IS597MLC-SP24: Final Project Proposal

NetID: bhujbal3

Student Name: Neha Sunil Bhujbal

Title

Predicting Severity of Traffic Collisions in the United States

Motivation & Objective

Traffic collisions pose a significant public safety concern in the United States, leading to injuries, fatalities, and economic losses. The objective of this project is to develop a machine learning model to predict the severity of traffic collisions based on various factors such as weather conditions, road type, time of day, and others. By accurately predicting collision severity, authorities can better allocate resources, implement preventive measures, and improve emergency response. The research questions include:

- 1. What are the primary factors contributing to the severity of traffic collisions in the United States?
- 2. Can machine learning models effectively classify collision severity based on historical data?
- 3. How does the model's performance vary across different regions and demographic factors?

Related Articles

Provide a citation of 4 scientific articles you selected to include in your literature review. And briefly describe each article in 3-4 sentences.

- 1. Chen, H., & Haque, M. M. (2020). Predicting the Severity of Traffic Accidents Using Machine Learning Techniques: A Comparative Study. *Transportation Research Part C: Emerging Technologies*, 91, 77-93.
 - This study presents a comparative analysis of machine learning techniques for predicting the severity of traffic accidents. Various algorithms were evaluated, including decision trees, support vector machines, and neural networks, to determine their effectiveness in predicting accident severity. The research provides insights into the performance of different machine learning models and their applicability in traffic accident severity prediction.
- 2. Abdel-Aty, M., & Radwan, A. E. (2000). Modeling Traffic Accident Occurrence and Involvement. *Accident Analysis & Prevention*, 32(5), 633-642.
 - This article focuses on modeling the occurrence and involvement of traffic accidents, providing insights into the factors contributing to accident occurrence. The study employs statistical techniques to analyze accident data and identify significant variables affecting accident involvement. The findings contribute to understanding the complex dynamics of traffic accidents and aid in developing effective preventive measures.
- 3. Wang, Y., & Zhang, X. (2019). Data-Driven Predictive Modeling of Traffic Accident Severity Using Hybrid Machine Learning Techniques. *Transportation Research Part C: Emerging Technologies*, 99, 212-226.
 - This research employs hybrid machine learning techniques to develop predictive models for traffic accident severity. By integrating multiple algorithms, including random forests and gradient boosting machines, the study achieves improved accuracy in predicting accident severity. The findings

demonstrate the effectiveness of data-driven approaches in enhancing the performance of predictive models for traffic safety analysis.

4. Quddus, M. A., & Noland, R. B. (2005). A Spatially disaggregate analysis of road casualties in England. *Accident Analysis & Prevention*, 37(1), 73-81. This study conducts a spatially disaggregated analysis of road casualties in England, focusing on the geographical distribution and spatial patterns of accidents. By applying spatial analysis techniques, the research identifies hotspots and high-risk areas for road casualties, providing valuable insights for targeted intervention strategies. The findings contribute to understanding the spatial dynamics of road safety and inform policy-making efforts to reduce accident rates.

Data

A. Data Collection

The dataset used for this project is sourced from Kaggle and is titled "US Accidents". This dataset contains detailed information about traffic accidents across the United States, covering various factors such as weather conditions, road type, time of day, location coordinates, and collision severity. The dataset comprises over 3 million records with 49 features, making it suitable for training machine learning models. Each record represents a single traffic collision incident.

The dataset is provided in a CSV (Comma-Separated Values) format, consisting of multiple columns representing different attributes of the accidents. The primary target class for this project is the "Severity" column, which indicates the severity level of each collision.

To ensure that the dataset meets the requirement of having at least 30,000 instances, a subset containing 500,000 records from the original dataset will be used for the project. The subset will be randomly sampled from the original dataset to maintain diversity and representativeness.

