Lec 06-1. Neural Collaborative Filtering

Recap: Latent Factor Models

 Existing latent models assume that user-item interactions are represented by linear combination.

$$\min \frac{1}{2} \sum_{(u,i) \in \mathcal{S}} e_{ui}^2 = \frac{1}{2} \sum_{(u,i) \in \mathcal{S}} (r_{ui} - \mathbf{u}_u \mathbf{v}_i^{\mathsf{T}})^2$$

 \mathcal{S} : a set of observed user-item pairs in \mathbf{R}

Example: Limitation of Linear Models

- Given a user-item rating matrix, the linear factor model represents users in the latent space.
 - It is difficult to preserve the true ranking order in the original space.

How to Design Latent Factor Models?

> How to model user-item interactions?

- U: latent user matrix ($m \times k$ matrix)
 - Each user is represented by a latent vector (1 × k vector).
- V: latent item matrix ($n \times k$ matrix)
 - Each item is represented by a latent vector (1 × k vector).

Feed-forward Neural Network

> It is a typical artificial neural network.

- The neurons in each layer feed their output forward to the next layer until we get the final output from the neural network.
 - Each node is a neuron that uses a (non-linear) activation function.
- There can be any number of hidden layers in a feedforward network.

Generalized Matrix Factorization (GMF)

> Element-wise product is same as existing matrix factorization.

- Input: one-hot feature vector for user u and item i
- Output: predicted score \hat{r}_{ui}

> When combining user and item latent vectors, different weights are used.

 w_i is the weight for the j-th latent feature.

$$\hat{r}_{ui} = \sum_{j=1}^{k} w_j u_{uj} v_{ij}^T$$

Embedding for Users and Items

> User and item projection layers

10

Element-wise Product

Lec 06-1. Neural Collaborative Filtering

MLP-based Matrix Factorization

 Instead of element-wise product, aggregate latent user and item vectors with different parameters.

> Instead of element-wise product, aggregate latent user and item vectors with different parameters.

Capturing Non-linear Interactions

> Learning non-linear interactions between users and items

Neural Collaborative Filtering (NCF)

> It utilizes both GMF and MLP layers.

