# Reinforcement Learning and Optimal Control A Selective Overview

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems Massachusetts Institute of Technology

2018 CDC

December 2018

# Reinforcement Learning (RL): A Happy Union of AI and Decision/Control Ideas



### Historical highlights

- Exact DP, optimal control (Bellman, Shannon, 1950s ...)
- First major successes: Backgammon programs (Tesauro, 1992, 1996)
- Algorithmic progress, analysis, applications, first books (mid 90s ...)
- Machine Learning, BIG Data, Robotics, Deep Neural Networks (mid 2000s ...)
- AlphaGo and Alphazero (DeepMind, 2016, 2017)

# AlphaGo (2016) and AlphaZero (2017)



# AlphaZero

Plays much better than all chess programs

Plays different!

Learned from scratch  $\dots$  with 4 hours of training!

Same algorithm learned multiple games (Go, Shogi)

# AlphaZero was Trained Using Self-Generated Data



- The "current" player plays games that are used to "train" an "improved" player
- At a given position, the "move probabilities" and the "value" of a position are approximated by a deep neural net (NN)
- Successive NNs are trained using self-generated data and a form of regression
- A form of randomized policy improvement Monte-Carlo Tree Search (MCTS) generates move probabilities
- AlphaZero bears similarity to earlier works, e.g., TD-Gammon (Tesauro, 1992), but is more complicated because of the MCTS and the deep NN
- The success of AlphaZero is due to a skillful implementation/integration of known ideas, and awesome computational power

# Approximate DP/RL Methodology is now Ambitious and Universal

# Exact DP applies (in principle) to a very broad range of optimization problems

- Deterministic <---> Stochastic
- Combinatorial optimization <---> Optimal control w/ infinite state/control spaces
- One decision maker <---> Two player games
- ... BUT is plagued by the curse of dimensionality and need for a math model

### Approximate DP/RL overcomes the difficulties of exact DP by:

- Approximation (use neural nets and other architectures to reduce dimension)
- Simulation (use a computer model in place of a math model)

#### State of the art:

- Broadly applicable methodology: Can address broad range of challenging problems. Deterministic-stochastic-dynamic, discrete-continuous, games, etc
- There are no methods that are guaranteed to work for all or even most problems
- There are enough methods to try with a reasonable chance of success for most types of optimization problems
- Role of the theory: Guide the art, delineate the sound ideas

# Approximation in Value Space

## Central Idea: Lookahead with an approximate cost

- ullet Compute an approximation  $ilde{J}$  to the optimal cost function  $J^*$
- At current state, apply control that attains the minimum in

Current Stage Cost  $+ \tilde{J}(\text{Next State})$ 

### Multistep lookahead extension

- ullet At current state solve an  $\ell$ -step DP problem using terminal cost  $ilde{J}$
- $\bullet$  Apply the first control in the optimal policy for the  $\ell\text{-step}$  problem

# Example approaches to compute $\tilde{J}$ :

- ullet Problem approximation: Use as  $ilde{J}$  the optimal cost function of a simpler problem
- Rollout and model predictive control: Use a single policy iteration, with cost evaluated on-line by simulation or limited optimization
- Self-learning/approximate policy iteration (API): Use as  $\tilde{J}$  an approximation to the cost function of the final policy obtained through a policy iteration process
- Role of neural networks: "Learn" the cost functions of policies in the context of API; "learn" policies obtained by value space approximation

### Aims and References of this Talk

## The purpose of this talk

To selectively review some of the methods, and bring out some of the AI-DP connections

#### References

- Quite a few Exact DP books (1950s-present starting with Bellman; my latest book "Abstract DP" came out earlier this year)
- Quite a few DP/Approximate DP/RL/Neural Nets books (1996-Present)
  - Bertsekas and Tsitsiklis, Neuro-Dynamic Programming, 1996
  - Sutton and Barto, 1998, Reinforcement Learning (new edition 2019, Draft on-line)
  - NEW DRAFT BOOK: Bertsekas, Reinforcement Learning and Optimal Control, 2019, on-line
- Many surveys on all aspects of the subject; Tesauro's papers on computer backgammon, and Silver, et al., papers on AlphaZero

# Terminology in RL/AI and DP/Control

### RL uses Max/Value, DP uses Min/Cost

- Reward of a stage = (Opposite of) Cost of a stage.
- State value = (Opposite of) State cost.
- Value (or state-value) function = (Opposite of) Cost function.

