

Sliding mode control

Objectives of this class of <u>nonlinear</u> control?

- Robustness versus uncertainties/perturbations
- Finite time convergence towards the objectives

Features of this class of control?

- Discontinuous control law
- For standart sliding mode (*first order*) : chattering effect, robustness
- For high order sliding mode: accuracy, finite time convergence, robustness

This class of controllers has been studied

- from 40's in the former USSR
- intensively since 20 years

Sliding modes as a phenomenon may appear in a dynamic system governed by ordinary differential equations with discontinuous right hand sides.

The term « **sliding mode** » first appeared in the context of relay systems.

- → It may happen that the control as a function of the system state switches at high (theoretically infinite) frequency
- → This motion is referred to as « sliding mode ».

Nonlinear system (uncertain)

$$\dot{x} = f(x) + \underbrace{u} |f(x)| < f_0$$

How to stabilize, in a finite time, this system in spite of uncertainties?

Tracking error
$$e = r(t) - x$$

Switched control input

$$u = \begin{cases} u_0 & \text{if } e > 0 \\ -u_0 & \text{if } e < 0 \end{cases} \quad \longleftarrow \quad u = u_0 \ sign(e)$$

$$\dot{e} = \dot{r} - f(x) - u_0 \operatorname{sign}(e)$$

$$u_0 > f_0 + |\dot{r}|$$

- The magnitude of the tracking error decays at a finite rate.
- The error is equal to 0 after a finite time.

At the convergence time, the tracking error is equal to $0 \rightarrow Discontinuity point$.

- → Real-applications : the control switches at high frequency
- \rightarrow The motion for t > T is called « **Sliding mode** ».

Consider the following system

$$\ddot{x} = u$$

Fictive output
$$s = cx + \dot{x}$$
 (sliding variable)

M sufficiently large c > 0

Control input u = -Msign(s)

In a **finite time** $t > t_1$, one has s = 0 (sliding surface).

Once the control objective is reached, one has

$$\dot{x} + cx = 0 \quad \Longrightarrow \quad x(t) = x(t_1)e^{-c(t-t_1)}$$

- The motion on the sliding surface depends neither on the plant parameters, nor the disturbances/uncertainties.
- This so-called « invariance » property looks promising for designing feedback control for the dynamic plants operating under uncertainty conditions.

Real implementation

• Finite frequency of the control commutation → it is not possible to reach exactly the sliding surface → notion of real sliding mode.

Chattering effect: oscillations around the sliding surface (inducing commutation of the control input) → dangerous for the actuators.

How to decrease?

Modification of « sign »-function (approximation)

$$\operatorname{sat}(s,\delta) = \begin{cases} \operatorname{sign}(s) & \operatorname{si}|s| > \delta \\ \frac{s}{\delta} & \operatorname{si}|s| \le \delta \end{cases}$$

$$0 < \delta < 1$$

$$\upsilon(s,\delta) = \begin{cases} \operatorname{sign}(s) & \operatorname{si}|s| > \delta \\ (\delta/|s|)^{(q-1)} \operatorname{sign}(s) & \operatorname{si} 0 < |s| \le \delta \quad q \in [0.1) \end{cases} \qquad \upsilon(s, \delta) = \frac{s}{|s| + \delta}$$

$$\upsilon(s, \ \delta) = \frac{s}{|s| + \delta}$$

 $0 < \delta < 1$

Ecole Centrale de Names

Drawback of these approximations. Loss of accuracy and robustness.

• Use of observers (as a filter ?)

Drawback. The observer « needs » to be a finite time convergence one.

→ Solutions based on sliding mode oberver.

Concept of High Order Sliding Mode Control.

Standart sliding mode control.

Objective

$$s = 0$$

in a finite time

The discontinuous function sign(s) is acting on the control input (relative degree of s = 1)

High sliding mode control.

