

Building a Scalable Record Linkage System

with Apache Spark, Python 3, and Machine Learning

Nicholas Chammas and Eddie Pantridge MassMutual

#Py6SAIS

The Business Problem

- What: Comprehensive view of the customer
- Why: Marketing and underwriting
- Problem:
 - Customer information scattered across many systems
 - No global key to link them all together
 - Variations in name and address

The Technical Challenge

- 330M+ records that need to be linked
- Records come from various systems with differing schemas
- No global key; SSN generally not available
- No differential extracts of source systems
- Need to link everything, all at once, every night

Record Linkage Prior Art

- Dedupe
 - Mature, sophisticated
 - Local processing
 - Previous team found did not scale enough

Record Linkage Prior Art

- Splinkr 2
 - In-house system built on Spark's RDD API in late 2015 / early 2016
 - 8+ hours to run; problems with stability, code maintainability, and link quality
 - Successful as an experiment, but needed replacement for production

Splinkr 3

- All-new project started in late 2016, targeting Spark's DataFrame API
- Goal: Build a production-ready record linkage system, leveraging the lessons from Splinkr 2

Record Linkage in the Abstract

Varied and messy sources

Unify and standardize

Generate pairs

Score

Resolve transitive links

Standardizing the Incoming Data

	Full Name			ZIP		
Nick Chammas				02138	3	
	First Name	Last Name				ZIP
	Nicholas	Cl	han	nmas		02138-1516

First Name	Last Name	 ZIP	
Nick	Chammas	02138	
Nicholas	Chammas	02138	

- 330M records means (330M choose 2) ≈ 10¹⁶ possible pairs
- Need heuristic to quickly cut that 10¹⁶ down without losing many matches
- We accomplish this by extracting a "blocking key"
- We generate pairs only for records in the same block

- Example:
 - Record: John Roberts, 20 Main St, Plainville MA 01111
 - Blocking key: JR01111
- Will be paired with: Jonathan Ray ... 01111
- Won't be paired with: Frank Sinatra ... 07030

- Blocking as a crude model for predicting matches
 - We want a recall of 1.0
 - Don't care about precision
 - Drastically shrink search space
- Blocking cuts down generated pairs from 10¹⁶ to 10⁸

```
blocked_people = (
    people
    .withColumn(
        ' blocking key',
        blocking_key_udf('first_name', 'last_name', 'zip')
```

```
people_pairs = (
    blocked people.alias('p1')
    .join(
        blocked people.alias('p2'),
        on=' blocking key')
    .where(
        concat(col('p1.source_name'), col('p1.source_pk')) <</pre>
        concat(col('p2.source_name'), col('p2.source_pk'))
```

Identifying Matches

- Logistic regression model (<u>Spark ML Guide</u>)
- Trained on records where SSN was available
- Model features:
 - Phonetic equality on full name and city
 - String distance on full name, address, and city
 - Exact match on state and ZIP
- <u>Jellyfish</u>: Python library providing implementations of Metaphone, Jaro-Winkler, ...

Identifying Matches

First Name	Last Name	Address	 First Name	Last Name	Address	 Match?
John	Jones	64 Plain St	Jonathan	Jones	64 Plain Street Apt. A	V
John	Jones	64 Plain St	Jon	Jones	13 Washington Ave	×
John	Jones	64 Plain St	Janet	Jackson	22 Regency Blvd	×

Resolving Transitive Links

Resolving Transitive Links

Resolving Transitive Links

```
from graphframes import GraphFrame
graph = GraphFrame(vertices, edges)
connected_components = (graph.connectedComponents())
globally linked people = (
    connected components
    .select(
        col('component').alias('global id'),
        'person',
```

Splinkr 3 at Launch

- Cut runtime from 8+ hours (Splinkr 2) to 1.5 hours on same hardware
- Model performance better than previous in-house systems
- Code base easier to read thanks to declarative style of DataFrame API
- Less code weight by leveraging Spark and Python packages

Experiments with Neural Networks

- Prompted by idea shared during Riot Games talk at Spark Summit 2017
- Goals:
 - Handle edge cases better than logistic regression model
 - Simplify code while maintaining model performance

Experiments with Neural Networks

- Experimented with convolutional neural networks
- Model trained on raw text; no explicit features extracted
- Minor hacking required to integrate Keras model into Spark

Experiments with Neural Networks

- Results:
 - Marginal increase in accuracy; recall up, precision down
 - Neural network did not seem to learn anything not already captured by logistic regression
 - Code simplified at expense of interpretability, memory requirements, and run time

Biggest Hurdles in Building Splinkr 3

- Poor quality labels on our training data
 - SSN is not a great way to generate training pairs
 - Poor training data limited potential for linkage improvements
 - Manual cleanup helped, but turking or synthetic training data would have been better

Biggest Hurdles in Building Splinkr 3

- Bugs and API gaps working with Spark 2.0
 - Code generation bugs (<u>SPARK-18492</u>, <u>SPARK-18866</u>)
 - Optimizer problems related to UDFs (SPARK-18254, SPARK-18589)
 - GraphFrames Python 3 compatibility (graphframes#85)
 - GraphFrames correctness bug (graphframes#159)

Take-aways from Building Splinkr 3

- Spark makes building a scalable linkage pipeline approachable
- Declarative style of DataFrame API facilitates good design
- Access to Spark and Python ecosystems saves time (GraphFrames, Jellyfish)

Take-aways from Building Splinkr 3

- Good training data is critical and worth the upfront investment
- Good heuristics are often a better starting point than machine learning (<u>Google's ML Engineering</u> <u>Rule #1</u>)
- Building with cutting-edge tools (at the time, Spark 2.0) comes with risk

Building a Scalable Record Linkage System

with Apache Spark, Python 3, and Machine Learning

Nicholas Chammas and Eddie Pantridge MassMutual

#Py6SAIS