Math 493 Lecture 7

Thomas Cohn

9/25/19

Direct Sums

Let V be a vector space, $W_1, \ldots, W_r \subseteq V$ subspaces.

Defn: W_1, \ldots, W_r are independent if $w_1 = \ldots + w_r = 0$, for $w_i \in W_i$, then $w_i = 0$.

Defn: We let $W_1 + \cdots + W_r = \{w_1 = \cdots + w_r \mid w_i \in W_i\}.$

Observations:

- 1. $W_1 + \cdots + W_r$ is a subspace.
- 2. Suppose $v_1, \ldots, v_r \in V$ are nonzero. Put $W_i = \operatorname{span}(v_i) = \{av_i \mid a \in K\}$. Then W_1, \ldots, W_r are independent if and only if v_1, \ldots, v_r are linearly independent. Additionally, $W_1 + \cdots + W_r = \operatorname{span}(v_1, \ldots, v_r)$.
- 3. r = 2: W_1 and W_2 are independent if and only if $W_1 \cap W_2 = \{0\}$. Reason: say W_1 and W_2 are independent, $v \in W_1 \cap W_2$. Then v + (-v) = 0, and we have $v \in W_1$, $-v \in W_2$. So v = 0.

Defn: V is the (internal) direct sum of W_1, \ldots, W_r , written $V = W_1 \oplus \cdots \oplus W_r$ if W_1, \ldots, W_r are independent and $W_1 + \cdots + W_r = V$.

Observe: $V = W_1 \oplus \cdots \oplus W_r$ if and only if every $v \in V$ can be written uniquely in the form $w_1 = \cdots + w_r$, with $w_i \in W_i$.

Reason: suppose $v = w_1 + w_2 + \dots + w_r = w'_1 + w'_2 + \dots + w'_r$. Then $0 = (w_1 - w'_1) + \dots + (w_r - w'_r)$ (each $w_i - w'_i \in W_i$). Because the W_i are independent, we must have $w_i - w'_i = 0$, so $w_i = w'_i$.

Ex: $K = \mathbb{C}, \ V = M_{n \times n}(\mathbb{C}). \ W_1 = \{ m \in V \mid {}^T m = m \}, \ W_2 = \{ m \in V \mid {}^T m = -m \}.$ Claim: $V = W_1 \oplus W_2.$

- $V = W_1 + W_2$: Given $m \in V$, $m = \left(\frac{m + T_m}{2}\right) + \left(\frac{m T_m}{2}\right)$. $\frac{m + T_m}{2} \in W_1$ and $\frac{m T_m}{2} \in W_2$.
- $W_1 \cap W_2 = \{0\}$. If $m \in W_1 \cap W_2$, then $m = {}^T m = -{}^T m$. So m = 0.

Let V be a vector space, and $U \subseteq V$ a subspace.

Defn: A subspace W of V is called a **complement** to U if $V = U \oplus W$.

Prop: Every subspace U has at least one complement.

Proof: Pick a basis S (possibly infinite) of U. Extend S to a basis T of V. Define $W = \operatorname{span}(T \setminus S)$. Claim that $V = U \oplus W$.

Well, V = U + W. Let $v \in V$. Write $v = a_1x_1 + \cdots + a_nv_n$, $a_i \in K$, $x_i \in T$. Assume $x_i \in S$ for $1 \le i \le k$, $x_i \in T \setminus S$ for $k + 1 \le i \le n$.

Now, independence. Suppose u + w = 0, $u \in U$, $w \in W$. Write

$$u = a_1 x_1 + \dots + a_n x_n \quad (a_i \in K, x_i \in S)$$

$$w = b_1 y_1 + \dots + b_m y_m \quad (b_i \in K, y_i \in T \setminus S)$$

So

$$u + w = a_1 x_1 = \dots + a_n x_n + b_1 y_1 = \dots + b_m y_m$$

T is a basis, and $v_i \in T$, $w_i \in T$, so $a_i = 0$ and $b_j = 0$, $\forall i, j$. So u = 0 and w = 0. \square

Ex: $V = \mathbb{C}^2, U = \text{span}(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) = \{ \begin{bmatrix} a \\ 0 \end{bmatrix} \mid a \in \mathbb{C} \}.$

Claim: if $w = \begin{bmatrix} b \\ 1 \end{bmatrix}$, for any $b \in \mathbb{C}$, then $W = \operatorname{span}(w)$ is a complement of U. Reason: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} b \\ 1 \end{bmatrix}$ are a basis for \mathbb{C}^2 .

In fact, any line other than the x-axis is a complement to U.

Prop: V is a vector space, $U, W \subseteq V$ subspaces. Let $\pi: V \to V/U$ be the quotient map. Then W is complement to U if $\pi|_W: W \to V/U$ is an isomorphism.

