Particle spectrograph

Wave operator and propagator

Source constraints		1+:0:1c:+1:0A
SO(5) Irreps	rundamental neids	Multiplicities
$\tau_0^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$\sigma_{0}^{\#1} = 0$	$\partial_{\beta}\sigma^{\alpha\beta}{}_{\alpha}==0$	1
$t_1^{\#2\alpha} + 2ik \ \sigma_1^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi}+$	С
	$2 (\partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi}_{\beta} - \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \sigma^{\alpha \beta \chi} +$	
	$\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}$) == $\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\sigma_{1}^{\#1}{}^{\alpha} := \sigma_{1}^{\#2}{}^{\alpha}$	$\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi}_{\beta} + \partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\beta} = 0$	8
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha} \tau^{\beta\chi} + \partial_{\chi}\partial^{\beta} \tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi} \tau^{\alpha\beta} +$	3
1		
	$\partial_{\chi}\partial^{\alpha}\iota^{\chi\beta} + \partial_{\chi}\partial^{\beta}\iota^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}t^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1}\alpha\beta - 2ik\sigma_{2+}^{\#1}\alpha\beta == 0$	$-i (4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} -$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi}$ - $3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta}$ -	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi}$ - $3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\chi\alpha}$ +	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$4\ ^{i}\ k^{\chi}\ \partial_{\epsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\delta\epsilon}_{\ \delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau_{\chi}^{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^X \partial_\phi \partial^\phi \partial_\epsilon \partial_\chi \sigma^{\delta\epsilon}{}_\delta) == 0$	
Total constraints/gauge generators:	uge generators:	20

α				$\frac{ik}{2}$	$\frac{\sqrt{2}k}{^2)^2t_1}$		$\frac{2}{(2)^2 t_1}$	
$ au_1^{\#2}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$	
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0	$f_{1^-}^{\#2}$
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	$f_{1^-}^{\#1}{}_{lpha}$ f
$\sigma_{1^{\text{-}}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+4k^2)^2 t_1}$ $\frac{6\sqrt{2}}{(3+4k^2)^2 t_1}$		0	$-\frac{12ik}{(3+4k^2)^2t_1}$	$\omega_{1^-}^{\#2}_{\alpha}$
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$ $\frac{k^2}{(1+k^2)^2 t_2}$		0	0	0	0	$\omega_{1^-}^{\#1}$
$\sigma_{1}^{\#2}{}_{lphaeta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0	$\omega_{1}^{#1} \;\; \omega_{1}^{#2} \;\; \omega_{1}^{#1} \;\; \omega_{1}^{#1} \;\;$
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0	$\omega_{1}^{\#1}{}_{lphaeta}\; \omega_{}$
	$\sigma_{1}^{\#1} + \alpha \beta$ $\sigma_{1}^{\#2} + \alpha \beta$		$\tau_{1+}^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$	•

				×		_1	01.1									1 ~	
0	0	0	<i>ikt</i> 1 3	$\sqrt{2} k$	0	$\frac{2k^2t_1}{3}$	$f_{0}^{#2}$	0	0	0	0	$\tau_{0}^{\#2}$	0	0	0	0	
				$\frac{1}{3}$ \vec{I}			$f_{0}^{\#1}$	0	0	0	0	$\tau_0^{\#1}$	0	0	0	0	
0	0	0	0	0	0	0	$\omega_{0}^{\#1}$	0	0	0	0	$\sigma_{0}^{\#1}$	0	0	0	0	
0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>†1</u> 3	0	$-\frac{1}{3}i\sqrt{2}kt_1$		$\omega_{0}^{\#1}$ \dagger				$\alpha\beta$ ω			$\tau_{0}^{#2} +$	$\sigma_{0}^{\#1} +$	
0	0	0	9 T 7	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} k t_1	_	$^{\frac{1}{+}}$ $^{+}$ $^{\alpha_{i}}$		$\frac{t_1}{2}$ $\frac{kt_1}{\sqrt{2}}$	$-\frac{ikt}{\sqrt{2}}$ $k^2 t$		0				
$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0		† ^{αβ}		0	0		<u>t</u> 1 2				
$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0			($\sigma_{2^{+}\alpha\beta}^{\sharp 1}$ $\tau_{2^{+}\alpha\beta}^{\sharp 1}$			$\sigma_2^{\#}$	÷1 - αβχ			
$-\frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0		¹ † ^α /	_	` ' -				-	0		
αβ	αβ	αβ	$+^{\alpha}$	$+^{\alpha}$	$+^{\alpha}$	$+^{\alpha}$	$ au_2^{\#}$	$^{1}_{+}$ \dagger^{α}_{-}	$\frac{3}{(1+$	$\frac{2i\sqrt{2}}{(2k^2)^2}$	$\frac{k}{2} t_1$	$\frac{4k}{(1+2k)}$	$\frac{k^2}{(2)^2 t_1}$		0		
$\omega_1^{\#1} +^{lphaeta}$	$\omega_1^{\#2} + ^{lphaeta}$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^\alpha$	$f_1^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} +^{\alpha}$	$\sigma_2^{\#1}$	† ^{αβ}	X	0		()		$\frac{2}{t_1}$		

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $\frac{t_1}{r_2} > 0$
Spin: 0
Parity: Odd

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$