EDF & IOT Forecasting electricity consumption using Al

The Forecasters

The Team

Summary

Context

Ecological transition => efficience and sobriety

Methodology

Optimization of our prediction in terms of RMSE adding one by one new parameters

Techniques

Data analysis

Machine learning

Electricity networks in the ecological transition

Goal: Forecasting consumption to monitor production

Forecasts adjusted in real time with meteorological data

Used to decide

- Importations
- Exportations
- Pumping
- Adjust production

Essential to:

- Equilibrium
- Safety

Data collection

Sources of the data

An open platform of the French government for the calendar features

A weather station network for the climatic features

A selection of index meter reader eventually corrected

Key variables collected for the analysis:

Date and hour

Temperature

Nebulosity

Wind

Correlation
between the
different
parameters and
not controllable
balance energy

High score => high correlation

	Features	Score
1	year	221.901258
3	toy	10267.347391
6	temperature	16514.676243
4	week_number	22457.065407
8	wind	24145.801151
12	period_holiday	28706.811152
11	day_type_week_jf	40819.204994
10	day_type_jf	44522.856336
5	period_hour_changed	46546.877915
14	period_summer	48467.300457
13	period_christmas	51822.899559
9	day_type_week	71305.658252
0	month	113373.028242
7	nebulosity	211466.236588
15	nebulosity_by_solar_power_weights	219731.254405
2	tod	425438.774038

Model development: I training and testing

Evaluation metrics: RMSE

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

 $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n$ are predicted values y_1, y_2, \dots, y_n are observed values n is the number of observations

$$\mathrm{RMSE_{combined}} pprox \sqrt{\mathrm{RMSE}_1^2 + \mathrm{RMSE}_2^2 + \mathrm{RMSE}_3^2}$$

Our different trials

Methods and approaches : Neural Network

- Activation functions
- Choice of features: following previous analysis
- Random choice of hyperparameters
- Normalised data
- Dropout
- One-Hot encoding

Results of Neural Network simulations

$$\mathbf{y}_{conv}(i+1) = \begin{cases} \alpha y(i+1) + (1-\alpha)y_{conv}(i) & \text{si } |y_{conv}(i) - y(i+1)| \ge seuil \\ y(i+1) & \text{sinon.} \end{cases}$$

Methods and approaches: Linear regressions

- The linear regression: We developed 48 linear regression models to predict each half-hour interval of the day separately
- Other data considered :
 - Covid
 - Sobriety
 - Smoothed temperatures
 - Shifted temperatures

Temperatures Smoothing

LOESS: LOcally Estimated Scatterplot Smoothing

• Predicted values for 2023

Results

Results of the simulations

Challenges

Model improvements

Conclusive Insights

The linear regression models provided reasonably accurate forecasts

- Potential improvements and future work :
- -different linear regressions for each day of the week
- -real time model adjustment
- -more advanced machine learning models
- Imagining an IoT system to have perfect energetic balance in the electrical network

Questions and Answers

