Що реалізує машина Тьюрінга?

Що реалізує така машина Тьюрінга?

	Λ	1
q_0	R	$1q_1R$
q_1	$1q_F$	R

Select one:

- функцію додавання двох чисел в унарній системі числення
- нуль-функцію
- О функцію вибору аргументу
- 🥟 функцію наступності

Що означає кожна з наведених команд машини Поста?

Скласти нормальний алгоритм, що виконує збільшення унарного числа на 1

Скласти нормальний алгоритм, що виконує збільшення унарного числа на 1.

1 -> .11

11 111 .1

Що є різновидом машини Тьюрінга?

Алгоритм сортування бульбашкою (bubble)

```
Перетягніть фрагменти коду у вільні місця, щоб отримати алгоритм сортування бульбашкою
int temp;
                                    void bubbleSort(int* array, int size)
bool wasSwapped;
        for (int i = 1; i <= size; ++i)
            wasSwapped = false;
           for (int j = 0; j < (size - i); ++j)
     for (int i = 1; (i <= size) && wasSwapped; ++i)
     if (array[j] > array[j + 1])
       temp=array[j];
       array[j]= array[j + 1];
       array[j+1]=temp;
                     wasSwapped = true;
      for (int j = 0; j < (size - i); ++j)
                                                         for (int i = 1; i \le size; ++i)
                                                                                                            for (int j = 0; j < size; ++j)
                                               for (int i = 1; (i <= size) && wasSwapped; ++i)
           wasSwapped = true;
                                                                                                              wasSwapped = false;
```

Алгоритм сортування вибором(choices)

Алгоритм сортування підрахунком(counting)

```
Перетягніть фрагменти коду у вільні місця, щоб отримати алгоритм сортування підрахунком
void CountingSort(int arr[], int sz) {
   int i, i, k:
   int idx = 0:
    int min, max;
    k = max - min + 1;
    for (i = 1; i < sz; i++) {
       B[arr[i] - min]++;
        min = max = arr[0];
    int *B = new intfkl:
                        min=max=0:
    for (i = 0: i < sz: i++) (
       arr[idx++] = i;
    for (i = min; i <= max; i++)
       for (j = 0; j < B[i - min]; j++) {
           min = (min> arr[i] ) ? arr[i] : min; max = (arr[i] > max) ? arr[i] : max;
    delete[] B;
                                                              min = (min> arr[i] ) ? arr[i] : min; max = (arr[i] > max) ? arr[i] : max;
                                                                                                                                                         min=max=0;
                       k = max - min + 1;
                                                                                      min = max = arr[0]; ---
                                                                                                                                                        arr[idx++] = i;
```

```
разок > 🏺 Untitled-1.py > 😭 countingSort
     def countingSort(inputArray):
         maxElement= max(inputArray)
         countArrayLength = maxElement+1
         countArray = [0] * countArrayLength
          for el in inputArray:
             countArray[el] += 1
          for i in range(1, countArrayLength):
12
             countArray[i] += countArray[i-1]
         outputArray = [0] * len(inputArray)
          i = len(inputArray) - 1
         while i >= 0:
             currentEl = inputArray[i]
18
             countArray[currentEl] -= 1
             newPosition = countArray[currentEl]
             outputArray[newPosition] = currentEl
             i -= 1
         return outputArray
```

Що виконає програма для машини Поста?

Що виконує наступна програма для машини Поста, якщо на стрічці задано послідовність відмічених комірок і початково каретка знаходиться над однією з відмічених комірок?
1.72,3
2.ε4
3. → 1
4.1
Select one:
✓ програма виконає недопустиму команду і зупиниться
О подвоює кількість відмічених комірок
○ збільшує кількість відмічених комірок на 1
О програма зациклиться
О стирає крайню праву відмічену комірку
Clear my choice

Задана початкова конфігурація і програма для деякої машини Тьюрінга. Вказати вірні твердження стосовно даної машини.

