1 Introduction to Sonar

History of Sonar

"If you cause your ship to stop, and place the head of a long tube in the water and place the outer extremity to your ear you will hear ships at a great distance from you"

— Leonardo da Vinci, 1490.

- 1. "...ship to stop" \longrightarrow reduce self-noise
- 2. "... tube in water" \longrightarrow transducer
- 3. "... to your ear" \longrightarrow receiver
- 4. "... will hear ships" \longrightarrow detection
- 5. "... at a great distance" \longrightarrow low attenuation

1687 Issac Newton: first theoretical prediction of sound speed

$$\frac{\partial \rho}{\partial p} \approx \frac{1}{c^2}$$

1847 Culladon and Sturm:

- first accurate measurement of speed of sound in water
- light flash/underwater bell

1900 Submarine Signal Company: first commercial application.

- range from ship to lighthouse
- simulataneous sounding of underwater bell and foghorn

1914 Fessendon: first active sonar system (detect iceberg 2 miles)

World War I: experiments.

- passive sonar operational equipment
- active sonar experiments

2

Passive Sonar Equation

$$SL - TL - (NL - DI) = DT$$

Active Sonar Equation

$$SL - 2TL + TS - (\frac{NL - DI}{RL}) = DT$$

$$SL - TL - (NL - DI) = DT$$

Parameter definitions:

- SL = Source Level
- TL = Transmission Loss
- NL = Noise Level
- \bullet DI = Directivity Index
- \bullet RL = Reverberation Level
- \bullet TS = Target Strength
- DT = Detection Threshold

Reverberation vs. Noise-limited Range

- Active Sonar
- Range independent noise vs. range dependent reverberation
- Define Echo Level: EL = SL 2TL + TS

Definition of sound intensity

dB = decibel (after Alexander Graham Bell) For acoustics:

$$\mathrm{dB} = 10 \log_{10} \frac{I}{I_{\mathrm{ref}}}$$

2 Arrays

Summary of array formulas

Source Level

•
$$SL = 10 \log \frac{I}{I_{ref}} = 10 \log \frac{p^2}{p_{ref}^2}$$
 (general)
• $SL = 171 + 10 \log \mathcal{P}$ (omni)
• $SL = 171 + 10 \log \mathcal{P} + DI$ (directional)

Directivity Index

• DI =
$$10 \log(\frac{I_D}{I_O})$$
 (general)

 $I_D = \text{directional intensity (measured at center of beam)}$
 $I_O = \text{omnidirectional intensity}$
(same source power radiated equally in all directions)

• DI =
$$10 \log(\frac{2L}{\lambda})$$
 (line array)
• DI = $10 \log((\frac{\pi D}{\lambda})^2) = 20 \log(\frac{\pi D}{\lambda})$ (disc array)
• DI = $10 \log(\frac{4\pi L_x L_y}{\lambda^2})$ (rect. array)

3-dB Beamwidth θ_{3dB}

•
$$\theta_{3dB} = \pm \frac{25.3\lambda}{L} \text{ deg.}$$
 (line array)
• $\theta_{3dB} = \pm \frac{29.5\lambda}{D} \text{ deg.}$ (disc array)
• $\theta_{3dB} = \pm \frac{25.3\lambda}{L_x}, \pm \frac{25.3\lambda}{L_y} \text{ deg.}$ (rect. array)

This figure shows the beam pattern for a circular transducer for D/λ equal to 2, 4, and 8. Note that the beampattern gets narrower as the diameter is increased.

This figure compares the response of a line array and a circular disc transducer. For the line array, the beam pattern is:

$$b(\theta) = \left[\frac{\sin(\frac{1}{2}kL\sin\theta)}{\frac{1}{2}kL\sin\theta} \right]^2$$

whereas for the disc array, the beam pattern is

$$b(\theta) = \left[\frac{2J_1(\frac{1}{2}kD\sin\theta)}{\frac{1}{2}kD\sin\theta} \right]^2$$

where $J_1(x)$ is the Bessel function of the first kind. For the line array, the height of the first side-lobe is 13 dB less than the peak of the main lobe. For the disc, the height of the first side-lobe is 17 dB less than the peak of the main lobe.

Problem geometry

Our goal is to compute the acoustic field at the point (r, θ) in the far field of a uniform line array of intensity A/L. First, let's find an expression for l in terms of r and θ . From the law of cosines, we can write:

$$l^2 = r^2 + z^2 - 2rz\cos\alpha.$$

If we factor out r^2 from the left hand side, and substitute $\sin \theta$ for $\cos \alpha$, we get:

$$l^2 = r^2 \left[1 - \frac{2z}{r} \sin \theta + \frac{z^2}{r^2} \right]$$

and take the square root of each side we get:

$$l = r \left[1 - \frac{2z}{r} \sin \theta + \frac{z^2}{r^2} \right]^{\frac{1}{2}}$$

We can simplify the square root making use of the fact:

$$(1+x)^p = 1 + px + \frac{p(p-1)}{2!} + \frac{p(p-1)(p-2)}{3!} + \cdots$$

and keeping only the first term for $p = \frac{1}{2}$:

$$(1+x)^{\frac{1}{2}} \cong 1 + \frac{1}{2}x$$

Applying this to the above expression yields:

$$l \cong r \left[1 + \frac{1}{2} \left(-\frac{2z}{r} \sin \theta + \frac{z^2}{r^2} \right) \right]$$

