Logic Control

Prof. Dr. Ping Zhang WS 2017/2018

Overview of the course

- Introduction
- **Modeling of logic control systems**
 - **Boolean algebra**
 - Finite state automata
 - Petri nets, SIPN
- Analysis of logic control systems
- Design of logic control systems
- Verification and validation
- Online diagnosis of logic control systems
- Implementation of logic control systems
 - > PLC
 - Programming languages (IEC 61131-3)
 - Automatic code generation
- Distributed control (optional)

- The automata describe state transitions.
- FSA are suitable for the description of dynamic systems with discrete signals.
- Key elements in a finite state automaton:

$$A = (Z, U, Y, f, g, z_0)$$

 $Z = \{Z_1, Z_2, \cdots, Z_{n_n}\}$: the set of states

 $U = \{U_1, U_2, \cdots, U_{n_u}\}$: the set of inputs

 $Y = \{Y_1, Y_2, \dots, Y_{n_v}\}$: the set of outputs

f: the state transition function

g: the output function

 z_0 : the initial state

- An automaton can be described in different ways:
 - State transition diagram (in German: Automatengraf)
 - Update table (in German: Automatentabelle)
 - State and output equations (in German: Automatengleichungen)

State transition diagram

- **Directed** graph
- > The nodes denote the states.
- > The branches denote the state transitions
- > The branches are labeled by the corresponding inputs and outputs.
- The initial state is marked by an arrow.

Update table

Next state	Output	Current state	Input
Z_4	Y_3	Z_3	U_1
Z_1	Y_2	Z_3	U_2
Z_1	Y_1	Z_4	U_2
Z_2	Y_2	Z_1	U_3
Z_3	Y_3	Z_2	U_1

Current	(Next state, Output)		
state	U_1	U_2	U_3
Z_1	_	_	(Z_2, Y_2)
Z_2	(Z_3, Y_3)	_	_
Z_3	(Z_4, Y_3)	(Z_1,Y_2)	_
Z_4	_	(Z_1, Y_1)	_

Each row denotes a state transition.

Each cell denotes a state transition.

State and output equations

$$z(k+1) = f(z(k), u(k))$$
$$y(k) = g(z(k), u(k))$$
$$z(0) = Z_3$$

$$\begin{split} z(k+1) &= f \big(z(k), u(k) \big) \\ &= \begin{cases} Z_1, & \text{if } [(z(k) = Z_3) \ \lor (z(k) = Z_4)] \land (u(k) = U_2) \\ Z_2, & \text{if } (z(k) = Z_1) \land (u(k) = U_3) \\ Z_3, & \text{if } (z(k) = Z_2) \land (u(k) = U_1) \\ Z_4, & \text{if } (z(k) = Z_3) \land (u(k) = U_1) \end{cases} \end{split}$$

$$y(k) = g(z(k), u(k))$$

$$= \begin{cases} Y_1, & \text{if } (z(k) = Z_4) \land (u(k) = U_2) \\ Y_2, & \text{if } [(z(k) = Z_1) \land (u(k) = U_3)] \lor [(z(k) = Z_3) \land (u(k) = U_2)] \\ Y_3, & \text{if } [(z(k) = Z_2) \lor (z(k) = Z_3)] \land (u(k) = U_1) \end{cases}$$

■ Input sequence

$$\{U_1, U_2, U_3, U_1, U_2, U_3, U_1, U_1, U_2, \ldots\}$$

State trajectory

$${Z_3, Z_4, Z_1, Z_2, Z_3, Z_1, Z_2, Z_3, Z_4, Z_1, \ldots}$$

Output sequence

$$\{Y_3, Y_1, Y_2, Y_3, Y_2, Y_2, Y_3, Y_3, \ldots\}$$

Example: Belt conveyor

States, inputs and outputs in the above automaton

State	Description
Z_1	The belt conveyor is running
Z_2	The belt conveyor doesn't run

