

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/82, 15/54		(11) International Publication Number: WO 98/46776			
		(43) International Publication Date: 22 October 1998 (22.10.98)			
(21) International Application Number: PCT/US (22) International Filing Date: 9 April 1998 ((81) Designated States: AU, BR, CA, JP, KR, MX, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).				
(30) Priority Data: 60/041,815 11 April 1997 (11.04.97)	τ	Published US Without international search report and to be republished upon receipt of that report.			
(71) Applicant (for all designated States except US): CLLC [US/US]; 1920 Fifth Street, Davis, CA 9561					
(72) Inventor; and (75) Inventor/Applicant (for US only): DEHESH, [US/US]; 521 Crownpointe Circle, Vacaville, C (US).					
(74) Agent: SCHWEDLER, Carl, J.; Calgene LLC, 19 Street, Davis, CA 95616 (US).	920 Fi	fth			
(54) Title: PLANT FATTY ACID SYNTHASES AND U	JSE IN	INTERPORT INTO A STREET OF THE			

(54) Title: PLANT FATTY ACID SYNTHASES AND USE IN IMPROVED METHODS FOR PRODUCTION OF MEDIUM—CHAIN FATTY ACIDS

(57) Abstract

By this invention, compositions and methods of use related to β -ketoacyl-ACP synthase of special interest are synthases obtainable from *Cuphea* species. Amino acid and nucleic acid for synthase protein factors are provided, as well as methods to utilize such sequences in constructs for production of genetically engineered plants having altered fatty acid compositions. Of particular interest is the expression of synthase protein factors in conjunction with expression of plant medium-chain acyl-ACP thioesterases for production of increased levels and/or modified ratios of medium-chain fatty acids in oils of transgenic plant seeds.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL AM AT AU AZ BA BB BF BG BJ CA CF CG CH CI CM CU CZ DE DK EE	Albania Armenia Austria Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Denmark Estonia	ES FI FR GA GB GC GN GR HU IE IL IS IT JP KE KG KP KR LC LI LK LR	Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Kazakstan Saint Lucia Liechtenstein Sri Lanka Liberia	LS LT LU LV MC MD MG MK ML MN MR MW MX NE NL NO NZ PL PT RO RU SD SE SG	Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Singapore	SI SK SN SZ TD TG TJ TM TR TT UA UG US UZ VN YU ZW	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe
--	--	--	---	---	---	--	--

WO 98/46776 PCT/US98/07114

PLANT FATTY ACID SYNTHASES AND USE IN IMPROVED METHODS FOR PRODUCTION OF MEDIUM-CHAIN FATTY ACIDS

INTRODUCTION

Field of Invention

5

10

15

20

25

The present invention is directed to genes encoding plant fatty acid synthase enzymes relevant to fatty acid synthesis in plants, and to methods of using such genes in combination with genes encoding plant medium-chain preferring thioesterase proteins. Such uses provide a method to increase the levels of medium-chain fatty acids that may be produced in seed oils of transgenic plants.

Background

Higher plants synthesize fatty acids via a common metabolic pathway. In developing seeds, where fatty acids attached to triglycerides are stored as a source of energy for further germination, the fatty acid synthesis pathway is located in the plastids. The first step is the formation of acetyl-ACP (acyl carrier protein) from acetyl-CoA and ACP catalyzed by a short chain preferring condensing enzyme, ß-ketoacyl-ACP synthase (KAS) III. Elongation of acetyl-ACP to 16- and 18- carbon fatty acids involves the cyclical action of the following sequence of reactions: condensation with a two-carbon unit from malonyl-ACP to form a longer ß-ketoacyl-ACP (ß-ketoacyl-ACP synthase), reduction of the

keto-function to an alcohol (ß-ketoacyl-ACP reductase), dehydration to form an enoyl-ACP (ß-hydroxyacyl-ACP dehydrase), and finally reduction of the enoyl-ACP to form the elongated saturated acyl-ACP (enoyl-ACP reductase). ß-ketoacyl-ACP synthase I (KAS I), is primarily responsible for elongation up to palmitoyl-ACP (C16:0), whereas ß-ketoacyl-ACP synthase II (KAS II) is predominantly responsible for the final elongation to stearoyl-ACP (C18:0).

Genes encoding peptide components of ß-ketoacyl-ACP synthases I and II have been cloned from a number of higher plant species, including castor (Ricinus communis) and Brassica species (USPN 5,510,255). KAS I activity was associated with a single synthase protein factor having an approximate molecular weight of 50 kD (synthase factor B) and KAS II activity was associated with a combination of two synthase protein factors, the 50 kD synthase factor B and a 46 kd protein designated synthase factor A. Cloning and sequence of a plant gene encoding a KAS III protein has been reported by Tai and Jaworski (Plant Physiol. (1993) 103:1361-1367).

The end products of plant fatty acid synthetase activities are usually 16- and 18-carbon fatty acids. There are, however, several plant families that store large amounts of 8- to 14-carbon (medium-chain) fatty acids in their oilseeds. Recent studies with Umbellularia californica (California bay), a plant that produces seed oil rich in lauric acid (12:0), have demonstrated the existence of a medium-chain-specific isozyme of acyl-ACP thioesterase

in the seed plastids. Subsequent purification of the 12:0-ACP thioesterase from Umbellularia californica led to the cloning of a thioesterase cDNA which was expressed in seeds of Arabidopsis and Brassica resulting in a substantial accumulation of lauric acid in the triglyceride pools of these transgenic seeds (USPN 5,512,482). These results and subsequent studies with medium-chain thioesterases from other plant species have confirmed the chain-length-determining role of acyl-ACP thioesterases during de novo fatty acid biosynthesis (T. Voelker (1996) Genetic Engineering, Ed. J. K. Setlow, Vol. 18, pgs. 111-133).

10

DESCRIPTION OF THE FIGURES

Figure 1. DNA and translated amino acid sequence of Cuphea hookeriana KAS factor B clone chKAS B-2 are provided. Figure 2. DNA and translated amino acid sequence of Cuphea hookeriana KAS factor B clone chKAS B-31-7 are provided. Figure 3. DNA and translated amino acid sequence of Cuphea hookeriana KAS factor A clone chKAS A-2-7 are provided. Figure 4. DNA and translated amino acid sequence of Cuphea 20 hookeriana KAS factor A clone chKAS A-1-6 are provided. Figure 5. DNA and translated amino acid sequence of Cuphea pullcherrima KAS factor B clone cpuKAS B/7-8 are provided. Figure 6. DNA and translated amino acid sequence of Cuphea 25 pullcherrima KAS factor B clone cpuKAS B/8-7A are provided. Figure 7. DNA and translated amino acid sequence of Cuphea pullcherrima KAS factor A clone cpuKAS A/p7-6A are provided. Figure 8. Preliminary DNA sequence of Cuphea pullcherrima KAS factor A clone cpuKAS A/p8-9A is provided.

A-2-7 is provided.

- Figure 9. DNA and translated amino acid sequence of Cuphea hookeriana KASIII clone chKASIII-27 are provided.
- Figure 10. The activity profile for purified cpuKAS B/8-7A using various acyl-ACP substrates is provided.
- Figure 11. The activity profile for purified chKAS A-2-75 and chKAS A-1-6 using various acyl-ACP substrates is provided.
 - Figure 12. The activity profile for purified castor KAS factor A using various acyl-ACP substrates is provided.
- Figure 13. The activity profile for purified castor KAS 10 factor B using various acyl-ACP substrates is provided. Figure 14. A graph showing the number of plants arranged according to C8:0 content for transgenic plants containing CpFatB1 versus transgenic plants containing CpFatB1 + chKAS 15
 - Figure 15. Graphs showing the %C10/%C8 ratios in transgenic plants containing ChFatB2 (4804-22-357) and in plants resulting from crosses between 4804-22-357 and 5401-9 (chKAS A-2-7 plants) are provided.
- 20 Figure 16. Graphs showing the %C10 + %C8 contents in transgenic plants containing ChFatB2 (4804-22-357) and in plants resulting from crosses between 4804-22-357 and 5401-9(chKAS A-2-7 plants) are provided.
- Figure 17. Graphs showing the %C10/%C8 ratios in transgenic plants containing ChFatB2 (4804-22-357) and in plants 25 resulting from crosses between 4804-22-357 and 5413-17 (chKAS A-2-7 + CpFatB1 plants) are provided.
 - Figure 18. Graphs showing the %C10 + %C8 contents in transgenic plants containing ChFatB2 (4804-22-357) and in

WO 98/46776 PCT/US98/07114

plants resulting from crosses between 4804-22-357 and 5413-17 (chKAS A-2-7 + CpFatB1 plants) are provided.

Figure 19. Graphs showing the %C12:0 in transgenic plants containing Uc FatB1 (LA86DH186) and in plants resulting from crosses with wild type (X WT) and with lines expressing Ch KAS A-2-7.

Figure 20. Graph showing the relative proportions of C12:0 and C14:0 fatty acids in the seeds of transgenic plants containing Uc FatB1 (LA86DH186) and in plants resulting from crosses with wild type (X WT) and with lines expressing Ch KAS A-2-7.

Figure 21. Graphs showing the %C18:0 in transgenic plants containing Garm FatB1 (5266) and in seeds of plants resulting from crosses with wild type (X WT) and with lines expressing Ch KAS A-2-7.

Figure 22. The activity profile of Ch KAS A in protein extracts from transgenic plants containing Ch KAS A-2-7. Extracts were preptreated with the indicated concentrations of cerulenin.

20

SUMMARY OF THE INVENTION

By this invention, compositions and methods of use related to ß-ketoacyl-ACP synthase (KAS) are provided. Also of interest are methods and compositions of amino acid and nucleic acid sequences related to biologically active plant synthase(s).

In particular, genes encoding KAS protein factors A and B from Cuphea species are provided. The KAS genes are of interest for use in a variety of applications, and may be

used to provide synthase I and/or synthase II activities in transformed host cells, including bacterial cells, such as E. coli, and plant cells. Synthase activities are distinguished by the preferential activity towards longer and shorter acyl-ACPs as well as by the sensitivity towards the KAS specific inhibitor, cerulenin. Synthase protein preparations having preferential activity towards medium chain length acyl-ACPs are synthase I-type or KAS I. KAS I class is sensitive to inhibition by cerulenin at concentrations as low as $1\mu M$. Synthases having preferential activity towards longer chain length acyl-ACPs are synthase II-type or KAS II. The KAS enzymes of the II-type are also sensitive to cerulenin, but at higher concentrations (50 μM). Synthase III-type enzymes have preferential activity towards short chain length acyl-ACPs and are insensitive to cerulenin inhibition.

5

10

15

Nucleic acid sequences encoding a synthase protein may be employed in nucleic acid constructs to modulate the amount of synthase activity present in the host cell,

20 especially the relative amounts of synthase I-type, synthase III-type and synthase III-type activity when the host cell is a plant host cell. In addition, nucleic acid constructs may be designed to decrease expression of endogenous synthase in a plant cell as well. One example is the use of an anti
25 sense synthase sequence under the control of a promoter capable of expression in at least those plant cells which normally produce the enzyme.

Of particular interest in the present invention is the coordinate expression of a synthase protein with the

expression of thioesterase proteins. For example, coordinated expression of synthase factor A and a medium-chain thioesterase provides a method for increasing the level of medium-chain fatty acids which may be harvested from transgenic plant seeds. Furthermore, coordinated expression of a synthase factor A gene with plant medium-chain thioesterase proteins also provides a method by which the ratios of various medium-chain fatty acids produced in a transgenic plant may be modified. For example, by expression of a synthase factor A, it is possible to increase the ratio of C10/C8 fatty acids which are produced in plant seed oils as the result of expression of a thioesterase having activity on C8 and C10 fatty acids.

10

15

20

25

DETAILED DESCRIPTION OF THE INVENTION

A plant synthase factor protein of this invention includes a sequence of amino acids or polypeptide which is required for catalyzation of a condensation reaction between an acyl-ACP having a chain length of C2 to C16 and malonyl-ACP in a plant host cell. A particular plant synthase factor protein may be capable of catalyzing a synthase reaction in a plant host cell (for example as a monomer or homodimer) or may be one component of a multiple peptide enzyme which is capable of catalyzing a synthase reaction in a plant host cell, i.e. one peptide of a heterodimer.

Synthase I (KAS I) demonstrates preferential activity towards acyl-ACPs having shorter carbon chains, C2-C14 and is sensitive to inhibition by cerulenin at concentrations of 1µM. Synthase II (KAS II) demonstrates preferential

activity towards acyl-ACPs having longer carbon chains, C_{14} - C_{16} , and is inhibited by concentrations of cerulenin (50 μ M). Synthase III demonstrates preferential activity towards acyl-CoAs having very short carbon chains, C_{2} to C_{6} , and is insensitive to inhibition by cerulenin.

Synthase factors A and B, and synthase III proteins obtained from medium-chain fatty acid producing plant species of the genus Cuphea are described herein. described in the following Examples, synthase A from C. hookeriana is naturally expressed at a high level and only in the seeds. C. hookeriana synthase B is expressed at low levels in all tissues examined. Expression of synthase A and synthase B factors in E. coli and purification of the resulting proteins is employed to determine activity of the various synthase factors. Results of these analyses indicate that synthase factor A from Cuphea hookeriana has the greatest activity on 6:0-ACP substrates, whereas synthase factor B from Cuphea pullcherrima has greatest activity on 14:0-ACP. Similar studies with synthase factors A and B from castor demonstrate similar activity profiles between the factor B synthase proteins from Cuphea and castor. The synthase A clone from castor, however, demonstrates a preference for 14:0-ACP substrate.

10

15

20

Expression of a Cuphea hookeriana KAS A protein in

transgenic plant seeds which normally do not produce mediumchain fatty acids does not result in any detectable
modification of the fatty acid types and contents produced
in such seeds. However, when Cuphea hookeriana KAS A
protein is expressed in conjunction with expression of a

medium-chain acyl-ACP thioesterase capable of providing for production of C8 and C10 fatty acids in plant seed oils, increases in the levels of medium-chain fatty acids over the levels obtainable by expression of the medium-chain thioesterase alone are observed. In addition, where significant amounts of C8 and C10 fatty acids are produced as the result of medium-chain thioesterase expression, co-expression of a Cuphea KAS A protein also results in an alteration of the proportion of the C8 and C10 fatty acids that are obtained. For example, an increased proportion of C10 fatty acids may be obtained by co-expression of Cuphea hookeriana ChFatB2 thioesterase and a chKAS A synthase factor proteins.

10

20

25

Furthermore, when Cuphea hookeriana KAS A protein is expressed in conjunction with expression of a medium-chain acyl-ACP thioesterase capable of providing for production of C12 fatty acids in plant seed oils, increases in the levels of medium-chain fatty acids over the levels obtainable by expression of the medium-chain thioesterase alone are also observed. In addition, where significant amounts of C12 and C14 fatty acids are produced as the result of medium-chain thioesterase expression, co-expression of a Cuphea KAS A protein also results in an alteration of the proportion of the C12 and C14 fatty acids that are obtained. For example, an increased proportion of C12 fatty acids may be obtained by co-expression of Uc FatB1 thioesterase and a chKAS A synthase factor proteins.

However, when Cuphea hookeriana KAS A protein is expressed in conjunction with the expression of a long-chain

acyl-ACP thioesterase capable of providing for production of C18 and C18:1 fatty acids in plant seed oils, no effect on the production of long chain fatty acids was observed. Furthermore, when plants transformed to express a long chain acyl-ACP thioesterase from mangosteen (GarmFatA1, U.S. Patent Application No. 08/440,845), which preferentially hydrolyzes C18:0 and C18:1 fatty acyl-ACPs, are crossed with nontransformed control plants, a significant reduction in the levels of C18:0 is obtained. Similar reductions are also observed in the levels of C18:0 in the seeds of plants resulting from crosses between plants transformed to express the GarmFatA1 and plants expressing the Cuphea hookeriana KAS A protein.

10

15

20

25

Thus, the instant invention provides methods of increasing and/or altering the medium-chain fatty acid compositions in transgenic plant seed oils by co-expression of medium-chain acyl-ACP thioesterases with synthase factor proteins. Furthermore, various combinations of synthase factors and medium-chain thioesterases may be achieved depending upon the particular fatty acids desired. For example, for increased production of C14 fatty acids, synthase protein factors may be expressed in combination with a C14 thioesterase, for example from Cuphea palustris or nutmeg may be employed (WO 96/23892). In addition, thioesterase expression may be combined with a number of different synthase factor proteins for additional effects on medium-chain fatty acid composition.

Synthases of use in the present invention include modified amino acid sequences, such as sequences which have

been mutated, truncated, increased and the like, as well as such sequences which are partially or wholly artificially synthesized. The synthase protein encoding sequences provided herein may be employed in probes for further screening or used in genetic engineering constructs for transcription or transcription and translation in host cells, especially plant host cells. One skilled in the art will readily recognize that antibody preparations, nucleic acid probes (DNA and RNA) and the like may be prepared and used to screen and recover synthases and/or synthase nucleic acid sequences from other sources. Typically, a homologously related nucleic acid sequence will show at least about 60% homology, and more preferably at least about 70% homology, between the R. communis synthase and the given plant synthase of interest, excluding any deletions which may be present. Homology is determined upon comparison of sequence information, nucleic acid or amino acid, or through hybridization reactions.

15

20

25

Recombinant constructs containing a nucleic acid sequence encoding a synthase protein factor or nucleic acid sequences encoding a synthase protein factor and a medium-chain acyl-ACP thioesterase may be prepared by methods well known in the art. Constructs may be designed to produce synthase in either prokaryotic or eukaryotic cells. The increased expression of a synthase in a plant cell, particularly in conjunction with expression of medium-chain thioesterases, or decreasing the amount of endogenous synthase observed in plant cells are of special interest.

Synthase protein factors may be used, alone or in combination, to catalyze the elongating condensation reactions of fatty acid synthesis depending upon the desired result. For example, rate influencing synthase activity may reside in synthase I-type, synthase II-type, synthase III-type or in a combination of these enzymes. Furthermore, synthase activities may rely on a combination of the various synthase factors described herein.

Constructs which contain elements to provide the transcription and translation of a nucleic acid sequence of 10 interest in a host cell are "expression cassettes". Depending upon the host, the regulatory regions will vary, including regions from structural genes from viruses, plasmid or chromosomal genes, or the like. For expression in prokaryotic or eukaryotic microorganisms, particularly 15 unicellular hosts, a wide variety of constitutive or regulatable promoters may be employed. Among transcriptional initiation regions which have been described are regions from bacterial and yeast hosts, such as E. coli, B. subtilis, Saccharomyces cerevisiae, including genes such 20 as ß-galactosidase, T7 polymerase, trp-lac (tac), trp E and the like.

An expression cassette for expression of synthase in a plant cell will include, in the 5' to 3' direction of transcription, a transcription and translation initiation control regulatory region (also known as a "promoter") functional in a plant cell, a nucleic acid sequence encoding a synthase, and a transcription termination region.

Numerous transcription initiation regions are available

25

which provide for a wide variety of constitutive or regulatable, e.g., inducible, transcription of the desaturase structural gene. Among transcriptional initiation regions used for plants are such regions associated with cauliflower mosaic viruses (35S, 19S), and structural genes such as for nopaline synthase or mannopine synthase or napin and ACP promoters, etc. The transcription/ translation initiation regions corresponding to such structural genes are found immediately 5' upstream to the respective start codons. Thus, depending upon the intended use, different promoters may be desired:

10

20

Of special interest in this invention are the use of promoters which are capable of preferentially expressing the synthase in seed tissue, in particular, at early stages of seed oil formation. Examples of such seed-specific promoters include the region immediately 5% upstream of a napin or seed ACP genes such as described in USPN 5,420,034, desaturase genes such as described in Thompson et al (Proc. Nat. Acad. Sci. (1991) 88:2578-2582), or a Bce-4 gene such as described in USPN 5,530,194. Alternatively, the use of the 5' regulatory region associated with the plant synthase structural gene, i.e., the region immediately 5' upstream to a plant synthase structural gene and/or the transcription termination regions found immediately 3' downstream to the plant synthase structural gene, may often be desired. general, promoters will be selected based upon their expression profile which may change given the particular application.

