Pre-Trained Models

Transfer Learning und Transformer

Author

TOBIAS SCHMÜCKER

Datum

9.11.2022

Inhalte

PRE-TRAINED MODELS

Intro

- Transfer Learning
- Pre-Trained Models
- Transformer-Architektur
- Code-Beispiele "from scratch"
 - Human Action Recognition
 - Sentiment Analyse
- Plattformen f
 ür Pre-Trained Models
- Code-Beispiele mit Pre-Trained Models
 - Human Action Recognition
 - Sentiment Analyse
 - AutoTrain
- Ausblick

Intro

Machine Learning generiert Wissen aus Daten.

PROBLEM

Jedes Machine Learning Modell kann nur eine Aufgabe lösen.

FRAGE

Wie kann das gelernte Wissen auf andere Aufgaben übertragen werden?

Transfer Learning

"UPCYCLING VON WISSEN"

ÜBERTRAG VON WISSEN

ÜBERTRAG VON WISSEN

Transfer Learning

DEFINITION

"Die Anwendung von Fähigkeiten, Wissen und/oder Einstellungen, die in einer Situation gelernt wurden, auf eine andere Lernsituation" Perkins, 1992

vs.

Transfer Learning

Traditionelles ML vs. Transfer Learning

TRADITIONELLES MACHINE LEARNING

- Modelle werden von Grund auf trainiert
- Ignoriert bestehendes Wissen
- Ressourcen-intensives Training

TRANSFER LEARNING

- Erfordert weniger Daten, um neue Aufgaben zu lernen
- Nutzt adaptiertes Wissen von anderen Aufgaben
- Gute Modell-Performance mit wenig Training

TRANSFER LEARNING

Pre-Training

- Große Datensätze (unlabeled)
- Self-supervised training
- Dauer: Stunden bis Tage

Fine-Tuning

- Kleinere Datensätze (labeled)
- Aufgaben-spezifisches Training
- Dauer: Minuten bis Stunden

Inference

Anwenden des Modells für Predictions

TRANSFER LEARNING

Pre-Training

- Große Datensätze (unlabeled)
- Self-supervised training
- Dauer: Stunden bis Tage

Fine-Tuning

- Kleinere Datensätze (labeled)
- Aufgaben-spezifisches Training
- Dauer: Minuten bis Stunden

Inference

Anwenden des Modells für Predictions

→ Pre-Trained Models

Pre-Trained Models

ANWENDUNG VON TRANSFER LEARNING

- Source Task → Downstream Task
- Feature Representation Transfer vs. Parameter
 Transfer
- Gelerntes Wissen steckt in Parametern
- Mehrere Milliarden Parameter (GPT-3)
- Frozen Layers

gpt2	bert-base-uncased ☐ • Updated Oct 3 • ↓ 24.9M • ♡ 323
xlm-roberta-base ⊕ • Updated Jun 6 • ↓ 18.1M • ♡ 104	<pre> openai/clip-vit-large-patch14</pre>
roberta-base ⊕ • Updated Sep 29 • ↓ 7.63M • ♡ 77	Al2 allenai/specter ⊞ • Updated Jun 25 • ↓ 7.21M • ♡ 20
<pre> Jean-Baptiste/camembert-ner Updated 27 days ago • ↓ 7.06M • ♡ 38 </pre>	bert-base-cased ☐ • Updated Sep 6, 2021 • ↓ 6.38M • ♡ 54
<pre> facebook/bart-base</pre>	distilbert-base-uncased ☐ • Updated May 31 • ↓ 6.26M • ♡ 100
<pre> dmis-lab/biobert-base-cased-v1.2 Updated Jun 24, 2021 • ↓ 4.83M • ♡ 6 </pre>	roberta-large ☐ • Updated Sep 29 • ↓ 4.56M • ♡ 64
bert-base-chinese ☐ • Updated Jul 22 • ↓ 3.71M • ♡ 152	Cardiffnlp/twitter-roberta-base-sentiment Updated Apr 6 • ↓ 3.6M • ♡ 91
<pre>b vblagoje/bert-english-uncased-finetuned-pos</pre> Updated May 20, 2021 • ↓ 2.87M • ♥ 13	bert-base-multilingual-cased ☐ • Updated Aug 7 • ↓ 2.58M • ♡ 59
distilroberta-base □ • Updated Jul 22 • ↓ 2.45M • ♡ 35	distilbert-base-uncased-finetuned-sst-2-english $_{8\%}$ • Updated Aug 16 • $$ $$ $$ $$ $$ $$ $$ 101
<pre>finiteautomata/bertweet-base-sentiment-analysis</pre> Updated Jun 23 • ↓ 2.16M • ♥ 33	albert-base-v2 ☐ • Updated Aug 30, 2021 • ↓ 2.06M • ♡ 26
<pre> sentence-transformers/all-MiniLM-L6-v2 H• Updated 1 day ago • ↓ 1.99M • ♡ 117 </pre>	<pre> prajjwal1/bert-tiny Updated Oct 27, 2021 • ↓ 1.96M • ♡ 12 </pre>
microsoft/tapex-base ■ • Updated May 17 • ↓ 1.84M • ♡ 7	Al2 allenai/led-base-16384 S • Updated Jan 11, 2021 • ↓ 1.76M • ♡ 10
<pre> ② Rostlab/prot_bert ② • Updated Dec 11, 2020 • ↓ 1.52M • ♡ 25 </pre>	t5-small $*_A \cdot Updated Jul 22 \cdot \downarrow 1.37M \cdot \heartsuit 38$
● Seethal/sentiment_analysis_generic_dataset Updated Apr 19 • ↓ 1.28M • ♡ 1	deepset/roberta-base-squad2 □ • Updated Sep 21 • ↓ 1.28M • ♡ 149
pysentimiento/robertuito-sentiment-analysis Updated Jun 23 • ↓ 1.27M • ♡ 11	t5-base *• Undated Jul 22 • ↓ 1.15M • ♥ 68

