

SED1560/1/2 Technical Manual (Preliminary)

S-MOS Systems, Inc. October, 1996 Version 3.0 (Preliminary)

THIS PAGE INTENTIONALLY BLANK

TABLE OF CONTENTS

1.0 Overvi	ew	5
1.1	Description	7
1.2	Features	7
1.3	System Block Diagrams	7
1.4	Block Diagram	g
2.0 Pin De	scription	11
2.1	Power Supply	13
2.2	LCD Driver Power Supplies	13
	Microprocessor Interface	
2.4	Oscillator and Display Timing Control	15
2.5	LCD Driver Outputs	16
3.0 Electri	cal Characteristics	17
3.1	Absolute Maximum Ratings	19
3.2	DC Characteristics	20
3.3	AC Characteristics	
	3.3.1 Reset	
	Display Control Timing	
	System Buses: Read/Write Characteristics I (80-Series MPU)	
	System Buses: Read/Write Characteristics II (68-Series MPU)	
3.7	Serial Interface	30
	onal Description	
4.1	Microprocessor Interface	
	4.1.1 Parallel/Serial Interface	
	4.1.2 Parallel Interface	
	4.1.3 Serial Interface	
	4.1.4 Chip Select Inputs	
	Data Transfer	
	Status Flag	
	Display Data RAM	
	Column Address Counter	
	Page Address Register	
	Initial Display Line Register	
	Output Selection Circuit	
	SED1560 Output Status	
	0 SED1561 Output Status	
	1 SED1562 Output Status	
4.12	2 Display Timers	
	4.12.1 Line Counter and Display Data Latch Timing	
	4.12.2 FR and SYNC	
	4.12.3 Common Timing Signals	
	3 Two-frame AC Driver Waveform (SED1561, 1/32 duty)	
	4 n Line Inverse Driver Waveform (n-5, line inverse register 4)	
4.1	5 Display Data Latch	46

SED1560 Series

Table of Contents

	4.16 LCD Driver	46
	4.17 Display Data Latch Circuit	. 46
	4.18 LCD Driver Circuit	46
	4.19 Oscillator Circuit	. 46
	4.20 FR Control Circuit	46
	4.21 Power Supply Circuit	. 48
	4.22 Tripler Boosting Circuit	. 48
	4.23 Voltage Regulation Circuit (Software Contrast Adjustment Function is Not Used)	. 49
	4.24 Voltage Regulation Circuit Using Software Contrast Adjustment Control Function	. 50
	4.25 Precautions on Using the SED1560 Series Software Contrast Adjustment Control Function .	. 51
	4.26 Liquid Crystal Voltage Generating Circuit	. 54
	4.27 Reset	. 56
5.0 Co	ommands	
	5.1 Command Summary	
	5.2 Command Definitions	
	5.3 Software Contrast Control Register	
	5.4 Microprocessor Interface	
	5.5 LCD Panel Interface Examples	
	5.6 Special Common Driver Configurations	. 72
6.0 Pa	ckaging	
	6.1 Pad Layout	
	6.2 SED1560/1/2 TAB Pin Layout	
	6.3 TCP Dimensions (2-sided)	
	6.4 TCP Dimensions (4-sided)	
	6.5 TCP Dimensions (D1561TOC)	
	6.6 Pad Profile	
	6.7 BGA Package Dimensions	
	6.8 BGA Pin Assignment	
	6.9 SED1560TOA OL Dimensions	24

1.0 Overview

THIS PAGE INTENTIONALLY BLANK

1.0 Overview 1.0 - 1.3

1.1 DESCRIPTION

The SED1560 Series are intelligent CMOS LCD driver-controllers with the ability to drive alphanumeric and graphic displays. The SED1560 Series communicates with a high-speed microprocessor, such as the Intel 80XX family or the Motorola 68XX family, through either a serial or an 8-bit parallel interface. It stores the data sent from the microprocessor in the built-in display data RAM (166×65 bits) and generates an LCD drive signal. These devices incorporate an internal DC/DC converter to generate the negative voltage needed for LCD contrast. The controllers feature software contrast adjustment by command setting.

The three different versions of the SED1560 Series support the following duty ratios and display sizes:

Model	Duty Ratio	$SEG \times COM$
SED1560	1/65, 1/64, 1/49, 1/48	102 × 65
SED1561	1/33, 1/32, 1/25, 1/24	134 × 33
SED1562	1/17, 1/16	150 × 17

1.2 FEATURES

- Low-power operation: 8 μA @ 1 kHz, 6V LCD
- 350 μA current consumption during CPU access
 200 kHz
- Direct interface to both 80XX and 68XX, 5 MHz, zero wait-state
- On-chip display data RAM (166 × 65 bits)
- On-chip DC/DC converter for LCD voltage
- On-chip voltage regulator and low-power voltage follower
- -.17% / °C temperature gradient
- On-chip oscillator with external resistor
- 32 levels of contrast adjustment by software
- Supports master/slave operation
- Selectable output configuration
- 2.4V to 6.0V supply voltage
- 3.5V to 16V LCD voltage
- Package: TAB 2 side TOB TAB 4 side TQA Al pad D*A Au bump D*B BGA 225 pad B0A

1.3 SYSTEM BLOCK DIAGRAMS

1.3 1.0 Overview

1.3 SYSTEM BLOCK DIAGRAMS (cont.)

1.0 Overview 1.4

1.4 BLOCK DIAGRAM

THIS PAGE INTENTIONALLY BLANK

2.0 Pin Description

THIS PAGE INTENTIONALLY BLANK

2.1 POWER SUPPLY

Number of Pins	I/O	Name	Description							
2	Supply	VDD	Commo	Common to MPU power supply pin VCC						
2	Supply	Vss	Ground	Ground						
11	Supply LCD voltage	V1 to V5	LCD driver supply voltages. The voltage determined by the LCD cell is impedance-converted by a resistive divider or an operational amplifier for application. Voltage levels are based on VDD. The voltages must satisfy the following relationship: $VDD \geq V1 \geq V2 \geq V3 \geq V4 \geq V5$ Master mode select: bias voltages are generated on-chip.							
				SED1560	SED1561	SED1562				
			V1	1/9 V5	1/7 V5	1/5 V5				
			V2	2/9 V5	2/7 V5	2/5 V5				
			V3 7/9 V5 5/7 V5 3/5 V5							
			V4	8/9 V5	6/7 V5	4/5 V5				

2.2 LCD DRIVER POWER SUPPLIES

Number of Pins	I/O	Name	Description							
1	0	CAP1+	DC/DC	DC/DC voltage converter capacitor 1 positive connection						
1	0	CAP1-	DC/DC	DC/DC voltage converter capacitor 1 negative connection						
1	0	CAP2+	DC/DC	DC/DC voltage converter capacitor 2 positive connection						
1	0	CAP2-	DC/DC	DC/DC voltage converter capacitor 2 negative connection						
1	0	Vout	DC/DC	voltage	converter output	İ				
1	I	VR		Voltage adjustment pin. Applies voltage between VDD and V5 using a resistive divider.						
2	I	T1, T2	Liquid o	crystal p	ower control tern	ninals				
			T1	T2	Boosting Circuit	Voltage Regulation Circuit	V/F Circuit			
			L	L	Valid	Valid	Valid			
			L	Н	Valid	Valid	Valid*			
			Н	L	Invalid	Valid	Valid			
			H H Invalid Invalid Valid				Valid			
			* V/F	circuit cui	rrent capacity enhand	ement				

2.3 MICROPROCESSOR INTERFACE

Number of Pins	I/O	Name		Description							
8	I/O	D0 to D7	Data is	transferred l	petween the	control	er and l	MPU via the	se pins		
1	I	A0		/display data ocessor add	• .	This is c	connecte	ed to the LS	B of the		
			• Wh	en LOW, the	data on D0	to D7 is	s comm	and data			
			• Wh	en HIGH, the	e data on DC) to D7 i	s displa	y data			
1	I	RES	Reset ii	Reset input. Setting this pin low initializes the SED156X.							
2	I	CS1, CS2	•	lect inputs. I 2 is HIGH.	Data input/o	utput is	enabled	d when CS1	is LOW		
1	I	RD	Read e	Read enable input. See note 1.							
1	I	WR	Write e	nable input.	See note 2.						
1	I	C86	Micropr	Microprocessor interface select input.							
			 LOW when interfacing to 8080-series 								
			• HIG	GH when inte	rfacing to 68	300-seri	es				
1	I	SI	Serial d	lata input							
1	I	SCL		clock input. ed to 8-bit pa		d on th	e rising	edge of S	CL and		
1	I	P/S	Parallel	/serial data i	nput select						
			P/S	Operating Mode	Chip Select	Data/ com- mand	Data I/O	Read/ write	Serial Clock		
			HIGH	Parallel	CS1, CS2	A0	D0 to D7	RD, WR	_		
			LOW Serial CS1, CS2 A0 SI Write only SCL								
			RD and	I mode, data I WR must b e HIGH or LO	e HIGH or L			•			

Notes:

- 1. When interfacing to 8080-series microprocessors, \overline{RD} is active-LOW. When interfacing to 6800-series microprocessors, they are active-HIGH.
- 2. When interfacing to 8080-series microprocessors, WR is active-LOW. When interfacing to 6800-series microprocessors, read mode is selected when \overline{WR} is HIGH, and write mode is selected when \overline{WR} is LOW.

2.4 OSCILLATOR AND DISPLAY TIMING CONTROL

Number of Pins	I/O	Name		Description								
2	I	OSC1		nd OS	oscillator v SC2 pins. ifier.		-					
2	I/O	OSC2	The OSC	When M/S = "L": the OSC2 pin is used for input of oscillation signal. The OSC1 pin should be left open. Fix the CL pin to the Vss level when using the internal oscillator circuit as the display clock.							•	
1	I	CL	CL, and the exter	Display clock input. The line counter increments on the rising edge of CL , and the display pattern is output on the falling edge. When using the external display clock, $OSC1 = "H"$, $OSC2 = "L"$, and reset this LSI by \overline{RES} pin.								
1	0	CLO	Display clock output. When using the internal oscillator, the clock signal is output on this pin. Connect CLO to YSCL on the common driver.									
1	I	M/S			elect input them. This			_			splay	, and
			Device	M/S	Operating Mode	Internal Oscillator	Power Supply	FR	SYNC	OSC1	OSC2	DYO
			156X	LOW	Slave	OFF	OFF	ı	ı	Open	ı	0
			IJOX	HIGH	Master	ON	ON	0	0	I	0	0
				nput mo								
1	I/O	FR			signal inp ut is select					ed wh	en M	1/S is
1	I/O	SYNC	Display sync input/output. Output is selected when M/S is HIGH, and input is selected when M/S is LOW.									
1	0	DYO		•	for comm the SED1		Conne	ct to	DIO	of the	e con	nmon

^{*} SED1630 has a DIO input.

2.5 LCD DRIVER OUTPUTS

Number of Pins	I/O	Name		Desc	ription					
166	0	O0 to O165		non outputs, de	termined by a s	0165 are selectable selection command.				
			For segment outp following table:	outs, the ON vo	tage level is giv	ven as shown in the				
			DAM Data	ED	LCD	ON Voltage				
			RAM Data	FR	Normal Displa	y Inverse Display				
			LOW	LOW	V3	V5				
			LOW	HIGH	V2	V _{DD}				
			HIGH	LOW	V5	V3				
			nigh	HIGH	V _{DD}	V2				
			For common outputs, the ON voltage is given as shown in the following table:							
			Scan Data		FR	LCD ON Voltage				
			LOW	L	OW	V4				
			LOVV	Н	IGH	V1				
			HIGH	L	OW	VDD				
			Tilott	Н	IGH	V5				
1	0	COM1	LCD driver comm	<u>.</u>	•	hen the "DUTY + 1"				
			Device	"DUTY	' + 1" ON	"DUTY + 1" OFF				
			SED1560	COM64	I, COM48	V1 or V4				
			SED1561	COM32	2, COM24	V1 or V4				
			SED1562	SED1562 COM16						
			Common output s	special for the i	ndicator.					

