

ZILLIONTV CORPORATION ADDENDUM TEST REPORT TO FC09-038

FOR THE

WIRELESS REMOTE CONTROL, ZR102

FCC PART 15 SUBPART C SECTIONS 15.207 & 15.247 AND RSS-210 ISSUE 7

TESTING

DATE OF ISSUE: APRIL 24, 2009

PREPARED FOR: PREPARED BY:

ZillionTV Corporation
Joyce Walker
CKC Laboratories, Inc.
Sunnyvale, CA 94086
Sierra Pines Drive
Mariposa, CA 95338

W.O. No.: 89171 Date of test: March 11-12, 2009

Report No.: FC09-038A

This report contains a total of 57 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 57 Report No: FC09-038A

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Summary of Results	4
Conditions During Testing	4
FCC 15.31(m) Number Of Channels	4
FCC 15.33(a) Frequency Ranges Tested	4
EUT Operating Frequency	4
Equipment Under Test (EUT) Description	5
Equipment Under Test	5
Peripheral Devices	
Measurement Uncertainties	6
Report of Emissions Measurements	6
Testing Parameters	6
FCC 15.31(e) Voltage Variation	8
FCC Part 15.247(a)(2) 6dB Bandwidth	12
FCC Part 15.247(b)(3) RF Power Output	17
FCC 15.247(d) OATS Radiated Spurious Emissions	22
FCC 15.247(d) Bandedge	45
FCC 15.247(e) Peak Power Spectral Density	49
RSS-210 99% Bandwidth	

Page 2 of 57 Report No: FC09-038A

ADMINISTRATIVE INFORMATION

DATE OF TEST: March 11-12, 2009 **DATE OF RECEIPT:** March 11, 2009

REPRESENTATIVE: Tom Woch

MANUFACTURER: ZillionTV Corporation 1170 Kifer Road Sunnyvale, CA 94086 TEST LOCATION: CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

TEST METHOD: ANSI C63.4 (2003), RSS-210 Issue 7 and RSS GEN Issue 2

PURPOSE OF TEST:

Original: To perform the testing of the Wireless Remote Control, ZR102 with the requirements for FCC Part 15 Subpart C Sections 15.207 & 15.247 and RSS-210 Issue 7 devices.

Addendum A: To correct the spec limit used in section 15.247(d) OATS Radiated Spurious Emissions. Corrections were also made to 6dB Bandwidth table on page 13 and RF Power Output table on page 19. No new testing was performed.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

Steve of Below

TEST PERSONNEL:

teroth

Steve Behm, Director of Engineering Services

Armando Del Angel, Test Engineer

Donald Jones, Senior EMC Engineer / Lab

Manager

Page 3 of 57 Report No: FC09-038A

SUMMARY OF RESULTS

Test	Specification/Method	Results
Voltage Variation	FCC 15.31(e)	Pass
6 dB Bandwidth	FCC 15.247(a)(2)	Pass
RF Output Power	FCC 15.247(b)(3)	Pass
OATS Spurious Emissions	FCC 15.247(d)	Pass
Bandedge	FCC 15.247(d)	Pass
Peak Power Spectral Density	FCC 15.247(e)	Pass
99% Bandwidth	RSS-210 Issue 7 and RSS GEN Issue 2	Pass
Site File No.	FCC 318736	
	IC 3082C-1	

CONDITIONS DURING TESTING

No modifications to the EUT were necessary during testing.

FCC 15.31(m) Number Of Channels

This device was tested on three channels.

FCC 15.33(a) Frequency Ranges Tested

15.207 Conducted Emissions: 150 kHz – 30 MHz 15.247 Radiate Emissions: 9 kHz – 10 GHz.

EUT Operating Frequency

The EUT was operating at 903 MHz – 927 MHz

Page 4 of 57 Report No: FC09-038A

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST

Wireless Remote Control

Manuf: ZillionTV Corporation

Model: ZR102 Serial: 013

PERIPHERAL DEVICES

The EUT was not tested with peripheral devices.

<u>USB Base Station</u> <u>L</u>	_apto	p
----------------------------------	-------	---

Manuf:ZillionTV CorporationManuf:LenovoModel:ZA100Model:T61Serial:013Serial:10156

Page 5 of 57 Report No: FC09-038A

MEASUREMENT UNCERTAINTIES

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 6 of 57 Report No: FC09-038A

	SAMPLE CALCULATIONS					
	Meter reading	$(dB\mu V)$				
+	Antenna Factor	(dB)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
_	Preamplifier Gain	(dB)				
=	Corrected Reading	$(dB\mu V/m)$				

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 7 of 57 Report No: FC09-038A

FCC 15.31(e) VOLTAGE VARIATIONS

Test Equipment

Test Equipment								
Asset #	Equipment	Serial #	Cal Date	Cal Due				
ANP05361	Cable 6'	51	12/30/2008	12/30/2010				
AN01994	Antenna	2453	12/22/2008	12/22/2010				
ANP05366	Cable 30'	11	11/5/2008	11/5/2010				
ANP05371	Cable 6'	49	11/10/2008	11/10/2010				
ANP05360	Cable 20'	16	11/10/2008	11/10/2010				
AN01517	HP 8447D Preamp	2944A08601	7/8/2008	7/8/2010				
AN02872	Agilent E4440A	MY46186330	1/31/2008	1/31/2010				

Test Conditions

The EUT is transmitting. Due to the lack of antenna connectors the test will be done through radiated measurements. Since the EUT is battery powered the test only requires to be performed with fresh batteries. EUT is located in the center of the test table over 10cm of Styrofoam. The support equipment is used before each test to set the EUT to the specific channel. The Fundamental emission will be maximized per ANSI C63.4 procedures. EMI test will be used with the solely purpose of accurate Field Strength data gathering. Same calculation from the RF power output test will be done in order to convert the field strength to power.

Page 8 of 57 Report No: FC09-038A

Test Data

	Fresh Battery	Limit	
	Vertical	Horizontal	
LOW	2.468dBm	-9.932dBm	30dBm
MID	1.968dBm	-14.132dBm	30dBm
HIGH	0.868dBm	-11.432dBm	30dBm

Page 9 of 57 Report No: FC09-038A

Test Data Sheets

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Zillion TV Corporation.

Specification: 15.247(b)(3) RF power Output - Radiated

Work Order #: 89171 Date: 3/12/2009
Test Type: Radiated Scan Time: 14:45:27
Equipment: Wireless Remote Control Sequence#: 1

Manufacturer: ZillionTV Corporation Tested By: Armando Del Angel

Model: ZR102 S/N: 013

Test Equipment:

том Бушриси.					
Function	S/N	Calibration Date	Cal Due Date	Asset #	
HP 8447D Preamp	2944A08601	07/08/2008	07/08/2010	AN01517	
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872	
Cable 6'	51	12/30/2008	12/30/2010	ANP05361	
Antenna	2453	12/22/2008	12/22/2010	AN01994	
Cable 30'	11	11/05/2008	11/05/2010	ANP05366	
Cable 6'	49	11/10/2008	11/10/2010	ANP05371	
Cable 20'	16	11/10/2008	11/10/2010	ANP05360	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Remote Control*	ZillionTV Corporation	ZR102	013

Support Devices:

Function	Manufacturer	Model #	S/N	
USB Base Station	ZillionTV Corporation	ZA100	013	
Laptop	Lenovo	T61	10156	

Test Conditions / Notes:

Temp = 20° C

Relative Humidity = 19%

Atmospheric Pressure = 103.7kPa

Testing Voltage Variation on Power FCC 15.31(e)

The EUT is a wireless remote control.

The EUT is located in the center of the test table raised 10cm with styrofoam.

The EUT will be transmitting in the LOW, MID and HIGH channels.

The support equipment is used before each test to set the EUT to the specific channel.

The Test is being done with fresh batteries.

Because of the lack of antenna connectors the test will have to be done through radiated scans.

RBW = 1MHzVBW = 3MHz

Span = 5MHz

Sweep = 20ms

Page 10 of 57 Report No: FC09-038A

*Transducer Legend:*T1=ANT AN01994 25-1000MHz T2=CAB-ANP05360 T3=CAB-ANP05361 T4=CAB-ANP05366 T5=CAB-ANP05371 T6=AMP-AN01517-070808

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	st Distan	ce: 3 Meter	S	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	902.815M	100.2	+23.1	+1.9	+0.5	+2.0	+0.0	98.7	137.0	-38.3	Vert
			+0.3	-29.3			340		LOW		100
2	914.792M	99.4	+23.3	+1.9	+0.5	+2.0	+0.0	98.2	137.0	-38.8	Vert
			+0.4	-29.3			340		MID		100
3	926.766M	97.8	+23.5	+2.0	+0.5	+2.0	+0.0	97.1	137.0	-39.9	Vert
			+0.5	-29.2			340		HIGH		100
4	902.808M	87.8	+23.1	+1.9	+0.5	+2.0	+0.0	86.3	137.0	-50.7	Horiz
			+0.3	-29.3			204		LOW		100
5	914.796M	86.0	+23.3	+1.9	+0.5	+2.0	+0.0	84.8	137.0	-52.2	Horiz
			+0.4	-29.3			204		MID		100
6	926.762M	82.8	+23.5	+2.0	+0.5	+2.0	+0.0	82.1	137.0	-54.9	Horiz
			+0.5	-29.2			204		HIGH		100

Page 11 of 57 Report No: FC09-038A

FCC Part 15.247(a)(2) 6dB BANDWIDTH

Test Equipment

Asset #	Equipment	Serial #	Cal Date	Cal Due
ANP05361	Cable 6'	51	12/30/2008	12/30/2010
AN01994	Antenna	2453	12/22/2008	12/22/2010
ANP05366	Cable 30'	11	11/5/2008	11/5/2010
ANP05371	Cable 6'	49	11/10/2008	11/10/2010
ANP05360	Cable 20'	16	11/10/2008	11/10/2010
AN01517	HP 8447D Preamp	2944A08601	7/8/2008	7/8/2010
AN02872	Agilent E4440A	MY46186330	1/31/2008	1/31/2010

Test Conditions

EUT is transmitting. Due to the lack of antenna connectors the test will be done through radiated measurements. EUT is located in the center of the test table over 10cm of Styrofoam. The support equipment is used before each test to set the EUT to the specific channel. PSA is on max hold, marker-to-peak function is set on the peak of each channel (LOW, MID, HIGH), and then the marker will be positioned 6dB below the peak on one side and then on the other side, the separation between those two is the 6dB bandwidth.

