Intégrales à paramètres

 \mathbb{K} désigne les corps \mathbb{R} ou \mathbb{C} .

1 Passage à la limite

Théorème 1.1 Convergence dominée

Soit (f_n) une suite de fonctions définies sur un intervalle I à valeurs dans \mathbb{K} . On suppose que

- **(H1)** pour tout $n \in \mathbb{N}$, f_n est continue par morceaux sur I;
- **(H2)** (f_n) converge simplement sur I vers une fonction f;
- **(H3)** f est continue par morceaux sur I;
- (H4) il existe une fonction positive φ intégrable sur I telle que

$$\forall n \in \mathbb{N}, \ \forall t \in \mathcal{I} \ |f_n(t)| \leq \varphi(t)$$

Alors f est intégrable sur I et

$$\lim_{n \to +\infty} \int_{\mathbf{I}} f_n(t) \, dt = \int_{\mathbf{I}} f(t) \, dt$$

Remarque. L'intégrabilité des f_n sur I est garantie par la condition de domination.

Exemple 1.1

On pose $f_n: t \in \mathbb{R}_+ \mapsto \frac{1}{t^n + e^t}$ et $I_n = \int_0^{+\infty} f_n(t) dt$ pour $n \in \mathbb{N}$. On souhaite déterminer la limite de la suite (I_n) .

- **(H1)** Pour tout $n \in \mathbb{N}$, f_n est bien continue (par morceaux) sur \mathbb{R}_+ .
- **(H2)** La suite de fonctions (f_n) converge simplement sur \mathbb{R}_+ vers la fonction

$$f: t \in \mathbb{R}_+ \mapsto \begin{cases} e^{-t} & \text{si } 0 \le t < 1\\ \frac{1}{1+e} & \text{si } t = 1\\ 0 & \text{si } t > 1 \end{cases}$$

- **(H3)** f est bien continue par morceaux sur \mathbb{R}_+ .
- (H4) De plus,

$$\forall n \in \mathbb{N}, \ \forall t \in \mathbb{R}_+, \ |f_n(t)| \le e^{-t}$$

et la fonction φ : $t \mapsto e^{-t}$ est intégrable sur \mathbb{R}_+ .

D'après le théorème de convergence dominée,

$$\lim_{n \to +\infty} I_n = \int_0^{+\infty} f(t) dt = \int_0^1 e^{-t} dt = 1 - \frac{1}{e}$$

1

REMARQUE. Comme bien souvent, on peut en fait se passer du théorème de convergence dominée. En effet, en posant

$$J_n = \int_0^1 f_n(t) dt$$

$$K_n = \int_1^{+\infty} f_n(t) dt$$

on a $I_n = J_n + K_n$. On découpe cette intégrale en deux car le comportement de t^n change selon que $t \le 1$ ou $t \ge 1$.

On se doute alors que $J_n \xrightarrow[n \to +\infty]{} \int_0^1 \frac{dt}{e^t} = 1 - e^{-1}$, ce que l'on montre par le théorème des gendarmes. En effet

$$(1 - e^{-1}) - J_n = \int_0^1 \frac{dt}{e^t} - \int_0^1 \frac{dt}{t^n + e^t} = \int_0^1 \frac{t^n dt}{e^t (t^n + e^t)}$$

On en déduit que

$$0 \le J_n - (1 - e^{-1}) \le \int_0^1 t^n dt = \frac{1}{n+1}$$

et ainsi $\lim_{n \to +\infty} J_n = 1 - \frac{1}{e}$. On se doute de même que $K_n \xrightarrow[n \to +\infty]{} 0$ et on utilise à nouveau le théorème des gendarmes : pour tout entier $n \ge 2$,

$$0 \le \int_1^{+\infty} \frac{\mathrm{d}t}{t^n + e^t} \le \int_1^{+\infty} \frac{\mathrm{d}t}{t^n} = \frac{1}{n - 1}$$

On a donc bien $\lim_{n \to +\infty} K_n = 0$. Finalement, $\lim_{n \to +\infty} I_n = 1 - e^{-1}$.

Méthode Convergence dominée pour les séries de fonctions

On peut justifier une interversion série/intégrale en appliquant le théorème de convergence dominée à la suite des sommes partielles.

