Matematická morfológia

Cvičenia z Počítačového Videnia

Čo už vieme

Načítať obrázok

Konvertovať na šedoúrovňový

Ekvalizovať histogram

Vyhladiť

Prahovať

Nájsť hrany

<= Binárny obrázok

Čo ďalej

Matematická morfológia

Hľadanie objektov:

- Houghova transformácia
- Počet objektov
- Veľkosť, tvar...

Matamatická morfológia

- pracuje s transformáciami, ktoré sú opísané s použitím operátorov v nelineárnej algebre
- predstavuje protipól ku tradičnému spracovaniu signálov, ktoré používa lineárne operátory (napr. konvolúcia)

Morfológia

binárna (2D bodová množina) šedotónová (3D bodová množina)

Matamatická morfológia I.

 predpokladá, že obraz sa dá modelovať pomocou bodových množín

Bodová množina

 množina súradníc obrazových bodov, ktoré patria objektu

$$X = \{(1, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 3)\}$$

Použitie

- predspracovanie
 - odstránenie šumu, zjednodušenie tvaru
- tvorba kostry, stenčovanie/zhrubnutie
 obrazu, tvorba konvexného obalu...
- segmentácia

Morfologická transformácia

 relácia medzi bodovou množinou X a štrukturálnym elementom B

Štrukturálny element:

- bodová množina
- obsahuje jeden reprezentatívny bod O

Morfologické transformácie

- dilatácia, erózia
- opening (otvorenie), closing (uzavretie)
- hit-or-miss
- translácia, reflekcia, komplement, rozdiel, extrancia hranice, nájdenie konvexného obalu, stenčenie, zhrubnutie, nájdenie kostry...

Dilatácia

- založená na Minkowského súčte
 X Θ B = {p ∈ ε², p= x + b, x ∈ X, b ∈ B}
- relácia, ktorá skladá body dvoch množín pomocou vektorového súčinu
- zjednotenie posunutých bodových množín
- komutatívna, asociatívna, invariantná na otočenie

Dilatácia

$$X = \{(1, 0), (1, 1), (2, 1)\}$$

$$B = \{(0, 0), (1, 0)\}$$

$$X \oplus B = \{(1, 0), (1, 1), (2, 1) \\ (2, 0), (2, 1), (3, 1)\}$$

Dilatácia

Erózia

- založená na Minkowského rozdieli

$$X - B = \{p \in \varepsilon^2, p+b \in X, b \in B\}$$

- komutatívna, invariantná voči posunutiu
- prienik všetkých posunutí

Erózia

$$X = \{(1, 0), (1, 1), (1, 2), (0, 2), (1, 2), (2, 2), (3, 2)\}$$

$$\mathsf{B} = \{(0,\,0)\,\,,\,(1,\,0)\}$$

$$X \odot B = \{(0, 2), (1, 2), (2, 2)\}$$

Erózia

Opening

- erózia za ktorou nasleduje dilatácia
- $X \circ B = (X-B) \oplus B$

Closing

- dilatácia , za ktorou nasleduje erózia
- $X \cdot B = (X \oplus B) B$

Opening a Closing

- obe operácie sú idempotentné: ich opätovná aplikácia nemení predošlý výsledok
- použitie rovnakého štrukturálneho prvku
- duálne operácie zatvorenie popredia dá rovnaký výsledok, ako otvorenie pozadia

Hit and miss

- hľadanie hrán a rohov objektov, nájdenie izolovaných bodov, koncových bodov kostry
- štrukturálny element
 - 1,0,don't care
 - závislý na tom, čo hľadám
- príklad: nájdenie rohov

	1	
0	1	1
0	0	

	1	
1	1	0
	0	0

	0	0
1	1	0
	1	

0	0	
0	1	1
	1	

Iné operácie

- thinning
 - thin(X,B) = X hit_and_miss(X,B)
- thickening
 - thicken(X,B) = X U hit_and_miss(X,B)
- skeletonization

X – obraz, B – štrukturálny prvok

Hl'adanie hranice

použitie dilatácie a erózie

- Algoritmy

- Štandardné
$$Edge_s(A) = (A \oplus B) - (A \ominus B)$$

- Externé
$$Edge_{E}(A) = (A \oplus B) - A$$

- Interné
$$Edge_I(A) = A - (A \ominus B)$$

Hl'adanie hranice

Príklad využitia

prahovanie

prahovanie

kostra

kostra

Erózia: imerode(Obrázok, štrukt. Element)

Dilatácia: imdilate(Obrazok, strukt. Element)

Opening: imopen(Obrazok, strukt. Element)

Closing: imclose(Obrazok, strukt. Element)

```
Strukturálny element:
SE = strel(shape, parameters);
shape: 'arbitrary'; 'pair'; 'diamond'; 'periodicline'
'disk';'rectangle';'line';'square';'octagon'
se1 = strel('square',11) % 11-by-11 square
se2 = strel('line',10,45) % length 10, angle 45
se3 = strel('disk',15) % disk, radius 15
se4 = strel('ball',15,5) % ball, radius 15, height 5
```

```
Erózia: imerode(Obrázok, štrukt. Element)
Obrázok binárny alebo šedoúrovňový
I = imread('circles.png');
%rgb2gray(); ak treba
se = strel('disk', 11);
erl = imerode(l,se);
imshow(I); figure,imshow(erI);
```

```
Ďalšie metódy
Top Hat: imtophat(I,se);
    original I - opening;
Bottom Hat: imbothat(I,se);
    closing- Original I;
Hmax: imhmax(I,h)
    potlačí maximá menšie ako h
    imregionalmax(I); imhmin(I,h)...
```

Vlastnosti oblastí v Binárnom obr.

```
s = regionprops(Bin. obrazok, 'vlastnost');
```

vlastnosti: 'Area', 'BoundingBox',

'Centroid','Orientation','Perimeter','ConvexArea'...

```
BW = imread('text.png');
s = regionprops(double(BW), 'centroid');
centroids = cat(1, s.Centroid);
imshow(BW)
hold on
plot(centroids(:,1), centroids(:,2), 'b*')
hold off
```