

Exfiltrating data over air gaps via hard drive LED modulation

Denver Cohen
Calvin Figuereo-Supraner

Background

- What are air gaps?
 - Physical disconnect between a secure network and public internet / LANs
- Regulations exist, like TEMPEST (an NSA public spec for COMSEC)
 - Level 1: Attacker has access one meter away from network
 - Level 2: 20m
 - Level 3: 100m (or equivalent free-space attenuation)
- After infiltrating an air gapped system, the data needs to leak back out somehow

Background

Lots of existing literature on exfiltration techniques.

	Examples	Bandwidth	Distance
Electromagnetic	GSMem	1000 bps	5m
Acoustic	Fansmitter, DiskFiltration	0.25-3 bps	15m
Thermal	BitWhisper	1-8 b/hr	0.4m
Optical	Keyboard LED, Screen backlight	20-150 bps	Line-of-sight

Project Objective

Get data out of an air gapped computer.

1. Rules

- No physical access to the building
- Realistic software and hardware operation

2. Weapon of choice

- Optical, via hard drive LED

3. Justification

- Line-of-sight is potentially infinite distance
- Other optical methods are suspicious

Hard Drive LED

- When does the LED activate?
 - Whenever a read/write queue is present on the HDD

- Problem:

LED controlled by the motherboard's BIOS, not directly by operating system!

- Solution:

- Use 'dd' utility to trigger reads to drive from userspace (iflag=direct will avoid cache)
- The motherboard lights the LED for us

LED Modulation Technique

Improvement on previous LED-IT-GO paper (OOK, Manchester, BFSK variant).

Bit Framing

- Two types of packets transmitted on repeat

HEADER packet

DATA packet(s)

- 13 bits: Barker code for preamble detection

barker code for predifficie detection

- 16 bits: Indicates plaintext length

- 32 bits: Reed-Solomon code for FEC

- 13 bits: Barker code, again

0-128 bits: Plaintext

- 128 bits: Reed-Solomon code

Transmitter Summary

- Technique
 - Repeated 'dd' invocations (read-only from userspace)
- Throughput
 - We get about 120 bps (50% overhead, 50% content)
- Scheme
 - 0: 5 kHz LED toggling, for 8 ms
 - 1: 7 kHz LED toggling, for 8 ms
 - (HDD goes up to 60 kHz, but LED isn't fast enough)

```
$ cat secretfile.txt | ./encoder.py | ./readbfsk.sh
```

Receiver Architecture

Receiver Software

Receiver Software

- GNU Radio is awesome

Receiver Results

Photodiode, telescope eyepiece mount

Photodiode on FET, free-air mount

Overall construction:

- diecast aluminum box
- copper-clad PCB
- dead-bug style

Non-Idealities

- 1. Photodiode not tuned for our wavelength
 - Hard drive LED is blue
- 2. Optical spectrum is noisy (building lighting, car headlights)
 - WPI campus is well-lit at night, for safety purposes
- 3. OS background processes are running
 - Causes burst errors

Relative Spectral Sensitivity

$$S_{\text{rel}} = f(\lambda)$$

Check your components thoroughly before you build!

Blue LED $\lambda = \sim 400-500 \text{ nm}$

Sound Card noise floor: -110dB

Detector frequency response, before modification

Telescope Run 1: Notice 120Hz spike

Modified Detect Frequency Response: Note low F roll-off

Telescope Run 2: Notice reduced 120Hz spike

Final Results

Final Results

Transferred payload

- Still in the process of decoder algorithm design

Take a majority vote after preamble Check ASCII validity in a sliding window 11111001101010010000 55157 b'ard drivE LED\x8c\x01...'

Thanks to:

- Thomas Eisenbarth, our advisor
- The Applied Crypto and Secure Embedded Systems Laboratory, for the use of their space
- MITRE Collaboratory, for the use of their space