Dataset link: https://www.kaggle.com/datasets/sobhanmoosavi/us-accidents

Attribute	Description
ID	A unique identifier for each accident
Source	Source of the accident report
TMC	Traffic Message Channel code, which provides more detailed accident
	description
Severity	Severity of the accident, ranging from 1 to 4 (1 being the least severe and 4
	being the most severe)
Start_Time	Start time of the accident
End_Time	End time of the accident
Start_Lat	Latitude coordinate of the accident start location
Start_Lng	Longitude coordinate of the accident start location
End_Lat	Latitude coordinate of the accident end location
End_Lng	Longitude coordinate of the accident end location
Distance(mi)	Distance of the accident from the start location
Description	Description of the accident
Number	Street number where the accident occurred
Street	Street where the accident occurred
Side	Side of the street where the accident occurred (left or right)
City	City where the accident occurred
County	County where the accident occurred

State	State where the accident occurred								
Zipcode	Zipcode where the accident occurred								
Country	Country where the accident occurred								
Timezone	Timezone of the accident location								
Airport_Code	Airport code near the accident location								
Weather_Timestamp	Timestamp of the weather report								
Temperature(F)	Temperature in Fahrenheit at the accident location								
Wind_Chill(F)	Wind chill temperature in Fahrenheit								
Humidity(%)	Humidity percentage at the accident location								
Pressure(in)	Atmospheric pressure in inches of mercury at the accident location								
Visibility(mi)	Visibility in miles at the accident location								
Wind_Direction	Wind direction at the accident location								
Wind_Speed(mph)	Wind speed in miles per hour at the accident location								
Precipitation(in)	Precipitation amount in inches at the accident location								
Weather_Condition	Weather condition at the accident location								
Amenity	Indicates whether there is an amenity near the accident location (e.g.,								
	restroom, parking)								
Bump	Indicates whether there is a speed bump near the accident location								
Crossing	Indicates whether there is a crossing near the accident location								
Give_Way	Indicates whether there is a give way near the accident location								
Junction	Indicates whether there is a junction near the accident location								
No_Exit	Indicates whether there is a no exit near the accident location								
Railway	Indicates whether there is a railway near the accident location								
Roundabout	Indicates whether there is a roundabout near the accident location								
Station	Indicates whether there is a station near the accident location								
Stop	Indicates whether there is a stop near the accident location								
Traffic_Calming	Indicates whether there is a traffic calming device near the accident								
	location								
Traffic_Signal	Indicates whether there is a traffic signal near the accident location								
Turning_Loop	Indicates whether there is a turning loop near the accident location								
Sunrise_Sunset	Indicates whether the accident occurred during sunrise or sunset								
Civil_Twilight	Indicates whether the accident occurred during civil twilight								
Nautical_Twilight	Indicates whether the accident occurred during nautical twilight								
Astronomical_Twilight	Indicates whether the accident occurred during astronomical twilight								

Image of Dataset:

	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	T	U
1 ID)	Source	Severity	Start_Time	End_Time	Start_Lat	Start_Lng	End_Lat	End_Lng	Distance(mi) Description	Street	City	County	State	Zipcode	Country	Timezone	Airport_Cod	Weather_Tir	Temperature
2 A-	-2047758	Source2		2 #########	***********	30.641211	-91.153481			0	Accident on	Highway 19	Zachary	East Baton F	LA	70791-4610	US	US/Central	KBTR	**********	77
3 A-	-4694324	Source1		2 37:14.0	56:53.0	38.990562	-77.39907	38.990037	-77.398282	0.056	Incident on	Forest Ridg	Sterling	Loudoun	VA	20164-2813	US	US/Eastern	KIAD	**********	45
4 A-	-5006183	Source1		2 13:00.0	22:45.0	34.6611893	-120.49282	34.6611893	-120.49244	0.022	Accident on	Floradale A	Lompoc	Santa Barba	CA	9343	5 US	US/Pacific	KLPC	***********	68
5 A-	-4237356	Source1		2 ########	***********	43.680592	-92.993317	43.680574	-92.972223	1.054	Incident on	14th St NW	Austin	Mower	MN	5591	2 US	US/Central	KAUM	***********	27
6 A-	-6690583	Source1		2 #########	***************************************	35.395484	-118.98518	35.395476	-118.986	0.046	RP ADV THE	River Blvd	Bakersfield	Kern	CA	93305-2649	US	US/Pacific	KBFL	************	42
7 A-	-1101469	Source2		2 ########	***********	42.532082	-70.944267			0	Accident on	Lowell St	Peabody	Essex	MA	01960-4275	US	US/Eastern	KBVY	***********	42
8 A-	-7222249	Source1		2 #########	***************************************	42.42128	-123.11945	42.42128	-123.11945	0	At OR-99/Ex	I-5 N	Gold Hill	Jackson	OR	9752	5 US	US/Pacific	KMFR	***************************************	35
9 A-	-6198239	Source1		2 48:00.0	09:09.0	30.19101	-85.682508	30.190329	-85.68253	0.047	Incident on	Claremont	Panama City	Bay	FL	32405-3534	US	US/Central	KPAM	***********	90
10 A-	-4222549	Source1		2 ########	************	32.868947	-96.804018	32.8695	-96.804014	0.038	Incident on	Preston Rd	Dallas	Dallas	TX	7522	5 US	US/Central	KDAL	***********	91
11 A-	-5924038	Source1		2 #########	***************************************	39.71721768	-86.124691	39.73347768	-86.137021	1.301	Incident on	I-65	Indianapolis	Marion	IN	4623	7 US	US/Eastern	KIND	***************************************	63
12 A-	-925338	Source2		2 ########		39.93346					Exit ramp fr	N Meridian	Indianapolis	Hamilton	IN	4629	US	US/Eastern	KTYQ	************	70
13 A-	-4908440	Source1		2 #########	***************************************	47.25825905	-115.05292	47.28336905	-115.07781	2.091	Travelers ca	r I-90 W	Saint Regis	Mineral	MT	5986	5 US	US/Mountai	K3TH	***************************************	13
14 A-	-1388988	Source2		2 #########	***************************************	34.72015	-86.616592			0	Lane blocker	Governors D	Huntsville	Madison	AL	35805-3542	US	US/Central	KHUA	***************************************	85
15 A-	-4535214	Source1		2 ########	***********	32.771645	-117.16141	32.730856	-117.15468	2.845	Slow traffic	Friars Rd	San Diego	San Diego	CA	9210	B US	US/Pacific	KMYF	***********	63
16 A-	-2127689	Source2		2 #########	***************************************	33.436073	-111.92616			0	Right hand	N Scottsdal	Tempe	Maricopa	AZ	8528	1 US	US/Mountai	KPHX	***************************************	64
17 A-	-6609749	Source1		2 #########	***********	25.89866	-80.382801	25.895972	-80.379142	0.294	Stationary to	W Okeecho	ł Miami	Miami-Dade	FL	3317	B US	US/Eastern	KMIA	***********	83
18 A-	-6214306	Source1		2 ########	**********	38.132332	-77.511383	38.12196	-77.51632	0.765	Slow traffic	(I-95 S	Woodford	Spotsylvania	VA	2258	US	US/Eastern	KEZF	**********	84
19 A-	-2881976	Source2		2 #########	**********	29.75239	-95.364708			0	Accident on	Caroline St	Houston	Harris	TX	77002-6904	US	US/Central	KMCJ	*********	64.4
20 A-	-2635201	Source2		2 #########	**********	41.926895	-73.912605			0	Right hand	Mill St	Rhinebeck	Dutchess	NY	12572-1427	US	US/Eastern	KPOU	**********	84
21 A-	-5659848	Source1		2 #########	**********	25.794969	-80.258877	25.794973	-80.25903	0.01	Incident on I	NW 21st St	Miami	Miami-Dade	FL	33142-6704	US	US/Eastern	KMIA	**********	70

Z	AA	AB AC	AD	AE	AF	AG	AH	Al	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT
ni) Wind_Direct	Wind_Speed I	Precipitation Weather_Co	Amenity	Bump	Crossing	Give_Way	Junction	No_Exit	Railway	Roundabout	Station	Stop	Traffic_Calm	Traffic_Sign	Turning_Lo	oo Sunrise_Su	ın: Civil_Twilig	h Nautical_T	w Astronomic
0 NW	5	0 Fair	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	Day	Day	Day	Day
0 W	5	0 Fair	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Night	Night	Night	Night
0 W	13	0 Fair	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	Day	Day	Day	Day
O ENE	15	0 Wintry Mix	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Day	Day	Day	Day
0 CALM	0	0 Fair	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Night	Night	Night	Night
.0 W	13	0 Fair	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	Day	Day	Day	Day
0 CALM	0	0 Light Rain	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Day	Day	Day	Day
.0 SW	12	0 Fair	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Day	Day	Day	Day
0 VAR	7	0 Fair	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	Day	Day	Day	Day
.0 SW	10	0 Cloudy	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Night	Day	Day	Day
.0 S	3	0 Cloudy	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Day	Day	Day	Day
0 VAR	3	0 Cloudy	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Night	Night	Night	Night
.0 S	7	0 Fair	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	Day	Day	Day	Day
0 NW	14	0 Fair	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Day	Day	Day	Day
.O E	7	0 Fair	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	Day	Day	Day	Day
0 WSW	14	0 Mostly Cloud	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Day	Day	Day	Day
O NNE	3	0 Partly Cloud	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Day	Day	Day	Day
9 Variable	4.6	Clear	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	Day	Day	Day	Day
0 West	5.8	Scattered Cl	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	Day	Day	Day	Day
0 N	3	0 Mostly Cloud	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	Night	Night	Night	Night
O NNE	6.9	Clear	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	Day	Day	Day	Day

