Introducción al Diseño de Filtros Digitales

Diego Milone

Muestreo y Procesamiento Digital Ingeniería Informática FICH-UNL

7 de mayo de 2009

Organización de la clase

Introducción

Concepto y clasificación de filtros Filtros ideales y filtros realizables

Diseño de filtros IIR

Algoritmos de diseño IIR Diseños analógicos básicos Transformaciones en frecuencia

Diseño de filtros FIR

Propiedades de los filtros FIR Filtros de fase lineal Métodos de diseño FIR

Modulación

Conceptos básicos

Organización de la clase

Introducción

Concepto y clasificación de filtros Filtros ideales y filtros realizables

Diseño de filtros IIR

Algoritmos de diseño IIR Diseños analógicos básicos Transformaciones en frecuencia

Diseño de filtros FIR

Propiedades de los filtros FIR Filtros de fase lineal Métodos de diseño FIR

Modulación

Conceptos básicos

Diseño FIR

Concepto

• ¿Qué es un filtro?

Concepto

- ¿Qué es un filtro?
- Filtros vs. Sistemas

Concepto

- ¿Qué es un filtro?
- Filtros vs. Sistemas
- Ejemplos...

Clasificación de los filtros

- Respuesta al impulso
 - IIR (recursivos, AR/ARMA)
 - FIR (no-recursivos, MA)

Clasificación de los filtros

- Respuesta al impulso
 - IIR (recursivos, AR/ARMA)
 - FIR (no-recursivos, MA)
- Banda de paso
 - Pasa-Bajos
 - Pasa-Altos
 - Pasa-Banda
 - Rechaza-Banda
 - Multibanda

Clasificación de los filtros

- Adaptativos vs. estáticos
- Filtros de fase lineal
- Filtros para compensación de fase

Clasificación de las técnicas de diseño

- Filtros IIR
 - Prototipos analógicos
 - Butterworth
 - Chebyshev I y II
 - Elípticos
 - Bessel
 - Diseño digital directo (Yule-Walk)

Clasificación de las técnicas de diseño

- Filtros IIR
 - Prototipos analógicos
 - Butterworth
 - Chebyshev I y II
 - Elípticos
 - Bessel
 - Diseño digital directo (Yule-Walk)
- Filtros FIR
 - Método de Fourier + Ventaneo
 - Otros (mínimos cuadrados, minimax, etc)

Filtro pasa bajos ideal

- Magnitud
- Fase
- Frecuencia de corte (-3 dB)

- Filtro pasa bajos
 - Bandas de paso, rechazo y transición

- Filtro pasa bajos
 - Bandas de paso, rechazo y transición
 - Tolerancias en las bandas de paso y rechazo

- Filtro pasa bajos
 - Bandas de paso, rechazo y transición
 - Tolerancias en las bandas de paso y rechazo
 - Frecuencias de paso, corte y rechazo

- Filtro pasa bajos
 - Bandas de paso, rechazo y transición
 - Tolerancias en las bandas de paso y rechazo
 - Frecuencias de paso, corte y rechazo
 - Fase

- Filtro pasa altos
 - Bandas de paso, rechazo y transición
 - Tolerancias en las bandas de paso y rechazo
 - Frecuencias de paso, corte y rechazo
 - Fase

- Filtro pasa banda
 - Bandas de paso, rechazo y transición
 - Tolerancias en las bandas de paso y rechazo
 - Frecuencias de paso, corte y rechazo
 - Fase

- Filtro rechaza banda
 - Bandas de paso, rechazo y transición
 - Tolerancias en las bandas de paso y rechazo
 - Frecuencias de paso, corte y rechazo
 - Fase

Filtros digitales vs. analógicos

- ++ Estabilidad (componentes electrónicos)
- ++ Precisión
- -- Frecuencia limitada por la conversión A/D (=> costos)

Organización de la clase

Introducción

Concepto y clasificación de filtros Filtros ideales y filtros realizables

Diseño de filtros IIR

Algoritmos de diseño IIR Diseños analógicos básicos Transformaciones en frecuencia

Diseño de filtros FIR

Propiedades de los filtros FIR Filtros de fase lineal Métodos de diseño FIR

Modulación

Conceptos básicos

Algoritmos de diseño IIR

- Método 1
 - Diseño analógico (filtro P-Bajos normalizado)
 - Transformación en frecuencia (analógica, en s)
 - Transformación conforme (bilineal)

