

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Rubin, Gerald M.
 5 Pan, Duoja
 Rooke, Jenny
 Yavari, Reza
 Xu, Tian

(ii) TITLE OF INVENTION: KUZ: A Novel Family of Metalloproteases

10 (iii) NUMBER OF SEQUENCES: 8

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: SCIENCE & TECHNOLOGY LAW GROUP
 (B) STREET: 268 BUSH STREET, SUITE 3200
 (C) CITY: SAN FRANCISCO
 15 (D) STATE: CALIFORNIA
 (E) COUNTRY: USA
 (F) ZIP: 94104

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
 20 (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.30

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER:

(B) FILING DATE:

(C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: OSMAN, RICHARD A
 (B) REGISTRATION NUMBER: 36,627
 30 (C) REFERENCE/DOCKET NUMBER: B97-081

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (415) 343-4341
 (B) TELEFAX: (415) 343-4342

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5630 base pairs
 (B) TYPE: nucleic acid
 40 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GT	TAAAAAAA	AACCACCAAG	CGAGTTGGAC	GCGTAACTCT	TTGTAACGGA	TCTCGGAACG	60
CG	CGTGGGAGT	CGGAAAATCG	CTGGACGCGT	TTTCGTGCGT	TTGCATGTGT	GCGTGCCTTC	120
GT	GTGTGTGTGT	GTGTGCTAAT	GTGCGAGCGG	GTGAGCGAAT	AAAAATAAAT	ATATATCGTC	180
AA	AAGTCAGGCT	TAAGAAATGT	GCGCTAACCA	AAGAAAATGC	CCCCAATTCT	GCCCAATTGA	240
TT	GAATTGTGGC	TAAACAAAAA	ATTGACCGG	AGTTAAAAAA	TAAACAATCC	AGTGAATAAA	300
AC	CACACAAAAT	CAATCAAAAA	AGAAGATTTC	TCTTTTTTAT	TTTCGCTTTT	AATTTATTAA	360
AC	CGAGAATAAT	AAATAAATAA	ATAAATAAAT	ATAAACAAAA	ATAAAAATAT	AAGAAAAGTG	420
GT	TACGTGACAA	GAGCTCGAAA	AGAAGTTGCA	ACAAATAGCA	AAAATAATTC	GTGCGTGCAG	480
CG	AAAAGTGTG	CGAAGTTTA	TGGCCCATGC	AAAAAGTGCT	AAATTGTAA	ATGGCATGGA	540
CA	AAGTGCAG	CTCTGATTAA	AAAACCCGCG	AAGATTGGAG	TGCGAGGTGC	CGCCCAATAA	600
AC	CGCAACCAAC	TACTGCCACA	AGGAAATTAT	TAAGACCAAT	CAACGACCAA	AAAAATAAAA	660
AA	AATAAAACAA	AAGCAAGCAG	AAATTGCTG	CTAGTTCTGT	TTAGTCGACA	GCCATCCACG	720
CA	TTGGATCCCC	ATCGCAAATA	ATGTCAACAA	AATGTGCTTT	CAACATTGTA	TTCGTATCGA	780

	TCATTTCAT	CATCATCGTA	AATGGTTACG	CAAAGATAT	TTCTGGAGTT	AAAAGAGGTC	840
	ATGAACGACT	TAACGAATAAC	ATATCCCAC	ATGAAACACT	CAACTATGAT	CACGAGCACA	900
	TCCGAGCTAG	TCACAATAGA	GCGCGACGAT	CAGTGACCAA	AGATCAATAT	GTACATTAA	960
5	AGTTTGCATC	ACATGGAAGA	GACTTCCATC	TTAGATTAAA	ACGTGATTAA	AATACATTAA	1020
	GCAATAAGTT	AGACTTTAT	GATAGCAAAG	GTCCCATTGA	TGTCTCCACG	GATCATATCT	1080
	ATGAGGGCGA	AGTGATAGGG	GATCGTAATA	GTTATGTATT	TGGTCCATA	CACAATGGGG	1140
	TATTGAGGG	TAAAATTATA	ACGGAACGTG	ATGCCTATTA	TGTTGAACAT	GCCAAACATT	1200
	ATTTTCCCAC	AAATCGCACG	GCGACAACAA	CACCACCATC	GACTTCGACG	ACATCCTCAG	1260
10	CAACAACAGT	CACAAAAAGC	ACACAACCAA	CACGCCCTT	GGCCAAAAGC	AACACCAGTA	1320
	CTACTGCCGT	TAATAGTAAG	ACAGAAAAC	TTATAAAGAA	AATTGCTGAA	TCCACAACGA	1380
	CGAGCCAGCA	GCTTCCAGAA	TATACCGAAT	CGTCGTCGTC	GTCGTCGACA	ACAAACATTCC	1440
	CACCCACAAC	AGAGTATTT	GAGGACGAAA	AGGAGCGTAA	TGCCGAGGAC	GAACTTGATT	1500
	TTCACTCCAT	TATCTACAAG	GAGTCACATG	TCGAGGACGC	CTACGAAAAT	GTGCGCGAAG	1560
	GTCACGTGGC	CGGCTGTGGC	ATCACGGATG	AGGTCTCTCA	GTGGATGGAG	ACATACAAA	1620
15	ATTCAGCCGT	CGAAGAGTTG	CCGGAGCCA	TGTCAAAGGA	CTATCAAAAG	CTCCACCGGA	1680
	AGCAGCTGCA	CAAAAAGTCC	GCCCCACAGC	AAACACAGCA	GCCCCATCCG	CCGAAGAAGT	1740
	ACATCAGCGG	GGATGAGGAC	TTCAAGTATC	CCCACCATC	GTACACGAAG	GAAGCTAACT	1800
	TCGCCGAGGG	TGCATTCTAC	GATCCATCGA	CCGGACGTG	CCTGGCTCA	TCCGCCAACG	1860
	TGGCCGACTG	GCATCAGCTC	GTCCACGAGC	GCGTCCGCCG	CGCCACCGAC	AATGGTGCTG	1920
20	GGGATAGGGG	CTCATCCGGT	GGATCTGGAC	GCGGTCGCGA	GGACAACAAG	AATACCTGCT	1980
	CGCTCTACAT	TCAAACGGAT	CCATTGATAT	GGCGCCACAT	ACGCGAAGGC	ATTGCTGACC	2040
	ACGATCGTGG	ACGCAAGTAC	GAGGTGGATG	AGAAAACGCG	CGAGGAAATC	ACATCGTTGA	2100
	TTGCACATCA	CGTGACGGCC	TTAATTACA	TTTACCGCAA	CACAAAGTTC	GACGGACGCA	2160
	CCGAGCATCG	CAACATACGC	TTTGAGGTGC	AACGCATTAA	GATCGATGAC	GATTGGCCT	2220
25	GTCGCAATT	CTACAATGGT	CCACACAAATG	CCTTTGCAA	TGAACACATG	GATGTCTCGA	2280
	ACTTTTGAA	TCTGCATTCC	CTAGAAGATC	ACTCGGACTT	TTGTTGGCT	TACGTGTTCA	2340
	CCTACAGAGA	TTTCACTGGC	GGCACTTTGG	GTCTGGCCTG	GGTGGCCAGT	GGTCGGGAG	2400
	CCTCTGGTGG	AATTTGCGAG	AAAGTACAAGA	CGTACACGGA	AACGGTGGGT	GGACAGTACC	2460
	AGAGCACCA	GCGATCACTC	AACACGGGCA	TCATCACCTT	TGTCAACTAC	AACAGTCGGG	2520
30	TGCCGCGAA	AGTGTGCGAG	CTTACGTTGG	CACACGAGAT	TGGCCACAAAC	TTGGATCAC	2580
	CTCACGATTA	CCCTCAGGAA	TGTCGTCCTG	GTGGCCTAAA	TGGCAATTAC	ATTATGTTCG	2640
	CCAGTGCCAC	CTCCGGTGT	AGGCCAAATA	ACTCCAAGTT	CTCGCCCTGC	TCCATTGGAA	2700
	ACATCTCCAA	TGTCTTGAC	GTGCTGGTGG	GCAACACGAA	GCGCAGCTGC	TTCAAGGCCT	2760
	CGGAAGGTGC	CTTCTGCGGC	AAACAGATCG	TGGAGTCTGG	CGAGGAATGC	GACTGTGGCT	2820
35	TCAACGAGGA	GGAGTGAAG	GACAAGTGCT	GCTACCCGCG	TCTGATCAGC	GAGTACGACC	2880
	AGTCGCTGAA	CTCCAGTGCC	AAGGGATGCA	CGCGCCGCGC	CAAGACCCAG	TGCTCACCAT	2940
	CGCAGGGTCC	GTGCTGTCTG	TCCAACCTCT	GCACCTTTGT	GGCGACGAGC	TACCAACCAGA	3000
	AGTGCAAGGA	GGAGACGGAG	TGCAAGCTGGT	CGAGCACATG	CAACGGAACC	ACGGCCGAGT	3060
	GTCCGGAGCC	ACGTCACTCGC	GATGACAAGA	CCATGTGCAA	CAATGGAACA	GCGCTATGCA	3120
40	TCCCGGGTGA	ATGTAGTGGA	TCGCCATGTT	TGCTCTGGAA	TATGACAAAG	TGCTTCCTTA	3180
	CCTCGACCAC	ACTGCGCAC	GTGAGCAAGC	GCAAGTTGTG	CGACTTGGCC	TGCCAGGATG	3240
	GCAATGACAC	CTCCACCTGC	CGCAGCACCA	GCGAGTTTG	CGATAAAATAT	AAATATTCAA	3300
	AGGGTGGTAT	TAGTCTGCAG	CCCGGTTCGC	CATGCGATAA	TTTCCAGGGC	TACTGCGATG	3360
	TGTTCTTAA	GTGTCGAGCC	GTGGATGCCG	ATGGTCCGCT	TCTTCGGCTG	AAAATTGT	3420
45	TGCTCAACCG	GAAGACCCCTG	CAAACGGTGG	CCGAGTGGAT	CGTCGACAAT	TGGTACCTAG	3480
	TGGTTCTGAT	GGGAGTGGCC	TTTATTGTGG	TCATGGGTT	GTTCATCAA	TGTTGTGCCG	3540
	TGCAACACGCC	CAGTTCCAAT	CCGAAGAACG	GACGGAGCTG	TCGAATCAGC	GAAACTCTAA	3600
	GAGCACCCAT	GAACACGTTG	CGTAGAATGC	AACGTCACTC	CAATCAGCGA	GGAGCAGGTC	3660
	CTCGAAGCAT	CCCACCGCCG	GCACATGAGG	CGCAGCATT	TTCACCGCGC	GGAGATGGTC	3720
50	GCGGCGGGCG	CGGTGGAGGC	GGAGGTGCC	ACGGTGGCTC	TAGGTACAC	CATCAACAGC	3780
	ATCCGCACGA	TTGGGATCGT	CATCAGGGTG	GCCACTCAAT	CGTCCCATTG	CCCACCGCG	3840
	GCAGCCATT	AAGTCGCAAC	TCGGCGGCCA	ATCAAGCGAG	AAGAAGCGAT	GGACGAGGTC	3900
	CACGATCCAC	CAGCAGTGGG	CGGCCGCAGG	CTATAGCCAG	CGGAAGCGGT	GGCGCGAGCG	3960
	GAGCAGCGCG	ATCTCATGGC	GGGTACGGAG	CCGAACAGGC	GATACGGGT	TCCATTGGTG	4020
55	GTGGTGTCCA	GGCGGCCATT	AGCAGCGGCC	GTGTGGTGGC	TCGGGCCAG	CTGCCGCTGC	4080

