

Design & Analysis of Algorithms

Saman Riaz (PhD) Associate Professor RSCI, Lahore

Lecture # 10

DYNAMIC PROGRAMMING I

Dynamic Programming

- Dynamic programming is not an algorithm, but a technique like divide and conquer
- Divide and conquer is used for disjoint subproblems however dynamic programming is for overlap subproblems
- Here "Programming" refers to a tabular method, not to writing computer code.
- A dynamic-programming solves each subsubproblem just once and then saves its answer in a table, thereby avoiding the work of recomputing the answer every time it solves each subsubproblem

Dynamic Programming - Advantages

The main advantages of dynamic programming are:

- Dynamic Programming can be used to solve optimization problems very efficiently, which cannot be solved efficiently by brute force and divide-and-conquer methods
- The implementation of dynamic programming solution is simple. The code consists of mainly nested loops which can be easily coded.
- The time and space complexity analysis of dynamic programming is easy and straightforward. Running time can be determined by counting loop cycles.

Dynamic Programming – Disadvantages

The disadvantages associated with dynamic programming are:

- There is an overhead of memory requirement to to store tables for the solution of sub problems
- *The formulation of sub problem structure is difficult*
- *The principle of optimality must hold.*

Dynamic Programming (Cont.)

When developing a dynamic-programming, we follow a sequence of four steps:

- 1. Characterize the structure of an optimal solution.
- Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution, typically in a bottom-up fashion.
- 4. Construct an optimal solution from computed information.

Elements of Dynamic Programming

- Optimal sub-structure
 - An optimal solution to a problem contains optimal solutions to sub-problems
 - Dynamic programming uses optimal sub-structure in a bottom-up manner
- Overlapping sub-problems
 - Space of sub-problems must be "small" typically the total number of distinct sub-problems is a polynomial in the input size
 - Recursive algorithm visits same problem again and again
 - Each sub-problem is solved once, solution is stored in table

Optimal sub-structure

- The principle of optimality holds in the case of problem of finding a shortest distance in a network, but it does not hold good for problem of finding the longest distance
- Consider, for example, the network shown in the figure. The shortest distance A to D is A->B->C->D 35. Further, the shortest distance from A to C is A->B->C=25, and shortest distance from A to B is A->B=20. Thus, principle of *optimality holds true for each of the sub paths of the shortest distance between A to D.*
- Now consider the longest distance from C to A. It is C->D->A=60.
 However, the sub path C->D=10 is not the longest distance, because the longest distance from C to D is C->B->A->D=75. Hence, the principle of *optimality does not hold true*.

Recursive Algorithm

- Takes Exponential time, seen few lectures back!
- Actual sub problems are polynomial (O(n)) but they get repeated
- Sub problems are not INDEPENDENT.
- Sub problems share sub-sub problems.
- We can solve it using Dynamic programming.

Benefit of Dynamic Programming

- Run an O(n) time loop, keep a temp variable to store the solution of sub-problems and then reuse them rather then recalculating them.
- So by using dynamic programming we can solve a problem in polynomial time which otherwise was solved in exponential time.

Dynamic programming Assembly Line Scheduling

Assembly Line Scheduling

- Automobile factory with two assembly lines
 - Each line has n stations: $S_{1,1}, \ldots, S_{1,n}$ and $S_{2,1}, \ldots, S_{2,n}$
 - Corresponding stations $S_{1,j}$ and $S_{2,j}$ perform the same function but can take different amounts of time $a_{1,j}$ and $a_{2,j}$
 - Entry times are: e_1 and e_2 ; exit times are: x_1 and x_2

Assembly Line Scheduling

- After going through a station, can either:
 - stay on same line at no cost, or
 - transfer to other line: cost after $S_{i,j}$ is $t_{i,j}$, $j=1,\ldots,n-1$

Assembly Line Scheduling

Problem:

what stations should be chosen from line 1 and which from line 2 in order to minimize the total time through the factory for one car?

One Solution

- Brute force
 - Enumerate all possibilities of selecting stations
 - Compute how long it takes in each case and choose the best one
 - There are 2ⁿ possible ways to choose stations
 - Infeasible when n is large!!

1. Structure of the Optimal Solution

 How do we compute the minimum time of going through a station?

1. Structure of the Optimal Solution

- Let's consider all possible ways to get from the starting point through station $S_{1,j}$
 - We have two choices of how to get to S_{1, j}:
 - Through S_{1, j-1}, then directly to S_{1, j}
 - Through S_{2, j-1}, then transfer over to S_{1, j}

1. Structure of the Optimal Solution

- Suppose that the fastest way through $S_{1,j}$ is through $S_{1,j-1}$
 - We must have taken a fastest way from entry through S_{1, j-1}
 - If there were a faster way through $S_{1,j-1}$, we would use it instead Similarly for $S_{2,j-1}$

Optimal Substructure

• **Generalization**: an optimal solution to the problem "find the fastest way through $S_{1,j}$ " contains within it an optimal solution to subproblems: "find the fastest way through $S_{1,j-1}$ or $S_{2,j-1}$ ".

