COMPARISON_MediaPipe+CNN+LSTM

June 21, 2025

```
[1]: from modules.SignLanguageProcessor import load_and_preprocess_data,parse_frame
     import os
[2]: ROOT PATH = ''
     sequences,labels,label_map = load_and_preprocess_data(os.path.
      ⇔join(ROOT_PATH, 'data'))
[3]: num_classes = len(label_map)
[4]: len(labels)
[4]: 1722
[5]: sequences.shape
[5]: (1722, 3, 61, 3)
[6]: from sklearn.model_selection import train_test_split
     X_train, X_temp, y_train, y_temp = train_test_split(
         sequences, labels, test_size=0.4, stratify=labels, random_state=42
     X_val, X_test, y_val, y_test = train_test_split(
         X_temp, y_temp, test_size=0.5, stratify=y_temp, random_state=42
[7]: import numpy as np
     def normalize landmark data(X):
         Normalize the landmark features (x, y) to have zero mean and unit variance
      \hookrightarrowacross the training set.
         Assumes X shape is (N, F, L, T), where F=3 (x, y, vis).
         X = X.copy()
         # Flatten across all samples, landmarks, and frames
         x_vals = X[:, 0, :, :].flatten()
         y_vals = X[:, 1, :, :].flatten()
```

```
# Compute mean and std
         x_mean, x_std = np.mean(x_vals), np.std(x_vals)
         y_mean, y_std = np.mean(y_vals), np.std(y_vals)
          # Normalize
         X[:, 0, :, :] = (X[:, 0, :, :] - x_mean) / x_std
         X[:, 1, :, :] = (X[:, 1, :, :] - y_mean) / y_std
         return X, (x_mean, x_std), (y_mean, y_std)
      def apply_normalization(X, x_mean, x_std, y_mean, y_std):
         X = X.copy()
         X[:, 0, :, :] = (X[:, 0, :, :] - x_mean) / x_std
         X[:, 1, :, :] = (X[:, 1, :, :] - y_mean) / y_std
         return X
 [8]: def reshape_frames_for_cnn(X, y):
         X = X.transpose(0, 3, 2, 1) # (N, T, L, F)
         X = X[..., np.newaxis] # (N, T, L, F, 1)
         return X,y
 [9]: X_train_norm, (x_mean, x_std), (y_mean, y_std) =
      →normalize_landmark_data(X_train)
      X_val_norm = apply_normalization(X_val, x_mean, x_std, y_mean, y_std)
      X test_norm = apply_normalization(X_test, x_mean, x_std, y_mean, y_std)
      X train_cnn, y_train_cnn = reshape_frames_for_cnn(X_train_norm, y_train)
      X_val_cnn, y_val_cnn = reshape_frames_for_cnn(X_val_norm, y_val)
      X_test_cnn, y_test_cnn = reshape_frames_for_cnn(X_test_norm, y_test)
      print(X_train_cnn.shape)
      print(y_train_cnn.shape)
     (1033, 3, 61, 3, 1)
     (1033,)
[10]: input_shape = X_train_cnn.shape[1:]
      print(input_shape)
     (3, 61, 3, 1)
[11]: import tensorflow as tf
      train_ds = tf.data.Dataset.from_tensor_slices((X_train_cnn, y_train_cnn))
      train_ds = train_ds.shuffle(buffer_size=1000).batch(64).prefetch(tf.data.
