Consider the finite state machine whose transition function δ is given by Table 3.1 in the form of a transition table. Here, $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{0, 1\}, F = \{q_0\}$. Give the entire sequence of states for the input string 110001.

TABLE 3.1 Transition Function Table for Example 3.5

_	State	Input	
90-1 Int al		0	.1
shit	$\rightarrow \widehat{(q_0)}$	q_2	q_1
•	q_i	q_3	q_0
b =a cupting	q_2	$oldsymbol{q}_0$	q_3
أسلما وحوا	<i>9</i> 3	q_1	q ₂
state	000	Z [134

[110001)

Construct a deterministic automaton equivalent to

$$M = (\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_0\})$$

where δ is defined by its state table (see Table 3.2).

TABLE 3.2 State Table for Example 3.6 State/ Σ 0 1 $\frac{1}{\sqrt{q_0}}$ $\frac{q_0}{q_1}$ $\frac{q_0}{q_1}$ $\frac{q_0}{q_1}$ $\frac{q_0}{q_1}$ $\frac{q_0}{q_0}$ $\frac{q_1}{q_1}$ $\frac{q_0}{q_0}$ $\frac{q_1}{q_1}$ $\frac{q_0}{q_0}$ $\frac{q_1}{q_1}$

2 Toi 43

1) Copy ear thy same trous trous from Enthel Stete (Kon)

2) Construct DFA at hun Time depending states in the table

Find a deterministic acceptor equivalent to $M = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_2\})$ where δ is as given by Table 3.4.
 TABLE 3.4
 State Table for Example 3.7
 State/S q_0, q_1