2019 Full States EV and EC of One Check

This is the example vignette for function: **snw_evuvw19_jaeemk** from the **PrjOptiSNW Package.** 2019 integrated over VU and VW, given optimal savings choices, unemployment shocks and various expectations.

Test SNW EVUVW19 JAEEMK Defaults

Call the function with defaults.

```
clear all;
st_solu_type = 'bisec_vec';
% Solve the VFI Problem and get Value Function
mp_params = snw_mp_param('default_docdense');
mp_controls = snw_mp_control('default_test');
% set Unemployment Related Variables
mp_params('a2_covidyr') = mp_params('a2_covidyr_manna_heaven');
% mp_params('a2_covidyr') = mp_params('a2_covidyr_tax_fully_pay');
% Solve for Unemployment Values
mp controls('bl print vfi') = false;
mp_controls('bl_print_vfi_verbose') = true;
mp controls('bl print ds') = false;
mp_controls('bl_print_ds_verbose') = false;
mp_controls('bl_print_precompute') = false;
mp controls('bl print precompute verbose') = false;
mp_controls('bl_print_a4chk') = false;
mp_controls('bl_print_a4chk_verbose') = false;
mp_controls('bl_print_evuvw20_jaeemk') = false;
mp_controls('bl_print_evuvw20_jaeemk_verbose') = false;
% Solve the Model to get V working and unemployed
[V ss,ap ss,cons ss,mp valpol more ss] = snw vfi main bisec vec(mp params, mp controls);
```

Completed SNW_VFI_MAIN_BISEC_VEC; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time=527.9563

	i	idx	ndim	numel	rowN	colN	sum	mean	std	coefvari
	_									
V_VFI	1	1	6	4.37e+07	83	5.265e+05	-1.5339e+08	-3.5101	26.119	-7.441
ap_VFI	2	2	6	4.37e+07	83	5.265e+05	1.4159e+09	32.402	36.798	1.1357
cons_VFI	3	3	6	4.37e+07	83	5.265e+05	2.1402e+08	4.8975	8.3294	1.7007

xxx TABLE:V_VFI xxxxxxxxxxxxxxxxxx

	_ c1	c2	c 3	с4	c 5	c526496	c526497	c526498	c526499	c52656
r1	-346.51	-346.12	-343.63	-337.86	-328.51	21.702	21.852	22.003	22.154	22.36
r2	-334.38	-333.99	-331.51	-325.83	-316.83	21.724	21.869	22.015	22.163	22.31
r3	-322.45	-322.06	-319.6	-314.14	-305.6	21.745	21.885	22.027	22.171	22.31
r4	-310.63	-310.27	-307.99	-302.88	-294.87	21.767	21.903	22.041	22.182	22.32
r5	-299.94	-299.6	-297.46	-292.67	-285.12	21.775	21.907	22.042	22.18	22.32
r79	-9.9437	-9.9325	-9.8557	-9.6597	-9.3232	2.5394	2.5501	2.5602	2.5696	2.578

r81 r82 r83	-7.6363 -5.9673	-7.6251							327 2 3226 2
r83	3.3073								5046 1
	-3.5892				9687 0.97			8097 0.98	
TABLE:	-3.3032	-3.376	-3.3012 -3	-2.	5067 0.57	7904 0.9	0.90	5097 0.90	5105 0.
		(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		c5	cE26406	cF36407	cF3C409	cE26400	cE36E0
	c1 c2	c3	c4		c526496	c526497	c526498	c526499	c52650
r1	0 0	0.0005656	0.0075134	0.022901	114.75	120.41	126.27	132.38	138.8
r2	0 0	0.00051498	0.0065334			120.41	126.27	132.54	138.95
r3	0 0	0.00051498	0.0049294			120.55	126.41	132.54	139.12
r3 r4	0 0	0.00051498	0.0047937			120.65	125.36	133.51	139.12
r5	0 0	0.00031498	0.0046683			121.42	127.34	134.32	140.74
							90.335		
r79	0 0 0 0	0	0			85.68 80.563	90.335 84.304	94.378 88.04	98.419 91.693
r80	0 0		0						
r81 r82	0 0	0	0			71.534 53.467	74.475 56.953	77.832 58.745	81.11 60.587
r82 r83	0 0	0	6			53.467	50.953	58.745 0	60.587
1.02	9 9	0	e	0	0	0	0	0	
TABLE:	cons VFI xx	(XXXXXXXXXXXXX	кххх						
	_ c1	c2	с3	c4	c 5	c526496	c526497	c526498	c526499
r1	0.036717	0.037251	0.040426	0.04363	0.048012	9.6491	9.817	9.9649	10.073
r2	0.036717	0.037251	0.040477	0.04461	0.049364	9.8118	9.9685	10.101	10.191
r3	0.036717	0.037251	0.040477	0.046214	0.051039	9.9779	10.12	10.234	10.302
r4	0.038144	0.038678	0.041903	0.047776	0.052666	10.131	10.258	10.354	10.405
r5	0.039534	0.040068	0.043323	0.04929	0.054241	10.272	10.384	10.463	10.5
r79	0.2179	0.21844	0.22216	0.23228	0.25197	35.858	37.092	38.455	40.627
r80	0.2179	0.21844	0.22216	0.23228	0.25197	40.253	42.183	44.459	46.938
	0.2179	0.21844	0.22216	0.23228	0.25197	48.587	51.19	54.266	57.123
r81		0.21844	0.22216	0.23228	0.25197	66.755	69.238	71.77	76.192
	0.2179 0.2179	0.21844	0.22216	0.23228	0.25197	116.87	122.69	128.71	134.92

