Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Ans: The optimal value of alpha for Ridge is 2 and for Lasso it is 0.0005. With these alphas the R2 of the model was approximately 0.85. After doubling the alpha values in the Ridge and Lasso, the prediction accuracy remains around 0.8 but there is a small change in the co-efficient values. The new model is created and demonstrated in the Jupiter notebook.

Below are the changes in the co-efficients.

	Ridge Co-Efficient
LotArea	0.305458
OverallQual_10	0.287260
OverallQual_9	0.271877
GarageArea	0.242461
FullBath	0.233263
TotRmsAbvGrd	0.233186
Neighborhood_Crawfor	0.200674
LotFrontage	0.189872
OverallQual_8	0.172335
Fireplaces	0.164290
WoodDeckSF	0.135467
Neighborhood_StoneBr	0.132718
GarageCars	0.123897
OpenPorchSF	0.122857
Condition1_PosN	0.114455
YearRemodAdd	0.109267
ScreenPorch	0.109102
BedroomAbvGr	0.107873
PoolArea	0.106615

HalfBath

0.105333

	Ridge Doubled Alpha Co-Efficient	
LotArea	0.248086	
OverallQual_9	0.247373	
TotRmsAbvGrd	0.240529	
OverallQual_10	0.239825	
FullBath	0.221067	
GarageArea	0.219435	
Neighborhood_Crawfor	0.188898	
Fireplaces	0.169610	
LotFrontage	0.165822	
OverallQual_8	0.164717	
GarageCars	0.144385	
WoodDeckSF	0.132021	
Neighborhood_StoneBr	0.121409	
OpenPorchSF	0.117769	
BedroomAbvGr	0.113068	
YearRemodAdd	0.111127	
HalfBath	0.104218	
ScreenPorch	0.098520	
Condition1_PosN	0.095393	
Foundation_PConc	0.092875	

	Lasso Co-Efficient		Lasso Doubled Alpha Co-Effici
LotArea	0.398696	LotArea	0.4220
OverallQual_10	0.323633	OverallQual_10	0.3461
OverallQual_9	0.300729	OverallQual_9	0.3041
GarageArea	0.282321	GarageArea	0.287
TotRmsAbvGrd	0.281028	TotRmsAbvGrd	0.2479
FullBath	0.230077	FullBath	0.2398
Neighborhood_Crawfor	0.188842	Neighborhood_Crawfor	0.2027
OverallQual_8	0.187073	LotFrontage	0.1978
Fireplaces	0.172857	OverallQual_8	0.1857
LotFrontage	0.168334	Fireplaces	0.1618
WoodDeckSF	0.123574	${\bf N} eighborhood_Stone Br$	0.1292
YearRemodAdd	0.108176	WoodDeckSF	0.1257
Neighborhood_StoneBr	0.106268	Condition1_PosN	0.123
HalfBath	0.103487	PoolArea	0.1224
OpenPorchSF	0.098663	OpenPorchSF	0.1117
ScreenPorch	0.093594	ScreenPorch	0.1088
Condition1_PosN	0.089163	YearRemodAdd	0.1072
Foundation_PConc	0.086146	HalfBath	0.1042
OverallQual_7	0.084210	Foundation_PConc	0.0928
GarageCars	0.079243	3SsnPorch	0.088

Lacco Doubled Alpha Co-Efficient

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Ans:

The optimum lambda value in case of Ridge and Lasso is as follows:-

- Ridge 2
- Lasso 0.0005

The Mean Squared Error in case of Ridge and Lasso are:

- Ridge 0.02545459625614572
- Lasso 0.026171161948074582

The Mean Squared Error of both the models are almost same.

Since Lasso helps in feature reduction (as the coefficient value of some of the features become zero), Lasso has a better edge over Ridge and should be used as the final model.

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Ans:

The five most important predictor variables in the current lasso model is:-

- 1. Overall Qual
- 2. Total Garage Area
- 3. Total rooms above grade
- 4. Full bathrooms above grade
- 5. Neighbourhod Crawford

We build a Lasso model in the Jupiter notebook after removing these attributes from the dataset. The R2 of the new model without the top 5 predictors drops to 0.81 The Mean Squared Error increases to 0.03186

The new Top 5 predictos are:-

	Lasso Co-Efficient
LotFrontage	0.462279
FullBath	0.364248
GarageCars	0.361037
Exterior1st_Stone	0.236592
BedroomAbvGr	0.236231

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Ans:

Model should be as simple as possible, though its accuracy will decrease but it will be more robust and generalizable. It can be understood by bias-variance tradeoff. The simpler the model, more will bias but less variance and more generalizable will be the model. It will perform equally on both training and test data set It is important to have balance between bias and variance to avoid overfitting and underfitting.

Regularization can be used to make the model simpler. Regularization helps to strike the delicate balance between keeping the model simple and not making it too naive to be of any use. For regression, regularization involves adding a regularization term to the cost that adds up the absolute values or the squares of the parameters of the model.