数据结构与算法 介绍

张晓平

数学与统计学院

Email: xpzhang.math@whu.edu.cn

 $Homepage: \ http://staff.whu.edu.cn/show.jsp?n=Zhang\%20Xiaoping$

目录

- 1 数据结构起源
- ② 基本概念和术语
- ③ 逻辑结构和物理结构
- 4 抽象数据类型
- 5 算法

If you give someone a program, you will frustrate them for a day; if you teach them how to program, you will frustrate them for a lifetime.

图:参考用书

- 1 数据结构起源
- 2 基本概念和术语
- ③ 逻辑结构和物理结构
- 4 抽象数据类型
- 5 算法

数值计算

非数值计算

数据结构是一门研究非数值计算的程序设计问题中的操作对象,以及它们之间的关系和操作等相关问题的学科.

(a) Donald Knuth(1938-)

THE CLASSIC WORK EXTENDED AND REFINED

The Art of Computer Programming

VOLUME 4A
Combinatorial Algorithms
Part 1

DONALD E. KNUTH

(b) The Art of Computer Programing

(a) Donald Knuth(1938-)

THE CLASSIC WORK EXTENDED AND REFINED

The Art of Computer Programming VOLUME 4A Combinatorial Algorithms Part 1

DONALD E. KNUTH

(b) The Art of Computer Programing

1968年, Donald教授较系统地阐述了数据的逻辑结构和存储结构及其操作, 开创了数据结构的课程体系.

(a) Donald Knuth(1938-)

THE CLASSIC WORK
EXTENDED AND REFINED

The Art of
Computer
Programming
VOLUME 4A
Combinatorial Algorithms
Part 1

DONALD E KNUTH

(b) The Art of Computer Programing

1968年, Donald教授较系统地阐述了数据的逻辑结构和存储 结构及其操作, 开创了数据结构的课程体系.

程序设计 = 好的结构 + 好的算法

- 1 数据结构起源
- ② 基本概念和术语
- ③ 逻辑结构和物理结构
- △ 抽象数据类型
- 5 算法

描述客观事物的符号,是计算机中可以操作的对象,是能被计算机识别,并输入给计算机处理的符号集合.

描述客观事物的符号,是计算机中可以操作的对象,是能被计算机识别,并输入给计算机处理的符号集合.

数据包括

- 整型、实型等数值类型;
- 字符及声音、图像、视频等 非数值类型。

(描述客观事物的符号,是计算机中可以操作的对象,是能被计算机识别,并输入给计算机处理的符号集合.

数据包括

- 整型、实型等数值类型;
- 字符及声音、图像、视频等 非数值类型。

组成数据的、有一定意义的基本单位,在 计算机中通常作为整体来处理.

组成数据的、有一定意义的基本单位,在 计算机中通常作为整体来处理.

- 在人类中,数据元素就是人;
- 在畜类中,数据元素为牛、马、猪、狗、羊等.

一个元素可由若干个数据项组成.

一个元素可由若干个数据项组成.

如:人可以有耳、鼻、眼、嘴、手、脚等这些数据项,也可以有姓名、年龄、性别、出生地址、联系电话等数据项.

一个元素可由若干个数据项组成.

如: 人可以有耳、鼻、眼、嘴、 手、脚等这些数据项, 也可以有 姓名、年龄、性别、出生地址、 联系电话等数据项.

性质相同的数据元素的集合,它是 数据的子集。 数据对象

性质相同的数据元素的集合,它是数据的子集。

所谓性质相同指的是数据元素具有相同数量和 类型的数据项。

实际应用中,处理的数据元素通常具有相同性质,在不产生混淆的情况下,将数据对象简称 为数据。

相互之间存在一种或多种特定关系的数据元素的集合.

相互之间存在一种或多种特定关系的数据 元素的集合.

行算机中,数据元素并不是孤立、杂乱无序的,而是具有 内在联系的;

数据元素之间存在的一种或多种特定关系,就是数据的组织形式.

- 1 数据结构起源
- 2 基本概念和术语
- ③ 逻辑结构和物理结构
- △ 抽象数据类型
- 5 算法

1 数据结构起源

2 基本概念和术语

- ③ 逻辑结构和物理结构
 - 逻辑结构
 - 物理结构

4 抽象数据类型

5 算法

张晓平

数据对象中数据元素之间的相互关系。

数据对象中数据元素之间的相互关系。

- 集合结构
- 线性结构
- 树形结构
- 图形结构

其中的元素除了同属于一个集合外,之间 没有其他关系.

