История развития искусственного интеллекта. Интерактивный курс

Урок 10

О том, как биология и эволюция помогают развивать ИИ-системы

Биокомпьютинг

Сосредоточен на разработке и использовании компьютеров, которые функционируют как живые организмы или содержат биологические компоненты

Феномены человеческого поведения, способность человека к обучению и адаптации

Биологическая структура

Вычисления в рамках биокомпьютинга

- Живые ткани
- Клетки
- Вирусы
- Биомолекулы

Машина Тьюринга

ДНК-компьютер

Индивидуальная машина

Может быть подвергнута эволюции, поэтому она может адаптироваться к изменению входных данных, как к резким, так и малозаметным

Направления квазибиологического подхода

- Молекулярные вычисления
- Биомолекулярная электроника

Молекулярные вычисления

Решение задачи осуществляется при помощи проведения сложных биохимических или нанотехнологических реакций

Дж. Фон Нейман

CITY	DNA NAME	COMPLEMENT
ATLANTA	ACTTGCAG	TGAACGTC
BOSTON	TCGGACTG	AGCCTGAC
CHICAGO	GGCTATGT	CCGATACA
DETROIT	CCGAGCA	GGCTCGTT
FLIGHT	D	NA FLIGHT NUMBER
ATLANTA - BOSTON		CAGTCGG
ATLANTA - DET	ROIT G	CAGCCGA
BOSTON - CHIC	AGO A	CTGGGCT
BOSTON - DET	ROIT	CTGCCGA
BOSTON - ATLA	ANTA A	CTGACTT
CHICAGO - DETROIT		TGTCCGA

ДНК-компьютер

Решение задача коммивояжёра, то есть поиска кратчайшего пути обхода графа, при помощи реакций с ДНК осуществляется практически мгновенно

Биомолекулярная электроника

Биомолекулы переносят заряд, а потому могут быть использованы для построения электронных устройств обработки информации

Эволюционный подход

Направления эволюционного подхода

- 1. Эволюционное программирование
- 2. Генетическое программирование
- 3. Эволюционные стратегии
- 4. Генетические алгоритмы
- 5. Дифференциальная эволюция
- 6. Нейроэволюция

Генетическое программирование

В качестве объектов эволюции выступают программные коды

Генетические алгоритмы

Шаги генетического алгоритма

- 1. Генерация начальной популяции
- 2. Рождение новых особей
- 3. Перекрёст
- 4. Мутации
- 5. Отбор

Генерация начальной популяции

Подготовка некоторого количества «начальных» значений в пространстве поиска, с которых алгоритм начнёт свою работу

Цикличный процесс порождения новых поколений

Запуск процесса порождения новых поколений, изучения новых особей и отбора наиболее интересных.

- 1. Перекрёст
- 2. Мутации
- 3. Отбор

Перекрёст

Мутации

Отбор

На следующем занятии:

- Агентный подход
- Рациональность
- Имитация поведенческих отношений популяций

Оставайтесь с нами

До новых встреч

