Exercise 2:

There is a multiplexer that is capable of handling message service in bulk. Assume that the interarrival times are exponentially distributed with mean 5 min, and that service times are exponentially distributed with mean 4 min. The multiplexer has 2 stations for service. Find the average number of messages in the multiplexer.

Solution:

The model for this bulk-service problem is of the type $M/M^{[K]}/1$. The parameters are $\lambda = 1/(5min) = 12/hour$, $\mu = 1/(4min) = 15/hour$, and K = 2. The operator equation for the multiplexer is therefore,

$$15r^3 - 27r + 12 = 0$$

The roots are 1, .525, and -1.525.

We select the positive root with absolute value less than 1, i.e. the second one. Thus, r = 0.525. Therefore,

L = 0.525/(1-0.219) = 1.105 messages.

For a simulation of the multiplexer, perform the following steps:

- → Open the page where the simulation is to be performed.
- → Next feed the data as shown.

Virtual Lab @ IITD

→ Click Start. The applet will now generate a sample path for the queue.

Non Birth and Death (Bulk Arrival/Departure) Markovian Models

	Pause
Arrival Rate (lambda):	1.2 🔲 Bulk Arrival
	Arrival Distribution : Poisson 🔻
	Parameter 1 : 2
	Parameter 2 :
Departure Rate (mu):	1.5 ■ Bulk Departure
	Departure Size : 2
	Batch Type: O Full • Partial
Number of Servers :	1
Capacity of the System :	inf
Queueing Discipline :	€ FIFO C LIFO C Random
☐ Orbit	Orbit Capacity :
	Retrial Rate (alpha):

Virtual Lab @ IITD