其中的元素除了同属于一个集合外,之间没有其他关系.

◆ロ > ◆昼 > ◆差 > 差 のQの

线性结构

其中的数据元素之间是一对一的关系.

(其中的数据元素之间是一对一的关系.

其中的数据元素之间是一对多的层次关系.

其中的数据元素之间是一对多的层次关系.

其中的数据元素之间是多对多的关系.

其中的数据元素之间是多对多的关系.

张晓平

在用示意图表示数据的逻辑结构时,请注意:

- 将每一个数据元素看做一个结点,用圆圈表示;
- 元素之间的逻辑关系用结点之间的连线表示,如果这个关系是有方向的,那么用带箭头的连线表示。

21 / 67

张晓平 数据结构与算法

在用示意图表示数据的逻辑结构时,请注意:

- 将每一个数据元素看做一个结点,用圆圈表示;
- 元素之间的逻辑关系用结点之间的连线表示,如果这个关系是有方向的,那么用带箭头的连线表示。

逻辑结构是针对具体问题的,是为了解决某个问题。在对问题理解的基础上,选择一个合适的数据结构表示数据元素之间的逻辑关系。

1 数据结构起源

2 基本概念和术语

- ③ 逻辑结构和物理结构
 - 逻辑结构
 - 物理结构

4 抽象数据类型

5 算法

张晓平

数据的逻辑结构在计算机中的存储方 式. 物理结构

数据的逻辑结构在计算机中的存储方式.

数据的存储结构应正确反映数据元素之间的逻辑关系。如何存储数据 元素之间的逻辑关系,是实现物理 结构的重点和难点。

数据的逻辑结构在计算机中的存储方式.

数据的存储结构应正确反映数据元素之间的逻辑关系。如何存储数据 元素之间的逻辑关系,是实现物理 结构的重点和难点。

- 顺序存储
- 链式存储

把数据元素存放在连续的存储单元 里,其数据间的逻辑关系与物理关 系一致。

把数据元素存放在连续的存储单元 里,其数据间的逻辑关系与物理关 系一致。

把数据元素存放在任意的存储单元 里,这组存储单元可以连续,也可 以不连续。

把数据元素存放在任意的存储单元 里,这组存储单元可以连续,也可 以不连续。

逻辑结构是面向问题的,而物理结构是面向计算机的,我们的目标是将数据及其逻辑关系存储到计算机的内存中。

- 1 数据结构起源
- 2 基本概念和术语
- ③ 逻辑结构和物理结构
- 4 抽象数据类型
- 5 算法

张晓平

指一组性质相同的值的集合及定义 在此集合上的一些操作的总称。

指一组性质相同的值的集合及定义在此集合上的一些操作的总称。

在C语言中,按照取值的不同,数据类型可分为:

- 原子类型:不可分解,包括整型、浮点型、字 符型等;
- 由若干个类型组合而成,可再分解。如整型数组由若干个整型数据组成。

抽象

抽取出事物具有的普遍性的本质。

抽取出事物具有的普遍性的本质。

提炼出问题的特征,忽略非本质的细节,对 具体事物做一个概括。

抽象是一种思考问题的方式,它隐藏了繁杂的细节,只保留实现目标所必须的信息。

(Abstract Data Type, ADT) 指一个数学模型及定义在该模型上 的一组操作。

(Abstract Data Type, ADT) 指一个数学模型及定义在该模型上 的一组操作。

ADT的定义仅取决于它的一组逻辑特性,而 与其在计算机内部如何表示和实现无关。

抽象的意义在于数据类型的数学抽象特性。

例

编写计算机绘图软件时,经常会用到坐标,总会出现成对的x和y,在3D系统中还有z出现。我们不妨定义一个叫point的抽象数据类型,它有x,y,z三个变量。这样我们可以方便地操作一个point数据变量就能知道这一点的坐标。

图: 超级玛丽

ADT 抽象数据类型名 Data 数据元素之间逻辑关系的定义 Operation 操作1 初始条件 操作结果描述 操作2 操作3

33 / 67

- 1 数据结构起源
- 2 基本概念和术语
- ③ 逻辑结构和物理结构
- 4 抽象数据类型
- 5 算法


```
int i,sum=0,n=100;
for (i=1;i<=n;i++)
   sum=sum+i;
printf("%d",sum);</pre>
```

```
int i,sum=0,n=100;
sum=(n+1)*n/2;
printf("%d",sum);
```

算法

算法是解决特定问题求解步骤的描述,在 计算机中表现为指令的有限序列,并且每 条指令表示一个或多个操作.

