Introduction

The Iris dataset is a classic dataset in the field of machine learning and statistics. It consists of 150 samples of iris flowers, each belonging to one of three species: Setosa, Versicolor, and Virginica. Each sample includes four features: sepal length, sepal width, petal length, and petal width, all measured in centimeters.

Importing Necessary libraries

```
In [1]: import pandas as pd
    from sklearn.datasets import load_iris, load_diabetes
    from sklearn.preprocessing import StandardScaler, LabelEncoder, MinMaxScaler
    from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
    import matplotlib.pyplot as plt
    import seaborn as sns
```

Loading IRIS dataset

```
In [2]: file_path=r"C:\Users\Irene Chelsia\Downloads\Iris.csv"
    df=pd.read_csv(file_path)
    df
```

Out[2]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

Data Understanding

In [3]: df.head()

Out[3]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [4]: df.tail()

Out[4]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

In [5]: df.describe()

Out[5]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

```
In [6]: #Statistical description of the data
df.describe().plot()
```

Out[6]: <Axes: >

In [7]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
```

```
Non-Null Count Dtype
#
    Column
                   -----
                                 ----
0
    Ιd
                  150 non-null
                                  int64
    SepalLengthCm 150 non-null
1
                                  float64
2
    SepalWidthCm
                  150 non-null
                                  float64
    PetalLengthCm 150 non-null
                                  float64
4
    PetalWidthCm
                  150 non-null
                                  float64
5
    Species
                  150 non-null
                                  object
dtypes: float64(4), int64(1), object(1)
```

memory usage: 7.2+ KB

```
In [8]: df.dtypes
```

```
Out[8]: Id int64
SepalLengthCm float64
SepalWidthCm float64
PetalLengthCm float64
PetalWidthCm float64
Species object
dtype: object
```

```
In [9]: df.columns
```

Species Frequency


```
In [13]: |df['Species'].nunique()
Out[13]: 3
In [14]: df.duplicated().sum()
Out[14]: 0
In [15]: df[df.duplicated()]
Out[15]:
            Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species
In [16]: df.isnull().sum()
Out[16]: Id
                           0
         SepalLengthCm
                           0
         SepalWidthCm
                           0
         PetalLengthCm
                           0
         PetalWidthCm
                           0
         Species
         dtype: int64
```

```
In [17]: df.drop("Id", axis=1).boxplot(by="Species", figsize=(10, 10))
plt.show()
```

Boxplot grouped by Species

In [18]: df.corr()

C:\Users\Irene Chelsia\AppData\Local\Temp\ipykernel_13692\1134722465.py:1: FutureW
arning: The default value of numeric_only in DataFrame.corr is deprecated. In a fu
ture version, it will default to False. Select only valid columns or specify the v
alue of numeric_only to silence this warning.
 df.corr()

Out[18]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
ld	1.000000	0.716676	-0.397729	0.882747	0.899759
SepalLengthCm	0.716676	1.000000	-0.109369	0.871754	0.817954
SepalWidthCm	-0.397729	-0.109369	1.000000	-0.420516	-0.356544
PetalLengthCm	0.882747	0.871754	-0.420516	1.000000	0.962757
PetalWidthCm	0.899759	0.817954	-0.356544	0.962757	1.000000

Out[19]: Text(0.5, 1.0, 'Sepal Length Vs Sepal Width')


```
In [20]: corr=df.corr()
sns.heatmap(corr,annot=True)
```

C:\Users\Irene Chelsia\AppData\Local\Temp\ipykernel_13692\2699745944.py:1: FutureW
arning: The default value of numeric_only in DataFrame.corr is deprecated. In a fu
ture version, it will default to False. Select only valid columns or specify the v
alue of numeric_only to silence this warning.
 corr=df.corr()

Out[20]: <Axes: >

Data Preprocessing

```
In [21]: df.drop(columns=['Id'],inplace=True)
    df.head()
```

Out[21]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

