GEOMETRÍA 🎹

RELACIÓN DE EYERCICIOS 4

- (1) Sea A un espacio afín. Denoterios por R al conjunto formado por las rectas afines de A. Dadas dos rectas L, y L2 en R, decimos que L,~ L2 si L, es paralela a L. Demostrar que:
 - a) La relación ~ es de equivalencia en R.
 - ·) [leflexiva: L, ~ L, (Trivial)
 - •) Simétrica: L1~ L2 => L2~ L1
 - •) Transitiva: $L_1 \sim L_2$ y $L_2 \sim L_3 \Rightarrow L_1 \sim L_3$

b) Existe una biyección f: R/ -> P(A).

- Los espacios vectoriales tienen la misma dinensión
- P/~ es un espacio cociente donde las clases de equivalencia son rectas paralelas. Para que dos rectas sean paralelas, sus variedades de dirección deben ser proporcionales, lo que equivale a que los vectores sean proporcionales, que es, precisamente, la definición de $P(\overline{A})$.
- 2) Mostrar un espacio proyectivo en el que existan dos rectas proyectivas que no se corten. Sean \mathbb{R} y S dos rectas proyectivas. Sabenos que \mathbb{R} n $S = \emptyset \iff \mathbb{R}$ n $\mathbb{S} = \{\vec{0}\}$. Nos situamos en $\mathbb{P}^3 = \mathbb{P}(\mathbb{R}^4)$ y construimos un sistema de ecuaciones implícitas homogéneo que sea compatible determinado. Por ejemplo:

$$\begin{cases} x_{0} + x_{1} + x_{2} + x_{3} = 0 \\ x_{0} + 2x_{1} = 0 \\ x_{1} + 2x_{3} = 0 \\ x_{0} - x_{1} - x_{2} + x_{3} = 0 \end{cases} \Rightarrow \text{ Tiene solución única}$$

$$\begin{cases} x_{0} + x_{1} + x_{2} + x_{3} = 0 \\ x_{1} + 2x_{2} = 0 \\ y \text{ es } (x_{1}, x_{2}, x_{3}, x_{4}) = (0,0,0,0) \end{cases}$$

Ahora, asignamos dos ecuaciones implícitas a R y dos a S:

Sabiendo que la expresamos en coordenadas homogéneas y en la base canónica, tenemos que $\hat{R} \cap \hat{S} = \{ \vec{o} \} \Rightarrow R \cap S = \emptyset.$

3 Demostrar que, en un espacio proyectivo tridimensional, dos planos proyectivos distintos se cortan en una recta proyectiva.

Supongamos que P y S son dos planos proyectivos. Sabemos que la dimensión de un plano proyectivo es 2, luego, distinguimos los siguientes casos:

- •) Si dim(SnP) = 3 ⇒ No tendría sentido.
- Si din (SnP) = 2 => SnP es un plano proyectivo => S=P!! Contradicción.
- •) Si dim (SnP)=1 => SyP se cortan en una recta proyectiva.
- •) Si dim (SnP) = 0 => SyP no se cortan!! Contradicción

- (4) Sean [P., Pm] puntos proyectivos en P(V), donde Pi=[vi], para cada i=1,..., m. Recordemos que los puntos son proyectivamente independientes si los vectores [vi,..., vm] son linealmente independientes en V.
 - a) Demostrar que esta definición no depende de representantes.

Sean $\{v_1,...,v_m\}$ y $\{v_1',...,v_m'\}$ dos conjuntos de vectores linealmente independientes y supongamos que $v_i = \lambda v_i'$, $\forall i = 1,...,m$. Por definición, $[v_i] = [v_i']$, $\forall i = 1,...,m$, y, por hipótesis del enunciado, $p_i = [v_i] = [v_i'] = p_i'$, $\forall i = 1,...,m$, luego, efectivamente, la definición no depende de representantes.

