

Aplicações de Aprendizado de Máquina & PLN

Juvenal J. Duarte

Aula 2: Classificação

Ementa

Tópicos de hoje:

- 1. Problemas comuns em classificação e suas abordagens.
- 2. Algoritmos de classificação e suas características.
- 3. Medidas de avaliação
- 4. Classificação de dados desbalanceados
- 5. Viés e variância
- 6. Otimização de hiper-parâmetros

Introdução:

Tipos de problemas e abordagens

Juvenal J. Duarte

Regressão / Classificação

Qual a diferença?

Regressão / Classificação

Qual a diferença?

	Classificação	Regressão	
Atributo alvo	categórico	numérico contínuo	
Tipo de modelo	função de decisão	regressor	
F. Custo (mais comum)	Cross Entropy	Mean Squared Error	
Avaliação (mais comum)	F-Medida, Precisão, Revocação, ROC/AUC	MSE, MAE, RMSE, Residual Plots	

Regressão / Classificação

Ex. 1: Fará um dia ensolarado, nublado ou chuvoso?

Classes = {"ensolarado", "nublado", "chuvoso"}

Ex. 2: Qual será a temperatura média?

Temperatura = [-50 C, +50 C]

Tipos de Problemas

	Descrição
Binária	Muito comum para problemas de diagnóstico: Classe positiva Vs negativa. Ex. Diabetes, Classificação de Crédito.
Multiclasse	Usado quando o modelo deve decidir entre mais de duas classes. Ex. Iris Dataset, MNIST.
Multirótulo	Neste tipo de problema, registros podem receber mais de um rótudo. Ex. Muito usado na classificação de textos.
Hierárquica	Para alguns casos, a quantidade de classes possíveis é muito grande para ser tratada por um único modelo. Ex. Qual o autor de uma obra.

Tipos de Problemas

Hierarchical classification: Binary classification: Multi-class classification: Panthera pardus Species \mathbf{x}_{2} X_2 Panthera Genus 000 Felidae Family X_1 Order Carnivora 000880 Mammalia Multi-Class Multi-Label Class C = 3Samples Samples Chordata Phylum Animalia Labels (t) Labels (t) Kingdom [0 0 1] [1 0 0] [0 1 0] [1 0 1] [0 1 0] [1 1 1] Eukarya Domain

Classificação Multiclasse

One Vs All (One Vs Rest)

Classificação Multiclasse

One Vs One (All Vs All)

- Constroi-se um modelo para cada combinação duas a duas das classes.
- Resulta em mais modelos, porém mais simples.

Classificação Multirótulo & Hierárquica

Global Vs Local

Local (por nó pai)

- Um único classificador para distinguir entre todas as classes possíveis.
- Pode ser abordado como um problema multirótulo.

- Um classificador por nó pai.
- Classificadores encadeiados baseado na classificação do nível anterior.

Algoritmos:

Características, vantagens e limitações

Juvenal J. Duarte

Técnicas mais comuns

Baseado em Instância	Baseado em Regras	Modelos Lineares	Modelos Não Lineares	Comitês (Ensembles)
K-Nearest Neighbors Árvores de Decisão		Regressão Logística	Redes Neurais	Bagging
	Floresta Aleatória	Naïve Bayes	Redes Bayesianas	Boosting
	Gradient Boosting	SVM-Linear	SVM-Polinomial	
	XGBoost		SVM-RBF	

Técnicas mais comuns

Baseado em Instância	Baseado em Regras	Modelos Lineares	Modelos Não Lineares	Comitês (Ensembles)
K-Nearest Neighbors	Árvores de Decisão	Regressão Logística	Redes Neurais	Bagging
	Floresta Aleatória	Naïve Bayes	Redes Bayesianas	Boosting
	Gradient Boosting	SVM-Linear	SVM-Polinomial	
	XGBoost		SVM-RBF	
Técnica simples com resultados tão bons quanto os melhores métodos dependendo do problema. Sofre com alta dimensionalidade (wide) e, principalmente, com muitos registros (long).	Modelos interessantes principalmente pela capacidade de interpretação. AD possui problemas crônicos com alta dimensionalidade e super ajustamento, os demais (especialmente XGBoost) possuem artifícios para estes	De fácil configuração e pouco sensíveis a super ajustamento. Sofrem com problemas não lineares e atributos não independentes (colinearidade)	Conseguem representar funções altamente complexas, mas são mais susceptíveis a superajustamento. Exigem ajuste de hyperparâmetros e regularização muito mais intensos.	Combinação de modelos "fracos". Usados para reduzir o viês sem comprometer a capacidade de generalização (variância).

problemas

Técnicas mais comuns

Permite avaliar o caminho (conjunto de regras) que levaram à decisão.

