Mobile
Robotics,
Reinforcement
Learning and
Deep Reinforcement
Learning for
Mobile
Robots

Mobile Robotics, Reinforcement Learning and Deep Reinforcement Learning for Mobile Robots

Material based on Reinforcement Learning: an Introduction, 2nd Edition [sect. 5.1-5.3, 6.1-6.3, 6.5], Reinforcement Learning course offered by Prof. Pascal Poupart at Univ. of Waterloo

Summary

- Introduction to Reinforcement Learning
- Deep Reinforcement Learning
- Deep Q Network
- DQN for Mapless Navigation

Reinforcement Learning: relationships with MDPs

Mobile
Robotics,
Reinforcement
Learning and
Deep Reinforcement
Learning for
Mobile
Robots

Guide an MDP without knowing the dynamics

- do not know which states are good/bad (no R(s, a))
- do not know where actions will lead us (no T(s, a, s'))
- hence we must try out actions/states and collect the reward

Recycling robot example: RL

Mobile
Robotics,
Reinforcement
Learning and
Deep Reinforcement
Learning for
Mobile
Robots

low recharge search wait

Learning

To use a model or not to use a model?

- Model-Based methods try to learn a model
 - + avoid repeating bad states/actions
 - + fewer execution steps
 - + efficient use of data
- Model-Free methods try to learn Q-function and policy directly
 - + simplicity, no need to build and use a model
 - + no bias in model design

Algorithm 1 Tabular Q-Learning

- 1: Initialize Q(s, a) arbitrarily
- 2: Initialize s {observe current state}
- 3: **loop**
- 4: Select and execute action a
- 5: Observe new state s' receive immediate reward r
- 6: $Q(s,a) = Q(s,a) + \alpha[r + \gamma \max_{a}' Q(s',a') Q(s,a)]$
- 7: update state $s \leftarrow s'$
- 8: end loop

 \diamond ϵ -greedy: choose best action most of the time, but every once in a while (with probability ϵ) choose randomly amongst all action (with equal probability)

Deep Reinforcement Learning: key points

- \diamond For many real world domains we can not explicitly represent key functions for RL $(\pi(s), V(s), Q(s, a))$
- ♦ We can try to approximate them
 - Linear approximation
 - Neural Network approximation
 - Deep RL
- \Diamond Deep Q Network approximates Q(s,a) with a DNN

- \Diamond approximate Q(s,a) with a parametrized function $Q_{\mathbf{w}}(s,a)$
- Minimize squared error between estimate and target
 - Estimate $Q_{\mathbf{w}}(s, a)$
 - Target: $r(s, a, s') + \gamma \max_{a'} Q_{\overline{w}}(s', a')$
- ♦ squared error:

$$Err(\mathbf{w}) = (Q_{\mathbf{w}}(s, a) - r(s, a, s') - \gamma \max_{a'} Q_{\overline{\mathbf{w}}}(s', a'))^2$$

gradient:

$$\frac{\partial \textit{Err}(\textbf{w})}{\partial \textbf{w}} = 2(Q_{\textbf{w}}(s,a) - r(s,a,s') - \gamma \max_{a'} Q_{\overline{\textbf{w}}}(s',a')) \frac{\partial Q_{\textbf{w}}(s,a)}{\partial \textbf{w}}$$
 (Scalar 2 is a constant factor and not important for update)

Algorithm 2 Gradient Q-Learning

- 1: Initialize weights \mathbf{w} randomly in [-1,1]
- 2: Initialize s {observe current state}
- 3: **loop**
- 4: Select and execute action a
- 5: Observe new state s' receive immediate reward r

6:
$$\frac{\partial Err(\mathbf{w})}{\partial \mathbf{w}} = (Q_{\mathbf{w}}(s, a) - r - \gamma \max_{a'} Q_{\mathbf{w}}(s', a')) \frac{\partial Q_{\mathbf{w}}(s, a)}{\partial \mathbf{w}}$$

- 7: update weights $\mathbf{w} \leftarrow \mathbf{w} \alpha \frac{\partial \textit{Err}(\mathbf{w})}{\partial \mathbf{w}}$
- 8: update state $s \leftarrow s'$
- 9: end loop

Non-Convergence of Non-linear gradient Q-Learning

- \Diamond Non-linear approximation of Q(s,a), $Q(s,a) \approx g(\mathbf{x}; \mathbf{w})$
- ♦ gradient Q-Learning may not converge
- ♦ Issue:
 - we update the weights to reduce error for a specific experience (i.e., a specific (s, a)) but by changing the weights we may end up changing the Q(s, a) potentially everywhere.

