DESTRUCTION OF THE KONDO CLOUD IN THE GENERALISED SIAM: Unitary RG Perspective

ABHIRUP MUKHERJEE 1, SIDDHARTHA LAL 1

¹DEPARTMENT OF PHYSICAL SCIENCES, IISER KOLKATA

FEBRUARY 18, 2022

THE GENERALISED SIAM MODEL

THE MODEL

$$H = \sum_{k\sigma} \epsilon_k \tau_{k\sigma} + V \sum_{k\sigma} \left(c_{d\sigma}^{\dagger} c_{k\sigma} + \text{h.c.} \right) - \frac{1}{2} U \left(\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow} \right)^2 + J \vec{S}_d \cdot \vec{s} + K \vec{C}_d \cdot \vec{C}$$

supplement 1-particle hybridisation with **spin-exchange** and **charge isospin-exchange**

Schrieffer and Wolff 1966; Anderson 1961.

THE MODEL

$$H = \sum_{k\sigma} \epsilon_k \tau_{k\sigma} + V \sum_{k\sigma} \left(c_{d\sigma}^{\dagger} c_{k\sigma} + \text{h.c.} \right) - \frac{1}{2} U \left(\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow} \right)^2 + J \vec{S}_d \cdot \vec{s} + K \vec{C}_d \cdot \vec{C}$$

$$C_{d}^{z} = \frac{1}{2}(\hat{n}_{d} - 1)$$

$$C_{d}^{+} = c_{d\uparrow}^{\dagger} c_{d\downarrow}^{\dagger}$$

$$C_{d}^{-} = c_{d\downarrow} c_{d\uparrow}$$

$$C_{d}^{+} = c_{d\downarrow} c_{d\uparrow}$$

$$C_{d}^{+} = c_{d\downarrow} c_{d\uparrow}$$

$$C_{d}^{-} = c_{d\downarrow} c_{d\uparrow}$$

$$C_{d}^{+} = c_{d\downarrow} c_{d\uparrow}$$

$$C_{d}^{-} = c_{d\downarrow} c_{d\uparrow}$$

Schrieffer and Wolff 1966; Anderson 1961.

U > O (J > O, K < O): FLOW TOWARDS STRONG-COUPLING

$$J \rightarrow$$
 AFM, $K \rightarrow$ FM

$$d_0 = \omega - \frac{D}{2} - \frac{U}{2} + \frac{K}{4}, \quad d_1 = \omega - \frac{D}{2} + \frac{U}{2} + \frac{J}{4}, \quad d_2 = \omega - \frac{D}{2} + \frac{J}{4}, \quad d_3 = \omega - \frac{D}{2} + \frac{K}{4}$$

$$\Delta V = \frac{3n_{j}VJ}{8} \left(\frac{1}{|d_{2}|} + \frac{1}{|d_{1}|}\right) > O$$

$$1.8 \times 10^{-2}$$

$$1.6 \times 10^{-2}$$

$$1.6 \times 10^{-2}$$

$$1.6 \times 10^{-2}$$

$$1.2 \times 10^{-2}$$

$$1.3 \times 10^{-2}$$

$$1.3 \times 10^{-2}$$

$$1.4 \times 10^{-2}$$

$$1.5 \times 10^{-3}$$

(K is irrelevant)

U > O (J > O, K < O): FLOW TOWARDS STRONG-COUPLING

$$J
ightarrow {f AFM}, \quad K
ightarrow {f FM}$$

$$\begin{array}{c} V > J \\ \hline 0.100 \\ 0.098 \\ \hline 0.096 \\ 0.094 \\ \hline 0.092 \\ \hline 0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\ \hline \text{fraction of RG remaining} \end{array}$$

U > 0 FIXED POINT HAMILTONIAN

$$H^* = \sum_{k < k^*, \sigma} \epsilon_k \hat{n}_{k\sigma} + \frac{U^*}{2} \left(\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow} \right)^2 + J^* \vec{S}_d \cdot \vec{s}_{<}$$

$$+ V^* \sum_{k < k^*, \sigma} \left(c_{d\sigma}^{\dagger} c_{k\sigma} + \text{h.c.} \right)$$

$$= \text{IOMs}$$

$$E < E_F$$

$$E > E_F$$

$$\vec{S}_{<} = \frac{1}{2} \sum_{k, k' < k^*} c_{k\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} c_{k', \beta}$$

ZERO-BANDWIDTH LIMIT OF FIXED POINT

HAMILTONIAN

ZERO-BANDWIDTH LIMIT OF FIXED POINT HAMILTONIAN

Route to the zero-bandwidth model

At strong-coupling fixed point,

- kinetic energy acts as a perturbation
- compress the bandwidth to just the Fermi surface

$$H_{\text{zero bw}}^* = (\epsilon_F - \mu) \, \hat{n}_{k_F} + \frac{U^*}{2} \, (\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow})^2 + V^* \sum_{\sigma} \left(c_{d\sigma}^{\dagger} c_{O\sigma} + \text{h.c.} \right) + J \vec{S}_d \cdot \vec{S}_O$$
(center of motion)

■ Setting
$$\mu$$
 = ϵ_F gives a **two-site model**

$$H_{\rm zero}^* = \frac{U^*}{2} \left(\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow} \right)^2 + V^* \sum_{\sigma} \left(c_{d\sigma}^{\dagger} c_{o\sigma} + \text{h.c.} \right) + J \vec{S}_d \cdot \vec{S}_0$$

