

CURSO DE "ESPECIALIZACIÓN EN CIBERSEGURIDAD EN ENTORNOS DE LAS TECNOLOGÍAS DE LA INFORMACIÓN"

TEMA 4 Análisis forense informático

ÍNDICE

nálisis forense informático.	3
4.1 Introducción y conceptos	3
Evidencias	3
Memorias Volátiles	3
Memorias No Volátiles	4
Firmas de fichero	4
Delitos tecnológicos y ciberdelitos	5
4.2 Normativa y metodología para un análisis forense.	5
Cadena de Custodia	6
4.3 Análisis Forense en móviles Android/IOS	7
Android	7
WhatsApp	8
IOS	9
WhatsApp	10
4.4 Análisis Forense a PC/Servidor u otros dispositivos	11
Firmas de fichero y Metadatos	11
Sistemas Operativos Microsoft Windows	12
Memoria RAM	12
Comandos	16
Memoria No Volátil	17
Registro de Windows	17
Comandos	18
USB	19
Sysinternals	20
Sistemas Operativos Linux	21
Memoria RAM	21
Memoria No Volátil	24
Sistemas Operativos Mac OS	25
Memoria RAM	25
Ftk Imager	27
Autopsy	28
SQLite Browser	29
4.5 Informe pericial y defensa en el juicio	30
Informe pericial	30
Presentación del caso y aceptación	30
Realización del informe pericial	31
Declaración en los juzgados	31

Eduardo Sánchez Toril CEO AllPentesting formacion@allpentesting.es

Tratamiento del delito tecnológico	3
Instrucción del proceso	3.
La calificación y la vista oral	3.
Enlaces a recursos	3

Análisis forense informático.

4.1 Introducción y conceptos

Informática Forense, es aquella en la que aplicamos una serie de técnicas de examinación de datos para localizar o recuperar información. La informática forense aplica técnicas científicas y analíticas especializadas a infraestructuras tecnológicas que permiten identificar, preservar, analizar y presentar datos válidos dentro de un proceso legal.

Ilustración 1 - Tipo de Evidencias, Volátiles y No Volátiles

Un análisis forense informático es fundamental que tenga al menos la siguientes fases:

Ilustración 2 - Fases de un análisis forense

Evidencias

A la hora de realizar un análisis informático forense nos podemos encontrar **dos tipos de evidencias**:

Memorias Volátiles

La **memoria volátil** de una infraestructura tecnológica, es aquella cuya información se pierde al interrumpirse el flujo eléctrico.

El término "volátil" se refiere a cómo se **pierde la información** si se produce una **interrupción** del **flujo eléctrico**.

El tipo más común de memoria volátil es la RAM del sistema pero existen **diferentes tipos**:

- Memoria de acceso aleatorio o RAM del sistema.
- RAM de video.
- Procesador L1 y L2 caché.
- Caché de disco HDD y SSD.

Memorias No Volátiles

La **memoria no volátil** es un tipo de memoria que **no necesita** de un **flujo eléctrico** para mantener guardada la información en ella.

El término "no volátil" se refiere a cómo se almacena la información y no se produce pérdida si ocurre una interrupción en el flujo eléctrico.

El tipo más común de memoria no volátil es un disco duro pero existen **diferentes tipos**:

- Disco Duro (HDD o SSD).
- CD.
- DVD.
- Cinta magnética.
- Disquete.
- EPROM.
- EEPROM.
- MRAM.
- Memoria de tambor.
- NVRAM.
- Flash.
- PROM.
- PRAM.
- ROM.
- Bios.
- Memoria racetrack.

Firmas de fichero

Una **firma** o **file signatures**, es un identificador que nos verifica el contenido de un fichero. Estas firmas se conocen cómo **Magic Numbers** o **Magic Bytes**.

Muchos ficheros no se pueden leer cómo texto, si lo abriéramos con un editor de textos el contenido sería inteligible para nosotros.

Dependiendo del tipo de fichero, nos encontraremos **diferentes firmas** a las cuales en un análisis forense tendremos que **identificar** para poder analizar las evidencias obtenidas.

Delitos tecnológicos y ciberdelitos

La acción u omisión voluntaria o imprudente penada por la ley, que se realiza mediante conocimientos científicos y técnicas que hacen posible el tratamiento de la información, de forma antijurídica, por medio de ordenadores o elementos informáticos.

Según la ONU(Organización de las Naciones Unidas) se define tres tipos de delitos informáticos:

- Fraudes cometidos mediante manipulación de ordenadores.
- Manipulación de los datos de entrada.
- Daños o modificaciones de programas o datos informatizados.

Según nuestro Código Penal se contemplan ocho tipos de delitos informáticos:

- Amenazas.
- Calumnias e injurias.
- Infracciones contra la propiedad intelectual.
- Pornografía infantil.
- Fraudes y Estafas informáticas.
- Falsedades.
- Sabotajes informáticos.
- Ataques contra el derecho a la intimidad.

4.2 Normativa y metodología para un análisis forense.

Existen múltiples metodologías, protocolos de actuación y recomendaciones relativas a la recolección de evidencias forenses, el estándar y referente principal es el documento "RFC 3227".

Según la RFC 3227 a la hora de recolectar las evidencias tenemos que tener en cuenta:

- 1. Principios de recolección.
- 2. Orden de volatilidad.
- 3. Cosas a evitar.
- 4. Privacidad de los datos.

En la RFC 3227 se establecen unos principios de recolección de Evidencias Digitales:

- Primero recolectar y segundo analizar.
- Duplicar evidencias.
- Evitar e identificar cambios en los contenidos.
- Sistema metódico adaptado al dispositivo.
- Fechar y firmar anotaciones.

- Obtener una copia.
- Preparar prueba testifical.
- Política de seguridad del lugar.

La RFC 3227 establece unos parámetros a seguir respecto al orden de volatilidad de la prueba.

- 1. Registros y caché.
- 2. Enrutamiento, ARP, conexiones entrantes, ...
- 3. Discos duros.
- 4. Log y configuración.
- 5. Documentos.

Durante el proceso de recopilación de evidencias y para que el proceso no pueda ser invalidado por terceros tenemos que evitar:

- No apagar el equipo hasta recopilar todas las evidencias.
- No confiar en la información de los programas del sistema.
- Evitar programar que modifiquen la hora y/o la fecha de ficheros.
- Evitar programas que puedan eliminar de forma automática las evidencias.

Los métodos utilizados para recolectar evidencias deben ser transparentes y reproducibles.

- Listar sistemas involucrados.
- Fijar volatilidad.
- Sincronización reloj
- Documentar cada paso.
- Anotar personal involucrado.

Cadena de Custodia

La cadena de custodia es el proceso de captación, preservación y conservación de la prueba en el cual el mismo objeto de la pericia es transmitido sin modificación sustancial desde que se ocupa hasta que se analiza.

