2021년도 2학기 바이오빅데이터와데이터마이닝 중간고사 보고서

이화여자대학교 컴퓨터공학과 1871056 한지수

1번 a) 문제 풀이

Apriori 원리에 따라 데이터베이스로부터 각 원소 항목의 지지도를 구하고자 합니다.

k=1 조건부터 시작하여 1-itemset → 2-itemset → 3-itemset 순으로 빈발항목집합을 구합니다. Count는 편의상 분자만 표기하였습니다.

k=1	Count	Support(%)
{a}	4	<u>66</u>
{b}	5	<u>83</u>
{c}	4	<u>66</u>
{d}	3	<u>50</u>
{e}	2	33

k=2	Count	Support(%)		
{a,b}	4	<u>66</u>		
{a,c}	3	<u>50</u>		
{a,d}	2	33		
{b,c}	4	<u>66</u>		
{b,d}	3	<u>50</u>		
{c,d}	2	33		

k=3	Count	Support(%)
{a,b,c}	3	<u>50</u>
{b,c,d}	2	33
{a,c,d}	1	16

Minsup(=support threshold 50)를 만족하는 3원소 집합은 1개이므로 4원소 집합으로 확장 불가. 알고리즘은 여기서 중단

Support threshold 를 고려하여 이를 만족하는 상위 빈발항목집합은 {b,d}, {a,b,c}이며, 이를 바탕으로 연관 규칙을 생성하게 된다.

∴ Apriori 원리를 통해 추출된 빈발항목집합: {a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {b, d}, {a, b, c}

1번 b) 문제 풀이

상위빈발항목집합 {b,d}, {a,b,c}를 바탕으로 연관 규칙을 구한다.

연관 규칙	Confidence
$\{b\} o \{d\}$	$c({b} \to {d}) = \frac{\sigma({b,d})}{\sigma({b})} = \frac{3}{5} = 0.75$
$\{a\} \rightarrow \{b,c\}$	$c(\{a\} \to \{b,c\}) = \frac{\sigma(\{a,b,c\})}{\sigma(\{a\})} = \frac{3}{4} = 0.75$
$\{a,b\} \to \{c\}$	$c(\{a,b\} \to \{c\}) = \frac{\sigma(\{a,b,c\})}{\sigma(\{a,b\})} = \frac{3}{4} = 0.75$
$\{a,c\} \rightarrow \{b\}$	$c(\{a,c\} \to \{b\}) = \frac{\sigma(\{a,b,c\})}{\sigma(\{a,b\})} = \frac{3}{4} = 0.75$
$\{b\} \rightarrow \{a,c\}$	$c({b} \rightarrow {a,c}) = \frac{\sigma({a,b,c})}{\sigma({b})} = \frac{3}{5} = 0.6$
$\{b,c\} \to \{a\}$	$c(\{b,c\} \to \{a\}) = \frac{\sigma(\{a,b,c\})}{\sigma(\{b,c\})} = \frac{3}{4} = 0.75$
$\{c\} \rightarrow \{a,b\}$	$c(\{c\} \to \{a,b\}) = \frac{\sigma(\{a,b,c\})}{\sigma(\{c\})} = \frac{3}{4} = 0.75$

오른쪽의 표를 참고하여 $Confidence(\%) \ge 60(=confidence\ threshold)$ 를 만족하는 연관규칙은 다음과 같습니다.

:.추출된 연관 규칙

- $\{b\} \rightarrow \{d\}$
- $\{a\} \rightarrow \{b,c\}$
- $\{a,b\} \rightarrow \{c\}$
- $\{a,c\} \rightarrow \{b\}$
- $\{b\} \rightarrow \{a,c\}$
- $\{b,c\} \rightarrow \{a\}$
- $\{c\} \rightarrow \{a,b\}$

문제 풀이 방향

Tid	Refund	Refund Marital Taxable Status Income			
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married 75K		No	
10	No	Single	90K	Yes	

Cheat 클라스를 예측하기 위한 결정트리를 위해 각 분기에 비교할 3가지 속성은 다음과 같습니다.

