9. Interpolation

Lemma 9.1. Suppose that \mathcal{L}_1 and \mathcal{L}_2 are languages and $\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2$. Suppose that \overline{B} is an \mathcal{L}_1 -structure and \overline{C} is an \mathcal{L}_2 -structure. Suppose that \overline{a} is a sequence of elements of B, \overline{c} is a sequence of elements of C, and $(\overline{B} \upharpoonright \mathcal{L}, \overline{a}) \equiv (\overline{C} \upharpoonright \mathcal{L}, \overline{c})$.

Then there exist an elementary extension \overline{D} of \overline{B} and an elementary embedding g of $\overline{C} \upharpoonright \mathcal{L}$ into $\overline{D} \upharpoonright \mathcal{L}$ such that $g \circ \overline{c} = \overline{a}$.

Note that the sequences \overline{a} and \overline{c} can both be empty, or both infinite; but they are of the same length.

Proof. This proof is patterned after that of Proposition 8.6. Our first goal is to obtain an isomorphic copy \overline{C}' of \overline{C} so that $B \cap C' = \operatorname{rng}(\overline{a})$. Let Q be a set such that $Q \cap B = \emptyset$ and $|Q| = |C \setminus \operatorname{rng}(\overline{c})|$. Let f be a bijection from $C \setminus \operatorname{rng}(\overline{c})$ onto Q. Define $C' = \operatorname{rng}(\overline{a}) \cup Q$. Note that $B \cap C' = \operatorname{rng}(\overline{a})$. Define $f' : C \to C'$ by setting, for any $d \in C$,

$$f'(d) = \begin{cases} a_i & \text{if } d = c_i, \\ f(d) & \text{if } d \in C \backslash \text{rng}(\overline{c}). \end{cases}$$

We now define a structure on C'. If R is an m-ary relation symbol of \mathcal{L}_2 , let

$$R^{\overline{C}'} = \{ d \in {}^{m}C' : (f')^{-1} \circ c \in R^{\overline{C}} \},$$

while if F is an m-ary function symbol of \mathcal{L}_2 and $d \in {}^mC'$ define

$$F^{\overline{C}'}(d) = f'(F^{\overline{C}}((f')^{-1} \circ d)).$$

Clearly f' is an isomorphism from \overline{C} onto \overline{C}' . Moreover, $(\overline{B} \upharpoonright \mathcal{L}, \overline{a}) \equiv (\overline{C}' \upharpoonright \mathcal{L}, \overline{a})$. In fact, for any sentence $\varphi(\overline{a})$ of \mathcal{L} we have

$$(\overline{B} \upharpoonright \mathscr{L}, \overline{a}) \models \varphi(\overline{a}) \quad \text{iff} \quad (\overline{C} \upharpoonright \mathscr{L}, \overline{c}) \models \varphi(\overline{c})$$
$$\text{iff} \quad (\overline{C}' \upharpoonright \mathscr{L}, \overline{a}) \models \varphi(\overline{a}).$$

Now we claim that $\operatorname{Eldiag}(\overline{B}) \cup \operatorname{Eldiag}(\overline{C'} \upharpoonright \mathscr{L})$ has a model. Here the same constants are used in $\operatorname{Eldiag}(\overline{B})$ and $\operatorname{Eldiag}(\overline{C'} \upharpoonright \mathscr{L})$ for the members of $\operatorname{rng}(\overline{a})$. If not, by the compactness theorem some finite subset fails to have a model. Say Δ_0 is a finite subset of $\operatorname{Eldiag}(\overline{B})$ and Δ_1 is a finite subset of $\operatorname{Eldiag}(\overline{C'} \upharpoonright \mathscr{L})$ such that $\Delta_0 \cup \Delta_1$ does not have a model. Then $\bigwedge \Delta_1$ has the form $\psi(c_{a(i_0)}, \ldots c_{a(i_{n-1})}, c_{d(0)}, \ldots, c_{d(m-1)})$ with each d(i) in $C' \backslash \operatorname{rng}(a)$. Thus

$$\Delta_0 \models \neg \psi(c_{a(i_0)}, \dots c_{a(i_{n-1})}, c_{d(0)}, \dots, c_{d(m-1)}).$$

Now the constants $c_{d(i)}$ do not occur in the formulas of Δ_0 . Hence, replacing each $c_{b(i)}$ by a new variable w_i we get

$$\Delta_0 \models \forall \overline{w} \neg \psi(c_{a(i_0)}, \dots, c_{a(i_{n-1})}, \overline{w}).$$

Since \overline{B}_B is a model of Δ_0 , we get

$$\overline{B}_B \models \forall \overline{w} \neg \psi(c_{a(i_0)}, \dots, c_{a(i_{n-1})}, \overline{w}),$$

hence

$$\overline{B}_{\operatorname{rng}(a)} \models \forall \overline{w} \neg \psi(c_{a(i_0)}, \dots, c_{a(i_{n-1})}, \overline{w}).$$

Hence by the above,

$$\overline{C}'_{\operatorname{rng}(a)} \models \forall \overline{w} \neg \psi(c_{a(i_0)}, \dots, c_{a(i_{n-1})}, \overline{w}).$$

But this is impossible.

Hence $\operatorname{Eldiag}(\overline{B}) \cup \operatorname{Eldiag}(\overline{C'} \upharpoonright \mathscr{L})$ has a model, say $(\overline{D}, h(b), k(c))_{b \in B, c \in C'}$, where $h(a_i) = k(a_i)$ for all i. By the elementary diagram lemma, h is an elementary embedding of \overline{B} into \overline{D} and k is an elementary embedding of $\overline{C'} \upharpoonright \mathscr{L}$ into $\overline{D} \upharpoonright \mathscr{L}$. Now let $\overline{D'}$ be an elementary extension of \overline{B} and l an isomorphism of \overline{D} with $\overline{D'}$ such that $l \circ h$ is the identity on B. Now $l \circ k \circ f'$ is an elementary embedding of $\overline{C} \upharpoonright \mathscr{L}$ into $\overline{D'} \upharpoonright \mathscr{L}$, and

$$l \circ k \circ f' \circ \overline{c} = l \circ k \circ \overline{a} = l \circ h \circ \overline{a} = \overline{a}.$$

Theorem 9.2. Suppose that \mathcal{L}_1 and \mathcal{L}_2 are languages and $\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2$. Suppose that \overline{B} is an \mathcal{L}_1 -structure and \overline{C} is an \mathcal{L}_2 -structure. Suppose that \overline{a} is a sequence of elements of $B \cap C$, and $(\overline{B} \upharpoonright \mathcal{L}, \overline{a}) \equiv (\overline{C} \upharpoonright \mathcal{L}, \overline{a})$.

Then there exist an $(\mathcal{L}_1 \cup \mathcal{L}_2)$ -structure \overline{D} and a function g such that $\overline{B} \preceq (\overline{D} \upharpoonright \mathcal{L}_1)$ and g is an elementary embedding of \overline{C} into $\overline{D} \upharpoonright \mathcal{L}_2$ such that $g \circ \overline{a} = \overline{a}$.

Proof. Define $B_0 = B$ and $C_0 = C$. We apply Lemma 9.1 to get $B_0 \leq B_1$ and an elementary embedding $g_0 : C \upharpoonright \mathscr{L} \to B_1 \upharpoonright \mathscr{L}$ such that $g_0 \circ \overline{a} = \overline{a}$. Let \overline{c} enumerate C_0 . Then we have $(C_0 \upharpoonright \mathscr{L}, \overline{c}) \equiv (B_1 \upharpoonright \mathscr{L}, g_0 \circ \overline{c})$, so we apply Lemma 9.1 to get $C_0 \leq C_1$ and $h_1 : B_1 \upharpoonright \mathscr{L} \to C_1 \upharpoonright \mathscr{L}$ such that $h_1 \circ g_0 \circ \overline{c} = \overline{c}$. This means that $h_1 \circ g$ is the identity on C_0 . Thus so far we have the following diagram:

Now suppose that C_i , B_{i+1} , C_{i+1} , g_i , and h_{i+1} have been defined so that B_{i+1} is an \mathcal{L}_1 -structure, $C_i \leq C_{i+1}$ are \mathcal{L}_2 -structures, $g_i : C_i \upharpoonright \mathcal{L} \to B_{i+1} \upharpoonright \mathcal{L}$ is an elementary embedding, $h_{i+1} : B_{i+1} \upharpoonright \mathcal{L} \to C_{i+1} \upharpoonright \mathcal{L}$ is an elementary embedding, and $h_{i+1} \circ g_i$ is the identity on C_i . Let \overline{b} enumerate B_{i+1} . Then $(B_{i+1} \upharpoonright \mathcal{L}, \overline{b}) \equiv (C_{i+1} \upharpoonright \mathcal{L}, h_{i+1} \circ \overline{b})$. So we can apply Lemma 9.1 and get $B_{i+1} \leq B_{i+2}$ and an elementary embedding g_{i+1} of $C_{i+1} \upharpoonright \mathcal{L}$ into $B_{i+2} \upharpoonright \mathcal{L}$ such that $g_{i+1} \circ h_{i+1} \circ \overline{b} = \overline{b}$. Thus $g_{i+1} \circ h_{i+1}$ is the identity on B_{i+1} . Then let \overline{d} enumerate C_{i+1} . So we have $(C_{i+1} \upharpoonright \mathcal{L}, \overline{d}) \equiv (B_{i+2} \upharpoonright \mathcal{L}, g_{i+1} \circ \overline{d})$, so by Lemma 9.1 we get $C_{i+1} \leq C_{i+2}$ and an elementary embedding h_{i+2} of $h_{i+2} \upharpoonright \mathcal{L}$ into $h_{i+2} \upharpoonright \mathcal{L}$ such that $h_{i+2} \circ g_{i+1}$ is the identity on h_{i+1} .

This completes the inductive definition; we have

We claim that $g_0 \subseteq g_1 \subseteq g_2 \subseteq \cdots$. For, if $c \in C_i$, then $g_{i+1}(c) = g_{i+1}(h_{i+1}(g_i(c))) = g_i(c)$. Also, $h_1 \subseteq h_2 \subseteq h_3 \subseteq \cdots$. For, if $b \in B_i$, then $h_{i+1}(b) = h_{i+1}(g_i(h_i(b))) = h_i(b)$.

Let $B_{\omega} = \bigcup_{i < \omega} B_i$ (an \mathscr{L}_1 -structure) and $C_{\omega} = \bigcup_{i < \omega} C_i$ (an \mathscr{L}_2 -structure). Let $k = \bigcup_{i < \omega} g_i$. Then k is an embedding of $C_{\omega} \upharpoonright \mathscr{L}$ into $B_{\omega} \upharpoonright \mathscr{L}$. Actually k is onto; for, given $b \in B_{\omega}$, say $b \in B_i$. Then $k(h_i(b)) = g_i(h_i(b) = b$. Thus k is an isomorphism of $C_{\omega} \upharpoonright \mathscr{L}$ onto $B_{\omega} \upharpoonright \mathscr{L}$. Now we expand B_{ω} to an $(\mathscr{L}_1 \cup \mathscr{L}_2)$ -structure D by defining, for any symbol S in $\mathscr{L}_2 \backslash \mathscr{L}_1 S^D = k(S^{C_{\omega}})$ (in the natural sense). Thus $B \preceq B_{\omega} = D \upharpoonright \mathscr{L}_1$. We claim that $g_0 : C \to D \upharpoonright \mathscr{L}_2$ is an elementary embedding. Since $C \preceq C_{\omega}$, it suffices to show that k is an isomorphism of C_{ω} onto $D \upharpoonright \mathscr{L}_2$. This is clear by the definition above. \square

If \mathscr{L} and \mathscr{L}' are languages with $\mathscr{L} \subseteq \mathscr{L}'$, and T is a theory in \mathscr{L}' , then we denote by $T_{\mathscr{L}}$ the set of all sentences φ of \mathscr{L} such that $T \models \varphi$.

Lemma 9.3. Let \mathcal{L} and \mathcal{L}' be languages with $\mathcal{L} \subseteq \mathcal{L}'$, and let T be a theory in \mathcal{L}' . Let \overline{M} be an \mathcal{L} -structure. Then $\overline{M} \models T_{\mathcal{L}}$ iff there is a model \overline{N} of T such that $\overline{M} \preceq \overline{N} \upharpoonright \mathcal{L}$.

Proof. \Rightarrow : Assume that $\overline{M} \models T_{\mathscr{L}}$. It suffices to show that $S \stackrel{\text{def}}{=} T \cup \text{Eldiag}(\overline{M})$ has a model. To apply the compactness theorem, suppose that there is a finite subset of it with no model. This finite subset has the form $\Delta_0 \cup \Delta_1$ with Δ_0 a finite subset of T and Δ_1 a finite subset of Eldiag(\overline{M}). This yields $T \models \neg \bigwedge \Delta_1$. Replacing the diagram constants in Δ_1 by variables, we obtain a formula $\varphi(\overline{w})$ such that $T \models \forall \overline{w} \neg \varphi(\overline{w})$, with $\overline{M} \models \exists \overline{w} \varphi(\overline{w})$. Then $\forall \overline{w} \neg \varphi(\overline{w}) \in T_{\mathscr{L}}$, hence $\overline{M} \models \forall \overline{w} \neg \varphi(\overline{w})$, contradiction.

←: obvious.

Theorem 9.4. Let \mathcal{L} , \mathcal{L}_1 , \mathcal{L}_2 be languages with $\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2$. Suppose that T_1 and T_2 are theories in \mathcal{L}_1 and \mathcal{L}_2 respectively, and $T_1 \cup T_2$ does not have a model. Then there is a sentence φ of \mathcal{L} such that $T_1 \models \varphi$ and $T_2 \models \neg \varphi$.

Proof. By the compactness theorem it suffices to show that $(T_1)_{\mathscr{L}} \cup T_2$ does not have a model. Suppose that \overline{M} is a model of $(T_1)_{\mathscr{L}} \cup T_2$. By Lemma 9.3 let \overline{N} be a model of T_1 such that $\overline{M} \upharpoonright \mathscr{L} \preceq \overline{N} \upharpoonright \mathscr{L}$. Then $\overline{M} \upharpoonright \mathscr{L} \equiv \overline{N} \upharpoonright \mathscr{L}$, so by Theorem 9.2 there exist an $(\mathscr{L}_1 \cup \mathscr{L}_2)$ -structure \overline{D} and a function g such that $\overline{N} \preceq \overline{D} \upharpoonright \mathscr{L}_1$ and g is an elementary embedding of \overline{M} into $\overline{D} \upharpoonright \mathscr{L}_2$. Since $\overline{N} \models T_1$ and $\overline{N} \preceq \overline{D} \upharpoonright \mathscr{L}_1$, it follows that $\overline{D} \models T_1$. Since $\overline{M} \models T_2$ and g is an elementary embedding of \overline{M} into $\overline{D} \upharpoonright \mathscr{L}_2$, it follows that $\overline{D} \models T_2$. So \overline{D} is a model of $T_1 \cup T_2$, contradiction.

Corollary 9.5. (Craig's interpolation theorem) If φ and ψ are sentences and $\models \varphi \rightarrow \psi$, then there is a sentence χ such that $\models \varphi \rightarrow \chi$, $\models \chi \rightarrow \psi$, and the non-logical symbols that occur in χ occur in both φ and ψ .

