ACT-3000 Examens Annexes

Étienne Marceau, PhD, ASA Professeur titulaire, École d'actuariat

4 octobre 2018

Table des matières

1	Lois	continues de mortalité 4
	1.1	Loi uniforme (DeMoivre)
	1.2	Loi exponentielle
	1.3	Loi de Gompertz
	1.4	Loi de Makeham
	1.5	Loi de Weibull
2	Lois	continues à support positif 7
	2.1	Loi uniforme
	2.2	Loi exponentielle
	2.3	Loi gamma
	2.4	Loi bêta
	2.5	Loi Erlang
	2.6	Loi Erlang généralisée
	2.7	Loi lognormale
	2.8	Loi inverse gaussienne
	2.9	Loi Pareto
	2.10	Loi F-généralisée
	2.11	Loi Burr
	2.12	Loi log-logistique
3	Lois	continues à support réel 17
	3.1	Loi normale
	3.2	Loi de Student
4	Lois	discrètes 19
	4.1	Loi avec support arithmétique
	4.2	Loi de Poisson
	4.3	Loi binomiale
	4.4	Loi de Bernoulli
	4.5	Loi binomiale négative
	4.6	Loi géométrique

5	Lois univariées avec mélange	22
	5.1 Loi mélange d'exponentielles	22
	5.2 Loi mélange d'Erlang	22
6	Algorithme de Panjer et lois de fréquence $(a,b,0)$	2 4
7	Relation récursive pour somme de v.a. discrètes i.i.d.	26
8	Algorithmes récursifs et fonctions R	27
	8.1 Convolution directe (2 v.a. indépendantes)	27
	8.2 Convolution directe (n v.a. indépendantes)	27
	8.3 Algorithme récursif – DePril (n v.a. i.i.d.)	
	8.4 Algorithme de Panjer – Poisson composée	
	8.5 Algorithme récursif de Panjer – Binomiale composée	
	8.6 Algorithme récursif de Panjer – Binomiale négative composée (1)	30
	8.7 Algorithme récursif de Panjer – Binomiale négative composée (2)	30
9	Variables aléatoires discrètes, fgp, fonctions caractéristiques et méthode FFT	31
	9.1 Contexte	31
	9.2 Fonction caractéristique	31
	9.3 Définition de deux vecteurs	31
	9.4 Construction: \underline{f}_X vers $\underline{\phi}_X$	
	9.5 Inversion : ϕ_X vers f_X	
	9.6 Remarque $\frac{-x}{x}$	
	9.7 Algorithme FFT	
10	FFT et fonctions R	33
	10.1 FFT – Somme de deux v.a. discrètes indépendantes.	33
	10.2 FFT – Somme de n v.a. discrètes indépendantes	
	10.3 FFT – Somme aléatoire (loi Poisson composée)	
11	Mesures de risque	35
	11.1 Motivations	35
	11.2 Ingrédients = quantiles	35
	11.3 Mesures VaR et TVaR	35
	11.4 Desirable properties and coherence	36
	11.5 Other desirable properties	36
12	Principaux principes de calcul de prime	37
	12.1 Propriétés désirables d'un principe de calcul de la prime majorée	37
	12.2 Principes	37
13	Générateur de nombres pseudo-aléatoires (GNPA)	38
14	Algorithme pour somme de v.a. i.d.d. de la gamma	38
15	Tables loi normale	39
	15.1 Fonction de répartition	39
	15.2 Fonction quantile	40

16	Tables loi gamma	4 1
	16.1 Fonction de répartition	41
	16.2 Fonction quantile	42
17	Table khi-deux	43

1 Lois continues de mortalité

1.1 Loi uniforme (DeMoivre)

• Notation : $X \sim Unif(0, \omega)$

• Force de mortalité de $X: \mu(x) = \frac{1}{\omega - x}$

• Fonction de survie de $X: \bar{F}\left(x\right) = \left\{ egin{array}{ll} 1, & x < 0 \\ \frac{\omega - x}{\omega}, & 0 \leq x \leq \omega \\ 0, & x > \omega \end{array} \right.$

• Fonction de répartition de $X: F\left(x\right) = \left\{ egin{array}{ll} 0, & x < 0 \\ \frac{x}{\omega}, & 0 \leq x \leq \omega \\ 1, & x > \omega \end{array} \right.$

• VaR de $X: VaR_{\kappa}(X) = \omega \kappa$

• TVaR de $X: TVaR_{\kappa}(X) = \frac{\omega(1-\kappa^2)}{2(1-\kappa)}$

• Comportement de $T_x: T_x \sim Unif(0, \omega - x)$

• Force de mortalité de T_x : $\mu(t) = \frac{1}{\omega - t - x}$

• Fonction de survie de T_x : $\bar{F}\left(t\right) = \left\{ \begin{array}{ll} 1, & t < 0 \\ \frac{\omega - x - t}{\omega - x}, & 0 \leq t \leq \omega - x \\ 0, & t > \omega - x \end{array} \right.$

• Fonction de répartition de T_x : $F(t) = \begin{cases} 0, & t < 0 \\ \frac{t}{\omega - x}, & 0 \le t \le \omega - x \\ 1, & t > \omega - x \end{cases}$

• Fonction de densité de T_x : $f\left(t\right) = \frac{1}{\omega - x} \times 1_{\{t \in (0, \omega - x]\}}$

• VaR de $T_x: VaR_{\kappa}(T_x) = (\omega - x)\kappa$

• TVaR de T_x : $TVaR_{\kappa}(T_x) = \frac{(\omega - x)(1 - \kappa^2)}{2(1 - \kappa)}$

1.2 Loi exponentielle

• Notation : $X \sim Exp(\beta)$ et $T_x \sim Exp(\beta)$

• Fonction de répartition : $F(x) = 1 - e^{-\beta x}$

• Fonction de survie : $\overline{F}(x) = e^{-\beta x}$

• Fonction de densité : $f(x) = \beta e^{-\beta x}$

• VaR: $VaR_{\kappa}(X) = -\frac{1}{\beta}\ln(1-\kappa)$

• TVaR: $TVaR_{\kappa}(X) = VaR_{\kappa}(X) + E[X]$

1.3 Loi de Gompertz

• Notation : $Gomp(\beta, \gamma)$

• Force de mortalité de X (notation 1) : $\mu(x) = \beta e^{\gamma x}, \ x \ge 0$

• Force de mortalité de X (notation 2) : $\mu\left(x\right)=Bc^{x}$, oû $B=\beta$ et $c=\mathrm{e}^{\gamma}\geq1$

4

- Fonction de survie de $X : \overline{F}(x) = \exp\left(-\frac{\beta}{\gamma}\left(e^{\gamma x} 1\right)\right) = \exp\left(-\frac{\beta}{\ln(c)}\left(c^x 1\right)\right), \ x > 0$
- Fonction de répartition de X : $F\left(x\right)=1-\exp\left(-\frac{\beta}{\gamma}\left(\mathrm{e}^{\gamma x}-1\right)\right)=1-\exp\left(-\frac{\beta}{\ln(c)}\left(c^{x}-1\right)\right),\ x>0$
- Fonction de densité de $X:f\left(x\right)=\beta\mathrm{e}^{\gamma x}\exp\left(-\frac{\beta}{\gamma}\left(\mathrm{e}^{\gamma x}-1\right)\right)$
- VaR de $X: VaR_{\kappa}(X) = \frac{1}{\gamma} \ln(1 \frac{\gamma}{\beta} \ln(1 \kappa))$
- Comportement de $T_x: T_x \sim Gom(\beta e^{\gamma x}, \gamma)$
- Force de mortalité de T_x : $\mu(t) = \beta e^{\gamma(x+t)}$
- Fonction de survie de T_x : $\bar{F}_{T_x}(t) = e^{-\frac{\beta}{\gamma} e^{\gamma x} (e^{\gamma t} 1)}$
- Fonction de répartition de T_x : $F_{T_x}(t) = 1 e^{-rac{eta}{\gamma}\,e^{\gamma x}\,(e^{\gamma t}-1)}$
- VaR de T_x : $VaR_{\kappa}(T_x) = \frac{1}{\gamma} \ln(1 \frac{\gamma}{\beta e^{\gamma x}} \ln(1 \kappa))$

1.4 Loi de Makeham

- Notation : $X \sim Makeham(\alpha, \beta, \gamma)$
- Force de mortalité de $X: \mu(x) = \alpha + \beta e^{\gamma x}$
- Fonction de survie de $X: \bar{F}_x(x) = e^{-\frac{\beta}{\gamma}(e^{\gamma x}-1)-\alpha x}$
- Fonction de répartition de $X: F_x(x) = 1 e^{-\frac{\beta}{\gamma}(e^{\gamma x} 1) \alpha x}$
- Comportement de $T_x: T_x \sim Makeham(\alpha, \beta e^{\gamma x}, \gamma)$
- Force de mortalité de T_x : $\mu(t) = \alpha + \beta e^{\gamma(x+t)}$
- Fonction de survie de T_x : $\bar{F}_{T_x}(t) = e^{-\frac{\beta}{\gamma}} e^{\gamma x} (e^{\gamma t} 1) \alpha t$
- Fonction de répartition de T_x : $F_{T_x}(t)=1-e^{-\frac{\beta}{\gamma}}e^{\gamma x}(e^{\gamma t}-1)-\alpha t$

1.5 Loi de Weibull

• Notation : $X \sim We(\tau, \beta)$

• Paramètres : $\tau > 0, \beta > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f(x) = \beta \tau (\beta x)^{\tau-1} e^{-(\beta x)^{\tau}}$

• Fonction de répartition : $F(x) = 1 - e^{-(\beta x)^{\tau}}$

• Fonction de survie : $\overline{F}(x) = e^{-(\beta x)^{\tau}}$

• Espérance : $E[X] = \frac{1}{\beta}\Gamma(1 + \frac{1}{\tau})$

• Variance: $\operatorname{Var}(X) = \frac{1}{\beta^2} \Gamma\left(1 + \frac{2}{\tau}\right) - \left(\frac{1}{\beta} \Gamma\left(1 + \frac{1}{\tau}\right)\right)^2$

• Fonction génératrice des moments (pour $\alpha > 1$):

$$M_X(t) = \sum_{k=0}^{\infty} \frac{t^k}{\beta^k k!} \Gamma\left(1 + \frac{k}{\tau}\right)$$

• Moments d'ordre $k:E\left[X^k\right]=\frac{1}{\beta^k}\Gamma\left(1+\frac{k}{ au}\right)$

• Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \frac{1}{\beta}\Gamma(1+\frac{1}{\tau})H(d^{\tau};1+\frac{1}{\tau},\beta^{\tau})$

• Mesure $VaR: VaR_{\kappa}(X) = \frac{1}{\beta}(-\ln(1-\kappa))^{\frac{1}{\tau}}$

• Mesure $TVaR: TVaR_{\kappa}(X) = \frac{1}{\beta(1-\kappa)}\Gamma(1+\frac{1}{\tau})\overline{H}(-\ln(1-\kappa);1+\frac{1}{\tau},1)$

• Fonction $stop\text{-loss}:\pi_d\left(X\right)=\frac{1}{\beta}\Gamma(1+\frac{1}{\tau})\overline{H}(d^{\tau};1+\frac{1}{\tau},\beta^{\tau})-d\mathrm{e}^{-(\beta d)^{\tau}}$

• Fonction d'excès-moyen : $e_d\left(X\right) = \frac{e^{\left(\beta d\right)^{\tau}}}{\beta}\Gamma(1+\frac{1}{\tau})\overline{H}(d^{\tau};1+\frac{1}{\tau},\beta^{\tau}) - d$

• Espérance limitée : $E\left[\min\left(X;d\right)\right] = \frac{1}{\beta}\Gamma(1+\frac{1}{\tau})H(d^{\tau};1+\frac{1}{\tau},\beta^{\tau}) + d\mathrm{e}^{-(\beta d)^{\tau}}$

• Cas particuliers :

ullet la loi exponentielle est un cas cas particulier de la loi Weibull avec au=1 ;

• la loi Raleigh est un cas cas particulier de la loi Weibull avec $\tau=2$.

