Decision True Classifier : Used for both classification and Regression problem.

- a) Entropy and aini Index -> Purity Split
- b) Information Gain -> features to select for DT construction

age = 14

if (age < 15):

Print (11 The pincon is in School)

elif (age >15 and age < 21):

Print (4 The pinson may be college)

age >15 and age < 21

the Yes

Print (11 The person her pained)

The person her pained)

Datant

Binary Clanification Problem

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast <	Hot	High	Weak	Yes Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

1 Party -> Pure or Impure Split

To check pure or impure split Mathematically

2) What feature you need scleet for Splitting -> Information Gain }

O {Binary clanification}

Entropy = - 2 Plage

2 Luni Impunity

$$C \cdot I = I - \sum_{i=1}^{N} (P)^{2}$$

P+ means probability of being positive(1/Y)

ntropy of C1 node

$$H(C_1) = -P_+ \log_2 P_+ - P_- \log_2 P_-$$

$$= -\frac{3}{6} \log_2 \frac{3}{6} - \frac{3}{6} \log_2 \frac{3}{6}$$

$$H(c_2) = -\frac{3}{3} \log_2 \frac{3}{3} - 0 \log_2 0$$

= -1 log_2 1 => 0 => Pure Spix

2) Gin i Impuny

G:
$$I = 1 - \frac{3}{2} (p)^{2}$$
 $= 1 - ((p_{+})^{2} + (p_{-})^{2})$
 $= 1 - ((\frac{1}{2})^{2} + (\frac{1}{2})^{2})$
 $= 0.5 =)$ Impun Split

 $= 0.5 =)$ Impun Split

How to decide which feature is select to make this decision tree split?

Information measure the effectiveness of a feature in reducing uncertainty (or impurity) in a dataset.

Information chain
$$\ell$$

The first of the fir

$$|1(c_1) = -\frac{6}{8} \log_2 \frac{6}{8} - \frac{2}{8} \log_2 \frac{2}{8}$$

 $|S_{\mathbf{v}}|$ = Number of samples child node $S_{\mathbf{v}}$.

|S| =Total number of samples in the parent node

Number of child nodes created by the split.

Higher Information Gain

Feature splits the data effectively and

Gain(s,f,)= 0.049

When should use Entropy vs Gini impurity?

Entropy Vs Gini Impunity

$$G.I = 1 - \sum_{i=1}^{n} (p)^{2} =$$