Universidade Estadual Paulista "Júlio de Mesquita Filho"

Notas de aula Sistemas p-fuzzy

Prof. Dr. Vinícius Francisco Wasques viniciuswasques@gmail.com

17 de janeiro de 2022

α -níveis de conjuntos fuzzy

A partir da ideia de fixar níveis de associação de um elemento x em um determinando conjunto fuzzy A, definimos o conceito de α -níveis, em que α é um valor no intervalo [0,1] que representa o grau de associação do elemento x. Assim,

$$[A]^\alpha=\{x\in U:\varphi_A(x)\geq\alpha\}, \text{ se }\alpha\in(0,1].$$

$$[A]^0=\overline{\{x\in U:\varphi_A(x)>0\}}.$$

em que a notação \overline{Y} representa o fecho de um subconjunto Y.

Observação: é importante ressaltar que o 0-nível está definido apenas no caso em que U é um espaço topológico.

Pergunta: Quais propriedades os α -níveis de um conjunto fuzzy possuem?

1. Se $0 \le \alpha \le \beta \le 1$, então $[A]^{\beta} \subseteq [A]^{\alpha}$.

Dem: Vamos provar que esse resultado de fato é válido. Primeiro vamos supor $\alpha>0$. Seja $x\in [A]^{\beta}$. Assim, temos que $\varphi_A(x)\geq \beta$. Por hipótese, temos que $\beta\geq \alpha$. Logo, $\varphi_A(x)\geq \beta\geq \alpha$. Portanto, $\varphi_A(x)\geq \alpha$, e assim, $x\in [A]^{\alpha}$.

Por fim, vamos supor que $\alpha=0$. Seja $x\in [A]^{\beta}$. Assim, $\varphi_A(x)\geq \beta$. Como $\beta\geq \alpha$, por hipótese, então $\varphi_A(x)\geq \beta\geq \alpha=0$. Lembre-se que, para $\alpha=0$, temos que $[A]^0=\overline{\{x\in U: \varphi_A(x)>0\}}$.

Se
$$\varphi_A(x)>0$$
, então $x\in\{x\in U:\varphi_A(x)>0\}\subseteq\overline{\{x\in U:\varphi_A(x)>0\}}=[A]^0$.

Se
$$\varphi_A(x) = 0$$
, então $x \in [A]^{\beta} = [A]^0 = [A]^{\alpha}$.

2. Sejam A e B dois subconjuntos fuzzy de U. Assim, A=B se, e somente se $[A]^{\alpha}=[B]^{\alpha}$, para todo $\alpha\in[0,1]$.

Exercício (para entregar):

- 1. Prove a propriedade 2 acima.
- 2. O núcleo de conjunto fuzzy A é definido pelos elementos que tem total associação com o conjunto fuzzy A, isto é, $Nuc(A) = [A]^1$.
 - Por outro lado, o suporte de um conjunto fuzzy é definido pelos elementos que tem alguma associação não nula com o conjunto fuzzy A, isto é, $supp(A) = \{x \in U : \varphi_A(x) > 0\}$.
 - O diâmetro (ou chamado também de largura) de um conjunto fuzzy é definido pelo tamanho de seu 0-nível, e está associado com a maior incerteza que ele modela.

Sabendo disso, considere o seguinte conjunto fuzzy:

$$\varphi_A(x) = \begin{cases} x, & \text{se } 0 \le x \le 1 \\ 1, & \text{se } 1 \le x \le 3 \\ 4 - x, & \text{se } 3 \le x \le 4 \\ 0, & \text{caso contrário} \end{cases} \tag{1}$$

Determine o núcleo, suporte e o diâmetro do conjunto fuzzy A.

- 3. Desenhe um conjunto fuzzy que cumpre as seguintes propriedades:
 - (a) O núcleo é vazio;
 - (b) O 0.5-nível é dado por dois intervalos disjuntos;
 - (c) O 0-nível é dado pelo conjunto universo $U=\mathbb{R}.$