$$\Theta_{i}$$
 is an unbiased estimator of Θ

2. $E(\Theta_{2}) = E(\max(X_{1}, ..., X_{n})) = E(X_{i})$ where i is an integer $|x| \le n$
 $= \frac{0+\theta}{2} = \frac{\theta}{2} \neq 0$

N Oz is a biased estimator of O

1. $E(\tilde{\beta}_i) = E(2\bar{X}) = 2E(\bar{X}) = 2E(\frac{1}{h}\sum_{i=1}^{h}X_i)$

 $=\frac{2}{n}E\left(\sum_{i=1}^{n}X_{i}\right)=\frac{2}{n}\sum_{i=1}^{n}\left(E\left(X_{i}\right)\right)=\frac{2}{n}n\left(\frac{O+b}{2}\right)$

AZQI

 $= 2\left(\frac{\Theta}{2}\right) = \Theta$

3. $Var(\overset{\sim}{\theta}_{1}) = Var(2\overline{x})$

 $= 2^2 \text{Var}(\overline{x})$

 $= 4 \text{ Var} \left(\frac{1}{n} \sum_{i=1}^{n} X_i \right)$

 $= \frac{4}{n^2} \operatorname{Var} \left(\sum_{i=1}^{n} X_i \right)$ $= \frac{4}{n^2} \sum_{i=1}^{n} \left(\operatorname{Var}(X_i) \right) \text{ because } X_i \text{ are in dependent}$

$$= \frac{4}{h^2} n \left(\frac{(\Theta - 0)^2}{12} \right)$$

$$= \frac{4}{h} \frac{\Theta^2}{12} = \frac{\Theta^2}{3h}$$
4. See Simulation. R and simulation. txt

Comparison: The sample mean & sample Variance of the 10000 samples of $\widetilde{\Theta}_1$ are closer to the theoretical results I've obtained for $E(\widetilde{\Theta}_1)$ and $Var(\widetilde{\Theta}_1)$ 5. See Simulation. R and simulation. txt

6. By over 82: The sample mean & sample

Variance of the 10000 samples of &, are

Closer to the theoretical results Ive obtained for $E(\tilde{\Theta}_1)$ and $Var(\tilde{\Theta}_1)$. Also, $\tilde{\Theta}_1$ is an unbiased estimator of θ whereas $\tilde{\Theta}_2$ is biased. $\tilde{\Theta}_2$ over $\tilde{\Theta}_1$: From simulation, $\tilde{MSE}(\tilde{\Theta}_2) < \tilde{MSE}(\tilde{\Theta}_1)$