Конспект курса Р. В. Бессонова по функциональному анализу

Михаил Иванов

19 января 2020 г.

Оглавление

1	1 Базовый функциональный анализ					
	1.1 Теорема Хана-Банаха	5				

Глава 1

Базовый функциональный анализ

1.1. Теорема Хана-Банаха

Определение 1.1.1. X называется *линейным пространством*, или $\Pi\Pi$ (над \mathbb{R} или над \mathbb{C}), если на нём заданы бинарные операции $+: X \times X \to X$ и $\cdot: \mathbb{C} \times X \to X$, такие что для любых $x,y,z \in X$ и $\alpha,\beta \in \mathbb{C}$ выполнено:

- 1) (x + y) + x = x + (y + z) (ассоциативность сложения в X);
- 2) x + y = y + x (коммутативность сложения в X);
- 3) $\exists 0 \in X : x + 0 = x$ (существование нейтрального элемента по сложению в X);
- 4) $(\alpha + \beta)x = \alpha x + \beta x$ (линейность по коэффициенту);
- 5) $\alpha(x+y) = \alpha x + \alpha y$ (линейность по вектору);
- 6) $\alpha(\beta x) = (\alpha \beta) x$ (ассоциативность умножения на коэффициент);
- 7) 1x = x (свойство единицы);
- 8) 0x = 0 (свойство нуля).

Временно засядем в вещественный функциональный анализ.

Определение 1.1.2. $p: X \to \mathbb{R} - cyбаддитивный функционал, если$

$$\forall x, y \in X \quad p(x+y) \leq p(x) + p(y).$$

Определение 1.1.3. $p\colon X\to \mathbb{R}$ — положительно однородный функционал на X, если

$$\forall t \ge 0 \quad \forall x \in X \quad p(tx) = tp(x).$$

Определение 1.1.4. $\varphi \colon X \to \mathbb{R}$ — линейный функционал, или $\mathcal{I}\Phi$, если

$$\forall x, t \in X \quad \forall \alpha \in \mathbb{R} \quad \varphi(\alpha x) = \alpha \varphi(x) \quad \text{if} \quad \varphi(x+y) = \varphi(x) + \varphi(y).$$

Определение 1.1.5. $\varphi \colon X \to \mathbb{R} - cyблинейный функционал, если он субаддитивный и положительно однородный.$

Определение 1.1.6. Для **ЛП** X будем называть $Y \subseteq X$ линейным подмножеством X, если $+_{X|_{Y}}$, $+_{X|_{Y}}$, $0_{X} \in Y$ задают на Y структуру линейного пространства.

Теорема 1.1.1 (Хан, Банах, вещественная форма). Пусть X- вещественное $\Pi\Pi$, $L\subseteq X-$ линейное подмножество $X,\ \varphi\colon L\to\mathbb{R}-\Pi\Phi,\ p\colon X\to\mathbb{R}-$ сублинейный функционал, такой что $\forall x\in L\quad \varphi(x)\leqslant p(x).$ Тогда существует $\Pi\Phi$ $\Phi\colon X\to\mathbb{R},$ такой что $\forall x\in L\quad \Phi(x)=\phi(x)\ u\ \forall x\in X\quad \Phi(x)\leqslant p(x).$

Доказательство. Если L = X, то, очевидно, $\Phi = \varphi$ подходит. В противном случае зафиксируем любой $x_0 \in X \setminus L$ и рассмотрим в нашем X линейное подмножество $L_1 = \langle x_0 \rangle + L = \{ \alpha x_0 + x \mid \alpha \in \mathbb{R}, x \in L \}$. Зададим на нём $\mathbf{\Pi} \mathbf{\Phi} \Phi_{\beta} (\alpha x_0 + x) = \alpha \beta + \varphi(x)$

Подберём такое β , чтобы $\mathbf{\Pi} \mathbf{\Phi} \Phi_{\beta}$ на L_1 , определяемый по формуле $\Phi_{\beta} \left(\alpha x_0 + x \right) = \alpha \beta + \varphi(x)$, был ограничен p сверху: $\forall z \in L_1 \quad \Phi_{\beta}(z) \overset{\circledast}{\leqslant} p(z)$. Нам надо, чтобы \circledast было выполнено для $z = \alpha x_0 + x$. Другими словами, хотим, чтобы $\forall \alpha \in \mathbb{R} \quad \forall x \in X \quad \alpha \beta + \varphi(x) \leqslant p\left(\alpha x_0 + x\right)$. Для $\alpha = 0$ мы это уже знаем. В остальных случаях можно поделить неравенство на $|\alpha|$, ведь это положительное число, на него можно делить неравенства, а положительная однородность позволяет заносить деление в аргумент: $\forall \alpha \in \mathbb{R} \quad \forall x \in X \quad \beta \operatorname{sgn} \alpha + \varphi\left(\frac{x}{|\alpha|}\right) \leqslant p\left(x_0 \operatorname{sgn} \alpha + \frac{x}{|\alpha|}\right)$. $\frac{x}{|\alpha|}$ может быть любым вектором $z \in L$, поэтому условие на наше β равносильно

