The Classical Limit of Quantum Theory

R.F. Werner 1,2

Abstract. For a quantum observable A_{\hbar} depending on a parameter \hbar we define the notion " A_{\hbar} converges in the classical limit". The limit is a function on phase space. Convergence is in norm in the sense that $A_{\hbar} \to 0$ is equivalent with $||A_{\hbar}|| \to 0$. The \hbar -wise product of convergent observables converges to the product of the limiting phase space functions. \hbar^{-1} times the commutator of suitable observables converges to the Poisson bracket of the limits. For a large class of convergent Hamiltonians the \hbar -wise action of the corresponding dynamics converges to the classical Hamiltonian dynamics. The connections with earlier approaches, based on the WKB method, or on Wigner distribution functions, or on the limits of coherent states are reviewed.

Physics and Astronomy classification scheme PACS (1994): 03.65.Sq, 03.65.Db

¹ FB Physik, Universität Osnabrück, 49069 Osnabrück, Germany

² Electronic mail: reinwer@dosuni1.rz.Uni-Osnabrueck.DE

1. Introduction

The problem of taking the limit of quantum mechanics as $\hbar \to 0$ is as old as quantum mechanics itself. Indeed, under the name "correspondence principle" it was one of the important guidelines for the construction of the theory itself. Naturally, there is a vast literature on the subject, and it requires some justification to add yet another paper to it. I will therefore begin by stating the aims of the present paper more carefully than usual, and proceed to review some of the existing approaches to the classical limit with regard to these aims. This will be done in a separate subsection of the introduction. In Section 2 and Section 3 we describe the basic notions of our approach. It is based on a set of "comparison maps" $j_{\hbar\hbar'}$ which relate observables at different values of \hbar . This framework was originally designed for applications in statistical mechanics [We3], and has many further conceivable applications. In Section 2 it is shown that this furnishes a language in which the convergence of sequences of observables, and the theorems of the desired type can be adequately expressed. The definition of the comparison maps $j_{\hbar\hbar'}$ requires some additional structure from phase space quantum mechanics, and is undertaken in Section 3. Section 4 gives an extensive list of examples and applications. We hope that this section especially will help to convince the reader that the present approach to the classical limit is a natural, if not canonical one. Section 5 contains the more technical aspects, including, of course, the proofs of the main results. Some of these technical points, notably the proofs of the theorems about convergence of commutators to Poisson brackets, and the convergence of dynamics were beyond the scope of a single journal article, and will therefore be treated in a separate publication [We5]. The concluding Section 6 contains previews of such further extensions, and also some remarks about how some simplifying assumptions (like the boundedness of Hamiltonians) can be relaxed.

1.1. Motivation and review of the literature

There are basically two reasons for studying the classical limit. The first is concerned with the architecture of theoretical physics, and demands the reconstruction of classical mechanics in terms of its supposedly more comprehensive successor. This "correspondence principle" was part of the supporting evidence for the new quantum theory. Now that this is hardly needed anymore, some theorists feel that there is no more reason to study the classical limit. Some physicists also seem to feel uneasy about the sacrilege of changing the value of the Fundamental Constant $\hbar = 1.0545887 * 10^{-34} \, kg \, m^2/s$ (or $\hbar = 1$ in more practical units). Are we free to do this without talking about a different possible world of no relevance to our own? This leads to the second motivation for discussing the classical limit: it is seen mainly as a practical tool for the simplified approximate evaluation of quantum mechanical predictions. In this interpretation a limit theorem says that the classical treatment is accurate (within certain bounds) as long as the relevant observables change sufficiently slowly relative to the phase space scale fixed by \hbar . The introduction of a changeable parameter \hbar is then merely a convenient shorthand for this comparison. What makes it especially convenient is that the comparison parameter \hbar will show up in all those places, where we are used to seeing the constant \hbar in the textbooks.

For the mathematical formulation of the classical limit both readings amount to the same thing. The following are some of the features, which one might ask of a satisfactory explanation, and which the present paper aims to implement.

- (a) The limit should be defined for the *whole theory*, not of certain isolated aspects. That is, we should define the limits of general states, observables, and expectation values, and these should go to their classical counterparts.
- (b) The definition should be conceptually *simple* and *general*. That is, it should be appropriate for inclusion in a basic course on quantum mechanics. It should not depend on the choice of a special (e.g., quadratic or classically integrable) Hamiltonian, or special (e.g., coherent) states.
- (c) It should be a rigorous version of accepted *folklore* on the subject. For example, the limit of $-\hbar^2/(2m)\Delta + V(x)$ should be the Hamiltonian function $p^2/2m + V(q)$, and some intuition should be given, for what kinds of observables the classical approximation is sensible.
- (d) The limit should be in the *strongest topology* possible. We want the statement of the limit to be a equivalent to an asymptotic estimate of *operator norms* for observables and trace norms for states. These norms carry special significance in the statistical interpretation of quantum theory, since they correspond to uniform estimates on probabilities.
- (e) In the limit, the *product* of bounded operators should become the product of functions on phase space.
- (f) In the limit, " i/\hbar times a commutator" should become the *Poisson bracket* of the limits.
- (g) The quantum mechanical *time evolution* should converge (uniformly in finite time intervals) to the classical Hamiltonian evolution.
- (h) Equilibrium states (canonical Gibbs states) and partition functions of quantum theory should converge to their classical counterparts.

On the other hand, we can distinguish in the literature the following approaches to the classical limit, each of which naturally has a considerable overlap of results and applications with the approach we are going to present. This list is necessarily incomplete, and no attempt has been made to evaluate the historical development of the subject, or to decide any priority claims. Nor can we adequately portray the merits of the different schools since our perspective is limited to the comparison with the approach of the present paper.

(A) The WKB method. [Mas,Sch,Hel,Frö,DH,BS] One virtue of this well-known approach is that it is so close to Schrödinger's beautiful series of papers establishing his wave mechanics. It fails mainly on item (a): the Schrödinger equation is only one aspect of quantum mechanics, and its short wave asymptotics is only one aspect of the classical limit. For example, it seems hopeless to try to understand the opera-

- tor properties (e) and (f) in WKB terms. The WKB wave functions do correspond to (a subclass of) convergent states in our approach (see Section 4.8). Their limits are measures supported by Lagrangian manifolds in phase space, hence they have a curious intermediate position between point measures and general measures.
- (B) Wigner functions. [Wig,BB,Bru,BCSS,Ara] It is often claimed that quantum mechanics has an equivalent reformulation in terms of Wigner's phase space distribution functions. The classical limit could then be stated very simply in terms of these functions. However, the premise is only partly correct. Since the Wigner function of a state need not be integrable, it often represents a "probability" density, in which an infinite positive probability is cancelled by an infinite negative probability to give formally the normalization to unity. This is highly unsatisfactory from the conceptual point of view. Technically it means that operator norms (see (d) above) cannot be estimated without artificial smoothness assumptions [Dau]. It is well-known that by averaging Wigner functions with a suitable Gaussian [Bop,Car] these difficulties disappear [Dav,Hol,We1]. Moreover, the Gaussians can be chosen such that in the classical limit this smearing out becomes negligible anyhow. In their averaged form Wigner functions play an important role in our approach. For a discussion of states that have positive Wigner functions "all the way to the classical limit" see Section 4.10.
- (C) Pseudodifferential and Fourier integral operators. [Rob,Vor,Omn] Such operators have a rich mathematical theory, whose applications are by no means confined to the classical limit. However, much of the rigorous work on the classical limit has been done under this heading. The "symbol" of a pseudodifferential operator is just its Wigner function, so much of what has been said under (B) applies. The main weakness is again the lack of control on operator norms, and hence of probability estimates, unless additional smoothness assumptions are introduced. Where such assumptions hold, the results fit well into the framework of the present paper, too.
- (D) Feynman integrals. The basic observation here is that the phase of the Feynman integrand is stationary precisely for the classical paths, which therefore give the main contribution to the propagator. To the extent that the Feynman integral and the method of stationary phase in infinite dimensional spaces can be given a mathematical meaning, this observation can be made rigorous [Tru,AHK], and reproduces WKB wave functions. The shortcomings of this approach are therefore similar to the WKB approach. It is maybe interesting to note that the propagator itself does not have a classical limit in our approach, whereas the time evolution it implements on observables does (see Section 4.5).
- (E) Limits of coherent states. In the papers [Hep,Hag] it is shown that in the limit $\hbar \to 0$ the time evolution of a coherent state, which is initially concentrated near a given point in phase space, is well approximated by another coherent state, concentrated at the classically evolved point. This statement is essentially what one gets in the version of the present approach based on norm convergences of states [We6] rather than norm

convergence of observables. What is missed in this approach are therefore the operator properties (e) and (f).

- (F) Limit of partition functions. [Lie,Sim,LS,WS] This aspect of the classical limit is conceptually straightforward, because it only requires the convergence of some numbers. Of course, it covers only a small fraction of the desirable features listed above. Nevertheless some of the techniques developed for this problem, like upper and lower symbols, or certain operators connecting spin systems of different spin [LS] are close to the approach of this paper.
- (G) Deformation quantization. [Ri1,Ri2,Lan]. In this approach the emphasis is indeed on the structure of products and Poisson brackets, and it is in many ways close to ours. With each classical phase space function (typically the Fourier transform of a finite measure) one associates a specific family of ħ-dependent operators, belonging to an algebra in which the product is defined by some variant of the ħ-dependent Moyal formula. It is clear that such families are also convergent in our sense (see Section 4.3). Nevertheless, the very restricted ħ-dependence of such families is unnatural from the point of view of the classical limit (or "dequantization" [Em1]), natural as it may be for "quantization". For another approach to quantization, based on a very restricted class of Hamiltonians, see [BV].

2. Definition and Main Results

Consider a typical Hamiltonian operator

$$H_{\hbar} = -\frac{\hbar^2}{2m}\Delta + V(x) \tag{2.1}$$

from a textbook on quantum mechanics. Our aim is to define the limit of operators like H_{\hbar} as $\hbar \to 0$. Since the naïve approach of setting $\hbar = 0$ in the above expression is obviously not what is intended, we have to be more careful with the definition of such limits. Rather than the algebraic expression (2.1), it must be the relation of H_{\hbar} to other observables in the theory which has to be taken to the limit. So let us denote by \mathfrak{A}_{\hbar} the algebra of observables "at some value of $\hbar > 0$ ". This will always be the set of bounded operators on a Hilbert space (or a suitable subalgebra), and hence in some sense independent of \hbar . However, the notational distinction between these algebras may help keeping track of the various objects. Note that we will always consider bounded observables. Thus it is not the operator (2.1) we will take to the limit but, for example, its resolvent $(H_{\hbar} - z)^{-1}$ or the time evolution it generates.

For an \hbar -dependent observable $A_{\hbar} \in \mathfrak{A}_{\hbar}$ we now want to define " $\lim_{\hbar \to 0} A_{\hbar}$ ". Of course, since we have not yet put any constraint on the allowed \hbar -dependence of A_{\hbar} , this limit (whatever its definition) may fail to exist. The crucial notion we must define is therefore " A_{\hbar} converges as $\hbar \to 0$ ". Loosely speaking we must express the property that,

for \hbar and \hbar' small enough, A_{\hbar} and $A_{\hbar'}$ become "similar". This shifts the problem to the definition of some connection between the spaces \mathfrak{A}_{\hbar} and $\mathfrak{A}_{\hbar'}$ which would permit such a comparison. The basic idea of our approach is to use certain linear maps

$$j_{\hbar\hbar'}: \mathfrak{A}_{\hbar'} \to \mathfrak{A}_{\hbar} \quad , \tag{2.2}$$

and then to compare elements in the norm of \mathfrak{A}_{\hbar} . Once the operators $j_{\hbar\hbar'}$ are defined there will be no more arbitrariness in the definition of the classical limit.

In order to illustrate this point, and to give a quick insight into the kind of limits we will describe, we will proceed as follows: in this section we will assume that the spaces \mathfrak{A}_{\hbar} , and the maps $j_{\hbar\hbar'}$ have been defined. Our aim is to show how this suffices to set up a language, in which we can describe a limit with the desirable features listed in the introduction. In particular, we will state the main theorems of our approach in this subsection. The actual definition of $j_{\hbar\hbar'}$ will be given later, in the next section, after the necessary preliminaries on phase space quantum mechanics have been provided. In Section 4 we will then be able to give examples of convergent sequences of operators and states, by which the reader will be able to judge whether we have indeed found a rigorous statement of the usual folklore and intuitions on the classical limit. Most proofs will be given in Section 5, but those relating to the dynamics had to be relegated to a sequel paper [We5].

The central notion of this paper is the following notion of convergence, which we can define in terms of $j_{\hbar\hbar'}$.

