Modelos de series de tiempo multivariadas VAR(p)

Javier López

Universidad los Libertadores

Abril, 2020

Índice

- Introducción
- 2 VAR(p)
- Especificación del Modelo

Introducción

Como habíamos vistos anteriormente en series de tiempo univariadas, uno de nuestros objetivos es realizar pronósticos de una variable, ahora en series de tiempo multivariadas vamos a tener un vector aleatorio compuesto por varias series de tiempo univariadas relacionadas entre si buscando el mismo objetivo.

Ejemplo PIB y Desempleo en EEUU

Sea el vector aleatorio $\mathbf{Y_t} = (Y_{1t}, Y_{2t})$, donde Y_{1t} es el PIB de EEUU y Y_{2t} es la tasa de desempleo en EEEUU.

data

Objetivos de las series de tiempo multivariadas

Sea el vector aleatorio k-dimensional $\mathbf{Y_t} = (Y_{1t}, Y_{2t}, ..., Y_{kt})$, luego los objetivos son:

- Definir funciones $f_1, f_2, ..., f_k$ que nos permitan realizar pronósticos.
- Encontrar la interrelación entre las variables.

Estacionario

Débilmente estacionario

 $\mathbf{Y_t}$ es débilmente estacionario si $\mathbb{E}(\mathbf{Y_t}) = \mu$ y $Cov(\mathbf{Y_t}) = \mathbb{E}[(\mathbf{Y_t} - \mu)(\mathbf{Y_t} - \mu)^t] = \Sigma_Y(k \times k)$ es semidefinida positiva

Estrictamente estacionario

Y_t es estrictamente estacionario si la función de densidad de probabilidad conjunta de $(Y_{t1},...,Y_{tk})$ es la misma de $(Y_{t,k+1},...,Y_{t,k+j})$ donde k y json arbitrarios.

Covarianza

Covarianza Cruzada

$$\Gamma_I = Cov(\mathbf{Y_t}, \mathbf{Y_{t-I}}) = \mathbb{E}[(\mathbf{Y_t} - \mu)(\mathbf{Y_{t-I}} - \mu)^I]$$

 Γ_0 es la matriz de covarianza de \mathbf{Y}_t Note que el (i, j) elemento de $\Gamma_I = \Gamma_I[\gamma_{I,ii}]$ es $\gamma_{I,ii}$, donde $\gamma_{I,ii}$ es la covarianza entre $Y_{i,t}$ y $Y_{i,t-1}$ Esta mide la dependencia lineal de Y_{it} y el l-ésimo rezago de Y_{it}

Correlación

Matriz de Correlación Cruzada - CCM (en inglés)

$$\rho_{\mathbf{I}} = D^{-1} \Gamma_{I} D^{-1} = [\rho_{I,ij}]$$

Donde $D = diag\{\sigma_1, ..., \sigma_k\}$ con $\sigma_i^2 = Var(Y_{it}) = \gamma_{0,ij}$ que es el ij-ésimo elemnto de Γ_0

Correlación Muestral

CCM Muestral

$$\bullet \hat{\mu}_y = \frac{1}{n} \sum_{t=1}^n \mathbf{Y_t}$$

•
$$\hat{\Gamma}_0 = \frac{1}{n-1} \sum_{t=1}^{n} (\mathbf{Y_t} - \hat{\mu_y}) (\mathbf{Y_t} - \hat{\mu_y})^T$$

•
$$\hat{\Gamma}_I = \frac{1}{n-1} \sum_{t=1}^{n} (\mathbf{Y_t} - \hat{\mu_y}) (\mathbf{Y_{t-1}} - \hat{\mu_y})^T$$

•
$$\hat{\rho}_{l} = \hat{D}^{-1}\hat{\Gamma}_{l}\hat{D}^{-1}$$
, donde $\hat{D} = diag\{\gamma_{0,11}^{-1}^{1/2},...,\gamma_{0,kk}^{-1/2}\}$ y $\gamma_{0,i}^{-1}$ es el elemento (i,i) de Γ_{0}

Esta se puede ver como una generalización del ACF univariado para Y_t

Testeando correlación cruzada

Deseamos detectar la existencia de dependencia lineal dinámica en los datos. Formalmente es contrastar la siguiente hipótesis:

$$H_0: \rho_1 = ... = \rho_m = 0$$

$$H_a: \rho_i \neq 0$$

Test de Ljung-Box

$$Q_k(m) = n^2 \sum_{l=1}^m \frac{1}{n-l} tr(\hat{\Gamma}_l' \hat{\Gamma}_0^{-1} \hat{\Gamma}_l' \hat{\Gamma}_0^{-1})$$

donde tr(A) es la traza de una matriz A. $Q_k(m)$ es asintoticamente distribuida Chi-cuadrado con mk^2

Correlación cruzada

p-values of Ljung-Box statistics

VAR(p)

$$\mathbf{Y}_t = \phi_0 + \sum_{i=1}^p \phi_i \mathbf{Y}_{t-i} + \mathbf{a}_t$$

Donde ϕ_0 es k-dimensional, ϕ_i es de dimensión $(k \times k)$, i > 0 \mathbf{a}_t es iid com media cero y matriz de varianza Σ_a definida positiva.

