

Universidade do Minho

APLICAÇÕES INFORMÁTICAS NA BIOMEDICINA MESTRADO EM ENGENHARIA INFORMÁTICA 2019/2020

Grupo: 1

A realização de urgências gerais num determinado hospital nacional

Trabalho realizado por:	$N\'umero\ de\ Aluno:$
Filipa Parente	A82145
João Almeida	A75209
Leonardo Jesus	PG39261
Nuno Valente	A81986

18 de Dezembro de 2019

Conteúdo

C	ontei		
1	Intr 1.1 1.2	Podução Plano Estrutural	2 2 2
2	Res	olução das questões propostas	4
	2.1	Criar um novo schema no MySQL Workbench denominado " BD_URG "	4
	2.2	Fazer o import de todos os dados no ficheiro urg_inform_geral.csv para um nova tabela denominada "urg_inform_geral" na base de dados BD_URG	4
	2.3	Desenhar e criar um modelo dimensional no formato de esquema em estrela no	۲
	2.4	$MySQL\ Workbench$ - EER	5 6
	2.5	Povoar o Data Warehouse na base de dados "DW_URG" a partir da tabela urg_inform_geral da base de dados BD_URG:	6 6
		 2.5.2 Com jobs no Talend 2.5.3 Descrever e explicar as vantagens e as desvantagens entre os dois diferentes processos de povoamento utilizados (alíneas (a) e (b)) 	7 9
	2.6	Defina e crie indicadores clínicos e de desempenho com o Microsoft Power BI (ou outro programa similar, por exemplo, Tableau) recorrendo ao Data Warehouse DW_URG implementado, justificando e descrevendo a relevância e a utilidade	
		de cada um dos indicadores.	9
	2.7	Sugira e descreva as diversas interfaces e as funcionalidade de uma aplicação informática que poderia incluir dashboards com os indicadores clínicos e de desempenho definidos, ou seja, de uma aplicação direcionada às urgência gerais no hospital nacional em questão, bem como das tecnologias que utilizaria para o	
		seu desenvolvimento	13

1 Introdução

1.1 Plano Estrutural

O seguinte documento visa elucidar os tópicos propostos para a elaboração do projeto prático, inserido na unidade curricular de Aplicações Informáticas na Biomedicina.

Numa primeira fase, na subsecção **Descrição do Problema (subsecção 1.2)**, começa-se por abordar o problema do projeto em si, bem como as tarefas a serem executadas para o seu sucesso.

Numa segunda fase, na secção **Resolução das questões propostas (secção 2)**, será explicitado o modo como cada tarefa/questão foi resolvida, através de pequenos textos com imagens ilustrativas. Esta secção está dividida em subsecções correspondentes às tarefas pedidas no enunciado.

Finalmente, na secção Conclusões e Trabalho Futuro (secção 3), analisar-se-á o trabalho realizado, num cômputo geral, evidenciando as dificuldades sentidas durante a sua realização. Na mesma secção, serão sugeridas possíveis melhorias que poderão ser feitas futuramente.

1.2 Descrição do problema

Neste trabalho prático, inserido na unidade curricular de Aplicações Informáticas na Biomedicina, foi proposta o desenvolvimento de um Data Warehouse de um determinado hospital (não referido no enunciado).

Para o efeito, no enunciado são apresentadas as seguintes tarefas a serem executadas, com base no ficheiro .csv disponibilizado juntamente com o mesmo (urg_inform_geral.csv):

- Criar um novo schema no MySQL Workbench denominado "BD_URG";
- Fazer o import de todos os dados no ficheiro urg_inform_geral.csv para um nova tabela denominada "urg_inform_geral" na base de dados BD_URG;
- Desenhar e criar um modelo dimensional no formato de esquema em estrela no MySQL Workbench EER Diagram. O modelo dimensional deverá ser constituído por uma tabela de factos que se liga às tabelas de dimensão definidas;
- Gerar o modelo físico associado ao modelo dimensional definido e criado no ponto anterior para uma base de dados denominada "DW_URG";
- Povoar o Data Warehouse na base de dados "DW_URG" a partir da tabela urg_inform_geral da base de dados BD_URG:
 - Em SQL com uma script;
 - Com jobs no Talend;
 - Descrever e explique as vantagens e as desvantagens entre os dois diferentes processos de povoamento utilizados (alíneas (a) e (b)).

- Definir e criar indicadores clínicos e de desempenho com o *Microsoft Power BI* (ou outro programa similar) recorrendo ao Data Warehouse DW_URG implementado, justificando e descrevendo a relevância e a utilidade de cada um dos indicadores;
- Sugerir e descrever as diversas interfaces e as funcionalidade de uma aplicação informática que poderia incluir dashboards com os indicadores clínicos e de desempenho definidos, ou seja, de uma aplicação direccionada às urgência gerais no hospital nacional em questão, bem como das tecnologias que utilizaria para o seu desenvolvimento.

