

Kühlung von PC und Co

Wohin mit der Energie?

Dr. Reiner Kupferschmidt

Gliederung

- Physikalische Grundlagen
- Woher kommt die "Wärme"
- Was ist die "TDP"
- Aktiv oder passiv
- Kühlungsmöglichkeiten passiv
- Kühlungsmöglichleiten aktiv
- Wärmeleitpaste?
- Heatpipe?
- Strömungsverhalten im Gehäuse

Gliederung

- Physikalische Grundlagen
- Woher kommt die "Wärme"
- Was ist die "TDP"
- Aktiv oder passiv
- Kühlungsmöglichkeiten passiv
- Kühlungsmöglichleiten aktiv
- Wärmeleitpaste?
- Heatpipe?
- Strömungsverhalten im Gehäuse

Physikalische Grundlagen

- Kühlung ist der "Abtransport" der in Wärmenergie umgewandelten elektrischen Energie
- Erfolgt von "heißer" Quelle zu "kalter" Senke
- Strahlung (erfordert kein Medium, kann nicht aktiv beeinflusst werden)
- Leitung (erfordert Medium, materialabhängig, kann nicht aktiv beeinflusst werden)
- Strömung (erfordert Medium, materialabhängig, kann aktiv beeinflusst werden)

Woher kommt die "Wärme"?

- Elektrische Energie wird im elektronischen Bauelement auf Grund von Folgendem in Wärmeenergie umgewandelt
 - Ohmschen Widerständen
 - Kapazitiven Umladungen (+, -)
 - Taktfrequenz
- Fast die komplette elektrische Energie wird umgewandelt

Was ist TDP?

- Thermal Design Power Berechnete Thermische Verlustleistung
- Maximaler Wert f
 ür elektronische Ger
 äte und Komponeten (CPU, GPU, ...)
- Grundlage für Kühlung u. Netzteil
- Angegebener Wert meist größer als tatsächliche TDP
- Hersteller fassen TDP in Gruppen zusammen
- Leitlinie für Mainboard und Kühl-Körper(-Varianten)-Hersteller
- Ist abhängig unter anderem von
 - Taktfrequenz
 - V_{core}
 - Umgebungstemperatur
 - Strukturgröße
 - Materialübergängen (Nacktchip, Heatspreader, Wärmeleitpaste)

Je höher die TDP-Klasse desto höher der Aufwand für die Kühlung – Erhöhung von Zuverlässigkeit und Verfügbarkeit!

Aktiv oder Passiv?

Aktiv

- Wärmeenergie durch Zuführung von "Fremd"-Energie abgeführt bzw. transportiert
- Strömung kann beeinflusst werden
- Lüfter, Pumpen, elektrophysikalische Effekte (Peltier)
- Game-PC, Server

Passiv

- Wärmeenergie wird ohne Zuführung von "Fremd"-Energie abgeführt bzw. transportiert
- Strahlung Gestaltung der Oberfläche
- Leitung Materialien mit guten Wärmeleitkoeffizient, Wärmebrücken
- Vermeidung von Wärmeisolation (Luft, Vakuum)
- Smartphone, Mini-, Micro-PC, Raspberry Pi

Entwicklung

Entwicklung

Kühlung - Passiv

Kühlung – Aktiv – Topflow-Kühler

Kühlung – Aktiv – Turm-Kühler

Kühlung – Aktiv – Radial-Kühler

Kühlung – Aktiv – Flüssigmetall-Kühlung

Kühlung – Aktiv – Peltier-Kühlung

Wärmeübergang?

- Die Wärmeübergänge sollten so effektiv als möglich gestaltet werden
- Die Grenzflächen sind nicht 100 %ig eben
- Für möglichst geringen Wärmewiderstand werden div. Hilfsmittel eingesetzt
 - Wärmeleitpaste
 - Flüssigmetall
 - Wärmeleitpad

Wärmeleitpaste

- Dient dem Ausgleich der Unebenheiten zwischen Die/Heatspreader und Kühlkörper/Collector
- Vermeidung von Lufteinschlüssen
- Silikonöl und Zinkoxid
 (Aluminium-, Graphit- oder
 Silberbestandteile leitfähig)
- Nichtleitfähige Pasten auf Kohlenstoffbasis

Werkzeuge?

- Plastikkarte,
 Reinigungstuch
- Wärmeleitpaste
- Reinigungsflüssigkeit (Isopropanol, H₂O)

Welche Menge?

- Etwa ein erbsengroßes "Stück", je nach Prozessorgröße
- Auf dem Die oder Heatspreader je nach Hotspot verstreichen
- Oder einfach dem Anpressdruck des Kühlkörpers überlassen

Wärmeleitung – Flüssigmetall?