1 Definition. By an \hbar -sequence we mean a family of observables $A_{\hbar} \in \mathfrak{A}_{\hbar}$, defined for all sufficiently small \hbar . We say that an \hbar -sequence A_{\hbar} is j-convergent, if

$$\lim_{\hbar' \to 0} \overline{\lim}_{\hbar \to 0} \|A_{\hbar} - j_{\hbar \hbar'} A_{\hbar'}\| = 0 \quad .$$

The set of j-convergent \hbar -sequence will be denoted by $\mathcal{C}(\mathfrak{A}, j)$. Two \hbar -sequences A_{\hbar} and B_{\hbar} are said to have the same limit, if

$$\lim_{\hbar \to 0} \|A_{\hbar} - B_{\hbar}\| = 0 \quad .$$

Thus the **limit** of A_{\hbar} is defined as an equivalence class of j-convergent \hbar -sequences, and we will denote it by j-lim $_{\hbar}$ A_{\hbar} , or sometimes just A_0 . The space of all limits of j-convergent \hbar -sequences will be denoted by \mathfrak{A}_0 .

The abstract definition of j-lim $_{\hbar}$ A_{\hbar} as an equivalence class is the best we can do without giving a concrete definition of $j_{\hbar\hbar'}$. It will be evident from our definition of $j_{\hbar\hbar'}$, however, that the limits can be identified with functions on phase space (see Definition 6 and Proposition 7). The convergence of operator products to products of functions can then be stated as follows:

2 Product Theorem. Let A_{\hbar} , B_{\hbar} be j-convergent \hbar -sequences, and define, for each \hbar , $C_{\hbar} = A_{\hbar}B_{\hbar} \in \mathfrak{A}_{\hbar}$. Then C is j-convergent, and

$$j \operatorname{lim}_{\hbar}(A_{\hbar}B_{\hbar}) = (j \operatorname{lim}_{\hbar}A_{\hbar})(j \operatorname{lim}_{\hbar}B_{\hbar})$$
,

where the product on the right hand side is the product in the commutative algebra \mathfrak{A}_0 .

Since the product in \mathfrak{A}_0 is abelian, commutators $[A_{\hbar}, \mathcal{B}_{\hbar}]$ are j-convergent to zero. The interesting term for commutators is thus the next order in \hbar . It is clear, however, that $\hbar^{-1}[A_{\hbar}, \mathcal{B}_{\hbar}]$ cannot be j-convergent for arbitrary j-convergent A_{\hbar} and B_{\hbar} : any sequences A_{\hbar}, B_{\hbar} with norm going to zero are j-convergent, but this does not even suffice to force the scaled commutators to stay bounded. Hence we need better control of the \hbar -sequences than mere j-convergence. A hint of the kind of condition needed here is given by the theorem below: the Poisson bracket to which these commutators converge is only defined for differentiable limit functions. Hence we need differentiability properties also for the sequences A_{\hbar} and B_{\hbar} . The appropriate space of sequences, denoted by $C^2(\mathfrak{A}, j)$, will be defined and discussed in [We5]. Briefly, $C^2(\mathfrak{A}, j)$ consists of those sequences A_{\hbar} such that $\alpha_{\varepsilon\xi}^{\hbar}(A_{\hbar})$ has Taylor expansions to second order in ε with derivatives in $C(\mathfrak{A}, j)$ and an error estimate which is uniform for sufficiently small \hbar . This space is norm dense in $C(\mathfrak{A}, j)$. The following theorem is also shown in [We5].

3 Bracket Theorem. Let $A, B \in \mathcal{C}^2(\mathfrak{A}, j)$. Then $\hbar^{-1} \left[A_{\hbar}, B_{\hbar} \right]$ is j-convergent, and $j \lim_{\hbar} \frac{i}{\hbar} \left[A_{\hbar}, B_{\hbar} \right] = \left\{ j \lim_{\hbar} A_{\hbar}, \ j \lim_{\hbar} B_{\hbar} \right\}$,

where the product on the right hand side is the Poisson bracket of C^2 -functions on phase space.

Commutators and Poisson brackets determine the equations of motion for quantum and classical systems, respectively. Hence the above theorem says that the quantum equations of motion converge to the classical ones. Of course, one also wants to know that the solutions of the respective equations converge. This is the content of the following Theorem. Again the proof is given in [We5]. Note that the Theorem only makes a statement for finite times, i.e., it is not strong enough to allow the interchange the limits $\hbar \to 0$, and the ergodic time average, or some other version of the limit $t \to \infty$. This would be very interesting for applications to "quantum chaos" (see [DGI] for a result in this direction).

4 Evolution Theorem. Let $H_{\hbar} \in \mathcal{C}^2(\mathfrak{A}, j)$ such that $H_{\hbar} = H_{\hbar}^*$ for every \hbar . Define the time evolution for each \hbar by

$$\gamma_{\hbar}^{t}(A) = e^{itH_{\hbar}/\hbar} A e^{-itH_{\hbar}/\hbar} \quad , \tag{2.3}$$

for $A \in \mathfrak{A}_{\hbar}$, and $t \in \mathbb{R}$. Let A_{\hbar} be j-convergent, and define $A_{\hbar}^{t} = \gamma_{\hbar}^{t}(A_{\hbar})$, for every \hbar . Then A_{\hbar}^{t} is also j-convergent, and

$$j \lim_{\hbar} \gamma_{\hbar}^{t}(A_{\hbar}) = \gamma_{0}^{t} \left(j \lim_{\hbar} A_{\hbar} \right) ,$$

where γ_0^t is the Hamiltonian time evolution on phase space generated by the Hamiltonian function $H_0 = j \operatorname{lim}_{\hbar} H_{\hbar}$.

Finally, we would like to define the convergence of states. The states for each \hbar are, by definition, positive, normalized linear functionals on \mathfrak{A}_{\hbar} . Since \mathfrak{A}_{\hbar} is an algebra of operators on Hilbert space this includes all states given by density matrices, the so-called normal states. Non-normal states appear naturally in the description of limiting situations such as states with sharp position and infinite momentum. They are also included in the present setup.

5 Definition. For each \hbar , let $\omega_{\hbar}: \mathfrak{A}_{\hbar} \to \mathbb{C}$ be a state. We say that the \hbar -sequence ω is j^* -convergent, if for every j-convergent \hbar -sequence $A_{\hbar} \in \mathfrak{A}_{\hbar}$ of observables, the sequence of numbers $\omega_{\hbar}(A_{\hbar})$ has a limit as $\hbar \to 0$. The **limit** of the sequence is the state $\omega_0 = j^*$ -lim $_{\hbar} \omega_{\hbar}: \mathfrak{A}_0 \to \mathbb{C}$, defined by

$$\omega_0(j\lim_{\hbar} A_{\hbar}) = \lim_{\hbar \to 0} \omega_{\hbar}(A_{\hbar}) .$$

 ω_0 will be called a **cluster point** of the sequence ω_{\hbar} , if there is a subsequence $\hbar_n, n \in N$ such that the above equation holds for limits along this subsequence.

Since $A_0 = j - \lim_{\hbar} A_{\hbar}$ is a function on phase space, the limit functionals ω_0 are measures on phase space, or, more precisely, measures on a compactification of phase space. We will see that every state on \mathfrak{A}_0 occurs as the limit of suitable \hbar -sequences of states. Definition 5 gives the analogue of weak*-convergence of states on a fixed algebra. In particular, every sequence ω_{\hbar} has cluster points. Norm limits of states will be considered in another paper [We6].

3. Definition of $j_{\hbar\hbar'}$

Without the concrete definition of \mathfrak{A}_{\hbar} and $j_{\hbar\hbar'}$ the statements made in the last section are void. In this section we will provide these definitions, and describe some further properties of the limits, which can be stated only in this more concrete context.

The systems we treat will be non-relativistic with $d < \infty$ degrees of freedom. Let us denote by $X = \mathbb{R}^d$ the configuration space of the system. Then its *Hilbert space* is

$$\mathcal{H} = \mathcal{L}^2(X, dx) \tag{3.1}$$

In \mathcal{H} we have a representation of the translations in configuration space and momentum space, given by the unitary Weyl operators

$$\left(W^{\hbar}(x,p)\psi\right)(y) = \exp\left(-\frac{i}{2\hbar}p \cdot x + \frac{i}{\hbar}p \cdot y\right) \psi(y-x) \quad . \tag{3.2}$$

This is a translation by the momentum $p \in \mathbb{R}^d$ and the position $x \in \mathbb{R}^d$. Taken together these two determine a point in *phase space* Ξ , usually denoted by $\xi = (x, p)$. The basic commutation relations for the Weyl operators then read

$$W^{\hbar}(\xi)W^{\hbar}(\eta) = e^{\frac{i}{2\hbar}\sigma(\xi,\eta)}W^{\hbar}(\xi+\eta) \quad , \tag{3.3}$$

where
$$\sigma(x, p; x', p') = p \cdot x' - p' \cdot x$$
 (3.4)

is the usual symplectic form on phase space. The *phase space translations* act on quantum observables, represented by bounded operators $A \in \mathcal{B}(\mathcal{H})$, (resp. classical observables, represented by bounded measurable functions $f \in \mathcal{L}^{\infty}(\Xi)$) via

$$\alpha_{\xi}^{\hbar}(A) = W^{\hbar}(\xi) A W^{\hbar}(-\xi)$$

$$\alpha_{\xi}^{0}(f)(\eta) = f(\eta - \xi) . \tag{3.5}$$

In either case, i.e., for $\hbar \geq 0$, we get $\alpha_{\xi+\eta}^{\hbar} = \alpha_{\xi}^{\hbar} \alpha_{\eta}^{\hbar}$. The Weyl operators are eigenvectors of the translations, i.e.,

$$\alpha_{\xi}^{\hbar} \Big(W^{\hbar}(\eta) \Big) = e^{\frac{i}{\hbar} \sigma(\xi, \eta)} W^{\hbar}(\eta) \quad . \tag{3.6}$$

The comparison maps $j_{\hbar\hbar'}: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ will be taken to be positive in the sense that $A \geq 0 \Longrightarrow j_{\hbar\hbar'}(A) \geq 0$, and unital, i.e., $j_{\hbar\hbar'}(\mathbb{I}) = \mathbb{I}$. These properties are simply required by the statistical interpretation of quantum mechanics. The essential condition is the one linking the comparison to the phase space structure: we will demand that

$$j_{\hbar\hbar'} \circ \alpha_{\xi}^{\hbar'} = \alpha_{\xi}^{\hbar} \circ j_{\hbar\hbar'} \quad . \tag{3.7}$$

Note that the set of operators $j_{\hbar\hbar'}$ satisfying these conditions for fixed \hbar , \hbar' is convex and, with any operator $j_{\hbar\hbar'}$, also contains the operator

$$\widetilde{\jmath}_{\hbar\hbar'} = \int \rho(d\xi) \; \alpha_{\xi}^{\hbar} \circ j_{\hbar\hbar'} \quad ,$$

where ρ is any probability measure on phase space. Obviously, in order to get a sensible limit we must require that the origin of phase space is not shifted around in some arbitrary way (so only ρ centered near the origin will be allowed in the above formula), and that no large scale smearing out (with ρ of very large variance) is contained in $j_{\hbar\hbar'}$. We won't go into making these requirements precise in this paper (see, however, [We4]). The main point is that all systems of comparison maps satisfying these requirements define the same class of j-convergent \hbar -sequences via Definition 1. Since our whole theory is not based on the detailed behaviour of $j_{\hbar\hbar'}$, but only on the class of j-convergent \hbar -sequences, we are free in this paper to make a somewhat arbitrary but explicit choice of $j_{\hbar\hbar'}$ for the sake of simple presentation. The equivalence to other choices, including an essentially unique "optimal" one will be shown in [We4]. Our choice of comparison maps will have the special property that it maps quantum to quantum observables (at different value of \hbar) via a classical intermediate step. It is clear that something like this must be possible from the idea that the comparison described by the $j_{\hbar\hbar'}$ should be at least asymptotically transitive.

