

DEUTSCHES PATENTAMT ② Aktenzeichen:

P 37 07 652.3 10. 3.87

Anmeldetag: Offenlegungstag:

22. 9.88

Behördeneigentum

(7) Anmelder:

Knoll AG, 6700 Ludwigshafen, DE

(7) Erfinder:

Braña, Miguel Fernandez; Berlanga, Jose Maria Castella, Madrid, ES

Verwendung von Benzo[de]isochinolin-1,3-dionen zur Herstellung von Arzneimitteln

Es wird die Verwendung von Benzo[de]isochinolin-1,3dionen der Formel I

$$\begin{array}{c}
X \\
N-(CH_2) \\
0
\end{array}$$
(1).

worln X, Y und n die in der Beschreibung angegebene Bedeutung besitzen, zur Bekämpfung von viralen Erkrankungen beschrieben.

Patentanspruch

Verwendung von Benzoldelisochinolin-1,3-dionen der Formel I

$$\begin{array}{c}
X \\
O \\
N - (CH_2)_n - Y
\end{array}$$
(I)

worin

5

10

15

20

25

30

35

X eine Nitro-, C₁₋₄-Alkylamino-, Di-C₁₋₄-alkylamino-, Hydroxy, C₁₋₄-Alkoxy-, Trihalogenmethyl-, C₁₋₄-Alkyl-, Formyl-, C₁₋₄-Alkylcarbonyl, C₁₋₅-Acylamino- oder C₁₋₄-Alkoxycarbonylaminogruppe oder ein Halogenatom und

Y eine Amino-, C₁₋₄-Alkylamino-, Di-C₁₋₄-alkylamino-, Pyrrolidino-, Piperidino-, Morpholino- oder Piperazinogruppe und

n die Zahlen 0, 1, 2, 3 oder 4

darstellen, wobei jedoch n ungleich 2 ist, wenn a) X eine Nitrogruppe und Y eine Dimethylamino- oder Pyrrolidinogruppe oder b) X eine Aminogruppe und Y eine Dimethylaminogruppe ist, sowie deren Salzen mit physiologisch verträglichen Säuren bei der Bekämpfung von viralen Erkrankungen.

Beschreibung

Es ist bereits bekannt, daß ein Benzo[de]isochinolin-1,3-dione eine Wirkung gegen Viren besitzen (Chemotherapy 25, 83 (1979), Arch. Virol. 74, 157 (1982), Antiviral Research 4, 201 (1984), IP-OS 79/160 127 (Chem. Abstr. 93, 2247e (1980)). Die Wirkung dieser Verbindungen ist jedoch nicht in jeder Hinsicht befriedigend.

Es wurde nun gefunden, daß eine Reihe von Benzo[de]isochinolin-1,3-dionen eine bessere antivirale Wirkung

Sitzen. Gegenstand der Erfindung ist die Verwendung von Benzo[de]isochinolin-1,3-dionen der Formel I

$$\begin{array}{c}
X \\
O \\
N - (CH_2)_n - Y
\end{array}$$
(1)

worin

X eine Nitro-, C₁₋₄-Alkylamino-, Di-C₁₋₄-alkylamino-, Hydroxy, C₁₋₄-Alkoxy-, Trihalogenmethyl-, C₁₋₄-Alkyl-, Formyl-, C₁₋₄-Alkylcarbonyl, C₁₋₅-Acylamino- oder C₁₋₄-Alkoxycarbonylaminogruppe oder ein Halogenatom und

Y eine Amino-, C₁₋₄-Alkylamino-, Di-C₁₋₄-alkylamino-, Pyrrolidino-, Piperidino-, Morpholino- oder Piperazinogruppen und

n die Zahlen 0, 1, 2, 3 oder 4

darstellen, wobei jedoch n ungleich 2 ist, wenn a) X eine Nitrogruppe und Y eine Dimethylamino- oder Pyrrolidinogruppe oder b) X eine Aminogruppe und Y eine Dimethylaminogruppe ist, sowie deren Salzen mit physikalisch verträglichen Säuren bei der Bekämpfung von viralen Erkrankungen.

Die Verbindungen der Formel I sind aus der US-PS 42 04 063 und der DE-OS 23 23 555 bekannt, wo auch ihre Herstellung beschrieben ist. Als physiologisch verträgliche Säuren eignen sich zur Salzbildung organische und anorganische Säuren, wie Salzsäure, Schwefelsäure, Phosphorsäure, Essigsäure, Zitronensäure, Oxalsäure, Malonsäure, Salicylsäure, Maleinsäure, Furmarsäure, Bernsteinsäure, Ascorbinsäure, Apfelsäure, Methansulfonsäure, Isethionsäure, Milchsäure, Gluconsäure, Glucuronsäure, Amidosulfonsäure, Benzoesäure, Weinsäure, Pamoasäure.

Die Verbindungen der Formel I eignen sich insbesondere zur Behandlung von Infektionen, die durch DNA-Viren, z. B. Papillomaviren, Adenoviren, Herpesviren, und RNA-Viren, z. B. Enteroviren, Rhinoviren, Influenzaviren, Vesiculoviren, hervorgerufen werden. Sie werden normalerweise in einer Menge von 25 mg bis 300 mg bei oraler Gabe und von 20 mg bis 250 mg bei parenteraler Gabe appliziert.

