Формулы сокращенного умножения:

Квадрат суммы $(a+b)^2 = a^2 + 2ab + b^2$ Квадрат разности $(a - b)^2 = a^2 - 2ab + b^2$ Разность квадратов $a^2 - b^2 = (a + b)(a - b)$ Куб суммы $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ Куб разности $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$ Сумма кубов $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ Разность кубов $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Арифметическая прогрессия

Последовательность, у которой задан первый член a_I , а каждый следующий равен предыдущему, сложенному с одним и тем же числом dназывается арифметической прогрессией:

 $a_{n+1} = a_n + d$, где d – разность прогрессии.

$$a_n = a_1 + d(n - a_n = a_k + d(n - k))$$
1)
 $2a_n = a_{n-1} + a_{n+1}$
 $a_n + a_m = a_k + a_l$, ecnumber $n + m = k + l$

$$S_n = \frac{a_1 + a_n}{n}$$
 $S_n = \frac{2a_1 + d(n - l)}{n}$

Геометрическая прогрессия

Определение: Последовательность, у которой задан первый член $b_1 \neq 0$, а каждый следующий равен предыдущему, умноженному на одно и то же число $q \neq 0$, называется геометрической прогрессией:

исло
$$q \neq 0$$
, называется геометрической прогре
 $b_{n+1} = b_n \ q$, где q – знаменатель прогрессии.
 $b_n = b_1 \ q^{n-1}$ $b_n = b_k \ q$
 $b_n^2 = b_{n-1} \ b_{n+1}$ $b_n \ b_n \ b_n = e_{CRH} \ n$

$$b_n = b_k \ q^{n-k}$$
 $b_n = b_k \ b_l$,
 $ecnu \ n + m = k$
 $+ l$
Бесковечно убывающая геомерическая прогресси

$$S_n = \frac{b_1(1-q^n)}{1-q}$$

Определение

 $a^n = a \cdot a \cdot a \dots \cdot a$, если n – натуральное число а - основание степени, п - показатель степени

$$a^{0} = 1$$
 $a^{1} = a a^{\frac{n}{m}} = \sqrt[m]{a^{n}} a^{-n} = \frac{1}{a^{n}}$

Формулы

$$a^n \cdot a^m = a^{n+m}$$

$$\frac{a^n \cdot b^n}{b^n} = \left(\frac{a}{b}\right)^n$$

$$\frac{a^n}{a^m} = a^{n-m}$$

Арифметический квадратный корень

Определение

<u>Определение</u>
<u>Арифметическим квадратным корнем</u> из <u>неотрицательного</u> числа $a - (\sqrt{a})$ 1. $a | f(x) | = k \quad (k > 0) \Rightarrow f(x) = \pm k$ - называется неотрицательное число, квадрат которого равен a.

$$(\sqrt{a})^2 = a$$
 $\sqrt{a^2} = |a|$ $\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$ $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Корнем k-ой степени из a (k - нечетное) называется число, k-ая

которого равна
$$a$$
. $\left(\sqrt[k]{a}\right)^k = a\sqrt[k]{a^k} = a\sqrt[k]{a \cdot b} = \sqrt[k]{a} \cdot \sqrt[k]{b}$ $\sqrt[k]{a} = \sqrt[k]{a}$

$$\left(\sqrt[k]{a}\right)^m = \sqrt[k]{a^m} \sqrt[k]{a} = a^{\frac{1}{k}}$$

Квадратное уравнение:

 $ax^2 + bx + c = 0$

Дискриминант: $D = b^2 - 4ac$

Если D < 0 то не имеет корней $x \in \mathcal{O}$ D = 0 уравнение имеет один корень x_I D > 0имеет два корня $x_1; x_2$

 $x_1 + x_2 = -p$

 $x_1 \cdot x_2 = q$ $x_1 + x_2 = -b/a$ $x_1 \cdot x_2 = c/a$

Логарифм

Логарифмом числа по b основанию a называется такое число,

обозначаемое
$$\log_a b$$
, что $a^{\log_a b} = b$.

a - основание логарифма $(a>0,\ a\neq l),$ b - логарифмическое число (b>0)

