King Saud University College of Computer and Information Sciences Computer Science Department

CSC 212

First Semester 1437-1438

Tutorial #2

Important: 🛚	This tutorial h	as an online	part, which y	you should	complete on	LMS
The deadline	for this task	is Monday O	ctober 3rd at	8:00 A.M		

Question 1: Find the total number of primitive operations and the Big Oh notation of the following methods:

a)

	Statements	S/E	Freq.	Total
1	void findProduct(int n)			
2	{			
3	int product = 1;			
4	for (int i = 0; i<10; i=i+2)			
5	{			
6	product = product * i;			
7	}			
8	System.out.println(product);			
9	}			
	Total Operations		1	
	Big Oh			

	Statements	S/E	Freq.	Total
1	void findNestedProduct(int n)			
2	{			
3	int product = 1;			
4	for (int $i = 0$; $i < n$; $i = i + 2$)			
5	{			
6	for (int $j = 0$; $j < 6$; $j ++$)			
7	product = product * i * j;			
8	}			
9	System.out.println(product);			
10	}			
	Total Operations			
	Big Oh			

	Statements	S/E	Freq.	Total
1	void sum1(int n)			
2	{			
3	int sum = 0;			
4	for (int i = 1; i < =n; i++)			
5	{			
6	for (int j = 1; j <= i; j ++)			
7	sum = sum + 1;			
8	}			
9	System.out.println(sum);			
10	}			
	Total Operations			
	Big Oh			

Is there any other way to solve the above problem in better performance?

	Statements	S/E	Freq.	Total
1	Public int method4(int n)			
2	f			
3	for (int i = 0; i < n; i++)			
4	for (int j = n; j >= 1; j=j/2) {			
5	sum += 1;			
6	}			
9	return sum;			
10	}			
	Total Operations			
	Big Oh			