Completed SNW_VFI_MAIN_BISEC_VEC 1 Period Unemp Shock;SNW_MP_PARAM=default_docdense;SNW_MP_CONTROL=default_test;time

colN

sum

mean

std

coefvari

CONTAINER NAME: mp_outcomes ND Array (Matrix etc)

i idx ndim

	-									
V_VFI	1	1	6	4.37e+07	83	5.265e+05	-1.5339e+08	-3.5101	26.119	-7.441
ap_VFI	2	2	6	4.37e+07	83	5.265e+05	1.4159e+09	32.402	36.798	1.1357
cons_VFI	3	3	6	4.37e+07	83	5.265e+05	2.1402e+08	4.8975	8.3294	1.7007
xxx TABLE:V_VF	FI xxx	XXXXXXX	(XXXXXXXX	<						
_	c 1	c 2)	c3	c1	c E	cE26496 cE26	107 (526)	100 6526	400 cE26E

rowN

numel

	CI	CZ	CS	C4	CS	C320490	C320497	C320498	C320433	C32036
r1	-346.51	-346.12	-343.63	-337.86	-328.51	21.702	21.852	22.003	22.154	22.30
r2	-334.38	-333.99	-331.51	-325.83	-316.83	21.724	21.869	22.015	22.163	22.31
r3	-322.45	-322.06	-319.6	-314.14	-305.6	21.745	21.885	22.027	22.171	22.31
r4	-310.63	-310.27	-307.99	-302.88	-294.87	21.767	21.903	22.041	22.182	22.32

r5 r79 r80	-9.9	9.94 9437 9023	-9.9325	-9.8557 -9	.6597 -9	285.12 9.3232 8.2818	21.77 2.539 2.303	4 2.5	501 2.	5602 2.	2.18 5696 .327
r81		5363				7.0159	2.006				0226
r82		9673				5.3468	1.595				6046
r83		5892				2.9687	0.9790				8185 (
TABLE	ap_VF		«xxxxxxxxxxx								
	c1	c2	с3	c4	с5	c 5	26496	c526497	c526498	c526499	c526!
r1	0	0	0.0005656	0.0075134	0.0229	21 11	4.75	120.41	126.27	132.38	138
r2	0	0	0.00051498	0.0065334			4.86	120.41	126.27	132.54	138.9
r3	0	0	0.00051498	0.0049294			4.97	120.55	126.41	132.34	139.3
r4	0	0	0.00051498	0.0047937			5.73	121.42	127.34	133.51	139.9
r5	0	0	0.00048517	0.0046683			16.5	122.21	128.15	134.32	140.
r79	0	0	0	6			.091	85.68	90.335	94.378	98.43
r80	0	0	0	6			.669	80.563	84.304	88.04	91.69
r81	0	0	0	6		0 68	.313	71.534	74.475	77.832	81.
r82	0	0	0	0		0 50	.126	53.467	56.953	58.745	60.5
r83	0	0	0	6		0	0	0	0	0	
TABLE	:cons	VFI xx	(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	«ххх							
	_	1	c2	c3	c4	c5	c	526496	c526497	c526498	c526499
r1	0.03	36717	0.037251	0.040426	0.04363	0.048	01 2 9	.6491	9.817	9.9649	10.073
r2		36717	0.037251	0.040477	0.04461	0.049	364 9	.8118	9.9685	10.101	10.191
r3	0.03	36717	0.037251	0.040477	0.046214	0.051	939 9	.9779	10.12	10.234	10.302
r4	0.03	38144	0.038678	0.041903	0.047776	0.052		0.131	10.258	10.354	10.405
r5		39534	0.040068	0.043323	0.04929	0.054		0.272	10.384	10.463	10.5
r79		2179	0.21844	0.22216	0.23228	0.25		5.858	37.092	38.455	40.627
r80		2179	0.21844	0.22216	0.23228	0.25		0.253	42.183	44.459	46.938
r81		.2179	0.21844	0.22216	0.23228	0.25		8.587	51.19	54.266	57.123
r82		2179	0.21844	0.22216	0.23228	0.25		6.755	69.238	71.77	76.192
r83		. 2179	0.21844	0.22216	0.23228	0.25		16.87	122.69	128.71	134.92
para para	ms('x ms('b	i') =	ment, differ 0.50; 0.50; cons_unemp_2							contnols	V 55).

