

LINEAR MODELS FOR REGRESSION

- 1. The concept of regression
- 2. Maximum Likelihood and Least Square
- 3. Over-fitting and Regularization
- 4. The Bias-Variance Trade-off
- 5. Bayesian Linear Regression
- 6. Sparse regression

Regression is the process of learning the relationship between a set of input (explanatory) and output (response) variables, such that given new instances of input variables, their corresponding output variables can be predicted.

Example for linear basis functions

Input: population

of state

Output: fatal traffic

accident of state

Age estimation

Head pose estimation

What is Linear Regression?

The simplest linear model for regression is one that involves a linear combination of the input variables

$$y\left(\mathbf{x}, \mathbf{w}\right) = \mathbf{w_0} + \mathbf{w_1}x_1 + \dots + \mathbf{w_D}x_D$$

where $\mathbf{x} = (x_1, ... x_D)^T$. This is often simply known as *linear regression*.

The key property of this model is that it is a linear function of the parameters $w_0...w_D$.

Generally

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

where $\phi_j(\mathbf{x})$ are known as *basis functions*.

Typically, $\phi_0\left(\mathbf{x}\right)=1$, so that w_0 acts as a bias.

In the simplest case, we use linear basis functions : $\phi_d(\mathbf{x}) = x_d$.

Example for linear basis functions

Input: population

of state

Output: fatal traffic

accident of state

Polynomial basis functions:

$$\phi_j(x) = x^j$$
.

These are global; a small change in x affect all basis functions.

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

These are local; a small change in x only affect nearby basis functions. μ_j and s control location and scale (width).

Sigmoidal basis functions:

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.$$

Also these are local; a small change in x only affect nearby basis functions. μ_j and s control location and scale (slope).

LINEAR MODELS FOR REGRESSION

- 1. The concept of regression
- 2. Maximum Likelihood and Least Square
- 3. Over-fitting and Regularization
- 4. The Bias-Variance Trade-off
- 5. Bayesian Linear Regression
- 6. Sparse regression

Population	$\times 10^7$	Fatal traffic accident	$\times 10^3$
x_1	2.0493	t_1	2.2538
x_2	1.0676	t_2	1.1531
x_3	2.0939	t_3	2.2342
x_4	0.7897	t_4	0.9514
x_5	0.7299	t_5	0.7950
x_6	0.4996	t_6	0.8286
x_7	1.9002	t_7	2.1222
x_8	0.4083	t_8	0.6541
x_9	0.9201	t_9	1.1208
x_{10}	0.3346	t_{10}	0.4322

Sum-of-squares error

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$
$$= \frac{1}{2} \sum_{n=1}^{N} (w_0 + w_1 x_n - t_n)^2$$

where N = 10.

Sum-of-squares error in matrix form

$$E\left(\mathbf{w}\right) = \frac{1}{2} \left\| \mathbf{\Phi} \mathbf{w} - \mathbf{t} \right\|^{2}$$

Where

$$\mathbf{w} = (w_0, w_1)^T \qquad \mathbf{\Phi} = \begin{pmatrix} 1 & \mathbf{x}_1 \\ \vdots & \vdots \\ 1 & \mathbf{x}_{10} \end{pmatrix} \quad \mathbf{t} = (t_1, \dots, t_{10})^T$$

The sum-of-squares error

$$E(\mathbf{w}) = \frac{1}{2} \|\mathbf{\Phi}\mathbf{w} - \mathbf{t}\|^2 = \frac{1}{2} (\mathbf{\Phi}\mathbf{w} - \mathbf{t})^T (\mathbf{\Phi}\mathbf{w} - \mathbf{t})$$
$$= \frac{1}{2} (\mathbf{w}^T \mathbf{\Phi}^T \mathbf{\Phi} \mathbf{w} - 2\mathbf{w}^T \mathbf{\Phi}^T \mathbf{t} + \mathbf{t}^T \mathbf{t})$$

The gradient of $E(\mathbf{w})$

$$\nabla E\left(\mathbf{w}\right) = \mathbf{\Phi}^T \mathbf{\Phi} \mathbf{w} - \mathbf{\Phi}^T \mathbf{t}$$

Let

$$\nabla E\left(\mathbf{w}\right) = \mathbf{0}$$

the optimal solution for w is

$$\mathbf{w}^* = \left(\mathbf{\Phi}^T\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^T\mathbf{t}$$

Population	$\times 10^7$	Traffic accident	$\times 10^3$	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	2.0493 1.0676 2.0939 0.7897 0.7299 0.4996 1.9002 0.4083 0.9201	$t_1 \ t_2 \ t_3 \ t_4 \ t_5 \ t_6 \ t_7 \ t_8 \ t_9$		$\mathbf{\Phi} = \begin{pmatrix} 1 & \mathbf{x}_1 \\ \vdots & \vdots \\ 1 & \mathbf{x}_{10} \end{pmatrix}$ $\mathbf{t} = (t_1, \dots, t_{10})^T$ $\mathbf{w}^* = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}$
x_{10}	0.3346	t_{10}	0.4322	$= (177.3, 0.0001)^T$

