NumPy Exercises

Now that we've learned about NumPy let's test your knowledge. We'll start off with a few simple tasks, and then you'll be asked some more complicated questions.

Import NumPy as np

```
In [0]: import numpy as np
```

Create an array of 10 zeros

```
In [4]: import numpy as np
allzeroes = np.zeros(10)
print(allzeroes)

[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
```

Create an array of 10 ones

```
In [5]: import numpy as np
allones = np.ones(10)
print(allones)
```

```
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
```

Create an array of 10 fives

Create an array of the integers from 10 to 50

Create an array of all the even integers from 10 to 50

44, 45, 46, 47, 48, 49, 50])

```
In [10]: import numpy as np
    even_integers_array = np.arange(10, 51, 2)
    print(even_integers_array)
```

[10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50]

Create a 3x3 matrix with values ranging from 0 to 8

```
| identity_matrix = np.eye(3)
| print(identity_matrix)

[[1. 0. 0.]
| [0. 1. 0.]
```

Use NumPy to generate a random number between 0 and 1

```
In [0]: import numpy as np
    random_number = np.random.rand()
    print(random_number)
```

Out[15]: array([0.42829726])

[0. 0. 1.]]

Use NumPy to generate an array of 25 random numbers sampled from a standard normal distribution

```
In [0]: import numpy as np
        random numbers = np.random.randn(25)
        print(random numbers)
Out[33]: array([ 1.32031013,  1.6798602 , -0.42985892, -1.53116655,
                                                                 0.85753232,
                0.87339938, 0.35668636, -1.47491157, 0.15349697,
                                                                 0.99530727,
               -0.94865451, -1.69174783, 1.57525349, -0.70615234, 0.10991879,
               -0.49478947, 1.08279872, 0.76488333, -2.3039931, 0.35401124,
               -0.45454399, -0.64754649, -0.29391671, 0.02339861, 0.38272124])
        Create the following matrix:
 In [0]: import numpy as np
        matrix = np.arange(0.01, 1.01, 0.01).reshape(10, 10)
        print(matrix)
Out[35]: array([[ 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 ],
               [0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19,
                                                                            0.2 1,
               [0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3],
               [0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4],
               [0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5],
               [0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59,
```

[0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7], [0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8], [0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9], [0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.]])

Create an array of 20 linearly spaced points between 0 and 1:

Numpy Indexing and Selection

Now you will be given a few matrices, and be asked to replicate the resulting matrix outputs:

```
In [0]: import numpy as np
         mat = np.arange(1, 26).reshape(5, 5)
         result = mat[2:, 1:]
         print(result)
Out[40]: array([[12, 13, 14, 15],
                [17, 18, 19, 20],
                [22, 23, 24, 25]])
 In [0]: # WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
         # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
         # BE ABLE TO SEE THE OUTPUT ANY MORE
 In [0]: import numpy as np
         mat = np.arange(1, 26).reshape(5, 5)
         number 20 = mat[3, 4]
         print(number 20)
Out[41]: 20
 In [0]: # WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
         # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
         # BE ABLE TO SEE THE OUTPUT ANY MORE
 In [2]: import numpy as np
         mat = np.arange(1, 26).reshape(5, 5)
         result = mat[0:3, 1:2]
         print(result)
         [[ 2]
          [ 7]
          [12]]
```

```
In [3]: # WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
         # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
         # BE ABLE TO SEE THE OUTPUT ANY MORE
 In [4]: import numpy as np
         mat = np.arange(1, 26).reshape(5, 5)
         result = mat[4, :]
         print(result)
         [21 22 23 24 25]
 In [0]: # WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
         # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
         # BE ABLE TO SEE THE OUTPUT ANY MORE
 In [0]: import numpy as np
         mat = np.arange(1, 26).reshape(5, 5)
         result = mat[3:, :]
         print(result)
Out[49]: array([[16, 17, 18, 19, 20],
                [21, 22, 23, 24, 25]])
```

Now do the following

Get the sum of all the values in mat

```
In [0]: import numpy as np
    mat = np.arange(1, 26).reshape(5, 5)
    sum_of_values = np.sum(mat)
    print(sum_of_values)
Out[50]: 325
```

Get the standard deviation of the values in mat

```
In [0]: import numpy as np

mat = np.arange(1, 26).reshape(5, 5)
    std_deviation = np.std(mat)
    print(std_deviation)
```

Out[51]: 7.2111025509279782

Get the sum of all the columns in mat

```
In [0]: import numpy as np

mat = np.arange(1, 26).reshape(5, 5)
    column_sums = np.sum(mat, axis=0)
    print(column_sums)
```

Out[53]: array([55, 60, 65, 70, 75])

Type *Markdown* and LaTeX: α^2