       →AUTOTUNE)
```

```
val_ds = tf.data.Dataset.from_tensor_slices((X_val_cnn, y_val_cnn))
      val_ds = val_ds.batch(64).prefetch(tf.data.AUTOTUNE)
      test_ds = tf.data.Dataset.from_tensor_slices((X_test_cnn, y_test_cnn))
      test_ds = test_ds.batch(64).prefetch(tf.data.AUTOTUNE)
[12]: from tensorflow.keras.models import Sequential
      from tensorflow.keras.layers import TimeDistributed, Conv2D, MaxPooling2D,
       →Flatten, Input
      from tensorflow.keras.layers import LSTM, Dropout, Dense, BatchNormalization
      model = Sequential([
          Input((3, 61, 3, 1)),
          TimeDistributed(Conv2D(32, (3, 2), activation='relu', padding='same')),
          TimeDistributed(BatchNormalization()),
          TimeDistributed(MaxPooling2D(pool_size=(2, 1))),
          TimeDistributed(Dropout(0.25)),
          TimeDistributed(Conv2D(64, (3, 2), activation='relu', padding='same')),
          TimeDistributed(BatchNormalization()),
          TimeDistributed(MaxPooling2D(pool_size=(2, 1))),
          TimeDistributed(Flatten()),
          LSTM(128, return_sequences=False),
          Dropout(0.5),
          Dense(num_classes, activation='softmax')
      ])
      model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', u
       →metrics=['accuracy'])
[13]: history = model.fit(train_ds,validation_data=val_ds, epochs=50, batch_size=64)
     Epoch 1/50
                       6s 91ms/step -
     17/17
     accuracy: 0.0948 - loss: 3.1329 - val_accuracy: 0.1192 - val_loss: 3.1134
     Epoch 2/50
     17/17
                       1s 58ms/step -
     accuracy: 0.2185 - loss: 2.6554 - val_accuracy: 0.0872 - val_loss: 3.0680
     Epoch 3/50
     17/17
                       1s 55ms/step -
     accuracy: 0.3175 - loss: 2.3707 - val_accuracy: 0.1163 - val_loss: 3.0046
     Epoch 4/50
     17/17
                       1s 57ms/step -
     accuracy: 0.3634 - loss: 2.2721 - val_accuracy: 0.1453 - val_loss: 2.9339
     Epoch 5/50
     17/17
                       1s 54ms/step -
     accuracy: 0.4012 - loss: 2.0538 - val_accuracy: 0.2645 - val_loss: 2.7263
```

```
Epoch 6/50
17/17
                 1s 52ms/step -
accuracy: 0.4447 - loss: 1.9395 - val_accuracy: 0.2616 - val_loss: 2.5388
Epoch 7/50
17/17
                 1s 47ms/step -
accuracy: 0.4373 - loss: 1.9222 - val_accuracy: 0.3023 - val_loss: 2.4330
Epoch 8/50
17/17
                 1s 48ms/step -
accuracy: 0.5558 - loss: 1.7145 - val_accuracy: 0.4273 - val_loss: 2.1990
Epoch 9/50
17/17
                 1s 47ms/step -
accuracy: 0.5358 - loss: 1.6715 - val_accuracy: 0.4738 - val_loss: 2.0136
Epoch 10/50
17/17
                 1s 48ms/step -
accuracy: 0.5771 - loss: 1.5514 - val_accuracy: 0.5349 - val_loss: 1.8477
Epoch 11/50
17/17
                 1s 48ms/step -
accuracy: 0.6159 - loss: 1.4467 - val_accuracy: 0.5552 - val_loss: 1.6849
Epoch 12/50
17/17
                 1s 48ms/step -
accuracy: 0.6478 - loss: 1.3760 - val_accuracy: 0.5727 - val_loss: 1.6199
Epoch 13/50
17/17
                 1s 48ms/step -
accuracy: 0.6681 - loss: 1.2819 - val_accuracy: 0.5494 - val_loss: 1.5836
Epoch 14/50
17/17
                 1s 49ms/step -
accuracy: 0.6684 - loss: 1.2353 - val_accuracy: 0.5959 - val_loss: 1.4854
Epoch 15/50
17/17
                 1s 49ms/step -
accuracy: 0.6957 - loss: 1.1325 - val_accuracy: 0.6366 - val_loss: 1.3885
Epoch 16/50
17/17
                 1s 48ms/step -
