Практическое занятие №11

Теория вычетов (продолжение)

Формулы для вычисления вычетов функции f(z)

- 1. Если z_0 устранимая особая точка функции f(z), то $resf(z_0)=0$.
- 2. Если точка z_0 существенно особая точка функции f(z), то для нахождения вычета нужно найти коэффициент c_{-1} в разложении функции f(z) в ряд Лорана: $resf(z_0) = c_{-1}$.
 - 3. Если z_0 полюс порядка n функции f(z), то

$$resf(z_0) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} [f(z)(z-z_0)^n].$$

Частные случаи (для полюсов)

- A) если z_0 простой полюс, т.е. полюс первого порядка (n=1), то $resf(z_0) = \lim_{z \to z_0} [f(z)(z-z_0) \] \ .$
 - Б) для полюса 2-го порядка

$$resf(z_0) = \lim_{z \to z_0} \frac{d}{dz} [f(z)(z - z_0)^2].$$

В) для полюса 3-го порядка

$$resf(z_0) = \frac{1}{2!} \lim_{z \to z_0} \frac{d^2}{dz^2} [f(z)(z - z_0)^3]$$

<u>Пример.</u> Найти особые точки функции $f(z) = \frac{e^{z-i}-1}{(z^2+1)z}$ и установить их тип. Найти вычеты.

Peшeнue. Особыми точками функции f(z) являются $z_1=i$, $z_2=-i$ и $z_3=0.$

В точке $z_1=i$ числитель и знаменатель f(z) обращаются в нуль. Для числителя $P(z)=e^{z-i}-1$ число z=i является нулем 1 порядка, так как $iP'(z)\mid_{z=i}=e^{z-i}\mid_{z=i}=1,$ то z=i – нуль 1-го порядка.

Знаменатель Q(z)=(z-i)(z+i)z в точке z=i имеет также нуль 1-го порядка. Поскольку $(e^{z-i}-1)\sim(z-i)$ при $z\to i$,

$$\lim_{z \to i} \frac{e^{z-i} - 1}{(z^2 + 1)z} = \lim_{z \to i} \frac{e^{z-i} - 1}{(z-i)(z+i)z} = \lim_{z \to i} \frac{(z-i)}{(z-i)(z+i)z} = \frac{-1}{2}$$

Следовательно, $z_1 = i$ – устранимая особая точка. resf(i) = 0.

Рассмотрим точку z=0. В точке z=0 перепишем функцию в виде $f(z)=\frac{e^{z-i}-1}{(z^2+1)z}=\frac{\varphi(z)}{z}$, где $\varphi(z)=\frac{e^{z-i}-1}{(z^2+1)}$ — аналитическая функция в точке z=0, $\varphi(0)=\frac{e^{-i}-1}{1}\neq 0$. По теореме z=0 — полюс 1-го порядка. Тогда

$$resf(0) = \lim_{z \to 0} f(z) \cdot (z - 0) = \lim_{z \to 0} \frac{e^{z - i} - 1}{(z^2 + 1)z} \cdot z = e^{-i} - 1$$

В точке z=-i перепишем функцию в виде $f(z)=\frac{e^{z-i}-1}{(z^2+1)z}=\frac{\varphi(z)}{z-i}$, где

$$\varphi(z) = \frac{e^{z-i}-1}{z-i}$$
 — аналитическая функция в точке $z=-i$,

$$\varphi(-i) = \frac{e^{-2i}-1}{-2i} \neq 0$$
. По теореме $z = -i$ – полюс 1-го порядка.

Поскольку z = -i – полюс 1-го порядка, то

$$resf(-i) = \lim_{z \to -i} f(z) \cdot (z+i) = \lim_{z \to -i} \frac{e^{z-i} - 1}{(z^2 + 1)z} \cdot (z+i)$$
, T.e.

$$resf(-i) = \lim_{z \to -i} \frac{e^{z-i}-1}{(z-i)\cdot z} = \frac{e^{-2i}-1}{(-2i)\cdot i} = \frac{e^{-2i}-1}{2}.$$

<u>Пример.</u> Найти особые точки функции $f(z) = \frac{\sin 2z + 1}{z^5 - 3z^4}$ и установить их тип. Найти вычеты.

