Light barrier operating method for detecting obstacle in light path

Patent number:

DE19924351

Publication date:

1999-12-16

Inventor:

ARGAST MARTIN (DE); HANG ROLAND (DE)

Applicant:

LEUZE ELECTRONIC GMBH & CO (DE)

Classification:

- international:

G01V8/12; H03K17/78; H04L25/26

- european:

G01V8/12

Application number: DE19991024351 19990527

Priority number(s): DE19991024351 19990527; DE19981025236 19980605

Report a data error here

Abstract of **DE19924351**

The method involves transmitting a periodic light pulse signal over a given period duration and detecting the corresponding light pulses by a receiver (6), coupled to an evaluation circuit (9), which registers the light pulses within a reception period. This is divided into a number of time windows, with a counter indexed by each reception pulse within a time window, to provide a 'path clear' indication when a threshold count value is attained. An Independent claim is also included for a light barrier.

Data supplied from the esp@cenet database - Worldwide

BUNDESREPUBLIK DEUTSCHLAND

(5) Int. Cl.⁷: G 01 V 8/12 H 03 K 17/78

DEUTSCHES PATENT- UND MARKENAMT

(2) Aktenzeichen: 199 24 351.4-52 Anmeldetag: 27. 5. 1999

(43) Offenlegungstag: 16. 12. 1999

(45) Veröffentlichungstag

der Patenterteilung: 24, 7, 2003

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

66 Innere Priorität:

198 25 236.6

05.06.1998

(73) Patentinhaber:

Leuze electronic GmbH + Co., 73277 Owen, DE

(74) Vertreter:

Ruckh, R., Dipl.-Phys. Dr.rer.nat., Pat.-Anw., 73277 Owen

(72) Erfinder:

Argast, Martin, Dipl.-Ing. (FH), 72584 Hülben, DE; Hang, Roland, 73278 Schlierbach, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

0 C2
4 C2
0 A1
7 A1
8 A 1
1 A1

- 54 Lichtschranke
- Verfahren zum Betrieb einer Lichtschranke, welche einen Sender aufweist, der jeweils innerhalb einer Periodendauer TS periodisch Sendelichtimpulse emittiert, sowie einen Empfangslichtimpulse empfangenden Empfänger, der an eine Auswerteeinheit angeschlossen ist, dadurch gekennzeichnet, daß in der Auswerteeinheit (9) die Auswertung von Empfangssignalen am Ausgang des Empfängers (6) mit einem Empfangstakt 1/TE erfolgt, der zumindest näherungsweise mit dem Sendetakt 1/Ts übereinstimmt, dass jede Periodendauer TE auf gleiche Weise in eine vorgegebene Anzahl von Zeitfenstern Z_n (1 < n ≤ N) unterteilt ist, wobei für jede Periodendauer TE in jedem Zeitfenster Zn die Anzahl der am Empfänger (6) auftreffenden Empfangslichtimpulse registriert wird, indem ein in einem Zeitfenster Z_n zugeordneter Zählerstand B_n um einen vorgegebenen Wert erhöht wird, falls ein Empfangslichtimpuls innerhalb des Zeitfensters Zn registriert wird und andernfalls der Zählerstand Bn gleichbleibt oder um einen vorgegebenen Wert vermindert wird, und daß die Lichtschranke 1 den Schaltzustand "Lichtweg frei" einnimmt, falls wenigstens der Zählerstand Bn eines Zeitfensters Zn größer oder gleich als ein vorgegebener Schwellwert A ist.

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren zum Betrieb einer Lichtschranke gemäß dem Oberbegriff des Anspruchs 1 sowie eine Lichtschranke zur Durchführung des Verfahrens gemäß dem Oberbegriff des Anspruchs 13.

[0002] Ein derartiges Verfahren ist aus der DE 196 13 940 C2 bekannt. Die dort beschriebene Lichtschranke weist zwei Schaltzustände "Lichtweg frei" und "Lichtweg nicht frei" auf. Der Sender der Lichtschranke sendet periodisch Folgen von Lichtimpulsen aus, wobei jeweils innerhalb einer Periode T innerhalb eines Zeitintervalls T_S eine vorgegebenen Anzahl von N_S Lichtimpulsen ausgesendet wird, worauf sich eine Sendepause T_P anschließt. In der Auswerteeinheit der Lichtschranke werden auf den Empfänger auftreffende Lichtimpulse jeweils während vorgegebener Zeitintervalle T_E ausgewertet, wobei das Zeitintervall T_E geringfügig größer als das Zeitintervall T_S ist.

[0003] Ausgehend vom Schaltzustand "Lichtweg nicht 20 frei" wird das Zeitintervall T_E erstmals dann geöffnet, sobald empfangsseitig ein Lichtimpuls registriert wird. Der Schaltzustand "Lichtweg nicht frei" wechselt erst dann in den Schaltzustand "Lichtweg frei", nachdem N_S Lichtimpulse innerhalb eines Zeitintervalls T_E registriert worden 25 sind.

