1. Die Pell Gleichung

Pell Gleichung: $x^2 - dy^2 = 1$ $(d \in \mathbb{N}^+ \text{ kein Quadrat})$

$$x^2 - dy^2 = (x + \sqrt{dy})(x - \sqrt{dy})$$

Satz 1 (Dirichlet Lemma). Sei $x \in \mathbb{R}$ und $N \in \mathbb{N}^+$. Dann gibt es $p, q \in \mathbb{Z}$ teilerfremd mit

$$\left|x - \frac{p}{q}\right| \leqslant \frac{1}{q(N+1)} \quad und \quad 1 \leqslant q \leqslant N.$$

Korollar 2. Sei $x \in \mathbb{R} \setminus \mathbb{Q}$. Dann gibt es unendlich viele $p, q \in \mathbb{Z}$ teilerfremd mit $|qx - p| < \frac{1}{q}$.

Theorem 3. Die Pell Gleichung $x^2 - dy^2 = 1$, $0 < d \neq n^2$, hat eine nichttriviale Lösung $(x, y) \in \mathbb{Z}^2$.

Korollar 4. Die Pell Gleichung $x^2 - dy^2 = 1$, $0 < d \neq n^2$, hat unendlich viele Lösungen $(x, y) \in \mathbb{Z}^2$.

Die Lösungen von $x^2 - 2y^2 = 1$:

$$(\pm 3, \pm 2), (\pm 17, \pm 12), (\pm 99, \pm 70), (\pm 577, \pm 408), (\pm 3363, \pm 2378), \dots$$

2. Quadratische Zahlkörper und Zahlringe

Zahlkörper: endliche Körpererweiterungen von \mathbb{Q}

quadratischen Zahlkörper: $\mathbb{Q}(\sqrt{d})$ $(d \in \mathbb{Z} \setminus \{0, 1\} \text{ quadratfrei})$

$$\mathbb{Q}(\sqrt{d}) = \mathbb{Q} + \mathbb{Q}\sqrt{d} = \{a + b\sqrt{d} \mid a, b \in \mathbb{Q}\}\$$

Konjugation, Norm, Spur:

$$\overline{\square}: \qquad \mathbb{Q}(\sqrt{d}) \to \mathbb{Q}(\sqrt{d})$$
$$z = a + b\sqrt{d} \mapsto \overline{z} \coloneqq a - b\sqrt{d}$$

$$N: \quad \mathbb{Q}(\sqrt{d}) \to \mathbb{Q} \qquad \text{tr}: \quad \mathbb{Q}(\sqrt{d}) \to \mathbb{Q}$$

$$z = a + b\sqrt{d} \mapsto a^2 - db^2 = z \cdot \overline{z} \qquad z = a + b\sqrt{d} \mapsto 2a = z + \overline{z}$$

$$N(z \cdot w) = N(z) \cdot N(w) \qquad \text{tr}(z + w) = \text{tr}(z) + \text{tr}(w)$$

Definition 5. $\mathcal{O}_d := \{z \in \mathbb{Q}(\sqrt{d}) \mid \operatorname{tr}(z) \in \mathbb{Z}, N(z) \in \mathbb{Z}\} \subseteq \mathbb{Q}(\sqrt{d}) \text{ heißt quadratischer Zahlring.}$

Lemma 6. \mathcal{O}_d ist tatsächlich ein Unterring, und es gilt:

- $\mathcal{O}_d = \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\} = \mathbb{Z} + \mathbb{Z}\sqrt{d}$ falls $d \equiv 2, 3 \mod 4$
- $\mathcal{O}_d = \{\frac{a+b\sqrt{d}}{2} \mid a,b \in \mathbb{Z} \text{ und } a \equiv b \mod 2\} = \mathbb{Z} + \mathbb{Z}\omega \text{ mit } \omega = \frac{1+\sqrt{d}}{2}$ $falls d \equiv 1 \mod 4$