In addition, one may choose to provide for the transcription or transcription and translation of one or more other sequences of interest in concert with the expression or anti-sense of the synthase sequence, particularly medium-chain plant thioesterases such as described in USPN 5,512,482, to affect alterations in the amounts and/or composition of plant oils.

When one wishes to provide a plant transformed for the combined effect of more than one nucleic acid sequence of interest, a separate nucleic acid construct may be provided for each or the constructs may both be present on the same plant transformation construct. The constructs may be introduced into the host cells by the same or different methods, including the introduction of such a trait by crossing transgenic plants via traditional plant breeding methods, so long as the resulting product is a plant having both characteristics integrated into its genome.

10

15

20

25

Normally, included with the DNA construct will be a structural gene having the necessary regulatory regions for expression in a host and providing for selection of transformed cells. The gene may provide for resistance to a cytotoxic agent, e.g. antibiotic, heavy metal, toxin, etc., complementation providing prototrophy to an auxotrophic host, viral immunity or the like. Depending upon the number of different host species into which the expression construct or components thereof are introduced, one or more markers may be employed, where different conditions for selection are used for the different hosts.

The manner in which the DNA construct is introduced into the plant host is not critical to this invention. Any method which provides for efficient transformation may be employed. Various methods for plant cell transformation include the use of Ti- or Ri-plasmids, microinjection, electroporation, liposome fusion, DNA bombardment or the like. In many instances, it will be desirable to have the construct bordered on one or both sides by T-DNA, particularly having the left and right borders, more particularly the right border. This is particularly useful when the construct uses A. tumefaciens or A. rhizogenes as a mode for transformation, although the T-DNA borders may find use with other modes of transformation.

The expression constructs may be employed with a wide

15 variety of plant life, particularly plant life involved in

the production of vegetable oils. These plants include, but

are not limited to rapeseed, peanut, sunflower, safflower,

cotton, soybean, corn and oilseed palm.

explants may be combined and incubated with the transformed Agrobacterium for sufficient time for transformation, the bacteria killed, and the plant cells cultured in an appropriate selective medium. Once callus forms, shoot formation can be encouraged by employing the appropriate plant hormones in accordance with known methods and the shoots transferred to rooting medium for regeneration of plants. The plants may then be grown to seed and the seed used to establish repetitive generations and for isolation of vegetable oils.

WO 98/46776

The invention now being generally described, it will be more readily understood by reference to the following examples which are included for purposes of illustration only and are not intended to limit the present invention.

5

10

15

20

25

EXAMPLES

Example 1 Cuphea KAS Factor A and B Gene Cloning

Total RNA isolated from developing seeds of Cuphea hookeriana and Cuphea pullcherrima was used for cDNA synthesis in commercial 1-based cloning vectors. cloning each type of KAS gene, approximately 400,000-500,000 unamplified recombinant phage were plated and the plaques transferred to nitrocellulose. For KAS factor B cloning from C. hookeriana, a mixed probe containing Brassica napus KAS factor B and Ricinus communis (Castor) KAS factor B radiolabeled cDNA's was used. Similarly, a mixed probe containing Brassica napus KAS factor A and Ricinus communis KAS factor A cDNA clones was used to obtain C. hookeriana KAS factor A genes. For KASIII, a spinach KASIII cDNA clone obtained from Dr. Jan Jaworski was radiolabeled and used as a probe to isolate a KASIII clone from C. hookeriana. For KAS B and KAS A cloning from C. pullcherrima, C. hookeriana KAS B and KAS A genes chKAS B-2 and chKAS A-2-7 (see below) were radiolabeled and used as probes.

DNA sequence and translated amino acid sequence for Cuphea KAS clones are provided in Figures 1-9. Cuphea hookeriana KAS factor B clones chKAS B-2 and chKAS B-31-7

are provided in Figures 1 and 2. Neither of the clones is full length. Cuphea hookeriana KAS Factor A clones chKAS A-2-7 and chKAS A-1-6 are provided in Figures 3 and 4. chKAS A-2-7 contains the entire encoding sequence for the KAS factor protein. Based on comparison with other plant synthase proteins, the transit peptide is believed to be represented in the amino acids encoded by nucleotides 125-466. chKAS A-1-6 is not a full length clone although some transit peptide encoding sequence is present. Nucleotides 1-180 represent transit peptide encoding sequence, and the mature protein encoding sequence is believed to begin at nucleotide 181.

10

20

Cuphea pullcherrima KAS factor B clones cpuKAS B/7-8 and cpuKAS B/8-7A are provided in Figures 5 and 6. Both of the clones contain the entire encoding sequences for the KAS factor B proteins. The first 35 amino acids of cpuKAS B/7-8 are believed to represent the transit peptide, with the mature protein encoding sequence beginning at nucleotide 233. The first 39 amino acids of cpuKAS B/8-7A are believed to represent the transit peptide, with the mature protein encoding sequence beginning at nucleotide 209. Cuphea pullcherrima KAS factor A clones cpuKAS A/p7-6A and cpuKAS A-p8-9A are provided in Figures 7 and 8. Both of the clones contain the entire encoding sequences for the KAS factor A proteins. Translated amino acid sequence of cpuKAS A/p7-6A is provided. The mature protein is believed to begin at the lysine residue encoded 595-597, and the first 126 amino acids are believed to represent the transit peptide. DNA sequence of KAS A clone cpuKAS A-p8-9A is preliminary.

Further analysis will be conducted to determine final DNA sequence and reveal the amino acid sequence encoded by this gene.

DNA and translated amino acid sequence of Cuphea

5 hookeriana KASIII clone chKASIII-27 is provided in Figure 9.
The encoding sequence from nucleotides 37-144 of chKASIII-27
are believed to encode a transit peptide, and the presumed
mature protein encoding sequence is from nucleotides 1451233.

10 Deduced amino acid sequence of the C. hookeriana KAS factor B and KAS factor A cDNA's reveals strong homology to the Brassica napus and Ricinus communis clones previously reported. The C. hookeriana KAS factor B clone is more homologous to the Ricinus and Brassica KAS factor B clones 15 (94% and 91% respectively) than it is to the Ricinus and Brassica KAS factor A clones (60% for both). Furthermore, the C. hookeriana KAS factor A clone is more homologous to the Ricinus and Brassica KAS factor A clones (85% and 82% respectively) than it is the Ricinus and Brassica KAS factor 20 B clone (60% for both). The C. hookeriana KAS factor B cDNAs designated as chKAS B-2 and chKAS B-31-7 are 96% identical within the mature portion of the polypeptide. Similarly, the deduced amino acid sequence of the mature protein regions of the C. hookeriana KAS factor A clones chKAS A-2-7 and chKAS A-1-6 are 96% identical. 25 pullcherrima KAS clones also demonstrate homology to the R. communis and Brassica napus KAS clones. The mature protein portion of all of the KAS factor A family members in the different Cuphea species are 95% identical. Similarly the

mature protein portion of the KAS factor B genes in Cuphea are also 95-97% identical with each other. However there is only approximately 60% sequence identity between KAS factor B and KAS factor A clones either within the same or different species of Cuphea.

Example 2 Levels and Patterns of Expression

10

15

20

25

To examine tissue specificity of KAS expression in Cuphea hookeriana, Northern blot analysis was conducted using total RNA isolated from seed, root, leaf and flower tissue. Two separate but identical blots were hybridized with either chKAS B-31-7 or chKAS A-2-7 coding region probes. The data from this RNA blot analysis indicate that KAS B is expressed at a similar level in all tissues examined, whereas KAS A expression is detected only in the seed. These results also demonstrate a different level of expression for each of the synthases. KAS A is an abundant message, whereas KAS B is expressed at low levels. Furthermore, even under highly stringent hybridization conditions (65_C, 0.1 X SSC, 0.5% SDS), the KAS A probe hybridizes equally well with two seed transcripts of 2.3 and The larger hybridizing band is likely the transcript of the KAS A-2-7 gene since the size of its cDNA is 2046bp, and the number of clones obtained from cDNA screening corresponds well with the apparent mobility of the mRNA and its abundance on the blot.

Example 3 Expression of Plant KAS Genes in E.coli

10

15

20

DNA fragments encoding the mature polypeptide of the Cuphea hookeriana KAS A cDNAs and the Cuphea pullcherrima KAS B cDNAs were obtained by PCR and cloned into a QIAexpress expression vector (Qiagene). Experimental conditions for maximum level of expression were determined for all of these clones and the parameters for highest level of soluble fraction were identified. Cells are grown in ECLB media containing 1M sorbitol and 2.5 mM betaine overnight and subcultured as a 1:4 dilution in the same medium. Cells are then grown for 2 hours (to approximately .6-.8 O.D.) and induced with 0.4 mM IPTG and allowed to grow for 5 more hours.

Enzyme activity of the affinity purified recombinant enzymes obtained from over-expression of the chKAS A-2-7 and cpuKAS B/8-7A clones was measured using a wide range of acyl-ACP substrates (6:0- to 16:1-ACP). The activity profile for cpuKAS B/8-7A is provided in Fig.10. The data demonstrate that the enzyme is active with all acyl-ACP substrates examined, although activity on 6:0 to 14:0-ACP substrates is substantially greater than the activity on 16:0 and 16:1 substrates.

The activity profile of the *C. hookeriana* KAS A clones chKAS A-2-7 and chKAS A-1-6 is provided in Figure 11. The *C. hookeriana* KAS A clones are most active with C:6, and have the least activity with C:16:0 substrates. However, the activity of this clone on even the preferred C6:0 substrate

is 50 fold lower than the activity of the *C. pullcherrima* KAS B clones.

A fragment containing the mature protein encoding portion of a R. communis KAS factor A clone was also cloned into a QIAexpress expression vector, expressed in E. coli and the enzyme affinity purified as described above. The activity profile for castor KAS A is provided in Figure 12. Highest activity is observed with C14:0 substrates, although some activity is also seen with C6:0 and C16:1. In comparison, the activity profile obtained from purified R. communis KAS factor B also using the QIAexpress expression system is provided in Figure 13. The KAS B clone demonstrates substantially higher levels of activity (10 fold and higher) than the R.-communis KAS A clone. The preference of the KAS factor B for 6:0- to 14:0-ACP substrates is consistent with the previous observations that this protein provides KAS I activity.

Example 4 KAS and TE Expression in Transgenic Seed

Dehesh et al. (1996) Plant Physiol. 110:203-210) and the chKAS A-2-7 were PCR amplified, sequenced, and cloned into a napin expression cassette. The napin/cp FatB1 and the napin/KAS A-2-7 fusions were ligated separately into the binary vector pCGN1558 (McBride and Summerfelt (Pl.Mol.Biol. (1990) 14:269-276) and transformed into A. tumefaciens, EHA101. The resulting CpFatB1 binary construct is pCGN5400 and the chKAS A-2-7 construct is pCGN5401. Agrobacterium mediated transformation of a Brassica napus canola variety

was carried out as described by Radke et al. (Theor. Appl. Genet. (1988) 75:685-694; Plant Cell Reports (1992) 11:499-505). Several transgenic events were produced for each of the pCGN5400 and pCGN5401 constructs.

5

10

A double gene construct containing a napin/cpFatB1 expression construct in combination with a napin/chKAS A-2-7 expression construct was also assembled, ligated into a binary vector and used for co-cultivation of a canola Brassica variety. The binary construct containing the chFatB1 and chKAS A-2-7 expression constructs is pCGN5413.

Fatty acid analysis of 26 transgenic lines containing chKAS A-2-7 (5401 lines) showed no significant changes in the oil content or profile as compared to similar analyses of wild type canola seeds of the transformed variety.

Fatty acid analysis of 36 transgenic lines containing 15 cpFatB1 (5400 lines) showed increased levels of C:8 and C:10 in transgenic seeds. The highest level of C:8 observed in a pool seed sample was 4.2 mol%. The C:10 levels were between 30 and 35% of the C:8 content. Fatty acid analysis of 25 transgenic lines containing the TE/KAS A tandem (5413 lines) 20 demonstrated an overall increase in both C:8 and C:10 levels relative to those observed with TE containing lines (5400) alone. In lines containing the cpFatB1 construct alone, the average level of C:8 average were 1.5 mol%, whereas the C:8 average levels in TE/KAS A tandem containing lines was 2.37 25 mol%. The ratio of C:8 to C:10 remained constant in both populations. The number of transgenic events relative to the C:8 content are presented in Figure 14. These data show that the transgenic events with tandem TE/KAS A construct

yield more lines with higher levels of C:8 than those events with single TE construct. For example, several lines containing nearly 7 mole% C8 were obtained with the TE/KAS A pCGN5413 construct, whereas the highest C8 containing line from the pCGN5400 TE alone transformation contained 4.2 mole% C8.

Half seed analysis of the T3 generation of transgenic canola plants expressing a ChFatB2 (C. hookeriana thioesterase; Dehesh et al. (1996) The Plant Journal 9:167-172) indicate that these plant can accumulate up to 22 weight% (33 mol%) of 8:0 and 10:0 fatty acids (4804-22-357). Segregation analysis shows that these transformants contain two loci and that they are now homozygous. Selected plants grown from these half seeds were transferred into the greenhouse and later crossed with T1 transformants that had been transformed with either Cuphea hookeriana KAS A (5401) alone or KAS A/CpFatB1 double constructs (5413).

Fatty acid analysis of several events resulting from the crosses between transgenic lines containing ChFatB2

20 (4804-22-357) and chKAS A-2-7 (5401-9), reveal an increase in the ratio of C:10/C:8 levels (Figure 15). This C:10/C:8 ratio in nearly all of the transgenic events containing ChFatB2 TE alone fluctuates between 3 and 6, whereas in the F1 generation of transgenic containing both the TE and the

25 KAS A-2-7, the ratio can be as high as 22. This increase in C:10 levels is accompanied by an increase in the total C:8 and C:10 content (Figure 16). The sum of the C:8 and C:10 fatty acids in the heterozygous F1 lines is as high as those in the homozygous parent line (4804-22-357), whereas the

heterozygous lines usually contain substantially less C:8 and C:10 than the homozygous lines.

Similar results were observed in F1 generation seeds resulting from crosses performed between 4804-22-357 (ChFatB2) and the 5413-17 event (CpFatB1 and chKAS A-2-7 tandem). Levels of C:8 and C:10 in the 5413-17 line were 6.3 and 2.8 mol% respectively. Data presented in Figure 17 show that there is shift towards C:10 fatty acids as was observed with the 4804-22-357 (ChFatB2) x 5401-9 (chKAS A-2-7) crosses. Furthermore, Figure 18 indicates the presence 10 of two separate populations of heterozygotes. containing approximately 9-11 weight percent C:10 + C:8 are believed to represent offspring containing a single copy of the ChFatB1 TE gene and no copies of the CpFatB1 and chKAS A genes from 5413. Those plants containing approximately 15-15 20 weight percent C:10 + C:8 are believed to represent the heterozygotes containing a single ChFatB1 TE gene as well as the CpFatBl and chKAS A genes from 5413. Thus, the level of the C:10 + C:8 fatty acids does not decrease to 50% of that detected in parent lines when a copy of the ChKAS A gene is 20 present.

To further characterize the chain length specificity of the Cuphea hookeriana KAS A enzyme, crosses between transgenic Brassica napus lines containing a California Bay (Umbellularia californica) 12:0 specific thioesterase, Uc FatB1 (USPN 5,344,771) and chKAS A-2-7 (5401-9) were made. Half seed analysis of transgenic plants containing Uc fatB1 have previuosly indicated that these plants can accumulate up to 52 mol% C12:0 in the seed oil of homozygous dihaploid

25

lines (LA86DH186). Crosses between the line LA86DH186 and untransformed control *Brassica* demonstrated a decrease in the C12:0 levels.

However, crosses between LA86DH186 and the 5401-9

5 hemizygous line led to an accumulation of up to 57 mol%

C12:0 in the seed oil of F1 progeny (Figure 19).

Interestingly, in crosses with LA86DH186 x untransformed

control line and LA86DH186 x 5401-9, levels of C14:0 in the

seeds of the F1 progeny decreased to 50% of the levels

obtained in homozygous LA86DH186 lines (Figure 20).

Furthermore, increases in the proportion of C12:0 fatty acid

resulted in a substantial decline in the proportions of all

the long-chain fatty acyl groups (C16:0, C18:0, C18:2, and

C18:3). These results indicate that the ChKAS A-2-7 is an

15 enzyme with substrate specificity ranging from C6:0 to

C10:0-ACP, and that its over-expression ultimately reduces

the longer chain acyl-ACP pools.

Further evidence is obtained in support of the chain length specificity of the ChKAS A-2-7 in crosses of the 5401-9 line with a transgenic line (5266) expressing an 18:1/18:0 TE from Garcinia mangostana (GarmFatA1, US patent application No. 08/440,845). Transgenic Brassica line 5266 has been shown to accumulate up to 24 mol% C18:0 in the seed oil of homozygous lines (Figure 21). However, in the seed oil of F1 progeny of crosses between 5266 and 5401-9 levels of C18:0 were reduced to approximately 12 mol%. Furthermore, levels of C16:0 generated from these crosses was similar to the levels obtained from the seed oil of nontransgenic control plants.

Example 5 In vitro Analysis of Plant KAS Enzymes

Seed extracts were prepared from developing seeds of nontransgenic controls or transgenic Brassica expressing chKAS A-2-7 as described in Slabaugh et al. (Plant Journal, 1998 in press) and Leonard et al. (Plant Journal, 1998, in press). In vitro fatty acid synthesis assays were performed as described by Post-Beittenmiller (J. Biol. Chem. (1991), 266:1858-1865). Extracts were concentrated by ammonium sulfate precipitation and desalting using P-6 columns (Bio-Rad, Hercules, CA). Reactions (65µl) contained 0.1M 10 Tris/HCl (pH 8.0), 1 mM dithiothreitol, 25 mM recombinant spinach ACP1, 1 mM NADH, 2 mM NADPH, 50 µM malonyl-CoA, 10 μ M [1-14C]acetyl-CoA (50 mCi/mmol), 1mg/ml BSA, and 0.25 mg/ml seed protein. Selected seed extracts were preincubated with cerulenin at 23°C for 10 min. products were separated on an 18% acrlamide gel containing 2.25M urea, electroblotted onto to nitrocellulose and quntitated by phosporimaging using Image QuaNT software (Molecular Dynamics, Sunnyvale, CA). Authentic acyl-ACPs 20 were run in parallel, immunoblotted and finally detected by anti-ACP serum to confirm fatty acid chain lengths.

The results (Figure 22) indicate that the fatty acid synthesis capabilities of transgenic Brasica (5401-9) seed extracts was greater than that obtained from in the

25 nontransgenic controls as measured by the relative abundance of C8:0- and C10:0-ACP at all time points tested. In addition, pretreatment of the extracts with cerulenin, markedly reduced the synthesis of longer chain fatty acids in both the transgenic and nontransgenic control seed

extracts. However, the extension of the spinach-ACP was much less inhibited in the seed extracts from the transgenic lines than in the seed extracts of nontransgenic control Brassica.

