Logical Approach in Software and Data Design

Evgeny Cherkashin

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk, Russia eugeneai@icc.ru

2023, December, Yantai, China

Model-Driven Architecture: Research objectives

Main objective of the research is to construct a MDA technology based on nowadays system modeling visual languages (SysML, UML, BPMN, CMMN) and existing Semantic Web **vocabularies** and **technologies**. The following techniques and software are under development:

- 1. CIM representation with SysML, BPMN, CMMN, and results of source code processing,
- 2. CIM, PIM, PSM representation in UML, RDF with existing vocabularies,
- 3. transformation implementation with logical language Logtalk,
- 4. usage of LOD sources in transformations for obtaining additional semantic data,
- 5. generation of documents and user interfaces with LOD markup.

Model-Driven Architecture

MDA Model-Driven Architecture;

CIM Computationally Independent Model;

CM Model of Computations;

PIM Platform Independent Model;

PM Platform Model;

PSM Platform-Specific Model;

CODE Source code of software;

DATA Initial database state.

Logtalk as transformation definition language

We have chosen Logtalk as it

- inherits widely known Prolog language syntax and runtime;
- is implemented as macro package, performance penalties are about 1.5%;
- has flexible semantics: we can define transformations and constraints within the same syntax;
- implement object-oriented knowledge (rules) structuring, encapsulation and replacement;
- compositional way of transformation implementation;
- powerful engine to post constraints on object-to-object messages (events);
- has implementation for various Prolog engines.

The «regular» language allow us to use its libraries not directly related to MDA transformations.

Linked Open Data, LOD

- 1. Information is published in Internet with open access license;
- 2. It is represented in a machine-readable form, e.g., Excel table instead of a bitmap picture;
- 3. An open format used, e.g., CSV instead of Excel;
- 4. The format is based on W₃C recommended standards, allowing RDF and SPARQL reference;
- 5. Published data refer to objects, forming context.

Thus, applications publish data as relations of objects (entities).

Model Driven Architecture and Linked Open Data

MDA infrastructure

Architecture of transformation modules

PSM: Scenario of a Class synthesis

```
:- object(direct(_Package,_LocalProf,_CodeProf)).
                                                     % Transformation driver object
:- public([tr/4.tr/3]).
                                                     % Public interface of a class synthesis scenario
* . . . . . . . . . . .
tr(class, Class, ClassID):- ::package(Package).
                                                     % Synthesize a class
                                                                                          scenario (tr/2) class
    query(Package)::class(Name, ClassID).
                                                     % Ouerv package structure in XMI
                                                     % Create a «Class» object
    create_object(Class,
                             % . . . . .
                                                                                                                attributes
                                                     % Create «Attributes» objequery(rdf)
    create_object(Attributes, % . . . . .
    create_object(Methods,
                             % . . . . .
                                                     % ... «Methods».
                                                                                  XMI
    Class::name(Name).
                                                     % Name the class.
    % Generate attributes of the class,
                                                                                  RDF
    % organizing them in a local database.
    % ...methods...
    Class::attributes(Attributes),
                                                                                                                methods
                                                     % Set the attributes for class.
    Class::methods(Methods).
                                                     % ...methods.
tr(attribute, Attribute, ClassID, AttributeID):-
                                                     % Attribute transformations
    ::package(Package),
    query(Package)::attribute(Name,ClassID,AttrID),
    create_object(Attribute, % . . . . .
    Attribute::name(Name).
                                                     % Name the attribute.
                                                                                                           code block
tr(method, Method, ClassID, MethodID):-
                                                     % Transformation of methods
                                                                                             render/1
    ::package(Package),
    query(Package)::method(Name,ClassID,MethodID),
    create object(Method.
                            8 . . . . .
    Method::name(Name).
                                                     % Name of the method
:- end object.
```

Implementation of Query object

```
:- object(query( XMI)).
:- protected(xmi/1).
:- public([class/2, attribute/3, method/3]).
xmi(XMI) :- parameter(1, XMI).
class(Name, ID):-
                                            % Recognition of Class in RDF
    ::xmi(XMI).
   XMI::rdf(ID,rdf:type,uml:'Class'),
   XMI::rdf(ID,rdfs:label, literal(Name)).
attribute(Name, ClassID, ID):-
                                            % ...attribute...
    ::xmi(XMI),
   XMI::rdf(ClassID, xmi:ownedAttribute, ID),
   XMI::rdf(ID. rdfs:label. literal(Name)).
method(Name, ClassID, ID):-
                                            % ...method...
    ::xmi(XMI),
   XMI::rdf(ClassID, xmi:ownedOperation, ID),
   XMI::rdf(ID, rdfs:label, literal(Name)).
:- end object.
```