Positive maps taking quantum observables to classical ones and conversely are well-known [Bop,Sim,Dav,Tak,We1]. These maps depend on the choice of a normal state, which is usually taken to be coherent, i.e., the ground state of some harmonic oscillator. Let

$$\chi_{\hbar}(x) = (\pi \hbar)^{-d/4} \exp \frac{-x^2}{2\hbar}$$
(3.8)

be the ground state vector of the standard oscillator Hamiltonian

$$H_{\hbar}^{\text{osc}} = \frac{1}{2} \sum_{i} (P_i^2 + Q_i^2) \quad ,$$
 (3.9)

with $P_i = (\hbar/i)\partial/\partial x_i$. By $\Gamma_{\hbar} = |\chi_{\hbar}\rangle\langle\chi_{\hbar}|$ we will denote the corresponding one-dimensional projection. Then we set, for $f \in \mathcal{L}^{\infty}(\Xi)$, and $A \in \mathcal{B}(\mathcal{H})$,

$$j_{0\hbar}(A)(x,p) = \langle \chi_{\hbar} | W^{\hbar}(-x,-p) A W^{\hbar}(x,p) | \chi_{\hbar} \rangle$$
(3.10.a)

$$j_{\hbar 0}(f) = \int \frac{dx \, dp}{(2\pi\hbar)^d} f(x,p) W^{\hbar}(x,p) |\chi_{\hbar}\rangle \langle \chi_{\hbar}|W^{\hbar}(-x,-p) \quad . \tag{3.10.b}$$

In terms of Γ_{\hbar} we can write this as

$$j_{0\hbar}(A)(x,p) = \operatorname{tr}\left(A\,\alpha_{x,p}^{\hbar}(\Gamma_{\hbar})\right) \tag{3.10.a'}$$

$$j_{\hbar 0}(f) = \int \frac{dx \, dp}{(2\pi\hbar)^d} f(x, p) \, \alpha_{x,p}^{\hbar}(\Gamma_{\hbar}) \quad . \tag{3.10.b'}$$

The integrals in (3.10.b) or (3.10.b') are to be interpreted as weak integrals, i.e., we have to take matrix elements of the integral, and compute it as a family of scalar integrals, which converge by virtue of the "square integrability of the Weyl operators" (see [We1]). One readily verifies that $j_{0\hbar}$ and $j_{\hbar 0}$ both take positive into positive elements, and preserve the respective unit elements. Moreover, these maps transform the phase space translations according to

$$j_{\hbar 0} \circ \alpha_{\xi}^{0} = \alpha_{\xi}^{\hbar} \circ j_{\hbar 0}$$
 , and $j_{0\hbar} \circ \alpha_{\xi}^{\hbar} = \alpha_{\xi}^{0} \circ j_{0\hbar}$. (3.11)

Since $\xi \mapsto W^{\hbar}(\xi)$ is strongly continuous, $\xi \mapsto \alpha_{\xi}^{\hbar}(\Gamma_{\hbar})$ is continuous in trace norm, which implies that $j_{0\hbar}A$ is a uniformly continuous function for any $A \in \mathcal{B}(\mathcal{H})$. Uniform continuity of a function f can be expressed as $\|\alpha_{\xi}^0 f - f\| \to 0$ for $\xi \to 0$, where we have used the supremum norm of functions in $\mathcal{L}^{\infty}(\Xi)$. The same continuity argument applies to $j_{\hbar 0}$ and, indeed, all operators of the form $A = j_{\hbar 0}f$ are uniformly continuous in the sense that $\|\alpha_{\xi}^{\hbar}(A) - A\| \to 0$. With these preliminaries we can now define $j_{\hbar \hbar'}$, and also describe the ranges of these maps.

6 Definition. For $\hbar, \hbar' > 0$, we set

$$j_{\hbar\hbar'} = j_{\hbar0} \circ j_{0\hbar'} : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H}) \quad ,$$
 (3.12)

where the maps $j_{\hbar 0}: \mathcal{L}^{\infty}(\Xi) \to \mathcal{B}(\mathcal{H})$ and $j_{0\hbar}: \mathcal{B}(\mathcal{H}) \to \mathcal{L}^{\infty}(\Xi)$ are defined by equations (3.10.b') and (3.10.a'). Together with the convention $j_{00} = \mathrm{id}$, the maps $j_{\hbar\hbar'}$ are thus defined for $\hbar, \hbar' \geq 0$. From the above discussion it follows that, unless $\hbar = \hbar' = 0$, the range of $j_{\hbar\hbar'}$ is contained in \mathfrak{A}_{\hbar} , where

$$\mathfrak{A}_{\hbar} = \left\{ A \in \mathcal{B}(\mathcal{H}) \mid \lim_{\xi \to 0} \left\| \alpha_{\xi}^{\hbar}(A) - A \right\| = 0 \right\}$$
 (3.13.a)

$$\mathfrak{A}_0 = \left\{ f \in \mathcal{L}^{\infty}(\Xi) \middle| \lim_{\xi \to 0} \left\| \alpha_{\xi}^0(f) - f \right\| = 0 \right\} . \tag{3.13.b}$$

The space of observables "at the value \hbar " (see the beginning of Section 2) can be taken as all of $\mathcal{B}(\mathcal{H})$, independently of \hbar . However, since after one application of a comparison map $j_{\hbar\hbar'}$ only continuous elements play a role, we will usually take \mathfrak{A}_{\hbar} from (3.13.*a*) as the space of observables. Note that this space is also the same for all \hbar . Other possible choices are briefly indicated in Section 4.3.

We have now used the symbol \mathfrak{A}_0 for two different spaces, and we have to justify this by showing that the space \mathfrak{A}_0 of uniformly continuous functions on Ξ as defined in (3.13.*b*) is indeed a concrete representation of the abstract limit space \mathfrak{A}_0 appearing in Definition 1. This will also justify our referring to the limits $j \lim_{\hbar} A_{\hbar}$ as functions on phase space in the previous section.

7 Proposition. Let A_{\hbar} be a j-convergent \hbar -sequence. Then $j_{0\hbar}A_{\hbar}$ is a norm convergent sequence of functions in the space \mathfrak{A}_0 , as defined in Definition 6. The identification

$$j - \lim_{\hbar} A_{\hbar} \equiv \lim_{\hbar} j_{0\hbar} A_{\hbar}$$

defines an isometric isomorphism between \mathfrak{A}_0 , and the abstract limit space of Definition 1.

It is suggestive at this point to try an alternative definition of "convergence as $\hbar \to 0$ ": the map $j_{0\hbar}$ already takes operators to functions, i.e., quantum to classical observables, and the convergence of these functions is at least implied by the definition we have given. Hence we might try to take the uniform convergence of $j_{0\hbar}A_{\hbar}$ as a definition. We will see in Section 4.5, however, that with this definition the Product Theorem 2 would fail, so with this restricted definition we would miss an important desirable feature of the classical limit. The example in Section 4.5 is an operator which in a sense oscillates more and more rapidly as $\hbar \to 0$. If we exclude this sort of oscillation by an "equicontinuity" condition, i.e., if we make the uniform continuity condition in \mathfrak{A}_{\hbar} also uniform in \hbar , the convergence of $j_{0\hbar}A_{\hbar}$ indeed becomes equivalent to convergence in the sense of Definition 1 (seeTheorem 8 below).

In order to state this precisely, we define the modulus of continuity of $X \in \mathfrak{A}_{\hbar}$, $\hbar \geq 0$, as the function $\lambda \mapsto \mathbf{m}_{\hbar}(X,\lambda)$, with

$$\mathbf{m}_{\hbar}(X,\lambda) := \sup \left\{ \left\| \alpha_{\xi}^{\hbar}(X) - X \right\| \middle| \xi^{2} \le \lambda \right\} , \qquad (3.14)$$

where the "square" of a phase space translation $\xi = (x, p)$ is defined by $\xi^2 = x^2 + p^2$. This involves some arbitrariness since positions and momenta have different physical dimensions. Any choice of the form $\lambda q^2 + \lambda^{-1} p^2$ would have done just as well, except that the estimates involving $j_{\hbar\hbar'}$ look a bit simpler when the Euclidean norm" $\sqrt{\xi^2}$ " in phase space matches the oscillator Hamiltonian (3.9), whose ground state χ_{\hbar} enters the definition of $j_{\hbar\hbar'}$.

Uniform continuity of $X \in \mathfrak{A}_{\hbar}$ is equivalent to $\lim_{\lambda \to 0} \mathbf{m}_{\hbar}(X, \lambda) = 0$. Moreover, the properties (3.7) and (3.11), together with the norm estimate $||j_{\hbar\hbar'}X|| \leq ||X||$ imply

$$\mathbf{m}_{\hbar}(j_{\hbar\hbar'}(X),\lambda) \le \mathbf{m}_{\hbar'}(X,\lambda) \quad \text{for } \hbar, \hbar' \ge 0.$$
 (3.15)

(Note that the cases $\hbar = 0$ and $\hbar' = 0$ are included). Now, for a j-convergent \hbar -sequence, A_{\hbar} is well approximated for small \hbar by $j_{\hbar\hbar'}(A_{\hbar'})$, which has \hbar -modulus of continuity at most $\mathbf{m}_{\hbar'}(A_{\hbar'}, \lambda)$. This bound holds uniformly for small \hbar , thus excluding rapid oscillations of A_{\hbar} for small \hbar . This is the basic idea of the following characterization of j-convergent sequences. It will be our basic tool for verifying j-convergence of the various sequences of observables in the examples of the next section. It also gives a quantitative meaning to the intuition that "nearly classical" observables are those that change little on a classical phase space scale, i.e., have small modulus of continuity. Whenever all relevant observables in some given physical situation satisfy this criterion, the classical limit is a good approximation, and quantitative bounds of this type can also be given, by following the proofs. This intuition can also be used [\mathbf{W} \mathbf{W}] to give a very direct (although "nonstandard") definition of the classical limit, which is essentially equivalent to the one given in this paper.

- **8 Theorem.** A sequence of observables $A_{\hbar} \in \mathfrak{A}_{\hbar}$ is j-convergent, if and only if the following two conditions hold:
- (a) $j_{0\hbar}(A_{\hbar}) \in \mathfrak{A}_0$ converges uniformly as $\hbar \to 0$.
- (b) A_{\hbar} is **equicontinuous** in the following sense: for any $\varepsilon > 0$, we can find $\hbar(\varepsilon)$, $\lambda(\varepsilon)$ such that, for $\hbar \leq \hbar(\varepsilon)$, and $\lambda \leq \lambda(\varepsilon)$, we have $\mathbf{m}_{\hbar}(A_{\hbar}, \lambda) \leq \varepsilon$.

The idea of introducing the maps $j_{\hbar\hbar'}$ was to get a precise meaning of " A_{\hbar} and $A_{\hbar'}$ are similar". Of course, this relation should be approximately transitive. This is expressed by the following estimate. Its concrete form depends on the choice of the coherent state (3.8) in the definition (3.10), and on (3.14). Note that each of the three parameters \hbar in the theorem may take the value zero.

9 Theorem. Let $\hbar, \hbar', \hbar'' \geq 0$, and let $X \in \mathcal{B}(\mathcal{H})$. Then

$$\|(j_{\hbar\hbar''} - j_{\hbar\hbar'}j_{\hbar'\hbar''})X\| \le \int_0^\infty \mu_d(d\theta) \ \mathbf{m}_{\hbar''}(X, 2\hbar'\theta)$$
 (3.16)

$$||X - j_{\hbar 0} j_{0\hbar} X|| \le \int_0^\infty \mu_d(d\theta) \mathbf{m}_{\hbar}(X, 2\hbar\theta) \quad , \tag{3.17}$$

where
$$\mu_d(d\theta) = \frac{\theta^{d-1}}{(d-1)!} e^{-\theta} d\theta$$
.

In particular, if $X \in \mathfrak{A}_{\hbar''}$, the norm (3.16) goes to zero as $\hbar' \to 0$, uniformly in \hbar .

An important Corollary of Theorem 9 is the following construction of j-convergent sequences and j^* -convergent states. The sequences described in (1) are called "basic sequences" in the theory of "generalized inductive limits" [**We3,GW,DW**]. Their convergence is equivalent to the asymptotic transitivity $j_{\hbar\hbar''} \approx j_{\hbar\hbar'} j_{\hbar'\hbar''}$ of the comparison.

10 Corollary.

- (1) Fix $\hbar' \geq 0$ and $X \in \mathfrak{A}_{\hbar'}$. Then $X_{\hbar} = j_{\hbar \hbar'} X$ is j-convergent, and $j = \lim_{\hbar} j_{\hbar \hbar'} X = j_{0 \hbar'} X$.
- (2) Let $\omega: \mathfrak{A}_0 \to \mathbb{C}$ be a state, and define, for every $\hbar > 0$ a state $\omega_{\hbar}: \mathfrak{A}_{\hbar} \to \mathbb{C}$ by $\omega_{\hbar}(X) = \omega(j_{0\hbar}(X))$. Then ω_{\hbar} is j^* -convergent, and j^* -lim $_{\hbar} \omega_{\hbar} = \omega$.
- (3) An \hbar -sequence ω_{\hbar} of states on \mathfrak{A}_{\hbar} is j^* -convergent if and only if the sequence $\omega_{\hbar} \circ j_{\hbar 0}$ is weak*-convergent in the state space of \mathfrak{A}_0 .

Usually we are interested in normal states on \mathfrak{A}_{\hbar} , i.e., states of the form $\omega_{\hbar}(A) = \operatorname{tr} D_{\hbar} A$, where D_{\hbar} is a density matrix. This excludes, for example, states with sharp position and infinite momentum. (These can be obtained as the Hahn-Banach extensions

of a pure state on the algebra of uniformly continuous functions of position alone, and assign zero probability to any finite momentum interval). Similarly, on the classical side we often consider states of the form $\omega_0(f) = \int \mu(d\xi) f(\xi)$, where μ is a probability measure on phase space. Note that this is a strong assumption on the state: there are many states on \mathfrak{A}_0 which live "at infinity", i.e., on the compactification points [We2] of the spectrum space of \mathfrak{A}_0 . However, for those states for which position and momentum are both finite with probability 1, we get the following somewhat simplified criterion for convergence. It is analogous to the convergence theorems for characteristic functions in probability theory (see, e.g., [Chu]). Recall that $\mathcal{C}_0(\Xi)$ denotes the complex valued functions on Ξ vanishing at infinity.

- 11 Proposition. Let ω_{\hbar} be an \hbar -sequence of normal states. Then the following conditions are equivalent:
- (1) j^* -lim_{\hbar} $\omega_{\hbar} = \omega_0$ exists, and is a measure on phase space.
- (2) For every $f \in \mathcal{C}_0(\Xi)$, the limit $\lim_{\hbar} \omega_{\hbar}(j_{\hbar 0}f) = \omega_0(f)$ exists, and ω_0 is normalized, i.e., $\sup \{\omega_0(f) | f \in \mathcal{C}_0(\Xi), f \leq 1\} = 1$.
- (3) For all $\xi \in \Xi$, the limit $\lim_{\hbar} \omega_{\hbar}(W^{\hbar}(\hbar \xi)) = \widehat{\omega}_{0}(\xi)$ exists, and $\xi \mapsto \widehat{\omega}_{0}(\xi)$ is a continuous function.