RBW = 120 kHzVBW = 120 kHz

Span = Wide enough to see all the signal

Test Setup Photos

Page 12 of 57 Report No: FC09-038A

Test Data

Channel	6dB Ba	Limit	
	Vertical	Horizontal	
LOW	500kHz	500kHz	500kHz
MID	502kHz	502kHz	500kHz
HIGH	500kHz	500kHz	500kHz

Page 13 of 57 Report No: FC09-038A

Test Plots

FCC 15.247(a)(2) 6dB BANDWIDTH – LOW CHANNEL HORIZONTAL

FCC 15.247(a)(2) 6dB BANDWIDTH – LOW CHANNEL VERTICAL

Page 14 of 57 Report No: FC09-038A

FCC 15.247(a)(2) 6dB BANDWIDTH – MID CHANNEL HORIZONTAL

FCC 15.247(a)(2) 6dB BANDWIDTH – MID CHANNEL VERTICAL

Page 15 of 57 Report No: FC09-038A

FCC 15.247(a)(2) 6dB BANDWIDTH – HIGH CHANNEL HORIZONTAL

FCC 15.247(a)(2) 6dB BANDWIDTH – HIGH CHANNEL VERTICAL

Page 16 of 57 Report No: FC09-038A

FCC Part 15.247(b)(3) RF POWER OUTPUT

Test Equipment

Test Equipment								
Asset #	Equipment	Serial #	Cal Date	Cal Due				
ANP05361	Cable 6'	51	12/30/2008	12/30/2010				
AN01994	Antenna	2453	12/22/2008	12/22/2010				
ANP05366	Cable 30'	11	11/5/2008	11/5/2010				
ANP05371	Cable 6'	49	11/10/2008	11/10/2010				
ANP05360	Cable 20'	16	11/10/2008	11/10/2010				
AN01517	HP 8447D Preamp	2944A08601	7/8/2008	7/8/2010				
AN02872	Agilent E4440A	MY46186330	1/31/2008	1/31/2010				

Test Conditions

The EUT is transmitting. Due to the lack of antenna connectors the test will be done through radiated measurements. EUT is located in the center of the test table over 10cm of Styrofoam. The support equipment is used before each test to set the EUT to the specific channel. The Fundamental's emission will be maximized per ANSI C63.4 procedures. EMI test will be used with the solely purpose of accurate Field Strength data gathering. The following calculation will be used per FCC procedures in order to obtain the transmitter peak power:

 $P = (E*d)^2 / (30*G)$

E: Is the field strength in V/m

G: Is the numeric gain of the transmitting antenna with reference to an isotropic radiator.

d: Is the distance at which the measurement is being executed.

RBW = 1 MHzVBW = 1 MHz

Span = Wide enough to see all the signal

Page 17 of 57 Report No: FC09-038A

Test Setup Photos

Page 18 of 57 Report No: FC09-038A

Test Data

cst Data						
	Ve	rtical	Hor	Horizontal		
	F/S	Power	F/S	Power		
LOW	98.5dBuV	2.26dBm	85.7dBuV	-10.53dBm	30dBm	
MID	98.2dBuV	1.97dBm	85.3dBuV	-10.93dBm	30dBm	
HIGH	97.1dBuV	0.87dBm	82.1dBuV	-14.13dBm	30dBm	

Page 19 of 57 Report No: FC09-038A

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Zillion TV Corporation.

Specification: 15.247(b)(3) RF power Output - Radiated

Work Order #: 89171 Date: 3/11/2009
Test Type: Radiated Scan Time: 14:01:25
Equipment: Wireless Remote Control Sequence#: 1

Manufacturer: ZillionTV Corporation Tested By: Armando Del Angel

Model: ZR102 S/N: 013

Test Equipment:

Test Equipment.					
Function	S/N	Calibration Date	Cal Due Date	Asset #	
HP 8447D Preamp	2944A08601	07/08/2008	07/08/2010	AN01517	
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872	
Cable 6'	51	12/30/2008	12/30/2010	ANP05361	
Antenna	2453	12/22/2008	12/22/2010	AN01994	
Cable 30'	11	11/05/2008	11/05/2010	ANP05366	
Cable 6'	49	11/10/2008	11/10/2010	ANP05371	
Cable 20'	16	11/10/2008	11/10/2010	ANP05360	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Remote Control*	ZillionTV Corporation	ZR102	013

Support Devices:

Function	Manufacturer	Model #	S/N
USB Base Station	ZillionTV Corporation	ZA100	013
Laptop	Lenovo	T61	10156

Test Conditions / Notes:

Temp = 20° C

Relative Humidity = 19%

Atmospheric Pressure = 103.7kPa

Testing RF Power Output FCC 15.247(b)(3)

The EUT is a wireless remote control.

The EUT is located in the center of the test table raised 10cm with styrofoam.

The EUT will be transmitting in the LOW, MID and HIGH channels.

The support equipment is used before each test to set the EUT to the specific channel.

The Test is being done with fresh batteries.

Because of the lack of antenna connectors the test will have to be done through radiated scans.

RBW = 1MHz VBW = 3MHz Span = 5MHzSweep = 20ms

> Page 20 of 57 Report No: FC09-038A

*Transducer Legend:*T1=ANT AN01994 25-1000MHz T2=CAB-ANP05360 T3=CAB-ANP05361 T4=CAB-ANP05366 T5=CAB-ANP05371 T6=AMP-AN01517-070808

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	st Distan	ce: 3 Meter	S	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	902.815M	100.0	+23.1	+1.9	+0.5	+2.0	+0.0	98.5	137.0	-38.5	Vert
			+0.3	-29.3			340		LOW		100
2	914.792M	99.4	+23.3	+1.9	+0.5	+2.0	+0.0	98.2	137.0	-38.8	Vert
			+0.4	-29.3			340		MID		100
3	926.766M	97.8	+23.5	+2.0	+0.5	+2.0	+0.0	97.1	137.0	-39.9	Vert
			+0.5	-29.2			340		HIGH		100
4	902.808M	87.2	+23.1	+1.9	+0.5	+2.0	+0.0	85.7	137.0	-51.3	Horiz
			+0.3	-29.3			204		LOW		100
5	914.796M	86.5	+23.3	+1.9	+0.5	+2.0	+0.0	85.3	137.0	-51.7	Horiz
			+0.4	-29.3			204		MID		100
6	926.762M	82.8	+23.5	+2.0	+0.5	+2.0	+0.0	82.1	137.0	-54.9	Horiz
			+0.5	-29.2			204		HIGH		100

Page 21 of 57 Report No: FC09-038A

FCC 15.247(d) OATS RADIATED SPURIOUS EMISSIONS

Test Setup Photos

Page 22 of 57 Report No: FC09-038A

Page 23 of 57 Report No: FC09-038A

Test Data Sheets

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Zillion TV Corporation.
Specification: FCC 15.247/15.209

Work Order #: 89171 Date: 3/12/2009
Test Type: Radiated Scan Time: 14:00:05
Equipment: Wireless Remote Control Sequence#: 2

Manufacturer: ZillionTV Corporation Tested By: Armando Del Angel

Model: ZR102 S/N: 013

Test Equipment:

Test Equipment.				
Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8447D Preamp	2944A08601	07/08/2008	07/08/2010	AN01517
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872
Cable 6'	51	12/30/2008	12/30/2010	ANP05361
Antenna	2453	12/22/2008	12/22/2010	AN01994
Cable 30'	11	11/05/2008	11/05/2010	ANP05366
Cable 6'	49	11/10/2008	11/10/2010	ANP05371
Cable 20'	16	11/10/2008	11/10/2010	ANP05360
Heliax cable	N/A	07/22/2008	07/22/2010	AN05545
High freq. Cable	N/A	12/02/2008	12/02/2010	AN03123
High freq. Cable	N/A	12/02/2008	12/02/2010	AN03121
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412
HP 83017A Pre-amp	3123A00464	10/02/2007	10/02/2009	AN01271
High Pass Filter	2	05/01/2008	05/01/2010	02750
Mag Loop	2156	06/04/2008	06/04/2010	AN00052

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Remote Control*	ZillionTV Corporation	ZR102	013

Support Devices:

Function	Manufacturer	Model #	S/N
USB Base Station	ZillionTV Corporation	ZA100	013
Laptop	Lenovo	T61	10156

Test Conditions / Notes:

 $Temp = 20^{\circ}C$

Rel. Humidity = 19% Atm. Pressure = 103.7kPa

Testing Radiated Spurious Emissions per FCC 15.247(d)

The EUT is a wireless remote control.

The EUT is located in the center of the test table raised 10cm with styrofoam.

The EUT will be transmitting in the LOW channel.

The support equipment is used before each test to set the EUT to the specific channel.

The Test is being done with fresh batteries.

Because of the lack of antenna connectors the test will have to be done trhough radiated scans.

0.009-0.150MHz RBW = 200Hz, VBW = 2kHz 0.150-30MHz RBW = 9kHz, VBW = 91kHz 30-1000MHz RBW = 120kHz, VBW = 1.2MHz 1000-10000MHz RBW = 1MHz, VBW = 8MHz

> Page 24 of 57 Report No: FC09-038A

Transducer Legend:

T1=ANT AN01994 25-1000MHz
T2=CAB-ANP05360
T3=CAB-ANP05361
T5=CAB-ANP05371
T6=AMP-AN01517-070808
T7=AN01271 HP PreAmplifier
T8=ANT-AN01412-111207
T9=Filter 1GHz HP AN02750
T11=CAB-ANP03123-120208
T13=ANT- AN00052-06042008
T12=CAB-ANP05545-072208

Measurement Data: Reading listed by margin. Test Distance: 3 Meters Rdng T2 T3 T4 Freq T1 Dist Corr Spec Margin Polar T5 T6 T7 T8 T9 T10 T11 T12 T13 MHz $dB\mu V$ dB dB dB dB Table $dB\mu V/m dB\mu V/m$ dB Ant 1 5417.898M +0.046.2 -7.8 37.3 +0.0+0.0+0.0+0.054.0 Horiz +0.0+0.0-33.1 +34.599 +2.3+0.3+1.0+3.9+0.02 7222.864M +0.0+0.0-11.4 32.6 +0.0+0.0+0.042.6 54.0 Horiz Ambient +0.0+0.0-34.7 +36.399 +0.3+2.3+1.1+4.7+0.03 900.000M 35.3 +23.1+1.9+0.5+2.0 +0.033.8 -12.2 Horiz 46.0 QP -29.3 +0.0204 100 +0.3+0.0+0.0+0.0+0.0+0.0+0.0+1.9 +2.0900.000M 42.9 +23.1+0.5+0.041.4 46.0 -4.6 Horiz +0.3-29.3 +0.0+0.0360 100 +0.0+0.0+0.0+0.0+0.0930.210M 33.3 +23.5+2.0 +0.5+2.0 +0.032.6 46.0 -13.4 Horiz -29.2+0.0+0.5+0.063 100 +0.0+0.0+0.0+0.0+0.06 1805.886M 38.2 +0.0+0.0+0.0+0.0+0.035.1 54.0 -18.9 Horiz 99 +0.0+0.0-33.8 +26.5360 +2.2+0.4+1.1+0.5+0.0949.390M 23.8 +23.8+0.5+2.1+0.023.4 46.0 -22.6 +1.9Horiz Ambient -29.2 +0.5+0.0+0.0100 +0.0+0.0+0.0+0.0+0.0810.800M 23.9 +22.6+1.9+2.0+0.0-24.2 +0.421.8 46.0 Horiz Ambient +0.5-29.5 +0.0+0.0360 100 +0.0+0.0+0.0+0.0+0.0659.200M 25.3 +20.4+1.6+0.4+1.8+0.020.2 46.0 -25.8 Horiz Ambient +0.4-29.7 +0.0+0.0360 100 +0.0+0.0+0.0+0.0+0.0

