UNIVERSIDADE FEDERAL DE SÃO CARLOS

CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

UMA IMPLEMENTAÇÃO DISTRIBUÍDA EM NÉVOA DO ALGORITMO DE DETECÇÃO DE NOVIDADE EM FLUXOS DE DADOS MINAS

Luís Henrique Puhl de Souza

Orientador: Prof. Dr. Hermes Senger

São Carlos – SP Fevereiro/2020

UNIVERSIDADE FEDERAL DE SÃO CARLOS

CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

UMA IMPLEMENTAÇÃO DISTRIBUÍDA EM NÉVOA DO ALGORITMO DE DETECÇÃO DE NOVIDADE EM FLUXOS DE DADOS MINAS

Luís Henrique Puhl de Souza

Dissertação apresentada ao Programa de Pós-Graduação em Ciência da Computação da Universidade Federal de São Carlos, como parte dos requisitos para a obtenção do título de Mestre em Ciência da Computação, área de concentração: Sistemas de Computação

Orientador: Prof. Dr. Hermes Senger

São Carlos – SP Fevereiro/2020

Agradecimentos

O presente trabalho de pesquisa está sendo realizado com o apoio parcial do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Resumo

Em um cenário de crescente número de dispositivos na Internet das Coisas (IoT), gerando proporcional crescimento no volume dos fluxos de dados gerados, são necessários métodos robustos para a mineração de fluxos contínuos de dados. Uma das áreas afetadas pelo crescimento vertiginoso do número de dispositivos e os fluxos associados a eles é a área de segurança da informação, onde são necessárias ferramentas de detecção de intrusão em redes que operem em ambientes de computação em névoa, devido aos custos de comunicação associados a operar estas ferramentas . As ferramentas de detecção de intrusão utilizam extensivamente algoritmos de detecção de novidade em fluxos de dados para identificar padrões no tráfego da rede. Porém, os algoritmos que tratam adequadamente dos desafios de detecção de novidade em fluxos de dados, evolução de conceito e de classificação sem interferência de especialistas, ainda são pouco utilizados. O algoritmo de detecção de novidade em fluxo de dados MINAS tem recebido atenção de pesquisas recentes por tratar desses desafios de detecção de novidade em fluxos de dados. No entanto, apesar de sua divisão em três partes semi-independentes, este algoritmo ainda não foi adaptado para processar grandes volumes de fluxos reais em ambiente de computação em névoa. O presente trabalho aborda essa lacuna, propondo um sistema que implementa o algoritmo MINAS de maneira distribuída num contexto de detecção de intrusão e computação em névoa. Experimentos mostram que o algoritmo MINAS pode ser paralelizado e distribuído utilizando plataformas de processamento de fluxos como Apache Flink.

Palavras-chave: Detecção de Novidades, Detecção de Intrusão, Fluxos de Dados, Computação Distribuída, Computação em Névoa, Internet das Coisas.

Abstract

In a scenario of growing number of devices connected to the Internet of Things (IoT) with proportional growth in the volume of data streams generated, robust methods are needed for mining streams continuous data. One of the areas affected by the huge growth in the number of devices and the streams associated with them is the information security, which needs network intrusion detection tools that operate in fog computing environments due to the . These tools make extensive use of algorithms for novelty detection in data streams to identify treat patterns in network traffic. However, algorithms in wide use do not adequately address the challenges of novelty detection in data streams, such as concept drift, concept evolution and continuous update of the classification model, without expert interference. The MINAS algorithm addresses in data streams challenges and has received recent research attention. However, despite its division in three semi-independent parts, MINAS has not yet been adapted to process large volumes of real streams or to operate in a fog computing environment. The present work proposes a system that implements the MINAS algorithm in a distributed fog environment in the context of intrusion detection to addresses this gap. Preliminary work shows that it is possible to have a distributed version of the MINAS algorithm by using stream processing platforms such as Apache Flink.

Keywords: Novelty Detection, Intrusion Detection, Data Streams, Distributed Computing, Fog Computing, IoT devices

Lista de Figuras

1	Estrutura Física da Arquitetura IDSA-IoT. Produzida e traduzida por Cassales et al. (2019)	36
2	Distribuição de Serviços da Arquitetura IDSA-IoT. Produzida e traduzida por Cassales et al. (2019).	37
3	Arquitetura e fluxos de dados do sistema M-FOG	39
4	IDSA-IoT (CASSALES et al., 2019) physical architecture and deployment scenario overview	51
5	MFOG life line overview	54
6	Reference Implementation	57
7	Serial Implementation	58
8	Parallel single-node	58
9	Parallel multi-node	59
10	Time measurements per added instance	60

Sumário

CAPÍTULO 1 –INTRODUÇÃO				
1.1	Motiv	ação	10	
1.2	Objetivos			
1.3	Proposta Metodológica			
1.4	Organização do trabalho			
CAPÍ	ГULO	2 –FUNDAMENTOS CIENTÍFICOS E TECNOLÓGICOS	14	
2.1	Ambie	entes de Computação Distribuída	14	
	2.1.1	Computação em Nuvem	14	
	2.1.2	Computação de Borda	16	
	2.1.3	Computação em Névoa	16	
2.2	Miner	ação de Dados e Fluxo de Dados	18	
2.3	Arqui	teturas e Plataformas de Processamento de Fluxos	19	
	2.3.1	Arquitetura Lambda	19	
	2.3.2	Arquitetura Kappa	20	
	2.3.3	Plataformas MapReduce e Apache Hadoop	20	
	2.3.4	Plataforma Apache Spark	21	
	2.3.5	Plataforma Apache Storm	21	
2.4	Plataf	orma Apache Flink	22	
	2.4.1	Arquitetura	22	

	2.4.2	Abstrações e estruturas do Apache Flink	23
	2.4.3	Tolerância a falhas	24
2.5	Detec	ção de Novidade	25
	2.5.1	O algoritmo MINAS	26
	2.5.2	Algoritmo FuzzyND	28
	2.5.3	Algoritmos MINAS-LC e MINAS-BR	28
CAPÍ	ГULO	3 -TRABALHOS RELACIONADOS	31
3.1	Ferran	nenta BigFlow	31
3.2	3.2 Ferramenta CATRACA		
3.3	Arquit	setura IDSA-IoT	35
3.4	Conclu	ısão	37
CAPÍ	ГULO	4 –PROPOSTA E METODOLOGIA	38
4.1	Descri	ção da Implementação	39
4.2	Metod	lologia de Avaliação e Resultados Esperados	41
	4.2.1	Ambiente de Teste	43
4.3	Result	ados preliminares	44
	4.3.1	Implementação com <i>Python</i> e <i>Apache Kafka</i>	44
	4.3.2	Implementação com Apache Flink	45
4.4	Article	9	46
	4.4.1	Abstract	46
	4.4.2	Introduction	46
	4.4.3	MINAS	48
	4.4.4	Proposal	48
		4.4.4.1 Polices	51
		4.4.4.2 Implementation	52

4.5	4.5 Experiments and Results				
	4.5.1	Measurements and Visualizations	55		
		4.5.1.1 Discussion	57		
	4.5.2	Conclusion	61		
	Ackno	owledgment	61		
CAPÍTULO 5 –CONSIDERAÇÕES FINAIS					
REFERÊNCIAS					

Capítulo 1

Introdução

A Internet das Coisas (Internet of Things - IoT) é um sistema global de dispositivos (máquinas, objetos físicos ou virtuais, sensores, atuadores e pessoas) com capacidade de comunicação pela Internet, sem depender de interação com interface humano-computador tradicional. Outra característica de dispositivos IoT são os , para propósitos específicos que limitam a capacidade de computar outras funções além da função original do dispositivo. O número de dispositivos categorizados como IoT na última década teve crescimento sem precedentes e, proporcionalmente, cresceu o volume de dados A análise desses dados pode trazer novos conhecimentos e tem sido um tema frequentemente abordado por trabalhos de pesquisa. Contudo, além dos dados de sensores e atuadores, esses dispositivos se subvertidos, podem gerar tráfego maligno , como o gerado pela botnet mirai em 2016 (KAMBOURAKIS; KOLIAS; STAVROU, 2017). Nesse cenário, fatores que podem favorecer a subversão dos dispositivos incluem a falta de controle sobre a origem do hardware e software embarcado nos dispositivos, além da falta das cruciais atualizações de segurança.

Com milhares de dispositivos em redes distantes gerando dados (diretamente ligados às suas funções originais ou metadados produzidos como subproduto) em volumes e velocidades consideráveis, formando fluxos contínuos de dados (Data Stream - DS), técnicas de mineração de fluxos de dados (Data Stream Mining) são amplamente necessárias. Nesses cenários, essas técnicas são aplicadas, por exemplo, em problemas de monitoramento e classificação de valores originários de sensores para tomada de decisão tanto em nível micro, como na modificação de atuadores remotos, ou macro, na otimização de processos industriais. Analogamente, as mesmas técnicas de classificação podem ser aplicadas para os metadados gerados pela comunicação entre esses nós e a Internet, detectando alterações nos padrões de comunicação num serviço de detecção de intrusão (Network Intrusion Detection System, NIDS).

Técnicas de Mineração de Fluxo de Dados (Data Stream Mining) envolvem mineração de dados (Data Mining), aprendizado de máquina (Machine Learning) e, dentro destes tópicos, detecção de novidades (Novelty Detection, ND). Dentre as técnicas de mineração de fluxo de dados, classificadores podem ser utilizados para detectar padrões conhecidos e, em conjunto com algoritmos de detecção de novidades ou detecção de anomalias, detectar novos padrões. Essa capacidade é relevante em especial para o exemplo de detecção de intrusão, onde novidades na rede podem distinguir novas funcionalidades (entregues aos dispositivos após sua implantação em campo) de ataques por agentes externos, sem assinaturas existentes em bancos de dados de ataques conhecidos.

Análises como Data Stream Mining e ND são geralmente implementadas sobre o paradigma de computação na nuvem (Cloud Computing) e, recentemente, sobre paradigmas como (Fog Computing). Para fog, além dos recursos em cloud, são explorados os recursos distribuídos pela rede desde o nó remoto até a cloud. Processos que dependem desses recursos são distribuídos de acordo com características como sensibilidade à latência, privacidade, consumo computacional ou energético.

1.1 Motivação

Um problema recente que une, em um único contexto, os métodos de computação em névoa, processamento de fluxo de dados e detecção de novidades nesses fluxos é a detecção de intrusão em redes de dispositivos IoT. Para tratar esse problema, a arquitetura IDSA-IoT, recentemente proposta por Cassales et al. (2019), aplica ao problema algoritmos atuais de detecção de novidades em fluxos, executando esses algoritmos em ambiente próximo aos dispositivos e avaliando-os quanto à detecção de intrusão.

Na arquitetura proposta, Cassales et al. (2019) avaliou os algoritmos ECSMiner (MASUD et al., 2011), AnyNovel (ABDALLAH et al., 2016) e MINAS (FARIA; CARVALHO; GAMA, 2015a), sendo que o último mostrou resultados promissores. A arquitetura proposta foi avaliada com o conjunto de dados (data set) Kyoto 2006+, composto de dados coletados de 348 Honeypots (máquinas isoladas equipadas com diversos softwares com vulnerabilidades conhecidas expostas à Internet com propósito de atrair ataques) de 2006 até dezembro 2015. O data set Kyoto 2006+ contém 24 atributos, 3 etiquetas atribuídas por detectores de intrusão comerciais e uma etiqueta distinguindo o tráfego entre normal, ataque conhecido e ataque desconhecido (CASSALES et al., 2019).

Contudo, o algoritmo MINAS ainda não foi implementado e avaliado com paralelismo,

multi-processamento ou distribuição computacional, que são necessários para tratar fluxos de dados com grandes volumes e velocidades. O tratamento de distribuição em ambiente fog computing é essencial para aplicação deste algoritmo ao problema de detecção de intrusão em redes IoT, pois esta aplicação requer tempo de resposta mínimo e mínima comunicação entre nós distantes, como aqueles na borda e na nuvem. Ainda observando o algoritmo MINAS, destaca-se a possível divisão em três partes semi-independentes, sendo elas treinamento, classificação e detecção de novidade; a classificação é o elemento central cujos resultados são utilizados para a identificação de intrusões.

Ainda no contexto de ND como método de detecção de intrusão, outras propostas tratam do caso de fluxos com grandes volumes e velocidades, como é o caso de Viegas et al. (2019), que apresenta o BigFlow no intuito de detectar intrusão em redes do tipo 10 Gigabit Ethernet, que podem produzir um volume considerável, atualmente impossível de ser processado em um único núcleo de processador (single-threaded). Essa implementação foi feita sobre uma plataforma distribuída processadora de fluxos (Apache Flink) executada em um cluster com até 10 nós de trabalho, cada um com 4 núcleos de processamento, totalizando 40 núcleos, para atingir taxas de até 10,72 Gbps.

Os trabalhos de Cassales et al. (2019) e Viegas et al. (2019) abordam detecção de intrusão em redes utilizando algoritmos de ND em DS, porém com perspectivas diferentes. O primeiro investiga IoT e processamento em fog e baseia-se em um algoritmo genérico de detecção de novidade. O segundo trabalho trata de backbones e processamento em cloud e implementa o próprio algoritmo de detecção de novidade. Essas diferenças deixam uma lacuna onde, de um lado, tem-se uma arquitetura mais adequada para o ambiente fog com um algoritmo estado da arte de detecção de novidades, porém sem paralelismo e. Do outro lado da lacuna, tem-se um sistema escalável de alto desempenho porém almejando outro ambiente (cloud) e com um algoritmo menos preparado para os desafios de detecção de novidades.

1.2 Objetivos

Como estabelecido na Seção 1.1, a lacuna no estado da arte observada é a implementação de algoritmo de detecção de novidades que trate adequadamente os desafios de fluxo de dados contínuos (como volume e velocidade do fluxo, evolução e mudança de conceito) e considere o ambiente de computação em névoa aplicada à detecção de intrusão. Seguindo a comparação entre algoritmos desse gênero realizada por Cassales et

al. (2019), esta pesquisa escolheu investigar o algoritmo MINAS (FARIA; CARVALHO; GAMA, 2015a) para receber o tratamento necessário para adequá-lo ao ambiente de névoa e para fluxos de grandes volumes e velocidades.

Portanto, seguindo os trabalhos do Grupo de Sistemas Distribuídos e Redes (GSDR) da Universidade Federal de São Carlos (UFSCar), propõem-se a construção de uma o algoritmo MINAS de maneira escalável e distribuível para ambientes de computação em névoa e a avaliação dessa implementação com experimentos baseados na literatura usando conjunto de dados públicos relevantes. O resultado esperado é uma implementação compatível em qualidade de classificação ao algoritmo MINAS e passível de ser distribuída em um ambiente de computação em névoa aplicado à detecção de intrusão.

Com foco no objetivo geral, alguns objetivos específicos são propostos:

- Implementar o algoritmo MINAS de maneira distribuída sobre uma plataforma de processamento distribuída de fluxos de dados;
- Avaliar a qualidade de detecção de intrusão em ambiente distribuído conforme a arquitetura IDSA-IoT;
- Avaliar o desempenho da implementação em ambiente de computação em névoa.

1.3 Proposta Metodológica

Para cumprir os objetivos citados na Seção 1.2, foi identificada a necessidade de um processo exploratório seguido de experimentação. Tal processo inclui a revisão da literatura, tanto acadêmica quanto técnica, seguida da experimentação através de implementação de aplicação e testes.

O foco da é em trabalhos que abordem processamento de fluxos de dados, classificação de fluxo de dados, detecção de novidades em fluxo de dados e processamento distribuído de fluxo de dados. O objetivo da revisão é o estabelecimento do estado da arte desses assuntos, de forma que alguns desses trabalhos sirvam para comparações e relacionamentos. Além disso, desses trabalhos buscam-se métricas de qualidade de classificação (por exemplo, taxa de falso positivo e matriz de confusão) e métricas de escalabilidade (como taxa de mensagens por segundo e escalabilidade vertical ou horizontal).

A revisão da literatura técnica será focada em plataformas, ferramentas e técnicas para realizar a implementação proposta. Portanto, são selecionadas plataformas de

processamento distribuído de DS e técnicas de aprendizado de máquina associadas a elas. Dessa revisão também serão obtidas técnicas ou ferramentas necessárias para extração das métricas de avaliação, bem como *data sets* públicos relevantes para detecção de novidades em DS.

Uma vez definidos o estado da arte, as ferramentas técnicas e os data sets, o passo seguinte é a experimentação. Nesse passo, será desenvolvida uma aplicação na plataforma escolhida que, com base no algoritmo MINAS (FARIA; CARVALHO; GAMA, 2015a), irá classificar e detectar novidades em DS. Também nesse passo, a implementação será validada comparando os resultados de classificação obtidos com os resultados de classificação do algoritmo original MINAS. Posteriormente, serão realizados experimentos com a implementação e variações em data sets e cenários de distribuição em fog, coletando as métricas de classificação e escalabilidade.

Ao final, a aplicação, resultados, comparações e discussões serão publicados nos meios e formatos adequados, como repositórios técnicos, eventos ou revistas acadêmicas.

1.4 Organização do trabalho

O restante desse trabalho segue a estrutura: Capítulo 2 aborda conceitos teóricos e técnicos que embasam esse trabalho; Capítulo 3 enumera e discute trabalhos relacionados e estabelece o estado da arte do tema detecção de novidade em fluxos de dados e seu processamento; Capítulo 4 descreve a proposta de implementação, discute as escolhas de plataformas e resultados esperados. Também são discutidos no Capítulo 4 os desafios e resultados preliminares encontrados durante o desenvolvimento do trabalho. Capítulo 5 adiciona considerações gerais e apresenta o plano de trabalho e cronograma até a defesa do mestrado.

