

Ensemble methods

Florence d'Alché-Buc, florence.dalche@telecom-paristech.fr

MDI343

Motivation
Bagging
Random forests
Boosting
Boosting with scikitlearn
References

Outline

Motivation

Bagging

Random forests

Boosting

AdaBoost as a Greedy Scheme Gradient Boosting Boosting and subsampling

Boosting with scikitlearn

References

Motivation
Bagging
Random forests
Boosting
Boosting with scikitlearn

References

Motivation

Bagging

Random forests

Boosting

Boosting with scikitlearn

References

Ensemble methods for classification and regression

1. Remark:

- Machine Learning not so "automatic": too many hyperparameters to tune
- meta-learning: a procedure to automatically use a base classifier/regressor even weak to produce a performant classifier/regressor
- committee learning or wisdom of the crowd: better results are obtained by combining the predictions of a set of diverse classifiers/regressors
- 4. **ensemble learning**: Improve upon a single predictor by building an ensemble of predictors (with no hyperparameter)

Random forests
Boosting with scikitlearn
References

Ensemble methods for regression

Let f_t , t = 1, ..., T be T different regressors. Notations:

$$\epsilon_t(x) = y - f_t(x)
MSE(f_t) = \mathbb{E}[\epsilon_t(x)^2]
f_{ens}(x) = \frac{1}{T} \sum_t f_t(x)
= y - \frac{1}{T} \sum_t \epsilon_t(x).$$

References

Encourage the diversity of base predictors

$$MSE(f_{ens}) = \mathbb{E}[(y - f_{ens}(x))^2]$$

If ϵ_t are mutually independent with zero mean, then we have:

$$MSE(f_{ens}) = \frac{1}{T^2} \mathbb{E}[\sum_t \epsilon_t(x)^2]$$

The more diverse are the classifiers, the more we reduce the mean square error !

Ensemble methods for supervised classification

Binary classification

$$h_{ens}(x) = \operatorname{sign}(\sum_t h_t(x))$$

Multiclass classification

$$h_{ens}(x) = \arg\max_{c} \text{vote}(c, h_1, \dots, h_T)$$

with :
$$vote(c, h_1, ..., h_T) = \sum_t 1_{h_t(x)=c}(h_t(x))$$

Motivation

Bagging Random forests Boosting Boosting with scikitlearn References

Ensemble methods

- Encourage the diversity of base predictors by:
 - using bootstrap samples (Bagging and Random forests)
 - using randomized predictors (ex: Random forests)
 - using weighted version of the current sample (Boosting) with weights dependent on the previous predictor (adaptive sampling)

Motivation Bagging

Random forests
Boosting
Boosting with scikitlearn
References

Ensemble methods at a glance

▶ 1995: Boosting, Freund and Schapire

▶ 1996: Bagging, Breiman

▶ 2001: Random forests, Breiman

▶ 2006: Extra-trees, Geurts, Ernst, Wehenkel

Motivation
Bagging
Random forests
Boosting
Boosting with scikitlearn
References

Outline

Motivation

Bagging

Random forests

Boosting

Boosting with scikitlearn

References

Reminder: Decomposition bias/variance in regression

Given x,

$$\mathbb{E}_{S}\mathbb{E}_{y|x}(y - f_{S}(x))^{2} = \operatorname{noise}(x) + \operatorname{bias}^{2}(x) + \operatorname{variance}(x) \tag{1}$$

noise(x):
$$E_{y|x}[(y - E_{y|x}(y))^2]$$
:

quantifies the error made by the Bayes model
$$(E_{y|x}(y))$$

$$bias^2(x) = (E_{y|x}(y) - E_S[f_S(x)])^2$$

measures the difference between minimal error (Bayes error) and the average model

$$variance(x) = E_S[(f_S(x) - E_S[f_S(x)])^2]$$

measures how much $h_S(x)$ varies from one training set to another

Introduction to bagging (regression) - f 1

Assume we can generate several training independent samples $\mathcal{S}_1,\dots,\mathcal{S}_{\mathcal{T}}$ from P(x,y).

