CHAPITRE

FONCTIONS VECTORIELLES D'UNE VARIABLE RÉELLE

On note $\mathcal{B}=(e_1,\ldots,e_p)$ la base canonique de \mathbb{R}^p . Un élément $x\in\mathbb{R}^p$ s'écrit donc indifféremment $x, (x_1, \dots, x_p)$ ou $x_1e_1 + \dots + x_pe_p$. Rappelons que si $\overrightarrow{u} = (x_1, \dots, x_p)$ et $\overrightarrow{v} = (y_1, \dots, y_p)$ sont deux vecteurs de \mathbb{R}^p , alors

$$\|\overrightarrow{u}\| = \sqrt{x_1^2 + \dots + x_p^2} \quad \text{ et } \quad \langle \overrightarrow{u}, \overrightarrow{v} \rangle = \overrightarrow{u} \cdot \overrightarrow{v} = x_1 y_1 + \dots + x_p y_p.$$

GÉNÉRALITÉS SUR LES FONCTIONS 49.1 **VECTORIELLES**

Définition 1 Soit X une partie de \mathbb{R} et $f: X \to \mathbb{R}^p$. On peut écrire

$$\begin{array}{cccc} f: & X & \to & \mathbb{R}^p \\ & t & \mapsto & f_1(t) \cdot e_1 + \cdots + f_p(t) \cdot e_p = \left(f_1(t), \ldots, f_p(t)\right) \end{array}.$$

Les applications f_1, \dots, f_p (définie sur X) sont les **applications coordonnées** de f.

Exemple 2 Dans un langage géométrique, les application de $X \subset \mathbb{R}$ dans \mathbb{R}^p sont appelées **courbes** paramétrées.

Par exemple, dans \mathbb{R}^2 , on peut noter M(t) = (x(t), y(t)). L'image Γ de cette fonction est une courbe de \mathbb{R}^2 . En physique, on dit que Γ est la trajectoire (du point, de la particule, de...). On dit aussi que M est un paramétrage de la courbe Γ .

$$\left\{ \begin{array}{ll} x(t) &= 3\cos(t)\\ y(t) &= 2\sin(t) \end{array} \right., t \in [0,2\pi].$$

est le paramétrage d'une ellipse.

49.2 LIMITE ET CONTINUITÉ D'UNE FONCTION VECTORIELLE

Définition 3

Soit $f: X \to \mathbb{R}^p$ et a un point adhérent à $X \subset \mathbb{R}$ et $\ell \in \mathbb{R}^p$. On dit que la fonction $f: X \to \mathbb{R}^2$ admet une limite ℓ en a si

$$\forall \varepsilon > 0, \exists \delta > 0, \forall t \in X, |t-a| \leq \delta \implies \|f(t) - \ell\| \leq \varepsilon.$$

Proposition 4

Si f admet une limite $\ell \in \mathbb{R}^p$ au point a, celle-ci est unique.

On note alors

$$\lim_{a} f = \ell \quad \text{ou} \quad \lim_{t \to a} f(t) = \ell.$$

Proposition 5

La fonction f admet une limite $\ell \in \mathbb{R}^p$ au point a si, et seulement si

$$\lim_{t \to a} \|f(t) - \ell\| = 0.$$

Cette propriété permet donc de se ramener à une fonction à valeurs réels et utiliser, par exemple, les théorèmes d'existence de limite par domination.

Proposition 6

Soit $f: X \to \mathbb{R}^p$ et a un point adhérent à $X \subset \mathbb{R}$ On note (f_1, \dots, f_p) les applications coordonnées de f:

$$\forall t \in X, f(t) = (f_1(t), \dots, f_n(t))$$

Soit $\ell = (\ell_1, \dots, \ell_p) \in \mathbb{R}^p$.

