PROBLEMA COMPLEMENTARI

Air-Express: problemes de planificació de plantilles.

Enunciat modificat:

La companyia aèrla *Air-Express* ha de confeccionar la programació de vol de la seva tripulació de cabina. Les necessitats estimades de treballadors durant els diferents dies de la setmana són:

Dia	Treballadors
Diumenge	18
Dilluns	27
Dimarts	22
Dimecres	26
Dijous	25
Divendres	21
Dissabte	19

Abans la tripulació s'organitzava per torns que descansaven dos dies de la setmana. Ara, el nombre de dies de descans ja no és constant, i els dies lliures segons el torn es mostren en la següent taula:

Torn	Torn Dies descans	
1	dilluns	680 €
.2	dilluns, dimarts	.705€
3	dimarts, dimecres, dijous	705 €
4	dijous	705 €
5	dijous, divendres, dissabte	705 €
.6	dissabte, diumenge	.680€
7	diumenge	680 €

Air-Express vol trobar el nombre de treballadors que s'han de contractar a cada torn de forma que s'asseguri que el nombre de treballadors diaris és el que indica la Taula 1 i que el cost total de la plantilla sigui el mínim possible. Formuleu el problema de Air-Express com a problema de programació lineal entera completament parametritzat i resoleu-lo amb OPTMODEL.

A continuació es presenten el plantejament i la resolució del problema mitjançant els apartats:

- I. Formulació matemàtica del problema.
- II. Codi SAS/OR.
- III. Sortida de SAS: resultats finals.

Formulació matemàtica del problema:

Paràmetres

Conjunt de dies: $D = \{\text{`Sun', `Mon', `Tue', `Wed', `Thu', `Fri', `Sat'}\}$

Conjunt de torns: $S = \{1, 2, 3, 4, 5, 6, 7\}$

Dies de descans: H_i , de cada $i \in S$ (i = 1,...,7)

Salari treballador (\in): c_i

Demanda de treballadors: d_{j} , de cada $j \in D$ (j = 1,...,7)

Variables

Les variables son el nombre de treballadors a contractar en el torn i: x_i , per a tot $i \in S$.

Al tractarse d'un problema de programació lineal entera, el domini de les variables són els enters positius ($Z^{\geq 0}$).

· Funció objectiu

Es desitja minimitzar el cost total de la plantilla, això és:

$$\min_{x \in Z} z = \sum_{i \in S} c_i x_i$$

Constriccions

El nombre de treballadors a contractar ha de ser major o igual que la demanda de treballadors, tenint en compte que hi ha treballadors que tenen descans.

$$\sum_{i:j\notin H_i} x_i \ge \quad d_j \quad \text{on} \quad j \in D$$

Això es farà a SAS amb la variable binària $k_i \in \{0,1\}$.

Codi SAS/OR

```
DATA Days;
input DAY $ workforce;
datalines;
Sun
      18
Mon
      27
      22
Tue
      26
Wed
      25
Thu
Fri
      21
Sat
      19
DATA Shifts;
input shift lab_costs holy1 $ holy2 $ holy3 $ holy4 $ holy5 $ holy6 $ holy7 $;
datalines;
           1 680 Mon
                      Na
                            Na
                                 Na
                                       Na
                                             Na
                                                   Na
           2 705 Mon Tue Na
                                 Na
                                       Na
                                             Na
                                                   Na
           3 705 Tue Wed Thu Na
                                       Na
                                             Na
                                                   Na
           4 705 Thu Na Na Na
                                       Na
                                             Na
                                                   Na
           5 705 Thu
                     Fri
                            Sat Na
                                       Na
                                             Na
                                                   Na
```

```
6 680 Sat Sun Na
7 655 Sun Na Na
                                     Na
                                            Na
                                                  Na
                                                         Na
                                     Na
                                            Na
                                                  Na
                                                         Na
PROC OPTMODEL;
/* Parameters of the model */
set <str> DAYS;
set <num> SHIFTS;
string holy{SHIFTS, 1..7};
number lab costs{SHIFTS};
number workforce{DAYS};
/* DAYS */
read data Days into DAYS=[day] workforce;
/* SHIFTS*/
read data Shifts
     into
             SHIFTS=[shift]
             lab_costs {i in 1..7} <holy[shift,i]=col("holy"||i)>;
var Workers{SHIFTS} >=0 integer;
minimize Tot labcost= sum{i in SHIFTS} lab costs[i]*Workers[i];
con Workforce con{j in DAYS}: sum{ i in SHIFTS : and{k in 1..7} j NE holy[i,k]}
Workers[i] >= workforce[j];
/* Show the model */
expand;
/* Optimize and output */
solve with MILP / presolver = 0 printfreq=1 allcuts=0; /* cutgomory=-1 */
print Tot labcost;
print _var_.name _var_.lb _var_.sol _var_.ub;
print _con_.name _con_.lb _con_.body _con_.ub;
/* Storing the solution to a DB */
create data Sol
      from [ shift ] = SHIFTS
      workers = Workers;
create data workforce
      from [ day ] = DAYS
      workers = Workforce con.body;
run;
/* Merging the optimal solution with the parameters datasets */
/* Workers by shift */
 proc sort data=Shifts; by shift; run;
 proc sort data=Sol; by shift; run;
 data Shifts; merge Shifts Sol; by shift; run;
 proc datasets library=work; delete Sol; run;
 /* Workers by day */
proc sort data=Days; by day; run;
proc sort data=Workforce; by day; run;
data Days; merge Days Workforce; by day; run;
proc datasets library=work; delete Workforce; run;
/* Printing the extended dataset */
proc print; run;
```

