Distribution Theory and Applications — Example Sheet 1

Lucas Riedstra

4 November 2020

Question 1. Construct a non-zero element of $\mathcal{D}(\mathbb{R})$ that vanishes outside (0,1). Construct a non-zero of $\mathcal{D}(\mathbb{R}^n)$ that vanishes outside the ball $B_{\varepsilon} = \{x \in \mathbb{R}^n : ||x|| < \varepsilon\}$.

Proof. It is well-known that the function

$$\varphi \colon \mathbb{R} \to \mathbb{R} \colon x \mapsto \begin{cases} 0 & \text{if } x \leqslant 0; \\ e^{-1/x} & \text{if } x > 0, \end{cases}$$

is smooth and vanishes outside $(0, \infty)$. The function $\psi(x) := \varphi(x)\varphi(1-x)$ is therefore also smooth and vanishes outside (0, 1).

Since ψ vanishes outside (0,1), the function $\psi(x/\varepsilon)$ vanishes outside $(0,\varepsilon)$, and therefore the function $\mathbf{x} \mapsto \psi(\|\mathbf{x}\|/\varepsilon)$ vanishes outside B_{ε} .

For both questions 2 and 4, we need the following lemma:

Lemma 1. Let $K, V \subseteq \mathbb{R}^n$ where K is compact, V is closed, and $K \cap V = \emptyset$. Then there is a nonzero distance between K and V, i.e.,

$$\inf_{x \in K, v \in V} \|x - v\| > 0.$$

Proof. We know that $K \subseteq V^{\complement}$ and that V^{\complement} is open, so for every $x \in K$ there exists an open ball $B(x, \varepsilon_x)$ around x such that $B(x, 2\varepsilon_x) \subseteq V^{\complement}$. Since $\{B(x, \varepsilon_x)\}$ is an open covering of K, there exist finitely many balls $B(x_1, \varepsilon_1), \ldots, B(x_n, \varepsilon_n)$ that cover K. Let $\varepsilon := \min\{\varepsilon_1, \ldots, \varepsilon_n\}$ and $x \in K$, then there is an x_i such that $\|x - x_i\| < \varepsilon$, and since $B(x_i, 2\varepsilon) \subseteq B(x_i, 2\varepsilon_i) \subseteq V^{\complement}$ it is clear that $B(x, \varepsilon) \subseteq V^{\complement}$ as well.

We conclude that $B(x,\varepsilon) \subseteq V^{\complement}$ for any $x \in K$, and therefore that $\inf_{x \in K, v \in V} ||x-v|| \ge \varepsilon > 0$. \square

Question 2. Given $\varphi \in \mathcal{D}(X)$, Taylor's theorem gives

$$\varphi(x+h) = \sum_{|\alpha| \leq N} \frac{h^{\alpha}}{\alpha!} \partial^{\alpha} \varphi(x) + R_N(x,h).$$

Prove that $\operatorname{supp}(R_N)$ is contained in some fixed compact $K \subseteq X$ for |h| sufficiently small. Show also that $\partial^{\alpha} R_N = o(|h|^N)$ uniformly in x for each multi-index α , i.e. prove

$$\lim_{|h| \to 0} \frac{\sup_{x} \left| \partial^{\alpha} R_{N}(x, h) \right|}{\left| h \right|^{N}} = 0$$

for each multi-index α .

Hint: you may find it convenient to use the following form of the remainder

$$R_N(x,h) = \sum_{|\alpha|=N+1} \frac{h^{\alpha}}{\alpha!} (N+1) \int_0^1 (1-t)^N (\partial^{\alpha} \varphi)(x+th) dt,$$

and note that $(N+1)! \sum_{|\alpha|=N+1} \frac{h^{\alpha}}{\alpha!} = (h_1 + \dots + h_n)^{N+1}$.

