Détecter les faux billets

Septembre 2021

PLAN

Introduction

- 1. Présentation du jeu de données
- 2. Analyse univariée
- 3. Analyse bivariée
- 4. Analyse en composantes principales ACP
- 5. Classification non supervisée: K-means
- 6. Classification supervisée: la régression logistique
- 7. Test du programme avec le jeu de données

Conclusion

Introduction

Dans le cadre de la lutte contre la criminalité organisée, à l'Office central pour la répression du faux monnayage au Ministère de l'intérieur, ma société de consulting informatique me propose de créer un algorithme de détection de faux billets.

1. Présentation du jeu de données

dataframe data contient:

- 170 lignes
- 7 colonnes

	is_genuine	diagonal	height_left	height_right	margin_low	margin_up	length
0	True	171.81	104.86	104.95	4.52	2.89	112.83
1	True	171.67	103.74	103.70	4.01	2.87	113.29
2	True	171.83	103.76	103.76	4.40	2.88	113.84
3	True	171.80	103.78	103.65	3.73	3.12	113.63
4	True	172.05	103.70	103.75	5.04	2.27	113.5
		7222	100	322	500	822	92.
165	False	172.11	104.23	104.45	5.24	3.58	111.78
166	False	173.01	104.59	104.31	5.04	3.05	110.9
167	False	172.47	104.27	104.10	4.88	3.33	110.6
168	False	171.82	103.97	103.88	4.73	3.55	111.87
169	False	171.96	104.00	103.95	5.63	3.26	110.96

Détections des outliers

Grâce à l'écart interquartile on a détecté 5 outliers

	is_genuine	diagonal	height_left	height_right	margin_low	margin_up	length
34	True	172.75	104.33	103.97	4.34	3.14	113.12
70	True	171.04	103.84	103.64	4.22	3.36	112.70
166	False	173.01	104.59	104.31	5.04	3.05	110.91
0	True	171.81	104.86	104.95	4.52	2.89	112.83
4	True	172.05	103.70	103.75	5.04	2.27	113.55

Nouveau dataframe

Le nouveau dataframe a :

- 165 lignes
- 7 colonnes

	is_genuine	diagonal	height_left	height_right	margin_low	margin_up	length
0	True	171.67	103.74	103.70	4.01	2.87	113.29
1	True	171.83	103.76	103.76	4.40	2.88	113.84
2	True	171.80	103.78	103.65	3.73	3.12	113.63
3	True	172.57	104.65	104.44	4.54	2.99	113.16
4	True	172.38	103.55	103.80	3.97	2.90	113.30
160	False	171.43	104.26	103.97	5.73	3.14	111.82
161	False	172.11	104.23	104.45	5.24	3.58	111.78
162	False	172.47	104.27	104.10	4.88	3.33	110.68
163	False	171.82	103.97	103.88	4.73	3.55	111.87
164	False	171.96	104.00	103.95	5.63	3.26	110.96

165 rows × 7 columns

2. Analyse univariée

- Ona 165 individus
- la diagonale moyenne est 171.93
- hauteur moyenne à gauche est 104.06
- hauteur moyenne à droite est 103.92
- marge moyenne du bas est 3.17
- marge moyenne du haut est 4.61
- longueur moyenne est 112.56

	diagonal	height_left	height_right	margin_low	margin_up	length
count	165.000000	165.000000	165.000000	165.000000	165.000000	165.000000
mean	171.934788	104.060364	103.922182	4.611515	3.177333	112.568848
std	0.283232	0.290726	0.323860	0.710143	0.227564	0.925008
min	171.130000	103.230000	103.140000	3.540000	2.560000	109.970000
25%	171.730000	103.850000	103.690000	4.050000	3.020000	111.850000
50%	171.940000	104.050000	103.950000	4.450000	3.180000	112.850000
75%	172.130000	104.280000	104.170000	5.140000	3.330000	113.290000
max	172.590000	104.720000	104.860000	6.280000	3.680000	113.980000

Proportion des individus

	diagonal	height_left	height_right	margin_low	margin_up	length
is_genuine						
False	69	69	69	69	69	69
True	96	96	96	96	96	96

3. Analyse bivariée

Boxplot des diagonales des billets

• False min: 171.4

médiane: 171.84

max: 172.5

True

min: 171.38 médiane: 172

max: 172.6

Boxplot de height_left

False

min: 103.8

mediane: 104.2 max: 104.67

True

min: 103.22

mediane:103.85

max: 104.62

Boxplot de height_right

False

min: 103.73

mediane: 104.20

max: 104.70

True

min: 103.15

mediane: 103.75

max: 104.48

Boxplot de margin_low

• False min: 3.7

mediane: 5.25

max: 6.4

True min: 3.5 mediane: 4.1

max: 4.9

Boxplot de margin_up

• False min: 3

mediane: 3.35

max: 3.7

• True min: 2.7

mediane: 3.1

max: 3.5

Boxplot de length

• False min: 110.4

mediane: 111.8

max: 113

True

min: 112.45

mediane: 113.25

max: 114

Matrice de corrélation

On note une bonne corrélation entre Height_left et hight_right.