A first algorithm:

- ▶ draw T training independent samples $\{S_1, \ldots, S_T\}$
- learn a model $f_t \in \mathcal{F}$ from each training sample \mathcal{S}_t ; $t = 1, \dots, T$
- ▶ compute the average model : $f_{ens}(x) = \frac{1}{T} \sum_{t=1}^{T} f_t(x)$

Introduction to bagging - 2

The bias $(E_{S_1,\dots,S_T}[f_{ens}(x)] - f_{target}(x))$ remains the same because : $E_{S_1,\dots,S_T}[f_{ens}(x)] = \frac{1}{T} \sum_t E_{S_t}[f_t(x)] = E_S[f_S(x)]$ But the variance is divided by T: $E_{S_1,\dots,S_T}[(f_{ens}(x) - E_{S_1,\dots,S_T}[f_{ens}(x)])^2] = \frac{1}{T}E_S[(f_S(x) - E_S[f_S(x)])^2]$ When is it useful? When the learning algorithm is unstable, producing high variance estimators such as trees!

Bagging (Breiman 1996)

In practice, we do not know P(x,y) and we have only **one training** sample S: we are going to use Bootstrap samples!

Bagging = Bootstrap Aggregating

- draw T bootstrap samples $\{\mathcal{B}_1 \dots, \mathcal{B}_T\}$ from \mathcal{S}
- ▶ Learn a model f_t for each \mathcal{B}_t
- ▶ Build the average model: $f_{bag}(x) = \frac{1}{T} \sum_{t} f_{t}(x)$

Example of bagged trees

[Book: The elements of statistical learning, Hastie, Tibshirani,

Example of bagged trees

[Book: The elements of statistical learning, Hastie, Tibshirani, Friedman, 2001]

Bagging in practise

- ightharpoonup Variance is reduced but the bias can increase a bit (the effective size of a bootstrap sample is 30% smaller than the original training set $\mathcal S$
- ► The obtained model is however more complex than a single model
- Bagging works for unstable predictors (neural nets, trees)
- ► In supervised classification, bagging a good classifier usually makes it better but bagging a bad classifier can make it worse

Motivation Bagging Random forests Boosting Boosting with scikitlearn References

Outline

Motivation

Bagging

Random forests

Boosting

Boosting with scikitlearn

References

Motivation Bagging Random forests Boosting Boosting with scikitlearn References

Other ensemble methods

- Perturbe and combine algorithms
 - Perturbe the base predictor
 - Combine the perturbed predictors

REFS: Random forests: Breiman 2001 Geurts, Ernst, Wehenkel, Extra-trees, 2006

Random forests: Breiman 2001

Random forests algorithm

- ▶ INPUT: candidate feature splits F, S_{train}
- ▶ for t=1 to T
 - $m \mathcal{S}_{train}^{(t)}$ m instance randomly drawn with replacement from \mathcal{S}_{train}
 - $lacktriangleright h_{tree}^{(t)} \leftarrow$ randomized decision tree learned from $\mathcal{S}_{train}^{(t)}$
- ► OUTPUT: $H^T = \frac{1}{T} \sum_t h_{tree}^{(t)}$

Learning a single randomized tree

- ► To select a split at a node:
 - ▶ $R_f(F)$ ← randomly select (without replacement) f feature splits from F with f << |F|
 - ▶ Choose the best split in $R_f(F)$ (consider the different cut-points)
- Do not prune this tree

Extra-trees: Geurts et al. 2006

Extra-trees

- ▶ INPUT: candidate feature splits $F = \{1, ..., p\}, S_{train}$
- ▶ for t=1 to T
 - ightharpoonup Always use \mathcal{S}_{train}
 - $m{ ilde{h}}_{tree}^{(t)}
 ightarrow$: randomized decision tree learned from \mathcal{S}_{train}
- ► OUTPUT: $H^T = \frac{1}{T} h_{tree}^{(t)}$

Learning a single randomized tree in extra-trees:

- ► To select a split at a node:
 - randomly select (without replacement) K feature splits from F with K << |F|
 - ▶ Draw K splits using the procedure Pick-a-random-split(S,i):
 - ▶ let a_{max}^i and a_{min}^i denote the maximal and minimal value of x_i in S
 - ▶ Draw uniformly a cut-point a_c in $[a_{max}^i, a_{min}^i]$
- ► Choose the best split among the *K* previous splits

Do not prune this tree

Random forest

Example of decision frontier:

Spam Data

Comparison (just an example)

[Book: The elements of statistical learning, Hastie, Tibshirani, Friedman, 2001]

Outline

Motivation

Bagging

Random forests

Boosting

AdaBoost as a Greedy Scheme Gradient Boosting Boosting and subsampling

Boosting with scikitlearn

A preliminary question

- ► Is it possible to "boost" a weak learner into a strong learner? Michael Kearns
- Yoav Freund and Rob Schapire proposed an iterative scheme, called, Adaboost to solve this problem
 - ▶ Idea: train a sequence of learners on weighted datasets with weights depending on the loss obtained so far.
 - Freund and Schapire received the Godel prize in 2003 for his work on AdaBoost.

