Logică computațională Curs 5

Lector dr. Pop Andreea-Diana

Metoda tabelelor semantice

- introdusă de Smullyan
- se bazează pe considerații semantice
- încearcă să construiască modelele unei formule date

(FND)

- $\models U$ prin respingere, $\neg U$ nu are modele
- ideea:
 - descompunerea formulei inițiale în subformule
 - până la nivel de literali

Clase de formule

• clasa α - formule de tip conjunctiv

$$A \wedge B$$

$$\neg (A \lor B)$$

$$\neg (A \rightarrow B)$$

• clasa β - formule de tip disjunctiv

$$A \vee B$$

$$\neg (A \land B)$$

$$A \rightarrow B$$

Reguli de descompunere a formulelor

• regula α

• regula β

Arborele binar de descompunere a unei formule

Având o formulă U, ei i se poate asocia o tabelă semantică, care este de fapt un arbore binar ce conține în nodurile sale formule și se construiește astfel:

- \bullet rădăcina arborelui este etichetată cu formula U;
- fiecare ramură a arborelui care conţine o formulă va fi extinsă cu subarborele corespunzător regulii de descompunere care se aplică formulei;
- extinderea unei ramuri se încheie în două situații:
 - a) dacă pe ramură apare o formulă și negația sa;
 - b) dacă au fost descompuse toate formulele de pe acea ramură

Tipuri de ramuri

- O ramură a tabelei se numeşte închisă (simbolizată prin ⊗) dacă ea conţine o formulă şi negaţia ei, în caz contrar ramura se numeşte deschisă (simbolizată prin⊙).
- O ramură a tabelei se numește completă dacă ea este fie *închisă*, fie toate formulele de pe acea ramură au fost descompuse.

Tipuri de tabele semantice

- O *tabelă* se numește *închisă* dacă toate ramurile sale sunt închise. Dacă o tabelă are cel puţin o ramură deschisă, atunci ea se numește *deschisă*.
- O *tabelă* se numește *completă* dacă toate ramurile ei sunt complete.

Observaţii:

- Procesul de construire a unei tabele semantice este unul *nedeterminist* deoarece regulile de descompunere se pot aplica în orice ordine și la un moment dat se pot alege mai multe ramuri pentru extindere. Astfel unei formule i se pot asocia mai multe tabele semantice, dar acestea sunt echivalente.
- Pentru a obține tabele semantice *cât mai simple* (mai puțin ramificate) se recomandă:
 - utilizarea regulilor de tip α înaintea regulilor de tip β care realizează o ramificare;

Observaţii (2):

- formulele de pe aceeași ramură a unei tabele semantice sunt *legate* între ele prin conectiva logică ^, iar *ramificarea* corespunde conectivei logice v.
- tabela semantică asociată unei formule propoziționale este o reprezentare grafică a *formei* sale *normale disjunctive*. Fiecare ramură reprezintă un *cub* (conjuncția tuturor literalilor de pe acea ramură), iar arborele este *disjuncția* tuturor *ramurilor* sale.
- Unei formule *consistente* i se asociază o *tabelă completă deschisă*, iar fiecare *ramură deschisă* a tabelei furnizează cel puţin un *model* pentru formula respectivă.
- O *tabelă semantică închisă* asociată unei formule indică faptul că formula este *inconsistentă*, adică nu există nicio interpretare în care formula să fie adevărată

Teorema de corectitudine şi completitudine a metodei tabelelor semantice

• O formulă U este teoremă (tautologie) dacă și numai dacă există o tabelă semantică închisă pentru formula $\neg U$.

Teoremă

• $U_1, U_2, ..., U_n \vdash Y$ (echivalent cu $U_1, U_2, ..., U_n \models Y$) dacă şi numai dacă există o tabelă semantică închisă pentru formula $U_1 \land U_2 \land ... \land U_n \land \neg Y$.