- Refund 명목형 (이진: Yes, No) 속성
- Marital Status 명목형 (다중: Single, Married, Divorced) 속성
- Taxable Income (60K~220K) 연속형 속성

이 때 최선의 분할이 되는 최선의 속성을 고르기 위해서는 셋 중에서 최선의 information gain을 주는 것을 골라야 하며, Marital Status는 속성 특성으로 다중 분할이 가능한 점을 고려하면 다음과 같이 6가지 비교가 필요합니다.

- Refund의 이진 분할 속성에서 나오는 Gini(Children)
- Marital Status 의 Multi-way split({Single},{Married}, {Divorced})의 Gini
- Marital Status 의 Two-way split의 Gini
 - {Single, Married}, {Divorced}
 - {Single, Divorced}, {Married}
 - {Married, Divorced}, {Single}
- •Taxable Income의 GINI 중 split position을 고려한 가장 낮은 Gini값

즉, 본 문제를 해결하기 위해 위 6가지 경우의 수 Gini 값 구하여 분기마다 최선의 속성을 구하고자 합니다. (Gini값은 소수점 셋째자리에서 버림하여 표현됩니다.)

첫 번째 분기 속성 고르기

1. Refund의 Gini

		Ch	Gini(t)				
		Yes	No	Girii(t)			
Defined	Yes	0	3	0			
Refund	No	3	4	0.489			
Gini = 0.342							

2. Marital Status 의 ({Single},{Married}, {Divorced})의 Gini

		Ch	Gini(t)	
		Yes	No	Girii(t)
	{Single}	2	2	0.5
Marital Status	{Married}	0	4	0
Ciaiao	{Divorced}	1	1	0.5
Gini = <u>0.3</u>	<u> </u>			

3. Marital Status 의 ({Single, Married}, {Divorced})의 Gini

		Ch	Gini(t)					
		Yes	No	Girii(t)				
Marital Status	{S, M}	2	6	0.375				
	{D}	1	1	0.5				
Gini = 0.4								

4. Marital Status의 ({Single, Divorced}, {Married}) 의 Gini

		Ch	Gini(t)			
		Yes	No	Girii(t)		
Marital	{S, D}	3	3	0.5		
Status	{M}	0	4	0		
Gini = <u>0.3</u>						

5. Marital Status 의 ({Married, Divorced}, {Single}) 의 Gini

		Ch	- Gini(t)		
		No			
Marital Status	{M, D}	1	5	0.277	
	{S}	2	2	0.5	
Gini = 0.3					

6. Taxable Income의 Gini 중 split position을 고려한 가장 낮은 Gini

Sorted Value		60		7	0	7	5	8	5	9	0	9	5	1(00	12	20	12	125		220			
Split	55		6	5	72		80		87		87 9		92		9	7	11	10	12	22	17	72	23	30
Position	<=	>	<=	>	<=	^	\=	>	<=	>	<=	>	\=	>	\=	>	\=	>	\=	^	<=	>		
Yes	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0	3	0		
No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0		
Gini	0.4	20	0.4	100	0.3	375	0.3	43	0.4	17	0.4	00	0.3	<u>800</u>	0.3	43	0.3	75	0.4	00	0.4	20		

Tid	Refund	Marital Status	Taxable Income	Cheat		
1	Yes	Single	125K	No		
2	No	Married	100K	No		
3	No	Single	70K	No		
4	Yes	Married	120K	No		
5	No	Divorced	95K	Yes		
6	No	Married	60K	No		
7	Yes	Divorced	220K	No		
8	No	Single	85K	Yes		
9	No	Married 75K		No		
10	No	Single	90K	Yes		

첫 번째 분기 속성 고르기 결론

가장 낮은 Gini Index를 가지는 경우의 수는 다음과 같습니다.

- 2. Marital Status 의 ({Single},{Married}, {Divorced})
- 4. Marital Status 의 ({Single, Divorced}, {Married})
- 6. Taxable Income ({≤97},{>97})
- 이 중에서 어떤 경우를 분기 속성으로 고르는지에 따라 새로운 의사결정트리가 만들어집니다.

