

第三章

非线性方程(组)的数值解法

(2)

第4节 Newton迭代法

* 不动点迭代法 $x_{k+1} = \varphi(x_k)$ 求根的关键就是构造合理的迭代函数使得迭代收敛于不动点,也即方程的根,常用的构造迭代函数有Newton迭代法,有理函数迭代法等等。

▶ 4.1 Newton迭代公式及其几何意义

取 x_0 作为初始近似值,将 f(x)在 x_0 做Taylor展开:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(\xi)}{2!}(x - x_0)^2$$

$$0 = f(x^*) \approx f(x_0) + f'(x_0)(x^* - x_0) \Rightarrow x^* \approx x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
作为第一次的近似值

重复上述过程
$$\Rightarrow x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} >$$

称为Newton迭代公式

牛顿法的几何意义 切线: $y - f(x_0) = f'(x_0)(x - x_0)$

牛顿法也称为切线法, 迭代函数 $\varphi(x) = x - \frac{f(x)}{f'(x)}$

▶ 4.2 牛顿法的收敛性与收敛速度

定理1(局部收敛性定理) 设 $f(x) \in C^2[a,b]$,若 x^* 为 f(x) 在 [a,b]上的单根,即 $f(x^*) = 0$, $f'(x^*) \neq 0$,则存在 x^* 的邻域 $R(x^*)$ 使得任取初始值 $x_0 \in R(x^*)$,Newton 法产生的序列 $\{x_k\}$ 收敛到 x^* ,且满足

$$\lim_{k\to\infty}\frac{|x_{k+1}-x^*|}{|x_k-x^*|^2}=\frac{|f''(x^*)|}{2|f'(x^*)|}.$$

至少平方收敛

证明: Newton迭代法是一种特殊的不动点迭代, 其中 $\varphi(x) = x - \frac{f(x)}{f'(x)}$, 则

曲
$$f(x^*) = 0$$
及 $\varphi'(x^*) = \frac{f''(x^*)f(x^*)}{{f'}^2(x^*)} \Rightarrow \varphi'(x^*) = 0$

结合第二节定理3可知,迭代法收敛至少平方收敛。✓

if:
$$0 = f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + \frac{f''(\xi_k)}{2!}(x^* - x_k)^2$$

$$\Rightarrow x^* = \boxed{x_k - \frac{f(x_k)}{f'(x_k)} - \frac{f''(\xi_k)}{2! f'(x_k)} (x^* - x_k)^2}$$

$$\Rightarrow x^* = x_k - \frac{f(x_k)}{f'(x_k)} - \frac{f''(\xi_k)}{2! f'(x_k)} (x^* - x_k)^2$$

$$\Rightarrow \frac{x^* - x_{k+1}}{(x^* - x_k)^2} = -\frac{f''(\xi_k)}{2f'(x_k)} \Rightarrow \lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = \frac{|f''(x^*)|}{2|f'(x^*)|} = C.$$

例:设 $f(x) = x^3 + 4x^2 - 10 = 0$,利用Newton迭代法求方程的根. 初始值 $x_0 = 1.25$,要求 $|x_{k+1} - x_k| < 10^{-8}$ 。

解:
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^3 + 4x_k^2 - 10}{3x_k^2 + 8x_k}$$

初始值 $x_0 = 1.25$, 迭代结果如表

k	x_k	$ x_{k+1} - x_k $
0	1.25	-
1	1.3723404255	0.1223
2	1.3652546708	0.008
3	1.3652300137	0.000024
4	1.3652300134	0.3×10^{-9}

▶ 4.3 Newton下山法 /* Descent Method */

Newton下山法是一种针对初值 x_0 偏离真实值 x^* 时的一种改进。

原理: 若由 x_k 得到的 x_{k+1} 不能使|f(x)|减小,则在 x_k 和 x_{k+1} 之间找一个更好的点 \overline{x}_{k+1} ,使得 $|f(\overline{x}_{k+1})| < |f(x_k)|$ 。

$$\begin{split} \overline{x}_{k+1} &= \lambda [x_k - \frac{f(x_k)}{f'(x_k)}] + (1 - \lambda) x_k \\ &= x_k - \lambda \frac{f(x_k)}{f'(x_k)}, \lambda = \frac{1}{2}, \cdots, \frac{1}{2^k} \end{split}$$

称 $\overline{x}_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$ 为Newton下山法.

例 求方程 $x^3 - x - 1 = 0$ 在x = 1.5 附近的一个根 x^* 。

解1: Newton迭代法
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^3 - x_k - 1}{3x_k^2 - 1}$$

k	0	1	2	3
x_k	1.5	1.34783	1.32520	1.32472

注: 若初始值取为0.6

k	0	1	2	3
x_k	0.6	17.90000	11.94680	7.98551

Newton下山法
$$x_{k+1} = x_k - \frac{1}{16} \times \frac{f(x_k)}{f'(x_k)} = x_k - \frac{1}{16} \times \frac{x_k^3 - x_k - 1}{3x_k^2 - 1}$$

\boldsymbol{k}	0	1	迭代过程如果一直采用下山法未必好,
x_k	0.6	1.68125	建议采用下山法与Newton迭代相结合。

▶ 4.4 Newton迭代法求重根 /* multiple root */

定义3 若 x^* 为方程f(x) = 0的根,若对 $x \neq x^*$, f(x)可以写成 $f(x) = (x - x^*)^m q(x)$, $\lim_{x \to x^*} q(x) \neq 0$

则称 x^* 为f(x) = 0的m重根。

定理4 设 $f(x) \in C^m[a,b]$,则 $x^* \in (a,b)$ 为方程f(x) = 0的m重根的充分必要条件为

$$f(x^*) = f'(x^*) = \cdots = f^{(m-1)}(x^*) = 0, f^{(m)}(x^*) \neq 0.$$

证明:由定义3和Leibniz法则易得.

