Matroids

Introduction to Model Theory (Third hour)

December 16, 2021

Section 1

Closure operations

Closure operations

Definition

A *closure operation* on a set S is a map $cl(-): P(S) \rightarrow P(S)$ satisfying these identities:

(increasing)
$$X \subseteq cl(X)$$
.

$$(monotone) X \subseteq Y \implies cl(X) \subseteq cl(Y)$$

(idempotent)
$$cl(cl(X)) = cl(X)$$
.

Closed sets

Fix a closure operation cl(-) on S.

Definition

 $X \subseteq S$ is *closed* if cl(X) = X.

Fact

Let I be a set. Let X_i be closed for $i \in I$. Then $\bigcap_{i \in I} X_i$ is closed.

Fact

For any $X \subseteq S$.

- \bullet cl(X) is closed.
- cl(X) is the smallest closed set containing X.
- cl(X) is the intersection of the closed sets containing X.

Finitary closure operations

Definition

A closure operation on S is *finitary* if whenever $X \subseteq S$ and $a \in cl(X)$, there is a finite subset $X_0 \subseteq X$ with $a \in cl(X_0)$.

Idea

If a is in the closure of X, it's because of only finitely many elements of X.

Example

If $\langle A \rangle$ denotes the substructure of M generated by A, then $A \mapsto \langle A \rangle$ is a finitary closure operation on M.

Section 2

Matroids: definition and examples

The exchange property

A closure operation cl(-) on S satisfies the exchange property if: Whenever $X \subseteq S$, $a, b \in S$, $a, b \notin cl(X)$, we have

$$a \in \operatorname{cl}(X \cup \{b\}) \implies b \in \operatorname{cl}(X \cup \{a\}).$$

Definition

A *matroid* (or *pregeometry*) is a set with a finitary closure operation satisfying exchange.

Vector-space span

If $S \subseteq \mathbb{R}^n$, define

$$cl(S) = \{a_1v_1 + \cdots + a_nv_n : a_1, \dots, a_n \in \mathbb{R}; \ v_1, \dots, v_n \in S\}.$$

Fact

This is a finitary closure operation satisfying exchange.

• If $v \in \operatorname{cl}(S \cup \{w\}) \setminus \operatorname{cl}(S)$, then

$$v = a_1u_1 + \cdots + a_nu_n + bw$$

for some $u_1, \ldots, u_n \in S$, $a_1, \ldots, a_n, b \in \mathbb{R}$.

- $b \neq 0$, or else $v \in cl(S)$.
- Then

$$w = b^{-1}v - b^{-1}a_1u_1 - b^{-1}a_2u_2 - \cdots - b^{-1}a_nu_n.$$

Graphs

Definition

A graph consists of

- A set V of vertices.
- A set E of edges.
- A map ϕ assigning to each edge $e \in E$ a set of one or two vertices.

An edge from v_1 to v_2 is an edge e with $\phi(e) = \{v_1, v_2\}$.

- We allow loops—edges from v to v.
- We allow parallel edges—more than one edge from v to w.

Walks

If $a, b \in V$, a walk from a to b is a sequence

$$v_0, e_1, v_1, e_2, v_2, \ldots, e_n, v_n$$

where

- $v_0, v_1, v_2, \ldots, v_n \in V$.
- $e_1, e_2, \ldots, e_n \in E$.
- $v_0 = a$.
- \bullet $v_n = b$.
- e_i is an edge from v_{i-1} to v_i .

$$v_0 \xrightarrow{e_1} v_1 \xrightarrow{e_2} v_2 \xrightarrow{e_3} v_3$$

Span

Let S be a set of edges.

- An edge e from v_1 to v_2 is spanned by S if there is a walk from v_1 to v_2 in S.
- The span of S is the set of edges spanned by S.

Fact

span(-) is a finitary closure operation.

Cycles

A cycle is a sequence $v_1, e_1, v_2, e_2, v_2, \dots, v_n, e_n$ where

- The v_i are distinct vertices.
- The e_i are distinct edges.
- e_i is an edge from v_i to v_{i+1} .
- e_n is an edge from v_n to v_1 .
- $n \ge 1$.

