和7年至壁井岩等的到于安化和时

2022 DGIST 하계 인턴 최종 발표

BMI_인턴 오정은

목 차

Summary of Previous Works

- Spike & LFP Local Field Potential
- DSP Digital Signal Processing
- FFT Fast Fourier Transform
- PSD Power Spectral Density

Last Week & This Week

- FFT vs Welch's Method
- FOOOF Algorithm Fitting Oscillations and One-Over-f
- Aperiodic & Periodic

Final Works

Plotting & Comparison

Summary of Previous Works

Summary of Previous Works

- PD rat model vs Normal rat model
 - LFP를 PSD로 분석
 - 파킨슨 질병 Parkinson's disease: PD 유발된 쥐
 - 정상 쥐 뇌파 비교

 \rightarrow

Spike & Local Field Potential

Digital Signal Processing

Fast Fourier Transform

Power Spectral Density

Power Spectral Density PSD

- FFT 사용
- Welch's Method 사용

Welch's Method

- 주파수 power의 수치를 추정하기 위한 사용 방법
 - Average the squared FFT over multiple windows
 - Simplest method, use when you have a long signal

FFT vs Welch's Method

- 비교적 계산 간단 FFT
- 노이즈 감소 Welch's


```
%% Raw Data - fft-power domain
N = length(data);
xdft = fft(data*10^6);
xdft = xdft(1:N/2+1);
psdx = (1/(fs*N))*abs(xdft).^2;
psdx(2:end-1) = 2*psdx(2:end-1);
f = 0:fs/N:fs/2;

figure()
plot(f, log10(psdx))
xlabel('Frequency [Hz]')
ylabel('Power [log(V^2)]')
```

FFT Code

Noise Reduction

Pwelch Code

Fitting Oscillations & One-Over-F Algorithm

- LFP의 Aperiodic & Periodic Components 분리
- 더 정확한 분석을 도와주는 알고리즘

Periodic Component

특정 주파수에 치중해서 갖는 파워

Aperiodic Component

특정 주파수에 치중되는 값을 갖지 않는 파워

■ LFP의 Aperiodic & Periodic

Separation Steps

b Remove aperiodic signal

Normal rat model

Beta Band Oscillations

PD rat model

Beta Band Oscillations

Normal rat model

Periodic

PD rat model

Periodic

Normal rat model

Full Model

PD rat model

Full Model

O&A Thank you

