Name: Caleb McWhorter — Solutions

MATH 308 Fall 2022

"Since, as is well known, god helps those who help themselves, presumably the devil helps all those, and only those, who don't help HW 6: Due 09/27 themselves. Does the devil help himself?"

-Douglas Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid

Problem 1. (10pt) Let $S := \{-3, -2, -1, 0, 1, 2, 3\}$ be a universal set and define $X := \{-1, 0, 1\}$. Give an example of...

- (a) a proper subset of S, say A, that is disjoint from X.
- (b) a subset of S, say B, such that $B X \neq B$.
- (c) a subset of S, say C, such that $X\Delta C = X \cup C$.
- (d) a subset of S, say D, such that D^c contains only nonnegative numbers.
- (e) a subset of S, say E, such that the complement of $X \cup E$ is empty.

Solution. *Note: Answers may vary.*

- (a) The chosen set, A, needs to be disjoint from X; that is, the set A needs to contain no elements of X, i.e. -1, 0, 1. The set A also needs to be a proper subset of S, i.e. not contain every element of S. Examples of such A are $A = \{-3, -2, 2, 3\}, A = \{-2, 2\}, A = \{3\}, \emptyset$, etc.
- (b) The set B-X is the set of elements that are in B but not in X. For B-X to not contain every element of B, i.e. $B - X \neq B$, B and X cannot be disjoint, i.e. $B \cap X \neq \emptyset$. Then the given set B needs to contain at least one element of X. Examples of such B are $B = \{0\}$, $B = \{-3, -2, -1\}, B = \{-1, 0, 1\}, \text{ etc.}$
- (c) The set $X\Delta C$ is the set of elements that are *only* in X or *only* in C, i.e. the elements in X or C but not in $X \cap C$. The set $X \cup C$ is the set of elements in X or C. For $X \Delta C = X \cup C$, there was nothing from $X \cup C$ 'excluded' from $X \Delta C$, i.e. every element of $X \cup C$ is in X or C but not both. Examples of such C are $C = \{-3, -2, 2, 3\}$, $C = \{3\}$, $C = \emptyset$, etc.
- (d) The set D^c is the set of elements of S that are not in D. Then for D^c to contain only nonnegative numbers, i.e. real numbers $x \ge 0$, the set D^c must then contain all the negative numbers of S. Therefore, the only such example of D is $D = \{-3, -2, -1\}$.
- (e) The set $X \cup E$ is the set of elements that are in X or in E. The complement of $X \cup E$, i.e. $(X \cup E)^c$, is the set of elements that are not in $X \cup E$. For the set $(X \cup E)^c$ to be empty, there must be no elements in S that are not already in $X \cup E$, i.e. $X \cup E = S$. Examples of such E are $E = \{-3, -2, 2, 3\}, E = \{-2, -1, 0, 1, 2\}, E = \{-3, -2, -1, 0, 1, 2, 3\}, \text{ etc.}$

Problem 2. (10pt) Let A and B be sets. By defining A = B by using a quantified open sentence, show that $A \neq B$ is equivalent to the logical statement...

$$(\exists x)(x \in A \land x \notin B) \lor (\exists x)(x \in B \land x \notin A)$$

Solution. By definition, we know that A=B if and only if $A\subseteq B$ and $B\subseteq A$, i.e. every element of A is an element of B and every element of B is an element of A. More precisely, A=B if and only if we have: if $a\in A$, then $a\in B$ and if $b\in B$, then $b\in A$. Writing this as a qualified open statement, we have...

$$(\forall x)(x \in A \to x \in B) \land (\forall x)(x \in B \to x \in A)$$

Then recalling $\neg(\forall x) \equiv \exists x, \neg(P \to Q) \equiv P \land \neg Q$, and $\neg(x \in X) \equiv x \notin X$, as well as the fact that $A \neq B = \neg[A = B]$, we must have...

$$A \neq B \equiv \neg [A = B]$$

$$\equiv \neg ((\forall x)(x \in A \to x \in B) \land (\forall x)(x \in B \to x \in A))$$

$$\equiv \neg (\forall x)(x \in A \to x \in B) \lor \neg (\forall x)(x \in B \to x \in A)$$

$$\equiv ((\exists x)\neg (x \in A \to x \in B)) \lor (\exists x)(\neg (x \in B \to x \in A))$$

$$\equiv (\exists x)(x \in A \land \neg (x \in B)) \lor (\exists x)(x \in B \land \neg (x \in A))$$

$$\equiv (\exists x)(x \in A \land x \notin B) \lor (\exists x)(x \in B \land x \notin A)$$

Problem 3. (10pt) Let A and B be sets in a universe \mathcal{U} and consider the set $A\Delta B$.

- (a) Using set-builder notation and logical propositions, define the set $A\Delta B$.
- (b) Construct a Venn diagram for the set $(A\Delta B)^c$.
- (c) Construct a Venn diagram for the set $(A \cup B)^c \cup (A \cap B)$
- (d) What might you conjecture from your answers in (b) and (c)?

Solution.

