PQC Function Evaluation

Carnegie Vacation Scholarship

David Amorim

Week 4 (22/07/2024 - 26/07/2024)

Aims for the Week

The following aims were set at the last meeting (22/07/2024):

1. Change Input Layer Structure

Improve the connectivity of input layers. Each input qubit should ideally control each target qubit at some point in the network.

2. Fix Parameters

Add the option to keep parameters fixed for each type of network layer.

3. Improve Loss Function

Develop a distance measure taking into account digital encoding. Either incorporate this into weights for an existing loss function or define a new loss function on this basis.

Glossary

Acronym	Meaning
CL	convolutional layer
AA-CL	all-to-all convolutional layer
NN-CL	neighbour-to-neighbour convolutional layer
IL	input layer
SAM	sign-adjusted mismatch

Table 1: Acronyms used in the following.

Variable	Meaning
n	input register size
m	target register size
L	number of network layers
Ψ_{H23}	phase function from Hayes 2023

Table 2: Variables used in the following.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ 夕久○

Table of Contents

- Changing Input Layer Structure
- Pixing Parameters
- Improving the Loss Function
- Mext Steps

David Amorim PQC Function Evaluation 29/07/2024 4/29

- Previously, the jth input qubit controlled an operation on the jth target qubit (with wrap-around for n>m)
- An optional shift parameter, s, has now been added so that the jth input qubit controls an operation on the j+sth target qubit
- This shift parameter is incremented for each successive IL
- The QCNN is padded with additional ILs to ensure that the number of ILs is $\geq m$
- Thus, each input qubit now controls an operation on each target qubit at some point in the QCNN
- Note that ILs still alternate between control states 0 and 1

Figure 1: Effects of shifted ILs for $\Psi(f) \sim f$ and m=3 (L=6, 600 epochs, SAM)

Figure 2: Effects of shifted ILs for $\Psi(f)\sim f^2$ and m=3 (L=6, 600 epochs, SAM)

6/29

Figure 3: Effects of shifted ILs for $\Psi(f)\sim f$ and m=4 (L=6, 600 epochs, SAM)

Figure 4: Effects of shifted ILs for $\Psi(f)\sim f^2$ and m=4 (L=6, 600 epochs, SAM)

7 / 29

- The data for 'no shifts' was obtained by setting s=0 for all ILs instead of incrementing s
- This should be equivalent to last week's circuit structure
- However, the 'no shifts' results are significantly worse than the results shown last week (???)
- Thus, the improvements due to the new IL structure are somewhat exaggerated
- Nonetheless, increased IL connectivity clearly leads to improved performance

Figure 5: Effects of shifted ILs for $\Psi_{\rm H23}$ and m=3 (L=6, 600 epochs, SAM)

Table of Contents

- Changing Input Layer Structure
- 2 Fixing Parameters
- 3 Improving the Loss Function
- Mext Steps

David Amorim PQC Function Evaluation 29/07/2024 9/29

Fixing Parameters

- Implemented the option to fix parameters for each layer type
- This means that each instance of a layer type (IL, AA-CL, NN-CL) uses the same set of parameters
- \bullet This significantly reduces the number of trainable parameters at large L
- Surprisingly, reducing the parameter space produces no noticeable speed-up (so-called qiskit primitives, i.e. the sampler, take up roughly 95% of the computational time)

David Amorim PQC Function Evaluation 29/07/2024 10/29

Fixing Parameters

Figure 6: Effects of fixing parameters ILs for $\Psi(f) \sim f$ and m=4 (L=6, 600 epochs, SAM)

Figure 7: Effects of fixing parameters for $\Psi(f)\sim f^2$ and m=4 (L=6, 600 epochs, SAM)

Fixing Parameters

- Legend for the plots on the previous slide:
 - 'none' : no parameters fixed
 - 'CL': only CL parameters fixed
 - 'IL': only IL parameters fixed
 - 'both': all parameters fixed
- Evidently, keeping parameters fixed leads to (slightly, for 'CL', or drastically, for 'IL' and 'both') worse performance
- This is likely due to a reduction of the search space
- Note that 'IL' as well as 'both' lead to incomplete phase extraction¹
 and hence somewhat meaningless results
- Thus, especially taking into account the equivalent computational times, not keeping parameters fixed yields better results
- These results suggest a particular importance of ILs compared to CLs

12/29

Table of Contents

- Changing Input Layer Structure
- Pixing Parameters
- 3 Improving the Loss Function
- Mext Steps

