

588 West Jindu Road, Xingiao, Songjiang, 201612 Shanghai, China

Telephone: +86 (0) 21 6191 5666 Report No.: SHEM180800747901

Fax: +86 (0) 21 6191 5678 ee.shanghai@sgs.com Page: 1 of 59

TEST REPORT

Application No.: SHEM1808007479CR

FCC ID 2ADTD-I042011 **IC** 20199- I042011

Applicant: Hangzhou Hikvision Digital Technology Co., Ltd.

Address of Applicant: No.555 Qianmo Road, Binjiang District, Hangzhou 310052, China

Manufacturer: Hangzhou Hikvision Digital Technology Co., Ltd.

Address of Manufacturer: No.555 Qianmo Road, Binjiang District, Hangzhou 310052, China

Factory: 1,Hangzhou Hikvision Technology Co., Ltd. 2,Hangzhou Hikvision Electronics Co., Ltd.

3, Chongqing Hikvision technology Co., LTD.

Address of Factory: 1,No.700,Dongliu Road, Binjiang District, Hangzhou City,Zhejiang, 310052,

China

2,No.299,Qiushi Road,Tonglu Economic Development Zone,Tonglu

County, Hangzhou, Zhejiang, 310052, China

3, No. 118, Haikang Road, Area C, Jianqiao Industrial Park, Dadukou

District, Chongqing, 401325, China

Equipment Under Test (EUT):

EUT Name: Network Camera

Model No.: DS-2CD2051G1-IDW1, DS-2CD2041G1-IDW1, DS-2CD2041G1-IDW1(T)¤

Please refer to section 2 of this report which indicates which model was

actually tested and which were electrically identical.

Standard(s): 47 CFR Part 15, Subpart C 15.247

RSS-247 Issue 2, February 2017, RSS-Gen Issue 5, April 2018

 Date of Receipt:
 2018-08-29

 Date of Test:
 2018-09-18

 Date of Issue:
 2018-09-18

Test Result: Pass*

^{*} In the configuration tested, the EUT complied with the standards specified above.

Parlam Zhan E&E Section Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indeminification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SHEM180800747901

Page: 2 of 59

Revision Record							
Version Description Date Remark							
00	Original	2018-09-18	/				

Authorized for issue by:		
	Bril Wu	
	Bill Wu / Project Engineer	
	Parlam Zhan	
	Parlam Zhan /Reviewer	

Report No.: SHEM180800747901

Page: 3 of 59

2 Test Summary

Radio Spectrum Technical Requirement							
Item Standard Method Requirement Result							
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Customer Declaration			

Radio Spectrum Matter Part								
Item	Standard	Method	Requirement	Result				
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass				
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass				
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.9.1	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass				
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass				
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass				
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass				
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass				
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass				
99% Bandwidth	RSS-247 Issue 2, February 2017	ANSI C63.10 Section 6.9.3	RSS-Gen Section 6.6	Pass				

Declaration of EUT Family Grouping:

Note: There are series models mentioned in this report and they are the similar in electrical and electronic characters. Only the model DS-2CD2051G1-IDW1 was tested since their differences are model number and appearance

Report No.: SHEM180800747901

Page: 4 of 59

3 Contents

			Page
1	COVE	R PAGE	1
2	TEST	SUMMARY	3
3	CONT	ENTS	4
4	GENE	RAL INFORMATION	6
	4.1	DETAILS OF E.U.T	6
		DESCRIPTION OF SUPPORT UNITS	
		MEASUREMENT UNCERTAINTY	
	4.4	FEST LOCATION	8
		FEST FACILITY	
		DEVIATION FROM STANDARDS	
	4.7 A	ABNORMALITIES FROM STANDARD CONDITIONS	8
5	EQUIF	PMENT LIST	9
6	RADIO	O SPECTRUM TECHNICAL REQUIREMENT	10
	6.1 <i>A</i>	ANTENNA REQUIREMENT	10
	6.1.1	Test Requirement:	
	6.1.2	Conclusion	
7	RADIO	O SPECTRUM MATTER TEST RESULTS	11
•			
		CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz)	
	7.1.1	E.U.T. Operation	
	7.1.2 7.1.3	Test Setup Diagram Measurement Procedure and Data	
	_	Minimum 6dB Bandwidth	
	7.2.1	E.U.T. Operation	
	7.2.2	Test Setup Diagram	
	7.2.3	Measurement Procedure and Data	
		CONDUCTED PEAK OUTPUT POWER	
	7.3.1	E.U.T. Operation	
	7.3.2	Test Setup Diagram	16
	7.3.3	Measurement Procedure and Data	16
	7.4 F	Power Spectrum Density	
	7.4.1	E.U.T. Operation	
	7.4.2	Test Setup Diagram	
	7.4.3	Measurement Procedure and Data	
		CONDUCTED BAND EDGES MEASUREMENT	
	7.5.1 7.5.2	E.U.T. Operation	
	7.5.2 7.5.3	Test Setup Diagram Measurement Procedure and Data	
		Conducted Spurious Emissions	
	7.6.1	E.U.T. Operation	
	7.6.2	Test Setup Diagram	
	7.6.3	Measurement Procedure and Data	
		RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.7.1	E.U.T. Operation	
	7.7.2	Test Setup Diagram	

Report No.: SHEM180800747901

Page: 5 of 59

7.7.3	B Measurement Procedure and Data	22
7.8	RADIATED SPURIOUS EMISSIONS	49
7.8.1	E.U.T. Operation	49
7.8.2	Test Setup Diagram	50
7.8.3		51
7.9	99% BANDWIDTH	
7.9.1	E.U.T. Operation	58
7.9.2	Part Setup Diagram	58
7.9.3		58
8 TES	T SETUP PHOTOGRAPHS	59
9 EUT	CONSTRUCTIONAL DETAILS	59

Report No.: SHEM180800747901

Page: 6 of 59

4 General Information

4.1 Details of E.U.T.

Power supply: DC 12V 0.5A By adapter

Test voltage: AC 120V/60Hz

Antenna Gain 3.45dBi Antenna Type Dipole Channel Spacing 5MHz

Modulation Type 802.11b: DSSS (CCK, DQPSK, DBPSK)

