

咨询热线:400-678-3456

微信扫码刷题

免费约直播领资料

2020年成人高考高起点数学(理)考试真题及答案解析

绝密★启用前

2020年成人高等学校招生全国统一考试高起点

数学

本试卷分第 [卷(选择题)和第 [卷(非选择题)两部分,满分150分,考试时间120分钟,

题	号	_	=	Ξ	总 分	统分人签字
分	数					

第 [卷(选择题,共85分)

1. 不等式 $x-2$ $<$ 1 的解集是		7 小题,每小题 5 分,共 85 分. 在每小题 5是符合题目要求的)	1给出的	四
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1. 不等式 x-2 < 1 的解集是		ľ	1
2. 下列函数中,在 $\left(0,\frac{\pi}{2}\right)$ 为滅函数的是 A. $y = \ln(3x+1)$	A. $\langle x -1 < x < 3 \rangle$	B. $\langle x -2 < x < 1 \rangle$		
$A. \ y = \ln(3x+1)$ $C. \ y = 5 \sin x$ $D. \ y = 4-2x$ $3. \ \text{M数} \ y = \log_{\mathbb{Z}}(x+1) \ \text{的定义域是}$ $A. \ (2, +\infty)$ $C. \ (-\infty, -1)$ $4. \ \underline{1} \ \exists \ x - y - 3 = 0 \ \exists \ x - y + 3 = 0 \ \angle 1 \ \text{odd} \ \underline{n} \ \exists \ B. \ (-2, +\infty)$ $A. \ 2\sqrt{2}$ $B. \ (-2, +\infty)$ $A. \ 2\sqrt{2}$ $B. \ (-2, +\infty)$ $B. \ (-1, +\infty)$ $A. \ 2\sqrt{2}$ $B. \ 6\sqrt{2}$ $C. \ 3\sqrt{2}$ $D. \ 6$ $C. \ 3\sqrt{2}$ $D. \ 6$ $C. \ 3\sqrt{2}$ $D. \ 6$ $C. \ (x \mid 0 < x \le 2)$ $D. \ (x \mid -1, 0, 1, 2)$ $C. \ (x \mid 0 < x \le 2)$ $D. \ (x \mid -1 < x < 2)$ $C. \ (x \mid 0 < x \le 2)$ $D. \ (x \mid -1 < x < 2)$ $E. \ (1)$ $A. \ -\frac{1}{2}$ $C. \ -1$ $A. \ -\frac{1}{2}$ $C. \ -1$ $C. \ -1$ $D. \ 1$ $C. \ -1$ $D. \ 1$ $C. \ -1$ $D. \ 1$	C. $\{x \mid -3 < x < 1\}$	D. $\{x \mid 1 < x < 3\}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2. 下列函数中,在 $\left(0,\frac{\pi}{2}\right)$ 为减函数的是		ľ	1
3. 函数 $y = \log_2(x+1)$ 的定义域是	$A. y = \ln(3x + 1)$	B. $y = x + 1$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C, y = 5\sin x$	D. $y = 4 - 2x$		
$\begin{array}{c} \text{C.} (-\infty,-1) & \text{D.} (-1,+\infty) \\ \text{4. 直线 } x-y-3=0 \text{ 5} \ x-y+3=0 \text{ 之间的距离为} & \text{I} \\ \text{A. } 2\sqrt{2} & \text{B. } 6\sqrt{2} \\ \text{C. } 3\sqrt{2} & \text{D. } 6 \\ \text{5. 设集合 } M= \langle -2,-1,0,1,2 \rangle, N= \langle x\mid x\leqslant 2 \rangle, \text{ M} \ M\cap N= \\ \text{A. } \langle -1,0,1 \rangle & \text{B. } \langle -2,-1,0,1,2 \rangle \\ \text{C. } \langle x\mid 0< x\leqslant 2 \rangle & \text{D. } \langle x\mid -1< x<2 \rangle \\ \text{6. 已知点 } A(1,0), B(-1,1), \text{若直线 } kx-y-1=0 \text{ 与直线 } AB \text{ \mathbb{P}}7, \text{ M} \ k= \\ \text{A. } -\frac{1}{2} & \text{B. } \frac{1}{2} \\ \text{C. } -1 & \text{D. } 1 \\ \text{7. 已知向量} \overrightarrow{AB}=(1,t), \overrightarrow{BC}=(-1,1), \overrightarrow{AC}=(0,2), \text{ M} \ t= \\ \text{A. } -1 & \text{B. } 2 \\ \text{C. } -2 & \text{D. } 1 \\ \end{array}$	3. 函数 $y = \log_2(x+1)$ 的定义域是		ľ	1
4. 直线 $x-y-3=0$ 与 $x-y+3=0$ 之间的距离为	A. $(2, +\infty)$	B. $(-2, +\infty)$		
