Краткий курс геометрии если все совсем плохо

Иван Попов

11 апреля 2022 г.

Содержание

1	Вев	горная алгебра	2
	1.1	Действия над векторами и их свойства(Аксиомпатика Вейля)	2
		1.1.1 Сложение векторов	2
		1.1.2 Свойства сложения векторов	3
		1.1.3 Умножение вектора на число	3
		1.1.4 Свойства умножения вектора на число	3
		1.1.5 Скалярное произведение двух векторов	4
		1.1.6 Свойства скалярного произведения двух векторов	4
		1.1.7 Векторое произведение двух векторов для пространства размерности 3	4
		1.1.8 Свойства векторного произведения двух векторов	4
		1.1.9 Псевдоскалярное произведение двух векторов	4
		1.1.10 Свойства псевдоскалярного произведение двух векторов	5
		1.1.11 Смешаное произведение трех векторов	5
		1.1.12 Свойства смешаного произведения трех векторов	5
	1.2	Взаимное расположение векторов, линейная зависимость и базис	5
		1.2.1 Взаимное расположение векторов	5
		1.2.2 Линейная зависимость	5
		1.2.3 Базис	6
		1.2.4 Взаимосвязь между базисами	6
2	Деі	ствия над векторами в координатной форме	7
		2.0.1 Сложение векторов в координатной форме	7
		2.0.2 Умножение вектора на число	7
		2.0.3 Скалярное произведение векторов	7
	2.1	Псевдоскалярное произведение векторов в координатной форме в двухмерном	
		пространстве	7
	2.2	Векторное произведение двух векторов в координатной форме в трехмерном	
		векторном простанстве	7
	2.3	Смешаное произведение трех векторов в координатной форме в трехмерном	
		векторном простанстве	7
	2.4	Векторное произведение n-1 векторов в координатной форме в n-мерном век-	
		торном простанстве	8
	2.5	Псевдоскалярное произведение п векторов в координатной форме в п-мерном	
		векторном простанстве	8
3	Opt	огонализация и нормизация системы векторов	9
	$3.\overline{1}$	Для двух двухмерных векторов	9
	3.2	Для двух трехмерных векторов	9
	3.3	Для трех трехмерных векторов	10

1 Векторная алгебра

Направленный отрезок - отрезок с указаным направлением. Направление задается при помощи точки начала и точки конца.

 $\overline{AB} \in \overrightarrow{d}$ - направленный отрезок является представителем вектора \overrightarrow{d}

Рис. 1: Направленный отрезок \overline{AB}

Внимание Направленный отрезок равен только себе

Совокупность напраленых отрезков является вектором.

1.1 Действия над векторами и их свойства (Аксиомпатика Вейля)

1.1.1 Сложение векторов

Правило треугольника

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

Правило параллелограма

$$\overrightarrow{AX} = \overrightarrow{AB} + \overrightarrow{AC}$$

Правило замкнутой ломаной многоугольника

$$\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EF}$$

1.1.2 Свойства сложения векторов

$$\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$$

$$\overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c}) = (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c}$$

$$\overrightarrow{a} + \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{a}$$

$$\overrightarrow{\alpha} (\overrightarrow{a} + \overrightarrow{b}) = \alpha * \overrightarrow{a} + \alpha * \overrightarrow{b}$$

1.1.3 Умножение вектора на число

$$k*\overrightarrow{a}=\overrightarrow{b}$$
 $k>0=>\overrightarrow{a}\uparrow\uparrow\overrightarrow{b}$
 $k<0>>\overrightarrow{a}\uparrow\downarrow\overrightarrow{b}$
 $|k|>1=>|\overrightarrow{a}|<|\overrightarrow{b}|$
 $0<|k|<1=>|\overrightarrow{a}|>|\overrightarrow{b}|$
 $k=0=>|k\overrightarrow{a}|=\overrightarrow{0}$ - нуль вектор
 $k=1=>|\overrightarrow{a}|=|\overrightarrow{b}|$

