Common

$$\sin c \theta = \frac{\sin \pi \theta}{\pi \theta}$$

$$\int e^{at} dt = \frac{1}{a} e^{at} + C$$

$$\int t e^{at} dt = \frac{at - 1}{t^2} e^{at} + C$$

$$\int t^n e^{at} dt = \frac{t^n}{a} e^{at} - \frac{n}{a} \int t^{n-1} e^{at} dt$$

$$\int e^{at} \sin bt dt = \frac{1}{a^2 + b^2} e^{at} (a \sin bt - b \cos bt) + C$$

$$\int e^{at} \cos bt dt = \frac{1}{a^2 + b^2} e^{at} (b \sin bt + a \cos bt) + C$$

Chapter 3

Continuous

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-j\omega_0 t} dt = \frac{1}{T} \int_T x(t) e^{-j(2\pi/T)t} dt$$

$$a_0 = \frac{1}{T} \int_T x(t) dt$$

Convergent

$$\int_T |x(t)| dt < \infty$$

Discrete

$$\begin{split} x[n] &= \sum_{k = < N >} a_k e^{jk\omega_0 n} = \sum_{k = < N >} a_k e^{jk(2\pi/N)n} \\ a_k &= \frac{1}{N} \sum_{k = < N >} x[n] e^{-jk\omega_0 n} = \frac{1}{N} \sum_{k = < N >} x[n] e^{-jk(2\pi/N)n} \end{split}$$

Chapter 4

Continuous

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$
$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$$

Periodic

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$
$$X(j\omega) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - k\omega_0)$$

Differential Equations

$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t)$$

$$H(j\omega) = \frac{(j\omega) + 2}{(j\omega)^2 + 4(j\omega) + 3} = \frac{1/2}{j\omega + 1} + \frac{1/2}{j\omega + 3}$$

$$h(t) = \frac{1}{2}e^{-t}u(t) + \frac{1}{2}e^{-3t}u(t)$$

Chapter 5

Discrete

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega} e^{j\omega n}) d\omega$$
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

Periodic

$$\begin{split} x[n] &= \sum_{k=< N>} a_k e^{jk(2\pi/N)n} \\ X(e^{j\omega}) &= \sum_{k=-\infty}^{\infty} 2\pi a_k \delta\left(\omega - \frac{2\pi k}{N}\right) \end{split}$$

Differential Equations

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n]$$

$$H(e^{j\omega}) = \frac{2}{1 - \frac{3}{4}e^{-j\omega} + \frac{1}{8}e^{-j2\omega}} = \frac{4}{1 - \frac{1}{2}e^{-j\omega}} - \frac{2}{1 - \frac{1}{4}e^{-j\omega}}$$

$$h[n] = 4\left(\frac{1}{2}\right)^n u[n] - 2\left(\frac{1}{4}\right)^n u[n]$$

Chapter 6

Group Delay

$$\tau(\omega) = -\frac{d}{d\omega} \{ \triangleleft H_2 j\omega \}$$

Step response

$$s(t) = \int_{-\infty}^{t} h(\tau)d\tau$$
$$s[n] = \sum_{m=-\infty}^{n} h[m]$$

First Order Systems

$$\tau \frac{dy(t)}{dt} + y(t) = x(t)$$

$$H(j\omega) = \frac{1}{j\omega\tau + 1}$$

$$h(t) = \frac{1}{\tau}e^{-t/\tau}u(t)$$

$$s(t) = h(t) * u(t) = [1 - e^{-t/\tau}]u(t)$$

Second Order Systems

$$\frac{d^2y(t)}{dt^2} + 2\xi\omega_n^2 \frac{dy(t)}{dt} + \omega_n^2 y(t) = \omega_n^2 x(t)$$
For $\xi \neq 1$,
$$H(j\omega) == \frac{M}{j\omega - c_1} - \frac{M}{j\omega - c_2}$$

$$c_{1,2} = -\xi\omega_n \pm \omega_n \sqrt{\xi^2 - 1}, M = \frac{\omega_n}{2\sqrt{\xi^2 - 1}}$$

$$h(t) = M[e^{c_1t} - e^{c_2t}]u(t)$$

$$s(t) = h(t) * u(t) = \left\{1 + M\left[\frac{e^{c_1t}}{c_1} - \frac{e^{c_2t}}{c_2}\right]\right\} u(t)$$
For $\xi = 1$

