

(12)

Offenlegungsschrift

(21) Aktenzeichen: 102 56 114.1 (22) Anmeldetag: 29.11.2002

(43) Offenlegungstag: 09.06.2004

(51) Int CI.7: G07D 7/12

(71) Anmelder:

Giesecke & Devrient GmbH, 81677 München, DE

(72) Erfinder:

Rauscher, Wolfgang, Dr., 81373 München, DE; Giering, Thomas, Dr., 85614 Kirchseeon, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Bezeichnung: Verfahren und Vorrichtung zur Prüfung von Wertdokumenten

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Prüfung von Wertdokumenten mit einem Echtheitsmerkmal in Form von zumindest einer lumineszierenden Substanz.

Dadurch, daß aus den Meßwerten, welche unterschiedlichen Frequenzen und/oder Frequenzbereichen der Lumineszenzstrahlung entsprechen, ein Meßvektor gebildet wird, und eine Zuordnung des Meßvektors zu einem von mehreren vorgegebenen Referenzvektoren, die unterschiedlichen Echtheitsmerkmalen entsprechen, dadurch erfolgt, daß den Referenzvektoren jeweils zumindest ein Klassenzuordnungsgebiet zugeordnet und geprüft wird, in welchem Klassenzuordnungsgebiet sich der Meßvektor befindet, kann eine einfache und sichere Unterscheidung auch von Echtheitsmerkmalen mit sehr ähnlichem Spektralverhalten erreicht werden.

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Prüfung von Wertdokumenten mit einem Echtheitsmerkmal in Form zumindest einer lumineszierenden Substanz, wobei das Wertdokument mit Licht bestrahlt und die vom Wertdokument ausgehende Lumineszenzstrahlung spektral aufgelöst erfasst wird, um zu bestimmen, ob das Echtheitsmerkmal im geprüften Wertdokument tatsächlich vorhanden ist.

[0002] Im Sinne der vorliegenden Erfindung wird unter einem lumineszierenden, wie z.B. einem fluoreszierenden oder phosphoreszierenden Echtheitsmerkmal eine einzelne Substanz oder eine Mischung von mehreren Substanzen verstanden, die ein Lumineszenzverhalten zeigen.

[0003] Es gibt eine Reihe von bekannten Systemen zur Echtheitsprüfung solcher Wertdokumente. Ein System ist beispielsweise aus der DE 23 66 274 C2 der Anmelderin bekannt. Bei diesem System wird zur Prüfung der Echtheit einer Banknote, d. h. im speziellen der Prüfung, ob ein fluoreszierendes Echtheitsmerkmal tatsächlich in einer zu prüfenden Banknote vorhanden ist, diese bestrahlt und die remittierte Fluoreszenzstrahlung spektral aufgelöst erfaßt. Die Auswertung erfolgt durch einen Vergleich der Signale von unterschiedlichen Photozellen des Spektrometers.

[0004] Dieses Verfahren arbeitet zwar in den meisten Fällen sehr zuverlässig, allerdings kann es insbesondere dann, wenn es mehrere mögliche Echtheitsmerkmale gibt, die ein sehr ähnliches Spektralverhalten haben, zu Schwierigkeiten bei der Unterscheidung und damit der Entscheidung geben, welches dieser Echtheitsmerkmale tatsächlich im geprüften Wertdokument vorhanden ist.

[0005] Davon ausgehend ist es die Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zur Prüfung von Wertdokumenten bereitzustellen, welche eine Unterscheidung auch von Echtheitsmerkmalen mit ähnlichem Spektralverlauf auf einfache und sichere Weise ermöglichen.

[0006] Diese Aufgabe wird durch das Verfahren nach Anspruch 1 und die Vorrichtung nach Anspruch 12 gelöst.

[0007] Die vorliegende Erfindung basiert somit auf der Erkenntnis, daß eine einfache und sichere Unterscheidung zwischen unterschiedlichen Echtheitsmerkmalen dann am besten gewonnen werden kann, wenn aus den Meßwerten, welche unterschiedlichen Frequenzen und/oder Frequenzbereichen der Lumineszenzstrahlung entsprechen, ein Meßvektor gebildet wird, und eine Klassenzuordnung des Meßvektors zu einem von mehreren vorgegebenen Referenzvektoren, die unterschiedlichen Echtheitsmerkmalen entsprechen, dadurch erfolgt, daß den Referenzvektoren jeweils zumindest ein Klassenzuordnungsgebiet zugeordnet und geprüft wird, in welchem Klassenzuordnungsgebiet sich der Meßvektor befindet. Der Meßvektor kann dabei aus den Meß-

werten an sich und/oder daraus abgeleiteten Größen bestehen.

