COL703: Logic for Computer Science (Jul-Nov 2023)

Lectures 21 & 22 (Ground Resolution, Undecidability results, Predicate Resolution)

Kumar Madhukar

madhukar@cse.iitd.ac.in

October 26th and 30th, 2023

Herbrand expansion

Let $F := \forall x_1 \dots \forall x_n \ F^*$ be a closed formula in Skolem form with matrix F^* .

$$E(F) := \{F^*[t_1/x_1] \dots [t_n/x_n] \mid t_1 \dots t_n \text{ are ground terms } \}$$

Herbrand expansion

Let $F := \forall x_1 \dots \forall x_n \ F^*$ be a closed formula in Skolem form with matrix F^* .

$$E(F) := \{F^*[t_1/x_1] \dots [t_n/x_n] \mid t_1 \dots t_n \text{ are ground terms } \}$$

A closed formula F in Skolem form is satisfiable iff E(F) is satisfiable when considered as a set of propositional formulas.

Proof:

Ground resolution

A closed formula F in Skolem form is unsatisfiable iff there is a propositional resolution proof of \square from E(F).

Proof:

Ground resolution

A closed formula F in Skolem form is unsatisfiable iff there is a propositional resolution proof of \square from E(F).

Proof:

E(F) is unsat iff some finite subset of E(F) is unsat. (Compactness theorem)

Ground resolution

Α	closed	formula	F in	Skolem	form	is	unsatisfiable	iff	there	is a	propositional	resolution	proof
0	$f \; \square \; fror$	n E(F).											

Proof:

E(F) is unsat iff some finite subset of E(F) is unsat. (Compactness theorem)

Soundness and completeness of propositional resolution says that we can derive \square from E(F) using resolution.

Generalized version of Ground Resolution Theorem

Let F_1, F_2, \dots, F_n be closed formulas in Skolem form

whose respective matrices $F_1^*, F_2^*, \dots, F_n^*$ are in CNF.

 $F_1 \wedge F_2 \wedge \ldots \wedge F_n$ is unsatisfiable iff there is a propositional resolution proof of \square from the ground instances¹ of clauses from $F_1^*, F_2^*, \ldots, F_n^*$.

 $^{^{1}}$ a ground instance of F is a formula obtained by replacing all variables in F with ground terms

Let us use ground resolution to show that (a), (b), and (c) together entail (d).

- (a) Everyone in the class is either sleepy, bored, or day-dreaming.
- (b) All those who are bored are sleepy.
- (c) Someone in the class is not day-dreaming.
- (d) Someone in the class is sleepy.

Show that $\forall x \exists y \ (P(x) \to Q(y)) \to \exists y \ \forall x \ (P(x) \to Q(y))$ is a valid sentence.

Compactness

- Compactness of sets of ground formulas A set of ground quantifier-free formulas has a model iff every finite subset of it has a model.
- Compactness of closed formulas A set of first-order sentences has a model iff every finite subset of it has a model.
- Löwenheim Skolem Theorem If a set of closed formulas has a model, then it has a model with a domain (universe) which is at most countable.

Semi-decidability of validity

Validity of first-order formulas is semi-decidable².

Proof:

²a semi-decision procedure for validity should return "valid" if a valid formula is given as input, but otherwise may compute forever

Semi-decidability of validity

Validity of first-order formulas is semi-decidable².

Proof:

```
Semi-Decision Procedure for Validity Input: Closed formula F Output: Either that F is valid or compute forever Compute a Skolem-form formula G equisatisfiable with \neg F Let G_1, G_2, \ldots be an enumeration of the Herbrand expansion E(G) for n=1 to \infty do begin if \square \in \operatorname{Res}^*(G_1 \cup \ldots \cup G_n) then stop and output "F is valid" end
```

²a semi-decision procedure for validity should return "valid" if a valid formula is given as input, but otherwise may compute forever

Let us try this on the formula

$$\exists x \forall y \ P(x,y) \rightarrow \forall y \exists x \ P(x,y)$$

Undecidability results

Post's Correspondence Problem (PCP) is undecidable.

