

Department of ECE, Bennett University

EECE105L: Fundamentals of Electrical and Electronics Engineering

Tutorial Sheet-10

Topics Covered: Capacitance, Inductance, Impedance

Note: Questions 1, 3, 7 and 8 will be discussed in tutorial sessions. Remaining problems are the student's efforts.

1. Find the equivalent capacitance of the networks shown in fig. 1 through fig. 6.

Fig. 5

Fig. 6

- Consider an RC circuit. The resistance (R) and capacitance (C) are varied in such a way that the time constant = RC s always constant. Explain the difference between the circuits when (i) R is small (ii) R is large and (iii) R is medium.
- Find the equivalent impedance (impedance between points A and B for the circuit shown in Fig. 7. Given that $\omega = 2.5 \times 10^3$ rad/sec.

Fig. 7

For the circuit shown in Fig. 8, for ω = 4000 rad/sec, the impedance across A and B is $(25+j10)~\Omega$. What is the value of inductor?

In the circuit shown in Fig. 9, If v(t) and i(t) are in phase, what is the value of ℓ ?

, 6 In the circuit shown in Fig. 10, find the charge and energy stored by the 20 μF capacitor.

7. In the circuit shown in Fig. 11, in a steady state, find the voltage drop across 2 F capacitor.

- 8. If a current $i(t) = \sin(377t)$ is applied to a 2 mH inductor, find the voltage across the inductor and energy stored by the inductor.
- The voltage applied across a 50 μ F capacitor is given by the waveform shown in Fig. 12. What is the current through the capacitor at 2 ms and 3 ms?

Fig. 12

10. If the current flowing through a 2 mH inductor is given by $i(t) = 5.3 t^2 + 4.7 t$, find the power stored by the inductor.

----- END OF QUESTIONS -----

Answers:

1)

Fig. 1	$C_{eq} = \frac{(C_1 + C_2)C_3}{C_1 + C_2 + C_3}$
Fig. 2	2C
Fig. 3	4C
Fig. 4	С
Fig. 5	2.5 C
Fig. 6	2C

- 3) $(4.586 + j0.014)\Omega$
- 4) 6.25 mH
- 5) 6.5 mH
- 6) 1000 $\mu\text{C}\text{, }0.025\text{ W}$
- 7) 48 V
- 8) $0.754 \cos(377 t)$, $0.01 \sin^2(377 t)$
- 9) 5 mA, -5 mA
- 10) $16.8t^3 + 22.4t^2 + 6.6t$