$3^{\rm o}$ appello — 18 settembre 2024

Esercizio 1. Sia $U \subset \mathbb{R}^4$ il sottospazio generato da $u_1 = (1, 0, -1, 1), u_2 = (2, 1, -1, 3), u_3 = (1, 2, 1, 3).$

- (a) Verificare che dim U=2 e trovare una base ortogonale di U.
- (b) Trovare una base di U^{\perp} .
- (c) Sia $L \subset \mathbb{R}^4$ il sottospazio generato da $\ell = (2, -1, -3, 2)$. Dato $v = (-1, 3, 4, 0) \in \mathbb{R}^4$ trovare un vettore $w \in L$ in modo che esista $u \in U$ tale che v = u + w.
- (d) Trovare una base di un sottospazio $W \subset \mathbb{R}^4$ con dim W = 2, tale che dim $(U \cap W) = 1$ e dim $(U^{\perp} \cap W) = 1$. Sarebbe possibile trovare un sottospazio $\widetilde{W} \subset \mathbb{R}^4$ con dim $\widetilde{W} = 2$, tale che dim $(U \cap \widetilde{W}) = 0$ e dim $(U^{\perp} \cap \widetilde{W}) = 0$? [la risposta deve essere qiustificata]

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^4$ una funzione lineare tale che f(1,0,1) = (5,1,2,1), f(0,1,-1) = (-2,1,0,-1), f(1,0,-1) = (-1,-3,-2,1).

- (a) Scrivere la matrice A di f rispetto alle basi canoniche di \mathbb{R}^3 e di \mathbb{R}^4 .
- (b) Scrivere basi del nucleo e dell'immagine di f.
- (c) Sia $w_{\alpha} = (3, \alpha, -2, 3)$. Trovare il valore di α per cui $w_{\alpha} \in \text{Im } f$ e per tale α trovare tutti i vettori $v \in \mathbb{R}^3$ tali che $f(v) = w_{\alpha}$.
- (d) Sia $g: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare la cui matrice è la trasposta della matrice di f trovata al punto (a). Scrivere la matrice della funzione composta $g \circ f$ (rispetto alle basi canoniche) e stabilire se $g \circ f$ è un isomorfismo di spazi vettoriali.

Esercizio 3. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita da

$$f(x, y, z) = (-2y + 2z, -x + y - 2z, -x + 2y - 3z)$$

- (a) La funzione f è iniettiva? è suriettiva?
- (b) Determinare tutti i numeri $a \in \mathbb{R}$ per i quali esistono dei vettori $v \neq \vec{0}$ tali che f(v) = av.
- (c) Si dica se esiste una base $\{w_1, w_2, w_3\}$ di \mathbb{R}^3 rispetto alla quale la matrice di f è diagonale.
- (d) Sia $g: \mathbb{R}^3 \to \mathbb{R}^3$ una funzione lineare qualunque e sia G la sua matrice rispetto alla base canonica. Senza conoscere la matrice G è possibile stabilire se la matrice $A = GG^T$ è diagonalizzabile? [la risposta deve essere qiustificata]

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono dati il punto P = (1,2,2) e la retta r di equazioni

$$r: \begin{cases} 2x + z - 3 = 0 \\ x - 2y + 1 = 0 \end{cases}$$

- (a) Scrivere l'equazione cartesiana del piano π contenente $r \in P$.
- (b) Sia σ il piano di equazione 2x + z 2 = 0. Scrivere le equazioni parametriche della retta s ottenuta intersecando i piani π e σ .
- (c) Sia H la proiezione ortogonale di A = (3, 2, 6) sul piano σ . Trovare le coordinate di H e poi trovare un punto B tale che H sia un punto interno del segmento AB e dist $(B, H) = 2 \operatorname{dist}(A, H)$.
- (d) Consideriamo i piani di equazione $(\alpha + \beta)x + (\alpha + 2\gamma)y + (2\alpha \beta + \gamma)z = 2\beta + \gamma$, per ogni $\alpha, \beta, \gamma \in \mathbb{R}$, non tutti nulli. Verificare che per ogni α, β, γ tutti questi piani passano per lo stesso punto e trovare le coordinate di tale punto.

