Classification of Documents using Text Mining Package "tm"

Pavel Brazdil LIAAD - INESC Porto LA FEP, Univ. of Porto

Aug. 2011

http://www.liaad.up.pt

References

- I. Feinerer, K.Hornik, and D. Mayer, "Text mining infrastructure in R," *Journal of Statistical Software*, vol. 25, pp. 1-54, 2008.
- M. Moens, "Information extraction: algorithms and prospects in a retrieval context," Computational Linguistics, vol. 34, pp. 315-317, 2008.
- J. Cowie and W. Lehnert, "Information extraction," Communications of the ACM, vol. 39, pp. 80-91, 1996.
- I. Feinerer. (2010, Jan.) Introduction to the tm Package Text Mining in R. http://cran.r-project.org/web/packages/tm/vignettes/tm.pdf
- R. Feldman ans J. Sanger: *The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data.* Cambridge University Press, 2006.
- C. Silva and B. Ribeiro, "The importance of stop word removal on recall values in text categorization," in *International Joint Conference on Neural Networks*, 2003.
- J. Rennie. (2008, 30th January). 20 Newsgroups data set. Available: http://people.csail.mit.edu/jrennie/20Newsgroups/
- L. Francis, Flynn Matt, Text Mining Handbook, Casualty Actuarian Society E-Furum, 2010.
- G. Bettina, K.Hornik, *Topic Models in R*, Wirtschaftsuniversitat Wien
- L. Torgo, A Linguagem R, Programação para a análise de dados, Escolar Editora, 2009.

References

- Raymond Mooney and U. Nahm, Text Mining with Information Extraction http://userweb.cs.utexas.edu/ml/papers/discotex-meml-03.pdf
- José Lino Uber, Descoberta de Conhecimento com o uso de text Mining aplicado ao SAC, 2004.

Acknowledgements:

The author wishes to thank to the following people for their contributions that helped to improve this material:

- students of M.ADSAD 08/09 and 09/10 and students of MAPi 2009/10;
- Jan Knotek, U.Masaryk, Czech R., visiting student in 2010 of U. Porto under Erasmus.

3

Overview

- 1.Introduction
- 2.Preprocessing document collection using tm
 - 2.1 The dataset 20Newsgroups
 - 2.2 Creating a directory with a corpus for 2 subgroups
 - 2.3 Preprocessing operations
 - 2.4 Creating a Document-Term matrix
 - 2.5 Converting the Matrix into Data Frame
 - 2.6 Including class information
- 3. Identifying Informative Terms (columns)
- 4. Classification of documents
 - 4.1 Using a Decision Tree classifier
 - 4.2 Using a Neural Net classifier
 - 4.3 Using a k-NN classifier
 - 4.4 Using a SVM classifier
 - 4.5 Using a Naive Bayes
- 5. Classifiers comparison chart

1. Introduction

Package "tm" of R permits to process text documents in an effective manner

The work with this package can be initiated using a command

> library(tm)

It permits to:

- Create a corpus a collection of text documents
- Provide various preprocessing operations
- Create a Document-Term matrix
- Inspect / manipulate the Document-Term matrix
 (e.g. convert into a data frame needed by classifiers)
- Train a classifier on pre-classified Document-Term data frame
- Apply the trained classifier on new text documents to obtain class predictions and evaluate performance

5

2 Classification of documents2.1 The dataset 20Newsgroups

This data is available from

http://people.csail.mit.edu/jrennie/20Newsgroups/

There are two directores:

- 20news-bydate-train (for training a classifier)
- 20news-bydate-test (for applying a classifier / testing)

Each contains 20 directories, each containing the text documents belonging to one newsgroup.

The data (20news-bydate-tar.gz) can be copied to your PC.

Then extract files to your directories:

../20news-bydate-train and ../20news-bydate-test

After entering in R, use "Change Directory" to the above.