[0004] Im Schaltzustand "Lichtweg frei" wird das Zeitintervall T_E jeweils nach seiner Beendigung geöffnet, sobald empfangsseitig ein Lichtimpuls registriert wird. Dabei verbleibt die Lichtschranke im Schaltzustand "Lichtweg frei" auch dann, wenn während eines vorgegebenen Zeitintervalls T_I , welches größer oder gleich der Periodendauer $T = T_S + T_P$ ist, empfangsseitig innerhalb wenigstens eines Zeitintervalls T_E wenigstens N_{min} Lichtimpulse registriert werden, wobei $0.5~N_S < N_{min} < N_S$ ist.

wobei $0.5~N_S < N_{min} < N_S$ ist. [0005] Vorteilhaft bei diesem Verfahren ist, daß ohne eine Synchronisierung von Sender und Empfänger eine weitgehend sichere Detektion von Störsignalen gewährleistet ist. [0006] Jedoch kann es bei derartigen Lichtschranken insbesondere dann zu Fehlschaltungen kommen, wenn sich ein Objekt im Strahlengang befindet und gleichzeitig von einer Störlichtquelle emittierte Lichtimpulse mit sich verändernder Frequenz auf den Empfänger der Lichtschranke treffen. Aufgrund der sich verändernden Störlichtfrequenz kann es vorkommen, daß innerhalb eines Zeitintervalls TE gerade N_S Lichtimpulse registriert werden, worauf die Lichtschranke fälschlicherweise in den Schaltzustand "Lichtweg frei" wechselt. Wenn dann die für den Wechsel in den Schaltzustand "Lichtweg nicht frei" geforderte Anzahl N_{min} von Lichtimpulsen erheblich kleiner als der Wert N_S ist, kann der Schaltzustand "Lichtweg frei" sogar über eine längere Zeit erhalten bleiben.

[0007] Derartige Fehlerquellen könnten prinzipiell dadurch minimiert werden, daß die für den Wechsel in den Schaltzustand "Lichtweg frei" geforderte Anzahl von N_S Lichtimpulsen sehr groß gewählt würde. Dies würde jedoch zu einer unerwünscht niedrigen Schaltfrequenz der Lichtschranke führen.

[0008] Ferner ist bei diesem Verfahren nachteilig, daß der Sender eine Folge von kurzen Lichtimpulsen generieren 60 muß, wobei dabei die Pausen zwischen zwei Lichtimpulsen ebenfalls sehr kurz sind. Dies führt zu einem relativ großen schaltungstechnischen Aufwand bei der Pulsformung der Lichtimpulse und zu einer relativ hohen Belastung des Senders. Zudem ist auch empfangsseitig ein erhöhter Aufwand 65 notwendig, um die einzelnen Lichtimpulse getrennt voneinander zu detektieren. Dies macht den Einsatz von hochwertigen, schnellen elektronischen Bauteilen notwendig, wo-

durch die Herstellkosten der Lichtschranke relativ groß sind.

[0009] Der Erfindung liegt die Aufgabe zugrunde auf möglichst einfache Weise einen störungsfreien Betrieb einer Lichtschranke zu gewährleisten.

[0010] Zur Lösung dieser Aufgabe sind die Merkmale der Ansprüche 1 und 13 vorgesehen. Vorteilhafte Ausführungsformen und zweckmäßige Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.

10 [0011] Erfindungsgemäß werden die Empfangslichtimpulse periodisch jeweils innerhalb einer Periodendauer T_E registriert, welche zumindest n\u00e4herungsweise der Periodendauer T_S entspricht, mit welcher der Sender periodisch Sendelichtimpulse emittiert.

5 [0012] Jede Periodendauer T_E ist in gleicher Weise in eine vorgegebene Anzahl von Zeitfenstern Z_n (n=1...N) unterteilt, wobei für jede Periodendauer T_E in jedem Zeitfenster Z_n die Anzahl der am Empfänger auftreffenden Empfangslichtimpulse registriert wird.

[0013] Vorzugsweise wird jeweils geprüft, in welches Zeitfenster beispielsweise die Vorderflanke eines Empfangslichtimpulses fällt. In diesem Fall können die Breiten der Zeitfenster Z_n kleiner als die Pulsbreite eines Sende- oder eines entsprechenden Empfangslichtimpulses sein, wobei dennoch eine eindeutige Zuordnung des Empfangslichtimpulses zu einem Zeitfenster Z_n möglich ist.

[0014] Die Auswertung innerhalb einer Periodendauer T_E erfolgt derart, daß der einem Zeitfenster Z_n zugeordnete Zählerstand B_n um einen vorgegebenen Wert erhöht wird, falls ein Empfangslichtimpuls innerhalb dieses Zeitfensters Z_n registriert wird. Andernfalls bleibt der Zählerstand B_n gleich oder wird um einen vorgegebenen Betrag vermindert. [0015] Die Lichtschranke nimmt dann den Schaltzustand "Lichtweg frei" ein, falls wenigstens der Zählerstand B_n eines Zeitfensters Z_n größer oder gleich als ein vorgegebener Schwellwert A ist.

[0016] Der Grundgedanke der Erfindung besteht darin, die Auswertung der Empfangslichtimpulse jeweils innerhalb einer Periodendauer $T_{\rm E}$ vorzunehmen, welche der Periodendauer $T_{\rm S}$ etwa entspricht.

[0017] Für den Fall, daß die Periodendauer T_E exakt gleich der Periodendauer T_S ist, fallen bei störungsfreiem Betrieb und freiem Lichtweg der Lichtschranke die von dem Sender emittierten Sendelichtimpulse und am Empfänger als Empfangslichtimpulse für jede Periodendauer T_E jeweils in das gleiche Zeitfenster Z_n. Dadurch wird mit jeder Periodendauer T_E der Zählerstand B_n des entsprechenden Zeitfensters Z_n erhöht bis der Schwellwert A überschritten wird und demzufolge der Schaltzustand "Lichtweg frei" eingenommen wird.

[0018] Auch wenn die Periodendauer T_E geringfügig von der Periodendauer T_S abweicht, ist gewährleistet, daß bei freiem Strahlengang der Zählerstand B_n eines Zeitfensters Z_n den Schwellwert A erreicht, so daß der Schaltzustand "Lichtweg frei" angenommen wird. Bei etwas größeren Zeitdifferenzen von $T_E - T_S$ kann hierzu in einer vorteilhaften Ausführungsform der Erfindung vorgesehen sein, daß bei einem in ein Zeitfenster Z_n fallenden Empfangslichtimpuls nicht nur der Zählerstand B_n dieses Zeitfensters sondern auch der Zählerstand des benachbarten Zeitfensters B_{n-1} oder gegebenenfalls B_{n+1} erhöht wird.

