Course Code	Course Name	Credit
CSC404	Operating System	03

Pr	Prerequisites: Data structures and Computer architecture		
_			
Co	ourse Objectives:		
1	1. To introduce basic concepts and functions of operating systems.		
2	2. To understand the concept of process, thread and resource management.		
3	3. To understand the concepts of process synchronization and deadlock.		
4	4. To understand various Memory, I/O and File management techniques.		
Co	ourse Outcome:		
1	Understand the objectives, functions and structure of OS		
2	Analyze the concept of process management and evaluate performance of processscheduling		
	algorithms.		
3	Understand and apply the concepts of synchronization and deadlocks		
4	Evaluate performance of Memory allocation and replacement policies		
5	Understand the concepts of file management.		
	Apply concepts of I/O management and analyze techniques of disk scheduling.		

Module	Detailed Content H	
1	Operating system Overview	
	1.1 Introduction, Objectives, Functions and Evolution System	of Operating
	1.2 Operating system structures: Layered, Monolithic and M.	Iicrokernel
	1.3 Linux Kernel, Shell and System Calls	
2	Process and Process Scheduling	
	2.1 Concept of a Process, Process States, Process Descrip Control Block.	ption, Process
	2.2 Uniprocessor Scheduling-Types: Preemptive and No scheduling algorithms (FCFS, SJF, SRTN, Priority, RR)	
	2.3 Threads: Definition and Types, Concept of Multithreading	ng
3	Process Synchronization and Deadlocks	
	3.1 Concurrency: Principles of Concurrency, Communication, Process Synchronization.	Inter-Process
	3.2 Mutual Exclusion: Requirements, Hardware Sup Operating System Support (Semaphores), Producer a problem.	
	3.3 Principles of Deadlock: Conditions and Resource, Alloc Deadlock Prevention, Deadlock Avoidance: Banker Deadlock Detection and Recovery, Dining Philosophers	's Algorithm,
4	Memory Management	
	4.1 Memory Management Requirements, Memory Partiti- Partitioning, Dynamic Partitioning, Memory Allocation Best-Fit, First Fit, Worst Fit, Paging and Segmentation,	on Strategies:
	4.2 Virtual Memory: Demand Paging, Page Replaceme FIFO, Optimal, LRU, Thrashing	nt Strategies:
5	File Management	4

	5.1	Overview, File Organization and Access, File Directories, File Sharing	
6		I/O management	4
	6.1	I/O devices, Organization of the I/O Function, Disk Organization, I/O Management and Disk Scheduling: FCFS, SSTF, SCAN, CSCAN, LOOK, C-LOOK.	

Tex	Textbooks:		
1	William Stallings, Operating System: Internals and Design Principles, Prentice Hall, 8 th Edition, 2014, ISBN-10: 0133805913 • ISBN-13: 9780133805918.		
2	Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, Operating System Concepts, John Wiley &Sons, Inc., 9 th Edition, 2016, ISBN 978-81-265-5427-0		
Refe	References:		
1	Achyut Godbole and Atul Kahate, Operating Systems, McGraw Hill Education, 3 rd Edition		
2	Andrew Tannenbaum, Operating System Design and Implementation, Pearson, 3 rd Edition.		
3	Maurice J. Bach, "Design of UNIX Operating System", PHI		
4	Sumitabha Das, "UNIX: Concepts and Applications", McGraw Hill, 4th Edition		

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1 Question paper will comprise of 6 questions, each carrying 20 marks.
 2 The students need to solve total 4 questions.
 3 Question No.1 will be compulsory and based on entire syllabus.
- 4 Remaining question (Q.2 to Q.6) will be selected from all the modules

Useful Links		
1	https://swayam.gov.in/nd1 noc19 cs50/preview	
2	https://nptel.ac.in/courses/117/106/117106113/	
3	https://www.classcentral.com/course/swayam-introduction-to-operating-systems-6559	

Course Code	Course Name	Credit	
CSL403	Operating System Lab	01	
Based on the entire syllabus of CSC403: Database Management System			

