Technische Universität Dresden Fachrichtung Mathematik

Institut für Mathematische Stochastik

Fractional Brownian Motion and its Application in Financial Mathematics

Diplomarbeit

zur Erlangung des ersten akademischen Grades

Diplommathematiker

(Wirtschaftsmathematik)

vorgelegt von

Name: Zhu Vorname: Ke

geboren am: 03.12.1985 in: Wuhan

Tag der Einreichung: 01.03.2015

Betreuer: Prof. Dr. rer. nat. Martin Keller-Ressel

Abstract

blahblah

${\bf Contents}$

1	Introduction	1			
2	Gaussian Process and Brownian Motion	2			
	2.1 Probability Space and Stochastic Process	2			
	2.2 Normal Distribution and Gaussian Process	3			
	2.3 Brownian Motion	8			
3	Regularity for Brownian Motion and Itó Integral	10			
	3.1 Lévy Modulus of Continuity	10			
4	Fractional Brownian Motion	11			
5	Fractional Ornstein Uhlenbeck Process Model	12			
6	3 Application in Financial Mathematics				
7	Conclusion	14			
$\mathbf{R}_{\mathbf{c}}$	eferences	15			

1 Introduction

2 Gaussian Process and Brownian Motion

In this section we start off the general concept of probability spaces and stochastic processes. Of this, a most important case we then discribe, is Gaussian process. It bring us to introduce the Brownian Motion as a fine example.

2.1 Probability Space and Stochastic Process

DEFINITION 2.1. Let \mathscr{A} be a collection of subsets of a set Ω . \mathscr{A} is then a σ - Algebra on Ω if it satisfies the following conditions:

- (i) $\Omega \in \mathscr{A}$.
- (ii) For any set $F \in \mathcal{A}$, its complement $F^c \in \mathcal{A}$.
- (iii) If a serie $\{F_n\}_{n\in\mathbb{N}}\subseteq\mathscr{A}$, then $\cup_{n\in\mathbb{N}}F_n\in\mathscr{A}$.

DEFINITION 2.2. A mapping \mathcal{P} is said to be a *probability measure* from \mathscr{A} to $\mathscr{B}(\mathbb{R}^n)$, if $\mathcal{P}\left[\sum_{n=1}^{\infty}F_n\right]=\sum_{n=1}^{\infty}\mathcal{P}\left[F_n\right]$ for any $\{F_n\}_{n\in\mathbb{N}}$ disjoint in \mathscr{A} satisfying $\sum_{n=1}^{\infty}F_n\in\mathscr{A}$.

DEFINITION 2.3. A probability space is defined as a triple $(\Omega, \mathscr{A}, \mathcal{P})$ of a set Ω , a σ -Algebra \mathscr{A} of Ω and a measure \mathcal{P} from \mathscr{A} to $\mathscr{B}(\mathbb{R}^n)$.

The σ - Algebra generated of all open sets on \mathbb{R}^n is called the *Borel* σ - Algebra which we denote as usual by $\mathscr{B}(\mathbb{R}^n)$. Let μ be a probability measure on \mathbb{R}^n . Indeed, $(\mathbb{R}^n, \mathscr{B}(\mathbb{R}^n), \mu)$ is a special case that probability space on \mathbb{R}^n . A function f mapping from $(\mathcal{D}, \mathcal{D}, \mu)$ into $(\mathcal{E}, \mathcal{E}, \nu)$ is measurable if its collection of the inverse image of \mathcal{E} is a subset of \mathcal{D} . A random variable is a \mathbb{R}^n -valued measurable function on some probability space. Let \mathcal{P} represent a probability measure, recall that in probability theory, for $B \in \mathscr{B}(\mathbb{R}^n)$ we call $\mathcal{P}[\{X \in B\}]$ the distribution of X. We write also $\mathcal{P}_X[\cdot]$ or $\mathcal{P}[X]$ for convenience of the notation above.

DEFINITION 2.4. Let $(\Omega, \mathscr{A}, \mathcal{P})$ be a probability space. A *n*-dimensional stochastic process (X_t) is a family of random variable such that $X_t(\omega): \Omega \longrightarrow \mathbb{R}^n, \forall t \in T$, where T denotes the set of Index of Time.

DEFINITION 2.5. A stochastic process $(X_t)_{t\in T}$ is said to be *stationary*, if the joint distribution

$$\mathcal{P}\left[X_{t_1},\ldots,X_{t_n}\right] = \mathcal{P}\left[X_{t_1+\tau},\ldots,X_{t_n+\tau}\right]$$

for t_1, \ldots, t_n and $t_1 + \tau, \ldots, t_n + \tau \in T$.