본 문제에서는 4번 속성을 고르기로 결정하였으며, 이에 따라 만들어지는 결정 트리는 다음과 같습니다.

Marital Status이 Married인 경우 Cheat=No로 바로 분류 가능하며, 이에 따라 남은 노드인 (Single, Divorced)인 경우에 대하여 분기 속성을 고르도록 하겠습니다.

두 번째 분기 속성 고르기 Marital Status가 {Single, Divorced}에 해당되는 instance인 1,3,5,7,8,10에 대하여 속성을 고르고자 합니다.

1. Refund의 Gini

		Ch	eat	Gini(t)
		Yes	No	Gini(t)
Refund	Yes	0	2	0
neiulia	No	3	1	0.375
Gini = <u>0.2</u>	<u>25</u>			

2. Marital Status 의 ({Single}, {Divorced})의 Gini

		Ch	Cheat						
		Yes	No	Gini(t)					
Marital	{Single}	2	2	0.5					
Status	{Divorced}	1	1	0.5					
Gini = 0.5	-								

3. Taxable Income의 Gini 중 split position을 고려한) 가장 낮은 Gini

Sorted Value (K)		70		8	85 90 95			85		5	5 12			220	
Split Position (K)	6	5	7	77 87		7	92		110		172		230		
Split Fosition (K)	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	
Yes	0	3	0	3 1		2	2	1	3	0	3	0	3	0	
No	0	3	1	2	1	1 2		2	1	2	2	1	2	1	
GINI(t)	1	0.5	0	0 0.48 0		0.5 0.5		0.444	0.375	0	0.48	0	0.48	0	
GINI	0	.5	0	0.4 0.		0.5 0.444		.44 <u>0.25</u>			0	.4	0.4		

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
3	No	Single	70K	No
5	No	Divorced	95K	Yes
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
10	No	Cit-	0014	Van
10	No	Single	90K	Yes

두 번째 분기 속성 고르기 결론

가장 낮은 Gini Index 0.25를 가지는 경우의 수는 다음과 같습니다.

- 1. Refund의 Gini
- 3. Taxable Income ({≤110K},{>110K})

이 중에서 어떤 경우를 분기 속성으로 고르는지에 따라 새로운 의사결정트리가 만들어집니다.

본 문제에서는 3번 속성을 고르기로 결정하였으며, 이에 따라 만들어지는 결정트리는 다음과 같습니다.

Taxable Income이 {>110}) 인 경우 Cheat=No로 바로 분류 가능하며, 이에 따라 남은 노드인 ({≤110})인 경우에 대하여 분기 속성을 고르도록 하겠습니다.

세 번째 분기 속성 고르기 Marital Status가 {Single, Divorced}이며, Taxable Income이 {≤110K} 에 해당되는 instance인 3,5,8,10에 대하여 속성을 고르고자 합니다.

1. Refund의 Gini

		Ch	eat	Gini(t)
		Yes	No	Girii(t)
Refund	Yes	0	0	1
neiuria	No	1	3	0.375
Gini = 0.3	375			

2. Marital Status 의 ({Single}, {Divorced})의 Gini

		Ch	eat	Gini(t)		
		Yes	Gini(t)			
Marital	{Single}	2	1	0.444		
Status	{Divorced}	1	0	0		
Gini = 0.3	333					

3. Taxable Income의 Gini 중 split position을 고려한 가장 낮은 Gini

Sorted Value (K)		70		8	5	9	0		95			
Split Position (K)	6	65		7	87		9	2	100			
Split Fosition (K)	<=	<= >		>	<=	>	<=	>	<=	>		
Yes	0	2	0	3	1	2	2	1	3	0		
No	0	0 2		1 0		0	1	0	1	0		
GINI(t)	1	1 0.5		0	0.5	0	0.444	0	0.375	0		
GINI	0.5 <u>0</u>		2	0.:	25	0.3	333	375				

Tid	Refund	Marital Status	Taxable Income	Cheat
3	No	Single	70K	No
5	No	Divorced	95K	Yes
8	No	Single	85K	Yes
10	No	Single	90K	Yes

세 번째 분기 속성 고르기 결론 및 최종 결론

가장 낮은 Gini Index 0을 가지는 경우의 수는 다음과 같습니다.

