Running head: LEBA 1

Light Exposure Behavior Assessment (LEBA): Development of a novel instrument to capture light exposure-related behaviours 2 Mushfigul Anwar Siraji^{1, *}, Rafael Robert Lazar^{2, 3, *}, Juliëtte van Duijnhoven⁴, Luc 3 Schlangen⁵, Shamsul Haque¹, Vineetha Kalavally⁶, Céline Vetter^{7, 8}, Gena Glickman⁹, Karin Smolders¹⁰, & Manuel Spitschan^{11, 2, 3} 5 ¹ Monash University, Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Malaysia 7 ² Psychiatric Hospital of the University of Basel (UPK), Centre for Chronobiology, Basel, Switzerland 9 ³ University of Basel, Transfaculty Research Platform Molecular and Cognitive 10 Neurosciences, Basel, Switzerland 11 ⁴ Eindhoven University of Technology, Department of the Built Environment, Building 12 Lighting, Eindhoven, Netherlands 13 ⁵ Eindhoven University of Technology, Department of Industrial Engineering and 14 Innovation Sciences, Intelligent Lighting Institute, Eindhoven, Netherlands 15 ⁶ Monash University, Department of Electrical and Computer Systems Engineering, 16 Malaysia, Selangor, Malaysia 17 ⁷ University of Colorado Boulder, Department of Integrative Physiology, Boulder, USA 18 ⁸ Ximes GmbH, Frankfurt, Germanv 19

⁹ Uniformed Services University of the Health Sciences, Department of Psychiatry,

20

Bethesda, USA 21 ¹⁰ Eindhoven University of Technology, Human-Technology Interaction Group, 22 Eindhoven, Netherlands 23 ¹¹ University of Oxford, Department of Experimental Psychology, Oxford, UK 24 * Joint first author

Author Note 26

Add complete departmental affiliations for each author here. Each new line herein 27 must be indented, like this line. 28

Enter author note here.

25

29

editing.

The authors made the following contributions. Mushfigul Anwar Siraji: Formal 30 Analysis, Visualization, Writing - original draft, Writing - review & editing;; Rafael Robert 31 Lazar: Data curation, Investigation, Project administration, Visualization, Writing -32 original draft, Writing - review & editing;; Juliëtte van Duijnhoven: Conceptualization, Methodology, Investigation, Writing – review & editing; Luc Schlangen: Conceptualization, Methodology, Investigation, Writing – review & editing; Shamsul Haque: Conceptualization, Supervision, Writing – review & editing; Vineetha Kalavally: Supervision, Writing - review & editing; Céline Vetter: Conceptualization, Writing review & editing; Gena Glickman: Conceptualization, Methodology, Writing - review & editing; Karin Smolders: Conceptualization, Methodology, Writing – review & editing; Manuel Spitschan: Conceptualization, Data curation, Investigation, Project administration, Visualization, Methodology, Writing - original draft, Writing - review &

Abstract 43

One or two sentences providing a **basic introduction** to the field, comprehensible to a

scientist in any discipline.

Two to three sentences of more detailed background, comprehensible to 46

scientists in related disciplines.

One sentence clearly stating the general problem being addressed by this

particular study. 49

48

55

56

One sentence summarizing the main result (with the words "here we show" or their 50

equivalent).

Two or three sentences explaining what the main result reveals in direct

comparison to what was thought to be the case previously, or how the main result adds

to previous knowledge.

One or two sentences to put the results into a more **general context**.

Two or three sentences to provide a **broader perspective**, readily comprehensible

to a scientist in any discipline.

Keywords: keywords 58

Word count: X 59

Light Exposure Behavior Assessment (LEBA): Development of a novel instrument to capture light exposure-related behaviours

62 Introduction

- Light exposure is important
- Light exposure Behavior is important
- Table: Overview Existing Related Scales: items in total / items on light exposure

 (behaviour)
- Existing Scales: Review them in text
- None of these do light exposure behavior.

Methods

₇₀ Ethical approval

The cantonal ethics commission (Ethikkommission Nordwest- und Zentralschweiz, project ID Req-2021-00488) reviewed this project and issued an official clarification of responsibility (full document see Suppl. Fig X in appendix) stating: "The research project does not fall under the scope of the Human Research Act, because your project is using only anonymised data. An authorisation from the ethics committee is therefore not required and the EKNZ is not responsible for its review."

77 Data Availability

78 Survey characteristics

Data was collected in a quantitative cross-sectional approach via a fully anonymous online survey hosted on REDCap (Harris et al., 2019, 2009) by way of the

University of Basel sciCORE. Participants were recruited via the website of a Comic co-released with the survey(Weinzaepflen & Spitschan, 2021)(

https://enlightenyourclock.org/participate-in-research), social media (i.e., LinkedIn,

Twitter, Facebook), mailing lists, word of mouth, the investigators' personal contacts, and supported by distribution of the survey link via f.lux software (F.lux Software LLC, 2021).

Completing the online survey took approx. 15 to 20 minutes and was not 86 compensated. The first page of the survey comprised a participant information sheet, 87 where participants' informed consent to participate was obtained before any of the 88 questions were displayed. Underaged participants (<18 years) were urged to obtain 89 assent from their parents/legal guardians, before filling in the survey. Information on the first page included the objectives of the study, inclusion criteria, estimated duration, the 91 use, storage and sharing of the data, compensation (none), and information about the 92 type of questions in the survey. Moreover, participants needed to confirm that they were participating the survey for the first time. To ensure high data quality, five attention check items were included in the survey (e.g., "We want to make sure you are paying attention. What is 4+5?"). The data analysed in this study was collected between 17.05.2021 and 03.09.2021. Questions incorporating retrospective recall were all aligned to the period of "past four weeks," matching the presented LEBA instrument.

In addition to the LEBA questionnaire, which is subject of the current study, the following variables and items were assessed but not included in the analysis:

gg

101

102

103

104

105

106

- Sleep disturbance and sleep-related impairment (adult and pediatric versions)
 (Bevans et al., 2019; Daniel J. Buysse et al., 2010; Forrest et al., 2018; Harb,
 Hidalgo, & Martau, 2015; L. Yu et al., 2011)
- Sleep duration, timing, and latency, chronotype, social jetlag, time in bed, work/sleep schedule and outdoor light exposure duration (version for adults and adolescents) (Roenneberg et al., 2003)

- Sleep environment [@Olivier.2016]
 - Meal timing & caffeine consumption [custom items]
- Light sensitivity (photophobia vs. photophilia) [@Wu.2017]
- Self-reported pubertal stage (only if younger than 18 years old) (Petersen,
 Crockett, Richards, & Boxer, 1988)

Furthermore, the following 1-item demographic variables were assessed:

113 • Age

108

114 • Sex

118

- Gender identity
- Occupational Status
- COVID-19 related Occupational setting during the past four weeks
 - Time zone & country of residence
- English as native language

Participants

Table 1 summarizes the survey participants' demographic characteristics. Only 121 participants completing the full LEBA questionnaire were included, thus there are no 122 missing values in the item analyses. XX participants were excluded from analysis due to 123 not passing at least one of the "attention check" items. For exploring initial factor 124 structure (EFA), a sample of 250-300 is recommended (Comrey & Lee, 1992; 125 Schönbrodt & Perugini, 2013). For estimating the sample size for the confirmatory factor analysis (CFA) we followed the N:q rule (Bentler & Chou, 1987; Jackson, 2003; Kline, 2015; Worthington & Whittaker, 2006), where ten participants per parameter is required to earn trustworthiness of the result. Our sample size exceeds these requirements: 129 Anonymous responses from a total of n = 690 participants were included in the analysis 130 of the current study, split into samples for exploratory (EFA: n = 428) and confirmatory 131

factor analysis (CFA: n = 262). The EFA sample included participants filling out the

questionnaire from 17.05.2021 to XX.XXXXXX , whereas participants who filled out the

- questionnaire from YY.YY.YYYY to 03.09.2021 were included in the CFA analysis.
- Participants indicated filling out the online survey from a diverse range of geographic
- locations. The four most common geographic locations included:

	x
United States - America/New_York (UTC -04:00)	63
United Kingdom - Europe/London (UTC)	57
Germany - Europe/Berlin (UTC +01:00)	53
India - Asia/Kolkata (UTC +05:30)	38

- For a full list of geographic locations, see Suppl. Table X in the appendix.
- Age among all participants ranged from 11 years to 84 years

$$EFA: *min* = 11, *max* = 84; CFA: *min* = 12, *max* = 74$$

₁₄₀ , with an overall mean of ~ 33 years of age

$$Overall: *M* = 32.95, *SD* = 14.57; EFA: *M* = 32.99, *SD* = 15.11; CFA: *M*$$

11 In total 325 (47%) of the participants indicated female sex

142 , 351 (51%) indicated male

137

and 14 (2.0%) indicated other sex

144 . Overall, 49 (7.2%)

participants indicated a gender-variant identity. In a "Yes/No" question regarding native language, 320 (46%) of respondents

indicated to be native English speakers. For their "Occupational Status," more than half of the overall sample reported that they currently work

Overall: 396(57)

149 , whereas 174 (25%)

reported that they go to school and 120 (17%)

responded that they do "Neither." With respect to the COVID-19 pandemic we asked
participants to indicate their occupational setting during the last four weeks: In the overall
sample 303 (44%)

of the participants indicated that they were in a home office/ home schooling setting.,

155 while 109 (16%) overall

reported face-to-face work/schooling. Lastly, 147 (21%) overall

reported a combination of home- and face-to-face work/schooling, whereas 131 (19%) overall

filled in the "Neither (no work or school, or indication)" response option. We tested all demographic variables in Table 1 for significant group differences between the EFA and 160 CFA sample, applying Wilcoxon rank sum test for the continuous variable "Age" and 161 Pearson's Chi-squared test for all other categorical variables via the gtsummary R 162 package's "add_p" function (Sjoberg et al., 2021a). The p-values were corrected for 163 multiple testing applying false discovery rate (FDR) via the "add_q" function of the same 164 package. After p-value (FDR) correction for multiple testing, none of the demographic 165 variables were significantly different between the EFA sample and the CFA sample (all q-values $q \ge 0.2$, indicating equivalence). 167

- 1. Describe EFA and CFA sample separately.
- 2. Sampling technique: Convince sampling (non-probability sample)
 - 3. Method: cross-sectional survey
- 4. How many missing data?
- 5. How incomplete data were addressed.
- 6. Why such sample was chosen?