Remark that, definition 2.5 means the distribution of a stationary process is independent of a shift of time.

2.2 Normal Distribution and Gaussian Process

DEFINITION 2.6 (1-dimensional normal distribution). A \mathbb{R} -valued random variable X is said to be *standard normal distributed*, if its distribution can be discribed as

$$\mathcal{P}[X \le x] = \int_{-\infty}^{x} (2\pi)^{-\frac{1}{2}} e^{-\frac{u^2}{2}} du$$

for $x \in \mathbb{R}$.

DEFINITION 2.7. A \mathbb{R} -valued random variable X is said to be *normal distributed* with a mean μ and a variance σ^2 , if

$$(X-\mu)/\sigma$$

is standard normal distributed.

We use a notation $X \sim Y$, which means X and Y have the same distribution. In similar way it is denoted by $X \sim (2\pi)^{-\frac{1}{2}} e^{-\frac{x^2}{2}} dx$, if it is standard normal distributed. In order to identifying the behaviour of a normal distributed random variable we recall the characteristic function in probability theory, see[1].

PROPOSITION 2.8. Let X be a \mathbb{R} -valued standard normal distributed random variable. The characteristic function of X

$$\Psi_X(\xi) := \int_{\mathbb{R}} e^{ix\xi} \mathcal{P}\left[X \in dx\right] = e^{-\frac{\xi^2}{2}} \tag{2.1}$$

for $\xi \in \mathbb{R}$.

Proof. According to the definion of characteristic function

$$\Psi_X(\xi) = \int_{\mathbb{R}} (2\pi)^{-\frac{1}{2}} e^{-\frac{x^2}{2}} e^{ix\xi} dx,$$

take differentiating both sides of the equation by ξ , then

$$\Psi_X'(\xi) = \int_{\mathbb{R}} (2\pi)^{-\frac{1}{2}} e^{-\frac{x^2}{2}} e^{ix\xi} ix \, dx
= (-i) \cdot \int_{\mathbb{R}} (2\pi)^{-\frac{1}{2}} (\frac{d}{dx} e^{-\frac{x^2}{2}}) e^{ix\xi} \, dx
\xrightarrow{part.int.} - \int_{\mathbb{R}} (2\pi)^{-\frac{1}{2}} e^{-\frac{x^2}{2}} e^{ix\xi} \xi \, dx
= -\xi \Psi_X(\xi).$$

Obviously, $\Psi(\xi) = \Psi(0)e^{-\frac{\xi^2}{2}}$ is the solution of the partial differential equation above, and $\Psi(0)$ is equal to 1.

In particular, the characteristic function of a normal distributed random variable with a mean μ and a variance σ^2 , which denoted by $\Psi_{X_{\mu,\sigma^2}}(\xi)$, is $e^{i\mu\xi-\frac{1}{2}(\sigma\xi)^2}$. To achieve this result, we just need to substitute x by $(x-\mu)/\sigma$ in the calculation before.

DEFINITION 2.9. Let X be a \mathbb{R}^n -valued random variable. X is said to be *normal distributed*, if for any $d \in \mathbb{R}^n$ such that $d^T X$ is normal distributed on \mathbb{R} .

PROPOSITION 2.10. Let X be a \mathbb{R}^n -valued normal distributed. Then there exist $m \in \mathbb{R}^n$ and a positive definite symmetric matrix $\Sigma \in \mathbb{R}^{n \times n}$ such that,

$$\mathbf{E} \, e^{i\xi^T X} = e^{i\xi^T m - \frac{1}{2}\xi^T \Sigma \xi} \tag{2.2}$$

For $\xi \in \mathbb{R}^n$. Furthermore, the density function of X is

$$(2\pi)^{-\frac{d}{2}} (\det \Sigma)^{-\frac{1}{2}} e^{-\frac{1}{2}(x-m)^T \Sigma^{-1}(x-m)} dx.$$
 (2.3)

Remark, the equation (2.2) can also be as definition of characteristic function of a n-dimensional normal distributed random variable. I.e., any normal distributed random variable can be characterized by form of the equation (2.2).

