Reproducibility

Principles and Practice

Daniela Palleschi

2024-04-30

Table of contents

1	The	replication crisis	2
2	Rep	roducibility	2
	2.1	What should (ideally) be shared?	2
	2.2	Linguistic research	
	2.3	Journal of Memory and Language	4
3	FAII	R data	4
	3.1	Findable	6
	3.2	Accessible	7
	3.3	Interoperable	7
	3.4	Reusable	7
	3.5	Task: finding data	7
4	Data and code availability		
	4.1	Data and code \neq Reproducibility	9
	4.2	Share the code, not just the data	9
5	Reproducible workflow 1		
	5.1	Project management	10
	5.2	Literate programming	10
	5.3	Documentation	10
	5.4	Version control	10
	5.5	Persistant (pubic) storage	11
	5.6	Writing	11
6	Sett	ting up a project	12

Important terms 12

Learning Objectives

Today we will learn about...

Resources

• this lecture covers

1 The replication crisis

2 Reproducibility

- generating the same results with the same data and analysis scripts
 - seems obvious, but requires organisation and forethought
- bare minimum: share the code and the data (Laurinavichyute et al., 2022)
- rates of reproducibility across fields (Bochynska et al., 2023)
 - open access: 25-65%
 - data and analyses sharing: 11-33%
 - pre-registrations: 0-3%
- Journal of Memory and Language (JML) (Laurinavichyute et al., 2022)

_

2.1 What should (ideally) be shared?

- materials
 - stimuli
 - experiment set-up
- documentation
 - README
 - metadata

- data
 - raw
 - * e.g., text files, audio, video, or images
 - processed
- analysis code
 - pre-processing
 - analyses
- materials are helpful for replication
 - but also for inspection of e.g., design
- necessary for reproducibility
 - along with proper documentation of software used

2.2 Linguistic research

Figure 2: Percentages of the available and not available materials, raw data, processed data, and analysis scripts for the pre-RC (left) and post-RC (right) time windows, displayed separately for primary data (Primary) and secondary data (Secondary), for the empirical study articles in the sample. The Other category was excluded.

Figure 1: Source: Bochynska et al. (2023), p. 11 (all rights reserved)

- meta-analysis of 519 randomly sampled articles from various linguistic journales
 - pre- and post-reproducibility crisis (2008/9, 2018/19) (Bochynska et al., 2023)
 - differentiated between primary (collected for study) and secondary (pre-existing) data
- found a slight increase in shared materials, data, and analyses
 - but still low rates of each
- higher rates of secondary data sharing, presumably due to publicly available corpora

2.3 Journal of Memory and Language

- meta-analysis of articles from JML (Laurinavichyute et al., 2022)
 - before and after an Open Science Policy was introduced in 2019

Figure 2: Source: Laurinavichyute et al. (2022), p. 5 (all rights reserved)

- code and data availability improved
- but reproducibility rate ranged from 34-56%, depending on criteria
- higher rates compared to field-wide meta-analysis (Bochynska et al., 2023)

3 FAIR data

- refers broadly to data, but we'll consider it in terms of analyses
- findable and accesssible refer to where materials are stored
 - in *findable* repositories
 - that are accessible, i.e., do not require an account
- interoperable and reusable emphasis the format of data (and code)

Figure 3: Source: National Library of Medicine (all rights reserved)

- the importance of future use
- and use beyond your precise computational environment
- a great way to test the FAIR principles
 - code review!
 - i.e., have a colleague try to access your data/run your code
 - * either via an online repository
 - * or send them your project folder
- Findable
 - refers to data and supplementary materials
 - persistant and unique identifer
 - relevant metadata
- Accessible
 - human-readable
 - available on a trusted repository, e.g., the OSF
- Interoperable
 - not dependent on an operating system
 - nor entirely on software/package versions
- Reusable
 - data should be reusable for future research
 - we can swap with 'reproducible' in the context of analyses

3.1 Findable

- materials should have a "persistant identifier"
 - e.g., Digital Object Identifier (DOI) for scholarly articles
- a digital, long-term storage of data
 - not on a personal or professional website
 - GitHub files don't typically have sufficient metadata
 - ideally: OSF, Zenodo or some other repository
- in recent papers, an OSF link is typically provided
- also: discoverable
 - e.g., in data-specific search engines (Google's Dataset search)

3.2 Accessible

3.3 Interoperable

3.4 Reusable

3.5 Task: finding data

Go to datasetsearch.research.google.com/

- do a search for data related to a topic of interest to you
- what type of information does the search provide?
- what type of links?
- do you find analysis code, or just data?
- do the same search at osf.io
- and at zenodo.org/
 - are there the same amount of hits?

