

ACM-ICPC Cheat Sheet

School Name

Team Name

2017年11月5日

目 录

1	头文	件模板	1
2	数学		2
	2.1	素数	2
		2.1.1 埃氏筛	2
		2.1.2 欧拉筛	2
		2.1.3 随机素数判定	2
		2.1.4 分解质因数	3
	2.2	欧拉函数	3
		2.2.1 求一个数的欧拉函数	3
		2.2.2 筛法求欧拉函数	4
	2.3	扩展欧几里得-乘法逆元	4
		2.3.1 扩展欧几里得	4
		2.3.2 求 ax+by=c 的解	4
		2.3.3 乘法逆元	5
	2.4	模线性方程组	5
		2.4.1 中国剩余定理	5
		2.4.2 一般模线性方程组	5
	2.5	组合数学	6
		2.5.1 一般组合数	6
		2.5.2 Lucas 定理	6
		2.5.3 大组合数	7
		2.5.4 Polya 定理	7
	2.6	快速乘 + 快速幂	8
	2.7	莫比乌斯反演	8
		2.7.1 莫比乌斯	8
		2.7.2 n 个数中互质数对数	9
			0
	2.8	其他	0
		2.8.1 Josephus 问题	0
		2.8.2 数位问题	1
	2.9	相关公式 1	1
3	字符		2
	3.1		2
	3.2		13
	3.3	AC 自动机	13
4	数据	社长	.5
4	致功 4.1		. 3 [5
	4.1		16
	4.2		10 16
			10 16
			10 17
	4.3		ι <i>τ</i> L7
	$\frac{4.3}{4.4}$		L 1 [9
	4.4	RMQ 1	.9

5	图论	20
	5.1	并查集
	5.2	最小生成树
		5.2.1 Kruskal
		5.2.2 Prim
	5.3	最短路
		5.3.1 Dijkstra-邻接矩阵
		5.3.2 Dijkstra-邻接表数组
		5.3.3 Dijkstra-邻接表向量
		5.3.4 Dijkstra-优先队列
		5.3.5 Bellman-Ford(可判负环)
		5.3.6 SPFA
		5.3.7 Floyd 算法
	5.4	拓扑排序
	-	5.4.1 邻接矩阵
		5.4.2 邻接表
	5.5	欧拉回路
	0.0	5.5.1 判定
		5.5.2 求解
		0.0.2 AVAIT
6	计算	几何 30
	6.1	定义
	6.2	位置关系 32
		6.2.1 两点间距离
		6.2.2 直线与直线的交点
		6.2.3 判断线段与线段相交
		6.2.4 判断线段与直线相交
		6.2.5 点到直线距离
		6.2.6 点到线段距离
		6.2.7 点在线段上
	6.3	多边形
	0.0	6.3.1 多边形面积
		6.3.2 点在凸多边形内
		6.3.3 点在任意多边形内
		6.3.4 判断凸多边形
		6.3.5 小结
	6.4	整数点问题
	0.4	6.4.1 线段上整点个数
		6.4.2 多边形边上整点个数
		6.4.3 多边形内整点个数
	6.5	· · · · · · · · · · · · · · · · · · ·
	6.6	圆
	0.0	红典趣
7	动态	规划 40
•	7.1	最大子序列和
	7.2	最长上升子序列 LIS
	7.3	最长公共上升子序列 LCIS
	1.0	

1 头文件模板

```
#include <bits/stdc++.h> // c++0x only
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <cmath>
#include <iomanip>
#include <functional>
#include <cstdlib>
#include <climits>
#include <cctype>
using namespace std;
#define REP(i,x) for(int i = 0; i < (x); i++)
#define DEP(i,x) for(int i = (x) - 1; i \ge 0; i--)
#define FOR(i,x) for(_typeof(x.begin())i=x.begin(); i!=x.end();
\rightarrow i++)
#define CLR(a,x) memset(a, x, sizeof(a))
#define MO(a,b) (((a)%(b)+(b))%(b))
#define ALL(x) (x).begin(), (x).end()
#define SZ(v) ((int)v.size())
\#define\ UNIQUE(v)\ sort(ALL(v));\ v.erase(unique(ALL(v)),\ v.end())
\#define\ out(x)\ cout\ <<\ \#x\ <<\ ":\ "\ <<\ x\ <<\ endl;
#define fastcin ios_base::sync_with_stdio(0);cin.tie(0);
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
#define INF Ox3f3f3f3f
#define MOD 100000007
#define EPS 1e-8
#define MP(x,y) make pair(x,y)
#define MT(x,y...) make_tuple(x,y) // c++0x only
\#define PB(x) push\_back(x)
#define IT iterator
#define X first
#define Y second
```

2 数学

2.1 素数

2.1.1 埃氏筛

```
// O(n log log n) 筛出 MAXN 内所有素数
// notprime[i] = 0/1 0 为素数 1 为非素数
const int MAXN = 1000100;
bool notprime[MAXN] = {1, 1}; // O/1 为非素数
void GetPrime() {
   for (int i = 2; i < MAXN; i++)
       if (!notprime[i] && i <= MAXN / i) // 筛到 √n 为止
       for (int j = i * i; j < MAXN; j += i)
            notprime[j] = 1;
}
```

2.1.2 欧拉筛

```
// O(n) 得到欧拉函数 phi[]、素数表 prime[]、素数个数 tot
// 传入的 n 为函数定义域上界
const int MAXN = 100010;
bool vis[MAXN];
int tot, phi[MAXN], prime[MAXN];
void CalPhi(int n) {
   set(vis, 0); phi[1] = 1; tot = 0;
   for (int i = 2; i < n; i++) {
       if (!vis[i]) {
           prime[tot++] = i;
           phi[i] = i - 1;
       for (int j = 0; j < tot; j++) {
           if (i * prime[j] > n) break;
           vis[i * prime[j]] = 1;
           if (i % prime[j] == 0) {
               phi[i * prime[j]] = phi[i] * prime[j];
               break;
           }
           else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
       }
   }
```

2.1.3 随机素数判定

```
// O(s log n) 内判定 2<sup>63</sup> 内的数是不是素数, s 为测定次数 bool Miller_Rabin(ll n, int s) {
   if (n == 2) return 1;
```

```
if (n < 2 || !(n & 1)) return 0;
int t = 0; ll x, y, u = n - 1;
while ((u & 1) == 0) t++, u >>= 1;
for (int i = 0; i < s; i++) {
    ll a = rand() % (n - 1) + 1;
    ll x = Pow(a, u, n);
    for (int j = 0; j < t; j++) {
        ll y = Mul(x, x, n);
        if (y == 1 && x != 1 && x != n - 1) return 0;
        x = y;
    }
    if (x != 1) return 0;
}
return 1;
}</pre>
```

2.1.4 分解质因数

```
// 函数返回素因数个数
// 数组以 fact[i][0]^{fact[i][1]} 的形式保存第 i 个素因数
ll fact[100][2];
int getFactors(ll x) {
    int cnt = 0;
    for (int i = 0; prime[i] <= x / prime[i]; i++) {</pre>
        fact[cnt][1] = 0;
        if (x % prime[i] == 0 ) {
            fact[cnt][0] = prime[i];
            while (x % prime[i] == 0) {
                fact[cnt][1]++;
                x /= prime[i];
            }
            cnt++;
        }
    }
    if (x != 1) {
        fact[cnt][0] = x;
        fact[cnt++][1] = 1;
    }
    return cnt;
```

2.2 欧拉函数

2.2.1 求一个数的欧拉函数

```
long long Euler(long long n) {
   long long rt = n;
   for (int i = 2; i * i <= n; i++)</pre>
```

```
if (n % i == 0) {
    rt -= rt / i;
    while (n % i == 0) n /= i;
}
if (n > 1) rt -= rt / n;
return rt;
}
```

