Satisfiability Checking 07 First-order logic

Prof. Dr. Erika Ábrahám

RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems

WS 22/23

First-order logic

- We have seen that natural languages are not well-suited for correct reasoning.
- Propositional logic is useful but sometimes not expressive enough for modeling.
- First-order (FO) logic is a framework with the syntactical ingredients:
 - 1 Theory symbols: constants, variables, function symbols
 - 2 Lifting from theory to the logical level: predicate symbols
 - 3 Logical symbols: Logical connectives and quantifiers
 - 3 is fixed

- 一阶逻辑和命题逻辑的不同之处在于,
- 一阶逻辑包含量词。
- Fixing 1 and 2 gives different FO instances
- 一阶逻辑不同于单纯的"命题逻辑"(Proposition Logic),因为,一阶逻辑里面使用了大量quantifier. **∃**"和"▼"就是一阶逻辑的"限量词"(Quantifier)

Constants, variables, function symbols, terms

Theory symbols constants, variables, function symbols

Example:

- Constants: 0, 1
- Variables: x, y, z, ...Function symbol binary +
- Terms (theory expressions) are inductively defined by the following rules:
 - 1 All constants and variables are terms.
 - 2 If t_1, \ldots, t_n (n > 0) are terms and f an n-ary function symbol then $f(t_1, \ldots, t_n)$ is a term. constant和variable是terms, 由他们构成的函数f(c/v)还是terms
- Only strings obtained by finitely many applications of these rules are terms.

Example terms: 0,
$$x$$
, $+(0,1)$, $+(x,1)$, $+(x,+(y,1))$ $(0+1)$, $(x+1)$, $(x+(y+1))$

Predicates, constraints

Predicates lift terms from the theory to the logical level.

Example predicate symbols: binary \geq , >, =, <, \leq comparable

(Theory) constraints are inductively defined by the following rule:

If P is an n-ary predicate symbol and t_1, \ldots, t_n are terms then $P(t_1,\ldots,t_n)$ is a constraint.

Only strings obtained by finitely many applications of this rule are constraints.

Example constraints: x < (x+1), ((x+1)+y) = ((x+y)+1)

Logical connectives and quantifiers, formulas

first order logic:对于第一支重,不是变量的set

- Logical connectives: unary \neg , binary \land , \lor , \rightarrow , \leftrightarrow , ...
- Universal quantifier ("for all"), existential quantifier ("exists")

(Well-formed) formulas are inductively defined by the following rules:

- If c is a constraint then c is a formula (called atomic formula).
- 2 If φ is a formula then $(\neg \varphi)$ is a formula.
- If φ and ψ are formulas then $(\varphi \wedge \psi)$ is a formula.
- 4 Similar rules apply to other binary logical connectives.
- 5 If φ is a formula and x is a variable, then $(\forall x. \varphi)$ and $(\exists x. \varphi)$ are formulas.

Only expressions which can be obtained by finitely many applications of these rules are formulas.

Example formulas:

- x < (x+1) (atomic formula)
- $(\neg x < 0)$
- $(x < (x+1) \land ((x+1)+y) = ((x+y)+1))$

Assume the argumentation:

- All men are mortal.
- Socrates is a man.
- 3 Therefore. Socrates is mortal.

We can formalize it by defining

Socrates Constants:

Variables:

Predicate symbols: unary isMen, isMortal

Formalization:

- 1 $\forall x. isMen(x) \rightarrow isMortal(x)$
- 2 isMen(Socrates)
- 3 isMortal(Socrates)

Some remarks and notation

- Constants can also be seen as function symbols of arity 0.
- Sometimes equality (=) is included as a logical symbol.
- Note: the logical connectives negation (\neg) and conjunction (\land) and the existential quantifier (\exists) would be sufficient, the remaining syntax $(\lor, \rightarrow, \leftrightarrow, \dots, \forall)$ are syntactic sugar.

We omit parentheses whenever we may restore them through operator precedence (with left-to-right binding for several occurrences of the same operator):

binds stronger
$$\overset{\mbox{\scriptsize 4}}{\leftarrow}$$
 $\overset{\mbox{\scriptsize 4}}{\sim}$ \wedge \vee \rightarrow \leftrightarrow \exists \forall

Thus, we write:

$$\neg \neg a$$
 for $(\neg (\neg a))$, $\exists a. \exists b. (a \land b \rightarrow P(a, b))$ for $\exists a. \exists b. ((a \land b) \rightarrow P(a, b))$

Free and bound variable occurrences

A variable occurrence in a formula φ is an occurrence of a variable in an atomic sub-formula (constraint) of φ .

