Week 14: Panel data

Daniel Stegmueller

Dept. of Political Science Duke University

Panel data

- ▶ Data observed on cross-section of units and over time
- ► Panel data of individuals or households
- ► Clinical trials
- ► Time series cross section data

Notation

- ▶ Units i, i = 1,...,N
- ▶ Repeated observations t, $t = 1, ..., T_i$
- ightharpoonup Thus it indexes cross-sections (individuals, countries, firms etc.) and time.

Model setup

► Most flexible model specification:

$$y_{it} = \alpha_{it} + \mathbf{x}_{it}\boldsymbol{\beta}_i + \epsilon_{it}$$

- ightharpoonup Response y_{it}
- ▶ Intercepts, α_{it} varying over individuals and time
- ightharpoonup Covariate vector \mathbf{x}_{it} with time-constant and time varying variables
- ightharpoonup Regression coefficients β_t varying over individuals
- ▶ Stochastic error term, ϵ_{it} , over time and individuals
- ▶ Too general to estimate (with $T \times N$ data points)

Pooled model

► Constant coefficients, no heterogeneity

$$y_{it} = \alpha + \mathbf{x}_{it}\boldsymbol{\beta} + \epsilon_{it}$$

- ▶ Uses variation over i and t to estimate β
- ▶ Consistently estimated by OLS if $Cov(\mathbf{x}_{it}, \epsilon_{it}) = 0$ and either T or $N \to \infty$.
- ► However $Cor(y_{is}, y_{it}) > 0$ and even after including covariates we are likely to have

$$Cor(\epsilon_{is}, \epsilon_{it}) > 0$$

► Thus standard errors will be too small and need to be corrected

Between model estimator

- ► Uses only 'cross-sectional' variation
- ► Average over all years:

$$\bar{\mathbf{y}}_i = \alpha + \bar{\mathbf{x}}_i \boldsymbol{\beta} + \bar{\epsilon}_i$$

► Rewrite as between model:

$$\bar{y}_i = \alpha + \bar{\mathbf{x}}_i \boldsymbol{\beta} + (\alpha_i - \alpha + \bar{\epsilon}_i)$$
 with $\bar{y}_i = 1/T \sum_t y_{it}$; $\bar{\epsilon}_i = 1/T \sum_t \epsilon_{it}$; and $\bar{\mathbf{x}}_i = 1/T \sum_t \mathbf{x}_{it}$

- ► Estimated via OLS
- ► The between estimator is consistent if the composite error term $(\alpha_i \alpha + \bar{\epsilon}_i)$ is independent of covariates $\bar{\mathbf{x}}_i$

Heterogeneity via individual specific effects

► Alternatively, allow for heterogeneity using individual specific effects

$$y_{it} = \alpha_i + \mathbf{x}_{it}\boldsymbol{\beta} + \epsilon_{it}$$

► Central assumption: exogenous regressors

$$E(\epsilon_{it}|a_i, \mathbf{x}_{i1}, ..., \mathbf{x}_{iT}) = 0$$
, for $t = 1, ..., T$

- ► Model variants:
 - \triangleright Fixed effects: α_i is unobserved random variable possibly correlated with \mathbf{x}_{it}
 - ▶ Random effects: 'random intercept' model for individual effects, usually assuming

$$\alpha_i \sim N(0, \sigma_\alpha^2)$$
 $\epsilon_{it} \sim N(0, \sigma_\epsilon^2)$

▶ Both models assume that $E(y_{it}|\mathbf{x}_{it},\alpha_i) = \mathbf{x}_{it}\boldsymbol{\beta}$

Heterogeneity via individual specific effects

- ► Fixed effects estimation strategies:
 - *▶ LSDV* estimation
 - *▶ Within* estimation
 - *▶ First differences* estimation
- ► Random effects estimation strategies:
 - ▶ *GLS* estimation
 - *▶ ML* estimation

Fixed effects panel regression via within estimator

- ► Uses panel structure of the data
- ► Individual-specific deviations from time-averages of covariates and dependent variable
- Starting with individual heterogeneity model

$$y_{it} = \alpha_i + \mathbf{x}_{it} \boldsymbol{\beta} + \epsilon_{it}$$

► Take averages over time

$$\bar{y}_i = \alpha_i + \bar{\mathbf{x}}_i \boldsymbol{\beta} + \bar{\epsilon}_i$$

