UNSUPERVISED LEARNING

HOMEWORK - WEEK 16

Theofilus Arifin Christofer Bryan N. K. Ramlan Apriyansyah Muhammad Iqbal

Hanifah Arrasyidah Christopher Stephen Muhammad Rizq N. A. Ujang Pian

Exploratory Data Analysis

Data 200

Data Info

Berdasarkan pengematan yang telah dilakukan, ada beberapa kolom yang bertipe data tidak sesuai.

Descriptive Analysis

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 62988 entries, 0 to 62987
Data columns (total 23 columns):
 # Column
                       Non-Null Count Dtype
    MEMBER NO
                       62988 non-null int64
    FFP_DATE
                       62988 non-null object
    FIRST FLIGHT DATE 62988 non-null object
    GENDER
                       62985 non-null object
    FFP_TIER
                       62988 non-null in $4
    WORK_CITY
                       60719 non-null object
    WORK_PROVINCE
                       59740 non-null object
    WORK_COUNTRY
                       62962 non-null object
    AGE
                       62568 non-null float64
    LOAD_TIME
                       62988 non-null object
 10 FLIGHT COUNT
                       62988 non-null int64
11 BP_SUM
                       62988 non-null int64
 12 SUM YR 1
                       62437 non-null float64
 13 SUM YR 2
                       62850 non-null float64
 14 SEG_KM_SUM
                       62988 non-null int64
 15 LAST_FLIGHT_DATE 62988 non-null object
 16 LAST_TO_END
                       62988 non-null int64
 17 AVG_INTERVAL
                       62988 non-null float64
 18 MAX_INTERVAL
                       62988 non-null int64
 19 EXCHANGE COUNT
                       62988 non-null int64
 20 avg discount
                       62988 non-null float64
 21 Points_Sum
                       62988 non-null int64
 22 Point_NotFlight
                       62988 non-null int64
dtypes: float64(5), int64(10), object(8)
memory usage: 11.1+ MB
```

Data 200

Null

Values

Terdapat beberapa kolom kosong yaitu:

1.WORK_CITY = 2269
2.WORK_PROVINCE = 3248
3.WORK_COUNTRY = 26
4.AGE = 420
5.SUM_YR_1 = 551
6.SUM_YR_2 = 138

Descriptive Analysis

MEMBER_NO	0	
FFP_DATE	0	
FIRST_FLIGHT_DATE	0	
GENDER	3	
FFP_TIER	0	
WORK_CITY	2269	
WORK_PROVINCE	3248	
WORK_COUNTRY	26	
AGE	420	
LOAD_TIME	0	
FLIGHT_COUNT	0	
BP_SUM	0	
SUM_YR_1	551	
SUM_YR_2	138	
SEG_KM_SUM	0	
LAST_FLIGHT_DATE	421	
LAST_TO_END	0	
AVG_INTERVAL	0	
MAX_INTERVAL	0	
EXCHANGE_COUNT	0	
avg_discount	0	
Points_Sum	0	
Point_NotFlight	0	
dtype: int64		

Descriptive Analysis

duplikat Values

Tidak ada Values yang duplicated

```
df.duplicated().sum()
```

0

Descriptive Analysis

Tipe data object yang memiliki unique value banyak

Tipe data Object yang memiliki unique value banyak :

• FFP DATE : 3068

• FIRST FLIGHT DATE : 3406

• WORK CITY : 3234

• WORK_PROVINCE : 1165

• WORK_COUNTRY : 118

• LAST_FLIGHT_DATE : 731

```
df.select_dtypes(include='object').nunique()
FFP_DATE
                     3068
FIRST_FLIGHT_DATE
                     3406
GENDER
WORK_CITY
                     3234
WORK_PROVINCE
                     1165
WORK_COUNTRY
                      118
LOAD_TIME
LAST_FLIGHT_DATE
                      731
dtype: int64
```

DescriptiveAnalysis

Merubah tipe data Object ke Date Time

Merubah tipe data Object ke Date Time:

- FFP_DATE
- FIRST_FLIGHT_DATE
- LAST_FLIGHT_DATE
- LOAD_TIME