Each variable occurence in a formula is either bound or free, defined inductively by the following rules:

- Any occurrence of any variable in any atomic formula is free.
- A variable occurrence in φ is free in $(\neg \varphi)$ iff it is free in φ .
- A variable occurrence in φ is free in $(\varphi \wedge \psi)$ iff it is free in φ , and analogously for the symmetric case and all other binary Boolean connectives.
- An occurrence of a variable x in φ is free in $(\exists y. \varphi)$ iff x is free in φ and x is a symbol different from y.
- An analogous rule holds with \forall in place of \exists .
- A variable occurrence is bound iff it is not free.

Free and bound variable occurrences

Examples:

In

$$P(z) \lor \forall x. (P(x) \rightarrow Q(z))$$

z is occurs free in P(z) and in Q(z), whereas x occurs bound in P(x).

In

$$Q(z) \vee \forall z.P(z)$$

the first occurrence of z is free whereas its second occurrence is bound.

Signature Σ , Σ -formula, Σ -sentence

The non-logical symbols 包含predicates and individual constants. These include symbols that, in an interpretation, may stand for individual constants, variables, functions, or predicates.

- A signature fixes the set of non-logical symbols (up to variables).
- \blacksquare A Σ-formula is a formula with non-logical symbols from Σ.
- \blacksquare A Σ -sentence is a Σ -formula without free variable occurrences.

In the previous example: $\Sigma = (Socrates, isMen(\cdot), isMortal(\cdot))$ with

- Socrates a constant and
- *isMen* and *isMortal* unary predicate symbols.

类似的 logical symbols包含truth-functional connectives (such as "and", "or", "not", "implies", and logical equivalence) and the symbols for the quantifiers "for all" and "there exists".

- 1 $\forall x$. $isMen(x) \rightarrow isMortal(x)$
- 2 isMen(Socrates)
- 3 isMortal(Socrates)

are Σ -sentences (all occurrences of the only variable x are bound).

Exercise A

Assume the following signature Σ :

- 0 and 2 are constants:
- x, y, z are variables;
- * is a binary function;
- > and = are binary predicates.

How many occurrences of x are free in the following Σ -formula?

$$\mathbf{x} = \boxed{0} \lor \boxed{\forall y. \ (\mathbf{x} > (2 * \mathbf{x}))} \lor \boxed{\forall x. \ \neg((x = y) \rightarrow (\forall x. \ x > z)))}$$

- **0**
- **2**
- **3**
- **4**
- **5**

Further examples

- $\Sigma = \{0, 1, +, >\}$
 - 0,1 are constant symbols
 - + is a binary function symbol
 - > is a binary predicate symbol
- Examples of Σ -sentences:

$$\exists x. \ \forall y. \ x > y$$

$$\forall x. \exists y. x > y$$

$$\forall x. \ x+1>x$$

$$\forall x. \ \neg(x+0>x\lor x>x+0)$$

Further examples

- $\Sigma = \{0, 1, +, *, <, isPrime\}$
 - 0,1 constant symbols
 - +, * binary function symbols

 - *isPrime* unary predicate symbol
- An example Σ-sentence:

$$\forall n. \ (1 < n \rightarrow (\exists p. \ \textit{isPrime}(p) \land n < p \land p < 2 * n))$$

Further examples

- Let $\Sigma = \{0, 1, +, =\}$ where 0, 1 are constants, + is a binary function symbol and = a binary predicate symbol.
- Let $\varphi = \exists x. \ x + 0 = 1$ a Σ -formula.
- \mathbb{Q} : Is φ true?
- A: So far these are only symbols, strings. No meaning yet.
- Q: What do we need to fix for the semantics?
- A: We need a domain for the variables. Let's say \mathbb{N}_0 .
- **Q**: Is φ true in \mathbb{N}_0 ?
- A: Depends on the interpretation of '+' and '='!

