Recap: Stochastic Contextual Bandit setup

- Stochastic contextual bandits generalize adversarial contextual bandits by adding a stochastic reward model.
- At each round t:
 - The learner observes a context C_t .
 - Then chooses an action $A_t \in [k]$.
- The reward is given by:

$$X_t = r(C_t, A_t) + \eta_t$$

where:

- r is the expected reward function.
- η_t is a noise term.
- The noise η_t is conditionally 1-subgaussian given past observations.
- This implies:

$$\mathbb{E}[X_t \mid \mathcal{F}_t] = r(C_t, A_t)$$

and the noise has zero mean.

1 / 46 MAB

Terminology

- Let:
 - $C_t \in \mathcal{C}$: context at round t
 - $A_t \in [k]$: action chosen at round t
 - $X_t \in \mathbb{R}$: reward received
 - $r: \mathcal{C} \times [k] \to \mathbb{R}$: unknown expected reward function
 - η_t : noise
- Then the stochastic contextual bandit model assumes:

$$X_t = r(C_t, A_t) + \eta_t$$

- With the assumptions:
 - $\mathbb{E}[\eta_t \mid \mathcal{F}_t] = 0$
 - η_t is conditionally 1-subgaussian, i.e.,

$$\mathbb{E}\left[\exp(\lambda \eta_t) \mid \mathcal{F}_t\right] \le \exp\left(\frac{\lambda^2}{2}\right) \quad \forall \lambda \in \mathbb{R}$$

• Here, the filtration \mathcal{F}_t is defined as:

$$\mathcal{F}_t = \sigma(C_1, A_1, X_1, \dots, C_{t-1}, A_{t-1}, X_{t-1}, C_t, A_t)$$

 Because this filtration captures all the past data and the current action, but not the current reward?

A motivating example

An online ad platform must select an advertisement to display to a user each time they visit a webpage. The objective is to maximize the cumulative **click-through rate (CTR)** over time.

At each round $t = 1, 2, \dots, n$:

- The user is described by a **context vector** $c_t \in C$, encoding features such as:
 - Demographics (e.g., age, gender, location)
 - Device type (mobile, desktop)
 - Temporal features (hour, weekday)
 - Behavioral data (past clicks, interests)
- The learner must select one advertisement from a finite action set $\mathcal{A} = \{1, 2, \dots, k\}$. Each ad $a \in \mathcal{A}$ has its own features, such as:
 - Product category
 - Target audience
 - Visual design style

Assume a known joint feature map:

$$\psi: \mathcal{C} \times \mathcal{A} \to \mathbb{R}^d$$

that encodes the interaction between user and ad.

We assume the reward model is linear:

$$r(c_t, a) = \langle \theta^*, \psi(c_t, a) \rangle$$

where $\theta^* \in \mathbb{R}^d$ is an unknown parameter vector capturing latent preferences.

Gagan Chandra June 30, 2025 4 / 46 MA

After choosing action $A_t \in \mathcal{A}$, the learner observes:

$$X_t = r(c_t, A_t) + \eta_t \in \{0, 1\}$$

where:

- $X_t = 1$ if the user clicks the ad,
- $X_t = 0$ otherwise,
- η_t is 1-subgaussian noise (zero-mean, bounded variance).

Gagan Chandra June 30, 2025 5 / 46 MAI

- **Generalization across ads:** The feature map allows learning across similar user-ad pairs, reducing sample complexity.
- Sample-efficient exploration: LinUCB selects actions optimistically using confidence ellipsoids around θ^* .
- **Scalability:** Only a single $\theta^* \in \mathbb{R}^d$ needs to be learned, rather than a separate reward for every (c, a) pair.

Linearity assumption

- If the true reward function r(c,a) were known, the learner could act optimally at each round.
- Regret measures the performance gap due to not knowing r.
- In the worst case, estimating r(c,a) for every pair (c,a) is infeasible especially when the context space is large.
- \bullet A powerful workaround: assume rewards are linear in a feature map $\psi(c,a)$ concat,NN,etc..
- This yields the **stochastic linear contextual bandit** model.
- Smoothness of r can be controlled via bounds on $\|\theta^*\|$.

