HW3

RYSP

July 11, 2025

1. Function Counting:

- (a) How many functions $f: \{1, 2, 3, 4\} \rightarrow \{a, b\}$ are there? $[2^4]$
- (b) How many injective functions $g: \{1, 2, 3\} \rightarrow \{a, b, c, d\}$? [4!/1!]
- (c) How many surjective function $\phi: \{1, 2, 3, 4\} \rightarrow \{a, b, c\}$? [4!/1!]
- (d) How many bijective functions $h: \{1, 2, 3\} \rightarrow \{a, b, c\}$? [3!]
- (e) Let A, B be finite sets, |A| = n, |B| = m. For which values of n, m can there exist:
 - (i) An injective function $A \to B$?
 - (ii) A surjective function $A \to B$?
 - (iii) A bijective function $A \to B$?

Explain.

2. Images and Preimages:

- (a) Define $f: \mathbb{Z} \to \mathbb{Z}$ by f(n) = 3n + 2. Is f injective? Surjective? Bijective? Prove your answers.
- (b) Give an explicit example of a function $g: \mathbb{N} \to \mathbb{N}$ that is injective but not surjective.
- (c) Give an explicit example of a function $h: \mathbb{N} \to \mathbb{N}$ that is surjective but not injective.

3. Composition and Inverses:

- (a) Let f(x) = 2x + 1 and g(x) = x 3 for $x \in \mathbb{R}$. Find $f \circ g$ and $g \circ f$. Are these compositions invertible?
- (b) Prove or disprove: If $f:A\to B$ and $g:B\to C$ are both injective, then $g\circ f$ is injective.
- (c) Suppose $f: A \to B$ and $g: B \to A$ satisfy $g \circ f = \mathrm{id}_A$ and $f \circ g = \mathrm{id}_B$. Show that f and g are inverses and both bijective.

4. Function Operations:

(a) Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$. Write the restriction $f|_{[0,2]}$ and describe its domain and range.

- (b) Give an example of a function $f:A\to B$ that can be extended to a larger domain $Y\supset A$.
- (c) Suppose $f, g : \mathbb{R} \to \mathbb{R}$, f(x) = x + 1, g(x) = 2x. Write the comma product $(f, g) : \mathbb{R} \to \mathbb{R}^2$ and the cross product $f \times g : \mathbb{R}^2 \to \mathbb{R}^2$.

5. Relations and Equivalence:

- (a) Prove that "congruence modulo n" $(a \sim b \text{ if } a \equiv b \pmod{n})$ is an equivalence relation on \mathbb{Z} .
- (b) Describe the partition of \mathbb{Z} induced by congruence mod 4. What is a canonical form for each class?
- (c) Let $A = \{1, 2, 3, 4\}$ and R be the relation aRb if a divides b. Is R a partial order? Draw the Hasse diagram (lattice) for (A, R).

6. Countable and Uncountable Sets:

- (a) Prove that the set $E = \{2, 4, 6, \ldots\}$ of positive even numbers is countably infinite by constructing an explicit bijection with \mathbb{N} .
- (b) Show that the set of all finite subsets of \mathbb{N} is countable.
- (c) Is the set of real numbers in (0,1) with only finitely many nonzero decimal digits countable or uncountable? Prove your answer.

7. Cantor's Diagonal Argument:

- (a) Prove that the set of all infinite binary sequences is uncountable using Cantor's diagonal argument.
- (b) Briefly explain why the set of all polynomials with rational coefficients is countable.
- (c) Give an example of an uncountable subset of \mathbb{R} that is not an interval.
- 8. Prove or disprove: There is a bijection between \mathbb{R} and \mathbb{R}^2 .
- 9. The set of algebraic numbers (roots of integer polynomials) is countable. Briefly outline why.
- 10. Let S be the set of all functions $f: \mathbb{N} \to \mathbb{N}$ which are not eventually constant (that is, for all n there exists m > n with $f(m) \neq f(n)$). Is S countable or uncountable? Prove your answer.
- 11. Prove that $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$ (i.e., the power set of the naturals has the same cardinality as the real numbers).
- 12. Suppose $f: A \to B$ is a function and $S \subseteq B$. Prove that $f(f^{-1}(S)) \subseteq S$. Give an example where equality does not hold.
- 13. Let A and B be infinite sets. Is it always true that $|A \cup B| = \max\{|A|, |B|\}$? Explain and give examples.

- 14. Fix positive integers n, m. Prove there are m^n n-letter words in an m-letter alphabet, and relate this to the number of functions $f: \{1, \ldots, n\} \to \{1, \ldots, m\}$.
- 15. Describe all possible partitions of the set $A = \{1, 2, 3\}$. For each, write an equivalence relation corresponding to the partition.
- 16. Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x$. Compute $f^{-1}((1, e^2))$ and explain your reasoning.
- 17. True or False? If $f:A\to B$ and $g:B\to C$ are surjective, then $g\circ f$ is surjective. Prove or provide a counterexample.
- 18. Explain (with justification) why $|\mathbb{Q}| < |\mathbb{R}|$. (Hint: you may cite Cantor's argument or use density.)
- 19. The continuum hypothesis posits that there is no set whose cardinality is strictly between that of the integers and the real numbers. Research: Is this statement provable from the usual axioms of set theory? (Briefly summarize in your own words.)
- 20. Show there is a bijection between (0,1) and \mathbb{R}^2 (hint: try "interleaving decimals" or construct a step-by-step map).
- 21. Is the set of all infinite sequences of rational numbers countable or uncountable? Prove your answer.
- 22. Let $f: A \to B$ be bijective. Prove that the inverse function f^{-1} is unique.
- 23. Draw the Hasse diagram for the power set of $\{a, b, c\}$, ordered by inclusion.
- 24. Let $f: \mathbb{Z} \to \mathbb{Z}_6$ be $f(n) = n \mod 6$. Describe all fibers (preimages of points) and the induced equivalence classes.
- 25. How many equivalence relations are there on a 4-element set? [Hint: Bell numbers, partition of integers, Young diagram]
- 26. Give an explicit example of a function $f:A\to B$ that cannot be extended to any larger domain $A'\supset A$ in a way that preserves surjectivity. Explain.