Research Plan

Area of Focus

– In their paper on Proximal Policy Optimization, Schulman et. al. propose the clipped surrogate loss function for a fixed parameter ϵ :

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min \left(r_t(\theta) \hat{A}_t, \operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right]$$

where $r_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)}$ and \hat{A}_t is the generalized advantage estimator. For simplicity, let $r_t(\theta) = r_t$. \hat{A}_t can be replaced with a number of other " γ -just" estimators that must satisfy certain conditions . Generalizing \hat{A}_t to these estimators, which will be denoted \hat{G}_t , yields:

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min \left(r_t \hat{G}_t, \text{clip}(r_t, 1 - \epsilon, 1 + \epsilon) \hat{G}_t \right) \right]$$

- The goal is to investigate replacements for the clipper function $\operatorname{clip}(r_t, 1 \epsilon, 1 + \epsilon)$. Let us refer to these replacements as "min-filters," and let $m(r_t)$ denote an arbitrary min-filter.
- In this experimental framework, we have the loss function:

$$L^{m}(\theta) = \hat{\mathbb{E}}_{t} \left[\min \left(r_{t}(\theta) \hat{G}_{t}, m(r_{t}) \hat{G}_{t} \right) \right]$$

- L^{CLIP} is simply an instance of this where $m(r_t) = \text{clip}(r_t, 1 - \epsilon, 1 + \epsilon)$.

– Illustrating minimization under ${\cal L}_{CLIP}$ on individual expectation components:

Expectation component, $\hat{G}_t > 0$

Expectation component, $\hat{G}_t < 0$

The paper on Trust Region Policy Optimization by Schulman et. al. proposes a target function whose maximization guarantees monotonic improvement:

$$targ(\theta) = L_{\theta_{old}}(\theta) - CD_{KL}^{max}(\theta, \theta_{old})$$

where C is a fixed positive constant (see paper for specifics) and it is shown that

$$L_{\theta_{old}}(\theta) = \frac{1}{1-\gamma} \mathbb{E}_{s \sim p_{\theta_{old}}, a \sim \theta_{old}} \left[\frac{\pi_{\theta}(a|s)}{\pi_{\theta_{old}}(a|s)} A_{\theta_{old}}(s, a) \right]$$

where $p_{\theta_{old}}$ is the normalized discounted visitation frequency distribution.

- Assuming that the on-policy distribution matches the normalized dis-

counted visitation frequency distribution, we can write:

$$L_{\theta_{old}}(\theta) = \frac{1}{1 - \gamma} \mathbb{E}_{t \in (1, \dots \infty)} \left[r_t \hat{A}_t \right]$$

– By definition, any γ -just estimator can replace \hat{A}_t because doing so only adds a constant to $targ(\theta)$. Therefore, we can redefine $L_{\theta_{old}}(\theta)$ as:

$$L_{\theta_{old}}(\theta) = \frac{1}{1 - \gamma} \mathbb{E}_{t \in (1, \dots, \infty)} \left[r_t \hat{G}_t \right]$$

– Consider the case where $\hat{G}_t > 0$ and $r_t < 1 + \epsilon \ \forall t \in (1, \dots \infty)$. In this case, no penalty is applied and the clipped loss is a strict overestimate without the same gradient:

Ideas and Intuitions

Sigmoid Min-Filters

Plan

References

 $[1] \ \mathtt{https://arxiv.org/abs/1707.06347}$

[2] https://arxiv.org/abs/1506.02438