



# FCC PART 15.247

# MEASUREMENT AND TEST REPORT

For

# ZBA, Inc.

94 Old Camplain Road Hillsborough, New Jersey 08844, USA

FCC ID: VMTBTMS-X Model: BTMS-X

Report Type: **Product Type:** Original Report Bluetooth Media System Reter. Peter Zhang Marshal Yu **Test Engineer:** Marshal Yu **Report Number:** RSC100408002 **Report Date:** 2010-05-28 David Li Dervil **Reviewed By:** EMC Engineer Bay Area Compliance Laboratories Corp. (Shenzhen) Prepared By: 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China www.baclcorp.com

**Note**: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP\*, NIST, or any agency of the Federal Government. \* This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "\*" (Rev.2)

# **TABLE OF CONTENTS**

| GENERAL INFORMATION                                      | 4      |
|----------------------------------------------------------|--------|
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)       |        |
| OBJECTIVE                                                |        |
| Related Submittal(s)/Grant(s)<br>Test Methodology        |        |
| TEST FACILITY                                            |        |
| SYSTEM TEST CONFIGURATION                                |        |
| DESCRIPTION OF TEST CONFIGURATION                        |        |
| EQUIPMENT MODIFICATIONS                                  |        |
| EUT Exercise Software                                    | 6      |
| LOCAL SUPPORT EQUIPMENT LIST AND DETAILS                 |        |
| EXTERNAL I/O CABLE                                       | 6      |
| CONFIGURATION OF TEST SETUP BLOCK DIAGRAM OF TEST SETUP  | /<br>8 |
| SUMMARY OF TEST RESULTS                                  |        |
| FCC §15.247 (i), §1.1307 (b) (1) & §2.1091 - RF EXPOSURE |        |
| APPLICABLE STANDARDS                                     |        |
| RF Exposure Limit                                        |        |
| MPE Prediction                                           |        |
| MPE RESULTS                                              | 11     |
| FCC §15.203 – ANTENNA REQUIREMENT                        |        |
| APPLICABLE STANDARD                                      |        |
| Antenna Connector Construction                           |        |
| FCC§ 15.207(a) - CONDUCTED EMISSIONS                     |        |
| APPLICABLE STANDARD                                      |        |
| EUT SETUP                                                |        |
| EMI TEST RECEIVERTEST EQUIPMENT LIST AND DETAILS         |        |
| TEST PROCEDURE                                           |        |
| SUMMARY OF TEST RESULTS                                  | 14     |
| CONDUCTED EMISSIONS TEST DATA & PLOTS                    | 14     |
| FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS   |        |
| APPLICABLE STANDARD                                      |        |
| MEASUREMENT UNCERTAINTY                                  |        |
| EUT SETUPEMI TEST RECEIVER & SPECTRUM ANALYZER SETUP     |        |
| TEST EQUIPMENT LIST AND DETAILS.                         |        |
| TEST PROCEDURE                                           |        |
| CORRECTED AMPLITUDE & MARGIN CALCULATION                 |        |
| TEST RESULTS SUMMARY                                     |        |
| TEST DATA                                                |        |
|                                                          |        |
| FCC §15.247(a) (1) - CHANNEL SEPARATION TEST             |        |
| APPLICABLE STANDARDTEST EQUIPMENT LIST AND DETAILS       |        |
| 1 EST EQUI MENT LIST AND DETAILS                         | 32     |

| TEST PROCEDURE                                            | 32  |
|-----------------------------------------------------------|-----|
| Test Data                                                 |     |
| FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING              | 37  |
| APPLICABLE STANDARD                                       |     |
| TEST EQUIPMENT LIST AND DETAILS                           |     |
| TEST PROCEDURE                                            |     |
| Test Data                                                 | 37  |
| FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST | 45  |
| APPLICABLE STANDARD                                       | 45  |
| TEST EQUIPMENT LIST AND DETAILS                           |     |
| Test Procedure                                            | 45  |
| TEST DATA                                                 | 45  |
| FCC §15.247(a) (1) (iii) -TIME OF OCCUPANCY (DWELL TIME)  | 48  |
| APPLICABLE STANDARD                                       | 48  |
| TEST EQUIPMENT LIST AND DETAILS                           | 48  |
| TEST PROCEDURE                                            |     |
| TEST DATA                                                 | 48  |
| FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT        | 55  |
| APPLICABLE STANDARD                                       | 55  |
| TEST EQUIPMENT LIST AND DETAILS                           |     |
| TEST PROCEDURE                                            |     |
| TEST DATA                                                 | 55  |
| FCC §15.247(d) - BAND EDGES TESTING                       | 63  |
| APPLICABLE STANDARD                                       | 63  |
| TEST EQUIPMENT LIST AND DETAILS                           | 63  |
| Test Procedure                                            |     |
| Tram Dama                                                 | C A |

#### **GENERAL INFORMATION**

#### **Product Description for Equipment under Test (EUT)**

The ZBA, Inc.'s product, model number: BTMS-X (FCC ID: VMTBTMS-X) or the "EUT" as referred to in this report is a Bluetooth Media System, rated input voltage: DC 12V.

Adapter:

Manufacture: SINGOF Model: GFP051U-1205 Input: 100-240V ~ 50/60Hz

Output: 12V----0.5A

All measurement and test data in this report was gathered from production sample serial number: 1004081 (Assigned by BACL, Shenzhen). The EUT was received on 2010-04-08.

## **Objective**

This Type approval report is prepared on behalf of *ZBA*, *Inc*. in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

#### Related Submittal(s)/Grant(s)

N/A.

#### **Test Methodology**

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

#### **Test Facility**

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located in the 6/F, the 3<sup>rd</sup> Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 21, 2007. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).



The current scope of accreditations can be found at <a href="http://ts.nist.gov/Standards/scopes/2007070.htm">http://ts.nist.gov/Standards/scopes/2007070.htm</a>

# **SYSTEM TEST CONFIGURATION**

## **Description of Test Configuration**

The system was configured for testing in a typical fashion (as normally used by a typical user).

# **Equipment Modifications**

No modification was made to the unit tested.

