Álgebra Linear

André Ribeiro

June 2022

Contents

1	Esp	aços Vetoriais		
	1.1	Subespaços Vetoriais		
	1.2	Somas e Somas Diretas		
2	Espaços Vetoriais Finitos			
	2.1	Gerador (span)		
	2.2	Dependência e Independência Linear		
	2.3	Base		
	2.4	Dimensão		
3	Transformações Lineares			
	3.1	Núcleo e Imagem		
	3.2	Matriz de uma transformação linear		
	3.3	Aplicações inversíveis		
4	Aut	sovalores e Autovetores 8		
	4.1	Invariantes		
	4.2	Polinômios aplicados a operadores		
5	Espaço de Produto Interno 10			
	5.1	Motivação		
		Produto Interno		

1 Espaços Vetoriais

Dado um conjunto V e um corpo $(\mathbb{K},+,\cdot)$, dizemos que V é um \mathbb{K} -espaço vetorial se os seguintes axiomas são satisfeitos:

• O operador

$$\begin{array}{c} +_{_{V}}: V \times V \rightarrow V \\ (u,v) \mapsto u +_{_{V}} v \end{array}$$

é associativo, comutativo, possui elemento neutro e inverso.

• O operador

$$\begin{array}{c} \cdot_{_{V}}: \mathbb{K} \times V \to V \\ (a,u) \mapsto a \cdot_{_{V}} u \end{array}$$

é compatível com o produto em $\mathbb K$ e possui elemento neutro. Este operador é também distributivo com respeito a $+_{_V}$ e +, i.e., dados $a,b\in\mathbb K$ e $u,v\in V$, temos que

$$(a+b,v) \rightarrow (a,v) +_{_{V}} (b,v) \quad \wedge \quad (a,u+_{_{V}} v) \rightarrow (a,u) +_{_{V}} (a,v)$$

A partir de agora usaremos as notações usuais de soma e produto, e o contexto deixa claro quando estamos tratando de somas e produtos no corpo ou nos espaços vetoriais.

1.1 Subespaços Vetoriais

Dado V um \mathbb{K} -espaço vetorial, dizemos que $F\subset V$ é um \mathbb{K} -subespaço vetorial se valem as propriedades

- $x, y \in F \implies x + y \in F$
- $\alpha \in \mathbb{K}, x \in F \implies \alpha x \in F$,

Proposição: Se V é \mathbb{K} -espaço vetorial e $F\subset V$ é subespaço então F é \mathbb{K} -espaço vetorial

1.2 Somas e Somas Diretas

Sejam U K-espaço vetorial e $V_1, \cdots, V_n \subset U$ subespaços. Definimos o conjunto $V = \sum V_i$ como

$$V = V_1 + V_2 + \dots + V_n$$

= $\{v_1 + v_2 + \dots + v_n \mid v_i \in V_i, \forall i = 1, 2, \dots, n\}$

O conjunto $V \subset U$ é também um subespaço vetorial. Se cada vetor de V pode ser escrito unicamente como uma soma de vetores acima, dizemos que V é soma direta de $V_1, \dots V_n$, e denotamos por

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_n$$

Proposição: Seja V um \mathbb{K} -espaço vetorial e $U_1, \cdots U_n \subset V$ subespaços. Então

 $V = U_1 \oplus \cdots \oplus U_n$ se, e somente se

- $V = U_1 + \cdots U_n$
- $0 = u_1 + \cdots + u_n \iff u_1 = \cdots = u_n = 0$

Proposição: Seja Vum K-espaço vetorial e $U,W\subset V$ subespaços. Então $V=U\oplus W$

- $\bullet V = U + W$
- $\bullet \ U \cap W = \{0\}$

2 Espaços Vetoriais Finitos

2.1 Gerador (span)

Seja V um \mathbb{K} -espaço vetorial e $S = \{x_1, \dots, x_k\} \subset V$ subespaço, definimos o espaço gerado por S como o menor espaço vetorial contendo S, (i.e. o conjunto de todas as combinações lineares de seus vetores) denotado por

$$Ger(S) = span(S) = \left\{ \sum_{j=1}^{k} \alpha_j x_j, \ \alpha_j \in \mathbb{K} \right\}$$

Dizemos que V tem dimensão finita se $\exists E \in V$ t.q. $V = \operatorname{span}(E)$, caso contrário V tem dimensão infinita.

