1 Problems submitted by Sohyun Kim

1.1 Problem 1

a)
$$y' - 2y = 0$$

$$y' - 2y = 0$$

$$Ne^{Nx} - 2e^{Nx} = 0$$

$$Ne^{Nx} = 2e^{Nx}$$

$$N = 2$$

Therefore N=2.

b)
$$y'' + 4y = 0$$

$$y'' + 4y = 0$$

$$N^{2}e^{Nx} + 4e^{Nx} = 0$$

$$N^{2}e^{Nx} = -4e^{Nx}$$

$$N^{2} = -4$$

Since $N^2 >= 0$, there are no such N's.

1.2 Problem 2

a) First we shall find the derivatives of y.

$$y = N\cos(2x) + x$$
$$y' = -2N\sin(2x) + 1$$
$$y'' = -4N\cos(2x)$$

Next we shall check if y is a solution.

$$y'' + 4y$$

= $-4N\cos(2x) + 4(N\cos(2x) + x)$
= $-4N\cos(2x) + 4N\cos(2x) + 4x$
= $4x$
= RHS

Therefore, y is a solution.

b)

$$y'(x) = -2N\sin(2x) + 1$$

$$y'(0) = -2N\sin(0) + 1$$

$$2 = -2N\sin(0) + 1$$

$$2 = -2N0 + 1$$

$$2 = 1$$

Therefore, there are no possible solutions.

c) Linear, as it can be written in the form $a_n(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + ... + a_0(x)y(t) = g(x)$. Where n = 2, $a_2 = 1$, $a_1 = 4$, $a_0 = 0$, and g(x) = 4x.