Discrete Mathematics

Venkata Abhiram Madhuvarasu

Homework 1

1. Prove that there is no positive integer n such that $n^2 + n^3 = 100$. Given n belongs to Z^+ ,

$$n^2 + n^3 = 100$$
$$n^2(n+1) = 100$$

Let's presume the assumption that \exists n which satisfies the condition which means n^2 is a factor of 100

The factors of 100 which are perfect squares are

$$n^2 = 1, 4, 25, 100$$

 $\Rightarrow n = 1, 2, 5, 10$

By using induction, our assumption is wrong.

This proves that there is no positive integer n such that $n^2 + n^3 = 100$

2. Prove that $n^2 + 1 \ge 2^n$ when n is a positive integer with $1 \le n \le 4$ Given to prove $n^2 + 1 \ge 2^n$ when n is a positive integer with $1 \le n \le 4$

$$n^2 + 1 \ge 2^n$$
$$\Rightarrow n^2 - 2^n \ge -1$$

Let's see how the function $f(n) = n^2 - 2^n$ acts in our domain $n \in [1, 4]$.

$$df/dn = 2n - 2^n ln2$$

For $n = 1, f(n) = -1$

Differential is grater than zero for $1 \le n \le 3$

 \Rightarrow f(n) is *increasing* in this interval

But it starts decreasing from somewhere between 3 and 4 as differential f(4) is negative.

$$f(4) = 0$$

So, the function f(n) increases from -1 and decreases to 0 in the interval [1,4].

$$\Rightarrow n^2 - 2^n \ge -1$$
 for the interval $n \in [1, 4]$

Hence $n^2 + 1 \ge 2^n$ for interval $n \in [1, 4]$

3. Find a compound proposition involving the propositional variables p, q, r, and s that is true when exactly three of these propositional variables are true and is false otherwise

The compound proposition given below gives true when any 3 out of 4 variables are true.

$$(\neg p \cap q \cap r \cap s) \cup (p \cap \neg q \cap r \cap s) \cup (p \cap q \cap \neg r \cap s) \cup (p \cap q \cap r \cap \neg s)$$

4. Let P(x) and Q(x) be propositional functions. Show that $\exists x (P(x) \to Q(x))$ and $\forall x P(x) \to \exists x Q(x)$ always have the same truth value

The first proposition $\exists x(P(x) \to Q(x))$ is same as $\exists x(\neg (P \cap \neg Q))$

As we know that $\neg(\neg(P)) = P$ and $\neg(P \to Q)$ is equivalent to $P \cap \neg Q$.

The second proposition $\forall x \ P(x) \to \exists x \ Q(x)$ is true except when $[\forall x \ P(x)]$ is true and $\exists x \ Q(x)$ is false $[\forall x \ P(x)]$

Now, the first proposition is only false when [P is true and Q is false] for $\exists x$ which is same as $\exists x \ Q(x)$ is false and $\forall x \ P(x)$ is true.

Hence the both propositions have same truth table.

5. Suppose that A and B are sets such that the power set of A is a subset of the power set of B. Does it follow that A is a subset of B.

Given power set of A is a sub set of power set of B.

Let's denote P(A) to be the power set of A: it's elements are subsets of A.

$$\Rightarrow P(A) \subseteq A$$

As we know that any set S is subset of it's own set S

$$\Rightarrow SetA \in P(A)$$

From the conditions,

$$P(A) \subset P(B) \text{ and } P(B) \subseteq B$$

 $\Rightarrow P(A) \subset P(B) \subseteq B$
 $\Rightarrow P(A) \subset B \text{ [Set } A \in P(A)\text{]}$
 $\Rightarrow A \subset B$

Hence, we conclude that A is subset of B.

6. Let A and B be sets. Show that $A \subseteq B$ if and only if $A \cap B = A$

To show that $A \subseteq B \Leftrightarrow A \cap B = A$

 $A \subseteq B \Rightarrow$ Every element of set A is in set B. [Subset definition]

Formal definition of intersection of 2 sets:

Given two sets, say (A) and (B), the **intersection** of these sets consists of all elements that are **common to both** (A) and (B).

In our case of A and B,

 $A \subseteq B$ [Every element of A is in B.]

 \Rightarrow Common elements of A and B is/are in set A.

$$\Rightarrow A \cap B = A$$

Hence, we showed that $A \subseteq B \Leftrightarrow A \cap B = A$