This is referred to as the optimal substructure property

 We use this property to construct an optimal solution to a problem from optimal solutions to subproblems

2. A Recursive Solution

 Define the value of an optimal solution in terms of the optimal solution to subproblems

Definitions:

- f*: the fastest time to get through the entire factory
- f_i[j]: the fastest time to get from the starting point through station S_{i,j}

• Base case: j = 1, i=1,2 (getting through station 1) $f_1[1] = e_1 + a_{1,1}$ $f_2[1] = e_2 + a_{2,1}$

- General Case: j = 2, 3, ...,n, and i = 1, 2
- Fastest way through S_{1, j} is either:
 - the way through $S_{1,i-1}$ then directly through $S_{1,i}$, or

$$f_1[j-1] + a_{1,j}$$

• the way through $S_{2,j-1}$, transfer from line 2 to line 1, then through $S_{1,j-1}$

$$f_2[j-1] + t_{2,j-1} + a_{1,j}$$

 $f_2[j-1] + t_{2,j-1} + a_{1,j}$ $f_1[j] = min(f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j})Line 2$

$$f_{1}[j] = \begin{cases} e_{1} + a_{1,1} & \text{if } j = 1 \\ \min(f_{1}[j-1] + a_{1,j}, f_{2}[j-1] + t_{2,j-1} + a_{1,j}) & \text{if } j \geq 2 \end{cases}$$

$$f_{2}[j] = \begin{cases} e_{2} + a_{2,1} & \text{if } j = 1 \\ \min(f_{2}[j-1] + a_{2,j}, f_{1}[j-1] + t_{1,j-1} + a_{2,j}) & \text{if } j \geq 2 \end{cases}$$

3. Computing the Optimal Solution

Solving top-down would result in exponential running time

3. Computing the Optimal Solution

- For j ≥ 2, each value f_i[j] depends only on the values of f₁[j 1] and f₂[j 1]
- Idea: compute the values of f_i[j] as follows:

- Bottom-up approach
 - First find optimal solutions to subproblems
 - Find an optimal solution to the problem from the subproblems

Example

 $f^* = 35^{[1]}$

$$f_{1}[j] = \begin{cases} e_{1} + a_{1,1}, & \text{if } j = 1 \\ \min(f_{1}[j-1] + a_{1,j}, f_{2}[j-1] + t_{2,j-1} + a_{1,j}) & \text{if } j \geq 2 \end{cases}$$

$$f_{1}[j] = \begin{cases} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{cases}$$

$$f_{2}[j] = \begin{cases} 1 & 2 & 3 & 4 & 5 \\ 1 & 20^{[2]} & 24^{[1]} & 32^{[1]} \\ 1 & 20^{[2]} & 25^{[1]} & 30^{[2]} \end{cases}$$

FASTEST-WAY(a, t, e, x, n)

1.
$$f_1[1] \leftarrow e_1 + a_{1,1}$$

2.
$$f_2[1] \leftarrow e_2 + a_{2,1}$$

Compute initial values of f₁ and f₂

3. for $j \leftarrow 2$ to n

4. do if
$$f_1[j-1] + a_{1,j} \le f_2[j-1] + t_{2,j-1} + a_{1,j}$$

5. then
$$f_1[j] \leftarrow f_1[j-1] + a_{1,j}$$

6.
$$I_1[j] \leftarrow 1$$

7. else
$$f_1[j] \leftarrow f_2[j-1] + t_{2,j-1} + a_{1,j}$$

8.
$$I_1[j] \leftarrow 2$$

9. if
$$f_2[j-1] + a_{2,j} \le f_1[j-1] + t_{1,j-1} + a_{2,j}$$

10. then
$$f_2[j] \leftarrow f_2[j-1] + a_{2,j}$$

11.
$$I_2[j] \leftarrow 2$$

12. else
$$f_2[j] \leftarrow f_1[j-1] + f_{1,j-1} + a_{2,j}$$

13.
$$I_2[j] \leftarrow 1$$

O(N)

Compute the values of $f_1[j]$ and $I_1[j]$

Compute the values of $f_2[j]$ and $I_2[j]$

FASTEST-WAY(a, t, e, x, n) (cont.)

14. if
$$f_1[n] + x_1 \le f_2[n] + x_2$$

15. then
$$f^* = f_1[n] + x_1$$

17. **else**
$$f^* = f_2[n] + x_2$$

Compute the values of the fastest time through the entire factory

4. Construct an Optimal Solution

```
Alg.: PRINT-STATIONS(I, n)

i \leftarrow I^*

print "line " i ", station " n

for j \leftarrow n downto 2

do i \leftarrow I_i[j]

print "line " i ", station " j - 1
```


Quiz 5

Using KMP algorithm-for-pattern-searching

Text: aabbcraabdjtabbabbabdjrk

Pattern :abbabbabdj