802.11g/n: OFDM (64QAM, 16QAM, QPSK, BPSK)

Number of Channels 802.11b/g/n(HT20):11

802.11n(HT40):7

Operation Frequency 802.11b/g/n(HT20): 2412MHz to 2462MHz

802.11n(HT40): 2422MHz to 2452MHz

4.2 Description of Support Units

Description	Description Manufacturer		Serial No.
Laptop	Laptop Lenovo		1
SecureCRT	VanDyke	V 6.2.0	1
Serial port adapter plate	1	Test Plate 3	/
AC Adapter	DVE	ESA-12G-12FEU	/

Report No.: SHEM180800747901

Page: 7 of 59

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.25 x 10-8
2	Timeout	2s
3	Duty cycle	0.37%
4	Occupied Bandwidth	3%
5	RF conducted power	0.75dB
6	RF power density	2.84dB
7	Conducted Spurious emissions	0.75dB
0	DE Dodieted nover	4.5dB (Below 1GHz)
8	RF Radiated power	4.8dB (Above 1GHz)
		4.2dB (Below 30MHz)
	Dadiated Causiana amission toot	4.4dB (30MHz-1GHz)
9	Radiated Spurious emission test	4.6dB (1GHz-18GHz)
		5.2dB (Above 18GHz)
10	Temperature test	1°C
11	Humidity test	3%
12	Supply voltages	1.5%
13	Time	3%

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: SHEM180800747901

Page: 8 of 59

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd. Shanghai Branch 588 West Jindu Road, Xinqiao, Songjiang, 201612 Shanghai, China

Tel: +86 21 6191 5666 Fax: +86 21 6191 5678

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L0599)

CNAS has accredited SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• NVLAP (Certificate No. 201034-0)

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. is accredited by the National Voluntary Laboratory Accreditation Program(NVLAP). Certificate No. 201034-0.

• FCC -Designation Number: CN5033

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been recognized as an accredited testing laboratory.

Designation Number: CN5033. Test Firm Registration Number: 479755.

• Industry Canada (IC) – IC Assigned Code: 8617A

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 8617A-1.

• VCCI (Member No.: 3061)

The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-13868, C-14336, T-12221, G-10830 respectively.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SHEM180800747901

Page: 9 of 59

5 Equipment List

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Conducted Emission at AC	Power Line		•		
EMI test receiver	R&S	ESR7	SHEM162-1	2017-12-20	2018-12-19
LISN	Schwarzbeck	NSLK8127	SHEM061-1	2017-12-20	2018-12-19
LISN	EMCO	3816/2	SHEM019-1	2017-12-20	2018-12-19
Pulse limiter	R&S	ESH3-Z2	SHEM029-1	2017-12-20	2018-12-19
CE test Cable	/	CE01	/	2017-12-26	2018-12-25
Conducted Test	I				
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2017-12-20	2018-12-19
Spectrum Analyzer	Agilent	N9020A	SHEM181-1	2018-08-13	2019-08-12
Signal Generator	R&S	SMR20	SHEM006-1	2018-08-13	2019-08-12
Signal Generator	Agilent	N5182A	SHEM182-1	2018-08-13	2019-08-12
Communication Tester	R&S	CMW270	SHEM183-1	2018-08-13	2019-08-12
Switcher	Tonscend	JS0806	SHEM184-1	2018-08-13	2019-08-12
Power Sensor	Keysight	U2021XA * 4	SHEM184-1	2018-08-13	2019-08-12
Splitter	Anritsu	MA1612A	SHEM185-1	/	/
Coupler	e-meca	803-S-1	SHEM186-1	/	/
High-low Temp Cabinet	Suzhou Zhihe	TL-40	SHEM087-1	2017-09-25	2020-09-24
AC Power Stabilizer	WOCEN	6100	SHEM045-1	2017-12-26	2018-12-25
DC Power Supply	QJE	QJ30003SII	SHEM046-1	2017-12-26	2018-12-25
Conducted test Cable	/	RF01~RF04	/	2017-12-26	2018-12-25
Radiated Test					
EMI test Receiver	R&S	ESU40	SHEM051-1	2017-12-20	2018-12-19
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2017-12-20	2018-12-19
Loop Antenna (9kHz-30MHz)	Schwarzbeck	FMZB1519	SHEM135-1	2017-04-10	2020-04-09
Antenna (25MHz-2GHz)	Schwarzbeck	VULB9168	SHEM048-1	2017-02-28	2020-02-27
Antenna (25MHz-3GHz)	Schwarzbeck	HL562	SHEM010-1	2017-02-28	2020-02-27
Horn Antenna (1-8GHz)	Schwarzbeck	HF906	SHEM009-1	2017-10-24	2020-10-23
Horn Antenna (1-18GHz)	Schwarzbeck	BBHA9120D	SHEM050-1	2017-01-14	2020-01-13
Horn Antenna (14-40GHz)	Schwarzbeck	BBHA 9170	SHEM049-1	2017-12-03	2020-12-02
Pre-amplifier (9KHz-2GHz)	CLAVIIO	BDLNA-0001	SHEM164-1	2018-08-13	2019-08-12
Pre-amplifier (1-18GHz)	CLAVIIO	BDLNA-0118	SHEM050-2	2018-08-13	2019-08-12
High-amplifier (14-40GHz)	Schwarzbeck	10001	SHEM049-2	2017-12-20	2018-12-19
Signal Generator	R&S	SMR40	SHEM058-1	2018-08-13	2019-08-12
Band Filter	LORCH	9BRX-875/X150	SHEM156-1	1	/
Band Filter	LORCH	13BRX-1950/X500	SHEM083-2	1	/
Band Filter	LORCH	5BRX-2400/X200	SHEM155-1	1	/
Band Filter	LORCH	5BRX-5500/X1000	SHEM157-2	1	/
High pass Filter	Wainwright	WHK3.0/18G	SHEM157-1	1	/
High pass Filter	Wainwright	WHKS1700	SHEM157-3	/	/
Semi/Fully Anechoic	ST	11*6*6M	SHEM078-2	2017-07-22	2020-07-21
RE test Cable	/	RE01, RE02, RE06	/	2017-12-26	2018-12-25

Report No.: SHEM180800747901

Page: 10 of 59

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(c)

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is RP-SMA Connector antenna and no consideration of replacement. The best case gain of the antenna is 3.45dBi.

