ARM[®] and Thumb[®]-2 Instruction Set Quick Reference Card

Key to Tables			
Rm {, <opsh>}</opsh>	See Table Register, optionally shifted by constant	<reglist></reglist>	A comma-separated list of registers, enclosed in braces { and }.
<operand2></operand2>	See Table Flexible Operand 2. Shift and rotate are only available as part of Operand2.	<reglist-pc></reglist-pc>	As <reglist>, must not include the PC.</reglist>
<fields></fields>	See Table PSR fields.	<reglist+pc></reglist+pc>	As <reglist>, including the PC.</reglist>
<psr></psr>	APSR (Application Program Status Register), CPSR (Current Processor Status Register), or SPSR (Saved Processor Status Register)	<flags></flags>	Either nzcvq (ALU flags PSR[31:27]) or g (SIMD GE flags PSR[19:16])
C*, V*	Flag is unpredictable in Architecture v4 and earlier, unchanged in Architecture v5 and later.	§	See Table ARM architecture versions.
<rs sh="" =""></rs>	Can be Rs or an immediate shift value. The values allowed for each shift type are the same as those	+/-	+ or (+ may be omitted.)
	shown in Table Register, optionally shifted by constant.	<iflags></iflags>	Interrupt flags. One or more of a, i, f (abort, interrupt, fast interrupt).
x,y	B meaning half-register [15:0], or T meaning [31:16].	<p_mode></p_mode>	See Table Processor Modes
<imm8m></imm8m>	ARM: a 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits.	SPm	SP for the processor mode specified by <p_mode></p_mode>
	Thumb: a 32-bit constant, formed by left-shifting an 8-bit value by any number of bits, or a bit	<lsb></lsb>	Least significant bit of bitfield.
	pattern of one of the forms 0xXYXYXYXY, 0x00XY00XY or 0xXY00XY00.	<width></width>	Width of bitfield. <width> + <lsb> must be <= 32.</lsb></width>
<pre><prefix></prefix></pre>	See Table Prefixes for Parallel instructions	{X}	RsX is Rs rotated 16 bits if X present. Otherwise, RsX is Rs.
{IA IB DA DB}	Increment After, Increment Before, Decrement After, or Decrement Before.	{!}	Updates base register after data transfer if ! present (pre-indexed).
	IB and DA are not available in Thumb state. If omitted, defaults to IA.	{S}	Updates condition flags if S present.
<size></size>	B, SB, H, or SH, meaning Byte, Signed Byte, Halfword, and Signed Halfword respectively.	{T}	User mode privilege if T present.
	SB and SH are not available in STR instructions.	{R}	Rounds result to nearest if R present, otherwise truncates result.

