Corrigé : Feuille de travaux dirigés 1

Solution Exercice 1

1. On observe n réplications X_1, \ldots, X_n de la v.a. à valeurs dans $\Omega = \mathbb{R}$

$$X = \mu + \delta + \epsilon$$
,

où $\delta = 0.1$, μ est le paramètre d'intérêt, ϵ représente l'erreur de mesure, de variance supposée connue $\sigma > 0$. L'espace des observations est $\mathcal{X} = \mathbb{R}$. Un échantillon de taille n est un vecteur de \mathcal{X}^n , le modèle pour une observation X (n = 1) est

$$\mathcal{P} = \{ P : \mathbb{E}_{P}(X) = \delta + \mu, \mathbb{V}ar_{P}(X) = \sigma^{2}, \mu \in \mathbb{R} \},$$

avec σ^2 et δ connus, μ inconnu. Les X_n sont i.i.d., comme les bruits de mesure associés $\epsilon_1, \ldots, \epsilon_n$. Le modèle pour un échantillon i.i.d.de taille n est

$$\mathcal{P}_n = \{ \mathbf{P}^{\otimes n} : \mathbf{P} \in \mathcal{P} \},$$

voir le poly pour un rappel sur les lois produits.

- 2. Le modèle statistique est non paramétrique dans la mesure où les paramètres (inconnus et connus) ne caractérisent pas la distribution de l'observation X: l'ensemble de toutes les lois de probabilité de variance donnée ne peut pas être paramétré par un ouvert d'un espace de dimension finie. Par exemple à paramètre $\mu > 0$ fixé, loi des observations est de moyenne $\mu + 0.1$ et de variance σ^2 , comme le sont par exemple les lois $\mathcal{N}(\mu + 0.1; \sigma^2)$ et $\Gamma((\mu + 0.1)^2/\sigma^2, \sigma/(\mu + 0.1))$.
- 3. Lorsque le biais δ est connu, le paramètre μ est identifiable. En effet, deux lois identiques ont même moyenne, donc si P_1 et P_2 sont deux lois de paramètres respectifs μ_1 et μ_2 avec $\mu_1 \neq \mu_2$, alors on a $\mathbb{E}_{P_1}(X) = \mu_1 + \delta \neq \mu_2 + \delta = \mathbb{E}_{P_2}(X)$, donc $P_1 \neq P_2$.
- 4. Si le biais est inconnu, on considère alors un couple de paramètres (μ, δ) . Le modèle devient

$$\mathcal{P} = \{ P : \mathbb{E}_P(X) = \delta + \mu , \mathbb{V}ar_P(X) = \sigma^2, \mu \in \mathbb{R}, \delta \in \mathbb{R}. \},$$

Le couple n'est alors pas identifiable, toutes les valeurs appartenant à la droite $\mu+\delta=c$, pour une constante c donnée définissent la même loi de probabilité. Par contre, si le biais est connu mais pas σ^2 , on vérifie que le vecteur de paramètre (μ, σ^2) est identifiable en utilisant le fait que deux lois égales ont même espérance et même variance.

Solution Exercice 2 1. Le modèle statistique relatif à l'observation X, à valeurs dans $\mathcal{X} = \{0, 1\}$, s'écrit

$$(\{0,1\}, \mathcal{P}(\{0,1\}), Ber(q), q \in (0,1)).$$

L'espace des actions est $\mathcal{A} = \{a_0, a_1\}$. Il y a $(\#\mathcal{A})^{\#\mathcal{X}}$ règles de décisions $\delta : \mathcal{X} \to \mathcal{A}$ possibles.

