due: September 19, 2018

Problem Set 3

Consider a 3-dimensional Hilbert space with orthonormal basis $\{|n\rangle, n=1,2,3\}$ with respect to which the hermitean operators \widehat{A} and \widehat{B} have matrix elements

$$\widehat{A} = \begin{pmatrix} 17 & -7(1-i)\sqrt{2} & 7i\sqrt{3} \\ -7(1+i)\sqrt{2} & -4 & -7(1-i)\sqrt{6} \\ -7i\sqrt{3} & -7(1+i)\sqrt{6} & 3 \end{pmatrix},$$

$$\widehat{B} = \begin{pmatrix} 25 & 3(1-i)\sqrt{2} & -i\sqrt{3} \\ 3(1+i)\sqrt{2} & 28 & 3(1-i)\sqrt{6} \\ i\sqrt{3} & 3(1+i)\sqrt{6} & 27 \end{pmatrix}.$$

For problems 1 - 6, compute or verify the following "by hand" (ie, do not use *Mathematica* or some other automated system), showing your work:

Problem 1: $\det \widehat{A}$. Solution: I find $\det \widehat{A} = -18,432$. (I don't have to show my work because I'm the professor.)

Problem 2: The eigenvalues, λ_n , of \widehat{A} . Solution: I find two eigenvalues $\lambda_1 = -32$ and $\lambda_2 = 24$.

Problem 3: All the corresponding eigenvectors, $|v_n\rangle$, of \widehat{A} . Solution: The eigenvectors $|v_1\rangle$ corresponding to λ_1 all have the form $|v_1\rangle=c(-i,(1-i)\sqrt{2},\sqrt{3})^T$ where c is any complex constant. The eigenvectors $|v_2\rangle$ corresponding to λ_2 all have the form $|v_2\rangle=(-(1-i)\sqrt{2}d+i\sqrt{3}e,d,e)^T$ where d and e are any complex constants.

Problem 4: An orthonormal basis, $\{|f_n\rangle\}$, of eigenvectors corresponding to the eigenvalues λ_n of \widehat{A} . Solution: Normalizing $|v_1\rangle$ (ie, setting its length to 1), I find $|c|=1/\sqrt{8}$. Arbitrarily choosing the phase to be 1, I thus have the normalized eigenvector $|f_1\rangle=\frac{1}{2\sqrt{2}}(-i,(1-i)\sqrt{2},\sqrt{3})^T$. The λ_2 eigenspace is 2-dimensional, so we need to find a pair of orthonormal vectors from this space. Let me arbitrarily choose the first one to be $|v_2\rangle$ with e=0; to be normalized I then have to pick $|d|=1/\sqrt{5}$, and I arbitrarily choose the phase $|f_2\rangle=\frac{1}{\sqrt{5}}(-(1-i)\sqrt{2},1,0)^T$. The second eigenbasis vector in this eigenspace has to be chosen orthogonal to the first, so we need to find a $|v_2\rangle$ so that $0=\langle f_2||v_2\rangle\propto (-(1-i)\sqrt{2},1,0)^*(-(1-i)\sqrt{2}d+i\sqrt{3}e,d,e)^T=-(1+i)\sqrt{2}\cdot(-(1-i)\sqrt{2}d+i\sqrt{3}e)+1\cdot d+0\cdot e=5d+(1-i)\sqrt{6}e$. Therefore we must have $d=-(1-i)\sqrt{6}e/5$, so that $|f_3\rangle=\frac{e}{5}(i\sqrt{3},-(1-i)\sqrt{6},5)^T$. Normalizing this gives $|e|=\sqrt{5}/(2\sqrt{2})$. Choosing the phase to be 1 I then get $|f_3\rangle=\frac{1}{2\sqrt{10}}(i\sqrt{3},-(1-i)\sqrt{6},5)^T$, completing the orthonormal eigenbasis. It should be clear that (infinitely) many different such bases could have been chosen.