Assume a signature Σ consisting of theory constants a and b, unary Assume a signature 2 consisting or theory constants a and p, the signature of the signature Which of the following are (well-formed) \(\Sigma\)-formulas? (Multiple choice: please select all correct cases.) (\forall x. \(\beta x. \(p(a)\)) binary 海军z4 arg

(一(∀x.p(x))))

(一(∀x.p(x)))) f(p(y(q)), p(y(q))) $\blacksquare (\forall x. (\exists x. p(a)))$ q(y, f(y))

Structures

- A Σ-structure is given by:
 - a domain D,
 - \blacksquare an interpretation I of the non-logical symbols in Σ that maps
 - each constant symbol to a domain element,
 - **each function symbol** of arity n to a function of type $D^n \to D$, and
 - lacksquare each predicate symbol of arity n to a predicate of type $D^n o \{0,1\}.$
- To give meaning to formulas with free variable occurrences, we also need an assignment α that maps each variable (with a free occurrence) to a domain element.

Semantics

To give semantics to a logical system means to define a notion of truth for the formulas.

Semantics of terms and formulas under a structure S = (D, I) and an Interpretation = I(c)assignment α :

constants:
$$[c]_{S,\alpha} = I(c)$$

variables:
$$[x]_{S,\alpha} = \alpha(x)$$

functions:
$$\llbracket f(t_1,\ldots,t_n) \rrbracket_{S,\alpha} = I(f)(\llbracket t_1 \rrbracket_{S,\alpha},\ldots,\llbracket t_n \rrbracket_{S,\alpha})$$

predicates:
$$S, \alpha \models p(t_1, \dots, t_n)$$
 iff $I(p)(\llbracket t_1 \rrbracket_{S,\alpha}, \dots, \llbracket t_n \rrbracket_{S,\alpha})$

logical structure:

$$S, \alpha \models \neg \varphi$$
 iff $S, \alpha \not\models \varphi$

$$S, \alpha \models \varphi \land \psi$$
 iff $S, \alpha \models \varphi$ and $S, \alpha \models \psi$

$$S, \alpha \models \exists x. \ \varphi$$
 iff there exists $v \in D$ such that $S, \alpha[x \mapsto v] \models \varphi$

Satisfiability, validity

 \blacksquare A Σ -formula φ is satisfiable if there exist a Σ -structure S and an assignment α that satisfy it.

Notation: $S, \alpha \models \varphi$. For Σ -sentences we also write $S \models \varphi$.

 \blacksquare A Σ -formula φ is valid if it is satisfied by all Σ -structures and all assignments.

Notation: φ .

17 / 37

$$\Sigma = \{0, 1, +, =\}$$

$$\varphi = \exists x. \ x + 0 = 1 \ a \ \Sigma$$
-formula

- **Q**: Is φ satisfiable?
- A: Yes. Consider the structure *S*:
 - Domain: \mathbb{N}_0
 - Interpretation:
 - lacksquare 0 and 1 are mapped to 0 and 1 in \mathbb{N}_0
 - + means addition
 - means equality

S satisfies φ . S is said to be a model of φ .

$$\Sigma = \{0, 1, +, =\}$$

$$\varphi = \exists x. \ x + 0 = 1 \ a \ \Sigma$$
-formula

- Q: Is φ valid?
- A: No. Consider the structure S':
 - Domain: \mathbb{N}_0
 - Interpretation:
 - lacksquare 0 and 1 are mapped to 0 and 1 in \mathbb{N}_0
 - + means multiplication
 - means equality

S' does not satisfy φ .

Theories T, T-safisfiability and T-validity

- A Σ -theory T is defined by a set of Σ -sentences.
- A Σ-formula φ is T-satisfiable if there exists a structure that satisfies both the sentences of T and φ .
- A Σ-formula φ is T-valid if all structures that satisfy the sentences defining T also satisfy φ .
- The number of sentences that are necessary for defining a theory may be large or infinite.
- Instead, it is common to define a theory through a set of axioms.
- The theory is defined by these axioms and everything that can be inferred from them by a sound inference system.

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. \ x + 0 = 1 \ \text{a} \ \Sigma$ -formula.
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. \ x = x$ //= must be reflexive
 - 2 $\forall x. \ \forall y. \ x + y = y + x$ //+ must be commutative
- **Q**: Is φ *T*-satisfiable?
- A: Yes, S is a model.
- Q: Is φ T-valid?
- A: No. S' satisfies the sentences in T but not φ .

