RELAZIONE DI LABORATORIO

Oggetto:

Progettazione in base a vincoli del cliente e orientata all'affidabilità, di un convertitore corrente tensione.

Progetto:

La progettazione di questo apparato è stata vincolata dalle richieste dell' ipotetico committente, elencate come nel paragrafo seguente.

Richieste del committente:

- a) Stabilità in temperatura.
- b) Resistenza alle vibrazioni tipiche di un mezzo mobile.
- c) R = 98% a 26 000 h con T=30°C con GM (da MIL-HDBK-217: Ground Mobile).
- d) Specifiche funzionamento: convertitore corrente tensione da 4mA-20mA a 0,5V-2,5V.
- e) Ingombro minimo.
- f) Costo <=7 euro.

Custom Needs	Custom Preference	Tipo comp. Attivi	Tipo comp. Passivi	Tipo Interconn.
Stab. T (a)	4	4	2	1
Res. Vibr. (b)	5	2	2	4
Affidabile (c)	5	4	2	4
Preciso (d)	5	3	3	1
Ingombro (e)	2	3	1	3
	A I R ¹	67	45	55
	RIR ²	40,1%	26,9%	32,9%

Tabella 1: Relazione fra priorità di spesa e livelli di richiesta sulle specifiche.

GRADO DI INFLUENZA fra scelta della

parte e richiesta:

5- massima

GRADO DI RILEVANZA PER IL CLIENTE:

5- imprescindibile

1- nulla1- nulla2- lieve2- lieve3- media3- media4- elevata4- elevata

¹ Absolute Importance Rating.

² Relative Importance Rating.

OFD

Si procede a tracciare una particolare tabella detta "house of quality" essenzialmente per stabilire la priorità di scelta di ogni gruppo di componenti e si abbozza un primo schema del circuito, migliorandolo secondo i risultati della tabella.

Il metodo di strutturare la tabella è detto QFD (quality function deployement) ed è essenzialmente una metodica di analisi della relazione fra necessità del cliente e scelta dei requisiti di progetto.

Si articola come in figura 1,

FIG. 1

la forma ha determinato il nome di "house of quality".

- La prima colonna rappresenta i "whats" ossia le richieste, la "voce del cliente" anche dette "Custom Requirements", "Business Priorities" o semplicemente "Custom needs".
- La seconda colonna è costituita dal grado con cui il cliente preferisce una o l'altra richiesta, ed è detta "Costumer Preference".
- Le scelte del progetto ("hows") ovvero la "voce dell'azienda" si rappresenta con la riga delle "Technical Design Requirements", sotto di essa mettiamo una matrice detta "Intercorrelation Matrix" (in azzurro nla figura 1), i cui valori indicano il grado con cui ogni richiesta può essere condizionata da una determinata scelta progettuale fra quelle espresse nella suddetta riga.
- La matrice triangolare posta in posizione sovrastante è detta "Technical Correlation Matrix" o anche "roof" per la forma e l'analogia con "house of quality", rappresenta come l'agire su una scelta progettuale si traduca in un peggioramento/miglioramento delle caratteristiche di una altra scelta progettuale.

Questa ultima matrice triangolare è utile nei progetti dove le scelte tecniche abbiano valore quantitativo e siano molto intercorrelate come ad esempio nelle prime fasi di progettazione di una caldaia: fra la scelta del diametro del serbatoio e la scelta delle dimensioni e del tipo dello chassis.

Nel nostro caso la matrice di intercorrelazione fra le scelte di progetto è sempre nulla, infatti

le caratteristiche di un componente sono ovviamente indipendenti dalle caratteristiche di un altro, quindi non è riportata.

I QFD normalmente sono frutto di un "brain storming", per ogni fase di creazione del prodotto: marketing, progettazione, industrializzazione e produzione. Le scelte risultanti da una fase sono poste in ingresso alla successiva fino alla produzione.

Essendo la nostra scheda piuttosto semplice, il nostro caso il QFD consta di una unica fase che porta direttamente alla produzione.

Osservando il QFD in tab. 1.0 si nota che la scelta più importante come priorità è per i componenti attivi.