2.2 Dependência e Independência Linear

Seja V um \mathbb{K} -espaço vetorial e $S = \{s_i\}_{1 \leq i \leq n} \subset V$ subespaço. Dizemos que o conjunto de vetores em S é linearmente independente (LI) se

$$a_1s_1 + a_2s_2 + \dots + a_ns_n = 0 \iff a_1 = a_2 = \dots = a_n = 0$$

O conjunto de vetores é linearmente dependente (LD) se não é LI.

2.3 Base

Seja V um \mathbb{K} -espaço vetorial. Um conjunto $B\subset V$ é uma base de V se $V=\mathrm{span}(B)$ e os vetores de B são LI.

Corolário: Todo espaço vetorial finito tem uma base.

Teorema: Seja V um \mathbb{K} -espaço vetorial. Se B_1 e B_2 são bases para V, então $|B_1|=|B_2|$

2.4 Dimensão

Seja V um \mathbb{K} -espaço vetorial. Definimos a dimensão de V sobre \mathbb{K} , dim \mathbb{K} V, como a cardinalidade de qualquer base de V.

Teorema: Sejam U_1, U_2 subespaços de um \mathbb{K} -espaço vetorial finito. Então

$$\dim_{\mathbb{K}}(U_1 + U_2) = \dim(U_1) + \dim(U_2) - \dim(U_1 \cap U_2)$$

3 Transformações Lineares

Sejam U e W \mathbb{K} -espaços vetoriais. Uma transformação linear $T:U\to W$ é uma função que satisfaz, $\forall u,v\in U$ e $\forall \alpha\in\mathbb{K}$

- T(u+v) = T(u) + T(v)
- $T(\alpha u) = \alpha(Tu)$

O conjunto das funções lineares de U em W é denotado por $\mathcal{L}(U,W)$

3.1 Núcleo e Imagem

Definimos o núcleo e a imagem (ou espaço nulo e espaço coluna) de uma transformação $T \in \mathcal{L}(U, W)$, respectivamente, como os conjuntos

$$N(T) = \{ v \in U \mid Tv = 0 \} \quad \land \quad C(T) = \{ Tv \mid v \in U \}$$

Teorema: $N(T) \subset U$ e $C(T) \subset W$ são subespaços.

Um mapa linear $T:U\to W$ é sobrejetivo se C(T)=We é injetivo se, $\forall u,v\in U,$ temos

$$Tu = Tv \iff u = v$$

Proposição: Seja $T \in \mathcal{L}(U, W)$. Então T é injetiva se, e somente se, $N(T) = \{0\}$

Teorema: Se $\dim_{\mathbb{K}} U < \infty$ e $T \in \mathcal{L}(U, W)$ então $\dim_{\mathbb{K}} C(T) < \infty$ e

$$\dim_{\mathbb{K}} U = \dim_{\mathbb{K}} C(T) + \dim_{\mathbb{K}} N(T)$$

Corolário: Se U e W são \mathbb{K} -espaços com dimensão finita com dim $U>\dim W$, então nenhum mapa linear de U para W é injetivo. Analogamente, se dim $U<\dim W$, então nenhum mapa linear de U para W é sobrejetivo.

3.2 Matriz de uma transformação linear

Seja $T \in \mathcal{L}(U, W)$, e suponha que (u_1, \dots, u_n) e (w_1, \dots, w_m) são bases de U e W, respectivamente. Podemos então escrever cada Tu_k unicamente como combinação linear dos w_i

$$Tu_k = \sum_{j=1}^m a_{j,k} w_j$$

com $k=1,\cdots,n$ e $a_{j,k}\in\mathbb{K},\forall j,k$. A matriz $m\times n$ cujas entradas são compostas pelos a's é chamada matriz da transformação linear T, denotada por

$$M(T, (u_1, \dots, u_n), (w_1, \dots, w_m)) = M(T) = \begin{bmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{bmatrix}$$

