Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation

Lecture Notes for Chapter 4

Introduction to Data Mining by Tan, Steinbach, Kumar

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Classification: Definition

- Given a collection of records (training set)
 - Each record is by characterized by a tuple (x,y), where x is the attribute set and y is the class label
 - ◆ x: attribute, predictor, independent variable, input
 - ♦ y: class, response, dependent variable, output
- Task:
 - Learn a model that maps each attribute set x into one of the predefined class labels y

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

Examples of Classification Task

Task	Attribute set, x	Class label, y
Categorizing email messages	Features extracted from email message header and content	spam or non-spam
Identifying tumor cells	Features extracted from MRI scans	malignant or benign cells
Cataloging galaxies	Features extracted from telescope images	Elliptical, spiral, or irregular-shaped galaxies

© Tan,Steinbach, Kumar Introduction to Data Mining 8/05/2005 3

Classification Techniques

- Base Classifiers
 - Decision Tree based Methods
 - Rule-based Methods
 - Nearest-neighbor
 - Neural Networks
 - Naïve Bayes and Bayesian Belief Networks
 - Support Vector Machines
- Ensemble Classifiers
 - Boosting, Bagging, Random Forests

© Tan,Steinbach, Kumar Introduction to Data Mining 8/05/2005 5

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ,SPRINT

General Structure of Hunt's Algorithm Let D_t be the set of training records that reach a node t 125K Yes Single No 100K No Single 70K General Procedure: 120K Yes If D_t contains records that No 95K belong the same class yt, 60K 220K Yes Divorced then t is a leaf node Single 85K No labeled as y, No 75K Married If D, contains records that 90K belong to more than one class, use an attribute test to split the data into smaller ? subsets. Recursively apply the procedure to each subset. © Tan,Steinbach, Kumar Introduction to Data Mining 8/05/2005 17

Design Issues of Decision Tree Induction

- How should training records be split?
 - Method for specifying test condition
 - depending on attribute types
 - Measure for evaluating the goodness of a test condition
- How should the splitting procedure stop?
 - Stop splitting if all the records belong to the same class or have identical attribute values
 - Early termination

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

19

Methods for Expressing Test Conditions

- Depends on attribute types
 - Binary
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

Test Condition for Continuous Attributes

(i) Binary split

(ii) Multi-way split

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

23

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - Binary Decision: (A < v) or (A ≥ v)
 - consider all possible splits and finds the best cut
 - can be more compute intensive

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

How to determine the Best Split

- Greedy approach:
 - Nodes with purer class distribution are preferred
- Need a measure of node impurity:

C0: 5 C1: 5 C0: 9 C1: 1

High degree of impurity

Low degree of impurity

Measures of Node Impurity

Gini Index

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

Entropy

$$Entropy(t) = -\sum_{j} p(j|t) \log p(j|t)$$

Misclassification error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

27

Finding the Best Split

- Compute impurity measure (P) before splitting
- Compute impurity measure (M) after splitting
 - Compute impurity measure of each child node
 - Compute the average impurity of the children (M)
- Choose the attribute test condition that produces the highest gain

$$Gain = P - M$$

or equivalently, lowest impurity measure after splitting (M)

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

Measure of Impurity: GINI

• Gini Index for a given node t:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Gini=	0.000	Gini=	0.278	
C2	6	C2	5	
C1	0	C1	1	

C1	2
C2	4
Gini=	0.444

į	C1	3
İ	C2	3
	Gini=	0.500

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

Computing Gini Index of a Single Node

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
 $Gini = 1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
 $Gini = 1 - (2/6)^2 - (4/6)^2 = 0.444$

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

31

Computing Gini Index for a Collection of Nodes

• When a node p is split into k partitions (children)

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where,

n_i = number of records at child i,

n = number of records at parent node p.

- Choose the attribute that minimizes weighted average Gini index of the children
- Gini index is used in decision tree algorithms such as CART, SLIQ, SPRINT

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

Binary Attributes: Computing GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

© Tan,Steinbach, Kumar

= 0.444

 $= 1 - (2/6)^2 - (4/6)^2$

Introduction to Data Mining

Gini=0.361

8/05/2005

= 0.361

33

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

111

Multi-way split

	CarType		
	Family	Sports	Luxury
C1	1	8	1
C2	3	0	7
Gini	0.163		

Two-way split (find best partition of values)

	CarType	
	{Sports, Luxury} {Family	
C1	9	1
C2	7	3
Gini	0.468	

	CarType	
	{Sports} {Family Luxury	
C1	8	2
C2	0 10	
Gini	0.167	

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v and A ≥ v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

35

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

Measure of Impurity: Entropy

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum (log n_c) when records are equally distributed among all classes implying least information
- Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are quite similar to the GINI index computations

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

37

Computing Entropy of a Single Node

$$Entropy(t) = -\sum_{j} p(j | t) \log_{2} p(j | t)$$

		P(C1) = 0/6 = 0 $P(C2) = 6/6 = 1$
C2	6	Entropy = $-0 \log 0 - 1 \log 1 = -0 - 0 = 0$

C1	1	P(C1) = 1/6	P(C2) = 5/6
C2	5	Entropy = $-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0$	

C1	2	P(C1) = 2/6	P(C2) = 4/6
C2	4	Entropy = - (2	$2/6$) $\log_2(2/6) - (4/6) \log_2(4/6) = 0.92$

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

Computing Information Gain After Splitting

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions; n_i is number of records in partition i

- Choose the split that achieves most reduction (maximizes GAIN)
- Used in the ID3 and C4.5 decision tree algorithms

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

39

Problems with Information Gain

 Info Gain tends to prefer splits that result in large number of partitions, each being small but pure

 Customer ID has highest information gain because entropy for all the children is zero

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

Gain Ratio

Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} SplitINFO = -\sum_{i=1}^{k} \frac{n_{i}}{n} \log \frac{n_{i}}{n}$$

Parent Node, p is split into k partitions n_i is the number of records in partition i

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO).
 - Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5 algorithm
- Designed to overcome the disadvantage of Information Gain

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

41

Measure of Impurity: Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0) when all records belong to one class, implying most interesting information

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

Computing Error of a Single Node

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Error = 1 - max(0, 1) = 1 - 1 = 0$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Error = 1 - max $(1/6, 5/6) = 1 - 5/6 = 1/6$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Error = 1 - max (2/6, 4/6) = 1 - 4/6 = 1/3

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

43

Comparison among Impurity Measures

For a 2-class problem:

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

Misclassification Error vs Gini Index

	Parent
C1	7
C2	3
Gini = 0.42	

Gini(N1) $= 1 - (3/3)^2 - (0/3)^2$

Gini(N2) $= 1 - (4/7)^2 - (3/7)^2$ = 0.489

	N1	N2
C1	3	4
C2	0	3
Gini=0.361		

Gini(Children) = 3/10 * 0+ 7/10 * 0.489

= 0.342

Gini improves but

error remains the same!!

© Tan,Steinbach, Kumar

Introduction to Data Mining

8/05/2005

45

Decision Tree Based Classification

- Advantages:
 - Inexpensive to construct
 - Extremely fast at classifying unknown records
 - Easy to interpret for small-sized trees
 - Accuracy is comparable to other classification techniques for many simple data sets