Orbital Architecture of Planetary Systems Formed by Giant Impacts

Eiichiro Kokubo

National Astronomical Observatory of Japan

Mari Isoe

Yuji Matsumoto

University of Tokyo

Chiba Institute of Technology

Exoplanets

Close-in Terrestrial Planets: $P \lesssim 100 \, \mathrm{d}$, $M \lesssim 30 M_{\oplus}$

Close-in Terrestrial Planets

Definition

- orbital period: $P \lesssim 100 \, \mathrm{d} \, (a \lesssim 0.4 \, \mathrm{AU} \, \mathrm{for} \, M_* = M_\odot)$
- mass: $M \lesssim 30 M_{\oplus}$

Properties

- \gtrsim 50 % stars independent of metallicity
- \simeq 70 % in multiple systems
- $M_1/M_{\rm tot} \simeq 0.3$ -0.4 (0.5)
- random P with slight excess around 3:2 and 2:1 MMRs
- small e and i ($e \leq 0.2, i \leq 0.05$) (~ 0.01 -0.1)
- orbital separation $b \simeq 15\text{-}30r_{\mathrm{H}}$ (r_{H} : the Hill radius) ($43r_{\mathrm{H}}$) (solar system terrestrial planets)

The Standard Formation Scenario

- **Act 1** Dust to planetesimals (gravitational instability/binary coagulation)
- Act 2 Planetesimals to protoplanets (runaway-oligarchic growth)
- **Act 3** Protoplanets to terrestrial planets (giant impacts)

Close-in TP Formation Scenarios

In-Situ Accretion

• Extension of the standard scenario to inner heavy disks (e.g., Raymond+ 2008; Montgomery & Laughlin 2009; Hansen & Murray 2012; Chiang & Laughlin 2013; Lee & Chiang 2016; Dawson+ 2016)

Accretion and then Migration

 Formation far out followed by inward migration due to gas (e.g., Lopez+ 2011; Kley & Nelson 2012; Rein 2012)

Migration and then Accretion

 Inward migration due to gas followed by giant impacts after gas dispersal

(e.g., Terquem & Papaloizou 2007; Kennedy & Kenyon 2008; Ogihara & Ida 2009; Ida & Lin 2010; Ogihara+ 2015)

Close-in Giant Impacts?

Goal

To clarify the final stage of terrestrial planet formation

Protoplanet System => Terrestrial Planet System

Number?

Orbit?

• Mass?

• Spin?

(EK+ 2006, EK & Ida 2007, EK & Genda 2010, Genda+ 2012, Genda+ 2015, Matsumoto & EK in prep., Oshino+ in prep., ...)

Strategy

N-body simulation of terrestrial planet formation from protoplanets

- systematically different initial conditions (not only solar system formation)
- statistical analysis with many runs

Self-Gravitating Particle Disk

Disk Properties

- many-body (particulate) system
- rotation
- self-gravity
- dissipation (collisions and accretion)

Planet Formation as Disk Evolution

- evolution of a dissipative self-gravitating particulate disk

Final Configuration?

N-Body Simulation

Model

- planet: uniform sphere
- disk: gas-free
- collision: perfect accretion

Integration Method

- Modified Hermite integrator for planetary dynamics (EK & Makino 2004)
- Phantom-GRAPE (Nitadori+ 2006)

Initial Conditions

Protoplanets formed by oligarchic growth (EK & Ida 2002)

Oligarchic Growth Model

planetesimals

protoplanets

Planetesimal Disk Model

$$\Sigma_{\text{solid}} = \Sigma_1 \left(\frac{a}{1 \,\text{AU}} \right)^{-\alpha} \,\text{gcm}^{-2}$$

standard disk: $\Sigma_1 \simeq 10$, $\alpha = 3/2$

Assumptions

- orbital separation $b \propto$ Hill radius: $r_{\rm H} = \left(\frac{2M}{3M_{\odot}}\right)^{1/3} a$
- no radial migration, 100% accretion efficiency

Isolation Mass of Protoplanets

$$M_{\rm iso} \simeq 0.16 \left(\frac{b}{10r_{\rm H}}\right)^{3/2} \left(\frac{\Sigma_1}{10}\right)^{3/2} \left(\frac{a}{1\,{\rm AU}}\right)^{(3/2)(2-\alpha)} M_{\oplus}$$

(EK & Ida 2002)