3. Einheiten in Quadratischen Zahlringen

Lemma 7. Für $z \in \mathcal{O}_d$ ist $z \in \mathcal{O}_d^{\times} \iff N(z) = \pm 1$

Korollar 8. $F\ddot{u}r\ a,b\in\mathbb{Z}\ gilt:$

- $a + b\sqrt{d} \in \mathcal{O}_d^{\times} \iff a^2 db^2 = \pm 1$ $falls \ d \equiv 2, 3 \mod 4$ $\frac{a + b\sqrt{d}}{2} \in \mathcal{O}_d^{\times} \iff a^2 db^2 = \pm 4$ $falls \ d \equiv 1 \mod 4$

Satz 9. Im imaginär-quadratischen Fall d < 0 sind alle Einheiten Einheitswurzeln. Konkret:

$$\mathcal{O}_{-1}^{\times} = \left\langle \xi_4 \right\rangle \qquad \qquad \mathcal{O}_{-3}^{\times} = \left\langle \xi_6 \right\rangle \qquad \qquad \mathcal{O}_{d}^{\times} = \left\langle \xi_2 \right\rangle = \pm 1 \quad \text{für } d \leqslant -5 \ \text{oder } d = -2$$

Lemma 10. Im reellquadratischen Fall d > 0 ist $\mathcal{O}_d^{\times} \cap (1, M)$ endlich für alle M > 1.

Satz 11. Im reellquadratischen Fall d > 0 gibt es $\varepsilon \in \mathcal{O}_d^{\times}, \varepsilon \neq \pm 1$, sodass $\mathcal{O}_d^{\times} = \{\pm \varepsilon^k \mid k \in \mathbb{Z}\}$.

Theorem 12. Sei $d \in \mathbb{Z}\setminus\{0,1\}$ quadratfrei und $U \subseteq \mathcal{O}_d$ die multiplikative Gruppe der Einheitswurzeln im Ganzzahlring \mathcal{O}_d des Körpers $\mathbb{Q}(\sqrt{d})$. Dann gilt:

$$\mathcal{O}_d^{\times} \cong \begin{cases} U & d < 0 \\ U \times \mathbb{Z} & d > 0 \end{cases}$$

Die Pell Gleichung

Die Gleichung
$$x^2 - dy^2 = 1$$
 mit deN^+
heißt Pell-Gleichung.

Wir suchen die ganzzahligen Lösungen
$$(x,y) \in \mathbb{Z}^2$$
. (1,0) und (-1,0) heißen triviale Lösungen.

Wichig:
$$x^2 - dy^2 = (x + \sqrt{d}y)(x - \sqrt{d}y)$$

Wenn
$$d = h^2$$
 mit new dann folgt für jede Löxung:
 $1 = x^2 - dy^2 = (x + ny)(x - ny)$

$$\Rightarrow$$
 \times + $hy = \times - hy$ \Rightarrow $y = 0$

Satz 1 (Dirichlet Lemma). Sei $x \in \mathbb{R}$ und $N \in \mathbb{N}^+$. Dann gibt es $p, q \in \mathbb{Z}$ teilerfremd mit

$$\left|x-\frac{p}{q}\right|\leqslant\frac{1}{q(N+1)}\quad und\quad 1\leqslant q\leqslant N.$$

$$[y] := y - Ly$$

Betradule die N+1 Zahlen 0,[x],[2x],...,[Nx] e[0,1).

Teile [0,1) in die N+1 Invervalle

$$\begin{bmatrix} J & J+1 \\ N+1 & N+1 \end{bmatrix} \qquad J=0, ..., N$$

M.

