S&DS 365 / 665
Intermediate Machine Learning

Smoothing and Kernels

Wednesday, February 2

Please note

- Changes to calendar http://interml.ydata123.org
- Readings from "Probabilistic Machine Learning: An Introduction"
- https://probml.github.io/pml-book/book1.html

Topics for today

- Recap: Smoothing methods
- Demo of smoothing with various kernels
- Mercer kernels

Nonparametric Regression

Given $(X_1, Y_1), \dots, (X_n, Y_n)$ predict Y from X.

Assume only that $Y_i = m(X_i) + \epsilon_i$ where where m(x) is a smooth function of x.

The most popular methods are *kernel methods*. However, there are two types of kernels:

- Smoothing kernels
- Mercer kernels

Smoothing kernels involve local averaging. Mercer kernels involve regularization.

Smoothing Kernels

Smoothing kernel estimator:

$$\widehat{m}_h(x) = \frac{\sum_{i=1}^n Y_i K_h(X_i, x)}{\sum_{i=1}^n K_h(X_i, x)}$$

where $K_h(x, z)$ is a *kernel* such as

$$K_h(x,z) = \exp\left(-\frac{\|x-z\|^2}{2h^2}\right)$$

and h > 0 is called the *bandwidth*.

- $\widehat{m}_h(x)$ is just a local average of the Y_i 's near x.
- The bandwidth h controls the bias-variance tradeoff: Small h = large variance while large h = large bias.

Example: Some Data – Plot of Y_i versus X_i

Example: $\widehat{m}(x)$

7

$\widehat{m}(x)$ is a local average

Effect of the bandwidth h

very small bandwidth

small bandwidth

medium bandwidth

large bandwidth

Smoothing Kernels

Risk =
$$\mathbb{E}(Y - \widehat{m}_h(X))^2 = \text{bias}^2 + \text{variance} + \sigma^2$$
.

bias²
$$\approx h^4$$
,

variance
$$\approx \frac{1}{nh^p}$$
 where $p = \text{dimension of } X$.

$$\sigma^2 = \mathbb{E}(Y - m(X))^2$$
 is the unavoidable prediction error.

small h: low bias, high variance (undersmoothing)large h: high bias, low variance (oversmoothing)

Risk Versus Bandwidth

Estimating the Risk: Cross-Validation

To choose h we need to estimate the risk R(h). We can estimate the risk by using *cross-validation*.

- **1** Omit (X_i, Y_i) to get $\widehat{m}_{h,(i)}$, then predict: $\widehat{Y}_{(i)} = \widehat{m}_{h,(i)}(X_i)$.
- 2 Repeat this for all observations.
- 3 The cross-validation estimate of risk is:

$$\widehat{R}(h) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{Y}_{(i)})^2.$$

Shortcut formula: Whenever $\hat{Y} = LY$ we can use the shortcut

$$\widehat{R}(h) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{Y_i - \widehat{Y}_i}{1 - L_{ii}} \right)^2.$$

In this case $L_{ii} = K_h(X_i, X_i) / \sum_t K_h(X_i, X_t)$.

Summary so far

- **1** Compute \widehat{m}_h for each h.
- 2 Estimate the risk $\widehat{R}(h)$.
- 3 Choose bandwidth \hat{h} to minimize $\hat{R}(h)$.
- 4 Let $\widehat{m}(x) = \widehat{m}_{\widehat{h}}(x)$.

Example

0.20

Let's revisit the notebook

Another Approach: Mercer Kernels

Instead of using local smoothing, we can optimize the fit to the data subject to regularization (penalization). Choose \widehat{m} to minimize

$$\sum_{i} (Y_{i} - \widehat{m}(X_{i}))^{2} + \lambda \text{ penalty}(\widehat{m})$$

where penalty(\hat{m}) is a *roughness penalty*.

 λ is a parameter that controls the amount of smoothing.

How do we construct a penalty that measures roughness? One approach is: *Mercer Kernels* and *RKHS = Reproducing Kernel Hilbert Spaces*.

What is a Mercer Kernel?

A *Mercer Kernel* K(x, x') is symmetric and positive definite:

$$\int \int f(x)f(x')K(x,x')\,dx\,dx' \geq 0 \quad \text{for all } f.$$

Example: $K(x, x') = e^{-||x-x'||^2/2}$.

Think of K(x, x') as the *similarity* between x and x'. We will create a set of *basis functions* based on K.

Fix z and think of K(z, x) as a function of x. That is,

$$K(z,x)=K_z(x)$$

is a function of the second argument, with the first argument fixed.

Mercer Kernels

Let

$$\mathcal{F} = \left\{ f(\cdot) = \sum_{j=1}^{k} \beta_j \, K(z_j, \cdot) \right\}$$

Define a norm: $||f||_K = \sum_j \sum_k \beta_j \beta_k K(z_j, z_k)$. $||f||_K$ small means f smooth.

If
$$f = \sum_{r} \alpha_{r} K(z_{r}, \cdot)$$
, $g = \sum_{s} \beta_{s} K(w_{s}, \cdot)$, the inner product is $\langle f, g \rangle_{K} = \sum_{r} \sum_{s} \alpha_{r} \beta_{s} K(z_{r}, w_{s})$.

