Homework 5 MAD4204

Carson Mulvey

- 1. Let $P = [2] \times [3]$, where we view [n] as a chain.
 - (a) Draw the poset J(P) and find its join irreducibles.
 - (b) Show that P and J(P) are ranked and find their rank generating functions.
 - (c) Find all the linear extensions of P (Bonus: do this for J(P) too!).
 - (d) Compute $\mu(\hat{0}, \hat{1})$ for J(P).

Solution.

(a) Denoting (a,b) as ab for shorthand, we see that J(P) =

with orange sets being its join irreducibles.

(b) Since P essentially creates a 1x2 block-walking grid, P has 3 maximal chains, all of length 3. In J(P), a maximal chain is a path from \emptyset to $[2] \times [3]$. Since an element is added at each step in the path, all maximal chains have length 6. Thus, both P and J(P) are ranked. In particular,

$$F_P(q) = 1 + 2q + 2q^2 + q^3,$$

 $F_{J(P)}(q) = 1 + q + 2q^2 + 2q^3 + 2q^4 + q^5 + q^6.$

(c) For any linear extension L, clearly L(11) = 1 and L(23) = 6. We can casework by $L(12) \in \{2,3\}$ to get all linear extensions as follows:

i	$L_i(11)$	$L_i(12)$	$L_i(21)$	$L_i(13)$	$L_i(22)$	$L_i(23)$
1	1	2	3	5	4	6
2	1	2	3	4	5	6
3	1	2	4	3	5	6
4	1	3	2	4	5	6
5	1	3	2	5	4	6

(d) We have $\mu(\hat{0}, \hat{0}) = 1$, so $\mu(\hat{0}, \{11\}) = -\mu(\hat{0}, \hat{0}) = -1$. Then

$$\begin{split} \mu(\hat{0}, \{21, 11\}) &= \mu(\hat{0}, \{12, 11\}) \\ &= \mu(\hat{0}, \hat{0}) + \mu(\hat{0}, \{11\}) \\ &= 0. \end{split}$$

Continuing this process recursively, we see that $\mu(\hat{0}, p) = 0$ for any $p \in P$ with rank greater than 1. Thus $\mu(\hat{0}, \hat{1}) = 0$.

2. Let L be a finite lattice. Show $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ for all $x, y, z \in L$ if and only if $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$ for all $x, y, z \in L$.

(A lattice satisfying either of these properties is called a distributive lattice.)

Solution. (\Longrightarrow) Assume that \land distributes over \lor . Then

$$(x \lor y) \land (x \lor z) = ((x \lor y) \land x) \lor ((x \lor y) \land z)$$

$$= x \lor ((x \lor y) \land z)$$

$$= x \lor (z \land (x \lor y))$$

$$= x \lor ((z \land x) \lor (z \land y))$$

$$= (x \lor (z \land x)) \lor (z \land y)$$

$$= x \lor (z \land y)$$

as desired.

(\iff) Now assume that \vee distributes over \wedge . We let \tilde{L} , the *dual* of L, be the lattice where $p \leq_L q \iff q \leq_{\tilde{L}} p$. We see that \tilde{L} is indeed a lattice, since $\vee_L = \wedge_{\tilde{L}}$ and $\wedge_L = \vee_{\tilde{L}}$. Using this duality, (\iff) for L is equivalent to (\implies) for \tilde{L} , so we are done.

3. Let L be a finite distributive lattice. For $t \in L$, let $K_t = \{p \in Irr(L) : p \leq t\}$. Show

$$t = \bigvee_{p \in K_t} p.$$

Solution. Since $p \leq t$ for all $p \in K_t$, by Proposition 16.29, $\bigvee_{p \in K_t} p \leq t$. However, since all of p are join irreducible, $t \leq \bigvee_{p \in K_t} p$. Thus

$$t = \bigvee_{p \in K_t} p.$$

- 4. In class we introduced Young's lattice Y, which is equivalent to the subposet of finite ideals in $J(\mathbb{N} \times \mathbb{N})$ or partitions ordered under containment of Young diagrams.
 - (a) Show Y is a distributive lattice and describe Irr(Y) (Hint: what are \land and \lor ?).
 - (b) Let $\lambda = \mu^1 \vee \cdots \vee \mu^k$ where $\{\mu^1, \dots, \mu^k\} \subset \operatorname{Irr}(Y)$ is an antichain. Give a combinatorial interpretation of k in terms of properties of λ .

Solution.

- (a) Because \wedge and \vee are the intersection and union of Young diagrams, respectively, and these operations are distributive, Y must be a distributive lattice. Since join irreducibles must cover at most one element, Irr(Y) will contain the empty set, as well as for any integer n > 0, partitions of singleton n, as well as the partition $\underbrace{1 + \dots + 1}_{n \text{ times}}$.
- (b) Since partitions of singleton n as described above contain one another, at most one can be chosen to form an antichain. Similarly, partitions of form $\underbrace{1+\dots+1}_{n \text{ times}}$ must contain one another, so at most one can be chosen for an antichain. Then k is at most 2, and λ takes form $n+\underbrace{1+\dots+1}_{m \text{ times}}$ for $n,m\in\mathbb{N}$.