

AZ34063A

General Description

The AZ34063A is a monolithic switching regulator control circuit containing the primary functions required for DC-DC converters. This device consists of internal temperature compensated reference, voltage comparator, controlled duty cycle oscillator with active current limit circuit, driver and high current output switch. This device was specifically designed to be used in Step-Down, Step-Up and Voltage-Inverting applications with a minimum number of external components.

The AZ34063A is available in 2 packages: SOIC-8 and DIP-8.

Features

- Operation from 3.0V to 36V Input
- Low Standby Current
- Current Limiting
- Output Switch Current to 1.5A
- Output Voltage Adjustable
- Operation Frequency up to 180KHz
- Precision 2% Reference

Applications

- Battery Chargers
- NICs/ Switches/ Hubs
- ADSL Modems
- Negative Voltage Power Supplies

Figure 1. Package Types of AZ34063A

AZ34063A

Pin Configuration

Top View

Figure 2. Pin Configuration of AZ34063A

Functional Block Diagram

Figure 3. Functional Block Diagram of AZ34063A

AZ34063A

Pin Description

Pin Number	Pin Name	Function
1	Switch Collector	Internal switch transistor collector
2	Switch Emitter	Internal switch transistor emitter
3	Timing Capacitor	Timing Capacitor to control the switching frequency
4	GND	Ground pin for all internal circuits
5	Comparator Inverting Input	Inverting input pin for internal comparator
6	V _{CC}	Voltage supply
7	I _{PK} Sense	Peak Current Sense Input by monitoring the voltage drop across an external I sense resistor to limit the peak current through the switch
8	Driver Collector	Voltage driver collector

Ordering Information

Apr. 2005 Rev. 1. 2

Package	Temperature	Part Number		Marking ID		Packing Type	
	Range	Tin Lead	Lead Free	Tin Lead	Lead Free	1 acking Type	
SOIC-8	-40 to 85°C	AZ34063AM	AZ34063AM-E1	34063AM	34063AM-E1	Tube	
		AZ34063AMTR	AZ34063AMTR-E1	34063AM	34063AM-E1	Tape & Reel	
DIP-8	-40 to 85°C	AZ34063AP	AZ34063AP-E1	AZ34063AP	AZ34063AP-E1	Tube	

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant.

AZ34063A

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit	
Power Supply Voltage	V _{CC}	40	V	
Comparator Input Voltage Range	V _{IR}	-0.3 to 40	V	
Switch Collector Voltage	V _C (switch)	40	V	
Switch Emitter Voltage (Vpin1=40V)	V _E (switch)	40	V	
Switch Collector to Emitter Voltage	V _{CE} (switch)	40	V	
Driver Collector Voltage	V _C (driver)	40	V	
Driver Collector Current (Note 2)	I _C (driver)	100	mA	
Switch Current	I_{SW}	1.5	A	
Power Dissipation and Thermal Characteristics Plastic Package,				
Power Dissipation ($T_A = 25 ^{\circ}\text{C}$)	P_{D}	1.25	W	
Thermal Resistance SOIC Package, $ \begin{array}{c} \text{Power Dissipation (T}_{A} = 25 \ ^{\circ}\text{C} \) \\ \text{Thermal Resistance} \end{array} $	$R_{ heta J}$ P_{D} $R_{ heta J A}$	100 625 160	°C /W mW °C /W	
Operating Junction Temperature	T_{J}	150	$^{\circ}\!\mathbb{C}$	
Storage Temperature Range	T _{STG}	-65 to 150	$^{\circ}$	
ESD (Human body model)		2000	V	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 2: Maximum package power dissipation limits must be observed.

Recommended Operating Conditions

Parameter	Symbol	Symbol Min		Unit	
Supply Voltage	V _{CC}	3	36	V	
Ambient Temperature	T _A	-40	85	°C	