#### **EUT Exercise Software**

BlueSuite 2.0

# **Local Support Equipment List and Details**

| Manufacturer | Description | Model | Serial Number | FCC ID |
|--------------|-------------|-------|---------------|--------|
| DELL         | Notebook    | PP01L | 01014         | DOC    |

## **External I/O Cable**

| Cable Description | Length (m) | From/Port | То       |
|-------------------|------------|-----------|----------|
| DC Power Cable    | 1.2        | Adapter   | EUT      |
| Signal Cable      | 0.5        | EUT       | Notebook |

# **Configuration of Test Setup**



# **Block Diagram of Test Setup**

For Conducted Emission:



For radiated emission:



# SUMMARY OF TEST RESULTS

| FCC Rules                               | Description of Test              | Result     |
|-----------------------------------------|----------------------------------|------------|
| 15.247 (i), §1.1307 (b)(1)<br>& §2.1091 | RF Exposure                      | Compliant  |
| §15.203                                 | Antenna Requirement              | Compliant  |
| §15.207 (a)                             | Conducted Emissions              | Compliant  |
| \$15.205, \$15.209,<br>\$15.247(d)      | Radiated Emission                | Compliant* |
| §15.247 (a)(1)                          | 20 dB Bandwidth                  | Compliant  |
| §15.247(a)(1)                           | Channel Separation Test          | Compliant  |
| §15.247(a)(1)(iii)                      | Time of Occupancy (Dwell Time)   | Compliant  |
| §15.247(a)(1)(iii)                      | Quantity of hopping channel Test | Compliant  |
| §15.247(b)(1)                           | Peak Output Power Measurement    | Compliant  |
| §15.247(d)                              | Band edges                       | Compliant  |

Note: \*With measurement uncertainty.

# FCC §15.247 (i), §1.1307 (b) (1) & §2.1091 - RF EXPOSURE

#### **Applicable Standards**

According to FCC §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to FCC §1.1310 and §2.1091 RF exposure is calculated.

### **RF Exposure Limit**

Limits for General Population/Uncontrolled Exposure

| Frequency<br>Range<br>(MHz) | Electric Field<br>Strength<br>(V/m) | Magnetic Field<br>Strength<br>(A/m) | Power Density (mW/cm²) | Averaging Time (minutes) |
|-----------------------------|-------------------------------------|-------------------------------------|------------------------|--------------------------|
| 0.3-1.34                    | 614                                 | 1.63                                | *(100)                 | 30                       |
| 1.34-30                     | 824/f                               | 2.19/f                              | *(180/f)               | 30                       |
| 30-300                      | 27.5                                | 0.073                               | 0.2                    | 30                       |
| 300-1500                    | /                                   | /                                   | f/1500                 | 30                       |
| 1500-100,000                | /                                   | /                                   | 1.0                    | 30                       |

#### **MPE Prediction**

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R =distance to the center of radiation of the antenna

#### **MPE Results**

| Frequency<br>Band | MPE Distance (cm) | Output<br>Power<br>(dBm) | Atenna<br>Gain<br>(dBi) | Power Density (mw/cm²) | Result     |
|-------------------|-------------------|--------------------------|-------------------------|------------------------|------------|
| 2.4 GHz           | 20                | 18.32                    | 2.7                     | 0.025                  | Compliance |

The predicted power density level at 20 cm is 0.025 mw/cm<sup>2</sup> which is below the uncontrolled exposure limit of 1.0 mW/cm<sup>2</sup>. The EUT is used at least 20 cm away from user's body. It is determined as mobile equipment and complies with the MPE limit.

# FCC §15.203 – ANTENNA REQUIREMENT

#### **Applicable Standard**

According to FCC §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### **Antenna Connector Construction**

The EUT has four 50 Ohm SMA Male Reverse Omni-directional TX antennas, which in accordance to section 15.203, the maximum gain is 2.7 dBi which fulfills the requirements of FCC rule 15.203. Please refer to the antenna photo.



Result: Compliant.

# FCC§ 15.207(a) - CONDUCTED EMISSIONS

## **Applicable Standard**

According to FCC §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

| Frequency of Emission | Conducted I | imit (dBμV) |
|-----------------------|-------------|-------------|
| (MHz)                 | Quasi-Peak  | Average     |
| 0.15 – 0.5            | 66 to 56 *  | 56 to 46 *  |
| 0.5 – 5               | 56          | 46          |
| 5 – 30                | 60          | 50          |

**Note:** \* Decreases with the logarithm of the frequency.

## **EUT Setup**



Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The specification used was in accordance with FCC §15.207(a) limits.

#### **EMI Test Receiver**

The EMI test receiver was set to investigate the spectrum from 150 KHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

| Frequency Range  | IF B/W |
|------------------|--------|
| 150 kHz – 30 MHz | 9 kHz  |

## **Test Equipment List and Details**

| Manufacturer    | Description         | Model<br>Number | Serial Number | Cal. Due Date |
|-----------------|---------------------|-----------------|---------------|---------------|
| Rohde & Schwarz | EMI Test Receiver   | ESCI            | 1200028       | 2010-09-27    |
| Com-Power       | L.I.S.N.            | LI-200          | 12008         | 2010-12-20    |
| Com-Power       | L.I.S.N.            | LI-200          | 12005         | 2010-12-20    |
| Rohde & Schwarz | L.I.S.N.            | ESH2-Z5         | 892107/021    | 2010-11-12    |
| Rohde & Schwarz | Pulse Limiter       | ESH3Z2          | DE25985       | 2010-10-12    |
| BACL            | Data Entry Software | DES1            | 0001          | 2010-12-20    |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratory Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

#### **Test Procedure**

Maximizing procedure is performed on the six (6) highest emissions to ensure EUT compliance using all installation combination. All data is recorded in the Quasi-peak mode.

Final test data for this test configuration is recorded in the section below.

#### **Summary of Test Results**

According to the recorded data in following table, the EUT complied with the FCC §15.207(a), with the worst margin reading of:

-5.4 dB at 0.34 MHz in the Line conductor mode

#### **Conducted Emissions Test Data & Plots**

**Environmental Conditions** 

| Temperature:       | 25 ° C    |
|--------------------|-----------|
| Relative Humidity: | 56%       |
| ATM Pressure:      | 100.0 KPa |

The testing was performed by Marshal Yu on 2010-04-13.

