Category Theory and Computational Complexity

Marco Larrea

Octavio Zapata

December 22, 2014

A first-order dependence logic D is a class which consists of all D-definable properties where $D:=(FO+\mu.\bar{t})$ and $\mu.\bar{t}$ denotes that term $t_{|\bar{t}|}$ is functionally dependent on t_i for all $i\leq |\bar{t}|$. The model class FO is as always defined as the class of models of all first-order sentences (i.e. $FO:=\{S:(\exists\tau)(\exists\varphi\in L(\tau))\ S=Mod(\varphi)\}$ where $L(\tau)$ is a first-order language of type τ) and $\mu.\bar{t}$ is interpreted as a recursively generated tuple of terms which we naturally identify with the set $[|\bar{t}|]:=\{1,2,\ldots,|\bar{t}|\}$. D sentences are capable to characterise variable dependence and in general they are proven to be as expressive as the sentences of the second order Σ_1^1 fragment. The intuitionistic dependence version ID has the same expressive power as full SO. It is a fact that MID-model checking is PSPACE-complete where MID is the intuitionistic implication fragment of the modal dependence logic MD which contains at least two modifiers. Hence, $(FO+\mu.\bar{t})=NP,ID=\Sigma_*P$ and MID=PSPACE. On the other hand, PSPACE=IP=QIP, and so MID=QIP which is the quantum version of the interactive polytime class IP.

We shall try to cook up a purely algebraic definition for the class of structures MID and extend such categorical logic in order to capture other quantum and classical complexity classes.

Ehrenfeucht-Fraïssé games characterise the expressive power of logical languages [?]. Every Ehrenfeucht-Fraïssé game is an ultraproduct [?]. A back-and-forth method for showing isomorphism between countably infinite structures. If F is an ultrafilter (i.e. $F \subseteq 2^{\mathbb{N}}$ and $\forall X \subseteq \mathbb{N}(X \notin F \Leftrightarrow \mathbb{N} \setminus X \in F)$ holds) then the reduced product $\prod_i M_i/F$ is an ultraproduct of the sets M_i , $i \in I$. Recall that

$$f \sim g \Leftrightarrow \{i \in I : f(i) = g(i)\} \in F$$

for all infinite sequences $f, g \in \prod_i M_i$ and any index set I is the relation which induces the equivalence classes that conform the ultraproduct

$$\prod_i M_i/F = \{[f]: f \in \prod_i M_i\}.$$

Lemma 1 (Loś Lemma). If F is an ultrafilter and φ a first-order formula, then the ultraproduct of models of φ indexed by any index set $I \in F$ is a model of φ , i.e.

$$(\prod_i A_i/F,\alpha) \models \varphi \Leftrightarrow \{i \in I : (A_i,\alpha_i) \models \varphi\} \in F.$$