2.2.2 筛法求欧拉函数

2.3 扩展欧几里得-乘法逆元

2.3.1 扩展欧几里得

```
void exgcd(ll a, ll b, ll &d, ll &x, ll &y) {
   if (!b) {d = a; x = 1; y = 0;}
   else {exgcd(b, a % b, d, y, x); y -= x * (a / b);}
}
```

2.3.2 求 ax+by=c 的解

```
// 引用返回通解: X = x + k * dx, Y = y-k * dy
// 引用返回的 x 是最小非负整数解, 方程无解函数返回 O
#define Mod(a,b) (((a)%(b)+(b))%(b))
bool solve(ll a, ll b, ll c, ll &x, ll &y, ll &dx, ll &dy) {
    if (a == 0 && b == 0) return 0;
    ll d, x0, y0; exgcd(a, b, d, x0, y0);
    if (c % d != 0) return 0;
    dx = b / d; dy = a / d;
    x = Mod(x0 * c / d, dx); y = (c - a * x) / b;
// y = Mod(y0 * c / d, dy); x = (c - b * y) / a;
    return 1;
}
```

2.3.3 乘法逆元

```
// 利用 exgcd 求 a 在模 m 下的逆元, 需要保证 gcd(a, m) == 1.
ll inv(ll a, ll m) {
    ll x, y, d; exgcd(a, m, d, x, y);
    return d == 1 ? (x + m) % m : -1;
}
// a < m 且 m 为素数时, 有以下两种求法
ll inv(ll a, ll m) {
    return a == 1 ? 1 : inv(m % a, m) * (m - m / a) % m;
}
ll inv(ll a, ll m) {
    return Pow(a, m - 2, m);
}</pre>
```

2.4 模线性方程组

2.4.1 中国剩余定理

```
// X = r[i]%m[i], 要求 m[i] 两两互质
// 引用返回通解 X = re + k * mo

void crt(ll r[], ll m[], ll n, ll &re, ll &mo) {
    mo = 1, re = 0;
    for (int i = 0; i < n; i++) mo *= m[i];
    for (int i = 0; i < n; i++) {
        ll x, y, d, tm = mo / m[i];
        exgcd(tm, m[i], d, x, y);
        re = (re + tm * x * r[i]) % mo;
    } re = (re + mo) % mo;
}
```

2.4.2 一般模线性方程组

```
// X = r[i]%m[i], m[i] 可以不两两互质
// 引用返回通解 X = re + k * mo, 函数返回是否有解
bool excrt(ll r[], ll m[], ll n, ll &re, ll &mo) {
    ll x, y, d; mo = m[0], re = r[0];
    for (int i = 1; i < n; i++) {
        exgcd(mo, m[i], d, x, y);
        if ((r[i] - re) % d != 0) return 0;
        x = (r[i] - re) / d * x % (m[i] / d);
        re += x * mo;
        mo = mo / d * m[i];
        re %= mo;
    } re = (re + mo) % mo;
    return 1;
}
```

2.5 组合数学

2.5.1 一般组合数

```
// 0 \le m \le n \le 1000
const int maxn = 1010;
11 C[maxn] [maxn];
void CalComb() {
    C[0][0] = 1;
    for (int i = 1; i < maxn; i++) {</pre>
        C[i][0] = 1;
        for (int j = 1; j <= i; j++)
            C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) \% mod;
    }
}
// 0 \le m \le n \le 10^5,模 p 为素数
const int maxn = 100010;
11 f[maxn];
void CalFact() {
    f[0] = 1;
    for (int i = 1; i < maxn; i++)</pre>
        f[i] = (f[i - 1] * i) \% mod;
11 C(int n, int m) {
    return f[n] * inv(f[m] * f[n - m] % mod, mod) % mod;
}
```

2.5.2 Lucas 定理

```
// 1 \le n, m \le 10^9, 1 , p 是素数
const int maxp = 100010;
11 f[maxp];
void CalFact(ll p) {
    f[0] = 1;
    for (int i = 1; i <= p; i++)
        f[i] = (f[i - 1] * i) \% p;
11 Lucas(11 n, 11 m, 11 p) {
    ll ret = 1;
    while (n && m) {
        ll a = n \% p, b = m \% p;
        if (a < b) return 0;</pre>
        ret = (ret * f[a] * Pow(f[b] * f[a - b] % p, p - 2, p)) % p;
        n \neq p; m \neq p;
    }
    return ret;
```

2.5.3 大组合数

```
// 0 \le n \le 10^9, 0 \le m \le 10^4, 1 \le k \le 10^9 + 7
vector<int> v;
int dp[110];
11 Cal(int 1, int r, int k, int dis) {
    11 \text{ res} = 1;
    for (int i = 1; i <= r; i++) {
        int t = i;
        for (int j = 0; j < v.size(); j++) {</pre>
             int y = v[j];
             while (t \% y == 0) {
                 dp[j] += dis;
                 t /= y;
             }
        }
        res = res * (11)t % k;
    return res;
11 Comb(int n, int m, int k) {
    set(dp, 0); v.clear(); int tmp = k;
    for (int i = 2; i * i <= tmp; i++) {</pre>
        if (tmp % i == 0) {
             int num = 0;
             while (tmp % i == 0) {
                 tmp /= i;
                 num++;
             }
             v.pb(i);
        }
    } if (tmp != 1) v.pb(tmp);
    ll ans = Cal(n - m + 1, n, k, 1);
    for (int j = 0; j < v.size(); j++) {</pre>
        ans = ans * Pow(v[j], dp[j], k) \% k;
    ans = ans * inv(Cal(2, m, k, -1), k) % k;
    return ans;
```

2.5.4 Polya 定理

```
// 推论: 一共 n 个置换,第 i 个置换的循环节个数为 gcd(i,n) // N*N 的正方形格子,c^{n^2}+2c^{\frac{n^2+3}{4}}+c^{\frac{n^2+1}{2}}+2c^{\frac{n+1}{2}}+2c^{\frac{n(n+1)}{2}} // 正六面体,(m^8+17m^4+6m^2)/24 // 正四面体,(m^4+11m^2)/12 // 长度为 n 的项链串用 c 种颜色染 ll solve(int c, int n) {
```

2.6 快速乘 + 快速幂

```
11 Mul(ll a, ll b, ll mod) {
    ll t = 0;
    for (; b; b >>= 1, a = (a << 1) % mod)
        if (b & 1) t = (t + a) % mod;
    return t;
}

11 Pow(ll a, ll n, ll mod) {
    ll t = 1;
    for (; n; n >>= 1, a = (a * a % mod))
        if (n & 1) t = (t * a % mod);
    return t;
}
```

2.7 莫比乌斯反演

2.7.1 莫比乌斯

```
// F(n) = \sum_{d|n} f(d) \Rightarrow f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d})

// F(n) = \sum_{n|d} f(d) \Rightarrow f(n) = \sum_{n|d} \mu(\frac{d}{n}) F(d)

long long ans;

const int MAXN = 1e5 + 1;

int n, x, prime[MAXN], tot, mu[MAXN];

bool check[MAXN];

void calmu() {

    mu[1] = 1;

    for (int i = 2; i < MAXN; i++) {

        if (!check[i]) {

            prime[tot++] = i;

            mu[i] = -1;

        }

        for (int j = 0; j < tot; j++) {

            if (i * prime[j] >= MAXN) break;

            check[i * prime[j]] = true;
```

```
if (i % prime[j] == 0) {
            mu[i * prime[j]] = 0;
            break;
            } else {
                mu[i * prime[j]] = -mu[i];
            }
            }
}
```

