20 0 1 9 C

EARTHQUAKES LOCATED BY T PHASES DURING THE VELA UNIFORM ALEUTEAN ISLANDS EXPERIMENT, 1964

MIDROFICHE \$. 0.50

By ROCKNE H. JOHNSON

December 1964

TECHNICAL SUMMARY REPORT NO. 7

Prepared for ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO. Non-3748(01)
ARPA ORDER NO. 212-62 AMENDMEN. 1
PROJECT CODE 615.1

HAWAIE INSTITUTE OF GEOPHYSICS UNIVERSITY OF HAWAII

BEST AVAILABLE COPY

EARTHQUAKES LOCATED BY T PHASES DURING THE VELA UNIFORM ALEUTIAN ISLANDS EXPERIMENT, 1964

Ву

Rockne H. Johnson

December 1964

TECHNICAL SUMMARY REPORT NO. 7

Prepared for

Advanced Research Projects Agency under Contract No. Nonr-3748(01)

ARPA Order No. 218-62 Amendment 3 Project Code 8100

Approved by Director

Date: 23 December 1964

Reproduction of this report in whole or in part is permitted for any purpose of the United States Covernment.

Contents

	Page
Abstract	1
Introduction	2
Computational Method	2
T-Phase Strength	3
Method of Analysis	4
Results	5
Aleutians	7
SOFAR Location of Air Drops	8
Acknowledgments	9
References	10
Explanation of Tables I, II, III	11

ABSTRACT'

This report tabulates sources and strengths of earthquake <u>T</u> phases recorded by hydrophone net during the VEIA UNIFORM Aleutian Islands

Experiment (August-September, 1964). In a thirty-seven day period, 654 earthquake locations were found for the entire Pacific, of which 184 were in the Aleutians. Comparison of <u>T</u>-phase strengths with earthquake magnitudes suggests a threshold about magnitude three for location by hydrophone net.

Introduction

An extensive underwater detonation program was undertaken in August and September 1964, for the primary purpose of calibrating a network of land and ocean-bottom seismographs established in the Aleutian Islands (Gerlach, 1964). The actual period of detonations was 30 August to 21 September, 1964 (Gray and Tocher, 1964).

The <u>T</u>-phase project at the Hawaii Institute of Geophysics is commercing a routine program for the determination of <u>T</u>-phase sources by means of arrival times at a SOFAR hydrophone network. These determinations will be published at regular intervals as the program becomes operational.

Because of the special interest in Pacific seismicity during the VELA UNIFORM Aleutian Islands Experiment, those events located for the period 15 August to 21 September, 1964, are listed in this report.

Computational Method

The tabulated solutions were obtained on the IBM 7040 computer at the University of Hawaii Statistical and Computing Center. The computer program is in the process of refinement and will be the subject of a later report. It will be discussed only briefly in this report.

The program obtained, by iteration, the geographic position which gave the minimum variance for a set of origin times as computed for the ith hydrophone by the formula:

$$H_i = T_i - \frac{S_i}{V_{ki}}$$

for origin time H. arrival time T, distance to the hydrophone S, and average velocity V between region k and the hydrophone.

Seismic belts in the Pacific ware divided into 29 regions for the purpose of indexing SOFAR velocity. The sets of velocities assigned each region were determined by explosion travel-time calibration where possible and from hydrographic data where explosion calibration was not available (Johnson and Norris, 1964). Regions where explosion calibrations were available are the Andreanof Islands (Aleutians), Hawaii, and California.

T-Fhase Strength

A power level, in decibels relative to 0.1 microbar, is listed as a measure of T-phase strength. This level is calculated for a distance of 30 degrees from the source. The level measured at each hydrophone is reduced to that distance by the formula:

$$L_{30}^{\circ} - L_{\theta} = 10 \log \frac{\sin \theta}{\sin 30^{\circ}} + A(\theta - 30^{\circ})$$

where θ is the distance in degrees from the source to the hydrophone; L_{30}° and L_{θ} are the peak levels, in decibels, at distances of 30° and 9; and A is the attenuation equivalent to 1.6 db per megayard. On the righthand side of this equation, the first term accounts for spatial spreading over the earth's surface (cylindrical near the source), and the second term accounts for losses as measured in the Atlantic by Urick (1963). Signals from impulsive sources, as explosions, would require a third term to account for time spreading of the SOFAR signal (Urick, 1963); however, for \underline{T} phases, the source is extensive in both time and space and the effective duration of the peak is of the same or greater order than the rise time. Therefore, time spreading does not significantly reduce the peak level of \underline{T} phases. As the hydrophones and amplifiers used shift the peak of the T-phase power

spectrum to about 10 cps, this frequency was used in calculating loss and in referring the recorded level to pressure.

In many cases, the level measured at a particular hydrophone is influenced strongly by shadowing from local features. In tabulating a strength for a particular T phase, the level for each hydrophone was reduced to the standard distance and the hydrophone giving the maximum level was selected as being the least influenced by local features and therefore the most representative. It should be noted that no allowance is made for differences in efficiency between the various propagation paths nor for variation in radiated energy with azimuth at the source.

The most obvious flaw in this system is that it is too sensitive to human error. It is noted that several events are listed at strengths of 80 db or more. As these levels exceed the dynamic range of the recording equipment, they should be disregarded. The method of computing <u>T</u>-phase strength will probably be revised in the near future.

The relationship between T-phase strength and earthquake magnitude is, as yet, obscure. It appears that the strength of the T phase is heavily influenced by the location of the earthquake focus relative to continental, island, or seamount slopes (Johnson et al., 1963: Northrop, 1964).

Method of Analysis

The T-phase source is considered to be that area of the ocean bottom from which acoustic energy is rediated into the SOFAR channel. As the mathematical solution attempts to find a point source, its position may be at variance with that of the radiator. Neither of these positions will

necessarily coincide with the earthquake epicenter as one radiator may serve for epicenters throughout a given region. For a single earthquake, multiple peaks in the T phase is assumed to represent multiple radiators. Presumably, a separate T-phase source location could be established for each peak. Multiple radiators are identified and distinguished from multiple earthquakes, by noting that the peak spacing varies from hydrophone to hydrophone.

The appearance of the T-phase power-level record varies considerably from event to event and less so from hydrophone to hydrophone. To insure reliability of identification of corresponding events, all records are viewed in synchrony on table modified for this purpose. The time normally read is that of the peak power level. This peak may be quite sharp for some events or quite broad for others. For events with multiple peaks, that peak is read which appears to be best identified with peaks recorded at other stations. This peak may not be the highest at all stations. In fact, if a minor peak is sharper at all hydrophones, it will be preferred as giving the least uncertainty of arrival time.

The charts were recorded at a speed of 0.25 mm/sec from Pacific Missile Range hydrophones near Eniwetok, Wake, Midway, and Oahu. For some events, arrival times at a California hydrophone were included. All the hydrophones are placed at or near the depth of minimum sound velocity, the ax s of the SOFAR channel.

Results

For the entire Pacific area, 654 sources of earthquake <u>T</u> phase were located. This is an average of about eighteen per day for the 37-day period. Of these, 184 were from the Aleutian area. The Aleutian events are listed

in Table I and the remaining events in Table II. An explanation of the tables is on page II which precedes Table I.

The geometry of the fixes, with hydrophones in the center of the Pacific and sources around the perifery, gives an area of uncertainty which is usually elongated on an axis normal to the Pacific rim. The degree of elongation varies inversely with the distribution in azimuth of the hydrophones. For some areas, notably Central and South America, the distribution in azimuth was seldom sufficient to obtain satisfactory fixes.

In a few cases, where it was desired to report the detection of <u>T</u> phases from an earthquake but a satisfactory fix could not be obtained, the nearest likely position is listed in the tables. These cases are recognized by the tabulation of time to whole minutes and of position to whole degrees.

 \underline{T} phases from the Gulf of Alaska area are not sharply received at Wake and Eniwetok because of the shadow cast by Kodiak Island. Although Midway and Cahu received many \underline{T} phases from this area, the sources could not be satisfactorily fixed without reference to errival times at a California hydrophone.

An unexpected degree of precision was obtained in locating two earthquakes in the South Facific Cordillers. These events, numbers 440 and 441 of Table II, were about 95° (two hours travel time, from all hydrophones, including the one at California. The Coast and Geodetic Survey reported the epicenters at 49.5 S, 116.2 W, and 49.6 S, 116.2 W. The T-phase fixes, both at 49.3 S, 116.5 W, were about 0.3° from these positions. The T-phase origin times averaged 11 seconds later than the listed earthquake origin times.

Velocities used in this calculation were obtained by averaging across the SOFAR velocity chart of the Pacific Ocean (Johnson and Norris, 1964).

Detection in the southwestern Pacific was spotty, due, primarily, to the number of intervening islands between sources and receivers. Results in this area should be interpreted very cautiously.

Aleutians

Generally good results were obtained in the sector from the Alaska
Peninsula to Japan. The events listed in Table I (Aleutians) are plotted
in Figures 1 and 2. Locations are indicated by the serial number from the
table. Circled numbers indicate the epicenters for corresponding events
reported by the Coast and Geodetic Survey.

The positions lie generally farther north than would be expected from bathymetric considerations. This systematic error may be ascribed to the areal extent of the <u>T</u>-phase radiator which makes the computed point source appear behind the Aleutian slope.

About 76 events, nearly half of those for the entire Aleutians, are from a source off Unalaska Island. This area is plotted on an enlarged map in Figure 3. It may be assumed that these events were actually all from one radiator and that the observed scatter is an indication of the relative accuracy of the fix. Accordingly, the mean latitude and standard deviation was calculated for all fixes lying between 166 W and 168 W which are located by six or more hydrophones and with standard deviations of origin time less than 5.3 seconds. Fifty-seven events, ranging from number 7 to number 91, fell within these criteria. The mean latitude was 53.25 N with a standard

FIG. 1. T-phase source locations for the Aleutians between longitudes 175 W and 173 E. Nambers correspond to serial numbers in column 1 of Table 1, Circled numbers are corresponding earthquake epicenters from Table 1V.

146. 2. T-phase source locations for the Aleutians between longitudes 163 W and 175 W. Numbers correspond to serial numbers in column 1 of Table I. Girded numbers are corresponding earthquake epicenters from Table IV. Unalaska Island area is shown in Figure 3.

FIG. 3. T-phase source locations for the Unalaska Island area, Numbers correspond to serial numbers in column 1 of Tablé I. Circled number 46 marks the epicenter for the earthquake corresponding to T-phase source 46. Numbers in Italies are contour depths in Tathons.

deviation of 0.53°. The location of the mean is about 0.3° inshore from the zone in which T-phase generation is assumed to take place.

Eight shots in the Aleutian series, ranging in weight from 2,200 to 6,800 pounds, were fired on land. T-phases were detected from none of these.