Code Block (idea is taken from llvmlite*)

```
:- object(code block, specializes(root)).
% Public interface of the object
:- public([append/1, prepend/1, clear/0,
   render/1, render to/1, remove/1,
   item/1, items/1]).
% Code block items
:- dynamic([item /1]).
:- private([item_/1]).
% Methods specialized during inheritance
:- protected([renderitem/2, render to/2]).
% . . . . . . . . . . . . .
% Delegate rendering to object itself
renderitem(Object, String):-
    current object(Object), !,
    Object::render(String).
% Convert a literal to its string
% representation
renderitem(literal(Item), String):-!,
    atom_string(Item, String).
% Just print the item (debugging).
renderitem(Item, String):-
    root::iswritef(String, '%q', [Item]).
:- end_object.
```


*) https://github.com/ numba/llvmlite

PSM of a Python Class as a specialization of Code Block

```
:- object(class, specializes(code block),
  imports([named])). % Category of named entities
:- public([classlist/1, methods/1, attributes/1]).
                                                                 render/1
renderitem(Item, Result):- % proceed with default
   ^^renderitem(Item, Result). % rendering
                                                        name
render(Result):-
                % Source generator
   ^^render(Name), % implemented in a category
   ( ::item(classlist(List)) ->
                                                        attributes
    % . . . . . . . . . . . .
       [Name])),
   ( ::item(attributes(Attributes))->
    % . . . . . . . . . . . .
       [DefAttrList]),
     Attributes::items(InstanceAttrs),
     findall(S, ( % initialize attributes
        % . . . . . . . . .
                                                        methods
        ). AttrAssigns).
       root::unindent,
       AttrList=[ConstructorDef|AttrAssigns];
        % . . . . . . . . . .
       AttrList=[ConstructorDef, Pass]),
   (::item(methods(Methods))-> % If anv ...
     Methods::render(MethodList);
     MethodList=[] ),
   lists::append(AttrList, MethodList, StringList),
   root::unindent. Result=[Signature|StringList].
```

:- end object.

Applications: Dataflow representation of NGS analysis of amplicons

Term	Description
NGS	New Generation
	Sequencing
Amplicon	A DNA or RNA part
	copied many times
Mothur	A software toolset for
	NGS research
Rapidminer	A visual tool for
	data mining modeling
	and execution

Green blocks are Mothur modules. Others are Rapidminer modules.

Rapidminer module

```
vector<string> AlignCommand::setParameters(){ // PART OF MODULE SOURCE
trv (
  CommandParameter ptemplate("reference", "InputTypes", "", "", "none", "none", "none", "false, true, true); parameters.push_back
  CommandParameter pcandidate("fasta", "InputTypes", "", "", "none", "none", "fasta-alignreport-accnos", false, true, true);
  CommandParameter psearch("search", "Multiple", "kmer-blast-suffix", "kmer", "", "", ", false, false, true); parameters, push b
  CommandParameter pksize("ksize", "Number", "", "8", "", "", "", "", false, false); parameters.push_back(pksize);
  CommandParameter pmatch("match", "Number", "", "1.0", "", "", "", "", false, false); parameters.push_back(pmatch);
package com.rapidminer.ngs.operator; // GENERATED JAVA MODULE
// imports
class MothurChimeraCcodeOperator extends MothurGeneratedOperator {
  private InputPort fastaInPort = getInputPorts().createPort("fasta"):
  private InputPort referenceInPort = getInputPorts().createPort("reference"):
  private OutputPort chimeraOutPort = getOutputPorts().createPort("chimera");
  private OutputPort mapinfoOutPort = getOutputPorts().createPort("mapinfo");
  private OutputPort accnosOutPort = getOutputPorts().createPort("accnos");
  public MothurChimeraCcodeOperator (OperatorDescription description) {
    super(description):
  anverride
  public void doWork() throws OperatorException {
    super():
  anverride.
  public List<ParameterType> getParameterTypes() {
    super();
  a0verride
  public String getOutputPattern(String type) {
    if (type=="chimera") return "[filename],[tag],ccode.chimeras-[filename],ccode.chimeras";
    if (type=="mapinfo") return "[filename], mapinfo";
    if (type=="accnos") return "[filename],[tag],ccode.accnos-[filename],ccode.accnos";
    return super.getOutputPattern(type);
  }
```