Operation		§	Assembler	S updates	Action	Notes
Add	Add		ADD{S} Rd, Rn, <operand2></operand2>	N Z C V	Rd := Rn + Operand2	N
	with carry		ADC{S} Rd, Rn, <operand2></operand2>	N Z C V	Rd := Rn + Operand2 + Carry	N
	wide	T2	ADD Rd, Rn, # <imm12></imm12>		Rd := Rn + imm12, imm12 range 0-4095	T, P
	saturating {doubled}	5E	Q{D}ADD Rd, Rm, Rn		Rd := SAT(Rm + Rn) doubled: $Rd := SAT(Rm + SAT(Rn * 2))$	Q
Address	Form PC-relative address		ADR Rd, <label></label>		Rd := <label>, for <label> range from current instruction see Note L</label></label>	N, L
Subtract	Subtract		SUB{S} Rd, Rn, <operand2></operand2>	N Z C V	Rd := Rn – Operand2	N
	with carry		SBC{S} Rd, Rn, <operand2></operand2>	N Z C V	Rd := Rn - Operand2 - NOT(Carry)	N
	wide	T2	SUB Rd, Rn, # <imm12></imm12>		Rd := Rn – imm12, imm12 range 0-4095	T, P
	reverse subtract		RSB{S} Rd, Rn, <operand2></operand2>	N Z C V	Rd := Operand2 - Rn	N
	reverse subtract with carry		RSC{S} Rd, Rn, <operand2></operand2>	N Z C V	Rd := Operand2 - Rn - NOT(Carry)	A
	saturating {doubled}	5E	Q{D}SUB Rd, Rm, Rn		$Rd := SAT(Rm - Rn) \qquad \qquad doubled: Rd := SAT(Rm - SAT(Rn * 2))$	Q
	Exception return without stack		SUBS PC, LR, # <imm8></imm8>	N Z C V	PC = LR – imm8, CPSR = SPSR(current mode), imm8 range 0-255.	
Parallel	Halfword-wise addition	6	<pre><prefix>ADD16 Rd, Rn, Rm</prefix></pre>		Rd[31:16] := Rn[31:16] + Rm[31:16], Rd[15:0] := Rn[15:0] + Rm[15:0]	G
arithmetic	Halfword-wise subtraction	6	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>		Rd[31:16] := Rn[31:16] - Rm[31:16], Rd[15:0] := Rn[15:0] - Rm[15:0]	G
	Byte-wise addition	6	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>		Rd[31:24] := Rn[31:24] + Rm[31:24], Rd[23:16] := Rn[23:16] + Rm[23:16], Rd[15:8] := Rn[15:8] + Rm[15:8], Rd[7:0] := Rn[7:0] + Rm[7:0]	G
	Byte-wise subtraction	6	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>		Rd[31:24] := Rn[31:24] - Rm[31:24], Rd[23:16] := Rn[23:16] - Rm[23:16], Rd[15:8] := Rn[15:8] - Rm[15:8], Rd[7:0] := Rn[7:0] - Rm[7:0]	G
	Halfword-wise exchange, add, subtract	6	<pre><prefix>ASX Rd, Rn, Rm</prefix></pre>		Rd[31:16] := Rn[31:16] + Rm[15:0], Rd[15:0] := Rn[15:0] - Rm[31:16]	G
	Halfword-wise exchange, subtract, add	6	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>		Rd[31:16] := Rn[31:16] - Rm[15:0], Rd[15:0] := Rn[15:0] + Rm[31:16]	G
	Unsigned sum of absolute differences	6	USAD8 Rd, Rm, Rs		Rd := Abs(Rm[31:24] - Rs[31:24]) + Abs(Rm[23:16] - Rs[23:16]) + Abs(Rm[15:8] - Rs[15:8]) + Abs(Rm[7:0] - Rs[7:0])	
	and accumulate	6	USADA8 Rd, Rm, Rs, Rn		Rd := Rn + Abs(Rm[31:24] - Rs[31:24]) + Abs(Rm[23:16] - Rs[23:16]) + Abs(Rm[15:8] - Rs[15:8]) + Abs(Rm[7:0] - Rs[7:0])	
Saturate	Signed saturate word, right shift	6	SSAT Rd, # <sat>, Rm{, ASR <sh>}</sh></sat>		Rd := SignedSat((Rm ASR sh), sat). <sat> range 1-32, <sh> range 1-31.</sh></sat>	Q, R
	Signed saturate word, left shift	6	SSAT Rd, # <sat>, Rm{, LSL <sh>}</sh></sat>		Rd := SignedSat((Rm LSL sh), sat). <sat> range 1-32, <sh> range 0-31.</sh></sat>	Q
	Signed saturate two halfwords	6	SSAT16 Rd, # <sat>, Rm</sat>		Rd[31:16] := SignedSat(Rm[31:16], sat), Rd[15:0] := SignedSat(Rm[15:0], sat). <sat> range 1-16.</sat>	Q
	Unsigned saturate word, right shift	6	USAT Rd, # <sat>, Rm{, ASR <sh>}</sh></sat>		Rd := UnsignedSat((Rm ASR sh), sat). <sat> range 0-31, <sh> range 1-31.</sh></sat>	Q, R
	Unsigned saturate word, left shift	6	USAT Rd, # <sat>, Rm{, LSL <sh>}</sh></sat>		Rd := UnsignedSat((Rm LSL sh), sat). <sat> range 0-31, <sh> range 0-31.</sh></sat>	Q
	Unsigned saturate two halfwords	6	USAT16 Rd, # <sat>, Rm</sat>		Rd[31:16] := UnsignedSat(Rm[31:16], sat), Rd[15:0] := UnsignedSat(Rm[15:0], sat) < sat > range 0-15.	Q

