Mendelova univerzita v Brně Provozně ekonomická fakulta

Modelování pokrytí terénu technologií Wi-Fi

Jan Šilhan

26/09/2017

OBSAH

1	Uvod	3		
2	Přenos signálu			
	2.1 Útlum signálu v atmosféře			
	2.2 Útlum signálu s překážkami	3		
	2.3 Výkon AP			
	2.3.1 Nařízení ČTÚ	4		
	2.4 Modely pro plánování vnitřních prostor	4		
	2.4.1 One-Slope model	4		
	2.4.2 Multi-Wall model	4		
3	Softwarové řešení	5		
4	Závěr	5		

1 Úvod

Wi-Fi je označení pro bezdrátový přenos dat. Pro přenos se používají mikrovlny, které se šíří v budovách a ve volných prostranstvích. Jelikož šíření signálu venku není velký úkol zaměříme se na pokrytí vnitřku budov. Pro modelování lze použít několik softwarových řešení kde lze namodelovat budovu s překážkami. Poté lze velmi jednoduše nasimulovat sílu signálu v různých umístění. Tato práce se nezabývá standarty IEEE 802.11 ani infrastruktury sítě.

2 Přenos signálu

2.1 ÚTLUM SIGNÁLU V ATMOSFÉŘE

Je ztráta signálu v běžných podmínkách, bez překážek. Pro který se používá se následující vztah:

$$L_0 = 20 * log\left(\frac{4 * \pi * d}{\alpha}\right) \tag{2.1}$$

kde:

 L_0 - Ztráta vlivem průchodu atmosférou; [dB]

d - Vzdálenost mezi anténami; [m]

 α - Vlnová délka; [m]

2.2 ÚTLUM SIGNÁLU S PŘEKÁŽKAMI

Překážky jsou buď stacionární nebo pohyblivé. Útlum lze zjistit měřením a následným výpočtem. Se zvyšující se frekvencí klesá prostupnost. Proto se používá maximálně 5GHz (s výjimkou 60 GHz směrovače který je ve vývoji a vysoce experimentální). Pro výpočet se používá následující vztah:

$$L = 10 * log\left(\frac{P_2}{P_1}\right) \tag{2.2}$$

Kde:

L - Ztráty vlivem překážek; [dB]

 P_1 - Výkon vyslaný; [dB]

P₂ - Výkon přijatý; [dB]

2.3 VÝKON AP

2.3.1 Nařízení ČTÚ

Kmitočtové pásmo	Vyzářený výkon	Maximální spekt-	Další podmínky
		rální hustota EIRP	
2400,0 - 2483,5 MHz	Iz 100 mW	10 mW/1 MHz	systémy s technikou
2400,0 - 2403,3 WILL			DSSS nebo OFDM
		100 mW/100 kHz	systémy s technikou
			FHSS
5150 - 5250 MHz	200 mW střední	10 mW/MHz	pouze pro použití
		(střední spekt-	uvnitř budovy
		rální hustota v	
		libovolném úseku	
		širokém 1MHz)	
5470 - 5725 MHz	1 W střední	50 mW/MHz	-
		(střední spekt-	
		rální hustota v	
		libovolném úseku	
		širokém 1MHz)	

2.4 Modely pro plánování vnitřních prostor

Modely slouží pro predikci pokrytí uvnitř i vně. Pomáhají rozmístit přístupové body, nastavováním kanálů a výkonu.

2.4.1 One-Slope model

Empirický model, pro velké městské buňky, do dnes využívaný. Není náročný na zadání vstupních dat a je rychlý na výpočet. Využívá jeden útlum pro celou oblast, udávají se útlumy pro různá prostředí a frekvenční pásma.

2.4.2 Multi-Wall model

Je daleko složitější a potřebuje přesné rozmístění příček na patrech i s jejich útlumem. Ovšem tento model je úměrně složitý k výstupu. Omezení tohoto modelu je že nelze simulovat vlnovodný efekt v dlouhých a zahnutých chodbách.

3 SOFTWAROVÉ ŘEŠENÍ

Řešení pro simulaci šíření není mnoho, jeden z nich je I-prop který však potřebuje přídavný hardware pro měření. Návrh rozložení přístupových bodů je stále složitý, ale tento software pomůže jak s rozložením, tak rozvrhnutím kanálů.

4 ZÁVĚR

Modelování pokrytí terénu není jednoduchá disciplína, je zde neuvěřitelné množství překážek se kterými je nutno se vypořádat. Venkovní pokrytí je jednoduší z několika důvodů, například daleko méně překážek, ale jsou zde jiné těžkosti. Jelikož města a celkově česká republika nemá regulované pásmo a poskytovatelé si mohou vybírat kanály které obsadí je zde velké rušení, Brno je toho velkým příkladem. Model uvnitř budov je komplexnější a je zde mnoho možností pochybení. Které může začínat výběrem špatného zařízení a končit slepými místy bez signálu. Simulace nejsou přesné a vždy je nutná korektura v reálu.