离散数学第一章作业:

1.5 (5) — (8)

作业: 1.5 (5)-(8). 1.6(2)-(3). 1.7(0条增为公园》	口房創刊到希
1.5 将下列命题符号化	(av)	(1) + (PV
(5) 如果天下大雨, 他就乘公共汽车上班.	PVQVF	021
(6) 只有天下大雨, 他才乘公共汽车上班.	0	000
(7) 除非天下大雨, 否则他不乘公共汽车上班.	1	100
(8) 不经一事, 不长一智.	1	0 1 0
解: 今p:天下大雨. q:他乘公共汽车上班.	Y: 经一事	S:长-智.
(5) p → q	1	001
(b) 0,→p.	1	101
(1) ¬p→¬q (=> q→p)	1	0 1 1
(8) ¬r→¬s ←>s→r	4.5 专业	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1.6 (2) (3)

```
1.b 设 p.q 的真值为 0; r.S 的真值为 1. 求下列各命题公式的真值

(2) (p↔r) Λ (¬q Vs).

(3) (pΛ (q,Vr)) → ((p Vq)Λ (rΛs)).

解:

(2) (p↔r) Λ (¬q Vs) ⇔ οΛ 1 ⇔ ο.

(3) (pΛ (q,Vr)) → ((p Vq)Λ (rΛs)) ⇔ (οΛ 1) → (οΛ 1) ⇔ 1
```

1.7 (1)

1.8 (2) (3)

```
1.8 用等值演算法证明下列等值式。
(2) ((p\rightarrow q)\Lambda(p\rightarrow r)) \iff (p\rightarrow (q\Lambda r))
     (p \rightarrow q) \Lambda(p \rightarrow r)
   (TPVq) A (TPVr)
   ($) TPV(qAr)
    \Leftrightarrow p \to (q \land r)
     : ((p+q) 1(p+r)) <=> (p+(q/r))
(3) \neg (p \leftrightarrow q) \iff ((p \lor q) \land \neg (p \land q))
     7 (p + q)
  <=> ¬((p → q) Λ(q → p))
  (=>7 ((7pVq) ) (7qVp))
  (=> 7 (7pVq) V 7 (7qVp)
   <=> (p∧7q) V (q∧7p)
   (=> (p V (q 17p)) 1 (7q V (q 17p))
   <=> ((pVq) ((qrVq)) ((qqVq) ((qV7p))
    <=> (p/q) 17 (p/q)
      : 7(p++q) <=> ((pVq) ∧7(pAq))
```

1.12 (1)

7	9	4	214	p v (9 1 Y)	PAGAY	(pregny)-)(prgny)
0	0	0	0	0	0	, , ,
0	0	1	0	0	0	1
0	- 1	ō	0	0	0	
O		1	1	1	0	0
1	0	0	0	1	0	0
- 1	0	1	0	ı	0	0
1	1	0	0	1	0	0
L_	1	1		1	1	1
芥 真短	作为:	0 (00,0	01,010,	11 1	
	は花す *): (1	/	1) V (7pn		サハタハマソン (カハタハイ)

(2)

(2) 10	9_	73	79	77->9	79 V P	(カラタ) つ (79レタ)	
D	o	1		0	1	1	
0	1	1	0	1	0	0	
· ·	0	0	1	1	1		
1	1	0	0	1	1	l l	
老假娘 主机取	先 d is :) V (P19	2)	
老等取り		: ↑∨ ⊜ T				2024 0 20	10.24

1.17

(1)

项	7×Ay	хЛлу	7×∧z	TYAZ
盖	m_2, m_3	m4, m5	m_1 , m_3	m., m5
算符数	2	2	2	2

1.19

1.19 (2) 前提: p→(q,→s), q,pV7	r.
结论: Y→S.	
证明: ① pV¬r.	前提引入
② Y.	附加前提引入
3 P.	①②折取三段论
	前提引入
⑤ q→s.	③④假言推理
(b) q,	前提引入
① S.	⑤⑥假音推理

离散数学第二章作业:

1、P53 Ex2.3(3)(5)(6) 答案:

2、P54 Ex2.14

3、证明下列推理:

有理数和无理数都是实数、虚数不是实数。因此、虚数既不是有理数、也不是无理数。

- F(x):x 是有理数;
- G(x):x是有理数;
- P(x):x 是实数;
- Q(x):x 是虚数。

- $\bigcirc \neg H(y) \rightarrow (\neg F(y) \land \neg G(y))$
- $\bigcirc \forall x(I(x) \rightarrow (\neg F(x) \land \neg G(x)))$

4置换

②⑤假言三段论

6 H+

离散数学第三章作业:

1、 使用容斥原理求不超过 120 的素数个数。

答案:

23. 因为 $11^2 = 121$, 不超过 120 的合数至少含有 2,3,5 或 7 这几个素因子之一. 先考虑不能 2,3,5,7 整除的整数. 设

 $A_4 = |x|x \in S, x$ 是 7 的倍数

那么

 $\begin{aligned} |S| &= 120, \quad |A_1| &= 60, \quad |A_2| &= 40, \quad |A_3| &= 24, \quad |A_4| &= 17 \\ |A_1 \cap A_2| &= 20, \quad |A_1 \cap A_3| &= 12, \quad |A_1 \cap A_4| &= 8, \quad |A_2 \cap A_3| &= 8, \quad |A_2 \cap A_4| &= 5, \quad |A_3 \cap A_4| &= 3 \\ |A_1 \cap A_2 \cap A_3| &= 4, \quad |A_1 \cap A_2 \cap A_4| &= 2, \quad |A_1 \cap A_3 \cap A_4| &= 1, \quad |A_2 \cap A_3 \cap A_4| &= 1 \\ |A_1 \cap A_2 \cap A_3 \cap A_4| &= 0 \end{aligned}$

根据包含排斥原理,不能被2,3,5,7整除的整数是

$$|\overline{A_1} \cap \overline{A_2} \cap \overline{A_3} \cap \overline{A_4}| = 120 - (60 + 40 + 24 + 17)$$

 $+ (20 + 12 + 8 + 8 + 5 + 3) - (4 + 2 + 1 + 1) + 0$
 $= 120 - 141 + 56 - 8 = 27$

因为 2,3,5,7 不满足上述条件,但是它们都是素数, 另外,1 满足上述条件,但是 1 不是素数, 因此,不超过 120 的素数有 27+4-1=30 个.

- 2、对60个人的调查表明,有25人阅读《每周新闻》杂志,26人阅读《时代》杂志,26人阅读《财富》杂志,9人阅读《每周新闻》和《财富》杂志,11人阅读《每周新闻》和《时代》杂志,8人阅读《时代》和《财富》杂志,还有8人什么杂志也不读。
- (1) 求三种杂志全都阅读的人数;
- (2) 分别求只阅读《每周新闻》、《时代》和《财富》杂志的人数。

答案: (1) 3人(2) 只阅读《每周新闻》、《时代》和《财富》杂志分别为8人、10人、12人。

解:(1) S:调查中至少读过一本杂志的人

|S| = 60 - 8 = 52.

A: 读过《每周新闻》的人(调查中) B:调查中读过《时代》的人.

C:调查中读过《财富》的人.

|A| = 25. |B| = 26. |C| = 26. |AAB| = 11. |AAC| = 9. |BAC| = 8.

$$|S| = (|A| + |B| + |C|) - (|A \cap B| + |A \cap C| + |B \cap C|) + |A \cap B \cap C|$$

$$|S| = (25 + 26 + 26) - (11 + 9 + 8) + |A \cap B \cap C|$$

$$|A \cap B \cap C| = 3$$

$$|A \cap B \cap C| = |A| - |A \cap B| - |A \cap C| + |A \cap B \cap C|$$

$$= 25 - 11 - 9 + 3 = 8$$

$$|A \cap B \cap C| = |B| - |A \cap B| - |B \cap C| + |A \cap B \cap C|$$

$$= 26 - 11 - 8 + 3 = 10$$

$$|A \cap B \cap C| = |C| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

$$= 26 - 9 + 8 + 3 = 12$$

离散数学第四章作业:

1、设 $A = \{0,1,2,3\}$, $R \in A$ 上的二元关系

R= { <0,1>,<0,2>,<0,3>,<1,2>,<1,3>,<2,3>}

(1)请写出 R、 $R \circ R$ 、 R^{-1} 的关系矩阵;

(2) 请画出 R、 $R \circ R$ 、 R^{-1} 的关系图。

2、设 A= {1,2,3}, 下图给出了三种 A 上的二元关系,写出每种关系对应的关系矩阵,并说明每种关系所具有的性质。

3、设 $A=\{1,2,3,4\}$, R 为 $A \times A$ 上的二元关系, $\forall < a,b>, < c,d> \in A \times A$ $< a,b> R < c,d> \Leftrightarrow a+b=c+d$

(1) 证明: *R* 为等价关系;(2) 求 *R* 导出的划分。

- 4、对于集合 $A = \{1, 2, 3, \dots 12\}$ 与整除关系,构成一个偏序关系;
 - (1) 请画出哈斯图;
 - (2) 写出集合 A 的极大元、极小元、最大元、最小元;

(3) 写出集合 $B = \{1, 2, 3, 6\}$ 的最大元、最小元、上界、下界、上确界、下确界答案:

第五章作业

1、无向图 G 如下图所示

请写出 G 的的点割集和边割集,并指出其中的割点和桥。 答案:

2、无向图 G=<V,E>,其中 V={ v_1 , v_2 , v_3 , v_4 }, E={ e_1 , e_2 , e_3 , e_4 , e_5 }, 其关联矩阵为

$$M(G) = \begin{bmatrix} 2 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

试画出G的图形。

3、有向图 D 如下图所示

- (1) $D + v_1$ 到 v_4 长度为 1, 2, 3, 4 的通路各有几条?
- (2) $D + v_1$ 到 v_1 长度为 1, 2, 3, 4 的回路各有几条?
- (3) D中长度为3的通路有多少条?其中长为3的回路有多少条?
- (4) 写出 D 的可达矩阵。

答案:

(2)	0010	Vi到Vi长度为I的通路为0条 Vi到Vi长度为I的回路为1条
A2(D) =	1220	V.到 V4长度为2的油路为0多
	1210	Vi到Vi,旋为2的回路为1条
A3(D) =	3 2 2 2 1 2 1 0	V,到V4长度为3由通路为2条
	2 2 2 1 1 2 1 0	Vi到 Vi 长度为3由回路为3条
A+(D)=	5 6 4 2 7 2 2 2 1	V.到V4长度为4即通路为28
4 4 /33	4 4 3 2 2 2 1	V.到V.长度为4的回路为5
(3) [] aij =	24. 有24条通路	· [] a:1] = 7. 有7条回路
(4) P(D) =		

第九章作业:

1、P227 Ex9.16

(1) 医算意知:

** 0 1 2 3 4

0 0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 0>1 8 (34) 2 2 3 4

(1) 憂え: 0

3 元: 1

1 0 2 3 4

1 0 4 3 2 1

1 0 2 2 3 4

1 0 4 3 2 1

2、设代数系统 V_1 =< $\{0, 1\}$, °>, V_2 =< $\{0, 1\}$, *>, 其中°表示模 2 加法, *表示模 2 乘法。试构造积代数 $V_1 \times V_2$ 的运算表,并指出其中积代数的幺元。答案:

3、P227 Ex9.20 答案:

xo(yoz) = xo(y+z-2) = x + y+z-2-2 = x+4+2-4 : x040Z = x0(40Z) 即 0 满足结合律. ③ 单位之的存在, 读 e ∈ Z, 为单位元, R) Y X ∈ Z x0 e = x + e - 2 = x B 6. X = 6+ X-7 = X 可以指出 e=262 所以, 足上的二之运等。存在净位之为2 ● 之中を下込ま都有多元 ∀ α ∈ Z , 沒 α ¬ 为其浮之, 凡)有 $\chi \circ \chi^{-1} = \chi + \chi^{-1} - 2 = \mathcal{R} = 2$ A x 0 x = x + x -2 = e = 2 J以推出 x = 4-x € Z βh 仏, 2中母「元素 γ 都有色元, 且其達えガ 4-γ 除上, とちき等。 節 科 寺 群 . 2021/5/25 11:21