For
$$\xi = 1$$
,

$$H(j\omega) = \frac{\omega_n^2}{(j\omega + \omega_n)^2}$$
$$h(t) = \omega_n^2 t e^{-\omega_n t} u(t)$$
$$s(t) = [1 - e^{-\omega_n t} - \omega_n t e^{-\omega_n t}] u(t)$$

For $0 < \xi < 1$,

$$H(j\omega) = \frac{1}{(j\omega/\omega_n)^2 + 2\xi(j\omega/\omega_n) + 1}$$
$$h(t) = \frac{\omega_n e^{-\xi\omega_n t}}{\sqrt{1 - \xi^2}} \left[\sin(\omega_n \sqrt{1 - \xi^2})t\right] u(t)$$

$$0 < \xi < 1$$
 under damped $\xi = 1$ critical damped $\xi > 1$ over damped

$$\omega_{max} = \omega_n \sqrt{1 - 2\xi^2}$$
$$|H(j\omega_{max}) = \frac{1}{2\xi\sqrt{1 - \xi^2}}$$

Name	Waveform	$\mathbf{C_0}$	$C_k, k \neq 0$	Comments
1. Square wave	$-\frac{X(t)}{X_0}$ $-\frac{T_0}{X_0}$ $-\frac{T_0}{X_0}$ $-\frac{T_0}{X_0}$ $-\frac{T_0}{X_0}$	0	$-j\frac{2X_0}{\pi k}$	$C_k = 0,$ k even
2. Sawtooth	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{X_0}{2}$	$jrac{X_0}{2\pi k}$	
3. Triangular wave	X_0 X_0 T_0 T_0	$\frac{X_0}{2}$	$\frac{-2X_0}{(\pi k)^2}$	$C_k = 0,$ $k \text{ even}$
4. Full-wave rectified	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{2X_0}{\pi}$	$\frac{-2X_0}{\pi(4k^2-1)}$	
5. Half-wave rectified	$ \begin{array}{c c} & x(t) \\ & X_0 \\ \hline & T_0 \\ \end{array} $	$\frac{X_0}{\pi}$	$\frac{-X_0}{\pi(k^2-1)}$	$C_k = 0,$ $k \text{ odd, except}$ $C_1 = -j\frac{X_0}{4}$ and $C_{-1} = j\frac{X_0}{4}$
6. Rectangular wave	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$rac{TX_0}{T_0}$	$\frac{TX_0}{T_0}$ sinc $\frac{Tk\omega_0}{2}$	$\frac{Tk\omega_0}{2} = \frac{\pi Tk}{T_0}$
7. Impulse train	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$rac{X_0}{T_0}$	$rac{oldsymbol{\mathcal{X}}_0}{T_0}$	

Factor	Magnitude	Phase
	20 log ₁₀ K	
K		
	ω	ω
$(j\omega)^N$	20N dB/decade	90N°
	1	
$\frac{1}{(j\omega)^N}$	1	→ ω
$(j\omega)^N$	−20N dB/decade	-90 <i>N</i> °
(_ jω\ ^N	20N dB/decade	90N°
$\left(1+\frac{j\omega}{z}\right)^N$	zω	$\frac{0^{\circ}}{\frac{z}{10}} z 10z \omega$
	p	$\frac{p}{10}$ p $10p$
$\frac{1}{\left(1+j\omega/p\right)^{N}}$	ω	0° ω
	-20N dB/decade	-90N°
	40N dB/decade	180N°
$\left[1 + \frac{2j\omega\zeta}{\omega_n} + \left(\frac{j\omega}{\omega_n}\right)^2\right]^N$		
	ω_n	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	ω_k	$\frac{\omega_k}{10}$ ω_k $10\omega_k$
$\frac{1}{\left[1+2j\omega\zeta/\omega_k+(j\omega/\omega_k)^2\right]^N}$		0° ω
	-40N dB/decade	
		-180 <i>N</i> °