Gagan Chandra June 30, 2025 7 / 46 MA

- Let:
 - $C_t \in \mathcal{C}$: context at round t
 - $A_t \in [k]$: chosen action at round t
 - $\psi: \mathcal{C} \times [k] \to \mathbb{R}^d$: feature map
 - $\theta^* \in \mathbb{R}^d$: unknown parameter vector
 - $X_t = r(C_t, A_t) + \eta_t$: reward with 1-subgaussian noise η_t
- Assume the linear reward model:

$$r(c,a) = \langle \theta^*, \psi(c,a) \rangle \quad \text{for all } (c,a) \in \mathcal{C} \times [k]$$

• Define the optimal action at round t as:

$$A_t^* = \arg\max_{a \in [k]} r(C_t, a)$$

• Then the cumulative **regret** over n rounds is defined as:

$$R_n = \mathbb{E}\left[\sum_{t=1}^{n} \left(r(C_t, A_t^*) - r(C_t, A_t)\right)\right] = \mathbb{E}\left[\sum_{t=1}^{n} \left(\max_{a \in [k]} r(C_t, a) - X_t\right)\right]$$

ullet This measures the cumulative performance gap caused by not knowing the reward function r

Gagan Chandra IIT Hyderabad June 30, 2025 8 / 46 MAB

A lower bound on regret

- Lower Bound (Tabular Case):
- If you must learn r(c,a) for all M contexts and k actions, the worst-case cumulative regret is:

$$\Omega(\sqrt{nMk})$$

• This becomes infeasible when M is large (e.g., $M=2^{100}$).

Gagan Chandra June 30, 2025 9 / 46 MAE

Gagan Chandra June 30, 2025 10 / 46 MAB

Gagan Chandra June 30, 2025 11 / 46 MAB

- Linear contextual bandits simplify into the stochastic linear bandit setting.
- All that matters is the **feature vector** not the specific identity of the action.
- At round t, the learner selects an action:

$$A_t \in \mathcal{A}_t \subset \mathbb{R}^d$$

• The reward is linear in the chosen action:

$$X_t = \langle \theta^*, A_t \rangle + \eta_t$$

where:

- $\theta^* \in \mathbb{R}^d$ is an unknown parameter vector,
- η_t is 1-subgaussian noise.
- Pseudo-regret and expected regret are both defined over these chosen actions A_t .
- Special cases include:
 - Finite-armed bandits
 - Contextual bandits
 - Combinatorial linear bandits

• We simplify Eq. (19.1):

$$r(c,a) = \langle \theta^*, \psi(c,a) \rangle \quad \Rightarrow \quad X_t = \langle \theta^*, A_t \rangle + \eta_t$$

- Where:
 - $A_t \in \mathcal{A}_t \subset \mathbb{R}^d$: decision/action in round t
 - $\theta^* \in \mathbb{R}^d$: unknown parameter vector
 - η_t : 1-subgaussian noise, i.e.,

$$\mathbb{E}\left[e^{\lambda\eta_t}\mid \mathcal{F}_t\right] \leq \exp\left(\frac{\lambda^2}{2}\right) \quad \text{for all } \lambda \in \mathbb{R}$$

Pseudo-Regret:

$$\widehat{R}_n = \sum_{t=1}^n \left(\max_{a \in \mathcal{A}_t} \langle \theta^*, a \rangle - \langle \theta^*, A_t \rangle \right)$$

• Expected Regret:

$$R_n = \mathbb{E}[\hat{R}_n] = \mathbb{E}\left[\sum_{t=1}^n \left(\max_{a \in \mathcal{A}_t} \langle \theta^*, a \rangle - X_t\right)\right]$$

- UCB (Upper Confidence Bound) is a powerful method in stochastic bandits.
- It can be generalized to linear bandits using the optimism in the face of uncertainty (OFU) principle.
- The generalization involves:
 - ullet Estimating $heta^*$ with a confidence set $C_t \subset \mathbb{R}^d$
 - Selecting actions by solving:

$$A_t = \arg\max_{a \in \mathcal{A}_t} \max_{\theta \in C_t} \langle \theta, a \rangle$$

- The resulting algorithm is known as LinUCB or OFUL (Optimism in the Face of Uncertainty for Linear bandits).
- **Key challenge:** Constructing the confidence set C_t such that:
 - It contains θ^* with high probability,
 - While remaining as small as possible to ensure good exploration-exploitation balance.

