Discrete Mathematics and Algorithms (CSE611)

Dr. Ashok Kumar Das

Assistant Professor

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad Gachibowli 500 032, Hyderabad, India

E-mail: ashok.das@iiit.ac.in

Homepage: http://www.iiit.ac.in/people/faculty/ashokkdas Personal Homepage: https://sites.google.com/site/iitkgpakdas/

Topic: **Set Theory**

- A set is a well-defined collection of distinct objects, which are called members of the set or elements of the set.
- Representation of a set
 - **Tabular form:** If the set *A* consists of the elements 1, 2, 3, and 4, then we express the set in the "tabular form" as $A = \{1, 2, 3, 4\}$.
 - Set-builder form: A set is expressed in this form by displaying a typical element and by stating the properties which the elements of the set must satisfy.

```
The symbol A = \{x | P(x)\} or A = \{x : P(x)\}
```

states that A is a set of elements x which satisfy the condition P(x); the symbol ':' or '|' is read as 'such that'.

Examples

$$A = \{1,3,5,...,39\}$$

$$= \{x | x \text{ is a positive odd integer} < 40\}.$$

$$B = \{2,4,6,...\}$$

$$= \{x | x = 2n, n \text{ being a natural number}\}.$$

$$X = \{1,8,27,64,...\}$$

$$= \{x | x = n^3, n \text{ being a positive integer}\}.$$

$$S = \{...,-15,-10,-5,0,5,10,15,...\}$$

$$= \{x | x = 5n, n \text{ is an integer}\}.$$
(1)
(2)
(3)
(4)

- **Null Set:** A set, having no elements, is defined as the null set or the empty set. An empty set is denoted by ϕ .
- Finite Set: A set is finite, if it be empty or contains a finite number of elements.
- Infinite Set: A set contains an infinite number of elements is called an infinite set.
 - Example: The set $\{1, 2, 3, 4, 5\}$ is a finite set and the set $\{x_1, x_2, x_3, \ldots\}$ is an infinite set.
- Order of a set: The number of elements of a finite set A is called the order or cardinal number or cardinality of the set A and is symbolically denoted by n(A) or |A|.
 - Example 1: If $A = \{1, 2\}$ and $B = \{1, 2, 3\}$, then |A| = 2 and |B| = 3.
 - *Example 2:* The null set is regarded as a finite set of order zero, that is $|\phi| = 0$.

Notations for some well-known sets

- N the set of all natural numbers
- Z the set of all integers
- Q the set of all rational numbers, r such that $r = \frac{a}{b}$, $a, b \in Z$, with $b \neq 0$ and gcd(a, b) = 1
- R the set of all real numbers
- C the set of all complex numbers z = a + ib, $a, b \in R$
- E the set of all even integers
- ullet Z^+, Q^+, R^+ the corresponding sets of positive quantities only
- \bullet Z^- , Q^- , R^- the corresponding sets of negative quantities only

- Sub-set: If every element of a set A be also an element of another set B, then A is called a subset of B and we write it as A ⊆ B.
 Mathematically, A ⊆ B means if an arbitrary element x ∈ A, then x ∈ B also.
- Proper subset: If, however, the set B contains some elements which are not the elements of a set A, then A is called a proper subset of B and we write it as A ⊂ B.
- Comparable: Two sets A and B are said to be comparable, if either A ⊆ B or B ⊆ A.
- **Equality of sets:** Two sets A and B are said to be equal, that is A = B, if and only if $A \subseteq B$ and $B \subseteq A$.
- **Disjoint set:** Two sets A and B are said to be disjoint, if they have no element in common, that is $A \cap B = \emptyset$.

• **Difference between sets:** The difference between two sets *A* and *B* in that order is the set of elements which belong to *A*, but do not belong to *B*.

$$A - B$$
 or $A \setminus B = \{x | x \in A, \text{ but } x \notin B\}$
 $B - A$ or $B \setminus A = \{x | x \in B, \text{ but } x \notin A\}$
Example: Let $A = \{1, 2, 3, 4\}$ and $B = \{5, 2, 3, 6\}$. Then $A - B = \{1, 4\}$ and $B - A = \{5, 6\}$.

- Theorem: If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- **Theorem:** If $A \subseteq B$ and $B \subseteq A$, then A = B.
- Theorem: The null set ∅ is a proper subset of every set except ∅ itself.