Die Verbindungen der Formel I können in üblicher Weise oral oder parenteral verabfolgt werden. Sie können in den gebräuchlichen galenischen Applikationsformen fest oder flüssig angewendet werden, z. B. als Tabletten, Filmtabletten, Kapseln, Granulate, Dragees oder Lösungen. Diese werden in üblicher Weise hergestellt. Die Wirkstoffe können dabei mit den üblichen galenischen Hilfsmitteln, wie Tablettenbindern, Füllstoffen, Konservierungsmitteln, Tablettensprengmitteln, Flüßregulierungsmitteln, Weichmachern, Netzmitteln, Dispergiermitteln, Emulgatoren, Lösungsmitteln, Retadierungsmitteln und/oder Antioxidaten verarbeitet werden (vgl. H.

37 07 652

Sucker et al: Pharmazeutische Technologie, Thieme-Verlag, Stuttgart, 1978). Die so erhaltenen Applikationsformen enthalten den Wirkstoff normalerweise in einer Menge von 10 bis 90 Gew.-%.

Zur Behandlung viraler Infekte eignen sich beispielsweise folgende Substanzen der Formel I:

10

15

Nr.	x	Y	n	Fp. (°C)
1	5-NO ₂	N(C ₂ H ₅) ₂	2	120-121
2	5-NO ₂	N(CH ₂)s	2	136-137
3	5-NO ₂	N(CH ₂) ₄	0.	227-228
4	5-NO ₂	N(CH ₂) ₄	1	174-176
5	5-NO ₂	N(CH ₃) ₂	3	99-100
6	5-NO ₂	$N(C_2H_5)_2$	3	105
7	5-NH ₂	$N(C_2H_5)_2$	3	132-133
8	5-N(CH ₃) ₂	N(CH ₃) ₂	2	230-232
9	5-NO ₂	N(CH2CH3)2O	2	188-190
10	5-NH ₂	N(CH2CH2)2O	2	288
11	5-NO ₂	$N-C_2H_5$	0	157-158
12	5-NH ₂	$N(C_2H_5)_2$	2	120-122
13	5-NH ₂	N(CH ₂) ₄	2	195-197
.3 [4	5-NO ₂	N(CH2CH2)2NCH3	3	150-151
5	5-NH ₂	N(CH2CH2)2NCH3	3	148-150
16	5-NH ₂	N(CH ₂) ₅	2	180-182
17	5-C1	N(CH2CH2)2O	2	143-144
18	5-CI	N(CH ₃) ₂	3 -	75- 76
19	5-CI	N(CH ₂) ₄	2	173-174
20	5-Cl	N(CH ₂) _s	2	137
21	5-CI	N(CH ₁) ₂	2	161-163
22	5-OH	N(CH ₁) ₂	2	210
23	5-OH -	N(CH2CH2)2O	2	194-196
23 24	5-OH	N(CH ₂)4	.2	208-209
25	5-NO ₂	N(CH ₃) ₂	0	230-23
26	5-NH ₂	N(CH ₃) ₂	Q	214
27	5-OCH ₃	N(CH ₃) ₂	2	115-11
28	5-NHCO2C2H5	N(CH ₃) ₂	2	194-19
29	5-NHCO ₂ C ₂ H ₅	N(CH ₂) ₄	2	180-18
30	5-OCH ₃	N(CH ₂) ₄	2	-114-11.
31	5-NHCOCH ₃	N(CH ₃) ₂	2	221-22
32	5-NHCOCH ₃	N(CH ₂) ₄	2	218-22
33	5-NO ₂	CH(CH ₃) ₂	2	141-14
34	5-NO ₂	SH	2	190-19
35	H	N(CH ₂) ₄	2	147
<i>35</i>	н	N(CH ₃) ₂	2	91- 9
37	5-t-C ₄ H ₉	N(CH ₃) ₂	2	123-12
38	5-NO ₂	OH.	2 .	231