[0008] Bevorzugt kann die Bestimmung der Klassenzuordnungsgebiete und damit die Klassenzuordnung vom Meßvektor zu einem der Referenzvektoren durch einen Vergleich des Meßvektors mit mehreren Referenzvektoren oder mit zumindest einer Größe erfolgen, welche von mindestens zwei Referenzvektoren abhängt.

[0009] Ein besonders bevorzugtes Beispiel der erstgenannten Variante kann sein, daß das Echtheitsmerkmal, dessen Referenzvektor den kleinsten Unterschied, wie z.B. den kleinsten Abstand zum Meßvektor aufweist, als im zu prüfenden Wertdokument vorhanden bestimmt wird bzw. bestimmbar ist.

[0010] Diese Vorgehensweise hat sich insbesondere bei Echtheitsmerkmalen mit sehr ähnlichem Spektralverlauf als wesentlich geeigneter erwiesen als eine Vorgehensweise, bei der geprüft wird, ob sich die Intensität und/oder der Verlauf einer gemessenen Lumineszenzstrahlung nur um maximal einen vorgegebenen Wert von der Intensität bzw. dem Verlauf einer Referenzstrahlung unterscheidet.

[0011] Die zweitgenannte Variante, bei der kein Veraleich des Meßvektors mit iedem einzelnen Referenzvektoren selbst, sondern mit mindestens einer aus mindestens zwei Referenzvektoren abgeleiteten Größe durchgeführt wird, vermindert den Rechenaufwand signifikant und ist deshalb insbesondere dann von Vorteil, wenn es auf hohe Prüfgeschwindigkeiten ankommt. Ein besonders bevorzugtes Beispiel hierfür ist, daß die Größe , welche von mindestens zwei Referenzvektoren abhängt, als eine Trennfläche zwischen den zwei Referenzvektoren, wie z.B. eine (n-1) dimensionale Hyperebene zwischen den zwei n-dimensionalen Referenzvektoren gebildet wird, wobei die Trennfläche die Klassenzuordnungsgebiete der zwei Referenzvektoren voneinander trennt. In diesem Fall wird z.B. die Lage des Meßvektors in Bezug auf die Trennfläche bestimmt.

[0012] Das erfindungsgemäße Prüfsystem kann bevorzugt dahingehend erweitert werden, daß es einen weiteren Schritt aufweist, bei dem geprüft wird, ob der Betrag des Meßvektors größer als ein vorgegebener Referenzwert ist oder nicht. Dieser Schritt wird besonders bevorzugt vor dem Schritt der Zuordnung der Klassenzuordnungsgebiete und/oder dem Schritt der Prüfung, in welchem dieser Gebiete sich der Meßvektor befindet, durchgeführt werden. Hierdurch kann eine signifikante Zeitersparnis bei der Auswertung erreicht werden, da die nachfolgenden zeitaufwendigeren Auswertungsschritte der Prüfung der Klassenzuordnungsgebiete nicht mehr notwendig sind, wenn bereits die einfache Betragsprüfung ein negatives Ergebnis liefert.

[0013] Diese Vorgehensweise erweist sich insbesondere bei der Prüfung von Echtheitsmerkmalen als sinnvoll, deren Lumineszenzstrahlung in signifikantem Maße im nicht-sichtbaren, wie z.B. ultravioletten oder insbesondere im infraroten Spektralbereich

liegt. Durch diesen Betragsvergleich kann z.B. bereits eine Reihe von nicht passenden Merkmalen in gefälschten Wertdokumenten erkannt werden, die nur im sichtbaren Spektralbereich emittieren. Unter anderem aus den vorgenannten Gründen wird der Meßvektor somit vorzugsweise aus Meßwerten des infraroten Spektralbereichs gebildet.

[0014] Vorzugsweise kann alternativ oder zusätzlich vorgesehen sein, daß der Meßvektor und die Referenzvektoren in einer gleichen Weise normiert werden. Bei n-dimensionalen Meß- und Referenzvektoren kann dies beispielsweise durch eine Normierung auf eine n-1 dimensionale Einheitskugel geschehen, so daß der Betrag aller normierten Vektoren gleich, d.h. im speziellen den Wert 1 hat.