1.1.4 Свойства умножения вектора на число

$$\begin{array}{l} \mathbf{k}(\mathbf{m}^*\overrightarrow{a}) \!=\! \overrightarrow{a}^*(\mathbf{k}^*\mathbf{m}) \!=\! \mathbf{m}(\mathbf{k}^*\overrightarrow{a}) \\ (\mathbf{k} \!+\! \mathbf{m})^*\overrightarrow{a} \!=\! \mathbf{k} \, \overrightarrow{a} \!+\! \mathbf{m} \, \overrightarrow{a} \end{array}$$

1.1.5 Скалярное произведение двух векторов

Результат: скаляр

угол между двумя векторами

$$\overrightarrow{a} * \overrightarrow{b} = (\overrightarrow{a}, \overrightarrow{b})$$

$$\overrightarrow{a} * \overrightarrow{b} = k$$

$$k > 0 => \overrightarrow{a} \uparrow \uparrow \overrightarrow{b} \angle \overrightarrow{a} \overrightarrow{b} \in [0^{\circ}..90^{\circ})$$

$$k < 0 => \overrightarrow{a} \uparrow \downarrow \overrightarrow{b} \angle \overrightarrow{a} \overrightarrow{b} \in (90^{\circ}..180^{\circ}]$$

$$k > 0 => \overrightarrow{a} \uparrow \uparrow \overrightarrow{b}$$

$$k = 0 => \overrightarrow{a} || \overrightarrow{b} \in \overrightarrow{a}$$

$$\overrightarrow{a} * \overrightarrow{b} = |\overrightarrow{a}| * |\overrightarrow{b}| * \cos \angle (\overrightarrow{a} \overrightarrow{b})$$

$$\cos \angle (\overrightarrow{a} \overrightarrow{b}) = \frac{\overrightarrow{a}}{|a|} * \frac{\overrightarrow{b}}{|b|}$$

$$k > 0 \Longrightarrow \overrightarrow{a} \uparrow \uparrow \overrightarrow{b}$$

$$k=0 \Longrightarrow \overrightarrow{a} || \overrightarrow{b} \in \overline{a}$$

$$\overrightarrow{a} * \overrightarrow{b} = |\overrightarrow{a}| * |\overrightarrow{b}| * \cos \angle (\overrightarrow{a} \overrightarrow{b})$$

$$\cos \angle (\overrightarrow{a} \overrightarrow{b}) = \frac{\overrightarrow{a}}{|a|} * \frac{\overrightarrow{b}}{|b|}$$

1.1.6 Свойства скалярного произведения двух векторов

1.1.7 Векторое произведение двух векторов для пространства размерности 3

модуль результата (\overrightarrow{c}) равен площади параллелограма натянутого на векторы \overrightarrow{a} и \overrightarrow{b}

$$\overrightarrow{a} \times \overrightarrow{b} = [\overrightarrow{a} * \overrightarrow{b}]$$

$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \overrightarrow{c} \perp \overrightarrow{a}, \overrightarrow{b}$$

1.1.8 Свойства векторного произведения двух векторов

1.1.9 Псевдоскалярное произведение двух векторов

Результат: скаляр

характеризует ориентацию угла между векторами при помощи знака

характеризует ориентацию угла между ве
$$\overrightarrow{a} \lor \overrightarrow{b} = m$$
 $\overrightarrow{a} \lor \overrightarrow{b} = |\overrightarrow{a}| * |\overrightarrow{b}| * \sin \angle (\overrightarrow{a} \overrightarrow{b})$
 $\sin \angle (\overrightarrow{a} \overrightarrow{b}) = \frac{\overrightarrow{a} \lor \overrightarrow{b}}{|\overrightarrow{a}| * |\overrightarrow{b}|}$
 $m = 0 => \angle (\overrightarrow{a}, \overrightarrow{b}) = (0^{\circ}||180^{\circ}) => \overrightarrow{a}||\overrightarrow{b}|$