Undecidability of validity follows from undecidability of PCP.

Since F is unsatisfiable iff $\neg F$ is valid, satisfiability must also be undecidable.

Satisfiability is not even semi-decidable (because, for any F, either F is valid or $\neg F$ is satisfiable).

Proof

Reference material:

https://www.cs.ox.ac.uk/people/james.worrell/lecture13-2015.pdf

Closed formula for a general PCP instance

Given a general instance $\mathbf{P} = \{(x_1, y_1), \dots, (x_k, y_k)\}$ of PCP we have the formulas

$$F_{1} = \bigwedge_{i=1}^{k} P(f_{x_{i}}(e), f_{y_{i}}(e))$$

$$F_{2} = \forall u \forall v \bigwedge_{i=1}^{k} (P(u, v) \rightarrow P(f_{x_{i}}(u), f_{y_{i}}(v)))$$

$$F_{3} = \exists u P(u, u).$$

The PCP instance **P** has a solution iff $F_1 \wedge F_2 \rightarrow F_3$ is valid.

Unification

- a substitution is a function θ from the set of σ -terms to itself such that $c\theta = c$ for each constant symbol c, and $f(t_1, \ldots, t_k)\theta = f(t_1\theta, \ldots, t_k\theta)$ for each k-ary function symbol f
- composition of substitutions is written diagrammatically ($\theta.\theta'$ denotes the substitution obtained by applying θ first, and then θ')
- given a set of literals $D = \{L_1, \dots, L_k\}$ and a substitution θ , define $D\theta = \{L_1\theta, \dots, L_k\theta\}$
- we say that θ unifies D if $D\theta = \{L\}$ for some literal L

Most General Unifier

- $\theta = [f(a)/x][a/y]$ unifies $\{P(x), P(f(y))\}$
- $\theta' = [f(y)/x]$ also unifies $\{P(x), P(f(y))\}$
- θ' is a more general unifier than θ (because $\theta = \theta'.[a/y]$)
- θ is a most general unifier of a set of literals D if θ is a unifier of D, and for any other unifier θ' , we have that $\theta' = \theta.\theta''$
- most general unifiers are only unique up to renaming variables (why?)

Unification theorem

- a set of literals either has no unifier or it has a most general unifier
- $\{P(f(x)), P(g(x))\}\$ cannot be unified
- $\{P(f(x)), P(x)\}\$ cannot be unified
- we cannot unify a variable x and a term t is x occurs in t
- a unifiable set of literals has a most general unifier
- proof:

Robinson's algorithm

```
Unification Algorithm
Input: Set of literals D
Output: Either a most general unifier of D or "fail"
\theta := \text{identity substitution}
while \theta is not a unifier of D do
begin
pick two distinct literals in D\theta and find the left-most positions at which they differ
if one of the corresponding sub-terms is a variable x and the other a term t not containing x
then \theta := \theta \cdot [t/x] else output "fail" and halt
```

Termination

- a variable x is replaced in each iteration with a term t that does not contain x
- ullet the number of different variables occurring in D heta decreases by one in each iteration

Correctness

- for any unifier θ' of D, we have $\theta' = \theta.\theta'$
- argue that this is a loop invariant
- holds initially (θ is identity)
- why does the inductive step work?