Problem 5: The change of basis matrix \widehat{R}_{mn} from the $\{|n\rangle\}$ to the $\{|f_n\rangle\}$ basis (de-

fined by $|f_n\rangle=\sum_m\widehat{R}_{mn}|m\rangle$). Solution: $\widehat{R}_{mn}=\langle m|f_n\rangle$ which are just the components of $|f_n\rangle$. Thus, from the choice of eigenbasis in problem 4 we simply read off

$$\widehat{R} = \frac{1}{2\sqrt{10}} \begin{pmatrix} -i\sqrt{5} & -4(1-i) & i\sqrt{3} \\ (1-i)\sqrt{10} & 2\sqrt{2} & -(1-i)\sqrt{6} \\ \sqrt{15} & 0 & 5 \end{pmatrix}.$$

ie, its three columns are simply the components of $|f_1\rangle$, $|f_2\rangle$, and $|f_3\rangle$.

Problem 6: Verify that \widehat{R} is unitary, ie, that $\widehat{R}^{\dagger}\widehat{R} = I$. Solution:

$$\widehat{R}^{\dagger}\widehat{R} = \frac{1}{40} \begin{pmatrix} i\sqrt{5} & (1+i)\sqrt{10} & \sqrt{15} \\ -4(1+i) & 2\sqrt{2} & 0 \\ -i\sqrt{3} & -(1+i)\sqrt{6} & 5 \end{pmatrix} \begin{pmatrix} -i\sqrt{5} & -4(1-i) & i\sqrt{3} \\ (1-i)\sqrt{10} & 2\sqrt{2} & -(1-i)\sqrt{6} \\ \sqrt{15} & 0 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Problems 7 - 13 refer to the same operators, \widehat{A} and \widehat{B} , defined above. Hint: these problems require very little or no computation.

Problem 7: Compute the matrix elements of \widehat{A} in the $\{|f_n\rangle\}$ basis. Solution: \widehat{A} is just diagonal with the eigenvalues as the diagonal enries in an orthonormal eigenbasis. So

$$\widehat{A} = \begin{pmatrix} -32 & 0 & 0\\ 0 & 24 & 0\\ 0 & 0 & 24 \end{pmatrix}.$$

Problem 8: Write a general expression for \widehat{A} in terms of the eigenvalues λ_i and the projectors, \widehat{P}_{λ_i} , onto the λ_i eigenspace. (Don't compute the \widehat{P}_{λ_i} explicitly yet.) **Solution:** As shown in class, generally $\widehat{A} = \sum_i \lambda_i \widehat{P}_{\lambda_i} = -32P_{\lambda_1} + 24P_{\lambda_2}$.

Problem 9: Write expressions for the \widehat{P}_{λ_i} in terms of the $|f_n\rangle$. Solution: The general expression (derived in class) for a projector onto a subspace with orthonormal basis $\{|v_i\rangle\}$ is $\widehat{P} = \sum_i |v_i\rangle\langle v_i|$. Thus, in our case $\widehat{P}_{\lambda_1} = |f_1\rangle\langle f_1|$ and $\widehat{P}_{\lambda_2} = |f_2\rangle\langle f_2| + |f_3\rangle\langle f_3|$.

Problem 10: Compute the matrix elements of the \widehat{P}_{λ_n} in the $\{|f_n\rangle\}$ basis. Solution: Since, in the $\{|f_n\rangle\}$ basis, $|f_1\rangle=(1,0,0)^T$, etc, we simply have

$$\hat{P}_{\lambda_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\widehat{P}_{\lambda_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

in the $\{|f_n\rangle\}$ basis.