Vorteil

- trocknet nicht aus
- Höherer
 Wärmeleitkoeffizient
- Niedrigere Temperaturen der CPU
- Nachteil
 - Reagiert mit anderen
 Metallen bes. Aluminium

Heatpipe - Aufbau

- Wartungsfreier Wärmetransporteur
- Funktioniert meist unabhängig von der Schwerkraft
- Kapilarwirkung

Heatpipe - Funktionsweise

- In der heißen Zone nimmt die Heatpipe die Wärme auf
- 2. Die enthaltende Flüssigkeit wandelt sich in ein Gas um
- 3. Dieses strömt zur anderen Seite, wo es abkühlt und sich wieder verflüssigt
- 4. Und an den Innenseiten wieder zurückläuft

Vapor Chamber

https://www.pcgameshardware.de/Grafikkarten-Kuehler-Grafikkarte-255486/Specials/2-Phasen-Kuehler-erklaert-1271045/

- 1. Verdampfung, Wärmequelle (z. B. Prozessor)
- 2. Dampfphase (verdunstetes Kühlmittel)
- 3. Abgabe der Wärmeenergie an Kühlrippen (Kondensation)
- 4. Abtransport der Wärmeenergie durch Luftströmung
- Rückfluss durch Kapillarwirkung

 $https://b2c-content hub.com/wp-content/uploads/2022/10/Vapor-Champer-Struktur_Cofan.jpg?quality=50\&strip=allarentering for the content of t$

Vapor Chamber

- Vereinfacht flache Heatpipes
- Vapour Chambers werden horizontal verwendet
- Vapour Chambers transportieren die Wärme deutlich langsamer als HP

https://www.heise.de/newsticker/meldung/Prozessor-Kuehler-mit-Vapour-Chamber-Technik-1468686.html

Vapor Chamber

	Heat Pipe	Hybrid 1-Piece Vapor Chamber	Traditional 2-Piece Vapor Chamber	
		SPREADER;COPPER; POWDER SPACER	SPREADERICOPPER) POWDER SPACER	
Initial Form Factor	Small diameter tube 3-10mm	Very large diameter tube 20- 75mm	Upper and lower stamped plates	
Shapes	Round, flattened and/or bent in any direction	Flattened rectangle, surface embossing & z-direction bendable	Complex shapes in x and y direction, surface embossing	
Typical Dimensions	3-8mm diameter or flattened to 1.5-2.5mm. Length 500mm+	1.5-4mm thick, up to 100mm W by 400mm L	2.5-4mm thick, up to 100mm W by 400mm L	
Mounting to Heat Source	Indirect contact though base plate unless flat & machined	Direct contact. Mounting pressure up to 90 PSI	Direct contact. Mounting pressure up to 90 PSI	
Relative Cost	Very cost effective, but increases quickly with large diameter, custom wick structure, secondary ops	Comparable to 2-4 heat pipes in higher power and/or high heat flux applications	More expensive than 1-piece design due to additional tooling cost and labor time, but large scale production closes the gap	

https://www.computerbase.de/2019-12/intel-ces-2020-kuehlung-vapor-chamber-graphit/

Luftkühlung

- Unterstützung der Strömung durch Ventilatoren
- Zur Beachtung
 - definierter Luftstrom
 - Keine Verwirbelungen
 - Leichter gefilterter
 Überdruck im Gehäuse
 zur Vermeidung von
 Verschmutzungen

Optimaler Luftstrom

20.01.2023

So oder so?

Wasserkühlung

- Arbeitet ähnlich einer Warmwasserheizung
- Wasser "ersetzt" den Luftstrom
- Aber nicht vollständig!
- Bauelemente sind wärmetechnisch in Reihe zu schalten
- Benötigt Lüfter für Radiatoren (Wärmetauscher)
- Luftkühlung für div.
 Bauelemente auf Motherboard
 - Spannungswandler
 - Chipsatz
 - Arbeitsspeicher

— ...

Lüftersteuerung

- Fan-Anschlüsse
 - 3-polig
 - 4-polig (geregelt)
 - 12 V
 - Möglichst großer dmr.