> Page 25 of 57 Report No: FC09-038A

10 458.170M	27.6	+17.4	+1.6	+0.3	+1.6	+0.0	19.7	46.0	-26.3	Horiz
Ambient		+0.5	-29.3	+0.0	+0.0					100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
11 578.200k	35.2	+0.0	+0.1	+0.0	+0.0	-40.0	5.3	32.4	-27.1	90deg
Ambient		+0.1	+0.0	+0.0	+0.0	360				141
		+0.0	+0.0	+0.0	+0.0					
		+9.9								
12 530.800M	24.2	+18.8	+1.5	+0.4	+1.6	+0.0	17.3	46.0	-28.7	Horiz
Ambient		+0.4	-29.6	+0.0	+0.0	360				100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
13 973.470M	23.6	+24.1	+1.8	+0.5	+2.2	+0.0	23.6	54.0	-30.4	Horiz
Ambient		+0.5	-29.1	+0.0	+0.0					100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
14 235.390M	24.5	+11.7	+1.0	+0.2	+1.0	+0.0	10.2	46.0	-35.8	Horiz
Ambient		+0.4	-28.6	+0.0	+0.0					100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
15 66.190M	25.5	+5.7	+0.4	+0.1	+0.4	+0.0	3.0	40.0	-37.0	Horiz
Ambient		+0.1	-29.2	+0.0	+0.0					100
		+0.0	+0.0	+0.0	+0.0					
16 10 110 1	100	+0.0		0.0		10.0	15.0	20.7	460	001
16 12.110M	13.2	+0.0	+0.2	+0.0	+0.2	-40.0	-17.3	29.5	-46.8	90deg
Ambient		+0.1	+0.0	+0.0	+0.0	360				141
		+0.0	+0.0	+0.0	+0.0					
17 002 15 CM	97.3	+9.0	. 1.0	.0.5	.20	. 0. 0	05.7	127.0	51.2	TT!
17 903.156M	87.2	+23.1	+1.9	+0.5	+2.0	+0.0	85.7	137.0	-51.3	Horiz
		+0.3	-29.3	+0.0	+0.0	204		Fundamenta	dI	100
		+0.0	+0.0	+0.0	+0.0					
10 27 070M	10.5	+0.0	+0.2	.00	.0.2	-40.0	21.0	20.5	-51.3	004
18 27.070M Ambient	10.5	+0.0 +0.2	$+0.3 \\ +0.0$	$+0.0 \\ +0.0$	+0.3 +0.0	-40.0 360	-21.8	29.5	-51.5	90deg
Ambient		+0.2 +0.0	+0.0 +0.0	+0.0	+0.0 +0.0	300				141
		+6.9	+0.0	+0.0	+0.0					
19 89.800k	35.0	+0.9	+0.0	+0.0	+0.0	-80.0	-35.0	28.5	-63.5	90deg
Ambient	33.0	+0.0 +0.0	+0.0 +0.0	+0.0	+0.0 +0.0	360	-33.0	20.3	-03.3	141
Ambient		+0.0	+0.0	+0.0	+0.0	300				141
		+10.0	+0.0	+0.0	+0.0					
20 41.060k	41.1	+0.0	+0.0	+0.0	+0.0	-80.0	-28.3	35.3	-63.6	90deg
Ambient	→1.1	+0.0	+0.0	+0.0	+0.0 +0.0	360	-20.3	33.3	-05.0	90deg 141
Ambient		+0.0	+0.0	+0.0	+0.0	500				171
		+10.6	10.0	10.0	10.0					
21 58.280k	38.4	+0.0	+0.0	+0.0	+0.0	-80.0	-31.5	32.3	-63.8	90deg
Ambient	JU. T	+0.0	+0.0	+0.0	+0.0	360	51.5	34.3	05.0	141
Minorchi		+0.0	+0.0	+0.0	+0.0	300				171
		+10.1	10.0	10.0	10.0					
22 14.440k	45.3	+0.0	+0.0	+0.0	+0.0	-80.0	-20.1	44.4	-64.5	90deg
Ambient	тэ.э	+0.0	+0.0	+0.0	+0.0	360	20.1	77. 7	UT.J	141
7 Inforcit		+0.0	+0.0	+0.0	+0.0	500				171
		+14.6	10.0	10.0	10.0					
		117.0								

Page 26 of 57 Report No: FC09-038A

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Zillion TV Corporation.
Specification: FCC 15.247/15.209

Work Order #: 89171 Date: 3/12/2009
Test Type: Radiated Scan Time: 13:43:34

Equipment: Wireless Remote Control Sequence#: 3

Manufacturer: ZillionTV Corporation Tested By: Armando Del Angel

Model: ZR102 S/N: 013

Test Equipment:

Test Equipment.				
Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8447D Preamp	2944A08601	07/08/2008	07/08/2010	AN01517
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872
Cable 6'	51	12/30/2008	12/30/2010	ANP05361
Antenna	2453	12/22/2008	12/22/2010	AN01994
Cable 30'	11	11/05/2008	11/05/2010	ANP05366
Cable 6'	49	11/10/2008	11/10/2010	ANP05371
Cable 20'	16	11/10/2008	11/10/2010	ANP05360
Heliax cable	N/A	07/22/2008	07/22/2010	AN05545
High freq. Cable	N/A	12/02/2008	12/02/2010	AN03123
High freq. Cable	N/A	12/02/2008	12/02/2010	AN03121
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412
HP 83017A Pre-amp	3123A00464	10/02/2007	10/02/2009	AN01271
High Pass Filter	2	05/01/2008	05/01/2010	02750
Mag Loop	2156	06/04/2008	06/04/2010	AN00052

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Remote Control*	ZillionTV Corporation	ZR102	013

Support Devices:

Function	Manufacturer	Model #	S/N
USB Base Station	ZillionTV Corporation	ZA100	013
Laptop	Lenovo	T61	10156

Test Conditions / Notes:

Temp = 20° C

Rel. Humidity = 19% Atm. Pressure = 103.7kPa

Testing Radiated Spurious Emissions per FCC 15.247(d)

The EUT is a wireless remote control.

The EUT is located in the center of the test table raised 10cm with styrofoam.

The EUT will be transmitting in the MID channel.

The support equipment is used before each test to set the EUT to the specific channel.

The Test is being done with fresh batteries.

Because of the lack of antenna connectors the test will have to be done trhough radiated scans.

0.009-0.150MHz RBW = 200Hz, VBW = 2kHz 0.150-30MHz RBW = 9kHz, VBW = 91kHz 30-1000MHz RBW = 120kHz, VBW = 1.2MHz 1000-10000MHz RBW = 1MHz, VBW = 8MHz

> Page 27 of 57 Report No: FC09-038A

Transducer Legend:
T1=ANT AN01994 25-1000MHz T2=CAB-ANP05360 T3=CAB-ANP05361 T4=CAB-ANP05366 T5=CAB-ANP05371 T6=AMP-AN01517-070808 T7=AN01271 HP PreAmplifier T8=ANT-AN01412-111207 T9=Filter 1GHz HP AN02750 T10=CAB-ANP03121-120208 T11=CAB-ANP03123-120208 T12=CAB-ANP05545-072208 T13=ANT- AN00052-06042008

Measu	rement Data:	R	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters	ı	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$		dB	Ant
1	8236.236M	36.2	+0.0	+0.0	+0.0	+0.0	+0.0	49.0	54.0	-5.0	Vert
			+0.0	+0.0	-34.3	+37.5	56				101
			+0.3	+2.7	+1.4	+5.2					
			+0.0								
2	5490.874M	40.5	+0.0	+0.0	+0.0	+0.0	+0.0	48.9	54.0	-5.1	Vert
			+0.0	+0.0	-33.3	+34.7	29				101
			+0.3	+2.0	+0.8	+3.9					
			+0.0								
3	6405.998M	40.6	+0.0	+0.0	+0.0	+0.0	+0.0	48.7	54.0	-5.3	Vert
			+0.0	+0.0	-34.5	+34.6	34				101
			+0.2	+2.3	+1.2	+4.3					
			+0.0								
4	1830.324M	45.1	+0.0	+0.0	+0.0	+0.0	+0.0	42.2	54.0	-11.8	Vert
			+0.0	+0.0	-33.7	+26.6	360				101
			+0.4	+1.1	+0.5	+2.2					
			+0.0								
5	940.000M	33.8	+23.6	+1.9	+0.5	+2.1	+0.0	33.2	46.0	-12.8	Vert
			+0.5	-29.2	+0.0	+0.0	360				100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
6		33.8	+23.5	+2.0	+0.5	+2.0	+0.0	33.1	46.0	-12.9	Vert
	QP		+0.5	-29.2	+0.0	+0.0	339				100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	930.000M	47.2	+23.5	+2.0	+0.5	+2.0	+0.0	46.5	46.0	+0.5	Vert
			+0.5	-29.2	+0.0	+0.0	360				100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
8		34.5	+23.1	+1.8	+0.5	+2.0	+0.0	32.9	46.0	-13.1	Vert
	QP		+0.3	-29.3	+0.0	+0.0	339				100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	898.400M	46.5	+23.1	+1.8	+0.5	+2.0	+0.0	44.9	46.0	-1.1	Vert
			+0.3	-29.3	+0.0	+0.0					100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 28 of 57 Report No: FC09-038A

