LAB₆

Arjun Gandhi, Christian Cooper, Ilyas Salhi

Table of Contents

Introduction	
1)	1
2)	_
3)	
Conclusion.	_

Introduction

The goal of this lab was to combine everything we learned throughout the term and apply it to a relevant to life example. We have been progressively building on this problem for the last six labs. In this lab we took what we learned in class and applied a root locus analysis on the Cruise Control Car example that we worked in previous weeks. Running the root locus looks at how the roots of a system change when you vary a certain parameter. By doing this we can try and reduce the steady state error.

1)

```
clear;
close all;
% ' + = u
% U(s) = m(V(s)s-v(0)) + bV(s)
% U(s) /s+b) -m(v(0))
% openloop: V(s)/U(s) = 1/(ms+ b)
m = 1000;
b = 50;
u = 500;

s = tf('s');
G = 1/(m*s + b) %Open loop
```

1 -----1000 s + 50

Continuous-time transfer function.

```
step(G)
```

Warning: MATLAB has disabled some advanced graphics rendering features by switching to software OpenGL. For more information, click here.

transients=stepinfo(G)

```
transients = struct with fields:
    RiseTime: 43.9401
SettlingTime: 78.2415
SettlingMin: 0.0181
SettlingMax: 0.0200
    Overshoot: 0
    Undershoot: 0
    Peak: 0.0200
    PeakTime: 210.9168
```

```
figure;
rlocus(G)
sgrid(0.6, 0.36)
axis([-0.6 0 -0.6 0.6] )
```


2)

```
figure;
rlocus(G);
sgrid(0.6, 0.36);
axis([-0.6 0 -0.6 0.6] );
[Kp,~]=rlocfind(G)

Select a point in the graphics window
selected_point = -0.3996 + 0.0490i
Kp = 353.0051

close;
C = pid(Kp)
C =
Kp = 353
```

```
TF = feedback(G*C,1)
```

P-only controller.

```
TF = 353
-----
1000 s + 403
```

Continuous-time transfer function.

figure;
step(TF)

transients=stepinfo(TF)

```
transients = struct with fields:
    RiseTime: 5.4516
SettlingTime: 9.7073
SettlingMin: 0.7923
SettlingMax: 0.8759
    Overshoot: 0
    Undershoot: 0
    Peak: 0.8759
    PeakTime: 26.1680
```

3)

```
figure;
rlocus(TF);
sgrid(0.6, 0.36);
axis([-0.6 0 -0.6 0.6] );
[Kp,~]=rlocfind(TF)

Select a point in the graphics window
selected_point = -0.3971 + 0.0565i
Kp = 0.1610

close;
```

```
z0=0.3;
p0=0.03;
lag = (s+z0)/(s+p0)
```

lag =

s + 0.3

s + 0.03

Continuous-time transfer function.

TF = feedback(G*C*lag,1)

TF =

Continuous-time transfer function.

figure;
step(TF)

transients=stepinfo(TF)

transients = struct with fields:

RiseTime: 3.2225
SettlingTime: 15.1063
SettlingMin: 0.9036

SettlingMax: 1.1467 Overshoot: 16.2960

Undershoot: 0

Peak: 1.1467 PeakTime: 7.6575

The transient info shows that the peak time is smaller, and actually reaches its peak with a brief over shoot.

Conclusion

In this lab we applied what we learned in class and previous labs to take our Cruise Control Car example to another level. For example we found a gain to place the closed-loop poles in the desired region by employing the rlocfind command. After doing so we reduced the steady-state error even further by created a lag controller. Then after designing the controller we were able to look at the transient info .