3. Taxable Income ({≤77K},{>77K})

불순도 척도인 Gini index가 0인 점으로 보아 모든 레코드가 하나의 클래스에 속하는 경우에 속함을 알 수 있습니다. 이에 따라 만들어지는 결정 트리는 다음과 같습니다.

3번 조건을 적용하면서 모든 데이터가 분류 완료되며, 완성된 결정 트리는 다음과 같습니다.

breast-cancer-wisconsin.data 데이터셋 소개

5. Number of Instances: 699 (as of 15 July 1992)

6. Number of Attributes: 10 plus the class attribute

7. Attribute Information: (class attribute has been moved to last column)

# Attribute		Domain
 Sample code numbe 	r	id number
Clump Thickness		1 - 10
3. Uniformity of Cell Siz	е	1 - 10
4. Uniformity of Cell Sha	ape	1 - 10
Marginal Adhesion		1 - 10
6. Single Epithelial Cell	Size	1 - 10
7. Bare Nuclei		1 - 10
8. Bland Chromatin		1 - 10
Normal Nucleoli		1 - 10
10. Mitoses		1 - 10
11. Class:	(2 for benign,	4 for malignant)

8. Missing attribute values: 17

There are 16 instances in Groups 1 to 6 that contain a single missing (i.e., unavailable) attribute value, now denoted by "?".

9. Class distribution: Benign: 458 (65.5%) Malignant: 241 (34.5%) - 699 instance (단, 결측치는 17개 객체에 존재하며 "?", NA로 명시되어있다. 모든 속성 데이터를 가지고 있는 객체는 682개이다.)

- 10개 속성과 class attribute로 구성되어있다.

1. Sample code number (단순 id 숫자이므로 결정트리 속성에 제외)

2. Clump Thickness	1-10 연속형 속성
3. Uniformity of Cell Size	1-10 연속형 속성
4. Uniformity of Cell Shape	1-10 연속형 속성
5. Marginal Adhesion	1-10 연속형 속성
6. Single Epithelial Cell Size	1-10 연속형 속성
7. Bare Nuclei	1-10 연속형 속성
8. Bland Chromatin	1-10 연속형 속성
9. Normal Nucleoli	1-10 연속형 속성
10. Mitoses	1-10 연속형 속성
11. Class	(2는 양성. 4는 음성으로 표기)

⇒ 결정트리를 통해 breast-cancer-wisconsine.data 를 통해 Class(11번째 속성)을 분류하고자 합니다.

breast-cancer-wisconsin.names

midterm.R 코드 파이프라인 및 결정트리 결과

- 1. Dataset Preperation
 - a. 데이터 셋의 column name 수정 (2-11행: a-i, class)
 - b. 결측치 처리: "?", NA 가진 instance
- 2. Split training set and test set (train: test = 0.7:0.3)
- 3. Training set의 Decision Tree: ctree() "conditional inference tree", Decision Tree인 bio_ctree 생성
- 4. Classification with test set and check accuracy
- ⇒ bio_ctree: 노드 1,2,4,7에서 4개의 분할 생성

Train dataset = 480 instances, Test dataset = 202 instances

Test set accuracy: 72.4444%

- ▶ 본 문제에는 <u>2-10행 중 3,4,5,7 행(Column b,c,d,f) 속성이 결정트리 분류 속성</u>에 들어갔습니다.
- 난수 생성 등의 컴퓨터에 세팅된 여러 변수로 인해 코드 실행시 다른 결정 트리 결과가 나올 수 있습니다.
- Gini index는 소수 셋째자리에서 버림 처리되었습니다.
- ctree 개념은 p-test에 의한 significance를 기준으로 분기가 됩니다. 현재 비교자하는 gini index와 달라 비교 결과가 상이하게 나올 가능성이 존재합니다.