Twelve events reported by the Coast and Geodetic Survey appear to correlate with T-phase sources. These are listed in Table IV, and the corresponding events are indicated by asterisks in Table I. Figure 4 contains a plot of magnitude (as published on the USC&GS Preliminary Determination of Epicenter Cards) versus T-phase strength for 11 of these events and also a histogram of T-phase strength. As magnitude is a logarithmic scale of an amplitude measurement and T-phase strength is a logarithmic scale of power, one might expect a slope of 20 db per order of magnitude for a line relating the two. As might be expected, the scatter in the present data is great and the line drawn in the figure is intended only as a rough estimate. The histogram suggests a threshold for location at a T-phase strength about 20 db. It is further suggested that this corresponds to an earthquake magnitude 3.

SOFAR Location of Air Drops

As a check on the program, fixes were obtained for 21 explosions from air drops in the Aleutian shot series. The results are listed in Table III and can be compared with the times and locations reported by the aircraft (Gray and Tocher, 1964). The mean deviation between computed and reported origin times is 8 seconds which corresponds to about 12 kilometers or 0.1 degree of great circle. Individual deviations were as high as 30 seconds (shot 79).

FIG. 4 Histogram of strengths of *T*-phase sources in the Aleutian area and C&GS magnitude versus *T*-phase strength for Aleutian events listed by the Coast & Geodetic Survey. Plotted numbers are from column 1 of Table I.

Acknowledgments

All staff members of the <u>T</u>-phase project, John Northrop, Roger Norris, James Sasser, and Norman Chang, contributed to this report through many hours of correlation of <u>T</u> phases from the charts. The computer program was principally written by William Butzlaff and James Sasser. Original data was supplied by the Pacific Missile Range. This research was supported by the Advanced Research Projects Agency under Office of Naval Research contract Nonr-3748(01).

REFERENCES

- Gerlach, Alan M., "Underwater Shot Program", Hq. AFCRL letter, 1964.
- Gray, Robert A. and Don Tocher, "Aleutian Islands Seismic Calibration Shot Program", Coast and Geodetic Survey Memorandum of 1 October 1964.
- Johnson, Rockne H., and Roger Norris, "SOFAR Velocity Chart of the Pacific Ocean", Hawaii Inst. Geophys. Rept. No. 64-4, 1964.
- Johnson, Rockne H., John Northrop, and Robert Eppley, "Sources of Pacific T Phases", Journ. Geophys. Res., 68, 4251-4260, 1963.
- Northrop, J., "T Phases from 80 Alaskan Earthquakes, March 28-31," Trans. Am. Geophys. Union, 45, 635, 1964.
- Urick, R. J., "Low-Frequency Sound Attenuation in the Deep Ocean", Journ. Acous. Soc. Am. 35, 1413-1422, 1963.

Explanation of Tables I, II, III

Column 1. SER In Tables I and II this is a serial number assigned chronologically. In Table III it is the serial number listed by Gray and Tocher (1964). An asterisk to the left of the serial number indicates that the event is also listed in the Freliminary Determination of Epicenter Cards by the Coast and Geodetic Survey.

Columns 2 to 6. MDHMS Greenwich mean origin time.

Colums 7 and 8. LAT LONG Geographic coordinates of $\underline{\mathbf{T}}$ -phase source.

Column 9. AREA This name is for the region used in indexing velocities. It is not always descriptive of the location in columns 7 and 8.

Column 10. SD Standard deviation of origin time..

Column 11. NO Number of hydrophones from which arrival times were read.

Column 12. DB Maximum T-phase strength relative to 0.1 microbar at 30° from source.

TABLE I / PAGE 1

EARTHQUAKES LOCATED BY T PHASE 15 AUG TO 21 SEP 1964
ALEUTIAN ISLANDS

SER	M	D	Н	۳	S	LAT		LONG		A	×ΕA	SD	NO	DB
* 1	AUG	15	2	28	13	52.5	N	179.4	W	EAST	ALEUTIANS	5.3	11	63
2	AUG	15	2	55	24		N	167.4	W		ALEUTIANS	4.8	ŝ	47
3	AUG	17	9	25	37		N	169.9	W	EAST	ALEUTIANS	5.1	11	24
# 4	AUG	17	12	43	13	50.8	N	167.8	W	EAST	ALEUTIANS	5.3	9	39
* 5	AUG	17	16	38	36	51.8	Ν	179.1	E	WEST	ALEUTIANS	6.0	11	64
6	AUG	17	20	53	20		N	167.3		EAST	ALEUTIANS	5.4	11	45
* 7	AUG	17	21	41	23		ti	167.3	h	EAST	ALEUTIANS	2.9	11	42
8	AUG	18	10	10	22		N	167.6	H	EAST	ALEUTIANS	1.8	10	56
9	AUG	18	13	45	2.5		k; iV	172	W	EAST	ALEUTIANS	9.0	B	41
10	AUG	18	15	56	35	•	N N	173.2	W	EAST	ALEUTIANS	2.9	11	54
11	AUG AUG	19 19	1 17	58 15	11		N N	165.0 173.4	W	EAST	ALEUTIANS ALEUTIANS	2.9	7 10	38 62
13	AUG	20	2	18	0		N.	164.3	W		ALEUTIANS	1.4	10	94
14	AUG	20	3	51	5		1.1 1.1 1.1	175.5	W	EAST	ALEUTIANS	4.3	10	49
15	AUG	20	4	14	35		N.	154.1	k'	EAST	ALEUTIANS	1.3	11	59
16	AUG	20	8	12	54		N	179.0	W.	EAST	ALEUTIANS	2.8	9	42
17	AUG	20	9	59	7		N		W	EAST	ALEUTIANS	7.5	7	44
1.8	AUG	20	22	25	51		N:	163.8	W	EAST	ALEUTIANS	1.1	6	43
19	AUG	21	0	19		53	Ŋ	166	W	EAST	ALEUTIANS		5	34
20	AUG	21	õ	4	39	53.8	N	164.2	W	EAST	ALEUTIANS	1.0	ä	36
21	AUG	21	9	17	37		N	173.5	W	EAST	ALEUTIANS	2.8	8	36
22	۸UG	21	13	27	32		N	178.2	W	EAST	ALEUTIANS	4.7	9	49
23	AUG		16	39	28		1	169.1	N		ALEUTIANS	3.1	7	43
24	AUG	21		4.7	5			173.1	W		ALEUTIANS	0.9	6	33
25	AUG	21	22	35	45		H	179.8	<u>+</u>	EAST	ALEUTIANS	3.9	6	41
26	AUG	22	1	22	52		DE Na	179.4	W	FAST FAST	ALEUTIANS ALEUTIANS	2.0 3.8	6 10	41,
27 28	AUG AUG	22	10 15	13 55	33 57		ti N	170.4 177.3		FAST	ALEUTIANS	2.2	9. 10.	90 56
29	ΔIJG	23	11	14	45			167.3	h	EAST	ALEUTIANS	2.2	10	50
30	AUG	23	12	20	57		n.ļ	176.9		EAST	ALEUTIANS	3.0	7	أتزرت
31	AUG	23	12	30	46	52.9		167.2		EAST	ALEUTIANS	2.3	6	40
	AUG			41	39	53.5 !		167.4		FAST	ALEUTIANS	1.4	9	59
	۸IJG		15	41	58	53.5	, %	157.4	h	LAST	ALEUTIANS	1.2	Ģ	52
34	AUG	23	15	42	ь	53.7	\ \$	167.4	in	t: AST	ALEUTIANS	1.9	9	5,5
	AUG		15	47	25	53.3	NJ.	167.4	Įv.		ALEUTIANS	1.5	9	07
	AUG				10	53.3		167.5			ALEUTIANS	1.0	7	51
	AUG							173.9			ALEUTIALS	1.2	9	57
			1	7	34	53.9		103.3			VEGITIE A.	1.2	2	49
	AUG			36		52.8		170.2			ALEUTIANS	1.3	4	37
	AUG			32		53.4		173.2			ALFUTIANS	1.3	7	6.5 4.5
41 42	AUG AUG			55 59	13 24	51.6 52.0		177.0 176.9			ALEUTIANS	3.0 2.9	7 7	65 39
	AUG		10 17	31	30	53.7		163.3			ALEUTIANS	1.7	7	بەرد رۇق
	AUG		17	50		51.7		176.7			ALEUTIANS	1.3	3	49
	AUG		3		30	53.2		167.0			ALEUTIANS	2.3	9	50
4.7	1100	2. 1	_	U	F CF	27.E	•	1010	• •			L • ,	,	, 1

S	ER	M	D	Н	M	S	LAT	LONG		AF	REA	SD	NO	DB
	44	AUG	27	2	10	4	53.4 N	167.1	Li	EAST	ALEUTIANS	3.3	11	60
				4	58	7	53 N	165	W		ALEUTIANS	9 • 3	4	61
	48	AUG		5	28	26	53.9 N	166.6			ALEUTIANS	5.3	7	44
	49	AUG		0	10	50	52.0 N	170.5				4.3	7	32
	50	AUG		0	14	38	51.9 N	170.3			ALEUTIANS	5.9	8	33
	51	AUG	28	1	24	9	52.9 N	167.3			ALEUTIANS	1.4	7	40
	52	AUG	28	17	39	32	53.1 N	167.2		EAST	ALEUTIANS	1.0	5	39
	53	AUG	28	20	40	38	54.3 N	163.8	W	EAST	ALEUTIANS	2.2	10	40
	54	AUG	28	21	17	38	53.3 N	167.1	W	ĒAST	ALEUTIANS	1.7	8	40
	55	AUG		3	36	60	53.2 N	167.2	W	EAST	ALEUTIANS	2.8	10	50
	56			4	5	55	51.7 N	167.3			ALEUTIANS	0.2	5	37
	57	AUG			11		49.3 N	167.4			ALEUTIANS	0.9	5	36
		AUG				48	53.2 N	167.2			ALEUTIANS	1.9	10	49
	59	AUG		5	18	13	5 .2 N	167.3			ALEUTIANS	1.4	8	40
	60	AUG	29		48	27	51.1 N	167.9			ALEUTIANS	6.2	8	34
	6i	AUG		18	36	26	53.6 N	170.5		EAST	ALEUTIANS	1.5	11	48
		AUG AUG		20 20	42	43	52.6 N	170.7		EAST	ALEUTIANS	1.4	10	41
	64			20	1	2	53.0 N 51.3 N	167.2 179.4			ALEUTIANS ALEUTIANS	0.7	6 7	41 41
	65	AUG	30	8	11	12	49.7 N	175.9			ALEUTIANS	14.9	9	50
		AUG	30		40	59	53.4 N	167.0			ALEUTIANS	3.7	6	42
		AUG	30		42		53.2 N	167.2		EAST		2.0	6	41
	68	AUG	30		44		53.4 N		W	EAST		1.2	6	41
	69	AUG	30	21	48	25	51.6 N	167.3			ALEUTIANS	0.1	5	57
			31		51		52.6 N	170.3			ALEUTIANS	1.2	8	49
	71	AUG	31	6	19	12	54.2 N	163.7			ALEUTIANS	1.3	8	40
	72	AUG	31	14	32	56	53.4 N		h		ALEUTIANS	1.0	11	50
	73	AUG	31	15	48	40	54.8 N	167.0	W	EAST	ALEUTIANS	1.4	6	52
	74	AUG	31	16	5	2	53.4 N	167.3	W	EAST	ALEUTIANS	2.0	11	53
	75	AUG	31	16	6	49	53.0 N	167.3	W	EAST	ALEUTIANS	1.4	6	39
		AUG		16		10	52.9 N	167.4	W	FAST	ALEUTIANS	3.0	7	46
*		AUG			19		52.8 N	170.6			ALEUTIANS	2.0	11	67
		SEP	1			37	51.4 N	175.9			ALEUTIANS	2.2	11	62
		SEP	1	8	25		53.5 M	164.5		EAST	ALEUTIANS	2.9	9	38
		SEP	1		2		53.5 N	167.0			ALEUTIANS	2.1	10	49
	31		1		47	2	52.6 N	173.8			ALEUTIANS	3. 0	10	66
		SEP	1		16		51.1 3	170.7			ALEUTIANS	3.3	7	41
	83 01	SEP SEP	1			13	52.1 V	172.4			ALEUTIANS		11	61
		SEP	2	1 4	55 5	20 26	53.4 N	166.9		EAST	ALEUTIANS	4.3	7	42
		SEP	2		31	50	50.4 N 52.1 N	107.4			ALEUTIANS	0.0	5	33
		SEP	2		13		56.0 N	173.4 166.1			ALEUTIANS	1.4	- 6 2	39 44
		SEP	3			35	53.2 t	167.8			ALEUTIANS	2.2	3	40
		SEP	3	9		46	53.3 N	166.7			ALEUTIANS	2.2	ੂ 7	45
		SEP	3	10	52	35	51.4	173.7			ALEUTIANS	3.7	11	50
	91	SEP	3	11	15	54	55.4 N	166.7		FIAST		1.0	9	53
		SEP	3		35		51.9 N	176.9		SASI	ALEUTIANS	1.9	11	59
		SEP	4		14		53.5 N	165.4			ALEUTIA'S	1.8	11	41
										-			_	-

