Mistral 7B

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed

Abstract

We introduce Mistral 7B, a 7-billion-parameter language model engineered for superior performance and efficiency. Mistral 7B outperforms the best open 13B model (Llama 2) across all evaluated benchmarks, and the best released 34B model (Llama 1) in reasoning, mathematics, and code generation. Our model leverages grouped-query attention (GQA) for faster inference, coupled with sliding window attention (SWA) to effectively handle sequences of arbitrary length with a reduced inference cost. We also provide a model fine-tuned to follow instructions, Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and automated benchmarks. Our models are released under the Apache 2.0 license.

Code: https://github.com/mistralai/mistral-src

Webpage: https://mistral.ai/news/announcing-mistral-7b/

1 Introduction

In the rapidly evolving domain of Natural Language Processing (NLP), the race towards higher model performance often necessitates an escalation in model size. However, this scaling tends to increase computational costs and inference latency, thereby raising barriers to deployment in practical, real-world scenarios. In this context, the search for balanced models delivering both high-level performance and efficiency becomes critically essential. Our model, Mistral 7B, demonstrates that a carefully designed language model can deliver high performance while maintaining an efficient inference. Mistral 7B outperforms the previous best 13B model (Llama 2, [26]) across all tested benchmarks, and surpasses the best 34B model (LLaMa 34B, [25]) in mathematics and code generation. Furthermore, Mistral 7B approaches the coding performance of Code-Llama 7B [20], without sacrificing performance on non-code related benchmarks.

Mistral 7B leverages grouped-query attention (GQA) [1], and sliding window attention (SWA) [6, 3]. GQA significantly accelerates the inference speed, and also reduces the memory requirement during decoding, allowing for higher batch sizes hence higher throughput, a crucial factor for real-time applications. In addition, SWA is designed to handle longer sequences more effectively at a reduced computational cost, thereby alleviating a common limitation in LLMs. These attention mechanisms collectively contribute to the enhanced performance and efficiency of Mistral 7B.

Mistral 7B is released under the Apache 2.0 license. This release is accompanied by a reference implementation¹ facilitating easy deployment either locally or on cloud platforms such as AWS, GCP, or Azure using the vLLM [17] inference server and SkyPilot². Integration with Hugging Face³ is also streamlined for easier integration. Moreover, Mistral 7B is crafted for ease of fine-tuning across a myriad of tasks. As a demonstration of its adaptability and superior performance, we present a chat model fine-tuned from Mistral 7B that significantly outperforms the Llama 2 13B – Chat model.

Mistral 7B takes a significant step in balancing the goals of getting high performance while keeping large language models efficient. Through our work, our aim is to help the community create more affordable, efficient, and high-performing language models that can be used in a wide range of real-world applications.

2 Architectural details

Figure 1: Sliding Window Attention. The number of operations in vanilla attention is quadratic in the sequence length, and the memory increases linearly with the number of tokens. At inference time, this incurs higher latency and smaller throughput due to reduced cache availability. To alleviate this issue, we use sliding window attention: each token can attend to at most W tokens from the previous layer (here, W=3). Note that tokens outside the sliding window still influence next word prediction. At each attention layer, information can move forward by W tokens. Hence, after k attention layers, information can move forward by up to $k \times W$ tokens.

Mistral 7B is based on a transformer architecture [27]. The main parameters of the architecture are summarized in Table 1. Compared to Llama, it introduces a few changes that we summarize below.

Sliding Window Attention. SWA exploits the stacked layers of a transformer to attend information beyond the window size W. The hidden state in position i of the layer k, h_i , attends to all hidden states from the previous layer with positions between i-W and i. Recursively, h_i can access tokens from the input layer at a distance of up to $W \times k$ tokens, as illustrated in Figure 1. At the last layer, using a window size of W=4096, we have a theoretical attention span of approximately 131K tokens. In practice, for a sequence length of 16K and W=4096, changes made to FlashAttention [11] and xFormers [18] yield a 2x speed improvement over a vanilla attention baseline.