These data further support that Ch KAS A-2-7 is a condensing enzyme active on medium chain acyl-ACPs, and that expression of this enzyme in plants results in enlarged substrate pools to be hydrolyzed by medium-chain specific thioesterases. Furthermore, these data suggest that chKAS A-2-7 also is a cerulenin-resistant condensing enzyme.

10

15

All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claim.

MISSING UPON TIME OF PUBLICATION

- 13. The construct of Claim 5 wherein said encoding sequence is cpuKAS A/p8-9A.
- 14. The construct of Claim 5 wherein said encoding sequence is chKASIII-27.
- 15. An improved method for producing medium-chain fatty acids in transgenic plant seeds by expression of a plant medium-chain thioesterase protein heterologous to said transgenic plant,

10

15

the improvement comprising expression of a plant synthase factor protein heterologous to said transgenic plant in conjunction with expression of said plant medium-chain thioesterase, whereby the percentage of medium-chain fatty acids produced in seeds expressing both a plant synthase factor protein and a plant-medium-chain thioesterase protein is increased as compared to the percentage of medium-chain fatty acids produced in seeds expressing only said plant medium-chain thioesterase protein.

- 16. The method of Claim 15 wherein said medium-chain thioesterase protein is a ChFatB2 protein.
- 20 17. The method of Claim 15 wherein said medium-chain thioesterase protein is a CpFatB1 protein.
 - 18. The method of Claim 15 wherein said medium-chain thioesterase protein is a C12 preferring thioesterase from California bay.
- 19. The method of Claim 15 wherein said plant synthase factor protein is expressed from a construct according to Claim 1.
 - 20. The method of Claim 19 wherein said synthase factor A protein is from a Cuphea species.

- The method of Claim 20 wherein said Cuphea species is C. hookeriana or C. pullcherrima.
- A method of altering the medium-chain fatty acid composition in plant seeds expressing a heterologous plant medium-chain preferring thioesterase, wherein said method comprises

5

15

providing for expression of a plant synthase factor protein heterologous to said transgenic plant in conjunction with expression of a plant medium-chain thioesterase protein heterologous to said transgenic plant, whereby the composition 10 of medium-chain fatty acids produced in said seeds is modified as compared to the composition of medium-chain fatty acids produced in seeds expressing said plant medium-chain thioesterase protein in the absence of expression of said plant synthase factor protein.

- The method of Claim 22 wherein said medium-chain thioesterase protein is a ChFatB2 protein.
- The method of Claim 22 wherein said medium-chain thioesterase protein is a CpFatB1 protein.
- The method of Claim 22 wherein said medium-chain 20 thioesterase protein is a C12 preferring thioesterase from California bay.
- The method of Claim 22 wherein said plant synthase factor protein is expressed from a construct according to Claim 25 1.
 - The method of Claim 26 wherein said synthase factor A 27. protein is from a Cuphea species.
 - The method of Claim 27 wherein said Cuphea species is C. hookeriana or C. pullcherrima.

- 29. The method of Claim 22 wherein said fatty acid composition is enriched for C10 fatty acids.
- 30. The method of Claim 22 wherein said fatty acid composition is enriched for C12 fatty acids.
- 31. The method of Claim 22 wherein said fatty acid composition is enriched for at least one medium chain fatty acid and at least one other medium chain fatty acid is decreased.
- 32. The method of Claim 31 wherein said enriched fatty 10 acid is C12 and said decreased fatty acid is C14.

. والمراجع المنظم المراجع المراجع المراجع المراجع المراجع المراجع المنظم المراجع المنظم المراجع المراجع المراجع ا

				_		10	
48	96	144	192	240	288	336	384
66C 61y	AAG Lys	$_{\rm G1Y}^{\rm GGT}$	CAC His	666 61y	TCA	GCT	ACT
CCG	TCC	GGT Gly	GGT Gly	ATG Met	TAT Tyr	GCC	660 61y
CCC	CTC	ATG Met	AAG Lys	AAC Asn	AAC Asn	GCT Ala	GGA G1y
GAT Asp	CGC	GGA Gly	GAG Glu	ACA Thr	CCA Pro	CAT His	GCT
GTG Val	GAC Asp	ACA Thr	ATC Ile	ATT Ile	GGC G1y	TTC	ATT Ile
CTA Leu	GCC	GGA Gly	CTT	GCC	ATG Met	TGC Cys	ATG
GAA Glu	GGT Gly	GTC Val	TCT	TAT	CTC	TAC	CIT
CTA	CTC	CTG	CAG Gln	CCC	GGT	AAC Asn	GAT Asp
GCT Ala	GAT Asp	GTG Val	Grr Val	ATC Ile	TTT Phe	TCC	GCT Ala
GCC Ala	GCC Ala	GGA Gly	666 61y	TTC Phe	GAA Glu	ACT	GAG Glu
GCG Ala	CGA	GCC Ala	gac Asp	$ ext{TTC}$	ATC Ile	GCC Ala	GGT Gly
GTG Val	GCA Ala	AGA Arg	TCT Ser	CCT	GCT	TGT Cys	CGT Arg
GCG Ala	TCG	GAG Glu	TTC	ACC Thr	CTC	GCA Ala	CGC Arg
ACC Thr	AAT Asn	AAG Lys	GTC Val	ATC Ile	CTG	ACT Thr	ATC Ile
TCC	AGG Arg	GAC Asp	ACT	AAA Lys	GCC Ala	TCC	CAT His
AGC	TGC	ATC Ile	CTG	CGG Arg	TCT Ser	ATT Ile	AAT Asn

FIGURE 1

							• .
432	480	528	576	624	672	720	768
AGG Arg	TGG	TTG	ATT Ile	ACT Thr	AGC	GCT Ala	ATC Ile
TGC Cys	CCC	GTG Val	ATT Ile	ATG	AGT	AAT Asn	GCC Ala
GCT	AGG	GGA Gly	CCG	CAC	GAG Glu	ATA Ile	AAT Asn
GTG Val	TCT Ser	GCT	GCA	тат Туг	ATT Ile	TAC Tyr	ATA Ile
TTT Phe	GCC Ala	GGT Gly	GGA G1y	GCT	TGC Cys	AAT Asn	GAG Glu
GGC Gly	ACT	GAA Glu	CGA Arg	GAT	TCT Ser	GTC Val	GCC
GGA Gly	CAG Gln	GGT G1y	AGA Arg	TGT Cys	TCT Ser	GAG Glu	<u>-</u>
TTG Leu	CCG	ATG	ATG	AAC Asn	GTC	GAA Glu	GAT CTC ASP Leu FIGURE 20F4
GGG Gly	GAC	GTG Val	GCA Ala	ATC Ile	GGT G1y	CCT	666 61y
ATT	GAT	TTT Phe	CAT	GCA	CTT	TCA	GCT Ala
CCA	AAC	GGT Gly	GAA Glu	GGT Gly	GGT G1y	GTC Val	CTA
ATT Ile	AGG	GAT	TTG	GGA Gly	GAT Asp	66C 61y	ACT
ATC Ile	CAA Gln	CGT Arg	AGC Ser	TTG	GCT Ala	GCT Ala	TCT
GCA Ala	TCT Ser	GAC Asp	GAG Glu	TAT Tyr	AGG Arg	GAT Asp	ACT Thr
GCC Ala	TTG	AAA Lys	ATG Met	GAG Glu	CCA	GAA Glu	GCG Ala
GAG Glu	GCT Ala	GAT Asp	GTG Val	GCA Ala	GAT Asp	CTT	CAT
						·	

FIGURE 1 3 OF 4

816	864	912	096	1008	1056	1116
ATT AAT GCA ACT AAG Ile Asn Ala Thr Lys	GGT CTT GAA GCT ATA Gly Leu Glu Ala Ile	CAT CCC AGC ATT AAT His Pro Ser Ile Asn	ACT GTT GCC AAC AAG Thr Val Ala Asn Lys	AAT TCA TTC GGA TTT Asn Ser Phe Gly Phe	TTC AAG CCA TGATTA Phe Lys Pro	GGACTTGCAG AGTAATTTCC AAACCCATTT AGGATACTGT
TTC AAG AAC ACA AAG GAT ATC AAA 1 Phe Lys Asn Thr Lys Asp Ile Lys 1	GGA CAC TGT CTT GGA GCA TCT GGA (Gly His Cys Leu Gly Ala Ser Gly (AAG GGA ATA AAC ACC GGC TGG CTT (Lys Gly Ile Asn Thr Gly Trp Leu 1	CCT GAG CCA TCG GTG GAG TTC GAC ; Pro Glu Pro Ser Val Glu Phe Asp '	CAC GAA GTT AAC GTT GCG ATC TCG Atis Glu Val Asn Val Ala Ile Ser	AAC TCA GTC GTG GCT TTC TCG GCT Asn Ser Val Val Ala Phe Ser Ala	AAGGTACTTG TCATTGAGAA TACGGATTAT CGGAAGAGCA TATTACCACG GTTGTCCGTC
AAG AAG GTT TI Lys Lys Val Pi	TCA ATG ATC GC Ser Met Ile G	GCG ACT ATT AN Ala Thr Ile Ly	CAA TTC AAT CO Gln Phe Asn P	AAG CAG CAA C. Lys Gln Gln H	GGA GGC CAC A Gly Gly His A	CCCATTTCAC AA

イサイドイ へんじけ	日 人 子 日 子 日 子 日 子 日 子 日 子 日 子 日 子 日 子 日	この木木木の木田田の	KO K KEK K KUE			4
VIVI IVVI	THITTITE	りりなせなりなってつ	LCARAIARGA	TITIOTITIE	CCICIGIAAA	7.7
						ì
ACTITITICITIT GIPATIGGAAA GGAAGIIGCOG IICITOAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	GTATTGGAAA	GGAAGTGCCG	TCTCAAAAA	666666666	VV	124

Sequence Range: 1 to 1704

40 GTG Val>		GCA Ala>		TCT Ser>	0	GAC Asp>	240	* CGG Arg>	CTC Leu>		GAA Glu>
GNG		TCG Ser	140	GAC Asp	190	ATC (Ile)	• • •	ATC (Ile 2	AGG (Arg I		CTC C
ACC	90	AAT Asn	-	GTC Val		TTA Leu		cAG Gln		330	GCT CTC (Ala Leu
30 TCC Ser		AGG Arg		GAC		AGC	230	66C G1y	280 GAC AGG ASP Arg		AAG Lys
AGC		TGC	130	TCC	180	* ATC Ile	(1	GGC Gly	AAC Asn		AAG Lys
TGG	80	66C 61y	H	66c 61y		GGG G1y		TTC	AAG Lys	320	GGG G1y
20 AGC Ser		CCG		TTC		AGC	220	AGG Arg	270 GGG Gly	m	GCC
AAA Lys		CCC		GTA Val	170	GAG Glu	22	ACC Thr	GAC Asp		GTC
AAC	70	GAT Asp	120	TCC	• •	GGC		CCC Pro	ATC Ile	0	ATT Ile
10 AAA GGG Lys Gly		GTG Val		GTC Val		TCC		TTC Phe	260 GGA TAC Gly Tyr	310	TGC
AAA		CTA		CTC	160	CTC	210	AAG Lys	2 GGA G1y		TAC
ACT		GAA Glu	110	$_{\rm GGC}$	1(CTC		TCC	ACG Thr		CGC
CTC	6 09	CTA Leu		ATG Met		AAG Lys		GCT	o GCG Ala	300	CTC
ACC		GCT Ala		66C 61y		GAA Glu	200	GAC	250 AAC GCC ASD Ala		TGC Cys
TTA		GCC Ala	100	GCC Ala	150	TAC	.,	TTC Phe	TTC		GAT Asp
AAA Lys	20	GCG Ala	H	CGA Arg		TAT Tyr		CGC Arg	GGA Gly	90	GAC

SUBSTITUTE SHEET (RULE 26)

	AGA Arg>	0 8	TCT Ser>	480	CCG Pro>	GCC Ala>		TGT Cys>	٠.	CGA Arg>	0	ATT Ile>
380	GAG Glu	43	TTC		TCC	CTT Leu		GCA	620	CGC	670	ATC Ile
	AAG		GTC Val		AAG ATC Lys Ile	CTG CTG Leu	570	ACT	T.	ATC Ile		GCA
	GAT Asp		ACC Thr	470	AAG Lys	520 GCT CTG (Ala Leu 1		TCA		CAT His		GCT
370	AAG ATT Lys Ile	420	CTA Leu	4.	CGG	TCT		ATT Ile	0	AAT Asn	* 099	GAG Glu
'n	AAG Lys		66C 61y	•	CAC	666 61y	260	TCG	610	GCC		ACT Thr
	TCC		ATG GGT Met Gly	460	GGT G1y	510 ATG Met	u;	TAT		GCT		GGA Gly
	CTC	410	ATG	46		ACA AAC Thr Asn				GCC	650	GGA Gly
360	AGC	•	$_{\rm G1y}^{\rm GGT}$		GAG Glu	ACA	0	CCA	009	TAT	6 .	GCT
	GAA Glu		ACT Thr		CTC ATC Leu Ile	500 ATT Ile	550	GGC Gly		TTT Phe		ATT Ile
	GGT Gly	400	${\tt GGA} \\ {\tt G1y}$	450		GCC Ala		ATG Met		TGC	0	ATG Met
350	GGC Gly	4(GTT Val		AAT Asn	TAT Tyr		CTG	290	TAC	640	CTC
•	CTC		CTA Leu		CAG Gln	CCC Pro	540	GGT Gly	L)	AAC Asn		GAC
	GAT Asp		GTG Val	440	GTT Val	490 ATT CC Ile Pr		TTG		TCC		GCT
340	TCC Ser	390	GGA G1y	7	GGG G1y	TTC	٠.	GAT Asp	0	ACT Thr	630	GAG Glu
ň	AAT Asn		GCT Ala		GAC Asp	TTT Phe	30	ATC Ile	580	GCT Ala		GGC Gly

TGURE 2

720	* AGG Arg>	GAT Asp>		TTG Leu>		GGA Gly>	. 0	GAT Asp>	096	* GGG Gly>	ACT Thr>
	CAA Gln	CGT	•	AGC Ser	860	TTG Leu	910	GCT		GCT (TCC ACT Ser Thr
	TCT	760 AAG GAC Lys Asp	810	GAG	æ	TAT Tyr	l	AGG			
710	TTA			ATG Met		GAA Glu		CCA	950	GAA GAT Glu Asp	1000 GCG ACT Ala Thr
	GCT	GAT Asp		GTT Val	850	GCA	900	* GAT Asp	Ø	CTG	CAT (His A
	AGG	TGG Trp	800	TTG	8	ATT Ile		ACT Thr		GAG AGC AGT (Glu Ser Ser 1	GCT (
700	TGC	750 CCG Pro		GTA Val	•	ATT Ile		CAT ATG His Met	0	AGC	990 AAT Asn
	GCC Ala	AGG		GGA G1y		CCG	890	CAT His	940	GAG Glu	ATA Ile
	GTT Val	TCA	790	GCT	840	gCG Ala	w	TAT Tyr		ATT Ile	TAC
_	TTC Phe	740 GCC	7	$\frac{GGG}{Gly}$		GGA Gly		GCT Ala		TGC Cys	980 AAT Asn
069	GGA Gly	ACT Thr		GAA Glu		AAA CGA Lys Arg	880	GAT Asp	930	TCT	GTC Val
	6GA 1 Gly	CAG		GGC	830	AAA Lys	88	TGT		TCC	GAG 31u
	GGG TTA G	730 GAC CCT Asp Pro	780	ATG Met	-	ATG Met		AAT		GTC Val	4 2
680	. 660 61y			GTG Val		GCA Ala		GTC Val	920	GGT Gly	970 CCT G2 Pro G1
	A ATT Ile	GAT ASP		TTT Phe	820	CAT His	870	GCA Ala	o)	CTT	TCA
	CCA	AAT Asn	70	GGT Gly	80	GAA Glu		$_{\rm G1y}^{\rm GGT}$		GGG G1y	GTC

FIGURE 2

	AAG Lys>		CAC His>	09	GGA G1y>	1200	GAG Glu>	GAA Glu>		TCA Ser>		GCA
	TTC	1100	GGA G1y	1150	AAG Lys	-	CCC	CAT His		CAC AAC His Asn	1340	AAT
1050	AAG GTT Lys Val	H	ATC Ile		ATT Ile		AAT	40 CAA Gln	1290	CAC His	Ħ	TCA
	AAG Lys		ATG		ACA Thr	1190	TTC	1240 CAG C2 Gln G	` .	36C		GGT
	AAG	06	TCG	1140	GCG Ala	H	CAA Gln	AAG Lys	÷.	TTC GGA Phe Gly	. 0	TTA CTC
1040	ATC Ile	1090	AAG		ATT Ile		AAC Asn	AAG Lys	1280	TTC	1330	
Ħ.	GCC		ACT		GCC Ala	30	AGC ATA Ser Ile	1230 GCC AAC A	12	GGA G1y		CCA TGA Pro
	AAT Asn	•	GCA Ala	1130	CTT GAA	1180	AGC	GCC Ala		TTC	•	
. 08	GAG ATA AAT Glu Ile Asn	1080	ATC AAT GCA Ile Asn Ala	ः म ः		•	CCC	GTT Val	0,	AAT TCA Asn Ser	1320	AAG Lys
1030			ATC Ile		GGT Gly		CAT His	1220 AC ACA SP Thr	1270			TTC
	CTT GCC Leu.Ala		ACA Thr	0.	GGG G1y	1170	CTT	12 GAC ASP		TCA		GCC
	CTT	1070	ATC Ile	1120	TCA	-	TGG	TTC		GCT ATC Ala Ile	1310	TTC TCA
1020	GAT Asp	1(GAA Glu		GCA Ala		GGC G1y	1210 GTG GAA Val Glu	1260	GCT	13	TTC
•	GGG G1у		AAG Lys		$_{\rm GGA}^{\rm GGA}$	160	ACC Thr	1210 GTG G2 Val G]	***1	GTT Val		GCT
	GCT	0.9	ACC Thr	1110	CTT	. =	ACC	TCA		AAT	0	GTA Val
10	CTT	1060	AAC Asn		TGT Cys		ATA Ile	CCA	20	GTG Val	1300	GTT Val

SUBSTITUTE SHEET (RULE 26)

FIGURE 2

AATTTGTTGC TGAGACAGTG AGCTTCAACT TGCAGAGCAA TTTTTTACAT GCCTTGTCGT CGGAAGAGCG TAATACCGGG ATAGTTCCTT GATAGTTCAT TTAGGATGTT TTACTGCAAT AATCGAAGAT TATTTCCATT CTAATCCAGT CTCCGNCGAG TTTGAGAATC TATCTGTTTG TATTAGAAAG AACGAGGCAA GATTTTGTTT CATGTTTGTG TTTGTATTAC TTTCTTTTTG CCCTTGTCAA TGGCATTTAA GATAAGCTTA TAAAAAAAA AAAAAAAA AAAACTCGAG GGGGGCCCG GTACCCAATT CGCCCTATAG TGAGTCGTAT GACAATTCAC TGTCCGTCGG