1.1.10 Свойства псевдоскалярного произведение двух векторов

$$\overrightarrow{a} \vee \overrightarrow{b} = -\overrightarrow{b} \vee \overrightarrow{a} (\overrightarrow{a} + \overrightarrow{b}) \vee \overrightarrow{c} = \overrightarrow{a} \vee \overrightarrow{c} + \overrightarrow{a} \vee \overrightarrow{b} \\ (k * \overrightarrow{a}) \vee \overrightarrow{b} = k * (\overrightarrow{a} \vee \overrightarrow{b})$$

1.1.11 Смешаное произведение трех векторов

Результат: скаляр

результат смешаного произведения представляет собой объем паралелепипеда натянутого на данные векторы

$$(\overrightarrow{a} * \overrightarrow{b} * \overrightarrow{c}) = \overrightarrow{a} * (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \times \overrightarrow{b}) * \overrightarrow{c}$$

Порядок операций: Сначала выполняется векторное умножение (×), а только затем скалярное (*)

$$n = 0 \Rightarrow \overrightarrow{a} = \overrightarrow{0} || \overrightarrow{b} = \overrightarrow{0} || \overrightarrow{c} = \overrightarrow{0}$$

n>0=>Ориентация векторов такая же как в базисе $\overrightarrow{i}\overrightarrow{j}\overrightarrow{k}$ n<0=>Ориентация векторов не такая как в базисе $\overrightarrow{i}\overrightarrow{j}\overrightarrow{k}$

1.1.12 Свойства смешаного произведения трех векторов

Взаимное расположение векторов, линейная зависимость и ба-

1.2.1 Взаимное расположение векторов

Коллениарность - расположение двух векторов когда они параллельны: $\overrightarrow{a}||\overrightarrow{b}|$ а также $\overrightarrow{a} = k * \overrightarrow{b}$

Ортогональность - расположение двух векторов когда они перпендикулярны: $\overrightarrow{a} \perp \overrightarrow{b}$ Компланарность - расположение двух и более векторов когда они коллениарны (паралельны) одной плоскости или лежат в ней: $\overrightarrow{c} = k * \overrightarrow{a} + m * \overrightarrow{b}$

1.2.2Линейная зависимость

Линейная комбинация — выражение, построенное на множестве элементов путём умножения каждого элемента на коэффициенты с последующим сложением результатов $\lambda_1 \overrightarrow{a_1} + \lambda \overrightarrow{a_2} + \lambda \overrightarrow{a_3} + \dots + \lambda \overrightarrow{a_n} = \overrightarrow{0}$

Линейная комбинация(Система) является линейно зависимой если хотябы $1 \ \lambda \neq 0 \ и/или$ если имеется хотябы один $\overrightarrow{0}$.

Если система имеет линейно зависимую подсистему, то она линейно зависима.

Если мы не имеется ни одного 0, то система линейно не зависима и мы имеем размер векторного пространства n = div(M)

5

1.2.3 Базис

Базис - это упорядоченная СЛНВ (система линейно независимых векторов) в векторном пространстве.

Виды базисов:

- Ортогональный
- Ортонормированый например $(\overrightarrow{i} \overrightarrow{j} \overrightarrow{k})$
- Произвольный (Афинный)

Базис позволяет определить координаты вектора

1.2.4 Взаимосвязь между базисами

Пусть дан базис $\beta = \overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}'$ и базис $\beta' = \{\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}\}$, где $n = \dim(V)$ Тогда координаты векторов базиса β в базисе β' будут представлять собой линейную ком-

 $\overrightarrow{e_1} = a_1^1 * \overrightarrow{e_1} + a_1^2 * \overrightarrow{e_2} + ... a_1^n * \overrightarrow{e_n}$ из чего мы получим: $\overrightarrow{e_1} \{a_1^1, a_1^2, ..., a_1^n\}_{\beta}$ где a_i^j - координаты

Формула перехода: $\overrightarrow{e_j'} = a_j^i * \overrightarrow{e_i} = \sum_{j=1}^n a_1^j * \overrightarrow{e'} \ j = \overline{1,n}$

