Title

Text

David Bachmann | 4/9/19 | 1

Exercise 6: Orthonormal Functions & Radial Basis Functions

MAD

bacdavid@student.ethz.ch

Outline

- 1. Information
- 2. Goals
- 3. Theory/ Recap
- 4. Exercises

David Bachmann | 4/9/19 |

Information

General

- Lecture material & problem sets available <u>here</u>
- Tutorial material available here

Goals

Goals of Today

- Know what an orthonormal basis is
- Know what the benefit of orthonormal functions is
- Know how to fit orthonormal functions to data
- Know what radial basis functions (RBF) are
- Know how to fit RBFs to data

Theory / Recap

David Bachmann | 4/9/19

Inner Product

Properties:

Conjugate symmetry:

$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

Linear in first argument:

$$\langle ax, y \rangle = a \langle x, y \rangle$$

Positive definite:

$$\langle x, x \rangle > 0 \ \forall x \in V \setminus \{0\}$$

Examples:

• Real Numbers: $\langle x, y \rangle = x \cdot y$

• Vectors: $\langle x, y \rangle = x^T y$

• Random Vars.: $\langle x, y \rangle = \mathbb{E}_{p(x,y)}[xy]$

• Functions: $\langle f, g \rangle = \int_{-\infty}^{\infty} f(x)g(x)dx$

Projection:

Orthonormal Basis

• Inner product of two basis vectors:

$$\langle \phi_i, \phi_j \rangle = \delta_{ij}$$

• All basis vectors are of length one:

$$\sqrt{\langle \phi_i, \phi_i \rangle} = 1$$

Note: Projecting a on to one of the basis vectors will yield its coordinate wrt to that basis vector.

Gram Schmidt Orthonormalization

Given a valid basis $\{w_1, ..., w_k\}$, we want a orthonormal basis $\{v_1, ..., v_k\}$

1.
$$\widetilde{v_1} = w_1$$

2.
$$v_1 = \frac{\widetilde{v_1}}{\|v_1\|}$$

3.
$$\widetilde{v_2} = w_2 - \langle v_1, w_2 \rangle v_1$$

4.
$$v_2 = \frac{\widetilde{v_2}}{\|v_2\|}$$

5.
$$\widetilde{v_3} = w_3 - \langle v_1, w_3 \rangle v_1 - \langle v_2, w_3 \rangle v_2$$

6.
$$v_3 = \frac{\widetilde{v_3}}{\|v_3\|}$$

7. ...

Example 1: Gram Schmidt for Fourier

- Given the set $\{1, \sin(x), \cos(x)\}$ (Fourier Basis)
- Make the basis orthonormal wrt. $\int_{-\pi}^{\pi} f g dx$.
- Tipps:
 - $\int_{-\pi}^{\pi} \sin^2 x = \pi$

 - $\int_{-\pi}^{\pi} \cos x = 0$
 - $\int_{-\pi}^{\pi} \sin x = 0$
 - $\int_{-\pi}^{\pi} \sin x \cos x = 0$

Data Fitting with Orthonormal Basis

A function as a linear combination:

$$y(x) = \sum_{i} \alpha_i \phi_i(x)$$

As we have orthonormal basis:

$$\alpha_i = \langle y, \phi_i \rangle$$

• We are dealing with data – use $\langle x, y \rangle = \mathbb{E}_{p(x,y)}[xy]$

$$\alpha_i = \langle y, \phi_i \rangle = \mathbb{E}_{p(y,\phi_i)}[y \cdot \phi_i] \approx \frac{1}{N} \sum_{j=1}^N y_j \cdot \phi_i(x_j)$$
David Bachmann | 29.10.2017 | 13

Example 2: Fitting with orthonormal functions

- $D = \{(-1,0),(1,2)\}$
- Basis functions {1, x}
- Orthonormalize the basis
- Compute α_1 and write down the function
- Now compute α_2 and write down the function containing α_1 and α_2

Radial Basis Functions

 Functions that only depend on the distance from the origin:

$$\phi(\mathbf{x}, \mathbf{c}) = \phi(\|\mathbf{x} - \mathbf{c}\|)$$

Use for fitting as:

$$y(\mathbf{x}) = \sum_{i} \alpha_{i} \cdot \phi(\|\mathbf{x} - \mathbf{c}_{i}\|)$$

Typical example: Gauss function

Example 3: RBF fitting

- $D = \{(0,2), (3,10)\}$
- Use $\phi(x) = 1 |x c_i|$ as basis function
- Each RBF is centered at x_i
- Find α_1 and α_2 st. $y(x) = \sum_i \alpha_i \cdot (1 |x c_i|)$ goes through all data points exactly

Exercises

Q1

- Perform Gram Schmidt
- See how adding an additional orthonormal function improves performance while we do not have to recompute the parameters

Q2

Fit RBFs to some data points and see the resulting surface

Questions?

David Bachmann

4/9/19