A predicate/state transformer semantics for Bayesian learning

Bart Jacobs and Fabio Zanasi Radboud University Nijmegen

1. Introduction

Bayesian learning

Backward inference

What is the likelihood of burglars, given that Mary called?

P(B|M)

Forward inference

• if there are burglars, what is the likelihood that Mary calls?

In this work

An abstract approach to learning

Categorical framework: effectus theory

2. Effectuses, predicates, states

Effectuses

 An effectus is a category with finite coproducts (+,0) and a final object 1 satisfying a few basic requirements.

Examples

Set classical

• $\mathcal{K}\!\ell(\mathcal{D})$ discrete probabilistic

• $\mathcal{K}\ell(\mathcal{G})$ continuous probabilistic

• vNA^{op} quantum

Predicate

$$X \to 2 = 1 + 1$$

State

$$1 \to X$$

Pred. transformer

$$\operatorname{Pred}(X) \stackrel{f^*=(-)\circ f}{\longleftarrow} \operatorname{Pred}(Y)$$

State transformer

$$\operatorname{Stat}(X) \xrightarrow{f_* = f \circ (-)} \operatorname{Stat}(Y)$$

State $1 \rightarrow X$

Set Element of X

Predicate

 $X \rightarrow 2$

Subset of X

	State $1 \rightarrow X$	$\begin{array}{c} \text{Predicate} \\ X \rightarrow 2 \end{array}$
Set	Element of X	Subset of X
$\mathcal{K}\!\ell(\mathcal{D})$	Probability distribution $\omega \in \mathcal{D}(X)$	Fuzzy predicate $p \in [0,1]^X$
$\mathcal{K}\!\ell(\mathcal{G})$	Probability measure $\omega \in \mathcal{G}(X)$	Measurable function $p: X \rightarrow [0,1]$

	State $1 \rightarrow X$	Predicate $X \rightarrow 2$
Set	Element of X	Subset of X
$\mathcal{K}\!\ell(\mathcal{D})$	Probability distribution $\omega \in \mathcal{D}(X)$	Fuzzy predicate $p \in [0,1]^X$
$\mathcal{K}\!\ell(\mathcal{G})$	Probability measure $\omega \in \mathcal{G}(X)$	Measurable function $p: X \rightarrow [0,1]$
$\mathbf{vNA}^{\mathrm{op}}$	State $\omega: X \to \mathbb{C}$ (in \mathbf{vNA})	Positive unital map $\omega : \mathbb{C}^2 \to X$ (= effect $\omega \in \{e \mid 0 \le e \le 1\}$)

3. Learning in an effectus

The discrete probability case

$$\{B,B^{\perp},E,E^{\perp}\}=\mathrm{X}$$

$$F=\underbrace{\{J,J^{\perp},M,M^{\perp}\}}$$

 $\mathcal{K}\!\ell(\mathcal{D})$

Backward inference

What is the likelihood of burglars, given that Mary called?

Backward inference

What is the likelihood of burglars, given that Mary called?

 $\mathcal{K}\!\ell(\mathcal{D})$

Forward inference

if there are burglars, what is the likelihood that Mary calls?

The continuous probability case

Aim: infer the age (in the interval o-100 AD) of a tomb at an archeological site. Evidences: three kinds of objects, with associated predicates p_0 , p_1 , p_2 .

Finding an object of one of the three kinds updates ω by backward learning:

The quantum case

A backward inference situation

The quantum case

A backward inference situation

The quantum case

A backward inference situation

$$\mathbb{C} \stackrel{\text{State } \omega}{\longleftarrow} M_2$$

Probabilistic ⊂ Quantum

$$v: \begin{bmatrix} x & y \\ v & w \end{bmatrix} \mapsto \frac{1}{1000}x + \frac{999}{1000}w$$

Probabilistic ⊉ Quantum

$$\omega : \begin{bmatrix} x & y \\ v & w \end{bmatrix} \mapsto \frac{1}{1000} x + \frac{999}{1000} w \qquad \qquad \omega : \begin{bmatrix} x & y \\ v & w \end{bmatrix} \mapsto \frac{1}{2} (x - y - v + w)$$

 \mathbf{vNA}

Conclusions

Generalisation of Bayesian learning to Effectus theory

- probabilistic case:
 - now allows for non-sharp predicates $X \to \{0,1\}$ $X \to [0,1]$
 - states and predicates may concern any part of a Bayesian network
- quantum case is largely terra incognita
- Importance of state/predicate transformers for learning
 - revision of the primitives of Bayesian inference theory
 - influence, evidence, d-separation, analysis of counterfactuals, ...