Mixed Integer Linear Programming

Combinatorial Problem Solving (CPS)

Javier Larrosa Albert Oliveras Enric Rodríguez-Carbonell

April 26, 2019

Mixed Integer Linear Programs

A mixed integer linear program (MILP, MIP) is of the form

$$\min_{x \in \mathbb{Z}} c^T x$$

$$Ax = b$$

$$x \ge 0$$

$$x_i \in \mathbb{Z} \quad \forall i \in \mathcal{I}$$

- If all variables need to be integer, it is called a (pure) integer linear program (ILP, IP)
- If all variables need to be 0 or 1 (binary, boolean), it is called a 0-1 linear program

Complexity: LP vs. IP

- Including integer variables increases enourmously the modeling power, at the expense of more complexity
- LP's can be solved in polynomial time with interior-point methods (ellipsoid method, Karmarkar's algorithm)
- Integer Programming is an NP-complete problem. So:
 - ◆ There is no known polynomial-time algorithm
 - ◆ There are little chances that one will ever be found
 - ◆ Even small problems may be hard to solve
- What follows is one of the many approaches (and one of the most successful) for attacking IP's

LP Relaxation of a MIP

■ Given a MIP

$$(IP) \quad \begin{aligned} \min & c^T x \\ Ax &= b \\ x &\geq 0 \\ x_i &\in \mathbb{Z} \quad \forall i \in \mathcal{I} \end{aligned}$$

its linear relaxation is the LP obtained by dropping integrality constraints:

$$(LP) \quad \begin{aligned} \min & c^T x \\ Ax &= b \\ x &\geq 0 \end{aligned}$$

 \blacksquare Can we solve IP by solving LP? By rounding?

■ The optimal solution of

$$\max x + y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$

is (x,y)=(1,2), with objective 3

- The optimal solution of its LP relaxation is (x, y) = (4, 4.5), with objective 9.5
- No direct way of getting from (4, 4.5) to (1, 2) by rounding!
- Something more elaborate is needed: branch & bound

- Assume variables are bounded, i.e., have lower and upper bounds
- Let P_0 be the initial problem, $LP(P_0)$ be the LP relaxation of P_0
- If in optimal solution of $LP(P_0)$ all integer variables take integer values then it is also an optimal solution to P_0
- Else
 - Let x_j be integer variable whose value β_j at optimal solution of $LP(P_0)$ is such that $\beta_j \notin \mathbb{Z}$. Define

$$P_1 := P_0 \land x_j \le \lfloor \beta_j \rfloor$$

$$P_2 := P_0 \land x_j \ge \lceil \beta_j \rceil$$

- $lack feasibleSols(P_0) = feasibleSols(P_1) \cup feasibleSols(P_2)$
- lacktriangle Idea: solve P_1 , solve P_2 and then take the best

Let x_j be integer variable whose value β_j at optimal solution of $\operatorname{LP}(P_0)$ is such that $\beta_j \notin \mathbb{Z}$. Each of the problems

$$P_1 := P_0 \land x_i \le |\beta_i| \qquad P_2 := P_0 \land x_i \ge \lceil \beta_i \rceil$$

