Zaawansowany algorytm gry w Scrabble

Jakub Turek J.Turek@stud.elka.pw.edu.pl

Promotor: dr inż. Jakub Koperwas

Wydział Elektroniki i Technik Informacyjnych

25 kwietnia 2014

Scrabble

Gra słowna polegająca na układaniu na określonej planszy wyrazów z losowanych liter.

Wielki słownik ortograficzny - PWN 2003, 2006, 2008 - E. Polański

Historia Scrabble

- ▶ 1938 r. gra *Lexiko*, Alfred Mosher Butts.
- ▶ Lata 40. *Criss-Crossword* udoskonalona wersja *Lexiko*.
- ▶ 1948 r. James Burnot, Scrabble.
- Lata 80. Hasbro.
- ► Lata 80. teleturniej *Scrabble*.
- Obecnie 121 krajów, 29 różnych języków.
- Do chwili obecnej 150 milionów sprzedanych egzemplarzy.

Plansza

- ▶ Wymiary 15×15 .
- Premie:
 - ► literowe:
 - podwójna,
 - potrójna.
 - słowne:
 - podwójna,
 - potrójna.
- ► Środek planszy:
 - pierwszy wyraz musi przechodzić przez pole,
 - podwójna premia słowna.

Płytki (polska wersja)

			Α	9	1	М	3	2
			Ą	1	5	N	5	1
			В	2	3	Ń	1	7
			С	3	2	0	6	1
			B C Ć D	1	6	Ó	1	5
) Š		3	2	Р	3	2
•	llość płytek	Liczba punktów	Ę F	7	1	R	4	1
Litera	pły	nd	Ę	1	5	S	4	1
Ξ	ść	þa		1	5	S Ś T	1	5
	≅	<u> </u>	G	2	3		3	2
			Н	2	3	U	2	3
			ı	8	1	W	4	1
			J	2	3	Υ	4	2
			K	3	2	Z	5	1
			L	3	2	Z	1	9
			Ł	2	3	Ż	1	5

- ▶ 98 płytek z literami.
- Każda litera ma przyporządkowaną punktację.
- Ilość płytek proporcjonalna do częstotliwości występowania litery.
- Punktacja odwrotnie proporcjonalna do częstotliwości występowania litery.
- 2 blanki.

Reguly

- Na stojaku 7 wylosowanych płytek.
- Naprzemienne ruchy.
- Prawidłowy ruch:
 - Płytki wyłożone w jednym wierszu (lub kolumnie) w sposób ciągły.
 - Wykorzystanie przynajmniej jednej litery znajdującej się już na planszy.
 - ► Tworzy poprawny wyraz czytany od lewej do prawej (lub od góry do dołu).
 - Wszystkie płytki przylegające tworzą poprawne wyrazy w układzie krzyżówkowym.
- Koniec gry pierwszy gracz, który nie ma płytek na stojaku.
- Wygrywa gracz z największą liczbą punktów.

Dopuszczalne słowa

Dopuszczalne jest wykorzystanie wszystkich słów znajdujących się w dowolnym słowniku języka polskiego (wraz z poprawnymi odmianami) z wyłączeniem:

- nazw własnych (wyrazów pisanych z wielkiej litery),
- skrótów.
- przedrostków, przyrostków,
- wyrazów wymagających użycia apostrofu lub łącznika.

Słownik wyrazów do gier

Słownik wyrazów do gier to lista wszystkich słów, wraz ze wszystkimi poprawnymi odmianami, dopuszczalnych do wykorzystania w grach słownych.

Porównanie OSPS i słownika alternatywnego

	OSPS	Słownik alternatywny
Wydawca	Polska Federacja Scrabble, Polskie Wydawnictwo Naukowe	Serwis z grami online Kurnik
Przeznaczenie	Gry turniejowe	Gra "Literaki"
	, <u>, , , , , , , , , , , , , , , , , , </u>	"
Liczba słów	2 477 212	2 703 830
	Zamknięta lista słowników języka	Otwarta lista słowników języka
Źródło	polskiego, ortograficznych, wyrazów	polskiego, ortograficznych,
	obcych wydawnictwa PWN	wyrazów obcych
	▶ basfu	▶ aeolipile
Przykładowe różnice	▶ gral	▶ donowi
	▶ meru	▶ feroce
	▶ noblów	▶ geez
	późńmyż	▶ tyiyn
	▶ szwed	▶ żad

Dalsze rozważania przeprowadzane będą dla słownika alternatywnego.