Wern in letzlen lutervall eine Zahl liegt, gibt es $A \le q \le N$ ganz mit $\frac{N}{N+1} \le [-q \times] < \Lambda$.

$$p := \lceil q x \rceil_{\bullet} = \rangle |p - q x| \leq \frac{\Lambda}{N + \Lambda}$$

Ausnixten gibt es mach dem Schwafach prinzip
$$1$$
 $0 \le r < s \le N$ sodass $|[r \times] - [s \times]| < N+1$, $q := s-r$, $p := [s \times] - [r \times]$. $\Rightarrow |q \times - p| = |s \times - r \times - [s \times]| + [r \times]| = |[s \times]| - [r \times]| < \frac{1}{N+1}$. Korollar 2. Sei $x \in \mathbb{R} \setminus \mathbb{Q}$. Dann gibt es unendlich viele $p, q \in \mathbb{Z}$ teilerfremd mit $|qx - p| < \frac{1}{q}$. Bewels Much dem letztar Satz gibt es solche $p, q \in \mathbb{Z}$. Augmominen es gibt nur endlich viele, genannt (p, q) .

 $\mathcal{E} := \min \left| q_i x - p_i' \right| > 0$

Aler made deux letzfen Satz mit $N > \frac{1}{\epsilon}$ es p,q teiler freund mit

 $|qx-p| < \iint \mathcal{E}$

Theorem 3. Die Pell Gleichung $x^2 - dy^2 = 1$, $0 < d \neq n^2$, hat eine nichttriviale Lösung $(x, y) \in \mathbb{Z}^2$.

Beweis

Nach letztem Korollar gibt es unendlich viele $(x_y) \in \mathbb{N}^2$ deiber fremd mit $|x-y|d| < \frac{1}{y} \in 1$.

Instrusionaline X < 1+ XVal.

$$= |x^2 - dy| = |x + y \sqrt{d} |x - y \sqrt{d}| = \frac{x + y \sqrt{d}}{y}$$

$$\leq \frac{1 + 2y \sqrt{d}}{y} \leq 1 + 2\sqrt{d}$$

Nach dem Schubfachprinzip gibt es Met-1-2va, 1+2va] ganz sodas $x^2 - dy^2 = M$ uneudlich viele Teiler freude Lösungen hat. M≠0 da $\mathcal{A} \neq \mathcal{Q}$. Da $(\mathbb{Z}/M\mathbb{Z})^2$ audid ist, gibt es zwij verschiedene Lösungen $(x_1, y_1), (x_2, y_2) \in \mathbb{N}^2$ $\text{mit} \quad x_1 \equiv x_2 \mod M \quad \text{and} \quad y_1 \equiv y_2 \mod M.$ $A := \times_{1} \times_{2} - y_{1} y_{2} d$ B:= ×2/1 - ×1/2 sodac A+ BID = $(x_1 + y_1 \sqrt{d})(x_2 - y_2 \sqrt{d})$. $= 7 A^{2} - d\beta^{2} = (A + B \pi A)(A - B \pi A) = (2 - d\gamma^{2})(x_{2}^{2} - d\gamma^{2})$ $= M - M = M^2$ $A = x_1^2 - y_1^2 A \equiv 0 \quad \text{mod} \quad M$ $B = x_1 y_2 - x_1 y_2 = 0 \quad \text{mod} \quad M$ A = : MA $\left(\widehat{A},\widehat{B}\in\mathbb{N}\right)$ B = : MB $A^2 - dB^2 = \frac{1}{M^2} (A^2 - dB^2) = 1$ Die Losung ist wichthinial, da $\hat{B} = 0 \Rightarrow B = 0 \Rightarrow \chi_{2} / 1 = \chi_{1} / 2 \Rightarrow \chi_{2} / 1 = \chi_{2} / 2 = \chi_{2} / 2 \Rightarrow \chi_{2} / 2 = \chi_{2} / 2 \Rightarrow \chi_{2} / 2$

Korollar 4. Die Pell Gleichung $x^2 - dy^2 = 1$, $0 < d \neq n^2$, hat unendlich viele Lösungen $(x, y) \in \mathbb{Z}^2$.