can be solved recursively

- We can build a binary tree of subproblems whose leaves correspond to pending problems still to be solved
- This procedure terminates as integer vars have finite bounds and, at each split, the range of x_i becomes strictly smaller
- If $LP(P_i)$ has optimal solution where integer variables take integer values then solution is stored
- \blacksquare If $LP(P_i)$ is infeasible then P_i can be discarded (pruned, fathomed)

```
Min obj: -x - y
Subject To
c1: -2 x + 2 y >= 1
c2: -8 x + 10 y \le 13
End
CPLEX> optimize
Primal simplex - Optimal: Objective = - 8.5000000000e+00
Solution time = 0.00 \text{ sec.} Iterations = 0(0)
Deterministic time = 0.00 ticks (0.37 ticks/sec)
CPLEX> display solution variables x
Variable Name Solution Value
                             4.000000
X
CPLEX> display solution variables y
Variable Name Solution Value
                             4.500000
у
```

```
Min obj: -x - y
Subject To
c1: -2 x + 2 y >= 1
c2: -8 x + 10 y <= 13
Bounds
y >= 5
End
CPLEX> optimize
Bound infeasibility column 'x'.
Presolve time = 0.00 sec. (0.00 ticks)
Presolve - Infeasible.
Solution time = 0.00 sec.
Deterministic time = 0.00 ticks (1.67 ticks/sec)
```

```
Min obj: -x - y
Subject To
c1: -2 x + 2 y >= 1
c2: -8 x + 10 y \le 13
Bounds
y <= 4
End
CPLEX> optimize
Dual simplex - Optimal: Objective = - 7.5000000000e+00
Solution time = 0.00 \text{ sec.} Iterations = 0 (0)
Deterministic time = 0.00 ticks (2.68 ticks/sec)
CPLEX> display solution variables x
Variable Name Solution Value
                             3.500000
X
CPLEX> display solution variables y
Variable Name Solution Value
                             4.000000
```

```
CPLEX> optimize
Row 'c1' infeasible, all entries at implied bounds.
Presolve time = 0.00 sec. (0.00 ticks)
Presolve - Infeasible.
Solution time = 0.00 sec.
Deterministic time = 0.00 ticks (1.11 ticks/sec)
```

```
Min obj: -x - y
Subject To
c1: -2 x + 2 y >= 1
c2: -8 x + 10 y \le 13
Bounds
x <= 3
v <= 4
End
CPLEX> optimize
Dual simplex - Optimal: Objective = - 6.7000000000e+00
Solution time = 0.00 \text{ sec.} Iterations = 0.00 \text{ sec.}
Deterministic time = 0.00 ticks (2.71 ticks/sec)
CPLEX> display solution variables x
Variable Name Solution Value
                              3.000000
X
CPLEX> display solution variables y
Variable Name Solution Value
                              3.700000
```

```
Min obj: -x - y
Subject To
c1: -2 x + 2 y >= 1
c2: -8 x + 10 y <= 13
Bounds
x <= 3
y = 4
End
CPLEX> optimize
Bound infeasibility column 'x'.
Presolve time = 0.00 sec. (0.00 ticks)
Presolve - Infeasible.
Solution time = 0.00 sec.
Deterministic time = 0.00 ticks (1.12 ticks/sec)
```

```
Min obj: -x - y
Subject To
c1: -2 x + 2 y >= 1
c2: -8 x + 10 y \le 13
Bounds
x <= 3
v <= 3
End
CPLEX> optimize
Dual simplex - Optimal: Objective = - 5.5000000000e+00
Solution time = 0.00 \text{ sec.} Iterations = 0.00 \text{ sec.}
Deterministic time = 0.00 ticks (2.71 ticks/sec)
CPLEX> display solution variables x
Variable Name Solution Value
                              2.500000
X
CPLEX> display solution variables y
Variable Name Solution Value
                              3.000000
```

```
Min obj: -x - y
Subject To
c1: -2 x + 2 y >= 1
c2: -8 x + 10 y <= 13
Bounds
x = 3
y <= 3
End
CPLEX> optimize
Bound infeasibility column 'y'.
Presolve time = 0.00 sec. (0.00 ticks)
Presolve - Infeasible.
Solution time = 0.00 sec.
Deterministic time = 0.00 ticks (1.11 ticks/sec)
```

```
Min obj: -x - y
Subject To
c1: -2 x + 2 y >= 1
c2: -8 x + 10 y \le 13
Bounds
x <= 2
v <= 3
End
CPLEX> optimize
Dual simplex - Optimal: Objective = - 4.9000000000e+00
Solution time = 0.00 \text{ sec.} Iterations = 0.00 \text{ sec.}
Deterministic time = 0.00 ticks (2.71 ticks/sec)
CPLEX> display solution variables x
Variable Name
                    Solution Value
                              2,000000
X
CPLEX> display solution variables y
Variable Name
              Solution Value
                              2.900000
```

```
Min obj: -x - y
Subject To
c1: -2 x + 2 y >= 1
c2: -8 x + 10 y <= 13
Bounds
x <= 2
y = 3
End
CPLEX> optimize
Bound infeasibility column 'x'.
Presolve time = 0.00 sec. (0.00 ticks)
Presolve - Infeasible.
Solution time = 0.00 sec.
Deterministic time = 0.00 ticks (1.12 ticks/sec)
```

```
Min obj: -x - y
Subject To
c1: -2 x + 2 y >= 1
c2: -8 x + 10 y \le 13
Bounds
x <= 2
v <= 2
End
CPLEX> optimize
Dual simplex - Optimal: Objective = - 3.5000000000e+00
Solution time = 0.00 \text{ sec.} Iterations = 0.00 \text{ sec.}
Deterministic time = 0.00 ticks (2.71 ticks/sec)
CPLEX> display solution variables x
Variable Name Solution Value
                              1.500000
X
CPLEX> display solution variables y
Variable Name Solution Value
                              2,000000
```

```
Min obj: -x - y
Subject To
c1: -2 x + 2 y >= 1
c2: -8 x + 10 y <= 13
Bounds
x = 2
y <= 2
End
CPLEX> optimize
Bound infeasibility column 'y'.
Presolve time = 0.00 sec. (0.00 ticks)
Presolve - Infeasible.
Solution time = 0.00 sec.
Deterministic time = 0.00 ticks (1.11 ticks/sec)
```

```
Min obj: -x - y
Subject To
c1: -2 x + 2 y >= 1
c2: -8 x + 10 y \le 13
Bounds
x <= 1
v <= 2
End
CPLEX> optimize
Dual simplex - Optimal: Objective = - 3.0000000000e+00
Solution time = 0.00 \text{ sec.} Iterations = 0.00 \text{ sec.}
Deterministic time = 0.00 ticks (2.40 ticks/sec)
CPLEX> display solution variables x
Variable Name Solution Value
                              1.000000
X
CPLEX> display solution variables y
Variable Name Solution Value
                              2,000000
```