Proof. Let $\varphi \in \mathcal{D}(X)$ with $K = \text{supp } \varphi$, then by lemma 1 we know there exists a nonzero distance d > 0 between K and $\mathbb{R}^n \setminus X$. We claim that if $||h|| \leqslant \frac{d}{2}$, then

$$\operatorname{supp}(R_N) \subseteq \left\{ x \in X \mid d(x, K) \leqslant \frac{d}{2} \right\} =: \hat{K},$$

which is clearly a compact set contained in X. Indeed, if $||h|| \leq \frac{d}{2}$ we have

$$\varphi(x+h) \neq 0 \implies x+h \in K \implies d(x,K) \leqslant ||h|| \leqslant \frac{d}{2}.$$

By Taylor's theorem, we have

$$\varphi(x+h) = \sum_{|\alpha| \le N} \frac{h^{\alpha}}{\alpha!} \partial^{\alpha} \varphi(x) + R_N(x,h),$$

and since $\sum_{|\alpha| \leq N} \frac{h^{\alpha}}{\alpha!} \partial^{\alpha} \varphi(x)$ vanishes for $x \notin K$, it is clear that $\operatorname{supp}(R_N(\cdot, h))$ must be contained in \hat{K} (for $||h|| \leq \frac{d}{2}$).

Now let β be a multi-index and define $C := \frac{1}{N!} \max_{|\alpha|=N+1, x \in \mathbb{R}^n} \left| (\partial^{\alpha+\beta}) \varphi(x) \right|$ (note that C exists and is finite since all partial derivatives of φ have compact support), then we have

$$\begin{aligned} \left| \partial^{\beta} R_{N}(x,h) \right| &= \left| \partial^{\beta} \sum_{|\alpha|=N+1} \frac{h^{\alpha}}{\alpha!} (N+1) \int_{0}^{1} (1-t)^{N} (\partial^{\alpha} \varphi)(x+th) \, \mathrm{d}t \right| \\ &\stackrel{\star}{=} \left| \sum_{|\alpha|=N+1} \frac{h^{\alpha}}{\alpha!} (N+1) \int_{0}^{1} (1-t)^{N} (\partial^{\alpha+\beta} \varphi)(x+th) \, \mathrm{d}t \right| \\ &\leqslant \sum_{|\alpha|=N+1} \frac{|h^{\alpha}|}{\alpha!} (N+1) \int_{0}^{1} (1-t)^{N} \left| \left(\partial^{\alpha+\beta} \varphi \right)(x+th) \right| \, \mathrm{d}t \\ &\leqslant \left[\max_{|\alpha|=N+1, x \in \mathbb{R}^{n}} \left| \left(\partial^{\alpha+\beta} \right) \varphi(x) \right| \right] \sum_{|\alpha|=N+1} \frac{|h^{\alpha}|}{\alpha!} (N+1) \\ &= C(N+1)! \sum_{|\alpha|=N+1} \frac{|h^{\alpha}|}{\alpha!} = C(|h_{1}| + \dots + |h_{n}|)^{N+1}. \end{aligned}$$

Here, \star follows from differentiation under the integral sign since the integrand is bounded. Since this upper bound does not depend on x, we also have

$$\sup_{x} \left| \partial^{\beta} R_{N}(x,h) \right| \leq C(|h_{1}| + \dots + |h_{n}|)^{N+1},$$

and we conclude that

$$\frac{\sup_{x} \left| \hat{o}^{\beta} R_{N}(x,h) \right|}{\left\| h \right\|^{N}} \leqslant \frac{C(|h_{1}| + \dots + |h_{n}|)^{N+1}}{\left\| h \right\|^{N}} \leqslant \frac{CN^{N+1} \left\| h \right\|^{N+1}}{\left\| h \right\|^{N}} = CN^{N+1} \left\| h \right\| \to 0,$$

and therefore that $\partial^{\beta} R_N(x,h) = o(\|h\|^n)$ for all multi-indices β .

Question 3. Which elements of $\mathcal{D}(X)$ can be represented as a power series on X?

Solution. It is known that if two power series agree on an open set, they agree on the entire space. Since every $\varphi \in \mathcal{D}(X)$ is identically zero on some open set (outside its support), the only element of $\mathcal{D}(X)$ with a power series representation is the zero function.

Question 4. Prove the C^{∞} Urysohn lemma: if K is a compact subset of $X \subseteq \mathbb{R}^n$, show that one can find a $\varphi \in \mathcal{D}(X)$ such that $0 \leqslant \varphi \leqslant 1$ and $\varphi = 1$ on a neighborhood of K.

