Arc Length and Surface Area Assignment

Author Aaron Tresham

Date 2017-06-23T22:51:29

Project 9189c752-e334-4311-afa9-605b6159620a

Location <u>07 - Arc Length and Surface Area Assignments/Arc Length and Surface</u>

Area Assignments.sagews

Original file

Arc Length and Surface Area Assignments.sagews

Arc Length and Surface Area Assignment

Question 0

Watch the lecture video here.

Did you watch the video? [Type yes or no.]

Question 1

Approximate the length of $f(x)=x^4$ from x=0 to x=1 using the following steps:

- Divide the interval [0,1] into 5 equal subdivisions of width $\Delta x = \frac{1}{5}$.
- Calculate the length of the line segment from $(x_i, f(x_i))$ to $(x_{i+1}, f(x_{i+1}))$ using the distance formula for i = 0, 1, 2, 3, 4.
- Add up the five lengths from the last step. This is your approximation. Convert your approximation to a decimal using N(_).
- Now use numerical_integral to calculate the actual arc length.
- Calculate the difference between your approximation and the actual value (this is your error). [Answer: error ≈ 0.0059]

Question 2

Find the length of $f(x)=\sqrt{1-x^2}$ from x=-1 to x=1. [Answer: π]

Question 3

Find the area of the surface formed by rotating around the x-axis the graph of $f(x)=\sin(x)$ from x=0 to $x=\pi$. [Answer: pprox 14.42]

1

Question 4

Find the area of the surface formed by rotating around the y-axis the graph of $g(y)=y^3$ from y=1 to y=2. [Answer: pprox 199.48]

generated 2017-06-23T22:51:29 on CoCalc