2 Lois continues à support positif

2.1 Loi uniforme

- Notation : $X \sim Unif(a, b)$
- Paramètres : $-\infty < a < b < \infty$
- Support : $x \in [a, b]$
- Fonction de densité : $f(x) = \frac{1}{b-a} \times 1_{\{x \in [a,b]\}}$
- Fonction de répartition : $F\left(x\right) = \left\{ egin{array}{ll} 0, & x < a \\ \frac{x-a}{b-a}, & a \leq x \leq b \\ 1, & x > b \end{array} \right.$
- Espérance : $E[X] = \frac{a+b}{2}$
- Variance : $\operatorname{Var}(X) = \frac{(b-a)^2}{12}$
- Fonction génératrice des moments : $M_X(t) = \frac{\mathrm{e}^{bt} \mathrm{e}^{at}}{(b-a)t}$
- Moments d'ordre $k:E\left[X^k\right]=rac{b^{k+1}-a^{k+1}}{(k+1)(b-a)}$
- Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \frac{d^2 a^2}{2(b-a)}$
- Mesure $VaR: VaR_{\kappa}(X) = a + (b a) \kappa$
- Mesure $TVaR: TVaR_{\kappa}\left(X\right) = a + \frac{\left(b-a\right)}{2}\left(1+\kappa\right)$
- Fonction $stop\text{-loss}:\pi_{d}\left(X\right)=\frac{(b-d)^{2}}{2(b-a)}$
- Fonction d'excès-moyen : $e_d(X) = \frac{b-d}{2}$

2.2 Loi exponentielle

- Notation : $X \sim Exp(\beta)$
- Paramètre : $\beta > 0$
- Support : $x \in \mathbb{R}^+$
- Fonction de densité : $f(x) = \beta e^{-\beta x}$
- Fonction de répartition : $F(x) = 1 e^{-\beta x}$
- Fonction de survie : $\overline{F}(x) = e^{-\beta x}$
- Espérance : $E[X] = \frac{1}{\beta}$
- Variance : $Var(X) = \frac{1}{\beta^2}$
- Fonction génératrice des moments : $M_X(t) = \frac{\beta}{\beta t}$, $t < \beta$
- Moments d'ordre $k: E\left[X^k\right] = \left(\frac{1}{\beta}\right)^k k!$
- Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \frac{1}{\beta}\left(1 \mathrm{e}^{-\beta d}\right) d\mathrm{e}^{-\beta d}$
- Mesure $VaR: VaR_{\kappa}(X) = -\frac{1}{\beta} \ln (1 \kappa)$
- Mesure $TVaR: TVaR_{\kappa}(X) = VaR_{\kappa}(X) + E[X]$
- Fonction $stop-loss: \pi_{X}\left(d\right) = \frac{1}{\beta}e^{-\beta d} = E\left[X\right]\overline{F}\left(d\right)$
- Fonction d'excès-moyen : $e_X(d) = \frac{1}{\beta}$
- Espérance limitée : $E\left[\min\left(X;d\right)\right] = \frac{1}{\beta}\left(1 e^{-\beta d}\right)$

2.3 Loi gamma

- Notation : $X \sim Ga(\alpha, \beta)$
- Paramètres : $\alpha > 0, \beta > 0$
- Support : $x \in \mathbb{R}^+$
- Fonction de densité : $f\left(x\right)=\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}\mathrm{e}^{-\beta x},\,x>0$
- Fonction de répartition : notée $H(x; \alpha, \beta)$, forme non explicite pour $\alpha \notin \mathbb{N}^+$
- Fonction de survie : notée $\overline{H}(x; \alpha, \beta)$, forme non explicite pour $\alpha \notin \mathbb{N}^+$
- Espérance : $E[X] = \frac{\alpha}{\beta}$
- Variance : $Var(X) = \frac{\alpha}{\beta^2}$
- Fonction génératrice des moments : $M_X(t) = \left(\frac{\beta}{\beta t}\right)^{\alpha}$, $t < \beta$
- Moments d'ordre $k:E\left[X^k\right]=rac{\prod\limits_{i=0}^{k-1}(\alpha+i)}{\beta^k}$
- • Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \frac{\alpha}{\beta} H\left(d; \alpha+1, \beta\right)$
- Mesure VaR : outil d'optimisation si $\alpha \neq 1$
- Mesure $TVaR: TVaR_{\kappa}\left(X\right) = \frac{1}{1-\kappa}\frac{\alpha}{\beta}\overline{H}\left(VaR_{\kappa}\left(X\right); \alpha+1, \beta\right)$
- Fonction $stop-loss: \pi_d(X) = \frac{\alpha}{\beta}\overline{H}(d; \alpha + 1, \beta) d\overline{H}(d; \alpha, \beta)$
- Fonction d'excès-moyen : $e_d\left(X\right)=\frac{\alpha}{\beta}\frac{\overline{H}(d;\alpha+1,\beta)}{\overline{H}(d;\alpha,\beta)}-d$
- Espérance limitée : $E\left[\min\left(X;d\right)\right] = \frac{\alpha}{\beta}H\left(d;\alpha+1,\beta\right) + d\overline{H}\left(d;\alpha,\beta\right)$
- Lois associées:
 - la loi exponentielle est un cas particulier de la loi gamma (avec $\alpha=1$);
 - la loi du khi-deux avec paramètre $\nu \in \mathbb{N}^+$ (nombre de degrés de liberté) correspond à une loi gamma de paramètres $\alpha = \frac{\nu}{2}$ et $\beta = 2$;
 - la loi Erlang avec paramètre $n \in \mathbb{N}^+$ correspond à une loi gamma de paramètres $\alpha = n$ et β .

2.4 Loi bêta

- Notation : $X \sim B\hat{e}ta(\alpha, \beta)$
- Paramètres : $\alpha > 0, \beta > 0$
- Support : $x \in [0, 1]$
- Fonction bêta incomplète : $I\left(x;\alpha,\beta\right)=\int_0^x u^{\alpha-1}\left(1-u\right)^{\beta-1}\mathrm{d}u$, $x\in[0,1]$
- Fonction bêta complète : $I\left(\alpha,\beta\right)=I\left(1;\alpha,\beta\right)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$
- Fonction de densité : $f_X(x) = \frac{1}{I(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1} \times 1_{\{x \in [0,1]\}}$
- Fonction de répartition : $F_{X}\left(x\right)=\frac{I\left(x;\alpha,\beta\right)}{I\left(\alpha,\beta\right)}$, notée $B\left(x;\alpha,\beta\right)$
 - Si $\beta = 1$, $F(x) = \begin{cases} 0, & x < 0 \\ x^{\alpha}, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$

• Si
$$\alpha = 1$$
, $F(x) = \begin{cases} 0, & x < 0 \\ 1 - (1 - x)^{\beta}, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$

• Si α , $\beta \in \mathbb{N}^+$,

$$F(x) = \begin{cases} 0, & x < 0\\ \sum_{j=\alpha}^{\alpha+\beta-1} \frac{(\alpha+\beta-1)!}{j!(\alpha+\beta-1-j)!} x^{j} (1-x)^{\alpha+\beta-1-j}, & 0 \le x \le 1\\ 1, & x > 1 \end{cases}$$

- Espérance : $E[X] = \frac{\alpha}{\alpha + \beta}$
- Variance : $Var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
- Fonction génératrice des moments :

$$M_X(t) = 1 + \sum_{k=1}^{\infty} \left(\prod_{j=0}^{k-1} \frac{\alpha+j}{\alpha+\beta+j} \right) \frac{t^k}{k!}$$

- Moments d'ordre $k: E\left[X^k\right] = \frac{\Gamma(\alpha+k)\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\alpha+\beta+k)}$
- Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \frac{\alpha}{\alpha + \beta} B(d; \alpha + 1, \beta)$, $\alpha \leq d \leq \beta$
 - Si $\beta = 1$, $E\left[X \times 1_{\{X \leq d\}}\right] = \frac{\alpha d^{\alpha+1}}{\alpha+1}$
 - Si $\alpha = 1$, $E\left[X \times 1_{\{X \le d\}}\right] = -d(1-d)^{\beta} + \frac{1-(1-d)^{\beta+1}}{\beta+1}$
- Mesure VaR: outil d'optimisation
 - Si $\beta = 1$, $VaR_{\kappa}(X) = \kappa^{\frac{1}{\alpha}}$
 - Si $\alpha = 1$, $VaR_{\kappa}(X) = 1 (1 \kappa)^{\frac{1}{\beta}}$
- Mesure $TVaR: TVaR_{\kappa}(X) = \frac{1}{(1-\kappa)} \frac{\alpha}{\alpha+\beta} (1 B(VaR_{\kappa}(X); \alpha+1, \beta))$
 - Si $\beta = 1$, $TVaR_{\kappa}(X) = \frac{1}{(1-\kappa)} \frac{\alpha}{\alpha+1} (1 \kappa^{(\alpha+1)/\alpha})$
 - Si $\alpha = 1$, $TVaR_{\kappa}(X) = 1 \frac{\beta}{\beta+1} (1-\kappa)^{\frac{1}{\beta}}$
- Fonction stop-loss : $\pi_d(X) = \frac{\alpha}{\alpha + \beta}(1 B(d; \alpha + 1, \beta)) d(1 B(d; \alpha, \beta))$, $d \in [0, 1]$
 - Si $\beta = 1$, $\pi_d(X) = \frac{\alpha}{\alpha + 1}(1 d^{\alpha + 1}) d(1 d^{\alpha})$
 - Si $\alpha = 1$, $\pi_d(X) = \frac{(1-d)^{\beta+1}}{1+\beta}$
- Fonction d'excès-moyen : $e_d\left(X\right) = \frac{\alpha}{\alpha+\beta} \frac{1-B(d;\alpha+1,\beta)}{1-B(d;\alpha,\beta)} d$, $d \in [0,1]$
 - Si $\beta=1$, $e_{d}\left(X\right)=\frac{\alpha}{\alpha+1}\frac{1-d^{\alpha+1}}{1-d^{\alpha}}-d$
 - Si $\alpha = 1$, $e_d(X) = \frac{(1-d)}{1+\beta}$
- Espérance limitée : $E\left[\min\left(X;d\right)\right] = \frac{\alpha}{\alpha+\beta}B(d;\alpha+1,\beta) + \beta(1-B(d;\alpha,\beta))$, $d\in\left[0,1\right]$
 - Si $\beta = 1$, $E[\min(X; d)] = \frac{\alpha}{\alpha + 1} d^{\alpha + 1} + d(1 d^{\alpha})$
 - Si $\alpha = 1$, $E[\min(X;d)] = \frac{1 (1 d)^{\beta + 1}}{\beta + 1}$
- Loi associée : la loi uniforme avec a=0 et b=1 est un cas particulier de la loi bêta avec $\alpha=1$ et $\beta=1$.

2.5 Loi Erlang

• Notation : $X \sim Erl(n, \beta)$

• Paramètres : $n \in \mathbb{N}^+$, $\beta > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f(x) = \frac{\beta^n}{\Gamma(n)} x^{n-1} e^{-\beta x}$

• Fonction de répartition : $F(x) = 1 - e^{-\beta x} \sum_{j=0}^{n-1} \frac{(\beta x)^j}{j!}$

• Fonction de survie : $\overline{F}(x) = e^{-\beta x} \sum_{j=0}^{n-1} \frac{(\beta x)^j}{j!}$

• Espérance : $E[X] = \frac{n}{\beta}$

• Variance : $Var(X) = \frac{n}{\beta^2}$

• Fonction génératrice des moments : $M_X(t) = \left(\frac{\beta}{\beta - t}\right)^n$, $t < \beta$

• Moments d'ordre $k: E\left[X^k\right] = \frac{\prod\limits_{i=0}^{k-1}(n+i)}{\beta^k}$

• Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \frac{n}{\beta} \left(1 - e^{-\beta d} \sum_{j=0}^{n} \frac{(\beta d)^{j}}{j!}\right)$

• Mesure VaR: outil d'optimisation si $n \neq 1$

• Mesure $TVaR: TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \frac{n}{\beta} \left(e^{-\beta VaR_{\kappa}(X)} \sum_{j=0}^{n} \frac{(\beta VaR_{\kappa}(X))^{j}}{j!} \right)$

• Fonction $stop-loss:\pi_{d}\left(X\right)=\frac{n}{\beta}\overline{H}\left(d;n+1,\beta\right)-d\overline{H}\left(d;n,\beta\right)$

• Fonction d'excès-moyen : $e_d(X) = \frac{n}{\beta} \frac{\overline{H}(d;n+1,\beta)}{\overline{H}(d;n,\beta)} - d$

• Espérance limitée : $E\left[\min\left(X;d\right)\right] = \frac{n}{\beta}H\left(d;n+1,\beta\right) + d\overline{H}\left(d;n,\beta\right)$