- $\Sigma = \{0, 1, +, =\}$
- $\varphi = \exists x. \ x + 0 = 1 \text{ a } \Sigma\text{-formula}.$
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. \ x = x$ (= is reflexive)
 - 2 $\forall x, y, z$. $((x = y \land y = z) \rightarrow x = z)$ = is transitive)
 - 3 $\forall x. \ \forall y. \ x + y = y + x$ (+ is commutative)
 - $\forall x. \ 0 + x = x \quad (0 \text{ is neutral element for } +)$
- **Q**: Is φ *T*-satisfiable?
- \blacksquare A: Yes, S is a model.
- Q: Is φ T-valid?
- A: Yes. (S' does not satisfy the fourth axiom. 3, 4 $\rightarrow \varphi$.)

- $\Sigma = \{=\}$
- $\varphi = (x = y \land y \neq z) \rightarrow x \neq z$ a Σ -formula
- We now define the Σ -theory T by the following axioms:
 - 1 $\forall x. \ x = x \ (reflexivity)$
 - 2 $\forall x. \ \forall y. \ x = y \rightarrow y = x \ (symmetry)$
 - 3 $\forall x. \ \forall y. \ \forall z. \ x = y \land y = z \rightarrow x = z$ (transitivity)
- \blacksquare Q: Is φ T-satisfiable?
- A: Yes.
- Q: Is φ T-valid?
- **A**: Yes. Every structure that satisfies T also satisfies φ .

- $\Sigma = \{<\}$
- $\blacksquare \varphi : \forall x. \; \exists y. \; y < x \; a \; \Sigma$ -formula
- Consider the Σ -theory T defined by the axioms:
 - 1 $\forall x. \ \forall y. \ \forall z. \ (x < y \land y < z) \rightarrow x < z \ (transitivity)$
 - 2 $\forall x. \ \forall y. \ x < y \rightarrow \neg (y < x)$ (anti-symmetry)
- \blacksquare Q: Is φ T-satisfiable?
- A: Yes. We construct a model for it:
 - Domain: ℤ
 - < means "less than"</p>
- Q: Is φ T-valid?
- A: No. We construct a structure to the contrary:
 - Domain: No 空集
 - < means "less than"</p>

Bonus exercise 10

Signature Σ with variables x and y and a binary predicate \sim .

All Σ-formula φ : $\exists x. \exists y. x \sim y \land y \sim x$

Which of the following structures satisfy φ ? (Multiple choice: please select all models.)

lacksquare Domain is $\mathbb{Z}_{ au}\sim$ means equal

lacksquare Domain is \mathbb{Z} , \sim means not equal

lacksquare Domain is \mathbb{Z}, \sim means less than

lacksquare Domain is \mathbb{R}_{\sim} means less than lacksquare Domain is \mathbb{Q}, \sim means less than or equal

N:非色整数

Z: 整数

Q酒理數

R: 巫数

Let Σ be a signature with variables a and b and a binary predicate \sim .

Assume the Σ -formula φ : $\forall a$. $\exists b$. $(a \sim b \rightarrow b \sim a)$.

Which of the following structures satisfy $\varphi ?$ (Multiple choice: please select all models.)

Select one or more:

V Domain is Q, ~ means greater than か平旋目充成; ∃a, Vb. (a~b→b~a)

 \checkmark Domain is \mathbb{N} , \sim means greater than or equal

 \checkmark Domain is \mathbb{Z} , \sim means less than or equal \checkmark

ヨ…V… 和V… ヨ... 不-样![(

None of the above.

The correct answers are: Domain is \mathbb{Q} , \sim means greater than, Domain is \mathbb{N} , \sim means greater than or equal, Domain is \mathbb{Z} , \sim means less than or equal

Let Σ be a signature with variables a and b and a binary predicate \sim .

Assume the Σ -formula φ : $\exists a. \ \forall b. \ (a \sim b \lor b \sim a)$.

Which of the following structures satisfy φ ? (Multiple choice: please select all models.)

Wählen Sie eine oder mehrere Antworten:

- \square Domain is \mathbb{Z} , \sim means less than or equal
- \square Domain is \mathbb{Q} , \sim means greater than or equal
- \square Domain is \mathbb{Q} , \sim means greater than or equal
- 🛮 None of the above. 🗶

Die richtigen Antworten sind: Domain is \mathbb{Z} , \sim means less than or equal, Domain is \mathbb{Q} , \sim means greater than or equal, Domain is \mathbb{Q} , \sim means greater than or equal

Let Σ be a signature with variables u and v and a binary predicate \sim .

