Examen final

Département de génie électrique et de génie informatique Microélectronique - GIF17457

le 19 avril 2007

Vous avez droit à tous les documents. SVP, pas d'ordinateurs portables. Durée de l'examen: 3 heures (13h30-16h30).

1. (20 points) Verilog – styles de modélisation Soit un additionneur à retenue conditionnelle à 2 bits:

(a) (10 points) En assumant que les deux composantes suivantes vous sont fournies:

Écrivez une description structurale de cet additionneur

- (b) (10 points) Écrivez une description comportementale pour le même circuit.
- **2.** (18 points) Modélisation RC Soit le pFET suivant:

On donne les paramètres suivants:

- Technologie CMOS à 0.12 μ m;
- $C_{\text{ox}} = 3.82 \frac{\text{fF}}{\mu \text{m}^2}$;
- $\mu_n = 180 \frac{\text{cm}^2}{V \cdot s}$;
- $C_j = 0.94 \frac{\text{fF}}{\mu \text{m}^2};$

- Profondeur de jonction $x_j = 0.04 \mu \text{m}$;
- Tension de seuil $||V_{T_p}|| = 0.3 \text{ V};$
- Alimentation $V_{DD} = 1.2 \text{ V}.$
- (a) (3 points) Calculez la transconductance de procédé k_p' ;
- (b) (3 points) Calculez la transconductance du transistor β_p ;
- (c) (3 points) Calculez R_p ;
- (d) (3 points) Calculez la capacité de grille C_G ;
- (e) (3 points) Calculez la capacité de jonction C_p ;
- (f) (3 points) Déterminez C_S et C_D

3. (32 points) Analyse électronique des portes complexes

Soit le circuit suivant, qui constitue une réalisation en CMOS complémentaire d'une porte ou-exclusif (XOR):

On assume que les transistors ont les paramètres suivants:

•
$$\beta_n = 1.6 \text{ mA/V}^2$$
;

•
$$\beta_p = 1.6 \text{ mA/V}^2$$
;

•
$$C_{S_n} = C_{D_n} = 20 \text{ fF};$$

•
$$C_{S_p} = C_{D_p} = 80 \text{ fF};$$

•
$$V_{T_n} = 0.7 \text{ V};$$

•
$$|V_{T_p}| = 0.8 \text{ V};$$

•
$$C_{G_n} = 10 \text{ fF};$$

•
$$C_{G_p} = 40 \text{ fF};$$

et que la tension d'alimentation $V_{DD} = 2.5 \text{ V}.$

- (a) (5 points) Trouvez la capacité au point B.
- (b) (5 points) Calculez le temps de montée (pire cas) de 10% à 90% au point A.
- (c) (5 points)Calculez le temps de descente (pire cas) de 90% à 10% au point A.
- (d) (5 points) Dans le pire des cas, quel est le temps de montée total (résultant d'une transition sur les entrées $a,\ b,\ \bar{a},\ \bar{b})$ au point B? Assumez que le pFET supérieur de l'inverseur commence à conduire pleinement lorsque la tension en A descend en deça de $0.4V_{DD}$.
- (e) (5 points) Quel est le ratio r de ce circuit intégré?
- (f) (7 points) En assumant que les transistors n sont de taille minimale (transistors unitaires), quelles modifications de taille peuvent être appliquées pour équilibrer les temps trouvés en (b) et (c)?

4. (30 points) Arithmétique, conception Soit un multiplieur en réseau de 2 bits:

Ce multiplieur accepte des opérandes binaires non-signées. Soit deux opérandes de 4 bits que l'on divise en deux moitiés de 2 bits:

$$A = (A_1 \& A_0)$$
$$B = (B_1 \& B_0)$$

où A_1 , A_0 , B_1 , B_0 sont des vecteurs de deux bits et & est l'opérateur de concaténation. Sachant qu'on peut décomposer la multiplication comme suit:

$$\begin{array}{c|cccc}
 & B_1 & B_0 \\
 & & A_1 & A_0 \\
\hline
 & & (A_0 \times B_0) \\
 & & (A_1 \times B_0) \\
 & & & (A_1 \times B_1)
\end{array}$$

Dessinez le schéma de haut niveau d'un multiplieur acceptant 2 opérandes non-signées de 4 bits et restituant un résultat sur 8 bits. Ce multiplieur doit être entièrement combinatoire et vous pouvez utiliser comme composantes 1- le multiplieur à 2 bits ci-haut, 2- des additionneurs séquentiels de n'importe quelle taille, 3- des arbres de Wallace de n'importe quelle taille, 4- des additionneurs à retenue conservée. Vous pouvez également faire appel à des structures en arbre ou en cascade pour l'addition des produits partiels. Identifiez bien chacune des composantes, identifiez le nombre de bits de chaque connection (comme ci-dessus) et soyez conscients que plusieurs bonnes solutions sont possibles.

Bonne chance et bon été!

Sébastien Roy