San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Other Models of TMs

Lecture 18 -1 Day 21/31

CS 154
Formal Languages and Computability
Spring 2018

Agenda of Day 21

- About Midterm 2
- Summary of Lecture 17
- Quiz 7
- Lecture 18: Teaching ...
 - Other Models of TMs (Part 2)
 - Regular Expression (Part 1)

About Midterm 2

Midterm #2 (aka Quiz++)

Date: Thursday 04/12

- Value: 15%

Topics: Everything covered from the beginning of the semester

Type: Closed y ∈ Material

Material = {Book, Notes, Electronic Devices, Chat, . . . }

The cutoff for midterm #2 is the end of this lecture.

Summary of Lecture 17: We learned ...

TMs as Transducer

- Transducer is a device that converts an "input" to an "output".
- We model a transducer by a ...
 - ... function.
- TMs can work in transducers mode.
 - Input is all or part of the nonblank symbols on the tape at the initial time.
 - Output is all or part of the tape's content when the machine halts.
- We learned how JFLAP shows the output.

- A function is called "Turing-computable" if ...
 - ... there exists a Turing machine that implements it.
- We learned how to break a complex problem into smaller ones and how to combine TMs to make a bigger one.

Any Question

Summary of Lecture 17: We learned ...

Other Models of TMs

- We tried to figure out whether we can get more power by adding some capabilities to standard TMs.
- With any changes in standard TMs, we created a new class of automata.
- The changes we made:
 - TMs with stay-option ...
 - TMs with multidimensional-tape ...
 - TMs with multi-tape ...
- Were the new classes more powerful than the standard TM?

 We mentioned several theorems stating that the new classes were equivalent to standard TMs.

Any Question?

NAME	Alan M. Turing		
SUBJECT	CS 154	TEST NO.	7
DATE	04/05/2018	PERIOD	1,2,3

Quiz 7 No Scantron Take-Home Exam

Nondeterministic TMs

Determinism in Standard TMs

- 1. Determinism = during any timeframe, there is no more than one transition.
- Any violation of determinism, will make a machine nondeterministic.

- What could be those violations in standard TMs?
 - λ-transition
 - When δ is multifunction

Let's deal with each one in detail!

λ-Transitions

1. λ-transition in automata theory means:

The machine may "unconditionally" transit.

2. Therefore, if we put λ in the condition places, we make a λ -transition.

This is our knowledge so far:

Automata Class	Transition Condition
DFA/NFA	Input Symbol
NPDA	Input Symbol + Top of stack
ТМ	Input Symbol

λ-Transitions

For example, in the following transition, condition for transition is:
 input symbol = 'a'

• So, if we put λ in the condition place, we make a λ -transition.

① λ-Transitions

Definition

• For TMs, a transition is called λ -transition iff input part of the label is λ .

• But in practice, the following λ-transition is used:

The machine does not need to do anything if it jumps to q_j.

Nondeterministic TMs: Multifunction Examples

Example 4

Two or more transitions with the same input symbol

Nondeterministic TMs

Formal Definition

A nondeterministic TM M is defined by the septuple:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$$

- Where:
 - ... (same as standard TM elements)

δ: Q x (Γ U {λ}) →
$$2^{Q \times (\Gamma \cup \{\lambda\}) \times \{L, R, S\}}$$

δ might be total xor partial.

Nondeterministic TMs Transition Function Example

Example 5

Draw the transition graph of the following sub-rule:

$$\delta(q_0, a) = \{(q_1, b, R), (q_2, c, L)\}$$

Theorem

- The class of nondeterministic TMs is equivalent to the class of standard TMs.
- We need to prove two things:
 - Nondeterministic TMs simulate standard TMs.
 - Standard TMs simulate nondeterministic TMs.

Proof of 1

- Let's assume we've constructed a standard TM for an arbitrary language L.
- Can we always construct a nondeterministic TM for L? How?
- Yes, just use a similar algorithm we used for DFAs and NFAs.

Proof of 2

- Mathematical proof of this part is not so easy but we can understand it intuitively.
- We'll explain it through an example.
- But first, we need some background.
- Next slide refreshes your knowledge about one-dimensional projection.

One-Dimensional Projection of a Walk

Recap

- As we learned before, we can represent a walk by one-dimensional projection.
- As an example, look at the string (walk) w = aaaab in the following NFA:

This walk can be shown as:

- Proof of 2 (cont'd)
- The following transition graph is an example of a nondeterministic TM.

- For simplicity, we showed only the input symbols of the labels.
- It looks like an NFA, but we won't lose the generality of the point.

- If we input w = abab into this TM, overall 6 processes will be initiated.
- We usually prefer to organize them as a tree.

- Proof of 2 (cont'd)
- All processes for the string w = abab are:

- Proof of 2 (cont'd)
- Every walk from q₀ to a leaf is a process that is a standard TM.
 - every leaf is either accepting or rejecting state.

Therefore, here is the important point:

A nondeterministic TM is a collection of standard TMs.

Proof of 2 (cont'd)

In fact, nondeterminism is a determinism backtracking algorithm.

 It means, a deterministic TM can simulate a nondeterministic TM if it can handle the bookkeeping of the backtracking.

 Your term project will show that standard TM can handle this bookkeeping.

Nondeterministic TMs: Notes

- 1. Nondeterminism does not add any power to the automata.
 - It just speeds up the computation.
- We are always looking for more power and speed is not our concern.
 - "Speed" will be a matter of concern when we will be talking about "complexity theory".
- 3. Quantum computing tries to implement nondeterminism!
 - It does NOT add any power to computing.

