Mathematics Methods for Computer Science

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

Conditioning

Mathematics Methods for Computer Science

Instructor: Xubo Yang

SJTU-SE DALAB

Mathematics Methods for Computer Science

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

Conditioning

Lecture

Eigenproblems II: Computation

Setup

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteratio

C - ... 1141 - ... 1...

$$A \in \mathbb{R}^{n \times n}$$
 symmetric $ec{x}_1, \dots, ec{x}_n \in \mathbb{R}^n$ eigenvectors $|\lambda_1| \geq |\lambda_2| \geq \dots \geq |\lambda_n|$ eigenvalues

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

Conditioning

$$A \in \mathbb{R}^{n \times n}$$
 symmetric $ec{x}_1, \dots, ec{x}_n \in \mathbb{R}^n$ eigenvectors $|\lambda_1| \geq |\lambda_2| \geq \dots \geq |\lambda_n|$ eigenvalues

Review (Spectral Theorem): What do we know about the eigenvectors?

Usual Trick

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

$$\vec{v} \in \mathbb{R}^n$$

$$\downarrow \downarrow$$

$$\vec{v} = c_1 \vec{x}_1 + \dots + c_n \vec{x}_n$$

Observation

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

Conditioning

$$\lambda_1^k \left(c_1 \vec{x}_1 + \left(\frac{\lambda_2}{\lambda_1} \right)^k c_2 \vec{x}_2 + \dots + \left(\frac{\lambda_n}{\lambda_1} \right)^k c_n \vec{x}_n \right)$$

 $A^k \vec{v} =$

For Large k

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

$$A^k \vec{v} \approx \lambda_1^k c_1 \vec{x}_1$$

(assuming
$$|\lambda_2| < |\lambda_1|$$
 and $c_1 \neq 0$)

Power Iteration

Power Iteration

Other Eigenvalues

Multiple Eigenvalues

QR Iteration

$$\vec{v}_k = A\vec{v}_{k-1}$$

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

$$\vec{v}_k = A\vec{v}_{k-1}$$

Question: What if
$$|\lambda_1| > 1$$

Normalized Power Iteration

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

$$\vec{v}_k = A\vec{v}_{k-1}$$

$$\vec{v}_k = \frac{\vec{w}_k}{\|\vec{w}_k\|}$$

Normalized Power Iteration

Power Iteration

Other Eigenvalues

Multiple Eigenvalues

QR Iteration

Conditioning

$$\vec{v}_k = A\vec{v}_{k-1}$$

$$\vec{v}_k = \frac{\vec{w}_k}{||\vec{w}_k||}$$

Question: Which norm?

Eigenvalues of Inverse Matrix

Power Iteration

Other Eigenvalues

Multiple Eigenvalues

OR Iteration

$$A\vec{v} = \lambda \vec{v} \Rightarrow A^{-1}\vec{v} = \frac{1}{\lambda}\vec{v}$$

Eigenvalues of Inverse Matrix

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteratio

Conditioning

$$A\vec{v} = \lambda \vec{v} \Rightarrow A^{-1}\vec{v} = \frac{1}{\lambda}\vec{v}$$

Question:

What is the largest-magnitude eigenvalue?

Inverse Iteration

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

$$\vec{v}_k = A^{-1} \vec{v}_{k-1}$$

$$\vec{v}_k = \frac{\vec{w}_k}{||\vec{w}_k||}$$

Inverse Iteration

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

Conditioning

$$\vec{w}_k = A^{-1} \vec{v}_{k-1} \\ \vec{v}_k = \frac{\vec{w}_k}{||\vec{w}_k||}$$

Question: How to make faster?

Inverse Iteration with LU

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

Solve
$$L\vec{y_k} = \vec{v}_{k-1}$$

Solve $U\vec{w_k} = \vec{y_k}$

Normalize
$$ec{v}_k = rac{ec{w}_k}{||ec{w}_k||}$$

Eigenvalues of Shifted Matrix

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

OR Iteration

$$A\vec{v} = \lambda \vec{v} \Rightarrow (A - \sigma I)\vec{v} = (\lambda - \sigma)\vec{v}$$

Shifted Inverse Iteration

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteratio

Conditioning

To find eigenvalue closest to σ :

$$\vec{v}_{k+1} = \frac{(A-\sigma I)^{-1}\vec{v}_k}{||(A-\sigma I)^{-1}\vec{v}_k||}$$

