4.2 Let span($\{1, x, x^2\}$) be a subspace of the inner product space $L^2([0, 1]); \mathbb{R}$. Let D be the derivative operator $D: V \to V$ given by D[p](x) = p'(x). Recall

from a previous exercise (from Wk2) that
$$D = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
. Given that D is

upper triangular, we observe that the eigenvalues are all 0. So, the algebraic multiplicity is 3. Note that D has just one eigenvector for eigenvalue 0. Thus, the eigenspace of 0 is $\operatorname{span}(\{1\})$ and the geometric multiplicity is 1.

4.4

(i) Proof. We know that the determinant of a 2×2 matrix A denoted by $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ can be expressed as $\det(A) = ad - bc$. Now, given the Hermitian of A, denoted A^H , it follows that $a = \bar{a}$, $b = \bar{c}$, and $d = \bar{d}$. Thus, a and d must be real. Observe that $bc = \bar{c}c = ||c||^2$ is also real. Now, by exercise 4.3 the characteristic polynomial of any 2×2 matrix has the form

$$p(\lambda) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A)$$
$$= \lambda^2 - (a+d)\lambda + ad - ||c||^2$$

It follows that the solutions of this are given by

$$\lambda_{\pm} = \frac{(a+d) \pm \sqrt{(a+d)^2 - 4(ad - ||c||^2)}}{2}$$
$$= \frac{(a+d) \pm \sqrt{(a-d)^2 + ||c||^2}}{2}$$

But $(a-d)^2 + ||c||^2 \ge 0$, thus λ_{\pm} is real.

(ii) Let A be the same 2×2 matrix as defined in 4.4 (i). Hence $\det(A) = ad - bc$. Now, suppose A is a skew-Hermitian matrix (still 2×2 . It follows that $a = -\bar{a}$, $b = -\bar{c}$, and $d = -\bar{d}$. Thus, a and d are imaginary. Furthermore, $bc = -\bar{c}c = -||c||^2$ and ad are both negative. By similar

fashion to part (i) we use the same characteristic polynomial, whose solutions are also given by

$$\lambda_{\pm} = \frac{(a+d) \pm \sqrt{(a+d)^2 - 4(ad-||c||^2)}}{2}$$
$$= \frac{(a+d) \pm \sqrt{(a-d)^2 + ||c||^2}}{2}$$

However, this time $(a-d)^2 + ||c||^2 < 0$ (since each term is negative). Thus, for all a, b, c, d we have that λ_{\pm} is imaginary.

4.6

Proof. Let $A \in M_n(\mathbb{F})$ be upper-triangular, and suppose $\lambda \in \mathbb{C}$. It follows that $\lambda I - A$ is also upper-triangular, and the determinant is just the product of the entries that lie along the diagonal of the upper-triangular matrix. The characteristic polynomial of A is given by

$$p(\lambda) = \det(\lambda I - A)$$
$$= \prod_{i=1}^{n} (\lambda - a_{ii})$$

Note that the roots to this are the diagonal entries of A, and hence are the eigenvalues. Note that the proof for a lower-diagonal matrix is similar in that the determinant is the same as for an upper-triangular matrix.

- **4.8** Let V be the span of the set $S = \{\sin(x), \cos(x), \sin(2x), \cos(2x)\}$ in the vector space $C^{\infty}(\mathbb{R}, \mathbb{R})$
 - (i) *Proof.* Recall from a previous exercise (from Wk2) that this set is orthonormal given the inner product $\langle \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)g(t)dt \rangle$. So, each element in the spanning is independent. Thus, they form a basis for the span. Therefore, S is a basis for V.

