

UNIVERZITET U BEOGRADU ELEKTROTEHNIČKI FAKULTET

Zaštita podataka – 2020/2021

Bulevar kralja Aleksandara 73, PF 35-54, 11120 Beograd, Srbija

OPENPGP CRYPTO GUI

Autori: Vasilije Stambolić 0061/2018 Nemanja Maksimović 0355/2016

Sadržaj

1.	Uvo	od	. 3
		Glavni meni	
	2.2.	Enkripcija/potpisivanje	. 4
	2.3.	Manipulacija ključevima	. 5
	2.4.	Dekripcija	. 6
3.	Opi	s korišćenih algoritma	. 7
	3.1.	Asimetrični algoritmi	. 7
	3.2.	Simetrični algoritmi	. 7
4.	Opi	s klasa	. 8
	4.1.	Key managment	. 8
	4.2.	Transfer	10
	4.3.	Exceptions	11

1. Uvod

PGP (*Pretty Good Privacy*) je kriptografski protokol koji pruža privatnost (*enkripciju*) i autentikaciju (*potpisivanje*) u komunikaciji. PGP se koristi za potpisivanje, enkripciju i dekripciju mejlova, fajlova, tekstova da bi se povećala sigurnost u e-mail komunikaciji.

Cilj projekta je prikazati jednu implementaciju PGP protokola (OpenPGP) koristeći algoritme koji će biti opisani u nastavku dokumenta.

Glavne funkcionalnosti sistema su:

- Generisanje novog i brisanje postojećeg para ključeva
- Uvoz i izvoz javnih i privatnih ključeva
- Slanje poruke
- Primanje poruke

2.1. Glavni meni

Korisnički interfejs se sastoji iz glavnog menija koji dalje vodi u tri posebne stranice: enkripcija, kreiranje i manipulisanje ključevima i dekripcija.

2.2. Enkripcija/potpisivanje

Stranica za enkripciju služi da se izabare fajl koji će da se enkriptuje i lokacija gde će on biti snimljen. Takođe na toj stranici se biraju svi potrebni parametric koji su potrebni za enkripciu/potpisivanje kao što su: Algoritam koji se koristi za enkripciju, javni i tajni ključ kao i opcije da li korisnik želi da odradi enkripciju, potpisivanje, kompresiju i konvertovanje u Radix64 format.

2.3. Manipulacija ključevima

Na stranici za manipulaciju ključeva (Key Management) može da se doda novi par ključreva kao I da se obriše već postojeći. Pored ovih funkcionalnosti ključevi mogu da se eksportuju i importuju.

2.4. Dekripcija

Na stranici za dekripciju i verifikaciju bira se fajl koji želimo da dekriptujemo ili verifikujemo kao i lokaciju gde fajl treba da se snimi.

3. Opis korišćenih algoritma

Od algoritma za asimetrične ključeve aplikacija koristi DSA za potpisivanje i ElGamal za enkripciju.

Korišćeni algoritmi za simetrične ključeve su 3DES sa EDE konfiguracijom i CAST5.

3.1. Asimetrični algoritmi

DSA (*Digital Signature Algorithm*) je public-key enkripcioni algoritam koji se koristi za generisanje elektronskih potpisa. Kod DSA kreira se public-private par ključeva koji se koriste za potpisivanje i autentikaciju. Pošiljaoc potpisuje podatke koje šalje svojim privatnim ključem što obezbeđuje jedinstveni potpis za korisnika dok primaoci javnim ključem pošiljaoca verifikuju od koga je poruka došla.

ElGamal algoritam je algoritam za enkripciju sa asimetričnim ključevima. Poruka se šifruje javnim ključem primaoca dok primaoc dekriptuje poruku svojim privatnim ključem. Time se obezbeđuje da samo primalac može da dekriptuje poruku. U PGP algoritmu ElGamal se koristi za enkripciju simetričnog ključa koji se koristi za enkripciju same poruke.