[0015] Eine solche Normierung hat den Vorteil, daß ein einfacher Vergleich des Meßvektors mit den Referenzvektoren ermöglicht wird, der weitgehend unabhängig davon ist, in welcher Menge oder Konzentration das Echtheitsmerkmal in der Banknote tatsächlich eingebracht ist bzw. wie hoch die Gesamtintensität der gemessenen Strahlung tatsächlich ist. Im Gegensatz zu bekannten Verfahren der Farbraumanalyse beispielsweise, bei denen die Absolutwerte der einzelnen Farbanteile für eine korrekte Farbbestimmung wesentlich sind, ist dies bei der erfindungsgemäßen Lumineszentprüfung nicht zwingend erforderlich, da es hierbei im wesentlichen nur auf die Form der erfaßten Spektralkurven, und nicht aber auf deren absolute Intensitätswerte ankommt.

[0016] Weitere Vorteile der vorliegenden Erfindung ergeben sich durch die beigefügten abhängigen Ansprüche und die nachfolgende Beschreibung bevorzugter Ausführungsbeispiele. Dabei zeigt die

[0017] **Fig.** 1 eine schematische Ansicht auf eine Prüfvorrichtung nach einem ersten Ausführungsbeispiel; die

[0018] **Fig.** 2 eine zweidimensionale Darstellung zur Veranschaulichung des erfindungsgemäßen Verfahrens und die

[0019] **Fig.** 3 eine zweidimensionale Darstellung zur Veranschaulichung des erfindungsgemäßen Verfahrens der Klassenzuordnung.

[0020] Das erfindungsgemäße Prüfsystem kann in allen Vorrichtungen verwendet werden, welche lumineszierende Echtheitsmerkmale prüfen. Obwohl nicht darauf beschränkt, wird im folgenden die besonders bevorzugte Variante der Prüfung von Banknoten in Banknotenbearbeitungsvorrichtungen beschrieben, die beispielsweise zum Zählen, Sortieren, Einzahlen und/oder Auszahlen von Banknoten dienen können.

[0021] Die Fig. 1 stellt im speziellen eine Vorrichtung 1 dar, die neben an sich bereits bekannten Komponenten, welche nicht mit abgebildet sind, unter anderem eine Transporteinrichtung 2 aufweist, mittels derer Banknoten 3 vereinzelt an einer Prüfeinrichtung 4 vorbei transportiert werden. Die Prüfeinrichtung 4 kann zur Prüfung der Echtheit, des Zustands bzw. des Nennwerts der Banknoten 3 ausgelegt sein.

Im speziellen weist die Prüfeinrichtung 4 dabei eine Lichtquelle 5, einen Spektralsensor 6 und eine Auswertungseinrichtung 7 auf, welche über eine Signalleitung 8 zumindest mit dem Spektralsensor 6 verbunden ist. Die Lichtquelle 5 dient dabei zur Bestrahlung der Banknote 3 mit Lichtstrahlen 9 in einem schrägen Winkel zur Banknotenoberfläche und der Spektralsensor 6 zur Erfassung und spektralen Zerlegung der von der Banknotenoberfläche remittierten Strahlung 10. Bevorzugt erfaßt der Spektralsensor 6 mittels eines Spektrometers 6 Lumineszenzstrahlung 10 im infraroten Spektralbereich. Die vom Spektralsensor 6 erfassten Signale werden über die Signalleitung 8 an die EDV-basierte Auswertungseinrichtung 7 übertragen, die anhand der gemessenen Signale überprüft, ob ein bestimmtes Echtheitsmerkmal in der Banknote 3 vorhanden ist.

[0022] Die Vorrichtung 1 ist insbesondere durch die Art der Auswertung der Meßsignale in der Auswertungseinrichtung 7 ausgezeichnet. Dies kann beispielsweise gemäß eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens auf folgende Weise geschehen:

Es werden alle oder zumindest eine Teilmenge der Meßwerte des Spektralsensors 6, die jeweils unterschiedlichen Frequenzen bzw. Frequenzbereichen entsprechen, als Meßvektor X dargestellt. Der Meßvektor X=(x₁,..., x_n) sei beispielsweise ein Maß für die Spektralkurve der aufgenommenen Lumineszenzstrahlung 10 der Banknote 3, wobei x, bis x, Werte sind, welche auf der Grundlage der Meßsignale von n verschiedenen Photozellen des Spektralsensors 6 gebildet werden. Die Spektralwerte x, bis x, können dabei bevorzugt der gemessenen Lumineszenzintensität bei unterschiedlichen Frequenzen bzw. Frequenzbereichen in einem für das Auge unsichtbaren, wie z.B. ultravioletten oder besonders bevorzugt infraroten Spektralbereich entsprechen. Der Meßvektor X stellt somit zumindest für den Fall n>1, bevorzugt von n≥5 oder n≥10, ein Maß für die Form, d.h. den Verlauf der gemessenen Spektralkurve dar.

