

Physical Aimbot สำหรับเกม FPS ด้วย Computer Vision

นายภนลภัส สุทธิมาลา รหัศนักศึกษา 65340500046

โครงงานนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร
ปริญญาวิศวกรรมศาสตรบัณฑิต สาขาวิชาวิศวกรรมหุ่นยนต์และระบบอัตโนมัติ
สถาบันวิทยาการหุ่นยนต์ภาคสนาม
มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
ปีการศึกษา 2567

*** ไม่ต้องพิมพ์สารบัญเอง ***

หากจะพิมพ์เนื้อหาที่มีหัวข้อย่อย ให้ใช้ Heading 1,2,3 ของ Word (set ไว้ให้แล้ว) เมื่อพิมพ์เสร็จ ให้ไปที่ References => Update Table สารบัญจะอัพเดทให้เอง ลองเล่นกับ format ดูก่อนได้ ทำเสร็จแล้วลบกล่องข้อความนี้ทิ้ง

สารบัญ

บทที่ 1 บทนำ	3
1.1 ที่มา ความสำคัญ	3
1.2 ประโยคปัญหางานวิจัย (Problem Statement)	3
1.3 ผลผลิตและผลลัพธ์ (Outputs and Outcomes) ผลผลิต ผลลัพธ์	3 3 3
1.4 ความต้องการของระบบ (Requirements)	3
1.5 ขอบเขตของงานวิจัย (Scopes)	4
1.6 ข้อกำหนดของงานวิจัย (Assumptions)	4
1.7 ขั้นตอนการดำเนินงาน	4
บทที่ 2 ทฤษฎี/งานวิจัย/การศึกษาที่เกี่ยวข้อง	6
2.1 Computer Vision Models 2.1.1 Computer Vision Model Comparison	6
2.2 Training the Model	6
บทที่ 3 ระเบียบวิธีวิจัย	7
3.1 ขั้นตอนการทำวิจัย 3.1.1 ศึกษาหลักการเบื้องต้นเกี่ยวกับ Robotics และ Computer Vision	7
3.2[หัวข้อ]	7
บทที่ 4 การทดลองและผลการทดลอง/วิจัย	8
4.1 การทดสอบระบบ 4.1.1 [หัวข้อย่อย]	8
4.2 การทดสอบการเคลื่อนที่ของเมาสั่	8
บทที่ 5 บทสรุป	9
5.1[หัวข้อ] 5.1.1 [หัวข้อย่อย]	9
5.2[หัวข้อ]	9
เคกสารค้างคิง	10

บทที่ 1 บทนำ

1.1 ที่มา ความสำคัญ

ในปัจจุบันเกมแนว First-Person Shooter (FPS) เป็นประเภทเกมที่ได้รับความนิยมสูง ผู้เล่นส่วนมากให้
ความสำคัญกับการเล็งเป้าที่รวดเร็วและแม่นยำ ซึ่งนำไปสู่การใช้เครื่องมือและโปรแกรมต่าง ๆ ในการฝึกเล็งเพื่อ
พัฒนาทักษะการเล่นเกม โครงงานนี้จึงมีแนวคิดในการสร้างต้นแบบ "Physical Aimbot" ที่สามารถควบคุมการเล็ง
อัตโนมัติ โดยใช้หลักการของหุ่นยนต์ในการเคลื่อนที่ของเมาส์จริง ควบคู่กับการประมวลผลภาพ (Computer
Vision) เพื่อระบุตำแหน่งเป้าหมายบนหน้าจอและสั่งให้หุ่นยนต์ทำการเล็งได้อย่างอัตโนมัติ โดยมุ่งเน้นการศึกษา
และทดลองการผสานเทคโนโลยีด้านวิศวกรรมหุ่นยนต์และการมองเห็นคอมพิวเตอร์ มากกว่าจะมุ่งเน้นการใช้งานเชิง
โกงในเกม

1.2 ประโยคปัญหางานวิจัย (Problem Statement)

ในการเล็งเป้าหมายภายในเกม FPS หรือโปรแกรมฝึกเล็ง (Aim Training) ที่ต้องการความแม่นยำสูง ผู้เล่นอาจ สูญเสียเวลาไปกับการขยับเมาส์หรือปรับมุมเล็งซ้ำ ๆ โครงงานนี้จึงต้องการสำรวจเทคโนโลยีการเคลื่อนที่อัตโนมัติของ เมาส์ด้วยกลไกหุ่นยนต์ และการวิเคราะห์ข้อมูลภาพหรือวิดีโอแบบเรียลไทม์ เพื่อสร้างระบบช่วยเล็งที่ควบคุมเมาส์ใน เชิงกายภาพ ซึ่งจะทำให้ผู้วิจัยได้เรียนรู้และเข้าใจการนำ Computer Vision และ Robotics มาประยุกต์เข้า ด้วยกันอย่างเป็นรูปธรรม

1.3 ผลผลิตและผลลัพธ์ (Outputs and Outcomes)