```
df['FFP_DATE'] = pd.to_datetime(df['FFP_DATE'], errors='coerce')
df['FIRST_FLIGHT_DATE'] = pd.to_datetime(df['FIRST_FLIGHT_DATE'], errors='coerce')
df['LAST_FLIGHT_DATE'] = pd.to_datetime(df['LAST_FLIGHT_DATE'], errors='coerce')
df['LOAD_TIME'] = pd.to_datetime(df['LOAD_TIME'], errors='coerce')
```

Descriptive Analysis

Mengelompokkan data Menjadi Numerikal, kategorikal dan Date Time

```
Kategori =
["GENDER","WORK CITY","WORK PROVINCE","WORK COU
NTRY" 1
Numbering =
["FFP_TIER","AGE","FLIGHT_COUNT","BP_SUM","SUM_YR_1",
"SUM_YR_2","SEG_KM_SUM","LAST_TO_END","AVG_INTERVAL
","MAX INTERVAL","EXCHANGE COUNT","avg discount",
"Points Sum", "Point NotFlight" ]
Date Time =
["FFP_DATE","FIRST_FLIGHT_DATE","LAST_FLIGHT_DATE",
"LOAD TIME"]
```

```
df.select dtypes(include='int64'or'float64').columns.tolist()
['MEMBER_NO',
 'FFP_TIER',
 'FLIGHT_COUNT',
 'BP SUM',
 'SEG KM SUM',
 'LAST TO END',
 'MAX INTERVAL',
 'EXCHANGE_COUNT',
 'Points Sum',
 'Point_NotFlight']
df.select_dtypes(include='object').columns.tolist()
['GENDER', 'WORK_CITY', 'WORK_PROVINCE', 'WORK_COUNTRY']
df.select_dtypes(include='datetime64[ns]').columns.tolist()
['FFP_DATE', 'FIRST_FLIGHT_DATE', 'LOAD_TIME', 'LAST_FLIGHT_DATE']
```

Univariate Analysis

Univariate Analysis menggunakan Histogram Plot & Box Plot untuk tipe data Number

Histogram Plot & Box Plot:

- 1.Terdapat beberapa kolom dengan persebaran data Positive Skew seperti FLIGHT_COUNT, BP_SUM, SUM_YR_1, SUM_YR_2, SEGMEN_KM_SUM, AVG_INTERVAL dan lain-lain
- 2.Terdapat beberapa kolom dengan persebaran data Normal seperti AGE dan avg_discount

Univariate Analysis menggunakan Bar Plot dan Count Plot untuk tipe data Kategorikal

Bar Plot dan Count Plot:

- 1. Persebaran data pada Kolom GENDER di dominasi oleh Laki-laki , sekitar 45.000 dari keseluruhan data
- 2.pada kolom WORK_CITY, WORK_COUNTRY, & WORK_PROVINCE diambil top 20 dari keseluruhan data

Univariate Analysis

Univariate Analysis

Univariate Analysis menggunakan Histogram Plot untuk tipe data Date Time

Histogram plot:

- 1. Dapat terlihat dari grafik diatas bahwa terjadi kenaikan trend setiap tahunnya.
- 2.terdapat keanehan pada Distribusi kolom LOAD_TIME, karena perseberan data yang sama di setiap row dan menjadi pertimbangan untuk tidak menggunakan feature tersebut

Multivariate Analysis

Multivariate Analysis menggunakan Heatmap

Heatmaps:

Terdapat beberapa fitur yang memiliki korelasi yang besar, maka untuk fitur-fitur yang memiliki nilai korelasi lebih dari 0.85 untuk bisa langsung dieliminasi salah satunya sehingga didapatkan 1 fitur yang tidak redundant. Diantaranya adalah:

- 1. BP_SUM dan Points_SUM = 0.92
- 2. BP_SUM dan SUM_YR_2 = 0.88
- 3. BP_SUM dan SEG_KM_SUM = 0.92

Feature Extraction

Before

Handling Ouliers

Setelah dilakukan pengecekan outlier pada kolom numerikal dengan menggunakan boxplot didapat bahwa seluruh kolom memiliki outlier,

After

Handling Ouliers

Karena
visualisasi outlier
dilakukan menggunakan
boxplot, maka
penghapusan outlier
akan menggunakan
metode IQR. Berikut
adalah hasil dari
penghapusan
outlier.

Data 200

Before

Log

Transformation

Dapat dilihat bahwa hampir seluruh fitur memiliki skewed distribution dan memiliki skala distribusi yang sangat jauh,

After

Log Transformation

Setelah dilakukan log transform, dapat dilihat bahwa hampir seluruh kolom pada kategori numerik sudah memiliki distribusi yang lebih simetrik dan memiliki skala yang sama

Feature Engineering