Десятичный логарифм: $\lg b = \log_{10} b$

Натуральный логарифм: $\ln b = \log_e b$ где e = 2,71828

$$\log_a 1 = 0 \quad \log_a a = 1 \qquad \log_a (b \cdot c) = \log_a b + \log_a c$$
$$\log_a \left(\frac{b}{c}\right) = \log_a b - \log_a c \qquad \log_a b^n = n \cdot \log_a b$$

$$\log_{a^m} b = \frac{1}{m} \log_a b \quad \log_a b = \frac{\log_c b}{\log_c a} \qquad \log_a b = \frac{1}{\log_b a}$$
$$a^{\log_a b} = b \quad a^{\log_a b} = b^{\log_a a}$$

$$a^{\log_a b} = b \quad a^{\log_c b} = b^{\log_c a}$$

Дроби

Формула

 $\frac{a}{1} + \frac{c}{1} = \frac{a \cdot d + c \cdot b}{1}$ $-b \cdot d$ деления с остатком:

 $m \cdot k + r$ Вычитание

 $\frac{a}{c} = \frac{a \cdot d - c \cdot b}{c}$ где n — делимое, m делитель, k - частное, r - $\overline{b \cdot d}$ b dостаток: $0 \le r < m$ Умножение

 $\frac{a}{c} \cdot \frac{c}{c} = \frac{a \cdot c}{c}$ Пример: $b d b \cdot d$ Любое число можно

Деление представить в виде: $\frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}$ n = 2k + r, где $r = \{0; 1\}$ или n = 4k + r, где $r = \{0; 1;$ $m\frac{a}{b} = \frac{m \cdot b + a}{b}^{2; 3}$ Составная дробь

Делимость натуральных чисел:

Пусть n: m = k, где n, m, k — натуральные числа. Тогда m — делитель числа n, а n — кратно числу m.

Число n называется простым, если его делителями являются

только единица и само число п.

Множество простых чисел: {2; 3; 5; 7; 11; 13; . . .; 41; 43; 47 и m.д.} Числа *п* и *т* называются взаимно простыми, если у них нет общихделителей, кроме единицы.

Десятичные числа:

Определение

Стандартный вид: $317,3 = 3,173 \cdot 10^2$; $0,00003173 = 3,173 \cdot 10^{-5}$ $3173 = 3 \cdot 1000 + 1 \cdot 100 + 7 \cdot 10 + 3$ Форма записи: Модуль

Формулы

Сложение

$|x| \ge 0$

$$\bullet \qquad |x-y| \ge |x| - |y|$$

$$|x-y| \ge |x| - |y|$$

$$|x| = \begin{bmatrix} x, ecnu & x \ge 0 \\ -x, ecnu & x < 0 \end{bmatrix}$$

- $\begin{vmatrix} -x & | = |x| \\ |x \cdot y| = |x| \cdot |y| \end{vmatrix}$

Неравенства

Определения:

Неравенством называется выражение вида:

$$a < b \quad (a \le b), \qquad a > b \quad (a \ge b)$$

$$a \le b \Leftrightarrow \begin{bmatrix} a < b \\ a = b \end{bmatrix}$$

Основные свойства:

 $a < b \Leftrightarrow b > a$ $a < b \ u \ b < c \Leftrightarrow a < c$ $a < b \ u \ c > 0 \Leftrightarrow ac < bc$ $a < b \Leftrightarrow a + c < b + c$

 $a < b \ u \ c < 0 \Leftrightarrow ac > bc$

 $a < b \ u \ c < d \Leftrightarrow a + c < b + d$

Модуль: уравнения и неравенства

 $b) \left| f(x) \right| = 0 \Rightarrow f(x) = 0$

c) $|f(x)| = -k \ (k > 0) \Rightarrow x \in \emptyset$

2. $|f(x)| = f(x) \Leftrightarrow f(x) \ge 0$

 $|f(x)| = -f(x) \Leftrightarrow f(x) \le 0$

3. $|f(x)| + af^2(x) = k \Rightarrow |f(x)| + a|f(x)|^2 = k$ 3amena: $y = |f(x)| \Rightarrow y + ay^2 = k$

4. $|f(x)| = |g(x)| \Rightarrow f^2(x) = g^2(x) \Rightarrow (f(x) - g(x)) \cdot (f(x) + g(x)) = 0$

5. $|f(x)| < k \implies f^2(x) < k^2 \implies (f(x) - k) \cdot (f(x) + k) < 0$

Периодическая дробь

3,1737373... = 3,1(73) =
$$\frac{3173 - 31}{990}$$
 Правило: $ab,cde(fg) = \frac{abcdefg - abcde}{99000}$

Признаки делимости чисел:

Проценты

Процентом называется сотая часть от числа. 1%A = 0.01A

Основные типы задач на проценты: <u>Сколько</u> процентов составляет число A от числа B?