Resolution

Definition 3 (Resolution). Let C_1 and C_2 be clauses with no variable in common. We say that a clause R is a resolvent of C_1 and C_2 if there are sets of literals $D_1 \subseteq C_1$ and $D_2 \subseteq C_2$ such that $D_1 \cup \overline{D_2}$ has a most general unifier θ , and

$$R = (C_1 \theta \setminus \{L\}) \cup (C_2 \theta \setminus \{\overline{L}\}), \qquad (1)$$

where $L = D_1\theta$ and $\overline{L} = D_2\theta$. More generally, if C_1 and C_2 are arbitrary clauses, we say that R is a resolvent of C_1 and C_2 if there are variable renamings θ_1 and θ_2 such that $C_1\theta_1$ and $C_2\theta_2$ have no variable in common, and R is a resolvent of $C_1\theta_1$ and $C_2\theta_2$ according to the definition above.

$$\{P(f(x),g(y)),Q(x,y)\}$$

$$\{\neg P(f(f(a)),g(z)),Q(f(a),z)\}$$

$$\{P(f(x),g(y)),Q(x,y)\}$$

$$\{\neg P(f(f(a)),g(z)),Q(f(a),z)\}$$

check if there are common variables

$$\{P(f(x),g(y)),Q(x,y)\}$$

$$\{\neg P(f(f(a)),g(z)),Q(f(a),z)\}$$

check if there are common variables

pick D_1 and D_2 , and get a most general unifier θ of $D_1 \cup \overline{D_2}$

$$\{P(f(x),g(y)),Q(x,y)\}$$

$$\{\neg P(f(f(a)),g(z)),Q(f(a),z)\}$$

check if there are common variables

pick D_1 and D_2 , and get a most general unifier θ of $D_1 \cup \overline{D_2}$

resolve, to get $\{Q(f(a), z)\}$

Another example

$$\{P(x),P(y)\}$$

$$\{\neg P(x), \neg P(y)\}$$

Resolution procedure

Input: a set of clauses, S

Output: If the algorithm terminates, report that S is sat or unsat

 $S_0 := S$

Choose clashing clauses $C_1, C_2 \in S_i$, and let $C = Res(C_1, C_2)$.

If C is \square , terminate and report unsat

$$S_{i+1} = S_i \cup C$$

If $S_{i+1} = S_i$ for all possible pairs of clashing clauses, terminate and report sat

Resolution procedure

Input: a set of clauses, S

Output: If the algorithm terminates, report that S is sat or unsat

$$S_0 := S$$

Choose clashing clauses C_1 , $C_2 \in S_i$, and let $C = Res(C_1, C_2)$.

If C is \square , terminate and report unsat

$$S_{i+1} = S_i \cup C$$

If $S_{i+1} = S_i$ for all possible pairs of clashing clauses, terminate and report sat

this may not terminate for a satisfiable set of clauses (because of existence of infinite models); so this is not a decision procedure

```
1. \{\neg P(x), Q(x), R(x, f(x))\} given

2. \{\neg P(x), Q(x), R'(f(x))\} given

3. \{P'(a)\} given

4. \{P(a)\} given

5. \{\neg R(a, y), P'(y)\} given

6. \{\neg P'(x), \neg Q(x)\} given

7. \{\neg P'(x), \neg R'(x)\}
```

```
1. \{\neg P(x), Q(x), R(x, f(x))\}
                                                                                                                                  given
2. \{\neg P(x), Q(x), R'(f(x))\}
                                                                                                                                  given
3. \{P'(a)\}
                                                                                                                                  given
4. \{P(a)\}
                                                                                                                                  given
5. \{\neg R(a, y), P'(y)\}
                                                                                                                                  given
6. \{\neg P'(x), \neg Q(x)\}
                                                                                                                                  given
7. \{\neg P'(x), \neg R'(x)\}
                                                                                                                                  given
8. \{\neg Q(a)\}
                                                                                                                             [a/x] 3,6
```

9. $\{Q(a), R'(f(a))\}$

```
1. \{\neg P(x), Q(x), R(x, f(x))\}
                                                                                                                                   given
2. \{\neg P(x), Q(x), R'(f(x))\}
                                                                                                                                   given
3. \{P'(a)\}
                                                                                                                                   given
4. \{P(a)\}
                                                                                                                                   given
5. \{\neg R(a, y), P'(y)\}
                                                                                                                                   given
6. \{\neg P'(x), \neg Q(x)\}
                                                                                                                                   given
7. \{\neg P'(x), \neg R'(x)\}
                                                                                                                                   given
                                                                                                                              [a/x] 3,6
8. \{\neg Q(a)\}
```

