

Задача 3: Воздушный шарик

На рисунке изображен длинный резиновый воздушный шарик, который популярен на вечеринках по случаю дней рождения. Частично надутый воздушный шар обычно разделяется на две цилиндрические области с сильно отличающимися радиусами. Используя простую модель, попробуем разобраться в причинах такого разделения.

Рисунок 1: частично

надутый воздушный

шарик

Воздушный шарик имеет форму однородного цилиндра (за исключением концов). Все процессы будем считать

изотермическими и происходящими при комнатной температуре. Давление P в воздушном шарике превышает атмосферное давление P_0 на очень малую величину, так что воздух можно рассматривать как несжимаемую жидкость. Силой тяжести и весом воздушного шарика можно пренебречь. Процесс изменения объема воздушного шарика считайте медленным и квазистатическим. В частях (а) - (d) предполагается, что воздушный шарик надут всюду однородно по его длине. Обозначим как r_0 и L_0 начальные радиус и длину воздушного шарика до его надувания.

а. (1.8 балла) Воздушный шарик удерживается за один из его концов, по которому поступает воздух, в то время как остальная часть шарика висит свободно. Вычислите отношение σ_L/σ_t между продольным «поверхностным» натяжением σ_L (в направлении, параллельном оси воздушного шарика) и поперечным «поверхностным» натяжением σ_t (в направлении, касательном к поперечному сечению воздушного шарика).

«Поверхностное» натяжение воздушного шарика — это сила, с которой соседние части воздушного шарика действуют друг на друга, отнесенная к единице длины границы между ними.

При малых растяжениях шарика справедлив линейный закон Гука. Будем считать, что длина воздушного шара остается постоянной и равной L_0 , в то время как «поверхностное» натяжение σ_t линейно зависит от изменения отношения r/r_0 :

$$\sigma_t = k \left(\frac{r}{r_0} - 1 \right) \tag{1}$$

b. (1 балл) Используя формулу (1), получите выражение для зависимости давления P в воздушном шарике от его объема V. Изобразите (качественно) зависимость $P-P_0$ как функцию объема V. Исходя из закона Гука, найдите максимальное давление внутри воздушного шарика P_{max} .

В действительности отношение r/r_0 достаточно велико (см. рисунок 1), так что нужно учитывать нелинейное поведение резины и связанное с ним изменением длины воздушного шарика. Учет этих нелинейных свойств материала резины позволяет существенно уточнить формулу для давления внутри шарика, которое оказывается выше, чем результат, полученный в пункте (b). В реальном воздушном шарике график зависимости $\sigma_t(r)$ от радиуса шарика состоит из трех частей:

- 1. Для малых изменений $r, \, \sigma_t(r)$ растет по закону Гука.
- 2. При $r-r_0 \sim r_0$, длина воздушного шара L начинает увеличиваться, и $\sigma_t(r)$ приближается к насыщению, то есть растет очень медленно.

3. При больших значениях r резина начинает сильно сопротивляться дальнейшему растяжению, что приводит к резкому росту $\sigma_t(r)$.

Описанная выше зависимость показана на рисунке 2.

с. (1.3 балла.) Изобразите качественно график зависимости разности давлений $P-P_0$ как функцию объема V однородно надутого воздушного шара, материал резины которого ведет себя согласно рисунку 2. Укажите точки экстремумов на графике, на том же графике укажите точки, соответствующие значениям r=1см и r=2.5см. Вычислите разность давлений $P-P_0$ для этих двух значений радиуса с 10%-ой точностью.

Рисунок 2: Натяжение $\sigma_t(r)$ реального шарика

Рисунок 3: Зависимость (2).

Нелинейное поведение материала резины, исследованное в пункте (с), приводит к тому, что зависимость разности давлений $P-P_0$ внутри воздушного шарика от его объема Vаппроксимируется следующей кубической зависимостью:

$$P - P_0 = a((V - u)^3 - b(V - u) + c)$$
 (2)

где a, b, c и u — положительные константы. Пусть объем u больше, чем объем не надутого воздушного шара V_0 , а c принимает такие значения, при которых функция (2) положительна для всех $V > V_0$. См. рисунок (3).

Воздушный шарик соединен с большим воздушным резервуаром, в котором может контролируемое насосом давление Р. Может случиться так, что некоторым значениям давления P соответствуют несколько равновесных значений V. Если воздушный шарик, находящийся в равновесии, испытывает случайные возмущения (такие как локальное растяжение внешними силами), то он может перейти в другое равновесное состояние с отличным объемом. Такой переход возможен, только если он будет энергически выгодным для всей системы, состоящей из воздушного шарика, атмосферы и насоса, поддерживающего давление Р. Пусть давление медленно увеличивается от значения P_0 , и на каждом шаге существуют достаточные возмущения. Тогда резкое увеличение объема шарика может произойти только по достижении критического давления P_c , при котором полная энергия, необходимая для перехода между Страница 2 из 3

двумя равновесными состояниями равна нулю. Выше этого критического давления, переход от меньшего объема к большему, сопровождается выделением энергии и наоборот. Такие резкие переходы часто встречаются в природе, и иногда называются фазовыми переходами.

d. (2.3 балла) Используя зависимость (2), получите выражения для P_c , объема V_1 воздушного шарика перед скачком и объема V_2 после скачка. Выразите ответы через a,b,c и u.

В реальности мальчик на дне рождения неспособен подавать достаточно воздуха для мгновенного изменения объема воздушного шарика, описанного выше. Вместо этого воздух накачивается в воздушный шарик постепенно, эффективно контролируя увеличение объема воздушного шара, а не давление в нем. В этом случае становится возможным новый тип поведения шарика. Если сложится ситуация благоприятная для минимизации полной энергии системы, то воздушный шарик разделиться на две цилиндрические области с различными радиусами, длины которых будут постепенно изменяться. Энергией границы раздела можно пренебречь. Мы также пренебрежем длиной пограничного слоя (эти предположения действительны для очень длинного воздушного шара).

- е. (1 балл) Изобразите качественный график зависимости разности давлений $P-P_0$ от объема V, учитывая разделении объема шарика на две части. Укажите на осях давление P_c-P_0 и объемы V_1 и V_2 .
- f. (1.4 балла) Пусть шарик находится в условиях, при которых возможно его разделение на две цилиндрические области различных радиусов. Найдите длину L_{thin} более тонкой области как функция полного объема воздушного шара V. Выразите свой ответ через V_1 , V_2 и радиус r_1 более тонкой области.
- g. (1.2 балла) Пусть шарик опять находится в условиях, при которых возможно его разделение на две цилиндрические области различных радиусов. Найдите удельную работу $\Delta W/\Delta L_{thin}$, которую необходимо совершить, чтобы преобразовать единицу длины тонкой области в толстую область. Выразите свой ответ через P_c , V_1 , V_2 и радиус r_1 более тонкой области.