ПРОГРАММА «GEOMW» ДЛЯ РАСЧЕТА ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК ПЛОСКИХ СЕЧЕНИЙ

При расчете строительных конструкций на прочность и жесткость необходимо определять геометрические характеристики — площадь сечения, координаты центра тяжести, угол наклона главных центральных осей, главные центральные моменты инерции, моменты сопротивления и радиусы инерции.

Традиционный путь решения задачи состоит в разбиении сечения на отдельные фигуры, для которых площадь, положение центра тяжести, осевые и центробежный моменты инерции вычисляются по готовым формулам или определяются по сортаменту прокатных профилей. Затем вычисляются координаты центра тяжести всего сечения, моменты инерции относительно центральных осей и т. д. Этот алгоритм легко программируется и лежит в основе многих программ расчета геометрических характеристик. В программе «GeomW» предложен другой подход.

Все сечение разбивается на простые фигуры:

- прямоугольник;
- прямоугольный треугольник правый (левый);
- круг;
- полукруг;
- четверть круга;
- двутавр;
- швеллер;
- равнополочный уголок;
- неравнополочный уголок правый (левый).

Для каждой фигуры вводятся характерные размеры:

прямоугольник, треугольник – ширина и высота;

круг, полукруг, четверть круга – радиус;

двутавр, швеллер – номер профиля;

равнополочный уголок – размер полки, толщина полки;

неравнополочный уголок – размеры полок, толщина полки.

Для определения положения фигуры задаются координаты одной точки (точки привязки) в выбранной системе координат. Для всех фигур, кроме круга, вводится угол поворота фигуры вокруг точки привязки относительно исходного состояния, принятого в программе (положительным считается угол поворота по часовой стрелке). Характерные размеры, точки привязки и исходное состояние показаны на рис 1.

Фигуру, не являющуюся прокатным профилем, можно задать в виде отверстия (фигуры с отрицательной площадью). Рекомендуется следующий порядок ввода фигур. Сначала вводятся сплошные фигуры, затем отверстия. В этом случае отображение информации на экране будет правильным.

Если в состав сечения не входят прокатные профили, то единицы измерения вводимых величин могут быть любыми. Вся информация должна быть представлена в одних единицах, в этих же единицах будут выведены и результаты расчета. Для сечений, включающих прокатные профили, все размеры необходимо задавать в сантиметрах.

Рис. 1. Простые фигуры, из которых формируется сечение

Контрольные величины:

- площадь сечения;
- координаты центра тяжести;
- осевые и центробежный моменты инерции;
- положение главных центральных осей;
- главные центральные моменты инерции;
- радиусы инерции сечения.

Для поиска ошибок в ручном расчете следует вывести геометрические характеристики по фигурам (площадь, координаты центра тяжести, осевые и центробежный моменты инерции относительно собственных центральных осей).

Окно программы на этапе создания сечения показано на рис. 2, справочная информация, предоставляемая программой, (формулы для простых фигур, сортамент прокатных профилей и т. д.) представлена на рис 3.

Puc. 2. Окно программы «Geom W» на этапе создания сечения

Задача Опрог	о программе														
Сечение	Результаты		Формулы Де	Двутавры	Швеллеры	Уголки	Уголки равнополочные		Уголки неравнополочные	оавнопол		Инструкция	Сертификат	икат	
№ проф.	h (MM)	(MM) q	S (MM)	t (MM)	R (MM)	r (MM)	A (cm^2)	Jz (cm^4) Wz (cm^3 iz (cm)	Wz (cm²3	Siz (cm)	Sz (cm^3) Jy (cm^4)	Sz (cm^3) Jy (cm^4) Wy (cm^3 ly (cm)	iy (cM)	W (KL)
10	100	99	4,5	7,2	2,0	2,5	12.0	198,0	39,7	4,06	23,0	17,9	6,5	1,22	9,5
12	120	64	4,8	7,3	7,5	3,0	14,7	350,0	58,4	4,88	33,7	27.9	8,7	1,38	11,5
14	140	73	4,9	7,5	8,0	3,0	17,4	572,0	81,7	5,73	46,8	41,9		1,55	
16	160	81	6,0	7,8	8,5	3,5	20.2	873,0	109,0	6,57	62,3	58,6	14,5	1,70	15,9
18	180	90	5,1	1,8	0.6	3,5	23,4	1290,0	143,0	7,42	81,4	82,6	18,4	1,88	18,4
18a	180	100	5,1	80,00	9,0	3,5	25,4	1430,0	159,0	7,51	868	114,0	22.8	2,12	19,9
20	200	100	5,2	8,4	9,5	4,0	26,8	1840,0	184,0	8,28	104,0	115,0	23,1	2,07	21,0
20a	200	110	5,2	8,6	9,5	4,0	28,9	2030,0	203,0	8,37	114,0	155,0	28.2	2,32	22.7
22	220	110	5,4	8,7	10,0	4,0	90'08	2550,0	232,0	9,13	131,0	157,0	28,6	2,27	24,0
22a	220	120	5,4	6,8	10,01	4,0	32,8	2790,0	254,0	9,22	143,0	206,0	34,3	2,50	25,8
24	240	115	9	G G	10.5	0 7	878	3760.0	289.0	0.07	1620	1000	245	207	070