TABLE I / PAGE 3

SER	M	Ŋ	Н	M	S	LAT	LONG		A	REA	SD	NO	DB
* 94	SEP	4	18	39	24	50.9 N	177.0	Ε	WEST	ALEUTIANS	1.6	9	48
95	SEP	5	10	5	20	54.8 N	163.6	W	EAST	ALEUTIANS	1.4	7	25
96	SEP	5	13	10	15	53.1 N	167.3	W	EAST	ALEUTIANS	1.1	6	26
97	SEP	5	17	34	58	53.7 N	165.4	W	EAST	ALEUTIANS	1.3	8	53
98	SEP	5	22	21	4	53.3 N	167.5	W	EAST	ALEUTIANS	1.0	9	53
99	SEP	6	0	10	39	53.0 N	167.7	h	EAST	ALEUTIANS	2.2	8	51
100	SEP	6	0	52	27	53.0 N	167.9	K	EAST	ALEUTIANS	4.3	8	45
101	SEP	6	2	35	11	51.1 N	172.7	W	EAST	ALEUTIANS	2.1	7	44
102	SEP	6	5	2	50	53.5 N	167.4	W	EAST	ALEUTIANS	0.7	6	40
*103	SEP	6	10	30	8	53.7 N	164.0	W	EAST	ALEUTIANS	2.5	10	34
104	SEP	6	18	41	14	52.8 N	177.3	'n	EAST	ALEUTIANS	9.1	7	32
105	SEP	6	22	26	52	53.4 N	175.2	W	EAST	ALEUTIANS	0.8	5	26
106	SEP	7	1	39	11	52.3 N	174.3	h	EAST	ALEUTIANS	8.0	8	43
107	SEP	7	9	11		51 N	178	Ł	WEST	ALEUTIANS		5	25
108	SEP	7	15	0	23	52.9 N	167.7	h	EAST	ALEUTIANS	0.6	5	22
109	SEP	7	15	14	6	53.7 🕅	157.4	W	FAST	ALEUTIANS	1.2	8	42
110	SEP	7	16	16	44	52.8 N		W	EAST	ALEUTIANS	0.5	5	30
111	SEP	7	23	26	21	52.0 N	176.6	W	FAST	ALEUTIANS	0.9	6	43
	SEP	3	6	30	54	52.4 N	175.2	M	EAST	ALEUTIANS	2.3	8	55
113	SEP	Ė.	11	25	43	53.2 №	165.6	h	EAST	ALEUTIANS	3.1	9	49
114	SEP	8	14	26	35	51.2 🥞	169.7	h	WEST	ALEUTIANS	0.4	5	38
	SEP	8		43	40	52.7 N		W	F4ST	ALEUTIANS	3.1	11	55
116	SEP	ક	21	22	36	51.8	173.6	W	EAST	ALEUTIANS	1.5	9	24
117	SEP	3	7	2	38	52.1 N	169.9	h	EAST	ALEUTIANS	2.4	<u> 9</u>	3 i
	SEF	9	10	41	54	51.9 N	167.6	W	FAST	ALEUTIANS	2.2	9	30
119	SEP	9	13	30	47	53.9 N	167.3	W	EAST	ALEUTIANS	1.5	11	38
120	SEP	9	13	56		52 A	168	W	FAST	ALEUTIANS		5	1.8
121	SEP	9	16	50	18	53.2 N	167.5	W	EAST	ALEUTIANS	1.3	10	30
122	SEP	9	21	34	53	52.1 N	173.6	'n	EAST	ALEUTIANS	1.9	11	31
123	SEP	ò	21	4 §	57	51.7 h	176.4	h	EAST	ALEUTIANS	3.1	8	26
124	SEP	9	22	20	59	51.8 3	170.6	hi	FOST	ALEUTIANS	0.6	5	27
125	2Fb	10	3		18	53.4 %	167.1	W	EAST	ALEUTIANS	5.5	8	30
126		10		47		53.5 N	164.0			ALFUTIANS	1.4		21
127		10		55		52.1 A	174.0			ALEUTIANS	5.1	3	25
128	SEP	10		25		54.3 %	174.8			ALEUTIANS	3.0	7	24
129	SEP	10			19	53.3	167.6			ALEUTIANS		11	41
130	SEP	10		37		53.6	167.6		EAST	ALEUTIANS	1.6	7	21
131		10	16		9	53.0 N	167.2		SAST		1.0	7	22
132		10	19	7	58	51.9 N	172.1			ALEUTIANS	6.6	G)	25
133		11	3		16	52.b ¥	167.9			ALEUTIANS	5.6	6	26
134		11	7	8	14	53.1 *	167.4			ALEUTIANS	0.5	6	21
135		11	11		32	53.2 1	167.6			ALEUTIANS	2.3	9	29
136		11		26	54	53.1 H	167.6		FAST	ALEUTIANS	1.7	9	33
137		11	11	40	22	53.5 N	167.5			ALEUTIANS	0.7	6 7	19
	SLP	11		40	45	51.2	169.1			ALEUTIA .S	1.8	7	30
137	SEP	11			39	51.6	198.6			ALEUTIANS	10.2	S _i	21
140		11			23	51.9	173.6			ALEUTIA'S	1.3	9	22
141	SEP	1 /	Ð	2€	71	51. 2	176.3	I.	W 2 2 1	ALEUTIANS	1.3	7	21

TABLE I / PAGE 4

SER	M	D	Н	M	S	LAT	LONG	i	AREA	SE	50	ŊΒ
142	SEP	12	9	54	11	51.7 N	167.8 W	EAC	F. ALELITIAN C			
	SEP			40		51.9 N	171.9 W		T ALEUTIA'S	0.1	5	16
144	SEP		18			53.1 N	167.5 W		ALEUTIANS	1.3	8	19
145	SEP		22			53.7	164.0 W		F ALEUTIANS	1.5	7	23
146	SEP		0		48	51.2 N	178.4 W		r ALEUTIANS	2.0	7	26
147	SEP	13	1			53.3 N	167.1 h	EAST		0.9	7	37
148	SEP	1.3	3			53.8 %	164.0 W	EAST	-	1.7 2.0	9	26 31
149	SEP	13	4	12	12	51.1 4	179.3 E		ALEUTIANS	1.7	5	36
150	SEP	13	16	40	57	50.7 N	177.4 E		ALEUTIANS	1.1	7	50
151	SEp	13	21	18	58	51.5 N	176.0 -		ALEUTIANS	2.2	8	25
152	SEP	13	23	57	25	54.2 N	163.6 W		ALEUTIANS	2.6	a	28
153	SEP		2	1.8	46	53.0 N	169.7 W	EAST		1.0	7	25
		_	7	26	26	51.4 N	178.3 W	- AST		2.0	2	26
		_	9	5	46	53.2 N	165.7 W	EAST		2.0	ģ	3 7
	2Eb		11	34	34	53.6 1	170.3 W	EAST	ALEUTIANS	1.6	11	36
		_	12	30	7	52.6 N	177.9 W		ALEUTIANS	1.9	7	25
	SEP		3	23	30	50.8 N	178.9 h		ALEUTIANS	1.2	7	27
159	SEP		16	11	35	52.2 N	169.8 W	EAST		3.5	9	27
	SEP		3	32		52.3 1	173.7 k	ELST	ALEUTIANS	5.3	10	24
161		16	10			54.5 N	167.2 W	EAST	ALEUTIA'S	0.2	4	29
	SEP	16	10		1	51.7 N	167.5 W	HAST	ALEUTIANS	0.1	4	25
163	SEP	16	11	10		55.2 %	171.0 h	EAST	ALEUTIANS	1.2	5	22
164	SEP	16	11	35	1	53.0 V	167.3 W	LAST		2 - 3	9	37
	SEP	16		39		53.6 N	167.1 W	HAST		3.3	5	36
	SEP	16	13		26	+3.4 %	167.4 W	EAST		1.0	5	26
	SEP	16	18	39		52.3 %	177.0 h		ALEUTIANS	1.9	9	54
	SEP	16	19	36		52.4 N	173.7 W		ALEUTIANS	2.6	7	20
	SEP	16 16	20	14 57	8	53.3	164.2 h	= 12 T		3.2	9	32
		16	21	13	34	52.4 N	167 k	_ AST		3.5	7	12
	SEP	16	22		6 28	52.9	167.2 W	EAST		1.5	7	د د
173		17		11		53.7 N 54.1 N	134.2 %		ALEUTIANS		11	4 =
174				57		54.1 N 51.7 N	171.0 w		ALFUTIA'S	C • 1	4	16
175				28		50.6			ALEUTIA'S	3.2		₹7
176				20		53.9 V	169.6 W		ALEUTIANS	4.0	5	La.
	SEP			21		51.6 fe	130.0 k		ALEUTIA*.S	2.5		fill
178		18	17		18	53.3 M	157.5 V	5451 EACT	ALEUTIANS	4.6		111
		19			11	53.1 V	167.4 h		ALEUTIA S	1.7		3.7
190		20			37	52.2 1	170.8 %		ALEUTIANS	1.4	3	29
	SEP	20	13		37	52.2 %	178.4 4	E 45 I	ALEUTIALS) • C		44
182	SEP	20		50		51.1	178.8 k			1.3	9) 2	, 3
183	SEP	21			32	52.5 %	173.7 n	EAST		1.2 16.1		
184	SEP	21	15	1		52.3	167.4		VEFOLIA: 6			15
								, 1	ECVIIA .	1.7	ပ်	, 1

