Universidad Industrial de Santander

Introducción a la Física (2014)

• Unidad: 04

• Clase: 01

• Fecha: 20140823S

Contenido: Ondas

Web: http://halley.uis.edu.co/fisica_para_todos/

• Archivo: 20140823S-HA-ondas.pdf

Hace mucho, mucho tiempo....

NH LORRI OPNAV CAMPAIGN 1 2014-07-19 02:30:00 UTC

Distance to Pluto: 429375336 Km

(Proper Motion)

En el episodio anterior...

Problemas de "frizz" -> "Descárguese y póngase en contacto con la Tierra"

- Una onda es una perturbación y oscilación que se desplaza en el espacio y tiene asociada una transferencia neta de energía de un lugar a otro
- No implica desplazamientos de masa

- Tipos de ondas
 - Campos cuánticos → perturbaciones
 - Electromagnéticas → Oscilaciones del campo electromagnético
 - Mecánicas → Deformaciones en un medio material → Fuerzas restitutivas

- Osciliación respecto a la dirección de propagación
 - Transversal
 - Longitudinal

Ondas en la Naturaleza: en un estanque

En la playa

Olas heladas

Ondas en la Tierra -> terremotos y sismos

En el océano en el composición de la composición del composición de la composición d

En la atmósfera

En la atmósfera

En otros planetas (Venus)

O sus anillos (cometa en Júpiter)

O sus anillos (Dafne)

O sus Lunas (Calisto - Júpiter)

En el Sol

Solmoto

En la heliósfera

Supernovas (SNR0509)

Perturbaciones

- Perturbaciones → ondas
- Perturbación periódica -> Ondas periódicas, se requiere
 - elasticidad: punto de equilibrio + fuerza de restauración
 - Fuente de energía
- Movimiento periódico
 - Período T: tiempo requerido para completar un ciclo
 - Longitud de onda, λ: espacio requerido para completar un ciclo
 - Frecuencia, f: el número de ciclos por unidad de tiempo

$$f = \frac{1}{T}$$
, $[f] = s^{-1} \equiv Hz$

Ondas periódicas

¿Por qué siempre una función seno (o coseno)?

- Tienen período, longitud de onda y amplitud definidas
- Además,
 - Serie de Fourier: toda función peródica f(x) puede expresarse:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2n\pi}{T}t\right) + b_n \sin\left(\frac{2n\pi}{T}t\right) \right)$$

• Los a, y b, son los coeficientes de Fourier (y pueden ser cero)

Ondas periódicas

En la vida real

Onda periódica

Misma λ , distinta amplitud

Distinta λ , misma amplitud

Velocidad de propagación

$$v = \frac{\text{distancia}}{\text{tiempo}}$$

$$v = \frac{\lambda}{T} = f \lambda$$

• Recordemos:

- Período es el tiempo para completar un ciclo
- Longitud de onda es el espacio para completar un ciclo
- En un ciclo, la onda se propaga una distancia λ
- Para ello, necesita un tiempo T

Generalizando ondas

Amplitud modulada

Si la amplitud A(x,t) no es constante (en el tiempo o en la posición)

Frecuencia modulada

Si la frecuencia no es constante

Espacial Temporal Fase

$$f(x,t) = A(x,t) \sin \left(\frac{2\pi}{\lambda}x - \frac{2\pi}{T}t - \phi\right)$$
Amplitud