4. Examples and Miscellaneous Results

1. Functions of position or momentum

Let $f: \mathbb{R}^d \to \mathbb{R}$ be bounded and uniformly continuous, and let F_{\hbar} be the multiplication operator $(F_{\hbar}\psi)(x) = f(x)\psi(x)$. Then F_{\hbar} satisfies the equicontinuity condition in Theorem 8. Moreover, $j_{0\hbar}(F)$ is the convolution of f with a Gaussian of variance proportional to $\sqrt{\hbar}$. Hence, by the uniform continuity of f,

$$\left(j\lim_{\hbar} F_{\hbar}\right)(x,p) = f(x) \quad . \tag{4.1}$$

Similarly, let $\widetilde{F}_{\hbar} = f(P)$, where f is evaluated in the functional calculus of the d commuting self-adjoint operators $P_k = \frac{\hbar}{i} \frac{\partial}{\partial x_k}$. (This is the same as taking the Fourier transform, multiplying with f(p), and transforming back). Then

$$\left(j-\lim_{\hbar} \widetilde{F}_{\hbar}\right)(x,p) = f(p)$$
 (4.2)

2. Weyl operators

The Weyl operators (3.2) play a fundamental role. They oscillate too rapidly to be convergent (see Section 4.5), but with a suitable rescaling of the arguments they do converge. For fixed $\hat{x}, \hat{p} \in \mathbb{R}^d$, we set

$$E_{\hbar}(\widehat{x},\widehat{p}) = W^{\hbar}(\hbar\widehat{x},\hbar\widehat{p}) = e^{-\frac{i\hbar}{2}\widehat{x}\cdot\widehat{p}} \quad e^{i\widehat{p}\cdot Q} \quad e^{-i\widehat{x}\cdot P} \quad . \tag{4.3}$$

By the Product Theorem and the previous example, this converges to the phase space function $E_0(\widehat{x}, \widehat{p})$, defined as

$$E_0(\widehat{x}, \widehat{p})(x, p) = \exp(i(\widehat{p} \cdot x - \widehat{x} \cdot p)) = e^{i\sigma(\widehat{x}, \widehat{p}; x, p)} ,$$
or
$$E_0(\eta)(\xi) = e^{i\sigma(\eta, \xi)} .$$
(4.4)

The notational distinction between the two sets of Weyl operators reflects a difference in interpretation: while the basic Weyl operators $W^{\hbar}(\xi)$ implement a symmetry transformation, expectations of $E_{\hbar}(\xi)$ determine the probability distribution of position and momentum observables. This is precisely analogous to the dual role of selfadjoint operators in quantum mechanics as generators of one-parameter groups on the one hand, and as observables on the other. These also differ by a factor \hbar , e.g., the generator of the time evolution is not the observable H, but H/\hbar . Of course, this distinction is usually irrelevant ($\hbar = 1!$), but is crucial in the classical limit (see also Section 4.5 below).

3. Integrals of Weyl operators

Let μ be a finite (possibly signed) measure on \mathbb{R}^{2d} , and define

$$F_{\hbar}(\mu) = \int \mu(d\eta) E_{\hbar}(\eta) \quad . \tag{4.5}$$

By the previous example this is an integral of j-convergent sequences with \hbar -independent weights. It is easy to check using the Dominated Convergence Theorem that such sequences are also j-convergent. Moreover, the limit is the integral of the limits. In the present case we get the Fourier transform of the measure μ (with a symplectic twist, because Ξ and its dual vector space are identified via σ):

$$F_0(\mu)(\xi) = \left(j \lim_{\hbar} (F_{\hbar}(\mu))(\xi) = \int \mu(d\eta) \ e^{i\sigma(\eta,\xi)} \quad . \tag{4.6}$$

There are two interesting special cases: If μ happens to be absolutely continuous with respect to Lebesgue measure, the "quantum" Riemann-Lebesgue Lemma [We1] asserts that $F_{\hbar}(\mu)$ is a compact operator for all \hbar , and $F_{0}(\mu)$ is a continuous function vanishing at infinity. On the other hand, if μ is a sum of point measures, $F_{\hbar}(\mu)$ is an element of the CCR-algebra, i.e., the C*-algebra generated by the Weyl operators, and the limit function $F_{0}(\mu)$ is almost periodic. These correspondences are a special case of a correspondence theorem [We1,We2] for general phase space translation invariant spaces of operators and functions, respectively. This general result can be used to set up limit theorems for a variety of subspaces of \mathfrak{A}_{\hbar} .

The sequences $F_{\hbar}(\mu)$ with absolutely continuous μ of compact support have been made the basis of a discussion of the classical limit by Emch [Em1,Em2]. In his approach each classical observable F_0 thus has a unique \hbar -sequence of quantum observables F_{\hbar} associated with it, which is also typical for "deformation quantization" approaches [Ri1,Ri2,Ri3]. In our approach this constraint becomes unnecessary, both from a technical and from a conceptual point of view. Emch's main emphasis is on defining the (weak) convergence of states with respect to this particular set of sequences. The intersection between his "classical states", and our j^* -convergent states is described precisely by Proposition 11.

4. Resolvents of unbounded operators

By definition, j-convergent sequences are uniformly bounded in norm, which excludes the treatment of all standard quantum mechanical Hamiltonians. As a substitute, however, we can consider the resolvents of such operators. The following Theorem summarizes a few basic facts of this approach to unbounded operators.

12 Theorem. Let H_{\hbar} be an \hbar -sequence of (possibly unbounded) self-adjoint operators. We call H_{\hbar} **j-convergent in resolvent sense**, if $R_{\hbar}(z) = (H_{\hbar} - z)^{-1}$ is j-convergent for some $z \in \mathbb{C}$ with $\Im z \neq 0$. Then

- (1) $R_{\hbar}(z)$ is j-convergent for all z with $\Im z \neq 0$.
- (2) If V_{\hbar} is a j-convergent sequence with $V_{\hbar} = V_{\hbar}^*$, and H_{\hbar} is j-convergent in resolvent sense, then $H_{\hbar} + V_{\hbar}$ is j-convergent in resolvent sense.

Proof: (1) By the resolvent equation we have

$$R_{\hbar}(z') = \sum_{n=0}^{\infty} (z'-z)^n R_{\hbar}(z)^{n+1}$$
 ,

provided that $||(z'-z)R_{\hbar}(z)|| < 1$, which by self-adjointness of H_{\hbar} is guaranteed by $|z'-z| < |\Im mz|$. Each term in this sum is j-convergent by the Product Theorem, and convergence is uniform in \hbar . This suffices to establish j-convergence of the sum. Iterating this argument, we find j-convergence of $R_{\hbar}(z)$ for all z' in the same half plane as the originally given z. Since H_{\hbar} is assumed to be self-adjoint, we also get j-convergence of $R_{\hbar}(\overline{z}) = R_{\hbar}(z)^*$.

(2) We can argue exactly as in (1), using the series

$$(H_{\hbar} + V_{\hbar} - z)^{-1} = (H_{\hbar} - z)^{-1} \sum_{k=0}^{\infty} (V_{\hbar} (H_{\hbar} - z)^{-1})^{k}$$
,

which converges uniformly in \hbar , provided $||V_{\hbar}|| |\Im mz|^{-1} \le \varepsilon < 1$ for small \hbar . This will be the case if $|\Im mz| > ||V_0||$. For other values of z the convergence follows by (1).

An immediate application is to Schrödinger operators: the kinetic energy $H_{\hbar} = -\hbar^2/(2m)\Delta$ is j-convergent in resolvent sense by Section 4.1, and if V is a fixed uniformly continuous bounded potential, we conclude, for $\Im z \neq 0$:

$$j\lim_{\hbar} \left(\frac{-\hbar^2}{2m} \Delta + V(x) - z \mathbb{I} \right)^{-1} = R_0(z)$$
with
$$\left(R_0(z) \right) (x, p) = \left(\frac{p^2}{2m} + V(x) - z \mathbb{I} \right)^{-1} .$$
(4.7)

At first sight, it seems that the class of potentials for which this result holds is much larger. Indeed, the same technique is used to construct the Hamiltonian for relatively bounded perturbations [Kat], i.e., perturbations V for which $||V(H-z)^{-1}|| < 1$ for large z. The Coulomb potential is bounded relative to the Laplacian in this sense. However, in the above application the Laplacian is scaled down with a factor \hbar^2 , so this relative boundedness of V with respect to H cannot be used uniformly in \hbar , and this destroys the proof.

It is easy to see that not only this particular method fails for the attractive Coulomb potential, but the statement itself is false: suppose that the potential V is not bounded below, and let $R(x,p)=(p^2+V(x)-z)^{-1}$ be the classical resolvent function at $z\in\mathbb{C}$. If the resolvents of the corresponding Schrödinger operators were j-convergent, this function would have to be uniformly continuous. This is impossible: Let x_n be a sequence such that $V(x_n) \to -\infty$, and let p_n be a sequence such that $p_n^2 = -V(x_n)$. Then

$$R(x_n, p_n + \varepsilon) - R(x_n, p_n) = (2p_n\varepsilon + \varepsilon^2 - z)^{-1} + z^{-1}$$

For fixed ε the first term goes to zero, i.e., $\sup_{x,p} |R(x,p+\varepsilon) - R(x,p)| \ge |z|^{-1}$, and hence R is not uniformly continuous. It should be noted, however, that this negative result only

concerns *norm* convergence. Singular objects like the Coulomb resolvent may still be weakly convergent in the sense dual to the norm convergence of states [We6].

5. Implementing unitaries never converge

The time evolution, and all other symmetry transformations on $\mathcal{B}(\mathcal{H})$ are implemented by unitaries U_{\hbar} as $A_{\hbar} \mapsto U_{\hbar} A_{\hbar} U_{\hbar}^*$. Suppose that U_{\hbar} is j-convergent. Then we conclude with the Product Theorem that j-lim_{\hbar} $U_{\hbar} A_{\hbar} U_{\hbar}^* = (j$ -lim_{\hbar} $A_{\hbar})|j$ -lim_{\hbar} $U_{\hbar}|^2 = j$ -lim_{\hbar} A_{\hbar} . In other words, the symmetry transformation becomes trivial in the classical limit. On the other hand, the time evolution and many other canonical transformations act non-trivially in the limit by the Evolution Theorem 4. Hence in all these cases the implementing unitaries cannot converge.

An instructive special case is the phase space translation by $\eta \neq 0$. This clearly acts non-trivially in the limit, and is implemented by $X_{\hbar} = W^{\hbar}(\eta)$. We have

$$j_{0\hbar}(X_{\hbar})(\xi) = \exp\frac{i}{\hbar}\sigma(\eta,\xi) \cdot \exp\frac{-1}{4\hbar}\eta^2$$
 (4.8)

This converges to zero, uniformly in ξ . Hence the criterion (a) of Theorem 8 is satisfied, and would indicate the limit $X_0 = 0$. But, of course, (b) is violated for this "rapidly oscillating operator": we get

$$\mathbf{m}_{\hbar}(X_{\hbar}, \lambda) = \sup \left\{ \left| e^{i\alpha} - 1 \right| \middle| \alpha^{2} \le \frac{\lambda}{\hbar^{2}} (\eta^{2}) \right\} . \tag{4.9}$$

For fixed $\lambda \neq 0$ this expression is equal to 2 for all sufficiently small \hbar . It is clear from this example, that a notion of convergence based on Theorem 8.(a) alone would not satisfy the Product Theorem, and is hence too weak for many applications (compare Section 4.4, Section 4.7, and Section 4.9).

6. Point measures

The operators $\Gamma_{\hbar} = |\chi_{\hbar}\rangle\langle\chi_{\hbar}|$, which we have used in the definition of $j_{0\hbar}$ and $j_{0\hbar}$ are not j-convergent: $(j_{0\hbar}(\Gamma_{\hbar}))(\xi) = \exp(-\xi^2/(2\hbar))$ converges pointwise as $\hbar \to 0$, but not uniformly, (and not to a continuous function). On the other hand, we can also interpret the operators Γ_{\hbar} as the density matrices of an \hbar -sequence of states ω_{\hbar} . This sequence is j^* -convergent: for $A \in \mathcal{C}(\mathfrak{A}, j)$ we have

$$\lim_{\hbar} \omega_{\hbar}(A_{\hbar}) = \lim_{\hbar} \operatorname{tr}(\Gamma_{\hbar} A_{\hbar}) = \lim_{\hbar} (j_{0\hbar}(A_{\hbar}))(0) = A_{0}(0) \quad . \tag{4.10}$$

Hence these states converge to the point measure at the origin. More generally, we get from Proposition 11 the following statement: a sequence of normal states ω_{\hbar} converges to the point measure at the origin iff $\omega_{\hbar}(E_{\hbar}(\xi)) \to 1$ for every $\xi \in \Xi$.