Report No.: SHEM180800747901

Page: 11 of 59

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement 47 CFR Part 15, Subpart C 15.207 Test Method: ANSI C63.10 (2013) Section 6.2

Limit:

	Conducted	limit(dBµV)			
Frequency of emission(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
*Decreases with the logarithm of the frequency.					

7.1.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1001 mbar

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with all modulation

types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).

Only the data of worst case is recorded in the report.

7.1.2 Test Setup Diagram

Report No.: SHEM180800747901

Page: 12 of 59

7.1.3 Measurement Procedure and Data

1) The mains terminal disturbance voltage test was conducted in a shielded room.

- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50 \text{ohm}/50 \mu\text{H} + 5 \text{ohm}$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

Report No.: SHEM180800747901

Page: 13 of 59

LISN : LINE EUT/Project No : 7481CR

Test mode : a

	Freq	Read level	LISN Factor	Cable Loss	Emission Level	Limit	Over Limit	Remark
	(MHz)	(dBuV)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.15	21.21	0.05	9.82	31.08	55.87	-24.79	Average
2	0.15	37.12	0.05	9.82	46.99	65.87	-18.88	QP
3	0.28	25.79	0.05	9.85	35.69	50.85	-15.16	Average
4	0.28	37.23	0.05	9.85	47.13	60.85	-13.72	QP
5	0.77	6.91	0.04	9.86	16.81	46.00	-29.19	Average
6	0.77	20.17	0.04	9.86	30.07	56.00	-25.93	QP
7	1.80	8.33	0.05	9.87	18.25	46.00	-27.75	Average
8	1.80	20.13	0.05	9.87	30.05	56.00	-25.95	QP
9	5.25	7.51	0.08	9.94	17.53	50.00	-32.47	Average
10	5.25	17.78	0.08	9.94	27.80	60.00	-32.20	QP
11	20.27	24.49	0.34	9.92	34.75	50.00	-15.25	Average
12	20.27	33.61	0.34	9.92	43.87	60.00	-16.13	QP

Notes: Emission Level = Read Level +LISN Factor + Cable loss

Report No.: SHEM180800747901

Page: 14 of 59

LISN : NEUTRAL EUT/Project No : 7481CR

Test mode : a

	Freq (MHz)	Read level (dBuV)	LISN Factor (dB)	Cable Loss (dB)	Emission Level (dBuV)	Limit (dBuV)	Over Limit (dB)	Remark
1	0.15	11.64	0.06	9.82	21.52	55.87	-34.35	Average
2	0.15	29.73	0.06	9.82	39.61	65.87	-26.26	QP
3	0.20	12.60	0.06	9.83	22.49	53.80	-31.31	Average
4	0.20	25.59	0.06	9.83	35.48	63.80	-28.32	QP
5	0.28	29.01	0.06	9.85	38.92	50.94	-12.02	Average
6	0.28	37.56	0.06	9.85	47.47	60.94	-13.47	QP
7	0.77	9.01	0.05	9.86	18.92	46.00	-27.08	Average
8	0.77	20.79	0.05	9.86	30.70	56.00	-25.30	QP
9	3.60	7.64	0.07	9.91	17.62	46.00	-28.38	Average
10	3.60	18.58	0.07	9.91	28.56	56.00	-27.44	QP
11	20.27	25.36	0.35	9.92	35.63	50.00	-14.37	Average
12	20.27	31.81	0.35	9.92	42.08	60.00	-17.92	QP

Notes: Emission Level = Read Level +LISN Factor + Cable loss

Report No.: SHEM180800747901

Page: 15 of 59

7.2 Minimum 6dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.247a(2)
Test Method: ANSI C63.10 (2013) Section 11.8.1

Limit: ≥500 kHz

7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode a:TX mode Keep the EUT in continuously transmitting mode with all modulation

types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).

Only the data of worst case is recorded in the report.

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

The detailed test data see: Appendix A SHEM180800747901

Report No.: SHEM180800747901

Page: 16 of 59

7.3 Conducted Peak Output Power

Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(3)
Test Method: ANSI C63.10 (2013) Section 11.9.1

Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)					
	1 for ≥50 hopping channels					
902-928	0.25 for 25≤ hopping channels <50					
	1 for digital modulation					
	1 for ≥75 non-overlapping hopping channels					
2400-2483.5	0.125 for all other frequency hopping systems					
	1 for digital modulation					
5725-5850	1 for frequency hopping systems and digital modulation					

7.3.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with all modulation

types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).

Only the data of worst case is recorded in the report.

7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Procedure and Data

The detailed test data see: Appendix A SHEM180800747901

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SHEM180800747901

Page: 17 of 59

7.4 Power Spectrum Density

Test Requirement 47 CFR Part 15, Subpart C 15.247(e)
Test Method: ANSI C63.10 (2013) Section 11.10.2

Limit: ≤8dBm in any 3 kHz band during any time interval of continuous

transmission

7.4.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with all modulation

types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).

Only the data of worst case is recorded in the report.

7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Procedure and Data

The detailed test data see: Appendix A SHEM180800747901

Report No.: SHEM180800747901

Page: 18 of 59

7.5 Conducted Band Edges Measurement

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 11.13.3.2

Limit: In any 100 kHz bandwidth outside

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)

7.5.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode a:TX mode Keep the EUT in

a:TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).

Only the data of worst case is recorded in the report.

