Դինամիկ տրամագիծ (diameter)

Day	1
Language	Armenian
Time limit:	5 seconds
Memory limit:	1024 megabytes

Տրված են կշիռներով չուղղորդված n գագաթանոց ծառ և q թարմացումների ցուցակ։ Յուրաքանչյուր թարմացում փոխում է կողերից մեկի կշիռը։ Ձեր խնդիրն է յուրաքանչյուր թարմացումից հետո արտածել ծառի տրամագիծը։

(Երկու գագաթների միջև հեռավորությունը այդ գագաթները միացնող միակ պարզ ձանապարհի կշիռների գումարն է։ Տրամագիծը բոլոր հնարավոր այդպիսի հեռավորություններից մեծագույնն է)։

Մուտքային տվյալներ

Առաջին տողը պարունակում է մեկ բացատով իրարից անջատված երեք ամբողջ n, q և w ($2 \le n \le 100,000,1 \le q \le 100,000,1 \le w \le 20,000,000,000,000)$ թվեր՝ ծառում գագաթների քանակը, թարմացումների քանակը և կողերի կշիռների սահմանը։ Գագաթները համարակալված են 1-ից ո թվերով։

Հաջորդ n-1 տողերը նկարագրում են սկզբնական ծառը։ Այդ տողերից i-րդը պարունակում է մեկ բացատով իրարից անջատված երեք ամբողջ $a_i,\,b_i,\,c_i\;(1\leq a_i,b_i\leq n,\,0\leq c_i< w)$ թվեր, նշանակում է կա a_i և b_i գագաթները միացնող c_i կշռով կող։ Երաշխավորվում է, որ այս n-1 տողերը ծառ են նկարագրում։

Վերջին q տողերը նկարագրում են հարցումները։ Դրանցից j-րդը պարունակում է իրարից մեկ բացատով անջատված երկու d_j , e_j ($0 \le d_j < n-1, 0 \le e_j < w$) ամբողջ թվեր։ Այդ երկու ամբողջ թվերը ձևափոխվում են ըստ հետևյալ սխեմայի.

• $d'_i = (d_i + last) \operatorname{mod}(n-1)$

• $e'_j = (e_j + last) \bmod w$

որտեղ last-ը վերջին հարցման արդյունքն է (սկզբում=0)։ $\left(d'_j,e'_j\right)$ զույգը ներկայացնում է հարցում, որը մուտքում տրված d'_j+1 -րդ կողի կշիռը դարձնում է e'_j ։

Ելքային տվյալներ

Արտածեք q տող։ Յուրաքանչյուր i-ի համար, i-րդ տողը պետք է պարունակի ծառի տրամագիծը i-րդ թարմացումից հետո։

Գևահատում

Ենթախնդիր 1 (11 միավոր)։ $n, q \le 100$ և $w \le 10,000$

Ենթախնդիր 2 (13 միավոր): $n, q \le 5,000$ և $w \le 10,000$

Ենթախնդիր 3 (7 միավոր)։ $w \le 10,000$ և ծառի բոլոր կողերը $\{1,i\}$ տեսքի են։ (Այսպիսով, ծառը 1 կենտրոնով աստղ է)։

Ենթախնդիր 4 (18 միավոր)։ $w \le 10,000$, և ծառի բոլոր կողերը $\{i,2i\}$ և $\{i,2i+1\}$ տեսքի են։ (Այսպիսով, եթե համարենք, որ ծառի արմատը 1 գագաթն է, կստացվի, որ այն հաշվեկշռված երկուական ծառ է։

Ենթախնդիր 5 (24 միավոր)։ երաշխավորվում է, որ յուրաքանչյուր թարմացումից հետո ամենաերկար պարզ ձանապարհն անցում է 1 գագաթով։

Ենթախնդիր 6 (27 միավոր)։ Լրացուցիչ սահմանափակումներ չկան։

Օրինակներ

ստանդարտ մուտբ	ստանդարտ ելբ
4 3 2000	2030
1 2 100	2080
2 3 1000	2050
2 4 1000	
2 1030	
1 1020	
1 890	

ստաևդարտ մուտբ	ստանդարտ ելբ
10 10 10000	6164
1 9 1241	7812
5 6 1630	8385
10 5 1630	6737
2 6 853	6738
10 1 511	7205
5 3 760	6641
8 3 1076	7062
4 10 1483	6581
7 10 40	5155
8 2051	
5 6294	
5 4168	
7 1861	
0 5244	
6 5156	
3 3001	
8 5267	
5 3102	
8 3623	

Պարզաբանում

Առաջին օրինակը պատկվերված է ստորև։ Ձախ կողմի նկարը ցույց է տալիս ծառի սկզբնական վիճակը։ Հաջորդ նկարներից յուրաքանչյուրը պատկերում է ծառը հերթական թարմացումից հետո։ Թարմացված կողի կշիռը ներկված է կանաչ գույնով, իսկ տրամագիծը ներկված է կարմիր գույնով։

Առաջին հարցումը փոխում է 3րդ կողի, այսինքն {2,4}-ի կշիռը 1030-ի։ Կամայական երկու գագաթների միջև մեծագույն հեռավորությունը 2030 է՝ հեռավորությունը 3 և 4 գագաթների միջև։

Քանի որ պատասխանը 2030 է, երկրորդ հարցումը կլինի

$$d'_2 = (1 + 2030) \mod 3 = 0$$

$$e'_2 = (1020 + 2030) \mod 2000 = 1050$$

Այսպիսով {1,2} կողմի կշիռը դառնում է 1050։ Արդյունքում ամենամեծ հեռավորություն ունենում է {1,4} գագաթների զույգը` հեռավորությունը 2080։

Երրորդ հարցումը ապակոդավորվում է այսպես՝

$$d'_3 = (1 + 2080) \mod 3 = 2$$

 $e'_3 = (890 + 2080) \mod 2000 = 970$

Քանի որ $\{2,4\}$ կողմի երկարությունը փոքրանում և դառնում է 970, մեծագույն հեռավորություն` 2050, ունենում է $\{1,3\}$ զույգը։