(ii) Let D be the derivative operator. Observe that

$$D\sin(x) = \cos(x)$$

$$D\cos(x) = -\sin(x)$$

$$D\sin(2x) = 2\cos(x)$$

$$D\cos(2x) = -2\sin(x)$$

It follows that
$$D = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

- (iii) Two complementary *D*-invariant subspaces of *V* are span($\{\sin(x), \cos(x)\}$) and span($\{\sin(2x), \cos(2x)\}$)
- **4.13** Let $A = \begin{bmatrix} 0.8 & 0.4 \\ 0.2 & 0.6 \end{bmatrix}$. Observe that

$$\det(\lambda I - A) = \lambda^2 - 1.4\lambda + 0.4$$

The roots of which are 1 and 0.4. Hence the eigenvalues are 1 and 0.4 The corresponding eigenvector for $\lambda=1$ is the null space of $\begin{bmatrix} -0.2 & 0.4 \\ 0.2 & -0.4 \end{bmatrix}$ and has a solution of $\begin{bmatrix} 2 & 1 \end{bmatrix}^T$. Now, the eigenvector for $\lambda=0.4$ is the null space of $\begin{bmatrix} 0.4 & 0.4 \\ 0.2 & 0.2 \end{bmatrix}$ and has a solution of $\begin{bmatrix} 1 & -1 \end{bmatrix}^T$. Thus

$$P = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$$

4.15

Proof. Let $(\lambda_i)_{i=1}^n$ be the eigenvalues of a semisimple matrix $A \in M_n(\mathbb{F})$ and $f(x) = a_0 + a_1 x + ... + a_n x^n$ be a polynomial. Now by Theorem 4.3.7, A can

be diagonalized as PBP^{-1} . Observe that

$$f(A) = a_0 I + a_1 A + \dots + a_n A^n$$

= $a_0 P P^{-1} + a_1 P B P^{-1} + \dots + a_n P B^n P^{-1}$
= $P f(B) P^{-1}$

but each term in f(B) is a diagonal matrix. Hence, each diagonal entry is $(f(\lambda_i))_{i=1}^n$, and since f(B) is similar to f(A), it follows that the eigenvalues are the same denoted by $(f(\lambda_i))_{i=1}^n$

- **4.16** Let A be the matrix in Exercise 4.13, namely $A = \begin{bmatrix} 0.8 & 0.4 \\ 0.2 & 0.6 \end{bmatrix}$
 - (i) Observe that $A^n = PC^nP^{-1}$ with

$$C^{n} = \begin{bmatrix} 1^{n} & 0\\ 0 & 0.4^{n} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0\\ 0 & 0.4^{n} \end{bmatrix}$$

and

$$A^{k} = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0.4^{k} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{-2}{3} \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} 2 + 0.4^{k} & 2 - 2 \cdot 0.4^{k} \\ 1 - 0.4^{k} & 1 + 2 \cdot 0.4^{k} \end{bmatrix}$$

Note also that the limit $B = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{-2}{3} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$ Now, observe that $A^k - B = \frac{1}{3} \begin{bmatrix} 0.4^k & -2 \cdot 0.4^k \\ -0.4^k & 2 \cdot 0.4^k \end{bmatrix}$ and each term converges. Thus, it converges with respect to the 1-norm.

(ii) Note that for a given matrix, the ∞ -norm is just the largest row sum. Note also that $-0.4^k + 2 \cdot 0.4^k \to 0$ as $k \to \infty$.

Now, observe that

$$||A^{k} - B||_{F} = \sqrt{\operatorname{tr}\left(\begin{bmatrix} 0.4^{k} & -0.4^{k} \\ -2 \cdot 4^{k} & 2 \cdot 0.4^{k} \end{bmatrix} \begin{bmatrix} 0.4^{k} & -2 \cdot 0.4^{k} \\ -0.4^{k} & 2 \cdot 0.4^{k} \end{bmatrix}\right)}$$

$$= \sqrt{\operatorname{tr}\left(\begin{bmatrix} 2 \cdot 0.4^{2k} & -4 \cdot 0.4^{2k} \\ -4 \cdot 4^{2k} & 8 \cdot 0.4^{2k} \end{bmatrix}\right)}$$

$$= \sqrt{10 \cdot 0.4^{2k}} \to 0 \text{ as } k \to \infty$$

Hence, $||A^k - B||_F \to 0$. Therefore, the answer does not depend on the choice of norm.

