Cryptography Basics

Dr. E. Suresh Babu

Assistant Professor

Department of CSE

National Institute of Technology, Warangal

Outline

- Cryptography in Daily Life
- Introduction to Cryptography
 - **✓** Basic Terminology

Cryptography

- Did you use any cryptography?
 - ✓ Today?
 - ✓ Last week?

Cryptography

SSL uses Cryptography

Everyday Cryptography

- * ATM's
- On-Line Banking
- * SSH
- Kerberos

What is Cryptography

What is Cryptography

- ❖ The Art and Science of keeping messages secure is **Cryptography**
- ❖ The word "Cryptography" is derived from Greek and when literally translated, means "Secret Writing."
- ❖ The whole point of cryptography is to keep the plaintext (or the key, or both) secret from **Eavesdroppers**

Eavesdroppers

- **Eavesdroppers** also called
 - **✓ Adversaries**
 - **✓ Attackers**
 - **✓** Interceptors
 - **✓** Interlopers

- **✓ Intruders**
- ✓ Opponents Or
- ✓ Simply The Enemy).

Basic Terminology

Basic Terminology

Plaintext

• An original message

Ciphertext

• The coded message

Enciphering/Encryption

• The process of converting from plaintext to ciphertext

Deciphering/Decryption

• Restoring the plaintext from the ciphertext

Cryptography

• The area of study of the many schemes used for encryption

Cryptographic System/Cipher

• A scheme

Cryptanalysis

 Techniques used for deciphering a message without any knowledge of the enciphering details

Cryptology

 The areas of cryptography and cryptanalysis

Definition of Cryptosystem

 \Leftrightarrow A General Cryptosystem consists of a 5- tuple (P, C, K, E, D)

where P, C, K are sets:

- $\checkmark P \rightarrow$ Plaintext space
- \checkmark C \rightarrow Cipher text space
- $\checkmark K \rightarrow \text{key space}$
- $\checkmark \mathbf{E} = \{\mathbf{E}_{\mathbf{k}}\}_{\mathbf{k} \in \mathbf{K}},$
- \checkmark **D** = $\{D_k\}_{k \in K}$ are sets of functions

Functions of Cryptosystem

ightharpoonup Enciphering $\mathbf{E_k}: \mathbf{P} \rightarrow \mathbf{C}$ and deciphering functions $\mathbf{D_k}: \mathbf{C} \rightarrow \mathbf{P}$

respectively which satisfy:

$$\forall k \in K$$
 $D_k(E_k)(p) = p, \forall p \in P.$

Kerckhoffs' Principle

- The Basic Assumption is
 - ✓ A cryptosystem should be secure even the system is completely KNOWN to the attacker
 - ✓ Only the key should be secure
- * The Kerckhoffs' Principle states that the security of a cryptosystem should depend solely on the secrecy of the key.
 - ✓ Crypto Algorithm are not Secret

Kerckhoffs' Principle Assumption are useful

- ❖ Experience has shown that secret algorithm are weak when exposed to the Public
- ❖ Secret Algorithm never remain secret
- ❖ Better to Find Weaknesses for the Algorithm

Restricted Algorithm

- ❖ If the Secure Algorithm keeps the algorithm works in a secure manner, it is a **Restricted Algorithm**.
- Restricted Algorithms are woefully inadequate by today's standards

Restricted Algorithm

Advantages of Restricted Algorithm

Restricted Algorithms are enormously popular for Low-Security Applications.

Limitations of Restricted Algorithm

- ❖ A Large Group Of Users cannot use them
 - ✓ Every time a user leaves the group everyone else must switch to a different algorithm.
 - ✓ If someone accidentally reveals the secret, everyone must change their algorithm.

Outline

- Cryptography in Daily Life
- Introduction to Cryptography
 - **✓** Basic Terminology

Thank U