Изучение кинетики ионного обмена

Гарина Ольга Аксенова Светлана Б04-901

4 октября 2021 г.

Цель работы: исследовать временные закономерности в реакциях ионного обмена.

Иониты — твёрдые нерастворимые вещества, содержащие кислотные (катиониты) или основные (аниониты) группировки, способные обменивать свои ионы (катионы или анионы) на ионы контактирующего с ними раствора. Свойствами ионитов обладают различные природные и синтетические вещества. Например, природные алюмосиликаты (цеолиты, глины), в основном, обладают катионообменными свойствами. Гуминовые органические вещества — являются амфолитами, они способны осуществлять одновременный обмен катионов и анионов. Наибольшее практическое значение имеют синтетические органические иониты, получаемые на основе полимерных веществ — синтетических смол. Эти материалы состоят из неправильной высокополимерной пространственной сетки углеводородных цепочек, на которых закреплены группы, несущие заряд (фиксированные ионы). Они часто применяются в ионообменных и электродиализных установках водоподготовки для уменьшения жесткости и обессоливания воды. У катионитов это группы —SO 3 - , — COO - , —PO 3 2- ; у анионитов группы —NH 3 + ;NH 2 + и др.

В работе использовались катиониты Mg, Sr и Ca.

- 1. В колической колбе были смешаны 38 мл HNO₃ и 2 мл катионита
- 2. Колба была помещена в рН-метр. Стартовые значения для каждого катионита:

$$pH_{Mg} = 2,74$$

 $pH_{Sr} = 2,1$
 $pH_{Ca} = 1,94$

- 3. Далее в колбу было помещено 0,4 г катионита, запущена мешалка
- 4. Далее каждую минуту снимались значения pH, затем колба была помещена в шейкер и далее показания снимались каждые 30 минут
- 5. Равновесные значения рН для каждого катионита

$$pH_{Mg} = 1,75$$

 $pH_{Sr} = 1,46$
 $pH_{Ca} = 1,41$

Константы для реакций псевдопервого порядка

$$k1_{Mg} = -0.10969$$

 $k1_{Sr} = -0.02057$
 $k1_{Ca} = -0.00788$

Константы для реакций псевдовторого порядка

$$k2_{Mg} = 0.1975461$$

 $k2_{Sr} = 0.0315388$
 $k2_{Ca} = 0.0120667$

Рисунок 1 – График зависимости Bt от времени

t, мин	D_{Mg}	t, мин	D_{Sr}	t, мин	D_{Ca}
0.0	0.00048	0.0	0.00241	0.0	0.00401
1.0	0.0005	1.0	0.00505	1.0	0.00837
2.0	0.00061	2.0	0.00553	2.0	0.00635
3.0	0.00096	3.0	0.00579	3.0	0.00607
4.0	0.00175	4.0	0.00635	4.0	0.00607
5.0	0.00318	5.0	0.00665	5.0	0.00635
6.0	0.00579	6.0	0.00696	6.0	0.00665
7.0	0.00918	7.0	0.00696	7.0	0.00696
8.0	0.01671	8.0	0.00729	8.0	0.00696
10.0	0.02009	10.0	0.008	10.0	0.00764
49.0	0.02306	44.0	0.0139	41.0	0.01455
83.0	0.02648	84.0	0.01671	71.0	0.01918
113.0	0.02415	112.0	0.02202	91.0	0.02103

1 Литература

1. СИНТЕЗ И ИССЛЕДОВАНИЕ ИОНООБМЕННЫХ СВОЙСТВ $\rm H+/Me+(Me=Li, Na, K)$ В ПОЛИСУРЬМЯНОЙ КИСЛОТЕ

Рисунок 2 – График зависимости F от времени

Рисунок 3 – График зависимости F/(1-F) от времени

Рисунок 4 – График зависимости концентрации от времени

Рисунок 5 – График зависимости $\ln(\alpha)$ от времени

Рисунок 6 – График зависимости -ln(1-F) от времени

Юровских Ю.Н. Бурмистров В.А. Челябинский государственный университет, г. Челябинск, Россия

2. Лабораторный практикум по химической термодинамике

Лабораторная работа №5

Изучение термодинамических параметров гетерогенных реакций ионного обмена методом потенциометрии