Flüssigmetallkühlung

- Flüssigmetall ersetzt Wasser
- Wird durch starke Magnetfelder umgewälzt
- Vorteile:
 - Keine Mechanik
 - Sehr langlebig
 - Sehr gute Kühlleistung
- Nachteile:
 - Hohe Ströme
 - Und somit starke Magnetfelder
 - Hoher Preis → 120€

Kompressorkühlung

- Funktion ähnlich Kühlschrank
- Hoher Aufwand
- Laut
- Effektiv
- Komplexer Aufbau
- Schwierig zu ergänzen und zu warten
- Probleme mit Kältemittel
- Individuallösungen

Kompressorkühlung - Funktionsweise

- 1. Verdichter/Kompressor
- 2. Hochdruckleitung (heiß), gasförmig
- 3. Verflüssiger (Kondensator, Kühlung des Kältemittels) /gasförmig zu flüssig
- 4. Lüfter
- 5. Filter /flüssig
- 6. Kapillarrohr (Drosselorgan) /flüssig
- 7. Evaporator (Verdampfer) /flüssig zu gasförmig
- 8. HX (Heatexchanger)
- 9. Anschlüsse für den Kühlkreislauf
- Niederdruck- oder auch Saugleitung /gasförmig

Weitere Lösungen...

- Peltierelemente
- Trockeneiskühlung
- Stickstoffkühlung
- "trockenes" Wasser
- Ölbad

•

Komponente	Software und Messmethode	Temperaturbereich in °C		
CPU - Kerntemperatur	Core Temp, HWINFO AMD: AMD-Overdrive, Intel: Realtemp	Bis 55	56-74	Ab 75
CPU- Spannungswandler	Temperaturfühler auf der Rückseite der Platine	Bis 55	61-89	Ab 90
Chipsatz	Temperaturfühler auf der Rückseite der Platine	Bis 50	51-59	Ab 60
Grafikkarte - GPU	GPU-Z, MSI-Afterburner	Bis 70	71-89	Ab 90
Grafikkarte - Spannungswandler	GPU-Z, MSI-Afterburner	Bis 100	101-109	Ab 110
HDD/SSD	Crystal Disk Info	Bis 45	46-59	Ab 60

Unbedenklich

Kritisch für die Lebensdauer, kurzzeitig

Abstürze, Schäden in kürzester Zeit

Lernerfolgskontrolle

- Was ist Kühlung?
- Was passiert während der Kühlung?
- Welche physikalischen Vorgänge liegen der Kühlung zu Grunde?
- Welche Arten der Kühlung kennen Sie? Nennen Sie je 2 Beispiele!
- Welcher Parameter eines Prozessors ist maßgeblich für die Dimensionierung der Kühlung bestimmend?
- Nennen Sie mindestens 4 Faktoren die diesen Parameter des Prozessors beeinflussen!
- Nennen Sie mindestens 4 aktive Kühlmöglichkeiten und erläutern Sie das Funktionsprinzip in ein bis zwei Stichpunkten!
- Zeichnen Sie in den Querschnitt eines PC den Lauf der Kühlluft und die zu verbauenden Lüfter ein!
- Nennen Sie mindestens 4 Fehler, die bei dem Aufbau der Kühlung nicht passieren dürfen!
- Welchen Zweck soll die Wärmeleitpaste erfüllen?
- Welche Bauelemente werden mit Wärmeleitpaste "verbunden"?
- Was ist beim Auftragen der Wärmeleitpaste zu beachten?
- Erläutern Sie die Funktionsweise einer Heatpipe?
- Was sind die Unterschiede zwischen aktiver und passiver Kühlung?

BERUFSFÖRDERUNGSWERK Berlin Brandenburg e. V.

Quellen

- https://www.legitreviews.com/wp-content/uploads/2014/01/Thermaltake-Core-V71-full-tower-case-is-the-ultimate-powerhouse-suitable-for-any-type-of-PC-enthusiast-%E2%80%93-no-matter-liquid-cooling-or-extreme-airflow.ipg
- https://www.computerbase.de/2018-08/cpu-tdp-verbrauch-amd-intel/
- https://www.karlrupp.net/wp-content/uploads/2013/06/tdp.png
- https://www.powerelectronicsnews.com/thermal-design-for-a-high-density-gan-based-power-stage/
- https://www.pcmasters.de/system/photos/7992/full/m_c54dc4fbcb40012cd142c7a999f79b478122142131728__m.jpg?1392720220
- http://www.sigem-elektronik.de/computer/angebot/bilder/kk_graka.jpg
- https://www.fujitsu.com/global/Images/11-1e_tcm100-1559501.jpg
- https://www.pcgameshardware.de/screenshots/medium/2009/07/ DSC5673.jpg
- https://www.allround-pc.com/wp-content/uploads/2015/03/Corsair-H110i-GT-Lieferumfang.jpg
- https://www.computerbase.de/2005-05/sapphire-entwickelt-fluessigmetallkuehlung/#bilder
- https://extreme.pcgameshardware.de/luftkuehlung/43786-howto-sammelthread-fluessigmetall-waermeleitmittel.html
- https://de.wikipedia.org/wiki/W%C3%A4rmerohr

Abschluss

Vielen Dank für Ihre Aufmerksamkeit!

Für weitere Fragen stehe ich Ihnen gerne zur Verfügung.