Tesis de doctorado

Jorge Alejandro Tarango Yong

31 de mayo de 2017

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

INSTITUTO DE RADIOASTRONOMÍA Y ASTROFÍSICA

"Estudio de la Interacción de Flujos Múltiples de Fuentes Astrofísicas, Aplicada a los Proplyds Clásicos de la Nebulosa de Orión"

 $T\,E\,S\,I\,S$

PARA OBTENER EL GRADO ACADÉMICO DE DOCTOR EN CIENCIAS (ASTRONOMÍA)

PRESENTA

JORGE ALEJANDRO TARANGO YONG

Director de Tesis: Dr. William J. Henney Morelia, Michoacán

2017

Índice general

1.	Obje	etos Astrofísicos Relevantes	9
	1.1.	La Nebulosa de Orión	10
	1.2.	Estrellas "Errantes"	10
	1.3.	Discos Protoplanetarios	10
	1.4.	Proplyds	10
	1.5.		10
		1.5.1. Mapa de Objetos	10
2.	Mar	rco Teórico	11
	2.1.	Vientos Estelares	12
	2.2.	Choques	12
	2.3.	Frentes de Ionización	12
	2.4.	Regiones HII	12
	2.5.	Modelo Genérico de los Choques de Proa	12
		2.5.1. Radios "Característicos"	12
	2.6.	Aproximación Hipersónica	15
	2.7.	Proyección en el Plano del Cielo	15
		2.7.1. Vectores normal y tangente a la superficie	15
		2.7.2. Línea tangente	17
		2.7.3. Radios característicos en el plano del cielo	19
	2.8.		19
		2.8.1. Radios Característicos	
		2.8.2. Proyección en el plano del cielo	
3.	Heri	ramientas de Programación	27

ÍNDICE GENERAL	ÍNDICE GENERAL	
4. The Work	29	
5. Resultados obtenidos	31	
6. Conclusiones	33	

Agradecimientos

Esta tesis se realizó para obtener el título de doctorado en ciencias (Astronomía).

Deseo aprovechar esta sección para hacer agradecimientos a personas y/o instituciones que me ayudaron para que pueda completar este trabajo de manera exitosa.

Resumen

Abstract en español

Abstract

Abstract written in english

Objetos Astrofísicos Relevantes

- 1.1. La Nebulosa de Orión
 - 1.2. Estrellas "Errantes"
- 1.3. Discos Protoplanetarios
 - 1.4. Proplyds
 - 1.5. Objetos LL
 - 1.5.1. Mapa de Objetos

Marco Teórico

2.1. Vientos Estelares

2.2. Choques

2.3. Frentes de Ionización

2.4. Regiones HII

Las regiones HII se forman cuando una estrella masiva, de tipo espectral O ó B temprana, ioniza el gas que se encuentra a su alrededor. El gas ionizado se encuentra en equilibrio térmico, a una temperatura del orden de $10^4~K$. El principal proceso de calentamiento es la radiación de la estrella central, mientras que el enfriamiento se da principalmente por la recombinación de líneas prohibidas y por emisión libre-libre.

2.5. Modelo Genérico de los Choques de Proa

Para este trabajo consideramos en general dos modelos de interacción de vientos:

- Una fuente localizada en el origen que emite un viento esférico que puede ser isotrópico o anisotrópico (figura 2.5) no acelerado que interactúa con el viento esférico isotrópico de otra fuente que se encuentra a una distancia *D* de la primera(figura 2.5)
- Una fuente localizada en el origen que emite un viento esférico isotrópico no acelerado que interactúa con un viento plano paralelo no acelerado y densidad constante (figura)

El sitema en su conjunto tiene simtería cilíndrica.

2.5.1. Radios "Característicos"

Las cantidades medibles que nos ayudan a caracterizar un choque de proa las llamamos "Radios característicos" (ilustrados en la figura 2.5.1):

 Radio del choque en la dirección del eje de simetría del sistema. Denotado como R₀

Figura 2.1: Representación esquemática de vientos con diferentes anisotropías: Arriba izquierda: Viento isotrópico esférico. Arriba derecha: viento isotrópico hemisférico. Abajo: Vientos anisotrópicos donde el parámetro k indica el grado de anisotropía (ver sección 2.6)

Figura 2.2: Representación esquemática de los radios característicos de un choque de proa