RDF (TTL) representation and ad its query object

```
aprefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
ngsp:spec a ngsp:Specification;
    ngsp:module mothur:NoCommand,
        mothur:align-check.
        mothur:align-seqs.
# . . . . .
mothur:align-check a ngsp:Module ;
    ngsp:outputPattern [ a cnt:Chars ;
            ngsp:parameterName "type" ;
            ngsp:pattern [ ngsp:patternString
                    "[filename],align.check":
                    dc:identifier "aligncheck" ];
            cnt:chars # . . . .
# . . . . .
mothur:align-check-idir-parameter a ngsp:Parameter;
    ngsp:important false :
    ngsp:multipleSelectionAllowed false;
    ngsp:optionsDefault "";
    ngsp:required false :
    ngsp:type mothur:String :
    dc:title "inputdir" .
mothur:align-check-map-parameter a ngsp:Parameter :
    ngsp:important true :
    ngsp:multipleSelectionAllowed false :
    ngsp:optionsDefault "" :
    ngsp:required true :
    ngsp:tvpe mothur:InputTvpes :
    dc:title "map" .
mothur:align-check-name-parameter a ngsp:Parameter :
    ngsp:chooseOnlvOneGroup "namecount":
    ngsp:important false:
    ngsp:multipleSelectionAllowed false :
:- object(queryparam( RDF, Parameter).
```

```
extends(ngsquerybase)).
:- public(type/1).
type(Type) :-
    ::attr(type, Type).
:- public(name/1).
name(Name) :- ::attr(dc:title, literal(Name)).
:- public(options/1).
options(Value):- ::attr(options, Value).
:- public(options default/1).
options default(Value):-
    ::attr(optionsDefault, Value).
% . . . . . . . . .
:- public(multiple selection allowed/o).
multiple selection allowed:-
    ::bool attr(multipleSelectionAllowed).
:- public(required/o).
required:-
    ::bool attr(required).
:- public(important/e).
important:-
    ::bool attr(important).
:- protected(attr/2).
attr(NS:Name, Value):-
    ::ngs(RDF).
    ::second(Parameter).
    rdf db::rdf global object(Value, V).
    RDF::rdf(Parameter, NS:Name, V).
attr(Name, Value):-
    \+ Name= : .!.
    ::ngs(RDF).
    ::second(Parameter).
    rdf db::rdf global id(Value, V).
    RDF::rdf(Parameter, ngsp:Name, V).
% . . . . .
:- end object.
```

Discussion

Interesting positive impressions obtained:

- Logtalk and RDF are flexible, sufficiently universal and convenient implementation infrastructures for MDA;
- The best implemenation means is Prolog predicate wrapping and Logtalk object encapsulation of rules;
- Not all Logtalk properties are investigated: there might be more sophisticated programming techniques developed, e.g., on the base of message watchers.

Technical problems making the approach somewhat problematic:

- Very simple tasks take too much efforts, *e.g.*, text processing: convert an identifier into the CamelCase;
- □ It takes too long to surf Internet in order to find a vocabulary for a domain, but it is more productive than development;
- Prolog is not a popular language in MDA, neither Logtalk.

Document authoring and storage

In most cases documents are created as a result of

- creative activity of a person with a text processors (authoring);
- printing a digital copy or a data record in a database;
- aggregation operation over database records (report).

Then it is stored either as a physical paper and/or a digital document (PDF, DOCX, HTML).

Since 2000-th, Semantic Web and Linked Open Data (LOD) is being developed, allowing

- structural storage of data within published documents;
- processing stored data computationally;
- integration of data structures and data objects globally.

The **aim of this research** is to develop technologies, software and services allowing construction of digital archives supporting document data inclusion and inference from existing documents.