10 3659.858M	35.3	+0.0	+0.0	+0.0	+0.0	+0.0	40.3	54.0	-13.7	Vert
Ambient	33.3	+0.0	+0.0	-32.7	+31.9	360	40.5	34.0	-13.7	101
Amorem		+0.5	+0.0	+0.6	+31.9	300				101
		+0.0	+1.7	+0.0	+3.0					
11 950.000M	27.9	+23.8	+1.9	+0.5	+2.1	+0.0	27.5	46.0	-18.5	Vert
		+0.5	-29.2	+0.0	+0.0	360				100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
12 691.600M	32.5	+20.5	+1.7	+0.4	+1.8	+0.0	27.5	46.0	-18.5	Vert
Ambient		+0.2	-29.6	+0.0	+0.0					100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
13 571.600M	32.2	+19.6	+1.6	+0.4	+1.9	+0.0	26.5	46.0	-19.5	Vert
Ambient		+0.4	-29.6	+0.0	+0.0					100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
14 367.460M	34.6	+15.3	+1.2	+0.3	+1.3	+0.0	24.3	46.0	-21.7	Vert
Ambient		+0.3	-28.7	+0.0	+0.0	360				100
		+0.0	+0.0	+0.0	+0.0					
15 760 2701	25.2	+0.0	. 0. 1	. 0. 0	. 0. 1	40.0		20.0	24.5	1001
15 768.270k	35.2	+0.0	+0.1	+0.0	+0.1	-40.0	5.4	29.9	-24.5	180de
Ambient		+0.0	+0.0	+0.0	+0.0	307				141
		+0.0	+0.0	+0.0	+0.0					
16 212.360M	31.7	+10.0	+0.9	.0.2	.1.0	+0.0	15.5	44.0	-28.5	Vert
Ambient	31.7	+10.1 +0.3	+0.9 -28.7	+0.2 +0.0	+1.0 +0.0	+0.0 360	13.3	44.0	-28.3	100
Ambient		+0.0	+0.0	+0.0	+0.0	300				100
		+0.0	+0.0	+0.0	+0.0					
17 984.230M	25.1	+24.2	+1.9	+0.5	+2.2	+0.0	25.2	54.0	-28.8	Vert
Ambient	25.1	+0.4	-29.1	+0.0	+0.0	360	25.2	3	20.0	100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
18 54.440M	32.3	+6.9	+0.4	+0.1	+0.4	+0.0	11.1	40.0	-28.9	Vert
Ambient		+0.1	-29.1	+0.0	+0.0	360				100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
19 920.000M	43.0	+23.4	+2.0	+0.5	+2.0	+0.0	42.0	76.8	-34.8	Vert
QP		+0.4	-29.3	+0.0	+0.0	339		20dBc limi	t applied	100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 920.000M	54.8	+23.4	+2.0	+0.5	+2.0	+0.0	53.8	76.8	-23.0	Vert
		+0.4	-29.3	+0.0	+0.0	339		20dBc limi	t applied	100
		+0.0	+0.0	+0.0	+0.0					
01 014 70 (3.5	00.0	+0.0	4.0	^ -	2.0	0.0	0.5.0	105.0	40.2	*7
21 914.794M	98.0	+23.3	+1.9	+0.5	+2.0	+0.0	96.8	137.0	-40.2	Vert
		+0.4	-29.3	+0.0	+0.0	339		Fundament	al	100
		+0.0	+0.0	+0.0	+0.0					
00 17 4053 5	12.0	+0.0	.0.2	.00	.0.2	40.0	17.0	20.7	47.2	1001
22 17.495M	12.9	+0.0	+0.3	+0.0	+0.3	-40.0	-17.8	29.5	-47.3	180de
Ambient		+0.2	+0.0	+0.0	+0.0	166				141
		+0.0	+0.0	+0.0	+0.0					
		+8.5								

Page 29 of 57 Report No: FC09-038A

23 149.360k	46.6	+0.0	+0.0	+0.0	+0.0	-80.0	-23.4	24.1	-47.5	180de
Ambient		+0.0	+0.0	+0.0	+0.0	80				141
		+0.0	+0.0	+0.0	+0.0					
		+10.0								
24 28.490M	13.7	+0.0	+0.3	+0.0	+0.3	-40.0	-18.5	29.5	-48.0	180de
Ambient		+0.2	+0.0	+0.0	+0.0	359				141
		+0.0	+0.0	+0.0	+0.0					
		+7.0								
25 34.010k	40.7	+0.0	+0.0	+0.0	+0.0	-80.0	-28.2	37.0	-65.2	180de
Ambient		+0.0	+0.0	+0.0	+0.0					141
		+0.0	+0.0	+0.0	+0.0					
		+11.1								
26 17.150k	42.4	+0.0	+0.0	+0.0	+0.0	-80.0	-23.9	42.9	-66.8	180de
Ambient		+0.0	+0.0	+0.0	+0.0					141
		+0.0	+0.0	+0.0	+0.0					
		+13.7								

Page 30 of 57 Report No: FC09-038A

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Zillion TV Corporation.
Specification: FCC 15.247/15.209

Work Order #: 89171 Date: 3/12/2009
Test Type: Radiated Scan Time: 14:06:39
Equipment: Wireless Remote Control Sequence#: 4

Manufacturer: ZillionTV Corporation Tested By: Armando Del Angel

Model: ZR102 S/N: 013

Test Equipment:

Test Equipment				
Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8447D Preamp	2944A08601	07/08/2008	07/08/2010	AN01517
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872
Cable 6'	51	12/30/2008	12/30/2010	ANP05361
Antenna	2453	12/22/2008	12/22/2010	AN01994
Cable 30'	11	11/05/2008	11/05/2010	ANP05366
Cable 6'	49	11/10/2008	11/10/2010	ANP05371
Cable 20'	16	11/10/2008	11/10/2010	ANP05360
Heliax cable	N/A	07/22/2008	07/22/2010	AN05545
High freq. Cable	N/A	12/02/2008	12/02/2010	AN03123
High freq. Cable	N/A	12/02/2008	12/02/2010	AN03121
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412
HP 83017A Pre-amp	3123A00464	10/02/2007	10/02/2009	AN01271
High Pass Filter	2	05/01/2008	05/01/2010	02750
Mag Loop	2156	06/04/2008	06/04/2010	AN00052

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Remote Control*	ZillionTV Corporation	ZR102	013

Support Devices:

Function	Manufacturer	Model #	S/N
USB Base Station	ZillionTV Corporation	ZA100	013
Laptop	Lenovo	T61	10156

Test Conditions / Notes:

Temp = 20° C

Rel. Humidity = 19% Atm. Pressure = 103.7kPa

Testing Radiated Spurious Emissions per FCC 15.247(d)

The EUT is a wireless remote control.

The EUT is located in the center of the test table raised 10cm with styrofoam.

The EUT will be transmitting in the MID channel.

The support equipment is used before each test to set the EUT to the specific channel.

The Test is being done with fresh batteries.

Because of the lack of antenna connectors the test will have to be done trhough radiated scans.

0.009-0.150MHz RBW = 200Hz, VBW = 2kHz 0.150-30MHz RBW = 9kHz, VBW = 91kHz 30-1000MHz RBW = 120kHz, VBW = 1.2MHz 1000-10000MHz RBW = 1MHz, VBW = 8MHz

> Page 31 of 57 Report No: FC09-038A

Transducer Legend:

T1=ANT AN01994 25-1000MHz
T2=CAB-ANP05360
T3=CAB-ANP05361
T5=CAB-ANP05371
T6=AMP-AN01517-070808
T7=AN01271 HP PreAmplifier
T8=ANT-AN01412-111207
T9=Filter 1GHz HP AN02750
T11=CAB-ANP03123-120208
T11=CAB-ANP03123-120208
T13=ANT- AN00052-06042008

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	900.000M	33.5	+23.1	+1.9	+0.5	+2.0	+0.0	32.0	46.0	-14.0	Horiz
			+0.3	-29.3	+0.0	+0.0					100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
2	1829.636M	41.4	+0.0	+0.0	+0.0	+0.0	+0.0	38.5	54.0	-15.5	Horiz
			+0.0	+0.0	-33.7	+26.6					99
			+0.4	+1.1	+0.5	+2.2					
			+0.0								
3	931.540M	29.0	+23.5	+2.0	+0.5	+2.0	+0.0	28.3	46.0	-17.7	Horiz
			+0.5	-29.2	+0.0	+0.0	359				100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
4	5488.829M	27.0	+0.0	+0.0	+0.0	+0.0	+0.0	35.4	54.0	-18.6	Horiz
	Ave		+0.0	+0.0	-33.3	+34.7	323				131
			+0.3	+2.0	+0.8	+3.9					
			+0.0								
^	5488.829M	43.4	+0.0	+0.0	+0.0	+0.0	+0.0	51.8	54.0	-2.2	Horiz
			+0.0	+0.0	-33.3	+34.7	323				131
			+0.3	+2.0	+0.8	+3.9					
			+0.0								
6		26.4	+22.3	+1.8	+0.5	+1.9	+0.0	23.9	46.0	-22.1	Horiz
	Ambient		+0.5	-29.5	+0.0	+0.0					100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
7	200.0001.2	26.7	+19.5	+1.6	+0.4	+1.9	+0.0	20.9	46.0	-25.1	Horiz
	Ambient		+0.4	-29.6	+0.0	+0.0					100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
8	0 0 - 1 - 2 0 - 1 -	28.5	+15.2	+1.2	+0.3	+1.3	+0.0	18.1	46.0	-27.9	Horiz
	Ambient		+0.3	-28.7	+0.0	+0.0					100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
9		31.6	+0.0	+0.1	+0.0	+0.1	-40.0	1.8	29.8	-28.0	90deg
	Ambient		+0.0	+0.0	+0.0	+0.0	360				141
			+0.0	+0.0	+0.0	+0.0					
			+10.0								

