Another Argument for \supset

Branden Fitelson September 22, 2008

In this note, I will outline an argument for \supset , which combines (and refines) arguments from Priest and Gibbard. First, some notation. I will use ' \rightarrow ' for the English indicative conditional, and ' \supset ' for material implication. I will (typically) use English connectives in the meta-theory (sometimes, I will abbreviate the meta-theoretic conditional as ' \Rightarrow ', and sometimes I will use the word "entails", which is meant to be synonymous with the meta-theoretic \Rightarrow), and I will assume that our meta-theory is *classical*. I will give an argument for the following meta-theoretic statement (understood as a *schema*, which holds for *any* p/q):

$$p \rightarrow q$$
 if and only if $p \supset q$ [*i.e.*, $p \rightarrow q \Leftrightarrow p \supset q$]

This requires establishing the following two meta-theoretic conditionals:

① If
$$p \rightarrow q$$
, then $p \supset q$. [i.e., $p \rightarrow q \Rightarrow p \supset q$]

② If
$$p \supset q$$
, then $p \rightarrow q$. [i.e., $p \rightarrow q \leftarrow p \supset q$]

My strategy will be to prove ① first, and then use ① to prove ②. Here goes.

Argument for ①. Assuming a classical meta-theory, ① requires *only* the following principle:

$$(MP_{\rightarrow})$$
 If p and $p \rightarrow q$, then q. [i.e., Modus Ponens for ' \rightarrow ' preserves truth.]

Here is my argument for ①. I will actually prove the *contrapositive* of ①.

1	$p \supset q$ is false.	Assumption (for \Rightarrow I)
2	p is true.	From (1), by classical logic.
3	q is false.	From (1), by classical logic.
4	$p \rightarrow q$ is true.	Assumption (for RAA)
5	q is true.	From (2) and (4), by (MP_{\rightarrow}) .
6	Contradiction.	From (3), (5).
7	$p \rightarrow q$ is false.	From (4)–(6), by (RAA).
8	$p \supset q$ is false $\Rightarrow p \rightarrow q$ is false.	From (1)–(7), by (\Rightarrow I).
9	1	From (8), by \Rightarrow contraposition. \Box

Thus, assuming a classical meta-theory, *all* we need in order to prove 1 is (MP_{-}) . This shows that 1 is virtually equivalent to the assertion that Modus Ponens is truth-preserving for the indicative conditional.

Argument for ②. My argument for ② depends on the following six principles:

(EXP₋) If
$$\lceil (p \& q) \rightarrow r \rceil$$
, then $\lceil p \rightarrow (q \rightarrow r) \rceil$. [i.e., Exportation for ' \rightarrow ' preserves truth.] ① If $p \rightarrow q$, then $p \supset q$.

(AND $_{\rightarrow}$) $\lceil (p \& q) \rightarrow q \rceil$ is a logical truth.

- (LTE) If p is a logical truth, and p entails q, then q is a logical truth.
- (SUB) If p' is obtained from p by substitution of logical equivalents (*i.e.*, if p' results from substituting q' for q in p, where $q' \Leftrightarrow q$), then p entails p'.
- (SDT $_{\supset}^1$) If $\lceil p \supset q \rceil$ is a logical truth, then p entails q.

Here is my argument for ②. This argument will be *direct*.

1
$$\lceil (p \otimes q) \rightarrow q \rceil$$
 is a logical truth. (AND_)
2 $\lceil ((p \supset q) \otimes p) \rightarrow q \rceil$ is a logical truth. From (1), by (SDT_ \supset), (SUB), and (LTE).
3 $\lceil (p \supset q) \rightarrow (p \rightarrow q) \rceil$ is a logical truth. From (2), by (EXP_ \rightarrow) and (LTE).
4 $\lceil (p \supset q) \supset (p \rightarrow q) \rceil$ is a logical truth. From (3), by ① and (LTE).
5 ② From (4), by (SDT_ \supset).

Therefore, *the only way* one can resist the conclusion that the English indicative conditional \rightarrow is *equivalent* to \supset is to reject some of the following six assumptions (or some other classical inference in the meta-theory):

```
(MP<sub>-</sub>) If p and p \rightarrow q, then q. [i.e., Modus Ponens for '\rightarrow' preserves truth.]
```

(EXP₋) If
$$\lceil (p \& q) \rightarrow r \rceil$$
, then $\lceil p \rightarrow (q \rightarrow r) \rceil$. [i.e., Exportation for ' \rightarrow ' preserves truth.]

(AND₋) $\lceil (p \& q) \rightarrow q \rceil$ is a logical truth.

(LTE) If p is a logical truth, and p entails q, then q is a logical truth.

(SUB) If p' is obtained from p by substitution of logical equivalents (*i.e.*, if p' results from substituting q' for q in p, where $q' \Leftrightarrow q$), then p entails p'.

(SDT 1) If $p \supset q$ is a logical truth, then p entails q.

As we have seen, MacFarlane & Kolodny and McGee reject (MP $_{-}$). McGee seems to accept *all the other* assumptions of this argument, whereas MacFarlane & Kolodny also reject (EXP $_{-}$). I think MacFarlane & Kolodny accept everything here *except* for (MP $_{-}$) and (EXP $_{-}$). But, it's not at all obvious to me why someone who's worried about \supset should accept (SDT $_{-}^1$). That places a non-trivial constraint on our meta-theoretic "entailment" and "equivalence" relations, which could "trickle down" to our indicative, *especially* if we were inclined to assume some sort of semantic deduction theorem(s) for our *indicative* conditional as well. Consider:

```
(SDT^1_{\rightarrow}) If p \rightarrow q is a logical truth, then p entails q.
```

 (SDT^2) If p entails q, then $\lceil p \rightarrow q \rceil$ is a logical truth.

(SDT $_{\supset}^2$) If p entails q, then $\lceil p \supset q \rceil$ is a logical truth.

and

I suspect that (SDT)-type assumptions are doing more work than meets the eye here, since it is easy to tacitly presuppose that (SDT)-type principles hold for $both \rightarrow and \supset$. But, of course, if (SDT) *does* hold for both connectives, then we can "prove" a *validity-preserving* rendition of the desired equivalence, *trivially*:

And, if *these* meta-theoretic claims can be shown, then my conjecture about \rightarrow and \supset having similar *validity-preserving* (pure conditional) forms starts to look more plausible. We need to think more about (SDT)'s.