Initial Conditions

Planetesimal Disks

- surface density at 1 AU: $\Sigma_1 = 10, 30, 100$
- radial profile: $\alpha = 3/2, 2, 5/2$
- radial range: r = 0.05-0.15, 0.1-0.3, 0.2-0.6, 0.5-1.5 AU

$$\Sigma = \Sigma_1 \left(\frac{a}{1 \,\text{AU}}\right)^{-\alpha}, \, M_{\text{tot}} = \int_{r_{\text{in}}}^{r_{\text{out}}} \Sigma 2\pi a da$$

Protoplanets

- orbital separation: $b = 5, 10, 15r_{\rm H}$ ($r_{\rm H}$: the Hill radius)
- eccentricity and inclination: $\langle e^2 \rangle^{1/2} = 2 \langle i^2 \rangle^{1/2} = 0.0025 0.16$
- material density: $\rho = 3.0 \, \mathrm{gcm}^{-3}$

System Parameters

Mass Distribution

- most massive: $M_1/M_{\rm tot}$ (0.51)
- dispersion: σ_M/\bar{M} (0.85)

Orbital Structure

- mass-weighted orbital elements: $\langle a \rangle_M$, $\langle e \rangle_M$, $\langle i \rangle_M$ (0.90 AU, 0.022, 0.034)
- mean orbital separation: $\tilde{b}=b/r_{\rm H}$ (43)
- mean epicycle amplitude: $\tilde{e} = ea/r_{\rm H}$ (10)
- angular momentum deficit (AMD): (0.0018)

$$D = \frac{\sum_j M_j \sqrt{a_j} \left(1 - \sqrt{1 - e_j^2} \cos i_j\right)}{\sum_j M_j \sqrt{a_j}} \simeq \frac{\sum_j M_j (e_j^2 + i_j^2)/2}{\sum_j M_j} \text{ (Hill's approximation)}$$

(solar system terrestrial planets)

An Example Run for $a \sim 1 \, \mathrm{AU}$

Giant Impacts for $a \sim 1 \, \mathrm{AU}$

Planets for the Standard Disk

- disk: $\Sigma_1 = 10$, $\alpha = 3/2$, $b = 10r_{\rm H}$, $r_{\rm in} = 0.5\,{\rm AU}$, $r_{\rm out} = 1.5\,{\rm AU}$
- planets: 2 Earth-sized planets with 1 or 2 leftover protoplanets
 - mass: $\langle M_1/M_{\rm tot}\rangle \simeq 0.56$
 - orbit: $\langle \bar{b} \rangle \simeq 48 r_{\rm H}$, $e, i \simeq 0.1$ (dynamically hot loose system)

Mass Scaling Laws

• mass: $\langle M_1 \rangle, \langle M_2 \rangle \propto M_{\rm tot}$, $\langle M_2/M_1 \rangle \simeq 0.6$

(EK+ 2006; EK & Ida 2007; EK & Genda 2010; EK+ in prep.)

System Radius Dependence (1)

System Radius Dependence (2)

 $\Sigma_1 = 10$, $\alpha = 2$, $b = 10r_{\rm H}$, $\langle e^2 \rangle^{1/2} = 0.01$, r = 0.05 - 0.15, 0.1 - 0.3, 0.2 - 0.6, 0.5 - 1.5 AU

System Radius Dependence (3)

Close-in Giant Impacts

Key Parameter

• physical to Hill radius ratio: $\tilde{r}_{\rm p}=r_{\rm p}/r_{\rm H}=\left(\frac{9M_*}{4\pi\rho}\right)^{1/3}\left(\frac{1}{a}\right)$

Large \tilde{r}_{p} Effects

 relatively weak scattering and effective collisions → smaller e, less mobility → local accretion → dynamically cold compact comparable-mass system

Hill Radius

radius of the potential well of an orbiting body

$$r_{\rm H} = \left(\frac{M}{3M_*}\right)^{1/3} a$$

 M_* : central body mass, M: orbiting body mass, a: semimajor axis

Accretionary Evolution

 $\Sigma_1 = 10, \alpha = 3/2, r = 0.1$ -0.3 AU, $b = 10r_{\rm H}, \langle e^2 \rangle^{1/2} = 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08, 0.16$

N decreases with time by giant impacts

Orbital Evolution (1)

D converges on some range as \tilde{b} increases

Gravitational Relaxation ($D\uparrow$) \to Orbital Instability \to Collisions ($\tilde{b}\uparrow$) $\log t_{\rm inst} \simeq c_1 \tilde{b} + c_2$ (e.g., Chambers+ 1996, Yoshinaga, EK+ 1999)

Orbital Evolution (2)