Пример: $\overrightarrow{x} \in V^n$

Пример: $x \in V$ $\overrightarrow{x}\{x_1, x_2, ..., x_n\}_{\beta} \text{ и } \{y_1, y_2, ..., y_n\}_{\beta'}$ $\overrightarrow{x} = y^1 \overrightarrow{e_1'} + y^2 \overrightarrow{e_2'} + ... + y^n \overrightarrow{e_n'} = y^j \overrightarrow{e_i'} = y^1 (a_1^i \overrightarrow{e_j}) + y^2 (a_2^i \overrightarrow{e_j}) + ... + y^n (a_n^i \overrightarrow{e_j} = (y^1 a_1^1 + y^2 a_2^1 + ... + y^n a_n^1) \overrightarrow{e_1} + (y^1 a_1^2 + y^2 a_2^2 + ... + y^n a_n^2) \overrightarrow{e_2} + ... + (y^1 a_1^n + y^2 a_2^n + ... + y^n a_n^n) \overrightarrow{e_n}$ Из этого можно сделать вывод: $\overrightarrow{x} = x^1 \overrightarrow{e_1} + x^2 \overrightarrow{e_2} + ... + x^n \overrightarrow{e_n}$, где $x^n = y^1 a_1^n + y^2 a_2^n + ... + y^n a_n^n$

 $x^i = y^j a^i_j$ - формула перехода

2 Действия над векторами в координатной форме

Пусть даны векторы $\overrightarrow{x}\{x^1,x^2,...,x^n\}$ и $\overrightarrow{y}\{y^1,y^2,...,y^n\}$

2.0.1 Сложение векторов в координатной форме

$$\overrightarrow{x} + \overrightarrow{y} = x^{1}\overrightarrow{x_{1}} + x^{2}\overrightarrow{x_{2}} + \dots + x^{n}\overrightarrow{x_{n}} + y^{1}\overrightarrow{y_{1}} + y^{2}\overrightarrow{y_{2}} + \dots + y^{n}\overrightarrow{y_{n}} = (x^{1} + y^{1})\overrightarrow{e_{1}} + (x^{2} + y^{2})\overrightarrow{e_{2}} + \dots + (x^{n} + y^{n})\overrightarrow{e_{n}} = z^{1}\overrightarrow{e_{1}} + z^{2}\overrightarrow{e_{2}} + \dots + z^{n}\overrightarrow{e_{n}}$$

$$\boxed{x^{n} + y^{n} = z^{n}}$$

2.0.2 Умножение вектора на число

$$\overrightarrow{p} = k\overrightarrow{x} = k(x^1\overrightarrow{e_1} + x^2\overrightarrow{e_2} + \dots + x^n\overrightarrow{e_n}) = kx^1\overrightarrow{e_1} + kx^2\overrightarrow{e_2} + \dots + kx^n\overrightarrow{e_n}$$

2.0.3 Скалярное произведение векторов

$$\overrightarrow{x}*\overrightarrow{y}=(x^1\overrightarrow{e_1}+x^2\overrightarrow{e_2}+...+x^n\overrightarrow{e_n})*(y^1\overrightarrow{e_1}+y^2\overrightarrow{e_2}+...+y^n\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+...+x^ny^n\overrightarrow{e_n}\overrightarrow{e_n})<=$$
 простое раскрытие произведения скобок В частности для $V^3\beta\{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\}$ - ортогонального и ортонормированного базиса:

В частности для
$$V^3\beta\{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\}$$
 - ортогонального и ортонормированного базиса: $\overrightarrow{x}*\overrightarrow{y}=(x^1\overrightarrow{i}+x^2\overrightarrow{j}+x^3\overrightarrow{k})*(y^1\overrightarrow{i}+y^2\overrightarrow{j}+y^3\overrightarrow{k})=x_1y_1\overrightarrow{i'}^2+x_1y_2\overrightarrow{i'}\overrightarrow{j}+x_1y_3\overrightarrow{i'}\overrightarrow{k}+x_2y_1\overrightarrow{i'}\overrightarrow{j}+x_2y_2\overrightarrow{j'}^2+x_2y_3\overrightarrow{j}\overrightarrow{k}+x_3y_1\overrightarrow{i'}\overrightarrow{k}+x_3y_2\overrightarrow{j}\overrightarrow{k}+x_3y_3\overrightarrow{k}^2=>x_1y_1+x_2y_2+x_3y_3$ Итого: В ортонормированом и ортогональном базисе $\overrightarrow{x}*\overrightarrow{y}=x_1y_1+x_2y_2+\dots+x_ny_n$