Operation		§	Assembler	S updates	Action	Notes
Multiply	Multiply	3	MUL{S} Rd, Rm, Rs	N Z C*	Rd := (Rm * Rs)[31:0] (If Rs is Rd, S can be used in Thumb-2)	N, S
indicipiy	and accumulate		MLA{S} Rd, Rm, Rs, Rn	N Z C*	Rd := (Rn + (Rm * Rs))[31:0]	S
	and subtract	T2	MLS Rd, Rm, Rs, Rn	IV Z C	Rd := (Rn - (Rm * Rs))[31:0] $Rd := (Rn - (Rm * Rs))[31:0]$	3
	unsigned long	12	UMULL{S} RdLo, RdHi, Rm, Rs	N Z C* V	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S
	unsigned accumulate long		UMLAL{S} RdLo, RdHi, Rm, Rs	N Z C* V		S
	unsigned double accumulate long	6	UMAAL RdLo, RdHi, Rm, Rs	N Z C V	RdHi,RdLo := unsigned(RdHi + RdLo + Rm * Rs)	3
		0	SMULL{S} RdLo, RdHi, Rm, Rs	N Z C* V		S
	Signed multiply long			N Z C* V		S
	and accumulate long 16 * 16 bit	517	SMLAL{S} RdLo, RdHi, Rm, Rs	N Z C* V		3
	32 * 16 bit	5E 5E	SMULxy Rd, Rm, Rs		$Rd := Rm[x] * Rs[y]$ $Rd := (Rm * Rs[x])^{4/2} \cdot $	
			SMULWy Rd, Rm, Rs		Rd := (Rm * Rs[y])[47:16]	
	16 * 16 bit and accumulate	5E	SMLAxy Rd, Rm, Rs, Rn		Rd := Rn + Rm[x] * Rs[y]	Q
	32 * 16 bit and accumulate	5E	SMLAWy Rd, Rm, Rs, Rn		Rd := Rn + (Rm * Rs[y])[47:16]	Q
	16 * 16 bit and accumulate long	5E	SMLALxy RdLo, RdHi, Rm, Rs		RdHi,RdLo := RdHi,RdLo + Rm[x] * Rs[y]	
	Dual signed multiply, add	6	SMUAD(X) Rd, Rm, Rs		Rd := Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16]	Q
	and accumulate	6	SMLAD(X) Rd, Rm, Rs, Rn		Rd := Rn + Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16]	Q
	and accumulate long	6	SMLALD{X} RdLo, RdHi, Rm, Rs		RdHi,RdLo := RdHi,RdLo + Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16]	
	Dual signed multiply, subtract	6	SMUSD{X} Rd, Rm, Rs		Rd := Rm[15:0] * RsX[15:0] - Rm[31:16] * RsX[31:16]	Q
	and accumulate	6	SMLSD{X} Rd, Rm, Rs, Rn		Rd := Rn + Rm[15:0] * RsX[15:0] - Rm[31:16] * RsX[31:16]	Q
	and accumulate long	6	SMLSLD{X} RdLo, RdHi, Rm, Rs		RdHi,RdLo := RdHi,RdLo + Rm[15:0] * RsX[15:0] - Rm[31:16] * RsX[31:16]	
	Signed top word multiply	6	SMMUL{R} Rd, Rm, Rs		Rd := (Rm * Rs)[63:32]	
	and accumulate	6	SMMLA{R} Rd, Rm, Rs, Rn		Rd := Rn + (Rm * Rs)[63:32]	
	and subtract	6	SMMLS{R} Rd, Rm, Rs, Rn		Rd := Rn - (Rm * Rs)[63:32]	
	with internal 40-bit accumulate	XS	MIA Ac, Rm, Rs		Ac := Ac + Rm * Rs	
	packed halfword	XS	MIAPH Ac, Rm, Rs		Ac := Ac + Rm[15:0] * Rs[15:0] + Rm[31:16] * Rs[31:16]	
	halfword	XS	MIAxy Ac, Rm, Rs		Ac := Ac + Rm[x] * Rs[y]	
Divide	Signed or Unsigned	RM	<op> Rd, Rn, Rm</op>		$Rd := Rn / Rm \qquad \qquad is SDIV (signed) or UDIV (unsigned)$	T
Move	Move		MOV{S} Rd, <operand2></operand2>	N Z C	Rd := Operand2 See also Shift instructions	N
data	not		MVN{S} Rd, <operand2></operand2>	N Z C	Rd := 0xFFFFFFFF EOR Operand2	N
	top	T2	MOVT Rd, # <imm16></imm16>		Rd[31:16] := imm16, Rd[15:0] unaffected, imm16 range 0-65535	
	wide	T2	MOV Rd, # <imm16></imm16>		Rd[15:0] := imm16, Rd[31:16] = 0, imm16 range 0-65535	
	40-bit accumulator to register	XS	MRA RdLo, RdHi, Ac		RdLo := Ac[31:0], RdHi := Ac[39:32]	
	register to 40-bit accumulator	XS	MAR Ac, RdLo, RdHi		Ac[31:0] := RdLo, Ac[39:32] := RdHi[7:0]	
Shift	Arithmetic shift right		ASR{S} Rd, Rm, <rs sh></rs sh>	N Z C	$Rd := ASR(Rm, Rs sh) \qquad Same as MOV{S} Rd, Rm, ASR < Rs sh>$	· N
	Logical shift left		LSL{S} Rd, Rm, <rs sh></rs sh>	N Z C	$Rd := LSL(Rm, Rslsh)$ Same as MOV{S} Rd, Rm, LSL <rs sh="" =""></rs>	N
	Logical shift right		LSR{S} Rd, Rm, <rs sh=""></rs>	N Z C	$Rd := LSR(Rm, Rs sh)$ Same as MOV{S} Rd, Rm, LSR <rs sh="" =""></rs>	N
	Rotate right		ROR{S} Rd, Rm, <rs sh></rs sh>	N Z C	$Rd := ROR(Rm, Rs sh)$ Same as $MOV\{S\}$ Rd, Rm, ROR $$	N
	Rotate right with extend		RRX{S} Rd, Rm	N Z C	Rd := RRX(Rm) Same as MOV(S) Rd, Rm, RRX	
Count lea	ding zeros	5	CLZ Rd, Rm		Rd := number of leading zeros in Rm	1
Compare	Compare		CMP Rn, <operand2></operand2>	NZCV	Update CPSR flags on Rn – Operand2	N
-	negative		CMN Rn, <operand2></operand2>	NZCV	Update CPSR flags on Rn + Operand2	N
Logical	Test		TST Rn, <operand2></operand2>	N Z C	Update CPSR flags on Rn AND Operand2	N
1	Test equivalence		TEQ Rn, <operand2></operand2>	N Z C	Update CPSR flags on Rn EOR Operand2	
	AND		AND{S} Rd, Rn, <operand2></operand2>	N Z C	Rd := Rn AND Operand2	N
	EOR		EOR{S} Rd, Rn, <operand2></operand2>	N Z C	Rd := Rn EOR Operand2	N
	ORR		ORR(S) Rd, Rn, <operand2></operand2>	N Z C	Rd := Rn OR Operand2	N
	ORN	T2	ORN(S) Rd, Rn, <operand2></operand2>	N Z C	Rd := Rn OR NOT Operand2	T
	Bit Clear	1.2	BIC(S) Rd, Rn, <operand2></operand2>	N Z C	Rd := Rn AND NOT Operand2	N
	Dit Cicai		Dicio, Nu, Nii, Operaliuz>	11 Z C	Na Nii 1110 1101 Operanaz	14