Conseguem tratar problemas multiclasse/multilabel em um único modelo

Permite a comparação com exemplos observados mais parecidos.

Saída em forma de probabilidade, permitindo a manipulação do limiar de decisão.

Decomposição mais clara do problema, pode combinar as vantagens de diferentes métodos amenizando suas desvantagens.

Comparativo: funções de decisão

Referência

Regressão Logística:

https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html

SVM:

https://scikit-learn.org/0.15/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

Árvore de Decisão:

https://scikit-learn.org/0.15/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier

Floresta Aleatória:

https://scikit-learn.org/0.15/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier

Naïve Bayes Gaussiano:

https://scikit-learn.org/0.15/modules/generated/sklearn.naive bayes.GaussianNB.html#sklearn.naive bayes.GaussianNB

KNN:

https://scikit-learn.org/0.15/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier

Rede Neural Artificial (MultiLayer Perceptron):

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

Avaliação:

Medidas de avaliação

Juvenal J. Duarte

Medidas de avaliação Matriz de Confusão

- Compara os rótulos reais com os previstos.
- Cada quadrante indica a quantidade de registros. A soma de todos os quadrantes deve ser igual ao número total de registros *m*.
- Para problemas binários, as situações possíveis são:
 - True Positive (TP): Registro cujo rótulo real é positivo e foi previsto como positivo.
 - True Negative (TN): Registro negativo previsto como negativo.
 - False Positive (FP): Registro negativo previsto como positivo.
 - False Negative (FN): Registro positivo previsto como negativo.
- Para problemas multiclasse a matriz ajuda a identificar quais as classes confundidas com mais frequência.
 - As métricas TP, TN, FP e FN podem ser calculadas como One Vs Rest.

Problema Binário

	Predicted Positives	Predicted Negatives	
Positives	True Positives	False Negatives	
Negatives	False Positives	True Negatives	

Problema Multiclasse

	Car	Boat	Plane	Train
Car	✓ 88	X	×	X
Boat	×	65	X	X
Plane	×	×	72	X
Train	X 4	×	X	60

Medidas de avaliação Matriz de Confusão

- Compara os rótulos reais com os previstos.
- Cada quadrante indica a quantidade de registros. A soma de todos os quadrantes de ser igual ao número total de registros $m.\,$
- Para problemas binários, as situações possíveis são:
 - True Positive (TP): Registro cujo rótulo real é positivo e foi previsto como positivo.
 - True Negative (TN): Registro negativo previsto como negativo.
 - False Positive (FP): Registro negativo previsto como positivo.
 - False Negative (FN): Registro positivo previsto como negativo.
- Para problemas multiclasse a matriz ajuda a identificar quais as classes confundidas com mais frequência.
 - As métricas TP, TN, FP e FN podem ser calculadas como One Vs Rest.

Acertos!

Matriz de Confusão - Python

Código

```
from sklearn.metrics import confusion matrix
y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2]
y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2]
confusion matrix(y actu, y pred)
```

```
import scikitplot as skplt
skplt.metrics.plot_confusion_matrix(y_actu,
                                    y pred,
                                    normalize=True)
plt.show()
```

Saída

```
array([[3, 0, 0],
       [0, 1, 2],
       [2, 1, 3]], dtype=int64)
```


Medidas de acerto

- Revocação / Taxa de positivos verdadeiros ($recall = \frac{TP}{TP + FN}$):
 - Quantos casos positivos foram previstos dentre todos os registros positivos nos dados?
- Precisão ($precision = \frac{TP}{TP+FP}$):
 - Dos casos positivos previstos, quantos realmente eram positivos?
- F-Medida ($F Score = 2 * \frac{precision*recall}{precision+recall}$):
 - Média harmônica entre a precisão e revocação.