Span and cycles

Fact

 $e \in \text{span}(S)$ iff at least one of the following holds:

- *e* ∈ *S*
- There is a cycle C with $e \in C$ and $C \setminus \{e\} \subseteq S$.

Exchange

Fact

Let S be a set of edges. Let e_1 , e_2 be two edges not in span(S). Then

$$e_1 \in \mathsf{span}(S \cup \{e_2\}) \implies e_2 \in \mathsf{span}(S \cup \{e_1\}).$$

Proof.

Let C be the cycle showing $e_1 \in \text{span}(S \cup \{e_2\})$. Then $e_2 \in C$, or else $e_1 \in \text{span}(S)$. Then C shows $e_2 \in \text{span}(S \cup \{e_1\})$.

Fact

If (V, E) is a graph, then there is a matroid on E where cl(S) = span(S).

Section 3

Matroids: basic notions

Independent sets

Fix a matroid (M, cl(-)).

Definition

A set $I \subseteq M$ is independent if $a \in I \implies a \notin cl(I \setminus \{a\})$.

Fact

In \mathbb{R}^n , I is independent if it is linearly independent, i.e., for $a_1, \ldots, a_n \in \mathbb{R}$ and $v_1, \ldots, v_n \in I$,

$$a_1v_1 + \cdots + a_nv_n = 0 \implies a_1 = a_2 = \cdots = a_n = 0.$$

Fact

In (V, E), a set $I \subseteq E$ is independent iff I contains no cycles, i.e., I is a "forest."

Spanning sets

Definition

A set $S \subseteq M$ is spanning if cl(S) = M.

• In \mathbb{R}^n , a set S is spanning iff every vector in \mathbb{R}^n is a linear combination of things in S.

Bases

Fix a matroid M.

Fact

The following are equivalent for $B \subseteq M$.

- B is independent and spanning.
- B is maximal independent.
- B is minimal spanning.

Definition

A *basis* is a set $B \subseteq M$ satisfying these properties.

- In \mathbb{R}^n , a basis is a vector space basis.
- In a graph G = (V, E), a basis is a spanning tree or spanning forest.

Rank

Fact

Any matroid has a basis. Any two bases B_1 , B_2 have the same cardinality.

Definition

The rank of M, written r(M), is the cardinality of any basis.

Fact

- **1** The rank of \mathbb{R}^n is n.
- ② The rank of a graph G = (V, E) is the number of vertices minus the number of connected components.

Rank of a set

Fact

If $S \subseteq M$,

- There is a maximal independent subset $I \subseteq S$.
- If I_1 , I_2 are two maximal independent subsets of S, then $|I_1| = |I_2|$.

Definition

The rank of S, written r(S), is the cardinality of any maximal independent subset.

Rank in vector spaces and graphs

- If $V \subseteq \mathbb{R}^n$ is a linear subspace (a closed set), then r(V) is the dimension of V.
- If $S \subseteq \mathbb{R}^n$ is arbitrary, then $r(S) = r(\operatorname{cl}(S))$.
 - This holds in any matroid.
- In a graph G = (V, E), the rank of $S \subseteq E$ is the number of vertices in S minus the number of connected components (thinking of S as a subgraph).

Dependent sets and circuits

Definition

A dependent set is a set that is not independent.

A circuit is a minimal independent set.

Example

In a graph, a circuit is a cycle.

In \mathbb{R}^n , circuits aren't something very meaningful.

Dependent sets and circuits

Fact

- Any circuit is finite
- 2 Every dependent set contains a circuit.
- 3 $a \in cl(S)$ iff at least one of the following holds:
 - \triangleright $a \in S$.
 - ▶ There is a circuit C with $a \in C$ and $C \setminus \{a\} \subseteq S$.

Loops

Let M be a matroid.

Definition

A *loop* is an element $x \in cl(\emptyset)$.

- In \mathbb{R}^n , the zero vector is the unique loop.
- In a graph, a loop is an edge with the same start and end.
- In general, x is a loop if $\{x\}$ is a circuit.

Parallels

Definition

Two non-loop elements x, y are parallel if $x \in cl(y)$.

Fact

This is an equivalence relation on non-loop elements.

- If $x \neq y$, then x and y are parallel iff $\{x, y\}$ is a circuit.
- In a graph, two edges are parallel if they have the same start and end.
- In \mathbb{R}^n , two vectors are parallel if they are geometrically parallel.

