Basi di Dati Modulo Laboratorio

Lezione 5: Interrogazioni nidificate

DR. SARA MIGLIORINI

Interrogazioni nidificate

- Un'interrogazione è nidificata quando è presente all'interno di un'altra interrogazione.
- Un'interrogazione dentro la clausola FROM è un esempio di interrogazione nidificata.

Interrogazione dentro clausola FROM

```
SELECT titolo, prezzoIntero
FROM Mostra, (SELECT MAX (prezzoIntero)
FROM Mostra) AS T(prezzoMax)
WHERE prezzoIntero = prezzoMax;
```

Interrogazioni nidificate

- SQL permette di fare un'interrogazione nidificata anche dentro la clausola WHERE.
- L'interrogazione nidificata può essere usata per costruire selezioni di righe della query principale più sofisticati.
- In lezioni precedenti si è introdotto che la selezione è spesso basata sul confronto tra il valore di un attributo e valori di altri attributi della stessa riga o valori costanti.
- Se si usano interrogazioni nidificate, il confronto è tra un valore di un attributo (valore singolo) e il risultato di una interrogazione (possibile insieme di valori).
- Quindi:
 - Gli operatori di confronto tradizionali (<,>,<>,=,...) NON non possono essere usati.
 - Si devono usare dei nuovi operatori, [NOT] EXISTS, [NOT] IN, ALL, ANY/SOME, che estendono i tradizionali operatori a questo tipo di confronti.

Sintassi

EXISTS (subquery)

- (subquery) è una SELECT.
- EXISTS ritorna falso se (subquery) non contiene righe; vero altrimenti.
- EXISTS è significativo quando nella (subquery) si selezionano righe usando i valori della riga corrente nella SELECT principale: data binding

Esempio

Determinare i nomi degli impiegati che sono diversi tra loro ma di pari lunghezza.

```
SELECT I. nome
FROM Impiegato I
WHERE EXISTS (
SELECT 1 FROM Impiegato I1 WHERE I.nome <> I1. nome
AND CHAR_LENGTH(I.nome) = CHAR_LENGTH(I1. nome)
);
```

I.nome nella subquery è il valore di nome nella riga corrente della SELECT principale.

Nota

Se si usano attributi esterni nella subquery (data binding), la subquery deve essere valutata per ogni riga della SELECT principale.

Esempio

Visualizzare il nome e il cognome dei docenti, escludendo i coordinatori, che hanno tenuto almeno due insegnamenti (o moduli) con più di 24 crediti nel 2010/2011.

```
SELECT P.nome , P.cognome
FROM Persona P
WHERE EXISTS (
SELECT 1 FROM Docenza D JOIN InsErogato IE ON D. id_inserogato = IE.id
WHERE IE. crediti > 24 AND D. coordinatore = '0'
AND IE. annoaccademico = '2010/2011' AND D. id_persona = P.id
GROUP BY D. id_persona
HAVING COUNT (*) >=2
);
```

Nota

L'operatore NOT può essere usato in coppia con EXISTS.

Esempio

Visualizzare il nome dei corsi di studio che nel 2006/2007 <u>non</u> hanno erogato insegnamenti il cui nome contiene la sottostringa 'Info'.

```
SELECT CS. nome FROM CorsoStudi CS
WHERE NOT EXISTS (
SELECT 1 FROM InsErogato IE JOIN Insegn I ON IE. id_insegn = I.id
WHERE I.nomeins LIKE '%Info%'
AND IE.annoaccademico = '2006/2007'
AND IE.id_corsostudi = CS.id);
```

Sintassi

[ROW](expr [,...]) IN (subquery)

- expr è un'espressione costruita con un attributo della query principale. Ci possono essere una o più espressioni.
- La (subquery) deve restituire un numero di colonne pari al numero di espressioni in (expr [,...]).
- I valori dell'espressioni vengono confrontati con i valori di ciascuna riga del risultato di (subquery).
- Il confronto ritorna vero se i valori sono uguali ai valori di almeno una riga della subquery.

Esempio

```
SELECT I.nome , I.cognome
FROM Impiegato I
WHERE ROW( I.nome , I.cognome ) IN (
SELECT I1.nome, I1. cognome FROM ImpiegatoAltraAzienda I1
);
```

Interrogazioni nidificate: Operatore ANY/SOME

Sintassi

expression operator ANY(subquery)
expression operator SOME(subquery)

- (subquery) è una SELECT che deve restituire UNA sola colonna;
- expression è un'espressione che coinvolge attributi della SELECT principale.
- operator è un operatore di confronto, come '=', '>=', ...
- ANY: ritorna vero se expression è operator rispetto al valore di una qualsiasi riga del risultato di (subquery).
- SOME è uno sinonimo di ANY.