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Procedure and Data

The detailed test data see: Appendix A SHEM180800747901

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sqs.com/en/Terms-and-Conditions.rems-and-Conditions-and-Conditions-and-Conditions-and-Conditions-and-Conditions-and-Conditions-and-Conditions-and-

Report No.: SHEM180800747901

Page: 19 of 59

7.6 Conducted Spurious Emissions

47 CFR Part 15, Subpart C 15.247(d) Test Requirement Test Method: ANSI C63.10 (2013) Section 11.11

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in

§15.205(a), must also comply with the radiated emission limits specified in

§15.209(a) (see §15.205(c)

7.6.1 E.U.T. Operation

Operating Environment:

Humidity: 50 % RH Temperature: Atmospheric Pressure: 1002 mbar

Test mode

a:TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).

Only the data of worst case is recorded in the report.

7.6.2 Test Setup Diagram

Ground Reference Plane

7.6.3 Measurement Procedure and Data

The detailed test data see: Appendix A SHEM180800747901

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx at for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-e-Document.aspx. Attention is drawn to timitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction for exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthoriz alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results show in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SHEM180800747901

Page: 20 of 59

7.7 Radiated Emissions which fall in the restricted bands

Test Requirement 47 CFR Part 15, Subpart C 15.209 & 15.247(d)

Test Method: ANSI C63.10 (2013) Section 6.10.5

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.7.1 E.U.T. Operation

Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode Keep the EUT in continuously transmitting mode with all modulation

types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).

Only the data of worst case is recorded in the report.

Report No.: SHEM180800747901

Page: 21 of 59

7.7.2 Test Setup Diagram

Report No.: SHEM180800747901

Page: 22 of 59

7.7.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.
- Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: SHEM180800747901

Page: 23 of 59

Mode:a; Polarization:Horizontal; Modulation:b; bandwidth:20MHz; Channel:Low

Antenna Polarity : HORIZONTAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2334.34	42.73	25.95	6.37	37.37	37.68	74.00	-36.32	Peak
2390.00	41.55	26.03	6.47	37.36	36.69	74.00	-37.31	Peak
2410.88	98.55	26.06	6.50	37.35	93.76	74.00	19.76	Peak

Report No.: SHEM180800747901

Page: 24 of 59

Mode:a; Polarization:Vertical; Modulation:b; bandwidth:20MHz; Channel:Low

Antenna Polarity : VERTICAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2330.92	45.65	25.95	6.37	37.37	40.60	74.00	-33.40	Peak
2390.00	42.97	26.03	6.47	37.36	38.11	74.00	-35.89	Peak
2413.08	99.21	26.08	6.50	37.36	94.43	74.00	20.43	Peak

Report No.: SHEM180800747901

Page: 25 of 59

Mode:a; Polarization:Horizontal; Modulation:b; bandwidth:20MHz; Channel:High

Antenna Polarity : HORIZONTAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2463.07	96.90	26.15	6.68	37.46	92.27	74.00	18.27	Peak
2483.50	40.32	26.18	6.80	37.51	35.79	74.00	-38.21	Peak
2540.63	42.63	26.33	7.01	37.60	38.37	74.00	-35.63	Peak

Report No.: SHEM180800747901

Page: 26 of 59

Mode:a; Polarization:Vertical; Modulation:b; bandwidth:20MHz; Channel:High

Antenna Polarity : VERTICAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2463.07	99.77	26.15	6.68	37.46	95.14	74.00	21.14	Peak
2483.50	44.32	26.18	6.80	37.51	39.79	74.00	-34.21	Peak
2524.93	44.52	26.27	6.94	37.58	40.15	74.00	-33.85	Peak

Report No.: SHEM180800747901

Page: 27 of 59

Mode:a; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:Low

Antenna Polarity : HORIZONTAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2389.61	58.51	26.03	6.47	37.36	53.65	74.00	-20.35	Peak
2390.00	59.40	26.03	6.47	37.36	54.54	74.00	-19.46	Peak
2413.57	98.38	26.08	6.50	37.36	93.60	74.00	19.60	Peak

Report No.: SHEM180800747901

Page: 28 of 59

Mode:a; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:Low

Antenna Polarity : HORIZONTAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2389.36	39.93	26.03	6.47	37.36	35.07	54.00	-18.93	Average
2390.00	41.67	26.03	6.47	37.36	36.81	54.00	-17.19	Average
2410.76	89.08	26.06	6.50	37.35	84.29	54.00	30.29	Average

Report No.: SHEM180800747901

Page: 29 of 59

Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:Low

Antenna Polarity : VERTICAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2389.24	57.88	26.03	6.47	37.36	53.02	74.00	-20.98	Peak
2390.00	59.30	26.03	6.47	37.36	54.44	74.00	-19.56	Peak
2405.88	99.12	26.06	6.50	37.35	94.33	74.00	20.33	Peak

Report No.: SHEM180800747901

Page: 30 of 59

Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:Low

Antenna Polarity : VERTICAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2389.36	41.14	26.03	6.47	37.36	36.28	54.00	-17.72	Average
2390.00	42.92	26.03	6.47	37.36	38.06	54.00	-15.94	Average
2414.05	90.07	26.08	6.50	37.36	85.29	54.00	31.29	Average

Report No.: SHEM180800747901

Page: 31 of 59

Mode:a; Polarization:Horizontal; Modulation:g; bandwidth:20MHz; Channel:High

Antenna Polarity : HORIZONTAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2463.07	97.44	26.15	6.68	37.46	92.81	74.00	18.81	Peak
2483.50	56.59	26.18	6.80	37.51	52.06	74.00	-21.94	Peak
2484.25	56.81	26.18	6.80	37.51	52.28	74.00	-21.72	Peak

Report No.: SHEM180800747901

Page: 32 of 59

Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:High

Antenna Polarity : VERTICAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2463.66	99.27	26.15	6.68	37.46	94.64	74.00	20.64	Peak
2483.50	58.67	26.18	6.80	37.51	54.14	74.00	-19.86	Peak
2484.05	59.06	26.18	6.80	37.51	54.53	74.00	-19.47	Peak