Finally, making the assuming that $z \ll r$, we can drop the term $\frac{z^2}{r^2}$ to get

$$l \cong r - z \sin \theta$$

Field calculation

For an element of length dz at position z, the amplitude at the field position (r, θ) is:

$$dp = \frac{A}{L} \frac{1}{l} e^{-i(kl - \omega t)} dz$$

We obtain the total pressure at the field point (r, θ) due to the line array by integrating:

$$p = \frac{A}{L} \int_{-L/2}^{L/2} \frac{1}{l} e^{-i(kl - \omega t)} dz$$

but $l \cong r - z \sin \theta$, so we can write:

$$p = \frac{A}{L}e^{-i(kr - \omega t)} \int_{-L/2}^{L/2} \frac{1}{r - z\sin\theta} e^{ikz\sin\theta} dz$$

Since we are assuming we are in the far field, $r >> z \sin \theta$, so we can replace $\frac{1}{r-z\sin\theta}$ with $\frac{1}{r}$ and move it outside the integral:

$$p = \frac{A}{rL}e^{-i(kr-\omega t)} \int_{-L/2}^{L/2} e^{ikz\sin\theta} dz$$

Next, we evaluate the integral:

$$p = \frac{A}{rL}e^{-i(kr - \omega t)} \left[\frac{e^{ikz\sin\theta}}{ik\sin\theta} \right]_{-L/2}^{L/2}$$

$$p = \frac{A}{rL}e^{-i(kr - \omega t)} \left[\frac{e^{\frac{1}{2}ikL\sin\theta} - e^{-\frac{1}{2}ikL\sin\theta}}{ik\sin\theta} \right]$$

Next move the term $\frac{1}{L}$ into the square brackets:

$$p = \frac{A}{r}e^{-i(kr - \omega t)} \left[\frac{e^{\frac{1}{2}ikL\sin\theta} - e^{-\frac{1}{2}ikL\sin\theta}}{ikL\sin\theta} \right]$$

and, using the fact that $\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$, we can write:

$$p = \frac{A}{r}e^{-i(kr - \omega t)} \left[\frac{\sin(\frac{1}{2}kL\sin\theta)}{\frac{1}{2}kL\sin\theta} \right]$$

which is the pressure at (r, θ) due to the line array. The square of the term in brackets is defined as the *beam pattern* $b(\theta)$ of the array:

$$b(\theta) = \left[\frac{\sin(\frac{1}{2}kL\sin\theta)}{\frac{1}{2}kL\sin\theta} \right]^2$$

Steered Line Array

Recall importance of phase:

- Spatial phase: $kz \sin \theta = \frac{2\pi}{\lambda} z \sin \theta$ Temporal phase: $\omega t = \frac{2\pi}{T}$; $T = \frac{1}{f}$

 $k \sin \theta = \text{vertical wavenumber}$

 $k \sin \theta_0$ = vertical wavenumber reference

To make a steered line array, we apply a linear phase shift $-zk\sin\theta_0$ to the excitation of the array:

$$dp = \frac{A/L}{r} e^{iz(k\sin\theta - k\sin\theta_0)} e^{i\omega t} dz \tag{1}$$

We can write

$$zk\sin\theta_0 = \omega z \frac{\sin\theta_0}{c}$$
$$zk\sin\theta_0 = \omega T_0(z) \; ; \; T_0(z) = \frac{z\sin\theta_0}{c}$$

The phase term is equivalent to a time delay $T_0(z)$ that varies with position along the line array. We can re-write the phase term as follows.

$$e^{iz(k\sin\theta-k\sin\theta_0)}e^{i\omega t} = e^{ikz\sin\theta}e^{-i\omega(t+T_0(z))}$$

integrating Equation 1 yields:

$$p = \frac{A}{r}e^{-i(kr - \omega t)} \left[\frac{\sin(\frac{kL}{2}[\sin \theta - \sin \theta_0])}{(\frac{kL}{2}[\sin \theta - \sin \theta_0])} \right]$$

The resulting beam pattern is a shifted version of the beampattern of the unsteered line array. The center of the main lobe of the response occurs at $\theta = \theta_0$ instead of $\theta = 0$.

This plot shows the steered line array beam pattern

$$b(\theta) = \left[\frac{\sin(\frac{kL}{2}[\sin\theta - \sin\theta_0])}{(\frac{kL}{2}[\sin\theta - \sin\theta_0])} \right]^2$$

for $\theta_0 = 0$ and $\theta_0 = 20$ degrees.

Example 1: Acoustic Bathymetry

Given:

•
$$f = 12 \text{ kHz}$$

- Baffled disc transducer
- D = 0.5 m
- Acoustic power $\mathcal{P} = 2.4 \text{ W}$

Compute:

$$\bullet$$
 $\theta_{3dB} =$

Spatial resolution, ϵ

$$\epsilon = 2d \tan \theta_{3dB}$$
$$= d \cdot \underline{\hspace{1cm}}$$

Depth resolution, δ

$$T_F = \frac{2d}{c}$$
 (earliest arrival time)

$$T_L = \frac{2r}{c}$$
 (latest arrival time)

$$\delta = (T_L - T_F) \cdot c/2$$

$$= d(\frac{1}{\cos\theta_{3dB}} - 1)$$

$$=d\cdot$$

For d=2 km

$$\epsilon =$$

$$\delta =$$

Example 2: SeaBeam Swath Bathymetry

Transmit: 5 meter unsteered line array (along ship axis)

Receive array: 5 meter **steered** line array (athwartships)

Net beam (plan view)

3 Propagation Part I: spreading and absorption

Table of values for absorption coefficent (alpha)