(iii) By Theorem 4.3.12, since A is semi-simple, the eigenvalues for $f(A) = 3I + 5A + A^3$ are f(1) = 3 + 5 + 1 = 9 and $f(0.4) = 3 + 5 \cdot 0.4 + 0.4^3 = 5.064$, where 1 and 0.4 are the eigenvalues from exercise 4.13.

4.18

Proof. Let λ be an eigenvalue of $A \in M_n(\mathbb{F})$ Now, A and A^T have the same characteristic polynomial, hence it follows that λ is also an eigenvalue of A^T . Thus, there exists some \mathbf{x} such that $A^T\mathbf{x} = \lambda \mathbf{x}$ which implies that $(A^T\mathbf{x})^T = (\lambda \mathbf{x})^T$. Therefore $\mathbf{x}^T A = \lambda \mathbf{x}^T$

4.20

Proof. Let A be Hermitian and orthonormally similar to B. Observe that

$$B = PAP^{H}$$

$$= PA^{H}P^{H}$$

$$= (PAP^{H})^{H}$$

$$= B^{H}$$

Therefore, B is Hermitian

4.24

Proof. Let $A \in M_n(\mathbb{C})$. Define the Rayleigh quotient as

$$\rho(\mathbf{x}) = \frac{\langle \mathbf{x}, A\mathbf{x} \rangle}{||\mathbf{x}||^2},$$

where $\langle \cdot, \cdot \rangle$ is the usual inner product on \mathbb{F}^n . It must be that $||\mathbf{x}||^2$ is always real, so we determine what happens with the numerator of the *Rayleigh quotient*.

So, suppose A is Hermitian. Observe that

$$\langle \mathbf{x}, A\mathbf{x} \rangle = \mathbf{x}^H A\mathbf{x}$$
$$= \mathbf{x}^H A^H \mathbf{x}$$
$$= \langle A\mathbf{x}, \mathbf{x} \rangle$$
$$= \overline{\langle \mathbf{x}, A\mathbf{x} \rangle}$$

Hence the numerator of the *Rayleigh quotient* is real, so the *Rayleigh quotient* must take real values.

Now suppose A is Skew-Hermitian. Observe that

$$\begin{aligned} \langle \mathbf{x}, A\mathbf{x} \rangle &= \mathbf{x}^H A\mathbf{x} \\ &= -\mathbf{x}^H A^H \mathbf{x} \\ &= -\langle A\mathbf{x}, \mathbf{x} \rangle \\ &= -\overline{\langle \mathbf{x}, A\mathbf{x} \rangle} \end{aligned}$$

Hence the numerator of the Rayleigh quotient is imaginary, so the Rayleigh quotient must also take imaginary values.

4.25 Let $A \in M_n(\mathbb{C})$ be a normal matrix with eigenvalues $\lambda_1, ..., \lambda_n$ and corresponding eigenvectors $[\mathbf{x}_1, ..., \mathbf{x}_n]$.

- (i) Observe that $\langle \mathbf{x}_j, \mathbf{x}_j \rangle = \mathbf{x}_j^H \mathbf{x}_j = 1$, and also that $\langle \mathbf{x}_i, \mathbf{x}_j \rangle = \mathbf{x}_i^H \mathbf{x}_j = 0$ for all $i \neq j$. So, $(\mathbf{x}_1 \mathbf{x}_1^H + ... + \mathbf{x}_n \mathbf{x}_n^H) \mathbf{x}_j = \mathbf{x}_j \mathbf{x}_j^H \mathbf{x}_j = I \mathbf{x}_j$. Hence $I = \mathbf{x}_1 \mathbf{x}_1^H + ... + \mathbf{x}_n \mathbf{x}_n^H$.
- (ii) Observe that $(\lambda_1 \mathbf{x}_1 \mathbf{x}_1^H + ... + \lambda_n \mathbf{x}_n \mathbf{x}_n^H) \mathbf{x}_j = \lambda \mathbf{x}_j \mathbf{x}_j^H \mathbf{x}_j = \lambda \mathbf{x}_j = A \mathbf{x}_j$. Hence $A = \lambda_1 \mathbf{x}_1 \mathbf{x}_1^H + ... + \lambda_n \mathbf{x}_n \mathbf{x}_n^H$.