3.2. Simetrični algoritmi

3DES algoritam je algoritam sa simetričnim ključem koji se koristi za enkripciju blokovskih podataka. 3DES je varijacija DES algoritma gde se sam algoritam ponovi tri puta. U ovoj konkretnoj implementaciji koristi se EDE konfiguracija (Encrypt-Decrypt-Encrypt) sa tri kluča.

CAST5 algoritam je algoritam sa simetričnim ključem koji se koristi kao podrazumevani algoritam u nekim verzijama PGPa. CAST5 koristi Feistel strukturu sa 12-16 rundi i ključevima od 40-128 bita (u konkretnoj implementaciji korišćeni su ključevi od 128 bita).

4. Opis klasa

4.1. Key managment

Klasa KeyInfo: abstraktna klasa koja čuva podatke potrebne za generisanje ključeva kao što su keyID username i email korisnika.

Potpis metode	Povratna vrednost	Opis
KeyInfo(long keyId, String userId)		Konstruktor koji na osnovu
		keyId i userId kreira nov
		objekat
getUsername()	String	Geter za atribut username
getEmail()	String	Geter za atribut email
getKeyIdLong()	long	Geter za atribut keyId
setKeyId(long keyId)	void	Seter za za atribut keyId
setUsername(String username)	void	Seter za atribut username
setEmail(String email)	void	Seter za atribut email
setUserInfo(String userId)	void	Na osnovu id korisnika
_		postavlja podatke o korisniku
		(username, email)
formatKeyId(long keyId)	String	Konvertuje keyId u string

Klasa PublicKeyInfo: nasleđuje KeyInfo. Koristi se za čuvanje podataka o javnom ključu

Potpis metode	Povratna vrednost	Opis
PublicKeyInfo(PGPPublicKey		Konstruktor koji na osnovu
pgpPublicKey)		PGPPublicKey objekta kreira
		novi objekat PublicKeyInfo

Klasa SecretKeyInfo: nasleđuje KeyInfo. Koristi se za čuvanje podataka o tajnom ključu

	mile. Heristi se za ea a	ije podataka o tajnom kijaca
Potpis metode	Povratna vrednost	Opis
SecretKeyInfo(PGPSecretKey		Konstruktor koji na osnovu
pgpPublicKey)		PGPSecretKey objekta kreira
		novi objekat PublicKeyInfo

Klasa User: čuva podatke o korisniku

Masa Oser. cuva podatke o korisiiku		
Potpis metode	Povratna vrednost	Opis
User(String username, String email,		Konstruktor koji inicijalizuje
String passphrase)		atribute novog objekta
getUsername()	String	Geter za atribut username
getEmail()	String	Geter za atribut email
getPassphrase()	String	Geter za atribut passphrase
getId()	String	Kreira id korisnika na osnovu
		usernam-a i emaila

Klasa KeyManager: sadrži logiku za kreiranje, menjanje, brisanje, importovanje, eksportovanje ključeva unutar prstenova ključeva.

Potpis metode	Povratna vrednost	Opis
loadKeyRings()	void	Loads key rings from file
generateKeySubpacketVector()	PGPSignatureSubpacketVe	Generiše
	ctor	PGPSignatureSubpacketVe
		ctor koji sadrži podatke o
		sertifikatu koji se koristi za
		potpisivanje
generateSubkeySubpacketVector	PGPSignatureSubpacketVe	Generiše
()	ctor	PGPSignatureSubpacketVe
		ctor koji sadrži podatke o
		enkripciji asimetričnim
and another Verya (I I and was a	Dain Dublic Way Info	ključem
generateKeys(User user, KeyMaterial keyMaterial,	Pair <publickeyinfo, secretkeyinfo=""></publickeyinfo,>	Generiše par ključeva koristeći prosleđene
SubkeyMaterial	Secretkeyiii0>	podatke
subkeyMaterial)		podatke
generateSubkeyPair(SubkeyMate	KeyPair	Generiše par podključeva
rial subkeyMaterial)		koristeći prosleđene
,		parametre (za ElGamal)
generateKeyPair(KeyMaterial	KeyPair	Generiše par ključeva
keyMaterial)		koristeći prosleđene
		parametre (za DSA)
createKeyRingGenerator(User	PGPKeyRingGenerator	Kreira
user, KeyPair keyPair,		PGPKezRingGenerator
KeyPair subkeyPair)		Za korisnika koristeći
		glavni i sporedni par
getPublicKeyInfoCollection()	Collection <publickeyinfo></publickeyinfo>	ključeva Vraća kolekciju javnih
getruolickeyilliocollection()	Conection rubic Reynino	ključeva
getSecretKeyInfoCollection()	Collection <secretkeyinfo></secretkeyinfo>	Vraća kolekciju tajnih
		ključeva
exportSecretKeyRings()	void	Eksportuje kolekciju tajnih
		ključeva u fajl
exportPublicKeyRings()	void	Eksportuje kolekciju javnih
		ključeva u fajl
exportKey(KeyInfo keyInfo, File	void	Eksportuje konkretan ključ
file)		u fajl
importKeyRings(File file)	List <keyinfo></keyinfo>	Importuje prsten ključeva iz
		prosleđenog fajla
getPublicKeyRing(KeyInfo	PGPPublicKeyRing	Dohvata prsten javnih
keyInfo)		ključeva kome pripada
		prosleđeni ključ

