1. (a)
$$f(x) = x^{T}Qx + b^{T}x$$
 where $Q = \begin{pmatrix} 2 & 1 & 0 \\ 1 & \frac{x}{2} & -1 \\ 0 & -1 & 3 \end{pmatrix}$, $b = \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}$.
 $\nabla f = 2Qx + b = \begin{pmatrix} 4x + 2x + 2 + 2 \\ 2x_1 + 5x + 2x - 2x - 3 \\ -2x_2 + bx + 2 \end{pmatrix} = 0$, then stationary point $x_0 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$
Hessian matrix $\nabla^2 f = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 5 & -2 \\ 0 & -2 & 6 \end{pmatrix}$, where $|4| > 0$, $|4| = |6| > 0$, $|4| = 0$ = 80 > 0

It is positive definite, thus xo is a local minima.

(b)
$$f(x) = x^{T}Qx + b^{T}x$$
, where $Q = \begin{pmatrix} \frac{1}{2} & 0 \\ 1 & -\frac{1}{2} \\ 0 & -\frac{1}{2} & -\frac{3}{2} \end{pmatrix}$, $b = \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}$

(b)
$$f(x) = x^{T}Qx + b^{T}x$$
, where $Q = \begin{pmatrix} \frac{1}{2} & 1 & 0 \\ 1 & 1 & -\frac{1}{2} \\ 0 & -\frac{1}{2} & -\frac{3}{2} \end{pmatrix}$, $b = \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}$

$$\nabla f = 2Qx + b = \begin{pmatrix} x & 1 + 2x_{2} \\ 2x_{1} + 2x_{2} - x_{3} + 1 \\ -x_{2} - 3x_{3} - 3 \end{pmatrix} = 0$$
, then stationary point $x_{0} = \begin{pmatrix} \frac{12}{3} \\ \frac{1}{3} \\ -\frac{7}{3} \end{pmatrix}$

Hessian matrix
$$\nabla^2 f = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 2 & -1 \\ 0 & -1 & -3 \end{pmatrix}$$
, where $|1| > 0$, $|1| = 2 - 2 < 0$

It is indefinite, thus x_0 is a saddle point, neither local minima nor maxima.

2.
$$A \ge 0$$
, then $|3| \ge 0$, $|1| \ge 0$, $|2| \ge 0$,
 $|3-1| = 3 \ge 0$, $|3| = 2 \ge 0$, $|1| |\alpha| = 2 - \alpha^2 \ge 0$
 $|-1| |1| |2| = -3\alpha^2 - 4\alpha \ge 0$

Therefore, value of $\alpha \in [-\frac{4}{3}, 0]$.

3. For any $x_1, x_2 \in f^{-1}(C)$, we have $f(x_1), f(x_2) \in C$.

Since Cis convex, for any DE[0,1], we have

$$f(\theta x_1 + \overline{\theta} x_2) = A(\theta x_1 + \overline{\theta} x_2) + b$$

$$= \theta(Ax_1 + b) + \overline{\theta}(Ax_2 + b)$$

Therefore $\theta x_1 + \overline{\theta} x_2 \in f^{-1}(C)$, indicating that $f^{-1}(C)$ is convex.

4. For any $x_1, x_2 \in C$ and $\theta \in [0,1]$, there exists $u_1, v_1 \in G$, $u_2, v_2 \in C_2$ S.t. $x_1 = u_1 + v_1$, $x_2 = u_2 + v_2$

Then $\theta x_1 + \overline{\theta} x_2 = \theta(u_1 + v_1) + \overline{\theta}(u_2 + v_2)$ = $(\theta u_1 + \overline{\theta} u_2) + (\theta v_1 + \overline{\theta} v_2)$

Since C1, C2 are convex, Quit Qu2 EC1, Qv1+Qv2EC2

Therefore $0 \times 1 + \widehat{0} \times 2 \in \mathbb{C}$, indicating that C is convex.

5. (a) For any $x_1,x_2 \in \text{int } C$ and $0 \in [0,1]$, there exists $r_1,r_2>0$ s.t. $B(x_1,r_1)$, $B(x_2,r_2) \subset C$

Since C is convex, for any $x_i \in B(x_1, r_1)$, $x_2 \in B(x_2, r_2)$ and $\theta \in [0, 1]$: $\theta'(x_1' + \overline{\theta}'(x_2')) \in C$

Assume $x = \theta x_1 + \bar{\theta} x_2 \notin \text{int } C$, we have $x \in \partial C$, namely $\forall \varepsilon > 0$, $\exists x' \in B(x, \varepsilon) \ s.t.$ $x' \notin C$

However, when $\varepsilon \to 0$, \times falls into the region $\{\theta'x'_1+\bar{\theta}'x'_2\}\subset C$, then $x'\in C$, which is contradictory with $x\notin C$.

Therefore, $x = \theta x + \bar{\theta} x = \text{int } C$, indicating that int C is convex.

(b) For any x, y ∈ C, there exists {xn} ∈ C, {yn} ∈ C s.t. xn → x, yn → y Since C is convex, for any 0 ∈ [0,1], {0 xn + \(\tilde{\theta}\)yn} ∈ C and \(\theta\)xn + \(\tilde{\theta}\)yn → 0x + \(\tilde{\theta}\)y Therefore 0x + \(\tilde{\theta}\)y ∈ C, indicating that \(\tilde{C}\) is convex.