**Test Result:** Compliant, Please see the following tables and plots.

| Frequency | Frequency Cord. Detector Conductor | FCC Part 15.207(a) |                |                  |                |
|-----------|------------------------------------|--------------------|----------------|------------------|----------------|
| (MHz)     | Reading<br>(dBuV)                  | (QP/Ave)           | (Line/Neutral) | Limits<br>(dBµV) | Margin<br>(dB) |
| 0.34      | 53.8                               | QP                 | Line           | 59.2             | -5.4           |
| 0.50      | 37.1                               | AV                 | Neutral        | 46               | -8.9           |
| 0.34      | 50.3                               | QP                 | Neutral        | 59.2             | -9.0           |
| 0.50      | 47.0                               | QP                 | Line           | 56               | -9.0           |
| 0.23      | 53.2                               | QP                 | Line           | 62.45            | -9.3           |
| 0.50      | 36.6                               | AV                 | Line           | 46               | -9.4           |
| 0.17      | 54.7                               | QP                 | Neutral        | 64.96            | -10.3          |
| 0.39      | 47.7                               | PK                 | Line           | 58.06            | -10.4          |
| 0.33      | 39.0                               | AV                 | Line           | 49.45            | -10.5          |
| 0.34      | 38.5                               | AV                 | Neutral        | 49.2             | -10.7          |
| 0.17      | 54.1                               | PK                 | Line           | 65.16            | -11.1          |
| 0.446     | 45.79                              | PK                 | Neutral        | 56.95            | -11.2          |
| 0.39      | 46.55                              | PK                 | Neutral        | 58.06            | -11.5          |
| 0.28      | 49.13                              | PK                 | Line           | 60.76            | -11.6          |
| 0.28      | 48.9                               | PK                 | Neutral        | 60.82            | -11.9          |
| 0.39      | 36.1                               | AV                 | Neutral        | 48.06            | -12.0          |
| 0.39      | 35.2                               | AV                 | Line           | 48.06            | -12.8          |
| 0.23      | 37.3                               | AV                 | Line           | 52.45            | -15.1          |
| 0.29      | 35.2                               | AV                 | Neutral        | 50.52            | -15.4          |
| 0.23      | 37.1                               | AV                 | Neutral        | 52.45            | -15.4          |
| 0.28      | 33.9                               | AV                 | Line           | 50.82            | -16.9          |
| 0.17      | 37.2                               | AV                 | Neutral        | 54.96            | -17.8          |
| 0.17      | 37.15                              | AV                 | Line           | 54.96            | -17.8          |
| 0.22      | 37.2                               | QP                 | Neutral        | 62.74            | -25.6          |

#### Line



B T M S - X - L - F C C
D a t e : 13. A P R . 2010 11:50:53

#### Neutral



# FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

#### **Applicable Standard**

FCC §15.205; §15.209; §15.247(d)

## **Measurement Uncertainty**

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is  $\pm 4.0 \text{ dB}$ .

### **EUT Setup**



The radiated emission tests were performed in the 3 meters chamber B test site, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC 15.209 and FCC 15.247 limits.

## **EMI Test Receiver & Spectrum Analyzer Setup**

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

| Frequency Range   | RBW     | Video B/W | Detector |
|-------------------|---------|-----------|----------|
| 30MHz – 1000 MHz  | 100 kHz | 300 kHz   | QP       |
| 1000 MHz – 25 GHz | 1 MHz   | 3 MHz     | PK       |
| 1000 MHz – 25 GHz | 1 MHz   | 10 Hz     | AV       |

#### **Test Equipment List and Details**

| Manufacturer     | Description       | Model          | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|------------------|-------------------|----------------|------------------|---------------------|-------------------------|
| НР               | Pre-Amplifier     | 8447E          | 1937A01046       | 2009-11-15          | 2010-11-15              |
| Rohde & Schwarz  | EMI Test Receiver | ESCI           | 100224           | 2009-10-16          | 2010-10-16              |
| Sunol Sciences   | Broadband Antenna | JB3            | A040904-2        | 2009-08-14          | 2010-08-14              |
| Beijin microwave | Horn Antenna      | OMCDH101<br>80 | 10279001A        | 2009-08-14          | 2010-08-14              |
| НР               | Pre-Amplifier     | 8449B          | 3008A00277       | 2009-08-14          | 2010-08-14              |
| НР               | Spectrum Analyzer | 8562A          | 3204A07083       | 2009-08-14          | 2010-08-14              |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

#### **Test Procedure**

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz and peak and Average detection modes for frequencies above 1GHz.

#### **Corrected Amplitude & Margin Calculation**

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss- Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

#### **Test Results Summary**

According to the recorded data in following table, the EUT complied with the FCC Part 15, Subpart C, section 15.205, 15.209 and 15.247, with the worst margin reading of:

#### Below 1000 MHz:

Test Mode: BDR Mode

4.2 dB at 199.952 MHz in the Horizontal polarization

Test Mode: EDR Mode

0.2 dB at 200.00749 MHz in the Horizontal polarization

#### Above 1000 MHz:

Test Mode: BDR Transmitting

Low Channel: 2.6 dB at 72.6 MHz in the Vertical polarization Middle Channel: 0.8 dB at 7323 MHz in the Vertical polarization High Channel: 1.1 dB at 4960 MHz in the Vertical polarization

Test Mode: EDR Transmitting

Low Channel: 0.9 dB at 4804 MHz in the Vertical polarization Middle Channel: 0.2 dB at 4882 MHz in the Vertical polarization High Channel: 2.5 dB at 7440 MHz in the Vertical polarization

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 26 °C     |
|--------------------|-----------|
| Relative Humidity: | 56 %      |
| ATM Pressure:      | 100.9 KPa |

<sup>\*</sup> The testing was performed by Marshal Yu on 2010-05-25

Test Result: Compliant, please refer to following tables and plots

# Below 1000 MHz:

## **BDR Mode:**

Electric Field Strength with Scans



| Frequency<br>(MHz) | Cord.<br>Quasi-Peak<br>(dBµV/m) | Measurement<br>Bandwidth<br>(kHz) | Antenna<br>Height<br>(cm) | Antenna<br>Polarity<br>(H/V) | Turntable<br>Position<br>(deg) | Corr. (dB) | Margin<br>(dB) | Limit<br>(dBμV/m) |
|--------------------|---------------------------------|-----------------------------------|---------------------------|------------------------------|--------------------------------|------------|----------------|-------------------|
| 199.95200          | 39.3                            | 120.000                           | 150.0                     | Н                            | 253.0                          | -13.0      | 4.20           | 43.50             |
| 300.06669          | 41.0                            | 120.000                           | 122.0                     | Н                            | 344.0                          | -10.8      | 5.00           | 46.00             |
| 288.00703          | 37.4                            | 120.000                           | 150.0                     | Н                            | 299.0                          | -10.8      | 8.60           | 46.00             |
| 50.005508          | 25.5                            | 120.000                           | 150.0                     | V                            | 0.0                            | -19.1      | 14.50          | 40.00             |
| 203.19515          | 25.6                            | 120.000                           | 250.0                     | Н                            | 261.0                          | -13.5      | 17.90          | 43.50             |
| 49.800881          | 21.1                            | 120.000                           | 140.0                     | V                            | 45.0                           | -19.0      | 18.90          | 40.00             |