Pre-Trained Models

FROZEN LAYERS

Training size	Illustration	Explanation
Small		Freezes all layers, trains weights on softmax
Medium		Freezes most layers, trains weights on last layers and softmax
Large		Trains weights on layers and softmax by initializing weights on pre-trained ones

Transformer

ARCHITEKTUR FÜR DEEP NEURAL NETWORKS

Transformer

NATURAL LANGUAGE PROCESSING

- Wav2Vec2 Speech Recognition
- **BERT** Text Understanding
- **GPT-3** Text Generation
- **T5** Translation

Image Classification

1,061 models

Image Segmentation

88 models

Image-to-Image

33 models

Object Detection

76 models

Video Classification

14 models

Unconditional Image Generation

61 models

Zero-Shot Image Classification

43 models

Transformer

COMPUTER VISION

- **ViT** Image Classification
- **DETR** Object Detection
- **SegFormer** Semantic Segmentation

GRUNDLAGEN VON TRANSFORMERN

accord
sur
la
zone
économique
européenne
a été
signé
en
août
1992

Area

Area

Area

Area

Signed
en
août
1995

Area

Area

Area

Area

Area

Area

Area

Area

Signed
en
août
1992

Area

Positional Encoding

Reihenfolge der Wörter in Daten

Attention

Transformieren von Satzstrukturen

Self-Attention

Sprachverständnis wird gelernt

<CHAPTER 2 />

It's coding time!

(FROM SCRATCH)

Human Action Recognition

- Menschliches Verhalten verstehen
- Verschiedene Datenmodalitäten
 - Bilder
 - Skelette
 - Infrarot
- Datensatz:

https://huggingface.co/datasets/Bingsu/Human

Action Recognition

IMDB Sentiment Analysis

- Aussagen als positiv oder negativ bewerten
- Kontext: Filmreviews
- Datensatz:

https://huggingface.co/datasets/imdb

<CHAPTER 3 />

Plattformen

FÜR PRE-TRAINED MODELS

TENSORFLOW HUB / PYTORCH HUB

TensorFlow Hub

https://www.tensorflow.org/hub

PyTorch Hub

https://pytorch.org/hub/

TENSORFLOW.JS

https://www.tensorflow.org/js

HUGGING FACE 🤗

https://huggingface.co/

AWS SAGEMAKER

https://aws.amazon.com/marketplace/solutions/machine-learning/pre-trained-models

PTM PLATTFORMEN - FEATURES

PTM PLATTFORMEN - MATRIX

PAPERS WITH CODE

https://paperswithcode.com/

It's PTM time!

HUMAN ACTION RECOGNITION & SENTIMENT ANALYSIS

AUSBLICK

EffizienzMixed Precision Training

Neue Architekturen
Neural Architecture Search

Auto Training

Hilfe beim Modelltraining

Metamodelle Breiteres Verständnis

Bildquellen

https://waitbutwhy.com/2017/04/neuralink.html

https://unsplash.com/photos/n6B49lTx7NM

https://www.v7labs.com/blog/transfer-learning-guide

https://unsplash.com/photos/M5tzZtFCOfs

https://unsplash.com/photos/qwtCeJ5cLYs

https://unsplash.com/photos/U3sOwViXhkY

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks

https://unsplash.com/photos/uPuh-VwJRM0

https://www.youtube.com/watch?v=SZorAJ4I-sA

https://www.kaggle.com/code/meetnagadia/har-vgg

https://absurd.design/chapter/3/illustration/187