Low-overhead non-Clifford topological fault-tolerant circuits for all non-chiral abelian topological phases

Andreas Bauer, arXiv:2403.12119

Free University Berlin, MIT

03/28/24

Passive/**physical** fault toler- Active/**engineered** fault toler- ance

Passive/ physical fault toler-	Active/engineered fault toler-
ance	ance
Using a topological material	Simulating a topological material

Passive/ physical fault toler-	Active/engineered fault toler-
ance	ance
Using a topological material	Simulating a topological ma-
	terial
Suffices to use invariant data	Need explicit quantum circuit
or ground-state toy models	+ classical decoder

Passive/ physical fault toler-	Active/engineered fault toler-
ance	ance
Using a topological material	Simulating a topological ma-
	terial
Suffices to use invariant data	Need explicit quantum circuit
or ground-state toy models	+ classical decoder
Arbitrary topological phases	Almost exclusively the toric
are studied	code is studied

ance ance
Using a topological material Simulating a topological ma-
terial
Suffices to use invariant data Need explicit quantum circuit
or ground-state toy models + classical decoder
Arbitrary topological phases Almost exclusively the toric
are studied code is studied
Universality achieved purely Universality achieved through
topologically magic state distillation

Active fault tolerance beyond the toric-code phase: **Literature**

 Dauphinais et al, Quantum Error Correction with the Semion Code (2018)
 Magdalena de la Fuente et al, Non-Pauli topological stabilizer codes from twisted quantum doubles (2020)
 Extending abelian twisted quantum doubles to non-Pauli stabilizers

Active fault tolerance beyond the toric-code phase: **Literature**

- Dauphinais et al, Quantum Error Correction with the Semion Code (2018)
 Magdalena de la Fuente et al, Non-Pauli topological stabilizer codes from twisted quantum doubles (2020)
 Extending abelian twisted quantum doubles to non-Pauli stabilizers
- Ellison et al, Pauli Stabilizer Models of Twisted Quantum Doubles (2021)
 Twisted quantum doubles from higher-dimensional untwisted quantum doubles by measuring "short string operators" of condensed anyons

Active fault tolerance beyond the toric-code phase: **Literature**

- Dauphinais et al, Quantum Error Correction with the Semion Code (2018)
 Magdalena de la Fuente et al, Non-Pauli topological stabilizer codes from twisted quantum doubles (2020)
 Extending abelian twisted quantum doubles to non-Pauli stabilizers
- Ellison et al, Pauli Stabilizer Models of Twisted Quantum Doubles (2021)
 Twisted quantum doubles from higher-dimensional untwisted quantum doubles by measuring "short string operators" of condensed anyons
- Schotte et al, Quantum error correction thresholds for the universal Fibonacci Turaev-Viro code (2020)
 Syndrome-extraction circuit for the Fibonacci string-net model

► General method constructing fault-tolerant circuits from path integrals + 1-form symmetries

- ► General method constructing fault-tolerant circuits from path integrals + 1-form symmetries
- ► Here: Abelian twisted quantum doubles + one non-abelian example

- ► General method constructing fault-tolerant circuits from path integrals + 1-form symmetries
- ► Here: Abelian twisted quantum doubles + one non-abelian example
- ➤ Simple 2-qudit operations, moderate overhead, without enlarging qudit dimension

- ► General method constructing fault-tolerant circuits from path integrals + 1-form symmetries
- ► Here: Abelian twisted quantum doubles + one non-abelian example
- ➤ Simple 2-qudit operations, moderate overhead, without enlarging qudit dimension
- Error correction beyond Pauli measurements + Clifford operations

 \triangleright Sum over variables a, b, c, ... on regular lattice

- \triangleright Sum over variables a, b, c, ... on regular lattice
- ▶ Summand: Product of weights $\omega_{abc...}$

- \triangleright Sum over variables a, b, c, ... on regular lattice
- ▶ Summand: Product of weights $\omega_{abc...}$
- ▶ Quantum phases ⇒ ground state properties ⇒ imaginary-time evolution ⇒ Euclidean signature

- \triangleright Sum over variables a, b, c, ... on regular lattice
- ▶ Summand: Product of weights $\omega_{abc...}$
- ▶ Quantum phases ⇒ ground state properties ⇒ imaginary-time evolution ⇒ Euclidean signature
- ► Alternative language: Tensor networks in spacetime

