Short transformations between list colourings

Wouter Cames van Batenburg (TU Delft)

Joint work with Stijn Cambie and Daniel Cranston

Dutch Day of Combinatorics Eindhoven, 12 May 2022

Graph colouring

Given: a graph G and a positive integer k.

Proper k-colouring: colouring of the vertices using k colours, s.t. adjacent vertices receive distinct colours.

- **Q1**. Does G have a proper k-colouring?
- **Q2**. Can any two proper *k*-colourings of *G* be transformed into each other through a sequence of simple modifications?
- Q3. How 'close' are the k-colourings of G to each other?

Definition

The reconfiguration graph $C_k(G)$ has

- **vertices**: the proper *k*-colourings of *G*;
- **edges**: two proper *k*-colourings are adjacent iff their corrresponding colourings differ on exactly one vertex of *G*.

Example: Part of the reconfiguration graph $C_4(C_4)$

Three Questions formalized

Given: a graph G and a positive integer k.

- Q1. Does G have a proper k-colouring? Is $C_k(G)$ non-empty?
- Q2. Can any two proper k-colourings of G be transformed into each other through a sequence of simple modifications? Is $C_k(G)$ connected?
- Q3. How 'close' are the k-colourings of G to each other? What is the diameter of $C_k(G)$?

Frozen colourings

Observation

If for each vertex v of G, all k colours appear in the closed neighbourhood N[v], then the colouring is *frozen*; an isolated vertex of $C_k(G)$.

Examples:

$$k = 4$$

$$k = 3$$

Degeneracy

Definition

The $degeneracy \ degen(G)$ of G is the smallest integer d such that each subgraph of G contains a vertex v of degree at most d.

If $k \ge degen(G) + 2$, then G has no frozen k-colouring. (Indeed: at least one colour does not appear on N[v].)

Non-empty? Connected?

Q1. Is $C_k(G)$ non-empty?

Q2. Is $C_k(G)$ connected?

Non-empty? Connected?

```
Q1. Is C_k(G) non-empty?
A1. Not necessarily if k \leq degen(G).
Yes if k \geq degen(G) + 1.
```

Q2. Is $C_k(G)$ connected?

Non-empty? Connected?

- **Q1**. Is $C_k(G)$ non-empty? **A1**. Not necessarily if k < degen(G).
 - Yes if $k \ge degen(G) + 1$.

- **Q2**. Is $C_k(G)$ connected?
- **A2**. Not necessarily if $k \leq degen(G) + 1$. Yes if k > degen(G) + 2.

If
$$k \geq degen(G) + 2 \dots$$

Q3. What is the diameter of $C_k(G)$?

```
If k \ge degen(G) + 2...

Q3. What is the diameter of C_k(G)?

A3. There exist n-vertex graphs G with diam(C_{degen(G)+2}(G)) = \Omega(n^2). (Bonamy et al, 2012)
```

If
$$k \geq degen(G) + 2 \dots$$

- **Q3**. What is the diameter of $C_k(G)$?
- A3. There exist *n*-vertex graphs G with $\operatorname{diam}(\mathcal{C}_{degen(G)+2}(G)) = \Omega(n^2)$. (Bonamy et al, 2012)

Example: if G is a path, then $diam(C_3(G)) = \Omega(n^2)$.

```
If k \geq degen(G) + 2 \dots
```

- **Q3**. What is the diameter of $C_k(G)$?
- A3. There exist *n*-vertex graphs G with $\operatorname{diam}(\mathcal{C}_{degen(G)+2}(G)) = \Omega(n^2)$. (Bonamy et al, 2012)

Conjecture (Cereceda, 2007)

If
$$k \ge degen(G) + 2$$
, then $diam(C_k(G)) = O(n^2)$

If
$$k \geq degen(G) + 2 \dots$$

- **Q3**. What is the diameter of $C_k(G)$?
- A3. There exist *n*-vertex graphs *G* with $\operatorname{diam}(\mathcal{C}_{degen(G)+2}(G)) = \Omega(n^2)$. (Bonamy et al, 2012)

Conjecture (Cereceda, 2007)

If
$$k \ge degen(G) + 2$$
, then $diam(C_k(G)) = O(n^2)$

Theorem (Bousquet, Heinrich, 2022)

If
$$k \geq degen(G) + 2$$
, then $diam(C_k(G)) = O(n^{degen(G)+1})$

 $\Delta(G) := maximum degree of G$.

