113-1 雲端運算與邊緣運算應用

End computing and edge computing applications.

Lab2

LeNet Inference and application

授課老師: 王斯弘 老師

學生: B11123206 陳冠欣

中華民國 113 年 12 月 10 日

目錄

目錄 -		-1
壹、	LeNet 簡介	-2
貳、	PC 端 模型訓練&推理	-3
參、	Edge 端 操作流程-DevBoard 燒機	-7
肆、	遇到問題與解決1	14
伍、	心得1	15

壹、 LeNet 簡介

由於多層類神經網路的架構在高維度資料(手寫辨識)有不錯的效果,而且相較於傳統的辨識方法,不需要有太多的圖片預處理。

傳統的圖像辨識準確度與如何設計特徵提取有著密不可分的關係,而且常常必須針 對不同問題而重新設計特徵提取(如下圖)。

傳統的辨識模式是分兩模組執行的;一個固定的特徵擷取器和一個可訓練的分類器

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

上圖為 LeNet-5 的架構,總共有七層。其中 C 代表 Convolution, S 代表 subsampling,也可以稱為 Pooling。簡單介紹一下 Convolution 及 Pooling:Convolution 就是在對圖片去做擷取特徵的動作,找出最好的特徵最後再進行分類。Pooling 就是選取特徵,保留重要資訊,並降低 Overfitting。

貳、 PC 端 模型訓練&推理

1. 參數設定、dataset、資料處理

```
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# 超參數設定
num_class = 10
                                # 類別數量
                            # 每批次訓練資料的大小
# 訓練迭代次數
batch_size = 256
epochs = 500
                                # 每個 epoch 中的步驟數
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_{train} = x_{train} / 255.0
x_test = x_test.astype('float32')
# 增加通道維度以適配 CNN
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], x_train.shape[2], 1)) # (60000, 28, 28, 1)
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], x_test.shape[2], 1)) # (10000, 28, 28, 1)
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], x_test.shape[2], 1))
# 將標籤轉為 one-hot 編碼
y_train = tf.keras.utils.to_categorical(y_train, num_class)
y_test = tf.keras.utils.to_categorical(y_test, num_class)
print("資料預處理完成")
```

2. 定義 convolution(卷積層)

3. 定義 pooling 層(池化層)

4. 定義 Model

5. 建立模型

```
# 建立模型
img_input = tf.keras.Input(shape=(28, 28, 1)) # 輸入層
output = lenet(img_input) # 構建 LeNet 網路
model = tf.keras.Model(inputs=img_input, outputs=output)
```

6. 編譯模型

7. 訓練模型 & 保存模型

8. 預測圖片

9. 預測多張圖片

10. 將 H5 檔轉換成 tflite

```
C: > Users > user > Downloads > Lab2-LeNet Inference > 🥏 h5_to_tflite.py > ...
 10 ∨ import tensorflow as tf
      import numpy as np
      import glob
      tf.__version__
      IMAGE_SIZE=28
 17 v def color_preprocessing(x_train,x_test):
        x_train=x_train.astype('float32')
        x_test=x_test.astype('float32')
        x_train=x_train/255.
        x_test=x_test/255.
       return x_train,x_test
      (x_train,y_train),(x_test,y_test)=tf.keras.datasets.mnist.load_data()
      y_train=tf.keras.utils.to_categorical(y_train,10)
      y_test=tf.keras.utils.to_categorical(y_test,10)
      x train,x test=color preprocessing(x train,x test)
      x_train=np.reshape(x_train,(x_train.shape[0],x_train.shape[1],x_train.shape[2],1))
 30 ∨ def representative data gen():
        dataset list index=np.random.choice(range(50000),100)
        for i in range(100):
          image=x train[dataset list index[i]]
          image=tf.image.resize(image,[IMAGE SIZE,IMAGE SIZE])
          image=tf.cast(image,tf.float32)
          image=tf.expand_dims(image,0)
          yield [image]
 41
      model=tf.keras.models.load model('C:/model-resnet18.h5')
      converter = tf.lite.TFLiteConverter.from keras model(model)
      converter=tf.lite.TFLiteConverter.from keras model file('C:/model-resnet18.h5')
      converter.optimizations=[tf.lite.Optimize.DEFAULT]
      converter.target_spec.supported_ops=[tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
      converter.representative_dataset=representative_data_gen
      converter.inference_input_type=tf.uint8
      converter.inference_output_type=tf.uint8
      tflite_model=converter.convert()
 53 v with open('models/mnist_lenet.tflite','wb') as f:
        f.write(tflite_model)
```