CONTAINER NAME: mp_outcomes ND Array (Matrix etc)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

	i	idx	ndim	numel	rowN	colN	sum	mean	std	coefvari
	-									
V_VFI	1	1	6	4.37e+07	83	5.265e+05	-1.6419e+08	-3.7572	26.502	-7.0536
ap_VFI	2	2	6	4.37e+07	83	5.265e+05	1.3972e+09	31.974	36.732	1.1488
cons VFI	3	3	6	4.37e+07	83	5.265e+05	2.1267e+08	4.8667	8.3275	1.7111

xxx TABLE:V_VFI xxxxxxxxxxxxxxxxxx

	c1	c2	c 3	c4	c5	c526496	c526497	c526498	c526499	c52650
r1	-355.34	-354.66	-350.52	-342.92	-332.4	21.638	21.791	21.943	22.095	22.2
r2	-343.21	-342.53	-338.39	-330.8	-320.53	21.66	21.807	21.955	22.104	22.25
r3	-331.28	-330.6	-326.46	-318.91	-309.12	21.682	21.824	21.967	22.112	22.2
r4	-319.13	-318.5	-314.65	-307.53	-298.32	21.7	21.838	21.977	22.119	22.26
r5	-308.13	-307.54	-303.94	-297.21	-288.52	21.705	21.839	21.975	22.113	22.25
r79	-9.9437	-9.9325	-9.8557	-9.6597	-9.3232	2.5384	2.5492	2.5593	2.5688	2.577

1	r80 r81 r82 r83	-8.90 -7.60 -5.90 -3.50	363 673	-8.89 -7.62 -5.95 -3.5	-7.5484 -5.8793	-8.6183 -7.3524 -5.6833 -3.3052	-8.2818 -7.0159 -5.3468 -2.9687	2.3032 2.0063 1.5955 0.97895	2.3114 2.0119 1.5987 0.97995	2.3191 2.0172 1.6016 0.98089	2.3264 2.0222 1.6044 0.98178
XXX .	TABLE:	ap VF	I xxxx	xxxxxx	xxxxxxx						
		c1	c2	с3	c4	c 5	c526496	c526497	c526498	c526499	c526500
I	r1	0	0	0	0.0017295	0.013921	112.32	117.97	123.84	129.95	136.36
I	r2	0	0	0	0.0014073	0.013905	112.36	118.03	123.91	130.03	136.45
I	r3	0	0	0	0.00051498	0.013905	112.4	118.08	123.99	130.13	136.55
I	r4	0	0	0	0.00051498	0.013905	112.93	118.63	124.55	130.71	137.13
I	r5	0	0	0	0.00051498	0.013905	113.47	119.18	125.12	131.3	137.71
I	r79	0	0	0	0	0	81.091	85.68	89.816	93.86	97.901
I	r80	0	0	0	0	0	76.378	80.051	83.793	87.528	91.181
I	r81	0	0	0	0	0	68.288	71.027	73.968	77.326	81.091
I	r82	0	0	0	0	0	50.126	53.467	56.61	58.244	60.587
I	r83	0	0	0	0	0	0	0	0	0	0
xxx ·	TABLE	cons '	VFI xx	××××××	xxxxxxxxx						

2.333 2.026 1.60 0.9826

	_ c1	c2	c 3	c4	c 5	c526496	c526497	c526498	c526499
r1	0.027723	0.028258	0.031999	0.040426	0.048012	9.6491	9.817	9.9649	10.073
r2	0.027723	0.028258	0.031999	0.040748	0.048028	9.8118	9.9685	10.101	10.191
r3	0.027723	0.028258	0.031999	0.041641	0.048028	9.9779	10.12	10.234	10.302
r4	0.028805	0.029339	0.033081	0.042722	0.049108	10.131	10.258	10.354	10.405
r5	0.029859	0.030394	0.034135	0.043775	0.050161	10.272	10.384	10.463	10.5
r79	0.2179	0.21844	0.22216	0.23228	0.25197	35.339	36.573	38.455	40.627
r80	0.2179	0.21844	0.22216	0.23228	0.25197	40.033	42.183	44.459	46.938
r81	0.2179	0.21844	0.22216	0.23228	0.25197	48.106	51.19	54.266	57.123
r82	0.2179	0.21844	0.22216	0.23228	0.25197	66.254	68.736	71.611	76.192
r83	0.2179	0.21844	0.22216	0.23228	0.25197	116.37	122.19	128.21	134.43

[Phi_true] = snw_ds_main(mp_params, mp_controls, ap_ss, cons_emp_2020, mp_valpol_more_ss);

Completed SNW DS MAIN; SNW MP PARAM=default docdense; SNW MP CONTROL=default test; time=1500.619

```
% Get Matrixes
cl_st_precompute_list = {'a', ...
    'inc', 'inc_unemp', 'spouse_inc', 'spouse_inc_unemp', 'ref_earn_wageind_grid',...
    'ap_idx_lower_ss', 'ap_idx_higher_ss', 'ap_idx_lower_weight_ss'};
mp_controls('bl_print_precompute_verbose') = false;
[mp precompute res] = snw hh precompute(mp params, mp controls, cl st precompute list, ap ss, F
```

Wage quintile cutoffs=0.4645 1.0335 0.71528 1.5632 Completed SNW_HH_PRECOMPUTE; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time cost=428.4478

Solve for 2019 Evuvw With 0 and 2 Checks

```
% Call Function
welf checks = 0;
[ev19_jaeemk_check0, ec19_jaeemk_check0, ev20_jaeemk_check0, ec20_jaeemk_check0] = snw_evuvw19_
    welf_checks, st_solu_type, mp_params, mp_controls, ...
    V emp 2020, cons emp 2020, V unemp 2020, cons unemp 2020, mp precompute res);
```