TABLE II / PAGE 1

EARTHQUAKES LOCATED BY T PHASE 15 AUG TO 21 SEP 1964
PACIFIC OCEAN EXCEPT ALEUTIANS

•	SER	M	D	Ħ	м	S	LAT		LONG		AREA	SD	NO	ÐВ
	1	AUG	15	1	16	36	1.8	N	82.9	W	ECUADOR	2.0	7	58
	2	AUG	15	1	57	52	23.0	N	121.9	E	TAIWAN	0.4	7	54
	3	AUG	15	9	44		56	N	163	Ł	KAMCHATKA		9	47
	4	AUG	15	9	52	6	53.8	N	164.5	Ĺ,	KCMANDORSKIS	2.2	7	38
	5	AUG	15	20	58		49	N	155	É	KURILS		10	50
	6	AUG	15	23	1	49	56.6	N	164.8	E	KEMANDORSKIS	3.1	10	41
	7		16	0	47	40	47.1	1.6	152.1	E	KURILS	1.4	10	51
	8	AUG	16	2	45	12	4 .1	N	150.3	E	KURILS	6.3	10	44
	9	AUG	16	7	48	5'.	44.7	N	155.3	E	KURILS	4.6	6	34
	10	AUG	16	10	3	28	45.6	Ν		1	KURILS	0.5	4	32
•	11	AUG	16	11	41		40	- 1	142	C	JAPAN		ĝ	66
	12		lć	1.2		15	56.2	M	1:2.8	W	KCDIAK ISLAND	0.9	5	46
	13	AUG	16	14	32	5	38.3	N		£	JAPAN	2.5	5	44
	14	AUG	16	15	33	7	54.9	N	164.1	E	KEMANDORSKIS	1.4	7	37
_	15	AUG	16	17	8	40	45.5	7 a	152.0		KURILS	10.5	. 8	38
#	16	AUG	16	20	34	34	54.2	N	172.1		KCMANDORSKIS	3.1	11	69
	17		16	23	58	20	46.引	N		h:	KURILS	3.4	10	52
	18		17	3	2		45	N.	148	E	HCKKAIDC		9	46
	50	AUG AUG	17	3	35	30	3 8	N c	142	E	JAPAN	2.0	5	48
	21	AUG	17 17	4 5	25 41	30	10.4	5	176.8	jai E	SAF A	2.9	6	52
	22	AUG	17	5	19	37	46.5 50	N N	152.4 156	E	KURILS	4.4	3	37
*	23		17	11	52		47	No.	158		KURILS KURILS		10	41
*	24		17	14	54	39	41.9	N.	143.7	E	HCKKVIDO	4 0	10	ნ ე ∃ 7
•	25	AUG	17	14	56	27	42	i N	143.7	E	HEKKAIDO	6.0	8	60 60
	26	AUS	17	22		27	40.1	1	128.3	·	SAN ANDREAS EXT	0.9	5	41
	27	AUS	18	3	58	49	54.7	N		F	KAMCHATKA	2.0	10	49
	28		13	4	36	50	42.5	N		f	nCKKAIDO	2.0	3	46
*	29	AUG	18	4	45		25	S	71	þ,	8AJA CALIFLANIA	2.00	7	45.4
	30	AUG	18	6	20	27	54.9	۸	161.2	Ē	KAMCHATKA	3.4	li	72
	31	AUG	18	7	30	34	5.3	N	83.1	į,	ECUADOR	1.3	9	ĊĴ
	32		18	15	2		15	S	77	W	PERU		4	6 1
	33	AUG	18	15	43		56	¥.	163	t	KCMANDORSKIS		5	47
	34	1116	18	19	24	24	52.9	Ŋ	171.0	E	KCMANDORSKIS	1.9	9	49
	35	105	18	22	12		49	Ŋ	155	E	KURILS		9	53
	36	AUG	19	23	54	1	8.2	5	160.1	F	SCLOMONS	$6 \cdot a$	4	34
	37	AUG	19	2	9	27	45.2	h_{q}	148.5	Ė	HCKKAIDO	1.6	5	41
	38	AUG	19	3	4	15	51.8	Ŋ	128.3	h	CALIFORNIA	1.5	5	42
	39	AUG	19	3	50	5 2	53.3	A 1	162.8		KCDIAK ISLAND	3.9	ρ,	L, 4
	4 C	AUG		4	50	9	28.5	€.	107.8	W	SCUTH PACIFIC	6.0	5	57
	41	AUG			23		41.2	4	130.3		SAN ANDREAS EXT	0.6	6	45
	42		19	3		15	46.6		152.0	F	KURILS	2.9	3	33
	43	403			40		46	ħ;	124	17	SAN ANDREAS EXT		10	63
	44	AUG		11		2 a	54.2		165.3		KEMANDORSKIS	3.3	8	56
	45	AUG	19	14	40	56	39.0	N	140.5	Ĺ	JAPAN	1.4	6	44

-	SER	M	D	Н	M	S	LAT		LONG		ARE 4	SD	NO	DB
	46	AUG	19	14	51		19	N	156	W	HAWAII		6	43
	47	AUG	19	18		53	9.9			E	MARIANAS	0.8	7	51
	48	AUG	19	20	5	54	38.4		144.0	£	JAPAN	1.8	6	55
	49	AUG	19	20	10	25	12.5		148.7		MARIANAS	0.8	5	35
	50	AUG	20	2	21	56	49.2			Ē	KURILS	3.6	7	40
	51	AUG	20	4	49	29	56.3	N		'n	KODIAK ISLAND	1.9	7	45
	52	AUG	20	19	2	13	55.1	ř.j	160.5	£	KAMCHATKA	1.1	5	41
	53	AUG	20	19	25	47	44.2	N	131.1	W	SAN ANDREAS EXT	2.9	7	51
	54	AUG	21	2	3	44	47.5	N	151.0	Ė	KURILS	4.3	10	43
	55	AUG	21	4	16	51	54.2	M	162.1	E	KAMCHATKA	0.8	5	35
			21	4	30		50	14	156	F	KURILS		9	39
	57	AUG	21	4	48	49	45.1	N	147.9	E	HCKKAIDO	2.1	9	44
	58	AUG	21	9	25	8	55.2	11	159.0	W	KCDIAK ISLAND	1.0	10	44
•	59	AUG	21	10	9	30	19.6	S	65.9	Ħ	P∈RU	9.9	6	68
	60	AUG		10	41		58	N	137	W	QUEEN CHARLCTTE		10	50
	61		21	11	26		5	S	67	h	GALAPAGOS		7	52
	62	AUG	21	11	28	43	45.7	N	149.0	E	HCKKAIDO	2.6	7	45
	63	AUG	21	11	48	60	=	N	158.2	W	KCDIAK ISLAND	1.6	5	3 3
	64	AUG	21	13	20	3		N	149.3	Ē	HEKKAIDE	6.0	9	55
	65	AUG	21	15	55	11	49.1	N		F.	KURILS	9.7	8	38
	66		22		17	36		N.		E	KAMCHATKA	3.0	10	54
	67	AUG	22	1	56	34		N		F	KAMCHATKA	2.4	ä	57
	68		22	2	1	41		Ř.		E	K ∆MCHATKA	1.0	8	٤4
	69	AUG	22	2	39	59	- -	N		E	KAMCHATKA	1.9	10	49
	70	AUG	22	4	12	15		N	158.3	F	KAMCHATKA	1.6	11	94
	71		22	6	54	. 3	51	N	157	Ē	KURILS		10	22
	72 73	AUG AUG		9	7	47	46.1	V	152.7	É	KUTILS	3.2	8	51
	74	AUG	22 22	17 18	10	46	48.6	A .	149.7	E	KURILS	1.3	9	5()
	75	AUG	22	20	4 0	17	53 \$.3	N S	160 159.9	i.	KAMCHATKA PESMARCK	11 /	5	42
-	76	AUG	22			17	40	<u>ي</u> ن	124	 *	SULRRERC	11.4	6 10	رَ ق 50
		AUG		23			40	Ň.	124	k W	CALIFORNIA		10	62
		AUG			30	12	26.1			-	PONIN ISLANDS	1.4		52 6 0
		AUG			30		49.3		153.8		KURILS	4.()		52
		AUG		ì	2	6	41.7		146.6		HUKK VIDC	2.2	23	50
		AUG		2	5			N	124		JAN ANDREAS EXT	, • .	6	54
		AUS			56	47	6.0		33.0		JALISCO	2.8		51
		AUG			37		35.8		140.7		JAPAN	0.5	6	45
		AUG			50		54.8		163.8		KAMCHATKA	1.2	7	-,5
		406		13	5		59.5		136.9		QUEEN CHAPLOTTE	1.5	6	45
		AUG		16	9		4.7		94.8		GALAPAGOS	1.1	<u>u</u>	16
		AUG				11	50.7		163.6		KAMCHATKA	7.2	3	40
		AUG			50	t	42.6		141.0		HUKKVIDO	9.3	9	4, 2
	3 9	AUG	24	16	43		2		79		ECUADOR		7	70
	a 0	AUG	24	17	4	15	45.2	•	148.5		HTKK4[CC	0.8	5	3,4
	91	AUG	24	20	32	25	53.4	* 1	153.6	1	KURTIS	c • 3	7	7, 27
		AUG		22	15	37	55.4	*	1ಾರ∗6	L	KAMCHATKA	3.3	3	52
	93	AUS	25	()	1	48	46.4	14	149.2	ŧ_	FICKKAIDO	2.7	4	35