2.1 Псевдоскалярное произведение векторов в координатной форме в двухмерном пространстве

$$\overrightarrow{x} \{x^1, x^2\} \overrightarrow{y} \{y^1, y^2\}$$

$$\overrightarrow{x}, \overrightarrow{y} \in \beta \{\overrightarrow{i}, \overrightarrow{j}\}$$

$$\overrightarrow{x} \lor \overrightarrow{y} = x^1 y^2 - x^2 y^1$$

$$\overrightarrow{x}^2 = \overrightarrow{x} * \overrightarrow{x} = (x^1)^2 + (x^2)^2$$

Данный вариант подходит только для пространтства размерности 2!

2.2 Векторное произведение двух векторов в координатной форме в трехмерном векторном простанстве

$$\beta\{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\}$$

$$\overrightarrow{x}\times\overrightarrow{y}=\begin{vmatrix}x^1 & x^2 & x^3\\y^1 & y^2 & y^3\\\overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k}\end{vmatrix}=(x^2y^3-x^3y^2)*\overrightarrow{i}+(x^3y^1-x^1y^3)*\overrightarrow{j}+(x^1y^2-x^2y^1)*\overrightarrow{k}=\{x^2y^3-x^3y^2,x^3y^1-x^1y^3,x^1y^2-x^2y^1\}$$

2.3 Смешаное произведение трех векторов в координатной форме в трехмерном векторном простанстве

$$\overrightarrow{x}\{x^{1}, x^{2}, x^{3}\}\overrightarrow{y}\{y^{1}, y^{2}, y^{3}\}\overrightarrow{z}\{z^{1}, z^{2}, z^{3}\}$$

$$(\overrightarrow{x}\overrightarrow{y}\overrightarrow{z}) = (\overrightarrow{x}\times\overrightarrow{y})*\overrightarrow{z} = \begin{vmatrix} x^{1} & x^{2} & x^{3} \\ y^{1} & y^{2} & y^{3} \\ z^{1} & z^{2} & z^{3} \end{vmatrix} = (x^{2}y^{3} - x^{3}y^{2})*z^{1} + (x^{3}y^{1} - x^{1}y^{3})*z^{2} + (x^{1}y^{2} - x^{2}y^{2})*z^{2}$$

$$x^2y^1) * z^3 = \dots$$

2.4 Векторное произведение n-1 векторов в координатной форме в n-мерном векторном простанстве

$$\begin{split} \beta &= \{i^1, i^2, ..., i^n\}, dim(V) = n \\ |i^k| &= 1, i^k \perp i^e (e \neq k) \\ \overrightarrow{y} &= \overrightarrow{x_1} \times \overrightarrow{x_2} \times ... \times \overrightarrow{x_{n-1}} = \begin{vmatrix} x_1^1 & x_1^2 & ... & x_1^n \\ x_2^1 & x_2^2 & ... & x_2^n \\ ... & ... & ... & ... \\ x_{n-1}^1 & x_{n-1}^2 & ... & x_{n-1}^n \\ i^1 & i^2 & ... & i^n \end{vmatrix} \text{ где } \overrightarrow{x_1} \{x_1^j\}, \overrightarrow{x_2} \{x_2^j\}, ..., \overrightarrow{x_{n-1}} \{x_{n-1}^j\}; j = \overline{1,n} \end{split}$$