2 Resolução das questões propostas

2.1 Criar um novo schema no MySQL Workbench denominado " BD_URG "

Para criar um novo schema no MySQL Workbench, o grupo recorreu ao script SQL " $CRE-ATE\ SCHEMA\ BD_URG$ ", resultando no seguinte schema:

Figura 1: schema BD_URG no MySQL Workbench

2.2 Fazer o import de todos os dados no ficheiro urg_inform_geral.csv para um nova tabela denominada "urg_inform_geral" na base de dados BD_URG

Para realizar o import dos dados, recorreu-se à ferramenta "Table Data Import Wizard" presente no MySQL Workbench, tendo-se selecionado o ficheiro urg_inform_geral.csv (ficheiro, onde se faz o import dos dados).

Figura 2: tabela resultante da importação dos dados do ficheiro urq_inform_qeral.csv

2.3 Desenhar e criar um modelo dimensional no formato de esquema em estrela no MySQL Workbench - EER

De forma a realizar o modelo dimensional em formato de estrela, numa primeira fase fez-se uma análise dos atributos presentes na tabela urg_inform_geral.

Após a sua análise, procedeu-se à criação das tabelas da nova base de dados, a ser criada, já no MySQL Workbench-EER. Começou-se pela criação das tabelas de dimensão (causa, data, especialidade, paciente, proveniencia), finalizando o processo com a criação da tabela de factos (factos).

Figura 3: Modelo dimensional, resultante da análise dos dados da tabela urg_inform_geral

2.4 Gerar o modelo físico associado ao modelo dimensional definido e criado no ponto anterior para uma base de dados denominada " $DW_{-}URG$ "

Para gerar o modelo físico, recorreu-se à ferramenta "Database > Forward Engineer" presente no MySQL Workbench, tendo-se selecionado o modelo dimensional criado em 2.3, denominando-o com o nome referenciado no enunciado do projeto.

Figura 4: modelo físico dw_urg gerado

2.5 Povoar o Data Warehouse na base de dados "DW_URG" a partir da tabela urg_inform_geral da base de dados BD_URG:

2.5.1 Em SQL com uma script

Para povoar a base de dados DW_URG recorreu-se ao seguinte conjunto de queries SQL:

```
INSERT IGNORE INTO DW_URG.CAUSA(desc_causa)

SELECT DISTINCT DES_CAUSA FROM urg_inform_geral;

INSERT IGNORE INTO DW_URG.ESPECIALIDADE(desc_especialidade)

SELECT DISTINCT ALTA_DES_ESPECIALIDADE FROM urg_inform_geral;

INSERT IGNORE INTO DW_URG.PACIENTE(sexo,data_nascimento)

SELECT DISTINCT SEXO, DTA_NASCIMENTO FROM urg_inform_geral;

INSERT IGNORE INTO DW_URG.PROVENIENCIA(desc_proveniencia)

SELECT DISTINCT DES_PROVENIENCIA FROM urg_inform_geral;

INSERT INTO DW_URG.DATA(ADMISSAO,ALTA)

SELECT DISTINCT DATAHORA_ADM, DATAHORA_ALTA FROM urg_inform_geral;
```

Figura 5: Queries SQL para o povoamento das tabelas de dimensão

Note-se que para povoar as tabelas de dimensão, recorreu-se ao seguinte esquema de query:

```
INSERT IGNORE INTO tabela_destino (atributo(s)_ tabela_final)
    SELECT DISTICT atributo(s)_tabela_inicial FROM tabela_inicial;
```

```
INSERT INTO DW_URG.FACTOS(URG_EPISODIO,PROVENIENCIA_ID_PROVENIENCIA,ESPECIALIDADE_ID_ESPECIALIDADE,
PACIENTE_ID_PACIENTE,CAUSA_ID_CAUSA,DATA_ID_DATA)

SELECT raw.URG_EPISODIO,pr.ID_PROVENIENCIA , e.ID_ESPECIALIDADE, pa.ID_PACIENTE, c.ID_CAUSA, d.ID_DATA
FROM BD_URG.urg_inform_geral raw

INNER JOIN DW_URG.CAUSA c on raw.DES_CAUSA=c.desc_causa

INNER JOIN DW_URG.DATA d on (raw.DATAHORA_ADM=d.ADMISSAO and raw.DATAHORA_ALTA=d.ALTA )

INNER JOIN DW_URG.ESPECIALIDADE e on raw.ALTA_DES_ESPECIALIDADE=e.desc_especialidade

INNER JOIN DW_URG.PACIENTE pa on (raw.SEXO=pa.sexo and raw.DTA_NASCIMENTO=pa.data_nascimento)

INNER JOIN DW_URG.PROVENIENCIA pr on raw.DES_PROVENIENCIA =pr.desc_proveniencia;
```

Figura 6: Query SQL para o povoamento da tabela de factos

Por sua vez, para povoar a tabela de factos foi necessário recorrer tanto às tabelas de dimensão já povoadas como à tabela original. Basicamente foi necessário associar o(s) atributo(s) pertencente(s) à tabela original com o(s) atributo(s) de cada tabela de dimensão e retirar o respetivo ID.