► Subtracting yields the within/fixed effects estimator:

$$y_{it} - \bar{y}_i = (\mathbf{x}_{it} - \bar{\mathbf{x}}_i)\boldsymbol{\beta} + (\epsilon - \bar{\epsilon}_i), \quad t = 1, \dots, T$$

- ▶ Note that we got rid of the α_i s
- This is a consistent and efficient estimator of the fixed effects model (given that α_i are fixed effects and ϵ_{it} are iid)

Fixed effects panel regression via first-differences estimator

- ► Uses panel structure of the data
- ► Individual-specific changes of covariates and dependent variable
- ► Starting with individual heterogeneity model

$$y_{it} = \alpha_i + \mathbf{x}_{it}\boldsymbol{\beta} + \epsilon_{it}$$

► Lag by one period

$$y_{it-1} = \alpha_i + \mathbf{x}_{it-1} \boldsymbol{\beta} + \epsilon_{it-1}$$

► Subtracting yields first differences estimator

$$y_{it} - y_{it-1} = (\mathbf{x}_{it} - \mathbf{x}_{it-1})\boldsymbol{\beta} + (\epsilon_{it} - \epsilon_{it-1}), \quad t = 2, ..., T$$

- ► Again, the α_i s cancel
- ► This is a consistent estimator of the fixed effects model (though it is less efficient than the within variant for T > 2 and iid ϵ_{it})

Random effects panel regression via GLS

- ► Uses panel structure of the data
- ► Starting with individual heterogeneity model

$$y_{it} = \alpha_i + \mathbf{x}_{it}\boldsymbol{\beta} + \epsilon_{it}, \quad \epsilon_{it} \sim N(0, \sigma_{\epsilon}^2), \ \alpha_i \sim N(0, \sigma_{\alpha}^2)$$

▶ The FGLS estimator of the RE model is

$$y_{it} - \hat{\lambda}\bar{y}_i = (1 - \hat{\lambda})\mu + (\mathbf{x}_{it} - \hat{\lambda}\bar{\mathbf{x}}_i)\boldsymbol{\beta} + v_{it}$$

with an (asymptotically) iid term

$$v_{it} = (1 - \hat{\lambda})\alpha_i + (\epsilon_{it} - \hat{\lambda}\bar{\epsilon}_i)$$

 \triangleright $\hat{\lambda}$ is consistent for

$$1 - \frac{\sigma_{\epsilon}}{\sqrt{\sigma_{\epsilon}^2 + T\sigma_{\alpha}^2}}$$

- ▶ Pooled OLS model if $\hat{\lambda} \rightarrow 0$, within estimation if $\hat{\lambda} \rightarrow 1$
- ► As $T \to \infty$, $\hat{\lambda} \to 1$

Correlation structure of RE model

► Rewrite RE model in error components formulation

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + u_{it}, \ u_{it} = \alpha_i + \epsilon_{it}$$

► Thus

$$Cov((\alpha_i + \epsilon_{it}), (\alpha_i + \epsilon_{is})) = \begin{cases} \sigma_{\alpha}^2 & \text{if } t \neq s \\ \sigma_{\alpha}^2 + \sigma_{\epsilon}^2 & \text{if } t = s \end{cases}$$

► This implies constant error correlations, or equicorrelated errors

$$\operatorname{Cor}(u_{it}, u_{is}) = \frac{\sigma_{\alpha}^2}{\sigma_{\alpha}^2 + \sigma_{\epsilon}^2} \text{ for } t \neq s$$

Example: Wages and work hours

- ► Does labor supply react positively to wages?
- ▶ Data from Ziliak 1997.
- ▶ Balanced panel of 532 men from 1979–1988
- ► N=5320, T=10
- ► Annual hours worked (logged)
- ► Annual wage (logged)
- ► Basic model specification:

$$lnhr_{it} = \beta lnwg_{it} + \alpha_i + \epsilon_{it}$$

 \triangleright Cross-sectional correlation: 0.123, p=0.000

Example, data preparation

➤ Several function make use of pdata.frame structure from library plm pdata <- pdata.frame(data, index=c("id", "year"))

► Variation in hours worked

```
summary(pdata$lnhr)

total sum of squares : 433.8
     id     time
0.392212 0.004524
```

► Variation in wages

```
summary(pdata$lnwg)

total sum of squares : 964.8
    id    time
0.8422643 0.0003686
```

