

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE Technical Paper	3. DATES COVERED (From - To)		
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER		
		5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)		5d. PROJECT NUMBER 2303		
		5e. TASK NUMBER M1A3		
		5f. WORK UNIT NUMBER 346127		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT		
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048		10. SPONSOR/MONITOR'S ACRONYM(S)		
		11. SPONSOR/MONITOR'S NUMBER(S)		
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited.				
13. SUPPLEMENTARY NOTES				
14. ABSTRACT				
20030127 191				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT A	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Leilani Richardson
a. REPORT Unclassified	b. ABSTRACT Unclassified			c. THIS PAGE Unclassified

DTS✓

MEMORANDUM FOR PRS (In-House Publication)

FROM: PROI (STINFO)

22 March 2002

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-VG-2002-065
Capt. Rene I. Gonzalez, "Synthesis and In-Situ Atomic Oxygen Erosion Studies of Space-Survivable
Hybrid Organic/Inorganic Polyhedral Oligomeric Silsesquioxane Polymers"

Ph.D. Dissertation Defense

(Statement A)

(University of Florida, FL, 04 April 2002) (Deadline: 04 Apr 02)

A3

Chemical Engineering Department

**Synthesis and In-Situ Atomic Oxygen Erosion
Studies of Space-Survivable Hybrid
Organic/Inorganic Polyhedral Oligomeric
Silsesquioxane Polymers**

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

Ph.D. Dissertation Defense
for

Capt Rene I. Gonzalez

Materials Application Branch
Space and Missile Propulsion Division
Air Force Research Laboratory

Research Advisor: Prof. Gar B. Hoflund

Polymeric Materials

- Cost is the variable plaguing all space missions. (\$6,000 to \$10,000/1b to put payload in orbit)
- Materials are one of the main drivers of cost for space missions.
- Polymers offer many advantages (lightweight, easy to process, versatility)
- However, polymers are subject to severe degradation in Low Earth Orbit space environment

LEO Environment (Altitudes of 200 to 1500 km)

- Atomic Oxygen
 - $\sim 10^8$ atoms/cm³
 - Formed from photo-dissociation of O₂ in atmosphere.
 - Actual flux on spacecraft traveling at 8 to 12 km/s $\sim 10^{15}$ atoms/cm²•s
 - collision energy $\sim 5\text{ eV}$
- Low-energy and high energy charged particles.
- Thermal cycling -50 to 150°C
- Solar UV and VUV radiation
 - VUV wavelengths in LEO extend below 290nm.
 - Bond scission and radical formation can lead to embrittlement.

Goal: Develop Multi-Functional, Space-Survivable Materials (AFOSR/ER)

Material	Atomic Oxygen Reaction Efficiency cm ³ /atom		
	Rel. Rates*	LEO	
Kapton	1	3.0×10^{-24}	3.0×10^{-24}
Polyethylene	0.9	3.7×10^{-24}	$<0.05 \times 10^{-24}$
FEP Teflon	<0.03	1.0×10^{-24}	
FEP Teflon (Solar Max)	0.6	0.3×10^{-24}	
Siloxane-imide block copolymers(25% /75%)	0.1		1.7×10^{-24}
Epoxy	0.6		

Satellites & Space Systems

Objectives

- Increase Space Resistance (AO, particle & VUV radiation, thermal cycling) of Polymeric Materials

- Self-Passivating/Self-Rigidizing/Self-Healing based on Hybrid organic/ inorganic nanocomposite incorporation

AO undercutting of LDEF Aluminized-Kapton Multilayer Insulation

Groh, K.K., Banks, B.A., J. Spacecraft and Rockets, Vol. 31, No. 4, 656-664 (1994)

Propulsion & Space Technology is Limited by Material Properties

Goal: Develop High Performance Polymers that REDEFINE material properties

- Hybrid plastics can bridge the barrier between ceramics and polymers

POSS Polymer Incorporation

Cross-linker **Pendant Polymer** **Bead Copolymer**

POSS Blending

POSS = Polyhedral Oligomeric Silsesquioxane

- Traditional silsesquioxane chemistry focused on “T-Resins”
- The maximization of property enhancements in polymers results from interaction at the nano-level

Anatomy of a POSS Nanostructure

**Nonreactive organic (R)
groups for solubilization
and compatibilization.**

- May possess one or more functional groups suitable for polymerization or grafting.

Nanosopic in size with an Si-Si distance of 0.5 nm and a R-R distance of 1.5 nm.

Thermally and chemically robust hybrid (organic-inorganic) framework.

Precise three-dimensional structure for molecular level reinforcement of polymer segments and coils.