Capítulo 2

Fundamentos Científicos e Tecnológicos

Este Capítulo aborda conceitos que embasam esse trabalho, conceitos teóricos de ambientes e arquiteturas de computação distribuída e detecção de novidade e conceitos técnicos, como plataformas de processamento distribuído de fluxo de dados e o algoritmo MINAS.

2.1 Ambientes de Computação Distribuída

Esta Seção relaciona três ambientes de computação distribuída habitualmente utilizados para o processamento de dados massivos relacionados a redes de dispositivos IoT, entre outras aplicações. aplicada a vários problemas e neste trabalho seu papel em sistemas IoT é fornecer . O segundo e terceiro ambiente são computação de borda (edge computing) e a computação em névoa (fog computing), que utiliza os recursos computacionais distribuídos presentes em nós localizados entre os dispositivos de borda e a nuvem, com diversas intenções, desde privacidade até redução de latência.

2.1.1 Computação em Nuvem

A computação em nuvem (cloud computing), ou simplesmente nuvem (cloud), habilita o acesso através da rede a um grupo compartilhado de recursos de computação configuráveis, como servidores, redes, aplicações, armazenamento, etc. Tais recursos podem ser provisionados ou liberados sob demanda rapidamente com o mínimo esforço de gerenciamento e mínima interação com o provedor destes recursos (MELL; GRANCE, 2012). As principais características do ambiente cloud computing, segundo Mell e Grance (2012) são:

- Serviço sob Demanda: o cliente pode provisionar ou liberar capacidades de computação (ex: tempo de processamento e armazenamento) conforme o necessário, sem requerer interação com o provedor de serviço;
- Amplo acesso à rede: o acesso aos recursos de computação e capacidades ocorre pela rede através de mecanismos padrões que permitem o acesso por plataformas heterogêneas (celulares, computadores, tablets, etc.)
- Agrupamento de recursos: para servir múltiplos clientes, os recursos de computação são agrupados usando o modelo multi-tenancy com recursos físicos e virtuais diferentes dinamicamente atribuídos e reatribuídos de acordo com a demandas do clientes;
- Elasticidade: as capacidades de computação são rapidamente provisionadas ou liberadas, em alguns casos automaticamente, para escalar conforme a demanda;
- Serviço mensurado: os recursos de computação são monitorados, controlados e reportados para o provedor de serviços e para o cliente fornecendo transparência sobre as capacidades que foram consumidas.

Segundo, Mell e Grance (2012), a implantação da Computação em Nuvem pode ocorrer através dos seguintes modelos:

- Nuvem privada: a infraestrutura da nuvem é provisionada e dedicada para um único cliente ou organização. Nesse modelo, o cliente gerencia e controla a infraestrutura, ou pode delegar essas tarefas a uma outra empresa. A infraestrutura pode estar dentro ou fora das instalações da organização proprietária;
- Nuvem comunitária: a infraestrutura de nuvem é fornecida para um grupo exclusivo de clientes que compartilham um mesmo interesse (requerimentos de segurança, desempenho, políticas, etc.). Esse tipo de nuvem pode ser gerenciado pelo próprio grupo, ou por outra organização, podendo estar dentro ou fora das instalações das empresas proprietárias;
- Nuvem pública: É gerenciada e operada por um provedor de nuvem e a infraestrutura é provisionada e oferecida para uso público.
- Nuvem híbrida: a infraestrutura desse tipo de nuvem é uma composição de dois ou mais modelos de implantação de *cloud* (privada, pública e comunitária) que

formam uma entidade única e são unidos por tecnologias padronizadas que habilitam a portabilidade de dados e aplicações.

2.1.2 Computação de Borda

(edge computing) refere-se às tecnologias que permitem que a computação seja executada na borda da rede. Define-se borda ou edge como qualquer recurso de computação e de rede ao longo do caminho entre as fontes de dados e os data centers da nuvem (SHI et al., 2016). Na borda, é possível fazer armazenamento, processamento e descarregamento de dados, assim como distribuir as requisições e entregar os serviços das nuvens aos usuários. Shi et al. (2016) ressalta que essas capacidades (dentre outras) dos nós da borda (edge nodes) possibilitam que a computação de borda reduza a latência na resposta da nuvem, pré-processando os dados nos nós da borda, aproveitando melhor a banda e a transmissão de dados, e também consumindo menos recursos de computação na nuvem. Além disso, o autor ainda acrescenta que a computação de borda pode aumentar a privacidade dos dados, uma vez que eles podem ser processados no próprio dispositivo final.

A computação de borda tenta trazer a computação mais próxima das fontes de dados. Como é observado na figura, os componentes desse tipo de computação podem ser tanto produtores como consumidores, não só requisitando serviços e conteúdo da nuvem, mas também realizando tarefas da nuvem. Algumas aplicações da computação de borda incluem: análise de vídeo; em sistemas críticos para redução de latência; descarregar a nuvem de parte da computação; privacidade dos dados produzidos, mantendo-os fora de ambientes públicos; redução das cargas de dados na rede e processamento distribuído de sensoriamento massivo em cidades inteligentes (SHI et al., 2016).

2.1.3 Computação em Névoa

Dastjerdi e Buyya (2016) e IEEE Communications Society (2018) mencionam que a enorme massa de dados gerados por ambientes IoT pode ser processada em nuvem, entretanto produzida pela transferência desses dados para a nuvem e o retorno do resultado pode não ser toleradas por sistemas críticos que sejam sensíveis a latência (monitoramento de saúde e resposta a emergências). IEEE Communications Society (2018) ainda acrescenta que enviar tantos dados à nuvem para processamento e armazenamento pode ser ineficiente e não escalável, devido à saturação de dados na rede. O ambiente edge computing foi proposto para trazer o processamento e armazenamento para os dispositivos de borda

tentando solucionar esses problemas. Porém, dispositivos de borda comumente não podem lidar com várias aplicações IoT competindo pelos seus recursos limitados, o que poderia causar a contenção dos recursos e o aumento na latência do processamento (DASTJERDI; BUYYA, 2016). Portanto, para solucionar estas questões de latência e capacidade limitada dos dispositivos de borda, a computação em névoa foi proposta.

A computação em névoa (fog computing) é um paradigma que distribui as capacidades de computação, armazenamento e rede entre os nós próximos e dos, mas não necessariamente localizados na borda, dando a esses nós características de uma nuvem (BONOMI et al., 2012; DASTJERDI; BUYYA, 2016; IEEE Communications Society, 2018). Esse tipo de computação evita a sobrecarga dos dispositivos de borda. Bonomi et al. (2012) e Dastjerdi e Buyya (2016) consideram computação em névoa como complementar da computação em borda, podendo a computação em névoa aproveitar os recursos da nuvem e da borda. IEEE Communications Society (2018) considera que a principal diferença entre esses dois tipos de computação está no número de camadas. Enquanto edge computing tem , pois atua só nos dispositivos de borda, fog computing tem mais camadas e um modelo hierárquico, pois não atua só na camada de borda.

Segundo Bonomi et al. (2012) e Dastjerdi e Buyya (2016), as principais características da computação em névoa são:

- Mobilidade: é essencial que as aplicações fog sejam capazes de se comunicar com dispositivos móveis, por exemplo, utilizando protocolos que considerem a mobilidade dos nós;
- Heterogeneidade: os nós nesse tipo de paradigma possuem configurações e formatos diferentes e podem estar implantados em ambientes distintos;
- Baixa Latência: foi proposta para atender aplicações que requeiram baixa latência (monitoramento de saúde, jogos, realidade aumentada, etc.);
- Distribuição geográfica: computação em névoa pode possuir milhares de sensores e dispositivos distribuídos geograficamente, com consciência de suas localizações (location awareness);
- Alto número de nós: seguindo os ambientes IoT, a computação em névoa pode ser composta por milhares de nós;
- Interoperabilidade e federação: os componentes da computação em névoa devem ser capazes de interoperar, e o serviços devem ser federados ;

• Uso de fluxo de dados e aplicações em tempo real: a computação em névoa pode envolver aplicações que processam em lote, mas na maior parte das vezes envolve aplicações com requisito de processamento em tempo real, e para isso fazem o uso de fluxo de dados. Por exemplo, os sensores de um rede IoT escrevem a informação no fluxo de dados, a informação é processada, ações são inferidas e traduzidos em ações nos componentes atuadores.

Algumas aplicações para computação em névoa são: cidades inteligentes e semáforos inteligentes que enviam sinais de alerta aos veículos e coordenam os sinais verdes com outros semáforos através de sensores (veículos, pedestres, ciclistas); na área de saúde, para monitorar e prever situações de pacientes que estão conectados a sensores; em prédios inteligentes, que são dotados de sensores de umidade, temperatura, qualidade do ar, ocupação, sendo que a partir das informações deles, é possível alertar os ocupantes do prédio em algum caso de emergência.

2.2 Mineração de Dados e Fluxo de Dados

A Mineração de Dados é o processo de descoberta de padrões em conjuntos de dados utilizando métodos derivados de aprendizagem de máquina, estatística e banco de dados (GABER; ZASLAVSKY; KRISHNASWAMY, 2005). Além de mineração de dados tradicional, *Big Data* trata de conjuntos de dados que não podem ser processados em tempo viável, devido a limitações como memória ou armazenamento principal.

Definição 1. Um Fluxo de Dados S é uma sequência massiva, potencialmente ilimitada de exemplos multi-dimensionais $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n, \dots$ recebida em instantes $\mathbf{T}_1, \mathbf{T}_2, \dots, \mathbf{T}_n, \dots$ (AGGARWAL et al., 2003).

Além da dimensão de armazenamento, outra dimensão que afeta a maneira como dados são modelados e manipulados é o tempo. Técnicas e algoritmos de mineração de fluxo de dados atendem a esses desafios utilizando restrições como apenas uma leitura do conjunto de dados e baixo tempo de processamento na construção de seus algoritmos (GAMA; RODRIGUES, 2007; GABER; ZASLAVSKY; KRISHNASWAMY, 2005).

As características de fluxos de dados e mineração de dados e os requisitos de seu processamento regularmente superam as capacidades computacionais de um único nó computacional convencional, de forma que a distribuição dos requisitos em múltiplos nós computacionais em um sistema distribuído pode ser necessária (GABER; ZASLAVSKY; KRISHNASWAMY, 2005).

Computação distribuída é a área da ciência da computação que estuda sistemas em que os componentes são localizados em diferentes computadores (nós), que comunicam-se apenas por troca de mensagens e, para que o objetivo do sistema seja atingido, a cooperação entre os nós é necessária. Outras propriedades de um sistema distribuído são a concorrência entre os nós e possibilidade de falhas em partes independentes (TANENBAUM; STEEN, 2018).

Para a construção de sistemas que apliquem técnicas de mineração de fluxos de dados são necessárias bibliotecas e plataformas (frameworks) que são abordadas na Seção 2.3.

2.3 Arquiteturas e Plataformas de Processamento de Fluxos

Tradicionalmente, foram construídas com um sistema gerenciador de banco de dados (SGBD) relacional ou não-relacional associado. Essa arquitetura, nomeada de "arquitetura totalmente incremental" por Marz e Warren (2015), foi evoluída e simplificada iterativamente durante décadas de uso, porém ela não é adequada para sistemas em , como os sistema de fluxo de dados. O volume e a velocidade de dados em um *Data Stream* leva à necessidade de distribuir o processamento, acrescentando poder computacional a cada nó adicionado. Porém, desafios como comunicação eficiente e sincronização de estado entre os nós, assim como tolerância a falhas, aumentam a complexidade de construção de um sistema distribuído em relação a um sistema tradicional.

Para mitigar problemas associados à construção de sistemas *Big Data* e *Data Streams*, arquiteturas de processamento de fluxo de dados distribuído foram propostas, como a arquitetura *Lambda* (MARZ; WARREN, 2015) e *Kappa* (KREPS, 2014), além de diversas plataformas, tanto de *Big Data* com características de tempo real, como especializadas em fluxo de dados.

2.3.1 Arquitetura Lambda

A arquitetura de processamento distribuído de fluxos de grande volume de dados Lambda divide o processamento em três camadas: (MARZ; WARREN, 2015). A camada de lotes atua sobre o em modo de leitura sequencial, armazenando-o em sistema de arquivos distribuído e pré-processando várias visões sobre esse conjunto mestre. Essas visões (armazenadas num SGBD tradicional) são consumidas pela camada de serviço, que portanto tem acesso regular (leitura aleatória) dos dados. No entanto, as garantias oferecidas pela camada de lotes (escalabilidade, consistência, tolerância a falhas) não atendem os requisitos de latência em um sistema em tempo real, para isso a camada de velocidade complementa os dados das visões com dados diretamente do conjunto mestre em tempo real diretamente para a camada de serviço (MARZ; WARREN, 2015).

2.3.2 Arquitetura Kappa

Em contraposição à arquitetura Lambda, observações práticas de Kreps (2014) mostram que o sistema de fila de mensagens (no exemplo Apache~Kafka) já traz as garantias de escalabilidade, consistência, tolerância a falhas, replicação e armazenamento de longo prazo. Com isso, Kreps (2014) propõe que as camadas de lotes e velocidade sejam unificadas em uma camada de processamento de fluxo, cujos resultados sejam entregues continuamente para a camada de serviço através de um SGBD, definindo assim a arquitetura Kappa. Essa proposta simplifica a aplicação de três implementações para duas, eliminando a repetição de tarefas executadas pelas camadas de lotes e velocidade que produziam o mesmo resultado.

Em sincronia com os desenvolvimentos em arquiteturas de processamento de fluxo de dados, durante as últimas duas décadas foram construídas diversas plataformas de processamento para *Big Data* e *Data Streams*.

2.3.3 Plataformas MapReduce e $Apache\ Hadoop$

MapReduce é a primeira plataforma de processamento de conjuntos massivos de dados que atingiu uso generalizado. Nessa implementação, uma a distribuição, paralelização, tolerância a falhas e balanceamento de carga. Ao usuário da biblioteca resta implementar duas funções: Map, que recebe um par ordenado (chave, valor) e emite um conjunto de pares intermediários na mesma estrutura; Reduce, que recebe uma chave e um conjunto de valores gerado pelo agrupamento de pares com essa (DEAN; GHEMAWAT, 2004).

Em prática, um tem processadores e o conjunto de dados é armazenado em um sistema de arquivos distribuído que é lido pela plataforma com programas escritos. Essa implementação tem esquema geral de processamento em lotes que não atende o requisito de baixa latência. *MapReduce* é uma das principais influências na criação da arquitetura

Lambda (MARZ; WARREN, 2015).

Apache Hadoop é uma coleção de ferramentas, incluindo: Hadoop Distributed File System (HDFS, um sistema de arquivos distribuído), Hadoop YARN um gerenciador de recursos em cluster e escalonador de trabalhos e, Hadoop MapReduce, um sistema baseado em YARN, implementando o modelo MapReduce (Apache Hadoop, 2020).

2.3.4 Plataforma Apache Spark

Apache Spark, analogamente ao Hadoop, é um framework para construção de sistemas de computação distribuída em cluster, com garantias de tolerância a falhas. No entanto, o modelo de processamento diverge significativamente do tradicional MapReduce, utilizando em lugar do HDFS um multiconjunto imutável distribuído (Resilient Distributed Dataset - RDD) com um escalonador de trabalhos representados por grafos acíclicos direcionados (directed acyclic graph - DAG), otimizador de consultas e motor de execução (Apache Spark, 2020).

Enquanto programas *MapReduce* fazem sua entrada de dados por leitura de disco, executam a função *Map* em todos os items, agrupam, executam *Reduce* e armazenam o resultado em disco novamente, RDD opera com um conjunto de trabalho distribuído em formato de memória compartilhada com restrições. Esse conjunto de trabalho distribuído facilita a operação de programas iterativos que são típicos de análise, mineração de dados e aprendizado de máquina.

Uma das extensões de Apache Spark é Spark Streaming, que é um sistema de processamento de fluxo de dados (ZAHARIA et al., 2016a, 2016b). Spark Streaming implementa processamento incremental de fluxo de dados usando o modelo de fluxos discretizados em que dividem-se os dados de entrada em micro-lotes (ex: a cada 100 milissegundos) e combinam-se regularmente com o estado nos RDDs para produzir novos resultados (ZAHARIA et al., 2016a). Essa estratégia traz benefícios sobre os sistemas de fluxos de dados distribuídos tradicionais, pois permite a consistência e recuperação de falhas rapidamente, devido à (RDD lineage) e à combinação do fluxo de dados com consultas em lotes e interativas (ZAHARIA et al., 2016b; LOPEZ, 2018).

2.3.5 Plataforma Apache Storm

Apache Storm é um sistema de computação tolerante a falhas em tempo real que de fluxo de dados (FOUNDATION, 2020; LOPEZ, 2018). Ao invés de executar traba-

lhos (jobs) como algumas ferramentas citadas anteriormente, Apache Storm . Os jobs eventualmente finalizam, e as topologias executam continuamente até serem finalizadas por comandos. Uma topologia constitui-se de processos trabalhadores (workers) sendo executados em um cluster de nós que são gerenciados pelo nó mestre que além de coordenar e distribuir execução, monitora falhas. Uma topologia pode ser representada por um grafo de computação direcionado acíclico (DAG).

Além de topologias e nós mestre, outros componentes do funcionamento dessa ferramenta são os *spouts* e os *bolts*. *Spout* representa uma fonte de dado da ferramenta, sendo um ponto de entrada que lê os dados de fontes externas, converte-os para um fluxo de dados e emite-os para dentro da topologia. *Bolts* recebem os dados de um *spout* e processam esses dados (filtragem, funções de agregação e união, etc.).