Heuristic: Convergence Rate

Power Iteration

Other Eigenvalues

Multiple Eigenvalu

QR Iteration

Conditioning

Recall power iteration:

$$A^{k}\vec{v} = \lambda_{1}^{k} \left(c_{1}\vec{x}_{1} + \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} c_{2}\vec{x}_{2} + \dots + \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} c_{n}\vec{x}_{n} \right)$$

Strategy for Better Convergence

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteratio

Conditioning

For power iteration, find σ with

$$\left|\frac{\lambda_2 - \sigma}{\lambda_1 - \sigma}\right| < \left|\frac{\lambda_2}{\lambda_1}\right|$$

Least-Squares Approximation

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

Conditioning

If \vec{v}_0 is approximately an eigenvector:

$$\arg\min_{\lambda} ||A\vec{v}_0 - \lambda \vec{v}_0||_2^2 = \frac{\vec{v}_0^{\top} A \vec{v}_0}{||\vec{v}_0||_2^2}$$

Rayleigh Quotient Iteration

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

$$\vec{w}_k = (A - \sigma_k I)^{-1} \vec{v}_{k-1}$$

$$\vec{v}_k = \frac{\vec{w}_k}{\|\vec{w}_k\|}$$

$$\sigma_{k+1} = \frac{\vec{v}_k^\top A \vec{v}_k}{\|\vec{v}_k\|_2^2}$$

Rayleigh Quotient Iteration

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteratio

Conditioning

$$\vec{w}_{k} = (A - \sigma_{k}I)^{-1} \vec{v}_{k-1}$$

$$\vec{v}_{k} = \frac{\vec{w}_{k}}{\|\vec{w}_{k}\|}$$

$$\sigma_{k+1} = \frac{\vec{v}_{k}^{\top} A \vec{v}_{k}}{\|\vec{v}_{k}\|_{2}^{2}}$$

Efficiency per iteration vs. number of iterations?

Mathematics Methods for Computer Science

Unlikely Failure Mode for Iteration

Power Iteration

Other Eigenvalues

Multiple Eigenvalues

QR Iteration

Unlikely Failure Mode for Iteration

ower Iteration

Other Eigenvalues

Multiple Eigenvalues

QR Iteratio

Conditioning

What is \vec{v}_0 ?

What happens when

$$\vec{v}_0 \cdot \vec{x}_1 = 0$$
?

Bug or Feature?

Power Iteration

Other Eigenvalues

Multiple Eigenvalues

QR Iteration

- Compute \vec{x}_0 via power iteration.
- Project \vec{x}_0 out of \vec{v}_0 .
- Compute \vec{x}_1 via power iteration.
- Project $span\{\vec{x}_0, \vec{x}_1\}$ out of \vec{v}_0 .
- **5**

Bug or Feature?

Power Iteration

Other Eigenvalues

Multiple Eigenvalues

QR Iteration

Conditioning

- Compute \vec{x}_0 via power iteration.
- Project \vec{x}_0 out of \vec{v}_0 .
- Compute \vec{x}_1 via power iteration.
- Project $span\{\vec{x}_0, \vec{x}_1\}$ out of \vec{v}_0 .
- **5**

Assumption: A is symmetric.

Multiple Eigenvalues

Avoiding Numerical Drift

Do power iteration on $P^{\top}AP$ where P projects

out known eigenvectors.

Deflation

Modify A so that power iteration reveals an eigenvector you have not yet computed.

Similarity Transformations

Power Iteration

Other Eigenvalue

Multiple Eigenvalues

QR Iteration

Similar matrices

Two matrices A and B are similar if there exists T with $B=T^{-1}AT$.

Similarity Transformations

Power Iteration

Other Eigenvalue

Multiple Eigenvalues

QR Iteration

QIV Iteratio

Canditionine

Similar matrices

Two matrices A and B are similar if there exists T with $B = T^{-1}AT$.

Proposition

Similar matrices have the same eigenvalues.

