Lecture 8: Convolutional Networks

Last Time: Backpropagation

Represent complex expressions as **computational graphs**

Forward pass computes outputs

Backward pass computes gradients

During the backward pass, each node in the graph receives **upstream gradients** and multiplies them by **local gradients** to compute **downstream gradients**

f(x,W) = Wx

$$f=W_2\max(0,W_1x)$$

Problem: So far our classifiers don't respect the spatial structure of images!

f(x,W) = Wx

$$f=W_2\max(0,W_1x)$$

Problem: So far our classifiers don't respect the spatial structure of images!

Solution: Define new computational nodes that operate on images!

Components of a Fully-Connected Network

Fully-Connected Layers

Activation Function

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Lecture 8 - 6

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Lecture 8 - 7

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Fully-Connected Layer

32x32x3 image -> stretch to 3072 x 1

Fully-Connected Layer

32x32x3 image -> stretch to 3072 x 1

1 number:

the result of taking a dot product between a row of W and the input (a 3072dimensional dot product)

3x32x32 image: preserve spatial structure

3x32x32 image

3x5x5 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Filters always extend the full depth of the input volume

3x5x5 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

3x32x32 image

Convolution Layer 1x28x28 activation map 3x32x32 image 3x5x5 filter 28 convolve (slide) over all spatial locations 32 28 32

Convolution Layer two 1x28x28 activation map Consider repeating with 3x32x32 image a second (green) filter: 3x5x5 filter 28 28 convolve (slide) over all spatial locations 32 28

each 1x28x28 3x32x32 image Consider 6 filters, each 3x5x5 Convolution Layer 32 32 6x3x5x5 Stack activations to get a filters 6x28x28 output image!

6 activation maps,

each 1x28x28 Also 6-dim bias vector: 3x32x32 image Convolution Layer 32 32 6x3x5x5 Stack activations to get a filters

6 activation maps,

6x28x28 output image!

28x28 grid, at each point a 6-dim vector

Stacking Convolutions

Stacking Convolutions

Q: What happens if we stack two convolution layers?

Stacking Convolutions

Q: What happens if we stack two convolution layers?

(Recall y=W₂W₁x is a linear classifier)

A: We get another convolution!

Input: N x 3 x 32 x 32

First hidden layer:

N x 6 x 28 x 28

Second hidden layer:

N x 10 x 26 x 26

Lecture 8 - 25

MLP: Bank of whole-image templates

Input: N x 3 x 32 x 32

First hidden layer: N x 6 x 28 x 28

First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)

AlexNet: 64 filters, each 3x11x11

Input: N x 3 x 32 x 32

First hidden layer: N x 6 x 28 x 28

Input: 7x7

Filter: 3x3

Input: 7x7

Filter: 3x3

Input: 7x7

Filter: 3x3

Input: 7x7

Filter: 3x3

Input: 7x7

Filter: 3x3

Output: 5x5

Input: 7x7

Filter: 3x3

Output: 5x5

In general: Problem: Feature

with each layer!

Input: W maps "shrink"

Filter: K

Output: W - K + 1

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7

Filter: 3x3

Output: 5x5

In general: Problem: Feature

Input: W maps "shrink"

Filter: K

with each layer!

Output: W - K + 1

Solution: padding

Add zeros around the input

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7

Filter: 3x3

Output: 5x5

Very common: In general:

Input: W

Filter: K

Padding: P

Set P = (K - 1) / 2 to

make output have

same size as input!

Output: W + 2P - K + 1= W

For convolution with kernel size K, each element in the output depends on a K x K **receptive field** in the input

Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1 + L * (K-1)

Be careful – "receptive field in the input" vs "receptive field in the previous layer" Hopefully clear from context!

Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1 + L * (K-1)

Problem: For large images we need many layers for each output to "see" the whole image image

Each successive convolution adds K – 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)

Input

Problem: For large images we need many layers for each output to "see" the whole image image

Solution: Downsample inside the network

Input: 7x7

Filter: 3x3

Stride: 2

Input: 7x7

Filter: 3x3

Stride: 2

Input: 7x7

Filter: 3x3 Output: 3x3

Stride: 2

Input: 7x7

Filter: 3x3 Output: 3x3

Stride: 2

In general:

Input: W

Filter: K

Padding: P

Stride: S

Output: (W - K) / S + 1

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

$$(32+2*2-5)/1+1 = 32$$
 spatially, so

Input volume: 3 x 32 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: ?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: 760

Parameters per filter: 3*5*5 + 1 (for bias) = 76

10 filters, so total is **10** * **76** = **760**

Input volume: 3 x 32 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: 760 Number of multiply-add operations: ?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: 760

Number of multiply-add operations: 768,000

10*32*32 = 10,240 outputs; each output is the inner product of two 3x5x5 tensors (75 elems); total = 75*10240 = 768K

Example: 1x1 Convolution

Example: 1x1 Convolution

Lin et al, "Network in Network", ICLR 2014

Convolution Summary

Input: C_{in} x H x W

Hyperparameters:

- **Kernel size**: $K_H \times K_W$
- Number filters: C_{out}
- **Padding**: P
- Stride: S

Weight matrix: C_{out} x C_{in} x K_H x K_W

giving C_{out} filters of size C_{in} x K_H x K_W

Bias vector: C_{out}

Output size: C_{out} x H' x W' where:

- H' = (H K + 2P) / S + 1
- W' = (W K + 2P) / S + 1

Convolution Summary

Input: C_{in} x H x W

Hyperparameters:

- **Kernel size**: K_H x K_W
- Number filters: C_{out}
- **Padding**: P
- Stride: S

Weight matrix: $C_{out} \times C_{in} \times K_H \times K_W$ giving C_{out} filters of size $C_{in} \times K_H \times K_W$

Bias vector: C_{out}

Output size: C_{out} x H' x W' where:

- H' = (H K + 2P) / S + 1
- W' = (W K + 2P) / S + 1

Common settings:

 $K_H = K_W$ (Small square filters)

$$P = (K - 1) / 2$$
 ("Same" padding)

$$C_{in}$$
, C_{out} = 32, 64, 128, 256 (powers of 2)

$$K = 3$$
, $P = 1$, $S = 1$ (3x3 conv)

$$K = 5$$
, $P = 2$, $S = 1$ (5x5 conv)

$$K = 1, P = 0, S = 1 (1x1 conv)$$

$$K = 3, P = 1, S = 2$$
 (Downsample by 2)

Other types of convolution

So far: 2D Convolution

Other types of convolution

So far: 2D Convolution

Input: C_{in} x H x W Weights: C_{out} x C_{in} x K x K H W

1D Convolution

Input: C_{in} x W

Weights: C_{out} x C_{in} x K

Other types of convolution

So far: 2D Convolution

3D Convolution

Input: $C_{in} \times H \times W \times D$

Weights: C_{out} x C_{in} x K x K x K

at each point

PyTorch Convolution Layer

Conv2d

[SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $(N, C_{\rm in}, H, W)$ and output $(N, C_{
m out}, H_{
m out}, W_{
m out})$ can be precisely described as:

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) \star \operatorname{input}(N_i, k)$$

PyTorch Convolution Layers

Conv2d

```
CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')
```

[SOURCE]

Conv1d

```
CLASS torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')
```

[SOURCE] &

Conv3d

```
CLASS torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')
```

[SOURCE]

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Lecture 8 - 60

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Pooling Layers: Another way to downsample

Hyperparameters:

Kernel Size
Stride
Pooling function

Max Pooling

Single depth slice

4 5 6 8 3 0 3 4 64 x 224 x 224

Max pooling with 2x2 kernel size and stride 2

6	8
3	4

Introduces **invariance** to small spatial shifts
No learnable parameters!

Pooling Summary

Input: C x H x W

Hyperparameters:

- Kernel size: K
- Stride: S
- Pooling function (max, avg)

Output: C x H' x W' where

- H' = (H K) / S + 1
- W' = (W K) / S + 1

Learnable parameters: None!

Common settings:

max, K = 2, S = 2

max, K = 3, S = 2 (AlexNet)

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Lecture 8 - 64

Convolutional Networks

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Layer	Output Size	Weight Size
Input	1 x 28 x 28	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	

Example: LeNet-5

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Example: LeNet-5

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

As we go through the network:

Spatial size **decreases** (using pooling or strided conv)

Number of channels **increases** (total "volume" is preserved!)

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Problem: Deep Networks very hard to train!

