MEC529: Introduction to Robotics (Theory and Applications)

(Spring 2022)

Amin Fakhari, Ph.D.

Department of Mechanical Engineering
Stony Brook University

Amin Fakhari, Spring 2022

Ch1: Motivational Example

Amin Fakhari, Spring 2022

Linear Algebra

00000000

Vector

A **coordinate free vector** is a geometric quantity with a length and a direction.

Given a reference frame, v can be moved to a position such that the base of the arrow is at the origin without changing the orientation. Then, the vector v can be represented by its coordinates v in the reference frame.

- v refers to a physical quantity in the underlying space.
- \boldsymbol{v} is a representation of v that depends on the choice of coordinate frame.

Vector

$$x \in \mathbb{R}^n$$
: (an *n*-dimensional vector)

 \mathbb{R}^n : n-dimensional real space (Euclidian Space)

 x, x^T :

Linear Algebra

00000000

Norm of a vector x:

Point and Its Coordinate

• Point: p denotes a point in the physical space

• A point p can be represented by as a vector from frame origin to p

• p denotes the coordinate of a point p

ullet The coordinate $oldsymbol{p}$ depends on the choice of reference frame

Matrix

 $\mathbf{A} \in \mathbb{R}^{m \times n}$:

Linear Algebra

000000000

Symmetric matrix:

Skew-symmetric matrix:

Matrix vector multiplication as linear combination of columns:

Dot Product (or Scalar Product or Inner Product)

Dot Product of two vectors $p \in \mathbb{R}^n$, $q \in \mathbb{R}^n$ is defined as the scalar $p \cdot q$.

Applications of Dot Product

(1) Finding angle formed between two given vectors $p \in \mathbb{R}^n$, $q \in \mathbb{R}^n$ (or intersecting lines):

(2) Finding projection of a vector $p \in \mathbb{R}^n$ on a given axis or directed line:

 λ : unit vector of line L

Cross Product (or Vector Product)

Cross product of $p \in \mathbb{R}^3$, $q \in \mathbb{R}^3$ is defined as the <u>vector</u> $v = p \times q$ where $v \in \mathbb{R}^3$.

Cross Product (or Vector Product)

Coordinate notation:
$$\mathbf{v} = \mathbf{p} \times \mathbf{q} = (p_x \mathbf{i} + p_y \mathbf{j} + p_z \mathbf{k}) \times (q_x \mathbf{i} + q_y \mathbf{j} + q_z \mathbf{k})$$

Matrix notation:
$$v = p \times q = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ p_x & p_y & p_z \\ q_x & q_y & q_z \end{vmatrix}$$

Cross Product as a Matrix-Vector Multiplication

Cross product $p \times q$ ($p \in \mathbb{R}^3$, $q \in \mathbb{R}^3$) can be thought of as a multiplication of vector q by a 3x3 skew-symmetric matrix [p].

$$\boldsymbol{p} \times \boldsymbol{q} = \begin{bmatrix} 0 & -p_z & p_y \\ p_z & 0 & -p_x \\ -p_y & p_x & 0 \end{bmatrix} \begin{bmatrix} q_x \\ q_y \\ q_z \end{bmatrix} = [\boldsymbol{p}] \boldsymbol{q}$$

$$\boldsymbol{p} = (p_x, p_y, p_z), \boldsymbol{q} = (q_x, q_y, q_z)$$

The matrix [p] is a 3x3 skew-symmetric matrix representation of p.

$$[\boldsymbol{p}] = -[\boldsymbol{p}]^T$$

2R Planar Manipulator

Linear Algebra

00000000

RR (or 2R) Planar Manipulator

 (θ_1, θ_2) : Joint angles

Linear Algebra

(x, y): Position of end-effector (point A)

 $\{s\}$: Base frame of manipulator

 l_1 : Length of link 1

 l_2 : Length of link 2

Position Kinematics

Linear Algebra

00000000

Relation between Joint Angles and End-Effector Position

What is the relationship between the joint angles, (θ_1, θ_2) , and the position of the end effector point A, (x, y), in the base frame $\{s\}$?

