Gate-ASSIGNMENT-3

EE24BTECH11043 - Murra Rajesh Kumar Reddy

- 1) Which one of the following is a solution of $\frac{d^2u(x)}{dx^2} = k^2u(x)$, for k real?
 - a) e^{-kx}
 - b) $\sin kx$
 - c) $\cos kx$
 - d) $\sinh x$
- 2) A real, invertible 3×3 matrix M has eigenvalues λ , (i = 1, 2, 3) and the corresponding eigenvectors are $|e_i\rangle$, (i = 1, 2, 3) respectively. Which one of the following is correct?
 - a) $M|e_i\rangle = \frac{1}{\lambda_i}|e_i\rangle$, for i = 1, 2, 3
 - b) $M^{-1}|e_i\rangle = \frac{1}{\lambda_i}|e_i\rangle$, for i = 1, 2, 3
 - c) $M^{-1}|e_i\rangle = \lambda_i|e_i\rangle$, for i = 1, 2, 3
 - d) The eigenvalues of M and M^{-1} are not related.
- 3) A quantum particle is subjected to the potential

$$V(x) = \begin{cases} \infty, & x \le -\frac{a}{2} \\ 0, & -\frac{a}{2} < x < \frac{a}{2} \\ \infty, & x \ge \frac{a}{2} \end{cases}$$

The ground state wave function of the particle is proportional to

- a) $\sin\left(\frac{\pi x}{2a}\right)$
- b) $\sin\left(\frac{\pi x}{a}\right)$
- c) $\cos\left(\frac{\pi x}{2a}\right)$
- d) $\cos\left(\frac{\pi x}{a}\right)$
- 4) Let \hat{a} and \hat{a}^+ , respectively denote the lowering and raising operators of a one-dimensional simple harmonic oscillator. Let $|n\rangle$ be the energy eigenstate of the simple harmonic oscillator. Given that $|n\rangle$ is also an eigen state of $\hat{a}^+\hat{a}^+\hat{a}\hat{a}$, the corresponding eigenvalue is
 - a) n(n-1)
 - b) n(n+1)
 - c) $(n+1)^2$
 - d) n^2
- 5) Which one of the following is a universal logic gate?
 - a) AND
 - b) NOT
 - c) OR
 - d) NAND
- 6) Which one of the following is the correct binary equivalent of the hexadecimal F6C?
 - a) 0110 1111 1100
 - b) 1111 0110 1100
 - c) 1100 0110 1111
 - d) 0110 1100 0111
- 7) The total angular momentum j of the ground state of the ${}_{8}^{17}O$ nucleus is
 - a) $\frac{1}{2}$

- b) 1
- c) $\frac{3}{2}$ d) $\frac{5}{2}$

8) A particle X is produced in the process $\pi^+ + p \rightarrow K^+ + X$ via the strong interaction. If the quark content of the K^+ is $u\bar{s}$, the quark content of X is

- a) $c\bar{s}$
- b) uud
- c) uus
- d) $u\bar{d}$

9) A medium $(\epsilon_r > 1, \mu_r = 1, \sigma > 0)$ is semi-transparent to an electromagnetic wave when

- a) Conduction current >> Displacement current
- b) Conduction current << Displacement current
- c) Conduction current = Displacement current
- d) Both Conduction current and Displacement current are zero

10) A particle is moving in a central force field given by $\hat{F} = -\frac{k}{r^3}$, where \hat{r} is the unit vector pointing away from the center of the field. The potential energy of the particle is given by

- a) $\frac{k}{r^2}$ b) $\frac{k}{2r^2}$ c) $-\frac{k}{r^2}$ d) $-\frac{k}{2r^2}$

11) Choose the correct statement related to the Fermi energy (E_F) and the chemical potential (μ) of a metal

- a) $\mu = E_F$ only at 0k
- b) $\mu = E_F$ at finite temperature
- c) $\mu < E_F$ at 0K
- d) $\mu > E_F$ at finite temparature

12) Consider a diatomic molecule formed by identical atoms. If E_V and E_C represent the energy of the vibrational nuclear motion and electronic motion respectively, then in terms of the electronic mass m and nuclear mass M , $\frac{E_V}{E_C}$ is proportional to

- a) $\left(\frac{m}{M}\right)^1$ b) $\frac{m}{M}$
- c) $\left(\frac{m}{M}\right)^{3/2}$ d) $\left(\frac{m}{M}\right)^2$

13) Which one of the following relations determines the manner in which the electric field lines are refracted across the interface between two dielectric media having (see figure)?

3

- a) $\epsilon_1 \sin \theta_1 = \epsilon_2 \sin \theta_2$ b) $\epsilon_1 \cos \theta_1 = \epsilon_2 \cos \theta_2$
- c) $\epsilon_1 \tan \theta_1 = \epsilon_2 \tan \theta_2$
- d) $\epsilon_1 \cot \theta_1 = \epsilon_2 \cot \theta_2$