子群

- 1. 子群: 设 (G, \cdot) 为群, $S \neq G$ 的一个非空子集, 若 S 对 G 的运算"·"也构成群, 则称 S 为 G 的子群, 表示为 $S \leq G$;
 - (a) 真子群: 若 $S \neq G$, $S \leq G$, 则 $S \neq G$ 的真子群, 记为 S < G;
 - (b) 记号:
 - i. 设 G 是一个群, A, B 是 G 的非空子集, $g \in G$, 记: $gA = \{ga|a \in A\}$, $Ag = \{ag|a \in A\}$, $AB = \{ab|a \in A, b \in B\}$, $A^{-1} = \{a^{-1}|a \in A\}$;
 - (c) 平凡子群: 特殊的子群 e, G;
- 2. 子群的性质:
 - (a) 若 $H \leq G$, 则 H 的单位元就是 G 的单位元;
 - (b) $H_1, H_2 \leq G \Rightarrow H_1 \cap H_2 \leq G$;
 - (c) $H_1, H_2 \leq G$, 则 $H_1 \cup H_2 \leq G \Leftrightarrow H_1 \subseteq H_2$ 或者 $H_2 \subseteq H_1$;
 - (d) $H_1, H_2 \leq G, \text{ M} H_1H_2 \leq G \Leftrightarrow H_1H_2 = H_2H_1;$
- 3. 子群的判定定理: 设 S 是群 G 的非空子集,则下面三个命题等价:
 - (a) S 是群 G 的子群;
 - (b) $\forall a, b \in S$, $\neq ab \in S$ $\Rightarrow a^{-1} \in S$;
 - (c) $\forall a, b \in S$, $有 ab^{-1} \in S$;
- 4. 实数域上一般线性群的特殊子群:
 - (a) n 次特殊线性群: $SL(n,\mathbb{R}) = \{A \in GL(n,\mathbb{R}) | |A| = 1\};$
 - (b) n 次正交线性群: $O_n(\mathbb{R}) = \{A \in GL(n, \mathbb{R}) | A^t A = I_n \};$
 - (c) n 次特殊正交群: $SO_n(\mathbb{R}) = \{A \in GL(n, \mathbb{R}) | A^t A = I_n, |A| = 1\};$
- 5. 元素的幂: 设 G 是群, $a \in G$, $n \in \mathbb{N}$, 定义 $a^n = a \cdots a(n \uparrow)$, $a^0 = e$;
 - (a) 注意: 一般 $a^nb^n \neq (ab)^n$, 只有 ab = ba 时等号成立;
- 6. 元素的阶: 设 G 是群, $a \in G$, 使 $a^n = e$ 成立的最小正整数 n 称为元素的阶, 记作 o(a); 若不存在正整数 n 满足上面的条件, 则称 a 的阶是无限的;

- (a) 若 o(a) = n, 则 $a^m = e \Leftrightarrow n|m. n|m$ 表示 n 整除 m, 即 $\frac{m}{n}$ 是整数;
- (b) 若 o(a) = n, 则对每个正整数 m, a^m 的阶是 $\frac{n}{(m,n)}$. (m,n) 表示 m 和 n 的最大公因数;
- (c) $a, b \in G, o(a) = m, o(b) = n, 若 (m, n) = 1 且 ab = ba, 则 <math>o(ab) = mn$;
 - i. 若 (m,n)=1 不满足,则 $o(ab)=\frac{mn}{(m,n)}$;
- (d) 若除单位元外其他元素都是 2 阶元,则 G 是交换群;
- 7. 生成子群: 设 G 是群, $S \subseteq G$, 则 G 中包含 S 的最小子群 A 叫做由 S 生成的子群, 记作 A = < S >;
 - (a) 等价定义: $A \neq G$ 中包含S 的所有子群之交, $\langle S \rangle = \{a_1...a_m | m \geq 0, a_i \in S \cup S^{-1}\}$; 当 m = 0 时, $a_1...a_m = e$;
 - (b) 生成元系: 若 $G = \langle S \rangle$, 则称 $S \in G$ 的一个生成元系;
 - (c) 有限生成群: 若 $G = \langle S \rangle$, 且 S 是有限集合, 则称 G 为有限生成群;
 - (d) 循环群: 若 G = < a >, 则称 S 为循环群;
 - (e) n 阶有限群: 设 G = < a > 为循环群, 若 o(a) = n, 则 G 为 n 阶有限群;
 - (f) 无限群: 设 $G = \langle a \rangle$ 为循环群, 若a的阶无限, 则G为无限群;
- 8. 关系: 若 A 是集合, 集合 $A \times A$ 的一个子集 R 叫做集合 A 上的一个关系;
 - (a) 如果 $(a,b) \in R$, 称 a 和 b 有关系 R, 写成 aRb;
- 9. 等价关系:
 - (a) 自反性: $\forall a \in A, a \sim a$;
 - (b) 对称性: 若 $a \sim b$, 则 $b \sim a$;
 - (c) 传递性: 若 $a \sim b, b \sim c$, 则 $a \sim c$;
- 10. 等价类: 具有等价关系的元素全体称为一个等价类, 记作 [a];
 - (a) $a \in [a]$;

- (b) $\forall b, c \in [a] \Rightarrow b \sim c$;
- (c) $\forall b \in [a] \Rightarrow [b] = [a];$
 - i. 代表元: [a] 中任取一个元素 b, 则可以称 b 为等价类 [a] 的代表元;
- (d) 不同等价类不相交;
- (e) 若 $A = \bigcup_{i \in I} [a_i], [a_i], i \in I$ 两两不相交, 从每个等价类 $[a_i]$ 中取一个元素 b_i , 则 $R = \{b_i\}$ 具有性质: A 中每个元素都等价于 b_i , 而不同的 b_i 彼此不等价, 我们把这样的 R 叫做 A 对于等价关系 ~ 的完全代表系. 于是 $A = \bigcup_{a \in R} [a]$ (不相交);
- 11. 分拆: 若集合 $A = \bigcup_{i \in I} A_i, A_i, i \in I$ 两两不相交, 则称 $\{A_i | i \in I\}$ 是 A 的一个分拆;
 - (a) 结论: A 上的等价关系与 A 上的分拆——对应;