 $\frac{x}{|\alpha|}$ может быть любым вектором $z \in L$, поэтому условие на наше β равносильно тому, что $\forall w, z \in X$ — $p(-x_0-w)-\varphi(w) \leqslant \beta \leqslant p(x_0+z)-\varphi(z)$. Чтобы оно вообще нашлось, необходимо и достаточно, чтобы левая часть была всегда не больше правой: $\forall w, z \in X$ — $p(-x_0-w)-\varphi(w) \leqslant p(x_0+z)-\varphi(z)$. Перепишем это как $\forall w, z \in X$ — $\varphi(z-w) \leqslant p(x_0+z)+p(-x_0-w)$ по линейности. Это верно, так как $p(x_0+z)+p(-x_0-w)\geqslant p(z-w)$, а $p(z-w)\geqslant \varphi(z-w)$, так что можно взять любое $\beta \in \left[\sup_{w \in L} \left\{-p(x_0-w)-\varphi(w)\right\}; \inf_{z \in L} \left\{p(x_0+z)-\varphi(z)\right\}\right]$ (этот отрезок непустой).

Для дальнейшего нам потребуется лемма Цорна.

Определение 1.1.7. Для множества $\prec \subseteq M \times M$ и $x, y \in M$ будем писать $x \prec y$ и $y \succ x$, если $(x, y) \in \prec$, и $x \not\prec y$ и $y \not\succ x$, если $(x, y) \notin \prec$.

Множество $\prec\subseteq M\times M$ называется $\mathit{частичным}$ $\mathit{порядком},$ если для любых $x,y,z\in M$ выполнены его свойства:

- 1) $x \not\prec x$ (антирефлексивность);
- 2) $x \prec y \Rightarrow y \not\prec x$ (антисимметричность);
- 3) $(x \prec y) \land (y \prec z) \Rightarrow x \prec z$ (транзитивность).

В таком случае пара $\mathfrak{M} = \langle M, \prec \rangle$ называется *частично упорядоченным множеством*, или $\mathbf{\mathit{H}yM}$.

Частичный порядок $\prec \subseteq M \times M$ называется линейным порядком на M, если для любых двух элементов $x,y \in M$ выполнена ровно одна из трёх возможностей: $x \prec y$, $x = y, x \succ y$.

 $\mathbf{H}\mathbf{y}\mathbf{M}$ называется *линейно упорядоченным множеством*, или $\mathbf{J}\mathbf{y}\mathbf{M}$, или *цепью*, если порядок на нём линейный.

Для любого **ЧУМ** $\mathfrak{M} = \langle M, \prec \rangle$ любое $m \subseteq M$ индуцирует некоторый **ЧУМ** $\mathfrak{m} = \langle m, \prec |_m \rangle = \langle m, \prec \cap m \times m \rangle$, поэтому можно говорить о частично упорядоченных подмножествах данного **ЧУМ**.

Элемент $x \in M$ называется максимальным в **ЧУМ** $\mathfrak{M} = \langle M, \prec \rangle$, если нет такого $y \in M$, что $x \prec y$. Это не то же самое, что наибольший элемент — такой $x \in M$, что $\forall y \in M \ (x \succ y) \lor (x = y)$. Если в **ЧУМ** есть наибольший элемент, то он

же является единственным максимальным элементом в нём, однако максимальный элемент необязательно наибольший.

Элемент $x \in M$ называется верхней гранью для $m \subseteq M$ в **ЧУМ** $\mathfrak{M} = \langle M, \prec \rangle$, если в $m \cup \{x\}$ элемент x наибольший.

Лемма 1.1.1 (Цорн). Если в **ЧУМ** \mathfrak{M} у любой подцепи есть верхняя грань, то в \mathfrak{M} есть максимальный элемент.

Доказательство леммы Цорна приводить не будем, зато будем ею пользоваться.

