C. Amendments to the Specification:

Please amend the paragraph beginning at page 12, line 1, as follows:

Now turning to Fig. 3 where a system for energizing the contactless smart card 10 is illustrated generally at 31. The system includes the non-battery contactless smart card 10 and an external power supply 32, which is other than a power supply provided by the smart card reader shown generally at 42. In general, the external power supply 32 as described herein is distinguished from the power supply provided by the smart card reader 42. Accordingly, in one embodiment the external power supply 32 includes a battery 34 having a relatively high capacity so that it will not have to be replaced often, a voltage to frequency converter 36, a "first" amplifier 38 and an external power supply antenna 40. In one embodiment, the power from the battery 34 is switched ON and OFF by the voltage converter 36 at a frequency that will be recognized by the contactless smart card 10. Those skilled in the art will appreciate that the voltage converter 36 can the take take the form of a conventional DC-AC converter or a Voltage Controlled Oscillator (VCO), for example. The voltage converter 36 produces a signal at a predetermined frequency (e.g., 13.56 MHz) that is then coupled to the external power supply antenna 40 either directly or through the amplifier 38. The external power supply antenna 40 then radiates the electromagnetic energy at the signal frequency. When the contactless smart card 10 is placed in proximity, within a predetermined operating range (e.g., approximately zero to five inches) of the power supply 32, the smart card antenna 16 detects the radiated energy from the external power supply antenna 40. The power converter 30 then converts the detected energy into a voltage level that can be utilized by the integrated circuit 18. For example, the integrated circuit 18 can operate at voltage levels of about 4.75 V to about 5.25 V, although with advances in semiconductor technology these voltage levels may eventually drop to about 3 V.

Please amend the paragraph beginning at page 15, line 19, and ending at page 16, line 2 as follows:

The integrated circuit 18 within the contact smart card 52 communicates with a contact smart card reader by way of a physical electrical contact through the contact module 56. In use, the contact smart card 52 is inserted into the contact smart card reader wherein the contact module 56 makes physical contact with an electrical contact within the smart card reader. Information that can be transferred by way of the contact module 56 includes power supply voltage, data, algorithms, commands, card status and other information. For example, the contact module 5856 may include six contacts that are designed to provide power supply voltage to the integrated circuit 18, a ground reference, a reset signal line for initiating the state of the integrated circuit, a clock signal for driving the logic of the integrated circuit 18 and a high voltage signal for programming the NVM 24.

Please amend the paragraph beginning at page 18, line 22, and ending at page 19, line 12 as follows:

When the user of the vehicle 62 provides the proper authorization code by way of a smart card 10, 52, 60, 69, 70, the controller 71 enables the user to activate any one of the appropriate devices associated with the vehicle 62. Accordingly, in one embodiment, when the user provides the controller 71 with an authorization code by way of a contactless smart card 10, a contact smart card 52, a combination smart card 60 or an optical smart card 70 to the smart card reader 42, the processor 72 looks up the authorization code in the storage 76 and provides control access to the user only if a match is found. In one embodiment, the processor 72 can change the authorization code and store the new value in the storage 76 as well as in the smart card by way of the smart card reader 42. Once the processor 72 grants authorization, control of one or more devices associated with the vehicle is provided though through the interface 78. Those skilled in the art will appreciate that the interface may or may not be required based upon the control inputs available in each device. One example of the types of devices that can be controlled is

any one, all or combination of a starter 80, a lock 82, a steering mechanism 84, a radio 86, a break-brake 88 system including an anti-lock break-brake system, a fuel injection mechanism 90, an engine speed controller 92, a transmission 94, a clutch 96, air pressure 98 and a keyless entry security system 100. However, the invention is not intended to be limited to such devices as other devices capable of being controlled by the controller 71 can be adapted to operate when the proper authorization code is provided to the vehicle 62 by way of a smart card 10, 52, 60, 69, 70.

Please amend the paragraph beginning at page 20, line 17, as follows:

Now turning to Fig. 8, which comprises a flow diagram of a method 110 according to one embodiment of the present invention. In one embodiment, the method 110 includes a method of supplying power to a smart card 10, 60, 70. Accordingly, at block 112, the method 110 includes generating a first electromagnetic signal having a first frequency. At block 114, the method 110 includes transmitting the first electromagnetic signal to a smart card 10, 60 tuned to the first frequency. In one embodiment, the method 110 also includes, at block 116, receiving a second electromagnetic signal and, at block 118, enabling the transmission of the first electromagnetic signal upon receiving the second electromagnetic signal. Still, in a further embodiment at block 119, the method 110 includes enabling the transmission of the first electromagnetic signal upon receiving a signal from a switch contact closure.

The paragraph beginning at page 21, line 10, has been amended as follows:

Fig. 10 comprises a flow diagram of a method 130 according to one embodiment of the invention is illustrated generally at 130. In one embodiment, the method 130 includes a method of authorizing operation of one or more devices associated with a vehicle. At block 132 the method includes locating an authorization code to operate the one or more devices associated with the vehicle within a predetermined proximity of the vehicle. At block 135, the method includes reading the authorization code. At block 134, the method includes determining whether the authorization code matches a stored authorization code. At block 136, when the

authorization code matches the stored authorization code, the method includes providing access for controlling the one or more devices authorized.