Visual Representation Alignment for Multimodal Large Language Models

2025.10.21 가짜연구소 박지예

Introduction

- Visual Instruction Tuning 방식을 적용한 MLLMs(Multimodal Large Language Models)이 좋은 성과를 보이고 있음
 - 사전 학습된 LLM + Vision Encoder + Projector로 구성
 - 。 LLM이 시각적 문맥을 이해하고 다양한 과제를 수행 가능
- Projector: 시각 특징을 LLM이 이해할 수 있는 언어 임베딩으로 변환

Introduction

- 이전 연구에서 정밀한 시각 이해가 필요한 과제에서 한계 존재
 - 。 기존 연구들은 <mark>원인을 Vision Encoder나 Projector의 성능 부족</mark>으로 분석
 - → 더 큰 모델 (DINOv2, CLIP 등) 이나 복잡한 프로젝터를 도입
- 하지만 이런 접근은 모델 크기 증가, 비용 상승, 확장성 저하 문제 초래

Introduction

- 대부분의 MLLM은 언어 생성 목적만으로 finetuning 되어, 시각적 정보는 **텍스트를 통해 간접적으로 학습**
 - 모델은 텍스트 예측에 필요한 정보만 남기고, 색상·위치·수량 등 세밀한 시각 정보는 잃게 됨
- 결과적으로, vision encoder 표현과 MLLM 내부 시각 표현 간 불일치(misalignment) 발생
- 이러한 문제를 해결하기 위해, 학습 중 MLLM의 내부 시각 표현을 vision encoder의 시각적 특징과 정렬
- 코사인 유사도 기반 정규화 loss로 정렬을 유도 → vision encoder의 세밀한 시각 정보가 MLLM 내부에서도 유지됨
- 더 강력한 Vision Foundation Model (VFM) 을 teacher로 사용하면 정렬 신호가 강화되어 시각 추론 성능이 향상됨

주요 기여점

- Revealed visual misalignment problem: 기존 Visual Instruction Tuning이 시각적 표현 불일치를 일으켜 시각 추론 능력 저하됨 확인
- Proposed VIRAL for visual alignment: VIRAL을 통해 encoder와 MLLM 내부 표현을 정렬, 세밀한 시각 정보 보존
- Achieved consistent performance gains: 여러 벤치마크에서 +9.4% 성능 향상, VIRAL의 효과 검증

Preliminaries

- Architecture of MLLMs
 - 입력 받은 이미지를, vision encoder(ψ)가 패치 단위로 특징 추출

$$z = V_{\psi}(I) \in \mathbb{R}^{N \times D_Z}$$
 (N: 패치 개수, D_z : 각 시각적 feature 차원의 수)

- 。 Projector(φ)를 거쳐 $e_{im,g}$ $\in \mathbb{R}^{N \times D}$ 로 변환
- 。 텍스트 입력도 동일한 임베딩 공간으로 변환 후, [시각적 feature + 텍스트]가 하나의 시퀀스로 입력됨
- 。 시각 정보를 조건으로, 순차적으로 텍스트 토큰이 생성되는 확률 추정

$$p_{\theta,\varphi}(e_{1:K}^{text} \mid e^{img}) = \prod_{i=1}^{K} p_{\theta,\varphi}(e_{1:K}^{text} \mid e^{img})$$

• MLLM은 이미지를 입력받아 다음 단어를 예측하는 Autoregressive 구조

Preliminaries

- Training Stages of MLLMs
 - 。 Vision-Language Pretraining: 이미지-텍스트 캡션 데이터를 기반으로, '이미지 → 언어' 연관성 학습
 - o Visual Instruction Tuning (VIT): 명령 기반 질의응답, 추론, 대화 학습
 - 。 텍스트 생성 중심의 Log-Likelihood Maximization 사용
 - → 시각 정보는 직접 학습되지 않고, 보조 입력 역할

$$L_{LM} = -\frac{1}{K} \sum_{i=1}^{K} log p_{\theta,\varphi}(e_1^{text} \mid e_{\leq i}^{text}, e^{img})$$

- Do MLLMs undergo visual information loss?
 - MLLM은 이미지를 토큰으로 받아들이지만, 실제로는 텍스트 예측만 보고 배우기 때문에 시각 정보는 직접적으로 지시 받지 못함
 - 따라서 모델은 단어 예측에 필요한 남기고, 세밀한 시각 정보를 점차 버리게 됨
- LLaVA 모델과 CLIP을 이용해 CKNNA 유사도를 측정한 결과, 전체적으로 시각적 특징이 손실됨
- 중간층에서 시각적 근거를 기반으로 답을 형성하기 때문에, 일시적으로 시각 정보가 다시 활용됨