Simple matroids

Definition

A matroid M is *simple* if it has no circuits of size < 3.

Equivalently:

- There are no loops, and...
- If x and y are parallel, then x = y.

Simple matroids

Fact

Given any matroid M, we can form a simple matroid by throwing away loops and identifying parallel elements.

Fact

If M is a matroid and M' is the associated simple matroid, then M and M' have isomorphic lattices of closed sets.

Matroids are also called *pregeometries*, and simple matroids are called *geometries*.

Section 4

Finite matroids

In this section, all matroids are finite.

"Cryptomorphism"

- (Finite) matroids can be defined in many different ways.
- The different definitions appear unrelated...
- ... but are secretly equivalent.
- This phenomenon is called "cryptomorphism".

Definition via independent sets

Definition

A matroid is a finite set M and a family $\mathcal{I} \subseteq P(M)$ of "independent sets", satisfying the following axioms:

- Ø is independent.
- A subset of an independent set is independent.
- **3** For any $X \subseteq M$, any two maximal independent subsets of X have the same cardinality.

Definition via bases

Definition

A matroid is a finite set M and a family $\mathcal{B} \subseteq P(M)$ of "bases", satisfying the following axioms:

- There is at least one basis.
- ② If B_1, B_2 are bases and $a \in B_2 \setminus B_1$, then there is $b \in B_1 \setminus B_2$ such that $B_1 \cup \{a\} \setminus \{b\}$ is a basis.

Definition via circuits

Definition

A matroid is a finite set M and a family $C \subseteq P(M)$ of "circuits", satisfying the following axioms:

- If C_1 , C_2 are distinct circuits, then $C_1 \not\subseteq C_2$.
- **②** If C_1 , C_2 are distinct circuits and $x \in C_1 \cap C_2$, then $C_1 \cup C_2 \setminus \{x\}$ contains a circuit.

Definition via rank functions

Definition

A matroid is a finite set M and a function $r: P(M) \to \mathbb{N}$ called the rank function, such that

- **2** $0 \le r(X) \le |X|$.
- $(X \cup Y) \leq r(X) + r(Y) r(X \cap Y).$

Definition via closure operations

Definition

A *matroid* is a finite set M and a function $\operatorname{cl}(-):P(M)\to P(M)$ such that

- $2 X \subseteq Y \implies \operatorname{cl}(X) \subseteq \operatorname{cl}(Y).$
- **③** If $a, b \notin cl(X)$ and $a \in cl(X \cup \{b\})$, then $b \in cl(X \cup \{a\})$.

Duality

Let M be a (finite) matroid.

Definition

The dual matroid M' is characterized as follows:

- M' has the same underlying set as M.
- X is a basis of M' iff the complement $M \setminus X$ is a basis of M.

Fact

For matroids coming from planar graphs, this corresponds to taking the dual graph.

Duality

Greedy algorithms

Let M be a matroid and $f: M \to \mathbb{R}_{\geq 0}$ be a function.

Problem

Find an independent set $I \subseteq M$ maximizing $\sum_{x \in I} f(x)$.

Fact

The following "greedy algorithm" works:

- Let $I_0 = \emptyset$.
- Once I_n is known...
 - ▶ Look at the set of $a \in M \setminus I_n$ such that $I_n \cup \{a\}$ is independent.
 - If empty, terminate and output I_n .
 - ▶ Otherwise, take a maximizing f(a), let $I_{n+1} = I_n \cup \{a\}$.

Also, this fact characterizes finite matroids (sort of).

Section 5

More examples of matroids

The uniform matroid

Let M be a set and n be finite. In the uniform matroid of rank n on M...

- A set $I \subseteq M$ is independent iff $|I| \le n$.
- A set $B \subseteq M$ is a basis iff |B| = n.
- C is a circuit iff |C| = n + 1.
- $r(X) = \min(|X|, n).$
- Closure is like so:

$$cl(X) = \begin{cases} M & \text{if } |X| \ge n \\ X & \text{otherwise.} \end{cases}$$

Transversal matroids

Let X, Y be finite sets and $R \subseteq X \times Y$ be a relation.

• X = people; Y = jobs; R(a, b) means person a can do job b.

