Matrikelnummer: _____

Klausur zu "Diskrete Strukturen", WS 08/09

B.Sc-Modulprüfung / Diplom-Vorprüfung / Scheinklausur Dr. Timo Hanke, Lehrstuhl D für Mathematik, RWTH Aachen

	Spannbaum (ungewichtet)		minimal	er Spannbaum		
	Distanzen	ı		Hamiltonkreis		
	Eulertour		Zusammenhang	skomponenten		
Der Pe einzelne	be 2. (3 Punkte) terson-Graph besitzt weder e Kante so hinzuzufügen, das ragen Sie die beiden Endknot	s a) ein Hamilt	tonkreis und b) ei	ne Eulertour ei	ntsteht? V	Venn ja,
	$ \begin{array}{c} 2 \\ 7 \\ 9 \\ 6 \\ 8 \end{array} $ $ \begin{array}{c} 4 \end{array} $	Hamiltonkreis	S:	Eulertour:		
Bestim:	be 3. (12 Punkte) men Sie die folgenden Anzah möglich ist.	len. Vereinfach	nen Sie Ihr Ergeb	nis soweit, wie	es ohne T	aschen-
a) Wie	viele injektive Abbildungen g	ibt es von \mathbb{Z}_4 i	in \mathbb{Z}_6 , die $\bar{0}$ auf $\bar{0}$	abbilden?		(3 P.)
/	viele Farbzusammenstellunge		-	r Hand von für	nf Karten	(3 P.)
e) In ze	lich? Mit Farben sind die vie hn Produkten sind vier fehler enthalten weniger als zwei fe	rhaft. Wieviele	Stichproben, bes	tehend aus vier	Produk-	(3 P.)
aufe	Student hat sechs Flaschen linanderfolgenden Abenden tr die Abende zu verteilen, we len soll?	inken möchte.	Wieviele Möglich	keiten hat er, d	die Sorten	(3 P.)
	a) b)		c)	d)		

Aufgabe 4. (8 Punkte)

Gegeben ist die Permutation $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 7 & 5 & 2 & 6 & 3 & 4 \end{pmatrix}$.

- a) Schreiben Sie π als Produkt von disjunkten Zykeln. (3 P.)
- b) Berechnen Sie das Signum von π . (2 P.)
- c) Geben Sie σ so an, dass $(4,6,7) \circ \sigma \circ (3,5,6) = \pi$ gilt. (3 P.) Probehinweis: Die Lösung σ ist ein 3-Zykel.

$$\pi = \boxed{\hspace{1cm}} \operatorname{sgn}(\pi) = \boxed{\hspace{1cm}} \sigma = \boxed{\hspace{1cm}}$$

Aufgabe 5. (7 Punkte)

Bestimmen Sie:

a) Berechnen Sie
$$\lambda, \mu \in \mathbb{Z}$$
 so, dass $\lambda \cdot 192 + \mu \cdot 156 = ggT(192, 156)$ gilt. (2 P.)

- b) Geben Sie in \mathbb{Z}_{192} eine Lösung von $x \cdot \overline{156} = \overline{108}$ an. (2 P.)
- c) Bestimmen Sie in \mathbb{Z}_{69} das multiplikative Inverse von $c := \overline{31}$. (3 P.)

$$\lambda = \boxed{ }$$
 $\mu = \boxed{ }$ $x = \boxed{ }$ $c^{-1} = \boxed{ }$

Aufgabe 6. (6 Punkte)

Es seien zwei Abbildungen $A \xrightarrow{f} B \xrightarrow{g} C$ gegeben, deren Komposition surjektiv ist. Welche der folgenden Aussagen gelten allgemein?

a) g ist surjektiv \Box Ja \Box Nein (2 P.) b) g injektiv \Rightarrow f surjektiv \Box Ja \Box Nein (2 P.) c) f ist surjektiv \Box Ja \Box Nein (2 P.)

Aufgabe 7. (8 Punkte)

Diese Aufgabe ist schriftlich zu bearbeiten und, mit ausführlicher Begründung, auf einem gesonderten Blatt abzugeben.

a) Zeigen Sie, dass für alle
$$a, b, c \in \mathbb{Z}, a \neq 0$$
, gilt: (3 P.)

 $(1) a \cdot b = a \cdot c \Longrightarrow b = c.$

- b) Geben Sie $n \in \mathbb{N}$ sowie $a, b \in \mathbb{Z}_n, a \neq 0$, so an, dass (1) nicht gilt. (2 P.)
- c) Es seien $a, c \in \mathbb{Z}$ teilerfremd. Zeigen Sie für alle $b \in \mathbb{Z}$ gilt: $a|(b \cdot c) \Rightarrow a|b$. (3 P.) Hinweis: Schreiben Sie die Aussagen als Kongruenzen um.