Project Development Phase Model Performance Test

Team ID	PNT2022TMID05774
Project Name	Project - A Novel Method For Handwritten Digit
	Recognition System.
Maximum Marks	10 Marks

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot										
1.	Model Summary	mmary		Model: "sequential"									
			conv2d (Conv2D) conv2d_1 (Conv2D) flatten (Flatten) dense (Dense)	(None, 26, 26, 64) (None, 24, 24, 32) (None, 18432) (None, 18)	640 18464 0 184330								
			None										
2.	Accuracy	Training Accuracy - 99% Validation Accuracy - 97%	0.25 0.20 0.15 0.10 0.05 0.0 0.5 1.0 0.99 0.98 0.97 0.96 0.95 0.0 0.5 1.0		aining accuracy slidation accuracy								

3.	Confusion Matrix	Confusion matrix											
		0 -	968	1	2	0	0	1	4	0	3	1	
		1 -	1	1124	3	1	0	3	2	0	1	0	- 1000
		2 -	2	6	1011	0	2	0	2	6	3	0	
		3 -	0	0	6	982	0	13	0	3	2	4	- 800
		- p q	1	0	2	0	957	0	3	1	1	17	- 600
		True label	1	0	0	3	0	881	4	0	2	1	
		6 -	7	3	0	0	3	6	938	0	1	0	- 400
		7 -	0	5	16	2	3	1	0	994	0	7	
		8 -	7	1	4	1	1	3	3	5	943	6	- 200
		9 -	4	6	2	2	8	9	0	7	4	967	
			-0	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	<u>ν</u>	3	<u> </u>	5	6	1	φ	9	□ ₀
				,	•			ed lab		·			
4.	Classification Report				pre	cisi	on	rec	all	f1-s	core	sup	port
				0		0.9	98	e	.99		0.98		980
				1		0.9			.99		0.99		1135
				2		0.9 0.9			9.98		0.97 0.98		1032 1010
				4		0.			.97		0.98		982
						0.			.99		0.97		892
				6		0.9	98	e	.98		0.98		958
						0.9	98	е	.97		0.97		1028
				8		0.9			.97		0.98		974
				9		0.9	96	e	.96		0.96		1009
		accuracy macro avg		accuracy						0.98	1	.0000	
						0.9	98	e	.98		0.98	1	.0000
		weig	ghte	d avg		0.9	98	e	.98		0.98	1	.0000