Page 32 of 57 Report No: FC09-038A

10 998.460M	25.6	+24.4	+2.1	+0.5	+2.1	+0.0	25.9	54.0	-28.1	Horiz
Ambient		+0.2	-29.0	+0.0	+0.0	360				100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
11 964.370M	24.8	+24.0	+1.8	+0.5	+2.2	+0.0	24.7	54.0	-29.3	Horiz
Ambient		+0.5	-29.1	+0.0	+0.0	360				100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
12 107.550M	28.3	+10.8	+0.6	+0.1	+0.6	+0.0	11.5	44.0	-32.5	Horiz
Ambient		+0.2	-29.1	+0.0	+0.0					100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
13 5.225M	16.8	+0.0	+0.2	+0.0	+0.2	-40.0	-12.7	29.5	-42.2	90deg
Ambient		+0.1	+0.0	+0.0	+0.0					141
		+0.0	+0.0	+0.0	+0.0					
		+10.0								
14 405.830k	40.6	+0.0	+0.1	+0.0	+0.0	-80.0	-29.4	15.4	-44.8	90deg
Ambient		+0.1	+0.0	+0.0	+0.0	360				141
		+0.0	+0.0	+0.0	+0.0					
		+9.8								
15 15.275M	12.9	+0.0	+0.2	+0.0	+0.2	-40.0	-17.9	29.5	-47.4	90deg
Ambient		+0.1	+0.0	+0.0	+0.0					141
		+0.0	+0.0	+0.0	+0.0					
16 22 60016	100	+8.7	0.0	0.0	0.0	10.0	10.0	20.7	40.4	001
16 23.600M	13.3	+0.0	+0.3	+0.0	+0.3	-40.0	-18.9	29.5	-48.4	90deg
Ambient		+0.2	+0.0	+0.0	+0.0					141
		+0.0	+0.0	+0.0	+0.0					
17 015 140M	05.0	+7.0	. 1.0	.0.5	.20	. 0. 0	047	127.0	50.2	TT
17 915.140M	85.9	+23.3	+1.9	+0.5	+2.0	+0.0	84.7	137.0	-52.3	Horiz
		+0.4	-29.3	+0.0	+0.0	204		Fundamenta	ai	100
		+0.0	+0.0	+0.0	+0.0					
18 87.400k	26.5	+0.0	.0.0	.00	. 0. 0	90.0	22.5	20.0	-62.3	004
Ambient	36.5	$+0.0 \\ +0.0$	$+0.0 \\ +0.0$	$+0.0 \\ +0.0$	+0.0 +0.0	-80.0	-33.5	28.8	-02.3	90deg
Ambient		+0.0 +0.0	+0.0	+0.0	+0.0 +0.0					141
		+10.0	+0.0	+0.0	+0.0					
19 127.600k	32.8	+0.0	+0.0	+0.0	+0.0	-80.0	-37.2	25.5	-62.7	90deg
Ambient	32.0	+0.0	+0.0	+0.0	+0.0 +0.0	-80.0	-31.2	23.3	-02.7	90deg 141
Ambient		+0.0	+0.0	+0.0	+0.0					141
		+10.0	+0.0	+0.0	+0.0					
20 13.080k	41.3	+0.0	+0.0	+0.0	+0.0	-80.0	-23.5	45.3	-68.8	90deg
Ambient	+1.5	+0.0	+0.0	+0.0	+0.0 +0.0	360	-23.3	+3.3	-00.0	90deg 141
Amulciit		+0.0	+0.0	+0.0	+0.0	500				141
		+15.2	10.0	10.0	10.0					
21 51.600k	32.8	+0.0	+0.0	+0.0	+0.0	-80.0	-36.9	33.3	-70.2	90deg
Ambient	52.0	+0.0	+0.0	+0.0	+0.0	00.0	50.7	33.3	70.2	141
1 MillOlClit		+0.0	+0.0	+0.0	+0.0					171
		+10.3	10.0	10.0	10.0					
22 38.150k	33.8	+0.0	+0.0	+0.0	+0.0	-80.0	-35.5	36.0	-71.5	90deg
Ambient	55.0	+0.0	+0.0	+0.0	+0.0	360	33.3	20.0	11.5	141
1 1111010111		+0.0	+0.0	+0.0	+0.0	200				111
		+10.7	1 0.0	1 0.0	10.0					
		1 10.7								

Page 33 of 57 Report No: FC09-038A

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Zillion TV Corporation.
Specification: FCC 15.247/15.209

Work Order #: 89171 Date: 3/12/2009
Test Type: Radiated Scan Time: 13:40:04

Equipment: Wireless Remote Control Sequence#: 5

Manufacturer: ZillionTV Corporation Tested By: Armando Del Angel

Model: ZR102 S/N: 013

Test Equipment:

z est z quipiteitt				
Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8447D Preamp	2944A08601	07/08/2008	07/08/2010	AN01517
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872
Cable 6'	51	12/30/2008	12/30/2010	ANP05361
Antenna	2453	12/22/2008	12/22/2010	AN01994
Cable 30'	11	11/05/2008	11/05/2010	ANP05366
Cable 6'	49	11/10/2008	11/10/2010	ANP05371
Cable 20'	16	11/10/2008	11/10/2010	ANP05360
Heliax cable	N/A	07/22/2008	07/22/2010	AN05545
High freq. Cable	N/A	12/02/2008	12/02/2010	AN03123
High freq. Cable	N/A	12/02/2008	12/02/2010	AN03121
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412
HP 83017A Pre-amp	3123A00464	10/02/2007	10/02/2009	AN01271
High Pass Filter	2	05/01/2008	05/01/2010	02750
Mag Loop	2156	06/04/2008	06/04/2010	AN00052

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Remote Control*	ZillionTV Corporation	ZR102	013

Support Devices:

Function	Manufacturer	Model #	S/N
USB Base Station	ZillionTV Corporation	ZA100	013
Laptop	Lenovo	T61	10156

Test Conditions / Notes:

Temp = 20° C

Rel. Humidity = 19% Atm. Pressure = 103.7kPa

Testing Radiated Spurious Emissions per FCC 15.247(d)

The EUT is a wireless remote control.

The EUT is located in the center of the test table raised 10cm with styrofoam.

The EUT will be transmitting in the HIGH channel.

The support equipment is used before each test to set the EUT to the specific channel.

The Test is being done with fresh batteries.

Because of the lack of antenna connectors the test will have to be done trhough radiated scans.

0.009-0.150MHz RBW = 200Hz, VBW = 2kHz 0.150-30MHz RBW = 9kHz, VBW = 91kHz 30-1000MHz RBW = 120kHz, VBW = 1.2MHz 1000-10000MHz RBW = 1MHz, VBW = 8MHz

> Page 34 of 57 Report No: FC09-038A

Transducer Legend:

T1=ANT AN01994 25-1000MHz
T2=CAB-ANP05360
T3=CAB-ANP05361
T5=CAB-ANP05371
T6=AMP-AN01517-070808
T7=AN01271 HP PreAmplifier
T8=ANT-AN01412-111207
T9=Filter 1GHz HP AN02750
T10=CAB-ANP03123-120208
T11=CAB-ANP03123-120208
T13=ANT- AN00052-06042008

Measurement Data: Reading listed by margin. Test Distance: 3 Meters Rdng T2 T3 T4 Freq T1 Dist Corr Spec Margin Polar T5 T6 T7 T8 T9 T10 T11 T12 T13 MHz $dB\mu V \\$ dB dB dB dΒ Table $dB\mu V/m dB\mu V/m$ dB Ant 940.010M +23.6+1.9+2.1+0.039.0 -7.0 39.6 +0.546.0 Vert +0.5-29.2 +0.0+0.0340 100 +0.0+0.0+0.0+0.0+0.02 1854.358M +0.0+0.0+0.044.8 -9.2 47.5 +0.0+0.054.0 Vert +0.0+0.0-33.7 +26.829 126 +0.4+1.1+0.5+2.2+0.0950.160M 33.9 +23.8+1.9+0.5+2.1 +0.033.5 46.0 -12.5 Vert -29.2 +0.0340 100 +0.5+0.0+0.0+0.0+0.0+0.0+0.04 900.000M +1.9 +2.033.2 +23.1+0.5+0.031.7 46.0 -14.3 Vert QP +0.3-29.3 +0.0+0.0340 100 +0.0+0.0+0.0+0.0+0.0900.000M 49.3 +23.1+1.9+0.5+2.0 +0.047.8 46.0 +1.8Vert -29.3 +0.0340 +0.3+0.0100 +0.0+0.0+0.0+0.0+0.06 5560.515M 26.9 +0.0+0.0+0.0+0.0+0.035.2 54.0 -18.8 Vert +0.0+0.0-33.4 +34.7300 126 Ave +0.3+2.0+0.7+4.0+0.0^ 5560.515M +0.0+0.0+0.0+0.0+0.051.8 54.0 -2.2 43.5 Vert +0.0+34.7+0.0-33.4 300 126 +0.3+2.0+0.7+4.0+0.0804.000M +22.5+1.9+2.0+0.024.1 -21.9 26.3 +0.446.0 Vert Ambient +0.5-29.5 +0.0+0.0100 +0.0+0.0+0.0+0.0+0.0671.600M 29.0 +20.4+1.7+0.4+1.8+0.023.9 46.0 -22.1 Vert Ambient +0.3-29.7 +0.0+0.027 100 +0.0+0.0+0.0+0.0+0.0

> Page 35 of 57 Report No: FC09-038A

10 999.778M	30.3	+24.4	+2.1	+0.5	+2.1	+0.0	30.6	54.0	-23.4	Vert
Ambient		+0.2	-29.0	+0.0	+0.0	340				100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
11 437.236M	28.7	+17.0	+1.5	+0.3	+1.6	+0.0	20.4	46.0	-25.6	Vert
Ambient		+0.5	-29.2	+0.0	+0.0	360				100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
12 595.620k	35.5	+0.0	+0.1	+0.0	+0.0	-40.0	5.6	32.1	-26.5	180de
Ambient		+0.1	+0.0	+0.0	+0.0	360				141
		+0.0	+0.0	+0.0	+0.0					
		+9.9								
13 996.640k	29.6	+0.0	+0.1	+0.0	+0.1	-40.0	-0.2	27.6	-27.8	180de
Ambient		+0.0	+0.0	+0.0	+0.0	360				141
		+0.0	+0.0	+0.0	+0.0					
		+10.0								
14 85.986M	29.6	+8.3	+0.5	+0.1	+0.5	+0.0	10.1	40.0	-29.9	Vert
Ambient		+0.2	-29.1	+0.0	+0.0					100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
15 930.140M	45.8	+23.5	+2.0	+0.5	+2.0	+0.0	45.1	76.6	-31.5	Vert
QP		+0.5	-29.2	+0.0	+0.0	340		20dBc Limi		100
ζ-		+0.0	+0.0	+0.0	+0.0			applied		
		+0.0								
^ 930.140M	52.5	+23.5	+2.0	+0.5	+2.0	+0.0	51.8	76.6	-24.8	Vert
		+0.5	-29.2	+0.0	+0.0	340		20dBc Limi		100
		+0.0	+0.0	+0.0	+0.0			applied		
		+0.0						11		
17 216.000M	26.5	+10.3	+0.9	+0.2	+1.0	+0.0	10.5	44.0	-33.5	Vert
Ambient		+0.3	-28.7	+0.0	+0.0					100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
18 926.778M	97.3	+23.5	+2.0	+0.5	+2.0	+0.0	96.6	137.0	-40.4	Vert
		+0.5	-29.2	+0.0	+0.0	340		Fundamenta		100
		+0.0	+0.0	+0.0	+0.0	-				
		+0.0								
19 16.700M	14.6	+0.0	+0.3	+0.0	+0.3	-40.0	-16.0	29.5	-45.5	180de
Ambient		+0.2	+0.0	+0.0		62				141
		+0.0	+0.0	+0.0	+0.0					
		+8.6								
20 166.910k	47.6	+0.0	+0.0	+0.0	+0.0	-80.0	-22.4	23.1	-45.5	180de
Ambient		+0.0	+0.0	+0.0	+0.0	254	1			141
		+0.0	+0.0	+0.0	+0.0					
		+10.0	. 5.0	. 3.0	. 0.0					
21 249.000k	40.3	+0.0	+0.0	+0.0	+0.0	-80.0	-29.8	19.7	-49.5	180de
Ambient	.0.5	+0.0	+0.0	+0.0	+0.0	23.0		-211		141
1 IIIIOIOIII		+0.0	+0.0	+0.0	+0.0					111
		+9.9	1 0.0	1 0.0	. 0.0					
		⊤フ.フ								

