LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING Tredimensionell vektoranalys 2012–03–29, klockan 8–10

INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar.

- 1. Låt K vara den kropp som definieras av att $x^2 + y^2 \le 1$ och $0 \le z \le 1$.
 - **a)** Beräkna flödet av vektorfältet $\boldsymbol{u} = (xz + \cos z, -yz + \cos^2 z, z + \cos^3 x)$ ut ur kroppen K. (0.5)
 - **b**) Låt \boldsymbol{f} vara ett vektorfält som är C^2 . Beräkna flödet av $\nabla \times \boldsymbol{f}$ ut ur kroppen K.
- **2. a)** Vad menas med att en differentialform udx + vdy + wdz är exakt? Ge exempel på en differentialform som är exakt och en som inte är exakt. Motivera dina påståenden med bevis eller hänvisning till sats. (0.5)
 - **b)** Betrakta planet π : x + z = 1. Låt kurvan γ vara en cirkel i planet π med radie 1 och centrum i punkten (a, b, c), och negativt orienterad sett från origo. Låt $\mathbf{u} = (y, x, y^2)$. Beräkna $\int_{\gamma} \mathbf{u} \cdot d\mathbf{r}$ för (a, b, c) = (1, 0, 0).
 - **c**) Vad blir $\int_{\gamma} \boldsymbol{u} \cdot d\boldsymbol{r}$ för en godtycklig punkt (a, b, c) på planet π ? (0.2)

LYCKA TILL!