Theorem (Bousquet et al, 2022+)

If $k \ge \Delta(G) + 2$, then $diam(\mathcal{C}_k(G)) = O(\Delta(G) \cdot n)$.

 $\Delta(G) := maximum degree of G$.

Theorem (Bousquet et al, 2022+)

If
$$k \ge \Delta(G) + 2$$
, then $\operatorname{diam}(\mathcal{C}_k(G)) = O(\Delta(G) \cdot n)$.

Q: Can dependency on $\Delta(G)$ be removed from upper bound? Yes:

 $\Delta(G) := \max \text{imum degree of } G.$

Theorem (Bousquet et al, 2022+)

If
$$k \geq \Delta(G) + 2$$
, then $\operatorname{diam}(\mathcal{C}_k(G)) = O(\Delta(G) \cdot n)$.

Q: Can dependency on $\Delta(G)$ be removed from upper bound? Yes:

Theorem (Cambie, C., Cranston, 2022+)

If $k \geq \Delta(G) + 2$, then diam $(C_k(G)) \leq 2n$.

 $\Delta(G) := \max \text{imum degree of } G.$

Theorem (Bousquet et al, 2022+)

If
$$k \geq \Delta(G) + 2$$
, then $\operatorname{diam}(\mathcal{C}_k(G)) = O(\Delta(G) \cdot n)$.

Q: Can dependency on $\Delta(G)$ be removed from upper bound? Yes:

Theorem (Cambie, C., Cranston, 2022+)

If
$$k \geq \Delta(G) + 2$$
, then $\operatorname{diam}(\mathcal{C}_k(G)) \leq 2n$.

Corollary: Cereceda's conjecture is (more than) true for regular graphs.

 $\Delta(G) := \max \text{imum degree of } G.$

Theorem (Bousquet et al, 2022+)

If
$$k \geq \Delta(G) + 2$$
, then $\operatorname{diam}(\mathcal{C}_k(G)) = O(\Delta(G) \cdot n)$.

Q: Can dependency on $\Delta(G)$ be removed from upper bound? Yes:

Theorem (Cambie, C., Cranston, 2022+)

If
$$k \geq \Delta(G) + 2$$
, then $\operatorname{diam}(\mathcal{C}_k(G)) \leq 2n$.

Corollary: Cereceda's conjecture is (more than) true for regular graphs. But can we do even better?

Recall our theorem: $\operatorname{diam}(\mathcal{C}_k(G)) \leq 2n$, for all $k \geq \Delta(G) + 2$.

Remark: $n \leq \text{diam}(\mathcal{C}_k(G))$, for all k.

Remark: $n \leq \text{diam}(\mathcal{C}_k(G))$, for all k.

Indeed: consider two k-colourings α and β of G, such that $\alpha(v) \neq \beta(v)$, for every vertex v. Then every vertex needs to be recoloured at least once.

Remark: $n \leq \text{diam}(\mathcal{C}_k(G))$, for all k.

Truth in the middle?

Remark: $n \leq \text{diam}(\mathcal{C}_k(G))$, for all k.

Truth in the middle?

Conjecture (Cambie, C., Cranston, 2022)

If G is a graph on n vertices, then for every $k \ge \Delta(G) + 2$,

$$\operatorname{diam}(\mathcal{C}_k(G)) \leq \left\lfloor \frac{3n}{2} \right\rfloor.$$

True with equality for the complete graph (Bonamy and Bousquet, 2018).

Remark: $n \leq \text{diam}(\mathcal{C}_k(G))$, for all k.

Truth in the middle?

Conjecture (Cambie, C., Cranston, 2022+)

If G is a graph on n vertices with matching number $\mu(G)$, then for every $k > \Delta(G) + 2$,

$$\operatorname{diam}(\mathcal{C}_k(G)) = n + \mu(G) \leq \left\lfloor \frac{3n}{2} \right\rfloor.$$

True for the complete graph (Bonamy and Bousquet, 2018).

