Clustering vs. Classification

Feature	Clustering	Classification
Learning Type	Unsupervised	Supervised
Data	Unlabeled	Labeled (with pre-defined categories)
Objective	Identify groups (clusters) based on similarities	Predict category membership for new data
Output	Groups (clusters) of data points	Class labels for new data
Complexity	Generally less complex	Generally more complex

Real-Life Examples:

- **Clustering:** A streaming service might use clustering to identify groups of users with similar viewing habits. Based on what users watch, the service can cluster viewers who enjoy comedies, documentaries, or action movies. This helps personalize recommendations for each user group.
- Classification: An email provider uses classification to filter spam. The system is trained on labeled emails (spam and not spam) and uses this knowledge to predict the category of a new incoming email.

Regression vs. Classification

Feature Regression Classification

Output Variable	Continuous numerical value	Discrete category label
Goal	Predict a continuous value	Assign data points to predefined categories
Example of Output	Predicting house price based on size and location	Classifying an image as a cat or dog
Data Used	Can be continuous or discrete for independent variables	Independent variables can be continuous or discrete, but the dependent variable is categorical
Evaluation Metrics	Mean Squared Error (MSE), R-squared	Accuracy, Precision, Recall

Real-Life Examples:

- Regression: A weather forecasting model might use regression to predict the temperature for tomorrow. The model is trained on historical data that includes temperature readings along with factors like humidity and pressure. Based on these factors, the model predicts a continuous temperature value for the next day.
- Classification: A social media platform might use classification to identify hate speech in comments. The system is trained on labeled comments (hate speech and non-hate speech) and uses this knowledge to predict whether a new comment belongs to the hate speech category.