T(x)
$$|R^n \rightarrow R^n|$$
 $T(a+b) = T(a) + T(b)$
 $T\left(\sum_{i=1}^n x_i^n\right) = \sum_{i=1}^n T(x_i)$

- for all $x_i = 0$, $T(0) = nT(0)$

So $T(0) = 0$

- for all x_i to be some x , $T(nx) = nT(x)$

So hargeneity holds for all n
 $T(x_i + (-x_i)) = T(x_i) + T(-x_i)$
 $T(0) = 0 = 7 T(x_i) + T(-x_i) = 0$
 $T(x_i) = -T(x_i)$
 $T(x_i) = T(x_i) = T(x_i)$

applies to all c= f for CEIR Wisdensem/R there exists { (n) such that (n-2000) for any real Scalar T(co) T(eu) = /m T(cnu) $= 7 T(u) = \lim_{n \to \infty} (nT(u) = cT(u))$ Thus homogeneity holds for all red scalar numbers if additivity holds