La cadena de custodia supone garantía de la mismidad de la prueba, es decir, lo ocupado es lo mismo que lo analizado. Cualquier fallo en la captación de la prueba hará que se genere esa duda sobre su autenticidad e integridad haciendo que no sea una prueba nula, sino que sea una prueba no fiable.

Lo que intenta la cadena de custodia es lograr el adecuado equilibrio entre un proceso penal eficiente y un proceso penal que le dé al imputado la oportunidad de defenderse en un marco de verdadera imparcialidad.

Antes de nada, no hay obligación de seguir un proceso determinado. Ante la duda, siempre elegir primero recolectar las evidencias de mayor a menor volatilidad y recolectar las evidencias ante acta notarial o con testigos para correcta conservación y verificación íntegra de las evidencias analizadas.

La cadena de custodia se divide en diferentes etapas:

- 1. Ocupación.
- 2. Conversación.
- 3. Manipulación.
- 4. Transporte y traslado.
- 5. Custodia y preservación.

4.3 Análisis Forense en móviles Android/IOS

Android

A la hora de realizar un análisis forense en Android para poder acceder a las evidencias tendremos que realizar un rooteo del teléfono.

Una vez que tengamos rooteado nuestro teléfono Android podremos acceder a todas las evidencias.

Para analizar una APK para comprobar si tiene malware podemos utilizar **MobSF**. Esta herramienta nos permite realizar un análisis completo del funcionamiento y código de la aplicación. Se puede descargar desde su repositorio en github:

https://github.com/MobSF/Mobile-Security-Framework-MobSF

Ilustración 3 - Interfaz de MobSF

WhatsApp

Las bases de datos SQLite en WhatsApp se encuentran cifradas. Para poder extraer la key de cifrado tendremos que rootear el teléfono y extraer la key de cifrado y la base de datos cifrada de WhatsApp.

Ilustración 4 - Base de Datos de WhatsApp

Una vez extraídos los ficheros, tendremos que utilizar alguna herramienta como WhatsApp Viewer que nos permite desencriptar la base de datos con la llave de cifrado. La herramienta se puede descargar desde el siguiente enlace:

https://andreas-mausch.de/whatsapp-viewer/

Ilustración 5 - Aplicación WhatsApp Viewer

IOS

A la hora de realizar un análisis forense en IOS, tendremos que realizar un clonado del dispositivo. Para ello vamos a utilizar la aplicación iTunes, esta nos permite realizar una copia de seguridad en nuestro dispositivo para así poder acceder a todas las evidencias.

Ilustración 6 - Copias de seguridad de iPhone

Una vez realizada la copia de seguridad vamos a proceder a utilizar la herramienta iBackupBot. Esta herramienta nos permite abrir las copias de seguridad de los dispositivos móviles IOS, navegar a través de las copias y obtener y extraer evidencias.

Ilustración 7 - Interfaz de iBakcupBot

Para analizar una aplicación IOS para comprobar si tiene malware podemos utilizar **MobSF**. Esta herramienta nos permite realizar un análisis completo del funcionamiento y código de la aplicación. Se puede descargar desde el siguiente enlace:

https://github.com/MobSF/Mobile-Security-Framework-MobSF

Ilustración 8 - Interfaz de MobSF

WhatsApp

Para analizar una base de datos SQLite de WhatsApp de IOS es tan simple que a partir de la copia de seguridad extraemos el fichero ChatStorage.sqlite y la carpeta Library.

El fichero ChatStorage.sqlite contiene todas las conversaciones y la carpeta Library todo el contenido multimedia como imágenes o vídeos. Estos se encuentran en la ruta "net.whatsapp.WhatsApp\Documents\".

Ilustración 9 - Ficheros de Base de Datos

4.4 Análisis Forense a PC/Servidor u otros dispositivos

A la hora de realizar un análisis forense de un pc o servidor se tiene que tener en cuenta:

- Sistema Operativo
- Uso que se le daba al equipo

Dependiendo del Sistema Operativo, se tendrán que utilizar una serie de técnicas u otras para analizar el equipo.

Firmas de fichero y Metadatos

A la hora de realizar un análisis forense de un fichero tenemos que identificar que tipo de fichero es. Para identificar un fichero se observa al principio la firma del fichero.

Ilustración 10 - Firma de fichero de Gif

En sistemas operativos Linux podemos utilizar la herramienta File. Nos muestra información del fichero y de qué tipo es.

```
root@kali:/media/seguridad# file chall9
chall9: DOS/MBR boot sector; partition 1 : ID=0xb, start-CHS (0x0,32,33), end-CH
S (0x10,81,1), startsector 2048, 260096 sectors, extended partition table (last)
```

Ilustración 11 - Tipo de fichero

Podemos visualizar de forma hexadecimal el contenido de un fichero para poder visualizar o modificar la firma. Para ello podemos utilizar un editor hexadecimal HexEdit(Microsoft Windows) o HexEditor(Linux).

File:	per	ro.	pg						А	SCII	Of	fse	t:	0x00	000	510	1	0x000052DB (%06)
900003	CØ	A8	FD	84	79	91	F8	C3	C7	7F	4F	9D	D2	5F	43	1E	19	y0C
900003	DO	B1	FC	8A	D3	F5	7A	3F	65	47	53	86	AC	67	FC	CA	D7	z?eGSg
999993	E0	F5	7A	3F	65	6F	99	1F	81	E3	BF	A7	CF	AB	DO	BE	80	.z?eo
900003	F0	10	35	63	F9	15	AF	EA	F4	7E	CA	63	88	6A	CB	5F	EA	.5c~.c.j
000004	00	56	BF	AB	D1	FB	28	F2	E3	F0	CE	C3	FA	70	14	97	71	V(pq
909094	10	A7	81	59	82	66	D2	DB	F4	14	B4	FF	00	A5	57	B9	C1	Y.f
900004	20	EC	C6	82	D2	D8	7F	F6	29	70	95	AB	AA	88	FD	18	F0)}
000004	30	BF	A7	16	49	76	27	60	B6	99	7F	CD	6D	FF	00	41	4F	Iv'mAO
900004	40	EC	AC	FE	29	61	6E	33	96	DØ	A2	35	E5	49	82	3D	41)an35.I.=A
900004	50			17		5E	36	8E	7A	92	DA	5A	59	D1	CA	E2	69	2^6.zZYi
900004				34				FA		76	E4				E4	33	D8	R>4VvK.3.
900004	70	A8	B2	5F	E8	46	8C	42	48	A0	D3	BO	B6	C8		E6		F.BK
900004				7C						73	6D		13			6F		
900004				C4			96	49	68	99	6F		F1		FE	43	7D	aa.Ik.oG.T.C}
900004		89	C6	DE						9E	C4	58			96	BC	DA	1~X
900004			FC					D8	A2	16			00		4F	7F	88	M?t0
900004				2C		AA	4B	64	CB	4A	3F		A7	B7		D9	EC	.b,Kd.J?
000004	DO	50	FB	96	96	BF	83	A7	F2	18	EC	45	9B	46	4D	25	AC	PE.FM%.