## Controlled system terminology

- Agent = Decision maker or controller.
- Action = Control.
- Environment = Dynamic system.

### Methods terminology

- Learning = Solving a DP-related problem using simulation.
- Self-learning (or self-play in the context of games) = Solving a DP problem using simulation-based policy iteration.
- Planning vs Learning distinction = Solving a DP problem with model-based vs model-free simulation.

### Outline

- Approximation in Value Space
- Problem Approximation
- Rollout and Model Predictive Control
- Parametric Approximation Neural Networks
- Neural Networks and Approximation in Value Space
- 6 Model-free DP in Terms of Q-Factors
- Policy Iteration Self-Learning

### Finite Horizon Problem - Exact DP



System

$$X_{k+1} = f_k(X_k, u_k, w_k), \qquad k = 0, 1, ..., N-1$$

where  $x_k$ : State,  $u_k$ : Control,  $w_k$ : Random disturbance

Cost function:

$$E\left\{g_N(x_N)+\sum_{k=0}^{N-1}g_k(x_k,u_k,w_k)\right\}$$

- Perfect state information:  $u_k$  is applied with (exact) knowledge of  $x_k$
- Optimization over feedback policies  $\{\mu_0, \dots, \mu_{N-1}\}$ : Rules that specify the control  $\mu_k(x_k)$  to apply at each possible state  $x_k$  that can occur

# The DP Algorithm and Approximation in Value Space

Go backwards,  $k = N - 1, \dots, 0$ , using

$$J_{N}(x_{N}) = g_{N}(x_{N})$$

$$J_{k}(x_{k}) = \min_{u_{k}} E_{w_{k}} \left\{ g_{k}(x_{k}, u_{k}, w_{k}) + J_{k+1} \left( f_{k}(x_{k}, u_{k}, w_{k}) \right) \right\}$$

 $J_k(x_k)$ : Optimal cost-to-go starting from state  $x_k$ 

Approximate DP is motivated by the ENORMOUS computational demands of exact DP

Approximation in value space: Use an approximate cost-to-go function  $\tilde{J}_{k+1}$ 

$$\tilde{\mu}_k(x_k) \in \arg\min_{u_k} E_{w_k} \left\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1} \left( f_k(x_k, u_k, w_k) \right) \right\}$$

# There is also a multistep lookahead version

At state  $x_k$  solve an  $\ell$ -step DP problem with terminal cost function approximation  $\tilde{J}_{k+\ell}$ . Use the first control in the optimal  $\ell$ -step sequence.

# Approximation in Value Space Methods

#### One-step case at state $x_k$ :

#### Approximate minimization



#### Approximations:

Simplify  $E\{\cdot\}$ 

(certainty equivalence)
Adaptive simulation

Computation of  $\tilde{J}_{k+1}$ :

Problem approximation Rollout

Model Predictive Control

Parametric approximation Aggregation

### Multistep case at state $x_k$ :



Lookahead Minimization

Cost-to-go Approximation

# Problem Approximation: Simplify the Tail Problem and Solve it Exactly

Use as cost-to-go approximation  $\tilde{J}_{k+1}$  the exact cost-to-go of a simpler problem

## Many problem-dependent possibilities:

- Probabilistic approximation
  - Certainty equivalence: Replace stochastic quantities by deterministic ones (makes the lookahead minimization deterministic)
  - Approximate expected values by limited simulation
  - Partial versions of certainty equivalence
- Enforced decomposition of coupled subsystems
  - One-subsystem-at-a-time optimization
  - Constraint decomposition
  - Lagrangian relaxation
- Aggregation: Group states together and view the groups as aggregate states
  - Hard aggregation:  $\tilde{J}_{k+1}$  is a piecewise constant approximation to  $J_{k+1}$
  - Feature-based aggregation: The aggregate states are defined by "features" of the original states
  - Biased hard aggregation:  $\hat{J}_{k+1}$  is a piecewise constant local correction to some other approximation  $\hat{J}_{k+1}$ , e.g., one provided by a neural net

# Rollout: On-Line Simulation-Based Approximation in Value Space



- The base policy can be any suboptimal policy (obtained by another method)
- One-step or multistep lookahead; exact minimization or a "randomized form of lookahead" that involves "adaptive" simulation and Monte Carlo tree search
- With or without terminal cost approximation (obtained by another method)
- Some forms of model predictive control can be viewed as special cases (base policy is a short-term deterministic optimization)
- Important theoretical fact: With exact lookahead and no terminal cost approximation, the rollout policy improves over the base policy