ARM and Thumb-2 Instruction Set

Quick Reference Card

Operation		§	Assembler	Action	Notes
Bit field	Bit Field Clear	T2	BFC Rd, # <lsb>, #<width></width></lsb>	Rd[(width+lsb-1):lsb] := 0, other bits of Rd unaffected	
	Bit Field Insert	T2	BFI Rd, Rn, #<1sb>, # <width></width>	Rd[(width+lsb-1):lsb] := Rn[(width-1):0], other bits of Rd unaffected	
	Signed Bit Field Extract	T2	SBFX Rd, Rn, # <lsb>, #<width></width></lsb>	Rd[(width-1):0] = Rn[(width+lsb-1):lsb], Rd[31:width] = Replicate(Rn[width+lsb-1])	
	Unsigned Bit Field Extract	T2	UBFX Rd, Rn, # <lsb>, #<width></width></lsb>	Rd[(width-1):0] = Rn[(width+lsb-1):lsb], Rd[31:width] = Replicate(0)	
Pack	Pack halfword bottom + top	6	PKHBT Rd, Rn, Rm{, LSL # <sh>}</sh>	Rd[15:0] := Rn[15:0], Rd[31:16] := (Rm LSL sh)[31:16], sh 0-31.	
	Pack halfword top + bottom	6	PKHTB Rd, Rn, Rm{, ASR # <sh>}</sh>	Rd[31:16] := Rn[31:16], Rd[15:0] := (Rm ASR sh)[15:0]. sh 1-32.	
Signed	Halfword to word	6	SXTH Rd, Rm{, ROR # <sh>}</sh>	Rd[31:0] := SignExtend((Rm ROR (8 * sh))[15:0]). sh 0-3.	N
extend	Two bytes to halfwords	6	SXTB16 Rd, Rm{, ROR # <sh>}</sh>	Rd[31:16] := SignExtend((Rm ROR (8 * sh))[23:16]), Rd[15:0] := SignExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.	
	Byte to word	6	SXTB Rd, Rm{, ROR # <sh>}</sh>	Rd[31:0] := SignExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.	N
Unsigned	Halfword to word	6	UXTH Rd, Rm{, ROR # <sh>}</sh>	Rd[31:0] := ZeroExtend((Rm ROR (8 * sh))[15:0]). sh 0-3.	N
extend	Two bytes to halfwords	6	UXTB16 Rd, Rm{, ROR # <sh>}</sh>	Rd[31:16] := ZeroExtend((Rm ROR (8 * sh))[23:16]), Rd[15:0] := ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.	
	Byte to word	6	UXTB Rd, Rm{, ROR # <sh>}</sh>	Rd[31:0] := ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.	N
Signed	Halfword to word, add	6	SXTAH Rd, Rn, Rm{, ROR # <sh>}</sh>	Rd[31:0] := Rn[31:0] + SignExtend((Rm ROR (8 * sh))[15:0]). sh 0-3.	
extend with add	Two bytes to halfwords, add	6	SXTAB16 Rd, Rn, Rm{, ROR # <sh>}</sh>	$ \begin{array}{l} Rd[31:16] := Rn[31:16] + SignExtend((Rm ROR (8*sh))[23:16]), \\ Rd[15:0] := Rn[15:0] + SignExtend((Rm ROR (8*sh))[7:0]). sh 0-3. \\ \end{array} $	
	Byte to word, add	6	SXTAB Rd, Rn, Rm{, ROR # <sh>}</sh>	Rd[31:0] := Rn[31:0] + SignExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.	
Unsigned	Halfword to word, add	6	UXTAH Rd, Rn, Rm{, ROR # <sh>}</sh>	Rd[31:0] := Rn[31:0] + ZeroExtend((Rm ROR (8 * sh))[15:0]). sh 0-3.	
extend with add	Two bytes to halfwords, add 6 UXTAB16 Rd, Rn, Rm{, ROR # <sh>}</sh>		UXTAB16 Rd, Rn, Rm{, ROR # <sh>}</sh>	$ \begin{array}{l} Rd[31:16] := Rn[31:16] + ZeroExtend((Rm ROR (8*sh))[23:16]), \\ Rd[15:0] := Rn[15:0] + ZeroExtend((Rm ROR (8*sh))[7:0]). sh 0-3. \end{array} $	
	Byte to word, add	6	UXTAB Rd, Rn, Rm{, ROR # <sh>}</sh>	Rd[31:0] := Rn[31:0] + ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.	
Reverse	Bits in word	T2	RBIT Rd, Rm	For $(i = 0; i < 32; i++)$: $Rd[i] = Rm[31-i]$	
	Bytes in word	6	REV Rd, Rm	Rd[31:24] := Rm[7:0], Rd[23:16] := Rm[15:8], Rd[15:8] := Rm[23:16], Rd[7:0] := Rm[31:24]	N
	Bytes in both halfwords	6	REV16 Rd, Rm	Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:24] := Rm[23:16], Rd[23:16] := Rm[31:24]	N
	Bytes in low halfword, sign extend	6	REVSH Rd, Rm	Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:16] := Rm[7] * &FFFF	N
Select	Select bytes	6	SEL Rd, Rn, Rm	Rd[7:0] := Rn[7:0] if GE[0] = 1, else Rd[7:0] := Rm[7:0] Bits[15:8], [23:16], [31:24] selected similarly by GE[1], GE[2], GE[3]	
If-Then	If-Then	T2	<pre>IT{pattern} {cond}</pre>	Makes up to four following instructions conditional, according to pattern. pattern is a string of up to three letters. Each letter can be T (Then) or E (Else). The first instruction after IT has condition cond. The following instructions have condition cond if the corresponding letter is T, or the inverse of cond if the corresponding letter is E. See Table Condition Field for available condition codes.	T, U
Branch	Branch		B <label></label>	PC := label. label is this instruction ±32MB (T2: ±16MB, T: -252 - +256B)	N, B
	with link		BL <label></label>	LR := address of next instruction, PC := label. label is this instruction ±32MB (T2: ±16MB).	
	and exchange	4T	BX Rm	PC := Rm. Target is Thumb if Rm[0] is 1, ARM if Rm[0] is 0.	N
	with link and exchange (1)	5T	BLX <label></label>	LR := address of next instruction, PC := label, Change instruction set. label is this instruction ±32MB (T2: ±16MB).	С
	with link and exchange (2)	5	BLX Rm	LR := address of next instruction, PC := Rm[31:1]. Change to Thumb if Rm[0] is 1, to ARM if Rm[0] is 0.	N
	and change to Jazelle state	5J	BXJ Rm	Change to Jazelle state if available	
	Compare, branch if (non) zero	T2	CB{N}Z Rn, <label></label>	If Rn {== or !=} 0 then PC := label. label is (this instruction + 4-130).	N,T,U
	Table Branch Byte	T2	TBB [Rn, Rm]	PC = PC + ZeroExtend(Memory(Rn + Rm, 1) << 1). Branch range 4-512. Rn can be PC.	T, U
	Table Branch Halfword	T2	TBH [Rn, Rm, LSL #1]	PC = PC + ZeroExtend(Memory(Rn + Rm << 1, 2) << 1). Branch range 4-131072. Rn can be PC.	T, U
Move to or	PSR to register		MRS Rd, <psr></psr>	Rd := PSR	
from PSR	register flags to APSR flags		MSR APSR_ <flags>, Rm</flags>	APSR_ <flags> := Rm</flags>	
	immediate flags to APSR flags		MSR APSR_ <flags>, #<imm8m></imm8m></flags>	APSR_ <flags> := immed_8r</flags>	
	register to PSR		MSR <psr>_<fields>, Rm</fields></psr>	PSR := Rm (selected bytes only)	
	immediate to PSR		MSR <psr>_<fields>, #<imm8m></imm8m></fields></psr>	PSR := immed_8r (selected bytes only)	
Processor	Change processor state	6	CPSID <iflags> {, #<p_mode>}</p_mode></iflags>	Disable specified interrupts, optional change mode.	U, N
state		6	CPSIE <iflags> {, #<p_mode>}</p_mode></iflags>	Enable specified interrupts, optional change mode.	U, N
change	Change processor mode	6	CPS # <p_mode></p_mode>		U
	Set endianness	6	SETEND <endianness></endianness>	Sets endianness for loads and stores. <endianness> can be BE (Big Endian) or LE (Little Endian).</endianness>	U, N