Say $S \subseteq X$ is *independent* if there is an injection $f : S \to Y$ such that R(a, f(a)) holds for $a \in S$.

 We can assign each person in S a job in a non-overlapping, feasible way.

Fact

This defines a matroid structure on X.

Algebraic independence

Let L/K be an extension of fields.

Fact

There is a matroid on L where

- $a \in cl(S)$ if a is algebraic over the field generated by $K \cup S$.
- $\{a_1, \ldots, a_n\}$ is independent iff it is algebraically independent over K.
- The closed sets are the relatively algebraically closed subfields of L containing K.
- The rank of the matroid is the transcendence degree tr. deg(L/K).

Let M be a structure.

Definition

If $\phi(x)$ is an L(M)-formula, then $\phi(M)$ denotes $\{a \in M : M \models \phi(a)\}$. Such sets are called M-definable sets.

If $A \subseteq M$, an A-definable set is a set of the form $\phi(M)$, where $\phi(x)$ is an L(A)-formula.

Let M be a structure.

Definition

For $A \subseteq M$, the algebraic closure of A, written acl(A), is the union of all finite A-definable sets $X \subseteq M$.

We say b is algebraic over A if $b \in acl(A)$.

Fact

acl(-) is a finitary closure operator.

Fact

In RCF, ACF, and many other theories of fields (like \mathbb{Q}_p), b is algebraic over A iff b is field-theoretically algebraic over A.

In these theories, acl(-) satisfies exchange, so it defines a matroid.

Let T be an L-theory.

Definition

T is strongly minimal if for any model M and M-definable set $X \subseteq M$, either X is finite or X is cofinite $(M \setminus X \text{ is finite})$.

ACF is strongly minimal.

Definition

If $L \supseteq \{\leq\}$, we say T is *o-minimal* if for any model M and M-definable set $X \subseteq M$, X is a finite union of intervals.

RCF and DLO are o-minimal.

Fact

In a strongly minimal or o-minimal theory, acl(-) satisfies exchange, and defines a matroid.

Section 6

Modular matroids

Review: modular lattices

Definition

A lattice (M, \leq) is modular if for any $a, b \in M$, there is an isomorphism

$$f: [a \land b, a] \to [b, a \lor b]$$
$$f(x) = x \lor b$$
$$f^{-1}(y) = y \land a$$

Modularity

Fact

The following properties are equivalent in a matroid M:

1 If X, Y are finite-rank closed sets, then

$$r(X \cup Y) = r(X) + r(Y) - r(X \cap Y).$$

- 2 The lattice of finite-rank closed sets is modular.
- 3 The lattice of closed sets is modular.

A matroid M is modular if these conditions hold.

Vector spaces

Example

 \mathbb{R}^n is a modular matroid, because

$$\dim(V+W)=\dim(V)+\dim(W)-\dim(V\cap W)$$

for linear subspaces $V, W \subseteq \mathbb{R}^n$.

Matroids and modular lattices

Let $(L, \wedge, \vee, 0)$ be a modular lattice with minimum 0.

Definition

An atom is a minimal non-zero element.

Definition

A modular lattice L is *atomistic* if every element has the form $x_1 \vee \cdots \vee x_n$ for some $n \geq 0$ and some atoms x_1, \ldots, x_n .

Fact

- If M is a modular matroid, the lattice of finite-rank closed sets is an atomistic modular lattice.
- Atomistic modular lattices correspond exactly to modular simple matroids.

Decomposition of modular matroids

Fact

Let M be a modular simple matroid. For $x, y \in M$, define $x \sim y$ if $\{x, y\}$ is closed.

- ullet \sim is an equivalence relation.
- ② M is a direct sum $M_1 + M_2 + \cdots$ of the equivalence classes.

Fact

This amounts to decomposing the corresponding lattice as a product:

$$L \cong L_1 \times L_2 \times \cdots \times L_n$$
.

(at least when there are finitely many components).

Projective geometries

Definition

A d-dimensional projective geometry is an indecomposable modular simple matroid of rank d+1.

Fact

A 0-dimensional projective geometry is a single point.

Fact

A 1-dimensional projective geometry is a uniform matroid of rank 2 on a set of three or more points.

