Photon Attenuation Coefficient In Liquid Argon

In the graph we can see a small rise in the attenuation coefficient starting around 1MeV, and after checking out photon cross section in the literature, this makes sense, since photon cross section and photon attenuation length are highly correlated.

Argon has a Z = 18, and so it lies somewhere between Carbon and Lead, where we see a rise around 50 MeV and 5MeV respectively. Seeing as we have a rise around 10MeV, it seems to fit with the literature.

Neutron Attenuation Coefficient In Liquid Argon

n – ⁴⁰Ar Cross Sections

- We simulate neutron interaction in liquid argon of 1mm thickness (thin target, $t \ll \frac{1}{\mu}$)
- Now we aim to find the cross sections of the different interactions between neutrons and argon.

First we will show how the cross section is extracted from the geant4 simulation results:

We define –

 $N_{incident} = number\ of\ incident\ particles$ $N_{events} = number\ of\ neutron\ - liquid\ argon\ interactions$

 $n=number\ of\ argon\ atoms\ per\ unit\ volume=\frac{\rho N_{avogadro}}{A}$ where A=40 is the atomic mass number of argon, and $\rho=1.4\ g/cm^3$ is the mass density of liquid argon.

x = thickness of the liquid argon

Thus, we can write $N_{events} = N_{incident} \cdot nx \cdot \sigma$

And so

$$\sigma[barn] = 10^{24} \frac{N_{events}A}{N_{incident}\rho x N_{avogadro}}$$

$$d\sigma[barn] = 10^{24} \cdot \frac{A}{N_{avogadro}\rho x} \cdot \frac{N_{events}}{N_{incident}} \cdot \sqrt{\frac{1}{N_{events}} + \frac{1}{N_{incident}}}$$

• Note that these equations hold only if the target is thin enough, and so we set the argon thickness such that each neutron interacts once at most.

n – ⁴⁰Ar Cross Sections

n - ⁴⁰Ar Cross Section Decomposition

Dashes line aren't interpolation – only used to guide the eye

n – ⁴⁰Ar Total Cross Section Comparison

Number of ejected neutrons from Ar40 when hit by 20MeV neutrons

Number of ejected protons distribution

Atomic mass number of heavy nucleus distribution

Atomic number of heavy nucleus distribution

Inelastic reaction secondaries characteristics

20MeV neutron primaries

- •All Following pie charts represent the distribution of the **first reaction** between the neutrons and the argon.
- In order to simulate only a single reaction the argon target was set to be thin -

$$t \ll \frac{1}{\mu}$$

Nuclear reactions distribution using 1MeV neutrons

Nuclear reactions distribution using 10MeV neutrons

Nuclear reactions distribution using 20MeV neutrons

Nuclear reactions distribution using 30MeV neutrons

Nuclear reactions distribution using 40MeV neutrons

Nuclear reactions distribution using 50MeV neutrons

Conclusions

- At 1 MeV the dominant interaction is elastic (about 100% of reactions).
- At 10 MeV the dominant interactions are ⁴⁰Ar(n,n') ⁴⁰Ar (63% of interactions) and elastic (36% of interactions).
- At 20 MeV the dominant interactions are 40 Ar(n,2n) 39* Ar (45% of interactions), elastic (35% of interactions) and 40 Ar(n,n') 40* Ar (10% of interactions.
- Around the resonances ~ 875KeV