2.7.2 n 个数中互质数对数

```
// 有 n 个数 (n < 10^5), 问这 n 个数中互质的数的对数
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
long long ans;
const int MAXN = 1e5 + 1;
int n, x, prime[MAXN], _max, b[MAXN], tot, mu[MAXN];
bool check[MAXN];
void calmu() {
   mu[1] = 1;
   for (int i = 2; i < MAXN; i++) {</pre>
        if (!check[i]) {
            prime[tot++] = i;
            mu[i] = -1;
        }
        for (int j = 0; j < tot; j++) {
            if (i * prime[j] >= MAXN) break;
            check[i * prime[j]] = true;
            if (i % prime[j] == 0) {
                mu[i * prime[j]] = 0;
                break;
            } else {
                mu[i * prime[j]] = -mu[i];
            }
       }
   }
int main() {
   calmu();
   while (scanf("%d", &n) == 1) {
       memset(b, 0, sizeof(b));
        \max = 0; \quad ans = 0;
        for (int i = 0; i < n; i++) {
            scanf("%d", &x);
            if (x > _max) _max = x;
```

```
b[x]++;
}
int cnt;
for (int i = 1; i <= _max; i++) {
    cnt = 0;
    for (long long j = i; j <= _max; j += i)
        cnt += b[j];
    ans += 1LL * mu[i] * cnt * cnt;
}
printf("%lld\n", (ans - b[1]) / 2);
}
return 0;
}</pre>
```

2.7.3 VisibleTrees

```
// gcd(x,y)==1 的对数 x ≤ n, y ≤ m
int main() {
    calmu();
    int n, m;
    scanf("%d %d", &n, &m);
    if (n < m) swap(n, m);
    ll ans = 0;
    for (int i = 1; i <= m; ++i) {
        ans += (ll)mu[i] * (n / i) * (m / i);
    }
    printf("%lld\n", ans);
    return 0;
}</pre>
```

2.8 其他

2.8.1 Josephus 问题

```
#include <iostream>
using namespace std;
int main() {
   int num, m, r
   while (cin >> num >> m) {
      r = 0;
      for (int k = 1; k <= num; ++k)
           r = (r + m) % k;
      cout << r + 1 << endl;
   }
   return 0;
}</pre>
```

2.8.2 数位问题

```
// n^n 最左边一位数
int leftmost(int n) {
    double m = n * log10((double)n);
    double g = m - (long long)m;
    g = pow(10.0, g);
    return (int)g;
// n! 位数
int count(ll n) {
    return n == 1 ? 1 : (int)ceil(0.5 * log10(2 * M PI * n) + n *
    \rightarrow log10(n) - n * log10(M_E));
}
```

相关公式 2.9

```
约数定理: 若 n = \prod_{i=1}^k p_i^{a_i},则
1. 约数个数 f(n) = \prod_{i=1}^k (a_i + 1)
2. 约数和 g(n) = \prod_{i=1}^k (\sum_{j=0}^{a_i} p_i^j)
小于 n 且互素的数之和为 n\varphi(n)/2
     若 gcd(n,i) = 1, 则 gcd(n,n-i) = 1(1 \le i \le n)
     错排公式: D(n) = (n-1)(D(n-2) + D(n-1)) = \sum_{i=2}^{n} \frac{(-1)^{k} n!}{k!} = \left[\frac{n!}{e} + 0.5\right]
      威尔逊定理: p is prime \Rightarrow (p-1)! \equiv -1 \pmod{p}
      欧拉定理: gcd(a,n) = 1 \Rightarrow a^{\varphi(n)} \equiv 1 \pmod{n}
      欧拉定理推广: gcd(n,p) = 1 \Rightarrow a^n \equiv a^{n\%\varphi(p)} \pmod{p}
      素数定理: 对于不大于 n 的素数个数 \pi(n), \lim_{n\to\infty} \pi(n) = \frac{n}{\ln n}
      位数公式:正整数 x 的位数 N = log 10(n) + 1
      斯特灵公式 n! \approx \sqrt{2\pi n} (\frac{n}{a})^n
      设 a > 1, m, n > 0, 则 gcd(a^m - 1, a^n - 1) = a^{gcd(m,n)} - 1
     设 a > b, gcd(a, b) = 1, 则 gcd(a^m - b^m, a^n - b^n) = a^{gcd(m, n)} - b^{gcd(m, n)}
              G = \gcd(C_n^1, C_n^2, ..., C_n^{n-1}) = \begin{cases} n, & n \text{ is prime} \\ 1, & n \text{ has multy prime factors} \\ p, & n \text{ has single prime factor } p \end{cases}
      gcd(Fib(m), Fib(n)) = Fib(gcd(m, n))
      若 gcd(m,n)=1, 则:
      1. 最大不能组合的数为 m*n-m-n
     2. 不能组合数个数 N = \frac{(m-1)(n-1)}{2} (n+1)lcm(C_n^0, C_n^1, ..., C_n^{n-1}, C_n^n) = lcm(1, 2, ..., n+1) 若 p 为素数,则 (x+y+...+w)^p \equiv x^p+y^p+...+w^p \pmod{p}
     卡特兰数: 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012 h(0) = h(1) = 1, h(n) = \frac{(4n-2)h(n-1)}{n+1} = \frac{C_{2n}^n}{n+1} = C_{2n}^n - C_{2n}^{n-1}
```

$$a_{n+m} = \sum_{i=0}^{m-1} b_i a_{n+i} \Rightarrow \begin{pmatrix} a_{n+m} \\ a_{n+m-1} \\ \vdots \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} b_{m-1} & \cdots & b_1 & b_0 \\ 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 \end{pmatrix} \begin{pmatrix} a_{n+m-1} \\ a_{n+m-2} \\ \vdots \\ a_n \end{pmatrix}$$

$$a_{n+m} = \sum_{i=0}^{m-1} b_i a_{n+i} + c \Rightarrow \begin{pmatrix} a_{n+m} \\ a_{n+m-1} \\ \vdots \\ a_{n+1} \\ 1 \end{pmatrix} = \begin{pmatrix} b_{m-1} & \cdots & b_1 & b_0 & c \\ 1 & \cdots & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 & 0 \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{n+m-1} \\ a_{n+m-2} \\ \vdots \\ a_n \\ 1 \end{pmatrix}$$

3 字符串

3.1 KMP

```
// 返回 y 中 x 的个数
int ne[N];
void initkmp(char x[], int m) {
   int i, j; j = ne[0] = -1; i = 0;
   while (i < m) {
        while (j != -1 \&\& x[i] != x[j])
            j = ne[j];
       ne[++i] = ++j;
   }
int kmp(char x[], int m, char y[], int n) {
   int i, j, ans; i = j = ans = 0;
   initkmp (x, m);
   while (i < n) {
       while (j != -1 \&\& y[i] != x[j]) j = ne[j];
       i++; j++;
       if (j >= m) {
            ans++; j = ne[j];
        }
   }
```

```
return ans;
}
```

3.2 Manacher 最长回文子串

```
// O(n) 求解最长回文子串
const int N = 1000100;
char s[N], str[N << 1];</pre>
int p[N << 1];</pre>
void Manacher(char s[], int &n) {
    str[0] = '\$';
    str[1] = '#';
    for (int i = 0; i < n; i++) {
        str[(i << 1) + 2] = s[i];
        str[(i << 1) + 3] = '#';
    }
    n = 2 * n + 2;
    str[n] = 0;
    int mx = 0, id;
    for (int i = 1; i < n; i++) {
        p[i] = mx > i ? min(p[2 * id - i], mx - i) : 1;
        while(str[i - p[i]] == str[i + p[i]]) p[i]++;
        if (p[i] + i > mx) {
            mx = p[i] + i;
            id = i;
        }
    }
int solve(char s[]) {
    int n = strlen(s);
    Manacher(s, n);
    int res = 0;
    for (int i = 0; i < n; i++)
        res = max(res, p[i]);
    return res - 1;
```