2.6 Loi Erlang généralisée

• Notation : $X \sim ErlG(\beta_1, ..., \beta_n)$

• Paramètres : $\beta_1,...,\beta_n>0$ et $\beta_1,...,\beta_n$ distincts

• Support : $x \in \mathbb{R}^+$

• Fonction de densité de *X* :

$$f_X(x) = \sum_{i=1}^{n} \left(\prod_{j=1, j \neq i}^{n} \frac{\beta_j}{\beta_j - \beta_i} \right) \beta_i e^{-\beta_i x}$$

• Fonction de répartition de *X* :

$$F_X(x) = \sum_{i=1}^{n} \left(\prod_{j=1, j \neq i}^{n} \frac{\beta_j}{\beta_j - \beta_i} \right) \left(1 - e^{-\beta_i x} \right)$$

• Fonction de survie de $X: \overline{F}_{X}\left(x\right) = \sum_{i=1}^{n} \left(\prod_{j=1, j \neq i}^{n} \frac{\beta_{j}}{\beta_{j} - \beta_{i}}\right) \mathrm{e}^{-\beta_{i}x}$

• Espérance de $X: E[X] = \sum_{i=1}^{n} \frac{1}{\beta_i}$

- Variance de X : $Var(X) = \sum_{i=1}^{n} \frac{1}{\beta_i^2}$
- Fonction génératrice des moments de $X: M_X(t) = \prod_{i=1}^n \left(\frac{\beta_i}{\beta_i t}\right)$
- Moments d'ordre $k: E\left[X^k\right] = \prod_{i=1}^n \frac{\Gamma(k+1)}{\beta_i^k}$
- Espérance tronquée :

$$E\left[X \times 1_{\{X \le d\}}\right] = \sum_{i=1}^{n} \left(\prod_{j=1, j \ne i}^{n} \frac{\beta_j}{\beta_j - \beta_i}\right) \left(-de^{-\beta_i d} + \frac{1 - e^{-\beta_i d}}{\beta_i}\right)$$

- Mesure VaR: outil d'optimisation
- Mesure TVaR:

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \sum_{i=1}^{n} \left(\prod_{j=1, j \neq i}^{n} \frac{\beta_{j}}{\beta_{j} - \beta_{i}} \right) \left(VaR_{\kappa}(X) e^{-\beta_{i} VaR_{\kappa}(X)} + \frac{e^{-\beta_{i} VaR_{\kappa}(X)}}{\beta_{i}} \right)$$

- Espérance limitée : $E\left[\min\left(X;d\right)\right] = \sum_{i=1}^{n} \left(\prod_{j=1,j\neq i}^{n} \frac{\beta_{j}}{\beta_{j} \beta_{i}}\right) \left(\frac{1 \mathrm{e}^{-\beta_{i}d}}{\beta_{i}}\right)$
- Fonction $stop-loss: \pi_d(X) = \sum_{i=1}^n \left(\prod_{j=1, j \neq i}^n \frac{\beta_j}{\beta_j \beta_i} \right) \left(\frac{e^{-\beta_i d}}{\beta_i} \right)$
- $\bullet \text{ Fonction d'excès-moyen}: e_d\left(X\right) = \frac{\sum_{i=1}^n \left(\prod_{j=1, j \neq i}^n \frac{\beta_j}{\beta_j \beta_i}\right) \left(\frac{\mathrm{e}^{-\beta_i d}}{\beta_i}\right)}{\sum_{i=1}^n \left(\prod_{j=1, j \neq i}^n \frac{\beta_j}{\beta_j \beta_i}\right) \left(\mathrm{e}^{-\beta_i d}\right)}$
- Remarques:
 - les termes $\left(\prod_{j=1, j\neq i}^n \frac{\beta_j}{\beta_j \beta_i}\right)$ sont négatifs ou positifs et $\sum_{i=1}^n \left(\prod_{j=1, j\neq i}^n \frac{\beta_j}{\beta_j \beta_i}\right) = 1;$
 - la loi Erlang généralisée de la v.a. X est l'équivalent de la loi d'une somme de n v.a. indépendantes $Y_1, ..., Y_n$ de lois exponentielles indépendantes avec paramètres $\beta_1, ..., \beta_n$, e.g. $X = \sum_{i=1}^n Y_i$ où $Y_i \sim Exp\left(\beta_i\right)$ pour i=1,...,n.

2.7 Loi lognormale

- Notation : $X \sim LN(\mu, \sigma^2)$
- Paramètres : $-\infty < \mu < \infty, \sigma^2 > 0$
- Support : $x \in \mathbb{R}^+$
- Fonction de densité : $f\left(x\right) = \frac{1}{x\sqrt{2\pi}\sigma}\mathrm{e}^{-\frac{\left(\ln x \mu\right)^2}{2\sigma^2}}$
- Fonction de répartition : $F(x) = \Phi(\frac{\ln(x) \mu}{\sigma})$

- Espérance : $E[X] = e^{\mu + \frac{\sigma^2}{2}}$
- Variance : $\operatorname{Var}(X) = e^{2\mu + \sigma^2} \left(e^{\sigma^2} 1 \right)$
- Fonction génératrice des moments : forme non analytique
- Moments d'ordre $k: E[X^k] = e^{k\mu + k^2 \frac{\sigma^2}{2}}$
- Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \exp(\mu + \sigma^2/2)\Phi(\frac{\ln d \mu \sigma^2}{\sigma})$
- Mesure $VaR: VaR_{\kappa}(X) = \exp(\mu + \sigma VaR_{\kappa}(Z))$
- Mesure TVaR:

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} e^{\mu+\sigma^2/2} (1 - \Phi(VaR_{\kappa}(Z) - \sigma))$$

• Fonction *stop-loss*:

$$\pi_d(X) = e^{\mu + \sigma^2/2} (1 - \Phi(\frac{\ln d - \mu - \sigma^2}{\sigma})) - d[1 - \Phi(\frac{\ln d - \mu}{\sigma})]$$

• Fonction d'excès-moyen :

$$e_d(X) = \frac{1}{[1 - \Phi(\frac{\ln d - \mu}{\sigma})]} e^{\mu + \sigma^2/2} (1 - \Phi(\frac{\ln d - \mu - \sigma^2}{\sigma})) - d$$

• Espérance limitée :

$$E[\min(X;d)] = e^{\mu + \sigma^2/2} \Phi(\frac{\ln d - \mu - \sigma^2}{\sigma}) + d[1 - \Phi(\frac{\ln d - \mu}{\sigma})]$$

• Loi associée : $X = e^Y$, où $Y \sim N(\mu, \sigma^2)$, impliquant $E[X^k] = M_Y(k)$

2.8 Loi inverse gaussienne

- Notation : $X \sim IG(\mu, \beta)$
- Paramètres : $\mu, \beta \in \mathbb{R}^+$
- Support : $x \in \mathbb{R}^+$
- Fonction de densité : $f_X(x) = \frac{\mu}{\sqrt{2\pi\beta x^3}} \exp\left(-\frac{1}{2\beta x}(x-\mu)^2\right)$
- Fonction de répartition :

$$F_X(x) = \Phi\left(\sqrt{\frac{1}{\beta x}}(x-\mu)\right) + e^{\frac{2\mu}{\beta}}\Phi\left(-\sqrt{\frac{1}{\beta x}}(x+\mu)\right)$$

- Espérance : $E[X] = \mu$
- Variance : $Var(X) = \mu \beta$
- Fonction génératrice des moments : $M_{X}\left(t\right)=e^{\frac{\mu}{\beta}\left(1-\sqrt{\left(1-2\beta t\right)}\right)}$
- Espérance tronquée :

$$\begin{split} E\left[X\times \mathbf{1}_{\{X\leq d\}}\right] &= d-(2d-\mu)\Phi\bigg(\left(d-\mu\right)\sqrt{\frac{1}{\beta d}}\bigg) \\ &-(2d+\mu)\mathrm{e}^{\frac{2\mu}{\beta}}\Phi\bigg(-\left(d+\mu\right)\sqrt{\frac{1}{\beta d}}\bigg) \end{split}$$

- Mesure VaR: outil d'optimisation
- Mesure TVaR:

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \left(\mu - d + (2d+\mu)e^{\frac{2\mu}{\beta}} \right) + \frac{1}{1-\kappa} \left((2d-\mu)\Phi\left((d-\mu)\sqrt{\frac{1}{\beta d}} \right) \right),$$

avec $d = VaR_{\kappa}(X)$

• Fonction stop-loss:

$$\pi_{d}\left(X\right) = \left(\mu - d\right) \left(1 - \Phi\left(\left(d - \mu\right)\sqrt{\frac{1}{\beta d}}\right)\right) + \left(d + \mu\right) e^{\frac{2\mu}{\beta}} \Phi\left(-\left(d + \mu\right)\sqrt{\frac{1}{\beta d}}\right)$$

• Fonction d'excès-moyen :

$$\begin{split} e_{d}\left(X\right) &= \frac{\left(\mu - d\right)\left(1 - \Phi\left(\left(d - \mu\right)\sqrt{\frac{1}{\beta d}}\right)\right)}{1 - \left(\Phi\left(\sqrt{\frac{1}{\beta x}}\left(d - \mu\right)\right) + \mathrm{e}^{\frac{2\mu}{\beta}}\Phi\left(-\sqrt{\frac{1}{\beta x}}\left(d + \mu\right)\right)\right)} \\ &+ \frac{+ \left(d + \mu\right)\mathrm{e}^{\frac{2\mu}{\beta}}\Phi\left(-\left(d + \mu\right)\sqrt{\frac{1}{\beta d}}\right)}{1 - \left(\Phi\left(\sqrt{\frac{1}{\beta x}}\left(d - \mu\right)\right) + \mathrm{e}^{\frac{2\mu}{\beta}}\Phi\left(-\sqrt{\frac{1}{\beta x}}\left(d + \mu\right)\right)\right)} \end{split}$$

• Espérance limitée :

$$E\left[\min\left(X;d\right)\right] = d - (d-\mu)\Phi\left(\left(d-\mu\right)\sqrt{\frac{1}{\beta d}}\right)$$
$$-(d+\mu)e^{\frac{2\mu}{\beta}}\Phi\left(-\left(d+\mu\right)\sqrt{\frac{1}{\beta d}}\right)$$

2.9 Loi Pareto

• Notation : $X \sim Pa(\alpha, \lambda)$

• Paramètres : $\alpha > 0, \lambda > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f\left(x\right) = \frac{\alpha\lambda^{\alpha}}{\left(\lambda+x\right)^{\alpha+1}}$

• Fonction de répartition : $F(x) = 1 - \left(\frac{\lambda}{\lambda + x}\right)^{\alpha}$

• Fonction de survie : $\overline{F}(x) = \left(\frac{\lambda}{\lambda + x}\right)^{\alpha}$

• Espérance (pour $\alpha > 1$) : $E[X] = \frac{\lambda}{\alpha - 1}$

• Variance (pour $\alpha > 2$) : $Var(X) = \frac{\alpha \lambda^2}{(\alpha - 1)^2(\alpha - 2)}$

• Fonction génératrice des moments : n'existe pas

- Moments d'ordre k (pour $\alpha > k \in \mathbb{N}^+$) : $E\left[X^k\right] = \frac{\lambda^k k!}{\prod\limits_{i=1}^k (\alpha i)}$
- Moments d'ordre $k:E\left[X^k\right]=rac{\lambda^k\Gamma(k+1)\Gamma(\alpha-k)}{\Gamma(\alpha)},$ si $-1< k< \alpha$
- Espérance tronquée (pour $\alpha > 1$) :

$$E\left[X \times 1_{\{X \le d\}}\right] = \frac{\lambda}{\alpha - 1} \left(1 - \frac{\lambda^{\alpha - 1}}{(\lambda + d)^{\alpha - 1}}\right) - d\left(\frac{\lambda}{\lambda + d}\right)^{\alpha}$$

- Mesure $VaR: VaR_{\kappa}(X) = \lambda \left((1 \kappa)^{-\frac{1}{\alpha}} 1 \right)$
- Mesure TVaR (pour $\alpha > 1$): $TVaR_{\kappa}(X) = \lambda \left(\frac{\alpha}{\alpha 1} (1 \kappa)^{-\frac{1}{\alpha}} 1\right)$
- Fonction *stop-loss* (pour $\alpha > 1$): $\pi_d(X) = \frac{\lambda}{\alpha 1} (\frac{\lambda}{\lambda + d})^{\alpha 1}$
- Fonction d'excès-moyen (pour $\alpha > 1$): $e_d(X) = \frac{\lambda + d}{\alpha 1}$, si $\alpha > 1$
- Espérance limitée (pour $\alpha>1$) : $E\left[\min\left(X;d\right)\right]=\frac{\lambda}{\alpha-1}[1-(\frac{\lambda}{\lambda+d})^{\alpha-1}]$

