Camino a ONMAPS 2022

solución a todos los nacionales exceptuando 2020 de 3s

Emmanuel Buenrostro

July 5, 2022

Contents

1	Problemas				
	1.1	2014			
		2019			
	1.3	2021			
2	Soluciones				
	2.1	2014			
		2.1.1 P1, Talacha			
	2.2	2019			
		2.2.1 P5 ,Un solo caso y separadores			
	2.3	2021			
		2.3.1 P3. Área de un cuadrilatero usando analitica			

§1 Problemas

§1.1 2014

Problem 1.1 (ONMAPS 2014/1). Julio hace una lista con los números que cumplen las siguientes condiciones:

- El número es de ocho cifras, todas diferentes.
- Es múltiplo de 8.
- Cada dos cifras adyacentes en el número, forman un nuevo número que es multiplo de 7 o 13.

Encuentra los números de la lista de Julio.

§1.2 2019

Problem 1.2 (ONMAPS 2019/5). En el pizarron esta escrito el número 2019, dos mil diecinueve veces en línea. Se van a borrar todos los dígitos menos cuatro, de manera que los cuatro dígitos que sobren sean 2,0,1,9, en ese orden. ¿De cuántas maneras distintas es posible hacer esto?

§1.3 2021

Problem 1.3 (ONMAPS 2021/3). Dibuja un hexagono regular ABCDEF y marca el punto G sobre el arista CD de modo que sea el punto medio de ese lado de hexagono. Traza los segmentos AG, BE y BF. Llamemos H al punto de intersección de AG con BF e I al punto de intersección de AG con BE.

Si se sabe que el área del hexagono ABCDEF es 840, calcula el área del cuadrilatero EFHI.

§2 Soluciones

§2.1 2014

§2.1.1 P1, Talacha

Problem (ONMAPS 2014/1). Julio hace una lista con los números que cumplen las siguientes condiciones:

- El número es de ocho cifras, todas diferentes.
- Es múltiplo de 8.
- Cada dos cifras adyacentes en el número, forman un nuevo número que es multiplo de 7 o 13.

Encuentra los números de la lista de Julio.

Solution. Vamos a revisar los números que pueden ser multiplo de 7 o 13 de uno o dos digitos, que terminen en cada digito.

Digito	Multiplo de 7	Multiplo de 13
0	70	
1	21,91	91
2	42	52
3	63	13
4	14,84	
5	35	65
6	56	26
7	07,77	
8	28,98	78
9	49	39

Esta va a ser la Tabla 1.

Entonces si el número que queremos es ABCDEFGH como es multiplo de 8 a la vez es de 4, asi que GH es multiplo de 4 y de alguno entre 7 y 13. Entonces GH es alguno de estos $\{28, 56, 84, 52\}$.

Entonces usando la tabla 1 tenemos que FGH puede ser $\{428, 528, 356, 284, 984, 784, 352, 652\}$ no esta 656 porque repite el 6. De esos posibles casos los unicos que son multiplo de 8 son $\{528, 984, 784, 352\}$, asi que FGH es alguno de esos.

Ahora vamos a revisar estos casos con la Tabla 1.

Si FGH = 528 entonces podemos llegar a estos casos:

los cuales no pueden seguir por repetir cifras. De manera analoga: FGH = 984:

FGH = 784:

0784

FGH = 352:

6352, 78491352

Entonces todos los posibles son {65213984, 78491352}

§2.2 2019

§2.2.1 P5 ,Un solo caso y separadores

Problem (ONMAPS 2019/5). En el pizarron esta escrito el número 2019, dos mil diecinueve veces en línea. Se van a borrar todos los dígitos menos cuatro, de manera que los cuatro dígitos que sobren sean 2,0,1,9, en ese orden. ¿De cuántas maneras distintas es posible hacer esto?

Solution. Si tenemos 4 números de los 2019 veces que esta escrito 2019, entonces solo va a haber una forma de escogerlos para que se cumpla, en el menor número de los escogidos agarramos el 2, en el siguiente el 0 y asi consecutivamente.

Entonces para agarrar 4 de los 2019 tenemos por separadores que la cantidad de maneras posibles son

$$\binom{2022}{4}$$

4

§2.3 2021

§2.3.1 P3, Área de un cuadrilatero usando analitica

Problem (ONMAPS 2021/3). Dibuja un hexagono regular ABCDEF y marca el punto G sobre el arista CD de modo que sea el punto medio de ese lado de hexagono. Traza los segmentos AG, BE y BF. Llamemos H al punto de intersección de AG con BF e I al punto de intersección de AG con BE.

Si se sabe que el área del hexagono ABCDEF es 840, calcula el área del cuadrilatero EFHI.