- 2. On définit $\delta_1(x) \equiv a_0$, $\delta_2(x) \equiv a_1$, $\delta_3(x) = a_0 \mathbb{I}\{x = 0\} + a_1 \mathbb{I}\{x = 1\}$ et $\delta_4(x) = a_0 \mathbb{I}\{x = 1\} + a_1 \mathbb{I}\{x = 0\}$. En utilisant la matrice de coût $(C(\theta_i, a_i))_{i=0, 1}$ n vérifie que $R(\theta_0, \delta_1) = C(\theta_0, a_0) = 100$ et $R(\theta_1, \delta_1) = C(\theta_1, a_0) = 100$, $R(\theta_0, \delta_2) = C(\theta_0, a_1) = 200$ et $R(\theta_1, \delta_2) = C(\theta_1, a_1) = 0$, $R(\theta_0, \delta_3) = C(\theta_0, a_0)(1 q) + C(\theta_0, a_1)q = 120$ et $R(\theta_1, \delta_3) = C(\theta_1, a_0)(1 p) + C(\theta_1, a_1)p = 20$, $R(\theta_0, \delta_4) = C(\theta_0, a_0)q + C(\theta_0, a_1)(1 q) = 180$ et $R(\theta_1, \delta_4) = C(\theta_1, a_0)p + C(\theta_1, a_1)(1 p) = 80$.
- 3. Le risque maximum est 100 pour la règle δ_1 (obtenu que le paramètre vaille θ_0 ou θ_1), 200 pour δ_2 (lorsque $\theta = \theta_0$), 120 pour δ_3 (lorsque $\theta = \theta_0$) et 180 pour δ_4 (lorsque $\theta = \theta_0$). La règle minimisant le risque maximum est donc δ_1 , consistant à ne jamais forer, quelque soit la valeur observée pour X.
- 4. Si l'on dispose d'une information a priori (i.e. avant l'observation de X) sur la probabilité d'occurence des valeurs du paramètre θ , il est naturel de ne considérer le risque associé à une valeur que pondéré par la probabilité de se trouver dans l'état décrit par cette valeur. Ici, $\mathbb{P}\{\theta=\theta_0\}=\mathbb{P}\{\theta=\theta_1\}=1/2$. Un critère naturel de risque pour une règle δ devient alors :

$$\rho(\delta) = R(\theta_0, \delta)/2 + R(\theta_1, \delta)/2.$$

Le risque Bayesien des règles envisageables est donné par : $\rho(\delta_1) = 100 = \rho(\delta_2)$, $\rho(\delta_3) = 70$ et $\rho(\delta_4) = 130$. La règle de moindre risque de Bayes est alors δ_3 .

Solution Exercice 3

1. L'observation peut s'écrire de façon vectorielle $Y = \theta_1 A + V$ où $A = (x_1, \ldots, x_n)$ est un vecteur déterministe et $V = (V_1, \ldots, V_n)$ est un vecteur Gaussien (ses composantes sont des Gaussiennes i.i.d. $\mathcal{N}(0, \sigma^2)$) centré de matrice de covariance $\sigma^2 I_n$, I_n désignant la matrice $n \times n$ unité. La vraisemblance du modèle statistique (dominé par la mesure de Lebesgue) s'écrit donc :

$$p_{\theta}(Y) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (Y_i - x_i \theta_1)^2\right).$$

2. On maximise la log-vraisemblance. Les equations de score s'écrivent :

$$0 = \frac{\partial}{\partial \sigma^2} \log p_{\theta}(Y) = -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (Y_i - \theta_1 x_i)^2,$$

$$0 = \frac{\partial}{\partial \theta_1} \log p_{\theta}(Y) = \frac{1}{\sigma^2} \sum_{i=1}^n x_i (Y_i - \theta_1 x_i).$$

La solution (on vérifiera qu'il s'agit d'un maximum global en calculant la hessienne) est donc :

$$\widehat{\theta}_1 = \frac{\sum_{i=1}^n Y_i x_i}{\sum_{i=1}^n x_i^2},$$

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \widehat{\theta}_1 x_i)^2.$$

3. On vérifie que le maximum de $p((0, \sigma^2), Y)$ est atteint en $\tilde{\sigma}^2 = (1/n) \sum_{i=1}^n Y_i^2$, ainsi le rapport de vraisemblance est

$$Z = \frac{p(\widehat{\theta}, Y)}{p((0, \widetilde{\sigma}^2), Y)} = \left(\frac{\widetilde{\sigma}^2}{\widehat{\sigma}^2}\right)^{n/2}$$

Le test basé sur le rapport de vraisemblance généralisée s'écrit

$$\delta(Y) = \mathbb{1}_{\frac{\widetilde{\sigma}^2}{\widehat{\sigma}^2} > c}$$

où c est une constante (qu'il n'est pas demandé de calculer), telle que $\mathbb{P}_{H_0}(Z>c)=\alpha$.