[0019] Asynchron zum Sendetakt des Senders auf den Empfänger auftreffende Störlichtimpulse fallen zufällig auf beliebige Zeitfenster Z_m innerhalb einer Periode T_E und führen nur zu einem kurzzeitigen, geringfügigen Hochzählen der entsprechenden Zählerstände B_m , die nach vorgegebener Zeit wieder auf den Wert null zurückgesetzt werden und somit nicht zu einem Überschreiten des Schwellwerts A führen.

3

ren.

[0020] Derartige Störlichtimpulse führen somit nicht zu einer Fehlschaltung der Lichtschranke.

[0021] In einer vorteilhaften Ausführungsform wird pro Periodendauer T_S vom Sender jeweils ein Sendelichtimpuls 5 emittiert. Je nachdem, ob T_E etwas größer oder kleiner als T_S ist, werden dann bei freiem Lichtweg und im störungsfreien Betrieb der Lichtschranke pro Periodendauer ein oder zwei Empfangslichtimpulse am Empfänger registriert. Demzufolge kann maximal eine vorgegebene Anzahl D_o 10 von Zeitfenstern Z_n Zählerstände B_n aufweisen, die oberhalb des Schwellwerts A liegen.

[0022] Werden jedoch für mehr als D_o Zeitfenster Z_n Zählerstände B_n oberhalb des Schwellwerts A registriert, so muß ein Störsender vorliegen, welcher mit etwa derselben 15 Frequenz wie der Sender Störlicht abstrahlt. Dieser Fremdsender kann beispielsweise von einer zweiten Lichtschranke gebildet sein. In diesem Fall wird eine Störmeldung abgegeben, so daß auch derartige Störungen die Funktionsfähigkeit der erfindungsgemäßen Lichtschranke nicht beeinträchti- 20 gen.

[0023] Mit der erfindungsgemäßen Lichtschranke können somit sowohl zufällig auftretende Störlichteinstrahlungen als auch synchron zum Sendetakt auftretende Störlichteinflüsse sicher erkannt und unterschieden werden.

[0024] Besonders vorteilhaft dabei ist, daß diese Störungen ohne Zeitverzug erkannt werden können, wobei insbesondere die asynchron auftretenden Störeinflüsse beseitigt werden können ohne die Schaltfrequenz der Lichtschranke unerwünscht zu reduzieren. Der Betrieb der Lichtschranke bleibt somit durch derartige Störungen völlig unbeeinflußt.
[0025] Schließlich ist vorteilhaft, daß die Auswertung der Empfangslichtimpulse digital erfolgen kann, wobei die Auswerteeinheit von einem Mikroprozessor oder ASIC gebildet sein kann und dementsprechend kostengünstig ist. Dabei 35 eignet sich eine derartige Auswertung insbesondere auch für sicherheitstechnische Anwendungen, wobei in diesem Fall die Auswerteeinheit vorzugsweise redundant aufgebaut ist.
[0026] Die Erfindung wird im nachstehenden anhand der Zeichnungen erläutert. Es zeigen:

[0027] Fig. 1 Blockschaltbild der erfindungsgemäßen Lichtschranke

[0028] Fig. 2 Zeitdiagramme für einzelne Komponenten der Lichtschranke gemäß Fig. 1 für ein erstes Ausführungsbeispiel des erfindungsgemäßen Verfahrens.

[0029] Fig. 3 Erstes Zeitdiagramm für die Auswertung eines Empfangslichtimpulses nach einem zweiten Ausführungsbeispiel des erfindungsgemäßen Verfahrens.

[0030] Fig. 4 Zweites Zeitdiagramm für die Auswertung eines Empfangslichtimpulses nach einem zweiten Ausfüh- 50 rungsbeispiel des erfindungsgemäßen Verfahrens.

[0031] Fig. 5 Zeitdiagramme für einzelne Komponenten der Lichtschranke gemäß Fig. 1 für ein drittes Ausführungsbeispiel des erfindungsgemäßen Verfahrens.

[0032] Fig. 6 Zeitdiagramme für einzelne Komponenten 55 der Lichtschranke gemäß Fig. 1 für ein viertes Ausführungsbeispiel des erfindungsgemäßen Verfahrens.

[0033] Fig. 7 Schematische Darstellung von Auswertergeln zur Durchführung des erfindungsgemäßen Verfahrens.
[0034] Fig. 1 zeigt den Aufbau eines Ausführungsbei- 60 spiels der erfindungsgemäßen Lichtschranke 1. Die Lichtschranke 1 weist einen Sendelichtimpulse 2 emittierenden Sender 3 auf, der beispielsweise von einer Leuchtdiode gebildet ist. Der Sender 3 ist an einen Sendeoszillator 4 angeschlossen, welcher den Sendetakt 1/T_S vorgibt, mit welchem 65 die Sendelichtimpulse 2 emittiert werden. Im vorliegenden Ausführungsbeispiel wird innerhalb einer Periodendauer T_S jeweils ein Sendelichtimpuls 2 mit einer vorgegebenen Puls-

4 2d don Saudaa:

dauer emittiert. Der Sender 3 und der Sendeoszillator 4 sind in einem ersten Gehäuse 5 angeordnet, in welchem zudem eine nicht dargestellte, dem Sender 3 nachgeordnete Sendeoptik zur Strahlformung der Sendelichtimpulse 2 vorgesehen sein kann.