생성된 bio_ctree 결정트리

첫 번째 분기 속성 고르기

1. Column b의 Gini 중 split position을 고려한 가장 낮은 Gini

Split Position	1	1	2	2	3	3	4	4		5		6		7		3	9		1	0
Split Position	\=	^	\=	^	\ 	^	<=	>	<=	>	\=	>	<=	>	<=	^	\=	>	\=	>
Class 2	248	47	274	21	276	19	292	3	292	3	292	3	293	2	294	1	295	0	295	0
Class 4	2	171	8	165	9	144	50	123	72	101	92	81	107	66	124	49	126	47	173	0
GINI(t)	0.015	0.338	0.067	0.207	0.055	0.200	0.249	0.046	0.317	0.056	0.364	0.068	0.391	0.057	0.417	0.039	0.419	0	0.466	1
GINI	0.1	66	0.1	17	<u>0.1</u>	<u>13</u>	0.1	94	0.2	259	0.3	311	0.3	343	0.3	376	0.3	77	0.4	66

2. Column c의 Gini 중 split position을 고려한 가장 낮은 Gini

Split Position	_	1	2	2	3	3	4	4		5		6		7		7 8		3	9		10	
Split Position	<=	^	\=	^	=>	^	<=	^	<=	^		^	\ =	\	=>	>	<=	>	<=	>		
Class 2	229	66	266	29	284	11	288	7	290	5	292	3	294	1	295	0	295	0	295	0		
Class 4	0	173	7	166	25	148	48	125	73	100	97	76	115	58	133	40	137	36	173	0		
GINI(t)	0	0.399	0.049	0.253	0.148	0.128	0.244	0.100	0.321	0.090	0.374	0.073	0.404	0.033	0.428	0	0.433	0	0.466	1		
GINI	0.2	204	0.1	34	0.1	41	0.2	0.204 0.269		0.3	23 0.357		7 0.391		0.399		0.466					

첫 번째 분기 속성 고르기

3. Column e의 Gini 중 split position을 고려한 가장 낮은 Gini

Split Position	_	1	2	2	3	3	4	4	ţ	5	6	3	7	7	8	3	9)	1	0
Split Position	\=	^	=>	^	\ 	^	<=	>	<=	>	\ 	>	<=	^	<=	^		^	\=	^
Class 2	28	267	266	29	283	12	288	7	291	4	292	3	293	2	294	1	294	1	295	0
Class 4	0	173	13	160	41	132	75	98	100	73	131	42	138	35	150	23	151	22	173	0
GINI(t)	0	0.477	0.088	0.259	0.221	0.152	0.327	0.124	0.380	0.098	0.427	0.124	0.435	0.102	0.447	0.079	0.448	0.083	0.466	1
GINI	0.4	48	0.1	57	0.2	:00	0.2	282	0.3	334	0.3	98	0.4	09	0.4	128	0.4	30	0.4	-66

4. Column f의 Gini 중 split position을 고려한 가장 낮은 Gini

Split Position	,	1	2	2	3	3	4	1	5	5	6	6	7	7	8	3	Ç	9	1	0
Split Position	\ \	^	\= \	۸	\=	۸	\ \	^	\=	^	\ =	^	\ \	^	\ \	^	<=	^	<=	>
Class 2	261	34	271	24	279	16	284	11	291	4	291	4	291	4	293	2	293	2	295	0
Class 4	14	159	22	151	35	138	42	131	58	115	62	111	68	105	78	95	84	89	173	0
GINI(t)	0.096	0.290	0.138	0.236	0.198	0.186	0.224	0.142	0.277	0.064	0.289	0.067	0.307	0.070	0.332	0.040	0.346	0.042	0.466	1
GINI	0.1	76	0.1	74	0.1	94	0.1	99	0.2	23	0.2	234	0.2	:52	0.2	271	0.2	287	0.4	166

첫 번째 분기 속성 고르기 결론

가장 낮은 Gini Index 0.113을 가지는 경우의 수는 다음과 같습니다.