Algoritmos de diseño IIR

- Método 1
 - Diseño analógico (filtro P-Bajos normalizado)
 - Transformación en frecuencia (analógica, en s)
 - Transformación conforme (bilineal)
- Método 2
 - Diseño analógico (filtro P-Bajos normalizado)
 - Transformación conforme (bilineal)
 - Transformación en frecuencia (digital, en z)

Diseño analógico: Butterworth

- Función de transferencia
- Tolerancias en la banda de paso y rechazo
- Forma de la respuesta en frecuencia
- Diseño:
 - Especificaciones típicas $(w_p, A y K_0)$
 - Fórmula para la estimación del orden (N)

$$|H(j\omega)|^2 = \frac{1}{1 + \epsilon^2 \left(\frac{\omega}{\omega_P}\right)^{2N}}$$

$$|H(j\omega)|^2 = \frac{1}{1 + \epsilon^2 \left(\frac{\omega}{\omega_P}\right)^{2N}}$$

$$|H(j\omega)|^2 = \frac{1}{1 + \epsilon^2 \left(\frac{\omega}{\omega_P}\right)^{2N}}$$

$$|H(j\omega)|^2 = \frac{1}{1 + \epsilon^2 \left(\frac{\omega}{\omega_P}\right)^{2N}}$$

si
$$|\omega| \le \omega_P \Rightarrow |H(j\omega)|^2 > \frac{1}{1+\epsilon^2}$$

si $|\omega| \ge \omega_R \Rightarrow |H(j\omega)|^2 < \frac{1}{1+\lambda^2}$

si
$$N \to \infty$$

 $\omega_R \to \omega_P$
 $\epsilon \to 0$
 $\lambda \to \infty$

Características del filtro de Butterworth

- Respuesta monotónicamente decreciente
- Respuesta máximamente plana cerca de $\omega=0$
- Fase tendiendo a $-N\pi/2$ para $\omega \to \infty$

Diseño Butterworth

- Dados
 - ullet ω_p : frecuencia de corte
 - ullet \hat{A} : relación de atenuación máxima
 - K_0 : relación de ancho de transición
- Se requiere
 - ullet N: orden del filtro

Ecuación de diseño Butterworth

Se debe cumplir:

$$N > \frac{\log A}{\log\left(\frac{1}{K_0}\right)}$$

siendo:
$$A = \frac{\lambda}{\epsilon} = \sqrt{\frac{10^{0,1A_R} - 1}{10^{0,1A_P} - 1}}$$

$$K_0 = \frac{\omega_P}{\omega_R}$$

Diseño analógico: Chebyshev

- Función de transferencia tipo I y tipo II
- Forma de la respuesta en frecuencia
- Tolerancias en la banda de paso y rechazo
- Fórmula para la estimación del orden (N)

$$|H(j\omega)|^2 = \frac{1}{1+\epsilon^2 V_N^2\left(\frac{\omega}{\omega_P}\right)}$$

$$|H(j\omega)|^2 = \frac{1}{1+\epsilon^2 V_N^2\left(\frac{\omega}{\omega_P}\right)}$$

Polinomio de Chebyshev:

$$V_N(x) = 2xV_{N-1}(x) - V_{N-2}(x)$$

 $V_0 = 1$
 $V_1 = x$

$$|H(j\omega)|^2 = \frac{1}{1+\epsilon^2 V_N^2 \left(\frac{\omega}{\omega_P}\right)}$$

Polinomio de Chebyshev:

$$V_N(x) = 2xV_{N-1}(x) - V_{N-2}(x)$$

 $V_0 = 1$
 $V_1 = x$

$$|H(j\omega)|^2 = \frac{1}{1+\epsilon^2 V_N^2 \left(\frac{\omega}{\omega_P}\right)}$$

Polinomio de Chebyshev:

$$V_N(x) = 2xV_{N-1}(x) - V_{N-2}(x)$$

 $V_0 = 1$
 $V_1 = x$

Caracteristicas de los filtros de Chebyshev

- Tipo I: ondulaciones en la banda de paso y monotónico decreciente en la banda de rechazo
- Tipo II: ondulaciones en la banda de rechazo y monotónico decreciente en la banda de paso
- Diferentes formas para orden par o impar