Structure of a document

Open Annotaiton (oa)

Representation

```
<html lang="ru" xmlns=http://www.w3.org/1999/xhtml</pre>
xmlns:taa =http://irnok.net/engine/rdfa-manipulation
xml:lang="ru" metal:define-macro="page">
<head> . . . </head>
<body prefix="rdf: http://www.w3.org/1999/...-ns# foaf: http://xmlns.com/foaf/...</pre>
imei: imei.html# course: https://irnok.net/college/plan/01..16-...\
%Do\%BA PB-SM.plm.xml.xlsx-....2.3.1.html#" resource="#post"
typeof="schema:CreativeWork sioc:Post prov:Entity">
<!-- The application control panel -->
<main lang="ru" resource="#annotation" typeof="oa:Annotation" id="main-doc-cnt">
<div property="oa:hasTarget" resource="#course-work-prog"></div>
<article property="oa:hasBody" typeof="foaf:Document curr:WorkingProgram"</pre>
         resource="#course-work-program" id="main-document">
  <div taa:content ="imei:title-page"></div>
  <div taa:content ="imei:neg-UMK"></div>
  <section id="TOC" class="break-after"> <h2>Table of Contents</h2>
    <div id="tableOfContents"></div>
  </section>
  <section id="course-description" resource="#description"</pre>
           property="schema:hasPart" typeof="schema:CreativeWork">
    <div property="schema:hasPart" resource="#purpose"</pre>
         typeof="dc:Text cnt:ContentAsText" >
      <div property="cnt:chars" datatype="xsd:string">
        <h2 property="dc:title" datatype="xsd:string">
           Aims and objectives of the discipline (module)</h2>
        The aim of teaching the discipline ...
      </div>
   </div>
```

Architecture

Generated list of title page preambles

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Институт математики экономики и информатики

Кафедра информационных технологий

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕЛЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Институт математики экономики и информатики

Кафедра алгебраических и информационных систем

УТВЕРЖДАЮ

Generated part of a study program

Учебный план специальности 01.03.02 Прикладная математика и информатика

1. Общие сведения учебного плана

Сведения по Учебному плану

Профиль подготовки: Математическое и компьютерное моделирование в технике и экономике, методы принятия решений

Сведения о кафедре, разработавшей Учебный план

Кафедра: Математического анализа и дифференциальных уравнений, Факультет: ИМЭИ.

Сведения о специальности

Квалификация: Бакалавр

Форма обучения: очная

Программа подготовки: прикладн. бакалавриат

Руководители

Проректор по учебной работе: Не распознан

Начальник УМУ: А.И. Вокин

Директор: М.В. Фалалеев

2. Список компетенций

Дисциплина: Б1.В.ДВ.3.1. Технологии программирования

- способность приобретать новые научные и профессиональные знания, используя современные образовательные и информационные технологии (ОПК-2)
- способность критически переосмысливать накопленный опыт, изменять при необходимости вид
 - и характер своей профессиональной деятельности (ПК-3)
- способность к разработке и применению алгоритмических и программных решений в области системного и прикладного программного обеспечения (ПК-7)

3. Список курсов специальности

• Б1.Б.3 «Философия»

Imported time distribution for lecture, seminary, ...

загрузке,

Объем дисциплины (модуля) и виды учебной работы (разделяется по формам обучения)

	Всего часов /	Семестры	
Вид учебной работы	зачетных единиц	3	4
Аудиторные занятия (всего)	108	33	75
в том числе:			
Лекции	36		36
Практические занятия (ПЗ)			
Семинары (С)			
Лабораторные работы (ЛР)	66	30	36
KCP	6	3	3
Самостоятельная работа (всего)	45	39	6

методиками экстремального и agile-программирования.

Complete document

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Институт математики экономики и информатики

Кафедра информационных технологий

УТВЕРЖДАЮ

Дирсктор ИМЭИ

" " 20 г.

Рабочая программа дисциплины (модуля) Б1.В.ДВ.З.1. Технологии программирования

Направление подготовки:	10.03.01 (090900) Информационная безопасность
Направленность (профиль)	- общий
Квалификация (степень) выпускника	- бакалавр
Форма обучения	- венго

Согласовано с УМК факультета (института)	Рекомендовано кафедрой:		
Протовол №от ""20г.	Протожал №от "20г.		
Председатель (подявъ)	Зав. кафедрой (ф.н.о.)		