3.3 AC 自动机

```
#include <cstdio>
#include <cstring>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
const int AC_SIGMA = 26, AC_V = 29, AC_N = 500100;
struct AC_automaton {
   struct node {
      node *go[AC_V], *fail, *fa;</pre>
```

```
int fg, id;
   } pool[AC_N], *cur, *root, *q[AC_N];
   node* newnode() {
       node *p = cur++;
       memset(p->go, 0, sizeof(p->go));
       p->fail = p->fa = NULL; p->fg = 0;
       return p;
   }
   void init() { cur = pool; root = newnode();}
   node* append(node *p, int w) {
        if (!p->go[w]) p->go[w] = newnode(), p->go[w]->fa = p;
       return p = p->go[w];
   }
   void build() {
       int t = 1;
       q[0] = root;
        rep(i, 0, t) rep(j, 0, AC_SIGMA) if (q[i]->go[j]) {
            node v = q[i]-go[j], v = v-fa-fail;
            while (p \&\& !p->go[j]) p = p->fail;
            if (p) v->fail = p->go[j]; else v->fail = root;
            q[t++] = q[i]->go[j];
        } else {
            node *p = q[i]->fail;
            while (p && !p->go[j]) p = p->fail;
           if (p) q[i]->go[j] = p->go[j]; else q[i]->go[j] = root;
       }
   }
    int query(char s[]) {
       node *p = root;
        int res = 0;
        for (int i = 0; s[i]; i++) {
            p = p->go[s[i] - 'a'];
            node *v = p;
            while (v != root) {
                res += v->fg;
                v->fg = 0;
                v = v -> fail;
            }
       return res;
   }
} T;
typedef AC_automaton::node ACnode;
const int MAXN = 10000000 + 1000;
char txt[MAXN];
```

```
int main() {
#ifdef MANGOGAO
   freopen("data.in", "r", stdin);
#endif
   int t;
    scanf("%d", &t);
    while (t--) {
        int n;
        scanf("%d", &n);
        T.init();
        char s[55];
        rep(i, 0, n) {
            ACnode *p = T.root;
            scanf("%s", s);
            for (int j = 0; s[j]; j++)
                p = T.append(p, s[j] - 'a');
            p->fg++;
        }
        T.build();
        scanf("%s", txt);
        printf("%d\n", T.query(txt));
   return 0;
```

4 数据结构

4.1 树状数组

```
// O(log n) 查询和修改数组的前缀和
// 注意下标应从 1 开始 n 是全局变量
int bit[N], n;
int sum(int i){
    int s = 0;
    while(i){
        s += bit[i];
        i -= i&-i;
    }
    return s;
}

void add(int i, int x){
    while(i<=n){
        bit[i] += x;
        i += i&-i;
    }
}
```

4.2 线段树

4.2.1 声明

```
// 左儿子
#define lson rt<<1
                          // 右儿子
#define rson rt<<1/1
                        // 左子树
#define Lson l,m,lson
#define Rson m+1,r,rson
                        // 右子树
                          // 用 lson 和 rson 更新 rt
void PushUp(int rt);
void PushDown(int rt[, int m]); // rt 的标记下移, m 为区间长度
→ (若与标记有关)
void build(int 1, int r, int rt); // 以 rt 为根节点, 对区间 [l,
→ r] 建立线段树
void update([...,] int 1, int r, int rt) // rt[l, r] 内寻找目标
→ 并更新
int query(int L, int R, int l, int r, int rt) // rt-[l, r] 内查询
\hookrightarrow [L, R]
```

4.2.2 单点更新-区间查询

```
const int maxn = 50010;
int sum[maxn << 2]:</pre>
void PushUp(int rt) {
   sum[rt] = sum[lson] + sum[rson];
void build(int 1, int r, int rt) {
    if (l == r) {scanf("%d", &sum[rt]); return;} // 建立的时候
    → 直接输入叶节点
    int m = (1 + r) >> 1;
    build(Lson); build(Rson);
   PushUp(rt);
void update(int p, int add, int l, int r, int rt) {
    if (1 == r) {sum[rt] += add; return;}
    int m = (1 + r) >> 1;
    if (p <= m) update(p, add, Lson);</pre>
    else update(p, add, Rson);
   PushUp(rt);
int query(int L, int R, int 1, int r, int rt) {
    if (L <= 1 && r <= R) {return sum[rt];}</pre>
    int m = (1 + r) >> 1, s = 0;
    if (L <= m) s += query(L, R, Lson);</pre>
    if (m < R) s += query(L, R, Rson);</pre>
    return s;
```

4.2.3 区间更新-区间查询

```
// seq[rt] 用于存放懒惰标记, 注意 PushDown 时标记的传递
const int maxn = 101010;
int seg[maxn << 2], sum[maxn << 2];</pre>
void PushUp(int rt) {
    sum[rt] = sum[lson] + sum[rson];
void PushDown(int rt, int m) {
    if (seg[rt] == 0) return;
    seg[lson] += seg[rt];
   seg[rson] += seg[rt];
    sum[lson] += seg[rt] * (m - (m >> 1));
    sum[rson] += seg[rt] * (m >> 1);
    seg[rt] = 0;
void build(int 1, int r, int rt) {
    seg[rt] = 0;
    if (1 == r) {scanf("%11d", &sum[rt]); return;}
    int m = (1 + r) >> 1;
    build(Lson); build(Rson);
   PushUp(rt);
void update(int L, int R, int add, int l, int r, int rt) {
    if (L <= 1 && r <= R) {
        seg[rt] += add;
        sum[rt] += add * (r - 1 + 1);
        return;
    }
   PushDown(rt, r - l + 1);
    int m = (1 + r) >> 1;
    if (L <= m) update(L, R, add, Lson);</pre>
    if (m < R) update(L, R, add, Rson);</pre>
   PushUp(rt);
int query(int L, int R, int 1, int r, int rt) {
    if (L <= 1 && r <= R) return sum[rt];</pre>
   PushDown(rt, r - l + 1);
    int m = (1 + r) >> 1, ret = 0;
    if (L <= m) ret += query(L, R, Lson);</pre>
    if (m < R) ret += query(L, R, Rson);</pre>
    return ret;
```

4.3 字典树

```
struct Node {
   char c;
```

```
Node* next[26];
    Node(char cc) {
        c = cc;
        REP(i, 26)next[i] = NULL;
    }
    ~Node() {
        REP(i, 26) if (next[i] != NULL) {
            next[i]->~Node();
            delete next[i];
           next[i] = NULL;
        }
    }
    bool empty() {
        REP(i, 26)if (next[i])return 0;
        return 1;
};
class Trie {
public:
   Node *rt;
   Trie() {
        rt = new Node('*');
    }
    ~Trie() {
        rt->~Node();
    }
   void insert(char s[]) {
        Node *p = rt;
        for (int i = 0; s[i]; i++) {
            int d = s[i] - 'A';
            if (!p->next[d])
                p->next[d] = new Node(s[i]);
            p = p->next[d];
        }
    }
    int find(char s[]) {
        Node *p = rt;
        for (int i = 0; s[i]; i++) {
            int d = s[i] - 'A';
            if (!p->next[d]) return 0;
            p = p->next[d];
        }
        return 1;
    void remove(char s[]) {
        stack<Node*> st;
        Node *pp = rt;
```

```
for (int i = 0; s[i]; i++) {
            int d = s[i] - 'A';
            if (!pp->next[d]) return;
            st.push(pp);
            pp = pp->next[d];
        pp->~Node();
        while (!st.empty()) {
            Node *p = st.top(); st.pop();
            p->next[pp->c - 'A'] = NULL;
            pp = p;
            bool f = 1;
            REP(i, 26) if (p->next[i]) f = 0;
            if (f) {
                p->~Node();
                if (!st.empty())st.top()->next[p->c - 'A'] = NULL;
            }
            else break;
        }
        if (rt == NULL) rt = new Node('*');
   }
};
```

