Emmanuel Filiot
Shibashis Guha
Nicolas Mazzocchi

Université libre de Bruxelles Highlights 2019 - Warsaw Two-way Parikh automata: tool in transducer theory

Definitions

Presburger acceptance

Presburger formulas ($\exists FO[\mathbb{Z}, \leq, +]$)

$$\psi := \neg \psi \mid \exists x \; \psi \mid \psi \land \psi \mid \psi \lor \psi \mid t \le t$$

Definitions

Presburger acceptance $\xrightarrow{a_1 \mid \vec{v_1}} - \cdots - \xrightarrow{a_n \mid \vec{v_n}} \sum_{i=1}^n \vec{v_i} \models \psi$

Presburger formulas ($\exists FO[\mathbb{Z}, \leq, +]$)

$$\psi \coloneqq \neg \psi \mid \exists x \; \psi \mid \psi \land \psi \mid \psi \lor \psi \mid t \le t$$

NFA = 2NFA

Expressive and decidable formalism

Expressive and decidable formalism

Non-emptiness problem for NPA

- ▶ Decidable [Klaedtke and Rueß, ICALP03]
- ▶ NP-C with existential formulas [Figueira and Libkin, LICS15]

$$\forall u \in \Sigma^* \quad T_1(u) = T_2(u)$$

$$\{ u \in \Sigma^* : T_1(u) \neq T_2(u) \} = \emptyset$$

$$\{ u \in \Sigma^* : \exists i \in \mathbb{N} \ T_1(u)[i] \neq T_2(u)[i] \} = \emptyset$$

$$\{ u \in \Sigma^* : \exists i \in \mathbb{N} \ T_1(u)[i] \neq T_2(u)[i] \} = \emptyset$$

$$\{ u \in \Sigma^* : \exists i \in \mathbb{N} \ T_1(u)[i] \neq T_2(u)[i] \} = \emptyset$$

$$\{ u \in \Sigma^* : \exists i \in \mathbb{N} \ T_1(u)[i] \neq T_2(u)[i] \} = \emptyset$$

$$\{ u \in \Sigma^* : \exists i \in \mathbb{N} \ T_1(u)[i] \neq T_2(u)[i] \} = \emptyset$$

$$\{ u \in \Sigma^* : \exists i \in \mathbb{N} \ T_1(u)[i] \neq T_2(u)[i] \} = \emptyset$$

$$\{ u \in \Sigma^* : \exists i \in \mathbb{N} \ T_1(u)[i] \neq T_2(u)[i] \} = \emptyset$$

- 1. Decidability of emptiness
- 2. Counting positions
- 3. Recognize non-regular languages

Functional transducer equivalence

$$\{ u \in \Sigma^* : \exists i \in \mathbb{N} \ T_1(u)[i] \neq T_2(u)[i] \} = \emptyset$$

- 1. Decidability of emptiness
- 2. Counting positions
- 3. Recognize non-regular languages

Let's use NPA!

Equiv. ??

1-way functional transducers

Equiv. ??

2-way functional transducers

	Automata	Non-emptiness	Universality
	2NPA	undecidable	ble
A S	bounded-visit 2NPA	PSPACE-C	undecidable
	fixed-visit 2NPA	NP-C	
PA	2DPA		CONEXPTIME-C

NPA <

UPA {

	Automata	Non-emptiness	Universality
	2NPA	undecidable	He
NPA	bounded-visit 2NPA	PSPACE-C	undecidable
	fixed-visit 2NPA	NP-C	
UPA $\Big\{$	2DPA		CONEXPTIME-C

$$\psi \coloneqq \exists \vec{x_1} \ \varphi$$

	Automata	Non-emptiness	Universality
	2NPA	undecidable	ble
NPA (bounded-visit 2NPA	PSPACE-C	undecidable
NFA	fixed-visit 2NPA	NP-C	V
UPA $\Big\{$	2DPA	INF-C	CONEXPTIME-C

$$\psi := \exists \vec{x_1} \forall \vec{x_2} \dots \exists \vec{x_i} \varphi$$

	Automata	Non-emptiness	Universality
	2NPA	undecidable	Me
NPA {	bounded-visit 2NPA	PSPACE-C	undecidable
NFA	fixed-visit 2NPA	NP-C	V
UPA {	2DPA		CONEXPTIME-C
	Σ_{i} -2NPA	undecidable	ble
$\forall i > 1$	bounded-visit Σ_i -2NPA		undecidable
VI > 1	fixed-visit Σ_i -2NPA	$\Sigma_{i-1}^{ ext{Exp}} ext{-C}$	V
	Σ _i -2DPA		Π_i^{Exp} -C

$$\psi := \exists \vec{x_1} \forall \vec{x_2} \dots \exists \vec{x_i} \ \varphi$$

[FiliotGM, FSTTCS19] thanks to [Haase, LICS14]

	Automata	Non-emptiness	Universality	
	2NPA	undecidable	Me	
NPA	bounded-visit 2NPA	PSPACE-C	undecidable	
	fixed-visit 2NPA	NP-C	V	
UPA {	2DPA		CONEXPTIME-C	
	Σ_{i} -2NPA	undecidable	Me	
$\forall i > 1$	bounded-visit Σ_i -2NPA	$\Sigma_{i-1}^{ ext{Exp}} ext{-C}$	undecidable	
VI > 1	fixed-visit Σ_i -2NPA		V	
	Σ _i -2DPA		$\Pi_i^{ ext{Exp}} ext{-C}$	

$$\psi := \exists \vec{x_1} \forall \vec{x_2} \dots \exists \vec{x_i} \ \varphi$$

[FiliotGM, FSTTCS19] thanks to [Haase, LICS14]

Question?