Lecture 6

Michael Brodskiy

Professor: M. Onabajo

September 23, 2024

- Integrators
 - Capacitor impedance: $Z_C(s) = \frac{1}{sC}$
 - From KVL:

$$V_i(s) = I_i(s)R + I_i(s)R + I_i(s)Z_c(s) + V_o(s)$$

$$V_i(s) = I_i(s)R + I_i(s)R + I_i(s)/sC + V_o(s)$$

– Substituting $I_i(s) = V_i(s)/R$:

$$V_o(s) = -\frac{V_i(s)}{sRC} = -\frac{V_i(s)}{RC} \cdot \frac{1}{s}$$

- Taking the inverse Laplace transform, we get:

$$v_o = -\frac{1}{RC} \int_0^t v_i \, dt$$

- Reset switch guarantees zero initial condition $V_c=0$ at t=0
- \bullet Ideal Integrator Frequency Response
 - We find the output-input ratio:

$$\frac{V_o(s)}{V_i(s)} = -\frac{1}{j\omega RC}$$

- In practice:
 - $\ast\,$ Finite op-amp DC gain
 - $\ast\,$ High-frequency op-amp gain roll-off
- Differentiator

- The output voltage expression can be derived with the same procedure as on the previous slides, but using the differentiation property of the Laplace transform:

$$V_o(s) = -RC\frac{dV_i(s)}{dt}$$

- Alternatively, the output voltage equation can be derived directly by expressing the capacitor current as $i_c(t) = C \frac{dv_c(t)}{dt}$ (refer to the textbook for this approach)
- Ideal Differentiation Frequency Response

$$-V_o(s)/V_i(s) = -j2\pi fRC$$

- In practice:
 - $\ast\,$ Finite op-amp DC gain
 - * High-frequency op-amp gain roll-off
 - \cdot Serious limitation for differentiators because they require high gain at high frequencies, which practical op-amps cannot achieve