3.0 **Electrical Characteristics**

THIS PAGE INTENTIONALLY BLANK

3.1 ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
		-7.0 to 0.03	
Supply voltage range	Vss	-6.0 to 0.3(when triple voltage conversion)	V
Driver supply voltage range (1)	V5	-18.0 to 0.3	V
Driver supply voltage range (2)	V1, V2, V3, V4	V5 to 0.3	V
Input voltage range	VIN	Vss-0.3 to 0.3	V
Output voltage range	V0	Vss-0.3 to 0.3	V
Operating temperature range	Topr	-30 to 85	°C
Storage temperature range (TCP)	Tstr	-55 to 125	°C

Notes:

- 1. The voltages shown are based on $V_{DD} = 0V$.
- 2. Always keep the condition $V_{DD} \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$ for voltages V1, V2, V3 and V4.
- 3. If devices are used over the absolute maximum rating, the LSIs may be destroyed permanently. It is desirable to use them under the electrical characteristic conditions for general operation. Otherwise, a malfunction of the LSI may be caused and LSI reliability may be affected.
- 4. For operating temperatures below –30°C, please consult an S-MOS engineer.

3.2 DC CHARACTERISTICS

VDD = 0V, VSS = $-5 \pm 10\%$, Ta = -30 to +85°C unless otherwise noted.

Pa	rameter	Symbol	Con	dition	Min	Тур	Max	Unit	Applicable Pin
Power	Recommended operation	Vss			-5.5	-5.0	-4.5	V	Vss
voltage (1)	Operational				-6.0	_	-2.4	-	Vss *1
	Operational	V5			-16.0	_	-3.5	V	V5 *2
Operating	Operational	V1, V2			0.4 × V5	_	VDD	V	V1, V2
voltage (2)	Operational	V3, V4			V5	_	0.6 × V5	V	V3, V4
		VIHC1			0.3 × Vss	_	VDD	V	*3
I liada Jassal in		VIHC2			0.15 × Vss	_	VDD	V	*4
High-level ir	nput voltage	VIHC1	Vss = -2.7V		0.2 × Vss	_	VDD	V	*3
		VIHC2	Vss = -2.7V		0.15 × Vss	_	VDD	V	*4
		VILC1			Vss	_	0.7 × Vss	V	*3
		VILC2			Vss	_	0.85 × Vss	V	*4
Low-level in	iput voltage	VILC1	Vss = −2.7V		Vss	_	0.8 × Vss	V	*3
		VILC2	Vss = -2.7V		Vss	_	0.85 × Vss	V	*4
				IOH = −1 mA	0.2 × Vss	_	VDD		*5
				IOH = -120 μA	0.2 × Vss	_	VDD	V	OSC2
High-level o	output voltage	VOHC1	Vss = −2.7V	IOH = -0.5 mA	0.2 × Vss	_	VDD		*5
		VOHC2	Vss = −2.7V	IOH = -50 μA	0.2 × Vss	_	VDD	V	OSC2
		VOLC1		IOL = 1 mA	Vss	_	0.8 × Vss	V	*5
1 11		VOLC2		IOL = 120 μA	Vss	_	0.8 × Vss	V	OSC2
Low-level of	utput voltage	VOLC1	Vss = −2.7V	IOL = 0.5 mA	Vss	_	0.8 × Vss	V	*5
		VOLC2	Vss = −2.7V	IOL = 50 μA	Vss	_	0.8 × Vss	V	OSC2
Input leakag	ge current	ILI	VIN = VDD or V	V ss	-1.0	_	1.0	μΑ	*6
Output leak	age current	ILO			-3.0	_	3.0	μΑ	*7
LOD data and	ON resistance	Dov	T 0500	V5 = -14.0V	_	2.0	3.0	LO	O0 ~ O166
LCD driver	ON resistance	Ron	Ta = 25°C	V5 = -8.0V	_	3.0	4.5	kΩ	*8
Otatia a suus		Issq		,	_	0.00	5.0	μΑ	Vss
Static powe	r consumption	I5Q	V5 = -18.0V		_	0.01	15.0	μΑ	V5
Input termin	al capacity	CIN	Ta = 25°C	f = 1 MHz	_	5.0	8.0	pF	*3 *4
On alliata de		food	$R_f = 1 M\Omega$	Vss = -5V	15	18	22	1.1.1.	*0
Oscillator fro	equency	fosc	±2%	Vss = −2.7V	11	16	21	kHz	*9
Reset time		tR			1.0		l _	μs	*10
Reset "I " ni	ulsa width	fRW/			10			μS	*11

Reset "L" pulse width tRW *11

(continued)

(continued)

VDD = 0V, VSS = $-5 \pm 10\%$, Ta = -30 to +85°C unless otherwise noted.

	Parameter	Symbol	Condition	Min	Тур	Max	Unit	Applicable Pin
	Input voltage	Vss		-6.0		-2.4	V	*12
circuit	Amplified output voltage	Vout	If amplified 3 times	-18.0	_	_	V	Vout
wer cir	Voltage regulator circuit operation voltage	Vout		-18.0		-6.0	V	Vouт
Q	N/ 1/ / / II	V5 (1)	Supplied to SED1560	-16.0	_	-6.0	V	
I - i	Voltage follower operation voltage	V5 (2)	Supplied to SED1561	-16.0		-5.0	V	*13
Built-	operation voltage	V5 ③	Supplied to SED1562	-16.0		-4.5	V	
	Reference voltage	VREG	Ta = 25°C	-2.35	-2.5	-2.65	V	

Notes:

* See Notes on page 22.

When dynamic current consumption (I) is displayed; the built-in power supply is on and T1 = T2 = Low.

Test conditions, unless otherwise specified: VDD = 0V, $VSS = -5V \pm 10\%$, Ta = -30 to $85^{\circ}C$

Parameter	Symbol	Condition	Min	Тур	Max	Unit	Remarks
SED1560		V5 = -12.5V; 3 times amplified		169	340	μΑ	
SED1561		V5 = -8.0V; 3 times amplified		124	250	μА	
SED1562	IDD (1)	V5 = -6.0V; 2 times amplified		53	110	μΑ	*16
		Vss = $-2.7V$; 3 times amplified		66	130	μА	
		V5 = -6.0V					

Typical current consumption characteristics

Dynamic current consumption (I), if an external clock and an external power supply are used.

Conditions: The built-in power supply is off but

the external one is used.

SED1560 V5 = -12.5V SED1561 V5 = -8.0V SED1562 V5 = -6.0V

External clock:

SED1560 fcL = 4 kHz SED1561 fcL = 2 kHz SED1562 fcL = 1 kHz

Remarks: *14

• Dynamic current consumption (I), if the built-in oscillator and the external power supply are used.

Conditions: The built-in power supply is off but the

external one is used.

SED1560 V5 = -12.5V SED1561 V5 = -8.0V SED1562 V5 = -6.0V

Internal oscillation:

SED1560 Rf = 1 M Ω SED1561 Rf = 1 M Ω SED1562 Rf = 1 M Ω

Remarks: *15

• Dynamic current consumption (I), if the built-in power supply is used.

Conditions: The built-in power supply is on and T1 = T2 = Low.

SED1560 V5 = -12.5V; 3 times amplified

SED1561 V5 = -8.0V; 3 times amplified

SED1562 V5 = -6.0V;

2 times amplified

Internal oscillation:

$$\begin{split} & \text{SED1560} \dots \text{Rf} = 1 \text{ M}\Omega \\ & \text{SED1561} \dots \text{Rf} = 1 \text{ M}\Omega \\ & \text{SED1562} \dots \text{Rf} = 1 \text{ M}\Omega \end{split}$$

Remarks: *16

Notes:

- *1. A wide range of operating voltage is possible, but considerable voltage variation during MPU access is not guaranteed.
- *2. The operating voltage range of the Vss and V5 systems (see Figure 3.3). The operating voltage range is applied if an external power supply is used.
- Pins A0, D0 to D7, RD (E), WR (R/W), CS1, CS2, FR, SYNC, M/S, C86, SI, P/S, T1 AND T2.
- *4. Pins CL, SCL, and RES.
- *5. Pins D0 to D7, FR, SYNC, CL0, and DY0
- *6. Pins A0, RD (E), WR (R/W), CS1, CS2, CL, M/S, RES, C86, SI, SCL, P/S, T1, and T2.
- *7. Applied if pins D0 to D7, FR, and SYNC are high impedance.
- *8. The resistance when the 0.1 -volt voltage is applied between the "On" output terminal and each power terminal (V1, V2, V3 or V4). It must be within the operating voltage (2).
- The relationship between the oscillation frequency, frame and Rf value (see Figure 3.2).
- *10. "tr" (reset time) indicates the period between the time when the RES signal rises and when the internal circuit has been reset. Therefore,

the SED156* is usually operable after "tr" time.

- *11. Specifies the minimum pulse width of RES signal. The Low pulse greater than "trw" must be entered for reset.
- *12. If the voltage is amplified three times by the built-in power circuit, the primary power Vss must be used within the input voltage range.
- *13. The V5 voltage can be adjusted within the voltage follower operating range by the voltage regulator circuit.
- *14, 15, 16. Indicates the current consumed by the separate IC. The current consumption due to the LCD panel capacity and wiring capacity is not included.

The current consumption is shown if the checker is used, the display is turned on, the output status of Case 6 is selected, and the SED1560 is set to 1/64 duty, the SED1561 is set to 1/32 duty, and the SED1562 is set to 1/64 duty.

- *14. Applied if an external clock is used and if not accessed by the MPU.
- *15. Applied if the built-in oscillation circuit is used and if not accessed by the MPU.
- *16. Applied if the built-in oscillation circuit and the built-in power circuit are used (T1 = T2 = Low) and if not accessed by the MPU.

Figure 3.1 Oscillator frequency vs. frame vs. Rf [SED1560 Series]

The relationship between oscillator frequency fosc and LCD frame frequency fF is obtained from the following expression:

Table 3.1

Device	Duty	fF
SED1560	1/64	fOSC/256
SED 1300	1/48	fOSC/192
SED1561	1/32	fOSC/256
3501301	1/24	fOSC/192
SED1562	1/16	fOSC/256

(fr indicates not fr signal cycle but cycle of LCD AC.)

Figure 3.2 External clock (fCL) vs. frame frequency [SED1560 Series]

Figure 3.3 Operating voltage range for Vss and V5

Figure 3.4 Power consumption during CPU access cycle (IDD [2])

3.3 AC CHARACTERISTICS

3.3.1 Reset

Table 3.5 Reset

Parameter	Symbol	Condition	Rating			Unit
Parameter	er Symbol	Condition	Min	Тур	Max	Unit
Reset time	tR	tR is measured from the rising edge of RES. The SED156X resumes normal operating mode after a reset.	1.0	_	_	μs
Reset LOW-level pulsewidth	t _{RW}		1.0		_	μs

3.4 DISPLAY CONTROL TIMING

Figure 3.5 Display control timing

Display Control Input Timing

 $VSS = -5.5 \text{ to } -4.5 \text{V}, \text{ Ta} = -30 \text{ to } 85^{\circ}\text{C}$

Parameter	Symbol	Condition		Rating	Unit	
Parameter	Symbol	Condition	Min	Тур	Max	Unit
CL LOW-level pulsewidth	tWLCL		35			μs
CL HIGH-level pulsewidth	tWHCL		35	_	_	μs
CL rise time	tr		_	30		ns
CL fall time	tf		_	30		ns
FR delay time	tDFR		-1.0	_	1.0	μs
SYNC delay time	tDSNC		-1.0	_	1.0	μs

 $VSS = -4.5 \text{ to } -2.7 \text{V}, \text{ Ta} = -30 \text{ to } 85^{\circ}\text{C}$

Parameter	Cymphol	Candition		Rating	Unit	
Parameter	Symbol	Condition	Min	Тур	Max	Unit
CL LOW-level pulsewidth	tWLCL		35			μs
CL HIGH-level pulsewidth	tWHCL		35			μs
CL rise time	tr			40		ns
CL fall time	tf			40		ns
FR delay time	tDFR		-1.0		1.0	μs
SYNC delay time	tDSNC		-1.0		1.0	μs

1. Effective only when the SED156X is in the master mode.

2. The FR/SYNC delay time input timing is provided in the slave operation.

The FR/SYNC delay time output timing is provided in the master operation.

