1.- DATOS DE LA ASIGNATURA:

Nombre de la asignatura: Estructuras de acero

Carrera: Arquitectura

Clave de la asignatura:ARC-1011

(Créditos) SATCA: 2-2-4

2.- PRESENTACIÓN:

Caracterización de la asignatura:

La asignatura proporciona las competencia para que alumno de arquitectura Diseñe miembros y conexiones en estructuras de acero.

El curso incluye los principios del diseño estructural en acero, los métodos de diseño particularizando en el diseño por factores de carga y resistencia; los procedimientos de diseño y especificaciones para miembros sujetos a tensión y compresión, vigas y conexiones estructurales aplicando la reglamentación y códigos de diseño de construcción. Integrando las competencias adquiridas en el desarrollar un proyecto estructural ejecutivo.

3.- COMPETENCIAS A DESARROLLAR

Competencias específicas:

- Analizar, diseñara y seleccionara elementos estructurales de acero sometidos a tensión y compresión, conforme a las normatividades vigentes
- Diseñar vigas por teoría plástica, aplicando los métodos de equilibrio y del trabajo, conforme normas AISC.
- Analizar y diseñar conexiones estructurales
- Calcular esfuerzos en columnas y dimensionarla considerando el refuerzo necesario de acuerdo al reglamento.
- Integrara las competencias adquiridas en el diseño estructural de un proyecto arquitectónico

Competencias generales:

COMPETENCIAS INSTRUMENTALES:

- Capacidad de análisis y síntesis
- Sistematización de gestión de la información
- Resolución de problemas
- Capacidad de organización y planificación
- Comunicación oral y escrita
- Conocimiento de informática
- Capacidad de organización y planificación
- Toma de decisiones
- Comunicación oral y escrita

COMPETENCIAS INTERPERSONALES:

Capacidad de trabajo en equipo

 Razonamiento crítico Habilidad de asociación Destrezas de integración Compromiso ético Auto motivación Empatía o inteligencia interpersonal Compromiso ético
 COMPETENCIAS SISTEMICAS: Aprendizaje autónomo Aprendizaje basado en problemas Habilidad de investigación Adaptación a nuevas situaciones Creatividad Iniciativa y espíritu emprendedor Capacidad de aplicación del conocimiento Diseño y gestión de proyectos

4.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
IT Tijuana del 26 de Octubre del 2009 al 5 de marzo de 2010	Representantes de las Academias de arquitectura.	Análisis, enriquecimiento y elaboración del programa de estudio propuesto en la Reunión Nacional de Diseño Curricular de la carrera de Arquitectura.

5.- OBJETIVO(S) GENERAL(ES) DEL CURSO (competencias específicas a desarrollar en el curso)

Proponer, analizar y diseñar miembros y conexiones estructurales de acero, en proyectos arquitectónicos, con criterios de funcionalidad, seguridad y economía

Las competencias específicas a desarrollar:

- Investigar los tipos y propiedades físico-mecánicas del acero estructural, así como las especificaciones AISC y códigos de diseño
- Interpretar los distintos tipos de estructuras de acero, sus alcances y limitaciones.
- Analizar los modos de falla de los elementos estructurales de acero
- Conceptualizara el proceso del diseño estructural
- o Analizar los principios básicos y los métodos de diseño del acero estructural
- o Diseñar miembros estructurales a tensión y compresión, vigas y conexiones
- Aplicar las especificaciones AISC al diseño de conexiones soldadas, atornilladas y soldadas entre vigas y columnas
- Analizar y diseñara sistemas estructurales reticulares
- Integrar las competencias adquiridas en el diseño estructural de un proyecto arquitectónico

6.- COMPETENCIAS PREVIAS. Determinar deformaciones en vigas

- Analizar vigas estáticamente Indeterminadas
- Análisis de Marcos de uno a cuatro niveles
- Propiedades y comportamiento de los materiales
- Conocimiento previo de software de análisis de estructuras de acero