13.00 Fall, 1999 Acoustics: Table of attentuation coefficients

frequency	[Hz]	alpha [dl	B/km]	frequency	[Hz]	alpha [dB/km]]
1		0.003		50000		15.9	
10		0.003	3	60000)	19.8	
100		0.004	4	70000)	23.2	
200		0.00	7	80000)	26.2	
300		0.013	2	90000)	28.9	
400		0.018	8	100000	(100	kHz) 31.2	
500		0.026	6	200000)	47.4	
600		0.033	3	300000)	63.1	
700		0.04	1	400000)	83.1	
800		0.048	3	500000)	108	
900		0.056	6	600000)	139	
1000	(1kHz)	0.063	3	700000)	174	
2000		0.12		800000		216	
3000		0.18		900000		264	
4000		0.26		1000000	(1 MH	z) 315	
5000		0.35		2000000		1140	
6000		0.46		3000000		2520	
7000		0.59		4000000		4440	
8000		0.73		5000000		6920	
9000		0.90		6000000		9940	
10000	(10 kHz	2) 1.08		7000000		13520	
20000		3.78		8000000		17640	
30000		7.55		9000000		22320	
40000		11.8		10000000	(10 M	Hz) 27540	

Absorption of sound in sea water (from 13.851 class notes).

Absorption of sound in sea water

Relaxation mechanism

(conversion of acoustic energy to heat)

Four mechanisms

- shear viscosity ($\tau \approx 10^{-12} \text{ sec}$)
- structural viscosity ($\tau \approx 10^{-12} \text{ sec}$)
- magnesium sulfate MgSO₄ ($\tau \approx 10^{-6} \text{ sec}$) [1.35 ppt]
- boric acid ($\tau \approx 10^{-4} \text{ sec}$) [4.6 ppm]

Relaxation time, τ

- if $\omega \tau \ll 1$, then little loss.
- if $\omega \tau \approx 1$ or greater, then generating heat (driving the fluid too fast).

The attenuation coefficient α depends on temperature, salinity, pressure and pH. The following formula for α in dB/km applies at T=4° C, S=35 ppt, pH = 8.0, and depth = 1000 m. (Urick page 108).

$$\alpha \approx 3.0 \times 10^{-3} + \frac{0.1f^2}{1+f^2} + \frac{44f^2}{4100+f^2} + 2.75 \times 10^{-4}f^2$$

Solving for range given transition loss TL

The equation

$$20\log r + 10^{-3}\alpha r = TL$$

cannot be solved analytically. If absorption and spreading losses are comparable in magnitude, you have three options:

- In a "back-of-the-envelope" sonar design, one can obtain an initial estimate for the range by first ignoring absorption, then plugging in numbers with absorption until you get an answer that is "close enough".
- For a more systematic procedure, one can do Newton-Raphson iteration (either by hand or with a little computer program), using the range without absorption as the initial guess.
- Another good strategy (and a good way to check your results) is to make a plot of TL vs. range with a computer program (e.g., Matlab).

Newton-Raphson method: (Numerical recipes in C, page 362)

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

To solve for range given TL, we have:

$$f(x_i) = TL - 20\log x_i - 10^{-3}\alpha x_i$$
$$f'(x_i) = -\frac{20}{r} - 10^{-3}\alpha$$

$$\alpha = \underline{\qquad} \qquad \text{TL} = \underline{\qquad} \qquad x_0 = \underline{\qquad}$$

i	x_i	$20 \log x_i$	$0.001\alpha x_i$	$f(x_i)$	$f'(x_i)$	$f(x_i)/f'(x_i)$	$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$
0							
1							
2							
3							
4							

Example 1: whale tracking

Passive sonar equation:

Given:

• $f_0 = 250 \text{ Hz}$

• $\mathcal{P} = 1$ Watt (omni)

• line array: L = 2 km

• DT = 15 dB

• NL = 70 dB

Question: How far away can we hear the whale?

 $TL = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

 $\lambda = \underline{\hspace{1cm}}$

DI = _____

 $SL = \underline{\hspace{1cm}}$

 $TL = 20 \log r + \alpha * r * 10^{-3} =$

 $\alpha =$ _____

 $R_t = \frac{8680}{\alpha} = \underline{\hspace{1cm}}$

r = _____ (w/o absorption) r = _____ (with absorption)

Figure 1: TL vs. range for whale tracking example (f=250 Hz, $\alpha = 0.003$ dB/km).

$$f(x_i) = TL - 20\log x_i - 10^{-3}\alpha x_i =$$

$$f'(x_i) = -\frac{20}{r} - 10^{-3}\alpha =$$

$$\alpha = \underline{\qquad} \qquad \qquad \text{TL} = \underline{\qquad} \qquad \qquad x_0 = \underline{\qquad}$$

i	x_i	$20 \log x_i$	$0.001\alpha x_i$	$\int f(x_i)$	$f'(x_i)$	$f(x_i)/f'(x_i)$	$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$
0	500,000	114	1.5	-1.5	-3.7×10^{-5}	40540	459500
1	459,500	13.2	1.38	-0.6	-4.05×10^{-5}	14805	444694
2	445,000	112.96	1.34	-0.3			
3							
4							

Example 2: dolphin tracking

Passive sonar equation:

Given:

• $f_0 = 125 \text{ kHz}$

 \bullet SL 220 dB re 1 μ Pa at 1 meter

• line array: L = 1 m

• DT = 15 dB

• NL = 70 dB

Question: How far away can we hear (detect) the dolphin?