Proof. Since X normal distributed on \mathbb{R}^n , then $\xi^T X$ is normal distributed on \mathbb{R} . Due to the proposition 2.8 there is

$$\begin{split} \mathbf{E}e^{i\xi^TX} &= \mathbf{E}e^{i\cdot 1\cdot \xi^TX} \\ &= e^{i\mathbf{E}\left[\xi^TX\right] - \frac{1}{2}\mathrm{Var}\left[\xi^TX\right]} \\ &= e^{i\xi^T\mathbf{E}\left[X\right] - \frac{1}{2}\xi^T\mathrm{Var}\left[X\right]\xi}. \end{split}$$

According to the uniqueness theorem of characteristic function (Satz 23.4 in [1]), then we can deduce the density function of the equation (2.3).

A normal distributed normal random variable can be characterized by its mean and variance respectively mean vector and covariance vector because of the characteristic function.

COROLLARY 2.11. A linear combination of independent normal distributed random variables has normal distribution.

Proof. In general case, we suppose Y_1, \dots, Y_m are independent random variables on \mathbb{R}^n ,

for $c_1, \dots, c_m \in \mathbb{R}$. Let have a look at the chracteristic function of it,

$$\begin{aligned}
& \mathbf{E}e^{i\xi^{T}\sum_{j=1}^{m}(c_{j}X_{j})} & & independent & \prod_{j=1}^{m} \mathbf{E}e^{i\xi^{T}(c_{j}X_{j})} \\
& = & \prod_{j=1}^{m} \exp\left(i\xi^{T}\mathbf{E}[c_{j}X_{j}] - \frac{1}{2}\xi^{T}\mathbf{Var}[c_{j}X_{j}]\xi\right) \\
& = & \exp\left(i\xi^{T}\mathbf{E}[\sum_{j=1}^{m}c_{j}X_{j}] - \frac{1}{2}\xi^{T}\sum_{j=1}^{m}Var[c_{j}X_{j}]\xi\right) \\
& & independent & \exp\left(i\xi^{T}\mathbf{E}[\sum_{j=1}^{m}c_{j}X_{j}] - \frac{1}{2}\xi^{T}\mathbf{Var}[\sum_{j=1}^{m}c_{j}X_{j}]\xi\right),
\end{aligned}$$

which is a form of characteristic function of normal distribution. That means $\sum_{j=1}^{m} c_j X_j$ is normal distributed.

EXAMPLE 2.12 (Bivariate Normal Distribution). Suppose S_1, S_2 are independent random variables on \mathbb{R} and have standard normal distributions. $\begin{pmatrix} S_1 \\ S_2 \end{pmatrix}$ has standard normal joint distribution since they are independent. We define

$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} \sigma_1, & 0 \\ \sigma_2 \rho, \sigma_2 (1 - \rho^2)^{\frac{1}{2}} \end{pmatrix} \cdot \begin{pmatrix} S_1 \\ S_2 \end{pmatrix} + \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \tag{2.4}$$

where $\mu_1, \mu_2, \sigma_1, \sigma_2 \in \mathbb{R}, -1 \leq \rho \leq 1$. Again, Y_1, Y_2 are normal distributed and the joint distribution $\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}$ is normal. We set $\mathrm{E}[Y_1] = \mu_1, \mathrm{E}[Y_2] = \mu_2$ for short. Since S_1, S_2 are independent,

$$Var[Y_{1}] = Var[\sigma_{1}S_{1}]$$

$$= \sigma_{1}^{2},$$

$$Var[Y_{2}] = Var[\sigma_{2}\rho S_{1}] + Var[\sigma_{2}(1-\rho^{2})^{\frac{1}{2}}S_{2}]$$

$$= \sigma_{2}^{2}\rho^{2} + \sigma_{2}^{2}(1-\rho^{2})$$

$$= \sigma_{2}^{2},$$

$$Cov[Y_{1}, Y_{2}] = E[(Y_{1} - E[Y_{1}])(Y_{2} - E[Y_{2}])]$$

$$= E[Y_{1}Y_{2} - \mu_{1}Y_{2} - \mu_{2}Y_{1} + \mu_{1}\mu_{2}]$$

$$= E[(\sigma_{1}S_{1} + \mu_{1})(\sigma_{2}\rho S_{1} + \sigma_{2}(1-\rho^{2})^{\frac{1}{2}}S_{2} + \mu_{2})] - \mu_{1}\mu_{2}$$