Ilustración 12 - Editor Hexadecimal

Sistemas Operativos Microsoft Windows

Memoria RAM

La RAM es una memoria volátil que en el momento de producirse una interrupción en el flujo eléctrico se pierde lo que tenía almacenado. La memoria RAM es una de las principales evidencias que deben ser extraídas al principio del proceso de extracción de evidencias.

Para poder capturar la memoria RAM existen diferentes herramientas como Magnet RAM Capture. Se puede obtener y descargar de forma gratuita desde https://www.magnetforensics.com/resources/magnet-ram-capture/

Ilustración 13 - Proceso de Captura de RAM

Una vez tengamos la captura de la memoria RAM procederemos a su análisis. Para ello vamos a utilizar la herramienta más famosa, usada y de código abierto para análisis de las capturas de RAM.

Volatility es una herramienta que nos permite analizar capturas de RAM de diferentes sistemas operativos. En este caso, nos vamos a centrar en Microsoft Windows. Podéis descargar Volatility desde su página web https://www.volatilityfoundation.org/ o desde su repositorio de GitHub https://github.com/volatilityfoundation/volatility/

Primero de todo, para empezar a analizar una captura de RAM tenemos que identificar su perfil(versión del sistema operativo), para ello vamos a hacer uso del plugin imageinfo. Para ello ejecutamos en consola "volatility -f FICHERO_RAM imageinfo" y obtendremos el perfil específico de Windows.

```
# volatility -f retol_taller.raw --profile=Win7SP1x86 imageinfo

Volatility Foundation Volatility Framework 2.6

INFO : volatility.debug : Determining profile based on KDBG search...

Suggested Profile(s) : Win7SP1x86_23418, Win7SP0x86, Win7SP1x86_24000, Win7SP1x86 (Instantiated with Win7SP1x86)

AS Layer1 : IA32PagedMemoryPae (Kernel AS)

AS Layer2 : FileAddressSpace (Management AS)

PAE type : PAE

DTB : 0x185000L

KDBG : 0x82977be8L

Number of Processors : 1

Image Type (Service Pack) : 0

KPCR for CPU 0 : 0x82978c00L

KUSER SHARED DATA : 0xffdf0000L

Image date and time : 2019-11-07 12:52:54 UTC+0000

Image local date and time : 2019-11-07 13:52:54 +0100
```

Ilustración 14 - Identificando perfil de Windows

Una vez tengamos identificado el perfil podemos proceder a analizar diferentes evidencias dentro de la captura de RAM.

Con el plugin **netscan** se pueden visualizar las **conexiones entrantes y salientes** que había en el equipo en el momento de realizar la captura de RAM y desde que proceso se están realizando dichas conexiones.

root@kali:/media/	seguridad#	volatility -f capturashs2k19.ra	wprofile=Win7SP1	x64 netscan		8 B 8	
Volatility Founda	tion Volat	ility Framework 2.6					
Offset(P)	Proto	Local Address	Foreign Address	State	Pid	0wner	Created
0x7db99590	UDPv4	0.0.0.0:0	*:*		656	VBoxService.ex	2019-01-28 23:45:58 UTC+0000
0x7dc76690	UDPv4	10.0.2.11:1900	*:*		1260	svchost.exe	2019-01-28 23:40:19 UTC+0000
0x7dc84c80	UDPv4	127.0.0.1:1900			1260	svchost.exe	2019-01-28 23:40:19 UTC+0000
0x7dc850d0	UDPv6	::1:59748	*:*		1260	svchost.exe	2019-01-28 23:40:19 UTC+0000
0x7dc877f0	UDPv6	fe80::9508:aaeb:24b3:2217:59747	*:*		1260	svchost.exe	2019-01-28 23:40:19 UTC+0000
0x7dcb0a00	UDPv4	10.0.2.11:59749			1260	svchost.exe	2019-01-28 23:40:19 UTC+0000
0x7dcc8c30	UDPv6	::1:1900			1260	svchost.exe	2019-01-28 23:40:19 UTC+0000
0x7dce4ec0	UDPv4	0.0.0.0:3702			236	svchost.exe	2019-01-28 23:40:15 UTC+0000
0x7dce4ec0	UDPv6	:::3702			236	svchost.exe	2019-01-28 23:40:15 UTC+0000
0x7dce6140	UDPv4	0.0.0.0:3702			236	svchost.exe	2019-01-28 23:40:15 UTC+0000
0x7dce6140	UDPv6	:::3702			236	svchost.exe	2019-01-28 23:40:15 UTC+0000
0x7dceab60	UDPv4	0.0.0.0:3702			236	svchost.exe	2019-01-28 23:40:15 UTC+0000
0x7dceb560	UDPv4	0.0.0.0:59746			236	svchost.exe	2019-01-28 23:40:15 UTC+0000
0x7dceb560	UDPv6	:::59746			236	svchost.exe	2019-01-28 23:40:15 UTC+0000
0x7dceba60	UDPv4	0.0.0.0:59745			236	svchost.exe	2019-01-28 23:40:15 UTC+0000
0x7dcebd70	UDPv4	0.0.0.0:3702			236	svchost.exe	2019-01-28 23:40:15 UTC+0000
0x7dd0bec0	UDPv4	0.0.0.0:0			2160	svchost.exe	2019-01-28 23:40:15 UTC+0000
0x7dd0bec0	UDPv6	:::0			2160	svchost.exe	2019-01-28 23:40:15 UTC+0000
0x7dd24cc0	UDPv4	0.0.0.0:0			2160	svchost.exe	2019-01-28 23:40:16 UTC+0000
0x7dd24cc0	UDPv6	:::0			2160	svchost.exe	2019-01-28 23:40:16 UTC+0000
0x7dd5e530	UDPv4	127.0.0.1:59750			1260	svchost.exe	2019-01-28 23:40:19 UTC+0000
0x7dde85b0	UDPv4	0.0.0.0:3540			2160	svchost.exe	2019-01-28 23:40:26 UTC+0000
0x7dde85b0	UDPv6	:::3540			2160	svchost.exe	2019-01-28 23:40:26 UTC+0000
0x7dded7d0	UDPv4	0.0.0.0:0			2160	svchost.exe	2019-01-28 23:40:26 UTC+0000
0x7dded7d0	UDPv6	:::0			2160	svchost.exe	2019-01-28 23:40:26 UTC+0000
0x7de94200	UDPv4	0.0.0.0:0	*:*		656	VBoxService.ex	2019-01-28 23:44:18 UTC+0000

