Distributions intéressantes

Alec James van Rassel

Table des matières

1	Distributions continues	2
2	Distributions discrètes	4

1 Distributions continues

Bêta généralisée

Contexte et utilité

> Le domaine des x est élargit tel que $x \in (0, \theta)$.

Paramètres

- α Paramètre de forme.
- β Paramètre de forme.
- τ Paramètre.
- θ Paramètre d'échelle.

Notation	Paramètres	Domaine
$X \sim \text{B\^{e}ta G\'en.}(\alpha, \beta, \theta, \tau)$	$\alpha \in (0, \infty)$	$x \in \mathbb{R}$
	$\beta \in (0, \infty)$	
	$\tau \in$	
	$\theta \in (0, \infty)$	

= Fonctions

$$f_X(x) = \frac{\left(\left[\frac{x}{\theta}\right]^{\tau}\right)^{\alpha} \left(1 - \left[\frac{x}{\theta}\right]^{\tau}\right)^{\beta - 1}}{B(\alpha, \beta)} \frac{\tau}{x}$$
$$F_X(x) = B\left(\alpha, \beta; \left[\frac{x}{\theta}\right]^{\tau}\right)$$

■ Moments

$$E[X] = \frac{\alpha\theta}{(\alpha + \beta)}$$

$$E[X^2] = \frac{\alpha(\alpha + 1)\theta^2}{(\alpha + \beta + 1)(\alpha + \beta)}$$

$$Var(X) = \frac{\alpha\beta\theta^2}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

$$E[X^k] = \frac{\theta^k\Gamma(\alpha + \beta)\Gamma(\alpha + k)}{\Gamma(\alpha)\Gamma(\alpha + \beta + k)}, k > -\alpha$$

Laplace ou exponentielle double

Historique

- > La distribution Laplace est nommée après Pierre Simon Laplace ;
- > Elle se forme en prenant la différent de deux variables aléatoires exponentielles iid;
- > C'est pour cette raison qu'on la surnomme aussi la distribution exponentielle double.

Contexte et utilité

- > Comme la distribution normale, la distribution Laplace est unimodale et symétrique;
- > Cependant, la densité ressemble à deux distributions exponentielles collées ensemble et est donc plus à pic que la distribution normale;
- > Elle est souvent utilisée pour modéliser des événements ayant des queues lourdes ou un pic plus élevé qu'une distribution normale.

Paramètres

- μ Paramètre d'emplacement.
- b Paramètre d'échelle.
 - > Parfois surnommée la diversité.

Notation	Paramètres	Domaine
$X \sim L(\mu, b)$	$\mu \in \mathbb{R}$	$x \in \mathbb{R}$
	$b \in (0, \infty)$	

= Fonctions

$$f_X(x) = \frac{1}{2b} e^{-\frac{|x-\mu|}{b}}$$

$$F_X(x) = \frac{1}{2} \left(1 + \text{signe}(x-\mu) \left(1 - e^{-\frac{|x-\mu|}{b}} \right) \right)$$

$$F_X^{-1}(\kappa) = \begin{cases} \mu + b \ln(2\kappa) & 0 \le \kappa \le \frac{1}{2} \\ \mu - b \ln(2(1-\kappa)) & \frac{1}{2} \le \kappa < 1 \end{cases}$$

= Moments

$$E[X] = \mu$$
 $Var(X) = 2b^2$
 $M_X(t) = \frac{e^{\mu t}}{1 - b^2 t^2}, \quad t \in (-1/b, 1/b)$

2 Distributions discrètes

Borel

Contexte et utilité

 \gt Cette distribution est particulièrement pratique pour les « branching process » et le « queuing theory ».

Paramètres

- λ Paramètre de fréquence.
- n Paramètre d'échelle.

Notation	Paramètres	Domaine
$X \sim \operatorname{Borel}(\lambda, n)$	$\lambda \in [0,1]$	$n \in \mathcal{N}$

= Fonctions

$$\mathbb{P}(X = n) = \frac{e^{-\lambda n} (\lambda n)^{n-1}}{n!}$$

■ Moments

$$E[X] = \frac{1}{1 - \lambda}$$
$$Var(X) = \frac{\lambda}{(1 - \lambda)^3}$$