Chinese Lip Reading Based on Audio-Visual Hidden Unit BERT

指導教授: 陳冠文

組別:第7組

組員: 110550165何存益 110550085房天越

Table of Content

- 01 → Introduction
- $02 \longrightarrow Method$
- 03 → Result
- 04 → Conclusion
- 05 → Reference

Introduction

- Traditional lip-reading models are typically trained using only visual datasets.
- AV-HuBERT[1] employs self-supervised learning to cluster **audio and visual features** into hidden units, which significantly enhances lip-reading accuracy.
- In our project, we adapted AV-HuBERT for the **Chinese language** by training it on the CMLR dataset[2], a Chinese audio-visual dataset.
- Our model demonstrated its ability to distinguish test videos without relying on audio input.

AV-HuBERT

→ 交通大學將會取得勝利

Method

image from Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction

Method

Modality Dropout

$$\mathbf{f}_t^{av} = \begin{cases} \text{concat}(\mathbf{f}_t^a, \mathbf{f}_t^v) & \text{with } p_m \\ \text{concat}(\mathbf{f}_t^a, \mathbf{0}) & \text{with } (1 - p_m) p_a \\ \text{concat}(\mathbf{0}, \mathbf{f}_t^v) & \text{with } (1 - p_m) (1 - p_a) \end{cases}$$

Training Loss Function

$$L = -\sum_{t \in M^a \cup M^v} \log p_t(z_t) - \alpha \sum_{t \notin M^a \cup M^v} \log p_t(z_t)$$

Method - CMLR Preprocessing

Detect landmark Extract ROI

Input Video Frame

Audio

Text 推動社會 的 經濟 穩定發展

→ Input Audio Frame

Method - Fine-tune

Finally, we fine-tuned our model, enabling it to predict Chinese content.

14340.3s	8979	Reference: 歴史悠久 參與 可以 夏天
14340.3s	8971	Prediction: 歷史人 的 第 上海
14340.3s	8072	CER: 61.54%
14340.3s	8973	Sample 27:
14340.3s	8974	Reference: 發達國家 正視 部門 國家
14340.3s	8975	Prediction: 發展中國家 劃 了 質電
14340.3s	8976	CER: 61.54%
14340.3s	8977	Sample 28:
14340.3s	8078	Reference: 抗震救災 渡過 堅強 幹部
14340.3s	8079	Prediction: 抗震救災 工作 溫家寶 總
14340.3s	8888	CER: 53.85%
14340.3s	8081	Sample 29:
14340.3s	8882	Reference: 和平 主要 印
14340.3s	8083	Prediction: 和平 也 更多
14340.3s	8084	CER: 57.14%
14340.3s	8085	Sample 38:
14340.3s	8886	Reference: 哥本蛤根 出版 企業 利益
14340.3s	8087	Prediction: 哥本蛤根 會議 即將 召開
14340.3s	8888	CER: 46.15%
14340.3s	8889	Sample 31:
14340.3s	8090	Reference: 山西省 在 加大 反
14340.3s	8891	Prediction: 山西省 結合 的合

▲ Part of the results

Method - Generate Vocabulary Table

- Unlike English, where words are naturally separated by spaces and can be easily tokenized, Chinese lacks such delimiters, making segmentation more challenging.
- We need to find a more suitable tokenization method for Chinese.

SentencePiece

Method - SentencePiece

 SentencePiece processes all input by converting it into Unicode characters, enabling unified handling across multiple languages.

```
"\u6539\u9769 \u628a \u515a\u4e2d",
"\u6539\u9769 \u9886\u57df \u9ad8",
"\u4e60\u8fd1\u5e73 \u53d1\u5c55 \u4eca\u5929",
"\u65b0\u95fb\u8054\u64ad \u8bda \u5c31 \u97e9 \u64a4\u56de",
"\u4e60\u8fd1\u5e73 \u8fdb\u884c \u96e8 \u5b66",
```


Result - Generate Vocabulary Table

Due to the special structure of Chinese language, we use Character Error Rate (CER) instead of Word Error Rate (WER) that is mentioned in the paper.

	Sentence Tokenize (Unigram)	the word in CMLR	Word tokenize
CER↓	83.27%	65.07%	56.35%
Part of Vocab	深切的哀悼 1 及牙 1 1 1 1 1 2 1 2 2 3 3 5 5 5 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	具法交主发造 【可引时增严访兵有律通要展成 们 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Result - Video vs. Audio-Visual

Fine-tune	With video only	With audio and video
Character Error Rate (CER)↓	79.11%	56.35%

 The experiment demonstrates that incorporating both audio and video modalities during fine-tuning significantly improves performance compared to using video alone.

Result - Demo Video

<u>Link</u>

Prediction - 人民日报将发表评论员

Ground Truth - 人民日报发表评论员文章

Result - Demo Video

Prediction - 澳门特别行政区发风各一

Ground Truth - 澳門特別行政區改革開放

Result - Some Problems #1

 Chinese has more similar-sounding words and homophones than English, making it more difficult for the model to distinguish.

Reference: 數量

Prediction: 樹量

Reference: 智利

Prediction: 治理

Reference: 戰線

Prediction: 展現

Reference: 留守

Prediction: 留首

Reference: 涼山

Prediction: 良善

Reference: 合理

Prediction: 合力

Result - Some Problems #2

• The model may adjust the prediction word order for context, which results in higher CER.

Reference: 清華大學 信息 家

Prediction: 清華大學 交 信息

Reference: 製造 力量 農

Prediction: 製造 的 力量

Conclusion

- We trained the AV-HuBERT model based on CMLR dataset to predict the Chinese language.
- We discovered that different methods of constructing vocabulary lists can affect the accuracy.
- We showed that using Audio-Visual instead of only visual data can significantly decrease the character error rate for Chinese language.

Thank you!

CREDITS: This presentation template was created by **Slidesgo** and includes icons by **Flaticon**, infographics & images by **Freepik** and content by **Eliana Delacour**

Reference

[3]

[1] AV-HuBERT (Audio-Visual Hidden Unit BERT)

https://github.com/facebookresearch/av_hubert

[2] Ya Zhao, Rui Xu, and Mingli Song. A Cascade Sequence-to-Sequence Model for Chinese Mandarin Lip Reading. ACM International Conference on Multimedia in Asia 2019

https://dl.acm.org/doi/pdf/10.1145/3338533.3366579

Bowen Shi, Wei-Ning Hsu, Kushal Lakhotia, Abdelrahman Mohamed. Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction, In ICLR 2022

https://arxiv.org/pdf/2201.02184