Report No.: SHEM180800747901

Page: 33 of 59

Mode:a; Polarization:Vertical; Modulation:g; bandwidth:20MHz; Channel:High

Antenna Polarity : VERTICAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2463.86	89.73	26.15	6.68	37.46	85.10	54.00	31.10	Average
2483.50	43.11	26.18	6.80	37.51	38.58	54.00	-15.42	Average
2484.25	41.54	26.18	6.80	37.51	37.01	54.00	-16.99	Average

Report No.: SHEM180800747901

Page: 34 of 59

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low

Antenna Polarity : HORIZONTAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2389.48	58.73	26.03	6.47	37.36	53.87	74.00	-20.13	Peak
2390.00	60.21	26.03	6.47	37.36	55.35	74.00	-18.65	Peak
2413.57	98.34	26.08	6.50	37.36	93.56	74.00	19.56	Peak

Report No.: SHEM180800747901

Page: 35 of 59

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low

Antenna Polarity : HORIZONTAL

Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Level	Factor	Loss	Factor	Level	Line	Limit	Remark
dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
39.81	26.03	6.47	37.36	34.95	54.00	-19.05	Average
41.88	26.03	6.47	37.36	37.02	54.00	-16.98	Average
89.06	26.06	6.50	37.35	84.27	54.00	30.27	Average
	dBuv 39.81 41.88	Level Factor dBuv dB/m 39.81 26.03 41.88 26.03	Level Factor Loss dBuv dB/m dB 39.81 26.03 6.47 41.88 26.03 6.47	Level Factor Loss Factor dBuv dB/m dB dB 39.81 26.03 6.47 37.36 41.88 26.03 6.47 37.36	Level Factor Loss Factor Level dBuv dB/m dB dB dBuv/m 39.81 26.03 6.47 37.36 34.95 41.88 26.03 6.47 37.36 37.02	Level Factor Loss Factor Level Line dBuv dB/m dB dBuv/m dBuv/m dBuv/m 39.81 26.03 6.47 37.36 34.95 54.00 41.88 26.03 6.47 37.36 37.02 54.00	Read Antenna Cable Preamp Emission Limit Over Level Factor Loss Factor Level Line Limit dBuv dB/m dB dB dBuv/m dBuv/m dBuv/m dB 39.81 26.03 6.47 37.36 34.95 54.00 -19.05 54.00 -19.05 41.88 26.03 6.47 37.36 37.02 54.00 -16.98 39.06 26.06 6.50 37.35 84.27 54.00 30.27

Report No.: SHEM180800747901

Page: 36 of 59

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low

Antenna Polarity : VERTICAL

Freq					Emission Level			Remark
					ID			
MHZ	dBuv	dB/m	aB	aв	dBuv/m	dBuv/m	aв	
2389.36	59.81	26.03	6.47	37.36	54.95	74.00	-19.05	Peak
2390.00	61.67	26.03	6.47	37.36	56.81	74.00	-17.19	Peak
2413.57	99.55	26.08	6.50	37.36	94.77	74.00	20.77	Peak

Report No.: SHEM180800747901

Page: 37 of 59

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low

Antenna Polarity : VERTICAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2389.36	40.94	26.03	6.47	37.36	36.08	54.00	-17.92	Average
2390.00	42.71	26.03	6.47	37.36	37.85	54.00	-16.15	Average
2414.05	90.03	26.08	6.50	37.36	85.25	54.00	31.25	Average

Report No.: SHEM180800747901

Page: 38 of 59

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High

Antenna Polarity : HORIZONTAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2463.47	97.83	26.15	6.68	37.46	93.20	74.00	19.20	Peak
2483.50	55.81	26.18	6.80	37.51	51.28	74.00	-22.72	Peak
2484.05	56.64	26.18	6.80	37.51	52.11	74.00	-21.89	Peak

Report No.: SHEM180800747901

Page: 39 of 59

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High

Antenna Polarity : VERTICAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2463.56	98.29	26.15	6.68	37.46	93.66	74.00	19.66	Peak
2483.50	58.17	26.18	6.80	37.51	53.64	74.00	-20.36	Peak
2483.95	58.22	26.18	6.80	37.51	53.69	74.00	-20.31	Peak

Report No.: SHEM180800747901

Page: 40 of 59

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High

Antenna Polarity : VERTICAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2463.96	88.73	26.15	6.68	37.46	84.10	54.00	30.10	Average
2483.50	42.13	26.18	6.80	37.51	37.60	54.00	-16.40	Average
2484.35	40.32	26.18	6.80	37.51	35.79	54.00	-18.21	Average

Report No.: SHEM180800747901

Page: 41 of 59

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:Low

Antenna Polarity : HORIZONTAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2389.07	67.92	26.03	6.47	37.36	63.06	74.00	-10.94	Peak
2390.00	64.92	26.03	6.47	37.36	60.06	74.00	-13.94	Peak
2408.97	95.84	26.06	6.50	37.35	91.05	74.00	17.05	Peak

Report No.: SHEM180800747901

Page: 42 of 59

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:Low

Antenna Polarity : HORIZONTAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2387.95	54.82	26.03	6.47	37.36	49.96	54.00	-4.04	Average
2390.00	54.77	26.03	6.47	37.36	49.91	54.00	-4.09	Average
2409.68	86.62	26.06	6.50	37.35	81.83	54.00	27.83	Average

Report No.: SHEM180800747901

Page: 43 of 59

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:Low

Antenna Polarity : VERTICAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2388.93	67.61	26.03	6.47	37.36	62.75	74.00	-11.25	Peak
2390.00	67.92	26.03	6.47	37.36	63.06	74.00	-10.94	Peak
2429.33	95.87	26.10	6.56	37.39	91.14	74.00	17.14	Peak

Report No.: SHEM180800747901

Page: 44 of 59

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:Low

Antenna Polarity : VERTICAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2387.95	52.97	26.03	6.47	37.36	48.11	54.00	-5.89	Average
2390.00	52.86	26.03	6.47	37.36	48.00	54.00	-6.00	Average
2427.33	86.17	26.10	6.56	37.39	81.44	54.00	27.44	Average