getSecretKeyRing(KeyInfo	PGPSecretKeyRing	Dohvata prsten tajnih
keyInfo)		ključeva kome pripada
		prosleđeni ključ
deletePublicKey(KeyInfo	void	Uklanja javni ključ
keyInfo)		
deleteSecretKey(KeyInfo	void	Uklanja tajni ključ
keyInfo)		
isEncrypted(KeyInfo keyInfo)	boolean	Proverava da li je
		prosleđeni tajni ključ
		zaštićen šifrom (passphrase)

4.2. Transfer

Klasa Sender: sadrži logiku za enkripciju i potpisivanje fajlova

Potpis metode	Povratna vrednost	Opis
Sender(File file, File outputDirectory,		Konstruktor
boolean compressionEnabled,		
boolean radix64Enabled,		
boolean encryptEnabled, int		
symmetricAlgorithmId,		
PublicKeyInfo publicKeyInfo,		
boolean signEnabled, String		
passphrase, SecretKeyInfo		
secretKeyInfo)		
send()	void	Sadrži svu potrebnu logiku za
		enkripciju, potpisivanje,
		kompresiju u zavisnosti od
		atributa klase

Klasa Reciever: Sadrži logiku za dekriptovanje i verifikaciju fajlova

Potpis metode	Povratna vrednost	Opis
Receiver(File file)		Konstruktor
receive()	void	Sadrži logiku za dekripciju i
		verifikaciju u ondosu na
		sadržaj fajla (da li je fajl
		enkriptovan i/ili potpisan)
decrypt()	void	Dekriptuje fajl koristeći
		odgovarajući algoritam
decompress()	void	Vrši dekopresiju fajla ukoliko
		je bio kompresovan
read()	void	Čita sadržaj fajla
verify()	void	Verifikuje potpis fajla

Klasa RecieverStatus: Klasa u koju se upisuje rezultat dekripcije/verifikacije. Sadrži dekriptovanu poruku kao i podatke o potpisivaču. Klasa ne sadrži metode sa posebnom logikom već samo getere i setere za atribute koji čuvaju potrebne podatke.

4.3. Exceptions

Postoje nekoliko klasa koje nasleđuju Exception i služe za hendlovanje posebnih grešaka.

- InvalidFileFormatException : greška koja se prijavljuje ukoliko fajl koji je prosleđen na dekripciju nije u odgovarajucem formatu
- RecieverException : tip greške koji se javlja tokom dekripcije/verifikacije. Klase koje nasleđuju RecieverException:
 - o InvalidPassphraseException : javlaj se ukoliko passphrase koji je unet ne odgovara odabranom ključu
 - KeyNotFoundException : greška kada ključ korišćen za enkrpiciju ne postoji u odgovarajućem prstenu
 - PassphraseRequiredException : greška kada nije unet passphrase sa određeni ključ
 - SignerKeyNotFoundException: greška kada ključ korišćen za potpisivanje ne postoji u prstenu ključeva