Recall that we say two sets S & T have the same condinality if If: S->T
1-1 & onto

Def: |S|=|T| if there exists of: S->T 1-1

Theorem (Schroeder Beronstein)
if IsI < |T| and |T| < |s| then |S| = |T|

want h: S -> T 1-1 & onto

last ancestor in S

we proved $0 \text{ f: } S_s \rightarrow T_s \text{ } 1-1 \text{ & onto}$ $0 \text{ g: } S_7 \rightarrow T_7 \text{ } 1-1 \text{ & onto}$ $0 \text{ f: } S_{\infty} \rightarrow T_{\infty} \text{ } 1-1 \text{ & onto}$

last ancestor is in $S=>(3,4)\subseteq Ss$

+ €ST => by induction can prove == == ST for any n>1 =>SE Ss

S= (0) ST= [2" n=1,2,3, ...) everything else is in Ss.

Now we can construct h The case h(s) = f(s) if $s \in S_s$ $f(s) \text{ if } s \in S_{\infty}$ $f(s) \text{ if } s \in S_{\tau}$ f(s) f(s)

In this case h(s)= g'(s) if $S = \frac{1}{2}n$

$$h(s) = \begin{cases} S & \text{if } S \neq \frac{1}{2^n} \\ \frac{1}{2^{n-1}} & \text{if } S = \frac{1}{2^n} \end{cases}$$

S=[0,1] T=[0,1]) if $S \neq \frac{1}{2^n}$
h is 1-1 let $S_1, S_2 \in S$ be different $S_1 \neq S_2$ (ase 1), both S_1, S_2 are not of the form $\frac{1}{2^n}$ Then $h(S_1) = S_1 \Rightarrow h(S_1) \neq h(S_2)$ $h(S_2) = S_2$	
Case 2	Si = In for some n
	$S_2 \neq \frac{1}{2m}$ for any m h(si)=h(S ₂)
	then $h(S_1) = \frac{1}{2^{n-1}} h(S_2) = S_2$
<u> </u>	
Case 3	$S_1 = \frac{1}{2^n} \qquad h(S_1) = \frac{1}{2^n}$
	$S_2 = \frac{1}{2^m} \qquad h(S_2) = \frac{1}{2^m}$
	2 - 2 - 1 (32) - 2 - 2 - 1
	n≠m