Gdevops 全球敏捷运维峰会

百世物流科技架构演变之路

演讲人:周金中

继承传统,拥抱互联网

01 早期多使用通用的技术,利用成熟的方案快速解决问题。

02 加强运维管理,逐步实现运维自动化。

03 敢于放弃成熟的商业解决方案,自力更生形成可以运维的开源解决方案。

04 从私有云到混合云。

整体运维目标

- 1. 为公司业务发展提供可靠性运维服务(服务导向)
- 2. 实现量化的运维管理目标(KPI)
- 3. 提升用户体验和满意度 (SLA)

整体运维目标

目标的实现方式: 定目标、建组织、通过项 目管理实现

Gdevops.com 全球敏捷运维峰会杭州站

IT传统系统规划和实现视图

量化的系统运维管理

- 制定关键系统可用性目标
- 建立自动监控
- 自动报警(邮件&短信)
- 问题管理
- 变更管理
- 周期性性能评估

应用系统优化

- 应用重要性分级
- 一冗余架构和横向扩展
- 统一应用架构

统—沟通

- 全球地址簿和邮 件组规划
- 邮件安全和防垃圾功能
- 及时通讯
- voip

IT服务管理

- 遵照ITIL模型
- 建立事件管理流程
- 服务水平管理
- 使用统一的IT服务管 理平台
 - 量化的事件管理报表
- 用户满意度提升

单点认证

- 合理规划区域 和角色
- 域策略管理
- 用户信息规范
- 安全加固
- 分布式多区域 部署

数据库平台整合优化

- 根据性能需求设计数据库能力

一般应用服务器尽量使用

采用开源的虚拟化解决方

虚拟化解决方案

资源共享并避开热点

- 根据重要性设计冗余架构
- 数据备份
- 数据库监控和优化

基础架构虚拟化

数据库

CA认证、单点

业务应用

目录服务 (AD)

统一授权

OA.

服务器操作系统

客户端操作系统 客户端硬件

客户端配

基础架构虚拟化(IaaS)

服务器硬件

存储

邮件

系统

网络规划

- 网络架构整体规划设计
- 统一网络管理策略
- 加强网络监控

网络

存储规划

- 识别关键数据
- 合理分担负载
- 加强数据备份管理
- 设计冗余存储架构
- 存储性能监控

GdeVops.com

会 杭州站

根据应用重要性合理配置资源

#	资源池级别	应用	硬件使用时长	配置	数据备份	监控	问题处理	备注
1	Severity High	重要应用		主流高配置、 配置存储、 SSD , 应用使 用HA等	数据重要需要备份	对硬件状态和服务状 态要做严格的监控和 报警		
2	Severity Medium	一般应用	<36月	一般配置	部分数据需要备份	对硬件状态要做严格 的监控和报警	4小时内响应, 当天处理	
3	Severity Low	测试和不 重要应用	>36月	低配置或淘汰 的硬件设备	数据不重要 , 一般不 需要备份	一般报警	不做特别要求	

道理很简单,耻辱很难堪

应用重要性级别	B别 P1			P2			P3			P4		
事故级别	报警方式	响应时间	故障解决时 长	报警方式	响应时间	故障解决时 长	报警方式	响应时间	故障解决时 长	报警方式	响应时间	故障解决时 长
Disaster (灾难)	电话/短信/ 邮件	0. 5h	1h	电话/短信/邮件	1h	2h	短信/邮件	2h	1个工作日	短信/邮件	2h	2个工作日
High (重大)	电话/短信/邮件	1h	1个工作日	短信/邮件	2h	2个工作日	短信/邮件			邮件		
avarage (中等)	短信/邮件			短信(可选)/邮件			短信(可 选)/邮件			邮件		
warning (警告)	邮件			邮件			邮件(可选)			邮件(可选)		
information (日志)	可选			可选			可选			可选		
备注: 如果在故障解决时长	内未解决问]题,请及时 系统绩效识		2015. 1-12								
应用重要性级别		P1			P2			Р3			P4	
事故级别	可用性目标	实际可用性	超出SLA	可用性目标	实际可用性	超出SLA	可用性目标	实际可用性	超出SLA	可用性目标	实际可用性	超出SLA
Disaster (灾难)	99. 96%	99. 99%		99. 94%	99. 96%	1	99. 92%	99. 96%		99. 90%		1
High (重大)						1			1			2
avarage (中等)						2						
warning (警告) information (日志)												
备注:事件的级别会变化的。如果在规定时间或范围内没有解决,它的严重程度就会不断升级。												

物流云整体业务架构

业务支持

SaaS云服务

SOA架构

灵活、开发、稳定、可扩展性强

400人的技术团队、完善的产品体系

Gdevops.com 全球敏捷运维峰会杭州站

物流主数据库冗余架构-Oracle

- 数据冗余使用 Oracle DG
- · 重要数据异地 冗余
- 非交易性数据 不断拆分到 MySQL
- X86架构使用 闪存和传统存 储的结合

硬件快速迭代,敢吃螃蟹

MySQL应用比率不断增加

百世自动化平台框架

百世自动化运维平台

选择开源的云计算技术构建私有云 --OpenStack

OpenStack:架构开放、扩展性良好、支持多厂商基础设施的统一平台

百世私有云架构规划

不得不选择的公有云服务

PC服务器

NAS

低成本、流式

负载均衡

应用服务器

存储

数据库

数据库

CDN

SLB

ECS

OSS

节点和带宽资源丰富 网页、下载和视频多场景

可用性: 99.99% 吞叶: xGb

可用性: 99.95% CPU: 万核 内存: xTB 8线 BGP

可用性: 99.9% 数据可靠件: 99.9999999% 每秒请求数:50000+ 数据规模: PB

分布式集群和负载均衡设计 95%请求1毫秒返回 硬件故障10秒自动恢复

可用性: 99.95% 数据可靠性: 99.9999% DRDS数据库规模: xTB 最终一致性

大数据互联网 - 走向云时代

企业应用需要弹性吗?

弹性

企业资源利用率如何?

关键技术

- 计算、存储、网络虚拟化
- 负载均衡,反向代理
- 多租户,数据共享与隔离
- 混合云架构
- ••••

大数据互联网 - 走向云时代

合理配置资源,加强运维管理。

使用开源的云技 术,从私有云、 公有云到混合云

使用传统通用的技术,利用成熟的方案快速解决问题。

使用多种开源技术, 硬件快速迭代,发 展运维自动化

大数据,混合云,融合架构,安全

Gdevops 全球敏捷运维峰会

THANK YOU!