## **EDR Mode:**





| Frequency<br>(MHz) | Cord.<br>Quasi-Peak<br>(dBµV/m) | Measurement<br>Bandwidth<br>(kHz) | Antenna<br>Height<br>(cm) | Antenna<br>Polarity<br>(H/V) | Turntable<br>Position<br>(deg) | Corr. (dB) | Margin<br>(dB) | Limit<br>(dBμV/m) |
|--------------------|---------------------------------|-----------------------------------|---------------------------|------------------------------|--------------------------------|------------|----------------|-------------------|
| 200.00749          | 43.3                            | 120.000                           | 122.0                     | Н                            | 0.0                            | -13.0      | 0.20           | 43.50             |
| 288.00559          | 44.3                            | 120.000                           | 100.0                     | Н                            | 111.0                          | -10.8      | 1.70           | 46.00             |
| 288.01146          | 38.8                            | 120.000                           | 100.0                     | Н                            | 38.0                           | -10.8      | 7.20           | 46.00             |
| 45.631128          | 24.7                            | 120.000                           | 140.0                     | V                            | 0.0                            | -17.1      | 15.30          | 40.00             |
| 41.528137          | 21.6                            | 120.000                           | 250.0                     | V                            | 322.0                          | -14.8      | 18.40          | 40.00             |
| 848.41346          | 19.5                            | 120.000                           | 150.0                     | V                            | 69.0                           | -0.8       | 26.50          | 46.00             |

# Above 1000 MHz:

Test Mode: BDR Transmitting

| Б                  | S.A.                     | D: 4:               | Те         | est Anten      | na            | Cable        | Pre-      | Cord.         | Part 15.2         | 47/209      | D                      |
|--------------------|--------------------------|---------------------|------------|----------------|---------------|--------------|-----------|---------------|-------------------|-------------|------------------------|
| Frequency<br>(MHz) | Reading (dBuV)           | Direction<br>Degree | Height (m) | Polar<br>(H/V) | Factor (dB/m) | Loss<br>(dB) | Amp. (dB) | Amp. (dBuV/m) | Limit<br>(dBµV/m) | Margin (dB) | Detector<br>(PK/QP/AV) |
|                    | Low Channel (f=2402 MHz) |                     |            |                |               |              |           |               |                   |             |                        |
| 7206.00            | 63.1                     | 335                 | 1.2        | V3             | 36.6          | 5.3          | 33.6      | 71.4          | 74                | 2.6         | PK                     |
| 4804.00            | 66.7                     | 10                  | 1.3        | V3             | 31.5          | 4.3          | 33.7      | 68.8          | 74                | 5.3         | PK                     |
| 7206.00            | 38.5                     | 30                  | 1.5        | V3             | 36.6          | 5.3          | 33.6      | 46.8          | 54                | 7.2         | AV                     |
| 4804.00            | 38.8                     | 360                 | 1.2        | V3             | 31.5          | 4.3          | 33.7      | 40.9          | 54                | 13.2        | AV                     |
| 7206.00            | 50.1                     | 25                  | 1.6        | Н3             | 36.6          | 5.3          | 33.6      | 58.4          | 74                | 15.6        | PK                     |
| 1637.00            | 65.0                     | 100                 | 1.5        | V3             | 25.0          | 2.3          | 35.0      | 57.3          | 74                | 16.7        | PK                     |
| 4804.00            | 52.5                     | 350                 | 1          | Н3             | 31.5          | 4.3          | 33.7      | 54.6          | 74                | 19.5        | PK                     |
| 1637.00            | 36.8                     | 40                  | 1.4        | V3             | 25.0          | 2.3          | 35.0      | 29.1          | 54                | 24.9        | AV                     |
| 1637.00            | 51.8                     | 15                  | 1.7        | Н3             | 25.0          | 2.3          | 35.0      | 44.1          | 74                | 29.9        | PK                     |
|                    | -                        | -                   | =          | Mic            | ldle Chann    | el (f=244    | 1 MHz)    | -             | -                 | -           |                        |
| 7323.00            | 64.8                     | 38                  | 1.3        | V3             | 36.6          | 5.4          | 33.6      | 73.2          | 74                | 0.8         | PK                     |
| 4882.00            | 70.9                     | 45                  | 1.2        | V3             | 31.5          | 4.3          | 33.7      | 73.0          | 74                | 1.1         | PK                     |
| 7323.00            | 38.7                     | 42                  | 1.5        | V3             | 36.6          | 5.4          | 33.6      | 47.1          | 54                | 6.9         | AV                     |
| 4882.00            | 43.0                     | 350                 | 1.1        | V3             | 31.5          | 4.3          | 33.7      | 45.1          | 54                | 9.0         | AV                     |
| 7323.00            | 54.7                     | 20                  | 1.6        | Н3             | 36.6          | 5.4          | 33.6      | 63.1          | 74                | 10.9        | PK                     |
| 7323.00            | 33.9                     | 15                  | 1.3        | НЗ             | 36.6          | 5.4          | 33.6      | 42.3          | 54                | 11.7        | AV                     |
| 4882.00            | 38.8                     | 0                   | 1.7        | НЗ             | 31.5          | 4.3          | 33.7      | 40.9          | 54                | 13.2        | AV                     |
| 4882.00            | 56.8                     | 28                  | 1.7        | Н3             | 31.5          | 4.3          | 33.7      | 58.9          | 74                | 15.2        | PK                     |
| 1618.00            | 53.2                     | 15                  | 1.4        | V3             | 25.0          | 2.3          | 35.0      | 45.5          | 74                | 28.5        | PK                     |
|                    | -                        | -                   | =          | Hi             | gh Channe     | l (f=2480    | MHz)      | -             | -                 | -           |                        |
| 4960.00            | 70.8                     | 15                  | 1.4        | V3             | 31.5          | 4.3          | 33.7      | 72.9          | 74                | 1.1         | PK                     |
| 7440.00            | 64.3                     | 34                  | 1.2        | V3             | 36.6          | 5.4          | 33.6      | 72.7          | 74                | 1.3         | PK                     |
| 7440.00            | 40.7                     | 27                  | 1.4        | V3             | 36.6          | 5.4          | 33.6      | 49.1          | 54                | 4.9         | AV                     |
| 4960.00            | 45.7                     | 352                 | 1.2        | V3             | 31.5          | 4.3          | 33.7      | 47.8          | 54                | 6.2         | AV                     |
| 7440.00            | 38.2                     | 40                  | 1.1        | НЗ             | 36.6          | 5.4          | 33.6      | 46.6          | 54                | 7.4         | AV                     |
| 4960.00            | 40.1                     | 30                  | 1.2        | НЗ             | 31.5          | 4.3          | 33.7      | 42.2          | 54                | 11.8        | AV                     |
| 7440.00            | 50.8                     | 11                  | 1.7        | НЗ             | 36.6          | 5.4          | 33.6      | 59.2          | 74                | 14.8        | PK                     |
| 4960.00            | 51.0                     | 47                  | 1.3        | НЗ             | 31.5          | 4.3          | 33.7      | 53.1          | 74                | 20.9        | PK                     |

