Expectation-Maximization Algorithms for Itakura-Saito Nonnegative Matrix Factorization

Paul Magron, Tuomas Virtanen

Laboratory of Signal Processing, Tampere University of Technology, Finland

Motivation

- ► ISNMF is popular for audio source separation.
- Estimation: maximum-likelihood (ML) or the SAGE variant of EM, which performs worse than ML.
 - → What about alternative EM algorithms?

Baseline ISNMF [1]

- STFT mixture: $\mathbf{X} = \sum_{j} \mathbf{S}_{j}$
- ► Gaussian sources: $s_{j,ft} \sim \mathcal{N}(0, v_{j,ft})$
- NMF variances: $V_i = W_i H_i$

- ML estimation: $\max p(\mathbf{X}; \mathbf{W}, \mathbf{H}) \Leftrightarrow \min D_{\mathsf{IS}}(\mathbf{V}, \mathbf{WH}) \text{ with } \mathbf{V} = |\mathbf{X}|^{\odot 2}$
- ▶ Minimization of $D_{\mathsf{IS}} \to \mathsf{multiplicative}$ update rules:

$$\mathbf{W} \leftarrow \mathbf{W} \odot \frac{([\mathbf{W}\mathbf{H}]^{\odot - 2} \odot \mathbf{V})\mathbf{H}^{T}}{[\mathbf{W}\mathbf{H}]^{\odot - 1}\mathbf{H}^{T}} \text{ and } \mathbf{H} \leftarrow \mathbf{H} \odot \frac{\mathbf{W}^{T}([\mathbf{W}\mathbf{H}]^{\odot - 2} \odot \mathbf{V})}{\mathbf{W}^{T}[\mathbf{W}\mathbf{H}]^{\odot - 1}}$$

EM framework

Instead of the likelihood, maximize:

$$Q = \int p(\mathbf{Z}|\mathbf{X}; \Theta') \log p(\mathbf{X}, \mathbf{Z}; \mathbf{W}, \mathbf{H}) d\mathbf{Z}$$

- \triangleright Θ' = current estimates of the parameters;
- **Z** = latent variables (sources or rank-1 NMF components).

Alternate between:

- ► E-step: compute Q given Θ' ;
- ightharpoonup M-step: maximize Q it with respect to W/H

 \triangle Computing the joint posterior $p(\mathbf{Z}|\mathbf{X};\Theta')$ is difficult.

The **SAGE variant** [1] approximates Q:

- No need to compute the joint posterior distribution.
- ▶ ^② Updates are sequential.

Proposed algorithms

Key-idea: we can compute the joint posterior.

- ▶ \mathcal{J} sources, but $\mathcal{J} 1$ latent variables: $\mathbf{Z} = [\mathbf{S}_1, ..., \mathbf{S}_{\mathcal{J}-1}]$.
- Last source $S_{\mathcal{I}}$ = a degree of freedom.
- ► The joint posterior becomes non-degenerate.

$$\max \mathcal{Q} \Leftrightarrow \min \sum_{j} D_{\mathsf{IS}}(\mathbf{P}_{j}, \mathbf{W}_{j}\mathbf{H}_{j})$$

where P_i is the posterior power of S_i .

- ▶ Minimization of $D_{\mathsf{IS}} \to \mathsf{multiplicative}$ update rules:
 - V, W and H are replaced by P_j , W_j and H_j .
- Updates can be done in parallel.

Other algorithms: different sets of latent variables:

- ► SAGE variant with **Z** = sources;
- \triangleright EM with $\mathbf{Z} = \text{rank-1 NMF components.}$

Speech separation experiments

- ► Two speakers (male and female) from the GRID corpus.
- For each speaker, 100 sentences (= a sequence of six words):
 - \triangleright 90 = training material for learning the dictionaries W_i ;
 - ▶ 10 = test material for performing the separation.
- ► Separation quality: signal to distortion, interference and artifact ratios (SDR, SIR and SAR).

	SDR	SIR	SAR	Time
ML	7.0	15.4	7.8	3.6
SAGE	2.4	7.0	5.1	25.3
EM	7.1	15.1	8.0	6.7

- ► SAGE: time consuming, poor convergence and separation.
- ► EM outperforms SAGE and competes with ML: slightly more interference but less artifacts / overall distortion.

Conclusion

Novel EM algorithms for ISNMF that outperform SAGE and compete with ML

Applications: estimate more sophisticated models with non-tractable likelihood, e.g. [2].

References

- [1] C. Févotte, N. Bertin, and J.-L. Durrieu, "Nonnegative matrix factorization with the Itakura-Saito divergence: with application to music analysis", in Neural Computation, March 2009.
- [2] P. Magron and T. Virtanen, "Complex ISNMF: a phase-aware model for monaural audio source separation", to be published in the IEEE Trans. on Audio, Speech, and Language Processing, 2018.

