Multivector reversion sign

Let A be a k-blade. Its reverse is $\tilde{A} = \mathfrak{s}_k A$ where the reversion sign is defined by

$$\mathfrak{s}_k := (-1)^{\binom{k}{2}} = (-1)^{\frac{(k-1)k}{2}}$$

which is the sign of the permutation $(1, ..., k) \rightarrow (k, ..., 1)$.

k	0	1	2	3	¦ 4	5	6	7	8	9	10	11
\mathfrak{s}_k	+	+	_	-	+	+	_	_	+	+	_	_
\mathfrak{s}_{k+1}	+	_	_	+	+	_	_	+	+	_	_	+
\mathfrak{s}_{k+1} $\mathfrak{s}_k\mathfrak{s}_{k+1}$	+	_	+	_	+	_	+	_	+	_	+	_
$\mathfrak{s}_{k-1}\mathfrak{s}_k$	_	+	_	+	<u> </u>	+	_	+	<u> </u>	+	_	+

Lemma. $\mathfrak{s}_k \mathfrak{s}_{k+1} = (-1)^k$, $\mathfrak{s}_{k-1} \mathfrak{s}_k = -(-1)^k$, $\mathfrak{s}_k \mathfrak{s}_{k+2} = -1$.