Test Mode: EDR Transmitting

| E                  | S.A.                     | D:4:                | Те         | est Anten      | na            | Cable        | Pre-      | Cord.         | Part 15.2         | 47/209      | D. 4. 4                |
|--------------------|--------------------------|---------------------|------------|----------------|---------------|--------------|-----------|---------------|-------------------|-------------|------------------------|
| Frequency<br>(MHz) | Reading<br>(dBuV)        | Direction<br>Degree | Height (m) | Polar<br>(H/V) | Factor (dB/m) | Loss<br>(dB) | Amp. (dB) | Amp. (dBuV/m) | Limit<br>(dBµV/m) | Margin (dB) | Detector<br>(PK/QP/AV) |
|                    | Low Channel (f=2402 MHz) |                     |            |                |               |              |           |               |                   |             |                        |
| 4804.00            | 71.0                     | 0                   | 1.2        | V3             | 31.5          | 4.3          | 33.7      | 73.1          | 74                | 0.9         | PK                     |
| 7206.00            | 61.8                     | 30                  | 1.5        | V3             | 36.6          | 5.3          | 33.6      | 70.1          | 74                | 3.9         | PK                     |
| 7206.00            | 38.6                     | 15                  | 1.6        | V3             | 36.6          | 5.3          | 33.6      | 46.9          | 54                | 7.1         | AV                     |
| 1637.00            | 71.0                     | 150                 | 1.3        | V3             | 25.0          | 2.3          | 35.0      | 63.3          | 74                | 10.7        | PK                     |
| 7206.00            | 54.2                     | 25                  | 1.2        | Н3             | 36.6          | 5.3          | 33.6      | 62.5          | 74                | 11.5        | PK                     |
| 4804.00            | 39.5                     | 360                 | 1          | V3             | 31.5          | 4.3          | 33.7      | 41.6          | 54                | 12.5        | AV                     |
| 4804.00            | 53.1                     | 130                 | 1.5        | Н3             | 31.5          | 4.3          | 33.7      | 55.2          | 74                | 18.9        | PK                     |
| 1637.00            | 40.5                     | 40                  | 1.3        | V3             | 25.0          | 2.3          | 35.0      | 32.8          | 54                | 21.2        | AV                     |
| 1637.00            | 55.4                     | 0                   | 1.1        | Н3             | 25.0          | 2.3          | 35.0      | 47.7          | 74                | 26.3        | PK                     |
|                    | -                        | -                   | =          | Mic            | ldle Chann    | el (f=244    | 1 MHz)    | -             |                   | -           |                        |
| 4882.00            | 71.7                     | 20                  | 1.2        | V3             | 31.5          | 4.3          | 33.7      | 73.8          | 74                | 0.2         | PK                     |
| 7323.00            | 64.7                     | 90                  | 1.1        | V3             | 36.6          | 5.4          | 33.6      | 73.1          | 74                | 0.9         | PK                     |
| 7323.00            | 44.5                     | 24                  | 1.5        | V3             | 36.6          | 5.4          | 33.6      | 52.9          | 54                | 1.1         | AV                     |
| 4882.00            | 46.6                     | 30                  | 1.3        | V3             | 31.5          | 4.3          | 33.7      | 48.7          | 54                | 5.4         | AV                     |
| 7323.00            | 39.7                     | 0                   | 1.6        | НЗ             | 36.6          | 5.4          | 33.6      | 48.1          | 54                | 5.9         | AV                     |
| 4882.00            | 40.1                     | 51                  | 1.5        | НЗ             | 31.5          | 4.3          | 33.7      | 42.2          | 54                | 11.9        | AV                     |
| 7323.00            | 48.5                     | 15                  | 1          | НЗ             | 36.6          | 5.4          | 33.6      | 56.9          | 74                | 17.1        | PK                     |
| 4882.00            | 49.8                     | 330                 | 1.7        | Н3             | 31.5          | 4.3          | 33.7      | 51.9          | 74                | 22.2        | PK                     |
| 1618.00            | 57.5                     | 35                  | 1.4        | V3             | 25.0          | 2.3          | 35.0      | 49.8          | 74                | 24.2        | PK                     |
|                    | -                        | -                   | =          | Hi             | gh Channe     | l (f=2480    | MHz)      | -             |                   | -           |                        |
| 7440.00            | 63.1                     | 23                  | 1.7        | V3             | 36.6          | 5.4          | 33.6      | 71.5          | 74                | 2.5         | PK                     |
| 4960.00            | 68.9                     | 10                  | 1.2        | V3             | 31.5          | 4.3          | 33.7      | 71.0          | 74                | 3.0         | PK                     |
| 7440.00            | 37.3                     | 40                  | 1.1        | V3             | 36.6          | 5.4          | 33.6      | 45.7          | 54                | 8.3         | AV                     |
| 4960.00            | 43.2                     | 0                   | 1.5        | V3             | 31.5          | 4.3          | 33.7      | 45.3          | 54                | 8.7         | AV                     |
| 7440.00            | 33.5                     | 15                  | 1.3        | Н3             | 36.6          | 5.4          | 33.6      | 41.9          | 54                | 12.1        | AV                     |
| 7440.00            | 50.0                     | 15                  | 1.1        | Н3             | 36.6          | 5.4          | 33.6      | 58.4          | 74                | 15.6        | PK                     |
| 4960.00            | 35.6                     | 342                 | 1          | НЗ             | 31.5          | 4.3          | 33.7      | 37.7          | 54                | 16.3        | AV                     |
| 4960.00            | 54.2                     | 50                  | 1.4        | Н3             | 31.5          | 4.3          | 33.7      | 56.3          | 74                | 17.7        | PK                     |

# **Spurious Emissions in the Restricted Band**

BDR Lowest Channel at Horizontal: Peak



BDR Lowest Channel at Vertical: Peak



# BDR Lowest Channel at Horizontal: Average



BDR Lowest Channel at Vertical: Average



BDR Highest Channel at Horizontal: Peak



BDR Highest Channel at Vertical: Peak



BDR Highest Channel at Horizontal: Average



BDR Highest Channel at Vertical: Average



## EDR Lowest Channel at Horizontal: Peak



EDR Lowest Channel at Vertical: Peak



# EDR Lowest Channel at Horizontal: Average



EDR Lowest Channel at Vertical: Average



EDR Highest Channel at Horizontal: Peak



EDR Highest Channel at Vertical: Peak



EDR Highest Channel at Horizontal: Average



EDR Highest Channel at Vertical: Average



# FCC §15.247(a) (1) - CHANNEL SEPARATION TEST

#### **Applicable Standard**

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

#### **Test Equipment List and Details**

| Manufacturer    | Description       | Model | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|-------------------|-------|------------------|---------------------|-------------------------|
| Rohde & Schwarz | EMI Test Receiver | ESCI  | 100224           | 2009-10-16          | 2010-10-16              |

<sup>\*</sup> **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

#### **Test Procedure**

- 1. Set the EUT in transmitting mode, spectrum Bandwidth was set at 100 kHz, maxhold the channel.
- 2. Set the adjacent channel of the EUT maxhold another truce
- 3. Measure the channel separation.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:              | 25 °C     |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 52 %      |
| ATM Pressure:             | 100.9 kPa |

<sup>\*</sup> The testing was performed by Peter Zhang & Marshal Yu on 2010-05-17.

