ME321: Advanced Mechanics of Solids

Assignment 1: Cartesian Tensors.

1.	Simplify the following	g expressions	by	employing	properties	of the	Kronecker	delta
	and the e-permutati	on symbol:						

- (a) $e_{ijk}\delta_{kn}$ (b) $e_{ijk}\delta_{is}\delta_{jn}$ (c) $e_{ijk}\delta_{is}\delta_{jm}\delta_{kn}$,

- (d) $a_{ij}\delta_{in}$ (e) $\delta_{ij}\delta_{jn}$ (f) $\delta_{ij}\delta_{jn}\delta_{ni}$

Note: Try not to perform explicit summation.

- 2. Use the summation convention to evaluate:
 - (a) δ_{ii} ,

- (b) $e_{ijk}a_ia_ja_k$, (c) $\delta_{ij}\delta_{ij}$,

(d)
$$a_i b_j \delta_{ji} - b_m a_n \delta_{mn}$$
.

3. Express the following in indical notation.

- (a) $\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})$, (b) $\boldsymbol{b}(\boldsymbol{a} \cdot \boldsymbol{c}) \boldsymbol{c}(\boldsymbol{a} \cdot \boldsymbol{b})$,
- (c) $\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c})$.
- 4. Show that

$$e_{ijk} = -e_{jik} = -e_{ikj} = -e_{kji}.$$

5. Using the results of Pr.3 show that,

$$a \times (b \times c) = b(a \cdot c) - c(a \cdot b).$$

6. Use the $e - \delta$ identity to simplify.

(a) $e_{ijk}e_{jik}$,

 $(b)e_{ijk}e_{jki}$.

7. For a symmetric tensor S and a skew-symmetric tensor W, show that

$$\mathbf{S}: \mathbf{W} = 0. \tag{1}$$

8. Using the divergence theorem show that

$$\int_{V} \frac{\partial u_{i}}{\partial x_{j}} dV = \int_{\partial V} u_{i} n_{j} dS$$