одержание

- 1. Цели и задачи дисциплины (модуля)
- 2. Место дисциплины в структуре ОПОП
- 3. Требования к результатам освоения дисциплины (модуля)
- 4. Объем дисциплины (модуля) и виды учебной работы (разделяется по формам обучения)
- 5. Содержание дисциплины (модуля)
- 6. Перечень семинарских, практических занятий и лабораторных работ
- 7. Примерная тематика курсовых работ (проектов)
- 8. Учебно-методическое и информационное обеспечение дисциплины (модуля)
- 9. Материально-техническое обеспечение дисциплины (модуля)
- 10. Образовательные технологии
- 11. Оценочные средства (ОС)

1. Цели и задачи дисциплины (модуля)

Целю преподавания дисципливы «Технологии программирования» является освоение студентами практических вывыков в области разработки программирого обеспечения на основе современных подходов к проектированию сложных, гетерогенных, распредсенных информационных систем. Развитие навыков системного машления, необходимого для

Used ontologies

- Friend-of-a-friend (foaf) agent information: individuals, legal entities, program agents.
- ☐ Provenance (**prov**) references between documents.
- Dublin Core (dc) edited annotation mark up.
- □ DBPedia resource (**dbr**) references to instant objects and classes.
- Schema.org (schema) Google, Yandex, Yahoo, etc. searchable objects, structural elements.
- □ The Bibliographic Ontology (**bibo**) literature reference mark up.

Conclusion

A tools (components) for digital archive implementation, which allows to device information systems and document processing services with the following features:

- load LOD marked up document, extract, store in a graph and index RDF data;
- retrieve RDF data as triples or as a result of full-text search query;
- combine existing LOD data and its content in new documents dynamically with browser based context inference machine;
- use server-site inference machine (Prolog) to process RDF data upon request from browser's part of the system;
- convert created RDFa marked up HTML5 documents into Excel and Word formats.

Applications

- Document authoring automation;
- Context-depended editing;
- Self-organizing global document flows;
- Documents as data sources for information systems.

TabbyXL

Software Platform for Rule-Based Spreadsheet Data Extraction and Transformation

Alexey Shigarov, Vasiliy Khristyuk, et al shigarov@icc.ru

Motivation

- About arbitrary spreadsheet tables
 - A large volume of valuable data for science and business applications
 - ▶ A big variety of layout, style, and content features
 - ► Human-centeredness (incorrect structure and messy content)
 - No explicit semantics for interpretation by computers
- Challenges
 - How to extract tables from worksheets
 - How to recognize and correct cell structure anomalies
 - ▶ How to recover semantics needed for the automatic interpretation
 - How to conceptualize extracted data by using external vocabularies

Background

Table understanding includes the following tasks

- Extraction detecting a table and recognizing the physical structure of its cells
- 2. **Role analysis** extracting functional data items from cell content
- Structural analysis recovering internal relationships between extracted functional data items
- 4. **Interpretation** linking extracted functional data items with external vocabularies (general-purpose or domain-specific ontologies)

Contribution

TabbyXL is a software platform aiming at the development and execution of rule-based programs for spreadsheet data extraction and transformation from arbitrary (a) to relational tables (b)

Novelty

- Table object model assigning roles to data items, not cell
- CRL, domain-specific language to express user-defined rules for table analysis and interpretation
- CRL-to-Java translator to synthesize executable programs for spreadsheet data transformation

Table Object Model

Physical Layer

Cells characterized by layout, style, and content features

Logical Layer

Functional data items and their relationships:

- entries (values)
- labels (keys)
- categories (concepts)
- entry-label pairs
- label-label pairs
- □ label-category pairs

CRL Grammar

```
= 'rule' <a Java integer literal> 'when' condition
rule
             'then' action 'end' <EOL> {rule} <EOF>
condition = guery identifier [':' constraint {'.' constraint}
            [',' assignment {',' assignment}]] <EOL> {condition}
constraint = <a Java boolean expr>
assignment = identifier ':' <a valid Java expr>
          = 'cell' | 'entry' | 'label' | 'category' | 'no cells' |
query
             'no entries' | 'no labels' | 'no categories'
action
          = merge | split | set text | set indent | set mark |
            new entry | new label | add label | set parent |
             set category | group <EOL> {action}
          = 'merge' identifier 'with' identifier
merge
split
        = 'split' identifier
set text = 'set text' <a Java string expr> 'to' identifier
set indent = 'set indent' <a Java integer expr> 'to' identifier
set mark = 'set mark' <a Java string expr> 'to' identifier
new entry = 'new entry' identifier ['as' <a Java string expr>]
new label = 'new label' identifier ['as' <a Java string expr>]
add label = 'add label' identifier | (<a Java string expr>
             'of' identifier | <a Java string expr>)
            'to' identifier
set parent = 'set parent' identifier 'to' identifier
set category = 'set category' identifier | <a Java string expr>
              'to' identifier
group = 'group' identifier 'with' identifier
identifier = <a .Tava identifier>
```

