International Rectifier

PDP SWITCH

IRFP4228PbF

Features

- Advanced Process Technology
- Key Parameters Optimized for PDP Sustain, Energy Recovery and Pass Switch Applications
- Low E_{PULSE} Rating to Reduce Power Dissipation in PDP Sustain, Energy Recovery and Pass Switch Applications
- Low Q_G for Fast Response
- High Repetitive Peak Current Capability for Reliable Operation
- Short Fall & Rise Times for Fast Switching
- •175°C Operating Junction Temperature for Improved Ruggedness
- Repetitive Avalanche Capability for Robustness and Reliability

Key Parameters					
V _{DS} min	150	V			
V _{DS (Avalanche)} typ.	180	V			
R _{DS(ON)} typ. @ 10V	12	mΩ			
I _{RP} max @ T _C = 100°C	170	Α			
T _J max	175	°C			

G	D	S
Gate	Drain	Source

Description

This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area and low E_{PULSE} rating. Additional features of this MOSFET are 175°C operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{GS}	Gate-to-Source Voltage	±30	V
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	78	Α
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	55	
I _{DM}	Pulsed Drain Current ①	330	
I _{RP} @ T _C = 100°C	Repetitive Peak Current ©	170	
P _D @T _C = 25°C	Power Dissipation	310	W
P _D @T _C = 100°C	Power Dissipation	150	
	Linear Derating Factor	2.0	W/°C
T _J	Operating Junction and	-40 to + 175	°C
T _{STG}	Storage Temperature Range		
	Soldering Temperature for 10 seconds	300	7
	Mounting Torque, 6-32 or M3 Screw	10lb·in (1.1N·m)	N

Thermal Resistance

	Parameter	Тур.	Max.	Units			
$R_{\theta JC}$	Junction-to-Case @		0.49	°C/W			
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.24]			
$R_{\theta JA}$	Junction-to-Ambient		40	1			

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	150			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta \mathrm{BV}_{\mathrm{DSS}}/\Delta \mathrm{T}_{\mathrm{J}}$	Breakdown Voltage Temp. Coefficient		150		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		12	15.5	mΩ	$V_{GS} = 10V, I_D = 33A$ ③
V _{GS(th)}	Gate Threshold Voltage	3.0		5.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Coefficient		-14		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 150V, V_{GS} = 0V$
				1.0	mA	$V_{DS} = 150V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -20V$
g _{fs}	Forward Transconductance	170			S	$V_{DS} = 25V, I_{D} = 50A$
Q_g	Total Gate Charge		71	107	nC	$V_{DD} = 75V, I_D = 50A, V_{GS} = 10V$
Q_{gd}	Gate-to-Drain Charge		21			
t _{d(on)}	Turn-On Delay Time		18			$V_{DD} = 75V, V_{GS} = 10V$ ③
t _r	Rise Time		59		ns	$I_D = 50A$
t _{d(off)}	Turn-Off Delay Time		24			$R_G = 2.5\Omega$
t _f	Fall Time		33			See Fig. 22
t _{st}	Shoot Through Blocking Time	100			ns	$V_{DD} = 120V, V_{GS} = 15V, R_{G} = 5.1\Omega$
			58			$L = 220nH, C = 0.3\mu F, V_{GS} = 15V$
E _{PULSE}	Energy per Pulse		30		μJ	$V_{DS} = 120V, R_{G} = 5.1\Omega, T_{J} = 25^{\circ}C$
			110			$L = 220nH, C = 0.3\mu F, V_{GS} = 15V$
			110			$V_{DS} = 120V, R_G = 5.1\Omega, T_J = 100^{\circ}C$
C _{iss}	Input Capacitance		4530			$V_{GS} = 0V$
C _{oss}	Output Capacitance		550		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		100			f = 1.0MHz
C _{oss} eff.	Effective Output Capacitance		480			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 120V$
L _D	Internal Drain Inductance		4.5			Between lead,
					nΗ	6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy②		210	mJ
E _{AR}	Repetitive Avalanche Energy ①		33	mJ
V _{DS(Avalanche)}	Repetitive Avalanche Voltage ①	180		V
I _{AS}	Avalanche Current ②		50	Α