Completed SNW_A4CHK_WRK_BISEC_VEC; welf_checks=0; TR=0.0017225; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_te Completed SNW_A4CHK_UNEMP_BISEC_VEC; welf_checks=0; TR=0.0017225; xi=0.5; b=0.5; SNW_MP_PARAM=default_docdense; SNW_MP_CON_MP_CO Completed SNW_EVUVW20_JAEEMK;SNW_MP_PARAM=default_docdense;SNW_MP_CONTROL=default_test;timeEUEC=7.9254 Completed SNW_EVUVW19_JAEEMK;SNW_MP_PARAM=default_docdense;SNW_MP_CONTROL=default_test;time=4834.3572

CONTAINER NAME: mp_outcomes ND Array (Matrix etc)

XXXX	(XXXXX)	(XXXXXXXX	i i	idx ı		mel	rowN	l col	N		sum	mean	std	coefva
	ec19_j	iaeemk	1	1	6 4.31	73e+07	82	5.265		1.8	8059e+08	4.183	5.1876	1.240
	ec20_j		2	2		37e+07	83	5.265			.399e+08	4.8969	8.3295	1.70
	ev19_j		3	3		73e+07	82	5.265			054e+08	-3.2554	25.136	-7.721
	ev20_j		4	4		37e+07	83	5.265			388e+08	-3.5212	26.147	-7.425
XXX	TABLE:	ec19 jae	emk	xxxxxxxxx	xxxxxxxx									
		c1		c2	с3		c4	с5		c526496	c52649	7 c526498	8 c5264	99 d
	r1	0.03925	- 3	0.039253	0.039822	0.0)44086	0.04923	- 1	9.6484	9.8085	9.9488	10.03	
	r2	0.03925		0.039253	0.039788	0.0	44409	0.05051	3	9.7796	9.9379	10.073	10.15	6 1
	r3	0.04077		0.040776	0.041311		04504	0.0517		9.994	10.125	10.224	10.27	
	r4	0.04226		0.042261	0.042795		46467	0.05327		10.173	10.282		10.38	
	r5	0.04370		0.043702	0.044205		47871	0.05476		10.328	10.416		10.47	
	r78	0.2179		0.2179	0.2179		.2179	0.2184		27.794	28.962		31.0	
	r79	0.217		0.2179	0.2179		.2179	0.2134		30.071	31.673		34.08	
	r80	0.217		0.2179	0.2179		.2179	0.217		33.5	35.375			
		0.217			0.2179		.2179			40.296			39.12 45.79	
	r81 r82	0.217		0.2179 0.2179	0.2179		.2179	0.217 0.217		52.118	41.727 55.559	59.15	60.99	
	TABLE		ماسد											
XXX	IABLE:		emĸ	XXXXXXXXXX			- 4	- 5		-526406	-52640	7 -526404	-5264	00
		c1		c2	c 3		c4	c 5		c526496	c52649	7 c526498	8 c5264	99 (
			_						_					_]
	r1	0.03599		0.036529	0.03975		43373	0.04801		9.6491	9.817		10.07	
	r2	0.03599		0.036529	0.039796		.0443	0.04925		9.8118	9.9685		10.19	
	r3	0.03599		0.036529	0.039796		45847	0.05079		9.9779	10.12		10.30	
	r4	0.03739		0.037928	0.041195		04737	0.0523		10.131	10.258	10.354	10.40	
	r5	0.03875		0.039291	0.042585		48848	0.05391		10.272	10.384		10.	
	r79	0.217		0.21844	0.22216		23228	0.2519		35.858	37.092		40.62	
	r80	0.2179		0.21844			23228	0.2519		40.253	42.183		46.93	8
	r81	0.217	9	0.21844	0.22216	0.	23228	0.2519	7	48.587	51.19	54.266	57.12	3 6
	r82	0.2179	9	0.21844	0.22216	0.	23228	0.2519	7	66.755	69.238	71.77	76.19	2 8
	r83	0.217	9	0.21844	0.22216	0.	23228	0.2519	7	116.87	122.69	128.71	134.9	2 1
xxx	TABLE:	ev19_jae	emk	xxxxxxxx	xxxxxxxx									
		c1		c2	с3	c4		c 5	c5264	196 c	526497	c526498	526499	c52650
	r1	-330.68		-330.68	-330.27	-326.0		318.4	21.5		21.741	21.892	22.045	22.11
	r2	-318.19		-318.19	-317.82	-314.1		306.96			21.755	21.902	22.052	22.11
	r3	-305.88		-305.88	-305.54	-302.9)5 -2	296.09	21.6		21.769	21.913	22.06	22.11
	r4	-294.75		-294.75	-294.43	-292.0	7 -2	285.66	21.6		21.785	21.925	22.069	22.10
	r5	-284.65		-284.65	-284.37	-282.2	21 -2	276.18	21.6	553	21.787	21.924	22.066	22.08
	r78	-9.95		-9.95	-9.95	-9.9	95 -9	9.9388	2.48		2.501	2.5125	2.5234	2.533
	r79	-8.9084		-8.9084	-8.9084	-8.908	34 -8	3.9084	2.25	539	2.2657	2.2765	2.2849	2.292
	r80	-7.6422		-7.6422	-7.6422	-7.642	22 -7	7.6422	1.96	531	1.9708	1.9776	1.9838	1.989
	r81	-5.9728		-5.9728	-5.9728	-5.972	28 -5	.9728	1.56	503	1.5647	1.5684	1.5724	1.576
	r82	-3.5937		-3.5937	-3.5937	-3.593	37 -3	3.5937	0.955	581 6	.95855	0.96107	0.96221	0.9633
xxx	TABLE:	ev20 jae	emk	xxxxxxxxx	xxxxxxxx									
		c1		c2	c 3	c4		c5	c 52 64	196 c	526497	c526498	526499	c52650
							_							
	r1	-347.22		-346.8	-344.19	-338.2	27 -3	328.82	21.7	701	21.851	22.001	22.153	22.30
	r2	-335.09		-334.67	-332.06	-326.2		317.13	21.7		21.867	22.013	22.161	22.31
	r3	-323.16		-322.74	-320.15	-314.5		305.89	21.7		21.884	22.026	22.17	22.31
	r4	-311.32		-310.93	-308.52	-303.2		295.15	21.7		21.902	22.04	22.181	22.32

