1	ofo 62-135	召住里			
[- T	we have a add another c	derangement	with len the derang	N-1" ement. This	We want element
[S]	only be in the	on, for the el	ement originally	in the c	th position
inere	are two situations. the original eleme	nt at ith pos	itim SWAP	places at	nth
	then we have to	handle the	N-2 elements	left.	
	The permutation	TS Dn-1x			
2	the ith element	is not at	the new posi	tion. It is	just like
	n-1 objects permi		Vn-1		
9	Dn = (h-1) (Dn-1	+ ()n-2)			
Clo	$D_N = (N-1) (D_n-1)$	(+ Dn-2)			
	= n Dn-1 + n D				
	Dn - nDn - 1 = - (Dn)		
	Denote $P_n = D_n - n$				
	Pn-1 = Dn-1 -	(N-1) 1/n-2			
	Pn = - Pn-1	Dn-nDn-	= (-1) n		
	Pn-1 = - Pn-2				
	1	$D_n = \gamma$	Dn-1 + L-1) ~		
	$\times P_3 = -P_2$	_			
	$P_n = (-1)^n$				

2. (a)
$$a_1 - 6a_1 - 1 + 8a_1 - 3 = 2^n$$
 $x^2 - 6x + 8 = 0$. $(x - 4)(x - 2) = 0$
 $a_1 = A + 4^n + B + B^n$

Honogeneous solution: $a_1 = A + 4^n + B + B^n$

Particular solution: Guess $a_1 = C \cdot N \cdot 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6a_1 + 1 + 8a_1 - 2^n$
 $a_1 - 6$

3.
$$b_r = a^2r$$
 $b_r - 2b_{r-1} = 1$
 $b_0 = 4$
 $5uppose$
 $b_r = 2^rA - 1$
 $b_0 = A - 1$
 $b_0 = A - 1$
 $a_r = \sqrt{5 \cdot 2^r - 1}$

(b)
 $b_r = b_1 a_r$
 $a_r^2 - 2a_r = 0$
 $a_r^2 - 2a_r = 0$

4.
$$\sum_{r=1}^{\infty} (a_r - 5 a_{r-1} + 6 a_{r-1}) \pi^r = 0$$

A(x) = 6.

1-5x + 6x³ a

(h) $\sum_{r=1}^{\infty} (a_r - 2 a_{r-1} - 3 a_{r-1}) \pi^r$
 $\Rightarrow \sum_{r=1}^{\infty} (a^r + 6x^3 - 2 a_{r-1} - 3 a_{r-1}) \pi^r$

A(x) = -2x (A(x) - a_0) - 3x^3 A(x)

= $\frac{(a_r - 2 a_{r-1} - 3 a_{r-1})}{(a_r - 2 a_r - 2 a$

Let
$$bn:= \#$$
 of b image strings with 0.000 (

 $ccusing$ at position $n \Rightarrow 2^{n-5} - bn = 2^{$

$$xb_{1} = x b_{1}c_{0} + x b_{0}c_{1}$$

$$x^{2}b_{2} = x^{2}b_{2}c_{0} + x^{2}b_{1}c_{1} + x^{2}b_{0}c_{2}$$

$$\vdots$$

$$+)$$

$$B(x) - b_{0} = B(x) C(x)$$

$$B(x) C(x) = (b_{1}c_{0} + b_{0}c_{1})x + (b_{2}c_{0} + b_{1}c_{1} + b_{0}c_{2})x^{2} + (1-2x)(1+x^{3})$$

$$C(x) = \frac{3(x) - b_{0}}{3(x)} = (-\frac{(1-2x)(1+x^{3})}{x^{5} + (1-2x)(1+x^{3})}$$