Global median filtering forensic method based on Pearson parameter statistics

CNN Based Detector

Pearson Parameter 'K'

Pearson system of distributions is characterised by the parameter κ which is defined as the polynomial ratio of skewness and kurtosis.

Skewness(S) and Kurtosis(K)

Here. μ2, μ3 and μ4 are second, third and fourth centralised moments, respectively.

$$S = \mu_3 / \mu_2^{3/2}$$
 and $K = \mu_4 / \mu_2^2$.

Derivation of Parameter K

Generation of unimodal probability distributions can be achieved by solving the differential equation

$$\frac{1}{g(x)}\frac{dg(x)}{dx} = \frac{x+a}{c_0 + c_1 x + c_2 x^2}$$
 (2)

where g(x) is the probability density function (pdf) and a, c_0 , c_1 and c_2 are constant parameters.

Equation Generated

$$\frac{1}{g(x)}\frac{\mathrm{d}g(x)}{\mathrm{d}x} = -\frac{x + \left((\sqrt{\mu_2}S(K+3))/2(5K-6S^2-9)\right)}{\left(\left((2K-3S^2-6)x^2+\sqrt{\mu_2}S(K+3)x+\mu_2(4K-3S^2)\right)/2(5K-6S^2-9)\right)}$$

Final Equation

$$\kappa = \frac{c_1^2}{4c_0c_2} = \frac{S^2(K+3)^2}{4(4K-3S^2)(2K-3S^2-6)}$$

Streaking Effect.

The extent of dependence varies with the size of the window used and the distance between pixels. This effect is known as streaking effect.

SRV(Single Residual Value)

A block with single residual value referred to as SRV block.

/	/	/			
0	1	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	6
0	0	0	0	0	3
0	2	0	2	0	1
0	0	0	0	0	1

a

/	/				
0	0	0	0	0	0
3	7	2	0	0	0
0	0	0	7	8	3
0	0	0	0	9	0
0	0	0	0	5	0
2	4	4	2	6	1

Highlighted red block with residual values

 $\kappa_{\rm org3}$

	/	1	/	\geq	X
0	1	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	6
0	0	0	0	0	3
0	2	0	2	0	1
0	0	0	0	0	1

Highl	ighted	red	block
with	residu	al v	alues

 κ_{mf3}

.

е

f

κ analysis of distinct residual values in blocks

 Streaking effect is responsible for decrease in number of distinct residual values in sliding blocks after median filtering

Nr	Orignal Image	MFR of median filtered image(s=3)	MFR of median filtered image(s=5)
1	1.56	40.24	51.37
2	3.99	33.70	30.01
3	7.76	15.19	11.66
4	9.04	7.24	5.02
5	9.37	2.58	1.48
6	11.38	0.81	0.36
7	15.40	0.20	0.07
8	20.63	0.028	0.009
9	20.85	0.002	0.0007

- (a) Original image MFRs to corresponding 3x3 median filtered images MFRs
- (b) Original image MFRs to corresponding 5x5 median filtered images MFRs
- (c) κ range for different color blocks

Novel Feature Set

23 Distinguishing Features

- κ histogram bin height
- Moments of block κ distribution
- Count of SRV blocks

κ histogram bin height

• κ histogram bin height are utilised as intrinsic fingerprints

$$HBH_k = [h_i]$$
 $1 \le i \le 18$ and $i \in \mathbb{Z}^+$

 h_i denotes the ith bin of the κ vector histogram

Representation of h_i

$$h_i = \sum_{j=1}^{N_b} \Psi(\kappa, x_i, w_i)$$

where

$$\Psi(\kappa, x_i, w_i) = \begin{cases} 1 & (x_i - \frac{w_i}{2}) \le \kappa \le (x_i + \frac{w_i}{2}) \\ 0 & otherwise \end{cases}$$

 N_b -Total number of non-SRV blocks

 x_i Center of ith bin in κ histogram

 w_i Width of the *ith* bin in κ histogram

Moments of block κ distribution

$$MOM_{\kappa} = [\mu_{\kappa}, \sigma_{\kappa}^2, S_k, K_k]$$

where μ_{κ} , σ_{κ}^2 , S_k , K_k denote mean , variance , skewness and kurtosis of κ vector

Bar plots of the ratio of average of the first four moments

Count of SRV Block

$$C_{SRV} = \sum_{k=1}^{B} \phi(r_p^k, r_q^k)$$

Where B denotes number of SRV blocks in image MFR and

$$\phi(r_p^k, r_q^k) = \begin{cases} 1 & r_p^k = r_q^k \ \forall \ p, q \\ 0 & otherwise \end{cases}$$

Ratio of the average of SRV block count , 3x3 median filtered to original , 5x5 median filtered MFR

Composite Feature Set

$$F_k^{23} = [HBH_k, MOM_k, C_{SRV}]$$

