相対論的量子力学 期末レポート

2023年8月11日

目次

1	2 次元時空におけるディラック方程式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2	指数関数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3	スピノル球関数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
4	水素原子における電子のエネルギー準位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10

1 2次元時空におけるディラック方程式

問題 1.1.

2次元時空におけるディラック方程式は次のように考えられる。

$$(i\hbar\gamma^{\mu}\partial_{\mu} - mc)\psi(x) = 0 \tag{1.1}$$

 \Diamond

このときガンマ行列 γ^0, γ^1 は次を満たす。

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}, \qquad (\gamma^{0})^{\dagger} = \gamma^{0}, \qquad (\gamma^{1})^{\dagger} = -\gamma^{1}$$
 (1.2)

またカイラリティ γ^5 は次を満たす。

$$(\gamma^5)^{\dagger} = \gamma^5, \qquad (\gamma^5)^2 = 1, \qquad \{\gamma^{\mu}, \gamma^5\} = 0$$
 (1.3)

$$\gamma^5$$
 を γ^0, γ^1 を用いて表わせ。

証明

カイラリティがガンマ行列の複素数係数多項式で表されるとするとガンマ行列の性質より 次のように書ける。

$$\gamma^{5} = \sum_{e_{0}, e_{1}} a_{e_{0}, e_{1}} (\gamma^{0})^{e_{0}} (\gamma^{1})^{e_{1}} = \alpha_{0} + \alpha_{1} \gamma^{0} + \alpha_{2} \gamma^{1} + \alpha_{3} \gamma^{0} \gamma^{1} \qquad (a_{e_{0}, e_{1}}, \alpha_{i} \in \mathbb{C})$$
 (1.4)

これを代入するとガンマ行列の直交性より

$$(\gamma^5)^{\dagger} = \gamma^5 \iff \alpha_0 \in \mathbb{R}, \alpha_1 \in \mathbb{R}, \alpha_2 \in i\mathbb{R}, \alpha_3 \in \mathbb{R}$$
 (1.5)

$$\{\gamma^{\mu}, \gamma^5\} = 0 \implies \alpha_0 = \alpha_1 = \alpha_2 = 0 \tag{1.6}$$

$$(\gamma^5)^2 = 1 \implies \alpha_4 = \pm 1 \tag{1.7}$$

となる。よって $\gamma^5=\pm\gamma^0\gamma^1$ となる。ここでは特に $\gamma^5=\gamma^0\gamma^1$ とする。

問題 1.2.

 $\gamma_{\pm} = \frac{1 \pm \gamma^5}{2}$ とするとき $(\gamma_+)^a$, $(\gamma_-)^b$, $(\gamma_+)^a(\gamma_-)^b$, $(\gamma_-)^b(\gamma_+)^a$ $(a,b \in \mathbb{Z}_{>0})$ を γ_{\pm} を用いて 表わせ。

$$(\gamma_{\pm})^2 = \frac{1 \pm 2\gamma^5 + (\gamma^5)^2}{2^2} = \frac{1 \pm \gamma^5}{2} = \gamma_{\pm}$$
 (1.8)

$$\gamma_{+}\gamma_{-} = \gamma_{-}\gamma_{+} = \frac{1 + \gamma^{5} - \gamma^{5} - (\gamma^{5})^{2}}{2^{2}} = 0$$
 (1.9)

より帰納法から次が示せる。

$$(\gamma_{+})^{a} = \gamma_{+}, \qquad (\gamma_{-})^{b} = \gamma_{-}, \qquad (\gamma_{+})^{a} (\gamma_{-})^{b} = 0, \qquad (\gamma_{-})^{b} (\gamma_{+})^{a} = 0$$
 (1.10)

問題 1.3.

$$\psi_{+}(x) = \gamma_{+}\psi(x)$$
 は γ^{5} の固有関数である。それぞれの固有値を求めよ。

証明

カイラリティを作用させることで固有関数 $\psi_+(x)$ の固有値は ± 1 となる。

$$\gamma^5 \psi_{\pm}(x) = \gamma^5 \gamma_{\pm} \psi(x) = \frac{\gamma^5 \pm 1}{2} \psi(x) = \pm \gamma^5 \psi(x)$$
 (1.11)

問題 1.4.