 $TL = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

 $\lambda = \underline{\hspace{1cm}}$

DI = _____

 $TL = 20 \log r + \alpha * r * 10^{-3} =$

 $\alpha = \underline{\hspace{1cm}}$

 $R_t = \frac{8680}{\alpha} = \underline{\hspace{1cm}}$

r = ______ (w/o absorption) r = ______ (with absorption)

 $r = \underline{\hspace{1cm}}$ (w/o spreading)

 $f(x_i) = TL - 20\log x_i - 10^{-3}\alpha x_i =$

Figure 2: TL vs. range for dolphin tracking example (f=125 kHz, $\alpha = 30$ dB/km).

$$f'(x_i) = -\frac{20}{r} - 10^{-3}\alpha = \underline{\hspace{1cm}}$$

$$\alpha = \underline{\qquad} \qquad \qquad \text{TL} = \underline{\qquad} \qquad \qquad x_0 = \underline{\qquad}$$

i	x_i	$20 \log x_i$	$0.001\alpha x_i$	$f(x_i)$	$f'(x_i)$	$f(x_i)/f'(x_i)$	$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$
0	5000	74	150	-67	-0.034	1970	3030
1	3030	69.6	90.9	-3.5	-0.037	95	2935
2	2935	69.35	88.05	-0.4	-0.368	10.9	2925
3	2925						
4							

4 Propagation Part II: refraction

In general, the sound speed c is determined by a complex relationship between salinity, temperature, and pressure:

$$c = f(S, T, D)$$

Medwin's formula is a useful approximation for c in seawater:

$$c = 1449.2 + 4.6T - 0.055T^{2} + 0.00029T^{3} + (1.34 - 0.010T)(S - 35) + 0.016D$$

where S is the salinity in parts per thousand (ppt), T is the temperature in degrees Celsius, and D is the depth in meters. (See Ogilvie, Appendix A.)

Partial derivatives:

$$\frac{\partial c}{\partial T} = 4.6 \text{ m/sec/C}^{\circ} \qquad \frac{\partial c}{\partial S} = 1.34 \text{ m/sec/ppt} \qquad \frac{\partial c}{\partial D} = 0.016 \text{ m/sec/m}$$

For example:

- $\Delta T = 25^{\circ} \Longrightarrow \Delta c = 115 \text{ m/sec}$
- $\Delta S = 5 \text{ ppt} \Longrightarrow \Delta c = 6.5 \text{ m/sec}$
- $\Delta D = 6000 \text{ m} \Longrightarrow \Delta c = 96 \text{ m/sec}$

Sound across an interface

$$p_1 = p_i + p_r = Ie^{-i(k_1x\cos\theta_1 + k_1y\sin\theta_1)} + Re^{-i(-k_1x\cos\theta_1 + k_1y\sin\theta_1)}$$

$$p_2 = p_t = Te^{-i(k_2 x \cos \theta_2 + k_2 y \sin \theta_2)}$$

At x = 0, we require that $p_1 = p_2$ (continuity of pressure)

$$(I+R)e^{-ik_1y\sin\theta_1} = Te^{-ik_2y\sin\theta_2}$$

Match the phase to get **Snell's law**:

$$\frac{\sin \theta_1}{c_1} = \frac{\sin \theta_2}{c_2}$$

If $c_2 > c_1$, then $\theta_2 > \theta_1$

If $c_2 < c_1$, then $\theta_2 < \theta_1$

Sound bends *towards* region with *low* velocity Sound bends *away* from region with *high* velocity

Goal: prove that the radius of curvature R is constant for a linear sound speed gradient.

Use the following:

- 1. Snell's law: $\frac{\sin \theta}{c} = \text{constant} = \sigma \text{ or } c = \frac{\sin \theta}{\sigma}$ (σ is the horizontal slowness or ray parameter)
- 2. radius of curvature: $R = \frac{dS}{d\theta}$
- 3. gradient: $g = \frac{dc}{dz}$
- 4. $dz = dS \cos \theta$

First use Equation 4 in Equation 2:

$$R = \frac{dS}{d\theta} = \frac{dz}{d\theta} \cdot \frac{1}{\cos \theta}$$
$$R = \frac{dz}{dc} \frac{dc}{d\theta} \cdot \frac{1}{\cos \theta}$$

Then use Equation 3 for $\frac{dz}{dc}$:

$$R = \frac{1}{g\cos\theta} \cdot \frac{dc}{d\theta}$$

but from Equation 1 we can write:

$$\frac{dc}{d\theta} = \frac{\cos\theta}{\sigma}$$

and so we can write:

$$R = \frac{1}{g\sigma}$$

Hence, for linear sound speed gradient, radius of curvature is constant.

⇒ ray paths are arcs of a circle

For gradient g > 0, upward refraction occurs.

For gradient g < 0, downward refraction occurs.

Other forms for R

Since $\frac{\sin \theta}{c} = \sigma = \text{constant}$ for a ray, we can choose any known value.

For example, choose $\frac{\sin \theta}{c}$ at the turning point $z = z_t$.

At
$$\theta = \frac{\pi}{2} \Longrightarrow \frac{\sin \theta(z_t)}{c(z_t)} = \frac{1}{c(z_t)} = \sigma$$

Then:

$$R = \frac{c(z_t)}{g}$$

But

$$c(z_t) = c(z_0) + g(z_t - z_0)$$

So we can write:

$$R = \frac{c(z_0)}{q} + (z_t - z_0)$$

for z_0 any given depth.

Example 1: Arctic propagation

At
$$z_t = 4000$$
 m, $\theta_t = \pi/2$, $c(z_t) = 1504$ m/s.
Then radius of curvature $R = \frac{c(z_t)}{g} = \underline{\hspace{1cm}}$

What is range to first turning point, X_c ?

