

Search kaggle

Competitions Datasets Kernels

Discussion Jobs

Observing Dark Worlds

Can you find the Dark Matter that dominates our Universe? Winton Capital offers you the chance to unlock the secrets of dark worlds.

\$20,000 · 353 teams · 5 years ago

Competition Data		Edit
⊞ Gridded_Signal_bench ⊞ lenstool.benchmark.c ⊞ Maximum_likelihood_B	Train_Skies.zip 2.9 MB Leaderboard Rules	å Download
■ Training_halos.csv		
DarkWorldsMetric.py		
Gridded_Signal_bench		
Maximum_likelihood_B		
Random_Benchmark.py		
Test_Skies.7z		
Test_Skies.tar		
Test_Skies.zip		
Train_Skies.7z		
Train_Skies.tar		
Train_Skies.zip		

Data Description

Training Data

The training data consists of 300 simulated skies similar to the final panel in Figure 2 of the description page. Each sky contains between 300 and 740 galaxies. Each galaxy will have an x and y position ranging from 0 to 4200 (units are pixels), and a measure of ellipticity: e1 and e2 (see An Introduction to Ellipticity).

Training galaxy data is provided in a series of 300 files, one file for each Sky (e.g., Training Sky27.csv or Training Sky123.csv). These files have 4 columns:

- · galaxy id
- x-coordinate
- v-coordinate
- e1
- e2

Dark matter halo locations in each sky are provided in the file Training halos.csv. This file contains 10 columns, namely:

- Sky Id
- number of halos (1, 2 or 3)
- reference x-coordinate (used for evalulation metric)
- reference y-coordinate (used for evalulation metric)
- x-coordinate halo 1
- y-coordinate halo 1
- x-coordinate halo 2
- y-coordinate halo 2
- x-coordinate halo 3
- y-coordinate halo 3

In the case of only two or one halo present there will be zeros in the column.

Test Data

The test data is in a similar format to the training data. There are 120 simulated skies (see final panel in Figure 2 of the description). Each sky contains 300 to 740 galaxies. Each galaxy will have an x and y position ranging from 0 to 4200, e1 and e2 values (totalling 4 columns per galaxy in the sky).

In each sky there are either 1, 2 or 3 dark matter halos. The halo counts in each sky are provided in the file Test_haloCounts.csv.

The challenge is to predict the center of each dark matter halo in each test sky based on the galaxy information provided.

© 2017 Kaggle Inc

Our Team Terms Privacy Contact/Support