- Radio en dirección perpendicular al eje de simetría del sistema. Denotado como *R*₉₀
- lacktriangle Radio de curvatura en la "nariz" del choque de proa. Denotado como R_c
- . Para este trabajo resulta útil hacer una noramlización de los radios característicos u otros radios, para que las mediciones que obtengamos sean adimensionales. De esta forma, podemos hacer la normalización con la distancia D, o bien con R_0 , dependiendo de qué tipo de normalización resulte más conveniente. En el primer caso expresamos explícitamente el cociente (e.g. $\frac{R_0}{D}$, $\frac{R_c}{D}$, $\frac{R_{90}}{D}$), y en el segundo caso añadiremos una tilde al radio en cuestión (e.g \tilde{R}_c , \tilde{R}_{90}).

2.6. Aproximación Hipersónica

2.7. Proyección en el Plano del Cielo

Para un choque de proa que es la vez geométricamente delgado y ópticamente delgado, únicamente se observa el borde de éste por abrillantamiento al limbo, por lo tanto, sua orientación respecto a la línea de visión modifica su forma respecto a la forma real del choque. Para ello, rotamos el sistema de referencia del choque de proa en coordenadas cartesianas, denotado por (x, y, z), por un ángulo que llamamos *inclinación*, denotado por i, en el plano xz, de modo que la transformación entre el sistema de refencia del choque y el sistema de referencia del plano del cielo, denotado por (x', y', z') queda como sigue:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \cos i - z \sin i \\ y' \\ z \cos i + x \sin i \end{pmatrix}$$
 (2.1)

Por otro lado, la forma tridimensional del choque de proa viene dado por:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = R(\theta) \begin{pmatrix} \cos \theta \\ \sin \theta \cos \phi \\ \sin \theta \sin \phi \end{pmatrix}$$
 (2.2)

La relación entre ambos sistemas de referencia se ilustra en la figura 2.7.

2.7.1. Vectores normal y tangente a la superficie

Si definimos los vectores \hat{n} y \hat{t} , como los vectores normal y tangente a la superficie, respectivamente para ϕ constante. En el caso $\phi = 0$ (figura 2.7.1), ambos vectores se encuentran en el plano xy y es fácil mostrar que:

$$\hat{t}_0 = \begin{pmatrix} -\cos\alpha \\ \sin\alpha \\ 0 \end{pmatrix} \quad \text{y} \quad \hat{n}_0 = \begin{pmatrix} \sin\alpha \\ \cos\alpha \\ 0 \end{pmatrix}$$
 (2.3)

Figura 2.3: Sistema de referencia del choque vs sistema de referencia del plano del cielo. Los ejes x' y y' se encuentran en el plano del cielo, mientras el eje z' es paralelo a la línea de visión. Solo la región del choque cuya tangente sea paralela a la línea de visión será visible por abrillantamiento al limbo.

Donde:

$$\tan \alpha = -\frac{dy}{dx} = \frac{1 + \omega \tan \theta}{\tan \theta - \omega}$$
 (2.4)
y:

$$\omega(\theta) = -\frac{1}{R} \frac{dR}{d\theta} \tag{2.5}$$

Para otros valores de ϕ , basta con hacer una rotación de las ecuaciones (2.3) alrededor del eje x. Para la conversión al sistema de referencia del plano del cielo se utiliza la ecuación (2.1):

$$\hat{n}' = \frac{1}{(1+\omega^2)^{1/2}} \tag{2.6}$$

$$\times \begin{pmatrix} (\cos \theta + \omega \sin \theta) \cos i - (\sin \theta - \omega \cos \theta) \sin i \sin \phi \\ (\sin \theta - \omega \cos \theta) \cos \phi \\ (\cos \theta + \omega \sin \theta) \sin i + (\sin \theta - \omega \cos \theta) \sin \phi \cos i \end{pmatrix}$$
(2.7)

$$\hat{t}' = \frac{1}{(1+\omega^2)^{1/2}} \tag{2.8}$$

$$\times \begin{pmatrix} -(\sin\theta - \omega\cos\theta)\cos i - (\cos\theta + \omega\sin\theta)\sin i\sin\phi \\ (\cos\theta + \omega\sin\theta)\cos\phi \\ -(\cos\theta + \omega\sin\theta)\sin i + (\sin\theta - \omega\cos\theta)\sin\phi\cos i \end{pmatrix}$$
(2.9)