 $\Rightarrow x = \frac{A}{R} \cdot 100\%$

<u>ложные проценты.</u> число A увеличилось на 20%, а затем полученное число уменьшили на

Как. в итоге, изменилось исходное число? $A_1 = (100\% + 20\%)A = 120\%A = 1,2A$

 $\begin{array}{l} A_2 = (100\% - 25\%)A_1 = 75\%A_1 = 0,75A_1 = 0,75\cdot 1,2A = 0,9A \\ = 90\%A \\ A_1 - A = 90\%A - 100\%A = -10\%A \end{array}$ 2)

уменьшилось на 10%. Изменение величины. Как изменится время, если скорость движения увеличится на 25%?

$$t = \frac{S}{v} \implies t_1 = \frac{S}{v_1} = \frac{S}{1,25v} = \frac{1}{1,25} \frac{S}{v} = 0.8 \frac{S}{v} = 80\%t$$

$t = \frac{S}{v} \implies t_1 = \frac{S}{v_1} = \frac{S}{1,25v} = \frac{1}{1,25} \frac{S}{v} = 0.8 \frac{S}{v} = 80\% t$ Ответ: уменьшится на 20%

Среднее арифметическое, геометрическое

Среднее арифметическое: $a_1 + a_2 + a_3 + ... + a_n$

Среднее геометрическое:

$$\sqrt[k]{a_1 \cdot a_2 \cdot ... \cdot a_k}$$

Уравнение движения

Пусть S(t) - уравнение движения материальной точки, где S – путь, t – время движения.

	Признак	Пример
Ha 2	Числа, оканчивающиеся нулём или четной цифрой	6
Ha 4	Числа, у которых две последние цифры нули или выражают число, делящееся на 4.	1
На 8	Числа, у которых три последние цифры нули или выражают число, делящееся на 8.	10
На 3	Числа, сумма цифр которых делится на 3.	57061 2
На 9	Числа, сумма цифр которых делится на 9.	35945 1
На 5	Числа, оканчивающиеся нулём или цифрой 5.	5
На 25	Числа, у которых две последние цифры нули или выражают число, делящееся на 25.	7 5
Ha 10	Числа, оканчивающиеся нулём.	0

Тогда: v(t)=S'(t); a(t)=v'(t),

где \mathcal{V} – скорость, \mathcal{A} - ускорение. Определенный интеграл

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Первообразная элементарных функций

	псрв	оооразнал	301
№	f(x)	F(x)	
1	k	kx + C	
2	x^{n}	$\frac{x^{n+1}}{n+1} + C$	
3	$\frac{1}{x}$	$\ln x + C$	
4	sin x	$-\cos x + C$	
5	cos	$\sin x + C$	

JJIC	мен	гарных	<u> функции</u>
	$N_{\overline{0}}$	f(x)	F(x)
	6	$\frac{1}{\cos^2 x}$	tgx + C
	7	$\frac{1}{\sin^2 x}$	-ctgx + C
	8	e^{x}	$e^x + C$
	9	a^{x}	$\frac{a^x}{\ln a} + C$
	повр	oofmaaii	oŭ dvinen

<u>Правила вычисления первообразной функции</u>

Функция F(x) называется Определение: первообразной для функции f(x), если F'(x) = f(x)

Функция	Первообразная
$k \cdot f(x)$	$k \cdot F(x)$
$f_1(x) + f_2(x)$	$F_1(x) + F_2(x)$
f(ax+b)	$\frac{1}{a}F(ax+b)$

Правила вычисления производной функции

(u+v)'=u'+v'Сложная функция:

 $(u \cdot v)' = u' \cdot v + u \cdot v'$ $y = f(\varphi(x)) \implies y' = f_{\varphi} \cdot \varphi_{x}$