```
In [22]: |df[['Prefix', 'Species']]=df['Species'].str.split('-',1,expand=True)
          C:\Users\Irene Chelsia\AppData\Local\Temp\ipykernel_13692\1756609110.py:1: FutureW
          arning: In a future version of pandas all arguments of StringMethods.split except
          for the argument 'pat' will be keyword-only.
            df[['Prefix','Species']]=df['Species'].str.split('-',1,expand=True)
In [23]: |df.drop('Prefix',axis=1,inplace=True)
          df['Sepal ratio']=df['SepalLengthCm']/df['SepalWidthCm']
In [24]:
          df['Petal ratio']=df['PetalLengthCm']/df['PetalWidthCm']
          df.head()
In [25]:
Out[25]:
                                                                               Sepal ratio Petal ratio
              SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                       Species
           0
                        5.1
                                      3.5
                                                     1.4
                                                                  0.2
                                                                        setosa
                                                                                 1.457143
                                                                                                7.0
           1
                                       3.0
                                                                   0.2
                                                                                 1.633333
                                                                                                7.0
                        4.9
                                                     1.4
                                                                        setosa
           2
                        4.7
                                       3.2
                                                     1.3
                                                                   0.2
                                                                        setosa
                                                                                 1.468750
                                                                                                6.5
                                                                   0.2
                                                                                 1.483871
                                                                                                7.5
           3
                        4.6
                                       3.1
                                                     1.5
                                                                        setosa
                        5.0
                                       3.6
                                                     1.4
                                                                   0.2
                                                                        setosa
                                                                                 1.388889
                                                                                                7.0
          Feature Engineering
In [26]:
          minmax=MinMaxScaler()
          df[['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm','Sepal ratio','Pe
          df.head()
Out[26]:
              SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species
                                                                               Sepal ratio Petal ratio
           0
                    0.22222
                                  0.625000
                                                0.067797
                                                              0.041667
                                                                                 0.111531
                                                                                           0.378641
                                                                        setosa
           1
                    0.166667
                                  0.416667
                                                0.067797
                                                              0.041667
                                                                        setosa
                                                                                 0.215586
                                                                                           0.378641
                                  0.500000
                                                0.050847
                                                                                 0.118386
                                                                                           0.339806
           2
                    0.111111
                                                              0.041667
                                                                        setosa
           3
                    0.083333
                                  0.458333
                                                0.084746
                                                              0.041667
                                                                                 0.127317
                                                                                           0.417476
                                                                        setosa
                    0.194444
                                  0.666667
                                                0.067797
                                                              0.041667
                                                                        setosa
                                                                                 0.071222
                                                                                           0.378641
In [27]:
          encoder=LabelEncoder()
          df['Species']=encoder.fit_transform(df['Species'])
          df.head()
Out[27]:
```

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	Sepal ratio	Petal ratio
0	0.222222	0.625000	0.067797	0.041667	0	0.111531	0.378641
1	0.166667	0.416667	0.067797	0.041667	0	0.215586	0.378641
2	0.111111	0.500000	0.050847	0.041667	0	0.118386	0.339806
3	0.083333	0.458333	0.084746	0.041667	0	0.127317	0.417476
4	0.194444	0.666667	0.067797	0.041667	0	0.071222	0.378641

```
In [28]: labels = ['Small', 'Medium', 'Tall']
    df['Sepal bin'] = pd.cut(df['Sepal ratio'], bins=3, labels=labels)
    df['Petal bin'] = pd.cut(df['Petal ratio'], bins=3, labels=labels)
    df.head()
```

Out[28]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	Sepal ratio	Petal ratio	Sepal bin
0	0.222222	0.625000	0.067797	0.041667	0	0.111531	0.378641	Small
1	0.166667	0.416667	0.067797	0.041667	0	0.215586	0.378641	Small
2	0.111111	0.500000	0.050847	0.041667	0	0.118386	0.339806	Small
3	0.083333	0.458333	0.084746	0.041667	0	0.127317	0.417476	Small
4	0.194444	0.666667	0.067797	0.041667	0	0.071222	0.378641	Small
4								>

Split the data into training and testing sets