Objective
$$s = \dot{s} = \dots = s^{(r-1)} = 0$$

in a finite time

The discontinuous function sign(s) can act on the control input high order time derivative (for all relative degree of s)

Concept of Adaptive Sliding Mode Control.

Principle. The gain is *dynamically* adapted w.r.t. the uncertainties/perturbations magnitude.

- → The tuning of the gain is made *online*
 - → The gain is reduced : reduction of *chattering*
 - → No knowledge required on the uncertainties/pertubations bounds
 - → Simplification of identification
- → Great interest by a practical point-of-view.

Some references (books)

Slotine et al., Applied nonlinear control, Prentice-Hall, 1997.

Utkin, Sliding modes in control and optimization, Springer, 1992

Utkin et al., Sliding mode control in electromechanical systems, Taylor&Francis, 1999.

Utkin et al., Sliding mode control in electromechanical systems (2nd Edition), CRC

Shtessel et al., Sliiding mode control and observation, Birkhauser, 2013

Desgin of a sliding mode controller.

Principles of sliding mode control

- To force the system to reach in a finite time a set named surface, which is defined from the control objectives
- Once the system has reached this surface, it evolves on it in spite of uncertainties and perturbations.

Synthesis in two steps

- Design of the *sliding variable* (connected to the surface) *w.r.t.* to the control objectives and the desired (static and dynamic) features of the closed-loop system.
- Design of the discontinuous control law in order
 - to constraint the system trajectories ro reach the surface
 - and, then, to be maintained on it in spite of uncertainties/perturbations, ...

Consider the SISO nonlinear system

$$\begin{cases} \dot{x} = f(x) + g(x)u \\ y = h(x) \end{cases}$$

Control objective: the output must track a reference trajectory $y_{ref}(t)$ (sufficiently differentiable).

Assumption: the output y has a relative degree equal to r.

Definition: the **sliding variable** is defined as (coefficients λ_i chosen in order to have a stable behavior)

$$S(t,x) = \sum_{i=0}^{r-1} \lambda_i \cdot \left(y_{ref}(t) - y(x) \right)^{(i)}$$

Relative degree of the sliding variable = 1.

Definition: Sliding surface
$$S = \{x \in \mathcal{X} \mid \mathbf{S}(\mathbf{x}) = \mathbf{0}\}$$

Control objective: force the system trajectories to evolve, in a finite time, on the sliding surface, in spite of uncertainties and perturbation. Once it is obtained, the dynamics of the closed-loop system is defined by the definition of the sliding variable.

Given the definition of the sliding variable, once S(x)=0, the tracking error $e=y-y_R(t)$ is converging asymptotically to 0.

Example: system with 2 state variables, and $S = x_2 + cx_1$ (c > 0)

Definition. Consider the nonlinear system (1), and let the system be closed by some possibly dynamical discontinuous feedback. The motion on S(x)=0 is called « Sliding Mode » with respect to the sliding variable S(x).

$$\dot{S} = \frac{\partial S}{\partial t} + \frac{\partial S}{\partial x} \frac{\partial x}{\partial t} = \frac{\partial S}{\partial t} + \frac{\partial S}{\partial x} [f(x) + g(x)u]$$

$$:= S_1(x,t) + S_2(x)u$$

Define the control input as $u = u_{eq} + v_n$

$$u_{eq} = -\frac{S_1(x)}{S_2(x)}$$
 $v_n = \frac{u_n}{S_2(x)}$

 $u_{\it eq}$: equivalent control – this control law linearizes the system by an input-output point-of-view

How to choose u_n in order to ensure finite time convergence ? \rightarrow Lyapunov approach.

