Lab2: FPGA Emulation

107061112 王昊文

Experiments

1. Emulate exp1 in lab1 (a full adder s + cout = x + y + cin) with the following parameters.

I/O	X	y	cin	S	cout
LOC	V17	V16	W16	U16	E19

Design Specification

✓ I/O

Input x, y, cin

Output s, cout

✓ Logic Block:

輸入三個input,通過full adder邏輯得到兩個輸出。

Design Implementation

✓ Logic Function: cout = (x & cin) | (x & y) | (cin & x) $s = x ^ y ^ cin$

✓ Logic Diagram:

✓ IO Pin

Input			Out	tput
x	у	cin	cout	S
V17	V16	W16	E19	U19

Discussion

這一題算是讓我們體驗看看接Pin的感覺,第一次找按鍵找了蠻久的。基本上只要邏輯沒有出錯,Pin符合題目要求基本上就不會出錯。

2. Derive a BCD (i[3:0]) to 7-segment display decoder (D_ssd[7:0]), and also use four LEDs (d[3:0]) to monitor the 4-bit BCD number. (Other values of i outside the range will show F).

Design Specification

✓ I/O

Input [3:0]i // BCD input

Output [3:0]d // LED output

Output [7:0]D_ssd // Seven Segment

✓ Logic Block:

輸入i當作Pin輸入d直接連結到輸出。剩餘輸入前往decoder,選擇想要輸出的數字。

Design Implementation

✓ Logic Function:

d = i

we define the 7 segments, then for the case of i, we assign the segments to D_ssd. For cases bigger than 9, we assign F to D_ssd.

case (i)

✓ IO Pin

input [3:0]i				
i[0] i[1] i[2] i[3]				
V17	V16	W16	W17	

output [3:0]d				
d[0] d[1] d[2] d[3]				
U16	E19	U19	V19	

output [7:0]D_ssd							
D_ssd[0]				D_ssd[7]			
V7	U7	V5	U5	V8	U8	W6	W7

Discussion

其實我期待這一刻真的很久!讓LED亮起來是沒什麼感覺,但是看到能讓SSD亮起自己想要的數字感覺真的很好。這個實驗中,剛開始一直無法顯示自己想要的字,後來發現是接PIN的時候接反,導致無法顯示正確的數字。還有Define的部分設定數字的亮暗也容易設定錯誤。

3 Derive a binary (i[3:0], 0-9, a, b, c, d, e, f) to 7-segment display decoder (D[7:0]), and alsouse four LEDs (d[3:0]) to monitor the 4-bit binary number.

Design Specification

✓ I/O

Input [3:0]i // BCD input

Output [3:0]d // LED output

Output [7:0]D_ssd // Seven Segment

✓ Logic Block:

邏輯與前一題類似。

Design Implementation

✓ Logic

Similar to the previous experiment, the only difference is for 10~15 we have to assign the corresponding alphabet.

✓ IO Pin

input [3:0]i				
i[0] i[1] i[2] i[3]				
V17	V16	W16	W17	

output [3:0]d					
d[0]	d[1]	d[2]	d[3]		
U16	E19	U19	V19		

output [7:0]D_ssd							
D_ssd[0]				D_ssd[7]			
V7	U7	V5	U5	V8	U8	W6	W7

Discussion

這一題跟上一題相當的類似,只是必須額外補上 a~f 的 define.

4 (Bonus) Design a combinational circuit that compares two 4-bit unsigned numbers A and B to see whether A is greater than B. The circuit has one output X such that X = 0 if $A \le B$ and X = 1 if A > B. (let A[3:0], B[3:0] be controlled by 8 DIP switches, the binary numbers are displayed on 8 LEDs. The result X is on another LED.)

Design Specification

✓ I/O

Input [3:0]A, B // input number

Output [3:0]a, b // LED output of the number

Output X // If A > B, then, X = 1

Output [7:0]D // Seven Segment

✓ Logic Block:

a,b input 直接接到A, B output, 然後a, b進入comparator比較, 然後輸出大的值。

Design Implementation

✓ Logic

A = a // assign input to output

B = b

If A > B, X = 1, display A,

Else X = 0, display B

✓ IO Pin

input [3:0]A					
A[0] A[1] A[2] A[3]					
W15	V15	W14	W13		

input [3:0]B					
B[0]	B[1]	B[2]	B[3]		
V17	V16	W16	W17		

output [3:0]a					
a[0]	a[1]	a[2]	a[3]		
W18	U15	U14	V14		

output [3:0]b					
b[0] b[1] b[2] b[3]					
U16	E19	U19	V19		

output [7:0]D							
D [0]	D [1]	D [2]	D [3]	D [4]	D [5]	D [6]	D [7]
V7	U7	V5	U5	V8	U8	W6	W7

Output $X \rightarrow L1$

Discussion

這一題Bonus基本上,只要前面Segment Display會做,這一題也不成問題。題目只規定在LED上顯示大小關係,但我接受老師的建議把比較大的數字顯示在 ssd上。想法也很簡單,在大小比較完之後透過MUX選擇想要顯示的數字即可。

Conclusion

這次的lab難度有小小提升,但基本上上學期邏輯設計好好學的話應該都不難。 這次的實驗接線的部分讓我開始思考了很多延伸的功能,紅綠燈等等或許並不 是很難做到的。