

LAB Step: Create an IAM User with Programmatic Access

- 1. Log in to AWS Management Console.
- 2. Navigate to IAM:
 - o In the search bar, type "IAM" and select **IAM**.
- 3. Create a New User:
 - o In the IAM Dashboard, click on **Users** on the left side.
 - o Click **Add user**.
 - o Provide a username for the new IAM user (e.g., cli-user).
 - Select **Programmatic access** under "Access type". This generates an Access Key ID and Secret Access Key for CLI use.
 - o Click **Next: Permissions**.
- 4. Assign Permissions:
 - Select Attach policies directly.
 - o Attach basic policies like AdministratorAccess or create a custom policy based on your needs.
 - o Click Next: Tags.
- 5. Review and Create:
 - o Review your settings and click **Create user**.
 - Note the Access Key ID and Secret Access Key. You'll use these to configure the AWS CLI.

Step 2: Install AWS CLI

- 1. Download and install AWS CLI:
 - o For Windows: Download AWS CLI
 - o For macOS: Run brew install awscli if you have Homebrew.
 - o For Linux: Run sudo apt install awscli or sudo yum install awscli based on your distro.
- 2. Verify the installation by running:

```
aws --version
```

Step 3: Configure AWS CLI with Your Access Keys

1. Open your terminal/command prompt and run:

aws configure

- 2. Enter the following details:
 - o **AWS Access Key ID**: (Enter the key from IAM creation step)
 - o **AWS Secret Access Key**: (Enter the secret key)
 - o **Default region name**: (e.g., us-east-1)
 - o **Default output format**: (e.g., json or text)

Step 4: Practice Basic AWS CLI Commands

AWS CLI Commands to Practice

1. List S3 Buckets:

aws s3 ls

2. Create an S3 Bucket:

aws s3 mb s3://my-new-bucket

3. Upload a File to S3:

aws s3 cp myfile.txt s3://my-new-bucket/

4. List EC2 Instances:

aws ec2 describe-instances

5. Create an EC2 Instance (Using a Specific AMI):

aws ec2 run-instances --image-id ami-xxxxxxxx --count 1 --instance-type t2.micro --key-name my-key-pair

6. List IAM Users:

aws iam list-users

7. Describe Available Regions:

aws ec2 describe-regions

Step 5: Practice Advanced AWS CLI Commands

Advanced AWS CLI Commands to Try

1. Stop an EC2 Instance:

aws ec2 stop-instances --instance-ids i-xxxxxxxxxxxxxxxxx

2. Start an EC2 Instance:

aws ec2 start-instances --instance-ids i-xxxxxxxxxxxxxxxxxxxx

3. Create an Auto Scaling Group:

aws autoscaling create-auto-scaling-group --auto-scaling-group-name my-auto-scaling-group --launch-configuration-name my-launch-config --min-size 1 --max-size 5 --desired-capacity 2 --availability-zones useast-la

4. Configure an AWS Lambda Function:

aws lambda create-function --function-name my-function --runtime nodejs14.x --role arn:aws:iam::account-id:role/my-role --handler index.handler --zip-file fileb://my-function.zip

5. Create a CloudWatch Alarm:

aws cloudwatch put-metric-alarm --alarm-name HighCPUUtilization -- metric-name CPUUtilization --namespace AWS/EC2 --statistic Average --period 300 --threshold 80 --comparison-operator GreaterThanThreshold --evaluation-periods 2 --alarm-actions arn:aws:sns:us-east-1:account-id:my-topic

6. Describe DynamoDB Table:

aws dynamodb describe-table --table-name my-table

7. CloudFormation Stack Operations:

o Create a Stack:

aws cloudformation create-stack --stack-name my-stack -template-body file://template.json

o Delete a Stack:

aws cloudformation delete-stack --stack-name my-stack

1. Advanced EC2 Commands

Start an EC2 Instance with Specific Tags

aws ec2 start-instances --instance-ids i-xxxxxxxx --tag-specifications
'ResourceType=instance,Tags=[{Key=Environment,Value=Production},{Key=Owner,Value=Admin}]'

Stop Multiple EC2 Instances

aws ec2 stop-instances --instance-ids i-xxxxxxxx i-yyyyyyyy i-zzzzzzzz

Terminate an EC2 Instance

aws ec2 terminate-instances --instance-ids i-xxxxxxxx

Create an EC2 Key Pair

aws ec2 create-key-pair --key-name MyNewKeyPair --query 'KeyMaterial' -output text > MyNewKeyPair.pem

Attach an EBS Volume to an Instance

aws ec2 attach-volume --volume-id vol-xxxxxxxx --instance-id i-xxxxxxxx -device /dev/sdf

Modify an EC2 Instance Attribute (e.g., Change Instance Type)

aws ec2 modify-instance-attribute --instance-id i-xxxxxxx --instance-type
'{"Value": "t2.medium"}'

Create an EC2 Security Group

aws ec2 create-security-group --group-name MySecurityGroup --description
"Security group for my app"

Authorize an Inbound Rule in a Security Group

aws ec2 authorize-security-group-ingress --group-id sg-xxxxxxxx --protocol
tcp --port 22 --cidr 0.0.0.0/0