 $\psi_{\pm}(x)$ が満たす連立微分方程式をディラック方程式から求めよ。

 \Diamond

証明

 $\{\gamma^{\mu}, \gamma^{5}\} = 0$ より $\gamma^{\mu}\gamma_{\pm} = \gamma_{\mp}\gamma^{\mu}$ となる。よって

$$\begin{cases} \gamma_{+}(i\hbar\gamma^{\mu}\partial_{\mu} - mc)\psi(x) = 0\\ \gamma_{-}(i\hbar\gamma^{\mu}\partial_{\mu} - mc)\psi(x) = 0 \end{cases}$$
(1.12)

$$\begin{cases} \gamma_{+}(i\hbar\gamma^{\mu}\partial_{\mu} - mc)\psi(x) = 0\\ \gamma_{-}(i\hbar\gamma^{\mu}\partial_{\mu} - mc)\psi(x) = 0 \end{cases}$$

$$\iff \begin{cases} i\hbar\gamma^{\mu}\partial_{\mu}\psi_{-}(x) = mc\psi_{+}(x)\\ i\hbar\gamma^{\mu}\partial_{\mu}\psi_{+}(x) = mc\psi_{-}(x) \end{cases}$$

$$(1.12)$$

となる。

問題 1.5.

m=0 の場合に $\psi_+(x) \propto e^{-iEt/\hbar + ipx/\hbar}$ が解となるとき、E,p が満たす関係式を求めよ。

証明

m=0 のとき $i\hbar\gamma^{\mu}\partial_{\mu}\psi_{+}(x)=0$ となる。 $\gamma^{1}=\gamma^{0}(\gamma_{+}-\gamma_{-})$ より

$$i\hbar\gamma^{\mu}\partial_{\mu}\psi_{+}(x) = i\hbar(\gamma^{0}c\partial_{t} + \gamma^{1}\partial_{x})\psi_{+}(x)$$
(1.14)

$$= (\gamma^0 Ec - \gamma^1 p)\psi_+(x) \tag{1.15}$$

$$= \gamma^{0} (Ec - (\gamma_{+} - \gamma_{-})p)\psi_{+}(x) \tag{1.16}$$

$$= \gamma^0 (Ec - p)\psi_+(x) = 0 \tag{1.17}$$

となる。よって Ec = p を満たす。

問題 1.6.

m=0 の場合に $\psi_-(x) \propto e^{-iEt/\hbar + ipx/\hbar}$ が解となるとき、E,p が満たす関係式を求めよ。 \diamond

証明

m=0 のとき $i\hbar\gamma^{\mu}\partial_{\mu}\psi_{-}(x)=0$ となる。 $\gamma^{1}=\gamma^{0}(\gamma_{+}-\gamma_{-})$ より

$$i\hbar\gamma^{\mu}\partial_{\mu}\psi_{-}(x) = i\hbar(\gamma^{0}c\partial_{t} + \gamma^{1}\partial_{x})\psi_{-}(x)$$
(1.18)

$$= (\gamma^0 Ec - \gamma^1 p)\psi_-(x) \tag{1.19}$$

$$= \gamma^{0} (Ec - (\gamma_{+} - \gamma_{-})p)\psi_{-}(x)$$
 (1.20)

$$= \gamma^0 (Ec + p)\psi_-(x) = 0 \tag{1.21}$$

となる。よって Ec = -p を満たす。

問題 1.7.

 $\gamma^0, \gamma^1, \gamma^5$ を 2 行 2 列の行列とするとき、それらの具体形をパウリ行列を用いて表せ。

証明

パウリ行列を次のように定義する。

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(1.22)

これより次のようにおくとそれぞれの性質を満たす。

$$\gamma^0 = \sigma_1, \qquad \gamma^1 = i\sigma_2, \qquad \gamma^5 = -\sigma_3 \tag{1.23}$$

2 指数関数

問題 2.1.