Алгоритм сортування вставкою (insertion)

```
Перетягніть фрагменти коду у вільні місця, щоб отримати алгоритм сортування вставкою void insertionSort(int* arr, int n) {
    int temp, j;
        for (int i = 1; i <= n - 1; i + +)
    }
        temp = arr[i];
        j = i - 1;
        for(j; j>=0; j--)
    {
            arr[j + 1] = arr[j];
        }
        arr[j + 1] = temp;
}

while ((arr[j]) > temp) && (j > = 0))

temp=0;
```

Побудуйте нормальний алгоритм, який вилучає всі входження, крім першого, символа 'а' з заданого рядка в алфавіті $M=\{a,b\}$

Система Поста еквівалентна

Нормальний алгоритм незастосовний до заданого вхідного слова, якщо на даному кроці

Hop	мальний алгоритм незастосовний до заданого вхідного слова, якщо на даному кроці
Sele	ct one:
	Зрозуміло, що процес підстановок не зможе зупинитися
0	жодна підстановка не підходить
0	Застосована остання підстановка зі списку підстановок, що задають даний алгоритм
0	Застосована заключна підстановка

Чи може заключний стан зустрічатися в правій частині команди машини Тьюрінга?

-lu n	иоже заключний стан зустрічатися в правій частині команди машини Тьюрінга?
Sele	ct one:
	так, це можливо
0	ні, це неможливо
0	так, але тільки для однострічкових машин

Яким буде результат застосування нормального алгоритму в алфавіті A={a,b,c}

Які два види продукції можливі в нормальних алгоритмах Маркова?

Які д	ва види продукцій можливі в нормальних алгоритмах Маркова?
Selec	ct one or more:
0	початкова продукція
	проста продукція
	заключна продукція
0	складна продукція

Побудуйте нормальний алгоритм, який вилучає всі входження, крім останнього, символа 'a' з заданого рядка в алфавіті M={a,b,c}

```
Побудуйте нормальний алгоритм, який вилучає всі входження, крім останнього, символа 'a' з заданого рядка в алфавіті M={a,b,c}.

| "bacaabaa' => "bacabaa' => "bacbaa' => "bcbaa' => "bcbaa
```

Яким буде результат застосування нормального алгоритму в алфавіті A={a,b,c}

```
Яким буде результат застосування нормального алгоритму в алфавіті A = {a, b, c}:

abc -> c

ba -> cb

ca -> ab

ca -> ab

до слова R = bacaabc
```

Чому дорівнює результат розгалуження F(ba)?

3 допомогою якого оператора утворена наступна часткова функція? (ц)

3 допомогою якого оператора утворена наступна часткова функція?

$$\mu_y(f(x_1,...,x_{n-1},y)=x_n)$$

Select one:

- О Оператора слабкої мінімізації
- Оператора мінімізації
- О Оператора суперпозиції
- О Оператора примітивної рекурсії

Запишіть результат виконання найпростіших функцій

Запишіть результати виконання найпростіших функцій:

$$o^{5}(1,2,3,4,5) = 0$$
 $I_{2}^{3}(1,2,3) = 2$

$$I_2^3(1,2,3)=$$

У яких з алгоритмів сортування найгірша оцінка часової складності є O(n^2)?

У яких з цих алгоритмів сортування найгірша оцінка часової складності є O(n2)?

Select one or more:

- Сортування злиттям
- Сортування вибором
- Швидке сортування
- Сортування вставкою
- Випадкове сортування

За час $O(n^2)$

- Сортування вибором (англ. Selection sort) пошук найменшого або н
- Сортування вставкою(включенням) (англ. Insertion sort) Визначаєми
- Сортування обміном (сортування бульбашкою, англ. Bubble sort) для і
- Сортування методом бінарної вставки

Що виконає програма для машини Поста?

	виконує наступна програма для машини Поста, якщо на стрічці задана послідовність відмічених комірок і початково каретка знаходиться однією з відмічених комірок?
1. ? ?	2, 3
2. V	4
3, →	1
4. →	5
5. V	6
6. !	
Sele	ct one:
0	програма виконає недопустиму команду і зупиниться
0	подвоює кількість відмічених комірок
•	збільшує кількість відмічених комірок на 2
0	програма зациклиться
0	стирає дві відмічені комірки зправа

Який з цих алгоритмів сортування вимагають більше ніж O(1) додаткової пам'яті?

Внутрішнім алфавітом машини Тьюрінга називають

Вну	утрішнім алфавітом машини Тьюрінга називають
Sele	ect one:
0	символи, які можуть бути записані на стрічці
	множина станів машини
0	множина команд машини
•	символи, які допускає задача
	Clear my choice

Виберіть середню оцінку часової складності для кожного з алгоритмів сортування

Виберіть середню	оцінку часової складності для кожного з алгоритмів сортування
Сортування вибором	O(n^2)
Сортування вставкою	O(n^2)
Швидке сортування	O(n log n) \$
Сортування злиттям	O(n log n) ≑

Сортування підрахунком є найбільш ефективним для наборів даних

Сортування підрахунком ϵ найбільш ефективним для наборів даних -	÷
	будь-яких
	цілих чисел чисел з вузького діапазону
	чисел, що рівномірно розподілені по діапазону

З допомогою якого оператора утворена наступна часткова функція? (всюди визначена)

Які з наступних характеристик притаманні найпростішим рекурсивним функціям?

