COMP 3011 DESIGN AND ANALYSIS OF ALGORITHMS FALL 2024

Greedy Algorithms

LI Bo
Department of Computing
The Hong Kong Polytechnic University

GREEDY ALGORITHMS

Given a set of jobs $J = \{1, 2, \dots, n\}$

 \triangleright Job j starts at s_j and finishes at $f_j \ge s_j$.

> Two jobs (open intervals) are compatible if they don't overlap.

Goal: find maximum subset of mutually compatible jobs.

Intuition: shorter is better

4

Idea 1:

Repeatedly pick shortest compatible, unscheduled job (i.e. that does not conflict with any scheduled job).

Intuition: earlier is better

Idea 2:

> Repeatedly pick compatible job with earliest starting time.

GREEDY ALGORITHM

- > Repeatedly pick an item until no more feasible choices.
- Among all feasible choices, we always pick the one that minimizes (or maximizes) <u>some</u> <u>property</u>.
 - > length, starting time, ...
- > Such algorithms are called *greedy*.
- > Greedy algorithms may not be optimal.
- ➤ But maybe we have been using the wrong property!

What about earliest-finish-time-first?

Idea 1:

> Repeatedly pick shortest compatible, unscheduled job (i.e. that does not conflict with any scheduled job).

Idea 2:

> Repeatedly pick compatible job with earliest starting time.

EARLIEST-FINISH-TIME-FIRST ALGORITHM

```
EARLIEST-FINISH-TIME-FIRST (n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)

SORT jobs by finish times and renumber so that f_1 \le f_2 \le ... \le f_n.

S \leftarrow \emptyset. \longleftarrow set of jobs selected

FOR j = 1 TO n

IF (job j is compatible with S)

S \leftarrow S \cup \{j\}.

RETURN S.
```

Proposition. Can implement earliest-finish-time first in $O(n \log n)$ time.

Switching j_{r+1} by i_{r+1} in 0:

Still *feasible* and *optimal*!

EARLIEST-FINISH-TIME-FIRST ALGORITHM

Theorem. The earliest-finish-time-first algorithm is optimal.

Proof. [by contradiction]

- > Assume Greedy is not optimal.
- \triangleright Let $A = \{i_1, i_2, ..., i_k\}$ be set of jobs selected by Greedy.
- \triangleright Let $O = \{j_1, j_2, ..., j_m\}$ be set of jobs in an optimal solution. Then m > k.
- \blacktriangleright Let r+1 be first index such that $i_{r+1} \neq j_{r+1}$. such a job exists \Longrightarrow $f_{i_{r+1}} \leq f_{j_{r+1}}$

$$i_1 = j_1$$
 $i_2 = j_2$ $i_r = j_r$ $i_{r+1} \neq j_{r+1}$

INTERVAL PARTITIONING

Given a set of lectures (jobs) $L = \{1, 2, ..., n\}$;

- \triangleright Lecture j starts at s_j and finishes at $f_j \ge s_j$.
- > Two lectures are compatible if they don't overlap.

Goal: find minimum number of classrooms to schedule all lectures so that no two lectures occur at the same time in the same room

• Optimal is 3 classrooms.

Definition. The <u>depth</u> of a set of open intervals is the <u>maximum</u> number of intervals that contain any given point.

Key observation. #rooms needed ≥ depth.

Is depth enough???

Can we do earliest-finish-time-first?

Can we do earliest-start-time-first?

INTERVAL PARTITIONING: EARLIEST-Start-time-first algorithm

EARLIEST-START-TIME-FIRST $(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)$

SORT lectures by start times and renumber so that $s_1 \le s_2 \le ... \le s_n$.

 $d \leftarrow 0$. \leftarrow number of allocated classrooms

For j = 1 to n

IF (lecture *j* is compatible with some classroom)

Schedule lecture j in any such classroom k.

ELSE

Allocate a new classroom d + 1.

Schedule lecture j in classroom d + 1.

 $d \leftarrow d + 1$.

RETURN schedule.

Lemma.

The earliest-start-time-first algorithm can be implemented in $O(n \log n)$ time.

Lemma.

The earliest-start-time first algorithm never schedules two incompatible lectures in the same classroom.

The d lectures are incompatible.

INTERVAL PARTITIONING: EARLIEST-START-TIME-FIRST ALGORITHM

Theorem. Earliest-start-time-first algorithm uses #depth rooms and thus is optimal.

- \triangleright Let d = number of classrooms that the algorithm allocates.
- \triangleright Classroom d is opened because we needed to schedule a lecture, say j, that is incompatible with a lecture in each of d-1 other classrooms.
- \triangleright Thus, these d lectures each end after s_i .
- \triangleright Since we sorted by start time, each of these incompatible lectures start no later than s_i .

