Basic problem

- Want to detect approximate bursts of approximate stability
 - Burst is of unknown duration
 - Burst has unknown mean and sigma
 - Distribution of the original signal may be unknown
 - Burst may contain outliers with respect to samples in the burst
 - Burst may be part of a larger burst
- Want model and device that provides measure of confidence
 - Over the error of the imposed approximated model over the derivative form of the signal

Measurements Setup

- Want to
 - estimate at time *t*, presence of a possibly underlying stationary burst
 - estimate at time *t*, targeting mean of such underlying burst
 - have some confidence that stationary burst model fits data interval
 - accelerated detection of departure from stationary burst model to detect misalignment to the hypothesis
 - operating region behavior to parameterize quality/quantity of bursts

Dr. Nelson R. Manohar-Alers

15 January 2008

Decision Making Problem: Similarity of PAST to PRESENT

View into the setup of hypothesis testing for "approximate τ -invariance" at time index i.

Dr. Nelson R. Manohar-Alers

15 January 2008

Approach

Fig. 8: An inferential approximation to SIMILAR(). Testing setup for the HPS conjecture at some time i w.r.t. the outlooks of the CLT-stabilized signals.

Space spanned by PAST and PRESENT signals

- When BOTH outlooks WITHIN <u>localized stationary condition</u>
 - inside a tightly knit coarse-tracking cluster
 - samples true mean of localized stationary condition
- once ANY of the outlooks LEAVES localized stationary condition
 - manifests as fine-tracking transition away from coarse-tracking cluster
 Dr. Nelson R. Manohar-Alers
 15 January 2008

MSE Equivalency Result (Approximate Presence of Approximate Stationary)

- Let (g(i)) be an arbitrary signal,
- Let $(g(i-\tau))$ be its (τ) -delayed version.
- Let $(f(i-\tau))$ be a CLT-smoothed version of a (τ) -delayed $(g(i-\tau))$.
- Let α be a confidence level.
- Let (v) be an arbitrary finite interval of size m'.
- Then, at an α confidence level, the maximum error permissible $\langle MSE_{max}(i) | m' \rangle$ along an interval $\langle v \rangle$ of signal $\langle f(i) \rangle$ if approximate τ -invariance exists across interval $\langle v \rangle$ of signal $\langle f(i) \rangle$

$$\left\langle MSE(i|(m,m'))\right\rangle \leq \sqrt{m' \cdot t_{\max}^2 + 2 \cdot \left\langle \hat{\mu} \left[\left\langle \zeta(i|(m,m')) \right\rangle |m'| \right] \right\rangle^2} \cdot \frac{\left\langle \hat{\mu} \left[\left\langle \hat{\sigma}_D(i)|(m,m') \right\rangle |m'| \right] \right\rangle}{m'}$$

- is bounded by (5.8), where
 - $\mu[\sigma_D(i) \mid (m,m') \rangle$ is average of pooled stddev along σ , and
 - $t_{max} \equiv t(m+m'-2,\alpha/2)$.
 - $(\zeta(i) | (m,m'))$ represents an error correlation (5.9)

$$\left\langle \zeta(i|(m,m'))\right\rangle = \frac{\left\langle \hat{\varepsilon}_{fast}(i)\right\rangle \cdot \left\langle \hat{\varepsilon}_{slow}(i)\right\rangle}{\left\langle \hat{\sigma}_{D}(i)|(m,m')\right\rangle^{2}}$$

Behavior of the error correlation

 \rightarrow e(m)* e(m')/s_d(i)^2 — mse_threshold(i) — 30 per. Mov. Avg. (e(m)* e(m')/s_d(i)^2)

Dr. Nelson R. Manohar-Alers

15 January 2008

HPS Stationary-Based Encoding: Intuition

• Generation of stationary decision bit continually detects and encodes approximate duration, value, and location of stationary conditions regardless of timescale of such

HPS Transform: Operational Region

Fig. 4: Intuition into the operation region of the HPS TRANSFORM.

- Application of <u>MSE EQUIVALENCY THEOREM</u> transforms
 - a derivative form (two maximal likelihood estimators)
 - of an input signal of N samples
 - into a highly compressed representation of consisting of
 - (n) coarse tracking-segments and (n)+1 transitions
- Provides TRADEOFF control over
 - (n) number of segments used to track stationary conditions
 - *(MSE)* (GOODNESS-OF-FIT) of the representation

Dr. Nelson R. Manohar-Alers

Part II: A data reduction technique for SVM

- A data reduction technique to reduce a SVM training dataset
 - into a subsample of the training samples and
 - a careful selection of boundary conditioning points (samples that represent outliers for features)
 - while increasing prediction accuracy but lesser but carefully selected training samples

SVM is a margin classifier

- Datasets can be viewed as consisting of tuples which
 - Combine into one or more clusters within the space spanned by a feature or feature set
 - Do not combine into clusters
- Support vectors can come from either set but
 - A data reduction technique could be applied to the former
- Idea:
 - For each feature, find outliers with respect to population of feature values
 - Decompose dataset into two different sets with respect to the presence of outliers
 - Recombine the sub-datasets into a new training dataset based on some criteria

Approach for SVM Data Reduction

- Given a training set FULL_SET
- Identify per-feature, within feature values, outliers;
 - for example, for numerical features select outliers at K sigma levels from feature mean
- Identify training samples with D (e.g., 1) or more feature outliers
- Separate training dataset into two disjoint subsets:
 - OUTLIER_SET: those samples having at least D feature outliers
 - NORMAL_SET: those samples having less that D feature outliers
- Subsample NORMAL_SET by some fraction r
- Generate an ADJUSTED_SET by mixing subsampled NORMAL_SET with OUTLIER_SET
- Train SVM with ADJUSTED_SET

Performance Numbers (In Progress)

- Preliminary data obtained for yahoo answers dataset so far indicate increase in prediction accuracy (at K=3 sigma levels for extracting OUTLIER_SET) from
 - 72 % accuracy to
 - 75 % accuracy @ 50 % subsampling over NORMAL_SET
 - 80 % accuracy @ 65% subsampling over NORMAL_SET
 - 88 % accuracy @ 75% subsampling over NORMAL_SET
- For datasets with low outlier density,
 - no increase in performance is observed
 - OUTLIER_SET can be nil and consequently, subsampling of NORMAL_SET can actually decrease performance
- Standard SVM training and prediction datasets found from LIBSVM (w1a, symguide, etc.) will follow in subsequent document