Diagnóstico de diabetes con Feed Foward Neural Network

Juan Carlos Castillo López - 22008463

Abstract

Diabetes mellitus es un grupo de enfermedades metabólicas en las cuales se presenta un elevado nivel de azúcar en sangre durante periodos largos de tiempo. De acuerdo a la Organización Panamericana de Salud aproximadamente 62 millones de personas en las Américas (422 millones de personas en todo el mundo) tienen diabetes, y 244,084 muertes (1.5 millones en todo el mundo) se atribuyen a la enfermedad cada año. Para su tratamiento es importante una detección en sus primeras etapas, el presente paper presenta un modelo de red neuronal capaz de predecir la enfermedad de acuerdo a factores de riesgo, la red fue construida haciendo uso del dataset PIMA Indian Diabetes.

o 1 Introducción

- La diabetes es una enfermedad prolongada (crónica) en la cual el cuerpo no puede regular la cantidad de azúcar en sangre.
- La insulina es una hormona producida por el páncreas para controlar el azúcar en la sangre. La diabetes puede ser causada por muy poca producción de insulina, resistencia a la insulina o ambas.

15 2 Redes neuronales artificiales

Una red neuronal artificial (ANN) por sus siglas en ingles, es un modelo de aprendizaje de machine learning basado en la estructura y funcionamiento de una red neural biológica. Una red ANN es considerada una herramienta de modelado de datos estadísticos no lineal en la cual las relaciones complejas entre entradas y salidas son modelas por medio de patrones.

Figure 1: Ejemplo de red neuronal artificial

- Las redes neuronales artificiales brindan numerosas ventajas, una de ellas es la habilidad para aprender
- 21 a partir de un conjunto de datos.

- Las ANN utilizan muestras del conjunto de datos en la fase de entrenamiento para reducir el tiempo y
- el costo del proceso.

2.1 Entrenamiento de una red neronal

- 25 El entrenamiento de una red neuronal es un proceso iterativo que inicia con la recolección de los
- datos, los datos son pre-procesados para eficientar el proceso. Durante el pre procesamiento los datos
- son divididos en 3 subconjuntos, conjunto de entrenamiento, conjunto de validación y conjunto de
- 28 pruebas.

Figure 2: Proceso de división de los datos

29 3 Análisis de datos

30 El dataset utilizado cuenta con la siguiente información:

No.	Factores de riegos		
	Atributo	Descripción	Rango
1	Pregnancies	Número de embarazos	0-17
2	Glucose	Concentración de glucosa	0-199
3	BloodPressure	Presión sanguinea distolica	0-122
4	SkinThickness	Grosor de pien en triceps	0-99
5	Insulin	Insulina serum 2-horas	0-846
6	BMI	Indicador de indice de masa corporal	0-67.1
		Función de probabilidad de diabetes basado	
7	DiabetesPedigree	en historia familiar	0.078-2.42
8	Age	Edad	21-81
		Variable que indica si el paciente tiene	
9	Outcome	di ^l abetes o no	0-1

Figure 3: Tabla con descripción de atributos

4 Modelo

- Para la definición del modelo se realizo previamente un análisis de la importancia de cada una de las variables presentes en el conjunto de datos.
- En base a la importancia se utilizaron las siguientes variables dependientes:
- Glucose
- BMI
- DiabetesPedigreeFunction
- Pregnancies

Figure 4: Importancia de variables

Figure 5: Modelo utilizado para el entrenamiento

5 Conclusiones

- 40 Utilizando el modelo de red neuronal artificial se obtuvo un precisión del 81 por ciento en los datos
- 41 de prueba.