Определение 1. Окрестность точки a — это любой интервал, содержащий точку a. Обозначение: $\mathcal{U}(a)$.

Задача 1. Докажите, что любые две различные точки на прямой имеют непересекающиеся окрестности.

Определение 2. Число a называют *пределом последовательности* (x_n) и пишут $\lim_{n\to\infty} x_n = a$, если выполнено любое из следующих трёх эквивалентных определений:

- (x_n) можно представить в виде $x_n = a + \alpha_n$, где (α_n) бесконечно малая последовательность;
- любая окрестность точки a является ловушкой для (x_n) ;
- для каждого числа $\varepsilon > 0$ найдётся такое число N, что при любом натуральном $n \ge N$ выполнено $|x_n a| < \varepsilon$. Говорят также, что (x_n) стремится κ а при n, стремящемся κ бесконечности (и пишут $x_n \to a$ при $n \to \infty$).

Задача 2. Может ли последовательность иметь более одного предела?

Задача 3 $^{\varnothing}$. Запишите без отрицания: **a)** «число a не предел (x_n) »; **б)** « (x_n) не имеет предела».

Задача 4. Пусть $\lim_{n\to\infty} x_n > 0$. Верно ли, что **a)** $x_n > 0$ при $n \gg 0$; **б)** $(1/x_n)$ ограничена (если определена)?

Задача $\mathbf{5}^{\varnothing}$. Пусть $\lim_{n\to\infty}x_n=a,\ \lim_{n\to\infty}y_n=b.$ Найти **a)** $\lim_{n\to\infty}x_n\pm y_n;$ **b)** $\lim_{n\to\infty}x_n\cdot y_n;$ $\lim_{n\to\infty}x_n\cdot y_n;$ $\lim_{n\to\infty}\frac{x_n}{y_n},\ \operatorname{если}\ b\neq 0.$

Задача 6. а) Пусть (x_n) имеет предел. Докажите, что $(x_{n+1}-x_n)$ бесконечно малая. **б)** Верно ли обратное?

Задача 7[©]. Найдите предел, если он есть: **a)** $1+(-0,1)^n$; **b)** $\frac{n}{n+1}$; **b)** $(-1)^n$; **r)** $\frac{2^n-1}{2^n+1}$; **д)** $\sqrt{n+1}-\sqrt{n}$;

e) $\sqrt{n^2+n}-n;$ **ж**) $1+q+\ldots+q^n,$ где |q|<1; 3) $\frac{1+3+\ldots+3^n}{5^n};$ **и**) $\sqrt[n]{2};$ **к**) $\sqrt[n]{2^n+3^n};$ **л**) $\frac{n^{50}}{2^n};$ **м**) $\sqrt[n]{n}$.

Задача 8. Может ли последовательность без наименьшего и наибольшего членов иметь предел?

Задача 9[©]. Найдите: а) $\lim_{n\to\infty}\frac{n^2+n+1}{4n^2}$ б) $\lim_{n\to\infty}\frac{n^2+2n-2}{n^3+n}$; в) $\lim_{n\to\infty}\frac{n^9-n^4+1}{2n^9+7n-5}$; г) $\lim_{n\to\infty}\frac{C_n^{50}}{n^{50}}$.

Задача 10. Пусть $\lim_{n\to\infty}x_n=a,\ \lim_{n\to\infty}y_n=b$ и $x_n>y_n$ при $n\in\mathbb{N}.$ Верно ли, что **a)** a>b; **б)** $a\geqslant b?$

3адача 11^{\varnothing} . Обобщите теорему о двух милиционерах из листка 31 на последовательности, имеющие предел.

Задача 12. Пусть $\lim_{n \to \infty} x_n = 1$. Найти **a)** $\lim_{n \to \infty} \frac{x_n^2}{7}$; **b)** $\lim_{n \to \infty} \frac{x_n^2 + x_n - 2}{x_n - 1}$; **b)** $\lim_{n \to \infty} \sqrt{x_n}$; **r)*** $\lim_{n \to \infty} \frac{x_1 + \ldots + x_n}{n}$.

Задача 13 $^{\circ}$. а) Дана фигура, ограниченная графиком функции $y=x^2$, осью Ox и прямой x=1. Разобьём отрезок [0,1] на n равных частей и построим на каждой части прямоугольник так, чтобы его правая верхняя вершина лежала на графике (см. рис. справа). Сумму площадей прямоугольников обозначим S_n . Найдите предел (S_n) при $n \to \infty$.

б) Построим прямоугольники так, чтобы их левые верхние вершины лежали на графике. Сумму их площадей обозначим s_n . Докажите, что (s_n) стремится к тому же числу, что и (S_n) (это *площадь* нашей фигуры). в)* Решите ту же задачу для функции $y = x^k$, где $k \in \mathbb{N}$.

Задача 14. При каких натуральных k выполнено равенство $\lim_{n\to\infty}\frac{n^k-(n-1)^k}{n^{2018}}=2019?$

Задача 15. Последовательность (x_n) построена так: первый член выбирается произвольно, а каждый следующий находится по формуле $x_{n+1} = ax_n + 1$. При каких a последовательность (x_n) всегда будет иметь предел?

Задача 16 $^{\varnothing}$. Пусть $x_n>0$ при $n\in\mathbb{N}$ и $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=q$, где q<1. Докажите, что (x_n) бесконечно малая.

Задача 17*. Дано m последовательностей, сумма которых стремится к $m\alpha$, и сумма квадратов которых стремится к $m\alpha^2$. Докажите, что каждая из этих последовательность стремится к α .

Задача 18. Издавна жители островов Чунга и Чанга раз в год меняются драгоценностями. Одновременно жители Чунги привозят половину своих драгоценностей на Чангу, а жители Чанги треть своих драгоценностей на Чунгу. Какая часть драгоценностей находится на каждом острове? (Общий набор драгоценностей постоянен.)

Задача 19. а) Петя шёл из дома в школу. На полпути он решил, что болен, и пошёл обратно. На полпути к дому ему стало лучше, и он повернул в школу. На полпути к школе он решил, что всё-же болен, и повернул домой. Но на полпути к дому снова повернул к школе, и т. д. Куда придёт Петя? 6)* В другой раз Петя на полпути к школе свернул к катку, на полпути к катку свернул к дому, и т.д. Куда теперь придёт Петя?

Задача 20. По кругу сидят n ребят, у каждого по тарелке каши. Каждую минуту одновременно каждый из ребят берет себе по половине каши своих соседей. Сначала в тарелках было $1, 2, \ldots, n$ поварешек каши. Сколько каши будет в тарелках спустя достаточно долгое время, если **a)** n = 3; **б)** n = 4; **в)*** $n \in \mathbb{N}$?

