Машинное обучениее. Вводная лекция.

Московский физико-технический институт, МФТИ

Москва

Этапы развития области искусственный интелект

- Предыстория (мечты об ИИ и теоретические основы алгоритмистики);
- Появление самообучающихся машин конец 50х, начало 60х;
- Системы основанные на знаниях 70е;

Вводные замечания

•00000000

- Первые нейронные сети (в основе алгоритм обратного распространения ошибки) начало 80х;
- Прорыв связанный с применением глубокого обучения в 2006г;

Причины бурного развития ИИ: глубокое обучение, вычислительные мощности, большие наборы качественных данных.

Примеры задач

Модель МакКаллока-Питтса

Линейный классификатор или персептрон является простейшей математической моделью нервной клетки- нейрона. Нейрон имеет множество разветвлённых отростков - дендритов, и одно длинное тонкое волокно - аксон, на конце которого находятся синапсы, примыкающие к дендритам других нервных клеток. Нервная клетка может находиться в двух состояниях: обычном и возбуждённом. Клетка возбуждается, когда в ней накапливается достаточное количество положительных зарядов. В возбуждённом состоянии клетка генерирует электрический импульс величиной около 100 мВи длительностью около 1 мс, который проходит по аксону до синапсов.

Картинка нейрона

Мат модель нейрона

Особенности решаемых методов

Тринадцатая проблема Гилберта решена Колмогоровым в 1957 году:

Теорема

Вводные замечания

000000000

Любая непрерывная п аргументов на единичном кубе [0, 1] представима в виде суперпозиции непрерывных функций одного аргумента и операции сложения:

$$f(x^1, x^2, ..., x^n = \sum_{k=1}^{2n+1} h_k \left(\sum_{i=1}^n \varphi_{ik}(x^i) \right)$$
, где h_k , φ_{ik} непрерывные функции, причем φ_{ik} не зависят от выбора f .

Нетрудно видеть, что записанное здесь выражение имеет структуру нейронной сети с одним скрытым слоем из 2n+1нейронов. Таким образом, двух слоёв уже достаточно, чтобы вычислять произвольные непрерывные функции, и не приближённо, а точно.

Различные виды нейросетей

- классические архитектуры: светрочные сети и автокодировщики, рекуррентные сети;
- порождающие состязательные сети;
- нейронные сети с подкреплением привели к значительным прорывам;
- нейробайсовские методы соединили нейронные сети и классический веротяностные вывод с помощью вариационных приближений;

Вводные замечания

000000000

000000000

Решаемые задачи

000000000

Регрессия

Вводные замечания

000000000

Особенности решаемых методов

Математические обозначения

Пусть задано множество объектов X и множество допустимых ответов Ү. Исследуемый процесс описыватся целевой функцией $y^*: X \to Y$, задано конечное множество объектов $\{x_1,..,x_l\}\subset X$. Пары объектов $X^l=(x_i,y_i)_{i=1}^l$ представляют собой обучающую выборку.

Основная задача состоит в восстановлении зависимости y^* , а именно в построенни **решающей функции** $a: X \to Y$, причем на всем множестве X.

Решаются следующие вопросы

- как задаются объекты и какими могут быть ответы (представление данных);
- в какомы смысле a(x) приближает y(x) (выбор нормы);

Особенности решаемых методов

- правило постороения a(x);
- \[
 \mathbb{Y} = \{0, 1\}
 \]
 бинарная классификация;
- $\mathbb{Y} = \{1, ..., K\}$ многоклассовая классификация;
- $\mathbb{Y} = \{0,1\}^K$ многоклассовая классификация с пересекающимися классами;

Особенности решаемых методов

Методика обучения

В качестве модели алгоритма рассмотрим функцию $g(x,\theta):X imes\Theta o Y$, где Θ множество допутимых значений параметра.

$$g(x,\theta) = \sum_{j=1}^{n} \theta_j f_j(x), Y = \mathbb{R}$$

$$g(x, \theta) = \operatorname{sign} \sum_{j=1}^{n} \theta_{j} f_{j}(x), Y = \{-1, +1\}$$

Метод обучения - это отображение $\mu: (X \times Y)^I \to A$, которое произвольной коеченой выборке ставит некоторый алгоритм.

Функционал качества

Особенности решаемых методов

$$Q(a,X')=\frac{1}{l}\sum_{i=1}^{l}\mathcal{L}(a,x_i).$$

- $\mathcal{L}(a, x_i) = [a(x) \neq y^*(x)]$ индикатор ошибки,
- $\mathcal{L}(a, x_i) = |a(x) y^*(x)|$ отклонение от правильного ответа;
- $\mathcal{L}(a, x_i) = (a(x) y^*(x))^2$ квадратичная функция потерь;

Иными словами задача восстановлени регрессии есть не что иное, как метод наименьших квадратов

$$\mu(X^I) = \arg\min_{\theta} \sum_{i=1}^{I} (g(x_i, \theta) - y_i)^2,$$

Принцип максимума правдоподобия

Вместо модели алгоритма $g(x,\theta)$, аппроксимирующей $y^*(x)$ зададим модель совместной плотности распределения объектов и ответов $\varphi(x,y,\theta)$.

