

CS/IS F214 Logic in Computer Science

MODULE: INTRODUCTION

Problems in Logic and Their Complexity

Boolean expressions

- Consider Boolean operations AND, OR, and NOT defined on the set {1,0}:
 - If x and y are both 1,
 - then x AND y is 1; otherwise x AND y is 0
 - If x is 1, or y is 1, or both of them are 1,
 - then x OR y is 1; otherwise x OR y is 0
 - If x is 1, then NOT x is 0; and if x is 0, then NOT x is 1
- Consider Boolean expressions (or formulas) of the form:
 - e.g. (x AND y) OR ((NOT x) AND z AND w)
 - How do you evaluate such expressions, given values for the variables?

Evaluating Boolean Expressions

- Can you write an algorithm (or a program) for evaluation of Boolean expressions?
 - i.e. write an algorithm that
 - takes as input:
 - a Boolean expression e
 - containing variables, say, x0, x1, ...
 - and a map bm
 - assigning Boolean values i.e. 0 or 1 to each of these variables
 - and evaluate e

Evaluating Boolean Expressions – Time Taken

- What is the time taken by your algorithm to evaluate a Boolean expression?
 - Can you do it faster?
 - Can you argue that it cannot be done faster?
 - i.e. what is the minimum number of operations (or steps) required to evaluate an expression?

Boolean expressions - Satisfiability

- A Boolean expression (or formula) is said to be satisfiable
 - if there is an assignment for which the expression evaluates to 1
 - i.e. if there exists an assignment of values to the variables

 occurring in the expression that makes the value of the expression 1.
- For instance, consider:
 - (x AND y) OR ((NOT x) AND z AND y)
 - Is this satisfiable? Why or why not?
 - ((NOT x) OR y) AND ((NOT y) AND z AND x)
 - Is this satisfiable? Why or why not?

Satisfiability is in NP

- The problem of satisfiability of Boolean expressions (referred to as SAT) is in NP:
 - i.e. given an input expression, and an assignment to the variables in the expression,
 - it can be <u>verified in time that is polynomial</u> in the length of the expression
 - whether the value of the expression is 1.

Exercise:

- Write a polynomial-time algorithm (or a program)
 - that takes as inputs
 - a Boolean expression and
 - an assignment (i.e. of values to variables)
 - and verifies whether the expression evaluates to 1.

Is SAT in P?

- Is SAT in P?
 - i.e. is there an algorithm
 - that takes an input Boolean expression, and
 - computes a suitable assignment to make the value of the expression 1, and
 - in time polynomial in the length of the expression?
- There is no known polynomial time algorithm for SAT so far:
 - But no one has proved that <u>SAT</u> is not in <u>P</u> either!
- Question:
 - What is the simplest algorithm for SAT?

Algorithm for SAT

- Write an algorithm to construct and evaluate a truth table.
 - What is the time complexity of your algorithm?
 - How much space does it cost?
 - Can you eliminate / reduce this cost?
 - i.e. Do you need to store the **truth table**?

Logical Implication

- Logical Implication:
 - Consider the statements:
 - If it rains today, the road will be wet.
 - If I have a billion bucks, then I will stop working
 - If moon is made of cheese, and mars is made of ice then I will give you a billion bucks or I will eat cheese ice cream

Logical Implication

- These statements use "logical" implication:
 - i.e. they are of the form A *implies* B (denoted A --> B)
- Thus, we can formulate each statement using notation:
 - If it rains today then the road will be wet.
 - rains_today --> road_wet
 - If I have a billion bucks then I will stop working
 - have_billion --> stop_working
 - If moon is made of cheese and mars is made of ice then I will give you a billion bucks or I will eat cheese ice cream
 - (cheesy_moon AND icy_mars) --> (give_billion OR eat_cheese_ice-cream)

Understanding Implication

- A logical implication of the form:
 - A --> B

is TRUE (i.e. evaluates to 1) if **B** is TRUE when(ever) **A** is TRUE.

- Write the truth table for A --> B
- Thus A --> B can be equated to (NOT A) OR B
 - Why?

Horn Clauses

- More generally,
 - A1 AND A2 AND ... Ak --> B
- can be translated to
 - (NOT A1) OR (NOT A2) OR ... (NOT Ak) OR B
- Such (implication clauses) are referred to as Horn Clauses.

HORN-SAT

- Horn Clauses form a subset of Boolean expressions.
- But it turns out that
 - <u>satisfiability of Horn Clauses</u> can be computed in polynomial time.
 - i.e. **HORN-SAT** is in **P**.