Single data item loads and stores		§	Assembler	Action if <op> is LDR</op>	Action if <op> is STR</op>	Notes
Load	Immediate offset		<pre><op>{size}{T} Rd, [Rn {, #<offset>}]{!}</offset></op></pre>	Rd := [address, size]	[address, size] := Rd	1, N
or store	Post-indexed, immediate		<pre><op>{size}{T} Rd, [Rn], #<offset></offset></op></pre>	Rd := [address, size]	[address, size] := Rd	2
word, byte or halfword	Register offset		<pre><op>{size} Rd, [Rn, +/-Rm {, <opsh>}]{!}</opsh></op></pre>	Rd := [address, size]	[address, size] := Rd	3, N
or nanword	Post-indexed, register		<pre><op>{size}{T} Rd, [Rn], +/-Rm {, <opsh>}</opsh></op></pre>	Rd := [address, size]	[address, size] := Rd	4
	PC-relative		<pre><op>{size} Rd, <label></label></op></pre>	Rd := [label, size]	Not available	5, N
Load or store	Immediate offset	5E	<pre><op>D Rd1, Rd2, [Rn {, #<offset>}]{!}</offset></op></pre>	Rd1 := [address], Rd2 := [address + 4]	[address] := Rd1, [address + 4] := Rd2	6, 9
doubleword	Post-indexed, immediate	5E	<pre><op>D Rd1, Rd2, [Rn], #<offset></offset></op></pre>	Rd1 := [address], Rd2 := [address + 4]	[address] := Rd1, [address + 4] := Rd2	6, 9
	Register offset	5E	<pre><op>D Rd1, Rd2, [Rn, +/-Rm {, <opsh>}]{!}</opsh></op></pre>	Rd1 := [address], Rd2 := [address + 4]	[address] := Rd1, [address + 4] := Rd2	7, 9
	Post-indexed, register	5E	<pre><op>D Rd1, Rd2, [Rn], +/-Rm {, <opsh>}</opsh></op></pre>	Rd1 := [address], Rd2 := [address + 4]	[address] := Rd1, [address + 4] := Rd2	7, 9
	PC-relative	5E	<pre><op>D Rd1, Rd2, <label></label></op></pre>	Rd1 := [label], Rd2 := [label + 4]	Not available	8, 9

