

Unit -3 Transformation, Clipping, Projections and Solid Modeling

© Rharati Vidvaneeth's Institute of Computer Applications and Management, New Delhi-63, by Vaishali Joshi, Assistant Professor,

Two-Dimensional Viewing 2-D viewing is the formal mechanism for displaying views of a picture on an output device. Terms related to 2-D viewing are: · Co-ordinate representations · Output primitive Attributes Transformations Geometric Modeling Viewing Structures/ Segments/ Objects **Two-Dimensional Viewing** · Co-ordinate representations Output primitive Attributes Transformations Geometric Modeling Viewing • Structures/ Segments/ Objects **Co-ordinate Representations** • Modeling coordinates · World coordinates · Viewing coordinates · Normalized viewing coordinates · Device coordinates $(Xmc,Ymc)\rightarrow (Xwc,Ywc)\rightarrow (Xvc,Yvc)\rightarrow (Xnvc,Ynvc)\rightarrow (Xdc,Ydc)$

Two-Dimensional Viewing Co-ordinate representations Output primitive Attributes Transformations Modeling Geometric Viewing Structures/ Segments/ Objects

THUM!	Withhill Programmer and the second se
_	Vindow
	 World coordinate area selected for display
	It defines what is to be displayed
• \	/iewport
	 An area on a display device to which a window is mapped
	 It defines where it is to be displayed

Window-to-Viewport transformation

Viewport Transformation Cont.. Mapping a window onto a viewport involves converting from one coordinate system to another. Zooming effects can be achieved by successively mapping different-sized windows on a fixed-size viewport. Panning effects are produced by moving a fixed-size window across various sized viewport.

Viewing Coordinate Reference Frame Used to provide a method for setting up arbitrary orientations for rectangular windows Matrix for converting world-coordinate positions to viewing coordinate M_{WC,VC} = R · T R: rotation matrix T: translation matrix

XV - XV _{min =}	xw - xw _{min}	
XV _{max -} XV _{min}	xw _{max} - xw _{min}	
yv – yv _{min =}	yw - yw _{min}	
$yv_{max-}yv_{min}$	yw _{max} - yw _{min}	

Window-to-Vie	wport transformation co	ont			
From these two equations we derived					
$xv = xv_{min} + (xw - xw_{min})sx$					
$yv = yv_{min} + (yw - yw_{m})$	$yv = yv_{min} + (yw - yw_{min})sy$				
where the scaling factors are					
$\mathbf{sx} = \mathbf{xv}_{\text{max}} - \mathbf{xv}_{\text{min}}$	$sy = yv_{max} - yv_{min}$				
XW _{max –} XW _{min}	yw _{max} - yw _{min}				

Window-to-Viewport transformation cont
Thus, the conversion of window area into viewport area is performed with the following sequence of transformations:
Perform a scaling that scales the window area to the size of the viewport.
Translate the scaled window area to the position of the viewport.
Relative proportions are maintained if the scaling factors are same (sx=sy)
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Valshali Jobhi, Assistant Professor U3. (#)

Cohen-Sutherland Line Clipping				
Line Clipping • Split plane into 9 regions	1001	1000	1010	
 Assign each a 4-bit tag(left, right, below, above) 	0001	0000	0010	
Assign each endpoint a tag	0101		0110	
	recta	ņgle		

Cohen-Sutherland Line Clippin	ng	
Intersection points with a clipping boundary :		
$x = x_1 + \frac{(y - y_1)}{m}$ $y = y_1 + m(x - x_1)$		
Where $x = \text{either } xw_{\text{min}} \text{ or } xw_{\text{max}}$ $y = \text{either } yw_{\text{min}} \text{ or } yw_{\text{max}}$ $m = (y_2 - y_1) / (x_2 - x_1)$		
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Vaishali Joshi, Assistant Professor	U3.	(#)

Polygon Clipping
Sutherland-Hodgman Clipping Algorithm
To clip an area against an individual boundary:
 Consider each vertex in turn against the boundary
 Vertices inside the boundary are saved for clipping against the next boundary
 Vertices outside the boundary are clipped
 If we proceed from a point inside the boundary to one outside, the intersection of the line with the boundary is saved
 If we cross from the outside to the inside intersection point and the vertex are saved
© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Vaishali Joshi, Assistant Professor U3.

Perspective vs. Parallel Perspective projection + Size varies inversely with distance – looks realistic - Distance and angles are not(in general) preserved - Parallel line do not (in general) remain parallel Parallel projection + Good for exact measurements + Parallel lines remain parallel - Angles are not (in general) preserved - Less realistic looking

Sweep Representations Sweep representations are useful for constructing 3-D objects that posses translational or rotational symmetries. A large class of shapes can be formed by sweeping a 2D shape through space. Sweeps can be: Translational Rotational

Solid Modeling Cont
Boundary Representation (B-Rep) A solid is modeled as a set of surfaces forming its boundary. These surfaces seperate object interior from environment. Example: Polygon facets
Topology and Geometry 1. Topology – how the surfaces are connected together.
2. Geometry – where the surfaces actually are in space.
3. Topology and Geometry are strongly linked.

The most commonly used boundary representation for a 3-D graphics object is a set of surface polygons that enclose the object interior. All surfaces are described with linear equations. There are different ways for describing a Polygon Surface: Polygon tables (vertex, edge and polygon-surface table) Plane Equation Polygon meshes (triangle strip, quadrilateral mesh)

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Vaishali Joshi, Assistant Professor

In practice, however, we use "quadtree" and "octree" to mean something more specific: • Each node of the tree corresponds to a square (quadtree) or cubical (octree) region. • If a node has children, think of its region being chopped into 4 (quadtree) or 8 (octree) equal subregions. Child nodes correspond to these smaller subregions of their parent's region. • Subdivide as little or as much as is necessary. • Each internal node has exactly 4 (quadtree) or 8 (octree) children.

Conclusion

In this unit we understand the various features like Vanishing point projection, Viewing and window to viewport transformation and various concepts of clipping and Solid modeling as well.

Review Questions cont..

Short answer type Questions

- 1. Define Vanishing Point.
- 2. What do you mean by aspect ratio? Give its significance.
- 3. Define a viewport.
- 4. Explain with the help of an example Window-toviewport transformation.
- 5. What do you mean by Quad tree? Explain with an example.
- Define Clipping with reference to Computer Graphics.

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Vaishali Joshi, Assistant Professor

U3.

BARRET C VITTOR

Review Questions cont..

Long answer type Questions

- 1. What do you mean by Solid modeling? Explain various aspects of Solid modeling with example.
- 2. Explain Sutherland-Hodgman Clipping Algorithm? With the help of an example.
- 3. Explain Sutherland Cohen clipping algorithms? With the help of an example.
- 4. Differentiate between parallel and perspective projection.
- 5. Differentiate between Quad tree and Octree methods?

© Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi-63, by Vaishali Joshi, Assistant Professor

U3. (#)

Suggested Reading/References

- [1]. Donnald Hearn and M. Pauline Baker, "Computer Graphics", PHI.
- [2]. Foley James D, "Computer Graphics", AW 2nd Ed.
- [3]. Rogers, "Procedural Element of Computer Graphics", McGraw Hill.
- [4]. Newman and Sproul, "Principal of to Interactive Computer Graphics", McGraw Hill.
- [5]. Graphics lab @ Korea University.

© Rharati Vidyaneeth's Institute of Computer Applications and Management, New Delhi-63, by Vaishali Joshi, Assistant Pro	

_			
-			
-			
-			