- b) Sustificar que si $\{P_1, \dots, P_m\}$ son proyectivamente independientes, enlonces existe un único subespacio proyectivo E con $\dim(E) = m-1$ y tal que $\{P_1, \dots, P_m\} \subseteq E$.
- Si $\{P_1, ..., P_m\}$ son proyectivamente incependientes, entonces, por hipótesis, existe un conjunto de vectores linealmente independientes en V, $\{v_1, ..., v_m\}$, luego, denotemos $\hat{E} = L(\{v_1, ..., v_m\}) \subseteq V$. Por definición, sabemos que existe la proyección E del subespacio vectorial \hat{E} , del cual sabemos que $\dim(E) = \dim(\hat{E}) 1 = m 1$.
- Sea $(A_0, \overline{A_0}, \rightarrow)$ un espacio afin n-dimensional y sea $E = \mathbb{N} \times \overline{A_0}$ espacio vectorial producto. Fijemos $\rho \in A_0$ y consideremos la inyección natural $i : A_0 \rightarrow E$, $i(\rho) = (1, \rho, \rho)$. Lamemos A al hiperplano $i(A_0)$ de E como espacio afin, obviamente contenido en E, y consideremos el embebiniento canónico $e : A \rightarrow P(E)$, $e = \pi_{A}$, donde $\pi : E \rightarrow P(E)$ es la proyección natural. Demostrar que:

a) $A_{\omega} = \pi(\{0\} \times \overline{A}^{\bullet})$.

b) Para todo $S = q + \vec{S} \subseteq A_0$ subespacio afín: $X_S := X_{i(S)} = \pi((1, \vec{p}, \vec{q})) \vee \pi(\{0\} \times \vec{S}^{\dagger}) = \pi((L(\{(1, \vec{p}, \vec{q})\}) + \{0\} \times \vec{S}^{\dagger})^{\dagger})$ $S_{\infty} := i(S)_{\infty} = \pi(\{0\} \times \vec{S}^{\dagger}).$

Pendiente.

6 En un espacio proyectivo se consideran una recta proyectiva L y un hiperplano proyectivo H.

Demostrar que, o bien L⊆H, o bien LnH es un único punto.

Consideremos el espacio proyectivo $P^n = P(\mathbb{R}^{n+1})$. Sabemos que $\dim(\mathbb{H}) = n-1$. Tenemos las siguientes posibilidades:

- ·) dim(LnH)>1 => No tendría sentido.
- ·) dim(LnH)=1 => LnH=L => LeH.
- •) din (LnH) = 0 => LnH = {p} (punto proyectivo).
- (7) Calcular unas ecuaciones implicitas para la recta proyectiva en \mathbb{P}^3 que pasa por los puntos p = [0,1,0,1] y q = [1,1,1,0].

Sea R = p v q la recta proyectiva que pasa por p y q. Tenemos que:

$$\hat{R} = \hat{p} \hat{q} = \hat{p} + \hat{q} = L(\{(0,1,0,1)\}) + L(\{(1,1,1,0)\}) = L(\{(0,1,0,1), (1,1,1,0)\})$$

Calculeros las ecuaciones implícitas de R (sabenos que, en R, R se corresponde con un plano \Rightarrow dim = 2):

$$\begin{cases}
\chi_1 = \beta \\
\chi_2 = \alpha + \beta \\
\chi_3 = \beta \\
\chi_4 = \alpha
\end{cases} \Rightarrow
\begin{cases}
\chi_1 - \chi_3 = 0 \\
\chi_1 - \chi_2 + \chi_4 = 0
\end{cases}$$

Si $M_2(\mathbb{R})$ denote al espacio vectorial de las matrices cuadradas reales de orden 2, calcula las ecuaciones implícitas en $P(M_2(\mathbb{R}))$ del plano proyectivo $p \vee \Omega$, donde $P = \left[\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}\right] \in P(M_2(\mathbb{R})) \vee \Omega$ es la recta proyectiva en $P(M_2(\mathbb{R}))$ con ecuaciones implícitas $\begin{cases} x_1 - x_2 = 0 \\ x_1 + x_2 + x_4 = 0 \end{cases}$ en la base canónica $B_o = \left\{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}\right\}$. Tenemos que $\Omega = L\left(\left\{\begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\right\}\right)$, luego:

$$\widehat{\mathbb{N}}_{VP} = \widehat{\mathbb{N}}_{VP} + \widehat{\mathbb{N}}_{VP} = \mathbb{L}_{VP} \left[\left\{ \left(\frac{1}{2}, \frac{1}{2} \right), \left(\frac{9}{4}, \frac{9}{6} \right) \right\} \right] + \mathbb{L}_{VP} \left[\left\{ \left(\frac{1}{4}, \frac{1}{4} \right), \left(\frac{9}{4}, \frac{9}{4} \right), \left(\frac{1}{4}, \frac{1}{4} \right) \right\} \right]$$