定理5 设 x^* 为f(x) = 0的 $m(m \ge 2)$ 重根,则存在邻域 $R(x^*)$

- (a). 由Newton迭代法 $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$ 得到的序列 $\{x_k\}$ 收敛到 x^* .
- (b). 由改进的Newton迭代法 $x_{k+1} = x_k m \frac{f(x_k)}{f'(x_k)}$ 得到的序列 $\{x_k\}$ 至少平方收敛到 x^* .

证明:见教材P113-114

例 分别用Newton迭代法和改进的Newton迭代法求 $f(x) = x^3 - 2x^2 + x = 0$ 的重根 $x^* = 1$ 附近的近似值, 初始值取 $x_0 = 2$ 。

解: 因为f(1) = 0, f'(1) = 0, $f''(1) = 2 \neq 0$, 所以 $x^* = 1$ 为2重根.

Newton迭代法
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^3 - 2x_k^2 + x_k}{3x_k^2 - 2x_k - 1}$$

k	0	1	2	3	•••	18
x_k	2	1.6	1.347368	1.193617	•••	1.000007

改进的Newton迭代法
$$x_{k+1} = x_k - 2\frac{f(x_k)}{f'(x_k)} = x_k - 2\frac{x_k^3 - 2x_k^2 + x_k}{3x_k^2 - 2x_k - 1}$$

k	0	1	2	3	4
x_k	2	1.2	1.015385	1.000116	1.000000

若已知 x^* 为f(x) = 0的加重根,则可用 $x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}$ 迭代法求根,

若不知 x^* 为f(x) = 0的m重根,如何建立迭代公式求根?

因为q(x)不含 $(x-x^*)$ 的公因子,所以 x^* 为u(x)的单根。

构造求重根的Newton迭代公式

$$x_{k+1} = x_k - \frac{u(x_k)}{u'(x_k)} = x_k - \frac{f(x_k)f'(x_k)}{{f'}^2(x_k) - f(x_k)f''(x_k)}$$

例 用Newton迭代法求 $f(x) = x^3 - 2x^2 + x = 0$ 的重根 $x^* = 1$ 附近的近似值。

解: 令
$$u(x) = \frac{f(x)}{f'(x)} = \frac{x^3 - 2x^2 + x}{3x^2 - 4x - 1} = \frac{x^2 - x}{3x - 1}$$
, 则

$$x_{k+1} = x_k - \frac{u(x_k)}{u'(x_k)} = x_k - \frac{3x_k^2 - 4x_k + x}{3x_k^2 - 2x_k + 1}$$

初始值取 $x_0 = 2$, 迭代结果如下表

k	0	1	2	3	4
x_k	2	0.888889	0.992248	0.999969	1.000000
x_k	2	1.2	1.015385	1.000116	1.000000

未知x = 1为重根

已知x = 1为重根

第5节 弦截法

▶ 5.1 背景

Newton迭代法:
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

1. 当初始值偏离根 x^* 时迭代收敛较慢,采用Newton下山法

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$$

2. 当 x^* 为f(x) = 0的m重根时收敛较慢,采用改进Newton法

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)} \not x_{k+1} = x_k - \frac{f(x_k)f'(x_k)}{{f'}^2(x_k) - f(x_k)f''(x_k)}$$

3. 以上迭代公式计算导数比较复杂,如何简化?

▶ 5.2 弦截法

Newton迭代法:
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

$$\diamondsuit f'(x_k) pprox rac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$
 得 弦截法: $x_{k+1} = x_k - rac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k)$

不同于Newton迭代法,弦截法需要两个初始点 x_1, x_0 。

定理1(局部收敛定理) 设f(x) = 0, 若

- (1) f(x) 在根 x^* 的某邻域内有连续的二阶导数, 且 $f'(x) \neq 0$;
- (2) 任取 x_1, x_0 属于该邻域;

则由弦截法所得序列 $\{x_k\}$ p阶收敛于根 x^* , 其中

$$P = \frac{1+\sqrt{5}}{2} \approx 1.618.$$

证明:见教材P116-117

ARZ # * HEFEI UNIVERSITY OF TECHNOLOGY

例 用弦截法求 $f(x) = x^3 + 4x^2 - 10 = 0$ 的根,并使误差小于 10^{-6} .

解: 令
$$x_{k+1} = x_k - \frac{(x_k - x_{k-1})(x_k^3 + 4x_k^2 - 10)}{(x_k^3 + 4x_k^2 - 10) - (x_{k-1}^3 + 4x_{k-1}^2 - 10)}$$

取初始值 $x_0 = 1.25, x_1 = 1.3,$

代入 $x^* = 1.3652300134140969 \dots$, 得根和误差如下表

k	0	1	2	3	4	5
x_k	1.25	1.3	1.3691759244	1.3651009356	1.3652297641	1.3652300134
e	-	_	0.692×10^{-1}	$\textbf{0.408} \times \textbf{10}^{-2}$	$\boldsymbol{0.129 \times 10^{-3}}$	$\textbf{0.249} \times \textbf{10}^{-6}$