Abbiamo scelto LM741 che garantisce un buon compromesso fra le aspettative del cliente, tenuto conto anche dell'economicità.

Segue il tipo di interconnessione: scegliamo il circuito stampato con PTH saldato ad onda, perchè più affidabile delle connessioni in filo, scelta dettata dal QFD che mostra al secondo posto come priorità le interconnessioni.

PRIMA PROGETTAZIONE

Il circuito è stato reso definitivo scegliendo la configurazione a convertitore di corrente in modo da presentare in ingresso una bassissima impedenza e poter funzionare con qualsiasi sorgente reale (non ideale) di corrente.

Tale configurazione è invertente, quindi abbiamo inserito un secondo stadio a buffer invertente. La resistenza di conversione necessaria, da 125 Ω è realizzata con il parallelo di una (R1) da750 Ω ed una (R2) da 150 Ω (il parallelo reso necessario per la normalizzazione alle serie commerciali, avrà anche una incertezza minore).

Il buffer invertente ha un trimmer sulla resistenza ingresso-uscita per permettere una regolazione di precisione, compensando le rimanenti tolleranze della rete circuitale.

La simulazione e le prove sul prototipo hanno mostrato che non era necessaria una rete per compensare l'offset e la precisione sulle specifiche si attestava abbondantemente entro il 3%.

Figura 2 - Foto del prototipo.

BILL OF MATERIALS PROGETTO Parte Descrizione U1 LM741 plastic DIP U2 LM741 plastic DIP R1 750 Resistenza a film metallico; 1%; 0.25 W, R2 150 - Resistenza a film metallico; 1%; 0.25 W, R3 179k - Resistenza a film metallico; 1%; 0.25 W, R3 179k - Resistenza a film metallico; 1%; 0.25 W, R4 179k - Resistenza a film metallico; 1%; 0.25 W, R5 179k - Resistenza a film metallico; 1%; 0.25 W, R6 179k - Resistenza a film metallico; 1%; 0.25 W, R7 179k - Resistenza a film metallico; 1%; 0.25 W, R8 179k - Resistenza a film metallico; 1%; 0.25 W, R8 179k - Resistenza a film metallico; 1%; 0.25 W, R8 179k - Resistenza a film metallico; 1%; 0.25 W,						
Parte Descrizione	Prezzo					
U1 LM741 plastic DIP	0,350 eur					
U2 LM741 plastic DIP	0,350 eur					
R1 750 Resistenza a film metallico; 1%; 0.25 W,	0,047 eur					
R2 150 - Resistenza a film metallico; 1%; 0.25 W,	0,047 eur					
R3 179k - Resistenza a film metallico; 1%; 0.25 W,	0,047 eur					
R4 95.3k - Resistenza a film metallico; 1%; 0.25 W,	0,047 eur					
R5 10k- TRIM a film metallico; 1%; 0.25 W,	1,210 eur					
C1 100n ceramico multistrato 50 V	0,108 eur					
C2 100n ceramico multistrato 50 V	0,108 eur					
ALTRE PARTI BB PCB in vetronite 25 cm ²	1,25 eur					

TOTALE.....

..2,314 eur

CALCOLO DELLA AFFIDABILITA' (A MANO)

L'affidabilità della prima progettazione è stata calcolata prima per via analitica manuale e solo in seguito con l'ausilio di software (Relex).

Per la previsione dell'affidabilità ci siamo basati sul database MIL-HDBK-217F Notice 2. Con riferimento alla BOM di pag. 4 abbiamo calcolato i seguenti valori:

	λ FPMH	qtà
U1	0,0414	1
U2	0,0414	1
R2	0,1338	1
R1	0,0741	1
R3	0,0106	1
R4	0,0100	1
R5 trim	0,004318	1
C1	0,252000	1
C2	0,25200	1
Saldature	0,007616	32

DETTAGLI CALCOLO:

CONDIZIONI OPERATIVE

- Tipo di ambiente=GM;
- Ta= 30°C.

