Programación 2022

Guía 7: Interpolación. Método de cuadrado mínimos. Determinación de raíces

5 de Octubre 2022

Antes de comenzar los problemas genere un nuevo directorio guia6 donde trabajará y guardará todos los programas y archivos que se producirán en este práctico.

Problema 1: Desarrolle una función cuyos argumentos de entrada sea un array de N pares de variables (x, y) y que determine la ordenada y pendiente de la regresión lineal utilizando las fórmulas vistas en el teórico [Problema de desarrollo se recomienda NO usar funciones existentes en las librerías ni googlear].

- 1. Desarrollo de la función.
- 2. Genere un conjunto de N=100 datos datos por $v(t)=v_0-gt+0.2\epsilon$ con $v_0=4.5m/s$, $g=9.81m/s^2$ y que evalue la velocidad cada 0.25s ϵ es un número aleatorio que representa el error observacional de media 0 y varianza 1 (np.random.normal).
- 3. Utilize la función de regresión lineal con los datos generados y estime el valor de v_0 y g.
- 4. Compare el error obtenido en la estimación con el caso de N = 10 y con el caso de N = 1000.

Problema 2: Genere 20 valores aleatorios de la ordenada y con una distribución uniforme entre 0 y 2 usando np.random.uniform asigne estos a un intervalo de x entre 0,1 asumiendo los puntos estan equidistribuidos en x.

- 1. Utilice los esplines cúbicos para generar 100 puntos de la función en el intervalo 0,1. Use: scipy.interpolate.splrep o scipy.interpolate.CubicSpline
- 2. Realice el mismo procedimiento con la interpolación lineal entre los puntos originales. En este caso desarrolle su propio interpolador.

Problema 3: Encuentre la línea recta que ajusta a los siguientes datos por cuadrados mínimos. Use la función np.polyfit

0 3.076 0.5 2.810 1.0 2.588 1.5 2.297 2.0 1.981 2.5 1.912 3.0 1.653 3.5 1.478 4.0 1.399 4.5 1.018 5.0 0.794	t	X
1.0 2.588 1.5 2.297 2.0 1.981 2.5 1.912 3.0 1.653 3.5 1.478 4.0 1.399 4.5 1.018	0	3.076
1.5 2.297 2.0 1.981 2.5 1.912 3.0 1.653 3.5 1.478 4.0 1.399 4.5 1.018	0.5	2.810
2.0 1.981 2.5 1.912 3.0 1.653 3.5 1.478 4.0 1.399 4.5 1.018	1.0	2.588
2.5 1.912 3.0 1.653 3.5 1.478 4.0 1.399 4.5 1.018	1.5	2.297
3.0 1.653 3.5 1.478 4.0 1.399 4.5 1.018	2.0	1.981
3.5 1.478 4.0 1.399 4.5 1.018	2.5	1.912
4.0 1.399 4.5 1.018	3.0	1.653
4.5 1.018	3.5	1.478
	4.0	1.399
5.0 0.794	4.5	1.018
	5.0	0.794

Problema 4: Determine los parametros a y b tal que satisface $f(x) = ae^{bx}$ ajustan los datos a través de cuadrados mínimos. Use la función np.polyfit

t	X
1.2	7.5
2.8	16.1
4.3	38.9
5.4	67.0
6.8	146.6
7.9	266.2

Problema 5: Use el método de bisección para hallar la menor solución positiva de la ecuación 2x =tan(x). ¿Cuántos pasos serán necesarios para garantizar que el error sea menor a 10^{-3} ?

Problema 6: Sea $f(x) = (x+2)(x+1)^2x(x-1)^3(x-2)$. A cuál raíz de f converge el método de bisección en los siguientes intervalos?

(a)
$$[-1.5, 2.5]$$
,

(b)
$$[-0.5, 2.4],$$

(c)
$$[-0.5, 3]$$

(c)
$$[-0.5, 3]$$
, (d) $[-3, -0.5]$

Problema 7: Método de Newton-Raphson y de bisección-secante.

- 1. Desarrolle una función que determine la raiz de una función usando el método de Newton-Raphson, con argumentos de entrada, un valor inicial, la función, la derivada y la tolerancia.
- 2. Desarrolle una función bisección-secante determine la raiz de una función usando el método de biseccion adaptado para que en lugar de tomar el punto del medio del intervalo se elija la raiz de la recta que pasa por los puntos (a, f(a)) y (b, f(b)).
- 3. La difracción Fraunhofer producida por una rendija tiene el máximo principal en el origen x=0, y los máximos secundarios son las raíces de la ecuación trascendente $\tan x - x = 0$. Determine el valor de x que cumple que tan x-x=0, utilizando el método de Newton-Raphson con valor inicial $x_0 = 4$ y $x_0 = 4.6$ analice y saque conclusiones.
- 4. Use el metodo de bisección usando de intervalo inicial 4 y 5.
- 5. Compare la velocidad de convergencia con el metodo de bisección, de bisección-secante y de Newton-Raphson.

F@CENA © 2022