Page 36 of 57 Report No: FC09-038A

22	58.700k	38.8	+0.0	+0.0	+0.0	+0.0	-80.0	-31.1	32.2	-63.3	180de
A	mbient		+0.0	+0.0	+0.0	+0.0	262				141
			+0.0	+0.0	+0.0	+0.0					
			+10.1								
23	121.900k	32.0	+0.0	+0.0	+0.0	+0.0	-80.0	-37.9	25.9	-63.8	180de
A	mbient		+0.0	+0.0	+0.0	+0.0	360				141
			+0.0	+0.0	+0.0	+0.0					
			+10.1								
24	39.380k	40.8	+0.0	+0.0	+0.0	+0.0	-80.0	-28.6	35.7	-64.3	180de
A	mbient		+0.0	+0.0	+0.0	+0.0					141
			+0.0	+0.0	+0.0	+0.0					
			+10.6								
25	10.580k	44.4	+0.0	+0.0	+0.0	+0.0	-80.0	-19.3	47.1	-66.4	180de
A	mbient		+0.0	+0.0	+0.0	+0.0	113				141
			+0.0	+0.0	+0.0	+0.0					
			+16.3								

Page 37 of 57 Report No: FC09-038A

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Zillion TV Corporation.
Specification: FCC 15.247/15.209

Work Order #: 89171 Date: 3/12/2009
Test Type: Radiated Scan Time: 14:10:55

Equipment: Wireless Remote Control Sequence#: 6

Manufacturer: ZillionTV Corporation Tested By: Armando Del Angel

Model: ZR102 S/N: 013

Test Equipment:

Test Equipment.				
Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8447D Preamp	2944A08601	07/08/2008	07/08/2010	AN01517
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872
Cable 6'	51	12/30/2008	12/30/2010	ANP05361
Antenna	2453	12/22/2008	12/22/2010	AN01994
Cable 30'	11	11/05/2008	11/05/2010	ANP05366
Cable 6'	49	11/10/2008	11/10/2010	ANP05371
Cable 20'	16	11/10/2008	11/10/2010	ANP05360
Heliax cable	N/A	07/22/2008	07/22/2010	AN05545
High freq. Cable	N/A	12/02/2008	12/02/2010	AN03123
High freq. Cable	N/A	12/02/2008	12/02/2010	AN03121
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412
HP 83017A Pre-amp	3123A00464	10/02/2007	10/02/2009	AN01271
High Pass Filter	2	05/01/2008	05/01/2010	02750
Mag Loop	2156	06/04/2008	06/04/2010	AN00052

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Remote Control*	ZillionTV Corporation	ZR102	013

Support Devices:

Function	Manufacturer	Model #	S/N
USB Base Station	ZillionTV Corporation	ZA100	013
Laptop	Lenovo	T61	10156

Test Conditions / Notes:

Temp = 20° C

Rel. Humidity = 19% Atm. Pressure = 103.7kPa

Testing Radiated Spurious Emissions per FCC 15.247(d)

The EUT is a wireless remote control.

The EUT is located in the center of the test table raised 10cm with styrofoam.

The EUT will be transmitting in the HIGH channel.

The support equipment is used before each test to set the EUT to the specific channel.

The Test is being done with fresh batteries.

Because of the lack of antenna connectors the test will have to be done trhough radiated scans.

0.009-0.150MHz RBW = 200Hz, VBW = 2kHz 0.150-30MHz RBW = 9kHz, VBW = 91kHz 30-1000MHz RBW = 120kHz, VBW = 1.2MHz 1000-10000MHz RBW = 1MHz, VBW = 8MHz

> Page 38 of 57 Report No: FC09-038A

Transducer Legend:

T1=ANT AN01994 25-1000MHz
T2=CAB-ANP05360
T3=CAB-ANP05361
T5=CAB-ANP05371
T6=AMP-AN01517-070808
T7=AN01271 HP PreAmplifier
T8=ANT-AN01412-111207
T9=Filter 1GHz HP AN02750
T11=CAB-ANP03123-120208
T13=ANT- AN00052-06042008
T12=CAB-ANP05545-072208

Measurement Data: Reading listed by margin. Test Distance: 3 Meters Rdng T2 T3 T4 Freq T1 Dist Corr Spec Margin Polar T5 T6 T7 T8 T9 T10 T11 T12 T13 MHz $dB\mu V$ dB dB dB dΒ Table $dB\mu V/m$ $dB\mu V/m$ dB Ant 930.350M +23.5+0.033.9 -12.134.6 +2.0+0.5+2.046.0 Horiz Ambient +0.5-29.2 +0.0+0.0100 +0.0+0.0+0.0+0.0+0.0826.350M +22.7+2.0+0.032.3 -13.7 34.4 +1.8+0.446.0 Horiz Ambient +0.4-29.4+0.0+0.0360 100 +0.0+0.0+0.0+0.0+0.0594.250M 34.8 +20.1+1.6+0.4+1.9 +0.029.7 46.0 -16.3 Horiz Ambient -29.6 +0.0100 +0.5+0.0+0.0+0.0+0.0+0.0+0.0900.000M +1.9 +2.029.6 31.1 +23.1+0.5+0.046.0 -16.4 Horiz Ambient +0.3-29.3 +0.0+0.0100 +0.0+0.0+0.0+0.0+0.0696.250M 34.4 +20.5+1.7+0.4+1.8+0.029.4 46.0 -16.6 Horiz Ambient +0.2-29.6 +0.0+0.0100 +0.0+0.0+0.0+0.0+0.0461.376M 34.4 +17.4+1.5+0.3+1.6+0.026.3 46.0 -19.7Horiz Ambient +0.4-29.3+0.0+0.0360 100 +0.0+0.0+0.0+0.0+0.07 5562.845M 25.7 +0.0+0.0+0.0+0.034.0 54.0 -20.0 +0.0Horiz +34.7Ave +0.0+0.0-33.4 360 141 +0.3+1.9+0.8+4.0+0.043.4 +0.0+0.051.7 54.0 -2.3 ^ 5562.845M +0.0+0.0+0.0Horiz +0.0+0.0-33.4 +34.7360 141 +1.9+0.3+0.8+4.0+0.039.858M 32.9 +15.2+0.4+0.1+0.4+0.020.0 40.0 -20.0 Horiz Ambient +0.1-29.1+0.0+0.0100 +0.0+0.0+0.0+0.0+0.0

> Page 39 of 57 Report No: FC09-038A

10 1853.562M	36.0	+0.0	+0.0	+0.0	+0.0	+0.0	33.3	54.0	-20.7	Horiz
		+0.0	+0.0	-33.7	+26.8					111
		+0.4	+1.1	+0.5	+2.2					
		+0.0								
11 984.740M	32.0	+24.2	+1.9	+0.5	+2.2	+0.0	32.1	54.0	-21.9	Horiz
Ambient		+0.4	-29.1	+0.0	+0.0					100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
12 286.716M	32.6	+13.2	+1.0	+0.3	+1.2	+0.0	20.2	46.0	-25.8	Horiz
Ambient		+0.3	-28.4	+0.0	+0.0	360				100
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
13 168.756M	34.9	+9.9	+0.8	+0.2	+0.9	+0.0	18.1	44.0	-25.9	Horiz
Ambient		+0.2	-28.8	+0.0	+0.0	18				100
		+0.0	+0.0	+0.0	+0.0					
		+0.0				10.0				
14 5.050M	16.4	+0.0	+0.2	+0.0	+0.2	-40.0	-13.1	29.5	-42.6	90deg
Ambient		+0.1	+0.0	+0.0	+0.0					141
		+0.0	+0.0	+0.0	+0.0					
17 211 2201		+10.0						100		
15 241.330k	44.2	+0.0	+0.0	+0.0	+0.0	-80.0	-25.8	19.9	-45.7	90deg
Ambient		+0.0	+0.0	+0.0	+0.0	360				141
		+0.0	+0.0	+0.0	+0.0					
16 20 25 5	10.1	+10.0	0.2	0.0	0.0	10.0	22.0	20.7		001
16 23.375M	10.1	+0.0	+0.3	+0.0	+0.3	-40.0	-22.0	29.5	-51.5	90deg
Ambient		+0.2	+0.0	+0.0	+0.0					141
		+0.0	+0.0	+0.0	+0.0					
17 004 770) 4	01.6	+7.1	. 2. 0	.0.7	.0.0	.00	00.0	127.0	E (1	тт. '
17 926.778M	81.6	+23.5	+2.0	+0.5	+2.0	+0.0	80.9	137.0	-56.1	Horiz
		+0.5	-29.2	+0.0	+0.0	204		Fundamenta	1	100
		+0.0	+0.0	+0.0	+0.0					
10 (1.400)	20.0	+0.0	. 0. 0	. 0. 0	. 0. 0	00.0	20.0	21.0	(2.7	00.1
18 61.400k	39.0	+0.0	+0.0	+0.0	+0.0	-80.0	-30.9	31.8	-62.7	90deg
Ambient		+0.0	+0.0	+0.0	+0.0	22				141
		+0.0	+0.0	+0.0	+0.0					
10 12 (20)	45.0	+10.1	. 0. 0	. 0. 0	. 0. 0	00.0	10.1	44.0	C4.0	00.1
19 13.620k	45.9	+0.0	+0.0	+0.0	+0.0	-80.0	-19.1	44.9	-64.0	90deg
Ambient		+0.0	+0.0	+0.0	+0.0	310				141
		+0.0	+0.0	+0.0	+0.0					
		+15.0								

Page 40 of 57 Report No: FC09-038A

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: **Zillion TV Corporation.** Specification: FCC 15.247/15.209

Work Order #: 89171 Date: 3/12/2009 Time: 13:48:17 Test Type: **Radiated Scan** Equipment:

Wireless Remote Control Sequence#: 1

Manufacturer: ZillionTV Corporation Tested By: Armando Del Angel

Model: ZR102 S/N: 013

Test Equipment:

z est z quipiteitt				
Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8447D Preamp	2944A08601	07/08/2008	07/08/2010	AN01517
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872
Cable 6'	51	12/30/2008	12/30/2010	ANP05361
Antenna	2453	12/22/2008	12/22/2010	AN01994
Cable 30'	11	11/05/2008	11/05/2010	ANP05366
Cable 6'	49	11/10/2008	11/10/2010	ANP05371
Cable 20'	16	11/10/2008	11/10/2010	ANP05360
Heliax cable	N/A	07/22/2008	07/22/2010	AN05545
High freq. Cable	N/A	12/02/2008	12/02/2010	AN03123
High freq. Cable	N/A	12/02/2008	12/02/2010	AN03121
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412
HP 83017A Pre-amp	3123A00464	10/02/2007	10/02/2009	AN01271
High Pass Filter	2	05/01/2008	05/01/2010	02750
Mag Loop	2156	06/04/2008	06/04/2010	AN00052

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Remote Control*	ZillionTV Corporation	ZR102	013

Support Devices:

Function	Manufacturer	Model #	S/N
USB Base Station	ZillionTV Corporation	ZA100	013
Laptop	Lenovo	T61	10156

Test Conditions / Notes:

Temp = 20° C

Rel. Humidity = 19% Atm. Pressure = 103.7kPa

Testing Radiated Spurious Emissions per FCC 15.247(d)

The EUT is a wireless remote control.