$3^{\rm o}$ appello — 18 settembre 2024

Esercizio 1. Sia $U \subset \mathbb{R}^4$ il sottospazio generato da $u_1 = (1, 2, 0, -1), u_2 = (3, 1, -2, -1), u_3 = (-3, 4, 4, -1).$

- (a) Verificare che dim U=2 e trovare una base ortogonale di U.
- (b) Trovare una base di U^{\perp} .
- (c) Sia $L \subset \mathbb{R}^4$ il sottospazio generato da $\ell = (-2, -1, 2, 3)$. Dato $v = (0, 1, 2, 4) \in \mathbb{R}^4$ trovare un vettore $w \in L$ in modo che esista $u \in U$ tale che v = u + w.
- (d) Trovare una base di un sottospazio $W \subset \mathbb{R}^4$ con dim W = 2, tale che dim $(U \cap W) = 1$ e dim $(U^{\perp} \cap W) = 1$. Sarebbe possibile trovare un sottospazio $\widetilde{W} \subset \mathbb{R}^4$ con dim $\widetilde{W} = 2$, tale che dim $(U \cap \widetilde{W}) = 0$ e dim $(U^{\perp} \cap \widetilde{W}) = 0$? [la risposta deve essere qiustificata]

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^4$ una funzione lineare tale che f(1,0,1) = (0,2,-2,6), f(0,1,-1) = (3,-3,-3,-3), f(1,0,-1) = (2,-2,-2,-2).

- (a) Scrivere la matrice A di f rispetto alle basi canoniche di \mathbb{R}^3 e di \mathbb{R}^4 .
- (b) Scrivere basi del nucleo e dell'immagine di f.
- (c) Sia $w_{\alpha} = (4, -1, \alpha, 5)$. Trovare il valore di α per cui $w_{\alpha} \in \text{Im } f$ e per tale α trovare tutti i vettori $v \in \mathbb{R}^3$ tali che $f(v) = w_{\alpha}$.
- (d) Sia $g: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare la cui matrice è la trasposta della matrice di f trovata al punto (a). Scrivere la matrice della funzione composta $g \circ f$ (rispetto alle basi canoniche) e stabilire se $g \circ f$ è un isomorfismo di spazi vettoriali.

Esercizio 3. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita da

$$f(x, y, z) = (-2x + 4y - 8z, 2x + 4z, 2x - 2y + 6z)$$

- (a) La funzione f è iniettiva? è suriettiva?
- (b) Determinare tutti i numeri $a \in \mathbb{R}$ per i quali esistono dei vettori $v \neq \vec{0}$ tali che f(v) = av.
- (c) Si dica se esiste una base $\{w_1, w_2, w_3\}$ di \mathbb{R}^3 rispetto alla quale la matrice di f è diagonale.
- (d) Sia $g: \mathbb{R}^3 \to \mathbb{R}^3$ una funzione lineare qualunque e sia G la sua matrice rispetto alla base canonica. Senza conoscere la matrice G è possibile stabilire se la matrice $A = GG^T$ è diagonalizzabile? [la risposta deve essere quastificata]

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono dati il punto P = (1, -1, 0) e la retta r di equazioni

$$r: \begin{cases} y - 3z - 1 = 0 \\ x + 2y + 2 = 0 \end{cases}$$

- (a) Scrivere l'equazione cartesiana del piano π contenente $r \in P$.
- (b) Sia σ il piano di equazione 2y-z+2=0. Scrivere le equazioni parametriche della retta s ottenuta intersecando i piani π e σ .
- (c) Sia H la proiezione ortogonale di A = (-2, -3, 6) sul piano σ . Trovare le coordinate di H e poi trovare un punto B tale che H sia un punto interno del segmento AB e dist $(B, H) = 2 \operatorname{dist}(A, H)$.
- (d) Consideriamo i piani di equazione $(\alpha + \beta)x + (2\gamma \alpha)y + (\beta \alpha \gamma)z = 3\beta + \gamma$, per ogni $\alpha, \beta, \gamma \in \mathbb{R}$, non tutti nulli. Verificare che per ogni α, β, γ tutti questi piani passano per lo stesso punto e trovare le coordinate di tale punto.