- Column b의 ({≤3},{>3})

가장 낮은 Gini Index에 따라 만들어지는 결정 트리는 다음과 같습니다.

노드 1에서 Column b의 특성에 따라 노드 2,7로 나뉨을 볼 수 있습니다.

다음 분기는 Column b가 {≤3}인 경우에 대하여 분기 속성을 고르도록 하겠습니다.

[첫번째 분기 속성을 바탕으로 분기된 결정트리]

두 번째 분기 속성 고르기

1. Column b의 Gini 중 split position을 고려한 가장 낮은 Gini

Split Position	_	1	2	2	3	3
Split Position	<=	>	<=	>	<=	>
Class 2	248	47	274	21	287	8
Class 4	2	171	7	166	29	144
GINI(t)	0.015	0.338	0.048	0.199	0.166	0.099
GINI	0.1	66	0.1	08	0.1	44

2. Column c의 Gini 중 split position을 고려한 가장 낮은 Gini

Split Position	,	1	2	2	3	3	4	1	Ę	5	6	6	7	7	8	3	g)	1	0
Split Position	<=	>	\=	>	=>	^	\=	^	\=	>	<=	>	<=	>	\=	>	<=	>	<=	>
Class 2	229	58	265	22	283	4	286	1	286	1	287	0	287	0	287	0	287	0	287	0
Class 4	0	29	5	24	12	17	19	10	26	3	28	1	28	1	29	0	29	0	29	0
GINI(t)	0	0.444	0.036	0.499	0.078	0.308	0.116	0.165	0.152	0.375	0.161	0	0.161	0	0.166	0	0.166	0	0.166	0
GINI	0.1	22	0.1	03	0.0	93	0.1	18	0.1	55	0.1	61	0.1	61	0.1	66	0.1	66	0.1	66

두 번째 분기 속성 고르기

3. Column d의 Gini 중 split position을 고려한 가장 낮은 Gini

Split Position	_	I	2	2	3	3	2	1	ţ	5	6	5	-	7	8	3	Ç	9	1	0
Split Position	<=	^	\=	^	\=	^	=>	>	<=	^	\ 	>	<=	>	<=	>	<=	^	<=	>
Class 2	244	43	265	22	280	7	283	4	284	3	286	1	286	1	286	1	286	1	287	0
Class 4	11	18	14	15	17	12	23	6	25	4	26	3	26	3	27	2	27	2	29	0
GINI(t)	0.082	0.416	0.095	0.482	0.107	0.465	0.139	0.48	0.148	0.489	0.152	0.375	0.152	0.375	0.157	0.444	0.157	0.444	0.166	1
GINI	0.1	46	0.1	40	0.1	29	0.1	49	0.1	56	0.1	55	0.1	55	0.1	60	0.1	60	0.1	66

4. Column f의 Gini 중 split position을 고려한 가장 낮은 Gini

Split Position	1		2	2	3	3	2	1	ţ	5	6	6	7	7	8	3	Ó)	1	0
Split Position	\= =	>		^		^	\= 	>	<=	>	<=	^	<=	^	<=	>	<=	>	<=	>
Class 2	259	28	269	18	276	11	280	7	282	4	285	2	285	2	285	2	285	2	287	0
Class 4	1	28	2	27	6	23	8	21	11	18	12	17	14	15	15	14	16	13	29	0
GINI(t)	0.007	0.5	0.014	0.48	0.041	0.437	0.054	0.375	0.072	0.297	0.077	0.188	0.089	0.207	0.095	0.218	0.100	0.231	0.166	1
GINI	0.0	94	0.0	80	0.0)84	0.0	82	0.0)87	0.0	184	0.0	95	0.1	101	0.1	06	0.1	66

두 번째 분기 속성 고르기 결론

가장 낮은 Gini Index 0.080을 가지는 경우의 수는 다음과 같습니다.

- Column f의 ({≤2},{>2})

가장 낮은 Gini Index에 따라 만들어지는 결정 트리는 다음과 같습니다.

