Name:	

Due at the beginning of class on 4 February 2025

- Your answers should be neatly written and logically organized.
- You may collaborate on solving the problems, but the solutions you turn in should be your own.
- You may use any resource you find online (or elsewhere), but you must cite any resource you use.

Reading: Read §2.1 and §2.2 in [Rie14] or §B.1 in [HHR16].

- (0) Introduce yourself on Zulip. Include:
 - (a) Your name and pronouns
 - (b) Two pictures of yourself: a serious one and a silly one
 - (c) Your university
 - (d) Your mathematical interests
 - (e) A nonmathematical interest be specific!
 - "I like reading fantasy books" :(
 - "I just finished reading book 5 of the Stormlight Archive by Brandon Sanderson":)
- (1) A class of morphisms W in a category C satisfies the *two-out-of-three property* if given any two composable morphisms f and g, if any two of f, g, and gf are in W, then so is the third.
 - (a) Prove that the class of weak equivalences W in a homotopical category ${\mathfrak C}$ obeys the two-out-of-three property.
 - (b) Is the two-out-of-three property equivalent to the two-out-of-six property?
- (2) Let \mathcal{C} be any category equipped with a collection of morphisms \mathcal{W} . We say that \mathcal{W} is *saturated* if every morphism f in \mathcal{C} which becomes an isomorphism in $\mathcal{C}[\mathcal{W}^{-1}]$ is in \mathcal{W} . We say that a homotopical category is *saturated* if the class of weak equivalences is saturated (i.e. if f becomes an isomorphism in ho(\mathcal{C}), then $f \in \mathcal{W}$).
 - (a) Prove that if W is saturated, then W has the two-out-of-six property.
 - (b) Give an example of a homotopical category that is *not* saturated.

REFERENCES

- [HHR16] Michael Hill, Michael Hopkins, and Douglas Ravenel. On the nonexistence of elements of Kervaire invariant one. *Ann. of Math.* (2), 184(1):1–262, 2016.
- [Qui67] Daniel G. Quillen. *Homotopical algebra*, volume No. 43 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin-New York, 1967.
- [Rie14] Emily Riehl. *Categorical homotopy theory*, volume 24 of *New Mathematical Monographs*. Cambridge University Press, Cambridge, 2014.