MATH 2031 Introduction to Real Analysis

March 25, 2013

Tutorial Note 1

Calculus Review Exercises

Problem 1. Draw the graph of the function $f(x) = \frac{x}{x}$.

$$f(x) = \frac{x}{x} = \begin{cases} 1 & : \text{if } x \neq 0 \\ \text{Undefined} & : \text{if } x = 0 \end{cases}$$

Remark:

We should beware of how and where the function f(x) is defined. A priori, $f(x) = \frac{x}{x}$ "seems to be the same" as the constant function f(x) = 1. However, it's **NOT** true, since f(x) is not defined at x = 0 (everything divided by 0 is not well-defined).

Problem 2. Find $\lim_{x\to+\infty} \frac{x+2\cos x}{3+4x}$.

Solution

$$\lim_{x \to +\infty} \frac{x + 2\cos x}{3 + 4x} = \lim_{x \to +\infty} \frac{1 + 2\left(\frac{\cos x}{x}\right)}{\left(\frac{3}{x}\right) + 4} = \frac{1 + 0}{0 + 4} = \frac{1}{4}$$

Here $\cos x$ is a bounded function $(-1 \le \cos x \le 1)$.

Remark:

The reason why we do not apply L'Hospital rule is that not all the conditions are satisfied. The conditions for L'Hospital rule are

1.
$$\left(\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0\right)$$
 or $\left(\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \infty\right)$

2.
$$\lim_{x\to a} \frac{f'(x)}{g'(x)}$$
 exists and $g'(x) \neq 0$ for x near a

then
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

In this problem condition 2 falls as $\lim_{x\to +\infty} \frac{1-2\sin x}{4}$ does not exist due to $\sin x$ oscillating.

Problem 3. Let
$$f(x) = \begin{cases} x^2 & \text{: if } x \neq 3 \\ 3x & \text{: if } x = 3 \end{cases}$$
. Is it true that $f'(x) = \begin{cases} 2x & \text{: if } x \neq 3 \\ 3 & \text{: if } x = 3 \end{cases}$? Solution:

1

For $x \neq 3$, $f(x) = x^2$, so f'(x) = 2x, For x = 3.

$$f'(x) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} = \lim_{h \to 0} \frac{(3+h)^2 - 3(3)}{h} = \lim_{h \to 0} \frac{6h + h^2}{h} = 6$$

i.e.
$$f'(x) = \begin{cases} 2x & : \text{if } x \neq 3 \\ 6 & : \text{if } x = 3 \end{cases} = 2x \neq \begin{cases} 2x & : \text{if } x \neq 3 \\ 3 & : \text{if } x = 3 \end{cases}$$
.

Remark:

In general,
$$f(x) = \begin{cases} g(x) & : \text{if } x \notin S \\ h(x) & : \text{if } x \in S \end{cases}$$
 DOES NOT imply $f'(x) = \begin{cases} g'(x) & : \text{if } x \notin S \\ h'(x) & : \text{if } x \in S \end{cases}$

<u>Problem 4.</u> Must $1^{\infty} = 1$ More precisely, let a_1, a_2, a_3, \cdots be positive real numbers. Must it be true that if $\lim_{n \to \infty} a_n = 1$, then $\lim_{n \to \infty} a_n^n = 1$.

Solution:

It's not true in general, the following are counter-examples.

Take
$$a_n = \sqrt[n]{n}$$
, then $\ln(\lim_{n \to \infty} a_n) = \lim_{n \to \infty} \ln(n^{\frac{1}{n}}) = \lim_{n \to \infty} \frac{\ln n}{n} = \lim_{n \to \infty} \frac{1}{n} = 0$. Hence $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt[n]{n} = 1$.

However,
$$\lim_{n \to \infty} a_n^n = \lim_{n \to \infty} (\sqrt[n]{n})^n = \lim_{n \to \infty} n = \infty \neq 1.$$

Also, Take
$$a_n = 1 + \frac{1}{n}$$
, then $\lim_{n \to \infty} a_n = \lim_{n \to \infty} (1 + \frac{1}{n}) = 1$, but $\lim_{n \to \infty} a_n^n = \lim_{n \to \infty} (1 + \frac{1}{n})^n = e \neq 1$.

<u>Problem 5.</u> We know that $\lim_{x\to+\infty} \sin x$ doesn't exist. If a_1, a_2, a_3, \cdots are positive real numbers with $\lim_{n\to+\infty} a_n = +\infty$, then must it be true that $\lim_{n\to+\infty} \sin a_n$ doesn't exist?