Cell Cleansing

The actions correct an inaccurate layout and content of a hand-coded table

- <merge> combines two adjacent cells when they share one border
- <split> divides a merged cell that spans n-tiles (row-column intersections) into n-cells
- <set text> modifies a textual content of a cell
- <set indent> modifies a text indentation of a cell

```
when
  cell corner: cl == 1, rt == 1, blank
  cell c: cl > corner.cr, rt > corner.rb
then
  split c
```

Role Analysis

The actions recover entries and labels as functional data items presented in a table

- <set mark> annotates a cell with a user-defined tag that can be used in subsequent table analysis
- <new entry> (<new label>) creates an entry (label) from a cell content with the use of an optional string processing

```
when
  cell corner: cl == 1, rt == 1, blank
  cell c: cl > corner.cr, rt > corner.rb
then
  new entry c
```

Structural Analysis

The actions recover pairs of two kinds: entry-label and label-label

- <add label> associates an entry with a label
- <set parent> binds two labels as a parent and its child

```
when
   cell c1: cl == 1
   cell c2: cl == 1, rt > c1.rt, indent == c1.indent + 2
   no cells: cl == 1, rt > $c1.rt, rt < $c2.rt, indent == $c1.indent
then
   set parent c1.label to c2.label</pre>
```

Interpretation

The actions serve to recover label-category pairs

- <set category> associates a label with a category
- <group> places two labels to one group that can be considered as an undefined category

```
kwhen
label l1: cell.mark == "stub"
label l2: cell.mark == "stub", cell.rt == l1.cell.rt
then
group l1 with l2
```

Illustrative Example

The transformation of arbitrary tables with the same layout features (a and c) to their canonicalized

	al a2		2		DATA	A	В	l	
	b1	1	b4	4		1	a1	b1	
	b2	2	b5	NA	\rightarrow	2	a1	b2	l
	b3		b6	6		4	a2	b4	
'n	_	-	ı	_		6	a2	b6	l

_						,	DATA	A	В
a	1	a	2		3		2	a1	b2
b1		b3	3	b5	5	\rightarrow	3	a2	b3
b2	2	b4	NA	b6	6		5	a3	b5
c								а3	b6

The ruleset

versions (b and d) a 6 |a| |b| |c 6 |a| |b| |c 6 |a| |b| |c for the cell cleansing (a), role analysis (b, c), structural analysis (d, e), and interpretation (f, g)

```
when cell c: c.text.matches("NA")
                                       when cell c: (c1 % 2) == 0, !blank
a then set text "" to c
                                       then new entry c
   when cell c: (c1 % 2) == 1
                                       when
  then new label c
                                           entry e
                                          label 1: cell.cr == e.cell.cr
   when
                                        then add label 1 to e
      entrv e
      label 1: cell.rt == e.cell.rt, cell.cl == e.cell.cl - 1
   then add label 1 to e
   when label 1: cell.rt == 1
                                       when label 1: cell.rt > 1
  then set category "A" to 1
                                    g then set category "B" to 1
```

This example is reproducible at

https://codeocean.com/capsule/5326436

Architecture

Two options are provided

Rule Engine option

Executing a ruleset in an appropriate format with a JSR-94 compatible rule engine (e.g. Drools, Jess)

CRL₂J option

Translating a ruleset expressed in CRL to an executable Java program

CRL2J Translation

Workflow for generating a Maven-project of a spreadsheet data transformation program

Workflow for translating a CRL ruleset to Java source code

CRL2J Translation

In the Workflow

Rule Object Model

CRL2J Translation

when cell corner: cl == 1, rt == 1, blank cell c: cl > corner.cr, rt > corner.rb, ! marked then set mark "@entry" to c new entry c

Example (Fragment of the Generated Java Code) ...

