Лабораторная работа №3

Исследование резонансных цепей

Цель работы: Исследование свойств резонансных цепей

Продолжительность работы: 4 часа

Программа, используемая в работе: Для получения характеристик используется программа Electronic Workbench.

Приборы, используемые в работе: Используются четыре типа приборов: вольтметр, амперметр, осциллограф и Боде-плоттер.

Домашняя подготовка

Задание 1

Рис.1

Таблица 1

Варианты задания

№ варианта	L, мГн	С, мкФ	R, Ом
1	11	0,05	400
2	23	0,0075	1200
3	39,2	0,0068	1820
4	23	0,0036	2000
5	49	0,0075	2150
6	51,2	0,011	1750
7	62,4	0,012	2180
8	54	0,012	1620
9	43,3	0,0036	2500
10	50	0,013	1820

1. Выбрав из табл.1 параметры элементов последовательного резонансного контура (рис.1), рассчитать следующие характеристики контура:

волновое сопротивление
$$\rho = \sqrt{\frac{L}{C}}$$
;

резонансную частоту
$$F_p = \frac{1}{2\pi\sqrt{LC}}$$
;

добротность контура
$$Q = \frac{\rho}{R}$$
;

относительную полосу пропускания
$$d = \frac{1}{Q} = \frac{F_B - F_H}{F_p}$$
;

частоту. на которой действующее значение напряжения U_{L} достигает максимума

$$F_L = F_{\rm p} \sqrt{\frac{1}{1 - R^2 / 2\rho^2}}$$

частоту. на которой действующее значение напряжения U_{C} достигает максимума

$$F_{c} = \frac{F_{p}^{2}}{F_{L}}$$

2. Привести расчетные формулы для вычисления действующих значений тока I, напряжений U_R , U_L , U_C и угла сдвига фаз ϕ между входными током и напряжением.

Рассчитать все эти величины для частот указанных в табл. 2. Рачетные значения занести в табл. 2.

Параметры		Значения параметров								
		Частота, Гц								
		Fp	$0.1F_p$	$0.3F_p$	$0.5F_p$	$0.7F_p$	2F _p ,	3F _p ,	F _L ,	F _C .
		Гц	Гц	Гц	Гц	Гц	Гц	Гц	Гц	F _{C,} Гц
F, Гц	расч.									
I, A	расч.									
	эксп.									
U_R , B	расч.									
	эксп.									
U_L, B	расч.									
	эксп.									
$U_{\rm C}, B$	расч.									
	эксп.									
φ,	расч.									
град	эксп.									

По результатам расчета построить AЧX и ФЧX для комплексов действующих значений $U_R,\,U_L,\,U_C.$

4. Построить векторные диаграммы на комплексной плоскости для $F=F_p$, $F=0.5F_p$, $F=2F_p$, направив в каждой диаграмме ток по действительной оси.

Лабораторное задание

- 1. Включив в схему рис.1 амперметр и три вольтметров определите экспериментальные значения токов и напряжений, заданных в табл. 2.
 - 2. Получите АЧХ и ФЧХ с помощью Боде-плоттера.
- 3. Определите экспериментально относительную полосу пропускания, считая выходным элементом резистор R. Уменьшите величину сопротивления R в 4 раза. Определите снова полосу пропускания.
 - 4. Уменьшите в два раза роезонансную частоту:
 - за счет величины ирдуктивности L,
 - за счет величины емкости С.

Как в этих случаях изменяется добротность Q?

Характеристики последовательного колебательного контура

Для ряда электрических цепей содержащих реактивные элементы имеется одна или несколько характерных частот, при которых они ведут себя как чисто активные сопротивления (совпадают фаза входного напряжения и тока). Такие цепи называются резонансными. Определить

резонансные частоты и провести анализ поведения таких схем при различных частотах позволяют *частотные характеристики*, то есть зависимости от частоты различных электрических величин.

Рис.2

Рассмотрим простую электрическую цепь, состоящую из последовательного соединения резистора, конденсатора и катушки индуктивности, называемую последовательным колебательным контуром (рис. 2,а). Получить представление о ходе частотных зависимостей можно анализируя векторные диаграммы, отражающие процессы в цепи.

Прежде всего получим характерные точки для частотной зависимости напряжения на резисторе. Временная зависимость напряжения на резисторе

полностью харакетризуется комплексным числом U _R или двумя действительными числами: модулем и фазой этого комплекса.

Первая характерная точка соответствует нулевой частоте (то есть постоянному сигналу). Для постоянного сигнала катушка индуктивности превращается в провод, а конденсатор в разрыв, ток в такой цепи отсутствует, а все напряжение падает на разрыве, то есть на конденсаторе. При угловой частоте $\omega \to 0$ реактивное сопротивление конденсатора резко увеличивается, при этом снижается ток в цепи и модуль напряжения на резисторе U_R , а угол между током и напряжением приближается к -90° (рис. 2,в).

С ростом частоты емкостное сопротивление убывает, а индуктивное нарастает, при этом суммарное реактивное сопротивление падает (рис. 2,д). Угол сдвига ф между входным током и напряжением уменьшается по абсолютному значению, оставаясь отрицательным.

При некотором значении $\omega = \omega_p$ индуктивное сопротивление компенсируется емкостным и суммарное реактивное сопротивление становится равным нулю и наступает режим работы, называемый *резонансом* (рис. 2,e). Все напряжение при этом падает на резисторе $U_R = E$.

При дальнейшем увеличении частоты индуктивное сопротивление контура превышает емкостное, угол ф становится положительным (рис. 2,г).

Угол сдвига ϕ между входным током и напряжением становится пложительным и увеличивается с ростом частоты. При $\omega \to \infty$ угол ϕ стремится к 90° (рис.2, б).

Амплитудно-частотная и фазочастотная характеристики относительного напряжения U_R/E представлены на рис. 3,а и 3,б соответственно. По оси частот здесь также отложена относительная частота F/F_p .

На рис. 4 представлены частотные характеристики относительных напряжений $U_R/E,\,U_I/E,\,U_C/E.$

Для снятия характеристик в программе необходимо собрать на рабочем поле схему по рис. 5.

Рис. 5.1

Рис. 5.2

Рис. 5.3