U1 e U2

$$\lambda_p = (C_1 \pi_T + C_2 \pi_E) \pi_O \pi_L = (0.01 \cdot 0.71 + 0.0034 \cdot 4.00) 2.00 \cdot 1.00 = 0.0414 FPMH$$

dalle sezioni 5.1 Notice 2 e 5.8, 5.9, 5.10 tenendo conto di:

- PLASTIC DIP --> Resistenza termica= 48,9 °C/W;
- potenza dissipata (nella condizione peggiorativa) = 0,400 W;
- Innalzamento di T = 19,6 °C --> 49,6 °C, prendiamo 50 °C nella tabella 5.13 --> π_t =0,71 ;
- Qualità commerciale: si sceglie 2 per interpolazione;

R1, R2, R3, R4

Le potenze e fattori di stress sulle varie resistenze sono:

su R1	$I_1 = 3,33 mA$	$P_1 = 8,333 mW$	S = 0.0333
su R2	$I_2 = 0.0166 A$	$P_2 = 0.0416 W$	$S = 2,773 \cdot 10^{-4}$
su R3	$I_3 = 0.025 mA$	$P_3 = 6.25 \cdot 10^{-5} W$	$S = 2,5 \cdot 10^{-4}$
su R4	$I_4 = 0.025 mA$	$P_4 = 5.9565 \cdot 10^{-5} W$	$S = 2.3826 \cdot 10^{-4}$

per ogni resistenza si calcola:

$$\lambda_{p} = \lambda_{b} \pi_{T} \pi_{P} \pi_{S} \pi_{Q} \pi_{E} = 0.0037 \cdot 1.1 \cdot (P_{diss})^{0.39} \cdot 0.71 \cdot \exp(\frac{1.1 \cdot P_{diss}}{P_{max}}) \cdot 10 \cdot 16$$

considerando la sezione 9.1 della Notice 2:

- Resistenza a film;
- $\pi_P = (P_{diss})^{0.39}$;
- Rapporto di stress $S = \frac{(Potenza\ dissipata)}{(Potenza\ nominale)}$
- $\pi_s = 0.71 \exp(1.1 \cdot S)$ (oppure da tabella in sez. 9.1 della Notice 2);
- · Qualità commerciale;

Si calcolano R1, R2, R3, R4, tenendo conto delle diverse potenze.

$$\lambda_{RI} = 0.0741 \, FPMH$$

$$\lambda_{R2}=0,1338 FPMH$$

$$\lambda_{R3} = 0.0106 FPMH$$

$$\lambda_{R4} = 0.010 \, FPMH$$

TRIMMER R5

Stesse tabelle (nella Notice 2) delle resistenze (sez. 9.1 della Notice 2) ma tenendo conto di:

- · "Resistor Variable Not WW";
- $P_{dissipata}$ 6,25 μ W ;
- · Oualità commerciale:
- · Stessa formula delle resistenze:

$$\lambda = 4.318 \cdot 10^{-3} FPMH$$

CONDENSATORI:

$$\lambda_p = \lambda_b \pi_T \pi_C \pi_V \pi_{SR} \pi_O \pi_E = 0,00099 \cdot 1,3 \cdot 0,81 \cdot 1,21 \cdot 1.0 \cdot 10 \cdot 20 = 0,252$$

Considerando la sez. 10.1 della Notice 2 e tenendo conto di:

- "Capacitor, fixed, ceramic";
- 100nF;
- $V_{max} = 50 V$, $V_{applicata} = 18 V_{dc} + 10 mV_{ac}$;
- Rapporto con la tensione massima di lavoro= 36:

SALDATURE

Tenendo conto della sez. 16.1 in Notice 2. Per i motivi succitati si sceglie di usare un PCB saldato ad onda anche se più costoso;

Esso consta di 1 solo piano e di 32 saldature;

$$\lambda = \lambda_b [N_1 \pi_C + N_2 (\pi_C + 13)] \pi_Q \pi_E = 0,000017 \cdot [1 \cdot 32 + 0(1,0 + 13)] \cdot 2,0 \cdot 7,0 = 2,38 \cdot 10^{-4}$$

$$\lambda = 0,007616 FPMH$$

AFFIDABILITA' DEL SISTEMA

L'affidabilità del sistema serie è data dal prodotto delle affidabilità delle singole parti, nell'ipotesi di tasso costante in definitiva, il TASSO DI GUASTO è la somma dei tassi dei singoli componenti dato.

