אלגוריתמים חמדניים

אלגוריתם חמדן הוא אלגוריתם שבכל שלב מבצע בחירה ולא מתחרט עליה לאחר-מכן. אלגוריתם שכזה מתחיל לבנות פתרון, וכל חלק מהפתרון שנבחר יהיה בפתרון הסופי.

בעיית הפעילויות

יש לנו אודיטוריום אחד, וצריך לשבץ לו קבוצת פעילויות כך שרק פעילות אחת תתרחש בכל זמן נתון.

- :מופע
- $A = \{1, ..., n\}$ קבוצת פעילויות \circ
- . זמני התחלה/סיום f_i, s_i לכל פעילות סומני התחלה
- $s_j \geq f_i$ או $s_i \geq f_j$ אם אם ווען מתנגשות אם אוינן מתנגשות שתי פעילויות $i,j \in A$
 - A פתרון: תת-קבוצה חוקית ואופטימלית של \bullet
 - חוקית: תת-קבוצה נקראת חוקית אם אין בה זוג פעילויות שמתנגשות.
- אופטימלית: תת-קבוצה נקראת אופטימלית אם היא מקסימלית בגודלה כלומר אין קבוצה חוקית אחרת שהיא גדול יותר.

אלגוריתם איטרטיבי לפתרון

Activity_iter(A):

- 1. $G \leftarrow \emptyset$
- 2. $S \leftarrow A$
- 3. While $S \neq \emptyset$:
 - 3.1. $i \leftarrow$ הפעילות הראשונה שמסתיימת
 - 3.2. $S \leftarrow S \setminus \text{Collide}(i)$
 - 3.3. $G \leftarrow G \cup \{i\}$
- 4. Return G

i מחזירה את כל הפעילויות שמתנגשות עם הפעילות Collide(i) הפונקציה [נשים לב שאנו בונים פתרון ולעולם לא מורידים אפשרויות שנבחרו, ולכן זהו אלגוריתם חמדן.

ראינו הוכחה אחת בהרצאה [[מס' 3]]. כעת נראה הוכחה נוספת.

> הוכחה נוספת לזו שהייתה בהרצאה נסמן:

- "שלנו" הפתרון $-G = \{i_1, i_2, \dots, i_k\}$ •
- פתרון אופטימלי כלשהו $O = \left\{ j_1, j_2, ..., j_m \right\}$

נניח ש-O,G ממוין ע"פ זמני הסיום כך ש:

11.3.2014

$$f_{j_1} \le f_{j_2} \le \dots \le f_{j_m}$$

$$f_{i_1} \le f_{i_2} \le \dots \le f_{i_k}$$

[[אם הוא לא, ניתן למיין אותו, או לשנות את האינדקסים כך שכן יהיה ממוין, וזה עדיין יהיה אותו הפתרון.]]

- . טענה ראשית: הקבוצה G חוקית ומקסימלית:
- $l \in \{1, ..., \min\{m, k\}\}$ מתקיים $l \in \{1, ..., \min\{m, k\}\}$ סענת עזר:

הוכחת הטענה הראשית

• חוקיות:

לאחר הוספת פעילות ל- G מוסרות מ- S כל הוספת פעילות ל- G מוסרות מ- S כל הוספת פעילויות שמתנגשות בה, אזי לא ייתכן של- G הוספו זוג פעילויות שמתנגשות בה, אזי לא ייתכן של-

• <u>מקסימליות:</u>

 $k \leq m$ מאופטימליות O נובע כי

 $f_{i_{k}} \leq f_{j_{k}}$ מטענת העזר ידוע כי

. $j_{k+1} \in O$ נניח בשלילה כי קיימת

.
$$f_{i_k} \leq s_{j_{k+1}}$$
 אזי ,(O מחוקיות) $f_{j_k} \leq s_{j_{k+1}}$

אזי האלגוריתם היה בוחר ב- j_{k+1} , בסתירה לכך ש- G היא תוצאה של האלגוריתם. [G פעילות נוספת אחרי הפעילות ה- k-ית, היא בהכרח מתחילה גם אחרי כל הפעילויות שנמצאות ב- G , ולכן היא לא מתנגשת עם אף אחת מהן; במקרה זה, [G] האלגוריתם היה אמור לבחור גם את הפעילות הנוספת הזו, ואז ב- [G] היו לפחות [G] פעילויות.

