Processamento de Sinal (2013/14)

Teste 1 – 19 de novembro de 2013

	Grupo I
	que, neste enunciado, as questões que se seguem indicando se são verdadeiras (V) ou falsas (F). Duas as erradas anulam uma resposta correta.
1.	Um sistema causal tem que ser sem memóriaF
2.	Se um sinal é real então $ a_k = a_{-k} $ (relativamente aos coeficientes da série de Fourier)V
3.	Um sistema linear verifica sempre a propriedade da aditividade e da homogeneidadeV
4.	Se o $\int_{-\infty}^{+\infty} h(t)dt = 3$, então o sistema com resposta impulsional $h(t)$ é instávelF
5.	O sistema em tempo discreto definido por y[n]=(n+1).x[n]-1 é um sistema sem memória.
6.	Se os coeficientes de Fourier de um sinal são ímpares e puramente reais, então o sinal também é ímpar
	e realF
7.	O sistema definido pela resposta impulsional h[n]=u[1-n] é um sistema não causalV
8.	Num sistema LIT definido pela sua resposta impulsional $h(t)$ se a entrada é um impulso de Dirac, então
	a saída é $h(t)$ V
9.	Se um sistema é invariante no tempo, então a saída do sistema não pode ser calculada usando o
	integral de convoluçãoF
	Um sistema tem memória se, por exemplo, h[n]=1V
11.	Para que possamos calcular a saída de um sistema usando o integral de convolução, o sistema tem que verificar a propriedade da estabilidadeF
12.	A exponencial complexa é uma função própria dos sistemas LITV
	A resposta impulsional $h(t)$ da série (ou cascata) de dois sistemas LIT ($h_1(t)$ e $h_2(t)$ respetivamente) é
	definida como $h(t) = h_1(t) + h_2(t)$ F
	Grupo II
Respon	da às seguintes questões numa folha separada. Todas as respostas carecem de uma justificação
adequa	da.
1.	Considere um sistema LIT, de saída $y(t)$, caracterizado pela sua resposta impulsional, $h(t)$, definida por:
	$h(t) = \begin{cases} e^t \cdot u(1+t), t \le 0 \\ e^{-t}u(1-t), t > 0 \end{cases}$
	Considere ainda a entrada desse sistema, $x(t)$, definida por:
	x(t) = u(t-1) - u(t)
	a) Esboce as funções $h(t)$ e $x(t)$.
	b) Calcule a saída, $y(t)$, deste sistema quando o sinal de entrada é o $x(t)$ definido anteriormente (isto

c) Qual a saída deste sistema se a entrada for o sinal $g(t) = \frac{1}{2}x(t) + x(t-5) + \delta(t)$, em que x(t) é

é resolva o integral de convolução y(t) = h(t) * x(t).

o sinal definido anteriormente.

2. Considere o sinal x(t) periódico (com período 4), definido pela figura seguinte:

- a) Calcule o valor médio do sinal.
- b) Calcule os coeficientes (de ordem diferente de 0) da série de Fourier que define o sinal x(t). (A resolução deste exercício pela equação de análise é muito demorada, por isso sugere-se a utilização das propriedades da série de Fourier)
- c) Calcule a potência associada ao 4º harmónico.

Caso não tenha conseguido resolver b), considere
$$a_k=rac{j}{k\pi}-rac{\sin\left(rac{k\pi}{8}
ight)e^{-jrac{5k\pi}{4}}}{j(k\pi)^2}$$

- 3. Considere o circuito representado ao lado:
 - a) Calcule a função de transferência $H(j\omega) = \frac{v_o(j\omega)}{v_i(j\omega)}$
 - b) Faça os diagramas de Bode (módulo e fase) do resultado obtido em a), considerando que R=1 Ω e C=1F.