Alors f admet une limite ℓ au point a si, et seulement si

$$\forall j \in [\![1,p]\!], \lim_{t \to a} f_j(t) = \mathcal{\ell}_j.$$

Exemple 7

On a $\lim_{t \to 0} (\cos(t), t^2 - 1, \sin(t)) = (1, -1, 0).$

Définition 8

Soit $f: X \to \mathbb{R}^p$ et $a \in X \subset \mathbb{R}$. On dit que la fonction $f: X \to \mathbb{R}^2$ est **continue au point** a si

$$\forall \varepsilon > 0, \exists \delta > 0, \forall t \in X, |t - a| \le \delta \implies ||f(t) - f(a)|| \le \varepsilon$$

c'est-à-dire si

$$\lim_{t \to a} f(t) = f(a).$$

On dit que f est continue sur X si f est continue en tout point de X.

Proposition 9

Soit $f: X \to \mathbb{R}^p$, $f = (f_1, \dots, f_p)$ et $a \in X$. Alors f est continue au point a si, et seulement si chaque application coordonnées f_i est continue au point a.

Exemple 10

L'application $f: t \mapsto (\cos(t), t^2 - 1, \sin(t))$ est continue sur \mathbb{R} car chacune de ses fonctions coordonnées l'est.

49.3 DÉRIVABILITÉ D'UNE FONCTION VECTORIELLE

§1 Vecteur dérivé

Définition 11

Soit $f: X \to \mathbb{R}^p$ et $a \in X \subset \mathbb{R}$. On dit que la fonction $f: X \to \mathbb{R}^2$ est **dérivable au point** a si le taux d'accroissement

$$t \mapsto \frac{f(t) - f(a)}{t - a}$$

admet une limite finie lorsque $t \to a$. Dans ce cas, la limite est notée f'(a) et s'appelle le **vecteur dérivé** de f au point a.

$$f'(a) = \lim_{t \to a} \frac{f(t) - f(a)}{t - a}$$

On dit que f est dérivable sur X si f est dérivable en tout point de X.

Proposition 12

Soit $f: X \to \mathbb{R}^p$, $f = (f_1, \dots, f_p)$ et $a \in X$. Alors f est dérivable au point a si, et seulement si chaque application coordonnées f_i est dérivable au point a. Dans ce cas,

$$f'(a) = \left(f_1'(a), \dots, f_p'(a)\right).$$

Exemple 13

La fonction vectorielle définie par

$$f(t) = (3\cos(t), 2\sin(t))$$

est dérivable sur $\mathbb R$ et

$$\forall t \in \mathbb{R}, f'(t) = (-3\sin(t), 2\cos(t)).$$

§2 Opérations sur les fonctions dérivables

Généralisation Les proposition ci-dessous restent vraies en remplaçant «dérivable» par «de classe \mathscr{C}^1 » ou « de classe \mathscr{C}^k ».

Proposition 14 Dérivation du produit par une fonction scalaire

Soient $f = (f_1, ..., f_p) : X \to \mathbb{R}^p$ et $\lambda : X \to \mathbb{R}$ deux fonctions dérivables sur X. Alors, la fonction

$$\lambda f: X \to \mathbb{R}^p$$

$$t \mapsto \lambda(t)f(t) = (\lambda(t)f_1(t), \dots, \lambda(t)f_p(t))$$

est dérivable sur X et on a

$$\forall t \in X, (\lambda f)'(t) = \lambda'(t)f(t) + \lambda(t)f'(t).$$

Proposition 15 Dérivation d'une composée

Soient $f: X \to \mathbb{R}^p$ et $s: I \subset \mathbb{R} \to X$ deux fonctions dérivables Alors, la fonction

$$\begin{array}{cccc} f \circ s : & X & \to & \mathbb{R}^p \\ & t & \mapsto & \left(f_1(s(t)), \dots, f_p(s(t)) \right) \end{array}$$

est dérivable sur I et on a

$$\forall t \in I, (f \circ s)'(t) = s'(t) \cdot f'(s(t)).$$

Proposition 16 Composition avec une application linéaire

Soient $f: X \to \mathbb{R}^p$ une fonction dérivable et $u \in \mathcal{L}(\mathbb{R}^p, \mathbb{R}^q)$. Alors, la fonction

$$\begin{array}{cccc} u \circ f & : & X & \to & \mathbb{R}^q \\ & t & \mapsto & u \left(f_1(t), \dots, f_p(t) \right) \end{array}$$

est dérivable sur X et on a

$$\forall t \in I, (u \circ f)'(t) = u(f'(t)).$$

Démonstration. Admis pour l'instant. Cela se démontre avec la continuité des applications linéaires en dimension finie.

