Лекция 5

Схема испытаний и соответствующее распределение

Введем обозначения:

n - число испытаний

р - вероятность успеха при одном испытании

q = 1 - p - вероятность неудачи

І. Схема Бернулли

 $\exists v_n$ - число успехов в серии из n испытаний

$$P_n(v_n = k) = C_n^k p^k q^{n-k}, \qquad k = 0, 1, ..., n$$

Def. Соответствие $k \to C_n^k p^k q^{n-k}$, k = 0, ..., n называется биномиальным распределением (обозначается $B_{n,p}$ или B(n,p))

II. Схема до первого успешного испытания

Пусть проводится бесконечная серия испытаний, которая заканчивается после первого успешного испытания под номером τ

Th.
$$P(\tau = k) = q^{k-1}p$$
, $k = 1, 2, ...$

$$P(\tau = k) = P(\underbrace{\mathbf{H} \dots \mathbf{H} \mathbf{Y}}_{k-1}) = q^{k-1} p$$

Def. Соответствие $k \to q^{k-1}p, k \in \mathbb{N}$ называется геометрическим распределение вероятности (обозначается G_p или G(p))

Nota. Геометрическое распределение обладает свойством нестарения или свойством отсутствия последействия

Th.
$$\Box P(\tau=k)=q^{k-1}p, k\in\mathbb{N}.$$
 Тогда $\forall n,k\geq 0$ $P(\tau>n+k\mid \tau>n)=P(\tau>k)$

Паметим, что
$$P(\tau > m) = q^m$$
, первые m - неудачи
$$P(\tau > n+k|\tau > n) = \frac{P(\tau > n+k,\tau > n)}{P(\tau > n)} = \frac{P(\tau > n+k)}{P(\tau > n)} = \frac{q^{n+k}}{q^n} = q^k$$

$$Nota.\ P(\tau = n + k \mid \tau > n) = p(\tau = k)$$
 - Lab. доказать

III. Схема испытаний с несколькими исходами

Пусть при n независимых испытаний могут произойти m исходов (несовместных) p_i - вероятность i-ого исхода при одном испытании

Th. Вероятность того, что при n испытаниях первый исход появится n_1 раз, второй - n_2 раз, m-ый - n_m $(\sum_{i=1}^m n_i = n)$ равно $P_n(n_1, n_2, \ldots, n_m) = \frac{n!}{n_1! n_2! \ldots n_m!} p_1^{n_1} p_2^{n_2} \ldots p_m^{n_m}$

При m = 2 получаем формулу Бернулли

Рассмотрим следующий благоприятный исход, обозначим A_1

$$A_1 = \underbrace{11 \dots 122 \dots 2}_{n_1} \dots \underbrace{mm \dots m}_{n_m}$$

$$p(A_1) = p_1^{n_1} p_2^{n_2} \dots p_m^{n_m}$$

Все остальные благоприятные исходы имеют ту же вероятность и отличаются лишь расположением i-ых исходов на n позициях, получаем мультиномиальную теорему:

$$\frac{n!}{n_1!n_2!\dots n_m!}$$

В итоге получаем требуемую формулу

Ех. Два одинаковых сильных шахматиста играют шесть партий

Вероятность ничьи в партии - 0.5. Какова вероятность того, что второй игрок выиграет две партии, а еще три сведет к ничьей

1-ый исход - выиграл 1 игрок

2-ой исход - выиграл 2 игрок

3-ий исход - ничья

$$n = 6;$$
 $p_3 = 0.5;$ $p_1 = p_2 = \frac{1 - p_3}{2} = 0.25$

$$P_6(1;2;3) = \frac{6!}{1!2!3!} \left(\frac{1}{4}\right)^1 \left(\frac{1}{4}\right)^2 \left(\frac{1}{2}\right)^3 = \frac{4 \cdot 5 \cdot 6}{2} \frac{1}{2^9} \approx 0.12$$

IV. Урновая схема

В урне N шаров, из которых K шаров белые, N-K - черные

Из урны вынимаем (без учета порядка) n шаров. Найти вероятность, что из них k белых

- а) Схема с возвратом (после каждого раза кладем шар обратно). В этом случае вероятность вынуть белый шар одинакова и равна $\frac{K}{N}$. Получаем схему Бернулли: $P_n(k) = C_n^k \left(\frac{K}{N}\right)^k \left(1 \frac{K}{N}\right)^{n-k}$
- б) Схема без возврата вынутый шар мы выбрасываем, тогда $P_{N,K}(n,k) = \frac{C_K^k C_{N-K}^{n-k}}{C_N^n}$

Def. Соответствие $k \to \frac{C_K^k C_{N-K}^{n-k}}{C_N^n}, k = 0, \dots, n$ называется гипергеометрическим распределением