4.27

Proof. Let $A \in M_n\mathbb{F}$ be positive definite. From definition 4.5.1 it follows that $\langle \mathbf{x}, A\mathbf{x} \rangle = \mathbf{x}^H A\mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$. Now take e_i which the i^{th} vector of the standard basis. Thus $0 < e_i^H A e_i = a_{ii}$ must be real and positive by definition.

4.28

Proof. Let $A, B \in M_n(\mathbb{F})$ be positive semidefinite. So, it follows that there exist some matrices S, T such that $A = S^H S$ and $B = T^H T$. Observe that

$$tr(AB) = tr(S^H S T^H T)$$
$$= tr(T S^H (T S^H)^H)$$
$$= tr((T S^H)^H T S^H)$$

where in the inside of the last expression is positive semidefinite, and has nonnegative entries along the diagonal (see exercise 4.26). Hence, $\operatorname{tr}(AB)7 = \operatorname{tr}((TS^H)^HTS^H) \geq 0$. Now, let $A = PDP^P - 1$ and $B = QEQ^{-1}$. Observe that

$$tr(AB) = tr(PDP^{-1}QEQ^{-1})$$

$$= tr(PP^{-1}QDEQ^{-1})$$

$$= tr(QQ^{-1}DE)$$

$$= DE$$

$$= \sum_{i} \lambda_{i} \xi_{i}$$

$$\leq \sum_{i} \lambda_{i} \sum_{i} \xi_{i}$$

$$= tr(A)tr(B)$$

where λ_i and ξ_i represent the eigenvalues of both A and B respectively. Now we must show that $||\cdot||_F$ is a matrix norm.

Positivity. Observe that $||A||_F = \operatorname{tr}(A^H A)$ where $A^H A$ is positive semi

definite. So, it follows that $\operatorname{tr}(A^HA) \geq 0$. Hence $||A||_F \geq 0$. Now suppose $||A||_F = 0$. Given that all the elements along the diagonal of A^HA are weakly positive, it follows that each one must be 0 so that $||A||_F = 0$. Thus, each singular value of A is 0, and A is the 0 matrix.

Scale Preservation. Suppose we have a scalar $c \in \mathbb{R}$. Observe that

$$||cA||_F = \sqrt{\operatorname{tr}((cA)^H(cA))}$$

$$= \sqrt{c^2 \operatorname{tr}(A^H A)}$$

$$= c\sqrt{\operatorname{tr}(A^H A)}$$

$$= c||A||_F$$

Triangle inequality. Observe that

$$||A + B||_F^2 = \operatorname{tr}((A + B)^H (A + B)) = \operatorname{tr}(A^H A + A^H B + B^H A + B^H B)$$

$$= \operatorname{tr}(A^H A) + 2\operatorname{tr}(A^H B) + \operatorname{tr}(B^H B)$$

$$\leq ||A||_F^2 + 2||A|| ||B|| + ||B||_F^2$$

$$= (||A||_F + ||B||_F)^2$$

(Note that the inequality comes from applying the Cauchy-Schwartz Inequality)

Submultiplicative Property. This follows from the inequality we proved above; namely $0 \le \operatorname{tr}(AB) \le \operatorname{tr}(A)\operatorname{tr}(B)$.

Therefore, given that these properties are satisfied, it follows that $||\cdot||_F$ is a matrix norm.

- **4.31** Let $A \in M_{m \times n}(\mathbb{F})$ and A not identically zero.
 - (i) Proof. Let $A = U\Sigma V^H$, $y = V^H x$, and σ_1 be the largest singular value

of A. Observe that

$$||A||_{2} = \sup_{x \neq 0} \frac{||Ax||_{2}}{||x||_{2}}$$

$$= \sup_{x \neq 0} \frac{||U\Sigma V^{H}x||_{2}}{||x||_{2}}$$

$$= \sup_{x \neq 0} \frac{||\Sigma V^{H}x||_{2}}{||x||_{2}}$$

$$= \sup_{y \neq 0} \frac{||\Sigma y||_{2}}{||Vy||_{2}}$$

$$= \sup_{y \neq 0} \frac{||\Sigma y||_{2}}{||y||_{2}}$$

$$= \sup_{||y||=1} ||\Sigma y||_{2}$$

$$= \sigma_{1}$$

(ii) Let $A = U\Sigma V^H$ and σ_n be the smallest singular value of A. Suppose A is invertible. Observe that