	прои	зводные	элем	тента	трных (рункции
№	Функ ция	Произво дная		№	Функ ция	Произво дная
1	χ^{n}	nx^{n-1}		6	e^{x}	e^{x}
2	sin x	cos x		7	a^{X}	$a^{x} \ln a$
3	cos X	$-\sin x$				
4	tgx	$\frac{1}{\cos^2 x}$		8	ln x	$\frac{1}{x}$
5	ctgx	$-\frac{1}{\sin^2 x}$		9	log _a x	$\frac{1}{x \cdot \ln a}$

Равносильные уравнения:

Исходное Равносильное уравнение уравнение (система)

f(x) + C = g(x) + Cf(x) = g(x)

 $\int f(x) = 0$ $f(x) \cdot g(x) = 0$ g(x) = 0

 $\frac{f(x)}{}=0$ $\int f(x) = 0$ g(x) $g(x) \neq 0$

 $\int f(x) = 0$ $f^2(x) + g^2(x) = 0$ g(x) = 0

Числовые множества:

Натуральные числа	$N = \{1; 2; 3; 4;\}$				
Целые числа	$Z = N \cup \{0; -1; -2; -3;\}$				
Рациональные числа	$Q = Z \cup \left\{ \frac{1}{2}; -\frac{1}{2}; \frac{1}{3}; -\frac{1}{3}; \dots \right\}$				
Действительные числа	$R = Q \cup \left\{ \sqrt{2}; \sqrt{3}; u \text{ m.o.}; \pi = 3,14; . \right\}$				

Тригонометрия Основные триг. формулы

$$\sin^2 \alpha + \cos^2 \alpha = 1 \implies \sin^2 \alpha = 1 - \cos^2 \alpha$$
$$\cos^2 \alpha = 1 - \sin^2 \alpha$$

$$tg\alpha = \frac{\sin \alpha}{\cos \alpha} \quad ctg\alpha = \frac{\cos \alpha}{\sin \alpha} \qquad \Rightarrow \quad tg\alpha \cdot ctg\alpha = 1$$
$$1 + tg^{2}\alpha = \frac{1}{1 + ctg^{2}\alpha} = \frac{1}{1 + ctg^{2}$$

$$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha} \qquad 1 + ctg^2 \alpha = \frac{1}{\sin^2 \alpha}$$

Формулы суммы функций

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

$$tg\alpha + tg\beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta}$$
$$tg\alpha - tg\beta = \frac{\sin(\alpha - \beta)}{\cos \alpha \cos \beta}$$

Формулы суммы аргументов:

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

$$tg(\alpha + \beta) = \frac{tg\alpha + tg\beta}{1 - tg\alpha tg\beta} \qquad tg(\alpha - \beta) = \frac{tg\alpha - tg\beta}{1 + tg\alpha tg\beta}$$

Формулы произведения функций

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

$$\sin^2\frac{\alpha}{2} = \frac{\frac{\mathbf{Формулы}\ \mathbf{половинного}\ \mathbf{aprymenta}}{2}}{2} \cos^2\frac{\alpha}{2} = \frac{1+\cos\alpha}{2}\ tg\,\frac{\alpha}{2} = \frac{\sin\alpha}{1+\cos\alpha} = \frac{1-\cos\alpha}{\sin\alpha}$$

$$\mathbf{Формулы}\ \mathbf{двойного}\ \mathbf{aprymenta}$$

 $\sin 2\alpha = 2\sin \alpha \cos \alpha$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

$$tg 2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$$

Формула дополнительного угла

$$a \sin \alpha + b \cos \alpha = \sqrt{a^2 + b^2} \sin(\alpha + \varphi)$$
 ГДе

$$\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}} \qquad \cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$$

Определение тригонометрических функций

Универсальная подстановка

$$\sin 2\alpha = \frac{2tg\alpha}{1 + tg^2\alpha} \qquad \cos 2\alpha = \frac{1 - tg^2\alpha}{1 + tg^2\alpha}$$

