### GPU Accelerated Primal-Dual Algorithm

Apoorva Gupta, Jorge Salazar, Jiho Yang

Technische Universität München

Chair of Scientific Computing

October 9, 2017

### Group members

Group of three CSE students from highly interdisciplinary backgrounds

- Apoorva Gupta Ambassador of Diplomatic Relations
- Jorge Salazar Chief Executive Officer
- Jiho Yang Chief Lavatory & Facilities Manager

### Overview of minimum cut maximum flow problem

### Soviet Rail Network, 1955



Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.



# Why bother solving minimum cut maximum flow problem?

Minimum cut maximum flow problem gives us a mean to:

- Find the smallest total weight of the edges
- That can, if removed, disconnect the source from the sink

This is done based on the theory that:

 In a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in the minimum cut

### Applications of minimum cut maximum flow problem

#### Innumerous amount of applications including:

- Transportation: minimum number of connections to maximise flow
- Project selection: minimum number of machines to purchase to maximise their usage
- Image Segmentation: find pixels assigned to the foreground and background

#### Mathematical Problem: Maximum flow

#### INPUT:

- Graph G = (V, E), V set of vertices and E set of edges
- Vertices  $s, t \in V$  that denote **source** and **sink** respectively.
- Capacity function  $c: E \to \mathbf{R}^+$

#### Mathematical Problem: Maximum flow

- INPUT:
  - Graph G = (V, E), V set of vertices and E set of edges
  - Vertices  $s, t \in V$  that denote **source** and **sink** respectively.
  - Capacity function  $c: E \to \mathbf{R}^+$

- **OUTPUT**: Maximum flow |f| from **s** to **t**, such that:
  - ① Conservation:  $\sum_{(u,v)\in E} f(u,v) = \sum_{(v,u)\in E} f(v,u), v \neq s, t$
  - 2 Capacity:  $f(e) \leq c(e), e \in E$

### Maximum Flow



#### Maximum Flow



• (1) "what comes in, comes out"

#### Maximum Flow



- (1) "what comes in, comes out"
- (2) the flow cannot exceed the capacity of the edge



It is proven that finding the maximum flow is equivalent to finding the minimum cut between source and sink:

It is proven that finding the maximum flow is equivalent to finding the minimum cut between source and sink:



Figure: Different scenarios of cuts

It is proven that finding the maximum flow is equivalent to finding the minimum cut between source and sink:



Figure: Different scenarios of cuts

We can reformulate our initial maximization problem to a minimization problem!



#### We now focus on MinCut algorithms:

- 1 IBFS: Incremental Breadth-First Search
  - State of the art algorithm (2011, 2015), so far the fastest.
  - Based on sequential search in a tree structure to divide the graph and find the minimum cut.
  - Strictly sequential, but provides polynomial run time guarantee.

#### We now focus on MinCut algorithms:

- 1 IBFS: Incremental Breadth-First Search
  - State of the art algorithm (2011, 2015), so far the fastest.
  - Based on sequential search in a tree structure to divide the graph and find the minimum cut.
  - Strictly sequential, but provides polynomial run time guarantee.

#### Primal dual:

- Simple gradient descent algorithm with preconditioner
- Highly parallelizable (see next slides)

Make a cut by assigning the label  $x_i$  to the node i:

- $x_i = 1$ : belongs to the component of the source
- $x_i = 0$ : belongs to the component of the sink

Then the minimization function takes the form:

$$E(x) = \sum_{(i,j)\in E_d} \omega(i,j)x_i(1-x_j)$$

Make a cut by assigning the label  $x_i$  to the node i:

- $x_i = 1$ : belongs to the component of the source
- $x_i = 0$ : belongs to the component of the sink

Then the minimization function takes the form:

$$E(x) = \sum_{(i,j)\in E_d} \omega(i,j)x_i(1-x_j)$$

With some **magic math**, we can simplify the last equation:

$$E(x) = \langle x, f \rangle + ||\nabla_{\omega} x||_1 + b$$

where  $f \in \mathbb{R}^{|V|}$ ,  $b \in \mathbb{R}^+$  depend only on  $\omega(i,j)$ .



Given our function to be minimized, now we can compute our gradient descent steps:

Given our function to be minimized, now we can compute our gradient descent steps:

$$\begin{split} x^{t+1} = & \Pi_{[0,1]^{|V|}} (x^t + diag(\tau_i)(div_{\omega}y^t - f)) \\ y^{t+1} = & \Pi_{[-1,1]^{|E|}} (y^t + diag(\sigma_{(i,j)})(\nabla_{\omega}(2x^{t+1} - x^t))) \end{split}$$

Given our function to be minimized, now we can compute our gradient descent steps:

$$\begin{split} x^{t+1} = & \Pi_{[0,1]^{|V|}} (x^t + diag(\tau_i)(div_{\omega}y^t - f)) \\ y^{t+1} = & \Pi_{[-1,1]^{|E|}} (y^t + diag(\sigma_{(i,j)})(\nabla_{\omega}(2x^{t+1} - x^t))) \end{split}$$

We will perform this procedure until we reach a low error or reach a maximum number of iterations.