2.5 Псевдоскалярное произведение n векторов в координатной форме в n-мерном векторном простанстве

$$\begin{split} \beta &= \{i^1, i^2, ..., i^n\}, \dim(V) = n \\ |i^k| &= 1, i^k \perp i^e (e \neq k) \\ \overrightarrow{y} &= \overrightarrow{x_1} \vee \overrightarrow{x_2} \vee ... \vee \overrightarrow{x_{n-1}} = \begin{vmatrix} x_1^1 & x_1^2 & ... & x_1^n \\ x_2^1 & x_2^2 & ... & x_2^n \\ ... & ... & ... & ... \\ x_n^1 & x_n^2 & ... & x_n^n \end{vmatrix} \text{ где } \overrightarrow{x_1} \{x_1^j\}, \overrightarrow{x_2} \{x_2^j\}, ..., \overrightarrow{x_{n-1}} \{x_{n-1}^j\}; j = \overline{1, n} \end{split}$$

3 Ортогонализация и нормизация системы векторов

Дано: $\overrightarrow{a}, \overrightarrow{b}$

Цель: найти векторы $\overrightarrow{a'}$ и $\overrightarrow{b'}$, такие что их модули равны и векторы перпендикулярны. $\overrightarrow{a'}$, $\overrightarrow{b'}$: $|\overrightarrow{a'}| = |\overrightarrow{b'}| = 1$; $\overrightarrow{a'} \perp \overrightarrow{b'} \leftrightarrow \overrightarrow{a'} * \overrightarrow{b'} = 0$

3.1 Для двух двухмерных векторов

$$\overrightarrow{a}\{a^1,a^2\}, \overrightarrow{b}\{b^1,b^2\}$$

Шаг первый Определим вектор \overrightarrow{a}' : $\overrightarrow{a'} = \overrightarrow{a} = a^1, a^2$

Шаг второй Определим вектор $\overrightarrow{b'}$:

Мы знаем что $\overrightarrow{a'} \perp \overrightarrow{b'}$, а значит мы можем воспользоваться формулой:

$$a'^1b'^1 + a'^2b'^2 = 0$$

$$a'^{1}b'^{1} + a'^{2}b'^{2} = 0$$

$$a'^{1} \neq 0 \Rightarrow b'^{1} = -\frac{a'^{2}}{a'^{1}}b'^{2}$$

В итоге: $\overrightarrow{b'} = \{-\frac{a^2}{a^1}b', b'\}$

Как частный случай можно использовать формулу: $\overrightarrow{b'} = \{-a'^2, a'^1\}$ или $\{a'^2, -a'^1\}$

Шаг третий Проверка ориентации:

Если $\det\begin{pmatrix} a^1 & a^2 \\ b^1 & b^2 \end{pmatrix}$ и $\det\begin{pmatrix} a'^1 & a'^2 \\ b'^1 & b'^2 \end{pmatrix}$ имеют одинаковый знак, то ориентация совпала и можно переходить к нормированию. Иначе требуется вернуться на шаг $\,2\,$ и выбрать другой вариант из частного случая.

Нормирование Вектор считается нормированным, если его модуль равен 1. Формула нормирования на примере вектора $\overrightarrow{a}\{a^1,a^2\}$: $\overrightarrow{d}=\{\frac{a^1}{\sqrt{(a^1)^2+(a^2)^2}},\frac{a^2}{\sqrt{(a^1)^2+(a^2)^2}}\}$

9

3.2 Для двух трехмерных векторов

$$\overrightarrow{a} \{a^1, a^2, a^3\}$$

$$\overrightarrow{b} \{b^1, b^2, b^3\}$$

$$\overrightarrow{a}, \overrightarrow{b} \in V^3$$

 $egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & a' \end{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & a' \end{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & a' \end{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & a' \end{aligned} & egin{aligned} & egin{ali$

Шаг 2 Получим вектор $\overrightarrow{b'}$

Вектор $\overrightarrow{b'}$ является линейно зависимым для векторов \overrightarrow{a} и \overrightarrow{b} , а значит его можно получить следующим способом:

$$\overrightarrow{b'} = m\overrightarrow{a} + k\overrightarrow{b'} = ka^1, ka^2, ka^3 + mb^1, mb^2, mb^3 = ka^1 + mb^1, ka^2 + mb^2, ka^3 + mb^3$$

Так как
$$\overrightarrow{a} \perp \overrightarrow{b'}$$
, то косинус угла между ними равен нулю, а значит $\overrightarrow{a} * \overrightarrow{b'} = 0$ Следовательно: $a^1(ka^1+mb^1)+a^2(ka^2+mb^2)+a^3(ka^3+mb^3)=0$

Следовательно:
$$a^{1}(ka^{1}+mb^{1})+a^{2}(ka^{2}+mb^{2})+a^{3}(ka^{3}+mb^{3})=0$$

Спустя несколько преобразований мы получим
$$k((a^1)^2+(a^2)^2+(a^3)^2)+m(a^1b^1+a^2b^2+a^3b^3)=0$$

РЕШИМ УРАВНЕНИЕ

Вариант 1

$$m = (a^{1})^{2} + (a^{2})^{2} + (a^{3})^{2}$$

$$k = -(a^{1}b^{1} + a^{2}b^{2} + a^{3}b^{3})$$

Вариант 2

$$m = -((a^1)^2 + (a^2)^2 + (a^3)^2)$$

$$k = (a^1b^1 + a^2b^2 + a^3b^3)$$

Заменим m и n в формуле вектора $\overrightarrow{b'}$ на полученые значения.

 $oxdot{\mathbf{\Pi}}$ аг $oldsymbol{3}$ Проверим ориентацию: Получим векторы $\overrightarrow{c} = \overrightarrow{d} imes \overrightarrow{b}$

Проверим их коллениарность при помощи векторного произведения:

Если
$$\overrightarrow{c} \times \overrightarrow{c'} = 0$$

, то переходим далее, иначе ищем ошибку в вычислениях. Проверим соонаправленность векторов: $\lambda = \frac{\overrightarrow{c}}{\overrightarrow{c'}} = \frac{c^1}{c'^1} = \frac{c^2}{c'^2} = \frac{c^3}{c'^3}$ Если $\lambda > 0$, тогда переходим к нормированию, иначе повторим попытку используя другой вариант из шага 2.

Нормирование Формула нормирования на примере вектора $\overrightarrow{a}\{a^1,a^2,a^3\}$:

$$\overrightarrow{a} = \left\{ \frac{a^1}{\sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}}, \frac{a^2}{\sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}}, \frac{a^3}{\sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}} \right\}$$

3.3 Для трех трехмерных векторов

$$\overrightarrow{a} \{a^1, a^2, a^3\}$$

$$\overrightarrow{b} \{b^1, b^2, b^3\}$$

$$\overrightarrow{c} \{c^1, c^2, c^3\}$$

$$\overrightarrow{a} \perp \overrightarrow{b} \perp \overrightarrow{c}$$

$$\overrightarrow{b'} \perp \overrightarrow{c'}$$

Получим векторы $\overrightarrow{a'}$ и $\overrightarrow{b'}$

$$\overrightarrow{a'} - \overrightarrow{a}$$

 $\overrightarrow{a'} = \overrightarrow{a}$ $\overrightarrow{b'}$ получаем из варианта для двух трехмерных векторов. $\overrightarrow{c'} = \overrightarrow{a'} \times \overrightarrow{b'}$

$$\overrightarrow{c'} = \overrightarrow{a'} \times \overrightarrow{b'}$$

Проверим ориентацию:
$$\Delta 1 = \begin{vmatrix} a^1 & a^2 & a^3 \\ b^1 & b^2 & b^3 \\ c^1 & c^2 & c^3 \end{vmatrix} \Delta 2 = \begin{vmatrix} a'^1 & a'^2 & a'^3 \\ b'^1 & b'^2 & b'^3 \\ c'^1 & c'^2 & c'^3 \end{vmatrix}$$

Если $\Delta 1$ и $\Delta 2$ имеют одинаковый знак, то с ориентацией все хорошо и стоит переходить к нормированию.