$$A^{-1} = V \Sigma^{-1} U^H$$

Note that $\frac{1}{\sigma_1},...,\frac{1}{\sigma_n}$ are the diagonal entries of Σ^{-1} . Given that σ_n is the smallest singular value of A, it follows that $\frac{1}{\sigma_n}$ is the largest singular value of A^{-1} . By part(i), $||A^{-1}||_2 = \frac{1}{\sigma_n}$

(iii) Let $A = U\Sigma V^H$. Note then that $A^T = V\Sigma^T U^T$, and also that $A^H = V\Sigma^H U^H$. Now, the singular values of A are each positive and real, and Σ is diagonal comprised of singular values. Hence, it is equivalent to its transpose as well as its Hermitian. So by part (i), we have that

$$||A||_2^2 = ||A^T||_2^2$$

= $||A^H||_2^2$
= σ_1^2

Observe that

$$A^{H}A = V\Sigma^{H}U^{H}U\Sigma V^{H}$$
$$= V\Sigma^{H}\Sigma V^{H}$$
$$= V\Sigma^{2}V^{H}$$

Given that multiplication is preserved with diagonal matrices, it follows that Σ^2 is also diagonal, with σ_i^2 as the diagonal entries. So by part(i) it follows that $||A^HA||_2 = \sigma_1^2 = ||A||_2^2$

(iv) Let $U \in M_m(\mathbb{F})$ and $V \in M_n(\mathbb{F})$ be orthonormal. Observe that

$$||UAV||_{2}^{2} = ||(UAV)^{H}UAV||_{2}$$

$$= ||V^{H}A^{H}AV||_{2}$$

$$= ||A^{H}AVV^{H}||_{2}$$

$$= ||A^{H}A||_{2}$$

$$= ||A||_{2}^{2}$$

This follows from norm properties and by part(iii).

- **4.32** Let $A \in M_{m \times n}()\mathbb{F}$ be of rank r.
 - (i) Proof. Let $U \in M_m(\mathbb{F})$ and $V \in M_n(\mathbb{F})$ be orthonormal. Observe that

$$||UAV||_F = \sqrt{\operatorname{tr}(V^H A^H U^H U A V)}$$

$$= \sqrt{\operatorname{tr}(V^H A^H A V)}$$

$$= \sqrt{\operatorname{tr}(A^H A V V^H)}$$

$$= \sqrt{\operatorname{tr}(A^H A)}$$

$$= ||A||_F$$

(ii) Proof. By SVD and part (i), we have that

$$\begin{split} ||A||_F &= ||U\Sigma V^H||_F \\ &= ||\Sigma||_F \\ &= \sqrt{\operatorname{tr}(\Sigma^H \Sigma)} \\ &= \left(\sum_{i=1}^r \sigma_i^2\right)^{\frac{1}{2}} \\ &= \left(\sigma_1^2 + \sigma_2^2 + \dots + \sigma_r^2\right)^{\frac{1}{2}} \end{split}$$

4.33

Proof. Let $A \in M_n(\mathbb{F})$. By exercise 4.31, we have that $||A||_2 = \sigma_1$, with σ_1 being the largest singular value of A. Observe that

$$\sup_{\|x\|_{2}=1, \|y\|_{2}=1} |\mathbf{y}^{H} A \mathbf{x}| \leq \sup_{\|x\|_{2}=1, \|y\|_{2}=1} ||\mathbf{y}||_{2} ||\Sigma \mathbf{x}||_{2}$$

$$= \sup_{\|x\|_{2}=1} ||\Sigma \mathbf{x}||_{2}$$

$$\leq \sigma_{1} \text{ by exercise } 4.31$$

Now, if we let \mathbf{x} and \mathbf{y} be e_1 the standard eigenvector, it follows that

$$\sup_{||x||_2=1, ||y||_2=1} |\mathbf{y}^H A \mathbf{x}| \ge |\mathbf{y}^H A \mathbf{x}|$$

$$= \sigma_1$$

Therefore
$$\sup_{||x||_2=1, ||y||_2=1} |\mathbf{y}^H A \mathbf{x}| = \sigma_1 = ||A||_2.$$

4.36 Let $A = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$. So, $A^H A = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$. Now $\det(A) = -2$, and the singular values of A are 1 and 2, with eigenvalues $\pm \sqrt{2}$.