- IS PRESERVING VISUAL INFORMATION BENEFICIAL?
 - 。 가설: MLLM이 중간층에서 시각적 특징을 더 보존하면, 모델의 시각 이해 능력이 향상될 것이다.
 - 。 방법: 모델의 중간층의 시각적 표현 (e^l) 에 vision encoder의 원래 시각 표현 z를 **residual connection** $e^l=e^l+P(z)$
- Vision encoder의 feature z와의 유사도 증가
- 한계: projector (P)는 요약 과정을 거치기 때문에, 원래의 시각 표현을 완벽하게 전달하지 못함

- VISUAL REPRESENTATION ALIGNMENT FOR MLLMS
 - MLLM의 중간층 시각 feature를 vision encoder의 feature space로 projection 시켜 정렬
 - Vision encoder는 frozen (gradient 역전파 X)
- 새로운 학습 가능한 projection 모듈 도입
 - MLLM 내부 중간층 시각 표현을 vision encoder의 feature space로 mapping
 - 두 표현 간 코사인 유사도를 최대화

$$L_{VRA} = 1 - \cos(P(h^l), z)$$

$$L_{total} = L_{LM} + \lambda L_{VRA}$$

- Residual Connection보다 CKNNA 유사도와 벤치마크 성능이 더 높아짐
- 중간층의 표현이 vision encoder의 표현과 일관성 유지
- 세밀한 시각적 의미 보존 향상됨
- 한계
 - o Encoder Dependence: encoder의 편향이 그대로 전이됨
 - 。 Representation Constraint: CLIP의 표현이 충분히 풍부하지 않으면 성능이 정체됨
 - 。 Alignment Target Problem: CLIP에서의 표현과 정렬시키는 것으로 충분하지 않을 수 있음

- From encoder features to other VFMs
 - 。 CLIP은 텍스트-이미지 정렬에는 강하지만, 세부적 시각 정보 보존에는 한계가 있음
 - 。 CLIP 대신, Vision Foundation Model(VFM)이 학습한 feature space에 직접 mapping 시킴
- VIRAL with Vision Foundation Models

$$L_{VRA} = 1 - \cos(P_{\pi}(h^l), v), \qquad v = E(I)$$

- o MLLM의 중간층 시각 표현이 VFM feature와 유사하도록 학습
- VIRAL이 더 구조적이고 세밀한 시각 의미 보존
- 모델이 텍스트 중심 이해에서, 시각적 이해로 확장됨

$$v = E(I)$$

- Experimental Setup
 - Baseline MLLM: LLaVA-1.5
 - LLM (Backbone): Vicuna-1.5-7B, Qwen2.5-7B, Vicuna-1.5-13B
 - Vision Encoder: CLIP, SigLIP-v2
 - Alignment Module P_{π} : 3-layer MLP + SiLU
 - Alignment Target ε(·): DINOv2
- Evaluation
 - Vision-centric (정밀 시각 추론/카운팅): CV-Bench, What's Up, MMVP
 - o Hallucination detection (시각 환각 억제): POPE, MMStar
 - General multimodal: MME

• VIRAL (L_{VRA}) 적용 효과

Language Model	Vision Encoder	$\mathcal{L}_{ ext{VRA}}$	CV-Bench ^{2D}	MMVP	What's Up	POPE	MMStar	MME
Vicuna-1.5-7B	CLIP	×	56.82% 59.67% (+2.85)	28.20% 33.33% (+5.13)	40.13% 48.55 %(+8.42)	85.70% 88.32% (+2.62)	33.93% 33.93%(±0.00)	1650.21 1694.52 (+44.31)
	SigLIPv2	×	58.90% 62.66% (+3.76)	28.22% 33.11% (+4.89)	40.90% 44.40 %(+3.50)	90.13% 90.77% (+0.64)	36.53% 37.20%(+0.67)	1738.96 1835.62 (+96.66)
Qwen2.5-7B	CLIP	×	58.97% 60.50% (+1.53)	33.47% 36.07% (+2.60)	59.08% 63.57% (+4.49)	85.88% 84.92%(-0.96)	39.20% 39.67% (+0.47)	1743.56 1765.65 (+22.09)
Vicuna-1.5-13B	CLIP	×	57.51% 58.97%(+1.46)	32.30% 37.80 %(+5.50)	44.44% 62.26% (+17.82)	87.12% 87.79% (+0.67)	34.47% 37.00% (+2.53)	1599.04 1636.62 (+37.58)