accuracy: 0.6981 - loss: 1.1730 - val_accuracy: 0.6715 - val_loss: 1.3355
Epoch 17/50
17/17
                 1s 49ms/step -
accuracy: 0.7269 - loss: 1.0604 - val_accuracy: 0.6512 - val_loss: 1.3351
Epoch 18/50
17/17
                 1s 49ms/step -
accuracy: 0.7616 - loss: 0.9893 - val_accuracy: 0.6744 - val_loss: 1.2629
Epoch 19/50
17/17
                 1s 49ms/step -
accuracy: 0.7735 - loss: 0.9548 - val_accuracy: 0.6686 - val_loss: 1.2639
Epoch 20/50
17/17
                 1s 48ms/step -
accuracy: 0.7561 - loss: 0.9183 - val_accuracy: 0.6686 - val_loss: 1.2440
Epoch 21/50
17/17
                 1s 48ms/step -
accuracy: 0.7898 - loss: 0.8567 - val accuracy: 0.7006 - val loss: 1.1422
```

```
Epoch 22/50
17/17
                 1s 51ms/step -
accuracy: 0.8096 - loss: 0.7984 - val_accuracy: 0.7413 - val_loss: 1.0513
Epoch 23/50
17/17
                 1s 48ms/step -
accuracy: 0.7992 - loss: 0.7533 - val_accuracy: 0.7326 - val_loss: 1.0464
Epoch 24/50
17/17
                 1s 49ms/step -
accuracy: 0.8064 - loss: 0.7515 - val_accuracy: 0.7500 - val_loss: 0.9901
Epoch 25/50
17/17
                 1s 49ms/step -
accuracy: 0.8258 - loss: 0.6996 - val_accuracy: 0.7064 - val_loss: 1.0419
Epoch 26/50
17/17
                 1s 48ms/step -
accuracy: 0.8576 - loss: 0.6416 - val_accuracy: 0.7587 - val_loss: 0.9356
Epoch 27/50
17/17
                 1s 48ms/step -
accuracy: 0.8602 - loss: 0.6108 - val_accuracy: 0.7733 - val_loss: 0.9348
Epoch 28/50
17/17
                 1s 52ms/step -
accuracy: 0.8455 - loss: 0.6148 - val_accuracy: 0.7413 - val_loss: 0.9779
Epoch 29/50
17/17
                 1s 49ms/step -
accuracy: 0.8537 - loss: 0.6062 - val_accuracy: 0.7703 - val_loss: 0.9444
Epoch 30/50
17/17
                 1s 48ms/step -
accuracy: 0.8626 - loss: 0.5710 - val_accuracy: 0.8023 - val_loss: 0.8876
Epoch 31/50
17/17
                 1s 49ms/step -
accuracy: 0.8774 - loss: 0.5386 - val_accuracy: 0.7762 - val_loss: 0.8669
Epoch 32/50
17/17
                 1s 48ms/step -
accuracy: 0.8631 - loss: 0.5756 - val_accuracy: 0.7733 - val_loss: 0.8590
Epoch 33/50
17/17
                 1s 48ms/step -
accuracy: 0.8748 - loss: 0.5268 - val_accuracy: 0.7791 - val_loss: 0.8600
Epoch 34/50
17/17
                 1s 49ms/step -
accuracy: 0.8776 - loss: 0.4866 - val_accuracy: 0.7762 - val_loss: 0.8685
Epoch 35/50
17/17
                 1s 52ms/step -
accuracy: 0.9087 - loss: 0.4569 - val_accuracy: 0.7849 - val_loss: 0.9124
Epoch 36/50
17/17
                 1s 49ms/step -
accuracy: 0.8865 - loss: 0.4913 - val_accuracy: 0.8110 - val_loss: 0.8460
Epoch 37/50
17/17
                 1s 49ms/step -
accuracy: 0.8830 - loss: 0.4608 - val accuracy: 0.8023 - val loss: 0.8428
```

```
Epoch 38/50
                       1s 48ms/step -
     17/17
     accuracy: 0.8596 - loss: 0.5185 - val accuracy: 0.7994 - val loss: 0.8429
     Epoch 39/50
     17/17
                       1s 48ms/step -
     accuracy: 0.8957 - loss: 0.4660 - val_accuracy: 0.8052 - val_loss: 0.8251
     Epoch 40/50
     17/17
                       1s 48ms/step -
     accuracy: 0.9164 - loss: 0.3995 - val accuracy: 0.8140 - val loss: 0.7643
     Epoch 41/50
     17/17
                       1s 48ms/step -
     accuracy: 0.8954 - loss: 0.4456 - val_accuracy: 0.7733 - val_loss: 0.7977
     Epoch 42/50
     17/17
                       1s 49ms/step -
     accuracy: 0.9109 - loss: 0.4084 - val_accuracy: 0.7849 - val_loss: 0.7672
