CS 446: Machine Learning Homework 12

Due on April 24, 2018, 11:59 a.m. Central Time

1. [13 points] Q-Learning

(a) State the Bellman optimality principle as a function of the optimal Q-function $Q^*(s, a)$, the expected reward function R(s, a, s') and the transition probability P(s'|s, a), where s is the current state, s' is the next state and a is the action taken in state s.

Your answer:

$$Q^*(s, a) = \sum_{s' \in S} P(s'|s, a) \left[R(s, a, s') + \max_{a' \in A_{s'}} Q^*(s', a') \right]$$

(b) In case the transition probability P(s'|s,a) and the expected reward R(s,a,s') are unknown, a stochastic approach is used to approximate the optimal Q-function. After observing a transition of the form (s,a,r,s'), write down the update of the Q-function at the observed state-action pair (s,a) as a function of the learning rate α , the discount factor γ , Q(s,a) and Q(s',a').

Your answer:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \left(r + \gamma * \max_{a' \in \mathcal{A}} Q(s', a')\right)$$

(c) What is the advantage of an epsilon-greedy strategy?

Your answer:

The advantage of the epsilon-greedy strategy is that it prevents the model from falling into a suboptimal strategy by selecting a random action with some probability ϵ on every step.

(d) What is the advantage of using a replay-memory?

Your answer:

Replay-memory or experience-replay is a technique that uses a random sample of prior actions instead of the most recent action on the update step. This process removes correlations in the exploration/observation sequence and smooths changes in the data distribution.

(e) Consider a system with two states S_1 and S_2 and two actions a_1 and a_2 . You perform actions and observe the rewards and transitions listed below. Each step lists the current state, reward, action and resulting transition as: S_i ; R = r; $a_k : S_i \to S_j$. Perform Q-learning using a learning rate of $\alpha = 0.5$ and a discount factor of $\gamma = 0.5$ for each step by applying the formula from part (b). The Q-table entries are initialized to zero. Fill in the tables below corresponding to the following four transitions. What is the optimal policy after having observed the four transitions?

i.
$$S_1; R = -10; a_1: S_1 \to S_1$$

ii.
$$S_1$$
; $R = -10$; $a_2 : S_1 \to S_2$

iii.
$$S_2; R = 18.5; a_1: S_2 \to S_1$$

iv.
$$S_1$$
; $R = -10$; $a_2 : S_1 \to S_2$

Q	S_1	S_2
a_1		
a_2		

Q	S_1	S_2
a_1	•	
a_2		

Q	S_1	S_2
a_1	•	
a_2	•	

Q	S_1	S_2
a_1	•	•
a_2	•	

Your answer:

$$S_1; R = -10; a_1 : S_1 \to S_1$$

$$Q(s_1, a_1) \leftarrow \frac{1}{2} * 0 + \frac{1}{2} \left(-10 + \frac{1}{2} * \max\{0, 0\} \right)$$

$$\leftarrow -5$$

$$\boxed{\begin{array}{c|c} Q & S_1 & S_2 \\ \hline a_1 & -5 & 0 \\ \hline a_2 & 0 & 0 \\ \end{array}}$$

$$S_1; R = -10; a_2 : S_1 \to S_2$$

$$Q(s_1, a_2) \leftarrow \frac{1}{2} * 0 + \frac{1}{2} \left(-10 + \frac{1}{2} * \max\{0, 0\} \right)$$

$$\leftarrow -5$$

$$\boxed{\begin{array}{c|c} Q & S_1 & S_2 \\ \hline a_1 & -5 & 0 \\ \hline a_2 & -5 & 0 \end{array}}$$

$$S_2; R = 18.5; a_1 : S_2 \to S_1$$

$$Q(s_2, a_1) \leftarrow \frac{1}{2} * 0 + \frac{1}{2} \left(18.5 + \frac{1}{2} * \max\{-5, -5\} \right)$$

$$\leftarrow 8$$

$$\boxed{\begin{array}{c|c} Q & S_1 & S_2 \\ \hline a_1 & -5 & 8 \\ \hline a_2 & -5 & 0 \end{array}}$$

$$S_1; R = -10; a_2 : S_1 \to S_2$$

$$Q(s_1, a_2) \leftarrow \frac{1}{2} * -5 + \frac{1}{2} \left(-10 + \frac{1}{2} * \max\{8, 0\} \right)$$

$$\leftarrow -5.5$$

$$\boxed{\begin{array}{c|c} Q & S_1 & S_2 \\ \hline a_1 & -5 & 8 \\ \hline a_2 & -5.5 & 0 \\ \hline \end{array}}$$

Optimal Policy $S_1: a_1; \quad S_2: a_1$