[a/x] 2,4

```
1. \{\neg P(x), Q(x), R(x, f(x))\}
                                                                                                                                 given
 2. \{\neg P(x), Q(x), R'(f(x))\}
                                                                                                                                 given
 3. \{P'(a)\}
                                                                                                                                 given
 4. \{P(a)\}
                                                                                                                                 given
 5. \{\neg R(a, y), P'(y)\}
                                                                                                                                 given
 6. \{\neg P'(x), \neg Q(x)\}
                                                                                                                                 given
 7. \{\neg P'(x), \neg R'(x)\}
                                                                                                                                 given
                                                                                                                            [a/x] 3,6
 8. \{\neg Q(a)\}
 9. \{Q(a), R'(f(a))\}
                                                                                                                            [a/x] 2,4
10. \{R'(f(a))\}
                                                                                                                                   8,9
```

```
1. \{\neg P(x), Q(x), R(x, f(x))\}
                                                                                                                                given
 2. \{\neg P(x), Q(x), R'(f(x))\}
                                                                                                                                given
 3. \{P'(a)\}
                                                                                                                                given
 4. \{P(a)\}
                                                                                                                                given
 5. \{\neg R(a, y), P'(y)\}
                                                                                                                                given
 6. \{\neg P'(x), \neg Q(x)\}
                                                                                                                                given
 7. \{\neg P'(x), \neg R'(x)\}
                                                                                                                                given
 8. \{\neg Q(a)\}
                                                                                                                           [a/x] 3,6
 9. \{Q(a), R'(f(a))\}
                                                                                                                           [a/x] 2,4
10. \{R'(f(a))\}
                                                                                                                                 8,9
11. \{Q(a), R(a, f(a))\}
                                                                                                                           [a/x] 1,4
```

```
1. \{\neg P(x), Q(x), R(x, f(x))\}
                                                                                                                                given
 2. \{\neg P(x), Q(x), R'(f(x))\}
                                                                                                                                given
 3. \{P'(a)\}
                                                                                                                                given
 4. \{P(a)\}
                                                                                                                                given
 5. \{\neg R(a, y), P'(y)\}
                                                                                                                                given
 6. \{\neg P'(x), \neg Q(x)\}
                                                                                                                                given
 7. \{\neg P'(x), \neg R'(x)\}
                                                                                                                                given
 8. \{\neg Q(a)\}
                                                                                                                           [a/x] 3,6
 9. \{Q(a), R'(f(a))\}
                                                                                                                           [a/x] 2,4
10. \{R'(f(a))\}
                                                                                                                                 8,9
11. \{Q(a), R(a, f(a))\}
                                                                                                                           [a/x] 1,4
12. \{R(a, f(a))\}
                                                                                                                                8,11
```

Example

```
1. \{\neg P(x), Q(x), R(x, f(x))\}
                                                                                                                               given
 2. \{\neg P(x), Q(x), R'(f(x))\}
                                                                                                                               given
 3. \{P'(a)\}
                                                                                                                               given
 4. \{P(a)\}
                                                                                                                               given
 5. \{\neg R(a, y), P'(y)\}
                                                                                                                               given
 6. \{\neg P'(x), \neg Q(x)\}
                                                                                                                               given
 7. \{\neg P'(x), \neg R'(x)\}
                                                                                                                               given
 8. \{\neg Q(a)\}
                                                                                                                          [a/x] 3,6
 9. \{Q(a), R'(f(a))\}
                                                                                                                          [a/x] 2.4
10. \{R'(f(a))\}
                                                                                                                                8,9
11. \{Q(a), R(a, f(a))\}
                                                                                                                          [a/x] 1,4
12. \{R(a, f(a))\}
                                                                                                                               8,11
13. \{P'(f(a))\}
                                                                                                                      [f(a)/y] 5,12
```