Distance X_c is the chord:

$$X_c = 2\sqrt{2Rz - z^2} = \underline{\hspace{1cm}}$$

Arc length S is the distance traveled by the ray:

$$S = 2R\cos^{-1}\left(\frac{R-z}{R}\right) = \underline{\hspace{1cm}}$$

What is the launch angle $\theta(z_0)$ for this ray?

$$\frac{\sin(\theta(z_0))}{c(z_0)} = \frac{1}{c(z_t)}$$

$$\theta(z_0) = \sin^{-1}\left(\frac{c(z_0)}{c(z_t)}\right) = \underline{\hspace{1cm}}$$

Example 2: Bi-linear duct

Upper:

$$R_U = \frac{c(z_t)}{g} = \underline{\qquad}$$

$$D_U = 2\sqrt{2R_U z_a - z_a^2} = \underline{\qquad}$$

Lower:

$$R_{l} = \frac{c(z_{t})}{g} = \underline{ }$$

$$z_{t} = R_{L} - \frac{c(z_{a})}{g} + z_{a} = \underline{ }$$

$$D_{L} = 2\sqrt{2R_{L}(z_{t} - z_{a}) - (z_{t} - z_{a})^{2}} = \underline{ }$$

5 Reflection and target strength

Interface reflection

1

$$p_i = Ie^{i\omega t}e^{-i(k_1x\sin\theta_1 - k_1y\cos\theta_1)}$$

$$p_r = Re^{i\omega t}e^{-i(k_1x\sin\theta_1 + k_1y\cos\theta_1)}$$

$$p_t = Te^{i\omega t}e^{-i(k_2x\sin\theta_2 - k_2y\cos\theta_2)}$$

Boundary condition 1: continuity of pressure:

Boundary condition 2: continuity of normal particle velocity:

$$0 \quad y = 0 \quad v_1 = v_i + v_r = v_t = v_2$$

Momentum equation

$$\frac{\partial v}{\partial t} = -\frac{1}{\rho} \cdot \frac{\partial p}{\partial y}$$
but
$$\frac{\partial v}{\partial t} = i\omega v \quad (\text{since } v \propto e^{i\omega t})$$

$$\implies v = \frac{i}{\omega \rho} \frac{\partial p}{\partial y}$$

Continuity of pressure:

$$p_{i}|_{y=0} + p_{r}|_{y=0} = p_{t}|_{y=0}$$
$$(I+R)e^{-ik_{1}x\sin\theta_{1}} = Te^{-ik_{2}x\sin\theta_{2}}$$
$$(I+R)e^{-i\omega x\frac{\sin\theta_{1}}{c_{1}}} = Te^{-i\omega x\frac{\sin\theta_{2}}{c_{2}}}$$

And so using Snell's law, we can write:

$$I + R = T \tag{2}$$

Continuity of normal velocity:

$$v_i = \frac{i}{\omega \rho_1} \cdot i k_1 \cos \theta_1 p_i = -\frac{\cos \theta_1}{\rho_1 c_1} p_i$$

$$v_r = \frac{\cos \theta_1}{\rho_1 c_1} p_r$$

$$v_t = -\frac{\cos \theta_2}{\rho_2 c_2} p_t$$

$$v_i \mid_{y=0} + v_r \mid_{y=0} = v_t \mid_{y=0}$$

$$\rho_2 c_2 \cos(\theta_1)(I - R) = \rho_1 c_1 \cos(\theta_2) T \tag{3}$$

We can solve Equations 1 and 2 to get the reflection and transmission coeficients \mathcal{R} and \mathcal{T} :

$$\mathcal{R} = \frac{R}{I} = \frac{\rho_2 c_2 \cos \theta_1 - \rho_1 c_1 \cos \theta_2}{\rho_2 c_2 \cos \theta_1 + \rho_1 c_1 \cos \theta_2}$$
$$\mathcal{T} = \frac{T}{I} = \frac{2\rho_2 c_2 \cos \theta_1}{\rho_2 c_2 \cos \theta_1 + \rho_1 c_1 \cos \theta_2}$$

Recall that given θ_1 , we can compute θ_2 with Snell's law:

$$\frac{\sin \theta_1}{c_1} = \frac{\sin \theta_2}{c_2}$$

Special case: $\theta = 0$ (normal incidence)

$$\mathcal{R} = \frac{\rho_2 c_2 - \rho_1 c_1}{\rho_2 c_2 + \rho_1 c_1} \equiv \frac{Z_2 - Z_1}{Z_2 + Z_1}$$
$$\mathcal{T} = \frac{2\rho_2 c_2}{\rho_2 c_2 + \rho_1 c_1} \equiv \frac{2Z_2}{Z_2 + Z_1}$$

where $Z = \rho c$ is defined as the acoustic impedance.

Example 1: source in water

$$\rho_a = 1.2 \text{ kg/m}^3$$
, $c_a = 340 \text{ m/sec} \Longrightarrow Z_a = 408 \text{ kg/m}^2 \text{s}$
 $\rho_w = 1000 \text{ kg/m}^3$, $c_w = 1500 \text{ m/sec} \Longrightarrow Z_w = 1.5 \times 10^6 \text{ kg/m}^2 \text{s}$

$$\mathcal{R} = \frac{408\cos\theta_1 - 1.5 \times 10^6\cos\theta_2}{408\cos\theta_1 + 1.5 \times 10^6\cos\theta_2} \approx -1$$

$$T = 1 + \mathcal{R} \approx 0$$
 (no sound in air)

Example 2: source in air

$$\mathcal{R} = \frac{1.5 \times 10^6 \cos \theta_1 - 408 \cos \theta_2}{1.5 \times 10^6 \cos \theta_1 + 408 \cos \theta_2} \approx +1$$

$$T = 1 + \mathcal{R} \approx 2$$
 (double sound in water!)

Does this satisfy your intuition?

