Statistical Methods in AI (CSE/ECE 471)

Lecture-3: Intro to Performance Measures,
Benchmarking

Ravi Kiran (ravi.kiran@iiit.ac.in)

Vineet Gandhi (v.gandhi@iiit.ac.in)

Center for Visual Information Technology (CVIT)

IIIT Hyderabad

Machine Learning

Study of Algorithmic methods that use data to improve their knowledge of a task

An interview analogy

- 1. Collect worked out problems (Q, S are both known)
- 2. Prepare on ALL the available problems.
- 3. Go for interview.
- 1. Collect worked out problems (Q,S are both known)
- 2. Randomly set aside a small number of problems.
- 3. Prepare on rest of the problems.
- 4. Take a mock interview containing all the 'set aside' problems.
- 5. <u>Score answers</u> and compare with solution.
- 6. Use mistakes to decide which topics to prepare better on.
- 7. Go for interview.

Test set

Training set

Original set

Original set			
Training set	Test set		
Training set	Test set		

Supervised Learning

Classification Regression

ML::Tasks \rightarrow Predictive \rightarrow Classification

Task: Given $X \in \mathcal{X}$, predict $Y \in \mathcal{Y}$.

Discrete Labels

Binary Classification

Performance Measures - Accuracy

$$Accuracy = \frac{(100 + 50)}{165} = 0.91$$

$$Misclassification = \frac{(10+5)}{165} = 0.09$$

n=165	Predicted: NO	Predicted: YES
Actual:		40
NO Actual:	50	10
YES	5	100

- Pool of 100 patients' data used for validation of a cancer prediction ML model
- Prediction:
 - 3 have cancer
 - Rest (100-3=97) are healthy.
- Reality:
 - 1 of the 3 did not actually have cancer!
 - 3 from 97 predicted healthy actually have cancer

n=	Predicted: NO	Predicted: YES
Actual: NO		
Actual: YES		

Accuracy =

- Pool of 100 patients' data used for validation of a cancer prediction ML model
- Prediction:
 - 3 have cancer
 - Rest (100-3=97) are healthy.
- Reality:
 - 1 of the 3 did not actually have cancer!
 - 3 from 97 predicted healthy actually have cancer
- Accuracy = (100 4) / 100 = 96%!

n=	Predicted: NO	Predicted: YES
Actual:		
NO		
Actual:		
YES		

- Pool of 100 patients' data used for validation of a cancer prediction ML model
- Prediction:
 - 3 have cancer → selected for chemotherapy
 - Rest (100-3=97) are healthy.
- Reality:
 - 1 of the 3 did not actually have cancer!
 - 3 from 97 predicted healthy actually have cancer → should have been selected for chemotherapy

n=	Predicted: NO	Predicted: YES
Actual: NO		
Actual: YES		

Performance Measures - Accuracy

$$Accuracy = \frac{(100 + 50)}{165} = 0.91$$

$$Misclassification = \frac{(10+5)}{165} = 0.09$$

n=165	Predicted: NO	Predicted: YES
Actual:		
NO	50	10
Actual:		
YES	5	100

Performance Measures – Accuracy, TPR, FPR

$$Accuracy = \frac{(100 + 50)}{165} = 0.91$$

$$Misclassification = \frac{(10+5)}{165} = 0.09$$

$$FalsePositiveRate(FP) = \frac{(10)}{60} = 0.17$$

$$FalseNegativeRate(FN) = \frac{(5)}{105} = 0.048$$

	Predicted:	Predicted:	
n=165	NO	YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

$$TrueNegativeRate(TN) = \frac{(50)}{60} = 0.833$$

$$TruePositiveRate(TP) = \frac{(100)}{105} = 0.95$$

n=165	Predicted:	Predicted: YES	
Actual:	110	123	
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

levels to .01 or even .001

Four outcomes of a classifier Positive prediction true positive false positive TN false negative true negative Negative prediction

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Four outcomes of a classifier Positive prediction true positive false positive TN false negative true negative Negative prediction

% of correct predictions

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

% of correct predictions

% of + class correctly predicted [aka Recall / TPR]

Four outcomes of a classifier Positive prediction true positive false positive TN false negative true negative

n=165	Predicted: NO	Predicted: YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

Negative prediction

% of correct predictions

% of + class correctly predicted [aka Recall / TPR]

correct prediction of + class [aka Precision]

Four outcomes of a classifier Positive prediction true positive false positive TN true negative true negative

		Predicted:
n=	165	NO
Act	ual:	
N.	10	TN = 50
Act	ual:	
Y	ES	FN = 5
		55

Negative prediction

% of correct predictions

% of + class correctly predicted
[aka Recall / TPR]

Predicted:

YES

FP = 10

TP = 100

110

60

105

correct prediction of + class
[aka Precision]

% of – class incorrectly predicted

- Cancer-Prediction System
- Precision =
- Recall =
- Accuracy =

Cancer-Prediction System

- Precision = 2/(2+1) = 67%
- Recall = 2/(2+3) = 40%
- Accuracy = (94+2)/100 = 96%

Precision and Recall – examples

- A system which needs to launch a missile at a terrorist hideout located in a dense urban area.
- Precision not 100% → civilian casualties

- A system which needs to identify cancer-risk patients
- Recall not 100% → some patients will die of cancer

Accuracy vs Precision vs Recall

Accuracy: Performance w.r.t both classes

Recall : Performance w.r.t '+' class

Precision: Reliability of predictions w.r.t '+' class

true positive false positive TP FN false negative true negative Negative prediction