Assume the Σ -formula φ :

$$\exists u. \ \forall v. \ (u \sim v \rightarrow v \sim u).$$

Which of the following structures satisfy φ ? (Multiple choice: please select all models.)

Select one or more:

- \square Domain is \mathbb{N}, \sim means greater than or equal
- \square Domain is \mathbb{N} , \sim means less than or equal
- Domain is \mathbb{Z} , \sim means equal \checkmark
- None of the above.

The correct answers are: Domain is \mathbb{N} , \sim means greater than or equal, Domain is \mathbb{Z} , \sim means equal

Let Σ be a signature with variables a and b and a binary predicate \sim .

Assume the Σ -formula φ :

$$\forall a. \ \forall b. \ (a \sim b \rightarrow b \sim a).$$

Which of the following structures satisfy φ ? (Multiple choice: please select all models.)

Wählen Sie eine oder mehrere Antworten:

- lacksquare Domain is $\mathbb Q$, \sim means equal lacksquare
- \square Domain is \mathbb{N} , \sim means less than
- lacksquare Domain is \mathbb{N} , \sim means equal \checkmark
- None of the above.

Die richtigen Antworten sind: Domain is \mathbb{Q} , \sim means equal, Domain is \mathbb{N} , \sim means equal

Bonus test 10

Started on Friday, 3 November 2023, 9:48 AM

State Finished

Completed on Friday, 3 November 2023, 9:54 AM

Time taken 5 mins 2 secs

Grade 0.33 out of 0.33 (100%)

Question 1

Mark 0.33 out

Flag question

Let Σ be a signature with variables u and v and a binary predicate \sim .

Assume the Σ -formula φ : $\forall u$. $\forall v$. $(u \sim v \rightarrow v \sim u)$.

Which of the following structures satisfy φ ? (Multiple choice: please select all models.)

Select one or more:

Domain is \mathbb{R} , \sim means less than

 \square Domain is \mathbb{Q} , \sim means less than or equal

Domain is \mathbb{Q} , \sim means less than or equal

✓ None of the above. ✓

The correct answer is: None of the above.

Some famous theories

We assume in the following that the interpretation of symbols is fixed to their common use.

■ Thus + is plus, . . .

Some famous theories:

- Presburger arithmetic: $\Sigma = \{0, 1, +, >\}$ over integers
- Peano arithmetic: $\Sigma = \{0, 1, +, *, >\}$ over integers
- Linear real arithmetic: $\Sigma = \{0, 1, +, >\}$ over reals
- Real arithmetic: $\Sigma = \{0, 1, +, *, >\}$ over reals
- Theory of arrays
- Theory of pointers
- . . .

- So far we only restricted the non-logical symbols by signatures and their interpretation by theories.
- Sometimes we want to restrict the grammar and the logical symbols that we can use as well.
- These are called logic fragments.
- Examples:
 - The quantifier-free fragment over $\Sigma = \{0, 1, +, =\}$
 - \blacksquare The conjunctive fragment over $\Sigma = \{0,1,+,=\}$

- Q: Which FO theory is propositional logic?
- A: The quantifier-free fragment of the FO theory with signature $\Sigma = \{x_1, x_2, \dots, identity\}$ with variables x_1, x_2, \dots , the unary *identity* predicate (which we skip in the syntax), and without axioms.

Example: $x_1 \rightarrow (x_2 \lor x_3)$ Thus, propositional logic is also a first-order theory. (A very degenerate one.)

- Q: What if we allow quantifiers?
- A: We get the theory of quantified boolean formulas (QBF). Example:
 - $\blacksquare \forall x_1. \exists x_2. \forall x_3. x_1 \rightarrow (x_2 \lor x_3)$

It is common to present logic fragments via an abstract grammar rather than restrictions on the generic first-order grammar.

Example: Equality logic

■ Grammar:

```
formula ::= atom | formula \wedge formula | \neg formula
atom ::= Boolean-variable | variable = variable | variable = constant | constant = constant
```

■ Interpretation: = is equality.