74 Procedure

170

175

176

178

Development of the Scale.

- How the items were generated
- 2. How the literature was reviewed to identify construct adequacy of the items.
 - Discuss the expert panel review process to assess content validity
- Data Collection. Timeline of data collection, mode of data collection.

180 Analytic Strategies

We used R (version 4.1.0), including several R packages, for our analyses.Initially, our tool have six poin Likert type response scale(0:Does not apply/I don't know; 1:Never,

2:Rarely; 3:Sometimes; 4:Often; 5: Alsways). As our purpose was to capture light exposure related behavior, "Does not apply/I don't know" and "Never" were providing 184 similar information. As such we decided to collapse "Does not apply/I don't know" and 185 "Never" options into one making it a 5 point Likert type response scale. Necessary 186 assumptions of EFA, including sample adequacy, normality assumptions, quality of 187 correlation matrix, were assessed. Our data violated both the univariate and multivariate 188 normality assumptions. Due to these violations and the ordinal nature of our response 189 data, we used a polychoric correlation matrix (C. Desjardins & Bulut, 2018) for the EFA. 190 We employed principal axis (PA) as a factor extraction method with varimax rotation. PA 191 is robust to the normality assumption violations (Watkins, 2020). The obtained latent 192 structure was confirmed by another factor extraction method: the minimum residuals 193 extraction method as well. We used a combination factor identification method including scree plot(Cattell, 1966), Horn's parallel analysis (Horn, 1965), minimum average partials method(Velicer, 1976), and hull method (Lorenzo-Seva, Timmerman, & Kiers, 196 2011) to identify factor numbers. Additionally, to determine the simple structure, we 197 followed the following guidelines recommended by psychometricians (i) no factors with 198 fewer than three items (ii) no factors with a factor loading <0.3 (iii) no items with 199 cross-loading greater than .3 across factors (Bandalos & Finney, 2018) We also 200 conducted psychometric analysis on non-merged response options data (supplementary 201 analysis) and rejected the latent structure obtained as the factors were less interpretable. 202

203 Results

Exploratory Factor Analysis

205

206

207

Sampling adequacy was checked using Kaiser-Meyer-Olkin (KMO) measures of sampling adequacy(Kaiser, 1974). The overall KMO vale for 48 items was 0.63 which was above the cutoff value (.50) indicating a mediocre sample (Hutcheson, 1999).

Table3 summarizes the univariate descriptive statistics for the 48 items. some of the items were skewed with high Kurtosis values. Our data violated both univariate normality 200 (Shapiro-Wilk statistics; (Shapiro & Wilk, 1965)) and multivariate normality assumptions 210 (Marida's test;(Mardia, 1970)). Multivariate skew was = 583.80 (p <0.001) and 211 multivariate kurtosis was = 2,749.15 (p < 0.001). Due to these violations and ordinal 212 nature of the response data polychoric correlations over Pearson's correlations was 213 chosen (C. Desjardins & Bulut, 2018). Bartlett's test of sphericity (Bartlett, 1954), χ^2 214 (1128) = 5042.86, p < .001] indicated the correlations between items are adequate for 215 the EFA. However only 4.96% of the inter-item correlation coefficients were greater than 216 .30. The inter item correlation ranged between .44 to .91. And the corrected item-total 217 correlations ranged between .10 to .44. 218

219

220

221

222

223

224

Scree plot (Figure 3) suggested a six-factor solution. Horn's parallel analysis (Horn, 1965) with 500 iterations also indicated a six-factor solution. However, the minimum average partial (MAP) method (Velicer, 1976) and Hull method (Lorenzo-Seva et al., 2011) suggested a five-factor solution. As a result, we tested both five-factor and six-factor solutions.

Three rounds of EFA with all 48 items were conducted, and problematic items were 225 gradually discarded (cross-loading items and poor factor loading (<.30) items). Finally, a 226 five-factor EFA solution with 25 items was accepted with low RMSR = 0.08 (Brown, 227 2015), all factor-loading higher than .30 and no cross-loading greater than .30. We confirmed this five-factor latent structure using varimax rotation with a minimum residual 229 extraction method (TableA1). Table4 displays the factor-loading (structural coefficients) and communality of the items. The absolute value of the factor-loading ranged from -.49 231 to .99 indicating strong coefficients. The commonalities ranged between .11 to .99. 232 However, the histogram of the absolute values of non-redundant residual-correlations 233

(Fig?? showed 26.00% correlations greater than the absolute value of .05, indicating a possible under-factoring. (C. D. Desjardins, 2018). Subsequently, we fitted a six-factor solution. However, a factor emerged with only one salient variable loading in the six-factor solution, thus disqualifying the six-factor solution (TableA2).

In the five-factor solution, the first factor contained three items and explained 238 10.25% of the total variance with a satisfactory internal reliability coefficient (α = .86). All the items in this factor stemmed from the individual's preference to use blue light filters in different light environments. The second factor contained six items and explained 9.93% 241 of the total variance with a satisfactory internal reliability coefficient (α = .71). Items 242 under this factor commonly investigate an individual's hours spent outdoor. The third 243 factor contained five items and explained 8.83% of the total variance. Items under this 244 factor dealt with the specific behaviors pertaining to sleep. However, the internal 245 consistency reliability coefficient was not satisfactory (α = .68). The fourth factor 246 contained five items and explained 8.44% of the total variance with an internal 247 consistency coefficient, α = .62. These five items stemmed from the behavior related to 248 an individual's cellphone usage during the sleep-wakeup time. Lastly, the fifth factor 249 contained six items and explained 6.14% of the total variance. This factor tried to 250 measure an individual's behavior lead by the awareness of light's influence on health. 251 However, this factor showed unsatisfactory internal consistency reliability ($\alpha = .53$). It is 252 essential to attain a balance between psychometric properties and the interpretability of 253 the common themes when exploring the latent structure. As all of the emerged factors are highly interpretable, regardless of the apparent low reliability of the two factors, we retain the five-factor solution with 23 items for our confirmatory factor analysis (CFA). Two items showed negative factor-loading (items 44 and 21). Upon inspection, it was 257 understood that these items are negatively correlated to the common theme, and thus in 258 the CFA analysis, we reversed the response code for these two items. 250

Confirmatory Factor Analysis

260

We conducted a categorical confirmatory factor analysis with robust weighted least 261 square (WLSMV) estimator as our response data was in ordinary nature (C. D. 262 Desjardins, 2018). Several indices exist to measure the the model fit. These can be 263 categorized as absolute fit, comparative fit and parsimony fit indices (Brown, 2015). 264 Absolute fit assess the model fit at an absolute level using indices including chi-square 265 test statistics and the standardized root mean square (SRMR) parsimony fit indices 266 including the root mean square error of approximation (RMSEA) considers the number of 267 free parameters in the model to assess the parsimony of the model. Comparative fit 268 indices evaluate the fit of the specified model solution in relation to a more restricted 269 baseline model restricting all covariances among the idicators as zero. Comparative fit 270 index (CFI) and the Tucker Lewis index (TLI) are such two comparative fit indices. 271 Commonly used Model fit guidelines (Hu & Bentle, 1999; Schumacker & Lomax, 2004) 272 includes (i) Reporting of chi-square test statistics (A non-significant test statistics is 273 required to reflect model fit) (i) CFI and TLI (CFI/TLI close to .95 or above/ranging 274 between 90-95 and above) (ii) RMSEA (close to .06 or below), (iii) SRMR (close to .08 or below) to estimate the model fit. Table5 summarizes the fit indices of our fitted model. The fitted model failed to attain an absolute fit estimated by the chi-square test. However, the chi-square test is sensitive to sample size and not recommended to be used as the sole index of absolute model fit (Brown, 2015). Another absolute fit index we obtained in our analysis was SRMR which does not work well with categorical data (C.-Y. Yu, 2002). 280 Subsequently, we judged the model fit based on the comparative fit indices: CFI, TLI and 281 parsimony fit index-RMSEA. Our fitted model attained acceptable fit (CFI =.94; TLI = 282 .93); RMSEA = .06

) with two imposed equity constrain on item pairs 32-33 and 19-17. However SRMR value was higher than the guideline (SRMR = .12). Further by allowing one pair of items (30-41) to covary their error variance and discarding two item (item 37 & 26) for very low r-square value, our model attained best fit (CFI = .97; TLI = .96); RMSEA = .05

$$.04 - .06, 90$$

) and SRMR value (SRMR = .09) was also close to the suggestions of Hu and Bentle
(1999). The internal consistency reliability coefficients coefficient alpha .90, .78, .62, .61,
.42 respectively indicating satisfactory reliability for F1, F2 and F4 (N'ajera Catal'an,
2019)

