The Effect of Playoff Wins on Personal Seat Licenses in the NFL

Principal Investigator: Esther Chao

Email: ec2635@stern.nyu.edu (ec2635@stern.nyu.edu)

This project studies how on-field performance during the NFL post-season, specifically Superbowl wins, affect secondary market sales of NFL personal seat licenses (PSLs). PSLs are one-time fees that transfer stadium seat ownership rights from the team to the licensee, thus enabling the licensee to purchase season tickets. Teams only sell a fixed amount of seat licenses at face value. Since futher PSLs transactions take place on a secondary market, the effect of playoff wins on supply and demand is unclear. In order to meet increased demand, there must be a large group of fans willing to sell their own seat license rights.

This study will focus on the quantity and prices of PSLs for eight NFL teams:

- Baltimore Ravens
- Chicago Bears
- Cincinnati Bengals
- Houston Texans
- New York Giants
- Philadephia Eagles
- Pittsurgh Steelers
- Seattle Seahawks

Post-seasons after playoff appearances and Superbowl wins will be analyzed and compared to trends found within season and non-win post-seasons.

Data Cleaning

Overview: My data comes from STR Marketplace, an online brokerage for PSLs. It uploads cumulative Excel spreadsheets each month with transaction-level details of sales transactions. Below I demonstrate I have the ability to access the data.

Requisite Packages: Below I bring in the packages I need...

In [1]:

```
import pandas as pd
from pandas_datareader import data
import numpy as np
import matplotlib.pyplot as plt
import datetime as dt
```

Grabbing the data: Here are all eight URLs to the website's Excel spreadsheets.

In [2]:

```
url_BAL = "https://ravens.seasonticketrights.com/Images/Teams/Baltim
oreRavens/SalesData/Baltimore-Ravens-Sales-Data-PSLs.xls"
```

In [3]:

```
url_CHI = "https://bears.seasonticketrights.com/Images/Teams/Chicago
Bears/SalesData/Chicago-Bears-Sales-Data.xls"
```

In [4]:

url_CIN = "https://bengals.seasonticketrights.com/Images/Teams/Cinci
nnatiBengals/SalesData/Cincinnati-Bengals-Sales-Data.xls"

In [5]:

url_HOU = "https://texans.seasonticketrights.com/Images/Teams/Housto
nTexans/SalesData/Houston-Texans-Sales-Data.xls"

In [6]:

url_NYG = "https://nygiants.strmarketplace.com/Images/Teams/NewYorkG
iants/SalesData/New-York-Giants-Sales-Data.xls"

In [7]:

url_PHI = "https://manage.strmarketplace.com/Images/Teams/Philadelph
iaEagles/SalesData/Philadelphia-Eagles-Sales-Data-PSLs.xls"

In [8]:

url_PIT = "https://steelers.strmarketplace.com/Images/Teams/Pittsbur
ghSteelers/SalesData/Pittsburgh-Steelers-Sales-Data.xls"

In [9]:

url_SEA = "https://seahawks.strmarketplace.com/Images/Teams/SeattleS
eahawks/SalesData/Seattle-Seahawks-Sales-Data.xls"

Combining the Data: Next I will read it all in, skipping the headers and making each consistent to merge into one cohesive sample.

In [10]:

In [11]:

```
CHI = pd.read_excel(url_CHI,
skiprows = 8)
```

```
In [12]:
```

In [13]:

In [14]:

In [15]:

```
PHI = pd.read_excel(url_PHI,
skiprows = 8)
```

In [16]:

```
PIT = pd.read_excel(url_PIT,
skiprows = 8)
```

In [17]:

In [18]:

In [19]:

```
NYG = NYG[["Date", "# Seats", "Seating Area", "Section", "Row", "Tot
al Price"]]
```

In [20]:

```
PHI = PHI[["Date", "# Seats", "Seating Area", "Section", "Row", "Tot
al Price"]]
```

In [21]:

```
SEA = SEA[["Date", "# Seats", "Seating Area", "Section", "Row", "Tot
al Price"]]
```

In [22]:

I realized through working with this data in the past that Per Sea t Price they give is not always correct.

sublist = [BAL, CHI, HOU, PIT] # These are the four teams with an or iginal Per Seat Price column uploaded.

for team in sublist:

team.drop(["Per Seat Price"], axis = 1, inplace = True) # Drops
the column

In [23]:

list = [BAL, CHI, CIN, HOU, NYG, PHI, PIT, SEA] # List of all the da ta sets

for team in list:

team["Per Seat Price"] = team["Total Price"] / team["# Seats"] #
Creates a new column for Per Seat Price

In [24]:

for team in list:

team.set_index("Date", inplace = True) # Sets date as the index

In [25]:

BAL["Team"] = "BAL" # Adds a column for team identifiers so transact ions within the large sample can still be attributed # to a team

```
In [26]:
```

```
CHI["Team"] = "CHI"
```

In [27]:

```
CIN["Team"] = "CIN"
```

In [28]:

```
HOU["Team"] = "HOU"
```

In [29]:

```
NYG["Team"] = "NYG"
```

In [30]:

```
PHI["Team"] = "PHI"
```

In [31]:

```
PIT["Team"] = "PIT"
```

In [32]:

In [33]:

ALL = BAL.append([CHI, CIN, HOU, NYG, PHI, PIT, SEA]) # Merges the e ight data sets into one big sample

ALL.head() # Just checking the column headers

Out[33]:

	# Seats	Seating Area	Section	Row	Total Price	Per Seat Price	Team
Date							
2007- 05-18	2	Lower Level End Zone (C)	112	15	11000	5500.0	BAL
2007- 05-22	2	Club Level III Corner	222	9	10000	5000.0	BAL
2007- 05-22	2	Club Level III Corner	220	11	8500	4250.0	BAL
2007- 05-22	1	Club Level IV End Zone	208	11	3000	3000.0	BAL
2007- 05-22	4	Lower Level Sideline (B)	102	6	40000	10000.0	BAL

In [34]:

ALL.shape # The final sample we are working with contains 14,395 transactions across eight teams.

Out[34]:

(14395, 7)

Segmenting the Data: Next, because we're interested in post-season performance, we must separate the final sample into seasons and off-seasons.

In [35]:

offseason07 = ALL[(ALL.index < '2007-09-06')] # This means every transaction before 9-6-07 belongs to the 2007 Offseason.

In [36]:

offseason07["Category"] = "2007 Offseason" # This assigns a season i dentifier to the transactions.

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [37]:

offseason07["InorOff"] = "Offseason" # This assigns an identifier as to whether this is inseason or offseason.

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [38]:

season07 = ALL[(ALL.index >= '2007-09-06') & (ALL.index <= '2008-0203')] # This means every transaction between 9-6-07 and

2-3-08 belongs to the 2007 Season, including

the given dates, which were start of season and

the Superbowl.</pre>

In [39]:

season07["Category"] = "2007 Season" # Again, this assigns aseason i
dentifier to the transactions.

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [40]:

season07["InorOff"] = "In-Season" # Again, this assigns an identifie
r as to whether this is inseason or offseason.

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [41]:

offseason08 = ALL[(ALL.index > '2008-02-03') & (ALL.index < '2008-09 -04')] # We repeat the above process until present day.

In [42]:

```
offseason08["Category"] = "2008 Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [43]:

```
offseason08["InorOff"] = "Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [44]:

```
season08 = ALL[(ALL.index >= '2008-09-04') & (ALL.index <= '2009-02-
01')]</pre>
```

In [45]:

```
season08["Category"] = "2008 Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [46]:

```
season08["InorOff"] = "In-Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [47]:

```
offseason09 = ALL[(ALL.index > '2009-02-01') & (ALL.index < '2009-09 -10')]
```

In [48]:

```
offseason09["Category"] = "2009 Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [49]:

```
offseason09["InorOff"] = "Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [50]:

```
season09 = ALL[(ALL.index >= '2009-09-10') & (ALL.index <= '2010-02-
07')]
```

In [51]:

```
season09["Category"] = "2009 Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [52]:

```
season09["InorOff"] = "In-Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [53]:

```
offseason10 = ALL[(ALL.index > '2010-02-07') & (ALL.index < '2010-09 -09')]
```

In [54]:

```
offseason10["Category"] = "2010 Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [55]:

```
offseason10["InorOff"] = "Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [56]:

```
season10 = ALL[(ALL.index >= '2010-09-09') & (ALL.index <= '2011-02-
06')]
```

In [57]:

```
season10["Category"] = "2010 Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [58]:

```
season10["InorOff"] = "In-Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [59]:

```
offseason11 = ALL[(ALL.index > '2011-02-06') & (ALL.index < '2011-09 -08')]
```

In [60]:

```
offseason11["Category"] = "2011 Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [61]:

```
offseason11["InorOff"] = "Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [62]:

```
season11 = ALL[(ALL.index >= '2011-09-08') & (ALL.index <= '2012-02-
05')]</pre>
```

In [63]:

```
season11["Category"] = "2011 Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [64]:

```
season11["InorOff"] = "In-Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [65]:

```
offseason12 = ALL[(ALL.index > '2012-02-05') & (ALL.index < '2012-09 -05')]
```

In [66]:

```
offseason12["Category"] = "2012 Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [67]:

```
offseason12["InorOff"] = "Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [68]:

```
season12 = ALL[(ALL.index >= '2012-09-05') & (ALL.index <= '2013-02-
03')]
```

In [69]:

```
season12["Category"] = "2012 Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [70]:

```
season12["InorOff"] = "In-Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [71]:

```
offseason13 = ALL[(ALL.index > '2013-02-03 ') & (ALL.index < '2013-09-05')]
```

In [72]:

```
offseason13["Category"] = "2013 Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [73]:

```
offseason13["InorOff"] = "Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [74]:

```
season13 = ALL[(ALL.index >= '2013-09-05') & (ALL.index <= '2014-02-
02')]</pre>
```

In [75]:

```
season13["Category"] = "2013 Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [76]:

```
season13["InorOff"] = "In-Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [77]:

```
offseason14 = ALL[(ALL.index > '2014-02-02') & (ALL.index < '2014-09 -04')]
```

In [78]:

```
offseason14["Category"] = "2014 Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [79]:

```
offseason14["InorOff"] = "Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [80]:

```
season14 = ALL[(ALL.index >= '2014-09-04') & (ALL.index <= '2015-02-
01')]</pre>
```