• Power set: A set formed of all the subsets of a set S as its element is called a power set of S and is symbolically denoted by $\mathcal{P}(S)$.

Example: If
$$S = \{a, b, c\}$$
, then $\mathcal{P}(S) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}.$

- Notes: (1) The null set ∅ is an element/member of P(S).
 (2) The set S being a subset of itself is also an element of the power set P(S).
- **Theorem:** If a finite set S has n elements, then its power set $\mathcal{P}(S)$ has 2^n elements. In other words, $|\mathcal{P}(S)| = 2^{|S|}$.
- Quiz. What will happen for the power set $\mathcal{P}(S)$, if S is itself a null set?

 Universal set: A universal set, U is the set of elements from which elements may be chosen to form sets for a particular discussion.

Example: The set of even numbers is a subset of the universal set of whole numbers.

 Complement of a set: Let S be a given subset of the universal set U. The complement of S relative to U is the set of all elements of U which are not elements of S, and it is denoted by ∼ S or S' or S^c or S̄.

Example: If $U = \{1, 2, 3, 4, 5, 6\}$ and $S = \{2, 3, 4\}$, then $S' = \{1, 5, 6\}$.

Symbolically, $S' = \{x | x \in U \text{ and } x \notin S\}.$

Venn-Euler diagram

 It is a schematic representation of sets by certain areas containing the elements of the sets, being represented by the points of the respective areas.

Figure: $A \subseteq B$

Venn-Euler diagram

Figure: A' = U - A

Basic Set Operations

 Union or Join The union of two sets A and B is denoted and defined by

$$A \cup B = \{x | x \in A \text{ or } x \in B\}$$

= $\{x | x \in A \lor x \in B\}.$

• If $A_1, A_2, ..., A_n$ be the subsets of X, where n is a positive integer, then

$$A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{i=1}^n A_i$$

= $\{x | x \in A_i \text{ for some value } i, 1 \le i \le n\}.$

• Example: If $A = \{1, 2, 3\}$ and $B = \{4, 3, 5, 6\}$, then $A \cup B = \{1, 2, 3, 4, 5, 6\}$.

Basic Set Operations (Continued...)

- From the Venn diagram, it is easy to observe the following theorems.
 - \bigcirc $A \cup A = A$
 - \bigcirc $A \cup U = U$

 - $A \cup B = B \cup A$

Basic Set Operations (Continued...)

 Intersection or Meet The intersection of two sets A and B is denoted and defined by

$$A \cap B = \{x | x \in A \text{ and } x \in B\}$$

= $\{x | x \in A \land x \in B\}.$

• If $A_1, A_2, ..., A_n$ be the subsets of X, where n is a positive integer, then

$$A_1 \cap A_2 \cap \ldots \cap A_n = \bigcap_{i=1}^n A_i$$

= $\{x | x \in A_i, \forall i, 1 \le i \le n\}.$

• Example: If $A = \{a, b, c\}$ and $B = \{c, d, e\}$, then $A \cap B = \{c\}$.

Basic Set Operations (Continued...)

- From the Venn diagram, the following theorems are obvious:
 - \bigcirc $A \cap A = A$
 - $\bigcirc A \cap U = A$
 - \bigcirc If $A \subseteq B$, then $A \cap B = A$

Laws of Algebra on Sets

Let A, B and C be three any sets.

- Commutative laws
 - \bigcirc $A \cup B = B \cup A$
 - $A \cap B = B \cap A$
- Associative laws
- Idempotent laws

 - $\bigcirc A \cap A = A$

Laws of Algebra on Sets (Continued...)

Let A, B and C be three any sets.

- Distributive laws
- De Morgon's laws

 - $(A \cup B)' = A' \cap B'$
 - $(A \cap B)' = A' \cup B'$

Symmetric Difference

Let A and B be two sets.

The symmetric difference of A and B is denoted and defined by

$$A \triangle B = (A - B) \cup (B - A)$$

= $\{x | [x \in A \text{ and } x \notin B] \text{ or } [x \in B \text{ and } x \notin A] \}.$

- Example: If $A = \{1, 2, 4, 7, 9\}$ and $B = \{2, 3, 7, 8, 9\}$, then $A B = \{1, 4\}$, $B A = \{3, 8\}$. Thus, $A \triangle B = \{1, 4\} \cup \{3, 8\} = \{1, 3, 4, 8\}$.
- It can be easily verified that
 - (i) $A \triangle \emptyset = A$,
 - (ii) $A \triangle A = \emptyset$,
 - (iii) $A \triangle B = \emptyset \Rightarrow A = B$.