SER	M	D	Н	М	S	LAT		LONG		AREA	SD	NO	DB
94	AUG	25	1	59	17	+1.9	N	143.4	W	SAN ANDREAS EXT	1.5	10	45
95	AUG	25	3	25	23	54.1	N	161.7	W	KCDIAK ISLAND	1.7	7	35
96	AUG	25	10	7	47	46.4	N	149.2	E	HCKKAIDO	0.7	6	46
97	AUG	25	10	8	50	45.1	N	150.0	E	HGKKAIDO	2.2	7	34
98	AUG	25	12	7	3	54.1	N	130.9	W	VANCCUVER	1.6	11	68
99	AUG	25	12	28	18	58.8	N	150.3	K	KEDIAK ISLAND	1.0	7	55
100	AUG	25	13	53	55	56.9	N	162.2	W	KCDIAK ISLANC	2.1	8	41
101	AUG	25	15	1.0	47	56.5	N	149.8	W	KUDIAK ISLAND	1.3	10	47
102	AUG	25	15	i 1	32	57.3	Nº	151.2	N	KCDIAK ISLAM	1.4	7	56
103	AUG	25	19	36	22	58.7	N	141.0	W	QUEEN CHARLE.TE	3.0	9	47
104	AUG	25	19	37	35	57.2	N		K	QUEEN CHARLETTE	7.8	6	30
105	AUG	25	22	52	5 3	43.4	V		£	HCKKAIDO	0.9	5	37
106	AUG	25	23	38	5	34.7	A		E	JAPAN	0.3	7	53
197	AUG	26	1	17	12	46.0	1,	150.5	E	KURILS	3.3	9	48
108	AUG	26	1	17	30	46.4	÷γ	150.3	£	KURILS	2.0	9	51
109	AUG	26	1	59	28	11.4	N		E	TAIWAN	1.6	6	38
110	ΔUG	26	3	20	15	54.8	A 1	161.0	E	KAMCHATKA	1.8	10	69
*111	AUG	26	5	33	46	50.7	N	145.1	E	KURILS	3.3	9	55 47
112		26	6 7	59	Ĉ	61.4	N N	143.3	W L	GULF OF ALASKA KUKILS	1.8	5	47 40
*113 114	AUG AUG	26 26	17	38 3	5 0	44 17.7	N N	152 125.3	E E	TAIWAN	2.0	6 5	54 54
115	AUG	26	18	32	30	19	N	156	W	HAWAII	2.0	6	26
116	AUG	26	21	49	4.1	47.4	N	151.3	Ē	KURILS	4.8	9	58
117	AUG	27	0	20	47		. 1		ι. Έ	BCNIN ISLANDS	0.7	4	23
118	AUG	27	3	39	47	39.2	N	131.0	W	SAN ANDREAS EXT	1.3	7	51
119	AUG	27	5	37	4	3.5	5	175.8	W	SAMCA	4.5	5	40
120	AUG	27	14	6	55	44.9	N	123.8	W	SAN ANDREAS EXT	1.5	8	51
121	AUG	27	14	7	1	54.7	Ų		F	KCMANDURSKIS	0.7	8	38
122	AUG	27	20		16		N	149.0	W	KEDIAK ISLAND	1.4	9	39
123	ΛUG	27	20	59	11		N	167.3	£	KCMANDORSKIS	2.6	3	43
#124	AUG	27	23	47	48	21.2	5	175.5	W	SAMGA	i.9	5	47
125	AUG	28	2	1	3	57.1	i.	149.7	W	KEDIAK ISLAND	1.6	10	52
126	AUG	28	5	57	19	44.9	Αį	150.0	Į.	HCKKAIDO	1.2	11	<u>ੇ</u> ਨੋ
*127	4UG	28	1.2	18		23	Ą	122	Ë	TAIWAN		5	34
*12 8	AUG	28	19	6		23	Įψ	122	E	TAIWAN		5	53
129	AUG	28	21	42	3	50.3	λ	169.7	ł	KCMANDURSKIS	3.5	7	42
130	AUG	2 년	22	31	5∂	47.5	*.j	151.0	£	KURILS	7.2	7	36
*131	AUG		22	57		51.3		130.7		AVCOUVES	2.2	9	60
132	AUG		0	35		13.8		77.8		PERU	1.5	7	53
133	NUG		0		3	11.8		176.6		SAMUA	1.8	6	41
134	AUG			19	48	8.3		172.5		SAMOA	1.4	4	45
	AUG		3	40		2	S	78	h	PERU	0.	6	€s °a - Z
136	AUC		6	2	5	11.8		112.6		GALAPAGOS	0.1	4	66
	AUG		10	30	34	1.4		172.5		S AMI) A	3.1	5 a	47
135	AUG		16	3	31	2.2		95.5		PERU LALADACOS	2.9	į.	t]
	AUG AUG		16	3		5.9		97.5		GALAPAGES GALAPAGES	2 • 1	<u>ું</u> ક	54 59
140			16		54	1.3		93.1 95.6		PIPU	0.8 2.4	- ₹ - 7	54
141	AUG	2	16	4	12	2.2	. V.	0.0	₹ †	r () O	£ . 4	1	- → * †

TABLE II / PAGE 4

SER	Ħ	D	Н	M	S	LAT		LONG		AREA	\$ D	NO	08
142	AUG	29	16	5	56	0.8	S	88.1	W	ECUADOR	3.4	9	67
143	AUG	29	16	9	15	1.8	Š	85.8	W	ECUADOR	3.1	6	57
144	AUG	29	16	17	47		N	91.2	W	GALAPAGOS	2.7	9	67
145	AUG	29	16	20	57	2.1	N	95.2	N	GALAPAGOS	1.4	7	57
*146	AUG	29	17	24	57	3.8	N	100.7	H	GUERRERO	1.2	9	70
147	AUG	29	19	27	59	12.6	N	127.8	E	TAIWAN	2.3	7	62
148	AUG	29	20	9	7	8.9	S	170.6	Ε	BISMARCK	4.1	4	48
149	AUG	29	20	41	51	15.2	S	176.0	Ł	SAMOA	3.5	8	48
150	AUG	30	3	29	9	47.1	N	151.6	Ε	KURILS	3.6	11	53
151	AUG	30	3	39	52	45.9	N	144.9	E	HCKKAIDO	3.4	10	54
152	AUG	30	3	41		36	N	122	W	CALIFORNIA		8	61
153	AUG	30	4	35	5 8	22.1	S	172.0	Ł	SAMDA	0.5	5	60
154	AUG	30	5	10	59	42.1	N	142.7	E	HOKKAIDO	2.8	10	55
155	AUG	30	5	12	51	41.1	N	142.4	Ε	HCKKAIDO	3.4	9	49
156	AUG	3 0	à	6	28	46.9	Ν	149.3	E	KURILS	3.9	10	55
157	AUG	30	9	7	8	46.1	N	150.7	E	KURILS	3.6	9	50
158	AUG	30	12	35	39	55.3	Ν	165.6	E	KCMANDORSKIS	1.8	7	45
159	AUG	30	14	13	5 9	52.3	N	153.5	E	KURILS	6.4	10	44
160	AUG	30	14	15	57	51.4	N	154.9	E	KURILS	6.0	10	40
161	AUG	30	15	32	14	47.4	N	148.1	E	HCKKAIDO	1.9	6	41
162	AUG	30	20	16	10	16.3	S	73.5	W	PERU	2.1	7	63
163	AUG	30	20	57	19	6.9	N	172.5	E	BISMARCK	12.4	6	49
164	AUG	30	21	7	45	6.5	N	172.5	E	BISMARCK	მ • 2	7	58
165	AUG	31	2	18	46	50.6	N	156.3	E	KURILS	2.5	11	47
166	AUG	31	2	41	24	55.3	N	161.1	E	KAMCHATKA	2.6	11	66
167	AUG	31	8	15	44	57.C	N	135.8	W	QUEEN CHARLOTTE	1.6	11	61
168	AUC	31	8	56	55	35.4	N	141.0	E	JAPAN	2.2	7	5,3
169	AUG	31	9	4	45	57.8	N	150.2	W	KODIAK ISLAND	0.2	5	55
170	AUG	31	9	33	24	57.0	Ħ	149.0	W	GULF OF ALASKA	1.8	5	46
171 172	AUG AUG	31 31	10	2	18	55.8	Δi	163.5	F	KAMCHATKA	0.9	O O	43
	AUG	31	10	6	1.7	53	N	171	E	KCMANDORSKIS	0 0	9	42
			10	9 E 1	17	54.5	N,	169.6	E	KOMANDORSKIS	0.8	9	50
	AUG AUG			51 14		51.3 47.5		157.2		KURILS	3.0		5 L
	AUG				11			155.0		KURILS	4.0		-51
	AUG			30		47.5 57.6		155.0		KURILS GUEEN CHARLOTTE		9	43
		31		49		16.3		134.3 98.2		GUERRERO	1.1		56 . 7
		31		13		50.4		156.6		KURILS	0.6	5	67
* 180		31		37	29	58.4		145.8		GULF DF ALASKA	1.2	6 7	35
		31		20		57.3		147.7		GULF OF ALASKA	1.3	5	66 41
	AUG	31			32	15.1		172.6		SAMOA	1.5	- 3 - 4	91 55
183		1	0	10		13.3		172.6		SAMOA	1.0	4	55 56
184		i	3	1	53	13.8		172.6		SAMOA	0.2	4	52
185	SEP	ì	4	55	23	54	Ŋ	161		KAMCHATKA	0.6	7	40
186		i	6		38	11.2		172.7		CAMDA	0.3	4	44
187		1			17	56.7		146.3		KCDIAK ISLAND	1.1	8	36
188		1			16	24.4		172.3		SAMOA	1.4	4	55
199		1		25	6	20.3		126.1		TATWAN	0.7	4	57