ผลผลิต

- 1.ต้นแบบหุ่นยนต์ขยับเมาส์ (Physical Aimbot) ที่สามารถเคลื่อนเมาส์ไปยังเป้าหมายบนหน้าจอได้
- 2.โมดูลประมวลผลภาพที่สามารถตรวจจับ/ระบุตำแหน่งเป้าหมายในโปรแกรมฝึกเล็ง หรือเกม FPS

ผลลัพธ์

- 1.ความเข้าใจในกระบวนการผสานเทคโนโลยี Robotics และ Computer Vision ในงานด้านการเล็งเป้าอัตโนมัติ
- 2.แนวทางการพัฒนาระบบช่วยเล็งในเชิงกายภาพเพื่อศึกษาเพิ่มเติมหรือต่อยอดในงานอื่น ๆ

1.4 ความต้องการของระบบ (Requirements)

1.สามารถจับภาพหน้าจอหรือรับข้อมูลจากโปรแกรมฝึกเล็ง (Aim Training Software) เพื่อระบุพิกัดเป้าหมาย

- 2.ระบบหุ่นยนต์ต้องเคลื่อนที่ได้อย่างแม่นยำเพียงพอที่จะเล็ง/ปรับตำแหน่งเมาส์ได้
- 3.สามารถพัฒนาโมดูลการคลิกได้ในภายหลัง แต่ในระยะเริ่มต้นอาจเน้นการเล็งเป็นหลัก
- 4.ใช้ซอฟต์แวร์/ฮาร์ดแวร์ที่หาได้ทั่วไป เช่น Capture Card (หากจำเป็น), Logitech G Pro X Superlight, ESP32 สำหรับการสื่อสาร, Micro DC Motor สำหรับการเคลื่อนที่ของเมาส์

1.5 ขอบเขตของงานวิจัย (Scopes)

- 1.ใช้โปรแกรม Aim Training ที่สามารถนำภาพ/วิดีโอมาประมวลผลได้เป็นหลัก
- 2.มุ่งเน้นการทดสอบเรื่องความแม่นยำในการเคลื่อนเมาส์ โดยนับจากคะแนนของ Aim training มากกว่าการเก็บ สถิติเรื่องความเร็วหรือ Latency
- 3.โครงงานมีจุดประสงค์เพื่อการศึกษาเท่านั้น ไม่ได้มุ่งเน้นการโกงเกมแข่งขันจริง

1.6 ข้อกำหนดของงานวิจัย (Assumptions)

- 1.สิ่งแวดล้อม (Environment) ในการทดสอบ เช่น ความละเอียดหน้าจอ หรือการตั้งค่ากราฟิก จะถูกกำหนดให้ คงที่ระหว่างการทดลอง
- 2.สามารถปรับความไวของเมาส์ (Mouse Sensitivity) และการตั้งค่าอื่น ๆ ได้ตามต้องการ เพื่อการทดสอบที่ สอดคล้องกับโปรแกรมฝึกเล็ง

1.7 ขั้นตอนการดำเนินงาน

- 1.ศึกษาแนวทาง ทบทวนหลักการเบื้องต้นเกี่ยวกับ Robotics (สำหรับควบคุมเมาส์) และ Computer Vision (ตรวจจับเป้าหมาย)
- 2.**ออกแบบระบบหุ่นยนต์** เลือกชนิดมอเตอร์หรือกลไกเคลื่อนที่ของเมาส์ และวางแผนทางกายภาพ (เฟรมหรือ อุปกรณ์ยึด)
- 3.**สร้างต้นแบบ –** ต่อวงจร/สร้างขึ้นส่วน ติดตั้งเมาส์ ทดลองขยับและปรับตำแหน่งบนพื้นผิว
- 4.พัฒนาโมดูลประมวลผลภาพ เลือกหรือพัฒนาเทคนิคตรวจจับเป้าหมาย (อาจเป็น Object Detection หรือ Image Processing แบบอื่น)
- 5.ผ**สานระบบ** เขียนโปรแกรมหรือสคริปต์เชื่อมโยงระหว่างโมดูลตรวจจับภาพกับระบบหุ่นยนต์ (ส่งค่าพิกัด → สั่ง มอเตอร์เคลื่อน)

6.**ทดสอบบนโปรแกรม Aim Training** – ตรวจวัดความแม่นยำเบื้องต้น โดยไม่เน้นความเร็วในการเล็งเป็นหลัก 7.**สรุปผลและปรับปรุง** – ประเมินความแม่นยำและประสิทธิภาพ พร้อมเสนอแนวทางปรับปรุงในอนาคต

บทที่ 2 ทฤษฎี/งานวิจัย/การศึกษาที่เกี่ยวข้อง

[เนื้อหา]

2.1 Computer Vision Models

ในส่วนของการพัฒนาโมเดลสำหรับการตรวจจับเป้าหมายในเกม FPS หรือโปรแกรมฝึกเล็ง โครงการนี้มุ่งเน้นไปที่การ เลือกโมเดลที่สามารถตรวจจับในแบบ real-time ได้รวดเร็ว โดยไม่จำเป็นต้องมีความแม่นยำสูงมากนัก เนื่องจากมี แค่หนึ่งประเภทของเป้าหมายที่ต้องแยกออกจากกัน