```
In [29]: X=df.iloc[:,:4]
y=df.iloc[:,4:5]
```

In [30]: X

Out[30]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	0.222222	0.625000	0.067797	0.041667
1	0.166667	0.416667	0.067797	0.041667
2	0.111111	0.500000	0.050847	0.041667
3	0.083333	0.458333	0.084746	0.041667
4	0.194444	0.666667	0.067797	0.041667
145	0.666667	0.416667	0.711864	0.916667
146	0.555556	0.208333	0.677966	0.750000
147	0.611111	0.416667	0.711864	0.791667
148	0.527778	0.583333	0.745763	0.916667
149	0.444444	0.416667	0.694915	0.708333

150 rows × 4 columns

```
0
                    0
            1
                    0
            2
                    0
            3
                    0
                    2
           145
           146
           147
                    2
           148
                    2
                    2
           149
          150 rows × 1 columns
In [32]: X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)
```

Visualization

In [31]: y

Species

Out[31]:

```
In [33]: sns.pairplot(df, hue='Species', markers=['o', 's', 'D'])
```

Out[33]: <seaborn.axisgrid.PairGrid at 0x1925dd3dbd0>


```
In [34]: plt.figure(figsize=(10, 6))
    for i, feature in enumerate(X.columns):
        plt.subplot(2, 2, i+1)
        sns.violinplot(x='Species', y=feature, data=df, palette='Set3')
        plt.title(feature)
    plt.tight_layout()
```


Random Forest Classifier

```
In [35]: rfc=RandomForestClassifier(n_estimators=100)
    rfc.fit(X_train,y_train)
```

C:\Users\Irene Chelsia\anacondanew1\Lib\site-packages\sklearn\base.py:1151: DataCo
nversionWarning: A column-vector y was passed when a 1d array was expected. Please
change the shape of y to (n_samples,), for example using ravel().
 return fit_method(estimator, *args, **kwargs)

```
Out[35]: 

RandomForestClassifier()
```

```
In [36]: y_pred=rfc.predict(X_test)
```

Model Performance

```
In [37]: accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```

Accuracy: 1.0

```
In [38]:
         precision = precision_score(y_test, y_pred, average='weighted')
         print("Precision:", precision)
         Precision: 1.0
In [39]:
         recall = recall_score(y_test, y_pred, average='weighted')
         print("Recall:", recall)
         Recall: 1.0
In [40]: | f1 = f1_score(y_test, y_pred, average='weighted')
         print("F1 Score:", f1)
         F1 Score: 1.0
In [41]: |conf_matrix = confusion_matrix(y_test, y_pred)
         print("Confusion Matrix:")
         print(conf_matrix)
         Confusion Matrix:
         [[10 0 0]
          [0 9 0]
          [ 0 0 11]]
In [42]: roc_auc = roc_auc_score(y_test, rfc.predict_proba(X_test), multi_class='ovr')
         print("ROC AUC Score:", roc_auc)
         ROC AUC Score: 1.0
```

Insights

Species Differentiation: The dataset helps distinguish between three types of iris flowers: Setosa, Versicolor, and Virginica, based on their petal and sepal measurements.

Feature Importance: It shows which characteristics (sepal length, sepal width, petal length, petal width) are most relevant for classifying iris species.

Model Selection: It aids in choosing the right machine learning model (like decision trees or support vector machines) for accurately predicting iris species.

Model Evaluation: It helps assess how well the chosen model performs in predicting iris species using metrics like accuracy or confusion matrix.

Real-World Applications: Insights from the dataset can be applied to various fields such as botany or agriculture for species identification and classification.