次の式を示せ。

$$e^{i\hat{B}}\hat{A}e^{-i\hat{B}} = \sum_{n=0}^{\infty} \frac{i^n}{n!} [\hat{B}, \dots [\hat{B}, [\hat{B}, \hat{A}]] \dots]$$
 (2.1)

 \Diamond

 $e^{i\lambda\hat{B}}\hat{A}e^{-i\lambda\hat{B}}$ について考える。これを λ について展開すると

$$e^{i\lambda\hat{B}}\hat{A}e^{-i\lambda\hat{B}} = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \left[\frac{\mathrm{d}^n}{\mathrm{d}\lambda^n} e^{i\lambda\hat{B}} \hat{A}e^{i\lambda\hat{B}} \right]_{\lambda=0}$$
 (2.2)

$$= \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \left[\frac{\mathrm{d}^{n-1}}{\mathrm{d}\lambda^{n-1}} e^{i\lambda \hat{B}} i[\hat{B}, \hat{A}] e^{i\lambda \hat{B}} \right]_{\lambda=0}$$
 (2.3)

$$= \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \left[e^{i\lambda \hat{B}} i^n \underbrace{[\hat{B}, \dots [\hat{B}, [\hat{B}, \hat{A}]] \dots]}_{n} e^{i\lambda \hat{B}} \right]_{\lambda=0}$$
 (2.4)

$$=\sum_{n=0}^{\infty} \frac{(i\lambda)^n}{n!} \underbrace{[\hat{B}, \dots [\hat{B}, [\hat{B}, \hat{A}]] \dots]}_{n}$$
(2.5)

よって $\lambda = 1$ を代入することで示せる。

$$e^{i\hat{B}}\hat{A}e^{-i\hat{B}} = \sum_{n=0}^{\infty} \frac{i^n}{n!} \underbrace{[\hat{B}, \dots [\hat{B}, [\hat{B}, \hat{A}]] \dots]}_{n}$$
 (2.6)

問題 2.2.

$$\partial$$
 を微分演算子とするとき、 $(\partial e^{i\hat{B}})e^{-i\hat{B}}=-e^{i\hat{B}}(\partial e^{-i\hat{B}})$ を示せ。

証明

 $1 = e^{i\hat{B}}e^{-i\hat{B}}$ に微分演算子を作用させることで示せる。

$$0 = \partial 1 = \partial (e^{i\hat{B}}e^{-i\hat{B}}) = (\partial e^{i\hat{B}})e^{-i\hat{B}} + e^{i\hat{B}}(\partial e^{-i\hat{B}})$$

$$(2.7)$$

$$(\partial e^{i\hat{B}})e^{-i\hat{B}} = -e^{i\hat{B}}(\partial e^{-i\hat{B}})$$
(2.8)

問題 2.3.

次の式を示せ。

$$e^{i\hat{B}}(\partial e^{-i\hat{B}}) = -\sum_{n=1}^{\infty} \frac{i^n}{n!} \underbrace{[\hat{B}, \dots [\hat{B}, [\hat{B}, \partial \hat{B}]] \dots]}_{n-1}$$
(2.9)

 \Diamond

 \Diamond

(1) において $\hat{A} = \partial$ を代入して示せる。

$$e^{i\hat{B}}(\partial e^{-i\hat{B}}) = \sum_{n=0}^{\infty} \frac{i^n}{n!} \underbrace{[\hat{B}, \dots [\hat{B}, [\hat{B}, \partial]] \dots]}_{n}$$
(2.10)

$$= \partial + \sum_{n=1}^{\infty} \frac{i^n}{n!} \underbrace{[\hat{B}, \dots [\hat{B}, [\hat{B}, \partial]] \dots]}_{n}$$
 (2.11)

$$= -\sum_{n=1}^{\infty} \frac{i^n}{n!} \underbrace{[\hat{B}, \dots [\hat{B}, [\hat{B}, \partial \hat{B}]] \dots]}$$
(2.12)

(2.13)

3 スピノル球関数

問題 3.1.

