HW#6 Donglai Yang.

When
$$K_2 = 0$$

Xi

My My My My My My

Kt My My My My My

For each masks (here exercise index i)

F- ma => M, $\dot{U}_i = (\dot{U}_{in} - \dot{U}_i) k$, $+ (\dot{U}_i - \dot{U}_{in}) k$,

 $= \dot{U}_{in} k_i - \dot{U}_{in} k_i$,

 $= k_i (\dot{U}_{in} - \dot{U}_{in})$

Then this into a system equation

for $i = 1, 2, 3 \cdots N$

PHS:

 $\begin{pmatrix} M_1 & M_1 & M_2 \\ k_1 & 0 & M_3 \end{pmatrix}$
 $\begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix}$
 $\begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix}$
 $\begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix}$

PHS:

 $\begin{pmatrix} K_1 & K_1 & K_1 & K_2 \\ K_1 & 0 & K_1 & M_2 \end{pmatrix}$
 $\begin{pmatrix} K_1 & K_1 & K_2 & K_3 & K_4 & K_5 & K_6 &$

This $W_m^2 = \frac{2k_1}{M_1} \cos(k_m l_0)$