3. Each timing is based on 20% and 80% of Vss.

3.0 Electrical Characteristics

Display Control Output Timing

 $VSS = -5.5 \text{ to } -4.5V, Ta = -30 \text{ to } 85^{\circ}C$

Parameter	Symbol	Condition	Rating			Unit
Farameter	Symbol		Min	Тур	Max	Offic
FR delay time	tDFR	CL = 50 pF		60	150	ns
SYNC delay time	tDSNC	CL = 100 pF		60	150	ns
DYO LOW-level delay time	tDOL			70	160	ns
DYO HIGH-level delay time	tDOH			70	160	ns
CLO to DYO LOW-level delay time	tCDL	SED156X operating in master mode only		40	100	ns
CLO to DYO HIGH-level delay time	tCDH	SED156X operating in master mode only	_	40	100	ns

 $VSS = -4.5 \text{ to } -2.7V, Ta = -30 \text{ to } 85^{\circ}C$

Parameter	Symbol	Condition		Unit		
Farameter	Symbol		Min	Тур	Max	Oilit
FR delay time	tDFR	CL = 50 pF		120	240	ns
SYNC delay time	tDSNC	CL = 100 pF		120	240	ns
DYO LOW-level delay time	tDOL			140	250	ns
DYO HIGH-level delay time	tDOH			140	250	ns
CLO to DYO LOW-level delay time	tCDL	SED156X operating in master mode only	_	100	200	ns
CLO to DYO HIGH-level delay time	tCDH	SED156X operating in master mode only	_	100	200	ns

3.5 SYSTEM BUSES: READ/WRITE CHARACTERISTICS I (80-SERIES MPU)

Vss = $-5.0 \pm 10\%$, Ta = $-30 \text{ to } 85^{\circ}\text{C}$

Parameter	Signal	Symbol	Condition	Min	Max	Unit
Address hold time	A0, CS	tAH8		10	_	ns
Address setup time		tAW8		10	_	ns
System cycle time		tCYC8		200	_	ns
Control L pulse width (WR)	WR	tcclw		22	_	ns
Control L pulse width (RD)	RD	tCCLR		77	_	ns
Control H pulse width (WR)	WR	tcchw		172	_	ns
Control H pulse width (RD)	RD	tCCHR		117	_	ns
Data setup time		tDS8		20	_	ns
Data hold time		tDH8		10	_	ns
RD access time	D0 ~ D7	tACC8	CL = 100pF	_	70	ns
Output disable time		tCH8		10	50	ns
Input signal change time		tr, tf		_	15	ns

Vss = -	-2 7 to	_4 5\/	$T_2 = 0$	_30 tc	85°C
v	-Z./ lU	-4 .5∨,	1a =	–30 ic	, 65 C

Parameter	Signal	Symbol	Condition	Min	Max	Unit
Address hold time	A0, CS	tAH8		25	_	ns
Address setup time		tAW8		25	_	ns
System cycle time		tCYC8		450	_	ns
Control L pulse width (WR)	WR	tCCLW		44	_	ns
Control L pulse width (RD)	RD	tCCLR		194	_	ns
Control H pulse width (WR)	WR	tcchw		394	_	ns
Control H pulse width (RD)	RD	tCCHR		244	_	ns
Data setup time		tDS8		40	_	ns
Data hold time		tDH8		20	_	ns
RD access time	D0 ~ D7	tACC8	CL = 100pF	_	140	ns
Output disable time		tCH8		10	100	ns
Input signal change time		tr, tf		_	15	ns

Notes:

- 1. When using the system cycle time in the high-speed mode, it is limited by tr + tr ≤ (tcycs − tcclw − tcchw) or tr + tr ≤ (tcycs − $t_{CCLR} - t_{CCHR}$
- 2. All signal timings are limited based on 20% and 80% of Vss voltage.
- 3. Read/write operation is performed while CS (CS1 and CS2) is active and the RD or WR signal is in the low level. If read/write operation is performed by the RD or WR signal while CS is active, it is determined by the $\overline{\text{RD}}$ or $\overline{\text{WR}}$ signal timing. If read/write operation is performed by CS while the RD or WR signal is in the low level, it is determined by the CS active timing.

3.6 SYSTEM BUSES: READ/WRITE CHARACTERISTICS II (68-SERIES MPU)

Vss = $-5.0 \pm 10\%$, Ta = $-30 \text{ to } 85^{\circ}\text{C}$

Parameter		Signal	Symbol	Condition	Min	Max	Unit
System cycle time			tCYC6		200	_	ns
Address setup time		(A0)	tAW6		10	_	ns
Address hold time		R/W	tAH6		10	_	ns
Data setup time			tDS6		20	_	ns
Data hold time		D0 ~ D7	tDH6		10	_	ns
Output disable time		D0 ~ D7	tOH6	CL = 100pF	10	50	ns
Access time			tACC6		_	70	ns
Enable H pulse	READ	Е	tEWHR		77	_	ns
width	WRITE		tEWHW		22	_	ns
Enable L pulse	READ	Е	tEWLR		117		ns
width	WRITE	E	tEWLW		172	_	ns
Input signal change ti	me		tr, tf			15	ns

 $VSS = -2.7 \text{ to } +4.5 \text{V}, \text{ Ta} = -30 \text{ to } 85^{\circ}\text{C}$

Parameter		Signal	Symbol	Condition	Min	Max	Unit
System cycle time	System cycle time		tCYC6		450	_	ns
Address setup time		(CS1, CS2)	tAW6		25		ns
Address hold time		R/W	tAH6		25		ns
Data setup time			tDS6		40	_	ns
Data hold time		D0 ~ D7	tDH6		20	_	ns
Output disable time		וט ~ טט	tOH6	CL = 100pF	20	100	ns
Access time			tACC5		_	140	ns
Enable H pulse	READ	Е	tEWHR		154	_	ns
width	WRITE		tEWHW		44	_	ns
Enable L pulse	READ	Е	tEWLR		244	_	ns
width	WRITE		tEWLW		394		ns
Input signal change tir	ne		tr, tf			15	ns

Notes:

- 1. When using the system cycle time in the high-speed mode, it is limited by t_r + t_f ≤ (tcyc6 − tewlw − tewlw) or t_r + t_f ≤ (tcyc6
- 2. All signal timings are limited based on 20% and 80% of Vss voltage.
- 3. Read/write operation is performed while CS (CS1 and CS2) is active and the E signal is in the high level. If read/write operation is performed by the E signal while CS is active, it is determined by the E signal timing. If read/write operation is performed by CS while the E signal is in the high level, it is determined by the CS active timing.

3.7 SERIAL INTERFACE

Vss = $-5.0 \pm 10\%$, Ta = $-30 \text{ to } 85^{\circ}\text{C}$

Parameter	Signal	Symbol	Condition	Min	Max	Unit
Serial clock cycle		tscyc		500	_	ns
SCL high pulse width	SCL	tshw		150	_	ns
SCL low pulse width		tslw		150	_	ns
Address setup time	A0	tsas		120	_	ns
Address hold time	AU	tsah		200	_	ns
Data setup time	SI	tsds		120	_	ns
Data hold time	SI	tsdh		50	_	ns
CS-SCL time	cs	tcss		30	_	ns
CS-SCL time	US	tCSH		400	_	ns
Input signal change time		tr, tf			50	ns

 $VSS = -2.7 \text{ to } -4.5 \text{V}, \text{ Ta} = -30 \text{ to } 85^{\circ}\text{C}$

Parameter	Signal	Symbol	Condition	Min	Max	Unit
Serial clock cycle		tscyc		1000	_	ns
SCL high pulse width	SCL	tshw		300	_	ns
SCL low pulse width		tslw		300	_	ns
Address setup time	40	tsas		250	_	ns
Address hold time	A0	tsah		400	_	ns
Data setup time	SI	tsds		250	_	ns
Data hold time	SI	tsdh		100	_	ns
CS-SCL time		tcss		60	_	ns
	CS	tCSH		800	_	ns
Input signal change time		tr, tf		_	50	ns

*2. All signal timings are limited based on 20% and 80% of Vss voltage. Note:

THIS PAGE INTENTIONALLY BLANK

4.0 **Functional** Description

THIS PAGE INTENTIONALLY BLANK

4.1 MICROPROCESSOR INTERFACE

4.1.1 Parallel/Serial Interface

Table 4.1 Parallel/serial Interface Selection

P/S	Input Type	CS1	CS2	A0	RD	WR	C86	SI	SCL	D0 to D7
HIGH	Parallel	CS1	CS2	A0	RD	WR	C86	×	×	D0 to D7
LOW	Serial	CS1	CS2	A0	×	×	×	SI	SCL	(Hi-Z)

 $[\]times$ = don't care

Parallel data can be transferred in either direction between the controlling microprocessor and the SED1560 Series via an 8-bit I/O buffer (D0 to D7). Serial data can be sent from the microprocessor to the SED1560 Series through the serial data input (SI), but not from the SED1560 Series to the microprocessor. The parallel or serial interface is selected by setting P/S as shown in Table 4.1.

For the parallel interface, the type of microprocessor is selected by C86 as shown in Table 4.2.

Table 4.2 Microprocessor Selection for Parallel Interface

C86	MPU Bus Type	CS1	CS2	Α0	RD	WR	D0 to D7
HIGH	6800-series	CS1	CS2	Α0	Е	R/W	D0 to D7
LOW	8080-series	CS1	CS2	Α0	RD	WR	D0 to D7

4.1.2 Parallel Interface

A0, WR (or R/W) and RD (or E) determine the type of parallel data transfer. See Table 4.3.

Table 4.3 Parallel Data Transfer

Com- mon	6800 Series	8080 Series		Description		
A0	R/W	RD	WR			
1	1	0	1	Display data read out		
1	0	1	0	Display data write		
0	1	0	1	Status read		
0	0	1	0	Write to internal register (command)		

4.1.3 Serial Interface

The serial interface consists of an 8-bit shift register and a 3-bit counter. These are reset when CS1 is HIGH and CS2 is LOW. When these states are reversed, serial data and clock pulses can be received from the microprocessor on SI and SCL respectively.

Serial data is read on the rising edge of SCL and must be input at SI in the sequence D7 to D0. On every eighth clock pulse, the data is transferred from the shift register and processed as 8-bit parallel data.

Input data is display data when A0 is HIGH and command data when A0 is LOW. A0 is read on the rising edge of every eighth clock signal. See Figure 4.1.

Figure 4.1 Serial interface timing

4.1.4 Chip Select Inputs

Data transfer between the microprocessor and the SED1560 Series is enabled when CS1 is LOW and CS2 is HIGH. If these pins are set to any other values, D0 to D7 are in high impedance state and will not accept data.