Diode Characteristics

	Parameter		Typ. Max. U		Units	Conditions	
I _S @ T _C = 25°C	Continuous Source Current			78		MOSFET symbol	
	(Body Diode)				Α	showing the	
I _{SM}	Pulsed Source Current			330		integral reverse	
	(Body Diode) ①					p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 50A, V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		76	110	ns	$T_J = 25^{\circ}C, I_F = 50A, V_{DD} = 50V$	
Q _{rr}	Reverse Recovery Charge		230	350	nC	di/dt = 100A/μs ③	

2 www.irf.com

Fig 1. Typical Output Characteristics

V_{GS}, Gate-to-Source Voltage (V) **Fig 3.** Typical Transfer Characteristics

 $V_{DS,}$ Drain-to-Source Voltage (V) Fig 5. Typical E_{PULSE} vs. Drain-to-Source Voltage www.irf.com

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

I_D, Peak Drain Current (A) **Fig 6.** Typical E_{PULSE} vs. Drain Current

Fig 7. Typical E_{PULSE} vs.Temperature

1000

Fig 9. Typical Capacitance vs.Drain-to-Source Voltage Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage

Fig 11. Maximum Drain Current vs. Case Temperature

Fig 12. Maximum Safe Operating Area

4

Fig 13. On-Resistance vs. Gate Voltage

Fig 15. Threshold Voltage vs. Temperature

Fig 14. Maximum Avalanche Energy vs. Temperature

Fig 16. Typical Repetitive peak Current vs. Case temperature

Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case

www.irf.com

Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs

Fig 19a. Unclamped Inductive Test Circuit

Fig 20a. Gate Charge Test Circuit

Fig 19b. Unclamped Inductive Waveforms

Fig 20b. Gate Charge Waveform

6 www.irf.com

Fig 21a. $\rm t_{st}$ and $\rm E_{PULSE}$ Test Circuit

Fig 21b. t_{st} Test Waveforms

Fig 21c. E_{PULSE} Test Waveforms

Fig 22a. Switching Time Test Circuit

Fig 22b. Switching Time Waveforms

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994

2. DIMENSIONS ARE SHOWN IN INCHES.

CONTOUR OF SLOT OPTIONAL.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH, WOLD FLASH SHALL NOT EXCEED .005" (0.127)
PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERWOST EXTREMES OF THE PLASTIC BODY.

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS DI & E1.

6. LEAD FINISH UNCONTROLLED IN L1.

P TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 * TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.

8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC

		DIMEN	ISIONS			
SYMBOL	INC	HES	MILLIM	ETERS	1	
	MIN.	MAX.	MIN.	MAX.	NOTES	
A	.183	.209	4,65	5,31		
A1	.087	.102	2.21	2.59		
A2	.059	.098	1,50	2,49		
ь	.039	.055	0.99	1.40		
ь1	.039	.053	0.99	1.35		LEAD ASSIGNMENTS
b2	.065	.094	1,65	2.39		
b3	.065	.092	1.65	2.34		HEXFET
b4	.102	.135	2.59	3.43		- CALL
b5	.102	.133	2.59	3.38		1 GATE
c	.015	.035	0.38	0.89		2 DRAIN
c1	.015	.033	0.38	0.84		3. – SOURCE
D	.776	.815	19,71	20.70	4	4. – DRAIN
D1	.515	-	13.08	-	5	
D2	.020	,053	0,51	1,35		
E	.602	,625	15,29	15.87	4	IGBTs, CoPACK
E1	.530	- 1	13,46	l -		1 GATE
E2	.178	.216	4.52	5.49		2 COLLECTOR
e i	.215	BSC	5.46	BSC	1	3 EMITTER
øk	.0	10	0.	25	1	4 COLLECTOR
L	.559	.634	14.20	16,10	1	4, COLLECTOR
L1	.146	,169	3,71	4,29		
øP (.140	.144	3.56	3,66	1	DIODES
øP1	-	.291	-	7,39		
0	.209	.224	5.31	5.69		1 ANODE/OPEN
s	.217	BSC	5.51	BSC]	2 CATHODE
					-	3. – ANODE

TO-247AC Part Marking Information

EXAMPLE: THIS IS AN IRFPE30

WITH ASSEMBLY LOT CODE 5657

ASSEMBLED ON WW 35, 2001 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

TO-247AC package is not recommended for Surface Mount Application.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25^{\circ}C$, L = 0.173mH, $R_G = 25\Omega$, $I_{AS} = 50A$.
- ③ Pulse width \leq 400 μ s; duty cycle \leq 2%.
- $\ \, \mbox{ } \mbox$
- S Half sine wave with duty cycle = 0.25, ton=1µsec.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 09/2007