# SUPPLY CHAIN OPTIMIZATION

Machine Learning Project Review Delhi Technological University

Harshit Jha – 2K19/CO/152



We have developed a solution to a basic logistic problem most MNC's face. How to establish plants and warehouses across the country to reduce the overall cost and meet the SLA of all the shops in our case. Further we also suggest the companies how the shops selling their products can be more efficient with the delivery system

This Power Bi Webpages basically advices the MNC, locations where they can place their warehouses by considering their already made network and advising changes to improve it. It also provides the company with customer delivery routes for every shop

# What Is My Project About?



Analyse input data which contains the current supply chain

Python +

Get the output data ready to be visualized in POWER BI

**POWER BI** 

**EXCEL** 

Process the DATA using Kmeans, Dijkstra to produce clustering output and generate TSP results

**EXCEL** 

Visualize the output as a Power Bi report





### **Plant**

Manufacture product using the raw materials



#### Warehouse

Store product and perform deliveries to nearby shops



Sells the product within the city to customers



#### **Raw Material**

Raw materials are provided to the plant for manufacturing of the products by raw material providers

# What is K-Means?

The K-means algorithm is an iterative technique that attempts to split a dataset into K separate non-overlapping subgroups (clusters), each of which contains only one data point. It attempts to make intra-cluster data points as comparable as possible while maintaining clusters as distinct (far) as possible. It distributes data points to clusters in such a way that the sum of the squared distances between them and the cluster's centroid (arithmetic mean of all the data points in that cluster) is as small as possible. Within clusters, the less variance there is, the more homogenous (similar) the data points are.



The distance metric that was used in the project in the execution of the K-Means algorithm was Great Circle Distance. The Great Circle distance is the smallest distance between any two places on the sphere's surface. It takes into consideration the curvature of the Earth's surface. As the project comprises of delivering products and finding optimal paths for the same, it was the optimal measure of distance to be used.

$$d = r \cos^{-1}[\cos \sigma_1 \cos \sigma_2 \cos (\Lambda_1 - \Lambda_2) + \sin \sigma_1 \sin \sigma_2]$$

## WHY DO WE USE WEIGHTED K-MEANS?

Assume you're wanting to segment a retail store's customers based on their purchases of organic and local products. Some clients have a high spending propensity in both areas, whereas others have a mixed propensity.

Although a substantial percentage of customers spend heavily in these areas, their overall spending and visit frequency are low, making them less likely to respond to the ad. These customers' data points will result in skewed clusters and centroid values. In this case, weighted K-Means can be used to provide observational weight to each customer data point.

Imagine we're now working with data points of various sizes, and the weights have an impact on the algorithm (represented by their weights). We can also see that the size of the data point is related to its gravitational force. As a result, the larger the weight, the more a data point pulls the centroid toward it. In conclusion, the most significant modification from the usual approach is in the centroid computation, which now use weighted averages rather than standard means.



# Cleaning data before K-Means can be applied

#### Removing records with missing data

| 27 East | BHUBANESHWAR | 20.2961 | 85.8245 Visakhapatnam | 17.74585   | 83.2426122 | 14457 | 72  |
|---------|--------------|---------|-----------------------|------------|------------|-------|-----|
| 28 East | BHUBANESHWAR | 20.2961 | 85.8245 Vizianagaram  | 18.111529  | 83.395852  | 7180  | 96  |
| 29 East | GUWAHATI     | 26.1445 | 91.7362 Agartala      | 23.7928483 | 91.2782839 | 23938 | 120 |
| 30 East | GUWAHATI     | 26.1445 | 91.7362 Rangia        | 26.4397687 |            | 12225 | 48  |
| 31 East | GUWAHATI     | 26.1445 | 91.7362 Aizwal        | 26.1603552 | 91.7747472 | 28565 | 144 |
| 32 East | GUWAHATI     | 26.1445 | 91.7362 Barpeta       | 26.1230191 | 91.6846747 | 12853 | 72  |
| 33 East | GUWAHATI     | 26.1445 | 91.7362 Bongaigaon    | 26.4902033 | 90.5512525 | 14691 | 72  |
| 24 Fact | GUMAHATI     | 26 1445 | 01 7262 Dhuhri        | 26.0206082 | 90 0742462 | E021  | 06  |

#### Removing records which are outliers

| 78 | East | PATNA | 25.5941 | 85.1376 | Bhabua      | 25.6032982 | 85.137024  | 8441  | 72 |
|----|------|-------|---------|---------|-------------|------------|------------|-------|----|
| 79 | East | PATNA | 25.5941 | 85.1376 | Bhagalpur   | 25.5845965 | 85.1991676 | 55567 | 72 |
| 80 | East | PATNA | 25.5941 | 85.1376 | Biharsharif | 25.2049738 | 85.517437  | 21002 | 48 |
| 81 | East | PATNA | 25.5941 | 85.1376 | Raxaul      | 23.8103    | 90.4125    | 4640  | 96 |
| 82 | East | PATNA | 25.5941 | 85.1376 | Buxar       | 25.6150013 | 85.144441  | 13355 | 72 |
| 83 | East | PATNA | 25.5941 | 85.1376 | Chapra      | 25.7421253 | 84.9770735 | 5776  | 72 |
| 84 | East | PATNA | 25.5941 | 85.1376 | Darbhanga   | 25.6216476 | 85.1643816 | 17685 | 48 |
| 85 | East | PATNA | 25.5941 | 85.1376 | Forbishganj | 26.2986049 | 87.268613  | 6587  | 96 |
| 00 | F4   | DATNA | 25 5044 | OF 1270 | C           | 25 57402   | 05 1255610 | 27055 | 40 |

#### **Removing redundant columns**

| Lon        | Demand  | SLA   | Delivery   | Customer       |
|------------|---------|-------|------------|----------------|
| LOII       | Dellial | JLA 🔻 | Date 💌     | Satisfaction * |
| 85.1510818 | 25499   | 48    | 09-01-2021 | 1              |
| 85.8191119 | 24387   | 48    | 06-06-2021 | 8              |
| 86.737824  | 12916   | 72    | 06-03-2021 | 4              |
| 84.8275064 | 54704   | 48    | 08-02-2021 | 9              |
| 85.8249476 | 16649   | 48    | 22-08-2021 | 10             |
| 84.582481  | 5282    | 48    | 10-03-2021 | 4              |
| 85.8245398 | 18859   | 24    | 25-02-2021 | 8              |
| 85.8245398 | 9928    | 72    | 10-04-2021 | 10             |
| 85.8829895 | 33605   | 24    | 06-04-2021 | 9              |
| 02 0120265 | 6500    | 72    | 26 00 2021 | 0              |

