Linear Equations

Linear Equation:

A first-order differential equation of the form

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x) \tag{1}$$

is said to be a **linear equation** in the dependent variable y.

Standard Form:

By dividing both sides of (1) by the lead coefficient $a_1(x)$, we obtain a more useful form, the **standard form**, of a linear equation:

$$\frac{dy}{dx} + P(x)y = f(x) \tag{2}$$

Method:

SOLVING A LINEAR FIRST-ORDER EQUATION

- (i) Put a linear equation of form (1) into the standard form (2).
- (ii) From the standard form identify P(x) and then find the integrating factor $e^{\int P(x)dx}$.
- (iii) Multiply the standard form of the equation by the integrating factor. The left-hand side of the resulting equation is automatically the derivative of the integrating factor and y:

$$\frac{d}{dx} \left[e^{\int P(x) dx} y \right] = e^{\int P(x) dx} f(x).$$

(iv) Integrate both sides of this last equation.

Example 1

Solve
$$\frac{dy}{dx} - 3y = 0$$
.

SOLUTION This linear equation can be solved by separation of variables. Alternatively, since the equation is already in the standard form (2), we see that P(x) = -3, and so the integrating factor is $e^{\int (-3)dx} = e^{-3x}$. We multiply the equation by this factor and recognize that

$$e^{-3x}\frac{dy}{dx} - 3e^{-3x}y = 0$$
 is the same as $\frac{d}{dx}[e^{-3x}y] = 0$.

Integrating both sides of the last equation gives $e^{-3x}y = c$. Solving for y gives us the explicit solution $y = ce^{3x}$, $-\infty < x < \infty$.

Example 2

Solve
$$\frac{dy}{dx} - 3y = 6$$
.

SOLUTION The associated homogeneous equation for this DE was solved in Example 1. Again the equation is already in the standard form (2), and the integrating factor is still $e^{\int (-3)dx} = e^{-3x}$. This time multiplying the given equation by this factor gives

$$e^{-3x} \frac{dy}{dx} - 3e^{-3x}y = 6e^{-3x}$$
, which is the same as $\frac{d}{dx} [e^{-3x}y] = 6e^{-3x}$.

Integrating both sides of the last equation gives $e^{-3x}y = -2e^{-3x} + c$ or $y = -2 + ce^{3x}$, $-\infty < x < \infty$.

Example 3

Solve
$$x \frac{dy}{dx} - 4y = x^6 e^x$$
.

SOLUTION Dividing by x, we get the standard form

$$\frac{dy}{dx} - \frac{4}{x}y = x^5 e^x.$$

From this form we identify P(x) = -4/x and $f(x) = x^5 e^x$ and further observe that P and f are continuous on $(0, \infty)$. Hence the integrating factor is

we can use $\ln x$ instead of $\ln |x|$ since x > 0 \downarrow $e^{-4\int dx/x} = e^{-4\ln x} = e^{\ln x^{-4}} = x^{-4}.$

$$x^{-4} \frac{dy}{dx} - 4x^{-5}y = xe^x$$
 as $\frac{d}{dx}[x^{-4}y] = xe^x$.

It follows from integration by parts that the general solution defined on the interval $(0, \infty)$ is $x^{-4}y = xe^x - e^x + c$ or $y = x^5e^x - x^4e^x + cx^4$.

Example 4

Find the general solution of $(x^2 - 9) \frac{dy}{dx} + xy = 0$.

SOLUTION We write the differential equation in standard form

$$\frac{dy}{dx} + \frac{x}{x^2 - 9}y = 0$$

and identify $P(x) = x/(x^2 - 9)$. Although P is continuous on $(-\infty, -3)$, (-3, 3), and $(3, \infty)$, we shall solve the equation on the first and third intervals. On these intervals the integrating factor is

$$e^{\int x \, dx/(x^2-9)} = e^{\frac{1}{2}\int 2x \, dx/(x^2-9)} = e^{\frac{1}{2}\ln|x^2-9|} = \sqrt{x^2-9}$$

$$\frac{d}{dx} \left[\sqrt{x^2 - 9} \, y \right] = 0.$$

Integrating both sides of the last equation gives $\sqrt{x^2 - 9}$, y = c. Thus for either x > 3 or x < -3 the general solution of the equation is $y = \frac{c}{\sqrt{x^2 - 9}}$.

Practice Questions:

[Exercise 2.3 of Book: Differential Equations by D.G. Zill]

1.
$$\frac{dy}{dx} = 5y$$

$$2. \frac{dy}{dx} + 2y = 0$$

$$3. \frac{dy}{dx} + y = e^{3x}$$

4.
$$3\frac{dy}{dx} + 12y = 4$$

5.
$$y' + 3x^2y = x^2$$
 6. $y' + 2xy = x^3$

6.
$$y' + 2xy = x^3$$

7.
$$x^2y' + xy = 1$$

7.
$$x^2y' + xy = 1$$
 8. $y' = 2y + x^2 + 5$

9.
$$x \frac{dy}{dx} - y = x^2 \sin x$$
 10. $x \frac{dy}{dx} + 2y = 3$

10.
$$x \frac{dy}{dx} + 2y = 3$$

11.
$$x \frac{dy}{dx} + 4y = x^3 - x$$

11.
$$x \frac{dy}{dx} + 4y = x^3 - x$$
 12. $(1+x) \frac{dy}{dx} - xy = x + x^2$

13.
$$x^2y' + x(x+2)y = e^x$$

14.
$$xy' + (1+x)y = e^{-x} \sin 2x$$

15.
$$y dx - 4(x + y^6) dy = 0$$

16.
$$y dx = (ye^y - 2x) dy$$

17.
$$\cos x \frac{dy}{dx} + (\sin x)y = 1$$

$$18. \cos^2 x \sin x \frac{dy}{dx} + (\cos^3 x)y = 1$$

19.
$$(x+1)\frac{dy}{dx} + (x+2)y = 2xe^{-x}$$

20.
$$(x+2)^2 \frac{dy}{dx} = 5 - 8y - 4xy$$

21.
$$\frac{dr}{d\theta} + r \sec \theta = \cos \theta$$

22.
$$\frac{dP}{dt} + 2tP = P + 4t - 2$$

23.
$$x \frac{dy}{dx} + (3x + 1)y = e^{-3x}$$

24.
$$(x^2 - 1)\frac{dy}{dx} + 2y = (x + 1)^2$$