Exploring Semantic Hierarchies to Improve Resolution Theorem Proving on Ontologies Stanley C. Small

May 2, 2019

Agenda

Defense (2.5 Hours)

- ► Honors Thesis (1 Hour)
 - Presentation (20 min)
 - Questions (40 min)
- ► Honors Reading List (1 Hour)
 - ► Reading List Description (5 min)
 - Reading List Discussion (55 min)
- Committee Deliberation (30 min)
 - Level of honors discussion
 - Suggestions for Revision

Ontologies

First Order Logic

$$SubaruLegacy(myCar)$$

 $\forall x \ SubaruLegacy(x) \rightarrow Sedan(x)$
 $\forall x \ Sedan(x) \rightarrow Automobile(x)$

Theorem Proving

Semantic Hierarchies

Approach

Function 1 Weights

- weight(SubaruLegacy(x)) = 1.
- weight(Sedan(x)) = 1.
- weight(Automobile(x)) = 1.
- weight(Minivan(x)) = 2.
- weight(ToyotaSienna(x)) = 3.
- weight(FordWindstar(x)) = 3.
- weight(CarManufactuer(x)) = 10.
- weight(Produces(x,y)) This is not defined as the conjecture contains no relationships.

Function 2 Weights

- weight(SubaruLegacy(x)) = 1.
- weight(FordWindstar(x)) = 1.
- weight(Automobile(x)) = 1. (LCA)
- ightharpoonup weight(Sedan(x)) = 2.
- weight(Minivan(x)) = 2.
- weight(ToyotaSienna(x)) = 3.
- weight(CarManufactuer(x)) = 3.

Conjecture	Default	Function 1	Percent Change 1	Function 2	Percent Cha
1	85691	9165	-89	9231	-89
2	1803	1803	_	1803	_
3	1803	1803	_	1803	_
4	175	175	_	175	_
5	175	175	_	175	_
6	172	172	-	172	_
7	6357	6337	0	6225	-2
8	6015	5855	-3	2352	-61
9	1802	1802	-	1802	_
Average	11555	3032	-73	2638	-77
Median	1803	1803	0	1803	0
Sum	103993	27287	-74	23738	-77

Table: Results for the multidim_space_voids Ontology

Conjecture	Default	Function 1	Percent Change 1	Function 2	Percent Ch
1	140734	50476	-64	50476	-64
2	480	754	57	742	55
3	295	295	-	234	-21
4	308	308	-	332	8
5	28188	28188	-	28188	-
6	11793	7830	-34	7830	-34
			1		
Average	30300	14642	-52	14634	-52
Median	6137	4292	-30	4286	-30
Sum	181798	87851	-52	87802	-52

Table: Results for the inch Ontology

Conjecture	Default	Function 1	Percent Change 1	Function 2	Percent Cha
1	426	426	-	410	-4
2	285	285	_	285	_
3	426	426	_	430	-1
4	289	266	-8	324	-12
5	438	438	-	323	-26
6	283	240	-15	283	_
7	495	425	-14	255	-48
Average	377	358	-5	330	-12
Median	426	425	0	323	-24
Sum	2642	2506	-5	2310	-13

Table: Results for the multidim_space_physcont Ontology

Metric	Default	Function 1	Percent Change 1	Function 2	Percent Chang
Average	13111	5347	-59	5175	-61
Median	459	432	-6	420	-8
Sum	288433	117644	-59	113850	-61

Table: Overall Results

Limitations

- Increase in clauses for inch ontology
- ► (all x all y (GED(x,y) & GED(y,x) & (all z (CH(z,x) \rightarrow CH(z,y))) \rightarrow CS(x,y))).
- Semantic hierarchy has a depth of 2

Prover9 Output

Summary

- When proving specific conjectures with few predicates on large ontologies, semantic hierarchies can focus the search of a resolution theorem prover.
- Results of the experiments conducted indicate further work might yield lucrative results, especially for exceptionally large ontologies.
- Tests demonstrated success in a relatively unexplored domain of research.

Thank You

Questions

My Thoughts

- A Mind for Numbers
- ► The Inner Game of Tennis
- Trying Not to Try
- ► I Ching

My Career

- ► Algorithms to Live By
- Black Mirror
- ► The Signal and the Noise
- Disrupted

My Worldview

- What Every BODY is Saying
- Mr. Nobody
- ► The Lobster
- BoJack Horseman