20Newsgroups

Subgroup "comp"

comp.graphics

comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x

Subgroup "misc"

misc.forsale

Subgroup "rec"

rec.autos rec.motorcycles

rec.sport.baseball rec.sport.hockey

Subgroup "sci"

sci.crypt

sci.electronics <- chosen here

sci.med sci.space

Subgroup "talk.politics"

talk.politics.guns talk.politics.mideast talk.politics.misc

Subgroup "religion"

talk.religion.misc <- chosen here

alt.atheism

soc.religion.christian

7

2.2 Creating a Corpus

This involves:

- Invoking "Change directory" in R to 20news-bydate-train
- Selecting one of the newsgroups (e.g.sci.electronics)
- Loading a package "tm.plugin.mail"
- Invoking the instruction Corpus():

```
sci.electr.train <- Corpus( DirSource ("sci.electronics"),
    readerControl=list(reader=readMail, language="en_US") )</pre>
```

If we type:

> length(sci.electr.train)

[1] 591

Similarly, we obtain documents from another class (e.g. talk.religion.misc): talk.religion.train (377 documents)

and also obtain the test data:

sci.electr.test (393 documents) talk.religion.test (251 documents)

Note: The instruction *getReaders()* shows the instructions for reading in information.

Example of one document

sci.electr.train[[1]]

In article <00969FBA.E640FF10@AESOP.RUTGERS.EDU> mcdonald@AESOP.RUTGERS.EDU writes:

>[...]

>There are a variety of water-proof housings I could use but the real meat >of the problem is the electronics...hence this posting. What kind of >transmission would be reliable underwater, in murky or even night-time >conditions? I'm not sure if sound is feasible given the distortion under->water...obviously direction would have to be accurate but range could be >relatively short (I imagine 2 or 3 hundred yards would be more than enough)

> >Jim McDonald

9

2.3 Preprocessing

The Objective of Preprocessing:

Documents are normally represented using words, terms or concepts.

Considering all possible words as potential indicators of a class can create problems in training a given classifier.

It is desirable to avoid building a classifier using dependencies based on too few cases (spurious regularities).

The aim of preprocessing is to help to do this.

The function tm_map (available in "tm") can be used to carry out various preprocessing steps.

The operation is applied to the whole corpus (there is not need to program this using a loop).

Preprocessing using tm_map

The format of this function is as follows:

tm_map(Corpus, Function)

The second argument *Function* determines what is to be done:

PlainTextDocument - removes XML from the document,

removeWords, stopwords(language='english')

- removes stopwords for the language specified

stripWhitespace - removes extra spaces,

tolower – transforms all upper case letters to lower case,

removePunctuation - removes punctuation symbols,

removeNumbers – removes numbers,

Example of use:

> sci.electr.train <- tm_map(sci.electr.train, tolower)

etc

This can be repeated for the other 3 collections of documents

11

Merging document collections

Instead of repeating this for all 4 documents collections we can merge the four document collections and perform the preprocessing on the resulting large collection only once.

This can be done using the function c():

> docs <- c(sci.electr.train, talk.religion.train, sci.electr.test, talk.religion.test)

> length(docs)

[1] 1612

Merging document collections

We need to remember the indices of each document sub-collection to be able to separate the document collections later.

```
sci.electr.train – documents 1 .. 591
talk.religion.train sci.electr.test – documents 969 .. 1361 (393 docs)
talk.religion.test – documents 1362 .. 1612 (251 docs)
```

One single collection is important for the next step (document-term matrix). We will use variables I1 etc. for this.

```
> I1 <- length(sci.electr.train) (591 docs)
> I2 <- length(talk.religion.train) (377 docs)
> I3 <- length(sci.electr.test) (393 docs)
> I4 <- length(talk.religion.test) (251 docs)
```

13

Preprocessing the entire document collection

```
> docs.p <- docs
> docs.p <- tm_map(docs.p, PlainTextDocument)</pre>
> docs.p <- tm_map(docs.p, removeWords, stopwords(language="english"))
> docs.p <- tm_map(docs.p, stripWhitespace)</pre>
> docs.p <- tm map(docs.p, tolower)</pre>
> docs.p <- tm map(docs.p, removePunctuation)</pre>
> docs.p <- tm map(docs.p, removeNumbers)</pre>
Note:
The stopwords can be inspected using:
> stopwords(language="english")
[1] "a"
           "about" "above"
                                                                 "against"
                                 "across"
                                            "after"
                                                      "again"
[9] "almost"
                                   "already"
             "alone"
                        "along"
                                              "also"
                                                        "although"
                                                                   "always"
[481] "youngest" "your"
                           "you're"
                                      "yours"
                                                "yourself" "yourselves" "you've"
```


