Large Time Behaviour and Eigenvalue Problems for Finite State Mean-Field Particle Systems

Sarath A Y, Rajesh Sundaresan

Indian Institute of Science

17 Aug 2019

ightharpoonup N particles. Finite state space \mathcal{Z} .

- N particles. Finite state space Z.
- ▶ State of particle n at time t is $X_n^N(t) \in \mathcal{Z}$.

- ightharpoonup N particles. Finite state space \mathcal{Z} .
- ▶ State of particle n at time t is $X_n^N(t) \in \mathcal{Z}$.
- Empirical measure at time t:

$$\mu_N(t) = \frac{1}{N} \sum_{n=1}^N \delta_{X_n^N(t)} \in M_1(\mathcal{Z}).$$

- ightharpoonup N particles. Finite state space \mathcal{Z} .
- ▶ State of particle n at time t is $X_n^N(t) \in \mathcal{Z}$.
- Empirical measure at time t:

$$\mu_N(t) = \frac{1}{N} \sum_{n=1}^N \delta_{X_n^N(t)} \in M_1(\mathcal{Z}).$$

▶ Mean-field interaction: $z \to z'$ transition at rate $\lambda_{z,z'}(\mu_N(t))$.

- N particles. Finite state space Z.
- ▶ State of particle n at time t is $X_n^N(t) \in \mathcal{Z}$.
- Empirical measure at time t:

$$\mu_N(t) = \frac{1}{N} \sum_{n=1}^N \delta_{X_n^N(t)} \in M_1(\mathcal{Z}).$$

- ▶ Mean-field interaction: $z \to z'$ transition at rate $\lambda_{z,z'}(\mu_N(t))$.
- μ_N is a Markov process on $M_1(\mathcal{Z})$.

- ightharpoonup N particles. Finite state space \mathcal{Z} .
- ▶ State of particle n at time t is $X_n^N(t) \in \mathcal{Z}$.
- Empirical measure at time t:

$$\mu_N(t) = \frac{1}{N} \sum_{n=1}^N \delta_{X_n^N(t)} \in M_1(\mathcal{Z}).$$

- ▶ Mean-field interaction: $z \to z'$ transition at rate $\lambda_{z,z'}(\mu_N(t))$.
- μ_N is a Markov process on $M_1(\mathcal{Z})$.
- ▶ Goal: understand large time behaviour of μ_N , and convergence to stationarity.

▶ *N* nodes accessing a common wireless medium.

- ▶ *N* nodes accessing a common wireless medium.
- ▶ Interaction among nodes via the distributed MAC protocol.

- ▶ *N* nodes accessing a common wireless medium.
- ▶ Interaction among nodes via the distributed MAC protocol.
- ▶ State $X_n^N(t)$ represents aggressiveness of packet transmission.

- ▶ *N* nodes accessing a common wireless medium.
- ▶ Interaction among nodes via the distributed MAC protocol.
- ▶ State $X_n^N(t)$ represents aggressiveness of packet transmission.

Figure: Set of allowed transitions in WiFi example

- State evolution:
 - ▶ Becomes less aggressive after a collision.
 - Moves to the most aggressive state after a successful packet transmission.

A sample path of μ_N in WiFi example

Figure: Evolution of states in a WiFi network under the MAC protocol

A sample path of μ_N in WiFi example

Figure: Evolution of states in a WiFi network under the MAC protocol

▶ Multiple stable regions in the system. Transition between two stable region occur over large time durations.

$$\dot{\mu}(t) = \Lambda_{\mu(t)}^* \mu(t), \, \mu(0) = \nu.$$

▶ Let $\mu_N(0) \to \nu$. Then, over [0, T], the process μ_N is close to the McKean-Vlasov equation:

$$\dot{\mu}(t) = \Lambda_{\mu(t)}^* \mu(t), \, \mu(0) = \nu.$$

▶ Large deviations of μ_N in $D([0, T], M_1(\mathcal{Z}))$.