4 Data and code availability

- "data available upon (reasonable) request"
 - generally not true
- \bullet data was not available in 68% of the most cited psychology studies (2006-2016) (Hardwicke & Ioannidis, 2018)
 - a further 18% were available with restrictions
 - only 11% available without restriction

Figure 4: Source: Hardwicke & Ioannidis (2018), p. 6 (all rights reserved)

4.1 Data and code \neq Reproducibility

- access to data and code do not mean analyses are reproducible
- what can go wrong?
- 1. Data problems
 - inaccessible data
 - incomplete data (e.g., 2/3 experiments)
- 2. Code problems
 - incomplete code
 - error messages
 - code rot: outdated syntax or environment
 - proprietary software
- 3. Documentation problems
 - data difficult to interpret
 - no README file/data dictionary
 - unclear folder/file/variable naming convention
 - manuscript contradicts code
- 4. Unclear terms of use
 - no licence specification

4.2 Share the code, not just the data

- suggestions for researchers from Laurinavichyute et al. (2022)
- 1. Share data in usable form
 - with pre-processing code
- 2. Use publicly accessible repositories
- 3. Use non-proprietary data formats
 - e.g., not .mat files (MATLAB)
- 4. Provide documentation
- 5. Share code and data
 - they estimate a 38% increase in reproducibility
 - different results can b
- 6. Teach data management and computing skills

5 Reproducible workflow

- project-oriented
- project-specific
- contained in a single project folder
- we will be using RProjects

5.1 Project management

- folder structure
- project-relative file paths
- appropriate documentation
 - e.g., README

5.2 Literate programming

- code is linear
- concise commenting
- one script per goal
- file paths are preferably interoperable
- facilitates maintainence

5.3 Documentation

- metadata
 - project README
 - codebook/data dictionary

5.4 Version control

- git: local tracking
- useful for the analysis and writing phases
 - but can be tricky for collaboration
- GitHub/GitLab: remote tracking
 - store your changes to your local git repository

- then push them to your remote repository
- safe guards against local hardware/software issues
 - lost or damaged computer or local files
- and allows for collaboration or sharing

5.5 Persistant (pubic) storage

- GitHub/Lab are sub-optimal
 - developer-focused
 - typically lack thorough documentation/metadata
 - not very user-friendly for non-users
- OSF, Zenodo
 - Open Science-focused
 - can be linked to a GitHub/Lab repository
 - facilitate thorough documentation
 - user-friendly

5.6 Writing

- dynamic reports with Markdown syntax
 - e.g., Rmarkdown, Quarto
 - integration of data, code, and prose
 - * facilitates cross-referencing within document
 - * integration of citation management tools
 - * supports LaTeX syntax for example sentences and tables
- papaja package for APA-formatted Rmarkdown documents
- challenge: collaboration
 - not all collaborators know these tools
 - track changes not currently possible
 - some tools to facilitate version control with dynamic reports
 - * trackdown package: link an .Rmd file with a Google Doc
 - * GitHub/Lab: push and pull changes to source code

6 Setting up a project

- next week: hands-on
- required installations/recent versions of:
 - R
- * version 4.4.0, "Puppy Cup"
- * check current version with R.version
- * download/update: https://cran.r-project.org/bin/macosx/
- RStudio
 - * version 2023.12.1.402, "Ocean Storm"
 - * Help > Check for updates
 - * new install: https://posit.co/download/rstudio-desktop/

Learning objectives

Today we learned...

•

Important terms

References

Bochynska, A., Keeble, L., Halfacre, C., Casillas, J. V., Champagne, I.-A., Chen, K., Röthlisberger, M., Buchanan, E. M., & Roettger, T. B. (2023). Reproducible research practices and transparency across linguistics. *Glossa Psycholinguistics*, 2(1). https://doi.org/10.5070/G6011239

Hardwicke, T. E., & Ioannidis, J. P. A. (2018). Populating the Data Ark: An attempt to retrieve, preserve, and liberate data from the most highly-cited psychology and psychiatry articles. *PLOS ONE*, 13(8), e0201856. https://doi.org/10.1371/journal.pone.0201856

Laurinavichyute, A., Yadav, H., & Vasishth, S. (2022). Share the code, not just the data: A case study of the reproducibility of articles published in the Journal of Memory and Language under the open data policy. *Journal of Memory and Language*, 125, 12.