14 / 46 MAB

Gagan Chandra June 30, 2025 15 / 46 MAB

Gagan Chandra June 30, 2025 16 / 46 MAB

Define Confidence Set:

Let $C_t \subset \mathbb{R}^d$ be a confidence set such that:

$$\mathbb{P}\left[\theta^* \in C_t\right] \ge 1 - \delta$$

Define UCB Estimate:

For any action $a \in \mathbb{R}^d$, define:

$$UCB_t(a) = \max_{\theta \in C_t} \langle \theta, a \rangle$$
 (19.2)

This gives an upper bound on the expected reward of a, under uncertainty about θ^* .

LinUCB Selection Rule:

$$A_t = \arg\max_{a \in \mathcal{A}_t} \mathrm{UCB}_t(a) \tag{19.3}$$

This rule selects the action that has the highest optimistic reward estimate based on the current confidence set C_t .

- Where is the challenge?
- Choosing the confidence set C_t is non-trivial:
 - It is no longer a simple scalar interval (as in basic bandits).
 - \bullet It must contain the true parameter θ^* with high probability.
 - Yet, it must also be as small (tight) as possible to avoid unnecessary exploration.
- We will later construct C_t as an ellipsoid:
- Proof/Derivations (Preview):
- To build the confidence set C_t , we proceed as follows:
- Use **regularized least squares** to estimate θ^* :

$$\hat{\theta}_t = \arg\min_{\theta \in \mathbb{R}^d} \sum_{s=1}^t (X_s - \langle \theta, A_s \rangle)^2 + \lambda \|\theta\|^2$$

18 / 46 MAB

Gagan Chandra IIT Hyderabad June 30, 2025

why λ ?

contour plots.

MAB

Gagan Chandra June 30, 2025 20 / 46

We aim to minimize the empirical squared loss:

$$L(\theta) = \sum_{s=1}^{t} (X_s - A_s^{\top} \theta)^2$$
$$\nabla_{\theta} L(\theta) = -2A^{\top} (X - A\theta) = 0$$
$$A^{\top} A\theta = A^{\top} X$$

Gagan Chandra IIT Hyderabad June 30, 2025

Gagan Chandra IIT Hyderabad June 30, 2025 22 / 46 MAB

- Let's compute the gradient of the regularized least squares loss function $L(\theta)$, and set it to zero to solve for $\hat{\theta}_t$.
- Expand the loss function:

$$L(\theta) = \sum_{s=1}^{t} \left(X_s - A_s^{\top} \theta \right)^2 + \lambda \|\theta\|^2$$

• Take the gradient with respect to θ :

$$\nabla_{\theta} L(\theta) = -2 \sum_{s=1}^{t} A_s \left(X_s - A_s^{\top} \theta \right) + 2\lambda \theta$$

• Set the gradient to zero:

$$\sum_{s=1}^{t} A_s A_s^{\top} \theta + \lambda \theta = \sum_{s=1}^{t} A_s X_s$$

• Group terms:

$$\left(\lambda I + \sum_{s=1}^{t} A_s A_s^{\top}\right) \theta = \sum_{s=1}^{t} A_s X_s$$

• Define the design matrix:

$$V_t := \lambda I + \sum_{s=1}^{t} A_s A_s^{\top}$$
 (19.6)

Then the solution is:

$$\hat{\theta}_t = V_t^{-1} \sum_{s=1}^t A_s X_s \tag{19.5}$$

• Note: Some sources define the estimate as $\hat{\theta}_{t-1}$ to emphasize that data only up to time t-1 is used to choose action A_t .

Gagan Chandra June 30, 2025 24 / 46

$$\hat{\theta}_t - \theta_* = V_t^{-1} \sum_{s=1}^t A_s \eta_s - \lambda V_t^{-1} \theta_*$$

this is the error , we need to bound it.

