172. Factorial Trailing Zeroes

- Given an integer n, return the number of trailing zeroes in n!.
- Note that n! = n * (n 1) * (n 2) * ... * 3 * 2 * 1.

Example 1:

- **Input:** n = 3
- **Output:** 0
- **Explanation:** 3! = 6, no trailing zero.

Example 2:

- **Input:** n = 5
- Output: 1
- **Explanation:** 5! = 120, one trailing zero.

Example 3:

- Input: n = 0
- **Output:** 0

Constraints:

• $0 \le n \le 10^4$

Follow up: Could you write a solution that works in logarithmic time complexity?