Notación:

$$\phi(B)\mathbf{Y_t} = \phi_0 + \mathbf{a}_t$$

Donde $\phi(B) = I_k - \sum_{i=1}^p \phi_i B^i$ es una matriz polinomial de grado p $\phi_I = [\phi_{I,ij}]$ donde $\phi_{I,ij}$ es el l-ésimo rezago de la matriz de coeficientes AR

Ejemplo VAR(1)

$$\begin{aligned} \mathbf{Y_t} &= \phi_0 + \phi_1 \mathbf{Y_{t-1}} + \mathbf{a_t} \\ \begin{bmatrix} Y_{1t} \\ Y_{2t} \end{bmatrix} &= \begin{bmatrix} \phi_{10} \\ \phi_{20} \end{bmatrix} + \begin{bmatrix} \phi_{1,11} & \phi_{1,12} \\ \phi_{1,21} & \phi_{1,22} \end{bmatrix} \begin{bmatrix} Y_{1,t-1} \\ Y_{2,t-1} \end{bmatrix} + \begin{bmatrix} \mathbf{a_{1t}} \\ \mathbf{a_{2t}} \end{bmatrix} \end{aligned}$$

o su equivalente

$$y_{1t} = \phi_{10} + \phi_{1,11} Y_{1,t-1} + \phi_{1,12} Y_{2,t-1} + a_{1t}$$

$$y_{2t} = \phi_{20} + \phi_{1,21} Y_{1,t-1} + \phi_{1,22} Y_{2,t-1} + a_{2t}$$

 $\phi_{1,12}$ muestra la dependencia lineal de Y_{1t} sobre $Y_{2,t-1}$ en presencia de $Y_{1.t-1}$

Estacionariedad del VAR(p)

 $\phi(B)\mathbf{Y_t} = \phi_0 + \mathbf{a_t}$ donde $\phi(B) = I_k - \sum_{i=1}^p \phi_i B^i$ usando series expandidas podemos escribir:

$$\textbf{Y}_t = \boldsymbol{\Phi} \textbf{Y}_{t-1} + \textbf{b}_t$$

donde:

$$egin{aligned} \mathbf{b_t} &= (\mathbf{a_t}^I, \mathbf{0}^I) \ \mathbf{\phi} &= egin{bmatrix} \phi_1 & \phi_2 & ... & \phi_{p-1} & \phi_p \ \mathbf{I} & \mathbf{0} & ... & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \mathbf{I} & ... & \mathbf{0} & \mathbf{0} \ dots & dots & dots & dots & dots \ \mathbf{0} & \mathbf{0} & ... & \mathbf{0} & \mathbf{I} \ \end{bmatrix}$$

luego, para que el modelo sea estacionario el determinante de

 $|\mathbf{I} - \mathbf{\Phi} \mathbf{B}| = 0$ debe ser mayor que 1 en valor absoluto.

Especificación del Modelo

Test secuencial de razón de verosimilitud

$$\begin{split} &H_0: \phi_s = 0 \text{ Vs } H_a: \phi_s \neq 0 \\ &\Lambda = \frac{\max\{L(B_{s-1;\Sigma_a})\}}{\max\{L(B_{s;\Sigma_a})\}} = \left(\frac{|\hat{\Sigma}_{a,s}|}{|\hat{\Sigma}_{a,s-1}|}\right)^{\frac{n-s}{2}}, \text{ se distribuye } \chi^2_{k^2} \end{split}$$

Criterios de información

$$\begin{aligned} AIC(s) &= In|\hat{\Sigma}_{a,s}| + \frac{2}{n}sk^2 \\ BIC(s) &= In|\hat{\Sigma}_{a,s}| + \frac{In(n)}{n}sk^2 \\ HQ(s) &= In|\hat{\Sigma}_{a,s}| + \frac{2In(In(n))}{n}sk^2 \end{aligned}$$

15 / 18

Ejemplo: PIB Reino Unido, Canada y EEUU

Criterios de información para serie de PIB

p	AIC	BIC	HQ
0	-30.96	-30.96	-30.96
1	-31.88	-31.68	-31.80
2	-31.96	-31.56	-31.80
3	-31.92	-31.31	-31.68
4	-31.90	-31.08	-31.57
5	-31.78	-30.76	-31.37
6	-31.71	-30.49	-31.21
7	-31.62	-30.19	-31.04
8	-31.76	-30.13	-31.10
9	-31.69	-29.86	-30.95
10	-31.60	-29.56	-30.77
11	-31.60	-29.36	-30.69
12	-31.62	-29.17	-30.63
13	-31.67	-29.02	-30.60

