

AN INTRODUCTION TO STATISTICS

LECTURE I

BY/ ALY MAHER ABDELFATTAH

DEFINITIONS

- Statistics a collection of methods for planning experiments, obtaining data, and then then organizing, summarizing, presenting, analyzing, interpreting, and drawing conclusions based on the data.
- Variable is a characteristic or attribute that can assume different values.
- Data is observations (such as measurements, genders, survey responses) that have been collected and the variables can assume.
- Variables whose values are determined by chance are called random variables.

STATISTICS TYPES

Descriptive

consists of the collection, organization, summarization, and presentation of data.

Inferential

Consists of generalizing from samples to populations, performing estimations and hypothesis tests, and making predictions.

DEFINITIONS

- Population is the complete collection of all elements (scores, people, measurements, and so on) to be studied.
- The collection is complete in the sense that it includes all subjects to be studied.
- The population is usually too big to be studied directly, then statistics is used
- Census is the collection of data from every member of the population.
- Sample is a sub-collection of elements drawn from a population.

DATA TYPES

Data

Qualitative

can be separated into different categories that are distinguished by some nonnumeric characteristics. Example: genders (male/female).

Quantitative

numbers representing counts or measurements. Example: weights of students.

Continuous

(numerical) data result from infinitely many possible values that correspond to some continuous scale that covers a range of values without gaps, interruptions, or jumps.

Discrete

data result when the number of possible values is either a finite number or a 'countable' number of possible values.

LEVELS OF MEASUREMENT

This is another way to classify data using four levels of measurement (Nominal, Ordinal, Interval, Ratio)

- Nominal level of measurement: names of things without a mathematical interpretation (e.g., hair color, marital status).
- Ordinal level of measurement: Attributes with a meaningful order or rank but without a fixed magnitude difference (e.g., size, grades).
- Interval level of measurement: Attributes where the difference between values is meaningful, with an equal interval scale, but no true zero point (e.g., temperature in Celsius or Fahrenheit).
- Ratio level of measurement: Attributes with a meaningful order, equal intervals, and a true zero point, allowing for statements about how many times greater one value is than another (e.g., weight, height, income).

SAMPLING TYPES

- Random Sampling: selection so that each has an equal chance of being selected
- Stratified Sampling: subdivide the population into at least two different subgroups that share the same characteristics, then draw a sample from each subgroup.
- **Systematic Sampling:** Select some starting point and then select every K th element in the population
- Cluster Sampling: divide the population into sections (or clusters); randomly select some of those clusters; choose all members from selected clusters

PARAMETER VS STATISTIC

Parameter

a numerical measurement describing some characteristic of a population Example Mean μ

Statistic

• a numerical measurement describing some characteristic of a sample. Example sample Mean χ .