**Test Result:** Compliant, Please refer to following tables and plots.

Test Mode: BDR Transmitting

| Channel          | Channel<br>Frequency<br>(MHz) | Channel<br>Separation<br>(MHz) | Limit<br>(MHz) | Result |
|------------------|-------------------------------|--------------------------------|----------------|--------|
| Low Channel      | 2402                          | 1.004                          | 0.565          | Pass   |
| Adjacent Channel | 2403                          | 1.004                          | 0.505          | 1 455  |
| Mid Channel      | 2441                          | 1.004                          | 0.576          | Pass   |
| Adjacent Channel | 2442                          | 1.004                          | 0.570          | rass   |
| High Channel     | 2480                          | 1.00                           | 0.56           | D      |
| Adjacent Channel | 2479                          | 1.00                           | 0.56           | Pass   |

Please refer to the following plots.

## Low Channel



CS-LOW-BDR

Date: 17.MAY.2010 15:53:14

#### **Middle Channel**



CS-MIDDLE-BDR

Date: 17.MAY.2010 15:58:14

#### **High Channel**



CS-HIGH-BDR

Date: 17.MAY.2010 16:05:08

Test Mode: EDR Transmitting

| Channel          | Channel<br>Frequency<br>(MHz) | Channel<br>Separation<br>(MHz) | Limit<br>(MHz) | Result |
|------------------|-------------------------------|--------------------------------|----------------|--------|
| Low Channel      | 2402                          | 1.01                           | 0.912          | Pass   |
| Adjacent Channel | 2403                          | 1.01                           | 0.912          | 1 488  |
| Mid Channel      | 2441                          | 1.00                           | 0.891          | Pass   |
| Adjacent Channel | 2442                          | 1.00                           | 0.891          | rass   |
| High Channel     | 2480                          | 1.00                           | 0.012          | D      |
| Adjacent Channel | 2479                          | 1.00                           | 0.912          | Pass   |

Please refer to the following plots.

#### **Low Channel**



CS-LOW-EDR

Date: 17.MAY.2010 16:25:20

#### **Middle Channel**



CS-MIDDLE-EDR

Date: 17.MAY.2010 16:19:58

# High Channel



CS-HIGH-EDR

Date: 17.MAY.2010 16:12:33

# **FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING**

#### **Applicable Standard**

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

#### **Test Equipment List and Details**

| Manufacturer    | Description       | Model | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|-------------------|-------|------------------|---------------------|-------------------------|
| Rohde & Schwarz | EMI Test Receiver | ESCI  | 100224           | 2009-10-16          | 2010-10-16              |

<sup>\*</sup> **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

#### **Test Procedure**

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 °C     |
|--------------------|-----------|
| Relative Humidity: | 52 %      |
| ATM Pressure:      | 100.9 kPa |

<sup>\*</sup> The testing was performed by Peter Zhang & Marshal Yu on 2010-05-17 & 2010-05-26.

**Test Result:** Compliant, Please refer to following tables and plots.

Test Mode: BDR Transmitting

| Channel | Frequency<br>(MHz) | 20 dB Bandwidth<br>(MHz) | 99% Bandwidth<br>(MHz) |
|---------|--------------------|--------------------------|------------------------|
| Low     | 2402               | 0.848                    | 0.916                  |
| Middle  | 2441               | 0.864                    | 0.904                  |
| High    | 2480               | 0.840                    | 0.904                  |

#### Low Channel for 20 dB Bandwidth



20DB-LOW-BDR

Date: 17.MAY.2010 16:49:17

#### Middle Channel for 20 dB Bandwidth



20DB-MIDDLE-BDR

Date: 17.MAY.2010 16:54:47

# High Channel for 20 dB Bandwidth



20DB-HIGH-BDR

Date: 17.MAY.2010 16:58:28

#### Low Channel for 99% Bandwidth



99BANDWIDTH-LOW-BDR

Date: 26.MAY.2010 10:48:49

#### Middle Channel 99% Bandwidth



99BANDWIDTH-MIDDLE-BDR
Date: 26.MAY.2010 10:51:12

# High Channel for 99% Bandwidth



99BANDWIDTH-HIGH-BDR

Date: 26.MAY.2010 10:53:26

Test Mode: EDR Transmitting

| Channel | Frequency<br>(MHz) | 20 dB Bandwidth<br>(MHz) | 99% Bandwidth<br>(MHz) |
|---------|--------------------|--------------------------|------------------------|
| Low     | 2402               | 1.368                    | 2.28                   |
| Middle  | 2441               | 1.336                    | 1.744                  |
| High    | 2480               | 1.368                    | 1.912                  |

#### Low Channel for 20 dB Bandwidth



20DB-LOW-EDR

Date: 17.MAY.2010 17:21:00

#### Middle Channel for 20 dB Bandwidth



20DB-MIDDLE-EDR

Date: 17.MAY.2010 17:14:01

#### High Channel for 20 dB Bandwidth



20DB-HIGH-EDR

Date: 17.MAY.2010 17:04:54

#### Low Channel for 99% Bandwidth



99BANDWIDTH-HIGH-EDR

Date: 26.MAY.2010 11:01:08

#### Middle Channel for 99% Bandwidth



99BANDWIDTH-MIDDLE-EDR
Date: 26.MAY.2010 10:59:04

# High Channel for 99% Bandwidth



99BANDWIDTH-HIGH-EDR
Date: 26.MAY.2010 10:56:30

# FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

#### **Applicable Standard**

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

#### **Test Equipment List and Details**

| Manufacturer    | Description       | Model | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|-------------------|-------|------------------|---------------------|-------------------------|
| Rohde & Schwarz | EMI Test Receiver | ESCI  | 100224           | 2009-10-16          | 2010-10-16              |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

#### **Test Procedure**

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 °C     |
|--------------------|-----------|
| Relative Humidity: | 52 %      |
| ATM Pressure:      | 100.9 kPa |

The testing was performed by Peter Zhang & Marshal Yu on 2010-05-17.