Peшение. Найдем нули функции $\frac{1}{f(z)} = \frac{z^5 - 3z^4}{sin2z + 1}$. Поскольку

$$z^5-3z^4=z^4(z-3)$$
, то для функции $\frac{1}{f(z)}$ точка $z=0$ – это нуль

четвертого, а z = 3 – нуль первого порядка. Пользуясь теоремой, имеем

z = 0 – это полюс 4-го порядка функции f(z),

z = 3 – полюс первого порядка.

Поскольку z = 3 – полюс 1-го порядка, то

$$resf(3) = \lim_{z \to 3} f(z) \cdot (z-3) = \lim_{z \to 3} \frac{\sin 2z + 1}{z^5 - 3z^4} \cdot (z-3) = \lim_{z \to 3} \frac{\sin 2z + 1}{z^4} = \frac{\sin 6 + 1}{3^4}.$$

 $3a\partial a h u e$: самостоятельно найти вычет в точке z=0 – это полюс 4-го порядка функции.

<u>Пример.</u> Найти особые точки функции $f(z) = \frac{\sin(z-i)}{(z-i)^3 z^3}$ и установить их тип. Найти вычеты.

Pешение. Особыми точками функции f(z) являются $z_1=i$ и $z_2=0$.

В точке $z_1=i$ числитель и знаменатель f(z) обращаются в нуль. Для числителя $P(z)=\sin(z-i)$ число z=i является нулем 1-го порядка, так как $P'(z)\mid_{z=i}=\cos(z-i)\mid_{z=i}=1$, то z=i — нуль 1-го порядка. Знаменатель $Q(z)=(z-i)^3z^3$ в точке z=i имеет нуль 3-го порядка. Следовательно, по теореме $z_1=i$ —полюс 2-го порядка функции f(z). Найдем вычет.

$$resf(z_0) = \lim_{z \to z_0} \frac{d}{dz} [f(z)(z - z_0)^2]$$

$$res f(i) = \lim_{z \to i} \frac{d}{dz} \left[\frac{\sin(z - i)(z - i)^2}{(z - i)^3 z^3} \right] = \lim_{z \to i} \frac{d}{dz} \left[\frac{\sin(z - i)}{(z - i) z^3} \right] = \cdots \dots$$

(доделать самостоятельно)

В точке z=0 перепишем функцию в виде $f(z)=\frac{\varphi(z)}{z^3}$, где $\varphi(z)=\frac{\sin(z-i)}{(z-3)^3}$ — аналитическая функция в точке z=0,

$$\varphi(0)=rac{\sin(-i)}{-27} \neq 0$$
. По теореме $z=0$ – полюс 3-го порядка. Окончательно, $z=i$ – полюс 2-го порядка, $z=0$ – полюс 3-го порядка.

3adaнue. Вычислить вычет в точке z=0 (полюс 3-го порядка), используя

$$resf(z_0) = \frac{1}{2!} \lim_{z \to z_0} \frac{d^2}{dz^2} [f(z)(z - z_0)^3].$$

<u>Пример.</u> Найти особые точки функции $f(z) = \frac{z}{e^z - 1}$ и установить их тип. Найти вычеты.

Решение. Особыми точками функции f(z) являются точки, в которых знаменатель обращается в нуль, т.е. решения уравнения $e^z - 1 = 0$. Таким образом, особые точки: $z_n = 2\pi ni$, $n \in \mathbb{Z}$.

Рассмотрим сначала случай $z_0 = 0$. Поскольку

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{z}{e^z - 1} = \left[\frac{0}{0} \right] = 1,$$

то $z_0=0$ - устранимая особая точка. Следовательно, resf(0)=0.

Пусть теперь $z_n=2\pi ni$, $n\neq 0$. В этом случае

$$\lim_{z\to 2\pi ni} f(z) = \lim_{z\to 2\pi ni} \frac{z}{e^z - 1} = \infty.$$

Следовательно, особые точки $z_n = 2\pi ni$ при $n\neq 0$ являются полюсами функции f(z). Определим порядок этих полюсов.