09	BAT	120	'GT	TGG Trp		7					·	
	GTG	-	AGGJ			TCC		TCC		CCT TGC Pro Cys	360	GGA Gly
	ACTA		GCTCAGGTGT	r ACG s Thr		CGT Arg	260	CTC	310	CCT	• •	TTC GGA Phe Gly
20	AGA 1	110	rca (C TGT C Cys	210	CCA	26	ACT CTC TCC Thr Leu Ser		GAT Asp		CTC
	CTCT	•	CGGC	160 r rrc o Phe				AGG		CTC	0.	TCC
	CCG		TTCTTACTTG GGTCGGCTCA	ATG GTT GCG TCC CCT Met Val Ala Ser Pro		AAC		CGC CGG Arg Arg	300	CAA TGC Gln Cys	350	GCT TCC Ala Ser
40	9909	100	CTTG	.50 GCG TCC Ala Ser	200	TCC GAC Ser Asp	250					
	GGTG		CTTA	150 r GC(1 Al	7			CGT		TCC ACC TTC Ser Thr Phe		GAT AAC GGA TTC Asp Asn Gly Phe
	ပ္တိ			GTT: Val		TCA		TCC	. 0	ACC	340	AAC
30	CCAC	06	3AGT			CCC ACT TCA Pro Thr Ser	240	CTC	290	GGA TCC ACC TTC Gly Ser Thr Phe		
,	AGCT		GCAGGAATTC GGCACGAGTT	140 TCT TGC Ser Cys	190			CGC (•			666 61y
20	TG G	. 08	TC G			ATG		CTC		CGC Arg	330	CTC
	AAGC		3AAT	c GCT r Ala	•	TGC	230	CGG	280	CTC	(r)	TTC
	ACAA		GCAG	130 GCG ACC Ala Thr	180	GCA Ala	2	AAG Lys		TCC		CGC
10	GGA	70	GCT		• •	GCT		CAC His		TGC	320	CAA Gln
	ACTAAAGGGA ACAAAAGCTG GAGCTCCACC GCGGTGGCGG CCGCTCTAGA ACTAGTGGAT		CCCCGGGCT	A ATG Met		GTA Val		TCC	270	CAT His	32	CAG Gln
	ACT		CCC	TCCA	170	CTC	.220	CTT		TCC		AAC Asn

ACT		GAA Glu		GTG Val		TAC	009	* AAC Asn	TCT Ser		GAC Asp
CGC		CAG Gln	200	GTA GTT Val Val	550	GTT Val	Φ	GAG Glu	AAG Lys	ı	ATG Met
GGC G1y	450	GCA Ala	2			GAT Asp		ATA Ile	ATC Ile	069	AGG A
400 CTC		CCT		CGA Arg		CCC	590	GAG Glu	640 GAG Glu	9	GAG
3 AGG		CAA		CAA AGG Gln Arg	540	, GAC Asp	55	AGT GAG Ser Glu	GGA Gly		TCC
CTG	440	ATG	490			CAT		ATA Ile	GCC	o	TTC
390 GGC CAC Gly His	ব	GCT		AAG Lys		GGC Gly		GGC Gly	630 ATT Ile	680	AAG Lys
		GTG Val		ACC Thr	530	CTA Leu	580	AGT Ser	6 AGA Arg	٠	CCA
. CGC	_	GCT	480	GCT Ala	5	CCT		ATA Ile	ACG		GCC Ala
380 TCA AAȚ Ser Asn	430	ATG		CCT		ACT		GAC GGA Asp Gly	620 TTT CCC Phe Pro	670	GTG
38 TCA		GTC		AAA Lys		GTG GTG Val Val	570	GAC Asp	620 TTT C(Phe P1		TGG
CGT		GAG Glu	470	AAG Lys	520	GTG Val	u,	CTA Leu	CAG Gln		GGC Gly
CTT Leu	420	666 G1y	4	AAT Asn		GGC Gly		CTC	TCT Ser	099 *	GAT
370 GCCT Pro		TCC		ACA Thr		ATG Met	260	AAT Asn	610 TGC Cys	9	ACA Thr
AAG Lys		CAT His		TCC	510	$_{\rm GLY}^{\rm GGT}$	26	AAC Asn	GAC Asp		TCC
TCC	410	TCC	460	GTC Val	-,	ACA		TAC	TTC	650	TTT Phe

FIGURE 3 2 OF 6

*	•											
	GAT ASP		TGT Cys	840	GAT Asp	TGT Cys		GAC	•	ACA Thr		GAA Glu
740	GCA	790	AAG	Φ.	AGC	TTT Phe		ATG	086	GCA Ala	1030	GGC
	TTA		AGA Arg		TTC Phe	CCC	930	GCA Ala	8	TGT	V-1	AAA Lys
	GCA		AAA Lys	830	GTA Val	880 AGT Ser	01	CTT Leu	*	GCC		ATC Ile
730	AAA Lys	780	AAT	86	AAG Lys	ATC		ATT Ile		ACT Thr	1020	ATA
•	AAG Lys		CTC		ATG	AAG Lys		GCT	970	TCA	10	CAC
	GGC Gly	•-	AAA GAG Lys Glu		GGT Gly	870 TAT AAG AAG Tyr Lys Lys	920	TCC		ATA Ile	· .	AAC
720	GCA	770	AAA Lys	820	GGC Gly		·	GGA G1y		TCG	0	GCT GCG AAC Ala Ala Asn
7	ACT	7.	ATG Met		TTG	TCA	• ,	ATG	096	${\tt TAT} \\ {\tt TYT}$	1010	
	CTG	:	GAT GCG Asp Ala	-	GGA Gly	50 ACT Thr	910	AAT Asn		AAC		AAT
0	* ATG Met		GAT	810	TCC	860 AGG A(Arg Th		ACA Thr	-	CCT	•	CTG
710	TAC	760	GAA Glu	~	GGC Gly	CTG		ACC	950	GGC Gly	1000	ATA Ile
	CTT		ACT		ATT Ile	GCT	*	TCT	9	ATG Met	<u>.</u>	TGT
	ATG Met		ATC Ile	800	CTC	850 GAA G1u		TTT Phe		TGG Trp		TTC
700	TTC	750	$_{\rm GGA}^{\rm GGA}$	8	GTT Val	ATT Ile		CCT		GGA	066	AAC Asn
	AAG	1-	GGT		GGA Gly	TCC Ser	890	GTA	940	TTG	ი	AGT

FIGURE 3 3 OF 6

1080	GTT		AAT Asn		TTT Phe		CAT		AGT	1320	* GCT Ala	TCG
-	CCT	Pro	AAT Asn		GGA G1y	0	GAG Glu	1270	GGG	13	GGA Gly	
	TTA	Leu	CAG AGG Gln Arg	1170	GAT GGA Asp Gly	1220	TTA Leu	+4	GGT		GAA (GGA GTC Gly Val
1070	GCC GTT	. val	cAG Gln	딤	CGT Arg		GAG Glu		CTA	0	CCT (
10	225	ALA	Ser		AAT Asn		GAG Glu	1260	TTT Phe	1310	CAC (His 1	1360 CAG TCC Gln Ser
	GCG	A La	TTG	20	AGT Ser	1210	CTT	12	GAA Glu		CCT (Pro 1	GCT (Ala (
	TCG GAT	1110 1110	cea ecr Trg Arg Ala Leu	1160	GAC		CTT Leu		GCG Ala		GAG	50 TTG (Leu 2
1060					TGG		TTA Leu	0	TAT Tyr	1300	ACC	1350 GCC TTG Ala Leu
	960		Cys		CCA Pro	1200	GGA GTT Gly Val	1250	ATT TAT Ile Tyr		CAC ATG ACC His Met Thr	AAG (Lys
	GGT		Ala	1150	AGA Arg	17	GGA Gly		ACC Thr		CAC	
1050	TGT				TCG		3CT 11a		GCA Ala	1290	TAC	1340 ATA GAG Ile Glu
П	CTT	<u>ل</u> 1	Phe		GCT	00	${\tt GGA} \\ {\tt G1y}$	1240	$_{\rm GGT}^{\rm GGT}$, 12	GCC	TGC
	ATG Met	ц у	$_{ m G1y}$	1140	AAA Lys	1190	GAA GGA (Glu Gly)	П	AGA Arg		GAC	CTC (
1040	* GAC ATG Asp Met	1090 GGA	G1y (H	ACC Thr		GGA Gly		AAA Lys	0	TGC	1330 ATC (
7					CCT		ATG Met	1230	AAG Lys	1280	ACT Thr	GTG Val
	GCA	GGT	$_{ m G1y}$	1130	GAC	1180	GTG Val	12	GCA Ala		TTC	GGT G

FIGURE 3 4 OF 6

	GCT		AAC Asn		CTT	1560	AGG Arg	66C 61y		GTC Val			TCC
	CCT Pro	0.0	CAA Gln	1510	CTT	15	ATA Ile	GAA		AAG Lys	٠	0	TCA
1410	ACT Thr	1460	GGC Gly		CAC His		GCA	GAC	1650			1700	AAC Asn
Ä	TCC		TTC		$_{\rm GGT}$	00	CAG Gln	1600 GAC CCG GAC ASP Pro ASP	16	AAA Lys		٠	CAT His
	ACT		TGT	1500	ATC Ile	1550	GTT Val			GAG			66C 61y
. 00	GCA	1450	CAC	Ä,	ATG		GTA	GAA	10	AAG Lys		1690	GGC G1y
1400	CAT	-	GCC	• •	TCG	٠.	GCA	1590 AAT TTG Asn Leu	1640	AAG Lys			TTC
	GCG		CTC	06	AAA Lys	1540	GTT Val	1. AAT Asn		CCT	• •		GGG
	AAT Asn	1440	GCT	1490	ACC	• •	GCA	ATT Ile		GGC Gly	٠.	1680	TTT Phe
1390	ATA Ile	, 	CAA		TCC		GTA GAA Val Glu	80 AAT Asn	1630	GTC	,	7	TCA
	TAC		TAC		AAT Asn	1530	GTA Val	1580 CCA AA Pro Asi	` '	CTC			AAT Asn
	AAT	1430	GAA Glu	1480	GTG Val	Ä	GGC	CAT His		CTG		0.0	TCC
1380	GTA Val	14	AAG Lys		AGA Arg		GGT G1y	ATC Ile	1620	AAA Lys		1670	TTG
↔	GAC		ATC Ile		CTG	20	GCT Ala	1570 TGG Trp	Ä	GCA			GGT G1y
	GAA Glu		GAT Asp	1470	GAG Glu	1520	GGA G1y	1 GGA G1y		GAT			GTC
1370	AGG	1420	GGA Gly	FI.	AGT Ser		GGA	ACA	1610	GTG Val		1660	AAG

FIGURE 3 5 OF 6

9
R
9
m
Æ
E
. ,

1710	1720	1730	1740	1750	1760	
ATA CTA TTT Ile Leu Phe	GCC	TGC AAC TAG A Cys Asn ***	AAAGAGTCTG	TGGAAGCCGA	CCC TGC AAC TAG A AAAGAGTCTG TGGAAGCCGA GAGTCTTTGA Pro Cys Asn ***	
1770	1780	1790	1800	1810	1820	
GAACTCATGC	ACGTTAGTAG	GAACTCATGC ACGTTAGTAG CTTCTTATGC CTCTGAAACC GAGATAGACC GGCTACTCGA	CTCTGAAACC	GAGATAGACC	GGCTACTCGA	
1830	1840	1850	1860	1870	1880	
GGGGATGCCA	GGGGATGCCA AAGATACTCC	TTGCCGGTAT	TGGTGTTAAG AGATCACTGC TTGTCCCTTT	AGATCACTGC	TTGTCCCTTT	
1890	1900	1910	1920	1930	1940	
TATTTTTT	TTCTTTTGAG	TTCTTTTGAG AGCTTTAACC GAGGTAGTCG	GAGGTAGTCG	TATTTCGAG	CTTTTCGAAT	
1950	1960	1970	1980	1990	2000	
ACATGTTCGT	TATCGGATCA	TATCGGATCA ATGTGTTTCT TCTAAGATCA TTTGTAATGC ATATTTTGAA	TCTAAGATCA	TTTGTAATGC	ATATTTTGAA	
2010	2020	2030	2040			
AAACCACATC	TCAGTATGCA	<u> Арассасатс теастатеса аратарара арарарара арадар</u>	AAAAAAAA	AAAAA		

1921
ţ
-
Range:
Sequence

09	CTACACCTCC	120	GCTCAATCGA	180	AGTTACCACA	GGA ATG Gly Met>		AAT AAT Asn Asn>	320	GAT TGT Asp Cys>	370	TCC ACA Ser Thr>
50	CATGACTA	110	SCACCGGAG	170	GCACAGGA	220 T GTG ACT (270	T TTC TAC		GAG ACC TTT Glu Thr Phe	o *	G TCT TTC s Ser Phe
40	CGAGCCCT GC	100	CACCCGCA GO	160	TCTGCAAC CT	210 CGA GTA GTT Arg Val Val	260	GAC CCT GAT GTT ASP Pro ASP Val	310	GAG ATA Glu Ile	360	GCT GGA GAG ATC AAG Ala Gly Glu Ile Lys
30	TCGCCTGC TT	06	CCATCCGC AC	150	recrere ec	200 ATC AAA CAG CGG Ile Lys Gln Arg	250	GGC CAT GAC Gly His Asp	300	GGC ATA AGT Gly Ile Ser	350	ATT GCT GGA Ile Ala Gly
20	ACCTCTTA CC	80	GGATCCAG GC	140	GGGGAGGC AA	AGT	240	ACT CCT CTA Thr Pro Leu	290	GGA ACG AGT Gly Thr Ser	340	CCT ACG AGA ATT (Pro Thr Arg Ile 2
10	CGGCACGAGG TCACCTCTTA CCTCGCCTGC TTCGAGCCCT GCCATGACTA CTACACCTCC	70	GCATCCTTGT TCGGATCCAG GCCCATCCGC ACCACCCGCA GGCACCGGAG GCTCAATCGA	130	GCTTCCCCTT CCGGGGAGGC AATGGCTGTG GCTCTGCAAC CTGCACAGGA AGTTACCACA	190 AAG AAG AAG CCA Lys Lys Lys Pro	230 2	GGT GTG GTG A Gly Val Val T	280	CTG CTT GAT G Leu Leu Asp G	330	GCT CAA TTT C Ala Gln Phe P
							7	,				

160KE 4

420	ATG Met>	ATC Ile>		CTC Leu>		GAA Glu>	610	TTC Phe>	099	* TGG Trp>	TTT Phe>
	TTC	GGA G1y		GTT Val	260	ATT Ile	61	CCT		GGA Gly	AAC Asn
	GAC AAG ASP LYS	460 AAT GGT ASN Gly	510	GGA Gly	Δ,	GCC		GTA Val		TTG	
410				TGC Cys		GAT Asp		TGT Cys	650	GAC Asp	70 ACG Thr
	ATG			AAA Lys	550	AAT Asn	009	* TTT Phe	Ψ	ATG Met	GCA
	AGG	TTA	200	AGA Arg	55	$ ext{TTC}$		CCC		GCA Ala	TGT Cys
400	AAG Lys	450 GCA Ala		AAA Lys		GTA Val		AAT Asn	640	CTT	690 GCT Ala
4	TCC	AAA Lys		GAT Asp		AAG Lys	290	ATG Met	79	ATG Met	ACT
	CTC	AAG Lys	490	CTA	540	ATG	٠,	AAG Lys		GCT	TCT Ser
	AAG Lys	440 GGC Gly	4	GAG Glu		GGA Gly		AAG Lys		TCA	80 ATA Ile
390	CCG	GCC Ala		AAA Lys		$_{\rm G1y}^{\rm GGT}$	280	${\tt TAT} \\ {\tt TYT}$	630	GGA Gly	
	GCC Ala	ACT Thr		ATG Met	530	ATG	28	TCA		ATG Met	TAC
	GTG Val	430 ATG CTG	480	GTG Val	-,	GCA		ATT Ile		AAT Asn	
380	TGG			GAT Asp		TCA		AGG Arg	620	ACA Thr	670 CCC AAC Pro Asn
	$_{\rm G1y}^{\rm GGT}$	TAC		GAA Glu	520	GGC Gly	570	CTA Leu	•	ACC	GGC Gly
	GAT Asp	CTT Leu	470	ACC Thr	22	ATT Ile		GCC		GCT	ATG Met
			-								

FIGURE 4 2/6

÷.			٠									
	GTG Val>		GGA Gly>	09	ACT Thr>	* 006	GGG Gly>	AAA Lys>		TGC Cys>		ATT Ile>
	GAT Asp	800	ATG Met	85	CCT Pro		ATG Met	AAG Lys		ACT	1040	GTG Val
750	GCA		$_{\rm G1y}^{\rm GGT}$		GAC Asp		GTT Val	40 GCA Ala	066	TTC	. 10	GGA G1y
	GAA Glu		ATT Ile		GCC	890	TTT Phe	9 CAT His		AGT		GCT Ala
	66c 61y	190	CCT	840	AAT		GAT GGA Asp Gly	GAG Glu		GGA Gly	30	GAT GGA Asp Gly
740	AGA	7	ATA Ile		AGA Arg		GAT Asp	TTA	980	GGT	1.030	GAT
	ATC Ile	٠.	ATC Ile		CAG	088	CGT Arg	930 GAG Glu	-	CTA		CCT
• -	CAC ATA His Ile		GTA Val	830	TCA	80	AAT Asn	GAG	. <u>.</u> .	GAA TTT Glu Phe		CAC
730	CAC His	780	GCG	. 	TTG	-	AGT	CTA	970		1020	CCT
7	AAC Asn		GAT Asp		GCT		GAC	920 CTA Leu	o	GCA		
	GCG Ala		TCA	820	CGA Arg	870	TGG Trp	CTA Leu		TAC		ACC Thr
	GCT Ala	170	GGC G1y	œ	TGC		CCA Pro	GTG Val		ATT Ile	1010	ATG Met
720	AAT Asn	•	GGG		GCA Ala		AGA Arg	910 T GGA a Gly	960	ACT	1(CAC His
	CTG Leu		TGC		GTT Val	860	TCA	91 GCT Ala		GCG Ala		TAC
	ATC Ile	160	CTT	810	TTT Phe		GCT	GGA G1y		GGT G1y	0	GCC Ala
710	TGT	7(ATG		GGT		AAA Lys	GAA Glu	950	AGA	1000	GAT

IGURE 4

1090	Ø Ø	1140	GAT ATC Asp Ile>	G TTA u Leu>		CTC GGA GCA GCC Leu Gly Ala Ala>		GGG TGG Gly Trp>	1330	GAT ACC Asp Thr>	1380	c GGT 1 Gly>	
~			A GAT	c GAG n Glu	0	A GCA	1280	r GGG r Gly	↔	G GA 1 AS		G GTC s Val	
	TCT AGG Ser Arg		GGA G1y	1180 AAC AAC Asn Asn	1230	GGA G1y	••	ACT Thr		GGC GTG Gly Val		AAG Lys	
		1130	CCA GCT Pro Ala					AGG Arg		${\tt GGC}$	1370	AAC ATT AAG GTC Asn Ile Lys Val	
1080	GGA GTC Gly Val	\vdash		CAA G1n		CAC CTT His Leu	0.0	GCA ATA Ala Ile	1320	GAA Glu	-		
•			ACT Thr	GGC Gly	1220	CAC His	1270			GAT Asp		CTG	
	TCA	0	TCC Ser	1170 TGT TTC Cys Phe	13	GGT		CAG Gln		CCA Pro	0.0	GAG AGA CTG Glu Arg Leu	
1070	CAG Gln	1120				ATT Ile		GTT Val	1310	AAC CCA Asn Pro	1360	GAG Glu	
10	GCT		GCC Ala	CAC His	0.	TCA ATG ATT Ser Met Ile	1260	TCA GTA GTT Ser Val Val	13	GAA Glu		AAG Lys	
	TTG		CAT His	1160 CTT ATC Leu Ile	1210	TCA	П	TCA		ATT AAT TTG Ile Asn Leu		GGC CCT AAG Gly Pro Lys	
0	GCT	1110	GCA Ala	11 CTT Leu		AAA Lys		GCA GTT Ala Val	00	AAT Asn	1350	CCT	
1060	AAG Lys	П	AAT Asn	GCT		ACC Thr	1250	GCA Ala	1300	ATT Ile		GGC Gly	
	GAG Glu		ATA Ile	50 CAA Gln	1200	AAT TCT ACC Asn Ser Thr	12	GAA Glu		AAT Asn		CTC GTG Leu Val	
	ATA Ile	1100	TAC	1150 TAC CAA Tyr Gln	-	AAT Asn		GTG Val		CCG	1340	CTC	
1050	TGC Cys	11	AAT Asn	GAG Glu		GTG Val	0	GGT	1290	CAT	13	TTG	
∺	CTC		GTA Val	AAA Lys	1190	AAA Lys	1240	GGT G1y	+	ATC Ile		AAA Lys	