Ecuación de diseño Chebyshev (tipos I y II)

Se debe cumplir:

$$N > \frac{\cosh^{-1} A}{\cosh^{-1} \left(\frac{1}{K_0}\right)}$$

siendo:

$$A = \frac{\lambda}{\epsilon} = \sqrt{\frac{10^{0,1A_R} - 1}{10^{0,1A_P} - 1}}$$

$$K_0 = \frac{\omega_P}{\omega_R}$$

Diseño analógico: filtros elípticos

- Función de transferencia
- Forma de la respuesta en frecuencia
- Tolerancias en la banda de paso y rechazo
- Fórmula para la estimación del orden (N)

Filtros elípticos

$$|H(j\omega)|^2 = \frac{1}{1 + \epsilon^2 F_N^2 \left(\frac{\omega}{\omega_P}\right)}$$

Filtros elípticos

$$|H(j\omega)|^2 = \frac{1}{1 + \epsilon^2 F_N^2 \left(\frac{\omega}{\omega_P}\right)}$$

 $F_N(x)$: función elíptica Jacobiana

Filtros elípticos

$$|H(j\omega)|^2 = \frac{1}{1 + \epsilon^2 F_N^2 \left(\frac{\omega}{\omega_P}\right)}$$

 $F_N(x)$: función elíptica Jacobiana

Características de los filtros elípticos

- Ondulaciones en las bandas de paso y rechazo
- Corte más abrupto que los anteriores (para igual orden)
- Diferentes formas para orden par o impar

Ecuación de diseño para filtros elípticos

Se debe cumplir:

$$N > \frac{\log(16A)}{\log\left(\frac{1}{q}\right)}$$

siendo:

$$q = q_0 + 2q_0^5 + 15q_0^9 + 150q_0^{13}$$
$$q_0 = \frac{1 - (1 - K_0^2)^{0.25}}{2[1 + (1 - K_0^2)^{0.25}]}$$

Algoritmos de diseño IIR

- Método 1
 - Diseño analógico (filtro P-Bajos normalizado)
 - Transformación en frecuencia (analógica, en s) \Leftarrow
 - Transformación conforme (bilineal)
- Método 2
 - Diseño analógico (filtro P-Bajos normalizado)
 - Transformación conforme (bilineal)
 - Transformación en frecuencia (digital, en z) \Leftarrow

• Pasa-bajos \rightarrow Pasa-bajos $s \rightarrow \frac{s}{\omega_P}$

- Pasa-bajos \rightarrow Pasa-bajos $s \rightarrow \frac{s}{\omega_P}$
- Pasa-bajos \rightarrow Pasa-altos $s \rightarrow \frac{\omega_P}{s}$

- Pasa-bajos \rightarrow Pasa-bajos $s \rightarrow \frac{s}{\omega_P}$
- Pasa-bajos \rightarrow Pasa-altos $s \rightarrow \frac{\omega_P}{s}$
- Pasa-bajos Pasa-banda $s \to \frac{s^2 + \omega_{P1}\omega_{P2}}{s(\omega_{P2} \omega_{P1})}$

- Pasa-bajos \rightarrow Pasa-bajos $s \rightarrow \frac{s}{\omega_P}$
- Pasa-bajos \rightarrow Pasa-altos $s \rightarrow \frac{\omega_P}{s}$
- Pasa-bajos Pasa-banda $s \to \frac{s^2 + \omega_{P1}\omega_{P2}}{s(\omega_{P2} \omega_{P1})}$
- Pasa-bajos \rightarrow Rechaza-banda $s \rightarrow \frac{s(\omega_{P2} \omega_{P1})}{s^2 + \omega_{P1}\omega_{P2}}$

• Pasa-bajos \rightarrow Pasa-bajos $z^{-1} \rightarrow \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}$

$$\alpha = \frac{\sin((\omega_N - \omega_P)/2)}{\sin((\omega_N + \omega_P)/2)}$$

- Pasa-bajos \rightarrow Pasa-bajos $z^{-1} \rightarrow \frac{z^{-1} \alpha}{1 \alpha z^{-1}}$
- Pasa-bajos \rightarrow Pasa-altos $z^{-1} \rightarrow -\frac{z^{-1}+\alpha}{1+\alpha z^{-1}}$ $\alpha = -\frac{\cos((\omega_N + \omega_P)/2)}{\cos((\omega_N - \omega_P)/2)}$