Ilustración 15 - Identificando Conexiones entrantes

Con el plugin **pstree** podemos visualizar el **árbol de procesos** que había en ese momento en el Sistema Operativo. Esto es bastante importante, ya que nos permite ver que programas o que se estaba ejecutando en ese momento en el equipo. Cada proceso tiene un identificador único que se le conoce como Pid. A la hora de realizar una pericial con Malware nos tendremos que centrar en los procesos y conexiones entrantes y salientes del equipo.

ame	Pid	PPid	Thds	Hnds	Time
0xfffffa80018fb2f0:wininit.exe	392	336	3	74	2019-01-28 23:39:23 UTC+0
0xfffffa8002a13b30:services.exe	488	392	9	200	2019-01-28 23:39:26 UTC+0
. 0xfffffa8001aba580:svchost.exe	2732	488	9	301	2019-01-28 23:42:01 UTC+0
. 0xfffffa800372c9e0:svchost.exe	1260	488	22	301	2019-01-28 23:39:39 UTC+0
. 0xfffffa8003b0a670:svchost.exe	2160	488	10	348	2019-01-28 23:40:15 UTC+0
0xfffffa800389aa80:taskhost.exe	1700	488	9	200	2019-01-28 23:39:45 UTC+0
0xfffffa8003c4b720:mscorsvw.exe	2496	488	6	79	2019-01-28 23:41:48 UTC+0
0xfffffa8003517060:svchost.exe	812	488	21	549	2019-01-28 23:39:31 UTC+0
. 0xfffffa80035b83a0:audiodg.exe	952	812	4	128	2019-01-28 23:39:33 UTC+0
0xfffffa80039e8b30:wmpnetwk.exe	1800	488	9	208	2019-01-28 23:40:13 UTC+0
. 0xfffffa80037aab30:explorer.exe	1840	1800	26	859	2019-01-28 23:39:47 UTC+0
0xfffffa80039cba30:VBoxTray.exe	1252	1840	12	149	2019-01-28 23:39:59 UTC+0
0xfffffa8001b02850:MagnetRAMCaptu	1064	1840	6	282	2019-01-28 23:43:59 UTC+0
0xfffffa800193c870:spoolsv.exe	1088	488	14	307	2019-01-28 23:39:38 UTC+0
0xfffffa8003623060:svchost.exe	328	488	14	453	2019-01-28 23:39:35 UTC+0
0xfffffa80035883f0:svchost.exe	844	488	27	487	2019-01-28 23:39:32 UTC+0
. 0xfffffa800387bb30:dwm.exe	1812	844	3	68	2019-01-28 23:39:47 UTC+0
0xfffffa8003539b30:svchost.exe	720	488	7	262	2019-01-28 23:39:30 UTC+0
0xfffffa80029fb740:SearchIndexer.	1196	488	11	605	2019-01-28 23:40:11 UTC+0
0xfffffa8003504970:svchost.exe	596	488	9	350	2019-01-28 23:39:29 UTC+0
. 0xfffffa8003d94060:WmiPrvSE.exe	3008	596	6	113	2019-01-28 23:41:05 UTC+0
0xfffffa800359a890:svchost.exe	868	488	36	1009	2019-01-28 23:39:32 UTC+0
. 0xfffffa80019f5b30:WMIADAP.exe	2984	868	6	84	2019-01-28 23:43:48 UTC+0
. 0xfffffa8003520060:VBoxService.ex	656	488	12	117	2019-01-28 23:39:30 UTC+0
. 0xfffffa80036b7560:svchost.exe	1124	488	18	300	2019-01-28 23:39:38 UTC+0

Ilustración 16 - Árbol de procesos

Con el plugin **memdump** podemos extraer el minidump o crash dump de un proceso. Para ello primero tendremos que indicarle el PID del proceso.

Ilustración 17 - Extrayendo proceso de la RAM

Con el plugin **filescan** podemos **visualizar** los **diferentes ficheros cargados en memoria**. Cada fichero tiene una dirección de memoria.

Con el plugin dumpfiles podemos extraer un fichero que haya cargado en memoria. Para ello tenemos que indicarle con la opción -Q la dirección en memoria obtenida en filescan.

Ilustración 18 - Resultados de volatility

Con el plugin **hashdump** podemos dumpear los **hashes NTLM** de las **contraseñas** de los **usuarios** del Sistema Operativo. Para ello lo primero de todo es importante que en el árbol de procesos esté activo el proceso Isass.exe, que es el encargado en Windows de la autenticación de usuarios.

```
root@kali:/media/seguridad# volatility -f capturashs2k19.raw --profile=Win7SP1x64 hashdump
Volatility Foundation Volatility Framework 2.6
Administrador:500:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
Invitado:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
edusatoe:1001:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
HomeGroupUser$:1002:aad3b435b51404eeaad3b435b51404ee:7c451a2b1f306d11783f884326b67790:::
root@kali:/media/seguridad#
```

Ilustración 19 - Hashes de las contraseñas de usuario

Para poder crackear el hash de una cuenta de usuario podemos hacer uso de herramientas como HashCat u online como CrackStation https://crackstation.net/

Con el plugin **driverscan** podemos visualizar los **diferentes drivers** que hay instalados en el equipo. Esto nos permite comprobar si el usuario ha enchufado algún dispositivo específico.

root@kali:				VO	latility -f reto2_tal	ler.rawpro	file=Win7SP1x86_23418 driverscan
Volatility Foundation	n Volatilit	ty Fram	ework 2.6				
Offset(P)	#Ptr	#Hnd	Start	Size	Service Key	Name	Driver Name
0x0000000005c5e8a0	3	Θ	0x91358000	0x51000	srv	srv	\FileSystem\srv
0x00000000077da3f8	5	Θ	0x913cc000	0x2a000	fastfat	fastfat	\FileSystem\fastfat
0x000000000825e510	4	0	0x913a9000	0x21000	vmhgfs	vmhgfs	\FileSystem\vmhgfs
0x000000000a22f538	3	Θ	0x913ca000	0×1080	IefRamDump	IefRamDump	\Driver\IefRamDump
0x0000000000ce9f728	3	Θ	0x91309000	0x4f000	srv2	srv2	\FileSystem\srv2
0x000000000e810780	4	Θ	0x86e00000	0xb000	mouhid	mouhid	\Driver\mouhid
0x000000000e811688	3	Θ	0x86ff8000	0x8000	vmusbmouse	vmusbmouse	\Driver\vmusbmouse

Ilustración 20 - Drivers de los diferentes componentes

Se pueden visualizar todos los plugins de volatility en la siguiente URL: https://github.com/volatilityfoundation/volatility/wiki/Command-Reference

Comandos

Podemos ejecutar comandos en el terminal para obtener información del ordenador como conexiones activas, procesos, conexión de la red local.

