Sparse covariance estimation

Xuelong Wang 2019-12-25

Contents

1	Mot	tivation						
2 Simulation								
	2.1	Simulation procedure						
		Decorrelation steps						
		two steps decorrelation						
	2.4	Dpglasso: The Graphical Lasso: New Insights and Alternatives						
	2.5	PCB						
	2.6	Chi						
3	Mir	nic the histrocial covariance situation						
	3.1	Simulation setup						
		Decorrelation result						
	3.3	Simulation result on the variance estimation process						

1 Motivation

After decorrelation with the information of the historical data, the correlation between the covariate is reduced. However, there are still some correlation coefficients are large. That may suggest that after using the historical data, the decorrelated data still is not uncorrelated. But the correlation structure becomes a sparse and symmetric. Therefore, we could apply another decorrelation to further reudce the non-zero correlation, so that we may have a better performance on the following variance estimation procedure.

2 Simulation

2.1 Simulation procedure

2.1.1 Standardization will not change total variance

- 1. Standardize the X $\tilde{Z}_m = (X \mu)A_1$
- 2. Generate the interaction based on the $\tilde{Z}_{int} = \tilde{Z}_m * \tilde{Z}_m$ without the square terms and set $\tilde{Z}_t = (\tilde{Z}_m, \tilde{Z}_{int})$
- 3. Generate the Y based on the \tilde{Z}_t
- 4. Estimate the $Var(\tilde{Z}_t\beta_t)$ by $Z=\tilde{Z}_tA_2$, where A_2 is for decorrelation

Note that the $Var(\tilde{Z}_t\beta_t)=Var(Z\gamma), A_2=\hat{\Sigma}_h^{-1/2}$ or $A_2=\hat{\Sigma}_h^{-1/2}\hat{\Sigma}_s^{-1/2}$

2.2 Decorrelation steps

2.3 two steps decorrelation

1. Decorrelation by covariance matrix estimated by historical data

2. If after the step 1, the correlation is still large, then we may need a second decorrelation by sparse precision method

2.4 Dpglasso: The Graphical Lasso: New Insights and Alternatives

- 1. An Alternatives for Glasso
- 2. Glasso works on W the covariance matrix, but its alg cannot make sure the precision matrix Θ is positive definite.
- 3. Dpglasso can provide both W and Θ be positive definite

Histogram of correlations of PCBs with sample size 150

sparse decor 0.1

sparse decor 0.005

2.5 PCB

2.5.1 None

9: 1000 NaN

```
1: 8 2
 structure decor x_dist
1: un FALSE 1999
    n MSE est_var est_mean NA_total method
1: 100 206
          112 21
                          3 EigenPrism
2: 100 153
           108
                    18
                           O GCTA
3: 150 304
                   25
          112
                          O EigenPrism
4: 150 278
                          O GCTA
          149
                   23
                          O EigenPrism
O GCTA
5: 231 276
            83
                   25
6: 231 217
                   23
            86
                23
NaN
          NA
166
7: 500 NaN
                          100 EigenPrism
8: 500 472
                   29
                          O GCTA
9: 1000 NaN
                          100 EigenPrism
           NA
                   {\tt NaN}
10: 1000 495
            113
                  31
                          O GCTA
2.5.2 Hist
  var_main_effect var_inter_effect cov_main_inter_effect var_total_effect
1: 8 2
                                        0.62
 structure decor x_dist
   un TRUE 1999
    n MSE est_var est_mean NA_total method
1: 100 31 32 11 3 EigenPrism
2: 100 22
            22
                    11
                           O GCTA
3: 150 26
                          O EigenPrism
            26
                   11
          21 11
20 11
4: 150 21
                           O GCTA
                        O EigenPrism
O GCTA
5: 231 19
6: 231 14
            14
                   11
7: 500 NaN
            NA
               1∠
NaN
13
                  NaN
                         100 EigenPrism
          31
NA
39
8: 500 31
                          O GCTA
9: 1000 NaN
                          100 EigenPrism
10: 1000 44
                          1
                                 GCTA
  var_main_effect var_inter_effect cov_main_inter_effect var_total_effect
                                        0.62
 structure decor x_dist
      un TRUE 1999
     n MSE est var est mean NA total method
          32 11 3 EigenPrism
1: 100 31
2: 100 22
             22
                    11
                           O GCTA
3: 150 26
            26
                    11
                           0 EigenPrism
                           O GCTA
4: 150 20
                  11
            21
                          O EigenPrism
O GCTA
5: 231 19
            20
                   11
6: 231 14
            14
                   11
7: 500 NaN
                NaN
12
             NA
                        100 EigenPrism
8: 500 31
             31
                   12
                           O GCTA
             NA NaN 100 EigenPrism
```