Statystyczny opis słownika

Na podstawie statystycznego opisu słownika można wyprowadzić szereg użytecznych heurystyk:

- Częstotliwość występowania liter.
- Najbardziej prawdopodobne n-gramy.
- Najlepsze otwarcia.
- Najlepsze kombinacje liter.

Prawdopodobieństwo występowania liter

Prawdopodobieństwo występowania bigramów

N-gram

Sekwencja składająca się z n liter, znaków lub wyrazów.

- Unigram.
- Bigram.
- Trigram.
- 4-gram.
- N-gram.

Bigram	Wystąpienia
ni	1 077 436
ie	1 028 249
ow	645 018
an	507 205
wa	484 295
za	313 370
ро	301 636
ch	296 749
ał	294 734
ia	284 247

13/31

Prawdopodobieństwo występowania n-gramów

Trigram	Wystąpienia	
nie	635 196	
owa	307 277	
ani	195 186	
wan	180 460	
cie	148 513	
nia	142 201	
jąc	131 792	
prz	130 283	
wał	126 134	
rze	116 370	

4-gram	Wystąpienia
owan	127 626
ował	88 130
wani	78 095
niep	77 449
prze	73 230
ując	67 062
ania	61 398
ając	59 499
ście	56 462
łaby	55 380

5-gram	Wystąpienia	
owani	54 991	
niepo	40 329	
ałaby	37 581	
yście	33 161	
owała	28 175	
niewy	26 193	
owane	25 555	
wania	25 551	
owany	25 542	
ałyby	25 282	

Prawdopodobieństwo występowania n-gramów (2)

6-gram	Wystąpienia
owania	17 609
wałaby	17 161
byście	16 821
liście	15 910
aniami	15 585
aniach	15 585
łyście	15 405
owanie	14 674
owałby	14 437
nieprz	14 328

7-gram	Wystąpienia
owałaby	12 401
libyśmy	12 267
łybyśmy	12 094
ałyście	9 902
aliście	9 304
ibyście	8 445
libyści	8 443
ybyście	8 317
łybyści	8 314
nieprze	8 111

Najlepsze otwarcia

Najlepsze kombinacje liter

Najlepsze kombinacje liter to zawartość stojaka, która umożliwia ułożenie (niezależnie) jak największej ilości słów.

6 liter	Kombinacje
e, m, n, o, r, t	10 wyrazów
a, i, k, l, n, o	10 wyrazów
a, e, i, l, m, n	10 wyrazów
e, i, k, m, o, s	9 wyrazów
a, i, k, m, n, o	9 wyrazów
a, i, l, m, o, s	9 wyrazów
a, i, k, o, t, w	9 wyrazów
a, i, k, n, t, u	9 wyrazów
a, e, k, l, s, z	9 wyrazów
a, e, i, k, m, r	9 wyrazów

Kombinacje
12 wyrazów
12 wyrazów
12 wyrazów
11 wyrazów
11 wyrazów
11 wyrazów
10 wyrazów
10 wyrazów
10 wyrazów
10 wyrazów

Wyznaczanie wszystkich legalnych ruchów

- Algorytm opisany w pracy The World's Fastest Scrabble Program A. W. Appela
 i G. J. Jacobsona.
- Algorytm z nawrotami.
- Bazuje na skompresowanej, grafowej odmianie drzewa trie o nazwie DAWG (ang. Directed Acyclic Word Graph).

Algorytmy i struktury danych

Trie vs DAWG

Algorytmy i struktury danych

Algorytm Appela-Jacobsona (1)

- 1. Redukcja złożoności problemu do jednego wymiaru:
 - rozpatrywanie ruchów wyłącznie poziomo,
 - ograniczenie zbioru wyłącznie do jednego wiersza.

Rozumowanie należy powtórzyć dla wszystkich wierszy, a następnie transponować planszę i zastosować do ruchów w pionie.

Algorytm Appela-Jacobsona (2)

- Ograniczenie zbioru znaków możliwych do wstawienia w miejsce pustych płytek:
 - ruch w danym kierunku może skutkować tworzeniem nowych słów w kierunku przeciwnym,
 - słowa utworzone w kierunku przeciwnym powstają zawsze poprzez dodanie jednego znaku.