(a) We know that the set $A\Delta B$ is the set of elements of \mathcal{U} that are in A or B but *not* in both A and B. From this description of $A\Delta B$, we have...

$$A\Delta B = \{x \in \mathcal{U} \colon (x \in A \lor x \in B) \land \neg (x \in A \cap B)\}\$$

$$A\Delta B = \{x \in \mathcal{U} \colon (x \in A \lor x \in B) \land \neg (x \in A \cap B)\}\$$

Equivalently, the set $A\Delta B$ is the set of elements of \mathcal{U} that are in A but not B or that are in B but not A. From this description, we have...

$$A\Delta B = \{x \in \mathcal{U} \colon (x \in A \lor x \in B) \land (x \notin A \cap B)\}\$$

(b) Using any of the descriptions of $A\Delta B$ given in (a), the Venn diagram for $A\Delta B$ is...

But then the Venn diagram for $(A\Delta B)^c$ is...

(c) The Venn diagram for $A \cup B$ is given below on the left, which gives the Venn diagram for $(A \cup B)^c$ below on the right.

The Venn diagram for $A \cap B$ is...

But then the diagram for $(A \cup B)^c \cup (A \cap B)$ is...

(d) Because the Venn diagram for $(A\Delta B)^c$ in (b) is the same as the Venn diagram for $(A\cup B)^c\cup (A\cap B)$ in (d), we conjecture that $(A\Delta B)^c=(A\cup B)^c\cup (A\cap B)$. In fact, one can prove this:

$$(A\Delta B)^c = ((A \cup B) - (A \cap B))^c$$
$$= ((A \cup B) \cap (A \cap B)^c)^c$$
$$= (A \cup B)^c \cup ((A \cap B)^c)^c$$
$$= (A \cup B)^c \cup (A \cap B)$$

Problem 4. (10pt) Let A, B, and C be sets in some universe U. Find the *complement* of the following sets, showing all your work and 'simplifying' as much as possible:

- (a) $A \setminus B$
- (b) $(A^c \cup C) \cap B$
- (c) $(((A \cup B) \cap C))^c \cup B^c)^c$

Solution. Recall that if A and B are sets, then by DeMorgan's Laws, $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$. We also have $(A^c)^c = A$ and the distributive laws $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ and $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

(a) Recall that $A \setminus B$ is the set of elements that are in A but not in B, i.e. the set $A \cap B^c$. But then we have...

$$(A \setminus B)^c = (A \cap B^c)^c$$
$$= A^c \cup (B^c)^c$$
$$= A^c \cup B$$

That is, $(A \setminus B)^c$ are the elements that are either not in A or in B.

(b) We have...

$$((A^c \cup C) \cap B)^c = (A^c \cup C)^c \cup B^c$$
$$= ((A^c)^c \cap C^c) \cup B^c$$
$$= (A \cap C^c) \cup B^c$$

(c) We have...

$$((((A \cup B) \cap C))^c \cup B^c)^c)^c = ((A \cup B) \cap C))^c \cup B^c$$

$$= ((A \cup B)^c \cup C^c) \cup B^c$$

$$= ((A^c \cap B^c) \cup C^c) \cup B^c$$

$$= ((A^c \cap B^c) \cup B^c) \cup (C^c \cup B^c)$$

$$= B^c \cup (C^c \cup B^c)$$

$$= C^c \cup B^c$$

$$= (C \cap B)^c$$

Problem 5. (10pt) Define $S := \{1, 2, \{1\}, \{\{2\}\}\}$. Determine whether the following are true or false—no justification is necessary:

(a)
$$\varnothing \in S$$

(g)
$$\{1\} \subseteq \mathcal{P}(S)$$

(b)
$$\varnothing \subseteq S$$

(h)
$$\{\{1\}\}\subseteq \mathcal{P}(S)$$

(c)
$$1 \in \mathcal{P}(S)$$

(i)
$$\varnothing \in \mathcal{P}(S)$$

(d)
$$\{1\} \in \mathcal{P}(S)$$

(j)
$$\{\varnothing\} \in \mathcal{P}(S)$$

(e)
$$\{\{1\}\}\in \mathcal{P}(S)$$

(k)
$$\varnothing \subseteq \mathcal{P}(S)$$

(f)
$$1 \subseteq \mathcal{P}(S)$$

(1)
$$\{\emptyset\} \subseteq \mathcal{P}(S)$$

Solution. It would be useful to write S and compute $\mathcal{P}(S)$:

Problem 6. (10pt) Define $A := \{3, 5, 7\}$ and $B := \{\pi, e, \sqrt{2}, \varphi\}$.

- (a) Determine $A \times B$.
- (b) Is $(3,\pi) \in A \times B$? Is $(\pi,3) \in A \times B$? Explain the relation between your responses.
- (c) Is $A \times B = B \times A$? Explain.

Solution.