Finalmente, para inserir cada ID, já filtrado, utilizou-se o mesmo esquema de query, referido anteriormente.

2.5.2 Com jobs no Talend

Uma vez que o Talend é uma ferramenta (ETL - Extract, Transform, Load), serão aplicados os mesmos fundamentos (extrair do ficheiro .csv, tratar os dados e povoar) só que recorrendo a uma ferramenta diferente.

Assim, para povoar a base de dados procederam-se as seguintes etapas:

- criação de um job povoamento das tabelas de dimensão;
- criação de um job povoamento da tabela de factos.

Figura 7: jobs criadas para o povoamento da DW_URG

Povoamento das tabelas de dimensão

Figura 8: esquema do job "dw_urg 0.1"

Neste job, utilizaram-se 4 tipos de componentes diferentes:

- 2 tDBConnection uma $(mysql_dw_urg)$ para estabelecer uma conexão com a base de dados onde se vão inserir os dados (dw_urg) e outra conexão $(mysql_bd_urg)$ com a base de dados onde se vão buscar os dados (bd_urg) .
- 6 *tDBInput* para ler da base de dados já povoada (*bd_urq*)
- 6 *tMap* para mapear os atributos presentes na base de dados (bd_urg) para os atributos respetivos das novas tabelas de dimensão a serem criadas.
- 6 tDBOutput para inserir os dados nas tabelas de dimensão respetivas da BD (dw_urg)

Povoamento da tabela de factos

Figura 9: esquema do job "tab_factos 0.1"

Neste job, utilizaram-se 3 tipos de componentes diferentes:

- 2 tDBConnection uma (mysql_dw_urg) para estabelecer uma conexão com a base de dados onde se vão inserir os dados (dw_urg) e outra conexão (mysql_bd_urg) com a base de dados onde se vão buscar os dados (bd_urg).
- *tDBInput* para ler da base de dados já povoada (*bd_urg*)
- tDBOutput para inserir os dados na tabela de factos na BD (dw_urg)

2.5.3 Descrever e explicar as vantagens e as desvantagens entre os dois diferentes processos de povoamento utilizados (alíneas (a) e (b))

Para descrever as vantagens e desvantagens dos respectivos processos de povoamento, utilizouse dois critérios, modo de utilização e performance. Relativamente à performance, um dos aspetos essenciais é saber o tempo de execução para tal acção.

Tempos de execução do povoamento de cada tabela da dw_urg (em segundos):

tabela (dw_urg)	SQL(script)	Talend(jobs)
causa	0.016s	0.09s
paciente	0.016s	5.06s
proveniencia	0s	0.02s
especialidade	0s	0.01s
data	0.016s	4.94s
local	0s	0.02s
factos	1.094s	1.22s

Tempo total de processamento:

- Em SQL com uma script decorreu em 1.142 segundos.
- Com jobs no Talend decorreu em 11.36 segundos.

O know-how necessário para fazê-la em SQL com uma script é maior em relação aos jobs no Talend, pois não há nesse caso a necessidade possuir conhecimento de SQL avançado para construção de queries. Sobre a utilização, o Talend se destaca com sua usabilidade consequência da sua user-friendly interface em comparação a se utilizar de script o qual não detêm interface gráfica para auxiliar.

2.6 Defina e crie indicadores clínicos e de desempenho com o Microsoft Power BI (ou outro programa similar, por exemplo, Tableau) recorrendo ao Data Warehouse DW_URG implementado, justificando e descrevendo a relevância e a utilidade de cada um dos indicadores.

Foram criados 6

A Figura 10 representa um resumo geral das informações acerca do hospital. Sua utilidade é proporcionar ao tomador de decisão uma visão holística sobre os recursos e demandas do

Figura 10: Indicador sobre Geral do Hospital

hospital. Dessa forma, o gestor ou tomador de decisão pode fazer questionamentos e nesse intuito foi gerado os demais indicadores a seguir.

Ao observa-se o número de casos de urgência, o gestor do hospital pode se questionar quais as causas das urgências e suas respectivas quantidades?

