Module 2-3 Heap and its applications

Topic's Outlines

- * Heap
- ★ Heap Sort
- ★ Huffman's Code

- ★ Heap data structure is a complete binary tree that satisfies the heap property, where any given node is
 - ★ always greater than its child node/s and the key of the root node is the largest among all other nodes.

This property is also called max heap property.

★ always smaller than the child node/s and the key of the root node is the smallest among all other nodes.

This property is also called min heap property.

- ★ Heap data structure is a complete binary tree that satisfies the heap property, where any given node is
 - ★ always greater than its child node/s and the key of the root node is the largest among all other nodes.

This property is also called max heap property.

★ always smaller than the child node/s and the key of the root node is the smallest among all other nodes.

This property is also called min heap property.

Max Heap

- ★ Heap data structure is a complete binary tree that satisfies the heap property, where any given node is
 - ★ always greater than its child node/s and the key of the root node is the largest among all other nodes.

This property is also called max heap property.

★ always smaller than the child node/s and the key of the root node is the smallest among all other nodes.

This property is also called min heap property.

Max Heap

Min Heap

Heap Construction

- ★ Initialize an essentially complete binary tree from the keys given
- Heapify the tree as following:
 - * Start with the last (rightmost) parental node,
 - * Exchange key K with its children if the parental dominance does not hold.
 - * Check the parental dominance for the new position of K and repeat until the key K goes to right location.
 - * Continue with other parental nodes up to the root.

Heap Construction

FIGURE 6.11 Bottom-up construction of a heap for the list 2, 9, 7, 6, 5, 8. The double-headed arrows show key comparisons verifying the parental dominance.

Heapify


```
ALGORITHM HeapBottomUp(H[1..n])
     //Constructs a heap from elements of a given array
     // by the bottom-up algorithm
     //Input: An array H[1..n] of orderable items
     //Output: A heap H[1..n]
     for i \leftarrow \lfloor n/2 \rfloor downto 1 do
          k \leftarrow i; \quad v \leftarrow H[k]
          heap \leftarrow false
          while not heap and 2 * k \le n do
               j \leftarrow 2 * k
               if j < n //there are two children
                    if H[j] < H[j+1] \ j \leftarrow j+1
               if v \geq H[j]
                    heap \leftarrow true
               else H[k] \leftarrow H[j]; \quad k \leftarrow j
          H[k] \leftarrow v
```

Inserting Key into Heap

- Insert the new key to the last leaf.
- Repeatedly swap the new key with its parent until the parental dominance is satisfied.
- Also be used as top-down heap construction

Deleting Key from Heap

- Swap the key to delete with the key K in last leaf.
- Delete the last leaf.
- Heapify the tree by sifting K down the tree

Heapsort

- ★ Stage 1 (heap construction):

 Construct a heap for a given array with HeapBottomUP().
- \star Stage 2 (maximum deletion): Apply the root-deletion operation n-1 times to the remaining heap.
 - The largest value (root) will be deleted first.
 - Array elements are eliminated in decreasing order.
- ★ Since an element being deleted is placed last, the resulting array will be exactly the original array sorted in an increasing order.

2-3 Tree

- A 2-3 tree is a search tree that
 - may have 2-nodes and 3-nodes
 - height-balanced (all leaves are on the same level)

2-3 Tree

Sequence Inserted: 9, 5, 8, 3, 2, 4, 7

split and promote

If overflow, split parent into three and promote middle key to parent

Other Applications of Trees

- Red-Black Tree
- B Tree
- ❖ 2-3 Tree

ASCII Code

- ASCII characters use *fixed-length codes* (7 bits)
- For a textfile with 1000 characters, what is the file size?
- Suppose the file contains only 7 unique characters 'A' to 'G'
 - Can we use 3 bits instead of 8 bits?
 - What is the file size and *compression ratio* now?

Code	Char	Code	Char	Code	Char	Code	Char	Code	Char	Code	Char
32	[space]	48	0	64	@	80	Р	96	,	112	р
33	!	49	1	65	Α	81	Q	97	а	113	q
34	"	50	2	66	В	82	R	98	b	114	r
35	#	51	3	67	С	83	S	99	С	115	s
36	\$	52	4	68	D	84	T	100	d	116	t
37	%	53	5	69	E	85	U	101	e	117	u
38	&	54	6	70	F	86	V	102	f	118	V
39	'	55	7	71	G	87	W	103	g	119	w
40	(56	8	72	Н	88	Х	104	h	120	×
41)	57	9	73	ı	89	Υ	105	i	121	у
42	*	58	:	74	J	90	Z	106	j	122	z
43	+	59	;	75	K	91]	107	k	123	{
44	,	60	<	76	L	92	Ň	108		124	l ľ
45	-	61	=	77	M	93]	109	m	125	}
46	.	62	>	78	N	94	Ā	110	n	126	~
47	/	63	?	79	0	95	_	111	0	127	[backspace]

Huffman Code

* Can do better by using Prefix-free codes like Huffman Code

Symbol	Codeword	S
A	01	No codeword is a prefix of
В	11	another codeword.
C	000	
D	001	
E	101	n
F	1000	Average bits per symbol $\sum_{i}^{n} l_i p_i$
G	1001	i
		<i>'</i> 1

Huffman Tree

David Huffman (1952)

- Greedy algorithm to construct a Huffman tree of n symbols
 - Start from n single-node trees and combine them to a single tree
 - Generate short/long codewords to high/low frequency symbols

Symbol	Frequency
A	0.25
В	0.21
C	0.18
D	0.14
E	0.09
F	0.07
G	0.06

.25

(.21)

.18

(14)

.09

(.07)

.06

A

B

C

Ε

F

3

.25

A

.21

B

(.18)

(.14)

.09

Ε

(.07)

What is the best-case compression ratio for Huffman code?

Note on Huffman Algorithm

- ★ If you sort the initial trees from smallest to largest weight, a different huffman tree will be generated.
- ★ The same huffman tree must be used for both encoding and decoding Huffman tree

- **Step 1** Initialize *n* one-node trees and label them with the symbols of the alphabet given. Record the frequency of each symbol in its tree's root to indicate the tree's *weight*. (More generally, the weight of a tree will be equal to the sum of the frequencies in the tree's leaves.)
- Step 2 Repeat the following operation until a single tree is obtained. Find two trees with the smallest weight (ties can be broken arbitrarily, but see Problem 2 in this section's exercises). Make them the left and right subtree of a new tree and record the sum of their weights in the root of the new tree as its weight.

Create a Huffman tree and the resulting codewords from the following occurrence frequencies

symbol	Α	В	C	D	
frequency	0.35	0.1	0.2	0.2	0.15

- What are the huffman codes for this input?
- What is the average number of bits per symbol?

Greedy Technique

The resulting codewords are as follows:

symbol	Α	В	C	D	_
frequency	0.35	0.1	0.2	0.2	0.15
codeword	11	100	00	01	101

Hence, DAD is encoded as 011101, and 10011011011101 is decoded as BAD_AD. With the occurrence frequencies given and the codeword lengths obtained, the average number of bits per symbol in this code is

$$2 \cdot 0.35 + 3 \cdot 0.1 + 2 \cdot 0.2 + 2 \cdot 0.2 + 3 \cdot 0.15 = 2.25$$
.

Questions and Answers **CPE112: Programming with Data Structures (by Dr. Natasha)**