SER	M	D	Н	M	S	LAT		LONG		AREA	SD	NO	DB
190	SEP	1	9	47	32	22.0	S	119.8	W	GALAPAGOS	2.0	5	55
191	SEP	1	11	33	23	_	N	80.4	W	ECUADOR	1.3	8	58
192	SEP	1	11	40	37		N	154.7	Ē	KURILS	1.7	5	34
193	SEP	l	15	45	2		S	171.4	W	SAMOA	1.0	4	49
194	SEP	1	15	45	56		S	171.9	W	SAMOA	1.9	4	40
195	SEP	1	16	56	6	17.8	N	149.8	E	MARIANAS	2.4	4	26
196	SEP	1	17	15	32	52.4	N	150.7	W	KCDIAK ISLAND	1.1	8	47
197	SEP	1	17	56	16	46.8	N	152.1	Ľ.	KURÍLS	3.8	10	39
198	SEP	1	19	50		36	N	122	W	CALIFORNIA		9	50
199	SEP	1	22	33	26	36.7	N	121.7	W	CALTFORNIA	1.6	10	51
200	SEP	1		50	8		N	161.4		KAMCHATKA	2.5	11	67
201	SEP	2	1	58			17	122	٣	JALIFORNIA		10	44
202	SEP	S	7	41	59		N	149.1	W	KCDIAK ISLAND	1.8	5	37
203	SEP	2	11	2	5		N	141.8	E	JAPAN	0.2	4	41
204	SEP	2	12	8	3		N	97.9		3ALAPAGOS	1.6	7	56
205	SEP	2	14	39	1		N	159.0	E	KAMCHATKA	3.0	11	45
206	SEP	2	18	40			N.	80	W	ECUADOR		7	63
207	SEP	2	20	43	11		N	148.9	£	HOKKAIDO	1.2	9	42
208	SEP	3	4	1	26		N	158.6	Ë	KAMCHATKA	1.9	10	41
209	SEP	3	4	7	29		N	121.3	t	TAIWAN	1.0	7	47
210 211	SEP SEP	3	5	32 5	27 2		N	131.9		VANCOUVER	1.1	11	61
212	SEP	3	6 7	27	22		N N	131.2 132.1	W	VANCOUVER VANCOUVER	3.2	10 11	36 52
213	SEP	3	9	31	19		N.	153.2	W	KODIAK ISLAND	2.6	10	52 57
214	SEP	3	10	20	55		S	172.7	E	SAMOA	3.7	6	57
215	SEP	3	10	22	31		5	172.2	E	SAMOA	4.1	7	53
216	SEP	3	11	24	J.		N	125	W	CALIFORNIA	761	7	4£
217	SEP	3	11	49			N	127	W	SAN ANDREAS EXT		11	71
218	SEP	3	13	42	38		N	147.1	W	KCDIAK ISLAND	7.6	10	60
219	SEP	3	17	3	22		S	175.2	W	SAMOA	6.3	7	54
220	SEP	3	22	59	49		N	153.5	W	KCDIAK ISLAND	3.2	10	56
221	SEP	3	23	58	43	50.4	M	129.7	h	VANCCUVER	1.2	10	42
222	SEP	4	0	Ü	46	50.6	N	129.7	W	VANCCUVER	1.4	10	50
223	SEP	4	0	1		50	N	128	W	VANCOUVER		9	30
224	SEP	4	0	Æ	20	50.2	îi	156.7	E	KURILS	2.2	11	44
#225	SEB	4	1	26		4	S	154	F	BISMARCK		4	35
226		4	2	52	22	46.9	N	148.9	E	HCKKAIDO	0.8	5	40
227		4	3	3	3	45.0		150.3	Ł	HCKKAIDO	0.8	6	35
*2 28		4	4	10	24	58.9	N	139.2		QUEEN CHARLGITE	3.3	9	49
229		4	5	8			Ŋ	162	E	KAMCHATKA		8	54
230		4	5	51	33	45.6		148.3		HUKKAIDO	4.3	10	51
*231		4	8		54	51.5		159.5		KAMCHATKA	8.6	11	62
* 232	SEP	4	9	44	21	17.9		75.8		PERU	3.4	9	57
233		4	12	5 7		21.8		118.3		TAIWAN	1.5	5	39
234		4	13	50		33.9		140.1		JAPAN	2.5	7	54
* 235	SEP	4	17	11	2	5.6		95.9		GALAPAGOS	2.4	6	53
236	SEP	5 5	0		38	49.8		152.1		KURILS	4.5	6	61
237	2 E P)	2	эG	49	15.5	2	105.5	M	GALAPAGOS	4.6	5	56

SER	M	D	Н	M	\$	LAT		LONG		AREA	SD	NO	DB
*238	SEP	5	2	58	28	2.9	S	157.7	F	BISMARCK	2.9	5	10
239	SEP	5	4	43	21	50.0	Ŋ	141.8	W	QUEEN CHARLCITE	2.1	11	26
240	SEP	5	8	52	52	53.6	M	153.4	E	KURILS	5.3	10	33
241	SEP	5	14	10	57	58.5	N	158.7	t	KAMCHATKA	3.0	5	21
242	SEP	5	15	16	24	47.7	Ν	144.7	E	HOKKAIDO	1.9	6	28
243	SEP	5	16	7	20	54.8	N	154.0	W	KODIAK ISLAND	1.0	5	28
244	SEP	5	17	28	13	57.9	N	160.7	W	KCDIAK ISLAND	2.2	6	47
245	SEP	5	19	37	57	35.3	N	141.7	E	JAPAN	0.3	5	22
246	SEP	5	23	15	21	49.7	N	128.4	W	VANCCUVER	1.5	11	5 7
247	SEP	6	4	18	5	55.5	N	163.7	E	KCMANDORSKIS	1.2	7	26
248	SEP	6	5	21	43	60.6	Ν	135.7	W	QUEEN CHARLCTTE	2.0	7	47
249	SEP	6	15	8	3	7.2	5	104.5	W	GALAPAGOS	1.6	4	38
2 50	SEP	6	15	16	27	6.0	S	10/.4	W	GALAPAGOS	0.4	4	33
251	SEP	6	15	20	37	7.8	\$	102.5	W	GALAPAGOS	0.2	4	43
252	SEP	6	15	27	43	7.7	S	102.1	W	GALAPAGOS	1.1	4	35
253	SEP	6	15	31	49	6.3	S	106.6	H	GALAPAGOS	0.2	4	35
254	SEP	6	15	37	57	6.0	S	107.4	W	GALAPAGOS	1.5	5	50
255	SEP	6	15	43	35	6.4	S	105.8	W	GALAPAGOS	0.8	4	45
256	SEP	6	16	5	50	5.6	S	108.9	W	GALAPAGOS	0.3	4	35
257	SEP	6	17	10	45	53.2	N	158.8	E	KAMCHATKA	2.2	8	45
258	SEP	6	18	54	36		N	170.8	Ε	KOMANDORSKIS	1.4	9	34
259	SEP	6	20	23	37	53.0	Ŋ	136.8	H	QUEEN CHARLOTTE	1.3	10	46
*260	SEP	6	21	9	18	4.9	Ç	109.8	W	PERU	2.3	9	65
261	SEP	6	21	10	11	7.7	S	103.0	W	GALAPAGOS	0.9	5	52
* 262	SEP	6	21	19	52	5.5	S	108.6	W	GALAPAGOS	0.5	5	59
263	SEP	6	21	59	39	6.8	S	105.7	W	GALAPAGOS	0.1	4	45
264	SEP	6	22	3	15	7.4	S	103.7	W	GALAPAGOS	0.4	4	35
265	SEP	6	23	21	10	8.8	S	100.1	W	GALAPAGOS	0.9	4	45
266	SEP	6	23	35	11	5.6	S	108.1	W	GALAPAGOS	0.4	4	43
267	SEP	7	0	20	11	7.3	S	103.8	Ħ	GALAPAGOS	0.3	4	52
268	SEP	7 7	1	27	32	17.8	N	124.4	E	TAIWAN	3.4	4	42
269	SEP	-	1	29	60		S	104.8	H	GALAPAGOS	1.1	4	41
270 271		7 7	2	4	36	46.2		144.5		HCKKAIDO	0.8	5	33
272		7	2	8	26	7.4		103.8		GALAPAGOS	1.3	4	34
*273		7	3	21 40	33	6.8		105.2		GALAPAGOS	0.4	4	36
+274	SEP	7	3	54	46 15	20.2 48.3		123.4		TAIWAN	1.1	7	59
275		7	4	45	33	58.7		154.5		KURILS	2.0	10	60
276		7	5	8	41	52.7		150.0 159.2		KCDIAK ISLAND	0.8	5	35
•277		7	7	43	71	58	N	157.2	E W	KAMCHATKA KODIAK ISLAND	2.0	10	43
278	SEP	7	8	29	34	54.7		161.4		KAMCHATKA	1 5	4	35
279		7		49	53	43.6		131.9		CALIFORNIA	1.5 2.9	9	41
280	SEP	7	11	59	14	56.7		163.0		KAMCHATKA	0.9	4 9	22 42
281	SEP	7			41		5	105.6		GALAPAGOS	1.2	4	42 39
282		7		30	11		S		W	GALAPAGOS	0.8	5	39 47
	SEP	7			30	6.4		105.7		GALÁPÁGÖS	0.4	5 5	48
284		7		33	56	6.0		106.8		GALAPAGOS	1.5	ر 4	38
285		7		43		7.0		105.1		GALAPACOS	1.1	5	50
		-		-			_			VICE REUS	1 4 1	,	<i>)</i> (

SER	M	D	Н	M	5	LAT		LONG		AREA	SD	NO	บิ
286	SEP	7	13	44	20	6.2	S	106.5	W	GALAPAGOS	1.3	4	42
287	SEP	7	15	13	3	6.5	Š	106.0	W	GALAPAGOS	0.4	5	49
288	SEP	7	19	41	11	55.2	N		E	KAMCHATKA	1.5	7	44
289	SEP	7	23	43	54	48.4	N	150.3	Ē	KURILS	5.8	11	43
290	SEP	8	0	22	36	5.6	S	107.7	W	GALAPAGOS	0.7	5	45
291	SEP	8	4	56	47		N	156.2	E	KURILS	2.1	8	27
	SEP	8	8	34	59	40.8	N	127.7	W	SAN ANDREAS EXT	0.8	6	59
293	SEP	8	9	9	2	45.7	N		E	HCKKAIDO	2.2	7	42
294	SEP	8	9	30	29	47.0	N		£	HCKKAIDO	2.3	7	44
•295	SEP	8	10	3	17	41.8	N	127.2	W	SAN ANDREAS EXT	1.3	9	48
296	SEP	8	10	49	1	46.9	N	152.1	E	KURILS	2.5	6	26
297	SEP	8	13	39	49	29.0	Ν	142.1	E	BENIN ISLANDS	1.0	4	20
298	SEP	8	16	49	25	29.3	N	138.8	E	BENIN ISLANDS	4.7	5	22
299	SEP	8	17	14	19	52.9	N	152.3	Ë	KURILS	7.6	8	60
300	SEP	8	18	14	21	6.7	S	105.9	H	GALAPAGOS	1.1	5	40
301	SEP	8	20	12	31	54.5	N	164.4		KCMANDORSKIS	1.8	9	42
	SEP	8	21	6	44	58.7	Ν	145.6	W	GULF OF ALASKA	1.4	6	48
303	SEP	9	0	14	47	55.3	N	163.9	Ē	KCMANDERSKIS	0.5	8	36
304	SEP	9	1	39	18	56.5	Ν	151.9	W	KEDIAK ISLAND	1.7	7	31
305	SEP	9	3	28	19	54.6	M	161.9	E	KAMCHATKA	2.3	11	38
306	SEP	9	3	40	45	54.6	N		E	KAMCHATKA	3.3	9	30
• 307	SEP	9	6	6	14	26.0	N	143.9		BONIN ISLANDS	1.8	7	50
308	SEP	9	7	0	23	11.1	N	143.3	Ē	MARIANAS	0.7	5	53
309	SEP	9	13	14	4	47.4	N	152.7	E	KURILS	5.1	7	28
310	SEP	9	14	5	35	56.1	N	159.1	W	KEDIAK ISLAND	1.2	5	21
311	SEP	9	16	24	6	45.5	N	144.1	E	HCKKAIDO	0.6	4	33
312		9	16	24	23	26.1	N		E	BENIN ISLANDS	0.8	5	Žά
313	SEP	9		47	28	47.4	N		E	KURILS	26.0	10	53
314	SEP	10	1	54	9	58.0	N		E	KAMCHATKA	1.2	Э	30
315	SEP	10	2	16	51	55.8	Ν	165.5	E	KCMANDORSKIS	1.0	4	21
316	SEP	10	2	20		52	N	173	1:	KCMANDURSKIS	_	4	22
317	SEP	10	3	2	49	52.4	N	159.7	Ł	KAMCHATKA	1.5	11	22
	SEP		3	42		59	λį	141	*	GULF OF ALASKA		5	3.7
	SEP		5	5	14	16.6	5	176.7	Ē	SAMOA	0.1	4	4-4
320	SEP	10	11	55	8	42.5		146.8		HCKKAIDG	2.7		53
321	SEP	10	20	52	li	22.7	N	119.2		TAIWAN	1.7	ó	39
322	SEP	11	C	C	23	28.2	N	137.3	E	BONIN ISLANDS	0.8	4	34
323	SEP	11	0	27	30	58.2	Nj	144.1		GULF OF ALASKA	0.7	5	29
324	SEP	11	1	57	55	55.0	N_{\bullet}	161.4	E	KAMCHATKA	3.2	10	42
325	SEP	11	3	4	2	44.4	N	129.3	W	SAN ANDREAS EXT	1.3	7	19
326	SEF	11	3	23	42	31.0	N	140.3	Ŀ	GONIN ISLANDS	6.3	6	31
327	SEP	11	5	1 C	26	21.6	S	74.9	'n	JALISCO	4.2	6	45
3 28	SEP	11	7	26	49	55.7	<u>*</u> .	153.8		KEDIAK ISLAND	0.7	6	10
329	SEP	11	8	6	5 8	31.4	A.j	139.1	Ε	BENIA ISLANDS	0.2	Z	3(1
330	SEP	11	9	13	27	59.9	i	144.4	'n	GULF OF ALASKA	(. 1	4	25
331	SEP	11	13	50	13	26.4	Ν	143.3	Ė	PENIN ISLANDS	1.2	4	17
332	SEP	11	13	50	28	42.8	N	146.4		HUKKAIDO	2.0	4	34
333	SEP	11	18	12	46	49.1	N	137.1		VANCCUVER	1.3	3	27