r5	-300.59	-300.24	-297.98	-293.04	-285.4	21.773	21.906	22.041	22.179	22.32
r79	-9.9437	-9.9325	-9.8557	-9.6597	-9.3232	2.5394	2.5501	2.5602	2.5696	2.578
r80	-8.9023	-8.8911	-8.8143	-8.6183	-8.2818	2.3039	2.3121	2.3198	2.327	2.333
r81	-7.6363	-7.6251	-7.5484	-7.3524	-7.0159	2.0068	2.0124	2.0176	2.0226	2.027
r82	-5.9673	-5.9561	-5.8793	-5.6833	-5.3468	1.5958	1.5989	1.6018	1.6046	1.607
r83	-3.5892	-3.578	-3.5012	-3.3052	-2.9687	0.97904	0.98004	0.98097	0.98185	0.9826

% Call Function

welf_checks = 2;

[ev19_jaeemk_check2, ec19_jaeemk_check2, ev20_jaeemk_check2, ec20_jaeemk_check2] = snw_evuvw19_
welf_checks, st_solu_type, mp_params, mp_controls, ...
V_emp_2020, cons_emp_2020, V_unemp_2020, cons_unemp_2020, mp_precompute_res);

Completed SNW_A4CHK_WRK_BISEC_VEC; welf_checks=2; TR=0.0017225; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_tecompleted SNW_A4CHK_UNEMP_BISEC_VEC; welf_checks=2; TR=0.0017225; xi=0.5; b=0.5; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; timeEUEC=7.8653 Completed SNW_EVUVW19_JAEEMK; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time=4826.0215

CONTAINER NAME: mp_outcomes ND Array (Matrix etc)

		i _	idx ——	ndim	nume	el 	rowN	colN	s	um	mean	std 	coe
ec19_	jaeemk	1	1	6	4.3173	3e+07	82	5.265e+05	1.80	061e+08	4.1835	5.1877	
ec20	jaeemk	2	2	6	4.37	7e+07	83	5.265e+05	2.14	01e+08	4.8974	8.3297	1.
	jaeemk	3	3	6	4.3173		82	5.265e+05		.4e+08	-3.2427	25.089	-7.
	jaeemk	4	4	6	4.37	7e+07	83	5.265e+05		329e+08	-3.5078	26.096	-7.
TABLE		emk	xxxxxxxx	(XXXXX									
	c1	_	c2		c3	c4		c5	c526496	c526497	7 c52649	8 c5264 	99
r1	0.041965	5	0.041965	5	0.04239	0.045	342	0.049961	9.6485	9.8086	9.9489	10.03	7
r2	0.04233	3	0.04233	3 0	.042797	0.046	025	0.051275	9.7797	9.9379	10.073	10.15	6
r3	0.043853	3	0.043853	3	0.04432	0.046	854	0.052519	9.9941	10.125	10.224	10.27	5
r4	0.045349	9	0.045349	9 0	.045817	0.048	322	0.054074	10.173	10.282	10.354	10.38	1
r5	0.04681	5	0.046815	5 0	.047261	0.049	758	0.05558	10.328	10.416	10.467	10.47	7
r78	0.22135		0.22135		0.22135	0.22	135	0.22188	27.795	28.962	29.988	31.01	1
r79	0.22135		0.22135	5	0.22135	0.22	135	0.22135	30.073	31.674	33.011	34.08	6
r80	0.22135		0.22135		0.22135	0.22		0.22135	33.501	35.377	37.368		
r81	0.22135	5	0.22135	5	0.22135	0.22	135	0.22135	40.297	41.729	43.477	45.79	8
r82	0.22135	5	0.22135	5	0.22135	0.22	135	0.22135	52.121	55.563	59.153	60.99	9
TABLE		emk	xxxxxxxx	xxxxx		_		_					
	c1	_	c2		c3	c4		c5	c526496	c526497	7 c52649 	8 c5264 	99
r1	0.039035	5	0.039495	5 0	.040979	0.044	181	0.048566	9.6492	9.8171	9.965	10.07	3
r2	0.03907		0.039538		.041324	0.045		0.049841	9.8119	9.9686	10.101		
r3	0.03907		0.039538		.041849	0.04		0.051404	9.978	10.12	10.234		
r4	0.04047	7	0.040937		0.04329	0.048		0.052999	10.131	10.258	10.354		
r5	0.04185		0.042325		0.04471	0.04		0.054543	10.272	10.384	10.463		
r79	0.22135		0.22188		0.22561	0.23		0.25394	35.858	37.093	38.456		
r80	0.22135	5	0.22188	3	0.22561	0.23	572	0.25394	40.254	42.184	44.46	46.9	4
r81	0.22135	5	0.22188	3	0.22561	0.23	572	0.25402	48.589	51.192	54.268	57.12	5
r82	0.22135		0.22188		0.22561	0.23		0.25436	66.757	69.24	71.772		
r83	0.2213	5	0.22188	3	0.22561	0.23	572	0.25541	116.87	122.69	128.71	134.9	3
TABLE		emk	xxxxxxxx										_
	c1		c2		3	c4	C	:5 c526	496 c5	526497 d	c526498	c526499	c5