Рассмотрим M — множество всех $\mathbf{\Pi} \mathbf{\Phi}$ ψ , заданных на линейном подмножестве X, содержащих L, таких что $\forall x \in \text{dom } \psi$ $\psi(x) \leqslant p(x)$ и $\forall x \in L$ $\psi(x) = \varphi(x)$. Зададим порядок \prec на этих $\mathbf{\Pi} \mathbf{\Phi}$: $\psi_1 \prec \psi_2$, если ψ_2 является доопределением ψ_1 : $\text{dom } \psi_1 \subsetneq \text{dom } \psi_2$ и $\forall x \in \text{dom } \psi_1$ $\psi_1(x) = \psi_2(x)$. Это частичный порядок. Проверим условие леммы Цорна в $\mathfrak{M} = \langle M, \prec \rangle$: любая цепь — это набор $\mathbf{\Pi} \mathbf{\Phi}$, которые попарно друг друга доопределяют. Объединим их, понятно, что вновь получился $\mathbf{\Pi} \mathbf{\Phi}$ из M, и он больше либо равен любого $\mathbf{\Pi} \mathbf{\Phi}$ из цепи. Значит, применима лемма Цорна, и в \mathfrak{M} есть максимальный $\mathbf{\Pi} \mathbf{\Phi}$ Φ . Он удовлетворяет всем требованиям теоремы Хана-Банаха, кроме $\mathrm{dom } \Phi = X$. Но и ему он тоже удовлетворяет, так как иначе (согласно первой половине рассуждения) в \mathfrak{M} есть $\Phi_{\beta} \succ \Phi$, что невозможно по максимальности.

Определение 1.1.8. Для $\Pi\Pi$ X над \mathbb{C} будем называть $p\colon X\to\mathbb{R}$ *полунормой*, если $\forall x,y\in X$ и $\alpha\in\mathbb{C}$ выполнены условия:

- 1) $p(\alpha x) = |\alpha| p(x)$ (однородность);
- 2) $p(x+y) \leqslant p(x) + p(y)$ (неравенство треугольника).

Предложение 1.1.1. Любая полунорма $p: X \to \mathbb{R}$ сохраняет ноль, чётна и неотрицательна: для любого $x \in X$ выполнено p(0) = 0, p(x) = p(-x), $p(x) \ge 0$.

Доказательство.
$$p\left(\vec{0}\right) = p\left(0 \cdot \vec{0}\right) = |0|\left(\vec{0}\right) = 0; p(-x) = p(-1 \cdot x) = |-1|p(x) = p(x);$$
 $p(x) = \frac{p(x) + p(-x)}{2} \geqslant \frac{p(x-x)}{2} = 0.$

Определение 1.1.9. В комплексном $\Pi\Pi$ X функционал $u: X \to \mathbb{R}$ называется вещественно $\Pi\Phi$ на X как на вещественном $\Pi\Pi$.

Лемма 1.1.2. В комплексном **ЛП** для любого **ЛФ** $\psi: X \to \mathbb{C}$ существует вещественно линейный функционал $u: X \to \mathbb{R}$, такой что $\forall x \in X \quad \psi(x) \stackrel{\circledast}{=} u(x) - iu(ix)$. Обратно, по формуле \circledast любой вещественно линейный функционал u задаёт **ЛФ** ψ .

Доказательство. Нетрудно понять, что $u(x) = \Re \psi(x)$ представить в виде u(x) + iv(x), где $u,v \colon X \to \mathbb{R}$, то u и v будут вещественно линейными функционалами. Покажем, что u удовлетворяет \circledast :

Теорема 1.1.2 (Хан, Банах, комплексная форма). Пусть X — комплексное $\Pi\Pi$, $L \subseteq X$ — линейное подмножество X, $\varphi \colon L \to \mathbb{C}$ — $\Pi\Phi$, $p \colon X \to \mathbb{R}$ — полунорма, такая что $\forall x \in L \ |\varphi(x)| \leqslant p(x)$. Тогда существует $\Pi\Phi$ $\Phi \colon X \to \mathbb{C}$, такой что $\forall x \in L \ \Phi(x) = \phi(x) \ u \ \forall x \in X \ \Phi(x) \leqslant p(x)$.

Предметный указатель

```
\Pi\Phi, 5
                                            положительно однородный функционал,
\Pi\Pi, 5
ЧУМ, 6
                                            полунорма, 7
ЛУМ, 6
                                            субаддитивный функционал, 5
верхняя грань подмножества ЧУМ, 7
                                            сублинейный функционал, 5
вещественно линейный функционал, 7
лемма Цорна, 7
                                            теорема Хана-Банаха, вещественная
линейно упорядоченное множество, 6
                                                    форма, 6
линейное подмножество, 5
                                            теорема Хана-Банаха, комплексная
линейное пространство, 5
                                                    форма, 7
линейный порядок, 6
линейный функционал, 5
                                            цепь, 6
максимальный элемент в ЧУМ, 6
                                            частично упорядоченное множество, 6
наибольший элемент в ЧУМ, 6
                                            частичный порядок, 6
```