Global System for Mobile Communication - GSM

GSM - Specifications

Original specifications for the GSM system:

- Good subjective voice quality
- Low terminal and service cost
- Support for international roaming
- Support for handheld terminals
- Support for new services
- Spectrum efficient
- Compatible with ISDN

GSM - Versions

System	Band	Uplink (MHz)	Downlink (MHz)	Channel number
T-GSM-380	380	380.2–389.8	390.2–399.8	dynamic
T-GSM-410	410	410.2–419.8	420.2–429.8	dynamic
GSM-450	450	450.6–457.6	460.6–467.6	259–293
GSM-480	480	479.0–486.0	489.0–496.0	306–340
GSM-710	710	698.2–716.2	728.2–746.2	dynamic
GSM-750	750	747.2–762.2	777.2–792.2	438–511
T-GSM-810	810	806.2–821.2	851.2–866.2	dynamic
GSM-850	850	824.2–849.2	869.2–894.2	128–251
P-GSM-900	900	890.0-915.0	935.0-960.0	1–124
E-GSM-900	900	880.0–915.0	925.0–960.0	975–1023, 0-124
R-GSM-900	900	876.0–915.0	921.0–960.0	955–1023, 0-124
T-GSM-900	900	870.4–876.0	915.4–921.0	dynamic
DCS-1800	1800	1710.2-1784.8	1805.2-1879.8	512-885
PCS-1900	1900	1850.2-1909.8	1930.2-1989.8	512-810

P-GSM: Standard or Primary GSM-900 Band

E-GSM: Extended GSM-900 Band (includes Standard GSM-900 band)

R-GSM: Railways GSM-900 Band (includes Standard and Extended GSM-900 band)

T-GSM: TETRA-GSM

The frequency band for GSM 900

- > uplink (reverse) is 890-915MHz,
- downlink (forward) is 935-960MHz.

The bandwidth for the GSM system is 25MHz, which provides 125 carriers uplink/downlink each having a bandwidth of 200 kHz. The ARFCN (Absolute radio frequency channel numbers) denotes a forward and reverse channel pair which is separated in frequency by 45 MHz.

- \triangleright Mobile-to-base : Fu (n) = 890.2 + 0.2(n -1) MHz
- > Base-to-mobile : Fd (n) = Fu (n) + 45 MHz

In practical implementations, a guard band of 100kHz is provided at the upper and lower end of the GSM spectrum, and only 124 (duplex) channels are implemented.

GSM – Architecture – Base Station Subsystem

Base Transceiver Station (BTS)

- Establishes and maintains connections to the MS
- Interface between MS and BTS is called Um interface.
- Hosts the Antenna and Radio Frequency hardware
- Contain software for multiple access
- BTSs and the BS are either co-located or are connected together
- •Encodes, encrypts, multiplexes, modulates and feeds the RF signals to the antenna.
- Frequency hopping

Base Station Controller (BSC)

- Has control Functionality
- ullet Interface between BTS and BSC is called $A_{\rm bis}$ interface
- Responsible for, channel assignment, Maintenance of link quality, Handover Power Control, Coding

GSM – Architecture – Mobile Switching Center

The MSC (mobile switching center) plays a central role in GSM

- switching functions
- additional functions for mobility support
- management of network resources
- interworking functions via Gateway MSC (GMSC)
- integration of several databases
- specific functions for paging and call forwarding
- termination of SS7 (signaling system no. 7)
- mobility specific signaling
- location registration and forwarding of location information
- provision of new services (fax, data calls)
- support of short message service (SMS)
- generation and forwarding of accounting and billing information

GSM – Architecture – Mobile Switching Center

Databases (important: scalability, high capacity, low delay)

Home Location Register (HLR)

- central master database containing user data,
- permanent and semi-permanent data of all subscribers assigned to the HLR (one provider can have several HLRs, however generally one HLR for each network operator)

Visitor Location Register (VLR)

- -Temporary database which updates whenever new MS enters its area, by HLR database
- -Controls those mobiles roaming in its area
- -Reduces number of queries to HLR
- -Database contains IMSI, TMSI, MSISDN, MSRN, Location
- Area, authentication key
- -Usually integrated with MSC so that geographic area covered by both coincides, signalling requirements simplified considerably

GSM – Architecture – Mobile Switching Center

The OSS (Operation Subsystem) enables centralized operation, management, and maintenance of all GSM subsystems

Components

- Authentication Center (AUC)
 - generates user specific authentication parameters on request of a
 VLR
 - authentication parameters used for authentication of mobile terminals
 and encryption of user data on the <u>air interface</u> within the GSM system
- Equipment Identity Register (EIR)
 - registers GSM mobile stations and user rights
 - stolen or malfunctioning mobile stations can be locked and sometimes even localized
- > Operation and Maintenance Center (OMC)
 - different control capabilities for the radio subsystem and the network subsystem