[0023] Es wird nun auf die nachfolgend exemplarisch beschriebene Weise ein Vergleich dieses Meßvektors X mit k vorgegebenen Referenzvektoren A_1, \ldots, A_k durchgeführt. Der besseren Anschaulichkeit halber wird mit Bezug auf die

[0024] **Fig.** 2 und 3 eine einfache Fallgestaltung beschrieben, bei welcher der Meßvektor X nur zwei Meßwerte x_1 und x_2 aufweist, d. h. die Vektordimension n gleich 2 ist. In diesem Fall wird der Meßvektor X durch einen Punkt X im zweidimensionalen Diagramm der **Fig.** 2 und der **Fig.** 3 repräsentiert, wobei jede Achse des Diagramms einer anderen Koordinate des Meßvektors X entspricht.

[0025] Die Vektoren $A=(a_1,..., a_n)$ und $B=(b_1,..., b_n)$ sind dabei in exemplarischer Weise zwei vorgegebene Referenzvektoren $A_1=A$, $A_2=B$, die den Spektralkurven von zwei möglichen Echtheitsmerkmalen entsprechen, von denen eines eventuell in der geprüften Banknote 3 vorhanden sein kann.

[0026] Um zu entscheiden, ob überhaupt eines der beiden erlaubten Echheitsmerkmale in oder auf der Banknote vorhanden ist, kann zunächst überprüft werden, ob der Betrag des Meßvektors X, d.h. |X| eine vorgegebene Schwelle überschreitet. Ist dies nicht der Fall, kann bereits hier die Banknote als unecht zurückgewiesen werden. Die Schwelle kann 0 sein, wird bevorzugt aber so gewählt, daß Fälschungen ohne Echtheitsmerkmal bereits hier sicher unterscheidbar sind. Dieser Referenzwert R hat im exemplarischen Fall der Fig. 2 und 3 beispielsweise einen Betrag |R| von 0,4. Mit dieser Prüfung können auch Fälschungen aussortiert werden, bei denen die Echtheitsmerkmale zwar an sich vorhanden, aber in zu geringer Konzentration vorliegen. Dies ist deshalb besonders bevorzugt, weil bei der beschriebenen Variante im infraroten Spektralbereich gemessen wird und Fälschungen üblicherweise Intensitäten in diesem Spektralbereich aufweisen, die entweder vernachlässigbar oder zumindest wesentlich geringer als die Intensitäten der Echtheitsmerkmale A, B in echten Banknoten 3 sind.

[0027] Wie erwähnt wird dieses Kriterium, daß der Betrag |X| des Meßvektors X mindestens einem Referenzwert R entsprechen muß, besonders bevorzugt zur Vorauswertung der Meßwerte verwendet. Dies kann beispielsweise bedeuten, daß zuerst dieser Mindestwertvergleich des Betrages |X| des Meßvektors X durchgeführt wird, bevor die Klassenzuordnung des Referenzvektors A, B mit kleinstem Unterschied zum Meßvektor X durchgeführt wird. Diese Variante der vorgeschalteten Betragsprüfung kann die Geschwindigkeit der Banknotenprüfung signifikant erhöhen.

[0028] Liegt der Betrag des Meßvektors X über der vorgegebenen Schwelle, ist zu entscheiden, welches der Echtheitsmerkmale A, B tatsächlich in der Banknote 3 vorhanden ist.

[0029] Hierzu kann folgende Prozedur implementiert werden: Der affine Raum IRn, in dem sich die Mess- und Referenzvektoren (X, A₁,..., A_k) befinden, wird in Klassenzuordnungsgebiete $G_i \subseteq R''(i = 1,...,l)$ eingeteilt, wobei diese den Referenzvektoren (A,,..., A_k) zugeordnet sind. Im einfachsten Fall gibt es für jeden Referenzvektor genau ein Klassenzuordnungsgebiet, im allgemeinen Fall kann es mehrere Klassenzuordnungsgebiete pro Referenzvektor geben. Um zu entscheiden, welches Echtheitsmerkmal in oder auf der Banknote 3 vorhanden ist, wird festgestellt, in welchem Klassenzuordnungsgebiet G, der Meßvektor X liegt, d.h. es wird der Index m gesucht mit X ∈ G_m. Im dargestellten zweidimensionalen Beispiel sind diese Gebiete Halbebenen, GA, GB, wie in Fig. 3 veranschaulicht ist. Im allgemeinen Fall sind die Klassenzuordnungsgebiete Durchschnitte von endlich vielen Halbebenen.