Solution. Let $K \subseteq X$, then by lemma 1, there is a nonzero distance d from K to $\mathbb{R}^n \backslash X$, so we have neighbourhoods

$$U_1 := \left\{ u \in X \mid d(u, K) < \frac{d}{4} \right\}, \quad U_2 := \left\{ u \in X \mid d(u, K) < \frac{3d}{4} \right\}$$

which is an open neighbourhood of K with $\overline{U} \subseteq X$.

Let $\chi = \mathbb{1}_{U_2}$. Now let $\psi \in \mathcal{D}(\mathbb{R}^n)$ satisfy $\int_{\mathbb{R}^n} \psi \, \mathrm{d}x = 1$ and $\mathrm{supp} \, \psi \subseteq B(0, \frac{d}{4})$. The we compute

$$(\chi * \psi)(x) = \int_{\mathbb{R}^n} \chi(y)\psi(x-y) \, \mathrm{d}y = \int_{U_2} \psi(x-y) \, \mathrm{d}y.$$

Clearly, $\chi * \psi \in \mathcal{D}(X)$, and furthermore, we have for $x \in U_1$ that

$$\int_{U_2} \psi(x - y) \, \mathrm{d}y = \int_{U_2 - x} \psi(z) \, \mathrm{d}z \stackrel{\star}{=} 1,$$

since supp $\psi \subseteq B(0, \frac{d}{4}) \subseteq U_2 - x$. This proves the claim.

Question 5. Given $T \in \mathcal{D}'(X)$, the derivative $\partial^{\alpha} T$ is defined by

$$\langle \partial^{\alpha} T, \varphi \rangle = (-1)^{|\alpha|} \langle T, \partial^{\alpha} \varphi \rangle \quad \forall \varphi \in \mathcal{D}(X).$$

Show that $\partial^{\alpha}T \in \mathcal{D}'(X)$. If $\operatorname{ord}(T) = m$ what can you say about $\operatorname{ord}(\partial^{\alpha}T)$?

Proof. Let $K \subseteq X$ be compact and $\varphi \in \mathcal{D}(X)$. Since T is a distribution, we know that there exists constants C, N such that

$$|\langle T, \varphi \rangle| \leq C \sum_{|\beta| \leq N} \sup |\partial^{\beta} \varphi|.$$

Letting $M := |\alpha|$, we find

$$|\langle \hat{\sigma}^{\alpha}T, \varphi \rangle| = |\langle T, \hat{\sigma}^{\alpha}\varphi \rangle| \leqslant C \sum_{|\beta| \leqslant N} \sup \left| \hat{\sigma}^{\alpha+\beta}\varphi \right| \leqslant C \sum_{|\beta| \leqslant M+N} \sup \left| \hat{\sigma}^{\beta}\varphi \right|.$$

We conclude that $\partial^{\alpha}T$ is a distribution, and that if $\operatorname{ord}(T) = m$, $\operatorname{ord}(\partial^{\alpha}T) \leq m + |\alpha|$.

Question 6. Given $T \in \mathcal{D}'(X)$ and $f \in C^{\infty}(X)$, prove that for each multi-index α

$$\partial^{\alpha}(Tf) = \sum_{\beta \leqslant \alpha} {\alpha \choose \beta} \partial^{\beta} f \partial^{\alpha-\beta} T$$

in $\mathcal{D}'(X)$.

Proof. Let $\varphi \in \mathcal{D}(X)$, then by definition we have $\langle \partial^{\alpha}(Tf), \varphi \rangle = \langle T, (-1)^{|\alpha|} f \partial^{\alpha} \varphi \rangle$. Approximate T by a sequence $(\psi_n) \subseteq \mathcal{D}'(X)$, then we find

