BAREM DE EVALUARE ȘI NOTARE

Varianta 3

- Se punctează orice modalitate de rezolvare corectă a cerințelor.
- Nu se acordă fracţiuni de punct.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la zece.

A.<u>MECANICĂ</u>(45 de puncte)

A.Subiectul I

Nr.item	Soluție,rezolvare	Punctaj
I.1	C	3p
2.	d	3p
3.	d	3p
4.	С	3p
5.	a	3p
Total pe	ntru subiectul I	15p

A.Subiectul al II-lea

Nr.item	Soluție, rezolvare		Punctaj
II.a	Pentru: N=G _M =Mg	1p	3р
	Rezultat final N=60 N	2p	-
b.	Pentru:	•	4p
	Fe =F _{f1} (condiție pusă corpului de masă M)	1p	-
	Fe= k Δℓ ,	1p	
	$F_{f1} = \mu Mg$	1p	
	Rezultat final ∆ℓ = 2cm	1p	
C.	Pentru:	•	4p
	F-F _{f2} -F _e =0 (condiție pusă corpului de masă m)	1p	
	F _{f2} =µmg	1p	
	$F=F_{f2}+F_e=\mu mg+k \Delta \ell=\mu(m+M)g$	1p	
	Rezultat final F=16 N	1p	
d.	Pentru:	•	4p
	a = -μg	1p	-
	$a = \Delta v / \Delta t$	1p	
	$\Delta v = -v$; $\Delta t = v/\mu g$	1p	
	Rezultat final ∆t=1s	1p	
Total per	ntru subiectul al II –lea		15

A.Subiectul al III-lea

Nr.item	Soluție, rezolvare		punctaj
III.a.	Pentru:		4p
	La momentul inițial energia mecanică este $E_0 = E_{c0} + E_{p0}$	1p	-
	E _{po} =mgh	1p	
	$E_{c0}=mv_{o}^{2}/2$	1p	
	rezultat final: E = 7,5J	1p	
b.	Pentru:		3p
	Δ Ec= L total; Ltotal=LG	1p	
	Δ Ec= -mv _o ² /2	1p	
	rezultat final L _G =-4,8 J	1p	
C.	Pentru:		4p
	$mv_0^2/2+mgh = mv_1^2/2$, v_1 viteza cu care corpul atinge solul	1p	-
	$\overrightarrow{\Delta p} = \overrightarrow{p_1} - \overrightarrow{p_0}$ variația impulsului		
	$\Delta p = mv_0 + mv_1$	1p	
	Rezultat final: Δp=2,7 N·s	2p	
d.	Pentru:		4p
	$\Delta p_{1f} = F_{med} \cdot \Delta t$	1p	
	(p ₁ =mv ₁ impulsul la atingerea solului, p _f impulsul după atingerea s	olului) [.]	
	$\Delta p_{1f} = mv_1$; $p_f = 0$	2p	
	Rezultat final F _{med} =100 N	1p	
Total pen	tru subiectul al III-lea		15p

B. ELEMENTE DE TERMODINAMICĂ (45puncte) Subiectul I

Nr. item	Soluție, rezolvare	punctaj
1	b	3 p
2	d	3 p
3	b	3 p
4	d	3 p
5	а	3 p
Total subi	ectul I	15 p

A. Subiectul al II - lea

Nr. item	Soluție, rezolvare		punctaj
а	$v = \frac{pV}{RT}$	1p	3р
	⇒ Rezultat final: $v = \frac{2,83 \cdot 10^5 \cdot 16,62 \cdot 10^{-3}}{8,31 \cdot 283} = 2 \text{moli}$	2p	
b	$v = \frac{m}{\mu} \Rightarrow$	1p	4p
	$m = \nu \mu \Rightarrow$	1p	
	Rezultat final $m = 2mol \cdot \frac{2g}{mol} \Rightarrow m = 4g$	2p	
С	$\rho = \frac{m}{V} \Rightarrow$	1p	4p
	$\rho = \frac{m}{V} \Rightarrow$ $\rho = \frac{p\mu}{RT}$	1p	
	rezultat final $\rho = 0.24 Kg/m^3$	2p	
d	Pentru		4p
	$\left \begin{array}{c} \frac{p_1}{T_1} = \frac{p_2}{T_2} \Rightarrow \ p_2 = p_1 \frac{T_2}{T_1} \end{array} \right $	2 p	
	Rezultat final $p_2 = 2,83 \cdot 10^5 \frac{N}{m^2} \cdot \frac{300 \text{K}}{283 \text{K}} \Rightarrow p_2 = 3 \cdot \frac{10^5 \text{N}}{m^2} = 3 \cdot 10^5 \text{ Pa}$	2p	
Total subi	ectul al II – lea		15 p