[0030] Die Klassenzuordnungsgebiete können nun entweder über die Referenzvektoren A, B (im allgemeinen Fall A_1, \ldots, A_k) oder über eine Beschreibung der sie begrenzenden Hyperebenen definiert wer-

den.

[0031] Im erstgenannten Fall wird beispielsweise derjenige Referenzvektor A, B bestimmt, der den kleinsten Unterschied zum Meßvektor X aufweist. Hierzu kann der Abstand des Meßvektors X zu allen möglichen Echtheitsmerkmalen, im speziell beschriebenen Fall also zu den beiden Referenzvektoren A, B berechnet werden. Der Abstand kann als euklidischer Abstand zwischen den betreffenden Vektoren, im Beispiel also d(X,A) und d(X,B) berechnet werden. An Stelle des euklidischen Abstands kann jede Funktion d(X,A) verwendet werden mit folgender Eigenschaft: Für beliebige Messvektoren X und Referenzvektoren A, B gilt $d(X,A) \ge d(X,B)$ genau dann wenn $|X-A| \ge |X-B|$ gilt.

[0032] Alternativ kann man diese Prozedur auf eine andere Weise implementieren, welche exakt zum gleichen Ergebnis führt: Die Klassenzuordnungsgebiete werden im zweitgenannten Fall durch eine Trennfläche T definiert, welche die beiden Referenzvektoren A, B (im allgemeinen Fall $A_1,...,$ A_k) begrenzt. Diese Variante hat insbesondere in Echtzeitumgebungen den Vorteil, dass der Rechenaufwand verringert wird.

[0033] Um zu testen, ob ein Meßvektor X in einem Klassenzuordnungsgebiet G_i liegt (d.h. $X \in G_i$), muß man für alle G_i begrenzenden Trennflächen T prüfen, ob X auf der "richtigen" Seite liegt. Als Trennfläche lassen sich vorzugsweise n-1-dimensionale Hyperebenen T z.B. als Punktemengen $\{(y_1,...,y_n) \in R"|u_1y_1+...+u_ny_n-u_0=0$ beschreiben, wobei $(u_i,...,u_n)$ ein Normalenvektor der Hyperebene T ist. Das Vorzeichen von $u_ix_i+...+u_nx_n-u_0$ gibt nun an, auf welcher Seite der Hyperebene T die Messung X liegt.

[0034] Um die Erkennungssicherheit zu erhöhen, kann in einer bevorzugten Ausprägung des Verfahrens gefordert werden, daß eine Zuordnung des Meßvektors X zu einem der Referenzvektoren A, B erst dann erfolgt, wenn ihr gegenseitiger Abstand d(X, A) bzw. d(X, B) eine vorgegebene Schwelle nicht überschreitet.

[0035] Es kann in diesem Sinne festgelegt werden, daß die Klassenzuordnungsgebiete G_A , G_B so eingegrenzt werden, daß sich die Klassenzuordnungsgebiete nicht mehr berühren. Auf diese Weise entsteht zwischen den Klassenzuordnungsgebieten G_A , G_B "Niemandsland", d.h. Bereiche, die keiner Klasse und damit keinem Referenzvektor $A_1,...,\ A_k$ zugeordnet sind. Banknoten 3, deren Meßvektor in diesen Bereichen liegen, können z.B. mit einem Warnhinweis versehen nach der Prüfung in der Prüfeinrichtung 4 ausgesteuert bzw. in eine spezielle Ablage umgelegt werden.

[0036] In einer möglichen Erweiterung des Verfahrens wird bei der Festlegung der Klassenzuordnungsgebiete berücksichtigt, dass die Wahrscheinlichkeit, dass ein Messvektors X einem von mindestens zwei Referenzvektoren A, B entspricht, nicht gleichverteilt ist, sondern z.B. eine Korrelation aufweist.

[0037] Bei den bisher beschriebenen Verfahren ist allerdings zu beachten, daß der Abstand des Meßvektors X von den Referenzvektoren A, B mit seiner Intensität und der Intensität der einzelnen Referenzkurven A, B zunimmt. Dies führt dazu, daß dann, wenn einer der beiden möglichen Echtheitsmerkmale in wesentlich höherer Menge und Konzentration in die geprüfte Banknote 3 eingebracht ist, auch der Abstand seines Referenzvektors A bzw. B zum Meßvektor X in entsprechender Weise größer sein kann.

