W3C LBD Community Group Minutes - Call 15/01/2024

Attendees

- Mathias Bonduel (Neanex Technologies, Belgium)
- Dimitris Mavrokapnidis (UCL London)
- Janakiram Karlapudi (TU Dresden)
- Eva Heinlein (RWTH Aachen)
- Philipp Hagedorn (Ruhr-University Bochum, Germany)
- Philipp Dohmen (Amberg Group. Schweiz)
- Al-Hakam Hamdan (A+S Consult GmbH)
- Alex Donkers (Eindhoven University of Technology)
- Georgios Triantafyllidis (Norwegian University of Science and Technology)
- Sebastian Blechmann (RWTH Aachen University)
- Fathya Zemmouri (Al Institute of the University of Stuttgart)
- Jan-lwo Jäkel (RWTH Aachen)
- Shervin Rahnama (RWTH Aachen)
- Conor Shaw (UC Dublin)
- Klaus Linhard (HM München)
- Tim Rossi
- Pierre Bourreau (Nobatec)
- Melina Rohne (RWTH Aachen)

Please join the W3C LBD CG and subscribe to the internal mailing list:

Linked Building Data Community Group (w3.org)

Presentation slides

Slides: <u>GitHub link</u>

Date and time

Monday 15th of January 2024, 15:00-16:30@UTC/ 16:00-17:30@CET/ 07:00-08:30@PST

Moderators

1. Mathias Bonduel

Agenda

- 1. Introduction of new members
- 2. Dimitris Mavrokapnidis "Semi-automated extraction of HVAC topology from imperfect Building Information Models"
- 3. Discussion
- 4. Further topics

Minutes

1. Introduction of new members

- Janakiram Karlapudi: knowledge engineer at Gropius, TU Dresden PhD
- Fathya Zemmouri: University of Stuttgart, AI research with Prof Staab, modeling and topics in co-design phase of buildings
- Melina Rohne: RWTH Aachen, highway engineering
- Shervin Rahnama: Institute for Construction Management, Digital Engineering and Robotics in Construction - RWTH Aachen University doing research in ontologies for recycling and sustainable development

2. Dimitris Mavrokapnidis "Semi-automated extraction of HVAC topology from imperfect Building Information Models"

- 4th year PhD (located at UCL London) > close to submitting, working in CBIM network of researchers in BIM and semantics
- quality issues in BIM datasets
- HVAC topology
 - o interconnected components
 - o inputs for energy simulation, fault detection, facility management
 - o BIM/IFC as source?
- BIM/IFC
 - o focused on geometry > clash detection
 - o modelling imperfections
 - operational requirements not modelled
 - limits in IFC: equipment and spaces relation (e.g. "feeds")
- ongoing project New Museum of London (MoL)
 - very large BIM dataset > 24 siloed IFCs by different contractors
 - now under construction
 - IFCs unused after project delivery, despite many handover processes (CoBIE)
- IFC vs Linked Data
 - geometry and semantic relationships in a single file <> semantics separated from geometry
 - o cross domain linking
- LBD (Linked Building Data)
 - o overcoming IFC and ifcOWL > modular ontologies
 - 1-1 mapping from BIM > focus?
 - BOT and FSO for HAC system topology
 - BRICK Schema for HVAC operation logic
 - different modelling approaches (more abstract)
 - overlap with IFC: equipment and location <> Measurable and Point
- ontology-based HVAC representation
- transform check enrich
 - extract from IFC all useful HVAC data
 - ETL tool in Python (<u>open source</u>): ifcOpenShell + RDFLib
 - works with mapping in <u>custom JSON format</u>
 - gaps (missing relations) in graph due to modelling imperfections in IFCs
 - data validation using SHACL (pySHACL) > check semantic completeness (missing relations?)
 - examples of SHACL constraints
 - topological
 - every bot:Element in exactly 1 bot:Zone