スピノル球関数を球面調和関数を用いて次のように定義する。

$$\mathcal{Y}_{j,m}^{\pm}(\theta,\phi) = \frac{1}{\sqrt{2l+1}} \left(\frac{\sqrt{l+\frac{1}{2} \pm m} Y_l^{m-1/2}(\theta,\phi)}{\pm \sqrt{l+\frac{1}{2} \mp m} Y_l^{m+1/2}(\theta,\phi)} \right)_{i=l+1/2}$$
(3.1)

軌道角運動量 \hat{L} , スピン角運動量 \hat{S} , 全角運動量 \hat{J} とする。

$$\mathcal{Y}_{i,m}^{\pm}(heta,\phi)$$
 が持つパリティを求めよ。

証明

球面調和関数におけるパリティは $(-1)^l$ となるからスピノル球関数のパリティは $(-1)^l$ となる。

$$Y_l^m(\pi - \theta, \pi + \phi) = (-1)^l Y_l^m(\theta, \phi)$$
(3.2)

$$\mathcal{Y}_{j,m}^{\pm}(\pi - \theta, \pi + \phi) = (-1)^l \mathcal{Y}_{j,m}^{\pm}(\theta, \phi)$$
(3.3)

問題 3.2.

$$\mathcal{Y}_{im}^{\pm}(heta,\phi)$$
 が持つ \hat{J}_z の固有値を求めよ。

球面調和関数における固有値からスピノル球関数の \hat{J}_z の固有値は $m\hbar$ となる。

$$\hat{J}_z Y_l^m(\theta, \phi) = m\hbar Y_l^m(\theta, \phi) \tag{3.4}$$

$$\hat{J}_z \mathcal{Y}_{j,m}^{\pm}(\theta,\phi) = m\hbar \mathcal{Y}_{j,m}^{\pm}(\theta,\phi)$$
(3.5)

問題 3.3.

$$\mathcal{Y}_{i\,m}^{\pm}(heta,\phi)$$
 が持つ $\hat{m{L}}^2$ の固有値を求めよ。

証明

球面調和関数における固有値からスピノル球関数の \hat{L}^2 の固有値は $\hbar^2 l(l+1)$ となる。

$$\hat{L}^2 Y_l^m(\theta, \phi) = \hbar^2 l(l+1) Y_l^m(\theta, \phi) \tag{3.6}$$

$$\hat{L}^2 \mathcal{Y}_{j,m}^{\pm}(\theta,\phi) = \hbar^2 l(l+1) \mathcal{Y}_{j,m}^{\pm}(\theta,\phi)$$
(3.7)

問題 3.4.

$$\mathcal{Y}_{im}^{\pm}(heta,\phi)$$
 が持つ $\hat{m{L}}\cdot\hat{m{S}}$ の固有値を求めよ。

証明

 $\mathcal{Y}_{i.m}^{\pm}(heta,\phi)$ に $\hat{m{L}}\cdot\hat{m{S}}$ を作用させると

$$\hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}} \mathcal{Y}_{j,m}^{\pm}(\theta,\phi) = \frac{1}{2} (\hat{\boldsymbol{J}}^2 - \hat{\boldsymbol{L}}^2 - \hat{\boldsymbol{S}}^2) \mathcal{Y}_{j,m}^{\pm}(\theta,\phi)$$
(3.8)

$$= \frac{\hbar^2}{2} \left(j(j+1) - l(l+1) - \frac{3}{4} \right) \mathcal{Y}_{j,m}^{\pm}(\theta, \phi)$$
 (3.9)

$$= \frac{\hbar^2}{2} \left(\left(l \pm \frac{1}{2} \right) \left(l \pm \frac{1}{2} + 1 \right) - l(l+1) - \frac{3}{4} \right) \mathcal{Y}^{\pm}_{j,m}(\theta, \phi) \tag{3.10}$$

$$= \frac{\hbar^2}{2} \left(\pm \left(l + \frac{1}{2} \right) - \frac{1}{2} \right) \mathcal{Y}_{j,m}^{\pm}(\theta, \phi) \tag{3.11}$$

