Master 1 MAS & CHPS – Probabilités, Modèles et Applications

Responsable: Adrien Hardy, email: adrien.hardy@univ-lille.fr

Feuille d'exercices 4 Bases de Probabilités

Exercice 10. A l'aide de R, simuler et représenter graphiquement 100 réalisations indépendantes d'un vecteur gaussien de \mathbb{R}^2 de loi $\mathcal{N}(0,\Sigma)$ où :

- (a) $\Sigma = I_2$
- (b) $\Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 7 \end{bmatrix}$
- (c) $\Sigma = \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix}$
- (d) $\Sigma = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$

On donnera dans chaque cas la densité par rapport à Lebesgue si elle existe.

Exercice 11. Soit (X_n) et (Y_n) deux suites de variables aléatoires et X, Y deux variables aléatoires à valeurs dans le même espace métrique (E, d). Montrer que :

- (a) $X_n \to X$ p.s. et $Y_n \to Y$ p.s. implique que $X_n + Y_n \to X + Y$ p.s.
- (b) $X_n \to X$ en probabilité et $Y_n \to Y$ en probabilité implique que $X_n + Y_n \to X + Y$ en probabilité.
- (c) $X_n \to X$ en loi et $Y_n \to Y$ en loi n'implique pas que $X_n + Y_n \to X + Y$ en loi.

Exercice 12. Soit (X_n) une suite de variables aléatoires et X une variable aléatoire à valeurs dans le même espace métrique (E, d). Montrer que si pour tout $\varepsilon > 0$ on a

$$\sum_{n=1}^{\infty} \mathbb{P}(d(X_n, X) > \varepsilon) < \infty$$

alors $X_n \to X$ p.s.