Consider intensity:

$$I_a = \frac{p_a^2}{\rho_a c_a} = \frac{p_a^2}{408}$$

$$I_w = \frac{p_w^2}{\rho_w c_w} = \frac{4p_a^2}{\rho_w c_w} = \frac{4p_a^2}{1.5 \times 10^6} = \frac{p_a^2}{3.75 \times 10^5}$$

$$\Longrightarrow I_w \approx \frac{1}{1000}I_a$$

Does this satisfy your intuition?

Target Strength

Assumptions:

- large targets (relative to wavelength)
- plane wave source
 - no angular variation in beam at target
 - curvature of wavefront is zero

Example: rigid or soft sphere

Assume $\mathcal{P}_{\text{scat}} = \mathcal{P}_{\text{inc}}$ (omnidirectional scattering)

$$I_{
m scat} = rac{\mathcal{P}_{
m scat}}{4\pi r^2} = rac{\pi r_0^2 I_{
m inc}}{4\pi r^2}$$

For $r = r_{\text{ref}} = 1$ meter:

$$TS = 10 \log \frac{r_0^2}{4} \qquad (Assuming \ r_0 >> \lambda)$$

If $r_0 = 2$ meters, then TS = 0 dB

6 Design problem: tracking neutrally buoyant floats

Sonar design problem

Require:

- Track to $\pm 3^{\circ}$ bearing
- Range error: $\delta \pm 10$ meters
- Maximum range: R = 10 km
- Active sonar with DT = 15 dB
- sonar and float at sound channel axis
- baffled line array (source and receiver)
- Noise from sea surface waves (design for Sea State 6)

receiver DI: $DI_R =$

pulse length: $\tau =$

array length: L = _____

source level: SL = ______

noise level: NL = ______

transmission loss: TL =

wavelength: $\lambda =$ _____

source DI: $DI_T = \underline{\hspace{1cm}}$

time-of-flight: T =

ping interval: $T_p =$ _____

frequency: f = ______

target strength: TS =

range resolution: $\delta =$ _____

acoustic power: $\mathcal{P} =$ ______

average acoustic power: $\overline{\mathcal{P}} =$

7 Reverberation

Surface reverberation

$$I_{\text{rev}} = \int_A I_0 \cdot b(\theta, \phi) \cdot \frac{1}{r^2} \cdot \frac{I_{\text{scat}}}{I_{\text{inc}}} \cdot \frac{1}{r^2} \cdot b'(\theta, \phi) dA$$

Define the ratio $\frac{I_{\text{Scat}}}{I_{\text{inc}}}$ as s_s

$$I_{\text{rev}} = \frac{I_0}{r^4} s_s \int_A b(\theta, \phi) b'(\theta, \phi) dA$$

From figure:

$$dA = \frac{c\tau}{2}rd\phi$$

consider only beampatterns of the form:

$$b(0,\phi) = b'(0,\phi) = \begin{cases} 1 , & |\phi| \le \Phi/2 \\ 0 , & |\phi| > \Phi/2 \end{cases}$$

$$I_{\text{rev}} = \frac{I_0}{r^4} s_s \frac{c\tau}{2} r \Phi$$

Define A as the insonified area $\frac{c\tau}{2}r\Phi$. Take logs to define the reverberation level RL_s:

$$RL_s = SL - 40 \log r + S_s + 10 \log A$$
 (No absorption)

Example: 100 kHz side-scan sonar

•
$$f = 100 \text{ kHz} (\alpha = 30 \text{ db/km})$$

•
$$\theta_{3dB-H} = 0.5^{\circ}$$

$$\bullet \ \theta_{3dB-V} = 30^{\circ}$$

• SL = 201 dB re 1 μ Pa @ 1 meter (rectangular array)

•
$$DT = 15 dB$$

•
$$NL = 35 dB$$

•
$$\tau = 0.1 \times 10^{-3} \text{ sec}$$

Sonar equation:

$$SE = SL - 2TL - (NL - DI_r) + {S_s + 10 \log A \choose TS} - DT$$

How much signal excess for rock bottom vs clay bottom at 300 meter range?

•
$$\lambda =$$

$$\bullet L_x = \underline{\hspace{1cm}}$$

$$\bullet L_y = \underline{\hspace{1cm}}$$

•
$$DI_R =$$

Rock:
$$S_s = -20 \text{ dB} \implies \text{SE} = \underline{\hspace{1cm}}$$

Clay:
$$S_s = -40 \text{ dB} \implies \text{SE} = \underline{\hspace{1cm}}$$

Compare the **echo level** of a steel drum to the **reverberation level** of rocks and clay at 300 m.

•
$$EL = SL - 2TL + TS$$

• RL = SL - 2TL +
$$S_S$$
 + 10 log A

Drum is finite cylinder \implies TS = 10 log $\frac{aL^2}{2\lambda}$ = ______

$$EL = \underline{\hspace{1cm}}$$

$$RL|_{rocks} = \underline{\hspace{1cm}}$$

$$RL|_{clay} = \underline{\hspace{1cm}}$$

What if drum is in a boulder field with boulders of diameter 2 meters? (assume spherical boulders)

$$TS|_{boulder} = 10 \log \frac{r^2}{4} =$$
 $EL|_{drum} - EL|_{boulder} =$

45

Side scan sonar analysis

Slant range correction:

By Pythagorus:
$$R_h = \sqrt{R_s^2 - H_f^2}$$

Object height:

By similar triangles:
$$H_t = \frac{L_s H_f}{R_s + L_s}$$

Side view of sidescan geometry.

Tow direction

Plan view of sidescan geometry.

Summary of variable definitions for side-scan sonar.

