Chapter 10

Strongly Connected Components and Topological Sort.

10.1 Topological Sort

Definition 10.1.1. (connectivity)

- 1. Let G = (V, E) be a non-directed graph. A **connected component** of G is a subset $U \subseteq V$ of maximal size in which there exists a path between every two vertices.
- 2. A non-directed graph G is said to be a **connected** graph if it only has one connected component.
- 3. Let G = (V, E) be a directed graph. A **strongly connected component** of G is a subset $U \subseteq V$ of maximal size in which for any pair of vertices $u, v \in U$ there exist both directed path from u to v and a directed path form v to u.

10.1.1 Depth First Search (DFS)

As its name implies, depth-first search searches "deeper" in the graph whenever possible. Depth-first search explores edges out of the most recently discovered vertex v that still has unexplored edges leaving it. Once all of v's edges have been explored, the search "backtracks" to explore edges leaving the vertex from which v was discovered. This process continues until all vertices that are reachable from the original source vertex have been discovered. If any undiscovered vertices remain, then depth-first search selects one of them as a new source, repeating the search from that source. The algorithm repeats this entire process until it has discovered every vertex.

```
1 DFS(G):
                                                   1 Previsit(v):
 2 for v \in V do
                                                   2 pre(v) \leftarrow time
       v.visited \leftarrow False
                                                   3 \text{ time} \leftarrow \text{time} + 1
 4 end
                                                   1 Postvisit(v):
 5 time \leftarrow 1
                                                   2 post(v) \leftarrow time
 6 for v \in V do
                                                   3 time ← time +1
        if not v.visited then
             \pi(v) \leftarrow \text{null}
 8
            Explore (G, v)
 9
        end
10
11 end
 1 Explore(G, v):
 2 Previsit(v)
 solution{for } (v,u) \in E do
        if not u.visited then
 4
 5
             \pi\left(u\right)\leftarrow v
            Explore(G, u)
 6
        end
 7
 8 end
 9 Postvisit(v)
```

Properties of depth-first search. Depth-first search yields valuable information about the structure of a graph. Perhaps the most basic property of depth-first search is that the predecessor subgraph G_{π} does indeed form a forest of trees since the structure of the depth-first trees exactly mirrors the structure of recursive calls of explore-function. That is, $u = \pi(v)$ if and only if $\exp(G, v)$ was called during a search of u's adjacency list.

Additionally, vertex v is a descendant of vertex u in the depth-first forest if and only if v is discovered during the time in which u is gray. Another important property of depth-first search is that discovery and finish times have a parenthesis structure. If the explore procedure were to print a left parenthesis "(u" when it discovers vertex u and to print a right parenthesis "u" when it finishes u, then the printed expression would be well-formed in the sense that the parentheses are properly nested.

The following theorem provides another way to characterize the parenthesis structure.

Theorem 10.1.1 (Parenthesis theorem). In any depth-first search of a (directed or undirected) graph G = (V, E), for any two vertices u and v, exactly one of the following three conditions holds:

- 1. the intervals [pre(u), post(u)] and [pre(v), post(v)] are entirely disjoint, and neither u nor v is a descendant of the other in the depth-first forest.
- 2. the interval [pre(u), post(u)] is contained entirely within the interval [pre(v), post(v)], and u is a descendant of v in a depth-first tree, or

3. the interval [pre(v), post(v)] is contained entirely within the interval [pre(u), post(u)], and v is a descendant of u in a depth-first tree.

Proof. Assume without loss of generality that pre(u) < pre(v). Split to the following:

- 1. Either pre(v) < post(u). In that case, we will prove, by induction on pre(v) pre(u), that for any u, v satisfies the relations, the third case holds.
 - (a) Base. pre(v) pre(u) = 1, Then clearly $\{u, v\}$, i.e v is a direct child of u. Showing that the value of post(v) has to be set before post(v) is left as an exercise.
 - (b) Assumption. Assume correctness for any pre(v) pre(u) < t < post(u).
 - (c) Step. Consider t > 1 such pre(v) pre(u) = t. Since t > 1 there is must to be vertex w for which pre(u) < pre(w) < pre(v) = t. Split again:
 - i. Either post(w) > pre(v). Observes that:

$$\operatorname{pre}(v) - \operatorname{pre}(w) < \operatorname{pre}(v) - \operatorname{pre}(u) = t$$

and also:

$$pre(w) - pre(u) < pre(v) - pre(u) = t$$

Therefore by the induction assumption:

$$[\operatorname{pre}(v), \operatorname{post}(v)] \subset [\operatorname{pre}(w), \operatorname{post}(w)] \subset [\operatorname{pre}(u), \operatorname{post}(u)]$$

and in addition w is a descendant of u and v is a descendant of w. Hence v is a descendant of u.

so that v was discovered while u was still gray, which implies that v is a descendant of u. Moreover, since v was discovered after u, all of its outgoing edges are explored, and v is finished before the search returns to and finishes u. In this case, therefore, the interval $[\operatorname{pre}(v), \operatorname{post}(v)]$ is entirely contained within the interval $[\operatorname{pre}(u), \operatorname{post}(u)]$.

2. Or, post(u) < pre(v), and by definition, pre(u) < post(u) < pre(v) < post(v), and thus the intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint. Because the intervals are disjoint, neither vertex was discovered while the other was gray, and so neither vertex is a descendant of the other.

Corollary 10.1.1. Vertex v is a proper descendant of vertex u in the depth-first forest for a (directed or undirected) graph G if and only if pre(u) < pre(v) < post(v) < post(u).