(Caso não tenha conseguido resolver a) considere o seguinte resultado: $H(j\omega)=2\frac{j\omega RC+2}{(3+j\omega 2RC)j\omega}$)

$$Y(t) = \int_{-\infty}^{h} u(t-z) h(z) dz$$

$$t \leq -1$$
 $Y(t) = 0$

$$-1 < t \leq 0$$

$$\forall (t) = \int_{-1}^{t} -1 e^{t} dz = -\left[e^{t}\right]_{-1}^{t} = -e^{t} + 1$$

$$y(t) = \int_{-R}^{1} dz = + \left[\frac{1}{R} \right]_{t-1}^{1} = + \frac{1}{R} + \frac{1}{R}$$

c)
$$g(t) = \frac{1}{2} ne(t) + ne(t-5) + \delta(t)$$

Page o sinter of LIT, entry:
 $Y_s(t) = \frac{1}{2} Y(t) + Y(t-5) + h(t)$

$$\frac{dk}{dt} = k_{1}(t) + k_{2}(t) + k_{3}(t) + k_{4}(t) + k_{4}(t)$$

$$\frac{dk}{dt} = k_{1}(t) + k_{2}(t) + k_{3}(t) + k_{4}(t)$$

$$k_{1} = k_{4}(t) + k_{5}(t) + k_{5}(t) + k_{5}(t)$$

$$k_{2} = k_{5}(t) + k_{5}(t) + k_{5}(t) + k_{5}(t)$$

$$k_{5} = k_{5}(t) + k_{5}(t) + k_{5}(t) + k_{5}(t)$$

$$k_{5} = k_{5}(t) + k_{5}(t) + k_{5}(t) + k_{5}(t)$$

$$k_{5} = k_{5}(t) + k_{5}(t) + k_{5}(t) + k_{5}(t)$$

$$k_{5} = k_{5}(t) + k_{5}(t) + k_{5}(t) + k_{5}(t)$$

$$k_{5} = k_{5}(t) + k_{5}(t) + k_{5}(t) + k_{5}(t)$$

$$k_{5} = k_{5}(t) + k_{5}(t) + k_{5}(t) + k_{5}(t)$$

$$k_{5} = k_{5}(t) + k_{5}(t) + k_{5}(t) + k_{5}(t)$$

$$k_{5} = k_{5}(t) + k_{5}(t) + k_{5}(t) + k_{5}(t)$$

$$k_{5} = k_{5}(t) + k_{5}(t) + k_{5}(t) + k_{5}(t)$$

$$k_{5} = k_{5}(t) + k_{5}(t) + k_{5}(t) + k_{5}(t)$$

$$k_{5} = k_{5}(t) + k_{5}(t) + k_{5}(t) + k_{5}(t)$$

$$k_{5} = k_{5}(t) + k_{5}(t) + k_{5}(t) + k_{5}(t)$$

$$k_{5} = k_{5}(t) + k_{5}(t)$$

a)
$$V_{ed} = \frac{A}{4} = \frac{2.2 + 1 + 1 + 1/2}{4} = 1 + \frac{1}{2} + \frac{1}{8} = \frac{13}{8}$$

$$\frac{C.4}{\left(-\frac{j}{4}\frac{\pi}{4} - \frac{j}{4}\frac{\pi}{4}\right)} = \frac{-jk\pi}{4} - \frac{-jk\pi}{4} - \frac{-jk\pi}{4} - \frac{-jk\pi}{4} = \frac{-jk\pi}{4} - \frac{-jk\pi}{4} - \frac{-jk\pi}{4} = \frac{-jk\pi}{4} - \frac{-jk\pi}{4} - \frac{-jk\pi}{4} = \frac{-jk\pi}$$

$$C = \frac{\overline{Z} = R / \overline{R}c}{R + \overline{L}} = \frac{R / \overline{jwc}}{R + \overline{L}} = \frac{R}{\overline{jwc}}$$

$$\overline{Z} = \frac{R}{\overline{jwc} + 1}$$

$$V_0 = \frac{R}{R+\overline{L}} V_i \in H(i\omega) = \frac{V_0(i\omega)}{V_i(j\omega)} = \frac{R}{R+\frac{R}{j\omega Rc+1}} \in H(i\omega)$$

$$H(j\omega) = \frac{(j\omega RC+1)R}{(j\omega RC+1)R+R} = \frac{j\omega RC+1}{j\omega RC+2}$$
 =1

$$H(j\omega) = \frac{j \frac{\omega_{k}}{\omega_{k}} + 1}{2(j \frac{\omega_{k}}{\omega_{k}} + 1)}, \quad \omega_{a} = \frac{1}{RC} \quad e \quad \omega_{b} = \frac{2}{RC}$$

