Mock-5

Day-1

- i) Integers $a_0, a_1, a_2, \dots a_n$ are greater than or equal to -1 and are all non-zeros. If
- $a_0 + 2a_1 + 2^2a_2 + \dots + 2^na_n = 0$, then prove that $a_0 + a_1 + a_2 + \dots + a_n > 0$
- ii) Determine (with proof) all functions $f:[0,+\infty)\to[0,+\infty)$ such that for every $x\geq 0$, we have
- $4f(x) \ge 3x \text{ and } f(4f(x)-3x) = x.$
- iii) Let O and H be the circumcenter and orthocenter of acute $\triangle ABC$. The bisector of $\angle BAC$ meets the circumcircle τ of $\triangle ABC$ at D. Let E be the mirror image of D with respect to line BC. Let F be on τ such that DF is a diameter. Let lines AE and FH meet at G. Let M be the midpoint of side BC. Prove that $GM \perp AF$.

Day-2

- iv)In how many ways can one choose n-3 diagonals of a regular n-gon, so that no two have an intersection strictly inside the n-gon, and no three form a triangle?
- v)In acute $\triangle ABC$, AB > AC. Let M be the midpoint of BC. The exterior angle bisector of $\angle BAC$ meets ray BC at P. Points K and F lie on line PA such that MF \perp BC and MK \perp PA. Prove that BC²=4PF.AK
- vi) Let a, b, c and d be real numbers, and at least one of c or d is not zero. Let $f:\mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = \frac{ax + b}{cx + d}$. Assume that $f(x) \neq x$ for every $x \in \mathbb{R}$. Prove that if there exists at least one p such that $f^{1387}(p) = p$, then for every x, for which $f^{1387}(x)$ is defined, we have $f^{1387}(x) = x$.