	202.02	505.05	303.32	301.32	254.04	21.020	21.703	21.717	22.00	22.1
r4	-292.84	-292.84	-292.55	-290.54	-284.48	21.648	21.785	21.925	22.069	22.1
r5	-282.87	-282.87	-282.61	-280.77	-275.07	21.653	21.787	21.924	22.066	22.0
r78	-9.8787	-9.8787	-9.8787	-9.8787	-9.8678	2.4886	2.501	2.5125	2.5234	2.53
r79	-8.8371	-8.8371	-8.8371	-8.8371	-8.8371	2.2539	2.2657	2.2765	2.2849	2.29
r80	-7.5709	-7.5709	-7.5709	-7.5709	-7.5709	1.9631	1.9708	1.9776	1.9838	1.98
r81	-5.9015	-5.9015	-5.9015	-5.9015	-5.9015	1.5603	1.5647	1.5684	1.5724	1.57
r82	-3.5225	-3.5225	-3.5225	-3.5225	-3.5225	0.95582	0.95855	0.96107	0.96221	0.963
xxx TABLE	:ev20_jaeem	ık xxxxxxxx	xxxxxxxx							
	c1	c2	с3	c4	c 5	c526496	c526497	c526498	c526499	c5265
r1	-344.77	-344.39	-342.18	-336.62	-327.49	21.701	21.851	22.001	22.153	22.3
r2	-332.64	-332.26	-330.08	-324.65	-315.86	21.722	21.868	22.014	22.161	22.3
r3	-320.73	-320.36	-318.24	-313.02	-304.68	21.743	21.884	22.026	22.17	22.3
r4	-309.06	-308.71	-306.74	-301.84	-294.01	21.765	21.902	22.04	22.181	22.3
r5	-298.48	-298.16	-296.31	-291.71	-284.33	21.773	21.906	22.041	22.179	22.3
r79	-9.8725	-9.8615	-9.7889	-9.6008	-9.2728	2.5394	2.5501	2.5602	2.5696	2.57
r80	-8.8311	-8.8201	-8.7475	-8.5594	-8.2319	2.3039	2.3121	2.3198	2.327	2.33
r81	-7.5651	-7.5542	-7.4816	-7.2935	-6.9665	2.0068	2.0124	2.0176	2.0226	2.02
r82	-5.8961	-5.8851	-5.8126	-5.6245	-5.2979	1.5958	1.5989	1.6018	1.6046	1.60
r83	-3.518	-3.507	-3.4345	-3.2464	-2.9207	0.97904	0.98004	0.98097	0.98185	0.982

-315.64 -312.48 -305.65

-303.83 -303.83 -303.52 -301.32 -294.84 21.628 21.769 21.913

22.052

22.06

22.13

22.13

21.61 21.755 21.903

Differences between Checks in Expected Value and Expected Consumption

```
mn_V_U_gain_check = ev19_jaeemk_check2 - ev19_jaeemk_check0;
mn_MPC_U_gain_share_check = (ec19_jaeemk_check2 - ec19_jaeemk_check0)./(welf_checks*mp_params(
```

Param Results Define Frames

-315.98

r2

r3

-315.98

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = 18:99;
agrid = mp_params('agrid')';
eta_H_grid = mp_params('eta_H_grid')';
eta_S_grid = mp_params('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'wz
edu_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_params('n_kidsgrid'))';
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'eta', 1:length(eta_H_grid)});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids grid});
```

Analyze Difference in V and C with Check

The difference between V and V with Check, marginal utility gain given the check.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'eastoutside';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('it_legend_select') = 21; % how many shock legends to show
mp_support_graph('cl_colors') = 'jet';
```

MEAN(MN_V_GAIN_CHECK(A,Z))