Intuition lower bound $n + \mu(G)$

Observation

Consider a maximum matching M of G, with edges v_1v_2 , v_3v_4 ,... Suppose there exist two proper k-colourings α , β of G such that their colours are swapped on each edge of the matching. I.e. for all i:

$$\alpha(\mathbf{v}_{2i-1}) = \beta(\mathbf{v}_{2i})$$
 and $\beta(\mathbf{v}_{2i-1}) = \alpha(\mathbf{v}_{2i})$.

Then

$$diam(C_k(G)) \ge dist(\alpha, \beta) \ge n + \mu(G).$$

Intuition lower bound $n + \mu(G)$

Observation

Consider a maximum matching M of G, with edges v_1v_2 , v_3v_4 ,... Suppose there exist two proper k-colourings α, β of G such that their colours are swapped on each edge of the matching. I.e. for all i:

$$\alpha(\mathbf{v}_{2i-1}) = \beta(\mathbf{v}_{2i})$$
 and $\beta(\mathbf{v}_{2i-1}) = \alpha(\mathbf{v}_{2i})$.

Then

$$diam(C_k(G)) \ge dist(\alpha, \beta) \ge n + \mu(G).$$

Proof: To transform α into β , we need at least three recolourings on $\{v_{2i-1}, v_{2i}\}$, for all i. So in total we need $\geq n + \mu(G)$ recolourings.

Intuition lower bound $n + \mu(G)$

Observation

Consider a maximum matching M of G, with edges v_1v_2 , v_3v_4 ,... Suppose there exist two proper k-colourings α , β of G such that their colours are swapped on each edge of the matching. I.e. for all i:

$$\alpha(\mathbf{v}_{2i-1}) = \beta(\mathbf{v}_{2i})$$
 and $\beta(\mathbf{v}_{2i-1}) = \alpha(\mathbf{v}_{2i})$.

Then

$$diam(C_k(G)) \ge dist(\alpha, \beta) \ge n + \mu(G).$$

E.g. directly implies that $diam(C_k(G)) \ge n + \mu(G)$ if G complete bipartite. Also...

Theorem (CCC, 2022+)

For every $k \ge \Delta(G) + 2$ we have

$$\operatorname{diam}_k(G) \geq n + \mu(G)$$

in each of the following cases:

- $\Delta(G) \leq 3$;
- G triangle-free with $\Delta(G)$ suff. large;
- $G = G_{n,p}$ the random graph with $p \in (0,1)$ fixed, (a.a.s. as $n \to \infty$).

Theorem (CCC, 2022+)

For every $k \ge \Delta(G) + 2$ we have

$$\operatorname{diam}_k(G) \geq n + \mu(G)$$

in each of the following cases:

- $\Delta(G) \leq 3$;
- G triangle-free with $\Delta(G)$ suff. large;
- $G = G_{n,p}$ the random graph with $p \in (0,1)$ fixed, (a.a.s. as $n \to \infty$).

Furthermore, for large enough k we achieve equality:

Theorem (CCC,2022+)

For every graph G and every $k \ge 2\Delta(G) + 1$,

$$\operatorname{diam}_k(G) = n + \mu(G)$$

Generalization to list-colouring

A list-assignment L provides each vertex v of G with a list L(v) of possible colours. An L-colouring, is a proper colouring such that each vertex v receives a colour from L(v). For fixed L, we can again define a reconfiguration graph $\mathcal{C}_L(G)$ for all L-colourings of G.

List Conjecture (CCC, 2022)

If $|L(v)| \ge \deg(v) + 2$ for every vertex v, then

$$\operatorname{diam}(\mathcal{C}_L(G)) \leq n + \mu(G).$$

• Best possible for each graph *G*, if true.

List Conjecture (CCC, 2022+)

If $|L(v)| \ge \deg(v) + 2$ for every vertex v, then $\operatorname{diam}(\mathcal{C}_L(G)) \le n + \mu(G)$.

