cs-119 Quiz7 q4 (LDA)

The first 8 cells of this notebook install PySpark. The guiz guestions follow.

```
!apt-get install openjdk-8-jdk-headless -qq > /dev/null
!wget -qN https://archive.apache.org/dist/spark/spark-3.2.1/spark-3.2.1-bin-hadoop3.2.tgz
!tar xf spark-3.2.1-bin-hadoop3.2.tgz
!pip install -q findspark
import os
os.environ["JAVA HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
os.environ["SPARK_HOME"] = "spark-3.2.1-bin-hadoop3.2"
!pip install pyspark
     Collecting pyspark
      Downloading pyspark-3.2.1. tar. gz (281.4 MB)
                                                                 281.4 MB 25 kB/s
          Collecting py4j==0.10.9.3
       Downloading py4j-0.10.9.3-py2.py3-none-any.wh1 (198 kB)
          198 kB 51.8 MB/s
     Building wheels for collected packages: pyspark
      Building wheel for pyspark (setup.py) ... done
      Created wheel for pyspark: filename=pyspark-3.2.1-py2.py3-none-any.whl size=281853642 sha256=c
      Stored in directory: /root/.cache/pip/wheels/9f/f5/07/7cd8017084dce4e93e84e92efd1e1d5334db05f2
     Successfully built pyspark
     Installing collected packages: py4j, pyspark
     Successfully installed py4j-0.10.9.3 pyspark-3.2.1
import pyspark
from pyspark.sql import SparkSession
spark = SparkSession.builder.master("local[1]")
                                    .appName('Reviews LDA') \
                                    .getOrCreate()
      spark.sparkContext
from pyspark.sql.types import *
import nltk
nltk.download('averaged perceptron tagger')
nltk.download('wordnet')
nltk.download('stopwords')
```

Q1: Read the reviews data from the source and scrub it

The data source is here.

Download it to a Pandas DataFrameClean the text in the Title and Review Text columns according to these rules:

- 1. Remove all punctuations,
- 2. Turn all words into lowercase,
- 3. Reject all 3-character or smaller words.

```
df = pd.read_csv('reviews.csv')
df.dropna(inplace=True)
for (columnName, columnData) in df.iteritems():
    if pd.api.types.is_string_dtype(df[columnName].dtype):
        df[columnName] = df[columnName].str.lower()
        df[columnName]=df[columnName].str.findall('\w{3,}').str.join(' ')
        df[columnName] = df[columnName].str.replace(r'[^\w\s]+', '')
df
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:7: FutureWarning: The defa
import sys

Divisic Nam	Positive Feedback Count	Recommended IND	Rating	Review Text	Title	Age	Clothing ID	recNo	
gener	0	0	3	had such high hopes for this dress and really 	some major design flaws	60	1077	2	2
gener petil	0	1	5	love love love this jumpsuit fun flirty and fa	favorite buy	50	1049	3	3
				this shirt very	e ·				

Each review is organized as a row in the PySpark DataFrame, and the objective is to do the same processing on each review in parallel!

reese

Q2: Convert the Pandas DataFrame into a PySpark DataFrame

```
not for
sparkDF = spark.createDataFrame(df)
sparkDF.printSchema()
sparkDF. show()
     root
       - recNo: long (nullable = true)
       -- Clothing ID: long (nullable = true)
       -- Age: long (nullable = true)
       -- Title: string (nullable = true)
       -- Review Text: string (nullable = true)
       -- Rating: long (nullable = true)
       -- Recommended IND: long (nullable = true)
       -- Positive Feedback Count: long (nullable = true)
       -- Division Name: string (nullable = true)
       -- Department Name: string (nullable = true)
       -- Class Name: string (nullable = true)
      recNo Clothing ID Age
                                            Title
                                                            Review Text | Rating | Recommended IND | Positive
                    1077 60 some major design... had such high hop...
                                                                                              0
          2
                                                                              3
           3
                    1049 | 50
                                     favorite buy love love love th...
                                                                              5
                                                                                              1
                                 flattering shirt this shirt very f...
                                                                              5
           4
                     847 | 47 |
                                                                                              1
                                                                              2
           5
                    1080 49 not for the very ... love tracy reese ...
                                                                                              0
           6
                     858 39 cagreoal shimmer fun aded this basket ...
                                                                              5
                                                                                              1
           7
                     858 39 shimmer surprisin... ordered this carb...
                                                                              4
                                                                                              1
```

flattering love this dress u...

8

1077 | 24 |

1

```
9
                              such fun dress and 125 lbs order...
              1077 | 34 |
                                                                         5
                                                                                         1
    10
              1077
                    53 dress looks like ... dress runs small ...
                                                                         3
                                                                                         0
              1095 | 53
                                                                         5
    12
                                     perfect more and more fin...
                                                                                         1
    13
               767
                    44
                                    runs big bought the black ...
                                                                         5
                                                                                         1
    14
              1077 50 pretty party dres... this nice choice ...
                                                                         3
                                                                                         1
                    47 nice but not for ... took these out th...
    15
              1065
                                                                         4
                                                                         3
    16
              1065 34 you need least av... material and colo...
                                                                                         1
               853 41 looks great with ... took chance this ...
                                                                         5
    17
                                                                                         1
    18
              1120 | 32 |
                        super cute and cozy flattering super ...
                                                                         5
                                                                                         1
    19
              1077 47 stylish and comfo... love the look and...
                                                                         5
                                                                                         1
    20
               847 | 33 |
                            cute crisp shirt this product was ...
                                                                         4
                                                                                         1
    21
              1080 | 55
                                                                                         1
                                        torn upset because for...
                                                                         4
    22
              1077 31 not what looks like first all this no...
                                                                         2
                                                                                         0
only showing top 20 rows
```

Q3: Tokenize Review Text

NLTK provides its own stop words. Using these has the advantage that we can use NLTK-provided stop words for a variety of supported languages.

This is an excellent place to further process the text. A tokenizer for the Review Text is provided for you here, you may use it as-is or modify it as you see fit.

```
def tokenize(pyspark_DataFrame):
        import re
        from nltk.corpus import stopwords
        reviews = pyspark DataFrame.rdd.map(lambda x : x['Review Text'])
               .filter(lambda x: x is not None)
        StopWords = stopwords.words("english")
        tokens = reviews
               .map( lambda doc: doc.strip().lower())
               .map( lambda doc: re.split(" ", doc))
               .map( lambda word: [x for x in word if x.isalpha()])
               .map( lambda word: [x for x in word if x not in StopWords])
               .zipWithIndex()
        return tokens
def tokenize(pyspark DataFrame):
       import re
       from nltk.corpus import stopwords
       reviews = pyspark DataFrame.rdd.map(lambda x : x['Review Text'])
               .filter(lambda x: x is not None)
       StopWords = stopwords.words("english")
```

```
tokens = reviews
                    lambda doc:
                                  doc. strip().lower())
              .map(
                                  re.split(" ", doc))
              .map(
                     lambda
                            doc:
                     lambda
                            word:
                                  [x for x in word if x.isalpha()])
              .map(lambda
                            word:
                                   [x for x in word if x not in StopWords])
              .zipWithIndex()
       return tokens
token = tokenize(sparkDF)
sparkDF. show()
```

recNo	Clothing ID	Age	Title	Review Text	Rating	Recommended IND	Positive
2	1077	60	some major design	had such high hop	3	0	
3	1049	50	favorite buy	love love love th	5	1	
4	847	47	flattering shirt	this shirt very f	5	1	
5	1080	49	not for the very	love tracy reese	2	0	
6	858	39	cagrcoal shimmer fun	aded this basket	5	1	
7	858	39	shimmer surprisin	ordered this carb	4	1	
8	1077	24	flattering	love this dress u	5	1	
9	1077	34	such fun dress	and 125 lbs order	5	1	
10	1077	53	dress looks like	dress runs small	3	0	
12	1095	53	perfect	more and more fin	5	1	
13	767	44	runs big	bought the black	5	1	
14	1077	50	pretty party dres	this nice choice	3	1	
15	1065	47	nice but not for	took these out th	4	1	
16	1065	34	you need least av	material and colo	3	1	
17	853	41	looks great with	took chance this	5	1	
18	1120	32	super cute and cozy	flattering super	5	1	
19	1077	47	stylish and comfo	love the look and	5	1	
20	847	33	cute crisp shirt	this product was	4	1	
21	1080	55	torn	upset because for	4	1	
22	1077	31	not what looks like	first all this no	2	0	

only showing top 20 rows

Q4: TF.IDF Calculation

Feed the resulting tokens into a TF.IDF calculation. TF calculation is provided by ${\tt CountVectorizer}$, and IDF calculation by ${\tt IDF}$, both are available in the ${\tt pyspark.ml.}$ feature library.

```
def tfidf(sc, tokens):
    from pyspark.sql import SQLContext
    from pyspark.ml.feature import CountVectorizer , IDF
    sqlContext = SQLContext(sc)
    df_txts = sqlContext.createDataFrame(tokens, ["list_of_words",'index'])
#
```

```
# TF
        #
        cv = CountVectorizer(inputCol="list_of_words", outputCol="raw_features", \
               vocabSize=5000, minDF=10.0)
        cvmodel = cv.fit(df_txts)
        result_cv = cvmodel.transform(df_txts)
        # IDF
        idf = IDF(inputCol="raw_features", outputCol="features")
        idfModel = idf.fit(result_cv)
        tfidf result = idfModel.transform(result cv)
        return tfidf_result
def tfidf(sc, tokens):
       from pyspark.sql import SQLContext
       from pyspark.ml.feature import CountVectorizer, IDF
       sqlContext = SQLContext(sc)
       df txts = sqlContext.createDataFrame(tokens, ["list of words", 'index'])
       # TF
       #
       cv = CountVectorizer(inputCol="list_of_words", outputCol="raw_features", \
               vocabSize=5000, minDF=10.0)
       cvmodel = cv. fit(df txts)
       result cv = cvmodel.transform(df txts)
       #
       # IDF
       #
       idf = IDF(inputCol="raw features", outputCol="features")
       idfModel = idf.fit(result cv)
       tfidf result = idfModel.transform(result cv)
       return tfidf result, cvmodel
tf res, cvmodel = tfidf(sc, tokenize(sparkDF))
```

```
/usr/local/lib/python3.7/dist-packages/pyspark/sql/context.py:79: FutureWarning: Deprecated in FutureWarning
```

https://colab.research.google.com/drive/15NLSwOkpNNIeSMYIHw7nbqS5TYLclMa-?authuser=1#scrollTo=Cj9E61GXJ18z&printMode=true

Q5: LDA Training

The TF.IDF calculations form the input into LDA. An <code>lda_train()</code> function (shown below) takes columns <code>index</code> and <code>features</code> from the <code>tfidf</code> DataFrame and calculates the LDA Model. This calculation is referred to as *Training* the model.

```
def lda_train(result_tfidf):
    from pyspark.ml.linalg import Vectors, SparseVector
    from pyspark.ml.clustering import LDA

#
    lda = LDA(k=10, seed=1, optimizer="em")
    lda.setMaxIter(100)

#
    model = lda.fit(result_tfidf[['index', 'features']])
    return model
```

With the reviews dataset, LDA training takes about 15-20 minutes in a Colab environment.

```
def lda_train(result_tfidf):
    from pyspark.ml.linalg import Vectors, SparseVector
    from pyspark.ml.clustering import LDA
    #
    lda = LDA(k=10, seed=1, optimizer="em")
    lda.setMaxIter(100)
    #
    model = lda.fit(result_tfidf[['index', 'features']])
    return model
```

▼ This will take about 15 minutes

 $3 \mid [96, 17, 107, 57, \dots \mid [0.01768791402246.\dots]]$

```
| 4|[77, 131, 145, 92...|[0.01589315688429...|

5|[38, 59, 50, 51, ...|[0.02935966152497...|

6|[53, 102, 34, 140...|[0.02674571223454...|

7|[0, 95, 41, 98, 1...|[0.05758129915368...|

8|[19, 32, 69, 79, ...|[0.02366700487689...|

9|[36, 11, 70, 97, ...|[0.03011856656754...|
```

Q6: Reporting on the LDA Model

Examine the model generated during training. It will show the 10 topics it generated.

What is a topic? Just a list of words that "hang together." Does the collection of words describe a topic to you? What might it be?

```
def getDescrib(input, voca):
    res = []
    for i in input:
           res.append(voca[i])
    return
voca = cvmodel.vocabulary
pandaDF = newDF. toPandas()
descrip = []
for i in range(pandaDF.shape[0]):
    input = pandaDF.at[i, 'termIndices']
    temp = getDescrib(input, voca)
    descrip.append(temp)
pandaDF['description'] = descrip
sparkDF1 = spark.createDataFrame(pandaDF)
sparkDF1.printSchema()
sparkDF1.show()
    = sparkDF1.toPandas()
res
res
```

topic	termIndices	termWeights	description
1 [7, 6 2 [33, 3 [96, 4 [77, 5 [38, 6 [53, 7 [0, 9	4, 16, 76, 4 5, 71, 31, 2 17, 107, 57, 131, 145, 92 59, 50, 51, 102, 34, 140 5, 41, 98, 1 32, 69, 79,	[0.02875142105420 [0.02314743749983 [0.01768791402246 [0.01589315688429 [0.02935966152497 [0.02674571223454 [0.05758129915368 [0.02366700487689	[small, size, lar [great, black, pe [much, like, onli [first, one, time [design, blouse, [petite, pants, t [skirt, high, len [dress, body, wai [well, material,
+	+		++

1 to 10 of 10 entries

termWeights

I think most of them tells me something(I have to change the df to pandas so that I can see full content of description:

- 1. feels like someone its complaining that the small size thing runs loose to large size
- 2. someone is happy with the black jeans he/she bought
- 3. someone bought a shirt that looks like the picture online, positive feedback
- 4. someone like cloth he bought and it is his first time
- 5. can't tell if this is a positive or nagtive review but it is about a blouse
- 6. looks someone bought a small size pants
- 7. someone is happy with the skir it bought
- 8. can hardly tell what it says too many words
- 9. someone really like the thing he bought maybe about the style and matrerial
- 10. someone bought a sweater and jacket with light green color

✓ 0秒 完成时间: 21:50

×