$A. 2\sqrt{2}$ $B. 6\sqrt{2}$ $C. 3\sqrt{2}$ $D. 6$ $S. 设集合 M = \langle -2, -1, 0, 1, 2 \rangle, N = \langle x \mid x \leqslant 2 \rangle, M \cap N = 【 】 A. \langle -1, 0, 1 \rangle B. \langle -2, -1, 0, 1, 2 \rangle C. \langle x \mid 0 < x \leqslant 2 \rangle D. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 \rangle S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < 2 > x S. \langle x \mid -1 < x < x < 2 > x S. \langle x \mid -1 < x < x < x S. \langle x \mid -1 < x < x < x S. \langle x \mid -1 < x < x < x S. \langle x \mid -1 < x < x < x S. \langle x \mid -1 < x < x < x S. \langle x \mid -1 < x < x < x S. \langle x \mid -1 < x < x < x S. \langle x \mid -1 < x < x < x S. \langle x \mid -1 < x < x < x S. \langle x \mid -1 < x < x < x S. \langle x \mid -1 < x < x < x S. \langle x \mid -1 < x < x < x S. \langle x \mid -1 < x < x < x S. \langle x \mid -1 < x < x < x S. \langle x \mid -1 < x < x < x S. \langle x \mid -1 < x < x < x S. \langle x \mid -1 < x < x < x > x S. \langle x \mid -1 < x < x < x < x S. \langle x \mid -1 < x < x < x < x S. \langle x \mid -1 < x < x < x < x < x S. \langle x \mid -1 < x < x < x < x < x S. \langle x \mid -1 < x < x < x < x < x < x < x S. \langle x \mid -1 < x < x < x < x < x < x < x < x < x < $	$C, (-\infty, -1)$	D. $(-1, +\infty)$		
$C. 3\sqrt{2}$ D. 6 5. 设集合 $M = \{-21.0.1.2\}, N = \{x \mid x \leqslant 2\}, \text{则} M \cap N =$	4. 直线 $x - y - 3 = 0$ 与 $x - y + 3 = 0$ 之间的	距离为	ľ	1
5. 设集合 $M = \langle -2, -1, 0, 1, 2 \rangle$, $N = \langle x \mid x \leqslant 2 \rangle$, 则 $M \cap N =$	A. $2\sqrt{2}$	B, $6\sqrt{2}$		
A. $\langle -1.0.1 \rangle$ B. $\langle -2, -1.0.1.2 \rangle$ C. $\langle x \mid 0 < x \leqslant 2 \rangle$ D. $\langle x \mid -1 < x < 2 \rangle$ 6. 已知点 $A(1.0)$ $B(-1.1)$,若直线 $kx - y - 1 = 0$ 与直线 AB 平行,则 $k = 1$ A. $-\frac{1}{2}$ B. $\frac{1}{2}$ C. -1 D. 1 7. 已知向量 $\overrightarrow{AB} = (1,t)$, $\overrightarrow{BC} = (-1,1)$, $\overrightarrow{AC} = (0,2)$,则 $t = 1$ B. 2 C. -2 D. 1	C. $3\sqrt{2}$	D. 6		
$C. \langle x \mid 0 < x \leq 2 \rangle$	5. 设集合 $M = \{-2, -1, 0, 1, 2\}, N = \{x \mid x\}$	≤ 2 , \emptyset $M \cap N =$	ľ	1
6. 已知点 $A(1,0)$, $B(-1,1)$,若直线 $kx-y-1=0$ 与直线 AB 平行,则 $k=1$	A, (-1,0,1)	B. $\{-2, -1, 0, 1, 2\}$		
A. $-\frac{1}{2}$ B. $\frac{1}{2}$ C. -1 D. 1 7. 已知向量 $\overrightarrow{AB} = (1,t)$, $\overrightarrow{BC} = (-1,1)$, $\overrightarrow{AC} = (0,2)$,则 $t = A$. -1 B. 2 C. -2 D. 1	C. $(x \mid 0 < x \le 2)$	D. $\{x \mid -1 < x < 2\}$		
C. -1 D. 1 7. 已知向量 $\overrightarrow{AB} = (1,t)$, $\overrightarrow{BC} = (-1,1)$, $\overrightarrow{AC} = (0,2)$, 则 $t = $ A. -1 B. 2 C. -2 D. 1	6. 已知点 $A(1,0)$, $B(-1,1)$, 若直线 $kx-y-$	1 = 0 与直线 AB 平行,则 $k =$	ľ	1
7. 已知向量 $\overrightarrow{AB} = (1,t), \overrightarrow{BC} = (-1,1), \overrightarrow{AC} = (0,2), 则 t =$ A. -1 B. 2 C. -2 D. 1	A. $-\frac{1}{2}$	B. $\frac{1}{2}$		
A. -1 B. 2 C. -2 D. 1	C1	D. 1		
C2 D. 1	7. 已知向量 $\overrightarrow{AB} = (1,t), \overrightarrow{BC} = (-1,1), \overrightarrow{AC} =$	(0,2), $ 0 t = $	ľ	1
	A 1	B. 2		
2020年成人高等学校招生全国統一考试高起点数学试题和参考答案及解析(共8页) 第1页	$C_{*} = 2$	D. 1		
	2020年成人高等学校招生全国统一考试高起,	点数学试题和参考答案及解析(共8页) 第1	1 页	

