Basics of quantum computing and qubit implementation

Vishvendra S. Poonia Indian Institute of Technology Roorkee

Foundation: classical behavior

Experiment with particles

Experiment with waves

Foundation: quantum mechanical behavior

Experiment with electrons

Quantum Mechanics: Basics

- A system is represented by a wavefunction
 - Hilbert space
- Evolution is governed by Schrödinger equation
 - o Hamiltonian
- Measurement
 - Hermitian operators
- Superposition
- Entanglement

Quantum Computing: Qubits and Quantum Gates

Qubit

A two level quantum system: $|0\rangle$ $|1\rangle$

The qubit state: $\alpha |0\rangle + \beta |1\rangle$

In real world, we don't want: decoherence.

Quantum Gates

DiVincenzo's criteria

Quantum Communication/Internet The ability to interconvert stationary and flying qubits

The ability to faithfully transmit flying qubits between specified locations

Ways of realizing a qubit

A two level quantum system $|0\rangle$

The qubit state: $\alpha |0\rangle + \beta |1\rangle$

Quantum dots - 0 D conductor

- Flectrons confined in all directions.
- Discrete energy levels
- Like big molecule

Growth (an example): when InGaAs is grown on GaAs islands form spontaneously, due to the mismatch in the lattice constants.

Quantum Dot Qubits

Kloeffel, Christoph, and Daniel Loss. "Prospects for spin-based quantum computing in quantum dots." Annu. Rev. Condens. Matter Phys 4, no. 1 (2013): 51-81.

A quantum dot qubit system

Quantum Dot Qubits: CMOS Platform

Qubit on the standard CMOS platform

NV Center qubits

- Ground and excited triplet states
- Intermediate singlet states
- Long coherence time (upto ms) at 300K

Quantum Effects in Biological Systems and Biomimetic Devices

Bar-tailed Godwit

- · Alaska to New Zealand/Australia
 - ~ 11,000 km
 - ~ 60 km hr-1
 - ~ 8 days

Arctic Tern

Pole to Pole (50k - 70k km Roundtrip)

Bar-tailed godwit

· Alaska to New Zealand

- ~11,000 km
- ~60 km hr-1
- ~8 days

Light Harvesting

Light Harvesting

reaction centre

Quantum Technology

Quantum Entanglement

- 'Spooky' action at a distance
- A valuable 'quantum' resource

"Quantum" Biology

Biological systems seem to have figured out a way to sustain and utilize 'quantum' effects

Quantum Technology and Quantum Biology

Quantum Biology: History

- 1943: Erwin Schrödinger "What is Life"
 - Genetic structure and stability is determined by quantum nature of molecular energy levels
 - "... quantum indeterminacy plays no biologically relevant role..."
 - · No consideration of
 - Coherence
 - Entanglement

Non-trivial quantum effects

Experiments:

- 2007: Fleming et al.: excitonic coherence in EET during light harvesting
- 2010: Engel et al., Scholes et al.: quantum coherence of EET in LHCs at ambient temperatures

Other 'quantum' biology proposals

- 1996 Turin: inelastic electron tunneling in olfaction
- 1998: Schulten et al.: radical pair mechanism of bird navigation
- 1995: Hameroff, Penrose: quantum coherence in brain microtubules consciousness?

Avian Magnetoreception

The avian compass: behavioral characteristics

Experiments @ Frankfurt on European Robin: local geomagnetic field = $46 \mu T$

Behavioral characteristics

local

field

Inclination compass only

No North-South distinction

Operational in some optical frequency range

RF disruption

Small (50nT) field transverse RF field (specific frequency 1.315 MHz) destroys compass action

Adaptive functional window

Dynamic range: ± 30% of local geomagnetic field

The radical pair mechanism

Compass action can be quantified by:

- Singlet yield: fraction of the singlet products
- Triplet yield
- Protonated Signaling state

The radical pair mechanism: energetics

Chirality-induced spin selectivity (CISS) and the RP model

- Preferential transmission of electrons parallel or anti-parallel to the direction of motion –
 based on chirality of the molecule
- CISS has been experimentally observed in different contexts:
 - Electron Transmission
 - Electron Transport
 - Electron transfer/rearrangement in chemical reactions

Inclusion of CISS in the RP model

$$\frac{\mathrm{d}\hat{\rho}\left(t\right)}{\mathrm{d}t} = -i\left[\hat{H},\hat{\rho}\left(t\right)\right]_{-} - \frac{1}{2}k_{\mathrm{R}}\left[\hat{P}^{\mathrm{R}},\hat{\rho}\left(t\right)\right]_{+} - k_{\mathrm{F}}\hat{\rho}\left(t\right)$$

In full CISS case

Only one spin polarity electrons can travel in one direction

Opposite polarity electrons would travel in the opposite direction

The radical pair model with CISS: Coherence and Signaling State Yield

Radical Pair Mechanism: In conclusion

CISS enhances compass sensitivity and coherence (both local and global)

Global coherence shows strong correlation with signaling state yield

Functional Window?

RF Disruption?

Emulation of RP Mechanism – Quantum Sensor for navigation

CISS for Quantum Technologies

Photosynthetic Apparatus

The Photosynthetic Apparatus: Excitonic Transport and Charge Separation

Photosynthesis: Synthesis of carbohydrates from CO₂ and water in presence of sunlight

Steps:

- Pigments: Captured photons create excitons
- Antenna: Excitonic transport from pigments to the reaction center
- Reaction center: Charge separation

Two crucial steps in photosynthesis

- Excitonic transport through molecular complex
- Charge separation at the reaction center

The Reaction Center

Structure

• Two donors, one acceptor

Reaction center emulation

RC Emulation: A Quantum Photocell

- Inspired from photosynthetic reaction center
 - And builds on Marlan O. Scully's idea of a quantum photocell.
- Strong built-in electric fields excitonic dipole-dipole coupling between adjacent dots
- Helps in breaking the detailed balance.
- The photovoltaic cell exhibits enhanced photo-voltage and photocurrent (~25%).

Results (contd...)

· Relative power enhancement

$$\eta_R = \frac{\tilde{P}_{out}^{max} - P_{out}^{max}}{P_{out}^{max}}$$

Power enhancement upto 25% is observed due to excitonic delocalization.

Some observations:

- · Greater spacing between dots leads to poorer coupling and reduces efficiency.
- Another mechanism of charge carrier extraction must be found to augment the low tunnelling rates.
 - · Phonon mediated transfers could be the key to this.
- · The phonon spectrum of GaN quantum dots needs to be studied in detail
 - · This and variation of the geometry of the photocell may be done through DFT/tight-binding methods.

In summary

THANK YOU