Tabăra de pregătire a Lotului Naţional de Informatică Cluj-Napoca, 13-17 iunie, 2009 Baraj 6, Seniori

zeroc – Soluție

Autor: Mugurel Ionuț Andreica

O primă idee de soluție este următoarea. Calculăm pentru fiecare pereche de noduri (i,j) lungimea celui mai scurt drum de la i la j (dmin(i,j)). Apoi considerăm fiecare muchie mu (orientată de la a_{mu} la b_{mu}). Dacă $c_{mu}+dmin(b_{mu},a_{mu})=0$, atunci muchia aparține unui ciclu de cost zero. Pentru a calcula valorile dmin(i,j) putem folosi algoritmul Roy-Floyd (având complexitatea $O(N^3)$) sau putem rula N Bellman-Ford-uri, câte unul considerând fiecare nod i ca nod de start (complexitatea unui Bellman-Ford este $O(N \cdot M)$, astfel că, per total, complexitatea acestei abordări este $O(N^2 \cdot M)$). Totuși, dacă Bellman-Ford este implementat în varianta cu coadă, această abordare este mai rapidă decât cea care folosește algoritmul Roy-Floyd. Cu aceste soluții se pot obține 30 (pentru Roy-Floyd) sau 40 de puncte (pentru N Bellman-Ford-uri cu coadă).

O soluție de 100 puncte este următoarea. Se introduce în graf o sursă virtuală S, împreună cu muchii de cost O, orientate de la S la fiecare nod i al grafului. Folosind Bellman-Ford, vom calcula valorile d(i)=distanța minimă de la S la nodul i. Pentru fiecare muchie mu (orientată de la a_{mu} la b_{mu}), avem proprietatea că $d(a_{mu})+c_{mu}\geq d(b_{mu})$ (este evident, deoarece, în caz contrar, $d(b_{mu})$ nu ar reprezenta distanța minimă de la S la b_{mu}); vom asocia muchiei mu un cost $c'_{mu}=d(a_{mu})+c_{mu}-d(b_{mu})$. Toate valorile c'_{mu} sunt mai mari sau egale cu O. Observația importantă este că orice muchie mu care aparține unui ciclu de cost zero are $c'_{mu}=0$. Pe lângă aceste muchii, mai pot exista și alte muchii mu care au $c'_{mu}=0$. Vom considera graful G' din care eliminăm toate muchiile mu care au $c'_{mu}>0$ (deci păstrăm doar muchiile mu cu $c'_{mu}=0$). Dacă o muchie aparține unui ciclu în G', atunci ea aparține unui ciclu de cost O în graful inițial. Pentru a determina dacă o muchie aparține unui ciclu în G' vom calcula componentele tare conexe ale lui G' (cu o complexitate de O(N+M)). O muchie mu (orientată de la a_{mu} la b_{mu}) aparține unui ciclu în G' dacă nodurile a_{mu} și b_{mu} aparțin aceleiași componente tare conexe. Astfel, complexitatea totală a soluției este $O(N\cdot M+N+M)$.