

CS100 #04

Logic Gates

Vadim Surov

Introduction

- We have looked at Boolean expressions in abstract terms.
- In this presentation, we see that Boolean functions are implemented in digital computer circuits called gates.
- A gate is an electronic device that produces a result based on two or more input values.
 - In reality, gates consist of one to six transistors, but digital designers think of them as a single unit.
 - Integrated circuits contain collections of gates suited to a particular purpose.

Logic Gates AND

A	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

Copyright © 2017 DigiPen Corporation

Logic Gate OR

А	В	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

Copyright © 2017 DigiPen Corporation

Logic Gate NOT

Α	NOT A
0	1
1	0

Combinational Circuits

- The main thing to remember is that combinations of gates implement Boolean functions.
- The circuit below implements the Boolean expression

Combinational Circuits

А	В	C	AB	C	AB	((AB)+C)	((AB)+C)
0	0	0	0	1	1	1	0
0	0	1	0	0	1	1	0
0	1	0	0	1	1	1	0
0	1	1	0	0	1	1	0
1	0	0	0	1	1	1	0
1	0	1	0	0	1	1	0
1	1	0	1	1	0	1	0
1	1	1	1	0	0	0	1

Combinational Circuits

 Compare previous circuit to the following one, you will find that they are equivalent, they produce similar outputs:

Combining Logical Gate: NAND

Α	В	NAND
0	0	1
0	1	1
1	0	1
1	1	0

Combining Logical Gate: NOR

$$(A + B)$$

Α	В	NOR
0	0	1
0	1	0
1	0	0
1	1	0

Combining Logical Gate: XOR

0	0	0
0	1	1
1	0	1
1	1	0

Combining Logical Gate: XNOR

A	В	XNOR
0	0	1
0	1	0
1	0	0
1	1	1