Prelo	ad data or instruction	§(PLD)	§(PLI)	§(PLDW)	Assembler	Action if <op> is PLD</op>	Action if <op> is PLI</op>	Action if <op> is PLDW</op>	Notes
	Immediate offset	5E	7	7MP	<pre><op> [Rn {, #<offset>}]</offset></op></pre>	Preload [address, 32] (data)	Preload [address, 32] (instruction)	Preload to Write [address, 32] (data)	1, C
	Register offset	5E	7	7MP	<pre><op> [Rn, +/-Rm {, <opsh>}]</opsh></op></pre>	Preload [address, 32] (data)	Preload [address, 32] (instruction)	Preload to Write [address, 32] (data)	3, C
	PC-relative	5E	7		<op> <label></label></op>	Preload [label, 32] (data)	Preload [label, 32] (instruction)		5, C

Other memory of	perations	§	Assembler	Action	Notes
Load multiple	Block data load		LDM{IA IB DA DB Rn{!}, <reglist-pc></reglist-pc>	Load list of registers from [Rn]	N, I
	return (and exchange)		LDM{IA IB DA DB Rn{!}, <reglist+pc></reglist+pc>	Load registers, PC := [address][31:1] (§ 5T: Change to Thumb if [address][0] is 1)	I
	and restore CPSR		LDM{IA IB DA DB Rn{!}, <reglist+pc>^</reglist+pc>	Load registers, branch (§ 5T: and exchange), CPSR := SPSR. Exception modes only.	I
	User mode registers		LDM{IA IB DA DB} Rn, <reglist-pc>^</reglist-pc>	Load list of User mode registers from [Rn]. Privileged modes only.	I
Pop			POP <reglist></reglist>	Canonical form of LDM SP!, <reglist></reglist>	N
Load exclusive	Semaphore operation	6	LDREX Rd, [Rn]	Rd := [Rn], tag address as exclusive access. Outstanding tag set if not shared address. Rd, Rn not PC.	
	Halfword or Byte	6K	LDREX{H B} Rd, [Rn]	Rd[15:0] := [Rn] or Rd[7:0] := [Rn], tag address as exclusive access. Outstanding tag set if not shared address. Rd, Rn not PC.	
	Doubleword	6K	LDREXD Rd1, Rd2, [Rn]	Rd1 := [Rn], Rd2 := [Rn+4], tag addresses as exclusive access Outstanding tags set if not shared addresses. Rd1, Rd2, Rn not PC.	9
Store multiple	Push, or Block data store		STM{IA IB DA DB} Rn{!}, <reglist></reglist>	Store list of registers to [Rn]	N, I
	User mode registers		STM{IA IB DA DB Rn{!}, <reglist>^</reglist>	Store list of User mode registers to [Rn]. Privileged modes only.	I
Push			PUSH <reglist></reglist>	Canonical form of STMDB SP!, <reglist></reglist>	N
Store	Semaphore operation	6	STREX Rd, Rm, [Rn]	If allowed, [Rn] := Rm, clear exclusive tag, Rd := 0. Else Rd := 1. Rd, Rm, Rn not PC.	
exclusive	Halfword or Byte	6K	STREX{H B} Rd, Rm, [Rn]	If allowed, [Rn] := Rm[15:0] or [Rn] := Rm[7:0], clear exclusive tag, Rd := 0. Else Rd := 1 Rd, Rm, Rn not PC.	
	Doubleword	6K	STREXD Rd, Rm1, Rm2, [Rn]	If allowed, [Rn] := Rm1, [Rn+4] := Rm2, clear exclusive tags, Rd := 0. Else Rd := 1 Rd, Rm1, Rm2, Rn not PC.	10
Clear exclusive		6K	CLREX	Clear local processor exclusive tag	С

Notes: a	Notes: availability and range of options for Load, Store, and Preload operations							
Note	ARM Word, B, D	ARM SB, H, SH	ARM T, BT	Thumb-2 Word, B, SB, H, SH, D	Thumb-2 T, BT, SBT, HT, SHT			
1	offset: - 4095 to +4095	offset: -255 to +255	Not available	offset: -255 to +255 if writeback, -255 to +4095 otherwise	offset: 0 to +255, writeback not allowed			
2	offset: - 4095 to +4095	offset: -255 to +255	offset: - 4095 to +4095	offset: -255 to +255	Not available			
3	Full range of { , <opsh>}</opsh>	{, <opsh>} not allowed</opsh>	Not available	<pre><opsh> restricted to LSL #<sh>, <sh> range 0 to 3</sh></sh></opsh></pre>	Not available			
4	Full range of { , <opsh>}</opsh>	{, <opsh>} not allowed</opsh>	Full range of { , <opsh>}</opsh>	Not available	Not available			
5	label within +/- 4092 of current instruction	Not available	Not available	label within +/- 4092 of current instruction	Not available			
6	offset: -255 to +255	-	-	offset: -1020 to +1020, must be multiple of 4.	-			
7	{, <opsh>} not allowed</opsh>	-	-	Not available	-			
8	label within +/- 252 of current instruction	-	-	Not available	-			
9	Rd1 even, and not r14, Rd2 == Rd1 + 1.	-	-	Rd1 != PC, Rd2 != PC	-			
10	Rm1 even, and not r14, $Rm2 == Rm1 + 1$.	-	-	Rm1 != PC, Rm2 != PC	-			

Coprocessor operations	§	Assembler		Action	Notes
Data operations		CDP{2} <copr>, <op1>, CRd, CRn, CRm{, <op2>}</op2></op1></copr>		Coprocessor defined	C2
Move to ARM register from coprocessor		MRC{2} <copr>, <op1>, Rd, CRn, CRm{, <op2>}</op2></op1></copr>		Coprocessor defined	C2
Two ARM register move	5E	MRRC <copr>, <op1>, Rd, Rn, CRm</op1></copr>		Coprocessor defined	
Alternative two ARM register move	6	MRRC2 <copr>, <op1>, Rd, Rn, CRm</op1></copr>		Coprocessor defined	C
Move to coproc from ARM reg		MCR{2} <copr>, <op1>, Rd, CRn, CRm{, <op2>}</op2></op1></copr>		Coprocessor defined	C2
Two ARM register move	5E	MCRR <copr>, <op1>, Rd, Rn, CRm</op1></copr>		Coprocessor defined	
Alternative two ARM register move	6	MCRR2 <copr>, <op1>, Rd, Rn, CRm</op1></copr>		Coprocessor defined	C
Loads and stores, pre-indexed		<pre><op>{2} <copr>, CRd, [Rn, #+/-<offset8*4>]{!}</offset8*4></copr></op></pre>	op: LDC or STC. offset: multiple of 4 in range 0 to 1020.	Coprocessor defined	C2
Loads and stores, zero offset		<pre><op>{2} <copr>, CRd, [Rn] {, 8-bit copro. option}</copr></op></pre>	op: LDC or STC.	Coprocessor defined	C2
Loads and stores, post-indexed		<0p>{2} <copr>, CRd, [Rn], #+/-<offset8*4></offset8*4></copr>	op: LDC or STC. offset: multiple of 4 in range 0 to 1020.	Coprocessor defined	C2

Miscel	laneous operations	§	Assembler	Action	Notes
Swap v	word		SWP Rd, Rm, [Rn]	temp := [Rn], [Rn] := Rm, Rd := temp.	A, D
Swap I	byte		SWPB Rd, Rm, [Rn]	temp := ZeroExtend([Rn][7:0]), [Rn][7:0] := Rm[7:0], Rd := temp	A, D
Store r	return state	6	SRS{IA IB DA DB} SP{!}, # <p_mode></p_mode>	[SPm] := LR, [SPm + 4] := CPSR	C, I
Return	from exception	6	RFE{IA IB DA DB} Rn{!}	PC := [Rn], CPSR := [Rn + 4]	C, I
Break	point	5	BKPT <imm16></imm16>	Prefetch abort or enter debug state. 16-bit bitfield encoded in instruction.	C, N
Secure	Monitor Call	Z	SMC <imm4></imm4>	Secure Monitor Call exception. 4-bit bitfield encoded in instruction. Formerly SMI.	
Superv	visor Call		SVC <imm24></imm24>	Supervisor Call exception. 24-bit bitfield encoded in instruction. Formerly SWI.	N
No ope	eration	6K	NOP	None, might not even consume any time.	N, V
Hints	Debug Hint	7	DBG	Provide hint to debug and related systems.	
	Data Memory Barrier	7	DMB	Ensure the order of observation of memory accesses.	C
	Data Synchronization Barrier	7	DSB	Ensure the completion of memory accesses,	C
	Instruction Synchronization Barrier	7	ISB	Flush processor pipeline and branch prediction logic.	C
	Set event	6K	SEV	Signal event in multiprocessor system. NOP if not implemented.	N
	Wait for event	6K	WFE	Wait for event, IRQ, FIQ, Imprecise abort, or Debug entry request. NOP if not implemented.	N
	Wait for interrupt	6K	WFI	Wait for IRQ, FIQ, Imprecise abort, or Debug entry request. NOP if not implemented.	N
	Yield	6K	YIELD	Yield control to alternative thread. NOP if not implemented.	N

Note	S		
Α	Not available in Thumb state.	Р	Rn can be the PC in Thumb state in this instruction.
В	Can be conditional in Thumb state without having to be in an IT block.	Q	Sets the Q flag if saturation (addition or substraction) or overflow (multiplication) occurs. Read and reset the Q flag using MRS and MSR.
С	Condition codes are not allowed in ARM state.	R	<sh> range is 1-32 in the ARM instruction.</sh>
C2	The optional 2 is available from ARMv5. It provides an alternative operation. Condition codes are not allowed for the alternative form in ARM state.	S	The S modifier is not available in the Thumb-2 instruction.
D	Deprecated. Use LDREX and STREX instead.	Т	Not available in ARM state.
G	Updates the four GE flags in the CPSR based on the results of the individual operations.	U	Not allowed in an IT block. Condition codes not allowed in either ARM or Thumb state.
I	IA is the default, and is normally omitted.	٧	The assembler inserts a suitable instruction if the NOP instruction is not available.
L	ARM: <imm8m>. 16-bit Thumb: multiple of 4 in range 0-1020. 32-bit Thumb: 0-4095.</imm8m>		
N	Some or all forms of this instruction are 16-bit (Narrow) instructions in Thumb-2 code. For details see the <i>Thumb 16-bit Instruction Set (UAL) Quick Reference Card.</i>		

