## Lecture 4.1

## Root finding for non linear equations:

$$f(x) = x^2 - 2x = 0$$

$$\Rightarrow x(x-2) = 0$$

$$\Rightarrow x = 0, 2$$

$$Roots \Rightarrow x^* = 0, 2$$

# Polynomials degree \2

$$\#\left(\frac{1}{x}-2\right)$$



Bisection Root Finding Algorithm Interval Bisection method

Given, 
$$f(x) = \infty$$

$$\begin{bmatrix}
a_{1}m \\
b_{2}m \\
c_{3}m \\
c_{4}m \\
c_{5}m \\
c_{6}m \\
c_{7}m \\
c_{7}m \\
c_{7}m \\
c_{7}m \\
c_{8}m \\
c_{8}m$$

$$m = \frac{a+b}{2} = \frac{2+10}{2}$$

$$= 6$$

$$m = \frac{a+b}{2} = \frac{6+16}{2}$$

$$= 8$$

$$m = \frac{a+b}{2} = \frac{6+8}{2}$$

$$= 7$$

Case 1 : Root exists in [a,m]



f(a) and f(m) how different sign.

$$f(a) \times f(m) = -ve$$
  
means root exist in  
 $[a,m]$ ,  $b=m$ 

Case 2: Root doesn't exist in [a,m]



f(a) & f(m) have similar sign.

$$f(a) \times f(m) = +ve$$
  
root doesn't exist in  
 $[a,m]$ ,  $a = m$ 

Case 3:



if f(a) \* f(m) = 0, then f(m) = 0

m is the root.

There is a limit for iteration. We do this until we find actual root,

or we reach machine epsilon E.

Stopping Criteria.

# Using Bisection method, find the root of  $f(x) = x^3 - 7x^2 + 14x - 6 \quad \text{in interval} \quad \begin{bmatrix} 1, 3.2 \end{bmatrix}. \text{ Your}$  solution must be accurate within 0.05

| <i>Ateration</i> | a     | Ь      | $m = \frac{a+b}{2}$ | f(a)  | f(m)   | Root exist in [a,m] | new anterval            |
|------------------|-------|--------|---------------------|-------|--------|---------------------|-------------------------|
| 0                | 1     | 3.2    | 2⋅1                 | 2     | 1.79   | Doesn't exist       | [m,b]=[2.1,3.2]         |
| 1                | 2.1   | 3.2    | 2.65                | 1.79  | 0.55   | Doesn't exist       | [m,b]=[2.65,3.2]        |
| 2                | 2.65  | 3-2    | 2.925               | 0.55  | 0.086  | Doesn't exist       | [m,b] = [2.925,3.2]     |
| 3                | 2.925 | 3-2    | 3.6625              | 0.086 | -0.054 | Exists              | [a,m] = [2.925, 3.0(25] |
| 4                | 2.925 | 3.0625 | 2.99375             | 0.086 | 0.006  |                     |                         |
|                  |       |        |                     |       | ><€    |                     |                         |
|                  |       |        | >root.              |       | 1 205  |                     |                         |

# How do we select intervals? f(x) = 0 f'(x) = 0

[a,a] [c,e] [c,e,]

$$[a,b]$$
,  $\in = 10^{-2}$ 

number of iteration 
$$k \ge \frac{\log(|b_0 - a_0|) - \log(\epsilon)}{\log(2)}$$

$$k \ge \frac{\log(|b_{0}-a_{0}|) - \log(\epsilon)}{\log(2)} - 1$$

$$k \ge \frac{\log(|3-1.5|) - \log(1.1\times10^{-6})}{\log(2)} - 1$$

$$\log(2)$$

number of iteration required is 20.

$$k \ge \frac{\log(166 - \alpha \cdot 1) - \log(1.1 \times 10^{-6})}{\log(2)}$$
 $k \ge 20.379$ 
 $k \ge 21$ 

## Bisection number of iteration formula derivation 2

For interval, a, bo:

$$|b_{1}-a_{1}| = \frac{|b_{0}-a_{0}|}{2}$$

$$|b_{2}-a_{2}| = \frac{|b_{1}-a_{1}|}{2} = \frac{|b_{0}-a_{0}|}{2^{2}}$$

$$|b_{3}-a_{3}| = \frac{|b_{2}-a_{2}|}{2} = \frac{|b_{0}-a_{0}|}{2^{3}}$$

$$|b_{k}-a_{k}| = \frac{|b_{0}-a_{0}|}{2^{k}}$$



## After k iteration

antuitively,

Actual Error 
$$\leq \frac{|b_k - a_k|}{2}$$

$$\Rightarrow |m_k - x^*| \leq \frac{|b_k - a_k|}{2}$$

$$\Rightarrow |m_k - \chi^*| \leq \frac{|b_0 - a_0|}{2^k \cdot 2}$$



$$\Rightarrow \left| m_{k} - x^{*} \right| \leq \frac{\left| b_{o} - a_{o} \right|}{2^{k+1}}, \quad \left| m_{k} - x^{*} \right|_{\max} = \frac{\left| b_{o} - a_{o} \right|}{2^{k+1}} - 0$$

Since, we stop our iteration when actual error is less than given

$$\Rightarrow | | M_k - \chi^* | \leq \epsilon$$

$$= \frac{|b_{\delta} - a_{0}|}{2^{k+1}} \leq \in$$
 [from equation 2]

$$\Rightarrow \frac{|b_6-a_0|}{c} \leq 2^{k+1}$$

$$\Rightarrow \log\left(\frac{|b_0-\alpha_0|}{\epsilon}\right) \leq \log\left(2^{k+1}\right)$$

$$\Rightarrow K+1 \geq \frac{\log(|b_0-a_0|) - \log(\epsilon)}{\log(2)}$$

$$\therefore k \geq \frac{\log((b_0-a_0)) - \log(\epsilon)}{\log(2)} - 1$$

Advantages: Even though it is slow, it is more robust and guaranteed.



 $\left[\log\left(\frac{x}{y}\right) = \log\left(x\right) - \log\left(y\right)\right]$ 

 $[\log(x^m) = m \log(x)$