TASSO DI GUASTO = 0,8216 FPMH

CALCOLO DELL' AFFIDABILITA' (RELEX)

Il software ci ha dato i seguenti risultati:

Parte	Failure rate FPMH
U1	0,040992
U2	0,040992
R1	0,070913
R2	0,154007
R3	0,010149
R4	0,009962
R5	0,004465
C1	0,245064
C2	0,245064
S	0,007616

TASSO DI GUASTO = 0,829224 FPMH MTBF = 1205946 h

(Nota: il tasso di guasto calcolato mediante Relex differisce di circa 0,007 rispetto a quello calcolato a mano a causa dell'uso di tabelle nel calcolo a mano)

$$R(26000 \cdot 10^{-6}) = \exp(-\lambda \cdot 2600010^{-6})$$

AFFIDABILITA' a 26 000h = 97,8% Specifica sulla affidabilità non soddisfatta³.

I componenti meno affidabili sono in ordine: condensatori C1 e C2, resistenza R2, amplificatori.

All'aumentare della temperatura si nota come aumenti di significatività il tasso di guasto degli operazionali.

3 Si veda il paragrafo "Riprogettazione

Il tasso di guasto così alto per i condensatori è dovuto alla scelta di una tensione massima di lavoro molto bassa (50 V) e dalla particolare sensibilità di questi dispositivi all'ambiente operativo:

Di seguito il grafico dell'MTBF in funzione delle condizioni operative:

Si nota come l'MTBF della scheda, peggiori da ambiente fisso a mobile, trasporto aereo, trasporto navale e uso su elicottero.

RIPROGETTAZIONE

Le specifiche sull'affidabilità non sono state soddisfatte in prima progettazione, in quanto l'affidabilità a 26 000 h è pari a 97,86% contro 98% richiesti a 26 000h. Abbiamo deciso di riprogettare il circuito.

Le alternative per migliorare l'affidabilità erano:

- 1. Usare componenti a "burnizzati"
- 2. Derating
- 3. Usare componenti costruttivamente di qualità migliore

E' stato sufficiente cambiare il BOM come segue.

- La resistenza R2 è stata scelta del tipo conforme alle MIL spec (alternativa 3).
- I condensatori sono stati portati a 500V di tensione massima di lavoro, non abbiamo agito sulla qualità perchè il costo aggiuntivo non giustificava il guadagno in affidabilità (alternativa 2).
- Gli integrati sono stati scelti con package a lattina (alternativa 2).

I costi rientrano ancora nei 7 euro di spesa (6,755 euro).

Ottenendo i seguenti risultati:

TASSO DI GUASTO = 0,601522 FPMH e specifica di affidabilità soddisfatta. Addirittura l'affidabilità del 98% è adesso assicurata per tempi di missione di ben 30 000h.

Interessante notare come i grafici di tasso di guasto per componente di prima progettazione, siano stati utili per individuare il componente R2 (oltre agli operazionali) come critico e cambiare le sue caratteristiche apportando un notevole miglioramento all'affidabilità dell'intero circuito.

REPORT DI AFFIDABILITA'

Abbiamo stampato un report di affidabilità secondo il modello standard del software Relex: Standard Reliability Prediction Report

Part Number

Reference Des

Date dicembre 7, 2005
Environment GM - Ground Mobile
Temperature 30,00

Temperature 30.00

Description File Name Time Failure Rate

MTBF

Top-level assembly IVCONVERTER_riprogetto.1:11
0.601522

1,662,449

Assembly Name	Part Number	Ref Des	Qty	Failure Rate	MTBF		
System	System		1.00	0.601522	1,662,449		