Power Iteration

Other Eigenvalues

Multiple Eigenvalues

QR Iteration

$$H \vec{x}_1 = \vec{e}_1$$
 $\Longrightarrow HAH^{ op} \vec{e}_1 = HAH \vec{e}_1$ by symmetry $= HA \vec{x}_1$ since $H^2 = I$ $= \lambda_1 H \vec{x}_1$ $= \lambda_1 \vec{e}_1$

Power Iteration

Other Eigenvalues

Multiple Eigenvalues

QR Iteration

Conditioning

$$HAH^{\top} = \left(\begin{array}{cc} \lambda_1 & \vec{b}^{\top} \\ \overrightarrow{0} & B \end{array}\right)$$

Similarity transform of $A \Rightarrow$ same eigenvalues.

Power Iteration

Other Eigenvalues

Multiple Eigenvalues

QR Iteration

Conditioning

$$HAH^{\top} = \left(\begin{array}{cc} \lambda_1 & \overrightarrow{b}^{\top} \\ \overrightarrow{0} & B \end{array}\right)$$

Similarity transform of $A \Rightarrow$ same eigenvalues. **Do power iteration on** B.

Power Iteration

Other Eigenvalues

Multiple Eigenvalues

QR Iteration

Conditioning

$$HAH^{\top} = \left(\begin{array}{cc} \lambda_1 & \overrightarrow{b}^{\top} \\ \overrightarrow{0} & B \end{array}\right)$$

Similarity transform of $A \Rightarrow$ same eigenvalues.

Do power iteration on B.

Reveals eigenvalues + vectors one at a time.

Conjugation without Inversion

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

$$Q^{-1} = Q^{\top}$$

$$\Rightarrow Q^{-1}AQ = Q^{\top}AQ$$

Conjugation without Inversion

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

Conditioning

$$Q^{-1} = Q^{\top}$$

$$\Rightarrow Q^{-1}AQ = Q^{\top}AQ$$

But which Q ?

Should involve matrix structure but be easy to compute.

Experiment

Power Iteration

Other Eigenvalues

Multiple Eigenvalues

QR Iteration

$$A = QR$$
$$Q^{-1}AQ = ?$$

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

$$A_1 = A$$
 Factor $A_k = Q_k R_k$ Multiply $A_{k+1} = R_k Q_k$

Commutativity

ower Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

Lemma

Take $A, B \in \mathbb{R}^{n \times n}$. Suppose that the eigenvectors of A span \mathbb{R}^n and have distinct eigenvalues. Then, AB = BA if and only if A and B have the same set of eigenvectors (with possibly different eigenvalues).

If QR Iteration Converges

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

Conditioning

$$A_{\infty} = Q_{\infty} R_{\infty} = R_{\infty} Q_{\infty}$$

(Convergence proof in book.)

Starting Point

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

$$(A+\delta A)(\vec{x}+\delta \vec{x})=(\lambda+\delta\lambda)(\vec{x}+\delta \vec{x})$$

Starting Point

$$(A + \delta A)(\vec{x} + \delta \vec{x}) = (\lambda + \delta \lambda)(\vec{x} + \delta \vec{x})$$

What are the independent and dependent variables?

Other Eigenvalues

Multiple Eigenvalu

QR Iteration

Starting Point

$$(A + \delta A)(\vec{x} + \delta \vec{x}) = (\lambda + \delta \lambda)(\vec{x} + \delta \vec{x})$$

What are the independent and dependent variables?

Approximation:

$$A\delta\vec{x} + \delta A \cdot \vec{x} \approx \lambda \delta \vec{x} + \delta \lambda \cdot \vec{x}$$

Other Eigenvalues

Multiple Eigenvalue

QR Iteratio

Trick: Left Eigenvector

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteratio

$$A\vec{x} = \lambda \vec{x}, \vec{x} \neq \vec{0} \Rightarrow \\ \exists \vec{y} \neq \vec{0} \text{ such that } A^{\top} \vec{y} = \lambda \vec{y}$$

Change in Eigenvalue

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

$$|\delta\lambda| \lesssim \frac{\|\delta A\|_2}{|\vec{y}\cdot\vec{x}|}$$

Change in Eigenvalue

Power Iteration

Other Eigenvalues

Multiple Eigenvalue

QR Iteration

Conditioning

$$|\delta\lambda| \lesssim \frac{\|\delta A\|_2}{|\vec{y}\cdot\vec{x}|}$$

What about symmetric A?