Codici prefissi

Un *codice prefisso* è un codice in cui nessuna parola codice è prefisso (parte iniziale) di un'altra

Ogni codice a lunghezza fissa è ovviamente prefisso.

Ma anche il codice a lunghezza variabile che abbiamo appena visto è un codice prefisso.

Codifica e decodifica sono semplici con i codici prefissi.

Con il codice prefisso

carattere	a	b	С	d	е	f
cod. var.	0	101	100	111	1101	1100

la codifica della stringa **abc** è **0101100**

La decodifica è pure semplice.

Siccome nessuna parola codice è prefisso di un'altra, la prima parola codice del file codificato risulta univocamente determinata.

Per la decodifica basta quindi:

- 1. individuare la prima parola codice del file codificato
- 2. tradurla nel carattere originale e aggiungere tale carattere al file decodificato
- 3. rimuovere la parola codice dal file codificato
- 4. ripetere l'operazione per i caratteri successivi

Ad esempio con il codice

carattere	a	b	С	d	е	f
cod. var.	0	101	100	111	1101	1100

la suddivisione in parole codice della stringa di bit 001011101 è 0·0·101·1101 a cui corrisponde la stringa aabe

Per facilitare la suddivisione del file codificato in parole codice è comodo rappresentare il codice con un albero binario.

Esempio: il codice a lunghezza fissa

carattere	a	b	С	d	е	f
frequenza	57	13	12	24	9	5
cod. fisso	000	001	010	011	100	101

ha la rappresentazione ad albero

In realtà, come albero binario, la rappresentazione sarebbe

Noi eliminiamo le foglie e chiamiamo foglie i nodi interni senza figli

Il codice a lunghezza variabile

carattere	a	b	С	d	е	f
frequenza	57	13	12	24	9	5
cod. var.	0	101	100	111	1101	1100

è rappresentato

La lunghezza in bit del file codificato con il codice rappresentato da un albero T è:

$$B(T) = \sum_{c \in \Sigma} f_c d_T(c)$$

in cui la sommatoria è estesa a tutti i caratteri c dell'alfabeto Σ , f_c è la frequenza del carattere c e $d_T(c)$ è la profondità della foglia che rappresenta il carattere c nell'albero T

Nota: assumiamo che l'alfabeto Σ contenga almeno due caratteri. In caso contrario basta un numero per rappresentare il file: la sua lunghezza

La lunghezza in bit del file codificato è anche:

in cui la sommatoria è estesa alle frequenze x.f di tutti i nodi interni x dell'albero T.

Costruzione dell'albero di Huffman:

carattere	a	b	C	d	е	£
frequenza	57	13	12	24	9	5

$$Q \implies \boxed{f:5} \implies \boxed{e:9} \implies \boxed{c:12} \implies \boxed{b:13} \implies \boxed{d:24} \implies \boxed{a:57}$$

Implementazione dell'algoritmo goloso di Huffman

```
Huffman(c, f, n)
  Q = \emptyset
                         // coda con priorità
  for i = 1 to n
    Push(Q, Nodo(f_i, c_i))
  for j = n downto 2
    x = ExtractMin(Q)
    y = ExtractMin(Q)
    Push(Q, Nodo(x, y))
  return ExtractMin(Q)
```

Nodo(f, c) costruttore dei nodi foglia Nodo(x, y) costruttore dei nodi interni

Assumendo che la coda Q venga realizzata con un heap, le operazioni Insert ed ExtractMin richiedono tempo $O(\log n)$.

Pertanto l'algoritmo richiede tempo $O(n \log n)$ (dove n è il numero di caratteri dell'alfabeto).

L'algoritmo è *goloso* perché ad ogni passo costruisce il nodo interno avente frequenza minima possibile.

Ricordiamo infatti che

$$B(T) = \sum_{x \text{ nodo interno}} x.f$$

Siamo sicuri che in questo modo otteniamo sempre un codice ottimo?

Elementi della strategia golosa

Ingredienti comuni a molti problemi risolvibili con la strategia golosa:

Sottostruttura ottima: Ogni soluzione ottima non elementare si ottiene da soluzioni ottime di sottoproblemi.

Proprietà della scelta golosa: La scelta localmente ottima (golosa) non pregiudica la possibilità di arrivare ad una soluzione globalmente ottima.

Se T è ottimo ogni nodo interno ha due figli (altrimenti togliendo il nodo si otterrebbe un codice

Se T è ottimo esistono due foglie sorelle x ed y a profondità massima.