Input	Description
$\overline{U_1}$	Press button "START"
U_2	Press button "STOP"

Output	Description
Y_1	Start motor
Y_2	Turn off motor

Update table

Next state	Output	Current state	Input
Z_2	Y_2	Z_1	U_2
Z_1	Y_1	Z_2	U_1

Current	(Next state, Output)		
state	U_1	U_2	
Z_2	(Z_1,Y_1)	_	
Z_1	_	(Z_2,Y_2)	

State and output equations

$$z(k+1) = f(z(k), u(k))$$
$$y(k) = g(z(k), u(k))$$
$$z(0) = Z_2$$

$$z(k+1) = f(z(k), u(k))$$

$$= \begin{cases} Z_1, & \text{if } (z(k) = Z_2) \land (u(k) = U_1) \\ Z_2, & \text{if } (z(k) = Z_1) \land (u(k) = U_2) \end{cases}$$

$$y(k) = g(z(k), u(k))$$

$$= \begin{cases} Y_1, & \text{if } (z(k) = Z_2) \land (u(k) = U_1) \\ Y_2, & \text{if } (z(k) = Z_1) \land (u(k) = U_2) \end{cases}$$

Automata with/without input/output

Autonomous automaton: no input and output signals

Semi automaton: with inputs, but no outputs

Automaton with inputs and outputs: with both inputs and outputs

Moore Automata vs. Mealy Automata

Moore automaton:

The current output is only influenced by the current state, but not by the current input.

$$y(k) = g(z(k))$$

Mealy automaton:

The current output is influenced by both the current state and the current input.

$$y(k) = g(z(k), u(k))$$

Discussion: Is the following automaton a Mealy automaton or a Moore automaton?

Deterministic vs. nondeterministic Automata

Deterministic Automaton:

For a given current state and a given input, both the output and the next state are uniquely determined.

Nondeterministic Automaton:

For a given current state and a given input, the next state or the output is **not uniquely** determined

Discussion: Are the following automata a deterministic automaton or a nondeterministic automaton?

Deterministic vs. nondeterministic Automata

Discussion: Are the following automata a deterministic automaton or a nondeterministic automaton?

Specifications:

- The gate can be opened and closed by controlling the electric motor. The rotary direction of the electric motor (clockwise rotation or anticlockwise rotation) is controlled by two contactors.
- The gate can be opened from outside or inside by the key-operated switches, or by a remote control unit.
- For safety reasons, a light barrier is mounted. If the light barrier senses an object, the gate should not be closed.
- Two limit switches notify the states of the gate (i.e. "gate is opened" or "gate is closed").
- The completely opened gate should be automatically closed after 20 seconds waiting time.
- A red flashing light should notify the opening and closing of the rolling gate on both sides.

Signals	I/O	Symbol	Logic assignment
Key-operated switch (outside)	I	S1	Operated S1=1
Key-operated switch (inside)	1	S2	Operated S2=1
Wireless receiver	1	S 3	Code received S3=1
Limit switch (gate opened)	1	S4	Gate is opened S4=1
Limit switch (gate closed)	1	S5	Gate is closed S5=1
Light barrier	1	L1	Interrupted L1=0
Flash light	0	H1	Light on H1=1
Contactor (opening gate)	0	K1	Contactor activated K1=1
Contactor (closing gate)	0	K2	Contactor activated K2=1

State transition diagram of the gate control system

State transition diagram of the gate control system

State transition diagram of the gate control system

Deterministic Automaton, Mealy Automaton

Example 2: Mixing tank

Specifications:

- If the button START is pressed, open Valve 1 and Valve 2 to fill in, respectively, the liquid A and B.
- When the tank level reaches Level 2, close both Valve 1 and Valve 2 and start the motor of the mixer.
- 3. After 10 minutes, turn off the motor of the mixer and open Valve 3.
- 4. When the tank is empty, close Valve 3.
- 5. If the **button STOP** is pressed at any time, stop the process immediately.

