DM $N^{\circ}7$ (pour le 06/01/2009)

RÉSULTATS PRÉLIMINAIRES:

- 1°) Soit $\sum u_n$ une série à termes réels, et $\sum v_n$ une série à termes réels positifs, convergente.
 - a) On suppose que $u_n = \mathbf{o}(v_n)$ au voisinage de $+\infty$. Rappeler pourquoi la série $\sum u_n$ est convergente. En posant alors $R_n = \sum_{k=n+1}^{+\infty} u_k$ et $R'_n = \sum_{k=n+1}^{+\infty} v_k$, prouver que $R_n = \mathbf{o}(R'_n)$.
 - b) On suppose ici qu'il existe $k \in \mathbb{R}^*$ tel que $u_n \underset{n \to +\infty}{\sim} kv_n$. Prouver alors que : $R_n \underset{n \to +\infty}{\sim} kR'_n$.
- 2°) En remarquant que : $\frac{1}{n^2} \sim \frac{1}{n + \infty} \frac{1}{n(n-1)}$, trouver un équivalent, quand n tend vers $+\infty$, de $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2}.$
- 3°) Par une méthode analogue, trouver un équivalent, quand n tend vers $+\infty$, de $R'_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^3}$.
- 4°) En utilisant une méthode de comparaison série-intégrale, trouver, de manière plus générale, un équivalent, quand n tend vers $+\infty$, de $\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}$, α réel > 1.

Étant donnée une suite réelle (a_n) , on associe à tout couple de nombres réels (u_0, u_1) la suite réelle (u_n) définie à partir de ces deux valeurs initiales u_0 et u_1 par la relation (\mathcal{R}) :

$$u_{n+1} = u_n + a_{n-1}u_{n-1}$$
, pour $n \ge 1$

PARTIE I : Étude de la convergence de la suite (u_n)

- 1°) On suppose dans cette question que la suite (a_n) est à termes positifs, et que $u_0 \ge 0$ et $u_1 > 0$.
 - a) Étudier, pour n > 1, le sens de variation de la suite (u_n) .
 - b) Établir, pour $n \ge 2$, l'inégalité $u_{n+1} \le u_n \exp(a_{n-1})$. En déduire que, si la série $\sum a_n$ converge, alors la suite (u_n) converge aussi.
 - c) Établir réciproquement que, si la suite (u_n) converge, alors la série $\sum a_n$ est convergente.
- 2°) Dans cette question, on suppose la série $\sum a_n$ absolument convergente et l'on considère la suite (v_n) définie par : $v_0 = |u_0|$, $v_1 = |u_1|$ et, pour $n \ge 1$, $v_{n+1} = v_n + |a_{n-1}|v_{n-1}$.
 - a) Comparer $|u_n|$ et v_n .
 - b) Étudier la convergence absolue de la série $\sum (u_{n+1} u_n)$ et la convergence de la suite (u_n) .

3°) On suppose dans cette question que $a_n = a^n$, a étant un réel de l'intervalle]0,1[, et que la limite L de la suite (u_n) est non nulle.

Déterminer un équivalent de $u_{k+1} - u_k$, et en déduire un équivalent de $L - u_n$ (on interprétera $L - u_n$ comme reste d'ordre n de la série $\sum u_{k+1} - u_k$, et on utilisera les résultats de la question préliminaire)

- 4°) On suppose dans cette question que : $a_n = \frac{1}{(n+1)(n+2)}$, et que la limite L de la suite (u_n) est non nulle.
 - a) Prouver que $L u_n$ est équivalent à $\frac{L}{n}$.
 - b) On définit une suite (ε_n) en posant, pour $n \ge 1$:

$$u_n = L - \frac{L}{n} + \varepsilon_n$$

Déterminer de même un équivalent de $\varepsilon_{n+1} - \varepsilon_n$, puis de ε_n , et en déduire le développement limité à l'ordre 2 de u_n par rapport à 1/n.

PARTIE II : Étude des suites (u_n) de limite nulle.

Dans toute cette partie, on suppose les a_n strictement positifs pour tout entier naturel n et la série $\sum a_n$ convergente. Toute suite (u_n) de premiers termes u_0 et u_1 et définie par la relation (\mathcal{R}) est donc convergente. On notera $L(u_0, u_1)$ sa limite.

