Johns Hopkins Engineering

Immunoengineering

Immunoengineering: Modeling

Modeling T Cell Killing

Phases of antigen-specific T cell response

Therapeutic Intervention

Model to predict targets for immunotherapy

- Predator-prey dynamics
- Introduces 3 hypothetical immunological agents that can alter 3 phases:
 - \circ Increase antigen-driven expansion $c_{E}(t)$
 - \circ Enhance antigen-independent proliferation $c_P(t)$
 - \circ Promote self-renewal of antigen-specific T cells $c_M(t)$

Lorenzi et al. "Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion" Immunology 146, (2015): 271-280.

T cell-target cell as predator-prey dynamics

Increase antigen-driven expansion $c_E(t)$ Enhance antigen-independent proliferation $c_P(t)$ Promote self-renewal of antigen-specific T cells $c_M(t)$

T cell-target cell as predator-prey dynamics

Rate of clonal expansion, target cell death

$$\eta_T(v, u) := \beta_T g(v, u; \gamma, \theta),$$

$$\eta_C(u, v) := \beta_C g(u, v; \gamma, \theta).$$

 $\theta_T > 0$ – avg killing rate of target cells $\theta_C > 0$ – avg T cell replication rate $\Theta > 0$ – avg affinity range of T cell receptors $\phi > 0$ – maximum affinity

Increase antigen-driven expansion $c_E(t)$ Enhance antigen-independent proliferation $c_P(t)$ Promote self-renewal of antigen-specific T cells $c_M(t)$

Model parameters

Table 1. Values and sources of the parameters in the mathematical model

Parameter	Biological meaning	Value	Source
α_C	Rate of target-cell proliferation	3/day	12,13,19
$lpha_T$	Rate of antigen-independent T-cell proliferation	5×10^{-2} /day	20,21
μ_C	Rate of death due to competition between target cells	$1.5 \times 10^{-6} \mu l/day$	ad hoc
μ_T	Rate of T-cell death due to homeostatic regulation	$2.5 \times 10^{-6} \mu l/day$	ad hoc
β_C	Killing rate of target cells by T cells	$1 \times 10^{-5} \mu l/day$	12,13,19
$oldsymbol{eta}_T$	Rate of T-cell replication following recognition	$3 \times 10^{-5} \mu l/day$	12
θ	Average affinity range of T-cell receptors	$1 \times 10^{-3} \div 1 \times 10^{-1}$	12,22
γ	Maximum affinity	$1 \times 10^{-2} \div 3$	15,19

The values of the parameters α_C , α_T , β_C and β_T are consistent with previous measurement and estimation studies on the immune response mediated by T cells. $^{12,13,19-21}$ The values of the parameters μ_C and μ_T are selected to guarantee that the carrying capacities of the two cell populations are biologically consistent. The range of values of the parameter θ is consistent with experimental estimations of the precursor frequency of T cells, 22 and it is computed through a strategy analogous to that presented in ref. 12. The values of the parameter γ are consistent with those used in refs 15,19.

Mathematical Model

We describe the selection dynamics in the cell system through the following coupled integro-differential equations:

$$\frac{\partial}{\partial t} n_C(t, u) = \underbrace{\left[\alpha_C - \mu_C \rho_C(t)\right] n_C(t, u)}_{\text{proliferation and death of target cells}} - \underbrace{n_C(t, u) \int_0^1 \eta_C(u, v) n_T(t, v) dv}_{\text{selective action exerted by T cells}} \\
\frac{\partial}{\partial t} n_T(t, v) = \underbrace{\left[1 + c_E(t)\right] n_T(t, v) \int_0^1 \eta_T(v, u) n_C(t, u) du}_{\text{antigen-driven expansion}} + \underbrace{\left[1 + c_P(t)\right] \alpha_T n_T(t, v)}_{\text{antigen-independent proliferation}} \\
- \underbrace{\frac{\mu_T}{1 + c_M(t)} \rho_T(t) n_T(t, v)}_{\text{homeostatic regulation}} \tag{2}$$

Model reproduces observed biological behaviors

9

Lorenzi et al. "Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion" Immunology 146, (2015): 271-280.

Predicting efficacy of immunotherapeutic agents

Combination of P-agents and M-agents is most effective immunotherapy

Clinical Significance

- P = antigen-independent proliferation
- M = stabilize the memory pool
- Possible agents in clinical setting?
 - Homeostatic cytokines: IL-7, IL-15
 - IL-7, IL-15 shown to promote formation of memory CD8 T cells in vivo