SER	M	0	Н	M	\$	LAT		LONG		AREA	SC	NL	f t
334	SEP	12	0	16		41	N	124	W	CALIFORNIA		6	27
335	SEP	12	1	1	19	51.8	N	160.1	Ł	KAMCHATKA	1.7	8	29
336	SEP	12	3	10	21	61.5	N	146.4	W	GULF OF ALASKA	0.3	5	25
337	2Eb	12	4	33	42	55.7	Ν	155.9	W	KCDIAK ISLANC	0.6	8	39
338	SEP	12	12	49	27	0.2	S	147.6	E	BISMARCK	2.3	4	33
339	SEP	12	17	20	43	53.6	N	162.7	ε	KAMCHATKA	4.6	9	29
• 340	SEP	12	20	25	18	45.8	N	148.9	E	HEKKAIDC	2.1	9	59
341	SEP	12	21	45	43	21.1	S	117.8	W	SCUTH PACIFIC	2.8	ધ	63
342	SEP	12	22	49	35	60.3	Ν	142.8	W	GULF OF ALASKA	1.0	っ	39
343	SEP	12	23	18	45	10.5		130.4	E	TAIWAN	0.5	4	31
344	SEP	12	23	35	21	5.2	5	151.7	Ē.	BISMARCK	1.0	4	34
345	SEP	13	2	19	5 0	54.9	Ν	166.5	E	KEMANDORSKIS	2.1	7	23
346	SEP	13	3	30	52	26.9	N	153.6	E	MARIANAS	0.8	4	18
347	SEP	13	4	56	38	50.1		155.6	É	KURILS	1.6	Ġ	4.2
*348		13	ò	30	3	53.3	Ν	169.5	E	KCMANDORSKIS	2.4	9	49
349	_	13	10	20	56	48.0		151.1		KURILS	6.2	11	43
350		13	14	52	21	29.9		105.7		SCUTH PACIFIC	1.6	4	46
351	SEP	13	15	19	39	47.5	N	153.0		KURILS	1.3	11	36
	SEP	13	16	56	52		N	154.6		KURILS	2.9	7	31
353	SEP		18	7	32	57.4		166.2		KEMANDORSKIS	7.3	8	28
354	SEP		19	18	8	13.5		170.3		SAMOA	0.5	5	32
* 355		13		28	36		N	162.4		KCDIAK ISLAND	8.6	12	40
		14	1	12	41	55.7		152.7		KCDIAK ISLAND	1.8	8	4()
357	SEP		3	28	35	57.8		147.0		KODIAK ISLAND	1.4	4	1
358	SEP	14	3	36	26	55.7		163.7		KCDIAK ISLAND	1.4	4	17
359	SEP	14	4	7	43	2.0		157.3		BISMARCK	4.2	4	30
360	SEP		6	36	22	50.1		155.2		KURILS	0.8	7	29
	SEP		12		11	44.4		147.3		HOKKAIDO	9.2	9	44
362	SEP	14	13	36	13	51.7	N	153.4	E	KURILS	5.7	11	42
364	SEP	14	16	4	36	55.5	N	153.1	W	KODIAK ISLAND	2.0	11	43
365	SEP	14	16	13	30	51.7	N	164.1	Ł	KAMCHATKA	1.7	7	27
€366	SEP	14	20	41	1	45.4	N	151.1	Ε	KURILS	1.8	9	45
367	SEP	14	22	42	54	16.5	N	101.1	W	GUERRERO	3.3	6	49
* 368	SEP	15	0	59	2	16.4	S	175.9	W	SAMOA	1.6	6	41
369	SEP	15	1	27	56	17.4	S	175.6	W	SAMOA	5.9	7	37
370	SEP	15	2	48	31	46.8	N	150.8	E	KURILS	4.1	7	30
371	SEP	15	2	49	46	46.5	N	150.3	F	KURILS	2.3	7	29
372	SEP	15	5	12	10	11.4	N	133.8	E	MARIANAS	8.0	5	44
373	SEP	15	16	17	57	56.9	N	137.6	W	QUEEN CHARLOTTE	1.2	10	31
	SEP		17			51	N	156	F.	PAMCHATKA		10	35
	SEP		18	44	41	48.3	N	15 4. 3	E	KURILS	3.7	9	52
	SEP			27		44.9		151.4		HCKKAIDO	3.0		36
	SFP			27		45.6		151.3		KURILS	3.4		33
	SEP		21	53		56.2		157.4		KCDIAK ISLAND	2.4		49
	SEP			1		43.8		128.4		SAN ANDREAS EXT	3.5		37
	SEP		1	37		47.1		151.5		KURILS	0.5	6	24
381	SEP	16	2	46	19	61.4	N	140.8	W	GULF OF ALASKA	1.0	6	59

SÉR	M	O	Ħ	M	5	LAT	LONG		VKFV	sc	MU	**************************************
392	SEP	16	6	34	7	34.9 N	142.4	I	JAPAN	1.0	7	3 E
383	SEP	16	8	9	11	44.2 N	129.3		SAM ANDREAS EXT	3.5	12	59
384	SEP	16	8	12	22	44.7 N	126.9		SAN ANDREAS EXT	1.4	7	3,0
395	SEP	16	8	38	49	56.1 N		W	KCDIAK ISLAND	0.9	7	34
396	SEP	16	9	12	18	10.1 %	98.0	•	GUERREFO	1.4	5	37
387	SEP	16	9	51	23	46.1 N	149.3	F	HCKKAIDC	0.9	4	26
338	SEP	16	9	57	20	47.4 N	152.1	F	KURILS	6.6	10	47
399	SEP	16	17	i	12	57.6 N	149.3	•	KCDIAK ISLAND	0.9	5	16
390	SEP	16	21	0	21	44.8 N	149.1		HCKKATOO	2.5	10	35
*391	SEP	16	22	40	1	54.1 M	164.4	F	KCMANCORSKIS	1.1	11	52
*392	SEP	17	5	56	47	27.7 N	143.2	Ĺ	BENIN ISLANDS	0.5	5	Į ū
393	SEP	17	6	41	22	56.7 N	150.9	h	KODIAK ISLAND	2.1	7	45
394	SEP	17	6	45	38	28.4 N	129.7		TAIWAN	13.3	6	31
395	SEP	17	7	24	17	15.6 5	176.6		SAMOA	0.3	5	34
396	SEP	17	7	39	12	16.9 \$	71.1	W	PERU	4.7	7	44
397	SEP	17	10	11	55	44.3 %		h	SAN ANDREAS EXT	3.6	10	45
398	SEP	17	10	38	56	54.8 N	164.2	E	KCMANDORSKIS	0.7	9	4 C
399	SEP	17	10	46	42	52.8 N	170.1	E	KOMANDORSKIS	1.0	ģ	32
400	SEP	17	13	4	44	56.0 M	152.1	W	KUDIAK ISLAND	0.5	Ġ	J9
401	SEP	17		4	51	54.5 N		W	KCDIAK ISLAND	1.3	7	42
402	SEP	17	15	28	29	43.1 N	146.5	Ė	HOKKAIDO	2.6	10	44
403	SEP	17	15	32	13	53.8 N		W	KODIAK ISLAND	0.9	5	28
404	SEP	17	1.5	32	44	53.7 √	154.4	W	KCDIAK ISLAND	0.5	5	34
405	SEP	17	16	45	36	45.5 N	125.8	W	SAN ANDREAS EXT	15.0	11	47
406	SEP	17	21	28	32	32-1 N	122.9		CALIFORNIA	1.5	8	42
407	SEP	17	22	37	58	53.5 N	164.8	E	KCMANDORSKIS	1.6	8	25
408	SEP	17	23	49	1	53.5 N	164.7		KCMANDORSKIS	1.5	9	52
409	SEP	18	1	24	44	46.7 N	152.0	£	KURILS	7.0	9	28
410	SEP	18	2	33	11	48.2	154.7	E	KURILS	3.0	10	40
411	SEP	18	7	46	13	17.7 N	102.3	W	GUERRERO	1.1	5	28
412	SEP	18	10	26	10	19.5 🕏	156.3	h	HAWAII	0.3	6	55
413	SEP	18	10		47	27.0 N	148.5		BONIN , LANDS	0.4	4	23
414	SEP	18	12	7	45	60.9 N	141.5		GULF OF ALASKA		5	41
415		18	14	39	24	55.5	151.4	W	KEDIAK ISLAND	3.2		44
416	SEP	18	15	42	9	54.9 %	163.9		KAMCHATKA	1.5	7	21
417	SEP	18	16	24	19	57.0 N	155.6	ŧ.	KAMCHATKA	7.7	7	52
418	SEP	13	21	55	48	54.9 N	164.0	F	KAMCHATKA	1.5	9	45
419	SEP	19	C	15	21	52.5 N	171.2		KCMANCORSKIS	2.2	11	19
420	SEP	19	2	54	27	45.4 1	123.5		SAN ANDREAS EXT	2.7		49
421	SEP	19	3	7	37	50-2 V	167.9		KCMANDORSKIS	1.0	4	16
422	SEP	19	3	58	7	10.4 N	130.4		TAIWAN	0.6	4	32
423	SEP	19	6	52		44 11	145	E	HEKKATOG		9	4 3
424	SEP	19	10	41	36	60.6 N	141.0		SULF OF ALASKA	1.0	5	30
425		19		32		47.0 N	151.6		KURILS	2.6		41
*426	SEP	19	17			5 S	82	W	PIRU		7	50
427	SEP	19	23	10	29	41.1 N	127.4	W	SAN ANDREAS EXT	1.8		45
428	SEP	19	23	44	31	50.3 N	130.3		VANCCUVER		8	37
429	SEP	19	23	50	8	50.5 N	130.4		VANCOUVER	7.9	12	42

