

# planetmath.org

Math for the people, by the people.

## Schwarz (1975) theorem

Canonical name Schwarz1975Theorem
Date of creation 2013-03-22 13:40:06
Last modified on 2013-03-22 13:40:06
Owner mathcam (2727)
Last modified by mathcam (2727)

Numerical id 9

Author mathcam (2727)

Entry type Theorem Classification msc 13A50

#### theorem:

Let  $\Gamma$  be a compact Lie group acting on V. Let  $u_1, \ldots, u_s$  be a Hilbert basis for the  $\Gamma$ -invariant polynomials  $\mathcal{P}(\Gamma)$  (see Hilbert-Weyl theorem). Let  $f \in \mathcal{E}(\Gamma)$ . Then there exists a smooth germ  $h \in \mathcal{E}_s$  (the ring of  $C^{\infty}$  germs  $\mathbb{R}^s \to \mathbb{R}$ ) such that  $f(x) = h(u_1(x), \ldots, u_s(x))$ . [?]

#### proof:

The proof is shown on page 58 of [?].

theorem: (as stated by Gerald W. Schwarz)

Let G be a compact Lie group acting orthogonally on  $\mathbb{R}^n$ , let  $\rho_1, \ldots, \rho_k$  be generators of  $\mathcal{P}(\mathbb{R}^n)^G$  (the set G-invariant polynomials on  $\mathbb{R}^n$ ), and let  $\rho = (\rho_1, \ldots, \rho_k) : \mathbb{R}^n \to \mathbb{R}^k$ . Then  $\rho * \mathcal{E}(\mathbb{R}^k) = \mathcal{E}(\mathbb{R}^n)^G$ . [?]

#### proof:

The proof is shown in the following publication [?].

### References

- [GSS] Golubitsky, Martin. Stewart, Ian. Schaeffer, G. David: Singularities and Groups in Bifurcation Theory (Volume II). Springer-Verlag, New York, 1988.
- [SG] Schwarz, W. Gerald: Smooth Functions Invariant Under the Action of a Compact Lie Group, *Topology* Vol. 14, pp. 63-68, 1975.