$$= \sigma_{1}\sigma_{2}\underbrace{E[S_{1}^{2}]}_{=1}\rho + \mu_{1}\sigma_{2}\rho\underbrace{E[S_{1}]}_{=0} + \sigma_{1}\sigma_{2}(1-\rho^{2})^{\frac{1}{2}}\underbrace{E[S_{1}S_{2}]}_{=E[S_{1}]} = 0$$

$$+ \mu_{1}\sigma_{2}(1-\rho^{2})^{\frac{1}{2}}\underbrace{E[S_{2}]}_{=0} + \sigma_{1}\underbrace{E[S_{1}]}_{=0}\mu_{2} + \mu_{1}\mu_{2} - \mu_{1}\mu_{2}$$

$$= \rho\sigma_{1}\sigma_{2},$$

that means the corrlation of Y_1, Y_2 is ρ . Because of the equation (2.3), the joint density function

$$f_{Y_1,Y_2}(y_1,y_2) = (2\pi)^{-1} (\det(\Sigma))^{-\frac{1}{2}} \exp((y_1-\mu_1)\Sigma^{-1}(y_2-\mu_2)),$$

where
$$\Sigma = \begin{pmatrix} \sigma_1^2, & 0 \\ \sigma_2^2 \rho^2, \sigma_2^2 (1 - \rho^2) \end{pmatrix}$$

Indeed

$$\det(\Sigma) = (1 - \rho^2)\sigma_1^2 \sigma_2^2$$

and

$$\Sigma^{-1} = \frac{\begin{pmatrix} \sigma_2^2 (1 - \rho^2), & 0\\ -\sigma_2^2 \rho, & \sigma_1^2 \end{pmatrix}}{(1 - \rho^2)\sigma_1^2 \sigma_2^2}.$$

Namely,

$$f_{Y_1,Y_2}(y_1,y_2) = \frac{1}{2\pi(1-\rho^2)^{\frac{1}{2}}\sigma_1\sigma_2} \exp\left(-\frac{1}{2(1-\rho^2)}(z_1^2 - 2\rho z_1 z_2 + z_2^2)\right)$$
(2.5)

where $z_1 = \frac{y_1 - \mu_1}{\sigma_1}, z_2 = \frac{y_2 - \mu_2}{\sigma_2}$.

COROLLARY 2.13. Let Y_1, Y_2 be \mathbb{R} -valued normal distributed random variables and $\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}$ has a joint normal distribution, then the conditional mean of Y_2 given Y_1

$$E[Y_2|Y_1 = y_1] = E[Y_2] + \rho(y_1 - E[Y_1])\frac{\sigma_2}{\sigma_1},$$

and the conditional variance of Y_2 given Y_2

$$Var[Y_2|Y_1 = y_1] = \sigma_1^2(1 - \rho^2).$$

Where σ_1, σ_2 are standard deviations of Y_1, Y_2 and ρ is the correlation of Y_1, Y_2 .

Proof. Recall the equation (2.5), we can specify the joint density function if σ_1, σ_2, ρ are known. As result of this, $\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}$ has a form of the equation (2.4). Suppose S_1, S_2 are independent standard normal distributed random variables. Now we have

$$S_1 \sim \frac{(Y_1 - \mathbf{E}[Y_1])}{\sigma_1}$$

 $Y_2 \sim \sigma_2 \rho S_1 + \sigma_2 (1 - \rho^2)^{\frac{1}{2}} S_2 + \mathbf{E}[Y_2],$

more precisely,

$$Y_2 \sim \sigma_2 \rho \frac{(Y_1 - \mathrm{E}[Y_1])}{\sigma_1} + \sigma_2 (1 - \rho^2)^{\frac{1}{2}} S_2 + \mathrm{E}[Y_2].$$

Take expectation of both sides,

$$E[Y_2|Y_1 = y_1] = \sigma_2 \rho \frac{(y_1 - E[Y_1])}{\sigma_1} + E[Y_2].$$

Now consider

$$Var[Y_2|Y_1 = y_1] = E[(Y_2 - \mu_{Y_2|Y_1})^2 | Y_1 = y_1]$$

$$= \int_{-\infty}^{\infty} (y_2 - \mu_{Y_2|Y_1})^2 f_{Y_2|Y_1}(y_2, y_1) dy_2$$

$$= \int_{-\infty}^{\infty} \left[y_2 - \mu_2 - \frac{\rho \sigma_2}{\sigma_1} (y_1 - \mu_1) \right]^2 f_{Y_2|Y_1}(y_2, y_1) dy_2,$$

multiply both sides by the density function of Y_1 and integral it over by y_1 , we have

