INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO

DEPARTAMENTO DE CIENCIAS BÁSICAS

PRIMER EXAMEN DE LA UA DE MATEMÁTICAS DISCRETAS

Instrucciones: Lea cuidadosamente cada problema antes de proceder a resolverlo, justifique todas sus respuestas de manera clara y ordenada. Resolver todos los problemas. Subir el examen de donde lo descargaste en formato pdf, nombre del archivo: exa1MD_nombrecompleto_grupo.pdf.

- 1. Establezca el valor de verdad de las siguientes afirmaciones utilizando definiciones, diagramas de Venn o leyes del álgebra de conjuntos:
 - a) $A = B \leftrightarrow A \subseteq B \ o \ B \subseteq A$
 - b) $A \subseteq B \leftrightarrow A \subseteq B \ y \ A \neq B$ Sea $B = \{5,6, x, y, \{1,2,3,4\}\} = \{5,6, x, y, A\}$
 - c) |B|=8
 - d) $A \in B$
 - e) $\{A\} \subseteq B$
 - f) $A \not\subset B$
 - g) $\emptyset = \{0\}$
 - h) $\emptyset \Delta A = A$
 - i) $A\Delta A = A$
 - $j) \quad B A = A \cap \bar{B}$
- 2. Concluya con diagramas de Venn si se cumplen las siguientes igualdades indicando los pasos a seguir,

$$\left[\overline{A \cup (\overline{B} \cup C)}\right] \cup \left[\left(\overline{A} \cup B\right) \cup (\overline{A} \cup C)\right] = \emptyset$$
$$A\Delta(B \cup C) = (A\Delta B) \cup (A\Delta C)$$

3. Demuestre si se cumplen las siguientes igualdades utilizando las leyes del álgebra de conjuntos, en caso contrario de un contraejemplo.

Sean $A, B, C \subseteq U = \{0,1,2,3,...\}$ y los productos cartesianos a pares subconjuntos de UxU,

$$(\overline{A}\Delta \overline{B}) = A\Delta \overline{B}$$
$$\overline{AxB} = (\overline{A}xB) \cup (Ax\overline{B})$$

4. Supóngase que el conjunto universo consta de todos los puntos (x,y) cuyas coordenadas son enteros y quedan dentro o sobre el contorno del cuadrado acotado por las rectas x=0, y=0, x=6, y=6. Indique los elementos de los conjuntos en el plano cartesiano, de sus elementos de manera extensiva y determine sus cardinalidades de los siguientes

conjuntos:
$$\bar{A}, \bar{B}, \bar{C}, B \cap C \ y \ (\overline{\bar{A} \cap B}) \ \cap \bar{C}$$
. Tal que,

$$A = \{(x, y)|x^2 + y^2 \le 9\}$$

$$B = \{(x, y) | y \le x^3\}$$

$$C = \{(x, y) | x \le y^3\}$$

- 5. Sean $A, B, C \subseteq \mathbf{Z}$ tales que: $|A| = 25, |B| = 30, |C| = 35, |A \cap B| = 10, |B \cap C| = 20, |A \cup C| = 55, |\overline{A \cap C}| = 105$. Encuentre las siguientes cardinalidades,
 - a) |B-C|
 - b) |A (B C)|
 - c) $|(\overline{A \cup B \cup C})|$