Transfer Learning for Parkinson's classification

Robert Minneker CSE 599 G1 20au

Parkinson's disease can be classified from handwritten spirals

There are no good options for raw image input

Transfer learning as a solution to minimal data

- Commonly used in practice
- A way to get around not having large datasets

VGG-16, ResNet-50, and Inception_v3 weights for transfer learning

- VGG-16: deep CNN, great for it's time, heavy network
- ResNet-50: Residual connections, more efficient/deep networks
- Inception_v3: small convolutions, auxiliary classifiers overcome degradation

Evaluation: F1, accuracy, precision, recall

- Gathered data from the UCI machine learning repository and Kaggle
- Combined and split into 70/15/15 (%) train/validation/test
- Trained 2 variants of each network for 25 epochs, pick best model based on validation accuracy to run against test data

Results are promising but do not meet state-of-the-art performance

Model	F1	Accuracy	Precision	Recall
ResNet-50 (last FC)	0.7778	0.8000	1.0000	0.6364
ResNet-50 (last FC & layer 4)	0.7619	0.7500	0.8000	0.7273
Inception_v3 (FC)	0.8333	0.8000	0.7692	0.9091
Inception_v3 (FC and aux)	0.7097	0.5500	0.5500	1.0000
VGG-16 (last FC)	0.6316	0.6500	0.7500	0.5455
VGG-16 (last two FCs)	0.7407	0.6500	0.6250	0.9091

Go try it out for yourself in this Colab notebook!