     Epoch 43/50
     17/17
                       1s 48ms/step -
     accuracy: 0.9080 - loss: 0.3954 - val accuracy: 0.8140 - val loss: 0.7641
     Epoch 44/50
     17/17
                       1s 51ms/step -
     accuracy: 0.9062 - loss: 0.3786 - val_accuracy: 0.8256 - val_loss: 0.7286
     Epoch 45/50
     17/17
                       1s 55ms/step -
     accuracy: 0.8937 - loss: 0.3991 - val_accuracy: 0.7965 - val_loss: 0.7984
     Epoch 46/50
     17/17
                       1s 62ms/step -
     accuracy: 0.9230 - loss: 0.3566 - val_accuracy: 0.7849 - val_loss: 0.8290
     Epoch 47/50
     17/17
                       1s 50ms/step -
     accuracy: 0.9388 - loss: 0.3292 - val_accuracy: 0.8052 - val_loss: 0.7480
     Epoch 48/50
     17/17
                       1s 53ms/step -
     accuracy: 0.9307 - loss: 0.3336 - val_accuracy: 0.7762 - val_loss: 0.8068
     Epoch 49/50
     17/17
                       1s 53ms/step -
     accuracy: 0.9117 - loss: 0.3713 - val_accuracy: 0.7936 - val_loss: 0.7892
     Epoch 50/50
     17/17
                       1s 52ms/step -
     accuracy: 0.9248 - loss: 0.3455 - val_accuracy: 0.8198 - val_loss: 0.7747
[14]: test loss, test accuracy = model.evaluate(test ds)
      print(f"Test Accuracy: {test accuracy:.4f}")
     print(f"Test Loss: {test_loss:.4f}")
                     Os 9ms/step -
     accuracy: 0.8481 - loss: 0.6277
     Test Accuracy: 0.8522
```

Test Loss: 0.6277

```
[15]: import matplotlib.pyplot as plt from sklearn.metrics import classification_report, confusion_matrix import seaborn as sns
```

```
[16]: plt.figure(figsize=(12, 4))
      plt.subplot(1, 2, 1)
      plt.plot(history.history['accuracy'])
      plt.plot(history.history['val_accuracy'])
      plt.title('Model accuracy')
      plt.ylabel('Accuracy')
      plt.xlabel('Epoch')
      plt.legend(['Train', 'Validation'], loc='upper left')
      # Plot training & validation loss values
      plt.subplot(1, 2, 2)
      plt.plot(history.history['loss'])
      plt.plot(history.history['val_loss'])
      plt.title('Model loss')
      plt.ylabel('Loss')
      plt.xlabel('Epoch')
      plt.legend(['Train', 'Validation'], loc='upper left')
      plt.show()
```



```
[17]: y_true, y_pred = [], []
target_names = [label_map[i] for i in range(len(label_map))]
for X_batch, y_batch in test_ds:
    y_true.append(y_batch.numpy())

    batch_pred = model.predict(X_batch, verbose=0)
    y_pred.append(np.argmax(batch_pred, axis=1))

y_true = np.concatenate(y_true)
```

	precision	recall	f1-score	support	
baca	1.000	0.833	0.909	12	
bantu	1.000	0.727	0.842	11	
bapak	0.786	0.917	0.846	12	
buangairkecil	1.000	1.000	1.000	6	
buat	0.812	1.000	0.897	13	
halo	0.900	1.000	0.947	18	
ibu	1.000	0.750	0.857	4	
kamu	0.682	0.789	0.732	19	
maaf	1.000	1.000	1.000	18	
makan	1.000	0.714	0.833	14	
mau	0.933	0.824	0.875	17	
nama	0.833	0.833	0.833	18	
pagi	0.947	0.900	0.923	20	
paham	0.950	0.950	0.950	20	
sakit	1.000	0.667	0.800	3	
sama-sama	0.885	0.920	0.902	25	
saya	0.600	0.500	0.545	6	
selamat	0.882	0.833	0.857	18	
siapa	1.000	0.750	0.857	12	
tanya	0.867	0.765	0.812	17	
tempat	1.000	0.250	0.400	4	
terima-kasih	0.773	0.944	0.850	18	
terlambat	0.722	1.000	0.839	13	
tidak	0.909	0.714	0.800	14	
tolong	0.500	0.769	0.606	13	
accuracy			0.852	345	
accuracy			0.002	0.10	

macro	avg	0.879	0.814	0.829	345
weighted	avg	0.872	0.852	0.852	345

