MAT247 Problem Set 2

Nicolas

February 11, 2022

1.

Proof.

 \Rightarrow

Consider $L = v - \sum_{i=1}^{m} \langle v, e_i \rangle e_i$. Because our list is orthonormal, this is equal to $\langle v, e_i \rangle - \langle v, e_i \rangle = 0$, $\forall 1 \leq i \leq m$ Thus, this shows that L and all e_i are orthogonal. Which means that $\|L\|^2 = \|\langle v - \sum_{i=1}^{m} \langle v, e_i \rangle, e_i \rangle\|^2 = \|v\|^2$ by construction. However, we have an orthonormal list, so $\|\sum_{i=1}^{m} \langle v, e_i \rangle e_i\| = \sum_{i=1}^{m} |\langle v, e_i \rangle|^2$, which by assumption means that L = 0.

 \Leftarrow

This direction is trivial because if $v \in \text{span}(e_1, e_2, ..., e_m)$ then that list is a ONB for the subspace defined by the span of the list (following from $Axler\ 6.30$).

Proof.

Applying $Gram\text{-}Schmidt\ Process}$ to the basis of vectors of U gives us the ONB $((\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}},0),(0,\frac{i}{\sqrt{5}},0,\frac{2}{\sqrt{5}}))$. Thus, to find the $u\in U$ that minimizes $\|u-(1,2,3,4)\|$ we simply need to find the projection of (1,2,3,4) onto U. This is easy because we have a ONB. Thus $P_U(1,2,3,4) = \langle (1,2,3,4),(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}},0)\rangle(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}},0) + \langle (1,2,3,4),(0,\frac{i}{\sqrt{5}},0,\frac{2}{\sqrt{5}})\rangle(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}},0)$. Thus, $u=\frac{4}{\sqrt{2}}(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}},0)+\frac{2i}{\sqrt{5}}(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}},0)$.

Proof.

Let U=P(V). Consider $x\in \operatorname{Image}(P)$ and $y\in \operatorname{null}(P)$ Because P is linear $P(x+\alpha y)=P(x)+P(\alpha y)=P(x)=x, \alpha\in F$. This implies that $\|x\|^2\leq \|x+\alpha y\|^2$ by assumption. But if this is true for all α , then $\langle x,y\rangle=0$. Thus we have can make an orthogonal decomposition of every vector in V, with $x\in U=P(v)$ and $y\in U^\perp$, which by definition is an orthogonal projection onto U.

Proof.

 \subset

Let $x \in U^* = (U^{\perp})^{\perp}$. Then $\langle x, u \rangle = 0, \forall u \in (U^{\perp})^{\perp})^{\perp}$ which means by definition, $x \in (((U^{\perp})^{\perp})^{\perp})^{\perp}) = (U^*)^*$

 \supset

Consider $x \notin U^*$. This means that $\langle x, u \rangle \neq 0$, $\forall u \in (U^*)^{\perp}$ which means that $x \notin (U^*)^*$. Thus we have proven the contrapositive.

Proof.

Consider the functional $L(v): V \to \mathbb{C}, \ L(v) = \sum_{n \in \mathbb{N}} f(n)$. This functional is linear because $L(\lambda v) = \sum_{n \in \mathbb{N}} \lambda f(n) = \lambda \sum_{n \in \mathbb{N}} f(n)$. $L(u+v) = \sum_{n \in \mathbb{N}} (u+v)(n) = \sum_{n \in \mathbb{N}} u(n) + \sum_{n \in \mathbb{N}} v(n)$. However, this cannot be expressed as an inner product because inner products need require some form of a second vector.