- Pasa-bajos \rightarrow Pasa-bajos $z^{-1} \rightarrow \frac{z^{-1} \alpha}{1 \alpha z^{-1}}$
- Pasa-bajos \rightarrow Pasa-altos $z^{-1} \rightarrow -\frac{z^{-1}+\alpha}{1+\alpha z^{-1}}$
- Pasa-bajos \to Pasa-banda $z^{-1} \to \frac{z^{-2} \frac{2\alpha k}{k+1} z^{-1} + \frac{k-1}{k+1}}{\frac{k-1}{k+1} z^{-2} \frac{2\alpha k}{k+1} z^{-1} + 1}$

$$\alpha = \frac{\cos((\omega_{P2} + \omega_{P1})/2)}{\cos((\omega_{P2} - \omega_{P1})/2)}$$

$$k = \cos((\omega_{P2} - \omega_{P1})/2)\tan(\omega_N/2)$$

- Pasa-bajos \rightarrow Pasa-bajos $z^{-1} \rightarrow \frac{z^{-1} \alpha}{1 \alpha z^{-1}}$
- Pasa-bajos \rightarrow Pasa-altos $z^{-1} \rightarrow -\frac{z^{-1}+\alpha}{1+\alpha z^{-1}}$
- Pasa-bajos \to Pasa-banda z^{-1} \to $\frac{z^{-2}-\frac{2\alpha k}{k+1}z^{-1}+\frac{k-1}{k+1}}{\frac{k-1}{k+1}z^{-2}-\frac{2\alpha k}{k+1}z^{-1}+1}$
- Pasa-bajos \to Rechaza-banda z^{-1} \to $\frac{z^{-2}-\frac{2\alpha}{1+k}z^{-1}+\frac{1-k}{1+k}}{\frac{1-k}{1+k}z^{-2}-\frac{2\alpha}{k+1}z^{-1}+1}$

$$\alpha = \frac{\cos((\omega_{P2} + \omega_{P1})/2)}{\cos((\omega_{P2} - \omega_{P1})/2)}$$

$$k = \tan((\omega_{P2} - \omega_{P1})/2)\tan(\omega_N/2)$$

Organización de la clase

Introducción

Concepto y clasificación de filtros Filtros ideales y filtros realizables

Diseño de filtros IIR

Algoritmos de diseño IIR Diseños analógicos básicos Transformaciones en frecuencia

Diseño de filtros FIR

Propiedades de los filtros FIR Filtros de fase lineal Métodos de diseño FIR

Modulación

Conceptos básicos

Filtros FIR: ventajas y desventajas

- ++ Se puede lograr fase lineal
- ++ Presentan mayor estabilidad
- ++ Diseño hardware eficiente
- ++ Frecuencias de corte abruptas
- ++ Cortos transitorios de inicialización
- Requieren más cálculos

Filtros FIR: relaciones importantes

- Coeficientes FIR
- Respuesta al impulso
- Convolución
- Sistemas MA

• Descomposición de una onda cuadrada en dos componentes senoidales

- Descomposición de una onda cuadrada en dos componentes senoidales
- Aplicación de un filtro de fase constante a ambas componentes por superposición

- Descomposición de una onda cuadrada en dos componentes senoidales
- Aplicación de un filtro de fase constante a ambas componentes por superposición
- Aplicación de un filtro de fase lineal a ambas componentes por superposición

- Descomposición de una onda cuadrada en dos componentes senoidales
- Aplicación de un filtro de fase constante a ambas componentes por superposición
- Aplicación de un filtro de fase lineal a ambas componentes por superposición
- Filtro sin fase lineal (y con magnitud constante) deforma la onda en el tiempo

Fase lineal: definiciones

- Definiciones de módulo y fase
- Definición de retardo de fase: $\tau_{\phi}(\omega) = -\frac{\phi(\omega)}{\omega}$
- Definición de retardo de grupo $\tau_{\gamma}(\omega) = -\frac{d\phi(\omega)}{d\omega}$
- Fase lineal: $\phi(\omega) = \tau \omega$ (... τ_{ϕ} y τ_{γ} constantes ...)