Analysing the quality of items by Item Information Theory

We sought the IRT to gether information regarding the item quality. IRT 293 complements the conventional classical test theory-based analysis by gathering 294 information on item discrimination and item difficulty (Baker, 2017). Here, an item's 295 quality is judged based on item information in relation to participants' latent trait level (θ) . 296 We gathered evidence on item quality by fitting each factor of LEBA with the graded 297 response model (7 to the combined EFA sample and CFA sample (n =690). Item 298 discrimination indicates the pattern of variation in the categorical responses with the 299 changes in latent trait, and item information curve (IIC) indicates the amount of 300 information an item carries along the latent trait continuum. Here, we reported the item 301 discrimination parameter and only discarded the items with relatively flat item information curve (information <.2) to develop the short form of LEBA. Baker (2017) categorized the 303 item discrimination in as none = 0; very low =0.01 to 0.34; low = 0.35 to 0.64; moderate = 0.65 to 1.34; high = 1.35 to 1.69; very high >1.70. Item discrimination parameters of our 305 scale fell in very high (10 items), high (4 items), moderate (4 items), low (5 items) 306 indicating a good range of discrimination along the latent trait. Examination of the item 307

information curve indicated 6 items (1, 25, 9, 38, 30, & 41) had relatively flat information curves thus discarded. We also gathered evidence of item fit and person fit to our fitted model.

Test information curve (TIC) indicate the amount of information an the full-scale 311 carry along the latent trait continuum. As we treated each factor of LEBA as an 312 unidmensional construct we obtain 5 TICs. These information curves indicated except 313 blue filter factor, the other factor's TICs are roughly centered on the center of the trait 314 continuum ((θ)). Also the amount of information changed rather steadily with the change 315 of (θ) . Thus we conferred the LEBA scale (except blue filter) estimated the light 316 exposure related behavior with precision near the center of trait continuum (Baker, 2017) 317 which is sufficient to discriminate between latent trait measured by the each factor. The 318 blue filter factor had a peak to the right side of the center of latent trait indicating its ability 319 to providing information only for people who already have some preference towards using blue-filters. 321

Our result also indicated all the items fitted well to the respective models as assessed by assessed by RMSEA value obtained from Signed-X2 index implementation. All of the items had RMSEA value <.06 indicating adequate fit. Person fit indicates the validity and meaningfulness of the fitted model at the participants latent trait level (C. Desjardins & Bulut, 2018). We estimated the person fit statistics using standardized fit index Zh statistics (Drasgow, Levine, & Williams, 1985). Zh < -2 should be considered as a misfit. Fig indicates that Zh is larger than -2 for most participants, suggesting a good fit of the selected IRT models.

322

323

325

328

330

331

332

333

The overall we can concluded that IRT analysis indicated LEBA is a psychometrically sound measure. Item fit indexes and person fit index for all five fitted model were acceptable. Items had diverse slope parameters indicating a good range of discrimination- the ability to differentiate respondents with different levels of the light

exposure related behavior. All-in-all we can recommend the LEBA to be used to capture light exposure related behavior.

336 Discussion

337 F	References
337 F	reterences

Aust, F., & Barth, M. (2020). papaja: Prepare reproducible APA journal articles 338 with R Markdown. Retrieved from https://github.com/crsh/papaja 339 Bajaj, A., Rosner, B., Lockley, S. W., & Schernhammer, E. S. (2011). Validation of 340 a light questionnaire with real-life photopic illuminance measurements: The harvard light exposure assessment questionnaire. Cancer Epidemiology and *Prevention Biomarkers*, *20*(7), 1341–1349. 343 Baker, F. B. (2017). The Basics of Item Response Theory Using R (1st ed. 2017). 344 Springer. 345 Bandalos, D. L., & Finney, S. J. (2018). Factor analysis: Exploratory and 346 confirmatory. In The reviewer's guide to quantitative methods in the social 347 sciences (pp. 98–122). Routledge. 348 Barth, M. (2021). tinylabels: Lightweight variable labels. Retrieved from 349 https://github.com/mariusbarth/tinylabels 350 Bartlett, M. (1954). A Note on the Multiplying Factors for Various Chi-square 351 Approximations. Journal of the Royal Statistical Society. Series B, 352 Methodological, 16(2), 296–298. 353 Bentler, P. M., & Chou, C.-P. (1987). Practical Issues in Structural Modeling. 354 Sociological Methods & Research, 16(1), 78–117. 355 https://doi.org/10.1177/0049124187016001004 356 Bevans, K. B., Meltzer, L. J., La Motte, A. de, Kratchman, A., Viél, D., & Forrest, C. 357 B. (2019). Qualitative development and content validation of the PROMIS 358 pediatric sleep health items. Behavioral Sleep Medicine, 17(5), 657-671. 359 https://doi.org/10.1080/15402002.2018.1461102 360 Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). 361 New York, NY, US: The Guilford Press. 362 Bryer, J., & Speerschneider, K. (2016). Likert: Analysis and visualization likert 363

364	items. Retrieved from https://CRAN.R-project.org/package=likert
365	Buchanan, E. M., Gillenwaters, A., Scofield, J. E., & Valentine, K. D. (2019).
366	MOTE: Measure of the Effect: Package to assist in effect size calculations and
367	their confidence intervals. Retrieved from http://github.com/doomlab/MOTE
368	Buysse, Daniel J., Reynolds III, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J.
369	(1989). The pittsburgh sleep quality index: A new instrument for psychiatric
370	practice and research. Psychiatry Research, 28(2), 193-213.
371	Buysse, Daniel J., Yu, L., Moul, D. E., Germain, A., Stover, A., Dodds, N. E.,
372	Pilkonis, P. A. (2010). Development and validation of patient-reported outcome
373	measures for sleep disturbance and sleep-related impairments. Sleep, 33(6),
374	781-792. https://doi.org/10.1093/sleep/33.6.781
375	Cattell, R. B. (1966). The Scree Test For The Number Of Factors. Multivariate
376	Behavioral Research, 1(2), 245–276.
377	https://doi.org/10.1207/s15327906mbr0102_10
378	Chalmers, R. P. (2012). mirt: A multidimensional item response theory package
379	for the R environment. Journal of Statistical Software, 48(6), 1–29.
380	https://doi.org/10.18637/jss.v048.i06
381	Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Borges, B.
382	(2021). Shiny: Web application framework for r. Retrieved from
383	https://CRAN.R-project.org/package=shiny
384	Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis, 2nd ed.
385	Hillsdale, NJ, US: Lawrence Erlbaum Associates, Inc.
386	Conigrave, J. (2020). Corx: Create and format correlation matrices. Retrieved
387	from https://CRAN.R-project.org/package=corx
388	Dahl, D. B., Scott, D., Roosen, C., Magnusson, A., & Swinton, J. (2019). Xtable:
389	Export tables to LaTeX or HTML. Retrieved from
390	https://CRAN.R-project.org/package=xtable

391	Desjardins, C. D. (2018). Handbook of educational measurement and
392	psychometrics using R. (O. Bulut & ProQuest (Firm), Eds.). Boca Raton, FL:
393	CRC Press.
394	Desjardins, C., & Bulut, O. (2018). Handbook of Educational Measurement and
395	Psychometrics Using R. https://doi.org/10.1201/b20498
396	Dianat, I., Sedghi, A., Bagherzade, J., Jafarabadi, M. A., & Stedmon, A. W. (2013)
397	Objective and subjective assessments of lighting in a hospital setting:
398	Implications for health, safety and performance. Ergonomics, 56(10),
399	1535–1545.
400	Dinno, A. (2018). Paran: Horn's test of principal components/factors. Retrieved
401	from https://CRAN.R-project.org/package=paran
402	Drasgow, F., Levine, M. V., & Williams, E. A. (1985). Appropriateness
403	measurement with polychotomous item response models and standardized
404	indices. British Journal of Mathematical and Statistical Psychology, 38(1),
405	67–86.
406	Eklund, N., & Boyce, P. (1996). The development of a reliable, valid, and simple
407	office lighting survey. Journal of the Illuminating Engineering Society, 25(2),
408	25–40.
409	Epskamp, S. (2019). semPlot: Path diagrams and visual analysis of various SEM
410	packages' output. Retrieved from
411	https://CRAN.R-project.org/package=semPlot
412	Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom,
413	D. (2012). qgraph: Network visualizations of relationships in psychometric
414	data. Journal of Statistical Software, 48(4), 1–18.
415	F.lux Software LLC. (2021). F.lux (Version 4.120). Retrieved from
416	https://justgetflux.com/
417	Forrest, C. B., Meltzer, L. J., Marcus, C. L., La Motte, A. de, Kratchman, A.,