# Example of Rollout: Backgammon (Tesauro, 1996)



- Base policy was a backgammon player developed by a different RL method  $[TD(\lambda)]$  trained with a neural network]; was also used for terminal cost approximation
- The best backgammon players are based on rollout ... but are too slow for real-time play (MC simulation takes too long)

### AlphaGo has similar structure to backgammon

The base policy and terminal cost approximation are obtained with a deep neural net. In AlphaZero the rollout-with-base-policy part was dropped (long lookahead suffices)



 $\tilde{J}_k$  comes from a class of functions  $\tilde{J}_k(x_k, r_k)$ , where  $r_k$  is a tunable parameter vector



# Training with Fitted Value Iteration

### This is just DP with intermediate approximation at each step

- Start with  $\tilde{J}_N = g_N$  and sequentially train going backwards, until k = 0
- Given  $\tilde{J}_{k+1}$ , we construct a number of samples  $(x_k^s, \beta_k^s)$ ,  $s = 1, \dots, q$ ,

$$\beta_k^s = \min_u E\Big\{g(x_k^s, u, w_k) + \tilde{J}_{k+1}(f_k(x_k^s, u, w_k), r_{k+1})\Big\}, \qquad s = 1, \dots, q$$

• We "train"  $\tilde{J}_k$  on the set of samples  $(x_k^s, \beta_k^s), s = 1, \dots, q$ 

### Training by least squares/regression

• We minimize over  $r_k$ 

$$\sum_{s=1}^{q} \left( \tilde{J}_k(\boldsymbol{x}_k^s, r_k) - \beta^s \right)^2 + \gamma \|r_k - \overline{r}\|^2$$

where  $\bar{r}$  is an initial guess for  $r_k$  and  $\gamma > 0$  is a regularization parameter

# Neural Networks for Constructing Cost-to-Go Approximations $\tilde{J}_k$

### Major fact about neural networks

They automatically construct features to be used in a linear architecture

Neural nets are approximation architectures of the form

$$\tilde{J}(x,v,r) = \sum_{i=1}^{m} r_i \phi_i(x,v) = r' \phi(x,v)$$

involving two parameter vectors r and v with different roles

- View  $\phi(x, v)$  as a feature vector
- View r as a vector of linear weights for  $\phi(x, v)$
- By training *v* jointly with *r*, we obtain automatically generated features!

### Neural nets can be used in the fitted value iteration scheme

Train the stage k neural net (i.e., compute  $\tilde{J}_k$ ) using a training set generated with the stage k+1 neural net (which defines  $\tilde{J}_{k+1}$ )

# Neural Network with a Single Nonlinear Layer



- State encoding (could be the identity, could include special features of the state)
- Linear layer Ay(x) + b [parameters to be determined: v = (A, b)]
- Nonlinear layer produces m outputs  $\phi_i(x, v) = \sigma((Ay(x) + b)_i)$ , i = 1, ..., m
- σ is a scalar nonlinear differentiable function; several types have been used (hyperbolic tangent, logistic, rectified linear unit)
- Training problem is to use the training set  $(x^s, \beta^s)$ ,  $s = 1, \dots, q$ , for

$$\min_{v,r} \sum_{s=1}^{q} \left( \sum_{i=1}^{m} r_i \phi_i(x^s, v) - \beta^s \right)^2 + (\text{Regularization Term})$$

- Solved often with incremental gradient methods (known as backpropagation)
- Universal approximation theorem: With sufficiently large number of parameters, "arbitrarily" complex functions can be closely approximated

# Deep Neural Networks



- More complex NNs are formed by concatenation of multiple layers
- The outputs of each nonlinear layer become the inputs of the next linear layer
- A hierarchy of features
- Considerable success has been achieved in major contexts

#### Possible reasons for the success

- With more complex features, the number of parameters in the linear layers may be drastically decreased
- We may use matrices A with a special structure that encodes special linear operations such as convolution