$$\begin{split} \langle T, (-1)^{|\alpha|} f \partial^{\alpha} \varphi \rangle &= \lim_{n \to \infty} \langle \psi_n, (-1)^{|\alpha|} f \partial^{\alpha} \varphi \rangle = \lim_{n \to \infty} (-1)^{|\alpha|} \int_X \psi_n(x) f(x) \partial^{\alpha} \varphi(x) \, \mathrm{d}x \\ &= \lim_{n \to \infty} \int_X \partial^{\alpha} (\psi_n(x) f(x)) \varphi(x) \, \mathrm{d}x \\ &= \lim_{n \to \infty} \int_X \left(\sum_{\beta \leqslant \alpha} \binom{\alpha}{\beta} \partial^{\beta} f(x) \cdot \partial^{\alpha - \beta} \psi_n(x) \right) \varphi(x) \, \mathrm{d}x \\ &= \lim_{n \to \infty} \sum_{\beta \leqslant \alpha} \binom{\alpha}{\beta} \langle \partial^{\beta} f \partial^{\alpha - \beta} \psi_n, \varphi \rangle = \lim_{n \to \infty} \sum_{\beta \leqslant \alpha} \binom{\alpha}{\beta} (-1)^{|\alpha - \beta|} \langle \psi_n, \partial^{\beta} f \partial^{\alpha - \beta} \varphi \rangle \\ &= \sum_{\beta \leqslant \alpha} \binom{\alpha}{\beta} (-1)^{|\alpha - \beta|} \langle T, \partial^{\beta} f \partial^{\alpha - \beta} \varphi \rangle = \sum_{\beta \leqslant \alpha} \binom{\alpha}{\beta} \langle \partial^{\beta} f \partial^{\alpha - \beta} T, \varphi \rangle \\ &= \left\langle \sum_{\beta \leqslant \alpha} \binom{\alpha}{\beta} \partial^{\beta} f \partial^{\alpha - \beta} T, \varphi \right\rangle. \end{split}$$

Question 7. Let (x_k) be a sequence in X with no limit point in X. Consider the family of linear maps $u_{\alpha} \colon \mathcal{D}(X) \to \mathbb{C}$ defined by

$$\langle u_{\alpha}, \varphi \rangle = \sum_{k=1}^{\infty} \partial^{\alpha} \varphi(x_k)$$

for each multi-index α . For what α is $u_{\alpha} \in \mathcal{D}'(X)$? What is $\operatorname{ord}(u_{\alpha})$?

Solution. Let $K \subseteq X$ be compact. Since (x_k) does not have a limit point, only finitely many of the x_k lie in K (otherwise (x_k) would have a subsequence contained in K which would have a convergent subsequence). Without loss of generality, assume that $x_1, \ldots, x_n \in K$, and $x_{n+1}, x_{n+2}, \ldots, \notin K$. Now, for any $\varphi \in \mathcal{D}(X)$ with $\operatorname{supp}(\varphi) \subseteq K$ we find

$$|\langle u, \varphi \rangle| = \left| \sum_{k=1}^{\infty} \partial^{\alpha} \varphi(x_k) \right| = \left| \sum_{k=1}^{n} \partial^{\alpha} \varphi(x_k) \right| \leqslant \sum_{k=1}^{n} |\partial^{\alpha} \varphi(x_k)| \leqslant n \cdot \sup_{|\beta| \leqslant |\alpha|} |\partial^{\alpha} \varphi| \leqslant n \cdot \sum_{|\beta| \leqslant |\alpha|} \sup_{|\beta| \leqslant |\alpha|} |\partial^{\beta} \varphi|.$$

This shows that $u_{\alpha} \in \mathcal{D}'(X)$ for any α , with $\operatorname{ord}(u_{\alpha}) \leq |\alpha|$. We claim that this is an equality, i.e., $\operatorname{ord}(u_{\alpha}) = |\alpha|$. TODO: How to show??

Question 8. Find the most general solution to the equations

- (a) u' = 1.
- (b) $xu' = \delta_0$,
- (c) $(e^{2\pi ix} 1)u' = 0$

in $\mathcal{D}'(\mathbb{R})$.

Solution. Let $\varphi \in \mathcal{D}(X)$.

(a) If u' = 1 then we find

$$\int_{\mathbb{D}} \varphi(x) \, \mathrm{d}x = \langle 1, \varphi \rangle = \langle u', \varphi \rangle = -\langle u, \varphi' \rangle,$$

so for any $c \in \mathbb{R}$ we find by partial integration $\langle u, \varphi' \rangle = -\int_{\mathbb{R}} \varphi(x) dx = \int_{\mathbb{R}} (x+c)\varphi'(x) dx$. From this we deduce that u = x + c for some c.