4.4 RMQ

```
const int MAXN = 200000 + 100;
int mmax[MAXN][30], mmin[MAXN][30];
int a[MAXN], n, k;
void init() {
   for (int i = 1; i <= n; i++) {
       mmax[i][0] = mmin[i][0] = a[i];
   for (int j = 1; (1 << j) <= n; j++)
        for (int i = 1; i + (1 << j) - 1 <= n; i++) {
            mmax[i][j] = max(mmax[i][j - 1], mmax[i + (1 << (j -
            → 1))][j - 1]);
            mmin[i][j] = min(mmin[i][j - 1], mmin[i + (1 << (j -
            \rightarrow 1))][j - 1]);
        }
}
// op=0/1 返回 [l,r] 最大/小值
int rmq(int 1, int r, int op) {
   int k = 0;
   while ((1 << (k + 1)) <= r - 1 + 1) k++;
   if (op == 0) return max(mmax[1][k], mmax[r - (1 << k) + 1][k]);
```

```
return min(mmin[l][k], mmin[r - (1 << k) + 1][k]);
}</pre>
```

5 图论

5.1 并查集

```
const int MAXN = 128;
int n, fa[MAXN], ra[MAXN];
void init() {
   for (int i = 0; i <= n; i++) {
        fa[i] = i; ra[i] = 0;
   }
}
int find(int x) {
   if (fa[x] != x) fa[x] = find(fa[x]);
   return fa[x];
void unite(int x, int y) {
   x = find(x); y = find(y); if (x == y) return;
   if (ra[x] < ra[y]) fa[x] = y;
   else {
        fa[y] = x; if (ra[x] == ra[y]) ra[x]++;
bool same(int x, int y) {
   return find(x) == find(y);
```

5.2 最小生成树

5.2.1 Kruskal

```
vector<pair<int, PII> > G;
void add_edge(int u, int v, int d) {
    G.pb(mp(d, mp(u, v)));
}
int Kruskal(int n) {
    init(n);
    sort(G.begin(), G.end());
    int m = G.size();
    int num = 0, ret = 0;
    for (int i = 0; i < m; i++) {
        pair<int, PII> p = G[i];
        int x = p.Y.X;
        int y = p.Y.Y;
        int d = p.X;
```

```
if (!same(x, y)) {
      unite(x, y);
      num++;
      ret += d;
    }
    if (num == n - 1) break;
}
    return ret;
}
```

5.2.2 Prim

```
// 耗费矩阵 cost[][], 标号从 0 开始,0~n-1
// 返回最小生成树的权值, 返回-1 表示原图不连通
const int INF = 0x3f3f3f3f;
const int MAXN = 110;
bool vis[MAXN];
int lowc[MAXN];
int Prim(int cost[][MAXN], int n) {
   int ans = 0;
   set(vis, 0);
   vis[0] = 1;
   for (int i = 1; i < n; i++)
       lowc[i] = cost[0][i];
   for (int i = 1; i < n; i++) {
       int minc = INF;
       int p = -1;
       for (int j = 0; j < n; j++)
           if (!vis[j] && minc > lowc[j]) {
               minc = lowc[j];
               p = j;
       if (minc == INF) return -1;
       vis[p] = 1;
       for (int j = 0; j < n; j++)
           if (!vis[j] && lowc[j] > cost[p][j]) lowc[j] =
            → cost[p][j];
   return ans;
```

5.3 最短路

5.3.1 Dijkstra-邻接矩阵

```
// N 为点数最大值 求 s 到所有点的最短路
// 要求边权值为非负数 模板为有向边
// dis[x] 为起点到点 x 的最短路 inf 表示无法走到
```

```
// 记得初始化
const int N = 100; // 点数最大值
const int INF = 0x3f3f3f3f;
int G[N][N], dis[N];
bool vis[N];
void init(int n) {
   set(G, 0x3f);
void add edge(int u, int v, int w) {
   G[u][v] = min(G[u][v], w);
void Dijkstra(int s, int n) {
   set(vis, 0);
    set(dis, 0x3f);
    dis[s] = 0;
    for (int i = 0; i < n; i++) {
        int x, minDis = INF;
        for (int j = 0; j < n; j++) {
            if (!vis[j] && dis[j] <= minDis) {</pre>
                x = j;
                minDis = dis[j];
            }
        vis[x] = 1;
        for (int j = 0; j < n; j++)
            dis[j] = min(dis[j], dis[x] + G[x][j]);
    }
```

5.3.2 Dijkstra-邻接表数组

```
// 点最大值: MAX N 边最大值: MAX E
// 求起点 s 到每个点 x 的最短路 dis[x]
const int MAX N = "Edit";
                        // 点数最大值
const int MAX E = "Edit";
const int INF = 0x3F3F3F3F;
int tot;
int Head[MAX N], vis[MAX N], dis[MAX N];
int Next[MAX_E], To[MAX_E], W[MAX_E];
void init() {
   tot = 0:
   memset(Head, -1, sizeof(Head));
void add_edge(int u, int v, int d) {
   W[tot] = d;
   To[tot] = v;
   Next[tot] = Head[u];
   Head[u] = tot++;
```

```
void Dijkstra(int s, int n) {
    memset(vis, 0, sizeof(vis));
    memset(dis, 0x3F, sizeof(dis));
    dis[s] = 0;
    for (int i = 0; i < n; i++) {
        int x, min_dis = INF;
        for (int j = 0; j < n; j++) {
            if (!vis[j] && dis[j] <= min_dis) {</pre>
                x = j;
                min_dis = dis[j];
            }
        }
        vis[x] = 1;
        for (int j = Head[x]; j != -1; j = Next[j]) {
            int y = To[j];
            dis[y] = min(dis[y], dis[x] + W[j]);
        }
    }
}
```

5.3.3 Dijkstra-邻接表向量

```
// MAXN: 点数最大值
// 求起点 s 到所有点 x 的最短路 dis[x]
// 记得初始化
const int MAXN = "Edit";
const int INF = 0x3F3F3F3F;
vector<int> G[MAXN];
vector<int> GW[MAXN];
bool vis[MAXN];
int dis[MAXN];
void init(int n) {
   for (int i = 0; i < n; i++) {
       G[i].clear();
       GW[i].clear();
   }
void add_edge(int u, int v, int w) {
   G[u].push_back(v);
   GW[u].push back(w);
void Dijkstra(int s, int n) {
   memset(vis, false, sizeof(vis));
   memset(dis, 0x3F, sizeof(dis));
   dis[s] = 0;
   for (int i = 0; i < n; i++) {
       int x;
```

```
int min_dis = INF;
for (int j = 0; j < n; j++) {
    if (!vis[j] && dis[j] <= min_dis) {
        x = j;
        min_dis = dis[j];
    }
}
vis[x] = true;
for (int j = 0; j < (int)G[x].size(); j++) {
    int y = G[x][j];
    int w = GW[x][j];
    dis[y] = min(dis[y], dis[x] + w);
}
}</pre>
```

5.3.4 Dijkstra-优先队列

```
// pair< 权值, 点 >
// 记得初始化
const int MAXN = "Edit";
const int INF = 0x3F3F3F3F;
typedef pair<int, int> PII;
typedef vector<PII> VII;
VII G[MAXN];
int vis[MAXN], dis[MAXN];
void init(int n) {
    for (int i = 0; i < n; i++)</pre>
        G[i].clear();
void add_edge(int u, int v, int w) {
    G[u].push back(make pair(w, v));
}
void Dijkstra(int s, int n) {
   memset(vis, 0, sizeof(vis));
   memset(dis, 0x3F, sizeof(dis));
    dis[s] = 0;
    priority_queue<PII, VII, greater<PII> > q;
    q.push(make_pair(dis[s], s));
    while (!q.empty()) {
        PII t = q.top();
        int x = t.second;
        q.pop();
        if (vis[x]) continue;
        vis[x] = 1;
        for (int i = 0; i < (int)G[x].size(); i++) {</pre>
            int y = G[x][i].second;
            int w = G[x][i].first;
```