移动学习 职达未来 hqwx.com

免费约直播领资料

8 戸知初曲銀 ***	$y^{2} = 1$	的离心率为 $3,则$ $m=$
0. □ 和从曲线——	1 - 1	的商心华为3,则加一

1

1

1

Α.

B. 1

C. $\frac{1}{2}$

D. 2

9. 函数 $y = \sin(x+3) + \sin(x-3)$ 的最大值为

r

A. $-2\sin 3$ C. $-2\cos 3$ B. 2sin3 D. 2cos3

10. 已知 a > b > 1,则

ľ

A. $\log_2 a > \log_2 b$

B. $\log_2 \frac{1}{a} > \log_2 \frac{1}{b}$

 $C. \frac{1}{\log_2 a} > \frac{1}{\log_2 b}$

 $D. \log_{\frac{1}{2}} a > \log_{\frac{1}{2}} b$

11. 已知 $\cos x = \frac{3}{5}$,且 x 为第一象限角,则 $\sin 2x =$

[]

A. $\frac{4}{5}$

B. $\frac{24}{25}$

C. $\frac{18}{25}$

D. $\frac{12}{25}$

12. 曲线 $y = \sin(x+2)$ 的一条对称轴的方程是

[]

A. $x = \frac{\pi}{2}$

B. $x = \pi$

C. $x = \frac{\pi}{2} + 2$

D. $x = \frac{\pi}{2} - 2$

13. 若 $p:x=1;q:x^2-1=0$,则

A.p 既不是q 的充分条件也不是q 的必要条件

B. p 是 q 的充要条件

C. p是q的必要条件但不是充分条件

D. p是q的充分条件但不是必要条件

14. 已知点 A(1,-3) , B(0,-3) , C(2,2) , 则 $\triangle ABC$ 的面积为

B. 3

A. 2 C. $\frac{3}{2}$

D. $\frac{5}{2}$

15. 从红、黄、蓝、黑 4 个球中任取 3 个,则这 3 个球中有黑球的不同取法共有

r

1

1

1

1

A. 3 种

B. 4 种

C. 2 种

D.6种

16. 下列函数中,最小正周期为π的函数是

 $B. y = \sin 2x$

 $C. y = \cos x$

D. $y = \sin \frac{x}{2} + 1$

17. 下列函数中,为偶函数的是

 $A. y = \sin x + \sin x^2$

ľ

A. $y = e^{x} + x$

B. $y = x^{2}$

C. $y = x^3 + 1$

D. $y = \ln(2x + 1)$

2020年成人高等学校招生全国统一考试高起点数学试题和参考答案及解析(共8页) 第2页

咨询热线:400-678-3456

微信扫码刷题

免费约直播领资料

第 Ⅱ 卷 (非选择题,共65分)