2.10 Loi F-généralisée

- Notation : $X \sim FG(\alpha, \lambda, \tau)$
- Paramètres : $\alpha > 0, \lambda > 0, \tau > 0$
- Support : $x \in \mathbb{R}^+$
- Fonction de densité : $f_X(x) = \frac{\Gamma(\alpha+\tau)\lambda^{\alpha}x^{\tau-1}}{\Gamma(\alpha)\Gamma(\tau)(\lambda+x)^{\alpha+\tau}}$
- Fonction de répartition : $F_X(x) = B(\frac{x}{\lambda + x}; \tau, \alpha)$
- Espérance (pour $\alpha > 1$) : $E[X] = \frac{\lambda \tau}{\alpha 1}$
- Variance (pour $\alpha > 2$): Var $(X) = \frac{\lambda^2 \tau(\tau \alpha + 1)}{(\alpha 1)^2 (\alpha 2)}$
- Fonction génératrice des moments : n'existe pas
- Moments d'ordre k (pour $\alpha > k$) : $E\left[X^k\right] = \lambda^k \frac{\prod\limits_{i=0}^{k-1} (\tau+i)}{\prod\limits_{i=1}^{k} (\alpha-i)}$
- Espérance tronquée (pour $\alpha > 1$):

$$E\left[X \times 1_{\{X \le d\}}\right] = \frac{\lambda \tau}{\alpha - 1} B\left(\frac{d}{\lambda + d}; \tau + 1, \alpha - 1\right)$$

- Mesure VaR: outil d'optimisation
- Mesure TVaR (pour $\alpha > 1$):

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \frac{\lambda \tau}{\alpha - 1} \overline{B} \left(\frac{VaR_{\kappa}(X)}{\lambda + VaR_{\kappa}(X)}; \tau + 1, \alpha - 1 \right)$$

• Fonction *stop-loss* (pour $\alpha > 1$):

$$\pi_d(X) = \frac{\lambda \tau}{\alpha - 1} \overline{B}\left(\frac{d}{\lambda + d}; \tau + 1, \alpha - 1\right) - d\overline{B}\left(\frac{d}{\lambda + d}; \tau, \alpha\right)$$

• Fonction d'excès-moyen (pour $\alpha > 1$) :

$$e_d(X) = \frac{\lambda \tau}{\alpha - 1} \frac{\overline{B}\left(\frac{d}{\lambda + d}; \tau + 1, \alpha - 1\right)}{\overline{B}\left(\frac{d}{\lambda + d}; \tau, \alpha\right)} - d$$

• Espérance limitée (pour $\alpha > 1$) :

$$E\left[\min\left(X;d\right)\right] = \frac{\lambda\tau}{\alpha - 1}B\left(\frac{d}{\lambda + d}; \tau + 1, \alpha - 1\right) + d\overline{B}\left(\frac{d}{\lambda + d}; \tau, \alpha\right)$$

- Loi associée : la loi de Pareto est un cas particulier de la loi F-généralisée avec $\tau=1$.
- Remarque : la loi F-généralisée est parfois appelée la loi de Pareto généralisée.

2.11 Loi Burr

• Notation : $X \sim Burr(\alpha, \lambda, \tau)$

• Paramètres : $\alpha > 0, \lambda > 0, \tau > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f_X(x) = \frac{\alpha \tau \lambda^{\alpha} x^{\tau-1}}{(\lambda + x^{\tau})^{\alpha+1}}$

• Fonction de répartition : $F_X(x) = 1 - \left(\frac{\lambda}{\lambda + x^{\tau}}\right)^{\alpha}$

• Espérance : $E[X] = \frac{1}{\Gamma(\alpha)} \lambda^{1/\tau} \Gamma(1 + \frac{1}{\tau}) \Gamma(\alpha - \frac{1}{\tau})$

• Variance: $\operatorname{Var}(X) = \frac{\lambda^{2/\tau}}{\Gamma(\alpha)} \left(\Gamma(1 + \frac{2}{\tau}) \Gamma(\alpha - \frac{2}{\tau}) - \frac{(\Gamma(1 + \frac{1}{\tau}) \Gamma(\alpha - \frac{1}{\tau}))^2}{\Gamma(\alpha)} \right)$

• Fonction génératrice des moments : n'existe pas

• Moments d'ordre $k:E\left[X^k\right]=\frac{1}{\Gamma(\alpha)}\lambda^{k/\tau}\Gamma(1+\frac{k}{\tau})\Gamma(\alpha-\frac{k}{\tau}),\, -\tau< k< \alpha au$

• Espérance tronquée :

$$E\left[X \times 1_{\{X \le d\}}\right] = \frac{1}{\Gamma(\alpha)} \lambda^{1/\tau} \Gamma(1 + \frac{1}{\tau}) \Gamma(\alpha - \frac{1}{\tau}) B(\frac{d^{\tau}}{\lambda + d^{\tau}}; 1 + \frac{1}{\tau}, \alpha - \frac{1}{\tau})$$

- Mesure $VaR: VaR_{\kappa}(X) = (\lambda \{(1-\kappa)^{-1/\alpha} 1\})^{1/\tau}$
- Mesure TVaR:

$$TVaR_{\kappa}\left(X\right) = \frac{1}{(1-\kappa)\Gamma(\alpha)} \left(\lambda^{1/\tau}\Gamma(1+\frac{1}{\tau})\Gamma(\alpha-\frac{1}{\tau})\overline{B}\left(\frac{VaR_{\kappa}(X)^{\tau}}{\lambda + VaR_{\kappa}(X)^{\tau}}; 1+\frac{1}{\tau}, \alpha-\frac{1}{\tau}\right)\right)$$

• Fonction *stop-loss* :

$$\pi_d(X) = \frac{1}{\Gamma(\alpha)} \lambda^{1/\tau} \Gamma(1 + \frac{1}{\tau}) \Gamma(\alpha - \frac{1}{\tau}) \overline{B}(\frac{d^{\tau}}{\lambda + d^{\tau}}; 1 + \frac{1}{\tau}, \alpha - \frac{1}{\tau}) - d(\frac{\lambda}{\lambda + d^{\tau}})^{\alpha}$$

• Fonction d'excès-moyen :

$$e_d\left(X\right) = \frac{(\lambda + d^\tau)^\alpha \Gamma(1 + \frac{1}{\tau}) \Gamma(\alpha - \frac{1}{\tau})}{\lambda^{\alpha - 1/\tau} \Gamma(\alpha)} \overline{B}(\frac{d^\tau}{\lambda + d^\tau}; 1 + \frac{1}{\tau}, \alpha - \frac{1}{\tau}) - d$$

• Espérance limitée :

$$E\left[\min\left(X;d\right)\right] = \frac{1}{\Gamma(\alpha)} \lambda^{1/\tau} \Gamma(1 + \frac{1}{\tau}) \Gamma(\alpha - \frac{1}{\tau}) B\left(\frac{d^{\tau}}{\lambda + d^{\tau}}; 1 + \frac{1}{\tau}, \alpha - \frac{1}{\tau}\right) + d\left(\frac{\lambda}{\lambda + d^{\tau}}\right)^{\alpha}$$

• Loi associée : la loi de Pareto est un cas particulier de la loi Burr avec $\tau = 1$.

2.12 Loi log-logistique

• Notation : $X \sim LL(\lambda, \tau)$

• Paramètres : λ , $\tau > 0$

• Support : $x \in \mathbb{R}^+$

• Fonction de densité : $f(x) = \frac{\frac{\tau}{\lambda} \left(\frac{x}{\lambda}\right)^{\tau-1}}{\left(1 + \left(\frac{x}{\lambda}\right)^{\tau}\right)^2} = \frac{\tau x^{\tau-1}}{(\lambda^{\tau} + x^{\tau})^2}$

• Fonction de répartition : $F\left(x\right) = \frac{1}{1+\left(\frac{x}{\lambda}\right)^{-\tau}} = \frac{x^{\tau}}{\lambda^{\tau} + x^{\tau}}$

• Espérance (pour $\tau > 1$): $E[X] = \lambda \Gamma(1 + \frac{1}{\tau}) \Gamma(1 - \frac{1}{\tau})$

• Variance (pour $\tau > 2$):

$$\operatorname{Var}\left(X\right) = \lambda^{2} \left(\Gamma\left(1 + \frac{2}{\tau}\right) \Gamma\left(1 - \frac{2}{\tau}\right) - \left(\Gamma\left(1 + \frac{1}{\tau}\right) \Gamma\left(1 - \frac{1}{\tau}\right)\right)^{2}\right)$$

• Fonction génératrice des moments : n'existe pas

• Moments d'ordre $k: E\left[X^k\right] = \lambda^k \Gamma\left(1 + \frac{k}{\tau}\right) \Gamma\left(1 - \frac{k}{\tau}\right), -\tau < k < \tau$

• Espérance tronquée (pour $\tau > 1$) :

$$E\left[X\times 1_{\{X\leq d\}}\right] = \lambda\Gamma\left(1+\frac{1}{\tau}\right)\Gamma\left(1-\frac{1}{\tau}\right)B\left(\frac{d^{\tau}}{\lambda^{\tau}+d^{\tau}};1+\frac{1}{\tau},1-\frac{1}{\tau}\right)$$

• Mesure $VaR: VaR_{\kappa}\left(X\right) = \lambda \left(\kappa^{-1} - 1\right)^{-1/\tau}$

• Mesure TVaR (pour $\tau > 1$):

$$TVaR_{\kappa}\left(X\right) = \frac{\lambda}{1-\kappa}\Gamma\left(1+\frac{1}{\tau}\right)\Gamma\left(1-\frac{1}{\tau}\right)\overline{B}\left(\kappa;1+\frac{1}{\tau},1-\frac{1}{\tau}\right)$$

• Fonction *stop-loss* (pour $\tau > 1$):

$$\pi_{d}\left(X\right) = \lambda \Gamma\left(1 + \frac{1}{\tau}\right) \Gamma\left(1 - \frac{1}{\tau}\right) \overline{B}\left(\frac{d^{\tau}}{\lambda^{\tau} + d^{\tau}}; 1 + \frac{1}{\tau}, 1 - \frac{1}{\tau}\right) - \frac{d\lambda^{\tau}}{\lambda^{\tau} + d^{\tau}}$$

• Fonction d'excès-moyen (pour $\tau > 1$) :

$$e_{d}\left(X\right) = \frac{\lambda^{\tau} + d^{\tau}}{\lambda^{\tau - 1}} \Gamma\left(1 + \frac{1}{\tau}\right) \Gamma\left(1 - \frac{1}{\tau}\right) \overline{B}\left(\frac{d^{\tau}}{\lambda^{\tau} + d^{\tau}}; 1 + \frac{1}{\tau}, 1 - \frac{1}{\tau}\right) - d$$

• Espérance limitée (pour $\tau > 1$) :

$$\begin{split} E\left[\min\left(X;d\right)\right] &= \lambda \Gamma\left(1+\frac{1}{\tau}\right) \Gamma\left(1-\frac{1}{\tau}\right) B\left(\frac{d^{\tau}}{\lambda^{\tau}+d^{\tau}};1+\frac{1}{\tau},1-\frac{1}{\tau}\right) \\ &+\frac{d\lambda^{\tau}}{\lambda^{\tau}+d^{\tau}} \end{split}$$

3 Lois continues à support réel

3.1 Loi normale

- Notation : $X \sim N(\mu, \sigma^2)$
- Paramètres : $-\infty < \mu < \infty$, $\sigma^2 > 0$
- Support : $x \in \mathbb{R}$
- Fonction de densité : $f\left(x\right) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{\left(x-\mu\right)^2}{2\sigma^2}}$
- Fonction de répartition : notée $\Phi\left(\frac{x-\mu}{\sigma}\right)$, forme non explicite
- Espérance : $E[X] = \mu$
- Variance : $Var(X) = \sigma^2$
- Espérance tronquée : $E\left[X \times 1_{\{X \leq d\}}\right] = \mu \Phi\left(\frac{d-\mu}{\sigma}\right) \sigma \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-\frac{(d-\mu)^2}{2\sigma^2}}$
- Mesure $VaR:VaR_{\kappa}\left(X\right) =\mu+\sigma\Phi^{-1}\left(\kappa\right) =\mu+\sigma VaR_{\kappa}\left(Z\right)$
- Mesure TVaR:

$$TVaR_{\kappa}\left(X\right) = \mu + \frac{1}{1-\kappa}\sigma\frac{1}{\sqrt{2\pi}}e^{-\frac{\left(\Phi^{-1}(\kappa)\right)^{2}}{2}} = \mu + \sigma TVaR_{\kappa}\left(Z\right)$$

- Fonction $stop-loss: \pi_d(X) = (\mu + d)(1 \Phi(\frac{d-\mu}{\sigma})) \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{(d-\mu)^2}{2\sigma^2}}$
- Fonction d'excès-moyen : $e_d(X) = \mu + d \frac{1}{1 \Phi(\frac{d \mu}{\sigma})} \frac{\sigma}{\sqrt{2\pi}} e^{-\frac{(d \mu)^2}{2\sigma^2}}$
- Espérance limitée : $E\left[\min\left(X;d\right)\right] = \mu\Phi\left(\frac{d-\mu}{\sigma}\right) \frac{\sigma}{\sqrt{2\pi}}\mathrm{e}^{-\frac{(d-\mu)^2}{2\sigma^2}} + d\left[1 \Phi\left(\frac{d-\mu}{\sigma}\right)\right]$
- Remarque :
 - lorsque $\mu=0$ et $\sigma=1$, on dit par convention que X obéit à une loi normale standard;
 - par convention, Φ est la notation pour la fonction de répartition d'une loi normale standard.

3.2 Loi de Student

- Notation : $X \sim St(\nu)$
- Paramètre : $\nu > 0$
- Support : $x \in \mathbb{R}$
- Fonction de densité : $f\left(x\right)=\frac{1}{\sqrt{\nu\pi}}\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$
 - Si $\nu = 1$, $f(x) = \frac{1}{\pi} \frac{1}{(1+x^2)}$
 - Si $\nu = 2$, $f(x) = \frac{1}{(2+x^2)^{\frac{3}{2}}}$

• Fonction de répartition :

$$F(x) = 1 - \frac{1}{2}B\left(\frac{\nu}{x^2 + \nu}; \frac{\nu}{2}, \frac{1}{2}\right),$$

désignée par $t_{\nu}\left(x\right)$

• Si $\nu = 1$, $F(x) = \frac{1}{2} + \frac{1}{\pi}\arctan(x)$

• Si
$$\nu = 2$$
, $F(x) = \frac{1}{2} \left(1 + \frac{x}{\sqrt{2+x^2}} \right)$

- Fonction de survie : $\overline{F}(x) = \frac{1}{2}B\left(\frac{\nu}{x^2+\nu}; \frac{\nu}{2}, \frac{1}{2}\right)$
- Espérance : $E[X] = 0, \nu > 1$
- Variance : $Var(X) = \frac{\nu}{\nu 2}, \nu > 2$
- Fonction génératrice des moments : n'existe pas
- Moments d'ordre *k* :

$$E\left[X^k\right] = \left\{ \begin{array}{ll} 0, & 0 < k \text{ impair} < \nu \\ \frac{1}{\sqrt{\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(\Gamma\left(\frac{k+1}{2}\right)\Gamma\left(\frac{\nu-k}{2}\right)\nu^{\frac{k}{2}}\right), & 0 < k \text{ pair} < \nu \end{array} \right.$$

• Espérance tronquée (pour $\nu > 1$):

$$E\left[X\times 1_{\{X\leq d\}}\right] = \left\{ \begin{array}{l} -\sqrt{\frac{\nu}{\pi}}\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{d^2}{\nu}\right)^{-\frac{\nu-1}{2}}, \quad d<0\\ \sqrt{\frac{\nu}{\pi}}\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{d^2}{\nu}\right)^{-\frac{\nu-1}{2}}, \quad d>0 \end{array} \right.$$

- Mesure VaR: outil d'optimisation
- Mesure TVaR (pour $\nu > 1$):

$$TVaR_{\kappa}(X) = \begin{cases} -\frac{1}{1-\kappa} \sqrt{\frac{\nu}{\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{VaR_{\kappa}(X)^{2}}{\nu}\right)^{-\frac{\nu-1}{2}}, & VaR_{\kappa}(X) < 0\\ \frac{1}{1-\kappa} \sqrt{\frac{\nu}{\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{VaR_{\kappa}(X)^{2}}{\nu}\right)^{-\frac{\nu-1}{2}}, & VaR_{\kappa}(X) > 0 \end{cases}$$

• Espérance limitée (pour $\nu > 1$) :

$$E\left[\min\left(X;d\right)\right] = \begin{cases} -\sqrt{\frac{\nu}{\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{d^2}{\nu}\right)^{-\frac{\nu-1}{2}} + d\overline{F}(d), & d < 0\\ \sqrt{\frac{\nu}{\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{d^2}{\nu}\right)^{-\frac{\nu-1}{2}} + d\overline{F}(d), & d > 0 \end{cases}$$

18

• Note : la loi de Student converge en loi vers la loi normale lorsque $\nu \to \infty$.

4 Lois discrètes

4.1 Loi avec support arithmétique

- Support : $X \in \{0, 1h, 2h, ...\}$
- Fonction de masse de probabilité : $f(kh) = \Pr(X = kh), k \in \mathbb{N}, h \in \mathbb{R}^+$
- Espérance : $E[X] = \sum_{k=0}^{\infty} kh f_X(kh)$
- Variance : $\operatorname{Var}(X) = \sum_{k=0}^{\infty} (kh E[X])^2 f_X(kh)$
- Fonction génératrice des moments : $M_{X}\left(t\right)=\sum_{k=0}^{\infty}\mathrm{e}^{tkh}f_{X}\left(kh\right)$
- Fonction génératrice des probabilités : $P_{X}\left(t\right)=\sum_{k=0}^{\infty}t^{kh}f_{X}\left(kh\right)$
- Espérance tronquée : $E\left[X \times 1_{\{X \leq k_0 h\}}\right] = \sum_{k=0}^{k_0} k h f_X\left(kh\right)$
- Mesure TVaR:

$$TVaR_{\kappa}\left(X\right) = \frac{1}{1-\kappa} \left\{ E\left[X\right] - \sum_{k=0}^{k_0} khf_X\left(kh\right) + k_0h\left(\Pr\left(X \le k_0h\right) - \kappa\right) \right\},\,$$

où
$$VaR_{\kappa}\left(X\right)=k_{0}h$$
 avec $k_{0}\in\mathbb{N}$

4.2 Loi de Poisson

- Notation : $M \sim Pois(\lambda)$
- Paramètre : $\lambda > 0$
- Support : $k \in \mathbb{N}$
- Fonction de masse de probabilité : $\Pr(M=k) = \frac{\lambda^k \mathrm{e}^{-\lambda}}{k!}$
- Espérance : $E[M] = \lambda$
- Variance : $Var(M) = \lambda$
- Fonction génératrice des moments : $M(t) = \exp\{\lambda(e^t 1)\}$
- Fonction génératrice des probabilités : $P(t) = \exp{\{\lambda(t-1)\}}$

4.3 Loi binomiale

- Notation : $M \sim Bin(n, q)$
- $\bullet \ \ {\rm Paramètres}: n \in \mathbb{N}, \, q \in (0,1)$
- Support : $k \in \{0, 1, ..., n\}$
- Fonction de masse de probabilité : $\Pr(M = k) = \binom{n}{k} (q)^k (1 q)^{n-k}$
- Espérance : E[M] = nq
- Variance : Var(M) = nq(1-q)
- Fonction génératrice des moments : $M(t) = \left(qe^t + 1 q\right)^n$
- Fonction génératrice des probabilités : $P(t) = (qt + 1 q)^n$
- Loi associée : la loi de Bernoulli est un cas particulier de la loi binomiale avec n=1.

4.4 Loi de Bernoulli

• Notation : $M \sim Bern(q) \sim Bin(1, q)$

• Paramètre : $q \in (0,1)$

• Support : $k \in \{0, 1\}$

• Fonction de masse de probabilité : $Pr(M = k) = (q)^k (1 - q)^{1-k}$

• Espérance : E[M] = q

• Variance : Var(M) = q(1-q)

• Fonction génératrice des moments : $M(t) = (qe^t + 1 - q)$

• Fonction génératrice des probabilités : P(t) = (qt + 1 - q)

4.5 Loi binomiale négative

Selon les auteurs, on rencontre deux paramétrisations pour la loi binomiale négative qui sont équivalentes.

Les principales caractéristiques pour la première paramétrisation sont :

• Notation : $M \sim BN(r,q)$

• Paramètres : $r \in \mathbb{R}^+, q \in (0,1)$

• Support : $k \in \mathbb{N}$

• Fonction de masse de probabilité : $Pr(M = k) = {r+k-1 \choose k} (q)^r (1-q)^k$

• Espérance : $E[M] = r \frac{1-q}{q}$

• Variance : $\operatorname{Var}(M) = r \frac{1-q}{q^2}$

• Fonction génératrice des moments : $M(t) = \left(\frac{q}{1-(1-q)\mathrm{e}^t}\right)^r$

• Fonction génératrice des probabilités : $P(t) = \left(\frac{q}{1 - (1 - q)t}\right)^r$

Les principales caractéristiques pour la deuxième paramétrisation sont :

• Notation : $M \sim BN(r, \beta)$

• Paramètres : $r \in \mathbb{R}^+$, $\beta \in \mathbb{R}^+$

• Support : $k \in \mathbb{N}$

• Fonction de masse de probabilité : $\Pr(X = k) = \frac{\Gamma(r+k)}{\Gamma(r)k!} \left(\frac{1}{1+\beta}\right)^r \left(\frac{\beta}{1+\beta}\right)^k$

 $\bullet \ \ \mathrm{Esp\'{e}rance}: E[X] = r\beta$

• Variance : $Var(X) = r\beta(1+\beta)$

• Fonction génératrice des moments : $M_X(t) = (1 - \beta(e^t - 1))^{-r}$

• Fonction génératrice des probabilités : $P_X(t) = (1 - \beta(t-1))^{-r}$

• Lien entre la 1^{re} paramétrisation et la 2^e paramétrisation : $q=\frac{1}{1+\beta}$ ou $\beta=\frac{1-q}{q}$

• Note:

• si $r \in \mathbb{N}^+$, la distribution binomiale négative est parfois appelée la distribution de Pascal;

• si $r \in \mathbb{R}^+$, la distribution binomiale négative est parfois appelée la distribution de Polya.

• Loi associée : la loi géométrique est un cas particulier de la loi binomiale négative avec r=1.