- logical
- output: XML with errors
- geometric relation checking (GRC)
 - reused GRC tool > takes geometry from IFC which have semantic errors => create relations in the graph
 - clash
 - adjacent
 - containment
 - proximity (not yet)
 - GRC: currently not available online, but plan to make it open source. Not the main developer. C++ code
 - limitations:
 - false positives can occur
 - failed to resolve all issues > GUI to support manual improvement ("semi-automatic"). Examples:
 - terminals not following the logic of the validation constraints (element not part of a system) > louvres
 - geometry detected 2 louvres connected > not really a feeds relation
 - missing elements due to lack of detail in the modelrequires the improvement of the model
 - GUI under development to manually add semantic relation
 - terminals not linked to arch space limited by ceiling > requires proximity analysis
- logical inferencing
 - SPARQL IF-THEN rules for inference
 - e.g. which equipment serves which spaces
- results on MoL demo
 - GRC solved 70% errors (14140) <> 30% left for manual inspection
 - no relations between arch IFC and MEP IFC > no relations between spaces and MEP equipment
- conclusions and next steps
 - o cleaning the model?
 - flexible data access with SPARQL
 - 5-6 min to load IFCs individually <> with LD graph easier to query directly
 - further development of GRC (spatial proximity)
- demo (live)
 - integrate FSO/BOT/BRICKS mappings in current-next IFC version?
 - BIM Vision IFC viewer: 2 large IFC files loaded to show the large scale of the project
 - slow response due large amount of elements and geometry
 - GraphDB Ontotext > results of IFC conversion/extraction

3. Discussion

- [Fathya] complex SHACL constraints > how do you create them? Considered SWRL?
 - o SHACL more expressive, linking/extending constraints
 - more difficult to write
- [Fathya] manually written SHACL?
 - o yes, not that many constraints needed for the case
 - starting from text constraints and manually create the SHACL

- other projects needed more complex SHACL > automated/faster through a Python script
- [Mathias] SHACL can also contain SPARQL for more complex cases.
 Separation between validation rules and inference rules.
- [Janakiram] feed errors from SHACL validation to GRC > IFC logo and XML file in graph
 - some pieces left open in the diagram. IFCXML file containing IFC elements (with geometry) with errors, current output of GRC
- [Janakiram] JSON mapping between IFC and BOT/FSO/BRICKS
 - forming a buildingSMART working group for IFC extension towards operational phase. No public documentation available
- [Alex] RDF-based mapping considered? Alignments?
 - not yet
- [Mathias] <u>IFCtoLBD</u> converter not used?
 - more familiar with Python (Java code)
 - o BRICKS relations not supported
- [Alex] Lacking BIM modeling quality in general (misclassification)? Improve modeling process?
 - IFC can be used by BIM modeler as they want. Had to update to IFC4 (ongoing state-of-the-art)
 - already close mapping (generic) > easier to select by BIM modeler in next versions of IFC
 - o could create relations inside IFC
 - [Mathias] what about using a BIM property for your classification instead of using the "drafting" classification from BIM authoring tools?
 - UniClass code used in the project, but not considered in the mapping
- [Mathias] In addition to BOT, you could consider using a more generic EU standardized ontology named SML (Semantic Modelling and Linking) and create your "own classification system" based on it. It's available in EN 17632-2:2022. It also contains, besides agreements on graph modeling patterns, top-level terminology and relations for connections, ports, etc.

4. Further topics

Upcoming LBD CG presentation in 19th of February 2024 by Hervé Pruvost

Next Call

19/02/2024, Monday, 15:00-16:30@UTC/ 16:00-17:30@CET/ 07:00-08:30@PST

Agenda: Hervé Pruvost (Fraunhofer IIS, Dresden): "Ontologies to automate the configuration and deployment of monitoring services for building energy systems"

We are interested in getting suggestions from the community about potential agenda items and **Elevator Pitches** for the following calls. Please send your suggestions to the chairs or to internal-lbd@w3.org, whether you have a short presentation to bootstrap the discussion, and an approximate duration you think the discussion will last.

Previous minutes

https://github.com/w3c-lbd-cg/lbd/tree/gh-pages/minutes