[0038] Um ein Abstandsmaß der Echtheitsmerkmale A, B zu finden, welches unabhängig von der gemessenen Gesamtintensität bzw. der Menge und Konzentration der einzelnen Echtheitsmerkmale in der Banknote 3 ist, werden in einer besonders vorteilhaften Ausprägung der Erfindung sowohl die Referenzvektoren A, B, als auch der Meßvektor X normiert. Im Fall der zweidimensionalen Darstellung nach Fig. 2 wird beispielsweise eine Normierung auf den Einheitskreis E durchgeführt. Das bedeutet, daß die normierten Vektoren A/A/ (also A durch Betrag von A), B/|B| und X/|X| gebildet werden, welche alle einen normierten Betrag von 1 haben. Im allgemeinen n-dimensionalen Fall von k Referenzvektoren $A_1,...,A_k$, die jeweils n Komponenten besitzen, erfolgt die Projektion auf die n-dimensionale Einheitskugel

[0039] Mit dieser Normierung werden alle Meßvektoren X, die sich nur in der Länge unterscheiden, identifiziert. Sie liegen wie in der Fig. 2 gezeigt ist, auf Ursprungsgeraden durch den Messvektor X. Diese Vorgehensweise entspricht dem Übergang vom affinen Raum IRⁿ in einen projektiven Raum IPⁿ⁻¹, dessen Elemente im zugehörigen affinen Raum Ursprungsgeraden sind, die im folgenden ebenfalls durch die zugehörenden Vektoren X, A, B... beschrieben werden. Der Übergang in einen projektiven Raum hat sich insbesondere bei der Prüfung von Echtheitsmerkmalen als sehr vorteilhaft herausgestellt, die ein ähnliches Spektralverhalten haben.

[0040] Um die Zuordnung des Messvektors X zu einem der im Beispiel gezeigten Referenzvektoren A, B zu treffen, wird im einfachsten Fall nun der Abstand d(X,A) und d(X,B) des normierten Mesvektors X/|X| zu allen normierten Referenzvektoren A/|A| bzw. B/|B| berechnet. Die Klassifizierung erfolgt dabei wiederum für das Echtheitsmerkmal, dessen Referenzvektor A, B den kleinsten Abstand d(X,A) d(X,B) zum Meßvektor X hat, im abgebildeten Fall also das Echtheitsmerkmal A.

[0041] Als Abstand d(X,A) zweier Vektoren kann in diesem und im vorgenannten Fall beispielsweise der euklidische Abstand der normierten Vektoren X, A verwendet werden:

$$d(X,A) = \left| \frac{X}{|X|} - \frac{A}{|A|} \right|$$

. An Stelle des euklidischen Abstands kann jede Funktion d(X,A) verwendet werden mit folgender Ei-

genschaft: Für beliebige Messvektoren X und Referenzvektoren A, B gilt $d(X,A) \ge d(X,B)$ genau dann wenn

$$\left| \frac{X}{|X|} - \frac{A}{|A|} \right| \ge \left| \frac{X}{|X|} - \frac{B}{|B|} \right|$$

gilt.

[0042] In einem ersten Beispiel kann als Abstand d(X,A) der Vektoren X und A der Winkel zwischen durch sie definierten Ursprungsgeraden verwendet werden.

[0043] In einem zweiten Beispiel kann als Abstand d(X,A) der Vektoren X und A folgender Ausdruck verwendet werden: $d(X,A) = |X - \langle X, A \rangle \cdot A/|A|^2|$. Der Abstand d(X,A) entspricht hier der Länge des Lots von X auf die durch A definierte Ursprungsgerade.

[0044] In einem weiteren Beispiel kann als Abstand d(X,A) der Vektoren X und A folgender Ausdruck verwendet werden: $d(X,A) = |X - \langle X, A \rangle \cdot A |A|^2|^2$. Dieser Ausdruck ist besonders dann bevorzugt, wenn der Abstand zeitkritisch berechnet werden muß, da man sich hier die aufwendige Berechnung der Wurzel im zweiten Beispiel erspart.

[0045] In einem weiteren Beispiel kann als Abstand d(X,A) der Vektoren X und A der Ausdruck

$$d(X,A) = g(\left|\frac{X}{|X|} - \frac{A}{|A|}\right)$$

verwendet werden, wobei g eine beliebige streng monotone Funktion ist.