SER	М	D	Н	M	S	LAT	LONG		AREA	SD	NG	ÐВ
430	SEP	20	0	11	50	41.2 N	127.3	تعا	SAN ANDREAS EXT	1.9	5	19
431	SEP	20	0	39	14	41.1 N	127.4	W	SAN ANDREAS EXT	0.9	9	28
432	SEP	20	ì	1 5	56	41.8 N	127.1	k	SAN ANDREAS EXT	5.6	10	33
433	SEP	20	ī	52	21	41.2 \	127.3	W	SAN ANDREAS EXT	0.6	4	37
434	SEP	20	2	5	6	41.2 N	127.3	W	SAN ANDREAS EXT	0.3	5	42
435	SEP	20	2	36	16	41.2 N	127.4	W	SAN ANDREAS EXT	1.2	12	36
436	SEP	20	2	37	9	41.1 N	127.4	W	SAN ANDREAS EXT	1.9	13	38
437	SEP	20	2	46	28	41.2 N	127.4	W	SAN ANDREAS EXT	1.7	10	43
438	SEP	20	3	37	31	52.4 S	107.2	W	SCUTH PACIFIC	0.7	5	5
439	SEP	20	3	44	59	58.7 N	145.3	W	GULF OF ALASKA	1.7	6	49
#440	SEP	20	4	20	36	49.3 5	116.5	W	SCUTH PACIFIC	1.0	6	59
* 441	SEP	2 C	4	33	37	49.3 \$	116.5	W	SCUTH PACIFIC	1.6	6	74
442	SEP	20	4	48	40	49.9 S	115.6	M	SCUTH PACIFIC	0.4	4	70
443	SEP	20	5	33	40	51.1 N		[-	KURILS	1.3	8	42
*444	SEP	20	7	42	7	41.2 N	127.4	W	SAN ANDREAS EXT	1.3	13	49
445	SEP	20	7	-	3	41.1 N	127.4	W	SAN ANDREAS EXT	1.3	13	50
446	SEP	20	9	20	40	41.3 N	127.4	W	SAN ANDREAS EXT	5.9	7	29
447	SEP	20	9	30	42	41.4 N	127.3	W	SAN ANDREAS EXT	10.2	7	29
448	SEP	20	9	32	12	41.0 N	127.4	W	SAN ANDREAS EXT	4.6	7	27
449	SEP	20	10	28	58	41.1 N	127.4	W	SAN ANDREAS EXT	1.2	9	31
450	SEP	20	15	i	1	41.1 N	127.4	W	SAN ANDREAS EXT	3.6	5	28
451	SEP	20	15	28	35	41.1 N	127.4	W	SAN ANDREAS EXT	1.1	7	32
452 #453	SEP	20	16	16	34	41.1 N	127.4	W	SAN ANDREAS EXT TAIWAN	1.2	4 5	30 48
454	SEP		20	42	37	23.6 N	120.8 156.3	E	KURILS	1.9	6	40
455	SEP	20 21	20 2	54 51	19	49.2 N 22.0 N	122.2		TAIWAN	1.0 2.2	7	40
456	SEP	2 i	3	48	40	21.8 N	120.1	t. E	TAIWAN	9.6	6	29
457	SEP	21	4	34	26	57.3 N	149.7	M	KCDIAK ISLAND	1.9	5	26
458	SEP	21	12	10	13	37.3 N	140.9	E	JAPAN	4.7	6	35
459	SEP	21	12	43	57	40.7 N	127.6	W	SAN ANDREAS EXT	1.7	9	44
460	SEP	21	14	11	53	50.3 N	156.8		KURILS	1.6	10	35
+461	SEP	21	16	29	39	48.0 N	153.2		KURILS	2.4	11	61
	SEP			41		47.9 N	153.3		KURILS	1.1		47
	SEP		17	4		48 N	151	F.	KURILS		7	27
	SEP			14	56	48.0 N	153.2	Ē	KURILS	1.7	10	34
	SEP			19		47.9 N	153.3		KURTUS	0.5	6	20
466	SEP	21	17	31	8	46.4 N	151.2	E	KURILS	3.1	5	24
467	SEP	21	18	25	1	47.9 N	153.4	\mathbf{F}_{i}	KURTES	1.3	10	35
468	SEP		18	27	59	48.3 N	152.9	E	KURILS	1.5	7	30
	SEP		18	38	1	47.8 N	153.4	E	KURILS	1.5	9	40
470	SEP	21	19	8	44	48.2 N	152.9	E	KURILS	l.8	10	40

TABLE III / PAGE 1

EXPLOSIONS LOCATED BY SUFAR ARRIVAL 17 TO 21 SEP 1964

ALEUTIAN AIR DROPS

SER M	D H	M 5	LAT	LONG	AREA	SD NO	DB
65 SEP 66 SEP 67 SEP 68 SEP 70 SEP 71 SEP 72 SEP 80 SEP	17 22 17 23 17 23 17 23 18 0 18 0 18 1 18 1 20 19	59 54 14 54 31 36 45 28 30 29 44 42 0 15 15 20 44 7	51.5 N 51.3 N 51.2 N 51.0 N 51.0 N 50.8 N 50.7 N 50.4 N 51.5 N	176.6 W 176.6 W 176.6 W 176.5 W 176.6 W 176.6 W 176.6 W 176.6 W	EAST ALEUTIANS	1.3 11 3.5 11 3.0 11 2.9 11 2.7 13 2.2 13 2.9 12 2.6 13 4.8 6	73 55 48 71 72 73 72 49
79 SEP 78 SEP 77 SEP 76 SEP 74 SEP 73 SEP 75 SEP	20 20 20 20 20 20 20 21 20 21 20 21 20 22	23 8 32 44 46 57 32 47 50 8 59 56 36 33	51.2 N 51.4 N 51.5 N 51.6 N 52.0 N 51.9 N 51.7 N	177.9 W 177.5 W 177.2 W 176.2 W 175.4 W 174.8 W 175.9 W	EAST ALEUTIANS	4.8 6 0.9 10 1.1 9 1.1 7 1.3 10 1.1 11 1.3 11	49 63 75 61 75 55 56 74
82 SEP 83 SEP 84 SEP 16 SEP	20 23 20 23 21 0 21 0 21 1 -0 -0	18 22 40 55 5 20	51.4 N 51.2 N 51.0 N 51.5 N 50.9 N	178.7 W 179.4 W 179.6 E 178.9 E 179.3 E	EAST ALEUTIANS EAST ALEUTIANS WEST ALEUTIANS WEST ALEUTIANS	2.7 il 1.8 ll 1.8 ll 0.5 9 2.5 l0 -0	59 57 55 60 74 -0

END-OF-DATA ENCOUNTERED ON SYSTEM INPUT FILE.

Table IV

C&GS Epicenters Corresponding to Events in Table I

Date	Time	Latitude	Longitude	h,	Magnitude
(1964)	(GMT)			km	(C&GS)
Aug. 15	02 29 28*	50.7 N	179.4 E	33	1. 1
Aug. 17	12 41 58*	50.0 N	171.8 W	33	4.5
Aug. 17	16 38 44.4	51.5 N	177.8 E	42	5.4
Aug. 17	21 41 46*	51.7 N	167.7 W	33	4.9
Aug. 27	03 10 19*	54.1 N	167.4 W	33	4.3
Aug. 31	23 20 19.4	52.4 N	170.7 W	33	5.2
Sep. 1	17 16 40.4	51.2 N	170.6 W	25	5.5
Sep. 4	18 37 32.6	51.7 N	174.7 E	33	4.4
Sep. 6	10 29 51.4	53.9 N	163.9 7	33	
Sep. 14	11 35 54*	53.6 N	170.3 W	50	3.8
Sep. 16	03 32 34*	51.6 N	173.8 W	L5	4.2
Sep. 18	12 22 13.3	51.4 N	179.9 W	33	4.8

^{*} Notation of the Coast and Geodetic Survey.

Security Classification

	NTROL DATA - R&D ing annotation must be accerate when the overall report is classified)
1 ORIGINATING ACTIVITY (Corporate author)	Za REPORT SECURITY C LASSIFICATION
Hawaii Institute of Geophysics	Unclassified
University of Hawaii	25 GROUP
Honolulu, Hawaii 96822	
Eorthquakes Located by T Ph. Islands Experiment, 1964	ases During the VELA UNIFORM Aleutian
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)	
Technical Summary Report No. 7	
5 AUTHOR(5) (Last .ame. first name. initial)	
Johnson, Rockne H.	
6 REPORT DATE	74 TOT UND OF PAGES 75 NO OF REFS
December 1964	ll pp., 4 figs., 4 tables E_x
88 CONTRACT OR GRANT NO	9# ORIGINATOR'S REPORT NUMBER(5)
Contract No. Nonr-3748(O1)	HI:G-64-23
b PROJECT NO	
Project Code 81.00	
c	9 b OTHER REPORT NO(S) (Any other numbers that may be easigned this report)
d	none
10 AVAILABILITY/LIMITATION NOTICES	1
No limitation	
11 SUPPLEMENTARY NOTES	12 SPONSORING MILITARY ACTIVITY
None	Advanced Research Frojects Agency

3 ABSTRACT

This report tabulates sources and strengths of earthquake <u>T</u> phases recorded by hydrophone net during the VELA UNIFORM Alcutian Islands Experiment (August-September, 1964). In a thirty-seven day period, 654 earthquake locations were found for the entire Pacific, of which 184 were in the Aleutianc. Comparison of <u>T</u>-phase strengths with earthquake magnitudes suggests a threshold about magnitude three for location by hydrophone net.

V5 W0000	LIN	LINKA		. в	LINKC		
KEY WORDS	ROLE	+ T	ROLE	W.T	ROLE	₩T	
T Phases					***************************************		
VELA UNIFORM					N		
Earthquakes							
Hydrophone					0.000		
Aleutian Islands							
SOFAR	3	A CONTRACTOR OF THE CONTRACTOR					
			5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY Finter the name and address of the contractor, subcontractor, grantee Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e. enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b. 8c. & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
- IO. AVAILABILITY LIMITATION NOTICES. Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualitied DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- II. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13 ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports he unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS) (S), (C) or (U)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.

Unclassified