## Warehouses

# Initial Data that we have after the cleaning process

|     | GOWANATI         | 20.1443  | 91./302  | 3   |     |        |    |       |              |              |            |                                       |            |            |                |    |
|-----|------------------|----------|----------|-----|-----|--------|----|-------|--------------|--------------|------------|---------------------------------------|------------|------------|----------------|----|
| t   | KOLKATA          | 22.5726  | 88.3639  | 1   |     |        |    |       |              |              |            |                                       |            |            |                |    |
| ŧ   | PATNA            | 25.5941  | 85.1376  | 3   |     |        |    | Dogic | Branch       | ▼ Branch L ▼ | Duonah Law | City                                  | Lat 💌      | Lon ▼      | Demar <b>▼</b> | SL |
| t   | RANCHI DEPOT     | 23.3441  | 85.3096  | 3   |     |        |    | Regic |              |              |            | · · · · · · · · · · · · · · · · · · · | 201        |            |                | )L |
| th  | JAIPUR           | 26.9124  | 75.7873  | 3   |     |        |    | East  | BHUBANESHWAR | 20.2961      |            |                                       | 20.8444033 |            |                |    |
| th  | LUCKNOW          | 26.8467  | 80.9462  | 3   |     |        |    | East  | BHUBANESHWAR | 20.2961      | 85.8245    | Balasore                              | 20.3098259 | 85.8191119 | 24387          |    |
| th  | NOIDA            | 28.5355  | 77.391   | 3   |     |        |    | East  | BHUBANESHWAR | 20.2961      | 85.8245    | Baripada                              | 21.923201  | 86.737824  | 12916          |    |
| th  | Banur            | 30.5596  | 76.6982  | 1   |     |        |    | East  | BHUBANESHWAR | 20.2961      | 85.8245    | Berhampur                             | 19.3105216 | 84.8275064 | 54704          |    |
| th  | BANGALORE        | 12.9716  | 77.5946  | 1   |     |        |    | East  | BHUBANESHWAR | 20.2961      | 85.8245    | Bhadrak                               | 20.2449129 | 85.8249476 | 16649          |    |
| th  | COIMBATORE DEPOT | 11.0168  | 76.9558  | 3   |     |        |    | East  | BHUBANESHWAR | 20.2961      | 85.8245    | Bhanjanagar                           | 19.9358071 | 84.582481  | 5282           |    |
| ıth | HYDERABAD        | 17.385   | 78.4867  | 3   |     |        |    | East  | BHUBANESHWAR | 20.2961      | 85.8245    | Bhubaneswar                           | 20.2960587 | 85.8245398 | 18859          |    |
| st  | AHMEDABAD        | 23.01451 | 72.59176 | 3   |     |        |    | East  | BHUBANESHWAR | 20.2961      | 85.8245    | Bolangir                              | 20.2960587 | 85.8245398 | 9928           |    |
| st  | INDORE           | 22.7196  |          | 3   |     |        |    | East  | BHUBANESHWAR | 20.2961      | 85.8245    | Cuttack                               | 20.462521  | 85.8829895 | 33605          |    |
| st  | MUMBAI           | 19.076   |          | 1   |     |        |    | East  | BHUBANESHWAR | 20.2961      |            | Gunupur                               | 19.0754648 |            |                |    |
| st  | NAGPUR           | 21.1458  | 79.0882  | 3   |     |        |    | East  | BHUBANESHWAR | 20.2961      |            | Jajpur Road                           | 20.9550552 |            |                |    |
| st  | PUNE             | 18.5204  | 73.8567  | 3   |     |        |    |       |              |              |            | •                                     |            |            |                |    |
| st  | RAIPUR           | 21.2514  | 81.6296  | 3   |     |        |    | East  | BHUBANESHWAR | 20.2961      |            | Jeypore                               | 18.8963119 |            |                |    |
| th  | ZIRAKPUR DEPOT   | 30.6425  | 76.8173  | 3   |     |        |    | East  | BHUBANESHWAR | 20.2961      | 85.8245    | Jharsuguda                            | 21.8829086 | 84.0278719 | 26334          |    |
|     |                  |          |          |     |     |        |    | East  | BHUBANESHWAR | 20.2961      | 85.8245    | Keonjhar                              | 21.628933  | 85.5816847 | 14630          |    |
|     |                  |          |          |     |     |        |    | East  | BHUBANESHWAR | 20.2961      | 85.8245    | Kesinga                               | 20.1850477 | 83.2104426 | 9038           |    |
| Reg | ion              | City     |          | Lat | lon | Demand | 1) | East  | BHUBANESHWAR | 20.2961      | 85.8245    | Khariar Road,Dist Nuapada             | 20.2866522 | 82.762337  | 14489          |    |
| Keg | 1011             | City     |          | Lat |     | Demanu |    | East  | BHUBANESHWAR | 20,2961      | 85.8245    | Navagarh                              | 20.305678  | 85.85378   | 13870          |    |

**Shops** 

| Region | City                      | Lat      | Lon      | Demand |
|--------|---------------------------|----------|----------|--------|
| North  | Akkanwali                 | 29.8683  | 75.4214  | 177637 |
| West   | Aurangabad                | 19.17833 | 74.7679  | 82502  |
| North  | Baddi                     | 30.95783 | 76.79136 | 863191 |
| North  | Bahadurgarh               | 28.6914  | 76.9314  | 117083 |
| North  | Baddi                     | 30.95783 | 76.79136 | 415545 |
| North  | Bhiwadi                   | 28.20141 | 76.82755 | 137146 |
| West   | Chennai                   | 13.08268 | 80.27072 | 0      |
| North  | Chhat Rampur              | 26.3584  | 89.6405  | 753402 |
| West   | Daman                     | 20.39737 | 72.8328  | 231555 |
| North  | Dehradun                  | 30.31649 | 78.03219 | 13320  |
| North  | Faridabad                 | 28.40891 | 77.31779 | 49417  |
| North  | Gagret Una                | 31.4685  | 76.2708  | 11012  |
| North  | Haridwar                  | 29.94569 | 78.16425 | 636019 |
| West   | Hyderbad                  | 17.38504 | 78.48667 | 422323 |
| North  | Jhilmil Colony, New Delhi | 28.6715  | 77.3066  | 1430   |
| North  | Jodhpur                   | 26.23895 | 73.02431 | 10747  |
| Wost   | Kaikolamplayam            | 11.0745  | 77.055   | 25/100 |

Lon 85.8245

20.2961

City

BHUBANESHWAR

GUWAHATI

East

East East East East North North North North South South South West West West West West West North

**Raw Material provider** 

Calculating new plant locations to suggest a new supply network



Segregating shops into two clusters after applying K-Means

Location of Company Shops and raw material providers(higher weightage) all across India



Making the cluster centroids as new plants

## Python Code to calculate plant locations

# Scaling points

```
df_sh = df_shops.copy()[['Lat', 'Lon', 'Demand']] # new dataframe with 3 columns from vendor dataframe
df_sh['Type'] = 0
df_ven = df_vendors.copy()[['Lat', 'Lon', 'Demand']]
df_ven['Type'] = 1
df_sh['Demand'] = df_sh['Demand'] / 100
df = pd.concat([df_ven, df_sh])
```

```
km = KMeans(n_clusters=start_point, random_state=rand) # kmeans object number of centroid, rand
km.fit(X=df[["Lat", "Lon"]], sample_weight=df["Demand"]) # df passes is dataset to work on, wei
df['Cluster'] = km.labels_ # label of each pt
centers = pd.DataFrame(km.cluster_centers_, columns=["Lat", "Lon"]) # lat and long of clusters
```

Fitting data in K-Means object

Output

```
Lat Lon Cluster Region City Demand Level
0 29.308025 78.503308 0 North Dhampur 6612227.0 1.0
1 19.082698 74.735461 1 West Ahmednagar 1534817.0 1.0
```

Process finished with exit code -1

Calculating new warehouse locations to suggest a new supply network



## Python Code to calculate new warehouses

```
df = df_shops.copy()

km = KMeans(n_clusters=start_point, random_state=rand) # no of centers is k (10 to 30)

km.fit(X=df[["Lat", "Lon"]], sample_weight=df["TotalDemand"]) # dataset is all customers

df["cluster"] = km.labels_
centers = pd.DataFrame(km.cluster_centers_, columns=["Cluster Lat", "Cluster Lon"]) # k clustured warehouse locations
centers["Cluster"] = centers.index
```

Fitting data in K-Means object

Output

| Cluster Lat | Cluster Lon | Cluster | Cluster City  |
|-------------|-------------|---------|---------------|
| 26.160355   | 91.774747   |         | Aizwal        |
| 17.522534   | 78.522522   |         | Karimnagar    |
| 29.308025   | 78.503308   |         | Dhampur       |
| 21.251384   | 81.629641   |         | Baradwar      |
| 13.435498   | 77.731534   |         | CHICKBALLAPUR |
| 22.778804   | 73.614279   |         | Godhra        |
| 21.923201   | 86.737824   |         | Baripada      |
| 24.289552   | 87.255183   |         | Dumka         |
| 26.781491   | 80.884538   |         | Kanpur        |
| 19.082698   | 74.735461   |         | Ahmednagar    |

# Comparing Cost, SLA level and Other parameters between Optimized and Existing Supply chain Network



# Python code to make graphs and calculate distance

### **Graph Creation**

```
['Dhampur', 'Baradwar', 'customer_Visakhapatnam'] Distance = 1942.880534351929
['Dhampur', 'Baradwar', 'customer_Vizianagaram'] Distance = 1931.044506801948
['Ahmednagar', 'Baradwar', 'customer_Balaghat'] Distance = 896.8465906893256
['Ahmednagar', 'Baradwar', 'customer_Chhindwara'] Distance = 876.9516248774969
['Ahmednagar', 'Baradwar', 'customer_Seoni'] Distance = 876.3177279279955
['Ahmednagar', 'Baradwar', 'customer_Shahdol'] Distance = 872.592725103609
['Ahmednagar', 'Baradwar', 'customer_Wani'] Distance = 1226.9488553294177
['Ahmednagar', 'Baradwar', 'customer_Akola'] Distance = 999.5875449495728
```

Output

```
for index, c in customer.iterrows():
    mw = get_mother_warehouse(warehouse, c.Region)
    target1 = "customer_" + c.City
    m = nx.shortest_path(network_graph, mw, target1, weight='distance')
    totaldis = 0
    for ran in range(len(m) - 1):
        totaldis = nx.dijkstra_path_length(network_graph, m[0], 'customer_' + c.City, weight='weight')
    customer.at[index, 'end_to_end_existing_distance'] = totaldis + average_inward_distance
```

Applying Dijkstra for shortest path

# Calculating inter-city delivery clusters for shops and their customers and creating their disjoint graphs

We choose a sample city like Delhi with 8 shopkeepers and 73 customers (consumers of the product). After the product is distributed amongst the shopkeepers throughout India, costumers like us buy these products online and offline as well. Products bought offline is not considered here, rather we focus on the products bought online. The online customers expect an efficient delivery from the nearby shops so using K-means we cluster the customers into X clusters where X is the number of shops in the area. Then we assign each cluster to the shop nearest to the centroid. Efficiently delivering the products by saving fuel and time satisfies the customer and saves the shopkeeper money which converts into profit for the company as well.

8 disjoint graphs are created to connect shopkeepers with their respective costumers which bought the product from that shop. All of these 8 graphs are disjoint but each of these graphs are complete graphs

# Clustering result





Example of the graph for shop 8

## Applying K-Means to create delivery clusters

```
km = KMeans(n_clusters=count_auth, random_state=101)
km.fit(X=df_cit[["Lat", "Long"]])
centers = pd.DataFrame(km.cluster_centers_, columns=["Center Lat", "Center Long"])
centers["Cluster"] = centers.index
df_cit["Cluster"] = km.labels_
```

Clustering code

Clustering result

| Lat      | Long     | identity    | level | Cluster | Center Lat | Center Long | shop   |
|----------|----------|-------------|-------|---------|------------|-------------|--------|
| 28.61419 | 77.07154 | customer 1  | 1     | 3       | 28.6256914 | 77.10194107 | shop 6 |
| 28.67979 | 77.19491 | customer 8  | 1     | 5       | 28.720002  | 77.220003   | shop 7 |
| 28.71745 | 77.15087 | customer 7  | 1     | 8       | 28.7259717 | 77.162658   | shop 1 |
| 28.65952 | 77.20501 | customer 28 | 1     | 2       | 28.6499765 | 77.2320588  | shop 2 |
| 28.60014 | 77.22649 | customer 36 | 1     | 6       | 28.61609   | 77.243048   | shop 4 |
| 28.66916 | 77.31227 | customer 41 | 1     | 4       | 28.6926703 | 77.28354435 | shop 3 |
| 28.57416 | 77.19537 | customer 64 | 1     | 1       | 28.5735343 | 77.1863593  | shop 8 |
| 28.56366 | 77.28905 | customer 53 | 1     | 0       | 28.5115704 | 77.3026233  | shop 5 |
| 28.54001 | 77.11978 | customer 63 | 1     | 7       | 28.5012304 | 77.1823908  | shop 9 |

#### Applying TSP and calculating delivery paths for each shop

To make maximum deliveries in one run for a particular shop, it is profitable, and time saving for the delivery personnel to visit every customer of that particular shop and return back after completing all the deliveries in one circuit. Hence, we apply TSP algorithm to calculate such a path. We apply TSP (heuristics algorithm) for every separate graph and formulate the TSP paths for the delivery personnel to follow. All these paths are displayed using a webpage made by PowerBI using data generated by python.







## Applying TSP to on graphs to find optimal paths

```
jdef find_path(g, gsource, source, path, path_calc, totdis=0):
    if len(path_calc) == 1:
        path.append(gsource)
        totdis = totdis + nx.single_source_dijkstra(g, gsource, path_calc[0])[0]
        return totdis, path
    closest_node = path_calc[0]
    dis = nx.single_source_dijkstra(g, source, closest_node)[0]
    for node in path_calc:
        tempdis = nx.single_source_dijkstra(g, source, node)[0]
    if tempdis < dis:
        closest_node = node
        dis = tempdis
    path.append(closest_node)
    path_calc.remove(closest_node)
    totdis = totdis + dis
    totdis, path = find_path(g, gsource, closest_node, path, path_calc, totdis)
    return totdis, path</pre>
```

#### **Applying TSP**

```
TSP paths generated
```

```
['shop 8', 'customer 64', 'customer 54', 'customer 35', 'customer 31', 'customer 61', 'customer 68', 'customer 66', 'customer 60', ['shop 7', 'customer 18', 'customer 12', 'customer 13', 'customer 8', 'customer 17', 'customer 16', 'customer 27', 'customer 9', 'description of the customer 69', 'customer 71', 'customer 14', 'customer 73', 'customer 72', 'customer 1', 'customer 70', 'customer 67', ['customer 41', 'customer 20', 'customer 21', 'customer 42', 'customer 19', 'shop 3', 'customer 24', 'customer 38', 'customer 22', ['customer 55', 'customer 50', 'customer 48', 'customer 46', 'customer 57', 'customer 49', 'customer 51', 'customer 53', 'customer ['shop 2', 'customer 11', 'customer 10', 'customer 25', 'customer 29', 'customer 32', 'customer 30', 'customer 37', 'customer 36', ['shop 1', 'customer 7', 'customer 4', 'customer 5', 'customer 6', 'customer 3', 'shop 1'] ['customer 65', 'customer 44', 'shop 9', 'customer 62', 'customer 63', 'customer 65'] ['shop 5', 'customer 59', 'customer 58', 'shop 5']
```

#### USING THE ELBOW METHOD TO CALCULATE THE OPTIMAL K FOR K-MEANS

We used the WSS technique to try and identify the best K for K means. Even though we provided the whole model results for K from 13 to 30 for the company to be able to see that how the cost and service level shift increasing the credibility of the model, still we computed WSS's best K.



The elbow method suggest that the knee point is at k = 23 and hence 23 are the optimal number of warehouses (clusters) that we need to calculate



The final cost curve also suggests that K = 23 is the optimal number of warehouses that we need.

# POWER BI WEB SOLUTION FOR SUPPLY NETWORK COMPARISON



Using Microsoft Power BI We have created a web solution to demonstrate how this project accurately tends to optimize cost and achieve SLA

# POWER BI WEB SOLUTION FOR INTERCITY DELIVERY SYSTEM



Using Microsoft Power BI We have created a web solution to demonstrate how shops can efficiently deliver products to their customers