Boosting a linear classifier

Source Jiri Matas (Oxford U.)

Boosting a linear classifier

Source Jiri Matas (Oxford U.)

Boosting a linear classifier

Matas (Oxford U.)

Source Jiri

t

Boosting a linear classifier

Source Jiri Matas (Oxford U.)

Boosting a linear classifier

Source Jiri Matas (Oxford U.)

Boosting a linear classifier

Source Jiri Matas (Oxford U.)

t

Boosting a linear classifier

Source Jiri Matas (Oxford U.)

Definition: weak classifier

A classifier whose average training error is no more than 0.5

NB: it means that we do not need to have a deep architecture as the base classifier (a "short" tree will fit for instance, a linear classifier will be perfect and so on...)

Adaboost idea

- 1. \mathcal{H} : a chosen class of "weak" binary classifiers, \mathcal{A} : a learning algorithm for \mathcal{H}
- Set $w_1(i) = 1/n$; $H_0 = 0$
- ▶ For t = 1 to T
 - $h_t = \arg\min_{h \in \mathcal{H}} \epsilon_t(h)$
 - with $\epsilon_t(h) = \mathbb{P}_{i \sim \mathbf{w}_t}[h(x_i) \neq y_i]$
 - ▶ Choose α_t
 - ▶ Choose w_{t+1}
 - $H_t = H_{t-1} + \alpha_t h_t$
- ▶ Output $F_T = sign(H_t)$

\mathcal{H} : a chosen class of "weak" binary classifiers

▶ Set
$$w_1(i) = 1/n$$
; $H_0 = 0$

▶ For
$$t = 1$$
 to T

$$h_t = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n \epsilon_t(h)$$

• With
$$\epsilon_t(h) = \mathbb{P}_{i \sim \mathbf{w}_t}[h(x_i) \neq y_i]$$

$$\bullet \ \epsilon_t = \epsilon_t(h_t)$$

▶ let
$$w_{t+1,i} = \frac{w_t(i)e^{-\alpha_t y_i h_t(x_i)}}{Z_{t+1}}$$
 where Z_{t+1} is a renormalization constant such that $\sum_{i=1}^n w_{t+1,i} = 1$

$$H_t = H_{t-1} + \alpha_t h_t$$

Output
$$F_T = sign(H_t)$$

What weight to choose?

With the chosen definition, we have:

$$w_{t+1,i} = \frac{w_{t,i}e^{-\alpha_{t}y_{i}h_{t}(x_{i})}}{Z_{t}}$$

$$= \frac{w_{t-1,i}e^{-\alpha_{t-1}y_{i}h_{t-1}(x_{i})}e^{-\alpha_{t}y_{i}h_{t}(x_{i})}}{Z_{t-1}Z_{t}}$$

$$= \frac{e^{-y_{i}\sum_{s=1}^{t}\alpha_{s}h_{s}(x_{i})}}{n\prod_{s=1}^{t}Z_{s}}$$

$$= \frac{e^{-y_{i}H_{t}(x_{i})}}{n\prod_{s=1}^{t}Z_{s}}$$

You see the weights encourage to correct examples badly classified by the whole combination H_t

First of all let us study Z_t

$$Z_{t} = \sum_{i=1}^{n} w_{t}(i)e^{-\alpha_{t}y_{i}h_{t}(x_{i})}$$

$$= \sum_{i=1}^{n} w_{t}(i)e^{-\alpha_{t}y_{i}h_{t}(x_{i})}$$

$$= \sum_{i:y_{i}h_{t}(x_{i})=+1} w_{t}(i)e^{-\alpha_{t}} + \sum_{i:y_{i}h_{t}(x_{i})=-1} w_{t}(i)e^{\alpha_{t}}$$

