Art Unit: 2800

CLMSPTO

19 AUG 04

RJT

Art Unit: 2800

BEST AVAILABLE COPY

An electrostatic discharge circuit connected between a first power supply voltage source and a second power supply voltage source to protect internal integrated circuits from damage due to an electrostatic discharge, said electrostatic discharge circuit comprising:

a plurality of serially connected polycrystalline silicon diodes formed on a surface of a substrate, each diode having a first electrode and second electrode, said plurality of serially connected polycrystalline diodes including a first diode of the plurality of diodes has its first electrode connected to the first power supply voltage source, and a last diode having its second electrode connected to the second power supply voltage source.

wherein the first electrode is a first region of a polycrystalline silicon being heavily doped with an impurity of a first type and the second electrode is a second region of a polycrystalline silicon being heavily doped with an impurity of a second type, said second region being adjoined to the first region to form an electrical junction.

 The electrostatic discharge circuit of claim 1 wherein the adjoined first and second regions of each diode are formed on shallow trench isolation formed within the substrate.

Art Unit: 2800

- 3. The electrostatic discharge circuit of claim 1 wherein each diode further comprises a resistor protection oxide formed to overlay a portion of the first and second regions at the junction.
- 4. The electrostatic discharge circuit of claim 1 wherein the first electrode of each polycrystalline silicon diode is a cathode and the second electrode of each polycrystalline silicon diode is an anode.
- 5. The electrostatic discharge circuit of claim 4 wherein the impurity of the first type is an N-type impurity having a density of from approximately 10¹⁵ atoms/cm⁻³ to approximately 10²¹ atoms/cm⁻³.
- 6. The electrostatic discharge circuit of claim 4 wherein the impurity of the second type is a P-type impurity having a density of from approximately 10^{15} atoms/cm⁻³ to approximately 10^{21} atoms/cm⁻³.
- The electrostatic discharge circuit of claim 4 wherein each of the polycrystalline diodes has a thickness of from approximately 1000Å to approximately 3000 Å.
- 8. The electrostatic discharge circuit of claim 4 wherein each of the polycrystalline diodes has a thickness of from approximately 0.5µm to approximately 100µm.

Art Unit: 2800

9. The electrostatic discharge circuit of claim 1 wherein a number of the plurality of serially connected polycrystalline silicon diodes is determined by the formula:

$$n \ge \frac{V_{\text{noise}} + |Vx1 - Vx2|}{Vr}$$

where:

n is the number serially connected of polycrystalline silicon diodes,

V_{noise} is the maximum voltage level difference allowed to be present on the internal integrated circuits between the first power supply voltage source and the second power supply voltage source,

Vx1 is the magnitude of the first power supply voltage source,

Vx2 is the magnitude of the second power supply voltage source, and

V_T is the threshold voltage of each polycrystalline silicon diodes.

Art Unit: 2800

10. An integrated circuit formed on a substrate comprising:

- a first power distribution network connected to a first power supply voltage source;
- a second power distribution network connected to a second power supply voltage source;
- a plurality of internal circuits connected between the first and second power distribution networks; and
- an electrostatic discharge circuit connected between a first power supply voltage source and a second power supply voltage source to protect said internal circuits from an ESD event, said electrostatic discharge circuit comprising:
 - a plurality of serially connected polycrystalline silicon diodes formed on a surface of a substrate, each diode having a first electrode and second electrode, said plurality of serially connected polycrystalline diodes including a first diode of the plurality of diodes has its first electrode connected to the first power supply voltage source, and a fast diode having its second electrode connected to the second power supply voltage source,

Art Unit: 2800

wherein the first electrode is a first region of a polycrystalline silicon being heavily doped with an impurity of a first type and the second electrode is a second region of a polycrystalline silicon being heavily doped with an impurity of a second type, said second region being adjoined to the first region to form an electrical junction.

- 11. The integrated circuit of claim 10 wherein the adjoined first and second regions of each diode are formed on shallow trench isolation formed within the substrate.
- 12. The integrated circuit of claim 10 wherein each diode further comprises a resistor protection oxide formed to overlay a portion of the first and second regions at the junction
- 13. The integrated circuit of claim 10 wherein the first electrode of each polycrystalline silicon diode is a cathode and the second electrode of each polycrystalline silicon diode is an anode.
- 14. The integrated circuit of claim 13 wherein the impurity of the first type is an N-type impurity having a density of from approximately 10¹⁵ atoms/cm⁻³ to approximately 10²¹ atoms/cm⁻³.
- 15. The integrated circuit of claim 13 wherein the impurity of the second type is a P-type impurity having a density of from approximately 10¹⁵ atoms/cm⁻³ to approximately 10²¹ atoms/cm⁻³.

Art Unit: 2800

- 16. The integrated circuit of claim 13 wherein each of the polycrystalline diodes has a thickness of from approximately 1000Å to approximately 3000 Å.
- 17. The integrated circuit of claim 13 wherein each of the polycrystalline diodes has a thickness of from approximately 0.5μm to approximately 100μm.
- 18. The integrated circuit of claim 10 wherein a number of the plurality of serially connected polycrystalline silicon diodes is determined by the formula:

where:

n is the number of serially connected polycrystalline silicon diodes,

V_{noise} is the maximum voltage level difference allowed to be present on the internal integrated circuits between the first power supply voltage source and the second power supply voltage source.

Vx1 is the magnitude of the first power supply voltage source.

Art Unit: 2800

Vx2 is the magnitude of the second power supply voltage source, and

Page 9

V_T is the threshold voltage of each polycrystalline silicon diodes.

CLAIMS 19-28 CANCELED

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.