

Modeling Digital Systems

© Sudhakar Yalamanchili, Georgia Institute of Technology, 2006

(1)

Describing Systems

- · From Webster's Dictionary:
 - System: "An assemblage of objects united by some form of regular interaction or dependence"
- What aspects of a digital system do we want to describe?
 - Interface
 - Function: behavioral and structural

(3)

What Elements Should be in a Description?

- Descriptions should be at multiple levels of abstraction
 - The descriptive elements must be common to multiple levels of hierarchy
- The elements should enable meaningful and accurate simulation of hardware described using the elements
 - Elements should have attributes of time as well as function
- The elements should enable the generation of hardware elements that realize a correct physical implementation
 - Existence of a mapping from elements to VLSI devices

What Elements Should be in a **Description?**

- VHDL was conceived for the description of digital systems
 - From switches to networked systems
- Keep in mind the pragmatic issues of design re-use and portability of descriptions
 - Portability across technology generations
 - Portability across a range of cost/performance points
- Attributes of digital systems serve as the starting point
 - Language features designed to capture the key attributes

(5)

Attributes of Digital Systems

- Digital systems are about signals and their values
- Events, propagation delays, concurrency
 - Signal value changes at specific points in time
- Time ordered sequence of events produces a waveform

(6

Attributes of Digital Systems: Timing

- Timing: computation of events takes place at specific points in time
- Need to "wait for" an event: in this case the clock
- Timing is an attribute of both synchronous and asynchronous systems

(7)

Attributes of Digital Systems: Timing

- · Example: Asynchronous communication
- No global clock
- Still need to wait for events on specific signals

Attributes of Digital Systems: Signal Values

• We associate logical values with the state of a signal

• Signal Values: IEEE 1164 Value System

Value	Interpretation
U	Uninitialized
Х	Forcing Unknown
0	Forcing 0
1	Forcing 1
Z	High Impedance
W	Weak Unknown
L	Weak 0
Н	Weak 1
-	Don't Care

(9)

Attributes of Digital Systems: Multiple Drivers

- · Shared Signals
 - multiple drivers
- How is the value of the signal determined?
 - arbitration protocols
 - wired logic

(10)

Modeling Digital Systems

- We seek to describe attributes of digital systems common to multiple levels of abstraction
 - events, propagation delays, concurrency
 - waveforms and timing
 - signal values
 - shared signals
- Hardware description languages must provide constructs for naturally describing these attributes of a specific design
 - simulators use such descriptions for "mimicing" the physical system
 - synthesis compilers use such descriptions for synthesizing manufacturable hardware specifications that conform to this description

(11)

Execution Models for VHDL Programs

- Two classes of execution models govern the application of VHDL programs
- For Simulation
 - Discrete event simulation
 - Understanding is invaluable in debugging programs
- For Synthesis
 - Hardware inference
 - The resulting circuit is a function of the building blocks used for implementation
 - · Primitives: NAND vs. NOR
 - Cost/performance

Simulation vs. Synthesis

· Simulation and synthesis are complementary processes

(13)

Georgia Tech

Simulation of Digital Systems

- Digital systems are modeled as the generation of events value transitions – on signals
- Discrete event simulations manage the generation and ordering of events
 - Correct sequencing of event processing
 - Correct sequencing of computations caused by events

(14)

Georgia Tech

Discrete Event Simulation

- Management of simulation time: ordering of events
- · Two step model of the progression of time
 - Evaluate all affected components at the current time: events on input signals
 - Schedule future events and move to the next time step: the next time at which events take place

Simulation Modeling

- · VHDL programs describe the generation of events in digital systems
- · Discrete event simulator manages event ordering and progression of time
- · Now we can quantitatively understand accuracy vs. time trade-offs
 - Greater detail → more events → greater accuracy
 - Less detail → smaller number of events → faster simulation speed

(17)

Synthesis and Hardware Inference

Both processes can produce very different results!

(18)

Summary

- VHDL is used to describe digital systems and hence has language constructs for key attributes
 - Events, propagation delays, and concurrency
 - Timing, and waveforms
 - Signal values and use of multiple drivers for a signal
- VHDL has an underlying discrete event simulation model
 - Model the generation of events on signals
 - Built in mechanisms for managing events and the progression of time
 - Designer simply focuses on writing accurate descriptions

(19)