Дискретна математика

проф. д-р Тодорка Глушкова, Катедра "Компютърни технологии", ФМИ

Въведение

- В теоремите за пълни множества се определят необходимите и достатъчни условия, но не се дава алгоритъм, чрез който да установим дали F е пълно или не.
- Целта ни е да опишем алгоритъм, чрез който да установяваме пълнота на произволно крайно множество от двоични функции.

Затворено множество

Определение: Множеството С е **затворено**, ако C=[C].

Например множеството P_2 е затворено.

Определение: Ще казваме, че функцията $f(x_1,x_2,x_3,...,x_n)$ **запазва нулата**, ако f(0,0,0...0)=0.

Множеството на всички функции, запазващи нулата означаваме с T_0 .

Определение: Ще казваме, че функцията $f(x_1,x_2,x_3,...,x_n)$ **запазва единицата**, ако f(1,1,1...1)=1. Множеството на тези функции означаваме с T_1 .

Множествата T_0 и T_1

- Ще формулираме критерий за затвореност
- **Теорема:** F е затворено, ако:
 - 1. Идентитетът х_і ∈F;
 - 2. Ако f,g₁,g₂,...g_n ∈ F, то всяка съставна функция $f(g_1,g_2,g_3,...g_n)$ ∈ F

Теорема: Множествата T_0 и T_1 са затворени

<u>Доказателство за T_0 :</u> 1. $x_i \in T_0$, защото f(0)=0

2. Нека $f,g_1,g_2,...g_n \in T_0 =>$ $f(g_1(0,0,...0),g_2(0,0,...0)...g_n(0,0,...0))=f(0,0,...0)=0$

Множествата T_0 и T_1

Да проверим кои от елементарните двоични функции са в T_0 и T_1 , кои не са в нито едно от тях и кои са едновременно и в двете.

$$\{0, 1, x_1, \neg x_1, x_1.x_2, x_1 \lor x_2, x_1 + x_2, x_1 \downarrow x_2, x_1 | x_2\}$$

- $T_0 = \{0, x_1, x_1.x_2, x_1 \lor x_2, x_1 + x_2\}$
- $T_1 = \{1, x_1, x_1, x_2, x_1 \lor x_2\}$
- $T_0 \cap T_1 = \{x_1, x_1.x_2, x_1 \vee x_2 \}$
- $\neg x_1, x_1 \downarrow x_2 \notin T_0 \cup T_1$
- $X_1 | X_2 \in T_0 \cup T_1$

Самодвойнствени функции

Нека $f(x_1, x_2, ... x_n)$ е двоична функция

- **Определение:** Функцията $f*(x_1,x_2,...x_n)=f(x_1,x_2,...x_n)$
- се нарича **двойнствена** над f.
- <u>Заб.</u> Отрицанието на f бележим с \neg f или \overline{f}
- **Определение:** Ако f=f*, казваме че f е **самодвойнствена.**
- Множеството на всички самодвойнствени функции бележим с **S**.

Пример

x1	x2	х3	f1	⊣f1	f1*	f2	⊣f2	f2*
0	0	0	0	1	1	0	1	0
0	0	1	1	0	1	1	0	1
0	1	0	0	1	1	1	0	1
0	1	1	0	1	0	1	0	1
1	0	0	1	0	1	0	1	0
1	0	1	0	1	1	0	1	0
1	1	0	0	1	0	0	1	0
1	1	1	0	1	1	1	0	1

Очевидно f1 \notin S, a f2∈S

Въпрос

Ако $f^*=g$, дали $g^*=f$?

$$f^*(x_1,x_2,...x_n) = g(x_1,x_2,...x_n) /*$$

$$(f^*(x_1,x_2,...x_n))^* = g^*(x_1,x_2,...x_n)$$

$$f(x_1,x_2,...x_n) = g^*(x_1,x_2,...x_n)$$

• Да!

Монотонни двоични функции

- Нека $\alpha = \langle a_1, a_2, a_3, ... a_n \rangle$ и $\beta = \langle b_1, b_2, ... b_n \rangle$ са две произволни n-орки от 0 и 1.
- Определение: Казваме, че α предхожда β ($\alpha(\beta)$ ако $a_i \le b_i$ за всяко i.
- Например: <0,0,0,0> <<0,0,1,1>. В общия случай нито α $<\beta$ нито β $<\alpha$.
- Определение: Функцията f(x1,x2...xn) е **монотонна**, ако от $\alpha \langle \beta$ следва $f(\alpha) \leq f(\beta)$ за всяко α и β . Множеството на монотонните функции бележим с **M**.