Свойства тригонометрических функций

Своиства тригономстри теских функции							
Свойства							
Область определения	Множес тво значени й	Четность- нечетность	Период				
$x \in (-\infty, \infty)$	[-1;1]	cos(-x) = cosx	2π				
$x \in (-\infty, \infty)$	[-1;1]	sin(-x) = -sinx	2π				
$x\neq\frac{\pi}{2}+\pi n,n\in Z$	$(-\infty;\infty)$	tg(-x) = -tgx	π				
$x \neq \pi n, n \in \mathcal{L}$	$(-\infty;\infty)$	ctg(-x) = -ctgx	π				
	Область определения $x \in (-\infty; \infty)$ $x \in (-\infty; \infty)$ $x \in (-\infty; \infty)$ $x \neq \frac{\pi}{2} + \pi n, n \in Z$	Область определения $x \in (-\infty; \infty)$ [-1;1] $x \in (-\infty; \infty)$ [-1;1] $x \in (-\infty; \infty)$ [-1;1] $x \in (-\infty; \infty)$	Свойства Область определения $x \in (-\infty; \infty)$ $x \neq \frac{\pi}{2} + \pi, n \in \mathbb{Z}$ $x \neq (-\infty; \infty)$ $x \neq (-\infty; \infty$				

Тригонометрические уравнения

Косинус:

cos
$$x = 0 \Rightarrow x = \frac{\pi}{2} + m$$
 cos $x = 1 \Rightarrow x = 2\pi n$
cos $x = -1 \Rightarrow x = \pi + 2\pi n$
cos $x = a \Rightarrow x = \pm \arccos a + 2\pi n, n \in \mathbb{Z}$
Уравнения с синусом

Частные формулы:

$$\sin x = 0 \Rightarrow x = \pi n \sin x = 1 \Rightarrow x = \frac{\pi}{2} + 2\pi n$$

$$\sin x = -1 \Rightarrow x = -\frac{\pi}{2} + 2\pi n$$

Общая формула:

$$\sin x = a \Rightarrow x = (-1)^n \arcsin a + \pi n, n \in \mathbb{Z}$$

Уравнения с тангенсом и котангенсом

$$tgx = a \Rightarrow ctgx = a \Rightarrow$$

$$\arcsin x + \arccos x = \frac{\pi}{2}$$
 $\operatorname{arctg} x + \operatorname{arcctg} x = \frac{\pi}{2}$

Если $0 < x \le 1$, то $arccos(-x) = \pi -$ $arccosx$ $arcsin(-x) = -arcsinx$	Eсли $x > 0$, то $arctg(-x) = -arctgx$ $arcctg(-x) = \pi - arcctgx$
--	--

Обратные триг функции

COSMITTED TO STATE OF							
	Свойства						
Функция	Область	Множество					
	определения	значений					
arccosx	[-1;1]	$[0; \pi]$					
arcsinx	[-1; 1]	$[-\pi/2; \pi/2]$					

arctgx	$(-\infty;\infty)$	(-π/2; π/2)
arcctgx	$(-\infty;\infty)$	(0; π)

Геометрия

Теорема косинусов, синусов

Теорема косинусов: $c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \gamma$

Площадь треугольника

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$

$$S = \frac{1}{2} a \cdot b \cdot \sin \gamma$$

$$S = \frac{abc}{4R}$$

Средняя линия

Средняя линия - отрезок, соединяющий середины двух сторон треугольника.

Средняя линия параллельна третьей стороне и равна

её половине: $n_b = \frac{1}{2}b$

Средняя линия отсекает подобный треугольник, площадь которого равна одной четверти от исходного

Равносторонний треугольник треугольник, у которого все стороны равны.

Все углы равны 60° .

- ÷ Каждая из высот является одновременно биссектрисой и медианой.
- Центры описанной и вписанной окружностей совпадают.
- Радиусы окружностей: $r=\frac{a\sqrt{3}}{6}$; $R=\frac{a\sqrt{3}}{3}$

Площадь

$$S = \frac{a^2 \sqrt{3}}{4}$$

Равнобедренный треугольник

треугольник, у которого две стороны равны.