(3.12)

より固有値は
$$rac{\hbar^2 l}{2}, -rac{\hbar^2 (l+1)}{2}$$
 となる。

問題 3.5.

$$\mathcal{Y}_{j,m}^{\pm}(heta,\phi)$$
 が持つ $\hat{m{J}}^2$ の固有値を求めよ。

 $\mathcal{Y}_{j,m}^{\pm}(heta,\phi)$ に $\hat{m{J}}^2$ を作用させると

$$\hat{J}^2 \mathcal{Y}_{j,m}^{\pm}(\theta,\phi) = \hbar^2 j(j+1) \mathcal{Y}_{j,m}^{\pm}(\theta,\phi)$$
(3.13)

$$=\hbar^2 \left(l \pm \frac{1}{2}\right) \left(\left(l \pm \frac{1}{2}\right) + 1\right) \mathcal{Y}_{j,m}^{\pm}(\theta,\phi) \tag{3.14}$$

$$= \hbar^2 \left(\left(l \pm \frac{1}{2} + \frac{1}{2} \right)^2 - \frac{1}{4} \right) \mathcal{Y}_{j,m}^{\pm}(\theta, \phi)$$
 (3.15)

より固有値は
$$l^2 - \frac{1}{4}$$
, $(l+1)^2 - \frac{1}{4}$ となる。

問題 3.6.

パウリ行列 σ と位置ベクトル $r = r(\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$ に対して $\sigma \cdot \frac{r}{r} \mathcal{Y}_{j,m}^{\pm}(\theta, \phi)$ を計算し、スピノル球関数のみを用いて表せ。

証明

まず演算子を計算すると

$$\boldsymbol{\sigma} \cdot \frac{\boldsymbol{r}}{r} = \boldsymbol{\sigma} \cdot (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) = \begin{pmatrix} \cos \theta & \sin \theta e^{-i\phi} \\ \sin \theta e^{i\phi} & -\cos \theta \end{pmatrix}$$
(3.16)

となる。三角関数を球面調和関数に作用させたときの固有値は次のようになるから

$$\cos\theta Y_{l}^{m}(\theta,\phi) = \sqrt{\frac{(l+m+1)(l-m+1)}{(2l+1)(2l+3)}} Y_{l+1}^{m}(\theta,\phi) + \sqrt{\frac{(l+m)(l-m)}{(2l+1)(2l-1)}} Y_{l-1}^{m}(\theta,\phi) \quad (3.17)$$

$$\sin\theta e^{i\phi} Y_{l}^{m}(\theta,\phi) = -\sqrt{\frac{(l+m+1)(l+m+2)}{(2l+1)(2l+3)}} Y_{l+1}^{m+1}(\theta,\phi) + \sqrt{\frac{(l-m)(l-m-1)}{(2l+1)(2l-1)}} Y_{l-1}^{m+1}(\theta,\phi) \quad (3.18)$$

$$\sin \theta e^{-i\phi} Y_l^m(\theta, \phi) = \sqrt{\frac{(l-m+1)(l-m+2)}{(2l+1)(2l+3)}} Y_{l+1}^{m-1}(\theta, \phi) + \sqrt{\frac{(l+m)(l+m-1)}{(2l+1)(2l-1)}} Y_{l-1}^{m-1}(\theta, \phi)$$
(3.19)

次のように計算できる。
$$\sigma \cdot \frac{r}{r} \mathcal{Y}_{j,m}^{\pm}(\theta,\phi) = \frac{1}{\sqrt{2l+1}} \qquad \begin{pmatrix} \cos\theta & \sin\theta e^{-i\phi} \\ \sin\theta e^{i\phi} & -\cos\theta \end{pmatrix} \begin{pmatrix} \sqrt{l+\frac{1}{2}\pm m} Y_l^{m-1/2}(\theta,\phi) \\ \pm \sqrt{l+\frac{1}{2}\mp m} Y_l^{m+1/2}(\theta,\phi) \end{pmatrix}_{j=l\pm 1/2} \qquad (3.20)$$