Pruning in Branch & Bound

- We have already seen that if relaxation is infeasible, the problem can be pruned
- Now assume an (integral) solution has been previously found
- If solution has cost Z then any pending problem P_j whose relaxation has optimal value $\geq Z$ can be ignored, since

$$cost(P_j) \ge cost(LP(P_j)) \ge Z$$

The optimum will not be in any descendant of P_j !

■ This cost-based pruning of the search tree has a huge impact on the efficiency of Branch & Bound

Branch & Bound: Algorithm

```
S := \{P_0\}
                                                      /* set of pending problems */
Z := +\infty
                                                         /* best cost found so far */
while S \neq \emptyset do
     remove P from S
     solve LP(P)
     if LP(P) is feasible then /* if unfeasible P can be pruned */
           let \beta be optimal basic solution of LP(P)
          if \beta satisfies integrality constraints then
                if cost(\beta) < Z then store \beta; update Z
          else
                if cost(LP(P)) \ge Z then continue /* P can be pruned */
                let x_i be integer variable such that \beta_i \notin \mathbb{Z}
                S := S \cup \{ P \wedge x_i \leq |\beta_i|, P \wedge x_i \geq \lceil \beta_i \rceil \}
return Z
```

Heuristics in Branch & Bound

- Possible choices in Branch & Bound
 - Choice of the pending problem
 - Depth-first search
 - Breadth-first search
 - Best-first search: assuming relaxations are solved when adding to the set of pending problems, select the one with best cost value

Heuristics in Branch & Bound

- Possible choices in Branch & Bound
 - Choice of the pending problem
 - Depth-first search
 - Breadth-first search
 - Best-first search: assuming relaxations are solved when adding to the set of pending problems, select the one with best cost value
 - ◆ Choice of the branching variable: one that is
 - closest to halfway two integer values
 - most important in the model (e.g., 0-1 variable)
 - biggest in a variable ordering
 - the one with the largest/smallest cost coefficient

Heuristics in Branch & Bound

- Possible choices in Branch & Bound
 - Choice of the pending problem
 - Depth-first search
 - Breadth-first search
 - Best-first search: assuming relaxations are solved when adding to the set of pending problems, select the one with best cost value
 - ◆ Choice of the branching variable: one that is
 - closest to halfway two integer values
 - most important in the model (e.g., 0-1 variable)
 - biggest in a variable ordering
 - the one with the largest/smallest cost coefficient
- No known strategy is best for all problems!

■ If integer variables are not bounded, Branch & Bound may not terminate:

$$\min 0$$

$$1 \le 3x - 3y \le 2$$

$$x, y \in \mathbb{Z}$$

is infeasible but Branch & Bound loops forever looking for solutions!

■ If integer variables are not bounded, Branch & Bound may not terminate:

$$\min 0$$

$$1 \le 3x - 3y \le 2$$

$$x, y \in \mathbb{Z}$$

is infeasible but Branch & Bound loops forever looking for solutions!