Report No.: SHEM180800747901

Page: 45 of 59

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:High

Antenna Polarity : HORIZONTAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2463.85	94.59	26.15	6.68	37.46	89.96	74.00	15.96	Peak
2483.50	66.18	26.18	6.80	37.51	61.65	74.00	-12.35	Peak
2485.44	66.62	26.18	6.80	37.51	62.09	74.00	-11.91	Peak

Report No.: SHEM180800747901

Page: 46 of 59

Mode:a; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:High

Antenna Polarity : HORIZONTAL

Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Level	Factor	Loss	Factor	Level	Line	Limit	Remark
dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
85.15	26.15	6.68	37.46	80.52	54.00	26.52	Average
52.02	26.18	6.80	37.51	47.49	54.00	-6.51	Average
51.65	26.18	6.80	37.51	47.12	54.00	-6.88	Average
	Level dBuv 85.15 52.02	Level Factor dBuv dB/m 85.15 26.15 52.02 26.18	Level Factor Loss dBuv dB/m dB 85.15 26.15 6.68 52.02 26.18 6.80	Level Factor Loss Factor dBuv dB/m dB dB 85.15 26.15 6.68 37.46 52.02 26.18 6.80 37.51	Level Factor Loss Factor Level dBuv dB/m dB dB dBuv/m 85.15 26.15 6.68 37.46 80.52 52.02 26.18 6.80 37.51 47.49	Level Factor Loss Factor Level Line dBuv dB/m dB dB dBuv/m dBuv/m 85.15 26.15 6.68 37.46 80.52 54.00 52.02 26.18 6.80 37.51 47.49 54.00	Read Antenna Cable Preamp Emission Limit Over Level Factor Loss Factor Level Line Limit dBuv dB /m dB dB uv/m dBuv/m dB uv/m dB 85.15 26.15 6.68 37.46 80.52 54.00 26.52 52.02 26.18 6.80 37.51 47.49 54.00 -6.51 51.65 26.18 6.80 37.51 47.12 54.00 -6.88

Report No.: SHEM180800747901

Page: 47 of 59

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:High

Antenna Polarity : VERTICAL

	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2468.25	95.48	26.16	6.74	37.48	90.90	74.00	16.90	Peak
2483.50	68.73	26.18	6.80	37.51	64.20	74.00	-9.80	Peak
2486.76	70.25	26.18	6.80	37.51	65.72	74.00	-8.28	Peak

Report No.: SHEM180800747901

Page: 48 of 59

Mode:a; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:High

Antenna Polarity : VERTICAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2446.22	84.89	26.12	6.62	37.42	80.21	54.00	26.21	Average
2483.50	51.22	26.18	6.80	37.51	46.69	54.00	-7.31	Average
2486.04	50.82	26.18	6.80	37.51	46.29	54.00	-7.71	Average

Report No.: SHEM180800747901

Page: 49 of 59

7.8 Radiated Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.209 & 15.247(d)

Test Method: ANSI C63.10 (2013) Section 6.4,6.5,6.6

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.8.1 E.U.T. Operation

Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with all modulation

types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).

Only the data of worst case is recorded in the report.

Report No.: SHEM180800747901

Page: 50 of 59

7.8.2 Test Setup Diagram

Report No.: SHEM180800747901

Page: 51 of 59

7.8.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown

Report No.: SHEM180800747901

Page: 52 of 59

Below 1GHz:

Antenna Polarity :HORIZONTAL EUT/Project :7481CR

Test mode :a

		Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
1	38.89	43.12	16.20	0.22	43.69	15.85	40.00	-24.15	QP
2	51.66	52.54	10.95	0.27	43.73	20.03	40.00	-19.97	QP
3	74.40	56.78	9.88	0.36	43.73	23.29	40.00	-16.71	QP
4	135.51	50.65	11.94	0.60	43.73	19.46	43.50	-24.04	QP
5	199.29	55.67	9.46	0.69	43.71	22.11	43.50	-21.39	QP
6	300.37	51.72	13.20	0.84	43.65	22.11	46.00	-23.89	QP

Report No.: SHEM180800747901

Page: 53 of 59

Antenna Polarity :VERTICAL EUT/Project :7481CR

Test mode :a

		Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
1	38.89	58.45	16.20	0.22	43.69	31.18	40.00	-8.82	QP
2	43.66	61.94	14.07	0.23	43.71	32.53	40.00	-7.47	QP
3	50.41	69.50	10.68	0.26	43.73	36.71	40.00	-3.29	QP
4	73.10	71.08	10.33	0.35	43.74	38.02	40.00	-1.98	QP
5	106.76	66.28	9.57	0.49	43.74	32.60	43.50	-10.90	QP
6	350.48	59.24	14.22	0.92	43.54	30.84	46.00	-15.16	QP