In [81]:

```
season14["Category"] = "2014 Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [82]:

```
season14["InorOff"] = "In-Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [83]:

```
offseason15 = ALL[(ALL.index > '2015-02-01') & (ALL.index < '2015-09 -10')]
```

In [84]:

```
offseason15["Category"] = "2015 Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [85]:

```
offseason15["InorOff"] = "Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [86]:

```
season15 = ALL[(ALL.index >= '2015-09-10') & (ALL.index <= '2016-02-
07')]
```

In [87]:

```
season15["Category"] = "2015 Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [88]:

```
season15["InorOff"] = "In-Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [89]:

```
offseason16 = ALL[(ALL.index > '2016-02-07') & (ALL.index < '2016-09 -08')]
```

In [90]:

```
offseason16["Category"] = "2016 Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [91]:

```
offseason16["InorOff"] = "Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [92]:

```
season16 = ALL[(ALL.index >= '2016-09-08') & (ALL.index <= '2017-02-
05')]
```

In [93]:

```
season16["Category"] = "2016 Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [94]:

```
season16["InorOff"] = "In-Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [95]:

```
offseason17 = ALL[(ALL.index > '2017-02-05') & (ALL.index < '2017-09 -07')]
```

In [96]:

```
offseason17["Category"] = "2017 Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [97]:

```
offseason17["InorOff"] = "Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [98]:

```
season17 = ALL[(ALL.index >= '2017-09-07') & (ALL.index <= '2018-02-
07')]
```

In [99]:

```
season17["Category"] = "2017 Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [100]:

```
season17["InorOff"] = "In-Season"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

"""Entry point for launching an IPython kernel.

In [101]:

```
offseason18 = ALL[(ALL.index > '2018-02-07')] # Finally, this says t hat everything after this past Superbowl is part of # the 2018 offseaso n.
```

In [102]:

```
offseason18["Category"] = "2018 Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [103]:

```
offseason18["InorOff"] = "Offseason"
```

C:\Users\Esther Chao\Anaconda3\lib\site-packages\ipyker
nel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pyd ata.org/pandas-docs/stable/indexing.html#indexing-viewversus-copy

In [104]:

ALLbyseasons = offseason07.append([season07, offseason08, season08, offseason09, season09, offseason10, season10, offseason11, season11, offseason12, season12, offseason13, season13, offseason14, season14, offseason15, season16, offseason17, season17, offseason18])

Now we create a new sample merging all of these together with the seasons listed.

ALLbyseasons.head() # Checks the headers

Out[104]:

05-18 2 End Zone (C) 112 15 11000 5500.0 BAL Offs 2007- 05-22 2 Club Level III Corner 222 9 10000 5000.0 BAL 200 Offs 2007- 05-22 2 Club Level III Corner 220 11 8500 4250.0 BAL 200 Offs 2007- 05-22 1 Club Level IV End Zone 208 11 3000 3000.0 BAL 200 Offs 2007- 05-22 4 Lower Level Sideline 102 6 40000 10000.0 BAL 200 Offs		# Seats	Seating Area	Section	Row	Total Price	Per Seat Price	Team	Cat
2007- 05-18 2 Level End Zone (C) 112 15 11000 5500.0 BAL 200 Offs 2007- 05-22 2 Club Level III Corner 222 9 10000 5000.0 BAL 200 Offs 2007- 05-22 2 Club Level IIV Corner 220 11 8500 4250.0 BAL 200 Offs 2007- 05-22 1 Club Level IV End Zone 208 11 3000 3000.0 BAL 200 Offs 2007- 05-22 4 Lower Level Sideline 102 6 40000 10000.0 BAL 200 Offs	Date								
2007- 2		2	Level End Zone	112	15	11000	5500.0	BAL	200 Offs
2007- 05-22 2 Level III Corner 220 11 8500 4250.0 BAL 200 Offs 2007- 05-22 1 Club Level IV End Zone 208 11 3000 3000.0 BAL 200 Offs 2007- 05-22 4 Level Sideline 102 6 40000 10000.0 BAL 200 Offs		2	Level III	222	9	10000	5000.0	BAL	200° Offs
2007- 05-22 1 Level IV End Zone 208 11 3000 3000.0 BAL 200 Offs 2007- 05-22 4 Lower Level Sideline 102 6 40000 10000.0 BAL 200 Offs		2	Level III	220	11	8500	4250.0	BAL	200° Offs
2007- 4 Level 102 6 40000 10000.0 BAL 200 Offs		1	Level IV End	208	11	3000	3000.0	BAL	200 Offs
		4	Level	102	6	40000	10000.0	BAL	200 Offs

In [105]:

ALLbyseasons.shape # This matches the height of our previous sample, confirming that we didn't lose any transactions.

Out[105]:

(14395, 9)

Analysis 1: Comparing the Average Per Seat Price of a PSL Across the 8 Teams

In [106]:

total = ALL.groupby("Team") # This groups our final sample by team.

In [107]:

avg_per_seat_price = total["Per Seat Price"].mean() # This takes the
mean of each our eight teams.

In [108]:

```
avg_per_seat_price
```

Out[108]:

Team

BAL 3087.085366 CHI 7258.522525 CIN 1303.776579 HOU 3866.594966 NYG 3359.844443 PHI 5437.813659 PIT 6002.265933 11746.781466 SEA

Name: Per Seat Price, dtype: float64

In [181]:

Analyis 1 Conclusion: There is a large descrepancy between the average prices of PSL across teams, i.e. 1300 dollars for the average Chicago Bears PSL to nearly 12,000 dollars for the average Seattle Seahawks PSL. The Seattle Seahawks made the playoffs in each of the consecutive four seasons following its partnership with STR Marketplace in February 2012, even winning the Super Bowl in 2013. This prompts us to discover whether or not post-season performance is affecting its expensive price.

Analysis 2: Comparing In-Season PSL Sales Prices with Sales Prices During the Off-Season

In [110]:

In [111]:

```
avg_per_seat_price_inoroffseason = inoroffseason["Per Seat Price"].m
ean() # This takes the average of each of the 2 categories.
```

avg_per_seat_price_inoroffseason

Out[111]:

InorOff

In-Season 4069.388127 Offseason 4500.986982

Name: Per Seat Price, dtype: float64

In [183]:

Analysis 2 Conclusion: We do see that prices in the off-season are higher on average than prices of transactions that take place during the season. This again prompts us to consider the impact of post-season performance on sales in the offseason, ultimately raising demand and prices.

Analysis 3: Impact of Superbowl Wins on Performance

Providing a Benchmark for Analysis: When deciding if there's an impact of Postseason Performance on prices during a team's offseason, we need a benchmark to compare it to. We will use three:

Benchmark 1. Season leading up to that particular offseason

Benchmark 2. Team's average PSL price across all transactions and years (Analysis 1)

In [113]:

avg_per_seat_price # Average price of each team's PSLs across the en tire sample

Out[113]:

```
Team
BAL
        3087.085366
CHI
        7258.522525
CIN
        1303.776579
HOU
        3866.594966
NYG
        3359.844443
PHI
        5437.813659
PIT
        6002.265933
SEA
       11746.781466
```

Name: Per Seat Price, dtype: float64

Benchmark 3. The average price across the team's offseasons.

In [114]:

inoroffseason_teams = ALLbyseasons.groupby(["InorOff", "Team"]) # Gr
oups by In or Offseason, then by team

In [115]:

```
avg_per_seat_price_inoroffseason_teams = inoroffseason_teams["Per Se
at Price"].mean()
```

avg_per_seat_price_inoroffseason_teams # Acts as a benchmark for how
expensive a team's PSLs are during in or off-season.

Out[115]:

InorOff	Team	
In-Season	BAL	3015.057828
	CHI	7367.609162
	CIN	1259.214315
	HOU	3920.933328
	NYG	3679.382552
	PHI	5481.189276
	PIT	6264.831685
	SEA	12181.341954
Offseason	BAL	3125.083708
	CHI	7248.013333
	CIN	1326.916881
	HOU	3840.540779
	NYG	3244.305239
	PHI	5414.450592
	PIT	5902.958022
	SEA	11609.051913

Name: Per Seat Price, dtype: float64

Case Study: Baltimore Ravens - Superbowl Champions, 2012 Season

We chose Baltimore Ravens as our case study to walk through these benchmarks because they are the team that has used STR Marketplace the longest since 2007, giving it ample data before and after its win.

In [116]:

seasons_and_teams = ALLbyseasons.groupby(["Category", "Team"]) # Gro
ups by specific season/offseason, then by team

```
In [117]:
```

avg_per_seat_price_seasonsandteams = seasons_and_teams["Per Seat Pri
ce"].mean() #Takes the average of those transactions

In [118]:

avg_per_seat_price_seasonsandteams["2013 Offseason", "BAL"] # This i
s the average price of PSLs after BAL won the SuperBowl.

Out[118]:

4044.1063492063495

Benchmark 1. Season leading up to that particular offseason.

In [119]:

avg_per_seat_price_seasonsandteams["2012 Season", "BAL"] # This is t
he average price of PSLs before BAL won the SuperBowl.

Out[119]:

3946.222943722943

In [120]:

avg_per_seat_price_seasonsandteams["2013 Offseason", "BAL"] > avg_pe
r seat price seasonsandteams["2012 Season", "BAL"]

Out[120]:

True

```
In [121]:
```

avg_per_seat_price_seasonsandteams["2013 Offseason", "BAL"] - avg_pe
r_seat_price_seasonsandteams["2012 Season", "BAL"]

The average PSL price for Baltimore grew by nearly 100 dollars aft er they won the Superbowl.

Out[121]:

97.883405483406477

Benchmark 2. Team's average PSL price across all transactions and years (Analysis 1)

In [122]:

avg_per_seat_price["BAL"] # This is the average price of a BAL PSL a
cross all transactions.

Out[122]:

3087.0853655118299

In [123]:

avg_per_seat_price_seasonsandteams["2013 Offseason", "BAL"] > avg_pe
r_seat_price["BAL"]

Out[123]:

True

In [124]:

avg_per_seat_price_seasonsandteams["2013 Offseason", "BAL"] - avg_pe
r seat price["BAL"]

The average PSL for Baltimore in the offseason after they won the Superbowl is 957 dollars more than the team average.

Out[124]:

957.0209836945196

Benchmark 3. The average price across the team's offseasons.