418	buysse, D. J., bevans, K. B. (2016). Development and validation of the
419	PROMIS pediatric sleep disturbance and sleep-related impairment item banks
420	Sleep, 41(6). https://doi.org/10.1093/sleep/zsy054
421	Fox, J., & Weisberg, S. (2019). An R companion to applied regression (Third).
422	Thousand Oaks CA: Sage. Retrieved from
423	https://socialsciences.mcmaster.ca/jfox/Books/Companion/
424	Fox, J., Weisberg, S., & Price, B. (2020). carData: Companion to applied
425	regression data sets. Retrieved from
426	https://CRAN.R-project.org/package=carData
427	Harb, F., Hidalgo, M. P., & Martau, B. (2015). Lack of exposure to natural light in
428	the workspace is associated with physiological, sleep and depressive
429	symptoms. Chronobiology International, 32(3), 368–375.
430	https://doi.org/10.3109/07420528.2014.982757
431	Harrell Jr, F. E., Charles Dupont, with contributions from, & others., many. (2021).
432	Hmisc: Harrell miscellaneous. Retrieved from
433	https://CRAN.R-project.org/package=Hmisc
434	Harris, P. A., Taylor, R., Minor, B. L., Elliott, V., Fernandez, M., O'Neal, L.,
435	others. (2019). The REDCap consortium: Building an international community
436	of software platform partners. Journal of Biomedical Informatics, 95, 103208.
437	Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G.
438	(2009). Research electronic data capture (REDCap)—a metadata-driven
439	methodology and workflow process for providing translational research
440	informatics support. Journal of Biomedical Informatics, 42(2), 377–381.
441	Henry, L., & Wickham, H. (2020). Purrr: Functional programming tools. Retrieved
442	from https://CRAN.R-project.org/package=purrr
443	Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis
444	Psychometrika, 30(2), 179–185. https://doi.org/10.1007/BF02289447

445	Horne, J. A., & Ostberg, O. (1976). A self-assessment questionnaire to determine
446	morningness-eveningness in human circadian rhythms. International Journal
447	of Chronobiology.
448	Hu, L., & Bentle, P. M. (1999). Cutoff criteria for fit indexes in covariance structure
449	analysis: Conventional criteria versus new alternatives. Structural Equation
450	Modeling: A Multidisciplinary Journal, 6(1), 1–55.
451	https://doi.org/10.1080/10705519909540118
452	Hutcheson, G. D. (1999). The multivariate social scientist: Introductory statistics
453	using generalized linear models. London : SAGE.
454	Iannone, R. (2016). DiagrammeRsvg: Export DiagrammeR graphviz graphs as
455	SVG. Retrieved from https://CRAN.R-project.org/package=DiagrammeRsvg
456	Iannone, R. (2021). DiagrammeR: Graph/network visualization. Retrieved from
457	https://github.com/rich-iannone/DiagrammeR
458	Jackson, D. L. (2003). Revisiting Sample Size and Number of Parameter
459	Estimates: Some Support for the N:q Hypothesis. Structural Equation
460	Modeling, 10(1), 128-141. https://doi.org/10.1207/S15328007SEM1001_6
461	Johnson, P., & Kite, B. (2020). semTable: Structural equation modeling tables.
462	Retrieved from https://CRAN.R-project.org/package=semTable
463	Johnson, P., Kite, B., & Redmon, C. (2020). Kutils: Project management tools.
464	Retrieved from https://CRAN.R-project.org/package=kutils
465	Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y. (2021).
466	semTools: Useful tools for structural equation modeling. Retrieved from
467	https://CRAN.R-project.org/package=semTools
468	Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36
469	https://doi.org/10.1007/bf02291575
470	Kassambara, A. (2019). Ggcorrplot: Visualization of a correlation matrix using
471	'ggplot2'. Retrieved from https://CRAN.R-project.org/package=ggcorrplot

472	Kline, R. B. (2015). <i>Principles and practice of structural equation modeling</i> . The
473	Guilford Press.
474	Kowarik, A., & Templ, M. (2016). Imputation with the R package VIM. Journal of
475	Statistical Software, 74(7), 1–16. https://doi.org/10.18637/jss.v074.i07
476	Lishinski, A. (2021). lavaanPlot: Path diagrams for 'lavaan' models via
477	'DiagrammeR'. Retrieved from
478	https://CRAN.R-project.org/package=lavaanPlot
479	Lorenzo-Seva, U., Timmerman, M., & Kiers, H. (2011). The Hull Method for
480	Selecting the Number of Common Factors. Multivariate Behavioral Research,
481	46, 340-364. https://doi.org/10.1080/00273171.2011.564527
482	Makowski, D., Ben-Shachar, M. S., Patil, I., & Lüdecke, D. (2020). Methods and
483	algorithms for correlation analysis in r. Journal of Open Source Software,
484	5(51), 2306. https://doi.org/10.21105/joss.02306
485	Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with
486	applications. Biometrika, 57(3), 519-530.
487	https://doi.org/10.1093/biomet/57.3.519
488	Mock, T. (2021). gtExtras: A collection of helper functions for the gt package.
489	Retrieved from https://github.com/jthomasmock/gtExtras
490	Müller, K., & Wickham, H. (2021). Tibble: Simple data frames. Retrieved from
491	https://CRAN.R-project.org/package=tibble
492	N'ajera Catal'an, H. E. (2019). Reliability, Population Classification and Weighting
493	in Multidimensional Poverty Measurement: A Monte Carlo Study. Social
494	Indicators Research, 142(3), 887–910.
495	https://doi.org/10.1007/s11205-018-1950-z
496	Navarro-Gonzalez, D., & Lorenzo-Seva, U. (2021). EFA.MRFA: Dimensionality
497	assessment using minimum rank factor analysis. Retrieved from
498	https://CRAN.R-project.org/package=EFA.MRFA

499	Ooms, J. (2021a). Magick: Advanced graphics and image-processing in r.
500	Retrieved from https://CRAN.R-project.org/package=magick
501	Ooms, J. (2021b). Rsvg: Render SVG images into PDF, PNG, PostScript, or
502	bitmap arrays. Retrieved from https://CRAN.R-project.org/package=rsvg
503	Petersen, A. C., Crockett, L., Richards, M., & Boxer, A. (1988). A self-report
504	measure of pubertal status: Reliability, validity, and initial norms. Journal of
505	Youth and Adolescence, 17(2), 117-133. https://doi.org/10.1007/BF01537962
506	Pornprasertmanit, S., Miller, P., Schoemann, A., & Jorgensen, T. D. (2021).
507	Simsem: SIMulated structural equation modeling. Retrieved from
508	https://CRAN.R-project.org/package=simsem
509	R Core Team. (2021). R: A language and environment for statistical computing.
510	Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
511	https://www.R-project.org/
512	Revelle, W. (2021). Psych: Procedures for psychological, psychometric, and
513	personality research. Evanston, Illinois: Northwestern University. Retrieved
514	from https://CRAN.R-project.org/package=psych
515	Roenneberg, T., Wirz-Justice, A., & Merrow, M. (2003). Life between clocks: Daily
516	temporal patterns of human chronotypes. Journal of Biological Rhythms,
517	<i>18</i> (1), 80–90.
518	Rosseel, Y. (2012). lavaan: An R package for structural equation modeling.
519	Journal of Statistical Software, 48(2), 1-36. Retrieved from
520	https://www.jstatsoft.org/v48/i02/
521	Ryu, C. (2021). Dlookr: Tools for data diagnosis, exploration, transformation.
522	Retrieved from https://CRAN.R-project.org/package=dlookr
523	Sarkar, D. (2008). Lattice: Multivariate data visualization with r. New York:
524	Springer. Retrieved from http://lmdvr.r-forge.r-project.org
525	Schönbrodt, F. D., & Perugini, M. (2013). At what sample size do correlations

526	stabilize? Journal of Research in Personality, 47(5), 609-612.
527	https://doi.org/10.1016/j.jrp.2013.05.009
528	Schumacker, R. E., & Lomax, R. G. (2004). A beginner's guide to structural
529	equation modeling. psychology press.
530	Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality
531	(complete samples). Biometrika, 52(3-4), 591-611.
532	https://doi.org/10.1093/biomet/52.3-4.591
533	Sjoberg, D. D., Curry, M., Hannum, M., Larmarange, J., Whiting, K., & Zabor, E. C
534	(2021b). Gtsummary: Presentation-ready data summary and analytic result
535	tables. Retrieved from https://CRAN.R-project.org/package=gtsummary
536	Sjoberg, D. D., Curry, M., Hannum, M., Larmarange, J., Whiting, K., & Zabor, E. C
537	(2021a). Gtsummary: Presentation-ready data summary and analytic result
538	tables. Retrieved from https://CRAN.R-project.org/package=gtsummary
539	Stauffer, R., Mayr, G. J., Dabernig, M., & Zeileis, A. (2009). Somewhere over the
540	rainbow: How to make effective use of colors in meteorological visualizations.
541	Bulletin of the American Meteorological Society, 96(2), 203–216.
542	https://doi.org/10.1175/BAMS-D-13-00155.1
543	Terry M. Therneau, & Patricia M. Grambsch. (2000). Modeling survival data:
544	Extending the Cox model. New York: Springer.
545	Ushey, K., McPherson, J., Cheng, J., Atkins, A., & Allaire, J. (2021). Packrat: A
546	dependency management system for projects and their r package
547	dependencies. Retrieved from https://CRAN.R-project.org/package=packrat
548	van Lissa, C. J. (2021). tidySEM: Tidy structural equation modeling. Retrieved
549	from https://CRAN.R-project.org/package=tidySEM
550	Velicer, W. (1976). Determining the Number of Components from the Matrix of
551	Partial Correlations. Psychometrika, 41, 321–327.
552	https://doi.org/10.1007/BF02293557