$$= (1 - \epsilon_{t})e^{-\alpha_{t}} + \epsilon_{t}e^{\alpha_{t}}$$

$$= (1 - \epsilon_{t})\sqrt{\frac{\epsilon_{t}}{1 - \epsilon_{t}}} + \epsilon_{t}\sqrt{\frac{1 - \epsilon_{t}}{\epsilon_{t}}}$$

$$= \dots$$

$$= 2\sqrt{\epsilon_{t}(1 - \epsilon_{t})}$$

Typical behavior of boosting

AdaBoost as a Greedy Scheme Gradient Boosting Boosting and subsampling

Bound on the empirical error

Theorem

The empirical error of the classifier returned by Adaboost at time T verifies:

$$R_n(F_T) \leq e^{-2\sum_{t=1}^T (\frac{1}{2} - \epsilon_t)^2}.$$

Furthermore, if for all $t \in [1, T]$, $\gamma \leq (\frac{1}{2} - \epsilon_t)$, then

$$R_n(F_T) \leq e^{-2\gamma^2 T}$$
.

Bound on the empirical error: proof

For all $u \in \mathbb{R}$, we have $1_{u \leq 0} \leq \exp(-u)$. Then

$$\begin{array}{rcl}
, R_n(F_T) & = & \frac{1}{n} \sum_{i=1}^n 1_{y_i F_T(x_i) \le 0} \\
& \leq & \frac{1}{n} \sum_{i=1}^n \exp(-y_i F_T(x_i)) = \frac{1}{n} \sum_{i=1}^n [n \prod_{t=1}^T Z_t] w_{t+1,i} = \prod_{t=1}^T Z_t
\end{array}$$

AdaBoost as a Greedy Scheme Gradient Boosting Boosting and subsampling

Bound on the empirical error: proof ctd'

We can now express $\prod Z_t$ in terms of ϵ_t :

$$\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} 2\sqrt{\epsilon_t(1-\epsilon_t)}$$
=

 $\prod_{t=1}^{T} \sqrt{1-}$

by remark

$$\leq \prod e^{-2(1/2 - \epsilon_t)^2} = e^{-2\sum_{t=1}^T (1/2 - \epsilon_t)^2}$$

using the identity $1 - u \le \exp(-u)$.

AdaBoost as a Greedy Scheme Gradient Boosting Boosting and subsampling

Choice of α_t

The proof reveals serval interesting properties:

- 1. α_t is chosen to minimize $\prod_t Z_t = g(\alpha)$ with $g(\alpha) = (1 \epsilon_t)e^{-\alpha} + \epsilon_t e^{\alpha}$
 - $g'(\alpha) = -(1 \epsilon_t)e^{-\alpha} + \epsilon_t e^{\alpha}$
 - $g'(\alpha) = 0$ iff $(1 \epsilon_t)e^{-\alpha} = \epsilon_t e^{\alpha}$ iff $\alpha = 1/2\log\frac{1 \epsilon_t}{\epsilon_t}$
- 2. The equality $(1-\epsilon_t)e^{-\alpha}=\epsilon_t e^{\alpha}$ means that Adaboost assigns at each time t the same distribution mass to correctly classified examples and incorrectly classified ones. However there is no contradiction because the number of incorrectly examples decreases.

Typical behavior of boosting

AdaBoost as a Greedy Scheme Gradient Boosting Boosting and subsampling

Boosting as a coordinate descent

At the same time, different groups proved that Adaboost writes as a coordinate descent in the convex hull of \mathcal{H} .

- ► Greedy function approximation, Friedman, 1999.
- MarginBoost and AnyBoost : Mason et al. 1999.

Gradient Boosting

At each boosting step, one need to solve

$$(h_t, \alpha_t) = \arg\min_{h, \alpha} \sum_{i=1}^n \ell(y_i, H_{t-1}(x_i) + \alpha h) = L(y, H_{t-1} + \alpha h)$$

- ► Gradient approximation $L(y, H_{t-1} + \alpha h) \sim L(y, H_{t-1}) + \alpha \langle \nabla L(H_{t-1}), h \rangle$.
- Gradient boosting: replace the minimization step by a gradient descent type step:
 - \triangleright Choose h_t as the best possible descent direction in \mathcal{H}
 - ▶ Choose α_t that minimizes $L(y, H + \alpha h_t)$
- Easy if finding the best descent direction is easy!

Gradient boosting and adaboost

Those two algorithms are equivalent!

