Computational Dermatology - Developing and Testing Algorithms to Segment Images Based on Hair Density

Students:

Siddhi Velankar, MS EE Tejas Mane, MS SCMP Wenbo Zhang, MS SCMP **Supervisor**: Elena Bernardis, PhD

Alopecia Areata (AA) introduction

Clinical motivation?

- 6.8 million people in the US, 147 million worldwide^[1].
- Quantifying abnormal hair density needed to track progression.

Current Methods

- Simple diameter measurement methods used.
- Severity of Alopecia Tool (SALT) score.
- CHOP's Alopecia app.

What we want!

- Quick, reliable and consistent quantification methods.
- Development of a computer-based automated segmentation tool.

Pediatric Alopecia Areata dataset

- 251 de-identified images from CHOP's hair clinic
- Four different orientation (left, back, top, right)

Feature exploration

Pixel ← hair density information

Color channels

Filter responses

Feature exploration: pixels to patches

- Patch size: from *k* x *k* to the entire image
- Neighborhood Statistics: mean value, standard deviation, maximum/minimum value, intensity range

Hair density segmentation

- Unsupervised
 - Histograms and thresholding
 - K-means
- Supervised
 - K-Nearest Neighbours (KNN)
 - Random Forests (RF)
 - Naive Bayes (NB)
 - Logistic Regression (LR)
 - Fully Connected Neural Networks (FCNN)

Histograms and thresholding

Histograms and thresholding

Even if we can find such thresholds, this method is not scalable.

Sample segmentations by K-means

Quantitative evaluation

$$Segmentation\ Accuracy = \frac{\#\ of\ correctly\ labelled\ pixels}{\#\ of\ all\ pixels}$$

Quantitative evaluation

$$Segmentation\ Accuracy = \frac{\#\ of\ correctly\ labelled\ pixels}{\#\ of\ all\ pixels}$$

Sample segmentations by ML algorithms

Supervised ML methods using 3 X 3 patch

Quantitative evaluation of ML models

Quantitative evaluation of ML models

Quantitative evaluation of ML models

Note: >10% better than Appopecia app!

Scope for improvement

Conclusions: It was a hairy problem!

- Supervised preferred over unsupervised
- Visual/Clinical meaning of hair density regions

- Edges cannot be used to encode hair density information.
- Combining features is an art!

- RGB patches better than grayscale
- Hair color! Skin contrast!

Conclusions: It was a hairy problem!

- Supervised preferred over unsupervised
- Visual/Clinical meaning of hair density regions

- Edges cannot be used to encode hair density information
- Combining features is an art!

- RGB patches better than grayscale
- Hair color! Skin contrast!

THANKS