Data Modeling using ER Models

Why We Model

- Need to develop a common understanding of the problem and the solution
- to communicate the desired structure and behavior of our systems
- model may be at various levels depending of requirements :
 - logical or physical
 - external, conceptual, internal

Data Model.....

- model offers concepts, constructs and operations
- must capture meaning of data (data semantics) which help us in interpreting the data
- a good model
 - is easy to understand, is expressive
 - has a few concepts
 - permits top-down specifications

Data Model.....

- semantics captured through data types, inter-relationships and data integrity constraints
 - Proper naming
 - permitted values
 - Integrity constraints

ER MODEL....

- a few concepts
- simple and easy-to-use
- permits top-down approach for controlling details
- useful as a tool for communication between designer and user during requirements analysis and conceptual design

ENTITY

- an object that exists
- distinguishable from other objects (has unique id)
- could be concrete or abstract
- Examples: this course on DBIS, Ganesh as a student, etc

ENTITY SET

- a set of similar entities
- example : set of all books in a library
- need not be disjoint with other entity sets
 - e.g., supplier and customer may have common entities
- entity set also called entity type or entity class
- an entity is an occurrence or an instance of some entity type
- Often use 'entity' to mean 'entity set'!
- entity sets are named using singular common nouns: Book, Student,
 Course

ATTRIBUTE

- an entity (type) has a set of attributes
 - entity Book has Price attribute
- it is given a name
- attribute has value for each entity
- value may change over time
- same set of attributes are defined for entities in an entity set

ATTRIBUTE....

• Example : entity set BOOK has the following attributes

TITLE ISBN

ACC-NO AUTHOR

PUBLISHERYEAR PRICE

- PART: how to define it as an entity
 - Chair is a 'generic' part?
 - Every chair is a part each has Id
 - One consignment or each design is a part

ATTRIBUTE....

- an attribute may be multi-valued, e.g., a book may have many authors
- an attribute which uniquely identifies entities of a set is called candidate key
- Primary key is a candidate key
- composite attribute : date, address, etc

Composite Attributes

EXAMPLE: University

As we list them, we define scope of application:

• STUDENT : rollno, name, hostel-no., date-of-birth

• COURSE : courseno, name, credits

• TEACHER : empno, name, rank, room-no, telphone

• DEPT : name, tel-phone

Ex: identify primary keys of above entities.

Are attributes meaningful and exist uniformly?

EXAMPLE: University ...

- focus of design could have indicated more entities
 - HOSTEL SEMESTER
 - Or, teacher could only be an attribute

Entity notation

- Rectangle with attributes as small circles connected to it (double circle for repeating, composite)
- Keys are underlined

EXERCISE: identify entities in a hospital and give a few instances of each

E-R Diagram With Composite, Multivalued, and Derived Attributes

RELATIONSHIP

- represents association/interaction among entities
 - the book 'Database Systems' by S. Sudarshan is text for course identified by code 'CS644'
 - the student GANESH has enrolled for course CS644

RELATIONSHIP SET

- set of relationships of same type
- words 'relationship' and 'relationship set' often used interchangeably
- between certain entity sets
 - binary relationship : between two entity sets
 - ternary relationship : among three entity sets
 - N-ary ...

RELATIONSHIP SET....

- binary relationship called STUDY between STUDENT and COURSE
- A separate binary relationship called TEACH between COURSE and TEACHER
- relationship STUDY could be ternary among STUDENT, COURSE and TEACHER
- What is the difference?
- a relationship may have attributes
 - attribute GRADE and SEMESTER for STUDY

DEPICTING A RELATIONSHIP – like a mapping

Mappings may not be 'total'

PRIMARY KEY FOR RELATIONSHIPS

- made of primary keys of all participating entities
- No need to indicate: implicit
 e.g., primary key of STUDY is
 (rollno, courseno)

RELATIONSHIP SET....

relationships named using verbs or nouns

Study Enroll

Order

Implies a direction from one entity to another

EXERCISE: identify relationships and their attributes in the hospital example and give a few instances of each

E-R Diagram

- □ Diamonds represent relationship sets.
- ☐ **Lines** link entity sets to relationship sets.

RELATIONSHIP CARDINALITY

- is a constraint on a relationship
- given by indicating weather zero, one or more entities from one set relate to zero, one or more entities of the other entity set
- especially useful for binary relationships
 - One : one
 - One : many
 - Many : one
 - Many: many

RELATIONSHIP CARDINALITY...

• EXAMPLES :

- relationship TEACHES from TEACHER to COURSE is one-to-many (TAUGHT-BY from COURSE to TEACHER is many-to-one)
- relationship STUDY between STUDENT and COURSE is many-to-many

Cardinality Constraints

- cardinality constraints by drawing
 - directed line (→) signifying "one,"
 - an undirected line (—) signifying "many,"

Relationship Sets with Attributes

One-To-Many Relationship

- Every loan must have one customer
- Note: all customers need not take loans

- Can you represents this: a supplier may supply same part many times
- . Relationship 'supplies' could also be ternary (by involving warehouse)
- . Can this model tell us 'who supplied a part used in a project?'

TERNARY RELATIONSHIPS

- be sure that your model reflects real-world correctly
- ternary (or, of higher order) relationships are harder to understand
- ternary relationship is not same as two binary relationships

Exercise: Compare the following E-R Diagram with the one on next page using sample data

A: Ternary

B:Two Binaries

Example: Ternary Relationship

Converting Non-Binary Relationships to Binary Form

- In general, any non-binary relationship can be represented using binary relationships by creating an artificial entity set.
 - Replace *relationship* by an entity set *E*, and three relationship sets as shown
 - Create a special identifying attribute for E
 - Add any attributes of R to E
 - translate constraints

Example/Exercise

Exercise: Airport database

- keeps track of airplanes, their owners, airport employees and pilots
- Each airplane has a registration number, is of a particular plane type and is stored in a particular hanger. Each plane type has a model number, capacity and weight. Each hanger has a number, capacity and location. The database also keeps track of who owns which plane. Persons have name, address and phones. A person buys a plane on a particular date and cost.

Airport database....

- Each plane undergoes service many times. A service information contains date of work, nature, hours spent, cost, etc. Pilots and employees are persons. Pilots have a license number with validity and salary. Employees have a number, rank and salary. Each pilot is authorized to fly certain types of planes. Employees are involved in servicing of planes.
- prepare E-R model

Library, Hospital, Railway Resrv, ...

Old Car Mart

- buying and selling of old cars
- cars, purchases, sales direct or installment-wise
- service to sold cars, pre-sale repairs
- agents

Cricket Database

- countries, players, teams
- matches, results, scores (team, individual level)
- Prepare sample data

- Summary: the basic concepts: entity, relationship. Attributes, key
 - Compare with relational model
- ER also extended with OO
- Next module