Parameter	Value
dim	4096
n_layers	32
head_dim	128
hidden_dim	14336
n_heads	32
n_kv_heads	8
window_size	4096
context_len	8192
vocab_size	32000

Table 1: Model architecture.

Rolling Buffer Cache. A fixed attention span means that we can limit our cache size using a rolling buffer cache. The cache has a fixed size of W, and the keys and values for the timestep i are stored in position $i \mod W$ of the cache. As a result, when the position i is larger than W, past values in the cache are overwritten, and the size of the cache stops increasing. We provide an illustration in Figure 2 for W=3. On a sequence length of 32k tokens, this reduces the cache memory usage by 8x, without impacting the model quality.

https://github.com/mistralai/mistral-src

²https://github.com/skypilot-org/skypilot

³https://huggingface.co/mistralai

	Timestep i				Timestep $i+1$				Timestep $i+2$					
This is an example of	This	is	an			This	is	an	example		of	is	an	example
Mistral is a good	Mistral	is				Mistral	is	а			Mistral	is	а	good
The cat sat on the mat	The	cat	sat	on		the	cat	sat	on		the	mat	sat	on

Figure 2: Rolling buffer cache. The cache has a fixed size of W=4. Keys and values for position i are stored in position $i \mod W$ of the cache. When the position i is larger than W, past values in the cache are overwritten. The hidden state corresponding to the latest generated tokens are colored in orange.

Pre-fill and Chunking. When generating a sequence, we need to predict tokens one-by-one, as each token is conditioned on the previous ones. However, the prompt is known in advance, and we can pre-fill the (k, v) cache with the prompt. If the prompt is very large, we can chunk it into smaller pieces, and pre-fill the cache with each chunk. For this purpose, we can select the window size as our chunk size. For each chunk, we thus need to compute the attention over the cache and over the chunk. Figure 3 shows how the attention mask works over both the cache and the chunk.

Figure 3: Pre-fill and chunking. During pre-fill of the cache, long sequences are chunked to limit memory usage. We process a sequence in three chunks, "The cat sat on", "the mat and saw", "the dog go to". The figure shows what happens for the third chunk ("the dog go to"): it attends itself using a causal mask (rightmost block), attends the cache using a sliding window (center block), and does not attend to past tokens as they are outside of the sliding window (left block).

3 Results

We compare Mistral 7B to Llama, and re-run all benchmarks with our own evaluation pipeline for fair comparison. We measure performance on a wide variety of tasks categorized as follow:

- Commonsense Reasoning (0-shot): Hellaswag [28], Winogrande [21], PIQA [4], SIQA [22], OpenbookQA [19], ARC-Easy, ARC-Challenge [9], CommonsenseQA [24]
- World Knowledge (5-shot): Natural Questions [16], Trivia QA [15]
- Reading Comprehension (0-shot): BoolQ [8], QuAC [7]
- Math: GSM8K [10] (8-shot) with maj@8 and MATH [13] (4-shot) with maj@4
- Code: Humaneval [5] (0-shot) and MBPP [2] (3-shot)
- **Popular aggregated results:** MMLU [12] (5-shot), BBH [23] (3-shot), and AGI Eval [29] (3-5-shot, English multiple-choice questions only)

Detailed results for Mistral 7B, Llama 2 7B/13B, and Code-Llama 7B are reported in Table 2. Figure 4 compares the performance of Mistral 7B with Llama 2 7B/13B, and Llama 1 34B⁴ in different categories. Mistral 7B surpasses Llama 2 13B across all metrics, and outperforms Llama 1 34B on most benchmarks. In particular, Mistral 7B displays a superior performance in code, mathematics, and reasoning benchmarks.

⁴Since Llama 2 34B was not open-sourced, we report results for Llama 1 34B.