$$= \frac{1}{\sqrt{2l+1}} \qquad \begin{pmatrix} \sqrt{l+\frac{1}{2}\pm m}\cos\theta Y_l^{m-1/2}(\theta,\phi) \pm \sqrt{l+\frac{1}{2}\mp m}\sin\theta e^{-i\phi} Y_l^{m+1/2}(\theta,\phi) \\ & (3.21) \end{pmatrix}$$

$$\cdot \sqrt{l+\frac{1}{2}\pm m}\sin\theta e^{i\phi} Y_l^{m-1/2}(\theta,\phi) \mp \sqrt{l+\frac{1}{2}\mp m}\cos\theta Y_l^{m+1/2}(\theta,\phi) \\ = \frac{1}{\sqrt{2l+1}} \qquad \begin{pmatrix} \sqrt{l+\frac{1}{2}\pm m} \sqrt{\frac{(l+m+\frac{1}{2})(l-m+\frac{3}{2})}{(2l+1)(2l+3)}} Y_{l-1}^{m-1/2}(\theta,\phi) & (3.23) \\ + \sqrt{l+\frac{1}{2}\pm m} \sqrt{\frac{(l+m+\frac{1}{2})(l-m+\frac{3}{2})}{(2l+1)(2l-1)}} Y_{l-1}^{m-1/2}(\theta,\phi) & (3.24) \\ \pm \sqrt{l+\frac{1}{2}\mp m} \sqrt{\frac{(l+m+\frac{1}{2})(l+m+\frac{3}{2})}{(2l+1)(2l-1)}} Y_{l-1}^{m-1/2}(\theta,\phi) & (3.25) \\ \pm \sqrt{l+\frac{1}{2}\mp m} \sqrt{\frac{(l+m+\frac{1}{2})(l+m+\frac{3}{2})}{(2l+1)(2l-1)}} Y_{l-1}^{m-1/2}(\theta,\phi) & (3.26) \\ \cdot -\sqrt{l+\frac{1}{2}\pm m} \sqrt{\frac{(l+m+\frac{1}{2})(l-m+\frac{3}{2})}{(2l+1)(2l-1)}} Y_{l-1}^{m-1/2}(\theta,\phi) & (3.27) \\ + \sqrt{l+\frac{1}{2}\pm m} \sqrt{\frac{(l+m+\frac{1}{2})(l-m-\frac{1}{2})}{(2l+1)(2l-1)}} Y_{l-1}^{m+1/2}(\theta,\phi) & (3.28) \\ \mp \sqrt{l+\frac{1}{2}\mp m} \sqrt{\frac{(l+m+\frac{3}{2})(l-m+\frac{1}{2})}{(2l+1)(2l+3)}} Y_{l+1}^{m+1/2}(\theta,\phi) & (3.29) \\ \mp \sqrt{l+\frac{1}{2}\mp m} \sqrt{\frac{(l+m+\frac{3}{2})(l-m-\frac{1}{2})}{(2l+1)(2l-1)}} Y_{l-1}^{m+1/2}(\theta,\phi) & (3.29) \\ \mp \sqrt{l+\frac{1}{2}\mp m} \sqrt{\frac{(l+m+\frac{3}{2})(l-m-\frac{1}{2})}{(2l+1)(2l-1)}} Y_{l+1}^{m+1/2}(\theta,\phi) & (3.29) \\ \end{pmatrix}$$

$$\mp \sqrt{l + \frac{1}{2} \mp m} \sqrt{\frac{(l + m + \frac{1}{2})(l - m - \frac{1}{2})}{(2l + 1)(2l - 1)}} Y_{l-1}^{m+1/2}(\theta, \phi) \bigg)_{j=l \pm 1/2}$$

