Quiz II (CS 205: Fall 2019) (Solutions)

Name:

NetID:

Section No.:

For each of the following problems, use the space provided below the problem statement to write down your answer. Write clearly and concisely. There are 3 problems in total.

1. (20 pts) Use induction to prove that $n^3 - 7n$ is divisible by 3 for all natural numbers $n \ge 0$. Hint: You might have to use $(a+b)^3 = a^3 + b^3 + 3ab(a+b)$.

Solution: Let P(n) be the predicate

$$n^3 - 7n$$
 is divisible by 3.

We want to prove $\forall n \geq 0 \ P(n)$. We will use weak induction to prove this.

Base case: We will show that P(0) is true. For n = 0,

$$n^3 - 7n = 0$$

which is divisible by 3 and so P(0) is true.

Induction step: We want to prove that

$$\forall n \geq 0 \ P(n) \rightarrow P(n+1).$$

Let $k \ge 0$ be any natural number. It suffices to show that

$$P(k) \rightarrow P(k+1)$$
.

Assume that P(k) is true, i.e. $k^3 - 7k$ is divisible by 3 and so there is some integer m such that

$$k^3 - 7k = 3m$$
 (Induction hypothesis)

We want to prove that P(k+1) is true, i.e. $(k+1)^3 - 7(k+1)$ is divisible by 3. We can write

$$(k+1)^3 - 7(k+1)$$
= $k^3 + 1 + 3k(1+k) - 7k - 7$
= $(k^3 - 7k) + 3k(1+k) - 6$
= $3m + 3k(1+k) - 6$ (Using the induction hypothesis)
= $3(m+k(1+k)-2)$ (1)

It is clear from (1) that $(k+1)^3 - 7(k+1)$ can be written as 3 times some integer, and so it is divisible by 3. Thus, P(k+1) is true and this completes the proof of the induction step.

- 2. (10 pts) Prove the following statement: If the average high temperature in New Brunswick over the past 365 days was 53° F, then there must have been a day (among the past 365 days) on which the high temperature was at least 53° F.
 - **Solution:** Let us assume for the sake of contradiction that the high temperature every day over the past 365 days was strictly less than 53° F. This would mean that the sum of the high temperatures of the past 365 days is strictly less than 53×365 , and hence the average is strictly less than $\frac{53 \times 365}{365} = 53$, which would contradict the given fact that the average high temperature is 53. Thus, there must be at least one day when the temperature was at least 53° F.
- 3. (10 + 10 = 20 pts) For each of the following statements, state whether you think the statement is True or False. If you claim that a statement is True, you must supplement your answer with a proof, and if you claim that a statement is False, you must provide a *concrete* (i.e., provide actual numbers) counterexample to the statement.
 - (a) If α is an irrational number and β is a rational number then $\alpha\beta$ must be irrational. **Solution:** This is false. Let $\alpha = \sqrt{2}$ (irrational) and $\beta = 0$ (rational) then $\alpha\beta = 0$ which is rational, and so this is a counterexample.
 - (b) The ratio of two distinct positive irrational numbers is always irrational. **Solution:** This is False. Consider two numbers, $\sqrt{2}$ and $2\sqrt{2}$. Both are irrational since we know that $\sqrt{2}$ is irrational, and they are clearly distinct and positive, but their ratio is

$$\frac{\sqrt{2}}{2\sqrt{2}} = \frac{1}{2},$$

which is a rational number. Thus, this is a counterexample.