算法

算法是解决特定问题求解步骤的描述,在 计算机中表现为指令的有限序列,并且每 条指令表示一个或多个操作.

图: 阿勒.花剌子密(约780~约850,波斯数学家)

1、输入有零个或多个输入

算法等性

1、输入 有零个或多个输入 2、输出 至少有一个或多个输出 特性 1、输入 有零个或多个输入

算法特性

2、输出 至少有一个或多个输出

3、有穷性

在执行有限步后,会自动结束而 不出现无限循环,并且每一步在 可接受的时间内完成

1、输入 有零个或多个输入

算法特性

2、输出 至少有一个或多个输出

3、有穷性

在执行有限步后,会自动结束而 不出现无限循环,并且每一步在 可接受的时间内完成

4、确定性

每一步都有确定的含义, 不出现二义性

2、输出 至少有一个或多个输出

3、有穷性

在执行有限步后,会自动结束而 不出现无限循环,并且每一步在 可接受的时间内完成

5、可行性 每一步都必须可 行,能通过执行 有限次数完成

4、确定性 每一步都有确定的含义, 不出现二义性

正确性

算法至少应该具有输入、输出和加工处理无 歧义性,能正确反映问题的需求、能得到问 题的正确答案。

- 无语法错误
- 对合法输入能产生满足要求的输出
- 对非法输入能给出满足规格的说明
- 对精心选择的甚至是刁难的测试数据都 有满足要求的输出

可读性

便于阅读、理解和交流

健壮性(鲁棒性)

当输入不合法时,也能做出相应处理,而 不是产生异常或莫名其妙的结果

时间效率高和存储量低

事后统计方法

通过设计好的测试程序和数据,利用计算机 计时器对不同算法编制的程序的运行时间进 行比较,从而确定效率的高低。

事后统计方法

通过设计好的测试程序和数据,利用计算机 计时器对不同算法编制的程序的运行时间进 行比较,从而确定效率的高低。

缺点

须依据算法事先编制好程序

时间的比较依赖于软硬件等环境因素

- 不同性能的机器上算法的表现不尽相同:
- 不同操作系统、编译器等也会影响算法的运行结果;
- CPU使用率和内存占用情况也会造成微小差异。

测试数据设计困难,且程序运行时间还与测试数据的规模有很大关系,效率高的算法在小的测试数据面前往往得不到体现。

事前分析估算方法 在编制程序前,依据统计方 法对算法进行估算。

事前分析估算方法 在编制程序前,依据统计方 法对算法进行估算。

程序运行时间取决于

- (1) 算法采用的策略、方法 (算法好坏的根本)
- (2) 编译产生的代码质量 (软件支持)
- (3) 问题的输入规模
- (4) 机器执行指令的速度 (硬件性能)

事前分析估算方法 在编制程序前,依据统计方 法对算法进行估算。

程序运行时间取决于

- (1) 算法采用的策略、方法 (算法好坏的根本)
- (2) 编译产生的代码质量 (软件支持)
- (3) 问题的输入规模
- (4) 机器执行指令的速度 (硬件性能)

程序的运行时间,依赖于算法的好坏和问题的输入规模。

◆□▶ ◆□▶ ◆重▶ ◆重▶ ■ 釣९○

```
for (i=1;i<=n;i++)</pre>
                     //执行n次
  sum += i;
sum=(n+1)*n/2; //执行1次
for (i=1;i<=n;i++)</pre>
  for (j=1; j<=n; j++) {</pre>
         //执行n \times n次
    x++;
    sum += x;
```

张晓平 数据结构与算法 42 / 67

43 / 67

张晓平 数据结构与算法

函数的渐近增长

给定两个函数f(n)和g(n),若 $\exists N \in \mathbb{N}$, s.t. $\forall n > N$, f(n)总是比g(n)大, 我们就说f(n)的增长渐近快于g(n).