Для знаменателя $P(z)=e^z-1$ число $z_n=2\pi ni$, $n\neq 0$, является нулем 1-го порядка, так как $P'(z)\left|_{z=2\pi ni}=e^z\right|_{z=2\pi ni}=1$. При этом числитель функции f(z) в точке $z_n=2\pi ni$, $n\neq 0$, не равен

нулю. Следовательно, особые точки $z_n = 2\pi ni$ при $n\neq 0$ являются полюсами 1-го порядка функции f(z).

Найдем вычет в этих особых точках.

$$resf(z_n) = \lim_{z \to 2\pi ni} f(z) \cdot (z - 2\pi ni) = \lim_{z \to 2\pi ni} \frac{z \cdot (z - 2\pi ni)}{e^z - 1} = \lim_{z \to 2\pi ni} \frac{2z - 2\pi ni}{e^z}$$

Здесь на последнем шаге использовалось правило Лопиталя.

Таким образом, при $n\neq 0$ вычет f(z) в точках $z_n=2\pi ni$:

$$resf(z_n) = \frac{2\pi ni}{e^{2\pi ni}} = 2\pi ni.$$

Основная теорема о вычетах

Теорема. Если функция f(z) является аналитической всюду внутри области D, за исключением конечного числа изолированных особых точек $z_{1,z_{2,...,z_{n}}$, лежащих внутри кусочно-гладкой замкнутой кривой Γ , $\Gamma \subset D$, тогда

$$\oint_{\Gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} res f(z_k).$$

Контур Γ проходится в положительном направлении, т.е. против часовой стрелки.

Пример. Вычислить интеграл
$$\int_{|z+2|=1} \frac{dz}{(z+2)^2(z^2+1)}$$
.

Peшение. Находим особые точки подынтегральной функции: $z_1 = -2$ – полюс второго порядка,

 $z_{2,3} = \pm i$ – полюсы первого порядка.

Нарисуем контур |z+2|=1. Внутри контура лежит только одна особая точка

 $z_1 = -2$ (см. рис. 13).

По основной теореме о вычетах получаем

$$\int_{|z+2|=1} \frac{dz}{(z+2)^2(z^2+1)} = 2\pi i \cdot resf(-2).$$

Найдем res f(-2):

res
$$f(-2) = \lim_{z \to -2} \frac{d}{dz} \left[\frac{(z+2)^2}{(z+2)^2 (z^2+1)} \right] = \lim_{z \to -2} \frac{-2z}{(z^2+1)^2} = \frac{4}{25}.$$

Далее получим

$$\int_{|z+2|=1} \frac{dz}{(z+2)^2(z^2+1)} = 2\pi i \cdot \text{res } f(-2) = \frac{8\pi i}{25}.$$

<u>Пример.</u> Вычислить интеграл $\int_{|z-i|=2} z^2 e^{\frac{1}{z}} dz$.

Pешение. \underline{B} области \underline{D} : |z-i| < 2

функция $f(z) = z^2 e^{\frac{1}{z}}$ имеет одну особую точку z = 0.

Разложение в ряд Лорана для заданной функции имеет вид

$$f(z) = z^{2} \left(1 + \frac{1}{z} + \frac{1}{2! z^{2}} + \frac{1}{3! z^{3}} + \frac{1}{4! z^{4}} + \cdots \right) =$$

$$= z^{2} + z + \frac{1}{2!} + \frac{1}{3! z} + \frac{1}{4! z^{2}} + \cdots$$

Главная часть ряда Лорана содержит бесконечное число членов, поэтому z=0 — существенно особая точка. Вычет в этой точке равен коэффициенту $c_{-1}=\frac{1}{3!}$, т.е. $res\ f(0)=\frac{1}{3!}$. По основной теореме о вычетах получаем ответ:

$$\int_{|z-i|=2} z^2 e^{\frac{1}{z}} dz = 2\pi i \cdot res \, f(0) = \frac{2\pi i}{3!} = \frac{\pi i}{3}.$$

<u>Пример.</u> Вычислить интеграл $\int_{|z|=3}^{\infty} \frac{1}{z^5+4z^3} dz$.