Proposition 17

Dérivation du produit scalaire et produit vectoriel

Soient f et g deux fonctions de X dans \mathbb{R}^p dérivables sur X.

1. La fonction

$$\langle f, g \rangle : X \to \mathbb{R}$$

 $t \mapsto \langle f(t), g(t) \rangle$

est dérivable sur X et

$$\forall t \in X, \langle f, g \rangle'(t) = \langle f'(t), g(t) \rangle + \langle f(t), g'(t) \rangle.$$

2. Lorsque p = 3, la fonction

$$\begin{array}{ccc} f \wedge g : & X & \to & \mathbb{R}^3 \\ & t & \mapsto & f(t) \wedge g(t) \end{array}$$

est dérivable sur X et

$$\forall t \in X, (f \land g)'(t) = f'(t) \land g(t) + f(t) \land g'(t).$$

Remarque

Si $f: X \to \mathbb{R}^p$ et $g: X \to \mathbb{R}^q$ sont deux fonction dérivable et $\varphi: \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}^n$ est une application bilinéaire, alors la fonction

$$\varphi(f,g): X \to \mathbb{R}^n$$

$$t \mapsto \varphi(f(t),g(t))$$

est dérivable sur X et

$$\forall t \in X, (\varphi(f,g))'(t) = \varphi(f'(t),g(t)) + \varphi(f(t),g'(t)).$$

Proposition 18

Dérivation de la norme

Soit f une fonction de X dans \mathbb{R}^p dérivable sur X et ne s'annulant en aucun point de X. Alors, la fonction

$$||f||: X \to \mathbb{R}$$

$$t \mapsto ||f(t)||$$

est dérivable sur X et on a

$$\forall t \in X, ||f||'(t) = \frac{\langle f(t), f'(t) \rangle}{||f(t)||}.$$

§3 Fonctions de classe \mathscr{C}^k

Définition 19

Soit $f: X \to \mathbb{R}^p$. On définit par récurrence l'application dérivée *n*-ième de f, notée $f^{(n)}$.

- Pour n = 0, on pose $f^{(0)} = f$.
- Soit $n \in \mathbb{N}$ tel que $n \ge 1$. On suppose $f^{(n-1)}: X \to \mathbb{R}^p$ est dérivable au point $a \in X$. Dans on dit que f admet une dérivée n-ième au point a et on note

$$f^{(n)}(a) = (f^{(n-1)})'(a).$$

On dit que f est **n-fois dérivable** sur X si f admet une dérivée n-ième en tout point de X.

Définition 20

Soit $f: X \to \mathbb{R}^p$.

- On dit que f est de classe \mathscr{C}^0 sur X si f est continue sur X.
- Soit $n \in \mathbb{N}^*$. On dit que f est de classe \mathcal{C}^n sur X si f est n-fois dérivable sur X et si $f^{(n)}$ est continue sur X.
- On dit que f est de classe \mathscr{C}^{∞} sur X si f est dérivable n-fois pour tout $n \in \mathbb{N}$.

Proposition 21

Soit $f: X \to \mathbb{R}^p$, $f = (f_1, \dots, f_p)$ et $a \in X$. Alors f est n-fois dérivable au point a si, et seulement si chaque application coordonnées f_j est n-fois dérivable au point a. Dans ce cas,

$$f^{(n)}(a) = \left(f_1^{(n)}(a), \dots, f_p^{(n)}(a)\right).$$

De plus, f est de classe \mathcal{C}^n sur X si, et seulement si chaque application coordonnées f_j est de classe \mathcal{C}^n sur X.