Least squares:

 $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$: N observations of input variables

 $\mathbf{t} = (t_1, ..., t_N)^T$: N observations of target variable t

Regression model:

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

We minimize

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2$$
$$= \frac{1}{2} \sum_{n=1}^{N} \left\{ \mathbf{w}^T \boldsymbol{\phi} \left(\mathbf{x}_n \right) - t_n \right\}^2$$

Write in matrix form

$$E\left(\mathbf{w}\right) = \frac{1}{2} \left\| \mathbf{t} - \mathbf{\Phi} \mathbf{w} \right\|_{2}^{2}$$

where

$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix} \qquad \mathbf{t} = (t_1, ..., t_N)^T$$

The gradient of $E(\mathbf{w})$

$$\nabla E\left(\mathbf{w}\right) = \mathbf{\Phi}^T \mathbf{\Phi} \mathbf{w} - \mathbf{\Phi}^T \mathbf{t}$$

Let

$$\nabla E\left(\mathbf{w}\right) = \mathbf{0}$$

the optimal solution for w is

$$\mathbf{w}^* = \left(\mathbf{\Phi}^T\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^T\mathbf{t}$$

$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

If N < M, $\Phi^T \Phi$ is underdetermined and $(\Phi^T \Phi)^{-1}$ does not exist.

If N > M, $\Phi^T \Phi$ is overdetermined and $(\Phi^T \Phi)^{-1}$ does exist.

In statistics, maximum-likelihood estimation (MLE) is a method of estimating the parameters of a statistical model given data.

For parameters θ , the joint distribution for all observations is $p(x_1,...,x_N|\theta)$. We let $\mathcal{L}(\theta)$ denote this joint distribution and name it as likelihood function of parameters θ .

The maximum likelihood estimation of parameters $oldsymbol{ heta}$ is

$$\boldsymbol{\theta}_{ML} = \operatorname{argmax} \mathcal{L}\left(\boldsymbol{\theta}\right)$$

Assume observations from a deterministic function with added Gaussian noise:

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$
 where $p(\epsilon|\beta) = \mathcal{N}(\epsilon|0, \beta^{-1})$

which is the same as saying,

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$

Given observed inputs, $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, and targets, $\mathbf{t} = [t_1, \dots, t_N]^T$, we obtain the likelihood function

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}).$$

Observations:

$$\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$
 and $\mathbf{t} = [t_1, \dots, t_N]^{\mathrm{T}}$

Parameters:

 \mathbf{w} and β

the likelihood function:

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}).$$

$$\mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}} = \operatorname{argmax} p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta)$$

Taking the logarithm, we get

$$\ln p(\mathbf{t}|\mathbf{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

where

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

is the sum-of-squares error.

Computing the gradient and setting it to zero yields

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{w}, \beta) = \beta \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = \mathbf{0}.$$

Solving for
$$\mathbf{w}$$
, we get
$$\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$

The Moore-Penrose pseudo-inverse, $\mathbf{\Phi}^{\mathsf{T}}$.

where

$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}.$$

Maximum Likelihood and Least Square

Maximizing with respect to the bias, w_0 , alone, we see that

$$w_0 = \overline{t} - \sum_{j=1}^{M-1} w_j \overline{\phi_j}$$

$$= \frac{1}{N} \sum_{n=1}^{N} t_n - \sum_{j=1}^{M-1} w_j \frac{1}{N} \sum_{n=1}^{N} \phi_j(\mathbf{x}_n).$$

We can also maximize with respect to β , giving

$$\frac{1}{\beta_{\mathrm{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \{t_n - \mathbf{w}_{\mathrm{ML}}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

Geometry of Least Squares

Consider

$$\mathbf{y} = \mathbf{\Phi} \mathbf{w}_{\mathrm{ML}} = [oldsymbol{arphi}_1, \ldots, oldsymbol{arphi}_M] \, \mathbf{w}_{\mathrm{ML}}.$$
 $\mathbf{y} \in \mathcal{S} \subseteq \mathcal{T}$ $\mathbf{t} \in \mathcal{T}$ N -dimensional M -dimensional

 \mathcal{S} is spanned by $\varphi_1, \dots, \varphi_M$. \mathbf{w}_{ML} minimizes the distance between \mathbf{t} and its orthogonal projection on \mathcal{S} , i.e. \mathbf{y} .