Property	Aperiodic Signal	Fourier transform	Aperiodic Signal	Fourier transform
$x(t)$ Period with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$		$egin{aligned} a_k \ b_k \end{aligned}$	$x[n]$ Period with period N and $y[n]$ fundamental frenquency $\omega_0=2\pi/N$	$X(e^{j\omega})$ periodic with $Y(e^{j\omega})$ period N
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time and Frequency Scaling / Time expansion	$Ax(t) + By(t)$ $x(t - t_0)$ $e^{-jM\omega_0 t} = e^{-jM(2\pi/T)t}x(t)$ $x^*(t)$ $x(-t)$ $x(\alpha t), \alpha > 0$	$Aa_k + Bb_k$ $a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$ a_{k-M} a_{-k}^* a_{-k} a_{-k}	$Ax[n] + By[n]$ $x[n - n_0]$ $e^{-jM(2\pi/N)t}x[n]$ $x^*[n]$ $x[-n]$ $x_m[n] = \begin{cases} x[n/m] & \text{if } n = \text{ multiple of } m \\ 0 & \text{if } n \neq \text{ multiple of } m \end{cases}$	$Aa_k + Bb_k$ $a_k e^{-jk(2\pi/N)n_0}$ a_{k-M} a_{-k}^* a_{-k} $\frac{1}{m}a_k$
Periodic Convolution	$\int_T x(\tau)y(t-\tau)d\tau$	Ta_kb_k	$\sum_{r=< N>} x[r]y[n-r]$	Na_kb_k
Multiplication	x(t)y(t)	$\sum^{+\infty} \ a_l b_k - l$	$r=<\!\!N> \ x[n]y[n]$	$\sum_{l=< N>} a_l b_{k-l}$
Differentiation	$\frac{d}{dt}x(t)$	$\sum_{l=-\infty}^{+\infty} a_l b_k - l \ jk\omega_0 a_k = jk \frac{2\pi}{T} a_k$	x[n] - x[n-1]	$l=< N> $ $(1 - e^{-jk(2\pi/N)})a_k$
Integration/Accumulation	$\int_{-\infty}^t x(t)dt$	$\frac{1}{jk\omega_0}a_k = \frac{1}{jk(2\pi/T)}a_k$	$\sum_{k=-\infty}^{+\infty} x[k]$	$\frac{1}{1 - e^{-jk(2\pi/N)}} a_k$
Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} a_k = a_{-k}^* \\ \mathfrak{Re}\{a_k\} = \mathfrak{Re}\{a_{-k}\} \\ \mathfrak{Im}\{a_k\} = -\mathfrak{Im}\{a_{-k}\} \\ a_k = a_{-k} \\ \sphericalangle a_k = - \sphericalangle a_{-k} \end{cases}$	x[n] real	$\begin{cases} a_k = a_{-k}^* \\ \mathfrak{Re}\{a_k\} = \mathfrak{Re}\{a_{-k}\} \\ \mathfrak{Im}\{a_k\} = -\mathfrak{Im}\{a_{-k}\} \\ a_k = a_{-k} \\ \sphericalangle a_k = - \sphericalangle a_{-k} \end{cases}$
Symmetry for Real and Even Signals	x(t) real and even	a_k real and even	x[n] real and even	a_k real and even
Symmetry for Real and Odd Signals	x(t) real and odd	a_k purely imaginary and odd	x[n] real and odd	a_k purely imaginary and odd
Even-Odd Decomposition for Real Signals	$x_e(t) = \mathfrak{Ev}\{x(t)\}$ $[x(t) \text{ real}]$ $x_o(t) = \mathfrak{Do}\{x(t)\}$ $[x(t) \text{ real}]$	$\mathfrak{Re}\{a_k\} \ j\mathfrak{Im}\{a_k\}$	$x_e[n] = \mathfrak{Ev}\{x[n]\}$ $[x[n] \text{ real}]$ $x_o[n] = \mathfrak{Dd}\{x[n]\}$ $[x[n] \text{ real}]$	$\mathfrak{Re}\{a_k\}$ $j\mathfrak{Im}\{a_k\}$
Parseval's Relation for Aperiodic Signals	$\frac{1}{T} \int_{T} x(t) ^{2} dt$	$= \sum_{k=-\infty}^{+\infty} a_k ^2$	$\frac{1}{N}\sum_{N} x[n] ^2 = \sum_{k=$	$\sum_{\mathrm{N}>} a_k ^2$