(b) If $xu' = \delta_0$ then we have

$$\varphi(0) = \langle \delta_0, \varphi \rangle = \langle xu', \varphi \rangle = \langle u', x\varphi \rangle = \langle u, -(x\varphi)' \rangle = \langle u, -x\varphi' - \varphi \rangle$$

Note that the above is satisfied for $u = -\delta_0 + c$ for any constant c. TODO: is this the most general solution?

(c) Since $e^{2\pi ix} = 1 \iff x \in \mathbb{Z}$, it is clear that $\operatorname{supp}(u') \subseteq \mathbb{Z}$. We will show that this is also sufficient, i.e., that any distribution u with $\operatorname{supp}(u') \subseteq \mathbb{Z}$ yields a solution.

It is easily seen that

$$\operatorname{supp}(u') \subseteq \mathbb{Z} \iff u' = \sum_{n \in \mathbb{Z}} \alpha_n \delta_n \quad \text{for some } (\alpha_n)_{n \in \mathbb{Z}} \subseteq \mathbb{C}$$

$$\iff u = c + \sum_{n \in \mathbb{Z}} \alpha_n \mathbb{1}_{x \geqslant n} \quad \text{for some } c \in \mathbb{C}, \ (\alpha_n)_{n \in \mathbb{Z}} \subseteq \mathbb{C}.$$

Indeed, if $u = c + \sum_{n \in \mathbb{Z}} \alpha_n \mathbb{1}_{x \ge n}$ then

$$\langle u', \varphi \rangle = -\langle u, \varphi' \rangle \stackrel{\star}{=} -\alpha_n \sum_{n \in \mathbb{Z} \cap \text{supp } \varphi} \int_n^{\infty} \varphi'(x) \, \mathrm{d}x = \sum_{n \in \mathbb{Z} \cap \text{supp } \varphi} \alpha_n \varphi(n) = \langle \sum_{n \in \mathbb{Z}} \alpha_n \delta_n, \varphi \rangle,$$

where \star follows from the fact that there are only finitely many n in $\mathbb{Z} \cap \operatorname{supp} \varphi$ (since φ has compact support).

Finally, we compute that

$$\langle (e^{2\pi ix} - 1)u', \varphi \rangle = \langle u', (e^{2\pi ix} - 1)\varphi \rangle = \sum_{n \in \mathbb{Z}} \alpha_n (e^{2\pi in} - 1)\varphi(n) = 0,$$

so u satisfies the equation.

Question 9. Define the distribution $u \in \mathcal{D}'(\mathbb{R}^2)$ by the locally integrable function $u(x,y) = \mathbb{1}_{x \geqslant y}$. Show that $\partial_x^2 u - \partial_y^2 u = 0$ in $\mathcal{D}'(\mathbb{R}^2)$. Can you give a physical interpretation of this result?

Proof. Let $f \in \mathcal{D}(\mathbb{R}^2)$, then we have

$$\begin{split} \langle \partial_x^2 u - \partial_y^2 u, f \rangle &= \langle \partial_x^2 u, f \rangle - \langle \partial_y^2 u, f \rangle = \langle u, \partial_x^2 f \rangle - \langle u, \partial_y^2 f \rangle = \langle u, \partial_x^2 f - \partial_y^2 f \rangle \\ & \stackrel{\star}{=} \int_{-\infty}^{\infty} \int_y^{\infty} \partial_x^2 f(x,y) \, \mathrm{d}x \, \mathrm{d}y - \int_{-\infty}^{\infty} \int_{-\infty}^x \partial_y^2 f(x,y) \, \mathrm{d}y \, \mathrm{d}x \\ &= - \int_{-\infty}^{\infty} \partial_x f(y,y) \, \mathrm{d}y - \int_{-\infty}^{\infty} \partial_y f(x,x) \, \mathrm{d}x \\ &= - \int_{-\infty}^{\infty} (\partial_x f + \partial_y f)(x,x) \, \mathrm{d}x \, . \end{split}$$

Here, \star follows from Fubini's theorem. Define g(x) = f(x,x), then it is easily seen that $g'(x) = \partial_x f(x,x) + \partial_y f(x,x)$, so we find that

$$\langle \hat{c}_x^2 u - \hat{c}_y^2 u, f \rangle = -\int_{-\infty}^{\infty} g'(x) \, \mathrm{d}x = \lim_{x \to -\infty} g(x) - \lim_{x \to \infty} g(x) = 0 - 0 = 0.$$

This shows that $\partial_x u - \partial_y u = 0$, or equivalently, that u satisfies the wave equation.

