Introduction to Mathematical Concepts (MA 107) - Final Exam IIT Bombay: 25th April, 2019

Instructions: Show all your work for full marks. Answers without justifications will get a ZERO. You may use only the results PROVED in class. State the results used clearly. **Max. Marks:** 40

- (1) Let X and Y be non-empty sets, $A, B \subset X$, and $f: X \to Y$ be a function. Prove or disprove: $f(A \cup B) = f(A) \cup f(B)$.
- (2) Let $a, b \in \mathbb{R}$ be such that a < b. Show that $(a, b) \cap \mathbb{Q} \neq \emptyset$. (You may assume the Archimedean property). [3]
- (3) Let $A = \left(-\frac{1}{2}, \frac{1}{2}\right) \subset \mathbb{R}$. Show that $\text{lub}(A) = \frac{1}{2}$.
- (4) Let $a \in \mathbb{R}$. Find $\bigcap_{n=1}^{\infty} [a, a+1/n]$. Justify your steps. [3]
- (5) Find the limit of the series $\sum a_n$, where $a_n = \frac{1}{n(n+1)}$ for all n. Justify your steps. [3]
- (6) Show that $12\mathbb{Z}$ is a subgroup of \mathbb{Z} .
- (7) Prove or disprove: There exists a bijection from the set $\mathbb{Q} \cap (0,1)$ to $\mathbb{Q} \cap [0,1]$. [3]
- (8) Let $a, b \in \mathbb{N}$.
 - (a) Show there exist unique $q \in \mathbb{N}$ and $r \in \{0, \dots, a-1\}$, such that b = aq + r. (You may assume existence of q and r, and only need to prove the uniqueness).
 - (b) Show that gcd(a, b) = gcd(a, r).
- (9) Let $(a_n), (b_n)$ and (c_n) be sequences of real numbers. Suppose for all $n \in \mathbb{N}$, $a_n \leq b_n \leq c_n$. If (a_n) and (c_n) converse the same limit $L \in \mathbb{R}$, show that (b_n) converges to L. [4]
- (10) Let $a, b, p \in \mathbb{N}$, where p is prime. Show that if p|(ab), then p|a or p|b. Justify your steps. [4]
- (11) Define a relation on \mathbb{C} as follows: For $a, b \in \mathbb{C}, a \sim b$ if |a| = |b|. [5]
 - (a) Is $i \in \mathbb{C}$ related to 2i? Why or why not?
 - (b) Show that \sim is an equivalence relation on \mathbb{C} .
 - (c) Identify the equivalence class of 1 (with justification).
- (12) Let G be a group and $f: G \to G$ be defined as $f(a) = a^{-1}$. Show that f is a (i) well-defined function and (ii) a bijection. [5]

Bonus: (All or nothing)

Prove or disprove: Let \mathcal{A} be a non-empty set with a relation, which is a total order. If \mathcal{A} is in bijection with \mathbb{N} , then every non-empty subset of \mathcal{A} has a least order element under the given order. [3]