Heuristic Analysis

Here is the output of tournament.py with the 3 custom evaluation functions.

(python3) LM-SJC-11002359:AIND-Isolation ssatpati\$ python tournament.py

This script evaluates the performance of the custom_score evaluation function against a baseline agent using alpha-beta search and iterative deepening (ID) called `AB_Improved`. The three `AB_Custom` agents use ID and alpha-beta search with the custom_score functions defined in game_agent.py.

Match #	Opponent	AB_Improved		AB_Custom		AB_Custom_2		AB_Custom_3	
		Won	Lost	Won	Lost	Won	Lost	Won	Lost
1	Random	17	3	20	0	20	0	20	0
2	MM_Open	16	4	15	5	13	7	17	3
3	MM_Center	17	3	16	4	18	2	19	1
4	MM_Improved	13	7	17	3	12	8	14	6
5	AB_0pen	11	9	11	9	6	14	8	12
6	AB_Center	10	10	12	8	12	8	11	9
7	AB_Improved	10	10	14	6	9	11	7	13
	 Win Rate:	67.1%		75 . 0%		64.3%		68.6%	
(python3) LM-SJC-11002359:AIND-Isolation ssatpati\$ ■									

The 3 custom evaluation functions are as follows:

- 1. AB_Custom: # of legal moves of player 2 X (# of legal moves of opponent)
- 2. AB_Custom_2: 2 X
 (# of legal moves of player) 3 X (# of legal moves of opponent)
- 3. AB_Custom_3: # of legal moves of player 3 X (# of legal moves of opponent)

As evident from above table, AB Custom performed the best out of all three that were tested.

Also, as alpha beta pruning *enables deeper search by limiting to more-promising subtrees*, the AB_* agents performed better than the MM_* agents, since AB_* were able to search much deeper compared to MM * given the same timeout was applied to both.

Recommendations: Evaluation Function

Out of all three, the best evaluation function is #1 from above list for the reasons below:

- 1. Supported by data (above). It consistently performed the best out of the three custom evaluation functions that were tested
- 2. It takes into account the number of options that a player has, and penalizes for the options that the opponent has, which is both logical and intuitive

3.	Performance: easy to compute at any point or state of the game							