The K Summarizer

Runtime Verification, Inc. (written by Xiaohong Chen)

June 20, 2022

The purpose of this document is to give a formal specification of the \mathbb{K} summarizer (https://github.com/runtimeverification/erc20-verification/tree/master/ksummarize). We will investigate how the \mathbb{K} summarizer can be used to do semantics-based compilation (SBC) and formal verification.

1 Preliminaries

Throughout this document, we assume that there is an underlying matching logic theory Γ^L that defines the formal semantics of a given programming language L. The provability symbol \vdash in this document should always be understood as

$$\Gamma^L \vdash \varphi$$

i.e., φ is provable with the formal semantics of L. The following standard notations will be used:

- $-\varphi, \psi$: an arbitrary pattern.
- -t: a term pattern, built from element variables and functional symbols.
- p: a predicate pattern.
- $-t \wedge p$: a constraint term.
- $-\tau \equiv [\varphi_1/x_1, \ldots, \varphi_n/x_n]$: a substitution.
- $\varphi\tau$ or $\varphi[\varphi_1/x_1,\ldots,\varphi_n/x_n]$: applying the substitution to φ .
- $[\varphi]$: the definedness pattern of φ .
- $\bullet \varphi$: "one-path next" of φ .
- $-\circ\varphi$: "all-path next" of φ , defined as $\circ\varphi\equiv\neg\bullet\neg\varphi$.
- STOP: stopped/terminal states; abbreviation for ∘⊥.
- NONSTOP: non-stopped states; abbreviation for •⊤.

- $-\circ_s \varphi$: "strongly all-path next" of φ , defined as $\circ_s \varphi \equiv \circ \varphi \wedge \mathsf{NONSTOP}$.
- $-\varphi \Rightarrow_1^\exists \varphi'$: "one-step one-path execution"; abbreviation for $\varphi \to \bullet \varphi'$.
- $-\varphi \Rightarrow_1^{\forall} \varphi'$: "one-step all-path execution"; abbreviation for $\varphi \to \circ_s \varphi'$.
- $-\varphi \Rightarrow^{\forall}_* \varphi'$: "all-path execution"; abbreviation for $\varphi \to \mu X \cdot \varphi \lor \circ X$.
- more to be added . . .

2 Matching and Unification

In this section we formalize matching and unification as proving matching logic theorems. Some definitions and results are from Arusoaie and Lucanu's paper https://arxiv.org/pdf/1811.02835.pdf.

2.1 Substitution Patterns

Definition 1. Given a substitution

$$\tau \equiv [\varphi_1/x_1, \dots, \varphi_n/x_n]$$

we define a corresponding substitution pattern

$$\varphi^{\tau} \equiv (x_1 = \varphi_1) \wedge \dots \wedge (x_n = \varphi_n)$$

Proposition 2. $\vdash \varphi^{\tau} \rightarrow (\psi = \psi \tau)$.

Proof. This (derived) proof rule is called (EQUALITY ELIMINATION).

2.2 Matching

Definition 3. Let φ and ψ be two patterns. We say that φ matches ψ if

$$\vdash \varphi \rightarrow \exists FV(\psi) . \psi$$

We say that $\{\sigma_1, \ldots, \sigma_n\}$ is a *complete solution* to the matching problem

$$\varphi_1 \triangleleft_? \psi_1, \ldots, \varphi_m \triangleleft_? \psi_m$$

if

$$\vdash \left(\bigwedge_{i=1}^{m} \varphi_i \subseteq \psi_i\right) \leftrightarrow \varphi^{\tau_1} \vee \dots \vee \varphi^{\tau_n}$$

Proposition 4. For terms t and s, Definition 3 coincides with the classical definition of term matching.

Proposition 5. φ matches ψ if and only if

$$\vdash (\exists FV(\varphi) . \varphi) \subseteq (\exists FV(\psi) . \psi)$$

Proof. By Definition 3.

2.3 Unification

Definition 6. Let φ and ψ be two patterns. We say that φ unifies with ψ if

$$\vdash \lceil (\exists FV(\varphi) \cdot \varphi) \land (\exists FV(\psi) \cdot \psi) \rceil$$

We say that $\{\sigma_1, \ldots, \sigma_n\}$ is a *complete solution* to the unification problem

$$\varphi_1 = \psi_1, \dots, \varphi_m = \psi_m$$

if

$$\vdash \left(\bigwedge_{i=1}^{m} \lceil \varphi_i \wedge \psi_i \rceil\right) \leftrightarrow \varphi^{\tau_1} \vee \dots \vee \varphi^{\tau_n}$$

Proposition 7. For terms t and s, Definition 6 coincides with the classical definition of term unification.

2.4 Modulo Theories

Definitions 3 and 6 work with underlying theories, in which case we obtain matching/unification modulo theories.

3 K Summaries

Definition 8. A \mathbb{K} control-flow graph (abbreviated KCFG) $G = (V, E_r, E_a, E_s)$ is a directed graph with three types of edges where

- \bullet the vertex set V is a set of patterns;
- $E_r \subseteq V \times V$ is called the rewriting relation;
- $E_a \subseteq V \times V$ is called the abstracting relation;
- $E_s \subseteq V \times V$ is called the *splitting relation*.

We write $\varphi \leadsto_r \psi$ ($\varphi \leadsto_a \psi$ and $\varphi \leadsto_s \psi$, resp.) for the three types of edges.

Definition 9. A KCFG G = (V, E, F) is sound w.r.t. Γ^L if

- 1. $\vdash \varphi \Rightarrow^{\forall}_{*} \psi$ for all $\varphi \leadsto_{r} \psi$;
- 2. $\vdash \varphi \rightarrow \psi$ for all $\varphi \leadsto_a \psi$;
- 3. $\vdash \varphi \leftrightarrow \psi_1 \lor \cdots \lor \psi_n$ for all $\varphi, \psi_1, \dots, \psi_n$ such that ψ_1, \dots, ψ_n are all the E_s -successors of φ in G.

Intuitively, $\varphi \Rightarrow_*^\forall \psi$ denotes a compilation of many all-path execution steps.