2.4 Creating Document-Term Matrix (DTM)

transmission reliable underwater murky nighttime

conditions i sound feasible distortion waterobviously direction accurate range relatively short i imagine hundred yards

Existing classifiers that exploit *propositional representation*, (such as decision trees, kNN, NaiveBayes, SVM etc.)

require that data be represented in the form of a table, where: each row contains one case (here a document), each column represents a particular atribute / feature (here a word).

The function *DocumentTermMatrix(...)* can be used to create such a table.

The format of this function is:

DocumentTermMatrix(<DocCollection>, control=list(<Options>))

Simple Example:

> DocumentTermMatrix(docs.p)

Creating Document-Term Matrix (DTM)

Simple Example:

> DocumentTermMatrix(docs.p)

A document-term matrix (1612 documents, 21906 terms)

Non-/sparse entries: 122787/35189685 +

Sparsity : 100% Maximal term length: 135 ←

Weighting : term frequency (tf)

17

problematic

Options of *DTM*

Most important options of DTM:

weighting=Tfldf weighting is Tf-ldf

minWordLength=WL the minimum word length is WL

minDocFreq=ND each word must appear at least ND times

in one of the documents

Other options of DTM

These are not really needed, if preprocessing has been carried out:

stemming = TRUE stemming is applied stopwords=TRUE stopwords are eliminated removeNumbers=True numers are eliminated

Generating DTM with different options

- > dtm.mx <- DocumentTermMatrix(docs.p, control=list(minWordLength=3, minDocFreq=2))
- > dtm.mx

A document-term matrix (1612 documents, 2959 terms)

Non-/sparse entries: 7849/4762059 Sparsity: 100%

Maximal term length: 26
Weighting: term frequency (tf)

> dtm.mx.tfidf <- DocumentTermMatrix(docs.p, control=list(weighting=weightTfldf, minWordLength=2, minDocFreq=2))

better

> dtm.mx.tfidf

Similar results to above

19

Inspecting the DTM

Function $\dim(DTM)$ permits to obtain the dimensions of the DTM matrix. Ex.

> dim(dtm.mx)

[1] 1612 2959

Inspecting some of the column names:

(ex. 10 columns / words starting with column / word 101)

- > colnames(dtm.mx) [101:110]
- [1] "angels" "angra" "animals" "anneser" "anode" "anointed"
- [7] "anonymous" "another" "answer" "answerfax"

Inspecting the DTM

Inspecting a part of the DTM matrix:

(ex. the first 10 documents and 20 columns)

> inspect(dtm.mx)[1:10,101:106]

Docs	adultery	advance	advanced	advantages	advent	advertise
[1,]	0	0	0	0	0	0
[2,]	0	0	0	0	0	0
[3,]	0	0	0	0	0	0
[4,]	0	0	0	0	0	0
[5,]	0	0	0	0	0	0
[6,]	0	0	0	0	0	0
[7,]	0	0	0	0	0	0
[8,]	0	0	0	0	0	0
[9,]	0	0	0	0	0	0
[10,]	0	0	0	0	0	0

As we can see, the matrix is very sparse. By chance all values are 0s.

Note: The DTM is not and ordinary matrix, as it exploits object-oriented representation (includes meta-data).

The function inspect(..) converts this into an ordinary matrix which can be inspected.