Proposition 22

Formule de Leibniz

Soient $f: X \to \mathbb{R}^p$ et $\lambda: X \to \mathbb{R}$ deux fonctions n-fois dérivables sur X. Alors, la fonction

$$\lambda f : X \to \mathbb{R}^p$$

$$t \mapsto \lambda(t) f(t) = \left(\lambda(t) f_1(t), \dots, \lambda(t) f_p(t)\right)$$

est n-fois dérivable sur X et on a

$$\forall t \in X, (\lambda f)^{(n)}(t) = \sum_{k=0}^{n} \binom{n}{k} \lambda^{(n-k)}(t) f^{(k)}(t).$$

§4 Développement limité

Définition 23

Soit $f: X \to \mathbb{R}^p$ une fonction vectorielle et $\lambda: X \to \mathbb{R}$ une fonction réelle. La relation

$$f(t) = o(\lambda(t))$$
 lorsque $t \to a$

signifie

• lorsque *a* un point adhérent à *X*:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall t \in X, |t - a| \le \delta \implies ||f(t)|| \le \varepsilon |\lambda(t)|.$$

• lorsque X n'est pas majorée et $a = +\infty$:

$$\forall \varepsilon > 0, \exists t_0 \in \mathbb{R}, \forall t \in X, t \geq t_0 \implies \|f(t)\| \leq \varepsilon |\lambda(t)|.$$

• lorsque X n'est pas minorée et $a = -\infty$:

$$\forall \varepsilon > 0, \exists t_0 \in \mathbb{R}, \forall t \in X, t \leq t_0 \implies \|f(t)\| \leq \varepsilon |\lambda(t)|.$$

On dit que f est **négligeable** devant λ au voisinage de a.

Proposition 24

Soit $f=(f_1,\ldots,f_p):X\to\mathbb{R}^p$ une fonction vectorielle et $\lambda:X\to\mathbb{R}$ une fonction réelle.

Alors f est négligeable devant λ au voisinage de a si, et seulement si chaque application coordonnées f_j est négligeable devant λ au point a.

Lorsque λ ne s'annule pas au voisinage de a, alors les assertions suivantes sont équivalentes:

- $f(t) = o(\lambda(t))$ lorsque $t \to a$;
- $\bullet \lim_{t \to a} \frac{\|f(t)\|}{\lambda(t)} = 0;$
- $\lim_{t\to a} \frac{f(t)}{\lambda(t)} = 0_{\mathbb{R}^p}.$

Définition 25

Soit $f: X \to \mathbb{R}^p$ une fonction vectorielle. On dit que la fonction f admet un développement limité au point $a \in X$ à l'ordre n s'il existe des vecteurs $v_0, v_1, \dots, v_n \in \mathbb{R}^p$ tels que

$$f(a+t) = v_0 + tv_1 + t^2v_2 + \dots + t^nv_n + o(t^n)$$
 lorsque $t \to 0$.

Proposition 26

La fonction $f=(f_1,\ldots,f_p):X\to\mathbb{R}^p$ admet un développement limité au point a à l'ordre n si, et seulement si chaque application coordonnées f_j admet un développement limité au point a à l'ordre n.

Dans ce cas, le développement limité de f se calcule coordonnée par coordonée.

Exemple 27

Lorsque $t \to 0$,

$$f(t) = \begin{pmatrix} 3\cos(t) \\ 2\sin(t) \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 2 \end{pmatrix} + t^2 \begin{pmatrix} -3/2 \\ 0 \end{pmatrix} + t^3 \begin{pmatrix} 0 \\ 1/3 \end{pmatrix} + o\left(t^3\right).$$

Proposition 28

Formule de Taylor-Young

Soit $f: X \to \mathbb{R}^p$ une fonction de classe \mathscr{C}^n sur X et $a \in X$. Lorsque $t \to 0$,

$$f(a+t) = f(a) + tf'(a) + \frac{t^2}{2}f''(a) + \dots + \frac{t^n}{n!}f^{(n)}(a) + o(t^n) = \sum_{k=0}^n \frac{t^k}{k!}f^{(k)}(a).$$

CHAPITRE

49

COMPLÉMENTS

Dans la suite Le plan euclidien \mathcal{P} est muni d'un repère orthonormé direct $\Re = (O, \overrightarrow{e_1}, \overrightarrow{e_2})$.