Tabulate value and policies along savings and shocks:

```
% Set
ar_permute = [1,4,5,6,3,2];
% Value Function
st_title = ['MEAN(MN_V_U_GAIN_CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str(r
tb_az_v = ff_summ_nd_array(st_title, mn_v_U_gain_check, true, ["mean"], 4, 1, cl_mp_datasetdesd
savings
                                 mean_eta_2
   group
                      mean_eta_1
                                             mean_eta_3
                                                        mean_eta_4
                                                                    mean_eta_5
                                                                               mean_eta_6
                                                                                           mean_
    1
                        0.51002
                                    0.47311
                                               0.43235
                                                           0.39151
                                                                      0.35308
                                                                                  0.31813
                                                                                             0.
          0.00051498
    2
                        0.51002
                                    0.47311
                                               0.43235
                                                          0.39149
                                                                      0.35304
                                                                                  0.31808
                                                                                             0.
    3
           0.0041199
                        0.50903
                                    0.47115
                                               0.42958
                                                          0.38871
                                                                      0.35063
                                                                                  0.31612
                                                                                             0.
    4
            0.013905
                       0.43877
                                    0.4092
                                               0.37682
                                                          0.34423
                                                                      0.31326
                                                                                  0.2847
                                                                                             0.
                                               0.3198
    5
            0.032959
                                                          0.29483
                        0.36701
                                    0.34448
                                                                      0.2708
                                                                                  0.2483
                                                                                             0
            0.064373
                                    0.28888
                                               0.27048
                                                           0.25156
    6
                        0.3056
                                                                      0.23296
                                                                                  0.21526
                                                                                             0.
% Consumption
st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 4, 1, cl_mp_date
    MEAN(MN MDC II GATN CHECK(A 7))
```

XXX	group	_MPC_U_GAIN_C savings	:HECK(A,Z)), we mean_eta_1	mean_eta_2	TR=0.0017225 mean_eta_3	mean_eta_4	mean_eta_5	mean_eta_6	mean
	1	0	0.79858	0.79639	0.79456	0.79339	0.79289	0.79281	0.
	2	0.00051498	0.79858	0.79639	0.79456	0.79338	0.79288	0.7928	0.7
	3	0.0041199	0.79747	0.79444	0.79173	0.79014	0.78955	0.78958	0.7
	4	0.013905	0.69033	0.68665	0.68413	0.68242	0.6814	0.68076	0.6
	5	0.032959	0.60901	0.60566	0.60319	0.602	0.60204	0.60284	0.
	6	0.064373	0.53062	0.52872	0.52759	0.52722	0.52749	0.52815	0.5

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR='
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_v{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Consumption (*MPC: Share of Check Consumed*):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR=' nump_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Analyze Marginal Value and MPC over Y(a,eta), Conditional On Kids, Marry, Age, Education

Income is generated by savings and shocks, what are the income levels generated by all the shock and savings points conditional on kids, marital status, age and educational levels. Plot on the Y axis MPC, and plot on the X axis income levels, use colors to first distinguish between different a levels, then use colors to distinguish between different eta levels.

Set Up date, Select Age 37vn

, unmarried, no kids, lower education:

```
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
% 38 year old, unmarried, no kids, lower educated
```

```
% Only Household Head Shock Matters so select up to 'n_eta_H_grid'
mn_total_inc_jemk = total_inc_VFI(19,:,1:mp_params('n_eta_H_grid'),1,1,1);
mn_V_W_gain_check_use = ev19_jaeemk_check2 - ev19_jaeemk_check0;
mn_C_W_gain_check_use = ec19_jaeemk_check2 - ec19_jaeemk_check0;
```

Select Age, Education, Marital, Kids Count:s

```
% Selections
it age = 21; % +18
it_marital = 1; % 1 = unmarried
it kids = 1; % 1 = kids is zero
it educ = 1; % 1 = lower education
% Select: NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
mn C W gain check jemk = mn C W gain check use(it age, :, 1:mp params('n eta H grid'), it educ.
mn V W gain check jemk = mn V W gain check use(it age, :, 1:mp params('n eta H grid'), it educ,
% Reshape, so shock is the first dim, a is the second
mt total inc jemk = permute(mn total inc jemk,[3,2,1]);
mt C W gain check jemk = permute(mn C W gain check jemk,[3,2,1]);
mt_C_W_gain_check_jemk(mt_C_W_gain_check_jemk<=1e-10) = 1e-10;</pre>
mt V W gain check jemk = permute(mn V W gain check jemk,[3,2,1]);
mt_V_W_gain_check_jemk(mt_V_W_gain_check_jemk<=1e-10) = 1e-10;</pre>
% Generate meshed a and shock grid
[mt_eta_H, mt_a] = ndgrid(eta_H_grid(1:mp_params('n_eta_H_grid')), agrid);
```

Marginal Value Gains, Color as Shock, Conditional on Age, Marital, Kids, and Education

How do shocks and a impact marginal value. First plot one asset level, variation comes only from increasingly higher shocks:

```
figure();
it_a = 1;
scatter((mt_total_inc_jemk(:,it_a)), (mt_V_W_gain_check_jemk(:,it_a)), 100);
title({'MN\_V\_W\_GAIN\_CHECK(Y(A, eta)), Lowest A, J38M0E0K0', ...
    'Each Circle is A Different Shock Level'});
xlabel('Y(a,eta) = Spouse + Household head Income Joint');
ylabel('MN\_V\_W\_GAIN\_CHECK(A, eta)');
grid on;
grid minor;
```