Finding Frequent Terms

```
The function findFreqTerms(DTM, N) permits to find
 all the terms that appear at least N times in one of the documents.
> freqterms100 <- findFreqTerms( dtm.mx, 100)
> freqterms100
[1] "wire" "elohim" "god" "jehovah" "lord"
                                                     From talk.religion
> fregterms40 <- findFregTerms(dtm.mx, 40)
> freqterms40
[1] "cable" "circuit" "ground" "neutral" "outlets" "subject" "wire" "wiring"
[9] "judas" "ra" "christ" "elohim" "father" "gods" "gods"
[17] "jesus" "lord" "mcconkie" "ps" "son"
                                              "unto"
> table(as.matrix(dtm.mx)[,"cable"])
 0 5 6 8 43 🕳
                                          "cable" appears in 1 document 43 times
1608 1 1 1 1
```

Removing Sparse Terms

The function removeSparseTerms(DTM, S) permits to eliminate all the terms that have relatively few values in a column. The level of sparseness is controlled by a parameter S. All terms that contain more than 1-S values equal to 0 are dropped. Suppose S=0.99, then 1-S represents 1%. As our matrix has 1612 rows, it is required that 1%=16 values are non-empty. > dtm.mx.aux <- removeSparseTerms(dtm.mx, 0.95) > dim(dtm.mx.aux) [1] 1612 10-Only 10 tems were kept > dtm.mx.aux <- removeSparseTerms(dtm.mx, 0.99) > dim(dtm.mx.aux) [1] 1612 181 This function is quite useful, leading to improved results in classification. An alternative way is to select informative terms (see later), although this method requires usage of a separate program.

2.5 Converting DTM into a Data Frame

Existing classifiers in R require that data be represented as a data frame (particular representation of tables).

So, we need to convert the matrix into a data frame:

2.5 Converting DTM into a Data Frame

```
Repeating this for the tfidf version:
```

- > dtm.tfidf <- as.data.frame(inspect(dtm.mx.tfidf))
- > rownames(dtm.tfidf)<- 1:nrow(dtm.mx.tfidf)
- > round(dtm.tfidf\$wire[180:195],2)

The numbers [1] 0 6 0 8 108 0 0 0 0 0 0 0 0 0 0 0 should be different

> round(dtm\$god[180:195],2)

[1]00000000000000000

2.5 Converting DTM into a Data Frame

```
> table(dtm$wire)
 0 2 3 4 6 8 10 108
1591 10 3 3 1 2 1 1
> table(dtm$god)
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 21 32 36 116
1488 37 24 12 4 7 7 6 6 3 2 1 2 2 3 2 3 1 1 1
 Word "god" appears 3 times in 24 documents
```

2.6 Appending class information

This includes two steps:

- Generate a vector with class information,
- Append the vector as the last column to the data frame.

```
Step 1. Generate a vector with class values (e.g. "sci", "rel")
```

We know that (see slide 6):

```
sci.electr.train – 591 docs
sci.electr.test – 393 docs
talk.religion.test - 251 docs
talk.religion.test - 251 docs
```

> class <- c(rep("sci",591), rep("rel",377), rep("sci",393), rep("rel",251))

Step2. Append the class vector as the last column to the data frame

- > dtm <- cbind(dtm, class)
- > last.col <- length(dtm)

[1] 2960 (the number of columns has increased by 1)

27

3. Identifying Informative Terms (Columns)

Preparing the Data for Training a Classifier and Testing:

Generate the training data with the appropriate lines of dtm

```
> dtm.tr <- dtm[1:(I1+I2), 1:last.col]
```

> dim(dtm.tr)

[1] 968 2960

Generate the test data with the appropriate lines of dtm

```
> dtm.ts <- dtm[(I1+I2+1):(I1+I2+I3+I4),1:(last.col-1)]
```

> dim(dtm.ts)

[1] 644 2959

Identifying Informative Terms (Columns)

```
info.terms <- vector()

find.info.terms <- function(dtm.tr,min.info)
ix.class <- ncol(dtm.tr) 

Index class (assuming that is the last column)

default.info<-info(table(dtm.tr[,ix.class]))
cat("default.info: ", default.info, "\n")

n.atr <- ncol(dtm.tr)-1
n.info.terms <- 0
info.term.ixs <- vector()
col.names <- names(dtm.tr)

# continue
```