Pasando a ecuaciones implícitas:

$$\begin{cases} x_{4} = \lambda + 8 \\ x_{2} = \lambda - 8 \\ x_{3} = \beta \end{cases} \Rightarrow \begin{cases} x_{1} + 3x_{2} + 2x_{4} = 0 \end{cases}$$

$$\xrightarrow{\text{Ecuaciones implicitas del}} \text{plano proyectivo } \text{log} \text{ vp}$$

9 Sea S el subespacio proyectivo de P3 con ecuaciones implícitas:

$$\begin{cases} x_0 + x_1 + x_2 + x_3 = 0 \\ -x_0 - x_1 + x_2 + x_3 = 0 \end{cases}$$

Sea R_a la recta proyectiva en P^3 que pasa por los puntos p=(1:-1:1:-1) y q=(0:0:a:1), donde $a \in \mathbb{R}$. Calcular $S \cap R_a$ y $S \vee R_a$.

Tenemos que:

 $\dim(\mathbb{P}^3)$ - Número de ecuaciones de $S=3-2=1\Longrightarrow S$ es una recta proyectiva

$$S = \begin{cases} x_0 + x_1 + x_2 + x_3 = 0 \\ -x_0 - x_1 + x_2 + x_3 = 0 \end{cases}$$

$$\hat{S} = L\left(\left\{ (1, -1, 0, 0), (0, 0, 1, -1) \right\} \right)$$

$$\hat{\Pi}_{a} = \rho \vee q = [1, -1, 1, -1] \vee [0, 0, a, 1]
 \hat{\Pi}_{a} = \hat{\rho} \vee \hat{q} = \hat{\rho} + \hat{q} = L(\{(1, -1, 1, -1)\}) + L(\{(0, 0, a, 1)\}) = L(\{(1, -1, 1, -1), (0, 0, a, 1)\})$$
Calculeros las ecuaciones implícitas de Sn $\hat{\Pi}_{a}$:

$$\begin{cases} x_0 = \alpha \\ x_1 = -\alpha \\ x_2 = \alpha + \alpha \beta \\ x_3 = -\alpha + \beta \end{cases} \implies \begin{cases} x_0 + x_1 = 0 \\ (1+\alpha)x_0 - x_2 + \alpha x_3 = 0 \end{cases}$$

Calculeros la intersección Sn Ra:

$$S \cap R_{a} = \begin{cases} x_{0} + x_{1} + x_{2} + x_{3} = 0 \\ -x_{0} - x_{1} + x_{2} + x_{3} = 0 \\ x_{0} + x_{1} = 0 \\ (1+a)x_{0} - x_{2} + ax_{3} = 0 \end{cases}$$

$$(A|b) = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ -1 & -1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1+a & 0 & -1 & a & 0 \end{pmatrix}$$

$$det(A) = 0$$

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1+\alpha & 0 & -1 & \alpha & 0 \end{pmatrix}$$

$$Si \quad \alpha \neq -1 \implies rg(A|b) = 2$$

$$Si \quad \alpha \neq -1 \implies rg(A|b) = 3$$

·) Si a = -1:

$$SnR_{\alpha} = \left\{ \begin{array}{l} x_{0} + x_{1} = 0 \\ x_{2} + x_{3} = 0 \end{array} \right\} \implies SnR_{\alpha} = L\left(\left\{ (1, -1, 0, 0), (0, 0, 1, -1) \right\} \right)$$

·) Si q = -1:

En conclusion:

$$\begin{cases} S \cap R_{q} = \begin{cases} T = \begin{cases} x_{o} + x_{1} = 0 \\ x_{2} + x_{3} = 0 \end{cases} & \text{si } \alpha = -1 \text{ (Recta proyectiva)} \\ (1:-1:1:-1) & \text{si } \alpha \neq -1 \text{ (Punto proyectivo)} \end{cases}$$

Calculemos ahora Sv Ra:

$$\widehat{S}_{V}\widehat{R}_{\alpha} = \widehat{S} + \widehat{R}_{\alpha} = L(\{(1,-1,0,0),(0,0,1,-1)\}) + L(\{(1,-1,1,-1),(0,0,\alpha,1)\}) = L(\{(1,-1,0,0),(0,0,1,-1),(0,0,\alpha,1)\})$$

•) Si q = -1:

$$\widehat{S_{V}}\widehat{R}_{q} = L\left\{\left\{\left(1, -1, 0, 0\right), \left(0, 0, 1, -1\right)\right\}\right\}$$

$$\widehat{S_{V}}\widehat{R}_{q} = \begin{cases} \underset{X_{1} = -\alpha}{X_{1} = -\alpha} \\ \underset{X_{2} = -\beta}{X_{2} = -\beta} \end{cases} \implies \widehat{S_{V}}\widehat{R}_{q} = \begin{cases} \underset{X_{2} + X_{3} = 0}{X_{2} + X_{3} = 0} \end{cases}$$

o) Si a ≠ -1:

$$\begin{vmatrix} x_0 & 1 & 0 & 0 \\ x_1 & -1 & 0 & 0 \\ x_2 & 0 & 1 & q \\ x_3 & 0 & -1 & 1 \end{vmatrix} = 0 \implies - \begin{vmatrix} x_1 & 0 & 0 \\ x_2 & 1 & q \\ x_3 & -1 & 1 \end{vmatrix} - \begin{vmatrix} x_0 & 0 & 0 \\ x_2 & 1 & q \\ x_3 & -1 & 1 \end{vmatrix} = 0 \implies$$

$$=$$
) $-(1+a)x_0-(1+a)x_1=0$

En conclusion:

$$\begin{cases} \sum_{\alpha} \sum_$$

Considera el plano afin T de \mathbb{R}^3 determinado por los puntos $(x_1, x_2, x_3) \in \mathbb{R}^3$ tales que:

$$x_1 - 2x_2 - 1 = x_2 - 2x_3 + 3 = 0$$

Determina las ecuaciones implícitas en coordenadas homogéneas canónicas de la proyectivización canónica X_T de T en \mathbb{P}^3 . Calcula también las ecuaciones de su variedad del infinito canónica T_{so} .

Saberros que T viene dada como $T = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : \begin{array}{l} x_1 - 2x_2 - 1 = 0 \\ x_2 - 2x_3 + 3 = 0 \end{array} \right\}$ en ecuaciones implícitas, por la que la proyectivización canónica de T viene dada por:

$$X_{T} = \left\{ (x_{0}: x_{1}: x_{2}: x_{3}) \in \mathbb{P}^{3}: \begin{array}{l} -x_{0} + x_{1} - 2x_{2} = 0 \\ 3x_{0} + x_{2} - 2x_{3} = 0 \end{array} \right\}$$

y su variedad del infinito canónica es:

$$\left\{
\begin{array}{c}
T_{\omega} = \left\{ (\chi_{o}: \chi_{1}: \chi_{2}: \chi_{3}) \in \mathbb{P}^{3} : \begin{array}{c} \chi_{o} = 0 \\ \chi_{1} - 2\chi_{2} = 0 \\ \chi_{2} - 2\chi_{3} = 0 \end{array}\right\}
\end{array}
\right\}$$

Determinar las ecuaciones implícitas en la base canónica $B_0 = \{(1,0,0), (0,1,0), (0,0,1)\}$ de \mathbb{R}^3 de la recta proyectiva \mathbb{R} del plano proyectivo \mathbb{R}^2 que pasa por los puntos $p = \{1:0:-1\}$, $q = \{0:1:1\} \in \mathbb{R}^2$.

