

Public's Tax Preference

MASTERSIN COMPUTATIONAL SOCIAL SCIENCE

Keertana V. Chidambaram

MA Program in Computational Social Science, University of Chicago; keertana@uchicago.edu; GitHub: keertanavc

Research Question

- 1. Do people favor tax structures that benefit them directly?
- 2. How progressive or regressive are tax preferences?

Novelty of the study:

- 1. Open source tax calculator (python) [1] for revenue, income estimation (previous studies use simpler low accuracy models)
- 2. Suits index for progressivity (previous surveys use simple run-over-rise indices)
- 3. Thorough investigation of the effect of demographics

Survey Design

F1: Survey Flow Chart

Demographic Variables:

Gender, Age, Political Affiliation, Education, Race, Income, Marital Status, # Children, primary earner or not

Tax Policy Variables:

- 1. Max Taxable Earnings for Social Security
- 2. Long Term Capital Gains (LTCG) Taxes (3)
- 3. Personal Income (PI) Tax (7)

Data

F2: Geographic Dispersion of Respondents

More Data

Summary Statistics

Total number of observations: 1080

	Mean	5 th Perc	95 th Perc
Age	35	23	58
Max Taxable SS	165623	50000	500000
LTCG Tax 1	20%	0%	75%
LTCG Tax 2	27%	6%	76%
LTCG Tax 3	33%	10%	80%
PI Tax 1	21%	0%	76%
PI Tax 2	24%	5%	79%
PI Tax 3	30%	10%	80%
PI Tax 4	32%	12%	78%
PI Tax 5	39%	15%	81%
PI Tax 6	42%	15%	78%
PI Tax 7	46%	15%	84%

T1: Descriptive statistics for continuous variables

F3: Composition for the discrete variables: Gender Distribution Political Affiliation Democrat 58.0% 58.1% Other Republican Income Distribution Education 4 year degree 49.8% 100k – 200k Some College < \$20k Two-year degree 40k - 75k Professional Degree #Children Distribution Accessed Informational Video Marital Status Not married 54.6% 3 or more

Results

% Delta After-Tax Income

Democrat

Other

1.0 - Fitted Current Tax Structure (Progressive)

Current Tax Structure (Progressive)

% Accumulated Total Income

For primary earners: men = women For non-primary earners: men > women

*All results based on 2-sample t-tests conducted on sample

size of at least 25 and significant at the p=0.05 level

F7: Except for young Republicans, young Independents and young 'others', all other demographic groups on an average exhibit pro-tax behavior

Progressivity Calculation

Calculated using Suit's Index [2]. Given by (refer F8):

age_group

It is equal to 0 for flat, positive for progressive and negative for regressive tax structures. Data used for income distribution required to calculate accumulated income and tax burden is the aggregated IRS taxreturns data [3]. The % population in each bracket is assumed to be proportional to the % of tax returns filed from the bracket.

F8: Suit's index calculation for current policy Sp for current policy (F8) = 0.1861

Tax Bracket % Population

T2: Aggregate population data used in Sp calculation LTCG tax (down)

F9: Majority prefer regressive PI tax (up) & progressive

More Results

Decision Tree Prediction:

F10: Optimal decision tree model to predict change in after-tax income We try to predict the difference in revenue, PI/LTCG progressivity, and change in after-tax income for various demographic groups. 2 models: Decision Tree and Random Forest were tuned and fit. The cross-validation MSE is as follows:

CV MSE	Decision Tree	Random Forest
Change in after-tax income	286.4	256.5
Change in total revenue	1553353.7	1348388.7
PI Progressivity	1.54	1.54
LTCG Progressivity	0.0081	0.0078

Clearly, Random Forest gives a better prediction accuracy.

Conclusion

- 1. Conclusions about demographic trends made from the direct effect of a demographic variable cab be erroneous, interaction effects are also significant
- 2. People prefer regressive PI tax and progressive LTCG tax. The current political narrative revolving around PI tax must be reevaluated
- 3. Random Forest gives better prediction accuracy over Decision Trees in predicting tax-attitude from demographic variables

Limitations + Future Work

- 1. Some sub-groups are underrepresented, a larger survey can reveal more interesting patterns and validate the current patterns
- 2. Trying other models (e.g. clustering) to improve prediction accuracy and testing out prediction accuracy on a new dataset to test robustness

References

[1] https://github.com/PSLmodels/Tax-Calculator

[2] Suits, Daniel B. "Measurement of tax progressivity." The American Economic Review 67, no. 4 (1977): 747-752

[3] Pew Research Center's internal analysis of IRS data ("U.S. income tax is progressive, but enough to be 'fair'?" Oct 6, 2017)

Acknowledgements

I would like to thank Dr. Richard Evans for his continuous support and feedback. I would also like to thank the OSE lab for funding this survey.