Gagan Chandra June 30, 2025 25 / 46 MAI

Gagan Chandra June 30, 2025 26 / 46 MAB

$$\leq: \beta_{1,t} := \sqrt{2 \log \left(\frac{\det(V_t)^{1/2}}{\delta \cdot \lambda^{d/2}} \right)}$$

Abbasi-Yadkouri(2011)

Gagan Chandra June 30, 2025 27 / 46 MAI

$$\leq \lambda \, \theta^{*\top} \theta^* = \lambda \, \|\theta^*\|_2^2$$

Gagan Chandra June 30, 2025 28 / 46 MAB

$$\|\hat{\theta}_t - \theta^*\|_{V_t}^2 \le \beta_t^2 := 2 \log \left(\frac{\det(V_t)^{1/2}}{\delta \cdot \lambda^{d/2}} \right) + 2\lambda \|\theta^*\|_2^2$$

with prob. atleast 1- δ

Gagan Chandra June 30, 2025 29 / 46 MA

$$\begin{split} & \mathsf{V}_{t-1} = Q \Lambda Q^\top \\ & \sum_{i=1}^d \left(\frac{\beta_t}{\lambda_i} z_i\right)^2 \leq 1 \\ & \mathsf{Vol}(E) = \frac{\pi^{d/2}}{\Gamma\left(\frac{d}{2} + 1\right)} \cdot \frac{\beta^{d/2}}{\sqrt{\det(M)}} \end{split}$$

Gagan Chandra IIT Hyderabad June 30, 2025 30 / 46 MAB

UCB using optimization over an ellipsoid

We are interested in computing:

$$\mathsf{UCB}_t(a) = \max_{\theta \in C_t} \langle \theta, a \rangle$$

where the confidence set is defined as:

$$C_t = \left\{ \theta \in \mathbb{R}^d : \left\| \theta - \hat{\theta}_t \right\|_{V_t} \le \beta_t \right\}$$

This is equivalent to solving:

$$\max_{\theta \in \mathbb{R}^d} \langle \theta, a \rangle \quad \text{subject to} \quad (\theta - \hat{\theta}_t)^\top V_t (\theta - \hat{\theta}_t) \leq \beta_t^2$$

31 / 46 MAB

Gagan Chandra IIT Hyderabad June 30, 2025

Let $z := \theta - \hat{\theta}_t$, so that $\theta = \hat{\theta}_t + z$. Then:

$$\langle \theta, a \rangle = \langle \hat{\theta}_t + z, a \rangle = \langle \hat{\theta}_t, a \rangle + \langle z, a \rangle$$

The constraint becomes:

$$z^{\top} V_t z \le \beta_t^2$$

Thus, the problem reduces to:

$$\max_{z \in \mathbb{R}^d} \langle z, a \rangle \quad \text{subject to} \quad z^\top V_t z \le \beta_t^2$$

Gagan Chandra June 30, 2025 32 / 46

This is a linearly constrained quadratic program. By the Cauchy-Schwarz inequality in the Mahalanobis norm:

$$\langle z, a \rangle \le \|z\|_{V_t} \cdot \|a\|_{V_t^{-1}}$$

with equality when:

$$z = \alpha V_t^{-1} a$$
 for some scalar $\alpha > 0$

To satisfy the constraint $||z||_{V_t} = \beta_t$, compute:

$$||z||_{V_t}^2 = z^\top V_t z = \alpha^2 a^\top V_t^{-1} a = \beta_t^2 \Rightarrow \alpha = \frac{\beta_t}{||a||_{V_t^{-1}}}$$

Thus, the optimal z is:

$$z^{\star} = \frac{\beta_t}{\|a\|_{V_t^{-1}}} V_t^{-1} a$$

Substituting back:

$$\max_{\theta \in C_t} \langle \theta, a \rangle = \langle \hat{\theta}_t + z^*, a \rangle = \langle \hat{\theta}_t, a \rangle + \langle z^*, a \rangle$$

Compute:

$$\langle z^*, a \rangle = \frac{\beta_t}{\|a\|_{V_t^{-1}}} a^\top V_t^{-1} a = \beta_t \cdot \|a\|_{V_t^{-1}}$$

Therefore:

$$\mathsf{UCB}_t(a) = \langle \hat{\theta}_t, a \rangle + \beta_t \cdot ||a||_{V_t^{-1}}$$

Gagan Chandra June 30, 2025 34 / 46

Gagan Chandra IIT Hyderabad June 30, 2025 35 / 46 MAB

Gagan Chandra IIT Hyderabad June 30, 2025 36 / 46 MAB

• Given a positive definite matrix *V*, the set:

$$\left\{ x \in \mathbb{R}^d : (x - \mu)^\top V(x - \mu) \le \beta \right\}$$

is an **ellipsoid** centered at μ .

- Let $V = Q\Lambda Q^{\top}$ be the eigendecomposition of V, where:
 - ullet Q is an orthonormal matrix of eigenvectors q_1,\ldots,q_d
 - ullet $\Lambda = \mathsf{diag}(\lambda_1,\ldots,\lambda_d)$ contains the eigenvalues
- Then the Mahalanobis norm becomes:

$$||x - \mu||_V^2 = (x - \mu)^\top Q \Lambda Q^\top (x - \mu) = \sum_{i=1}^d \lambda_i \langle q_i, x - \mu \rangle^2$$

- This shows:
 - ullet The ellipsoid is stretched/scaled along directions q_i
 - Axis length in direction q_i is proportional to $\frac{1}{\sqrt{\lambda_i}}$
- Therefore:
 - As V_t increases in all directions (i.e., more data accumulated),
 - The ellipsoid shrinks indicating improved certainty and better learning
 - Provided β_t doesn't grow too fast, the confidence set contracts

Continued

- Why center at $\hat{\theta}_{t-1}$?
 - $\hat{\theta}_{t-1}$ is the best guess of θ^* using data from rounds 1 to t-1
 - ullet The confidence set C_t is built using this historical data
 - It allows us to apply the UCB principle:

"With high probability,
$$\theta^* \in C_t$$
"

 So we choose the action a that maximizes the most optimistic reward:

$$UCB_t(a) = \max_{\theta \in C_t} \langle \theta, a \rangle$$

Gagan Chandra IIT Hyderabad

LinUCB

We assume the following:

- ullet Feature map: $\psi: \mathcal{C} imes [k] o \mathbb{R}^d$
- Regularization parameter: $\lambda > 0$
- ullet Confidence radius eta_t computed via concentration bounds
- Design matrix: $V_t \in \mathbb{R}^{d \times d}$
- Weighted feature-reward vector: $b_t \in \mathbb{R}^d$

$$V_0 = \lambda I_d, \quad b_0 = 0 \in \mathbb{R}^d$$

For each round $t = 1, 2, \ldots, n$:

• Observe context: $C_t \in \mathcal{C}$ Construct the set of feature vectors:

$$A_t = \{x_{t,1} = \psi(C_t, 1), \dots, x_{t,k} = \psi(C_t, k)\} \subset \mathbb{R}^d$$

2 Estimate the parameter:

$$\hat{\theta}_{t-1} = V_{t-1}^{-1} b_{t-1}$$

3 Compute the UCB score for each arm $a \in [k]$:

$$UCB_{t}(a) = \langle \hat{\theta}_{t-1}, x_{t,a} \rangle + \beta_{t} \cdot ||x_{t,a}||_{V_{t-1}^{-1}}$$

Select the action with highest UCB:

$$A_t = \arg\max_{a \in [k]} \mathsf{UCB}_t(a)$$

Observe stochastic reward:

$$X_t = \langle \theta^*, x_{t,A_t} \rangle + \eta_t,$$
 where η_t is 1-subgaussian

Update:

$$V_t = V_{t-1} + x_{t,A_t} x_{t,A_t}^{\top}$$

$$b_t = b_{t-1} + x_{t,A_t} X_t$$

With probability at least $1 - \delta$, the true parameter θ^* lies in the ellipsoid:

$$\|\hat{\theta}_{t-1} - \theta^*\|_{V_{t-1}} \le \beta_t$$

A typical choice for β_t (assuming $\|\theta^*\|_2 \leq S$) is:

$$\beta_t = \sqrt{\lambda}S + \sqrt{2\log\left(\frac{1}{\delta} \cdot \frac{\det(V_t)^{1/2}}{\lambda^{d/2}}\right)}$$

MAB