Input: population of state

Output: 1. fatal traffic accident of state 2. accident of state

Population	$\times 10^7$	Fatal traffic accident	$\times 10^3$	Traffic accident	$\times 10^4$
x_1	2.0493	t_{11}	2.2538	t_{12}	0.8891
x_2	1.0676	t_{21}	1.1531	t_{22}	0.6102
x_3	2.0939	t_{31}	2.2342	t_{32}	1.0346
x_4	0.7897	t_{41}	0.9514	t_{42}	0.5223
x_5	0.7299	t_{51}	0.7950	t_{52}	0.3851
x_6	0.4996	t_{61}	0.8286	t_{62}	0.2107
x_7	1.9002	t_{71}	2.1222	t_{72}	0.9206
x_8	0.4083	t_{81}	0.6541	t_{82}	0.4247
x_9	0.9201	t_{91}	1.1208	t_{92}	0.4927
x_{10}	0.3346	$t_{ exttt{101}}$	0.4322	t_{102}	0.2763

Maximum Likelihood and Least Square

Sum-of-squares error

$$E\left(\mathbf{W}\right) = \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{y}\left(x_n, \mathbf{W}\right) - \mathbf{t}_n\|^2$$

where

$$\mathbf{y}(x_n, \mathbf{W}) = \begin{bmatrix} \mathbf{w}_1^T \boldsymbol{\phi}(x_n) \\ \mathbf{w}_2^T \boldsymbol{\phi}(x_n) \end{bmatrix}$$
$$= \mathbf{W}^T \boldsymbol{\phi}(x_n)$$

where N = 10.

Write in matrix form

$$E\left(\mathbf{W}\right) = \frac{1}{2} \|\mathbf{\Phi}\mathbf{W} - \mathbf{T}\|_F^2$$

where

$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix} \qquad \mathbf{T} = \begin{bmatrix} \mathbf{t}_1^T \\ \vdots \\ \mathbf{t}_N^T \end{bmatrix}$$

The gradient of $E(\mathbf{W})$

$$\nabla E\left(\mathbf{W}\right) = \mathbf{\Phi}^T \mathbf{\Phi} \mathbf{W} - \mathbf{\Phi}^T \mathbf{T}$$

Let

$$\nabla E\left(\mathbf{W}\right) = \mathbf{0}$$

the optimal solution for w is

$$\mathbf{W}^* = \left(\mathbf{\Phi}^T\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^T\mathbf{T}$$

$$\mathbf{W}^* = \left(\mathbf{\Phi}^T \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^T \mathbf{T}$$

Analogously to the single output case we have:

$$p(\mathbf{t}|\mathbf{x}, \mathbf{W}, \beta) = \mathcal{N}(\mathbf{t}|\mathbf{y}(\mathbf{W}, \mathbf{x}), \beta^{-1}\mathbf{I})$$
$$= \mathcal{N}(\mathbf{t}|\mathbf{W}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}), \beta^{-1}\mathbf{I}).$$

Given observed inputs, $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, and targets, $\mathbf{T} = [\mathbf{t}_1, \dots, \mathbf{t}_N]^T$, we obtain the log likelihood function

$$\ln p(\mathbf{T}|\mathbf{X}, \mathbf{W}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(\mathbf{t}_{n}|\mathbf{W}^{T} \boldsymbol{\phi}(\mathbf{x}_{n}), \beta^{-1}\mathbf{I})$$

$$= \frac{NK}{2} \ln \left(\frac{\beta}{2\pi}\right) - \frac{\beta}{2} \sum_{n=1}^{N} \left\|\mathbf{t}_{n} - \mathbf{W}^{T} \boldsymbol{\phi}(\mathbf{x}_{n})\right\|^{2}.$$

Maximizing with respect to W, we obtain

$$\mathbf{W}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{T}.$$

If we consider a single target variable, t_k , we see that

$$\mathbf{w}_k = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}_k = \mathbf{\Phi}^{\dagger}\mathbf{t}_k$$

where $\mathbf{t}_k = [t_{1k}, \dots, t_{Nk}]^{\mathrm{T}}$, which is identical with the single output case.

Sequential Learning

Gradient descent

$$\nabla J(\mathbf{w}) = \begin{bmatrix} \frac{\partial J}{\partial w_1} \\ \vdots \\ \frac{\partial J}{\partial w_n} \end{bmatrix}$$

Sequential Learning

Data items considered one at a time (a.k.a. online learning); use stochastic (sequential) gradient descent:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$$

=
$$\mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \boldsymbol{\phi}(\mathbf{x}_n)) \boldsymbol{\phi}(\mathbf{x}_n).$$

This is known as the *least-mean-squares* (*LMS*) algorithm. Issue: how to choose η ?

LINEAR MODELS FOR REGRESSION

- 1. The concept of regression
- 2. Maximum Likelihood and Least Square
- 3. Over-fitting and Regularization
- 4. The Bias-Variance Trade-off
- 5. Bayesian Linear Regression
- 6. Sparse regression

Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Sum-of-Squares Error Function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

9th Order Polynomial

Over-fitting

Root-Mean-Square (RMS) Error: $E_{\mathrm{RMS}} = \sqrt{2E(\mathbf{w}^{\star})/N}$

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43

Regularization

Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Regularization: $\ln \lambda = -18$

Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0^{\star}}$	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^\star	125201.43	72.68	0.01

Regularized Least Squares

Consider the error function:

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

Data term + Regularization term

With the sum-of-squares error function and a quadratic regularizer, we get

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

which is minimized by

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

 λ is called the regularization coefficient.

Regularized Least Squares

With a more general regularizer, we have

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

Regularized Least Squares

Lasso tends to generate sparser solutions than a quadratic

regularizer.