Identifying Informative Terms (Columns)

```
Process all attributes
for (atri in 1:n.atr) { ←
if (sum(dtm.tr[,atri])>0) ←
                                                   If sum of values of atri is not 0, continue
 { # begin if
 no.dif.atr.val<-length(table(dtm.tr[,atri]))
 atr.class.table<-table(dtm.tr[,atri],dtm.tr[,ix.class])
 n.rows<-nrow(dtm.tr)
 atr.info <- 0
 for (atr.val in 1: no.dif.atr.val)
  { # begin for
  atr.peso <- sum( atr.class.table[atr.val,]) / n.rows
  atr.info1 <- atr.peso * info(atr.class.table[atr.val,])
  atr.info<-atr.info + atr.info1 }
  info.gain <- default.info - atr.info
                                                         If information gain > threshold
  if (info.gain > min.info)*
    { info.term.ixs[n.info.terms] <- atri
     n.info.terms <- n.info.terms+1 }
  } #end for
} # end if
```

Identifying Informative Terms (Columns)

```
cat("\n", "Vão ser mantidos ", n.info.terms, " atributos: ", "\n")
cat( col.names[info.term.ixs[1:10]], " etc. ")
cat( col.names[info.term.ixs[n.info.terms-1]],"\n")
cat("Vão ser eliminados ", n.atr-n.info.terms, " atributos", "\n")
return(col.names[info.term.ixs])
                                                    # Corrected 29 June 2011
} # end function
Function "info" calculates information relative to a list specifying a distribution:
Info <- function(x){
inf <- 0
sumx <- sum(x)
for (i in x) {
 pi <- i/sumx
 infi <- (pi)*log2(pi)
 if (is.na(infi)) infi <- 0
 inf <- inf - infi }
 return(inf)
```

Identifying Informative Terms (Columns)

```
> info.terms <- find.info.terms(dtm.tr,0.005)
```

default.info: 0.964452

Vão ser mantidos 170 atributos:

accept according agree amp and article articles audio basis belief etc. you

Vão ser eliminados 2789 atributos

4. Classification of Documents

4.1 Preparatory Steps for Usage of Decision Tree

We note that some reserved words of R, such as *break* etc. cause a problem for *rpart*. We get messages such as: *Error in eval(expr, envir, enclos) : no loop to break from ...* To overcome this, words need to be substituted by other terms (e.g. *break.t*)

```
rename.terms.in.list <- function(list) {
    for (i in 1:length(list)) {
        cat("replaced", list[i], "at", i, "with", paste(list[i],".t", sep=""), "\n")
        list[i]<- paste(list[i],".t", sep="")
    } #end for i
    return(list)
}
> info.terms <- rename.terms.in.list(info.terms)
replaced break at 130 with break.t
replaced else ..</pre>
```

33

Preparatory Steps

```
We have to modify also the data frames:

rename.terms.in.dtm <- function(dtm) {
    for (i in 1:length(dtm)) {
        cat("replaced", names(dtm)[i], "at", i, "with", paste(names(dtm)[i],".t", sep=""), "\n")
        names(dtm)[i] <- paste(names(dtm)[i],".t", sep="")
} #end for i
return(dtm)
}

> dtm.tr<- rename.terms.in.dtm(dtm.tr)
replaced break at 688 with break.t
replaced else at 1826 with else.t
...
> dtm.ts<- rename.terms.in.dtm(dtm.ts)
...
```

Classification of Docs using a Decision Tree

- > names.tr <-paste(info.terms, collapse='+')
- > names.tr
- "abortion.t+abraham.t+absolute.t+accept.t+according.t+accusing.t+act.t+action.t+...
- > clas.formula <- as.formula(paste('class.t', names.tr, sep='~')) # Modified 29 June 2011
- > clas formula
- "class ~ abortion.t+abraham.t+absolute.t+accept.t+according.t+accusing.t+act.t+ ...
- > rpart(clas.formula, dtm.tr)

