1-6-1 集合と順列

集合の概念

- ◆集合とは、ある特定の「もの」の集まりのことです。
- ◆ 集合 A を構成する「もの」のことを要素または元とよびます。
 - x が A の要素であるとき, $x \in A$ または $A \ni x$ と書きます.
 - p が A の要素でないとき, $p \notin A$ または $A \not\ni p$ と書きます.
- 有限個の要素からなる集合を有限集合とよび、 無限個の要素からなる集合を無限集合とよびます。

基本的な数の集合

- 実数の集合 ℝ.
- 整数の集合 ℤ.
- 自然数の集合 №.
- 有理数の集合 ℚ.

- これらは、すべて無限集合です.
- 例: $16 \in \mathbb{N}$, $24.2 \notin \mathbb{N}$, $24.2 \in \mathbb{Q}$, $\sqrt{5} \notin \mathbb{Q}$, $\sqrt{5} \in \mathbb{R}$.

集合の表し方 (1/2)

- 例として、{2,4,7} は、「3 つの実数 2,4,7 からなる集合」のことです.
 - 要素を書き並べる順番を変えても、集合としては同じものです。
 - 0 ± 0 , $\{2, 4, 7\} = \{2, 7, 4\} = \{7, 4, 2\} = \{4, 7, 2\} = \cdots$.

- {5,6,7,...,30} は,「5 以上 30 以下の自然数からなる集合」のことです.
- $\{1, 2, 3, \dots\} = \mathbb{N}$.
- $\{0, \pm 1, \pm 2, \pm 3, \dots\} = \mathbb{Z}$.

集合の表し方 (2/2)

- 「5 以上 30 以下の自然数からなる集合」は、{5,6,7,...,30} と表しました.
 - これとは別の表し方として、

```
\{x \mid x \text{ は 5 以上 30 以下の自然数 }\},または、 \{x \in \mathbb{N} \mid 5 \le x \le 30\} もあります.
```

- $\{x \in \mathbb{R} \mid 5 \le x \le 30\}$ は, [5] 以上 30 以下の実数からなる集合」です.
- $\{2i \mid i \in \mathbb{Z}\}$ は、偶数の集合です.
- $\{2i-1 \mid i \in \mathbb{Z}\}$ は、奇数の集合です.

空集合

- 要素を1つももたない集合を、空集合とよびます.
 - ・ 空集合は、 ∅ や {} などで表します.
- 例: $\{x \in \mathbb{R} \mid x^2 = -1\} = \emptyset$.
- \emptyset : $\{x \in \mathbb{N} \mid x \leq -5\} = \emptyset$.

部分集合

- 集合 A の要素がすべて集合 B の要素でもあるとき, A を B の部分集合と よびます.
 - このとき, $A \subset B$ または $B \supset A$ と書きます.

 \bullet $A \subset B$ かつ $A \supset B$ のとき, A = B と書きます.

- $A \subset \{2, 4, 6, 7\}$, $A \subset \mathbb{N}$, $\{2, 4\} \subset A$.
- {2,5} は、A の部分集合ではありません。
- A の部分集合は、全部で8個あります:Ø, {2}, {4}, {7}, {2,4}, {4,7}, {2,7}, {2,4,7}.

共通部分,和集合,差集合 (1/2)

- 2 つの集合 A と B に対して、次の集合が定義できます。
- A と B の共通部分(または、交わり) A ∩ B とは、
 A と B の両方に含まれる要素をすべて集めた集合のことです。
- $A \ge B$ の和集合 $A \cup B \ge t$ は、 A の要素 $\ge B$ の要素をすべて集めた集合のことです。
- A と B の差集合 A − B とは,
 A に含まれるが B に含まれない要素をすべて集めた集合のことです.

共通部分,和集合,差集合 (2/2)

- 例: $A = \{1, 2, 3, 4, 5\}$, $B = \{4, 5, 6, 7\}$ に対して,
 - $A \cap B = \{4, 5\}$.
 - $A \cup B = \{1, 2, 3, 4, 5, 6, 7, \}$.
 - \bullet $A B = \{1, 2, 3\}$.
 - $B A = \{6, 7\}$.

補集合

• 補集合

- 集合 X と、その部分集合 A に対して、
 X A を A の (X における) 補集合とよび、
 A^c や X \ A などで表します。
- このとき、X を全体集合とよびます。

(なお、このような図は、ベン図と よばれます。)

- 例: $X = \{1, 2, 3, 4, 5, 6\}$, $A = \{2, 3, 4\}$ とすると, $A^c = \{1, 5, 6\}$ です.
- 例: $X = \mathbb{Z}$, $A = \{x \in \mathbb{Z} \mid x \text{ は 3 で割ると 1 余る}\}$ とすると, A^c は「3 の倍数と, 3 で割ると 2 余る整数とを, すべて集めた集合」です.

