SISTEMAS DE CONTROLE

3ª LISTA DE EXERCÍCIOS

Prof. Valdir Sampaio

1ª) Usando o critério de Routh determine quais dentre os polinômios abaixo são estáveis, e determine o número de raízes em C⁺.

a)
$$s^4 + 5s^3 + 8s^2 + 20s + 16$$

b)
$$s^6 + 3s^5 + 8s^4 + 10s^3 + 8s^2 + 15s + 20$$

c)
$$s^5 + 3s^4 + s + 1$$

d)
$$s^3 + 3s^2 + 8s + 8$$

2ª) Determine os valores de K para que os sistemas sejam estáveis.

a)

3^a) Para o sistema

- a)Determine a função de transferência do sistema.
- b) Realize por modelo de estados considerando $x_1(t)$ e $x_2(t)$ como estados
- c) Faça um estudo sobre estabilidade e observabilidade do sistema. O Sistema é detectável?

 4^{2}) Trace o root lócus para os sistemas definidos nos itens abaixo.

a)
$$G(s) = \frac{s+4}{s(s^2+4s+4)(s+6)}$$

b)
$$G(s) = \frac{s+0.5}{s^2(s+4)(s+8)}$$

b)
$$G(s) = \frac{s+0.5}{s^2(s+4)(s+8)}$$

c) $G(s) = \frac{s^2+8s+20}{(s+2)(s^2+2s+2)}$

d)
$$G(s) = \frac{s + \frac{1}{4}}{(s-3)^2(s+10)}$$

- 5^a) Na questão 4 determine
 - a) Limites de estabilidade para todos os itens
 - b) K para que ζ =0,707 para os itens b e d.
- 6^a) No sistema abaixo determine

- a) A constante de erro ao degrau
- b) A constante de erro à rampa
- c) O erro de regime permanente para a entrada $r(t)=t\delta_{-1}(t)$
- d) O s valores de K_1 e K_2 para se obter ζ =0,5
- e) Para os valores K₁ e K₂ obtidos em d, determine overshoot, t_r, t_d, t_p,t_s.

 7^{a}) Para $G(s) = \frac{5\left(s + \frac{1}{2}\right)}{s^{2}(s + p)}$ com realimentação unitária (veja figura da questão 4) determine:

- a) O valor de p de modo que o root lócus tenha um, dois, oi três pontos de ramificação
- b) Os valores de p e K de modo que o sistema em malha fechada tenha um pólo triplo
- c) O valor de K para se obter ζ =0,707 com pólo dominante
- 8^a) Para que valores de K os polinômios são estáveis

a)
$$s^4 + 2s^3 + 2s^2 + (K+1)s + 2$$

b)
$$s^4 + 3s^3 + 3s^2 + (K-2)s + K + 3$$

9^a) Nos sistemas abaixo
$$G(s) = \frac{15000}{s(s+5)(1+0.01s)}$$
 e $H_1(s) = \frac{1}{1+0.1s}$

- a) Determine H₂(s) para que os dois diagramas de blocos sejam equivalentes
- b) Determine as constantes de erro de posição e velocidade da Fig 02, Qual o significado de K_v ser negativo?
- c) Determine y(t) para u(t) = degrau unitário.
- 10 ª) um sistema de controle com retroação unitária tem a seguinte função de transferência

$$G(s) = \frac{K(s+a)}{s(s+b)(s^2+cs+d)}.$$
 Os valores nominais são K= 20, a = 3, b = 6, c = 4 e d = 8

- a) Determine a sensibilidade em relação K
- b) Determine a sensibilidade em relação a
- c) Determine a sensibilidade em relação b
- d) Determine a sensibilidade em relação c
- e) Determine a sensibilidade em relação d