LINKÖPINGS UNIVERSITET Institutionen för datavetenskap Avdelningen för statistik Per Sidén  $\begin{array}{c} 2015\text{-}04\text{-}21 \\ \text{Time Series Analysis, 6 hp} \\ 732\text{A}34 \end{array}$ 

## Exam in Time Series Analysis, 6 credits

Exam time: 8-12

Allowed: Pocket calculator.

Text book (Cryer & Chan: "Time Series Analysis- with applications

in R"), notes allowed.

Examinator: Lotta Hallberg. Assisting teacher: Per Sidén.

Grades: Maximum is 20 points.

A=19-20 points B=17-18.5 points C=14-16.5 points D=12-13.5 points E=10-11.5 points F=0-9.5 points

- Provide a detailed report that shows motivation of the results.

- 1. For the processes below, assume  $e_t$  is zero mean white noise with variance  $\sigma_e^2 = 1$ .
  - (a) Show that the process  $Y_t = Y_{t-1} + e_t$  is not weakly stationary.

1p.

(b) Consider the process  $Y_t = e_t - \frac{1}{4}e_{t-2}$ . Is it invertible?

1p.

- (c) Suppose  $Y_t = \beta_0 + \beta_1 \cdot t + e_t$  and  $W_t = Y_t Y_{t-1}$ . For which real values of  $\beta_0$  and  $\beta_1$  is  $Y_t$  weakly stationary? For which real values of  $\beta_0$  and  $\beta_1$  is  $W_t$  weakly stationary? 2p.
- 2. For the stationary process  $Y_t = 2 + \frac{1}{2}Y_{t-1} + e_t \frac{1}{3}e_{t-1}$ , compute the mean and the covariance function.  $e_t$  is white noise with variance 1.
- 3. Below you find three model specifications (a,b,c), three simulated time series (X,Y,Z) and three SAC/SPAC functions (1,2,3).  $e_t$  is white noise with unit variance. Your job is to connect each simulated time series with the model that generated it and also with the corresponding SAC/SPAC functions. Motivate your choices.
  - (a) AR(1),  $(1 + 0.8B) W_t = e_t$ .
  - (b) MA(1),  $W_t = (1 + 0.8B)e_t$ .
  - (c) ARMA(1,1),  $(1-0.8B) W_t = (1-0.4B) e_t$



Figure 1: Simulated time series (X,Y,Z).



Figure 2: SAC/SPAC graphs (1,2,3).

4. The water-level  $Y_t$  in a lake has been measured once a year for 50 years. The level has been modelled with two different models. In the models below,  $e_t$  is white noise. Calculate the forecasts for  $Y_t$  the next two years. Two years for each of the models.

Model 1: 
$$Y_t = \beta_0 + \beta_1 \cdot t + N_t$$
, where  $N_t = \phi_1 N_{t-1} + \phi_2 N_{t-2} + e_t$ .

Model 2: 
$$(1 - B) Y_t = W_t$$
, where  $W_t = \rho_1 W_{t-1} + \rho_2 W_{t-2} + e_t$ .

| t  | $Y_t$ | Residuals model 1 | Residuals model 2 |
|----|-------|-------------------|-------------------|
| 47 |       | 0.099             | 0.554             |
| 48 | 7.31  | -0.376            | 0.159             |
| 49 | 8.43  | 0.724             | 1.406             |
| 50 | 6.67  | -1.797            | -1.686            |

| Parameter | Estimate |
|-----------|----------|
| $\beta_0$ | 9.32     |
| $\beta_1$ | -0.027   |
| $\phi_1$  | 0.771    |
| $\phi_2$  | -0.239   |
| $ ho_1$   | 0.035    |
| $ ho_2$   | -0.329   |

5. Consider the model  $Y_t = 4 - \frac{1}{2}Y_{t-1} + e_t + \frac{1}{4}e_{t-1}$ , where  $e_t$  is normally distributed white noise with variance 1. A simulation of the model with 200 values is shown in the graph below.

## **Simulation**



Figure 3: Simulation from the model.

(a) Express the process as a  $MA(\infty)$ -process.

2p.

We use this simulated series to estimate the parameters. The result is given in the table below:

| Parameter    | Estimate | SE of estimate |
|--------------|----------|----------------|
| $\mu$        | 2.699    | 0.061          |
| $\theta$     | -0.330   | 0.302          |
| $\phi$       | -0.531   | 0.270          |
| $\sigma_e^2$ | 0.996    |                |

(b) Estimate the constant  $\delta$  in the process using the fitted values. Use the method of moments. True value is 4.

(c) Use the fitted model to calculate 95% forecast-intervals for the time points t = 201, 202 and 203. The last four simulated values are  $Y_{197} = 2.34, Y_{198} = 3.58, Y_{199} = 1.84, Y_{200} = 3.26$ . The last four residuals are  $\hat{e}_{197} = -0.157, \, \hat{e}_{198} = 0.738, \, \hat{e}_{199} = -0.635, \, \hat{e}_{200} = 0.319$ .

GOOD LUCK!