Mitigating divergence

- ♦ Two main approaches to mitigate divergence:
 - experience replay
 - use two different networks
 - Q-network
 - Target network

Experience replay

- \Diamond Store previous experiences (i.e., (s, a, s', r)) and use them at each step
 - Store previous (s, a, s', r) in a dedicated memory buffer
 - At each step sample a mini-batch from this buffer and use the mini-batch to update the weights
- ♦ Benefits
 - 1 reduces correlation between successive samples (increase stability)
 - 2 reduces number of interaction with the environment (increase data efficiency)

- ♦ Maintain a separate target network and update this network periodically (not with every experience)
 - \blacksquare Q-network $Q_{\mathbf{w}}(s, a)$
 - Target network $Q_{\overline{w}}(s, a)$
- \Diamond repeat for every (s, a, s', r) in the mini-batch update the Q-network

- \Diamond update the target network
 - $\overline{\mathbf{w}} \leftarrow \mathbf{w}$

Deep Q Network

Mobile
Robotics,
Reinforcement
Learning and
Deep Reinforcement
Learning for
Mobile
Robots

- ♦ Human-level control through deep reinforcement learning (V. Mnih et al., Nature 2015)
- ♦ Gradient Q-Learning
 - Deep neural networks to approximate Q(s,a)
 - Experience Replay and Target network

⇒ above human-level performance in many Atari video games

Deep Q Network sketch of algorithm

Mobile
Robotics,
Reinforcement
Learning and
Deep Reinforcement
Learning for
Mobile
Robots

Algorithm 3 DQN

- 1: Initialize weights ${m w}$ and $\overline{{m w}}$ randomly in [-1,1]
- 2: Initialize *s* {observe current state}
- 3: **loop**
- 4: Select and execute action a
- 5: Observe new state s' receive immediate reward r
- 6: Add (s, a, s', r) to experience buffer
- 7: Sample mini-batch MB of experiences from buffer
- 8: for $(\hat{s}, \hat{a}, \hat{s}', \hat{r}) \in MB$ do

9:
$$\frac{\partial Err(\mathbf{w})}{\partial \mathbf{w}} = (Q_{\mathbf{w}}(\hat{\mathbf{s}}, \hat{\mathbf{a}}) - \hat{\mathbf{r}} - \gamma \max_{\hat{\mathbf{a}}'} Q_{\overline{\mathbf{w}}}(\hat{\mathbf{s}}', \hat{\mathbf{a}}')) \frac{\partial Q_{\mathbf{w}}(\hat{\mathbf{s}}, \hat{\mathbf{a}})}{\partial \mathbf{w}}$$

- 10: update weights $\mathbf{w} \leftarrow \mathbf{w} \alpha \frac{\partial Err(\mathbf{w})}{\partial \mathbf{w}}$
- 11: end for
- 12: update state $s \leftarrow s'$
- 13: every c steps, update target: $\overline{\boldsymbol{w}} \leftarrow \boldsymbol{w}$
- 14: end loop

DRL for robotics, sim to real

Mobile
Robotics,
Reinforcement
Learning and
Deep Reinforcement
Learning for
Mobile
Robots

Acting in the real environment is difficult/dangerous

train in a synthetic environment

DRL for robotics, continuous approaches and mapless navigation

- ♦ Most DRL approaches considers continuous action space
 - Proximal Policy Optimization (PPO)
 - Policy Gradient (DDPG)
- ♦ Continuous approaches are time-consuming compared to discrete action space (e.g., DQN)
- ♦ Mapless Navigation: Navigate in the environment, avoiding obstacles, without a map
 - laser scans and target heading as input
 - angular velocities as output
 - dense reward (i.e., distance from target)

Discrete DRL for mapless navigation

Mobile
Robotics,
Reinforcement
Learning and
Deep Reinforcement
Learning for
Mobile
Robots

Proper discretization of the action space and the use of DQN can result in a significantly shorter training time (from 20 hours to 1 hour), maintaining comparable performance.

Deep RL: current trends

- ♦ Formal verification of DRL models
 - ensure the learned model respect safety properties
- ♦ Transfer of Learning/Curricula learning
 - ToL: train the model in an environment and deploy in another one
 - Curricula Learning: learn a difficult task by training on a series of simpler tasks
- ♦ DRL for robotics
 - Adaptation to environment is critical but interacting with the environment is difficult, expensive and potentially dangerous.
- ♦ MADRL
 - A set of agents/robots that learn at the same time in the same environment

- PPO: Schulman et al. (2017) Proximal Policy Optimization
- DDPG: Lillicrap et al. (2015) Continuous control with deep reinforcement learning
- Mapless: Tai et al. (2017) "Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation"