

AD-A169 289

INFLUENCE OF SHEAR MODULUS ON THE BEHAVIOR OF
ACOUSTICALLY TRANSPARENT MATERIALS(U) NAVAL RESEARCH
LAB WASHINGTON DC P S DUBBELDAY 30 APR 86 NRL-MR-5745

1/1

UNCLASSIFIED

F/G 17/1

NL

MICROCOM[®]

CHART

Naval Research Laboratory

Washington, DC 20375-5000

NRL Memorandum Report 5745

April 30, 1986

2

Influence of Shear Modulus on the Behavior of Acoustically Transparent Materials

AD-A169 289

P. S. DUBBELDAY

Materials Section
Transducer Branch
Underwater Sound Reference Detachment
Naval Research Laboratory
P. O. Box 568337
Orlando, Florida 32856-8337

ONIC FILE COPY

Approved for public release; distribution unlimited.

86 6 30 027

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS None			
2a. SECURITY CLASSIFICATION AUTHORITY None		3. DISTRIBUTION/AVAILABILITY OF REPORT			
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE None		Approved for public release; distribution is unlimited			
4. PERFORMING ORGANIZATION REPORT NUMBER(S) NRL Memorandum Report 5745		5. MONITORING ORGANIZATION REPORT NUMBER(S) None			
6a. NAME OF PERFORMING ORGANIZATION Underwater Sound Ref. Det. Naval Research Laboratory	6b OFFICE SYMBOL (if applicable) Code 5975	7a. NAME OF MONITORING ORGANIZATION None			
6c. ADDRESS (City, State, and ZIP Code) P.O. Box 568337 Orlando, FL 32856-8337		7b. ADDRESS (City, State, and ZIP Code) None			
8a. NAME OF FUNDING/SPONSORING ORGANIZATION ONR/NRL Non-Special Focus Prgm.	8b. OFFICE SYMBOL (if applicable) Code 5900	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Various			
8c. ADDRESS (City, State, and ZIP Code) P.O. Box 568337 Orlando, FL 32856-8337		10. SOURCE OF FUNDING NUMBERS			
		PROGRAM ELEMENT NO. 61153N	PROJECT NO.	TASK NO. RR011-08-42	WORK UNIT ACCESSION NO. 1472-0

11. TITLE (Include Security Classification)

Influence of Shear Modulus on the Behavior of Acoustically Transparent Materials

12 PERSONAL AUTHOR(S)

Dubbelday, Pieter S.

13a. TYPE OF REPORT

Interim

13b. TIME COVERED

FROM 9/1/87 to 12/1/85

14. DATE OF REPORT (Year, Month, Day)

1986 April 30

15. PAGE COUNT

16

16. SUPPLEMENTARY NOTATION

17 COSATI CODES			18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)		
FIELD	GROUP	SUB-GROUP	rho-c material reflection of acoustic waves, acoustic transparency		
20	01	X			

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Materials are under construction that match the density rho and dilatational sound speed c as closely as possible to the values of seawater, while maintaining sufficient rigidity to serve for structural purposes. The demand for rigidity implies a larger shear modulus than is typical for the usual rho-c elastomers. Matching of density and sound speed results in transparency for fluids only; the finite shear modulus in a solid admits the presence of a shear wave, which causes deviation from ideal rho-c behavior. In this report the effect is analyzed of a finite shear modulus on the reflection of plane waves by an infinite plate of the rho-c material. Examples are given of the reflection coefficient as a function of incidence angle for various combinations of density and sound speed close to ideal, and various ratios of plate thickness to dilatational wavelength. The effect of a finite loss factor in the shear modulus is shown.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT			21. ABSTRACT SECURITY CLASSIFICATION		
<input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT. <input type="checkbox"/> DTIC USERS			UNCLASSIFIED		
22a. NAME OF RESPONSIBLE INDIVIDUAL Dr. Pieter S. Dubbelday			22b. TELEPHONE (Include Area Code) 305, 857-5197		22c. OFFICE SYMBOL Code 5975

(This page blank)

