1 算法流程

异构深度森林算法:

输入:

训练集 D,样本个数 N, x_i , y_i , i=1,...,N, x_i 的维度为 n, y_i 维度为 m。异构随机森林的总层数为 L,其中一层记为 j,j=1,...L。基学习器随机森林模型记为 RF,逻辑回归模型记为 LR,极端随机森林模型记为 ERF,xgboost 模型记为 XGB,lightgbm 模型记为 LGB,catboost 模型记为 CAB,k 为每一层基学习器的数量。

步骤:

Step 1: j=1

Step 2: 初始化基学习器

$$RF_i, LR_i, ERF_i, XGB_i, LGB_i, CAB_i$$

根据训练集的特征 x_i 和标签 y_i 进行训练,得到模型对于特征的预测概率

$$p_{RF_{ij}}, p_{LR_{ij}}, p_{ERF_{ij}}, p_{XGB_{ij}}, p_{LGB_{ij}}, p_{CAB_{ij}}$$

其中所有的 p 维度为 m, 与 y_i 相同

Step 3: 将特征与预测概率进行融合, 令

$$x_{i}' = [x_{i}, p_{RF_{ij}}, p_{LR_{ij}}, p_{ERF_{ij}}, p_{XGB_{ij}}, p_{LGB_{ij}}, p_{CAB_{ij}}]$$

此时 x_i' 的维度为 (n+k*m)

Step 4: j = j + 1, 从 j = 2 开始,

$$j = j + 1$$

训练基学习器的特征替换为 x_i' , 重复 step2-step3, 直至 j = L

Step 5: 根据最后一次的模型预测概率

 $p_{RF_{iL}}, p_{LR_{iL}}, p_{ERF_{iL}}, p_{XGB_{iL}}, p_{LGB_{iL}}, p_{CAB_{iL}}$

计算

$$p_{final} = \frac{1}{k} [p_{RF_{iL}} + p_{LR_{iL}} + p_{ERF_{iL}} + p_{XGB_{iL}} + p_{LGB_{iL}} + p_{CAB_{iL}}]$$

Step 6: 根据 p_{final} 计算 $y' = \arg \max(p_{final})$ 为最终的模型预测结果

残差深度森林算法:

输入:

训练集 D, 样本个数 N, x_i , y_i , i=1,...,N, x_i 的维度为 n, y_i 维度为 m。异构随机森林的总层数为 L, 其中一层记为 j,j=1,...L。基学习器随机森林模型记为 RF, 极端随机森林模型记为 ERF。k 为每一层基学习器的数量。

步骤:

Step 1: j=1

Step 2: 初始化基学习器 RF_j , ERF_j , 根据训练集的特征 x_i 和标签 y_i 进行训练,得到模型对于特征的预测概率 $p_{RF_{ij}}$, $p_{ERF_{ij}}$, 其中所有的 p 维度为 m,与 y_i 相同。

Step 3: 将特征与预测概率进行融合,令

$$x_i' = [x_i, p_{RF_{ij}}, p_{ERF_{ij}}]$$

此时 x_i' 的维度为 (n+k*m*j)

Step 4: 令 $x = x'_i, j = j + 1$, 重复 step2-step3, 直至 j = L

Step 5: 根据最后一次的模型预测概率 $p_{RF_{iL}}, p_{ERF_{iL}}$ 计算

$$p_{final} = \frac{1}{k} [p_{RF_{iL}} + p_{ERF_{iL}}]$$

Step 6: 根据 p_{final} 计算 $y' = \arg \max(p_{final})$ 为最终的模型预测结果

2 参数说明及模型对比

表 1: 异构深度森林参数设置

	农 1. 升物休及林州多数以且								
参数	含义	取值							
n_bins	非缺失值的分箱数	255							
bin_type	分箱类型	percentile							
\max_{layers}	级联图层的最大层数	20							
$n_{estimators}$	每个级联图层中的估算器数	2							
$n_{ m trees}$	每个估算器中的树数	100							
$min_samples_split$	拆分内部节点所需的最小样本数	2							
$min_samples_leaf$	叶节点上所需的最小样本数	1							
$use_predictor$	是否构建连接到深度森林的预测变量	False							
predictor	连接到深度森林的预测变量的类型	forest							
$n_tolerant_rounds$	进行早停的层数	2							
delta	早停的阈值	1e-5							
${\rm random_state}$	随机种子标识	42							
base_model		Random Forest Classifier							
		ExtraTreesClassifier							
	基学习器类型	LogisticRegression							
		LGBMClassifier							
		${\bf CatBoostClassifier}$							
		XGBClassifier							
									

表 2: 残差深度森林参数设置

	文 2: 残差採度採件参数设直 含义	取值	
n_bins	非缺失值的分箱数	255	
bin_type	分箱类型	percentile	
\max_{layers}	级联图层的最大层数	20	
$n_{estimators}$	每个级联图层中的估算器数	2	
n_trees	每个估算器中的树数	100	
$min_samples_split$	拆分内部节点所需的最小样本数	2	
$min_samples_leaf$	叶节点上所需的最小样本数	1	
$use_predictor$	是否构建连接到深度森林的预测变量	False	
predictor	连接到深度森林的预测变量的类型	forest	
$n_tolerant_rounds$	进行早停的层数	2	
delta	早停的阈值	1e-5	
${\rm random_state}$	随机种子标识	42	
$base_model_name$	基学习器名称	${\rm deep_forest}$	
$base_model_max_layers$	基学习器 (深度森林) 的最大层数	1	
layers	残差深度森林的层数	3	

表 3: 模型对比

模型	Accuracy	Precision	Recall	F1	AUC	KS
DeepForest	93.75	99.78	87.60	93.29	96.76	87.48
${\bf HGDeepForest}$	93.80	99.69	87.77	93.35	96.98	87.52
${\tt HGDeepForest_LR}$	93.73	99.00	88.26	93.32	97.07	87.49
ResDeepForest	88.51	86.92	90.45	88.65	95.55	86.89
${\bf HGResDeepForest}$	93.60	98.67	88.29	93.19	96.78	87.35
Stacking_LR	93.69	98.70	88.45	93.30	96.93	87.38