25. 4. 11. 오후 11:38 research1

1. Contradictions in the Traditional Theory

The mainstream model proposes:

- The Moon's uneven gravitational pull raises ocean tides on the near side of Earth and causes a symmetric bulge on the far side;
- Tidal friction transfers angular momentum from Earth to the Moon, causing the Moon to slowly recede.

However, key issues include:

- If the Moon can lift ocean masses, why can't Earth—being much more massive—pull the Moon significantly closer?
- Continuous tidal friction should cause extreme geophysical shifts and rapid deceleration of Earth's rotation, but observations do not support this;
- The tidal bulge is consistently ahead of the Moon's position rather than aligned—something the traditional theory cannot adequately explain;
- If Earth is "throwing" the Moon away due to angular momentum transfer, **Earth's own** orbital or rotational speed should increase—but data shows that **Earth's rotation is** actually slowing down, violating basic conservation expectations;
- Both the near side and **the far side** of Earth—aligned in a straight line with the Moon—experience ocean tide bulges. This contradicts the logic of a unidirectional gravitational pull.

2. Proposal: Spatial Structure Disturbance Theory

We propose:

- The Moon, by occupying its spatial region, displaces or restructures local spatial electron configurations;
- This displacement results in a slight decrease in gravitational field density in that region;
- When this "gravity reduction zone" aligns with parts of Earth, ocean water in that region experiences slightly weaker centripetal force;
- Liquids are highly responsive to even minimal variations, so a reduction of just one part in ten million can visibly raise sea levels due to massive fluid volume;
- Since Earth rotates faster than the Moon orbits, the affected ocean area has already rotated slightly ahead of the Moon by the time the disturbance reaches it—explaining the **forward tidal bulge**;
- Likewise, the Earth's opposite side (far from the Moon) experiences symmetrical spatial field disturbance, causing a **mirrored bulge**—not due to gravitational pulling, but due to matching reduction in gravitational binding.

3. Observational Features and Predictive Characteristics

Key testable characteristics include:

25. 4. 11. 오후 11:38 research

- Tidal bulges consistently lead the Moon's sub-point on Earth;
- Earth-Moon tidal alignment shows temporal lag inconsistent with gravitational equilibrium models;
- Lunar recession and Earth's deceleration do not match predictions from friction-based models;
- The far side of Earth also shows tidal bulging, which cannot be explained by single-direction gravitational attraction;
- Earth's rotation slows annually, contradicting the hypothesis that angular momentum is being transferred to accelerate the Moon outward.

4. Potential Applications and Significance

If validated, this theory implies:

- Tides are not a mechanical gravitational effect, but rather the result of spatial structure perturbation altering effective gravitational distribution;
- Models of the Earth-Moon system based on angular momentum transfer need significant revision;
- Tidal forecasting should incorporate "spatial electron disturbance indicators" as new variables;
- Future spacecraft navigating within the Earth-Moon system should account for gravitational field diffusion when modeling trajectories.

5. Conclusion

This theory remains in its initial formulation stage, but the logical consistency and alignment with observable anomalies make it worth deeper exploration.

I do not aim to overthrow established physics, but rather to illuminate overlooked inconsistencies between theory and reality.

Thank you for reading.

HAKBONG OH