THE ALGEBRA OF REGULAR EXPRESSIONS

Reminder of Basic Definitions and Some Basic Proofs

(1) For languages $L, M \subseteq \Sigma^*$; L+M, L.M and L^* are interpreted as follows:

$$L+M=L\cup M$$
; $L.M=\{w\mid w=u.v;\ u\in L; v\in M\}$; $L^*=\bigcup_{i=0,+\infty}L^i$ where $L^i:=L.L....L$ (i times)

(2)
$$(L+M)^* = (L^*. M^*)^*$$

Proof of (2):

Let $u \in (L+M)^*$ then by definition $u = u_1 . u_2 u_k$ for some integer $k \ge 0$ where for each j $u_j \in L+M$. But $L \subseteq L^* \subseteq L^*$. $e \subseteq L^*$. M^* and $M \subseteq M^* \subseteq e$. $M^* \subseteq L^*$. M^* and thus $u_j \in L^*$. $M^* + L^*$. $M^* = L^*$. M^* and therefore $(L+M)^* \subseteq (L^* . M^*)^*$ Conversely let $u \in (L^*.M^*)^*$ then by definition $u = u_1 . u_2 u_k$ where $u_j \in L^*.M^*$ hence $u_j = v_j^{-1} . v_j^{-2} v_j^{-1(j)} . w_j^{-1} . w_j^{-2} w_j^{-p(j)}$ where $v_j^{-m} \in L$ and $w_j^{-m} \in M$. Hence $u = z_1 . z_2 z_q$ where $q = \sum_{j=1,k} l(j) + p(j)$ and each $z_j \in L+M$. This proves that $(L^*.M^*)^* \subseteq (L+M)^*$ which proves that $(L+M)^* = (L^*.M^*)^*$

(3)
$$(L+M)* = (L*+M*)*$$

Proof of (3):

Since $L \subseteq L^*$ and $M \subseteq M^*$ it follows that $(L+M)^* \subset (L^*+M^*)^*$.

Conversely let $u \in (L^*+M^*)^*$ then $u = (v_I+w_I)$ $(v_k + w_k)$ where for each j $v_j \in L^*$ and $w_j \in M^*$. We show that $u \in (L^*, M^*)^*$ by using induction on k. For k=1 $v_I \in L^* \subseteq L^*$. $e \subseteq L^*.M^* \subseteq (L^*, M^*)^*$ similarly $w_I \in M^* \subseteq e$. $M^* \subseteq L^*.M^* \subseteq (L^*, M^*)^*$ hence $v_I+w_I \subseteq (L^*, M^*)^*$. Now assume statement holds for k-1, hence $z := (v_I+w_I)$ $(v_{k-1}+w_{k-1}) \in (L^*, M^*)^*$. But using the above reasoning for v_I+w_I it follows that $v_k+w_k \in (L^*, M^*)^*$ and therefore u = z. $(v_k+w_k) \in (L^*, M^*)^*$. $(L^*, M^*)^* = (L^*, M^*)^*$ using the obvious identity K^* . $K^* = K^*$ for any language K. This proves that $(L^*+M^*)^* \subseteq (L^*, M^*)^*$, but by (2) $(L+M)^* = (L^*, M^*)^*$ hence $(L^*+M^*)^* \subseteq (L+M)^*$ and (3) is proved.

(4) $(L.M)^* \subseteq (L^*M^*)^*$ and $(L.M)^* = (L^*M^*)^*$ iff $e \in L$ and $e \in M$

Proof of (4):

First statement is obvious using $L \subseteq L^*$ and $M \subseteq M^*$.

To prove the second one assume $e \in L$ and $e \in M$

and let $u \in (L^*, M^*)$ then $u = v_1, w_1, \dots, v_k, w_k$ where $v_i \in L^*$ and $w_i \in M^*$ therefore

 $vj = y_i^{\ l} \dots y_i^{\ l(j)}$ and $wj = z_i^{\ l} \dots z_i^{\ p(j)}$ with $y_i^{\ m} \in L$ and $z_i^{\ m} \in M$. Hence

 $u = q_1 \dots q_r$ where $r = \sum_{j=1,k} (l(j) + p(j))$ where each $q_i \in L$ or $q_i \in M$. Using the assumption we can write $u = q'_1 \dots q'_{r'}$ by adding an empty string in between the q_j strings ,if necessary, so that we have for each $j=1, \dots, r'$, $q'_j \in L$ and $q'_{j+1} \in M$. This proves that $u \in (L.M)^*$ To prove the converse result we present counter-examples that violate the assumption $e \in L$ and $e \in M$.

Suppose $e \not\in L$ choose $L = 0.0^*$ and $M = 1^*$ then $1 \in (L^*.M^*)^*$ whereas $1 \not\in (L.M)^*$; alternatively if $e \not\in M$ choose $L = 0^*$ and $M = 1.1^*$ then $0 \in (L^*.M^*)^*$ whereas $0 \not\in (L.M)^*$.

Homework #2 due November 2 2020, before recitation

- (1) Using either the results or the techniques used above try to simplify the following expressions and prove your simplification.
- (i) (0+1)*.1.(0+1) + (0+1) *.1.(0+1)
- (ii) (((0*.1*)+1)*(0+1)*)*
- (iii) (L+M*)*
- (iv) (*L.M**)*
- (2) Convert the regular expression $((0.0^*.(1.1)) + 0.1)^*$ into an ε -NFA
- (3) Problems from the textbook
- 3.1.1 (b) and (c)
- 3.1.4 (b) and (c)
- 3.2.1 (c) and (d)
- 3.2.3