Example

```
1. \{\neg P(x), Q(x), R(x, f(x))\}
                                                                                                                               given
 2. \{\neg P(x), Q(x), R'(f(x))\}
                                                                                                                               given
 3. \{P'(a)\}
                                                                                                                               given
 4. \{P(a)\}
                                                                                                                               given
 5. \{\neg R(a, y), P'(y)\}
                                                                                                                               given
 6. \{\neg P'(x), \neg Q(x)\}
                                                                                                                               given
 7. \{\neg P'(x), \neg R'(x)\}
                                                                                                                               given
 8. \{\neg Q(a)\}
                                                                                                                          [a/x] 3,6
 9. \{Q(a), R'(f(a))\}
                                                                                                                          [a/x] 2.4
10. \{R'(f(a))\}
                                                                                                                                 8,9
11. \{Q(a), R(a, f(a))\}
                                                                                                                           [a/x] 1,4
12. \{R(a, f(a))\}
                                                                                                                               8,11
13. \{P'(f(a))\}
                                                                                                                      [f(a)/y] 5,12
14. \{\neg R'(f(a))\}
                                                                                                                      [f(a)/x] 7,13
```

Example

```
1. \{\neg P(x), Q(x), R(x, f(x))\}
                                                                                                                               given
 2. \{\neg P(x), Q(x), R'(f(x))\}
                                                                                                                               given
 3. \{P'(a)\}
                                                                                                                               given
 4. \{P(a)\}
                                                                                                                               given
 5. \{\neg R(a, y), P'(y)\}
                                                                                                                               given
 6. \{\neg P'(x), \neg Q(x)\}
                                                                                                                               given
 7. \{\neg P'(x), \neg R'(x)\}
                                                                                                                               given
 8. \{\neg Q(a)\}
                                                                                                                          [a/x] 3,6
 9. \{Q(a), R'(f(a))\}
                                                                                                                          [a/x] 2.4
10. \{R'(f(a))\}
                                                                                                                                8,9
11. \{Q(a), R(a, f(a))\}
                                                                                                                          [a/x] 1,4
12. \{R(a, f(a))\}
                                                                                                                               8,11
13. \{P'(f(a))\}
                                                                                                                      [f(a)/y] 5,12
14. \{\neg R'(f(a))\}
                                                                                                                      [f(a)/x] 7,13
15. {}
                                                                                                                             10,14
```

Another example

1.
$$\{\neg P(x, y), P(y, x)\}$$

2.
$$\{\neg P(x, y), \neg P(y, z), P(x, z)\}$$

3.
$$\{P(x, f(x))\}$$

4.
$$\{\neg P(x,x)\}$$

given

given

given

given

Exercise

Consider the following sentences over a signature containing a ternary predicate symbol A, a constant symbol e, and a unary function symbol s.

$$F_1: \forall x \ A(e,x,x)$$

$$F_2: \forall x \forall y \forall z \ (\neg A(x, y, z) \lor A(s(x), y, s(z)))$$

$$F_3: \forall x \exists y \ A(s(s(e)), x, y)$$

Use first-order resolution to show that $F_1 \wedge F_2 \vDash F_3$.

Exercise

Consider the following sentences over a signature containing a ternary predicate symbol A, a constant symbol e, and a unary function symbol s.

$$F_1: \forall x \ A(e,x,x)$$

$$F_2: \forall x \forall y \forall z \ (\neg A(x, y, z) \lor A(s(x), y, s(z)))$$

$$F_3: \forall x \exists y \ A(s(s(e)), x, y)$$

Use first-order resolution to show that $F_1 \wedge F_2 \vDash F_3$.

In other words, show that $F_1 \wedge F_2 \wedge \neg F_3$ is unsatisfiable.

Resolution Lemma

- Given a formula H with free variables x_1, \ldots, x_n , its universal closure $\forall^* H$ is the sentence $\forall x_1, \ldots, \forall x_n H$.
- Let $F = \forall x_1, \dots, \forall x_n \ G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall^* \ (G \cup \{R\})$.
- Soundness follows immediately from this.