553	Venables, W. N., & Ripley, B. D. (2002). <i>Modern applied statistics with s</i> (Fourth).
554	New York: Springer. Retrieved from https://www.stats.ox.ac.uk/pub/MASS4/
555	Verriotto, J. D., Gonzalez, A., Aguilar, M. C., Parel, JM. A., Feuer, W. J., Smith,
556	A. R., & Lam, B. L. (2017). New methods for quantification of visual
557	photosensitivity threshold and symptoms. Translational Vision Science &
558	Technology, 6(4), 18–18.
559	Watkins, M. (2020). A Step-by-Step Guide to Exploratory Factor Analysis with R
560	and RStudio. https://doi.org/10.4324/9781003120001
561	Weinzaepflen, C., & Spitschan, M. (2021). Enlighten your clock: How your body
562	tells time. Open Science Framework. https://doi.org/10.17605/OSF.IO/ZQXVH
563	Wickham, H. (2011). The split-apply-combine strategy for data analysis. Journal
564	of Statistical Software, 40(1), 1-29. Retrieved from
565	http://www.jstatsoft.org/v40/i01/
566	Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag
567	New York. Retrieved from https://ggplot2.tidyverse.org
568	Wickham, H. (2019). Stringr: Simple, consistent wrappers for common string
569	operations. Retrieved from https://CRAN.R-project.org/package=stringr
570	Wickham, H. (2021a). Forcats: Tools for working with categorical variables
571	(factors). Retrieved from https://CRAN.R-project.org/package=forcats
572	Wickham, H. (2021b). Tidyr: Tidy messy data. Retrieved from
573	https://CRAN.R-project.org/package=tidyr
574	Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R.,
575	Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source
576	Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
577	Wickham, H., & Bryan, J. (2019). Readxl: Read excel files. Retrieved from
578	https://CRAN.R-project.org/package=readxl
579	Wickham, H., François, R., Henry, L., & Müller, K. (2021). Dplyr: A grammar of

580	data manipulation. Retrieved from https://CRAN.R-project.org/package=dplyr
581	Wickham, H., & Hester, J. (2021). Readr: Read rectangular text data. Retrieved
582	from https://CRAN.R-project.org/package=readr
583	Wilke, C. O. (2020). Cowplot: Streamlined plot theme and plot annotations for
584	'ggplot2'. Retrieved from https://CRAN.R-project.org/package=cowplot
585	Winston Chang. (2014). Extrafont: Tools for using fonts. Retrieved from
586	https://CRAN.R-project.org/package=extrafont
587	Worthington, R. L., & Whittaker, T. A. (2006). Scale Development Research: A
588	Content Analysis and Recommendations for Best Practices. The Counseling
589	Psychologist, 34(6), 806-838. https://doi.org/10.1177/0011000006288127
590	Yu, CY. (2002). Evaluating cutoff criteria of model fit indices for latent variable
591	models with binary and continuous outcomes (Thesis). ProQuest
592	Dissertations Publishing.
593	Yu, L., Buysse, D. J., Germain, A., Moul, D. E., Stover, A., Dodds, N. E.,
594	Pilkonis, P. A. (2011). Development of short forms from the PROMIS™ sleep
595	disturbance and sleep-related impairment item banks. Behavioral Sleep
596	Medicine, 10(1), 6-24. https://doi.org/10.1080/15402002.2012.636266
597	Zeileis, A., & Croissant, Y. (2010). Extended model formulas in R: Multiple parts
598	and multiple responses. Journal of Statistical Software, 34(1), 1-13.
599	https://doi.org/10.18637/jss.v034.i01
600	Zeileis, A., Fisher, J. C., Hornik, K., Ihaka, R., McWhite, C. D., Murrell, P.,
601	Wilke, C. O. (2020). colorspace: A toolbox for manipulating and assessing
602	colors and palettes. Journal of Statistical Software, 96(1), 1-49.
603	https://doi.org/10.18637/jss.v096.i01
604	Zeileis, A., Hornik, K., & Murrell, P. (2009). Escaping RGBland: Selecting colors
605	for statistical graphics. Computational Statistics & Data Analysis, 53(9),
606	3259-3270. https://doi.org/10.1016/j.csda.2008.11.033

Zhu, H. (2021). *kableExtra: Construct complex table with 'kable' and pipe syntax*.

Retrieved from https://CRAN.R-project.org/package=kableExtra

Table 1

Existing related Scales

			Relevant	_
Name	Authors	Description	Items	Adaptations
Visual Light	(Verriotto	Eight-question survey to assess the	All items	
Sensitivity	et al.,	presence and severity of photosensitivity		
Questionnaire-8	2017)	symptoms		
Office Light	(Eklund	Multi-item questionnaire to assess		
Survey	&	electrical lighting environment in office		
	Boyce,			
	1996)			
Harvard Light	(Bajaj,	Self-administered semi-quantitative light	All Items	
Exposure	Ros-	questionnaire		
Assessment	ner,			
Questionnaire	Lock-			
	ley, &			
	Sch-			
	ern-			
	ham-			
	mer,			
	2011)			

		Relevant	
Name	Authors Description	Items	Adaptations
Hospital Lighting	(Dianat, 23 items questionnaire to asse	ess light	
Survey	Sedghi, environment in a hospital		
	Bagherzade,		
	Ja-		
	farabadi,		
	& Sted-		
	mon,		
	2013)		
Morningness-	(Horne 19 items questionnaire to unde	erstand	
Eveningness	& Öst- your body clock		
Questionnaire	berg,		
	1976)		
Munich	(Roennebergitems questionnaire to unde	erstand	
Chronotype	Wirz- individuals phase of entrainme	nt	
Questionnaire	Justice,		
(MCTQ)	& Mer-		
	row,		
	2003)		
Assessment of	@Olivie1*321eh6s questionnaire measur	ring your	
Sleep	sleep environment quality		
Environment			

			Relevant	
Name	Authors	Description	Items	Adaptation
The Pittsburgh	(Daniel	9 items inventory to measure sleep		
Sleep Quality	J.	quality and sleeping pattern		
Index (PSQI)	Buysse,			
	Reynold	S		
	III,			
	Monk,			
	Berman	,		
	&			
	Kupfer,			
	1989)			
Self-Rating of	@Xie.2	2029 litems questionnaire assessing four	Items 3.,	
Biological		dimensions of biological rhythm disorder	22., 23.,	
Rhythm Disorder		in adolescents (digital media use, sleep,	24., 25.	
for Adolescents		eating habits, and activity)	and 29.	
(SBRDA)				
Photosensitivity	@Wu.2	20167dichotomous (yes/no) items	All items	
Assessment		questionnaire to assess "photophobia"		
Questionnaire		and "photophilia," giving two final scores		
(PAQ)		of "photophobic" and "photophilic"		
		behaviours		

		1. EFA	2. CFA		
	Overall, N	Sample, N =	Sample, N =	p-	q-
Variable	= 690	428	262	value	value
Age	32.95	32.99 (15.11)	32.89 (13.66)	0.5	0.5
	(14.57)				
Sex				0.14	0.4
Female	325 (47%)	189 (44%)	136 (52%)		
Male	351 (51%)	230 (54%)	121 (46%)		
Other	14 (2.0%)	9 (2.1%)	5 (1.9%)		
Gender-Variant Identity	49 (7.2%)	33 (7.8%)	16 (6.2%)	0.4	0.5
Native English Speaker	320 (46%)	191 (45%)	129 (49%)	0.2	0.5
Occupational Status				0.040	0.2
Work	396 (57%)	235 (55%)	161 (61%)		
School	174 (25%)	122 (29%)	52 (20%)		
Neither	120 (17%)	71 (17%)	49 (19%)		
Occupational setting				0.3	0.5
Home office/Home	303 (44%)	194 (45%)	109 (42%)		
schooling					
Face-to-face	109 (16%)	68 (16%)	41 (16%)		
work/Face-to-face					
schooling					
Combination of home- and	147 (21%)	94 (22%)	53 (20%)		
face-to-face-					
work/schooling					
Neither (no work or school,	131 (19%)	72 (17%)	59 (23%)		
or in vacation)					

Table 3

Descriptive Statistics

	Mean	SD	Skew	Kurtosis	Shapiro-Wilk Statistics	Item-Total Correlation
Item1	2.27	1.39	0.74	-0.81	0.81*	.25
Item2	2.87	1.59	0.08	-1.60	0.83*	.19
Item3	3.36	1.38	-0.48	-1.03	0.87*	.16
Item4	1.47	1.18	2.38	4.00	0.43*	.28
Item5	4.01	1.40	-1.22	0.07	0.70*	.13
Item6	2.79	1.55	0.19	-1.48	0.85*	.20
Item7	2.26	1.25	0.70	-0.60	0.85*	.19
Item8	2.97	1.20	-0.06	-0.94	0.91*	10
Item9	2.94	1.03	-0.12	-0.40	0.91*	.10
Item10	2.74	1.04	0.09	-0.74	0.91*	.28
Item11	2.18	0.90	0.60	0.12	0.86*	.26
Item12	2.36	1.22	0.59	-0.62	0.87*	.25
Item13	2.73	1.46	0.20	-1.36	0.87*	.33
Item14	2.14	1.31	0.77	-0.78	0.80*	.26
Item15	3.26	1.09	-0.26	-0.45	0.91*	.14
Item16	1.56	1.23	2.00	2.45	0.50*	.32
Item17	1.54	1.21	2.07	2.75	0.49*	.31
Item18	1.12	0.49	5.02	27.80	0.25*	.16
Item19	1.05	0.36	7.23	52.98	0.13*	.18
Item20	1.04	0.33	8.99	85.28	0.10*	.16
Item21	1.14	0.59	4.79	24.05	0.25*	.16
Item22	3.57	1.07	-0.65	-0.17	0.88*	.21
Item23	2.56	1.27	0.33	-1.00	0.89*	.11