Create a Custom Amazon Machine Image (AMI)

aws ec2 create-image --instance-id i-xxxxxxxx --name "MyCustomAMI" --noreboot

2. Auto Scaling Commands

Create an Auto Scaling Group

aws autoscaling create-auto-scaling-group --auto-scaling-group-name my-auto-scaling-group --launch-configuration-name my-launch-config --min-size 1 --max-size 5 --desired-capacity 3 --availability-zones us-west-2a --vpc-zone-identifier subnet-xxxxxxxx

Update the Desired Capacity of an Auto Scaling Group

aws autoscaling update-auto-scaling-group --auto-scaling-group-name myauto-scaling-group --desired-capacity 4

Create a Launch Configuration for Auto Scaling

aws autoscaling create-launch-configuration --launch-configuration-name my-launch-config --image-id ami-xxxxxxxx --instance-type t2.micro --security-groups sg-xxxxxxxx

Set up a Scaling Policy (Scale-In/Scale-Out)

aws autoscaling put-scaling-policy --auto-scaling-group-name my-auto-scaling-group --policy-name ScaleOutPolicy --scaling-adjustment 2 --adjustment-type ChangeInCapacity

Describe Auto Scaling Groups

aws autoscaling describe-auto-scaling-groups --auto-scaling-group-name my-auto-scaling-group

Delete an Auto Scaling Group

aws autoscaling delete-auto-scaling-group --auto-scaling-group-name myauto-scaling-group --force-delete

3. Load Balancer (ELB) Commands

Create an Application Load Balancer (ALB)

aws elbv2 create-load-balancer --name my-load-balancer --subnets subnet-xxxxxxx subnet-yyyyyyy --security-groups sg-xxxxxxxx --scheme internet-facing --load-balancer-type application

Register EC2 Instances with a Target Group

aws elbv2 register-targets --target-group-arn
arn:aws:elasticloadbalancing:us-west-2:123456789012:targetgroup/mytargets/50dc6c495c0c9188 --targets Id=i-xxxxxxxx Id=i-yyyyyyyy

Create a Listener for an ALB

aws elbv2 create-listener --load-balancer-arn
arn:aws:elasticloadbalancing:us-west-2:123456789012:loadbalancer/app/myload-balancer/50dc6c495c0c9188 --protocol HTTP --port 80 --default-actions
Type=fixedresponse, FixedResponseConfig={StatusCode=200, ContentType=text/plain, Message
Body="OK"}

Describe Load Balancer

aws elbv2 describe-load-balancers --load-balancer-arns arn:aws:elasticloadbalancing:us-west-2:123456789012:loadbalancer/app/my-load-balancer/50dc6c495c0c9188

Delete a Load Balancer

aws elbv2 delete-load-balancer --load-balancer-arn
arn:aws:elasticloadbalancing:us-west-2:123456789012:loadbalancer/app/myload-balancer/50dc6c495c0c9188

Delete Target Group

aws elbv2 delete-target-group --target-group-arn
arn:aws:elasticloadbalancing:us-west-2:123456789012:targetgroup/mytargets/50dc6c495c0c9188

4. VPC Commands

Create a New VPC

aws ec2 create-vpc --cidr-block 10.0.0.0/16

Create a Subnet within the VPC

aws ec2 create-subnet --vpc-id vpc-xxxxxxxx --cidr-block 10.0.1.0/24 --availability-zone us-west-2a

Create an Internet Gateway and Attach to the VPC

aws ec2 create-internet-gateway
aws ec2 attach-internet-gateway --vpc-id vpc-xxxxxxxx --internet-gateway-id
igw-xxxxxxx

Create a Route Table

aws ec2 create-route-table --vpc-id vpc-xxxxxxxx

Associate Route Table with a Subnet

aws ec2 associate-route-table --route-table-id rtb-xxxxxxx --subnet-id
subnet-xxxxxxx

Modify a VPC Security Group (Add Inbound Rule)

aws ec2 authorize-security-group-ingress --group-id sg-xxxxxxxx --protocol
tcp --port 22 --cidr 0.0.0.0/0

Create a Network ACL (NACL)

aws ec2 create-network-acl --vpc-id vpc-xxxxxxxx

Add a Rule to a Network ACL

aws ec2 create-network-acl-entry --network-acl-id acl-xxxxxxxx --rule-number 100 --protocol tcp --port-range From=80, To=80 --cidr-block 0.0.0.0/0 --egress --rule-action allow

Delete a Subnet

aws ec2 delete-subnet --subnet-id subnet-xxxxxxxx

Delete a VPC

aws ec2 delete-vpc --vpc-id vpc-xxxxxxxx

5. VPC Peering Commands

Create a VPC Peering Connection

aws ec2 create-vpc-peering-connection --vpc-id vpc-xxxxxxxx --peer-vpc-id vpc-yyyyyyyy

Accept a VPC Peering Request

aws ec2 accept-vpc-peering-connection --vpc-peering-connection-id pcx-xxxxxxx

Delete a VPC Peering Connection

aws ec2 delete-vpc-peering-connection --vpc-peering-connection-id pcx-xxxxxxx