BIOS 7747: Machine Learning for Biomedical Applications

Convolutional neural networks

Antonio R. Porras (antonio.porras@cuanschutz.edu)

Department of Biostatistics and Informatics
Colorado School of Public Health
University of Colorado Anschutz Medical Campus

Outline

- □ Introduction to convolutional neural networks
 - Convolutions
 - Downsampling
 - Activation
 - Full architecture
 - Training
- Architectures and basic design concepts
- Fully convolutional networks

□ In previous class: artificial neural networks

- What happens if we have too much data?
 - Thousands or millions of observations?
 - It does not affect the network architecture
 - It will likely decrease overfitting and build more robust models

- Thousands or millions of features?
 - It will require a much wider network
 - It will likely increase overfitting (many more weights)

- Images (and temporal signals) usually have a high number of pixels (temporal samples)
 - 2D images with size 200x200: 40,000 features per image
 - 3D images with size 200x200x200: 8,000,000 features per image
 - Signal sampled at 120Hz for 5 minutes: 36,000 features per signal
- □ Number of parameters needed only in the first hidden layer:

□ To evaluate one image using a network with only 1,000 neurons in one hidden layer we would need :

$$4*(40,000+1,000*40,000+1,000+1,000*1+1) \approx 160MB$$
 image hidden layer output neuron

- □ More realistic scenario of a <u>narrow</u> 8-layer network :
 - $4*(40,000+40,000*40,000+40,000+40,000*30,000+30,000+30,000*20,000+20,000+20,000*10,000+10,000*10,000*20,000+20,000+20,000*512+512+512*128+128+128*1+1) \approx 14GB$

Memory needs:

Memory for model parameters

Memory for parameter gradients

Memory for optimizer's momentum

Memory for outputs

Memory for error and losses

Memory for operations

Library overhead, other resources, OS management, etc.

□ Spatial operation that aggregates the information in a specific neighborhood

■ Defined using a base kernel and a convolution operation

weights	1	Γ		
	$W_{-1,1}$	$W_{-1,0}$	$W_{-1,-1}$	
Neighborhood: 3x3	<i>w</i> _{0,1}	$w_{0,0}$	<i>W</i> _{0,-1}	
	<i>w</i> _{1,1}	<i>w</i> _{1,0}	W _{1,-1}	

Spatial kernel:

For each image position (x,y):

2. Multiply all filter coefficients w(s,t) with corresponding pixel f(x+s,y+t)

1. Move filter matrix w over image such that w(0,0) coincides with current image position (x,y)

Cross-correlation of image f and filter w: $g(x,y) = \sum_{i,j=-1}^{1} f(x+i,y+j) * w(i,j)$

Padding

 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?

- Zero-padding
- Mirroring
- Replication
- Circle-padding
- Border removal

- Visual (or temporal) patterns consists in:
 - Intensity value in a continuous region (brighter or darker)
 - Intensity change between regions (edge strength)
- Convolutions can provide information about:
 - Regional intensity
 [aka smoothing or (weighted) average filter]

4	1	1	1
$\frac{1}{9} *$	1	1	1
J	1	1	1

Edge information
 [aka sharpening or differential filter]

$\frac{-1}{8}$	$\frac{-1}{8}$	$\frac{-1}{8}$
$\frac{-1}{8}$	1	$\frac{-1}{8}$
$\frac{-1}{8}$	$\frac{-1}{8}$	$\frac{-1}{8}$

Convolution vs. cross-correlation

Cross-correlation:
$$g(x,y) = \sum_{i,j=-1}^{1} f(x+i,y+j) * w(i,j)$$

Convolution:
$$g(x,y) = \sum_{i,j=-1}^{1} f(x+i,y+j) * w(-i,-j)$$

- □ To implement a convolution, a 180° rotation must be applied to the kernel
- □ They are only equivalent in symmetric kernels
- Most libraries implement cross-correlations, not convolutions

■ Example of convolutions

- Convolutional neural networks use convolutional filters to calculate spatial or temporal features
 - Convolution operations replace the linear decision function of the perceptron

$$z = wx + b$$

$$z = wx + b \qquad \qquad z = w * I + b$$

- Comparison:
 - Parameters required for linear function: #Neurons x #Features + #Neurons
 - Parameters required for convolution: #Filters x FilterSize + #Filters
- □ The number of convolution parameters does not depend on the spatial size (or signal length)

- □ Example: Extraction of 10 features of a 200x200 image
 - Fully connected layer with 10 neurons:
 - Number of parameters: $10 \times (200 \times 200) + 10 = 400,010$ parameters
 - Every perceptron combines all image information (most information will not be relevant so there are very high chances of overfitting)
 - Output: 10 features
 - Convolutional network with 10 filters:
 - Region size: 5x5 neighborhood
 - Number of parameters $10 \times 25 + 10 = 260$ parameters
 - Every feature combines only regional information
 - Output: 10 features at each pixel (10x200x200)