	CATTGCCGCC	GCCAAATGGA	CAGCAGCAAA	TGCAACAGCA	ACAACAACGT	CAAATACAGC	4140
	AACCGGCAAT	TTCGCCGCAG	CAGCAGCCGC	AGCAAGCGTT	CTACACGCCG	AAAGAACTAC	4200
	CACCAACGCAA	TAAGTCCCAG	TCATCACGTA	CCAACAACAC	CTCCAACACC	ACAACCACCA	4260
5	CCAACATCATC	CACAGGGCA	GCCGGCAGTG	GGTCGGTCTC	GGGACCGGGC	TGGGGGGCGG	4320
	GCAGTAGTAG	TAAGAGCAAG	AGCGGTAAAA	GTGCCAAAGC	CAAAGACTCA	AAATCGCAAA	4380
	AATCGCAGCA	GGCCAACAAC	AGTCGCAGCA	GCAGCAAGGA	GAAGGGCGTC	AAGCCAGTGC	4440
	GCCGAAATAT	CGTTTATTAG	GAGCGGAACC	ATCACATTGC	CATAACAAAC	ACTGAACGAA	4500
	ATATAGCCCC	GAACCCAAAA	TATCAAATGC	AACCACATAT	AGAATCGCCC	GCTGCTAGTC	4560
	ATCGAACTAC	ATGTATGAGT	TGTTGCTTCC	CATCCACCGA	CAAACACAAA	CAGAAAAGAA	4620
10	ATTATAATGA	TATTCATTT	AATCGATGCA	ATTGGCGTCTG	CGCCGCCTCC	GCTACAAGTA	4680
	AGCTTTAGTC	GGCCGACATC	GTTGCACCGAG	CAACAGCAGC	AGCAACATCA	TCTGCAGCAG	4740
	CAGCAGCAGC	ATCAGCAGCA	ACTGGAGCCG	CAGCAGCAAC	ACGCCTATGC	CGATGCTTAT	4800
	GCGGCCTTGG	GGCGGGGCCA	GTATGAGTCC	ACCACGCGGG	CGCCCAACAA	CAGCAAGGTT	4860
	TGACAGCCAA	AAGTAGCAAT	GGAGCGCCAC	AAAAGGCCAA	AGGCTAACGCG	ACTCAAGCAG	4920
15	CAGAAGGAGC	CGCATACACA	GCAAACAACA	ACACAGCAAC	AAAAGCAAAA	ACAACATAAA	4980
	TCAAATGAAC	TCAAATTAAA	TGTAAATGTA	ATTTTATGC	TAATTATTTT	TATTTAAACA	5040
	GTGTTGTAT	GCCACAAGGG	AAACAGCCA	GCAACAAAAA	AAAAAATACA	AAAATAACAC	5100
	AAAAAAGGAG	ACAAATTTCG	TAATACAGAA	AAAGCTGAA	GTGAATGATA	TTTTGATTA	5160
	ACTAAATTAA	AATGAAAATA	CGAATGCAA	TTATGAATAA	AAAAAGTAAT	AAAAACGAC	5220
20	AACATGCATA	ATACATATAA	AGTTGCAAGT	TGCATATATA	TACATTTGTA	TGTATATATT	5280
	TATTATGGAT	ACACAATTAT	TAATAGCAG	CAGCCACAAAC	AAACAAGTAA	TATACATGAA	5340
	GAAAAAACTAA	GGTTTAATTG	TATGAGAAAG	CATTCTATAT	GTCGGTGAGA	TTTCTAAGCG	5400
	CTAGGCCGAA	ATACAAAATT	AATTACACAC	TTGAATAACA	AAATGTGTTT	TGTACAAAAA	5460
	AAAAAAAATG	AAATAAACAA	AAACAGTGCG	AATTAATTAA	GCGTCATTAT	AAAAAAAAGA	5520
25	ACGGAAACAA	CAAAGCATTT	AAATTGTATT	TATCTGTACC	GAAGCTAAC	TTTTATTAA	5580
	AGCCGTCAAA	ATTGCATTG	TAACACTAGCA	AAACAAAAAA	AAAAAAAAC		5630