Nota. Если $K,N\to\infty$ так, что $\frac{K}{N}\approx p$ (не меняется), а n и k зафиксировать, то после выбора n шаров пропорции состава шаров не сильно изменятся, поэтому логично предположить, что гипергеометрическое распределение будет сходиться к биномиальному

Th. Если $K, N \to \infty$ таким образом, что $\frac{K}{N} \to p \in (0; 1)$, а n и $0 \le k \le n$ фиксированы, то вероятность при гипергеометрическом распределении будет стремиться к биномиальному:

$$P_{N,K}(n,k) = \frac{C_K^k C_{N-K}^{n-k}}{C_N^n} \to C_n^k \left(\frac{K}{N}\right)^k \left(1 - \frac{K}{N}\right)^{n-k}$$

Воспользуемся леммой: $C_n^k \sim \frac{n^k}{k!}$ при $n \to \infty$ и фиксированном k Доказательство леммы: $C_n^k = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\dots(n-k+1)}{n^k} \frac{n^k}{k!} = 1\left(1-\frac{1}{n}\right)\dots\left(1-\frac{k-1}{n}\right)\frac{n^k}{k!} \sim \frac{n^k}{k!}$

$$\begin{array}{l}
\square \\
P_{N,K}(n,k) = \frac{C_K^k C_{N-K}^{n-k}}{C_N^n} \sim \frac{K^k}{k!} \frac{(N-K)^{n-k}}{(n-k)!} \frac{n!}{N^n} = \frac{n!}{k!} \frac{(N-K)^{n-k}}{(n-k)!} \frac{K^k}{N^n} = C_n^k \left(\frac{K}{N}\right)^k \left(1 - \frac{K}{N}\right)^{n-k} \to C_n^k \left(\frac{K}{N}\right)^k \left(1 - \frac{K}{N}\right)^{n-k} & \square \\
\square \\
\square \\
\square \\
\square
\end{array}$$

V. Схема Пуассона. Теорема Пуассона для схемы Бернулли

Nota. Если вероятность успеха p в схеме Бернулли мала или близка к 1, то предельная формула Лапласа при недостаточно большом числе испытаний дает достаточно большую погрешность. В этой ситуации следует использовать формулу Пуасоона (формула редких событий) Схема: вероятность числа успеха при одном испытании p_n зависит от числа испытаний n, причем таким образом, что $np_n \approx \lambda = const$

λ - интенсивность появления редких событий в единицу времени в потоке испытаний

Th. 1. (формула Пуассона) Пусть $n \to \infty, p_n \to 0$ таким образом, что $np_n \to \lambda = const > 0$ Тогда вероятность k успехов при n испытаниях: $P_n(k) = C_n^k p_n^k (1-p_n)^{n-k} \underset{n \to \infty}{\longrightarrow} = \frac{\lambda^k}{k!} e^{-\lambda}$

Обозначим $\lambda_n = np_n$. Тогда $p_n = \frac{\lambda_n}{n}$ и $P_n(k) = C_n^k \left(\frac{\lambda_n}{n}\right)^k \left(1 - \frac{\lambda_n}{n}\right)^{n-k} \xrightarrow[n \to \infty]{} \frac{n^k}{k!} \frac{\lambda_n^k}{n^k} \left(1 - \frac{\lambda_n}{n}\right)^n \left(1 - \frac{\lambda_n}{n}\right)^n \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} \left(1 - \frac{\lambda_n}{n}\right)^n = \frac{\lambda_n^k}{k!} \left(1 - \frac{\lambda_n}{n}\right)^{-\frac{\lambda_n}{\lambda_n}} \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} e^{-\lambda_n} \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} e^{-\lambda}$

Th. 2. (оценка погрешности в формуле Пуассона) Пусть v_n - число успехов при n испытаниях в схеме Бернулли

p - вероятность успеха при одном испытании, $\lambda = np, A \subset \{0,1,\dots,n\}$ - произвольное подмножество чисел

Тогда $|P_n(v_n \in A) - \sum_{k \in A} \frac{\lambda^k}{k!} e^{-\lambda}| \le \min(p, np^2) = \min(p, p\lambda)$ (без доказательства)

Def. Соответствие $k \to \frac{\lambda^k}{k!} e^{-\lambda}, k = 0, 1, \dots$ называется распределением Пуассона с параметром $\lambda > 0$ (обозначается Π_{λ})

Ex. Прибор состоит из 1000 элементов, вероятность отказа каждого элемента равна 0.001. Какова вероятность отказа больше двух элементов

$$P_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda}$$

$$n = 1000, p = 0.001, \lambda = 1$$

$$P_n(k>2) = 1 - P_n(k \le 2) = 1 - P(0) - P(1) - P(2) \approx 1 - \left(\frac{1^0}{0!}e^{-1} + \frac{1^1}{1!}e^{-1} + \frac{1^2}{2!}e^{-1}\right) = 1 - \left(1 + 1 + \frac{1}{2}\right)e^{-1} \approx 0.0803$$