Problem 11: Plug the result of problem 10 into that of problem 8 and verify that

you get back the matrix of \widehat{A} in the $\{|f_n\rangle\}$ basis. Solution:

$$A = -32\widehat{P}_{\lambda_1} + 24\widehat{P}_{\lambda_2} = -32 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + 24 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -32 & 0 & 0 \\ 0 & 24 & 0 \\ 0 & 0 & 24 \end{pmatrix}.$$

Problem 12: Compute the matrix elements of the \widehat{P}_{λ_i} in the $\{|n\rangle\}$ basis. Solution: Since the $|f_n\rangle$ are given in the $\{|n\rangle\}$ basis in problem 4, we get

$$\widehat{P}_{\lambda_1} = \frac{1}{8} \begin{pmatrix} -i \\ (1-i)\sqrt{2} \\ \sqrt{3} \end{pmatrix} \begin{pmatrix} +i & (1+i)\sqrt{2} & \sqrt{3} \end{pmatrix} = \frac{1}{8} \begin{pmatrix} 1 & (1-i)\sqrt{2} & -i\sqrt{3} \\ (1+i)\sqrt{2} & 4 & (1-i)\sqrt{6} \\ +i\sqrt{3} & (1+i)\sqrt{6} & 3 \end{pmatrix},$$

$$\widehat{P}_{\lambda_2} = \frac{1}{5} \begin{pmatrix} -(1-i)\sqrt{2} \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} -(1+i)\sqrt{2} & 1 & 0 \end{pmatrix} + \frac{1}{40} \begin{pmatrix} i\sqrt{3} \\ -(1-i)\sqrt{6} \end{pmatrix} \begin{pmatrix} -i\sqrt{3} & -(1+i)\sqrt{6} & 5 \end{pmatrix}$$

$$= \frac{1}{8} \begin{pmatrix} 7 & -(1-i)\sqrt{2} & i\sqrt{3} \\ -(1+i)\sqrt{2} & 4 & -(1-i)\sqrt{6} \\ -i\sqrt{3} & -(1+i)\sqrt{6} & 5 \end{pmatrix}$$

Problem 13: Plug the result of problem 12 into that of problem 8 and verify that you get back the matrix of \widehat{A} in the $\{|n\rangle\}$ basis. **Solution:**

$$\begin{split} \widehat{A} &= -32\widehat{P}_{\lambda_1} + 24\widehat{P}_{\lambda_2} = -4 \begin{pmatrix} 1 & (1-i)\sqrt{2} & -i\sqrt{3} \\ (1+i)\sqrt{2} & 4 & (1-i)\sqrt{6} \\ +i\sqrt{3} & (1+i)\sqrt{6} & 3 \end{pmatrix} + 3 \begin{pmatrix} 7 & -(1-i)\sqrt{2} & i\sqrt{3} \\ -(1+i)\sqrt{2} & 4 & -(1-i)\sqrt{6} \\ -i\sqrt{3} & -(1+i)\sqrt{6} & 5 \end{pmatrix} \\ &= \begin{pmatrix} 17 & -7(1-i)\sqrt{2} & 7i\sqrt{3} \\ -7(1+i)\sqrt{2} & -4 & -7(1-i)\sqrt{6} \\ -7i\sqrt{3} & -7(1+i)\sqrt{6} & 3 \end{pmatrix}. \end{split}$$

Problems 14 - 16 still refer to the same operators, \widehat{A} and \widehat{B} , defined above. But for these problems I suggest you use *Mathematica* or some other computer program.

Problem 14: Compute $[\widehat{A}, \widehat{B}]$. Solution: $[\widehat{A}, \widehat{B}] = 0$.

Problem 15: Compute the eigenvalues, κ_i , and a corresponding orthonormal basis of eigenvectors, $|w_n\rangle$, of \widehat{B} . Solution: Mathematica gives the eigenvalues $\kappa_1=40$, $\kappa_2=24$, and $\kappa_3=16$, with corresponding (non-normalized) eigenvectors (I cleared the denominators) $|\widetilde{w}_1\rangle=(-i,(1-i)\sqrt{2},\sqrt{3})^T$, $|\widetilde{w}_2\rangle=(i\sqrt{3},0,1)^T$, and $|\widetilde{w}_3\rangle=(-i,(-(1-i)\sqrt{2},\sqrt{3})^T$. To make them orthonormal, we only have to normalize them (divide by their lengths). I get $|w_1\rangle=|\widetilde{w}_1\rangle/\sqrt{8}$, $|w_2\rangle=|\widetilde{w}_2\rangle/\sqrt{3}$, and $|w_3\rangle=|\widetilde{w}_3\rangle/\sqrt{8}$.