Beweis

Sei
$$(x,y) \in \mathbb{Z}^2$$
 eine vidustriviale Lésing.
 $x_n := \frac{(x+y)\partial l}{2}^n + (x-y)\partial l^n = \mathbb{Z}$
 $y_n := \frac{(x+y)\partial l}{2}^n - (x-y)\partial l^n = \mathbb{Z}$
Sodass $x_n + y_n \partial l = (x+y)\partial l^n = \mathbb{Z}$
 $x_n - y_n \partial l = (x-y)\partial l^n = \mathbb{Z}$
 $x_n - y_n \partial l = (x-y)\partial l^n = (x+y)\partial l^n = 1$
Die Lésingen sind alle verschreden, der $|x_n + y_n|\partial l = |x+y|\partial l^n = 1$
 $|x_n + y_n|\partial l = |x+y|\partial l^n = 1$ folgt $|x+y|\partial l \neq l$
 $|x_n + y_n|\partial l = |x+y|\partial l = 1$ folgt $|x+y|\partial l = 1$

Quadratische Zahlkörper & Z	ahlringe
-----------------------------	----------

Q(M) mit deZ heißt quadratischer Zahkörper. $d=0,1 \implies Q(M)=Q$

Fals N^2/d mit $N \in \mathbb{N}$, dann $\mathcal{Q}(\sqrt{N}) = \mathcal{Q}(\sqrt{N})$

Also setzen wir vorans, dass $d \neq 0,1$ und d quadratirei. Id ist Mulstelle von $X^Z - d \in Q[X]$

 $\Rightarrow Q(\mathcal{M}) = Q + Q \mathcal{M}$

Pie Konjugation ist

 $\begin{array}{c} \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ & a + b \sqrt{A} & \mapsto & a - b \sqrt{A} \end{array}$

Z.(a+6) = Z.a + Z.6

Beziglich der Basis (1, Val) ist die Multiplikation mit a+bval gegeben durch (a db).

ZEC heißt ganz-algebraisch, wenn es Nullstelle eines normierten Polynous in Z[X] ist. (=> Minimalpolynour von z liegt in Z[X]

normjertes

Bei uns: Das Minima/polynour vou ZE Q (Vd) ist X-z bzw $(X-z)(X-\overline{z})$ $= \chi^2 - tr(z) \times + N(z)$

Definition 5. $\mathcal{O}_d := \{z \in \mathbb{Q}(\sqrt{d}) \mid \operatorname{tr}(z) \in \mathbb{Z}, N(z) \in \mathbb{Z}\} \subseteq \mathbb{Q}(\sqrt{d}) \text{ hei}\beta t \text{ quadratischer Zahlring.}$

Lemma 7. \mathcal{O}_d ist tatsächlich ein Unterring, und es gilt:

• $\mathcal{O}_d = \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\} = \mathbb{Z} + \mathbb{Z}\sqrt{d}$ falls $d \equiv 2, 3 \mod 4$ • $\mathcal{O}_d = \{\frac{a + b\sqrt{d}}{2} \mid a, b \in \mathbb{Z} \text{ und } a \equiv b \mod 2\} = \mathbb{Z} + \mathbb{Z}\omega \text{ mit } \omega = \frac{1 + \sqrt{d}}{2}$ $falls d \equiv 1 \mod 4$

Beweis

Diese Mengun liegen talsächlich in Od. Sei <u>A+BID</u> E Od, ABED.

 $\Rightarrow AeZ, \frac{A'-dB'}{u} eZ$

Instasondere $A^2 - dB^2 \in \mathbb{Z}_1$, also $dB^2 \in \mathbb{Z}_1$

also BEZ da d quadrattrei.

=> AET, BET, A = dB2 mod 4

Die enzigen anadrade in 2/47 sind 0,1.