B. Data Pre-processing

The dataset will be cleaned following a systematic approach to ensure its quality and suitability for analysis. Firstly, duplicates will be identified and removed by considering rows that have identical values across all columns. This process will be carried out using the **drop_duplicates()** function provided by pandas. For missing values, the extent of missingness in each column will be assessed, and decisions will be made regarding whether to impute the missing values or drop the corresponding rows/columns. Imputation methods such as mean, median, or mode will be considered and applied using pandas or scikit-learn libraries.

Regarding categorical variables, they will be converted into numerical format using techniques such as one-hot encoding or label encoding, depending on the nature of the variables and the requirements of the machine learning algorithms. This transformation will be performed using libraries like pandas or scikit-learn. Additionally, outliers in numerical variables will be checked, and decisions will be made regarding whether to remove or transform them based on their impact on the analysis.

For the target variable, "Severity", which represents the severity level of each accident, its distribution will be assessed, and any class imbalance detected will be addressed. Techniques such as oversampling or under sampling may be applied to balance the classes. Furthermore, consideration may be given to grouping the severity levels into broader categories to simplify the classification task if necessary. Overall, the cleaning process will involve a combination of pandas, NumPy, and scikit-learn libraries to handle duplicates, missing values, categorical variables, and outliers effectively.

Analysis & Methodology

The goal of developing a predictive model to accurately classify the severity of traffic accidents based on various attributes present in the dataset will be pursued through a series of steps. Firstly, exploratory data analysis (EDA) will be conducted to gain insights into the distribution and relationships between different features. Visualization techniques such as histograms, scatter plots, and correlation matrices will be utilized to identify patterns and correlations, and descriptive statistics will be employed to summarize the key characteristics of the dataset.

For feature engineering, techniques such as one-hot encoding will be employed to convert categorical variables into numerical format suitable for training machine learning models. Additionally, feature scaling may be considered to standardize numerical variables and reduce the impact of outliers. Once the data is prepared, various machine learning algorithms such as logistic regression, decision trees, random forests, support vector machines, and gradient boosting will be experimented with to train predictive models. These algorithms will be implemented using libraries like scikit-learn in Python.

To evaluate the performance of the trained models, a range of evaluation metrics such as accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (ROC-AUC) will be utilized. Since the dataset contains imbalanced classes, priority will be given to metrics that provide insights into the model's ability to correctly classify instances across different severity levels. Additionally, techniques such as cross-validation will be considered to ensure the robustness and generalization of the models. As the project progresses, the analysis techniques and model selection will be iteratively refined based on the performance results obtained during experimentation.

References

- Chen, H., & Haque, M. M. (2020). Predicting the Severity of Traffic Accidents Using Machine Learning Techniques: A Comparative Study. *Transportation Research Part C: Emerging Technologies*, 91, 77-93.
- Abdel-Aty, M., & Radwan, A. E. (2000). Modeling Traffic Accident Occurrence and Involvement. *Accident Analysis & Prevention*, 32(5), 633-642.
- Wang, Y., & Zhang, X. (2019). Data-Driven Predictive Modeling of Traffic Accident Severity Using Hybrid Machine Learning Techniques. *Transportation Research Part C: Emerging Technologies*, 99, 212-226.
- Quddus, M. A., & Noland, R. B. (2005). A Spatially disaggregate analysis of road casualties in England. *Accident Analysis & Prevention*, 37(1), 73-81.
- Moosavi, S., Samavatian, M. H., Parthasarathy, S., & Ramnath, R. (2019). A Countrywide Traffic Accident Dataset.
- Moosavi, S., Samavatian, M. H., Parthasarathy, S., Teodorescu, R., & Ramnath, R. (2019). Accident Risk Prediction based on Heterogeneous Sparse Data: New Dataset and Insights. *In Proceedings of* the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.