函数的渐近增长

给定两个函数f(n)和g(n),

次数n	算法A	算法A'	算法B	算法B′
	(2n+3)	(2n)	(3n+1)	(3n)
1	5	2	4	3
2	7	4	7	6
3	9	6	10	9
10	23	20	31	30
100	203	200	301	300

次数n	算法C	算法C'	算法D	算法D′
	(4n+8)	(n)	$(2n^2+1)$	(n^2)
1	12	1	3	2
2	16	2	9	4
3	20	3	19	9
10	48	10	201	100
100	408	100	20 001	10 000
1000	4 008	1 000	2 000 001	1 000 000

张晓平 数据结构与算法 45 / 67

次数n	算法C	算法C'	算法D	算法D′
	(4n + 8)	(n)	$(2n^2+1)$	(n^2)
1	12	1	3	2
2	16	2	9	4
3	20	3	19	9
10	48	10	201	100
100	408	100	20 001	10 000
1000	4 008	1 000	2 000 001	1 000 000

函数的渐近增长可忽略加法 常数,并且最高次项的系数 也不重要。

45 / 67

次数n	算法E	算法E'	算法F	算法F′
	$(2n^2 + 3n + 1)$	(n^2)	$(2n^3 + 3n + 1)$	(n^3)
1	6	1	6	1
2	15	4	23	8
3	28	9	64	27
10	231	100	2 031	1 000
100	20 301	10 000	2 000 301	1 000 000

次数n	算法E	算法E'	算法F	算法F′
	$(2n^2 + 3n + 1)$	(n^2)	$(2n^3 + 3n + 1)$	(n^3)
1	6	1	6	1
2	15	4	23	8
3	28	9	64	27
10	231	100	2 031	1 000
100	20 301	10 000	2 000 301	1 000 000

最高次项的指数越大,随着n的增长,函数结果也会变得增长特别快。

次数n	算法G	算法H	算法1
	$(2n^2)$	(3n+1)	$(2n^2 + 3n + 1)$
1	2	4	6
2	8	7	15
5	50	16	66
10	200	31	231
100	20 000	301	20 301
1,000	2 000 000	3 001	2 003 001
10,000	200 000 000	30 001	200 030 001
100,000	20 000 000 000	300 001	20 000 300 001
1,000,000	2 000 000 000 000	3 000 001	2 000 003 000 001

次数n	算法 G	算法H	算法1
	$(2n^2)$	(3n + 1)	$(2n^2 + 3n + 1)$
1	2	4	6
2	8	7	15
5	50	16	66
10	200	31	231
100	20 000	301	20 301
1,000	2 000 000	3 001	2 003 001
10,000	200 000 000	30 001	200 030 001
100,000	20 000 000 000	300 001	20 000 300 001
1,000,000	2 000 000 000 000	3 000 001	2 000 003 000 001

注

当n越来越大时,3n+1的结果与 $2n^2$ 相比,几乎可以忽略不计。也就是说,随着n的不断增大, 算法G其实很接近于算法I.

4 D > 4 D > 4 E > 4 E > 9 Q Q

判断一个算法的效率时,函数中的常数与其他次要项可以忽略,而更应该关注主项(最高阶项)的阶数。

在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数, 进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度, 记作

$$T(n) = O(f(n)).$$

它表示随着n的增大,算法执行时间的增长率和f(n)的增长率相同,称为算法的渐近时间复杂度,简称为时间复杂度,其中f(n)是关于n的某个函数。

在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度, 记作

大O记法

$$T(n) = O(f(n))$$
:

它表示随着n的增大,算法执行时间的增长率和f(n)的增长率相同,称为算法的渐近时间复杂度,简称为时间复杂度,其中f(n)是关于n的某个函数。

如何分析一个算法的时间复杂度? 即如何推导大O阶? 如何分析一个算法的时间复杂度? 即如何推导大O阶?