4.2 DATA TRANSFER

To match the timing of the display data RAM and registers to that of the controlling microprocessor, the SED1560 Series uses an internal data bus and bus buffer. When the microprocessor reads the contents of RAM, the data for the initial read cycle is first stored in the bus buffer (dummy read cycle). On the next read cycle, the data is read from the bus buffer onto the microprocessor bus. At the same time, the next block of data is transferred from RAM to the bus buffer.

Likewise, when the microprocessor writes data to display data RAM, the data is first stored in the bus buffer before being written to RAM at the next write cycle.

When writing data from the microprocessor to RAM, there is no delay since data is automatically transferred from the bus buffer to the display data RAM. If the data rate is required to slow down, the microprocessor can insert a NOP instruction which has the same effect as executing a wait procedure.

When a sequence of address sets is executed, a dummy read cycle must be inserted between each pair of address sets. This is necessary because the addressed data from the RAM is delayed one cycle by the bus buffer, before it is sent to the microprocessor. A dummy read cycle is thus necessary after an address set and after a write cycle.

Figure 4.2 Write timing

Figure 4.3 Read timing

4.0 Functional Description

4.3 STATUS FLAG

The SED1560 Series has a single bit status flag, D7. When D7 is HIGH, the device is busy and will accept only a Status Read command. It is not necessary for the microprocessor to check the status of this bit before each command, if enough time is allowed for the last cycle to be completed.

4.4 DISPLAY DATA RAM

The SED1560 Series stores the display data sent from the microcomputer in the built-in display data RAM (166×65 bits) and generates the LCD drive signals. It is a 166-column $\times 65$ -row addressable array as shown in Figure 4.4.

The 65 rows are divided into 8 pages of 8 lines and a ninth page with a single line (D0 only). Data is read from or written to the 8 lines of each page directly through D0 to D7.

The microprocessor reads from and writes to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written to RAM at the same time as data is being displayed, without causing the LCD to flicker.

The time taken to transfer data is very short, because the microprocessor inputs D0 to D7 correspond to the LCD common lines as shown in Figure 4.5. Large display configuration can thus be created using multiple SED1560 Series devices.

4.5 COLUMN ADDRESS COUNTER

The column address counter is an 8-bit presettable counter that provides the column address to display data RAM. See Figure 4.4. It is incremented by 1 each time a read or write command is received. The counter automatically stops at the highest address, A6H. The contents of the column address counter are changed by the Column Address Set command. This counter is independent of the page address register.

When the Select ADC command is used to select inverse display operation, the column address decoder inverts the relationship between the RAM column data and the display segment outputs.

4.6 PAGE ADDRESS REGISTER

The 4-bit page address register provides the page address to display data RAM. The contents of the register are changed by the Page Address Set command.

Page address 8 (1000) is a special use RAM area for the indicator.

Figure 4.4 Display data RAM addressing

Figure 4.5 RAM-to-LCD data transfer

4.7 INITIAL DISPLAY LINE REGISTER

The Initial Display Line register stores the address of the RAM line that corresponds to the first (normally the top) line (COM0) of the display. See Figure 4.4. The contents of this 6-bit register are changed by the Initial Display Line command. At the start of each LCD frame, synchronized with SYNC, the initial line is copied to the line counter. The line counter is then incremented on the CL clock signal once for every display line. This generates the line addresses for the transfer of the 166 bits of RAM data to the LCD drivers.

If a 1/65 or 1/33 display duty cycle is selected by the DUTY+1 command, the line address corresponding to the 65th or 33rd SYNC signal is changed and the indicator special-use line address is selected. If the DUTY+1 command is not used, the indicator special-use line address is not selected.

4.8 OUTPUT SELECTION CIRCUIT

The number of common (COM) and segment (SEG) driver outputs can be selected to fit different LCD panel configurations by the output selection circuit.

There are 70 segment-only outputs (O32 to O101) and 96 common or segment dual outputs (O0 to O31 and O102 to O165). A command selects the status of the dual common/segment outputs. Figure 4.6 shows

the six different LCD driver arrangements.

The necessary LCD driver voltage is automatically allocated to the COM/SEG dual outputs when their function is determined by the output selection circuit.

The SED1560 selects Case 1, 2 or 6 while the SED1561 selects Case 3, 4, 5 or 6. The COM/SEG output status for the SED1562 is fixed and so cannot be selected.

When COM outputs are assigned to the output drivers, the unused RAM area is not available. However, all RAM column addresses can still be accessed by the microprocessor.

Since duty setting and output selection are independent, the appropriate duty must be selected for each case.

Cases 1 to 6 are determined according to the three lowest bits in the output status register in the output selection circuit. The COM output scanning direction can be selected by setting bit D3 in the output status register to "H" or "L".

When the DUTY+1 command is executed, pin COM1 becomes as shown in Figure 4.4 irrelevant to output selection.

Figure 4.6 Output configuration selection

Since master/slave operation and the output selection circuit are completely independent in the SED1560 Series, a chip on either the master or slave side can be allocated to the COM output function in multi-chip configuration.

The LCD driver outputs shown in Table 4.5 become ineffective when the SED1560 or SED1561 is used with 1/48 or 1/24 duty, respectively. In this case, ineffective outputs are used in the open state.

Table 4.4

	SED	1560	SED	SED1562	
Duty	1/64	1/48	1/32	1/24	1/16
COMI function	COM64	COM48	COM32	COM24	COM16

Table 4.5

		C	Output Stat	us Registe	er	Inoffoctive Output
		D3	D2	D1	D0	Ineffective Output
	Case 1	0	1	0	1	O150 ~ O165
SED1560	Case i	1	1	0	1	O102 ~ O117
3501300	Case 2	0	1	1	0	O150 ~ O165
	Case 2	1	1	1	0	O16 ~ O31
	Case 3	0	0	1	1	O0 ~ O7
	Case 3	1	0	1	1	O23 ~ O31
SED1561	Case 4	0	0	1	0	O158 ~ O165
3501301	Case 4	1	0	1	0	O134 ~ O141
	Case 5	0	0	0	1	O158 ~ O165
	Case 5	1	0	0	1	O8 ~ O15

4.9 SED1560 OUTPUT STATUS

The SED1560 selects any output status from Cases 1, 2 and 6.

1/64 Duty (Display Area 102×64)

Coco	St	atus F	Regist	er	LCD Driver Output						
Case	D3	D2	D1	D0	O0 O31	O31 O32 O101				O134	O165
1	0	1	0	1				СОМ0			► COM63
l	1	1	0	1				COM63 ◄			— сомо
2	0	1	0	0	COM31 ← COM0		SEG	G102		COM32 —	➤ COM63
2	1	1	0	0	COM32 → COM63		SEG	G102		COM31 ←	— СОМ0
6	_	0	0	0	SEG166						

1/48 Duty (Display Area 102×48)

Cooo	St	atus F	Regist	er				LCD Driv	er Outpu	t		
Case	D3	D2	D1	D0	00	O31	O32	O101	O102	O133	O134	O165
1	0	1	0	1					COM0		→ COM47	
	1	1	0	1						COM47 ◀		COM0
2	0	1	0	0	COM31 ◄	COM0		SEG	3102		COM32 → 47	
	1	1	0	0	COM32 → 47			SEG	9102		COM31 ◄	COM0
6	_	0	0	0			•	SEG	G166			

4.10 SED1561 OUTPUT STATUS

The SED1561 selects any output status from Cases 3, 4, 5 and 6.

1/32 Duty (Display Area 134×32)

Case	St	atus F	Regist	er		LCD Driver Output					
Case	D3	D2	D1	D0	O0 O15	O16 O31	O32	O133	O134 149	150 O165	
3	0	0	1	1	COM31 ←	— сомо	S	SEG134			
3	1	0	1	1	сомо —	→ COM31	S	SEG134			
4	0	0	1	0			SEG134		СОМ0 —	→ COM31	
4	1	0	1	0			SEG134		COM31 ←	— COM0	
5	0	0	0	1	15 ← COM0		SEG134			COM16+31	
5	1	0	0	1	COM16→31		SEG134			15 ← COM0	
6	_	0	0	0			SEG166				

1/24 Duty (Display Area 134×24)

Case	St	atus F	Regist	er			LCD Driver Output			
Case	D3	D2	D1	D0	O0 O15	O16 O31	O32	O133	O134 149 1	50 O165
3	0	0	1	1	COM2	3 ← COM0	SEG134			
3	1	0	1	1	COM0 → 0	COM23	SEG134			
4	0	0	1	0			SEG134		COM0 → CC)M23
4	1	0	1	0			SEG134		COM23	← COM0
_	0	0	0	1	15 - COM0		SEG134		1	6 → 23
5	1	0	0	1	16 → 23		SEG134		15	5-COM0
6	_	0	0	0			SEG166			

4.11 SED1562 OUTPUT STATUS

COM/SEG output status of the SED1562 is fixed.

1/16 Duty (Display Area 150 × 16)

LCD Driver Output		
O0 O149	O150 O	165
SEG150	15 ← CC	OMC

4.12 DISPLAY TIMERS

4.12.1 Line Counter and Display Data Latch Timing

The display clock, CL, provides the timing signals for the line counter and the display data latch. The RAM line address is generated synchronously using the display clock. The display data latch synchronizes the 166-bit display data with the display clock.

The timing of the LCD panel driver outputs is independent of the timing of the input data from the microprocessor.

4.12.2 FR and SYNC

The LCD AC signal, FR, and the synchronization signal, SYNC, are generated from the display clock. The FR controller generates the timing for the LCD panel driver outputs. Normally, 2-frame wave patterns are generated, but *n*-line inverse wave patterns can also be generated. These produce a high-quality display if *n* is based on the LCD panel being used.

SYNC synchronizes the timing of the line counter and common timers. It is also needed to synchronize the frame period and a 50% duty clock.

In a multiple-chip configuration, FR and SYNC are inputs. The SYNC signal from the master synchronizes the line counter and common timing of the slave.

4.12.3 Common Timing Signals

The internal common timing and the special-use common driver start signal, DYO, are generated from CL. As shown in Figures 4.7 and 4.8, DYO outputs a HIGH-level pulse on the rising edge of the CL clock pulse that precedes a change on SYNC. DYO is generated by both the SED1560 Series devices, regardless of whether the device is in master or slave mode. However, when operating in slave mode, the device duty and the external SYNC signal must be the same as that of the master. In a multiple-chip configuration, FR and SYNC must be supplied to the slave from the master.

Table 4.6 Master and Slave Timing Signal Status

Part Number	Mode	FR	SYNC	CLO	DYO
SED1560	Master	Output	Output	CL Output	Output
Series	Slave	Input	Input	High Imped- ance	Output

4.13 TWO-FRAME AC DRIVER WAVEFORM (SED1561, 1/32 DUTY)

Figure 4.7 Frame driver timing for duty 1/32

4.14 *n* LINE INVERSE DRIVER WAVEFORM (*n*=5, LINE INVERSE REGISTER 4)

Figure 4.8 Line inverse driver timing

4.15 DISPLAY DATA LATCH

Display data is transferred from RAM to the LCD drivers through the display data latch. This latch is controlled by the Display ON/OFF, Display All Points ON/OFF and Normal/Inverse Display commands.

These commands do not alter the data.

4.16 LCD DRIVER

The LCD driver converts RAM data into the 167 outputs that drive the LCD panel. There are 70 segment outputs, 96 segment or common dual outputs, and a COM1 output for the indicator display.

Two shift registers for the common/segment drivers are used to ensure that the common outputs are output in the correct sequence. The driver output voltages depend on the display data, the common scanning signal and FR.

4.17 DISPLAY DATA LATCH CIRCUIT

The display data latch circuit temporarily stores the output display data from the display data RAM to the LCD driver circuit in each common period. Since the Normal/Inverse Display, Display ON/OFF and Display All Points ON/OFF commands control the data in this latch, the data in the display data RAM remains unchanged.