Projective planes

Definition

A projective plane is a set M of points, and a set $L \subseteq P(M)$ of lines, satisfying the axioms:

- For any two distinct points x, y, there is a unique line containing x and y.
- For any two lines ℓ_1, ℓ_2 , there is a unique point in the intersection $\ell_1 \cap \ell_2$.
- Every line has at least three points, and every point is on at least three lines.

Fact

- **1** A projective plane determines a 2-dimensional projective geometry in which the closed sets are \emptyset , M, the singletons (points), and the lines.
- 2-dimensional projective geometries are the same thing as projective planes.

The real projective plane

• Define a formal symbol P_ℓ for lines $\ell \subseteq \mathbb{R}^2$ so that

$$P_{\ell_1} = P_{\ell_2} \iff \ell_1 \parallel \ell_2.$$

- Let $\ell_{\infty} = \{P_{\ell} : \ell \text{ is a line in } \mathbb{R}^2\}.$
- For ℓ a line in \mathbb{R}^2 , let $\overline{\ell}$ be $\ell \cup \{P_\ell\}$.

Idea

 P_{ℓ} is a "point at infinity."

Definition

The real projective plane has

- Points are elements of $\mathbb{R}^2 \cup \ell_{\infty}$.
- Lines are ℓ_{∞} and the $\overline{\ell}$ for $\ell \subseteq \mathbb{R}^2$.

The real projective plane

Fact

The real projective plane is the simple matroid associated with \mathbb{R}^3 .

Definition

A *skew field* is a structure $(K, +, \cdot)$ satisfying all the field axioms except possibly xy = yx.

Example: the quaternions.

Fact

If K is a skew field, there is a natural modular matroid structure on K^n generalizing the one on \mathbb{R}^n . When n = 3, this gives a projective plane.

Projective 3-spaces

Definition

A projective 3-space is a set M of "points", a set $L \subseteq P(M)$ of "lines", and a set $\Pi \subseteq P(M)$ of "planes", such that

- Any two points determine a line.
- Any two lines on a plane intersect in a point.
- Any two lines through a point determine a plane.
- Any two planes intersect in a line.
- [Various non-degeneracy axioms]

Duality

Given a projective plane P, we can build a *dual* projective plane P' where

- Points in P' correspond to lines in P.
- Lines in P correspond to points in P'.
- If x, ℓ are a point and a line in P, and x', ℓ' are the corresponding line and point in P', then

$$x \in \ell \iff \ell' \in x'$$
.

Fact

The real projective plane is isomorphic to its dual.

Duality

Fact

Let (L, \leq) be an atomistic modular lattice of length $n < \infty$. Then the dual lattice (L, \geq) is an atomistic modular lattice of length n.

Fact

Given a modular simple matroid M, there is a "dual" modular simple matroid M' whose lattice of closed sets is dual to the lattice of closed sets in M.

Remark

Points in M' correspond to hyperplanes in M (closed sets of rank one less than the rank of M).

Remark

This duality is unrelated to the duality for finite matroids.

Desargues's theorem

Pappus's theorem

Projective planes

Fact

Let P be a projective plane.

- P comes from a skew field iff P satisfies Desargues's theorem.
- P comes from a field iff P satisfies Desargues's theorem and Pappus's theorem.
- If P is a Desarguesian projective plane, then the corresponding skew field is determined up to isomorphism.
- There are non-Desarguesian projective planes.

Non-desarguesian planes

Higher dimensional projective geometries

Fact

If n > 2, then any n-dimensional projective geometry comes from a skew field.

Desargues's theorem is automatic.

Modularity in model theory

Conjecture (Trichotomy conjecture, FALSE)

Let M be a model of a strongly minimal theory. Consider the simple matroid associated with (M, acl(-)). Then one of three things happens:

- **1** The matroid is trivial (cl(X) = X).
- 2 The matroid is a projective geometry usually infinite rank over a skew field or an affine geometry.
- M defines an algebraically closed field.
- If (M, acl(-)) is modular, then (1) or (2) must happen.
 - ▶ This happens when M is ω -categorical.
- 4 Hrushovski found a counterexample to the trichotomy conjecture.
- The trichotomy conjecture is true in the context of "Zariski geometries."
- For o-minimal theories, the trichotomy conjecture is (essentially) true.