

图神经网络在实时风控中的应用

○ 讲师简介

韩志超 高级机器学习工程师

eBay Payments and Risk 机器学习工程师,负责多个领域风险评估,包括实时交易,共谋和合规风险。入职 eBay 前有多年金融行业从业经验,包括对冲基金和投资银行。专注于时间序列决策问题。

○ 目录

- 1. 实时交易反欺诈场景介绍
- 2. 图神经网络在实时场景的挑战
- 3. 端到端的解决方案
- 4. 小结和展望

- 实时交易的风险检测对模型推断的延迟要求较高
- 利用有向时序异构图方式构建动态图
 - 解决实验阶段信息穿越问题
 - 提高在线推断速度

实时交易反欺诈场景介绍

Risk Assessment in Transaction Flow

实时交易反欺诈场景介绍

盗号评估

盗卡评估

支付渠道评估

信息核对

交易评估

是否标记(共谋)

是否拒绝 (未授权交易)

0

实时交易反欺诈场景介绍

ebaymsüp°

Transaction Risk Platforms

实时交易反欺诈场景介绍

Real-time Risk Evaluation: Supervised Machine-learned Models for Account Takeover

What is Account Takeover (ATO)?

- · Account takeover fraud is a form of identity theft in which the fraudster gets access to a victim's eBay accounts
- A successful account takeover attack leads to fraudulent transactions and unauthorized shopping from the victim's compromised account

Gather data based on historical transactions Data Bad (Unauthorized Claim with ATO Tag) or Good (No claim) Streaming Ingestion Batch Data · Unified & real-time risk variable extraction Processing Model State-of-the-art classification model Training Deployment Predict the possibility of ATO in real-time during transaction Model prediction affects decision of Approve /Surface **Live System** remedy / Decline during the check out flow

实时交易反欺诈场景介绍

Current Machine Learning Model is not a powerful representation of context information!

图神经网络在实时场景的挑战 — 二部图

事件节点和关联节点

避免了同质图的冗余

特征关联事件

图神经网络在实时场景的挑战 - 构图的时效性

图神经网络在实时场景的挑战 - 在线推断的延迟

关联特征的拼接

在线推断

图神经网络在实时场景的挑战 – VS GBDT

- Dataset: House insurance
 - Feature 66 columns
 - Boolean 7
 - Integer 18
 - String 11
 - Other 7
 - Label Resiliated
- Winner XGBoost
 - Best metric in test
 - Efficient in Training Time
 - More Understandable

	ROC AUC	F1 score	Time (sec)
XGBoost	0.7706	0.5591	500
MLP	0.7514	0.5458	184
TabNet without pretrain	0.7579	0.5529	1464
TabNet with pretrain	0.7524	0.5484	2370

构图的时效性

• 有向动态切片图 Directed Dynamic Snapshot Graph

推断低延迟

• Lambda 架构的网络结构

端到端方案 - 有向动态切片图

端到端方案 - 有向动态切片图

• DDSL

Directed Dynamic Snapshot Lambda

- 运用在分区切片图上
 - 类ClusterGCN
- 堆叠的通用GNN层
 - 类DeepGCN
- 推断的最后一跳
 - 类双塔模型

分区构图

编码学习

实体表述 订单评估

分区构图

编码学习

在线推断

实体表述 订单评估

分区构图

编码学习

实体表述
订单评估

- $Order_t^S \rightarrow Entity_t$
 - 实体表述
- $Entity_{t-i} \rightarrow Entity_t$
 - 实体表述
- $Entity_{t-e} \rightarrow Order_t$
 - 订单评估

分区构图

编码学习

实体表述 订单评估

分区构图

编码学习

实体表述

分区构图

编码学习

实体表述

分区构图

编码学习

在线推断

实体表述

分区构图

编码学习

在线推断

实体表述

Transaction Risk Platforms

0

端到端方案 - 实验对比

交易图

- 数月交易数据构建
- 90天实体关联窗口

关联实体

• 账户, 电子邮箱, 设备, 收货地址, IP

数据

- 训练 时间切片前80%
- •验证时间切片中10%
- •测试时间切片后10%

交易订单节点标签分布

• 正常:异常 - 20:1

端到端方案 - 实验对比

Model	Average Precision	ROC AUC
MLP	0.3917±0.0030	0.9209±0.0016
LGB	0.4081±0.0096	0.9317±0.0005
DDSL (GCN)	0.4928±0.0021	0.9428±0.0006
DDSL (GAT)	0.4796±0.0144	0.9387±0.0004

2020-11 Guest

Model	\$ Fraud Precision	\$ Fraud Recall
mlp	16.67%	12.50%
bst	16.67%	10.80%
gcn	16.67%	40.20%

2020-11 New (first payment dof < 90)

Model	\$ Fraud Precision	\$ Fraud Recall
mlp	16.67%	38.50%
bst	16.67%	51.20%
gcn	16.67%	68.99%

- 端到端的图神经网络实时反欺诈检测的方案
 - 图切分使得分布式训练和推断可行
 - 有效的实验切片构图规避未来信息
 - 高效的在线推断 P99<80ms
 - 相比GBDT有显著提升 AP +20%

- 对比引入RNN机制的TGN
- 社区分区大小对模型的影响
- 深度模型替换GBDT编码
- 图神经网络的预训练

参考资料

- 1. Lu, M., Han, Z., Zhang, Z., Zhao, Y. Shan, Y. (2021). Graph Neural Networks in Real-Time Fraud Detection with Lambda Architecture. *arXiv preprint arXiv:2110.04559*.
- Chiang, W. L., Liu, X., Si, S., Li, Y., Bengio, S., & Hsieh, C. J. (2019, July). Cluster-gcn: An efficient algorithm for training deep and large graph convolutional networks. In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining* (pp. 257-266).
- 3. Li, G., Muller, M., Thabet, A., & Ghanem, B. (2019). Deepgcns: Can gcns go as deep as cnns?. In *Proceedings of the IEEE/CVF International Conference on Computer Vision* (pp. 9267-9276).
- 4. He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., ... & Candela, J. Q. (2014, August). Practical lessons from predicting clicks on ads at facebook. In *Proceedings of the Eighth International Workshop on Data Mining for Online Advertising* (pp. 1-9).
- 5. Deep Learning vs GBDT model on tabular data, https://www.kaggle.com/kyosukemorita/deep-learning-vs-gbdt-model-on-tabular-data/notebook

关注msup公众号 获取更多AI落地实践

麦思博(msup)有限公司是一家面向技术型企业的培训咨询机构,携手2000余位中外客座导师,服务于技术团队的能力提升、软件工程效能和产品创新迭代,超过3000余家企业续约学习,是科技领域占有率第1的客座导师品牌,msup以整合全球领先经验实践为己任,为中国产业快速发展提供智库。