1. Углы, при основании треугольника, равны 2.Высота, проведенная из вершины, является

биссектрисой и медиан

Прямоугольный треугольник

- Теорема Пифагора: $c^2 = a^2 + b^2$ Площадь: $S = \frac{1}{2} a \cdot b$

$$\cos \alpha = \frac{a}{a}$$
; $\sin \alpha = \frac{b}{a}$; $tg\alpha = \frac{b}{a}$

- Тригонометрические соотношения: $\cos\alpha = \frac{a}{c}; \quad \sin\alpha = \frac{b}{c}; \quad tg\alpha = \frac{b}{a}$ Центр описанной окружности лежит на середине
- Радиусы окружностей: $r = \frac{a+b-c}{2}$; $R = \frac{c}{2}$

Высота, опущенная на гипотенузу:
$$h = \sqrt{a_c \cdot b_c} = \frac{a \cdot b}{c}; \left(\frac{a}{b}\right)^2 = \frac{a_c}{b_c}$$

Катеты: $a = \sqrt{a_c \cdot c}$; $b = \sqrt{b_c \cdot c}$

Основные соотношения в треугольнике

- Неравенство треугольника:
- a+b>c; a+c>b; b+c>aСумма углов: $\alpha+\beta+\gamma=180^{9}$
- Против большей стороны лежит больший угол, и обратно, $|AM| \cdot |MB| = |CM| \cdot |MD|$ против большего угла лежит большая сторона.
- Против равных сторон лежат равные углы, и обратно, против равных углов лежат равные стороны.

А — С — С — Биссектриса — обрезок, выходящий из вершины треугольника и делящий угол пополам.

- Биссектриса делит противолежащую сторону на части, пропорциональные прилежащим сторонам: $a_b: a_c = b: c$
- Биссектриса делит площадь треугольника, пропорционально прилежащим сторонам.
- $w = \sqrt{b \cdot c a_b \cdot a_a}$

Вписанная окружность

- Центр окружности, вписанной в треугольник,
- лежит на пересечении биссектрис треугольника.
- Если окружность вписана в произвольный четырехугольник, тогда попарные суммы противолежащих сторон равны между собой:

Описанная окружность

- Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к его трем сторонам.
- Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы.
- Около трапеции можно описать окружность только тогда, когда трапеция равнобочная.
- Если окружность описана около произвольного четырехугольника, тогда попарные суммы противолежащих углов равны между собой:

$$\alpha + \beta = \phi + \gamma$$

<u>Длина окружности, площадь</u>

Длина окружности: $l=\pi \cdot d=2\pi \cdot R$

Площадь круга:

Хорда – отрезок, соединяющий две точки окружности.

- Диаметр, делящий хорду пополам, перпендикулярен
- В окружности равные хорды равноудалены от центра окружности.
- Отрезки пересекающихся хорд связаны равенством:

Шаровой сектор $V = \frac{2}{3}\pi R^2 H S_{\delta \delta \delta \kappa} = \pi R \sqrt{2RH - H^2}$ $S = 2\pi RH$

 $V = \frac{1}{3}\pi^2 H(3R - H)$

Центральный, вписанный угол

Сектор

Сектор – часть круга, ограниченная двумя его радиусами. Длина дуги сектора:

 $l = \frac{\pi R \alpha}{}$ 180°

Площадь сектора:

 $S = \frac{\pi R^2 \alpha}{}$

Касательная, секущая

Касательная - прямая, имеющая с окружностью одну общую точку.

Секущая – прямая, имеющая с окружностью две общие

- $(AB)\bot(OB)$ $(AC)\bot(OC)$
- |AB| = |AC|
- $|AM| \cdot |AN| = |AP| \cdot |AK| = |AB|^2$

прямая призма

Цилиндр $S_{\widetilde{O}O\kappa} = 2\pi RH$

 $V = \pi R^2 H$

hМедиана – отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

- Медианы треугольника точкой их пересечения делятся в отношении 2:1 (считая от вершины треугольника).
- Медиана делит треугольник на два треугольника с равными площадями.

$$m_a = \frac{1}{2} \sqrt{2b^2 + 2c^2 - a^2} \qquad a = \frac{2}{3} \sqrt{2(m_b^2 + m_c^2) - m_a^2}$$

Правильная пирамида

Все боковые рёбра равны между собой и все боковые грани – равные

Правильная пирамида пирамида, у которой в основании правильный многоугольник, а вершина с проецируется в центр основания

равнобедренные треугольники. $V = \frac{1}{3} S_{OCH} \cdot H; \quad S_{OOK} = \frac{1}{2} P \cdot h,$