Exampe: 2-CNF

Grammar:

```
formula ::= (literal ∨ literal) | formula ∧ formula
literal ::= Boolean-variable | ¬Boolean-variable
```

■ Example formula:

$$(x_1 \vee \neg x_2) \wedge (\neg x_3 \vee x_2)$$

Expressivity

- Consider the propositional logic formula $\varphi = (x_1 \lor x_2 \lor x_3)$.
- Q: Can we express this in 2-CNF, i.e., can we define a 2-CNF formula that is satisfied by the same assignments?
- A: No.
- Proof:
 - The language accepted by φ has 7 words: all assignments other than $x_1 = x_2 = x_3 = 0$ (false).
 - A 2-CNF clause removes 2 assignments, which leaves us with 6 accepted words.
 - E.g., $(x_1 \lor x_2)$ removes the assignments $x_1 = x_2 = x_3 = 0$ and $x_1 = x_2 = 0$, $x_3 = 1$.
 - Additional clauses only remove more assignments.
- We say that propositional logic is more expressive than 2-CNF.
- Notation: $\mathcal{L}_1 \prec \mathcal{L}_2$ means that \mathcal{L}_2 is more expressive than \mathcal{L}_1 .
- Generally there is only a partial order between theories.

The tradeoff

- So we see that theories can have different expressive power.
- The more expressive the logic the harder it might be to decide the satisfiability/validity of formulas; thus sometimes we aim at less expressiveness that is decidable at lower costs.
- Perhaps it is a bit counterintuitive, but adding restrictions to a theory in form of further axioms may make the theory harder to decide or even turn the satisfiability problem to be undecidable.

Example: First-order Peano arithmetic

- $\Sigma = \{0, 1, +, *, =\}$
- Domain: Natural numbers
- Axioms ("semantics"):
 - 1 $\forall x. (x \neq x + 1)$
 - $\forall x. \ \forall y. \ (x \neq y) \rightarrow (x+1 \neq y+1)$
 - 3 Induction
 - 4 $\forall x. \ x + 0 = x$
 - 5 $\forall x. \ \forall y: (x+y)+1=x+(y+1)$
 - 6 $\forall x. \ x * 0 = 0$
 - 7 $\forall x. \ \forall y. \ x * (y+1) = x * y + x$

UNDECIDABLE!

Reduction: Peano arithmetic to Presburger arithmetic

- $\Sigma = \{0, 1, +, */=\}$
- Domain: Natural numbers
- Axioms ("semantics"):
 - 1 $\forall x. (x \neq x + 1)$
 - 2 $\forall x. \ \forall y. \ (x \neq y) \rightarrow (x+1 \neq y+1)$
 - 3 Induction
 - 4 $\forall x. \ x + 0 = x$
 - 5 $\forall x. \ \forall y. \ (x+y)+1=x+(y+1)$
 - 6 $\forall x \cdot x * 0 = 0$
 - 7 $\forall x. \ \forall y. \ x*(y+1)=x*y+x$

DECIDABLE!

Expressivity and complexity

- Q1: Let \(\mathcal{L}_1\) and \(\mathcal{L}_2\) be two theories whose satisfiability problem is decidable and in the same complexity class. Is the satisfiability problem of an \(\mathcal{L}_1\) formula reducible to a satisfiability problem of an \(\mathcal{L}_2\) formula?
 A1: Yes, reduction with the given complexity is possible.
- Q2: Let L₁ and L₂ be two theories whose satisfiability problems are reducible to each other. Are L₁ and L₂ in the same complexity class?
 A2: It depends on the complexity of the reduction.

Tradeoff: Expressivity vs. computational hardness

- Expressible enough to state something interesting.
- Decidable (or semi-decidable) and more efficiently solvable than richer theories.

In this lecture we assume $P \neq NP$.

35 / 37

Exercise B

Which of the following statements are true?

Multiple choice: Please select all true statements.

- Propositional logic is a fragment of 2-CNF.
- 2-CNF is less expressive than propositional logic.
- There exists a signature Σ and a Σ -theory T such that no Σ -formulas are T-satisfiable.
- There exist undecidable FO theories.

Learning target

- What is first-order (FO) logic?
- How is the semantics of FO logic formulas defined by structures?
- When is a Σ -formula satisfiable resp. valid?
- What is a Σ-theory T?
 When are Σ-formulas T-satisfiable resp. T-valid?
- What is a logic fragment?
- What does it mean that one theory or logic fragment is more expressive than another one?