2.7.2. Línea tangente

Debido a que el choque es ópticamente delgado y geométricamente delgado, solo la región del choque cuya tangente sea paralela a la línea de visión será visible. Esto corresponde a una curva que denominamos *línea tangente*, que debe cumplir con la siguiente condición:

$$\hat{n}' \cdot \hat{z}' = 0 \tag{2.10}$$

Denotamos como ϕ_T al ángulo azimutal que cumple la condición anterior para una inclinación dada, en función del ángulo polar θ :

$$\sin \phi_T = \tan i \tan \alpha = \tan i \frac{1 + \omega \tan \theta}{\omega - \tan \theta}$$
 (2.11)

Figura 2.4: Vectores unitarios normal y tangente a la superficie $R(\theta)$ en un plano de azimuth ϕ constante.

De esta manera, la forma de la línea tangente del choque de proa, a la que llamamos *forma proyectada* viene dada por:

$$\begin{pmatrix} x_T' \\ y_T' \\ z_T' \end{pmatrix} = R(\theta) \begin{pmatrix} \cos \theta \cos i - \sin \theta \sin \phi_t \sin i \\ \sin \theta \left(1 - \sin^2 \phi_T \right)^{1/2} \\ \cos \theta \sin i + \sin \theta \sin \phi_T \cos i \end{pmatrix}$$
(2.12)

En el caso general, z_T' no es una función lineal de x_t' y y_T' , por lo que la línea tangente no se encuentra en un plano.

La forma aparente (x'_t, y'_T) de la línea tangente también puede escribirse en coordenadas polares (R', θ') , donde:

$$R'(\theta) = (x_t'^2 + y_T'^2)^{1/2} y$$
 $\tan \theta' = \frac{y_T'}{x_T'}$ (2.13)

Es de notar a su vez que la ecuación (2.11) no tiene solución para valores arbitrarios de θ y de la inclinación, puesto que se requiere que $|\sin \phi_T| < 1$. Por

tanto, la línea tangente solo existe para valores de θ tales que $\theta < \theta_0$ donde θ_0 es el valor de θ en el eje de simetría de la línea tangente proyectada $(\theta'(\theta_0)) = 0$ y que se obtiene de la siguiente ecuación implícita:

$$\tan \theta_0 = \frac{|\tan i| + \omega(\theta_0)}{1 - \omega(\theta_0)|\tan i|}$$
 (2.14)

Esto implica que si el choque de proa es suficientemente "abierto" ($\alpha > \alpha_{min}$), entonces para inclinaciones tales que $|i| > 90^{\circ} - \alpha_{min}$ no existirá la línea tangente para ningún valor de θ , es decir, el choque de proa se encontrará sufientemente "de cara" como para que ya no parezca un chouque de proa para el observador.

2.7.3. Radios característicos en el plano del cielo

En orden de comparar la forma $R(\theta)$ con observaciones, es útil definir los radios característicos R_0' y R_{90}' , donde R_0' es el radio del eje de simetría aparente y R_{90}' es el radio aparente en la dirección perpendicular a R_0' . Es decir $R_0' = x_T'(y_t' = 0)$ y $R_{90}' = y_t'(x_t' = 0)$. Utilizando las ecuaciones (2.11) y (2.12)

$$R'_0 = x'_T(y'_t = 0)$$
 y $R'_{90} = y'_t(x'_t = 0)$. Utilizando las ecuaciones (2.11) y (2.12) encontramos que:

$$R_0' = R(\theta_0)\cos(\theta_0 + i) \tag{2.15}$$

Donde θ_0 es la solución de la ecuación (2.14), y

$$R'_{90} = R(\theta_{90}) \sin \theta_{90} \left(1 - \sin^2 \phi_T(\theta_{90}) \right)^{1/2}$$
 (2.16)

donde θ_{90} es la solución de la siguiente ecuación implícita:

$$\cot \theta_{90} = \frac{1 - \left(1 + \omega(\theta_{90})^2 \sin^2 2i\right)^{1/2}}{2\omega(\theta_{90}) \cos^2 i}$$
(2.17)

2.8. Cuádricas de Revolución

En el caso general es difícil encontrar la forma aparente para un choque de proa siguiendo el formalismo desarrollado en la sección anterior, por lo que optamos por aproximar la forma éstos con una de las superficies más simples: las *cuádricas de revolución*, que son superficies de revolución de las curvas cónicas.

