OTE Domácí úkol 6b - Horní propust

Vojtěch Michal

31. března 2022

V simulacích pro tuto úlohu bylo použito standardní nastavení parametrů operačního zesilovače, které však s ohledem na charakter úlohy nemá významný vliv. Tranzitní kmitočet použitého OZ je $f_T = 1$ MHz.

Použitím hodnot $C=10\mathrm{nF}$ a $R=10\mathrm{k}\Omega$ vychází mezní frekvence horní propusti

$$f_m = \frac{1}{2\pi RC} = 1592$$
Hz. (1)

V závislosti na použitém typu aproximace je nastavováno zesílení

$$G_{\infty} = \frac{R_3 + R_4}{R_4} \in \langle 1; 3 \rangle. \tag{2}$$

1 Frekvenční charakteristika

S pomocí zapojení na schématu 1 a funkce AC sweep byly získány frekvenční charakteristiky všech aproximací horní propusti, které jsou vykresleny na obrázkách 2, 3, 4 a 5. Srovnání vypočtených a změřených veličin je v tabulce ??. Teoretické zlomové frekvence byly vypočítány nalezeném takového přirozeného f, které splňuje

$$\left| \frac{-(\frac{f}{f_0})^2}{1 + i\frac{f}{f_0}(3 - G_\infty) - (\frac{f}{f_0})^2} \right| \approx \frac{\sqrt{2}}{2}.$$
 (3)

Obrázek 1: Horní propust dle Butterworthovy aproximace

aproximace	zesílení G_{∞}	vypočtená f_m	změřená f_m
kritické tlumení	1 (-0,059 dB)	2478 Hz	2419 Hz
Bessel	1,268 (1,97 dB)	$2028~\mathrm{Hz}$	$1983~\mathrm{Hz}$
Butterworth	1,586 (3,86 dB)	$1595~\mathrm{Hz}$	$1555~\mathrm{Hz}$
Čebyšev	2,234 (6,71 dB)	1146 Hz	1126 Hz

Tabulka 1: Vlastnosti různých aproximací filtru

Obrázek 2: Frekvenční charakteristika pro kritické tlumení $(G_{\infty}=1)$

Obrázek 3: Frekvenční charakteristika pro Besselovu aproximaci $(G_{\infty}=1,268)$

Obrázek 4: Frekvenční charakteristika pro Butterworthovu aproximaci $(G_{\infty}=1,586)$

Obrázek 5: Frekvenční charakteristika pro Čebyševovu aproximaci $(G_{\infty}=2,234)$

2 Přechodová charakteristika

Obrázek 6: Schéma pro určení přechodové charakteristiky filtru

Na zapojení na schématu 6 bylo změřeno několik přechodových charakteristik vykreslených na obrázkách 7. Na vstup filtru byl připojen budicí signál obdélníkového tvaru s amplitudou 1 V a frekvencí 300 Hz. Rozlišení na svislé ose je rovněž stejné (1 V na dílek) s výjimkou 7e a 7f, kde musel být krok na svislé ose upraven, aby byl vidět plný rozkmit výstupu filtru.

Charakteristiky 7a až 7d vypadají podle očekávání – s rostoucím zesílením G_{∞} roste i míra oscilací po první špičce a systém se pomalu stává nestabilní. Na charakteristice 7e již jsou pozorovatelné kmity, které se neustálí během celé půlperiody budicího signálu. Poslední průběh s $G_{\infty}=2,995$ ukazuje, jak filtr kmitá skoro bez ohledu na hrany budicího signálu a tlumení je naprosto minimální.

Obrázek 7: Přechodové charakteristiky filtru pro různá zesílení G_{∞}