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1239 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ser Ser Lys Cys Ala Phe Asn Ile Val Phe Val Ser Ile Ile Phe

1 5 10 15

Ile Ile Ile Val Asn Gly Tyr Ala Lys Asp Ile Ser Gly Val Lys Arg
20 25 30

Gly His Glu Arg Leu Asn Glu Tyr Ile Ser His Tyr Glu Thr Leu Asn
35 40 45

Tyr Asp His Glu His Ile Arg Ala Ser His Asn Arg Ala Arg Arg Ser
50 55 60

Val Thr Lys Asp Gln Tyr Val His Leu Lys Phe Ala Ser His Gly Arg
65 70 75 80

Asp Phe His Leu Arg Leu Lys Arg Asp Leu Asn Thr Phe Ser Asn Lys
85 90 95

Leu Asp Phe Tyr Asp Ser Lys Gly Pro Ile Asp Val Ser Thr Asp His
100 105 110

Ile Tyr Glu Gly Glu Val Ile Gly Asp Arg Asn Ser Tyr Val Phe Gly
115 120 125

Ser Ile His Asn Gly Val Phe Glu Gly Lys Ile Ile Thr Glu Arg Asp
130 135 140

Ala Tyr Tyr Val Glu His Ala Lys His Tyr Phe Pro Thr Asn Arg Thr
145 150 155 160

Ala Thr Thr Pro Pro Ser Thr Ser Thr Ser Ala Thr Thr
 165 170 175
 Val Thr Lys Ser Thr Gln Pro Thr Arg Pro Leu Ala Lys Ser Asn Thr
 180 185 190
 5 Ser Thr Thr Ala Val Asn Ser Lys Thr Glu Asn Phe Ile Lys Lys Ile
 195 200 205
 Ala Glu Ser Thr Thr Ser Gln Gln Leu Pro Glu Tyr Thr Glu Ser
 210 215 220
 Ser Ser Ser Ser Thr Thr Phe Pro Pro Thr Thr Glu Tyr Phe
 10 225 230 235 240
 Glu Asp Glu Lys Glu Arg Asn Ala Glu Asp Glu Leu Asp Phe His Ser
 245 250 255
 Ile Ile Tyr Lys Glu Ser His Val Glu Asp Ala Tyr Glu Asn Val Arg
 260 265 270
 15 Glu Gly His Val Ala Gly Cys Gly Ile Thr Asp Glu Val Ser Gln Trp
 275 280 285
 Met Glu Asn Ile Gln Asn Ser Ala Val Glu Glu Leu Pro Glu Pro Met
 290 295 300
 Ser Lys Asp Tyr Gln Lys Leu His Arg Lys Gln Leu His Lys Lys Ser
 20 305 310 315 320
 Ala Pro Gln Gln Gln Gln Pro His Pro Pro Lys Lys Tyr Ile Ser
 325 330 335
 Gly Asp Glu Asp Phe Lys Tyr Pro His Gln Lys Tyr Thr Lys Glu Ala
 340 345 350
 25 Asn Phe Ala Glu Gly Ala Phe Tyr Asp Pro Ser Thr Gly Arg Arg Leu
 355 360 365
 Gly Ser Ser Ala Asn Val Ala Asp Trp His Gln Leu Val His Glu Arg
 370 375 380
 Val Arg Arg Ala Thr Asp Asn Gly Ala Gly Asp Arg Gly Ser Ser Gly
 30 385 390 395 400
 Gly Ser Gly Arg Gly Arg Glu Asp Asn Lys Asn Thr Cys Ser Leu Tyr
 405 410 415
 Ile Gln Thr Asp Pro Leu Ile Trp Arg His Ile Arg Glu Gly Ile Ala
 420 425 430
 35 Asp His Asp Arg Gly Arg Lys Tyr Glu Val Asp Glu Lys Thr Arg Glu
 435 440 445
 Glu Ile Thr Ser Leu Ile Ala His His Val Thr Ala Val Asn Tyr Ile
 450 455 460
 Tyr Arg Asn Thr Lys Phe Asp Gly Arg Thr Glu His Arg Asn Ile Arg
 40 465 470 475 480
 Phe Glu Val Gln Arg Ile Lys Ile Asp Asp Asp Ser Ala Cys Arg Asn
 485 490 495
 Ser Tyr Asn Gly Pro His Asn Ala Phe Cys Asn Glu His Met Asp Val
 500 505 510
 45 Ser Asn Phe Leu Asn Leu His Ser Leu Glu Asp His Ser Asp Phe Cys
 515 520 525
 Leu Ala Tyr Val Phe Thr Tyr Arg Asp Phe Thr Gly Gly Thr Leu Gly
 530 535 540
 Leu Ala Trp Val Ala Ser Ala Ser Gly Ala Ser Gly Gly Ile Cys Glu
 50 545 550 555 560
 Lys Tyr Lys Thr Tyr Thr Glu Thr Val Gly Gly Gln Tyr Gln Ser Thr
 565 570 575
 Lys Arg Ser Leu Asn Thr Gly Ile Ile Thr Phe Val Asn Tyr Asn Ser
 580 585 590
 55 Arg Val Pro Pro Lys Val Ser Gln Leu Thr Leu Ala His Glu Ile Gly

	595	600	605
	His Asn Phe Gly Ser Pro His	Asp Tyr Pro Gln Glu Cys Arg Pro Gly	
	610	615	620
5	Gly Leu Asn Gly Asn Tyr Ile Met Phe Ala Ser Ala Thr Ser Gly Asp		
	625	630	635
	Arg Pro Asn Asn Ser Lys Phe Ser Pro Cys Ser Ile Arg Asn Ile Ser		640
	645	650	655
	Asn Val Leu Asp Val Leu Val Gly Asn Thr Lys Arg Asp Cys Phe Lys		
	660	665	670
10	Ala Ser Glu Gly Ala Phe Cys Gly Asn Lys Ile Val Glu Ser Gly Glu		
	675	680	685
	Glu Cys Asp Cys Gly Phe Asn Glu Glu Cys Lys Asp Lys Cys Cys		
	690	695	700
15	Tyr Pro Arg Leu Ile Ser Glu Tyr Asp Gln Ser Leu Asn Ser Ser Ala		
	705	710	715
	Lys Gly Cys Thr Arg Arg Ala Lys Thr Gln Cys Ser Pro Ser Gln Gly		720
	725	730	735
	Pro Cys Cys Leu Ser Asn Ser Cys Thr Phe Val Pro Thr Ser Tyr His		
	740	745	750
20	Gln Lys Cys Lys Glu Glu Thr Glu Cys Ser Trp Ser Ser Thr Cys Asn		
	755	760	765
	Gly Thr Thr Ala Glu Cys Pro Glu Pro Arg His Arg Asp Asp Lys Thr		
	770	775	780
25	Met Cys Asn Asn Gly Thr Ala Leu Cys Ile Arg Gly Glu Cys Ser Gly		
	785	790	795
	Ser Pro Cys Leu Leu Trp Asn Met Thr Lys Cys Phe Leu Thr Ser Thr		800
	805	810	815
	Thr Leu Pro His Val Ser Lys Arg Lys Leu Cys Asp Leu Ala Cys Gln		
	820	825	830
30	Asp Gly Asn Asp Thr Ser Thr Cys Arg Ser Thr Ser Glu Phe Ala Asp		
	835	840	845
	Lys Tyr Asn Ile Gln Lys Gly Gly Ile Ser Leu Gln Pro Gly Ser Pro		
	850	855	860
	Cys Asp Asn Phe Gln Gly Tyr Cys Asp Val Phe Leu Lys Cys Arg Ala		
35	865	870	875
	Val Asp Ala Asp Gly Pro Leu Leu Arg Leu Lys Asn Leu Leu Asn		880
	885	890	895
	Arg Lys Thr Leu Gln Thr Val Ala Glu Trp Ile Val Asp Asn Trp Tyr		
	900	905	910
40	Leu Val Val Leu Met Gly Val Ala Phe Ile Val Val Met Gly Ser Phe		
	915	920	925
	Ile Lys Cys Cys Ala Val His Thr Pro Ser Ser Asn Pro Lys Lys Arg		
	930	935	940
	Arg Ala Arg Arg Ile Ser Glu Thr Leu Arg Ala Pro Met Asn Thr Leu		
45	945	950	955
	Arg Arg Met Gln Arg His Pro Asn Gln Arg Gly Ala Gly Pro Arg Ser		960
	965	970	975
	Ile Pro Pro Pro Ala His Glu Ala Gln His Tyr Ser Arg Gly Gly Asp		
	980	985	990
50	Gly Arg Gly Gly Gly Gly Gly Gly Gly Arg His Gly Gly Ser Arg		
	995	1000	1005
	Ser His His Gln Gln His Pro His Asp Trp Asp Arg His Gln Gly Gly		
	1010	1015	1020
	His Ser Ile Val Pro Leu Pro Thr Gly Gly Ser His Ser Ser Arg Asn		
55	1025	1030	1035
			1040

Ser Ala Ala Asn Gln Ala Arg Arg Ser Asp Gly Arg Gly Pro Arg Ser
 1045 1050 1055
 Thr Ser Ser Gly Arg Pro Gln Ala Ile Ala Ser Gly Ser Gly Ala Ala
 1060 1065 1070
 5 Ser Gly Ala Ala Arg Ser His Gly Gly Tyr Gly Ala Glu Gln Ala Ile
 1075 1080 1085
 Pro Gly Ser Ile Gly Gly Val Gln Ala Ala Ile Ser Ser Gly Gly
 1090 1095 1100
 Val Val Ala Arg Ala Gln Leu Pro Leu Pro Leu Pro Pro Asn Gly
 10 1105 1110 1115 1120
 Gln Gln Gln Met Gln Gln Gln Gln Leu Gln Leu Gln Gln Pro Ala
 1125 1130 1135
 Ile Ser Pro Gln Gln Pro Gln Gln Ala Phe Tyr Thr Pro Lys Glu
 1140 1145 1150
 15 Leu Pro Pro Arg Asn Lys Ser Arg Ser Ser Arg Thr Asn Asn Thr Ser
 1155 1160 1165
 Asn Thr Thr Thr Thr Asn Ser Ser Thr Ala Ala Ala Gly Ser Gly
 1170 1175 1180
 Ser Val Ser Gly Pro Gly Ser Gly Ala Gly Ser Ser Ser Lys Ser Lys
 20 1185 1190 1195 1200
 Ser Gly Lys Ser Ala Lys Ala Lys Asp Ser Lys Ser Gln Lys Ser Gln
 1205 1210 1215
 Gln Ala Asn Asn Ser Arg Ser Ser Ser Lys Glu Lys Gly Val Lys Pro
 1220 1225 1230
 25 Val Arg Arg Asn Ile Val Tyr
 1235

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2796 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GAATTCCGGG TTTTGGAGGA GCTAGGAGCG TTGCCGGCCC	CTGAAGTGGGA GCGAGAGGGGA	60
GGTGCTTCG CCGTTCTCCT GCCAGGGGAG GTCCCGGCTT	CCCGTGGAGG CTCCGGACCA	120
AGCCCCCTCA GCTTCTCCCT CCGGATCGAT GTGCTGCTGT	TAACCCGTGA GGAGGCAGCG	180
GCGGCGGCAG CGGCAGCGGA AGATGGTGT GCTGAGAGTG	TTAATTCTGC TCCTCTCCTG	240
GGCGGCGGGG ATGGGAGGTC AGTATGGAA TCCTTTAAAT	AAATATATCA GACATTATGA	300
AGGATTATCT TACAATGTGG ATTCAATTACA CCAAAAACAC	CAGCGTGCCA AAAGAGCAGT	360
CTCACATGAA GACCAATTTC TAGTCTAGA TTTCCATGCC	CATGGAAGAC ATTTCAACCT	420
ACCAATGAAG AGGGACACTT CCCTTTTCAG TGATGAATT	AAAGTAGAAA CATCAAATAA	480
AGTACTTGAT TATGATACT CTCATATTCA CACTGGACAT	ATTTATGGTG AAGAAGGAAG	540
TTTAGCCATG GGTCTGTTAT TGATGGAAGA TTTGAAGGAT	TCATCCAGAC TCGTGGTGGC	600
ACATTTATG TTTGAGCCAG CAGAGAGATA TATTAAGAC	CGAACTCTGC CATTTCACTC	660
TGTCATTTAT CATGAAGATG ATATTAACCA TCCCCATAAA	TACGGTCCTC AGGGGGGCTG	720
TGCAAGATCAT TCAGTATTG AAAGAATGAG GAAATACCAG	ATGACTGGTG TAGAGGAAGT	780
AACACAGATA CCTCAAGAAG AACATGCTGC TAATGGTCCA	GAACTTCTGA GGAAAAAACG	840
TACAAATTCA GCTGAAAAAA ATACTTGCA GCTTTATATT	CAGACTGATC ATTTGTTCTT	900
TAAATATTAC GGAACACGAG AAGCTGTGAT TGCCCAGATA	TCCAGTCATG TTAAAGCGAT	960
TGATACAATT TACCAGACCA CAGACTTCTC CGGAATCCGT	AACATCAGTT TCATGGTGAA	1020
ACGCATAAGA ATCAATACAA CTGCTGATGA GAAGGACCCCT	ACAAATCCTT TCCGTTTCCC	1080
AAATATTGGT GTGGAGAAGT TTCTGGAATT GAATTCTGAG	CAGAATCATG ATGACTACTG	1140
TTTGGCCTAT GTCTTCACAG ACCGAGATT TGATGATGGC	GTACTGGTC TGGCTTGGGT	1200

TGGAGCACCT	TCAGGAAGCT	CTGGAGGAAT	ATGTGAAAAA	AGTAAACTCT	ATT CAGATGG	1260	
TAAGAAGAAG	TCCTTAAACA	CTGGAATTAT	TACTGTTCA	AACTATGGGT	CTCATGTACC	1320	
TCCCAAAGTC	TCTCACATTA	CTTTGCTCA	CGAAGTTGGA	CATAACTTG	GATCCCCACA	1380	
5	TGATTCTGGA	ACAGAGTGCA	CACCAAGGAGA	ATCTAAGAAT	TTGGGTCAA	AAGAAAATGG	1440
CAATTACATC	ATGTATGCAA	GAGCAACATC	TGGGGACAAA	CTTAACAACA	ATAAATTCTC	1500	
ACTCTGTAGT	ATTAGAAATA	TAAGCCAAGT	TCTTGAGAAG	AAGAGAAACA	ACTGTTTTGT	1560	
TGAATCTGGC	CAACCTATTT	GTGGAATGG	AATGGTAGAA	CAAGGTGAAG	AATGTGATTG	1620	
TGGCTATAGT	GACCAGTGT	AAGATGAATG	CTGCTTCGAT	GCAAATCAAC	CAGAGGGAAG	1680	
10	AAAATGCAA	CTGAAACCTG	GGAAACAGTG	CAGTCCAAGT	CAAGGTCC	GTTGTACAGC	1740
ACAGTGTGCA	TTCAAGTCAA	AGTCTGAGAA	GTGTCGGGAT	GATTCAACT	GTGCAAGGGA	1800	
AGGAATATGT	AATGGCTTCA	CAGCTCTCTG	CCCAGCATCT	GACCCCTAAAC	CAAACATTAC	1860	
AGACTGTAAT	AGGCATACAC	AAGTGTGCAT	TAATGGGAA	TGTGCAGGTT	CTATCTGTGA	1920	
GAAATATGGC	TTAGAGGAGT	GTACGTGTG	CAGTCTGTAT	GGCAAAGATG	ATAAAGAATT	1980	
ATGCCATGTA	TGCTGTATGA	AGAAAATGGA	CCCATCAACT	TGTGCCAGTA	CAGGGTCTGT	2040	
15	GCAGTGGAGT	AGGCACCTCA	GTGGTCGAAC	CATCACCCCTG	CAACCTGGAT	CCCCTTGCAA	2100
CGATTTAGA	GGTTACTGTG	ATGTTTTCAT	GCGGTGCAGA	TTAGTAGATG	CTGATGGTCC	2160	
TCTAGCTAGG	CTTAAAAAAAG	CAATTTTAG	TCCAGAGCTC	TATGAAAACA	TTGCTGAATG	2220	
GATTGTGGCT	CATTGGTGGG	CAGTATTACT	TATGGGAATT	GCTCTGATCA	TGCTAATGGC	2280	
TGGATTTATT	AAGATATGCA	GTGTTCATAC	TCCAAGTAGT	AATCCAAAGT	TGCTCCTCC	2340	
20	TAAACCACTT	CCAGGCACCTT	TAAAGAGGAG	GAGACCTCCA	CAGCCCATT	AGCAACCCCA	2400
GCGTCAGCGG	CCCCGAGAGA	GTTATCAAAT	GGGACACATG	AGACGCTAAC	TGCAGCTTT	2460	
GCCTTGGTTC	TTCCTAGTGC	CTACAATGGG	AAAACCTCAC	TCCAAAGAGA	ACCTATTAA	2520	
GTCATCATCT	CCAAACTAAA	CCCTCACAAG	TAACAGTTGA	AGAAAAAAATG	GCAAGAGATC	2580	
ATATCCTCAG	ACCAGGTGGA	ATTACTTAAA	TTTAAAGCC	TGAAAATTCC	AATTGGGGGG	2640	
25	TGGGAGGTGG	AAAAGGAACC	CAATTTCTT	ATGAACAGAT	ATTTTAAC	TAATGGCACA	2700
AAGTCTTAGA	ATATTATTAT	GTGCCCCGTG	TTCCCTGTT	TTCTGTTGCTG	CATTTCTTC	2760	
ACTTGCAGGC	AAACTTGGCT	CTCAATAAAC	TTTCG			2796	

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 748 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met	Val	Leu	Leu	Arg	Val	Leu	Ile	Leu	Leu	Ser	Trp	Ala	Ala	Gly		
1							5		10					15		
Met	Gly	Gly	Gln	Tyr	Gly	Asn	Pro	Leu	Asn	Lys	Tyr	Ile	Arg	His	Tyr	
								20	25					30		
Glu	Gly	Leu	Ser	Tyr	Asn	Val	Asp	Ser	Leu	His	Gln	Lys	His	Gln	Arg	
							35	40				45				
Ala	Lys	Arg	Ala	Val	Ser	His	Glu	Asp	Gln	Phe	Leu	Arg	Leu	Asp	Phe	
							50	55				60				
45	His	Ala	His	Gly	Arg	His	Phe	Asn	Leu	Arg	Met	Lys	Arg	Asp	Thr	Ser
							65	70			75				80	
Leu	Phe	Ser	Asp	Glu	Phe	Lys	Val	Glu	Thr	Ser	Asn	Lys	Val	Leu	Asp	
							85		90					95		
50	Tyr	Asp	Thr	Ser	His	Ile	Tyr	Thr	Gly	His	Ile	Tyr	Gly	Glu	Gly	
							100		105				110			
Ser	Leu	Ala	Met	Gly	Leu	Leu	Leu	Met	Glu	Asp	Leu	Lys	Asp	Ser	Ser	
							115		120				125			
55	Arg	Leu	Val	Val	Ala	His	Phe	Met	Phe	Glu	Pro	Ala	Glu	Arg	Tyr	Ile
							130		135				140			
Lys	Asp	Arg	Thr	Leu	Pro	Phe	His	Ser	Val	Ile	Tyr	His	Glu	Asp	Asp	

145 150 155 160
 Ile Asn Tyr Pro His Lys Tyr Gly Pro Gln Gly Gly Cys Ala Asp His
 165 170 175
 Ser Val Phe Glu Arg Met Arg Lys Tyr Gln Met Thr Gly Val Glu Glu
 5 180 185 190
 Val Thr Gln Ile Pro Gln Glu Glu His Ala Ala Asn Gly Pro Glu Leu
 195 200 205
 Leu Arg Lys Lys Arg Thr Asn Ser Ala Glu Lys Asn Thr Cys Gln Leu
 210 215 220
 10 Tyr Ile Gln Thr Asp His Leu Phe Phe Lys Tyr Tyr Gly Thr Arg Glu
 225 230 235 240
 Ala Val Ile Ala Gln Ile Ser Ser His Val Lys Ala Ile Asp Thr Ile
 245 250 255
 Tyr Gln Thr Thr Asp Phe Ser Gly Ile Arg Asn Ile Ser Phe Met Val
 15 260 265 270
 Lys Arg Ile Arg Ile Asn Thr Thr Ala Asp Glu Lys Asp Pro Thr Asn
 275 280 285
 Pro Phe Arg Phe Pro Asn Ile Gly Val Glu Lys Phe Leu Glu Leu Asn
 290 295 300
 20 Ser Glu Gln Asn His Asp Asp Tyr Cys Leu Ala Tyr Val Phe Thr Asp
 305 310 315 320
 Arg Asp Phe Asp Asp Gly Val Leu Gly Leu Ala Trp Val Gly Ala Pro
 325 330 335
 Ser Gly Ser Ser Gly Gly Ile Cys Glu Lys Ser Lys Leu Tyr Ser Asp
 25 340 345 350
 Gly Lys Lys Lys Ser Leu Asn Thr Gly Ile Ile Thr Val Gln Asn Tyr
 355 360 365
 Gly Ser His Val Pro Pro Lys Val Ser His Ile Thr Phe Ala His Glu
 370 375 380
 30 Val Gly His Asn Phe Gly Ser Pro His Asp Ser Gly Thr Glu Cys Thr
 385 390 395 400
 Pro Gly Glu Ser Lys Asn Leu Gly Gln Lys Glu Asn Gly Asn Tyr Ile
 405 410 415
 Met Tyr Ala Arg Ala Thr Ser Gly Asp Lys Leu Asn Asn Lys Phe
 35 420 425 430
 Ser Leu Cys Ser Ile Arg Asn Ile Ser Gln Val Leu Glu Lys Lys Arg
 435 440 445
 Asn Asn Cys Phe Val Glu Ser Gly Gln Pro Ile Cys Gly Asn Gly Met
 450 455 460
 40 Val Glu Gln Gly Glu Cys Asp Cys Gly Tyr Ser Asp Gln Cys Lys
 465 470 475 480
 Asp Glu Cys Cys Phe Asp Ala Asn Gln Pro Glu Gly Arg Lys Cys Lys
 485 490 495
 Leu Lys Pro Gly Lys Gln Cys Ser Pro Ser Gln Gly Pro Cys Cys Thr
 45 500 505 510
 Ala Gln Cys Ala Phe Lys Ser Lys Ser Glu Lys Cys Arg Asp Asp Ser
 515 520 525
 Asp Cys Ala Arg Glu Gly Ile Cys Asn Gly Phe Thr Ala Leu Cys Pro
 530 535 540
 50 Ala Ser Asp Pro Lys Pro Asn Phe Thr Asp Cys Asn Arg His Thr Gln
 545 550 555 560
 Val Cys Ile Asn Gly Gln Cys Ala Gly Ser Ile Cys Glu Lys Tyr Gly
 565 570 575
 Leu Glu Glu Cys Thr Cys Ala Ser Ser Asp Gly Lys Asp Asp Lys Glu
 55 580 585 590