5.3.5 Bellman-Ford(可判负环)

```
// 求出起点 s 到每个点 x 的最短路 dis[x]
// 存在负环返回 1 否则返回 0
// 记得初始化
const int MAX_N = "Edit"; // 点数最大值
                           // 边数最大值
const int MAX E = "Edit";
const int INF = 0x3F3F3F3F;
int From[MAX_E], To[MAX_E], W[MAX_E];
int dis[MAX N], tot;
void init() {tot = 0;}
void add edge(int u, int v, int d) {
   From[tot] = u;
   To[tot] = v;
   W[tot++] = d;
bool Bellman Ford(int s, int n) {
   memset(dis, 0x3F, sizeof(dis));
   dis[s] = 0;
   for (int k = 0; k < n - 1; k++) {
       bool relaxed = 0;
       for (int i = 0; i < tot; i++) {</pre>
           int x = From[i], y = To[i];
           if (dis[y] > dis[x] + W[i]) {
               dis[y] = dis[x] + W[i];
               relaxed = 1;
       }
       if (!relaxed) break;
   for (int i = 0; i < tot; i++)</pre>
       if (dis[To[i]] > dis[From[i]] + W[i])
           return 1;
   return 0;
```

5.3.6 SPFA

```
// G[u] = mp(v, w)
// SPFA() 返回 O 表示存在负环
const int MAXN = "Edit";
const int INF = 0x3F3F3F3F;
vector<pair<int, int> > G[MAXN];
bool vis[MAXN];
int dis[MAXN];
int inqueue[MAXN];
void init(int n) {
   for (int i = 0; i < n; i++)</pre>
       G[i].clear();
void add_edge(int u, int v, int w) {
   G[u].push back(make pair(v, w));
}
bool SPFA(int s, int n) {
   memset(vis, 0, sizeof(vis));
   memset(dis, 0x3F, sizeof(dis));
   memset(inqueue, 0, sizeof(inqueue));
   dis[s] = 0;
   queue<int> q; // 待优化的节点入队
   q.push(s);
   while (!q.empty()) {
        int x = q.front();
        q.pop();
       vis[x] = false;
        for (int i = 0; i < G[x].size(); i++) {</pre>
            int y = G[x][i].first;
            int w = G[x][i].second;
            if (dis[y] > dis[x] + w) {
                dis[y] = dis[x] + w;
                if (!vis[y]) {
                    q.push(y);
                    vis[y] = true;
                    if (++inqueue[y] >= n) return 0;
                }
            }
       }
   }
   return 1;
}
```

5.3.7 Floyd 算法

```
// O(n^3) 求出任意两点间最短路 const int MAXN = "Edit";
```

```
const int INF = 0x3F3F3F3F;
int G[MAXN][MAXN];
void init(int n) {
   memset(G, 0x3F, sizeof(G));
   for (int i = 0; i < n; i++)</pre>
        G[i][i] = 0;
}
void add edge(int u, int v, int w) {
    G[u][v] = min(G[u][v], w);
}
void Floyd(int n) {
   for (int k = 0; k < n; k++)
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)</pre>
                G[i][j] = min(G[i][j], G[i][k] + G[k][j]);
}
```

5.4 拓扑排序

5.4.1 邻接矩阵

```
// 存图前记得初始化
// Ans 存放拓排结果, G 为邻接矩阵, deg 为入度信息
// 排序成功返回 1, 存在环返回 O
const int MAXN = "Edit";
              // 存放拓扑排序结果
int Ans[MAXN];
                  // 存放图信息
int G[MAXN] [MAXN];
                   // 存放点入度信息
int deg[MAXN];
void init() {
   memset(G, 0, sizeof(G));
   memset(deg, 0, sizeof(deg));
   memset(Ans, 0, sizeof(Ans));
void add_edge(int u, int v) {
   if (G[u][v]) return;
   G[u][v] = 1;
   deg[v]++;
bool Toposort(int n) {
   int tot = 0;
   queue<int> que;
   for (int i = 0; i < n; ++i)
       if (deg[i] == 0) que.push(i);
   while (!que.empty()) {
       int v = que.front(); que.pop();
       Ans[tot++] = v;
       for (int i = 0; i < n; ++i)
           if (G[v][i] == 1)
```

```
if (--deg[t] == 0) que.push(t);
}
if (tot < n) return false;
return true;
}</pre>
```

5.4.2 邻接表

```
// 存图前记得初始化
// Ans 排序结果, G 邻接表, deg 入度, map 用于判断重边
// 排序成功返回 1, 存在环返回 0
const int MAXN = "Edit";
typedef pair<int, int> PII;
int Ans[MAXN];
vector<int> G[MAXN];
int deg[MAXN];
map<PII, bool> S;
void init(int n) {
   S.clear();
    for (int i = 0; i < n; i++)G[i].clear();</pre>
   memset(deg, 0, sizeof(deg));
    memset(Ans, 0, sizeof(Ans));
void add edge(int u, int v) {
    if (S[make_pair(u, v)]) return;
    G[u].push_back(v);
    S[make_pair(u, v)] = 1;
    deg[v]++;
bool Toposort(int n) {
    int tot = 0; queue<int> que;
    for (int i = 0; i < n; ++i)</pre>
        if (deg[i] == 0) que.push(i);
    while (!que.empty()) {
        int v = que.front(); que.pop();
        Ans[tot++] = v;
        for (int i = 0; i < G[v].size(); ++i) {</pre>
            int t = G[v][i];
            if (--deg[t] == 0) que.push(t);
        }
    }
    if (tot < n) return false;</pre>
    return true;
```

5.5 欧拉回路

5.5.1 判定

定理 5.1. 无向图 G 存在欧拉通路的充要条件是: G 为连通图, 并且 G 仅有两个奇度结点或无奇度结点。

推论 5.1. (1) 当 G 是仅有两个奇度结点的连通图时,G 的欧拉通路必以此两个结点为端点。(2) 当 G 时无奇度结点的连通图时,G 必有欧拉回路。(3) G 为欧拉图(存在欧拉回路)的充要条件是 G 为无奇度结点的连通图。

定理 5.2. 有向图 D 存在欧拉通路的充要条件是: D 为有向图, D 的基图连通, 并且所有顶点的出度与入度都相等; 或者除两个顶点外, 其余顶点的出度与入度都相等, 而这两个顶点中一个顶点的出度与入度只差为 1, 另一个顶点的出度与入度之差为-1。

推论 5.2. (1) 当 D 除出、入度之差为 1, -1 的两个顶点之外,其余顶点的出度与入度都相等时,D 的有向欧拉通路必以出、入度之差为 1 的顶点作为始点,以出、入度之差为 -1 的顶点作为终点。(2) 当 D 的所有顶点的出、入度都相等时,D 中存在有向欧拉回路。(3) 有向图 D 为有向欧拉图的充要条件是 D 的基图为连通图. 并且所有顶点的出、入度都相等。