3° appello — 18 settembre 2024

Esercizio 1. Sia $U \subset \mathbb{R}^4$ il sottospazio generato da $u_1 = (1, -1, 1, 0), u_2 = (2, -1, 3, 1), u_3 = (1, 1, 3, 2).$

- (a) Verificare che dim U=2 e trovare una base ortogonale di U.
- (b) Trovare una base di U^{\perp} .
- (c) Sia $L \subset \mathbb{R}^4$ il sottospazio generato da $\ell = (2, -3, 2, -1)$. Dato $v = (-1, 4, 0, 3) \in \mathbb{R}^4$ trovare un vettore $w \in L$ in modo che esista $u \in U$ tale che v = u + w.
- (d) Trovare una base di un sottospazio $W \subset \mathbb{R}^4$ con dim W = 2, tale che dim $(U \cap W) = 1$ e dim $(U^{\perp} \cap W) = 1$. Sarebbe possibile trovare un sottospazio $\widetilde{W} \subset \mathbb{R}^4$ con dim $\widetilde{W} = 2$, tale che dim $(U \cap \widetilde{W}) = 0$ e dim $(U^{\perp} \cap \widetilde{W}) = 0$? [la risposta deve essere qiustificata]

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^4$ una funzione lineare tale che f(1,0,1) = (0,2,2,3), f(0,1,-1) = (-1,2,3,1), f(1,0,-1) = (-2,2,4,-1).

- (a) Scrivere la matrice A di f rispetto alle basi canoniche di \mathbb{R}^3 e di \mathbb{R}^4 .
- (b) Scrivere basi del nucleo e dell'immagine di f.
- (c) Sia $w_{\alpha} = (2, \alpha, 0, 7)$. Trovare il valore di α per cui $w_{\alpha} \in \text{Im } f$ e per tale α trovare tutti i vettori $v \in \mathbb{R}^3$ tali che $f(v) = w_{\alpha}$.
- (d) Sia $g: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare la cui matrice è la trasposta della matrice di f trovata al punto (a). Scrivere la matrice della funzione composta $g \circ f$ (rispetto alle basi canoniche) e stabilire se $g \circ f$ è un isomorfismo di spazi vettoriali.

Esercizio 3. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita da

$$f(x, y, z) = (y - z, 2x - y + 2z, 2x - 2y + 3z)$$

- (a) La funzione f è iniettiva? è suriettiva?
- (b) Determinare tutti i numeri $a \in \mathbb{R}$ per i quali esistono dei vettori $v \neq \vec{0}$ tali che f(v) = av.
- (c) Si dica se esiste una base $\{w_1, w_2, w_3\}$ di \mathbb{R}^3 rispetto alla quale la matrice di f è diagonale.
- (d) Sia $g: \mathbb{R}^3 \to \mathbb{R}^3$ una funzione lineare qualunque e sia G la sua matrice rispetto alla base canonica. Senza conoscere la matrice G è possibile stabilire se la matrice $A = GG^T$ è diagonalizzabile? [la risposta deve essere qiustificata]

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono dati il punto P=(2,2,-1) e la retta r di equazioni

$$r: \begin{cases} 2x - y - 1 = 0 \\ y + 3z + 2 = 0 \end{cases}$$

- (a) Scrivere l'equazione cartesiana del piano π contenente $r \in P$.
- (b) Sia σ il piano di equazione x-2z-1=0. Scrivere le equazioni parametriche della retta s ottenuta intersecando i piani π e σ .
- (c) Sia H la proiezione ortogonale di A = (3, -2, 6) sul piano σ . Trovare le coordinate di H e poi trovare un punto B tale che H sia un punto interno del segmento AB e dist $(B, H) = 2 \operatorname{dist}(A, H)$.
- (d) Consideriamo i piani di equazione $(\alpha + 2\beta)x + (\alpha + 3\gamma)y + (\alpha \beta + \gamma)z = 4\beta + \gamma$, per ogni $\alpha, \beta, \gamma \in \mathbb{R}$, non tutti nulli. Verificare che per ogni α, β, γ tutti questi piani passano per lo stesso punto e trovare le coordinate di tale punto.

