestion for Project

Learning Objectives

Ensemble Methods: Bagging

You should be able to...

- 1. Distinguish between (sample) bagging, the random subspace method, and random forests.
- 2. Implement (sample) bagging for an arbitrary base classifier/regressor.
- 3. Implement the random subspace method for an arbitrary base classifier/ regressor.
- 4. Implement random forests.
- 5. Contrast out-of-bag error with cross-validation error.
- 6. Differentiate boosting from bagging, when to use which.
- 7. Compare and contrast weighted and unweighted majority vote of a collection of classifiers.
- 8. Discuss the relation in bagging between the sample size and variance of the base classifier/regressor (project suggestion).
- 9. Bound the generalization error of a random forest classifier (project suggestion).