49.4 NOTION D'ARC PARAMÉTRÉ

§1 Définitions

Définition 29

Une application de D dans P est appelée une courbe paramétrée.

$$M: D \to \mathcal{P}$$

$$t \mapsto M(t)$$

Le choix d'une base permettant d'identifier les vecteurs du plan à \mathbb{R}^2 , la donnée d'une courbe paramétrée revient donc à celle d'une **fonction vectorielle**

$$f: D \to \mathbb{R}^2$$
 où $\overrightarrow{OM(t)} = x(t)\overrightarrow{e_1} + y(t)\overrightarrow{e_2}$.

On dira que M est continue (resp. de classe $\mathscr{C}^k,...$) si f est continue (resp. de classe $\mathscr{C}^k,...$).

Définition 30

- La variable *t* s'appelle le **paramètre**.
- Le point M(t), est le **point de paramètre** t.
- Le vecteur

$$\overrightarrow{OM}(t) = x(t)\overrightarrow{e_1} + y(t)\overrightarrow{e_2}$$

est le **vecteur position** à l'instant t.

• L'ensemble $\Gamma = \{ M(t) \mid t \in D \}$ est le **support** de la courbe paramétrée.

• On dit que f est un **paramétrage** de Γ .

Lorsque D est un intervalle réel, on dit également que f est un arc paramétrée.

Remarque

Le plan étant muni d'un repère orthonormé direct, on peut identifier naturellement les couples de réels, les points et les vecteurs. On peut donc confondre (abusivement) dans ce chapitre $f(t) = ((x(t), y(t)) \in \mathbb{R}^2, M(t) \in \mathcal{P} \text{ et } \overrightarrow{OM}(t) \in \mathcal{P}$. Selon le contexte, nous penserons f(t) tantôt comme un point, tantôt comme un vecteur. Nous identifierons également le support de l'arc Γ avec l'image directe de D par l'application $f: f(D) = \{ f(t) \mid t \in D \}$.

§2 Exemples

Exemple 31

Soit $(a, b) \in \mathbb{R}^2$ et $(\alpha, \beta) \in \mathbb{R}^2 \setminus \{(0, 0)\}$. La courbe Γ représentée paramétriquement par le système

$$\begin{cases} x = a + \alpha t \\ y = b + \beta t \end{cases}, t \in \mathbb{R}$$

est la droite passant par le point A(a, b) et dirigée par le vecteur $\overrightarrow{u}(\alpha, \beta)$.

Exemple 32

Soit $(a,b) \in \mathbb{R}^2$ et R > 0. La courbe Γ représentée paramétriquement par le système

$$\begin{cases} x = a + R \cos t \\ y = b + R \sin t \end{cases}, t \in \mathbb{R}$$

est le cercle de centre $\Omega(a, b)$ et de rayon R.

Exemple 33

Soit $\varphi: D \to \mathbb{R}$ une fonction à valeurs réelles. La représentation graphique de φ peut toujours être définie paramétriquement : il suffit de prendre l'abscisse x comme paramètre.

$$\left\{ \begin{array}{ll} x & = & t \\ y & = & \varphi(t) \end{array}, t \in D. \right.$$

Remarque

Une courbe peut avoir plusieurs paramétrages.

$$f:]-\pi, \pi[\rightarrow \mathbb{R}^2$$
 et $g: \mathbb{R} \rightarrow \mathbb{R}^2$
$$t \mapsto (\cos t, \sin t)$$
 et $g: \mathbb{R} \rightarrow \mathbb{R}^2$
$$u \mapsto \left(\frac{1-u^2}{1+u^2}, \frac{2u}{1+u^2}\right)$$

Décrivent le cercle trigonométrique privé du point (-1,0) (qui correspond à l'angle π). Alors $f \neq g$ mais $f(]-\pi,\pi[)=g(\mathbb{R})$.