ZERO-BANDWIDTH LIMIT OF FIXED POINT HAMILTONIAN

Effective two-site problem

$$|\Psi\rangle_{gs} = \frac{c_s}{\sqrt{2}} (|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle) + \frac{\sqrt{1-c_s^2}}{\sqrt{2}} (|2,0\rangle + |0,2\rangle), \quad c_s \to 1 \text{ as } D \to \infty$$

Effective Hamiltonian in singlet subspace

We treat the dispersion as a real-space nearest neighbour hopping.

$$H^* = -\frac{U}{2} \left(\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow} \right)^2 + J^* \vec{S}_d \cdot \vec{s}_0$$

$$+ V \sum_{\sigma} \left(c^{\dagger}_{d\sigma} c_{0\sigma} + \text{h.c.} \right)$$

$$- t \sum_{i\sigma} \left(c^{\dagger}_{i\sigma} c_{i+1,\sigma} + \text{h.c.} \right)$$

Effective Hamiltonian in singlet subspace

Initially consider **just the first site**. Treat **hopping as perturbation**:

$$|\Psi\rangle_{GS}^* = c_s |SS\rangle + \sqrt{1 - c_s^2} |CT, o\rangle$$

$$V = -t \sum_{\sigma} \left(c_{O\sigma}^{\dagger} c_{1,\sigma} + \text{h.c.} \right)$$

Effective Hamiltonian in singlet subspace

Upto **fourth order**, effective Hamiltonian is

$$H_{ ext{eff}}^*$$
 = constant + $lpha \mathcal{P}_{ ext{charge}}$
 $\mathcal{P}_{ ext{charge}} \longrightarrow ext{projector onto } \hat{n}_1
eq 1$

- For $U \ll V \ll J$, we get $0 < \alpha \ll 1$
- a very weak local FL on 1st site

SIGNATURES OF BREAKDOWN OF SCREENING -

JOURNEY TOWARDS LOCAL MOMENT PHASE

- We will work with a Hilbert space of (6+1=) **7 sites**
- **Recreate RG flow** by tuning the parameters U, V, J
- Observe various measures of entanglement and correlation along this variation

Breakdown of renormalised perturbation theory

Perturbation parameter, zero mode gap and local FL strength

closing of gap,

breakdown of p. theory,

extremely correlated LFL

DESTRUCTION OF KONDO CLOUD

Mutual information within the Kondo cloud

 k_5

Kondo cloud

DESTRUCTION OF KONDO CLOUD

Many-particle correlations in k-space

Mutual information in real space

■ *d* and o disentangle, o gets entangled with the lattice

Impurity entanglement entropy

■ impurity site disentangles from the lattice

Real space spin-spin correlations

- impurity **spin compensation vanishes** (loss of screening)
- Spin correlation between o and 1 increases

Real space diagonal and off-diagonal correlations

- Correlations between o and 1 increase
- Result of tight-binding hopping **breaking the singlet**

Variation of real-space correlations with distance

- Correlations fall off with distance
- Even sites are AFM in correlation, odd sites are FM

VARIATION OF IMPURITY SPECTRAL FUNCTION

WHAT'S HAPPENING?

Auxiliary Model ightarrow bulk

- At large *J*, *V*, we have **large overlapping** Kondo clouds (gray regions)
- As we go towards the local moment phase, the **Kondo clouds shrink**
- \blacksquare At $V, J \sim$ 0, the Kondo **length scale diverges** and the system becomes insulating

■ Rewinding the RG flow shows the **decoupling** of the impurity site.

- Rewinding the RG flow shows the **decoupling** of the impurity site.
- When used as an auxiliary model, this a **metal-insulator transition**.

- Rewinding the RG flow shows the **decoupling** of the impurity site.
- When used as an auxiliary model, this a **metal-insulator transition**.
- Stabilising the insulating phase under RG still remains to be done.

- Rewinding the RG flow shows the **decoupling** of the impurity site.
- When used as an auxiliary model, this a **metal-insulator transition**.
- Stabilising the insulating phase under RG **still remains to be done**.
- For this, we will insert a **Hubbard term on the zeroth site**, and check the RG flows.

OTHER MEASURES OF CORRELATION IN GEN.

SIAM

REAL SPACE CORRELATIONS

REAL SPACE CORRELATIONS AS FUNCTIONS OF DISTANCE

IMPURITY SPECTRAL FUNCTION (GEN. SIAM)

MEASURES OF CORRELATION IN PURE SIAM

Breakdown of renormalised perturbation theory

Perturbation parameter, zero mode gap and local FL strength

DESTRUCTION OF KONDO CLOUD

Mutual information within the Kondo cloud

DESTRUCTION OF KONDO CLOUD

Many-particle correlations in k-space

Mutual information in real space

Impurity entanglement entropy

Real space spin-spin correlations

Real space off-diagonal 1-particle and 2-particle correlations

Real space diagonal correlations

Variation of real-space correlations with distance

FORM OF KONDO CLOUD HAMILTONIAN

$$H_{\text{eff}} = 2H_0^* + \frac{2}{J^*}H_0^{*2} + \sum_{1234} V_{1234}c_{R_4\uparrow}^{\dagger}c_{R_3\downarrow}^{\dagger}c_{R_2\downarrow}c_{R_1\uparrow}$$

$$V_{1234} = \left(\epsilon_{k_1} - \epsilon_{k_3}\right) \left[1 - \frac{2}{J^*} \left(\epsilon_{k_3} - \epsilon_{k_1} + \epsilon_{k_2} + \epsilon_{k_4}\right)\right]$$

- Mixture of Fermi liquid and two-particle off-diagonal scattering term
- Fermi liquid part: result of Ising scattering
- 2P off-diagonal term: Non-Fermi liquid in character result of spin-flip scattering
- NFL part **leads to screening** and formation of singlet