We proved the List Conjecture for all *trees, cycles, bipartite cubic graphs, complete bipartite graphs and complete graphs.* Furthermore,

Theorem (CCC, 2022+)

- If $|L(v)| \ge \deg(v) + 2$ for every v, then $\operatorname{diam}(\mathcal{C}_L(G)) \le \frac{n}{2} + 2\mu(G)$.
- If $|L(v)| \ge 2 \deg(v) + 1$ for every v, then $\operatorname{diam}(\mathcal{C}_L(G)) \le n + \mu(G)$.

Lemma

Let G be an n-vertex graph and L a list-assignment s.t. $|L(v)| \ge \deg(v) + 2$ for all $v \in V(G)$. Then $\operatorname{dist}(\alpha, \beta) \le 2n$ for any two L-colourings α, β .

Proof:

Lemma

Let G be an n-vertex graph and L a list-assignment s.t. $|L(v)| \ge \deg(v) + 2$ for all $v \in V(G)$. Then $\operatorname{dist}(\alpha, \beta) \le 2n$ for any two L-colourings α, β .

Proof: Induction on $|\beta(V(G))|$, the number of distinct colours under β .

By pigeon hole principle, there exists a colour c such that

$$|\alpha^{-1}(c)| \leq |\beta^{-1}(c)|.$$

Lemma

Let G be an n-vertex graph and L a list-assignment s.t. $|L(v)| \ge \deg(v) + 2$ for all $v \in V(G)$. Then $\operatorname{dist}(\alpha, \beta) \le 2n$ for any two L-colourings α, β .

Proof: Induction on $|\beta(V(G))|$, the number of distinct colours under β .

By pigeon hole principle, there exists a colour c such that

$$|\alpha^{-1}(c)| \leq |\beta^{-1}(c)|.$$

- Recolour each $v \in \alpha^{-1}(c)$ to some colour different from c.
- Then recolour $\beta^{-1}(c)$ to c.

This takes $|a^{-1}(c)| + |b^{-1}(c)| \le 2|\beta^{-1}(c)|$ recolouring steps.

Lemma

Let G be an *n*-vertex graph and L a list-assignment s.t. $|L(v)| \ge \deg(v) + 2$ for all $v \in V(G)$. Then $\operatorname{dist}(\alpha, \beta) \le 2n$ for any two L-colourings α, β .

Proof: Induction on $|\beta(V(G))|$, the number of distinct colours under β .

By pigeon hole principle, there exists a colour c such that

$$|\alpha^{-1}(c)| \leq |\beta^{-1}(c)|.$$

- Recolour each $v \in \alpha^{-1}(c)$ to some colour different from c.
- Then recolour $\beta^{-1}(c)$ to c.

This takes $|a^{-1}(c)| + |b^{-1}(c)| \le 2|\beta^{-1}(c)|$ recolouring steps.

Now apply induction to $G - \beta^{-1}(c)$, with colour c removed from all lists.

In total we use $\leq \sum_{c \in \beta(V(G))} |2\beta^{-1}(c)| = 2n$ steps.

Open problems

- Prove the List Conjecture for more graph classes. *Bipartite, complete multipartite, subcubic, outerplanar, planar, . . .*
- Is it true that $diam(C_k(G)) \ge n + \mu(G)$ for every $k \ge \Delta(G) + 2$?
- Bonus: Correspondence Conjecture

Theorem (Cambie, C., Cranston, 2022)

 $diam_k(G) \ge n + \mu(G)$ in each of the following cases:

- $k \geq 2\Delta(G)$;
- $k \ge \Delta(G) + 2 = 5$;
- $k \ge \Delta(G) + 2$ and G triangle-free with $\Delta(G)$ suff. large;
- $k \ge \Delta(G) + 2$ and $G = G_{n,p}$ the random graph (a.a.s. as $n \to \infty$).

On the other hand:

Theorem (Cambie, C., Cranston, 2022)

 $\operatorname{diam}_k(G) \leq n + 2\mu(G)$ if

•
$$k \geq \Delta(G) + 2$$
,

and $diam_k(G) = n + \mu(G)$ in each of the following cases:

- $k \ge 2\Delta(G) + 1$;
- $k \ge \Delta(G) + 2$ and G complete bipartite, complete, cycle or a tree.