Proof. Assume that φ and ψ are sentences and $\models \varphi \to \psi$. Let \mathcal{L}_1 consist of all of the non-logical symbols occurring in φ , and let \mathcal{L}_2 consist of all of the non-logical symbols occurring in ψ . Let $\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2$. Let $T_1 = \{\theta : \theta \text{ is a sentence of } \mathcal{L}_1 \text{ and } \models \varphi \to \theta\}$ and let $T_2 = \{\theta : \theta \text{ is a sentence of } \mathcal{L}_2 \text{ and } \models \neg \psi \to \theta\}$. Then $T_1 \cup T_2$ does not have a model. Hence by Theorem 9.4 there is a sentence θ of \mathcal{L} such that $T_1 \models \theta$ and $T_2 \models \neg \theta$. Hence $\varphi \to \theta$ and $\theta \to \psi$.

Corollary 9.6. (Robinson's consistency theorem) Let \mathcal{L}_1 and \mathcal{L}_2 be languages, and let T_1 and T_2 be theories in \mathcal{L}_1 and \mathcal{L}_2 respectively, both of which have models. Let $\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2$. Suppose that $\{\varphi : \varphi \text{ is a sentence of } \mathcal{L} \text{ and } T_1 \models \varphi \text{ and } T_2 \models \varphi\}$ is a complete theory in \mathcal{L} . Then $T_1 \cup T_2$ has a model.

Proof. Suppose not. Then by Theorem 9.4 there is a sentence φ of \mathscr{L} such that $T_1 \models \varphi$ and $T_2 \models \neg \varphi$. This contradicts the completeness of the above theory.

Proposition 9.7. (Padoa's method) Let \mathcal{L} be a language and let S be a non-logical symbol of \mathcal{L} , and let T be a theory in \mathcal{L} . Suppose that \overline{M} and \overline{N} are models of T such that $\overline{M} \upharpoonright (\mathcal{L} - S) = \overline{N} \upharpoonright (\mathcal{L} - S)$ while $S^{\overline{M}} \neq S^{\overline{N}}$.

Then S is not definable in \mathcal{L} under T. That is, if S is an m-ary relation symbol then there does not exist a formula $\varphi(v_0,\ldots,v_{m-1})$ of $\mathcal{L}-S$ such that $T\models\forall\overline{v}[\varphi\leftrightarrow S\overline{v}];$ and similarly for function symbols and individual constants.

Proof. Assume the hypotheses, but suppose that such a formula φ exists. Then for \overline{b} in M we have

$$\begin{split} \overline{M} &\models S\overline{b} & \text{ iff } & \overline{M} \models \varphi[\overline{b}] \\ & \text{ iff } & \overline{M} \upharpoonright (\mathscr{L} - S) \models \varphi[\overline{b}] \\ & \text{ iff } & \overline{N} \upharpoonright (\mathscr{L} - S) \models \varphi[\overline{b}] \\ & \text{ iff } & \overline{N} \models \varphi[\overline{b}]. \end{split}$$

Thus $S^{\overline{M}} = S^{\overline{N}}$, contradiction.

Theorem 9.8. Let \mathcal{L} and \mathcal{L}^+ be languages with $\mathcal{L} \subseteq \mathcal{L}^+$. Let T be a theory in \mathcal{L}^+ and $\varphi(\overline{x})$ a formula of \mathcal{L}^+ . Then the following are equivalent:

- (i) If \overline{A} and \overline{B} are models of T and $\overline{A} \upharpoonright \mathscr{L} = \overline{B} \upharpoonright \mathscr{L}$, then for all tuples \overline{a} in A, $\overline{A} \models \varphi[\overline{a}]$ iff $\overline{B} \models \varphi[\overline{a}]$.
 - (ii) There is a formula $\psi(\overline{x})$ of $\mathscr L$ such that $T \models \forall \overline{x} [\varphi(\overline{x}) \leftrightarrow \psi(\overline{x})]$.

Proof. Clearly (ii) \Rightarrow (i). Now assume (i). Let

$$\Phi = T \cup \{\psi(\overline{c}) : \psi(\overline{x}) \text{ is a formula of } \mathscr{L} \text{ and } T \cup \varphi(\overline{c}) \models \psi(\overline{c})\}.$$

Clearly it suffices to show that any model $(\overline{A}, \overline{a})$ of Φ is a model of $\varphi(\overline{c})$.