노드 2에서 Column f의 특성에 따라 단말 노드인 노드 3, 노드 4로 나뉨을 볼 수 있습니다.

Column b가 {≤3}이고, Column f가 {≤2}인 경우는 단말 노드로 결정되었음을 볼 수 있습니다.

다음 분기는 Column b가 {≤3}이고, Column f가 {>2} 인 경우에 대하여 분기 속성을 고르도록 하겠습니다.

〔두번째 분기 속성을 바탕으로 분기된 결정트리〕

세 번째 분기 속성 고르기

1. Column b의 Gini 중 split position을 고려한 가장 낮은 Gini

Split Position	-	1	4	2	(3
Split Position	<=	>	<=	>	<=	>
Class 2	12	6	14	4	18	0
Class 4	2	25	6	21	27	0
GINI(t)	0.244	0.312	0.42	0.268	0.48	1
GINI	0.2	291	0.3	336	0.	48

2. Column c의 Gini 중 split position을 고려한 가장 낮은 Gini

Split Position	•	1	4	2	3	3	2	1	Ę	5	6	,	7	7	8	3	9)	1	0
Split Position	\ =	>	\ =	۸	\=	^	\=	>	<=	>	<=	>	<=	>	\=	^	<=	>	<=	>
Class 2	10	8	15	3	17	1	18	0	18	0	18	0	18	0	18	0	18	0	18	0
Class 4	0	27	3	24	12	15	17	10	24	3	26	1	26	1	27	0	27	0	27	0
GINI(t)	0	0.352	0.277	0.197	0.485	0.117	0.499	0	0.489	0	0.48347 107	0	0.483	0	0.48	1	0.48	1	0.48	1
GINI	0.2	274	0.2	229	0.3	354	0.3	88	0.4	.57	0.4727	27273	0.4	72	0.4	48	0.4	48	0.	48

세 번째 분기 속성 고르기

3. Column d의 Gini 중 split position을 고려한 가장 낮은 Gini

Split Position	-	1	2	2	3	3	4	1	Ę	5	6	5	7	7	8	3	9	9	1	0
Split Position	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
Class 2	12	6	13	5	14	4	15	3	16	2	17	1	17	1	17	1	17	1	18	0
Class 4	9	18	12	15	15	12	21	6	23	4	24	3	24	3	25	2	25	2	27	0
GINI(t)	0.489	0.375	0.499	0.375	0.499	0.375	0.486	0.444	0.483	0.444	0.485	0.375	0.485	0.375	0.481	0.444	0.481	0.444	0.48	1
GINI	0.4	128	0.4	144	0.4	-55	0.4	77	0.4	78	0.4	75	0.4	75	0.4	79	0.4	179	0.	48

4. Column f의 Gini 중 split position을 고려한 가장 낮은 Gini

Split Position	3	3	4	1	5	5	(6	-	7	8	3	Ć	9	1	0
Split Position	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
Class 2	7	11	11	7	16	2	16	2	16	2	16	2	16	2	18	0
Class 4	4	23	5	22	9	18	10	17	12	15	13	14	14	13	27	0
GINI(t)	0.462	0.437	0.429	0.366	0.460	0.18	0.473	0.188	0.489	0.207	0.494	0.21875	0.497	0.231	0.48	1
GINI	0.4	143	0.3	388	0.3	36	0.3	353	0.3	883	0.3	396	0.4	108	0.4	48

세 번째 분기 속성 고르기 결론

가장 낮은 Gini Index 0.229을 가지는 경우의 수는 다음과 같습니다.