Para obtener las conexiones activas podemos usar el comando "netstat -a" para listar las conexiones entrantes y salientes.

```
C:\Users
                 >netstat -a
Conexiones activas
 Proto Dirección local
                                  Dirección remota
                                                           Estado
 TCP
         0.0.0.0:135
                                                   :0
                                                           LISTENING
         0.0.0.0:443
                                                   :0
 TCP
                                                           LISTENING
 TCP
         0.0.0.0:445
                                                   :0
                                                           LISTENING
                                                   :0
 TCP
         0.0.0.0:903
                                                           LISTENING
                                                   :0
 TCP
         0.0.0.0:913
                                                           LISTENING
                                                   0
 TCP
         0.0.0.0:1521
                                                           LISTENING
                                                   0
 TCP
         0.0.0.0:1536
                                                           LISTENING
 TCP
         0.0.0.0:1537
                                                   0
                                                           LISTENING
 TCP
         0.0.0.0:1538
                                                   0
                                                           LISTENING
                                                   0
 TCP
         0.0.0.0:1539
                                                           LISTENING
                                                   0
         0.0.0.0:1542
 TCP
                                                           LISTENING
                                                   0
 TCP
         0.0.0.0:1546
                                                           LISTENING
                                                   0
         0.0.0.0:1548
 TCP
                                                           LISTENING
```

Ilustración 21 - Conexiones entrantes y salientes

Con el comando "ipconfig /all" podemos obtener la información completa de las tarjetas de red y que dirección IP tienen asignadas.

Ilustración 22 - Configuración e información de las tarjetas de red

Con el comando "route print" podemos obtener todas las rutas de conexiones que hay en el sistema.

Ilustración 23 - Ruta de conexiones

Memoria No Volátil

Cómo explicamos anteriormente, una evidencia no volátil puede ser desde un HDD a un USB. En los sistemas operativos Windows encontramos evidencias como registro de Windows, los eventos, ficheros del sistema...

Registro de Windows

En el registro de Windows podemos encontrar todas las claves y configuración del sistema.

Si queremos obtener información del sistema instalado, cómo fecha de instalación, versión exacta, id del producto podemos consultarlo en la siguiente ruta:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\

Ilustración 24 - Editor de registro de Windows

Para identificar la fecha de instalación nos vamos a la key "InstallDate" y copiamos su valor. Una vez que tengamos el valor a través de EpochConverter nos permitirá convertir el valor del tiempo en hexadecimal a legible y podremos saber en qué fecha se instaló el sistema operativo. Se puede acceder desde el siguiente enlace:

https://www.epochconverter.com/hex

Ilustración 25 - Web de EpochConverter

Comandos

A su vez, también podemos obtener la fecha de instalación del sistema a través de la terminal de Windows. Con el comando systeminfo nos proporcionará directamente la fecha de instalación del sistema.

```
C:\Users systeminfo | find /i "original"
Fecha de instalación original: 17/01/2019, 14:36:58
```



```
Microsoft Windows [Uersion 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

D:\Windows Resource Kits\Tools\systeminfo

Host Name:

MARKKAELIN-PC
Microsoft Windows 7 Ultimate
OS Name:

OS Uersion:
OS Gonfiguration:
OS Gonfiguration:
OS Gonfiguration:
OS Build Type:
Registered Owner:
Registered Owner:
Registered Owner:
Registered Organization:
Product ID:
Original Install Date:
Original Install Date:
System Boot Time:
System Manufacturer:
System Manufacturer:
System Manufacturer:
System Model:
System Model:
System Type:
Processor(s):

1 Processor(s) Installed.
I011: x64 Family 6 Model 23 Stepping 10 Genuine
Mindows Directory:
System Locale:
Input Locale:
In
```

Ilustración 26 - Información del sistema con systeminfo

USB

Para obtener todos los dispositivos USB que han sido conectados a lo largo del tiempo en un equipo podemos usar la herramienta USBDeview. Se puede descargar desde https://www.nirsoft.net/utils/usb_devices_view.html

Ilustración 27 - Historial de dispositivos USB

Cada dispositivo USB tiene dos identificadores, VendorID, que indica el ID de la marca del dispositivo y ProductID, que indica el ID del producto dentro de la marca. Si necesitamos identificar si un dispositivo ha sido conectado a un equipo podemos consultar a través de USBDeview el listado de USB conectados y buscar a través del VendorID y ProductoID en una base de datos de ID de USB. Podemos acceder a esta base de datos desde https://www.the-sz.com/products/usbid/.

USB ID Dat	abase
Search for USB d	evices with Vendor ID, Product ID and/or Name:
Vendor ID:	0xF000
Product ID:	oxFFFo
Name:	Name
	Search
Search Results:	
Nothing found	

Ilustración 28 - Base de Datos USB

Sysinternals

Las Windows Sysinternals son una serie de herramientas externas que nos permiten obtener información de los sistemas operativos Windows. Se pueden obtener en https://docs.microsoft.com/en-us/sysinternals/

Ilustración 29 - Windows Sysinternals

Con la utilidad pslist podemos listar todos los procesos en memoria.

C:\Users\wesleywh\D	C:\Users\wesleywh\Desktop\data\sysinternals>pslist							
pslist v1.3 - Sysinternals PsList								
Copyright (C) 2000-	Copyright (C) 2000-2012 Mark Russinovich							
Sysinternals - www.sysinternals.com								
Process information	for	1138	85-ตร	R :				
Name		Pri	Thd	Hnd	Priv	CPU Time	Elapsed Time	
Idle	Ø	Ø	4	0	_ 0	5:33:51.015	1:30:48.553	
System	4	8	113	1021	196	0:01:04.265	1:30:48.553	
SMSS	364	11	2	44	276	0:00:01.937	1:30:48.475	
csrss	464	13	10	381	2356	0:00:01.875	1:30:36.443	
csrss	544	13	12	335	2636	0:00:08.593	1:30:32.227	
wininit	552	13	1	76	792	0:00:00.500	1:30:32.227	
winlogon	600	13	2	176	1532	0:00:00.562	1:30:31.587	
services	640	9	4	290	4356	0:00:05.890	1:30:24.504	
lsass	648	9	8	1100	5676	0:00:03.875	1:30:24.423	
svchost	724	8	9	510	5852	0:00:01.265	1:30:20.006	
svchost	768	. 8	9	487	4472	0:00:01.312	1:30:19.896	
dwm _	880	13	_6	196	18236	0:00:56.234	1:30:19.709	
MsMpEng	892	8	36	641	113148	0:02:59.156	1:30:19.631	
atiesrxx	964	8	_5	109	876	0:00:00.000	1:30:17.365	
svchost	988	8	23	752	16448	0:00:03.625	1:30:17.318	
svchost	80	8	39	2738	31668	0:00:16.593	1:30:17.146	
svchost	444	8	20	582	8568	0:00:00.640	1:30:16.974	
svchost	420	8	11	424	97992	0:02:16.984	1:30:16.568	
	1044	8	39	906	10400	0:00:01.312	1:30:16.240	
	1224	8	13	448	5600	0:00:00.734	1:30:16.084	
	1248	8	22	473	21572	0:00:01.796	1:30:16.068	
	1400	8	60	408	26100	0:00:00.250	1:30:14.519	
	1468	8	10	363	4464	0:00:00.203	1:30:11.666	
mqsvc	1512	8	21	290	4128	0:00:00.031	1:30:11.541	