В случае независимой последовательности наблюдений $p(X^I) = p(x_1, y_1)\dot{p}(x_I, y_I)$, получаем функию правдоподобия

$$L(\theta, X^I) = \prod_{i=1}^I \varphi(x_i, y_i, \theta).$$

[Пример с нормальным распределением и средней дисперсией]

Оценки обучающей способности

Эмпирический риск на тестовых данных

$$HO(\mu, X^I, X^k) = Q(\mu(X^I), X^k \to \min,$$

• Кросс-проверка, L = I + k, $X^L = X_n^I \sqcup X_n^k$:

$$CV(\mu, X^L) = \frac{1}{|N|} \sum_{n \in N} Q(\mu(X_n^I), X_n^k) \to \min,$$

• Эмпирическая оценка вероятности переобучения:

$$Q_{\varepsilon}(\mu, X^L) = \frac{1}{|N|} \sum_{n \in N} \left[Q(\mu(X_n^I), X_n^k) - Q(\mu(X_n^I), X_n^I) \ge \varepsilon \right] \to \min$$

Кросс-проверка

Выборку $X^{L} = (x_{i}, y_{i}))_{i=1}^{I}$ разобьем N различными способами.

Для каждого разбиение n=1..N построим алгоритм $a_n=\mu(X_n^l)$ и вычислим среднее значение ошибки $Q_n=Q(a_n,X_n^k)$. Среднее арифитическое невязок всех указанных алгоритмов называется скользящим контролем

$$CV(\mu, X^{L}) = \frac{1}{N} \sum_{n=1}^{l} Q(\mu(X_{n}^{l}), X_{n}^{l}).$$

Скользящий контроль. Иллюстрация.

Переобучение

Особенности решаемых методов

Особое место среди попиксельной классификации занимают методы машинного обучения: классификация с использованием самоорганизующихся нейронных сетей, деревьев решений, опорных векторов. Нейронные сети более всегод подходят для объектов с нечеткими границами.

Деревья решений здесь в отличие от "черного ящика ^{II} нейронных сетей можно указать, какие показатели использваны для разделения на классы (так называемые "ключи")

Рис. 1. Растительность Долины р. Гейзерной:

1 — каменноберезняк разнотравный 2 — неняк шеломайниковый, 3 — сообщества ольхового стлании, а — крупнотравно-шеломайниковые луговые сообщества, 5 — высокотравные луговые сообщества преобладанием лабазники и бодяка, 6 — высокотравные луговые сообщества с преобладанием вольданием вольстванием добазимых от бодком бот высокотравные луговые сообщества с преобладанием вольстванием добазимых растительность преобладанием вольстваний преобладанием в преобладанием преобладанием вольстваний преобладанием вольстванием в преобладанием преобладанием вольстваний преобладанием в преобладанием вольстваний преобладанием вольстваний преобладанием вольстваний преобладанием вольстванием в преобладанием вольстванием в преобладанием вольстванием в преобладанием вольстванием в преобладанием в

Вводные замечания

Особенности решаемых методов

Рисунок 5. Варианты темнохвойных лесов хорошо разделяются в пространстве спектральных и морфометрических признаков методом дискриминантного анализа (цифрами обозначены синтаксоны в соответствии с таблицей I)

Примеры задач

Вводные замечания

нумериция синтиксонов, используемая в бальнеишем обсужоении	
Cl. Carpino-Fagetea sylvaticae Jakucs ex Passarge 1968	
Or. Rhododendro pontici - Fagetalia orientalis (Soó 1964) Pass. 1981	
Al. Abieti-Fagion orientalis Korotkov et Belonovskaja 1987	
Subal. Abieti-Fagenion orientalis Korotkov et Belonovskaja 1987	
Ass. Ilici colchicae – Abietetum nordmannianae Korotkov et Belonovsk	aja 1987
Subass. I. c A. n. vaccinietosum arctostaphyli Belonovskaja et al 199	00 2
Subass. I. c. – A. n. rhododendretosum pontici Belonovskaja et al 1990	1
Ass. Abieti – Fagetum orientalis Korotkov et Belonovskaja 1987	
Subass. A. – F. o. piceetosum orientalis Belonovskaja et al 1990	
Var. <i>Luzula sylvatica</i>	3
Var. Calamagrostis arundinacea	4
Var. ≡ Ass. <i>Petasito albae-Abietetum nordmannianae</i> Frantsuzov 200	6 5
Var. Salvia glutinosa	6
Subass. A. – F. o. athyrietosum filici-feminae Belonovskaja et al 1990	
Var. Galeobdolon luteum	7
Var. Sanicula europaea	8

Рисунок 8. Картографирование темнохвойных лесов. а, б – структура нейронных сетей, построенных независимо по разным снимкам; в – результат классификации снимка нейронной сетью; г - конечный результат

Заключение

Особенности решаемых методов

- 1. Анализ предметной области;
- 2. Коррекция данных, формализация признаков;
- 3. Построение прямой мат модели;
- 4. Подбор невязки, решение задачи оптимизации;
- 5. Поиск оптимального решения, регуляризация решения;
- 6. Оценки качества полученной модели;
- 7. Тестирование модельное и аппробация;