1 Analysis

(5285 HW1 Consider the problem of imitation learning with Ciscole MDP) with horizon T and export BICY TO We Juster export demonstration from 7th and fit an imitation policy to to these trajectories so that Ext(s) Tola = + x*(s) |s) = = = = = Exc(s) Tolaz = x*(s) |s) < E 我的是 村部 R(Se)는 不到 不到明 10° 生 1991 8日是 9日, PC)是 \$753 四周日 \$20 8日 8年 8世 1801 日 1801 1. Show that Ex | Proles) - Parlet) < 2TE. Pao (5) = (1-8) thought (1-(1-8)) Pointer (5) & Union brus : Et / Papelse)-Ralle) | = = 28t = 28T

3 Behavioral Cloning

1. Run behavioral cloning (BC) and report results on two tasks: one where a behavioral cloning agent should achieve at least 30% of the performance of the expert, and one environment of your choosing where it does not.

python cs285/scripts/run_hw1.py --expert_policy_file cs285/policies/experts/Ant.pkl --env_name Ant-v4 -- exp_name bc_ant_video --n_iter 1 --expert_data cs285/expert_data/expert_data_Ant-v4.pkl --ep_len 1000 -- eval_batch_size 5000 --video_log_freq 1 --n_layers 2 --size 64

• Eval AverageReturn: 1552.6072998046875

Eval_StdReturn: 292.062255859375
 Eval_MaxReturn: 2147.45068359375
 Eval_MinReturn: 1278.1318359375

Train_AverageEpLen: 1000.0

• Training Loss: 0.03868953138589859

Train_EnvstepsSoFar: 0

• TimeSinceStart: 30.320274114608765

• Initial_DataCollection_AverageReturn: 4681.891673935816

python cs285/scripts/run_hw1.py --expert_policy_file cs285/policies/experts/Hopper.pkl --env_name Hopper-v4 --exp_name bc_hopper_video --n_iter 1 --expert_data cs285/expert_data/expert_data_Hopper-v4.pkl --ep_len 1000 --eval_batch_size 5000 --video_log_freq 1 --n_layers 2 --size 64

Eval_AverageReturn: 1006.6049194335938
Eval_StdReturn: 315.4906005859375
Eval_MaxReturn: 1974.660400390625
Eval_MinReturn: 405.4320068359375
Eval_AverageEpLen: 302.2352941176471

• Train_AverageReturn: 3717.5129936182307

Train_StdReturn: 0.3530361779417035
 Train_MaxReturn: 3717.8660297961724
 Train_MinReturn: 3717.159957440289

• Train_AverageEpLen : 1000.0

• Training Loss: 0.03620936721563339

Train_EnvstepsSoFar: 0

TimeSinceStart: 11.099523305892944

Initial_DataCollection_AverageReturn: 3717.5129936182307

2. Experiment with one set of hyperparameters that affects the performance of the behavioral cloning agent, such as the amount of training steps, the amount of expert data provided, or something that you come up with yourself. For one of the tasks used in the previous question, show a graph of how the BC agent's performance varies with the value of this hyperparameter. In the caption for the graph, state the hyperparameter and a brief rationale for why you chose it.

python cs285/scripts/run_hw1.py --expert_policy_file cs285/policies/experts/Ant.pkl --env_name Ant-v4 -- exp_name bc_ant_video --n_iter 1 --expert_data cs285/expert_data/expert_data_Ant-v4.pkl --ep_len 1000 -- eval_batch_size 5000 --video_log_freq 1 --n_layers 2 --size 64

• Eval_AverageReturn : 1552.6072998046875

Eval_StdReturn: 292.062255859375
 Eval_MaxReturn: 2147.45068359375
 Eval_MinReturn: 1278.1318359375

• Train_AverageEpLen: 1000.0

• Training Loss: 0.03868953138589859

• Train_EnvstepsSoFar : 0

• TimeSinceStart: 30.320274114608765

• Initial_DataCollection_AverageReturn: 4681.891673935816

... --n_layers 4 --size 128

Eval_AverageReturn: 1277.498291015625
 Eval_StdReturn: 362.19354248046875
 Eval_MaxReturn: 1998.316650390625
 Eval_MinReturn: 870.1470336914062

• Eval_AverageEpLen: 998.5

Train_AverageReturn: 4681.891673935816
Train_StdReturn: 30.70862278765526
Train_MaxReturn: 4712.600296723471
Train_MinReturn: 4651.18305114816

• Train_AverageEpLen: 1000.0

• Training Loss: 0.03484756872057915

• Train_EnvstepsSoFar : 0

TimeSinceStart: 33.58611559867859

• Initial_DataCollection_AverageReturn: 4681.891673935816

... --n_layers 1 --size 32

Eval_AverageReturn: 612.7852783203125
 Eval_StdReturn: 90.59205627441406
 Eval_MaxReturn: 790.5887451171875
 Eval_MinReturn: 546.1014404296875

• Eval_AverageEpLen : 1000.0

Train_AverageReturn: 4681.891673935816
Train_StdReturn: 30.70862278765526
Train_MaxReturn: 4712.600296723471
Train_MinReturn: 4651.18305114816

• Train_AverageEpLen: 1000.0

• Training Loss: 0.03733008727431297

Train_EnvstepsSoFar : 0

• TimeSinceStart: 28.81749987602234

• Initial_DataCollection_AverageReturn: 4681.891673935816

4 Dagger

1. Using the same code, you should be able to run DAgger by modifying the runtime parameters as follows:

python cs285/scripts/run_hw1.py --expert_policy_file cs285/policies/experts/Ant.pkl --env_name Ant-v4 --exp_name dagger_ant_video --n_iter 10 --do_dagger --expert_data cs285/expert_data/expert_data_Ant-v4.pkl --ep_len 1000 --eval_batch_size 5000 --video_log_freg 1 --n_layers 2 --size 64

2. Run DAgger and report results on the two tasks you tested previously with behavioral cloning. Report your results in the form of a learning curve, plotting the number of DAgger iterations vs. the policy's mean return, with error bars to show the standard deviation. Include the performance of the expert policy and the behavioral cloning agent on the same plot (as horizontal lines that go across the plot). In the caption, state which task you used, and any details regarding network architecture, amount of data, etc. (as in the previous section).

Environment (Task): Ant-v4

Expert Policy File: Ant.pkl (used to imitate expert behavior)

Learning Method: DAgger (Dataset Aggregation)

• Executed with the --do_dagger flag

Number of Iterations: --n_iter 10 → DAgger was run for 10 iterations

Episode Length: --ep_len 1000 → Each episode consists of 1000 steps

Policy Network Architecture:

• Number of hidden layers: --n_layers 2

• Size of each hidden layer: --size 64

Evaluation Batch Size: --eval_batch_size 5000 → Each evaluation is performed using 5000 steps

5 Discussion

1. How much time did you spend on each part of this assignment.

Analysis	1h
Editing Code	2h
Behavioral Cloning	2h
DAgger	2h

2. Any additional feedback?