B Subjectul al III - lea

	i ai iii – iea	1
Nr. Item	Soluție, rezolvare	punctaj
а		4p
	$pV = vRT \Rightarrow T = \frac{pV}{vR}$ În transformarea 2 \rightarrow 3 $p = const$	
	$V_3 = 3V_1 \qquad \Rightarrow T_3 = 6T_1$ $T = \frac{pV}{\nu R}$	
	În transformarea $3\rightarrow 4$ $V = const.$	
	$p_4 = p_1 \qquad \Rightarrow T_4 = 3T_1$ $T = \frac{pV}{\nu R}$ În transformarea $4 \rightarrow 1$ $p = const.$	
	$p_4 = p_1 \qquad T_1 < T_4.$ $V_1 \lhd V_4$	

	Reprezentare grafică corectă. (1p pentru fiecare proces) $4x1p=4p$		
b	Gazul primeşte căldură în transformările $1\rightarrow 2$ și $2\rightarrow 3$, deoarece $T_2 > 7$	Γ ₁ şi	4p
	$T_3 > T_2$.		
	$Q_p = Q_{12} + Q_{23}$	1p	
	$Q_{12} = \nu C_{\nu} (T_2 - T_1) = \nu \frac{5}{2} R (T_2 - T_1) = \frac{5}{2} \nu R (2T_1 - T_1) = \frac{5}{2} p_1 V_1$	1p	
	$Q_{12} = \frac{5}{2} \cdot 2 \cdot 10^5 \cdot 20 \cdot 10^{-3} J = 1000 J = 10 KJ$		
	$Q_{23} = \nu C_p(T_3 - T_2) = \nu \frac{7}{2} R(6T_1 - 2T_1) = \frac{7}{2} \nu R \cdot 4T_1 =$		
	$14p_1V_1$	1p	
	$Q_{23} = 14 \cdot 2 \cdot 10^5 \cdot 20 \cdot 10^{-3} J = 56000 J = 56 KJ$		
	$Q_p = 10KJ + 56KJ = 66KJ$	_1p	
С	Gazul cedează căldură în transformările $3\rightarrow 4$ și $4\rightarrow 1$, deoarece $T_4< T_1< T_4$.	T₃ şi	4p
		1p	
	$Q_{c} = \sqrt{34} + \sqrt{41}$ $Q_{34} = \nu C_V (T_4 - T_3) = \nu \frac{5}{2} R(3T_1 - 6T_1) = -\frac{5}{2} \nu R \cdot 3T_1 = 0$	-ρ	
	2		
	2	1p	
	$Q_{34} = -\frac{15}{2} \cdot 2 \cdot 10^5 \cdot 20 \cdot 10^{-3} J = -30000 J = -30 KJ$		
	$Q_{41} = \nu C_p(T_1 - T_4) = \nu \frac{7}{2} R(T_1 - 3T_1) = -\frac{7}{2} \nu R \cdot 2T_1$		
	$=-7p_1V_1$	1p	
	$Q_{41} = -7 \cdot 2 \cdot 10^{5} \cdot 20 \cdot 10^{-3} J = -28000 J = -28 KJ$		
	Rezultat final: Q _c =-58KJ	1p	
d	Deoarece variația energiei interne depinde doar de starea finală și de	;	3р
	starea iniţială:		
	$\Delta U_{123} = v \frac{5}{2} R(6T_1 - T_1) = \frac{25}{2} vRT_1 = \frac{25}{2} p_1 V_1$	2p	
	Rezultat final $\Delta U_{123} = \frac{25}{2} \cdot 2 \cdot 10^5 \cdot 20 \cdot 10^{-3} J = 50 KJ$	1p	
Total subic	ectul al III – lea		15 p

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU (45puncte) Subiectul I

Nr. Item	Soluție, rezolvare	Punctaj
I.1	d.	3p
2.	d.	3p
3.	b.	3p
4.	a.	3p
5.	d.	3p
TOTAL po	entru Subiectul I	15p

C.Subiectul al II-lea

Nr.	Soluție, rezolva	е	Punctaj
Item	ŕ		
II.a	$E_s=E_1-E_2$	1p	4p
	E _s =22V	1p	•
	$r_s=r_1+r_2$	1p	
	$r_s=2\Omega$	1p	

b.	$I_S = \frac{E_S}{R_S + r_S}$	1p	4p
	$R_s = R_1 + R_2$	1p	
	U _s =I _s R _s	1 ['] p	
	Rezultat final: U _s =20V	1p	
C.	$I_p = \frac{E_S}{R_p + r_S}$	1p	4 p
	$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}$	1p	
	$\dot{U_p} = I_p R_p$	1p	
	Rezultat final: U _p =14,32V	1p	
d.	$Isc = \frac{E_S}{r_c}$	1p	3p
	$I_{sc} = \frac{r_s}{(E_1 - E_2)/(r_1 + r_2)}$	1p	
	I _{SC} = I IA	1p	
TOTAL	pentru Subiectul II		15 p