FIGURE 4 4/6

1390															
1390 1410 15cr AAT TCA TTC GGG TTT GGT GGG CAC AAC 1 Ser Asn Ser Phe Gly Phe Gly Gly His Asn 1440 1440 1450 1500 1500 1500 1500 1500	CTC	1480	ATCAAA	1540	CATGCCCATG	1600	GGCGACACAG		TTTCTGAAAT	1720	GAAGAGAACA	1780	TTTATCGCCG	1840	ATCATTGGAG
1390 3 TCT AAT 1 Ser ASD 2 CCT TAC 1490 1550 1710 1610 2ATACTCC 1730 1730 1790 TTGTGGT		1470	ractca atct	1530	CGTCTCTAGA	1590	GAGTACTCAT	1650	TCCCATTTT	1710	AGTCAGTGAA	1770	тестстстат		TTTCTCTTG
1390 3 TCT AAT 1 Ser ASD 2 CCT TAC 1490 1550 1710 1610 2ATACTCC 1730 1730 1790 TTGTGGT	1410 3GG CAC AAC 31y His Asn	1460	rgrgga attc		TAGCTCCTTA		ATGACGGATT	-	CTATTCATTA	1700	CGTTTCATCG		CCCTTTGTTT	 	GACTGGTTTG
1390 3 TCT AAT 1 Ser ASD 2 CCT TAC 1490 1550 1710 1610 2ATACTCC 1730 1730 1790 TTGTGGT	100 3G TTT GGT (1y Phe Gly (1450	SCGTTT CATG	1510	AGCATGTTGG	1570	AGTCGGAACC	1630	TGTTAGAGCA	1690	TACTTTCGAG	1750	TAACCATTTG	1810	AAAACTAGAC
139C TTG TCT AAI Leu Ser ASI 1430 GCC CCT TAC Ala Pro Tyr 1490 GCTGAAGTTT 1610 GATATACTCC 1670 CTCCCTCCTT 1730 AAGCTAACTC 1730	TCA TTC Ser Phe	1440	AAC Asn	1500	TGAGGACTCC	1560	CGGGAGCTGT	1620	TTGCTAGAAT	1680	ACGGTAGTTG	1740	GGGCACGTAG	1800	TAAAATTTGT
		1430	CCT	1490	GCTGAAGTTT	1550	AGTTTTGTGT	1610	GATATACTCC	1670	CICCCICCII	1730	AAGCTAACTC	1790	TTTTGTGGGT

IGURE 4

FIGURE 4 6/6

1900 ATGTATGGCC ATATTTGCCT TTCATTGATG ATAAAAAAA AAAAAAAA AAAAAAAA 1890 1880 1870 1860 1850

1910 1920 *

AAAAAAAA AAAAAAAA A

					•	.*.			
09	120	169	217	265	313	361	409	457	202
CTGGTACGCC TGCAGGTACC GGTCCGGAAT TCCCGGGTCG ACCCACGCGT CCGTCTTCCC	retrerice accecatere rrerery	CGCCGCC ATG CAT TCC CTC CAG TCA CCC TCC CTT CGG GCC TCC CCG CTC Met His Ser Leu Gln Ser Pro Ser Leu Arg Ala Ser Pro Leu 1	GAC CCC TTC CGC CCC AAA TCA TCC ACC GTC CGC CCC CTC CAC CGA GCA Asp Pro Phe Arg Pro Lys Ser Ser Thr Val Arg Pro Leu His Arg Ala 15	TCA ATT CCC AAC GTC CGG GCC GCT TCC CCC ACC GTC TCC GCT CCC AAG Ser Ile Pro Asn Val Arg Ala Ala Ser Pro Thr Val Ser Ala Pro Lys 35	CGC GAG ACC GAC CCC AAG AAG CGC GTC GTG ATC ACC GGA ATG GGC CTT Arg Glu Thr Asp Pro Lys Lys Arg Val Val Ile Thr Gly Met Gly Leu 55	GTC TCC GTT TTC GGC TCC GAC GTC GAT GCG TAC TAC GAC AAG CTC CTG Val Ser Val Phe Gly Ser Asp Val Asp Ala Tyr Tyr Asp Lys Leu Leu 65	TCA GGC GAG AGC GGG ATC GGC CCA ATC GAC CGC TTC GAC GCC TCC AAG Ser Gly Glu Ser Gly Ile Gly Pro Ile Asp Arg Phe Asp Ala Ser Lys 80	TTC CCC ACC AGG TTC GGC GGC CAG ATT CGT GGC TTC AAC TCC ATG GGA Phe Pro Thr Arg Phe Gly Gly Gln Ile Arg Gly Phe Asn Ser Met Gly 95	TAC ATT GAC GGC AAA AAC GAC AGG CGG CTT GAT GAT TGC CTT CGC TAC Tyr lle Asp Gly Lys Asn Asp Arg Arg Leu Asp Asp Cys Leu Arg Tyr 115 115

553	601	649	697	745	793	841	889
GCC Ala	666 G1y	CTT Leu	GCC Ala 190	ATG Met	TGC Cys	ATG Met	GGC Gly
GGT Gly	GTT Val	TCT Ser	TAT Tyr	CTG Leu 205	TAC Tyr	CTT Leu	GGA
CTC Leu 140	CTG	CAA Gln	CCC	GGT Gly	AAC Asn 220	GAT	TTG (
GAT Asp	GTG Val 155	GTT Val	ATC Ile	CTC	TCC	GCT Ala 235	GGG '
GCC Ala	GGA G1y	GGG G1y 170	TTC Phe	GAA Glu	ACT	GAG Glu	ATT (Ile (250
gac Asp	GCC Ala	GAC Asp	TTC Phe 185	ATT Ile	GCC	GGT (CCA
GAG Glu	AGA Arg	TCT Ser	CCT	GCT Ala 200	TGT	CGT Arg	ATT (Ile)
CTT Leu 135	GAG Glu	TTC	ACC Thr	CTC	GCA Ala 215	CGC	ATC Ile
TCT	AAG Lys 150	GTC Val	ATC Ile	CTG	ACT	ATC Ile 230	GCA
AAG Lys	GAC Asp	ACT Thr 165	AAA Lys	GCC Ala	TCC	CAT	GCC Ala 245
AAG Lys	ATC Ile	CTG	CGG Arg 180	TCT	ATT Ile	AAT	GAG Glu
666 61y	AAG Lys	$_{\rm GLY}^{\rm GGT}$	CAC His	GGG Gly 195	TCA	GCT	ACT Thr
GCC Ala 130	TCC	GGT Gly	$_{\rm G1y}^{\rm GGT}$	ATG Met	TAT Tyr 210	GCT	GGC 2
GTC Val	CTC Leu 145	ATG Met	AAG Lys	AAC Asn	AAC Asn	GCT Ala 225	GGA (
ATT Ile	CGC Arg	GGA Gly 160	GAG Glu	ACA Thr	CCA	CAT	GCT (Ala (240
TGC Cys	GAC Asp	ACA Thr	ATC Ile 175	ATT Ile	GGC Gly	TTC (ATT (Ile /
							- · •

FIGURE 5

					•		
937	985	1033	1081	1129	1176	1224	1272
ACT Thr 270	GAA Glu	CGA	GAT	TCT Ser	GTC Val 350	GCC	AAA Lys
CAG Gln	GGT Gly 285	aaa Lys	TGT Cys	TCC	GAG Glu	CTC Leu 365	ATC Ile
CCT	ATG Met	ATG Met 300	AAC	GTC Val	GAA Glu	GAT Asp	GAT ASP 380
GAC Asp	GTG Val	GCA Ala	ATC 11e 315	GGT Gly	CCT	666 G1y	AAG Lys
GAT Asp	TTT Phe	CAT	GCA	CTC Leu 330	TCA	GCT Ala	ACA
AAC Asn 265	GGT G1y	GAA Glu	GGT G1y	GGT	GTC Val 345	CTA	AAC Asn
AGG	GAT Asp 280	TTG	GGA G1y	GAT	GGC Gly	ACT Thr 360	AAG Lys
CAA	CGT	AGC Ser 295	TTG	GCT	GCT	TCT Ser	TTC Phe 375
Ser	GAC	GAG Glu	TAT TYE 310	AGG	GAT	ACT Thr	GTT Val
CTG	AAA Lys	CTG	GAG Glu	CCA Pro 325	GAA Glu	GCG Ala	AAG Lys
GCT Ala 260	GAT Asp	GTG Val	GCA Ala	GAC Asp	CTT Leu 340	CAT	AAG Lys
AGG Arg	TGG Trp 275	TTG	ATT Ile	ACT Thr	AGC	GCT Ala 355	ATC Ile
TGC	CCC	GTG Val 290	ATT Ile	ATG	AGT Ser	AAT	GCC Ala 370
GCT	AGG	GGA Gly	CCT Pro 305	CAC His	GAG Glu	ATA Ile	AAT Asn
GTG Val	TCT Ser	GCT Ala	GCA Ala	TAT Tyr 320	ATT Ile	TAC Tyr	ATA Ile
TTT Phe 255	GCC Ala	GGT Gly	GGA Gly	GCT	TGC Cys 335	AAT Asn	GAG Glu

TGUKE 3

1320	1368	1416	1464	1512	1569	1629	1689	1712
C TGT CTT GGA GCC TCT GGA s Cys Leu Gly Ala Ser Gly 395	A ATA AAC ACC GGC TGG CTT Y Ile Asn Thr Gly Trp Leu 410	G CCA TCC GTG GAG TTC GAC Pro Ser Val Glu Phe Asp 425	A GTT AAT GTT GCG ATC TCG 1 Val Asn Val Ala Ile Ser)	A GTC GTG GCT TTC TCG GCT Total Val Ala Phe Ser Ala 460	TTACC CATTTCACAA GGCACTTGTC ATTGAGAGTA CGGTTGTTCG	GTTCTATGTA AAAAAAGTA AGGATTATCA CTTTCCCTTC	TAATCCTGTC TCCAGTTTGA GAATGAAATT ATATTTATTT TAAAAAAAAA	
GGA CAC Gly His	AAG GGA Lys Gly	CCT GAG Pro Glu	CAC GAA His Glu 440	AAC TCA Asn Ser 455	GGCACT	AAAAA	ATATTT	
ATG ATC Met Ile 390	ACT ATT Thr Ile 405	TTC AAT Phe Asn	CAG CAA Gln Gln	GGC CAC Gly His	CATTTCACAA (STTCTATGTA	SAATGAAATT 1	SCT
ACT AAG TCA Thr Lys Ser 1	GCT ATA GCG Ala Ile Ala	ATT AAT CAA Ile Asn Gln 420	AAC AAG AAG Asn Lys Lys 435	GGA TTC GGA Gly Phe Gly 450	TGA TTACC	AGGATACT (CAGTTTGA (GGATCCAA (
AAT GCA Asn Ala 385	CTT GAA Leu Glu 400	CCC AGC Pro Ser	GTT GCC Val Ala	TCA TTT Ser Phe	AAG CCA Lys Pro 465	TCAAACCCAT TTAGGATACT	TCCTGTC TC	GGCCGCTCTA GAGGATCCAA GCT
ATT Ile	$_{\rm G1y}$	CAT His 415	ACT Thr	AAT Asn	TTC	TCA	TAA	255

FIGURE 5

1802
to
Н
Range:
Sequence

											•	
09	TTATCTCCGC	110 C CCT TCC T Pro Ser	0	C TCC r Ser	210	c cgr e Arg		G CGG s Arg		c grc p val	C CTA r Leu	
20		11 CAC TCC His Ser	160	CCC TCC Pro Ser	÷	GTC ATC Val Ile		AAG AAG Lys Lys	300	rcc gac Ser Asp	350 ATC AGC Ile Ser	
	TTGCCI	CTC		AAT TCC Asn Ser	200	CTC CCC Leu Pro	250	GAC CCC ASP Pro	. ო 	TTC GGC Phe Gly	C 66C F 61y	
40	PATT TC	100 CAA TCC Gln Ser	150	CTC	-	AGC		TCC	290	GTC Val	340 GAG AGC Glu Ser	
	ACATTT(C ATG (Met (· - ·	TTC CGC Phe Arg	190	cgc gcc Arg Ala	240	ccc cac Arg Glu	7	GTC TCC Val Ser	TCC GGC Ser Gly	
30	CTTTCCGACC ACATTTCATT TCTTGCCTCG	06	140	CCC	ਜ	CGT Arg		AAG Lys		CTC	330 CTC Leu	
	CTTTC			CTC GAG Leu Glu	·	CCC CTC Pro Leu	230	GCC CCC Ala Pro	280	ATG GGC Met Gly	3 AAG CTG Lys Leu	
20	GGTCGACCCA CGCGTCCGGG	80 CCGTCGTTCG	130	CCT	180	CGC		TCC		GGC G1y	0 GAC ASP	
	A CGCG			CCC TCC Pro Ser		GCT CTC Ala Leu	220	ACC GCC Thr Ala	270	ATC ACC Ile Thr		
10	GACCC	70 CGCTCCTCCG	120	CGC Arg	170	GCC GC Ala Al	22	GCC AC Ala Th		GTC A1 Val I1	GCC TAC Ala Tyr	
	GGT	ເວຍວ	77	CTC		GCC		GCT	260	GTC	310 GAC ASD	

SUBSTITUTE SHEET (RULE 26)

	cag Gln	450	CGG Arg		GCT Ala		AAG Lys	GTC Val		ATC Ile	069	CTG	
400	66C 61y	•	GAC Asp		AAG Lys		GAT Asp	590 A ACT u Thr	640	AAG		GCG Ala	
	GCC Ala		AAC Asn		AAG Lys	540	ATT Ile	59 CTA Leu		CGG Arg		TCT	
	TTC Phe	0	AAG Lys	490	GGC	L)	AAG	GGC G1y		CAC His	089	$_{\rm GGG}$	
390	AGG Arg	440	GGC		GCC		TCC	GGT G1y	630	AAA GGT Lys Gly 1	89	ATG Met	
m	ACC		GAC		GTC Val	0	CTC	580 ATG Met	9	AAA Lys		AAC	
	CCC		ATC Ile	480	ATT Ile	530	TCC	GGT Gly		GAG Glu		ACA Thr	© .
0	TTC Phe	430	TAC	4	TGC	-	CAA Gln	ACC	0	ATC Ile	670	ATT Ile	GURE 2/5
380	AAA Lys		GGC Gly		TAC		GGC Gly	570 GGA Gly	620	CTC		GCC ATT Ala Ile	FIGURE 2/5
	TCC		ACG Thr	0	CGC Arg	520	GCC Ala	GTT Val		AAT Asn		TAT Tyr	
	GCT Ala	420	GCG Ala	470	CTC		CTC	CTA	,	CAG Gln	* 099	CCA	
370	GAC	4	AAC Asn		TGC		GAT Asp	50 GTG Val	610	GTT Val	U	ATT Ile	
	TTC Phe		TTC Phe		GAT Asp	510	GCC Ala	560 GGA GJ Gly Va		666		TTC	
	CGC Arg	0	GGC Gly	460	GAC	ц,	GAC	GCC Ala		GAC Asp	029	TTT Phe	
360	GAC	410	CGT Arg		CTC		GAA Glu	AGG Arg	* 009	TCT Ser	9	CCG	
m	ATC Ile		ATC Ile		CGG Arg	200	CTC	550 GAG Glu	w	TTC Phe		TCC	
						5(

SUBSTITUTE SHEET (RULE 26)