Interrogazioni nidificate: Operatore ANY/SOME

Esempio

Visualizzare il nome degli insegnamenti che hanno un numero di crediti inferiore alla media dell'ateneo di un qualsiasi anno accademico.

```
SELECT DISTINCT I.nomeins , IE.crediti
FROM Insegn I JOIN InsErogato IE ON I.id=IE.id_insegn
WHERE IE.crediti < ANY (
    SELECT AVG ( crediti ) FROM InsErogato
    WHERE modulo =0
    GROUP BY annoaccademico
);

11607 righe
```

Interrogazioni nidificate: Operatore ALL

Sintassi

expression operator ALL(subquery)

- (subquery) è una SELECT che deve restituire <u>UNA sola colonna</u>;
- expression è un'espressione che coinvolge attributi della SELECT principale.
- operator è un operatore di confronto, come '=', '>=', ...
- ALL: ritorna vero se expression è operator rispetto al valore di ciascuna riga del risultato di (subquery).

Interrogazioni nidificate: Operatore ALL

Esempio

Trovare il nome degli insegnamenti con almeno un docente e crediti maggiori rispetto ai crediti di ciascun insegnamento del corso di laurea con id=6. (si considerano solo occorrenze insegnamento genitore).

Operatore ALL: esempio complicato

- Quesito: Trovare il nome degli insegnamenti <u>con almeno due</u> docenti e con crediti maggiori rispetto ai crediti di ciascun insegnamento del corso di laurea con id=6. (si considerano solo occorrenze insegnamento genitore).
- Possibile soluzione: usare due volte la soluzione che trova i dati per almeno un docente assicurando che il nome dell'insegnamento sia lo stesso e che i docenti siano diversi.

Operatore ALL: esempio complicato

Esempio

```
SELECT DISTINCT Lnomeins
FROM Insegn I JOIN InsErogato IE1 ON I.id = IE1.id_insegn
             JOIN Docenza D1 ON IE1.id = D1.id_inserogato
             JOIN InsErogato IE2 ON <a href="Lid="IE2.id_insegn">I.id = IE2.id_insegn</a>
             JOIN Docenza D2 ON IE2.id = D2.id_inserogato
WHERE IE1.modulo = 0 AND IE1.crediti > ALL (
  SELECT crediti FROM InsErogato
  WHERE id_corsostudi = 6 AND modulo = 0
AND IE2.modulo = 0 AND IE2.crediti > ALL (
SELECT crediti FROM InsErogato
WHERE id corsostudi = 6 AND modulo = 0
AND D1.id_persona <> D2.id_persona;
(448 righe)
```

Il nome dell'insegnamento è il JOIN tra le due tabelle di InsErogato e ciascuna di queste è in JOIN con una alias della tabella Docente.

Operatore ALL: esempio complicato (ALT.)

Esempio (Soluzione alternativa)

Selezioniamo le coppie (nomeins, docente) con le caratteristiche volute circa i crediti degli

insegnamenti erogati associati.

```
SELECT DISTINCT I.nomeins , D.id_persona
FROM Insegn I

JOIN InsErogato IE ON I.id = IE.id_insegn

JOIN Docenza D ON IE.id = D.id_inserogato
WHERE IE. modulo = 0 AND IE.crediti > ALL (

SELECT crediti FROM InsErogato

WHERE id_corsostudi = 6 AND modulo =0
);

(2277 righe )
```

Questa query è il punto di partenza: raggruppando il risultato della query per nomeins, si hanno gruppi dove ciascuno contiene tante righe quanti sono i docenti che hanno insegnato quel corso.

Basta quindi imporre un vincolo sulla numerosità di ciascun gruppo per ottenere il risultato.

Operatore ALL: esempio complicato (ALT.)

Esempio (Soluzione alternativa)

```
SELECT nomeInsegnamento
FROM (
SELECT DISTINCT I.nomeins, D.id_persona
FROM Insegn I JOIN InsErogato IE ON I.id = IE.id_insegn
JOIN Docenza D ON IE.id = D.id_inserogato
WHERE IE. modulo = 0 AND IE. crediti > ALL (
SELECT crediti FROM InsErogato
WHERE id_corsostudi = 6 AND modulo =0
)
AS Risultato( nomeInsegnamento, persona )
GROUP BY nomeInsegnamento
HAVING COUNT(*) >= 2;

(448 righe )
```