Table 1: Properties of Fourier Series

Property	Aperiodic Signal Fourier transform		Aperiodic Signal	Fourier transform	
	x(t)	$X(j\omega)$	x[n]	$X(e^{j\omega})$ periodic with	
	y(t)	$Y(j\omega)$	y[n]	$Y(e^{j\omega})$ period 2π	
Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$	ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	
Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$	$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$	
Frequency Shifting	$e^{-j\omega t_0}x(t)$	$X(j(\omega-\omega_0))$	$e^{j\omega_0 n}$	$X(e^{j(\omega-\omega_0)})$	
Conjugation Time Reversal	$x^*(t) \ x(-t)$	$X^*(-j\omega) \ X(-j\omega)$	$egin{array}{c} x^*[n] \ x[-n] \end{array}$	$X^*(e^{-j\omega}) \\ X(e^{-j\omega})$	
Time and Frequency Scaling / Time expansion	x(at)	$\frac{1}{ a }X(\frac{j\omega}{a})$	$x_k[n] = \begin{cases} x[n/k] & \text{if } n = \text{ multiple of } k \\ 0 & \text{if } n \neq \text{ multiple of } k \end{cases}$	$X(e^{jk\omega})$	
Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$	x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$	
Multiplication	x(t)y(t)	$\frac{X(j\omega)Y(j\omega)}{\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega)Y(j(\omega-\theta))d\theta}$	x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	
Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$	x[n] - x[n-1]	$(1 - e^{-j\omega})X(e^{j\omega})$	
Integration/Accumulation	$\int_{-\infty}^t x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$	$\sum_{k=-\infty}^{+\infty} x[k]$	$\frac{1}{1 - e^{-j\omega}} X(e^{j\omega})$	
Differentiation in Frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$	nx[n]	$j\frac{dX(e^{j\omega})}{d\omega}$	
Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \mathfrak{Re}\{X(j\omega)\} = \mathfrak{Re}\{X(-j\omega)\} \\ \mathfrak{Im}\{X(j\omega)\} = -\mathfrak{Im}\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ \sphericalangle X(j\omega) = -\sphericalangle X(-j\omega) \end{cases}$	x[n] real	$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \mathfrak{Re}\{X(e^{j\omega})\} = \mathfrak{Re}\{X(e^{-j\omega})\} \\ \mathfrak{Im}\{X(e^{j\omega})\} = -\mathfrak{Im}\{X(e^{-j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \lhd X(e^{j\omega}) = -\lhd X(e^{-j\omega}) \end{cases}$	
Symmetry for Real and Even Signals	x(t) real and even	$X(j\omega)$ real and even	x[n] real and even	$X(e^{j\omega})$ real and even	
Symmetry for Real and Odd Signals	x(t) real and odd	$X(j\omega)$ purely imaginary and odd	x[n] real and odd	$X(e^{j\omega})$ purely imaginary and odd	
Even-Odd Decomposition for Real Signals	$x_e(t) = \mathfrak{Ev}\{x(t)\}$ $[x(t) \text{ real}]$ $x_o(t) = \mathfrak{So}\{x(t)\}$ $[x(t) \text{ real}]$	$\mathfrak{Re}\{X(j\omega)\}$ $j\mathfrak{Im}\{X(j\omega)\}$	$x_e[n] = \mathfrak{Ev}\{x[n]\}$ $[x[n] \text{ real}]$ $x_o[n] = \mathfrak{Dd}\{x[n]\}$ $[x[n] \text{ real}]$	$\mathfrak{Re}\{X(e^{j\omega})\}$ $j\mathfrak{Im}\{X(e^{j\omega})\}$	
Parseval's Relation for Aperiodic Signals	$\int_{-\infty}^{+\infty} x(t) ^2 dt =$	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) ^2 d\omega$	$\sum_{n=-\infty}^{+\infty} x[n] ^2 dt = \frac{1}{2\pi}$	$\int_{2\pi} X(e^{j\omega}) ^2 d\omega$	