0

сортамент (θ); обозначения основных размеров и осей для прокатного профиля (ϵ) Puc. 3. Справочная информация программы «Geom W»: справочные формулы (a);

Пример 1. Рассчитаем сечение, состоящее из пяти простых фигур (рис. 4, а): прямоугольник, полукруг, прямоугольный треугольник, четверть круга, круг. Две последние фигуры задаются в виде отверстия.

Выберем систему координат, как показано на рис. 4, б. Определим характерные размеры фигур, координаты точек привязки и углы поворота.

Первая фигура — прямоугольник. Ширина $b_1 = 8$ см, высота $h_{\!\scriptscriptstyle 1}=\!10~{\rm cm}$, координаты точки привязки $z_{\scriptscriptstyle 1}=\!4~{\rm cm}$, $y_{\scriptscriptstyle 1}=\!5~{\rm cm}$, угол поворота $\alpha_1 = 0^\circ$.

Вторая фигура — полукруг ($r_2 = 4$ см; $z_2 = 4$ см; $y_2 = 10$ см; $\alpha_2 = 0^{\circ}$).

Третья фигура – прямоугольный треугольник правый $(b_3 = 4 \text{ cm}; h_3 = 10 \text{ cm}; z_3 = 8 \text{ cm}; y_3 = 0 \text{ cm}; \alpha_3 = 0^\circ).$

Четвертая фигура — четверть круга ($r_4 = 4$ см; $z_4 = y_4 = 0 \text{ cm}; \ \alpha_4 = 0^{\circ}$).

Пятая фигура – круг ($r_5 = 2$ см; $z_5 = 4$ см; $y_5 = 8$ см).

Геометрические характеристики отдельных фигур и всего сечения, сведены в табл. 1.

Таблица 1

Номер	$A_{\dot{2}}$	z_i ,	y_i ,	$J_{_{zi}}$,	$J_{_{yi}}$,	$J_{_{zyi}}$,	a_i ,	b_i ,
фигуры	CM ²	CM	СМ	cm ⁴	cm ⁴	cm ⁴	СМ	CM
1	80,0	4,0	5,0	666,7	426,7	0,0	-1,387	-1,356
2	25,120	4,0	11,696	28,160	100,61	0,0	5,309	-1,356
3	20,0	9,333	3,333	111,1	17,78	-22,22	-3,054	3,977
4	-12,56	1,696	1,696	-14,05	-14,05	4,224	-4,691	-3,660
5	-12,56	4,0	8,0	-12,56	-12,56	0,0	1,613	-1,356

 $A = 100,0 \text{ cm}^2$; $z_C = 5,356 \text{ cm}$; $y_C = 6,387 \text{ cm}$; $J_{ZC} = 1518,7 \text{ cm}^4$; $J_{YC} = 836,8 \text{ cm}^4$; $J_{ZCYC} = -479,5 \text{ cm}^4$; $tg(2\alpha) = 1,406$; $\alpha = 27,3^\circ$; $J_{max} = 1766,1 \text{ cm}^4$;

 $I_{\min} = 589.4 \text{ cm}^4$; $i_{\max} = 4.202 \text{ cm}$; $i_{\min} = 2.428 \text{ cm}$.

 $Puc.\ 4.\$ Поперечное сечение (a) с разбивкой на фигуры (δ) для примера 1

Порядок работы с программой следующий.

1. Создаем новую задачу

2. Добавляем фигуру

3. Выбираем фигуру – прямоугольник

4. Вводим исходные данные для прямоугольника

5. Выбираем фигуру – полукруг

6. Вводим исходные данные для полукруга

7. Выбираем фигуру – треугольник (правый)

8. Вводим исходные данные для треугольника

9. Выбираем фигуру – четверть круга

10. Вводим исходные данные для четверти круга

11. Выбираем фигуру – круг

12. Вводим исходные данные для круга

Для просмотра исходных данных, редактирования или удаления фигуры выбираем ее из списка

Данные для выбранной фигуры выводятся в режиме просмотра (редактирование недоступно)

При необходимости редактирования исходных данных

Для удаления фигуры из сечения

Подтверждение операции удаления фигуры

Вид сечения после ввода всех фигур

13. Выполняем расчет

14. Переходим на закладку «Результаты» и проверяем результаты для всего сечения

Для поиска ошибок выбираем опцию «вывести результаты по фигурам» и проверяем все расчетные величины по каждой фигуре в отдельности

15. При необходимости сохраняем данные в файле

16. Завершаем работу

Пример 2. Поперечное сечение состоит из трех фигур (рис. 5, a):

- прямоугольник с размерами 40×1.0 см;
- двутавр № 24;
- неравнополочный уголок 200×125×12.

