Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2022 EE3EL03/ EX3EL03 Digital Signal Processing

Programme: B.Tech. Branch/Specialisation: EE/EX

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Which of the following discrete time system is a linear system? Q.1 i. 1
 - (a) y[n] = nx[n]
- (b) $y[n] = x^2[n]$
- (c) y[n] = ax[n] + b
- (d) $y[n] = x[n][1 + \cos\omega n]$
- If the length of two discrete time signal is given as L₁ & L₂ 1 respectively, then the length of convolution result of the two signals will be-
 - (a) $L_1 + L_2$

- (b) $L_1 + L_2 + 1$
- (c) $L_1 + L_2 1$
- (d) $L_1 L_2$
- The Region of Convergence (ROC) of the Z transform of a Unit step 1 function is-
 - (a) |Z| > 1

- (b) |Z| < 1
- (c) Real part of Z > 0
- (d) Real part of Z < 0
- The Region of Convergence (ROC) of the Z-transform of the 1 sequence $(\frac{5}{6})^n u[n] - (\frac{6}{5})^n u[-n-1]$

- (a) $|z| < \frac{5}{6}$ (b) $|z| > \frac{5}{6}$ (c) $\frac{5}{6} < |z| < \frac{5}{6}$ (d) $\frac{5}{6} < |z| < \infty$
- In a Fourier series expansion of a signal, coefficient a_n would be 1 zero when the nature of the signal is _____.
 - (a) Even

- (b) Odd
- (c) Half wave symmetrical (d) None of these
- For an Analog LTI system to be stable, where should the poles of 1
 - system function H(s) lie?
 - (b) Left half of s-plane (a) Right half of s-plane
 - (c) On the imaginary axis
- (d) At origin

P.T.O.

	vii.	DFT is applied to-	1			
		(a) Infinite sequences				
		(b) Finite discrete sequences				
		(c) Continuous infinite signals				
		(d) Continuous finite sequences				
	viii.	DFT of sequence results in a sequence.	1			
		(a) Finite length, aperiodic (b) Infinite length, aperiodic				
		(c) Finite length, periodic (d) Infinite length, periodic				
	ix.	Which of the following methods are used to convert analog filter	1			
		into digital filter?				
		(a) Approximation of derivatives				
		(b) Bilinear transformation				
		(c) Impulse invariance				
		(d) All of these	_			
	х.	If z transform is evaluated for the unit circle at evenly spaced points	1			
		only then it becomes-				
		(a) IIR filters (b) DFT (c) IDFT (d) FIR filters				
Q.2	i.	Define and classify systems.	2			
₹	ii.	Draw and explain the graphical representation of discrete time signal.	3			
	iii.	Examine the following system with respect to the properties- 5				
		Linearity, Time-Variance, Causality and Stability.				
		(a) $y(n) = x(-n+2)$ (b) $y(n) = x(2n)$				
		(c) $y(n) = \sum_{k=-\infty}^{n} x(k)$				
OR	iv.	State and prove the following properties of DTFT-	5			
		(a) Multiplication of two sequence				
		(b) Differentiation in the frequency domain				
0.2			•			
Q.3	i.	Define Z transform and region of convergence (ROC) for the Z transform.	3			
	ii.	Consider the linear constant coefficient difference equation-	7			
	11.	y(n) = 0.25y(n-2) + x(n)	′			
		Find the solution to this equation assuming that				
		$x(n) = \delta(n-1)$ with $y(-1) = y(-2) = 1$.				
OR	iii.	Explain and prove following properties of Z transform-	7			
		(a) Time reversal (b) Convolution				

Q.4		Attempt any two:	
	i.	Enlist the difference between a continuous time Fourier transform and a discrete time Fourier transform.	
	ii.	What are the advantages of Digital signal processing over Analog signal processing?	
	iii.	Determine the circular convolution of the following sequences- $x_1(n) = \{2,1,2,1\}$, and $x_2(n) = \{1,2,3,4\}$	4
Q.5	i.	Explain the circular property of DFT with example.	3
	ii.	Draw the flow graph for decimation-in-time FFT algorithm for $N = 8$ using radix-2. Show various steps for decimation.	
OR	iii.	Compute the eight-point DFT of the following- x(n) = [1,2,3,4,5,6,7,8]	-
Q.6	i.	What are the desirable and undesirable features of FIR filters? Differentiate between FIR filters and IIR filters.	4
	ii.	Realize the FIR filter transfer function $H(z) = (1 + 0.4Z^{-1})^4$ in (a) Cascade of first order section	(
		(b) Two different direct forms	
OR	iii.	Explain the procedure for designing FIR filter using windows.	(

