

Data Structures and Algorithms (CS F211) – T1

Prof.N.L.Bhanu Murthy

Problem-1 Use the definition of Big-Oh to prove that $0.001n^3 - 1000n^2 \log n - 100n + 5$ is $O(n^3)$.

Problem-2 Prove or disprove each of the following.

1.
$$f(n) = O(g(n))$$
 implies $g(n) = O(f(n))$.

2.
$$f(n) + g(n) = \Theta(\min(f(n), g(n))).$$

3.
$$f(n) = O(g(n))$$
 implies $g(n) = \Omega(f(n))$.

Problem-3 Rank the following functions by asymptotic growth rate in non-decreasing order: $2^{64} - 1$, n^3 , $0.0001n^2$, 10000n, $\log n^2$, $2^{\log n}$, $n \log n$, n^2 , 2^{1000} , n, $n^2 \log n$, n^2 , $\log n$, n^{100} , 4^n , $\log n^3$, n^n .

Problem-4 Is
$$2^{n+1} = O(2^n)$$
? Is $2^{2n} = O(2^n)$?

Problem-5 Use the definition of Big-Oh to prove that $n^{1+0.001}$ is not O(n).

Problem-6 Express the function $n^3/1000 - 100n^2 - 100n + 3$ in terms of Θ -notation

Problem-7 Prove that $o(g(n)) \cap \omega(g(n))$ is the empty set.

Problem-8 Let processing time of an algorithm of Big-Oh complexity O(f(n)) be directly proportional to f(n). Let three such algorithms A, B, and C have time complexity $O(n^2)$, $O(n^{1.5})$, and $O(n \log n)$ respectively. During a test, each algorithm spends 10 seconds to process 100 data items. Derive the time each algorithm should spend to process 10,000 items.

```
(a) Input A[n]
c=0
for i=1 to n
for j=1 to n
c=c+1
A[c\%n]=A[c\%n]+1
end
end
```

```
(b) Input A[n] c=0 for i=1 to n*n for j=1 to n*n*n c=c+1 A[c%n]=A[c%n]+1 end
```

```
(c) Input A[n]
c=0
m=1
for i=1 to n
for j=1 to m*n
c=c+1
A[c\%n]=A[c\%n]+1
end
m=m/2;
```

```
(e) Input A[n] m=1, c=0 for i=1 to n for j=1 to m c=c+1 end m=m*2 end
```

```
(f) Input A[n]

m = n-1

while (m >= 1)

print A[m]

m = floor (m/3)

end
```

```
(g) Input A[n]
    m = n-1
    while ( m >= 1)
        for i=0 to m
             print A[i]
        end
        m = floor (m/3)
    end
```

Problem-9 Show that $\log^3 n$ is $o(n^{1/3})$.

Problem-10 Show that the summation $\sum_{i=1}^{n} \lceil \log_2 i \rceil$ is $\Omega(n \log n)$.

Thank You!!