Proprietà (sottostruttura ottima)

Sia T l'albero di un codice prefisso ottimo per l'alfabeto Σ e siano a ed b i caratteri associati a due foglie sorelle x ed y di T.

Se consideriamo il padre z di x ed y come foglia associata ad un nuovo carattere c con frequenza

$$f_c = z \cdot f = f_a + f_b$$

allora l'albero $T'=T - \{x,y\}$ rappresenta un codice prefisso ottimo per l'alfabeto

$$\Sigma' = \Sigma - \{a,b\} \cup \{c\}$$

$$B(T) = B(T') + f_a d_T(a) + f_b d_T(b) - f_c d_{T'}(c)$$

$$= B(T') + (f_a + f_b)(d_{T'}(c) + 1) - (f_a + f_b)d_{T'}(c)$$

$$= B(T') + f_a + f_b$$

Supponiamo, per assurdo, esista un albero S' per Σ' tale che B(S') < B(T').

Aggiungendo ad S' le foglie x ed y come figlie del nodo z (che in S' è una foglia) otterremmo un albero S per Σ tale che B(S) < B(T) contro l'ipotesi che T sia ottimo.

$$B(S) = B(S') + f_a + f_b < B(T') + f_a + f_b = B(T)$$

Proprietà (scelta golosa)

Siano a e b due caratteri di Σ aventi frequenze f_a ed f_b minime

Esiste un codice prefisso ottimo in cui le parole codice di *a* e *b* hanno uguale lunghezza e differiscono soltanto per l'ultimo

bit.

Se i codici di *a* e *b* differiscono soltanto per l'ultimo bit, nell'albero del codice le foglie *a* e *b* sono figlie dello stesso nodo, cioè sorelle.

Attenzione: Il Lemma *non* dice che ciò è vero per ogni codice prefisso ottimo e *tanto meno* che se ciò è vero il codice è ottimo!!!!

Dice *solo* che ciò è vero per *almeno* un codice ottimo.

Sappiamo che in *T* esistono due foglie sorelle a profondità massima.

Siano c e d i caratteri di tali foglie.

Mostriamo che scambiando $c \in d \text{ con } a \in b \text{ il}$ codice rimane ottimo.

Possiamo supporre $f_c \leq f_d$ ed $f_a \leq f_b$.

a e b sono i due caratteri con frequenza minima in assoluto e quindi $f_a \le f_c$ ed $f_b \le f_d$.

Sia *T'* ottenuto da *T* scambiando la foglia *c* con la foglia *a* (con ricalcolo delle frequenze dei nodi interni)

Allora:

$$B(T) - B(T') = \sum_{k \in \Sigma} f_k dT(k) - \sum_{k \in \Sigma} f_k dT'(k)$$

$$= f_a dT(a) + f_c dT(c) - f_a dT'(a) - f_c dT'(c)$$

$$= f_a dT(a) + f_c dT(c) - f_a dT(c) - f_c dT(a)$$

$$= [f_c - f_a][dT(c) - dT(a)]$$

$$\geq 0$$

Siccome T è ottimo B(T) = B(T') e quindi anche T' è ottimo.

Scambiando poi le foglie d e b, si ottiene ancora un albero ottimo T'' in cui a e b sono foglie sorelle.

Teorema L'algoritmo di Huffman produce un codice prefisso ottimo

```
Huffman(c, f, n)
  Q = \emptyset
                         // coda con priorità
  for i = 1 to n
    Push(Q, Nodo(f_i, c_i))
  for j = n downto 2
    x = ExtractMin(Q)
    y = ExtractMin(Q)
    Push(Q, Nodo(x,y))
  return ExtractMin(Q)
```

proprietà della scelta golosa

Esercizio 5

Dimostrare che ogni algoritmo di compressione che accorcia qualche sequenza di bit deve per forza allungarne qualche altra.

Dimostrazione

Supponiamo per assurdo che l'algoritmo accorci qualche sequenza ma non ne allunghi nessuna.

Sia x la più corta sequenza che viene accorciata dall'algoritmo e sia m la sua lunghezza.

Le sequenze di lunghezza minore di m sono 2^m-1 e non vengono accorciate o allungate.

Ognuna di esse viene codificata con una sequenza diversa e quindi le loro codifiche sono anch'esse 2^m-1 e sono tutte di lunghezza minore di m.

Dunque ognuna delle 2^m -1 sequenze più corte di m è codifica di qualche sequenza più corta di m.

Dunque la codifica di *x* coincide con la codifica di un'altra sequenza. ASSURDO!!!!