The Web (part 2)

Lecture 7

http://www.cs.rutgers.edu/~sn624/352-F24

Srinivas Narayana

Review of concepts

HyperText Transfer Protocol (HTTP)

Client-Server Protocol

HTTP Persistence

Two types of HTTP connectivity

Non-persistent HTTP

 At most one object is sent over a TCP connection.

HTTP/1.0 uses non-persistent connections

Persistent HTTP

 Multiple objects can be sent over single TCP connection between client and server.

 HTTP/1.1 uses persistent connections in default mode

TCP is a reliable communication protocol provided by the transport layer. It requires setting up some resources (e.g., memory regions) for the connection to be set up at the endpoints before data communication.

Non-persistent HTTP (HTTP/1.0)

1a. HTTP client initiates TCP connection to HTTP server

1b. HTTP server at host "accepts" connection, notifying client

Suppose a user visits a page with text and 10 embedded images.

2. HTTP client sends HTTP request message

 HTTP server receives request message, replies with response message containing requested object

Non-persistent HTTP (HTTP/1.0)

4. HTTP server closes TCP connection.

Single connection per object

Useful at a time when web pages contained 1 object: the base HTML file.

How long does it take to download an entire web page with non-persistent HTTP?
i.e.: before your browser can load the (entire) web page?

Non-persistent HTTP user response time

- Total delay = propagation + queueing + transmission
- Response time for the user
 - = sum of forward and backward total delays
- Round-Trip Time (RTT): total forward + backward delay for a "small" packet
 - Zero transmission delay
- Assumptions:
 - TCP initiation packet, response, HTTP requests are all "small" packets
 - No processing delays at the server
 - RTT is stable over time
- (2RTT + file transmission time) * #objects

Per-object overheads quickly add up

Modern web pages have 100s of objects in them.

Objects (e.g. images) may not be small.

Persistent HTTP (HTTP/1.1)

1a. HTTP client initiates TCP connection to HTTP server

1b. HTTP server at host "accepts"

connection, notifying client

Suppose user visits a page with text and 10 images.

2. HTTP client sends HTTP request message

3. HTTP ser message message message object object

 HTTP server receives request message, replies with response message containing requested object

time

Persistent HTTP (HTTP/1.1)

4. HTTP server sends a response.

objects

Server keeps the TCP connection alive.

time

The 10 objects can be requested over the same TCP connection.

i.e., save an RTT per object (otherwise spent opening a new TCP connection in HTTP/1.0)

Persistent HTTP user response time

- Assume requests made one at a time (separate RTT per req)
- RTT + (RTT + file transmission time) * #objects
- Pipelining: send more than one HTTP request at a time
 - Extreme case: all requests in one (small) packet
 - RTT + (file transmission time) * #objects
 - In practice, dependencies between objects
- Compare with non-persistent:
 - (2RTT + file transmission time) * #objects
- Persistence (& pipelining) can save significant time, especially on high-RTT connections
- Other advantages of persistence: CPU savings, reduced network congestion, less memory (fewer connections)

Persistence vs. # of connections

 Persistence is distinct from the number of concurrent connections made by a client

- Your browser has the choice to open multiple connections to a server
 - HTTP spec suggests to limit this to a small number (2)
- Further, a single connection can have multiple HTTP requests in flight (pipelining) with persistent HTTP

 Clients that use persistent connections SHOULD limit the

Clients that use persistent connections SHOULD limit the number of simultaneous connections that they maintain to a given server. A single-user client SHOULD NOT maintain more than 2 connections with any server or proxy. A proxy SHOULD use up to 2*N connections to another server or proxy, where N is the number of simultaneously active users. These guidelines are intended to improve HTTP response times and avoid congestion.

Remembering Users On the Web

HTTP: Remembering users

So far, HTTP mechanisms considered stateless

- Each request processed independently at the server
- The server maintains no memory about past client requests

However, state, i.e., memory, about the user at the server, is very useful!

- User authentication (e.g., gmail)
- Shopping carts (e.g., Amazon)
- Video recommendations (e.g., Netflix)
- Any user session state in general

Familiar with these?

Your Privacy

We use cookies to make sure that our website works properly, as well as some 'optional' cookies to personalise content and advertising, provide social media features and analyse how people use our site. By accepting some or all optional cookies you give consent to the processing of your personal data, including transfer to third parties, some in countries outside of the European Economic Area that do not offer the same data protection standards as the country where you live. You can decide which optional cookies to accept by clicking on 'Manage Settings', where you can also find more information about how your personal data is processed. Further information can be found in our <u>privacy policy</u>.

Accept all cookies

Manage preferences

This website uses cookies

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners who may combine it with other information that you've provided to them or that they've collected from your use of their services

Use necessary cookies only

Allow selection

Allow all cookies

Necessary □ Preferences □ Statistics □ Marketing

Show details ✓

Cookies: Keeping user memory