▶ Denoting
$$H_t = \sum_{t'=1}^t \alpha_{t'} h_{t'}$$
,

$$\sum_{i=1}^n e^{-y_i(H_{t-1}(x_i) + \alpha h(x_i))} = \sum_{i=1}^n e^{-y_i H_{t-1}(x_i)} e^{-\alpha y_i h(x_i)}$$

$$= \sum_{i=1}^n w_i'(t) e^{-\alpha y_i h(x_i)}$$

$$= (e^{\alpha} - e^{-\alpha}) \sum_{i=1}^n w_i'(t) \ell^{0/1}(y_i, h(x_i))$$

$$+ e^{-\alpha} \sum_{i=1}^n w_i'(t)$$

Parisi

Gradient boosting and adaboost

▶ The optimal α_t is then given by

$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t'}{\epsilon_t'}$$

with
$$\epsilon'_t = (\sum_{i=1}^n w'_i(t) \ell^{0/1}(y_i, h_t(x_i))) / (\sum_{i=1}^n w'_i(t))$$

One verify then by recursion that

$$w_i(t) = w_i'(t)/(\sum_{i=1}^n w_i'(t))$$

and thus the two procedures are equivalent!

AnyBoost or Foward Stagewise Additive model

- General greedy optimization strategy to obtain a linear combination of weak predictor
 - ▶ Set t = 0 and $H_0 = 0$.
 - For t = 1 to T,

$$\blacktriangleright (h_t, \alpha_t) = \arg\min_{h, \alpha} \sum_{i=1}^n \ell(y_i, H_{t-1}(x_i) + \alpha h(x_i))$$

$$H_t = H_{t-1} + \alpha_t h_t$$

• Output
$$H_T = \sum_{t=1}^T \alpha_t h_t$$

Losses in Forward Stagewise Additive Modeling

- ▶ AdaBoost with $\ell(y,h) = e^{-yh}$
- ▶ LogitBoost with $\ell(y, h) = \log(1 + e^{-yh})$
- ▶ L_2 Boost with $\ell(y,h) = (y-h)^2$ (Matching pursuit)
- ▶ L_1 Boost with $\ell(y,h) = |y-h|$
- ▶ HuberBoost with $\ell(y,h) = |y-h|^2 \mathbf{1}_{|y-h|<\epsilon} + (2\epsilon|y-h|-\epsilon^2) \mathbf{1}_{|y-h|\geq\epsilon}$

Simple principle but no easy numerical scheme except for AdaBoost and L_2 Boost...

AdaBoost as a Greedy Scheme Gradient Boosting Boosting and subsampling

Continuous loss functions and gradient boosting

L_2 Boosting

- ▶ Loss function for regression: $\ell(y, h) = (y h)^2$
- $(h_t, \alpha_t) = \arg\min_{h,\alpha} \sum_{i=1}^n (y_i H_t(x_i) + \alpha h)^2$

Fitting the residuals.

Boosting and regularization

- You have to wait a long time to see Boosting overfit. However contrary to first assertions, Adaboost does overfit
- Early stopping may be a first answer
- More interestingly : shrinkage
- ightharpoonup Subsampling at each step t for learning h_t

Stochastic Gradient Boosting

- Variation of the Boosting scheme
- Idea: change the learning set at each step.
- Two possible reasons:
 - Optimization over all examples too costly
 - Add variability to use a averaged solution
- Two different samplings:
 - ▶ Use sub-sampling, if you need to reduce the complexity
 - Use re-sampling, if you add variability...

Motivation Bagging Random forests Boosting Boosting with scikitlearn References

Outline

Boosting with scikitlearn

Motivation
Bagging
Random forests
Boosting
Boosting with scikitlearn
References

Outline

Motivation

Bagging

Random forests

Boosting

Boosting with scikitlearn

References

References

- Perrone, Cooper, When classifiers disagree, 1992
- Tumer and Gosh, 1996
- Breiman, Bagging predictors, 1996
- Buhlman and Yu, Analyzing bagging, Annals of stats., 2002
- Breiman, Random Forests, Machine Learning, 2001.
- Geurts, Ernst, Wehenekl, Extra-trees, JMLR, 2006
- Boosting:
 - Freund and Schapire, 1996
 - Greedy function approximation, Friedman, 1999.
 - MarginBoost and AnyBoost: Mason et al. 1999.
 - Tutorial Boosting de Buehlman