**Test Result:** Compliant, Please refer to following tables and plots.

Test Mode: BDR Transmitting

| Frequency Range<br>(MHz) | Number of<br>Hopping Channel | Limit |
|--------------------------|------------------------------|-------|
| 2400-2483.5              | 79                           | ≥ 15  |

# **Number of Hopping Channels**



HS-BDR

Date: 17.MAY.2010 17:56:41

Test Mode: EDR Transmitting

| Frequency Range<br>(MHz) | Number of<br>Hopping Channel | Limit |
|--------------------------|------------------------------|-------|
| 2400-2483.5              | 79                           | ≥ 15  |

# **Number of Hopping Channels**



HS-EDR

Date: 17.MAY.2010 18:13:57

# FCC §15.247(a) (1) (iii) -TIME OF OCCUPANCY (DWELL TIME)

### **Applicable Standard**

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

#### **Test Equipment List and Details**

| Manufacturer    | Description       | Model | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|-------------------|-------|------------------|---------------------|-------------------------|
| Rohde & Schwarz | EMI Test Receiver | ESCI  | 100224           | 2009-10-16          | 2010-10-16              |

<sup>\*</sup> **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

#### **Test Procedure**

The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 X channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Dwell Time= time slot length \* hope rate/ number of hopping channels \* 31.6s Hop rate=1600/s

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 °C     |  |
|--------------------|-----------|--|
| Relative Humidity: | 52 %      |  |
| ATM Pressure:      | 100.9 kPa |  |

<sup>\*</sup> The testing was performed by Peter Zhang & Marshal Yu on 2010-05-18.

**Test Result:** Compliant, Please refer to following tables and plots.

#### **Dwell Time**

Test Mode: BDR Transmitting

| Mode | Channel                                                                               | Pulse Width (ms)      | Dwell Time<br>(Sec)    | Limit<br>(Sec) | Result |
|------|---------------------------------------------------------------------------------------|-----------------------|------------------------|----------------|--------|
|      | Low                                                                                   | 0.491                 | 0.157                  | 0.4            | Pass   |
| DH 1 | Middle                                                                                | 0.491                 | 0.157                  | 0.4            | Pass   |
|      | High                                                                                  | 0.494                 | 0.158                  | 0.4            | Pass   |
|      | <i>Note:</i> Dwel                                                                     | l time=Pulse width (m | $(1600 \div 2 \div 7)$ | (9) ×31.6 Seco | ond    |
|      | Low                                                                                   | 1.765                 | 0.282                  | 0.4            | Pass   |
| DH 3 | Middle                                                                                | 1.77                  | 0.283                  | 0.4            | Pass   |
| DH 3 | High                                                                                  | 1.76                  | 0.282                  | 0.4            | Pass   |
|      | <i>Note:</i> Dwell time=Pulse width (ms) × $(1600 \div 4 \div 79) \times 31.6$ Second |                       |                        |                |        |
|      | Low                                                                                   | 3.06                  | 0.326                  | 0.4            | Pass   |
| DH 5 | Middle                                                                                | 3.041                 | 0.324                  | 0.4            | Pass   |
|      | High                                                                                  | 3.02                  | 0.322                  | 0.4            | Pass   |
|      | Note: Dwel                                                                            | l time=Pulse width (m | $(1600 \div 6 \div 7)$ | (9) ×31.6 Seco | ond    |

#### **Low Channel for DH1**

# Middle Channel for DH1





DH1-LOW-BDR

Date: 18.MAY.2010 10:03:58

DHI-MIDDLE-BDR

Date: 18.MAY.2010 10:07:24

# **High Channel for DH1**

#### **Low Channel for DH3**





DH1-HIGH-BDR

Date: 18.MAY.2010 10:10:20

DH3-LOW-BDR

Date: 18.MAY.2010 10:21:10

#### **Middle Channel for DH3**

# **High Channel for DH3**





DH3-MIDDLE-BDR
Date: 18.MAY.2010 10:19:14

DH5-HIGH-BDR Date: 18.MAY

Date: 18.MAY.2010 10:37:44

#### **Low Channel for DH5**

#### **Middle Channel for DH5**





DH5-LOW-BDR
Date: 18.MAY.2010 10:30:12

DH5-MIDDLE-BDR
Date: 18.MAY.2010 10:34:29

# **High Channel for DH5**



DH5-HIGH-BDR

Date: 18.MAY.2010 10:37:44

#### **Dwell Time**

Test Mode: EDR Transmitting

| Mode                                                                        | Channel                                                                               | Pulse Width (ms)      | Dwell Time<br>(Sec)    | Limit<br>(Sec) | Result |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|------------------------|----------------|--------|
|                                                                             | Low                                                                                   | 0.504                 | 0.161                  | 0.4            | Pass   |
| DH1                                                                         | Middle                                                                                | 0.509                 | 0.153                  | 0.4            | Pass   |
| Dill                                                                        | High                                                                                  | 0.503                 | 0.161                  | 0.4            | Pass   |
|                                                                             | <i>Note:</i> Dwel                                                                     | l time=Pulse width (m | $(1600 \div 2 \div 7)$ | 79) ×31.6 Seco | ond    |
|                                                                             | Low                                                                                   | 1.776                 | 0.284                  | 0.4            | Pass   |
| DH3                                                                         | Middle                                                                                | 1.78                  | 0.285                  | 0.4            | Pass   |
| DH3                                                                         | High                                                                                  | 1.772                 | 0.284                  | 0.4            | Pass   |
|                                                                             | <i>Note:</i> Dwell time=Pulse width (ms) × $(1600 \div 4 \div 79) \times 31.6$ Second |                       |                        |                |        |
|                                                                             | Low                                                                                   | 3.024                 | 0.323                  | 0.4            | Pass   |
| DH5                                                                         | Middle                                                                                | 3.031                 | 0.323                  | 0.4            | Pass   |
|                                                                             | High                                                                                  | 3.038                 | 0.324                  | 0.4            | Pass   |
| <b>Note:</b> Dwell time=Pulse width (ms) × $(1600 \div 6 \div 79) \times 3$ |                                                                                       |                       |                        |                | ond    |

#### **Low Channel for DH1**

# Middle Channel for DH1



DH1-MIDDLE-EDR

Date: 18.MAY.2010 10:52:17

Date: 18.MAY.2010 10:54:46

DH1-LOW-EDR

# **High Channel for DH1**

# REW 3 MHz Delta 2 [T1] 4.16 dB SWT 840 µB 503.080000 µB µB 503.0800000 µB 503.080000 µB 503.08000 µB 503

**Low Channel for DH3** 



DH3-LOW-EDR

Date: 18.MAY.2010 11:01:27

DH1-HIGH-EDR
Date: 18.MAY.2010 10:45:49

#### **Middle Channel for DH3**



# DH3-MIDDLE-EDR Date: 18.MAY.2010 11:14:58

### **High Channel for DH3**



DH3-HIGH-EDR

Date: 18.MAY.2010 11:17:44

FCC ID: VMTBTMS-X ZBA, Inc.

#### **Low Channel for DH5**

#### **Middle Channel for DH5**





DH5-LOW-EDR Date: 18.MAY.2010 11:38:44 DH5-MIDDLE-EDR Date: 18.MAY.2010 11:35:52

# **High Channel for DH5**



DH5-HIGH-EDR

Date: 18.MAY.2010 11:28:10

# FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

#### **Applicable Standard**

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

#### **Test Equipment List and Details**

| Manufacturer    | Description       | Model | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|-------------------|-------|------------------|---------------------|-------------------------|
| Rohde & Schwarz | EMI Test Receiver | ESCI  | 100224           | 2009-10-16          | 2010-10-16              |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

#### **Test Procedure**

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI test receiver.
- 3. Add a correction factor to the display.