Монотонни двоични функции

- **Теорема:** Множеството на монотонните двоични функции М е затворено.
- <u>Пример:</u> Монотонна ли е f1, f2, f3:

x1	x2	x 3	f1	f2	f3
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	1	1	1

f1 - не f2 - да f3- не

Линейни двоични функции

- **Дефиниция:** Една функция е **линейна**, ако нейния Полином на Жигалкин е линеен. Т.е. $f(x_1,x_2,...x_n) = a_1.x_1+a_2.x_2+...+a_n.x_n$
- Множеството на всички линейни функции бележим с L.
- **Теорема:** Множеството L е затворено.
- Например: 0, 1, x1, x1+x2 са линейни функции.
- **Твърдение:** $f \in L \cap S \Leftrightarrow a_1 + a_2 + a_3 + ... + a_n = 1$

Пример

• Линейна ли е функцията f?

x1	x2	x 3	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Изчисляваме коефицентите в ПЖ и получаваме, че b_1 =1, т.е. f= x_1 . x_3 +...

Следователно f не е линейна.

Теорема на Post

Теорема: Множеството F е пълно, тогава и само тогава, когато $F \not\subset T_0$, T_1 , S, M, L

Пример

• Пълно ли е F1={f1,f2,f3}, където:

x1	x2	х3	f1	f2	f3
0	0	0	0	1	0
0	0	1	1	1	1
0	1	0	0	1	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	1	0	1
1	1	0	0	0	1
1	1	1	1	0	1

Пример

```
• f1 \in T0; f2 \notin T0; f3 \in T0 => F1 \not\subset T0

• f1 \in T1; f2 \notin T1; f3 \in T1 => F1 \not\subset T1

• f1 \in S; f2 \in S; f3 \notin S => F1 \not\subset S

• f1 \in M; f2 \notin M; f3 \in M => F1 \not\subset M

• f3 \notin L \dots => F1 \not\subset L
```

Тогава от Теоремата на Post F1 е пълно.

Шеферова функция

- **Определение:** Една функция е **Шеферова**, ако сама образува пълно множество, т.е. {f} е пълно.
- Например: {|} и {↓} са Шеферови
- **Теорема:** Функцията f е Шеферова тогава и само тогава, когато f∉T0∪T1∪S

Теорема

- <u>Доказателство</u>: Ако f е Шеферова, то {f} е пълно и f∉T0∪T1∪S.
- Обратно, нека $f \notin T0 \cup T1 \cup S$.Тогава $f \notin T0 = > f(0,0..0) = 1$ и $f \notin T1 = > f(1,1..1) = 0$. Следователно $f \notin M$. Остава да докажем, че $f \notin L$. Допускаме противното. Тогава $f = a_1.x_1 + a_2.x_2 + ...a_n.x_n + a_0$. От $f \notin T0$ получаваме $a_0 = 1$. От $f \notin T1$ получаваме, че $f(1,1...1) = (a_1 + a_2 + ... + a_n) + 1 = 0$ или $a_1 + a_2 + ...a_n = 1 = > f \in L \cap S$. Но това противоречи с факта, че $f \notin S$. Следователно $f \notin L$ и теоремата е доказана.

- D. W. Hoffmann, Theoretische Informatik, Hansen Verlag, 2009
- H. P. Gumm, M. Sommer, Einfuehrung in die Informatik, Oldenbourg Wissenschaftsverlag, 2004
- J. W. Grossman, Discrete Mathematics, Macmillan Pub. Co., 1990
- К. Манев, Увод в дискретната математика, КЛМН, 2005
- Й. Денев, Р. Павлов, Я. Демирович. Дискретна математика. Наука и изкуство, София, 1984.

- Д. Байнов, С. Костадинов, Р. Павлов, Л. Луканова. Ръководство за решаване на задачи по дискретна математика. Университетско издателство "Паисий Хилендарски", Пловдив, 1990.
- В.А. Успенский, Машина Поста, Москва, Наука, 1988, ISBN 5-02-013735-9.
- L. Lovasz, J. Pelikan, K. Vesztergombi, Discrete Mathematics Elementary and Beyond, Springer Verlag, New York, 2003, ISBN 0-387-95584-4.

- E. Bender, S. Williamson, A Short Course in Discrete Mathematics, Dover, 2006, ISBN 0-486-43946-1.
- P. Linz, An Introduction to Formal Languages and Automata, Jones and Bartlett Publishers, 6-th edition, Jones & Bartlett Publishers, ISBN-13: 9781284077247, 2016
- Kenneth H. Rosen, Kamala Krithivasan, Discrete mathematics and its application, McGraw-Hill Companies, 7-th edition, ISBN 978-0-07-338309-5, 2012

- Owen D. Byer, Deirdre L. Smeltzer, Kenneth L. Wantz, Journey into Discrete Mathematics, AMS, MAA Press, Providence Rhode Island, ISBN 9781470446963, 2018
- Christopher Rhoades, Introductory Discrete Mathematics, Willford Press, ISBN 1682854922, 9781682854921, 2018
- David Liben-Nowell, Discrete Mathematics for Computer Science, Wiley, 2017, ISBN 1119397197, 9781119397199, 2017.
- <u>http://www.jflap.org/</u>- софтуерна среда