Cada processo worker no Storm é uma instância de Java Virtual Machine (JVM) que executa um conjunto de tarefas para uma topologia, processando um ou mais executores. Um executor é uma thread gerada por um processo worker. Cada executor pode processar uma ou mais tarefas para um mesmo componente (spout ou bolt). O número de processos workers, executores e tarefas (para os spouts e bolts) que são passados como parâmetro (parallelism hint) definem o "paralelismo" do Storm. A principal característica desse paralelismo é que ele pode ser alterado em tempo de execução da topologia.

2.4 Plataforma Apache Flink

O Apache Flink é uma plataforma de processamento distribuído para computação com estado gerenciado (stateful) sobre fluxo de dados limitados (têm início e fim) e ilimitados (não têm fim definido) (Apache Flink, 2020a). Essa plataforma segue um paradigma que abrange o processamento de fluxos de dados contínuos e o processamento em lote (CARBONE et al., 2015; LOPEZ, 2018). O Apache Flink pode ser integrado a vários gerenciadores de cluster comuns, como Hadoop Yarn, Apache Mesos, e Kubernetes, mas também pode ser configurado para ser executado como um cluster stand-alone. Já o acesso programático a essa plataforma pode ser feito através das linguagens Java, Scala ou Python.

2.4.1 Arquitetura

Quando Flink é inicializado, um processo gerenciador de trabalho (Job Manager) e múltiplos gerenciadores de tarefa (Task Manager) são criados. Quando um código de

programa é submetido, o cliente transforma-o em um grafo acíclico direcionado - data flow - e submete-o ao gerenciador de trabalho. Segundo Carbone et al. (2015), essa fase de transformação examina o esquema dos dados trocados entre os operadores e cria serializadores e outros códigos para otimização da futura execução. O gerenciador de trabalho coordena toda execução distribuída do grafo data flow. Ele rastreia o estado e o progresso de cada fluxo, agenda novos operadores e coordena os checkpoints e recuperação. Para alta disponibilidade, o gerenciador de trabalho em disco um conjunto mínimo de metadados em cada checkpoint para um armazenamento tolerante a falhas, de modo que esse gerenciador possa recuperar a execução do grafo a partir desse ponto. O processamento de dados ocorre no Task Manager que executa um ou mais operadores que produzem fluxos de dados, e reportam seus estados ao gerenciador de trabalho.

A pilha de componentes de software do Apache Flink é composta em camadas. A camada core é vista como um mecanismo de processamento e execução de fluxo de dados, enxergando o processamento em lote como um caso especial (LOPEZ, 2018; CARBONE et al., 2015). A camada de APIs é composta pelo DataStream API, que processa dados infinitos ou fluxos de dados, e pelo DataSet API, que processa dados finitos ou dados em lote. Junto ao core, essas APIs montam planos de execução otimizados para cada tipo de conjuntos de dados, gerando programas executáveis pelo core. Na camada de bibliotecas (libraries), há bibliotecas específicas para cada domínio que geram programas API Data Stream API ou DataSet API. Essas bibliotecas são: FlinkML para aprendizado de máquina, Gelly para processamento de grafos, Table para domínios relacionais (SQL), e CEP (Complex Event Processing) para processamento de eventos.

2.4.2 Abstrações e estruturas do Apache Flink

Na plataforma Apache Flink, as principais abstrações são programas, Dataflows (fluxo de dados), e transformações (operações ou operadores) (CARBONE et al., 2015; Apache Flink, 2020b). Um fluxo de dados (Dataflow) é definido como um fluxo de registros. Já as transformações são operações (map, filtering, reduction, join, etc.) onde um data stream é consumido, processado, e um novo fluxo de dados gerado como saída. Cada uma dessas transformações pode ser paralelizada por um parâmetro de paralelismo (Apache Flink, 2020a).

Um programa *Flink* é mapeado para um grafo acíclico direcionado, *data flow*, utilizado pelo *Job Manager* (CARBONE et al., 2015). Esse grafo é composto por operadores de transformação e fluxo de dados (Apache Flink, 2020a). Para facilitar o paralelismo desse

grafo de execução, os operadores que agem sobre os fluxos de dados podem ser divididos em sub-tarefas que são executadas pelos *slots* dos *Task Manager*, e os fluxos de dados podem ser particionados entre os operadores consumidores e produtores.

Cada data flow dos programas do Apache Flink inicia execução com uma fonte de dados e termina com um sink que escreve os dados de saída em algum sistema de armazenamento suportado, como Apache Kafka, Amazon Kinesis Streams, Hadoop Filesystem e Apache Cassandra (Apache Flink, 2020a).

2.4.3 Tolerância a falhas

O Apache Flink implementa um mecanismo de tolerância a falhas combinando repetição e checkpoint dos fluxos (CARBONE et al., 2015; Apache Flink, 2020a). Um checkpoint está relacionado com pontos específicos dos fluxos de entrada, juntamente com o estado dos operadores. Um fluxo de dados pode ser retornado a partir de um checkpoint, mantendo a consistência de "exatamente uma vez" (não há dados duplicados e nem dados que não sejam processados), e restaurando o estado dos operadores e eventos naquele momento. Portanto, as falhas são tratadas de forma transparente e não afetam a exatidão da execução de um programa Flink (Apache Flink, 2020a).

O algoritmo de *checkpoint* assíncrono e incremental um impacto mínimo em latência no processamento (CARBONE et al., 2015). Além disso, para reduzir o tempo de recuperação, o *Apache Flink* gera *snapshots* do estado dos operadores, incluindo a posição atual dos fluxos de entrada, em intervalos regulares.

O Apache Flink realiza computações com estado (stateful) que guardam eventos ou resultados intermediários para acessá-los posteriormente, contribuindo para planos de execução, mecanismo de recuperação de falhas e para lembrar de eventos passados para agregar dados (Apache Flink, 2020a; CARBONE et al., 2015).

O Apache Flink considera o processamento em lotes como um caso especial de fluxo de dados, que nesse caso é limitado em número de elementos. Para esse tipo de dados existem estruturas de dados e algoritmos específicos, como o DataSet API e operações próprias (agregações, uniões, interações) (CARBONE et al., 2015).

Para o processamento em lote, não há o mecanismo de *checkpoint* como há para o fluxo de dados. No lugar, a recuperação é feita repetindo completamente o fluxo ou repetindo as últimas partições perdidas do fluxo intermediário materializado.

2.5 Detecção de Novidade

No âmbito de classificação de dados, parte da área de aprendizado de máquina, os métodos de detecção de novidade (*Novelty Detection*, ND) lidam com o reconhecimento e a classificação (PERNER, 2007; GAMA; RODRIGUES, 2010). Esses métodos tratam da classificação em fluxos de dados que evoluem com o tempo, levando em consideração as características desse tipo de fluxos.

Tratando-se de fluxos de dados contínuos, são características dos: evolução de conceito (Concept Evolution) em que novos padrões podem surgir; desaparecimento ou recorrência de conceito, em que padrões podem desaparecer e também podem reaparecer; mudança de conceito (Concept Drift, também nomeado deriva ou desvio) onde um padrão gradualmente se transforma; presença de ruído e outliers (GAMA; RODRIGUES, 2010).

Os métodos de ND são aplicados a diversos problemas como detecção de intrusos (COULL et al., 2003; SPINOSA; CARVALHO; GAMA, 2008; VIEGAS et al., 2019; CASSALES et al., 2019), detecção de falhas (ZHANG et al., 2006), diagnósticos médicos (PERNER, 2009), detecção de regiões de interesse em imagens (SINGH; MARKOU, 2004), detecção de fraudes (WANG et al., 2003; ABDALLAH; MAAROF; ZAINAL, 2016), filtros de spam (HAYAT; HASHEMI, 2010) e detecção de variações comportamentais em um jogador (VALLIM et al., 2013).

Alguns métodos de ND utilizam tratam de novidades como uma classificação de uma ou duas classes () onde um conceito representa a classe normal e as ou como um segundo conceito no modelo. Além da abordagem de classificação binária, em um mesmo conjunto de dados, para isso é necessário abordar ND como classificação multi-classe. Alguns métodos que abordam ND como classificação multi-classe não atendem completamente características de conjuntos com como *Concept Evolution* e *Concept Drift*, deixando de detectar múltiplos padrões que surgem simultaneamente num intervalo de avaliação (FARIA et al., 2015; GAMA; RODRIGUES, 2010).

A maioria dos métodos de ND são construídos seguindo a abordagem de aprendizado Offline-Online. Essa abordagem estabelece que o método seja dividido em duas fases: a primeira fase (Offline) usa um conjunto de exemplos rotulados para deles extrair conceitos conhecidos e gerar um modelo; a segunda fase (Online) consome um conjunto ou fluxo de exemplos não rotulados e detecta padrões-novidade. Além de detectar padrões-novidade, alguns algoritmos classificam cada exemplo em um dos conceitos do modelo, ou marca o exemplo como desconhecido. Ainda na segunda fase, para atualizar o modelo, os exemplos

marcados como desconhecidos são utilizados para a extração de novos conceitos ou variações em conceitos conhecidos (GAMA; RODRIGUES, 2010).

Dentre os métodos de ND que baseiam-se em aprendizado *Offline-Online*, muitos são baseados em algoritmos de agrupamento não supervisionados, tanto para construção do modelo inicial como na extração de novos conceitos dos exemplos não explicados pelo modelo marcados como desconhecidos (SPINOSA; CARVALHO; GAMA, 2009; MASUD et al., 2011; FARIA et al., 2013).

2.5.1 O algoritmo MINAS

Um algoritmo de ND que tem recebido atenção nos últimos anos é o algoritmo MINAS, originalmente proposto por Faria et al. (2013), refinado por Faria, Carvalho e Gama (2015a) e recentemente aprimorado por Silva (2018), com o uso de conceitos Fuzzy, e expandido por Costa (2019), para tratar problemas multi-rótulo além dos problemas multi-classe já tratados na versão original. Esse algoritmo segue a abordagem de duas fases no modelo Offline-Online e usa por base algoritmos de agrupamento não supervisionados como K-means e CluStream.

O algoritmo MINAS em sua fase Offline consome um conjunto de treinamento contendo exemplos etiquetados. Esse conjunto de treinamento é dividido em grupos usando como chave a etiqueta, e para cada grupo de exemplos o método de agrupamento (clustering) é executado. O método de agrupamento objetiva resumir um conjunto maior de exemplos em um conjunto menor de micro-clusters.

Um micro-cluster é uma tupla de quatro components $(N, \mathbf{LS}, \mathbf{SS}, T)$ derivados dos exemplos representados por este micro-cluster, onde: N número de exemplos, \mathbf{LS} soma linear dos exemplos, \mathbf{SS} soma quadrada dos exemplos, T instante de chegada do último exemplo adicionado ao micro-cluster. Deste sumário extrai-se, entre outras estatísticas, o centro e raio que são utilizados na operação de classificação da fase Online. A cada micro-cluster é adicionada a etiqueta do grupo original e todos micro-clusters são arranjados em um único conjunto formando o modelo de decisão.

Na fase Online, listada no Algoritmo 1, o algoritmo MINAS opera com três operações: classificação de novos exemplos, detecção de padrões-novidade e atualização do modelo de decisão (Faria Paiva, 2014). O primeiro método é o de classificação, onde exemplos do fluxo de dados são consumidos e avaliados pelo modelo de decisão. O modelo de decisão avalia cada exemplo calculando a distância euclidiana entre o exemplo e todos micro-clusters do

modelo, selecionando o *micro-cluster* de menor distância. Se a distância entre o exemplo e o centro do *micro-cluster* for menor que o raio do *micro-cluster*, o exemplo é classificado com a etiqueta do *micro-cluster* e o sumário estatístico do *micro-cluster* é atualizado. Caso a distância (mínima no modelo) seja maior que o raio, o exemplo é marcado como desconhecido e armazenado em conjunto próprio (Faria Paiva, 2014; FARIA; CARVALHO; GAMA, 2015a).

O segundo método da fase *Online* é a detecção de padrões novidade, que é executada quando o tamanho do conjunto de desconhecidos é maior que um parâmetro predefinido. Esse método executa o agrupamento (*clustering* descrito na fase *Offline*) e valida os *micro-clusters* gerados verificando sua representatividade e coesão.

Algoritmo 1: MINAS (FARIA; CARVALHO; GAMA, 2015a; CASSALES et al., 2019)

```
Entrada: Modelo, FCD, T, NumMinExemplos, ts, P
 1: MemTmp \leftarrow \emptyset
 2: MemSleep \leftarrow \emptyset
 3: for all exemplo \in FCD do
      (Dist, micro) \leftarrow \text{micro-mais-proximo}(exemplo, Modelo)
 4:
 5:
      if Dist < raio(micro) then
 6:
         exemplo.classe \leftarrow micro.rotulo
         atualizar-micro(micro, exemplo)
 7:
      else
 8:
         exemplo.classe \leftarrow desconhecido
 9:
         MemTmp \leftarrow MemTmp \cup exemplo
10:
         if |MemTmp| > NumMinExemplos then
11:
12:
           Modelo \leftarrow deteccao-novidade(Modelo, MemTmp, T)
         end if
13:
      end if
14:
      TempoAtual \leftarrow exemplo.T
15:
      if TempoAtual \mod TamJanela == 0 then
16:
         Modelo \leftarrow mover-micro-grupos-mem-sleep(Modelo, MemSleep, P)
17:
         MemTmp \leftarrow \text{remover-exemplos-antigos}(MemTmp, ts)
18:
19:
      end if
20: end for
```

Para atribuição de etiquetas aos *micro-clusters* gerados, o algoritmo MINAS encontra no modelo atual o *micro-cluster* mais próximo pela distância euclidiana e classifica em dois tipos de conceito. Se a distância é menor que um parâmetro predefinido, o novo *micro-cluster* gerado recebe como etiqueta o valor de extensão de conceito conhecido. Caso contrário, se o novo *micro-cluster* está mais distante, um novo conceito foi encontrado e a etiqueta marca um padrão novidade. Após a atribuição da etiqueta do novo *micro-cluster*, ele é adicionado ao modelo de decisão.

O algoritmo MINAS, como já foi discutido na Seção 2.5.1, classifica exemplos e detecta novidades em DS e considera em sua composição concept drift e concept evolution, sendo capaz de classificar como extensão de classe conhecida e identificar padrões novidade sem intervenção de especialista (FARIA; CARVALHO; GAMA, 2015a). Neste trabalho, consideram-se algoritmos derivados do algoritmo MINAS aqueles apresentados em trabalhos publicados após 2016, que estendem a implementação original seguindo sua estrutura básica.

2.5.2 Algoritmo FuzzyND

O algoritmo FuzzyND, derivado do MINAS foi proposto por Da Silva et al. (2018). FuzzyND incrementa o algoritmo original, aplicando a ele teorias de conjuntos fuzzy pela modificação da representação dos clusters. A modificação afeta o método de construção de clusters, método de classificação de exemplos e método de detecção de novidades de acordo com a nova representação.

A avaliação do algoritmo FuzzyND foi feita por meio de experimentos usando 3 data sets sintéticos (MOA3, RBF, SynEDC) e por comparação com o MINAS. O método de avaliação utilizado baseia-se na matriz de confusão incremental descrita por Faria et al. (2015), extraindo dessa matriz duas métricas: acurácia (Macro F-Score) (SOKOLOVA; LAPALME, 2009) e taxa de desconhecidos (UnkR) (FARIA; CARVALHO; GAMA, 2015a). Em geral, o algoritmo FuzzyND detecta melhor novidades e, consequentemente, é mais robusto a valores atípicos (outlier), porém perde a capacidade de reconhecer padrões recorrentes.

2.5.3 Algoritmos MINAS-LC e MINAS-BR

O algoritmo MINAS-LC foi proposto por Costa (2019) e trata a classificação multirótulo, porém não trata evoluções de conceito (*Concept Evolution*). As alterações fundamentais propostas são: a representação de *cluster* onde MINAS-LC troca a etiqueta, que era única, por uma multi-rótulo; a transformação de problema aplicada ao conjunto de treinamento para transformá-lo de um conjunto multi-rótulo para um conjunto multi-classe (simplificação) em duas variações *Label Powerset* e *Pruned Sets* com mineração de conjunto de itens frequentes.

Já o trabalho de Costa et al. (2019a), estende o algoritmo original para que classifique um exemplo com uma ou mais etiquetas usando a transformação *Binary Relevance*, o que

deu origem ao algoritmo MINAS-BR. O algoritmo modifica a representação do modelo, originalmente conjunto de *clusters*, para um grupo de *clusters* por classe (etiqueta). Também modifica o método de agrupamento, substituindo a inicialização do algoritmo *K-means*, originalmente aleatória, pelo algoritmo *Leader Incremental Clustering* (VIJAYA; MURTY; SUBRAMANIAN, 2004).

O algoritmo MINAS-BR também é experimentalmente avaliado com 4 data sets sintéticos: MOA-3C-5C-2D, MOA-5C-7C-2D, MOA-5C-7C-3 da ferramenta MOA (BIFET et al., 2010) e 4CRE-V2 ¹ gerados pelo método Radial Basis Function (SOUZA et al., 2015; COSTA et al., 2019a). O algoritmo MINAS-BR foi comparado com 7 algoritmos da literatura também disponíveis na ferramenta MOA (BIFET et al., 2010), diferente da avaliação do FuzzyND que compara diretamente com MINAS. Para análise, os 7 algoritmos foram divididos em dois grupos (COSTA et al., 2019a). O primeiro grupo de 3 algoritmos com acesso às etiquetas corretas para atualização do modelo e com a técnica ADWIN (ADaptive WINdowing) para detectar mudanças de conceito (Concept Drift) O segundo grupo com os 4 algoritmos sem acesso às etiquetas corretas, ou seja, sem feedback externo, mesma condição do MINAS-BR (COSTA et al., 2019a).

