Ficha 9 - Testes de Hipóteses

17.Os dados registam o número médio de horas-homem perdidas devidas a acidentes em 10 fábricas, antes e depois de um programa de higiene e segurança ter sido implementado:

Use o nível de significância de 0.05 para testar se o programa de higiene e segurança é eficaz.

Resolução:

De acordo com o enunciado sabe-se que o valor de n é igual a 10 e o nível de significância de 5%. Considere-se as seguintes hipóteses a serem testadas:

$$H_0$$
: $\mu_a - \mu_d = 0$ vs H_1 : $\mu_a > \mu_d$

Como se pretende testar a diferença de duas médias, $n_1=n_2=10<30$, σ_1 e σ_2 não são conhecidos e as amostras são dependentes. A estatística de teste é dada por:

$$t = \frac{\bar{d} - (\mu_1 - \mu_2)}{s_{D_i} / \sqrt{n}} = \frac{5.2 - 0}{4.08 / \sqrt{10}} = 4,03$$
d 9 13 2 5 -2 6 6 5 2 6

$$\bar{d} = \frac{9+13+2+5-2+6+6+5+2+6}{10} = 5,2$$

$$s_d^2 = \frac{9^2+13^2+\dots+6^2-10\times5.2^2}{10-1} = 16.62 \implies s = 4,08$$

A região de rejeição é calculada da seguinte forma:

$$t > t_{\alpha:n-1} \Leftrightarrow t > t_{0.05:9} \Leftrightarrow t > 1,833$$

Como o valor da estatística de teste é superior ao valor da região de rejeição, rejeita-se a hipótese nula, ao considerar o nível de confiança de 95%. Logo, o programa foi eficaz uma vez que houve uma redução estatisticamente significativa de horas perdidas devido a acidentes.

19. Os teores de nicotina de duas marcas de cigarros estão a ser medidos. Se numa experiência 50 cigarros da marca A têm um teor médio de nicotina de $\bar{y}_1 = 2.61\,\mathrm{mg}$ com um desvio padrão de $s_1 = 0.12\,\mathrm{mg}$, enquanto os 40 cigarros da marca B têm um teor médio de nicotina de $\bar{y}_2 = 2.38\,\mathrm{mg}$ com um desvio padrão de $s_2 = 0.14\,\mathrm{mg}$, teste a hipótese nula $\mu_1 - \mu_2 = 0.2\,\mathrm{contra}$ a hipótese alternativa $\mu_1 - \mu_2 \neq 0.2$, usando $\alpha = 0.05$.

Resolução:

Aplicação da diferenças entre médias, em que σ_1^2 e σ_2^2 não são conhecidos e $n_1 > 30$ e $n_2 > 30$, considere-se o nível de significância de 5%. Sejam

$$H_0$$
: $\mu_1 - \mu_2 = 0.2 \ vs \ H_1$: $\mu_1 - \mu_2 \neq 0.2$

A estatística de teste é dada por:

$$z = \frac{(\overline{y_1} - \overline{y_2}) - 0.2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \approx 1,08$$

A região de rejeição é dada por:

$$|z| > c \Leftrightarrow z > c \cup z < -c$$

$$z_{1-\frac{\alpha}{2}} = z_{0.975} = 1,96 \Longrightarrow c = 1,96$$

Como a estatística de teste não está na região de rejeição , não se rejeita a hipótese nula, ao considerar o nível de confiança de 95%. Logo, a diferença das médias é igual a 0,2 mg, ou seja, a média da marca A é maior que a média da marca B.

22. Um novo tratamento para a esquizofrenia foi testado durante seis meses com 54 doentes selecionados aleatoriamente. Ao fim desse período foi dada alta a 25 doentes. A proporção usual em seis meses é de 1/3. Usando uma aproximação normal à distribuição binomial, determine se o novo tratamento resultou em maior número de altas que o tratamento anterior (α =0.05).

Pela informação fornecida pelo enunciado, sabe-se:

- N=54;
- $\pi = 1/3$;
- 25 doentes tiverem alta em seis meses, ou seja, $p = \frac{25}{54} = 0.4630$;
- $\alpha = 0.05$,

Assim, as hipóteses a considerar são:

$$H_0: \pi = \frac{1}{3} vs H_1: \pi > \frac{1}{3}$$

em que a estatística de teste é dada por:

$$z = \frac{p - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}} = \frac{0,4630 - 1/3}{\sqrt{\frac{1/3(1 - \frac{1}{3})}{54}}} = 2,021$$

A região de rejeição é:

$$z > z_{1-\alpha} \Leftrightarrow z > z_{0.95} \Leftrightarrow z > 1,645$$

Uma vez que a estatística de teste é superior ao valor da região de rejeição, rejeita-se a hipótese nula, para um nível de confiança de 95%. O que significa que o número de altas teve um aumento significativo.