Сумма, разность векторов

Перпендикулярность, коллинеарность

Перпендикулярные вектора:

$$\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$$

внутренние

Коллинеарные вектора:

$$\vec{a} \mid |\vec{b} \Leftrightarrow \frac{x_a}{x_b} = \frac{y_a}{y_b} = \frac{z_a}{z_b} = \lambda$$
$$\vec{a} \mid |\vec{b} \Leftrightarrow \vec{a} = \lambda b$$

Длина вектора:

$$|\vec{a}| = \sqrt{x_a^2 + y_a^2 + z_a^2}$$

Умножение вектора на число:

 $\lambda \vec{a} = (\lambda x_a; \lambda y_a; \lambda z_a)$

Свойства прямых и плоскостей

(SO) – перпендикуляр к плоскости (ABCD). O – проекция точки S. |SO| – расстояние от точки S до плоскости (ABCD).

α – двугранный угол между плоскостями (SAB) и (ABCD).

Теорема о трёх перпендикулярах: $(AB)\bot(SM) \Leftrightarrow (AB)\bot(OM)$

	Значения									
Функция	0	o°	$\frac{\pi}{6}$	30°	<u>π</u> 4	45°	<u>π</u> 3	60°	$\frac{\pi}{2}$	90°
cosx		1 $\frac{\sqrt{3}}{2}$		$\frac{\sqrt{2}}{2}$		$\frac{1}{2}$		0		
sinx	0			1 2	۲.	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$		1	
tgx	0		$0 \qquad \frac{\sqrt{3}}{3}$		1	$\sqrt{3}$		-		
ctgx	-		,	$\sqrt{3}$		1		$\frac{\sqrt{3}}{3}$		0

Выпуклый четырёхугольник

Произвольный выпуклый четырёхугольник: ✓ Сумма всех углов равна 360° .

Площадь: $S = \frac{1}{2} d_1 \cdot d_2 \cdot \sin \varphi$

Правильный многоугольник
Правильным многоугольником называется многоугольник, у которого все стороны и углы равны между собой.
✓ Около всякого правильного многоугольника можно описать

окружность и в него вписать окружность, причём центры этих окружностей совпадают.

Сторона правильного *n*–угольника: $a_n = 2R \sin \frac{180^0}{}$

Площадь правильного *n*-угольника:
$$S_n = \frac{1}{2} P_n r; \quad S_n = \frac{1}{2} R^2 \cdot n \cdot \sin \frac{360^0}{n}$$

Произвольный выпуклый многоугольник

Произвольный выпуклый многоугольник:

Сумма всех углов равна $\pi(n-2)u\pi u 180^{\circ}(n-2)$

Число диагоналей: $\frac{1}{2}n\cdot(n-3)$

Трапеция: Ь

Четырёхугольник, у которого две стороны параллельны, а другие не параллельны, называется трапецией.

равна:
$$n = \frac{a+b}{2} \frac{\Pi$$
лощадь: $S = \frac{a+b}{2} h = nh$

Квадрат:

Прямоугольник, у которого все стороны равны, называется

Диагональ квадрата $d=a\sqrt{2}$ Площадь:

$$S=a^2=\frac{1}{2}d^2$$

$$a$$
Pom6

Параллелограмм, все стороны которого равны называется ромбом.

- Диагональ ромба является его осью симметрии. Диагонали взаимно перпендикулярны. Диагонали являются биссектрисами углов.
- Площадь: $S = \frac{1}{2} d_1 \cdot d_2$ <u>Параллелограмм</u>

Параллелограмм:

Четырёхугольник, у которого противоположные стороны попарно параллельные называется параллелограммом

- Середина диагонали является центром симметрии.
- Противоположные стороны и углы равны.
- Каждая диагональ делит параллелограмм на два равных треугольника.
- Диагонали делятся точкой пересечения пополам:

$$d_1^2 + d_2^2 = 2(a^2 + b^2)$$

$$S = a \cdot h_a = a \cdot b \cdot \sin \alpha = \frac{1}{2} d_1 \cdot d_2 \cdot \sin \varphi$$

Прямоугольный параллелепипед

 $V=abc \qquad d^2=a^2+b^2+c^2$