7.- TEMARIO

	T =	
Unidad	Temas	Subtemas
		Propiedades mecánicas de los aceros
1	Consideraciones	Tipos de estructuras de acero
	generales del diseño	 Proceso de diseño estructural
		Factores de seguridad y de carga
		 Método elástico
		o Método plástico
		 Introducción a los estados limites de diseño
2	Miembros sujetos a	 Tipos de miembros a tensión
	tensión	 Esfuerzos permisibles
		o Área neta
		 Diseño para área neta
		 Relación de esbeltez, nomenclatura y
		conceptos a utilizar.
		 Soluciones típicas para miembros a tensión.
		 Ejemplos de aplicación
3	Miembros sujetos a	Tipos de columnas, condiciones de apoyo
	compresión	de los extremos de columnas, determinación
		de factor de longitud efectiva.
		 Pandeo de piezas, estados de equilibrio,
		Formula de Euler, pandeo elástico e
		inelástico.
		 Esfuerzos permisibles en columnas de
		acero.
		Relaciones espesor/esbeltez
		 Fórmulas empiricas para diseño de
		columnas de acero
		Soluciones típicas para columnas. (Axial y
		con Momento) o Diseño de columnas con las formulas de la
		O Diseno de columnas con las formulas de la AISC
		 Placas de base (axial y con momento)
		 Ejemplos de aplicación
4	Disaña da vigas par	Acción plástica de vigas
4	Diseño de vigas por	La articulación plástica
	teoría plástica	El módulo plástico
		Análisis plástico por el método de equilibrio
		 Análisis plástico por el método de trabajo.
		Requerimientos de la AISC para diseño
		plástico.
		pidolioo.

5	Conexiones Estructurales	 Conexiones remachadas, atornilladas y soldadas Eficiencia y diseno de conexiones Modos de falla de las conexiones remachadas Ventajas y desventajas de las uniones soldadas
6	Proyecto estructural	 Análisis de proyecto Diseño estructural del proyecto Bajada de cargas Cálculo estructural del proyecto en acero Memoria de cálculo Plano integral ejecutivo del proyecto, incluyendo cimentación y datos técnicos requeridos

8.- SUGERENCIAS DIDÁCTICAS. (desarrollo de competencias genéricas)

Con respecto a la finalidad, intención y enfoque de la asignatura es preciso puntualizar que:

- Aplicar técnicas de aprendizaje basado en problemas.
- Propiciar en actividades que fomenten el aprendizaje en equipo favoreciendo un ambiente solidario
- Participar en tutorías grupales conducidas por el profesor con equipos de estudiantes
- o Estimular el desarrollo de habilidades de análisis y síntesis
- o Análisis y resolución de ejercicios en clase
- Discusión de casos reales en clase
- o Taller dirigido al estudio de problemas y proyectos de diseño de casos típicos
- o Análisis y discusión del Reglamento AISC
- o Promover visitas de obra para conocer los distintos procesos constructivos
- o Promover la investigación documental
- o Vincular los aprendizajes adquiridos con el diseño estructural
- o Aplicar software en el Diseño de los elementos de una estructura de acero
- Fomentar el apego a la cultura de la legalidad, particularmente, en lo relacionado a los reglamentos y normas de construcción
- o Promover el desarrollo de los valores y actitudes de autoestima, perseverancia, objetividad, estudiosidad, empatía y responsabilidad

9.- SUGERENCIAS DE EVALUACIÓN.

La evaluación de la asignatura se hará con base en siguiente desempeño:

- Exámenes
- Prácticas de laboratorio
- Modelos elaborados
- Tareas y ejercicios
- Análisis de casos
- Participación en tutorías
- Participación en el aula
- Cumplimiento
- Avance de proyecto
- Presentación del proyecto final

•

UNIDADES DE APRENDIZAJE.

