Investigation of graph SIR+ model and lockdown's restrictions effects

Сёмкин К. Бишук А.

Аннотация

Задача создания и обоснования математических моделей распространения эпидемий всегда являлась и будет являться актуальной в наше время. Существуют оправданные и реалистичные модели распространения, такие как SIR и SIER, основанные на дифференциальных уравнениях динамики количества больных и здоровых жителей, но их область применимости ограничивается большими масштабами наблюдения. В данной работе рассматривается аналог SIR, основанный на графе контактов, для анализа заболеваемости на малых мастштабах (предприятие, небольшая коммуна), исследуется вероятностная динамика распространения эпидемии в зависимости от параметров модели, а также влияние разных ограничительных мер. В частности интересно обоснование противоречивого эффекта, связанного с ростом заболевших при введении локдауна. Все теоретичские результаты демонстрируются проведением численных экспериментов посредством сэмплирования эпидемии на графе контактов, а также на основе реальных данных.

Introduction

В связи с известными событиями интерес к эпидемиологии и её методам сильно вырос. Для понимания динамики протекания короновирусной инфекции в 2020 году в разных местах Земли и на разных масштабах, а также для подготовки к будущим вспышкам заболеваемости, как никогда актуально построение адекватных математических моделей развития болезней в людских популяциях. Классические техники моделирования эпидемий опираются на параметризованные автономные системы дифференциальных уравнений, описывающие динамику изменения количества болеющих и здоровых людей. Эти модели дают хорошее понимание протекания болезни на больших масштабах (города, страны), но не способны описывать заболевание в небольших общественных структурах, например, промышленное предприятие, небольшую деревню или студенческое общежитие. В данной работе исследуется графовый подход к моделированию распространения инфекции, а именно вводится граф контактов, по которому болезнь может «кочевать». В качестве представления болезни используется стандартная для эпидемиологии модель SIR/SEIR, в которой каждому человеку (вершине в графе) сопоставляется некоторое состояние (больной, здоровый и т.д.), после чего в дискретном времени происходят смены этих состояний с некоторыми вероятностями и система эволюционирует.

Также исследуются различные эффекты от мер по борьбе с инфекцией, таких как тестирование, изоляция и, самое интересное, *локдаун*. Именно ему уделяется основное внимание, так как его введение может привести к необычному последствию — росту заболеваемости среди населения. Но обнаружить такое поведение в стандартных моделях не представляется возможным, поэтому цель данной работы — найти условия возникновения такого эффекта в модели и продемонстрировать его на численных экспериментах.

Изучение эпидемий на больших популяциях позволяет моделировать этот процесс в среднем, и даже получать точные аналитические решения [5]. В зависимости от поставлен-

ной прикладной задачи возникает необходимость моделировать процесс эпидемии с разной степенью подробности. Так, например, простейшая модель SI [1] рассматривает всего два состояния: больной и здоровый. В этой модели не рассматривается формирование иммунитета: здоровый всегда может заразиться при контакте с инфекцией. Существуют модели, рассматривающие дополнительно формирование иммунитета, инкубационный период, летальные исходы и многие другие возможные состояния. Одной из таких моделей является SEIR(S) [2]. Моделирование в среднем не подходит для небольших или слишком разнородных популяций. Эту проблему позволяют решить модели распространения эпидемии на графах [8], [9]. Распространение эпидемии на графе контактов можно рассматривать, например, при помощи цепи Маркова [4]. Однако моделирование распространения болезни на больших графах со сложной структурой имеет высокую алгоритмическую сложность. Наиболее распространенной является задача прогнозирования течения эпидемии [7] и оценка индивидуальных рисков. Результаты изучения распространения эпидемии на графах могут быть использованы не только для анализа заболеваний. Например, распространение слухов или автомобильного трафика можно описать схожим математическим аппаратом [3]. Фундаментом для данной статьи является [10], где, в частности, введена модель болезни на графе и где в её рамках исследован эффект локдауна.

В работе ставится задача обобщить модель из [10], сформулировать новые условия возникновения роста заболеваемости при введении карантина и явно показать этот эффект в численном эксперименте. Т.о. появится возможность испытывать обновлённую модель в более широком спектре реальных ситуаций, а также пересмотреть локдаун как однозначно позитивную меру противодействия эпидемии.

Problem statement

Формально задача состоит в выявлении зависимости роста заболеваемости при введении локдауна от графа контактов и параметров динамики развития болезни.

Пусть G = (V, E) — исходный граф контактов, $G^q = (V^q, E^q)$ — граф контактов при введении карантинного режима. Ребро этих графов соответствует контакту данных лиц, а вес ребра β_{ij} соответствует вероятности вершины заразиться, если её сосед сам находится в состоянии $Infected\ (I)$.

Будем понимать под G_t граф контактов на дискретном временном шаге t, т.е. его графовую структуру, а также состояния каждой вершины в данный момент. Под I(G) будем понимать множество больных вершин в графе (или кол-во больных в графе, в зависимости от контекста).

Т.о. задача состоит в поиске условий на t_0 , G и G_q , при которых $\max_{t \geq t_0} I(G_t^q) \geq \max_{t \geq t_0} I(G_t)$, где t_0 момент введения локдауна. Другая возможная постановка: найти условия на те же параметры, при которых $\beta_{ij}^q \geq \beta_{ij}$.

Computational experiment

Главная задача вычислительного эксперимента — проиллюстрировать эффект локдауна, сэмулировав эпидемию на графах контактов, в которых такой эффект вообще возможен. Т.о. данная демонстрация служит подтверждением неголословности оговоренного ранее.

Basic algorith

Для начала были проведены симулирования заболеваемости с помощью библиотеки SEIRSplus [6], которая предоставляет богатые средства инициализации модели, а также

её тонкой настройки в любой момент развития эпидемии. Стандартный граф контактов генерировался на заданном наборе вершин $V = \{1, \dots, N\}$ и содержал случайное количество рёбер, которое было точно больше половины числа ребёр в полносвязном графе. Граф карантина же собирался из клик случайного размера от 1 до 5 вершин. Чувствительность к заболеванию генерировалась случайно для каждой вершины, со средним вокруг значения 0.5, вероятность восстановления у заболевших вершин была одна для всех 0.3.

В итоге запускалось две симуляции, в одной из которых карантин не вводился, а в другой вводился на некоторое время. Результаты приведены на рис. 1. Здесь представлена динамика количества заражённых узлов для размера популяции 10, 100, 500 вершин в графе. Синия линия — развитие болезни без локдауна, красная и розовая — развитие с локдауном, где розовая линия как раз отвечает периоду изоляции. Зелёными линиями обозначены точки входа и выхода из локдауна.

К сожалению, данная библиотека хоть и обладает огромным потенциалом, но всё же является технически недоработанной, а также скрывает в себе некоторые нежелательные методы ускорения сэмплирования, что не является приемлемым для текущего исследования.

Рис. 1: Графики количества заражённых в двух режимах протекания эпидемии от времени

Main experiment

В итоге для данной работы был составлен собственный программный пакет для создания эпидемий и проведения сэмплирования на них. Эпидемия проходит на двух графах контактов, отвечающих за «рабочий» и «домашний» режимы для вершин, во времени, в которой элементарная единица есть один день. Причём если не введён локдаун, то половину дня эпидемия проводится на одном графе, а половину на другом. Вершины меняют состояния согласно вероятностям, заданным по правилам модели. Также задаются временные рамки, в течении которых вводится локдаун, который симулируется как проведение эпидемии только на «домашнем» графе.

Главная цель вычислительного эксперимента — проиллюстрировать эффект локдауна для эпидемий и графов с параметрами, для которых этот самый эффект обязан проявиться согласно теоретическим оценкам.

Опишем xod эксперимента: создаётся два графа контактов на N вершинах со взвешенными рёбрами. Вес любого ребра $w_{(a,b)} \in [0,1]$ и интерпретируется как доля времени, проведённая вершиной a с вершиной b за всё время на данном графе контактов. Задаются гиперпараметры эпидемии: вероятности перехода между подверженным/больным/выздоровевшим для вершины. Задаётся начальное распределение больных/здоровых вершин. Далее, вне локдауна, одна итерация для эпидемии проходит так: сначала активен «рабочий» граф, в котором согласно вычисленным вероятностям вершины меняют состояния. Далее становится активен «домашний» граф, на котором происходит аналогичные действия. При введении карантина же одна итерация будет происходить два раза на «домашнем» графе. По таким правилам эпидемия эволюционирует любое заданное время с сохранением истории состояний для каждой вершины.

Результаты сэмплирований для нескольких графов представлены на рис. 2 и рис. 3. Основные графы представляли собой полносвязанный и полный цикл на 10 и 15 вершинах, графы карантина представляли собой совокупность клик размера 3 и 4 соответственно. Каждая 3 и каждая 4 вершина в графах были изначально заражены. После проведения многих опытов по описанной выше схеме и усреднения были получены треки эволюции заболеваемости, в которых сравниваются количества заболевших в эпидемии с карантином и идущей параллельно от неё (до ограничения болезни развиваются одинаково) без карантина. Из данных графиков ясно видно, что для данных конфигураций эпидемия проходит тяжелее во время локдауна и некоторое время после него.

Список литературы

- [1] Linda JS Allen. «Some discrete-time SI, SIR, and SIS epidemic models». B: *Mathematical biosciences* 124.1 (1994), c. 83—105.
- [2] Vincenzo Capasso. Mathematical structures of epidemic systems. T. 97. Springer Science & Business Media, 2008.
- [3] Manlio De Domenico и др. «The anatomy of a scientific rumor». B: Scientific reports 3.1 (2013), с. 1—9.
- [4] Sergio Gómez и др. «Discrete-time Markov chain approach to contact-based disease spreading in complex networks». B: Europhysics Letters 89.3 (2010), с. 38009.
- [5] Tiberiu Harko, Francisco SN Lobo и MK3197716 Mak. «Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates». B: Applied Mathematics and Computation 236 (2014), c. 184—194
- [6] https://github.com/ryansmcgee/seirsplus, ред. SEIRS+ library.

- [7] Jack Leitch, Kathleen A Alexander и Srijan Sengupta. «Toward epidemic thresholds on temporal networks: a review and open questions». В: Applied Network Science 4 (2019), с. 1—21.
- [8] Yamir Moreno, Romualdo Pastor-Satorras и Alessandro Vespignani. «Epidemic outbreaks in complex heterogeneous networks». B: *The European Physical Journal B-Condensed Matter and Complex Systems* 26 (2002), с. 521—529.
- [9] Romualdo Pastor-Satorras и др. «Epidemic processes in complex networks». B: Reviews of modern physics 87.3 (2015), с. 925.
- [10] Бишук А.Ю. «Применение активного обучения к графовым моделям на примере оценки рисков распространения эпидемии». Диплом бакалавра. МФТИ, 2021.

Начальная конфигурация вершин и вид «рабочего» графа

Вид «домашнего» графа

Сравнительные треки эпидемии с локдауном и без него

Рис. 2: Визуализация протекания эпидемии для полносвязанного графа

Начальная конфигурация вершин и вид «рабочего» графа

Вид «домашнего» графа

Сравнительные треки эпидемии с локдауном и без него

Рис. 3: Визуализация протекания эпидемии для графа-цикла