[0035] Im Abstand zum Sender 3 ist ein Empfänger 6 angeordnet, der von einer Photodiode oder dergleichen gebildet ist. Auf den Empfänger 6 treffen vom Sender 3 emittierte Sendelichtimpulse 2 sowie gegebenenfalls von Störsendern emittierte Störlichtimpulse als Empfangslichtimpulse auf. Zudem kann dem Empfänger 6 eine nicht dargestellte Empfangsoptik vorgeordnet sein. Diese Empfangslichtimpulse generieren im Empfänger 6 Empfangssignale, die in einem am Ausgang des Empfängers 6 angeschlossenen Verstärker 7 verstärkt werden. Der Ausgang des Verstärkers 7 ist auf einen Eingang eines D-Flip-Flops 8 geführt. Der Ausgang Q des D-Flip-Flops 8 ist auf einen Eingang einer Auswerteeinheit 9 geführt, welche von einem ASIC oder von einem Mikroprozessor gebildet ist. Von einem Ausgang der Auswerteeinheit 9 ist eine Zuleitung zu einem Eingang R des Flip-Flops geführt.

[0036] An einen weiteren Eingang der Auswerteeinheit 9 ist ein Empfangsoszillator 10 angeschlossen, der insbesondere baugleich wie der Sendeoszillator 4 ausgeführt sein kann. Vorzugsweise sind der Sende-4 und Empfangsoszillator 10 jeweils von einem Quarzoszillator oder einem RC-Oszillator gebildet.

[0037] Schließlich sind an jeweils einem Ausgang der Auswerteeinheit 9 ein Schaltausgang 11 und ein Störmeldeausgang 12 angeschlossen. An einen weiteren Eingang der Auswerteeinheit 9 ist ein Parametriereingang 13 angeschlossen, über welchen Parameterwerte zur Einstellung der Betriebsparameter der Lichtschranke 1 einlesbar sind. Die Parameterwerte werden in einem an die Auswerteeinheit 9 angeschlossenen Parameterspeicher 14 abgespeichert.

[0038] Der Empfänger 6 und sämtliche weiteren an die Auswerteeinheit 9 angeschlossenen Komponenten sind in einem zweiten Gehäuse 15 untergebracht.

[0039] Die beiden Gehäuse 5, 15 sind in Abstand zueinander angeordnet, wobei der Zwischenraum zwischen Sender 3 und Empfänger 6 die Überwachungsstrecke der Lichtschranke 1 bildet. Befindet sich kein Objekt in der Überwachungsstrecke, treffen bei störungsfreiem Betrieb nur die vom Sender 3 emittierten Sendelichtimpulse 2 auf den Empfänger 6 und über die Auswerteeinheit 9 wird der Schaltausgang 11 in dem Schaltzustand "Lichtweg frei" gesetzt. Befindet sich ein Objekt in der Überwachungsstrecke, treffen die Sendelichtimpulse 2 nicht mehr auf den Empfänger 6, so daß der Schaltausgang 11 den Schaltzustand "Lichtweg nicht frei" einnimmt.

[0040] Zur Unterdrückung von Störsignaleinflüssen erfolgt die Auswertung der Empfangssignale am Ausgang des Empfängers 6 mit einem Empfangstakt 1/T_E, der zumindest näherungsweise mit dem Sendetakt 1/T_S des Senders 3 übereinstimmt. Dies kann beispielsweise dadurch erreicht werden, daß die Vorgabe des Empfangstakts 1/T_E über einen Empfangsoszillator 10 erfolgt, der baugleich mit dem Sendeoszillator 4 ist. Somit sind die Abweichungen der Periodendauern T_S und T_E allein durch bauteilbedingte Toleranzen bedingt und dementsprechend gering.

[0041] Jede Periodendauer T_E wird in gleicher Weise in eine vorgegebene Anzahl N von Zeitfenstern Z_n (n = 1, 2, N) unterteilt. Für Sendefrequenzen $1/T_S$ im Bereich von 0,5 kHz ... 10 kHz wird eine Periodendauer T_E typischerweise in etwa N = 30 Zeitfenster Z_n unterteilt. Die Unterteilung der Periodendauer T_E in die Zeitfenster Z_n erfolgt durch eine geeignete Taktvorgabe des Empfangsoszillators 10. Dabei weisen die Zeitfenster Z_n jeweils dieselbe Breite

auf.

[0042] Erfindungsgemäß wird zur Auswertung der Empfangslichtimpulse in der Auswerteeinheit 9 innerhalb jeder Periodendauer T_E registriert, in welches Zeitfenster Z_n die einzelnen Empfangslichtimpulse fallen.

5

[0043] Vorteilhafterweise wird dabei nicht die gesamte Pulsbreite eines durch einen Empfangslichtimpuls generierten Empfangssignalimpulses ausgewertet. Vielmehr wird in der Auswerteeinheit 9 die Vorderflanke eines derartigen Empfangssignalimpulses ausgewertet und registriert, in 10 lichtimpuls. welches Zeitfenster Zn diese Vorderflanke fällt. Dies hat den Vorteil, daß die Breiten der Zeitfenster Zn erheblich kleiner als die Pulsbreiten der Empfangslichtimpulse sein können und dennoch eine genaue Zuordnung eines Empfangslichtimpulses zu einem bestimmten Zeitfenster Z_n möglich ist. Zur Erfassung, ob innerhalb eines Zeitfensters Z_n ein Empfangslichtimpuls vorliegt, wird nach Ablauf des betreffenden Zeitfensters \mathbf{Z}_n jeweils von der Auswerteeinheit $\mathbf{9}$ der Schaltzustand am Ausgang Q des D-Flip-Flops 8 abgefragt und danach das D-Flip-Flop 8 über die Auswerteeinheit 9 am Eingang R zurückgesetzt.