5.5.2 求解

```
#define MAXN 200
struct stack {
   int top, node[MAXN];
} s;
                     // 邻接矩阵
int G[MAXN] [MAXN];
int n: // 顶点个数
void dfs(int x) {
   int i;
   s.node[++s.top] = x;
    for (int i = 0; i < n; i++)</pre>
        if (G[i][x] > 0) {
            G[i][x] = G[x][i] = 0;
            dfs(i);
            break;
        }
void Fleury(int x) {
   int i, b;
    s.node[s.top = 0] = x;
   while (s.top >= 0) {
        b = 0:
        for (int i = 0; i < n; i++)</pre>
            if (G[s.node[s.top]][i] > 0) {
                b = 1;
                break;
```

```
}
       if (b == 0) {
           printf("%d ", s.node[s.top] + 1);
           s.top--;
       }
       else {
           s.top--;
           dfs(s.node[s.top + 1]);
   }
   printf("\n");
}
int main() {
   int i, j;
   int m, s, t; // 边数, 读入的边的起点和终点
   int degree, num, start; // 每个顶点的度、奇度顶点个数、欧拉回路
    → 的起点
   scanf("%d%d", &n, &m);
   set(G, 0);
   for (i = 0; i < m; i++) {
       scanf("%d%d", &s, &t)
       G[s-1][t-1] = G[t-1][s-1] = 1;
   }
   num = 0; start = 0;
   for (i = 0; i < n; i++) {
       degree = 0;
       for (j = 0; j < n; j++)
           degree += G[i][j];
       if (degree & 1) {
           start = i;
           num++;
       }
   }
   if (num == 0 || num == 2) Fleury(start);
   else puts("No Euler path");
   return 0;
```

6 计算几何

6.1 定义

```
#define eps 1e-8
#define pi M_PI
#define zero(x) ((fabs(x)<eps?1:0))
#define sgn(x) (fabs(x)<eps?0:((x)<0?-1:1))
```

```
#define mp make_pair
#define X first
#define Y second
struct point {
   double x, y;
   point(double a = 0, double b = 0) {x = a; y = b;}
   point operator - (const point& b) const {
       return point(x - b.x, y - b.y);
   point operator + (const point &b) const {
       return point(x + b.x, y + b.y);
   }
   // 两点是否重合
   bool operator == (point& b) {
       return zero(x - b.x) && zero(y - b.y);
   // 点积 (以原点为基准)
   double operator * (const point &b) const {
       return x * b.x + y * b.y;
   }
   // 叉积 (以原点为基准)
   double operator ^ (const point &b) const {
       return x * b.y - y * b.x;
   }
   // 绕 P 点逆时针旋转 a 弧度后的点
   point rotate(point b, double a) {
       double dx, dy; (*this - b).split(dx, dy);
       double tx = dx * cos(a) - dy * sin(a);
       double ty = dx * sin(a) + dy * cos(a);
       return point(tx, ty) + b;
   }
   // 点坐标分别赋值到 a 和 b
   void split(double &a, double &b) {
       a = x; b = y;
   }
};
struct line {
   point s, e;
   line() {}
   line(point ss, point ee) {s = ss; e = ee;}
};
```

6.2 位置关系

6.2.1 两点间距离

```
double dist(point a, point b) {
   return sqrt((a - b) * (a - b));
}
```

6.2.2 直线与直线的交点

6.2.3 判断线段与线段相交

6.2.4 判断线段与直线相交

6.2.5 点到直线距离

```
point pointtoline(point P, line L) {
   point res;
   double t = ((P - L.s) * (L.e-L.s)) / ((L.e-L.s) * (L.e-L.s));
```

```
res.x = L.s.x + (L.e.x - L.s.x) * t;
res.y = L.s.y + (L.e.y - L.s.y) * t;
return dist(P, res);
}
```

6.2.6 点到线段距离

```
point pointtosegment(point p, line l) {
   point res;
   double t = ((p - 1.s) * (1.e-1.s)) / ((1.e-1.s) * (1.e-1.s));
   if (t >= 0 && t <= 1) {
       res.x = 1.s.x + (1.e.x - 1.s.x) * t;
       res.y = 1.s.y + (1.e.y - 1.s.y) * t;
   }
   else res = dist(p, 1.s) < dist(p, 1.e) ? 1.s : 1.e;
   return res;
}</pre>
```

6.2.7 点在线段上

```
bool PointOnSeg(point p, line 1) {
   return
        sgn((1.s - p) ^ (1.e-p)) == 0 &&
        sgn((p.x - 1.s.x) * (p.x - 1.e.x)) <= 0 &&
        sgn((p.y - 1.s.y) * (p.y - 1.e.y)) <= 0;
}</pre>
```

6.3 多边形

6.3.1 多边形面积

```
double area(point p[], int n) {
    double res = 0;
    for (int i = 0; i < n; i++)
        res += (p[i] ^ p[(i + 1) % n]) / 2;
    return fabs(res);
}</pre>
```

6.3.2 点在凸多边形内

```
// 点形成一个凸包,而且按逆时针排序 (如果是顺时针把里面的 <0 改为 → >0)
// 点的编号 : [0,n)
// -1 : 点在凸多边形外
// 0 : 点在凸多边形边界上
// 1 : 点在凸多边形内
int PointInConvex(point a, point p[], int n) {
```

```
for (int i = 0; i < n; i++) {
    if (sgn((p[i] - a) ^ (p[(i + 1) % n] - a)) < 0)
        return -1;
    else if (PointOnSeg(a, line(p[i], p[(i + 1) % n])))
        return 0;
}
return 1;
}</pre>
```

6.3.3 点在任意多边形内

```
// 射线法,poly[] 的顶点数要大于等于 3, 点的编号 0~n-1
// -1: 点在凸多边形外
// 0 : 点在凸多边形边界上
// 1 : 点在凸多边形内
int PointInPoly(point p, point poly[], int n) {
   int cnt;
   line ray, side;
   cnt = 0;
   ray.s = p;
   ray.e.y = p.y;
   ray.e.x = -100000000000.0; // -INF, 注意取值防止越界
   for (int i = 0; i < n; i++) {
       side.s = poly[i];
       side.e = poly[(i + 1) \% n];
       if (PointOnSeg(p, side))return 0;
       //如果平行轴则不考虑
       if (sgn(side.s.y - side.e.y) == 0)
           continue;
       if (PointOnSeg(sid e.s, r ay)) {
           if (sgn(side.s.y - side.e.y) > 0) cnt++;
       else if (PointOnSeg(side.e, ray)) {
           if (sgn(side.e.y - side.s.y) > 0) cnt++;
       else if (segxseg(ray, side)) cnt++;
   return cnt % 2 == 1 ? 1 : -1;
```

6.3.4 判断凸多边形

```
// 点可以是顺时针给出也可以是逆时针给出
// 点的编号 1~n-1
bool isconvex(point poly[], int n) {
    bool s[3];
    set(s, 0);
```