הוכחת טענת העזר

: l באינדוקציה על

l=1: $\underline{co'o}$

. הפעילות היא הפעילות בעלת זמן הסיום הקטן ביותר $i_{\scriptscriptstyle 1}$

$$f_{i_{\mathrm{l}}} \leq f_{j_{\mathrm{l}}}$$
 לכן

<u>צעד</u>: •

$$1,f_{i_{k+1}} \leq f_{j_{k+1}}$$
 ונוכיח $r \in \left\{1,\ldots,k
ight\}$ לכל ל

היות וּ-O חוקית, מהנחת האינדוקציה אנו מקבלים:

$$f_{i_k} \le f_{j_k} \le s_{j_{k+1}}$$

. בשלב ה-אלגוריתם ב- בשלב ה- בשלב ה-אלגוריתם j_{k+1} נמצאת ב-

. j_{k+1} או פעילות המסתיימת לפני לכן האלגוריתם יבחר את את או פעילות המסתיימת לפני

:אזי

$$f_{i_{k+1}} \le f_{j_{k+1}}$$

ניתוח זמן ריצה

- O(n) : לולאה
- $\mathrm{O}(n)$: תלוי במימוש של Collide עבור אלגוריתם נאיבי: (Collide הפעלת הפעלת \circ
 - $O(n^2)$:סה"כ

כמובן, ניתן לייעל זאת.

אלגוריתם רקורסיבי לפתרון

Activity_rec(A):

- 1. If $A = \emptyset$
 - 1.1. Return \varnothing
- 2. Else
 - 2.1. $i \leftarrow$ הפעילות שנגמרת ראשונה
 - 2.2. $A \leftarrow A \setminus Collide(i)$
- 3. Return $\{i\} \cup Activity_rec(A)$

<u>דוגמת ריצה</u>:

סדר הפעולות שמתבצעות:

- 1. Activity_rec($\{1, 2, 3, 4, 5\}$):
 - 1.1. $i \leftarrow 2$
 - 1.2. $A \leftarrow A \setminus \{1, 2, 4\}$
 - 1.3. Return $\{2\} \cup Activity_rec(\{3,5\})$:
 - 1.3.1. $i \leftarrow 5$
 - 1.3.2. $A \leftarrow A \setminus \{3,5\}$
 - 1.3.3. Return $\{5\} \cup Activity_rec(\emptyset)$:
 - 1.3.3.1. Return ∅
 - 1.3.4. [$\{5\} \cup \emptyset = \{5\}$ is returned]
 - 1.4. $[\{2\} \cup \{5\} = \{2,5\}]$ is returned]

[[בכל קריאה רקורסיבית יש A מקומי אחר; סימנתי בכל שלב את הקבוצה שאיתה מפעילים את הפונקציה בצבע ייחודי, ואת כל השימושים באותה קבוצה באותו הצבע, ע"מ שניתן יהיה להפריד בין ה- A -ים השונים.

 $\{2,5\}$ תוצאה סופית:

הוכחה

- **.** טענה עיקרית: האלגוריתם מחזיר קבוצה חוקית ומקסימלית.
 - <u>טענה 1 נכונות הבחירה החמדנית:</u>

-תהי הסיום המוקדם ביותר הפעילות עם המוקדם ביותר החיות לא ריקה ותהי ותהי הפעילות עם המוקדם ביותר בB . B

. j אזי קיימת קובצה חוקית מקסימלית מקסימלית , $P^* \subseteq B$, P^* אזי קיימת קובצה חוקית מקסימלית

:2 טענה •

תהי $P^*\subseteq B$, חוקית מקסימלית, P^* קבוצה ריקה, תהי א קבוצת פעילויות לא ריקה, תהי א קבוצה פעילות כלשהי. $x\in P^*$

 $B \setminus \mathrm{Collide}(x)$ אזי תת-הפתרון $P^* \setminus \{x\}$ היא קבוצה חוקית מקסימלית עבור

יס , אז נקבל , x=5ין $P^*=\left\{2,5\right\}$ יבחר, אם נבחר (למשל, עבור הדוגמה הקודמת, אם נבחר

טענה זו אופטימלי עבור $P^*\setminus \{5\}=\{2\}$ הוא פתרון אופטימלי עבור . $A\setminus \mathrm{Collide}(5)=\{1,2\}$ [. $\{1,2\}$

הוכחת הטענה הראשית

באינדוקציה שלמה:

. |A| < k -פך ש- A כך שלט הנטענה נכונה לכל קלט •

תרגול 2

|A| = k צעד: עבור •

נסמן ב-i את הפעילות שנבחרה בצעד הראשון.

 $A \setminus \mathrm{Collide}(i)$ נסמן ב- Q^* את הפלט של האלגוריתם על נסמן ב- נוכיח חוקיות ואופטימליות:

<u>חוקיות</u>: ○

 $A \setminus \mathrm{Collide}(i)$ תת קבוצה מקסימלית בגודלה עבור Q^*

מהגדרתה, Q^* חוקית.

לא מתנגשת עם אף פעילות ב- Q^* , שכן Q^* הינה תת-קבוצה של פעילויות שלא i מתנגשות עם A .