In case each ω_{\hbar} has finite second moments we can give a simple and intuitive sufficient criterion for convergence to this point measure. Consider the standard oscillator Hamiltonian $H_{\hbar}^{\rm osc}$ (3.9). Then we claim the inequality

$$\frac{1}{2} \left(E_{\hbar}(\xi) + E_{\hbar}(\xi)^* \right) \ge \mathbb{I} - \xi^2 H_{\hbar}^{\text{osc}} \quad , \tag{4.11}$$

interpreted as an inequality between quadratic forms. To prove this, note that the inequality is unchanged under any symplectic linear transformation leaving the metric ξ^2 , and hence $H_{\hbar}^{\rm osc}$ invariant. We may thus transform to a standard form in which only one component, say the p_1 -component of ξ is non-zero. Then, according to (4.4), $E_{\hbar}(\xi) = \exp(ip_1Q_1)$, and in the functional calculus of Q_1 , we find $\Re e(E_{\hbar}(\xi)) = \cos(p_1Q_1) \geq \mathbb{I} - p_1^2Q_1^2/2 \geq \mathbb{I} - \xi^2 H_{\hbar}^{\rm osc}$. Evaluating now the inequality (4.11) on a sequence of states, we find that, if

$$\omega_{\hbar}(H_{\hbar}^{\text{osc}}) \longrightarrow 0 \quad \text{as} \quad \hbar \to 0 \quad ,$$

then $\omega_{\hbar}(E_{\hbar}(\xi)) \to 1$ for all ξ , and hence j^* -lim $_{\hbar} \omega_{\hbar}$ is the point measure at 0 by the above arguments. It is shown in [We4] that any such sequence ω_{\hbar} could have been used in the definition of $j_{\hbar\hbar'}$ instead of Γ_{\hbar} , without changing the class of convergent sequences.

7. Eigenstates

Let H_{\hbar} be a sequence of self-adjoint operators which are j-convergent in resolvent sense. Let λ_{\hbar} be a sequence of real numbers, converging to λ_0 , and let ψ_{\hbar} be an eigenvector with

$$H_{\hbar}\psi_{\hbar} = \lambda_{\hbar}\psi_{\hbar} \quad , \tag{4.12}$$

for each $\hbar > 0$. Let $\omega_{\hbar}(X) = \langle \psi_{\hbar}, X \psi_{\hbar} \rangle$ be the corresponding state on \mathfrak{A}_{\hbar} . Consider a cluster point ω_* of this sequence of states, i.e., the limit along a subsequence \hbar_n . Then by the Product Theorem we have

$$\omega_* \left(\left| R_0(z) - (\lambda_0 - z)^{-1} \right|^2 \right) = \lim_{\hbar_n \to 0} \omega_{\hbar_n} \left(\left| R_{\hbar}(z) - (\lambda_{\hbar} - z)^{-1} \right|^2 \right) = 0 \quad ,$$

because ω_{\hbar_n} is a sequence of eigenstates. It follows that ω_* , considered as a measure on (a compactification of) phase space is supported by the level set

$$\{\xi \mid H_0(\xi) = \lambda_0\} \quad .$$

In the one-dimensional case, and when the dynamics associated with H_{\hbar} is also j-convergent, we can say more: then ω_0 has to be invariant under the phase flow generated by H_0 . Hence it has to be equal to the micro-canonical ensemble at energy λ for the classical Hamiltonian H_0 . In particular, all cluster points of ω_{\hbar} coincide, and we have convergence.

8. WKB states

The basic states for the WKB-method are vectors of the form

$$\varphi_{\hbar}(x) = \varphi(x)e^{iS(x)/\hbar}$$
 , (4.13)

with a fixed vector $\varphi \in \mathcal{L}^2(\Xi)$, and the "action" $S : \mathbb{R}^d \to \mathbb{R}$. The distribution of "position" in these vectors is $|\varphi(x)|^2$, independently of \hbar , and the rapidly oscillating phase determines the momentum. Asymptotic estimates of expectation values in such states

are traditionally evaluated using the stationary phase method [Mas]. Since this typically involves some partial integration, the technical conditions in such results usually demand some smoothness of φ and S. In our context we can get by with the minimal assumptions needed to even state the asymptotic formula.

13 Theorem. Let $\varphi \in \mathcal{L}^2(\mathbb{R}^d)$ with $\|\varphi\| = 1$, and let $S : \mathbb{R}^d \to \mathbb{R}$ almost everywhere differentiable. Set $\omega_{\hbar}(A) = \langle \varphi_{\hbar}, A\varphi_{\hbar} \rangle$, with φ_{\hbar} from (4.13). Then ω_{\hbar} is j^* -convergent with limit ω_0 given by

$$\omega_0(f) = \int dx |\varphi(x)|^2 f(x, dS(x))$$
.

Proof: The states ω_{\hbar} are normal, and ω_0 is a probability measure on phase space. Hence we may apply Proposition 11. In the expression

$$\omega_{\hbar}(E_{\hbar}(x,p)) = \int dy \ \overline{\varphi(y)} \ \exp i \left\{ \frac{\hbar}{2} x \cdot p + p \cdot y - \frac{1}{\hbar} (S(y) - S(y - \hbar x)) \right\} \varphi(y - \hbar x)$$

we may replace $\varphi(y - \hbar x)$ by $\varphi(y)$: the error is bounded by $\|W^{\hbar}(\hbar x, 0)\varphi - \varphi\|$, which goes to zero by strong continuity of the translations on \mathcal{L}^2 . Since $|\varphi(y)|^2$ is integrable, and independent of \hbar , we may carry out the limit under the integral by the Dominated Convergence Theorem. This gives

$$\lim_{\hbar} \omega_{\hbar}(E_{\hbar}(x,p)) = \int dy |\varphi(y)|^2 \exp i\{p \cdot y - x \cdot dS(y)\} .$$

The exponential can be written as $E_0(x,p)(y,dS(y))$, which shows that $\omega_{\hbar}(E_{\hbar}(x,p)) \to \omega_0(E_0(x,p))$ with the ω_0 given in the Theorem.

When S is reasonably smooth, the set $\mathfrak{L}_S = \{(x, dS(x)) | x \in \Xi\}$, which contains the support of the measure ω_0 is a Lagrange manifold in phase space, i.e., a manifold on which the symplectic form vanishes. This property remains stable under time evolution, whereas the uniqueness of the projection $(x, dS(x)) \mapsto x$ from \mathfrak{L} onto the configuration space is obviously not stable. The points where this projection becomes singular are called caustics, and play an important role in the time dependent WKB-method [Mas]. At such points, and at the turning points of a bound state problem, it may become more profitable to play the same game with wave functions φ in momentum representation, and a p-dependent action S. The limits of such states can be treated exactly as above, so we will not do it explicitly.

9. Interference terms, and pure states converging to mixed states

The WKB-states ω_{\hbar} of the previous example are pure for every non-zero \hbar . Yet their limit is not a point measure, i.e., the limit is a mixed state. Is the funny support of the limit measure (the Lagrange manifold) perhaps a consequence of this purity? Are the limits of pure states always singular with respect to Lebesgue measure, as Section 4.7 also suggests?

We will see in this example that, to the contrary, any measure on phase space can be the limit of a sequence of pure states.

The basic observation is that the classical limit annihilates certain "interference terms". In The following Proposition describes a general situation in which this happens. Recall that two states ω, ω' on a C*-algebra are called orthogonal, if $\|\omega - \omega'\| = 2$, or, equivalently, if, for every $\varepsilon > 0$, there is an element $0 \le F_{\varepsilon} \le \mathbb{I}$ in the algebra such that $\omega(F_{\varepsilon}) \le \varepsilon$, and $\omega'(F_{\varepsilon}) \ge 1 - \varepsilon$. On the abelian algebra \mathfrak{A}_0 two states (measures) are orthogonal if they have disjoint supports, but also if one is, say, a sum of point measures, and the other is absolutely continuous with respect to Lebesgue measure on phase space.

14 Proposition. Let φ_{\hbar} , ψ_{\hbar} be \hbar -sequences of unit vectors such that the states $\langle \varphi_{\hbar}, \cdot \varphi_{\hbar} \rangle$ and $\langle \psi_{\hbar}, \cdot \psi_{\hbar} \rangle$ are j^* -convergent with orthogonal limits. Then, for any j-convergent \hbar -sequence A_{\hbar} , we have

$$\lim_{\hbar} \langle \varphi_{\hbar}, A_{\hbar} \psi_{\hbar} \rangle = 0 \quad .$$

Proof: Let $\omega_{\varphi}, \omega_{\psi}$ be the limit states of the sequences in the Proposition. Pick F_{ε} such that $\omega_{\varphi}(F_{\varepsilon}) \leq \varepsilon$, and $\omega_{\psi}(\mathbb{I} - F_{\varepsilon}) \leq \varepsilon$, and let $F_{\varepsilon,\hbar}$ be a j-convergent \hbar -sequence with $j \lim_{\hbar} F_{\varepsilon,\hbar} = F_{\varepsilon}$. Then

$$\begin{aligned} |\langle \varphi_{\hbar}, A_{\hbar} \psi_{\hbar} \rangle| &\leq |\langle \varphi_{\hbar}, F_{\varepsilon, \hbar} A_{\hbar} \psi_{\hbar} \rangle| + |\langle \varphi_{\hbar}, A_{\hbar} (\mathbb{I} - F_{\varepsilon, \hbar}) \psi_{\hbar} \rangle| + |\langle \varphi_{\hbar}, [A_{\hbar}, F_{\varepsilon, \hbar}] \psi_{\hbar} \rangle| \\ &\leq ||A_{\hbar}|| \, ||F_{\varepsilon, \hbar} \varphi_{\hbar}|| + ||A_{\hbar}|| \, ||(\mathbb{I} - F_{\varepsilon, \hbar}) \psi_{\hbar}|| + ||[A_{\hbar}, F_{\varepsilon, \hbar}]|| \end{aligned}.$$

The first two terms converge to limits less than ε by the choice of F_{ε} , and the last term goes to zero by the Product Theorem.

15 Theorem. Let ω_0 be a state on \mathfrak{A}_0 , represented by a probability measure on phase space. Then there is an \hbar -sequence φ_{\hbar} of unit vectors such that ω_0 is the limit of the j^* -convergent \hbar -sequence $\omega_{\hbar} = \langle \varphi_{\hbar}, \cdot \varphi_{\hbar} \rangle$ of pure states.

Proof: By Proposition 11.(2) we have to construct φ_{\hbar} such that

$$\omega_{\hbar}'(f) = \langle \varphi_{\hbar}, j_{\hbar 0}(f)\varphi_{\hbar} \rangle \longrightarrow \omega_{0}(f) \quad , \tag{*}$$

for all $f \in \mathcal{C}_0(\Xi)$. Let $f_n \in \mathcal{C}_0(\Xi)$ be a norm dense sequence. Since the states are uniformly bounded, it suffices to show $\omega_{\hbar}'(f_n) \to \omega_0(f_n)$ for all n. We will do this by constructing a sequence of vectors φ_{\hbar} , and a sequence $\hbar(N)$, $N \in \mathbb{N}$, such that $\hbar(N) \to 0$ as $N \to \infty$, and

$$|\langle \varphi_{\hbar}, j_{\hbar 0}(f_n)\varphi_{\hbar}\rangle - \omega_0(f_n)| \le 2^{-N}$$

for $n \leq N$, and $\hbar \leq \hbar(N)$. We first pick a state $\dot{\omega}_N$, which is a sum of finitely many point measures (supported on different points) such that $|\omega_0(f_n) - \dot{\omega}_N(f_n)| \leq 2^{-(N+1)}$. We know from Section 4.6 that we can find pure states converging to any point measure, and combining these using Proposition 14 we find vectors φ_{\hbar} such that $|\langle \varphi_{\hbar}, j_{\hbar 0}(f_n) \varphi_{\hbar} \rangle - \dot{\omega}_N(f_n)| \leq$

 $2^{-(N+1)}$, for sufficiently small \hbar . These are the vectors that have the desired approximation property.

10. Wigner functions

The Wigner function [Wig], or "quasi-probability density" of a state ω can be written as

$$(\mathfrak{W}_{\hbar}\omega)(\xi) = (2/\hbar)^d \ \omega(\alpha_{\xi}^{\hbar}(\Pi)) \quad , \tag{4.14}$$

where $(\Pi\varphi)(x) = \varphi(-x)$ is the parity operator [**Gro**]. Here we have chosen the normalization such that formally, or with suitable regularization, $(2\pi)^{-d} \int dx \, dp \, (\mathfrak{W}_{\hbar}\omega)(x,p) = 1$. Of course, $\mathfrak{W}_{\hbar}\omega$ is rarely positive [**Hud,BW**], and in general not even integrable. Ignoring such technical quibbles, however, as most of the literature on Wigner functions does, we get a "simplified" formulation of the classical limit, and also an interesting class of convergent states.

The modified definition of the classical limit is based on an alternative definition of $j_{0\hbar}$ and $j_{\hbar 0}$, namely as the usual Wigner-Weyl quantization and dequantization maps. These can be defined using the adjoint of (4.14):

$$\int \frac{dx \, dp}{(2\pi)^d} \left(\mathfrak{W}_{\hbar} \omega \right) (x, p) \, \left(j_{0\hbar}^{\mathfrak{W}} A \right) (x, p) = \omega(A)$$

$$j_{\hbar 0}^{\mathfrak{W}} = \left(j_{0\hbar}^{\mathfrak{W}} \right)^{-1}$$

$$j_{\hbar \hbar'}^{\mathfrak{W}} = j_{\hbar 0}^{\mathfrak{W}} j_{0\hbar'}^{\mathfrak{W}} .$$

$$(4.15)$$

From the observation that \mathfrak{W}_{\hbar} maps the state ω to the measure on phase space with the same Fourier transform [We1] (or Weyl transform) we get

$$j_{\hbar\hbar'}^{\mathfrak{W}}\left(E_{\hbar'}(\xi)\right) = E_{\hbar}(\xi) \quad . \tag{4.16}$$

Because $\mathfrak{W}_{\hbar}\omega$ is in general not integrable, the transformations (4.15) are all ill-defined as they stand, and unbounded for the norms of $\mathcal{B}(\mathcal{H})$ and $\mathcal{L}^{\infty}(\Xi)$ [Dau]. There are several ways to give them a meaning on some restricted domain. For example, all transformations make sense on the Hilbert-Schmidt class and $\mathcal{L}^{2}(\Xi)$, because \mathfrak{W}_{\hbar} is unitary up to a factor:

$$\int \frac{dx \, dp}{(2\pi)^d} \, \overline{(\mathfrak{W}_{\hbar}\omega)(x,p)} \big(\mathfrak{W}_{\hbar}\omega'\big)(x,p) = \hbar^{-d} \operatorname{tr}\big(D_{\omega}^* D_{\omega'}\big) \quad , \tag{4.17}$$

where D_{ω} and $D_{\omega'}$ are the density matrices of ω and ω' . Further customary domains of such transformations involve additional smoothness assumptions [**Rob**]. Whether one wants to burden the definition of the classical limit with such constraints is a matter of taste. That they are not necessary is demonstrated by the present paper, or so the author hopes.

The transformation \mathfrak{W}_{\hbar} can also be used directly to define a sequence of states ω_{\hbar} by fixing a density $\rho \in \mathcal{L}^1(\Xi)$, and demanding

$$\mathfrak{W}_{\hbar}\omega_{\hbar} = \rho \quad . \tag{4.18}$$

We have to assume that ρ is chosen so that ω_{\hbar} is given by a trace class operator D_{\hbar} . Let us denote the classical state with density ρ by ω_0 . Is this the classical limit of the sequence ω_{\hbar} , i.e., do we have

$$j^*-\lim_{\hbar} \omega_{\hbar} = \omega_0 \quad ? \tag{4.19}$$

In order to decide this, let us first consider a j-convergent sequence of quantum observables of the special form $A_{\hbar} = j_{\hbar 0} A_0$. Then

$$\omega_{\hbar}(A_{\hbar}) = \operatorname{tr}(D_{\hbar}A_{\hbar})$$

$$= \int \frac{dx \, dp}{(2\pi\hbar)^d} A_0(x,p) \operatorname{tr}(D_{\hbar}\alpha_{x,p}^{\hbar}(\Gamma_{\hbar}))$$

$$= \int \frac{dx \, dp}{(2\pi)^d} \frac{dx' \, dp'}{(2\pi)^d} A_0(x,p) K_{\hbar}(x-x',p-p') \rho(x',p') ,$$

where we have evaluated the trace using (4.17), and have used the Wigner function $K_{\hbar}(x,p) = (2/\hbar)^d \exp(-(x^2 + p^2)/\hbar)$ of the coherent projection Γ_{\hbar} . This kernel goes to a δ -function as $\hbar \to 0$, and since A_0 is uniformly continuous, $\omega_{\hbar}(A_{\hbar})$ converges to $(2\pi)^{-d} \int dx \, dp \, A_0(x,p) \rho(x,p) = \omega_0(A_0)$. So it appears that (4.19) holds.

What makes this computation work is the fact that the convolution of two Wigner functions of trace class operators (here D_{\hbar} and Γ_{\hbar}) is always integrable. Thus the bad properties of ω_{\hbar} are averaged out. The argument fails, however, when A_{\hbar} is not of the special form $A_{\hbar} = j_{\hbar 0} A_0$. It is true that the A_{\hbar} of this form are norm dense ($||A_{\hbar} - j_{\hbar 0} A_0|| \to 0$ for any j-convergent sequence). However, this kind of approximation for a general \mathfrak{A}_{\hbar} is only sufficient to show the convergence of $\omega_{\hbar}(A_{\hbar})$, when D_{\hbar} is uniformly bounded in trace norm as $\hbar \to 0$. Only in this case the conclusion (4.19) is valid. It is easy to find densities ρ , however, such that D_{\hbar} is not even trace class for any \hbar (any density ρ , which is unbounded, or discontinuous, or does not go to zero at infinity will do). For such densities the sequence $\omega_{\hbar}(A_{\hbar})$ may diverge, even if $||A_{\hbar}|| \to 0$. In particular the Ansatz (4.18) with such ρ never yields a j^* -convergent sequence ω_{\hbar} .

If we value the statistical interpretation of quantum mechanics, we should demand not only that D_{\hbar} has uniformly bounded trace norm, but also that D_{\hbar} (and hence ω_{\hbar}) is positive for all \hbar , or at least for a sequence \hbar_n along which we want to take the classical limit. In the terminology of Narcowich [Nar] this means that the "Wigner spectrum" of the Fourier transform of ρ contains the sequence \hbar_n . This is a severe constraint on the classical densities ρ [BW].

5. Proofs

In this section we prove the results stated in Section 2 and Section 3, apart from the Theorems 3 and 4 about Poisson brackets and the dynamics [We5]. We first state a Lemma that allows us to handle the maps $j_{\hbar\hbar'}$ with $\hbar, \hbar' \geq 0$ and their compositions more easily. The basic observation is that since all these maps are normal, they are completely determined by their action on Weyl operators. Moreover, since Weyl operators are eigenvectors of the phase space translations (3.6), and these are intertwined by $j_{\hbar\hbar'}$, Weyl operators must be mapped into Weyl operators— up to a scalar factor. This scalar factor is what distinguishes $j_{\hbar\hbar'}^{\mathfrak{W}}$ after (4.16) from $j_{\hbar\hbar'}$, and some such a factor is necessary to make $j_{\hbar\hbar'}$ positive (see [We4] for a complete discussion).

16 Lemma. For $\hbar \geq 0$, let $E_{\hbar}(x,p)$ be defined as in (4.3), and let $j_{\hbar\hbar'}$ be as defined in equations (3.10) and (3.12). Then, for $\hbar, \hbar' \geq 0$, and $A \in \mathcal{B}(\mathcal{H})$, we have

$$j_{\hbar\hbar'}E_{\hbar'}(x,p) = E_{\hbar}(x,p) \exp \frac{-(\hbar + \hbar')}{4}(x^2 + p^2)$$
 , (5.1)

and

$$j_{\hbar\hbar'}j_{\hbar'\hbar}(A) = \int \frac{dx \, dp}{(2\pi(\hbar + \hbar'))^d} \exp \frac{-(x^2 + p^2)}{2(\hbar + \hbar')} \, \alpha_{x,p}^{\hbar}(A) \quad , \tag{5.2}$$

Proof: A Gaussian integration using (3.8) and (3.2) gives

$$\langle \chi_{\hbar}, W^{\hbar}(x, p)\chi_{\hbar} \rangle = \exp \frac{-1}{4\hbar} (x^2 + p^2) \quad . \tag{5.3}$$

From this and the Weyl relations (3.3) we get the equation (5.1) for the special case $\hbar = 0$. The case $\hbar' = 0$ is verified by the following computation:

$$j_{\hbar 0} E_0(x, p) = \int \frac{dx' dp'}{(2\pi\hbar)^d} \exp i(x' \cdot p - p' \cdot x) \, \alpha_{x', p'}^{\hbar}(\Gamma_{\hbar})$$

$$= W^{\hbar}(\hbar x, \hbar p) \, \int \frac{dx' dp'}{(2\pi\hbar)^d} \, \alpha_{x', p'}^{\hbar} \Big(W^{\hbar}(\hbar x, \hbar p)^* \Gamma_{\hbar} \Big)$$

$$= E_{\hbar}(x, p) \, \operatorname{tr} \big(W^{\hbar}(\hbar x, \hbar p)^* \Gamma_{\hbar} \big)$$

$$= E_{\hbar}(x, p) \, \exp \frac{-\hbar}{4} (x^2 + p^2) \quad .$$

For general \hbar , \hbar' we get (5.1) by composition. In the same way we find $j_{\hbar\hbar'}j_{\hbar'\hbar}E_{\hbar}(x,p) = E_{\hbar}(x,p) \exp \frac{-(\hbar+\hbar')}{2}(x^2+p^2)$. When A is a Weyl operator, (5.2) can be verified by computing the Gaussian integral. For other operators A, (5.2) follows, because $j_{\hbar\hbar'}j_{\hbar'\hbar}$ is ultraweakly continuous, and the Weyl operators span an irreducible algebra of operators, which is hence ultraweakly dense in $\mathcal{B}(\mathcal{H})$.

Proof of Theorem 9: From Lemma 16 and the definition (3.14) of the modulus of continuity we get

$$||f - j_{0\hbar}j_{\hbar 0}f|| = \sup_{x,p} \left| \int \frac{dx' \, dp'}{(2\pi\hbar)^d} \exp \frac{-1}{2\hbar} \left((x - x')^2 + (p - p')^2 \right) \left(f(x,p) - f(x',p') \right) \right|$$

$$\leq \int \frac{dx \, dp}{(2\pi\hbar)^d} \exp \frac{-1}{2\hbar} \left(x^2 + p^2 \right) \mathbf{m}_0(f, (x^2 + p^2))$$

$$= \int_0^\infty d\theta \, \frac{\theta^{d-1}}{(d-1)!} e^{-\theta} \, \mathbf{m}_0(f, 2\hbar\theta) \quad .$$

The estimate (3.16) now follows from

$$||(j_{\hbar\hbar''} - j_{\hbar\hbar'}j_{\hbar'\hbar''})X|| = ||j_{\hbar0}(\operatorname{id} - j_{0\hbar'}j_{\hbar'0})j_{0\hbar''}X||$$

 $||j_{\hbar 0}X|| \leq ||X||$, and $\mathbf{m}_0(j_{0\hbar''}X,\lambda) \leq \mathbf{m}_{\hbar''}(X,\lambda)$. The proof of the estimate (3.17) is completely analogous.

Proof of Theorem 8: Assume that A_{\hbar} is j-convergent. We first show the equicontinuity condition (b). By Definition 1 we can pick \hbar' such that $\overline{\lim_{\hbar}} \|A_{\hbar} - j_{\hbar\hbar'} A_{\hbar'}\| \leq \varepsilon/8$. Next we pick $\hbar(\varepsilon)$ such that $\|A_{\hbar} - j_{\hbar\hbar'} A_{\hbar'}\| \leq \varepsilon/4$ for $\hbar \leq \hbar(\varepsilon)$. Since $A_{\hbar'} \in \mathfrak{A}_{\hbar'}$, we can find $\lambda(\varepsilon)$ such that $\mathbf{m}_{\hbar'}(A_{\hbar'}, \lambda) \leq \varepsilon/2$ for $\lambda \leq \lambda(\varepsilon)$. Hence, for $\hbar \leq \hbar(\varepsilon)$, and $\lambda \leq \lambda(\varepsilon)$,

$$\mathbf{m}_{\hbar}(A_{\hbar}, \lambda) \leq \mathbf{m}_{\hbar}(j_{\hbar\hbar'}A_{\hbar'}, \lambda) + 2 \|A_{\hbar} - j_{\hbar\hbar'}A_{\hbar'}\|$$

$$\leq \mathbf{m}_{\hbar'}(A_{\hbar'}, \lambda) + \varepsilon/2 \leq \varepsilon .$$

To see condition (a), the uniform convergence of $j_{0\hbar}A_{\hbar}$, we estimate

$$||j_{0\hbar}A_{\hbar} - j_{0\hbar'}A_{\hbar'}|| \le ||j_{0\hbar}(A_{\hbar} - j_{\hbar\hbar'}A_{\hbar'})|| + ||(j_{0\hbar}j_{\hbar\hbar'} - j_{0\hbar'})A_{\hbar'}||$$

$$\le ||A_{\hbar} - j_{\hbar\hbar'}A_{\hbar'}|| + ||(\mathrm{id} - j_{0\hbar}j_{\hbar0})j_{0\hbar'}A_{\hbar'}|| .$$

Since $j_{0\hbar'}A_{\hbar'}$ is uniformly continuous, the second term goes to zero as $\hbar \to 0$. Hence, using the j-convergence of A_{\hbar} for the first term, we get $\lim_{\hbar'} \overline{\lim}_{\hbar} \|j_{0\hbar}A_{\hbar} - j_{0\hbar'}A_{\hbar'}\| = 0$, which implies that $j_{0\hbar}A_{\hbar}$ is norm-Cauchy in \mathfrak{A}_0 , and hence converges.