6.3.5 小结

```
#include <stdlib.h>
#include <math.h>
#define MAXN 1000
#define offset 10000
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps)
#define sign(x) ((x)>eps?1:((x)<-eps?2:0))
struct point{double x,y;};
struct line{point a,b;};
double xmult(point p1,point p2,point p0){
   return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
// 判定凸多边形, 顶点按顺时针或逆时针给出, 允许相邻边共线
int is convex(int n,point* p){
   int i,s[3]=\{1,1,1\};
   for (i=0;i<n&&s[1]|s[2];i++)
       s[sign(xmult(p[(i+1)%n],p[(i+2)%n],p[i]))]=0;
   return s[1]|s[2];
}
// 判定凸多边形, 顶点按顺时针或逆时针给出, 不允许相邻边共线
int is_convex_v2(int n,point* p){
   int i,s[3]=\{1,1,1\};
   for (i=0; i < n \& \& s[0] \& \& s[1] | s[2]; i++)
       s[sign(xmult(p[(i+1)%n],p[(i+2)%n],p[i]))]=0;
   return s[0]&&s[1]|s[2];
}
// 判点在凸多边形内或多边形边上, 顶点按顺时针或逆时针给出
int inside convex(point q,int n,point* p){
   int i,s[3]=\{1,1,1\};
   for (i=0; i \le n \&\&s[1] | s[2]; i++)
       s[sign(xmult(p[(i+1)%n],q,p[i]))]=0;
   return s[1]|s[2];
}
```

```
// 判点在凸多边形内, 顶点按顺时针或逆时针给出, 在多边形边上返回 o
int inside_convex_v2(point q,int n,point* p){
    int i,s[3]={1,1,1};
   for (i=0;i<n&&s[0]&&s[1]|s[2];i++)</pre>
        s[_sign(xmult(p[(i+1)%n],q,p[i]))]=0;
   return s[0] \&\&s[1] | s[2];
}
// 判点在任意多边形内, 顶点按顺时针或逆时针给出
// on_edge 表示点在多边形边上时的返回值,offset 为多边形坐标上限
int inside_polygon(point q,int n,point* p,int on_edge=1){
   point q2;
   int i=0,count;
   while (i<n)
     for (count=i=0,q2.x=rand()+offset,q2.y=rand()+offset;i<n;i++)</pre>
            \rightarrow (zero(xmult(q,p[i],p[(i+1)\%n]))\&\&(p[i].x-q.x)*(p[(i+1)\%n].x-q.x)<e
                return on_edge;
            else if (zero(xmult(q,q2,p[i])))
                break;
            else if
            \rightarrow (xmult(q,p[i],q2)*xmult(q,p[(i+1)\%n],q2)<-eps&\&xmult(p[i],q,p[(i+1)\%n])
                count++;
   return count&1;
}
inline int opposite side(point p1,point p2,point l1,point l2){
    return xmult(11,p1,12)*xmult(11,p2,12)<-eps;</pre>
}
inline int dot_online_in(point p,point 11,point 12){
    \rightarrow zero(xmult(p,11,12))&&(11.x-p.x)*(12.x-p.x)<eps&&(11.y-p.y)*(12.y-p.y)<eps
}
// 判线段在任意多边形内, 顶点按顺时针或逆时针给出, 与边界相交返回 1
int inside_polygon(point 11,point 12,int n,point* p){
   point t[MAXN],tt;
   int i, j, k=0;
   if (!inside_polygon(11,n,p)||!inside_polygon(12,n,p))
       return 0;
   for (i=0;i<n;i++)</pre>
        \rightarrow (opposite\_side(11,12,p[i],p[(i+1)\%n])\&\&opposite\_side(p[\ddagger],p[(i+1)\%n],l)\\
            return 0;
        else if (dot_online_in(l1,p[i],p[(i+1)%n]))
            t[k++]=11;
        else if (dot_online_in(12,p[i],p[(i+1)%n]))
```

```
t[k++]=12;
        else if (dot online in(p[i],11,12))
            t[k++]=p[i];
    for (i=0;i<k;i++)</pre>
        for (j=i+1; j< k; j++){
            tt.x=(t[i].x+t[j].x)/2;
            tt.y=(t[i].y+t[j].y)/2;
            if (!inside polygon(tt,n,p))
                return 0;
        }
    return 1;
}
point intersection(line u,line v){
    point ret=u.a;
    double
    \rightarrow t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))
             \rightarrow /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-\psi.b.x));
    ret.x+=(u.b.x-u.a.x)*t;
    ret.y=(u.b.y-u.a.y)*t;
    return ret;
}
point barycenter(point a,point b,point c){
    line u, v;
    u.a.x=(a.x+b.x)/2;
    u.a.y=(a.y+b.y)/2;
    u.b=c;
    v.a.x=(a.x+c.x)/2;
    v.a.y=(a.y+c.y)/2;
    v.b=b;
    return intersection(u,v);
}
// 多边形重心
point barycenter(int n,point* p){
    point ret,t;
    double t1=0,t2;
    int i;
    ret.x=ret.y=0;
    for (i=1;i< n-1;i++)
        if (fabs(t2=xmult(p[0],p[i],p[i+1]))>eps){
            t=barycenter(p[0],p[i],p[i+1]);
            ret.x+=t.x*t2;
            ret.y+=t.y*t2;
            t1+=t2;
        }
```

```
if (fabs(t1)>eps)
    ret.x/=t1,ret.y/=t1;
    return ret;
}
```

6.4 整数点问题

6.4.1 线段上整点个数

```
int OnSegment(line 1) {
   return __gcd(fabs(l.s.x - l.e.x), fabs(l.s.y - l.e.y)) + 1;
}
```

6.4.2 多边形边上整点个数

6.4.3 多边形内整点个数

```
int InSide(point p[], int n) {
   int i, area = 0;
   for (i = 0; i < n; i++)
        area += p[(i + 1) % n].y * (p[i].x - p[(i + 2) % n].x);
   return (fabs(area) - OnEdge(n, p)) / 2 + 1;
}</pre>
```

6.5 圆

6.6 经典题

```
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const int N = 100100;
struct Point {
   double x, y;
};
int n;
Point p[N], tmp[N];
bool cmp(Point a, Point b) {return a.x == b.x ? a.y < b.y : a.x <</pre>
\rightarrow b.x;}
bool cmpy(Point a, Point b) {return a.y < b.y;}</pre>
double dis(Point a, Point b) {
    double dx = a.x - b.x;
   double dy = a.y - b.y;
   return sqrt(dx * dx + dy * dy);
double solve(int 1, int r) {
   double d = 1e20;
    if (1 == r) return d;
    if (l + 1 == r) return dis(p[l], p[r]);
    int mid = 1 + r \gg 1;
    double d1 = solve(1, mid);
    double d2 = solve(mid + 1, r);
    d = min(d1, d2);
    int k = 0;
    for (int i = 1; i <= r; i++)
        if (fabs(p[i].x - p[mid].x) \le d)
            tmp[k++] = p[i];
    sort(tmp, tmp + k, cmpy);
    for (int i = 0; i < k; i++)
        for (int j = i + 1; j < k; j++) {
            if (tmp[j].y - tmp[i].y > d) break;
            d = min(d, dis(tmp[i], tmp[j]));
   return d;
}
int main() {
    while (scanf("%d", &n) && n != 0) {
        for (int i = 0; i < n; i++)</pre>
            scanf("%lf %lf", &p[i].x, &p[i].y);
        sort(p, p + n, cmp);
        printf("%.2lf\n", solve(0, n - 1) / 2);
    }
```

```
return 0;
}
```

7 动态规划

7.1 最大子序列和

```
// 传入序列 a 和长度 n, 返回最大子序列和
// 限制最短长度: 用 cnt 记录长度, rt 更新时判断
int MaxSeqSum(int a[], int n) {
    int rt = 0, cur = 0;
    for (int i = 0; i < n; i++) {
        cur += a[i];
        rt = rt < cur ? cur : rt;
        cur = cur < 0 ? 0 : cur;
    }
    return rt;
}
```

7.2 最长上升子序列 LIS

```
// 序列下标从 1 开始, LIS() 返回长度, 序列存在 lis[] 中
#define N 100100
int n, len, a[N], b[N], f[N];
int Find(int p, int l, int r) {
   int mid;
   while (1 <= r) {
       mid = (1 + r) >> 1;
       if (a[p] > b[mid]) l = mid + 1;
       else r = mid - 1;
   return f[p] = 1;
int LIS(int lis[]) {
int len = 1;
f[1] = 1;
b[1] = a[1];
   for (int i = 2; i <= n; i++) {
       if (a[i] > b[len]) b[++len] = a[i], f[i] = len;
       else b[Find(i, 1, len)] = a[i];
   for (int i = n, t = len; i >= 1 && t >= 1; i--)
       if (f[i] == t)
           lis[--t] = a[i];
   return len;
```

7.3 最长公共上升子序列 LCIS

```
// 序列下标从 1 开始
int LCIS(int a[], int b[], int n, int m) {
    set(dp, 0);
    for (int i = 1; i <= n; i++) {
        int ma = 0;
        for (int j = 1; j <= m; j++) {
            dp[i][j] = dp[i - 1][j];
            if (a[i] > b[j]) ma = max(ma, dp[i - 1][j]);
            if (a[i] == b[j]) dp[i][j] = ma + 1;
        }
    }
    return *max_element(dp[n] + 1, dp[n] + 1 + m);
}
```