SCHEDULING TO MINIMIZING LATENESS

SCHEDULING TO MINIMIZING LATENESS

 s_j f_j time

Single resource processes one job at a time.

- \triangleright Job j requires t_j units of processing time and is due at time d_j .
- \triangleright If j starts at time s_j , it finishes at time $f_j = s_j + t_j$.
- \triangleright Lateness: $l_j = \max\{0, f_j d_j\}$.

Goal: schedule all jobs to minimize maximum lateness $L = \max_{j} l_{j}$.

 $l_1 = 2$

		d_{j}	time
t_{j}	1	- 1	
	d_j	f_j	time
	$l_j = f_j$	$-d_j$	

 $l_4 = 6$

	1	2	3	4	5	6
tj	3	2	1	4	3	2
d_{j}	6	8	9	9	14	15

 $d_6 = 15$

 $d_3 = 9$

 $d_2 = 8$

Maximum latency L = 6

SCHEDULING TO MINIMIZING LATENESS

 $t + t_i$

SCHEDULING TO MINIMIZING LATENESS

EARLIEST-DEADLINE-FIRST $(n, t_1, t_2, ..., t_n, d_1, d_2, ..., d_n)$

SORT jobs by due times and renumber so that $d_1 \le d_2 \le ... \le d_n$.

$$t \leftarrow 0$$
.

For j = 1 To n Process the ordered jobs one by one (immediately)

Assign job j to interval $[t, t + t_j]$.

$$s_j \leftarrow t$$
; $f_j \leftarrow t + t_j$.

$$t \leftarrow t + t_j$$
.

RETURN intervals $[s_1, f_1], [s_2, f_2], ..., [s_n, f_n].$

	1	2	3	4	5	6
t _j	3	2	1	4	3	2
d_j	6	8	9	9	14	15

 $l_4 = 1$

SCHEDULING TO MINIMIZING LATENESS

Properties for optimal schedules.

Observation 1. There exists an optimal schedule with no idle time.

Observation 2. The earliest-deadline-first schedule has no idle time.

SCHEDULING TO MINIMIZING LATENESS

or i < j for ordered jobs

Definition. Given a schedule S, an inversion is a pair of jobs i and j such that: $d_i < d_j$ but j is scheduled before i.

swap makes the schedule better!

Observation 3. The earliest-deadline-first schedule is the *unique* idle-free schedule with no inversions.

SCHEDULING TO MINIMIZING LATENESS

Observation 4. If an idle-free schedule has an inversion, then it has an adjacent inversion.

two inverted jobs scheduled consecutively

Proof.

- \triangleright Let i-j be a closest inversion. $d_j > d_i$
- \triangleright Let k be element immediately to the right of j.
 - \triangleright Case 1: $d_j > d_k$. Then j k is an adjacent inversion.
 - ightharpoonup Case 2. $d_i < d_k$. Then i k is a closer inversion.

SCHEDULING TO MINIMIZING LATENESS

Key Claim. Exchanging two adjacent, inverted jobs i and j reduces the number of inversions by 1 and does not increase the max lateness.

 $f_j' = f_i \qquad i < j : d_i \le d_j$

 \triangleright Let l be the lateness before the swap, and let l' be it afterwards.

$$> l'_k = l_k \text{ for all } k \neq i, j.$$

$$> l_i' \le l_i$$

$$\triangleright$$
 If job j is late, $l'_i = f'_i - d_j = f_i - d_j \le f_i - d_i \le l_i$.

SCHEDULING TO MINIMIZING LATENESS

Theorem. The earliest-deadline-first schedule S is optimal.

Proof. [by contradiction]

- \triangleright Define S^* to be an optimal schedule with the fewest inversions.
- \triangleright Can assume S^* has no idle time. \longrightarrow Observation 1
- \triangleright Case 1: S^* has no inversions. Then $S = S^*$. Observation 3
- \triangleright Case 2: S^* has an inversion.
 - \triangleright Let i j be an adjacent inversion \longrightarrow Observation 4
 - \triangleright Exchanging jobs i and j decreases the number of inversions by 1 without increasing the max lateness \longrightarrow Key Claim
 - \triangleright Contradicts "fewest inversions" part of the definition of S^* .

GREEDY ANALYSIS STRATEGIES

Greedy algorithm stays ahead.

- ➤ Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.
- > [Interval scheduling]

Structural.

- Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.
- > [Interval partitioning]

Exchange argument.

- > Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.
- > [Minimizing lateness, Interval scheduling]

Thank You!