Project Development Phase Model Performance Test

Date	19 November 2022
Team ID	PNT2022TMID04255
Project Name	University Admit Eligibility Predictor
Maximum Marks	10 Marks

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot					
1.	Metrics	Regression Model: MAE - , 0.04555 MSE - , 0.00426 RMSE - 0.06527 , R2 score - 0.71683 Classification Model: Confusion Matrix - Accuracy Score- Classification Report -	Mean Squared Error (MSE) In [25]: from sklearn.metrics import mean_squared_error, r2_score mse = mean_squared_error(pred_test,y_test) In [26]: mse					
			Out[26]: 0.004260810050671112					
			Root Mean Squared Error (RMSE) In [27]: rmse = np.sqrt(mse)					
			In [28]: rmse Out[28]: 0.06527488070208257					
			R2 Score In [29]: r2_score(pred_test, y_test)					
			Out[29]: 0.7168318679092451 Mean Absolute Error (MAE)					
			<pre>In [32]: from sklearn.metrics import mean_absolute_error mean_absolute_error(pred_test, y_test) Out[32]: 0.0455524319663054</pre>					
			- 700					
			False - 16 91 - 600 - 500 - 400					
			- 300 - 200 - 100					
			False True Predicted label					

			Out[44]: C In [56]: fi	Accuracy	on Report	rt classi rt(actual	fication_re	d)))
			We	accuracy macro avg eighted avg	0.52 0.82	0.52 0.82	0.82 0.52 0.82	1000 1000 1000
2.	Tune the Model	Hyperparameter Tuning - Validation Method –	In [63]: from : from : from : from : X, y clf = sk_fol score: print: print: print: print: Cross Average Average Ave	atified K-Fold sklearn import dat sklearn import dat sklearn import dat sklearn import dat sklearn import sklearn import sklearn import dat datasets.logla d	t becisionTreclas: is(return_X_y=True) ifier(random_state: old(n_splits = 5) =(clf, X, y, cv = : Scores: ", scores: =", scores.mean() res used in Average: [0.96666667 0.9: 333333333333333333333333333333333333	:42) sk_folds) :: ", len(scor		l. j