Leyes de Newton

Ejemplos

Ejemplo 4: En el sistema mostrado en la figura considere que la cuerda es de masa despreciable que pasa por dos poleas tb de masa despreciables.

- a) calcular la aceleración de los bloques
- b) calcula la tensión en la cuerda.

Calcular la aceleración de los cuerpos y la tensión en la cuerda

Ejemplo

Encontrar la relación entre las aceleraciones de los bloques A y B.

Ejemplo

En el sistema mostrado en la figura. Determine la velocidad y aceleración del bloque 2.

Enunciado para problemas 9 a 11.

En el sistema de la figura abajo las poleas P_1 y P_2 son ideales. Si llamamos T a la tensión de la cuerda que parte de O y llega hasta el bloque de masa m, entonces:

Figura 6: problemas 9 a 11.

Problema 9. La ecuación de movimiento del bloque M está dada por

a)
$$Mg - T = M\ddot{x}$$

b)
$$Mg - 2T = M\ddot{x}$$

c)
$$mg + T - Mg = M\ddot{x}$$

d)
$$2T + Mg = M\ddot{x}$$

Problema 10. La tensión T de la cuerda está dada por

a)
$$T = (m + M) g$$

b)
$$T = \frac{3mM}{(m+M)}g$$

c)
$$T = \frac{2mM}{(m+M)}g$$

$$d) T = \frac{3mM}{(4m+M)} g$$

Problema 11. La aceleración \ddot{y} del bloque m está dada por

a)
$$\ddot{y} = g\left(\frac{4m - 2M}{M + m}\right)$$

b) $\ddot{y} = g\left(\frac{4m - 2M}{4m + M}\right)$

b)
$$\ddot{y} = g \left(\frac{4m - 2M}{4m + M} \right)$$

c)
$$\ddot{y} = g\left(\frac{m-M}{M+m}\right)$$

d)
$$\ddot{y} = g$$