### Q-Factors - Model-Free RL

• The Q-factor of a state-control pair  $(x_k, u_k)$  at time k is defined by

$$Q_k(x_k, u_k) = E\{g_k(x_k, u_k, w_k) + J_{k+1}(x_{k+1})\}$$

where  $J_{k+1}$  is the optimal cost-to-go function for stage k+1

Note that

$$J_k(x_k) = \min_{u \in U_k(x_k)} Q_k(x_k, u_k)$$

so the DP algorithm is written in terms of  $Q_k$ 

$$Q_k(x_k, u_k) = E\left\{g_k(x_k, u_k, w_k) + \min_{u \in U_{k+1}(x_{k+1})} Q_{k+1}(x_{k+1}, u)\right\}$$

We can approximate Q-factors instead of costs

# Fitted Value Iteration for Q-Factors: Model-Free Approximate DP

Consider fitted value iteration of Q-factor parametric approximations

$$\tilde{Q}_k(x_k, u_k, r_k) \approx E\Big\{g_k(x_k, u_k, w_k) + \min_{u \in U_{k+1}(x_{k+1})} \tilde{Q}_{k+1}(x_{k+1}, u, r_{k+1})\Big\}$$

(Note a mathematical magic: The order of  $E\{\cdot\}$  and min have been reversed.)

- We obtain  $\tilde{Q}_k(x_k, u_k, r_k)$  by training with many pairs  $((x_k^s, u_k^s), \beta_k^s)$ , where  $\beta_k^s$  is a sample of the approximate Q-factor of  $(x_k^s, u_k^s)$ . No need to compute  $E\{\cdot\}$
- No need for a model to obtain  $\beta_k^s$ . Sufficient to have a simulator that generates random samples of state-control-cost-next state

$$((x_k, u_k), (g_k(x_k, u_k, w_k), x_{k+1}))$$

• Having computed  $r_k$ , the one-step lookahead control is obtained on-line as

$$\overline{\mu}_k(x_k) = \arg\min_{u \in U_k(x_k)} \tilde{Q}_k(x_k, u, r_k)$$

without the need of a model or expected value calculations

Also the on-line calculation of the control is simplified

### A Few Remarks on Infinite Horizon Problems



- Most popular setting: Stationary finite-state system, stationary policies, discounting or termination state
- Policy iteration (PI) method generates a sequence of policies
  - ▶ The current policy  $\mu$  is evaluated using a parametric architecture:  $\tilde{J}_{\mu}(x, \bar{r})$
  - An "improved" policy  $\overline{\mu}$  is obtained by one-step lookahead using  $\tilde{J}_{\mu}(x,\overline{r})$
- ullet The architecture is trained using simulation data with  $\mu$
- Thus the system "observes itself" under  $\mu$  and uses the data to "learn" the improved policy  $\overline{\mu}$  "self-learning"
- Exact PI converges to an optimal policy; approximate PI "converges" to within an "error zone" of the optimal, then oscillates
- TD-Gammon, AlphaGo, and AlphaZero, all use forms of approximate PI for training

# A Few Topics we did not Cover in this Talk

- Infinite horizon extensions: Approximate value and policy iteration methods, error bounds, model-based and model-free methods
- Temporal difference methods: A class of methods for policy evaluation in infinite horizon problems with a rich theory, issues of variance-bias tradeoff
- Sampling for exploration, in the context of policy iteration
- Monte Carlo tree search, and related methods
- Aggregation methods, synergism with other approximate DP methods
- Approximation in policy space, actor-critic methods, policy gradient and cross-entropy methods
- Special aspects of imperfect state information problems, connections with traditional control schemes
- Infinite spaces optimal control, connections with aggregation schemes
- Special aspects of deterministic problems: Shortest paths and their use in approximate DP
- A broad view of using simulation for large-scale computations: Methods for large systems of equations and linear programs, connection to proximal algorithms

# Concluding Remarks

#### Some words of caution

- There are challenging implementation issues in all approaches, and no fool-proof methods
- Problem approximation and feature selection require domain-specific knowledge
- Training algorithms are not as reliable as you might think by reading the literature
- Approximate PI involves oscillations
- Recognizing success or failure can be a challenge!
- The RL successes in game contexts are spectacular, but they have benefited from perfectly known and stable models and small number of controls (per state)
- Problems with partial state observation remain a big challenge

### On the positive side

- Massive computational power together with distributed computation are a source of hope
- Silver lining: We can begin to address practical problems of unimaginable difficulty!
- There is an exciting journey ahead!

# Thank you!