基礎数学 小テスト 6/24/09 (佐藤) 学籍番号

氏名

注意 (1) 解を導きだす経過をできるだけ丁寧に記述すること。説明が不十分な場合は減点する。また、字が粗暴な解答も減点の対象とする。

- (2) 最終的に導き出した答えを右側の四角の中に記入せよ.
- (3) 終了時間前に <u>すべて解答できた場合</u> は途中退席しても構わない。未解答問題がある者は途中退席してはならない。

点

1 次の不定積分を計算しなさい. (各8点)

(1)
$$\int x^5 dx$$

 $\frac{1}{6}x^6 + C$

(2)
$$\int (3x^2 + 2) dx$$

(2) $x^3 + 2x + C$

(3)
$$\int 3 dx$$

(3) 3x + C

(4)
$$\int (2x^3 - 3x + 4) \, dx$$

 $(4) \quad \frac{1}{2}x^4 - \frac{3}{2}x^2 + 4x + C$

(5)
$$\int (-x^3 + 2x^2 + 4x - 2) \, dx$$

(5) $-\frac{x^4}{4} + \frac{2}{3}x^3 + 2x^2 - 2x + C$

$$(6) \int \frac{x^2 + x - 2}{3} \, dx$$

(6) $\frac{1}{9}x^3 + \frac{1}{6}x^2 - \frac{2}{3}x + C$

(1)
$$f(x) = x^3 + \frac{3}{2}x^2 - 6x - 4$$

 $f'(x) = 3x^2 + 3x - 6 = 3(x+2)(x-1)$
 $x = -2$ で極大値 $f(-2) = 6$
 $x = 1$ で極小値 $f(1) = -\frac{15}{2}$

$$(2) f(x) = \frac{x^4}{2} - 7x^2 + 12x + 3$$

$$f'(x) = 2x^3 - 14x + 12 = 2(x - 1)(x + 3)(x - 2)$$

$$x = -3$$
 で極小値 $f(-3) = -\frac{111}{2}$

$$x = 1$$
 で極大値 $f(1) = \frac{17}{2}$

3 関数 $f(x) = 2x^3 + \frac{3}{2}x^2 - 3x - 1$ の <u>グラフの概形を描き</u>,区間 $-2 \le x \le 1$ での f(x) の <u>最大値・最小値</u> を求めなさい. (20点)

$$f'(x) = 6x^{2} + 3x - 3 = 3(2x - 1)(x + 1)$$

$$f(-2) = -5, \quad f(-1) = \frac{3}{2}, \quad f(1/2) - \frac{15}{8}, \quad f(1) = -\frac{1}{2}$$

最大值	3	
	-	(x = -1)

最小值
$$-5$$
 $(x=-2)$