TOO 710 720 730 CTT GCC ATC GAT TTG GGT CTG ATG GGC CCA AAC TAT TCG ATT TCA ACT Leu Ala Ile Asp Leu Gly Leu Met Gly Pro Asn Tyr Ser Ile Ser Thr 740 750 760 770 770 780 GCA TGT GCT ACT TCC AAC TAC TAC TTG TTT TAT GCT GCC GCC AAT CAT ATC Ala Cys Ala Thr Ser Asn Tyr Cys Phe Tyr Ala Ala Asn His Ile 790 800 870 880 GC CGA GGT GAG GCT GAC CTG ATG ATT GCT GCA GCA ACT CAT ATC Ala Cys Arg Gly Glu Ala Asp Leu Met Ile Ala Gly Gly Thr Glu Ala Ala Ala Ser Arg GCC ATG ATT GCT GCA GCA GCT GCG GCT GCG ATT GCT TTA GCA GCA GCA ACT GCG GCT GCG ATT TCT Val Ile Pro Ile Gly Leu Gly Gly Phe Val Ala Ser Arg Pro Trp Asp Asp Asp Pro Gln Thr Ala Ser Arg Pro Trp Asp Leu Ser Arg Asg GAC Gln Arg Asn Asp Asp Asp Pro Gln Thr Ala Ser Arg Pro Trp Asp Lys Asp 940 950 1000 1000 1000 1000 880 870 880 870 880 870 880 870 880 870 87				٠										
TT GCC ATC GAT TTG GGT CTG ATG GGC CCA AAC TAT TCG ATT TCA eu Ala Ile Asp Leu Gly Leu Met Gly Pro Asn Tyr Ser Ile Ser 750 760 770 780 770 780 770 780 810 810 820 820 830 820 830 820 830 820 830 820 830 820 820 830 820 830 820 820 820 830 820 820 820 820 820 820 820 820 820 82		ACT Thr		ATC Ile	GCG Ala		TCT	30	GAC	•	GAG Glu		TAT	
TT GCC ATC GAT TTG GCT CTG ATG GCC CCA AAC TAT TCG eu Ala Ile Asp Leu Gly Leu Met Gly Pro Asn Tyr Ser 750 760 770 770 CA TGT GCT ACT TCC AAC TAC TGC TTT TAT GCT GCC GCC la Cys Ala Thr Ser Asn Tyr Cys Phe Tyr Ala Ala Ala 800 810 820 GC CGA GGT GAG GCT GAC CTG ATG ATT GCT GGA GGA ACT 910 850 850 860 870 TC ATT CCA ATT GGT TTA GGA GGA TTC GTT GCT GC GGA GGA ACT 920 860 870 AA AGG AAT GGT TTA GGA GGA TTC GTT GCT GC TGC AGG 11 le Pro Ile Gly Leu Gly Gly Phe Val Ala Cys Arg AA AGG AAT GAT CCT CAG ACT GCT TGC TGC TGC AA AGG AAT GAT CCT CAG ACT GCT TGC TGC GT GAT GCT TTG GT GT GAT GCT GGA GTA TTG 940 950 950 960 970 GT GAT GGC TTT GTG ATG GGT GAA GGG GCT GGA GTA TTG 940 950 1000 1000 1000 1000 1000 GT GAT GCC TTT GTG ATG GGT GAA GGG GCT GGA GTA TTG GT GAT GCC TTT GTG ATG GGT GAA GGG GCT GGA GTA TTG GT GAT GCC TTT GTG ATG GGT GAA GGG GCT GGA GTA TTG 940 950 1000 1000 1000 1000 1000 1000 1000				CAT His	30 GCT Ala	880	TTA		AAG		ATG Met		GAA Glu	
TT GCC ATC GAT TTG GCT CTG ATG GCC CCA AAC TAT TCG eu Ala Ile Asp Leu Gly Leu Met Gly Pro Asn Tyr Ser 750 760 770 770 CA TGT GCT ACT TCC AAC TAC TGC TTT TAT GCT GCC GCC la Cys Ala Thr Ser Asn Tyr Cys Phe Tyr Ala Ala Ala 800 810 820 GC CGA GGT GAG GCT GAC CTG ATG ATT GCT GGA GGA ACT 910 850 850 860 870 TC ATT CCA ATT GGT TTA GGA GGA TTC GTT GCT GC GGA GGA ACT 920 860 870 AA AGG AAT GGT TTA GGA GGA TTC GTT GCT GC TGC AGG 11 le Pro Ile Gly Leu Gly Gly Phe Val Ala Cys Arg AA AGG AAT GAT CCT CAG ACT GCT TGC TGC TGC AA AGG AAT GAT CCT CAG ACT GCT TGC TGC GT GAT GCT TTG GT GT GAT GCT GGA GTA TTG 940 950 950 960 970 GT GAT GGC TTT GTG ATG GGT GAA GGG GCT GGA GTA TTG 940 950 1000 1000 1000 1000 1000 GT GAT GCC TTT GTG ATG GGT GAA GGG GCT GGA GTA TTG GT GAT GCC TTT GTG ATG GGT GAA GGG GCT GGA GTA TTG GT GAT GCC TTT GTG ATG GGT GAA GGG GCT GGA GTA TTG 940 950 1000 1000 1000 1000 1000 1000 1000		ATT Ile	780	AAT Asn	83 GAG Glu				GAT Asp			320	GCA	
TT GCC ATC GAT TTG GGT CTG ATG GGC CCA AAC TAGE ATG GGC CCA ATG GGC GGA GGC GGA GGT GGC TTG TAGE ATG ATG GGA GGC GGA GGC GGA GGC GGA GGC GGA GGC GGA GGC GGA GGA	730			GCC	ACT Thr		AGG Arg	07		970	TTG	1		
TT GCC ATC GAT TTG GGT CTG ATG GGC CCA AAC eu Ala Ile Asp Leu Gly Leu Met Gly Pro Asn 750 760 770 CA TGT GCT ACT TCC AAC TAC TGC TTT TAT GCT la Cys Ala Thr Ser Asn Tyr Cys Phe Tyr Ala 800 810 850 GC GGA GGT GAG GCT GAC CTG ATG GTT GCT GATG GTT GGT GAG GTT GCT GAG TC ATT CCA ATT GGT TTA GGA GGA TTC GTT GCT 1 Ile Pro Ile Gly Leu Gly Gly Phe Val Ala 890 900 910 AA AGG AAT GAT GAT CCT CAG GCT GCG 1 Ile Pro Ile GTY Leu GlY GIY Phe Val Ala 890 950 950 GT GAT GGT TTT GTG ATG GGT GAA GGG GCT GGA TG ATG GAT GAT GAT GTG ATG GTT Ala Ser Arg TT GAT GCC TTT GTG ATG GGT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GGT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GGT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GGT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GGT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GGT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GGT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GGT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GCT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GCT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GCT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GCT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GCT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GCT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GCT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GCT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GCT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GCT GAA GGG GCT GGA TT GAT GCC TTT GTG ATG GCT GAA GGG GCT GAA GCG GCT GCT GAA GCG GCT GAA GCG GCT GAA GCG GCT GAA GCG GCT GCT GCT GCT GC				GCC		370	TGC	.6			GTA		ATT Ile	,•
TT GCC ATC GAT TTG GGT CTG ATG GGC eu Ala Ile Asp Leu Gly Leu Met Gly Leu Ala Ile Asp Leu Gly Leu Met Gly Leu Atg Thr Ser Asn Tyr Cys Phe 800 810 810 860 850 850 860 850 850 850 860 850 850 850 850 850 850 850 850 850 85		AAC Asn	0.0	GCT	820 GGA G1y	ω	GCC		AGG		GGA G1y		CCG	
TT GCC ATC GAT TTG GGT CTG ATG eu Ala Ile Asp Leu Gly Leu Met 750 760 CA TGT GCT ACT TCC AAC TAC TGC la Cys Ala Thr Ser Asn Tyr Cys 90 800 810 GC CGA GGT GAG GCT GAC CTG ATG TT CATT CCA ATT GGT TTA GGA GGA al Ile Pro Ile Gly Leu Gly Gly 890 900 AA AGG AAT GAT CCT CAG ACT In Arg Asn Asp Asp Pro Gln Thr 940 950 GT GAT GGC TTT GTG ATG GAA TG GAT GAT GAT CCT CAG GAA TG AAT GAT GAT CCT CAG GAA TG GAT GAT GAT CTT CTG GAT TT CATT CATT GTG ATG GAA TG AAT GAT GAT GAT CCT CAG GAA TG AAT GAT GAT GAT CCT CAG GAA TG AAT GAT GAT GAT ATG AAG GGG TTG GAG CAT GCA ATG AAA CGG ET Leu Glu His Ala Met Lys Arg	, *	CCA	7.1		GCT		GTT Val		TCA	096	GCT	101	GCG	. 6
TT GCC ATC GAT TTG GGT CTG ATG eu Ala Ile Asp Leu Gly Leu Met 750 760 CA TGT GCT ACT TCC AAC TAC TGC la Cys Ala Thr Ser Asn Tyr Cys 90 800 810 GC CGA GGT GAG GCT GAC CTG ATG TT CATT CCA ATT GGT TTA GGA GGA al Ile Pro Ile Gly Leu Gly Gly 890 900 AA AGG AAT GAT CCT CAG ACT In Arg Asn Asp Asp Pro Gln Thr 940 950 GT GAT GGC TTT GTG ATG GAA TG GAT GAT GAT CCT CAG GAA TG AAT GAT GAT CCT CAG GAA TG GAT GAT GAT CTT CTG GAT TT CATT CATT GTG ATG GAA TG AAT GAT GAT GAT CCT CAG GAA TG AAT GAT GAT GAT CCT CAG GAA TG AAT GAT GAT GAT ATG AAG GGG TTG GAG CAT GCA ATG AAA CGG ET Leu Glu His Ala Met Lys Arg		GGC Gly		TTT Phe	ATT Ile	. 05	TTC	910	GCC		GGG G1y		GGA G1y	URE
TT GCC ATC GAT TTG GGT CTG eu Ala Ile Asp Leu Gly Leu 750 760 CA TGT GCT ACT TCC AAC TAC 12 Cys Ala Thr Ser Asn Tyr 90 800 GC CGA GGT GAG GCT GAC CTG 760 850 840 850 850 AA AGG AAT GAT GGT TTA GGA 11		ATG		TGC	310 ATG Met	8	GGA Gly		ACT		GAA Glu	• . •	CGG Arg	FIG
TT GCC ATC GAT TTG eu Ala Ile Asp Leu 750 CA TGT GCT ACT TCC la Cys Ala Thr Ser 90 GC CGA GGT GAG GCT rg Arg Gly Glu Ala 840 840 850 AA AGG AAT GAT GAT ln Arg Asn Asp Asp 940 GT GAT GGC TTT GTG rg Asp Gly Phe Val 650 671 672 673 674 675 675 676 677 677 677 677 677 677 677	10	CTG	760	TAC	CTG				CAG Gln	. 00	GGT Gly	0007	AAA Lys	
TT GCC ATC GAT eu Ala Ile Asp 750 CA TGT GCT ACT la Cys Ala Thr 90 GC CGA GGT GAG GG ATG GAT al Ile Pro Ile 890 AA AGG AAT GAT ln Arg Asn Asp 940 GT GAT GGC TTT rg Asp Gly Phe GT GAT GGC TTT rg Asp Gly Phe GC TTG GAG CAT er Leu Glu His	7.			AAC			TTA	006	CCT	9,	ATG Met	П		
TT GCC ATC eu Ala Ile la Cys Ala 90 GC CGA GGT rg Arg Gly * TC ATT CCA al Ile Pro 890 890 890 87 AAR AGG AAT In Arg Asn 11 Arg Asn 940 GT GAT GGC rg Asp Gly GT GAT GGC rg Asp Gly				TCC	O GCT Ala	850		01					GCA Ala	
TT GCC ATC eu Ala Ile la Cys Ala 90 GC CGA GGT rg Arg Gly * TC ATT CCA al Ile Pro 890 890 890 87 AAR AGG AAT In Arg Asn 11 Arg Asn 940 GT GAT GGC rg Asp Gly GT GAT GGC rg Asp Gly		GAT	750	ACT	8(GAG Glu		ATT Ile		GAT Asp		TTT Phe	066		
TT GC eu Al la Cy 10 CA TG 10 CG 10 CG 11	700		•	GCT	GGT		CCA	06	AAT Asn	940	GGC Gly		GAG Glu	
er di la		GCC Ala		TGT Cys		340		80	AGG		GAT Asp		TTG	
		CTT	740	GCA	790 CGC Arg	ω	GTC Val		CAA Gln		CGT Arg	086	AGC	

7D ha		r. 0		_							
AGG		GAT Asp	1170	ACT		GTT Val		ATC Ile	ATT Ile		AAT Asn
1070 GAT CCA ASP Pro	1120	GAA Glu	H	GCG ACT Ala Thr		AAA Lys	1	ATG Met		1360	TTT
1070 GAT C(ASP P1	•	CTC		CAT His		AAG Lys	1260	* TCA Ser	1310 GCA ACC Ala Thr	∺	CAA Glu
ACT		AGT Ser	0	GCT	1210	ATT	12	* AAG TCA Lys Ser	ATC (Ile A		AAT C Asn G
ATG Met	1110	AGC	1160	AAT	H	GCC		ACT 1 Thr 1	GCC A	0	ATT A Ile A
.060 CAT His	11	GAG Glu		ATA		AAT (0	SCA A	1300 GAA G	1350	CCC AGC ATT Pro Ser Ile
1 TAT TYr		ATT Ile		TAC	00	ATA i	1250	AAT GCA Asn Ala	1300 CTT GAA Leu Glu		CCC A Pro S
GCT Ala	0	TGC	1150	AAT Asn	1200	GAG 7 Glu 1		TC A	GGT C		CAT C His P
F	1100	TCG	H	GTC ;		GCC (Ala G		AAA ATC Lys Ile	90 GGA G Gly G	1340	CTT C
1050 TGT GAI Cys Asp		Ser		GAG (Glu V	_	CTT G	1240	ATC A Ile L	1290 TCA GGA Ser Gly		TGG C
AAC '		GTC 7	0 *	GAA G	1190	GAT CTT Asp Leu	12	GAA A Glu I	GCA T		
TC A	06	GGT G	1140	CCT G Pro G						0	2 GGC 5 G1y
1040 GCA GTC Ala Val	1090	9 9 9				. GGG		AAG Lys	1280 CTT GGA Leu Gly	1330	ACC
Al Al		CTT		TCA		GCT Ala	1230	ACC Thr	1280 CTT GGA Leu Gly	•	ACC Thr
GGT Gly		GGG	30	GTC Val	1180	CTT GCT Leu Ala	12	AAC Asn	TGT Cys		ATA Ile
GGA Gly	1080	GAT Asp	1130	666	П	ACT Thr		AAG Lys	CAC	50 *	GGA Z
1030 TTG Leu	H	GCT		GCC Ala		TCT Ser	0	TTC	1270 GGA (1320	AAG (Lys (
•							1220		1100		K II

FIGURE 6

1370 1380 1410 1410 1410 1410																
1370 CC GAG CCA TO GIU Pro 1420 AT GAA GTG IS GIU VAII SIN SEL VAII 1580 1580 1580 1640 1700 STATTAGAA 1760	1410	CAG Gln		GGG	1510	ACTTGGTTCA	1570	TAAATGCCTT	1630	AGCCATTTAG	1690	CTCTGATTTA	1750	GTTATTTAAG		CT.
1370 CC GAG CCA TO GIU Pro 1420 AT GAA GTG IS GIU VAII SIN SEL VAII 1580 1580 1580 1640 1700 STATTAGAA 1760	1400	AAC AAA Asn Lys	1450	GGA TTT Gly Phe	1500	TGA * * *	ě	AGCAATTTTT	1620	AGTTCCTCGA	1680		1740	TGTTGTCAAT	1800	ATCCAGCTTA
1370 CC GAG CCA TO GIU Pro 1420 AT GAA GTG IS GIU VAII SIN SEL VAII 1580 1580 1580 1640 1700 STATTAGAA 1760	1390	ACT GTT Thr Val	1440	AAT TCT Asn Ser	1490	TTC AAG		r CAACTTGCAG		3 GTCCTTTGAT		3 ATTCCCATTT				CTCTAGAGG
1370 CC GAG CCA TO GIU Pro 1420 AT GAA GTG IS GIU VAII SIN SEL VAII 1580 1580 1580 1640 1700 STATTAGAA 1760	-	TTC	1430	CT ATC TCG	1480	TCA		GATAGGGCT		GAATAGGTCC	•	ATCGAAGATC		AAGATTTTG1		AAGGGCGGCC
CCC GAG CC Pro Glu Pr 142 CAT GAA GT His Glu Va 1460 AAC TCG GT ASD SER VA 1520 AAATGCACAC 1580 GTCGGAAGAG TGTATTAGAA 1760 ATAAAAGCAAA	138	TCG GTG Ser Val	0	AAC GTC Asn Val	1470	GTG GCA Val Ala					1650	TACTGTAATA	1710	AGACCAATGA	1770	АААААААА
	1370	GAG Glu	142	GAA Glu		TCG	1520	AAATGCACAC	1580	GTCGGAAGAG	1640	GATGATGTTT	1700	TGTATTAGAA	1760	ATAAAGCAAA

Sequence Range: 1 to 2369

09	CATAAAAGAG	120	AGAGAGAGG ATCCATCGAA TGCGGCCACC CTCCTTTCAT CTTCGATTCA TTACCATACC	180	ATCCTTTTCT	TCC Ser>	280	TCT Ser>	330	CCT Pro>		CTA Leu>
	ATA		FTACC		ATCC	230 GCC TCT Ala Ser	22	ATG		TCT		CCA
20) 500	110	rca .	170	3GT 1			TGC		TCC	370	TGC GCC Cys Ala
	AGGTACCGGT CCGGAATTCC CGGGTCGACC CACGCGTCCG	•	CGAT	` '	ATTCCGCTGA TCCATTTTCC GCCTTTTCCG GGTCTTTCAT CCCAAAGGGT	GCC		GCC Ala	320	TCC ATC TCC Ser Ile Ser	'n	TGC
	CACC		CTT(CCC	220 ATG CCT Met Pro	270	GCC		TCC		CAA Gln
40	3ACC	100	rcat	160	rcat	22 ATG Met		CTT		CCT		TCC
	GTCC		CTT		rctt	CCTCCA		CTC	310	CCG	360	CTC
_	SS		CTC		g GG		260	TGG	æ	CTT		ATT Ile
30	ATTC	90	CAC	150	rtcc	210 AGTTC		ACG		CCT		CGG Arg
	GGA		3000		CTT	210 CAGTCAGTTC		CTC TGT ACG Leu Cys Thr		TCC GAC CCT Ser Asp Pro	350	CGC CGC CGG ATT Arg Arg Arg Ile
20	S E	80	A TG	140	ည	200 GGT C2	250	CTC	300	TCC	••	
(1)	\ccc	w	\TCG2	14	rttt(2(\AGG(25	CCT		CCC		CTC TCC Leu Ser
	\GGT?		ATCC2		rcca	200 CTCAAAGGGT		TCC		CAC His	340	CTC
10	GC 7	70	366 7	130	rga ?			GCT	290	TTC Phe	ň	CGC
	GTACGCCTGC		3AGA(, ,	CCCC	190 ATCCTATCTT	240	CTC Leu		ACC TCC Thr Ser		CGA
	GTA(AGA(ATT(ATC		CTG		ACC		CGC

1/7

1:

				•								
	GTC Val>		TCC Ser>	0:	CGG Arg>	570	CTG Leu>		CAG Gln>		CAT His>	ATA Ile>
	CTC	470	ACA	520	CAC His		GCT		AAA Lys		GGC Gly	710 AGT GGC Ser Gly
420	ACC Thr		TAT		AGG		GTG Val	610	ATC Ile	099	CTA	AGT
	CAT His		TAC	I	CGC	260	GCC	61	AGT		CCT	ACG
	TTC	460	CAT GAC His Asp	510	ACC		ATG Met		CCA		ACT Thr	700 GAT GGA ASP Gly
410	AGT	46	CAT His	. •-	ACC		GCA		AAG Lys	650	GTG Val	700 GAT G ASP G
•	TCC		TGC Cys	•	CGC	550	GAG Glu	· 009	AAG Lys	W	GTG Val	CTT
	GGA G1y		CCC	200	ATT Ile	ις	AGG	15.2	AAG Lys		GGT	CTG
400	CGC Arg	450	GAG Glu	.	CCC	-1-:	TCC		ACA Thr	640	ATG Met	690 AAT Asn
4	CTC		TTC		AGA		CCT Pro	590	ACC	79	GGA	AAT Asn
	GCC		TGC	490	TCC	540	TCC	u,	GTT Val		ACT Thr	TAC
	TCC	440	GCC Ala	4	GGA Gly		GCT Ala		GAA Glu		GTG Val	680 GTT TTC Val Phe
390	TCC	7	CTC		TTC		CGA Arg	280	CAG Gln	630	GTT Val	GTT Val
	GCT Ala		TAC		TTG	530	AAT Asn	28	GAA Glu		GTA Val	GAT Asp
	TCT Ser	430	TCT Ser	480	TCC		CTC		CCT		CGA Arg	O CCT Pro
380	CCT	43	ACC		GCA		AGG Arg	•	CAA	620	CGG Arg	670 GAC CCT ASP Pro
												•

TGUKE /

760	T GCT e Ala>	810	G CTC s Leu>		C AAG	1	G CTA	ATG Met>	1000	AAG Lys>	1050	GCT Ala>
	AGA ATT Arg Ile		AAG Lys		GGC Gly	,	GAG Glu	950 GGA Gly	10	AAG Lys		TCA
	AGA Arg		CCG	850	GCT	900	* AAA Lys	GGT G1y		\mathtt{TAT}		GGA Gly
	ACG	800	GCC	∞	ACC Thr		ATG Met	ATG Met		TCA Ser	10	ATG
750	CCT ACG		GTG Val		CTG Leu		GTG Val	.0 GCA Ala	066	ATT Ile	1040	AAT A
•	\ TTT 1 Phe		TGG Trp		ATG Met	890	GAT ASP			AGG Arg		ACA Thr
	CAA	790	GGT G1y	840	TAC TYT		GAA Glu	GGC Gly		CTA	0	ACC Thr
740	GCT	7	GAT Asp		CTA Leu		ACC	ATT Ile	980	3CC Ala	1030	GCT
	TGT Cys	-	ACA Thr		ATG Met	0	ATC Ile	930 CTC Leu	Ó	GAA GCC (Glu Ala 1	٠	TTC (Phe A
	GAT Asp		TCC	830	TTC	880	GGA ATC	GTT Val		ATT (Ile (CCT 1 Pro F
730	TTT Phe	780	TTC	w	AAG Lys		сст С1у	GGA Gly	0		1020	
7	ACC		TCT		GAC Asp		gat Asp	20 TGC Cys	970	GAT GCC Asp Ala	Ä	TGT GTA Cys Val
	GAG Glu		AAG Lys	820	ATG Met	870	ACA Thr	9 AAA Lys		AAT		TTT Phe
	ATA Ile	170	ATC Ile	∞	AGG Arg		TTA Leu	AGA Arg		TTC Phe	01	CCC
720	GAG		GAG Glu		AAG Lys		GCA Ala	0 AAA Lys	* 096	GTA Val	1010	AAT (Asn 1
	AGC		GGA Gly		TCT	860	AAA Lys	910 GAT AAA ASP Lys		AAG		ATG Met Met