DUBBELDAY

CONTENTS

Abstract-----	i
INTRODUCTION-----	1
ANALYSIS-----	1
RESULTS AND DISCUSSION-----	8

B

DATE

A-1

INFLUENCE OF SHEAR MODULUS ON THE BEHAVIOR OF ACOUSTICALLY TRANSPARENT MATERIALS

INTRODUCTION

Several publications [1-4] have appeared in recent years that report on the development of an acoustically transparent material based on a fluoroepoxy filled with microballoons. Such a material can be designed to have a density and dilatational sound speed that closely match those of the acoustic medium, usually seawater, but with sufficient rigidity to serve as a material for structural members or backing plates of acoustical systems. The matching of density and dilatational sound speed leads to perfect acoustic transparency for reflection of sound at the interface of fluids only. A solid has a finite shear modulus; and for other than perpendicular incidence, a shear wave will be present in addition to the dilatational wave. This shear wave causes a deviation from ideal transparency.

In this study an analysis is given of the influence of the shear modulus on the reflection and transmission of a plane sound wave by an infinite plate with strictly or approximately matching density and sound speed. It shows the limits on plate thickness and frequency imposed by the requirement of negligible reflection. The effect of a finite loss factor in the shear modulus is also investigated.

ANALYSIS

The analysis of the reflection and transmission of a plane sound wave by a plate is given in Ref. 5. The main points of the derivation are repeated here. In the general case (Fig. 1) a fluid with density ρ_0 is present at one side of the plate (thickness $h = 2d$) where the incident wave arrives, with

Fig. 1 - Geometry of fluid-loaded plate

angle θ to the normal and wavenumber k_o . Another fluid with density ρ' and sound speed c' is at the other boundary of the plate. The transmitted wave forms an angle θ' with the normal.

The propagation of waves in the solid, excited by the incoming wave, is treated by exact elasticity theory. The plane-crested wave in the solid with wavenumber k is a combination of a dilatational wave, represented by a scalar potential ϕ with amplitudes A_s and B_a for the symmetric and antisymmetric contributions, respectively, and a shear wave represented by the z -component of a vector potential ψ with amplitudes D_s and C_a . Other field variables are the pressure amplitudes of the incoming wave P_i , of the transmitted wave P' , and of the reflected wave P_r . At the boundaries of the plate with the two fluids, one imposes conditions of continuous normal stress and velocity and zero tangential stress. The matrix of the coefficients of the seven field variables in the six boundary conditions (after manipulation of the rows) is shown in Table 1. Here $P_o = P_i \exp(ik_o d \cos \theta)$, $P = P_r \exp(-ik_o d \cos \theta)$,

Table 1 - Matrix of Coefficients of Equations Describing Reflection and Transmission by Fluid-Loaded Plate

Field variables-->	$i \frac{B_s}{d} d^2$	c_s/d^2	A_s/d^2	$i \frac{D_s}{d} d^2$	$P_s/(\rho_s c_s^2)$	$P/(\rho_s c_s^2)$	$P'/(\rho_s c_s^2)$
$(k^2 - s'^2) d^2 \sin q' d$	$2ik s' d^2 \sin s' d$	s	\bullet	$\frac{1}{2} (\rho_s/\rho_a)$	$\frac{1}{2} (\rho_s/\rho_a)$	$-\frac{1}{2} (\rho'/\rho_a)$	\bullet
$-2ik q' d^2 \cos q' d$	$-(k^2 - s'^2) d^2 \cos s' d$	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
s	s	$(k^2 - s'^2) d^2 \cos q' d$	$-2ik s' d^2 \cos s' d$	$\frac{1}{2} (\rho_s/\rho_a)$	$\frac{1}{2} (\rho_s/\rho_a)$	$-\frac{1}{2} (\rho'/\rho_a)$	\bullet
\bullet	\bullet	$2ik q' d^2 \sin q' d$	$-(k^2 - s'^2) d^2 \sin s' d$	\bullet	\bullet	\bullet	\bullet
$q' d \cos q' d$	$-ik d \cos s' d$	\bullet	\bullet	$-\frac{1}{2} \frac{ik_s d \cos \theta}{(k_s d)^2}$	$\frac{1}{2} \frac{ik_s d \cos \theta}{(k_s d)^2}$	$-\frac{1}{2} \frac{ik_s d \cos \theta}{(k_s d)^2}$	\bullet
\bullet	\bullet	$q' d \sin q' d$	$ik d \sin s' d$	$\frac{1}{2} \frac{ik_s d \cos \theta}{(k_s d)^2}$	$-\frac{1}{2} \frac{ik_s d \cos \theta}{(k_s d)^2}$	$-\frac{1}{2} \frac{ik_s d \cos \theta}{(k_s d)^2}$	\bullet