Lifting Lemma

Let C_1 and C_2 be clauses with respective ground instances G_1 and G_2 . Suppose that R is a propositional resolvent of G_1 and G_2 . Then C_1 and C_2 have a predicate-logic resolvent R' such that R is a ground instance of R'.

Proof:

Reference material: https://www.cs.ox.ac.uk/people/james.worrell/lecture14-2015.pdf

Let F be a closed formula in Skolem form with its matrix F' in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F'.

Let F be a closed formula in Skolem form with its matrix F' in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F'.

Proof:

ullet by completeness of ground resolution, there is a proof $C_1', C_2', \ldots, C_n' = \square$

Let F be a closed formula in Skolem form with its matrix F' in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F'.

- by completeness of ground resolution, there is a proof $C_1', C_2', \ldots, C_n' = \square$
- C_i' is either a ground instance of a clause in F' or is a resolvent of C_j' and C_k' for j,k < i

Let F be a closed formula in Skolem form with its matrix F' in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F'.

- ullet by completeness of ground resolution, there is a proof $C_1', C_2', \ldots, C_n' = \square$
- ullet C_i' is either a ground instance of a clause in F' or is a resolvent of C_j' and C_k' for j,k < i
- we inductively define a corresponding predicate-logic proof $C_1', C_2', \ldots, C_n = \square$ such that C_i' is a ground instance of C_i

Let F be a closed formula in Skolem form with its matrix F' in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F'.

- by completeness of ground resolution, there is a proof $C_1', C_2', \ldots, C_n' = \square$
- C_i' is either a ground instance of a clause in F' or is a resolvent of C_j' and C_k' for j,k < i
- we inductively define a corresponding predicate-logic proof $C_1', C_2', \ldots, C_n = \square$ such that C_i' is a ground instance of C_i
- if C'_i is a ground instance of $C \in F'$, $C_i = C$

Let F be a closed formula in Skolem form with its matrix F' in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F'.

- ullet by completeness of ground resolution, there is a proof $C_1', C_2', \ldots, C_n' = \square$
- ullet C_i' is either a ground instance of a clause in F' or is a resolvent of C_j' and C_k' for j,k < i
- we inductively define a corresponding predicate-logic proof $C_1', C_2', \ldots, C_n = \square$ such that C_i' is a ground instance of C_i
- if C'_i is a ground instance of $C \in F'$, $C_i = C$
- otherwise, C'_i is a resolvent of C'_j and C'_k for j, k < i

Let F be a closed formula in Skolem form with its matrix F' in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F'.

- by completeness of ground resolution, there is a proof $C_1', C_2', \ldots, C_n' = \square$
- ullet C_i' is either a ground instance of a clause in F' or is a resolvent of C_j' and C_k' for j,k < i
- we inductively define a corresponding predicate-logic proof $C_1', C_2', \ldots, C_n = \square$ such that C_i' is a ground instance of C_i
- if C'_i is a ground instance of $C \in F'$, $C_i = C$
- otherwise, C'_i is a resolvent of C'_i and C'_k for j, k < i
- by induction, we have constructed C_j and C_k ...

Let F be a closed formula in Skolem form with its matrix F' in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F'.

- by completeness of ground resolution, there is a proof $C_1', C_2', \ldots, C_n' = \square$
- ullet C_i' is either a ground instance of a clause in F' or is a resolvent of C_j' and C_k' for j,k < i
- we inductively define a corresponding predicate-logic proof $C_1', C_2', \ldots, C_n = \square$ such that C_i' is a ground instance of C_i
- if C'_i is a ground instance of $C \in F'$, $C_i = C$
- otherwise, C'_i is a resolvent of C'_i and C'_k for j, k < i
- by induction, we have constructed C_j and C_k ...
- by the lifting lemma ...

Thank you!