Data Mining ENSIA 2023-2024

Additional exercises Association rules

Exercise 1:

In market basket analysis, describe whether the following rules are subjectively interesting:

- A rule that has high support and high confidence (e.g. Milk → Bread)
- A rule that has reasonably high support but low confidence (e.g. Milk → Tuna)
- A rule that has low support and low confidence (e.g. Cooking oil → Laundry detergent)
- A rule that has low support and high confidence (e.g. Running Shoes → Performance Socks)

Exercise 2:

Consider the following set of frequent 3-itemsets:

$$\{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}, \{1, 3, 4\}, \{1, 3, 5\}, \{2, 3, 4\}, \{2, 3, 5\}, \{3, 4, 5\}.$$

Assume that there are only five items in the dataset.

- 1. List all candidate 4-itemsets obtained by a candidate generation procedure using the $F_{K-1} \times F_1$ merging strategy.
- 2. List all candidate 4-itemsets obtained by the candidate generation procedure in the Apriori algorithm $(F_{_{K-1}} \times F_{_{K-1}})$.
- **3.** List all candidate 4-itemsets that survive the candidate pruning step of the Apriori algorithm.

Exercise 3:

Consider the market basket transactions shown in the following table.

Data Mining ENSIA 2023-2024

1. What is the maximum number of association rules that can be extracted from this data (including rules that have zero support)?

Transaction ID	Items Bought
1	Milk, Juice, Diapers
2	Bread, Butter, Milk
3	Milk, Diapers, Cookies
4	Bread, Butter, Cookies
5	Juice, Cookies, Diapers
6	Milk, Diapers, Bread, Butter
7	Bread, Butter, Diapers
8	Juice, Diapers
9	Milk, Diapers, Bread, Butter
10	Juice, Cookies

- 2. What is the maximum size of frequent itemsets that can be extracted (assuming *minsup* > 0)
- **3.** Write an expression for the maximum number of size-3 itemsets that can be derived from this dataset.
- **4.** Find an itemset (of size 2 or larger) that has the largest support.
- **5.** Find a pair of items, \mathbf{a} and \mathbf{b} , such that the rules $\{\mathbf{a}\} \rightarrow \{\mathbf{b}\}$ and $\{\mathbf{b}\} \rightarrow \{\mathbf{a}\}$ have the same confidence.

Exercise 4:

- **1.** What is the confidence for the rules $\varnothing \to A$ and $A \to \varnothing$?
- 2. Let c1, c2, and c3 be the confidence values of the rules { p } → { q }, { p } → { q , r }, and { p, r } → { q }, respectively. If we assume that c1, c2, and c3 have different values, what are the possible relationships that may exist among c1, c2, and c3? Which rule has the lowest confidence?
- **3.** Repeat the analysis in question 2 assuming the rules have identical support. Which rule has the highest confidence?
- 4. Transitivity: Suppose the confidence of the rules A → B and B → C are larger than some threshold, *minconf*. Is it possible that A → C has a confidence less than *minconf*?