4.6 Loi géométrique

• Notation : $M \sim Geom(q)$

• Paramètre : $q \in (0,1)$

• Support : $k \in \mathbb{N}$

• Espérance : $E[M] = \frac{1-q}{q}$

• Variance : $\operatorname{Var}(M) = \frac{1-q}{q^2}$

5 Lois univariées avec mélange

5.1 Loi mélange d'exponentielles

- Notation : $X \sim MxExp(\{(p_i, \beta_i), i = 1, 2, ..., n\})$
- Paramètres : $\beta_i > 0, \, 0 \le p_i \le 1, \, p_1 + \ldots + p_n = 1$
- Fonction de densité : $f(x) = \sum_{i=1}^{n} p_i \beta_i e^{-\beta_i x}, x > 0$
- Fonction de répartition : $F(x) = \sum_{i=1}^{n} p_i \left(1 e^{-\beta_i x}\right), x > 0$
- Fonction de survie : $\overline{F}(x) = \sum_{i=1}^{n} p_i e^{-\beta_i x}, x > 0$
- Espérance : $E[X] = \sum_{i=1}^{n} p_i \frac{1}{\beta_i}$
- Variance : Var $(X) = \sum_{i=1}^{n} p_i \frac{2}{\beta_i^2} \left(\sum_{i=1}^{n} p_i \frac{1}{\beta_i}\right)^2$
- Fonction génératrice des moments : $M_X(t) = \sum_{i=1}^n p_i \frac{\beta_i}{\beta_i t}$
- Moments d'ordre $k : E[X^k] = \sum_{i=1}^n p_i \left(\frac{1}{\beta_i}\right)^k k!$
- Espérance tronquée :

$$E\left[X \times 1_{\{X \le d\}}\right] = \sum_{i=1}^{n} p_i \left(\frac{1}{\beta_i} \left(1 - e^{-\beta_i d}\right) - de^{-\beta_i d}\right)$$

- Mesure VaR: outil d'optimisation
- Mesure TVaR:

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \sum_{i=1}^{n} p_{i} \left(\frac{1}{\beta_{i}} \left(e^{-\beta_{i}VaR_{\kappa}(X)} \right) + de^{-\beta_{i}VaR_{\kappa}(X)} \right)$$

- Fonction $stop-loss: \pi_X(d) = \sum_{i=1}^n p_i \frac{1}{\beta_i} e^{-\beta_i d}$
- Espérance limitée : $E\left[\min\left(X;d\right)\right] = \sum_{i=1}^{n} p_i \frac{1}{\beta_i} \left(1 \mathrm{e}^{-\beta_i d}\right)$

5.2 Loi mélange d'Erlang

- Notation : $X \sim MxErl(\{(p_k, \beta), k = 1, 2, ...\})$
- Paramètres : $\beta > 0,\, 0 \leq p_k \leq 1$ ($k=1,2,\ldots$), $\sum_{k=1}^{\infty} p_k = 1$
- Fonction de densité : $f\left(x\right)=\sum_{k=1}^{\infty}p_{k}h\left(x;k,\beta\right),x>0$
- Fonction de répartition : $F\left(x\right) = \sum_{k=1}^{\infty} p_k H\left(x; k, \beta\right), x > 0$
- Fonction de survie : $\overline{F}\left(x\right) = \sum_{k=1}^{\infty} p_k \overline{H}\left(x;k,\beta\right), x>0$
- Espérance : $E[X] = \sum_{k=1}^{\infty} p_k \frac{k}{\beta}$
- Variance : $\operatorname{Var}(X) = \sum_{k=1}^{\infty} p_k \frac{k(k+1)}{\beta} \left(\sum_{k=1}^{\infty} p_k \frac{k}{\beta}\right)^2$
- Fonction génératrice des moments : $M_X(t) = \sum_{k=1}^{\infty} p_k \left(\frac{\beta_i}{\beta_i t}\right)^k$
- Moments $m: E[X^m] = \sum_{k=1}^{\infty} p_k \frac{k(k+1)...(k+m-1)}{\beta}$

- Mesure VaR: outil d'optimisation
- Mesure TVaR:

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \sum_{k=1}^{\infty} p_{k} \frac{k}{\beta} \overline{H}\left(VaR_{\kappa}(X); k+1, \beta\right)$$

• Fonction *stop-loss* :

$$\pi_{d}(X) = \sum_{k=1}^{\infty} p_{k} \left(\frac{k}{\beta} \overline{H}(d; k+1, \beta) - d\overline{H}(d; k, \beta) \right)$$

• Espérance limitée :

$$E\left[\min\left(X;d\right)\right] = \sum_{k=1}^{\infty} p_k \left(\frac{k}{\beta} H\left(d;k+1,\beta\right) + d\overline{H}\left(d;k,\beta\right)\right)$$

• Note : $H(x; k, \beta)$, $\overline{H}(x; k, \beta)$ et $h(x; k, \beta)$ sont les fonctions de répartition, de survie et de densité de la loi Erlang (k, β) .

6 Algorithme de Panjer et lois de fréquence (a, b, 0)

Définition de la v.a. X selon l'approche fréquence sévérité

$$X = \begin{cases} \sum_{i=1}^{N} B_i, & N > 0 \\ 0, & N = 0 \end{cases}$$

L'algorithme de Panjer s'applique à la condition que la loi de N fasse partie de la classe (a,b,0).

Relations récursive pour la fonction de masses de probabilité de N

$$f_N(k) = \left(a + \frac{b}{k}\right) f_N(k-1),$$

pour k = 1, 2, ...

Seules les lois Poisson, Binomiale et Binomiale Négative sont membres de cette famille. On indique les valeurs de a et b pour les membres de la famille (a,b,0):

- loi de Poisson : a = 0 et $b = \lambda$;
- loi binomiale négative (1ère paramétrisation): a = 1 q et b = (1 q)(r 1);
- loi binomiale négative (2e paramétrisation) : $a = \frac{\beta}{1+\beta}$ et $b = \frac{\beta}{1+\beta}$ (r-1);
- loi binomiale : $a = -\frac{q}{1-q}$ et $b = (n+1)\frac{q}{1-q}$.

Fonction de masse de probabilité de B:

$$\Pr(B = hj) = f_B(hj),$$

pour y = 0, 1, 2, ... où h est une coefficient positif plus petit (0.1) ou plus grand (10000) que 1.

1. Algorithme de Panjer – Forme générale Point de départ :

$$f_X(0) = \Pr(X = 0)$$

= $P_N \{f_B(0)\}$

Relation récursive :

$$f_X(hk) = \frac{\sum_{j=1}^k \left(a + \frac{bj}{k}\right) f_B(hj) f_X(h(k-j))}{1 - af_B(0)}$$

pour k = 1, 2, ...

2. Loi Poisson:

$$N \sim Pois(\lambda)$$
.

Point de départ :

$$f_X(0) = \Pr(X = 0) = e^{-\lambda(1 - f_B(0))}.$$

Relation récursive :

$$f_X(hk) = \frac{\lambda}{k} \sum_{j=1}^k (j) f_B(hj) f_X(h(k-j)),$$

pour k = 1, 2, ...

3. **Loi Binomiale Négative** (1ère paramétrisation) :

$$N \sim BNeg(r,q)$$
.

Point de départ :

$$f_X(0) = \left(\frac{q}{1 - (1 - q) f_B(0)}\right)^r$$

Relation récursive :

$$f_X(kh) = \frac{\sum_{j=1}^k \left(1 - q + \frac{(1-q)(r-1)j}{k}\right) f_B(jh) f_X((k-j)h)}{1 - (1-q) f_B(0)},$$

pour k = 1, 2, ...

4. Loi Binomiale Négative (2^e paramétrisation) :

$$N \sim BNeq(r, \beta)$$
.

Point de départ :

$$f_X(0) = \Pr(X = 0) = \left(\frac{1}{(1 - \beta((f_B(0)) - 1))}\right)^r$$

Relation récursive :

$$f_X(hk) = \frac{\sum_{j=1}^{k} \left(\beta + \frac{\beta(r-1)j}{k}\right) f_B(hj) f_X(h(k-j))}{1 + \beta - \beta f_B(0)},$$

pour $k = 1, 2, \dots$

Note : Il suffit de remplacer $\beta=\frac{1-q}{q}$ dans les deux relations pour retrouver les relations correspondantes pour la 1ère paramétrisation de la loi binomiale négative. \square

5. Loi Binomiale:

$$N \sim Binom(n, q)$$
.

Point de départ :

$$f_X(0) = \Pr(X = 0) = (1 - q + qf_B(0))^n$$

Relation récursive :

$$f_X(hk) = \frac{\sum_{j=1}^k \left(\frac{q}{q-1} + \frac{(n+1)qj}{(1-q)k}\right) f_B(j) f_X(k-j)}{1 + \frac{q}{1-q} f_B(0)}$$

$$= \frac{\sum_{j=1}^k \left(-q + \frac{(n+1)qj}{k}\right) f_B(hj) f_X(h(k-j))}{1 - q + q f_B(0)},$$

pour $k = 1, 2, \dots \square$

7 Relation récursive pour somme de v.a. discrètes i.i.d.

On considère une v.a. X discrète où $X \in \{0,1h,2h,\ldots\}$ avec

$$f_X(kh) = \Pr(X = kh)$$

pour k = 0, 1,

On définit

$$S_n = X_1 + \dots + X_n$$

où les v.a. $X_1,...,X_n$ sont i.i.d. et se comportent comme la v.a. X. Relation récursive pour calculer $f_{S_n}\left(kh\right)$ pour k=0,1,2,...:

$$f_{S_n}(kh) = \frac{1}{f_X(0)} \sum_{j=1}^k \left((n+1) \frac{j}{k} - 1 \right) f_X(jh) f_{S_n}((k-j)h)$$

dont le point de départ est

$$f_{S_n}(0) = f_X(0)^n$$
.

8 Algorithmes récursifs et fonctions R

8.1 Convolution directe (2 v.a. indépendantes)

```
directconvo<-function(ff1,ff2)
{
# convolution de deux fns de masses de probabilité
l1<-length(ff1)
l2<-length(ff2)
ffs<-ff1[1]*ff2[1]
smax<-l1+l2-2
ff1<-c(ff1,rep(0,smax-l1+1))
ff2<-c(ff2,rep(0,smax-l2+1))
for (i in 1 :smax)
{
j<-i+1
ffs<-c(ffs,sum(ff1[1 :j]*ff2[j :1]))
}
return(ffs)
}</pre>
```

8.2 Convolution directe (n v.a. indépendantes)

```
directconvo.nrisks<-function(matff=rbind(...))
{
    # convolution de n fns de masses de probabilité
    # supports de longueur égale – sinon ajouter des 0
    # utiliser rbind pour mettre ensemble les vecteurs de
    # fns de masses de probabilite
nbrisks<-dim(matff)[1]
ffs<-matff[1,]
for (i in 2 :nbrisks)
{
ffx<-matff[i,]
ffs<-directconvo(ffs,ffx)
}
return(ffs)
}</pre>
```

8.3 Algorithme récursif – DePril (n v.a. i.i.d.)

```
recur.nrisks<-function(ff,nn=5,smax=100)
{
    # convolution de n fns de masses de probabilité avec
# elle-meme
    # premier algorihtme de DePril
ll<-length(ff)
ffs<-ff[1]^nn
ff<-c(ff,rep(0,smax-ll+1))
for (i in 1 :smax)
{
    j<-i+1
ffs<-c(ffs,(1/ff[1])*sum(ff[2 :j]*ffs[i :1]*((nn+1)*(1 :i)/i-1)))
}
return(ffs)
}</pre>
```

8.4 Algorithme de Panjer - Poisson composée

```
# Algorithme récursif de Panjer-Poisson
panjer.poisson<-function(lam,ff,smax)
{
    aa<-0
    bb<-lam
ll<-length(ff)
ffs<-exp(lam*(ff[1]-1))
ff<-c(ff,rep(0,smax-ll+1))
for (i in 1 :smax)
{
    j<-i+1
    ffs<-c(ffs,(1/(1-aa*ff[1]))*sum(ff[2 :j]*ffs[i :1]*(bb*(1 :i)/i+aa)))
}
return(ffs)
}</pre>
```

8.5 Algorithme récursif de Panjer – Binomiale composée

```
panjer.binom<-function(nn,qq,ff,smax)
{
# Algorithme de Panjer
# Cas Binomiale
# Loi discrete pour B
aa<- -qq/(1-qq)
bb<- -(nn+1)*aa
ll<-length(ff)
ffs<-(1-qq+qq*ff[1])^nn
ff<-c(ff,rep(0,smax-ll+1))
for (i in 1 :smax)
{
j<-i+1
ffs<-c(ffs,(1/(1-aa*ff[1]))*sum(ff[2 :j]*ffs[i :1]*(bb*(1 :i)/i+aa)))
}
return(ffs)
}</pre>
```

8.6 Algorithme récursif de Panjer – Binomiale négative composée (1)

```
panjer.nbinom1<-function(rr,qq,ff,smax)
{
# Algorithme de Panjer
# Cas Binomiale negative 1
# Loi discrete pour B
aa<-1-qq
bb<-aa*(rr-1)
ll<-length(ff)
ffs<-(qq/(1-(1-qq)*ff[1]))^rr
ff<-c(ff,rep(0,smax-ll+1))
for (i in 1 :smax)
{
j<-i+1
ffs<-c(ffs,(1/(1-aa*ff[1]))*sum(ff[2 :j]*ffs[i :1]*(bb*(1 :i)/i+aa)))
}
return(ffs)
}</pre>
```

8.7 Algorithme récursif de Panjer – Binomiale négative composée (2)

```
panjer.nbinom2<-function(rr,beta,ff,smax)
{
# Algorithme de Panjer
# Cas Binomiale negative 2
# Loi discrete pour B
aa<-beta/(1+beta)
bb<-aa*(rr-1)
ll<-length(ff)
qq<-1/(1+beta)
ffs<-(qq/(1-(1-qq)*ff[1]))^rr
ff<-c(ff,rep(0,smax-ll+1))
for (i in 1 :smax)
{
j<-i+1
ffs<-c(ffs,(1/(1-aa*ff[1]))*sum(ff[2 :j]*ffs[i :1]*(bb*(1 :i)/i+aa)))
}
return(ffs)
}</pre>
```

9 Variables aléatoires discrètes, fgp, fonctions caractéristiques et méthode FFT

9.1 Contexte

Soit la v.a. discrète positive X définie sur $\{0, 1, ..., n-1\}$ avec

$$f_X(k) = \Pr(X = k)$$

pour k = 0, 1, 2, ..., n - 1.