```
# Membuat mapping dari kategori ke nilai numerik
gender_mapping = {'Male': 0, 'Female': 1}
df_filtered['GENDER'] = df_filtered['GENDER'].map(gender_mapping)
```

Feature Encoding

Feature encoding akan dilakukan pada fitur kategorikal yaitu fitur 'Gender'agar fitur dapat direpresentasikan sebagai fitur numerik

Data 200

Monetary Feature

Pada fitur ini kita dapat melihat berapa total pengeluaran customer ketika melakukan penerbangan

Recency Feature

Pada fitur ini kita dapat melihat kapan terakhir kali customer melakukan penerbangan (Dalam jumlah hari)

AVG_DISTANCE Feature

Pada fitur ini kita dapat melihat jarak rata-rata yang ditempuh customer ketika melakukan penerbangan

Feature Engineering

	monetary	count
0	0.000000	136
1	7.244942	31
2	7.139660	29
3	7.215975	29
4	7.560601	28
20316	15.674517	1
20317	16.081355	1
20318	15.286521	1
20319	8.953252	1
20320	5.916202	1

	recency	count
0	3	206
1	0	198
2	4	191
3	1	189
4	11	185
•••		
721	403	4
722	716	4
723	687	4
724	724	3
725	454	1

AVG_DISTANCE
3.667844
3.838365
3.662903
3.797679
3.588507

Monetary Feature

Recency Feature

AVG_DISTANCE Feature

Feature Engineering

Binning

```
# Menggunakan pd.qcut untuk membuat bins pada kolom 'AGE'

df_filtered['age_bin'] = pd.qcut(df_filtered['AGE'], q=5, labels=False)

# Menggunakan pd.qcut untuk membuat bins pada kolom 'avg_discount'

df_filtered['avg_discount_level'] = pd.qcut(df_filtered['avg_discount'], q=5, labels=False)

# Membuat bins untuk mengelompokan jumlah poin

df_filtered['Points_Sum_level'] = pd.qcut(df_filtered['Points_Sum'], q=5, labels=False)