# Gradient and Divergence

#### • Gradient:

$$abla_w: \mathbf{R}^{|V|} o \mathbf{R}^{|E|} \ (
abla_\omega u)(\{i,j\}) = \omega_{ij}(u_i - u_j)$$

# Gradient and Divergence

• Gradient:

$$abla_w: \mathbf{R}^{|V|} o \mathbf{R}^{|E|} \ (
abla_\omega u)(\{i,j\}) = \omega_{ij}(u_i - u_j)$$

• Divergence:

$$div_{w}: \mathbf{R}^{|E|} \to \mathbf{R}^{|V|}$$

$$(div_{\omega}p)(i) = \sum_{\substack{(i,j) \in E \\ i < j}} \omega_{ij}p_{ij} - \sum_{\substack{(i,j) \in E \\ j < i}} \omega_{ij}p_{ij}$$

#### Data Structures

Given our graph file, we store  $\omega_{ij}$  (weights on edges of the undirected graph), neighborhood vertices and adjacent edges of a vertex.

• Per vertex: list of adjacent edges and list of nbhd vertices

#### Data Structures

Given our graph file, we store  $\omega_{ij}$  (weights on edges of the undirected graph), neighborhood vertices and adjacent edges of a vertex.

- Per vertex: list of adjacent edges and list of nbhd vertices
- Per edge: list of start and end vertices

#### Data Structures

Given our graph file, we store  $\omega_{ij}$  (weights on edges of the undirected graph), neighborhood vertices and adjacent edges of a vertex.

- Per vertex: list of adjacent edges and list of nbhd vertices
- Per edge: list of start and end vertices
- $\omega_{ij}$ : 1D array of size # edges

### **Implementation**



ullet Store  $\omega$  and f in global memory

- Store  $\omega$  and f in global memory
- UpdateX and Compute Gap can de done in parallel by #vertices threads

- Store  $\omega$  and f in global memory
- UpdateX and Compute Gap can de done in parallel by #vertices threads
- UpdateY can be done in parallel by #edges threads

- Store  $\omega$  and f in global memory
- UpdateX and Compute Gap can de done in parallel by #vertices threads
- UpdateY can be done in parallel by #edges threads
- Global synchronization is necessary between each step of the while loop:

- Store  $\omega$  and f in global memory
- UpdateX and Compute Gap can de done in parallel by #vertices threads
- UpdateY can be done in parallel by #edges threads
- Global synchronization is necessary between each step of the while loop: split updateX and updateY into different kernels!

- Store  $\omega$  and f in global memory
- UpdateX and Compute Gap can de done in parallel by #vertices threads
- UpdateY can be done in parallel by #edges threads
- Global synchronization is necessary between each step of the while loop: split updateX and updateY into different kernels!
- Use shared/constant memory to store  $\omega_{ij}$  and f?

- Store  $\omega$  and f in global memory
- UpdateX and Compute Gap can de done in parallel by #vertices threads
- UpdateY can be done in parallel by #edges threads
- Global synchronization is necessary between each step of the while loop: split updateX and updateY into different kernels!
- Use shared/constant memory to store  $\omega_{ij}$  and f? No, lifetime of a block/ too big to be stored

# Hardware and Data Specifications

- Graphics card: GeForce GTX Titan X 12GB
- CPU processor: Intel Core i7 2600 3.4 GHz
- Variable type: float

### **Validation**

| File Size | Error (%) | t_comp(PD) / t_comp(IBFS) |
|-----------|-----------|---------------------------|
| GB        | 0.97      | 2.67                      |
| GB        | 0.46      | 5.56                      |
| GB        | 0.69      | 7.78                      |
| GB        | 0.001     | 4.23                      |
| Average   | 0.53      | 5.06                      |

Table: Accuracy and Performance of PD-GPU



Figure: Normalised instruction time for different problem sizes





Figure: #nodes vs Time





Figure: #edges vs Time



Figure: Edges vs Nodes for file graph3x3.max.bk, PD: 713ms, IBFS: 8ms



Figure: Edges vs Nodes for file BVZ-venus0.bk, PD:54ms, IBFS:33ms



Figure: Block size effect for file graph3x3.max.bk





Figure: Block size effect for file BVZ-venus0.bk



#### **Encountered Problems**

Several problems were encountered during the project phase:

- Lack of options for code optimization
- Difficulties in understanding and finding the comprehensible source for Primal-Dual Algorithm
- Hyperparameters for Primal-Dual Algorithm difficult and very heuristic to gain convergence
- Complex data structure
- Lack of C++ library support on CUDA (std::vector, struct, class on device)

#### Conclusion

- Despite parallel nature of PD it is very difficult to outperform IBFS
- Coalescing a major issue
- BUT coalescing is the only significant optimization available
- Hence no guarantee that coalescing optimization will necessarily make PD outperform IBFS
- Reduction in file load time (inherently sequential) vital
- Anyhow GPU-accelerated PD greatly benefits from multi-threaded computing (bigger the problem size the better)

#### Future work

#### Implementation wise:

- Improve coalescing
- Possibility: re-implement to use more cublas functions

#### Algorithm wise:

- Use Preconditioners
- Basic PD is like using Jacobi Iteration

# Thank You. Questions???