Harmonic maps of Riemannian manifolds

Tien NGUYEN MANH

Feb 20, 2018

Contents

1	Har	rmonic maps		
1.1 Variational approach: energy integral and tension field		sional approach: energy integral and tension field	1	
	1.2	Formulation using connection on vector bundle		3
	1.3			6
		1.3.1	Energy functional and tension field	6
		1.3.2	Fundamental form, some results in case of signed cur-	
			vature	7
		1.3.3	Example: Riemannian immersion	9
		1.3.4	Example: Riemannian submersion	9
	1.4	4 Composition of maps		9
				_
2	•			9
	Deformation of maps This is my reading note for [?].			

1 Harmonic maps

1.1 Variational approach: energy integral and tension field

Notation. Let M, M', M'' be Riemannian manifolds of dimension n, n' and n', n'' respectively. We will use $i, j, k, \ldots, \alpha, \beta, \gamma, \ldots, a, b, c$ for local coordinates of M, M', M''. Let $f: M \longrightarrow M', f': M' \longrightarrow M''$ be a smooth maps, one denotes

$$f_i^{\alpha} = \frac{\partial f^{\alpha}}{\partial x^i}, \quad f_{ij}^{\alpha} = \frac{\partial^2 f^{\alpha}}{\partial x^i \partial x^j} - \Gamma_{ij}^k f_k^{\alpha}$$

so that $\nabla g = g_i dx^i$ and $\nabla(\nabla g) = g_{ij} dx^i \otimes dx^j$

Definition 1. The energy desity of f at $p \in m$ is defined by

$$e(f)(p) = \frac{1}{2} \langle g(p), f^g(p) \rangle_p = \frac{1}{2} g^{ij} f_i^{\alpha} f_j^{\beta} g'_{\alpha\beta}$$

and the energy functional of f is

$$E(f) = \int_M e(f)dV = \frac{1}{2} \int_M g^{ij} f_i^{\alpha} f_j^{\beta} g_{\alpha\beta}' |\det(g_{ij})|^{\frac{1}{2}} dx^1 \wedge \dots \wedge dx^n$$

We recall that the inner product is between 2 tensors of type (p,q) $S=S_{j_1...j_q}^{i_1...i_p}, T=T_{l_1...l_q}^{k_1...k_p}$ is $\prod_{m,n}g_{i_mk_m}g^{j_nl_m}S_{j_1...j_q}^{i_1...i_p}T_{l_1...l_q}^{k_1...k_p}$

Remark 1. Under any orthonormal basis of T_PM and $T_{f(P)}N$, one can see that the energy density is non-negative at every point. Hence E(f) = 0 if and only if e(f) = 0 at all points if and only if f is constant.

Definition 2. Let σ be a symmetric function of n variables and α be a symmetric (0,2) tensor field, one can define the σ -energy desity of α at $P \in M$ to be $\sigma(\beta_1, \ldots, \beta_n)(P)$ where β_i are eigenvalues of the linear operator $(g^{ik}\alpha_{ij})_{k,j}$. The σ -energy of α is $I_{\sigma}(\alpha) := \int_{M} \sigma(\alpha) dV$

Take $\alpha = f^*g'$, one calls $\sigma(\alpha)$ the $/\sigma$ -energy density of f and $I_{\sigma}(\alpha)$ the σ -energy of f.

Example 1. For example, the energy functional E(f) is $I_{\frac{\sigma_1}{2}}(f)$. $V(f) := I_{\sigma_1^{-1/2}}(f)$ is called the **volume** of f.

Lemma 1 (variation of the energy). Let $f_t: M \longrightarrow M'$ be a smooth family of smooth maps between Riemannian manifolds for $t \in (t_0, t_1)$. Then

$$\frac{d}{dt}E(f_t) = -\int_M \left(\Delta f_t^{\gamma} + g^{ij}\Gamma_{\alpha\beta}^{\prime\gamma} f_{t,i}^{\alpha} f_{t,j}^{\beta}\right) g_{\gamma\nu}^{\prime} \frac{\partial f_t^{\nu}}{\partial t} dV, \qquad \forall t \in (t_0, t_1)$$

Proof. Direct computation.

- **Definition 3.** 1. A vector field along $f: M \longrightarrow M'$ is a smooth application $v: M \longrightarrow TM'$ such that $\pi \circ v = f$ where $\pi: TM' \longrightarrow M'$ is the canonical projection. In other words, it is the association of each point $P \in M$ a tangent vector at f(P)
 - 2. The tension field of f is the following vector field along f defined by

$$\tau(f)^{\gamma} := \Delta f^{\gamma} + g^{ij} \Gamma_{\alpha\beta}^{\prime\gamma} f_i^{\alpha} f_i^{\beta}$$

By the Lemma 1, $\tau(f)$ is the unique vector field along f such that $\frac{d}{dt}E(f_t) = -\int_M \langle \tau(f), \frac{df_t}{dt} \rangle$. In particular, if f_t is the variation of f along a vector field v along f, i.e. $f_t(P) = \exp_{f(P)}(tv(P))$ then $\nabla_v E(f) = -\langle \tau(f), v \rangle$ along f.

3. $f: M \longrightarrow M'$ is called **harmonic** if $\tau(f) = 0$, or equivalently f is a critical point of E.

In normal coordinates of M at P and M' at f(P), the tension field of f is given by

$$\tau^{\gamma}(f)(P) = \sum_{i} \frac{\partial^{2} f^{\gamma}}{\partial (x^{i})^{2}}(P)$$

Remark 2. 1. If M' is flat, i.e. $R'_{\alpha\beta\gamma\delta} = 0$ then $\tau(f)^{\gamma} = \Delta f^{\gamma}$ is linear in f.

2. Since $\tau(f)$ depends locally on f, isometries and covering maps are harmonic.

Proposition 1.1 (holomorphicity implies harmonicity). *Holomorphic maps between Kahler manifolds are harmonic.*

Proof. We recall that exponential functions $\exp_P: T_PM \longrightarrow M'$ on a Kahler manifold M are holomorphic for any $P \in M$. In fact, let $v \in T_PM$ and $\delta v \in T_v(T_PM)$ be a tangent vector at v and denote abusively by J the complex structure of the complex vector space T_PM and that of M, one needs to see that

$$D\exp_{P}(v).J\delta v = J(\exp_{P}(v))D\exp_{P}(v).\delta v \tag{1}$$

In fact, let Y_1, Y_2 be Jacobi fields along $U(t) = \exp_P(tv)$ the geodesics of M starting at P in direction v with $Y_1(0) = Y_2(0) = 0, \dot{Y}_1(0) = \delta v, \dot{Y}_2(0) = J\delta v$ then the LHS of (1) is $Y_2(1)$, and the RHS is $J(U(1))Y_1(1)$. Then one can see that $Y_2(t) - J(U(t))Y_1(t) = 0$ for every $t \in [0,1]$ since it is true at t = 0 and the derivative with respect to t vanishes as $\nabla_{\dot{U}} J = 0$.

Therefore, at a point P of a Kahler manifold M, there exist holomorphic coordinates $z^j = x^j + iy^j$ of M in a neighborhood of P such that $\{x_j, y_j : j = \overline{1, n/2}\}$ are normal coordinates centered in P. Using such coordinates for $P \in M$ and $f(P) \in M'$, one has $f^{\gamma} = 0$ since f^{γ} is holomorphic and $\Gamma_{\alpha\beta}^{\prime\gamma}(P) = 0$ by normality, it follows that $\tau(f) = 0$ at every point $P \in M$. \square

1.2 Formulation using connection on vector bundle

Setup and notation. Let E be a metric vector bundle over a Riemannian manifold M, i.e. each fiber of E is equiped with an inner product that we denote by $(g'_{\alpha\beta})$. The metric of M is denoted by (g_{ij}) . Let n and m be the dimension of M of the fiber.

Covariant derivatives and exterior derivatives. We recall that a covariant derivative or a connection $\tilde{\nabla}$ of E is uniquely determined in a local coordinates by an $m \times m$ matrix A of 1-form on M, in other words an 1-form on M with value in $Hom_M(E,E)$ which depends on the local frame of E (i.e. A is not a tensor with value in E). A is called the **connection form** of $\tilde{\nabla}$. Locally

$$\tilde{\nabla}_X(s^{\alpha}\tilde{e}_{\alpha}) = (\nabla_X s^{\alpha})\tilde{e}_{\alpha} + A^{\alpha}_{\beta}(X)s^{\beta}\tilde{e}_{\alpha}.$$

When one prefers to work with forms other than tensors with value in E, one uses an **exterior derivative**, a map $D: A^p(M, E) \longrightarrow A^{p+1}(M, E)$ which turns an p-form with value in E to an p+1-form with value in E. Locally

$$D(s^{\alpha}\tilde{e}_{\alpha}) = (ds^{\alpha})\tilde{e}_{\alpha} + A^{\alpha}_{\beta} \wedge s^{\beta}\tilde{e}_{\alpha}.$$

and

$$D^2(s^{\alpha}\tilde{e}_{\alpha} = (dA + A \wedge A) \wedge s.$$

One notes $\Theta := dA + A \wedge A$, which is an $m \times m$ matrix of 2-forms of M. Unlike A, Θ , seen as an 2-form with value in $Hom_M(E, E)$ does not depend on the local frame of E, i.e. Θ transforms as a (0,2) tensor with value in E, called the **curvature form**.

The fibrewise metric structure of E and the metric tensor of M give rise to a pointwise inner product of (p,q) tensors of M with value in E, in particular a pointwise inner product $(s,s')\mapsto s\cdot s'$ from $A^p(M,E)\times A^p(M,E)$ to $C^\infty(M)$. Integrated over M, the pointwise inner product gives rise to a global inner product $\langle\cdot,\cdot\rangle$, i.e. a true inner product of $A^p(M,E)$. One denotes by $\delta:A^{p+1}(M,E)\longrightarrow A^p(M,E)$ the adjoint operator of $D:A^p(M,E)\longrightarrow A^{p+1}(M,E)$ with respect to this inner product, i.e. $\langle Ds,s'\rangle_{A^{p+1}(M,E)}=\langle s,\delta s'\rangle_{A^p(M,E)}$ for all $s\in A^p(M,E),s'\in A^{p+1}(M,E)$.

Laplacian operator and harmonic forms. The Laplacian operator is defined as a endomorphism of $A^p(M, E)$ given by

$$\tilde{\Delta} = -(D\delta + \delta D)$$

and a form $s \in A^p(M, E)$ is called **harmonic** if $\tilde{\Delta}s = 0$. Since the Laplacian operator represents the *Dirichlet integral*, i.e.

$$\langle Ds, Ds' \rangle + \langle \delta s, \delta s' \rangle = \langle -\tilde{\Delta}s, s' \rangle,$$

one has $\tilde{\Delta}s = 0$ if and only if $Ds = \delta s = 0$.

Riemannian connected bundle. The metric vector bundle E over M is called a Riemannian-connected bundle if it has a connection $\tilde{\nabla}$ under which the metric g' of E is parallel, i.e. $\tilde{\nabla}g'=0$, in other words, the matrix A in a orthonormal frame is anti-symmetric: $A+{}^tA=0$. Unless explicitly indicated, we always suppose that our metric vector bundle E is Riemannian-connected and the metric g' is parallel to the connection being used.

Example 2. The case of our interest is when we have a smooth map $f: M \longrightarrow M'$ and $E = f^*TM'$ is a metric vector bundle over M under the metric g' induced from M'. Taking the connection $\tilde{\nabla}$ to be the Levi-Civita connection ∇' on M', meaning

$$\tilde{\nabla}_X s = \nabla'_{f_* X} s,$$

for any vector field s along f, one can see that E is a Riemannian-connected bundle over M.

Lemma 2. Let E be a Riemannian-connected bundle and $s \in A^1(M, E)$, one has

1. $\delta s = (\delta s)^{\alpha} \tilde{e}_{\alpha} \in A^{0}(M, E)$ where

$$(\delta s)^{\alpha} = -g^{ij} \left(\nabla_i s_j^{\alpha} + A_{\beta i}^{\alpha} s_j^{\beta} \right),$$

2. $\Delta s = (\Delta s)_i dx^i$ where $(\Delta s)_i$ is an $m \times m$ matrix given by

$$(\Delta s)_i = \tilde{\nabla}^k \tilde{\nabla}_k s_i - {}^{\mathrm{t}} \left(\Theta_i^h - \mathrm{Ric}_i^h \right) s_h$$

where:

- the indices i, h, k correspond to local coordinates of M, <u>not</u> a frame of M',
- Θ_i^h is the curvature form of $\tilde{\nabla}$ with its indices raised by the metric g of M,
- $\operatorname{Ric}_{i}^{h} = \operatorname{Ric}_{i}^{h} I_{m}$ is the Ricci curvature tensor of (M, g) with indices raised by the metric g, multiplied by the identity $m \times m$ matrix,
- $\tilde{\nabla}^k = g^{hk}\tilde{\nabla}_h$.
- 3. With $s \cdot s'$ denoting the pointwise inner product of $A^1(M, E)$ and $\langle \cdot, \cdot \rangle$ denoting the metric g' of E, one has

$$\frac{1}{2}\Delta(s \cdot s) = -s \cdot \Delta s - \langle \tilde{\nabla}_i s_k, \tilde{\nabla}^i s^k \rangle_E - \langle {}^{\mathrm{t}} \left(\Theta_i^h - \mathrm{Ric}_i^h \right) s_h, s^i \rangle_E$$
 (2)

Proof. Computational in nature.

Remark 3. 1. We note by Q(s) the last term of (2), then Q(s) is a (2,0) tensor on M with value in $E^* \otimes E^*$ where E^* is the dualised bundle of E. In practice, Q(s) is an $mn \times mn$ matrix with coefficients

$$Q(s)_{\alpha\beta}^{hi} = g^{hk}h^{ij} \left[\left(g'_{\alpha\gamma} \Theta_{\beta}^{\gamma} \right)_{kj} - g'_{\alpha\beta} \operatorname{Ric}_{kj} \right]$$

2. Since $\int_M \Delta(s \cdot s) dV = 0$, if s is harmonic, one has

$$\int_{M} Q(s)dV = -\int_{M} \langle \tilde{\nabla}_{i} s_{k}, \tilde{\nabla}^{i} s^{k} \rangle_{E} dV$$

$$= -\int_{M} \|\nabla_{i} s_{k}^{\alpha} dx^{i} \otimes dx^{k} \otimes \tilde{e}_{\alpha}\|_{A^{2}(M, E)}^{2} dV \leq 0$$
(3)

1.3 The case of $E = f^*TM'$

1.3.1 Energy functional and tension field

Our interest will be the case of Example 2 where $E = f^*TM'$ for some smooth map $f: M \longrightarrow M'$ of Riemannian manifolds is a Riemannian-connected bundle over M with the connection $\tilde{\nabla}$ given by the Levi-Civita connection of M'.

The tangent map $Tf:TM\longrightarrow TM'$ can be interpreted as a form f_* in $A^1(M,E)$. The energy functional can be rewritten as

$$E(f) = \frac{1}{2} \int_{M} f_{i}^{\alpha} f_{j}^{\beta} g^{ij} g_{\alpha\beta}^{\prime} dV = \frac{1}{2} \langle f_{*}, f_{*} \rangle_{A^{1}M, E}.$$

Proposition 2.1. Let $f: M \longrightarrow M'$ and $E = f^*TM'$ be the Riemannian-connected bundle over M. Then:

- 1. $A_{\alpha}^{\beta} = \Gamma_{\gamma\alpha}^{\prime\beta} f_i^{\gamma} dx^i$ where $\Gamma_{\gamma,\alpha}^{\prime\beta}$ are Christoffel symbols of (M',g').
- 2. $Df_* = 0$ where f_* is considered as an element of $A^1(M, E)$. Hence $\tilde{\Delta}f_* = -D\delta f_*$.
- 3. The tension field of f is $\tau f_* = -\delta f_*$.

Proof. 1. We will use the fact that $\tilde{\nabla}g' = 0$. Given two section $s = s^{\alpha}\tilde{e}_{\alpha}, t = t^{\beta}\tilde{e}_{\beta}$ of E, expanding $\nabla_{i}(s \cdot t) = (\tilde{\nabla}_{i}s) \cdot t + s \cdot \tilde{\nabla}_{i}t$, one has

$$s^{\alpha}t^{\beta}\frac{\partial g'_{\alpha\beta}}{\partial x^{i}} = s^{\alpha}t^{\beta}\left(A^{\gamma}_{\alpha i}g'_{\gamma\beta} + A^{\gamma}_{\beta i}g'_{\alpha\gamma}\right)$$

Taking s, t to be of small support, $\alpha = \beta$ and substituing $A_{\alpha i}^{\gamma} = \Gamma_{\gamma \alpha}^{\prime \nu} f_i^{\gamma}$, one obtains the first statement.

2. By direct computation:

$$Df_* = \left(\frac{\partial^2 f^{\alpha}}{\partial x^i \partial x^j} + \Gamma_{\gamma\beta}^{\prime \alpha} f_i^{\gamma} f_j^{\beta}\right) dx^j \wedge dx^i \otimes \tilde{e}_{\alpha},$$

which is the product of a symmetric quantity in (i, j) and an anti-symmetric one, hence 0.

3. Using the first part of Lemma 2 for $s=f_*=f_i^{\alpha}dx^i\otimes \tilde{e}_{\alpha}$, one has $\delta f_*=-g^{ij}\left(\nabla_i\nabla_j f^{\gamma}+\Gamma_{\alpha\beta}^{\prime\gamma}f_i^{\alpha}f_j^{\beta}\right)\tilde{e}_{\gamma}=-\tau(f)$

It follows immediately that

Corollary 2.1. $f: M \longrightarrow M'$ is a harmonic map of Riemannian manifolds if and only if f_* is harmonic as form in $A^1(M, f^*TM')$.

1.3.2 Fundamental form, some results in case of signed curvature

Definition 4. The fundamental form of a map $f: M \longrightarrow M'$ of Riemannian manifolds is the (0,2) symmetric tensor on M with value in $E = f^*TM'$ defined by

$$\beta(f) := \tilde{\nabla} f_* = \left(f_{ij}^{\gamma} + \Gamma_{\alpha\beta}^{\prime\gamma} f_i^{\alpha} f_j^{\beta} \right) dx^i \otimes dx^j \otimes \tilde{e}_{\gamma}.$$

The function f is called **totally symmetric** if $\beta(f) = 0$ identically on M.

Remark 4. 1. The tension field $\tau(f) = g^{ij}(\beta(f))_{ij}$ is the trace of the fundamental form.

2. If f is totally geodesic then it is harmonic.

When $s = f_*$, Lemma 2 and Remark 3 become, with no more than direct computation. The appearance of the Riemann curvature tensor R' of (M', g') is due to the formula

$$R'^{\rho}{}_{\sigma\mu\nu} = \partial_{\mu}\Gamma'^{\rho}{}_{\nu\sigma} - \partial_{\nu}\Gamma'^{\rho}{}_{\mu\sigma} + \Gamma'^{\rho}{}_{\mu\lambda}\Gamma'^{\lambda}{}_{\nu\sigma} - \Gamma'^{\rho}{}_{\nu\lambda}\Gamma'^{\lambda}{}_{\mu\sigma}.$$

Lemma 3. 1. $Q(f_*)$ is given by

$$Q(f_*) = -R'_{\alpha\beta\gamma\delta} f_i^{\alpha} f_j^{\beta} f_k^{\gamma} f_l^{\delta} g^{ik} g^{jl} - \operatorname{Ric}^{ij} f_i^{\alpha} f_j^{\beta} g'_{\alpha\beta}$$

and

$$Q(f_*)_{\alpha\beta}^{ij} = -R'_{\alpha\beta\gamma\delta}f_k^{\gamma}f_l^{\delta}g^{ik}g^{jl} - \operatorname{Ric}^{ij}g'_{\alpha\beta}.$$

2. If f is harmonic then

$$\Delta e(f) = |\beta(f)|^2 + Q(f_*)$$

where $|\beta(f)|$ is the pointwise norm of $\beta(f)$.

The previous computation of $Q(f_*)$ in term of Riemannian curvature of M' and Ricci curvature of M give the following result in the case where the curvature of M and M' are of definite sign.

Notation. Given a Riemannian manifold M, we will use the following notation:

- 1. Ric ≥ 0 (resp. Ric > 0) if the Ricci curvature is positive semi-definite (resp. positive definite) as symmetric bilinear form.
- 2. Ric ≤ 0 (resp. Ric ≤ 0) if $-\text{Ric} \geq 0$ (resp. -Ric > 0).
- 3. Riem ≥ 0 (resp. Riem > 0) if the Riemann curvature tensor satisfies $R_{ijhk}u^{ij}u^{hk} \geq C(P)u_{ij}u^{ij}$ at $P \in M$ for all anti-symmetric (0,2) tensor u on M, where $C(P) \geq 0$ (resp. C(P) > 0)
- 4. Riem ≤ 0 (resp. Riem < 0) if $-\text{Riem} \geq 0$ (resp. -Riem > 0).

Remark 5. By symmetries of the curvature tensor, Riem ≥ 0 if and only if $R_{ijhk}u^{ij}u^{hk} \geq 0$ at $P \in M$ for all (0,2) tensor u on M, where $C(P) \geq 0$.

Corollary 3.1. Let $f: M \longrightarrow M'$ be a map of Riemannian manifolds.

- 1. If f is harmonic and $Q(f_*) \ge 0$ then f is totally geodesic and e(f) is constant.
- 2. If $Ric(M) \leq 0$ and $Riem(M') \leq 0$ then f is harmonic if and only if f is totally geodesic.
- 3. Under the same condition as 2),

- If $\operatorname{Ric}(M) < 0$ at one point of M then all harmonic maps are constant.
- If Riem(M') < 0 everywhere in the image of f and f is harmonic, then f is either constant or maps M onto a closed geodesic of M'.

Proof. All the statements are consequence of 2) of Lemma 3 and the fact that $\int_M \Delta e(f) dV = 0$ noticing that

- $-\mathrm{Ric}^{ij} f_i^{\alpha} f_j^{\beta} g'_{\alpha\beta}$ is $-\mathrm{Ric} \otimes g'$ applied doubly to $f_i^{\alpha} dx^i \otimes \tilde{e}_{\alpha}$.
- $-R'_{\alpha\beta\gamma\delta}f_k^{\gamma}f_l^{\delta}g^{ik}g^{jl}$ is $-\tilde{R}'\otimes g\otimes g$ applied to $f_i^{\alpha}f_j^{\beta}\tilde{e}_{\alpha}\otimes\tilde{e}_{\beta}\otimes dx^i\otimes dx^j$ where \tilde{R}' is the bilinear form $(u,v)\mapsto R'_{\alpha\beta\gamma\delta}u^{\alpha\beta}v^{\gamma\delta}$.

For 3), if $\operatorname{Ric}(M) < 0$ at one point $P \in M$ then at that point $f_i^{\alpha} dx^i \tilde{e}_{\alpha} = 0$, meaning $f_* = 0$, hence e(f) vanishes at P. Since e(f) has to be constant, it vanishes identically, which implies that f is constant.

If $\operatorname{Riem}(M') < 0$, one has $f_i^{\alpha} f_j^{\beta} \tilde{e}_{\alpha} \otimes \tilde{e}_{\beta}$ is symmetric, i.e. $f_i^{\alpha} f_j^{\beta} = f_j^{\alpha} f_i^{\beta}$ for all i, j, α, β , meaning that the ratio $f_i^{\alpha} : f_j^{\alpha}$ is independent of α , i.e. $(\nabla f^{\alpha})_{\alpha \in \overline{1,m}}$ are colinear, i.e. the image of Tf is of one dimension, which leads to the conclusion, as we will see later that a totally geodesic map transform geodesic to geodesic.

- 1.3.3 Example: Riemannian immersion
- 1.3.4 Example: Riemannian submersion
- 1.4 Composition of maps

2 Deformation of maps

Emacs 25.3.1 (Org mode 9.0.5)