[0044] Die Auswertung in der Auswerteeinheit 9 erfolgt derart, daß die in die einzelnen Zeitfenster Z_n fallenden Empfangslichtimpulse fortlaufend gezählt werden. Dabei wird der Zählerstand B_n eines Zeitfensters Z_n um einen Wert, der in den vorliegenden Ausführungsbeispielen eins beträgt, erhöht, falls innerhalb einer Periodendauer T_E ein Empfangslichtimpuls in dieses Zeitfenster Z_n fällt. Fällt in der darauffolgenden Periodendauer T_E in dieses Zeitfenster Z_n kein Empfangslichtimpuls, so wird der Zählerstand Z_n wieder um einen Wert, der in den vorliegenden Ausführungsbeispielen zwei beträgt, reduziert. Dabei werden die Zählerstände Z_n jeweils nur bis zu einem oberen Grenzwert B_{max} erhöht und jeweils nur bis zu einem unteren Grenzwert $B_{min} = 0$ reduziert.

[0045] Alternativ kann, falls nach Erhöhen eines Zählerstands Z_n während der nächsten Periodendauer T_E kein Empfangslichtimpuls registriert wird, der Zählerstand B_n zunächst unverändert bleiben und erst dann reduziert werden, wenn innerhalb der darauffolgenden Periodendauer T_E wieder kein Empfangslichtimpuls in das Zeitfenster Z_n fällt. [0046] Der Schaltausgang 11 der Lichtschranke 1 nimmt den Schaltzustand "Lichtweg frei" ein, falls wenigstens einer der Zählerstände B_n größer oder gleich als ein vorgegebener Schwellwert A, die sogenannte Auswertetiefe, ist. [0047] Vorteilhafterweise wird der obere Grenzwert B_{max} in Abhängigkeit dieses Schwellwerts A gewählt. In den vorliegenden Ausführungsbeispielen beträgt $B_{max} = 2A - 1$. [0048] Fig. 2 zeigt die Funktionsweise einer ersten Va-

[0048] Fig. 2 zeigt die Funktionsweise einer ersten Variante des erfindungsgemäßen Verfahrens. Der Sender 3 50 emittiert mit der Periodendauer T_S periodisch Sendelichtimpulse 2 zu den Zeiten $t_1 + NT_S$ ($N = 0, 1, 2 \ldots$). Da kein Objekt in der Überwachungsstrecke angeordnet ist, treffen diese Sendelichtimpulse 2 als Empfangslichtimpulse zu den entsprechenden Zeiten auf dem Empfänger 6 auf. Zudem 55 treffen zu den Zeiten t_2 und t_3 Störlichtimpulse auf den Empfänger 6 auf.

[0049] Bei dem Ausführungsbeispiel gemäß Fig. 2 entspricht die Periodendauer T_E exakt der Periodendauer T_S . Demzufolge wird für jede Periodendauer T_E der vom Sender 3 emittierte Sendelichtimpuls 2 als Empfangslichtimpuls in demselben Zeitfenster, im vorliegenden Fall im Zeitfenster Z_8 , registriert. Somit wird von dem Ausgangswert $B_8=0$ der Zählerstand B_8 für jede Periodendauer T_E um den Wert eins erhöht, bis der Schwellwert A=3 erreicht wird und die Lichtschranke 1 in den Schaltzustand "Lichtweg frei" wechselt.

[0050] Der erste Störlichtimpuls zur Zeit t_2 wird während

der ersten Periodendauer T_E im Zeitfenster Z_m registriert, so daß der Zählerstand B_m auf den Wert eins erhöht wird. Nachdem während der nächsten Periodendauer T_E kein Empfangslichtimpuls mehr im Zeitfenster Z_m registriert wird, wird der Zählerstand B_m wieder auf den Wert null zurückgesetzt. Normalerweise würde der Zählerstand B_m um den Wert 2 vermindert. Jedoch sind die Zählerstände B_n auf den minimalen Grenzwert $B_{min}=0$ begrenzt. Dieselbe Auswertung erfolgt auch für den zur Zeit t_3 auftretenden Stör-

[0051] Dadurch, daß die Zählerstände B_n der einzelnen Zeitfenster Z_n fortlaufend erhöht werden, wenn innerhalb aufeinanderfolgender Periodendauern T_E jeweils im gleichen Zeitfenster Z_n ein Empfangslichtimpuls registriert wird, können die vom Sender 3 emittierten Sendelichtimpulse 2 effizient von Störlichtimpulsen, die zufällig auftreten, getrennt werden.

[0052] Besonders vorteilhaft hierbei ist, daß eine Synchronisation des Empfängers 6 auf den Sender 3 der Lichtschranke 1 nicht notwendig ist. Des weiteren ist vorteilhaft, daß die Emission der Sendelichtimpulse 2 nicht verzögert werden muß, um eventuell vorhandenen Störlichtimpulsen auszuweichen. Die Störlichtimpulse können allein durch eine geeignete Wahl des Schwellwerts A eliminiert werden, und zwar unabhängig von der Häufigkeit der Störlichtimpulse als auch unabhängig von der Amplitude der Störlichtimpulse.

[0053] Die Fig. 3 und 4 zeigen eine zweite Variante des erfindungsgemäßen Verfahrens. Diese Variante ist insbesondere für den Fall geeignet, daß die Periodendauer T_{E} nicht exakt mit der Periodendauer T_{S} des Senders 3 übereinstimmt.

[0054] Im Gegensatz zum Ausführungsbeispiel gemäß Fig. 2 wird in diesem Fall bei einem in das Zeitfenster Z_n 35 fallenden Empfangslichtimpuls nicht nur der Zählerstand B_n um den Wert eins erhöht sondern auch der Zählerstand B_{n-1} des benachbarten Zeitfensters Z_{n-1} . Dieser Fall ist in Fig. 3 dargestellt. Nachdem das Objekt aus dem Überwachungsbereich entfernt wurde, gelangen die Empfangslichtimpulse ab dem Zeitpunkt to zum Empfänger 6, wo sie im Zeitfenster Z3 registriert werden, sodaß die Zählerstände B2 und B3 jeweils um 1 erhöht werden bis der Zählerstand B_{max} erreicht wird. [0055] In Fig. 4 sind die Zeitfenster $Z_1 ext{...} ext{.} Z_5$ bei freiem Strahlengang der Lichtschranke 1 dargestellt. Zum Anfangszeitpunkt B(t) liegen für die Zählerstände B2 und B3 jeweils die Maximalwerte $B_{max} = 2A - 1 = 5$ vor, nachdem diese gemäß Fig. 3 auf den Maximalwert hochgezählt wurden.