Example, pooled model

▶ Pooled model OLS

Residuals:

```
Min. 1st Qu. Median 3rd Qu. Max. -4.83000 -0.08880 -0.00545 0.11400 0.96500
```

Coefficients :

```
Estimate Std. Error t-value Pr(>|t|)
(Intercept) 7.44152 0.02413 308.44 <2e-16
lnwg 0.08274 0.00913 9.07 <2e-16
```

Total Sum of Squares: 434 Residual Sum of Squares: 427

R-Squared : 0.0152 Adj. R-Squared : 0.0152

F-statistic: 82.2223 on 1 and 5318 DF, p-value: <2e-16

Example, fixed effects model

► Fixed effects / within model

Residuals:

```
Min. 1st Qu. Median 3rd Qu. Max. -4.00000 -0.06170 0.00128 0.07760 1.27000
```

Coefficients:

```
Estimate Std. Error t-value Pr(>|t|)
lnwg 0.1677 0.0189 8.89 <2e-16
```

Total Sum of Squares: 264
Residual Sum of Squares: 259

R-Squared : 0.0162 Adj. R-Squared : 0.0146

F-statistic: 78.9578 on 1 and 4787 DF, p-value: <2e-16

Example, fixed effects model

► Fixed effects model via individual dummies (LSDV)

```
m2b <- lm(lnhr~ -1 + lnwg + factor(id), data=data)</pre>
```

Residuals:

```
Min 1Q Median 3Q Max -4.004 -0.062 0.001 0.078 1.272
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|) lnwg 0.1677 0.0189 8.89 <2e-16 factor(id) ....
```

Residual standard error: 0.233 on 4787 degrees of freedom Multiple R-squared: 0.999, Adjusted R-squared: 0.999 F-statistic: 1.08e+04 on 533 and 4787 DF, p-value: <2e-16

Example, random effects model, ML

► Random effects, (RE)ML estimation

```
m3 <- lmer(lnhr~lnwg + (1|id), data=data)

AIC BIC logLik deviance REMLdev
556 583 -274 534 548

Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 0.0264 0.162
Residual 0.0543 0.233

Number of obs: 5320, groups: id, 532

Fixed effects:
Estimate Std. Error t value
```

(Intercept) 7.3453 0.0365 201.4

lnwg 0.1196 0.0137 8.8

Example, random effects model, GLS

► Random effects, GLS estimation

Residuals :

```
Min. 1st Qu. Median 3rd Qu. Max. -4.32000 -0.06680 0.00288 0.08720 0.79300
```

Coefficients:

Estimate Std. Error t-value Pr(>|t|)
(Intercept) 7.3460 0.0364 201.86 <2e-16
lnwg 0.1193 0.0136 8.75 <2e-16

Total Sum of Squares: 293 Residual Sum of Squares: 289

R-Squared : 0.0142 Adj. R-Squared : 0.0142

F-statistic: 76.6383 on 1 and 5318 DF, p-value: <2e-16

Example, random effects model, GLS

► Variance decomposition

```
ercomp(m3b)
```

Effects:

```
var std.dev share
```

idiosyncratic 0.0542 0.2328 0.68

individual 0.0260 0.1612 0.32

theta: 0.585

Example, first differences model

► Fitted to first differences

Residuals:

```
Min. 1st Qu. Median 3rd Qu. Max. -4.8000 -0.0728 -0.0041 0.0672 4.5500
```

Coefficients:

```
Estimate Std. Error t-value Pr(>|t|) (intercept) 0.000828    0.004271    0.19    0.85 lnwg    0.108985    0.021335    5.11    3.4e-07
```

Total Sum of Squares: 420
Residual Sum of Squares: 418
R-Squared: 0.00542

Adj. R-Squared : 0.00542

F-statistic: 26.0942 on 1 and 4786 DF, p-value: 3.38e-07

Estimation comparisons

Estim.	β	s.e.(β)	σ_ϵ^2	σ_{ξ}^2	N
Pooled	0.083	0.009	0.080		5320
Between	0.067	0.020			532
Within	0.168	0.019	0.049	0.033	5320
RE (GLS)	0.119	0.014	0.054	0.026	5320
RE (ML)	0.120	0.014	0.054	0.026	5320
First Diff.	0.109	0.021			4788

'Twoway models': adding time effects

- ► Allow for time effects or 'common shocks' experienced by all units of a cross-section
- ► Extended individual heterogeneity model:

$$y_{it} = \alpha_i + \gamma_t + \mathbf{x}_{it}\boldsymbol{\beta} + \epsilon_{it}$$

- ► Estimated by
 - ▶ Time dummies
 - ▶ Within-estimation, GLS RE
 - ▶ ML RE by adding an additional random intercept
- ► E.g., our within estimator is modified to regressing $y_{it} \bar{y}_i \bar{y}_t + \bar{\bar{y}}$ on $\mathbf{x}_{it} \bar{\mathbf{x}}_i \bar{\mathbf{x}}_t + \bar{\bar{\mathbf{x}}}_i$ with \bar{y}_i as before, and

$$\bar{y}_t = 1/N \sum_{i=1}^{N} y_{it}$$
, and $\bar{\bar{y}} = 1/NT \sum_{i=1}^{N} \sum_{i=1}^{T} y_{it}$

Example contd., twoway FE

► Individual and time fixed effects

Time fixed effects estimates

► Fixed time effects estimates, levels

```
summary(fixef(m6, effect="time", type="level"))
```

```
Estimate Std. Error t-value Pr(>|t|)
1979
      7.2367
                0.0500
                           145
                              <2e-16
     7.2267
                0.0501
                           144 <2e-16
1980
1981
     7.2329
                0.0502
                           144 <2e-16
1982
     7.2107
                0.0503
                           143 <2e-16
1983
     7.1783
                0.0502
                           143
                                <2e-16
1984
      7.2035
                0.0500
                           144
                                <2e-16
1985
     7.2329
                0.0503
                           144
                                <2e-16
                                <2e-16
1986
     7.2259
                0.0501
                           144
1987
      7.2386
                0.0503
                           144
                                <2e-16
      7.2426
                           143
                                <2e-16
1988
                0.0505
```

Time fixed effects estimates

► Display fixed time effect, deviations from mean

```
summary(fixef(m6, effect="time", type="dmean"))
```

```
Estimate Std. Error t-value Pr(>|t|)
1979 0.01386
              0.04997
                        0.28
                                0.78
    0.00384 0.05005 0.08
                                0.94
1980
1981
    0.00997
              0.05021 0.20
                                0.84
                      -0.24
                                0.81
1982 -0.01221
              0.05028
1983 -0.04455 0.05020
                       -0.89
                               0.37
                       -0.39
1984 -0.01937
              0.05001
                                0.70
1985 0.01002
              0.05028
                      0.20
                                0.84
    0.00299
              0.05006 0.06
1986
                                0.95
1987
    0.01575
              0.05028
                        0.31
                                0.75
1988 0.01971
                                0.70
              0.05048
                        0.39
```

Example contd., twoway RE, GLS

► Individual and time random effects, GLS estimation

Example contd., twoway RE, GLS

▶ Individual and time random effects, ML estimation

```
m7b <- lmer(lnhr~lnwg + (1|id) + (1|year), data=data)
AIC BIC logLik deviance REMLdev
 544 577 -267
                  520
                          534
Random effects:
Groups Name Variance Std.Dev.
 id (Intercept) 0.026413 0.1625
year (Intercept) 0.000298 0.0173
                   0.053959 0.2323
Residual
Number of obs: 5320, groups: id, 532; year, 10
Fixed effects:
          Estimate Std. Error t value
(Intercept) 7.3462 0.0368 199.4
lnwg
    0.1193 0.0136
                                8.7
```

Time random effects estimates

► Time random effects EB estimates and (normal-approx.) confidence intervals

```
m7b.re <- lme4::ranef(m7b)$year
m7b.re.lo <- m7b.re - 1.96*arm::se.ranef(m7b)$year
m7b.re.hi <- m7b.re + 1.96*arm::se.ranef(m7b)$year
m7b.re <- data.frame(m7b.re, m7b.re.lo, m7b.re.hi)
colnames(m7b.re) <- c("re.est", "lo", "hi")
round(m7b.re,3)</pre>
```

```
re.est
                lo
                      hi
1979 0.010 -0.008 0.028
1980 0.003 -0.016 0.021
1981 0.007 -0.011 0.026
1982
     -0.009 -0.027 0.009
1983
    -0.033 -0.052 -0.015
1984
    -0.015 -0.033 0.004
1985
    0.008 -0.011 0.026
1986
    0.002 -0.016 0.020
1987 0.012 -0.006 0.030
1988
    0.015 -0.003
                   0.034
```

Tests for individual specific effects

- ► Test for presence of individual specific effects (Breusch Pagan 1980)
- ► Based on residuals of OLS pooled model
- ► Null hypothesis: iid errors
- ► Test distributed χ^2 with 1 df.

```
test <- plm(lnhr~lnwg, data=pdata, model="pooling")
plmtest(test, effect="individual", type="bp")

data: lnhr ~ lnwg
chisq = 2490, df = 1, p-value < 2.2e-16
alternative hypothesis: significant effects</pre>
```

► BP = 2490 > $\chi_{0.05}^2(1)$ = 3.84 rejects null hypothesis

F-test of within against pooling model

- ► F test of pooled model versus within model with individual and/or time specific effects
- ► Test distributed F with (M_1, M_2) degrees of freedom
- ► Example: Individual specific effects

```
testw1 <- plm(lnhr~lnwg, data=pdata,
        effect="individual", model="within")
pFtest(testw1, test)</pre>
```

F test for individual effects

data: lnhr ~ lnwg
F = 5.833, df1 = 531, df2 = 4787, p-value < 2.2e-16
alternative hypothesis: significant effects</pre>

 $F = 5.8 > F_{0.05}(531,4787) = 1.1$ rejects null hypothesis

Fixed versus random effects

- ▶ Both models assume that $E(y_{it}|\mathbf{x}_{it},\alpha_i) = \mathbf{x}_{it}\boldsymbol{\beta}$
- ▶ We cannot estimate $E(y_{it}|\mathbf{x}_{it},\alpha_i)$ in a short (i.e., small T) panel
- ightharpoonup Eliminate α_i

$$E(y_{it}|\mathbf{x}_{it}) = E(\alpha_i|\mathbf{x}_{it}) + \mathbf{x}_{it}\boldsymbol{\beta}$$

- ► RE model assumes $E(\alpha_i|\mathbf{x}_{it}) = \alpha$, thus $E(y_{it}|\mathbf{x}_{it}) = \alpha + \mathbf{x}_{it}\boldsymbol{\beta}$ and one can identify $E(y_{it}|\mathbf{x}_{it})$
- ► FE model $E(\alpha_i|\mathbf{x}_{it}) = \alpha$ varies with \mathbf{x}_{it} , thus we cannot identify $E(y_{it}|\mathbf{x}_{it})$
- ► It is possible to identify marginal effect

$$\boldsymbol{\beta} = \partial E(y_{it} | \alpha_i, \mathbf{x}_{it}) / \partial \mathbf{x}_{it}$$

for time-varying covariates

Hausman test

- ▶ If individual effects are fixed (i.e., assuming the FE model is a correct description of the DGP), within estimator is consistent, random effects estimate is inconsistent
- ▶ Test for statistically significant difference between within-estimates $\hat{\beta}_W$ of time-varying covariates and random-effects estimates $\tilde{\beta}_R$
- Large test value rejects null hypothesis: individual effects α_i are uncorrelated with covariates
- ► *Two* possible responses
 - ▶ Decide to use fixed effects model
 - ▶ Respecify random effects model

Hausman test computation

- ► Start with random effects model and iid error components $\epsilon \sim (0, \sigma_{\epsilon}^2)$ and $\alpha \sim (0, \sigma_{\alpha}^2)$
- ► The Hausman test statistics is

$$H = (\tilde{\boldsymbol{\beta}}_R - \hat{\boldsymbol{\beta}}_W) [\hat{\boldsymbol{V}}(\tilde{\boldsymbol{\beta}}_W) - \hat{\boldsymbol{V}}(\hat{\boldsymbol{\beta}}_R)]^{-1} (\tilde{\boldsymbol{\beta}}_R - \hat{\boldsymbol{\beta}}_W)$$

- ▶ *H* is asymptotically distributed χ^2 with dim(β) degrees of freedom
- ightharpoonup Alternatively, perform Wald test of $\gamma = 0$ in

$$y_{it} - \hat{\lambda}\bar{y}_i = (1 - \hat{\lambda})\mu + (\mathbf{x}_{it} - \hat{\lambda}\bar{\mathbf{x}}_i)\boldsymbol{\beta} + v_{it} + (\mathbf{x}_{it} - \bar{\mathbf{x}}_i)\boldsymbol{\gamma}$$

- $ightharpoonup \gamma = 0$ yields RE estimator
- ▶ If v_{it} is correlated with covariates, additional functions of regressors (i.e., $(\mathbf{x}_{it} \bar{\mathbf{x}}_i)$) will be significantly different from zero