• Unidad 1: Consideraciones generales de diseño

Competencias específicas a desarrollar.	Actividades de aprendizaje.
 Examinar las especificaciones de los manuales AISC y IMCA Conceptualizar el proceso de diseño estructural Analizar los métodos de diseño 	 Examinar las propiedades mecánicas del acero estructural y los códigos de diseño Interpretar los distintos tipos de estructuras de acero, sus alcances y limitaciones. Analizara el proceso y diferenciara los métodos del diseño estructural en acero Definirá los estado limites de diseño

Unidad 2: Miembros sujetos a tensión

Competencias específicas a desarrollar.	Actividades de aprendizaje.
Analizar y diseñara miembros sujetos a tensión típicos de estructuras reticuladas. Aplicar el método LRFD al diseño de miembros a tensión.	 Identificar de comportamiento estructural de miembros a tensión. Aplicar los códigos y métodos de diseño vigentes Analizar soluciones típicas para miembros a tensión. Diseñar miembros a tensión

Unidad 3: Miembros sujetos a compresión

Competencias específicas a desarrollar.	Actividades de aprendizaje.
 Analizar y diseñara miembros sujetos a tensión típicos de estructuras reticuladas Diseñar placas de base Aplicar el método LRFD al diseño 	 Caracterizar los tipos de columnas y su comportamiento. Examinar los conceptos de falla de pandeo elástico e inelástico, estabilidad, carga crítica y relación de esbeltez. Aplicar las formulas empíricas para el análisis de columnas de acero. Identificar los perfiles estructurales apropiados para columnas Diseñar miembros sujetos a compresión, conforme a los códigos vigentes Determinar el dimensionado de placas de base

Unidad 4: Diseño de vigas por teoría plástica

Competencias específicas a desarrollar.	Actividades de aprendizaje.
 Diseñar vigas de acero estructural aplicando la teoría plástica Aplicar los códigos AISC 	 Trazar la distribución de esfuerzos de una sección rectangular y de una sección asimétrica con respecto a su eje de flexión Especificar en una viga estructural las secciones donde se producen articulaciones plásticas atendiendo a la sección del momento plástico. Calcular el módulo de selección para diferentes secciones transversales de acero estructural, para calcular el factor de forma tomando en cuenta el módulo e sección elástica. Evaluar los momentos plásticos que se presentan a las vigas continuas empleando el método de equilibrio. Determinar los momentos plásticos que se presentan en las vigas y marcos hiperestáticos por el método del trabajo virtual Diseñar vigas y marcos hiperestáticos con apego los códigos del AISC para el diseño plástico

Unidad 5: Conexiones estructurales

Competencias específicas a desarrollar.	Actividades de aprendizaje.
Determinar conexiones convenientes para un sistema estructurales.	 Describir en aula los tipos, características y comportamiento de los elementos de conexión Evaluar las ventajas y desventajas de los distintos tipos de conexiones estructurales Elaborar un cuadro sinóptico de diseños de conexiones trabe-columna

	soldadas, atornilladas y remachadas Relacionar la eficiencia y diseno de conexiones Identificaralos modos de falla de las conexiones remachadas soldadas Observar las normas AISC para juntas remachadas y atornilladas y normas AWS para uniones soldadas
--	---

Unidad 12: Proyecto estructural

npetencias específicas a arrollar.	Actividades de aprendizaje.
Aplicar el "saber hacer" adquirido en el curso en el desarrollo un proyecto de diseño estructural	 Analizar de proyecto el proyecto propuesto considerando los criterios de diseño apropiados Estructurar el proyecto Efectuar el análisis y bajada de carga Diseñar estructuralmente el proyecto Elaborar la memoria descriptiva y de cálculo del proyecto propuesto Dibujar el plano estructural completo con información técnica Aplicar software para el análisis y diseño estructural

11.- FUENTES DE INFORMACIÓN

Diseño de Estructuras de Acero-Bresler, Lin y Scalzi-Editorial LIMUSA
Diseño de Estructuras Metálicas-John E. LOthers-Editorial Prentice Hall
Diseño de Estructuras Metálicas-Jack C. McGraw-Hill
Manual AISC-American Institute for Steel Construction
Reglamento y normas técnicas de construcción de la entidad federativa correspondiente

12.- PRÁCTICAS PROPUESTAS.

- Resolución de problemas en grupo
- Estudio de casos
- Tutorías grupales
- Visitas de campo a obras de estructuras
- Prácticas en el centro cómputo empleando software actualizado para análisis y diseño de estructural.