Performance Evaluation

The results of the transformation of 200 tables of Troy200 dataset

	Role ar	nalysis	Structural analysis		
		Туре	of instances		
Metrics	entries	labels	entry-label pairs	label-label pairs	
Recall	0.9813 $\frac{16602}{16918}$	$0.9965 \frac{4842}{4859}$	$0.9773 \frac{34270}{35066}$	o.9389 $\frac{1951}{2078}$	
Precision	$0.9996 \frac{16602}{16609}$	0.9364 $\frac{4842}{5171}$	0.9965 $\frac{34270}{34389}$	o.9784 $\frac{1951}{1994}$	
F-score	0.9904	0.9655	0.9868	0.9582	

Metrics

$$\operatorname{recall} = \frac{|R \cap S|}{|S|} \quad \operatorname{precision} = \frac{|R \cap S|}{|R|}$$

S is a set of instances in a source table, R is a set of instances in its canonical form

All data and steps to reproduce the results are available at http://dx.doi.org/10.17632/ydcr7mcrtp.5

Performance Evaluation

The comparison of the running time by using TabbyXL with three different options for transforming 200 tables of Troy200 dataset [Nagy, 2016]

Running time of	CRL2J	Drools	Jess
Ruleset preparation (t_1)	2108* ms	$1711^\dagger~\mathrm{ms}$	$432^{\dagger}~\mathrm{ms}$
Ruleset execution (t_2)	367** ms	$1974^{\ddagger}~{ m ms}$	$4149^{\ddagger}~\mathrm{ms}$

 $^{^*}$ t_1 — a time of parsing and compiling the original ruleset into a Java program ** t_2 — a time of executing the generated Java program

For testing, we used 3.2 GHz 4-core CPU

 $^{^{\}dagger}$ t_1 — a time of parsing the original ruleset and adding the result into a rule engine session

 $^{^{\}ddagger}$ t_2 - a time of asserting facts into the working memory and matching rules against the facts

Comparison with Others

Role Analysis

- Contest task: The segmentation of a table into typical functional cell regions
- Testing dataset: Troy200 [Nagy, 2016]
- □ Contestant: MIPS (TANGO) [Embley et al., 2016]
- ullet Accuracy: MIPS (TANGO) **0.9899** vs. TabbyXL **0.9950**

Structural Analysis

- □ *Contest task*: The extraction of header hierarchies from tables
- Testing dataset: A random subset of SAUS^a
- Contestant: Senbazuru [Chen and Cafarella, 2014]
- □ F-score: Senbazuru o.886o vs. TabbyXL o.8657

ahttp://dbgroup.eecs.umich.edu/project/sheets/datasets.html

Application Experience

Populating a web-based statistical atlas of the Irkutsk region - (b) via extracting data from government statistical reports - (a)

The more detail can be found at https://github.com/tabbydoc/tabbyxl/wiki/statistical-atlas

Application Experience

Generating conceptual models -(b) from arbitrary tables presented in industrial safety inspection reports -(a)

The more detail can be found at https://github.com/tabbydoc/tabbyxl/wiki/industrial-safety-inspection

Conclusions & Further Work

- Impact on software development for spreadsheet data management
 - ▶ Table object model associating functional roles with data items
 - Table analysis and interpretation driven by user-defined rules
 - ► Formulated actions to recover missing semantics of arbitrary tables
 - ► Translation of rules to executable spreadsheet transformation programs

Limitations

- ▶ The inaccurate cell structure prevents the table analysis
- ► The very limited interpretation (without external vocabularies)

Further work

- ► Rearrangement of cell structure by using visual (human-readable) cells
- ▶ Detecting derived data by spreadsheet formulas
- Enriching the table analysis by named entity recognition
- ▶ Linking extracted data items with LOD cloud

References I

Chen, Z. and Cafarella, M. (2014).

Integrating spreadsheet data via accurate and low-effort extraction.

In Proc. 20th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, pages 1126-1135.

Embley, D. W., Krishnamoorthy, M. S., Nagy, G., and Seth, S. (2016).

Converting heterogeneous statistical tables on the web to searchable databases.

Int. J. Document Analysis and Recognition, 19(2):119-138.

Nagy, G. (2016).

TANGO-DocLab web tables from international statistical sites (Troy_200), 1, ID: Troy_200_1.

Thanks

Read more about the project at http://td.icc.ru

The project source code is available at https://github.com/tabbydoc/tabbyxl

Thanks for Your interest to our project!