Table 3 continued

	Mean	SD	Skew	Kurtosis	Shapiro-Wilk Statistics	Item-Total Correlation
Item24	4.14	0.99	-1.23	1.14	0.79*	.19
Item25	2.59	1.41	0.27	-1.27	0.86*	.19
Item26	2.25	1.27	0.69	-0.64	0.84*	.18
Item27	3.80	1.29	-0.87	-0.42	0.82*	.17
Item28	3.76	1.14	-0.68	-0.45	0.86*	.00
Item29	2.44	1.31	0.38	-1.14	0.86*	.11
Item30	1.48	1.11	2.18	3.35	0.48*	.24
Item31	3.00	1.62	-0.08	-1.61	0.83*	.44
Item32	3.55	1.65	-0.60	-1.34	0.76*	.43
Item33	3.62	1.64	-0.68	-1.25	0.74*	.32
Item34	3.42	1.83	-0.45	-1.69	0.69*	.33
Item35	3.86	1.67	-0.99	-0.85	0.65*	.23
Item36	1.54	1.25	2.13	2.86	0.46*	.36
Item37	1.33	0.91	3.03	8.43	0.41*	.01
Item38	4.30	1.08	-1.79	2.53	0.67*	.22
Item39	1.96	0.98	1.02	0.69	0.82*	.05
Item40	2.16	1.19	0.71	-0.54	0.84*	.14
Item41	1.31	0.81	2.75	6.92	0.43*	.21
Item42	3.93	1.48	-1.06	-0.44	0.71*	.18
Item43	1.64	1.18	1.79	2.02	0.60*	.15
Item44	3.51	1.30	-0.70	-0.59	0.85*	.39
Item45	2.22	1.48	0.71	-1.02	0.76*	.30
Item46	1.76	1.23	1.35	0.44	0.66*	.38
Item47	2.11	1.17	0.77	-0.39	0.83*	.32

Table 3 continued

	Mean	SD	Skew	Kurtosis	Shapiro-Wilk Statistics	Item-Total Correlation
Item48	2.60	1.25	0.29	-0.86	0.89*	.35

Note. *p<.001

Table 4

Factor loadings and communality of the retained items

item	PA1	PA2	PA3	PA4	PA5	Communality	Uniqueness	Complexity
item16	0.99					0.99	0.01	1.01
item36	0.94					0.90	0.10	1.05
item17	8.0					0.66	0.34	1.08
item11		0.79				0.64	0.36	1.06
item10		0.76				0.59	0.41	1.03
item12		0.65				0.47	0.54	1.25
item7		0.5				0.27	0.73	1.15
item8		-0.49				0.25	0.75	1.07
item9		0.32				0.11	0.89	1.25
item27			8.0			0.66	0.34	1.04
item3			8.0			0.68	0.32	1.12
item40			0.65			0.46	0.54	1.19
item30			0.45			0.35	0.65	2.61
item41			0.36			0.33	0.67	3.63
item33				0.74		0.56	0.44	1.04
item32				0.73		0.62	0.38	1.33
item35				0.66		0.45	0.55	1.12
item37				-0.39		0.17	0.83	1.26
item38				0.38		0.18	0.82	1.42
item46					0.6	0.42	0.58	1.35
item45					0.59	0.37	0.63	1.16
item25					0.41	0.19	0.81	1.28
item4					0.41	0.22	0.78	1.63
item1					0.4	0.17	0.83	1.15
item26					0.35	0.16	0.84	1.75
% of Variance	0.1	0.1	0.09	80.0	0.06	NA	NA	NA

Note. Only loading higher than .30 is reported

Table 5

Fit indices of CFA

Model	Chi-Squre	df	CFI	TLI	RMSEA	RMSEA 90% Lower CI	RMSEA 90% Upper CI	SRMR
Five factor model:25	448.51	222.00	.94	0.93	0.06	0.05	0.07	0.12
Five factor model:23	346.59	221.00	.97	0.96	0.05	0.04	0.06	0.09

Note. df: Degrees of Freedom; CFI: Comparative Fit Index; TLI: Tucker Lewis Index;RMSEA:Root Mean Square Error of Approximation; CI: Confidence Interval; SRMR: Standardized Root Mean Square

Table 6
Invariance Analysis

	Chi-Square	df	CFI	TLI	RMSEA	RMSEA 90% Lower CI	RMSEA 90% Upper	SRMR	Chi-Sqr comparison	df*	р
Configural	632.20	442.00	0.95	0.94	0.06	0.05	0.07	0.13	-	-	-
Metric	644.58	458.00	0.95	0.95	0.06	0.05	0.07	0.13	18.019a	16	0.323
Scalar	714.19	522.00	0.95	0.95	0.05	0.04	0.06	0.13	67.961b	64	0.344
Residual	714.19	522.00	0.95	0.95	0.05	0.04	0.06	0.13	0c	0	NA
Structural	691.49	542.00	0.96	0.96	0.05	0.04	0.06	0.13	12.617d	20	0.893

Note. a = Metric vs Configural; b = Scalar vs Metric; c = Residual vs Scalar; d = Structural vs Residual;* = df of model comparison

Table 7

IRT Item parameters for the LEBA Scale

	а	b1	b2	b3	b4
item16	28.55	0.78	0.90	1.06	1.40
item36	4.49	0.94	1.08	1.23	1.40
item17	2.81	0.97	1.11	1.38	1.62
item11	3.27	-0.79	0.65	1.54	2.31
item10	3.07	-1.27	-0.09	0.82	2.00
item12	1.72	-0.67	0.44	1.28	2.11
item7	1.09	-0.50	0.73	1.63	2.97
Ritem8	1.19	-2.26	-0.48	0.64	1.91
item9	0.91	-2.63	-0.96	1.11	3.49
item27	2.21	-1.88	-1.19	-0.73	0.30
item3	3.03	-1.24	-0.77	-0.20	0.66
item40	1.55	-0.51	0.46	1.32	2.22
item30	0.49	3.27	3.74	4.64	6.52
item41	0.51	3.87	4.78	6.39	8.91
item32	1.62	-1.03	-0.78	-0.42	0.16
item35	1.36	-1.09	-0.98	-0.75	-0.40
item38	0.40	-7.50	-5.58	-4.25	-0.91
item33	13.51	-0.66	-0.48	-0.24	0.13
item46	2.22	0.68	0.89	1.38	2.17
item45	1.51	0.30	0.55	1.17	1.91
item25	0.52	-1.37	-0.04	1.89	4.22
item4	0.84	2.44	2.80	3.18	3.67
item1	0.39	-0.91	1.52	3.25	5.53

Note. a = item discrimination parameter; b(1-4)

= response category difficulty parameter

Table 8

correlation coefficents of obtained

scores and estimated latent trait for

each factots

F1	F2	F3	F4	F5
.94***	.94**	.98***	.98***	.98***

Note. * p < 0.05; ** p < 0.01; *** p < 0.001

Figure 1. Development

Figure 2. Correlation plot of the items

Figure 3. Factor Identification (A) Parallel analysis (B) Scree Plot (C) Hull Method