POSS Monomer/Polymer Trees

**Hybrid
Plastics™**

UNIVERSITY OF
FLORIDA

UF LEO Simulation Facility

Oxygen Atom Source

Improved reflector/lens assembly

Reinforced membrane assembly

Photoemission process occurring during XPS

Sampling Depth of Photoelectron

Kapton

Composition, at %

Sample Treatment	O	C	N
As entered	18.1	77.7	4.2
2.0 hr	14.4	78.4	7.2
24.6 hr	9.2	83.2	7.8
3 hr in air	17.9	78.2	3.9

Grossman, E.; Wolan, J.T.; Mount, C.K.; Hoflund, G.B.; J. Spacecraft and Rockets, 36, No. 1, 75-78

XPS survey spectra obtained from a solvent-cleaned, Kapton film after (a) insertion into the vacuum system, (b) a 20-min, and (C) a 24-h exposure to the hyperthermal AO flux, and (d) a 3-hr air exposure following the 24-hr exposure.

High Resolution C 1s and O 1s spectra obtained from a solvent-cleaned, Kapton film after (a) insertion into the vacuum system, (b) a 20-min, and (C) a 24-h exposure to the hyperthermal AO flux, and (d) a 3-hr air exposure following the 24-hr exposure.

High Resolution N 1s spectra obtained from a solvent-cleaned, Kapton film after (a) insertion into the vacuum system, (b) a 20-min, and (C) a 24-h exposure to the hyperthermal AO flux, and (d) a 3-hr air exposure following the 24-hr exposure.

AFM images from a solvent-cleaned Kapton film after (a) insertion into the vacuum system, (b) a 20-min, and (c), a 24-hr exposure to hyperthermal AO flux.

POSS Siloxane

Composition, at %

Sample Treatment	O	C	Si
As entered	18.5	65.0	16.6
2.0 hr	33.8	48.4	17.8
24.6 hr	49.1	22.1	28.8
63.0 hr	55.7	16.3	28.0
4.8 hr air	52.8	19.5	27.7

Gonzalez, R. I., Phillips, S. H., Hoflund, G. B., *J. of Spacecraft and Rockets*, Vol 37, No. 4, 2000, pp. 463-467.

XPS survey spectra obtained from a solvent-cleaned, POSS-PDMS film (a) after insertion into the vacuum system, (b), after a 2-hr (c) 24.6-hr and (d) 63-hr exposure to the hyperthermal AO flux, and (e) 4.75-hr air exposure following the 63-hr AO exposure.

20

High Resolution Si 2p spectra obtained from a solvent-cleaned, POSS-PDMS film (a) after insertion into the vacuum system, (b), after a 2-hr (c) 24.6-hr and (d) 63-hr exposure to the hyperthermal AO flux, and (e) 4.75-hr air exposure following the 63-hr AO exposure.

SEM of POSS-Siloxane Copolymer

SEM of (a) unexposed and (b) exposed POSS-siloxane copolymer surfaces. The simulated LEO exposure “healed” the micro-cracks present initially in the POSS-siloxane sample.

Properties of POSS-Urethanes

Polymer	Melt Transition °C	T _{dec} °C	Char Yield %	Appearance
0% POSS*	-49, 22	274 °C	1.4	Viscous Fluid
29% POSS*	201	372 °C	16.0	Solid Rubber
43% POSS*	260, 320	344 °C	20.0	Solid Rubber

Moduli for POSS BPA and TMIP Urethanes

POSS Content	Modulus (MPa)	POSS Content	Modulus (MPa)
0 wt.% POSS	0.04 MPa	0 wt.% POSS	0.01 MPa
17 wt.% POSS	0.42 MPa	17 wt.% POSS	0.14 MPa
34 wt.% POSS	1.06 MPa	34 wt.% POSS	0.39 MPa

Samples were stretched to 400% elongation

All polymers were prepared through melt polymerization

60 wt % POSS-Polyurethane

Sample Treatment	O	C	Si	Sn	Na	N
As entered	18.2	70.1	11.3	0.4	-	-
2.0-hr	17.5	70.2	11.2	0.7	0.4	-
24.0-hr	23.7	58.2	13.2	0.9	1.4	2.6
63.0-hr	35.3	37.3	20.4	1.3	3.0	2.7
3.3-h air	31.6	48.5	14.6	1.0	2.7	1.6

Phillips, S. H., Hoflund, G. B., Gonzalez, R. I., 45th International SAMPE Symposium, 2000, Vol. 45, No. 2, pp. 1921-1931.

XPS Survey Spectra from a 60 wt% POSS-PU (a) after insertion into the vacuum system, (b) after a 2-hr (c) 24-hr and (d) 63-hr exposure to the hyperthermal AO flux, and (e) 3.3-hr air exposure following the 63-hr exposure.

High Resolution C 1s and O 1s spectra from a 60 wt% POSS-PU (a) after insertion into the vacuum system, (b) after a 2-hr (c) 24-hr and (d) 63-hr exposure to the hyperthermal AO flux, and (e) 3.3-hr air exposure following the 63-hr exposure.

High Resolution Si 2p spectra from a 60 wt% POSS-PU (a) after insertion into the vacuum system, (b) after a 2-hr (c) 24-hr and (d) 63-hr exposure to the hyperthermal AO flux, and (e) 3.3-hr air exposure following the 63-hr exposure.

POSS-Kapton Polyimides

Table 2. AFRL Kapton Tensile Properties Calculated with the Average Sample Thickness.

