Lecture 7 Text Entry on Mobile Devices -1

Xiaojun Bi
Stony Brook University
xiaojun@cs.stonybrook.edu

•Top Three Activities on Mobile Devices:

1) Emailing, 2) Social Networking, 3) Messaging

(www.time.com)

•18 to 24 Year Olds Average 110 Text Messages per Day

(www.time.com)

Challenges of Touchscreen Text Entry

Challenges of Touchscreen Text Entry

Determined by key boundaries, 50% of words are not correctly typed on phone.

Unsuccessful Auto-correction

Your mom and I are going to divorce next month what??? why! call me please? I wrote Disney and this phone changed it. We are going to Disney. DAMN YOUAUTOCORRECT.COM

Unsuccessful Auto-correction

Outline

Smart Touch Keyboard

Gesture Typing

Optimizing Keyboard Layouts

Outline

Smart Touch Keyboard

Gesture Typing

Optimizing Keyboard Layouts

Smart Touch Keyboard

n target candidates: $T=\{t_1,t_2,\dots,t_n\}$ t_1 t_2 t_3 ... touch point: s t_4 t_5 t_6

n target candidates: $T=\{t_1,t_2,\ldots,t_n\}$ t_1 t_2 t_3 ... touch point: s t_4 t_5 t_6

Determining the target:

$$t^* = \underset{t}{argmax} P(t|s)$$

$$n$$
 target candidates: $T=\{t_1,t_2,\ldots,t_n\}$ t_1 t_2 t_3 touch point: s t_4 t_5 t_6

Determining the target:

$$t^* = \underset{t}{argmax} P(t|s)$$

$$t^* = \mathop{argmax}_t P(t|s)$$
 From Bayes' rule,
$$P(t|s) = \frac{P(S|t)P(t)}{P(s)}$$

$$n$$
 target candidates: $T=\{t_1,t_2,\ldots,t_n\}$ t_1 t_2 t_3 ... touch point: s t_4 t_5 t_6

Determining the target:

$$t^* = \underset{t}{argmax} P(t|s)$$

From Bayes' rule, $P(t|s) = \frac{P(S|t)P(t)}{P(S)}$

$$P(s|t) = P(s|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} exp\{-\frac{1}{2\sigma^2}(s-\mu)^2\}$$

$$n$$
 target candidates: $T=\{t_1,t_2,\ldots,t_n\}$ t_1 t_2 t_3 ... touch point: s t_4 t_5 t_6

Determining the target:

$$t^* = \underset{t}{argmax} P(t|s)$$

From Bayes' rule, $P(t|s) = \frac{P(S|t)P(t)}{P(S)}$

$$P(s|t) = P(s|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} exp\{-\frac{1}{2\sigma^2}(s-\mu)^2\}$$

P(t): prior probability

P(w): probability from language model

P(w): probability from language model

$$P(s_1, s_2, ..., s_n | w)$$
?

Assume w consists of n letters c_1 , c_2 , ..., c_n

$$P(s_1, s_2, ..., s_n | w) = P(s_1, s_2, ..., s_n | c_1, c_2, ..., c_n)$$

= $P(s_1 | c_1) P(s_2 | c_2) ... P(s_n | c_n)$

$$P(s_i|c_i) = P(s_i|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} exp\{-\frac{1}{2\sigma^2}(s-\mu)^2\}$$

P(w): probability from language model

$$P(s_1, s_2, ..., s_n | w)$$
?

Outline

Smart Touch Keyboard

Gesture Typing

Optimizing Keyboard Layouts

Gesture Keyboard

Entering *nice*

Gesture Decoder

$$W^* = \underset{w}{\operatorname{argmax}} P(W|G) = \underset{w}{\operatorname{argmax}} \frac{P(G|W)P(W)}{P(G)}$$

$$W^* = \operatorname*{argmax}_{W} P(G|W)P(W)$$

How to calculate P(G|W)?

SHARK² Algorithm

Location Recognition Channel

$$x_{x} = \frac{1}{N} \sum_{i=1}^{N} ||u_{i} - t_{i}||_{2}$$

Shape Matching Channel

Gesture Keyboard

ShapeWriter

Swype

TouchPal

Bimanual Gesture Typing

Entering *nice*

Bimanual Gesture Typing

Entering interaction

Bimanual Gesture Typing

Perfect Templates

Perfect Templates

Perfect Templates

Bimanual Gesture Recognition

Bimanual Gesture Recognition

Entering *nice*

Unimanual Gesture

Bimanual Gesture

Finger Travel Distance of Unimaual and Bimanual Gesture Typing

Android Keyboard