TGURE 7

		•										
	TCT Ser>		CAT His>	GCG Ala>	0.	TTG Leu>	1290	AGT Ser>		CTA Leu>		GAA Glu>
	ATA Ile		AAC Asn	1190 TCA GAT Ser Asp	1240	GCT	.	GAC Asp		CTA Leu		GCA Ala
06	TCG	1140	GCG			CGA Arg		TGG Trp	30	CTA Leu	1380	ATT TAC Ile Tyr
1090	TAC	•	GCT	GGC Gly		TGC	1280	CCA Pro	1330	GTG (Val)		
•	AAC		AAT Asn	1180 TGC GGG Cys, Gly	1230	GTT GCA TGC Val Ala Cys	ä	AGA Arg		GGA Gly		ACT Thr
	GGA TGG ATG GGG CCC Gly Trp Met Gly Pro	1130	ATG Met		-	TTT GTT Phe Val	•	TCA	-	GCT	1370	AAA AGA GGT GCG Lys Arg Gly Ala
1080	GGG	=	ATA Ile	CTT	•	TTT Phe	0.0	AAA GCT Lys Ala	1320	GGA G1y		GGT Gly
	ATG		TGT	1170 GAT GTG ATG ASP Val Met	1220	GGA GGT TTT Gly Gly Phe	1270	AAA Lys		ATG GGG GAA GGA Met Gly Glu Gly	_	AGA Arg
	TGG	1120	AAC TTT Asn Phe	1170 GTG 2	ij		•	ACT		GGG G1y	. 09	AAA Ly's
1070	GGA G1y	113		GAT Asp		ATG Met		GAC CCT Asp Pro	1310	ATG Met	1360	AAG Lys
Ť,	TTG		AGT	GCA	01	ATT GGT Ile Gly	1260	GAC	∺	GTT Val		GCA
	GAC		GCA ACG Ala Thr	1160 GGC GAA Gly Glu	1210	ATT Ile	, ,	TCC		TTT Phe		CAT
20	GCA ATG Ala Met	1110	GCA Ala			CCT Pro		AGA AAT Arg Asn	00	GAT GGA Asp Gly	1350	GAG Glu
1060	GCA Ala	•	${f TGT}$	AGA Arg		ATA Ile	1250	AGA Arg	1300		• •	TTG
	CTT Leu		GCT Ala	30 ATC Ile	1200	ATC Ile		CAG Gln		CGT Arg		GAG Glu
	ATG Met	1100	ACT Thr	1150 ATA AT Ile I	Π	GTA Val		TCC		AAT	1340	GAG

CCT Pro>	1480	TTG GCT Leu Ala>	1530	GCC Ala>		CAC His>		ATG Met>	1660 GTG GAA GCA GTT TCA GTA Val Glu Ala Val Ser Val>	1720	GAA Glu>
1430 C GAG Ir Glu	14			CAT His		ATC Ile		TCA	1670 T TCA	17	TTG
14 ACC Thr		GCT Ala		GCC	07	CTT Leu	1620	ACC AAA TCA Thr Lys Ser	1 GTT Val		AAT Asn
ATG Met		GAG AAG Glu Lys	1520	AAT Asn	1570	CAA GCT CTT ATC Gln Ala Leu Ile	,,	ACC Thr	GCA Ala		ATT Ile
1420 TAC CAC ATG ACC GAG Tyr His Met Thr Glu	1470	GAG Glu	Ä	ATA Ile				TCA	50 GAA Glu	1710	CCG AAT ATT AAT Pro Asn Ile Asn
	` '	ATA Ile		TAC Tyr		TAC	1610	AAT Asn	1660 GTG GZ Val GJ	• •	CCG Pro
GCC Ala		CTC TGC Leu Cys	0.	AAT Asn	1560	GAG Glu	16	GTT Val	GGT G1y		CAT His
GAT Asp	1460	CTC	1510	GTA Val		AAA Lys		AAA Lys	GGT Gly	1700	ATC Ile
1410 ACT TGC Thr Cys	14	ATT Ile		GAC Asp		GAT ATC AAA GAG Asp Ile Lys Glu	0	TTA	1650 GCA GCC GGT GGT Ala Ala Gly Gly	17	TGG ATC CAT Trp Ile His
		GTG Val		GAA Glu	1550	GAT Asp	1600	GAG Glu	1 GCA Ala		$^{\rm GGG}_{\rm G1Y}$
TTC	0	GGA Gly	1500	AGG Arg	15	GGA Gly		AGA Arg	GGA Gly	0	ACT Thr
1400 3G AGT 1y Ser	1450	GCT Ala	7	TCT Ser		GCT Ala		AAC Asn	1640 Crr Crc Leu Leu	1690	AGG Arg
14 GGG Gly		GGA Gly		GTC Val	O.	CCG	1590	CAA Gln	16 CTT Leu		ATA Ile
GGT Gly		GAT Asp	1490	GGA Gly	1540	ACT	⊣	GGC Gly	CAC His		GCA Ala
0 CTA Leu	1440	CCT	14	TCA		TCC		TTC	0 GGT Gly	1680	cAG Gln
1390 TTT CTA Phe Leu	1	CAC His		CAG Gln		ACA	1580	TGT	1630 ATT GGT Ile Gly	П	GTT Val

FIGURE 7 5/7

1770	AAG AAG Lys Lys>		rrr GGr Phe Gly>	1870	GTTTCCGTGT	1930	GTTGGTAGCT	1990	GAACCATGAC	2050	GTAGAGCAAT	2110	GTTGTACTTT	2170	CACGTAGTAA
1760	GTG GGT CCT Val Gly Pro	1810	TCA TTT GGG Ser Phe Gly	1860	ATC TAG GAC Ile ***>	1920	AGTTTTGAGG ACTCCAGCAT	1980	GCTTTAGTCG	2040	AGAATTGTTG	2100	CCTTGCAATA	2160	TTAACTCGGG
1750	GAT ACA AAA TTG CTC Asp Thr Lys Leu Leu	1790 1800	GTC GGT TTG TCT AAT TCA S Val Gly Leu Ser Asn Ser	1840	CTC TTC GCC CCT TAC Leu Phe Ala Pro Tyr	1900 1910		1960 1970	CTAGACATGC CCATGAGTTT TGTGTCCGGA GCTTTAGTCG	2020 2030	CACTIGATAL ACTCCTIGCT AGAATIGITG	2080 2090	TTTTTCTCTG AAATCTCCCT	2140 2150	CGAGCTTTTC ATCGAGTCAG TGAAGAAGAG AACAAAGCTG TTAACTCGGG
1740	GAA GGC GTG Glu Gly Val	1780	CTG AAC GTT AAG Leu Asn Val Lys	1830	TCG TCC ATA	1890	ACTCAACATA TCAAAGCTGA	1950	CTAGACATGC	2010	CTCATGGCGA	2070	TCATATTTT	2130	ATCGAGTCAG
1730	AAC CCA GAT (Asn Pro Asp (17	GAG AGA CTG Glu Arg Leu	1820	GGG CAC AAC Gly His Asn	1880	GTGGAATTCT	1940	CCTTACGTCT	2000	GGATTGAGTA	2060	ATTCATTATC	2120	CGAGCTTTTC

аааааааа	ААААААААА	АААААААА	AAAAAAAAA	TGGAAATAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAA	TGGAAATAAA
2350	2340	2330	2320	2310	2300
ATGTATGTT	TAATTGGGGR	TTCTCATTGA	TTGGTTTGTT	AACTAGAAGA CTGGTTTAGA TTGGTTTGTT TTCTCATTGA TAATTGGGGR ATGTATGTTT	AACTAGAAGA
2290	2280	2270	2260	2250	2240
AAATTTGTAA	TGTGGTTTTA	ATCACCGTTT	TCTCTATTTC	CCATTIGCCC TITGITITGC TCTCTATITC ATCACCGITT TGTGGTTTTA AAATTIGTAA	CCATITIGCCC
2230	2220	2210	2200	2190	2180

2360 AGGGCGCCG CICTAGAGG TGURE 7

Sequence Range: 1 to 2374

٠	•				•											
	* 09	CACACCAAAC	120	ACAGACAGAC	180	TCTTCGALTC	240	TCCCAAAGGG	300	CCTGCCGCCT	360	CGCCTGCATG TCTACCTCCT	420	TCGCCGACGC CTCTCCCGCC	480	CTCCGCCCTC CGCGGATCCA
	20	CGGAATTCCC GGGTCGACCC ACGCGTCCGC GACGCCAACC CACACCAAAC	110	CATTGGCAGC AGACAGACAG ACAGACAGAC	170	CCATAAAAGA GAGAGAGG GATCCATCGA ATGCGGCCAC CCTCCTTTCA TCTTCGATTC	230	GGGTCTTTCA TCCCAAAGGG	290	CCCTCCAATG	350		410	TCGCCGACGC	470	CICCGCCCIC
	40	ACGCGTCCGC	100	CATTGGCAGC	160	ATGCGGCCAC	220	CGCCTTTTCC	280	TCAGTCAGTT	340	GGCTCCTTGC	400	Terecretee	460	CTTCTGCTTC
	30	GGGTCGACCC	06	TTCCTCAGCT TCTCTTCTCA AGACGGACGC	150	GATCCATCGA	210	CATTCCGCTG ATCCATTTTC CGCCTTTTCC	270	TATCCTTTTC TATCCTATCT TCTCAAAGGG TCAGTCAGTT	330	CTTCCCTGCT CGCTTCCCCT CTCTGTACGT GGCTCCTTGC	390	CCGCCTTCCA	450	GCCGGATTCT CTCCCAATGC GCCCCACTAC CTTCTGCTTC
	20	CGGAATTCCC	80	TCTCTTCTCA	140	GAGAGAGAGG	200	CATTCCGCTG	260	TATCCTATCT	320	CGCTTCCCCT	380	CGACCCTCTT	440	CTCCCAATGC
	10	-A-CNTGGTC	70	TTCCTCAGCT	130	CCATAAAAGA	. 190	ATTACCATAC	250	TATCCTTTTC	310	CTTCCCTGCT	370	TCCACCCCTC	430	GCCGGATTCT

'IGORE 8

540	GACTACTATA	*	CGGAGGCTCA	* 099	ACAGGAAGTT	720	AATGGGTGTG	780	ATGGAACGAG	840	TTGCTGGAGA	* 006	GGATGGACAA	* 096	GAATCACCGA	1020	CAGCAATGGG
530	CCTGCTTCGA GCCCTGCCAT	290	CCGCAGGCAC	650	TGCAACCTGA	710	TTGTGACTGG	770	TTTCTACAAT AATCTGCTTG	830	CCTACGAGAA	890	CTCTCTAAGA	950	ACAGATGGTG	1010	CTCATTGGCT
520		580	TTCGCACCAC	640	GCCGTGGCTC	700	CGGCGAGTAG	160	TTTCTACAAT	820	TGCTCAATTT	880	GGCCCCGAAG	940	GAAAGCATTA	1000	ATGCGGAGTT
510	CCTCGTCACC TCTTACCTCG	570	CTTGTTCGGA TCCAGACCCA TTCGCACCAC CCGCAGGCAC	630	GGAGGCAATG	069	TATCAAACAG	750	TAGGCCATGA ACCTGATGTT	810	CCTTTGATTG	870	ATGGTTGGGT	930	CTGCTGGCAA	066	Ataaaagaaa
200		260		620	ATCGAGCTTC CCCTTCCAGG GGAGGCAATG GCCGTGGCTC TGCAACCTGA ACAGGAAGTT	089	ACCACAAAGA AGAAGCCAAG	740	TAGGCCATGA	800	GAGATAGAGA	860	TTCTCCACAG ATGGTTGGGT GGCCCCGAAG CTCTCTAAGA	920	GTTCATGCTA TACATGCTGA CTGCTGGCAA GAAAGCATTA ACAGATGGTG	980	AGATGTGATG AAAGAGCTAG ATAAAAGAAA ATGCGGAGTT CTCATTGGCT CAGCAATGGG
490	GTTTCCATAC	550	CATCCGCATC	610	ATCGAGCTTC	670	ACCACAAAGA	730	GTGACTCCTC	790	TGGCATAAGC	850	GATCAAGTCT	910	GTTCATGCTA	970	AGATGTGATG

FIGURE 8 2/5

					:
ACCACATGAC	GAGTTTCACT TGCGATGCCT ACCACATGAC	GAGTTTCACT	TGCGACTATT TACGCAGAAT TTCTAGGTGG	TACGCAGAAT	TGCGACTATT
1500	1490	1480	1470	1460	1450
GAGCATGCAA AGAAAAGAGG	GAGCATGCAA	AGAGGAGTTG	TATGGGGGAA GGAGCTGGAG TGCTACTACT AGAGGAGTTG	GGAGCTGGAG	TATGGGGGAA
1440	1430	1420	1410	1400	1390
ATGGATTTGT	AGTAATCGTG	ACCATGGGAC	GAGAAATTCC GACCCTACTA AAGCTTCAAG ACCATGGGAC AGTAATCGTG	GACCCTACTA	GAGAAATTCC
1380	1370	1360	1350	1340	1330
CTTTGTCCCA	AGGTTTTGTT GCATGCCGAG	AGGTTTTGTT	AGATGCGGTA ATCATACCTA TTGGTATGGG	ATCATACCTA	AGATGCGGTA
1320	1310	1300	1290	1280	1270
GCGGGGGCTC	CGAAGCAGAT GTGATGCTTT GCGGGGGCTC		AATGAATGCT GCGAACCATA TAATCAGAGG	GCGAACCATA	AATGAATGCT
1260	1250	1240	1230	1220	1210
GCAACGAGTA ACTTTTGTAT	GCAACGAGTA	TACTGCTTGT	ACTCGATATC TACTGCTTGT	GGGCCCAACT	GGGATGGATG
1200	1190	1180	1170	1160	1150
CAATGGACTT	GCTATGCTTG	TATGGGATCA	TCCCTTTTGT GTACCTTTCG CTACCACAAA TATGGGATCA GCTATGCTTG	GTACCTTTCG	TCCCTTTTGT
1140	1130	1120	1110	1100	1090
AGAAGATGAA	ATTTCATATA	AGCCCTAAGG	TGGAATGAAG GTATTCAATG ATGCCATTGA AGCCCTAAGG ATTTCATATA AGAAGATGAA	GTATTCAATG	TGGAATGAAG
1080	1070	1060	1050	1040	1030

IGURE 8

TTTGTGTCCG	GCCCATGAGT	CTCTAGACAT	CTCCTTACGT	GGACTCCAGC ATGTTGGTAG CTCCTTACGT CTCTAGACAT GCCCATGAGT TTTGTGTCCG	GGACTCCAGC
2040	2030	2020	2010	2000	1990
GAAGTTTTGA	TATCAAAGCT	CTACTCAACA	GTGTGGAATT	TTACATCTAG GACGTTTCGT GTGTGGAATT CTACTCAACA TATCAAAGCT GAAGTTTTGA	TTACATCTAG
1980	1970	1960	1950	1940	1930
TCTTCGCCCC	TCGTCCATAC	TGGGCACAAC	TTGGGTTTGG	GGTCGGTTTG TCTAATTCAT TTGGGTTTGG TGGGCACAAC TCGTCCATAC TCTTCGCCCC	GGTCGGTTTG
1920	1910	1900	1890	1880	1870
TGAACGTTAA	AAGGAGAGAC	GGGTCCTAAG	AATTGCTCGT	AGATGAAGGC GTGGATACAA AATTGCTCGT GGGTCCTAAG AAGGAGAGAC TGAACGTTAA	AGATGAAGGC
1860	1850	1840	1830	1820	1810
AATATTAATT TGGAAAACCC		GATCCATCCG	CAGGCAATAA GGACTGGGTG GATCCATCCG		TTCAGTAGTT
1800	1790	1780	1770	1760	1750
TGGAAGCAGT	GCCGGTGGTG	TCTCGGAGCA	TTGGTCACCT	TAATTCAACC AAATCAATGA TTGGTCACCT TCTCGGAGCA GCCGGTGGTG TGGAAGCAGT	TAATTCAACC
1740	1730	1720	1710	1700	1690
AGTTAAAAGT	CAAAACAGAG	CTGTTTCGGC	CTCTTATCCA	AGATATCAAA GAGTACCAAG CTCTTATCCA CTGTTTCGGC CAAAACAGAG AGTTAAAAGT	AGATATCAAA
1680	1670	1660	1650	1640	1630
CTCCGGCTGG	GCCACATCCA	AAATGCCCAT	TAAATTACAT	AGGAGTCTCT AGGGAAGACG TAAATTACAT AAATGCCCAT GCCACATCCA CTCCGGCTGG	AGGAGTCTCT
1620	1610	1600	1590	1580	1570
CCTGATGGAG CTGGAGTGAT TCTCTGCATA GAGAAGGCTT TGGCTCAGTC	GAGAAGGCTT	TCTCTGCATA	CTGGAGTGAT	CCTGATGGAG	CGAGCCTCAC
1560	1550	1540	1530	1520	1510

FIGURE 8

		ATIC	2370	2350 2360 2360 2370 AAAAAAAAA AAGGGGGGC GCTCTAGAGG ATCC	2350
TTTTCTCAAA	GATTGGTTTG	GACTGGTTTA	AAAACTAGAA	TTTGTGGTTT TAAAATTTGT AAAACTAGAA GACTGGTTTA GATTGGTTTG TTTTCTCAAA	TTTGTGGTTT
2340	2330	2320	2310	2300	2290
TCATCACCGT	GCTCTCTATT	CCTTTGTTTT	AACCATTTGC	TGTTAACTCG GGCACGTAGT AACCATTTGC CCTTTGTTTT GCTCTCTATT TCATCACCGT	TGTTAACTCG
2280	2270	2260	2250	2240	2230
AGAACAAAGC	AGTGAAGAAG	TCATCGAGTC	TTCGAGCTTT	CTCCTTGCAA TAGTTGTACT TTCGAGCTTT TCATCGAGTC AGTGAAGAAG AGAACAAAGC	CTCCTTGCAA
2220	2210	2200	2190	2180	2170
TGAAATCTCC	TTTTTTCTC	TCTCATATTT	ATATTCATTA	CTAGAATTGT TGGTAGAGCA ATATTCATTA TCTCATATTT TTTTTTCTC TGAAATCTCC	CTAGAATTGT
2160	2150	2140	2130	2120	2110
ATACTCCTTG	CGGAACCATG ACGGATTGAG TACTCATGGC GACACTTGAT ATACTCCTTG	TACTCATGGC	ACGGATTGAG	CGGAACCATG	GAGCTTTAGT
2100	2090	2080	2070	2060	2050