Downsampling

- Downsampling: reduces the amount of data (dimensionality reduction)
 - Increases robustness to slight changes in rotation and translation
 - Convolutions of lower resolution images with same kernels aggregate information from larger regions
- Two main approaches to downsampling

Convolution with strides

• Faster

2x2 strides

<u>Pooling (after convolution)</u>

2x2 pooling with 2x2 strides

Downsampling

□ Typical convolutional neural network

Activation

 Although pooling can eliminate meaningless features, it needs to either choose between different potentially meaningful features (max pool) or aggregate potentially meaningless features (average pooling)

□ The activation function

• An activation enables kernels to learn how to zero-out irrelevant spatial patterns

Full architecture

width

height

channels

Number of parameters: $Nx(k \times k \times C_{in} + 1)$

Full architecture

Training

□ How can we backpropagate a convolution cross-correlation operation?

$$z = w * I + b$$

Single channel

3x3 kernel

$$z(i,j) = \sum_{u=1}^{-1} \sum_{v=1}^{-1} I(i-u,j-v)w(u,v) + b$$

Derivative at location
$$(i, j)$$
:

$$\frac{\partial L}{\partial w}(i,j) = \frac{\partial L}{\partial z(i,j)} \frac{\partial z(i,j)}{\partial w} = \frac{\partial L}{\partial z(i,j)} I(i-1:i+1,j-1:j+1)$$

$$\frac{\partial L}{\partial b}(i,j) = \frac{\partial L}{\partial z(i,j)}$$

□ LeNet-5

5x5 convolution (1 stride) 2x2 pooling (2 strides)

Y. LeCun, et al., "Gradient-based learning applied to document recognition", Proceedings of the IEEE, 1998

AlexNet

A. Krizhevsky et al.,. "ImageNet Classification with Deep Convolutional Neural Networks", NIPS, 2012

□ VGG-16

All convolutions are 3x3, 1x1 stride, 1 padding All max pooling layers are 2x2 with 2x2 strides

Why two 3x3 kernels? It covers the same space than a 5x5 kernel with less parameters (3x3x2=18 vs. 5x5=25).

Three 3x3 kernels (27 parameters) covers the same space than one 7x7 kernel (49 parameters).

K. Simonyan, A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR, 2015

GoogLeNet

GoogLeNet

Theoretical inception module: multi-scale filter bank (remember multi-scale Gabor filter banks?)

GoogLeNet

Inception and dimensionality reduction in GoogLeNet

GoogLeNet

ResNet

- Deeper networks highly suffer from vanishing gradient problem
- Residual blocks allows backpropagation of gradients without vanishing further
- Resnet also showed that it may be optimal to double the number of features as the dimensions halve in deeper layers

34-laver residual

K. He, et al., "Deep Residual Learning for Image Recognition", CVPR, 2016

S. Xie, et al., "Aggregated Residual Transformations for Deep Neural Networks", CVPR, 2017

DenseNet

- Pass all residuals to all layers in every block
- Or how to take Resnet to the extreme...

Figure 3: Comparison of the DenseNets and ResNets top-1 error rates (single-crop testing) on the ImageNet validation dataset as a function of learned parameters (*left*) and FLOPs during test-time (*right*).

G. Huang, et al., "Densely Connected Convolutional Networks", CVPR, 2017

- Fully convolutional networks
 - Normally designed to create an output image

- Fully convolutional networks
 - Unpooling

- □ Fully convolutional networks
 - Unpooling

Max Pooling

Remember which element was max!

1	2	6	3
3	5	2	1
1	2	2	1
7	3	4	8

Max Unpooling

Use positions from pooling layer

1	2	
3	4	

0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

Input: 4 x 4

Output: 2 x 2

Input: 2 x 2

Output: 4 x 4

Corresponding pairs of downsampling and upsampling layers

- Fully convolutional networks
 - Transposed convolution (or upconvolution)

Input: 4×4 Kernel: 3×3 Stride: 1 Convolution Padding: 0 Output: 2×2 Input: 2×2 Kernel: 3×3 Transposed Stride: 1

convolution

Padding: 2

Output: 4×4

- Fully convolutional networks
 - Transposed convolution (or upconvolution)

Input: 4×4 Kernel: 3×3 Stride: 1 Convolution Padding: 0 Output: 2×2 Input: 2×2 Kernel: 3×3 Transposed Stride: 1 convolution Padding: 2

Output: 5×5

■ U-net

■ U-net

Autoencoders

- Generative adversarial networks (GANs)
 - Or learning how to fake images

Generator and discriminator must be trained independently iteratively