Ilustración 30 - Procesos del sistema

Con la utilidad logonsessions podemos listar el historial de acceso de los usuarios.

```
Logonsesions v1.1
Copyright (C) 2004 Bryce Cogswell and Mark Russinovich
Sysinternals - www.sysinternals.com

[0] Logon session 00000000:000003e7:
User name: CTSAMBANIEST-382-XP$
Auth package: NTLM
Logon type: (none)
Session: 0
Sid: S-1-5-18
Logon time: 22.11.2007 12:35:59
Logon server:
DNS Domain:
UPN:
592: SystemRoot\System32\smss.exe
664: \??\C:\WINDOWS\system32\csrss.exe
688: \??\C:\WINDOWS\system32\csrss.exe
732: C:\WINDOWS\system32\sunlogon.exe
732: C:\WINDOWS\system32\surlogon.exe
744: C:\WINDOWS\system32\surlogon.exe
1056: C:\WINDOWS\system32\surlogon.exe
1056: C:\WINDOWS\system32\surlogon.exe
1056: C:\WINDOWS\system32\surlogon.exe
1440: C:\WINDOWS\system32\surlogon.exe
1596: C:\WINDOWS\system32\surlogon.exe
1596: C:\WINDOWS\system32\surlogon.exe
1596: C:\WINDOWS\system32\surlogon.exe
1596: C:\WINDOWS\system32\surlogon.exe
1608: C:\WINDOWS\system32\surlogon.exe
```

Ilustración 31 - Historial de acceso de usuarios

Sistemas Operativos Linux

Memoria RAM

Volatility es una herramienta que nos permite analizar capturas de RAM de diferentes sistemas operativos. En este caso, nos vamos a centrar en Microsoft Windows. Podeis descargar Volatility desde su página web https://www.volatilityfoundation.org/ o desde su repositorio de GitHub https://github.com/volatilityfoundation/volatility/

Primero de todo, para empezar a analizar una captura de RAM tenemos que identificar su perfil(versión del sistema operativo), para ello vamos a hacer uso de la herramienta strings. Volatility no cuenta con un plugin que identifique el tipo de perfil y versión de kernel que se va a utilizar para analizar la RAM. Con el comando strings seguido de la palabra GNU/Linux o Welcome nos aparecerá.

```
# strings memory.raw | grep GNU/Linux GNU/Linux (GNU/Linux) elcome to Ubuntu 16.04 LTS (GNU/Linux 4.4.0-72-lowlatency x86_64) Google Earth is available for GNU/Linux from their web site, but is HWelcome to Ubuntu 16.04 LTS (GNU/Linux 4.4.0-72-lowlatency x86_64)

GNU/Linux 4.4.0-72-lowlatency x86_64)
```

Ilustración 32 - Salida comando strings

Una vez que sepamos la versión correcta del kernel tendremos que instalarnos esa versión en nuestro sistema operativo linux o máquina virtual (más recomendable). Vamos a proceder a crear el módulo de volatility. Para ello usaremos las herramientas de volatility.

Ilustración 33 - Creación módulo volatility

Cuando generemos el módulo podemos importar el perfil creado con la opción -- plugins y usar el --info para comprobar si se ha importado correctamente.

```
taller@osboxes:/usr/share/volatility/tools/linux$ sudo zip /home/taller/Ubuntu16
04-4.4.0-72-lowlatency.zip /home/taller/module.dwarf /boot/System.map-4.4.0-72-l
owlatency
   adding: home/taller/module.dwarf (deflated 91%)
   adding: boot/System.map-4.4.0-72-lowlatency (deflated 79%)
taller@osboxes:/usr/share/volatility/tools/linux$ volatility --plugins=/home/taller/x32 --info | grep Ubuntu
Volatility Foundation Volatility Framework 2.6
LinuxUbuntu1604-4_4_0-72-lowlatencyx64 - A Profile for Linux Ubuntu1604-4.4.0-72
-lowlatency x64
```

Ilustración 34 - Creación del perfil de volatility

Con el plugin **linux_pslist** podemos listar los procesos en el sistema. Con el plugin **linux pstree** sería de forma similar pero se mostrarían en forma de árbol.

root@kali:				/backup# vola	
	ofile -f memory.raw	profile=LinuxUb	untu1604-4_4_0	0-72-lowlatencyx64	4 linux_
pslist	Mation Volatility Fr	ramovark 2 6			
Offset	Name	Pid	PPid	Uid	Gi
d DTB	Start Time	110	1114	010	01
0xffff88000c9c06	000 svstemd	1	Θ	Θ	0
	cbde000 2017-05-05	12:04:06 UTC+0000			
0xffff88000c9c0e		2	0	0	0
0xffff88000c9c1c		12:04:06 UTC+0000	2	0	0
	2017-05-05			0	O
0	[ira/20	-vboxques]	493	^	
	- 1				
	.[ttm_sw		534		
		•	535		
	.[kdmflu		625		
	.[bioset	:]	628		
	.[kcrypt	d io]	629		
	.[kcrypt	:d]	630		
	.[dmcryp	t write]	631 🛑		
	.[bioset		632		
	.[jbd2/d	-	652		
		sv-conver]	653		
		enp0s3]	784		
	[vfcall	oc]	15061		
	Ilustración 35	- Listado de proce	esos con volat	ility	

Con el plugin linux_bash podremos obtener los comandos que se han ejecutado y siguen cargados en memoria.

```
Command
apt-get install linux-image-4.4.0-72-lowlatency linux-headers-lowlatency
reboot
apt-get insta
history
apt-get install lynx gnupg
nano /etc/fstab
nano /etc/crypttab
cd /mnt/
cp -R /media/sf_DUMP/dir* .
ping 8.8.8.8
```

Ilustración 36 - Comandos ejecutados

Puedes visualizar la lista completa de plugins de volatility para linux en el siguiente recurso:

https://github.com/volatilityfoundation/volatility/wiki/Linux

Memoria No Volátil

A la hora de analizar una evidencia con un sistema operativo linux podemos encontrar las siguientes evidencias importantes.