$$\int_{-\infty}^{\infty} \operatorname{Var}[Y_{2}|Y_{1} = y_{1}] f_{Y_{1}}(y_{1}) dy_{1}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[y_{2} - \mu_{2} - \frac{\rho \sigma_{2}}{\sigma_{1}} (y_{1} - \mu_{1}) \right]^{2} \underbrace{f_{Y_{2}|Y_{1}}(y_{2}, y_{1}) f_{Y_{1}}(y_{1})}_{f_{Y_{1}, Y_{2}}(y_{1}, y_{2})} dy_{2} dy_{1}$$

$$\iff \operatorname{Var}[Y_{2}|Y_{1} = y_{1}] \underbrace{\int_{-\infty}^{\infty} f_{Y_{1}}(y_{1}) dy_{1}}_{1}$$

$$= \operatorname{E}\left[(Y_{2} - \mu_{2}) - (\frac{\rho \sigma_{2}}{\sigma_{1}})(Y_{1} - \mu_{1}) \right]^{2}$$

Also

$$\operatorname{Var}[Y_{2}|Y_{1} = y_{1}] = \underbrace{\operatorname{E}[(Y_{2} - \mu_{2})^{2}]}_{\sigma_{2}^{2}} - 2 \frac{\rho \sigma_{2}}{\sigma_{1}} \underbrace{\operatorname{E}[(Y_{1} - \mu_{1})(Y_{2} - \mu_{2})]}_{\rho \sigma_{1} \sigma_{2}} + \underbrace{\frac{\rho^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}}}_{\sigma_{1}^{2}} \underbrace{\operatorname{E}[(Y_{1} - \mu_{1})^{2}]}_{\sigma_{1}^{2}} = \sigma_{2}^{2} - 2\rho^{2}\sigma^{2} + \rho^{2}\sigma_{2}^{2} = \sigma_{2}^{2} - \rho^{2}\sigma_{2}^{2}.$$

DEFINITION 2.14. Let $(X_t)_{t\in T}$ be a \mathbb{R}^n -valued stochastic process. (X_t) is said to be a gaussian process if X_{t_1}, \ldots, X_{t_n} has a joint normal distribution for any $t_1 \ldots t_n \in T$ and $n \in \mathbb{N}$.

The definition immediately shows for every X_t in gaussian process has a normal distribution. Therefore the prior corollary is applicable to a gaussian process.

2.3 Brownian Motion

The brownian motion was first introduced by Bachelier in 1900 in his PhD thesis. We now give the common definition of it.

DEFINITION 2.15. Let $(B_t)_{t\geq 0}$ be a \mathbb{R}^n -valued stochastic process. (B_t) is called *brownian motion* if it satisfies the following conditions:

- (i) $B_0 = 0$ a.s. .
- (ii) $(B_{t_1} B_{t_0}), \dots, (B_{t_n} B_{t_{n_1}})$ are independent for $0 = t_0 < t_1 < \dots < t_n$ and $n \in \mathbb{N}$.
- (iii) $B_t B_s \sim B_{t-s}$, for $0 \le s \le t < \infty$.
- (iv) $B_t B_s \sim \mathcal{N}(0, t s)^{\otimes n}$.
- (v) B_t is continuous in t a.s. .

A usual saying for (ii) and (iii) is the brownian motion has independent, stationary increments. In (iv), N represent a random variable which has a normal distribution. B_t is normal distributed due to (ii). It is clear that the increments of brownian motion is stationary.

PROPOSITION 2.16. Let (B_t) be a one-dimensional brownian motion. Then the covarice of B_m, B_n for $m, n \geq 0$ is $m \wedge n$.

Proof. WLOG, we assume that $m \geq n$, then

$$E[B_m B_n] = E[(B_m - B_n)B_n] + E[B_n^2]$$
$$= E[B_m - B_n]E[B_n] + n$$
$$= n.$$

PROPOSITION 2.17. Let (B_t) be a one-dimensional brownian motion. Then $B_{cm} \sim c^{\frac{1}{2}}B_m$.

Proof. Because B_m is normal distributed for any m > 0, we then get

$$E[e^{i\xi B_{cm}}] = e^{-\frac{1}{2}cm\xi^{2}}$$

$$= e^{-\frac{1}{2}(c(m)^{\frac{1}{2}}\xi)^{2}}$$

$$= E[e^{i\xi c^{\frac{1}{2}}B_{m}}].$$

THEOREM 2.18. A one-dimensional brownian motion is a gaussian process.