```
In [125]:
```

```
avg_per_seat_price_inoroffseason_teams["Offseason", "BAL"] # This is
the average across BAL's off-season prices.
```

Out[125]:

3125.0837079854432

In [126]:

```
avg_per_seat_price_seasonsandteams["2013 Offseason", "BAL"] > avg_pe
r_seat_price_inoroffseason_teams["Offseason", "BAL"]
```

Out[126]:

True

In [127]:

```
avg_per_seat_price_seasonsandteams["2013 Offseason", "BAL"] - avg_pe
r_seat_price_inoroffseason_teams["Offseason", "BAL"]
```

The average PSL for Baltimore in the offseason after they won the superbowl is 919 dollars more than # their regular offseason average.

Out[127]:

919.02264122090628

Conclusion from Case Study: It appears that Baltimore's SuperBowl win had a great positive impact on the team's PSL prices.

Does this prove true for the others Superbowl Champions in our sample?

In [128]:

```
SBChamps = pd.DataFrame({
    "Team": ["NYG", "SEA", "PHI"],
    "1Avg During": [avg per seat price seasonsandteams["2011 Season"
, "NYG"],
                  avg per seat price seasonsandteams["2013 Season",
"SEA"],
                  avg per seat price seasonsandteams["2017 Season",
"PHI"]],
    "OAvg After": [avg per seat price seasonsandteams["2012 Offseaso
n", "NYG"],
                 avg per seat price seasonsandteams["2014 Offseason"
, "SEA"],
                 avg per seat price seasonsandteams["2018 Offseason"
 "PHI"]],
    "2Avg ALL": [avg_per_seat_price["NYG"],
                avg per seat price["SEA"],
                avg_per_seat_price["PHI"]],
    "3Avg Offseason": [avg per seat price inoroffseason teams["Offse
ason", "NYG"],
               avg per seat price inoroffseason teams["Offseason",
"SEA"],
               avg per seat price inoroffseason teams["Offseason",
"PHI"]],
}) # Created a data frame for the relevant teams and benchmarks
```

In [129]:

SBChamps.set_index("Team")

Out[129]:

	0Avg_After	1Avg_During	2Avg_ALL	3Avg_Offseas
Team				
NYG	4377.750929	4530.638889	3359.844443	3244.305239
SEA	12305.355263	11107.500000	11746.781466	11609.051913
PHI	8069.871795	6596.793651	5437.813659	5414.450592

Conclusion: Seattle and Philadelphia proved the same outcome as Baltimore, where the average price after their championship win was higher than the average leading up to the win (Benchmark 1), the average of all the team's transactions (Benchmark 2) and the average of all the team's offseason transactions (Benchmark 3). However, the NYG did not follow the same trend; in fact, the price of their PSLs decreased after their Superbowl win from the average that season.

Analysis 4: Impact of All Postseason Performances and Appearances on PSL Prices

We will visually analyze the PSL behavior of select teams with prominent postseason appearances throughout this time.

In [130]:

team_analysis = ALLbyseasons.groupby(["Team"]) # Groups our sample b
y team

Baltimore Ravens

In [131]:

BAL_analysis = team_analysis.get_group("BAL").groupby("Category") #
Pulls only team transactions from sample, then groups

by year and in-season vs. offseason

In [132]:

BAL_analysis2 = BAL_analysis["Per Seat Price"].mean() # Takes the average of each year/in-season vs. offseason

In [133]:

BAL_analysis2

Out[133]:

Category	
2007 Offseason	5002.938791
2007 Season	4065.982639
2008 Offseason	4199.864428
2008 Season	3900.915094
2009 Offseason	2918.952439
2009 Season	3241.930851
2010 Offseason	3468.466270
2010 Season	3554.801339
2011 Offseason	2901.281061
2011 Season	3068.738000
2012 Offseason	3777.587753
2012 Season	3946.222944
2013 Offseason	4044.106349
2013 Season	3468.463384
2014 Offseason	3453.635753
2014 Season	2775.370253
2015 Offseason	3359.034508
2015 Season	2751.985697
2016 Offseason	2373.509798
2016 Season	1878.660920
2017 Offseason	2039.449941
2017 Season	1575.757669
2018 Offseason	969.600490
Name: Per Seat	Price, dtype: float64

http://localhost:8888/nbconvert/html/Data_Bootcamp/Chao_Final_Project.ipynb?download=false

In [145]:

```
seasons = ["20070ff", "2007", "20080ff", "2008", "20090ff", "200
9", "20100ff", "2010", "20110ff", "2011", "20120ff", "2012",
          "20130ff", "2013", "20140ff", "2014", "20150ff", "2015"
, "20160ff", "2016", "20170ff", "2017", "20180ff"]
fix, ax = plt.subplots(figsize = (18,5)) # Changes size to fit be
tter on screen
ax.bar(BAL analysis2.index, BAL analysis2, color = "navy") # Base
Layer
ax.bar(BAL analysis2[BAL analysis2.index == "2012 Season"].index,
       BAL analysis2[BAL analysis2.index == "2012 Season"], color
 = "red") # Highlights Superbowl win
ax.bar(BAL_analysis2[BAL_analysis2.index == "2008 Season"].index,
       BAL analysis2[BAL analysis2.index == "2008 Season"], color
= "green") # Highlights Conference Appearance
ax.bar(BAL analysis2[BAL analysis2.index == "2011 Season"].index,
       BAL analysis2[BAL analysis2.index == "2011 Season"], color
= "green") # Highlights Conference Appearance
ax.bar(BAL analysis2[BAL analysis2.index == "2009 Season"].index,
       BAL analysis2[BAL analysis2.index == "2009 Season"], color
= "purple") # Highlights Division Appearance
ax.bar(BAL analysis2[BAL analysis2.index == "2010 Season"].index,
       BAL_analysis2[BAL_analysis2.index == "2010 Season"], color
= "purple") # Highlights Division Appearance
ax.bar(BAL analysis2[BAL analysis2.index == "2014 Season"].index,
       BAL analysis2[BAL analysis2.index == "2014 Season"], color
= "purple") # Highlights Division Appearance
ax.set xticklabels(seasons)
ax.annotate("Red = Superbowl Win", xy = (18, 4500), color = "red"
) # Identifies what colors indicate on graph
ax.annotate("Green = Conference Appearance", xy = (18, 4200), col
or = "green")
```

```
ax.annotate("Purple = Division Appearance", xy = (18, 3900), colo
r = "purple")

ax.set_title("Relationship between Playoff History and PSL Prices
for the Baltimore Ravens")
ax.set_ylabel("Average PSL Price")
ax.set_xlabel("Season")

ax.spines["right"].set_visible(False) # Removes border from right
ax.spines["top"].set_visible(False) # Removes border from top

plt.show()
```


Conclusion: Inconclusive. While prices do rise after 2009 (Division loss), 2011 (Conference loss) and 2012 (Superbowl win), and 2014 (Division loss), they fall *drastically* after 2008 (Conference loss) and 2010 (Division loss).

Houston Texans

In [135]:

HOU_analysis = team_analysis.get_group("HOU").groupby("Category") #
Pulls only team transactions from sample, then groups
by year and in-season vs. offseason

In [136]:

HOU_analysis2 = HOU_analysis["Per Seat Price"].mean() # Takes the av
erage of each year/in-season vs. offseason

In [137]:

HOU_analysis2

Out[137]:

Cate	gory	
2008	Offseason	2105.388480
2008	Season	1860.514925
2009	Offseason	1641.366279
2009	Season	1731.103604
2010	Offseason	1841.852965
2010	Season	1788.346774
2011	Offseason	1898.296875
2011	Season	2460.115333
2012	Offseason	3894.341941
2012	Season	4980.284553
2013	Offseason	5384.090127
2013	Season	5878.320875
2014	Offseason	5775.511404
2014	Season	6136.718750
2015	Offseason	5798.111526
2015	Season	6052.309309
2016	Offseason	5788.705914
2016	Season	4602.602234
2017	Offseason	4248.242101
2017	Season	3325.059295
2018	Offseason	2915.496795
Namo	Pon Soat	Price dtyre: flea

Name: Per Seat Price, dtype: float64

In [144]:

```
seasons = ["20080ff", "2008", "20090ff", "2009", "20100ff", "201
0", "20110ff", "2011", "20120ff", "2012",
          "20130ff", "2013", "20140ff", "2014", "20150ff", "2015"
, "20160ff", "2016", "20170ff", "2017", "20180ff"]
fix, ax = plt.subplots(figsize = (18,5)) # Changes size to fit be
tter on screen
ax.bar(HOU analysis2.index, HOU analysis2, color = "navy") # Base
 Layer
ax.bar(HOU analysis2[HOU analysis2.index == "2011 Season"].index,
      HOU analysis2[HOU analysis2.index == "2011 Season"], color
 = "purple") # Highlights Division Appearance
ax.bar(HOU analysis2[HOU analysis2.index == "2012 Season"].index,
      HOU analysis2[HOU analysis2.index == "2012 Season"], color
= "purple") # Highlights Division Appearance
ax.bar(HOU analysis2[HOU analysis2.index == "2016 Season"].index,
      HOU analysis2[HOU analysis2.index == "2016 Season"], color
= "purple") # Highlights Division Appearance
ax.bar(HOU analysis2[HOU analysis2.index == "2015 Season"].index,
      HOU analysis2[HOU analysis2.index == "2015 Season"], color
= "orange") # Highlights Wildcard Appearance
ax.set xticklabels(seasons)
ax.annotate("Purple = Division Appearance", xy = (17, 5400), colo
r = "purple") # Identifies what colors indicate on graph
ax.annotate("Orange = Wild Card Appearance", xy = (17, 5100), col
or = "orange")
ax.set title("Relationship between Playoff History and PSL Prices
for the Houston Texans")
ax.set ylabel("Average PSL Price")
ax.set xlabel("Season")
ax.spines["right"].set_visible(False) # Removes border from right
ax.spines["top"].set_visible(False) # Removes border from top
```

plt.show()

Conclusion: Again, inconclusive. Some other factor is not being captured because prices are rising dramatically towards the 2014 season but the Texans do not have postseason performance to show for it.

New York Giants

In [139]:

NYG_analysis = team_analysis.get_group("NYG").groupby("Category")

In [140]:

NYG_analysis2 = NYG_analysis["Per Seat Price"].mean()

In [141]:

NYG_analysis2

Out[141]:

Category		
2011	Offseason	3585.625192
2011	Season	4530.638889
2012	Offseason	4377.750929
2012	Season	4459.748428
2013	Offseason	3986.786990
2013	Season	4618.416667
2014	Offseason	2935.426942
2014	Season	2623.591954
2015	Offseason	2741.052789
2015	Season	3416.927288
2016	Offseason	2592.143750
2016	Season	3049.270588
2017	Offseason	3131.460905
2017	Season	2950.417614

2018 Offseason

Name: Per Seat Price, dtype: float64

2200.272081

In [143]:

```
seasons = ["20110ff", "2011", "20120ff", "2012","20130ff", "2013",
"20140ff", "2014", "20150ff", "2015", "20160ff",
           "2016", "20170ff", "2017", "20180ff"]
fix, ax = plt.subplots(figsize = (18,5)) # Changes size to fit bette
r on screen
ax.bar(NYG analysis2.index, NYG analysis2, color = "navy") # Base La
yer
ax.bar(NYG analysis2[NYG analysis2.index == "2011 Season"].index,
       NYG analysis2[NYG analysis2.index == "2011 Season"], color =
"red") # Highlights Superbowl win
ax.bar(NYG_analysis2[NYG_analysis2.index == "2016 Season"].index,
       NYG analysis2[NYG analysis2.index == "2016 Season"], color =
"orange") # Highlights Wildcard Appearance
ax.set xticklabels(seasons)
ax.annotate("Red = Superbowl Win", xy = (11.5, 4400), color = "red")
# Identifies what colors indicate on graph
ax.annotate("Orange = Wild Card Appearance", xy = (11.5, 4100), colo
r = "orange")
ax.set title("Relationship between Playoff History and PSL Prices fo
r the New York Giants")
ax.set ylabel("Average PSL Price")
ax.set xlabel("Season")
ax.spines["right"].set visible(False) # Removes border from right
ax.spines["top"].set visible(False) # Removes border from top
plt.show()
```


Conclusion: Prices rose after the Wild card appearance but not after the Superbowl win..... Really not intuitive....

Pittsburgh Steelers

In [146]:

PIT_analysis = team_analysis.get_group("PIT").groupby("Category")

In [147]:

PIT_analysis2 = PIT_analysis["Per Seat Price"].mean()

In [148]:

PIT_analysis2

Out[148]:

Category			
2010	Offseason	8260.106183	
2010	Season	11194.476744	
2011	Offseason	8024.220370	
2011	Season	8339.887006	
2012	Offseason	8540.369444	
2012	Season	8229.346774	
2013	Offseason	8369.801136	
2013	Season	6256.597222	
2014	Offseason	5165.271766	
2014	Season	4964.926768	
2015	Offseason	4587.772096	
2015	Season	3612.959119	
2016	Offseason	4245.614539	
2016	Season	4936.986842	
2017	Offseason	4791.968701	
2017	Season	4120.709722	
2018	Offseason	4138.769900	

Name: Per Seat Price, dtype: float64

In [162]:

```
seasons = ["20100ff", "2010", "20110ff", "2011", "20120ff", "201
2",
          "20130ff", "2013", "20140ff", "2014", "20150ff", "2015"
, "20160ff", "2016", "20170ff", "2017", "20180ff"]
fix, ax = plt.subplots(figsize = (18,5)) # Changes size to fit be
tter on screen
ax.bar(PIT analysis2.index, PIT analysis2, color = "navy") # Base
Layer
ax.bar(PIT analysis2[PIT analysis2.index == "2010 Season"].index,
       PIT analysis2[PIT analysis2.index == "2010 Season"], color
= "red", alpha = 0.5) # Highlights Superbowl LOSS, not win
ax.bar(PIT_analysis2[PIT_analysis2.index == "2016 Season"].index,
       PIT analysis2[PIT analysis2.index == "2016 Season"], color
= "green") # Highlights Conference Appearance
ax.bar(PIT analysis2[PIT analysis2.index == "2015 Season"].index,
       PIT analysis2[PIT analysis2.index == "2015 Season"], color
= "purple") # Highlights Division Appearance
ax.bar(PIT analysis2[PIT analysis2.index == "2017 Season"].index,
       PIT analysis2[PIT analysis2.index == "2017 Season"], color
= "purple") # Highlights Division Appearance
ax.bar(PIT analysis2[PIT analysis2.index == "2011 Season"].index,
       PIT analysis2[PIT analysis2.index == "2011 Season"], color
= "orange") # Highlights Wildcard Appearance
ax.bar(PIT analysis2[PIT analysis2.index == "2014 Season"].index,
       PIT analysis2[PIT analysis2.index == "2014 Season"], color
= "orange") # Highlights Wildcard Appearance
ax.set xticklabels(seasons)
ax.annotate("Maroon = Superbowl LOSS", xy = (12, 10000), color =
"maroon") # Identifies what colors indicate on graph
ax.annotate("Green = Conference Appearance", xy = (12, 9400), col
or = "green")
```