Conversely, assume that (a) and (b) are satisfied. Then

$$||A_{\hbar} - j_{\hbar\hbar'} A_{\hbar'}|| \le ||A_{\hbar} - j_{\hbar0} j_{0\hbar} A_{\hbar}|| + ||j_{\hbar0} j_{0\hbar} A_{\hbar} - j_{\hbar0} j_{0\hbar'} A_{\hbar'}||$$

$$\le \int \mu_d(d\theta) \mathbf{m}_{\hbar} (A_{\hbar}, 2\hbar\theta) + ||j_{0\hbar} A_{\hbar} - j_{0\hbar'} A_{\hbar'}||$$

The integrand in the first term goes to zero as $\hbar \to 0$, for every θ due to condition (b), so the first term vanishes in this limit by dominated convergence. Hence by condition (a), $\lim_{\hbar'} \overline{\lim}_{\hbar} \|A_{\hbar} - j_{\hbar\hbar'} A_{\hbar'}\| = 0$.

Proof of Proposition 7: Let us denote, for the sake of this proof, the abstract limit space of Definition 1 by \mathfrak{A}_{∞} , and the space of uniformly continuous functions from (3.13.*b*) by \mathfrak{A}_0 . Then the equation

$$j_{0\infty}(j-\lim_{\hbar}A_{\hbar}) = \lim_{\hbar}j_{0\hbar}A_{\hbar}$$
,

for j-convergent A_{\hbar} , defines an operator $j_{0\infty}: \mathfrak{A}_{\infty} \to \mathfrak{A}_{0}$, because j-lim $_{\hbar} A_{\hbar} = 0$ is defined as $\lim_{\hbar} \|A_{\hbar}\| = 0$, and hence implies $\lim_{\hbar} j_{0\hbar} A_{\hbar} = 0$. $j_{0\infty}$ is surjective, because j-lim $_{\hbar} j_{\hbar 0} f = f$ for $f \in \mathfrak{A}_{0}$, and is injective by the estimate (3.17). Since both $j_{0\hbar}$ and $j_{\hbar 0}$ are contractive the same arguments also show that $j_{0\infty}$ is isometric.

Proof of Corollary 10: j-convergence in (1) follows immediately from the Theorem, and the value of the limit follows from the identification of the limit space. For (2) it suffices to evaluate ω_{\hbar} on j-convergent sequences of the form (1), for which the convergence again follows from (3.16) with $\hbar = 0$. (3) follows from the observation that

$$\lim_{\hbar} \|A_{\hbar} - j_{\hbar 0} A_0\| = 0 \quad , \tag{5.4}$$

for any $A \in \mathcal{C}(\mathfrak{A}, j)$.

Proof of Proposition 11: (1) \Rightarrow (3): By Section 4.2, $E_{\hbar}(\xi) = W^{\hbar}(\hbar \xi)$ is *j*-convergent, hence the existence of the limit is clear, which is then equal to $\omega_0(E_0(\xi))$. This is the Fourier transform of the measure ω_0 , which is continuous by Bochner's Theorem [**Kat**].

(3) \Rightarrow (2): Positivity of ω_{\hbar} is equivalent [**We1,BW**] to the positive definiteness of all matrices $M^{\hbar}_{\nu\mu}$, $\nu, \mu = 1, \dots, N$ defined by

$$M_{\nu\mu}^{\hbar} = \omega_{\hbar} \left(E_{\hbar} (\xi_{\nu} - \xi_{\mu}) \right) e^{i\hbar\sigma(\xi_{\nu}, \xi_{\mu})}$$

for all choices of $\xi_1, \ldots, \xi_N \in \Xi$. In the limit $\hbar \to 0$ this becomes the positive definiteness hypothesis in Bochner's theorem, which together with the postulated continuity implies that $\widehat{\omega}_0(\xi)$ is the Fourier transform of a positive measure ω_0 on Ξ , i.e., $\widehat{\omega}_0(\xi) = \omega_0(E_0(\xi))$. The normalization of this measure follows by setting $\xi = 0$.

It suffices to show convergence for $f = F_0$ in a norm dense subset of $C_0(\Xi)$. For this we take the Fourier transforms of \mathcal{L}^1 -functions in the sense of Section 4.3. Explicitly, we let $f = \int d\xi \, \rho(\xi) E_0(\xi)$ with fixed $\rho \in \mathcal{L}^1(\Xi)$. Then

$$j_{\hbar 0} = \int d\xi \ \rho(\xi) e^{-\hbar \xi^2/4} \ E_{\hbar}(\xi) \quad ,$$
 and
$$\omega_{\hbar}(j_{\hbar 0} f) = \int d\xi \ \rho(\xi) e^{-\hbar \xi^2/4} \ \omega_{\hbar} \big(E_{\hbar}(\xi) \big)$$

holds for all $\hbar \geq 0$, and the claim follows by dominated convergence.

 $(2)\Rightarrow(1)$: By Corollary 10.(3) we have to show that the convergence $\omega_{\hbar}(j_{\hbar 0}f) \equiv \omega'_{\hbar}(f) \rightarrow \omega_{0}(f)$ extends from $f \in \mathcal{C}_{0}(\Xi)$ to all $f \in \mathfrak{A}_{0}$. By the normalization condition in (2), we can find $f_{\varepsilon} \in \mathcal{C}_{0}(\Xi)$ such that $0 \leq f_{\varepsilon} \leq 1$, and $\omega_{0}(f) \geq 1 - \varepsilon$. Hence $\omega'_{\hbar}(f_{\varepsilon}) \geq 1 - 2\varepsilon$ for $\hbar \leq \hbar(\varepsilon)$. But then, for arbitrary $f \in \mathfrak{A}_{0}$,

$$|\omega_{\hbar}'(f) - \omega_0(f)| \le |\omega_{\hbar}'(f(1 - f_{\varepsilon}))| + |\omega_{\hbar}'(ff_{\varepsilon}) - \omega_0(ff_{\varepsilon})| + |\omega_0(f(1 - f_{\varepsilon}))|$$

Then, for $\hbar \leq \hbar(\varepsilon)$, the first and last term are bounded by $2\varepsilon ||f||$ and $\varepsilon ||f||$, respectively, and the middle term goes to zero, because $ff_{\varepsilon} \in \mathcal{C}_0(\Xi)$.

Proof of the Product Theorem 2: Let A_{\hbar} , B_{\hbar} be convergent \hbar -sequences. We have to show the convergence of $C_{\hbar} = A_{\hbar}B_{\hbar}$. Two observations help to simplify the proof: firstly we may replace A_{\hbar} by A'_{\hbar} such that $||A_{\hbar} - A'_{\hbar}|| \to 0$, and similarly for B_{\hbar} . Note that this modification will also not change j-lim $_{\hbar}$ C_{\hbar} . Hence we may take $A_{\hbar} = j_{\hbar 0}A_{0}$, and $B_{\hbar} = j_{\hbar 0}B_{0}$. Secondly, the estimate

$$\mathbf{m}_{\hbar}(A_{\hbar}B_{\hbar},\lambda) \leq \mathbf{m}_{\hbar}(A_{\hbar},\lambda) \|B_{\hbar}\| + \|A_{\hbar}\| \mathbf{m}_{\hbar}(B_{\hbar},\lambda)$$

shows that C_{\hbar} satisfies the equicontinuity condition in Theorem 8, since A_{\hbar} and B_{\hbar} do. Therefore, by that Theorem, it suffices to show that, for $A_0, B_0 \in \mathfrak{A}_0$,

$$\lim_{h \to \infty} ||j_{0h}((j_{h0}A)(j_{h0}B)) - A_0B_0|| = 0 .$$

This norm is the supremum norm in the function algebra \mathfrak{A}_0 , hence it suffices to estimate it at any point, say the origin, in terms of data, which do not change under translation. Specifically, we will give a bound on

$$|j_{0\hbar}((j_{\hbar 0}A_0)(j_{\hbar 0}B_0))(0) - A_0(0)B_0(0)|$$
 (*)

by a quantity depending only on moduli of continuity of A_0 and B_0 . Then (*) is bounded by

$$|j_{0\hbar} (j_{\hbar 0} (A_0 - A_0(0) \mathbb{I}) j_{\hbar 0} (B_0 - B_0(0) \mathbb{I}))(0)| + |A_0(0)| ||B_0 - j_{0\hbar} j_{\hbar 0} B_0|| + ||A_0 - j_{0\hbar} j_{\hbar 0} A_0|| |(j_{0\hbar} j_{\hbar 0} B_0)(0)| ,$$

where the terms in the second line go to zero by virtue of (3.16). Hence in (*) we may suppose that $A_0(0) = B_0(0) = 0$ and, consequently, $|A_0(\xi)| \leq \mathbf{m}_0(A_0, \xi^2)$. Inserting the definitions (3.10.a') and (3.10.b') of $j_{0\hbar}$ and $j_{\hbar 0}$, we obtain

$$|j_{0\hbar}((j_{\hbar 0}A_{0})(j_{\hbar 0}B_{0}))(0)|$$

$$\leq \int \frac{dx\,dp}{(2\pi\hbar)^{d}} \frac{dx'\,dp'}{(2\pi\hbar)^{d}} |A_{0}(x,p)| |B_{0}(x',p')| \left| \operatorname{tr}\left(\Gamma_{\hbar}\alpha_{x,p}^{\hbar}(\Gamma_{\hbar})\alpha_{x',p'}^{\hbar}(\Gamma_{\hbar})\right)\right|$$

$$\leq \int \frac{dx\,dp}{(2\pi\hbar)^{d}} \frac{dx'\,dp'}{(2\pi\hbar)^{d}} \,\mathbf{m}_{0}(A_{0},x^{2}+p^{2}) \,\mathbf{m}_{0}(B_{0},x'^{2}+p'^{2}) \times \left| \langle \chi_{\hbar},W^{\hbar}(x,p)\chi_{\hbar}\rangle \langle \chi_{\hbar},W^{\hbar}(x,p)^{*}W^{\hbar}(x',p')\chi_{\hbar}\rangle \langle \chi_{\hbar},W^{\hbar}(x',p')^{*}\chi_{\hbar}\rangle \right|$$

$$\leq \int \frac{dx\,dp}{(2\pi\hbar)^{d}} \frac{dx'\,dp'}{(2\pi\hbar)^{d}} \,\mathbf{m}_{0}(A_{0},x^{2}+p^{2}) \,\mathbf{m}_{0}(B_{0},x'^{2}+p'^{2}) \times \left| \exp \frac{-1}{4\hbar}(x^{2}+p^{2}) \,\exp \frac{-1}{4\hbar}(x'^{2}+p'^{2}) \right|$$

$$\leq 2^{2d} \int \mu_{d}(d\theta)\mathbf{m}_{0}(A_{0},4\hbar\theta) \int \mu_{d}(d\theta')\mathbf{m}_{0}(B_{0},4\hbar\theta') .$$

Note that we are justified in using the weak* integrals defining $j_{\hbar 0}$ because in both integrations in the second line the definition of $j_{\hbar 0}$ is used under the trace with a trace class operator. In any case, since the integrals in the last line go to zero by dominated convergence, we find that $|j_{0\hbar}((j_{\hbar 0}A_0)(j_{\hbar 0}B_0))(0)| \to 0$. The estimate involves only the moduli of continuity of A and B, which concludes the proof.

6. Further extensions

(1) Alternative definitions of $j_{\hbar\hbar'}$

It was claimed in Section 2 that the precise definition of $j_{\hbar\hbar'}$ is not essential, since asymptotically close systems of comparison maps yield the same class of j-convergent \hbar -sequences. In [We4] the class of alternative choices of $j_{\hbar\hbar'}$ with this property is studied systematically. Surprisingly, there is even one choice for which the chain relation $j_{\hbar\hbar''} = j_{\hbar\hbar'} j_{\hbar'\hbar''}$ is satisfied exactly. Hence the classical limit can be understood as an ordinary inductive limit of ordered normed spaces. The "sharpest possible" comparison maps satisfying the chain relation are essentially unique (i.e., up to the choice of a complex structure on phase space).

(2) Norm limits of states

It is easy to define comparison maps $\tilde{\jmath}_{\hbar\hbar'}$ for density matrices, which determine the notion of a norm convergent sequence of states in the classical limit: for example we may take $\tilde{\jmath}_{\hbar\hbar'}$ as the pre-adjoint of $j_{\hbar'\hbar}$ from Section 3. The limit space then consists of all integrable functions on phase space [We6]. Also the evaluation of a norm convergent sequence of states on a norm convergent sequence of observables produces a convergent sequence of numbers, or, what is the same thing, norm convergence of either states or observables implies weak convergence. The notion of weak convergence of observables in the classical limit allows one to discuss, for example, the convergence of spectral projections. However, the Product Theorem is lost for this weak convergence. The limits of WKB states or eigenstates (see Section 4.7 and Section 4.8) do not exist in norm, since the limit measures are not absolutely continuous. On the other hand, under suitable conditions the equilibrium states belonging to a norm convergent sequence of Hamiltonians do converge in norm.

