FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN LÓGICA

Práctica 4: Lógica de Predicados, Sintaxis

- **1.** Encuentre una formalización en lógica de predicados para las siguientes oraciones. Tenga en cuenta que P(x,y), M(x,y), H(x,y), E(x,y) significan, respectivamente, que x es padre, madre, hermano, esposo de y y Mj(x), V(x) significan que x es mujer o varón, respectivamente.
- a) Todas las personas tienen madre.
- b) Todas las personas tienen madre y padre.
- c) Quien tiene una madre tiene un padre.
- d) Juan es abuelo.
- e) Nadie que sea tío es tía.
- f) Nadie que sea abuela de alguien es padre de alguien.
- g) Juan y Lisa son marido y mujer.
- h) Carlos es el cuñado de Mónica.
- 2. Defina el principio de inducción primitiva para TERM y FORM.
- **3.** Sea $\phi \in \text{FORM}$ y las constantes a y b.
- a) Demuestre que para dos variables $x \in y$ distintas,

$$\phi[a/x][b/y] = \phi[b/y][a/x]$$

- b) Demuestre que lo anterior no es válido para el caso x = y.
- **4.** Defina la función $BV: FORM \to 2^{\text{VAR}}$ que, dada una fórmula ϕ , devuelve el conjunto de variables ligadas de ϕ .
- **5.** Realizar la sustitución $\varphi[t/x]$ para los siguientes valores de φ y t:
- a) $\varphi = \forall x \ P(x), \quad t = g(x)$
- b) $\varphi = \forall z \ P(x), \quad t = h(y)$
- c) $\varphi = \forall z \ P(x), \quad t = f(y, z)$
- d) $\varphi = B(x,y) \to \exists x \ C(x), \quad t = s(y)$
- e) $\varphi = \neg (\exists y \ (\forall x \ P(x, y, z)) \land (\exists z \ G(z, y, x))) \rightarrow B(a), \quad t = g(z)$
- f) $\varphi = \exists y \ pow(y, x) = x, \quad t = dos$

Práctica 4 2021 Página 1/2

- **6.** Decida, para cada caso, si el término t está libre para la variable x en la fórmula ϕ :
- a) x para la variable x en (x = x)
- b) y para la variable x en (x = x)
- c) x + y para la variable y en (z = c)
- d) c + y para la variable y en $\exists x(y = x)$
- e) x + w para la variable z en $\forall w(x + z = c)$
- **f**) x + y para la variable z en $\forall w(x + z = c) \land \exists y(z = x)$
- g) x + y para la variable z en $\forall u(u = v) \rightarrow \forall z(z = y)$
- 7. Sea $\phi = \forall x (\forall y R(y, x, z)) \lor \exists z S(x, z)$, donde R es un símbolo de predicado de aridad 3 y S un símbolo de predicado de aridad 2.
- a) Calcule los conjuntos $FV(\phi)$ y $BV(\phi)$.
- b) Sea t = f(f(z, z), g(z)) un término. Realice las sustituciones $\phi[t/x], \phi[t/y], \phi[t/z]$.
- c) ¿Está t libre para x en ϕ ? ¿Para y? ¿Para z?