É fácil mostrar que, dados $T, S \in \mathcal{L}(U, W)$ e $c \in \mathbb{K}$, temos que

- M(T+S) = M(T) + M(S)
- M(cT) = cM(T)

Seja $\mathbb{M}(m,n,\mathbb{K})=\mathbb{M}_{m\times n}(\mathbb{K})=\mathbb{K}^{m\times n}$ o conjunto das matrizes $m\times n$ com entradas em \mathbb{K} . Com as operações acima, o conjunto $\mathbb{K}^{m\times n}$ é um \mathbb{K} -espaço vetorial. Note que a matriz cujas entradas são todas 0 representa a identidade aditiva desse espaço. Consideremos agora, um \mathbb{K} -espaço $V, (v_1, \cdots, v_p)$ uma base e as aplicações lineares $S:U\to V, T:V\to W$. Então TS é uma aplicação de U para W. Com a multiplicação usual de matrizes, temos também que

$$M(TS) = M(T)M(S)$$

Seja (u_1, \dots, u_n) uma base de U. Se $u \in U$, então

$$u = \sum_{i=1}^{n} a_i u_i$$

A matriz de u é definida por

$$M(u) = M(u, (u_1, \dots, u_n)) = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$

3.3 Aplicações inversíveis

Proposição: Uma aplicação linear é invertível se, e somente se, é injetiva e sobrejetiva

Dizemos que dois espaços vetoriais são isomorfos se existe uma bijeção entre eles, i.e. uma aplicação linear invertível de um espaço para o outro.

Teorema: Dois espaços vetoriais finitos são isomorfos se, e se somente se, tem mesma dimensão.

Proposição: A aplicação M : $\mathcal{L}(U,W) \to \mathbb{K}^{m \times n}$ é invertível, i.e. $\mathcal{L}(U,W) \cong \mathbb{K}^{m \times n}$

Note que uma base para o espaço das matrizes $m \times n$ são as matrizes com 1 em uma entrada e 0 nas outras. Com isso, temos que dim $\mathbb{K}^{m \times n} = mn$. Como esse espaço é isomorfo ao dos funcionais lineares, dim $\mathcal{L}(U,W) = mn$.

Teorema: Seja U um \mathbb{K} -espaço de dimensão finita. Se $T\in\mathcal{L}(U),$ então as seguintes definições são equivalentes

- (a) T é invertível
- (b) T é injetiva
- (c) T é sobrejetiva

4 Autovalores e Autovetores

4.1 Invariantes

Sejam V um \mathbb{K} -espaço, $T\in\mathcal{L}(V)$ e $U\subset V$ subespaço. Dizemos que U é invariante sob T se

$$u \in U \implies Tu \in U, \forall u \in U$$

Em outras palavras, U é invariante sob T se $T_{|U}$ é um operador em U. Note que $\{0\}$ e V são invariantes triviais, e é fácil verificar que os espaços N(T) e C(T) são invariantes sob T. O caso mais simples de subespaço invariante é quando $\dim U_1 = 1$. Nesse caso, dado $u \in V$ temos

$$U_1 = \{ \alpha u \mid \alpha \in \mathbb{K} \}$$

Temos que todos subespaços de dimensão 1 de V são dessa forma. Se U_1 é invariante sob T, então

$$Tu = \lambda u$$

Esse caso particular tem enorme importância. Dizemos que um escalar $\lambda \in \mathbb{K}$ é um autovalor de $T \in \mathcal{L}(V)$ se $\exists u \in V \setminus \{0\}$ tal que $Tu = \lambda u$. Portanto T tem subespaço invariante de dimensão 1 se, e somente se, possui um autovalor. Perceba que

$$Tu = \lambda u \iff (T - I\lambda)u = 0$$

portanto λ é um autovalor se, e somente se $T-I\lambda$ não é invertível (i.e. não é bijetiva). O vetor u que satisfaz essa equação é chamado autovetor de T correspondente a λ . O conjunto de autovetores associados a λ é dado por $N(T-I\lambda)\subset V$

Teorema: Seja $T \in \mathcal{L}(V)$. Suponha $\lambda_1, \dots, \lambda_m$ são autovalores distintos de T e v_1, \dots, v_m são os autovetores correspondentes (diferentes de 0). Então (v_1, \dots, v_m) é L.I.