Proof: $\ker(\pi|_W) = \{w \in W \mid \pi(w) = 0\} = \{w \in W \mid w \in \ker(\pi)\} = W \cap \ker(\pi) = W \cap U.$ $\pi|_W$ is injective $\Leftrightarrow W \cap U = \{0\} \Leftrightarrow W, V$ independent.

Suppose $\bar{v} \in \operatorname{im}(\pi|_W)$, $\bar{v} = \bar{w}$ where $w \in W$. So $\overline{v - w} = 0$, thus, $v - w \in U$. v = w + u, with $w \in W$ and $u \in U$. Conversely, if v = w + u, $w \in W$, $u \in U$, then $\bar{v} = \bar{w}$ because $\bar{u} = 0$.

 $\operatorname{im}(\pi|_W) = \{\bar{v} \mid v \in U + W\}$. So $\pi|_W$ is surjective if and only if U + W = V. \square

Cor: Suppose V is finite dimensional, and U, W are complements. Then $\dim V = \dim U + \dim W$. Proof: $\dim V = \dim U + \dim V/U = \dim U + \dim W$, because $W \cong V/U$. \square

External Direct Sums

Let U and W be vector spaces over K.

Defn: The (external) direct sum $U \oplus W$ is the set of all ordered pairs (u, w) with $u \in U, w \in W$.

The external direct sum is a vector space:

- (u, w) + (u', w') = (u + u', w + w')
- \bullet a(u,v) = (au,av)

Let $\bar{u} = \{(u,0) \mid u \in U\} \subseteq U \oplus W \text{ and } \bar{w} = \{(0,w) \mid w \in W\} \subseteq U \oplus W.$

Then $U \oplus W$ is the internal direct sum of \bar{u} and \bar{w} .

Linear Transformations

Let $T: V \to W$ be a linear transformation.

Defn: $ker(T) = \{v \in V \mid T(v) = 0\}.$

Defn: $im(T) = \{ w \in W \mid \exists v \in V \text{ s.t. } T(v) = w \}.$

Facts:

- 1. ker(T) is a subspace of V.
- 2. im(T) is a subspace of W.
- 3. T is injective if and only if $ker(T) = \{0\}$.
- 4. First isomorphism theorem holds: T induces an isomorphism $V/\ker(T) \to \operatorname{im}(T)$.

Defn: Suppose V is a finite dimensional vector space. The rank of T is $\dim(\operatorname{im}(T))$. The nullity of T is $\dim(\ker(T)).$

Thm: (Rank-Nullity) $rank(T) + nullity(T) = \dim V$.

Proof: $\dim V = \dim V / \ker(T) + \dim(\ker(T)) = \dim(\operatorname{im}(T)) + \dim(\ker(T))$, by the first isomorphism theorem. \square

Ex: $V = P_{\leq d} = \{\text{polynomials of degree } \leq d\}, K = \mathbb{C}.$ $T = V \to V$ is a linear transformation.

 $\begin{array}{l} f\mapsto \frac{df}{dx}\\ \text{Then }\dim P_{\leq d}=\text{nullity}(T)+\text{rank}(T)=1+d=d+1.\\ \text{Note: if we work over }\mathbb{F}_p, \text{ then } \frac{d}{dx}(x^p)=px^{p-1}=0, \text{ so nullity can be greater than }1. \end{array}$

Let A be an $n \times m$ matrix (i.e. n rows, m columns) over K. Define a linear transformation $T_A: K^m \to K^n$ by $T_A(v) = Av$.

Prop: Every linear transformation $T: K^m \to K^n$ has the form T_A for a unique matrix A.

Proof: write

$$A = \begin{bmatrix} | & & | \\ v_1 & \cdots & v_m \\ | & & | \end{bmatrix}$$

with $v_i \in K^n$. Then $T_A(e_i) = v_i$.

If $T_A = T_B$, write

$$B = \begin{bmatrix} | & & | \\ w_1 & \cdots & w_m \\ | & & | \end{bmatrix}$$

 $T_A(e_i) = T_B(e_i)$, so $v_i = w_i$. Thus, A = B.

Given an arbitrary T, put $v_i = T(e_i)$ and

$$A = \begin{bmatrix} | & & | \\ v_1 & \cdots & v_m \\ | & & | \end{bmatrix}$$

Then $T(e_i) = v_i = T_A(e_i)$, so $T = T_A$. Let $v = \sum a_i e_i$. Then $T(v) = T(\sum a_i e_i) = \sum a_i T(e_i) = \sum a_i T_A(e_i) = T_A(\sum a_i e_i) = T_A(v)$. \square