結合法則と分配法則 (1/2)

• 結合法則

- (i) $(A \cup B) \cup C = A \cup (B \cup C)$.
- (ii) $(A \cap B) \cap C = A \cap (B \cap C)$.

結合法則と分配法則 (2/2)

• 分配法則

- (i) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- (ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

ド・モルガンの法則

集合 X, A, B に対して,

(i)
$$X - (A \cup B) = (X - A) \cap (X - B)$$
.

(ii)
$$X - (A \cap B) = (X - A) \cup (X - B)$$
.

(i) の左辺

(ii) の左辺

(ii) の右辺

順列:導入

- 例として、巡回セールスマン問題とよばれる問題をとりあげます.
- 都市 s から出発し、都市 c₁,..., c₄ のすべてをちょうど 1 回ずつ訪れてから s に戻る経路のうち、移動距離が最小のものを求めて下さい。

● 候補となる経路は、

$$s \rightarrow c_1 \rightarrow c_2 \rightarrow c_3 \rightarrow c_4 \rightarrow s$$

$$s \rightarrow c_1 \rightarrow c_2 \rightarrow c_4 \rightarrow c_3 \rightarrow s$$

$$s \rightarrow c_1 \rightarrow c_3 \rightarrow c_2 \rightarrow c_4 \rightarrow s$$

$$s \rightarrow c_1 \rightarrow c_3 \rightarrow c_4 \rightarrow c_2 \rightarrow s$$

$$s \rightarrow c_1 \rightarrow c_4 \rightarrow c_2 \rightarrow c_3 \rightarrow s$$

$$s \rightarrow c_1 \rightarrow c_4 \rightarrow c_2 \rightarrow c_3 \rightarrow s$$

$$s \rightarrow c_1 \rightarrow c_4 \rightarrow c_3 \rightarrow c_2 \rightarrow s$$

$$s \rightarrow c_1 \rightarrow c_4 \rightarrow c_3 \rightarrow c_2 \rightarrow s$$

$$s \rightarrow c_1 \rightarrow c_4 \rightarrow c_3 \rightarrow c_2 \rightarrow s$$

$$s \rightarrow c_1 \rightarrow c_4 \rightarrow c_3 \rightarrow c_2 \rightarrow s$$

$$s \rightarrow c_1 \rightarrow c_4 \rightarrow c_3 \rightarrow c_2 \rightarrow s$$

$$s \rightarrow c_1 \rightarrow c_4 \rightarrow c_3 \rightarrow c_2 \rightarrow s$$

- 最初を c₁ と決めたら, 6 通り.
- 最初の決め方は4通り→全部で4・3・2・1 = 24通り.

順列とは

- いくつかのものを一列に並べるとき、その並べ方の1つ1つのことを、順列とよびます。
- 4 個の都市の順列の総数は 4・3・2・1 = 24 通り.
- n 個の(相異なるものの)順列の総数は n! です.
 - $n! = n \cdot (n-1) \cdot \cdot \cdot 3 \cdot 2 \cdot 1$ のことを, n の階乗とよびます.
 - 0! = 1 と決めておく.
 - n! は, n が大きくなると急激に大きくなります.
- \bullet n 個から r 個を選んで並べる場合は、順列の総数は

$$\underbrace{n\cdot (n-1)\cdot \cdot \cdot \cdot (n-r+2)\cdot (n-r+1)}_{r$$
 個の積

- この数のことを、_nP_r と書きます。
 - $_{n}P_{r} = \frac{n!}{(n-r)!}$, $_{n}P_{n} = n!$ です.

(狭義の)組合せとは

- n 個のものから r 個を選ぶときの、選び方の総数のことを、組合せとよび、 $_{n}C_{r}$ や $\binom{n}{r}$ で表します.
 - 順列では順番を区別しますが、組合せでは順番を区別しません。
 - 選んできた r 個の順列の総数は r! ですので,

$$_{n}C_{r} = \frac{_{n}P_{r}}{r!} = \frac{n!}{(n-r)!r!}$$
.

- ${}_{n}C_{0} = 1$, ${}_{n}C_{n} = 1$.
- $_{n+1}C_r = _nC_{r-1} + _nC_r$. (再帰的な定義)
 - n+1 個目を選ぶ場合は、n 個目までからはあと r-1 個を選ぶので、 nC_{r-1} .
 - n+1 個目を選ばない場合は、n 個目までから r 個すべてを選ぶので、 nC_r .

