

#### Universidade Federal de Uberlândia

Faculdade de Engenharia Elétrica FEELT

# CIRCUITOS TRIFÁSICOS DESEQUILIBRADOS

Relatório da Disciplina de Experimental de Circuitos Elétricos II por

Lesly Viviane Montúfar Berrios 11811ETE001

Prof. Wellington Maycon Santos Bernardes Uberlândia, Novembro / 2019

# Sumário

| 1 | Obj                                         | ietivos                               | 2 |
|---|---------------------------------------------|---------------------------------------|---|
| 2 | Introdução teórica Preparação               |                                       | 2 |
| 3 |                                             |                                       | 2 |
|   | 3.1                                         | Materiais e ferramentas               | 2 |
|   | 3.2                                         | Montagem                              | 2 |
|   | 3.3                                         | Carga em estrela com neutro conectado | 2 |
|   | 3.4                                         | Dados Experimentais                   | 3 |
|   | 3.5                                         |                                       | 3 |
| 4 | 4 Análise sobre segurança                   |                                       | 3 |
| 5 | Cálculos, análise dos resultados e questões |                                       | 3 |
| 6 | Simulação computacional                     |                                       | 4 |
| 7 | Conclusões                                  |                                       | 4 |

### 1 Objetivos

#### 2 Introdução teórica

#### 3 Preparação

#### 3.1 Materiais e ferramentas

- 1 **Fonte:** Alimentará todo o circuito. Possui frequência de 60Hz.
- 2 **Regulador de tensão (Varivolt):** Também chamado de autotransformador, permitirá obter o valor desejado de corrente a partir da regulagem correta da tensão fornecida pela fonte.
- 3 *Conectores:* Para as conexões no circuito foi utilizado majoritariamente cabos banana-banana.
- 4 **Medidor eletrônico KRON Mult K:** Possibilita encontrar a medição da potência real (P) vatímetro, reativa (Q) e aparente (S) do circuito. Ele também possui função de cofasímetro, instrumento elétrico que mede o fator de potência (fp,  $cos\theta$ ) ou o ângulo da impedância  $\theta$  do circuito, para um circuito com a impedância  $Z = Z \angle \theta$ .
- 5 Amperímetro analógico AC: Instrumento utilizado para acompanhar visualmente o aumento da corrente.
- 6 **Reatores de 160 mH:** Foram utilizados 3, para compor a carga do circuito trifásico. Sendo L=160mH e  $R_L=3,8\Omega$ .
- 7 **Resistores de**  $50\Omega$ : Foram utilizados 3, para compor a carga do circuito trifásico.
- 8 Capacitores de 45,9 $\mu F$ : Foram utilizados 3, para compor a carga do circuito trifásico. Sendo  $C=45,9\mu F$ .

#### 3.2 Montagem

#### 3.3 Carga em estrela com neutro conectado

A montagem utilizada observa-se na Figura 1. Pretende-se com este circuito investigar-se acerca do efeito do neutro em circuitos trifásicos desequilibrados.



Figura 1

#### 3.4 Dados Experimentais

3.5

## 4 Análise sobre segurança

Os óculos de segurança são Equipamentos de Proteção Individual (EPIs) e são utilizados para a proteção da área ao redor dos olhos contra qualquer tipo de detrito estranho, que possa causar irritação ou ferimentos. Também protegem contra faíscas, respingos de produtos químicos, detritos, poeira, radiação e etc [4]. É importante a utilização desse equipamento durante os experimentos a fim de evitar qualquer dano, além de preparar o profissional para o manejo correto e seguro de qualquer equipamento. Além disso, foi de extrema importância a presença do professor ou técnico na verificação da montagem do circuito antes de energizá-lo. Assim, reduziuse riscos de curtos-circuitos ou sobrecarga na rede.

### 5 Cálculos, análise dos resultados e questões

- 6 Simulação computacional
- 7 Conclusões

## Referências

- [1] P. H. O. Rezende, "Circuitos Polifásicos Equilibrados", 2018.
- [2] J. D. Irwin, "Análise de Circuitos Em Engenharia", Pearson,  $4^a$  Ed., 2000.
- [3] R. L. Boylestad, "Introdução À Análise de Circuitos", Pearson,  $10^a$  Ed., 2004.
- [4] SafetyTrabi, "Óculos de segurança: Saiba quando utilizar este EPI", SafetyTrab, 2019. Disponível em: https://www.safetytrab.com.br/blog/oculos-de-seguranca/. Acesso em: ago. 2019.