(3) Dynamics

The definition of the class $C^2(\mathfrak{A}, j)$, as well as the proofs of Theorem 3 and Theorem 4 will be given in [We5]. As written, these theorems require bounded Hamiltonians, which comes from the technical requirement that the time evolution should be strongly continuous on \mathfrak{A}_{\hbar} . Not even the time evolution of the free particle satisfies this. On the other hand, by restricting \mathfrak{A}_{\hbar} to the space of compact operators with adjoined identity, certain unbounded Hamiltonians can be treated, as well. Note, however, that a version of the Evolution Theorem can only hold if the classical time evolution exists for all times, so some restrictions on H_{\hbar} are always needed. A good way of handling unbounded Hamiltonians is also to study the dynamics in the norm limit of states (see (2), and [Hep,Hag]). In the deformation quantization approach, dynamics was recently discussed in [Ri3].

(4) Classical trajectories

The Evolution Theorem does not explain how, in the classical limit, a description of the systems in terms of trajectories becomes possible. The statistics of trajectories should be the limit of a sequence of continual measurement processes depending on \hbar . One can set up such processes quite easily in the framework of E.B. Davies [Dav], and thus obtains an idealized description of a measuring device which is always in interaction with the system under consideration, and produces as output a sequence of random events, each of which is described by a Poisson distributed random time, and a random point in phase space. The rate ν of random events can be chosen arbitrarily, but it is clear that a larger rate will introduce a stronger perturbation of the free evolution. What happens in the classical limit now depends on how this rate ν is scaled as $\hbar \to 0$. If we take $\nu \to \infty$, but $\nu \hbar \to 0$, we will get a classical process, which is concentrated on the classical orbits, and has the initial condition as the only random parameter. On the other hand, if we take $\nu \hbar \to C$, some quantum perturbations of the free evolution survive the limit, and we get a diffusion in phase space with diffusion constant proportional to C (compare [FLM]), and with a drift given by the Hamiltonian vector field. Joint work on these issues is in progress with Fabio Benatti.

(5) Higher orders in \hbar

In the WKB method one is usually not only interested in the classical limit, but in the asymptotic expansion of the wave functions to all orders in \hbar . In this paper we have only considered the limit itself, for the following reason: we wanted to emphasize that the notion of convergence is almost completely insensitive to special choices of identification operators $j_{\hbar\hbar'}$. Given these identifications one can also define higher orders of the asymptotic expansion of an \hbar -dependent operator. But these are now much less "canonical", and there seems little point in computing such quantities which depend on a special choice of, say, coherent states, unless there is a specific reason for considering a particular choice. One possible "canonical choice" of identifications is given in [We4] (see (2) above).

(6) infinitesimal \hbar

In the framework of nonstandard analysis [AFHL] the limit $\hbar \to 0$ can be carried out simply by taking \hbar literally infinitesimal. The art, as usual in this theory, is to extract from the resulting structure the relevant "standard part". For the classical limit the idea is essentially taken from Theorem 8: the relevant observables for the classical limit are those, which are strongly continuous for phase space translations "on the standard scale". Up to corrections of infinitesimal norm this observable algebra is precisely the algebra \mathfrak{A}_0 obtained above [WW]. This formulation is perhaps even closer to physical intuition than the one presented here. However, for the proofs we mostly had to go back to the standard proofs given in this paper.

(7) Spin systems

Of course, one can also consider particles with spin, or other internal degrees of freedom. How the classical limit on these internal degrees of freedom is to be taken depends on the physical question under consideration. For example, in the kinetic theory of gases, one sometimes leaves these degrees of freedom untouched, obtaining a theory of classical particles with quantum excitations. But we can also fix the

spin in angular momentum units, which means that the half-integer labelling the irreducible representation of SU_2 must go to infinity. This limit can be stated exactly along the lines of this paper, with analogous results. It is essentially equivalent to a mean-field limit [GW]. It can also be carried out for systems of many spins [RW], for more general compact Lie groups [Duf], and for some quantum groups [GW]. For a nonstandard version, see [WW].

Acknowledgements

This paper has grown out of a series of lectures given at the Marc Kac Seminar in Amsterdam in Summer 1993. The topic of the lectures was non-commutative large deviation theory, and the classical limit was included at the request of some members of the seminar, taking me up on my claim that the techniques I was presenting had applications to this problem. I would like to thank the members of the seminar, and in particular the organizers, Hans Maassen and Frank den Hollander, for the stimulating atmosphere of the seminar.

References

- [AHK] S. Albeverio and R. Høegh-Krohn: "Oscillatory integrals and the method of stationary phase in infinitely many dimensions, with applications to the classical limit of quantum mechanics, I", *Invent.Math.* **40**(1977) 59–106
- [AFHL] S. Albeverio, J.E. Fenstad, R. Høegh-Krohn, and T. Lindstrøm: Nonstandard methods in stochastic analysis and mathematical physics, Academic Press, Orlando 1986
 - [Ara] T. Arai: "Some extensions of the semiclassical limit $\hbar \to 0$ for Wigner functions on phase space", J.Math.Phys. **36**(1995) 622–630
 - [BB] M.V. Berry and N.L. Balazs: "Evolution of semiclassical quantum states in phase space", J.Phys. A12(1979) 625–642
 - [BV] J. Bellissard and M. Vittot: "Heisenberg's picture and non commutative geometry of the semi-classical limit in quantum mechanics", Ann. Inst. Henri Poincaré A52(1990) 175–235
- [BCSS] Ph. Blanchard, Ph. Combe, M. Sirugue, and M. Sirugue-Collin: "Estimates of quantum deviations from classical mechanics using large deviation results", in: L. Accardi and W. von Waldenfels: "Quantum probability and applications II", Springer Lect.Not.Math. 1136, Berlin 1985
 - [Bop] F. Bopp: "La méchanique quantique est-elle une méchanique statistique classique particulière?", Ann.Inst. Henri Poincaré 15(1956) 81–112

- [BW] T. Bröcker and R.F. Werner: "Mixed states with positive Wigner functions", J.Math.Phys. 36(1995) 62–75
- [Bru] J.T. Bruer: "The classical limit of quantum theory", Synthese 50(1982) 167–212
- [BS] M. Burdick and H.-J. Schmidt: "On the validity of the WKB approximation", J.Phys.~A~27(1994)~579-592
- [Car] N.D. Cartwright: "A non-negative Wigner-type distribution", Physica 83A(1976) 210–212
- [Chu] K.L. Chung: A course in probability theory, Academic Press, New York 1974
- [Dau] I. Daubechies: "On the distributions corresponding to bounded operators in the Weyl quantization", Commun.Math.Phys. **75**(1980) 229–238;

 _______: "Continuity statements and counterintuitive examples in connection with Weyl quantization", J.Math.Phys. **24**(1983) 1453–1461
- [Dav] E.B. Davies: Quantum theory of open systems, Academic Press, London 1976
- [**DGI**] M. Degli Esposti, S. Graffi, and S. Isola: "Classical limit of the quantized hyperbolic toral automorphisms", *Commun. Math. Phys.* **167**(1995) 471–507
- [**DH**] P. Duclos and H. Hogreve: "On the semiclassical localization of quantum probability", J.Math.Phys. **34**(1993) 1681–1691
- [**Duf**] N.G. Duffield: "Classical and thermodynamic limits for generalised quantum spin systems", Commun.Math.Phys. @127(1990) 27–39
- [**DW**] N.G. Duffield and R.F. Werner: "Local dynamics of mean-field quantum systems", Helv.Phys.Acta **65**(1992) 1016–1054
- [Em1] G.G. Emch: "Geometric dequantization and the correspondence problem", Int. J. Theo. Phys. 22(1983) 397–420
- [Em2] _____: Conceptual and mathematical foundations of 20th-century physics, North-Holland Mathematics Studies 100, Amsterdam 1984
- [FLM] W. Fischer, H. Leschke, and P. Müller: "Dynamics by white noise Hamiltonians", Phys. Rev. Lett. 73(1994) 1578–1581
 - $[\mathbf{Fr\"o}]$ N. Fröman and P.O. Fröman: JWKB Approximation; Contributions to the theory, North-Holland, Amsterdam 1965
- [GW] C.-T. Gottstein and R.F. Werner: "Ground states of the infinite q-deformed Heisenberg ferromagnet", Preprint, Osnabrück 1994 archived at cond-mat/9501123
- [Gro] A. Grossmann: "Parity operator and quantization of delta-functions", Commun. Math. Phys. 48(1976) 191–194

- [Hag] G.A. Hagedorn: "Semiclassical quantum mechanics", part I: "The $\hbar \to 0$ limit for coherent states", Commun.Math.Phys. **71**(1980) 77–93, part III: "The large order asymptotics and more general states", Ann.Phys. **135**(1981) 58–70, part IV: "Large order asymptotics and more general states in more than one dimension", Ann.Inst.Henri Poincaré **A42**(1985) 363–374
- [Hel] B. Helffer: Semi-classical analysis for the Schrödinger operator and applications, Springer Lect.Not.Math. 1336, Berlin 1988
- [Hep] K. Hepp: "The classical limit for quantum mechanical correlation functions", Commun. Math. Phys. 35(1974) 265–277.
- [Hol] A.S. Holevo: Probabilistic and statistical aspects of quantum theory, North Holland, Amsterdam 1982
- [Hor] L. Hörmander: The analysis of linear partial differential operators, ?? volumes Springer, Berlin 1985
- [Hud] R.L. Hudson: "When is the Wigner quasi-probability density nonnegative?", Rep. Math. Phys. 6(1974) 249–252
- [Kat] T. Kato: Perturbation theory for linear operators, Springer, Berlin, Heidelberg, New York 1984
- [Kat] Y. Katznelson: An introduction to harmonic analysis, Wiley&Sons, New York 1968
- [Lan] N.P. Landsman: "Deformations of algebras of observables and the classical limit of quantum mechanics", Rev. Math. Phys. 5(1993) 775–806
- [Lie] E.H. Lieb: "The classical limit of quantum spin systems", Commun.Math.Phys. **62**(1973) 327–340
- [LS] E.H. Lieb and J.P. Solovej: "Quantum coherent operators: a generalization of coherent states", *Lett.Math.Phys.* **22**(1991) 145–154
- [Mas] V.P. Maslov and M.V. Fedoriuk: Semi-classical approximation in quantum mechanics, D. Reidel, Dordrecht 1981
- [Nar] F.J. Narcowich: "Conditions for the convolution of two Wigner distributions to be itself a Wigner distribution", J.Math.Phys. 29(1988) 2036–2041
- [Omn] R. Omnès: "Logical reformulation of quantum mechanics", part III: "Classical limit and irreversibility", J.Stat.Phys. **53**(1988) 957–975 part IV: "Projectors in semiclassical physics", J.Stat.Phys. **57**(1989) 357–382
- [RW] G.A. Raggio and R.F. Werner: "The Gibbs variational principle for inhomogeneous mean field systems", *Helv. Phys. Acta* **64** (1991) 633–667
- [Ri1] M.A. Rieffel: "Deformation quantization of Heisenberg manifolds", Commun. Math. Phys. 122(1989) 531–562

- [Ri2] M.A. Rieffel: Deformation quantization for actions of \mathbb{R}^d , Memoirs of the AMS, #506, Am.Math.Soc., Providence 1993
- [Ri3] M.A. Rieffel: "The classical limit of dynamics for spaces quantized by an action of \mathbb{R}^{d} ", Preliminary version, March 1995
- [Rob] D. Robert: Autour de'l approximation semi-classique, Birkhäuser, Boston 1987
- [Sch] L.I. Schiff: Quantum mechanics, McGraw-Hill Kogakusha, Tokyo 1955
- [Sim] B. Simon: "The classical limit of quantum partition of functions", Commun. Math. Phys. **71**(1980) 247–276
- [Tak] K. Takahashi: "Wigner and Husimi functions in quantum mechanics", J. Phys. Soc. Jap. 55(1986) 762–779
- [Tru] A. Truman: "Feynman path integrals and quantum mechanics as $\hbar \to 0$ ", J.Math.Phys. 17(1976) 1852–1862
- [Vor] A. Voros: "An algebra of pseudodifferential operators and the asymptotics of quantum mechanics", J.Funct.Anal. 29(1978) 104–132
- [We1] R.F. Werner: "Quantum harmonic analysis on phase space", J.Math.Phys. 25(1984) 1404–1411
- [We2] ____ : "Physical uniformities on the state space of non-relativistic quantum mechanics", Found.Phys. 13(1983) 859–881
- [We3] _____: "Mean field quantum systems and large deviations", Lectures in the Mark Kac Seminar, Summer 1993; Written version in preparation as "Quantum lattice systems with infinite range interactions"
- [We4] _____: "The classical limit of quantum mechanics as an inductive limit", In preparation
- [We5] _____: "The classical limit of quantum mechanics: differentiable structure and dynamics", In preparation
- [We6] _____: "The classical limit of quantum mechanics: norm limit of states and equilibrium states", In preparation
- [WW] R.F. Werner and M.P.H. Wolff: "Classical mechanics as quantum mechanics with infinitesimal \hbar ", Preprint Osnabrück, Oct. 1994, archived at mp_arc, # 94-388
- [Wig] E.P. Wigner: "On the quantum correction for thermodynamic equilibrium", Phys.Rev. **40**(1932) 749–759
- [WS] W. Wreszinski and G. Scharf: "On the relation between classical and quantum statistical mechanics", Commun.Math.Phys. 110(1987) 1–31