 $d = 2,3 \mod 4$ $\Rightarrow A^2 = B^2 \equiv 0 \mod 4$

 $\Rightarrow A = B \equiv 0 \mod 2$

d≡1 mod 4 $\Rightarrow A^2 \equiv B^2 \mod 4$

> A = B mod 2

Lemma 9. Für $z \in \mathcal{O}_d$ ist $z \in \mathcal{O}_d^{\times} \iff N(z) = \pm 1$

Beweis

$$\exists zw=1 \Rightarrow A=N(A)=N(zw)=N(z)N(w)$$

$$\Rightarrow N(z)=\pm A$$

Korollar 10. $F\ddot{u}r\ a,b\in\mathbb{Z}\ gilt$:

- $a + b\sqrt{d} \in \mathcal{O}_d^{\times} \iff a^2 db^2 = \pm 1 \quad \text{ falls } d \equiv 2, 3 \mod 4$
- $\frac{a+b\sqrt{d}}{2} \in \mathcal{O}_d^{\times} \iff a^2 db^2 = \pm 4 \quad \text{falls } d \equiv 1 \mod 4$

Beweis

$$d = 2,3 \mod 4$$
 Squam vorheriges Lemma $d = 1 \mod 4$ gibt and

$$\frac{a+bM}{2}\in\mathcal{A}^{\times}\Leftrightarrow\left(\frac{a}{2}\right)^{2}-d\left(\frac{b}{2}\right)^{2}=\pm1$$

$$(=) \alpha^2 - \alpha 6^2 = \pm 4$$

Und
$$a^2 - db^2 \equiv 0$$
 mod 4

$$\Rightarrow \alpha^2 = 6 \mod 4 \Rightarrow \alpha = 6 \mod 6$$

Satz 11. Im imaginär-quadratischen Fall d < 0 sind alle Einheiten Einheitswurzeln. Konkret:

$$\mathcal{O}_{-1}^{\times} = \langle \xi_4 \rangle$$
 $\qquad \mathcal{O}_{-3}^{\times} = \langle \xi_6 \rangle$ $\qquad \mathcal{O}_{d}^{\times} = \langle \xi_2 \rangle = \pm 1 \quad \text{für } d \leqslant -5 \text{ oder } d = -2$

Beneis

Die Norm entspricht dem komplexen Absolut betrag.
Da es nur endlich viele Elemente auf dem
Einheits kreis gift (in Od), ist jedes 2 mit N(z) = 1 eine Einheitswurzel.

Lemma 12. Im reellquadratischen Fall d>0 ist $\mathcal{O}_d^{\times}\cap(1,M)$ endlich für alle M>1

Bureis

Fix e EOX (1,M).

 $\Rightarrow e\overline{e} = N(e) = \pm 1 \Rightarrow \overline{e} \in (-1,1)$

 $\Rightarrow 4r(e) = e + \overline{e} \in (0, M+1)$

=> Mur endlich viele Möglichkeiten für Nle) und trle).

=) e ist eine der 4M Nullstehen von $\{X^2 - \alpha X + 6\}_{\alpha \in \{1, ..., M\}, 6 \in \{-1, 1\}}$

Satz 13. Im reellquadratischen Fall d > 0 gibt es $\varepsilon \in \mathcal{O}_d^{\times}$, $\varepsilon \neq \pm 1$, sodass $\mathcal{O}_d^{\times} = \{ \pm \varepsilon^k \mid k \in \mathbb{Z} \}$.

Benveis

Es gibt eine udutriviale Einheit e, da nir eine nidutriviale Lösung der Pellgleichung haben.

Dibid, A ist e>1. Nach vorhengen Lemma gibt es eine kleinste Finheit e>1.

Angenommen is gibt $e \in Od$, $e \neq e^k$ thet. O.6.d.A. $\Rightarrow e^k < e < e^{k+1}$ mid $k \in \mathbb{Z}$ e > O.6.d.A.

= $1 < e^{-k} < \epsilon$

Theorem 14. Sei $d \in \mathbb{Z}\setminus\{0,1\}$ quadratfrei und $U \subseteq \mathcal{O}_d$ die multiplikative Gruppe der Einheitswurzeln im Ganzzahlring \mathcal{O}_d des Körpers $\mathbb{Q}(\sqrt{d})$. Dann gilt:

$$\mathcal{O}_d^{\times} \cong \begin{cases} U & d < 0 \\ U \times \mathbb{Z} & d > 0 \end{cases}$$