Fatty-Acid Biosynthesis:

1) C-C Bond Formation

The fatty acids are long-chain carboxylic acids, like palmitic acid (a saturated fatty acid found in palm oil, among other foods):

Fatty acids are *also* synthesized from acetyl CoA. The **first steps** in fatty-acid synthesis involve the **formation of a carbon-carbon bond**. Propose a mechanism:

SCOA

$$CO_{2}$$

$$O O O SCOA$$

$$HS - ACP$$

$$ACP = Acyl Carrier Protein$$

$$KS = Keto Synthase$$

$$O O O SCOA$$

$$ACP = Acyl Carrier Protein$$

Fatty-Acid Biosynthesis:

2) Changing Functional Groups

Now that the new C-C bond has been formed, we must reduce the ketone to the alkane chain we desire. Propose mechanisms for the following steps; note that some *cofactors* will be required:

The whole process added 2 carbons to acetyl CoA. The process can be repeated:

Polyketide Biosynthesis

The pathway for synthesizing fatty acids can be modified by *removing* some of the functional-group transformation steps. The resulting products are highly-functionalized natural products known as *polyketides*. One of the best-known polyketides is the antibiotic *erythromycin*. The key intermediate in the synthesis of erythromycin is the macrolactone 6-deoxyerythronolide B, which is synthesized from some very simple molecules:

6-deoxyerythronolide B

Can you find which carbons in the starting materials end up as the various carbons in product?

Methylmalonyl CoA is synthesized from propionyl CoA. Propose a mechanism.

Palytoxin

Biosynthesis: $^{\circ}60$ malonate units; synthase complex probably $^{\circ}100,000$ amino acids. Synthesized by a marine coral.

Laboratory synthesis (Kishi): ~65 steps, involved 42 total protecting groups (8 different kinds!). Synthesized by 21 researchers of a period of several years. Probably the most complicated laboratory organic synthesis ever.

This is the apex of laboratory organic synthesis, not the apex of biosynthesis!

Maitotoxin

The largest and most complex non-polymeric natural product known ($C_{164}H_{256}O_{68}S_2Na_{2,}$ with 108 stereocenters!)

Isolated from marine plankton (the same species responsible for "red tide")

Extremely toxic ($LD_{50} = 50 \text{ ng/kg}$)!

It's a polyketide! Can you find the carbon chain that threads through the structure?

Why would the organism make such a molecule?

Nature uses organic chemistry to build virtually everything we are... and we can mimic it, to a point.

But can we use organic chemistry to fix biological systems when they fail?

Medicinal Chemistry: An Introduction

One of the most prominent intersections of medicine and organic synthesis is in *drug development*. How do chemists use biological research to design new molecules?

Let's examine a case study.

Malfunctions (overactivity or overexpression, in this case) of enzymes cause problems!

Glaucoma

Epilepsy

Obesity

Altitude Sickness

Cancer?

In order to *inhibit* CA II, we should know how it works...

The enzyme active site:

The strategy: Design a molecule that will bind in the active site and prevent CO₂ from entering.

a "transition state mimic"

Test the idea....

$$H_{2}N - \stackrel{\circ}{S} - \stackrel{\circ}{U} - H$$
 $Kd = 200-1500 \text{ nM}$
 $H_{2}N - \stackrel{\circ}{S} - \stackrel{\circ}{U} - \stackrel{\circ}{U}$

Kd = 0.6 nM

Identify patterns...

$$H_2N-S$$
 H_2N-S H_2N-S

Kd = 200-1500 nM

$$H_2N-S$$
 O
 NH_2

Kd = 120 nM

$$H_2N-S$$
 O
 N
 H_2N-S

Kd = 1.1 nM

$$H_2N-\ddot{\ddot{S}}$$

Kd = 0.6 nM

Conceive "isosteric" variations:

Synthesize and test!

Now it's your turn...