La fgp est donnée par

$$P_X(t) = f_X(0) + f_X(1)t^1 + \dots + f_X(n-1)t^{n-1} = \sum_{k=0}^{n-1} f_X(k)t^k,$$

pour $t \geq 0$.

Pour identifer la valeur $f_X(k)$ à partir de $P_X(t)$, on a

$$f_X(k) = \frac{1}{k!} \frac{\mathrm{d}^k}{\mathrm{d}t^k} P_X(t) \bigg|_{t=0}.$$

9.2 Fonction caractéristique

La fonction caractéristique de la v.a. X est

$$\varphi_X(t) = \sum_{k=0}^{n-1} f_X(k) e^{itk},$$

Selon la formule d'Euler, on a

$$e^{itk} = \cos(tk) + i \times \sin(tk)$$
.

La méthode FFT permet d'idenfier $f_X(k)$ à partir de $\varphi_X(t)$.

9.3 Définition de deux vecteurs

On définit le vecteur des fonctions de masse de probabilité de la v.a. X par

$$\underline{f}_{X}=\left(f_{X}\left(0\right),f_{X}\left(1\right),...,f_{X}\left(n-1\right)\right).$$

On définit un vecteur correspondant avec les valeurs de $\varphi_X(t)$ aux points $t=t_j=2\pi\frac{j}{n}$, pour j=0,1,...,n-1, par

$$\underline{\phi}_{X}=\left(\varphi_{X}\left(t_{0}\right),\varphi_{X}\left(t_{1}\right),...,\varphi_{X}\left(t_{n-1}\right)\right)=\left(\varphi_{X}\left(2\pi\frac{0}{n}\right),\varphi_{X}\left(2\pi\frac{1}{n}\right),...,\varphi_{X}\left(2\pi\frac{n-1}{n}\right)\right).$$

9.4 Construction : f_X vers ϕ_X

Chaque élément de $\underline{\phi}_{\scriptscriptstyle X}$ est obtenu avec

$$\varphi_X(t_j) = \varphi_X\left(2\pi \frac{j}{n}\right) = \sum_{k=0}^{n-1} f_X(k) \exp\left(i2\pi \frac{j}{n}k\right)$$

pour j = 0, 1, ..., n - 1.

Chaque élément de $\phi_{_{X}}$ est un nombre complexe i.e.

$$\varphi_X(t_j) = \sum_{k=0}^{n-1} f_X(k) \cos\left(2\pi \frac{j}{n}k\right) + i \times \sum_{k=0}^{n-1} f_X(k) \sin\left(2\pi \frac{j}{n}k\right).$$

9.5 Inversion : ϕ_X vers f_X

On dispose du vecteur

$$\underline{\phi}_{X} = (\varphi_{X}(t_{0}), \varphi_{X}(t_{1}), ..., \varphi_{X}(t_{n-1}))$$

et on vise à identifier les valeurs de

$$f_X = (f_X(0), f_X(1), ..., f_X(n-1)).$$

Cette procédure est appelée inversion de la fonction caractéristique et les composantes de \underline{f}_X sont obtenues avec

$$f_X(k) = \frac{1}{n} \sum_{j=0}^{n-1} \varphi_X(t_j) \exp\left(-i2\pi \frac{j}{n}k\right)$$
, par $k = 0, 1, ..., n-1$.

9.6 Remarque

La construction et l'inversion fonctionne pour tout $n \ge 1$.

9.7 Algorithme FFT

La méthode FFT est un algorithme permettant d'effectuer les calculs de façon efficace numériquement. L'algorithme est préprogrammé en R et dans plusieurs autres logiciels. Il est important que $n=2^m$, $m=1,2,\ldots$

10 FFT et fonctions R

10.1 FFT – Somme de deux v.a. discrètes indépendantes.

```
fft.directconvo<-function(m=16, fx, fy)
{
    aa <- 2^m
    nx <- length(fx)
    ny <- length(fy)
    ftx <- fft(c(fx, rep(0, aa - nx)))
    fty <- fft(c(fy, rep(0, aa - ny)))
    fs <- Re(fft(ftx*fty, TRUE))/aa
    return(fs)
}</pre>
```

10.2 FFT - Somme de n v.a. discrètes indépendantes

```
fft.nrisks<-function(matff, v.n, m=14)</pre>
aa <- 2^m
nbrisks<-dim(matff)[1]</pre>
fx < -matff[1,]
nx <- length(fx)
ftx \leftarrow fft(c(fx, rep(0, aa - nx)))
fts < -(ftx)^v.n[1]
    for (i in 2:nbrisks)
        {
        fx<-matff[i,]</pre>
       nx <- length(fx)</pre>
        ftx \leftarrow fft(c(fx, rep(0, aa - nx)))
        fts<-fts*(ftx^v.n[i])</pre>
    ffs <- Re(fft(fts, TRUE))/aa
return(ffs)
}
```

10.3 FFT – Somme aléatoire (loi Poisson composée)

```
fft.poiscomposee<-function(lam, n, fx)
{
# 2**n = longueur du vecteur
# prendre n eleve (ex: n=12 ou plus)
# premiere masse de fx est Pr(X=0)
    aa <- 2^n
    nx <- length(fx)
    ftx <- fft(c(fx, rep(0, aa - nx)))
    fts<-exp(lam * (ftx - 1))
    fs <- Re(fft(fts, T))/aa
    return(fs)
}</pre>
```

11 Mesures de risque

11.1 Motivations

Les deux principaux objectifs en actuariat pour les mesures de risque sont les suivants :

- Établissement du capital pour le portefeuille d'une compagnie d'assurance;
- Calcul des primes.

Les mesures de risque servent dans le contexte de la gestion actif-passif et dans la gestion quantitative des placements.

11.2 Ingrédients = quantiles

Définition 1. Let X be a rv with cdf F_X . The quantile function corresponds to the inverse function F_X^{-1} associated to F_X which is defined by

$$F_X^{-1}(u) = \inf \left\{ x \in \mathbb{R} : F_X(x) \ge u \right\},\,$$

for $u \in (0,1)$. By convention, $\inf \emptyset = +\infty$.

Théorème 1. Quantile Function Theorem. Let X be a rv with cdf F_X and quantile function F_X^{-1} . Let U ba a rv such that $U \sim U(0,1)$. Then, the cdf of $F_X^{-1}(U)$ is F_X .

Théorème 2. . *Probability Integral Transform Theorem*. Let X be a continuous rv with $cdf F_X$, quantile function F_X^{-1} . Let $U \sim U(0,1)$. Then, $F_X(X) \sim U(0,1)$ (i.e. the $rv F_X(X)$ follows a standard uniform distribution).

Proposition 1. Let X be a rv. If φ is a strictly increasing continuous function, then we have

$$F_{\varphi(X)}^{-1}\left(u\right) = \varphi\left(F_X^{-1}\left(u\right)\right),\,$$

for $u \in (0,1)$.

Proposition 2. Let X be a **continuous** rv. If φ is a strictly decreasing continuous function, then we have

$$F_{\varphi(X)}^{-1}(u) = \varphi\left(F_X^{-1}(1-u)\right),\,$$

for $u \in (0,1)$.

Proposition 3. Let X be a rv with cdf F_X , quantile function F_X^{-1} and for which the expectation exists. Then, we have the following relations:

- $\int_{\kappa}^{1} F_{X}^{-1}(u) du = E\left[X \times 1_{\{X > F_{X}^{-1}(\kappa)\}}\right] + F_{X}^{-1}(\kappa) \left(F_{X}\left(F_{X}^{-1}(\kappa)\right) \kappa\right);$
- $\int_0^{\kappa} F_X^{-1}(u) du = E\left[X \times 1_{\left\{X \le F_X^{-1}(\kappa)\right\}}\right] + F_X^{-1}(\kappa) \left(\kappa F_X\left(F_X^{-1}(\kappa)\right)\right);$
- $\int_0^1 F_X^{-1}(u) du = E[X].$

11.3 Mesures VaR et TVaR

- Mesure VaR : $VaR_{\kappa}(X) = F_X^{-1}(\kappa)$, $0 < \kappa < 1$.
- Mesure TVaR:

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \int_{\kappa}^{1} VaR_{u}(X) du$$
$$= \frac{1}{1-\kappa} \left(E\left[X \times 1_{\{X > VaR_{\kappa}(X)\}} \right] + VaR_{\kappa}(X) \left(F_{X}\left(VaR_{\kappa}(X)\right) - \kappa \right) \right)$$

11.4 Desirable properties and coherence

We present the desirable properties for a risk measure ς_{κ} .

Proposition 1. Homogeneity. Let the rv X be a risk and and $a \in \mathbb{R}^+$ be a strictly positive scalar. A risk measure ς_{κ} is homogeneous if

$$\varsigma_{\kappa}(aX) = a\varsigma_{\kappa}(X),$$

for $0 < \kappa < 1$.

Proposition 2. *Invariance to translation.* Let the risk X and a scalar $a \in \mathbb{R}$. A risk measure ς_{κ} is invariant to translation if

$$\varsigma_{\kappa}(X+a) = \varsigma_{\kappa}(X) + a,$$

for $0 < \kappa < 1$.

Proposition 3. *Monotonocity.* Let the rv X_1 and X_2 be two risks such that

$$\Pr(X_1 \le X_2) = 1.$$

A risk measure ς_{κ} *is monotone if*

$$\varsigma_{\kappa}(X_1) \leq \varsigma_{\kappa}(X_2),$$

for $0 < \kappa < 1$.

Proposition 4. Subadditivity. Let X_1 and X_2 be two risks. The risk measure ς_{κ} is subadditive if

$$\varsigma_{\kappa} (X_1 + X_2) \le \varsigma_{\kappa} (X_1) + \varsigma_{\kappa} (X_2),$$

for $0 < \kappa < 1$.

Définition 2. *Benefit of risk pooling.* The property of subadditivity is very important regarding risk pooling. The benefit of risk pooling that corresponds to

$$B_{\kappa}^{\varsigma}(S) = \sum_{i=1}^{n} \varsigma_{\kappa}(X_{i}) - \varsigma_{\kappa}(S)$$

and that results by pooling risks X_1 , ..., X_n . As risk pooling is the foundation of the insurance, it would be desirable that $B_{\kappa}^{\varsigma}(S)$ is positive.

Définition 3. Coherent risk measure. A risk measure ς_{κ} si said to be coherent if Properties 1, 2, 3 and 4 are satisfied.

11.5 Other desirable properties

In actuarial science, the three following properties are considered to be desirable.

Proposition 5. No excessive risk margin (no rip-off). The risk measure ς_{κ} should not induce an excessive risk margin. If $X \leq x_{\max}$, then we have $\varsigma_{\kappa}(X) \leq x_{\max}$, for $0 < \kappa < 1$.

Proposition 6. *Positive Risk Margin.* We should have $\varsigma_{\kappa}(X) \geq E[X]$, for $0 < \kappa < 1$.

Proposition 7. *Justified Risk Margin.* Let $a \in \mathbb{R}$ be a scalar. We should have $\varsigma_{\kappa}(a) = a$, for $0 < \kappa < 1$.

12 Principaux principes de calcul de prime

- Prime pure = PP(X) = E[X].
- Prime majorée = $\Pi(X)$.

12.1 Propriétés désirables d'un principe de calcul de la prime majorée

- Marge de sécurité positive (P1). Selon ce principe, la prime majorée doit être supérieure à la prime pure $\Pi(X) \ge E[X]$.
- Exclusion de marge de sécurité non justifiée (P2). Pour une constante a > 0, on dit avoir $\Pi(a) = a$.
- Additivité (P3). Soient X_1 , X_2 deux risques indépendants. On doit avoir $\Pi(X_1 + X_2) = \Pi(X_1) + \Pi(X_2)$.
- Sous-additivité (P4). Soient X_1 , X_2 deux risques. On doit avoir $\Pi(X_1 + X_2) \leq \Pi(X_1) + \Pi(X_2)$.
- Invariance d'échelle (P5). Pour une constante a > 0, on dit avoir $\Pi(aX) = a\Pi(X)$.
- Invariance à la translation (P6). Pour une constante a>0, on dit avoir $\Pi\left(X+a\right)=\Pi\left(X\right)+a$.
- Maximum (P7). Si les coûts associés à un contrat ne peuvent excéder une valeur x_{max} , alors on doit avoir $\Pi(X) \leq x_{\text{max}}$.

