Study Notes March 19, 2011 Kenneth Chu

1 Support Vector Machines for Two-Class Classification

$$\mathcal{D} = \{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_m, y_m) \}, \quad \mathbf{x}_i \in \mathbb{R}^d, \quad y_i \in \{-1, 1\}$$

Reminder:

• Let $\mathbf{n}, \mathbf{z} \in \mathbb{R}^d$, with $\mathbf{n} \neq \mathbf{0}$, be given. The hyperplane $H_{\mathbf{n}, \mathbf{z}} \subset \mathbb{R}^d$ with normal vector \mathbf{n} and containing the point \mathbf{z} is given by:

$$H_{\mathbf{n},\mathbf{z}} := \left\{ \left. \mathbf{x} \in \mathbb{R}^d \mid \left\langle \left. \mathbf{x} - \mathbf{z} \,,\, \mathbf{n} \right\rangle = 0 \right. \right\} = \left. \left\{ \left. \mathbf{x} \in \mathbb{R}^d \mid \left\langle \left. \mathbf{x} - \mathbf{z} \,,\, \frac{\mathbf{n}}{\left\| \, \mathbf{n} \, \right\|} \right. \right\rangle = 0 \right. \right\} = \left. \left\{ \left. \mathbf{x} \in \mathbb{R}^d \mid \left\langle \left. \mathbf{x} - \mathbf{z} \,,\, \widehat{\mathbf{n}} \right\rangle = 0 \right. \right\}$$

- Note that $H_{\mathbf{n},\mathbf{z}} = H_{\alpha\mathbf{n},\mathbf{z}}$, for any $\alpha \neq 0$.
- Let $\mathbf{x} \in \mathbb{R}^d$. The distance between \mathbf{x} and the hyperplane $H_{\mathbf{n},\mathbf{z}}$ is given by:

$$\operatorname{dist}(\mathbf{x}, H_{\mathbf{n}, \mathbf{z}}) = \left| \left\langle \mathbf{x} - \mathbf{z}, \frac{\mathbf{n}}{\|\mathbf{n}\|} \right\rangle \right|$$

This implies:

$$||\mathbf{n}|| \cdot \operatorname{dist}(\mathbf{x}, H_{\mathbf{n}, \mathbf{z}}) = |\langle \mathbf{x} - \mathbf{z}, \mathbf{n} \rangle|$$

• Note that $\operatorname{dist}(\mathbf{x}, H_{\mathbf{n}, \mathbf{z}})$ is well-defined, i.e. it depends only on the point \mathbf{x} and the hyperplane $H_{\mathbf{n}, \mathbf{z}}$, and is indeed independent of the particular choice of the normal vector \mathbf{n} and the point $\mathbf{z} \in H_{\mathbf{n}, \mathbf{z}}$.

Lemma 1.1 Let $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathbb{R}^d$ and a hyperplane $H_{\mathbf{n},\mathbf{z}} \subset \mathbb{R}^d$ be given, with $\mathbf{x}_i \notin H_{\mathbf{n},\mathbf{z}}$, for each $i = 1,\dots,m$. Without loss of generality, we may assume (by rescaling \mathbf{n} , if necessary) that the normal vector \mathbf{n} satisfies

$$\min_{1 \le i \le m} |\langle \mathbf{x}_i - \mathbf{z}, \mathbf{n} \rangle| = 1$$

PROOF Without loss of generality, we may assume (by rescaling \mathbf{n} , if necessary, while leaving \mathbf{z} unchanged) that the normal vector \mathbf{n} satisfies

$$\|\mathbf{n}\| = \frac{1}{\min_{1 \le i \le m} \{ \operatorname{dist}(\mathbf{x}_i, H_{\mathbf{n}, \mathbf{z}}) \}}$$

With this choice of normal vector \mathbf{n} , we have

$$\min_{1 \leq i \leq m} |\langle \mathbf{x}_i - \mathbf{z}, \mathbf{n} \rangle| = \min_{1 \leq i \leq m} \{ ||\mathbf{n}|| \cdot \operatorname{dist}(\mathbf{x}_i, H_{\mathbf{n}, \mathbf{z}}) \} = ||\mathbf{n}|| \cdot \min_{1 \leq i \leq m} \{ \operatorname{dist}(\mathbf{x}_i, H_{\mathbf{n}, \mathbf{z}}) \} = 1$$

Definition 1.2 Let $\mathcal{D}_0 := \{\mathbf{x}_1, \dots, \mathbf{x}_m\} \subset \mathbb{R}^d$, and $H \subset \mathbb{R}^d$ be a hyperplane, with $\mathbf{x}_1, \dots, \mathbf{x}_m \notin H$. A representation $H_{\mathbf{n},\mathbf{z}} = H$ of H is said to be in \mathcal{D}_0 -canonical form if

$$\min_{1 \le i \le m} |\langle \mathbf{x}_i - \mathbf{z}, \mathbf{n} \rangle| = 1$$

Corollary 1.3 A \mathcal{D} -separating hyperplane $H_{\mathbf{n},\mathbf{z}}$ in \mathcal{D}_0 -canonical form satisfies:

$$y_i \cdot \langle \mathbf{x}_i - \mathbf{z}, \mathbf{n} \rangle \geq 1, \quad \text{for each } i = 1, \dots, m.$$

References