 \mathcal{F} is a reproducing kernel Hilbert space (RKHS) because

$$\langle f, K(x, \cdot) \rangle = f(x)$$

Nonparametric Regression: Mercer Kernels

Representer Theorem

Let \widehat{m} minimize

$$J(m) = \sum_{i=1}^{n} (Y_i - m(X_i))^2 + \lambda ||m||_{K}^{2}.$$

Then

$$\widehat{m}(x) = \sum_{i=1}^{n} \alpha_i K(X_i, x)$$

for some $\alpha_1, \ldots, \alpha_n$.

So, we only need to find the coefficients

$$\alpha = (\alpha_1, \ldots, \alpha_n).$$

Nonparametric Regression: Mercer Kernels

Plug
$$\widehat{m}(x) = \sum_{i=1}^{n} \alpha_i K(X_i, x)$$
 into J :

$$J(\alpha) = \|Y - \mathbb{K}\alpha\|^2 + \lambda \alpha^T \mathbb{K}\alpha$$

where $\mathbb{K}_{jk} = K(X_j, X_k)$

Now we find α to minimize J. We get: $\widehat{\alpha} = (\mathbb{K} + \lambda I)^{-1} Y$ and $\widehat{m}(x) = \sum_{i} \widehat{\alpha}_{i} K(X_{i}, x)$.

The estimator depends on the amount of regularization λ . Again, there is a bias-variance tradeoff. We choose λ by cross-validation. This is like the bandwidth in smoothing kernel regression.

Smoothing Kernels *Versus* **Mercer Kernels**

Smoothing kernels: the bandwidth *h* controls the amount of smoothing.

Mercer kernels: norm $||f||_K$ controls the amount of smoothing.

In practice these two methods give answers that are very similar.

Mercer Kernels: Examples

Multiple Regression

Both methods extend easily to the case where X has dimension $\rho > 1$. For example, just use

$$K(x,x')=e^{-\|x-x'\|^2/2}.$$

However, this is hard to interpret and is subject to the curse of dimensionality. This means that the *statistical performance* and the *computational complexity* degrade as dimension *p* increases.

An alternative is to use something less nonparametric such as additive model where we restrict $m(x_1, ..., x_p)$ to be of the form:

$$m(x_1,\ldots,x_p)=\beta_0+\sum_j m_j(x_j).$$

Additive Models

Model:
$$m(x) = \beta_0 + \sum_{j=1}^{p} m_j(x_j)$$
.

We can take $\widehat{\beta}_0 = \overline{Y}$ and we will ignore β_0 from now on.

We want to minimize

$$\sum_{i=1}^n \left(Y_i - \left(m_1(X_{i1}) + \cdots + m_p(X_{ip}) \right) \right)^2$$

subject to m_j smooth.

Additive models: Backfitting Algorithm

```
Input: Data (X_i, Y_i)
Iterate until convergence:
For each j = 1, \ldots, p:
Compute residual: R_j = Y - \sum_{k \neq j} \widehat{m}_k(X_k)
Smooth \widehat{m}_j = \mathcal{S}_j R_j
Output: Estimator \widehat{m}(X_i) = \sum_j \widehat{m}_j(X_{ij}).
```

Here, S_jR is any 1-dimensional nonparametric regression smoother

But what if *p* is large?

Sparse Additive Models

Additive Model:
$$Y_i = \sum_{j=1}^{p} m_j(X_{ij}) + \varepsilon_i, \quad i = 1, \dots, n$$

High dimensional: $n \ll p$, with most $m_j = 0$.

Optimization: minimize
$$\mathbb{E}\left(Y-\sum_{j}m_{j}(X_{j})\right)^{2}$$
 subject to $\sum_{j=1}^{p}\sqrt{\mathbb{E}(m_{j}^{2})}\leq L_{n}$ $\mathbb{E}(m_{j})=0$

This generalizes the lasso!

https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2009.00718.x

Sparse Backfitting Algorithm

```
Input: Data (X_i, Y_i), regularization parameter \lambda.
Iterate until convergence:
       For each i = 1, \ldots, p
              Compute residual: R_i = Y - \sum_{k \neq i} \widehat{m}_k(X_k)
              Smooth \widehat{m}_i = S_i R_i
               Estimate norm: s_j = \sqrt{\mathbb{E}(\widehat{m}_j^2)}
              Soft-threshold: \widehat{m}_j \leftarrow \left[1 - \frac{\lambda}{\widehat{s}_i}\right] \widehat{m}_j
Output: Estimator \widehat{m}(X_i) = \sum_i \widehat{m}_i(X_{ij}).
```

This generalizes coordinate descent algorithm from last time.

Example: Boston Housing Data

Predict house value Y from 10 covariates.

We added 20 irrelevant (random) covariates to test the method.

$$Y = \text{house value}; n = 506, p = 30.$$

$$Y = \beta_0 + m_1(\text{crime}) + m_2(\text{tax}) + \cdots + \cdots + m_{30}(X_{30}) + \epsilon.$$

Note that $m_{11} = \cdots = m_{30} = 0$.

We choose λ by minimizing the estimated risk.

SpAM yields 6 nonzero functions. It correctly reports that $\widehat{m}_{11} = \cdots = \widehat{m}_{30} = 0$.

L_2 norms of fitted functions versus $1/\lambda$

Estimated Risk Versus λ

Summary for today

- Smoothing methods compute local averages, weighting points by a kernel
- The details of the kernel don't matter much
- Mercer kernels using penalization rather than smoothing
- Equivalent to a type of ridge regression in function space
- The curse of dimensionality limits use of both approaches to low dimensions
- A compromise between nonparametric and linear models is to use additive models