KochkaKV 20122024-155711

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Если цепь на рисунке 1 используется в качестве цепи обратной связи в кольце ФАПЧ, то вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 2.813 кГц на 4.6 дВ больше, чем вклад ГУН. Если исключить эту цепь и замкнуть кольцо, то на той же частоте отстройки вклад ОГ на 3.3 дВ больше, чем вклад ГУН. Известно, что C=18.5 нФ, а $R_1=2900$ Ом. Чему равно сопротивление другого резистора цепи обратной связи?

Рисунок 1 – Электрическая схема цепи обратной связи

- 1) 1381 Ом
- 2) 1404 Ом
- $3)1427 \, \text{OM}$
- $4)1450 \, \text{OM}$
- 5) 1473 Ом
- 6) 1496 Ом
- $7)1519 \, \text{Om}$
- 8) 1542 O_M
- 9) 1565 O_M

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Коэффициент передачи цепи обратной связи частотно независим и равен 10⁻¹, а крутизна характеристики фазового детектора равна 0.8 В/рад. Частота колебаний опорного генератора (ОГ) 310 МГц. Частота колебаний ГУН 1240 МГц. Известно, что неприведённые спектральные плотности мощности фазовых шумов двух генераторов равны на частоте отстройки 2.9 МГц. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 20 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада. Также известно, что вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 514 кГц на 5.9 дВ меньше, чем вклад ГУН. Чему равна крутизна характеристики управления частотой ГУН?

Рисунок 2 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

- 1) $1.58 \, \text{M} \, \Gamma_{\text{II}} / \text{B}$
- 2) $2.35 \text{ M}\Gamma_{\text{II}}/\text{B}$
- 3) $3.12 \text{ M}\Gamma_{\text{II}}/\text{B}$
- 4) $3.89 \text{ M}\Gamma_{\text{II}}/\text{B}$
- 5)4.66 MΓμ/B
- 6) 5.43 MΓ_{II}/B
- 7)6.20 MΓ_І/B
- 8) $6.97 \, \text{M} \, \Gamma \, \text{H} \, / \, \text{B}$
- 9) $7.74 \text{ M}\Gamma_{\text{II}}/\text{B}$

Источник колебаний и частотой 5930 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 180 дБн/Гц. Он был подключён к согласованному линейному усилителю с шумовой температурой плюс 1715 К. Выход усилителя подключён ко входу анализатор фазовых шумов. Какую спектральную плотность мощности измерит анализатор фазовых шумов на частоте отстройки 5 Гц, если с доступная мощность на выходе усилителя равна -0.1 дБм?

- 1)-170.1 дБн/ Γ ц
- (2) -170.6 дБн/ Γ ц
- 3)-171.1 дБн/Гц
- 4)-171.6 дБн/Гц
- 5) -172.1 дБн/Гц
- 6) -172.6 дБн/Гц
- 7) -173.1 дБн/Гц
- 8) -173.6 дБн/Гц
- 9) -174.1 дБн/Гц

Для прямого синтеза заданной частоты использовались два источника колебаний, двойной балансный смеситель и полосовой фильтр. Нужная частота была получена преобразованием вверх с выделением верхней боковой с помощью полосового фильтра.

Один источник колебаний имеет частоту 7000 М Γ ц и спектральную плотность мощности фазового шума на отстройке 100 к Γ ц минус 145 д $\mathrm{Брад}^2/\Gamma$ ц . Спектральная плотность мощности фазового шума на отстройке 100 к Γ ц второго колебания равна минус 146 д $\mathrm{Бh}/\Gamma$ ц, а частота его равна 8810 М Γ ц. Чему равна спектральная плотность мощности фазового шума синтезированного колебания на отстройке 100 к Γ ц при описанном выше некогерентном синтезе?

- 1)-162.8 дБн/Гц
- 2)-159.7 дБн/Гц
- 3) -156.7 дБн/Гц
- 4)-153.3 дБн/Гц
- 5)-150.3 дБн/Гц
- 6) -147.3 дБн/Гц
- 7) -146.9 дБн/Гц
- 8) -140.9 дБн/Гц
- 9) -137.9 дБн/Гц

Источник колебаний с доступной мощностью -2.7 дБм и частотой 2640 М Γ ц имеет равномерную спектральную плотность мощности фазового шума равную минус 103 дБн/ Γ ц. Этот источник подключён к согласованному входу анализатора спектра. Какую мощность измерит анализатор спектра на частоте 2639.999982 М Γ ц, если спектральная плотность мощности его собственных шумов равна минус 114 дБм/ Γ ц, а полоса пропускания Π Ч установлена в положение 3 Γ ц?

- 1)-86.7 дБм
- 2)-88.4 дБм
- 3) -90.1 дБм
- 4)-91.8 дБм
- 5) -93.5 дБм
- 6) -95.2 дБм
- 7) -96.9 дБм
- 8) -98.6 дБм
- 9) -100.3 дБм

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Частота колебаний опорного генератора (ОГ) 130 МГц. Частота колебаний ГУН 6660 МГц. Известно, что спектральная плотность мощности фазовых шумов на частоте отстройки 1 Γ ц равна минус 69.8 дBн/ Γ ц для О Γ и плюс 19.4 дBн/ Γ ц для Γ УH. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 10 дБ/декада, а фазовых шумов ГУН минус 20 дБ/декада.

Коэффициент передачи цепи обратной связи равен описывается формулой $A_0(1+(j\Omega\tau)^{-1})$, где $A_0=86.1084$, $\tau=35.0705$ мкс.

Крутизна характеристики управления частотой ГУН равна 0.3 МГц/В. Крутизна характеристики фазового детектора 0.4 В/рад.

Рисунок 3 – Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

На сколько дБ отличается спектральная плотность мощности фазовых шумов на частоте отстройки $46 \text{ к}\Gamma$ ц колебания той же выходной частоты, но полученного из опорного путём прямого синтеза? Варианты ОТВЕТА:

- 1) на плюс 1.5 дВ
- на плюс 1.1 дБ
- на плюс 0.7 дБ
- 4) на плюс 0.3дБ
- на минус 0.1 дБ
- на минус 0.5 дБ
- 7) на минус 0.9 дБ
- на минус 1.3 дБ
- 9) на минус 1.7 дБ