[0046] Zum vorstehend detailliert beschriebenen Ausführungsbeispiel sind zahlreiche Weiterbildungen und Alternativen denkbar.

[0047] Obwohl beispielsweise der Fall von nur zwei möglichen Echtheitsmerkmalen beschrieben und in den Figuren dargestellt wurde, ist selbstverständlich auch eine Verallgemeinerung auf mehr als zwei Echtheitsmerkmale möglich. Ebenso ist selbstverständlich eine Verallgemeinerung auf Meß- und Referenzvektoren X, $A_1,..., A_k$, möglich, die mehr als n=2 Komponenten, d. h. mehr als zwei spektrale Meßwerte pro Banknote 3 aufweisen.

[0048] Weiterhin kann auch vorgesehen sein, daß die Lumineszenzstrahlung 10 einer Banknote 3 zu verschiedenen Zeiten gemessen und dies bei der Auswertung berücksichtigt wird. Zum einen kann hierbei festgestellt werden, ob die gemessene Strahlung 10 der geprüften Banknote 3 tatsächlich das für die jeweilige Lumineszenzart zu erwartende Zeitverhalten hat. Bevorzugt werden die Banknoten 3 hierbei zeitlich intermittierend durch die Lichtquelle 5 bestrahlt, um z.B. das Abklingverhalten der Lumineszenzstrahlung 10 zeitlich aufgelöst messen zu können. In diesem Fall kann besonders bevorzugt auch eine zeitabhängige Darstellung der Meßvektoren X und/oder der Referenzvektoren A, B gewählt und die Abstandsbildung zeitabhängig durchgeführt werden.

[0049] Eine weitere Idee der vorliegenden Erfindung besteht darin, daß die Messung der Lumineszenzstrahlung nur an vorbestimmten Teilbereichen der Banknotenfläche erfolgt, welche in besonders bevorzugter Weise nennwertspezifisch gewählt sind. Dies kann beispielsweise dadurch geschehen, daß die Lichtquelle 5 nur einen oder mehrere spezielle Teilbereiche der Banknote 3 beim Vorbeitransport an einer Prüfeinrichtung 3 beleuchtet, bzw. Informationen über die Lage der jeweils beleuchteten Teilbereiche der Banknote 3 bei der Auswertung in der Auswertungseinrichtung 7 berücksichtigt. Diese ortsabhängige Messung der Lumineszenzstrahlung 10 kann beispielsweise dazu verwendet werden, um auch räumlich codierte Echtheitsmerkmale, die im Banknotenpapier nicht homogen eingebracht sind, unterscheiden zu können.

[0050] Des weiteren muß die Lumineszenzstrahlung 10 auch nicht zwingend in Reflexion, sondern sie kann alternativ oder zusätzlich auch in Transmission gemessen und ausgewertet werden.

[0051] Die erfindungsgemäße Vorgehensweise ermöglicht folglich eine einfache und sichere Prüfung und Unterscheidung von Echtheitsmerkmalen, insbesondere mit sehr ähnlichem Spektralverlauf, die in Wertdokumenten enthalten sein können.

Patentansprüche

- 1. Verfahren zur Prüfung von Wertdokumenten (3) mit einem Echtheitsmerkmal in Form zumindest einer lumineszierenden Substanz, wobei das Wertdokument (3) mit Licht (9) bestrahlt und die vom Wertdokument (3) ausgehende Lumineszenzstrahlung (10) spektral aufgelöst erfaßt wird, um zu bestimmen, ob das Echtheitsmerkmal im Wertdokument (3) vorhanden ist, dadurch gekennzeichnet, daß aus den Meßwerten, welche unterschiedlichen Frequenzen und/oder Frequenzbereichen der Lumineszenzstrahlung (10) entsprechen, ein Meßvektor (X) gebildet wird, und eine Klassenzuordnung des Meßvektors (X) zu einem von mehreren vorgegebenen Referenzvektoren (A1,..., Ak), die unterschiedlichen Echtheitsmerkmalen entsprechen, dadurch erfolgt, daß den Referenzvektoren (A1,..., AL) jeweils zumindest ein Klassenzuordnungsgebiet (G1,..., G1) zugeordnet und geprüft wird, in welchem Klassenzuordnungsgebiet (G₁,..., G_i) sich der Meßvektor (X) befindet.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Prüfverfahren einen weiteren Schritt aufweist, bei dem geprüft wird, ob der Betrag (|X|) des Meßvektors (X) größer als ein vorgegebener Referenzwert (R) ist.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Schritt der Prüfung, ob der Betrag (|X|) des Meßvektors (X) größer als ein vorgegebener Referenzwert (R) ist, vor dem Schritt der Klassenzu-

ordnung des Meßvektors (X) zu einem von mehreren vorgegebenen Referenzvektoren $(A_1,...,A_k)$ durchgeführt wird