A avaliação elencada por Costa et al. (2019a) leva em consideração que as classes contidas no conjunto de testes podem não ter correlação direta com os padrões identificados pelos algoritmos. Para tratar a divergência, uma estratégia baseada em proposta anterior por Faria et al. (2015) foi apresentada com alterações para exemplos multi-rótulo. Após associação entre padrões de novidade e classes novidade foi possível calcular métricas tradicionais. A estratégia é executada na fase de classificação seguindo as regras:

- 1. após o consumo do exemplo X_n ;
- 2. para todo padrão P_i (etiqueta atribuída) identificado sem associação até o momento;
- 3. com classes novidade y_j (etiqueta real) presentes em exemplos antes X_n ;
- 4. preenche-se a tabela de contingência $\mathbf{T}_{(i,j)}$ relacionando padrão P_i e classe y_j ;
- 5. calcula-se o grau de dependência F1 derivado da tabela de contingência $F1_{(i,j)} = f(\mathbf{T}_{(i,j)});$
- 6. valores $F1_{(i,j)} = 0$ são descartados;

 $^{^1{\}rm A}$ versão original do data set 4CRE-V2 está disponível em ${\rm https://sites.google.com/site/nonstationaryarchive/home}$

7. dentre os valores restantes: o padrão P_i é associado à classe y_j se $F1_{(i,j)}$ é máximo.

As métricas utilizadas por Costa et al. (2019a) após a associação de classes e padrões são as tradicionais taxa de desconhecidos (UnkRM) e F1M. Os resultados apresentados indicam que MINAS-BR capturou todas as novidades dos data sets sintéticos de teste e mostrou, como esperado, melhores métricas que os 4 algoritmos equivalentes da literatura ficando abaixo dos 3 com feedback externo.

Os trabalhos abordados nessa Seção 2.5, têm em comum, além do algoritmo base, as métricas de avaliação acurácia (*Macro F-Score* e *Macro F-Measure* F1M) e taxa de desconhecidos, aplicadas com devido tratamento. Também é comum entre eles o uso de data sets sintéticos. Outro potencial não explorado do MINAS é em aplicações reais, ou seja, consumindo além de data sets reais, fluxos realistas em ambientes simulados ou reais porém considerando uso de recursos computacionais.

Observando a arquitetura dos algoritmos abordados na Seção 2.5, nota-se as semelhanças: a fase offline centrada no processo de agrupamento e criação de modelo; a fase online dividida em classificação (com atualização das estatísticas do modelo) e detecção de padrões, onde novamente o processo de agrupamento é central. Portanto, apesar de outros trabalhos expandirem o algoritmo com diferentes técnicas, seu núcleo continua relevante² (Da Silva et al., 2018; SILVA, 2018; COSTA et al., 2019a).

²Propostas de modificação do algoritmo MINAS estão longe de serem exauridas. Não cabe ao presente trabalho expandir e validar conceitos de aprendizagem de máquina, porém alguns exemplos mencionados ainda não abordados são: a) diferentes métodos de cálculo de distância entre pontos além da distância euclidiana; b) a mudança de representação de *clusters*, atualmente hiper-esferas (COSTA, 2019), para hiper-cubos tratando *data sets* onde as características representadas pelas dimensões são completamente independentes; c) um modo interativo onde o *cluster* é formado, mostrado ao especialista que o classifica como inválido (ruído ou não representativo) ou válido, podendo conter uma ou mais classes e, se contiver mais que uma classe corte em grupos menores até conter somente uma classe; d) ainda considerando interação com especialista, a possibilidade de injetar um exemplo não pertencente a uma classe, ou seja, marcar o exemplo como não pertencente a uma classe para mantê-lo na memória de desconhecidos e, eventualmente forçar criação de um *cluster* que represente uma classe geometricamente próxima mas semanticamente distinta; e) na fase *offline* a verificação de sobreposição de *clusters* pertencentes a classes distintas e tratamento adequado.

Capítulo 3

Trabalhos Relacionados

Este Capítulo trata dos trabalhos relacionados e apresenta aspectos do estado da arte dos tópicos Detecção de Novidades em Fluxos de Dados, e Processamento Distribuído de Fluxos de Dados.

Nesta Capítulo, abordam-se trabalhos que aplicam em de fluxo de dados em tempo real. Um sumário dos trabalhos abordados pode ser visto na Tabela 1.

Trabalho Plataforma Técnica Conjunto de dados Métricas Hoeffding Tree, Oza-Ferramenta BigFlow flowtbag,MAWILabAcurácia (geral e por Python,(VIEGAS KafkaBoosting, Leveraging classe), Taxa de bytes $_{
m et}$ ApacheApache Flink 2019) Baq e comitê CA-PCA, SFS, e SVM-NSL-KDD, Ferramenta VirtualNetwork Acurácia, precisão, TRACA (LOPEZ, Function,RFEGTA/UFRJ e NetOp sensibilidade e F1-ApacheKafka2018)A pachescore SparkECSMiner, IDSA-Java, Apache Kafka e AnyNo-Kyoto 2006+ Fnew, Mnew e erro Arquitetura IoT (CASSALES et Pythonvel e MINAS al., 2019)

Tabela 1: Sumário dos trabalhos relacionados

3.1 Ferramenta BigFlow

Proposta por Viegas et al. (2019), a ferramenta BigFlow é um sistema de detecção de intrusão em rede (Network Intrusion Detection System, NIDS) baseado em detecção de anomalias. Duas abordagens, detecção por assinatura e detecção por anomalia, . Para a detecção de novos tipos de ataque (zero day), a abordagem de detecção por anomalia é vantajosa, em contraste com a abordagem de detecção por assinatura, devido ao tempo de resposta (que envolve a identificação e criação de uma assinatura), grande demais para prevenir esse tipo de intrusão.

A ferramenta BigFlow é composta pelos módulos de extração de atributos e de aprendizado confiável. O módulo de extração de atributos é responsável por coletar da rede monitorada, com estatísticas de comunicação e enviar informações desses fluxos como exemplos para o módulo de aprendizado confiável. O módulo de aprendizado confiável, é composto pelos submódulos: submódulo classificador, responsável por classificar exemplos; submódulo de verificação, responsável por verificar o resultado de classificação; submódulo de exemplos rejeitados, responsável por requisitar a um especialista etiquetas para exemplos rejeitados e; submódulo de atualização incremental, que atualiza e distribui o modelo aos classificadores.

Viegas et al. (2019) destaca que *data sets* adequados para NIDS são poucos, devido ao conjunto de qualidades que os mesmos devem atender, como realismo, validade, etiquetamento, grande variabilidade e reprodutividade (disponibilidade pública).

Para avaliar o desempenho de NIDS, o data set MAWIFlow é proposto por Viegas et al. (2019). Este data set é derivado do data set Packet traces from WIDE backbone, samplepoint-F, composto por seções de captura de pacotes diárias de 15 minutos de um link de 1Gbps entre Japão e EUA, com início em 2006 continuamente até hoje, anonimizados e etiquetados por MAWILab (MAWI Working Group Traffic Archive, 2020; FONTUGNE et al., 2010). Desse data set original, o data set MAWIFlow utiliza apenas os eventos de 2016, dos quais 158 atributos são extraídos resultando em 7.9 TB de captura de pacotes. Além disso, os dados são estratificados para redução de seu tamanho a um centésimo, as proporções de etiquetas (Ataque e Normal), o compartilhamento e avaliação de NIDS, além de atender às qualidades anteriormente mencionadas.

Com o data set MAWIFlow reduzido a 62 atributos, foram avaliados quatro classificadores da literatura em dois modos de operação. O primeiro modo de operação usa somente a primeira semana do ano como conjunto de treinamento e as demais como conjunto teste. O segundo modo usa o conjunto da semana anterior como treinamento e o conjunto da semana seguinte como teste. Comparando os resultados entre os modos de operação, os autores demonstram que a qualidade da classificação reduz-se com o tempo, quando não há atualização frequente do modelo classificador.

Com base na avaliação dos classificadores da literatura, para a ferramenta BigFlow é proposta a utilização de 4 algoritmos de classificação com capacidade de atualização, sendo todos variações de árvore de decisão *Hoeffding* (VIEGAS et al., 2019; DOMINGOS; HULTEN, 2000). A avaliação da ferramenta foi executada de maneira semelhante à avaliação dos algoritmos da literatura, onde o conjunto de dados da primeira semana foi

usado para treinamento e o conjunto de dados do restante do ano como conjunto de teste. Além do conjunto de treinamento, o modelo é atualizado semanalmente com base nas instâncias rejeitadas pelo submódulo de verificação.

Quanto à distribuição do processamento, a ferramenta BigFlow faz uso das plataformas Apache Flink e Apache Kafka. Em especial, destaca-se o uso do serviço gerenciador de trabalhos (Job Manager) e as múltiplas instâncias do serviço gerenciador de tarefas (Task Manager).

Em conclusão, a ferramenta BigFlow demonstra capacidade de classificação e detecção de anomalias em fluxos de dados de alta velocidade no contexto de detecção de intrusão.

3.2 Ferramenta CATRACA

O trabalho de Lopez (2018) aborda a detecção de ameaças a redes de computadores em tempo real e, para atingir esse objetivo, propôs a ferramenta CATRACA¹. A ferramenta CATRACA é composta de três camadas: captura, processamento e visualização.

Na camada de captura, pacotes são capturados da rede e são geradas informações sumário de fluxos por uma aplicação *Python* utilizando a biblioteca *flowtbag*². Esses sumários são enviados para um tópico de um sistema de fila de mensagens (*Apache Kafka*) hospedado em nuvem. Essa aplicação *Python* é distribuída como uma função virtual de rede (*Network Function Virtualization*) executada em dispositivos de rede virtuais.

A camada de processamento consome o tópico de mensagens que contém os fluxos da camada de captura e extrai características dos fluxos, detecta e classifica ameaças, enriquece o resultado (com localização geográfica por exemplo) e envia para a próxima camada na arquitetura por meio de um banco de dados (SGBD). A última camada da ferramenta fornece uma interface gráfica que apresentada a visualização dos fluxos processados bem como os conhecimentos extraídos e armazenados no banco de dados (SGBD). Ambas as camadas de processamento e visualização são executadas em ambiente de computação em nuvem (cloud computing).

 $^{^1{\}rm A}$ ferramenta e sua documentação estão disponíveis em ${\rm http://gta.ufrj.br/catraca} \ e \ {\rm https://github.com/tinchoa/catraca}.$

 $^{^2} Disponível \ em \ \langle https://github.com/danielarndt/flowtbag \rangle \ e \ \langle https://dan.arndt.ca/projects/netmate-flowcalc/ \rangle.$

Para o desenvolvimento da ferramenta CATRACA, Lopez (2018) avaliou e comparou as plataformas de processamento de fluxo de dados em tempo real disponíveis (Apache Storm, Apache Flink, Apache Spark Streaming). A avaliação extraiu a velocidade máxima, em mensagens por minuto, de cada plataforma, variando a configuração de paralelismo em dois programas. Ambos consumiam dados de um tópico de um sistema de fila de mensagens (Apache Kafka) e produziam para outro tópico. O primeiro programa consiste de um detector de ameças composto por uma rede neural classificadora escrito em Java, que foi testado com o conjunto de dados sintético UFRJ/GTA (LOPEZ, 2018). O segundo programa conta quantas repetições de uma palavra existem em um fluxo de dados, exemplo muito comum em tutoriais de plataformas desse gênero, e é avaliado com um conjunto de Tweets.

Para o modelo de classificação, a ferramenta CATRACA utiliza o método árvore de decisão, escolhido pelo rápido treinamento e pela alta precisão e acurácia³. O modelo é criado na fase *Offline* e utilizado na classificação binária (normal e ameaça) da fase *Online*, sendo recalculado quando uma ameaça é encontrada.

Pra avaliação da ferramenta CATRACA dois conjuntos de dados são utilizados. O primeiro conjunto, UFRJ/GTA, é sintético e foi criado por uma simulação de rede de computadores, contendo 214 200 fluxos de rede e totalizando 95GB de pacotes capturados, este *data set* é composto de 24 atributos e 16 classes. O outro conjunto, referido como NetOp, foi coletado de um operador de rede que atendia 373 residências na cidade do Rio de Janeiro em 2017. O conjunto NetOp é formado por 5 TB de pacotes capturados e etiquetados por um detector de intrusão comercial.

Também para a avaliação da ferramenta CATRACA, foram utilizadas as métricas de qualidade de classificação acurácia, precisão, sensibilidade e F1M, com intervalo de confiança de 95%. As métricas de qualidade, dependendo do tamanho do conjunto, foram extraídas por métodos de avaliação amplamente utilizados para avaliar modelos de aprendizado de máquina (machine learning) como validação cruzada com proporção 70% do conjunto base para treinamento e 30% para teste. Para as métricas de escalabilidade foram utilizadas a latência e fator de aceleração speedup factor (latência observada com paralelismo 1 dividida pela latência observada com paralelismo variável).

Em conclusão, a ferramenta CATRACA apresenta uma arquitetura dividida em camadas alocadas em ambientes de névoa (fog computing) e nuvem (cloud computing).

³A precisão e a acurácia do método árvore de decisão podem estar associadas à independência entre as características (features) de cada exemplo, típico de conjuntos derivados de pacotes de rede.

Essa ferramenta foi avaliada com métricas de qualidade, métricas de escalabilidade e dois conjuntos de dados relevantes. No entanto, o algoritmo de detecção de anomalias desenvolvido para a ferramenta consiste de um modelo de classificação pelo método árvore de decisão e a atualização do modelo durante a fase *Online* depende de todos os exemplos do último intervalo de atualização. Esse tipo de algoritmo de detecção de anomalias de dados, como os descritos na Seção 2.5 (*Concept Drift, Concept Evolution*, limitado a ler o conjunto somente uma vez), que são atendidos por algoritmos de detecção de novidade.

3.3 Arquitetura IDSA-IoT

A arquitetura IDSA-IoT, proposta por Cassales et al. (2019), tem por objetivo monitorar uma rede local com dispositivos IoT e detectar tentativas de intrusão e alguma subversão do comportamento das transmissões destes dispositivos. O principal destaque da arquitetura é a distribuição de tarefas do sistema de detecção de intrusão entre nós na e nós em nuvem pública (cloud computing). O objetivo dessa distribuição é a redução de latência, que torna inviável a hospedagem de um sistema detector de intrusão somente em ambiente cloud computing, e também possibilitar a análise de grandes volumes de dados por algoritmos de maior complexidade, que são de custo computacional proibitivo para nós de borda. A Figura 1 ilustra a estrutura física da arquitetura IDSA-IoT, destacando os dispositivos IoT, dispositivos de borda e nuvem pública.

A arquitetura proposta é avaliada com três algoritmos de detecção de novidade: ECSMiner (MASUD et al., 2011), AnyNovel (ABDALLAH et al., 2016) e MINAS (FARIA; CARVALHO; GAMA, 2015a). A avaliação foi feita com o data set Kyoto 2006+, composto de dados coletados de 348 Honeypots (máquinas isoladas, equipadas com diversos softwares com vulnerabilidades conhecidas e expostas à Internet, com propósito de atrair ataques) de 2006 até dezembro 2015. Esse data set tem as características desejáveis de um conjunto para detectção de novidades como: realismo, validade, etiquetas previamente definidas, alta variabilidade, reprodutibilidade e disponibilidade pública. O data set Kyoto 2006+ contém 24 atributos, 3 etiquetas atribuídas por detectores de intrusão comerciais e uma etiqueta distinguindo o tráfego entre normal, ataque conhecido e ataque desconhecido.

A avaliação da arquitetura foi realizada utilizando as métricas de qualidade Fnew, Mnew e erro. A métrica Fnew (ou Falso Positivo) é a fração dos exemplos de uma classe normal classificados com etiqueta novidade ou etiqueta extensão. A métrica Mnew (ou Falso Negativo) é a fração dos exemplos de uma classe novidade classificados com

Figura 1: Estrutura Física da Arquitetura IDSA-IoT. Produzida e traduzida por Cassales et al. (2019).

etiqueta normal. A métrica erro é a soma dos valores falso positivo e falso negativo dividida pelo número de exemplos classificados. Além das métricas de qualidade de classificação tradicionais, também foi medida a quantidade de requisições de classificação por especialista.

Outra avaliação dos algoritmos foi a extração de métricas de uso de recursos computacionais e tempo total de processamento em dispositivos limitados. Essa avaliação envolveu dois computadores. Para tanto, um computador pessoal com recursos convencionais produzia exemplos e adicionava como mensagens em um tópico no sistema de fila de mensagens Apache Kafka; já o outro computador, com recursos limitados, consumia as mensagens do tópico e classificava os exemplos.

Ambas as avaliações demonstraram o equilíbrio entre qualidade de classificação e velocidade ou uso de recursos. O algoritmo ECSMiner mostrou melhor qualidade de classificação, porém com velocidade inferior e maior consumo de recursos comparado aos outros algoritmos. Já o algoritmo MINAS, apesar de maiores valores na métrica erro, mostrou-se adequado para dispositivos limitados com baixo consumo de recursos computacionais e manteve a métrica Fnew constante e baixa. O algoritmo AnyNovel não apresentou consistência nos resultados e o consumo de recursos computacionais (memória) foi elevado.

Com as avaliações realizadas, a arquitetura IDSA-IoT as tarefas de mineração dos fluxos para detecção de intrusão em serviços e aloca os serviços em diferentes camadas físicas, conforme ilustrado na Figura 2.

Figura 2: Distribuição de Serviços da Arquitetura IDSA-IoT. Produzida e traduzida por Cassales et al. (2019).

A distribuição das tarefas em serviços proposta abre oportunidades para a discussão de diferentes métodos de distribuição dessas tarefas em diferentes ambientes computacionais. Contudo, o algoritmo MINAS ainda não foi implementado e avaliado com ou , que são necessários para tratar fluxos de dados com grandes volumes e velocidades.