Dado el modelo general descrito en la sección 2.5, haremos algunas restricciones para las superficies cuádricas que utilizaremos en este trabajo:

- El eje focal se encuentra alineado con el eje *x*
- La posición del foco de la superficie cuádrica no necesariamente coincide con la posición de la fuente
- En el caso de las hipérbolas, solo tomamos una de las ramas de ésta.

Implementando dichas restricciones, utilizamos la representación paramétrica de las curvas cónicas en términos de un parámetro adimensional denotado con la letra *t* de manera general:

$$x = aC(t) + x_0 \tag{2.18}$$

$$y = bS(t) \tag{2.19}$$

Donde:

$$C(t) = \begin{cases} \cos t & \theta_c > 0\\ -\cosh t & \theta_c < 0 \end{cases}$$
 (2.20)

$$S(t) = \begin{cases} \sin t & \theta_c > 0\\ \sinh t & \theta_c < 0 \end{cases}$$
 (2.21)

$$x_0 = R_0 \mp a \tag{2.22}$$

Donde a y b representan la longitud del semi-eje mayor y menor, respectivamente (Figura 2.8). x_0 representa la distancia entre el centro de la cónica y el origen. θ_c es un parámetro que está relacionado con la excentricidad y que en este trabajo sustituye a ésta y que están relacionadas por la siguiente expresión:

$$\tan \theta_c = \pm \sqrt{|1 - e^2|} \tag{2.23}$$

Tomamos el signo positivo cuando la cantidad dentro de las barras de valor absoluto es positiva y viceversa (Figura 2.8). También podemos definirlo en términos de los parámetros de las cónicas:

$$\tan \theta_c = \pm \frac{b}{a} \tag{2.24}$$

Siguiendo la convención de que el signo positivo corresponde a elipses, negativo a hipérbolas y cero para las parábolas.

Figura 2.5: Representación esquemática de: Izquierda: Elipse. Y, derecha: Hipérbola. En ambos casos se ilustran los parámetros relevantes de éstas y los radios característicos

Figura 2.6: Familia de curvas cónicas, donde el valor del parámetro θ_c varía desde $\theta_c < 0$ (hipérbolas) hasta $\theta_c > 0$ (elipses). Casos especiales son $\theta_c = 0$ (parábola) y $\theta_c = 45^\circ$ (círculo). Este parámetro sustituye en este trabajo a la excentricidad.

2.8.1. Radios Característicos

Para que las curvas cónicas den una buena aproximación a la forma de un choque de proa dado, necesitamos saber calcular los radios característicos para éstas. A partir de la descripción de estos en la sección 2.5.1 podemos encontrar expresiones para cada uno de éstos en términos de los parámetros de las cónicas:

$$R_c = \frac{b^2}{a} \tag{2.25}$$

$$R_{90} = b \left[\pm \left(1 - \frac{(R_0 - a)^2}{a^2} \right) \right]^{1/2}$$
 (2.26)

 R_0 es independiente de los parámetros de las cónicas, por tanto, en esta sección nos será útil normalizar con este radio. De esta forma, podemos invertir las siguientes ecuaciones:

$$\tilde{a} = \pm \frac{\tilde{R}_c}{2\tilde{R}_c - \tilde{R}_{00}^2} \tag{2.27}$$

$$\tilde{b} = \frac{\tilde{R}_c}{\left| 2\tilde{R}_c - \tilde{R}_{90}^2 \right|^{1/2}} \tag{2.28}$$

$$\tan \theta_c = \pm \left| 2\tilde{R}_c - \tilde{R}_{90}^2 \right|^{1/2} \tag{2.29}$$

Nótese que la cantidad $T_c \equiv 2\tilde{R}_c - \tilde{R}_{90}^2$ nos sirve como discriminante para distinguir el tipo de curva cónica que mejor ajusta a un choque de proa dado.

