PopBin: Popcount Binarization for Lightweight Binary Neural Networks

Hyungdong Park, Inguk Yeo Department of Computer Engineering

Contents

- Background
 - BNNs (XNOR-Net / Bi-RealNet / ReActNet)
 - Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT)
- 2. Challenges Induced by Popcount Results in BNNs
 - Analysis of Latency Issues
 - Optimization Opportunities
- 3. Popcount Binarization Strategies
 - PTQ-Popcount Binarization
 - Simple QAT-Popcount Binarization
 - QAT-Popcount Binarization
 - Latency Reduction through Popcount Optimization

4. Experiments

- Datasets and Implementation Details
- Optimization of Popcount Results
- Latency Efficiency Analysis

5. Discussion

- Potential for Majority Voter Design
- Hierarchical and Approximate Majority Voter Design

Background

Binary Neural Networks (BNNs)

- XNOR-Net
 - XNOR operation-based binary neural network model. Description of its features and working principles.
- Bi-Real Net
 - The binarization technique used in Bi-Real Net and its performance improvements.
- ReActNet
 - The role of binarization and activation functions in ReActNet, along with related optimization techniques.

Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT)

- Post-Training Quantization (PTQ)
 - The basic concept of PTQ and its role in the binarization process of BNNs.
- Quantization-Aware Training (QAT)
 - Explanation of QAT techniques, differences from PTQ, and the advantages QAT provides for BNNs.

Background

units of Mul

- ReActNet-18 with CIFAR-10 using Xnor & Popcount

 $c_0 \times h_0 \times w_0$

Challenges Induced by Popcount Results in BNNs

Analysis of Latency Issues

- Analyzing the latency impact that Popcount results have on BNNs' performance.

Popcount Latency Optimization

- Exploring hardware optimization techniques to reduce latency caused by Popcount results.

Challenges Induced by Popcount Results in BNNs

- Analysis of latency issues

Challenges Induced by Popcount Results in BNNs

- Popcount Latency Optimization

Operations in QAT-popcount binarization ReActNet-18

Models	Operations	# Operations
ReActNet-18	Xnor & Popcount & Integer Multiplication & Bit shift	channel \times kernel ² Xnor & (channel \times kernel ² – 1) Popcount & $c_o \times w_o \times h_o$ Integer Multiplications & Bit shifts
QAT-Popcount binarization ReActNet-18	Xnor & Popcount	None

PTQ-Popcount Binarization

- A PTQ-based binarization method aimed at minimizing the impact of Popcount results. It is easy to apply but leads to a significant drop in accuracy.

Simple QAT-Popcount Binarization

- A method that uses QAT to improve the Popcount issue. It improves accuracy, but still falls short of the original model's performance.

QAT-Popcount Binarization

- An advanced binarization technique using QAT. It maintains accuracy within 1% of the original model while optimizing performance.

Latency Reduction through Popcount Optimization

- An optimization strategy to address latency issues caused by Popcount operations, enhancing overall system efficiency.

- PTQ-Popcount Binarization


```
|\alpha| \le (channel\_num \times kernel^2)

\beta = \pm 1

\gamma = \pm scaling \ factor

\delta = \pm (scaling \ factor \times channel\_num \times kernel^2)

: Inference
```

: Training

- Simple QAT-Popcount Binarization

 $|\alpha| \le (channel_num \times kernel^2)$ $\beta = \pm 1$ $\gamma = \pm scaling factor$

Forward

- QAT-Popcount Binarization


```
|\alpha| \le (channel\_num \times kernel^2)

\beta = \pm 1

\gamma = \pm scaling \ factor

\delta = \pm (channel\_num \times kernel^2 \div division\_num)

: Inference
```

: Training

Models	Operations	# Operations
ReActNet-18	Integer Multiplication & Bit shift	557,056 Integer Multiplications & Bit shifts
QAT-Popcount binarization ReActNet-18	None	None

Datasets and Implementation Details

- Description of datasets used in the experiments and implementation details.

Optimization of Popcount Results

- Comparison and analysis of various techniques to optimize Popcount results.

Latency Efficiency Analysis

- Analysis of latency efficiency after applying Popcount optimization techniques.

- Optimization of Popcount Results about PTQ-Popcount Binarization

Models	Top-1 Accuracy (%)	Top-5 Accuracy (%)
ReActNet-18	93.380	99.800
PTQ-Popcount binarization ReActNet-18	10.000	52.040
Bi-Real-18	88.770	98.250
PTQ-Popcount binarization Bi-Real-18	10.000	50.000

Experimental Settings

Dataset: CIFAR-10

Epoch: 128 for ReActNet-18, 256 for Bi-Real-18

Batch Size: 512

- Optimization of Popcount Results about Simple QAT-Popcount Binarization

Models	Top-1 Accuracy (%)	Top-5 Accuracy (%)
ReActNet-18	93.380	99.800
Simple QAT-Popcount binarization ReActNet-18	84.930	99.250
Bi-Real-18	88.770	98.250
Simple QAT-Popcount binarization Bi-Real-18	30.070	79.690

- Optimization of Popcount Results about QAT-Popcount Binarization depending on Division Num

Base Model	Division num	Top-1 Accuracy (%)	Top-5 Accuracy (%)
QAT-Popcount binarization ReActNet-18 (PopBin)	channel num $+$ α	92.150	99.640
	$(channel\ num\ imes\ kernel^2) + \alpha$	89.580	99.460
	channel num \times α	92.510	99.640
	(channel num \times kernel ²) \times α	92.160	99.660
	Min-Max Normalization (channel num \times kernel ²)	89.230	99.390

- Optimization of Popcount Results about QAT-Popcount Binarization

Models	Top-1 Accuracy (%)	Top-5 Accuracy (%)
ReActNet-18	93.380	99.800
Simple QAT-Popcount binarization ResNet-18	84.930	99.250
QAT-Popcount binarization ReActNet-18 (PopBin)	92.510	99.640
Bi-Real-18	88.770	98.250
Simple QAT-Popcount binarization Bi-Real-18	30.070	79.690
QAT-Popcount binarization Bi-Real-18 (PopBin)	88.520	98.380

Discussion

Potential for Majority Voter Design

- Exploring the potential for hardware optimization using Majority Voter design to enhance performance.

Hierarchical and Approximate Majority Voter Design

- Analyzing the contribution of hierarchical and approximate Majority Voter designs to improving hardware efficiency.

Thank you