Music Genre Classification with Machine Learning

Christiaan Dageforde

Goals

 Utilize Librosa methods for extracting spectral features

from audio

 Build a model that can accurately predict the musical genre of an audio signal

Key Definitions

- Digital Signal Processing
 - The process of transforming analog signals into digital ones
 - Audio/speech
 - Sonar & radar
 - Digital images
- Librosa
 - A Python package for audio analysis. Librosa provides us with the methods to build music information retrieval systems
- Musical Information Retrieval (MIR)
 - A broad field describing the process of retrieving information from music
 - Applications in psychoacoustics, musicology, machine learning, and so, SO much more!

Data

- GTZAN
 - 1000 audio files
 - 30 seconds each
- Ten Genres [Label Values]
 - Blues
 - Classical
 - Country
 - Disco
 - Hip-hop
 - Jazz
 - Metal
 - o Pop
 - Raggae
 - Rock
- Extracted spectral features with

_Librosa

Spectrogram

- A visual representation of the spectrum of frequencies of sound
- Frequency
 - The rate at which a sound wave repeats over time
- Frequency vs Amplitude
 - Size (Amp) vs Speed (Freq)
- Spectrogram
 - X-Axis: Time
 - Y-Axis: Frequency
 - Shading: Amplitude

Waveforms

- Waveforms are a visualization of a sound's amplitude envelope
- Amplitude
 - Fluctuation of a wave from its' mean value
 - In this case, the extent to which air particles are displaced
 - o "Loudness"

Envelope

How the amplitude changes over time

Zero-Crossing Rate

- The rate at which a signal changes from positive to negative
 - Can aid in describing music with a percussive focus

Chromagram

- Divides spectrogram into 12 bins based on absolute frequency
 - Relationship between notes; insight into melody & harmony

Spectral Centroids

- "Center of spectral mass"
- Weighted mean of frequencies present in a recording
- Density of higher frequencies
 - o "Brightness"

Spectral Rolloff

- The shape of the signal
- The frequency below which a specified percentage of total spectral energy lies

Mel-Frequency Cepstral Coefficients

- 10 20 "snapshots" of the overall shape of the spectral envelope
 - o I used 20 in my data
- Models qualities of the human voice

Modeling

Neural Network

- Topology
 - Input
 - Dense; 256 nodes
 - O Hidden (Two Layers)
 - Dense; 128 nodes
 - Dense; 64 nodes
 - Output
 - 10 nodes
 - One for each class label
- Difficult to interpret
 - "Black box"

Random Forest Classifier

- Selects a random subset of features for each split in the tree
- Better interpretability
- Few parameters to tune
- Best Parameters
 - o Maximum depth: None
 - Min. Samples Split: 2
 - Number of estimators: 80

Extra Trees Classifier

- Instead of computing optimal feature/split combination, a random value is assigned for each split
- Helps to further de-correlate our trees
- Best Parameters
 - Max Depth: None
 - Min Samples Split: 2
 - Number of Estimators: 40

Findings

Metrics

Feature importance

 Hierarchy of features crucial to the classification algorithm

Precision

Percentage of correctly predicted positive values

Recall

 How many positive values did we correctly predict?

• F1

 Harmonic average of Precision & Recall

Random Forest Feature Importances

Extra Trees Feature Importances

Best Grouping

Model	Label	Precision	Recall	F1
Neural Network	Classical [1]	.93	1	.96
Random Forest Classifier	Classical [1]	.93	.1	.96
Extra Trees Classifier	Classical [1]	.76	.89	.82

Worst Grouping

Label	Precision	Recall	F1
Нір-Нор [9]	.34	.48	.40
Rock [9]	.44	.33	.38
Rock [9]	.39	.5	.44
	Hip-Hop [9] Rock [9]	Hip-Hop [9] .34 Rock [9] .44	Hip-Hop [9] .34 .48 .33 .33

Musical Interlude

Further Steps

- More data!
 - Larger volume of recordings
 - Full-length recordings for structural analysis
- Tuning Models
 - Experimenting with NN topology
- Building Blocks for more complex projects
 - Sample identification
 - Instrument identification
 - Recommender systems

Questions?