• θ_1 is the angle from the vertical to the near edge of the fan beam in the vertical plane.

• θ_2 is the angle from the vertical to the far edge of the fan beam in the vertical plane.

$$\theta_2 = \theta_1 + 2 * \theta_{3dB-V}$$

• R_{Smax} is the maximum slant range.

$$R_{Smax} = H/\cos(\theta_2)$$

• R_{Smin} is the minimum slant range.

$$R_{\text{Smin}} = H/\cos(\theta_1)$$

• R_{Hmax} is the maximum horizontal range.

$$R_{\text{Hmax}} = H \tan(\theta_2)$$

 \bullet R_{Hmin} is the minimum horizontal range.

$$R_{\text{Hmin}} = H \tan(\theta_1)$$

 \bullet X_{\max} is the along-track resolution at maximum range.

$$X_{\text{max}} = 2R_{\text{Hmax}} * \tan \theta_{\text{3dB-H}}$$

 $\bullet~X_{\mbox{min}}$ is the along-track resolution at minimum range

$$X_{\min} = 2R_{\min} * \tan \theta_{3dB-H}$$

• T_f is the time-of-flight, which is the time required for the sonar ping to travel to maximum range and back.

$$T_f = 2 * R_{\text{Smax}}/c$$

• T_p is the pulse repetition interval, which is the time between pings. To avoid overlap of echos from one ping to the next:

$$T_p \ge T_f$$

- \bullet v is the velocity of the towfish.
- D is the distance traveled by the sonar towfish during one ping cycle. To avoid gaps in the sonar coverage:

$$D = v * T_p \le X_{\min}$$

8 NOISE 48

8 Noise

fig. 7.5 Average deep-water ambient-noise spectra.

Noise levels in the deep ocean (from Urick).

Sources of noise in the ocean (from Urick).

8 NOISE 50

Five bands of noise:

I. f < 1 Hz: hydrostatic, seismic

II. 1 < f < 20 Hz: oceanic turbulence

III. 20 < f < 500 Hz: shipping

IV. 500 Hz < f < 50 KHz: surface waves

V. 50 kHz < f: thermal noise

Band I: f < 1 Hz

• Tides $f \approx 2$ cycles/day

$$p = \rho g H \approx 10^4 \cdot H$$
 Pa

noise level: NL = 200dB re 1 μ Pa - 20 log H

example: 1 meter tide \Longrightarrow NL = 200 dB re 1 μ Pa

• microseisms $f \approx \frac{1}{7}$ Hz On land, displacements are

$$\eta \approx 10^{-6} \text{meters}$$

Assume harmonic motion

$$\eta \propto e^{i\omega t} \Longrightarrow v = \frac{d\eta}{dt} = i\omega\eta$$

Noise power due to microseisms

$$p=\rho cv=i\omega\rho c\eta=i2\pi f\rho c\eta$$

$$|p|=2\pi f\rho c\eta=1.4Pa\Longrightarrow \ \mathrm{NL}=123\ \mathrm{dB}\ \mathrm{re}\ 1\ \mu\mathrm{Pa}$$

8 NOISE 51

Band II: Oceanic turbulence

 $1~\mathrm{Hz} < f < 20~\mathrm{Hz}$

Possible mechanisms:

- hydrophone self-noise (spurious)
- internal waves
- upwelling

Band III: Shipping

 $20~\mathrm{Hz} < f < 500~\mathrm{Hz}$

Example: ≈ 1100 ships in the North Atlantic assume 25 Watts acoustic power each

$$\mathrm{SL} = 171 + 10\log\mathcal{P} = 215~\mathrm{dB}$$
re 1 $\mu\mathrm{Pa}$ at 1 meter

Mechanisms

- Internal machinery noise (strong)
- Propeller cavitation (strong)
- Turbulence from wake (weak)

Band IV: surface waves

$$500~\mathrm{Hz} < f < 50~\mathrm{KHz}$$

- Observations show NL is a function of local wind speed (sea state)
- Possible mechanisms:
 - breaking waves (only at high sea state)
 - wind flow noise (turbulence)
 - cavitation (100-1000 Hz)
 - long period waves

$$\omega = \sqrt{kg}$$
 $c_p = \frac{\omega}{k}$ $c_p^2 = \frac{g\lambda}{2\pi}$

if $\lambda \approx 2000$ km, then $c_p \approx 1500$ m/sec \Longrightarrow radiate noise!

Band V: Thermal noise

50 KHz < f

$$NL = -15 + 20 \log f$$

53

Directionality of noise

Vertical

- Low frequency
 - distant shipping dominates
 - low attenuation at horizontal

- High frequency
 - sea surface noise
 - local wind speed dominates
 - high attenuation at horizontal

Horizontal

- Low frequency: highest in direction of shipping centers
- High frequency: omnidriectional

Design Principles 9

Summary of important design principles

1. Required maximum range determines maximum frequency

Dyer's rule : $\alpha \times r \times 0.001 = 10 \text{ dB}$ [for r in meters]

2. Required angular resolution determines array size

•
$$\theta_{3dB} = \pm \frac{25.3\lambda}{L} \text{ deg.}$$
 (line array)

•
$$\theta_{3dB} = \pm \frac{29.5\lambda}{D} \text{ deg.}$$
 (disc array)

$$\theta_{3dB} = \pm \frac{25.3\lambda}{L} \text{ deg.}$$
 (line array)

$$\theta_{3dB} = \pm \frac{29.5\lambda}{D} \text{ deg.}$$
 (disc array)

$$\theta_{3dB} = \pm \frac{25.3\lambda}{L_x}, \pm \frac{25.3\lambda}{L_y} \text{ deg.}$$
 (rec. array)

3. Required range resolution determines maximum pulse length

$$\Delta r = \frac{c\tau}{2}$$

4. In a side-scan sonar, the horizontal (across-track) range resolution Δr_h is determined by the beam geometry:

$$\Delta r_h = \Delta r \sin \theta$$

where θ is the angle between a ray drawn at the maximum range and the vertical.

$$\frac{\partial \mathbf{r}}{\partial \mathbf{r}} = \mathbf{c}\tau/2$$

5. Characteristics of the transducer determine minimum pulse length.

• For a narrowband transducer, you must have at least 10 to 15 cycles of the carrier frequency.