3.4 Conclusão

Em conclusão, os trabalhos discutidos nesse Capítulo têm temas complementares em áreas distintas. A área de aprendizado de máquina, com o tema detecção de novidades em fluxos de dados, preocupa-se em fornecer melhores previsões através de algoritmos classificadores que atendam as características de cada problema. A área de computação distribuída aborda os temas de processamento distribuído de fluxos contínuos em ambientes de computação em nuvem e em névoa, fornecendo métodos para processar grandes volume de dados com mínima latência.

Apesar de já existirem propostas que estabelecem o estado da arte separadamente em cada um dos temas, entre o estado da arte em de novidade e o estado da arte em de fluxos de dados, em especial para focado em relacionados a

Capítulo 4

Proposta e metodologia

Este Capítulo apresenta a proposta deste trabalho e a metodologia elegida para atingir os objetivos.

A Internet das Coisas (IoT) é composta por vastas quantidades de dispositivos conectados à Internet e distribuídos geograficamente. Com capacidades diversas providas por elementos como sensores e atuadores, esses dispositivos produzem e consomem Fluxos Contínuos de Dados (data streams) com diversos objetivos. Alguns cenários de IoT envolvem a mineração desses fluxos (data stream mining) em busca de padrões para tomada de decisão e, por vezes requerem também baixa latência. Para casos de baixa latência ou alta vazão, conexões adequadas para processamento em nuvem nem sempre são possíveis ou desejáveis; para esses casos, a computação em névoa (fog computing) é uma solução.

O tema de data stream mining envolve a classificação de novos elementos, que podem tanto estar relacionados aos dados ou aos metadados das comunicações, com base em um modelo. as classes contidas em um data stream não são todas previamente conhecidas. A identificação e classificação de novas classes em data streams é denominada Detecção de Novidades (Novelty Detection, ND) em data streams.

inerentes a data stream mining, são considerados na construção de um que computa data streams a taxa de eventos gerados por cada produtor e o número de produtores nesse sistema, totalizando o volume de eventos . Volumes elevados dificilmente são computados em apenas um nó (e muito menos em um único núcleo processador) e por isso, esses sistemas são distribuídos.

Sistemas que utilizam ND para data streams gerados por dispositivos IoT devem utilizar algoritmos que considerem os desafios inerentes a fluxos de dados (Concept Evolution e Concept Drift) para adequada detecção de novidades e, para tanto, requerem processamento

em arquiteturas que atendam os requisitos de volume de mensagens e latência de detecção. O algoritmo MINAS é adequado para esse caso, pois trata os desafios de *data stream mining*, porém não tem ainda implementação que atenda os requisitos de volume e latência, especialmente para aplicações IoT onde um ambiente de *fog computing* é atrativo.

Para preencher a lacuna de algoritmo de ND em ambiente fog computing, propõem-se então o sistema M-FOG, uma implementação do algoritmo MINAS sobre a plataforma Apache Flink, que considera distribuição em um ambiente de fog computing. O sistema M-FOG descrito neste documento foi refinado com os resultados dos experimentos descritos na Seção 4.3 e poderá ser revisado ao longo da pesquisa conforme os resultados de outros experimentos evidenciarem obstáculos ou oportunidades de melhoria.

4.1 Descrição da Implementação

Nesta Seção, apresenta-se o sistema M-FOG, objeto proposta deste trabalho. O sistema M-FOG é composto de três módulos principais e dois auxiliares. Os módulos principais implementam o algoritmo MINAS, sendo eles: módulo treinamento (*Training Module*), módulo classificador (*Classification Module*) e módulo detector de novidades (*Novelty Detection Module*). Dois módulos auxiliares são utilizados para avaliação do sistema M-FOG: módulo auxiliar *source* (fonte) e módulo auxiliar *sink* (sorvedouro, consumidor final). Os módulos e as interações entre eles são ilustradas na Figura 3.

Figura 3: Arquitetura e fluxos de dados do sistema M-FOG.

A implementação do sistema M-FOG segue a arquitetura IDSA-IoT formalizada por

Cassales et al. (2019), discutida na Seção 3.3. A arquitetura IDSA-IoT estabelece que um serviço de captura e tratamento de dados é instalado na borda de uma rede local com dispositivos IoT. Na presente implementação, esse serviço de captura e tratamento é representado pelo módulo auxiliar source.

O módulo auxiliar source é dependente da fonte de dados, executando a transformação dos formatos dos data sets para um fluxo de exemplos (representado por x na Figura 3) compatível com o restante da implementação. Além de fornecer exemplos tratados para o módulo classificador, o módulo auxiliar source também fornece exemplos com a classe original (representado por x, c na Figura 3) .

O módulo auxiliar *sink* é responsável por agregar todos resultados do sistema M-FOG e, juntamente com os valores do *data set* fornecidos pelo módulo auxiliar *source*, por computar as métricas de qualidade de classificação. Além disso, esse módulo também coleta e agrega métricas base para as avaliação de escalabilidade e métricas de uso de recursos computacionais.

Os dados resultantes do serviço de captura e tratamento (representado no sistema M-FOG pelo módulo auxiliar source) são ingeridos pela aplicação no módulo classificador. A ingestão é feita por meio de um operador fonte, fornecida pela plataforma $Apache\ Flink$. Na plataforma, com o modelo de classificação disponível, os exemplos são classificados seguindo o algoritmo MINAS original discutido na Seção 2.5.1. A etiqueta atribuída pela classificação, ou meta-etiqueta de desconhecido, juntamente com o exemplo original (representado por x, l na Figura 3) são enviados para o módulo auxiliar sink. Além disso, se o exemplo não for classificado, o exemplo e a meta-etiqueta de desconhecido (representado por x, u na Figura 3) são enviados para o módulo detector de novidades. Outra comunicação é o envio das modificações ao sumário estatístico do modelo de classificação (representado por Summary na Figura 3) do módulo classificador para o módulo detector de novidades.

O módulo detector de novidades é responsável por executar o processo de detecção de novidade, atualizando o modelo de classificação, e entregar o novo modelo às instâncias do módulo classificador, através do serviço de armazenamento de modelo (*Model Store* na Figura 3). O módulo detector de novidades também envia meta-informações sobre o processo de detecção de novidade (representado por *Log* na Figura 3) para o módulo auxiliar *sink*.

O sistema M-FOG utiliza em seus módulos a distribuição oferecida pela plataforma $Apache\ Flink$ como paralelização, ou seja, utiliza uma instância de trabalho (job) por

dispositivo de classificação, sendo que cada instância de trabalho aloca um gerenciador de tarefas por processador. Dessa forma, busca-se a escalabilidade no ambiente de fog computing para o módulo classificador. O módulo treinamento, por ser utilizado somente uma vez para gerar o modelo de classificação inicial, não tem impacto na escalabilidade geral do sistema. O módulo detector de novidades também é implementado na plataforma Apache Flink e, por ser hospedado em ambiente de cloud computing, herda as qualidades desse ambiente incluindo escalabilidade. O restante do sistema (módulo auxiliar source, módulo auxiliar sink, armazenamento de modelo) não é foco deste estudo e sua escalabilidade, desde que não afete a escalabilidade do módulo classificador e módulo detector de novidades.

4.2 Metodologia de Avaliação e Resultados Esperados

A avaliação da proposta apresentada é feita por meio de métricas extraídas da literatura, divididas em duas partes: métricas de qualidade de classificação e métricas de escalabilidade. Métricas tradicionais de qualidade de classificação estabelecidas por trabalhos de aprendizado de máquina não são adequadas para avaliar detecção de novidades em data streams sem tratamento inicial. Felizmente, o tratamento necessário é estabelecido por Faria et al. (2013) e expandido por Da Silva et al. (2018), Silva (2018), Costa et al. (2019a), Costa (2019). Além do tratamento estabelecido, as métricas tradicionais não são calculadas somente para o conjunto completo, e sim para cada exemplo classificado. Portanto, as métricas têm como índice o instante (n nas equações à seguir), informando a posição do exemplo em relação ao fluxo.

O tratamento estabelecido das métricas de qualidade para data stream mining define que as métricas sejam extraídas de uma matriz de erro de classificação multi-classe \mathbf{E}_n (Equação 4.3), adaptada para detecção de novidade. A matriz de erro é preenchida com o número de eventos da classe c_i classificados com etiqueta l_j até o instante n. A Equação 4.1 representa o conjunto de classes presentes nos eventos do fluxo até o instante n e a Equação 4.2 representa o conjunto de etiquetas atribuídas pelo classificador a eventos até o mesmo instante.

$$\mathbf{C}_n = \{c_1, c_2, \cdots, c_M\} \tag{4.1}$$

$$\mathbf{L}_n = \{l_1, l_2, \cdots, l_J\} \tag{4.2}$$

$$\mathbf{E}_{n} = \begin{pmatrix} e_{1,1} & e_{1,2} & \cdots & e_{1,J} \\ e_{2,1} & e_{2,2} & \cdots & e_{2,J} \\ \vdots & \vdots & \ddots & \vdots \\ e_{M,1} & e_{M,2} & \cdots & e_{M,J} \end{pmatrix}$$
(4.3)

As métricas de qualidade de classificação selecionadas para avaliar a implementação do sistema M-FOG serão taxa de desconhecidos (UnkR na Equação 4.4) (FARIA et al., 2013), acurácia média (acc na Equação 4.5) e Macro F-score (Fscore na Equação 4.9, também referido na literatura por F1M) (SOKOLOVA; LAPALME, 2009; SILVA, 2018). As métricas são extraídas para todos os exemplos classificados (instantes n) da respectiva matriz de erro \mathbf{E}_n .

$$UnkR_{n} = \frac{1}{M} \sum_{i=1}^{M} \frac{\#Unk_{i}}{\#ExC_{i}}$$
(4.4)

$$acc_n = \frac{1}{M} \sum_{i=1}^{M} \frac{tp_i + tn_i}{tp_i + fn_i + fp_i + tn_i} = \frac{1}{M} \sum_{i=1}^{M} \frac{\#Acc_i}{\#ExC_i}$$
(4.5)

$$Precision_n = \frac{1}{M} \sum_{i=1}^{M} \frac{tp_i}{tp_i + fp_i}$$
(4.6)

$$Recall_n = \frac{1}{M} \sum_{i=1}^{M} \frac{tp_i}{tp_i + fn_i}$$

$$\tag{4.7}$$

$$Fscore \beta_n = (\beta^2 + 1) \cdot \frac{Precision \cdot Recall}{\beta^2 \cdot Precision + Recall}$$

$$Fscore 1_n = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

$$(4.8)$$

$$Fscore 1_n = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall} \tag{4.9}$$

A transformação do fluxo de saída em uma matriz de erro é realizada no módulo auxiliar sink, Esse módulo deve levar em consideração que pode haver reclassificação de um evento, previamente rotulado como desconhecido, em padrões oriundos de classe novidade ou extensão devido ao processo de detecção de novidades executado posteriormente ao surgimento do padrão em questão.

As métricas de escalabilidade selecionadas são: número de nós processadores, tipo de processadores, uso de memória, tempo de processamento, taxa de eventos processados e

latência entre a produção e classificação de um evento.

Da implementação do sistema M-FOG é prevista a execução de experimentos com *data* sets diversos, em especial os *data sets* reais como *Kyoto 2006+*, que contenham evolução de conceitos. Os resultados desses experimentos irão conter as seguintes métricas:

- a) Qualidade de classificação (taxa de desconhecidos, F1M);
- b) Escalabilidade (número de processadores, volume processado, tempo decorrido);
- c) Recursos computacionais utilizados (memória, tempo de processamento, operações de leitura e escrita).

Para a validação da corretude da implementação do sistema M-FOG com relação ao algoritmo MINAS original, as métricas de qualidade de classificação serão extraídas de ambas as Implementação e comparadas.

4.2.1 Ambiente de Teste

Para realização dos experimentos, diversas configurações de ambientes são propostas. Os ambientes selecionados são: local, . As configurações consistem na distribuição de módulos da implementação sistema M-FOG sendo executadas em combinações de ambientes nuvem e névoa com variada quantidade de nós.

O ambiente local é composto por um único nó computacional, consistindo de um computador pessoal equipado com um processador de 8 núcleos, 16GB de memória e armazenamento em estado sólido (SSD) usado para o desenvolvimento e referência em comparações. O ambiente nuvem é provido pela utilização da infraestrutura de nuvem da Universidade Federal de São Carlos (Cloud@UFSCar¹). O ambiente de névoa (fog computing) é composto por computadores de única placa (Single Board Computer) equipados com processador de arquitetura ARM de 4 núcleos, 1GB de memória, armazenamento em cartão SD (SD-card) e conectados por rede sem fio.

A combinação de diferentes distribuições tem por objetivo e qualidade que podem afetar implantações em ambientes reais que não são geralmente destacados quando os experimentos são realizados em um único nó ou ambiente.

Faz parte também do ambiente de teste os conjuntos de dados ($data\ sets$) KDD99 e $Kyoto\ 2006+$ que foram selecionados por motivos distintos.

¹Disponível em (http://portalcloud.ufscar.br/servicos)

O data set Kyoto 2006+ é o foco deste trabalho, pois contém dados ainda representativos (até 2015) e as característica desejáveis de um conjunto de dados (realismo, validade, etiquetas previamente definidas, alta variabilidade, reprodutibilidade e disponibilidade pública) são atendidas (SONG; TAKAKURA; OKABE, 2020; SONG et al., 2011a).

O data set KDD99 é amplamente utilizado em trabalhos de detecção de anomalia. Porém, como não possui mais a característica de realismo, uma vez que foi construído em 1998, neste trabalho o data set KDD99 é utilizado somente para que o leitor possa comparar com outros trabalhos (TAVALLAEE et al., 2009; PROTIĆ, 2018).

Os dois data sets mencionados e outros abordados em discussão e avaliados como relevantes são

Descrição KDD99 (TAVALLAEE et Captura de Fluxos de rede 41 atributos (sumário de (https://kdd.ics.uci.edu/ al., 2009; PROTIĆ, 2018) com ataques simulados fluxo), 23 classes, 4 898 431 databases/kddcup99/ instâncias, 709 MB kddcup99.html> Kyoto 2006+ (SONG et al., Captura de Fluxos de rede 23 atributos (sumário de (https://www.takakura. com HoneyPot fluxo), 3 classes, 7 865 245 com/Kyoto_data/ 2011a; PROTIĆ, 2018) instâncias e 1.3 GB (deznew_data201704/ \rangle 2015) CICIDS2017 (SHARAFAL-Captura de Fluxos de rede https://www.unb.ca/cic/ 80 atributos (sumário de DIN; LASHKARI; GHORcom ataques simulados com fluxo extraído de CIC $datasets/ids-2017.html\rangle$ BANI, 2018) perfil de trafego de 25 FlowMeter), 15 classes, usuários normais e de 6 per-2 830 751 instâncias e fis de ataques durante 5 1.2GB em arquivos pcap e dias (1° dia sem ataque) csvRadialBasis Function Sintético gerado por função Atributos (\mathbb{R}) , exemplos, (https://sites.google.com/ classes, evoluções e mu-(RBF) da biblioteca Mas-RBF da biblioteca MOA site/nonstationaryarchive/ Onlinecom características de mudanças configuráveis siveAnalusishome (MOA) 4CRE-V2 dança e evolução de conceito

Tabela 2: Sumário dos conjuntos de dados

4.3 Resultados preliminares

No desenvolvimento parcial desta pesquisa, algumas experimentações e algumas ferramentas de teste já foram desenvolvidas. Aspectos desses desenvolvimentos são descritos a seguir.

4.3.1 Implementação com *Python* e *Apache Kafka*

A primeira implementação e avaliação do sistema M-FOG realizada foi construída sobre a linguagem *Python* com o sistema de fila de mensagens *Apache Kafka* e a respectiva biblioteca de conexão. A escolha desse conjunto para a implementação ocorreu disponibilidade de bibliotecas de aprendizagem de máquina no ecossistema *Python* e, à

simplicidade geral da linguagem. Na implementação desenvolvida, o sistema Apache Kafka recebe mensagens e as armazena em tópicos distribuídos em partições replicadas em nós de um cluster, gerenciados por um nó mestre e suportados pelo serviço de gerenciamento de configuração distribuída Apache ZooKeeper. A aplicação Python consome eventos através da interface Consumer API, que expõe a distribuição através da associação de um consumidor às partições mantidas pelo Apache Kafka.

Para essa implementação, havia a hipótese de que a distribuição de mensagens gerenciada pelo Apache Kafka se estenderia a processos consumidores, efetivamente distribuindo o volume de mensagens entre eles igualmente. No entanto, a hipótese foi refutada nos experimentos realizados. Os experimentos em questão foram compostos de 8 processos consumidores, um processo produtor, uma instância Apache Kafka com 8 partições em seu tópico principal e uma instância Apache ZooKeeper associada à instância Apache Kafka. A hipótese foi refutada quando observou-se que o número de mensagens consumidas por um dos 8 processos representava a maioria (mais de 80%) do volume introduzido no sistema, o restante sendo distribuído entre outros 3 processos e o restante dos processos não recebia nenhuma mensagem. Portanto, a iniciativa de implementar o algoritmo MINAS em Python com Apache Kafka e atingir os objetivos de distribuição falhou, o que levou à reconsideração das plataformas escolhidas.

4.3.2 Implementação com Apache Flink

A segunda alternativa explorada teve por inspiração o trabalho de Viegas et al. (2019) e, como outro grupo de pesquisa já estava explorando o algoritmo na plataforma *Apache Spark*, a segunda implementação foi baseada na plataforma *Apache Flink*.