- After solving the relaxation of P, we have to solve the relaxations of $P \wedge x_j \leq \lfloor \beta_j \rfloor$ and $P \wedge x_j \geq \lceil \beta_j \rceil$
- These problems are similar. Do we have to start from scratch? Can be reuse somehow the computation for P?
- Idea: start from the optimal solution of the parent problem

 \blacksquare Let us assume that P is of the form

- \blacksquare Let B be an optimal basis of the relaxation
- Let x_j be integer variable which at optimal solution is assigned $\beta_j \notin \mathbb{Z}$
- Note that x_j must be basic
- Let us consider the problem $P_1 = P \wedge x_j \leq \lfloor \beta_j \rfloor$
- We add a new slack variable s and a new equation $P \wedge x_j + s = \lfloor \beta_j \rfloor$
- Then $(x_{\mathcal{B}}, s)$ defines a basis for the relaxation of P_1

- \blacksquare $(x_{\mathcal{B}}, s)$ defines a basis for the relaxation of P_1
- This basis is not feasible: the value in the basic solution assigned to s is $\lfloor \beta_j \rfloor \beta_j < 0$. We would need a Phase I to apply the primal simplex method!
- But since s is a slack the reduced costs have not changed: $(x_{\mathcal{B}}, s)$ satisfies the optimality conditions!
- Dual simplex method can be used: basis (x_B, s) is already dual feasible, no need of (dual) Phase I
- In practice often the dual simplex only needs very few iterations to obtain the optimal solution to the new problem

Cutting Planes

Let us consider a MIP of the form

$$\min_{x \in S} c^T x \text{ where } S = \left\{ \begin{array}{c} x \in \mathbb{R}^n \\ x \in \mathbb{R}^n \end{array} \middle| \begin{array}{c} Ax = b \\ x \ge 0 \\ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I} \end{array} \right\}$$

and its linear relaxation

$$\min_{x \in P} c^T x \quad \text{where } P = \left\{ \begin{array}{c} x \in \mathbb{R}^n & \left| \begin{array}{c} Ax = b \\ x \ge 0 \end{array} \right. \right\}$$

■ Let β be such that $\beta \in P$ but $\beta \notin S$.

A cut for β is a linear inequality $\hat{a}^T x \leq \hat{b}$ such that

- \bullet $\hat{a}^T \sigma \leq \hat{b}$ for any $\sigma \in S$ (feasible solutions of the MIP respect the cut)
- lacktriangle and $\hat{a}^T eta > \hat{b}$ (eta does not respect the cut)

Cutting Planes

$$\max x + y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$

$$x + y \le 6$$
 is a cut

Using Cuts for Solving MIP's

■ Let $\hat{a}^T x \leq \hat{b}$ be a cut. Then the MIP

$$\min_{x \in S'} c^T x \text{ where } S' = \left\{ \begin{array}{l} x \in \mathbb{R}^n \\ x \in \mathbb{R}^n \end{array} \right. \left. \begin{array}{l} Ax = b \\ \hat{a}^T x \le \hat{b} \\ x \ge 0 \\ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I} \end{array} \right\}$$

has the same set of feasible solutions ${\cal S}$ but its LP relaxation is strictly more constrained

- Instead of splitting into subproblems (Branch & Bound), one can add the cut and solve the relaxation of the new problem
- In practice cuts are used together with Branch & Bound: If after adding some cuts no integer solution is found, then branch This technique is called Branch & Cut

Gomory Cuts

- There are several techniques for deriving cuts
- \blacksquare Some are problem-specific (e.g., for the travelling salesman problem)
- Here we will see a generic technique: Gomory cuts
- Let us consider a basis B and let β be the associated basic solution. Note that for all $j \in \mathcal{R}$ we have $\beta_j = 0$
- Let x_i be a basic variable such that $i \in \mathcal{I}$ and $\beta_i \notin \mathbb{Z}$
- E.g., this happens in the optimal basis of the relaxation when the basic solution does not meet the integrality constraints
- lacktriangle Let the row of the tableau corresponding to x_i be of the form

$$x_i = \beta_i + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$$

Gomory Cuts

 \blacksquare Let $x \in S$. Then $x_i \in \mathbb{Z}$ and

$$x_i = \beta_i + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$$
$$x_i - \beta_i = \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$$

- Let $\delta = \beta_i |\beta_i|$. Then $0 < \delta < 1$
- Hence

$$x_{i} - \lfloor \beta_{i} \rfloor = x_{i} - \beta_{i} + \beta_{i} - \lfloor \beta_{i} \rfloor$$

$$= x_{i} - \beta_{i} + \delta$$

$$= \delta + x_{i} - \beta_{i}$$

$$= \delta + \sum_{i \in \mathcal{R}} \alpha_{ij} x_{j}$$

Gomory Cuts

$$x_i - \lfloor \beta_i \rfloor = \delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$$