Considerando la base usual B_0 de \mathbb{N}^3 , sabemos que la recta proyectiva \mathcal{R} viene dada como $\mathcal{R}=V(p u q)$. Pasando al espacio vectorial \mathbb{R}^3 , tenemos que:

$$\rho = \{1:0:-1\} \Rightarrow \hat{\rho} = L\{\{1,0,-1\}\}$$
 (Recta vectorial)

$$q = \{0:1:1\} \Rightarrow \hat{q} = L\{\{0,1,1\}\}$$
 (Recta vectorial)

Por tanto, la ecuación implicita de $\mathbb{R}=V(p u q)$ viene dada en la base usual de \mathbb{R}^3 por $V(\hat{p} u \hat{q}) = \hat{p} + \hat{q}$, luego:

$$\hat{R} = \hat{\rho} + \hat{q} = L(\{(1,0,-1)\}) + L(\{(0,1,1)\}) = L(\{(1,0,-1),(0,1,1)\})$$

Pasando a ecuaciones implicitas:

$$\begin{cases} x_0 = \alpha' \\ x_1 = \beta \\ x_2 = -\alpha + \beta \end{cases} \implies x_2 = -x_0 + x_1 \implies \begin{cases} -x_0 + x_1 - x_2 = 0 \end{cases} \xrightarrow{\text{Ecuación implicita de } \Omega} \xrightarrow{\text{en la base usual de } \Omega^3}$$

(12) Dada la proyectividad $f: P(S_2(\mathbb{R})) \to \mathbb{P}^2$ inducida por el isomorfismo lineal.

$$\hat{\beta}: S_2(\mathbb{R}) \longrightarrow \mathbb{R}^3, \quad \hat{\beta}\begin{pmatrix} a & b \\ b & c \end{pmatrix} = \begin{pmatrix} a+b+c \\ a+b \\ a \end{pmatrix},$$

determina las ecuaciones matriciales de f en las bases canónicas B_o y B_o de $S_2(\mathbb{R})$ y \mathbb{R}^3 respectivamente dadas por:

$$B_{o} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}, \quad B_{o}' = \left\{ (1,0,0), (0,1,0), (0,0,1) \right\}.$$

Calcula también la matriz M(f; B, B') para las bases B y B' de $S_2(\mathbb{R})$ $y \mathbb{R}^3$ respectivamente dadas por:

$$B = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} -1 & -1 \\ 0 & 0 \end{pmatrix} \right\}, \quad B' = \left\{ (1,1,1), (1,1,0), (1,0,0) \right\}.$$

Tenemos que:

$$\hat{\hat{f}}\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\hat{\hat{f}}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\hat{\hat{f}}\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{cases}
M(\hat{\hat{f}}; B_o, B_o') = M(\hat{f}; B_o, B_o') = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Calculeros ahora M(f; B, B'). Saberos que:

$$M(P; B, B') = M(IJ_{P^{2}}; B'_{0}, B') M(P; B_{0}, B'_{0}) M(IJ_{P^{2}}; B, B_{0})$$

$$M(P; B, B') = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$M(P; B, B') = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

13) Describir todas las proyectividades P: P2 tales que:

$$f(1:1:0) = (0:1:1), f(0:1:1) = (1:0:1), f(1:0:1) = (1:1:0).$$

Tenemos que:

$$\begin{cases}
\begin{cases}
1: 1: 0 \\
0: 1: 1
\end{cases}
\end{cases}$$

$$\begin{cases}
\begin{cases}
1: 1: 0 \\
0: 1: 1
\end{cases}
\end{cases}$$

$$\begin{cases}
\begin{cases}
0: 1: 1 \\
0: 1: 1
\end{cases}
\end{cases}$$

$$\begin{cases}
\begin{cases}
0: 1: 1 \\
0: 1: 1
\end{cases}
\end{cases}$$

$$\begin{cases}
\begin{cases}
0: 1: 1 \\
0: 1: 1
\end{cases}
\end{cases}$$

$$\begin{cases}
\begin{cases}
0: 1: 1 \\
0: 1: 1
\end{cases}
\end{cases}$$

$$\begin{cases}
\begin{cases}
0: 1: 1 \\
0: 1: 1
\end{cases}
\end{cases}$$

$$\begin{cases}
\begin{cases}
0: 1: 1 \\
0: 1: 1
\end{cases}
\end{cases}$$

$$\begin{cases}
\begin{cases}
0: 1: 1: 0 \\
0: 1: 1
\end{cases}
\end{cases}$$

$$\begin{cases}
\begin{cases}
0: 1: 1: 0 \\
0: 1: 1
\end{cases}
\end{cases}$$

$$\begin{cases}
\begin{cases}
0: 1: 1: 0 \\
0: 1: 1
\end{cases}
\end{cases}$$

$$\begin{cases}
\begin{cases}
0: 1: 1: 0 \\
0: 1: 1
\end{cases}
\end{cases}$$

$$\begin{cases}
\begin{cases}
0: 1: 1: 0 \\
0: 1: 1
\end{cases}
\end{cases}$$

$$\begin{cases}
\begin{cases}
0: 1: 1: 0 \\
0: 1: 1
\end{cases}
\end{cases}$$

$$\begin{cases}
\begin{cases}
0: 1: 1: 0 \\
0: 1: 1
\end{cases}
\end{cases}$$

$$\begin{cases}
\begin{cases}
0: 1: 1: 0 \\
0: 1: 1
\end{cases}
\end{cases}$$

$$\begin{cases}
0: 1: 1: 0 \\
0: 1: 1
\end{cases}
\end{cases}$$

$$\begin{cases}
0: 1: 1: 0 \\
0: 1: 1
\end{cases}
\end{cases}$$

Con respecto a las bases $B = \{(1,1,0), (0,1,1), (1,0,1)\}$ y $B_0 = \{(1,0,0), (0,1,0), (0,0,1)\}$, tenemos que:

$$M(\hat{\beta}, \beta, \beta_o) = M(\hat{\beta}, \beta, \beta_o) = \begin{pmatrix} 0 & b & c \\ a & b & c \\ a & b & o \end{pmatrix}$$

Luego:

$$M(f; B_o, B_o) = M(f; B, B_o) M(Id_{P^2}; B_o, B)$$

$$M(P; B_o) = \begin{pmatrix} 0 & b & c \\ a & 0 & c \\ a & b & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}^{-1}$$

$$M(P;B_o) = \frac{1}{2} \begin{pmatrix} -b+c & b-c & b+c \\ a+c & a-c & -a+c \\ a-b & a+b & -a+b \end{pmatrix}, a,b,c \in \mathbb{R}^*$$

En conclusion:

$$\begin{cases} f(x,y,2) = \frac{1}{2} \begin{pmatrix} -b+c & b-c & b+c \\ a+c & a-c & -a+c \\ a-b & a+b & -a+b \end{pmatrix} \begin{pmatrix} x \\ y \\ 2 \end{pmatrix}, \quad a,b,c \in \mathbb{R}^* \end{cases}$$

Sean E_1 y E_2 dos subespacios proyectivos de P(V). Demostrar que existe una homografía $f: P(V) \longrightarrow P(V)$ tal que $f(E_1) = E_2$ si, y solo si, $\dim(E_1) = \dim(E_2)$.

Consideremos los subespacios proyectivos E_1 y E_2 y los pasamos al espacio vectorial V:

$$\hat{E}_{1} = L(\{ \rho_{0}, \dots, \rho_{n} \}) \Rightarrow \dim(\hat{E}_{1}) = n+1 \Rightarrow \dim(E_{1}) = \dim(\hat{E}_{1}) - 1 = n$$

$$\hat{E}_{2} = L(\{ \rho_{0}', \dots, \rho_{n}' \}) \Rightarrow \dim(\hat{E}_{2}) = m+1 \Rightarrow \dim(E_{2}) = \dim(\hat{E}_{2}) - 1 = n$$