Table 2: Properties of Fourier Transform

Signal	Fourier transform	Fourier series coefficients	Signal	Fourier transform	Fourier series coefficients
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta(\omega - k\omega_0)$	a_k	$\sum_{k=< N>)} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k
$e^{j\omega_0t}$	$2\pi\delta(\omega-k\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise	$e^{j\omega_0 n}$	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	$\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, k = m, m \pm N, m \pm 2N, \dots \\ 0, \text{otherwise} \end{cases}$
$\cos \omega_0 t$	$\pi[\delta(\omega - k\omega_0) + \delta(\omega + k\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, \text{ otherwise}$	$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)$	$\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, \text{otherwise} \end{cases}$ $\omega_0 = \frac{2\pi r}{N}$
$\sin \omega_0 t$	$\frac{\pi}{j}\delta(\omega - k\omega_0) - \delta(\omega + k\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{ otherwise}$	$\sin \omega_0 n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l)$	$a_k = \begin{cases} \frac{1}{2j}, k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, k = -r, -r \pm N, -r \pm 2N, \dots \end{cases}$
x(t) = 1	$2\pi\delta(\omega)$	$a_k = 0, \ \kappa \neq 0$	x[n] = 1	$\iota = -\infty$	$a_k = \begin{cases} 0, \text{otherwise} \\ 1, & k = 0, \pm N, \pm 2N \\ 0, & \text{otherwise k} \neq 0 \end{cases}$
$x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \leqslant \frac{T}{2} \end{cases}$ $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - \omega_0)$	$\frac{\sin k\omega_0 T_1}{k\pi}$	$x[n] = \begin{cases} 1, & n \leqslant N_1 \\ 0, & N_1 < n \leqslant N/2 \end{cases}$ $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N\sin[2\pi k/2N]}, k \neq 0, \pm N, \pm 2N$ $a_k = \frac{2N_1 + 1}{N}, k = 0, \pm N, \pm 2N$
$\sum_{n=-\infty}^{+\infty} \delta(t - nT)$	$\frac{2\pi}{T} \sum_{n=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k	$\sum_{n=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{n=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	_	$x[n] \begin{cases} 1, & n \leqslant N \\ 0, & n > N \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	_
$\frac{\sin Wt}{\pi t}$ $\delta(t)$	$X(j\omega) = \begin{cases} \frac{2\sin\omega T_1}{\omega} \\ 1, & \omega < W \\ 0, & \omega > W \end{cases}$	_	$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $\delta[n]$	$X(\omega) = \begin{cases} 1, & 0 < \omega < W \\ 0, & W < \omega < \pi \end{cases}$	
u(t)	$rac{1}{j\omega}+\pi\delta(\omega)$	_	u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{\substack{k = -\infty \\ e^{-j\omega n_0}}}^{+\infty} \pi \delta(\omega - 2\pi k)$	_
$\delta(t-t_0)$	$e^{-j\omega t_0}$	_	$\delta[n-n_0]$	$e^{k=-\infty} e^{-j\omega n_0}$	_
$e^{-at}u(t), \mathfrak{Re}\{a\} > 0$	$\frac{1}{a+j\omega}$	_	$a^n u[n], a < 1$	$\frac{1}{1 - ae^{-j\omega}}$	_
$te^{-at}u(t), \Re \mathfrak{e}\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	_	$(n+1)a^n u[n], a < 1$	$\frac{1}{(1-ae^{-j\omega})^2}$	_
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t), \Re\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	_	$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a < 1$	$\frac{1}{(1 - ae^{-j\omega})^n}$	_

Table 3: Basic Fourier Transform Pairs