var_main_effect var_inter_effect cov_main_inter_effect var_total_effect

10: 1000 44 39 13 0 GCTA

2.5.3 Hist + sparse

var_main_effect var_inter_effect cov_main_inter_effect var_total_effect 2 0.62 structure decor x_{dist} un TRUE 1999 1: n MSE est_var est_mean NA_total method 0 EigenPrism 1: 100 14.6 14.68 11.4 2: 100 14.0 14.11 11.2 0 **GCTA** 3: 150 8.6 7.91 10.4 O EigenPrism 150 6.9 6.78 10.8 4: 0 GCTA 9.2 231 11.6 7.42 0 EigenPrism 5: 231 5.2 6: 4.37 10.3 0 GCTA 7: 500 NaN NA ${\tt NaN}$ 100 EigenPrism 8: 500 3.1 1.53 10.0 0 **GCTA** 9: 1000 NaN NA NaN 100 EigenPrism 10: 1000 2.4 0.99 10.1 1 GCTA var_main_effect var_inter_effect cov_main_inter_effect var_total_effect 2 1: 8 0.62 structure decor x_dist un TRUE 1999 1: n MSE est_var est_mean NA_total method 14.68 11.4 1: 100 14.6 0 EigenPrism 2: 100 13.8 13.98 11.2 GCTA 150 8.6 7.91 10.4 3: 0 EigenPrism 150 7.0 6.82 10.8 4: 0 **GCTA** 231 11.6 7.42 9.2 O EigenPrism 5: 231 5.2 4.37 6: 10.3 0 **GCTA** 7: 500 NaN NA ${\tt NaN}$ 100 EigenPrism 8: 500 3.1 1.53 10.0 0 **GCTA** 100 EigenPrism 9: 1000 NaN NA ${\tt NaN}$ 10: 1000 2.3 0.99 10.1 0 **GCTA**

2.6 Chi

2.6.1 None

var_main_effect var_inter_effect cov_main_inter_effect var_total_effect 8 2 1.8 1: structure decor x_dist un FALSE chi 1: n MSE est_var est_mean NA_total 1: 100 108 67 20 3 EigenPrism 2: 100 77 68 17 0 GCTA 3: 200 213 90 25 7 EigenPrism 4: 200 189 109 23 0 GCTA 5: 500 NaN NA ${\tt NaN}$ 100 EigenPrism 6: 500 131 31 24 GCTA

```
8: 1000 134
             20
                     24
                                    GCTA
2.6.2 hist
  var_main_effect var_inter_effect cov_main_inter_effect var_total_effect
                                           1.8
  structure decor x_dist
      un TRUE chi
1:
    n MSE est_var est_mean NA_total method
1: 100 23.4 21.5 12 0 EigenPrism
2: 100 18.5
           16.5
                    12
                             O GCTA
3: 200 15.5
           12.9
                    12
                            0 EigenPrism
4: 200 9.3
           8.2
                    13
                             0
5: 500 NaN
                            100 EigenPrism
             NA
                    {\tt NaN}
6: 500 4.1
            2.8
                    13
                             O GCTA
           NA
1.3
7: 1000 NaN
                     {\tt NaN}
                            100 EigenPrism
8: 1000 3.0
                    12
                             1
                                   GCTA
  var_main_effect var_inter_effect cov_main_inter_effect var_total_effect
                                           1.8
  structure decor x_dist
    un TRUE chi
1:
    n MSE est_var est_mean NA_total method
1: 100 23.4 21.5 12 0 EigenPrism
2: 100 35.5
           35.9
                     14
                             O GCTA
3: 200 15.5
           12.9
                    12
                            O EigenPrism
4: 200 19.1
           19.3
                    14
                             O GCTA
           NA
5: 500 NaN
                   NaN
                            100 EigenPrism
6: 500 5.2
             4.7
                    13
                            O GCTA
7: 1000 NaN
             NA
                            100 EigenPrism
                    {\tt NaN}
8: 1000 3.8
                             O GCTA
             2.4
                    13
2.6.3 hist + sparse
  var_main_effect var_inter_effect cov_main_inter_effect var_total_effect
1:
             8
                            2
                                            1.8
  structure decor x_dist
       un TRUE chi
    n MSE est_var est_mean NA_total method
1: 100 27.7 27.6 14 0 EigenPrism
                             O GCTA
2: 100 26.9
            27.1
                      14
3: 200 12.4
           10.7
                    12
                            O EigenPrism
4: 200 8.9
            8.8
                             O GCTA
                     13
5: 500 NaN
             NA
                    {\tt NaN}
                            100 EigenPrism
6: 500 4.5
            2.5
                    12
                             O GCTA
```