§3 Interprétation cinématique

Définition 34

Soient I un intervalle réel et $M: I \to \mathbb{R}^2$ un arc paramétré de classe \mathscr{C}^2 . En cinématique, lorsque t est le temps,

- l'arc paramétré $t \mapsto M(t)$ est le **mouvement** d'un point M (c'est une fonction).
- Le support de l'arc M(I) est appelé **trajectoire** de M.
- Le vecteur vitesse de M à l'instant t est le vecteur $\overrightarrow{v}(t) = M'(t)$.
- Le réel $v(t) = \|\vec{v}(t)\|$ s'appelle la vitesse algébrique de M à l'instant t.
- Le vecteur accélération de M à l'instant t est le vecteur $\vec{a}(t) = M''(t)$.
- Le réel $a(t) = \|\overrightarrow{a}(t)\|$ s'appelle l'accélération algébrique de M à l'instant t.

Remarque

En physique, quand on dérive par rapport au temps, on utilise plutôt les notations $\dot{x}(t)$, $\ddot{y}(t)$, ... (pour les fonctions à valeurs réelles) et $\frac{\mathrm{d}x(t)}{\mathrm{d}t}$, $\frac{\mathrm{d}^2y(t)}{\mathrm{d}t^2}$, $\frac{\mathrm{d}\overrightarrow{OM}(t)}{\mathrm{d}t}$

Si
$$M(t) = (x(t), y(t))$$
 alors

$$\vec{v}(t) = x'(t)\vec{e_1} + y'(t)\vec{e_2} \qquad v(t) = \sqrt{x'(t)^2 + y'(t)^2}$$

$$\vec{a}(t) = x''(t)\vec{e_1} + y''(t)\vec{e_2} \qquad a(t) = \sqrt{x''(t)^2 + y''(t)^2}$$

Définition 35

Le mouvement de *M* est dit :

- **uniforme** si *v* est constante.
- accéléré si v est croissante.
- retardé si v est décroissante.
- **rectiligne** lorsque sa trajectoire est incluse dans une droite c'est-à-dire s'il existe $(a, b, c) \in \mathbb{R}^3$ tel que

$$\forall t \in I, ax(t) + by(t) = c.$$

• à accélération centrale de centre $A \in \mathbb{R}^2$ si, pour tout $t \in I$, les vecteurs $\overrightarrow{AM}(t)$ et $\overrightarrow{a}(t)$ sont colinéaires.

Exemple 36

Soit $M: \mathbb{R} \to \mathbb{R}^2$. Le support de M est le cercle de centre O et de rayon 1 $t\mapsto (\cos t, \sin t)$ et le mouvement de M est :

• *uniforme* puisque v est constante (bien que \overrightarrow{v} ne le soit pas).

$$\forall t \in \mathbb{R}, \ \overrightarrow{v}(t) = f'(t) = (-\sin t, \cos t) \text{ et } v(t) = \|\overrightarrow{v}(t)\| = \sqrt{(-\sin t)^2 + (\cos t)^2} = 1.$$

• à accélération centrale de centre O car \overrightarrow{OM} et \overrightarrow{a} sont colinéaires.

$$\forall t \in \mathbb{R}, \ \overrightarrow{a}(t) = f''(t) = (-\cos t, -\sin t) = -\overrightarrow{OM}(t)$$

Remarquons également que

$$\forall t \in \mathbb{R}, a(t) = \|\vec{v}(t)\| = \sqrt{(-\cos t)^2 + (-\sin t)^2} = 1 \neq \frac{\mathrm{d}v}{\mathrm{d}t}(t) = 0.$$