4.18 LCD DRIVER CIRCUIT

This multiplexer generates 4-value levels for the LCD driver, having 167 outputs of 70 SEG outputs, 96 SEG/COM dual outputs and a COM output for the indicator display. The SEG/COM dual outputs have a shift register and sequentially transmit COM scanning signals. The LCD driver voltage is output according to the combination of display data, COM scanning signal and FR signal. Figure 4.9 shows a typical SEG/COM output waveform.

4.19 OSCILLATOR CIRCUIT

The low power consumption type CR oscillator adjusting the oscillator frequency by use of only oscillator resistor Rf is used as a display timing signal source or clock for the voltage raising circuit of the LCD power supply.

The oscillator circuit is available only in the master operation mode. When a signal from the oscillator circuit is used for display clock, fix the CL pin to the Vss level. When the oscillator circuit is not used, fix the OSC1 or OSC2 pin to the VDD or Vss level, respectively.

The oscillator signal frequency is divided and output from the CL0 pin as display clock. The frequency is divided to one-fourth, one-eighth, or one-sixteenth in the SED1560, SED1561, or SED1562, respectively.

4.20 FR CONTROL CIRCUIT

The LCD driver voltage supplied to the LCD driver outputs is selected using FR signal.

Figure 4.9 Example of segment and common timing

4.21 POWER SUPPLY CIRCUIT

The SED1560 Series has an internal DC/DC converter to generate LCD bias voltages. The internal power supply circuit can be used only when the controller operates in master mode. The power circuit consists of a triple boosting circuit, a voltage regulation circuit and a low power voltage follower circuit.

The power circuit built into SED1560 Series is set for smaller scale liquid crystal panels and it is not suitable when the picture element is larger or to drive a liquid crystal panel with larger indication capacity using multiple chips. It is recommended that an external power supply is used when using a liquid crystal panel with a larger load capacity.

The power supply circuit can be controlled by the built-in power ON/OFF command. When the built-in power is turned off, the boosting circuit, voltage regulation circuit and voltage follower circuit all go open. In this case, the liquid crystal driving voltage V1, V2, V3, V4 and V5 should be supplied from outside and the terminals CAP1+, CAP1-, CAP2+, CAP2-, VOUT and VR should be kept opened.

Various functions of the power circuit can be selected by combinations of the setting of the T1 and T2. It is also possible to make a combined use of the external power supply and a portion of the functions of the builtin power supply. When (T1, T2) = (H, L), the boosting circuit does not work and open the boosting circuit terminals (CAP1+, CAP1-, CAP2+ and CAP2-) and apply liquid crystal driving voltage to the VOUT terminals from outside.

When (T1, T2) = (H, H), the boosting circuit and voltage regulation circuit do not work and open the boosting circuit terminals and the VR terminals and apply liquid crystal driving voltage to the V5, and leave the VOUT pin open.

4.22 TRIPLER BOOSTING CIRCUIT

By connecting capacitors C1 between CAP1+ and CAP1-, CAP2+ and CAP2- and VSS - VOUT, the electric potential between VDD - VSS is boosted to the triple toward negative side and outputted from the VOUT terminal. When a double boosting is required, disconnect the capacitor between CAP2+ and CAP2- and short-circuit the CAP2- and VOUT terminals to obtain output boosted to the double out of the VOUT (or CAP2-) terminal.

Signals from the oscillation circuit are used in the boosting circuit and it then is necessary that the oscillation circuit is in operation.

Electric potentials by the boosting functions are shown in Figure 4.10 and 4.11.

Table 4.7

T1	T2	Voltage Converter Circuit	Voltage Regulation Circuit	V/F Circuit	External Voltage Input	Voltage Converter Circuit Terminals	Voltage Regulation Terminals
L	L	0	0	0			
L	Н	0	0	0	_		
Н	L	X	0	0	Vout	OPEN	
Н	Н	X	X	0	V5	OPEN	OPEN

Figure 4.10 Electric potentials of double boosting

Figure 4.11 Electric potentials of triple boosting

4.23 VOLTAGE REGULATION CIRCUIT (SOFTWARE CONTRAST ADJUSTMENT FUNCTION IS **NOT USED)**

The boosted voltage coming out from Vout is adjusted to become the liquid crystal driving voltage V5 via the voltage regulation circuit. V5 voltage can be regulated within a range of |V5| < |VOUT| by adjustment of resistors Ra and Rb and it may be calculated by the following equation:

$$V5 = (1 + \frac{Rb}{Ra}) VREG$$
 Equation 4.1

wherein VREG is the constant voltage source inside the IC and the voltage is constant at VREG ≈ 2.5 V.

Voltage regulation of the V5 output is made by connecting variable resistors between VR, VDD and V5. For fine adjustment of the V5 voltage, a combination of fixed resistors R1 and R3 and a variable resistor R2 is needed.

Examples of settings of R1, R2, and R3:

- R1 + R2 + R3 = 5 M Ω (determined by the current required to flow between VDD and V5)
- Voltage variation range by R2: −11V ~ −13V (determined based on the characteristics of the liquid crystal being used)

Using the above conditions and Equation 4.1, the following calculations can be made:

$$R1 = 0.947 \text{ M}\Omega$$

 $R2 = 0.174 M\Omega$

 $R3 = 3.879 M\Omega$

The voltage regulation circuit renders a temperature gradient, after VREG output, of about -0.17% / °C, but when any other temperature gradient is needed, connect a thermistor in series with the output voltage regulating resistors.

Since the VR terminal has a high input impedance, it is necessary to take some noise suppression measures, such as using the shortest length wiring or shielded wiring.

Figure 4.12 Voltage regulation circuit

4.24 VOLTAGE REGULATION CIRCUIT USING SOFTWARE CONTRAST ADJUSTMENT CONTROL FUNCTION

By using software contrast adjustment control function, it is possible to control the liquid crystal driving voltage V5 by inputting corresponding commands to adjust the contrast of the liquid crystal display.

With such an electronic contrast control function, setting 5-bit data to the electronic contrast control register will make available 32 states of voltages from which one voltage level can be selected for the liquid crystal driving voltage V5.

When using the software contrast control function, it is necessary to execute built-in power supply on command after one of (T1, T2) = (L, L), (T1, T2) = (L, H), or (T1, T2) = (H, L) is set.

Example of Constant Setting When Using the Software Contrast Adjustment Control Function

(1) Determine a V5 voltage setting range by the electronic contrast control.

Liquid crystal driving voltageV5 – 10V max. to –15V min. V5 variable voltage width4V

(2) Determine Rb.

Rb = V5 variable voltage width / IREF (32 states IREF $\approx 6.5 \mu A$ constant-current value) $Rb = 4V / 6.5\mu A$ (16 states | IREF ≈ 3.2μA constant-current value) $= 615 k\Omega$

(3) Determine Ra.

$$Ra = \frac{VREG}{(V5 \text{ set voltage max} - VREG) / Rb}$$

$$(For VREG and V5 \text{ set voltage, absolute values are used.})$$

$$Ra = \frac{2.5V}{(10V - 2.5V) / 615\Omega}$$

$$= 205 \text{ k}\Omega$$

(4) Adjust Ra.

Set the electronic contrast control register value to (D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0) or (0, 1, 1, 1, 1), and adjust the Ra value to the optimum contrast.

To set the voltage value by the software contrast adjustment control to the 16 states, fix the data D4 of the electronic contrast control register to L and set data in D3 to D0. At this time, set IREF $\approx 3.2\mu A$ and determine Ra and Rb according to the above steps (1) to (4).

Because IREF is a simplified constant-current source, it is necessary to consider the variation of maximum ±40% as manufacturing dispersion. The temperature dependency of IREF becomes ∆IREF ≈ $-0.0525 \,\mu\text{A}^{\circ}\text{C}$ (in the variable voltage 32 states) or $\Delta\text{IREF} \approx -0.0234 \,\mu\text{A}^{\circ}\text{C}$ (variable voltage 16 states).

Determine Ra and Rb for the LCD to be used, by taking the above dispersion and variations due to temperatures into consideration.

When using the software contrast adjustment control function, Ra must be a variable resistance and the

optimum contrast adjustment described in (4) must be made for each IC chip in order to compensate the V5 voltage value due to the dispersion of VREG and IREF.

When the contrast control function is not used, set the register value to (D4, D3, D2, D1, D0) = (0, 0, 0, 0, 0) by the RES signal or electronic contrast control register set command.

4.25 PRECAUTIONS ON USING THE SED1560 SERIES SOFTWARE CONTRAST ADJUSTMENT CONTROL FUNCTION

The SED1560 Series is provided with a software contrast adjustment control function having up to 32 levels to control the regulator. The V5 voltage, when the software contrast control function is used, is represented by the following expression:

V5 =
$$(1 + Rb / Ra)$$
. VREG + $Rb \times \Delta IREF$

By this expression, the software contrast control function controls an increment of V5 voltage by means of the current source IREF built into the IC. (In the case of 32 levels, \triangle IREF = IREF / 32).

The V5 minimum voltage is set by the resistance ratio of the externally-installed Ra and Rb, and the voltage step width by the software contrast control is determined by the resistance value of Rb.

The reference voltage VREG and current source IREF built into the SED1560 Series are kept constant against voltage variations.

However, IC manufacturing dispersion and variations due to temperatures are caused as shown below.

Example of Constant Setting

Variable voltage level......32 levels

(1) Determination of Rb.

Rb = V5 variable voltage width / IREF

 $= 3.2 \text{V} / 6.5 \mu \text{A}$

 $= 492 \text{ k}\Omega$

(2) Determination of Ra.

Ra =
$$\frac{\text{VREG}}{(\text{V5 minimum set voltage} - \text{VREG}) / \text{Rb}}$$
=
$$\frac{2.5\text{V}}{\{(8.5\text{V} - 3.2\text{V/2}) - 2.5\text{V}\} / 492\text{k}\Omega}$$
= 280 k\Omega

(3) Temperature dependency of V5 when VREG = 2.5V and IREF = 6.5μ A (32 levels).

V5 minimum set voltage (V5 min) = 8.5V - 3.2V/2 = 6.9V

$$Ta = 25^{\circ}C$$

$$V5 \text{ max} = V5 \text{ minimum set voltage} + Rb \times IREF$$

$$= 6.9V + 492k\Omega \times 6.5 \,\mu\text{A}$$

$$= 10.1V \dots \dots 1$$

$$V5 \text{ typ} = (V5 \text{ max} + V5 \text{ min}) / 2$$

$$= (10.1V + 6.9V) / 2$$

$$= 8.5V \dots 2$$

$$Ta = -10^{\circ}C$$

$$Ta = 50^{\circ}C$$

V5 typ =
$$(V5 max + V5 min) / 2$$

= $(9.15V + 6.6V) / 2$
= $7.9V$

- To set the number of variable voltage levels to 16, specify IREF = 3.2μ A.
- Margin calculation is performed by considering the dispersion of VREG and VREF according to the same procedure as (3). From this margin calculation, it is made clear that the center value of V5 is affected by variations of VREG and IREF.
- Accordingly, it is necessary to set the electronic contrast control register value to (D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0) or (0, 1, 1, 1, 1) and adjust the Ra value to the optimum contrast.
- The voltage step width by the electronic contrast control is changed by the dispersion of IREF. It is necessary to consider that supposing that 0.2V/STEP is set by TYP value, the maximum variation of 0.12V to 0.28V occurs.

Example of V5 voltage when using SED1560 Series electronic contrast control

Since the IREF is a simplified constant current source, when using the electronic contrast control function, it becomes necessary to make adjustment to the optimum contrast as given in the above item (4), with each of the IC chips, using the Ra as a variable resistor.

When not using the software contrast adjustment control function, set the register to (D3, D2, D1, D0) = (0, 0, 0, 0) using the \overline{RES} signal or by means of the software contrast adjustment control register setting command.