Leu Cys His Val Cys Cys Met Lys Lys Met Asp Pro Ser Thr Cys Ala
 595 600 605
 Ser Thr Gly Ser Val Gln Trp Ser Arg His Phe Ser Gly Arg Thr Ile
 610 615 620
 5 Thr Leu Gln Pro Gly Ser Pro Cys Asn Asp Phe Arg Gly Tyr Cys Asp
 625 630 635 640
 Val Phe Met Arg Cys Arg Leu Val Asp Ala Asp Gly Pro Leu Ala Arg
 645 650 655
 Leu Lys Lys Ala Ile Phe Ser Pro Glu Leu Tyr Glu Asn Ile Ala Glu
 10 660 665 670
 Trp Ile Val Ala His Trp Trp Ala Val Leu Leu Met Gly Ile Ala Leu
 675 680 685
 Ile Met Leu Met Ala Gly Phe Ile Lys Ile Cys Ser Val His Thr Pro
 15 690 695 700
 Ser Ser Asn Pro Lys Leu Pro Pro Pro Lys Pro Leu Pro Gly Thr Leu
 705 710 715 720
 Lys Arg Arg Arg Pro Pro Gln Pro Ile Gln Gln Pro Gln Arg Gln Arg
 725 730 735
 Pro Arg Glu Ser Tyr Gln Met Gly His Met Arg Arg
 20 740 745

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 2098 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

30	GAATTCTGAG CAGAACATCG ATGACTACTG TTTGGCCTAT GTCTTCACAG ACCGAGATT	60
31	TGATGATGGC GTACTTGGTC TGGCTGGGT TGGAGCACCT TCAGGAAGCT CTGGAGGAAT	120
32	ATGTGAAAAA AGTAAACTCT ATTCAAGATGG TAAGAAGAAAG TCCTTAAACA CTGGAATTAT	180
33	TACTGTTCAAG AACTATGGGT CTCATGTACC TCCCAAAGTC TCTCACATTA CTTTGCTCA	240
34	CGAAGTTGGA CATAACTTTG GATCCCCACA TGATTCTGGA ACAGAGTGCA CACCAGGAGA	300
35	ATCTAAGAAT TTGGGTCAAA AAGAAAATGG CAATTACATC ATGTATGCAA GAGCAACATC	360
36	TGGGGACAAA CTTAACAAACA ATAAATTCTC ACTCTGTAGT ATTAGAAATA TAAGCCAAGT	420
37	TCTTGAGAAG AAGAGAAACA ACTGTTTTGT TGAATCTGGC CAACCTATTT GTGGAAATGG	480
38	AATGGTAGAA CAAGGTGAAG AATGTCATTG TGGCTATAGT GACCAGTGTA AAGATGAATG	540
39	CTGCTTCGAT GCAAATCAAC CAGAGGGAAAG AAAATGCAA CTGAAACCTG GGAAACAGTG	600
40	CAGTCCAAGT CAAGGTCCCT GTTGTACAGC ACAGTGTGCA TTCAAGTCAA AGTCTGAGAA	660
41	GTGTCGGGAT GATTCAAGACT GTGCAAGGGA AGGAATATGT AATGGCTTCAGCTCTCTG	720
42	CCCAGCATCT GACCCTAAAC CAAACTTCAC AGACTGTAAT AGGCATACAC AAGTGTGCAT	780
43	TAATGGGTAA AGCATTAAAC TATATGTTT AAAATTAAAT TTTAGAAAAC TTGTTTTCA	840
44	GAAGAATTAT TGATGCTTAA AGCTACATAG TTAAAGTAAT TAATCTGGT CTCTGTTAA	900
45	GTAATATTCC CTCACAAAC CATGAATATA TTATGTGGCA TTCAATTAGC TACTAATTG	960
46	TCTTTCATCT TTCCATGTAC ATGTGGTGA TATTCTCTAG AGAAACATAG TTGTACAAC	1020
47	CGGCATGTGA TTTGCTATA ATATTTAAGT TTTATAAAAT AATATTTCAG TAGCCTAAAT	1080
48	AAAAGAACTC TTTGGTCATC TTCTCTGAAT ATCAAACCTT CAAAGCTTT GTGGCTGAAT	1140
49	ATCACTTTGC TCTACAGGAA AAAAATTAA TTTTCTTC TTTATAGAAG AGCCGTAATA	1200
50	ACCAACATAA AATCGATCCT CATCTAATCT CTTGCTCTGC TTTTATTTC TTTTTTTAAG	1260
51	TTGCCATTGC TTTAAAAGAT TTACTATCCT TCTTGGATT ACTGTTTTTC AAATTTTTTC	1320
52	AAATGTATTG ATGTAATTCA GTTTTGATAC TCATCTCTGT TTGTTTTCA CTTTCATTTC	1380
53	CATTTAAATA TTTTGACATT GGAAGCTCAT ACTTGCCTGT CTGTTACTAT AAAAATAGG	1440
54	TTTGACTGTA TAGGGATTAA ACAATTGTC TTTTATTTC TTCTAGCAAT GTGCAGGTT	1500
55	TATCTGTGAG AAATATGGCT TAGAAGAGTG TACGTGTGCC AGTCTGATGG CAAAGATGAT	1560

AAAGAATTAT	GCCATGTATG	CTGTATGAAG	AAAAGTAAGG	CTTTTAAAAA	CACAAGATAT	1620
AAAATTTGCC	TCAAACATT	ATTTTCTCCT	AAATTTAAG	TGTAAACTT	TGACCTACAG	1680
TTGGCCAGA	TAATTTCCAG	CTAAATCTGT	CCTCTGAGG	AGATTATAAA	TGTAACGTAG	1740
5 CATTGTGTCT	CTATTATTAT	GGTCTCTACA	ATGTTTAAA	AATGATAAAC	TAGACAAAAC	1800
GTTGCCAGCT	TTACAGCAGT	AATTTACATA	AACACTGTTA	GACTTTAAGT	CATCGTGGAC	1860
ACTGAGTC	AACTTGCTGG	TTGCTTGT	ACATTGTAAC	ATTTAATATG	AATTACTGAT	1920
GGCGTTACCC	AGCCTAACTA	GAGAAGGTCT	GTATAACATG	TTATGGTAAT	GATTTCAGTT	1980
TTTTTCCCT	CTTTGTATTT	GCACAACTGG	GAAATCTGAT	CTGCAACTTA	TATTTGAATC	2040
TGACCTTCAG	CTTATATTG	GCATTTCTT	TCCAGTGGAC	CCATCAACTC	CGGAATTC	2098

10

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 265 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