Question 10. Compute $\Delta(\|x\|^{2-n})$ in $\mathcal{D}'(\mathbb{R}^n)$ for $n \geq 3$, i.e. compute

$$\langle \Delta(\|x\|^{2-n}), \varphi \rangle = \langle \|x\|^{2-n}, \Delta \varphi \rangle = \int \frac{\Delta \varphi}{\|x\|^{n-2}} dx$$

for arbitrary $\varphi \in \mathcal{D}(\mathbb{R}^n)$. Note that $||x|| = (x_1^2 + \dots + x_n^2)^{1/2}$ and $\Delta = \sum_i (\frac{\partial}{\partial x_i})^2$. Hint: $use \int dx = \int_{||x|| \leqslant \varepsilon} dx + \int_{||x|| > \varepsilon} dx$ and treat each integral separately.

Solution. We follow the hint: let $\varepsilon > 0$, then we first compute

$$\int_{\|x\|>\varepsilon} \frac{\Delta \varphi}{\|x\|^{n-2}} \, \mathrm{d}x = \sum_{i=1}^n \int_{\|x\|>\varepsilon} \frac{\frac{\partial^2}{\partial x_i^2} \varphi}{\|x\|^{n-2}} \, \mathrm{d}x = \sum_{i=1}^n \int_{\|x\|>\varepsilon} \varphi \cdot \frac{\partial^2}{\partial x_i^2} \|x\|^{2-n} \, \mathrm{d}x.$$

Now, it is easily computed that $\frac{\partial}{\partial x_i} ||x|| = \frac{x_i}{||x||}$, and therefore

$$\frac{\partial^2}{\partial x_i^2} \|x\|^{2-n} = \frac{\partial}{\partial x_i} (2-n) x_i \|x\|^{-n} = (2-n) \left(\|x\|^{-n} - n x_i^2 \|x\|^{-n-2} \right)$$
$$= (n-2) \|x\|^{-n} \left(n \left(\frac{x_i}{\|x\|} \right)^2 - 1 \right).$$

TODO: finish

Question 11. Let (f_k) be the sequence of smooth functions defined by $f_k(x) = \frac{1}{\pi} \frac{k}{(kx)^2 + 1}$. Prove that $f_k \to \delta_0$ in $\mathcal{D}'(\mathbb{R})$. Compute the limits

- (a) $\lim_{k\to\infty} k^2 x e^{-k^2 x^2}$,
- (b) $\lim_{k\to\infty} k^3 e^{ikx}$,
- (c) $\lim_{k\to\infty} \frac{\sin(kx)}{\pi x}$,

in $\mathcal{D}'(\mathbb{R})$.

Solution. It is easily seen that every f_k is locally integrable. Furthermore, noting that $\arctan(kx)' = \frac{k}{(kx)^2+1}$, we see by the dominated convergence theorem that

$$\lim_{k \to \infty} \langle f_k, \varphi \rangle = \frac{1}{\pi} \lim_{k \to \infty} \int_{\mathbb{R}} \frac{k}{(kx)^2 + 1} \varphi(x) \, \mathrm{d}x = -\frac{1}{\pi} \lim_{k \to \infty} \int_{\mathbb{R}} \arctan(kx) \varphi'(x) \, \mathrm{d}x$$
$$= -\frac{1}{\pi} \int_{\mathbb{R}} \lim_{k \to \infty} \arctan(kx) \varphi'(x) \, \mathrm{d}x = -\frac{1}{\pi} \left(2\frac{\pi}{2} \int_0^\infty \varphi'(x) \, \mathrm{d}x \right) = \varphi(0),$$

which proves $f_k \to \delta_0$.