4.26 LIQUID CRYSTAL VOLTAGE GENERATING CIRCUIT

A V5 potential is resistively divided within the IC to cause V1, V2, V3 and V4 potentials needed for driving of liquid crystals. The V1, V2, V3 and V4 potentials are further converted in the impedance by the voltage follower before being supplied to the liquid crystal driving circuit.

The liquid crystal driving voltage is fixed with each type (see Table 4.8).

As shown in Figure 4.13, it needs to connect, externally, 5 units of voltage stabilizing capacitors C2 to the liquid crystal power terminals. When selecting such capacitor C2, make actual liquid crystal displays matching to the display capacity of the liquid crystal display panel, before determining the capacitance as the constant value for voltage stabilization.

Table 4.8

Туре	Liquid Crystal Driving Voltage
SED1560	1/9 of the bias voltage
SED1561	1/7 of the bias voltage
SED1562	1/5 of the bias voltage

Table 4.9 Reference Setting Value

Reference set values:

SED1560
$$V5 \approx -11 \sim -13V$$

SED1561 $V5 \approx -7 \sim -9V$
SED1562 $V5 \approx -5 \sim -7V$ (Variable)

	SED1560	SED1561	SED1562
C1	0.47μF~	0.47μF~	0.47μF~
C2	1.0µF∼	0.47μF~	0.47μF~
	1.0µF∼	0.47μF~	0.47μF~
R1	1ΜΩ	700ΚΩ	500ΚΩ
R2	200ΚΩ	200ΚΩ	200ΚΩ
R3	4ΜΩ	1.6MΩ	700ΚΩ
LCD	32 × 51	16 × 67	8 × 75
SIZE	mm	mm	mm
DOT	64×102	32 × 134	16 × 150

Figure 4.13 When the built-in power supply is used

- *1 Connect oscillator feedback resistor R_f as short as possible and place it close to the IC for preventing a malfunction.
- *2 Use short wiring or shielded cables for the VR pin due to high input impedance.
- *3 Determine C1 and C2 depending on the size of the LCD panel driven. You must set these values so that the LCD driving voltage becomes stable. Set (T1, T2) = (H, L) and supply an external voltage to VouT. Display the LCD heavy load pattern and determine C2 so that the LCD driving voltages (V1 to V5) become stable. However, it is necessary to make every C2 capacitance value equal. Then, set (T1, T2) = (L, L) and determine C1.
- *4 The "LCD SIZE" indicates the vertical and horizontal length of the LCD panel display area.

Figure 4.14
When external LCD power supply is used

4.27 RESET

When power is turned ON, the SED1560 Series is initialized on the rising edge of RES. Initial settings are as follows:

1. Display : OFF 2. Display mode : Normal : OFF 3. *n*-line inversion 4. Duty cycle : 1/64 5. ADC select : Normal : OFF 6. Read/write modify : OFF 7. On-chip power supply 8. Serial interface register : Cleared 9. Display initial line register : Line 1 : 0 10. Column address counter 11. Page address register : Page 0 12. Output selection circuit : Case 6 13. *n*-line inversion register : 16 14. Software contrast setting : zero

The RES pin should be connected to the microprocessor reset terminal so that both devices are reset at the same time. RES must be LOW for at least 1 us to correctly reset the SED1560 Series. Normal operation starts 1 μ s after the rising edge on RES.

If the SED1560 Series is not properly initialized when power is turned ON, it can lock itself into a state that cannot be cancelled.

When the Reset command is used, only initial settings 9 to 14 are active.

5.0 Commands

THIS PAGE INTENTIONALLY BLANK

5.0 Commands 5.1

5.1 COMMAND SUMMARY

A0, $\overline{\text{RD}}$ and $\overline{\text{WR}}$ identify the data bus commands. Interpretation and execution of commands are synchronized to the internal clock. Since a busy check is

normally not needed, commands can be processed at high speed. When the serial interface is used, the order of data entry is D7 to D0.

Table 5.1

						Code	!					
Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Description
Display ON/OFF	0	1	0	1	0	1	0	1	1	1	D	Turns the display ON and OFF. D = 0 OFF D = 1 ON
Initial display line	0	1	0	0	1		Disp	olay lir	ne add	ress		Sets the display RAM line address for COM0.
Page address set	0	1	0	1	0	1	1	F	Page a	ddres	s	Sets the RAM page address register.
Column address set (upper four bits)	0	1	0	0	0	0	1	_		addre our bit		Sets the column address register upper four bits.
Column address set (lower four bits)	0	1	0	0	0	0	0	_		addre our bit		Sets the column address register lower four bits.
Read status	0	0	1		Sta	itus		0	0	0	0	Reads out status information.
Write display data	1	1	0				Write	data				Writes to display RAM.
Read display data	1	0	1				Read	data				Reads from display RAM.
Select ADC	0	1	0	1	0	1	0	0	0	0	D	Sets the display RAM segment output. D = 0 Normal D = 1 Inverse
Normal/inverse display	0	1	0	1	0	1	0	0	1	1	D	Sets the LCD display mode. D = 0 Normal D = 1 Inverse
Display all points ON/OFF	0	1	0	1	0	1	0	0	1	0	D	Sets the segments display mode. D = 0 Normal D = 1 All display segments ON
Select duty	0	1	0	1	0	1	0	1	0	0	D	Sets the LCD controller duty (1). D = 0, D=1 See Table 5.3
Duty + 1	0	1	0	1	0	1	0	1	0	1	D	Sets the LCD controller duty (2). D = 0 Normal D = 1 Duty + 1
Set <i>n</i> -line inversion	0	1	0	0	0	1	1	i		ber of d item	S	Sets the number of inverted lines in the inversion register for the inversion controller.
Cancel <i>n</i> -line inversion	0	1	0	0	0	1	0	0	0	0	0	Cancels line inversion display mode.
Read Modify Write	0	1	0	1	1	1	0	0	0	0	0	Sets modified read mode. The column address counter is not incremented when reading.
End	0	1	0	1	1	1	0	1	1	1	0	Cancels modified read mode.
Power-on completion	0	1	0	1	1	1	0	1	1	0	1	Completes the turn-on sequence of built-in power supply
Reset	0	1	0	1	1	1	0	0	0	1	0	Resets the internal registers.
Output status set	0	1	0	1	1	0	0	(Output	status	6	Sets the common and segment output status register.
LCD power supply ON/OFF	0	1	0	0	0	1	0	0	1	0	D	Turns the power supply ON and OFF. D = 0 OFF D = 1 ON
Software contrast setting	0	1	0	1	0	0	Ele		ctronic contrast control Se			Setting the V5 output voltage to the electronic contrast control register.
Power save												A complex command to turn off the display and light all indicators.

5.2 COMMAND DEFINITIONS

5.2.1 Display ON/OFF

Alternately turns the display ON and OFF.

R/W

Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	1	1	1	D

Note:

D = 0 Display OFF D = 1 Display ON

5.2.2 Initial Display Line

Loads the RAM line address of the initial display line, COM0, into the initial display line register. The RAM display data becomes the top line of the LCD screen. It is followed by the higher number lines in ascending order, corresponding to the duty cycle. The screen can be scrolled using this command by incrementing the line address.

R/W

A0	\overline{RD}	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	1	A5	A4	А3	A2	A1	A0

A5	A4	А3	A2	A 1	A0	Line Address
0	0	0	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	0	2
			ļ			\
1	1	1	1	1	0	62
1	1	1	1	1	1	63

5.2.3 Page Address Set

Loads the RAM page address from the microprocessor into the page address register. A page address, along with a column address, defines a RAM location for writing or reading display data. When the page address is changed, the display status is not affected.

Page address 8 is a special use RAM area for the indicator. Only D0 is available for data exchange.

 R/\overline{W}

		,								
Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	1	А3	A2	A1	Α0

А3	A2	A1	A0	Page
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8

5.2.4 Column Address Set

Loads the RAM column address from the microprocessor into the column address register. The column address is divided into two parts—4 high-order bits and 4 low-order bits.

When the microprocessor reads or writes display data to or from RAM, column addresses are automatically incremented, starting with the address stored in the column address register and ending with address 166.

The page address is not incremented automatically.

R/W

Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	0	0	1	A7	A6	A5	A4

R/W

A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	0	0	0	А3	A2	A1	A0

A7	A6	A5	A4	А3	A2	A 1	Α0	Column Address
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
			\downarrow					\downarrow
1	0	1	0	0	1	0	1	165

5.2.5 Read Status

Indicates to the microprocessor the SED1560 Series status conditions.

R/W

Α0	RD	\overline{WR}	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	BUSY	ADC	ON/ OFF	RE- SET	0	0	0	0

- BUSY Indicates whether or not the SED1560
 Series will accept a command. If BUSY is 1, the device is currently executing a command or is resetting, and no new commands can be accepted. If BUSY is 0, a new command can be accepted. It is not necessary for the microprocessor to check the status of this bit if enough time is allowed for the last cycle to be completed.
- ADC Indicates the relationship between RAM column addresses and the segment drivers. If ADC is 1, the relationship is normal and column address n corresponds to segment driver n. If ADC is 0, the relationship is inverted and column address (165 n) corresponds to segment driver n.
- ON/OFF Indicates whether the display is ON or OFF. If ON/OFF is 1, the display is OFF. If ON/OFF is 0, the display is ON. Note that this is the opposite of the Display ON/OFF command.
- RESET Indicates whether initialization is in process as the result of RES or the Reset command.

5.2.6 Write Display Data

Writes bytes of display data from the microprocessor to the RAM location specified by the column address and page address registers. The column address is incremented automatically so that the microprocessor can continuously write data to the addressed page.

R/W

Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	1	0				Write	data			

5.2.7 Read Display Data

Sends bytes of display data to the microprocessor from the RAM location specified by the column address and page address registers. The column address is incremented automatically so that the microprocessor can continuously read data from the addressed page. A dummy read is required after loading an address into the column address register.

Display data cannot be read through the serial interface.

R/W

Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	1			Re	ad da	ata			

5.2.8 Select ADC

Selects the relationship between the RAM column addresses and the segment drivers. When reading or writing display data, the column address is incremented as shown in Figure 5.4.

R/W

Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	0	0	0	D

Note:

D = 0 Rotate right (normal direction)

D = 1 Rotate left (reverse direction)

The output pin relationship can also be changed by the microprocessor. There are very few restrictions on pin assignments when constructing an LCD module.

5.2.9 Normal/Inverse Display

Determines whether the data in RAM is displayed normally or inverted.

R/W

Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	0	1	1	D

Note:

D = 0 LCD segment is ON when RAM data is 1 (normal).

D = 1 LCD segment is ON when RAM data is 0 (inverse).

5.2 Command Definitions

5.2.10 Display All Points ON/OFF

Turns all LCD points ON independently of the display data in RAM. The RAM contents are not changed.

This command has priority over the normal/inverse display command.

Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	0	1	0	D

Note:

D = 0 Normal display status

D = 1 All display segments ON

If this command is received when the display status is OFF, the Power Save command is executed.

5.2.11 Select Duty

Selects the LCD driver duty.

Since this is independent from the contents of the output status register, the duty must be selected according to the LCD output status.

In multi-chip configuration, the master and slave devices must have the same duty.

 R/\overline{W}

Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	1	0	0	D

Table 5.2

Model	D	Duty
SED1560	0	1/48
2ED 1000	1	1/64
CED4564	0	1/24
SED1561	1	1/32
CED4562	0	1/16
SED1562	1	1/16

5.2.12 Duty + 1

Increases the duty by 1. If 1/48 or 1/64 duty is selected in the SED1560, for example, 1/49 or 1/65 is set, respectively, and COM1 functions as either the COM48 or COM64 output. The display line always accesses

the RAM area corresponding to page address 8, D0. (Refer to Figure 5.4.)