■ Let us define

$$\mathcal{R}^+ = \{ j \in \mathcal{R} \mid \alpha_{ij} \ge 0 \} \qquad \mathcal{R}^- = \{ j \in \mathcal{R} \mid \alpha_{ij} < 0 \}$$

$$x_i - \lfloor \beta_i \rfloor = \delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$$

■ Let us define

$$\mathcal{R}^+ = \{ j \in \mathcal{R} \mid \alpha_{ij} \ge 0 \} \qquad \mathcal{R}^- = \{ j \in \mathcal{R} \mid \alpha_{ij} < 0 \}$$

Assume $\sum_{j\in\mathcal{R}} \alpha_{ij} x_j \geq 0$. Then

$$\delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j \ge 1$$

$$\sum_{j \in \mathcal{R}^+} \alpha_{ij} x_j \ge \sum_{j \in \mathcal{R}} \alpha_{ij} x_j \ge 1 - \delta$$

$$\sum_{j \in \mathcal{R}^+} \frac{\alpha_{ij}}{1 - \delta} x_j \ge 1$$

$$x_i - \lfloor \beta_i \rfloor = \delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$$

Let us define

$$\mathcal{R}^+ = \{ j \in \mathcal{R} \mid \alpha_{ij} \ge 0 \} \qquad \mathcal{R}^- = \{ j \in \mathcal{R} \mid \alpha_{ij} < 0 \}$$

Assume $\sum_{j\in\mathcal{R}} \alpha_{ij} x_j \geq 0$. Then

$$\delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j \ge 1$$

$$\sum_{j \in \mathcal{R}^+} \alpha_{ij} x_j \ge \sum_{j \in \mathcal{R}} \alpha_{ij} x_j \ge 1 - \delta$$

$$\sum_{j \in \mathcal{R}^+} \frac{\alpha_{ij}}{1 - \delta} x_j \ge 1$$

Moreover
$$\sum_{j \in \mathcal{R}^-} \left(\frac{-\alpha_{ij}}{\delta}\right) x_j \ge 0$$

$$x_i - \lfloor \beta_i \rfloor = \delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$$

Let us define

$$\mathcal{R}^+ = \{ j \in \mathcal{R} \mid \alpha_{ij} \ge 0 \} \qquad \mathcal{R}^- = \{ j \in \mathcal{R} \mid \alpha_{ij} < 0 \}$$

$$x_i - \lfloor \beta_i \rfloor = \delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$$

Let us define

$$\mathcal{R}^+ = \{ j \in \mathcal{R} \mid \alpha_{ij} \ge 0 \} \qquad \mathcal{R}^- = \{ j \in \mathcal{R} \mid \alpha_{ij} < 0 \}$$

Assume $\sum_{j\in\mathcal{R}} \alpha_{ij} x_j < 0$. Then

$$\delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j \le 0$$

$$\sum_{j \in \mathcal{R}^-} \alpha_{ij} x_j \le \sum_{j \in \mathcal{R}} \alpha_{ij} x_j \le -\delta$$

$$\sum_{j \in \mathcal{R}^-} \left(\frac{-\alpha_{ij}}{\delta}\right) x_j \ge 1$$

$$x_i - \lfloor \beta_i \rfloor = \delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$$

Let us define

$$\mathcal{R}^+ = \{ j \in \mathcal{R} \mid \alpha_{ij} \ge 0 \} \qquad \mathcal{R}^- = \{ j \in \mathcal{R} \mid \alpha_{ij} < 0 \}$$

Assume $\sum_{j\in\mathcal{R}} \alpha_{ij}x_j < 0$. Then

$$\delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j \le 0$$

$$\sum_{j \in \mathcal{R}^-} \alpha_{ij} x_j \le \sum_{j \in \mathcal{R}} \alpha_{ij} x_j \le -\delta$$

$$\sum_{j \in \mathcal{R}^-} \left(\frac{-\alpha_{ij}}{\delta}\right) x_j \ge 1$$

Moreover
$$\sum_{j\in\mathcal{R}^+} \frac{\alpha_{ij}}{1-\delta} x_j \geq 0$$

In any case

$$\sum_{j \in \mathcal{R}^{-}} \left(\frac{-\alpha_{ij}}{\delta} \right) x_j + \sum_{j \in \mathcal{R}^{+}} \frac{\alpha_{ij}}{1 - \delta} x_j \ge 1$$

for any $x \in S$.

