Compte rendu de la séance 5 : Équation ADRS instationnaire et adaptation de maillage

Cours: Estimation a posteriori – Pr Bijan Mohammadi

Mouhamet TOURE - M2 MANU

Date: 06/10/2025

1 Introduction

Cette séance a pour but d'étudier la résolution instationnaire de l'équation d'advection-diffusion -réaction-source (ADRS) à l'aide d'un schéma temporel explicite de type Runge–Kutta, et d'analyser les effets de l'adaptation du maillage dans le cas où la solution dépend explicitement du temps.

Les objectifs spécifiques sont :

- Construire une solution exacte instationnaire et la comparer à la solution numérique.
- Étudier l'évolution de l'erreur dans le temps pour différents maillages et différents schémas de Runge-Kutta (ordre 1 à 4).
- Introduire un terme source dépendant du temps dans le modèle ADRS.
- Mettre en œuvre une adaptation de maillage instationnaire basée sur un critère mixte (erreur et nombre de points).
- Observer les différences entre l'adaptation stationnaire et instationnaire.

2 Modèle mathématique

On considère l'équation ADRS 1D sous la forme :

$$\frac{\partial u}{\partial t} + V \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2} - \lambda u + f(x, t), \tag{1}$$

où:

- u(x,t) est la grandeur d'intérêt (température ou concentration);
- V est la vitesse de convection, ν le coefficient de diffusion, et λ un coefficient de réaction;
- f(x,t) est un terme source dépendant du temps.

La solution exacte choisie est de la forme séparable :

$$u_{\text{exact}}(x,t) = u(t) v(x), \tag{2}$$

avec, par exemple:

$$u(t) = \sin(4\pi t),$$
 $v(x) = \text{fonction spatiale définie sur } [0, 1].$

Le terme source associé s'en déduit :

$$f(x,t) = u'(t)v(x) + V\frac{\partial v}{\partial x} - \nu \frac{\partial^2 v}{\partial x^2} + \lambda u(t)v(x),$$

d'où:

$$u'(t)v(x) = 4\pi\cos(4\pi t)v(x).$$

Ce terme rend l'équation instationnaire, et le résidu ne converge plus vers zéro.

3 Étude de la solution instationnaire

3.1 Comparaison de la solution exacte et numérique

Pour différents maillages uniformes, on a calculé l'erreur à deux instants clés :

$$t = \frac{T}{2}$$
 et $t = T_{\text{fin}}$.

FIGURE 1 – Visualisation de l'erreur à T/2 et $T_{\rm fin}$ pour différents maillages uniformes.

L'erreur diminue lorsque le maillage est raffiné. La différence entre T/2 et $T_{\rm fin}$ montre l'accumulation de l'erreur temporelle.

3.2 Influence du schéma de Runge-Kutta

L'évolution de l'erreur au point milieu du domaine (x = 0.5) a été étudiée pour différents schémas de Runge-Kutta (ordre 1 à 4).

FIGURE 2 – Évolution de l'erreur au centre du domaine pour différents schémas de Runge-Kutta.

Les schémas d'ordre élevé (RK3 et RK4) donnent une erreur plus faible et une évolution plus stable dans le temps. Le schéma d'ordre 1 montre une dissipation numérique importante.

4 Introduction d'un terme source temporel

Un terme source f(x,t) dépendant explicitement du temps a été introduit selon la relation :

$$f(x,t) = 4\pi \cos(4\pi t) v(x),$$

afin de reproduire une excitation sinusoïdale dans le temps.

FIGURE 3 – Visualisation de la solution u(x,t) à différents instants pour $T=0.32\,\mathrm{s}$.

FIGURE 4 – Visualisation de la solution u(x,t) à différents instants pour T=1 s.

La solution évolue de manière périodique dans le temps. Le terme source variable engendre des oscillations régulières dans tout le domaine.

5 Critères d'arrêt et adaptation de maillage

5.1 Critère mixte d'arrêt

Pour contrôler l'itération d'adaptation, un critère mixte a été introduit :

- arrêt si le nombre de points de maillage atteint un seuil $N_{\rm max}$;
- et si l'erreur globale L^2 devient inférieure à une tolérance donnée ε .

L'adaptation ne s'interrompt que lorsque ces deux conditions sont satisfaites simultanément.

5.2 Critère mixte portant sur l'Erreur L2

Figure 5 – Erreur L2 en fonction de la maillage

5.3 Maillage adaptatif stationnaire

FIGURE 6 – Maillage adaptatif obtenu à partir de la solution finale $(t = T_{\text{fin}})$.

Le maillage se concentre dans les zones où la solution finale présente les plus fortes variations spatiales. Ce maillage sert de référence pour une adaptation stationnaire.

5.4 Adaptation instationnaire

Une adaptation plus complète a été mise en place en tenant compte de la dépendance temporelle :

- les métriques locales sont calculées à chaque instant;
- une moyenne en temps des métriques est effectuée (intersection temporelle) pour obtenir un maillage équilibré.

FIGURE 7 – Maillage instationnaire obtenu par intersection temporelle des métriques.

Cette approche donne un maillage plus homogène dans le temps, limitant les oscillations spatiales excessives tout en maintenant la précision.

6 Conclusion

Cette séance a permis d'étendre l'étude de l'équation ADRS au cas instationnaire. Les principaux résultats sont :

- Validation du comportement temporel du modèle et de l'influence du terme source variable.
- Mise en évidence de l'efficacité des schémas de Runge-Kutta d'ordre élevé pour la stabilité temporelle.
- Définition d'un critère d'arrêt mixte fiable (nombre de points + erreur L^2).
- Mise en œuvre d'une adaptation instationnaire par moyenne temporelle des métriques, garantissant un bon compromis entre précision et stabilité.

Ces développements ouvrent la voie à des études plus complexes de couplage spatiotemporel dans des systèmes à dynamique rapide.