In multi-chip configuration, the Duty + 1 command must be executed to both the master and slave sides.

R/W

Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	1	0	1	D

Table 5.3

Model	D	Duty
SED1560	0	1/48 or 1/64
3ED 1300	1	1/49 or 1/65
SED1561	0	1/24 or 1/32
SED 1301	1	1/25 or 1/33
SED1562	0	1/16
SED 1302	1	1/17

5.2.13 Set *n*-line Inversion

Selects the number of inverse lines for the LCD AC controller. The value of n is set between 2 and 16 and is stored in the n-line inversion register.

R/W

Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	0	1	1	А3	A2	A1	Α0

А3	A2	A 1	A0	Number of Inverted Lines			
0	0	0	0	_			
0	0 0 0 1 0 0 1 0		1	2			
0			0	3			
	`	l		\			
1	1 1 1 0		0	15			
1	1	1	1	16			

5.2.14 Cancel *n*-line Inversion

Cancels *n*-line inversion and restores the normal 2-frame AC control. The contents of the *n*-line inversion register are not changed.

R/W

A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	0	1	0	0	0	0	0

5.2.15 Modify Read

Following this command, the column address is no longer incremented automatically by a Read Display Data command. The column address is still incremented by the Write Display Data command. This mode is cancelled by the End command. The column address is then returned to its value prior to the Modify Read command. This command makes it easy to manage the duplication of data from a particular display area for features such as cursor blinking.

R/W RD WR Α0 D7 D6 **D5** D4 D3 D2 D1 D0 0 1 0 1 1 1 0 0 0 0 0

Note: the Column Address Set command cannot be used in modify-read mode.

5.2.16 End

Cancels the modify read mode. The column address prior to the Modify Read command is restored.

		R/W								
Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	1	1	1	0

5.2.17 Reset

Resets the initial display line, column address, page address, and *n*-line inversion registers to their initial values. This command does not affect the display data in RAM.

		R/W								
A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	0

The reset command does not initialize the LCD power supply. Only hardware \overline{RES} can be used to initialize the power supplies.

Figure 5.1 Command sequence for cursor blinking

Figure 5.2

5.2 Command Definitions

5.2.18 Output Status Set

Selects the common or segment output state of the LCD driver dual outputs. The A3 bit selects the scan direction of the outputs.

R/W

Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	0	0	А3	A2	A1	Α0

5.2.19 Output Status Register

Available only in the SED1560 and SED1561.

This command selects the role of the COM/SEG dual pins and determines the LCD driver output status.

The COM output scanning direction can be selected by setting A3 to "H" or "L". For details, refer to the Output Status Circuit in each function description.

R/W

Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	0	0	А3	A2	A1	A0

A3: Selection of the COM output scanning direction

Table 5.4

A2	A 1	Α0	Output Status	Number of COM/SEG Output Pins	Remarks		
0	0	0	Case 6	SEG 166	Applies to the SED1560/61		
0	0	1	Case 5	SEG 134, COM 32			
0	1	0	Case 4	SEG 134, COM 32	Applies to the SED1561		
0	1	1	Case 3	SEG 134, COM 32	OLD 1301		
1	0	0	Case 2	SEG 102, COM 64	Applies to the		
1	0	1	Case 1	SEG 102, COM 64	SED1560		
1	1	0	Case 6	SEG 166	Applies to the		
1	1	1	Case 6	SEG 166	SED1560/61		

5.2.20 LCD Power Supply ON/OFF

Turns the SED1560 Series LCD power supply ON or OFF. When the power supply is ON, the voltage converter, the voltage regulator circuit and the voltage followers are operating. In order for the converter to function, the oscillator must also be operating.

R/W

Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	0	1	0	0	1	0	0
					2			4		OFF

Note:

D = 0 Supply OFF (24H)

D = 1 Supply ON (25H)

When an external power supply is used with the SED1560 Series, the internal supply must be OFF.

If the SED1560 Series is used in a multiple-chip configuration, an external power supply that meets the specifications of the LCD panel must be used. An SED1560 Series operating as a slave must have its internal power supply turned OFF.

Sequence in the Built-In Power ON/OFF Status

To turn on internal power supply, execute the following built-in power supply ON sequence. To turn off internal power supply, execute the power save sequence as shown in the following power supply OFF status.

Accordingly, to turn on internal power supply again after turn it off (power save), execute the "Power Save Clear Sequence" that is described below.

Sequence in the Power Save Status

Power Save and Power Save Clear must be executed according to the following sequence.

To give a liquid crystal driving voltage level by the externally-installed resistance dividing circuit, the current flowing in this resistance must be cut before or concurrently with putting the SED1560 Series into the power save status so that it may be fixed to the floating or VDD level.

Power Save Sequence

- *1. In the power save sequence, the power save status is provided after the display all ON command. In the power save clear sequence, the power save status is cleared after the display all ON status OFF command.
- *2. When the COMI pin is not used, it is not necessary to enter the DUTY + 1 command and DUTY + 1 clear command.
- *3. In the SED1562, it is not necessary to execute a command to decide an output status.
- *4. The display ON command can be executed anywhere if it is later than the display all ON status OFF command.

When using an external power supply, likewise, its function must be stopped before or concurrently with putting the SED1560 Series into the power save status so that it may be fixed to the floating or VDD level. In a configuration in which an exclusive common driver such as SED1630 is combined with the SED1560 Series, it is necessary to stop the external power supply function after putting all the common output into non-selection level.

Power Save Clear Sequence

- *5. When internal power supply startup end command is not executed, current is consumed stationarily. Internal power supply startup end command must always be used in a pair with internal power supply ON command.
- *6. The waiting time depends on the externally-installed capacitance C2 (refer to Table 5.9). After the waiting time shown in the graph above (see bottom of previous page), the power supply can be started surely.

Internal Power Supply ON Status

*1. Regarding the SED1562, it is not neces-

sary to execute a command to decide an

*2. When the COMI pin is not used, it is not necessary to enter the DUTY + 1 and DUTY + 1 Clear commands.

output status.

- *3. When the built-in power supply startup end command is not executed, current is consumed stationarily. Internal power supply startup end command must always be used in a pair with internal power supply ON command.
- *4. The waiting time depends on the externally-installed capacitance C2 (refer to Table 5.9).

Internal Power Supply OFF Status

- After the waiting time shown in the graph below, the power supply can be started surely.
- *5. Within the waiting time in internal power supply ON status, any command other than internal power supply control commands such as Power Save, and display ON/OFF command, display normal rotation/reverse command, display all ON command, output status select command and DUTY + 1 clear command can accept another command without any problem. RAM read and write operations can be freely performed.

5.3 SOFTWARE CONTRAST CONTROL REGISTER

Through these commands, the liquid crystal driving voltage V5 is output from the voltage regulation circuit of the built-in liquid crystal power supply, in order to adjust the contrast of the liquid crystal display.

By setting data to the 5-bit register, one of the 32 voltage statuses may be selected for the liquid crystal driving voltage V5. External resistors are used for setting the voltage regulation range of the V5. For details refer to the paragraph of the voltage regulation circuit in the clause for the explanation of functions.

R/W											
	Α0	RD	$\overline{\mathbf{W}}$ R	D7	D6	D5	D4	D3	D2	D1	D0
	0	1	0	1	0	0	A4	А3	A2	A1	A0

A4	А3	A2	A 1	A0	V5
0	0	0	0	0	Small (as the absolute value)
		\downarrow			\downarrow
1	1	1	1	1	Large (as the absolute value)

When not using the electronic contrast control function, set to (0, 0, 0, 0).

5.3.1 Power Save (Complex Command)

If the Display All Points ON command is specified in the display OFF state, the system enters the power save status, reducing the power consumption to approximate the static power consumption value. The internal state in the power save status is as follows:

- (a) The oscillator and power supply circuits are stopped.
- (b) The LCD driver is stopped and segment and common driver outputs output the VDD level.
- (c) An input of an external clock is inhibited and OSC2 enters the high-impedance state.
- (d) The display data and operation mode before execution of the power save command are held.
- (e) All LCD driver voltages are fixed to the VDD level.

The power save mode is cancelled by entering either the Display ON command or the Display All Points OFF command (display operation state). When external voltage driver resistors are used to supply the LCD driver voltage level, the current through them must be cut off by the power save signal.

If an external power supply is used, it must be turned OFF using the power save signal in the same manner, and voltage levels must be fixed to the floating or VDD level.

5.3.2 Connection between LCD Drivers

The LCD display area can be increased by using the SED1560 Series in a multiple-chip configuration or with the SED1560 Series special common driver (SED1630).

Figure 5.3 Application with external driver: SED156X – SED1630

5.3 Electronic Contrast Control Register

Figure 5.4 SED156X – SED156X (when oscillator circuit is used)

Figure 5.5 SED156X – SED156X (External clock)

5.4 MICROPROCESSOR INTERFACE

The SED1560 Series communicates with a high-speed microprocessor, such as the Intel 80XX family or the Motorola 68XX family, through 8-bit parallel data transfer. The number of connections to the

microprocessor can be minimized by using a serial interface. When used in a multiple-chip configuration, the SED1560 Series is controlled by the chip select signals from the microprocessor.

