

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA

DEPARTAMENTO DE ENHGENHARIA DE TELEINFORMÁTICA LABORATÓRIO DE CIRCUITOS ELETRÔNICOS

SEMESTRE 2023.2

LABORATÓRIO 06 – MODELO EMISSOR COMUM

ALUNO:

LUALISSON FERNANDES SOUSA – 511136

JOÃO VITOR OLIVEIRA FRAGA – 537377

TURMA: 01

OBJETIVOS

- Verificar com auxílio de um multímetro o estado de um transistor;
- Identificar os terminais de um transistor;
- Determinar os parâmetros α e β (ganho estático de corrente, h_{FE} .) e a queda de tensão V_{CE} .

MATERIAL

- Protoboard
- Fonte de alimentação ajustável 0-30 Volts
- Multímetro Digital Transistores BJT (BC547 e BC557)
- Resistores: $5.0k\Omega$ e $330k\Omega$
- Data Sheet do BC 547

PROCEDIMENTO

Atividade 1

Há dois métodos para determinação do terminal da base de um transistor usando multímetro.

- 1. Determinar os dois terminais que apresentam alta resistência nos dois sentidos de polarização e por exclusão o terminal que não participou desta medição é o terminal da base.
- 2. Determinar o terminal que proporciona baixa resistência, medindo-se deste terminal para os outros dois terminais. A menor das resistências indicará a junção base-emissor e a maior das resistências fornecerá a junção base-coletor. Este método determina o terminal da base e identifica se o transistor é um npn ou um pnp.
- **3.** Sem o emprego do multímetro, a identificação segura pode ser feita com consulta ao Data Sheet do fabricante. Pede-se:
- a) Determinar os terminais dos transistores fornecidos (BC547 e BC557) e fornecer: o tipo e os terminais.

BC547	pnp	677-675-679
BC557	npn	679-673-671

b) Especificar a orientação empregada para definir os terminais.

Para determinarmos se um transistor é npn ou pnp, podemos medir a tensão na base, para isso, realizamos a medição na junção base-emissor (BE), desse modo, no caso de um transistor npn, a junção BE será polarizada diretamente, o que significa que a tensão na base é maior que a no emissor. Já no transistor pnp, a junção BE será polarizada inversamente, o que significa que a tensão na base é menor que a tensão no emissor.

c) Justificar o motivo para haver diferença entre as resistências de coletor e emissor para o transistor npn e pnp.

A diferença nas resistências de coletor e emissor entre transistores npn e pnp é uma consequência das direções opostas das correntes no transistor e dos requisitos de amplificação de corrente associados a estes tipos de dispositivos. Pois cada configuração é otimizada para seu propósito específico e polarização adequada.

Atividade 2

4. Montar o circuito da Fig.1, usando o transistor BC547.

Figura 1 - Polarização de amplificador emissor comum

Fonte: Roteiro da prática.

5. Calcular, medir e anotar as seguintes grandezas: V_{BE}, V_{CE}, I_B e I_C.

	Medido	Teórico
$ m V_{BE}$	0,69 V	2,5 V
$ m V_{CE}$	0,15 V	1 V
I_{B}	1,22 mA	1,33 mA
I_{C}	1,96 mA	1,96 mA

6. Pede-se:

a) Comparar o valor de β obtido na prática com o valor de β medido.

MEDIDO	TEÓRICO
160,25	249

b) Aquecer o transistor e medir: $V_{CE}(V)$, $V_{RC}(V)$ e β .

Não foi possível realizar a medição, entretanto, o professor a realizou em laboratório e nos demonstrou que ao aquecer o transistor os valores de V_{CE} , V_{RC} e de β diferem do valor obtido em temperatura ambiente.