The EUT is located in the center of the test table raised 10cm with styrofoam.

The EUT will be transmitting in the LOW channel.

The support equipment is used before each test to set the EUT to the specific channel.

The Test is being done with fresh batteries.

Because of the lack of antenna connectors the test will have to be done trhough radiated scans.

0.009-0.150MHz RBW = 200Hz, VBW = 2kHz0.150-30MHz RBW = 9kHz, VBW = 91kHz30-1000MHz RBW = 120kHz, VBW = 1.2MHz1000-10000MHz RBW = 1MHz, VBW = 8MHz

> Page 41 of 57 Report No: FC09-038A

Transducer Legend:
T1=ANT AN01994 25-1000MHz T2=CAB-ANP05360 T3=CAB-ANP05361 T4=CAB-ANP05366 T5=CAB-ANP05371 T6=AMP-AN01517-070808 T7=AN01271 HP PreAmplifier T8=ANT-AN01412-111207 T9=Filter 1GHz HP AN02750 T10=CAB-ANP03121-120208 T11=CAB-ANP03123-120208 T12=CAB-ANP05545-072208 T13=ANT- AN00052-06042008

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters	ı	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$		dB	Ant
1	886.800M	40.9	+23.0	+1.8	+0.5	+2.0	+0.0	39.1	46.0	-6.9	Vert
			+0.2	-29.3	+0.0	+0.0	360				100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
2	858.400M	33.2	+22.9	+1.7	+0.5	+2.0	+0.0	31.3	46.0	-14.7	Vert
			+0.3	-29.3	+0.0	+0.0	360				100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
3	1806.312M	41.5	+0.0	+0.0	+0.0	+0.0	+0.0	38.4	54.0	-15.6	Vert
			+0.0	+0.0	-33.8	+26.5	12				100
			+0.4	+1.1	+0.5	+2.2					
			+0.0								
4	930.700M	30.6	+23.5	+2.0	+0.5	+2.0	+0.0	29.9	46.0	-16.1	Vert
	QP		+0.5	-29.2	+0.0	+0.0	342				100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
٨	930.700M	47.9	+23.5	+2.0	+0.5	+2.0	+0.0	47.2	46.0	+1.2	Vert
			+0.5	-29.2	+0.0	+0.0	342				100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
6	940.000M	30.3	+23.6	+1.9	+0.5	+2.1	+0.0	29.7	46.0	-16.3	Vert
			+0.5	-29.2	+0.0	+0.0	342				100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
7	1805.500M	39.9	+0.0	+0.0	+0.0	+0.0	+0.0	36.8	54.0	-17.2	Vert
			+0.0	+0.0	-33.8	+26.5	360				100
			+0.4	+1.1	+0.5	+2.2					
			+0.0								
8	950.000M	28.9	+23.8	+1.9	+0.5	+2.1	+0.0	28.5	46.0	-17.5	Vert
			+0.5	-29.2	+0.0	+0.0	342				100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
9	3265.000M	31.2	+0.0	+0.0	+0.0	+0.0	+0.0	35.4	54.0	-18.6	Vert
	Ambient		+0.0	+0.0	-32.7	+31.0	360				100
			+0.6	+1.6	+0.8	+2.9					
			+0.0								

Page 42 of 57 Report No: FC09-038A

10 4	395.000M	28.0	+0.0	+0.0	+0.0	+0.0	+0.0	34.2	54.0	-19.8	Vert
			+0.0	+0.0	-32.6	+32.5	360				100
			+0.2	+1.8	+0.8	+3.5					
			+0.0								
11 5	5416.874M	24.9	+0.0	+0.0	+0.0	+0.0	+0.0	33.8	54.0	-20.2	Vert
A.	ve		+0.0	+0.0	-33.1	+34.5	297				149
			+0.3	+2.3	+1.0	+3.9					
			+0.0								
^ 5	5416.874M	39.4	+0.0	+0.0	+0.0	+0.0	+0.0	48.3	54.0	-5.7	Vert
			+0.0	+0.0	-33.1	+34.5	297				149
			+0.3	+2.3	+1.0	+3.9					
12 -			+0.0								
	² 225.265M	23.5	+0.0	+0.0	+0.0	+0.0	+0.0	33.5	54.0	-20.5	Vert
A.	ve		+0.0	+0.0	-34.7	+36.3	297				149
			+0.3	+2.3	+1.1	+4.7					
		25.6	+0.0	0.0	0.0	0.0	0.0	15.5	7.1.0		**
^ 7	² 225.265M	37.6	+0.0	+0.0	+0.0	+0.0	+0.0	47.6	54.0	-6.4	Vert
			+0.0	+0.0	-34.7	+36.3	297				149
			+0.3	+2.3	+1.1	+4.7					
1.5	022 00014	26.0	+0.0	. 1.0	. 0. 4	.20	. 0. 0	247	46.0	21.2	V I
	822.800M	26.9	+22.6	+1.8	+0.4	+2.0	+0.0	24.7	46.0	-21.3	Vert
A	mbient		$+0.4 \\ +0.0$	-29.4	+0.0	+0.0	360				100
			+0.0	+0.0	+0.0	+0.0					
16	727.600M	26.1	+21.1	+1.7	+0.5	+1.9	+0.0	22.2	46.0	-23.8	Vert
	mbient	20.1	+21.1 +0.5	+1.7 -29.6	+0.5	+1.9	+0.0 360	22.2	40.0	-23.8	100
A	inotent		+0.0	+0.0	+0.0	+0.0	300				100
			+0.0	+0.0	+0.0	+0.0					
17	565.200M	27.5	+19.5	+1.6	+0.4	+1.9	+0.0	21.7	46.0	-24.3	Vert
	mbient	21.5	+0.4	-29.6	+0.0	+0.0	360	21.7	40.0	-24.5	100
111	motent		+0.0	+0.0	+0.0	+0.0	300				100
			+0.0	10.0	10.0	10.0					
18	389.550M	27.2	+15.9	+1.3	+0.3	+1.4	+0.0	17.6	46.0	-28.4	Vert
	mbient	27.2	+0.4	-28.9	+0.0	+0.0	10.0	17.0	10.0	20	100
			+0.0	+0.0	+0.0	+0.0					100
			+0.0								
19	900.000M	46.6	+23.1	+1.9	+0.5	+2.0	+0.0	45.1	74.2	-29.1	Vert
Q1			+0.3	-29.3	+0.0	+0.0	339		20dBc limi		100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
۸	900.000M	55.1	+23.1	+1.9	+0.5	+2.0	+0.0	53.6	74.2	-20.6	Vert
			+0.3	-29.3	+0.0	+0.0	360		20dBc limi	t applied	100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
	992.840M	24.2	+24.3	+2.0	+0.5	+2.1	+0.0	24.4	54.0	-29.6	Vert
A	mbient		+0.3	-29.0	+0.0	+0.0	342				100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
22	85.930M	29.1	+8.3	+0.5	+0.1	+0.5	+0.0	9.6	40.0	-30.4	Vert
A	mbient		+0.2	-29.1	+0.0	+0.0					100
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 43 of 57 Report No: FC09-038A