- 1. 用常数1取代运行次数中的所有加法常数;
- 2. 在修改后的运行次数函数中,只保留最高阶项;
- 3. 如果最高阶项存在且不是1,则去除最高阶项的系数。

得到的结果就是大O阶。


```
int sum=0,n=100; //执行1次
sum=(n+1)*n/2; //执行1次
printf("%d",sum); //执行1次
```



```
int sum=0,n=100; //执行1次
sum=(n+1)*n/2; //执行第1次
sum=(n+1)*n/2; //执行第2次
sum=(n+1)*n/2; //执行第3次
sum=(n+1)*n/2; //执行第4次
sum=(n+1)*n/2; //执行第5次
printf("%d",sum); //执行1次
```

4 D F 4 DF F 4 E F E *) Q (*


```
int i;
for (i=0;i<n;i++}
//时间复杂度为O(1)的语句块
```



```
int count=1;
while (count<n){
    count*=2;
    //时间复杂度为O(1)的语句块
}
```


张晓平 数据结构与算法 54 / 67

平方阶 $O(n^2)$

```
int i, j;
for (i=0;i<n;i++)</pre>
  for (j=0;j<n;j++)</pre>
    //时间复杂度为O(1)的语句块
int i,j;
for (i=0;i<m;i++)</pre>
  for (j=0;j<n;j++)</pre>
    //时间复杂度为O(1)的语句块
int i,j;
for (i=0;i<n;i++)</pre>
  for (j=i;j<n;j++)</pre>
    //时间复杂度为O(1)的语句块
```

```
平方阶O(n^2)
```

```
int i,j;
for (i=0;i<n;i++)</pre>
  for (j=0;j<n;j++)</pre>
    //时间复杂度为O(1)的语句块
int i,j;
for (i=0;i<m;i++)</pre>
  for (j=0;j<n;j++)</pre>
    //时间复杂度为O(1)的语句块
int i,j;
for (i=0;i<n;i++)</pre>
  for (j=i;j<n;j++)</pre>
    //时间复杂度为O(1)的语句块
```

 $O(n^2)$

```
平方阶O(n^2)
int i,j;
for (i=0;i<n;i++)</pre>
  for (j=0;j<n;j++)</pre>
                                       O(n^2)
    //时间复杂度为O(1)的语句块
int i,j;
for (i=0;i<m;i++)</pre>
                                    O(m \times n)
  for (j=0;j<n;j++)</pre>
    //时间复杂度为O(1)的语句块
int i,j;
for (i=0;i<n;i++)</pre>
  for (j=i;j<n;j++)</pre>
    //时间复杂度为O(1)的语句块
```

```
平方阶O(n^2)
int i, j;
for (i=0;i<n;i++)</pre>
  for (j=0;j<n;j++)</pre>
                                         O(n^2)
     //时间复杂度为O(1)的语句块
int i, j;
for (i=0;i<m;i++)</pre>
                                      O(m \times n)
  for (j=0;j<n;j++)
     //时间复杂度为O(1)的语句块
                      因 f(n) = n + \cdots + 2 + 1 = \frac{n(n+1)}{2} = \frac{n^2}{2} + \frac{n}{2}
int i,j;
for (i=0;i<n;i++) 故时间复杂度为O(n^2).
  for (j=i;j<n;j++)</pre>
     //时间复杂度为O(1)的语句块
```

```
int i,j;
for (i=0;i<n;i++)
  function(i);

void function(int i){
  print("%d",i);
}</pre>
```

请分析时间复杂度.

```
int i,j;
for (i=0;i<n;i++)</pre>
  function(i);
void function(int i){
 print("%d",i);
                   请分析时间复杂度.
           O(n)
```

```
int i,j;
for (i=0;i<n;i++)</pre>
  function(i);
void function(int i){
  int j;
  for (j=i;j<n;j++)</pre>
    //时间复杂度为O(1)的语句块
                   请分析时间复杂度.
```

```
int i,j;
for (i=0;i<n;i++)</pre>
  function(i);
void function(int i){
  int j;
  for (j=i;j<n;j++)</pre>
    //时间复杂度为O(1)的语句块
                   请分析时间复杂度.
```

请分析时间复杂度.

```
//执行次数为1
n++;
                        //执行次数为n
function(n);
int i,j;
for (i=0;i<n;i++) //执行次数为n<sup>2</sup>
  function(i);
for (i=0;i<n;i++) //执行次数为n(n+1)/2
  for (j=i;j<n;j++)</pre>
    //时间复杂度为O(1)的语句块
                               请分析时间复杂度.
   执行次数f(n) = 1 + n + n^2 + \frac{n(n+1)}{2} = \frac{3}{5}n^2 + \frac{3}{5}n + 1
    故时间复杂度为O(n^2).
```

