HW1

Jordan Hilton April 2, 2019

1 Bar Chart

Let's load the data:

```
d <- rd("Employee", format="lessR")</pre>
## >>> Suggestions
## Details about your data, Enter: details() for d, or details(name)
##
## Data Types
## -----
## character: Non-numeric data values
## integer: Numeric data values, integers only
  double: Numeric data values with decimal digits
##
##
##
      Variable
                               Missing Unique
          Name Type Values Values Values
##
                                                First and last values
##
                                                7 NA 15 ... 1 2 10
##
  1
        Years integer
                            36
                                  1 16
## 2
                           37
                                   0
                                          2 M M M ... F F M
        Gender character
## 3
         Dept character
                           36
                                   1
                                           5 ADMN SALE SALE ... MKTG SALE FINC
      Salary double 37 0 37 53788.26 94494.58 ... 56508.32 57562.36

JobSat character 35 2 3 med low low ... high low high

Plan integer 37 0 3 1 1 3 ... 2 2 1
## 4
## 5
          Pre integer 37
## 7
                                   0
                                          27
                                                82 62 96 ... 83 59 80
                               0
                         37
                                        22 92 74 97 ... 90 71 87
          Post integer
## 8
```

a.

Here's a barplot of the number of employees in each department using the base R plot:

barplot(table(d\$Dept))

b.

Here's the same data in table form:

```
table(d$Dept)
```

ACCT ADMN FINC MKTG SALE ## 5 6 4 6 15

 ${\bf c.}$ Here's the same chart in less R:

BarChart(Dept, quiet=TRUE)

ggplot(d, aes(Dept))+geom_bar()

$\mathbf{d}.$

Here's the less R 1d bubble plot:

Plot(Dept, quiet=TRUE)

e.

The bubble chart is more compact and there could be applications where showing relative size as an area as opposed to a length is useful. The bar chart is more readable and more common, so it will make more sense to most readers.

h. (no f/g?)

Here's the bar chart with proportions instead of counts:

BarChart(Dept, quiet=TRUE, stat.x="proportion")

i.With horizontal bars:

BarChart(Dept, quiet=TRUE, horiz=TRUE)

 ${f j}$. Now providing a title and custom axis lables:

BarChart(Dept, quiet=TRUE, xlab="Our Cool Departments", ylab="Awesome Employee Count", main="Employment

Employment at our Tubular Company

k.

A ring chart, using lessR:

PieChart(Dept, hole=.5, quiet=TRUE)

l.

A waffle chart, using the "waffle" package as from the code examples:

waffle(table(d\$Dept))

2. R Factors

Let's load the survey data:

surveydata<-rd("460S14.csv", quiet=TRUE)</pre>

head(surveydata)

##		Learn_1	Learn_2	l Learn	_3 Learı	n_4 Fee	el_1	Fee	1_2	Feel_3	Feel_4	Past_1
##	1	3	5	,	7	6	6		7	5	7	3
##	2	4	4		3	6	2		6	6	6	4
##	3	3	3	3	7	3	5		3	4	. 1	4
##	4	4	4		5	5	2		6	4	. 5	2
##	5	6	6	;	5	6	3		6	4	. 3	2
##	6	7	7	•	2	7	5		7	7	7	3
##		Past_2 H	Past_3 F	ast_4	Past2_1	Gender	r Cla	ass	Lear	n2_1 I	earn2_2	Learn2_3
##	1	4	3	4	6	2	2	2		59	78	95
##	2	4	4	4	6	:	1	2		30	50	60
##	3	2	3	2	7	2	2	2		NA	NA	100
##	4	2	1	2	6		1	2		50	39	70
##	5	3	4	3	13	2	2	2		60	100	50

```
2
                          2
                                  7
                                                2
## 6
          1
                                                        100
                                                                  100
                                                                             10
##
     Learn2 4
## 1
           53
## 2
           50
## 3
           NA
## 4
           60
## 5
           91
## 6
          100
length(surveydata$Learn_1)
```

[1] 31

a.

We can see from the length of the first column that there are 31 rows of data, so that's probably the number of student responses we got.

b.

The four variables we're discussing are Past_1, Past_2, Past_3, and Past_4

c.

```
sum(is.na(surveydata))

## [1] 7

sum(is.na(surveydata$Past_1))

## [1] 0

sum(is.na(surveydata$Past_2))

## [1] 0

sum(is.na(surveydata$Past_3))

## [1] 0

sum(is.na(surveydata$Past_4))
```

[1] 0

We can see that there are 7 total missing values in the dataset, but no missing values for any of these 4 questions. The missing values are in the columns "Past2_1" and "Learn2_1" so I"m guessing that those questions are either optional or only presented under some circumstances.

d.

Here are the first 3 rows of data for our four variables:

```
head(cbind(surveydata$Past_1, surveydata$Past_2, surveydata$Past_3,surveydata$Past_4),3)
```

```
## [,1] [,2] [,3] [,4]
## [1,] 3 4 3 4
## [2,] 4 4 4 4
## [3,] 4 2 3 2
```

e.

It looks like the responses are recorded as integers 1-4, presumably with 1 corresponding to "not at all" and 4 corresponding to "cannot remember"

f.

Let's convert these four variables to factors, and I'll use head to show the results for one variable:

```
surveydata$Past_1 = factor(surveydata$Past_1, levels=1:4, labels=c("Not at all", "Some", "A fair amount surveydata$Past_2 = factor(surveydata$Past_2, levels=1:4, labels=c("Not at all", "Some", "A fair amount surveydata$Past_3 = factor(surveydata$Past_3, levels=1:4, labels=c("Not at all", "Some", "A fair amount surveydata$Past_4 = factor(surveydata$Past_4, levels=1:4, labels=c("Not at all", "Some", "A fair amount head(surveydata$Past_1, 3)
```

```
## [1] A fair amount Can't remember Can't remember
## Levels: Not at all Some A fair amount Can't remember
```

 ${f g}$. A bar chart for the t-test survey question:

BarChart(Past_1, quiet=TRUE, data=surveydata, xlab="Responses to t-test question", ylab="Count of responses"

h.

Create a new, reordered factor variable, just for the t-test question: (I had to reload the data first in order to recreate the factor)

```
surveydata<-rd("460S14.csv", quiet=TRUE)
```

reordered = factor(surveydata\$Past_1, levels=c(4,1,2,3), labels=c("Can't remember","Not at all", "Some"

i.

Chart the reordered factor variable: it's interesting how the default coloring changes for ordered factors in lessR

BarChart(reordered, quiet=TRUE, data=reordered, xlab="Responses to t-test question", ylab="Count of res

>>> Note: reordered is from the workspace, not in a data frame (table)

Responses to t-test question

j.

Let's see if there are any cases where nobody picked one of the options for one of these 4 questions:

```
table(surveydata$Past_1)

##
## 1 2 3 4
## 2 10 14 5

table(surveydata$Past_2)

##
## 1 2 3 4
## 6 10 11 4

table(surveydata$Past_3)
##
```

1 2 3 4 ## 3 13 6 9

table(surveydata\$Past_4)

It looks like at least 2 people picked each option for all of these 4 questions. If we had missing cases, what we could do is create a factor with a level for the missing response, which would then show up as having 0 instances. For example if there was a 5th option that nobody had picked, we might run this pseudocode which I'll commment out so it doesn't break my RMD:

missingvalues = factor(surveyresponse, levels=1:5, labels=c("Can't remember","Not at all", "Some", ".