: Asn	Ser	Glu	Gln	Asn	His	Asp	Asp	Tyr	Cys	Leu	Ala	Tyr	Val	Phe	Thr
20 1									10						15
Asp	Arg	Asp	Phe	Asp	Asp	Gly	Val	Leu	Gly	Leu	Ala	Trp	Val	Gly	Ala
			20					25						30	
Pro	Ser	Gly	Ser	Ser	Gly	Gly	Ile	Cys	Glu	Lys	Ser	Lys	Leu	Tyr	Ser
						35		40						45	
Asp	Gly	Lys	Lys	Lys	Ser	Leu	Asn	Thr	Gly	Ile	Ile	Thr	Val	Gln	Asn
						50		55						60	
Tyr	Gly	Ser	His	Val	Pro	Pro	Lys	Val	Ser	His	Ile	Thr	Phe	Ala	His
						65		70				75		80	
Glu	Val	Gly	His	Asn	Phe	Gly	Ser	Pro	His	Asp	Ser	Gly	Thr	Glu	Cys
						85		90						95	
Thr	Pro	Gly	Glu	Ser	Lys	Asn	Leu	Gly	Gln	Lys	Glu	Asn	Gly	Asn	Tyr
						100		105						110	
Ile	Met	Tyr	Ala	Arg	Ala	Thr	Ser	Gly	Asp	Lys	Leu	Asn	Asn	Asn	Lys
						115		120						125	
Phe	Ser	Leu	Cys	Ser	Ile	Arg	Asn	Ile	Ser	Gln	Val	Leu	Glu	Lys	Lys
						130		135						140	
Arg	Asn	Asn	Cys	Phe	Val	Glu	Ser	Gly	Gln	Pro	Ile	Cys	Gly	Asn	Gly
						145		150				155		160	
Met	Val	Glu	Gln	Gly	Glu	Glu	Cys	Asp	Cys	Gly	Tyr	Ser	Asp	Gln	Cys
						165		170						175	
Lys	Asp	Glu	Cys	Cys	Phe	Asp	Ala	Asn	Gln	Pro	Glu	Gly	Arg	Lys	Cys
						180		185						190	
Lys	Leu	Lys	Pro	Gly	Lys	Gln	Cys	Ser	Pro	Ser	Gln	Gly	Pro	Cys	Cys
						195		200						205	
45 Thr	Ala	Gln	Cys	Ala	Phe	Lys	Ser	Lys	Ser	Glu	Lys	Cys	Arg	Asp	Asp
						210		215						220	
Ser	Asp	Cys	Ala	Arg	Glu	Gly	Ile	Cys	Asn	Gly	Phe	Thr	Ala	Leu	Cys
						225		230				235		240	
50 Pro	Ala	Ser	Asp	Pro	Lys	Pro	Asn	Phe	Thr	Asp	Cys	Asn	Arg	His	Thr
						245		250						255	
Gln	Val	Cys	Ile	Asn	Gly	Val	Ser	Ile							
						260		265							

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2481 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5 (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CCGTGAGGAG	GCGGCCGCG	GGAAGATGGT	GTTGCCGACA	GTGTTAAC	TGCTCCTCTC	60	
CTGGCGGCG	GGGCTGGGAG	GTCAGTATGG	AAATCCTTA	AATAAATATA	TTAGACATTA	120	
TGAAGGATT	TCTTACAATG	TGGATTCA	ACACCAAAA	CACCAGCGTG	CCAAACGAGC	180	
10 AGTCTCACAT	GAGGACCA	GT	TTTACTTCT	AGATTCCAT	GCTCATGGAA	240	
CCTACGAATG	AAGAGGGACA	CTTCCCTTT	TAGTGATGAA	TTTAAAGTAG	AAACATCAA	300	
TAAAGTACTT	GATTATGATA	CCTCTCATAT	TTACACTGGA	CATATTATG	GTGAAGAAGG	360	
AAGCTTAGT	CATGGGTCTG	TCATTGATGG	AAGATTGAA	GGTTTCATCA	AGACTCGTGG	420	
TGGCACGTT	TACATTGAGC	CAGCAGAGAG	ATACATTAA	GATCGAATCC	TGCCATTTC	480	
15 CTCTGTCATT	TATCATGAAG	ATGATATTAA	CTATCCCCAT	AAATACGGCC	CACAGGGGG	540	
CTGTGCAGAT	CACTCCGTT	TTGAAAGGAT	GAGGAAGTAC	CAAATGACTG	GAGTAGAGGA	600	
AGGAGCCCGG	GCACATCCAG	AGAAGCATGC	TGCTAGTAGT	GGTCCTGAGC	TCCTGAGGAA	660	
AAAACGCACA	ACTCTGGCTG	AAAGAAATAC	TTGTCAGCTC	TATATCCAGA	CAGATCACCT	720	
GTTCTTTAAA	TACTATGGAA	CACGAGAAGC	TGTGATTGCT	CAGATATCCA	GTCATGTTAA	780	
20 AGCAATTGAT	ACAATTTACC	AGACTACAGA	CTTCTCCGGA	ATCCGTAACA	TCAGCTTCAT	840	
GGTGAAACGC	ATAAGAATCA	ATACAACCTC	TGATGAAAAA	GACCTACAA	ATCCTTTCCG	900	
TTTCCCAAAT	ATTGGTGTGG	AGAAGTTCT	GGAGTTGAAT	TCTGAGCAGA	ATCATGATGA	960	
CTACTGCTG	GCCTATGTCT	TCACAGACCG	GGATTTGAT	GATGGTGTTC	TTGGTCTGGC	1020	
25 CTGGGTTGGA	GCACCTTCAG	GAAGCTCTGG	GGGAATATGT	GAGAAAAGCA	AGTTGTATT	1080	
AGATGGCAAG	AAGAAGTCAT	TGAACACAGG	CATCATTACT	GTTCAGAACT	ATGGCTCCC	1140	
TGTGCCTCCC	AAAGCTCTC	ATATTACGTT	TGCTCATGAA	GTTGGACATA	ACTTTGATC	1200	
TCCACATGAT	TCTGGAACAG	AGTGTACTCC	AGGAGAGTCT	AAGAACTTAG	GACAAAAAGA	1260	
AAATGGCAAT	TACATCATGT	ATGCAAGAGC	AACATCTGGG	GACAAACTTA	ACAACAAACAA	1320	
ATTTCACTC	TGCAGCATT	GAAACATAAG	CCAAGTGCTT	GAGAAGAAGA	GGAACAACTG	1380	
30 TTTGTTGAA	TCTGGCCAGC	CTATCTGTGG	AAACGGGATG	GTGGAACAAG	GGGAAGAGTG	1440	
TGACTGTGGC	TACAGTGACC	AGTGAAAGA	TGATTGCTGC	TTCGATGCCA	ACCAGCCAGA	1500	
GGGGAAGAAA	TGCAAGCTGA	AGCCTGGGAA	GCAGTGCAGT	CCGAGTCAG	GACCCCTGCTG	1560	
TACAGCACAG	TGTGCATTCA	AGTCAAAGTC	TGAAAAGTGC	CGGGATGATT	CTGACTGTGC	1620	
AAAGGAAGGG	ATATGCAATG	GCTTCACAGC	CCTTTCGCCA	GCATCTGATC	CCAAGCCAA	1680	
35 CTTTACAGAC	TGTAACAGGC	ACACACAAGT	GTGCATTAAT	GGGCAATGTG	CAGGTTCTAT	1740	
TTGTGAAAAG	TATGACTTGG	AGGAGTGAC	CTGTGCCAGC	TCTGATGGCA	AAGATAATAA	1800	
GGAATTATGC	CATGTTGCT	GCATGAAGAA	AATGGCTCCA	TCAACTTGTG	CCAGTACAGG	1860	
CTCTTGCAG	TGGACCAAGC	AGTTCACTGG	TCGGACTATC	ACTCTGCAGC	CGGGCTCTCC	1920	
40 ATGTAATGAC	TTCAGAGGCT	ACTGTGATGT	TTTCATGCGG	TGCAGATTAG	TAGATGCTGA	1980	
TGGCCCTCTA	GCTAGGCTGA	AAAAAGCCAT	TTTTAGTCCA	CAACTCTATG	AAAACATTG	2040	
TGAGTGGATT	GTGGCTCACT	GGTGGGCAGT	ACTGCTTATG	GGAATTGCC	TGATCATGTT	2100	
AATGGCTGGA	TTTATCAAGA	TTTGCAGTGT	TCACACTCCA	AGTAGTAATC	CAAAGTTGCC	2160	
45 GCCTCCTAAA	CCACTTCCAG	GCACCTTAAA	GAGGAGGAGA	CCGCCACAGC	CCATTCCAGCA	2220	
GCCCCCGCGT	CAGAGCCCCC	GAGAGAGTTA	TCAAATGGGA	CACATGCGAC	GCTAATGCAG	2280	
CTTTGCCTT	GGTTCTTCCT	AGTGCCTACA	GTGGGAAAAC	TTCACTCCAA	AGAGAAACCT	2340	
GTAAAGTCAT	CATCTGC	AAA	TGATACCC	ACAGTTAATA	GTTGAAGAAA	AAATGGCAAG	2400
AGATCATGTC	CTCAGATCAG	GTGGAATTAC	TCAAAATT	AAGCCTGAAA	ATTCCAATT	2460	
TGGGGGTGGG	GGTGGGATGG	G				2481	

