

Wi-Fi

- Wi-Fi es una tecnología de comunicación inalámbrica por radio frecuencia basada en el standard IEEE802.11.
- La alianza de Wi-Fi (Wi-Fi Alliance) se encarga de garantizar la interoperabilidad, la adopción y la evolución del estándar a nivel global.

IEEE 802.11

https://www.wi-fi.org/discover-wi-fi/connect-your-lifehttp://www.ieee802.org/11/

IEEE802.11

- ► El estándar IEEE 802.11 es un conjunto de especificaciones de control de acceso a medios (MAC) y capa física (PHY) para implementar comunicación de red inalámbrica de área local (WLAN) en las bandas de frecuencia de 900 MHz y 2.4, 3.6, 5 y 60 GHz.
- La versión base del estándar fue lanzada en 1997 y ha tenido modificaciones posteriores.

Application Presentation

Session

Transport

NWK

DLL LLC y MAC

PHY

IEEE802.11

- ▶ 802.11-1997 fue el primer estándar de red inalámbrica de la familia, pero 802.11b fue el primero ampliamente aceptado, seguido de 802.11a, 802.11g, 802.11n y 802.11ac.
- ▶ 802.11by 802.11g usan la banda ISM de 2.4 GHz. Debido a esta elección de banda de frecuencia, los equipos 802.11byg pueden ocasionalmente sufrir interferencia de hornos microondas, teléfonos inalámbricos y dispositivos Bluetooth.

Versiones mas comunes de Wi-Fi

Wireless Standards 802.11ac, 802.11n, and 802.11g ✓ PROS CONS Most expensive to implement; Fastest maximum speed and best signal range; 802.11ac performance improvements only noticeable on par with standard wired connections in high-bandwidth applications Significant bandwidth improvement from More expensive to implement than 802.11g; 802.11n previous standards; wide support across use of multiple signals may interfere with devices and network gear nearby 802.11b/g based networks Supported by essentially all wireless devices Entire network slows to match any 802.11b 802.11g and network equipment in use today; devices on the network; slowest/oldest standard still in use least expensive option

https://www.lifewire.com/wireless-standards-802-11a-802-11b-g-n-and-802-11ac-816553

RF

- La comunicación de RF se lleva a cabo a través de ondas electromagnéticas (EM) que se transmiten en las bandas de RF, que abarcan el espectro de 3 Hz a 300 GHz.
- ▶ Una onda electromagnética transporta su energía a través del vacío a una velocidad de 3.00 x 10^8 m/s (un valor de velocidad comúnmente representado por el símbolo c).
- Una opción común es utilizar las bandas ISM (industrial, científica y médica), que ofrecen comunicación sin licencia en la mayoría de los países.

Ejercisio

La longitud de onda de una onda electromagnética que viaja en el espacio es de 60 cm. ¿Cuál es su frecuencia?

- a) 500 MHz
- b) 3 GHz
- c) 5 GHz
- d) 15 GHz

1. ¿Cuál es la longitud de onda de una señal cuya frecuencia es 2.4 GHz?

Canales en la frecuencia de 2.4GHz (ISM)

16 Canales de IEEE802.15.4

3 Canales de WiFi

40 Canales de BLE

Características de las capas físicas mas comunes

Version	Frecuencia	Modulación	Data rate
ac	5Ghz	OFDM (MU-MIMO)	6.5-780Mbps
n	2.4/5Ghz	OFDM (MIMO)	6.5-135Mbps
g	2.4Ghz	OFDM, DSSS (SISO)	6-54Mbps

- ► Convierte señales eléctricas a ondas electromagnéticas.
- El tamaño debe de ser consistente con la longitud de onda.
- ► Tipos:
 - Direccional
 - Omnidireccional
 - ► MIMO

https://upload.wikimedia.org/wikipedia/commons/d/dd/Dipole_receiving_antenna_animation_6_800x394x150ms.gif

Efectos del canal sobre RF

- Algunos efectos que tiene el canal de transmisión sobre una señal en un medio inalámbrico:
 - Atenuación
 - Reflexión
 - Refracción
 - Difracción
 - División

Efectos del canal sobre RF

Ecuación de Friis

$$P_r = \frac{P_t G_t G_r \lambda^2}{(4\pi R)^2}$$

Where,

 P_r = Power at the receiving antenna

 P_t = Output power of transmitting antenna

 G_t = Gain of the transmitting antenna

 G_r = Gain of the receiving antenna

 λ = Wavelength

R = Distance between the antennas

https://www.everythingrf.com/rf-calculators/friis-transmission-calculator

The MAC Layer Hidden Terminal

- A sends to B, C cannot receive A.
- C wants to send to B and senses a free medium.
 - ► This is a Carrier Sense false negative.
- There is a collision at B, A cannot detect the collision.
 - ► This is a Collision Detect error.
- A is "hidden" for C.

- B sends to A, C wants to send to D.
- C senses carrier, finds medium in use and has to wait.
- A is outside of range of C, therefore waiting is not necessary.
- ► C is "exposed" to B.

Características de la capa MAC de

IEEE802.11

La subcapa IEEE 802.11 MAC es responsable de coordinar el acceso a la interfaz física compartida para que el punto de acceso (AP) y las estaciones Wi-Fi en el rango puedan comunicarse de manera efectiva.

 Para evitar colisiones se utiliza la técnica CSMA/CA

Arquitectura de la red WiFi

Autenticación wi-fi

- La autenticación 802.11 es el primer paso en la conexión a la red. La autenticación 802.11 requiere un dispositivo móvil (estación) para establecer su identidad con un punto de acceso (AP) o un enrutador inalámbrico de banda ancha. No hay encriptación de datos o seguridad disponible en esta etapa.
- Existen dos tipos de autenticación:
 - De sistema abierto.
 - ▶ De llave compartida.

Otras tecnologías Inalámbricas

Comparación de diferentes tecnologías

Decidiendo la tecnología correcta

- No existe el concepto: "La mejor tecnología". Las tecnologías son herramientas para resolver problemas y, como con las herramientas, se debe escoger la mejor para resolver el problema en turno.
- ▶ Algunas preguntas a realizar cuando se define una tecnología son:
 - ¿Mi aplicación requiere baterías (bajo consumo de energía)?
 - ¿Cuál es el rango de alcance que requiere la aplicación a resolver?
 - ¿Mis dispositivos tienen que interactuar con dispositivos de otros fabricantes (Interoperabilidad)?
 - ► ¿Mi aplicación requiere que la red alcance distancias mayores al rango de alcance del radio (routers)?
 - ¿La aplicación requiere la interacción con dispositivos móviles?
 - ¿Cuál es el tiempo que tengo para desarrollar la aplicación?
 - ¿Mi aplicación requiere algún tipo de certificación?
 - La aplicación requiere que la red este conectada a "la Nube"?

Decidiendo la tecnología correcta

Cableado vs Inalámbrico

Cableado	Inalámbrico	
Requiere conectores	Susceptible a la interferencia	
Los cables se atoran y se dañan	Menos seguro	
Corrosión	El diseño de la tarjeta es mas complejo y costoso	
Incrementa su costo con la distancia		

Ejercisio

SSID: Diplomado2018

► PSW:Diplomado2018