Suponganos que $n \le m$. Por definición, el conjunto de puntos $\{P_0, ..., P_n\}$ y $\{P'_0, ..., P'_m\}$ son proyectivamente independientes, luego, existe una proyectividad $\{P_i, E_i, E_j\}$ tal que $\{P_i\} = P'_i$, $\{P_i\} = 0, ..., n$. Para que $\{P_i\} = P'_i$, $\{P_i\} = P'$

- Demostrar que toda homográfia $P. P^2 \rightarrow P^2$ tiene al menos un punto fijo. Pendiente.
- Si Ω , S, Ω' , S' son rectas en un plano proyectivo P(E) con $\Omega + S$ y $\Omega' + S'$, prueba que existe una homografía $P: P(E) \longrightarrow P(E)$ tal que:

$$f(R) = R'$$
 y $f(S) = S'$.

Pendiente.

Considera un triángulo (A,B,C) en un espacio afin A, que está visto como hiperplano de un espacio vectorial E (entendido como espacio afin) con $\vec{O} \notin A$. Considera una traslación $T: A \longrightarrow A$ y llama A' = T(A), B' = T(B) y C' = T(C). Prueba que los triángulos (A,B,C) y (A',B',C') son perspectivamente equivalentes en el sentido de que los triángulos proyectivos (e(A), e(B), e(C)) y (e(A'), e(B'), e(C')) son perspectivamente equivalentes en P(E), donde e: $A \longrightarrow P(E)$ es el embebimiento canónico.

Escribarios $T: A \longrightarrow A$, $T(p) = p + \mu$, part un vector $\mu \in A^*$. Si $\pi: E \longrightarrow P(E)$ es la proyección natural, tenemos que:

 $e(A) \ v \ e(A') = \pi \left(L(\{A,A'\})^* \right) = \pi \left(L(\{A,A+u\})^* \right) = \pi \left(L(\{A,u\})^* \right)$ Análogo para $e(B) \ v \ e(B') \ y \ e(C) \ v \ e(C')$. Por tanto:

$$\left(e(A) \vee e(A')\right) \cap \left(e(B) \vee e(B')\right) = \pi \left(L\left(\{A,u\}\right)^{\dagger} \cap L\left(\{B,u\}\right)^{\dagger}\right) \ni \pi(u)$$

Análogo para $(e(A) \vee e(A')) \cap (e(C) \vee e(C'))$ y $(e(B) \vee e(B')) \cap (e(C) \vee e(C'))$. De aquí que (e(A), e(B), e(C)) y (e(A'), e(B'), e(C')) son perspectivamente equivalentes en P(E) desde el punto $O = \pi(u) \in \pi(\overrightarrow{A}^*) = A_{\infty}$.

Sean $P: P(E) \rightarrow P(E)$ una homografía sin puntos fijos, (A,B,C) un triángulo y $O \in P(E) \setminus \{A,B,C\}$ un punto tales que:

Prueba que los triángulos (A, B,C) y (P(A), P(B), P(C)) son perspectivamente equivalentes desde O.

Sabemos que:

$$O \lor A = f(O \lor A) = f(O) \lor f(A)$$

 $O \lor B = f(O \lor B) = f(O) \lor f(B)$
 $O \lor C = f(O \lor C) = f(O) \lor f(C)$

Por tanto, como O≠ {A,B,C}, deducimos que:

$$\{o\} = (o \lor A) \land (o \lor B) = \{f(o) \lor f(A)\} \land (f(o) \lor f(B)) = \{f(o)\}$$

 $\{o\} = (o \lor A) \land (o \lor C) = \{f(o) \lor f(A)\} \land (f(o) \lor f(C)) = \{f(o)\}$
 $\{o\} = (o \lor B) \land (o \lor C) = \{f(o) \lor f(B)\} \land (f(o) \lor f(C)) = \{f(o)\}$

Luego:

$$OvA = Ovf(A)$$
 y $O,A,f(A)$ están alineados
 $OvB = Ovf(B)$ y $O,B,f(B)$ están alineados
 $OvC = Ovf(C)$ y $O,C,f(C)$ están alineados

Esto prueba que los triángulos (A,B,C) y (f(A),f(B),f(C)) son perspectivamente equivalentes desde O.