- 4. Verfahren nach zumindest einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß der Meßvektor (X) und die Referenzvektoren $(A_1,...,A_k)$ normiert werden.
- 5. Verfahren nach zumindest einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Klassenzuordnung vom Meßvektor (X) zu einem der Referenzvektoren (A_m) durch einen Vergleich des Meßvektors (X) mit mehreren Referenzvektoren (A_1,\dots,A_k) und/oder mit zumindest einer Größe (T) erfolgt, welche von mindestens zwei Referenzvektoren (A_1,\dots,A_k) abhängt.
- 6. Verfahren nach zumindest einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Klassenzuordnung vom Meßvektor (X) zu einem der Referenzvektoren (A_m) dadurch erfolgt, daß der kleinste Unterschied, wie z.B. der kleinste Abstand ($d(X,A_m)$) vom Meßvektor (X) zu den Referenzvektoren ($A_1,...,A_k$) bestimmt wird.
- 7. Verfahren nach zumindest einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Größe (T), welche von mindestens zwei Referenzvektoren (A, B) abhängt, als eine Trennfläche (T) zwischen den zwei Referenzvektoren (A, B), wie z.B. eine (n-1) dimensionale Hyperebene (T) zwischen den zwei n-dimensionalen Referenzvektoren (A, B) gebildet wird, wobei die Trennfläche (T) die Klassenzuordnungsgebiete (Ga, Gs) der zwei Referenzvektoren (A, B) voneinander trennt.
- 8. Verfahren nach zumindest einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Klassenzuordnung vom Meßvektor (X) zu einem der Referenzvektoren (A_m) dadurch bestimmt wird, daß die Lage des Meßvektors (X) in Bezug auf die Trennfläche (Tbestimmt wird.
- 9. Verfahren nach zumindest einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß bei einem zu prüfenden Wertdokument (3) die Lumineszenzstrahlung (10) zeitaufgelöst gemessen wird, wobei der Vergleich von Meßvektor (X) und Referenzvektoren (A, B) zeitabhängig erfolgen kann.
- 10. Verfahren nach zumindest einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Messung der Lumineszenzstrahlung (10) nur an einem oder mehreren vorbestimmten Teilbereichen der Wertdokumentenfläche erfolgt, welche nennwertspezifisch vorbestimmt sein können.
- 11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Meßvektor (X) Meßwerte des infra-

roten oder ultravioletten, d.h. eines nicht sichtbaren Spektralbereichs umfaßt.

12. Vorrichtung (1) zur Prüfung von Wertdokumenten (3) mit einem Echtheitsmerkmal in Form zumindest einer lumineszierenden Substanz, mit einer Lichtquelle (5) zur Bestrahlung des Wertdokuments (3) und einem Spektralsensor (6), um die vom Wertdokument (3) ausgehende Lumineszenzstrahlung (10) spektral aufgelöst zu erfassen, und mit einer Auswertungseinrichtung (7), die mit dem Spektralsensor (6) verbunden ist, um zu bestimmen, ob das Echtheitsmerkmal im Wertdokument (3) vorhanden ist, dadurch gekennzeichnet, daß die Auswertungseinrichtung (7) so ausgestaltet ist, daß aus den Meßwerten, welche unterschiedlichen Frequenzen und/oder Frequenzbereichen der Lumineszenzstrahlung (10) entsprechen, ein Meßvektor (X) gebildet wird, und eine Klassenzuordnung des Meßvektors (X) zu einem von mehreren vorgegebenen Referenzvektoren (A₁,.., A_k), die unterschiedlichen Echtheitsmerkmalen entsprechen, dadurch erfolgt, daß den Referenzvektoren $(A_1,..., A_k)$ jeweils zumindest ein Klassenzuordnungsgebiet (G₁,.., G_I) zugeordnet und geprüft wird, in welchem Klassenzuordnungsgebiet sich der Meßvektor (X) befindet.

Es folgen 2 Blatt Zeichnungen

Anhängende Zeichnungen

Fig. 1

Fig. 2

Fig. 3

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

CRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.