23 195,440M											
100	23 195.440M	28.7	+9.1	+0.9	+0.2	+1.0	+0.0	11.4	44.0	-32.6	Vert
100 100	Ambient		+0.3	-28.8	+0.0	+0.0					100
24 5.015M Ambient			+0.0	+0.0	+0.0	+0.0					
Ambient			+0.0								
+0.0	24 5.015M	16.9	+0.0	+0.2	+0.0	+0.2	-40.0	-12.6	29.5	-42.1	180de
+10.0 25 902.812M	Ambient		+0.1	+0.0	+0.0	+0.0	46				141
25 902.812M			+0.0	+0.0	+0.0	+0.0					
100			+10.0								
+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 26 17.570M Ambient	25 902.812M	95.7	+23.1	+1.9	+0.5	+2.0	+0.0	94.2	137.0	-42.8	Vert
+0.0 26 17.570M			+0.3	-29.3	+0.0	+0.0	360		Fundament	tal	100
26 17.570M Ambient			+0.0	+0.0	+0.0	+0.0					
Ambient			+0.0								
+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0	26 17.570M	12.1	+0.0	+0.3	+0.0	+0.3	-40.0	-18.6	29.5	-48.1	180de
+8.5 27 119.800k Ambient	Ambient		+0.2	+0.0	+0.0	+0.0					141
27 119.800k Ambient 34.6 +0.0 +0.0 +0.0 +0.0 +0.0 -80.0 -35.3 26.0 -61.3 180de +0.0 +0.0 +0.0 +0.0 +0.0 360 141 28 50.500k Ambient +0.0 +0.0 +0.0 +0.0 +0.0 360 141 29 18.590k Ambient +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.			+0.0	+0.0	+0.0	+0.0					
Ambient			+8.5								
+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +10.1 +10.1 +0.0 +0.0 +0.0 +0.0 +0.0 -80.0 -30.1 33.5 -63.6 180de Ambient +0.0 +0.0 +0.0 +0.0 360 141 +0.0 +0.0 +0.0 +0.0 +0.0 -80.0 -24.3 42.2 -66.5 180de Ambient +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.	27 119.800k	34.6	+0.0	+0.0	+0.0	+0.0	-80.0	-35.3	26.0	-61.3	180de
+10.1 28 50.500k	Ambient		+0.0	+0.0	+0.0	+0.0	360				141
28 50.500k Ambient 39.5 +0.0 +0.0 +0.0 +0.0 -80.0 -30.1 33.5 -63.6 180de +0.0 +0.0 +0.0 +0.0 +0.0 360 141 29 18.590k Ambient +0.0 +0.0 +0.0 +0.0 +0.0 -80.0 -24.3 42.2 -66.5 180de +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.			+0.0	+0.0	+0.0	+0.0					
Ambient			+10.1								
+0.0 +0.0 +0.0 +0.0 +0.0 +10.4 +10.4 +0.0 +0.0 +0.0 +0.0 -80.0 -24.3 42.2 -66.5 180de Ambient +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +13.3 +10.500k	28 50.500k	39.5	+0.0	+0.0	+0.0	+0.0	-80.0	-30.1	33.5	-63.6	180de
+10.4 29 18.590k	Ambient		+0.0	+0.0	+0.0	+0.0	360				141
29 18.590k			+0.0	+0.0	+0.0	+0.0					
Ambient			+10.4								
+0.0 +0.0 +0.0 +0.0 +0.0 +13.3 30 10.500k 44.1 +0.0 +0.0 +0.0 +0.0 -80.0 -19.6 47.2 -66.8 180de Ambient +0.0 +0.0 +0.0 +0.0 21 141 +0.0 +0.0 +0.0 +0.0	29 18.590k	42.4	+0.0	+0.0	+0.0	+0.0	-80.0	-24.3	42.2	-66.5	180de
+13.3 30 10.500k 44.1 +0.0 +0.0 +0.0 +0.0 -80.0 -19.6 47.2 -66.8 180de Ambient +0.0 +0.0 +0.0 +0.0 21 141 +0.0 +0.0 +0.0 +0.0 +0.0	Ambient		+0.0	+0.0	+0.0	+0.0					141
30 10.500k 44.1 +0.0 +0.0 +0.0 +0.0 -80.0 -19.6 47.2 -66.8 180de Ambient +0.0 +0.0 +0.0 +0.0 21 141 +0.0 +0.0 +0.0 +0.0			+0.0	+0.0	+0.0	+0.0					
Ambient $\begin{array}{cccccccccccccccccccccccccccccccccccc$			+13.3								
+0.0 $+0.0$ $+0.0$ $+0.0$	30 10.500k	44.1	+0.0	+0.0	+0.0	+0.0	-80.0	-19.6	47.2	-66.8	180de
	Ambient		+0.0	+0.0	+0.0	+0.0	21				141
+16.3			+0.0	+0.0	+0.0	+0.0					
			+16.3								

Page 44 of 57 Report No: FC09-038A

FCC 15.247(d) BANDEDGE

Test Equipment

Asset #	Equipment	Serial #	Cal Date	Cal Due
ANP05361	Cable 6'	51	12/30/2008	12/30/2010
AN01994	Antenna	2453	12/22/2008	12/22/2010
ANP05366	Cable 30'	11	11/5/2008	11/5/2010
ANP05371	Cable 6'	49	11/10/2008	11/10/2010
ANP05360	Cable 20'	16	11/10/2008	11/10/2010
AN01517	HP 8447D Preamp	2944A08601	7/8/2008	7/8/2010
AN02872	Agilent E4440A	MY46186330	1/31/2008	1/31/2010

Test Setup Photos

Page 45 of 57 Report No: FC09-038A

Test Plots

FCC 15.247(d) BANDEDGE – LOW CHANNEL HORIZONTAL

FCC 15.247(d) BANDEDGE – LOW CHANNEL VERTICAL

Page 47 of 57 Report No: FC09-038A

FCC 15.247(d) BANDEDGE – HIGH CHANNEL HORIZONTAL

FCC 15.247(d) BANDEDGE – HIGH CHANNEL VERTICAL

Page 48 of 57 Report No: FC09-038A

FCC 15.247(e) PEAK POWER SPECTRAL DENSITY

Test Equipment

Asset #	Equipment	Serial #	Cal Date	Cal Due
ANP05361	Cable 6'	51	12/30/2008	12/30/2010
AN01994	Antenna	2453	12/22/2008	12/22/2010
ANP05366	Cable 30'	11	11/5/2008	11/5/2010
ANP05371	Cable 6'	49	11/10/2008	11/10/2010
ANP05360	Cable 20'	16	11/10/2008	11/10/2010
AN01517	HP 8447D Preamp	2944A08601	7/8/2008	7/8/2010
AN02872	Agilent E4440A	MY46186330	1/31/2008	1/31/2010

Test Conditions

The EUT is transmitting. Due to the lack of antenna connectors the test will be done through radiated measurements. EUT is located in the center of the test table over 10cm of Styrofoam. The support equipment is used before each test to set the EUT to the specific channel. PSA is on max hold centered at the desired channel, EMI test will be used with the solely purpose of accurate Field Strength data gathering. Same calculation from the RF power output test will be done in order to convert the field strength to power.

RBW = 3 kHz VBW = 9 kHz Span = 300 kHzSweep Time = 100s

Test Setup Photos

Page 49 of 57 Report No: FC09-038A

Test Data

	Vertical	Horizontal	Limit
LOW	-9.032dBm/3kHz	-19.232dBm/3kHz	8dBm/3kHz
MID	-8.572dBm/3kHz	-20.332dBm/3kHz	8dBm/3kHz
HIGH	-8.632dBm/3kHz	-24.232dBm/3kHz	8dBm/3kHz

Page 50 of 57 Report No: FC09-038A

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Zillion TV Corporation.

Specification: Peak Power Spectral Density - Radiated

Work Order #: 89171 Date: 3/12/2009
Test Type: Radiated Scan Time: 08:39:12
Equipment: Wireless Remote Control Sequence#: 1

Equipment: Wireless Remote Control Sequence#: 1
Manufacturer: ZillionTV Corporation Tested By: Armando Del Angel

Model: ZR102 S/N: 013

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8447D Preamp	2944A08601	07/08/2008	07/08/2010	AN01517
Agilent E4440A	MY46186330	01/31/2008	01/31/2010	AN02872
Cable 6'	51	12/30/2008	12/30/2010	ANP05361
Antenna	2453	12/22/2008	12/22/2010	AN01994
Cable 30'	11	11/05/2008	11/05/2010	ANP05366
Cable 6'	49	11/10/2008	11/10/2010	ANP05371
Cable 20'	16	11/10/2008	11/10/2010	ANP05360

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Remote Control*	ZillionTV Corporation	ZR102	013

Support Devices:

Function	Manufacturer	Model #	S/N	
USB Base Station	ZillionTV Corporation	ZA100	013	
Laptop	Lenovo	T61	10156	

Test Conditions / Notes:

Temp = 23° C

Relative Humidity = 17%

Atmospheric Pressure = 103.5kPa

Testing Peak Power Spectral Density per FCC 15.247(e)

The EUT is a wireless remote control.

The EUT is located in the center of the test table raised 10cm with styrofoam.

The EUT will be transmitting in the LOW, MID and HIGH channels.

The support equipment is used before each test to set the EUT to the specific channel.

The Test is being done with fresh batteries.

Because of the lack of antenna connectors the test will have to be done through radiated scans.

RBW = 3kHz VBW = 10kHz Span = 300kHz

Sweep = 100s

Page 51 of 57 Report No: FC09-038A

Transducer Legend:
T1=ANT AN01994 25-1000MHz T2=CAB-ANP05360 T3=CAB-ANP05361 T4=CAB-ANP05366 T5=CAB-ANP05371 T6=AMP-AN01517-070808

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	st Distan	ce: 3 Meter	S	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	915.092M	88.9	+23.3	+1.9	+0.5	+2.0	+0.0	87.7	115.0	-27.3	Vert
			+0.4	-29.3			340		MID		100
2	927.076M	88.3	+23.5	+2.0	+0.5	+2.0	+0.0	87.6	115.0	-27.4	Vert
			+0.5	-29.2			340		HIGH		100
3	903.107M	88.7	+23.1	+1.9	+0.5	+2.0	+0.0	87.2	115.0	-27.8	Vert
			+0.3	-29.3			339		LOW		100
4	903.107M	78.5	+23.1	+1.9	+0.5	+2.0	+0.0	77.0	115.0	-38.0	Horiz
			+0.3	-29.3			204		LOW		100
5	915.092M	77.1	+23.3	+1.9	+0.5	+2.0	+0.0	75.9	115.0	-39.1	Horiz
			+0.4	-29.3			204		MID		100
6	927.076M	72.7	+23.5	+2.0	+0.5	+2.0	+0.0	72.0	115.0	-43.0	Horiz
			+0.5	-29.2			204		HIGH		100

Page 52 of 57 Report No: FC09-038A

RSS-210 99% BANDWIDTH

Test Equipment

Asset #	Equipment	Serial #	Cal Date	Cal Due
ANP05361	Cable 6'	51	12/30/2008	12/30/2010
AN01994	Antenna	2453	12/22/2008	12/22/2010
ANP05366	Cable 30'	11	11/5/2008	11/5/2010
ANP05371	Cable 6'	49	11/10/2008	11/10/2010
ANP05360	Cable 20'	16	11/10/2008	11/10/2010
AN01517	HP 8447D Preamp	2944A08601	7/8/2008	7/8/2010
AN02872	Agilent E4440A	MY46186330	1/31/2008	1/31/2010

Test Conditions

EUT is transmitting. Due to the lack of antenna connectors the test will be done through radiated measurements. EUT is located in the center of the test table over 10cm of Styrofoam. The support equipment is used before each test to set the EUT to the specific channel. PSA is on max hold, Agilent procedure used for each channel LOW, MID, HIGH.

RBW = 10 kHz VBW = 100 kHzSpan = 1 MHz

Test Setup Photos

Page 53 of 57 Report No: FC09-038A

Test Data

	Vertical	Horizontal
LOW	580.12kHz	573.09kHz
MID	566.14kHz	564.73kHz
HIGH	568.01kHz	572.97kHz

Page 54 of 57 Report No: FC09-038A

Test Plots

RSS-210 99% BANDWIDTH – LOW CHANNEL HORIZONTAL

RSS-210 99% BANDWIDTH – LOW CHANNEL VERTICAL

Page 55 of 57 Report No: FC09-038A

RSS-210 99% BANDWIDTH – MID CHANNEL HORIZONTAL

RSS-210 99% BANDWIDTH – MID CHANNEL VERTICAL

Page 56 of 57 Report No: FC09-038A

RSS-210 99% BANDWIDTH – HIGH CHANNEL HORIZONTAL

RSS-210 99% BANDWIDTH – HIGH CHANNEL VERTICAL

Page 57 of 57 Report No: FC09-038A