(a) We have...

$$A \times B = \{(a,b) \colon a \in A, b \in B\} = \begin{cases} (3,\pi), & (3,e), & (3,\sqrt{2}), & (3,\varphi) \\ (5,\pi), & (5,e), & (5,\sqrt{2}), & (5,\varphi) \\ (7,\pi), & (7,e), & (7,\sqrt{2}), & (7,\varphi) \end{cases}$$

- (b) From (a), we can see that $(3,\pi) \in A \times B$ but $(\pi,3) \notin A \times B$. The set $A \times B$ consists of ordered pairs—ordered. The order in an order pair matters. So while $(3,\pi) \in A \times B$ because $3 \in A$ and $\pi \in B$, we know that $(\pi,3) \notin A \times B$ because $\pi \notin A$ and $3 \notin B$. This is in contrast to sets where order does not matter so that $\{3,\pi\} = \{\pi,3\}$.
- (c) We have...

$$A \times B = \{(b,a) \colon a \in A, b \in B\} = \begin{cases} (\pi,3), & (e,3), & (\sqrt{2},3), & (\varphi,3) \\ (\pi,5), & (e,5), & (\sqrt{2},5), & (\varphi,5) \\ (\pi,7), & (e,7), & (\sqrt{2},7), & (\varphi,7) \end{cases}$$

We can see that $(3,\pi) \in A \times B$ but $(3,\pi) \notin B \times A$. Because the sets do not contain the same elements, we know that these sets cannot be equal. In fact, $A \times B$ will never be the same as $B \times A$ unless A and B contain all the same elements.

Problem 7. (10pt) Determine $\bigcup_{i\in\mathcal{I}}A_n$ and $\bigcap_{i\in\mathcal{I}}A_n$ for the given A_n and \mathcal{I} below—no justification is

necessary. However, if the set is finite, enumerate its elements; otherwise, either give the set in set-builder notation or using set operations with 'standard' sets, e.g. \mathbb{Q} , $\mathbb{Z} \setminus \mathbb{N}$, etc.

(a)
$$A_n := (\frac{1}{n}, 1 + \frac{1}{n}); \mathcal{I} := \mathbb{N}$$

(b)
$$A_n := (n, n+1); \mathcal{I} := \mathbb{Z}$$

(c)
$$A_n := (n - \frac{1}{2}, n + \frac{1}{2}); \mathcal{I} := \mathbb{R}$$

Solution.

(a)
$$\bigcup_{i\in\mathcal{I}}A_n=(0,2], \quad \bigcap_{i\in\mathcal{I}}A_n=\{1\}$$

(b)
$$\bigcup_{i\in\mathcal{I}}A_n=\mathbb{R}\setminus\mathbb{Z},\quad\bigcap_{i\in\mathcal{I}}A_n=arnothing$$

(c)
$$\bigcup_{i\in\mathcal{I}}A_n=\mathbb{R},\quad \bigcup_{i\in\mathcal{I}}A_n=\varnothing$$

Problem 8. (10pt) Below is a partial proof of the fact that $A \setminus B = A \cap B^c$. By filling in the missing portions, complete the partial proof below so that it is a correct, logically sound proof with 'no gaps':

Proposition. If *A* and *B* are sets, then $A \setminus B = A \cap B^c$.

Proof. If $A \setminus B = \emptyset$, then there is no element in A that is not also in B. But then $A \subseteq B$ so that $A^c \supseteq B^c$. But then $A \cap B^c \subseteq A \cap A^c = \emptyset$ so that $A \cap B^c = \emptyset$. Therefore, if $A \setminus B = \emptyset$, then $A \setminus B = A \cap B^c$. If $A \cap B^c = \emptyset$, then there is no element in both A and B^c . Now if there were an element in $A \setminus B$, there would be an element in A that is not in B, i.e. an element in A that is in B^c , a contradiction to the fact that $A \cap B^c = \emptyset$, i.e. that there is no element in both A and B^c . This shows that $A \setminus B = \emptyset$. Therefore, if $A \cap B^c = \emptyset$, then $A \setminus B = A \cap B^c$. Then we have shown that if either $A \setminus B$ or $A \cap B^c$ are empty then $A \setminus B = A \cap B^c$. Now assume that both $A \setminus B$ and $A \cap B^c$ are nonempty.

To prove that $A \setminus B = A \cap B^c$, we need to show $A \setminus B \subseteq A \cap B^c$ and $A \cap B^c \subseteq A \setminus B$.

 $A\setminus B\subseteq A\cap B^c$: We prove that $A\setminus B\subseteq A\cap B^c$. Let $x\in A\setminus B$. Then by definition, $x\in A$ and $x\notin B$. But then $x\in A$ and $x\in B^c$. This shows that $x\in A\cap B^c$. Therefore, this shows that $x\in A\cap B^c$.

 $A \cap B^c \subseteq A \setminus B$: We need to show that $A \cap B^c \subseteq A \setminus B$. Let $x \in \underline{A \cap B^c}$. Then $x \in \underline{A}$ and $x \in \underline{B^c}$. But then $x \in \underline{A}$ and $x \in \underline{B^c}$ and $x \notin \underline{B}$. This shows that $x \in A \setminus B$. Therefore, we know that $A \cap B^c \subseteq A \setminus B$.

Because $A \setminus B \subseteq A \cap B^c$ and $A \cap B^c \subseteq A \setminus B$, we know that $A \setminus B = A \cap B^c$.