Figure 5.6 8080-series microprocessors

Figure 5.7 6800-series microprocessors

Figure 5.8 Serial interface

5.5 LCD PANEL INTERFACE EXAMPLES

Figure 5.9 Single-chip configurations

Figure 5.10 Multiple-chip combinations

5.6 SPECIAL COMMON DRIVER CONFIGURATIONS

Figure 5.11 Special common driver configurations

6.0 Packaging

THIS PAGE INTENTIONALLY BLANK

6.0 Pad Layout 6.1

6.1 PAD LAYOUT

Figure 6.1 Pad layout

Table 6.1 SED1560 Series Pad Center Coordinates

Pad	Pin		.,	Pad	Pin		.,	Pad	Pin	.,		Pac	Pin	.,	
No.	Name	Х	Y	No.	Name	X	Y	No.	Name	X	Y	No	I	X	Y
1	V5	3640	2487	55	O5	-3887	1794	109	O59	-2411	-2487	163		2989	-2487
2	V4	3489	2487	56	O6	-3887	1694	110	O60	-2311	-2487	164	0114	3089	-2487
3	V3	3339	2487	57	07	-3887	1594	111	O61	-2211	-2487	16	O115	3189	-2487
4	V2	3188	2487	58	08	-3887	1494	112	O62	-2111	-2487	166	O116	3289	-2487
5	V1	3037	2487	59	O9	-3887	1394	113	O63	-2011	-2487	16	7 0117	3389	-2487
6	Vdd	2889	2487	60	O10	-3887	1294	114	O64	-1911	-2487	168	O118	3489	-2487
7	M/S	2755	2487	61	011	-3887	1194	115	O65	-1811	-2487	169	O119	3589	-2487
8	RES	2604	2487	62	012	-3887	1094	116	O66	-1711	-2487	170		3689	-2487
9	SCL	2453	2487	63	O13	-3887	994	117	O67	-1611	-2487	17		3887	-2206
10	SI	2302	2487	64	014	-3887	894	118	O68	-1511	-2487	172		3887	-2106
11	P/S	2151	2487	65	O15	-3887	794	119	O69	-1411	-2487	173		3887	-2006
12	CS1	2001	2487	66	O16	-3887	694	120	O70	-1311	-2487	174		3887	-1906
13	CS2	1850	2487	67	017	-3887	594	121	071	-1211	-2487	17		3887	-1806
14	C86	1699	2487	68	O18	-3887	494	122	072	-1111	-2487	176		3887	-1706
15	<u>A0</u>	1548	2487	69	O19	-3887	394	123	O73	-1011	-2487	17		3887	-1606
16	WR	1397	2487	70	O20	-3887	294	124	074	-911	-2487	178		3887	-1506
17	RD	1247	2487	71	O21	-3887	194	125	O75	-811	-2487	179		3887	-1406
18	Vss	1077	2487	72	O22	-3887	94	126	076	-711	-2487	180		3887	-1306
19	D0	945	2487	73	023	-3887	-6	127	077	-611	-2487	18		3887	-1206
20	D1	794	2487	74	024	-3887	-106	128	078	-511	-2487	182		3887	-1106
21	D2	643	2487	75	O25	-3887	-206	129	079	-411	-2487	183		3887	-1006
22	D3	493	2487	76	026	-3887	-306	130	O80	-311	-2487	184		3887	-906
23	D4	342	2487	77	027	-3887	-406	131	O81	-211	-2487	18		3887	-806
24	D5	191	2487	78	028	-3887	-506	132	O82	-111	-2487	186		3887	-706
25	D6	40	2487	79	029	-3887	-606	133	O83	-11	-2487	187		3887	-606
26	D7	-111	2487	80	O30	-3887	-706	134	O84	89	-2487	188		3887	-506
27	DYO	-261	2487	81	O31	-3887	-806	135	O85	189	-2487	189		3887	-406
28	CLO	-412	2487	82	032	-3887	-906	136	O86	289	-2487	190		3887	-306
29	SYNC	-563	2487	83	O33	-3887	-1006	137	O87	389	-2487	19		3887	-206
30	FR	-714	2487	84	O34	-3887	-1106	138	O88	489 589	-2487	192		3887	-106
31	CL OSC2	-865 -1015	2487 2487	85	O35 O36	-3887	-1206	139	O89		-2487	193		3887	-6
32				86 87	036	-3887 -3887	-1306 -1406	140 141	O90 O91	689 789	-2487 -2487	19 ⁴		3887 3887	94 194
33 34	OSC1 T2	-1166 -1317	2487 2487	88	O37	-3887	-1 4 06	141	O91	889	-2487	196		3887	294
35	T1	-1468	2487	89	O39	-3887	-1606	143	O92	989	-2487	19		3887	394
36	Vss	-1638	2487	90	O40	-3887	-1706	143	O93	1089	-2487	198		3887	494
37	CAP1+	-1789	2487	91	O40	-3887	-1806	145	O95	1189	-2487	199		3887	594
38	CAP1-	-1939	2487	92	041		-1906	146	O96	1289	-2487	200		3887	694
39	CAP2+	-2090	2487	93	O42	-3887	-2006	147	O97	1389	-2487	20		3887	794
40	CAP2+	-2241	2487	94	043	-3887	-2106	148	O98	1489	-2487	202		3887	894
41	Vout	-2392	2487	95	O44 O45	-3887		149	O99	1589	-2487	203		3887	994
42	V5*	-2543	2487	96	O46	-3711	-2487	150	O100	1689	-2487	204		3887	1094
43	VR	-2674	2487	97	047	-3611	-2487	151	O101	1789	-2487	20		3887	1194
44	VDD	-2844	2487	98	O48	-3511	-2487	152	O102	1889	-2487	200	_	3887	1294
45	V1	-2995	2487	99	O49	-3411	-2487	153	O103	1989	-2487	20		3887	1394
46	V2	-3146	2487	100	O50	-3311	-2487	154	O104	2089	-2487	208		3887	1494
47	V3	-3297	2487	101	O51	-3211		155	O105	2189	-2487	209		3887	1594
48	V4	-3447	2487	102	O52	-3111	-2487	156	O106	2289	-2487	210		3887	1694
49	V 4	-3598	2487	103	O53	-3011	-2487	157	O107	2389	-2487	21		3887	1794
50	00	-3887	2294	103	O54	-2911	-2487	158	O107	2489	-2487	212		3887	1894
51	O1	-3887	2194	105	O55	-2811	-2487	159	O100	2589	-2487	213		3887	1994
52	02	-3887	2094	106	O56	-2711		160	O110	2689	-2487	214		3887	2094
53	03	-3887	1994	107	O57		-2487 -2487	161	O110	2789	-2487	21		3887	2194
54	O4	-3887		108	O58		-2487		0111	2889	-2487	210		3887	2294
54	U4	-3887	1894	108	U58	-2511	-2487	162	U112	2889	-2487	210	O COMI	3887	-

^{*} One V5 output is used for the LCD driver supply voltage; the other is used for the electronic volume control.

6.2 SED1560/1/2 TAB PIN LAYOUT

Figure 6.2 SED1560 Series TAB pin layout

6.3 TCP DIMENSIONS (2-SIDED) SED156XT0B

Figure 6.3 TCP dimensions (2-sided)

6.4 TCP DIMENSIONS (4-SIDED) SED156XT0A

Figure 6.4 TCP dimensions (4-sided)

6.5 TCP DIMENSIONS (SED1561TOC)

Figure 6.5 TCP dimensions (D1561TOC)

6.6 Pad Profile	6.6
6.6 PAD PROFILE	
TBD	

6.7 BGA PACKAGE DIMENSIONS

Figure 6.7 Plastic BGA 225pin

Table 6.2 BGA 225pin package dimensions

Symbol	Dim	ension in Millime	eters	Dimension in inches*					
Cyrribor	Min.	Nom.	Max.	Min.	Nom.	Max.			
øb	0.6	0.75	0.90	(0.024)	(0.030)	(0.035)			
Α		2.13			(0.084)				
A1	0.5	0.6	0.7	(0.020)	(0.024)	(0.027)			
A2	1.43	1.53	1.63	(0.057)	(0.060)	(0.064)			
θ2		25°			(25°)				
C1		1.5			(0.059)				
C2		1.2			(0.047)				
е		1.5			(0.059)				
D1	23.9	24	24.1	(0.941)	(0.945)	(0.948)			
E1	23.9	24	24.1	(0.941)	(0.945)	(0.948)			
D		27			(1.063)				
Е		27			(1.063)				

^{*} for reference

6.8 BGA PIN ASSIGNMENT

SED1560	SED1560	BC A 225	SED1560	SED1560	BC A 225	SED1560	SED1560	BC A 225	SED1560	SED1560	BGA225	N/C
pad#	pin name	pin#	pad#	pin name	pin#	pad#	pin name	pin#	pad#	pin name	pin#	IN/C
1 1	V5	B-2	55	05	R-2	109	059	K-10	163	0113	D-12	J-7
2	V5 V4	D-4	56	06	P-3	110	060	M-13	164	0113	B-14	H-7
3	V4 V3	B-1	57	07	K-6	111	060	N-15	165	0114	A-15	G-7
4	V3 V2	C-2	58	08	N-4	112	062	M-14	166	0116	C-13	J-8
5	V2 V1	F-6	59	09	R-3	113	063	J-10	167	0117	A-14	H-8
6	VDD	D-3	60	010	P-4	114	064	L-12	168	0117	B-13	G-8
7	M/S	C-1	61	010	K-7	115	065	M-15	169	0119	E-11	J-9
8	/RES	D-2	62	012	M-5	116	066	L-13	170	0120	C-12	H-9
9	SCL	G-6	63	012	R-4	117	067	L-13	170	0120	A-13	G-9
10	SI	E-4	64	013	N-5	118	068	K-11	172	0121	B-12	<u>G-9</u>
11	P/S	D-1	65	014	P-5	119	069	L-15	173	0123	F-9	
12	/CS1	E-3	66	016	L-6	120	070	K-12	173	0123	D-11	
13	CS2	E-2	67	017	R-5	121	070	K-12	175	0124	A-12	
14	C86	F-5	68	017	M-6	122	071	K-13	176	0125	C-11	
15	A0	E-1	69	018	N-6	123	072	K-14 K-15	177	0120	B-11	
16	/WR	F-4	70	020	P-6	123	073	J-12	177	0127	E-10	
17	/WK /RD	F- 4 F-3	71	020	R-6	125	074	J-12 J-13	179	0128	A-11	
18	VSS	F-3 F-2	72	021	M-7	126	075	J-13 J-14	180	0129	D-10	
19	D0	F-1	73	022	N-7	127	070	J-15	181	0130	C-10	
20	D1	G-4	74	023	P-7	128	078	J-13	182	0131	B-10	
21	D2	G-3	75	025	R-7	129	079	L-8	183	0133	A-10	
22	D3	G-2	76	025	L-7	130	080	K-8	184	0134	D-9	
23	D3	G-1	77	027	M-8	131	081	H-10	185	0135	C-9	
24	D5	G-5	78	027	P-8	132	081	H-11	186	0136	B-9	
25	D6	H-3	79	028	R-8	133	083	H-6	187	0137	A-9	
26	D7	H-1	80	030	N-8	134	084	H-5	188	0138	E-9	
27	DYO	H-2	81	031	L-9	135	085	F-8	189	0139	D-8	
28	CLO	H-4	82	032	R-9	136	086	E-8	190	0140	B-8	
29	SYNC	J-5	83	033	P-9	137	087	H-12	191	0141	A-8	
30	FR	J-1	84	034	N-9	138	088	H-14	192	0142	C-8	
31	CL	J-2	85	035	M-9	139	089	H-15	193	0143	E-7	
32	OSC2	J-3	86	036	R-10	140	090	H-13	194	0144	A-7	
33	OSC1	J-4	87	037	P-10	141	091	G-11	195	0145	B-7	
34	T2	K-1	88	038	N-10	142	092	G-15	196	0146	C-7	
35	T1	K-2	89	039	M-10	143	093	G-14	197	0147	D-7	
36	VSS	K-3	90	040	R-11	144	094	G-13	198	0148	A-6	
37	CAP1+	K-4	91	041	L-10	145	095	G-12	199	0149	B-6	
38	CAP1-	L-1	92	042	P-11	146	096	F-15	200	0150	C-6	
39	CAP2+	K-5	93	043	N-11	147	097	F-14	201	0151	D-6	
40	CAP2-	L-2	94	044	R-12	148	098	F-13	202	0152	A-5	
41	VOUT	L-3	95	045	M-11	149	099	F-12	203	0153	E-6	
42	V5	M-1	96	046	K-9	150	0100	E-15	204	0154	B-5	
43	VR	L-4	97	047	P-12	151	0101	F-11	205	0155	C-5	
44	VDD	J-6	98	048	R-13	152	0102	E-14	206	0156	A-4	
45	V1	M-2	99	049	N-12	153	0103	E-13	207	0157	D-5	
46	V2	N-1	100	050	L-11	154	0104	D-15	208	0158	F-7	
47	V2	M-3	101	051	P-13	155	0105	E-12	209	0159	B-4	
48	V4	L-5	102	052	R-14	156	0106	G-10	210	0160	A-3	
49	V5	N-2	103	053	N-13	157	0107	D-14	211	0161	C-4	
50	00	P-1	104	054	R-15	158	0107	C-15	212	0162	E-5	
51	01	N-3	105	055	P-14	159	0109	D-13	213	0163	B-3	
52	02	R-1	106	056	M-12	160	0110	F-10	214	0164	A-2	
53	03	P-2	107	057	P-15	161	0111	C-14	215	0165	C-3	
54	03	M-4	108	058	N-14	162	0112	B-15	216	COMI	A-1	
	U-T	IVI T	100	555		102	V112	כַ	10		7 1 1	

6.9 SED1560TQA OL DIMENSIONS

Figure 6.8 SED1560TQA OL Dimensions

S-MOS assumes no responsibility or liability for (1) any errors or inaccuracies contained in the information herein and (2) the use of the information or a portion thereof in any application, including any claim for (a) copyright or patent infringement or (b) direct, indirect, special or consequential damages. There are no warranties extended or granted by this document. The information herein is subject to change without notice from S-MOS.

October 1996

© Copyright 1996 S-MOS Systems, Inc.

Printed in U.S.A.

174-3.0