Adv Topics 2 (Lesieutre) September 2, 2021

Problem 1. For each of the following matrices T, choose a couple sample vectors $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$ and compute $T\mathbf{v}$. What does the matrix do to a vector, geometrically? What does it do to the unit square?

- a) $\begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$
- b) $\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1 & 6 \\ 0 & 2 \end{pmatrix}$
- $d) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- e) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- $f) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
- $g) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
- $h) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$
- $i) \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$

Problem 5. One property of a linear map is that it rescales all areas by the same scaling factor.

a) For each of the 2×2 maps in the first problem, what is the scaling factor?

b) The determinant of a 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is ad - bc. Compute the determinants of the 2×2 matrices.

c) Can you guess a formula for the determinant of the product of two matrices?

Problem 6. What is the determinant of the 3×3 matrix

$$\begin{pmatrix} 4 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 2 & 2 \end{pmatrix}$$
?

Can you guess what the geometric meaning of this might be? (We'll learn another way to compute determinants later on.)

Problem 7. One application of this is in the formula for change of variables in multiple integrals. Suppose you want to integrate a function $f(x,y)$ over a non-rectangular region S . Maybe you can parametrize the region by $x(s,t)$ and $y(s,t)$ where $a \le s \le b$ and $c \le t \le d$.
a) One case of this would be integrating over a circle. How would you parametrize a circle, using the description above?
b) Imagina the rectangle $a < c < b$ and $c < t < d$ is covered with a "mosh" of rectangles
b) Imagine the rectangle $a \le s \le b$ and $c \le t \le d$ is covered with a "mesh" of rectangles of width ds and height dt . Applying $x(s,t)$ and $y(s,t)$, we get a mesh covering S , but the elements won't be rectangles anymore.
Imagine a small rectangle based at (s_0, t_0) with sides of length ds and dt , parallel to the axes. When you apply $x(-, -)$ and $y(-, -)$, what happens to this small rectangle? Imagine ds and dt are so small that the map looks locally linear there. What is the area of the image?
c) How would you compute an integral over your area, using this formula?
d) I always find this formula confusing. Use it to compute the area of a circle to make sure everything works.

Problem 8. Let's do another integral over a strange region.

a) Consider the area S between y=0 and $y=x^2$ satisfying $0 \le x \le 2$. How could you parametrize this region by functions x(s,t) and y(s,t) where s,t range over a rectangular region?

b) Compute

$$\iint_{S} xy \, dA$$

using change of variables.

c) Compute

$$\iint_{S} xy \, dA$$

directly, by choosing suitable bounds for the intgral.