Lyapunov candidate function
$$V(t,x) = \frac{1}{2}S^2$$
 \rightarrow $\dot{V} = Su_n$

$$\rightarrow \dot{V} = s\dot{s} \leq -\eta |s|, \quad \eta > 0$$

$$\rightarrow u_n = -k.Sign(S) \rightarrow t_e \leq \frac{|s(0)|}{\eta}$$

Suppose now that the system is not well-known (uncertainties, perturbations)

$$\begin{vmatrix}
\dot{S} = \frac{\partial S}{\partial t} + \frac{\partial S}{\partial x} \frac{\partial x}{\partial t} = \frac{\partial S}{\partial t} + \frac{\partial S}{\partial x} [f(x) + g(x)u] \\
\vdots = S_1(x,t) + S_2(x)u
\end{vmatrix}$$

$$S_1(x,t) := S_{1n}(x,t) + \Delta S_1(x,t) \\
S_2(x) := S_{2n}(x) + \Delta S_2(x)$$

$$S_1(x,t) := S_{1n}(x,t) + \Delta S_1(x,t)$$

$$S_2(x) := S_{2n}(x) + \Delta S_2(x)$$

Hypothesis.
$$\left|\Delta S_1(x,t)\right| << \left|S_{1n}(x,t)\right| \left|\Delta S_2(x)\right| << \left|S_{2n}(x)\right|$$

$$\Rightarrow \dot{S} = S_{1n}(x,t) + \Delta S_1(x,t) + (S_{2n}(x) + \Delta S_2(x))u$$

$$\mathbf{u} = -\frac{S_{1n}}{S_{2n}} - \frac{K \operatorname{Sign}(S)}{S_{2n}}$$

$$\begin{vmatrix} \dot{S} = \Delta_1 - (\Delta_2 + 1) \operatorname{K} \operatorname{sign}(S) \\ |\Delta_1| = |\Delta S_1(x) - \Delta S_2(x) S_{1n}(x) / S_{2n}(x) | \\ |\Delta_2| = |\Delta S_2(x) / S_{2n}(x) |$$

Tuning of *K***:** large enough in order to ensure the establishment of a sliding mode.

Problem: dynamical systems with a discontinuous second member

→ Existence / unicity of the solution ? In case of sliding motion ?

Fillipov theory

Physically, the equivalent control is the average value of the successive commutations of the control

A first « ideal » example (no uncertainty)

$$\dot{x}_1 = x_2$$
 Objective : force y and \dot{y} to zero.

$$\dot{x}_2 = u$$

$$y = x_1$$

Define a control input based on the sliding mode approach

Suppose that $u = -K \operatorname{sign}(s)$: what is the condition on gain K? What is the value of the equivalent control? (viewed as the mean value once the sliding mode is established!)

2017/2018

Ecole Centrale de Nantes

Real behaviour: due to sampling period, the system is not reaching exactly the sliding surface. However, it will concergence in a neighborhood of the origin, in a finite time.

2017/2018

Ecole Centrale de Nantes

R(t)

Control of a variable-length pendulum

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -2\frac{\dot{R}(t)}{R(t)}x_2 - \frac{g}{R(t)}\sin(x_1) + \frac{1}{mR(t)^2}u$$

Nominal value of dR/dt(t) = 1 m/s.

$$R(t) = 0.8 + 0.1\sin(8t) + 0.3\cos(4t)$$

- **1** Determine the sliding variable in order to control the angle and its velocity.
- **2** By using no equivalent term in the control law, what is the minimal value of the control gain *K* ensuring the establishment of a sliding motion ?

MIMO case: commande d'une machine asynchrone

$$\dot{x} = f(x) + gu + \xi$$

Couple de charge non mesuré

$$\dot{x} = f(x) + gu + \xi$$
 $x = [\Omega, \phi_{r\alpha}, \phi_{r\beta}, i_{s\alpha}, i_{s\beta}]^T$

