

计算机组成原理

第三章 运算方法与运算器

3.4 补码一位乘法

1 补码一位乘法的基本方法

设[X]_补 =
$$X_0X_1X_2X_3...X_n$$
 [Y]_补 = $Y_0Y_1Y_2Y_3...Y_n$

可证明:

$$[X \cdot Y]_{\lambda h} = [X]_{\lambda h} \cdot (0.Y_1Y_2Y_3...Y_n) - Y_0 \cdot [X]_{\lambda h}$$

进一步展开合并后可得:

$$[x \cdot y]_{i} = [x]_{i=0}^{n} \cdot \sum_{i=0}^{n} (y_{i+1} - y_{i}) 2^{-i}$$
 (符号位参加运算)

1 补码一位乘法的基本方法

$$[x^{\bullet}y]_{i}=[x]_{i}^{\bullet} \Sigma(y_{i+1}-y_{i})2^{-i}$$
 (符号位参加运算)

补码一位乘法的运算规则如下:

- (1)如果 $y_{n+1}=y_n$,部分积加0,部分积算术右移1位;
- (2)如果 $y_{n+1}y_n=10$,部分积加 $[x]_{i}$,部分积算术右移1位;
- (3)如果 $y_{n+1}y_n=01$,部分积加 $[-x]_{in}$,部分积算术右移1位.

重复进行n + 1步,但最后一步不移位。

包括一位符号位,所得乘积为2n+1位,其中n为数据位位数.

1 补码一位乘法的基本方法

设[X]_补 =
$$X_0X_1X_2X_3...X_n$$
 [Y]_补 = $Y_0Y_1Y_2Y_3...Y_n$

$$[x \cdot y]_{i} = [x]_{i} \cdot \Sigma(y_{i+1} - y_{i})2^{-i}$$
 (符号位参加运算)

几个特殊问题的处理

(1)
$$i=n \oplus y_{n+1}=?$$
 $y_{n+1}=0$

- (2) y_{n+1} 是哪个寄存器? 在乘数寄存器Y后增加的一位
- (3)算术右移的对象有哪些? 部分积和乘数寄存器均右移

2 补码一位乘法的举例

例1 已知X= +1101 Y=+1011 用补码—位乘法求 X×Y

解: $[X]_{\stackrel{}{\nmid} h} = 01101$ $[Y]_{\stackrel{}{\nmid} h} = 01011$ $[-X]_{\stackrel{}{\nmid} h} = 10011$

001001

1.1	11		11
	部分积	乘数	说明
	000000	<u>010110</u>	Y _{n+1} < Y _n 部分积 +[-X] _补
+	<u>110011</u>		
	110011		
\rightarrow	111001	<u>101011</u>	结果右移一位, Y _{n+1} = Y _n 部分积 +0
+	000000		
	111001		
\rightarrow	111100	110101	结果右移一位, Y _{n+1} > Y _n 部分积 +[X] _i
+	<u>001101</u>		

2 补码一位乘法的举例

 $: [X \cdot Y]_{\lambda} = 010001111$

 $X \cdot Y = 010001111$