However, when $x = \beta$ this inequality is not satisfied (set $x_j = 0$ for $j \in \mathcal{R}$)

- lacktriangle Let us assume A, b have coefficients in \mathbb{Z}
- Sometimes it is possible to ensure for an IP that all vertices of the relaxation are integer
- For instance, when the matrix A is totally unimodular: the determinant of every square submatrix is 0 or ± 1

- \blacksquare Let us assume A, b have coefficients in \mathbb{Z}
- Sometimes it is possible to ensure for an IP that all vertices of the relaxation are integer
- For instance, when the matrix A is totally unimodular: the determinant of every square submatrix is 0 or ± 1

In that case all bases have inverses with integer coefficients

Recall Cramer's rule: if B is an invertible matrix, then

$$B^{-1} = \frac{1}{\det(B)} \operatorname{adj}(B)$$

where adj(B) is the adjugate matrix of B

Recall also that

$$adj(B) = ((-1)^{i+j} \det(M_{ji}))_{1 \le i, j \le n},$$

where M_{ij} is matrix B after removing the *i*-th row and the *j*-th column

- Sufficient condition for total unimodularity of a matrix A: (Hoffman & Gale's Theorem)
 - 1. Each element of A is 0 or ± 1
 - 2. No more than two non-zeros appear in each column
 - 3. Rows can be partitioned in two subsets R_1 and R_2 s.t.
 - (a) If a column contains two non-zeros of the same sign, one element is in each of the subsets
 - (b) If a column contains two non-zeros of different signs, both elements belong to the same subset

Assignment Problem

- \blacksquare n = # of workers = # of tasks
- Each worker must be assigned to exactly one task
- Each task is to be performed by exactly one worker
- lacksquare $c_{ij}=$ cost when worker i performs task j

Assignment Problem

- \blacksquare n = # of workers = # of tasks
- Each worker must be assigned to exactly one task
- Each task is to be performed by exactly one worker
- lacksquare $c_{ij}=$ cost when worker i performs task j

$$x_{ij} = \begin{cases} 1 & \text{if worker } i \text{ performs task } j \\ 0 & \text{otherwise} \end{cases}$$

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}
\sum_{j=1}^{n} x_{ij} = 1 \qquad \forall i \in \{1, \dots, n\}
\sum_{i=1}^{n} x_{ij} = 1 \qquad \forall j \in \{1, \dots, n\}
x_{ij} \in \{0, 1\} \qquad \forall i, j \in \{1, \dots, n\}$$

■ This problem satisfies Hoffman & Gale's conditions

- Several kinds of IP's satisfy Hoffman & Gale's conditions:
 - Assignment
 - **♦** Transportation
 - Maximum flow
 - ♦ Shortest path
 - **♦** ...
- Usually ad-hoc network algorithms are more efficient for these problems than the simplex method as presented here

- Several kinds of IP's satisfy Hoffman & Gale's conditions:
 - Assignment
 - ◆ Transportation
 - Maximum flow
 - ♦ Shortest path
 - **♦** ...
- Usually ad-hoc network algorithms are more efficient for these problems than the simplex method as presented here
- But:
 - ◆ The simplex method can be specialized: network simplex method
 - ◆ Simplex techniques can be applied if the problem is not a purely network one but has extra constraints

- Sometimes we want to have an indicator variable of a contraint: a 0/1 variable equal to 1 iff the constraint is true (= reification in CP)
- E.g., let us to encode $\delta = 1 \leftrightarrow a^T x \leq b$, where δ is a 0/1 var

- Sometimes we want to have an indicator variable of a contraint: a 0/1 variable equal to 1 iff the constraint is true (= reification in CP)
- E.g., let us to encode $\delta = 1 \leftrightarrow a^T x \leq b$, where δ is a 0/1 var
- Assume $a^Tx \in \mathbb{Z}$ for all feasible solution xLet U be an upper bound of $a^Tx - b$ for all feasible solutions Let L be a lower bound of $a^Tx - b$ for all feasible solutions

- Sometimes we want to have an indicator variable of a contraint: a 0/1 variable equal to 1 iff the constraint is true (= reification in CP)
- E.g., let us to encode $\delta = 1 \leftrightarrow a^T x \leq b$, where δ is a 0/1 var
- Assume $a^Tx \in \mathbb{Z}$ for all feasible solution xLet U be an upper bound of $a^Tx - b$ for all feasible solutions Let L be a lower bound of $a^Tx - b$ for all feasible solutions
 - 1. $\delta = 1 \to a^T x \leq b$ can be encoded with $a^T x b \leq U(1 \delta)$