Hausman test, hours & wages example

► Compute FE and RE model

```
fe <- plm(lnhr~lnwg, data=pdata, effect="individual", model="within")
re <- plm(lnhr~lnwg, data=pdata, effect="individual", model="random")</pre>
```

► General Hausman test

```
phtest(fe,re)
```

```
data: lnhr ~ lnwg
chisq = 13.73, df = 1, p-value = 0.0002115
alternative hypothesis: one model is inconsistent
```

 \blacktriangleright $H = 14 > \chi^2_{0.05}(1) = 3.84$ rejects the specified random effects model

Correlated random effects

- \blacktriangleright Deal with possible correlation between α_i and covariates in RE framework
- ▶ Mundlak (1978) allowed α_i s to depend on time averages of covariates

$$\alpha_i = \bar{\mathbf{x}}_i \boldsymbol{\delta} + \boldsymbol{w}_i$$

- ▶ GLS estimation of β and δ yields β estimates equal to the FE model
- ► Easy implementation
 - \triangleright Create time-constant covariate vector $\bar{\mathbf{x}}_i$
 - ▶ Estimate RE model

$$y_{it} = \alpha_i + \mathbf{x}_{it}\boldsymbol{\beta} + \bar{\mathbf{x}}_i\boldsymbol{\delta} + \epsilon_{it}$$

Correlated random effects example

► Correlated RE model

```
m3corr <- plm(lnhr~lnwg+lnwgm, data=pdata,
    effect="individual", model="random")</pre>
```

	Estimate	Std. Error	t-value	<pre>Pr(> t)</pre>
(Intercept)	7.4830	0.0519	144.23	< 2e-16
lnwg	0.1677	0.0189	8.89	< 2e-16
lnwgm	-0.1008	0.0273	-3.70	0.00022

► Previously estimated RE model

```
Estimate Std. Error t-value Pr(>|t|)
(Intercept) 7.3460 0.0364 201.86 <2e-16
lnwg 0.1193 0.0136 8.75 <2e-16
```

► Previously estimated within/FE model

```
Estimate Std. Error t-value Pr(>|t|)
lnwg 0.1677 0.0189 8.89 <2e-16
```

Robust standard errors

- ► Adapt 'robust/Huber-White/sandwich' correction to panel data
- ► Take into account possible serial correlation over time that is different for different units, i.e.,

$$Cov(u_{it}, u_{is}) > 0, s \neq t$$

► A general version of our panel models can be written as

$$\tilde{y}_{it} = \tilde{\mathbf{w}}_{it}\boldsymbol{\theta} + \tilde{u}_{it}$$

where suitable transformations yield each previous estimator

► Stacking observation over time yields

$$\tilde{\mathbf{y}}_i = \tilde{\mathbf{W}}_i \boldsymbol{\theta} + \tilde{\mathbf{u}}_i$$

► The OLS estimator is

$$\hat{\boldsymbol{\theta}} = \left(\sum_{i=1}^{N} \tilde{\mathbf{W}}_{i}' \tilde{\mathbf{W}}_{i}\right)^{-1} \sum_{i=1}^{N} \tilde{\mathbf{W}}_{i}' \tilde{\mathbf{y}}_{i}$$

Robust standard errors

► Its asymptotic variance is

$$V(\hat{\boldsymbol{\theta}}) = \left(\sum_{i=1}^{N} \tilde{\mathbf{W}}_{i}' \tilde{\mathbf{W}}_{i}\right)^{-1} \sum_{i=1}^{N} \tilde{\mathbf{W}}_{i}' E\left(\tilde{\mathbf{u}}_{i}' \tilde{\mathbf{u}}_{i} | \tilde{\mathbf{W}}_{i}\right) \tilde{\mathbf{W}}_{i} \left(\sum_{i=1}^{N} \tilde{\mathbf{W}}_{i}' \tilde{\mathbf{W}}_{i}\right)^{-1}$$

assuming $E(\tilde{\mathbf{W}}_i'\tilde{\mathbf{u}}_i) = \mathbf{0}$

► Arrelano (1987) proposed an estimate allowing for both heteroskedasticity and serial correlation:

$$\hat{V}(\hat{\boldsymbol{\theta}}) = \left(\sum_{i=1}^{N} \tilde{\mathbf{W}}_{i}' \tilde{\mathbf{W}}_{i}\right)^{-1} \sum_{i=1}^{N} \tilde{\mathbf{W}}_{i}' E\left(\hat{\mathbf{u}}_{i}' \hat{\mathbf{u}}_{i} | \tilde{\mathbf{W}}_{i}\right) \tilde{\mathbf{W}}_{i} \left(\sum_{i=1}^{N} \tilde{\mathbf{W}}_{i}' \tilde{\mathbf{W}}_{i}\right)^{-1}$$

with

$$\hat{\mathbf{u}}_i = \hat{\tilde{\mathbf{u}}}_i = \tilde{\mathbf{y}}_{it} - \tilde{\mathbf{w}}_{it} \hat{\boldsymbol{\theta}}$$

Robust standard errors, wages and hours worked

- ▶ Use R package sandwich to calculate robust SE for fitted plm objects
- ► E.g., results of within model M2

```
coeftest(m2)
    Estimate Std. Error t value Pr(>|t|)
lnwg 0.1677 0.0189 8.89 <2e-16</pre>
```

► Panel-robust standard errors

```
coeftest(m2, vcov=vcovHC(m2, method="arellano"))
    Estimate Std. Error t value Pr(>|t|)
lnwg 0.1677 0.0849 1.98 0.048
```

▶ Discuss! ...

Test: Pooling

- ► Test for
- ► Compare models
 - $ightharpoonup M_1$: estimated on full sample
 - \blacktriangleright M_2 : estimated equation for each individual
- \triangleright *F*-test with (M_1, M_2) degrees of freedom

```
testpld <- plm(lnhr~lnwg, data=pdata, model="within")
testnp <- pvcm(lnhr~lnwg, data=pdata, model="within")
pooltest(testpld,testnp)
data: lnhr~lnwg
F = 2.835, df1 = 531, df2 = 4256, p-value < 2.2e-16
alternative hypothesis: unstability</pre>
```

Random coefficient models

 \blacktriangleright Model allowing for effect heterogeneity for covariates \mathbf{w}_{it}

$$y_{it} = \mathbf{z}_{it}\boldsymbol{\beta} + \mathbf{w}_{it}\boldsymbol{\alpha}_i + \epsilon_{it}$$

where α_i is a random vector with zero mean.

▶ The random parameters or random coefficients model (Swamy 1970) specifies

$$y_{it} = \mathbf{z}_{it}\boldsymbol{\beta}_i + \epsilon_{it}$$

with

$$\boldsymbol{\beta}_i = \boldsymbol{\beta} + \boldsymbol{\alpha}_i$$

► Substituting yields

$$y_{it} = \mathbf{z}_{it}\boldsymbol{\beta} + \mathbf{z}_{it}\boldsymbol{\alpha}_i + \epsilon_{it}$$

► Estimation is possible by (RE)ML or FGLS

Random coefficient model of wages and hours worked, GLS

- ► Specification $y_{it} = \mathbf{z}_{it}\boldsymbol{\beta}_i + \epsilon_{it}$, $\boldsymbol{\beta}_i = \boldsymbol{\beta} + \boldsymbol{\alpha}_i$
- ► FGLS estimates

```
vc <- pvcm(lnhr~lnwg, data=pdata,
    effect="individual", model="random")</pre>
```

Estimated mean of the coefficients:

Estimate Std. Error z-value Pr(>|z|)

(Intercept) 7.7562 0.0666 116.43 <2e-16

lnwg -0.0301 0.0257 -1.17 0.24

Estimated variance of the coefficients:

(Intercept) lnwg

(Intercept) 1.654 -0.629

lnwg -0.629 0.248

Total Sum of Squares: 69200

Residual Sum of Squares: 442

Multiple R-Squared: 0.994

Random coefficient model of wages and hours worked, (RE)ML

► ML (or REML) estimates

```
vcml <- lmer(lnhr~lnwg + (1+lnwg|id), data=data)</pre>
```

```
AIC BIC logLik deviance REMLdev -60.5 -21.1 36.3 -86.5 -72.5
```

Random effects:

```
Groups Name Variance Std.Dev. Corr
id (Intercept) 0.6885 0.830
lnwg 0.0859 0.293 -0.988
Residual 0.0463 0.215
Number of obs: 5320, groups: id, 532
```

Fixed effects:

```
Estimate Std. Error t value (Intercept) 7.5725 0.0554 136.8 lnwg 0.0356 0.0203 1.8
```