Sample No.	Young's Modulus, Ksi	Ultimate Tensile Strength, Ksi	Failure Strain, %
Baseline AFRL Kapton without POSS			
Average	348	9.0	4.86
AFRL Kapton doped with 10 wt% POSS			
Average	370	10.8	6.59
AFRL Kapton doped with 20 wt% POSS			
Average	321	7.5	3.89

Glass Transition Temperatures of POSS-Polyimides

Measured by DMA

Heating Rate: 10°C per Minute

% POSS	Tg in Air (°C)	Tg in Nitrogen (°C)
0	386	389
10	380	381
20	370	373

Note: DuPont claims that the Tg of Kapton H is in the range of 360 - 410°C, "depending on how it is measured."

10 wt% POSS Kapton

10 wt% POSS Kapton Polyimide

Composition, at %

Sample Treatment	O	C	N	Si	O/Si
As entered	15.9	74.5	4.9	4.6	3.4
2.0-hr	14.3	72.6	8.2	4.9	2.9
24.0-hr	11.1	79.6	4.9	4.4	2.5
40.0-hr	9.1	81.5	5.6	3.7	2.4
Air exposed	13.9	76.8	5.8	3.5	3.9

Octaphenylamino Silsesquioxane Imide Resin

PMDA

OAPS

Octaphenylamino Silsesquioxane Imide Resin

Octaphenylamino Silsesquioxane Imide Resin

Composition, at %

Sample	Treatment	O 1s	C1s	N 1s	Si 2p	O/Si
	as entered	18.1	60.5	1.7	19.7	0.9
	2hrs	22.8	57.1	2.1	18.0	1.3
	24.5hrs	18.7	67.9	1.1	12.3	1.5
	42.5hrs	16.2	71.3	2.4	10.1	1.6
	Air exposed	19.3	71.5	0.9	8.3	2.3

Octaphenylamino Silsesquioxane Imide Resin

Beam-Surface Scattering/Atomic Oxygen Test Facility

Pulsed CO₂ Laser Atomic Oxygen Generator

Energy distribution beams produced by the pulsed CO₂ laser AO source

Surface Topographical Analysis/Profilometry

Hyperthermal AO Beam

Kapton H

Kapton 10 wt% POSS

O-Atom Etching Experiment

8.47×10^{20} atoms cm^{-2}

Multiplot of profilometry measurements obtained from Kapton HN and 0, 10 and 20 wt% POSS-Kapton polyimides exposed to a total AO fluence of 2.62×10^{20} atoms/ cm^2 .

O-Atom Etching Experiment

Total Fluence = 2.62×10^{20} atoms cm^{-2}

Sample	Kapton H	0% Poss Kapton Control	10% Poss Kapton	20% Poss Kapton	20% POSS- Polyurethane
Avg Etch Depth (microns)	7.85	9.14	1.15	0.41	6.05
Std Deviation	0.05	0.18	0.07	0.07	0.27
Re cm^3/atom	3.00E-24	3.49E-24	4.39E-25	1.55E-25	2.31E-24

POSS Siloxane

No erosion detected for POSS-Siloxane copolymer

MATERIALS INTERNATIONAL SPACE STATION EXPERIMENT

MATERIALS INTERNATIONAL SPACE STATION EXPERIMENT

1 YEAR AO & SOLAR
TRAY IN PEC 1 - TRAY 1

POSS in Space

**POSS-Polymers Fly on
STS 105 Discovery and
are deployed on the
Int'l Space Station
16 August 2001**

Footage courtesy of NASA

Development of Cp POSS aniline model compound

Cp_7T_8 Nitrobenzene

55% ortho

37 % meta

8% para

Cp_7T_8 aniline

57% ortho

38 % meta

5% para

Cp_7T_8 Nitrobenzene

Cp_7T_8 phenyl

Cp_7T_8 Triol

Cp_7T_8 aniline

Zn/ HCl

THF

Future Work

- Synthesis of other POSS-aniline monomer. AFRL & HP
 - Continue AO studies on other POSS-Polymer systems at UF
 - VUV Radiation with and without AO.
 - In-Situ Characterization XPS FTIR
 - Exposure to Different Gases
 - Sputtering Effects using FABS
 - Temperature Effects
- AO Etching and Profilometry Experiments at MSU
 - VUV, Proton and Electron Radiation at Aerospace

Acknowledgements

Polymer Working Group

Dr. Shawn Phillips

Dr. Brent Viers

Dr. Tim Haddad

Maj Steve Svejda, Ph.D.

Dr. Rusty Blanski

University of Florida

Prof. Gar Hoflund

Prof Jason Weaver

Dr. Helena Haeglin

Alex Gerard

Paulo Morales

Bryan Fittsimons

External

Prof. Tim Minton-MSU

Dr. Joe Lichtenhan - HP

Prof. Pat Mather - UConn

Dr. Howard Katzman Aerospace

Dr. Mike Meshsisek Aerospace

Dr. Gary Steckel Aerospace

Funding: AFOSR (Dr. Charles Lee)

AFRL