Multimodal Conversational AI for E-Commerce

Alex Tsourmas (alextsourmas@uchicago.edu), Jane Lee (gylee@uchicago.edu), Yeochan Youn (yyoun5@uchicago.edu), Kaylie Nguyen (adqnguyen@uchicago.edu), Danylo Sovgut (sovgut@uchicago.edu)

Introduction

This system implements a multimodal RAG application for e-commerce using CLIP embeddings for unified text-image search. Three core modules: Chainlit web interface ('app/main.py'), CLIP-based retrieval system ('multimodal_rag.py'), and data processing pipeline ('data_processor.py') handling Amazon Product Dataset 2020.

Data Retrieval and Preprocessing

Dataset: Amazon Product Dataset 2020 (10,000+ products) via Kaggle containing product names, descriptions, specifications, categories, pricing, and image URLs.

Text Processing: Concatenates product fields into unified text, implements query enhancement based on product vocabulary, preprocesses for CLIP's 77-token limit.

Image Processing: Async downloads using aiohttp with sync fallback, validates images (min 50x50px), standardizes to 512x512 JPEG format, handles timeouts and corrupted files.

Data Storage & Embeddings

CLIP Implementation: Uses `openai/clip-vit-base-patch32` via transformers, generates 512-dim embeddings in shared semantic space, CUDA/CPU device detection.

Storage: Three embedding types (text, image, multimodal-averaged), stored as NumPy `.npy` files with JSON fallback, in-memory cosine similarity search using scikit-learn.

Retrieval System

Core Class:

class MultimodalEcommerceRAG:

def get_clip_query_embedding(self, text_query, image_path)
def retrieve_similar_products(self, query_embedding, search_mode, top_k)

def generate_response(self, user_query, retrieved_products, chat_history)

Search Modes: Text search (CLIP text encoder), image search (CLIP image encoder), multimodal search (averaged embeddings). Returns top-k products ranked by cosine similarity.

LLM Integration & Modeling

Model Stack: CLIP `clip-vit-base-patch32` for embeddings, GPT-4o for text generation, GPT-4 Vision for image analysis.

Process: Retrieve products via CLIP \rightarrow format context \rightarrow generate response with GPT-40 \rightarrow track metrics via `SimpleAnalyticsTracker`.

Evaluation Methodology

LLM-as-Judge: GPT-4o-mini rates product relevance (1-5 scale) for 15 realistic queries, calculates Precision@5, MRR, NDCG with threshold ≥3 for relevance.

Analytics: Tracks response time, embedding time, retrieval time, search mode distribution via `analytics_tracker.py`.

Performance Results

LLM Evaluation (15 queries):

- Success Rate: 100%

- Precision@5: 0.587 (58.7%)

- MRR: 0.802 - NDCG: 0.837

- Average Relevance: 3.25/5

System Performance: - Response time: 2.1s average - Throughput: 0.48 queries/second

- Examples: "puzzle for kids" (P=0.8, MRR=1.0), "board games" (P=0.0, MRR=0.0)

System Architecture

Data Flow:
$Raw \ CSV \rightarrow Cleaning \rightarrow Image \ Download \rightarrow CLIP \ Embedding \rightarrow Storage$
$User\ Query \rightarrow CLIP\ Encoding \rightarrow Vector\ Search \rightarrow Product\ Retrieval \rightarrow GPT\ Response$
Tech Stack: PyTorch, transformers, OpenAI API, Chainlit, pandas, numpy, scikit-learn, aiohttp.
File Structure:
data/
amazon_products.csv
processed_products.csv
images/
embeddings/(*.npy files)

Conclusion

Functional multimodal RAG system achieving 58.7% precision on realistic queries. CLIP creates unified embedding space for text-image search. Modular architecture separates data processing, retrieval, and generation. LLM-as-judge provides practical evaluation without artificial benchmarks.

 $Limitations: Dataset\ quality\ affects\ performance,\ API\ dependencies,\ requires\ valid\ images/descriptions,\ OpenAI\ API\ latency\ constraints.$