ARM architect	ARM architecture versions					
n	ARM architecture version n and above					
nT, nJ	T or J variants of ARM architecture version n and above					
5E	ARM v5E, and 6 and above					
T2	All Thumb-2 versions of ARM v6 and above					
6K	ARMv6K and above for ARM instructions, ARMv7 for Thumb					
7MP	ARMv7 architectures that implement Multiprocessing Extensions					
Z	All Security extension versions of ARMv6 and above					
RM	ARMv7-R and ARMv7-M only					
XS	XScale coprocessor instruction					

Flexible Operand 2			
Immediate value	# <imm8m></imm8m>		
Register, optionally shifted by constant (see below)	Rm {, <opsh>}</opsh>		
Register, logical shift left by register	Rm, LSL Rs		
Register, logical shift right by register	Rm, LSR Rs		
Register, arithmetic shift right by register	Rm, ASR Rs		
Register, rotate right by register	Rm, ROR Rs		

Register, optionally shifted by constant				
(No shift)	Rm	Same as Rm, LSL #0		
Logical shift left	Rm, LSL # <shift></shift>	Allowed shifts 0-31		
Logical shift right	Rm, LSR # <shift></shift>	Allowed shifts 1-32		
Arithmetic shift right	Rm, ASR # <shift></shift>	Allowed shifts 1-32		
Rotate right	Rm, ROR # <shift></shift>	Allowed shifts 1-31		
Rotate right with extend	Rm, RRX			

PSR fields	(use at least one suffix)	(use at least one suffix)	
Suffix	Meaning		
С	Control field mask byte	PSR[7:0]	
f	Flags field mask byte	PSR[31:24]	
s	Status field mask byte	PSR[23:16]	
х	Extension field mask byte	PSR[15:8]	

Proprietary Notice

Words and logos marked with $^{\circledcirc}$ or $^{\intercal M}$ are registered trademarks or trademarks of ARM Limited in the EU and other countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This reference card is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable for any loss or damage arising from the use of any information in this reference card, or any error or omission in such information, or any incorrect use of the product.

Condition Field			
Mnemonic	Description	Description (VFP)	
EQ	Equal	Equal	
NE	Not equal	Not equal, or unordered	
CS / HS	Carry Set / Unsigned higher or same	Greater than or equal, or unordered	
CC / LO	Carry Clear / Unsigned lower	Less than	
MI	Negative	Less than	
PL	Positive or zero	Greater than or equal, or unordered	
VS	Overflow	Unordered (at least one NaN operand)	
VC	No overflow	Not unordered	
HI	Unsigned higher	Greater than, or unordered	
LS	Unsigned lower or same	Less than or equal	
GE	Signed greater than or equal	Greater than or equal	
LT	Signed less than	Less than, or unordered	
GT	Signed greater than	Greater than	
LE	Signed less than or equal	Less than or equal, or unordered	
AL	Always (normally omitted)	Always (normally omitted)	

- All ARM instructions (except those with Note C or Note U) can have any one of these condition codes after the instruction mnemonic (that is, before the first space in the instruction as shown on this card). This condition is encoded in the instruction.
- All Thumb-2 instructions (except those with Note U) can have any one of these condition codes after the instruction mnemonic. This condition is encoded in a preceding IT instruction (except in the case of conditional Branch instructions). Condition codes in instructions must match those in the preceding IT instruction.
- On processors without Thumb-2, the only Thumb instruction that can have a condition code is B <label>.

Processor Modes		
16	User	
17	FIQ Fast Interrupt	
18	IRQ Interrupt	
19	Supervisor	
23	Abort	
27	Undefined	
31	System	

Prefixes for Parallel Instructions		
S	Signed arithmetic modulo 2 ⁸ or 2 ¹⁶ , sets CPSR GE bits	
Q	Signed saturating arithmetic	
SH	Signed arithmetic, halving results	
U	Unsigned arithmetic modulo 2^8 or 2^{16} , sets CPSR GE bits	
UQ UH	Unsigned saturating arithmetic	
UH	Unsigned arithmetic, halving results	

Document Number

ARM QRC 0001M

Change Log

Issue	Date	Change	Issue	Date	Change
A	June 1995	First Release	В	Sept 1996	Second Release
C	Nov 1998	Third Release	D	Oct 1999	Fourth Release
E	Oct 2000	Fifth Release	F	Sept 2001	Sixth Release
G	Jan 2003	Seventh Release	Н	Oct 2003	Eighth Release
I	Dec 2004	Ninth Release	J	May 2005	RVCT 2.2 SP1
K	March 2006	RVCT 3.0	L	March 2007	RVCT 3.1
M	Sept 2008	RVCT 4.0			