- Sometimes we want to have an indicator variable of a contraint: a 0/1 variable equal to 1 iff the constraint is true (= reification in CP)
- E.g., let us to encode $\delta = 1 \leftrightarrow a^T x \leq b$, where δ is a 0/1 var
- Assume $a^Tx \in \mathbb{Z}$ for all feasible solution xLet U be an upper bound of $a^Tx - b$ for all feasible solutions Let L be a lower bound of $a^Tx - b$ for all feasible solutions
 - 1. $\delta = 1 \to a^T x \leq b$ can be encoded with $a^T x b \leq U(1 \delta)$

2.
$$\delta=1\leftarrow a^Tx\leq b$$

$$\delta=0\rightarrow a^Tx>b$$

$$\delta=0\rightarrow a^Tx\geq b+1$$
 can be encoded with $a^Tx-b\geq (L-1)\delta+1$

- We want to encode $\delta = 1 \leftrightarrow a^T x \leq b$, where δ is a 0/1 var
- Now assume that $a^T x$ is real-valued.

Let U be an upper bound of $a^Tx - b$ for all feasible solutions Let L be a lower bound of $a^Tx - b$ for all feasible solutions

1. $\delta = 1 \to a^T x \leq b$ can be encoded with $a^T x - b \leq U(1 - \delta)$

- We want to encode $\delta = 1 \leftrightarrow a^T x \leq b$, where δ is a 0/1 var
- \blacksquare Now assume that $a^T x$ is real-valued.

- 1. $\delta = 1 \to a^T x \leq b$ can be encoded with $a^T x b \leq U(1 \delta)$
- 2. $\delta=1\leftarrow a^Tx\leq b$ $\delta=0\to a^Tx>b$ Can only be modeled if we allow for a tolerance ϵ

- We want to encode $\delta = 1 \leftrightarrow a^T x \leq b$, where δ is a 0/1 var
- Now assume that $a^T x$ is real-valued.

- 1. $\delta = 1 \to a^T x \leq b$ can be encoded with $a^T x b \leq U(1 \delta)$
- 2. $\delta=1\leftarrow a^Tx\leq b$ $\delta=0\rightarrow a^Tx>b \quad \text{Can only be modeled if we allow for a tolerance }\epsilon$ $\delta=0\rightarrow a^Tx\geq b+\epsilon$ can be encoded with $a^Tx-b\geq (L-\epsilon)\delta+\epsilon$

- We want to encode $\delta = 1 \leftrightarrow a^T x = b$, where δ is a 0/1 var
- Assume that $a^T x$ is real-valued.

- We want to encode $\delta = 1 \leftrightarrow a^T x = b$, where δ is a 0/1 var
- \blacksquare Assume that $a^T x$ is real-valued.

1.
$$\delta = 1 \rightarrow a^T x \leq b \Rightarrow a^T x - b \leq U(1 - \delta)$$

- We want to encode $\delta = 1 \leftrightarrow a^T x = b$, where δ is a 0/1 var
- \blacksquare Assume that $a^T x$ is real-valued.

1.
$$\delta = 1 \rightarrow a^T x \leq b \Rightarrow a^T x - b \leq U(1 - \delta)$$

2.
$$\delta = 1 \rightarrow a^T x \ge b \implies a^T x - b \ge L(1 - \delta)$$

- We want to encode $\delta = 1 \leftrightarrow a^T x = b$, where δ is a 0/1 var
- \blacksquare Assume that $a^T x$ is real-valued.

1.
$$\delta = 1 \rightarrow a^T x \leq b \Rightarrow a^T x - b \leq U(1 - \delta)$$

2.
$$\delta = 1 \rightarrow a^T x \ge b \implies a^T x - b \ge L(1 - \delta)$$

3.
$$\delta = 1 \leftarrow a^T x = b$$

 $\delta = 0 \rightarrow a^T x \neq b$
 $\delta = 0 \rightarrow a^T x < b \lor a^T x > b$

- We want to encode $\delta = 1 \leftrightarrow a^T x = b$, where δ is a 0/1 var
- \blacksquare Assume that $a^T x$ is real-valued.