```
ax.annotate("Purple = Division Appearance", xy = (12, 8800), colo
r = "purple")
ax.annotate("Orange = Wild Card Appearance", xy = (12, 8200), col
or = "orange")

ax.set_title("Relationship between Playoff History and PSL Prices
for the Pittsburgh Steelers")
ax.set_ylabel("Average PSL Price")
ax.set_xlabel("Season")

ax.spines["right"].set_visible(False) # Removes border from right
ax.spines["top"].set_visible(False) # Removes border from top
plt.show()
```


Conclusion: Again, no clear indication that playoff performances are affecting the Steelers one way or another. Huge decline in 2011 Offseason despite making it to the SuperBowl in 2010.

Seattle Seahawks

In [163]:

SEA_analysis = team_analysis.get_group("SEA").groupby("Category")

In [164]:

```
SEA_analysis2 = SEA_analysis["Per Seat Price"].mean()
```

In [165]:

SEA_analysis2

Out[165]:

Category

2012	Offseason	2929.880952
2012	Season	5509.988095
2013	Offseason	7442.035088
2013	Season	11107.500000
2014	Offseason	12305.355263
2014	Season	13087.777778
2015	Offseason	15962.633333
2015	Season	19486.111111
2016	Offseason	14451.275362
2016	Season	14152.458333
2017	Offseason	14650.289855
2017	Season	18370.000000
2018	Offseason	16900.000000

Name: Per Seat Price, dtype: float64

In [179]:

```
seasons = ["20120ff", "2012", "20130ff", "2013", "20140ff", "2014"
, "20150ff",
           "2015", "20160ff", "2016", "20170ff", "2017", "20180f
f"]
fix, ax = plt.subplots(figsize = (18,5)) # Changes size to fit be
tter on screen
ax.bar(SEA analysis2.index, SEA analysis2, color = "navy") # Base
 Layer
ax.bar(SEA analysis2[SEA analysis2.index == "2013 Season"].index,
       SEA analysis2[SEA analysis2.index == "2013 Season"], color
 = "red") # Highlights Superbowl Win
ax.bar(SEA_analysis2[SEA_analysis2.index == "2014 Season"].index,
       SEA analysis2[SEA analysis2.index == "2014 Season"], color
= "red") # Highlights Superbowl Win
ax.bar(SEA analysis2[SEA analysis2.index == "2012 Season"].index,
       SEA analysis2[SEA analysis2.index == "2012 Season"], color
= "purple") # Highlights Division Appearance
ax.bar(SEA analysis2[SEA analysis2.index == "2015 Season"].index,
       SEA analysis2[SEA analysis2.index == "2015 Season"], color
= "purple") # Highlights Division Appearance
ax.bar(SEA analysis2[SEA analysis2.index == "2016 Season"].index,
       SEA analysis2[SEA analysis2.index == "2016 Season"], color
= "purple") # Highlights Division Appearance
ax.set xticklabels(seasons)
ax.annotate("Red = Superbowl Win", xy = (0, 17000), color = "Red"
) # Identifies what colors indicate on graph
ax.annotate("Purple = Division Appearance", xy = (0, 16000), colo
r = "purple")
ax.set title("Relationship between Playoff History and PSL Prices
for the Seattle Seahawks")
ax.set_ylabel("Average PSL Price")
```


Conclusion: The Seattle Seahawks most closely resemble our originally hypothesis, where postseason appearances cause PSL prices to increase in the following offseason. However, even with this model team, we see that PSL prices drastically fell in the 2016 offseason despite their division appearance.

Conclusion: Summary and Discussion

This project sought to determine how on-field performance during the NFL postseason, specifically Superbowl wins, affect secondary market sales of NFL personal seat licenses (PSLs). To summarize:

Analysis 1: There is a large discrepancy between the average prices of various NFL teams.

The relatively high prices of Seattle Seahawks PSLs led us to believe differences could be attributed to the quality of on-field performance.

Analysis 2: Average prices in the off-season are higher than the average prices during seasons.

The higher prices in the offseason again prompt us to consider post-season performance as the factor driving up sales prices.

Analysis 3: The PSLs for 3 out of 4 teams were more expensive following SuperBowl win.

The average prices for the Baltimore Ravens, Philadelpha Eagles and Seattle Seahawks were higher than the average of the season leading up to the win (Benchmark 1), the average of all the team's transactions (Benchmark 2) and the average of all the team's offseason transactions (Benchmark 3). However, the price of New York Giants PSLs actually decreased after winning the SuperBowl. This led to the consideration that the effect of post-season performances is not as clear-cut as hypothesized.

Analysis 4: The impact of post-season performances on PSL prices is inconclusive and has no clear correlation in either direction.

After looking at PSL price behavior following post-season appearances for the Baltimore Ravens, Houston Texans, New York Giants, Pittsburgh Steelers and Seattle Seahawks, there was no clear indication that postseason appearances increased PSL prices of the following postseason.

Moving Forward...

Since I was unable to determine a clear relationship between post-season appearances/performances and PSL prices, it's clear that there must be another factor driving up PSL prices in the offseason and for particular teams. For example, it may not be whether the team qualifies for the playoffs or wins a round but how the fans view the team's ability to win in the future based on its roster and expected offseason moves.