Sensing Space

Experimental System

Proprioceptive Sensing

Sense the environment with internal sensors

Pose Map

Simple map, just sensor data and poses in the environment

Defining Position

Defining Pose and Direction

Orientation and coordinate frame on articulated robot

Motion Models

Estimating travel of articulated robot

Environmental Landmarks

Finding Landmarks

Landmark features to track environment, difficult using only proprioceptive sensing

Corner Examples and Results

Corner features extracted from posture image, much difficulties

Wall Detection

Detect and measure the wall, time-consuming and sparse.

Pipe Shape, Macro Feature

Use general shape of environment, can be approximated with sparse data

Macro Feature Extraction

postureimage->alpha shape->medial axis

Different Macro Features

1) anchor points spline, 2) polygon walls, 3) medial axis

Pose-Based Mapping

Inter-Pose Correction

Correct transform between poses by ICP on medial axis

Paired Pose Correction

Same, ICP on medial axis between forward-backward probe pairs

Constraint Mapping

Show map using simple pose constraints between poses. Unclear how to solve data association problem

Aggregate Pose Mapping

Union of Posture Images

Global medial axis from union of posture images

Mapping with Junctions

Junctions

Breaking off from main medial axis indicates junction. Junctions only partially observable.

Shoot Map Representation

Each shoot is path graph, with two leaves. Except for root, all shoots have origin from a parent shoot at the branch point

Generating Shoots

Basic algorithm to generate medial axis of each shoot set, and cut the medial axis to create the shoots.

Detecting branch

Algorithm to detect a divergence of a pose from a shoot and deciding there is a branch.

Localizing on Shoot Map

Splicing shoots together, performing ICP on splices. Take best guess.

Curve segment algorithms

isOverlapped(), getOrientation(), getContiguity(), etc.

Probabilistic Mapping

Space of Possibilities

Poses, Branches, Branch Locations. Some decisions can lead to irrevocable consequences. Replicated shoots, circular cases.

Pose Particle Filter

Population of pose hypotheses, localized, evaluated, resampled.

Pose+BranchLoc Particles

Pose + Small grid of branch locations. Evaluated by overlapCost of full medial axis of child on parent.

Branch Decision

Shoot map for each go/nogo branch decision. Eliminate options based on degenerate conditions.

Appendix: Control and Locomotion

Control Methodology

Behaviors