Forward (Direct) Position Kinematics

Given the joint angles, (θ_1, θ_2) , of the 2R robot, find the position, (x, y) of the end-effector point A, in the base frame $\{s\}$.

Forward (Direct) Position Kinematics

$$oldsymbol{ heta} = egin{bmatrix} heta_1 \\ heta_2 \end{bmatrix}$$
: Vector of joint angles

 $q = \begin{bmatrix} x \\ y \end{bmatrix}$: Position vector of end-effector point

$$x = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) \equiv f_1(\theta_1, \theta_2)$$

$$y = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2) \equiv f_2(\theta_1, \theta_2)$$

$$\boldsymbol{q} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f_1(\theta_1, \theta_2) \\ f_2(\theta_1, \theta_2) \end{bmatrix}$$

More abstractly, the forward kinematics map is

$$q = f(\theta)$$

where f is a vector function.

$$\boldsymbol{f}(\boldsymbol{\theta}) = \begin{bmatrix} f_1(\theta_1, \theta_2) \\ f_2(\theta_1, \theta_2) \end{bmatrix}$$

Inverse Position Kinematics

Given the position, (x, y), of the end effector point A, find the joint angles, (θ_1, θ_2) so that the position (x, y) is reached.

In other words, from the equations

$$x = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2)$$

$$y = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2)$$

Find θ_1 and θ_2 as a function of x and y.

Numerical Example (Exercise)

Forward and Inverse Position Kinematics:

$$x = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2)$$

$$y = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2)$$

$$\theta_2 = \operatorname{atan} 2\left(\pm\sqrt{1 - u^2}, u\right)$$

$$\theta_1 = \operatorname{atan} 2(y, x) - \operatorname{atan} 2(l_2 \sin \theta_2, l_1 + l_2 \cos \theta_2)$$

$$u = \frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1l_2}$$

Velocity Kinematics

Linear Algebra

00000000

Relation between Joint Angle Rates and End-Effector Velocity

What is the relationship between the joint angle rates of motion $(\dot{\theta}_1, \dot{\theta}_2)$, and the velocity of the end effector point (v_x, v_y) ?

$$\dot{\theta}_1 = \frac{d\theta_1}{dt}$$
: Rate of change of angle of joint 1.

$$\dot{\theta}_2 = \frac{d\theta_2}{dt}$$
 : Rate of change of angle of joint 2.

$$v_x = \frac{dx}{dt} = \dot{x}$$
 : x-component of velocity of point A.

$$v_y = \frac{dy}{dt} = \dot{y}$$
 : y-component of velocity of point A.

Relation between Joint Angle Rates and End-Effector Velocity

$$\begin{bmatrix} v_x \\ v_y \end{bmatrix} = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} -l_1 \sin \theta_1 - l_2 \sin(\theta_1 + \theta_2) & -l_2 \sin(\theta_1 + \theta_2) \\ l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) & l_2 \cos(\theta_1 + \theta_2) \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix}$$

The manipulator (analytic) Jacobian is:

$$\boldsymbol{J}(\theta_1, \theta_2) = \begin{bmatrix} -l_1 \sin \theta_1 - l_2 \sin(\theta_1 + \theta_2) & -l_2 \sin(\theta_1 + \theta_2) \\ l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) & l_2 \cos(\theta_1 + \theta_2) \end{bmatrix}$$

$$\dot{\boldsymbol{\theta}} = \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix}$$
: Vector of joint angle rates.

$$v = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix}$$
: Velocity of end-effector point.

The velocity kinematics equations in vector-matrix form is: $v = J(\theta)\dot{\theta}$

Forward (Direct) Velocity Kinematics

Given the configuration of the robot, θ , and the joint angle rates, $\dot{\theta}$, compute the velocity, v of the end effector.

$$v = J(\theta)\dot{\theta}$$

Inverse Velocity Kinematics

Given the configuration of the robot, θ , and the velocity, v, of the end effector, compute the joint angle rates, $\dot{\theta}$.

$$\dot{\boldsymbol{\theta}} = \boldsymbol{J}^{-1}(\boldsymbol{\theta})\boldsymbol{v}$$

assuming $J^{-1}(\theta)$ exists or the Jacobian matrix is invertible at the configuration θ .

