Stat 134 lec 24

Sec 4.4 Change of variable

X cont RV us density of were dx >0

we write P(Xedx) = f(x)dx where dx >0

dx >0, so you could write length. $P(Xedx) = f_X(a) |dx|$ The value

let Y = g(X), g strictly decreasing

 $P(x \in \lambda x) = P(y \in \lambda y)$ $\Rightarrow f_{(x)}(\lambda x) = f_{(x)}(\lambda y) = f_{(x)}(\lambda x) \text{ where}$ $\Rightarrow f_{(x)}(\lambda x) = f_{(x)}(\lambda x) \text{ where}$

many to one 9:

addition rule
$$\sum P(x \in dx) = \sum f_{x}(x)|dx|$$

$$P(y \in dy) = \sum f_{x}(x)|dx| = \sum f_{x}(x)|dx|$$

$$\Rightarrow |f_{y}(x)| = \sum f_{x}(x)|dx| = \sum f_{x}(x)|dx|$$

$$\Rightarrow |f_{y}(x)| = \sum f_{x}(x)|dx| = \sum f_{x}(x)|dx|$$

$$\Rightarrow |f_{y}(x)| = \sum f_{x}(x)|dx| = \sum f_{x}(x)|dx|$$
where
$$|g(x)|$$

$$|g(x)|$$

$$|g(x)|$$

Flud the density of
$$Y = \frac{1}{22}$$

Sters
1) range of y - o(y/o

$$2) \frac{du}{dz} = -2\frac{1}{2^3}$$

$$4) + (3) = \begin{cases} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{cases}$$

sec
$$4.5$$
 cdf

 $E^{N} \times RV$
 $E^{N} \times RV$

TN expon (=) - = = = + 70 第T~expon(支) Continuous cdf EX= "T Killed at C", C>D Trespon (x) This defined using indicators: $X = T \cdot I (T < c) + c \cdot I (T \ge c)$ i.e. When T<e, X=T Otherwise, X = cPicture avea F(c) = 1-e "missed" distribution Notice that this distribution is both continuous and discrete (called a "mixed" distribution.)

Here $P(X=c)=e^{-\lambda c}$ so that the total probability is I.

Draw the coff;

This is a mixed cdf.

Properties of cdf

d)
$$P(a < x \in b) = F_{x}(b) - F_{x}(a)$$

$$\Rightarrow M \sim exbon(y+...+yn) + \\ = \frac{(x_1+...+y_n)}{(x_1+...+y_n)} = \\ = \frac{$$

Stat 134

Monday March 14 2018

rere eve

1. Below is the cdf of which distribution?

14the Sters here

 $\mathbf{a} \text{ binomial}(10,1/2)$

b geometric (1/2) on $\{1, 2, 3, ...\}$

 \mathbf{c} uniform(0,10)

d none of the above

Not (a) since $P(x=0) = (\frac{1}{2})^{10}$ and $P(x=1) = 10 \cdot (\frac{1}{2})^{10}$ so $F(1) = 11 \cdot (\frac{1}{2})^{10} \pm .5$

Not(c) since colf of unit is a continuous colf not a discrete colf.

(b) is good shake P(X=0)=0, P(k=1)=1/2 $P(X=2)=4 \Rightarrow F(2)=.75$