3° appello — 18 settembre 2024

Esercizio 1. Sia $U \subset \mathbb{R}^4$ il sottospazio generato da $u_1 = (1, 0, -1, 2), u_2 = (3, -2, -1, 1), u_3 = (-3, 4, -1, 4).$

- (a) Verificare che dim U=2 e trovare una base ortogonale di U.
- (b) Trovare una base di U^{\perp} .
- (c) Sia $L \subset \mathbb{R}^4$ il sottospazio generato da $\ell = (-2, 2, 3, -1)$. Dato $v = (0, 2, 4, 1) \in \mathbb{R}^4$ trovare un vettore $w \in L$ in modo che esista $u \in U$ tale che v = u + w.
- (d) Trovare una base di un sottospazio $W \subset \mathbb{R}^4$ con dim W = 2, tale che dim $(U \cap W) = 1$ e dim $(U^{\perp} \cap W) = 1$. Sarebbe possibile trovare un sottospazio $\widetilde{W} \subset \mathbb{R}^4$ con dim $\widetilde{W} = 2$, tale che dim $(U \cap \widetilde{W}) = 0$ e dim $(U^{\perp} \cap \widetilde{W}) = 0$? [la risposta deve essere qiustificata]

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^4$ una funzione lineare tale che f(1,0,1) = (3,-5,-1,3), f(0,1,-1) = (2,2,2,-2), f(1,0,-1) = (-1,-1,-1,1).

- (a) Scrivere la matrice A di f rispetto alle basi canoniche di \mathbb{R}^3 e di \mathbb{R}^4 .
- (b) Scrivere basi del nucleo e dell'immagine di f.
- (c) Sia $w_{\alpha} = (2, 6, \alpha, -5)$. Trovare il valore di α per cui $w_{\alpha} \in \text{Im } f$ e per tale α trovare tutti i vettori $v \in \mathbb{R}^3$ tali che $f(v) = w_{\alpha}$.
- (d) Sia $g: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare la cui matrice è la trasposta della matrice di f trovata al punto (a). Scrivere la matrice della funzione composta $g \circ f$ (rispetto alle basi canoniche) e stabilire se $g \circ f$ è un isomorfismo di spazi vettoriali.

Esercizio 3. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita da

$$f(x, y, z) = (-6x - 4y - 4z, 2x + 2z, 4x + 4y + 2z)$$

- (a) La funzione f è iniettiva? è suriettiva?
- (b) Determinare tutti i numeri $a \in \mathbb{R}$ per i quali esistono dei vettori $v \neq \vec{0}$ tali che f(v) = av.
- (c) Si dica se esiste una base $\{w_1, w_2, w_3\}$ di \mathbb{R}^3 rispetto alla quale la matrice di f è diagonale.
- (d) Sia $g: \mathbb{R}^3 \to \mathbb{R}^3$ una funzione lineare qualunque e sia G la sua matrice rispetto alla base canonica. Senza conoscere la matrice G è possibile stabilire se la matrice $A = GG^T$ è diagonalizzabile? [la risposta deve essere qiustificata]

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono dati il punto P = (0,3,1) e la retta r di equazioni

$$r: \begin{cases} x + 3z - 2 = 0 \\ 2x - y + 1 = 0 \end{cases}$$

- (a) Scrivere l'equazione cartesiana del piano π contenente $r \in P$.
- (b) Sia σ il piano di equazione x+2z-1=0. Scrivere le equazioni parametriche della retta s ottenuta intersecando i piani π e σ .
- (c) Sia H la proiezione ortogonale di A = (5, 2, 3) sul piano σ . Trovare le coordinate di H e poi trovare un punto B tale che H sia un punto interno del segmento AB e dist $(B, H) = 2 \operatorname{dist}(A, H)$.
- (d) Consideriamo i piani di equazione $(\alpha + 2\beta)x + (\beta \alpha + \gamma)y + (3\gamma \alpha)z = 4\beta \gamma$, per ogni $\alpha, \beta, \gamma \in \mathbb{R}$, non tutti nulli. Verificare che per ogni α, β, γ tutti questi piani passano per lo stesso punto e trovare le coordinate di tale punto.