 $\Sigma_1 = 10, \alpha = 3/2, r = 0.1$ -0.3 AU, $b = 10r_{\rm H}, \langle e^2 \rangle^{1/2} = 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08, 0.16$

D converges on some range as \tilde{b} increases

Gravitational Relaxation $(D \uparrow) \rightarrow$ Orbital Instability \rightarrow Collisions $(\tilde{b} \uparrow)$

$D_{\rm ini}$ -Dependence

 $\Sigma_1 = 10, \alpha = 3/2, r = 0.1 - 0.3 \,\text{AU}, b = 10 r_{\text{H}}, \langle e^2 \rangle^{1/2} = 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08, 0.16$

Minimum D_{fin} exists for systems formed by GIs!

$D_{\rm ini}$ -Dependence

 $\Sigma_1=10,\, \alpha=3/2,\, r=0.1$ -0.3 AU, $b=10r_{\rm H},\, \langle e^2\rangle^{1/2}=0.0025,\, 0.005,\, 0.01,\, 0.02,\, 0.04,\, 0.08,\, 0.16$ $\langle e\rangle_M$: filled, $\langle i\rangle_M$: open

i-damping is less effective for large $D_{\rm ini}$

Minimum System AMD

$D_{\rm ini} < D_{\rm min}$

- gravitational relaxation and collisions
- $D_{\rm fin} = D_{\rm min}$, $\langle i \rangle_M / \langle e \rangle_M \simeq 0.7$ (> equilibrium by gravitational relaxation)

$D_{\rm ini} > D_{\rm min}$

- collisions dominant
- $D_{\rm fin} < D_{\rm ini}$, $\langle i \rangle_M / \langle e \rangle_M \gtrsim 0.7$

Anisotropic Velocity Dispersion

 inclination damping is less effective than eccentricity damping (Matsumoto & EK in prep.)

Orbital Evolution (3)

 $\Sigma_1 = 10, \, \alpha = 2, \, b = 10r_{\rm H}, \, \langle e^2 \rangle^{1/2} = 0.01, \, r = 0.05 - 0.15, \, 0.1 - 0.3, \, 0.2 - 0.6, \, 0.5 - 1.5 \, {\rm AU}$

 $\tilde{r_{\mathrm{p}}}$ determines the final (\tilde{b},D)

$ilde{b}_{ ext{fin}} ext{-}D_{ ext{fin}}$ Relation

 $\Sigma_1 = 10$, 30, 100, $\alpha = 3/2-5/2$, $b = 5-15r_{\rm H}$, $r = 0.1-0.3, 0.2-0.6, 0.5-1.5 \,{\rm AU}$

 $\langle D_{\rm fin} \rangle$ increases with $\langle \tilde{b}_{\rm fin} \rangle$ (with decreasing $\tilde{r}_{\rm p}$)

$ilde{b}_{ ext{fin}} ext{-} ilde{e}_{ ext{fin}}$ Relation

 $\Sigma_1 = 10$, 30, 100, $\alpha = 3/2-5/2$, $b = 5-15r_{\rm H}$, $r = 0.05-0.15, 0.1-0.3, 0.2-0.6, 0.5-1.5 \,{\rm AU}$ ⟨ê fin 01 10 100 $\langle {\widetilde b}_{\sf fin}
angle$

 $\langle \tilde{e}_{\rm fin} \rangle$ increases with $\langle \tilde{b}_{\rm fin} \rangle$ (with decreasing $\tilde{r}_{\rm p}$) $\mathrm{d} \log \langle \tilde{e} \rangle / \mathrm{d} \log \langle \tilde{b} \rangle \simeq 2$

Summary

Close-in Giant Impacts

- large $\tilde{r}_{\mathrm{p}} = r_{\mathrm{p}}/r_{\mathrm{H}} \to \mathsf{cold}$ compact system
 - mass: comparable
 - orbit: $b \simeq 20\text{-}30r_{\mathrm{H}}$, $e, i \lesssim 0.04$ ($D \lesssim 0.001$), non-resonant (consistent with observations)

Orbital Architecture

- minimum D for systems formed by giant impacts
- $\tilde{r}_{\mathrm{p}}(a) \rightarrow \tilde{b}$, \tilde{e} ($\tilde{e} \propto \tilde{b}^2$)

Future Works

- comparison with the observation (Isoe+ in prep.)
- physical interpretation of the architecture: system instability timescale $t_{\text{inst}}(\tilde{b}, \tilde{e})$
- collisional orbital evolution (Matsumoto+ 2015; Matsumoto & EK in prep.)