4 (a) A uniform wire has length L and constant area of cross-section A. The material of the wire has Young modulus E and resistivity ρ . A tension F in the wire causes its length to increase by ΔL .

this wire, state expressions, in terms of L, A, F, ΔL and ρ for

(i)	the stress σ ,	
		[1]
(ii)	the strain ε ,	
		[1]
(iii)	the Young modulus <i>E</i> ,	
		[1]
(iv)	the resistance R.	

(b) One end of a metal wire of length 2.6 m and constant area of cross-section 3.8×10^{-7} m² is attached to a fixed point, as shown in Fig. 4.1.

.....[1]

Fig. 4.1

	The	e Young modulus of the material of $2.6 \times 10^{-8} \Omega$ m.	the wire is 7.0 \times	10 ¹⁰ Pa and its re	esistivity
	Αle	load of 30N is attached to the lower oss-section of the wire does not change this load of 30N,		Assume that the	area of
	(i)	show that the extension of the wire is	2.9 mm,		
					.
	(ii)	calculate the change in resistance of	the wire.		[1]
	()	J			
			change =		Ω [2]
(c)	Cor	e resistance of the wire changes with the mment on the suggestion that this character magnitude of the load on the wire.		could be used to r	neasure
					[2]