Part Number	Category	Ref Des	Failure Rate, Unit	Quantity	Failure Rate
LM741	Integrated Circuit	U1	0.024531	1.00	0.024531
LM741	Integrated Circuit	U2	0.024531	1.00	0.024531
150	Resistor	R2	0.046202	1.00	0.046202
750	Resistor	R1	0.070913	1.00	0.070913
100K	Resistor	R3	0.010149	1.00	0.010149
95.3K	Resistor	R4	0.009962	1.00	0.009962
10KTRIM	Resistor	R5	0.004465	1.00	0.004465
100N	Capacitor	C1	0.201576	1.00	0.201576
100N	Capacitor	C2	0.201576	1.00	0.201576
SALDATURE PIAZZOLE	Connection		0.007616	1.00	0.007616
	1				

CALCOLO SU ALTRI DATABASE

MIL 217 F N2 TASSO DI GUASTO= 0,601522 FPMH
Telcordia Issue 6 TASSO DI GUASTO= 0,575536 FPMH
CNET 93 TASSO DI GUASTO= 0,273797 FPMH

Si nota come i dati calcolati con la MIL 217 diano un tasso di guasto più alto degli altri per questo sono i più impiegati a livello industriale.

I dati di Telcordia hanno il pregio di avere il livello di confidenza dichiarato (90%).

TABELLA FMECA (Failure Modes Effects and Criticality Analysis)

(secondo l'ipotesi di impiego del circuito)*

Identificativo	Funzione	Modo di guasto	Meccanismo di guasto	Causa	Effetti Locali	Effetti finali	0	S	D	RPN
C1	Filtro disturbi sull'alimentazione	SC	Perdita isolamento	-Chimica-tempo -Tensione	Operazionali non alimentati	Possibili danni all'alimentazione	4	10	10	400
		ос	Altra alterazione dielettrico	applicata superiore alla massima	Perdita del filtro	Sprotezione contro i disturbi	1	2	10	20
C2	Filtro disturbi sull'alimentazione	SC	Perdita isolamento	-Chimica-tempo -Tensione	Operazionali non alimentati	Possibili danni all'alimentazione	4	10	10	400
		ос	Altra alterazione dielettrico	applicata superiore alla massima	Perdita del filtro	Sprotezione contro i disturbi	1	2	10	20
R1	Riferimento per conversione	Vout=IND	Varia il valore di resistenza del resistore	-Chimica- Tempo -Temperatura -Polveri	Dall' uscita dal primo stadio in poi non si rispetta più il fattore di conversione	Il circuito di conversione non presenta più il fattore di conversione richiesto, con la possibilità di uscita fuori dal range massimo di escursione previsto.	3	10	10	300
R2	Riferimento per conversione	Vout=IND	Varia il valore di resistenza del resistore	-Chimica-Tempo -Temperatura -Polveri	Dall' uscita dal primo stadio in poi non si rispetta più il fattore di conversione	Il circuito di conversione non presenta più il fattore di conversione richiesto, con la possibilità di uscita fuori dal range massimo di escursione previsto.	4	10	10	400
R3	Realizza il blocco buffer/invertente	Vout=IND	Varia il valore di resistenza del resistore	-Chimica- Tempo -Temperatura -Polveri	Il secondo stadio non ha più guadagno unitario	Il circuito di conversione non presenta più il fattore di conversione richiesto, con la possibilità di uscita fuori dal range massimo di escursione previsto.	2	10	10	200
R4	Realizza il blocco buffer invertente	Vout=IND	Varia il valore di resistenza del resistore	-Chimica-Tempo -Temperatura -Polveri	Il secondo stadio non ha più guadagno unitario	Il circuito di conversione non presenta più il fattore di conversione richiesto, con la possibilità di uscita fuori dal range massimo di escursione previsto.	1	10	10	100
R5 (trim)	Realizza il blocco buffer invertente e permette la taratura del circuito	Vout=IND	Varia il valore di resistenza del resistore	-Chimica-Tempo -Temperatura -Polveri	Il secondo stadio non ha più guadagno unitario	Il circuito di conversione non presenta più il fattore di conversione richiesto, con la possibilità di uscita fuori dal range massimo di escursione previsto.	1	10	10	100
U1	Conversione I/V	Vout=IND	Rottura o usura delle giunzioni, degenerazione dei parametri interni del dispositivo	-Chimica - tempo -Temperatura -Sovrastress	-La conversione è sprecisa(per la variazione di punti di lavoro dei transistor del chip) o addirittura assente	Il circuito di conversione non presenta più il fattore di conversione richiesto, con la possibilità di uscita fuori dal range massimo di escursione previsto, o la possibilità di una totale indifferenza nei confronti del segnale d'ingresso.	2	10	10	200
U2	Stadio con guadagno k= - 1	Vout=IND	Rottura o usura delle giunzioni, degenerazione dei parametri interni del dispositivo	-Chimica – tempo -Temperatura -Sovrastress	-La conversione è sprecisa(per la variazione di punti di lavoro dei transistor del chip) o addirittura assente	Il circuito di conversione non presenta più il fattore di conversione richiesto, con la possibilità di uscita fuori dal range massimo di escursione previsto.	2	10	10	200