אופטימליות: o

נסמן ב- P^* קבוצה חוקית מקסימלית המכילה את i (קיימת כזו מטענה 1). מטענה 2 נובע כי $P^*\setminus \left\{i\right\}$ היא קבוצה חוקית מקסימלית עבור הבעיה . $A\setminus \mathrm{Collide}(i)$

ער ש: Q^* אזי הקריאה הרקורסיבית אזי אזי הקריאה הרקורסיבית

$$|Q^*| = |P^* \setminus \{i\}|$$

אזי $\left|G\right|=\left|Q^*\right|+1$ [כאשר G הוא הפתרון הנבחר ע"י האלגוריתם (הפתרון "שלנו")]. "שלנו")

$$\begin{aligned} \left| P^* \setminus \{i\} \right| &= \left| Q^* \right| \\ &\downarrow \\ \left| P^* \right| &= \left| Q^* \right| + 1 \\ &\downarrow \\ \left| G \right| &= \left| P^* \right| \end{aligned}$$

. ולכן G אופטימלית

הוכחת טענה 1

יהי $P^{**} \subseteq B$ פתרון אופטימלי.

אם P^{**} מכילה את p^{**}

אם אחרי פעילות אחרי פעילות (i) אזי הפעילות הראשונה אחרי אזי הפעילות אזי הפעילות אזי אזי הפעילות אחרי אזי f אזי הפעילות הזמן).

. אזי $\{j\} \cup \left(P^{**} \setminus \{i\}
ight)$ חוקית ואופטימלית

11.3.2014

2 הוכחת טענה

.x קבוצה חוקית מקסימלית המכילה את $P^* \subset B$ תהי

חוקיות:

.[חוקית שכן P^* חוקית אוקית פעילויות אוקית אוקית ווהסרת פריע חוקית אוקית ווקית פריע חוקית אוקית ווהסרת פריע חוקית אוקית

<u>אופטימליות</u>: ●

. $B \setminus \mathrm{Collide}(x)$ אינה פתרון אופטימלי ל- $P^* \setminus \left\{x\right\}$ כניח בשלילה כי

 $.\left|Q\right|\!>\!\left|P^*\setminus\!\left\{x\right\}\right|$ כך ש- $B\setminus\mathrm{Collide}(x)$ אזי קיים פתרון Q ל-

אף פעילות ב- $Q \cup \{x\}$ אינה מתנגשת עם , לכן $Q \cup \{x\}$ חוקית.

:אזי

$$|Q \cup \{x\}| > |P^* \setminus \{x\}| + 1$$

$$\downarrow \qquad \qquad |Q \cup \{x\}| > |P^*|$$

. P^* בסתירה לאופטימליות של

ניתוח זמן ריצה

-במקרה הגרוע ביותר, שבו אין התנגשויות כלל, הפונקציה מתבצעת n פעמים ובכל פעם הקריאה ל-Collide . $\mathrm{O}(n)$

ליתר דיוק, זמני הריצה של Collide בכל הקריאות הרקורסיביות הן סכום הסדרה החשבונית:

$$n+(n-1)+(n-2)+\cdots+1=\frac{(1+n)n}{2}=O(n^2)$$

[ושוב, כמובן, ניתן לייעל זאת.]

אלגוריתם איטרטיבי נוסף

Activity_iter_2(A):

- 1. $G \leftarrow \emptyset$
- 2. $S \leftarrow A$
- 3. $f \leftarrow 0$
- 4. While $S \neq \emptyset$:

4.1. $i \leftarrow$ הפעילות המסתיימת ראשונה

4.2. $S \leftarrow S \setminus \{i\}$

4.3. If
$$s_i > f$$
:
4.3.1. $G \leftarrow G \cup \{i\}$
4.3.2. $f \leftarrow f_i$

5. Return G

המשתנה f מייצג את זמן הסיום של הפעילות האחרונה שנבחרה עד כה (ולכן הוא למעשה מציין מאיזו שעה האודיטוריום שלנו פנוי).

- אם הרשימה ממוינת, הלולאה מתבצעת בסיבוכיות של $\mathrm{O}(n)$ (כי מציאת הפעילות המסתיימת ראשונה מתבצעת ב- $\mathrm{O}(1)$
 - $\mathrm{O}(n\log n)$ מיון רשימת הפעילויות מראש מתבצעת בסיבוכיות של ullet
 - $\mathrm{O}(n\log n)$ לכן ניתן לבצע את האלגוריתם הנ"ל בסיבוכיות כוללת של ullet

המלצה לשיעורי הבית

נסו לחשוב כיצד אתם מיישמים את השיטות שנלמדו בכיתה בבעיות הנתונות. 99% מהבעיות שניתנות בשיעורי הבית פתירות כך; לא מצפים מהסטודנטים למצוא שיטות חדשות לפתירת השאלות.