and $P' = P_t \exp(-ik'd \cos \theta')$. The wavenumbers k_o , k , and k' are related through the coincidence condition $k = k_o \sin \theta = k' \sin \theta'$. Also $q'^2 = k_d^2 - k^2$, and $s'^2 = k_s^2 - k^2$, where k_d and k_s are the wavenumbers of the dilatational wave and shear wave in the solid.

The ratios of the field variables may be found from the matrix as ratios of the corresponding subdeterminants. One finds for the case where the same fluid is present on both faces of the plate that the reflection and transmission coefficients R and T are given by

$$R = \frac{P_r}{P_i} = \frac{P}{P_o} \exp(2ik_o d \cos \theta) \quad (1)$$

$$T = \frac{P_t}{P_i} = \frac{P'}{P_o} \exp(2ik_o d \cos \theta), \quad (2)$$

where

$$\frac{P}{P_o} = \frac{-A + D}{A + B - C + D}, \quad (3)$$

$$\frac{P'}{P_o} = \frac{B + C}{A + B - C + D}, \quad (4)$$

$$A = \frac{1}{2} \left[\frac{\rho_o}{\rho_s} \right]^2 (q'd)^2 (k_s d)^4 \cos q'd \sin q'd \cos s'd \sin s'd, \quad (5)$$

$$B = \frac{1}{2} i \left[\frac{\rho_o}{\rho_s} \right] k_o d q'd \Delta_s \cos q'd \cos s'd \cos \theta, \quad (6)$$

$$C = \frac{1}{2} i \left[\frac{\rho_o}{\rho_s} \right] k_o d q' d \Delta_a \sin q' d \sin s' d \cos \theta, \quad (7)$$

$$D = \frac{1}{2} (k_o d)^2 \Delta_a \Delta_s (\cos^2 \theta) / (k_s d)^4, \quad (8)$$

and

$$\Delta_a = m_{11} m_{22} - m_{12} m_{21}, \quad (9)$$

$$\Delta_s = m_{33} m_{44} - m_{34} m_{43}, \quad (10)$$

in terms of the elements m_{ij} of the matrix in Table 1.

It is of interest to formulate the condition for zero transmission through the plate, which is equivalent to total reflection if there are no losses in the plate. From Eq. (4) one sees that this is equivalent to $B + C = 0$. Inserting the expressions for Δ_a and Δ_s from Eqs. (9) and (10), one may reduce this to

$$[(kd)^2 - (s'd)^2]^2 \cos s'd \sin s'd + 4(kd)^2 q'd s'd \cos q'd \sin q'd = 0. \quad (11)$$

A computer program was written to evaluate the reflection coefficient R and transmission coefficient T according to Eqs. (1) and (2). Input to the program is the ratio of density of the fluid to that of solid ρ_o/ρ_s , sound speed in the fluid relative to the dilatational speed in the solid c_o/c_d , the ratio of shear to bulk modulus in the solid G/K , the loss tangent in the shear modulus η_G , and the thickness of the plate relative to the wavelength of dilatational waves in the plate material h/λ . The bulk modulus K is assumed lossless.