50 (2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 749 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

55

(ii) MOLECULE TYPE: peptide
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
 Met Val Leu Pro Thr Val Leu Ile Leu Leu Ser Trp Ala Ala Gly
 1 5 10 15
 Leu Gly Gly Gln Tyr Gly Asn Pro Leu Asn Lys Tyr Ile Arg His Tyr
 20 25 30
 Glu Gly Leu Ser Tyr Asn Val Asp Ser Leu His Gln Lys His Gln Arg
 35 40 45
 Ala Lys Arg Ala Val Ser His Glu Asp Gln Phe Leu Leu Leu Asp Phe
 50 55 60
 His Ala His Gly Arg Gln Phe Asn Leu Arg Met Lys Arg Asp Thr Ser
 65 70 75 80
 Leu Phe Ser Asp Glu Phe Lys Val Glu Thr Ser Asn Lys Val Leu Asp
 85 90 95
 Tyr Asp Thr Ser His Ile Tyr Thr Gly His Ile Tyr Gly Glu Gly
 100 105 110
 Ser Phe Ser His Gly Ser Val Ile Asp Gly Arg Phe Glu Gly Phe Ile
 115 120 125
 Lys Thr Arg Gly Gly Thr Phe Tyr Ile Glu Pro Ala Glu Arg Tyr Ile
 130 135 140
 Lys Asp Arg Ile Leu Pro Phe His Ser Val Ile Tyr His Glu Asp Asp
 145 150 155 160
 Ile Asn Tyr Pro His Lys Tyr Gly Pro Gln Gly Cys Ala Asp His
 165 170 175
 Ser Val Phe Glu Arg Met Arg Lys Tyr Gln Met Thr Gly Val Glu Glu
 180 185 190
 Gly Ala Arg Ala His Pro Glu Lys His Ala Ala Ser Ser Gly Pro Glu
 195 200 205
 Leu Leu Arg Lys Lys Arg Thr Thr Leu Ala Glu Arg Asn Thr Cys Gln
 210 215 220
 Leu Tyr Ile Gln Thr Asp His Leu Phe Phe Lys Tyr Tyr Gly Thr Arg
 225 230 235 240
 Glu Ala Val Ile Ala Gln Ile Ser Ser His Val Lys Ala Ile Asp Thr
 245 250 255
 Ile Tyr Gln Thr Thr Asp Phe Ser Gly Ile Arg Asn Ile Ser Phe Met
 260 265 270
 Val Lys Arg Ile Arg Ile Asn Thr Thr Ser Asp Glu Lys Asp Pro Thr
 275 280 285
 Asn Pro Phe Arg Phe Pro Asn Ile Gly Val Glu Lys Phe Leu Glu Leu
 290 295 300
 Asn Ser Glu Gln Asn His Asp Asp Tyr Cys Leu Ala Tyr Val Phe Thr
 305 310 315 320
 Asp Arg Asp Phe Asp Asp Gly Val Leu Gly Leu Ala Trp Val Gly Ala
 325 330 335
 Pro Ser Gly Ser Ser Gly Gly Ile Cys Glu Lys Ser Lys Leu Tyr Ser
 340 345 350
 Asp Gly Lys Lys Ser Leu Asn Thr Gly Ile Ile Thr Val Gln Asn
 355 360 365
 Tyr Gly Ser His Val Pro Pro Lys Val Ser His Ile Thr Phe Ala His
 370 375 380
 Glu Val Gly His Asn Phe Gly Ser Pro His Asp Ser Gly Thr Glu Cys
 385 390 395 400
 Thr Pro Gly Glu Ser Lys Asn Leu Gly Gln Lys Glu Asn Gly Asn Tyr
 405 410 415
 Ile Met Tyr Ala Arg Ala Thr Ser Gly Asp Lys Leu Asn Asn Lys

420 425 430

Phe Ser Leu Cys Ser Ile Arg Asn Ile Ser Gln Val Leu Glu Lys Lys
 435 440 445
 Arg Asn Asn Cys Phe Val Glu Ser Gly Gln Pro Ile Cys Gly Asn Gly
 450 455 460
 Met Val Glu Gln Gly Glu Glu Cys Asp Cys Gly Tyr Ser Asp Gln Cys
 465 470 475 480
 Lys Asp Asp Cys Cys Phe Asp Ala Asn Gln Pro Glu Gly Lys Lys Cys
 485 490 495
 10 Lys Leu Lys Pro Gly Lys Gln Cys Ser Pro Ser Gln Gly Pro Cys Cys
 500 505 510
 Thr Ala Gln Cys Ala Phe Lys Ser Lys Ser Glu Lys Cys Arg Asp Asp
 515 520 525
 Ser Asp Cys Ala Lys Glu Gly Ile Cys Asn Gly Phe Thr Ala Leu Cys
 530 535 540
 Pro Ala Ser Asp Pro Lys Pro Asn Phe Thr Asp Cys Asn Arg His Thr
 545 550 555 560
 Gln Val Cys Ile Asn Gly Gln Cys Ala Gly Ser Ile Cys Glu Lys Tyr
 565 570 575
 20 Asp Leu Glu Glu Cys Thr Cys Ala Ser Ser Asp Gly Lys Asp Asn Lys
 580 585 590
 Glu Leu Cys His Val Cys Cys Met Lys Lys Met Ala Pro Ser Thr Cys
 595 600 605
 Ala Ser Thr Gly Ser Leu Gln Trp Ser Lys Gln Phe Ser Gly Arg Thr
 610 615 620
 Ile Thr Leu Gln Pro Gly Ser Pro Cys Asn Asp Phe Arg Gly Tyr Cys
 625 630 635 640
 Asp Val Phe Met Arg Cys Arg Leu Val Asp Ala Asp Gly Pro Leu Ala
 645 650 655
 30 Arg Leu Lys Lys Ala Ile Phe Ser Pro Gln Leu Tyr Glu Asn Ile Ala
 660 665 670
 Glu Trp Ile Val Ala His Trp Trp Ala Val Leu Leu Met Gly Ile Ala
 675 680 685
 Leu Ile Met Leu Met Ala Gly Phe Ile Lys Ile Cys Ser Val His Thr
 690 695 700
 Pro Ser Ser Asn Pro Lys Leu Pro Pro Pro Lys Pro Leu Pro Gly Thr
 705 710 715 720
 Leu Lys Arg Arg Arg Pro Pro Gln Pro Ile Gln Gln Pro Pro Arg Gln
 725 730 735
 40 Arg Pro Arg Glu Ser Tyr Gln Met Gly His Met Arg Arg
 740 745

45 *add 57*