Proof. The following idea using the independence of increments to prove the claim come from [2]. We choose $0 = t_0 < t_1 < \cdots < t_n$, for $n \in \mathbb{N}$. Define $V = (B_{t_1}, \ldots, B_{t_n})^T$,

$$K = (B_{t_1} - B_{t_0}, \dots, B_{t_n} - B_{t_{n-1}})^T \text{ and } A = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}. \text{ Let us see the characteristic}$$

function of V,

$$\begin{split} & \text{E}[e^{i\xi^T V}] & = & \text{E}[e^{iA^T \xi K}] \\ & = & \text{E}[\exp(i(\xi^{(1)} + \dots + \xi^{(n)}, \xi^{(2)} + \dots + \xi^{(n)}, \dots, \xi^{(n)})] \\ & \cdot & (B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \dots, B_{t_n} - B_{t_{n-1}})^T) \\ & \text{ind.increments} & \prod_{j=1}^n \text{E}[\exp(i(\xi^{(j) + \dots + \xi^{(n)}})(B_{t_j} - B_{t_{t-1}}))] \\ & \text{stat.increments} & \prod_{j=1}^n \exp(-\frac{1}{2}(t_j - t_{j-1})(\xi^{(j)} + \dots + \xi^{(n)})^2) \\ & = & \exp\left(-\frac{1}{2}\sum_{j=1}^n (t_j - t_{j-1})(\xi^{(j)} + \dots + \xi^{(n)})^2\right) \\ & = & \exp\left(-\frac{1}{2}\left(\sum_{j=1}^n t_j(\xi^{(j)} + \dots + \xi^{(n)})^2 - \sum_{j=1}^n t_{j-1}(\xi^{(j)} + \dots + \xi^{(n)})^2\right)\right) \\ & = & \exp\left(-\frac{1}{2}\left(\sum_{j=1}^{n-1} t_j((\xi^{(j)} + \dots + \xi^{(n)})^2 - (\xi^{(j+1)} + \dots + \xi^{(n)})^2) + t_n(\xi^{(n)})^2\right)\right) \\ & = & \exp\left(-\frac{1}{2}\left(\sum_{j=1}^{n-1} t_j\xi^{(j)}(\xi^{(j)} + 2\xi^{(j+1)} + \dots + 2\xi^{(n)}) + t_n(\xi^{(n)})^2\right)\right) \\ & = & \exp\left(-\frac{1}{2}\left(\sum_{j,h=1}^n (t_j \wedge t_h)\xi^{(j)}\xi^{(h)}\right)\right). \end{split}$$

Recall with proposition 2.3, $(t_j \wedge t_h)_{t,h=1,\dots,n}$ is the covariance matrix of V. The mean vector of it is zero, then we have been proved that the characteristic function is a form of some normal distributed random vector, i.e., V is normal distributed.

Shilling gave in his lecture [2] the relationship between a one-dimensional brownian motion and a n-dimensional brownian motion. $(B_t^{(l)})_{l=1,\dots,n}$ is brownian motion if and only if $B_t^{(l)}$ is brownian motion and all of the component are independent. Using this independence and te theorem of fubini in the characteristic function for high-dimensional brownian motion we can say a n-dimensional brownian motion is also a gaussian process.

3 Regularity for Brownian Motion and Itó Integral

3.1 Lévy Modulus of Continuity

We consider now the one-dimensional brownian motion. In this section we need some notations, which are defined as followings

$$\Delta^{[0,T]} = \{t_1, \dots, t_n | 0 = t_0 < \dots < t_n = T\}$$
$$|\Delta^{[0,T]}| = \max_{t_j \in \Delta^{[0,T]}} |t_j - t_{j-1}|$$

LEMMA 3.1. Let B_t be a brownian motion. Then

$$\sum_{t_j \in \Delta^{[0,T]}} |B_{t_j} - B_{t_{j-1}}|^2 \overset{|\Delta^{[0,T]}| \to 0}{\longmapsto} T$$

4 Fractional Brownian Motion

5 Fractional Ornstein Uhlenbeck Process Model

6 Application in Financial Mathematics

7 Conclusion

References

- [1] BAUER, H. (2002). Wahrscheinlichkeitstheorie(5th. durchges. und verb. Aufl.). Berlin: W. de Gruyter
- [2] (2012, October 1). Stochastic Processes. Lecture conducted from Shilling, R., Dresden.