La FMECA (Failure Modes and Effects Analysis) è una analisi delle possibili cause di avaria, e della stima di un indice che individui il rischio.

E' molto importante e significativo per i sistemi complessi caratterizzati da diversi apparati che possono determinare condizioni di funzionamento parziale dell'intero sistema con diversi gradi di severità.

Per rendere più realistica l'analisi FMECA facciamo la seguente ipotesi di impiego della scheda di conversione.

IPOTESI DI UTILIZZO* e proposte di riprogetto

Si considera di impiegare la scheda come circuito di condizionamento del segnale di ingresso ad un controllo per un rotore d'antenna, con limitata possibilità di rotazione.

L'utilizzo scelto è piuttosto comune e tipico di una applicazione mobile dove si impieghi una antenna direttiva per comunicare.

Si osserva che nel nostro caso essendo un sistema a bassa complessità, il funzionamento risulta nella maggior parte dei casi, completamente compromesso con la rottura di una sola parte, ma l'analisi ci mostra comunque molto bene quale siano gli elementi più critici.

SCELTA INDICI:

La scelta è caratteristica di ogni progetto e si concorda con il committente e dipende anche dall'impiego del circuito (per questo se ne è ipotizzato uno). Nel nostro caso:

INDICE DETECTION:

Da 1 a 10.

1 rappresenta la piena rilevazione di un guasto.

I valori intermedi non sono considerati.

10 rappresenta all'assoluta incapacità di rilevare un guasto (e quindi prendere provvedimenti).

Nel nostro circuito essa è sempre 10 perchè non prevede sistemi di diagnosi, quindi la probabilità di diagnosi è sempre nulla.

INDICE OCCURRENCE:

Da 1 a 10.

1 rappresenta basso tasso di guasto, inferiore a 0,01 FPMH.

10 rappresenta alto tasso di guasto, superiore o uguale a 3 FPMH.

INDICE SEVERITY:

da 1 a 10 in base alla entità di danno:

- 1 nulla
- 2 trascurabile
- 3 lieve
- 4 media
- 5 importante

6 molto importante

7 estremamente importante

8 dannoso

9 molto dannoso

10 estremamente dannoso

Dall'analisi FMECA si evince che il RPN è sufficientemente basso, tale da non richiedere una riprogettazione.

Gli elementi più critici da considerare sarebbero:

- · L'eventualità di cortocircuito dei condensatori di alimentazione.
 - Porterebbe ad un cortocircuito delle alimentazione con possibilità di grave danno per gli alimentatori.
 - Per questo si può aggiungere due fusibili al nostro circuito (o almeno assicurarsi che gli alimentatori siano protetti, prescrivendo tale condizione all'utente finale).
- · L'eventualità che il circuito dia una uscita fuori range.
 - A tale scopo si possono mettere due zener per "tosare" tensioni più alte e più basse, oppure prescrivere l'impiego con rotori che non presentino il problema del "fine corsa" (con particolare ausilio meccanico o protezione nel sistema di controllo), eventualità che porterebbe ad un grave danno al motore.