4.38

Proof. Let $A \in M_{m \times n}(\mathbb{F})$. Then the Moore-Penrose pseudoinverse of A satisfies the following:

(i)

$$AA^{\dagger}A = U_{1}\Sigma_{1}V_{1}^{H}V_{1}\Sigma_{1}^{-1}U_{1}^{H}U_{1}\Sigma_{1}V_{1}^{H}$$

$$= U_{1}\Sigma_{1}\Sigma_{1}^{-1}\Sigma_{1}V_{1}^{H}$$

$$= U_{1}\Sigma_{1}V_{1}^{H}$$

$$= A$$

(ii)

$$\begin{split} A^{\dagger}AA^{\dagger} &= V_{1}\Sigma_{1}^{-1}U_{1}^{H}U_{1}\Sigma_{1}V_{1}^{H}V_{1}\Sigma_{1}^{-1}U_{1}^{H} \\ &= V_{1}\Sigma_{1}^{-1}\Sigma_{1}\Sigma_{1}^{-1}U_{1}^{H} \\ &= V_{1}\Sigma_{1}^{-1}U_{1}^{H} \\ &= A^{\dagger} \end{split}$$

(iii)

$$(AA^{\dagger})^{H} = (U_{1}\Sigma_{1}V_{1}^{H}V_{1}\Sigma^{-1}U_{1}^{H})^{H}$$
$$= U_{1}\Sigma_{1}V_{1}^{H}V_{1}\Sigma_{1}^{-1}U_{1}^{H}$$
$$= AA^{\dagger}$$

(iv)

$$(A^{\dagger}A)^{H} = (V_{1}\Sigma_{1}^{-1}U_{1}^{H}U_{1}\Sigma_{1}V_{1}^{H})^{H}$$
$$= V_{1}\Sigma_{1}^{-1}U_{1}^{H}U_{1}\Sigma_{1}V_{1}^{H}$$
$$= A^{\dagger}A$$

(v) By part (i), we have that $(AA^{\dagger}A)A^{\dagger} = A^{\dagger}A$. Hence $(AA^{\dagger})(AA^{\dagger}) = A^{\dagger}A$. Now, let $U_1 = [u_1, ..., u_n]$. So, U_1 is an orthonormal basis for $\mathcal{R}(A)$ by SVD. By part (iii), we have that

$$AA^{\dagger} = U_1 U_1^H x$$

$$= U_1 [u_1^H x, ..., u_n^H x]$$

$$= \sum_{i=1}^n u_i^H x u_i$$

$$= \sum_{i=1}^n \langle u_i, x \rangle u_i$$

$$= \operatorname{proj}_{\mathscr{R}(A)} x$$

where n denotes the number of singular values of A. Therefore, AA^{\dagger} is an orthogonal projection onto $\mathcal{R}(A)$ by definition.

(vi) This follows in similar fashion as part (v). Let $V_1 = [v_1, ..., v_n]$. So, V_1 is an orthonormal basis for $\mathcal{R}(A^H)$ by SVD. By part(iv), we have that

$$A^{\dagger}Ax = V_1V_1^H x$$

$$= V_1[v_1^H x, ..., v_n^H x]$$

$$= \sum_{i=1}^n v_i^H x v_i$$

$$= \sum_{i=1}^n \langle v_i, x \rangle v_i$$

$$= \text{proj}_{\mathscr{R}(A^H)} x$$

where n again denotes the number of singular values of A. Therefore, $A^{\dagger}A$ is an orthogonal projection onto $\mathcal{R}(A^H)$ by definition.