Operating System CPU Scheduling Part - 1

DPP NO: 1

1. Consider 3 processes P₁, P₂, and P₃, arrival time and I/O bursts and CPU bursts of these process are given in the below table. Note that each process has their own I/O resource.

Process	Arrival	Burst	tion	
		BT	I/O	BT
P_1	0	2	7	4
P_2	1	5	5	2
P ₃	2	3	4	2

The operating system uses FCFS scheduling calculate the finish time of process P₁, P₂ & P₃

- (a) 14, 16, 18
- (b) 14, 18, 20
- (c) 13, 17, 18
- (d) 13, 17, 19

[NAT]

2. Consider the following CPU processes with arrival times (in milliseconds) and length of CPU bursts (in milliseconds) as given below

	VIII.D. CO.	
Process	Arrival Time	Burst Time
P_1	0	8
P_2	2	4
P ₃	4	6
P_4	5	3

If the non-preemptive shortest job first algorithm is used to schedule the process, then average waiting time across all process is ____ milliseconds.

[NAT]

3. Consider the following CPU processes with arrival times (in milliseconds) and length of CPU bursts (in milliseconds) as given below.

Process	Arrival Time	Burst Time
P_1	0	8
P_2	2	4
P_3	4	6
P_4	5	3

If the preemptive shortest first algorithm is used to schedule the processes, then average waiting time across all process is ___ milliseconds.

4. Consider the following set of processes, with the given arrival, CPU burst times in milliseconds

Process	Arrival Time	Burst Time
P_1	0	6
P_2	3	4
P ₃	4	8
P_4	6	3

What is the average turnaround time for these processes with the pre-emptive shortest remaining processing time first (SRPT) algorithm?

- (a) 3.5 milliseconds
- (b) 9.5 milliseconds
- (c) 0 milliseconds
- (d) 9
- Consider three processes P0, P1, P2 with burst time4 and 6 units and the processes arrives at time 0,0 respectively. Consider the longest remaining time first (non-preemptive) scheduling algorithm.Find Average completion time of processes.
 - (a) 11.66 units
- (b) 9 units
- (c) 12 units
- (d) 9.33 units
- 6. Consider the three processes P1, P2 and P3 with burst time 2, 4 & 6 units, all the process arrive at time zero. Consider the longest remaining time first (LRTF) / (LJF) (Preemptive) scheduling algorithm in LRTF/ LJF, ties are broken by giving priority to the process having lowest process id (PID). What is average waiting time?
 - (a) 6
- (b) 5.33
- (c) 6.33
- (d) 7.33

Answer Key

- 1. (a)
- 2. (5.75 milliseconds)
- 3. (4.75)

- **4.** (d)
- 5. (d)
- 6. (c)

Hints & Solutions

1. (a)

CPU

Finish Times of

$$P_1 = 14$$

$$P_2 = 16$$

$$P_3 = 18$$

2. (5.75 milliseconds)

Gantt Chart
$$\begin{array}{c|ccccc}
P_1 & P_4 & P_2 & P_3 \\
\hline
0 & 8 & 11 & 15 & 21
\end{array}$$

Arrival time (AT)	Burst Time (BT)	Compiler Time (CT)	Turnaround Time (TaT)	Waiting Time (W.T)
0	8	8	8	0
2	4	15	13	9
4	6	21	17	11
5	3	11	6	3

$$TaT = CT - AT$$

$$WT = TaT - BT$$

Average WT =
$$\frac{0 + 9 + 11 + 3}{4}$$

= 5.75 milliseconds

3. (4.75)

Gantt chart:

Process	AT	BT	CT	TAT	WT
\mathbf{P}_1	0	8	15	15	7
P_2	2	4	6	4	0
P ₃	4	6	21	17	11
P ₄	5	3	9	4	1

$$TAT = CT - AT$$
$$WT = TAT - BT$$

Average Waiting time =
$$\frac{7+0+11+1}{4}$$

= 4.75 milliseconds

4. (d)

P_1	P_4	P_2	P_3	
0	6	9	13	21

AT	BT	CT	TAT	WT
0	6	6	6	0
3	4	13	10	6
4	8	21	17	11
6	3	9	3	0

Average WT =
$$\frac{0+6+11+0}{4} = \frac{18}{4} = 4.5$$
 milliseconds

Average TAT =
$$\frac{6+10+17+3}{4}$$
 = 9 milliseconds

$$TAT = CT - AT$$

$$WT = TAT - BT$$

5. (d)

Process	AT	BT	CT
P1	0	2	12
P2	0	4	10
P3	0	6	6

Gantt Chart:

P_3	I	2	\mathbf{P}_1	
0	6	10)	12

Average Completion time =
$$\frac{12+10+6}{3}$$
 = 9.33 units

6. (c)

Process	AT	BT	CT	TAT	WT
P1	0	2	9	9	7
P2	0	4	10	10	6
P3	0	5	11	11	6

Gantt Chart:

	P ₃	P_2	P_3	\mathbf{P}_2	P_3	P_1	\mathbf{P}_2	\mathbf{P}_3	\mathbf{P}_{1}	\mathbf{P}_2	P_3	
D	-2 1	D -2 D	-2 D	-2 D	-2 I	2 -2 1	D —1 I	D -1 D	-1 D	-0 D	_0 D -	

$$TAT = CT - AT$$

$$WT = TAT - BT$$

Average Waiting Time = $\frac{7+6+6}{3}$ = 6.33 units

PW Mobile APP: https://play.google.com/store/apps/details?id=xyz.penpencil.physicswala

For PW Website: https://www.physicswallah.live/contact-us