Plot all asset levels:

```
figure();
scatter((mt_total_inc_jemk(:)), (mt_V_W_gain_check_jemk(:)), 100, mt_a(:));
```



```
figure();
scatter((mt_total_inc_jemk(:)), log(mt_V_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_V\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('log of (MN\_V\_W\_GAIN\_CHECK(EM,J))');
xlim([0,7]);
grid on;
grid minor;
```


Marginal Consumption Gains, Color as Shock, Conditional on Age, Marital, Kids, and Education

How do shocks and a impact marginal value. First plot one asset level, variation comes only from increasingly higher shocks:

Plot all asset levels:

```
figure();
scatter((mt_total_inc_jemk(:)), (mt_C_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_C\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('MN\_C\_W\_GAIN\_CHECK(EM,J)');
grid on;
grid minor;
```



```
figure();
scatter(log(mt_total_inc_jemk(:)), log(mt_C_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_C\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
```

```
'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('log of income(a,eps)');
ylabel('log of (MN\_V\_W\_GAIN\_CHECK(EM,J))');
grid on;
grid minor;
```


Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
% Value Function
```

st_title = ['MEAN(MN_V_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2str(
tb_az_v = ff_summ_nd_array(st_title, mn_V_U_gain_check, true, ["mean"], 3, 1, cl_mp_datasetdesc

group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_2
1	1	0	0.031641	0.030484	0.02834	0.026038	0.02411	0.022484
2	2	0	0.043088	0.041562	0.038594	0.035346	0.032616	0.030302
3	3	0	0.050052	0.048552	0.04484	0.041129	0.038009	0.035365
4	4	0	0.056653	0.055085	0.050837	0.046658	0.043144	0.040164
5	5	0	0.061929	0.06035	0.055674	0.051173	0.04739	0.044186
6	1	1	0.0059451	0.0055031	0.0050109	0.0045637	0.0041817	0.0038582
7	2	1	0.0083276	0.0077158	0.0070125	0.0063646	0.0058204	0.0053596
8	3	1	0.0099952	0.0092796	0.0084495	0.0076771	0.0070251	0.0064706
9	4	1	0.012363	0.0115	0.010491	0.0095402	0.0087368	0.0080453
10	5	1	0.015311	0.014353	0.013136	0.011989	0.011016	0.010187

% Consumption Function

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 3, 1, cl_mp_dat

xxx MEAN((MN_MPC_U_	_GAIN_CHEC	CK(KM,J)), welf_	_checks=2, TR=0.	.0017225 xxxxx	xxxxxxxxxxxxxx	<xxxxx< th=""><th></th></xxxxx<>	
group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
1	1	0	0.056223	0.069417	0.075469	0.073238	0.071407	0.069388
2	2	0	0.065756	0.079137	0.086795	0.084309	0.082576	0.080501
3	3	0	0.074976	0.0915	0.097876	0.095212	0.092901	0.090654
4	4	0	0.080849	0.097766	0.10385	0.10096	0.098266	0.095837
5	5	0	0.086722	0.10427	0.1095	0.10587	0.10288	0.10028
6	1	1	0.076254	0.076512	0.076532	0.075066	0.074001	0.071748
7	2	1	0.078384	0.08099	0.082	0.080237	0.078625	0.07747
8	3	1	0.081685	0.086418	0.087477	0.086713	0.086059	0.084174
9	4	1	0.084587	0.091629	0.092233	0.091036	0.089321	0.087109
10	5	1	0.094144	0.10366	0.10288	0.10024	0.099154	0.096111

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(EM,J)), MEAN(AP(EM,J)), MEAN(C(EM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,6,1,4,5];
% Value Function
st_title = ['MEAN(MN_V_U_GAIN_CHECK(EM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2str(
tb_az_v = ff_summ_nd_array(st_title, mn_v_u_gain_check, true, ["mean"], 3, 1, cl_mp_datasetdeso
group
         edu
              marry
                     mean_age_18
                               mean_age_19
                                          mean_age_20
                                                      mean_age_21
                                                                 mean_age_22
                                                                            mean_age_23
                                                                             0.039858
    1
          0
                0
                     0.050402
                                 0.049194
                                            0.046825
                                                        0.04423
                                                                  0.041921
                                                      0.035907
    2
          1
                0
                     0.046943
                                 0.045218
                                           0.040488
                                                                  0.032187
                                                                             0.029142
                                0.010664
                                                      0.0091158
    3
                1
                     0.011395
                                           0.0098666
                                                                 0.0084651
                                                                            0.0078963
                                0.0086772
    4
          1
                1
                     0.009382
                                           0.0077734
                                                      0.0069379
                                                                 0.0062467
                                                                            0.0056721
% Consumption
st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(EM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 3, 1, cl_mp_date
mean age 23
```

group	eau	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
1	0	0	0.063628	0.073179	0.078161	0.077574	0.077065	0.076591
2	1	0	0.082182	0.10366	0.11123	0.10627	0.10215	0.098072
3	0	1	0.075603	0.077333	0.078368	0.078269	0.078227	0.077206
4	1	1	0.090419	0.098351	0.098081	0.09505	0.092637	0.089439

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


