Mathematical Optimization Model for a SCRUM-Based Software Development Company

AI Analyst

September 5, 2025

Contents

1	Sets (Entities)	2
2	Indices	2
3	Goals	3
4	Conditions	4
5	Decision Variables	5

Introduction

This document formalizes the optimization problem for resource allocation, scheduling, and process improvement in a SCRUM-based software development environment. The model is derived from a defined domain model consisting of Entities, Relationships, Goals, and Constraints.

1 Sets (Entities)

- Project = $\{p_1, p_2, ..., p_n\}$: The set of all projects.
- Team = $\{t_1, t_2, ..., t_n\}$: The set of all teams.
- Worker = $\{w_1, w_2, ..., w_n\}$: The set of all workers/employees.
- Feature = $\{f_1, f_2, ..., f_n\}$: The set of all features.
- Skill = $\{s_1, s_2, ..., s_n\}$: The set of all skills.
- Role = $\{r_1, r_2, ..., r_n\}$: The set of all roles.
- ProductBacklog = $\{pb_1, pb_2, ..., pb_n\}$: The set of all product backlogs.
- Sprint = $\{sp_1, sp_2, ..., sp_n\}$: The set of all sprints.
- SprintBacklog = $\{sbl_1, sbl_2, ..., sbl_n\}$: The set of all sprint backlogs.
- UserStory = $\{us_1, us_2, ..., us_n\}$: The set of all user stories.
- Task = $\{tsk_1, tsk_2, ..., tsk_n\}$: The set of all tasks.
- Blocker = $\{bl_1, bl_2, ..., bl_n\}$: The set of all blockers.
- DevelopmentSnapshot = $\{dev_1, dev_2, ..., dev_n\}$: The set of all development snapshots.

2 Indices

- $p, q \in \text{Project}$
- $t, u \in \text{Team}$
- $w, v \in Worker$
- $f, g \in \text{Feature}$

- $s \in Skill$
- $r \in \text{Role}$
- $sp \in Sprint$
- $sbl \in SprintBacklog$
- $us \in UserStory$
- $tsk \in Task$
- $bl \in Blocker$
- $dev \in DevelopmentSnapshot$

3 Goals

• **G0:** maximize_team_velocity - Maximize the average velocity of the team.

$$\text{Maximize } \sum_{t \in \text{Team}} \text{velocity}(t)$$

• G1: minimize_blocker_severity - Minimize the impact of blockers.

$$Minimize \sum_{bl \in Blocker} severity(bl)$$

• G2: maximize_feature_completion - Maximize the number of features completed.

$$\text{Maximize } \sum_{f \in \text{Feature}} \mathbb{I}(\text{status}(f) = \text{'Done'})$$

• G3: minimize_sprint_overhead - Minimize the total time spent in meetings.

$$\label{eq:minimize} \operatorname{Minimize} \ \sum_{sp \in \operatorname{Sprint}} \operatorname{meeting_duration}(sp)$$

• G4: maximize_stakeholder_satisfaction - Maximize stakeholder satisfaction.

• **G5:** minimize_task_effort_variance - Minimize effort estimation variance for a task.

Minimize | estimated effort(tsk) - actual effort(tsk) | $\forall tsk \in Task$

• **G6:** maximize _worker _availability - Maximize worker availability.

$$\text{Maximize } \sum_{w \in \text{Worker}} \text{availability}(w)$$

• G7: minimize_budget_overrun - Minimize the total budget overrun.

$$Minimize \sum_{p \in Project} \max(0, actual_cost(p) - budget(p))$$

• G8: maximize_sprint_goal_achievement - Maximize sprint goal achievement rate.

• **G9:** minimize_technical_debt - Minimize the level of technical debt.

Minimize technical $debt(dev) \quad \forall dev \in DevelopmentSnapshot$

4 Conditions

• C0: team_has_scrum_master - A team must be supported by a Scrum Master.

 $\exists sm \in \text{ScrumMaster supportedby}(t, sm) \quad \forall t \in \text{Team}$

• C1: worker_availability_threshold - A worker's availability must be ≥ 70%.

availability
$$(w) \ge 0.7 \quad \forall w \in \text{Worker}$$

• C2: feature_high_priority - The feature must have a 'High' or 'Critical' priority.

$$priority(f) \in \{'High', 'Critical'\} \quad \forall f \in Feature$$

• C3: blocker_is_resolved - The blocker must have a status of 'Resolved'.

$$status(bl) = 'Resolved' \quad \forall bl \in Blocker$$

• C4: sprint is active - The sprint must have an 'Active' status.

$$status(sp) = Active \forall sp \in Sprint$$

• C5: story_has_acceptance_criteria - A user story must have defined acceptance criteria.

acceptance_criteria(
$$us$$
) $\neq \emptyset \quad \forall us \in UserStory$

• C6: task is dev type - The task must be of type 'Development'.

$$type(tsk) = 'Development' \quad \forall \, tsk \in Task$$

• C7: skill is certified - The skill must be certified.

$$\operatorname{certified}(s) = \operatorname{True} \quad \forall s \in \operatorname{Skill}$$

• C8: project is running - The project status must be 'In Progress'.

$$status(p) = 'In Progress' \quad \forall p \in Project$$

• C9: snapshot_test_passed - The development snapshot test status must be 'Passed'.

test status(
$$dev$$
) = 'Passed' $\forall dev \in DevelopmentSnapshot$

• C10: review_has_min_attendees - The sprint review must have ≥ 3 attendees.

attendees_count
$$(sr) \ge 3 \quad \forall sr \in SprintReview$$

5 Decision Variables

- **DV0:** $x_{w,t} \in \{0,1\}$ Binary assignment of worker w to team t.
- DV1: $y_{f,sbl} \in \{0,1\}$ Binary inclusion of feature f in sprint backlog sbl.

- DV2: $z_{us} \in \mathbb{Z}^+$ Story points for user story us, where $1 \le z_{us} \le 20$.
- DV3: $d_{sp} \in \mathbb{Z}^+$ Duration of sprint sp in days, where $7 \leq d_{sp} \leq 30$.
- **DV5:** $p_f \in \mathbb{Z}^+$ Priority level of feature f, where $1 \le p_f \le 5$.
- **DV6:** $m_{sp} \in \mathbb{Z}^+$ Total meeting minutes for sprint sp.
- **DV7:** $av_w \in \mathbb{R}$ Planned availability of worker w, where $0.0 \le av_w \le 1.0$.
- DV8: $size_t \in \mathbb{Z}^+$ Size of team t, where $3 \leq size_t \leq 9$.
- **DV9:** $rd_p \in \mathbb{Z}^+$ Release day for project p (days from start), where $30 \le rd_p \le 365$.
- DV10: $budget_f \in \mathbb{R}^+$ Budget allocated to feature f.