(a) We have $-(\frac{1}{2}e^{-k^2x^2})' = k^2xe^{-k^2x^2}$ and therefore

$$\lim_{k \to \infty} \int_{\mathbb{R}} k^2 x e^{-k^2 x^2} \varphi(x) \, \mathrm{d}x = \frac{1}{2} \lim_{k \to \infty} \int_{\mathbb{R}} e^{-k^2 x^2} \varphi'(x) \, \mathrm{d}x = \frac{1}{2} \int_{\mathbb{R}} \lim_{k \to \infty} e^{-k^2 x^2} \varphi'(x) \, \mathrm{d}x = 0,$$

so the sequence converges to 0 in $\mathcal{D}'(\mathbb{R})$.

(b) We have

$$\lim_{k \to \infty} k^3 \int_{\mathbb{R}} e^{ikx} \varphi(x) \, \mathrm{d}x = \lim_{k \to \infty} 2\pi k^3 \mathcal{F}^{-1}[\varphi](k).$$

Since φ is a Schwarz function, its inverse Fourier transform is also a Schwarz function, and in particular $k^3 \mathcal{F}^{-1}[\varphi](k) \to 0$ as $k \to \infty$.

(c) This sequence converges to δ_0 , although I have no idea how to prove it.

Question 12. Compute the limit

$$\lim_{k \to \infty} \frac{1}{2} + \sum_{m=1}^{k} \cos(\pi mx)$$

in $\mathcal{D}'(-1,1)$.

Solution. Note that

$$f_k(x) := \frac{1}{2} + \sum_{m=1}^k \cos(\pi m x) = \frac{1}{2} \left(1 + e^{i\pi x} + e^{-i\pi x} + \dots + e^{i\pi m x} + e^{-i\pi m x} \right) = \frac{1}{2} \sum_{m=-k}^k (e^{i\pi x})^m.$$

By viewing the last term as a geometric series $\frac{1}{2}e^{-ik\pi x}\sum_{m=0}^{2k+1}(e^{ix})^m$ we can compute that

$$f_k(x) = \frac{\sin((n + \frac{1}{2})\pi x)}{2\sin(\frac{1}{2}\pi x)}.$$

It can be shown (???) that $f_k \to \delta_0$ in $\mathcal{D}'(\mathbb{R})$.

Question 13. We define the principal value of 1/x, written p.v.(1/x), by

$$\langle \text{p.v.}(1/x), \varphi \rangle = \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} \, \mathrm{d}x \quad \text{ for all } \varphi \in \mathcal{D}(\mathbb{R}).$$

Prove that p.v. $(1/x) \in \mathcal{D}'(\mathbb{R})$ and that $\operatorname{ord}(p.v.(1/x)) = 1$. Show that

$$\lim_{\varepsilon \to 0} \frac{1}{x - i\varepsilon} = \text{p.v.}\left(\frac{1}{x}\right) + i\pi\delta_0 \quad in \ \mathcal{D}'(\mathbb{R}).$$

Proof. First we must show that p.v.(1/x) is well-defined. ??

Question 14. ??

$$Proof.$$
 ??

Question 15. ??

$$Proof.$$
 ??

Question 16. Define the distribution $u \in \mathcal{E}'(\mathbb{R}^3)$ by the locally integrable function $u(x) = \mathbb{1}_{|x| \leq 1}$. Prove that $-\sum_i x_i(\frac{\partial u}{\partial x_i}) = d\sigma_2$ in $\mathcal{E}'(\mathbb{R}^3)$, where $d\sigma_2$ is the surface element on the sphere $S^2 \subseteq \mathbb{R}^3$.

Proof. We have

$$\left\langle -\sum_{i} x_{i} \frac{\partial u}{\partial x_{i}}, \varphi \right\rangle = -\sum_{i} \left\langle \frac{\partial u}{\partial x_{i}}, x_{i} \varphi \right\rangle = \sum_{i} \left\langle u, \frac{\partial}{\partial x_{i}} (x_{i} \varphi) \right\rangle = \left\langle u, \sum_{i} \frac{\partial}{\partial x_{i}} (x_{i} \varphi) \right\rangle$$
$$= \int_{\|x\| \leqslant 1} \sum_{i} \frac{\partial}{\partial x_{i}} (x_{i} \varphi) \, dx$$