Выберем систему координат, как показано на рис. 5, δ , и определим координаты точек привязки и углы поворота фигур.

Первая фигура — прямоугольник ($b_1 = 1 \text{ см}$; $h_1 = 40 \text{ см}$; $z_1 = y_1 = 0 \text{ cm}; \ \alpha_1 = 0^{\circ}$).

Вторая фигура – двутавр. Номер профиля 30, координаты точки привязки $z_2 = 13,25$ см, $y_2 = 15,5$ см, угол поворота $\alpha_2 = 0^\circ$.

Третья фигура – неравнополочный уголок 200×125×12. Развернем уголок вокруг точки привязки до совпадения с базовым положением (неравнополочный уголок левый, рис. 1.5, в). Координаты точки привязки $z_3 = -20 \,\mathrm{cm}$, $y_3 = -0.5 \,\mathrm{cm}$, угол поворота $\alpha_3 = 180^{\circ}$.

Геометрические характеристики отдельных фигур и всего сечения сведены в табл. 2.

Результаты расчета показаны на рис. 6.

Таблииа 2

Номер фигуры	A , cm^2	z_i , cm	y_i , cm	J_{zi} , cm^4	J_{yi} , cm ⁴	J_{zyi} , cm ⁴	a_i , cm	b_i ,
1	40,0	0,0	0,0	3,333	5333,3	0,0	-3,650	0,277
2	46,5	13,25	15,5	7080,0	337,0	0,0	11,85	13,527
3	37,89	-17,17	-7,04	1568,2	481,9	503,0	-10,69	-16,89

$$A = 124.4 \text{ cm}^2$$
; $z_C = -0.277 \text{ cm}$; $y_C = 3.650 \text{ cm}$; $J_{ZC} = 20043.9 \text{ cm}^4$;

$$J_{YC} = 25476,7 \text{ cm}^4$$
; $J_{ZCYC} = 14758,7 \text{ cm}^4$; $tg(2\alpha) = 5,433$; $\alpha = 39,8^\circ$;

$$A = 124.4 \text{ cm}^2; \ z_C = -0.277 \text{ cm}; \ y_C = 3,650 \text{ cm}; \ J_{ZC} = 20043.9 \text{ cm}^4; \ J_{YC} = 25476.7 \text{ cm}^4; \ J_{ZCYC} = 14758.7 \text{ cm}^4; \ \text{tg}(2\alpha) = 5,433; \ \alpha = 39.8^\circ; \ J_{\text{max}} = 37766.9 \text{ cm}^4; J_{\text{min}} = 7753.8 \text{ cm}^4; \ i_{\text{max}} = 17,425 \text{ cm}; \ i_{\text{min}} = 7,895 \text{ cm}.$$

Рис. 5. Поперечное сечение (a) с разбивкой на фигуры (б) для примера 2; схема для определения угла поворота неравнополочного уголка (в)

Рис. 6. Результаты расчета поперечного сечения (пример 2)

Пример 3. Поперечное сечение балки (рис. 7) с размерами, выраженными через параметр a.

Для расчета примем параметр a за единицу. Разделим сечение на три фигуры:

– прямоугольник (
$$b_1 = 7$$
 ; $h_1 = 10$; $z_1 = 3.5$; $y_1 = 5$; $\alpha_1 = 0^{\circ}$);

– прямоугольник (
$$b_2 = 5$$
; $h_2 = 6.5$; $z_2 = 3.5$; $y_2 = 3.25$;

$$\alpha_2 = 0^\circ$$
, отверстие);

— полукруг (
$$r_3=2,5$$
 ; $z_3=3,5$; $y_3=6,5$; $\alpha_3=0^\circ$, отверстие).

Результаты расчета показаны на рис. 8.

a

Рис. 7. Поперечное сечение (a) с разбивкой по фигурам (б) для примера 3

Рис. 8. Вид сечения и результаты расчета (пример 3)

По результатам решения записываем геометрические характеристики сечения:

координата центра тяжести $y_C = 6,147a$;

момент инерции $J_{ZC} = 264,35a^4$;

момент сопротивления
$$W_Z = \frac{264,35a^4}{6,147a} = 43,0a^3$$
.

Построенное программой изображение можно масштабировать, сдвигать по вертикали и горизонтали, заливать сплошным цветом или заштриховывать. Предусмотрена возможность вернуться к исходным параметрам.