$$u = \begin{bmatrix} u_{S\alpha}, & u_{S\beta} \end{bmatrix}^T$$

$$f(x) = \begin{bmatrix} f_{1}(x) \\ f_{2}(x) \\ f_{3}(x) \\ f_{4}(x) \\ f_{5}(x) \end{bmatrix} = \begin{bmatrix} (pM_{Sr}/JL_{r})(\phi_{r\alpha}i_{S\beta} - \phi_{r\beta}i_{S\alpha}) - (f_{V}/J)\Omega \\ -(R_{r}/L_{r})\phi_{r\alpha} - p\Omega\phi_{r\beta} + (R_{r}/L_{r})M_{Sr}i_{S\alpha} \\ + p\Omega\phi_{r\alpha} - (R_{r}/L_{r})\phi_{r\beta} + (R_{r}/L_{r})M_{Sr}i_{S\beta} \\ (M_{Sr}/\sigma L_{S}L_{r})((R_{r}/L_{r})\phi_{r\alpha} - p\Omega\phi_{r\beta}) - \gamma i_{S\alpha} \\ (M_{Sr}/\sigma L_{S}L_{r})((R_{r}/L_{r})\phi_{r\beta} - p\Omega\phi_{r\alpha}) - \gamma i_{S\beta} \end{bmatrix} \qquad g = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1/\sigma L_{S} & 0 \\ 0 & 1/\sigma L_{S} \end{bmatrix}, \quad \xi = \begin{bmatrix} -T_{l}/J \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$g = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1/\sigma L_S & 0 \\ 0 & 1/\sigma L_S \end{bmatrix}, \quad \xi = \begin{bmatrix} -T_l/J \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- **1** Design a controller of $\,arOmega$
- **2** Design a controller of $\phi^2 = \phi_{r\alpha}^2 + \phi_{r\beta}^2$

$$\sigma := 1 - \frac{M_{Sr}^2}{L_S L_r}, \quad \gamma := \frac{L_r^2 R_S + M_{Sr}^2 R_r}{\sigma L_S L_r^2}$$

$$S_{1} = -\dot{y}_{1} - l_{1}(y_{1,ref} - y_{1}) = -\dot{\Omega} - l_{1}(\Omega_{ref} - \Omega)$$

$$S_{2} = (\dot{y}_{2,ref} - \dot{y}_{2}) - l_{2}(y_{2,ref} - y_{2}) = (\dot{\phi}^{2}_{ref} - \dot{\phi}^{2}) - l_{2}(\phi^{2}_{ref} - \phi^{2})$$

$$\dot{S}_{1} = -\ddot{y}_{1} - l_{1}(\dot{\Omega}_{ref} - \dot{\Omega})$$

$$\dot{S}_{1}(x,u,t) = \ddot{\Omega}_{ref} - \dot{f}_{1}(x,u) - l_{1}(\dot{\Omega}_{ref} - f_{1}(x))$$

$$:= a_{1}(x,t) + b_{11}(x)u_{s\alpha} + b_{12}(x)u_{s\beta}$$

$$\dot{S}_{2}(x,u,t) = \ddot{\phi}^{2}_{ref} - 2(\phi_{r\alpha}\dot{f}_{2}(x,u) + (f_{2}(x))^{2} + \phi_{r\beta}\dot{f}_{3}(x,u) + (f_{3}(x))^{2}) - l_{2}(\dot{\phi}^{2}_{ref} - 2(\phi_{r\alpha}f_{2}(x) + \phi_{r\beta}f_{3}(x)))$$

$$\dot{S}_2(x, u, t) := a_2(x, t) + b_{21}(x)u_{s\alpha} + b_{22}(x)u_{s\beta}$$

$$u = \begin{bmatrix} u_{s\alpha} \\ u_{s\beta} \end{bmatrix} = \begin{bmatrix} b_{11}(x) & b_{12}(x) \\ b_{21}(x) & b_{22}(x) \end{bmatrix}^{-1} \begin{bmatrix} -\begin{bmatrix} a_1(x,t) \\ a_2(x,t) \end{bmatrix} + \begin{bmatrix} k_1 * signe(S_1) \\ k_2 * signe(S_2) \end{bmatrix} \end{bmatrix}$$