David Amorim PQC Function Evaluation 29/07/2024 13/29

Preliminary Definitions

- Consider a computational basis state, $|k\rangle$, of the combined input-register-target-register system
- The state $|k\rangle$ is associated with a bit string $k = \{0,1\}^{n+m}$
- Denote by $[k]_n$ and $[k]_m$ the bit strings of length n and m, respectively, associated with each of the registers and write their concatenation as

$$k \equiv [k]_n \diamond [k]_m \tag{1}$$

A general state of the two-register system is then written as

$$|z\rangle = \sum_{k=0}^{2^{n+m}-1} z_k |k\rangle \tag{2}$$

and referred to via its coefficients z_k

14 / 29

David Amorim PQC Function Evaluation 29/07/2024

Preliminary Definitions

When training in superposition, the desired state of the system is

$$|y\rangle = \sum_{j=0}^{2^{n}-1} \frac{1}{\sqrt{2^{n}}} |j\rangle_{i} |\Psi(j)\rangle_{t},$$
 (3)

where the subscripts i and t indicate basis states of the input and target registers, respectively

ullet This state |y
angle can be written in terms of the combined basis $\{|k
angle\}$ via

$$y_k = \begin{cases} \frac{1}{\sqrt{2^n}} & \text{if } k = [k]_n \diamond \Psi([k]_n) \\ 0 & \text{else} \end{cases}$$
 (4)

• Further denote the output state produced by the QCNN by $|x\rangle$, with associated coefficients x_k

◆ロト ◆部 ▶ ◆ 恵 ▶ ◆ 恵 ◆ 夕 Q G

15 / 29

SAM and Beyond

Recall the definition of SAM:

$$\mathsf{SAM}(|x\rangle, |y\rangle) = \left|1 - \sum_{k} x_{k} y_{k}\right| \tag{5}$$

By construction, this is closely related to the mismatch

$$\mathsf{M}(|x\rangle, |y\rangle) = 1 - \left| \sum_{k} x_{k} y_{k} \right| \tag{6}$$

• While effective, SAM's fundamental flaw is that it does not directly take into account the amplitudes x_k for k where $y_k=0$ (i.e. where $[k]_m \neq \Psi([k]_n)$

David Amorim PQC Function Evaluation 29/07/2024 16/29

SAM and Beyond

• Consider k=a and k=b with $[k]_m \neq \Psi([k]_n)$ for both and

$$\left| [a]_m - \Psi([a]_n) \right| \ge \left| [b]_m - \Psi([b]_n) \right| \tag{7}$$

- To improve performance, the loss function should punish a non-zero x_a more than a non-zero x_b which is not the case for SAM
- This could be achieved via a weighted mismatch,

$$WIM(|x\rangle, |y\rangle) = \left|1 - \sum_{k} \tilde{w}_{k} x_{k} y_{k}\right|, \tag{8}$$

where $ilde{w}_k \in \mathbb{R}_+$ are appropriate weights

◆ロト ◆個ト ◆ 差ト ◆ 差 ・ 釣 へ ○

David Amorim PQC Function Evaluation 29/07/2024 17 / 29

SAM and Beyond

It was discussed at the last meeting to base the weights on

$$w_k = \sum_{\substack{l=0, \\ l \neq [k]_m}}^{2^m - 1} \left| x_{[k]_n \diamond l} \right| \left| l - \Psi([k]_n) \right|, \tag{9}$$

with the $ilde{w}_k$ obtained from the w_k via normalisation and smoothing

- Implementing this proved to be ineffective, with no improvement on SAM (see later)
- This raises broader questions about the feasibility of WIM

David Amorim PQC Function Evaluation 29/07/2024 18/29

The Limits of WIM

- SAM is effective as it learns to maximise the x_k for k with $y_k \neq 0$ without regard for the remaining x_k
- It effectively optimises over a reduced set of states
- This is, presumably, why it outperforms more global loss functions, which directly take into account all coefficients, like L₁ loss
- Thus, it seems that SAM's 'fundamental flaw', of disregarding most x_k , is really the basis of its success
- Adding weights to SAM (WIM) likely is insufficient to alter its fundamental dynamic (or will alter it detrimentally)
- Therefore, WIM will be abandoned for the foreseeable future

David Amorim PQC Function Evaluation 29/07/2024 19/29

Introducing WILL

- To improve on SAM, it could be beneficial to return to a loss function which more directly takes into account all x_k (e.g. L₁ loss)
- More generally, define L_p loss as

$$\mathsf{LL}_{\mathsf{p}}(|x\rangle, |y\rangle) = \left(\sum_{k} |x_{k} - y_{k}|^{p}\right)^{1/p} \tag{10}$$

- As discussed, computational basis states are not equidistant for phase encoding: their distance depends on the value they encode on the input and target registers
- A weighted L_p loss (WILL) can factor in an appropriate distance measure for the state space:

$$\mathsf{WILL}_{\mathsf{p},\mathsf{q}} = \left(\sum_{k} \left| x_k - y_k \right|^p \left| [k]_m - \Psi([k]_n) \right|^q \right)^{1/p} \tag{11}$$