A plataforma *Apache Flink* tem modelos de processamento tanto de fluxos como em lotes. O modelo em lotes é implementado como extensão do modelo de fluxos e, apesar de não ser foco desse trabalho, mostrou-se útil para a construção do módulo treinamento, já que o conjunto consumido por esse módulo é limitado.

Um desafio encontrado durante o desenvolvimento da implementação do sistema M-FOG foi a falta de bibliotecas na plataforma *Apache Flink* que disponibilizem versões adaptadas à plataforma de algoritmos base para o algoritmo MINAS. Em especial, a ausência dos algoritmos *K-means* e *CluStream* gerou carga imprevista sobre o processo de desenvolvimento resultando no atraso do processo de desenvolvimento.

Esta implementação segue a arquitetura descrita na Seção 4.1 e as avaliações e

resultados esperados descritos neste Capítulo 4 referem-se à implementação do sistema M-FOG na plataforma *Apache Flink*.

4.4 Article

4.4.1 Abstract

The ongoing implementation of the Internet of Things (IoT) is sharply increasing the number and variety of small devices on edge networks. Likewise, the attack opportunities for hostile agents also increases, requiring more effort from network administrators and strategies to detect and react to those threats. For a network security system to operate in the context of edge and IoT, it has to comply with processing, storage, and energy requirements alongside traditional requirements for stream and network analysis like accuracy and scalability. Using a previously defined architecture (IDSA-IoT), we address the construction and evaluation of a support mechanism for distributed Network Intrusion Detection Systems (NIDS) based on the MINAS Data Stream Novelty Detection (DSND) algorithm. We discuss the algorithm steps, how it can be deployed in a distributed environment, the impacts on the accuracy and evaluate performance and scalability using a cluster of constrained devices commonly found in IoT scenarios. The obtained results show a negligible accuracy loss in the distributed version but also a small reduction in the execution time using low profile devices. Although not efficient, the parallel version showed to be viable as the proposed granularity provides equivalent accuracy and viable response times.

4.4.2 Introduction

The Internet of Things (IoT) brings together a wide variety of devices, including mobile, wearable, consumer electronics, automotive and sensors of various types. Such devices can either be accessed by users through the Internet or connect to other devices, servers and applications, with little human intervention or supervision (TAHSIEN; KARIMIPOUR; SPACHOS, 2020; Abane et al., 2019; HADDADPAJOUH et al., 2019; SHANBHAG; SHANKARMANI, 2015). Security and privacy is a major concern in the IoT, especially regarding devices having access to user personal data like location, health and many other sensitive data (SENGUPTA; RUJ; BIT, 2020). Furthermore, if compromised, such devices can also be used to attack other devices and systems, steal information, cause immediate physical damage or perform various other malicious acts (KOLIAS et al., 2017).

As an additional concern, IoT devices likely have a long lifespan, less frequent software patches, growing diversity of technologies combined with lack of control over the software and hardware of such devices by the host organization (where they are deployed), which considerably increases the attack surface.

Because most IoT devices have limited resources (i.e., battery, processing, memory and bandwidth), configurable and expensive algorithm-based security techniques are not usual, giving way to network based approaches (Zhou et al., 2017). Machine Learning (ML) techniques, for instance, have been studied for years to detect attacks from known patterns or to discover new attacks at an early stage (BUCZAK; GUVEN, 2016; MITCHELL; CHEN, 2014). A recent survey (TAHSIEN; KARIMIPOUR; SPACHOS, 2020) shows that ML based methods are a promising alternative which can provide potential security tools for the IoT network making them more reliable and accessible than before.

Despite the promising use of ML to secure IoT systems, studies found in the literature (BUCZAK; GUVEN, 2016; MITCHELL; CHEN, 2014; TAHSIEN; KARIMIPOUR; SPACHOS, 2020) are limited to traditional ML methods that use static models of traffic behavior. Most existing ML solutions for network-based intrusion detection cannot maintain their reliability over time when facing evolving attacks (VIEGAS et al., 2019; LOPEZ; DUARTE; PUJOLLE, 2019). Unlike traditional methods, stream mining algorithms can be applied to intrusion detection with several advantages, such as: (i) processing traffic data with a single read; (ii) working with limited memory (allowing the implementation in small devices commonly employed in edge services); (iii) producing real-time response; and (iv) detecting novelty and changes in concepts already learned.

Given the recent (VIEGAS et al., 2019; LOPEZ; DUARTE; PUJOLLE, 2019; COSTA et al., 2019b) use of Data Stream Novelty Detection (DSND) in network data streams, this paper shows the effects of adapting these mechanisms to edge services for use in IoT environments. Our proposal, called *MFOG*, adapted the IDSA-IoT architecture (CAS-SALES et al., 2019) using the DSND algorithm MINAS (FARIA; GAMA; CARVALHO, 2013; FARIA; CARVALHO; GAMA, 2015b), making it suitable to run on a distributed system composed of small devices with limited resources on the edge of the network. Using our newer version of the MINAS algorithm, we have experimentally evaluated how the distribution affects the capability to detect changes (novelty) in traffic patterns and its impact on the computational efficiency. Finally, some distribution strategies and policies for the data stream novelty detection system are discussed.

This paper is organized as follows: Section 4.4.3 reviews the chosen DSND algorithm

MINAS. A distributed extension of MINAS, including its implementation and evaluation are presented in Section 4.4.4 and in Section 4.5 we show how we evaluated *MFOG* and the discuss results we found. Finally, Section 4.5.2 summarizes the main findings and presents possible future work.

4.4.3 MINAS

MINAS (FARIA; GAMA; CARVALHO, 2013; FARIA; CARVALHO; GAMA, 2015b) is an offline-online DSND algorithm, meaning it has two distinct phases. The first phase (offline) creates an initial model set with several clusters based on a clustering algorithm with a training set. Each cluster can be associated with only one class of the problem, but each class can have many clusters.

During its online phase, which is the main focus of our work, MINAS performs three tasks in (near) real-time, in summary, classification, novelty detection, and model update tasks in a potentially infinite data stream, as shown in Algorithm 2.

MINAS attempts to classify each incoming unlabeled instance according to the current decision model. Instances not explained by the current model receive an *unknown* label and are stored in an unknowns-buffer. When the unknowns-buffer reaches a preset threshold, MINAS executes the Novelty Detection function. After a set interval, samples in the unknowns-buffer are considered to be noise or outliers and removed. The algorithm also has a mechanism to forget clusters that became obsolete and unrepresentative of the current data stream distribution, removing them from the Model and storing in a Sleep Model for possible recurring pattern detection (FARIA; CARVALHO; GAMA, 2015b).

The Novelty Detection function, illustrated in Algorithm 3, groups the instances to form new clusters, and each new cluster is validated to discard the non-cohesive or unrepresentative ones. Valid clusters are analyzed to decide if they represent an extension of a known pattern or a completely new pattern. In both cases, the model absorbs the valid clusters and starts using them to classify new instances.

4.4.4 Proposal

In this work, we investigate an appropriate architecture for performing DSND at the edge, as a means of allowing small IoT devices to filter and detect undesirable network behavior. Our approach is based on the IDSA-IoT architecture (CASSALES et al., 2019) and DSND techniques provide by the MINAS algorithm (FARIA; CARVALHO; GAMA,

Algoritmo 2: Our interpretation of MINAS (FARIA; CARVALHO; GAMA, 2015b)

```
Input: ModelSet, inputStream
   Output: outputStream
   Parameters: cleaningWindow, noveltyDetectionTrigger
1 Function MinasOnline (ModelSet, inputStream):
       UnkownSet \leftarrow \emptyset, ModelSleepSet \leftarrow \emptyset;
       lastCleanup \leftarrow 0, noveltyIndex \leftarrow 0;
3
       foreach sample_i \in inputStream do
 4
           nearest \leftarrow nearestCluster (sample, ModelSet);
 5
          if nearest.distance < nearest.cluster.radius then
 6
              sample.label \leftarrow nearest.cluster.label;
              nearest.cluster.lastUsed \leftarrow i;
 8
          else
 9
              sample.label \leftarrow unknown;
10
               UnkownSet \leftarrow UnkownSet \cup sample;
11
              if |UnkownSet| > noveltyDetectionTrigger then
12
                  novelties \leftarrow NoveltyDetection (ModelSet \cup ModelSleepSet,
13
                   *UnkownSet);
                  ModelSet \leftarrow ModelSet \cup novelties;
14
              if i > (lastCleanup + cleaningWindow) then
15
                  ModelSet \leftarrow moveToSleep (ModelSet, *ModelSleepSet,
16
                    lastCleanup);
                  UnkownSet \leftarrow removeOldSamples (UnkownSet, lastCleanup);
17
                  lastCleanup \leftarrow i;
18
           outputStream.append(sample);
19
```

2015b). Named MFOG, our distributed algorithm explores load balancing to enable low profile devices at the edge of the internet to also work on the classification and detection of unwanted traffic.

In this work, we propose and assess MFOG, a distributed data stream novelty detection system based on the algorithm MINAS for securing IoT networks. MFOG implements a distributed version of MINAS according to the IDSA-IoT architecture proposed in a previous work (CASSALES et al., 2019), to execute in the edge where small devices and constrained resources may be prevalent.

However, given the distributed nature and the typical use of small computing devices in IoT scenarios, new challenges arise: (i) the classification phase of the algorithm must occur in parallel at different nodes; (ii) the novelty detection phase, which provides the model evolution, must also be asynchronous; (iii) the algorithm complexity (time and space) must allow it to be processed by modest computing devices (i.e., small memory

Algoritmo 3: MINAS (FARIA; CARVALHO; GAMA, 2015b) Novelty Detection task.

```
Parameters: minExamplesPerCluster, noveltyFactor
1 Function NoveltyDetection(Model, Unknowns):
       newModelSet \leftarrow \emptyset;
2
       foreach cl in clustering (Unknowns) do
 3
           if |cl.sampleSet| > minExamplesPerCluster then
 4
               (distance, near) \leftarrow nearestCluster (cl, Model);
 5
               if distance < near.radius \times noveltyFactor then
 6
                   cl.label \leftarrow near.label;
 7
                   cl.type \leftarrow extension;
 8
               else
 9
                   cl.label \leftarrow noveltyIndex;
10
                   noveltyIndex \leftarrow noveltyIndex +1;
11
                   cl.type \leftarrow novelty;
12
               Unknowns \leftarrow Unknowns - cl.sampleSet;
13
               newModelSet \leftarrow newModelSet \cup cl;
14
       return newModelSet;
15
```

and low processor performance).

NIDS monitor network traffic, and analyze the characteristics of each flow to identify any intrusion or misbehavior. However, this problem requires both fast and accurate response (COSTA et al., 2019b): fast response is needed to have a proper reaction before harm can be cast to the network and to cope with the traffic without imposing loss or delay in the NIDS or observed network; accurate response is required as not to misidentify, especially the case of false positive that leads to false alarms. To achieve those goals, we leverage fog computing.

In common IoT scenarios, data is captured by small devices and sent to the cloud for any compute or storage tasks, but this is not feasible in a NIDS scenario. Fog computing infrastructure aims to offload processing from the cloud providers by placing edge devices closer to end-users and/or data sources.

In our proposal, fog and cloud computing resources are combined to minimize the time elapsed between a flow descriptor ingestion and intrusion alarm, performing the classification step of MINAS running multiple classifier instances. After the initial classification, the resulting label can be used immediately, but if the sample is labeled as *unknown*, this sample must be stored and the novelty detection step will be triggered.

To have a better overview of our proposal and how it integrates with existing IoT

environments, Figure 4 depicts such scenario showing from bottom to top: IoT devices directly connected to a (local) gateway network; this gateway network could be as simple as a single Internet router or be more complex by connecting to private clouds or containing more devices providing fog computing capabilities; lastly, available over the internet, the traditional public cloud provides inexpensive computing and storage on demand. In this scenario, the further apart resources are, the more network resources need to be employed, and, as with any networked system, the higher is the latency.

Figura 4: IDSA-IoT (CASSALES et al., 2019) physical architecture and deployment scenario overview.

The overall *MFOG* architecture has two main modules, Classification and Novelty Detection, which implement the MINAS main tasks. The Classification Module performs the same task of the MINAS Online phase and is the focal point for parallelism and distribution in our proposal. It is replicated in the fog and runs on each cluster node, using a configurable number of threads (limited to the node CPU core count).

The Novelty Detection Module can also be replicated, the choice being one instance per local network, one global cloud instance, or both. This module also handles the homonymous task of MINAS Online phase, receiving all the samples labeled with *unknown*, storing them in an internal *unknown-buffer*, and, when this buffer is full, performing the MINAS Novelty Detection task (clustering followed by validation).

4.4.4.1 Polices

The design of our distributed DSND architecture includes partitioning the functionalities of MINAS and establishing the appropriate data flows between different actors. Changes to placement and behavior can have different impacts and should be chosen with care. The decisions following these discussions can be organized in several policies, some of them were recurring during our implementation discussions and are:

- Regarding the allocation of the Novelty Detection Module:
 - At each fog node: patterns will be only detected if sufficient samples of them occur in the local observed network, use of the local node processing power, and a model synchronization mechanism between networks must be added;
 - In the cloud: detect patterns even when scattered on each local network, each sample with unknown label must be sent from edge to cloud implying increased internet link usage and increased delay between the appearance of a pattern, its detection and propagation to fog classifiers;
 - On both: local unknown buffer is maintained and novelty detection is local as well, once a sample is considered as noise or outlier it shall be sent to the cloud where the process repeats but with global data. This choice needs an even more complex model synchronization mechanism.
- Regarding the model cleanup (forget mechanism): Even when a global novelty detection is used, local models can be optimized for faster classification using the local model statistics by sorting by (or removing) least used clusters;
- Lastly, reclassification of *unknowns*: In the novelty detection task in MINAS, the *unknown* sample buffer is effectively classified using the new set of clusters. In Algorithm 3, at the line 13, the new cluster valid (novelty or extension) includes the set of samples composing that cluster, thus, if this new label assignment was put forth to the system output it would introduce delayed outputs, more recent and perhaps more accurate. Also, it would change the system data stream behavior from a *map* (meaning each input has one output) to a *flatMap* (each input can have many outputs).

4.4.4.2 Implementation

The original MINAS algorithm has a companion unpublished implementation (Ref) written in Java using MOA library base algorithms such as K-means and CluStream, but our implementation only used K-means. Another difference between Ref and MFOG is the calculus of the cluster radius from the distances of elements forming the cluster and the cluster's center. Ref uses the maximum distance while MFOG uses the standard deviation of all distances as described in (FARIA; CARVALHO; GAMA, 2015b).

The stream formats for input and output are also of note. As input, the algorithm takes samples (\vec{v}) , which are a sequence of numbers with dimension d. In addition to \vec{v} , for both training and evaluation, the class identifier is provided as a single character, along with a unique item identifier (uid), which can otherwise be determined from the sample index in the stream.

As its output, the algorithm returns the original sample \vec{v} followed by the assigned label. Adjustments can easily be made to provide the output results as a tuple containing uid and the assigned label.

Algoritmo 4: MFOG: main MPI entry-point.

```
Parameters: mpiNodeRank as mpiRank
 Input: ModelSet, Sample Stream
1 Function Mfog(ModelStream, InputStream, OutputStream):
     ModelSet = \emptyset;
2
     ModelSetLock = new Lock ();
3
     if mpiRank == 0 then root
4
        new Thread (Detector, [OutputStream, ModelSet, ModelSetLock]);
5
        Sampler (InputStream, ModelSet, ModelSetLock);
6
     else leaf
7
        new Thread (modelReceiver, [ModelSet, ModelSetLock]);
8
        Classifier (ModelSet, ModelSetLock);
9
```

Algoritmo 5: MFOG Leaf Tasks: Model Receiver and Classifier.

```
1 Function Classifier(ModelSet, ModelSetLock):
      while True do
2
         sampe = receive (SampleType, root);
3
         if sample == EndOfStream then break;
 4
         sample.label = unknown;
\mathbf{5}
         with readLock (ModelSetLock)
6
          (distance, cluster) = nearestCluster (sample, ModelSet);
 7
         if distance < cluster.radius then
8
            sample.label = cluster.label;
9
         send (root, SampleType, sample);
10
  Function modelReceiver (ModelSet, ModelSetLock):
11
12
      while True do
         cl = receive (ClusterType, root);
13
         if cl == EndOfStream then break;
14
         with writeLock(ModelSetLock)
15
             ModelSet = ModelSet \cup cl;
16
```

For evaluation purposes, an MFOG implementation was made using MPI ($Open\ MPI\ 4.0.4$). The program is organized in a single program multiple data (SPMD) programming model, so a single version of the MFOG program was initiated on all nodes, being that one of them would perform the root role, while the others ran as leaves, the program entry point is illustrated on Algorithm 4. On the root process, a sampler thread is responsible for distributing the sampled flow information (\vec{v}) to the classifier nodes, using a round-robin load balancing scheme. The other thread on the root process is responsible for receiving the classification results and for processing the unknown samples in the search for novelties. The root process functions are illustrated in Algorithm 6. Each leaf node runs a model adjustment thread and multiple (up to the number of cores) classifier threads. The leaf tasks are illustrated in Algorithm 5. The overall sequence of interactions is shown in Figure 5.

Figura 5: *MFOG* life line overview.

4.5 Experiments and Results

Aiming to evaluate our proposal for the effects of distributed novelty detection in a IoT NIDS scenario, we implemented an experimental setup, composed of three Raspberry Pi 3 model B single board computers connected via Ethernet Switch. The idea was to create a simple cluster simulating an IoT network with constrained resources at the edge of the network. This cluster stored all source code, binaries (compiled and linked in place) and data sets. In our setup, the data set is stored in the root's node SD card and is read for each experiment. All experiments were executed in this cluster for isolation of otherwise unforeseen variations and for safe software comparison with constant hardware.