33	diagonal	height_left	height_right	margin_low	margin_up	length
diagonal	1.000000	0.319584	0.220418	-0.181020	-0.027366	0.080295
height_left	0.319584	1.000000	0.734390	0.424530	0.324788	-0.421387
height_right	0.220418	0.734390	1.000000	0.509375	0.366918	-0.417021
margin_low	-0.181020	0.424530	0.509375	1.000000	0.171113	-0.637352
margin_up	-0.027366	0.324788	0.366918	0.171113	1.000000	-0.525284
length	0.080295	-0.421387	-0.417021	-0.637352	-0.525284	1.000000

4. ACP

Eboulis des valeurs propres:

L'axe 1 et 2 représentent 70% de l'inertie totale.

On va baser notre analyse sur le 1er plan factoriel

Cercle de corrélations et projection des individus

Qualité de représentation des individus

	is_genuine	COS2_1	COS2_2	premier_plan
35	True	2.5	0.0	3.5
160	False	6.9	4.3	11.2
43	True	3.9	6.3	11.2
88	True	2.3	13.6	16.9
52	True	7.7	10.6	19.3

Ws.	_genuine	CO\$2_1	CO\$2_2	premier_plan
90	True	89.8	6.1	96.9
45	True	63.1	33.1	97.2
46	True	96.2	0.3	97.5
143	False	97.3	0.8	98.1
148	False	57.8	41.1	98.9

Les 5 billets avec la pire qualité de représentation

Les 5 billets avec la meilleure qualité de représentation

Contribution des individus aux axes

0	is_genuine	CTR_1	CTR_2	premier_plan
49	True	1.96	0.75	3.71
34	True	0.01	3.33	4.34
70	True	0.22	3.15	4.37
166	False	1.38	3.79	5.17
5	True	0.32	3.97	5.29

Les 5 billets avec la meilleure
contribution dans le 1er plan
factoriel

	204 PM 000 TM 2100			hi
	is_genuine	CIR_1	CIR_2	premier_plan
102	False	0.17	0.01	0.18
118	False	0.25	0.01	0.26
114	False	0.30	0.00	0.30
128	False	0.31	0.02	0.33
150	False	0.30	0.05	0.35

Les 5 billets avec la pire contribution dans le 1er plan factoriel

5. Classification non supervisée K-Means

- les 2 ensembles sont nettement séparés
- on constate 7 faux positifs
- et 1 faux négatif

ANOVA

H0: diagonal est corrélée à la variable is_genuine

H1: il n'y a pas de corrélation entre diagonal et is_genuine.

La p_valeur de l'ANOVA entre diagonal et is_genuine est 0.07. Donc p_valeur > 0.05.

On rejette l'hypothèse H0

Variables explicatives	variable à expliquer	p_valeur
heigth_right	is_genuine	6.66e-15
height_left	is_genuine	2.33e-10
margin_low	is_genuine	3.94e-39
margin_up	is_genuine	7.56e-17
length	is_genuine	1.23e-43
diagonal	is_genuine	0.07

6. Régression logistique

L'objectif de la régression logistique est de **modéliser**, de **classifier**, une variable binaire prenant ses valeurs dans {0,1} en fonction de variables explicatives quantitatives (et potentiellement qualitatives).

Ce modèle permet de prédire la probabilité qu'un événement se produise (p=1) ou pas (p=0)

Fonction logit

La régression logistique utilise une fonction logistique comme fonction de lien.

La fonction qui remplit le mieux ces conditions est la fonction sigmoïde, définie sur R à valeurs dans [0,1]. Elle s'écrit de la manière suivante :

$$Y = \frac{1}{1 + e^{-X}}$$

Matrice de confusion

Vrai négatif: 17

Faux négatif: 1

Vrai positif: 23

Faux positif: 2

	0	1
0	17	2
1	1	23

Les metrics

Taux de succès : probabilité de bon

classement du modèle

Sensibilité : capacité du modèle à

retrouver les positifs

Précision: proportion de vrais

positifs parmi les individus classés

positifs

	Données Test	Données Train
Taux de succès	0.93	1
Précision	0.92	1
Rappel ou Sensibilité	0.95	1

Quelques étapes de la régression logistique

- Partitionnement des données (apprentissage et test)
 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
- Création de la fonction Régression logistique reg_log = LogisticRegression(solver='liblinear') reg_log.fit(x_train, y_train)
- Sauvegarde de prédictions des données test y_pred = reg_log.predict(x_test)
- Probabilités des événements de x_test via la méthode predict_proba()
 y_pred_proba = reg_log.predict_proba(x_test)

7. Test du programme avec le jeu de test donné par l'évaluateur

Conclusion

L'étude de ce projet nous a permis de revoir l'analyse univariée et bivariée, l'ACP et la classification non supervisée avec le K-means.

En plus de cela, nous avons découvert un nouvel outil qui nous permet de prédire des modèles avec la régression logistique.

Sources

Cours OpenClassrooms

http://eric.univ-lyon2.fr/~ricco/cours/slides/regression_logistique.pdf

https://whatis.techtarget.com/fr/definition/Regression-logistique

https://fr.wikipedia.org/wiki/Fonction_logistique_(Verhulst)

https://pingouin-stats.org/generated/pingouin.anova.html?highlight=anova#pingouin.anova

https://www.youtube.com/watch?v=hNRDLVpzYgl&ab_channel=INTECHWETRUST

etc

Merci de votre attention

Présenté par Yaya CISSE