El historial de comandos. En la carpeta de cada usuario del sistema podemos encontrar el fichero **.bash_history** que nos mostrará el historial completo de comandos que ha ejecutado el usuario.

```
Enter Your Command: $ cat /home/hendadel/.bash_history | grep 'kill'
sudo killall apt
sudo killall apt-get
sudo kill -9 735
sudo apt install xorg-xkill
xkill
```

Ilustración 37 - Historial de comandos

En el directorio /var/log nos encontramos los logs del sistema y sus diferentes servicios como Apache.

```
root@OPNsense:~ # cd /var/log/
root@OPNsense:/var/log # ls
hsdinstaller lighttpd.log
                                                  setuid.vesterday
configd.log
                         mount.today
                                                  squid
dhcpd.log
                                                  squid.log
dmesg.today
                        ntpd.log
                                                  suricata
                      openvpn.log
dmesg.yesterday
                                                  suricata.log
dnsmasq.log
                        pkg.log
                                                  system.log
elasticsearch
                        portalauth.log
                                                 userlog
                                                  utx.lastlogin
filter.log
                        ppps.log
                        resolver.log
gateways.log
                                                  utx.log
ipsec.log
                         routing.log
                                                  vpn.log
lighttpd
                         setuid.today
                                                  wireless.log
root@OPNsense:/var/log # [
```

Ilustración 38 - Directorio /var/log

El fichero passwd y shadow nos muestran el listado de usuarios del sistema y los hashes de sus contraseñas.


```
apt:x:105:65534::/nonexistent:/bin/false
messagebus:x:106:110::/var/run/dbus:/bin/false
uuidd:x:107:111::/run/uuidd:/bin/false
lightdm:x:108:114:Light Display Manager:/var/lib/lightdm:/bin/false
whoopste:x:109:116::/nonexistent:/bin/false
avahi-autoipd:x:110:119:Avahi autoip daemon,,;/var/lib/avahi-autoipd:/bin/false
avahi:x:111:120:Avahi mDNS daemon,,;/var/run/avahi-daemon:/bin/false
dnsmasq:x:112:65534:dnsmasq,,;/var/lib/misc:/bin/false
colord:x:113:123:colord colour management daemon,,;/var/lib/colord:/bin/false
speech-dispatcher:x:114:29:Speech Dispatcher,,;/var/run/speech-dispatcher:/bin/false
hplip:x:115:7:HPLIP system user,,;/var/run/hplip:/bin/false
kernoops:x:116:65534:Kernel Oops Tracking Daemon,,;/:/bin/false
pulse:x:117:124:PulseAudio daemon,,;/var/run/pulse:/bin/false
rtkit:x:118:126:RealtimeKit,,;/proc:/bin/false
usbmux:x:120:46:usbmux daemon,,;/var/lib/usbmux:/bin/false
rui:x:1000:1000:Rui,,;/home/rui:/bin/bash
vboxadd:x:999:1::/var/run/vboxadd:/bin/false
test1:x:1001:1001:,,;/home/test1:/bin/bash
test2:x:1002:1002:,,;/home/test2:/bin/bash
test3:x:1003:1003:,,,;/home/test3:/bin/bash
test5:x:1005:1005:,,,;/home/test5:/bin/bash
test5:x:1005:1005:,,,;/home/test5:/bin/bash
```

Ilustración 39 - Fichero passwd

Sistemas Operativos Mac OS

Memoria RAM

Volatility es una herramienta que nos permite analizar capturas de RAM de diferentes sistemas operativos. En este caso, nos vamos a centrar en Microsoft Windows. Podéis descargar Volatility desde su página web https://www.volatilityfoundation.org/ o desde su repositorio de GitHub https://github.com/volatilityfoundation/volatility/

Para poder analizar la RAM necesitamos el perfil de MAC OS específico. En el siguiente repositorio podréis encontrar perfiles para todas las versiones de MAC OS y perfiles de algunas versiones de kernel de Linux. Podeis descargar los perfiles desde https://github.com/volatilityfoundation/profiles

Ilustración 40 - Perfiles de volatility

Una vez descargados probamos a importarlos con la opción --plugins y comprobamos con el plugin **mac_get_profile** que es capaz de identificar el perfil para nuestra captura de RAM.

Ilustración 41 - Perfil de volatility

Con el plugin **mac_mount** podemos visualizar cuales son las particiones y dispositivos montados en el sistema operativo.

	·	
	nLion_10_8_1_AMDx64_mac_mount ion_Volatility_Framework_2.6	volatilityplugins=/media/seguridad/profiles_volatility/Mac/10.8/ -f findmeback.dmp
Device	Mount Point	Туре
1	/dev/disk0s2	hfs
/dev	devfs	devfs
/net	map -hosts	autofs
/home	map auto_home	autofs
/Volumes/VMware Sh	ared Folders .host:/VMware Shared Folders	vmhqfs

Ilustración 42 - Perfil de volatility

Con el plugin **mac_notesapp** podemos visualizar las notas del programa de notas por defecto de MAC OS.

Ilustración 43 - Perfil de volatility

Con el plugin **mac_contacts** podemos obtener los contactos de la agenda del sistema.


```
ick# volatility --plugins=/media/seguridad/profiles_volatility/Mac/10.8/ -f findmeback.dmp --
profile=MacMountainLion_10_8_1_AMDx64 mac_contacts
Volatility Foundation Volatility Framework 2.6
KyeongsikLeekyeongsik lee Kyeongsik Lee Lee kyeongsik Lee Kyeongsik
HyungjoonLeehyungjoon lee Hyungjoon Lee lee hyungjoon Lee Hyungjoon F?lixGrobertf?lix grobert F?lix Grobert folder your contact foundary of the foundary o
```

Ilustración 44 - Perfil de volatility

Con el plugin **mac_list_files** podemos listar los ficheros del sistema operativo cargados en memoria.

```
DXfffff800f30737550 /Users/rootme/Library/Mail/V2/MailData/BackingStoreUpdateJournal
DXfffff800f3083838 /Users/rootme/Library/Mail/V2/MailData/BackingStoreUpdateJournal
DXffffff800f3083838 /Users/rootme/Library/Mail/V2/IMAP-find.me.again.and.again@imap.gmail.com/[Gmail].mbox/9C9805D3-B08B-4144-AF4C-DAAAD5E478AD
DXffffff800f8163160 /Users/rootme/Library/MailV2/IMAP-find.me.again.and.again@imap.gmail.com/[Gmail].mbox/Tous les messages.mbox
DXffffff800f3200f8 /Users/rootme/Library/MailV2/MailData/Accounts.plist
DXffffff800f3200f8 /Users/rootme/Library/MailV2/MailData/Accounts.plist
DXffffff800f3200f8 /Users/rootme/Library/MailV2/MailData/Accounts.mbox/Info.plist
DXffffff800f30e76 /Users/rootme/Library/MailV2/IMAP-find.me.again.and.again@imap.gmail.com/[Gmail].mbox/Corbeille.mbox/9C9805D3-B08B-4144-AF4C-DAAAD5E478A
DXffffff800f30e70 /Users/rootme/Library/MailV2/IMAP-find.me.again.and.again@imap.gmail.com/[Gmail].mbox/9C9805D3-B08B-4144-AF4C-DAAAD5E478A
DXffffff800f50b208 /Users/rootme/Library/MailV2/IMAP-find.me.again.and.again@imap.gmail.com/[Gmail].mbox/Suivis.mbox
DXffffff800f50b209 /Users/rootme/Library/MailV2/IMAP-find.me.again.and.again@imap.gmail.com/[Gmail].mbox/Suivis.mbox
DXffffff800f30b4058 /Users/rootme/Library/MailV2/IMAP-find.me.again.and.again@imap.gmail.com/[Gmail].mbox/Suivis.mbox
DXffffff800f30b458 /Users/rootme/Library/MailV2/IMAP-find.me.again.and.again@imap.gmail.com/[Gmail].mbox/Suivis.mbox
DXffffff800f30b458 /Users/rootme/Library/MailV2/IMAP-find.me.again.and.again@imap.gmail.com/[Gmail].mbox/Suivis.mbox
DXffffff800f30b458 /Users/rootme/Library/MailV2/IMAP-find.me.again.and.again@imap.gmail.com/[Gmail].mbox/Suivis.mbox
```

Ilustración 45 - Perfil de volatility

Con el plugin **mac_pstree** podemos visualizar el árbol de procesos del sistema operativo. Con el plugin **mac_pslist** es de forma similar pero no es en forma de árbol.

		1
Finder	155	501
SystemUIServer	154	501
Dock	153	501
talagent	152	501
Calendar	151	501
Console	150	501
Mail	148	501
Terminal	147	501
login	522	Θ
bash	523	501
login	107	

Ilustración 46 - Perfil de volatility

Puedes visualizar la lista completa de plugins de volatility para MAC OS en el siguiente recurso: https://github.com/volatilityfoundation/volatility/wiki/Mac

Ftk Imager

Es una herramienta que te permite abrir en modo lectura imágenes de disco y discos duros para poder extraer las evidencias no volátiles sin modificar el sistema de forma segura.

Se puede obtener desde el siguiente enlace:

https://accessdata.com/product-download/ftk-imager-version-4-2-1

FTK Imager te permite también crear imágenes de disco y capturar la memoria RAM. Nosotros después de varias pruebas y de integridad recomendamos más Magnet RAM Capture para realizar las capturas de RAM.

Ilustración 47 - AccessData Ftk Imager

Autopsy

Es una herramienta automática de análisis de memoria no volátil. La puedes descargar desde https://www.sleuthkit.org/autopsy/.

Ilustración 48 - Autopsy

Autopsy te automatiza la búsqueda de información y evidencias dividiendo por historial de navegación, cookies, descargar, programas instalados, documentos e imágenes recientes, correos electrónicos.

Ilustración 49 - Autopsy

También nos permite navegar por la evidencia en modo lectura sin modificarla y extraer las evidencias correctamente.

Ilustración 50 - Autopsy

SQLite Browser

Es una herramienta que nos permite navegar y abrir base de datos tipo SQLite. La mayoría de aplicaciones Android e IOS se utilizan para almacenar la información en ficheros de base de datos SQLite.

Ilustración 51 - SQLite Browser

WhatsApp las utiliza para almacenar en tu dispositivo tus contactos y mensajes que intercambias entre ellos. Con SQLite Browser podemos abrir las bases de datos y visualizar las conversaciones.

Ilustración 52 - Conversaciones de WhatsApp

4.5 Informe pericial y defensa en el juicio

Informe pericial

Para realizar un informe pericial se siguen una serie de fases:

Presentación del caso y aceptación

Primero se seleccionará y designará un perito. Se le preparará un presupuesto y aceptará o no el caso.

Realización del informe pericial

Una vez aceptado el caso tendremos que desarrollar y crear el informe pericial. Para ello seguiremos una serie de fases:

- 1. Definición de los objetivos de la pericial.
- 2. Análisis de las evidencias.
- 3. Toma y extracción de pruebas de las evidencias.
- 4. Análisis de las pruebas extraídas de las evidencias.
- 5. Conclusiones de la pericial.
- 6. Redacción del informe.
- 7. Visado.

Declaración en los juzgados

Una vez presentado el Informe Pericial tendremos que prepararnos para la declaración en los juzgados y cómo debemos actuar a la hora de declarar.

- 1. Vista oral. Ocurre meses después desde la redacción del dictamen. El perito debe prepararse para coordinar preguntas.
- 2. Declaración. El perito tendrá que ratificar el dictamen y aclarar dudas.

Durante la declaración nunca debemos dejarnos intimidar, tener un tono firme y pausado, respeto y consultar el dictamen.

Tratamiento del delito tecnológico

A la hora del tratamiento de un delito tecnológico se contemplan diferentes fases:

Instrucción del proceso

- Aceptación de la denuncia.
- Medidas cautelares para preservación de las pruebas.
- Declaración de denunciante y posible denunciado.
- Interrogatorio de los testigos.

La calificación y la vista oral

La calificación supone definir el Delito por el que se va a llevar la Causa a Juicio. Se divide en diferentes fases:

- Definición. Autor del delito y perjudicado/s.
- Conservación. Toda la prueba necesaria.
- Citación. Los testigos válidos para las partes.
- Señalamiento. Vista Oral Juzgado Penal.

Enlaces a recursos

https://docs.microsoft.com/en-us/sysinternals/

Eduardo Sánchez Toril CEO AllPentesting formacion@allpentesting.es

- https://github.com/volatilityfoundation/volatility/wiki/Linux
- https://github.com/volatilityfoundation/volatility/wiki/Mac
- https://github.com/volatilityfoundation/profiles
- https://github.com/volatilityfoundation/volatility/wiki/Command-Reference
- https://www.nirsoft.net/utils/usb_devices_view.html
- https://www.the-sz.com/products/usbid/
- https://www.epochconverter.com/hex
- https://docs.microsoft.com/en-us/sysinternals/
- https://accessdata.com/product-download
- https://www.sleuthkit.org/autopsy/
- https://www.volatilityfoundation.org/
- https://sqlitebrowser.org/