$$\dot{\mu}(t) = \Lambda^*_{\mu(t)}\mu(t), \ \mu(0) = \nu.$$

- ▶ Large deviations of μ_N in $D([0, T], M_1(\mathcal{Z}))$.
- ▶ Multiple ω -limit sets for this dynamics: stable attractors, limit cycles, etc.

$$\dot{\mu}(t) = \Lambda^*_{\mu(t)}\mu(t), \ \mu(0) = \nu.$$

- ▶ Large deviations of μ_N in $D([0, T], M_1(\mathcal{Z}))$.
- ▶ Multiple ω -limit sets for this dynamics: stable attractors, limit cycles, etc.
- ▶ Freidlin-Wentzell quasipotential $\tilde{V}(K_i, K_j)$: minimum cost of moving from K_i to K_j .

$$\dot{\mu}(t) = \Lambda_{\mu(t)}^* \mu(t), \, \mu(0) = \nu.$$

- ▶ Large deviations of μ_N in $D([0, T], M_1(\mathcal{Z}))$.
- ▶ Multiple ω -limit sets for this dynamics: stable attractors, limit cycles, etc.
- ▶ Freidlin-Wentzell quasipotential $\tilde{V}(K_i, K_j)$: minimum cost of moving from K_i to K_j .
- ▶ Obtain one-step transition probability of μ_N near the ω -limits sets:

$$P(K_i, K_j) \simeq \exp\{-N\tilde{V}(K_i, K_j)\}.$$

- ▶ Large time behaviour of μ_N (in terms of \tilde{V}):
 - Mean exit time from ω -limit sets.
 - Estimates on probability of reaching a given ω -limit set.
 - Most likely cycle of ω -limits sets.

- Large time behaviour of μ_N (in terms of \tilde{V}):
 - Mean exit time from ω -limit sets.
 - Estimates on probability of reaching a given ω -limit set.
 - ▶ Most likely cycle of ω -limits sets.
- Mixing and convergence to the invariant measure:
 - ▶ A constant $\Lambda \ge 0$ in terms of \tilde{V} .

- ▶ Large time behaviour of μ_N (in terms of \tilde{V}):
 - Mean exit time from ω -limit sets.
 - Estimates on probability of reaching a given ω -limit set.
 - ▶ Most likely cycle of ω -limits sets.
- Mixing and convergence to the invariant measure:
 - A constant $\Lambda \geq 0$ in terms of \tilde{V} .
 - ▶ If time is of the order $\exp\{N(\Lambda O(1))\}$, a lower bound on the transition probability of μ_N .

- ▶ Large time behaviour of μ_N (in terms of \tilde{V}):
 - Mean exit time from ω -limit sets.
 - Estimates on probability of reaching a given ω -limit set.
 - Most likely cycle of ω -limits sets.
- Mixing and convergence to the invariant measure:
 - ▶ A constant $\Lambda \ge 0$ in terms of \tilde{V} .
 - ▶ If time is of the order $\exp\{N(\Lambda O(1))\}$, a lower bound on the transition probability of μ_N .
 - ▶ If time is of the order $\exp\{N(\Lambda + O(1))\}$, μ_N is very close to its invariant measure.

- ▶ Large time behaviour of μ_N (in terms of \tilde{V}):
 - ▶ Mean exit time from ω -limit sets.
 - Estimates on probability of reaching a given ω -limit set.
 - ▶ Most likely cycle of ω -limits sets.
- Mixing and convergence to the invariant measure:
 - A constant $\Lambda \geq 0$ in terms of \tilde{V} .
 - ▶ If time is of the order $\exp\{N(\Lambda O(1))\}$, a lower bound on the transition probability of μ_N .
 - ▶ If time is of the order $\exp\{N(\Lambda + O(1))\}$, μ_N is very close to its invariant measure.
- ▶ Scaling of the second largest eigenvalue (assuming reversibility): $\lambda_2^N \simeq \exp\{-N\Lambda\}$.
 - ▶ Consequence: μ_N mixes slowly if there are metastable states $(\Lambda > 0)$.