

A SPATIOTEMPORAL DATA AGGREGATION TECHNIQUE FOR PERFORMANCE ANALYSIS OF LARGE-SCALE EXECUTION TRACES

IEEE Cluster 2014 - 25th September 2014

Damien Dosimont ^{1 2}, Robin Lamarche-Perrin ³, Lucas M. Schnorr ⁴, Guillaume Huard ^{2 1}, Jean-Marc Vincent ^{2 1}

 $^{^{\}rm 1}$ Inria, $^{\rm 2}$ Univ. Grenoble Alpes, LIG, CNRS, F-38000 Grenoble, France first.last@imag.fr

³ MPI for Mathematics in the Sciences, 04103 Leipzig, Germany robin.lamarche-perrin@mis.mpq.de

⁴ Informatics Institute, UFRGS, Porto Alegre schnorr@inf.ufrgs.br

TRACE VISUALIZATION PROBLEMATIC

- ► Trace contents:
 - **SPACE** = application structure:
 - ▶ hardware components: clusters, machines, cores, etc.

- **software** components: *processes, threads, etc.*
- TIME = timestamped events:
 - ▶ function calls, communications, CPU load, malloc, etc.
- ► Traces can be **HUGE**
 - → **scalability issues** of space-time representations

PROBLEMATIC VISUALIZATION

OBJECTIVE: SPATIOTEMPORAL OVERVIEW...

Overcoming these issues thanks to data aggregation

Spatiotemporal data aggregation

► Showing meaningful information

Spatiotemporal data aggregation

TABLE OF CONTENTS

- 1. Introduction
- 2. Previous works
- 3. Spatiotemporal data aggregation
- 4. Conclusion

ADAPTING AN AGGREGATION METHODOLOGY

DATA AGGREGATION METHODOLOGY

- ▶ A1 Choose a model and a metric
- ► A2. Choose on which dimension(s) aggregate
- ► A3. Define the operands
- \blacktriangleright A4. **Constrain** the aggregation : \rightarrow partitions $\mathcal P$ allowed

- ► A5. Define the **operator**
- ► A6. Define the **trigger** the aggregation condition
- A7. Build the algorithm satisfying A1-A6

INFORMATION LOSS: KL DIVERGENCE

COMPLEXITY REDUCTION: SHANNON ENTROPY

TRADE-OFF: PIC

- \blacktriangleright For a given p : choose \mathcal{P} with the highest pIC
- Aggregate in priority most homogeneous values

VIVA: SPATIAL AGGREGATION

Introduction

Introduction

OCELOTL: TEMPORAL AGGREGATION

Spatiotemporal data aggregation

SPATIOTEMPORAL CRITERIA

- ▶ M1. Spatiotemporal representation
- ► M2. Aggregation coherence

SPATIOTEMPORAL DATA AGGREGATION

A.1 MICROSCOPIC MODEL

$$|X| = 2$$
, $\rho_x(s,t) = d_x(s,t)/d(t) \in [0,1]$, $\rho_1(s,t) = 1 - \rho_2(s,t)$

A2-A5

- ▶ A2. We aggregate simultaneously on T and S
- ▶ A3. Operands: $(s, t) \in S \times T$
- ▶ A4. Constraint: $\mathcal{A}(S \times T) = \mathcal{H}(S) \times \mathcal{I}(T)$ Aggregation result is a partition $\mathcal{P}(S \times T) \in \mathcal{A}(S \times T)$
- ► A5. Operator: +
- ▶ A6. Trigger: maximize pIC of the partition $\mathcal{P}(S \times T)$

BEST CUT ALGORITHM

- ► Compute the partition with the highest pIC :
 - Cut an area: time, space (or no cut)
 - Best cut: the partition \mathcal{P} where $\sum_{E \in \mathcal{P}} \text{pIC}_E$ is max
 - Recursively cut and evaluate the partitions of $E_1, E_2 \in \mathcal{P}$
 - Useless recomputation is avoided

INFLUENCE OF P

Introduction

CG CLASS C, 64 PROCESSES ON G5K RENNES

LU CLASS C, 700 PROCESSES ON G5K NANCY

PERFORMANCES

	Case A	Case B	Case C	Case D
Application Processes	CG, class C 64	CG, class C 512	LU, class C 700	LU, class B 900
Site	Rennes	Grenoble	Nancy	Rennes
Clusters (nodes)	parapide(8)	adonis(9), edel(24), genepi(31)	graphene(26), graphite(4), griffon(67)	paradent(38), parapide(21), parapluie(18)
Event number	3,838,144	49,149,440	218,457,456	177,376,729
Trace size	136.9 MB	1.8 GB	8.3 GB	6.7 GB

Ocelotl computation times (30 time slices)					
Trace reading + Microscopic description	5s	31 s	222 s	174 s	
Aggregation	<1s	<1s	2s	2s	

CONCLUSION

- Visualization based on spatiotemporal data aggregation
 - Solves screen, computing and analyst capability limitations

- · Gives meaningful information about homogeneity (phases, perturbations)
- Two use cases show its relevancy
- Future work :
 - Improve visualization and interaction to get more details
 - Extend methodology and design new algorithms $(\mathcal{H}(S) \times \mathcal{H}(S) \times \mathcal{I}(T)$, surface, etc.)

LINKS

Ocelotl:

http://github.com/dosimont/ocelotl

Framesoc:

http://github.com/generoso/framesoc

Viva:

http://github.com/schnorr/viva

THANK YOU FOR YOUR ATTENTION

Introduction

OCELOTL: TEMPORAL AGGREGATION (1)

OCELOTL: TEMPORAL AGGREGATION (2)

ELMQVIST-FEKETE CRITERIA

▶ Shneiderman : overview, zoom and filter, then get details on demand

- ► Elmqvist & Fekete: guidelines to design an overview visualization based on hierarchical aggregation
 - G1. Entity Budget
 - G2. Visual Summary
 - G3. Visual Simplicity
 - G4. Discriminability
 - G5. Fidelity
 - G6. Interpretability

Introduction

VISUALIZATIONS NOT FULFILLING THESE CRITERIA (1)

Example of Gantt chart - space-time diagram

VISUALIZATIONS NOT FULFILLING THESE CRITERIA (2)

KPTrace: G1 (time), G2, G4, G5

Introduction

VISUALIZATIONS NOT FULFILLING THESE CRITERIA (2)

Pajé: G1 (space), G2