1°) Montrer que l'application :

$$L: \mathbb{R}^2 \longrightarrow \mathbb{R}, (u_0, u_1) \longmapsto L(u_0, u_1)$$

est linéaire.

Dans toute la suite de cette partie, on supposera le couple (u_0, u_1) distinct du couple (0, 0).

- 2°) On note N le noyau de l'application L (i.e l'ensemble des couples (u_0, u_1) tels que $L(u_0, u_1) = 0$)..
 - a) Montrer que, si il existe un indice m tel que $u_m = 0$, alors la limite $L(u_0, u_1)$ de la suite (u_n) est non nulle.
 - b) Montrer que la dimension du sous-espace N est égale à 1.
- 3°) On dira que la suite (u_n) est alternée si $u_n u_{n+1} < 0$ pour tout entier n.
 - a) Montrer que le couple de réels (u_0, u_1) appartient à N si et seulement si la suite (u_n) de premiers termes u_0 et u_1 est alternée.
 - b) Le rapport $r_0 = -\frac{u_1}{u_0}$ dépend-t-il de l'élément (u_0, u_1) choisi dans N (0, 0)?
- 4°) On suppose dans cette question que le couple (u_0, u_1) appartient à N, donc que la suite (u_n) est alternée. Pour tout entier $n \ge 0$, on pose :

$$r_n = -\frac{u_{n+1}}{u_n}$$

a) Prouver que pour tout entier $n \ge 1$, on a :

$$r_n = -1 + \frac{a_{n-1}}{r_{n-1}}$$
 et $0 < r_n < a_n$

- b) En déduire que la suite (r_n) converge vers une limite que l'on précisera.
- c) Étudier enfin la convergence des séries $\sum r_n$, $\sum u_n$ et $\sum |u_n|$.

PARTIE III : Étude du noyau N de l'application L

Dans toute cette partie, on suppose les a_n strictement positifs pour tout entier naturel n et la série $\sum a_n$ convergente. Pour tout $n \in \mathbb{N}$, on considère les fonctions :

$$f_n: [0, +\infty[\longrightarrow [0, +\infty[\quad , \quad x \longmapsto f_n(x) = \frac{a_n}{1+x}]$$

et $g_n = f_0 \mathbf{o} f_1 \mathbf{o} \dots \mathbf{o} f_n$

On pose : $p_n = g_n(0)$.

Par ailleurs, r_0 est l'unique réel tel que, pour tout u_0 non nul, le couple $(u_0, -r_0u_0)$ est élément de N (cf II).

- 1°) a)Établir que f_n et g_n sont monotones, dérivables , et que, pour $x \ge 0$, $|g'_n(x)| \le a_0 a_1 \dots a_n$. b)En déduire que, pour tout entier $n \ge 1$, $|p_n - p_{n-1}| \le a_0 a_1 \dots a_n$.
- 2°) a)Montrer que la suite (p_n) est une suite de Cauchy.
 - b)Établir que, pour tout entier $n \ge 1$, r_0 est compris entre p_{n-1} et p_n .
 - c)En déduire la limite de la suite (p_n) .
- 3°) La suite (a_n) et un réel ε étant donnés, écrire en Maple une procédure permettant d'obtenir une valeur approchée de r_0 à moins de ε près.
- 4°) Déterminer r_0 à 10^{-5} près lorsque $a_n = \frac{1}{(n+1)(n+2)}$.

PARTIE IV : Application à l'étude d'une équation différentielle

Cette partie est réservée aux 5/2

On considère dans cette partie l'équation différentielle (E):

$$(x-1)y'' + 2y' + y = 0$$

- 1°) Déterminer les solutions de (E) développables en série entière, puis montrer toutes les solutions de (E) sur]-1,1[sont développables en série entière sur cet intervalle.
- 2°) Montrer que, parmi ces solutions, il existe une droite vectorielle de solutions développables en série entière sur ℝ.
- 3°) Soit f une solution de (E) développable en série entière sur]-1,1[mais pas sur \mathbb{R} . En utilisant les résultats de I.4, montrer que f admet pour développement asymptotique, quand x tend vers 1 à gauche :

 $f(x) = \frac{L}{1-x} + L\ln(1-x) + g(x)$

où L est un réel non nul et g une fonction admettant une limite finie lorsque x tend vers 1 à gauche.