Решение. Особые точки функции находятся из решения уравнения $z^5+4z^3=0$, т.е. $z^3(z+2i)(z-2i)=0$. Получаем, $z_1=0$ – полюс третьего порядка, $z_{2,3}=\pm 2i$ – полюсы первого порядка.

В области D: |z| < 3

функция
$$f(z) = \frac{1}{z^5 + 4z^3}$$
 имеет три и.о.т. $z_1 = 0$, $z_{2,3} = \pm 2i$

Найдем вычеты в полюсах первого порядка, т.е. в точках $z_2,\ z_3$:

$$res \ f(2i) = \lim_{z \to 2i} \frac{(z-2i)}{z^3(z+2i)(z-2i)} = \frac{1}{(2i)^3 4i} = \frac{1}{32},$$

$$res \ f(-2i) = \lim_{z \to -2i} \frac{(z+2i)}{z^3(z+2i)(z-2i)} = \frac{1}{(-2i)^3(-4i)} = \frac{1}{32}.$$

Найдем вычет в точке $z_1=0$ (это полюс третьего порядка), применяем формулу

$$resf(z_0) = \frac{1}{2!} \lim_{z \to z_0} \frac{d^2}{dz^2} [f(z)(z - z_0)^3].$$

Тогда

$$res f(0) = \frac{1}{2!} \lim_{z \to 0} \frac{d^2}{dz^2} \left[\frac{1 \cdot z^3}{z^3 (z^2 + 4)} \right] = \frac{1}{2} \lim_{z \to 0} \frac{d}{dz} \left[-\frac{2z}{(z^2 + 4)^2} \right] =$$

$$= -\lim_{z \to 0} \frac{d}{dz} \frac{z}{(z^2 + 4)^2} = -\lim_{z \to 0} \frac{-3z^2 + 4}{(z^2 + 4)^3} = -\frac{1}{16}.$$

Тогда

$$\int_{|z|=3}^{1} \frac{1}{z^{5}+4z^{3}} dz = 2\pi i \left(res f(2i) + res f(-2i) + res f(0) \right) =$$

$$= 2\pi i \left(\frac{1}{32} + \frac{1}{32} - \frac{1}{16} \right) = 0.$$

<u>Пример.</u> Вычислить интеграл $\int_{|z-3|=1} (z-3)^3 \cos\frac{1}{z-3} dz$. *Решение*. Изолированная особая точка z=3.

В области D: |z - 3| < 1

функция $f(z) = (z-3)^3 cos \frac{1}{z-3}$ имеет данную и.о.т.

Найдем вычет.

В данном случае нужно разложить функцию в ряд Лорана

$$f(z) = (z-3)^3 \left(1 - \frac{1}{2!(z-3)^2} + \frac{1}{4!(z-3)^4} - \frac{1}{6!(z-3)^6} + \dots\right)$$
$$+ \dots) = (z-3)^3 - \frac{(z-3)}{2!} + \frac{1}{4!(z-3)} - \frac{1}{6!(z-3)^3} + \dots$$

В данном случае главная часть ряда Лорана имеет бесконечное количество слагаемых. Тогда изолированная особая точка z=3 является существенно особой точкой. Находим коэффициент при $(z-3)^{-1}$, значит вычет функции $res\ f(3)=\frac{1}{4}$.

Тогда
$$\int_{|z-3|=1} (z-3)^4 \cos\frac{1}{z-3} dz = 2\pi i \cdot res f(3) = 2\pi i \left(\frac{1}{4!}\right)$$
.

ТФКП, 4 семестр, ИРТС

Домашнее задание.

Учебно-методическое пособие «Теория функций комплексного переменного», часть 1. Задача №1.16.

Пособие размещено на сайте кафедры ВМ-2 http://vm-2.mozello.ru раздел «Математический анализ. 4 семестр».