Model the mixed tank system by considering Specifications 1-4.

Model the mixed tank system by considering Specifications 1-4.

Model the mixed tank system by considering Specifications 1-5.

Example 3: Rain sensor

Working principles of rain sensors:

- An infrared light is emitted.
- Rain is detected based on how much light is reflected back.
- There may be other factors that influence the reflection of the light, such as dust, snow slush, etc.
 - → false alarms: There is no rain, but the rain sensor indicates rain.
 - → miss detections: There is rain, but the rain sensor indicates no rain.

States, inputs and outputs of the rain sensor system

State	Description
_	The rain sensor doesn't indicate rain.
Z_2	The rain sensor indicates rain.

Input	Description
$\overline{U_1}$	It doesn't rain.
U_2	It rains.

Output	Description
$\overline{Y_1}$	Display "no rain"
Y_2	Display "rain"

State transition diagram

Take into account false alarms

Take into account both false alarms and miss detections

Nondeterministic Automaton!

- The state transition is regarded as a stochastic process.
- Some information like the probability of the state transition is known.
- The labels on the arcs of the automata are further extended to include such information.

Prob
$$\{z(k+1) = Z_4, y(k) = Y_3 | z(k) = Z_3, u(k) = U_2\} = 0.8$$

Prob $\{z(k+1) = Z_1, y(k) = Y_2 | z(k) = Z_3, u(k) = U_2\} = 0.2$
Prob $\{z(k+1) = Z_1, y(k) = Y_1 | z(k) = Z_4, u(k) = U_2\} = 1$

A special kind of stochastic automata: The state transition is governed by a Markov chain

$$Prob\{z(k+1) = Z_{k+1}|z(k) = Z_k, z(k-1) = Z_{k-1}, \dots, z(0) = Z_0\}$$
$$= Prob\{z(k+1) = Z_{k+1}|z(k) = Z_k\}$$

The probability that the next state z(k+1) is Z_{k+1} depends **only** on the current state z(k), but not on the past states z(k-1), z(k-2), ..., z(0).

Example: Description of packet loss in networked control systems

Network Quality of Service:

- Delay and jitter
- Packet loss and packet error
- Quantization error, ...

The packet loss in the communication channel is often described by an autonomous automaton, whose state transition is governed by a Markov chain.

Overview of the course

Introduction

- **Modeling of logic control systems**
 - Boolean algebra
 - > Finite state automata
 - Petri nets, SIPN
- Analysis of logic control systems
- Design of logic control systems
- Verification and validation
- Implementation of logic control systems
 - > PIC
 - Programming languages (IEC 61131-3)
 - Automatic code generation
- Distributed control (optional)

Petri nets (PN)

- Proposed by Carl Petri in 1961
- Petri nets are suitable for the description of dynamic systems with discrete signals, especially concurrent processes.

Petri nets

- One of the basic forms of Petri nets: place transition net
- Two types of nodes in a place transition net: places and transitions.
- **Directed arcs**: either from a place to a transition or from a transition to a place.
- Each transition has **pre-place(s)** and **post-place(s)**.
- Each place contains a number of tokens. The maximal number of tokens that can be put in one place is called the **capacity** of the place.
- The distribution of tokens in the petri net is called the marking.

Petri nets

- Tokens are moved by the firing of transitions. → system dynamics
- If a transition fires, then tokens will be removed from all its pre-places and all its post-places will receives tokens. The number of tokens that are removed from / added to one place is decided by the weight of the directed arc that is connected to that place.
- Firing conditions of a transition (i.e. the transition is activated / enabled):
 - > Each pre-place of the transition has enough tokens.
 - > Each post-place of the transition has enough capacity to receive the token.
- By the firing of transitions, the marking may change.
- Interpretation from the control perspective: A marking corresponds to a state of the dynamic system.
- If several transitions are enabled at the same time, it is assumed that these transitions can only fire individually and successively, but not simultaneously.