35

Inspecting the Decision Tree

```
> dt <- rpart(clas.formula, dtm.tr)
> dt
n= 968
node), split, n, loss, yval, (yprob)
    * denotes terminal node
1) root 968 377 sci (0.38946281 0.61053719)
   2) god.t>=1 73 1 rel (0.98630137 0.01369863) *
   3) god.t< 1 895 305 sci (0.34078212 0.65921788)
    6) jesus.t>=1 28 0 rel (1.00000000 0.00000000) *
    7) jesus.t< 1 867 277 sci (0.31949250 0.68050750)
14) objective.t>=1 21 0 rel (1.00000000 0.00000000)
     15) objective.t< 1 846 256 sci (0.30260047 0.69739953)
      30) koresh.t>=1 15 0 rel (1.00000000 0.00000000)
      31) koresh.t< 1 831 241 sci (0.29001203 0.70998797)
       62) and t>=1 21 3 rel (0.85714286 0.14285714) *
       63) and t< 1 810 223 sci (0.27530864 0.72469136)
        126) christian.t>=1 16 2 rel (0.87500000 0.12500000)
        127) christian.t< 1 794 209 sci (0.26322418 0.73677582)
         254) evidence.t>=1 9 0 rel (1.00000000 0.00000000)
         255) evidence.t< 1 785 200 sci (0.25477707 0.74522293)
          510) bull.t>=1 8 0 rel (1.00000000 0.00000000) *
          511) bull.t< 1 777 192 sci (0.24710425 0.75289575)
```

Evaluating the Decision Tree

Evaluating the Classifer

Normally it is necessary to calculate these measures for both classes.

The measures can be combined using either a *micro-average* or *macro-average*.

$$MacroF1 = \begin{array}{c} 2^* \; (Pi + Pj)/2 \; ^* \; (Ri + Ri)/2 \\ \hline (Pi + Pj)/2 \; + \; (Ri + Ri)/2 \end{array}$$

4.2 Classification of Docs using a Neural Net

```
> library(nnet)
> nnet.classifier <- nnet(clas.formula, data=dtm.tr, size=2, rang=0.1,
    decay=5e-4, maxit=200)

> preds.nn <- predict(nnet.classifier, dtm.ts, type="class")

> conf.mx.nn <- table(class.ts, preds.nn)
> conf.mx.nn
    preds.nn
class.ts rel sci
    rel 184 67
    sci 24 369
> error.rate.nn <- (sum(conf.mx.nn) - sum(diag(conf.mx.nn))) / sum(conf.mx.nn)
> error.rate.nn
[1] 0.1413043 (14.1%)
```

4.3 Classification of Docs using a k-NN Classifier

4.4 Classification of Docs using a SVM Classifier

```
> library(e1071)
> svm.classifer <- svm(clas.formula, dtm.tr)
> preds.svm <- predict(svm.classifier, dtm.ts)
> conf.mx.svm <- table(class.ts, preds.svm)
> conf.mx.svm
preds.svm
class.ts rel sci
   rel 136 115
   sci 27 366
> error.rate.svm <- (sum(conf.mx.svm) - sum(diag(conf.mx.svm))) / sum(conf.mx.svm)
> error.rate.svm
[1] 0.2204969 (22.0 %)
Note: Search for optimal <a href="mailto:svm">svm</a> parameter settings would most likely improve the result.
Some options:
kernel = "linear"
cost = c(1, 10, 50)
```

4.5 Classification of Docs using a Naive Bayes

5 Comparison of Classification Results

	Error Rate	Macro F1	Prec1	Rec1	F1-1	Prec2	Rec2	F1-2
DTree	0.203	0.789	0.900	0.538	0.673	0.765	0.962	0.852
NN	0.141	0.850	0.887	0.733	0.802	0.846	0.939	0.890
k-NN	0.207	0.785	0.893	0.534	0.668	0.763	0.959	0.850
SVM	0.220	0.766	0.834	0.542	0.657	0.761	0.931	0.838
SVM-tun	0.161	0.828	0.827	0.741	0.781	0.845	0.901	0.872
NB	0.196	0.792	0.845	0.610	0.708	0.788	0.929	0.853

Note: Stemming of documents does not provide better results in this case.

Note2: SVM is SVM with default parameters, SVM-tun is SVM with kernel="linear", cost=50