2.8.2. Proyección en el plano del cielo

El objetivo de esta sección es obtener la forma proyectada de las cuádricas de revolución, puesto que son una aproximación buena y mucho más sencilla a la forma real de un choque de proa. La forma tridimensional de las cuádricas de revolución viene dada por:

$$x = aC(t) - x_0 \tag{2.30}$$

$$y = bS(t)\cos\phi \tag{2.31}$$

$$z = bS(t)\sin\phi \tag{2.32}$$

Siguiendo el procedimiento mostrado en la sección 2.7 calculamos el ángulo azimutal ϕ que cumple con el criterio de ser tangente al la línea de visión:

$$\sin \phi_T = -\frac{b}{a} \tan i \mathcal{T}(t) \tag{2.33}$$

Donde:

$$\mathcal{T}(t) = \begin{cases} \cot t & \text{if } \theta_c > 0\\ \coth t & \text{if } \theta_c < 0 \end{cases}$$
 (2.34)

Podemos movernos a otro sistema de referencia (X, Y) centrado en el origen, donde $X = x - x_0$ y Y = y. En este sistema, utilizamos la ecuación (2.1) para obtener la forma aperente de una cuádrica dada:

$$X'_{T} = \frac{C(t)}{a\cos i} \left(a^{2}\cos^{2}i \pm b^{2}\sin^{2}i \right)$$
 (2.35)

$$Y_T' = bS(t) \left(1 - \frac{b^2}{a^2} \tan^2 i \mathcal{T}^2(t) \right)^{1/2}$$
 (2.36)

Se espera que la forma proyectada de una cuádrica dada sea otra cuárica del mismo tipo, por lo que es posible escribir las ecuaciones (2.35) y (2.36) de la siguiente manera:

$$X_T' = a'C(t') \tag{2.37}$$

$$Y_T' = b'S(t') \tag{2.38}$$

Donde:

$$a' = \left(a^2 \cos^2 i \pm 2 \sin^2 i\right)^{1/2} \tag{2.39}$$

$$b' = b \tag{2.40}$$

$$C(t') = \frac{a'C(t)}{a\cos i} \tag{2.41}$$

$$S(t') = (1 - C^{2}(t'))^{1/2}$$
(2.42)

También implica que para encontrar los radios característicos en el sistema de referencia del observador solamente tenemos que sustituir a y b por a' y b' en las ecuaciones (2.22), (2.25), (2.26) y (2.24):

$$R_0' = \pm a' + x_0 \cos i \tag{2.43}$$

$$R_c' = \frac{b'^2}{a'} {(2.44)}$$

$$\tan \theta_c' = \frac{b'}{a'} \tag{2.45}$$

$$R'_{90} = \left(2R'_c \mp \tan^2 \theta'_c\right)^{1/2} \tag{2.46}$$

Utilizando las ecuaciones (2.22), (2.39) y (2.40), utilizando la definición $D' = D\cos i$ e introduciendo la función $f(i;\theta_c) \equiv \left(1 \pm \tan^2\theta_c \tan^2i\right)^{1/2}$ obtenemos ecuaciones explícitas para los radios característicos en el sistema de referencia del plano del cielo en términos de la inclinación:

$$\frac{q'}{q} = 1 \pm \tilde{R}_c \cot^2 \theta_c \left(f(i; \theta_c) - 1 \right) \tag{2.47}$$

$$\tilde{R}'_c = \frac{\tilde{R}_c}{\cos^2 i f(i; \theta_c) \frac{q'}{a}}$$
(2.48)

$$\tan \theta_c' = \frac{\tan \theta_c}{\cos i f(i; \theta_c)} \tag{2.49}$$

$$\tilde{R}'_{90} = \left(\frac{2\tilde{R}_c f(i; \theta_c) \mp \tan^2 \theta_c \frac{q'}{q}}{q'/q}\right)^{1/2} \frac{\sec i}{f(i; \theta_c)}$$
(2.50)

Cuando \tilde{R}'_{90} es medible, entonces es posible hacer diagramas de diagnóstico como el de la figura 2.8.2 para comparar con observaciones, independientemente de cualquier modelo de choques de proa.

Buscamos adjuntar el paper "quadrics bowshock"

Figura 2.7: Diagrama de diagnóstico \tilde{R}'_{90} vs \tilde{R}'_c para las cuádricas de revolución. En la región sin sombrear se representan las superficies abiertas (hiperboloides, $\theta_c < 0$), mientras que la región más oscura representa a elipsoides prolatos $(0 < \theta_c < 45^\circ)$ y la región poco sombreada a elipsoides oblatos $(\theta_c > 45^\circ)$

Herramientas de Programación

CAPÍTULO 3. HERRAMIENTAS DE PROGRAMACIÓN

This is chapter 3

The Work

This is chapter 4

Resultados obtenidos

This is chapter 5

Conclusiones

This is chapter 6