Let U be upper bound of $a^Tx - b$ for all feasible solutions Let L be lower bound of $a^Tx - b$ for all feasible solutions

1.
$$\delta = 1 \rightarrow a^T x \le b \implies a^T x - b \le U(1 - \delta)$$

2.
$$\delta = 1 \rightarrow a^T x \ge b \implies a^T x - b \ge L(1 - \delta)$$

3.
$$\delta = 1 \leftarrow a^T x = b$$

 $\delta = 0 \rightarrow a^T x \neq b$
 $\delta = 0 \rightarrow a^T x < b \lor a^T x > b$

Let ϵ be the tolerance, δ', δ'' auxiliary 0/1 vars

$$\delta = 0 \to \delta' = 0 \quad \forall \quad \delta'' = 0 \quad \Rightarrow \quad \delta' + \delta'' - \delta \le 1$$

$$\delta' = 0 \to a^T x \le b - \epsilon \quad \Rightarrow \quad a^T x - b \le (U + \epsilon)\delta' - \epsilon$$

$$\delta'' = 0 \to a^T x \ge b + \epsilon \quad \Rightarrow \quad a^T x - b \ge (L - \epsilon)\delta'' + \epsilon$$

- Boolean expressions can be modeled with 0/1 vars
- If x_i is a 0/1 variable, let X_i be a boolean variable such that X_i is true iff $x_i = 1$

$X_1 \vee X_2$	iff	$x_1 + x_2 \ge 1$
$X_1 \wedge X_2$	iff	$x_1 = x_2 = 1$
$\neg X_1$	iff	$x_1 = 0$
$X_1 \to X_2$	iff	$x_1 \le x_2$
$X_1 \leftrightarrow X_2$	iff	$x_1 = x_2$

Example

Let X_i represent "Ingredient i is in the blend", $i \in \{A, B, C\}$. Express the sentence

"If ingredient A is in the blend, then ingredient B or C (or both) must also be in the blend" with linear constraints.

Example

Let X_i represent "Ingredient i is in the blend", $i \in \{A, B, C\}$. Express the sentence

"If ingredient A is in the blend, then ingredient B or C (or both) must also be in the blend"

 \blacksquare We need to express $X_A \to (X_B \vee X_C)$.

- Equivalently, $\neg X_A \lor X_B \lor X_C$.
- $\neg X_A \lor X_B \lor X_C$ is equivalent to $(1-x_A)+x_B+x_C \ge 1$.
- $\blacksquare \quad \mathsf{So} \ x_B + x_C \ge x_A$

with linear constraints.

Example (Fixed Setup Charge)

Let x be the quantity of a product with unit production cost c_1 . If the product is manufactured at all, there is a setup cost c_0

Cost of producing
$$x$$
 units $= \begin{cases} 0 & \text{if} \quad x = 0 \\ c_0 + c_1 x & \text{if} \quad x > 0 \end{cases}$

Want to minimize costs. Model as a MIP?

(for simplicity, additional constraints are not specified and can be omitted)

Example (Fixed Setup Charge)

Let x be the quantity of a product with unit production cost c_1 . If the product is manufactured at all, there is a setup cost c_0

Cost of producing
$$x$$
 units $= \left\{ \begin{array}{ll} 0 & \text{if} & x=0 \\ c_0+c_1x & \text{if} & x>0 \end{array} \right.$

Want to minimize costs. Model as a MIP?

(for simplicity, additional constraints are not specified and can be omitted)

Let δ be 0/1 var such that $x>0\to \delta=1$ (i.e., $\delta=0\to x\le 0$): add constraint $x-U\delta\le 0$, where U is the upper bound on x

Then the cost is $c_0\delta + c_1x$.

No need to express $x>0\leftarrow \delta=1$, i.e. $x=0\rightarrow \delta=0$ Minimization will make $\delta=0$ if possible (i.e., if x=0)

Example (Capacity Expansion)

Let a^Tx be the consumption of a limited resource in a production process Want to relax the constraint $a^Tx \leq b$ by increasing capacity b. Capacity can be expanded to b_i

$$b = b_0 < b_1 < b_2 < \cdots < b_t$$

with costs, respectively,

$$0 = c_0 < c_1 < c_2 < \cdots < c_t$$

Want to minimize costs. Model as a MIP? (for simplicity, additional constraints are not specified and can be omitted)

Example (Capacity Expansion)

Let a^Tx be the consumption of a limited resource in a production process Want to relax the constraint $a^Tx \leq b$ by increasing capacity b. Capacity can be expanded to b_i

$$b = b_0 < b_1 < b_2 < \cdots < b_t$$

with costs, respectively,

$$0 = c_0 < c_1 < c_2 < \cdots < c_t$$

Want to minimize costs. Model as a MIP? (for simplicity, additional constraints are not specified and can be omitted) Let 0/1 variables δ_i mean "capacity expanded to b_i ". Then:

- $\blacksquare \quad \sum_{i=0}^t \delta_i = 1$
- $\blacksquare \quad a^T x \leq \sum_{i=0}^t b_i \delta_i$
- \blacksquare Cost function: $\sum_{i=0}^{t} c_i \delta_i$