Report No.: SHEM180800747901

Page: 54 of 59

Above 1GHz	Ab	ove	1	G١	Ηz
------------	----	-----	---	----	----

arization:F	lorizontal;	Modulation:b;	bandwid	th:20MHz;	Channel:Low
RX_R	Factor	Emission	Limit	Margin	Detector
dBuV	dB	dBuV/m	dBuV/m	dB	
39.56	6.40	45.96	54	-8.04	peak
37.21	10.76	47.97	54	-6.03	peak
33.69	14.37	48.06	54	-5.94	peak
	/			001411- 01	
				Ū	Detector
					peak
					peak
31.56	14.37	45.93	54	-8.07	peak
arization·F	lorizontal·	Modulation:b:	bandwid	th·20MHz·	Channel middle
				· ·	Detector
	dB			_	
41.64			54	-5.44	peak
			54		peak
35.42	14.36	49.78	54	-4.22	peak
					•
arization:V	ertical; M		andwidth:	20MHz; Cl	hannel:middle
RX_R	Factor	Emission	Limit	Margin	Detector
dBuV	dB	dBuV/m	dBuV/m	dB	
39.78	6.92	46.70	54	-7.30	peak
38.39	11.08	49.47	54	-4.53	peak
34.85	14.36	49.21	54	-4.79	peak
	المشامية	Madulatianda	المادة عاما	4b.20011 l=.	Channaldligh
					_
				_	Detector
					nook
					peak
					peak
34.71	14.38	49.09	54	-4.91	peak
arization:V	ertical; M	odulation:b; b	andwidth:	20MHz; CI	hannel:High
RX_R	Factor	Emission	Limit	Margin	Detector
dBuV	dB	dBuV/m	dBuV/m	dB	
40.57	7.31	47.88	54	-6.12	peak
34.01	11.41	45.42	54	-8.58	peak
		49.49		-4.51	-
	RX_R dBuV 39.56 37.21 33.69 arization:V RX_R dBuV 42.35 36.32 31.56 arization:H RX_R dBuV 41.64 35.94 35.42 arization:V RX_R dBuV 39.78 38.39 34.85 arization:H RX_R dBuV 39.78 38.39 34.85 arization:H RX_R dBuV 43.83 39.60 34.71 arization:V RX_R dBuV 43.83 39.60 34.71	arization:Horizontal; RX_R Factor dBuV dB 39.56 6.40 37.21 10.76 33.69 14.37 arization:Vertical; Marking Factor dBuV dB 42.35 6.40 36.32 10.76 31.56 14.37 arization:Horizontal; RX_R Factor dBuV dB 41.64 6.92 35.94 11.08 35.42 14.36 arization:Vertical; Marking Factor dBuV dB 39.78 6.92 38.39 11.08 34.85 14.36 arization:Horizontal; RX_R Factor dBuV dB 39.78 6.92 38.39 11.08 34.85 14.36 arization:Horizontal; RX_R Factor dBuV dB 39.78 6.92 38.39 11.08 34.85 14.36 arization:Horizontal; RX_R Factor dBuV dB 43.83 7.31 39.60 11.41 34.71 14.38 arization:Vertical; Marking Factor dBuV dB 43.83 7.31 39.60 11.41 34.71 14.38	arization:Horizontal; Modulation:b; RX_R Factor Emission dBuV dB dBuV/m 39.56 6.40 45.96 37.21 10.76 47.97 33.69 14.37 48.06 arization:Vertical; Modulation:b; b RX_R Factor Emission dBuV dB dBuV/m 42.35 6.40 48.75 36.32 10.76 47.08 31.56 14.37 45.93 arization:Horizontal; Modulation:b; RX_R Factor Emission dBuV dB dBuV/m 41.64 6.92 48.56 35.94 11.08 47.02 35.42 14.36 49.78 arization:Vertical; Modulation:b; b RX_R Factor Emission dBuV dB dBuV/m 39.78 6.92 46.70 38.39 11.08 49.47 34.85 14.36 49.21 arization:Horizontal; Modulation:b; b RX_R Factor Emission dBuV dB dBuV/m 39.78 6.92 46.70 38.39 11.08 49.47 34.85 14.36 49.21 arization:Horizontal; Modulation:b; RX_R Factor Emission dBuV dB dBuV/m 43.83 7.31 51.14 39.60 11.41 51.01 34.71 14.38 49.09 arization:Vertical; Modulation:b; b RX_R Factor Emission dBuV dB dBuV/m 43.83 7.31 51.14 39.60 11.41 51.01 34.71 14.38 49.09 arization:Vertical; Modulation:b; b RX_R Factor Emission dBuV dB dBuV/m 43.87 7.31 47.88	arization:Horizontal; Modulation:b; bandwid RX_R Factor Emission Limit dBuV dB dBuV/m dBuV/m 39.56 6.40 45.96 54 37.21 10.76 47.97 54 33.69 14.37 48.06 54 arization:Vertical; Modulation:b; bandwidth: RX_R Factor Emission Limit dBuV dB dBuV/m dBuV/m 42.35 6.40 48.75 54 36.32 10.76 47.08 54 31.56 14.37 45.93 54 arization:Horizontal; Modulation:b; bandwid RX_R Factor Emission Limit dBuV dB dBuV/m dBuV/m dBuV dB dBuV/m dBuV/m dBuV dB dBuV/m dBuV/m 39.78 6.92 46.70 54 34.85 14.36	arization:Horizontal; Modulation:b; bandwidth:20MHz; RX_R Factor Emission Limit Margin dBuV dB dBuV/m dBuV/m dB 39.56 6.40 45.96 54 -8.04 37.21 10.76 47.97 54 -6.03 33.69 14.37 48.06 54 -5.94 arization:Vertical; Modulation:b; bandwidth:20MHz; CI RX_R Factor Emission Limit Margin dBuV dB dBuV/m dBuV/m dB 42.35 6.40 48.75 54 -5.25 36.32 10.76 47.08 54 -6.92 31.56 14.37 45.93 54 -8.07 arization:Horizontal; Modulation:b; bandwidth:20MHz; RM RX_R Factor Emission Limit Margin dBuV dB dBuV/m dBuV/m dB 39.78 6.92