- Taxa de positivos falsos ($recall = \frac{FP}{TN+FP}$):
 - Quantos casos negativos foram previstos dentre todos os registros negativos nos dados?
- Acurácia ($acuracy = \frac{TP+TN}{m}$):
 - Quantos casos foram previstos <u>corretamente</u> dentre todos os registros?
- Taxa de erro ($error\ rate = \frac{FP + FN}{m}$):
 - Quantos casos foram previstos <u>erroneamente</u> dentre todos os registros?

Medidas de acerto

Sensíveis a classe escolhida como positiva!

- Revocação / Taxa de positivos verdadeiros ($recall = \frac{TP}{TP + FN}$):
 - Quantos casos positivos foram previstos dentre todos os registros positivos nos dados?
- Precisão ($precision = \frac{TP}{TP+FP}$):
 - Dos casos positivos previstos, quantos realmente eram positivos?
- F-Medida ($F Score = 2 * \frac{precision*recall}{precision+recall}$):
 - Média harmônica entre a precisão e revocação.

- Taxa de positivos falsos ($recall = \frac{FP}{TN+FP}$):
 - Quantos casos negativos foram previstos dentre todos os registros negativos nos dados?
- Acurácia ($acuracy = \frac{TP+TN}{m}$):
 - Quantos casos foram previstos <u>corretamente</u> dentre todos os registros?
- Taxa de erro ($error\ rate = \frac{FP + FN}{m}$):
 - Quantos casos foram previstos <u>erroneamente</u> dentre todos os registros?

Medidas de acerto

Código

```
from sklearn.metrics import classification_report

y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2]
y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2]

target_names = ['class 0', 'class 1', 'class 2']
print(classification_report(y_actu, y_pred,
target_names=target_names))
```

Saída

	precision	recall	f1-score	support
class 0	0.60	1.00	0.75	3
class 1	0.50	0.33	0.40	3
class 2	0.60	0.50	0.55	6
accuracy			0.58	12
macro avg	0.57	0.61	0.57	12
weighted avg	0.57	0.58	0.56	12

Limiar de decisão

- Alguns algoritmos fornecem a probabilidade de um registro pertencer a uma classe.
- Quando este é o caso, a classe é decidida por limiar de decisão, um *threshold*.
- A manipulação deste limiar permite tornar o modelo mais favorável a uma das classes, ajustando assim a taxa de acerto.

Exemplo	Classe Verdadeira	Probabilidade Prevista	Limiar de decisão = 0.6	Limiar de decisão = 0.7	
1	0	0.98	1	1	1
2	1	0.67	1	0	0
3	1	0.58	0	0	0
4	0	0.78	1	1	0
5	1	0.85	1	1	1
6	0	0.86	1	1	1
7	0	0.79	1	1	0
8	0	0.89	1	1	1
9	1	0.82	1	1	1
10	0	0.86	1	1	1

Curva ROC (Receiver Operating Characteristic)

- Usado para fazer um comparação gráfica entre a taxa de acertos contraposta à taxa de erro, conforme varia-se o threshold de separação das classes.
- Construção:
 - 1. Escolha os thresholds de decisão, ex.: (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
 - 2. Baseado nos thresholds, compute as previsões do modelo.
 - 3. Compare as previsões com os valores reais e calcule para cada threshold:

$$taxa de acerto = \frac{TP}{TP + FN}$$

$$taxa\ de\ erro = \frac{FP}{TN+FP}$$

4. Plote os pares (taxa de erro, taxa de acerto) e conecte os pontos.

Curva ROC: Interpretação

- A linha azul indica o comportamento de um classificador onde a quantidade de erros é sempre igual aos acertos, independente do threshold escolhido.
- A região verde é onde o classificador mantém a quantidade de acertos maior que a de erros (BOM!).
- A região laranja é onde os erros são mais frequentes que acertos (RUIM!).

Curva ROC: Qual o melhor classificador?

Curva ROC: Qual o melhor classificador?

Na prática depende o quão crítico é seu problema, mas este é um bom candidato: mantém uma boa taxa de acerto com erro notóriamente mais baixo que os pontos à direita.

