SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

I B.Tech II Semester (SVEC-19) Regular Examinations December - 2020

TRANSFORMATION TECHNIQUES AND LINEAR ALGEBRA

[Civil Engineering, Electrical and Electronics Engineering, Mechanical Engineering, Electronics and Communication Engineering, Computer Science and Engineering, Electronics and Instrumentation Engineering, Information Technology,

Computer Science and Systems Engineering

Time: 3 hours Max. Marks: 60 **Answer One Question from each Unit** All questions carry equal marks UNIT-I Obtain the Fourier series for x^2 in the interval $-\pi < x < \pi$. 8 Marks 1. L3 CO₁ PO₂ a) Hence show that $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} = \frac{\pi^2}{12}$ b) Find the Fourier transform of $f(x) = \begin{cases} 1 & \text{for } |x| < a \\ 0 & \text{for } |x| > a \end{cases}$ 4 Marks L2 CO₁ PO₁ 1. Find the half-range Cosine series for the following function: 2. a) 6 Marks CO₁ PO₁ f(x) = 2x - 1 for 0 < x < 16 Marks 2x: 0 < x < 1L2 CO₁ PO₁ b) Obtain Fourier cosine transform of $f(x) = \{2 - x; 1 < x < 2\}$ 0 ; x > 2.UNIT-II 3. a) Find the Laplace transform of *t* sin*at*. 6 Marks L1 CO₁ PO₁ Using Laplace transform, evaluate the integral b) 6 Marks L3 CO₁ PO₂ $\int_{t}^{\infty} \frac{\sin 2t}{t} dt$ 6 Marks L2 CO₁ PO₁ Determine Laplace transform of $\int_{0}^{t} t^{2} \sin t \, dt$. 4. a) b) Find the Laplace transform of 6 Marks L2 CO₁ PO₁ $f(t) = \begin{cases} 0, & 0 < t < 1 \\ 1, & 1 < t < 2 \\ 2, & t > 2 \end{cases}$ UNIT-III Solve the following differential equation using Laplace transform 8 Marks 5. L3 CO₁ PO₂ a) $y'' + 2y' + 2y = 5\sin t$, y(0) = y'(0) = 0. b) Find $L^{-1} \left[\frac{2s+3}{s^2-4s+13} \right]$. 4 Marks L2 CO₁ PO₁

(OR)

6. a) Find $L^{-1}\left[\frac{s-3}{s^2+4s+13}\right]$.

6 Marks L2 CO1 PO1

b) Apply convolution theorem to find $L^{-1}\left[\frac{1}{s(s^2+4)}\right]$.

6 Marks L3 CO1 PO2

UNIT-IV

7. Verify that the only real value λ for which the following 12 Marks L3 CO2 PO2 equations have nontrivial solution is 6 and solve them when λ =6.

b) $x+2y+3z=\lambda x$

c) $3x+y+2z=\lambda y$

 $2x+3y+z=\lambda z$

(OR)

- 8. a) Find the eigenvalues and the corresponding eigen vectors of the 8 Marks L3 CO2 PO2 matrix $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$.
 - b) Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$.

9. a) Determine whether the vectors 4 Marks L2 CO2 PO1 $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \text{ are linearly independent.}$

b) Determine the rank and nullity of the linear transformation 8 Marks L3 CO2 PO2 T: P₃ to R² defined by $T(a + bx + cx^2 + dx^3) = \begin{bmatrix} a + 2b + c + 2d \\ 3a + 4b - c - 2d \end{bmatrix}$.

(OR)

- 10 a) 2. Show that the vectors $\{(1,1,2), (1,2,5), (5,3,4)\}$ do not 4 Marks L2 CO2 PO1 form a basis for $\mathbb{R}^3(\mathbb{R})$.
 - b) Let T:P₂ to P₂ be the linear transformation defined by T(p(x) = p(2x-1)) 8 Marks L3 CO2 PO2

Find the matrix of T with respect to the basis $\{1, x, x^2\}$.

& & &