

Computer Security

What is Cryptography?

Hyoungshick Kim

Department of Software
College of Software
Sungkyunkwan University

Cryptography

"secret"

"writing"

Crypto as black box

Tools for confidentiality and Integrity

Types of crypto systems

Symmetric

(decryption key = encryption key)

Public or Asymmetric

(decryption key != encryption key)

A framework for crypto

- Cryptography (making), cryptanalysis (breaking), cryptology (both)
- Traditional cryptanalysis what goes wrong with the design of the algorithms
- Then what goes wrong with their implementation (power analysis, timing attacks)
- Then what goes wrong with their use

How to speak Crypto

- A cipher or cryptosystem is used to encrypt the plaintext
- The result of encryption is ciphertext
- We decrypt ciphertext to recover plaintext
- A key is used to configure a cryptosystem
- A symmetric key cryptosystem uses the same key to encrypt as to decrypt
- A public key cryptosystem uses a public key to encrypt and a private key to decrypt

Things to remember

- Cryptography is:
 - a tremendous tool
 - the basis for many security mechanisms
- Cryptography is not:
 - the solution to all security problems
 - reliable unless implemented and used properly
 - something you should try to invent yourself
 - » too many examples of broken ad-hoc designs

"If you think cryptography is the answer to your problem, you don't know what your problem is."

Peter G. Neumann

Three steps in cryptography

1. Precisely specify a threat (or attack) model

2. Propose a construction

3. Prove that breaking construction under the threat model will solve an underlying hard problem (security proof)

Questions?