Fixed-point path integrals

ightharpoonup Zero correlation length ightarrow Annulus operator = rank 1:

Ground state: Closed-loop superposition $\in 2D$

$$|\psi
angle \propto \sum_{ ext{1-cocycle }A} |A
angle$$

Ground state: Closed-loop superposition $\in 2D$

$$|\psi
angle \propto \sum_{ ext{1-cocycle }A} |A
angle$$

Ground state: Closed-loop superposition $\in 2D$

$$|\psi
angle \propto \sum_{ ext{1-cocycle }A} |A
angle$$

Ground state: Closed-loop superposition $\in 2D$

$$|\psi
angle \propto \sum_{ ext{1-cocycle }A} | ext{A}
angle$$

Path integral: Closed-membrane superposition $\in 2+1D$,

$$Z \propto \sum_{ ext{1-cocycle }A} 1 = \sum_{ ext{1-cochain }A ext{ plaquette }p} \delta_{
ho_0 +
ho_1 +
ho_2 + \ldots = 0}$$

$$c \xrightarrow{b} a$$

$$= \begin{cases} 1 & \text{if } a = b = c = \dots \\ 0 & \text{otherwise} \end{cases}$$

$$c \xrightarrow{b} c \xrightarrow{a} a$$

$$= \begin{cases} 1 & \text{if } a+b+c+\dots\\ &=0 \mod 2\\ 0 & \text{otherwise} \end{cases}$$

$$c \xrightarrow{b} a$$

$$\cdots$$

$$= \begin{cases} 1 & \text{if } a = b = c = \dots \\ 0 & \text{otherwise} \end{cases}$$

$$c \xrightarrow{b} c \xrightarrow{b} a$$

$$\cdots$$

$$= \begin{cases} 1 & \text{if } a + b + c + \dots \\ = 0 & \text{mod } 2 \\ 0 & \text{otherwise} \end{cases}$$

$$Z = \sum_{1 ext{-cocycle }A ext{ volume }v} i^{(\overline{A} \cup d\overline{A})(v)} \ .$$

$$Z = \sum_{\text{1-cocycle } A \text{ volume } v} i^{(\overline{A} \cup d\overline{A})(v)} .$$
$$\overline{A} \in \mathbb{Z} , \qquad \overline{A} \mod 2 = A \in \mathbb{Z}_2 .$$

$$Z = \sum_{1 ext{-cocycle }A ext{ volume }v} i^{(\overline{A} \cup d\overline{A})(v)} \ .$$

$$Z = \sum_{1 ext{-cocycle }A} \prod_{ ext{volume }v} i^{(\overline{A} \cup d\overline{A})(v)} \; .$$

▶ Path integral depends on an additional 2-cochain or 1-chain s

- ▶ Path integral depends on an additional 2-cochain or 1-chain s
- ▶ Path integral zero unless s is 2-cocycle (ds = 0) or 1-cycle

- ▶ Path integral depends on an additional 2-cochain or 1-chain s
- ▶ Path integral zero unless s is 2-cocycle (ds = 0) or 1-cycle
- ▶ Path integral projectively invariant under local changes of s

- Path integral depends on an additional 2-cochain or 1-chain s
- Path integral zero unless s is 2-cocycle (ds = 0) or 1-cycle
- ▶ Path integral projectively invariant under local changes of s
- ► Topological path integral ⇒ anyon worldlines

1-form symmetries: Toric code

(b, c) instead of s. 1-cycle c and 2-cocycle b.

1-form symmetries: Toric code

(b, c) instead of s. 1-cycle c and 2-cocycle b.

$$Z = \sum_{ ext{1-chain } A: dA = b ext{ edge } e} (-1)^{(A \cap c)(e)}$$

1-form symmetries: Toric code

(b, c) instead of s. 1-cycle c and 2-cocycle b.

$$Z = \sum_{1 ext{-chain }A:dA=b} \prod_{ ext{edge }e} (-1)^{(A\cap c)(e)}$$

b: fluxes or m-anyonsc: charges or e-anyons

b defects along 2-cocycles:

1-form symmetries: Double-semion model

$$Z = \sum_{ ext{1-chain }A:dA=b} \prod_{ ext{volume }v} i^{(\overline{A} \cup d\overline{A} + \overline{b} \cup_1 d\overline{A})(v)} \prod_{ ext{edge }e} (-1)^{(A \cap c)(e)}$$

1-form symmetries: Double-semion model

$$Z = \sum_{ ext{1-chain }A:dA=b} \prod_{ ext{volume }v} i^{(\overline{A} \cup d\overline{A} + \overline{b} \cup_1 d\overline{A})(v)} \prod_{ ext{edge }e} (-1)^{(A \cap c)(e)}$$

 \cup_1 : First order cup product

$$d(A \cup_1 B) = dA \cup_1 B + (-1)^a A \cup_1 dB + (-1)^{a+b+1} A \cup B + (-1)^{a+b+ab} B \cup A$$

Example: Stabilizer toric code

Path integral \rightarrow non-unitary circuit

Example: Stabilizer toric code

Path integral \rightarrow non-unitary circuit

▶ Resolve stabilizer measurements using ancillas and CX gates

▶ Resolve stabilizer measurements using ancillas and CX gates

ightharpoonup Slanted cubic lattice, $\begin{picture}(1,0) \put(0,0){\line(1,0){100}} \put(0,0){$

ightharpoonup Resolve stabilizer measurements using ancillas and CX gates

► Slanted cubic lattice, $t \downarrow_{X} y$

► Weight

$$i^{(\overline{A}\cup d\overline{A}+\overline{b}\cup_1 d\overline{A})(v)}$$

implemented by phase gates

▶ Resolve stabilizer measurements using ancillas and CX gates

► Slanted cubic lattice, $t \downarrow_{X} y$

▶ Weight

$$i^{(\overline{A}\cup d\overline{A}+\overline{b}\cup_1 d\overline{A})(v)}$$

implemented by phase gates

$$ightharpoonup CS |x,y\rangle = i^{\overline{xy}} |x,y\rangle$$

Other fault-tolerant protocols

Diagonal time direction \Rightarrow CSS honeycomb Floquet code ^{1 2}

(2023) ←□ → ←□ → ← ■ → ← ■ → → ■ → へ ●

¹Bombin, Unifying flavors of fault tolerance with the ZX calculus (2023)

²AB, Topological error correcting processes from fixed-point path integrals

Other fault-tolerant protocols

Diagonal time direction \Rightarrow CSS honeycomb Floquet code ^{1 2}

Turn 2 + 1D protocol into 3 + 0D protocol \Rightarrow Measurement-based quantum computation

¹Bombin, *Unifying flavors of fault tolerance with the ZX calculus* (2023)

²AB, Topological error correcting processes from fixed-point path integrals (2023)

General abelian twisted quantum doubles

Abelian gauge group *G*. Path integral:

$$\sum_{G\text{-valued 1-cocycle }A\text{ volume }v} e^{2\pi i (\overline{A}^T F \cup d\overline{A})(v)}$$

General abelian twisted quantum doubles

Abelian gauge group G. Path integral:

$$\sum_{G\text{-valued }1\text{-cocycle }A\text{ volume }v} e^{2\pi i (\overline{A}^T F \cup d\overline{A})(v)}$$

1-form symmetries:

$$\sum_{A:dA=b} \prod_{v} e^{2\pi i (\overline{A}^T F \cup d\overline{A} - \overline{A}^T (F + F^T) \cup \overline{b} + \overline{b}^T F \cup_1 d\overline{A})(v)} \prod_{e} e^{2\pi i \overline{A}^T (f^{-1})^T \overline{c}}$$

General abelian twisted quantum doubles

Abelian gauge group G. Path integral:

$$\sum_{\textit{G-valued 1-cocycle }A \textit{ volume } v} e^{2\pi i (\overline{A}^T F \cup d\overline{A})(v)}$$

1-form symmetries:

$$\sum_{A:dA=b} \prod_{v} e^{2\pi i (\overline{A}^T F \cup d\overline{A} - \overline{A}^T (F + F^T) \cup \overline{b} + \overline{b}^T F \cup_1 d\overline{A})(v)} \prod_{e} e^{2\pi i \overline{A}^T (f^{-1})^T \overline{c}}$$

b and c no longer independent:

$$\delta c = f^{T} \setminus \left(\cup f^{T} (F + F^{T}) d\overline{b} \right)$$

No noise: measured 1-form symmetry defects form 2-cocycle s

No noise: measured 1-form symmetry defects form 2-cocycle s

With noise: Fix 1-form symmetry defects

With noise: Fix 1-form symmetry defects

▶ Gauge group $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, with non-abelian "twist":

$$Z = \sum_{A_i} \prod_{\nu} (-1)^{(A_0 \cup A_1 \cup A_2)(\nu)}$$

⁴Brown, A fault-tolerant non-Clifford gate for the surface code in two dimensions (2019)

³Bombin, 2D quantum computation with 3D topological codes (2018)

▶ Gauge group $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, with non-abelian "twist":

$$Z = \sum_{A_i} \prod_{v} (-1)^{(A_0 \cup A_1 \cup A_2)(v)}$$

Gauge flux $dA_i = b_i \neq abelian anyon$

⁴Brown, A fault-tolerant non-Clifford gate for the surface code in two dimensions (2019)

³Bombin, 2D quantum computation with 3D topological codes (2018)

▶ Gauge group $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, with non-abelian "twist":

$$Z = \sum_{A_i} \prod_{v} (-1)^{(A_0 \cup A_1 \cup A_2)(v)}$$

- Gauge flux $dA_i = b_i \neq abelian anyon$
- Measure "bare" fluxes + "virtually" close them off:

$$Z = \sum_{A_i: dA_i = b_i} \prod_{v} (-1)^{((A_0 + e_0) \cup (A_1 + e_1) \cup (A_2 + e_2))(v)}, \quad de_i = b_i$$

⁴Brown, A fault-tolerant non-Clifford gate for the surface code in two dimensions (2019)

³Bombin, 2D quantum computation with 3D topological codes (2018)

▶ Gauge group $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, with non-abelian "twist":

$$Z = \sum_{A_i} \prod_{v} (-1)^{(A_0 \cup A_1 \cup A_2)(v)}$$

- ▶ Gauge flux $dA_i = b_i \neq abelian$ anyon
- Measure "bare" fluxes + "virtually" close them off:

$$Z = \sum_{A_i: dA_i = b_i} \prod_{v} (-1)^{((A_0 + e_0) \cup (A_1 + e_1) \cup (A_2 + e_2))(v)}, \quad de_i = b_i$$

► Requires just-in-time decoding ^{3 4}

⁴Brown, A fault-tolerant non-Clifford gate for the surface code in two dimensions (2019)

³Bombin, 2D quantum computation with 3D topological codes (2018)

Summary

► Fixed-point circuit: Quantum circuit = Fixed-point path integral

Summary

- Fixed-point circuit: Quantum circuit = Fixed-point path integral
- ► Classical inputs/outputs = 1-form symmetry defects

Summary

- Fixed-point circuit: Quantum circuit = Fixed-point path integral
- ► Classical inputs/outputs = 1-form symmetry defects
- ► Fault-tolerant circuits for all abelian topological phases

Summary

- Fixed-point circuit: Quantum circuit = Fixed-point path integral
- Classical inputs/outputs = 1-form symmetry defects
- ► Fault-tolerant circuits for all abelian topological phases
- Other defects needed for non-Abelian phases

Summary

- Fixed-point circuit: Quantum circuit = Fixed-point path integral
- Classical inputs/outputs = 1-form symmetry defects
- Fault-tolerant circuits for all abelian topological phases
- Other defects needed for non-Abelian phases

Outlook

Boundaries, domain walls, corners, twist defects, etc.

Summary

- Fixed-point circuit: Quantum circuit = Fixed-point path integral
- Classical inputs/outputs = 1-form symmetry defects
- Fault-tolerant circuits for all abelian topological phases
- Other defects needed for non-Abelian phases

Outlook

- ▶ Boundaries, domain walls, corners, twist defects, etc.
- Fermions

Summary

- Fixed-point circuit: Quantum circuit = Fixed-point path integral
- Classical inputs/outputs = 1-form symmetry defects
- ► Fault-tolerant circuits for all abelian topological phases
- Other defects needed for non-Abelian phases

Outlook

- ▶ Boundaries, domain walls, corners, twist defects, etc.
- Fermions
- ► More general non-abelian phases

Summary

- Fixed-point circuit: Quantum circuit = Fixed-point path integral
- Classical inputs/outputs = 1-form symmetry defects
- ► Fault-tolerant circuits for all abelian topological phases
- Other defects needed for non-Abelian phases

Outlook

- ▶ Boundaries, domain walls, corners, twist defects, etc.
- Fermions
- ► More general non-abelian phases
- ► Analyze "chiral" Floquet codes