David Amorim PQC Function Evaluation 29/07/2024 20/29

Loss Function Metrics

- The following metrics are useful when testing and comparing loss functions:
 - Let M_i be the mismatch between $|j\rangle |\Psi(j)\rangle$ and $\hat{Q}_{\Psi} |j\rangle |0\rangle$
 - Then define

$$\mu \equiv \mathsf{Mean}(\mathsf{M}_j) \tag{12}$$

$$\sigma \equiv \mathsf{STDEV}(\mathsf{M}_j) \tag{13}$$

- Consider additional figures of merit to explore the link between mismatch and successful phase extraction:
 - Define the error on the normalisation post phase extraction:

$$\epsilon \equiv 1 - |\langle \psi | \psi \rangle_{\text{final}}|^2 \tag{14}$$

• Define the mean absolute error on the extracted phase function, $\dot{\Psi}$, compared to the target function, Ψ :

$$\chi \equiv \mathsf{Mean}(|\tilde{\Psi}(j) - \Psi(j)|) \tag{15}$$

• Finally define the super-metric

$$\Omega \equiv (\mu + \sigma + \epsilon + \chi)^{-1} \tag{16}$$

21 / 29

David Amorim PQC Function Evaluation 29/07/2024

Testing WILL

Figure 8: Comparing Ω for various p, q (L=6, m=3, 600 epochs, $\Psi(f) \sim f$)

Figure 9: Comparing Ω for various p, q (L=6, m=3, 600 epochs, $\Psi(f)\sim f^2$)

Testing WILL

These tests already reveal WILL's subpar performance

	$\Psi(f) \sim f$	$\Psi(f) \sim f^2$	Ψ_{H23}
(p,q)	(0.75, 1.50)	(0.75, 2.50)	(0.5, 1.50)
μ	3.0e-1	4.7e-1	7.1e-2
σ	1.8e-2	1.5e-1	2.1e-1
ϵ	1.9e-1	3.8e-1	2.7e-2
χ	3.9e-1	6.8e-1	7.0e-2
Ω	1.11	0.60	2.63

Table 3: WILL metrics for different Ψ using the best identified p,q combination ($L=6,\ m=4,\ 600$ epochs)

David Amorim PQC Function Evaluation 29/07/2024 23/29

Comparing SAM, WIM, and WILL

	SAM	WIM	WILL
μ	3.4e-2	6.0e-2	3.0e-1
σ	1.4e-1	1.1e-1	1.7e-2
ϵ	1.9e-2	9.2e-2	1.9e-1
χ	3.2e-2	5.1e-2	3.9e-1
Ω	4.46	3.19	1.11

Table 4: Comparing loss function metrics for $\Psi(f) \sim f$ ($L=6,\ m=4,\ 600$ epochs)

Figure 10: Comparing extracted phase functions for $\Psi(f)\sim f$ ($L=6,\ m=4$, 600 epochs)

24 / 29

David Amorim PQC Function Evaluation 29/07/2024

Comparing SAM, WIM, and WILL

	SAM	WIM	WILL
μ	1.9e-1	2.3e-1	4.7e-1
σ	1.2e-1	1.0e-1	1.5e-1
ϵ	2.2e-1	4.2e-1	3.8e-1
χ	1.9e-1	2.0e-1	6.8e-1
Ω	1.39	1.05	0.60

Table 5: Comparing loss function metrics for $\Psi(f)\sim f^2$ ($L=6,\ m=4,\ 600$ epochs)

Figure 11: Comparing extracted phase functions for $\Psi(f) \sim f^2$ (L=6, m=4, 600 epochs)

Comparing SAM, WIM, and WILL

	SAM	WIM	WILL
μ	6.8e-2	8.4e-2	7.1e-2
σ	1.8e-1	1.2e-1	2.1e-1
ϵ	4.5e-2	1.8e-1	2.7e-2
χ	7.4e-2	1.0e-1	7.0e-2
Ω	2.75	2.07	2.63

Table 6: Comparing loss function metrics for $\Psi_{\rm H23}$ ($L=6,\ m=4,\ 600$ epochs)

Figure 12: Comparing extracted phase functions for $\Psi_{\rm H23}$ ($L=6,\ m=4,\ 600$ epochs)

Loss Function Conclusion

...attempt to construct a wavefunction that improves upon SAM failed... in the process developed formalisation which makes discussion more rigorous and could be helpful for future loss function design...for now: no more ideas on how to improve Also identified 5 key metrics for QCNN performance in general $(\mu,\sigma,\chi,\epsilon,\Omega)$

AT THIS POINT MOSTLY WINDOW DRESSING...

ALSO CALCULATE METRICS FOR LAYER STRUCTURE AND FIXED PARAMETERS??!!

David Amorim PQC Function Evaluation 29/07/2024 27/29

Table of Contents

- Changing Input Layer Structure
- Pixing Parameters
- 3 Improving the Loss Function
- 4 Next Steps

David Amorim PQC Function Evaluation 29/07/2024 28/29

Next Steps

- formalise and investigate 'completeness of phase extraction'
- look into adding more ILs compared to CLs?

David Amorim PQC Function Evaluation 29/07/2024 29/29