Artificial Intelligence (CS303)

Lecture 6: Performance Evaluation for Machine Learning

Hints for this lecture

• Learning is more than models and training algorithms, performance evaluation is crucial.

Outline of this lecture

• Why?

Performance Metrics

Estimating the Generalization

Why Performance Evaluation is Important?

 Suppose you are an engineer responsible for developing a computing system, say for surveillance purpose.

What you have is a set of data provided by your client.

• Upon deliver of the system, you need to make him/her believe that you' ve done a good job. What would you say?

Why Performance Evaluation is Important?

- A typical statement: my system has achieved a **score of 99** in terms of **XXX** (e.g., accuracy) in **5 seconds**.
- This statement sounds great but is highly risky because the environments for development and deployment might be different, e.g.,
 - What the client really want in his business is not consistent with XXX. (then no matter how you improve your score on XXX, things might be hopeless)
 - The data you got only reflect the reality partially. (Score of 99 does not hold in reality)
 - The hardware used to run the system might be different. (5 seconds does not hold in reality)
- Any of the above case happens → your reputation as an engineer will decrease → you might lose your job

General Remedy

- Be careful when choosing your objective function, two principles:
 - Consistent with the user requirements?
 - Existing easy-to-use algorithm to optimize it (to train the model)?

- Do internal tests as much as possible
 - estimate the generalization performance as accurate as possible.

Can only reduce rather than remove risk. There is no guarantee in life.

I. Performance Metrics

Performance Metrics

• For practical considerations, objective function for training could be **different** from the performance metric we truly care.

Green: Consistent but difficult to optimize

Red: Easy to optimize but inconsistent

Instance	Label	Classifier f	Classifier g
X ₁	1	$f(x_1) = -0.1$	$g(x_1) = 4$
x ₂	-1	$f(x_2) = 0.1$	$g(x_2) = -2$

Performance Metrics

• There are many performance metric (i.e., XXX), e.g., for even for binary classification

	Predicted Positive	Predicted Negative
Positive	True Positive rate	False Negative rate
Negative	False Positive rate	True Negative rate

$$accuracy = \frac{TPR \times N^{+} + TNR \times N^{-}}{N^{+} + N^{-}}$$

$$precision = \frac{TPR \times N^{+}}{TPR \times N^{+}}$$

$$recall = \frac{TPR \times N^{+} + FPR \times N^{-}}{TPR \times N^{+}}$$

$$F - measure = \frac{2 \times precision \times recall}{precision + recl}$$

Performance Metrics

- Receiver Operating Characteristic (ROC) analysis (for binary classification)
 - Mapping your classifier into the ROC space
 - Tune a threshold to get a set a points, connect them to get a ROC curve.

II. Estimating the Generalization

Estimating the Generalization

- Generalization performance is a random variable.
- Split the data in hand into training and testing subsets.
 - Random Split
 - Cross-validation
 - Bootstrap
- Collecting the test performance for many times, calculate the average and standard deviation.
- Do statistical tests (check your textbook on statistics).

Summary

• If there is only one lecture that you could remember about learning, this should be the one.

To be continued