Basic Concepts of Computation

24

Definition of Algorithm

① Definition

- An algorithm for a problem L (= language) is equivalent to design a TM that solves L (= accept the language).
- Therefore, we define the TM structure as the "algorithm" for solving that problem.

Definition of Program

- A sub-rule defines how a machine acts in one transition for a specific state.
- The transition function defines all possible transitions of the machine for all possible situations.
- What is the "program" of a TM?

① Definition

The transition function of a TM is the "program" of the TM.

San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Regular Expressions

(Part 1)

Lecture 18 -2 Day 21/31

CS 154
Formal Languages and Computability
Spring 2018

Regular Expressions

Objective of This Lecture

- So far, we've represented formal languages by sets.
- In this lecture, we are going to introduce an alternative mathematical tool to represent them.
- So, in a nutshell:
- Regular expressions (REGEXs for short) are another mathematical way to represent formal languages.
 - They have important practical applications in OS's like Linux/UNIX, and programming languages like Java.
- The question that raises here is:

Can REGEXs represent all formal languages?

Do We Have Standard REGEXs?

- In computer science, we do NOT have a standard REGEX!
- Every OS and every programming language has its own REGEX.
- Of course, there are some common alphabet and rules between all of them.
 - So, you should learn each one based on their alphabet and rules.
- But the basic idea is the same.
 - In fact, they have implemented their REGEXs based on the REGEX we'll introduce in this course.

Regular Expressions (REGEXs)

REGEXs Elements

- REGEXs like everything else in this course, has a mathematical base.
- We need to introduce REGEXs'
 - 1. Elements
 - 2. Rules (Formal Definition).
- REGEXs have three elements:
 - φ, λ, and the symbols of alphabet Σ (e.g. a, b, c)
 φ and λ has special usage that will be covered shortly.
 - 2. ()
 - 3. Operators:
 - + (union)
 - . (dot or concatenation)
 - * (star-closure)

 Before defining REGEXs' rules, let's take some simple examples to have a taste of them!

Example 1

- Given $L = \{a\}$ over $\Sigma = \{a, b\}$
- Represent L by a set builder and a REGEX
- Solution
- $L = \{x : x = a\}$
- r = a (we'll use "r" as a shortcut for REGEX.)

- So, we just learned how to write the REGEX of all languages with one symbol!
 - Infinite languages!

Concatenation Operator: '.'

We can concatenate REGEXs symbols (Σ, φ, λ)

Example 2

- Given L = $\{ab\}$ over $\Sigma = \{a, b\}$
- r = ?

- L = {a} . {b}
- r = a.b

Union Operator: '+'

Example 3

- Given L = $\{ab, bb, ba\}$ over $\Sigma = \{a, b\}$
- r = ?

- L = {ab, bb, ba} = {ab} U {bb} U {ba}
- r = a.b + b.b + b.a

Star-Closure Operator: '*'

Means "Zero or more concatenation"

Example 4

- Given $L = \{a^n : n \ge 0\}$ over $\Sigma = \{a\}$
- r = ?

- L = $\{\lambda, a, aa, aaa, ...\}$
- In formal languages terminology, L can also be represented as:
- $L = \{a\}^*$
- $r = a^*$

Example 5

- Given L = {aⁿ : n ≥ 1} over Σ = {a}
- r = ?

- It means, we need at least one 'a'.
- r = a.a*
 - The language L has at least one a.
 - So, we put the first 'a' to represent this fact.
 - And we put a* for zero or more a's.
- Note that we don't have expressions like a+, a², a³ in REGEXs.

A Side Note

Different Notations of a Language

Set builder

$$L = \{a^n : n \ge 0\}$$

Roster Method

$$L = {\lambda, a, aa, aaa, ...}$$

NFA

REGEX

$$r = a^*$$

- Why should we study REGEXs?
- REGEXs represent formal languages in a more compact way.
- They are shorthand for set builder notations!
- They are easier to be implemented in computer.

Precedence of Operators

For more complex REGEXs, there could be some ambiguity.

Example 6

- $r = a + b \cdot c$
- We may interpret the above REGEX as one of these:

$$r = ((a + b) \cdot c)$$

 $r = (a + (b \cdot c))$

- Which one is correct?
 - It depends on our definition of operators' precedence.
- So, to remove this ambiguity, we should define some "precedence rules".

Precedence of Operators

- The precedence from the highest to lowest would be:
 - Parentheses
 - Star-closure
 - Concatenation
 - Union

Example 7

- $r = a \cdot b^* + c$
- In fact, $r = ((a \cdot (b)^*) + c)$
- That is very similar to elementary algebra!
- For simplicity, from now on, we eliminate '.' (dot) operator.
- So, the above example can be shown as: r = ab* + c

What is the relationship between:

the set of REGEXs, and

the set of all formal languages?

- We know that "every REGEX represents a language".
- BUT we don't know yet whether we can represent every language, by a REGEX or not!
 - Our knowledge is not enough yet.

- Can we consider this relationship as a function?
 - Yes, the definition of the function can be: $L: r \rightarrow L(r)$
- What type of function is this?
 - Total function!

Associated Languages to REGEXs

Definition

 If REGEX r represents language L, then L is called the "associated language" to r and is denoted by L(r).

Example 8

- Given r = ba*.
- L(r) = ?
- We saw before that a* represented L = {aⁿ : n ≥ 0}
- So, $L(r) = \{ba^n : n \ge 0\}$

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790