% of correct predictions

% of + class correctly predicted [aka Recall / TPR]

correct prediction of + class [aka Precision]

Utility and Cost

- Sometimes, there is a cost for each error
 - O E.g. Earthquake prediction
 - False positive: Cost of preventive measures
 - False negative: Cost of recovery
- Detection Cost (Event detection)
 - \bigcirc Cost = C_{FP} * FP + C_{FN} * FN

Farmer Shri MoneyBags and ML-FruitPicker

- MB: I want an automated fruit picker and packer. I will pay an unholy amount for it.
- You (having just finished this lecture): Sure
- You (Thinking): I love unholy amounts of money 😌
- (rapid cuts of time passing, you collecting data, referring to SMAI slides, coding; dramatic music in background)

Farmer Shri MoneyBags and ML-FruitPicker

After 6 months ...

- MB: Well?
- You: I have a High Precision ML-FruitPicker. But its Recall is 20%!
- MB: (confused) Precision? Recall?
- You: (thinking) Should I go over first 3 lectures of SMAI with MB? He'll probably run away!
- You: It rejects 80% of good, pickable fruit, but whatever it picks, those fruits are good!
- MB: I'll take your system. How do I transfer unholy amount of money to you?
- You : 😯
- MB (seeing your shocked face): See, in a batch of 100 fruits, 10 fruits are usually bad. Among the 90 good ones, your system will select 18 of them on average. But from any given selection, I pack only 8.

Accuracy vs Precision vs Recall

- Monitor Precision if a false positive carries higher cost.
- Monitor Recall if a false negative carries higher cost.

% of correct predictions

Accuracy vs Precision vs Recall

- **Precision** \rightarrow Cost of inclusion
- Recall → Cost of exclusion

% of correct predictions

% of + class correctly predicted [aka Recall / TPR]

true positive false positive false prediction The false negative true negative true negative false prediction false prediction false prediction false positive true negative true negative false prediction false

% of correct predictions

% of + class correctly predicted [aka Recall / TPR]

correct prediction of + class

% of – class incorrectly predicted

F1-score: A unified measure

- What to do when one classifier has better precision but worse Recall, while other classifier behaves exactly opposite?
 - F-measure (Information Retrieval)

$$F_1 = \frac{1}{Recall} + \frac{1}{Precision}$$

Utility and Cost

- What to do when one classifier has better Precision but worse Recall, while other classifier behaves exactly opposite?
 - O F-measure (Information Retrieval)

$$\mathbf{F}_1 = 2$$

$$\frac{1}{Recall} + \frac{1}{Precision}$$

- → F1 measure punishes extreme values more!
- → Definition of Recall and Precision have same numerator, different denominators. A sensible way to combine them is harmonic mean.

How to use 2-class measures for multi-class?

Convert into 2-class problems!

- Average Precision, Recall etc.

Avg. accuracy may not be very meaningful with imbalanced class label distribution

Multi-class problems - Confusion matrix

predicted class

actual class

Multi-class Classification: Measures

- Mean <measure> +- standard deviation
- Median < measure > +- median absolute deviation

Descriptor	Spectral bands		
	RGB	PCA RGB	
Gist	74.14 ± 1.93	77.76 ± 2.62	
MSIFT	88.92 ± 1.39	90.97 ± 1.81	
MBoW	88.60 ± 1.70	88.31 ± 1.38	
cSIFT	88.17 ± 1.17	88.76 ± 1.74	
rgSIFT	88.24 ± 1.89	87.71 ± 1.33	
BoWV [8]	71.86	N/A	
SPMK [12]	74.00	N/A	
SPCK++[8]	76.05	N/A	
Dense SIFT [2]	81.67 ± 1.23	N/A	

Exam analogy: Did you prepare at least a little?

Original set			
Training set		Test set	
Training set	Validation set	Test set	

- Compute < Performance Measure > (e.g. Accuracy) for TRAINING SET
- Verify it is "decent"

Example-based

- $\frac{\mathbf{n}}{Y_i}$ is the number of examples. Y_i is the ground truth label assignment of the \mathbf{i}^{th} example..
- X_i is the i^{th} example.
- $h(x_i)$ is the predicted labels for the j^{th} example.

Precision =
$$\frac{1}{n} \sum_{i=1}^{n} \frac{|Y_i \cap h(x_i)|}{|h(x_i)|}$$

What fraction of labels are predicted correctly?

Recall =
$$\frac{1}{n} \sum_{i=1}^{n} \frac{|Y_i \cap h(x_i)|}{|Y_i|}$$

What % of correct labels were predicted?

Accuracy = Fraction of samples predicted correctly

Baselines

- 0 cost-to-build classifiers
- Binary
 - Equal # of samples / class → Random Guessing (50% accuracy)
 - Class imbalance
 - Guess according to class proportion (Accuracy =
 - O-Rule: Majority class (Accuracy =) [slightly stronger baseline]

Summary

- Many metrics:
 - Accuracy, TP, FP, Precision, Recall, AP/mAP
 - Class imbalance and decision-cost imbalance must be taken into account
- Confusion Matrix: Important to analyze and refine solution.

A useful metric is both accurate (in that it measures what it says it measures) and aligned with your goals.

Don't measure anything unless the data helps you make a better decision or change your actions.

~ Seth Godin

References and Reading

Code

 https://scikit-learn.org/stable/modules/model_evaluation.html#classificationmetrics