25.Em 1990, 371 empresas foram selecionadas para determinar em que medida disponham de sistemas de informação em logística. Cinco anos mais tarde, em 1995, 459 empresas foram selecionadas para determinar a evolução do uso destes sistemas de informação. Assim, a percentagem varia de 1990 para 1995, de 25% para 33%. Permitem os dados concluir que houve um aumento significativo de empresas que dispõem de sistemas de informação em logística? Use α =0.05.

Pelo enunciado retira-se que:

- $N_{1990} = 371$, $p_{1990} = 0.25$;
- $N_{1995} = 459$, $p_{1995} = 0.33$;
- $\alpha = 0.05$.

Como se pretende verificar se houve uma aumento significativo de empresas que utilizam de sistemas de informação, em logística, as hipóteses são:

$$H_0$$
: $\pi_1 - \pi_2 = 0$ vs H_1 : $\pi_1 < \pi_2$

Deve-se de aplicar o teste unilateral para a diferenças de proporções, em que a estatística de teste é:

$$z = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} - \frac{p_2(1 - p_2)}{n_2}}} = \frac{(0.25 - 0.33) - (0)}{\sqrt{\frac{0.25(1 - 0.25)}{371} - \frac{0.33(1 - 0.33)}{459}}} = -2.55$$

A região de rejeição é:

$$z < -z_{1-\alpha} \Leftrightarrow z < -z_{0.95} \Leftrightarrow z < -1.645$$

O valor obtido para a estatística de teste está contido na região de rejeição e, por essa razão, rejeita-se a hipótese nula, para um nível de confiança de 95%. Assim, retira-se que houve um aumento significativo de empresas que dispõem de sistemas de informação em logística.

26. Suponha que a espessura de um componente usado num semicondutor é a sua dimensão crítica e que as medidas da espessura, de uma amostra aleatória de 18 desses componentes, têm variância igual a 0.68 cm. Considera-se que o processo está controlado se a variância da espessura não é superior a 0.36 cm. Assumindo que as medições constituem uma amostra aleatória de uma população normal, teste a hipótese nula contra a hipótese alternativa $\sigma^2 > 0.36$ a um nível de significância de 5%.

Resolução dos exercícios propostos

Pelo enunciado, retira-se que:

- n = 18;
- $s^2 = 0.68$;
- Se $\sigma^2 \le 0.36$ então o processo está controlado;
- $\alpha = 0.05$.

As hipóteses a serem testadas são:

$$H_0: \sigma^2 \le 0.36 \ vs \ H_1: \sigma^2 > 0.36$$

A estatística de teste para estimar o parâmetro σ^2 é:

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2} = \frac{(18-1) \times 0,68}{0,36} = 32,11$$

A região de rejeição é dada por:

$$\chi^2 > \chi_{\alpha} \Longleftrightarrow \chi^2 > \chi_{0.05} \Longleftrightarrow \chi^2 > 27,58711$$

Como a estatística de teste está na região de rejeição, rejeita-se a hipótese nula, para um nível de confiança de 95%. Assim, retira-se que a variância é superior a 0,36, o que significa que o processo não está controlado.

28. Ao comparar a variabilidade da tensão em dois tipos de aço, uma experiência conduziu aos seguintes resultados:

$$n_1 = 13$$
 , $s_1^2 = 19.2$

$$n_2 = 16 \text{ e } s_2^2 = 3.5$$

onde as unidades são em 100 psi (libras por polegada quadrada). Assumindo que as medidas constituem amostras aleatórias independentes provenientes de duas populações normais, teste a hipótese nula $\sigma_1^2 = \sigma_2^2$ contra a hipótese alternativa $\sigma_1^2 \neq \sigma_2^2$ a um nível de significância de 5%.

Pelo enunciado, aplica-se um teste bilateral, em que as hipóteses são:

$$H_0: \sigma_1^2 = \sigma_2^2 \ vs \ H_1: \sigma_1^2 \neq \sigma_2^2$$

A estatística de teste para a razão das variâncias é:

$$F = \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2} = \frac{s_1^2}{s_2^2} = \frac{19.2}{3.5} = 5.49$$

A região de rejeição:

$$F>F_{\frac{\alpha}{2};n_1-1;n_{2-1}} \Longleftrightarrow F>F_{0,025;12;15} \Longleftrightarrow F>2,96$$

Como a estatística de teste pertence à região de rejeição, rejeita-se a hipótese nula, para um nível de confiança de 95%. Logo, as variâncias das medidas são diferentes.