- 。 VIRAL 추가만으로 모든 조합에서 일관된 성능 향상 보임
- 강한 vision encoder (SigLIP-v2)를 쓰더라도 추가적인 성능 향상이 지속됨 (정렬 자체에서 효과가 나타남)

- Target Layers
 - 。 각 layer에 정렬 적용 실험: 매 4번째 층마다 평가 진행

VFM	Layer Index	CV-Bench ^{2D}	MMVP	What's Up	POPE	MME			
Baseline		56.82%	28.20%	40.13%	85.70%	1650.21			
Ablation studies on different VFMs									
DINOv2	16	59.67%	33.33%	48.55%	88.32%	1694.52			
CLIP	16	59.53%	29.33%	44.50%	88.10%	1548.49			
SAM	16	57.58%	30.27%	49.84%	88.34%	1648.77			
DAv2	16	58.55%	28.67%	47.29%	88.70%	1682.42			
RADIO	16	57.59%	31.80%	47.35%	88.52%	1692.94			
Ablation s	Ablation studies on different target layers								
DINOv2	4	58.55%	30.67%	45.05%	87.68%	1720.36			
DINOv2	8	58.28%	27.70%	48.32%	88.43%	1662.67			
DINOv2	12	57.77%	28.59%	48.19%	88.27%	1648.88			
DINOv2	16	59.67%	33.33%	48.55%	88.32%	1694.52			
DINOv2	20	55.22%	27.41%	48.04%	88.39%	1705.97			
DINOv2	24	55.77%	27.48%	47.99%	88.10%	1740.55			
DINOv2	28	54.87%	27.19%	47.82%	88.56%	1755.86			
DINOv2	32	56.12%	26.52%	47.60%	87.32%	1678.69			

。 16번째 layer(중간층)에서 가장 안정적인 성능 향상 → 세밀한 시각 정보가 중간층에서 가장 잘 유지됨

- Attention Analysis
 - VIRAL이 텍스트-이미지 attention map을 어떻게 변화시키는지 분석
 - 。 시각적으로 의미 있는 영역에 집중하는지 평가

- Baseline: attention이 불분명하고 분산됨
- 。 VIRAL 적용: attention이 시각적으로 의미 있는 객체 영역에 집중됨, 불필요한 영역 무시

- Robustness Analysis
 - 。 시각적 토큰 순서를 임의로 섞었을 때, 모델이 구조적 정보에 대해 민감한 정보 평가
 - 。 시각적으로 의미 있는 영역에 집중하는지 평가

Vision Enc.	$\mathcal{L}_{ ext{VRA}}$	original	patch shuffle	Δ
CLIP	×	400 414	374 360	-26 (6.5%) - 54 (13.0 %)
SigLIPv2	×	374 436	353 353	-21 (5.6%) - 83 (19.0%)

- 。 VIRAL 모델이 성능 하락폭이 더 큼
 - → 모델이 실제 공간적 정보를 더 인식하고 활용하기 때문에, 공간 관계에 더 민감함
- 。 VIRAL이 단순히 평균 성능을 향상시킬 뿐만 아니라, 세밀한 공간적 추론 능력도 강화 시킴

- Qualitative Results
 - 。 구조적으로 더 의미론적으로 일관된 feature embedding 형성

Conclusion

- VIRAL: MLLM의 내부적 시각 표현을 사전 학습된 VFM 표현과 정렬하는 효과적인 정규화 전략
- 효과
 - Fine-grained visual semantics 보존
 - o Spatial reasoning과 object grounding 강화
 - o Attention 집중도 향상

Visual Representation Alignment for Multimodal Large Language Models

- Motivation
 - 기존 MLLM은 이미지-텍스트를 함께 학습하지만, 텍스트
 예측을 중심으로 학습을 진행하기 때문에 시각 정보가 사라짐
 - ∘ Fine-grained Spatial Reasoning에서 성능 저하 발생
- Methodology: VIRAL(VIsual Representation ALignment)
 - MLLM의 중간층 시각 표현을 사전학습된 VFM의 특징과 정렬
 시키는 정규화 기법
 - 기존 LM loss에 Alignment loss(L_{VRA}) 추가
 - o Spatial reasoning과 object grounding 강화
 - Attention 집중도 향상
- Experimental Results
 - 평균 +9.4% 성능 향상 확인, 특히 시각 중심 과제(vision-centric tasks)에서 두드러짐
 - 세밀한 시각 추론 능력 향상, 객체 인식과 시각 근거(object grounding) 강화 입증

[Benchmark Performance]