⟨□⟩ ⟨□⟩ ⟨≡⟩ ⟨≡⟩ ⟨≡⟩ ⟨≡⟩ ⟨○⟩

张晓平 数据结构与算法 58 / 67

Table: 常见时间复杂度

执行次数函数	阶	非正式术语
12	O(1)	常数阶
2n+3	O(n)	线性阶
$3n^2 + 2n + 1$	$O(n^2)$	平方阶
$5\log_2 n + 20$	$O(\log n)$	对数阶
$2n + 3n\log_2 n + 19$	$O(n \log n)$	$n \log n$ 於
$6n^3 + 2n^2 + 3n + 4$	$O(n^3)$	立方阶
2^n	$O(2^n)$	指数阶

Table: 常见时间复杂度

执行次数函数	阶	非正式术语
12	O(1)	常数阶
2n+3	O(n)	线性阶
$3n^2 + 2n + 1$	$O(n^2)$	平方阶
$5\log_2 n + 20$	$O(\log n)$	对数阶
$2n + 3n\log_2 n + 19$	$O(n \log n)$	$n \log n$ 阶
$6n^3 + 2n^2 + 3n + 4$	$O(n^3)$	立方阶
2^n	$O(2^n)$	指数阶

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)$$

 $\begin{array}{l}
 & E_n & \text{in} \\
 & E_n & \text$

- 最好情况是出现在第一个位置,时间复杂度为O(1);
- 最坏情况是出现在最后一个 位置,时间复杂度为O(n).

 $\begin{array}{l}
 \underline{c}_n$ 维随机数组中查找某个数字,

- 最好情况是出现在第一个位置,时间复杂度为O(1);
- 最坏情况是出现在最后一个 位置,时间复杂度为O(n).

从概率角度讲,该数字在每个位置的可能性相同,故平均查找时间为n/2。

从概率角度讲,该数字在每个位置的可能性相同,故平均查找时间为n/2。

对算法的分析,

- 一种方法是计算所有情况的平均值,这种时间复杂度的计算方法称为平均时间复杂度;
- 另一种是计算最坏情况下的时间复杂度,这种方 法称为最坏时间复杂度。

在没有特别说明的情况下,都指最坏时间复杂度。

通过计算算法所需的存储空间实现,其计算公式记作

$$S(n) = O(f(n)).$$

其中n为问题的规模,f(n)是语句关于n所占存。储空间的函数。

◆□▶ ◆圖▶ ◆豊▶ · 豊 · かんで

数据对象

数据对象

数据元素 数据元素 数据元素 数据元素

数据对象

数据元素 数据元素 数据元素 数据元素

、数据项1 数据项2 数据项1 数据项2 数据项1 数据项2 数据项1 数据项2 数据项1 数据项2

数据对象

数据元素 数据元素 数据元素 数据元素

(数据项1 | 数据项2 | 数据项1 | 数据项2 | 数据项1 | 数据项2 | 数据项1 | 数据项2

数据结构是相互之间存在一种或多种特定关系的数据元素的集合。

逻辑结构 集合结构 线性结构 树形结构 图形结构

逻辑结构 集合结构 线性结构 树形结构 图形结构

物理结构 顺序存储结构 链式存储结构

算法定义:解决特定问题求解步骤的描述, 在计算机中为指令的有限序列,且每条指令 表示一个或多个操作。

算法定义:解决特定问题求解步骤的描述, 在计算机中为指令的有限序列,且每条指令 表示一个或多个操作。

算法特性:有穷性、确定性、可行性、输入、输出

算法定义:解决特定问题求解步骤的描述, 在计算机中为指令的有限序列,且每条指令 表示一个或多个操作。

算法特性:有穷性、确定性、可行性、输入、输出

算法设计要求: 正确性、可读性、健壮性、 高效率和低存储。

算法度量方法:事后统计方法(不科学、不准确)、事前分析估算方法。

算法度量方法:事后统计方法(不科学、不准确)、事前分析估算方法。

函数的渐近增长: 给定两个函数f(n)和g(n),若 $\exists N \in \mathbb{N}$, s.t. $\forall n > N$,f(n)总是比g(n)大,我们就说f(n)的增长渐近快于g(n).

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 釣۹で

大O阶推导过程

- (1) 用常数1取代运行次数中的所有加法常数;
- (2) 在修改后的运行次数函数中,只保留最高阶项:
- (3) 如果最高阶项存在且不是1,则去除最高阶项的系数。

得到的结果就是大O阶。

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)$$

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)$$

算法最坏情况和平均情况,以及空间复杂度的概念。