Kinematic Singularities

The configuration θ at which the Jacobian, $J(\theta)$ of a manipulator loses rank is called a kinematic singularity or singular configuration of the manipulator.

For a 2R manipulator, the Jacobian, $J(\theta)$ losing rank implies $\det(J(\theta)) = 0$.

$$J(\theta) = \begin{bmatrix} -l_1 \sin \theta_1 - l_2 \sin(\theta_1 + \theta_2) & -l_2 \sin(\theta_1 + \theta_2) \\ l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) & l_2 \cos(\theta_1 + \theta_2) \end{bmatrix}$$

$$\theta_2$$

$$\{s\}$$

00000000

Physical Implications of Kinematic Singularities

Why should we care about singular (or almost singular) configurations?

Jacobian in Multi-Variable Calculus

Let $x \in \mathbb{R}^n$ (be an n-dimensional vector) vary with time t. What is $\frac{dx}{dt}$?

$$\mathbf{x} = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a **scalar function** (a function that maps a vector of dimension n to a scalar.

What is
$$\frac{df}{dt}$$
 ?

Linear Algebra

Jacobian in Multi-Variable Calculus

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a **vector function** (a function that maps a vector of dimension n to a vector of dimension m).

What is
$$\frac{d\mathbf{f}}{dt}$$
 ?

Linear Algebra

$$\frac{\mathrm{d}\boldsymbol{f}}{\mathrm{d}t} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix}$$

Jacobian $\frac{\partial \mathbf{f}}{\partial \mathbf{r}}$

* You can also obtain the manipulator Jacobian using this formula.

Velocity Manipulability Ellipsoid

The Jacobian can be used to map bounds on the rotational speed of the joints (which is a polygon) to bounds on v.

The Jacobian can be also used to map a unit circle of joint velocities in the θ_1 – θ_2 -plane ("iso-effort" contour) to an ellipse in the space of EE velocities (this ellipse is called the **velocity manipulability** ellipsoid/ellipse).

The closer the ellipsoid is to a circle, the more easily can the tip move in arbitrary directions.

2R Planar Manipulator Position Kinematics Velocity Kinematics OOOOO OOOOOOO

Statics

Statics

00000

Linear Algebra

Statics

What is the relationship between the applied force f and the joint torques τ such that the manipulator is at equilibrium at a given configuration θ ?

$$m{f} = egin{bmatrix} f_x \\ f_y \end{bmatrix}$$
 : Force acting at end-effector point A

$$oldsymbol{ au} = egin{bmatrix} au_1 \ au_2 \end{bmatrix}$$
 : Vector of joint torques required to resist $oldsymbol{f}$

(Assume that g = 0)

00000000

Statics

$$\begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix} = \begin{bmatrix} -l_1 \sin \theta_1 - l_2 \sin(\theta_1 + \theta_2) & l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) \\ -l_2 \sin(\theta_1 + \theta_2) & l_2 \cos(\theta_1 + \theta_2) \end{bmatrix} \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$

$$\boldsymbol{\tau} = \boldsymbol{J}(\boldsymbol{\theta})^T \boldsymbol{f}$$

00000000

Statics

A more general method to derive a relation between f and au.

Principle of conservation of power:

power generated at the joints = power measured at the end-effector

(Assume that g = 0)

Force Manipulability Ellipsoid

Since $f = (J(\theta)^T)^{-1}\tau = J(\theta)^{-T}\tau$, Jacobian transpose inverse can be used to map bounds on the joint torques (which is a polygon) to bounds on end-effector force f.

The Jacobian transpose inverse can be also used to map a unit circle of joint torques in the τ_1 – τ_2 -plane ("iso-effort" contour) to an ellipse in the space of EE forces (this ellipse is called the force manipulability ellipsoid/ellipse).

The closer the ellipsoid is to a circle, the more easily can the EE generate forces in arbitrary directions.

00000000

Kineto-Statics Duality

If it is easy to generate a tip velocity in a given direction then it is difficult to generate a force in that same direction, and vice versa.

At a singularity, EE motion capability becomes zero in one or more directions, and it can resist infinite force in one or more directions.