160KE 0

Sequence Range: 1 to 1580

10 GCG AAT GCA TCT GGG Ala Asn Ala Ser Gly>	90 100	GCA ACT CAG CAT TCG Ala Thr Gln His Ser>	140 150	GTC TCC AAA AGG GTG Val Ser Lys Arg Val>	190	CAG TCT TTG GGT GAT Gln Ser Leu Gly Asp>	ı	* AAA TTA ATT GGA TCT Lys Leu Ile Gly Ser>	290 T GAT CTT GCT AAA P ASP Leu Ala Lys>	34	CGA ACG GGG ATC CGC Arg Thr Gly Ile Arg>
40 ATG GCG Met Ala		AGG G Arg A		TTT G		AGG CA Arg G]	0	GC AA YS Ly	280 AAT GAT Asn Asp	330	GTC CGA Val Arg
10 CCTGAATCGG ATTCAAGAGA GAGTTTCGTT GCTGGG 1	70 80	TCT TCA GTT CCT GCC CTG AGA Ser Ser Val Pro Ala Leu Arg	120 130	TCT CGT GGA TCT TCC TCG GAG Ser Arg Gly Ser Ser Ser Glu	160 170 180	* AGT GCC GTT CAG GAT TCT GAC Ser Ala Val Gln Asp Ser Asp	210 220 230	CCG AGG CTT GTG AGT AGA GGA TGC AAA 7 Pro Arg Leu Val Ser Arg Gly Cys Lys 1	260 270 ATA CCA GCT CTT CAA GTC TCA Ile Pro Ala Leu Gln Val Ser	310 320	ACC AAT GAT GAA TGG ATT ACT Thr Asn Asp Glu Trp Ile Thr
10 CCTGAATCGG	09	TTT CTG GGT Phe Leu Gly	110	ATT TCA TCG Ile Ser Ser	7	TTT TGC TGT Phe Cys Cys	200	TCT CGC TCG Ser Arg Ser	250 GGT TCT GCT Gly Ser Ala	300	ATT GTC GAC Ile Val Asp

FIGURE 9 1/5

												•	
390	TCA Ser>		GAT Asp>		GGC G1y>	CCT TTG Pro Leu>	280	GTC Val>	630	GTG Val>		GGA Gly>	
	GCA Ala		AAT		TTC	530 CCT Pro	22	TTA		CTA		CGG Arg	
	AAT TTA Asn Leu	430	GCA Ala	480	CTT	AAT Asn		GGT Gly		ATT	029	GAT Asp	
380		43	GAC		GAC Asp	AAG Lys	-	TTG	620	AAT Asn	67	ACC	
(*)	ACA Thr		GTA		GAG Glu	520 TGC AAA Cys Lys	570	GTG Val	Q	AAC Asn		TGG	
	CTT		GCA CAG Ala Gln	470	CCT	52 TGC Cys		TTT Phe		TTT Phe	-	GAC	
370	AGT	420		7	ACC	GGC Gly		GGA Gly	0	GGT	099	GTT Val	
ω.	GAT		ATG		TCT	CTT	260	AGT	610	GGG G1y		TAT	
	AAA Lys		CTA GAG Leu Glu	460	ACT	510 GCA Ala		TGC		GGT Gly		CGG	
	GGT Gly	410	CTA	46	TGT Cys	AAA Lys		GCA Ala		AGA Arg	650	TCT Ser	
360	TCA	7	GCT		ATG	TCG	550	GCT Ala	600	ATT Ile	•	CTT	
	CTC		AAA Lys		TTG	500 CAG ATA Gln Ile	55	ACC Thr		CAC		TCT Ser	
	GTT Val	400	AGG Arg	450	GTT Val	5 CAG Gln		ATT Ile		TGC	640	GAT	
350	AGG Arg	4(GCA		ATG	CCT		GAC Asp	290	GCT	9	GCT	
,	CGA Arg		GCA		GAT Asp	90 GCT Ala	540	TAC	u,	GCT		GGT Gly	
-	AAC Asn		GAG Glu	440	GTG Val	490 AGT G		TCT		TCA Ser		ATT Ile	
*				٦.		•							

SUBSTITUTE SHEET (RULE 26)

	TCA Ser>	GAT Asp>	820	GTT Val>	870	AGG Arg>		CGC Arg>		AAG Lys>	GCA Ala>
	CAG Gln	770 AGC Ser	8	GAA Glu		CCA Pro		TTC		GGA Gly	1010 T CAG S Gln
720	GTG Val	CAT		GAT Asp		CCA	0.	GAG GTA Glu Val	096	CTT	10; CAT (
	GTG Val	TTG		GAA Glu	860	TTT Phe	910			GCA Ala	CTT
	GTA Val	760 TTT GAT Phe Asp	810	AAA Lys	ω	GAT Asp		AAA Lys		GAA TCA Glu Ser	OCTG Leu
710	GCT			ATC Ile		AGA Arg		GGT Gly	950	GAA Glu	1000 TTG CTG Leu Leu
-	GGA Gly	GCT		GCA	850	ATC Ile	900	AAC Asn	o,	ATC Ile	TGG
	GCT Ala	TTT Phe	800	GCT	∞ ,	TCC		ATG Met		TCA	GAC Asp
700	GCT	750 CTC Leu	ω	AAA Lys		$_{\rm GGG}$		CAA Gln	O.	CAG Gln	990 ATC Ile
7	GAT Asp	666 G1y		CTA		AAT Asn	890	ATC CAA I	940	CCT	AAC Asn
••	GGA Gly	GAT Asp	190	CAT His	840	CAT His	ω	TGC		GTG Val	TCC
	TTT Phe	740 GAA Glu	75	AGG Arg		GGA Gly		TCT Ser		TCT Ser	
069	CTC	GAG Glu		CAA Gln		CTG	0	TAC Tyr	930	CGC Arg	980 AAT GGA Asn Gly
	ATT Ile	GCT		GGG	830	GCC Ala	880	TCA		TGC Cys	CTT
	TGT Cys	730 TGT GAT Cys Asp	780	GAT Asp	ω	AAA Lys		TCT Ser		GCT	3T 1Y
089	ACA Thr	730 TGT <i>G</i> 2 Cys As		GGA Gly		GAT Asp		CGT Arg	920	TTT	970 GCC GC Ala G

FIGURE 9
3/5

46/66

1060	CCT CAA Pro Gln>	1110	GCG GCA Ala Ala>		GTG AAG Val Lys>	·	ACA TGG Thr Trp>	1260	CACTGCAGCT	1320	AAGAAGTCAG	1380	GTTCCCCT
1050	CTA GAG GTT Leu Glu Val	1100	AAC ACT AGT G Asn Thr Ser A	1150	AGT GGA AAT G Ser Gly Asn V	1200	GCC GGA CTC A Ala Gly Leu T	1250	GCCGAGCCAG CA	1310	CCANAAAAAG AA	1370	TCTTTTATGG AGCAAGCAAC ACGACACGAT CTTCATCACA TTGCCCTTTT TCGTTCCCCT
1040 1	GCA ACA CGT Ala Thr Arg	1090	AAT TAC GGG Asn Tyr Gly	1140	GCT GTG AGG Ala Val Arg	1190	TTT GGC Phe Gly	1240	GGA TAA GACTGAA Gly ***>	1300	GCTTCCATGA	1360	CTTCATCACA
10	GCA GTA Ala Val		TTG	1130	GAC GAA Asp Glu	1180	ACC GCA	1230		1290	ACGAAATTTT	1350	CGACACGAT
1030	ATC ATT GAT Ile Ile Asp	1080	ATC TCA AAC Ile Ser Asn		TTG GCA CTA Leu Ala Leu	1170	CAC GTG ATT GCA ACC GCA GGA His Val Ile Ala Thr Ala Gly	1220	ATT ATC AGG TGG Ile Ile Arg Trp	1280	CCGATGTTTC A	1340	GCAAGCAAC
1020	AAT CAG AGG Asn Gln Arg	1070	GAA CGA ATT ATC Glu Arg Ile Ile	1120	TCC ATT CCC Ser Ile Pro	160 1	CCG GGT CAC Pro Gly His	1210	GGT TCT GCT Gly Ser Ala	1270	TCCTCTCAAA C	1330	TCTTTTATGG A

FIGURE 9
4/5

1440	TITCCATTAG TITGATGATT TIGCTGACAA TACAATACCC ATAGITICTI TIGICCCCAA	1500	* TAAGTTATTT GTTTCTTGTT TAATTGTTCA GCTTTTACTT CATTTTGTCT CGGGACATTG	1560	* AAAAAAAAA
1430	ATAGTTTCTT	1490	CATTTTGTCT	1550	AAAAAAAAA
1420	TACAATACCC	1480	GCTTTTACTT	1540	TTTGCTAAAA
1410	TTGCTGACAA	1470	TAATTGTTCA	1530	ATGTTTATAT
1400	TTTGATGATT	1460	GTTTCTTGTT	1520	* GAGATGACAG CATAAACATC ATGTTTATAT TTTGCTAAAA AAAAAAAAA AAAAAAAAA
1390	TTTCCATTAG	1450	TAAGTTATTT	1510	GAGATGACAG

FIGURE 9 5/5

1570 1580 AAAAAAAAA AAAAAAAA

FIGURE 10

FIGURE 11

FIGURE 12

E328013-28

FIGURE 13

FIGURE 15

FIGURE 15 2/2

SUBSTITUTE SHEET (RULE 26)

FIGURE 17 1/2

FIGURE 17

FIGURE 18 1/2

SUBSTITUTE SHEET (RULE 26)

Number of independent events

59/66

12:0 levels (w%)

FIGURE 19 1/3

Number of independent events

FIGURE 19 3/3

SUBSTITUTE SHEET (RULE 26)

FIGURE 19

SUBSTITUTE SHEET (RULE 26)

2/3.

FIGURE 20

18:0 levels (w%)

.F.T GTIRE -- 21.-1/3

18:0 levels (w%)

FIGURE 21 2/3

Number of independent events

FIGURE 21

FIGURE 22

This Page Blank (uspto)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/82, 15/54	A3	(11) International Publication Number: WO 98/4677
		(43) International Publication Date: 22 October 1998 (22.10.98
(21) International Application Number: PCT/US (22) International Filing Date: 9 April 1998 (patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GF
(30) Priority Data: 60/041,815 11 April 1997 (11.04.97)	τ	Published S With international search report.
(71) Applicant (for all designated States except US): CALLC [US/US]; 1920 Fifth Street, Davis, CA 95616		(88) Date of publication of the international search report: 6 April 2000 (06.04.00)
(72) Inventor; and (75) Inventor/Applicant (for US only): DEHESH, I [US/US]; 521 Crownpointe Circle, Vacaville, C (US).	-	1
(74) Agent: SCHWEDLER, Carl, J.; Calgene LLC, 19 Street, Davis, CA 95616 (US).	920 Fi	h

(57) Abstract

By this invention, compositions and methods of use related to β -ketoacyl-ACP synthase of special interest are synthases obtainable from *Cuphea* species. Amino acid and nucleic acid for synthase protein factors are provided, as well as methods to utilize such sequences in constructs for production of genetically engineered plants having altered fatty acid compositions. Of particular interest is the expression of synthase protein factors in conjunction with expression of plant medium-chain acyl-ACP thioesterases for production of increased levels and/or modified ratios of medium-chain fatty acids in oils of transgenic plant seeds.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	· · · · · · · · · · · · · · · · ·	•	•				
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Inte. ..ional Application No PCT/US 98/07114

			, 00 30, 0, 114
A. CLASSI IPC 6	IFICATION OF SUBJECT MATTER C12N15/82 C12N15/54		
According to	to International Patent Classification(IPC) or to both national classif	ication and IPC	
	SEARCHED		
Minimum do	ocumentation searched (classification system followed by classifica C 1 2 N	ation symbols)	
Documenta	tion searched other than minimum documentation to the extent tha	such documents are included in	the fields searched -
Electronic d	data base consulted during the international search (name of data	base and, where practical, search	terms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	elevant passages	Relevant to claim No.
X	WO 95 06740 A (MAX PLANCK GESEL;TOEPFER REINHARD (DE); MARTINI (D) 9 March 1995 see page 16, paragraph 1; claim	15,22	
P,X	LEONARD, J.M., ET AL.: "A Cuph beta-ketoacyl-ACP synthase shif synthesis of fatty acids toward chains in Arabidopsis seeds exp Cuphea FatB thioesterases"	15,22, 29-32	
	THE PLANT JOURNAL, vol. 13, no. 5, March 1998, pag XP002081429 see the whole document	es 621-628,	
		-/	
X Furt	ther documents are listed in the continuation of box C.	X Patent family membe	rs are listed in annex.
* Special ca *A* docum- consid "E* earlier r filling c "L* docume which citatio "O* docume other *P* docume	ategories of cited documents: ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special reason (as specified) entertering to an oral disclosure, use, exhibition or means ent published prior to the International filing date but than the pnority date claimed	"T" later document published or priority date and not in cited to understand the priority date and not invention "X" document of particular relicannot be considered no involve an inventive step "Y" document of particular relicannot be considered to document is combined to	after the International filing date a conflict with the application but brinciple or theory underlying the evance; the claimed invention well or cannot be considered to when the document is taken alone evance; the claimed invention involve an inventive step when the rith one or more other such docunit being obvious to a person skilled same patent family
	actual completion of the international search	Date of mailing of the inte	rnational search report
	mailing address of the ISA	OZ/11/1996 Authorized officer	· · · · · · · · · · · · · · · · · · ·
. 101110 4110	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Maddox . A	

1

Inte. .ional Application No PCT/US 98/07114

C.(Continue	ation) DOCIMENTS CONCIDENT	PCT/US 98/07114
Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DEHESH, K., ET AL.: "Production of hgh levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase from Cuphea hookeriana" THE PLANT JOURNAL, vol. 9, no. 2, 1996, pages 167-172, XP002081430 see page 170, column 2, paragraph 2	15,22
A	DEHESH K ET AL: "TWO NOVEL THIOESTERASES ARE KEY DETERMINANTS OF THE BIMODAL DISTRIBUTION OF ACYL CHAIN LENGTH OF CUPHEA PALUSTRIS SEED OIL" PLANT PHYSIOLOGY, vol. 110, 1996, pages 203-210, XP002014020 see page 209, column 2, paragraph 2	15,22
4	SLABAUGH, M.B., ET AL.: "Cuphea wrightii beta-ketoacyl-ACP synthase II (CwKASIII) mRNA complete cds." EMBL SEQUENCE ACCESSION NO. U67317, 13 December 1996, XP002081431 see the whole document	15,22
	FUHRMANN, J., ET AL.: "Factors controlling medium-chain fatty acid synthesis in plastids from maturing Cuphea embryos" Z. NATURFORSCH., vol. 48c, 1993, pages 616-622, XP002081432 see the whole document	15,22
	SCHUCH, R., ET AL.,: "Medium-chain acyl-ACP thioesterase is not the exclusive enzyme responsible for early chain-length termination in medium-chain fatty acid synthesis" GRASAS Y ACEITES, vol. 44, 1993, pages 126-128, XP002081433 see the whole document	15,22
	TOEPFER R ET AL: "MODIFICATION OF PLANT LIPID SYNTHESIS" SCIENCE, vol. 268, 5 May 1995, pages 681-685, XP002014017 see page 684, column 3, paragraph 2	15,22
	MARTINI N ET AL: "MODIFICATION OF FATTY ACID COMPOSITION IN THE STORAGE OIL OF TRANSGENIC RAPESEED" BIOLOGICAL CHEMISTRY HOPPE-SEYLER, vol. 376, September 1995, page S55 XP002014021	15,22
	-/	1

1

Inte donal Application No PCT/US 98/07114

	~ · PC	PCT/US 98/07114			
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
A	WO 94 10189 A (CALGENE INC) 11 May 1994 see page 5, line 34 - line 36	15,22			
Α΄	WO 92 03564 A (CALGENE INC) 5 March 1992 see page 22, line 19 - line 23	15,22			
A	WO 96 23892 A (CALGENE INC ;DEHESH KATAYOON (US); VOELKER TONI ALOIS (US); HAWKIN) 8 August 1996 see the whole document	15,22 -			
A .	WO 95 13390 A (CALGENE INC ;VOELKER TONI ALOIS (US); YUAN LING (US); KRIDL JEAN () 18 May 1995 see the whole document	15,22			
A	WO 94 10288 A (CALGENE INC ;VOELKER TONI ALOIS (US); DAVIES HUW MAELOR (US); KNUT) 11 May 1994 see the whole document	15,22			
A .	WO 92 20236 A (CALGENE INC) 26 November 1992 see the whole document	15,22			
A	VOELKER, T.A., ET AL.: "Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed." THE PLANT JOURNAL, vol. 9, no. 2, 1996, pages 229-241, XP002081434 see the whole document	15,22			
A	WO 93 10240 A (DU PONT) 27 May 1993 see the whole document	15,22			
A	WO 95 15387 A (CALGENE INC ;METZ JAMES GEORGE (US); LARDIZABAL KATHRYN DENNIS (US) 8 June 1995 see the whole document	15,22			
T .	DEHESH, K., ET AL.: "KAS IV: a 3-ketoacyl-ACP synthase form Cuphea sp. is a medium chain specific condensing enzyme" THE PLANT JOURNAL, vol. 15, no. 3, August 1998, pages 383-390, XP002081435 see the whole document	15,22, 29-32			

1

International application No.

PCT/US 98/07114

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet
з. 🗌	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid.specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark (on Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Claims Nos.: 1-14,19,20,21,26,27,28

Remark: Claims 1-14 were not provided to the ISA at the time of search and hence the subject matter of these claims and the dependent claims 19,20,21,26,27,28, could not be defined.

Information on patent family members

Inte. Jonal Application No PCT/US 98/07114

		T		101/03	90/0/114
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9506740	A 	09-03-1995	AU AU CA EP	688377 B 7739894 A 2169094 A 0716708 A	12-03-1998 22-03-1995 09-03-1995 19-06-1996
WO 9410189	A 	11-05-1994	CA EP JP	2148358 A 0666865 A 8502891 T	11-05-1994 16-08-1995 02-04-1996
WO 9203564	Α	05-03-1992	US CA EP JP US	5475099 A 2087977 A 0495096 A 6500234 T 5510255 A	12-12-1995 16-02-1992 22-07-1992 13-01-1994 23-04-1996
WO 9623892	Α	08-08-1996	US CA EP	5654495 A 2212003 A 0807182 A	05-08-1997 08-08-1996 19-11-1997
WO 9513390	Α	18-05-1995	CA EP JP US US	2176137 A 0728212 A 9505470 T 5723761 A 5654495 A	18-05-1995 28-08-1996 03-06-1997 03-03-1998 05-08-1997
WO 9410288	Α	11-05-1994	US CA EP JP US US	5455167 A 2147617 A 0670903 A 8502892 T 5654495 A 5667997 A	03-10-1995 11-05-1994 13-09-1995 02-04-1996 05-08-1997 16-09-1997
WO 9220236	Ā	26-11-1992	US CA EP US US JP	5512482 A 2109580 A 0557469 A 5639790 A 5455167 A 7501924 T	30-04-1996 26-11-1992 01-09-1993 17-06-1997 03-10-1995 02-03-1995
WO 9310240	Α	27-05-1993	AU	3073592 A	15-06-1993

information on patent family members

Inte. Jonal Application No
PCT/US 98/07114

Patent document cited in search report	Publication date			atent family nember(s)	Publication date	
WO 9310240	A		CA EP JP MX US	2123495 A 0667906 A 7501446 T 9206540 A 5500361 A	27-05-1993 23-08-1995 16-02-1995 01-05-1993 19-03-1996	
WO 9515387	· A	08-06-1995	US CA EP JP	5679881 A 2177598 A 0731840 A 9505739 T	21-10-1997 08-06-1995 18-09-1996 10-06-1997	

This Page Blank (uspto)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspto)