

Strongly Connected Components

Notes: Strongly Connected Components & Kosaraju's Algorithm

DFS Discovery & Finishing Times

- **Discovery time d(v)**: when a vertex is first visited.
- **Finishing time f(v)**: when all its descendants are fully explored and we backtrack.
- Parentheses analogy:
 - Each discovery is an "open parenthesis (".
 - Each finish is a "close parenthesis)".
 - DFS on a tree produces properly nested parentheses (e.g., (()()
)).lecture07_sccs
- These times help order nodes for Kosaraju's algorithm.

Reachability

- Vertex v is reachable from u if there exists a directed path $u \rightarrow ... \rightarrow v$.
- Not symmetric: If u can reach v, it doesn't mean v can reach u (e.g., one-way street).lecture07_sccs
- BFS or DFS finds all vertices reachable from a start node.
- BFS/DFS on the **transpose graph** GT = (V, ET) finds all vertices that can **reach** the starting point in the original graph.lecture07_sccs

Strongly Connected Graphs

- Strongly connected graph: every vertex can reach every other vertex.
- SCC (Strongly Connected Component): a maximal subgraph that is strongly connected.
 - Maximal = you can't add any other vertex without breaking the property.
 - SCCs partition the graph.
- Between SCCs, edges form a DAG (no cycles between SCCs).lecture07_sccs

Naïve Solutions

1. Naïve algorithm:

- For each vertex u: DFS to find all reachable nodes, then for each v, check
 if v can reach u.
- Worst case: O(V2(V+E)). Too slow.lecture07_sccs

2. Less naïve (reachability matrix):

- Run DFS from every vertex → build vxv matrix of reachability.
- SCCs found by checking mutual reachability.
- Complexity: O(V(V+E)). Still expensive for large graphs.lecture07_sccs

Kosaraju's Algorithm

Process:

- 1. Run DFS on and record finishing times (postorder).
- 2. Compute transpose GT.
- 3. Process vertices in **decreasing finishing time** order:
 - For each unvisited vertex, run DFS on GT.
 - Each DFS tree = one SCC.

Why it works (proof idea):

lecture07_sccs

- If SCC c' has an edge to SCC c, then f(c') > f(c) (C finishes before C').
- In the transpose, no edge goes from later-finished to earlier-finished SCCs.
- So, when we process nodes in decreasing f(v), DFS stays inside one SCC.
- If DFS could spill into another, those SCCs were actually the same.

Complexity & Correctness

- Time complexity:
 - First DFS = O(V+E)
 - Transpose graph = O(V+E)
 - Second DFS = O(V+E)
 - ▼ Total = O(V+E)
- Memory complexity:
 - Adjacency list storage = O(V+E)
 - Stack/visited arrays = O(V)
 - ▼ Total = O(V+E)

Big Picture

- **DFS/BFS** = tools to test reachability.
- Reachability isn't symmetric in directed graphs.
- SCCs = subsets where reachability is symmetric (mutual).
- Kosaraju's algorithm:
 - First DFS (forward) orders SCCs.
 - Transpose makes SCCs self-contained.
 - Second DFS (backward, in order) isolates each SCC.

• Conceptual proof: postorder finishing times ≈ reverse topological order of SCC DAG, ensuring SCCs are peeled off one by one.

These notes cover: discovery/finishing times, parentheses analogy, reachability, definition of SCCs, naïve/less naïve methods, Kosaraju's algorithm process, its proof, and complexity.