```
import numpy as np
import pandas as pd
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt

data = pd.read_csv("temperatures.csv")
df = data
```

data.describe()

	YEAR	JAN	FEB	MAR	APR	MAY	JUN
count	117.000000	117.000000	117.000000	117.000000	117.000000	117.000000	117.000000
mean	1959.000000	23.687436	25.597863	29.085983	31.975812	33.565299	32.774274
std	33.919021	0.834588	1.150757	1.068451	0.889478	0.724905	0.633132
min	1901.000000	22.000000	22.830000	26.680000	30.010000	31.930000	31.100000
25%	1930.000000	23.100000	24.780000	28.370000	31.460000	33.110000	32.340000
50%	1959.000000	23.680000	25.480000	29.040000	31.950000	33.510000	32.730000
75%	1988.000000	24.180000	26.310000	29.610000	32.420000	34.030000	33.180000
max	2017.000000	26.940000	29.720000	32.620000	35.380000	35.840000	34.480000

data.head()

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	JAN-FEB	MAR-MAY	JUN-SEP	OCT-DEC	
0	1901	22.40	24.14	29.07	31.91	33.41	33.18	31.21	30.39	30.47	29.97	27.31	24.49	28.96	23.27	31.46	31.27	27.25	ıl.
1	1902	24.93	26.58	29.77	31.78	33.73	32.91	30.92	30.73	29.80	29.12	26.31	24.04	29.22	25.75	31.76	31.09	26.49	
2	1903	23.44	25.03	27.83	31.39	32.91	33.00	31.34	29.98	29.85	29.04	26.08	23.65	28.47	24.24	30.71	30.92	26.26	
3	1904	22.50	24.73	28.21	32.02	32.64	32.07	30.36	30.09	30.04	29.20	26.36	23.63	28.49	23.62	30.95	30.66	26.40	
4	1905	22.00	22.83	26.68	30.01	33.32	33.25	31.44	30.68	30.12	30.67	27.52	23.82	28.30	22.25	30.00	31.33	26.57	

data.tail()

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	JAN-FEB	MAR-MAY	JUN-SEP	OCT-DEC	
112	2013	24.56	26.59	30.62	32.66	34.46	32.44	31.07	30.76	31.04	30.27	27.83	25.37	29.81	25.58	32.58	31.33	27.83	th
113	2014	23.83	25.97	28.95	32.74	33.77	34.15	31.85	31.32	30.68	30.29	28.05	25.08	29.72	24.90	31.82	32.00	27.81	
114	2015	24.58	26.89	29.07	31.87	34.09	32.48	31.88	31.52	31.55	31.04	28.10	25.67	29.90	25.74	31.68	31.87	28.27	
115	2016	26.94	29.72	32.62	35.38	35.72	34.03	31.64	31.79	31.66	31.98	30.11	28.01	31.63	28.33	34.57	32.28	30.03	
116	2017	26.45	29.46	31.60	34.95	35.84	33.82	31.88	31.72	32.22	32.29	29.60	27.18	31.42	27.95	34.13	32.41	29.69	

type(data)

pandas.core.frame.DataFrame

data.shape

(117, 18)

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 117 entries, 0 to 116
Data columns (total 18 columns):
Column Non-Null Count Dtype

```
0
         YEAR
                  117 non-null int64
      1
          JAN
                  117 non-null
                                  float64
                   117 non-null
                                   float64
                  117 non-null
      3
          MAR
                                  float64
         APR
                   117 non-null
                                  float64
      4
      5
          MAY
                   117 non-null
                                   float64
                  117 non-null
      6
          JUN
                                  float64
      7
          JUL
                  117 non-null
                                  float64
      8
          AUG
                  117 non-null
                                  float64
          SEP
                  117 non-null
                                  float64
      10 OCT
                   117 non-null
                                  float64
         NOV
                   117 non-null
                                  float64
      11
      12 DEC
                   117 non-null
                                  float64
      13
          ANNUAL
                   117 non-null
                                  float64
      14 JAN-FEB 117 non-null
                                  float64
      15 MAR-MAY 117 non-null
                                  float64
      16
         JUN-SEP
                  117 non-null
                                   float64
      17 OCT-DEC 117 non-null
                                  float64
     dtypes: float64(17), int64(1)
     memory usage: 16.6 KB
count = (data["JAN"]==22).sum()
print(count)
     1
column = data
count = column[column == 0].count()
print(count)
     YEAR
                0
     JAN
                0
     FEB
                0
     MAR
                0
     APR
                a
     MAY
                0
     JUN
                0
     JUL
                0
     AUG
                0
     SEP
                0
     OCT
                0
     NOV
                0
     DEC
                0
     ANNUAL
                0
     JAN-FEB
                0
     MAR-MAY
                0
                0
     JUN-SEP
     OCT-DEC
                0
     dtype: int64
data.isnull().sum()
     YEAR
     JAN
                0
     FEB
                0
     MAR
     APR
                0
     MAY
                0
     JUN
     JUL
                0
     AUG
                0
     SEP
                0
     ОСТ
                0
     NOV
                0
     DEC
                0
     ANNUAL
                0
     JAN-FEB
                0
     MAR-MAY
                0
     JUN-SEP
               0
     OCT-DEC
                0
     dtype: int64
data.isnull().head()
```

		YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	JAN-FEB	MAR-MAY	JUN-SEP	OCT-DEC	\blacksquare
	0	False	False	False	False	False	ıl.													
	1	False	False	False	False	False														
	^					- 1		- 1		- 1				- 1						
data.info()																				

<class 'pandas.core.frame.DataFrame'> RangeIndex: 117 entries, 0 to 116 Data columns (total 18 columns): Column Non-Null Count Dtype 0 117 non-null int64 YEAR JAN 117 non-null float64 1 2 FEB 117 non-null float64 3 117 non-null float64 4 APR 117 non-null float64 MAY 117 non-null float64 JUN 117 non-null float64 JUL 117 non-null float64 8 AUG 117 non-null float64 SEP 117 non-null float64 10 ОСТ 117 non-null float64 NOV 117 non-null float64 11 12 DEC 117 non-null float64 13 ANNUAL 117 non-null float64 JAN-FEB 117 non-null float64 14 15 MAR-MAY 117 non-null float64 JUN-SEP 117 non-null float64 17 OCT-DEC 117 non-null float64 dtypes: float64(17), int64(1)

data.head()

memory usage: 16.6 KB

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	JAN-FEB	MAR-MAY	JUN-SEP	OCT-DEC	
0	1901	22.40	24.14	29.07	31.91	33.41	33.18	31.21	30.39	30.47	29.97	27.31	24.49	28.96	23.27	31.46	31.27	27.25	ıl.
1	1902	24.93	26.58	29.77	31.78	33.73	32.91	30.92	30.73	29.80	29.12	26.31	24.04	29.22	25.75	31.76	31.09	26.49	
2	1903	23.44	25.03	27.83	31.39	32.91	33.00	31.34	29.98	29.85	29.04	26.08	23.65	28.47	24.24	30.71	30.92	26.26	
3	1904	22.50	24.73	28.21	32.02	32.64	32.07	30.36	30.09	30.04	29.20	26.36	23.63	28.49	23.62	30.95	30.66	26.40	
4	1905	22.00	22.83	26.68	30.01	33.32	33.25	31.44	30.68	30.12	30.67	27.52	23.82	28.30	22.25	30.00	31.33	26.57	

x = data["YEAR"]
y = data["ANNUAL"]

plt.plot(x,y,'o')

[<matplotlib.lines.Line2D at 0x7836adc06dd0>]


```
\verb|sns.scatterplot(x=x,y=y,data=df)|
```

<Axes: xlabel='YEAR', ylabel='ANNUAL'>

```
31.5
   31.0
   30.5
ANNUAL
   30.0
   29.5
   29.0
   28.5
   28.0
         1900
                   1920
                              1940
                                         1960
                                                    1980
                                                              2000
                                                                         2020
                                         YEAR
```

```
type(x)
     pandas.core.series.Series
x.shape
     (117,)
x = x.values
x = x.reshape(117,1)
x.shape
     (117, 1)
type(x)
     numpy.ndarray
x_train, x_test, y_train, y_test = train_test_split(x, y,test_size=0.25)
print(f"x Training dataset: {x_train.shape}")
print(f"y Training dataset: {y_train.shape}")
print(f"x test dataset: \{x\_test.shape\}")
print(f"y test dataset: {y_test.shape}")
     x Training dataset: (87, 1)
     y Training dataset: (87,)
     x test dataset: (30, 1)
     y test dataset: (30,)
model = LinearRegression()
model.fit(x_train,y_train)
     ▼ LinearRegression
     LinearRegression()
y_pred = model.predict(x_test)
y_pred.shape
     (30,)
```

```
plt.scatter(x_train, y_train, color='blue')
plt.plot(x_test, y_pred, color='red', linewidth=3)
plt.title("Temperature vs Year")
plt.xlabel("Year")
plt.ylabel("Temperature")
plt.show()
```


sns.regplot(data=df,x=x_train,y=y_train,)

from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score print(f"MSE: {mean_squared_error(y_test,y_pred)}") print(f"MAE: {mean_absolute_error(y_test,y_pred)}")

print(f"R-Sqaure : {r2_score(y_test,y_pred)}")

MSE: 0.154432095234198 MAE: 0.20705613138488985 R-Sqaure: 0.6302583378469945