Stats 101C Final Project - Random Forest (Jamie)

James Griffith - UID: 805458693

2023-12-06

Loading Data and Normalizing

```
### Stats 101C Final Project - Jamie's Portion ###

# Set seed
set.seed(123)
# Load Libraries
library(randomForest) # the randomForest package was used to perform the random forest analysis.
```

randomForest 4.7-1.1

Type rfNews() to see new features/changes/bug fixes.

```
# Read in the pre-processed data.
x_pca <- read.csv(header = FALSE,"C:\\Users\\jamgr\\OneDrive\\Documents\\Stats 101C\\Datasets\\X</pre>
_pca.csv")
y <- read.csv( "C:\\Users\\jamgr\\OneDrive\\Documents\\Stats 101C\\Datasets\\y.csv")</pre>
y[,5] \leftarrow as.factor(y[,5]) # Switch to encoding y as a factor so it will be processed as a classi
fication problem by the randomForest function. This is required to have randomForest perform cla
ssification rather than regression (as far as I can tell after going through the documentation a
few times)
# Normalize
x_pca_n < -as.data.frame(scale(x_pca)) # Normalize using scale() and then converting the Matrix
output to a data frame.
## Split into training and testing data.
sampled_values <- sample(nrow(x_pca_n), nrow(x_pca_n)*.8) # Sample 40000 entries to put in train
ing set (80/20 split)
train <- x_pca_n[sampled_values, ] # Create training data</pre>
test <- x_pca_n[-sampled_values, ] # Create testing data</pre>
train[,51] <- y[sampled_values, 5] # Append y to the training data (note I prefer this method fo
r clarity since training [,51] is more understandable than y[sampled\_values,5] in later code. You
can also just use y[sampled_values,5] or y[-sampled_values,5], directly instead if you want to k
eep it separate.)
test[,51] <- y[-sampled_values, 5] # Create training data</pre>
```

Fit Random Forest to the training dataset

Use the model on the testing dataset

We obtain an error value of \sim 18%, the most important variables for prediction were columns 3,4,2,10, and 5. Increasing the number of trees slightly increases accuracy in exchange for a lot more computation. (ntree = 50 yields \sim 19% error, ntree = 500 yields \sim 18% error)

```
## Testing Data
# Predicting the Test set results
y_pred_rf = predict(classifier_RF, type="class", newdata = test)
# Confusion Matrix for test data
confusion_mtx_rf = table(test[,51], y_pred_rf)
confusion_mtx_rf
```

```
## y_pred_rf
## 0 1
## 0 4083 973
## 1 889 4055
```

```
# Compute error rate for test data
error_rf <- mean(y_pred_rf != test[,51])
error_rf # Current output is 0.1794</pre>
```

```
## [1] 0.1862
```

Additional Code to look at which variables were the most helpful/important # Variable importance

importance(classifier_RF) # Get measures of each variable's importance.

##		MeanDecreaseGini
##	V1	403.6942
##	V2	886.2415
##	V3	3564.3920
##	V4	1393.5857
##	V5	715.2859
##		530.7262
##		415.3102
##		523.6960
##		355.9740
	V10	720.7823
	V11	278.4715
	V12	293.4588
	V13	239.9739
	V14	251.3732
	V15	294.7662
	V15	311.0549
	V10	271.1208
	V17	243.1955
	V10 V19	257.6573
	V19	236.5622
	V20 V21	329.8190
	V22	254.0239
	V23	258.8989
	V24	236.7090
	V25	231.9803
	V26	325.7512
	V27	297.0049
	V28	298.8970
	V29	229.7995
	V30	225.9438
	V31	244.9739
	V32	413.4023
	V33	248.4806
	V34	315.8911
	V35	250.0078
	V36	241.2936
	V37	254.3892
	V38	231.5113
	V39	226.4784
	V40	230.9749
	V41	321.2520
	V42	256.6369
	V43	244.5929
	V44	237.6112
	V45	234.5448
	V46	247.9440
	V47	227.6257
	V48	221.1097
	V49	239.6148
##	V50	234.7587

Variable importance plot
varImpPlot(classifier_RF) # Plot those values

classifier_RF