# Membuat bins untuk mengelompokan jumlah penukaran poin

df_filtered['exchange_count_bin'] = pd.cut(df_filtered['EXCHANGE_COUNT'], bins=4, labels=False)
```

Pada fitur 'AGE', 'avg_discount', 'Points_Sum', dan 'EXCHANGE_COUNT' akan dilakukan dilakukan labeling sesuai dengan quantile masing-masing fitur

Data 200

Feature Selection

Setelah dilakukan preprocessing dan feature engineering, maka fitur yang akan kami gunakan untuk melakukan clustering customer penerbangan adalah kolom 'AGE', 'FLIGHT_COUNT', 'recency', 'monetary', dan 'AVG_DISTANCE'.

	AGE	FLIGHT_COUNT	recency	monetary	AVG_DISTANCE
11525	3.970292	2.772589	39	18.188687	3.667844
11738	3.663562	2.639057	26	18.176985	3.838365
11886	4.025352	2.772589	35	18.026103	3.662903
12003	3.784190	2.639057	85	17.926183	3.797679
12004	3.367296	2.833213	217	7.923348	3.588507
•••					
62962	3.465736	1.098612	490	6.732211	5.380239
62963	4.110874	1.098612	250	6.908755	5.380239
62964	3.713572	1.098612	414	6.722630	5.380239
62965	3.555348	1.098612	416	6.722630	5.380239
62978	3.891820	1.098612	280	5.916202	6.039104

Clustering Modeling

Elbow Method

Dari hasil Elbow Method dapat dilihat bahwa:

• Cluster yang optimalnya dibuat adalah sebanyak 2 cluster

Clustering menggunakan KMeans

df_r	esult[esult	= pd.read_csv(' 'Cluster_Labels			.csv')	
V 0.13	AGE	FLIGHT_COUNT	recency	monetary	AVG_DISTANCE	Cluster_Labels
0	38.0	13	26	17722.0	1928.846154	Olustei_Labels
1	58.0	4	487	7900.0	5930.750000	1
2	43.0	13	85	15875.0	1732.461538	0
3	34.0	14	104	15930.0	1770.357143	0
4	38.0	17	67	16742.0	1359.764706	0
30635	40.0	2	414	830.0	184.000000	1
30636	34.0	2	416	830.0	184.000000	1
30637	37.0	2	410	830.0	184.000000	1
30638	38.0	2	119	910.0	184.000000	1
30639	48.0	2	280	370.0	380.000000	1
30640 ro	ws × 6 (columns				

Dari hasil Clustering dapat dilihat bahwa setelah dilakukan clustering menggunakan KMeans data akan terbagi menjadi dua kelompok yang terlihat pada feature Cluster_Labels ada yang 0 dan ada yang 1. Dengan deskripsi yang termasuk di Cluster 0 ada 12965 data, sedangkan Cluster 1 ada 17675 data.

Evaluasi Cluster

Dari hasil Evaluasi Cluster dapat dilihat bahwa jumlah cluster yang optimal mungkin ada di bawah atau di atas angka yang dievaluasi, karena pada titik tersebut silhouette score tertinggi.

Evaluasi Cluster

Dari hasil Evaluasi Cluster yang menggunakan PCA dapat dilihat bahwa:

- Berdasarkan gambar, tiga titik terlihat berada pada satu tingkat kompresi dan saling berdekatan. Maka dapat dikatakan bahwa kedua komponen ini sangat penting dalam memahami hubungan antar data dalam dataset.
- Gambar ini juga menunjukkan bahwa cluster tersebut sangat mungkin terjadi pergerakan dari satu cluster ke cluster lainnya. Hal ini dapat terlihat dari sebaran titik yang menggantung di sepanjang akhir PCA dimensi yang lainnya.

Business Recomendation

Deskripsi Statistik pada Cluster

Dari visualisasi di atas dapat disimpulkan sebagai berikut:

1. Penggemar traveling (cluster 0)

Orang-orang pada cluster 0 ini memiliki karakteristik sebagai berikut:

- Lebih sering melakukan penerbangan dengan rata-rata jumlah penerbangan sebanyak 10 penerbangan.
- Terakhir kali melakukan penerbangan kurang dari 3 bulan yang lalu saat data ini diambil.
- Tingkat spend untuk traveling cukup tinggi, dengan rata-rata sebesar USD 7,819.

2. Bukan penggemar traveling (cluster 1)

Orang-orang pada cluster 1 ini memiliki karakteristik sebagai berikut:

- Lebih jarang melakukan penerbangan dengan rata-rata jumlah penerbangan sebanyak 3 penerbangan.
- Terakhir kali melakukan penerbangan lebih dari 10 bulan yang lalu saat data ini diambil.
- Tingkat spend untuk traveling rendah, dengan rata-rata sebesar USD 2,824.

Rekomendasi Bisnis:

- 1. Memberikan promo khusus kepada customers di cluster 1 dengan tujuan meningkatkan intensitas penerbangan yang dilakukan.
- 2. Memberikan kartu VIP kepada customers di cluster 0 dengan tujuan memberikan eksklusivitas agar mereka tetap mempertahankan loyalitas kepada perusahaan.

THANK YOU

HOMEWORK -UNSUPERVISED LEARNING