- Thus, the *current can't increase indefinitely*
- Assume $R_1 = 30 \Omega$ and $V_{\gamma} = 0.6 V$
 - \Rightarrow As soon as I_{c1} reaches about 20 mA, Q_5 cuts in, shunts current away from the base of Q_1 , and protects the circuit
- Due to the *exponential dependence* of this *shunted current* on V_{be5}, the *maximum output current* will *saturate near around 20 mA itself*
- Thus, under this case, if the output is accidentally shorted to ground, then $P_1(max)$ will be around 100 mW, which is well within limit, and protection will be achieved

- Similarly, for the *negative half cycle*, this job of *protection will be achieved by the* Q_6 - R_2 *combination*
- The *drop across* R_2 will depend on the *amount of current* being *sunk by* Q_2
- Once this drop reaches the cut-in voltage of Q_6 , it will turn on, and bypass the drive current of Q_2 , thus protecting the circuit
- This protection circuit is widely used due to its efficacy, and the most popular analog building block, the op-amp, uses this protection scheme

> Quantitative Estimate of the Protection Mechanism:

- Assume V_i positive and supplying drive current
 I_i to Q₁
- Output shorted to ground

$$\Rightarrow$$
 $V_o = 0$

- $I_{i} = I_{b1} + I_{c5}$ $I_{c5} = I_{S5} exp(V_{be5}/V_{T})$
- $V_{be5} = I_{c1}R_1$ (assuming $\alpha_1 = 1$ and neglecting I_{b5})

Protection Scheme

- For *small values* of I_{c1} , V_{be5} will be *small*, and I_{c5} will be *negligible*
- Also, $I_{c1} = \beta_1 I_{b1} = \beta_1 (I_i I_{c5})$ $\Rightarrow \beta_1 I_i = I_{c1} + \beta_1 I_{S5} \exp(I_{c1} R_1 / V_T)$
- This is the *final protection expression*
- For *small* I_{c1}, the *second term* on the *RHS* will be *negligible*
 - \Rightarrow I_{c1} would follow I_i linearly with proportionality constant β_1
- As I_{c1} 7, the second term on the RHS increases at a much more rapid rate than the first term

- Once it starts to become *comparable* to the first term, a *very little change* in I_{c1} can *counter a large change* in I_i
 - \Rightarrow I_{c1} gets clamped to almost a constant value of $I_{c1,max}$
- Note that the *protection equation* is *transcendental*
 - \Rightarrow Needs numerical or iterative solution

Protection Characteristic