NaN 100 EigenPrism

7: 1000 NaN

7: 1000 NaN

8: 1000 4.1

NA

1.8 12

NaN

NA

100 EigenPrism

O GCTA

3 Mimic the histrocial covariance situation

Based on the previous simulation, we found that if the historical data is from extact the same distribution, then the sparse decorrelation may not be necessary. That is after doing the second step of decorrelation the variance estimation does not get much improvement. So to mimic the situation situation we change the simulation so that there is historical covariance is not perfect.

Simulation setup 3.1

- p = 21
- $X \sim \chi_1^2$ Cor(X) is the sample covariance of subset of standardized PCB data with n=150

•
$$X_h = XB$$
, where $B = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \dots \\ 0 & 1 & 1 & 1 & 1 \dots \\ 0 & & 1 & 1 & 1 \dots \\ 0 & & & 1 & 1 \dots \\ 0 & & & & 1 \dots \end{bmatrix}$. So that the X_h is a column transfromation of X , therefore

the its covariance is different from the true value.

3.2 Decorrelation result

3.2.1 $X_h = X$

sample covariance n = 150

Min. 1st Qu. Mean 3rd Qu. ${\tt Median}$ ${\tt Max.}$ -0.42 0.29 0.50 0.49 0.72 1.00 Min. 1st Qu. Mean 3rd Qu. Median Max. -0.96 -0.11 0.00 0.00 0.11 0.94 Min. 1st Qu. Median Mean 3rd Qu. Max. -0.37 -0.06 0.00 0.00 0.06 0.48 Min. 1st Qu. Median Mean 3rd Qu. Max. -0.33 -0.05 0.00 0.00 0.04 0.54

3.2.2 $X_h = XB, t = 8$

sample covariance n = 150

Min. 1st Qu. Mean 3rd Qu. Median Max. -0.42 0.29 0.50 0.49 0.72 1.00 Min. 1st Qu. Median Mean 3rd Qu. Max. -0.93 -0.15 0.00 0.00 0.15 0.91 Min. 1st Qu. Mean 3rd Qu. Median Max. -0.65 -0.04 0.00 0.00 0.04 0.42 Min. 1st Qu. Median Mean 3rd Qu. Max. -0.64 -0.04 0.00 0.04 0.44 0.00

3.3 Simulation result on the variance estimation process

3.3.1 None

	var_main_	effect v	ar_inter_	_effect co	ov_main_inte	r_effect	var_total_effect
1:		8		2		1.8	14
	structure	decor x	_dist				
1:	ur	FALSE	chi				
	n MSE	est_var	est_mean	NA_total	method		
1:	100 108	67	20	3	EigenPrism		
2:	100 77	68	17	0	GCTA		
3:	200 213	90	25	7	EigenPrism		
4:	200 189	109	23	0	GCTA		
5:	500 NaN	NA	NaN	100	EigenPrism		
6:	500 131	31	24	0	GCTA		
7:	1000 NaN	NA	NaN	100	EigenPrism		

8: 1000 134 20 24 0 GCTA

3.3.2 Hist

var_main_effect var_inter_effect cov_main_inter_effect var_total_effect 2 1.8 structure decor x_dist 1: un TRUE chi n MSE est_var est_mean NA_total method 27.3 11 0 EigenPrism 1: 100 32 2: 100 25 18.1 11 0 GCTA 3: 200 29 22.8 11 O EigenPrism 4: 200 19 13.4 11 0 5: 500 NaN ${\tt NaN}$ 100 EigenPrism NA 6: 500 14 3.5 10 O GCTA 7: 1000 NaN NA ${\tt NaN}$ 100 EigenPrism 8: 1000 15 2.9 10 0 GCTA

3.3.3 Hist + Sparse(0.1)

var_main_effect var_inter_effect cov_main_inter_effect var_total_effect 2 1: 1.8 structure decor x_dist un TRUE chi n MSE est_var est_mean NA_total method 1: 100 19.8 20.0 14 0 EigenPrism 2: 100 22.0 22.0 13 O GCTA 3: 200 13.6 8.5 11 O EigenPrism 4: 200 7.7 6.9 O GCTA 13 5: 500 NaN 100 EigenPrism NA ${\tt NaN}$ 6: 500 6.0 1.5 12 O GCTA 7: 1000 NaN 100 EigenPrism NA ${\tt NaN}$ 8: 1000 10.1 0.9 11 1 GCTA