(*) There is a model $(\overline{B}, \overline{a})$ of $T \cup \{\varphi(\overline{c})\}$ such that $(\overline{A} \upharpoonright \mathscr{L}, \overline{a}) \preceq (\overline{B} \upharpoonright \mathscr{L}, \overline{a})$.

To prove this, it suffices to show that the set

$$T \cup \operatorname{eldiag}(\overline{A} \upharpoonright \mathscr{L}) \cup \{\varphi(\overline{c})\}$$

has a model, where in eldiag($\overline{A} \upharpoonright \mathcal{L}$) the tuple \overline{c} corresponds to \overline{a} . Suppose not. Then we can write

$$T \vdash \varphi(\overline{c}) \to \forall \overline{y} \neg \psi(\overline{c}, \overline{y}),$$

where $(\overline{A} \upharpoonright \mathcal{L}, \overline{a}) \models \exists \overline{y} \psi(\overline{c}, \overline{y})$ and ψ is an \mathcal{L} -formula. But this means that $\forall \overline{y} \neg \psi(\overline{c}, \overline{y})$ is in Φ , contradiction. Thus (*) holds.

Let \mathscr{L}' be obtained from \mathscr{L}^+ by replacing each symbol S in $\mathscr{L}^+ \backslash \mathscr{L}$ by a new symbol S' of the same kind. Thus $\mathscr{L}' \cap \mathscr{L}^+ = \mathscr{L}$. With each \mathscr{L}^+ -structure \overline{C} let \overline{C}' be the \mathscr{L}' -structure such that $S^{\overline{C}'} = S^{\overline{C}}$ if S is in \mathscr{L} , and $(S')^{\overline{C}'} = S^{\overline{C}}$ for S a symbol of $\mathscr{L}^+ \backslash \mathscr{L}$. With each formula φ of \mathscr{L}^+ , let φ' be obtained from φ by a similar replacement. Clearly $\overline{C} \models \varphi(\overline{b})$ iff $\overline{C}' \models \varphi'(\overline{b})$ for any tuple \overline{b} .

Now we apply Theorem 9.2 to \overline{A}' and \overline{B} . We obtain an $(\mathcal{L}' \cup \mathcal{L}^+)$ -structure \overline{D} such that $\overline{A}' \preceq \overline{D} \upharpoonright \mathcal{L}'$ and an elementary embedding $g : \overline{B} \to \overline{D} \upharpoonright \mathcal{L}^+$. We can write $\overline{D} \upharpoonright \mathcal{L}' = \overline{E}'$ for some \mathcal{L}^+ -structure \overline{E} . Then $\overline{D} \upharpoonright \mathcal{L}^+$ and \overline{E} are models of T and $\overline{D} \upharpoonright \mathcal{L} = \overline{E} \upharpoonright \mathcal{L}$. Since $\overline{B} \models \varphi(\overline{a})$, it follows from (i) that $\overline{E} \models \varphi(\overline{a})$. Clearly $\overline{A} \preceq \overline{E}$, so $\overline{A} \models \varphi(\overline{a})$, as desired.

Corollary 9.9. (Beth's definability theorem) Let \mathcal{L} and \mathcal{L}^+ be languages with $\mathcal{L} \subseteq \mathcal{L}^+$. Let T be a theory in \mathcal{L}^+ and S a nonlogical symbol of \mathcal{L}^+ . Then the following are equivalent:

- (i) If \overline{A} and \overline{B} are models of T and $\overline{A} \upharpoonright \mathscr{L} = \overline{B} \upharpoonright \mathscr{L}$, then $S^{\overline{A}} = S^{\overline{B}}$.
- (ii) There is a formula $\psi(\overline{x})$ of \mathscr{L} such that $T \models \forall \overline{x}[S(\overline{x}) \leftrightarrow \psi(\overline{x})].$