12.2 Principes

- Principe de la valeur espérée : $\Pi(X) = (1 + \kappa) E(X) = E(X) + \kappa E(X)$, où $\kappa > 0$
- Principe de la variance : $\Pi(X) = E(X) + \kappa Var(X)$, où $\kappa > 0$.
- Principe de l'écart type : $\Pi(X) = E(X) + \kappa \sqrt{\operatorname{Var}(X)}$, où $\kappa > 0$.
- Principe de la VaR : $\Pi(X) = VaR_{\kappa}(X)$, où κ est élevé (e.g. $\kappa = 95, 99, 99.5, 99.9 \%).$
- Principe de la TVaR : $\Pi(X) = TVaR_{\kappa}(X)$, où κ est élevé (e.g. $\kappa = 95, 99, 99.5, 99.9\%$).
- Approche top-down et principes adaptés de la VaR et de la TVaR :
 - Dans les principes de la VaR et de la TVaR, on ne tient pas compte du nombre de contrats potentiels qui peuvent être émis.
 - En se basant sur l'approche top-down, on adapte ces deux principes en déterminant la prime globale pour n risques que l'on répartit ensuite parmi les n risques.
 - Lorsque les risques sont identiquement distribués, cela revient à appliquer les principes de la VaR ou de la TVaR avec la v.a. W_n plutôt que sur la v.a. X seulement où $W_n = \frac{X_1 + \ldots + X_n}{n}$, où les v.a. X_1, \ldots, X_n sont identiquement distribuées $X_1 \sim \ldots \sim X_n \sim X$.
 - Principe Top-Down VaR : $\Pi(X) = VaR_{\kappa}(W_n)$, où κ est élevé (e.g. $\kappa = 95$, 99, 99.5, 99.9%).
 - Principe Top-Down TVaR : $\Pi(X) = TVaR_{\kappa}(W_n)$, où κ est élevé (e.g. $\kappa = 95$, 99, 99.5, 99.9 %).
 - Bénéfice de mutualisation selon le principe Top-Down VaR : $VaR_{\kappa}(W_n) VaR_{\kappa}(X)$
 - Bénéfice de mutualisation selon le principe Top-Down TVaR : $TVaR_{\kappa}(W_n)$ - $TVaR_{\kappa}(X)$
- Principe exponentiel : $\Pi(X) = \frac{1}{\kappa} \ln \{M_X(\kappa)\}$ avec $\kappa > 0$.

13 Générateur de nombres pseudo-aléatoires (GNPA)

Le GNPA classique est le générateur congruentiel linéaire défini dans l'algorithme suivant.

Algorithme 1. *GNPA congruentiel linéaire*. Le GNPA congruentiel linéaire est défini par la relation récurrente

$$x_n = (ax_{n-1}) \mod m, n \in \mathbb{N}^+,$$

où a et m sont des entiers positifs choisis soigneusement et x_0 est la valeur source. La n-ième réalisation de la v.a. $U \sim U(0,1)$ est obtenue avec $U^{(n)} = \frac{x_n}{m}$ pour $n \in \mathbb{N}^+$.

14 Algorithme pour somme de v.a. i.d.d. de la gamma

Dans la proposition suivante, on identifie la fonction de densité de la somme de n v.a. de loi gamma avec des paramètres β_1 , ..., β_n différents.

Proposition 4. Soient n v.a. indépendantes $X_i \sim Ga(\alpha_i, \beta_i)$, i = 1, ..., n. On définit $S = \sum_{i=1}^n X_i$. Alors, on a

$$f_S(x) = \sum_{k=0}^{\infty} p_k h(x; \alpha + k, \beta), \qquad (1)$$

où $p_k = \sigma \xi_k$, pour $k \in \mathbb{N}$, avec $\alpha = \sum_{i=1}^n \alpha_i$,

$$\beta = \max(\beta_1; ...; \beta_n), \quad \sigma = \prod_{i=1}^n \left(\frac{\beta_i}{\beta}\right)^{\alpha_i},$$

$$\zeta_k = \sum_{i=1}^n \frac{\alpha_i}{k} \left(1 - \frac{\beta_i}{\beta} \right)^k, \quad (k = 1, 2, ...),$$

$$\xi_0 = 1, \ \xi_k = \frac{1}{k} \sum_{i=1}^k i\zeta_i \xi_{k-i}, \ (k=1,2,\ldots).$$

15 Tables loi normale

15.1 Fonction de répartition

Table 1: Valeurs de la fonction de répartition de la loi normale standard à (x+u)

$x \setminus u$	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

15.2 Fonction quantile

Table 2: Valeurs de la fonction quantile de la loi normale standard, où $\kappa=u_1+u_2$

u_1/u_2	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.5	0.0000	0.0251	0.0502	0.0753	0.1004	0.1257	0.1510	0.1764	0.2019	0.2275
0.6	0.2533	0.2793	0.3055	0.3319	0.3585	0.3853	0.4125	0.4399	0.4677	0.4959
0.7	0.5244	0.5534	0.5828	0.6128	0.6433	0.6745	0.7063	0.7388	0.7722	0.8064
0.8	0.8416	0.8779	0.9154	0.9542	0.9945	1.0364	1.0803	1.1264	1.1750	1.2265
0.9	1.2816	1.3408	1.4051	1.4758	1.5548	1.6449	1.7507	1.8808	2.0537	2.3263

Table 3: Valeurs de la fonction quantile de la loi normale standard, où $\kappa=u_1+u_2$

u_1/u_2	0	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.99	2.3263	2.3656	2.4089	2.4573	2.5121	2.5758	2.6521	2.7478	2.8782	3.0902

Table 4: Valeurs de la fonction quantile de la loi normale standard, où $\kappa=u_1+u_2$

u_1/u_2	0	0.0001	0.0002	0.0003	0.0004	0.0005	0.0006	0.0007	0.0008	0.0009
0.999	3.0902	3.1214	3.1559	3.1947	3.2389	3.2905	3.3528	3.4316	3.5401	3.7190

16 Tables loi gamma

16.1 Fonction de répartition

Table 5: Valeurs de la fonction de répartition de la v.a. $X \sim Gamma(\alpha,1)$ à x

$x \mid \alpha$	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
0.5	0.6827	0.3935	0.1987	0.0902	0.0374	0.0144	0.0052	0.0018	0.0006	0.0002
1	0.8427	0.6321	0.4276	0.2642	0.1509	0.0803	0.0402	0.0190	0.0085	0.0037
1.5	0.9167	0.7769	0.6084	0.4422	0.3000	0.1912	0.1150	0.0656	0.0357	0.0186
2	0.9545	0.8647	0.7385	0.5940	0.4506	0.3233	0.2202	0.1429	0.0886	0.0527
2.5	0.9747	0.9179	0.8282	0.7127	0.5841	0.4562	0.3400	0.2424	0.1657	0.1088
3	0.9857	0.9502	0.8884	0.8009	0.6938	0.5768	0.4603	0.3528	0.2601	0.1847
3.5	0.9918	0.9698	0.9281	0.8641	0.7794	0.6792	0.5711	0.4634	0.3629	0.2746
\parallel 4	0.9953	0.9817	0.9540	0.9084	0.8438	0.7619	0.6674	0.5665	0.4659	0.3712
4.5	0.9973	0.9889	0.9707	0.9389	0.8909	0.8264	0.7473	0.6577	0.5627	0.4679
5	0.9984	0.9933	0.9814	0.9596	0.9248	0.8753	0.8114	0.7350	0.6495	0.5595
5.5	0.9991	0.9959	0.9883	0.9734	0.9486	0.9116	0.8614	0.7983	0.7243	0.6425
6	0.9995	0.9975	0.9926	0.9826	0.9652	0.9380	0.8994	0.8488	0.7867	0.7149
6.5	0.9997	0.9985	0.9954	0.9887	0.9766	0.9570	0.9279	0.8882	0.8374	0.7763
7	0.9998	0.9991	0.9971	0.9927	0.9844	0.9704	0.9488	0.9182	0.8777	0.8270
7.5	0.9999	0.9994	0.9982	0.9953	0.9896	0.9797	0.9640	0.9409	0.9091	0.8679
8	0.9999	0.9997	0.9989	0.9970	0.9932	0.9862	0.9749	0.9576	0.9331	0.9004
8.5	1.0000	0.9998	0.9993	0.9981	0.9955	0.9907	0.9826	0.9699	0.9513	0.9256
9	1.0000	0.9999	0.9996	0.9988	0.9971	0.9938	0.9880	0.9788	0.9648	0.9450
9.5	1.0000	0.9999	0.9997	0.9992	0.9981	0.9958	0.9918	0.9851	0.9748	0.9597
10	1.0000	1.0000	0.9998	0.9995	0.9988	0.9972	0.9944	0.9897	0.9821	0.9707

Relation : $H(x; \alpha, \beta) = H(x\beta; \alpha, 1)$. Exemple : H(0.5; 0.5, 10) = H(5; 0.5, 1) = 0.9984.

16.2 Fonction quantile

Table 6: Valeurs de la fonction quantile de la v.a. $X \sim Gamma(\alpha,1)$

$\kappa \mid \alpha \mid$	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
0.05	0.0020	0.0513	0.1759	0.3554	0.5727	0.8177	1.0837	1.3663	1.6626	1.9701
0.1	0.0079	0.1054	0.2922	0.5318	0.8052	1.1021	1.4166	1.7448	2.0841	2.4326
0.15	0.0179	0.1625	0.3989	0.6832	0.9969	1.3306	1.6791	2.0391	2.4083	2.7850
0.2	0.0321	0.2231	0.5026	0.8244	1.1713	1.5350	1.9112	2.2968	2.6900	3.0895
0.25	0.0508	0.2877	0.6063	0.9613	1.3373	1.7273	2.1274	2.5353	2.9494	3.3686
0.3	0.0742	0.3567	0.7118	1.0973	1.5000	1.9138	2.3357	2.7637	3.1967	3.6336
0.35	0.1030	0.4308	0.8208	1.2350	1.6626	2.0986	2.5408	2.9876	3.4381	3.8916
0.4	0.1375	0.5108	0.9346	1.3764	1.8277	2.2851	2.7466	3.2113	3.6785	4.1477
0.45	0.1787	0.5978	1.0547	1.5235	1.9980	2.4759	2.9563	3.4383	3.9217	4.4062
0.5	0.2275	0.6931	1.1830	1.6783	2.1757	2.6741	3.1729	3.6721	4.1714	4.6709
0.55	0.2853	0.7985	1.3215	1.8436	2.3639	2.8826	3.4000	3.9163	4.4316	4.9461
0.6	0.3542	0.9163	1.4731	2.0223	2.5659	3.1054	3.6416	4.1753	4.7068	5.2366
0.65	0.4367	1.0498	1.6416	2.2188	2.7865	3.3474	3.9031	4.4547	5.0030	5.5486
0.7	0.5371	1.2040	1.8324	2.4392	3.0322	3.6156	4.1917	4.7622	5.3282	5.8904
0.75	0.6617	1.3863	2.0542	2.6926	3.3128	3.9204	4.5186	5.1094	5.6944	6.2744
0.8	0.8212	1.6094	2.3208	2.9943	3.6446	4.2790	4.9016	5.5150	6.1211	6.7210
0.85	1.0361	1.8971	2.6585	3.3724	4.0576	4.7231	5.3739	6.0135	6.6440	7.2670
0.9	1.3528	2.3026	3.1257	3.8897	4.6182	5.3223	6.0085	6.6808	7.3418	7.9936
0.95	1.9207	2.9957	3.9074	4.7439	5.5352	6.2958	7.0336	7.7537	8.4595	9.1535

17 Table khi-deux

Table 7: Valeurs critiques calculées avec la loi du khi-deux et avec un niveau de confiance de 5%

Degrés de liberté	$VaR_{0.95}(Z)$
1	3.841458821
2	5.991464547
3	7.814727903
4	9.487729037
5	11.070497694
6	12.591587244
7	14.067140449
8	15.507313056
9	16.918977605
10	18.307038053
11	19.675137573
12	21.026069817
13	22.362032495
14	23.684791305
15	24.995790140
16	26.296227605
17	27.587111638
18	28.869299430
19	30.143527206
20	31.410432844