CREDIT CARD FRAUD DETECTION

Case Study and Dataset Report

Prepared by: Shreyas A

Submission / Due date: 15 September 2025 (Monday)

Abstract

This case study analyses a widely used credit card transaction dataset for fraud detection. The goal is to describe the data, present key statistics, show representative sample records, and provide insights for high-risk transaction detection. The dataset is anonymized and commonly used for benchmarking fraud detection models.

1. Introduction

Financial fraud—especially credit card fraud—poses significant losses to financial institutions and customers. Machine learning offers tools for detecting anomalous transactions automatically. This report studies a representative credit card transaction dataset and highlights data characteristics critical for model building.

2. Dataset Overview

Dataset Name: Credit Card Fraud Detection (representative subset)

Source: Kaggle (ULB Machine Learning Group) — original dataset typically contains 284,807 rows and 31 columns.

Subset used in this report: 1,000 transactions × 8 features (for demonstration).

Features (subset): Time, V1–V5 (anonymized PCA features), Amount, Class (0 = Non-Fraud, 1 = Fraud).

3. Key Metrics and Data Dictionary

Key metrics: number of transactions, fraud rate, transaction amount distribution, missing values (none in this subset).

Attribute	Туре	Description
Time	Numeric	Seconds elapsed between this transaction and the first transaction in the dataset
V1–V5	Numeric	Anonymized principal components (PCA) derived features; represent transformed confidential features
Amount	Numeric	Transaction amount in the recorded currency
Class	Categorical	Target label (0 non-fraud, 1 fraud)

4. Sample Records from Dataset (first 20 rows)

Time	V1	V2	V3	V4	V5	Amount	Class
121958.0	-2.289061	-1.313758	-0.452562	-0.392802	0.224787	647.02	0.0
146867.0	1.432482	-1.095302	-0.12991	-1.362911	-1.017335	1678.32	0.0
131932.0	1.214722	-0.168797	0.581433	0.69902	0.964415	1311.92	0.0
103694.0	-0.880864	0.110956	-0.203236	-0.24351	0.362543	558.11	0.0
119879.0	-0.881879	0.78697	1.110118	0.015365	-1.135162	1935.8	0.0
110268.0	0.512605	-0.891133	-0.404604	-0.578267	-1.606238	649.87	0.0
54886.0	-0.012744	-1.063109	-0.389535	0.475271	-0.977338	1996.49	0.0
137337.0	1.054395	0.138087	1.05198	0.198696	0.836302	1992.37	0.0
168266.0	0.479581	-0.258401	-0.763124	1.212784	-0.301602	390.51	0.0
87498.0	1.583031	0.926721	0.248929	0.480599	0.081143	632.35	0.0
112727.0	0.970078	0.48736	-1.660483	-0.202684	-1.33853	977.23	0.0
126324.0	0.720773	0.555379	1.819639	-0.739717	0.863219	1331.56	0.0
16023.0	-0.352125	-0.104481	1.206552	0.865953	-2.015184	1060.81	0.0
41090.0	-0.425321	2.35558	2.750107	-0.282576	-0.655378	1939.19	0.0
67221.0	-0.051759	-0.837748	1.338364	-0.171718	0.418464	1450.74	0.0
64820.0	1.840943	0.61081	-1.12965	-0.171972	-1.122631	431.97	0.0
769.0	-0.406275	-1.26969	0.66865	-0.401608	0.614129	219.14	0.0
59735.0	0.260529	-1.073468	-0.918009	-0.154539	-0.869194	1379.92	0.0
64925.0	-2.244803	-0.607346	1.578038	1.926208	-1.226071	325.32	0.0
5311.0	0.675809	1.629323	-1.10114	-1.047822	1.286482	1577.48	0.0

5. Data Exploration

Class Distribution:

Transaction Amount Distribution:

Total transactions (subset): 1000 Non-Fraud (Class=0): 994 transactions

Fraud (Class=1): 6 transactions Fraud rate (subset): 0.600%

6. High-Risk Transaction Detection (Insights)

This section adapts the 'influencer detection' concept into high-risk transaction detection. Criteria for flagging high-risk transactions often include high transaction amount, rare patterns in anonymized features, and unusual time/frequency behaviour. Below are practical criteria and findings:

Criteria	Rationale		
High Amount (e.g., > 90th percentile)	Large transactions are more attractive to fraudsters		
Anomalous PCA features (V1–V5 outliers)	PCA components capture unusual behaviour across features		
Multiple transactions in short time window	Bursts can indicate automated fraudulent attempts		
Low historical frequency for card/user	Unusual activity relative to past behaviour		

Findings:

- The dataset is highly imbalanced: fraud events are very rare (~0.600% in subset).
- High-value transactions exist but are uncommon; combining amount and anomaly detection is effective.
- PCA features (V1–V5) are useful for model inputs but require interpretability approaches for real-world deployment.

7. Challenges and Recommendations

- Class imbalance: use oversampling (SMOTE), anomaly detection, or cost-sensitive learning.
- Privacy & anonymization: feature interpretability is limited; use additional contextual data when permitted.
- Continuous learning: fraud patterns evolve, so periodic model retraining and monitoring are necessary.

8. Conclusion

The Credit Card Fraud Detection dataset offers a compact and practical benchmark for fraud detection research. This report presented dataset details, sample data, exploratory charts, and an insights-style high-risk transaction section to guide feature selection and detection strategies. Proper handling of class imbalance and continuous model updates are critical for real-world effectiveness.