Figure 4. Five Factor Solution

Figure 5. Histogram of residulas: five-factor solution

Items	St	ımmar	y Statisti	cs	Grap	ohics		R	esponse Patti	ern	
LEBA Items	n	Mean	Median	SD	Histogram [†]	Density ²	Never	Rarely	Sometimes	Often	Always
EFA (n = 4	428) 428	2.3	2.0	1.4	<u></u>	<u></u>	42.29% (181)	22.20% (95)	12.62% (54)	12.38%	10.51%
item03	428	3.4	4.0	1.4		_	15.89%	11.45%	17.29%	31.07%	24.30%
item04	428	1.5	1.0	1.2		^_	84.11% (360)	3.50% (15)	2.10% (9)	2.10% (9)	8.18% (3
item07	428	2.3	2.0	1.2		<u></u>	35.98% (154)	27.80% (119)	17.29%	12.38%	6.54% (2
item08	428	3.0	3.0	1.2		_	13.79%	22.20%	(74) 27.80% (119)	(53) 25.93% (111)	10.28%
item09	428	2.9	3.0	1.0		~	10.28%	19.63%	41.82%	22.43%	5.84% (2
item10	428	2.7	3.0	1.0		^	11.92%	31.31%	(179)	(96) 21.96%	3.50% (1
item11	428	2.2	2.0	0.9		\sim	(51)	(134) 46.26%	(134)	(94) 7.01% (30)	1.17% (
item12	428	2.4	2.0	1.2		<u></u>	(96) 29.91%	(198) 29.67%	(99)	12.15%	6.78% (2
item16	428	1.6	1.0	1.2		_	(128) 79.67%	(127)	(92)	(52) 4.67% (20)	7.48% (3
item17	428	1.5	1.0	1.2		^	(341)	3.27% (14)	5.14% (22)	3.27% (14)	7.71% (3
	428	2.6	3.0				(345)	13.79%	22.20%	17.99%	11.689
item25				1.4			(147) 38.32%	(59) 23.36%	(95) 20.09%	(77) 10.98%	(50)
item26	428	3.7	4.0	1.3			(164)	(100)	(86)	(47)	7.24% (3
item27	428	3.8	4.0	1.3			8.41% (36) 81.78%	(48)	(48)	(130)	(166)
item30	428	1.5	1.0	1.1		_	(350)	3.27% (14)		5.37% (23)	4.67% (2
item32	428	3.6	4.0	1.6		~	(99)	7.01% (30)	8.18% (35)	(64)	(200)
item33	428	3.6	4.0	1.6			21.96% (94)	7.01% (30)	7.24% (31)	14.49% (62)	49.309 (211)
item35	428	3.9	5.0	1.7		~	22.90% (98)	1.87% (8)	3.74% (16)	9.35% (40)	62.159 (266)
item36	428	1.5	1.0	1.3		^	82.24% (352)	3.04% (13)	3.04% (13)	2.34% (10)	9.35% (4
item37	428	2.3	2.0	1.3		\sim	38.32% (164)	23.36% (100)	20.09% (86)	10.98% (47)	7.24% (3
item38	428	4.3	5.0	1.1			5.37% (23)	3.50% (15)	5.37% (23)	27.57% (118)	58.189 (249)
item40	428	2.2	2.0	1.2		\sim	39.49% (169)	25.00% (107)	19.63% (84)	11.45% (49)	4.44% (
item41	428	1.3	1.0	0.8		^_	85.05% (364)	4.67% (20)	6.07% (26)	3.04% (13)	1.17% (
item45	428	2.2	1.0	1.5		<u></u>	53.04% (227)	7.01% (30)	16.36% (70)	11.92% (51)	11.689
item46	428	1.8	1.0	1.2		^	67.06% (287)	7.71% (33)	11.68% (50)	8.88% (38)	4.67% (2
CFA (n =2	(62)										
item01	262	2.3	2.0	1.4		<u></u>	40.46% (106)	22.52% (59)	14.50% (38)	10.69% (28)	11.839
item03	262	3.7	4.0	1.3		\sim	11.83% (31)	7.25% (19)	17.56% (46)	28.24% (74)	35.119 (92)
item04	262	1.3	1.0	0.8		^_	89.31% (234)	2.29% (6)	3.44% (9)	3.05% (8)	1.91% (
item07	262	2.1	2.0	1.2	<u> </u>	<u></u>	43.13% (113)	23.66% (62)	14.50% (38)	14.12% (37)	4.58% (
item08	262	3.0	3.0	1.2		\sim	14.12% (37)	22.90% (60)	20.99% (55)	32.06% (84)	9.92% (2
item09	262	2.9	3.0	1.1		<u></u>	12.98% (34)	22.14% (58)	34.35% (90)	26.34% (69)	4.20% (
item10	262	2.6	3.0	1.1		\sim	17.56% (46)	29.39% (77)	29.01% (76)	21.37% (56)	2.67% (
item11	262	2.1	2.0	0.9		<u></u>	25.95% (68)	46.56% (122)	20.23%	5.34% (14)	1.91% (
item12	262	2.3	2.0	1.2		<u></u>	32.06% (84)	30.92% (81)	19.08%	11.45%	6.49% (
item16	262	1.6	1.0	1.3		^	78.24% (205)	3.44% (9)		5.73% (15)	8.40% (2
item17	262	1.6	1.0	1.2		^	80.15%	3.44% (9)	5.34% (14)	2.67% (7)	8.40% (2
item25	262	2.5	2.0	1.4		<u></u>	(210) 32.82%	18.32%	21.76%	16.79%	10.319
item27	262	4.0	4.0	1.2		_	(86)	(48) 7.25% (19)	(57) 8.02% (21)	(44) 33.59%	(27) 45.049
item30	262	1.4	1.0	1.1		^	83.59%	2.67% (7)		(88) 6.11% (16)	3.44%
item32	262	3.4	4.0	1.7		~	(219) 25.95%	4.20% (11)	11.45%	16.79%	41.609
						~	(68) 32.44%		(30)	(44) 14.12%	(109)
item33	262	3.1	3.0	1.7			(85) 27.48%	6.11% (16)	(31)	(37)	(93) 56.119
item35	262	3.6	5.0	1.8			(72) 80.53%	2.67% (7)	7.25% (19)	6.49% (17)	(147)
item36	262	1.6	1.0	1.3			(211)	3.44% (9)	3.05% (8)	3.44% (9) 21.37%	9.54% (2
item38	262	4.3	5.0	1.1			4.20% (11)	7.63% (20)	6.49% (17)	(56)	(158)
item40	262	2.5	2.0	1.3		\sim	30.92% (81)	27.10% (71)	18.70% (49)	12.21% (32)	11.079
item41	262	1.2	1.0	0.7		^	90.08% (236)	3.82% (10)	2.29% (6)	2.67% (7)	1.15% (
	262	2.0	1.0	1.4		^_	64.12% (168)	5.34% (14)	9.54% (25)	11.83% (31)	9.16% (2
item45							75.57%				

Figure 6

Figure 7. (A) Five Factor Model of LEBA

Figure 8. Item information curves (A) blue filter (B) natural light (C)smart device (D)sleep environment (E)electic light

Figure 9. Test information curves (A) blue filter (B) natural light (C)smart device (D)sleep environment (E)electic light

Appendix A

Table A1

Factor loadings and communality of the retained items(Minmum Residual)

item	MR1	MR2	MR3	MR4	MR5	Communality	Uniqueness	Complexity
item16	1					0.996	0.004	1.008
item36	0.94					0.897	0.103	1.05
item17	0.8					0.658	0.342	1.079
item11		0.79				0.642	0.358	1.058
item10		0.76				0.592	0.408	1.034
item12		0.65				0.465	0.535	1.246
item7		0.5				0.267	0.733	1.148
item8		-0.49				0.252	0.748	1.068
item9		0.32				0.113	0.887	1.252
item27			0.8			0.659	0.341	1.04
item3			0.8			0.683	0.317	1.123
item40			0.65			0.464	0.536	1.191
item30			0.45			0.353	0.647	2.61
item41			0.36			0.329	0.671	3.627
item33				0.74		0.555	0.445	1.043
item32				0.73		0.623	0.377	1.335
item35				0.66		0.455	0.545	1.117
item37				-0.39		0.175	0.825	1.256
item38				0.38		0.178	0.822	1.42
item46					0.6	0.422	0.578	1.346
item45					0.59	0.374	0.626	1.164
item25					0.41	0.193	0.807	1.278
item4					0.41	0.219	0.781	1.626
item1					0.4	0.17	0.83	1.151
item26					0.35	0.165	0.835	1.752
% of Variance	0.1	0.1	0.09	0.08	0.06			

Note. Only loading higher than .30 is reported

Table A2

Factor loadings and communality of the retained items(six factor)

item	PA1	PA4	PA2	PA3	PA5	PA6	Communality	Uniqueness	Complexity
item19	1.78						3.318	-2.318	1.09
item5							0.11	0.89	3.457
item16		1					1.004	-0.004	1.015
item36		0.91					0.86	0.14	1.082
item17		0.81					0.691	0.309	1.114
item11			0.83				0.71	0.29	1.076
item10			0.79				0.638	0.362	1.05
item12			0.63				0.465	0.535	1.336
item8			-0.5				0.269	0.731	1.199
item7			0.47				0.268	0.732	1.477
item9			0.32				0.163	0.837	2.107
item33				0.83			0.698	0.302	1.05
item32				0.75			0.666	0.334	1.361
item35				0.64			0.446	0.554	1.188
item31				0.48			0.331	0.669	1.853
item38				0.39			0.191	0.809	1.483
item37				-0.35			0.153	0.847	1.531
item3					0.85		0.748	0.252	1.09
item27					0.8		0.644	0.356	1.016
item40					0.68		0.507	0.493	1.171
item46						0.6	0.431	0.569	1.37
item45						0.56	0.341	0.659	1.195
item4						0.43	0.265	0.735	1.968
item25						0.4	0.178	0.822	1.183
item1						0.36	0.142	0.858	1.138
item26						0.36	0.173	0.827	1.728
item13							0.087	0.913	1.515

Appendix B

Disclaimer: This is a non-public version of LEBA (dated November 8, 2021) and still a
 work in progress. Please do not distribute!

LEBA captures light exposure-related behaviours on a 5 point Likert type scale
ranging from 1 to 5 (Never/Does not apply/I don't know = 1; Rarely = 2; Sometimes = 3;
Often = 4; Always = 5). The score of each factor is calculated by the summation of
scores of items belonging to the corresponding factor. The following instruction is given
before displaying the items: "Please indicate how often you performed the following
behaviours in the past 4 weeks."

Appendix C
LEBA Long Form (23 Items)

	Items	Never/Does not apply/I don't know	Rarely	Sometimes	Often	Always
1	I wear blue-filtering,					
	orange-tinted, and/or					
	red-tinted glasses indoors					
	during the day.					
2	I wear blue-filtering,					
	orange-tinted, and/or					
	red-tinted glasses outdoors					
	during the day.					
3	I wear blue-filtering,					
	orange-tinted, and/or					
	red-tinted glasses within 1					
	hour before attempting to fall					
	asleep.					
4	I spend 30 minutes or less					
	per day (in total) outside.					

	Items	Never/Does not apply/I don't know	Rarely	Sometimes	Often	Always
5	I spend between 1 and 3					
	hours per day (in total)					
	outside.					
6	I spend between 30 minutes					
	and 1 hour per day (in total)					
	outside.					
7	I spend more than 3 hours					
	per day (in total) outside.					
8	I spend as much time outside					
	as possible.					
9	I go for a walk or exercise					
	outside within 2 hours after					
	waking up.					
10	I use my mobile phone within					
	1 hour before attempting to					
	fall asleep.					