Exemple 1.2

Soit $(a, b) \in (\mathbb{R}^*)^2$. On souhaite montrer que

$$\int_0^1 \frac{t^{a-1}}{1+t^b} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{a+nb}$$

On remarque déjà que (série géométrique)

$$\forall t \in [0, 1[, \frac{t^{a-1}}{1+t^b} = \sum_{n=0}^{+\infty} (-1)^n t^{a-1+nb}]$$

Posons pour $t \in [0, 1[$,

$$S_n(t) = \sum_{k=0}^{n} (-1)^k t^{a-1+kb} = t^{a-1} \cdot \frac{1 - (-1)^{n+1} t^{(n+1)b}}{1 + t^b}$$

(H1) Les fonctions S_n sont bien continues (par morceaux) sur [0,1[.

(H2) La suite (S_n) converge simplement vers $f: t \mapsto \frac{t^{a-1}}{1+t^b}$ sur [0,1[.

(H3) f est bien continue (par morceaux) sur [0, 1[.

(H4) Pour tout $n \in \mathbb{N}$ et pour tout $t \in [0, 1]$,

$$|S_n(t)| = \left| t^{a-1} \cdot \frac{1 - (-1)^{n+1} t^{(n+1)b}}{1 + t^b} \right| \le 2t^{a-1}$$

et $t \mapsto 2t^{a-1}$ est intégrable sur [0, 1[.

D'après le théorème de convergence dominée,

$$\int_0^1 S_n(t) dt \xrightarrow[n \to +\infty]{} \int_0^1 f(t) dt$$

ou encore

$$\int_0^1 \sum_{k=0}^n (-1)^k t^{a-1+kb} dt \xrightarrow[n \to +\infty]{} \int_0^1 \frac{t^{a-1}}{1+t^b} dt$$

Comme il s'agit de sommes **finies**, ceci peut encore s'écrire

$$\sum_{k=0}^{n} (-1)^k \int_0^1 t^{a-1+kb} dt \xrightarrow[n \to +\infty]{} \int_0^1 \frac{t^{a-1}}{1+t^b} dt$$

ou encore

$$\sum_{k=0}^{n} \frac{(-1)^k}{a+kb} \xrightarrow[n \to +\infty]{} \int_0^1 \frac{t^{a-1}}{1+t^b} dt$$

ce qui signifie que la série $\sum \frac{(-1)^n}{a+nb}$ converge (on le savait déjà par critère spécial des séries alternées) et que

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{a+nb} = \int_0^1 \frac{t^{a-1}}{1+t^b} \, \mathrm{d}t$$

REMARQUE. On pouvait aisément se passer du critère spécial des séries alternées. En effet

$$\begin{split} \sum_{k=0}^n \frac{(-1)^k}{a+kb} &= \sum_{k=0}^n \int_0^1 (-1)^k t^{a-1+kb} \ \mathrm{d}t \\ &= \int_0^1 \sum_{k=0}^n (-1)^k t^{a-1+kb} \ \mathrm{d}t \qquad \text{(somme finie)} \\ &= \int_0^1 t^{a-1} \frac{1-(-1)^{n+1} t^{(n+1)b}}{1+t^b} \ \mathrm{d}t \\ &= \int_0^1 \frac{t^{a-1}}{1+t^b} \ \mathrm{d}t - (-1)^{n+1} \int_0^1 \frac{t^{a-1+(n+1)b}}{1+t^b} \ \mathrm{d}t \end{split}$$

Alors

$$0 \leq \int_0^1 \frac{t^{a-1+(n+1)b}}{1+t^b} \ \mathrm{d}t \leq \int_0^1 t^{a-1+(n+1)b} \ \mathrm{d}t = \frac{1}{a+(n+1)b}$$

D'après le théorème des gendarmes,

$$\lim_{n \to +\infty} \int_0^1 \frac{t^{a-1+(n+1)b}}{1+t^b} \, \mathrm{d}t = 0$$

puis

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{(-1)^k}{a + kb} = \int_0^1 \frac{t^{a-1}}{1 + t^b} dt$$

c'est-à-dire

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{a+nb} = \int_0^1 \frac{t^{a-1}}{1+t^b} dt$$

Théorème 1.2 Convergence dominée

Soient $f: J \times I \to \mathbb{K}$ où I et J sont deux intervalles de \mathbb{R} et $a \in \overline{J}$ (éventuellement $a = \pm \infty$). On suppose que :

- **(H1)** pour tout $x \in J$, $t \mapsto f(x, t)$ est continue par morceaux sur I;
- **(H2)** pour tout $t \in I$, $\lim_{x \to a} f(x, t) = g(t)$ où g est continue par morceaux sur I;
- (H3) il existe une fonction positive ϕ intégrable sur I telle que

$$\forall (x,t) \in J \times I, |f(x,t)| \le \varphi(t)$$

Alors g est intégrable sur I et

$$\lim_{x \to a} \int_{\mathbf{I}} f(x, t) \, dt = \int_{\mathbf{I}} g(t) \, dt$$

Exercice 1.1

Déterminer
$$\lim_{x \to +\infty} \int_0^{+\infty} \frac{xe^{-t}}{x+t} dt$$
.

Théorème 1.3 Intégration terme à terme

Soit $\sum f_n$ une série de fonctions définies sur un intervalle I à valeurs dans \mathbb{K} . On suppose que

- **(H1)** pour tout $n \in \mathbb{N}$, f_n est continue par morceaux sur I;
- **(H2)** pour tout $n \in \mathbb{N}$, f_n est **intégrable** sur I;
- **(H3)** $\sum f_n$ converge simplement sur I vers une fonction f;
- **(H4)** f est continue par morceaux sur I;
- **(H5)** la série $\sum \int_{\mathbf{I}} |f_n(t)| dt$ converge.

Alors f est intégrable sur I et

$$\sum_{n=0}^{+\infty} \int_{\mathbf{I}} f_n(t) \, dt = \int_{\mathbf{I}} f(t) \, dt$$

Exemple 1.3

On souhaite montrer que

$$\int_0^1 \frac{\ln(t) \, dt}{1+t} = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$$

Par développement en série entière

$$\forall t \in]0,1[, \frac{\ln(t)}{1+t} = \sum_{n=0}^{+\infty} (-1)^n t^n \ln(t)$$

Posons $f_n: t \in]0,1[\mapsto (-1)^n t^n \ln(t)$. Alors

- **(H1)** pour tout $n \in \mathbb{N}$, f_n est continue (par morceaux) sur]0,1[;
- (H2) pour tout $n \in \mathbb{N}$, f_n est intégrable sur]0,1[puisque $\lim_{t \to 0^+} f_n = 0$ si n > 0, $f_0(t) = o(1/\sqrt{t})$ et $\lim_{t \to 0^+} f_n = 0$;
- **(H3)** $\sum f_n$ converge simplement vers $f: t \mapsto \frac{\ln(t)}{1+t}$ sur]0,1[;
- **(H4)** f est continue (par morceaux) sur]0,1[;
- **(H5)** pour tout $n \in \mathbb{N}$, $\int_0^1 |f_n(t)| dt = -\int_0^1 t^n \ln(t) dt = \frac{1}{(n+1)^2}$ par intégration par parties et $\sum \frac{1}{(n+1)^2}$ converge.

Par intégration terme à terme, f est intégrable sur]0,1[(ce qu'on aurait pu montrer directement) et

$$\int_0^1 \frac{\ln(t) dt}{1+t} = \sum_{n=0}^{+\infty} \int_0^1 f_n(t) dt = \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{(n+1)^2} = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$$

2 Continuité

Théorème 2.1

Soient $f: A \times I \to \mathbb{K}$ où I est un intervalle de \mathbb{R} et A une partie d'un espace vectoriel normé de dimension finie. On suppose que :

- **(H1)** pour tout $x \in A$, $t \mapsto f(x, t)$ est continue par morceaux sur I;
- **(H2)** pour tout $t \in I$, $x \mapsto g(x, t)$ est continue sur A;
- (H3) il existe une fonction positive φ intégrable sur I telle que

$$\forall (x, t) \in A \times I, |f(x, t)| \le \varphi(t)$$

Alors F:
$$x \in A \mapsto \int_{I} f(x, t) dt$$
 est continue sur A.

Remarque. La dernière condition est une condition dite de domination.

Remarque. La continuité étant une notion locale, on peut remplacer la condition de domination sur A par la domination au voisinage de tout point de A. En particulier, il suffit de montrer la domination sur tout compact de A. Si A est un intervalle de \mathbb{R} , il suffit de montrer la domination sur tout segment de A.