- Column c의 ({≤2},{>2})

[세번째 분기 속성을 바탕으로 분기된 결정트리]

네 번째 분기 속성 고르기

1. Column b의 Gini 중 split position을 고려한 가장 낮은 Gini

Split Position	4	1	Ę	5	6	3	7	7	8	3	Ş)	1	0
Split Position	<=	^	\=	>	<=	>	<=	^	<=	>	<=	>	\ 	>
Class 2	5	3	5	3	5	3	6	2	7	1	8	0	8	0
Class 4	21	123	43	101	63	81	78	66	95	49	97	47	144	0
GINI(t)	0.310	0.046	0.186	0.056	0.136	0.068	0.132	0.057	0.127	0.039	0.140	0	0.099	1
GINI	0.0	<u>191</u>	0.0	97	0.0	99	0.0	98	0.0)98	0.0	97	0.0	99

2. Column c의 Gini 중 split position을 고려한 가장 낮은 Gini

Split Position	1	1	2	2	3	3	4	1	Ę	5	(6	7	7	8	3	9)	1	0
Split Position	\ \	^	\"	^	<=	^	\=	^	\ =	۸	<=	^	<=	>	\ \	^	<=	>	\=	>
Class 2	0	8	1	7	1	7	2	6	4	4	5	3	7	1	8	0	8	0	8	0
Class 4	0	144	2	142	13	131	29	115	47	97	69	75	87	57	104	40	108	36	144	0
GINI(t)	1	0.099	0.444	0.089	0.132	0.096	0.120	0.094	0.144	0.076	0.126	0.073	0.137	0.033	0.132	0	0.128	0	0.099	1
GINI	0.0)99	0.0	96	0.0)99	0.0	99	0.0)99	0.0	99	0.0)98	0.0)97	0.0	98	0.0	99

네 번째 분기 속성 고르기

3. Column d의 Gini 중 split position을 고려한 가장 낮은 Gini

Split Position	1		2		3		4		5		6		7		8		9		10	
Split Position	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
Class 2	4	4	4	4	6	2	7	1	8	0	8	0	8	0	8	0	8	0	8	0
Class 4	20	124	24	120	38	106	57	87	71	73	79	65	88	56	103	41	105	39	144	0
GINI(t)	0.277	0.060	0.244	0.062	0.235	0.036	0.194	0.022	0.182	0	0.166	0	0.152	0	0.133	0	0.131	0	0.099	1
GINI	0.094		0.094 0.096 0.094		94	0.095		0.094		0.095		0.096		0.097		0.097		0.099		

4. Column f의 Gini 중 split position을 고려한 가장 낮은 Gini

Split Position	1		2		3		4		5		6		7		8		9		10	
Split Position	<=	^	\= \	۸	\ =	۸	\ \	^	\"	^	\ =	۸	\=	^	<=	>	<=	>	<=	>
Class 2	2	6	2	6	3	5	4	4	6	2	6	2	6	2	8	0	8	0	8	0
Class 4	13	131	20	124	29	115	35	109	47	97	50	94	54	90	63	81	68	86	144	0
GINI(t)	0.231	0.083	0.165	0.088	0.169	0.079	0.184	0.068	0.200	0.039	0.191	0.040	0.18	0.042	0.199	0	0.188	0	0.099	1
GINI	0.098		0.099		0.098		0.098		0.095		0.096		0.096		0.093		0.099		0.099	

네 번째 분기 속성 고르기 결론 및 최종 결론

가장 낮은 Gini Index 0.091을 가지는 경우의 수는 다음과 같습니다.

- Column b의 ({≤1},{>1})

가장 낮은 Gini Index에 따라 만들어지는 ctree 결정 트리는 다음과 같습니다.

Column c의 ({≤4},{>4})가 선택된 이유는 간단합니다. 불순도 척도를 나타내는 다양한 방법 중 ctree는 p-test를 거친 significance를 기준으로 분류됩니다. Gini index에 따라 분류를 시도하여 비교해본다면 분명 기준 측면이나 여러가지 고려사항이 달라 다르게 결과가 나올 수 있다고 해석하였습니다.

노드 7에서 Column c의 특성에 따라 모두 단말 노드인 노드 8, 노드 9로 나뉨을 볼 수 있습니다.

Column b가 {>3}인 경우에 대해서도 끝까지 모두 단말 노드로 분류되며, 분류가 완료되었음을 알 수 있습니다.

이에 따라 모든 instance가 단말 노드로 분류되며, 결정 트리 분기가 완료되었습니다.

[최종적으로 생성된 bio ctree 결정트리]