Автоматическое транскрибирование полевых данных: эксперименты и проблемы

Е. Клячко

OPLING-9

Дисклеймер

- я не специалист в области обработки речи
- цель:
 - поделиться опытом:
 - что сейчас доступно рядовому пользователю
 - обсудить опыт участников
 - дать мотивацию к собственным экспериментам

Что может потребоваться сделать со звуком, записанным в поле?

- "улучшение" данных (удаление шумов...)
- разметка:
 - диаризация (разделение дикторов) (speaker diarization)
 - автоматическое определение языка (language detection)
 - выделение ключевых слов (keyword spotting)
 - автоматическое выравнивание (forced alignment)
 - автоматическое распознавание (ASR, STT)
 - транскрипция
 - оформленный текст (с делением на предложения, расстановкой знаков препинания, нормализацией)
- синтез речи (TTS)
- ?...

Цель

- ≈ 147 часов эвенкийских озвученных словарей
- (≈ 95 тысяч фрагментов)
 - есть ручная нарезка
 - есть переводы
 - транскрибировать вручную?
- ⇒ дешево и быстро получить черновую транскрипцию для поиска
 - нерасшифрованные эвенкийские тексты
- ⇒ получить черновую транскрипцию

Некоторые термины

набор данных (dataset)

выборки: обучающая, валидационная, тестовая

(train split, validation split, test split)

обучение (training), предобученная (pretrained) модель

тонкая/точная настройка (fine-tuning)

GPU

оценка качества (evaluation): WER, CER

бенчмарк (benchmark)

Оценка качества: бенчмарки

Conneau, Alexis, Min Ma, Simran Khanuja, Yu Zhang, Vera Axelrod, Siddharth Dalmia, Jason Riesa, Clara Rivera, and Ankur Bapna. "Fleurs: Few-shot learning evaluation of universal representations of speech." In 2022 IEEE Spoken Language Technology Workshop (SLT), pp. 798-805. IEEE, 2023.

Figure 1: Distributions of language families in FLEURS (y-axis is the count).

Baevski, Alexei, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. "wav2vec 2.0: A framework for self-supervised learning of speech representations." *Advances in neural information processing systems* 33 (2020): 12449-12460.

Pratap, V., Tjandra, A., Shi, B., Tomasello, P., Babu, A., Kundu, S., Elkahky, A., Ni, Z., Vyas, A., Fazel-Zarandi, M. and Baevski, A., 2024. Scaling speech technology to 1,000+ languages. *Journal of*

Machine Learning Research, 25(97), pp.1-52. — MMS

Figure 1: Illustration of where the languages supported by MMS are spoken around the world: MMS models support speech-to-text and text-to-speech for 1,107 languages as well as language identification for 4,017 languages.

- сбор аудиоданных (в основном, озвученные библейские тексты)
- выравнивание
- нормализация текстовых данных
- удаление низкокачественных данных
- обучение модели wav2vec 2.0
- размеченные данные (44 700 часов)
- неразмеченные данные

Эвенкийский ASR: данные

корпус эвенкийского языка

(https://minlang.iling-ran.ru/corpora/evenki)

≈ 8 часов звука, ≈ 38 000 словоупотреблений

- спонтанные тексты, записанные от разных дикторов
- разные диалекты
- транскрипция МФА
- запись в эвенкийской орфографии
- текст и звук выровнены по предложениям (файлы .eaf)

Эвенкийский ASR: подготовка данных

- приведение транскрипции к единому виду
- удаление некорректных фрагментов (длины 0)
- подготовка данных в табличном виде
 - строка таблицы имеет вид:
 - файл wav
 - предложение
 - split: train vs test
 - экспорт на huggingface
 - TODO: добавить анонимизированные метаданные

Эвенкийский ASR: данные

https://huggingface.co/datasets/siberian-lang-lab/evenki-speech

Эвенкийский ASR: facebook/mms-1b-l1107

- обучалась в основном на библейских текстах
- результат в кириллице
 - ⇒ сделала транслитератор

Оценка качества ASR: WER

$$WER = rac{S+D+I}{N} = rac{S+D+I}{S+D+C}$$

WER = ?

Эталон	əŋki:wun	a:rə		gorojə	ta:du:
Предсказание проверяемой модели	əŋki:wun	a:ra	bi:	gorojə	
Результат	✓	S		✓	D

Оценка качества ASR: WER

$$WER = rac{S+D+I}{N} = rac{S+D+I}{S+D+C}$$

WER = ?

Эталон	əŋki:wun	a:rə		gorojə
Предсказание проверяемой модели	əŋki:wun	goro	bi:	gorojə
Результат	√	S		✓

Эвенкийский ASR: facebook/mms-1b-l1107

Образец

Результат

<u>bi ŋənəktə No:wu</u>

<u>bi bultad^jam biraldu</u> d^jiqali: t[^]∫ikt† d^jami

9nki:wun arə gorojə

WER на тестовой выборке: 1,00

bi: nonokta - nwo

bi: bultd^jim biraldu:

djegalji: t 6jikt djanni:

enkiwun ra goroo

CER на тестовой выборке: 0,46

Эвенкийский ASR: обучение

- подготовка данных для обучения и тестирования
- выбор модели
- fine-tuning модели

https://huggingface.co/siberian-lang-lab/wav2ve c2-large-mms-1b-evenki-colab

Эвенкийский ASR: обучение

инструкция: https://huggingface.co/blog/mms_adapters (P. von Platen)

- идея: fine-tuning только **слоев адаптера** ⇒ утверждается, что может сработать на небольшом объеме данных
- автоматический выбор размера пачки (auto_find_batch_size=True)
- сохраняла чекпойнты (потом вручную удаляла менее удачные)
 - ⇒ возобновление с произвольного момента (см. тетрадь)

```
save_total_limit=2,
push_to_hub=True,
resume_from_checkpoint=True,
hub strategy="all checkpoints"
```


Эвенкийский ASR: обученная модель

Образец

bi ŋənəktə no:wu

<u>bi bultad^jam biraldu</u> <u>d^jigali: t^∫ikt† d^jami</u>

<u>Əŋki:wun arə gorojə</u>

WER на тестовой выборке: 0,71

Результат

bi nənəktə no:wəl

bi bultad^jam biraldu:

dⁱigali: t^∫ikt† dⁱamŋi

Əŋki:wun ara gorojo

CER на тестовой выборке: 0,2

Эвенкийский ASR: словарь (диктора нет в корпусе)

	facebook/mms-1b-l1107	обученная модель		
начнётся_дождь	тыгдалдн тыгдалдн тыгдалдн	tigd ə ld ^j an tigd ə ld ^j an t † gdald ^j an		
дойти (до_дома)	б Й длви ихим б Й длви ихим б Й длви ихим	bi d ^j ula:wi ƏhƏm bi d ^j ula:wi ƏhƏm bi d ^j ula:wi ƏhƏm		
самолёт_сел	сомолт тэгэрэн амноннад ў сэмэлт тэгэрэн амнннад ў	<pre>samolott@g@r@n amnonnadu: samolott@g@r@n amnonnadu:</pre>		

Что дальше?

- Улучшить набор данных (исправить некоторые неконсистентные транскрипции)
- Пополнение датасета?
- Получить черновую транскрипцию для словарей:

на GPU:

тестовая выборка (1,6 ч) → 3 минуты словари (147 ч) → предположительно, 5 часов

Спасибо за внимание!