C.Subiectul al III-lea

Nr. Item	Soluție, rezolvare		punctaj
III.a	Pentru:		5p
	$W_b = P_b \cdot \Delta t$	1p	
	$W_R = U_R \cdot I \cdot \Delta t$	1p	
	$I = \frac{P_b}{U_b}$	1p	
	$U_R = E - U_b - I \cdot r$	1p	
	Rezultat numeric: $W = W_b + W_R = 8,25kJ$	1p	
b.	Pentru:		4p
	$R_b = \frac{U_b}{I} = \frac{U_b^2}{P}$	1p	
	$R_R = \frac{4U_R}{I}$	1p	
	Rezultate numerice: $R_b = 6.4\Omega$ și $R_R = 9.6\Omega$	2p	
c.	Pentru :		3р
	$\eta = \frac{P_u}{P_t} = \frac{U}{E}$	1p	
	$I = \frac{P_b}{U_b}$		
	U_b		
	$\eta = 1 - \frac{Ir}{E}$	1p	
	Rezultat numeric: η= 91,6%	1p	
d.	Pentru:		3р
	$R_e = r$	1p	
	$R_e = \frac{R(R_b + R_R)}{R_b + R_R + R}$	1p	
	Rezultat numeric : $R \cong 0.84\Omega$	1p	
TOTAL pe	ntru Subiectul III	•	15p

<u>D. OPTICĂ</u> (45 puncte) Subiectul I

Nr. item	Soluție, rezolvare	punctaj
1	d.	3 p
2	b.	3 p
3	a.	3 p
4	b.	3 p
5	c.	3 p
Total subi	ectul I	15

D.Subiectul al II – lea

Nr. item	Soluție, rezolvare		Punctaj
а	$d = x_2 + x_1' \Rightarrow x_1' = d - x_2$ $d = \text{distanţa dintre cele două lentile}$ $x_2 = \text{distanţa de la lentila } L_1 \text{ până la imaginea formată de ea}$ $x_1' = \text{distanța de la imaginea formată de lentila } L_1 \text{ până la lentila } L_2$	2p	4p

$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f_1} \Rightarrow x_2 = \frac{f_1 x_1}{x_1 + f_1} \Rightarrow x_2 = \frac{10cm(-15cm)}{-15cm + 10cm} \Rightarrow x_2 = 30cm$ $ x_1' = 40cm - 30cm = 10cm$	1p	
$\frac{1}{x_{2}^{'}} - \frac{1}{x_{1}^{'}} = \frac{1}{f_{2}} \Rightarrow x_{2}^{'} = \frac{f_{2}x_{1}^{'}}{x_{1}^{'} + f_{2}} \Rightarrow x_{2}^{'} = \frac{20cm(-10cm)}{-10cm + 20cm} \Rightarrow x_{2}^{'} = -20cm$	2p 1p	3р
$\begin{array}{c} \mathbf{c} \\ \\ A \\ B \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		4 p
$\beta = \beta_1 \cdot \beta_2 = \frac{x_2}{x_1} \cdot \frac{x_2^{'}}{x_1^{'}} \Rightarrow \beta = \frac{30cm}{-15cm} \cdot \frac{-20cm}{-10cm} \Rightarrow \beta = -4$ Imaginea finală este virtuală, răsturnată și de patru ori mai mare decât obiectul. Ea se formează la stânga lentilei L_2 .	2p 2p	4p
Total subjectul al II – lea		15 p

D. Subjectul al III - lea

Nr. Item	Soluție, rezolvare		Punctaj
а	$i_1 = \frac{\lambda_1 \cdot D}{2l}$	1р	
	$\left \frac{D}{2l} = \frac{i_1}{\lambda_1} \right ^{2l}$	2p	4p
	Rezultat final $\frac{D}{2l} = 10^4$	1p	
b	$x \frac{k\lambda D}{2l \ kmax}$ $k_{1} = k_{2} i_{2} \rightarrow k_{1} k_{2} = k_{2} i_{2} \rightarrow k_{3} k_{4} = k_{3} k_{4}$ 1p		
	$k_{k \max 1} = x_{k \max 2} \to k_1 i_1 = k_2 i_2 \to k_1 \lambda_1 = k_2 \lambda_2$ $k_1 = 13, k_2 = 10$	1p 1p	4 p
	$x_{k \max} = k_1 i_1 = 6,5cm$	1р	
С	$\upsilon = \frac{c}{\lambda}$	1p	4
	$\Delta v = v_1 - v_2 = \frac{c}{\lambda_1} - \frac{c}{\lambda_2} = \frac{c(\lambda_2 - \lambda_1)}{\lambda_1 \lambda_2}$	2p	4 p
	Rezultat final $\Delta v = 1.38 \cdot 10^{14} Hz$	1p	
d	Cel mai apropiat punct față de maximul central care nu este iluminat pe ecran este punctul unde se formează primul minim.	1p	3р
	$i_2 > i_1$ $x = \frac{i_1}{2} = 2,5mm$	2p	ЭÞ
Total subjectul al III – lea			15 p

Propunători:

VARIANTA 3, Filiera teoretică – Profilul real, Filiera vocațională – Profilul militar

- A. MECANICĂ prof. Diamandi Simona;
- B. ELEMENTE DE TERMODINAMICĂ prof. Toma Anca;
 C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU I, III- prof. Ioncea Virgil, prof. Cepreagă Cătălina, II-prof. Țipău Elena;
- D. OPTICĂ- prof. Avram Marian.