If one introduces the following symbols

$$\begin{aligned}
 a &= (\rho_o/\rho_s) q'd (k_s d)^2 \cos q'd \cos s'd \\
 a' &= (\rho_o/\rho_s) q'd (k_s d)^2 \sin q'd \sin s'd \\
 d &= \Delta_a k_o d / (k_s d)^2 \\
 d' &= \Delta_s k_o d / (k_s d)^2 , \tag{12}
 \end{aligned}$$

one may write for the expressions A, B, C, D,

$$\begin{aligned}
 A &= 1/2 aa' \\
 B &= 1/2 i ad' \cos \theta \\
 C &= 1/2 i a'd \cos \theta \\
 D &= 1/2 dd' \cos^2 \theta . \tag{13}
 \end{aligned}$$

The reflection factor P/P_o may be expressed as

$$\frac{P}{P_o} = \frac{(d'/a') (d/a) \cos^2 \theta - 1}{(1 - i \frac{d}{a} \cos \theta)(1 + i \frac{d'}{a'} \cos \theta)} . \tag{14}$$

A "structural response function" Ω was introduced in Ref. 6 by setting

$$i\Omega \cos \theta = \frac{P_o + P}{P_o - P} . \tag{15}$$

Here one finds a similar structural response function from

$$\frac{P_o + P}{P_o - P} = \frac{B - C + 2D}{2A + B - C}$$

as

$$\bar{\Omega} = \frac{(d'/a') - (d/a) - 2i(d/a)(d'/a') \cos \theta}{2 + i(d'/a') \cos \theta - i(d/a) \cos \theta}. \quad (16)$$

The structural response function is related to the effective impedance Z of the plate surface, defined as the ratio of the total pressure $P + P_o$ at the side of the incoming wave to the surface particle speed perpendicular to the plate. One finds

$$Z = -\frac{\rho_o c_o}{\cos \theta} \frac{P_o + P}{P_o - P} = -i\bar{\Omega}\rho_o c_o. \quad (17)$$

One may define effective surface impedances for antisymmetric and symmetric waves separately. First the pressure at the side of the incoming wave is split in a part contributing to antisymmetric waves and a part contributing to symmetric waves, namely

$$P + P_o = \frac{1}{2} (P + P_o - P') + \frac{1}{2} (P + P_o + P'). \quad (18)$$

Similarly the displacement perpendicular to the plate, $w(d)$, is written as

$$w(d) = \frac{1}{2} [w(d) + w(-d)] + \frac{1}{2} [w(d) - w(-d)]. \quad (19)$$

The two impedances are then defined by

$$Z_a = \frac{P_o + P - P'}{w(d) + w(-d)} \quad (20)$$

and

$$Z_s = \frac{P_o + P + P'}{w(d) - w(-d)}. \quad (21)$$

In terms of the symbols introduced before, one finds $Z_a = -id/a$ and $Z_s = id'/a'$.

It would be instructive to express Z in terms of Z_a and Z_s in the form of an equivalent circuit diagram. Thus far this has not been successfully accomplished.

RESULTS AND DISCUSSION

Figure 2 shows the reflection coefficient as a function of incidence angle θ for various values of relative density and sound speed. The three figures arranged along a column have equal values of ρ_o/ρ_s , namely 0.995, 1.000, and 1.005. The three figures arranged in a row have equal value of c_o/c_d : 0.995, 1.000, and 1.005. The four curves marked 1, 2, 3, 4 vary in value of the thickness h ($=2d$) relative to the wave length λ of dilatational waves in the material. The four curves correspond to $h/\lambda = 0.50, 0.25, 0.10, 0.05$. The value of the shear modulus G relative to the bulk modulus K was found from measurements [7] to be 0.13. In Fig. 2 the loss tangent in G is assumed zero.

A striking feature in Fig. 2 is the appearance of a spike in the $h/\lambda = 0.5$ curve indicating 100% reflection. This may be explained by considering Fig. 3, which is the locus of points for which the relative wave speed $\gamma = c/c_s$ is such that zero transmission occurs, as a function of the dimensionless frequency $k_s d$. The expression for this was given in Eq. (11). According to the coincidence relation $c_o = c \sin \theta$, the points for γ when the angle θ is varied lie on a vertical line starting at the point with abscissa $k_s d$ and ordinate c_o/c_s . If this line intersects the characteristic curve of Fig. 3, total reflection will occur. In the example depicted in Fig. 3 this occurs for $\gamma = 18.9^\circ$ and $\theta = 9.16^\circ$. This is relatively rare for near- ρ_c materials. A small amount of loss in the shear modulus reduces the height of the spike to a negligible size.