The data set used is the December 2015 segment of Kyoto 2006+ data set² (Traffic Data from Kyoto University's Honeypots) (SONG et al., 2011b) containing 7 865 245 samples. From the original data set, we filtered only samples associated with normal traffic or known attack types identified by existing NIDS, and attack types with more than 10 000 samples for significance, as previously done by (CASSALES et al., 2019). The remaining samples then were normalized so each feature value space (e.g., IP Address, Duration, Service) is translated to the Real interval [0, 1].

The resulting derived data set is then stored in two sets, training set and test set, using the holdout technique. However, for the training set we filter in only normal class resulting in 72 000 instances. For the test set we use 653 457 instances with 206 278 instances with "N" (normal) class and 447 179 instances with "A" (attack) class. Note that this choice results in possible overfitting for the normal class and, under-fitting for the attack class as the system first needs to detect a novel class and then add it to the model.

4.5.1 Measurements and Visualizations

We have used two types of evaluation measurements for each experiment: a measure of the full experiment execution time and, a set of qualitative measurements extracted by a Python script.

Our evaluation script was build following reference techniques like multi-class confusion matrix with label-class association (FARIA; CARVALHO; GAMA, 2015b) to extract classification quality measurements. This script takes two inputs, the test data set and the captured output stream, and outputs the confusion matrix, label-class association, final quality summary with: *Hits* (true positive), *Misses* (Err), *Unknowns* (UnkR); and stream

²Available at \(\text{http://www.takakura.com/Kyoto_data/}\)

visualization chart with per example instance summary with novelty label markers.

In the confusion matrix $M = m_{ij} \in \mathbb{N}^{c \times l}$, computed by our evaluation script, each row denotes the actual class c and each column denotes the predicted label l present in the captured output stream. Thus, each cell $M_{c,l}$ contains the count of examples from the test data set of class c found in the output stream with the label l assigned by the under evaluation experiment.

For the data set under use, original classes are $c \in \{N, A\}$, and for the labels we have the training class "N", unknown label "-" and the novelties $i \in \mathbb{N}$ so $l \in \{N, -\} \cup \mathbb{N}$.

Added to the original confusion matrix M are the rows Assigned and Hits. Assigned row represents which original class c (or if unknown, "-") the label l is assigned to, this is computed by using the original class if c = l or by associated novelty label to original class as described in (FARIA et al., 2015) section 4.1 (class from where the most samples came from). Hits row shows the true positive count for each label l with assigned class c, being the same value as cell $M_{c,l}$. The Hits row is also used to compute the overall true positive in the summary table and stream visualization chart. One complete matrix is shown in Tab. 4.

For the measurements summary table, six measurements from two sources are displayed. Three measures *Hits*, *Unknowns* and *Misses* represented as ratio of the captured output stream, extracted from the evaluation python program, computed as follows: *Hits* (true positive rate) is the sum of the *Hits* row in the extended confusion matrix; *Unknowns* is the count of examples in the captured output stream marked with the *unknown* label ("-"); *Misses* is the count of all examples in the captured output stream marked with a label distinct from the *Assigned* original class and are not marked as unknown.

Furthermore in the measurement summary table, *Time*, *System* and *Elapsed* represented in seconds, are extracted from *GNU Time 1.9*. *Time* is the amount of CPU seconds expended in user-mode (indicates time used doing CPU intensive computing, e.g., math); *System* is the amount of CPU seconds expended in kernel-mode (for our case, it indicates time doing input or output); *Elapsed* is the real-world (wall clock) elapsed time and indicates how long the program took to complete. The lower the times, the better. Our four main experiments are shown in Tab. 8.

Lastly, the stream visualization chart shows the summary quality measurement (*Hits*, *Unknowns*, *Misses*) computed for each example in the captured output stream. This summary is computed for each example, but it uses the *Assigned* row computed previously

Figura 6: Reference Implementation

to evaluate *Hits*; the other measurements are derived as described before. The Horizontal axis (x, domain) plots the index of the example and the vertical axis (y, image) shows the measurement computed until that example index on the captured output stream.

Adding to the stream visualization chart, novelty label markers are represented as vertical lines indicating when in the captured output stream a new label first appeared. Some of the novelty label markers include the label itself $(l \in \mathbb{N})$ for reference (showing every label would turn this feature unreadable due to overlapping). Figure ?? shows complete stream visualization charts.

4.5.1.1 Discussion

Four main experiments are presented for discussion: (a) reference implementation of Minas (Ref) (FARIA; CARVALHO; GAMA, 2015b); (b) new implementation in serial mode; (c) new implementation in single-node, multi-task mode and (d) new implementation in multi-node, multi-task mode. Each experiment uses the adequate binary executable, initial model (or training set for the reference implementation) and test set to compute a resulting output stream which is stored for qualitative evaluation. The summary of all four experiments is shown in Table 8.

Figura 7: Serial Implementation

Figura 8: Parallel single-node

Figura 9: Parallel multi-node

The comparison of the first two experiments (a and b) provides a validation for our implementation, while the latter three (b, c and d) serve as showcase for the effects of distribution.

As stated, to validate our implementation we have compared it to Ref (the original MINAS companion implementation), so we extracted the same measurements using same process for both a and b, which can be viewed in Tables 4, 5 and for ease of comparison in Table 8 the summary can be compared side by side.

In general, the observed classification quality measurements are very similar, and only diverge slightly where a has more Hits and Misses whereas b shifted those to Unknowns. This phenomenon was watched very closely during development and we found that it was due to small changes to MINAS parameters, MINAS internals like K-means ordering, cluster edge inclusion and cluster radius formula as stated in Subsection 4.4.4.2.

As for the time measurements in Table 8 our implementation used less time to analyze the test data set. This is mostly due to the stop condition on the internal K-means algorithm; while Ref uses a fixed iteration limit of 100, our implementations adds the "no improvement" check and stops earlier in most cases, which in turn reduces the time taken on the NoveltyDetection function. There are also small optimizations on the nearestCluster function (minimal distance from sample to cluster center in the set) affecting the classifier

task and *NoveltyDetection* function. One can also note that Ref time in a includes the Offline phase while our implementation runs it once and reuses the initial model for b, c and d. In the table the offline time this is shown as a separate column.

As for the effects of running the classification processes on the small devices as MPI nodes with our implementation, we observe an increase of time when we go from 2 to 4 instances in a single node (b and c respectively), hinting that our choice of load distribution is not as effective as we expected. Further experiments were conducted with the number of instances varying from 1 (serial) to 12 (3 nodes with 4 CPUs each), but that caused no impact on the true positive rate (Hits) and elapsed time. More detailed time measurements can be seen in Figure 10, where we observe near constant time for elapsed (near 100s), the system increases gradually while user decreases at the same rate. We interpret this behavior as a display of potential for gains using a better load balancing than our choice of round-robin such as micro-batching for better compute-to-communication ratio (CCR). In general, Figure 10 shows no speedup but also no penalty for scaling to more than 4 instances.

Figura 10: Time measurements per added instance

Nevertheless, we can also show the effects of delay in the Classify, Novelty Detection, Model Update and Classify feedback loop. Comparing b and c we observe a reduction in Novelty labels on the Confusion Matrix (tabs. 5 and 6) from 10 to 4. The same effect is observed on the stream visualization (figs. 7 and 8) where our serial implementation has

fewer novelty markers, and they appear later, but the measures keep the same "shape". Comparing c and d the difference is even smaller, (figs. 7 and 8) as they both suffer the expected delay in the feedback loop.

4.5.2 Conclusion

Data Stream Novelty Detection (DSND) can be a useful mechanism for Network Intrusion Detection (NIDS) in IoT environments. It can also serve other related applications of DSND using continuous network or system behavior monitoring and analysis. Regarding the tremendous amount of data that must be processed in the flow analysis for DSND, it is relevant that this processing takes place at the edge of the network. However, one relevant shortcoming of the IoT, in this case, is the reduced processing capacity of such edge devices.

In this sense, we have put together and evaluated a distributed architecture for performing DSND in network flows at the edge. Our proposal, MFOG is a distributed DSND implementation based on the DSND algorithm MINAS.

The main goal of this work is to observe the effects of our approach to a previously serial only algorithm, especially in regards to time and quality metrics.

While there is some impact on the predictive metrics, this is not reflected on overall classification quality metrics indicating that distribution of MINAS shows a negligible loss of accuracy. In regards to time and scale, our distributed executions was faster than the previous sequential implementation of MINAS, but efficient data distribution was not achieved as the observed time with each added node remained constant.

Overall, *MFOG* and the idea of using distributed flow classification and novelty detection while minimizing memory usage to fit in smaller devices at the edge of the network is a viable and promising solution. Further work include the investigation of other DSND algorithms, other clustering algorithms in MINAS and analysis of varying load balancing strategies.

Acknowledgment

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, and Programa Institucional de Internacionalização - CAPES-PrInt UFSCar (Contract 88887.373234/2019-00). Authors

also thank Stic AMSUD (project 20-STIC-09), FAPESP (contract numbers 2018/22979-2, and 2015/24461-2) and CNPq (Contract 167345/2018-4) for their support.

```
Algoritmo 6: MFOG Root Tasks: Sampler and Detector.
  Parameters: mpiClusterSize as mpiSize
1 Function Sampler(InputStream, ModelSet, ModelSetLock):
2
      dest = 1:
      foreach sample from InputStream do
3
         if typeOf (sample) is Cluster then
 4
            broadcast (ClusterType, sample, root);
 5
             with writeLock (ModelSetLock)
 6
                ModelSet = ModelSet \cup sample;
 7
            continue;
 8
         send (dest, SampleType, sample);
9
         dest = dest +1;
10
         if dest > mpiSize then dest = 1;
11
  Parameters: cleaningWindow, noveltyDetectionTrigger
12 Function Detector(OutputStream, ModelSet, ModelSetLock):
      lastCleanup \leftarrow 0;
13
      while True do
14
         sampe = receive (SampleType, any);
15
         if sample == EndOfStream then break;
16
         OutputStream.append(sample);
17
         if sample.label == unknown then
18
             UnkownSet = UnkownSet \cup sample;
19
             if |UnkownSet| \ge noveltyDetectionTrigger then
20
                novelties = NoveltyDetection (p, ModelSet, *UnkownSet);
21
                with writeLock (ModelSetLock)
22
                   ModelSet = ModelSet \cup novelties;
23
                foreach cl in novelties do
24
                   broadcast (ClusterType, cl, root);
25
               sampe.uid > (lastCleanup + cleaningWindow) then
26
                UnkownSet ← removeOldSamples (UnkownSet, lastCleanup);
27
                lastCleanup \leftarrow sampe.uid;
28
```

Tabela 3: Confusion Matrixes and Qualitative measurements

Tabela 4: Reference implementation

Labels	_	N	1	2	3	4	5	6	7	8	9	10	11	12
Classes														
A	3774	438750	123	145	368	8	52	165	1	1046	161	2489	71	26
N	8206	193030	0	79	44	0	0	0	229	181	154	4066	289	0
Assigned	-	N	A	A	A	A	A	A	N	A	A	N	N	A
Hits	0	193030	123	145	368	8	52	165	229	1046	161	4066	289	26

Tabela 5: Serial implementation

Labels	_	N	0	1	2	4	5	6	7	8	10
Classes											
A	16086	429765	94	995	104	0	23	3	29	46	34
N	12481	193642	3	94	0	47	0	0	0	11	0
Assigned	_	N	A	A	A	N	A	A	A	A	A
Hits	0	193642	94	995	104	47	23	3	29	46	34

Tabela 6: Parallel single-node

Labels	_	N	0	1	2	3	4
Classes							
A	12282	433797	147	952	0	0	1
N	3088	203019	40	99	27	5	0
Assigned	_	N	A	A	N	N	A
Hits	0	203019	147	952	27	5	1

Tabela 7: Parallel multi-node

Labels	_	N	0	1	2	3	4
Classes							
A	12378	433631	117	886	0	162	5
N	3121	202916	40	96	105	0	0
Assigned	_	N	A	A	N	A	A
Hits	0	202916	117	886	105	162	5

Tabela 8: Collected Measures Summary.

	Ref (a)	Offline	Serial (b)	Single Node (c)	Multi Node (d)
Hits	199708		195017	204151	204191
11165	0.305618		0.298438	0.312416	0.312478
Misses	441769		429873	433936	433767
MISSES	0.676049		0.657843	0.664061	0.663802
Unknowns	11980		28567	15370	15499
Ulikilowiis	0.018333		0.043717	0.023521	0.023718
Time	2761.83	194.12	80.79000	522.1000	207.1400
System	7.15	0.075	11.51000	47.7700	157.6100
Elapsed	2772.07	194.27	93.03000	145.0400	95.3800

Capítulo 5

Considerações Finais

Este Capítulo resume o trabalho realizado até agora e estabelece os próximos passos até sua completude.

Este trabalho reúne conceitos de aprendizado de máquina com ênfase em detecção de novidades em fluxos contínuos de dados e conceitos de processamento distribuído de fluxos contínuos, com o objetivo de unir a lacuna no estado da arte desses conceitos à luz de uma implementação e avaliação no cenário de detecção de intrusão em redes de dispositivos da Internet das Coisas (IoT) em ambiente de computação em névoa (fog computing).

O objeto central desse trabalho (MFOG) trata da implementação do algoritmo MINAS na plataforma de processamento de fluxos Apache Flink, em três módulos que podem ser distribuídos em um ambiente de fog computing. Sua distribuição permite selecionar o nó que tem os recursos computacionais mais adequados para cada tarefa.

Dando continuidade a este trabalho, segue-se com o desenvolvimento da implementação objeto (MFOG) bem como a contínua avaliação comparativa dos resultados produzidos pelo MFOG com seu algoritmo base, MINAS. Também será dada continuidade nos experimentos com os conjuntos de dados (data sets) diversos e configurações variadas de distribuição de processamento em fog computing extraindo desses experimentos as métricas previamente discutidas.

Dessa forma, o *MFOG* pode contribuir com adição de uma ferramenta para os interessados em sistemas de detecção de intrusão de redes de ou outros sistemas que tratam de fluxos contínuos que tradicionalmente sofrem com os ônus de latência e largura de banda na comunicação entre borda e nuvem. Além disso, o *MFOG* objetiva contribuir com a adição de uma implementação distribuída de um algoritmo cujo modelo é estado da arte em detecção de novidades em fluxos contínuos de dados.

Referências

Abane, A.; Muhlethaler, P.; Bouzefrane, S.; Battou, A. Modeling and improving named data networking over ieee 802.15.4. In: 2019 8th International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN). [S.l.: s.n.], 2019. p. 1–6.

ABDALLAH, A.; MAAROF, M. A.; ZAINAL, A. Fraud detection system: A survey. Journal of Network and Computer Applications, v. 68, p. 90 – 113, 2016. ISSN 1084-8045. Disponível em: (http://www.sciencedirect.com/science/article/pii/S1084804516300571).

ABDALLAH, Z. S.; GABER, M. M.; SRINIVASAN, B.; KRISHNASWAMY, S. Anynovel: detection of novel concepts in evolving data streams: An application for activity recognition. *Evolving Systems*, v. 7, n. 2, p. 73–93, 2016. ISSN 18686486.

AGGARWAL, C. C.; HAN, J.; WANG, J.; YU, P. S. A framework for clustering evolving data streams. *Proceedings - 29th International Conference on Very Large Data Bases*, VLDB 2003, p. 81–92, 2003.

Apache Flink. Apache Flink. 2020. Disponível em: (https://flink.apache.org/).

Apache Flink. Apache Flink 1.10 Documentation: Dataflow Programming Model. 2020. Disponível em: (https://ci.apache.org/projects/flink/flink-docs-release-1.10/concepts/programming-model.html).

Apache Hadoop. The ApacheTM Hadoop® project develops open-source software for reliable, scalable, distributed computing. 2020. Disponível em: $\langle https://hadoop.apache.org/\rangle$.

Apache Spark. Apache Spark^{\mathbb{M}} - Unified Analytics Engine for Big Data. 2020. Disponível em: $\langle \text{https://spark.apache.org/} \rangle$.

BIFET, A.; HOLMES, G.; KIRKBY, R.; PFAHRINGER, B. MOA: massive online analysis. J. Mach. Learn. Res., v. 11, p. 1601–1604, 2010. Disponível em: $\langle \text{http://portal.acm.org/citation.cfm?id=1859903} \rangle$.

BONOMI, F.; MILITO, R.; ZHU, J.; ADDEPALLI, S. Fog computing and its role in the internet of things. In: *Proceedings of the first edition of the MCC workshop on Mobile cloud computing.* [s.n.], 2012. p. 13–16. ISBN 9781450315197. Disponível em: http://www.lispmob.org).

BUCZAK, A. L.; GUVEN, E. A survey of data mining and machine learning methods for cyber security intrusion detection. *IEEE Communications Surveys & Tutorials*, IEEE, v. 18, n. 2, p. 1153–1176, 2016.

