WARNING: MISBEHAVIOR AT EXAM TIME WILL LEAD TO SERIOUS CONSEQUENCE.

SCUT Final Exam

Electric Circuits and Electronics Exam Paper A (2020-2021-1)

Notice:

- 1. Make sure that you have filled the form on the left side of seal line.
- 2. Write your answers on the exam paper.
- 3. This is a close-book exam.
- 4. The exam with full score of 100 points lasts 120 minutes.

Question No.	I	II	III	IV	V	VI	VII	VIII	Sum
Score									

INSTRUCTIONS TO CANDIDATES

Using calculator is allowed during the examination.

$$e \approx 2.72$$

For Bipolar Junction Transistors:

At room temperature, $V_T \cong 0.026 \text{V}$

For MOSFETs:

$$K = \left(\frac{W}{L}\right) \frac{KP}{2}$$
 and $g_m = 2\sqrt{KI_{DQ}}$

I. Consider the circuit shown in the following figure, find the values of v and i.

10

III. The following circuit is operating in steady state with the switch close prior to t = 0. Find the expression for $v_c(t)$ when t < 0 and $t \ge 0$. Calculate the voltage $i_L(t)$ when t = 1s.

 $R_{1} \ 40\Omega$ t = 0 $R_{3} \ 50\Omega$ v_{S} + c 0.5F $v_{C}(t) \geqslant R_{2}$ 100H $i_{L}(t) \downarrow$ $i_{L}(t) \downarrow$

IV. Consider the circuit shown in the following figure. Find the phasors I_L and I_C , and $i_R(t)$.

The BJT transistor has $\beta = 300$ and $V_{BEQ} = 0.7V$.

a) Draw the bias circuit to determine the Q point and calculate the values of I_{CQ} , find the value of r_{π} .

10

b) Draw the small signal equivalent circuit and calculate the voltage gain A_v , input impedance $Z_{\rm in}$, output impedance Z_o , and power gain G, assuming that the coupling capacitors are short circuits for the ac signal.

Total 20

The NMOS transistor in the above figure has $KP=50\mu A/V^2$, $L=20\mu m$, $W=400\mu m$, $V_{\rm to}=2V$, and $r_d=\infty$.

a) Draw the bias circuit to determine the Q point and calculates the values of I_{DQ} , V_{GSQ} , and g_m .

10

b) Draw the small signal equivalent circuit and compute the voltage gain A_v , input impedance $Z_{\rm in}$, output impedance Z_o , and power gain G, assuming that the coupling capacitors are short circuits for the ac signal.

10

VII. Design a PID controller using Op-amp based on the following equation:

10

$$v_o = 3v_{\rm in}(t) + 5\int_0^t v_{\rm in}(t)dt + 2\frac{dv_{\rm in}(t)}{dt}$$

VIII. Construct a Karnaugh map for the logic function:

 $F = \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}B\bar{C}\bar{D} + \bar{A}\bar{B}\bar{C}D + \bar{A}\bar{B}\bar{C}D + \bar{A}\bar{B}C\bar{D} + \bar{A}BC\bar{D} + \bar{A}BC\bar{D} + \bar{A}B\bar{C}\bar{D}$

Find the minimal sum of product expression, and implement the logic circuit.

......Seal Line......

WARNING: MISBEHAVIOR AT EXAM TIME WILL LEAD TO SERIOUS CONSEQUENCE.

SCUT Final Exam

Question No.	I	II	III	IV	V	VI	VII	VIII	Sum
Score									

I.

II.

III.

V.

VI.

VII.

VIII.