10 Sidescan sonar

Side view of sidescan geometry.

Tow direction

Plan view of sidescan geometry.

Summary of variable definitions for side-scan sonar.

- θ_1 is the angle from the vertical to the near edge of the fan beam in the vertical plane.
- θ_2 is the angle from the vertical to the far edge of the fan beam in the vertical plane.

$$\theta_2 = \theta_1 + 2 * \theta_{3dB-V}$$

• R_{Smax} is the maximum slant range.

$$R_{\text{Smax}} = H/\cos(\theta_2)$$

• R_{Smin} is the minimum slant range.

$$R_{\text{Smin}} = H/\cos(\theta_1)$$

• R_{Hmax} is the maximum horizontal range.

$$R_{\text{Hmax}} = H \tan(\theta_2)$$

 \bullet R_{Hmin} is the minimum horizontal range.

$$R_{\text{Hmin}} = H \tan(\theta_1)$$

 \bullet X_{\max} is the along-track resolution at maximum range.

$$X_{\text{max}} = 2R_{\text{Hmax}} * \tan \theta_{\text{3dB-H}}$$

 $\bullet~X_{\mbox{min}}$ is the along-track resolution at minimum range

$$X_{\min} = 2R_{\min} * \tan \theta_{3dB-H}$$

• T_f is the time-of-flight, which is the time required for the sonar ping to travel to maximum range and back.

$$T_f = 2 * R_{\text{Smax}}/c$$

• T_p is the pulse repetition interval, which is the time between pings. To avoid overlap of echos from one ping to the next:

$$T_p \ge T_f$$

- v is the velocity of the towfish.
- D is the distance traveled by the sonar towfish during one ping cycle. To avoid gaps in the sonar coverage:

$$D = v * T_p \le X_{\min}$$

11 Summary of important formulae

Source Level

•
$$SL = 171 + 10 \log \mathcal{P} + DI$$

Directivity Index

• DI =
$$10 \log(\frac{2L}{\lambda})$$
 (line array)
• DI = $20 \log(\frac{\pi D}{\lambda})$ (disc array)
• DI = $10 \log(\frac{4\pi L_x L_y}{\lambda^2})$ (rectangular array)

3-dB Beamwidth θ_{3dB}

•
$$\theta_{3dB} = \pm \frac{25.3\lambda}{L}$$
 deg. (line array)
• $\theta_{3dB} = \pm \frac{29.5\lambda}{D}$ deg. (disc array)
• $\theta_{3dB} = \pm \frac{25.3\lambda}{L_x}, \pm \frac{25.3\lambda}{L_y}$ deg. (rectangular array)

Transmission loss, spherical spreading and absorption:

• TL =
$$20 \log r + 10^{-3} \alpha r$$

Transmission loss, cylindrical spreading and absorption:

• TL =
$$10 \log r + 10^{-3} \alpha r$$

Target strength of a sphere $(r_0 = \text{radius, assumes } r_0 >> \lambda)$:

•
$$TS = 10 \log \frac{r_0^2}{4}$$

Target strength of a cylinder: (at normal incidence, a = radius, L = length)

• TS =
$$10 \log \frac{aL^2}{2\lambda}$$

Rule-of-thumb for picking frequency given maximum range

•
$$\alpha \times r \times 0.001 = 10 \text{ dB}$$
 [for r in meters]

Range resolution

•
$$\Delta r = \frac{c\tau}{2}$$

Absorption of sound in sea water (from Prof. Dyer's 13.851 class notes).

Table of values for absorption coefficent (alpha)

13.00 Fall, 1999 Acoustics: Table of attentuation coefficients

frequency	[Hz]	alpha [dB/km]	frequency	7 [I	lz]	alph	a	[dB/k	m]
1		0.0	03	50000)			1	5.9	
10		0.0	03	60000)			1	9.8	
100		0.0	04	70000)			2	3.2	
200		0.0	07	80000)			2	6.2	
300		0.0	12	90000)			2	8.9	
400		0.0	18	100000	(1	L00	kHz)	3	1.2	
500		0.0	26	200000)			4	7.4	
600		0.0	33	300000)			6	3.1	
700		0.0	41	400000)			8	3.1	
800		0.0	48	500000)			1	80	
900		0.0	56	600000)			1	39	
1000	(1kHz)	0.0	63	700000)			1	74	
2000		0.1	2	800000				21	6	
3000		0.1	8	900000				26	4	
4000		0.2	6	1000000	(1	MHz	:)	31	5	
5000		0.3	5	2000000				11	40	
6000		0.4	6	3000000				25	20	
7000		0.5	9	4000000				44	40	
8000		0.7	3	5000000				69	20	
9000		0.9	0	6000000				99	40	
10000	(10 kHz	1.0	8	7000000				13	520	
20000		3.7	8	8000000				17	640	
30000		7.5	5	9000000				22	320	
40000		11.	8	10000000	(10) MF	łz)	27	540	

fig. 7.5 Average deep-water ambient-noise spectra.

Noise levels in the deep ocean (from Urick).