Cartesian product of sets

 The Cartesian product of two sets A and B is denoted and defined by

$$A \times B = \{(a,b)|a \in A \text{ and } b \in B\}.$$

More generally, the Cartesian product of n sets A_1, A_2, \ldots, A_n is

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) | a_i \in A_i, 1 \leq i \leq n\}.$$

- Example: If $A = \{a, b, c\}$ and $B = \{m, n\}$, then $A \times B = \{(a, m), (a, n), (b, m), (b, n), (c, m), (c, n)\}$.
- It can be easily verified that if |A| = m and |B| = n, then $|A \times B| = mn$.
- In general, $A \times B \neq B \times A$.

The Inclusion-Exclusion Principle

• Let A_1, A_2, \ldots, A_n be n finite sets. Then

$$|\cup_{i=1}^{n} A_{i}| = \sum_{i=1}^{n} |A_{i}| - \sum_{i,j=1; i \neq j}^{n} |A_{i} \cap A_{j}|$$

$$+ \sum_{i,j,k=1; i \neq j \neq k}^{n} |A_{i} \cap A_{j} \cap A_{k}| - \dots$$

$$+ (-1)^{n+1} |\cap_{i=1}^{n} A_{i}|$$

- Special cases
 - When n = 2, $|A \cup B| = |A| + |B| |A \cap B|$
 - When n = 3, $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |B \cap C| |A \cap C| + |A \cap B \cap C|$

Problem: Prove that (A - B), (B - A) and $A \cap B$ are disjoint, where A and B are two sets.

Two sets X and Y are disjoint, if $X \cap Y = \emptyset$. Now,

$$(A - B) \cap (A \cap B) = (A \cap B') \cap (A \cap B)$$
, by De Morgan's laws
 $= (A \cap B') \cap (B \cap A)$, by Commutative laws
 $= A \cap (B' \cap B) \cap A$, by Associative laws
 $= A \cap (\emptyset \cap A)$
 $= A \cap \emptyset$
 $= \emptyset$

Similarly, it can be shown that

$$(B-A)\cap (A\cap B)=\emptyset$$
$$(A-B)\cap (B-A)=\emptyset$$

Problem

- The number of elements in a finite set S is denoted by |S|.
 - (a) Starting from the fact that $|A \cup B| = |A| + |B|$ when A and B are two disjoint sets, show that in general, $|A \cup B| = |A| + |B| |A \cap B|$.
 - (b) For any three sets A, B, and C, show that
 - $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |B \cap C| |A \cap C| + |A \cap B \cap C|.$

Problem [The Inclusion-Exclusion Principle]: Find the number of positive integers \leq 2076 and divisible by neither 4 nor 5.

Let $A = \{x \in N | x \le 2076 \text{ and divisible by 4}\}$, and $B = \{x \in N | x \le 2076 \text{ and divisible by 5}\}$. By the Inclusion-Exclusion Principle, we have,

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$= \lfloor \frac{2076}{4} \rfloor + \lfloor \frac{2076}{5} \rfloor - \lfloor \frac{2076}{4 \times 5} \rfloor$$

$$= 519 + 415 - 103$$

$$= 831.$$

Thus, among the first 2076 positive numbers, there are 2076 - 831 = 1245 integers NOT divisible by neither 4 nor 5.

A Number-Theoretic Function

- An integer p(>1) is called a prime number or simply a prime, if its only positive divisors are 1 and itself. In other words, p does not have any non-trivial divisor d such that 1 < d < p.
- Let x be a positive real number. Then $\pi(x)$ denotes the number of primes $\leq x$.
- Prime Number Theorem: $\pi(x) \to \frac{x}{\ln(x)}$ as $x \to \infty$
- Theorem: Let p_1, p_2, \ldots, p_t be the primes $\leq \sqrt{n}$. Then $\pi(n) = n 1 + \pi(\sqrt{n}) \sum_i \lfloor \frac{n}{p_i} \rfloor + \sum_{i < j} \lfloor \frac{n}{p_i p_j} \rfloor \sum_{i < j < k} \lfloor \frac{n}{p_i p_j p_k} \rfloor + \ldots + (-1)^t \lfloor \frac{n}{p_1 p_2 \dots p_t} \rfloor$

Problem: Find the number of primes \leq 100.

Here n = 100. Then $\pi(\sqrt{n}) = \pi(\sqrt{100}) = \pi(10) = 4$. The four primes $\leq \sqrt{n} = 10$ are 2, 3, 5 and 7. Let $p_1 = 2$, $p_2 = 3$, $p_3 = 5$ and $p_4 = 7$, t = 4. From the previous theorem, we have,

$$\pi(100) = 100 - 1 + 4 - \left(\left\lfloor \frac{100}{2} \right\rfloor + \left\lfloor \frac{100}{3} \right\rfloor + \left\lfloor \frac{100}{5} \right\rfloor + \left\lfloor \frac{100}{7} \right\rfloor\right) \\ + \left(\left\lfloor \frac{100}{2.3} \right\rfloor + \left\lfloor \frac{100}{2.5} \right\rfloor + \left\lfloor \frac{100}{2.7} \right\rfloor + \left\lfloor \frac{100}{3.5} \right\rfloor + \left\lfloor \frac{100}{5.7} \right\rfloor + \left\lfloor \frac{100}{5.7} \right\rfloor\right) \\ - \left(\left\lfloor \frac{100}{2.3.5} \right\rfloor + \left\lfloor \frac{100}{2.3.7} \right\rfloor + \left\lfloor \frac{100}{2.5.7} \right\rfloor + \left\lfloor \frac{100}{3.5.7} \right\rfloor + \left\lfloor \frac{100}{2.3.5.7} \right\rfloor \\ = 103 - (50 + 33 + 20 + 14) + (16 + 10 + 7 + 6 + 4 + 2) \\ - (3 + 2 + 1 + 0) + 0 \\ = 25.$$

This result is consistent with the sieve of Eratosthenes.

Quiz: Find the number of primes in between 50 and 100.

Solution

- Step 1. Find the number of primes \leq 50. We have $\pi(50) = 15$.
- Step 2. Find the number of primes \leq 100. We have $\pi(100) = 25$.
- Step 3. Finally, calculate the number of primes \geq 50 and \leq 100, which is $\pi(100) \pi(50) = 25 15 = 10$.

This is cinsistent with the sieve of Eratothenes.

Note: Using the sieve of Eratothenes, the primes \leq 100 are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Problem: If $A = \{1, 2\}$, $B = \{2, 3\}$ and $C = \{3, 4\}$, then find $A \times (B \cup C)$. Further verifies whether $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Part 1: We have, $B \cup C = \{2, 3, 4\}$. Now,

$$A \times (B \cup C) = \{1,2\} \times \{2,3,4\}$$

= \{(1,2),(1,3),(1,4),(2,2),(2,3),(2,4)\}

Part 2: We also have,

$$(A \times B) \cup (A \times C) = \{(1,2), (1,3), (2,2), (2,3)\}$$

$$\cup \{(1,3), (1,4), (2,3), (2,4)\}$$

$$= \{(1,2), (1,3), (1,4), (2,2), (2,3), (2,4)\}$$

$$= A \times (B \cup C)$$

Problem: Let X, A and B be three sets such that $X \cap A = X \cap B$ and $X \cup A = X \cup B$. Prove that A = B.

We have to prove $A \subseteq B$ and $B \subseteq A$.

Let $x \in A$.

We have then two cases:

- Case 1: Let $x \in X$. Then $x \in A \cap X = X \cap B$. Thus, $x \in B$.
- Case 2: Let x ∉ X.

Then
$$x \in A$$

$$\Rightarrow$$
 $X \in A \cup X = X \cup B$.

Thus,
$$x \in B$$
, since $x \notin X$.

Hence, for each case, we have $x \in A$

$$\Rightarrow$$
 $x \in B$.

As a result, $A \subseteq B$.

Similarly, one can prove that $B \subseteq A$.

Problem: For any two sets A and B, prove that $A \cap B = A$ if and only if $A \subseteq B$.

We first prove that $A \cap B = A \Rightarrow A \subseteq B$.

Since $A \cap B \subseteq B$ by definition, $A \subseteq B$.

Conversely, we prove that $A \subseteq B \Rightarrow A \cap B = A$.

By definition, $A \cap B \subseteq A$.

If $x \in A$, then $x \in B$, since $A \subseteq B$.

Hence, $x \in A \cap B$ and $A \subseteq A \cap B$.

Thus, $A \cap B = A$.

End of this lecture