Sortida de SAS: resultats finals

```
Var Workers[1] INTEGER >= 0
Var Workers[2] INTEGER >= 0
Var Workers[3] INTEGER >= 0
Var Workers[4] INTEGER >= 0
Var Workers[5] INTEGER >= 0
Var Workers[6] INTEGER >= 0
Var Workers[6] INTEGER >= 0
Var Workers[7] INTEGER >= 0

Minimize Tot_labcost=680*Workers[1] + 705*Workers[2] + 705*Workers[3] + 705*Workers[4] + 705*Workers[5] + 680*Workers[6] + 655*
Workers[7]
Constraint Workforce_con[Sun]: Workers[1] + Workers[2] + Workers[3] + Workers[4] + Workers[5] >= 18
Constraint Workforce_con[Mon]: Workers[3] + Workers[4] + Workers[6] + Workers[7] >= 27
Constraint Workforce_con[Tue]: Workers[1] + Workers[4] + Workers[5] + Workers[6] + Workers[7] >= 22
Constraint Workforce_con[Tue]: Workers[1] + Workers[2] + Workers[4] + Workers[5] + Workers[6] + Workers[7] >= 26
Constraint Workforce_con[Tue]: Workers[1] + Workers[2] + Workers[4] + Workers[6] + Workers[6] + Workers[7] >= 25
Constraint Workforce_con[Fri]: Workers[1] + Workers[2] + Workers[3] + Workers[4] + Workers[6] + Workers[7] >= 21
Constraint Workforce_con[Sat]: Workers[1] + Workers[2] + Workers[3] + Workers[4] + Workers[6] + Workers[7] >= 21
Constraint Workforce_con[Sat]: Workers[1] + Workers[2] + Workers[3] + Workers[4] + Workers[7] >= 19
```

Tot_labcost 23625

[1]	_VARNAME	_VARLB	_VARSOL	_VARUB
1	Workers[1]	0	8	1.7977E+308
2	Workers[2]	0	0	1.7977E+308
3	Workers[3]	0	9	1.7977E+308
4	Workers[4]	0	0	1.7977E+308
5	Workers[5]	0	1	1.7977E+308
6	Workers[6]	0	0	1.7977E+308
7	Workers[7]	0	17	1.7977E+308

[1]	_CONNAME	_CONLB	_CONBODY	_CONUB
1	Workforce_con[Sun]	18	18	1.7977E+308
2	Workforce_con[Mon]	27	27	1.7977E+308
3	Workforce_con[Tue]	22	26	1.7977E+308
4	Workforce_con[Wed]	26	26	1.7977E+308
5	Workforce_con[Thu]	25	25	1.7977E+308
6	Workforce_con[Fri]	21	34	1.7977E+308
7	Workforce_con[Sat]	19	34	1.7977E+308

Obs	DAY	workforce	workers
1	Fri	21	34
2	Mon	27	27
3	Sat	19	34
4	Sun	18	18
5	Thu	25	25
6	Tue	22	26
7	Wed	26	26