SISTEMAS PERIÓDICOS

Los ejercicios con (*) son opcionales.

Modos normales en sistemas periódicos

1. Para el sistema de N masas de la figura.

- a) Escriba la ecuación de movimiento transversal para la partícula enésima usando la aproximación de ángulos pequeños.
- b) Proponga una solución de la forma:

$$\Psi_n^{(p)}(t) = A^{(p)} \cos \left(nk^{(p)}a + \alpha^{(p)} \right) \cos \left(\omega^{(p)}t + \phi^{(p)} \right)$$

Halle la relación de dispersión y grafíquela. ¿Depende esta relación de las condiciones de contorno? ¿Cuánto vale la frecuencia más baja? ¿Qué representa dicho modo?

- c) Obtenga las frecuencias correspondientes a los modos normales cuando ambos extremos están libres (atención: ¿cómo sería un "extremo libre" en esta configuración?) y escriba la solución general para la masa enésima.
- d) Ídem. anterior, pero con el extremo izquierdo libre y el derecho fijo a la pared.
- e) Particularice los resultados de los dos ítems anteriores para el caso en que N=3.
- 2. Considere el sistema de péndulos acoplados de la figura.

- a) Escriba la ecuación de movimiento. Proponga una solución semejante a la del problema anterior y halle la relación de dispersión. Compárela con la obtenida en el problema anterior. ¿Cuánto vale la frecuencia más baja? ¿Qué representa dicho modo?
- b) Obtenga las frecuencias correspondientes a los modos normales cuando los resortes de los extremos están fijos y dé las condiciones iniciales para excitar el primer armónico.
- c) Ídem anterior, pero para el caso en que uno de los resortes de los extremos está libre.

Oscilaciones forzadas de sistemas periódicos

3. En este arreglo lineal de péndulos acoplados excitados tiene extremos en z=0 y en z=L. Se aplica una fuerza externa en función del tiempo a la primera masa (z=0), de forma tal que se conoce su amplitud $\Psi(0,t)=A_0\cos(\Omega t)$. Halle el movimiento estacionario del sistema y discuta las hipótesis que hace. Compare con el caso de extremo derecho fijo a una pared (o sea: agregando un resorte a la derecha de la última masa y uniéndolo a la pared).

4. Considere un sistema de péndulos acoplados con un cambio brusco en ω_0^2 en z=L, según se esquematiza en la figura. Halle el movimiento estacionario del sistema y discuta las hipótesis que hace.

5. Para el sistema esquematizado en la figura, calcule $\Psi_n(t),$ si $\Omega<\omega_{\mathrm{min}}.$