- CARBONE, P.; KATSIFODIMOS, A.; EWEN, S.; MARKL, V.; HARIDI, S.; TZOUMAS, K. Apache Flink™: Stream and Batch Processing in a Single Engine. [S.l.], 2015. v. 36, n. 4. Disponível em: ⟨http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-198940⟩.
- CASSALES, G. W.; SENGER, H.; DE FARIA, E. R.; BIFET, A. Idsa-iot: An intrusion detection system architecture for iot networks. In: 2019 IEEE Symposium on Computers and Communications (ISCC). [s.n.], 2019. p. 1–7. ISBN 978-1-7281-2999-0. ISSN 1530-1346. Disponível em: (https://ieeexplore.ieee.org/document/8969609/).
- COSTA, J. D. Detecção De Novidade Em Fluxos Contínuos De Dados Multirrótulo. 127 p. Tese (Master) UNIVERSIDADE FEDERAL DE SÃO CARLOS, 2019. Disponível em: (https://repositorio.ufscar.br/handle/ufscar/12197).
- COSTA, J. D.; FARIA, E. R.; SILVA, J. A.; GAMA, J.; CERRI, R. Novelty detection for multi-label stream classification. *Proceedings 2019 Brazilian Conference on Intelligent Systems*, *BRACIS 2019*, n. 8, p. 144–149, 2019.
- COSTA, K. A. da; PAPA, J. P.; LISBOA, C. O.; MUNOZ, R.; ALBUQUERQUE, V. H. C. de. Internet of things: A survey on machine learning-based intrusion detection approaches. *Computer Networks*, v. 151, p. 147–157, 2019. ISSN 13891286.
- COULL, S.; BRANCH, J.; SZYMANSKI, B.; BREIMER, E. Intrusion detection: A bioinformatics approach. In: IEEE. 19th Annual Computer Security Applications Conference, 2003. Proceedings. [S.l.], 2003. p. 24–33.
- Da Silva, T. P.; SCHICK, L.; De Abreu Lopes, P.; De Arruda Camargo, H. A fuzzy multiclass novelty detector for data streams. *IEEE International Conference on Fuzzy Systems*, IEEE, v. 2018-July, p. 1–8, 2018. ISSN 10987584.
- DASTJERDI, A. V.; BUYYA, R. Fog computing: Helping the internet of things realize its potential. *Computer*, IEEE, v. 49, n. 8, p. 112–116, Aug 2016. ISSN 1558-0814.
- DEAN, J.; GHEMAWAT, S. MapReduce: Simplified data processing on large clusters. OSDI 2004 - 6th Symposium on Operating Systems Design and Implementation, p. 137–149, 2004. ISSN 23487852.
- DOMINGOS, P.; HULTEN, G. Mining high-speed data streams. In: *Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. New York, NY, USA: Association for Computing Machinery, 2000. (KDD '00), p. 71–80. ISBN 1581132336. Disponível em: (https://doi.org/10.1145/347090.347107).
- FARIA, E. R.; GAMA, J. a.; CARVALHO, A. C. P. L. F. Novelty detection algorithm for data streams multi-class problems. In: *Proceedings of the 28th Annual ACM Symposium on Applied Computing*. New York, NY, USA: Association for Computing Machinery, 2013. (SAC '13), p. 795–800. ISBN 9781450316569. Disponível em: https://doi.org/10.1145/2480362.2480515).
- FARIA, E. R.; GONÇALVES, I. J.; GAMA, J.; CARVALHO, A. C. Evaluation methodology for multiclass novelty detection algorithms. *Proceedings 2013 Brazilian Conference on Intelligent Systems*, *BRACIS 2013*, p. 19–25, 2013.

- FARIA, E. R.; GONÇALVES, I. J. C. R.; CARVALHO, A. C. P. L. F. de; GAMA, J. Novelty detection in data streams. *Artificial Intelligence Review*, Springer, v. 45, n. 2, p. 235–269, Feb 2015. ISSN 1573-7462. Disponível em: (https://doi.org/10.1007/s10462-015-9444-8).
- FARIA, E. R. d.; CARVALHO, A. C. Ponce de L. F.; GAMA, J. Minas: multiclass learning algorithm for novelty detection in data streams. *Data Mining and Knowledge Discovery*, v. 30, n. 3, p. 640–680, May 2015. ISSN 1573-756X. Disponível em: \(\text{https:} \) //doi.org/10.1007/s10618-015-0433-y \(\text{}. \)
- FARIA, E. R. d.; CARVALHO, A. C. Ponce de L. F.; GAMA, J. Minas: multiclass learning algorithm for novelty detection in data streams. *Data Mining and Knowledge Discovery*, v. 30, n. 3, p. 640–680, May 2015. ISSN 1573-756X. Disponível em: \(\text{https:} \) //doi.org/10.1007/s10618-015-0433-y \(\text{}. \)
- FARIA, E. R. de; GONÇAALVES, I. R.; GAMA, J.; CARVALHO, A. C. P. d. L. F. Evaluation of multiclass novelty detection algorithms for data streams. *IEEE Transactions on Knowledge and Data Engineering*, v. 27, n. 11, p. 2961–2973, nov 2015. ISSN 1041-4347. Disponível em: (http://ieeexplore.ieee.org/document/7118190/).
- Faria Paiva, E. R. de. Detecção de novidade em fluxos contínuos de dados multiclasse. 161 p. Tese (Doutorado), 2014.
- FONTUGNE, R.; BORGNAT, P.; ABRY, P.; FUKUDA, K. Mawilab: Combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking. In: *ACM CoNEXT '10*. Philadelphia,PA: [s.n.], 2010. p. 1–12.
- FOUNDATION, A. S. Apache Storm. 2020. Disponível em: (https://storm.apache.org/).
- GABER, M. M.; ZASLAVSKY, A.; KRISHNASWAMY, S. Mining data streams: A review. SIGMOD Rec., Association for Computing Machinery, New York,NY,USA, v. 34, n. 2, p. 18–26, jun. 2005. ISSN 0163-5808. Disponível em: (https://doi.org/10.1145/1083784. 1083789).
- GAMA, J.; RODRIGUES, P. P. Data stream processing. In: ______. Learning from Data Streams: Processing Techniques in Sensor Networks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. p. 25–39. ISBN 978-3-540-73679-0. Disponível em: \(\https://doi.org/10. 1007/3-540-73679-4_3 \).
- GAMA, J.; RODRIGUES, P. P. Knowledge Discovery from Data Streams. [S.l.]: Chapman and Hall/CRC, 2010. ISBN 9781439826119.
- HADDADPAJOUH, H.; DEHGHANTANHA, A.; PARIZI, R. M.; ALEDHARI, M.; KARIMIPOUR, H. A survey on internet of things security: Requirements, challenges, and solutions. *Internet of Things*, Elsevier, p. 100129, 2019.
- HAYAT, M. Z.; HASHEMI, M. R. A dct based approach for detecting novelty and concept drift in data streams. In: IEEE. 2010 International Conference of Soft Computing and Pattern Recognition, SoCPaR 2010. [S.l.], 2010. p. 373–378. ISBN 9781424478958.
- IEEE Communications Society. *IEEE Std 1934-2018: IEEE Standard for Adoption of Open-*Fog Reference Architecture for Fog Computing. IEEE, 2018. 176 p. ISBN 9781504450171. Disponível em: (https://ieeexplore.ieee.org/document/8423800).

- KAMBOURAKIS, G.; KOLIAS, C.; STAVROU, A. The Mirai botnet and the IoT Zombie Armies. In: *MILCOM 2017 2017 IEEE Military Communications Conference (MILCOM)*. IEEE, 2017. v. 2017-Octob, p. 267–272. ISBN 978-1-5386-0595-0. Disponível em: (http://ieeexplore.ieee.org/document/8170867/).
- KOLIAS, C.; KAMBOURAKIS, G.; STAVROU, A.; VOAS, J. DDoS in the IoT: Mirai and Other Botnets. *Computer*, IEEE, v. 50, n. 7, p. 80–84, 2017. ISSN 00189162. Disponível em: (http://ieeexplore.ieee.org/document/7971869/).
- KREPS, J. Questioning the Lambda Architecture O'Reilly. 2014. 10 p. Disponível em: (https://www.oreilly.com/radar/questioning-the-lambda-architecture/).
- LOPEZ, M. A.; DUARTE, O. C. M. B.; PUJOLLE, G. A monitoring and threat detection system using stream processing as a virtual function for big data. In: *Anais Estendidos do XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos*. Porto Alegre, RS, Brasil: SBC, 2019. p. 209–216. ISSN 2177-9384. Disponível em: https://sol.sbc.org.br/index.php/sbrc/estendido/article/view/7789).
- LOPEZ, M. E. A. A monitoring and threat detection system using stream processing as a virtual function for Big Data. Tese (Theses) Sorbonne Université; Universidade federal do Rio de Janeiro, Jun 2018. Disponível em: (https://tel.archives-ouvertes.fr/tel-02111017).
- MARZ, N.; WARREN, J. Big Data: Principles and best practices of scalable real-time data systems. [S.l.]: New York; Manning Publications Co., 2015.
- MASUD, M.; GAO, J.; KHAN, L.; HAN, J.; THURAISINGHAM, B. M. Classification and novel class detection in concept-drifting data streams under time constraints. *IEEE Trans. on Knowledge and Data Engineering*, IEEE, v. 23, n. 6, p. 859–874, June 2011. ISSN 1041-4347.
- MAWI Working Group Traffic Archive. Index of /mawi/samplepoint-F. 2020. Disponível em: $\langle \text{http://mawi.wide.ad.jp/mawi/samplepoint-F/} \rangle$.
- MELL, P.; GRANCE, T. The NIST definition of cloud computing: Recommendations of the National Institute of Standards and Technology. In: NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. *Public Cloud Computing: Security and Privacy Guidelines*. 2012. p. 97–101. ISBN 9781620819821. Disponível em: http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf.
- MITCHELL, R.; CHEN, I.-R. A survey of intrusion detection techniques for cyber-physical systems. *ACM Computing Surveys (CSUR)*, ACM, v. 46, n. 4, p. 55, 2014.
- PERNER, P. Concepts for novelty detection and handling based on a case-based reasoning process scheme. In: *Advances in Data Mining. Theoretical Aspects and Applications*. [S.l.]: Springer, 2007. p. 21–33. ISBN 978-3-540-73435-2.
- PERNER, P. Concepts for novelty detection and handling based on a case-based reasoning process scheme. *Engineering Applications of Artificial Intelligence*, v. 22, n. 1, p. 86 91, 2009. ISSN 0952-1976. Disponível em: (http://www.sciencedirect.com/science/article/pii/S095219760800105X).

- PROTIĆ, D. D. Review of KDD Cup '99,NSL-KDD and Kyoto 2006+ datasets. *Vojnotehnicki glasnik*, v. 66, n. 3, p. 580–596, 2018. ISSN 0042-8469. Disponível em: (http://orcid.org/0000-0003-0827-2863).
- SENGUPTA, J.; RUJ, S.; BIT, S. D. A comprehensive survey on attacks, security issues and blockchain solutions for iot and iiot. *Journal of Network and Computer Applications*, Elsevier, v. 149, p. 102481, 2020.
- SHANBHAG, R.; SHANKARMANI, R. Architecture for internet of things to minimize human intervention. 2015 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2015, IEEE, p. 2348–2353, 2015.
- SHARAFALDIN, I.; LASHKARI, A. H.; GHORBANI, A. A. Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: *ICISSP*. [S.l.: s.n.], 2018. v. 2018-January, n. Cic, p. 108–116. ISBN 9789897582820.
- SHI, W.; CAO, J.; ZHANG, Q.; LI, Y.; XU, L. Edge computing: Vision and challenges. *IEEE Internet of Things Journal*, Institute of Electrical and Electronics Engineers Inc., v. 3, n. 5, p. 637–646, oct 2016. ISSN 23274662. Disponível em: (https://ieeexplore.ieee.org/abstract/document/7488250).
- SILVA, T. P. da. Abordagem Fuzzy para Detecção de Novidade em Fluxo Contínuo de Dados. 89 p. Tese (Master) Universidade Federal de São Carlos, 2018. Disponível em: (https://repositorio.ufscar.br/handle/ufscar/10544).
- SINGH, S.; MARKOU, M. An approach to novelty detection applied to the classification of image regions. *IEEE Transactions on Knowledge and Data Engineering*, IEEE, v. 16, n. 4, p. 396–407, 2004.
- SOKOLOVA, M.; LAPALME, G. A systematic analysis of performance measures for classification tasks. *Inf. Process. Manage.*, Pergamon Press, Inc., USA, v. 45, n. 4, p. 427–437, jul. 2009. ISSN 0306-4573. Disponível em: (https://doi.org/10.1016/j.ipm.2009.03.002).
- SONG, J.; TAKAKURA, H.; OKABE, Y. Kyoto $2006 + New \ version \ data.$ 2020. Disponível em: $\langle \text{http://www.takakura.com/Kyoto} \setminus \text{data/new} \setminus \text{data201704/} \rangle$.
- SONG, J.; TAKAKURA, H.; OKABE, Y.; ETO, M.; INOUE, D.; NAKAO, K. Statistical analysis of honeypot data and building of kyoto 2006+ dataset for nids evaluation. In: *Proceedings of the First Workshop on Building Analysis Datasets and Gathering Experience Returns for Security.* New York,NY,USA: Association for Computing Machinery, 2011. (BADGERS '11), p. 29–36. ISBN 9781450307680. Disponível em: \https://doi.org/10.1145/1978672.1978676\hdots.
- SONG, J.; TAKAKURA, H.; OKABE, Y.; ETO, M.; INOUE, D.; NAKAO, K. Statistical analysis of honeypot data and building of kyoto 2006+ dataset for nids evaluation. Proceedings of the 1st Workshop on Building Analysis Datasets and Gathering Experience Returns for Security, BADGERS 2011, p. 29–36, 2011.
- SOUZA, V. M.; SILVA, D. F.; GAMA, J.; BATISTA, G. E. Data stream classification guided by clustering on nonstationary environments and extreme verification latency. In: SIAM. *Proceedings of the 2015 SIAM International Conference on Data Mining*. Society for

- Industrial and Applied Mathematics Publications, 2015. p. 873–881. ISBN 9781510811522. Disponível em: (https://doi.org/10.1137/1.9781611974010.98).
- SPINOSA, E. J.; CARVALHO, A. P. de Leon F. de; GAMA, J. a. Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks. In: *Proceedings of the 2008 ACM Symposium on Applied Computing*. New York,NY,USA: Association for Computing Machinery, 2008. (SAC '08), p. 976–980. ISBN 9781595937537. Disponível em: (https://doi.org/10.1145/1363686.1363912).
- SPINOSA, E. J.; CARVALHO, A. P. de Leon F. de; GAMA, J. a. Novelty detection with application to data streams. *Intell. Data Anal.*, IOS Press, NLD, v. 13, n. 3, p. 405–422, ago. 2009. ISSN 1088-467X.
- TAHSIEN, S. M.; KARIMIPOUR, H.; SPACHOS, P. Machine learning based solutions for security of internet of things (iot): A survey. *Journal of Network and Computer Applications*, v. 161, n. November 2019, 2020. ISSN 10958592.
- TANENBAUM, A. S.; STEEN, M. V. Distributed systems: principles and paradigms. [S.1.]: Maarten van Steen, 2018. ISBN 978-90-815406-2-9.
- TAVALLAEE, M.; BAGHERI, E.; LU, W.; GHORBANI, A. A. A detailed analysis of the KDD CUP 99 data set. *IEEE Symposium on Computational Intelligence for Security and Defense Applications*, CISDA 2009, n. July, 2009.
- VALLIM, R. M.; FILHO, J. A. A.; MELLO, R. F. de; CARVALHO, A. C. de. Online behavior change detection in computer games. *Expert Systems with Applications*, v. 40, n. 16, p. 6258 6265, 2013. ISSN 0957-4174. Disponível em: (http://www.sciencedirect.com/science/article/pii/S0957417413003576).
- VIEGAS, E.; SANTIN, A.; BESSANI, A.; NEVES, N. Bigflow: Real-time and reliable anomaly-based intrusion detection for high-speed networks. *Future Generation Computer Systems*, Elsevier, v. 93, p. 473 485, 2019. ISSN 0167-739X. Disponível em: (http://www.sciencedirect.com/science/article/pii/S0167739X18307635).
- VIJAYA, P.; MURTY, M. N.; SUBRAMANIAN, D. Leaders—subleaders: An efficient hierarchical clustering algorithm for large data sets. *Pattern Recognition Letters*, Elsevier, v. 25, n. 4, p. 505 513, mar 2004. ISSN 0167-8655. Disponível em: (http://www.sciencedirect.com/science/article/pii/S0167865503002824).
- WANG, H.; FAN, W.; YU, P. S.; HAN, J. Mining concept-drifting data streams using ensemble classifiers. In: *Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. New York,NY,USA: Association for Computing Machinery, 2003. (KDD '03), p. 226–235. ISBN 1581137370. Disponível em: \(\delta \text{https:} \) //doi.org/10.1145/956750.956778 \(\delta \text{.} \)
- ZAHARIA, M.; XIN, R.; WENDELL, P.; DAS, T.; ARMBRUST, M.; DAVE, A.; MENG, X.; ROSEN, J.; VENKATARAMAN, S.; FRANKLIN, M.; GHODSI, A.; GONZALEZ, J.; SHENKER, S.; STOICA, I. Apache spark: A unified engine for big data processing. *Communications of the ACM*, v. 59, p. 56–65, 11 2016.

- ZAHARIA, M.; XIN, R. S.; WENDELL, P.; DAS, T.; ARMBRUST, M.; DAVE, A.; MENG, X.; ROSEN, J.; VENKATARAMAN, S.; FRANKLIN, M. J.; GHODSI, A.; GONZALEZ, J.; SHENKER, S.; STOICA, I. Apache spark: A unified engine for big data processing. *Communications of the ACM*, v. 59, n. 11, p. 56–65, 2016. ISSN 15577317.
- ZHANG, J.; YAN, Q.; ZHANG, Y.; HUANG, Z. Novel fault class detection based on novelty detection methods. In: _____. Intelligent Computing in Signal Processing and Pattern Recognition: International Conference on Intelligent Computing, ICIC 2006 Kunming, China, August 16–19,2006. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. p. 982–987. ISBN 978-3-540-37258-5. Disponível em: \https://doi.org/10.1007/978-3-540-37258-5_124\>.
- Zhou, J.; Cao, Z.; Dong, X.; Vasilakos, A. V. Security and privacy for cloud-based iot: Challenges. *IEEE Communications Magazine*, v. 55, n. 1, p. 26–33, 2017.