Algorytm Appela-Jacobsona (3)

- 3. Wyznaczenie kotwic (ang. anchors):
 - kotwica to najbardziej wysunięta na lewo płytka nowego słowa, która jest przyległa do płytki istniejącego już na planszy słowa,
 - kotwicą może być każde puste miejsce przyległe do płytki znajdującej się na planszy.

Algorytm Appela-Jacobsona (4)

4. Rozwinięcie słów, wychodząc od wyznaczonych kotwic, z uwzględnieniem ograniczeń.

Lewa strona

- Obejmuje wszystkie płytki na lewo od kotwicy.
- Może:
 - Składać się wyłącznie z płytek już znajdujących się na planszy - przypadek trywialny.
 - Składać się wyłącznie z płytek znajdujących się na stojaku. Wymaga wyznaczenia wszystkich możliwych kombinacji płytek.
 - Bvć pusta.

Prawa strona

- Obejmuje kotwicę oraz wszystkie płytki na prawo od niej.
- Wyznaczana poprzez dopełnianie lewej strony wyrazami ze słownika.
- Poszczególne litery muszą być dostepne na stojaku, a także spełniać ograniczenia wyznaczone dla poszczególnych pól planszy.

Algorytm Appela-Jacobsona - wydajność

Potencjalnym problemem wydajnościowym jest wyznaczanie wszystkich możliwych kombinacji prefiksów:

Algorytmy i struktury danych 000000000

- W pesymistycznym przypadku kotwica może być skrajnie prawą płytką wyrazu.
- ▶ Dla określonych liter na stojaku może istnieć do 6! = 720lewostronnych kombinacji do zbadania.
- W przypadku, gdy na stojaku znajdują się dwa blanki, liczba kombinacji rośnie do $\frac{4! \times 32^2}{2} = 12288$.
- ► Nadmiarowość obliczeń duża część badanych kombinacji może nie istnieć (lub nie posiadać rozwinięć) w słowniku.

GADDAG

- ▶ S. A. Gordon, A Faster Scrabble Move Generation Algorithm.
- Struktura nastawiona na szybkie prefiksowanie wyrazów.

GADDAG - wady

- Duża złożoność pamięciowa.
- Można próbować minimalizować graf po węzłach zawierających ≫.

Maven i Quackle - porównanie

	Maven	Quackle
Autorzy	Brian Sheppard	Jason Katz-Brown,
Autorzy	Brian Sheppard	John O'Laughlin
Źródło	Zamknięte	Otwarte (C++, Qt)
Struktura słownika	DAWG	GADDAG
	Zależna od fazy gry. Wykorzystanie	Zależna od fazy gry. Wykorzystanie
Strategia	heurystyk i symulacji do ewaluacji	heurystyk i symulacji do ewaluacji
	najbardziej korzystnych ruchów.	najbardziej korzystnych ruchów.
Wyniki przeciwko	▶ 9-5 vs Adam Logan (1997)	➤ 3-2 vs David Boys (2006)
ludziom	▶ 6-3 vs Joel Sherman (2006)	
"Bezpośrednie" starcie	▶ 30-6	▶ 32-4

"It's still better to be a human than to be a computer" - David Boys

Strategia

- 1. **MG** mid-game:
 - Trwa od momentu rozpoczęcia gry, aż do osiągnięcia fazy pre-endgame.
- 2. **PEG** pre-endgame.
 - Dzieli się na dwa etapy PEG-1 oraz PEG-2.
 - Występuje, gdy do pobrania pozostają odpowiednio jedna lub dwie płytki.
 - Przez PEG przechodzi ponad połowa gier.
- 3. EG endgame.
 - Rozpoczyna się, gdy pobrane zostaną wszystkie płytki.
 - Wiadomo jakimi literami dysponuje przeciwnik.

Mid-game (Quackle)

(Pre-)Endgame

- W fazach PEG, EG możliwe jest zastosowanie wyszukiwania wyczerpującego przestrzeni stanów.
- Algorytmy przeszukiwania $\alpha - \beta$, A^* , B^* .
- ▶ Obliczenia progresywne przeszukiwanie rozpoczynane w miejscu, w którym można podjać szybka i pewna decyzje.

Dziękuję za uwagę!

Wydział Elektroniki i Technik Informacyjnych