		,						
	ļ	i	į					1 1
D adam NTa	1	i	ł				1	!!
REGISTER NO	1		1				1	1
100810001 110.	1	l	i	i			ł	1 1
	1	5	ł .	!	,	1	1	1 1

BE Degree Examination November 2016

Fifth Semester

Computer Science and Engineering

14CST52 - THEORY OF COMPUTATION

(Regulations 2014)

Time: Three hours

Maximum: 100 marks

Answer all Questions

$$Part - A (10 \times 2 = 20 \text{ marks})$$

1. Consider the finite automata transition table shown below with start state and final state is $\{q_0\}$. Identify the language accepted by the finite automata using the string abba, abbbab....

State	Inputs	
s	а	b
90	q_2	q_1
q_1	q 3	q_0
q_2	q_0	q_3
q_3	q_1	q_2

- 2. Compare and contrast deterministic and non-deterministic finite automata.
- 3. Write the regular expression for language accepted by the NFA given. [use state elimination method]

- 4. Show that the language $L = \{a^i b^j : i \le j\}$ is not regular using pumping lemma.
- 5. Pictorially depict how a PDA works.
- Is the following grammar ambiguous? Justify
 S → i bt S e S | i bt S | a.
- 7. Let T be the turing machine defined by the δ functions:

 $(q_0,0)$, $(q_1,1,R)$, $(q_0,1)$, $(q_1,0,R)$, (q_0,B) , $(q_1,0,R)$, $(q_1,0)$, $(q_2,1,L)$, $(q_1,1)$, $(q_1,0,R)$ and (q_1,B) , $(q_2,0,L)$. For each of the following initial tapes, determine the final tape when T halts, assuming that T begins in initial position of the string given

 0	0	1	1	1	Ţ	
 1	1	1	1	0	0	

- 8. Define instantaneous description of TM.
- 9. Define recursive and recursively enumerable language.
- 10. When do we say a problem is decidable? Give an example.

$$Part - B (5 \times 13 = 65 \text{ marks})$$

11. a. i) Consider the following ϵ -NFA. Find the ϵ -closure of each state and (8) construct its equivalent NFA.

ii) Explain deductive and inductive proof with example.

(OR)

b. Construct a DFA equivalent to the NFA $M = (\{a, b, c, d\}, \{0,1\}, \delta, a, \{b, d\})$ where δ (13) defined as:

	0	1
а	{b,d}	{b}
b	{c}	{b,c}
С	{d}	{a}
d	φ	{a}

- 12. a. i) Find all strings in L((a+b)*b(a+ab)*) of length less than four. (3)
 - ii) Construct an NFA for the regular expression (a+b)*aab(a+b)* and (10) explain.

(OR)

b. i) Construct a minimum state automaton equivalent to a given automation M (10) whose transition table is given below:

State/Input	a	b
\rightarrow q0	q0	q3
q1	q 2	q5
q2	q3	q4
q 3	q0	q5
q4	q0	q6
q5	q1	q4
* q6	ql	q3

ii) Show that when the regular languages L_1 and L_2 are given, the resultant languages obtained through their intersection is also regular.

(5)

13.	a.	i)	Prove that if L is $N(M_1)$ (the language accepted by empty stack) for some PDA M_1 , then L is $N(M_2)$ (the language accepted by final state) for some PDA M_2 .	(8)
		ii)	Construct a PDA by empty stack to accept the given language $L = \left\{ w C w^R \mid w \in \{a,b\}^* \right\}.$	(5)
			(OR)	
	b.	i)	Write a grammar G to recognize all prefix expressions involving all binary arithmetic operators. Construct a parse tree for the sentence "-*+abc/de" using G.	(5)
		ii)	If L is context free language prove that there exists a PDA M, such that $L = N(M)$.	(8)
14.	a.	i)	Find the grammar in Chomsky Normal Form (CNF) equivalent to	(5)
		,	$S \rightarrow aAD$ $A \rightarrow aB \mid bAB$ $B \rightarrow b$ $D \rightarrow d$	` '
		ii)	Convert the grammar $G = (\{A_1, A_2, A_3\}, \{ab\}, P, A_1)$ into Geribach Normal Form (GNF) where P consists of the following productions:	(8)
			$\mathbf{A}_1 \rightarrow \mathbf{A}_2 \mathbf{A}_3 ,\; \mathbf{A}_2 \rightarrow \mathbf{A}_3 \mathbf{A}_1 \mid \mathbf{b} ,\; \mathbf{A}_3 \rightarrow \mathbf{A}_1 \mathbf{A}_2 \mid \mathbf{a} .$	
			(OR)	
	b.		ign a Turing Machine (M) to implement the function MULTIPLICATION ng the subroutine COPY.	(13)
15.	a.	i)	State and explain Post's Correspondence problem.	(5)
		ii)	Show that Universal language $L_{\mathbf{u}}$ is recursively enumerable but not recursive.	(8)
			(OR)	
	b.	i)	Prove that the halting problem is undecidable.	(8)
		ii)	Prove the following:	(5)
			"If L_1 and L_2 are recursive language then $L_1 \cup L_2$ is a recursive language".	
			$Part - C (1 \times 15 = 15 \text{ marks})$	
16.	a.	Des	ign a DFA that accepts the following language (L) over the alphabets {0,1}.	(15)

Let $L = \{ \text{Set of all string that contains a pattern } 11 \}$.

Explain the class P and NP problems with suitable example.

F-11981

(15)