參、 Edge 端 操作流程-

DevBoard 燒機:

1. 下載 balenaEtcher

下載 Etcher for Windows (x86|x64) (Installer)

DOWNLOAD

Download Etcher

ASSET	OS	ARCH	
ETCHER FOR WINDOWS (X86 X64) (INSTALLER)	WINDOWS	X86 X64	Download
ETCHER FOR MACOS	MACOS	X64	Download
ETCHER FOR MACOS (ARM64)	MACOS	ARM64	Download
ETCHER FOR LINUX X64 (64-BIT) (ZIP)	LINUX	X 6 4	Download
ETCHER FOR LINUX (LEGACY 32 BIT) (APPIMAGE)	LINUX	X86	Download

- 1. 下載並解壓縮SD卡鏡像: enterprise-eagle-flashcard-20211117215217.zip ZIP包含一個名為 flashcard_arm64.img .
- 2. 使用balengEtcher等程式將 flashcard_arm64.img 檔案閃存到您的 microSD 卡上。 這需要 5-10 分鐘,具體取決於您的 microSD 卡和適配器的速度。

2. 調整啟動模式、插入 SD 卡

3. 燒入映像檔到 SD 卡

4. 調整開關改為 SD 卡啟動

啟動模式	開關1	開關2	開關3	開關4
SD卡	在	離開	在	在

5. 進行刷機

插上電源前先插入SD卡 並根據前一步驟調整開機模式 插入SD卡並通電後 等待電路板關閉並紅色LED燈熄滅 即完成燒機

6. 斷電並整開機模式重新開機

- . 當紅色 LED 熄滅時,拔下電源並取出 microSD 卡。
- . 將啟動模式開關變更為eMMC模式,如圖4所示:

后	動模式	開闢1	開關2	開關3	開關4
3	5媒體卡	在	離開	離開	離開

圖 4. 啟動開關設定為 eMMC 模式

. 將開發板連接到電源,它現在應該啟動 Mendel Linux。

刷機後首次啟動大約需要3分鐘(後續啟動時間快得多)。

7. 按照步驟使用 Putty 連接 Windows

與 Windows 連線

您可以從 Windows 10 連接到開發板的序列控制台,如下所示:

- 1. 使用 micro-B USB 線將電腦連接到開發板,然後將開發板連接到電源,如圖 1 所示。
- 2. 在 Windows 電腦上,開啟裝置管理員並找到開發板的 COM 連接埠。

連接 USB 連接線後一分鐘內,Windows 應自動安裝必要的驅動程式。因此,如果您展開連接埠(COM 和 LPT),您應該會看到兩個名為「Silicon Labs Dual CP2105 USB to UART Bridge」的裝置。

記下名為「增強型 COM 連接埠」的裝置的 COM 連接埠(例如「COM3」)。您將在下一步中使用它。

如果 Windows 無法識別該設備,則應將其列在「其他設備」下。右鍵單擊增強型 Com 連接埠並選擇更新驅動程式以查找適當的裝置驅動程式。

- 3. 開啟 PuTTY 或其他串行控制台應用程序,並使用波特率 與上述 COM 連接埠啟動串行控制台連接 115200 。例如,如果使用 PuTTY:
 - 1. 在左側窗格中選擇會話。
 - 2. 對於連接類型,選擇串行。
 - 3. 在「序列線路」中輸入 COM 連接埠(「COM3」),在「速度」中輸入「115200」。
 - 4. 然後點選"開啟"。
- 4. 當螢幕終端打開時,它可能是空白的。按 Enter 鍵,系統完成啟動後您應該會看到登入提示。 預設使用者名稱和密碼均為"mendel"。

插好連接到電腦的傳輸線和電源線

先到裝置管理員尋找

Silicon Labs Dual CP2105 USB to UART Bridge: Enhanced COM Port

PuTTY Configuration:

調整連接類型為 Serial、連接阜為 COM6、pseed 為 115200

8. 進入終端機

如果 screen 後什麼都沒有記得按 Enter Enter 後,第一次 screen 需要登入,輸入帳號密碼都是 mendel

- 9. 將所需的檔案放入 USB
 - 需要的檔案有
 - 1. tflite
 - 2. Label
 - 3. Pv 檔
 - 4. 要預測的圖片

10. 插上 USB 到 DevBoard

11. 回到終端機尋找有 dev 資料夾的地方,輸入 sudo mkdir test 創建一個掛載 USB 的資料夾 test

```
mendel@coy-tang:/$ sudo mkdir test
mendel@coy-tang:/$ ls
bin
      home
                        lib64
                                                 tmp
                                                           vmlinuz.old
                                    opt
                                           sbin
                       lost+found
boot
      initrd.img
                                    proc
                                           srv
                                                 usr
                       media
                                                 var
dev
      initrd.img.old
                                    root
                                           sys
      lib
                                           test
                                                 vmlinuz
etc
                       mnt
                                    run
```

12. 進入 dev 尋找 sda1

13. 確認完名稱就可以退出 dev 將 USB 掛載到 test

指令為 sudo mount ./dev/sdal/ ./test

```
nendel@coy-tang:/dev$ cd ..
mendel@coy-tang:/$ sudo mount ./dev/sda1 ./test
mendel@coy-tang:/$ ls
bin
     home
                      lib64
                                                        vmlinuz.old
                                   opt
                                         sbin
                                               tmp
boot
     initrd.img
                      lost+found
                                  proc
                                         srv
      initrd.img.old media
dev
                                         sys
                                               var
      lib
                                               vmlinuz
etc
                      mnt
mendel@coy-tang:/$ cd test
mendel@coy-tang:/test$ ls
                         9.png
0.png
         3.png
                6.png
                                              mnist lenet edgetpu.tflite
         4.png
                         classify_image.py 'System Volume Information'
1.png
         5.png
                 8.png
                         label.txt
2.png
mendel@coy-tang:/test$
```

就可以看到 test 裡有 USB 的檔案了

肆、 Edge 端 驗證結果

輸入指令執行

python3 classify_image.py -m mnist_lenet_edgetpu.tflite -l label.txt -i 6.png

```
mendel@bored-zebra:~$ python3 ~/test/classify_image.py -m ~/test/mnist_lenet_edgetpu.tflite -i ~/test/1.png
 --- INFERENCE TIME-
Note: The first inference on Edge TPU is slow because it includes loading the model into Edge TPU memory.
1.7ms
0.4ms
endel@bored-zebra:~$ python3 ~/test/classify_image.py -m ~/test/mnist_lenet_edgetpu.tflite -i ~/test/2.png
---INFERENCE TIME-
2.0ms
mendel@bored-zebra:~$ python3 ~/test/classify_image.py -m ~/test/mnist_lenet_edgetpu.tflite -i ~/test/3.png
---INFERENCE TIME-
Note: The first inference on Edge TPU is slow because it includes loading the model into Edge TPU memory.
L.5ms
.4ms
mendel@bored-zebra:~$ python3 ~/test/classify_image.py -m ~/test/mnist_lenet_edgetpu.tflite -i ~/test/4.png
 ---INFERENCE TIME--
Note: The first inference on Edge TPU is slow because it includes loading the model into Edge TPU memory.
.8ms
     --RESULTS-----
```

伍、 遇到問題與解決

模型訓練時,有時候會遇到模型便是錯誤的問題、不過在調整參數並重新訓練之後酒可以正常辨識了。

Acc 和 loss 忽高忽低的問題:推測是 batch_size 過大造成的,在調整 batch_size 之後問題就解決了

陸、 心得

透過這次實驗,我深入了解了 LeNet 模型的架構及其在圖像辨識上的應用。從模型的訓練到在 Edge 端進行推論,整個過程不僅加深了我對深度學習的理論理解,也讓我體會到實際操作中的挑戰與收穫。

在模型訓練的過程中,我遇到了參數設定不當導致模型表現不穩定的情況。經過多次嘗試與調整,如修改 batch_size 和學習率等參數,最終解決了模型準確率波動過大的問題。這也讓我明白,實驗的關鍵不僅在於程式的執行,更在於對問題的深入剖析與解決方法的探索。

在 Edge 端實現推論時,將模型從 PC 端轉移並執行於開發板的整個過程讓我收穫頗多。 從燒機到連接開發板,雖然過程中需要克服硬體設定的挑戰,但成功將模型部署並進行推論 的成就感無法言喻。

此次實驗使我體認到理論與實踐相結合的重要性,也提升了我的問題解決能力與動手能力。我將持續探索人工智慧與邊緣運算的應用,期待能將這些技術運用於更具創新性的實際案例中。