EN-204 – Materials for Energy Applications Problem Set – Fermi Dirac Statistics

- 1. Find the probability of distribution of electrons at energies 1, 0.01 eV below the Fermi level and 0.01 and 1 eV above the Fermi Level.
- 2. Derive an expression for the total number of states in a semiconductor material (per unit volume) between Ec and Ec + kT, where Ec is the conduction band edge (bottom of the conduction band), k is Boltzmann's constat and T is the temperature. Consider the case of GaAs at room temperature where $m^*=0.067m_0$.
- 3. Consider a silicon crystal whose band gap energy is \mathbf{E}_g =1.12 eV and whose temperature is kept at \mathbf{T} =300° K.
 - a) If the Fermi level, E_f , is located in the middle of the band gap, what is the probability of finding an electron (or equivalently, the probability of a state being occupied) at $\mathbf{E} = \mathbf{E}\mathbf{c} + \mathbf{k}\mathbf{T}$. Hint: write $E_f = E_c E_g/2$
 - b) If the Fermi level, **E**f is located at the conduction band edge, $\mathbf{E}F = \mathbf{E}c$, what the probability of finding an electron at $\mathbf{E} = \mathbf{E}c + \mathbf{k}T$.
- 4. The equilibrium electron concentration is given by the product of the density of states and the probability function, $\mathbf{n}(\mathbf{E}) = \mathbf{g}(\mathbf{E}).\mathbf{F}(\mathbf{E})$. If $\mathbf{E} \mathbf{E}_{\mathbf{F}} >> \mathbf{k}\mathbf{T}$, the Fermi-Dirac probability function can be approximated with the Maxwell-Boltzmann function.
 - a) Using this approximation, find the energy relative to the conduction band edge, E E_c, at which the electron concentration becomes maximum.
 - b) Using this approximation, calculate the electron concentration per unit energy interval (in units of cm⁻³eV⁻¹) in silicon at energy E = Ec kT. Assume the Fermi level is located at the center of the band gap, EF = Ec Eg/2.
- 5. Show that the average kinetic energy in a Fermi gas is $(3/5)E_F$
- 6. Calculate the probability that an electron in Cu at 300 K has energy equal to 99% of the Fermi energy.
- 7. Quantum wells are often used in applications such as semiconductor lasers. In a quantum well, electrons are confined in a thin slab of material, as shown below

The density-of-states, D(E) in an ideal quantum-well is step-like:

At T \approx 0K, there are 1.4×10^5 states in this system, mark the location of Fermi Level.