Якіз	в наступних характеристик притаманні найпростішим рекурсивним функціям?
Sele	ct one or more:
0	Найпростіші функції визначені на множині цілих чисел
	Найпростіші функції є всюди визначені
0	Найпростіші функції можуть бути визнвчені через інші найпростіші функції
•	€ три найпростіші функції
0	€ дві найпростіші функції
0	Найпростіші функції - це числові функції

Запишіть результати виконання операторів над такими функціями

Побудувати нормальний алгоритм Маркова, який реалізує віднімання А-В, де значення є натуральними числами, поданими як ланцюжок символів '1'

Побудувати нормальний алгоритм Маркова, який реалізує віднімання *А-В*, де значення *А* і *В* є натуральними числами, поданими як ланцюжки символів '1' (у так званій унарній системі).

1-1 -> -\lambda

1-1 -\lambda \lambda \lambda \lambda

-\lambda \lambda \lambda -1 \lambda \

Будь-який алгоритм, заданий у довільній формі, можна замінити еквівалентною йому МТ

Виберіть правильні твердження стосовно наступного формулювання:

Будь-який алгоритм, заданий у довільній формі, можна замінити еквівалентною йому Машиною Тьюрінга.

Select one or more:

це твердження неможливо довести

це твердження встановлює відповідність між інтуїтивним поняттям алгоритму і точним математичним поняттям функції, обчислюваної на МТ

цю теорему довів Тьюрінг

це теза Тьюрінга

це теза Черча

Чому дорівнює результат розгалуження F(ab)?

Алгоритм швидкого сортування (quick)

Скільки команд ϵ в машини Поста?

Часова складність алгоритму Швидкого сортування у середньому і в найгіршому випадку

Виберіть середню оцінку часової складності для кожного з алгоритмів сортування

Виберіть середню оці	нку часової	складності для кожного з алгоритмів сортування
Випадкове сортування	Bulloppi :	
Сортування бульбашкою	Вифрати :	
Сортування за розрядами	Вибрети ‡	
Пірамідальне сортування	Bhologa.: :	

Яким буде результат застосування нормального алгоритма до слова R=bbaabab

Чи можуть дві різні команди машини Тьюрінга мати однакові ліві частини?

Що буде результатом застосування нормального алгоритма до слова R=abbc

Вкажіть результат ітерації алгоритмів на слові babbab

```
Задано алгоритми A, B і фіксоване слово R (P<sub>1</sub>, P<sub>2</sub>, P - довільні слова з алфавіту {a, b}):

A: P<sub>1</sub>abP<sub>2</sub> -> P<sub>2</sub>abP<sub>1</sub>,
B: P<sub>1</sub>bbbP<sub>2</sub> -> P<sub>1</sub>b; P -> P,
R = abb.

Вкажіть результат ітерації алгоритмів на слові babbab.

аbbb

аbabab

аbbbab

ітерація повторюватиметься нескінченну кількість разів
```

Скласти нормальний алгоритм, що в рядку символів з алфавіту {a, b, c} здійснює таку заміну

Функції, які отримують з функцій системи σ і найпростіших функцій із застосуванням скінченної кількості операторів суперпозиції, примітивної рекурсії та слабкої мінімізації, називають _____ відносно системи σ.

	кові функції, які отримують з функцій системи σ і найпростіших функцій із осуванням скінченної кількості операторів суперпозиції, примітивної рекурсії та слабкої
мінім	иізації, називають відносно системи σ.
Seled	ct one:
9	примітивно рекурсивними
0	елементарними
0	рекурсивними
0	загальнорекурсивними
0	частково рекурсивними

Побудувати нормальний алгоритм Маркова, який реалізовує додавання А+В

Нехай задано початкова конфігурація і програма для деякої машини Тьюрінга. Яким результатом буде застосування цієї машини до зображеного на стрічці слова?

Що таке Універсальний нормальний алгоритм?

Що таке Універсальний нормальний алгоритм?

Select one:

- 健 Це алгоритм, здатний виконувати роботу довільного нормального алгоритму.
- О Це будьякий нормальний алгоритм.
- Це алгоритм, здатний виконувати роботу довільного алгоритму.
- О Це нормальний алгоритм, який можна зобразити граф-схемою.

Clear my choice