Exercice 2.1

Montrer que l'application B :
$$(x,y) \mapsto \int_0^1 t^{x-1} (1-t)^{y-1} dt$$
 est continue sur $(\mathbb{R}_+^*)^2$.

Exercice 2.2

Montrer que l'application
$$\Gamma: z \mapsto \int_0^{+\infty} t^{z-1} e^{-t} dt$$
 est continue sur $P = \{z \in \mathbb{C}, Re(z) > 0\}.$

3 Dérivabilité

Théorème 3.1

Soient $f: J \times I \to \mathbb{K}$ où I et J sont deux intervalles de \mathbb{R} . On suppose que :

- **(H1)** pour tout $x \in J$, $t \mapsto f(x, t)$ est intégrable sur I;
- **(H2)** pour tout $t \in I$, $x \mapsto f(x, t)$ est de classe \mathcal{C}^1 sur J;
- **(H3)** pour tout $x \in J$, $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur I;
- (H4) il existe une fonction positive φ intégrable sur I telle que

$$\forall (x,t) \in J \times I, \ \left| \frac{\partial f}{\partial x}(x,t) \right| \le \varphi(t)$$

Alors F: $x \in J \mapsto \int_{I} f(x,t) dt$ est de classe C^1 sur J et

$$\forall x \in J, \ F'(x) = \int_{J} \frac{\partial f}{\partial x}(x, t) \ dt$$

Remarque. La dérivabilité étant une notion locale, on peut remplacer la domination sur J par la domination sur tout segment de J.

Exercice 3.1

Montrer que F: $x \mapsto \int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt$ est de classe \mathcal{C}^1 sur \mathbb{R} et calculer sa dérivée. En déduire F(x) pour $x \in \mathbb{R}$.

Corollaire 3.1

Soient $f: J \times I \to \mathbb{K}$ où I et J sont deux intervalles de $\mathbb{R}.$ On suppose que :

- **(H1)** pour tout $t \in I$, $x \mapsto f(x,t)$ est de classe C^k sur J;
- **(H2)** pour tout $x \in J$ et pour tout $j \in [0, k]$, $t \mapsto \frac{\partial^j f}{\partial x^j}(x, t)$ est continue par morceaux sur I;
- **(H3)** pour tout $x \in J$ et pour tout $j \in [0, k-1]$, $t \mapsto \frac{\partial^j f}{\partial x^j}(x, t)$ est intégrable sur I;
- (H4) il existe une fonction positive φ intégrable sur I telle que

$$\forall (x,t) \in J \times I, \ \left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \le \varphi(t)$$

Alors F: $x \in J \mapsto \int_{I} f(x,t) dt$ est de classe C^{k} sur J et

$$\forall j \in [0, k], \ \forall x \in J, \ F^{(j)}(x) = \int_{\mathbb{T}} \frac{\partial^{j} f}{\partial x^{j}}(x, t) \ dt$$

REMARQUE. A nouveau, la domination sur tout segment de J suffit.

Corollaire 3.2

Soient $f: J \times I \to \mathbb{K}$ où I et J sont deux intervalles de \mathbb{R} . On suppose que :

- **(H1)** pour tout $t \in I$, $x \mapsto f(x, t)$ est de classe \mathcal{C}^{∞} sur J;
- **(H2)** pour tout $x \in J$ et pour tout $k \in \mathbb{N}$, $t \mapsto \frac{\partial^k f}{\partial x^k}(x,t)$ est continue par morceaux sur I;
- **(H3)** pour tout $k \in \mathbb{N}$, il existe une fonction positive φ_k **intégrable** sur I telle que

$$\forall (x,t) \in J \times I, \ \left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \le \varphi_k(t)$$

Alors F: $x \in J \mapsto \int_{I} f(x,t) dt$ est de classe C^{∞} sur J et

$$\forall k \in \mathbb{N}, \ \forall x \in J, \ F^{(k)}(x) = \int_{I} \frac{\partial^{k} f}{\partial x^{k}}(x, t) \ dt$$

REMARQUE. A nouveau, la domination sur tout segment de J suffit.

Exercice 3.2

Montrer que la fonction $\Gamma: x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$ est de classe \mathcal{C}^{∞} sur \mathbb{R}_+^* .