A Figura 11 é um indicador que tem como propósito responder tal questionamento. Ao visualizar o indicador é possível saber quais as causas mais decorrentes de atendimento na urgência. De posse dessa informação é possível criar estratégias no hospital para um melhor atendimento ou até mesmo elaboração de campanhas junto a população.

Nº Episódios de Urgência por Causa

Figura 11: Indicador sobre Episódio por causa

Uma vez tenho conhecimento das causas dos episódios de urgências, pode-se questionar qual especialidade é mais solicitada para o atendimento? A Figura 12 o indicador o qual responde essa questão.

Figura 12: Indicador sobre Episódio por Especialidade

Pelo indicador da Figura 12 nota-se sobrecarga de atendimento em uma especialidade somente, por conseguinte essa informação é útil para saber qual especialidade necessitara de mais recursos.

A seguir suponhamos que o gestor e ou tomador de decisão do hospital necessitasse saber qual o número dos episódios de urgência por ano? A Figura 13 é indicador o qual se propõe responder a isso.

Figura 13: Indicador sobre Episódios por ano

Se for necessário uma análise mais detalhada, para saber qual o número de episódios de urgência decorreram em um determinado dia e quantos pacientes desses episódios foram para pacientes femininos ou masculino, o indicador da Figura 13 não consegue expressar essa informação.

Desta forma foi criado outro indicador ao qual traga essa informação na Figura 14. A qual exibe a distribuição do número de episódios e quais foram de pacientes do género masculino ou feminino.

Figura 14: Indicador sobre Episódios por dia

Para saber qual o género predominante dentro do total de episódios ocorridos no hospital

deve-se analisar o número de episódios no qual o paciente em questão era do género masculino ou feminino. Já se o gestor e ou tomador de decisão do hospital quiser saber qual do género dos pacientes é mais representativo será necessário contabilizar o paciente unicamente. Pois um paciente pode ir mais de uma vez ao hospital e nesse caso contabilizar ele representa dois episódios de urgência, no entanto, só um paciente.

Figura 15: Indicador sobre Género

A Figura 15 demonstra o número de episódios pelo sexo do paciente. De qual modo mostra o número de pacientes por sexo o qual o hospital teve ao realizar todos atendimentos de urgência.

2.7 Sugira e descreva as diversas interfaces e as funcionalidade de uma aplicação informática que poderia incluir dashboards com os indicadores clínicos e de desempenho definidos, ou seja, de uma aplicação direcionada às urgência gerais no hospital nacional em questão, bem como das tecnologias que utilizaria para o seu desenvolvimento

Um aplicativo para gestão de hospital. Foi criado um modulo para os gestores e tomadores de decisão do hospital terem acesso aos indicadores e dashboards a respeito das informações do hospital. Em especial os mockups descritos abaixo são referentes ao acesso ao modulo para os gestores e tomadores de decisão.

Na Figura 20 é descrito a tela inicial do aplicativo, de igual forma é apresentado a Tela de Login do mesmo. Após inserir os dados para aceder ao aplicativo. O aplicativo irá carregar

acesso aos dados e os dashboards para os gestores terem acesso de forma instantânea.

Figura 16: Tela Inicial, Login e Load

O utilizador será levado a tela para inserir os dados de usuário para aceder aos indicadores e dashboards do hospital. Logo após terá acesso aos dashboards e indicadores do hospital. Esse aplicativo tem como propósito dar suporte e manter informado os gestores diariamente sem a necessidade desses estarem fisicamente no hospital.

Logo após aceder ao aplicativo os gestores e tomadores de decisão terão acesso aos dashboards contendo os indicadores do hospital. Foram gerados 3 dashboards contendo os indicadores respectivos relacionados a específicos ao respectivo dashboard.

O primeiro dashboard, na Figura 17, contem indicadores em relação ao género do paciente. Trazendo a relação de cada género com outras variáveis a saber número de pacientes atendidos por exemplo.

O segundo dashboard, na Figura 18, refere-se a indicadores relacionados directamente a relação temporal do atendimento ao pacientes e o género dos mesmos. Trazendo conhecimento do dia a dia do hospital em relação ao atendimento como número de episódios de emergências.

O terceiro dashboard, na Figura 19, refere-se a indicadores relacionados a especialidades. Verificando qual especialidade está demandando mais recurso do hospital. Assim podendo administrar os recursos da forma mais efectiva.

Figura 17: DashBoard 1

Figura 18: DashBoard 2

Com esses dashboards descritos acima, os gestores podem ser acessíveis por meio dos seus dispositivos mobile. Desta forma, consegue trazer agilidade e optimização do tempo entre a tomada de decisão e o conhecimento da situação a qual necessita da decisão.

Figura 19: DashBoard 3

Figura 20: Telas dos Dashboards