Solution. Vamos a usar analitica, vamos a definir x_P la coordenada x del punto P y de igual manera y_P es la coordenada y del punto P, ejemplo las coordenadas del punto C es (x_C, y_C) .

Entonces vamos a acomodar el hexagono de manera que C = (0,0), D = (l,0) donde l es el lado de hexagono.

Si dividimos el hexagono en 6 triangulos equilateros iguales nos da que la altura de este es $\frac{l\sqrt{3}}{2}$ por Pitagoras, entonces $y_B=y_E=\frac{l\sqrt{3}}{2}$ y $y_A=y_F=l\sqrt{3}$

Además como ABC y DEF soon isosceles y $\angle ABC = \angle FED = 120$ entonces $\angle BAC = \angle EFD = 30$, entonces usando el triangulo notable 30,60,90 tenemos que $x_C - x_B = x_E - x_D = \frac{l}{2} \Rightarrow x_B = -\frac{l}{2}, x_E = \frac{3l}{2}$

Por otro lado tenemos que $\angle FAC = 120 - \angle BAC = 90$ y de manera analoga $\angle AFD = 90$ entonces AFCD es un rectangulo y como CD esta en el eje x entonces $x_A = 0, x_F = l$. Por hipotesis $G = (\frac{l}{2}, 0)$ entonces la pendiente de la recta AG es

$$m_{AG} = \frac{y_A - y_G}{x_A - x_G} = \frac{l\sqrt{3}}{-\frac{l}{2}} = -2\sqrt{3}$$

Entonces la ecuacion de la recta AG es $y=-2\sqrt{3}x+z_{AG}$ y para $x=0,y=l\sqrt{3}$ entonces $z_{AG}=l\sqrt{3}$ asi que la ecuacion de la recta AG es

$$y = -(2\sqrt{3})x + l\sqrt{3}$$

Ahora vamos a sacar la pendiente de la recta BF,

$$m_{BF} = \frac{y_B - y_F}{x_B - x_F} = \frac{\frac{l\sqrt{3}}{2}}{\frac{3l}{2}} = \frac{1}{\sqrt{3}}$$

Entonces la ecuación de la recta BF es $y = \frac{x}{\sqrt{3}} + z_{BF}$ y cuando $x = l, y = l\sqrt{3}$ entonces $z_{BF} = l\sqrt{3} - \frac{l}{\sqrt{3}} = \frac{2l}{\sqrt{3}}$.

Entonces la ecuación de la recta BF es

$$y = \frac{x}{\sqrt{3}} + \frac{2l}{\sqrt{3}}$$

Ahora para la linea BE como ambos puntos tienen la misma coordenada y entonces es una linea recta paralela al eje x entonces la ecuación de la linea BE es

$$y = \frac{l\sqrt{3}}{2}$$

Entonces la intersección de AG con BF es H asi que

$$-(2\sqrt{3})x_H + l\sqrt{3} = \frac{x_H + 2l}{\sqrt{3}} \Rightarrow -6x_H + 3l = x_H + 2l \Rightarrow 7x_H = l \Rightarrow x_H = \frac{l}{7}$$

Entonces $y_H = l\sqrt{3}(-\frac{2}{7}+1) = \frac{5l\sqrt{3}}{7}$, asi que $H = (\frac{l}{7}, \frac{5l\sqrt{3}}{7})$

Ahora para sacar el punto I tenemos que $y_I = \frac{l\sqrt{3}}{2}$ entonces

$$-(2\sqrt{3})x_I + l\sqrt{3} = \frac{l\sqrt{3}}{2} \Rightarrow 2x_I\sqrt{3} = \frac{l\sqrt{3}}{2} \Rightarrow 4x_I = l \Rightarrow x_I = \frac{l}{4}$$

Entonces el área de EFHI es

$$A = \frac{1}{2} \begin{vmatrix} \frac{l}{7} & \frac{5l\sqrt{3}}{7} \\ \frac{l}{l} & l\sqrt{3} \\ \frac{3l}{2} & \frac{l\sqrt{3}}{2} \\ \frac{l}{4} & \frac{l\sqrt{3}}{2} \\ \frac{l}{7} & \frac{5l\sqrt{3}}{7} \end{vmatrix} = \frac{1}{2} |l^2 \sqrt{3} (\frac{8+28+42+10-4-7-84-40}{56})| = \frac{|l^2 \sqrt{3} (-\frac{47}{56})|}{2} = \frac{l^2 \sqrt{3} \frac{47}{56}}{2}$$

y como el área de
es hexagono es 840, entonces $\frac{3}{2}l^2\sqrt{3}=840 \Rightarrow l^2\sqrt{3}=560$ Entonces al área reque
rida es

$$\frac{560 \cdot \frac{47}{56}}{2} = \frac{470}{2} = 235$$