

CS341 CDR(5): Floating Point rounding, Operations, properties

Lecture #6 - part 1

Prof. Soraya Abad-Mota, PhD

Recall How to represent 0.25?

In the tiny 8-bit IEEE (4 bits exp, 3 bits frac)
Normalized or denormalized?

Normalized

- \triangleright E = -2 = exp Bias
- Bias = $2^3 1 = 7$
- Exp = E + bias = -2 + 7 = 51.00 x 2^-2
- Final 8-bit IEEE representation 0 0101 000

Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example
- Distribution of values and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Learning objectives

After this portion students should be able to:

- 1. List and describe the different kinds of *rounding*.
- 2. Define the *properties of floating point numbers* represented in C.
- 3. Compare the mathematical properties of unsigned, two's complement and floating point numbers.

Plan for Week 4

- Finish FP with:
 - Rounding (sec. 2.4.4)
 - Properties of FP operations in IEEE repr. (2.4.5)
 - Comparison with integer arithmetic properties
 - FP in C (2.4.6)
- Finish Chapter 2
 - 2.1.3 Byte ordering
 - 2.1.4, 2.1.5
- ▶ Begin Ch. 3

Floating Point Operations: Basic Idea

Can only approximate real arithmetic (Sec. 2.4.4)

$$x +_f y = Round(x + y)$$

- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding): default finds closest match

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
To-Even (default)	\$1	\$2	\$2	\$2	-\$2
Toward-zero	\$1	\$1	\$1	\$2	-\$1
• Round down $(-\infty)$	\$1	\$1	\$1	\$2	-\$2
• Round up $(+\infty)$	\$2	\$2	\$2	\$3	-\$1

All others (outside the default) are used to compute upper and lower bounds

Closer Look at Round-To-Even

- Default Rounding Mode (closest match)
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under- estimated
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half way—round down)

Rounding Binary Numbers

- Binary Fractional Numbers
 - "Even" when least significant bit is 0
 - "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
2 7/8	10.111002	11.002	(1/2—up)	3
2 5/8	10.10100 ₂	10.102	(1/2—down)	2 1/2

Practice 1 (now and on your own)

Practice problems 2.50, 2.51, and 2.52
 on pages 121–122

Show binary fractional values rounded to the nearest half, according to the round-to-even rule. Show numeric value before and after.

- A. 10.010
- B. 10.011
- C. 10.110
- D. 11.001

Practice 2 (Problem 2.52) (home)¹

- ▶ Format A: k=3 exponent bits, exp bias = 3. n=4 fraction bits
- ▶ Format B: k=4 exponent bits, exp bias = 7. n=3 fraction bits

Format A		Format B		
Bits	Value	Bits	Value	
011 0000	1	0111 000	1	
101 1110				
010 1001				
110 1111				

¹Section 002 must do this Tuesday

Integer Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Integer Arithmetic: Basic Rules (2)

- Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting
- Left shift
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift
- Right shift
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix

Properties of Unsigned Arithmetic

- Unsigned Mult. with Addition Forms Commutative Ring
 - Addition is commutative group
 - Closed under multiplication: $0 \le UMult_w(u, v) \le 2^w 1$
 - Multiplication Commutative: $UMult_w(u, v) = UMult_w(v, u)$
 - Multiplication is Associative $UMult_w(t, UMult_w(u, v)) = UMult_w(UMult_w(t, u), v)$
 - 1 is multiplicative identity: $UMult_w(u, 1) = u$
 - Multiplication distributes over addition $UMult_w(t, UAdd_w(u, v)) = UAdd_w(UMult_w(t, u), UMult_w(t, v))$

Properties of Two's Comp. Arithmetic

- Isomorphic Algebras
 - Unsigned multiplication and addition: Truncating to w bits
 - Two's complement mult. and addition: Truncating to w bits
- Both Form Rings
 - Isomorphic to ring of integers mod 2^w
- Comparison to (Mathematical) Integer Arithmetic
 - Both are rings
 - Integers obey ordering properties, e.g.,

$$u > 0$$
 $\Rightarrow u + v > v$
 $u > 0, v > 0$ $\Rightarrow u \cdot v > 0$

These properties are not obeyed by two's comp. arithmetic

$$TMax + 1 == TMin$$

15213 * 30426 == -10030 (16-bit words)

FP Multiplication

- (-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}
 Exact Result: (-1)^s M 2^E (tricks are used to avoid the exact
 Sign s: s1 ^ s2 (^ is exclusive or) computations)
 Significand M: M1 x M2
 - Exponent E: E1 + E2
- Fixing
 - If $M \ge 2$, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

Floating Point Addition

• $(-1)^{s1}$ M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2} •Assume E1 > E2 Get binary points lined up

-1)s M

- Exact Result: (-1)^s M 2^E
 - •Sign s, significand M:
 - Result of signed align & add
 - •Exponent E: E1

- Fixing
 - •If $M \ge 2$, shift M right, increment E
 - ∘if M < 1, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - •Round M to fit frac precision

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition?
 - But may generate infinity or NaN
 - Commutative?
 - Associative?
 - Overflow and inexactness of rounding
 - O is additive identity?
 - 0 is additive identity?
 - Every element has additive inverse?
 - Yes, except for infinities & NaNs
- Monotonicity (not included in the group properties)

• (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

- $a \ge b \Rightarrow a+c \ge b+c$?
 - Except for infinities & NaNs

Yes

Yes

No (most important deficiency)

Yes

Almost

Almost

Mathematical Properties of FP Mult

- Compare to Commutative Ring
 - Closed under multiplication?

Yes

- But may generate infinity or NaN
- Multiplication Commutative?

Yes

Multiplication is Associative?

No

- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20
- 1 is multiplicative identity?

Yes

Multiplication distributes over addition?

No

- Possibility of overflow, inexactness of rounding
- 1e20*(1e20-1e20)= 0.0, 1e20*1e20 1e20*1e20 = NaN
- Monotonicity
 - $a \ge b \& c \ge 0 \Rightarrow a * c \ge b *c$?

Almost (not in ints)

Except for infinities & NaNs

Why should I care? (some conclusions)

- Rounding and overflow makes a mess of things math doesn't work like in school OR with computer ints
- Addition and Multiplication not Associative or Distributive!

```
(3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
(1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20) = 1e20
1e20*(1e20-1e20) = 0.0, 1e20*1e20 - 1e20*1e20 = NaN
```

Some things aren't exact (what is 0.1 in FP?):

- Every number has an additive and multiplicative inverse, unlike integer arithmetic (which has no mult. inverse)!
- So in some cases, you have to be really careful about the order in which you do things

Stop here part 1

Go to the next set of slides