	Items	Never/Does not apply/I don't know	Rarely	Sometimes	Often	Always
11	I look at my mobile phone					
	screen immediately after					
	waking up.					
12	I check my phone when I					
	wake up at night.					
13	I look at my smartwatch					
	within 1 hour before					
	attempting to fall asleep.					
14	I look at my smartwatch					
	when I wake up at night.					
15	I dim my mobile phone					
	screen within 1 hour before					
	attempting to fall asleep.					
16	I use a blue-filter app on my					
	computer screen within 1					
	hour before attempting to fall					
	asleep.					

	Items	Never/Does not apply/I don't know	Rarely	Sometimes	Often	Always
17	I use as little light as possible					
	when I get up during the					
	night.					
18	I dim my computer screen					
	within 1 hour before					
	attempting to fall asleep.					
19	I use tunable lights to create					
	a healthy light environment.					
20	I use LEDs to create a					
	healthy light environment.					
21	I use a desk lamp when I do					
	focused work.					
22	I use an alarm with a dawn					
	simulation light.					
23	I turn on the lights					
	immediately after waking up.					

Latent Structure, Reliability and Structural Validity

The long form of LEBA consists 23 items with five factors.

Factor names	Items	Reliability Coefficients
F1: Wearing blue light filters	1-3	.93
F2: Spending time outdoors	4-9 (Item 4 is reversed)	.80
F3: Using phone and smartwatch in bed	10-14	.61
F4: Using light before bedtime	15-18	.72
F5: Using light in the morning and during daytime	19-23	.45

LEBA -long form showed satisfactory structural validity (CFI =.97; TLI = .96; RMSEA = .05[.04-.06, 90% CI]; SRMR = .09).

621 How to cite:

Appendix D

LEBA Short Form (17 Items)

	Short Form (17 Items)	Never/Does not apply/I don't know	Rarely	Sometimes	Often	Always
01	I wear blue-filtering,					
	orange-tinted, and/or					
	red-tinted glasses indoors					
	during the day.					
02	I wear blue-filtering,					
	orange-tinted, and/or					
	red-tinted glasses outdoors					
	during the day.					
03	I wear blue-filtering,					
	orange-tinted, and/or					
	red-tinted glasses within 1					
	hour before attempting to fall					
	asleep.					
04	I spend 30 minutes or less					
	per day (in total) outside.					

	Short Form (17 Items)	Never/Does not apply/I don't know	Rarely	Sometimes	Often	Always
05	I spend between 1 and 3					
	hours per day (in total)					
	outside.					
6	I spend more than 3 hours					
	per day (in total) outside.					
7	I spend as much time outside					
	as possible.					
8	I go for a walk or exercise					
	outside within 2 hours after					
	waking up.					
9	I use my mobile phone within					
	1 hour before attempting to					
	fall asleep.					
10	I look at my mobile phone					
	screen immediately after					
	waking up.					
11	I check my phone when I					
	wake up at night.					

	Short Form (17 Items)	Never/Does not apply/I don't know	Rarely	Sometimes	Often	Always
12	I dim my mobile phone					
	screen within 1 hour before					
	attempting to fall asleep.					
13	I use a blue-filter app on my					
	computer screen within 1					
	hour before attempting to fall					
	asleep.					
14	I dim my computer screen					
	within 1 hour before					
	attempting to fall asleep.					
15	I use tunable lights to create					
	a healthy light environment.					
16	I use LEDs to create a					
	healthy light environment.					
17	I use an alarm with a dawn					
	simulation light.					

622 Latent Structure, Reliability and Structural Validity

The short form of LEBA consists 23 items with five factors.

Factor names	Items
F1: Wearing blue light filters	1-3
F2: Spending time outdoors	4-8 (Item 4 is reversed)
F3: Using phone and smart-watch in bed	9-11
F4: Using light before bedtime	12-14
F5: Using light in the morning and during daytime	15-17

How to cite:

Appendix E

Supplimentary Analysis

Figure E1. Correlation plot of the items

Horn's parallel analysis with 500 iterations indicated a five-factor solution. However,
Scree plot and the MAP method suggested 6-factor solution. five-factor solution. As a
result, we tested both five-factor and six-factor solutions.

Five Factor Solution[Unmerged Responses] (24 Items)

F1

I use light therapy applying a blue light box.

I use light therapy applying a light visor.

Five Factor Solution[Unmerged Responses] (24 Items)

I use light therapy applying a white light box.

I use light therapy applying another form of light device.

I use an alarm with a dawn simulation light.

F2

I spend more than 3 hours per day (in total) outside.

I spend between 1 and 3 hours per day (in total) outside.

I spend as much time outside as possible.

I spend 30 minutes or less per day (in total) outside.

I go for a walk or exercise outside within 2 hours after waking up.

I spend between 30 minutes and 1 hour per day (in total) outside.

F3

I look at my mobile phone screen immediately after waking up.

I use my mobile phone within 1 hour before attempting to fall asleep.

I check my phone when I wake up at night.

F4

I use a blue-filter app on my computer screen within 1 hour before attempting to fall asleep.

I seek out knowledge on how to improve my light exposure.

I dim my computer screen within 1 hour before attempting to fall asleep.

I discuss the effects of light on my body with other people.

I modify my light environment to match my current needs.

I dim my room light within 1 hour before attempting to fall asleep.

I use as little light as possible when I get up during the night.

F5

I wear blue-filtering, orange-tinted, and/or red-tinted glasses indoors during the day.

Five Factor Solution[Unmerged Responses] (24 Items)

I wear blue-filtering, orange-tinted, and/or red-tinted glasses outdoors during the day.

I wear blue-filtering, orange-tinted, and/or red-tinted glasses within 1 hour before attempting to fall asleep.

Figure E2. Factor Identification (A) Parallel analysis (B) Scree Plot

Figure E3. Histogram of residulas: five-factor solution

Table E1

Descriptive Statistics for Unmerged response options

	Mean	SD	Skew	Kurtosis	Shapiro-Wilk Statistics	Item-Total Correlation
Item1	2.16	1.51	0.49	-0.86	0.90*	.21
Item2	2.76	1.75	-0.10	-1.42	0.88*	.20
Item3	3.34	1.43	-0.58	-0.77	0.88*	.18
Item4	1.30	1.31	1.93	2.92	0.62*	.32
Item5	3.95	1.56	-1.42	0.75	0.70*	.19
Item6	2.70	1.66	0.02	-1.33	0.90*	.18
Item7	2.23	1.28	0.60	-0.59	0.89*	.18
Item8	2.95	1.24	-0.19	-0.70	0.93*	07
Item9	2.92	1.09	-0.37	0.11	0.91*	.14
Item10	2.73	1.07	-0.03	-0.52	0.92*	.27
Item11	2.17	0.93	0.44	0.20	0.89*	.25
Item12	2.34	1.26	0.46	-0.58	0.91*	.24
Item13	2.71	1.49	0.14	-1.29	0.89*	.28
Item14	2.11	1.34	0.68	-0.78	0.84*	.24
Item15	3.26	1.11	-0.34	-0.21	0.91*	.11
Item16	1.46	1.31	1.71	1.90	0.65*	.33
Item17	1.43	1.30	1.76	2.12	0.64*	.30
Item18	0.92	0.67	2.00	9.41	0.62*	.32
Item19	0.85	0.56	1.71	10.74	0.55*	.34
Item20	0.83	0.54	1.76	13.92	0.53*	.31
Item21	0.94	0.75	2.46	10.66	0.58*	.27
Item22	3.57	1.08	-0.72	0.08	0.88*	.19
Item23	2.53	1.31	0.22	-0.91	0.92*	.11
Item24	4.13	1.01	-1.39	2.01	0.78*	.19
Item25	2.57	1.43	0.22	-1.23	0.88*	.17

Table E2

Factor loadings and communality of the retained items [Unmerged Responses]

item	PA1	PA2	PA5	PA3	PA4	Communality	Uniqueness	Complexity
item19	0.99					1.01	-0.01	1.06
item20	0.91					0.87	0.13	1.11
item18	0.82					0.71	0.29	1.12
item21	8.0					0.68	0.32	1.16
item4	0.47					0.25	0.75	1.30
item11		0.83				0.69	0.31	1.01
item10		0.81				0.67	0.33	1.03
item12		0.56				0.37	0.63	1.37
item8		-0.44				0.21	0.79	1.11
item7		0.42				0.23	0.77	1.61
item9		0.33				0.12	0.88	1.10
item16			0.95			0.95	0.05	1.10
item17			0.74			0.60	0.41	1.17
item36	0.3		0.73			0.65	0.35	1.43
item3				0.85		0.75	0.25	1.05
item27				0.78		0.62	0.38	1.03
item40				0.71		0.51	0.49	1.05
item35					0.58	0.35	0.65	1.09
item48					0.57	0.35	0.65	1.14
item33					0.55	0.32	0.68	1.08
item47					0.52	0.29	0.71	1.19
item44					0.45	0.22	0.78	1.15
item31					0.41	0.21	0.79	1.48
item38					0.33	0.13	0.87	1.32
% of Variance	0.15	0.09	0.09	0.08	0.08	NA	NA	NA

Note. Only loading higher than .30 is reported