Solution:

It's not always true, so again we will give a counter-example to disprove it.

Take $a_n = n\pi$, then $\lim_{n \to \infty} a_n = \lim_{n \to \infty} n\pi = \infty$, but $\sin a_n = \sin(n\pi) = 0$ for all $n = 1, 2, 3, \dots$, i.e. $\lim_{n \to +\infty} \sin a_n = \lim_{n \to +\infty} 0 = 0$ which exists.

Problem 6. Show $\lim_{n\to\infty} \sin n \neq 0$

Solution:

As shown above that we may not simply conclude that $\lim_{x\to +\infty} \sin x$ doesn't exist so $\lim_{n\to +\infty} \sin n$ also doesn't exist. We will prove the statement by contradiction.

Assume $\lim_{n\to\infty} \sin n = 0$, then $\lim_{n\to\infty} \sin(n+1) = 0$ and $\lim_{n\to\infty} |\cos n| = \lim_{n\to\infty} \sqrt{1-\sin^2(n)} = \sqrt{1-0^2} = 1$. However,

$$\lim_{n\to\infty}|sin(n+1)|=\lim_{n\to\infty}|\underbrace{\sin n}_{\to 0}\cos 1+\sin 1\underbrace{\cos n}_{|\cos n|\to 1}|=\sin 1\neq 0$$

contradiction.

Hence, $\lim_{n\to\infty} \sin n \neq 0$

Problem 7.

Let

$$g(x) = \begin{cases} 1 & : \text{if } x \in [0,1] \cap \mathbb{Q} \\ 0 & : \text{if } x \notin [0,1] \cap \mathbb{Q}(i.e.[0,1] \setminus \mathbb{Q}) \end{cases}$$

For every positive integer n, divide [0,1] into intervals $\left[0,\frac{1}{n}\right],\left[\frac{1}{n},\frac{2}{n}\right],\cdots,\left[\frac{n-1}{n},1\right]$. On the *j*-th interval $\left[\frac{j-1}{n},\frac{j}{n}\right]$, let x_j be its midpoint. Since x_j is rational, we have $g(x_j)=1$. Now

$$\lim_{n \to +\infty} \left(g(x_1) \left(\frac{1}{n} - 0 \right) + g(x_2) \left(\frac{2}{n} - \frac{1}{n} \right) + \dots + g(x_n) \left(1 - \frac{n-1}{n} \right) \right) = 1$$

So
$$\int_0^1 g(x)dx = 1$$
. Is this correct?

It's not true. As we can see if we pick those points in another way we may get other value for the above limit. Say, we take $x_j = \frac{j-1}{n} + \frac{1}{n\pi}$, then x_j is an irrational number, then we have $g(x_j) = 0$, thus the value for the above

In fact, the problem here is that the argument presented in the problem is not sufficient to conclude that

 $\int_0^1 g(x)dx = 1.$ Recall, the definition of integral required that we have to check the above expression for **all possible points** instead of only checking on the midpoint. Also the choice of intervals may vary as long as the maximum length among them tends to zero.

Problem 8. Let
$$h(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{: if } x \neq 0 \\ 0 & \text{: if } x = 0 \end{cases}$$
. Graph $h(x)$. Find $h'(x)$. What is $h''(0)$

Since $-1 \le \sin \frac{1}{x} \le 1$, we get $-x^2 \le h(x) = x^2 \sin \frac{1}{x} \le x^2$. Thus we get the graph below.

Since h(x) is a piecewise defined function, similar to Problem 3, we will do it case-by-case.

For
$$x \neq 0$$
, $h'(x) = \frac{d}{dx}(x^2 \sin(\frac{1}{x})) = 2x \sin(\frac{1}{x}) - \cos(\frac{1}{x})$,
For $x = 0$, $h'(0) = \lim_{x \to 0} \frac{h(x) - h(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin(\frac{1}{x}) - 0}{x} = \lim_{x \to 0} x \sin(\frac{1}{x}) = 0$.

i.e.

$$h'(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & : \text{if } x \neq 0\\ 0 & : \text{if } x = 0 \end{cases}$$

$$h''(0) = \lim_{x \to 0} \frac{h'(x) - h'(0)}{x - 0}$$
$$= \lim_{x \to 0} \frac{2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) - 0}{x}$$
$$= \lim_{x \to 0} \left(2\sin\left(\frac{1}{x}\right) - \frac{\cos\left(\frac{1}{x}\right)}{x}\right)$$

which does not exist.

From the problem, we can see that even if the first derivative of a function exist, it DOES NOT imply that the second derivative of the function exist.