หลังหลังจากการศึกษาและวิเคราะห์ตัวเลือกที่เหมาะสม พบว่าโมเดล **YOLO** (You Only Look Once) รุ่น **Tiny** เป็นตัวเลือกที่เหมาะสม เนื่องจากมีคุณสมบัติในการตรวจจับได้เร็วและสามารถปรับให้เหมาะกับระบบที่จำกัด ทรัพยากร

2.1.1 Computer Vision Model Comparison

Model	Speed	Accuracy	Complexity	Suitable for FPS Aimbot
YOLOv5	Moderate	High	High	Suitable for general
(Full)				detection, but too slow
				for real-time aimbot in
				FPS.
YOLOv5	Fast	Moderate	Low	Ideal for real-time aimbot
(Tiny)				with quick detection.
YOLOv7 (Tiny)	Fast	Moderate	Low	Also suitable for realtime FPS aimbot, slightly better than YOLOv5 (Tiny).

1. Focus on speed for real-time applications rather than high accuracy, with YOLOv5 Tiny being the preferred model for object detection.

2.2 Training the Model

การฝึกโมเดลเพื่อการตรวจจับเป้าหมายจะเริ่มจากการใช้โปรแกรม Aim Trainer และทำการบันทึกวิดีโอเมื่อเล่น โดย จะนำวิดีโอมาทำการแปลงเป็นภาพแล้วใช้ในการฝึกโมเดล YOLOv5 Tiny ซึ่งจะช่วยให้ระบบสามารถแยกแยะ เป้าหมายจากพื้นหลังในเกมได้อย่างมีประสิทธิภาพ

บทที่ 3 ระเบียบวิธีวิจัย

[เนื้อหา]

3.1ขั้นตอนการทำวิจัย

[เนื้อหา]

3.1.1 ศึกษาหลักการเบื้องต้นเกี่ยวกับ Robotics และ Computer Vision

เริ่มจากการทบทวนหลักการของ Robotics สำหรับการควบคุมเมาส์ด้วย Micro DC Motor และการประมวลผล ภาพด้วย Computer Vision โดยใช้โมเดล YOLOv5 Tiny

3.1.2 ออกแบบระบบหุ่นยนต์

เลือกใช้ ESP32 สำหรับการสื่อสารผ่าน PySerial และออกแบบกลไกการเคลื่อนที่ด้วย Micro DC Motors จำนวน 4 ตัว โดยใช้ 2 Motor Drivers สำหรับควบคุมการเคลื่อนที่

3.1.3 พัฒนาโมดูลการประมวลผลภาพ

เลือกใช้โมเดล YOLOv5 Tiny ในการตรวจจับและติดตามตำแหน่งของเป้าหมายจากภาพที่ได้จากการเล่น Aim Training

3.1.4 ผสานระบบ

เขียนโปรแกรมเพื่อเชื่อมโยงระหว่างโมดูลการประมวลผลภาพและระบบหุ่นยนต์ โดยการส่งค่าพิกัดจาก YOLO ไปยัง ESP32 เพื่อควบคุมการเคลื่อนที่ของเมาส์

3.1.5 ทดสอบระบบ

ทดสอบระบบโดยการใช้ Aim Trainer เพื่อประเมินความแม่นยำในการเล็งเป้าหมายและทดสอบการเคลื่อนที่ของ เมาส์

3.2[หัวข้อ]

[เนื้อหา]

บทที่ 4 การทคลองและผลการทคลอง/วิจัย

[เนื้อหา]

4.1 การทคสอบระบบ

การทดสอบระบบจะเริ่มจากการใช้ Aim Trainer ในการฝึกเล็งเป้าหมาย โดยจะทำการบันทึกวิดีโอจากการเล่นและ แปลงวิดีโอนั้นเป็นภาพเพื่อนำมาฝึกโมเดล YOLOv5 Tiny ในการตรวจจับเป้าหมาย

4.1.1 [หัวข้อย่อย]

- 1. เนื้อหา
- 2. เนื้อหา

4.2 การทดสอบการเคลื่อนที่ของเมาส์

การทดสอบการเคลื่อนที่ของเมาส์จะทำการทดสอบในสภาวะแวดล้อมที่ควบคุมได้ เช่น การตั้งค่าความละเอียด หน้าจอและความไวของเมาส์ รวมถึงพื้นผิวที่ทำการตั้งเมาส์ (แผ่นรองเมาส์)

บทที่ 5 บทสรุป

[เนื้อหา]

5.1[หัวข้อ]

[เนื้อหา]

5.1.1 [หัวข้อย่อย]

- 1. เนื้อหา
- 2. เนื้อหา

5.2[หัวข้อ]

[เนื้อหา]

เอกสารอ้างอิง

1. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (CVPR), 779-788.

DOI: 10.1109/CVPR.2016.91

2. YOLOv5 Documentation. (2021). https://github.com/ultralytics/yolov5. Retrieved from https://github.com/ultralytics/yolov5.