Prerequisite: Ki	Prerequisite: Knowledge on Operating system principles			
Lab Objectives:	Lab Objectives:			
0 1	cal experience with designing and implementing concepts of operating			
systems such	as system calls, CPU scheduling, process management, memory management,			
file systems ar	nd deadlock handling using C language in Linux environment.			
2 To familiarize	students with the architecture of Linux OS.			
3 To provide ne	cessary skills for developing and debugging programs in Linux environment.			
4 To learn progr	rammatically to implement simple operation system mechanisms			
Lab Outcomes:	At the end of the course, the students will be able to			
1 Demonstrate	basic Operating system Commands, Shell scripts, System Calls and API wrt			
Linux				
2 Implement va	rious process scheduling algorithms and evaluate their performance.			
3 Implement an	d analyze concepts of synchronization and deadlocks.			
4 Implement va	rious Memory Management techniques and evaluate their performance.			
5 Implement an	d analyze concepts of virtual memory.			
6 Demonstrate a	and analyze concepts of file management and I/O management techniques.			

Sugge	Suggested List of Experiments		
Sr.		Content	
No.			
1	Explore Linux Commands		
	1.1	Explore usage of basic Linux Commands and system calls for file, directory	
		and process management.	
		For eg: (mkdir, chdir, cat, ls, chown, chmod, chgrp, ps etc.	
		system calls: open, read, write, close, getpid, setpid, getuid, getgid, getegid,	
		geteuid. sort, grep, awk, etc.)	
2		Linux shell script	
	2.1	Write shell scripts to do the following:	
		a. Display OS version, release number, kernel version	
		b. Display top 10 processes in descending order	
		c. Display processes with highest memory usage.	
		d. Display current logged in user and log name.	
		Display current shell, home directory, operating system type, current path setting,	
		current working directory.	
3		Linux- API	
	3.1	Implement any one basic commands of linux like ls, cp, mv and others using	
4	1	kernel APIs.	
4	4.1	Linux- Process	
	4.1	a. Create a child process in Linux using the fork system call. From the child	
		process obtain the process ID of both child and parent by using getpid and	
		getppid system call.	
-		b. Explore wait and waitpid before termination of process.	
5		Process Management: Scheduling	

10.000000000000000000000000000000000000		
5.1	a. Write a program to demonstrate the concept of non-preemptive scheduling	
	algorithms.	
	b. Write a program to demonstrate the concept of preemptive scheduling	
	algorithms	
	Process Management: Synchronization	
6.1	a. Write a C program to implement solution of Producer consumer problem	
	through Semaphore	
	Process Management: Deadlock	
7.1	a. Write a program to demonstrate the concept of deadlock avoidance through	
	Banker's Algorithm	
	b. Write a program demonstrate the concept of Dining Philospher's Problem	
	Memory Management	
8.1	a. Write a program to demonstrate the concept of MVT and MFT memory	
	management techniques	
	b. Write a program to demonstrate the concept of dynamic partitioning placement	
	algorithms i.e. Best Fit, First Fit, Worst-Fit etc.	
	Memory Management: Virtual Memory	
9.1	a. Write a program to demonstrate the concept of demand paging for simulation	
	of Virtual Memory implementation	
	b. Write a program in C demonstrate the concept of page replacement policies for	
	handling page faults eg: FIFO, LRU etc.	
	File Management & I/O Management	
10.1	a. Write a C program to simulate File allocation strategies typically sequential,	
	indexed and linked files	
	b. Write a C program to simulate file organization of multi-level directory	
	structure.	
	c. Write a program in C to do disk scheduling - FCFS, SCAN, C-SCAN	
	6.1 7.1 8.1 9.1	

Te	erm Work:		
1	Term work should consist of 10 experiments covering all modules.		
2	Journal must include at least 2 assignments on content of theory and practical of "Database		
	Management System"		
3	The final certification and acceptance of term work ensures that satisfactory performance of		
	laboratory work and minimum passing marks in term work.		
4	Total 25 Marks (Experiments: 15-marks, Attendance Theory& Practical: 05-marks,		
	Assignments: 05-marks)		
0	Oral & Practical exam		
	Based on the entire syllabus of CSC405: Operating System.		