3.3.4 Hist + Sparse(0.01)

var_main_effect var_inter_effect cov_main_inter_effect var_total_effect 1.8 2 structure decor x_dist un TRUE chi 1: n MSE est_var est_mean NA_total method 1: 100 39.5 39.37 14 0 EigenPrism 2: 100 22.5 22.69 13 O GCTA 3: 200 13.7 8.43 11 0 EigenPrism 4: 200 7.5 6.19 13 0 GCTA 5: 500 NaN NA ${\tt NaN}$ 100 EigenPrism 6: 500 7.5 O GCTA 1.43 11 7: 1000 NaN NA ${\tt NaN}$ 100 EigenPrism 8: 1000 10.6 0.93 1 GCTA 11

3.3.5 Hist + Sparse(0.001)

var_main_effect var_inter_effect cov_main_inter_effect var_total_effect 1: 2 1.8 structure decor x_dist un TRUE 1: n MSE est_var est_mean NA_total method 100 74.2 67.14 16 0 EigenPrism 2: 100 32.0 14 32.36 0 GCTA 3: 200 12.5 8.37 12 0 EigenPrism 4: 200 7.4 6.25 **GCTA** 13 0 5: 500 NaN NA NaN100 EigenPrism 6: 500 7.7 0 1.43 11 GCTA 7: 1000 NaN NA NaN 100 EigenPrism 8: 1000 10.4 0.96 0 GCTA 11

3.3.6 Perfect Hist

var_main_effect var_inter_effect cov_main_inter_effect var_total_effect 8 2 1.8 1: structure decor x_dist un TRUE 1: n MSE est_var est_mean NA_total method 1: 100 23.4 21.5 12 0 EigenPrism 2: 100 18.5 16.5 12 0 **GCTA** 3: 200 15.5 12.9 12 0 EigenPrism 4: 200 9.3 8.2 13 0 GCTA 5: 500 NaN NANaN 100 EigenPrism 6: 500 4.1 2.8 13 0 GCTA 7: 1000 NaN 100 EigenPrism NA ${\tt NaN}$ 8: 1000 3.0 GCTA 1.3 12 1

3.3.7 Perfect Hist + Sparse(0.1)

var_main_effect var_inter_effect cov_main_inter_effect var_total_effect 8 2 1.8 structure decor x dist 1: un TRUE chi n MSE est_var est_mean NA_total method 14 100 27.7 27.6 0 EigenPrism 2: 100 26.9 27.1 14 0 GCTA 3: 200 12.4 10.7 12 0 EigenPrism GCTA 4: 200 8.9 8.8 13 0 5: 500 NaN NA \mathtt{NaN} 100 EigenPrism 6: 500 4.5 2.5 12 0 **GCTA** 7: 1000 NaN NANaN100 EigenPrism 8: 1000 4.1 1.8 12 0 GCTA

3.3.8 Perfect Hist + Sparse(0.01)

var_main_effect var_inter_effect cov_main_inter_effect var_total_effect 1: 2 1.8 structure decor x_dist un TRUE chi 1: n MSE est_var est_mean NA_total method 1: 100 59.9 54.4 11 3 EigenPrism 2: 100 60.5 59.7 13 0 GCTA 3: 200 13.6 13.0 15 0 EigenPrism GCTA 4: 200 12.4 12.4 14 0 5: 500 NaN NA 100 EigenPrism ${\tt NaN}$ 6: 500 3.6 3.1 13 0 GCTA 7: 1000 NaN NA ${\tt NaN}$ 100 EigenPrism 8: 1000 2.9 0 GCTA 2.1 13

3.3.9 Perfect Hist + Sparse(0.001)

var_main_effect var_inter_effect cov_main_inter_effect var_total_effect
1: 8 2 1.8 14
 structure decor x_dist
1: un TRUE chi
 n MSE est_var est_mean NA_total method

	11	HOE	est_var	est_mean	NA_COCAL	method
1:	100	148.2	146.6	15	0	EigenPrism
2:	100	76.4	76.7	13	0	GCTA
3:	200	32.2	27.3	16	3	EigenPrism
4:	200	12.5	12.4	14	0	GCTA
5:	500	NaN	NA	NaN	100	EigenPrism
6:	500	3.8	3.1	13	0	GCTA
7:	1000	NaN	NA	NaN	100	EigenPrism
8:	1000	2.7	2.4	13	0	GCTA