2項定理

- 母関数
 - 数列 $a_0, a_1, a_2, \ldots, a_n$ に対して、関数 $a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$ のことを (x を変数とする) 母関数とよびます.
- 数列 ${}_{n}C_{0}$, ${}_{n}C_{1}$, ${}_{n}C_{2}$,..., ${}_{n}C_{n}$ の母関数は $(1+x)^{n}$ です,つまり, $(1+x)^{n} = {}_{n}C_{0} + {}_{n}C_{1}x + {}_{n}C_{2}x^{2} + \cdots + {}_{n}C_{n-1}x^{n-1} + {}_{n}C_{n}x^{n}$.
- これを一般化して, $(x+y)^n = {}_n C_0 y^n + {}_n C_1 x y^{n-1} + {}_n C_2 x^2 y^{n-2} + \dots + {}_n C_{n-1} x^n y + {}_n C_n x^n .$
 - これを、2項定理とよびます. また、 ${}_{n}C_{r}$ を2項係数とよびます.
- 例:
 - $(x + y)^6$ を展開したときの x^2y^4 の係数は, $_6C_2 = 15$.
 - $(x-3y)^7$ を展開したときの x^4y^3 の係数は、 ${}_{7}\mathbf{C}_{4} \cdot (-3)^3 = -945$.

2項定理の応用

- $\bullet \sum_{k=0}^{n} {}_{n}\mathbf{C}_{k} = 2^{n} .$
 - :: $2^n = (1+1)^n = \sum_{k=0}^n {n \choose k} 1^k 1^{n-k}$.

(n 個それぞれについて,選ぶか否かの2通りがある,と考えることもできます.)

- $\bullet_{m+n} C_r = \sum_{k=0}^r {}_m C_{kn} C_{r-k} .$
 - :: $(1+x)^{m+n} = (1+x)^m (1+x)^n = \sum_{k=0}^m {}_m C_k x^k \sum_{l=0}^n {}_n C_l x^l$ において, x^r の係数を比較します.

(注)記号:は、「なぜならば」を意味します.

包除原理 = 包含と排除の原理

- 数え上げに用いられる、集合の要素の数に関する原理です。
- S が有限集合のとき、S の要素の数を |S| で表します。
- 有限集合 A, B に対して,

$$|A \cup B| = |A| + |B| - |A \cap B|$$
.

包除原理 = 包含と排除の原理

- 数え上げに用いられる、集合の要素の数に関する原理です。
- *S* が有限集合のとき, *S* の要素の数を |*S*| で表します.
- 有限集合 A, B, C に対して,

$$|A \cup B \cup C| = |A| + |B| + |C|$$
$$-|A \cap B| - |B \cap C| - |C \cap A|$$
$$+|A \cap B \cap C|.$$

包除原理の応用

- オイラー関数:自然数 n に対して,n と互いに素である 1 以上 n 以下の自然数の個数を $\varphi(n)$ で表します.
 - 例: $\varphi(6) = 2$ (6 と互いに素なのは、1,5). $\varphi(7) = 6$ (7 と互いに素なのは、1,...,6). $\varphi(8) = 4$ (8 と互いに素なのは、1,3,5,7).
- $\varphi(504) = ?$
 - $504 = 2^3 \times 3^2 \times 7$ なので、504 以下で、2 の倍数でも3 の倍数でも7 の倍数でもない自然数の個数を求めます.
 - A を 2 の倍数, B を 3 の倍数, C を 7 の倍数の集合とすると, $\phi(504) = 504 |A \cup B \cup C|$.
 - |A| = 504/2 = 252, |B| = 504/3 = 168, |C| = 504/7 = 72.
 - $|A \cap B| = 504/6 = 84$ (6 の倍数の数), $|B \cap C| = 504/21 = 24$, $|C \cap A| = 504/14 = 36$, $|A \cap B \cap C| = 504/42 = 12$ より, $\phi(504) = 504 - 360 = 144$.

組合せは どこに現れるでしょうか

- 回帰分析や判別分析での変数選択
 - n 個の説明変数のうちの r 個で目的変数を説明するとすると、選び方は nC_r 個あります.

• 文書要約

- n 個の文からなる文書に対して、r 個の文を選んで要約とする. 選び方は nC_r 個あります.
- 2n 個の点からなるデータに 2-クラスタリングを適用するとき、解の候補は 2nC₁ + 2nC₂ + ··· + 2nC_n 個あります.
- (注)以上の例では、すべての組合せを試してみることは、実際にはしません。
- 2 項分布の確率関数 $P({X = k}) = {}_{n}C_{k}p^{k}(1-p)^{k}$. \Rightarrow スライド 68