Nr.	х	Y	п	Fp. (°C)
39	5-NO ₂	осн,	2	149-151
40	5-NO ₂	NH ₂	2	198-200
41	5-NO ₂	NHCH ₃	2	176-178
42	5-NO ₁	NHCOCH ₃	2	237-238
43	5-NHCO ₂ C ₂ H ₅	$N(C_2H_5)_2$	2	175-176
44	5-NHCO ₂ C ₂ H ₅	$N(C_2H_5)_2$	3	158-159
45	5-NH ₂	N(CH ₃) ₂	3	81- 83
46	5-OH	N(C ₂ H ₅) ₂	2	170-172
47	5-NHCOCH ₃	$N(C_2H_5)_2$	2	185-186
48	5-NHCOCH ₃	$N(C_2H_5)_2$	3	149-150
49	5-NO ₂	+N(CH ₃) ₂ , [-	2	291-292
50	6-NO ₂	N(CH ₁) ₂	2	114-115
51	6-NO ₂	N(CH ₂),	2	130-131
52	6-OCH ₃	N(CH ₂),	2	125-127
53	6-OCH ₃	N(CH ₃) ₂	2	79- 81
54	6-OCH ₃	N(C ₂ H ₅) ₂	2	92- 94
55	6-OCH ₃	N(CH ₂) ₅	2	121-122
56	6-NH ₂ 3 (4.5)	N(CH ₃) ₂	2	230-232
57	6-NH ₂	N(CH ₂) ₄	2	220-222
58	6-NO ₂	N(C ₂ H ₅) ₂	2	126-128
59	6-NO ₂	N(CH ₂) ₅	2.	147-149
60	6-Br	N(CH ₃) ₂	2	144-146
61	6-Br	N(CH ₂) ₄	2	129-131
62	6-C1	N(CH ₃) ₂	2	114-116
63	6-CI	N(CH ₂) ₄	2	113-115
64	6-NHBu ⁿ	N(CH ₃) ₂	2	104-106
65	6-NH — Bun	N(CH ₂) ₄	2	169-171
66	6-OH	N(CH ₃) ₂	2	190-192
67	6-OH	N(CH ₂) ₄	2	210-212
68	4-OCH ₃	N(CH ₁) ₂	2	127-129
69	5-NO ₂	$N(CH_2-CH_2OH)_2$	3	124-126
70	6-NO₂	N(CH ₂ CH ₂ OH) ₂	3	88
71	H .	N(CH ₂ —CH ₂ OH) ₂	3	101-103
72	5-NH₂	N(CH ₂ —CH ₂ OH) ₂	3	142-143
73	6-NH ₂	$N(CH_2-CH_2OH)_2$	3	158-160
74	6-C1	$N(CH_2-CH_2OH)_2$	3	118-120
75	5-N(CH ₃) ₂	N(CH ₂ —CH ₂ OH) ₂	3	180
76	5-NH—CO—CH ₃	N(CH ₂ CH ₂ OH) ₂	3	99-100
77	5-NH—CO ₂ C ₂ H ₅	N(CH ₂ —CH ₂ OH) ₂	3	160
78	6-NH—(CH ₂)3—CH ₃	N(CH ₂ —CH ₂ OH) ₂	3	152

Nr.	X	Υ	п	Fp. (°C)
79	5-NO₂	N(CH ₂ —CH ₂ OH) ₂	2	140
80	6-NO ₂	N(CH ₂ —CH ₂ OH) ₂	2	123
81	5-NH ₂	$N(CH_2-CH_2OH)_2$	2	158-160
82	6-NH ₂	N(CH ₂ —CH ₂ OH) ₂	2	180
83	6-NO ₂	NHCH₂—CH₂OH	2	115
84	5-NH ₂	NHCH ₂ —CH ₂ OH	2	160
85	6-NH ₂	NHCH2-CH2OH	2	188
86	5-OCH ₃	NHCH ₂ —CH ₂ OH	2	118-120
87	6-OCH ₃	NHCH ₂ —CH ₂ OH	2	132
88	6-C1	NHCH ₂ —CH ₂ OH	2	121
89	5-N(CH ₃) ₂	NHCH ₂ —CH ₂ OH	2	241
90	5-NH—CO—CH ₃	NHCH2—CH2OH	2	225
91	5-NH—CO ₂ C ₂ H ₅	NHCH2-CH2OH	2	213
92	6-NH-(CH ₂) ₃ -CH ₃	NHCH2-CH2OH	2	178

Beispiel 1

o Auf einer Tablettenpresse werden in üblicher Weise Tabletten folgender Zusammensetzung gepreßt:

100 mg Substanz Nr. 1

120 mg Maisstärke

13,5 mg Gelatine

45 mg Milchzucker

2,25 mg Aersosil® (chemisch reine Kieselsäure in submikroskopisch feiner Verteilung)

6,75 mg Kartoffelstärke (als 6%iger Kleister)

Beispiel 2

In üblicher Weise werden Dragees folgender Zusammensetzung hergestellt:

25 mg Substanz Nr.12

60 mg Kernmasse

45 60 mg Verzuckerungsmasse

Çal-Gereş a iztanga pi

Die Kernmasse besteht aus 9 Teilen Maisstärke, 3 Teilen Milchzucker und 1 Teil Luviskol ® VA 64 (Vinylpyrrolidon-Vinylacetat-Mischpolymerisat 60: 40, vgl. Pharm. Ind. 1962, 586). Die Verzuckerungsmasse besteht aus 5 Teilen Rohrzucker, 2 Teilen Maisstärke, 2 Teilen Calciumcarbonat und 1 Teil Talk. Die so hergestellten Dragees werden anschließend mit einem magensaftresistenten Überzug versehen.

Beispiel 3

20 g Substanz Nr. 72 werden in 5000 ml Wasser unter Zusatz von NaCl gelöst und mit 0,1 N NaOH auf pH 6,0 eingestellt, so daß eine blutisotonische Lösung entsteht. Jeweils 5 ml dieser Lösung werden in Ampullen gefüllt und sterilisiert.