Lecture - 16

Universal Grate &

Switch Represention of Logical functions

UNIVERSAL GATES

- A universal gate is a gate, which can implement any Boolean function without need to use any other gate.
- The NAND and NOR are universal gates.
 - These gates are economical and easier to fabricate, and are the basic gates used in all Integrated Circuit (IC).
 - In fact, an AND gate is typically implemented as a NAND gate + inverter.
 - Likewise, an OR gate is typically implemented as NOR gate + inverter.
 - The circuit which is designed by universal gates, are also called as Universal logic circuit.

NAND is a Universal Gate

UNIVERSAL GATES

NAND is a Universal Gate

NOR is a Universal Gate

Number of Universal gates required

Gate	NAND	NOR	
NOT	1	1	
AND	2	3 ~~~	
OR	<u>3</u>	2	
NAND	1	4 ~	
NOR	4	<u>1</u>	
XOR	4	_5_	
XNOR	<u>5</u>	<u>4</u>	

Switch orepresentation of Logical function La Circuit + switchs

ar Buffer

(b) Inverter $y = \overline{A}$

$$A = 0N$$
 Blob= 0 FF
 $B = 0N$ f $A = 0FF => Bulb = 0FF$
 $A & B = 0N => Bulb = 0N$

et NAND Grate:

1) Nor Grate

B=ON, Bub=OFF B=ON, Bub=OFF	Y= A+B		OLC = 0 $ON = 7$	
A,B=OFF=Bull=ON	A	S	B fa	A+B
low	— O	0	O	1 - high
200	70	P	7	67
	ع ا	O	1	0 Jow
	1	1	1	0

$$A=1$$
, $B=1$, $BUb=glow(0N)$
 $A=0$, $B=0$, $BUb=oN$