

Geração de Malhas por Refinamento de Delaunay

Marcelo Siqueira

DMAT-UFRN

mfsiqueira@mat.ufrn.br

Afonso Paiva
ICMC-USP
apneto@icmc.usp.br

Paulo Pagliosa
FACOM-UFMS
pagliosa@facom.ufms.br

Conteúdo

27/7	Aula 1	Introdução	12h30min às 13h	Paulo Pagliosa
27/7	Aula 2	Fundamentos	13h às 14h	Marcelo Siqueira
28/7	Aula 3	Triangulações	12h30min às 14h	Marcelo Siqueira
29/7	Aula 4	Geração de malhas	12h30min às 14h	Afonso Paiva
30/7	Aula 5	Geração de malhas	12h30min às 13h30min	Afonso Paiva
30/7	Aula 6	Aplicação	13h30min às 14h	Paulo Pagliosa
31/7	Aula 7	Aplicação	12h30min às 14h	Paulo Pagliosa

Aula 1

Introdução

Aula 1 - 27 de julho de 2015 - 12h30min às 13h

- O que é uma malha
- ► Subdivisão de um domínio geométrico em formas geométricas menores e mais simples, chamadas células ou elementos

O que é uma malha

► Subdivisão de um domínio geométrico em formas geométricas menores e mais simples, chamadas células ou elementos

O que é uma malha

 Subdivisão de um domínio geométrico em formas geométricas menores e mais simples, chamadas células ou elementos

Malhas são usadas em diversas áreas do conhecimento

- Geografia e cartografia
- Processamento gráfico
- Aplicações em ciências e engenharia

- Método numérico de solução de equações diferenciais parciais
- Pré-requisito: subdivisão de um domínio Ω em elementos

- Método numérico de solução de equações diferenciais parciais
- Pré-requisito: subdivisão de um domínio Ω em elementos

- Método numérico de solução de equações diferenciais parciais
- Pré-requisito: subdivisão de um domínio Ω em elementos
- Processo de geração de malhas deve ser automático

- Método numérico de solução de equações diferenciais parciais
- Pré-requisito: subdivisão de um domínio Ω em elementos
- Processo de geração de malhas deve ser automático
- Requisitos da malha
 - A malha deve estar "em conformidade" com a forma do domínio
 - A malha não deve ser desnecessariamente "grande"
 - Tamanho dos elementos pode variar ao longo do domínio
 - Elementos devem ter forma e tamanhos "corretos"
 - Elementos podem ser anisótropos

- Método numérico de solução de equações diferenciais parciais
- Pré-requisito: subdivisão de um domínio Ω em elementos
- Processo de geração de malhas deve ser automático
- Requisitos da malha
 - A malha deve estar "em conformidade" com a forma do domínio
 - A malha não deve ser desnecessariamente "grande"
 - Tamanho dos elementos pode variar ao longo do domínio
 - ► Elementos devem ter forma e tamanhos "corretos"
 - ► Elementos podem ser anisótropos
- Aplicações
 - Exploração de petróleo
 - Modelagem de transistores e circuitos integrados
 - Aerodinâmica de aeronaves e automóveis
 - Mecânica quântica, terremotos, buracos negros

- Anos 1980: pesquisas pioneiros em engenharia
 - Métodos: Delaunay, octree, avanço de fronte

- ► Anos 1980: pesquisas pioneiros em engenharia
 - ► Métodos: Delaunay, octree, avanço de fronte

- ▶ Anos 1980: pesquisas pioneiros em engenharia
 - Métodos: Delaunay, octree, avanço de fronte
 - ► Técnicas de "melhoria" da malha

- Anos 1980: pesquisas pioneiros em engenharia
 - Métodos: Delaunay, octree, avanço de fronte
 - ► Técnicas de "melhoria" da malha
 - Deficiências: algoritmos não-robustos, malhas "insatisfatórias"

- Anos 1980: pesquisas pioneiros em engenharia
 - Métodos: Delaunay, octree, avanço de fronte
 - ► Técnicas de "melhoria" da malha
 - Deficiências: algoritmos não-robustos, malhas "insatisfatórias"
- Anos 1990: geração de malhas comprovadamente "boas"
- Anos 2000: geração de malhas torna-se maior que o MEF
 - Animação por computador
 - Processamento de imagens
 - Sistemas de informação geográfica
 - **.** . . .

Tipos de malhas

- ► Elementos 2D: domínios 2D e malhas de superfície em 3D
 - Triângulo linear

Tipos de malhas

- ► Elementos 2D: domínios 2D e malhas de superfície em 3D
 - Triângulo linear

► Triângulo quadrático

Tipos de malhas

- ► Elementos 2D: domínios 2D e malhas de superfície em 3D
 - Quadrilátero linear

Tipos de malhas

- ► Elementos 2D: domínios 2D e malhas de superfície em 3D
 - Quadrilátero linear

Quadrilátero quadrático

Tipos de malhas

- ► Elementos 3D
 - ► Tetraedro linear

Tipos de malhas

- ► Elementos 3D
 - ► Tetraedro linear

► Tetraedro quadrático

Tipos de malhas

- ► Elementos 3D
 - Hexaedro linear

Tipos de malhas

- ► Elementos 3D
 - Hexaedro linear

Hexaedro quadrático

Tipos de malhas

► Malhas simpliciais: triângulos e tetraedros

Tipos de malhas

- Malhas simpliciais: triângulos e tetraedros
- Malhas estruturadas/não-estruturadas

Neste curso

Malhas 2D, simpliciais, não-estruturadas

Neste curso

Malhas 2D, simpliciais, não-estruturadas

Objetivo da geração de malhas: triangulação de um dominio planar

- ► Entrada: complexo linear por partes
- ► Saída: complexo simplicial

Neste curso

Malhas 2D, simpliciais, não-estruturadas

Objetivo da geração de malhas: triangulação de um dominio planar

- ► Entrada: complexo linear por partes
- Saída: complexo simplicial
 - Malhas de elementos conformes

Neste curso

▶ Malhas 2D, simpliciais, não-estruturadas

Objetivo da geração de malhas: triangulação de um dominio planar

- Entrada: complexo linear por partes
- Saída: complexo simplicial
 - Malhas de elementos conformes

► Elementos com restrições de tamanho e forma

Geração de malhas por refinamento de Delaunay

- Baseada na triangulação de Delaunay
 - ► Todo triângulo tem circuncírculo vazio
 - Maximiza o ângulo mínimo

Geração de malhas por refinamento de Delaunay

- Baseada na triangulação de Delaunay
- Malha conforme ao domínio, sem elementos "magros"
 - ► Triangulação de Delaunay restrita
 - ► Triangulação de Delaunay conforme: pontos de Steiner

