Lab Session: BJT Amplifier

If one wishes to design the bias network for an amplifier for given values of I_E and V_{CC} , following steps are to be followed:

- 1. Rule of thumb: $V_B = \frac{1}{3}V_{CC}$ (V_B voltage across R_2).
- 2. $V_E = V_B 0.7$
- 3. $R_E = \frac{V_E}{I_E}$
- 4. Assuming negligible base current, current through R_1+R_2 ,

$$I_1 = \frac{V_{CC}}{R_1 + R_2} = 0.1 \text{ I}_{E}$$

$$R_1 + R_2 = \frac{V_{CC}}{0.1I_E}$$

5.
$$V_B = \frac{R_2}{R_1 + R_2} \cdot V_{CC}$$

$$R_2 = V_B \frac{(R_1 + R_2)}{V_{CC}}$$

6. I_E to ensure the value of R_E .

Obtain
$$I_E = \frac{(V_{BB} - 0.7) (\beta + 1)}{R_B + (\beta + 1)R_E}$$

There could be slight variation in this value of I_E from the nominal value. Adjust R_E to get close approximation to nominal value of I_E .

7.
$$I_C = (\frac{\beta}{1+\beta}.I_E)$$

$$V_{\rm C} = \frac{2}{3} V_{CC}$$

$$R_{\rm C} = \frac{v_{cc} - v_c}{I_c}$$

Procedure:

- 1. Design bias network for $V_{CC} = 10 \text{ V}$, $I_E = 1 \text{ mA}$ for a transistor with $\beta = 400$.
- 2. Connect the circuit as shown in figure 3(a).
- 3. Carry out DC analysis.
- 4. Connect the coupling capacitors and bypass capacitor (fig 3(b)).
- 5. Obtain the voltage gain with and without bypass capacitor.
- 6. Does it match with the theoretical values?

