勒让德多项式的奇偶项不能同时为无限项			
应用: 化替泰勒级数 —— 广义级数			
① 勒让 德多项式的正文性			
$10 \text{ m} \neq \text{n}$			
$\int_{-1}^{1} P_{m}(x) P_{n}(x) dx = \int_{-1}^{1} 0 m \neq n$			
$\int_{-1}^{1} P_{m}(x) P_{n}(x) dx = \sum_{n=1}^{\infty} \int_{-1}^{1} x^{n} \frac{d^{n}}{dx^{n}} (x^{2} - 1)^{n} dx$	X		
[x x x [x'-1] "dx 分部积分至足的约	後次		
	_ L	2-2-4-4	· 2n. 2n
	7n =	3.3.5.5	· 2n. 2n
	36 h 1		[211]
	沃利 2	The second second	
$f(x) = \sum_{k=0}^{f(n)} C_k P_k(x)$			
(ftm			
$\int_{-1}^{1} f(x) P_{m}(x) dx = \int_{-1}^{1} \left(\sum_{k=0}^{+\infty} C_{k} P_{k}(x) \right) P_{m}(x) dx$			
$= C_m/P_m^2(x)dx$			
= Cm 2/2ntl			
$C_k = \frac{2nt1}{2} \int_{-1}^{\infty} f(x) P_m(x) dx$			
Pn(x) 偶函数 Pn-(x) 奇函数			
P2n(x) 傷函数 P2n-1(x) 奇函,数			

$$C_{2n} = \frac{x_{n+1}}{2} \int_{-1}^{1} f(x) P_{2n}(x) dx$$

$$= \frac{x_{n+1}}{2} \int_{-1}^{0} (-x) P_{2n}(x) dx + \frac{x_{n+1}}{2} \int_{0}^{1} x P_{2n}(x) dx$$

$$= \frac{x_{n+1}}{2} \int_{0}^{1} (-x) \frac{1}{2^{2n}(2n)!} \frac{d^{2n}}{dx^{2n}} (x^{2} - 1)^{2n} dx$$

$$+ \frac{x_{n+1}}{2} \int_{0}^{1} x \frac{1}{2^{2n}(2n)!} \frac{d^{2n}}{dx^{2n}} (x^{2} - 1)^{2n} dx$$

$$= \frac{x_{n+1}}{2^{2n}(2n)!} \left[-x \frac{d^{2n+1}}{dx^{2n+1}} (x^{2} - 1)^{2n} dx + \frac{x_{n+1}}{2^{2n}(2n)!} (-x \frac{d^{2n+1}}{dx^{2n+1}} (x^{2} - 1)^{2n} dx + \frac{x_{n+1}}{2^{2n}(2n)!} (-x \frac{d^{2n+1}}{dx^{2n+1}} (x^{2} - 1)^{2n} dx + \frac{x_{n+1}}{2^{2n}(2n)!} (-x \frac{d^{2n+1}}{dx^{2n}} (x^{2} - 1)^{2n} dx + \frac{x_{n+1}}{2^{2n}(2n)!} (-x \frac{d^{2n}}{dx^{2n}} (x^{2} - 1)^{2n} dx + \frac{x_{n+1}}{2^{2n}(2n)$$

			YL										
	χ	2 =	<u>5</u>) =	CiF	(۲) م	7	<u>1</u>	2/) ₂ (X)				
	u	(y, 6	ے ر	13 f	2 r2	P ₂ (0	(8 LO						
		六	(2)	(3)	(8)								