Marking scheme

EE3EL03/ EX3EL03 Digital Signal Processing

Q.1	i.	Which of the following discrete time system is a li	near system?	1		
	ii.	(a) $y[n] = nx[n]$ If the length of two discrete time signal is given as L ₁ & L ₂ respectively, then the length of convolution result of the two signals will be-				
	iii.	(c) L ₁ + L ₂ – 1 The Region of Convergence (ROC) of the Z transf function is- (a) Z >1	form of a Unit step	1		
	iv.	The Region of Convergence (ROC) of the Zesequence $(\frac{5}{6})^n u[n] - (\frac{6}{5})^n u[-n-1]$	-transform of the	1		
		(c) $\frac{5}{6} < z < \frac{5}{6}$ (d) $\frac{5}{6} < z < \infty$				
	v.	In a Fourier series expansion of a signal, coeffic zero when the nature of the signal is		1		
	vi.	For an Analog LTI system to be stable, where should the poles of system function H(s) lie? (b) Left half of s-plane				
	vii.	DFT is applied to-		1		
		(b) Finite discrete sequences				
	viii.	DFT of sequence results in a (d) Infinite length, periodic	sequence.	1		
	ix.	Which of the following methods are used to continto digital filter? (d) All of these	nvert analog filter	1		
	х.			1		
Q.2	i.	Definition	1 mark	2		
		Classify systems	1 mark			
	ii.	Graphical representation of discrete time signal		3		
		Drawing	1 mark			
		Explanation	2 marks			

	iii.	(a) $y(n) = x(-n+2)$ (b) $y(n) = x(2n)$ (c) $y(n) = \sum_{k=-\infty}^{n} x(k)$	1 mark 2 marks 2 marks	5
OR	iv.	State and prove the following properties of DTFT- (a) Multiplication of two sequence Statement Prove	1 mark 1.5 marks	5
		(b) Differentiation in the frequency domain Statement Prove	1 mark 1.5 marks	
Q.3	i.	Definition Z transform	1 mark	3
	ii.	Region of convergence (ROC) for the Z transform Find the solution	2 marks	7
	11.	Stepwise solution, 1 mark for each step	(1 mark * 7)	,
OR	iii.	(a) Time reversal Explanation	1.5 marks	7
		Prove	1 mark	
		(b) Convolution Explanation	1.5 marks	
		Prove	1 mark	
Q.4		Attempt any two:		
	i.	Difference between a continuous time Fourier discrete time Fourier transform.	transform and a	5
		1 mark for each difference	(1 mark * 5)	
	ii.	Advantages of Digital signal processing over processing	r Analog signal	5
		1 mark for each advantage	(1 mark * 5)	
	iii.	Determine the circular convolution of the following Stepwise solution	g sequences-	5
Q.5	i.	Circular property of DFT	2 marks	3
		Example	1 mark	_
	ii.	Flow graph for decimation-in-time FFT algorithm	2	7
		Diagram Stanyiga calution	3 marks 4 marks	
OR	iii.	Stepwise solution Compute the eight-point DFT of the following- Stepwise solution	4 marks	7

Q.6	i.	Four desirable features of FIR filters		4
		0.5 mark for each (0.5 mark * 4)	2 marks	
		Undesirable features of FIR filters		
		0.5 mark for each (0.5 mark * 4)	2 marks	
	ii.	Realize the FIR filter transfer function $H(z) = (1$	$+0.4Z^{-1})^4$ in	6
		(a) Cascade of first order section	3 marks	
		(b) Two different direct forms	3 marks	
OR	iii.	Procedure for designing FIR filter using windows		6
		1 mark for each procedure	(1 mark * 6)	