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Lecture 8 - 76

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Idea: "Normalize" the outputs of a layer so they have zero mean and unit variance

Why? Helps reduce "internal covariate shift", improves optimization

We can normalize a batch of activations like this:

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

This is a differentiable function, so we can use it as an operator in our networks and backprop through it!

Input: $x \in \mathbb{R}^{N \times D}$

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$$

Per-channel mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
 Per-channel std, shape is D

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

Input: $x \in \mathbb{R}^{N \times D}$

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$$

Per-channel mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
 Per-channel std, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

Problem: What if zero-mean, unit variance is too hard of a constraint?

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

Per-channel mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
 Per-channel std, shape is D

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output,
Shape is N x D

Problem: Estimates depend on minibatch; can't do this at test-time!

Input:
$$x \in \mathbb{R}^{N \times D}$$

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$u_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$
 Per-channel mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
 Per-channel std, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output,
Shape is N x D

Batch Normalization: Test-Time

Input: $x \in \mathbb{R}^{N \times D}$

(Running) average of
$$\mu_j = \text{values seen during}$$
 training

Per-channel mean, shape is D

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$\sigma_j^2 = \frac{\text{(Running) average of values seen during training}}{\text{values seen during training}} \frac{\text{Per-channel std, shape is D}}{\text{Std, shape is D}}$$

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output,
Shape is N x D

Batch Normalization: Test-Time

Input:
$$x \in \mathbb{R}^{N \times D}$$

$$\mu_j = \begin{array}{l} \text{(Running) average of} \\ \text{values seen during} \\ \text{training} \end{array}$$

Per-channel mean, shape is D

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$\mu_i^{test} = 0$$

For each training iteration:

$$\mu_{j} = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

$$\mu_{j}^{test} = 0.99 \, \mu_{j}^{test} + 0.01 \, \mu_{j}$$

(Similar for σ)

Batch Normalization: Test-Time

Input:
$$x \in \mathbb{R}^{N \times D}$$

(Running) average of
$$\mu_j = \text{values seen during}$$
 training

Per-channel mean, shape is D

Per-channel

std, shape is D

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

During testing batchnorm becomes a linear operator!
Can be fused with the previous fully-connected or conv layer

$$\sigma_{\!j}^{\,2} = {}^{
m (Running)}_{
m values\ seen\ during\ training}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \qquad \text{Normalized x,}$$
 Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Output,
Shape is N x D

Batch Normalization for ConvNets

Batch Normalization for **fully-connected** networks

Normalize
$$x: N \times D$$
 $\mu, \sigma: 1 \times D$
 $\gamma, \beta: 1 \times D$
 $y = \frac{(x - \mu)}{\sigma} \gamma + \beta$

Batch Normalization for **convolutional** networks (Spatial Batchnorm, BatchNorm2D)

Normalize
$$x : N \times C \times H \times W$$

$$\mu, \sigma : 1 \times C \times 1 \times 1$$

$$\gamma, \beta : 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

Ioffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

- Makes deep networks **much** easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!

Ioffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

- Makes deep networks **much** easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Not well-understood theoretically (yet)
- Behaves differently during training and testing: this is a very common source of bugs!

Layer Normalization

Batch Normalization for **fully-connected** networks

Normalize
$$\mu, \sigma : 1 \times D$$
$$\gamma, \beta : 1 \times D$$
$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Layer Normalization for fullyconnected networks Same behavior at train and test! Used in RNNs, Transformers

Normalize
$$\begin{array}{c|c} x:N\times D \\ \mu,\sigma:N\times 1 \\ \gamma,\beta:1\times D \\ y=\frac{(x-\mu)}{\sigma}\gamma+\beta \end{array}$$

Instance Normalization

Batch Normalization for convolutional networks

$$x: N \times C \times H \times W$$
Normalize
$$\mu, \sigma: 1 \times C \times 1 \times 1$$

$$\gamma, \beta: 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Instance Normalization for convolutional networks

$$x: N \times C \times H \times W$$
Normalize
$$\mu, \sigma: N \times C \times 1 \times 1$$

$$\gamma, \beta: 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Comparison of Normalization Layers

Group Normalization

Components of a Convolutional Network

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Components of a Convolutional Network

Convolution Layers Most computationally expensive!

Pooling Layers

Fully-Connected Layers

Activation Function

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Summary: Components of a Convolutional Network

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Summary: Components of a Convolutional Network

Problem: What is the right way to combine all these components?

Next time: CNN Architectures