Assignment Math45-Homework-WEEK-12 due 11/25/2020 at 11:59pm PST

1. (1 point)

(1) Set up an integral for finding the Laplace transform of f(t) = 1. (Don'd forget any dt terms.)

$$F(s) = \mathcal{L}\{f(t)\} = \int_{A}^{B}$$
 help (formulas)

where $A = \underline{\hspace{1cm}}$ and $B = \underline{\hspace{1cm}}$. (Note: use the word INFINITY for ∞ .)

(2) Find the antiderivative (with constant term 0) corresponding to the previous part.

(3) Evaluate appropriate limits to compute the Laplace transform of f(t):

$$F(s) = \mathcal{L}\left\{f(t)\right\} = \underline{\hspace{1cm}}$$

(4) Where does the Laplace transform you found exist? In other words, what is the domain of F(s)?

help (inequalities)

2. (1 point)

Use the definition of the Laplace transform to find F(s) = $\mathcal{L}\{f(t)\}\$ for the function $f(t)=e^{3t+8}$, for s>3.

$$F(s) = \mathcal{L}\{f(t)\} =$$
 help (formulas)

By the definition of Laplace towns forms

$$F(s) = L \left(f(t) \right)^{s}$$

$$= \int_{0}^{\infty} e^{-st} f(t) dt$$

from question
$$f(t)=6$$
.

$$F(s) = L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt$$

$$= \int_{0}^{\infty} e^{-st} f(t) dt$$

(b) finding an antiderivative corresponding to previous part. F(s) = 6 j est dt F(s)=6 (est only want this one for part (b). = -6 [= 0 0] =-6[0-1]

$$= \frac{6}{5}$$

$$= \frac{6}{5}$$

$$= \frac{6}{5}$$

(c) Evaluating appropriate lamits to be computing h.T of f(f) F(S) = Lgf(+)6 = -6/e-e7

$$= -\frac{6}{5}(0-1)$$

$$= -\frac{6}{5}(-1) = 6/5$$

(a) cohere does the haplace transform

you found exist and what brush

exist

Domain of F(s) is all real numbers

except for s=0.

Domain of $f(s) = \frac{6}{s} = \frac{6}{s} = (-\infty, 0) \cup (0, +\infty)$

pomain of $f(s) = \frac{6}{s}$ at $(-\infty,0)$ u $(0,+\infty)$

Laplace Transform of e^{3t+8} : $\frac{e^8}{s-3}$

Steps

 $L\left\{e^{3t+8}\right\}$

Use the constant multiplication property of Laplace Transform: For function f(t) and constant a: $L\{a\cdot f(t)\}=a\cdot L\{f(t)\}$

 $= e^{8} L \left\{ e^{3t} \right\}$

 $L\left\{e^{3t}\right\}: \frac{1}{s-3}$

Hide Steps 👄

 $L\left\{e^{3t}\right\}$

Use Laplace Transform table: $L\left\{e^{at}\right\} = \frac{1}{s-a}$

 $L\left\{e^{3t}\right\} = \frac{1}{s-3}$

 $=\frac{1}{s-3}$

 $=e^8\frac{1}{s-3}$

Refine $e^8 \frac{1}{s-3}$: $\frac{e^8}{s-3}$

Hide Steps 🖨

 $e^{8}\frac{1}{s-3}$

Multiply fractions: $a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$

 $=\frac{1\cdot e^8}{s-3}$

Multiply: $1 \cdot e^8 = e^8$

 $=\frac{e^8}{s-3}$

 $=\frac{e^8}{s-3}$