Diseño FIR por Fourier y ventaneo

- 1. Especificación de los requerimientos (mód. y fase)
- 2. Muestreo de la respuesta en frecuencia
- 3. Aplicación de la TDF inversa
- 4. Truncado temporal (ventanas temporales)
- 5. Corrección de amplitud
- 6. Corrección para obtener la causalidad

Truncado y ventaneo temporal

Objetivos:

- Reducción del orden del filtro resultante
- Reducción de los artefactos del truncado
 - reducción de los lóbulos laterales
 - "reducción" del ancho en el lóbulo central

Interpretación gráfica

• Ventana rectangular: $\omega_R[n] = 1$

- Ventana rectangular: $\omega_R[n] = 1$
- Ventana de Hanning: $\omega_h[n] = \frac{1}{2} \frac{1}{2}\cos(2\pi n/N)$

- Ventana rectangular: $\omega_R[n] = 1$
- Ventana de Hanning: $\omega_h[n] = \frac{1}{2} \frac{1}{2}\cos(2\pi n/N)$
- Ventana de Hamming: $\omega_H[n] = \frac{27}{50} \frac{23}{50}\cos(2\pi n/N)$

- Ventana rectangular: $\omega_R[n] = 1$
- Ventana de Hanning: $\omega_h[n] = \frac{1}{2} \frac{1}{2}\cos(2\pi n/N)$
- Ventana de Hamming: $\omega_H[n] = \frac{27}{50} \frac{23}{50}\cos(2\pi n/N)$
- Ventana de Bartlett:

$$\omega_B[n] = \begin{cases} 2n/N & \text{si } 0 < n \le N/2 \\ 2 - 2n/N & \text{si } N/2 < n \le N \end{cases}$$

- Ventana rectangular: $\omega_R[n] = 1$
- Ventana de Hanning: $\omega_h[n] = \frac{1}{2} \frac{1}{2}\cos(2\pi n/N)$
- Ventana de Hamming: $\omega_H[n] = \frac{27}{50} \frac{23}{50}\cos(2\pi n/N)$
- Ventana de Bartlett:

$$\omega_B[n] = \begin{cases} 2n/N & \text{si } 0 < n \le N/2 \\ 2 - 2n/N & \text{si } N/2 < n \le N \end{cases}$$

• Ventana de Blackman:

$$\omega_K[n] = \frac{21}{50} - \frac{1}{2}\cos(2\pi n/N) + \frac{2}{25}\cos(4\pi n/N)$$

Ventanas: ancho del lóbulo central

• Rectangular: $4\pi/N$

• Bartlet: $8\pi/N$

• Hanning: $8\pi/N$

• Hamming: $8\pi/N$

• Blackman: $12\pi/N$

Ventanas: relación de energía entre lóbulos laterales y central

• Rectangular: -13 dB

• Bartlet: -25 dB

Hanning: -31 dBHamming: -41 dB

• Blackman: -57 dB

Organización de la clase

Introducción

Concepto y clasificación de filtros Filtros ideales y filtros realizables

Diseño de filtros IIR

Algoritmos de diseño IIR Diseños analógicos básicos Transformaciones en frecuencia

Diseño de filtros FIR

Propiedades de los filtros FIR Filtros de fase lineal Métodos de diseño FIR

Modulación

Conceptos básicos

Modulación: conceptos básicos

- Modulación en amplitud (sinusoidal)
- Demodulación sincrónica y asincrónica
- Multiplexado en frecuencia
- Modulación en frecuencia

Bibliografía básica

- D.J. DeFatta, J.J. Lucas, W.S. Hodgkiss, Digital Signal Processing: A System Design Approach (Capítulos 4 y 5), John Wiley, 1988.
- R. Kuc, Introduction to Digital Signal Processing (Capítulos 6, 7, 8 y 9), Mcgraw-Hill, 1988.
- A.V. Oppenheim, A.S. Willsky, Signals and Systems (modulación en amplitud y en frecuencia, Secciones 7.1,7.2,7.3,7.5,7.6), Prentice-Hall, 1999.