Finding the Point Estimate and E from a Confidence Interval

Sometimes we want to better understand a confidence interval that might have been obtained from a journal article or technology. If we already know the confidence interval limits, the sample proportion (or the best point estimate) \hat{p} and the margin of error E can be found as follows:

Point estimate of p:

$$\hat{p} = \frac{\text{(upper confidence interval limit)} + \text{(lower confidence interval limit)}}{2}$$

Margin of error:

$$E = \frac{\text{(upper confidence interval limit)} - \text{(lower confidence interval limit)}}{2}$$

Example 5

The article "High-Dose Nicotine Patch Therapy," by Dale, Hurt, et al. (*Journal of the American Medical Association*, Vol. 274, No. 17) includes this statement: "Of the 71 subjects, 70% were abstinent from smoking at 8 weeks (95% confidence interval [CI], 58% to 81%)." Use that statement to find the point estimate \hat{p} and the margin of error E.

Solution

We get the 95% confidence interval of $0.58 from the given statement. The point estimate <math>\hat{p}$ is the value midway between the upper and lower confidence interval limits, so we get

$$\hat{p} = \frac{\text{(upper confidence limit)} + \text{(lower confidence limit)}}{2}$$

$$= \frac{0.81 + 0.58}{2} = 0.695$$

The margin of error can be found as follows:

$$E = \frac{\text{(upper confidence limit)} - \text{(lower confidence limit)}}{2}$$
$$= \frac{0.81 - 0.58}{2} = 0.115$$

Better-Performing Confidence Intervals

Important note: The exercises for this section are based on the method for constructing a confidence interval as described above, not the confidence intervals described in the following discussion.

Adjusted Wald CI The confidence interval described in this section has the format typically presented in introductory statistics courses, but it does not perform as well as some other confidence intervals. The *adjusted Wald confidence interval* performs better in the sense that its probability of containing the true population proportion p is closer to the confidence level that is used. The adjusted Wald confidence interval uses this simple procedure: Add 2 to the number of successes x, add 2 to the number of failures (so that the number of trials n is increased by 4),