[0056] Aufgrund der Differenz zwischen T_E und T_S wandert der Empfangslichtimpuls innerhalb der fünf dargestellten Perioden T_E vom Zeitfenster Z₃ zum Zeitfenster Z₄. Dementsprechend wird der Zählerstand B₄ von Z₄ fortlaufend erhöht, während der Zählerstand B2 von Z2 kontinuierlich bis zum unteren Grenzwert B_{min} abnimmt. Da jedoch jeweils für einen in einem Zeitfenster Z_n registrierten Empfangslichtimpuls zwei benachbarte Zählerstände B_n und B_{n-1} erhöht werden, ist gewährleistet, daß das Zeitfenster Z_3 den maximalen Wert $B_3 = 5$ behält und somit oberhalb von A = 3 liegt. Demzufolge verbleibt die Lichtschranke 1 im Schaltzustand "Lichtweg frei", so daß durch die Differenz zwischen T_S und T_E keine Fehlschaltungen der Lichtschranke 1 verursacht werden. Diese Variante des erfindungsgemäßen Verfahrens läßt sich prinzipiell auch im Ausführungsbeispiel gemäß Fig. 2 anwenden.

55 [0057] Fig. 5 zeigt eine weitere Variante des erfindungsgemäßen Verfahrens. In diesem Fall ist ein Objekt in der Überwachungsstrecke angeordnet, so daß die vom Sender 3 emittierten Sendelichtimpulse 2 nicht zum Empfänger 6 gelan-

7 gen. Jedoch treffen pro Periodendauer TE mehrere Störlicht-

impulse auf den Empfänger 6. Damit diese Störlichtimpulse

nicht zu Fehlschaltungen führen, wird der Schwellwert A in

Abhängigkeit der Anzahl C von Zeitfenster Z_n innerhalb einer Periodendauer T_E mit Zählerständen $B_n > 0$ verändert. [0058] Im vorliegenden Ausführungsbeispiel ist wie-

derum T_S exakt gleich groß wie T_E. Somit kann im störungs-

freien Betrieb und bei freiem Lichtweg der Lichtschranke 1

jeweils innerhalb einer Periodendauer TE exakt ein vom

Sender 3 emittierter Sendelichtimpuls 2 am Empfänger 6 re-

gistriert werden. Dabei werden im vorliegenden Beispiel

analog zu Fig. 3 und 4 bei einem im Zeitfenster Zn registrier-

ten Empfangslichtimpuls jeweils die Zählerstände B_{n-1} und

B_n inkrementiert. Werden pro Periodendauer T_E eine Anzahl

= A ist, so muß zwangsläufig eine Störlichteinstrahlung vor-

liegen. Ist dies der Fall, wird der Schwellwert A jeweils um

den Wert eins erhöht. Sinkt die Anzahl C auf C ≤ A wird

der Schwellwert A wieder um den Wert eins reduziert. Da-

durch wird vermieden, daß mehrere in ein Zeitfenster Zn fal-

lende Störlichtimpulse eine Fehlschaltung durch Erreichen des Schwellwerts A generieren. Zudem kann über den Störmeldeausgang 12 eine Störmeldung abgegeben werden,

falls der Schwellwert A einen oberen Grenzwert Astör überschreitet. Das signalisiert, daß aufgrund der starken Stör-

lichteinstrahlung ein sicherer Betrieb der Lichtschranke 1

 $D_o = Grenzwert für D$ $A_{St\"{o}r} = Grenzwert f\"{u}r A$

[0065] Schließlich können die Schaltzustände der Lichtschranke 1 zusätzlich durch Plausibilitätsprüfungen festge-

[0066] So kann bei freiem Strahlengang der Lichtschranke 1 die Nummer n des Zeitfensters Z_n registriert und gespeichert werden, für welches der Zählerstand $B_n \ge A$ registriert wurde. Bei einem Objekteingriff treffen die entsprechenden Sendelichtimpulse 2 nicht mehr auf den Empfänger 6, so daß der Wert B_n bis auf null reduziert wird.

[0067] Wird das Objekt nach kurzer Unterbrechungszeit aus der Überwachungsstrecke entfernt, so muß die 1 dummer des Zeitfensters Zm, dessen Zählerstand Bm dann bei freiem Strahlengang der Lichtschranke 1 den Schwellwert A C von Zählerständen mit $B_n > 0$ registriert, die größer als C_0 15 erreicht, zumindest näherungsweise mit der Nummer n übereinstimmen, da auch T_S und T_E näherungsweise übereinstimmen.

> [0068] Demzufolge wird dann eine Störmeldung ausgegeben, falls der Betrag In – ml einen vorgegebenen Sollwert no

nicht mehr möglich ist. [0059] In Fig. 6 ist eine weitere Variante des erfindungsgemäßen Verfahrens dargestellt. Auch in diesem Ausführungsbeispiel entspricht vorzugsweise die Periodendauer T_E 30 exakt der Periodendauer Ts. Zumindest ist Ts nahezu gleich groß wie T_E . Wiederum werden analog zu Fig. 3 und 4 bei

einem im Zeitfenster Z_n registrierten Empfangslichtimpuls jeweils die Zählerstände B_{n-1} und B_n inkrementiert.

[0060] Bei dem Beispiel gemäß Fig. 6 treffen jeweils zu 35 gleichen Zeitpunkten innerhalb von TE zwei Empfangslichtimpulse in den Zeitfenstern Z₈ und Z₂₂ auf den Empfänger 6, so daß jeweils die Zählerstände B_7 und B_8 und B_{21} und B₂₂ hochgezählt werden und oberhalb des Schwellwerts A liegen.

[0061] Die Empfangslichtimpulse stammen dabei zum einen von Sendelichtimpulsen 2 des eigenen Senders 3 sowie vom Sender einer zweiten Lichtschranke, welche mit demselben Sendetakt 1/T_S arbeitet.

[0062] Da für wenigstens ein Zeitfenster Z_n der Zähler- 45 stand B_n den Schwellwert A erreicht, nimmt die Lichtschranke 1 den Schaltzustand "Lichtweg frei" ein. Gleichzeitig wird in der Auswerteeinheit 9 jedoch die Anzahl D der Zählerstände Bn, die den Schwellwert A erreichen, ausgewertet. Da die Periodendauer Ts exakt oder nahezu gleich 50 T_E ist, können im störungsfreien Betrieb der Lichtschranke 1 bei freiem Strahlengang nur zwei Zählerstände B_n maximal aber drei Zählerstände B_n den Schwellwerts A erreichen. Da jedoch dieser Grenzwert $D_0 = 3$ im vorliegenden Fall überschritten wird, wird über den Störmeldeausgang 12 55 eine Störmeldung ausgegeben.

[0063] Fig. 7 zeigt schließlich eine Zusammenfassung der vorgenannten Auswertungen, die in der Software der Auswerteeinheit 9 nacheinander abgearbeitet werden. In Abhängigkeit dieser Auswerteregeln nehmen der Schaltausgang 11 60 und der Störmeldeausgang 12 definierte Schaltzustände ein. [0064] Dabei bedeuten in Fig. 7

A = Schwellwert (Auswertetiefe)

C = Anzahl der Zählerstände B_n pro Periodendauer T_E mit

 $D = Anzahl der Zählerstand B_n pro Periodendauer T_E mit B_n$

 C_0 = Grenzwert für C

Bezugszeichenliste

25 1 Lichtschranke

2 Sendelichtimpuls

3 Sender

4 Sendeoszillator

5 Erstes Gehäuse

6 Empfänger

7 Verstärker

8 D-Flip-Flops

9 Auswerteeinheit

10 Empfangsoszillator

11 Schaltausgang

12 Störmeldeausgang

13 Parametriereingang

14 Parametrierspeicher

15 Zweites Gehäuse

Patentansprüche

1. Verfahren zum Betrieb einer Lichtschranke, welche einen Sender aufweist, der jeweils innerhalb einer Periodendauer T_S periodisch Sendelichtimpulse emittiert, sowie einen Empfangslichtimpulse empfangenden Empfänger, der an eine Auswerteeinheit angeschlossen ist, dadurch gekennzeichnet, daß in der Auswerteeinheit (9) die Auswertung von Empfangssignalen am Ausgang des Empfängers (6) mit einem Empfangstakt 1/T_E erfolgt, der zumindest näherungsweise mit dem Sendetakt 1/T_S übereinstimmt, dass jede Periodendauer TE auf gleiche Weise in eine vorgegebene Anzahl von Zeitfenstern Z_n (1 < $n \le N$) unterteilt ist, wobei für jede Periodendauer T_E in jedem Zeitfenster Z_n die Anzahl der am Empfänger (6) auftreffenden Empfangslichtimpulse registriert wird, indem ein in einem Zeitfenster Z_n zugeordneter Zählerstand B_n um einen vorgegebenen Wert erhöht wird, falls ein Empfangslichtimpuls innerhalb des Zeitfensters Zn registriert wird und andernfalls der Zählerstand Bn gleichbleibt oder um einen vorgegebenen Wert vermindert wird, und daß die Lichtschranke 1 den Schaltzustand "Lichtweg frei" einnimmt, falls wenigstens der Zählerstand B_n eines Zeitfensters Z_n größer oder gleich als ein vorgegebener Schwellwert A ist.

2. Verfahren zum Betrieb einer Lichtschranke nach Anspruch 1, dadurch gekennzeichnet, daß in der Aus-

8

werteeinheit (9) registriert wird, in welches Zeitfenster Z_n die Vorderflanke eines Empfangslichtimpulses fällt. 3. Verfahren zum Betrieb einer Lichtschranke nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Breiten der Zeitfenster Z_n jeweils gleich groß sind.

- 4. Verfahren zum Betrieb einer Lichtschranke nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß der Sender (3) innerhalb einer Periodendauer T_s einen Sendelichtimpuls (2) emittiert, dessen Pulsbreite 10 etwas größer oder kleiner als die Pulsbreite eines Zeitfensters Z_n ist.
- 5. Verfahren zum Betrieb einer Lichtschranke nach einem der Ansprüche 1–4, dadurch gekennzeichnet, daß die Periodendauer T_E im Bereich von 0,1 ms bis 2 ms 15 liegt und die Anzahl N der Zeitfenster Z_n innerhalb einer Periodendauer T_E etwa 30 beträgt.
- 6. Verfahren zum Betrieb einer Lichtschranke nach einem der Ansprüche 1–5, dadurch gekennzeichnet, daß der Zählerstand B_n bei Registrieren eines Empfangslichtimpulses im Zeitfenster Z_n jeweils um den Wert 1 bis zu einem oberen Grenzwert $B_{max} = 2A-1$ erhöht wird.
- 7. Verfahren zum Betrieb einer Lichtschranke nach einem der Ansprüche 1–6, dadurch gekennzeichnet, daß 25 bei Registrieren eines Empfangslichtimpulses im Zeitfenster Z_n außer dem Zählerstand von B_n auch der Zählerstand eines benachbarten Zeitfensters B_{n-1} erhöht wird.
- 8. Verfahren zum Betrieb einer Lichtschranke nach einem der Ansprüche 1–7, dadurch gekennzeichnet, daß der Zählerstand B_n um den Wert 2 bis zu einem unteren Grenzwert $B_{min}=0$ reduziert wird, falls innerhalb einer Periodendauer T_E im Zeitfenster Z_n kein Empfangslichtimpuls registriert wird.
- 9. Verfahren zum Betrieb einer Lichtschranke nach einem der Ansprüche 1–8, dadurch gekennzeichnet, daß der Schwellwert A in Abhängigkeit der Anzahl C von Zeitfenstern Z_n innerhalb einer Periodendauer T_E mit Zählerständen $B_n > 0$ veränderbar ist.
- 10. Verfahren zum Betrieb einer Lichtschranke nach Anspruch 9, dadurch gekennzeichnet, daß eine Störmeldung generiert wird, falls der Schwellwert A einen oberen Grenzwert $A_{\text{stör}}$ überschreitet.
- 11. Verfahren zum Betrieb einer Lichtschranke nach 45 einem der Ansprüche $1{\text -}10$, dadurch gekennzeichnet, daß eine Störmeldung generiert wird, falls für mehr als eine vorgegebene Anzahl D_0 von Zeitfenstern Z_n , Z_m . . . die zugehörigen Zählerstände B_n , B_m . . . oberhalb des Schwellwerts A liegen.
- 12. Verfahren zum Betrieb einer Lichtschranke nach einem der Ansprüche 1–11, dadurch gekennzeichnet, daß bei freiem Strahlengang die Nummer n des Zeitfensters Z_n registriert wird, dessen Zählerstand B_n oberhalb des Schwellwerts A liegt, und daß nach einem 55 kurzzeitigen Objekteingriff eine Störmeldung generiert wird, falls die Nummer m des Zeitfensters Z_m , für welches nach dem Objekteingriff ein Zählerstand $B_m > A$ erhalten wird, mehr als einen vorgegebenen Betrag n_o von der Nummer n abweicht.
- 13. Lichtschranke zur Durchführung des Verfahrens nach einem der Ansprüche 1–12 mit einem periodisch Sendelichtimpulse (2) emittierenden Sender, einem Empfangslichtimpulse empfangenden Empfänger sowie einer daran angeschlossenen Auswerteeinheit (9), dadurch gekennzeichnet, daß zur Vorgabe des Sendetakts $1/T_s$ ein Sendeoszillator (4) an den Sender (3) angeschlossen ist und ein Empfangsoszillator (10) zur

Vorgabe eines Empfangstakts $1/T_E$ an die Auswerteeinheit (9) angeschlossen ist, wobei die der Periodendauer T_s zumindest näherungsweise entsprechende Periodendauer T_E über den Empfangsoszillator (10) in eine vorgegebene Anzahl von Zeitfenstern Z_n unterteilt ist, daß in der Auswerteeinheit (9) ein Zähler vorgesehen ist, mit welchem fortlaufend die in die einzelnen Zeitfenster Z_n fallenden Empfangslichtimpulse gezählt werden, und daß ein an die Auswerteeinheit (9) angeschlossener Schaltausgang (11) den Schaltzustand "Lichtweg frei" einnimmt, falls wenigstens ein einem Zeitfenster Z_n zugeordneter Zählerstand B_n größer oder gleich als ein vorgegebener Schwellwert A ist.

- 14. Lichtschranke nach Anspruch 13, dadurch gekennzeichnet, daß an die Auswerteeinheit (9) ein Störmeldeausgang (12) angeschlossen ist.
- 15. Lichtschranke nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, daß an die Auswerteeinheit (9) ein Parametriereingang (13) angeschlossen ist. 16. Lichtschranke nach einem der Ansprüche 13–15, dadurch gekennzeichnet, daß der Empfangsoszillator (10) an einen Eingang der Auswerteeinheit (9) angeschlossen ist.
- 17. Lichtschranke nach einem der Ansprüche 13–16, dadurch gekennzeichnet, daß an den Ausgang des Empfängers (6) ein Verstärker (7) angeschlossen ist, dessen Ausgang auf einen Eingang eines D-Flip-Flops (8) geführt ist, wobei ein Ausgang Q des Flip Flops (8) an einen Eingang der Auswerteeinheit (9) angeschlossen ist und ein Ausgang der Auswerteeinheit (9) auf einen Eingang R des D-Flip-Flops (8) geführt ist.
- 18. Lichtschranke nach Anspruch 17, dadurch gekennzeichnet, daß nach Ablauf eines vom Empfangsoszillator (10) generierten Zeitfensters Z_n jeweils von der Auswerteeinheit (9) der Schaltzustand am Ausgang Q des D-Flip-Flops (8) abgefragt und danach das D-Flip-Flop (8) über die Auswerteeinheit (9) am Eingang R zurückgesetzt wird.
- 19. Lichtschranke nach einem der Ansprüche 13–18, dadurch gekennzeichnet, daß der Sende- 4 und der Empfangsoszillator (10) jeweils von einem Quarzoszillator oder einem RC-Oszillator gebildet sind.

Hierzu 4 Seite(n) Zeichnungen

Nummer: Int. Cl.⁷: Veröffentlichungstag: DE 199 24 351 C2 G 01 V 8/12 24. Juli 2003

Fig. 2

Nummer: Int. Cl.⁷: Veröffentlichungstag:

DE 199 24 351 C2 G 01 V 8/12 24. Juli 2003

Fig. 3

(● = Position des Empfangslichtpulses)

Fig. 4

Nummer: Int. Cl.7: Veröffentlichungstag:

G 01 V 8/12

DE 199 24 351 C2

24. Juli 2003

Fig. 5

Nummer: Int. Cl.⁷:

Veröffentlichungstag:

DE 199 24 351 C2 G 01 V 8/12

24. Juli 2003

Fig 7