得 分 评卷人	二、填空题(本大题共4小题,每小题4分,共16分)
	-bx + c 的图像经过点 $(-1,0)$, $(3,0)$,则 $f(x)$ 的最小值为 b中的概率都是 0.6 ,各次是否投中相互独立,则该同学投篮 3 次恰有 2 次投中
20. 已知数列(a _n) 的自	f_{n} 项和为 $\frac{3}{2}$,则 $f_{a_{3}}$ = f_{a} + f_{a} 在点 $(1,a)$ 处的切线过点 $(2,-1)$,则 f_{a} =
得 分 评卷人	三、解答题(本大题共 4 小题,共 49 分.解答应写出推理、演算步骤)
22. (本小题满分 12 分 在 △ABC 中 · A = (I) 求 C; () 求 △ABC 的	$=30^{\circ}, AB=\sqrt{3}, BC=1.$

23. (本小题满分 12 分)

设函数 $f(x) = x^3 + x - 1$.

- (1)求 f(x) 的单调区间;
- (॥) 求出一个区间(a,b),使得 f(x) 在区间(a,b) 存在零点,且 b-a<0.5.

2020年成人高等学校招生全国统一考试高起点数学试题和参考答案及解析(共8页) 第3页

咨询热线:400-678-3456

微信扫码刷题

免费约直播领资料

24.(本小题满分12分)

已知 $\{a_n\}$ 是等差数列,且 $a_2 = -2, a_4 = -1$.

- (I) 求 $\{a_n\}$ 的通项公式;
- ($\|$) 求 $\{a_n\}$ 的前 n 项和 S_n .

25.(本小题满分13分)

已知椭圆 E 的中心在坐标原点 O,焦点在 x 轴上,长轴长为 8,焦距为 $2\sqrt{7}$.

- (I) 求 E 的标准方程;
- ($\|$) 若以 O 为圆心的圆与 E 交于四点,且这四点为一个正方形的四个顶点,求该圆的半径.

2020年成人高等学校招生全国统一考试高起点数学试题和参考答案及解析(共8页) 第4页

咨询热线: 400-678-3456

微信扫码刷题

免费约直播领资料

参考答案及解析

一、选择题

1.【答案】 D

【考情点拨】本题主要考查的知识点为绝对值不等式.

【应试指导】 $|x-2| < 1 \Rightarrow -1 < x-2 < 1 \Rightarrow 1 < x < 3$,故不等式的解集为(x | 1 < x < 3).

2.【答案】 D

【考情点拨】 本题主要考查的知识点为函数的单调性.

【应试指导】 A、B 选项在其定义城上为增函数,选项 C 在 $\left(0,\frac{\pi}{2}\right)$ 上为增函数,只有 D 选项在实数城上为减

函数.

3.【答案】 D

【考情点拨】本题主要考查的知识点为对数函数的性质,

【应试指导】 由对数函数的性质可知 $x+1>0\Rightarrow x>-1$,故函数的定义域为 $(-1,+\infty)$.

4.【答案】 C

【考情点拨】本题主要考查的知识点为直线间的距离.

【应试指导】 由题可知,两直线平行,故两直线的距离即为其中一条直线上一点到另一条直线的距离. 取直线

$$x-y-3=0$$
 上一点(4.1),点(4.1) 到直线 $x-y+3=0$ 的距离为 $d=\frac{4-1+3}{\sqrt{1^2+(-1)^2}}=3\sqrt{2}$.

5.【答案】 B

【考情点拨】本题主要考查的知识点为集合的运算.

【应试指导】 由于 $M \subseteq N$,故 $M \cap N = M = \{-2, -1, 0, 1, 2\}.$

6.【答案】 A

【考情点拨】 本题主要考查的知识点为直线的斜率.

【应试指导】 两直线平行则其斜率相等, $k_{AB} = \frac{1-0}{-1-1} = -\frac{1}{2}$,而直线 kx - y - 1 = 0 的斜率为 k,故 $k = -\frac{1}{2}$.

7.【答案】 D

【考情点拨】本题主要考查的知识点为向量的运算.

【应试指导】 $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = (1,t) + (-1,1) = (0,2)$, 故有 $t+1 = 2 \Rightarrow t = 1$.

8.【答案】 C

【考情点拨】本题主要考查的知识点为双曲线.

【应试指导】 由題知, $a^2 = m$, $b^2 = 4$, $c = \sqrt{a^2 + b^2} = \sqrt{m+4}$. 其萬心率 $e = \frac{c}{a} = \frac{\sqrt{m+4}}{\sqrt{m}} = 3$,故 $m = \frac{1}{2}$.

9.【答案】 D

【考情点拨】 本题主要考查的知识点为三角函数的运算.

2020年成人高等学校招生全国统一考试高起点数学试题和参考答案及解析(共8页) 第5页

移动学习 职达未来 hgwx.com

咨询热线: 400-678-3456

免费约直播领资料

【应试指导】 $y = \sin x \cos 3 + \cos x \sin 3 + \sin x \cos 3 - \cos x \sin 3 = 2 \sin x \cos 3$, $\sin x$ 的最大值为 1.故原函数的最大值为 2 $\cos 3$ 。

10.【答案】 A

【考情点拨】 本题主要考查的知识点为对数函数的性质.

【应试指导】 函数 $y = \log_2 x$ 在 $(0, +\infty)$ 上为增函数,由于 a > b > 1,故有 $\log_2 a > \log_2 b$.

11.【答案】 B

【考情点拨】 本題主要考查的知识点为三角函数.

【应试指导】 由于
$$x$$
 为第一象限角,故 $\sin x = \sqrt{1-\cos^2 x} = \sqrt{1-\left(\frac{3}{5}\right)^2} = \frac{4}{5}$,因此 $\sin 2x = 2\sin x\cos x = 2\times\frac{3}{5}\times\frac{4}{5} = \frac{24}{25}$.

12.【答案】 D

【考情点拨】 本题主要考查的知识点为三角函数的性质.

【应试指导】 $y=\sin(x+2)$ 是函数 $y=\sin x$ 向左平移 2 个单位得到的,故其对称轴也向左平移 2 个单位, $x=\frac{\pi}{2}$ 是函数 $y=\sin x$ 的一个对称轴,因此 $x=\frac{\pi}{2}-2$ 是 $y=\sin(x+2)$ 的一条对称轴.

13.【答案】 D

【考情点拨】 本题主要考查的知识点为简易逻辑.

【应试指导】 $x=1\Rightarrow x^2-1=0$,而 $x^2-1=0\Rightarrow x=1$ 或 x=-1,故 p 是 q 的充分但不必要条件.

14.【答案】 D

【考情点拨】本题主要考查的知识点为解三角形.

【应试指导】 易知 AB=1,点 C 到 AB 边的距离为 2+3=5,故 AB 边的高为 5,因此三角形的面积为 $\frac{1}{2}\times 1\times 1$

 $5 = \frac{5}{2}$.

15.【答案】 A

【考情点拨】本题主要考查的知识点为随机事件.

【应试指导】 3 个球中有黑球的取法有 C · C = 3 种.

16.【答案】 B

【考情点拨】本题主要考查的知识点为三角函数的性质.

【应试指导】 B 项中, 函数的最小正周期 $T = \frac{2\pi}{2} = \pi$.

17.【答案】 B

【考情点拨】 本题主要考查的知识点为函数的奇偶性.

【应试指导】 A、C、D 项为非奇非偶函数,B 项为偶函数.

二、填空题

18.【答案】-4

【考情点拨】本题主要考查的知识点为一元二次函数的性质.

2020年成人高等学校招生全国统一考试高起点数学试题和参考答案及解析(共8页) 第6页

移动学习 职达未来 hqwx.com

咨询热线: 400-678-3456

免费约直播领资料

【应试指导】 由于函数开口向上, 故其在对称轴处取得最小值. 又函数过点(-1,0), (3,0), 故其对称轴为 x=-1+3 =1, $f_{\max}(1)=1+b+c$, 而 f(-1)=1-b+c=0, f(3)=9+3b+c=0. 得 b=-2, c=-3, 故 $f_{\max}(1)=1$

19.【答案】 0.432

【考情点拨】本题主要考查的知识点为随机事件的概率.

【应试指导】 投篮 3 次恰有 2 次投中的概率为 C3 · 0.62 · 0.4 = 0.432,

20.【答案】 9

【考情点拨】本题主要考查的知识点为数列的性质.

【应试指导】 由題知
$$S_8 = \frac{3^8}{2}$$
,故有 $a_1 = \frac{3}{2}$, $a_2 = S_2 - a_1 = \frac{3^2}{2} - \frac{3}{2} = 3$, $a_3 = S_3 - a_2 - a_1 = \frac{3^3}{2} - 3 - \frac{3}{2} = 9$.

21.【答案】 - 2

【考情点拨】本题主要考查的知识点为曲线的切线,

【应试指导】 $y'=\frac{1}{x}$, 故曲线在点(1,a) 处的切线的斜率为 $y'\Big|_{x=1}=\frac{1}{x}\Big|_{x=1}=1$, 因此切线方程为 y-a=x-1 , y=x-1+a . 又切线过点(2,-1),因此有-1=2-1+a , 故 a=-2 .

三、解答题

22.(I)由正弦定理得 $\frac{BC}{\sin A} = \frac{AB}{\sin C}$,

即
$$\frac{1}{\frac{1}{2}} = \frac{\sqrt{3}}{\sin C}$$
,解得 $\sin C = \frac{\sqrt{3}}{2}$.

故 $C = 60^{\circ}$ 或 120° .

([]) 由余弦定理得
$$\cos A = \frac{AB^2 + AC^2 - BC^2}{2AB \cdot AC} = \frac{3 + AC^2 - 1}{2\sqrt{3} \, AC} = \frac{\sqrt{3}}{2}$$
,

解得 AC = 1 或 AC = 2.

$$\stackrel{\text{de}}{=} AC = 1 \text{ B$^{+}_{1}$, $S_{\triangle ABC}$} = \frac{1}{2}AB \cdot AC \cdot \sin A$$

$$= \frac{1}{2} \times \sqrt{3} \times 1 \times \frac{1}{2}$$

$$=\frac{\sqrt{3}}{4}$$
.

$$\label{eq:ac} \begin{array}{l} \stackrel{\mbox{\tiny $_4$}}{\underline{}} AC = 2 \; \text{B} \\ \uparrow \bullet S_{\triangle ABC} = \frac{1}{2} AB \bullet AC \bullet \sin A \\ \\ = \frac{1}{2} \times \sqrt{3} \times 2 \times \frac{1}{2} \\ \\ = \frac{\sqrt{3}}{2}. \end{array}$$

23. (]) $f'(x) = 3x^2 + 1 > 0$,

故函数在 R 上单调递增,故其单调区间为 R.

2020年成人高等学校招生全国统一考试高起点数学试题和参考答案及解析(共8页) 第7页

移动学习 职达未来 hqwx.com

咨询热线: 400-678-3456

免费约直播领资料

([])
$$a = \frac{1}{2}$$
 $, b = \frac{3}{4}$, 则有

$$f\left(\frac{1}{2}\right) = \frac{1}{8} + \frac{1}{2} - 1 < 0, f\left(\frac{3}{4}\right) = \frac{27}{64} + \frac{3}{4} - 1 > 0.$$

又由于函数在 \mathbf{R} 上单调递增,故其在 $\left(\frac{1}{2}, \frac{3}{4}\right)$ 内存在零点,

且
$$b-a=\frac{3}{4}-\frac{1}{2}=\frac{1}{4}<0.5$$
(答案不唯一).

24.([)由题可知

$$a_4 = a_2 + 2d = -2 + 2d = -1$$
,

可得
$$d = \frac{1}{2}$$
.

故
$$a_n = a_2 + (n-2)d$$

$$=-2+(n-2)\times\frac{1}{2}$$

$$=\frac{n}{2}-3.$$

([]) 由([]) 可知 $a_1=\frac{1}{2}\times 1-3=-\frac{5}{2}$,

故
$$S_n = \frac{n(a_1 + a_n)}{2}$$

$$=\frac{n(-\frac{5}{2}+\frac{n}{2}-3)}{2}$$

$$=\frac{1}{4}n(n-11).$$

25.([) 由题知 $2a = 8, 2c = 2\sqrt{7}$,

故
$$a = 4$$
, $c = \sqrt{7}$, $b = \sqrt{a^2 - c^2} = \sqrt{16 - 7} = 3$,

因此椭圆方程为
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
.

($\|$) 设圆的方程为 $x^2 + y^2 = R^2$,

因为圆与椭圆的四个交点为一正方形的顶点,设其在第一象限的交点为 A,

则有 OA = R, A 点到x 轴与y 轴的距离相等,

可求得
$$A$$
 点的坐标为 $\left(\frac{\sqrt{2}}{2}R, \frac{\sqrt{2}}{2}R\right)$.

而
$$A$$
 点也在椭圆上,故有 $\frac{R^{z}}{16} + \frac{R^{z}}{9} = 1$,

解得
$$R = \frac{12\sqrt{2}}{5}$$
.

2020年成人高等学校招生全国统一考试高起点数学试题和参考答案及解析(共8页) 第8页