Medidas de avaliação Curva ROC, superfície AUC (ROC-AUC)

- A curva **ROC** fornece uma maneira prática de avaliar qual o melhor limiar de probabilidade para separar as classes (maior acerto, menor erro).
- É muito comum combinar a curva ROC com a superfície AUC (area under curve) em analises com múltiplos métodos.
- **AUC** tem valor máximo 1.0.
- Em geral a métrica **AUC** determina quanta dúvida o classificador apresenta:
 - Se o classificador acerta sempre com probabilidades próximas de 1 e 0 a métrica AUC tende a ser alta. O impacto do threshold é baixo!
 - Se o classificar mantém probablidades sempre entre 0.25 e 0.75 para ambas as classes AUC tende a ser baixo. *O impacto do threshold é alto!*

Medidas de avaliação Curva ROC, superfície AUC (ROC-AUC)

- Qual o melhor método segundo a métrica AUC?
- Qual o melhor classificador?

Curva ROC, superfície AUC (ROC-AUC)

ROC-AUC: Python

Código

```
import scikitplot as skplt
import matplotlib.pyplot as plt

y_true = # ground truth labels
y_probas = # probabilities generated by classifier

skplt.metrics.plot_roc_curve(y_true, y_probas)

plt.show()
```

Saída

Balanceamento:

Tratando dados desbalanceados

Juvenal J. Duarte

Dados Desbalanceados

- Faz com que o algoritmo dê menor importância ou até despreze a classe minoritária durante o treinamento.

Sub-amostragem (Undersampling)

Sobre-amostragem (Oversampling)

Balanceamento de dados

- Na prática, fazer sub ou sobre amostragem sem critérios pode trazer problemas:
 - Ao excluir dados na sub amostragem pode-se acrescentar viés na função de decisão.
 - Simplesmente replicar os pontos da classe minoritária ajuda a balancear a importância das classes no aprendizado, mas pode prejudicar a capacidade de generalização do modelo.

Balanceamento de dados

Outras Técnicas

Balanceamento de dados

Outras Técnicas

- Alguns classificadores conseguem tratar o desbalanceamento de classes diretamente no processo de aprendizagem. Para isto, registros da classe minoritária previstos incorretamente são punidos mais severamente.
- Métodos como LogisticRegression e DecisionTreeClassifier implementam essa funcionalidade através do parametro class_weight="balanced".

class_weight : dict or 'balanced', default=None

Weights associated with classes in the form {class_label: weight}. If not given, all classes are supposed to have weight one.

The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as $n_samples / (n_classes * np.bincount(y))$.

Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified.

New in version 0.17: class_weight='balanced'

Bias/Variance Trade-Off:

Juvenal J. Duarte

Bias – Variance Trade-Off

O que é?

Bias - Variance Trade-Off

Como avaliar?

Recall Error

	Target	Treino	Teste		
Modelo 1	0.07	0.17	0.38		
Modelo 2	0.07	0.08	0.32		
Modelo 3	0.07	0.08	0.10		

Bias - Variance Trade-Off

Como avaliar?

	Target	Treino	Teste	Bias	Variance	
Modelo 1	0.07	0.17	0.38	0.10	0.21	
Modelo 2	0.07	0.08	0.32	0.01	0.24	
Modelo 3	0.07	0.08	0.10	0.01	0.02	

Bias - Variance Trade-Off

Como avaliar?

	B.E.R.	Treino	Teste	Bias	Variance
Modelo 1	0.07	0.17	0.38	0.10	0.21
Modelo 2	0.07	0.08	0.32	0.01	0.24
Modelo 3	0.07	0.08	0.10	0.01	0.02

Não aprende bem, não generaliza bem

Não generaliza

Desempenho tolerável

Hiper-parâmetros:

Validação cruzada + Busca em grid

Juvenal J. Duarte

Validação Cruzada:

K-Fold

- Validação cruzada: método K-Fold.
 - Subdivide o dataset em K porções.
 - Executa K iterações de treinamento e validação de modelos, sendo que a cada iteração uma partição é escolhida para validação e todas as demais são usadas no treinamento.
 - Os melhores hiper-parâmetros são escolhidos baseado no melhor resultado médio.

Grid Search

- Busca exaustiva pelos melhores parâmetros para o modelo.
 Deve ser associada a uma estratégia de validação: hold-out, k-fold etc.
- É necessário estabelecer os valores de cada parâmetro a serem testados. Exemplo no SKLearn:

 São testadas todas as combinações de valores para os hiperparâmetros (produto vetorial), o que leva à um custo computacional elevado.

```
https://scikit-
learn.org/stable/modules/generated/skle
arn.model selection.GridSearchCV.html
```