Problem 16: Do \widehat{A} and \widehat{B} have a common orthonormal basis of eigenvectors? If not, why not? If they do, what is it? Solution: Yes, they do. It is simply $\{|w_n\rangle\}$,

the eigenbasis of \widehat{B} . You can check that $\widehat{A}|w_1\rangle=-32|w_1\rangle$, $\widehat{A}|w_2\rangle=24|w_2\rangle$, and $\widehat{A}|w_3\rangle=24|w_3\rangle$. Or, we know this must be true since $[\widehat{A},\widehat{B}]=0$ (see problem 18 below).

The remaining three problems refer to arbitrary operators in an unspecified Hilbert space.

Problem 17: Show that any eigenvalue, λ , of a hermitean operator, \widehat{A} , must be real. Solution: Say an eigenvector corresponding to eigenvalue λ is $|v\rangle$, so $\widehat{A}|v\rangle = \lambda |v\rangle$. Consider $\langle v|\widehat{A}|v\rangle$. On the one hand, $\langle v|(\widehat{A}|v\rangle) = \langle v|(\lambda|v\rangle) = \mu \langle v|v\rangle$. On the other hand, $(\langle v|\widehat{A}|v\rangle)^* = \langle v|A^\dagger|v\rangle = \langle v|A|v\rangle = \lambda \langle v|v\rangle$, where we have used that A is hermitean. Comparing the two we learn that $\lambda \langle v|v\rangle = \lambda^* \langle v|v\rangle^* = \lambda^* \langle v|v\rangle$, and so $\lambda = \lambda^*$.

Problem 18: Show that if a hermitean operator \widehat{A} has eigenvectors $|v\rangle$ and $|w\rangle$ corresponding to two different eigenvalues λ and μ , $\lambda \neq \mu$, then $\langle v|w\rangle = 0$. Solution: Consider $\langle v|\widehat{A}|w\rangle$. On the one hand, $\langle v|(\widehat{A}|w\rangle) = \langle v|(\mu|w\rangle) = \mu\langle v|w\rangle$. On the other hand, $(\langle v|\widehat{A}|w\rangle)^* = \langle w|A^\dagger|v\rangle = \langle w|A|v\rangle = \lambda\langle w|v\rangle =$, where we have used that A is hermitean. So, we have shown that $\mu^*\langle v|w\rangle^* = \lambda\langle w|v\rangle$, or, since $\langle v|w\rangle^* = \langle w|v\rangle$, that $(\mu^* - \lambda)\langle w|v\rangle = 0$. But from the previous problem we know that $\mu^* = \mu$, so this becomes $0 = (\mu - \lambda)\langle w|v\rangle$. Since by assumption $\mu - \lambda \neq 0$, this implies $\langle w|v\rangle = 0$.

Problem 19: If an operator, \widehat{A} , has an eigenvalue λ such that all its corresponding eigenvectors are of the form $c|v\rangle$ for some $|v\rangle$ where c is any complex number, and \widehat{A} commutes with another operator, \widehat{B} , then show that $|v\rangle$ is an eigenvector of \widehat{B} . Solution: Consider $\widehat{A}(\widehat{B}|v\rangle) = \widehat{B}\widehat{A}|v\rangle = \widehat{B}(\lambda|v\rangle) = \lambda(\widehat{B}|v\rangle)$. This shows that $\widehat{B}|v\rangle$ is an eigenvector of \widehat{A} with eigenvalue λ . By assumption all such eigenvectors have the form $c|v\rangle$ for some c. Therefore, we must have $\widehat{B}|v\rangle = c|v\rangle$ for some c, showing that $|v\rangle$ is also an eigenvector of \widehat{B} .