Corolário: Cada operador em V tem no máximo dim V autovalores.

4.2 Polinômios aplicados a operadores

Se $T \in \mathcal{L}(V)$, definimos

$$T^m = \underbrace{T \cdots T}_{m \text{ vezes}}$$

Por conveniência $T^0 = I$. Definimos também

$$T^{-m} = (T^{-1})^m$$

É fácil verificar que valem as propriedades

$$T^n T^m = T^{n+m} \quad \wedge \quad (T^n)^m = T^{nm}$$

com $m,n\in\mathbb{Z}$ se T é invertível e $m,n\in\mathbb{N}$ caso contrário. Se $T\in\mathcal{L}(V)$ e $p\in\mathcal{P}(\mathbb{K})$ é um polinômio dado por

$$p(z) = \sum_{j=1}^{n} a_j z^j, \ z \in \mathbb{K}$$

então p(T) é o operador definido por

$$p(T) = \sum_{j=1}^{n} a_j T^j$$

Fixado um $T \in \mathcal{L}(V)$, a função

$$\mathbf{T}: \mathcal{P}(\mathbb{K}) \to \mathcal{L}(V)$$

 $p \mapsto p(T)$

é linear. Se $p,q\in\mathcal{P}(\mathbb{K}),$ então pq é o polinômio definido por

$$(pq)(z) = p(z)q(z)$$

É fácil verificar que

$$(pq)(T) = p(T)q(T), T \in \mathcal{L}(V)$$

5 Espaço de Produto Interno

5.1 Motivação

A motivação do conceito de produto interno vem da norma. Como a norma não é linear, injetamos linearidade nela com o produto interno. Definimos o produto escalar nos vetores do \mathbb{R}^n

$$x, y \in \mathbb{R}^n \implies x \cdot y = \sum_{i=1}^n x_i y_i$$

e podemos definir a norma a partir disso

$$\left\|x\right\|^2 = x \cdot x$$

Note que o produto escalar satisfaz, $\forall x, y \in \mathbb{R}^n$

- $x \cdot x \ge 0$ e $x \cdot x = 0 \iff x = 0$
- $\cdot: \mathbb{R}^n \to \mathbb{R}^n$ é linear, $x \cdot y = x^T y$
- $\bullet \ x \cdot y = y \cdot x$

O produto interno é uma generalização do produto escalar. Antes das definições, precisamos analisar o caso complexo. Para os vetores de \mathbb{C}^n , temos

$$z \in \mathbb{C}^n \implies ||z||^2 = \sum_{j=1}^n z_j \overline{z_j}$$

Como queremos que $\left\|z\right\|^2=z\cdot z,$ o produto interno de $z,w\in\mathbb{C}^n$ deve ser algo da forma

$$z_1\overline{w_1} + \dots + z_n\overline{w_n}$$

Note que se queremos o produto interno de w e z, a expressão acima é substituída pelo seu conjugado. Com essas motivações, podemos definir produtos internos sobre \mathbb{K} -espaços, com $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

5.2 Produto Interno

Seja V um \mathbb{K} -espaço. Um produto interno em V é uma função $\langle\cdot,\cdot\rangle:V\to\mathbb{K}$ que leva um par de vetores (u,v) em V em um escalar $\langle u,v\rangle$ do corpo \mathbb{K} , satisfazendo as seguintes propriedades

- $\langle u, u \rangle \ge 0, \ \forall u \in V \land \langle u, u \rangle = 0 \iff u = 0$
- $\langle u+w,v\rangle = \langle u,v\rangle + \langle w,v\rangle, \ \forall u,v,w\in V$
- $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle, \ \forall \alpha \in \mathbb{K}, \ \forall u, v \in V$
- $\langle u, v \rangle = \overline{\langle v, u \rangle}, \ \forall u, v \in V$

Note que a condição de simetria conjugada no caso real torna-se apenas simetria. O conjunto $(V,\langle\cdot,\cdot\rangle)$ é chamado espaço vetorial de produto interno (innerproduct space).