Микроэкономика

Домашняя работа №13 (Аверьянов Тимофей ПМ 3-1)

Задача №1. Полагая, что производственная функция монополистов является функцией двух факторов (капитал, труд) осуществить первые два шага метода Лагранжа трансформации модели (6) к приведённой форме.

$$\begin{cases}
\pi = p(q) \cdot q - \sum_{i=1}^{n} p_{i} x_{i} \to \max \\
q = F(x_{1}, \dots, x_{n}) \\
x_{1} \ge 0, \dots, x_{n} \ge 0; \\
p_{1}, \dots, p_{n} - \mathfrak{g} \kappa \mathfrak{g} \\
x_{1}, \dots, x_{n}, \pi, q, y, c - \mathfrak{g} \mathsf{H} \mathsf{J}.
\end{cases}$$
(6)

Решение:

Составим необходимое условие экстремума:

$$L = p(q) \cdot q - p_1 x_1 - p_2 x_2 + \lambda (F(x_1, x_2) - q)$$

$$\begin{cases} \frac{\partial L}{\partial x_1} = p(q) \cdot q'_{x_1} - p_1 + \lambda F(x_1, x_2)'_{x_1} = 0 \\ \frac{\partial L}{\partial x_2} = p(q) \cdot q'_{x_2} - p_2 + \lambda F(x_1, x_2)'_{x_2} = 0 \\ F(x_1, x_2) - q = 0 \end{cases}$$

Задача №2. Осуществить расчёты модели (5) привлекая линейную обратную функцию спроса (4.1).

Решение:

Воспользуемся файлом Excel сделанном на семинарском занятии и заменим:

$$\psi(q) = d_0 + d_1 \cdot q; \ d_1 < 0 \ (4.1)
(4.1) \begin{cases} d_0 = 0.8 \cdot 10^{-6}; \\ d_1 = -1.25 \cdot 10^{-15}; \end{cases}$$

Воспользуемся функцией "поиск решения", получим следующее решение:

Исходные данные	
a0	2200000
а	0.3
b	0.8
p0	0.000001
p1	0.015
p2	0.048
d0	8E-07
d1	-1.3E-15
Искомые величины	
x1	103.6242
x2	86.35244
q	3.13E+08
p(q)	4.08E-07
У	127.9453
С	5.69928
π	122.2461

Таким образом спрос на фаткоры производства равны:

 $x_1 = 103.6242, \ x_2 = 86.35244.$

Задача № 3. Вычислить экономический смысл d_1 в обеих моделях (*) обратной функции спроса.

$$\begin{cases} p(q) = d_0 + d_1 \cdot q; \ d_1 < 0 \ (4.1) \\ p(q) = d_0 \cdot e^{d_1 \cdot q}; \ d_1 < 0 \ (4.2) \end{cases}$$
 (*)

Решение: для выявляения экономического смысла d_1 вычислим частную производную по q от обратной функции спроса:

$$(4.1) \frac{\partial p(q)}{\partial q} = d_1$$

Возьмём логарифм от обратной функции спроса (4.2) : $\ln(p(q)) = \ln d_0 + d_1 \cdot q \cdot \ln e = \ln d_0 + d_1 \cdot q$

$$(p(q)) = \ln a_0 + a_1 \cdot q \cdot \ln e = \ln a_0 + a_1$$

$$(4.2) \frac{\partial \ln(p(q))}{\partial q} = a_1$$

Вывод: d_1 – это то на сколько изменится обратная функция спроса изменении выпуска q на 1 единицу.