#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 °C     |  |
|--------------------|-----------|--|
| Relative Humidity: | 52 %      |  |
| ATM Pressure:      | 100.9 kPa |  |

<sup>\*</sup> The testing was performed by Peter Zhang & Marshal Yu on 2010-05-18 & 2010-05-20.

**Test Result:** Compliant, Please refer to following tables and plots.

Test Mode: BDR Transmitting

| Frequency | Condu  | ucted Outp | out Power | (dBm)  | Max.Output  | Limit | Results |
|-----------|--------|------------|-----------|--------|-------------|-------|---------|
| (MHz)     | Ant. 0 | Ant.1      | Ant. 2    | Ant. 3 | Power (dBm) | (mW)  |         |
| 2402      | 16.08  | 16.80      | 16.06     | 16.69  | 16.80       | 125   | Pass    |
| 2440      | 16.70  | 17.54      | 16.92     | 17.53  | 17.54       | 125   | Pass    |
| 2480      | 16.46  | 17.78      | 17.05     | 17.59  | 17.78       | 125   | Pass    |

#### Low Channel for Antenna 0

#### Middle Channel for Antenna 0



CSO-LOW-BDR CSO-MIDDLE-BDR

Date: 18.MAY.2010 15:42:37 Date: 18.MAY.2010 15:51:58

# High Chanel for Antenna 0

#### Low Channel for Antenna 1



CS0-HIGH-BDR
Date: 18.MAY.2010 15:55:43

CS1-LOW-BDR

Date: 18.MAY.2010 16:25:46

#### **Middle Channel for Antenna 1**

#### **High Chanel for Antenna 1**



CS1-MIDDLE-BDR
Date: 18.MAY.2010 16:34:00

CS1-HIGH-BDR

Date: 18.MAY.2010 16:36:18

#### Low Channel for Antenna 2

#### Middle Channel for Antenna 2



CS2-LOW-BDR

Date: 18.MAY.2010 16:55:42

CS2-MIDDLE-BDR

Date: 18.MAY.2010 17:00:21

#### **High Chanel for Antenna 2**

#### Low Channel for Antenna 3



CS2-HIGH-BDR

Date: 18.MAY.2010 17:04:02

CS3-LOW-BDR

Date: 18.MAY.2010 17:25:04

#### Middle Channel for Antenna 3

# **High Chanel for Antenna 3**



CS3-MIDDLE-BDR

Date: 18.MAY.2010 17:36:01

CS3-HIGH-BDR

Date: 18.MAY.2010 17:32:51

# Test Mode: EDR Transmitting

| Frequency | Condu  | icted Outp | out Power | (dBm)  | Max.Output  | Limit | D 1     |
|-----------|--------|------------|-----------|--------|-------------|-------|---------|
| (MHz)     | Ant. 0 | Ant.1      | Ant. 2    | Ant. 3 | Power (dBm) | (mW)  | Results |
| 2402      | 16.55  | 17.16      | 15.97     | 16.94  | 17.16       | 125   | Pass    |
| 2440      | 17.25  | 17.95      | 17.00     | 17.74  | 17.95       | 125   | Pass    |
| 2480      | 17.16  | 18.32      | 17.55     | 17.86  | 18.32       | 125   | Pass    |

#### Low Channel for Antenna 0

#### Middle Channel for Antenna 0



CS0-LOW-EDR

Date: 20.MAY.2010 13:21:00

CS0-MIDDLE-EDR

Date: 20.MAY.2010 13:23:20

#### High Chanel for Antenna 0

#### Low Channel for Antenna 1



CS0-HIGH-EDR CS1-LOW-EDR

Date: 20.MAY.2010 13:25:27 Date: 20.MAY.2010 13:37:51

#### **Middle Channel for Antenna 1**

# **High Chanel for Antenna 1**



CS1-MIDDLE-EDR CS1-HIGH-EDR

Date: 20.MAY.2010 13:34:01 Date: 20.MAY.2010 13:28:45

#### Low Channel for Antenna 2

#### Middle Channel for Antenna 2



CS2-LOW-EDR

CS2-MIDDLE-EDR Date: 20.MAY.2010 13:41:18 Date: 20.MAY.2010 13:43:07

Report No.: RSC100408002 Page 61 of 65 FCC Part15.247 Test Report

#### **High Chanel for Antenna 2**

#### Low Channel for Antenna 3



CS2-HIGH-EDR CS3-LOW-EDR

Date: 20.MAY.2010 13:45:25 Date: 20.MAY.2010 13:49:49

#### Middle Channel for Antenna 3

#### **High Chanel for Antenna 3**



CS3-MIDDLE-EDR CS3-HIGH-EDR

Date: 20.MAY.2010 13:52:34 Date: 20.MAY.2010 13:54:20

# FCC §15.247(d) - BAND EDGES TESTING

#### **Applicable Standard**

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### **Test Equipment List and Details**

| Manufacturer    | Description       | Model | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|-------------------|-------|------------------|---------------------|-------------------------|
| Rohde & Schwarz | EMI Test Receiver | ESCI  | 100224           | 2009-10-16          | 2010-10-16              |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

#### **Test Procedure**

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 °C     |  |
|--------------------|-----------|--|
| Relative Humidity: | 52 %      |  |
| ATM Pressure:      | 100.9 kPa |  |

<sup>\*</sup>The testing was performed by Peter Zhang & Marshal Yu on 2010-05-18.

Test Result: Compliant, Please refer to the following table and plots.

Test Mode: BDR Transmitting

| Frequency<br>(MHz) | Delta Peak to Band Emission (dBc) | Limit<br>(dBc) |
|--------------------|-----------------------------------|----------------|
| 2399.28            | 47.14                             | 20             |
| 2485.72            | 58.1                              | 20             |

Band Edge: Left Side Band Edge: Right Side



BE-LOW-BDR BE-HIGH-BDR

Date: 18.MAY.2010 09:35:23 Date: 18.MAY.2010 09:41:35

Test Mode: EDR Transmitting

| Frequency<br>(MHz) | Delta Peak to Band Emission (dBc) | Limit<br>(dBc) |
|--------------------|-----------------------------------|----------------|
| 2399.28            | 29.14                             | 20             |
| 2485.72            | 44.33                             | 20             |

# **Band Edge: Left Side**

# Band Edge: Right Side



BE-LOW-EDR BE-HIGH-EDR

Date: 18.MAY.2010 09:50:55 Date: 18.MAY.2010 09:45:42

\*\*\*\*\* END OF REPORT \*\*\*\*\*