Fig. 2 - Reflection coefficient as a function of incidence angle θ .
 $h/\lambda = 0.5$ (curve 1), 0.25 (curve 2), 0.1 (curve 3), 0.05 (curve 4)

Fig. 3 - Wavespeed $\gamma = c/c_d$, as a function of dimensionless frequency $k d$ for which zero transmission occurs. Arrows indicate asymptotes. The vertical line is the locus of points with $h/\lambda = 0.5$ ($k d = 4.719$) and θ varying from 90° to 0° .

A global viewing of the nine sets of curves in Fig. 2 shows that at the intermediate range of θ , say from 30 to 60° , there is little difference in the appearance of the curves for varying density and sound speed. As to the small angle range, it appears that the relevant parameter is the product ρc ; the groups that have similar appearance are a; b,d; c,e,g; f,h; and i. This corresponds to the fact that for fluids the behavior near $\theta = 0^\circ$ is determined by the product ρc . Near $\theta = 90^\circ$ one sees that there are three groups distinguished by the presence or absence of zero reflection. For $c_o/c_d = 0.995$ there is an angle where the reflection is zero; for $c_o/c_d = 1.000$ the zero reflection occurs at 90° ; and for $c_o/c_d = 1.005$ there is no angle near 90° at which the reflection coefficient is zero.

In Figure 4 examples are given where both the density and the sound speed differ by $+5\%$ or -5% compared with ideal ρc . It appears that too small a density and sound speed are more deleterious than too large a density and sound speed, judging by the reflection coefficient.

Fig. 4 - Reflection coefficient
as a function of
incidence angle θ .

a) $\rho_o/\rho_d = c_o/c_d = 0.95$
b) $\rho_o^*/\rho_d^* = c_o^*/c_d^* = 1.05$

- curve 1 $h/\lambda = 0.5$
- curve 2 $h/\lambda = 0.25$
- curve 3 $h/\lambda = 0.1$
- curve 4 $h/\lambda = 0.05$

In Figure 5 the effect of a finite loss tangent in G is shown, namely $\eta_G = 0.01$, which is about the value measured for the shear modulus of the rigid pc material. Three combinations of density and sound speed were chosen. One sees that the effect is quite small.

Fig. 5 - Reflection coefficient
as a function of
incidence angle θ .

$$h/\lambda = 5.5$$

a) $\rho_o/\rho_s = c_o/c_d = 0.995$
 b) $\rho_o/\rho_s = c_o/c_d = 1.666$
 c) $\rho_o/\rho_s = c_o/c_d = 1.665$

curve 1 - $\eta_G = 0.66$
 curve 2 - $\eta_G = 0.61$

REFERENCES

1. C.M. Thompson and J.F. Griffith, "Development of an acoustically transparent plastic for underwater applications," *J. Acoust. Soc. Am. Suppl.* 1, 70, S74 (1981).
2. C.M. Thompson and R.Y. Ting, "A study of some epoxy polymers for underwater acoustic use," in *Organic Coatings and Applied Polymer Science Proceedings*, Vol. 46, Am. Chemical Society, 1981.
3. R.E. Montgomery, F.J. Weber, D.F. White, and C.M. Thompson, "On the development of acoustically transparent structural plastics," *J. Acoust. Soc. Am.*, 71, 735-741 (1982).
4. C.M. Thompson and J.R. Griffith, "Rigid, acoustically transparent plastic based on fluoroepoxy," to be presented at the Acoust. Soc. of Am. Mtg., Cleveland, OH, May 86.
5. P.S. Dubbelday, "Application of a new complex root-finding technique to the dispersion relations for elastic waves in a fluid-loaded plate," *SIAM J. Appl. Math.*, 43, 1127-1139 (1983).
6. P.S. Dubbelday and A.J. Rudgers, "An analysis of effective shear modulus for flexural and extensional waves and its application to reflection of sound by a plate," *J. Acoust. Soc. Am.*, 70, 603-614 (1981).
7. P.S. Dubbelday and K.W. Rittenmyer, "Influence of shear modulus on the behavior of acoustically transparent materials," to be presented at the Acoust. Soc. of Am. Mtg., Cleveland, OH, May 86.

7 - 86