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SHEM180800747901

Page: 55 of 59

Modera: Pol	arization:F	Horizontal:	Modulation:	r handwid	th·20MHz·	Channel:Low
Frequency	RX R	Factor	Emission	Limit	Margin	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4824	40.20	6.40	46.60	54	-7.40	peak
7236	36.67	10.76	47.43	54	-6.57	peak
9648	31.34	14.37	45.71	54	-8.29	peak
						F
Mode:a; Pol	arization:\	/ertical; M	odulation:g; ł	oandwidth:	20MHz; C	hannel:Low
Frequency	RX_R	Factor	Emission	Limit	Margin	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4824	43.87	6.40	50.27	54	-3.73	peak
7236	34.30	10.76	45.06	54	-8.94	peak
9648	34.27	14.37	48.64	54	-5.36	peak
Mode:a; Pol	arization:H	Horizontal;	_	; bandwid	th:20MHz;	Channel:middle
Frequency	RX_R	Factor	Emission	Limit	Margin	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4874	39.47	6.92	46.39	54	-7.61	peak
7311	35.06	11.08	46.14	54	-7.86	peak
9748	36.63	14.36	50.99	54	-3.01	peak
			-			hannel:middle
Frequency	RX_R	Factor	Emission	Limit	Margin	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4874	41.75	6.92	48.67	54	-5.33	peak
7311	39.12	11.08	50.20	54	-3.80	peak
9748	33.65	14.36	48.01	54	-5.99	peak
Madaiai Dal	orizationul	Jorizoptoli	Madulation	المناطبين	th:201/14-	Channel:High
			Emission			-
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
4924	41.73	7.31	49.04	54	-4.96	poak
		11.41	49.04 50.27	54 54		peak
7386	38.86				-3.73	peak
9848	35.61	14.38	49.99	54	-4.01	peak
Mode:a; Pol	arization:\	/ertical; M	odulation:g; l	oandwidth:	20MHz; C	hannel:High
Frequency	RX_R	Factor	Emission	Limit	Margin	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4924	38.08	7.31	45.39	54	-8.61	peak
7386	38.14	11.41	49.55	54	-4.45	peak
9848	36.91	14.38	51.29	54	-2.71	peak
						•

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SHEM180800747901

Page: 56 of 59

Mode:a:	Polarization	:Horizontal:	Modulation:n:	bandwic	th:20MHz:	Channel:Low
Frequen		Factor	Emission	Limit	Margin	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4824	43.19	6.40	49.59	54	-4.41	peak
7236	37.21	10.76	47.97	54	-6.03	peak
9648	36.24	14.37	50.61	54	-3.39	peak
Mode:a;	Polarization	:Vertical; M	odulation:n; b	andwidth:	:20MHz; Cl	hannel:Low
Frequen		Factor	Emission	Limit	Margin	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4824	38.27	6.40	44.67	54	-9.33	peak
7236	36.03	10.76	46.79	54	-7.21	peak
9648	36.88	14.37	51.25	54	-2.75	peak
Mode:a;	Polarization	:Horizontal;	Modulation:n;	bandwic	lth:20MHz;	Channel:middle
Frequen	cy RX_R	Factor	Emission	Limit	Margin	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4874	41.54	6.92	48.46	54	-5.54	peak
7311	35.67	11.08	46.75	54	-7.25	peak
9748	36.88	14.36	51.24	54	-2.76	peak
Mode:a;	Polarization	:Vertical; M	odulation:n; b	andwidth:	:20MHz; Cl	hannel:middle
Frequen		Factor	Emission	Limit	Margin	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4874	38.59	6.92	45.51	54	-8.49	peak
7311	39.27	11.08	50.35	54	-3.65	peak
9748	35.95	14.36	50.31	54	-3.69	peak
Modera:	Polarization	·Horizontal·	Modulation:n	· handwic	lth·20MHz·	Channel:High
Frequen		Factor	Emission	Limit	Margin	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	20100101
4924	39.85	7.31	47.16	54	-6.84	peak
7386	35.69	11.41	47.10	54	-6.90	peak
9848	32.33	14.38	46.71	54	-7.29	peak
	5			1 1 14		
			odulation:n; b			•
Frequen	•	Factor	Emission	Limit	Margin	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4924	43.86	7.31	51.17	54	-2.83	peak
7386	34.95	11.41	46.36	54	-7.64	peak
9848	32.03	14.38	46.41	54	-7.59	peak

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SHEM180800747901

Page: 57 of 59

Mode:a;	Polarization	:Horizontal;	Modulation:	n; bandwid	th:40MHz;	Channel:Low
Frequen		Factor	Emission	Limit	Margin	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4844	41.66	6.60	48.26	54	-5.74	peak
7266	39.52	10.89	50.41	54	-3.59	peak
9688	30.71	14.35	45.06	54	-8.94	peak
Mode:a:	Polarization	·Vertical· M	odulation:n;	handwidth:	40MHz· Cl	hannel·l ow
Frequen		Factor	Emission	Limit	Margin	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4844	39.88	6.60	46.48	54	-7.52	peak
7266	35.57	10.89	46.46	54	-7.54	peak
9688	33.44	14.35	47.79	54	-6.21	peak
Mode:a;	Polarization	•		-	· ·	Channel:middle
Frequen	cy RX_R	Factor	Emission	Limit	Margin	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4874	41.78	6.92	48.70	54	-5.30	peak
7311	35.96	11.08	47.04	54	-6.96	peak
9748	35.93	14.36	50.29	54	-3.71	peak
Mode:a:	Polarization	:Vertical: M	odulation:n:	bandwidth:	40MHz: Cl	hannel:middle
Frequen		Factor	Emission	Limit	Margin	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4874	41.68	6.92	48.60	54	-5.40	peak
7311	34.69	11.08	45.77	54	-8.23	peak
9748	32.09	14.36	46.45	54	-7.55	peak
	5.1.1.11					0
•		-		-	-	Channel:High
Frequen	•	Factor	Emission	Limit	Margin	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4904	39.76	7.22	46.98	54	-7.02	peak
7356	34.91	11.28	46.19	54	-7.81	peak
9808	34.83	14.37	49.20	54	-4.80	peak
Mode:a;	Polarization	:Vertical; M	odulation:n;	bandwidth:	40MHz; Cl	•
Frequen	cy RX_R	Factor	Emission	Limit	Margin	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
IVII IZ	abav					
4904	42.60	7.22	49.82	54	-4.18	peak
			49.82 46.43	54 54	-4.18 -7.57	peak peak

Report No.: SHEM180800747901

Page: 58 of 59

7.9 99% Bandwidth

Test Requirement RSS-Gen Section 6.6
Test Method: ANSI C63.10 Section 6.9.3

7.9.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with all modulation

types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20); data rate @ 13.5Mbps is the worst case of IEEE 802.11n(HT40).

Only the data of worst case is recorded in the report.

7.9.2 Test Setup Diagram

Ground Reference Plane

7.9.3 Measurement Procedure and Data

The detailed test data see: Appendix A SHEM180800747901

Report No.: SHEM180800747901

Page: 59 of 59

8 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

- End of the Report -