(3.30)

$$= \frac{1}{\sqrt{2l+1}} \qquad \left((2l+1)\sqrt{\frac{l \mp m + \frac{1}{2} \pm 1}{(2l+1)(2l+1 \pm 2)}} Y_{l \pm 1}^{m-1/2}(\theta, \phi) \right) \tag{3.31}$$

$$, \mp (2l+1)\sqrt{\frac{l\pm m + \frac{1}{2}\pm 1}{(2l+1)(2l+1\pm 2)}}Y_{l\pm 1}^{m+1/2}(\theta,\phi)\bigg)_{j=l\pm 1/2}$$
(3.32)

$$= \frac{1}{\sqrt{2j+1\pm 1}} \left(\sqrt{j+\frac{1}{2} \mp \left(m-\frac{1}{2}\right)} Y_{j\pm 1/2}^{m-1/2}(\theta,\phi) \right)$$
 (3.33)

$$, \mp \sqrt{j + \frac{1}{2} \pm \left(m + \frac{1}{2}\right)} Y_{j \pm 1/2}^{m+1/2}(\theta, \phi) = \mathcal{Y}_{j,m}^{\mp}(\theta, \phi)$$
 (3.34)

よって次の式となる。

$$\boldsymbol{\sigma} \cdot \frac{\boldsymbol{r}}{r} \mathcal{Y}_{j,m}^{\pm}(\boldsymbol{\theta}, \phi) = \mathcal{Y}_{j,m}^{\mp}(\boldsymbol{\theta}, \phi) \tag{3.35}$$

4 水素原子における電子のエネルギー準位

問題 4.1.

中心力ポテンシャル $V(r)=-\frac{\alpha\hbar c}{r}$ のもとでディラック方程式を解くことにより得られる水素原子中の電子のエネルギー準位を考える。

主量子数 n が与えられたとき、全角運動量 j が取り得る値を答えよ。

証明

n と j に関して n=j+n'+1/2 という関係があるから $j=1/2,\dots,(2n-1)/2$ を取る。 $\ \square$

問題 4.2.

主量子数 n, 全角運動量 j を持つ状態のエネルギー固有値の表式を書き下せ。また、そのエネルギー固有値の縮重度を答えよ。

証明

主量子数 n, 全角運動量 i を持つ状態のエネルギー固有値の表式は次のようになる。

$$E = \frac{mc^2}{\sqrt{1 + \frac{(Z\alpha)^2}{\left(n - \left(j + \frac{1}{2}\right) + \sqrt{(j + \frac{1}{2})^2 - (Z\alpha)^2}\right)^2}}}$$
(4.1)

また縮重度は $j=l\pm 1/2$ より n'=0 において 2j+1、n'>0 において 2(2j+1) となる。 $\ \square$

問題 4.3.

主量子数 n を持つ状態の総数を求めよ。

 \Diamond

証明

n = j + n' + 1/2 と $j = l \pm 1/2$ より状態の総数は $2n^2$ となる。

$$2n + 2 \times \sum_{n'=1}^{n-1} 2(n - n') = 2n^2$$
(4.2)

問題 4.4.

電子の静止エネルギーから測った束縛エネルギーの大きさが縮退を除いて7番目と10番目

に大きい準位の主量子数 n と全角運動量 j をそれぞれ答えよ。また、それらの準位の束縛エネルギーの大きさを有効数字 6 桁で求めよ。

証明

7 番目に大きい準位は n=4, j=1/2 で 10 番目に大きい準位は n=4, j=7/2 である。またそれぞれの束縛エネルギーは

$$\mathcal{E} \approx -\frac{\alpha^2 mc^2}{2n^2} - \left(\frac{1}{j+1/2} - \frac{3}{4n}\right) \frac{\alpha^4 mc^2}{2n^3}$$
 (4.3)

$$\approx -\frac{13.60569}{n^2} - \left(\frac{1}{j+1/2} - \frac{3}{4n}\right) \frac{7.249022 \times 10^{-4}}{n^3}$$
 (4.4)

$$\mathcal{E}_{4,1/2} \approx 0.850365 \tag{4.5}$$

$$\mathcal{E}_{4,7/2} \approx 0.850356 \tag{4.6}$$

となる。

問題 4.5.

同じ主量子数 n を持つ状態でも全角運動量 j に依存してエネルギー準位が分裂する. この 現象を表す名称を答えよ.

証明

微細構造 □