AZ34063A

Electrical Characteristics

 $(V_{CC} = 5.0 \text{ V}, T_A = -40 \text{ to } 85^{\circ}\text{C}, \text{ unless otherwise specified.})$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
OSCILLATOR							
Frequency	f_{OSC}	VPin 5 = 0 V, CT = 1.0 nF $T_A = 25^{\circ}C$	30	38	45	KHz	
Charge Current	I_{CHG}	$V_{CC} = 5.0 \text{ V to } 36 \text{ V}, T_A = 25^{\circ}\text{C}$	30	38	45	μΑ	
Discharge Current	I _{DISCHG}	$V_{CC} = 5.0 \text{ V to } 36 \text{ V}, T_A = 25^{\circ}\text{C}$	180	240	290	μΑ	
Discharge to Charge Current Ratio	I _{DISCHG} /I _{CHG}			6.5	7.5		
Current Limit Sense Voltage	V _{IPK} (sense)	$I_{\text{CHG}} = I_{\text{DISCHG}}, T_{\text{A}} = 25^{\circ}\text{C}$	250	300	350	mV	
OUTPUT SWITCH (Note 3)	The Bische A	I.				
Saturation Voltage, Dalington Connection	V _{CE} (sat)	I _{SW} = 1.0 A, Pins 1, 8 connected		1.0	1.3	V	
Saturation Voltage (Note 4.)	V _{CE} (sat)	I_{SW} = 1.0 A, RPin 8 = 82 Ω to V_{CC} , Forced β = 20		0.45	0.7	V	
DC Current Gain	h _{FE}	$I_{SW} = 1.0 \text{ A}, V_{CE} = 5.0 \text{ V},$ $T_A = 25^{\circ}\text{C}$	50	75			
Collector Off-State Current	I _C (off)	V _{CE} = 36 V		0.01	100	μΑ	
COMPARATOR							
	V_{TH}	$T_A = 25^{\circ}C$	1.225		1.275	V	
Threshold Voltage		$T_{A} = -40 \text{ to } 85^{\circ}\text{C}$	1.21	1.250	1.29		
		V _{CC} = 3.0 V to 36 V		1.4	5	mV	
Input Bias Current	I _{IB}	$V_{IN} = 0 V$		-20	-400	nA	
TOTAL DEVICE		,	•	•			
Supply Current	I _{CC}	$V_{CC} = 5.0 \text{ V to } 36 \text{ V, CT} = 1.0$ nF, Pin 7 = V_{CC} , VPin 5 > V_{TH} ,			4	mA	

Note 3: Low duty cycle pulse technique are used during test to maintain junction temperature as close to ambient temperature as possible.

Note 4: If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (\leq 30mA) and high driver currents (\geq 30mA), it may take up to 2.0us for it to come out of saturation. This condition will shorten the off time at frequencies 30KHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended:

AZ34063A

Electrical Characteristics (Continued)

Forced β of output switch: $\frac{I_C \ output}{I_C driver \ - \ 7.0 mA^*} {\geq 10}$

Typical Performance Characteristics

Figure 4. Output Switch On-Off Time vs. Oscillator Timing Capacitor

Figure 5. Timing Capacitor Waveform

Figure 6. Oscillator Frequency vs. Timing Capacitor

Figure 7. Standard Supply Current vs. Supply Voltage

Apr. 2005 Rev. 1. 2

BCD Semiconductor Manufacturing Limited

^{*} The 100Ω resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.

AZ34063A

Typical Performance Characteristics (Continued)

Figure 8. Emitter Follower Configuration Output Saturation Voltage vs. Emitter current

Figure 9. Common Emitter Configuration Output Switch Saturation Voltage vs. Collector Current

Figure 10. Current Limit Sense Voltage vs. Temperature

AZ34063A

Typical Applications

Figure 10. Step-Up Converter (Note 5)

Note 5: This is a typical step-up converter configuration. In the steady state, if the resistor divider voltage at pin 5 is greater than the voltage in the non-inverting input, which is 1.25V determined by the internal reference, the output of the comparator will go low. At the next swithching period, the output switch will not conduct and the output voltage will eventually drop below its nominal voltage until the divider voltage at pin 5 is lower than 1.25V. Then the output of the comparator will go high, the output switch will be allowed to conduct. Since Vpin5 = V_{OUT} * R2/(R1+R2) = 1.25(V), the output voltage can be decided by V_{OUT} = 1.25 * (R1+R2)/R2 (V).

AZ34063A

Typical Applications (Continued)

Figure 11. Step-Down converter (Note 6)

Note 6: This is a typical step-down converter configuration. The working process in the steady state is similar to step-up converter, Vpin5 = V_{OUT} * R2/(R1+R2) = 1.25 (V), the output voltage can be decided by V_{OUT} = 1.25 * (R1+R2)/R2 (V).

AZ34063A

Typical Applications (Continued)

Figure 12. Voltage Inverting Converter (Note 7)

Note 7: This is a typical inverting converter configuration. The working process in the steady state is similar to step-up converter, the difference in this situation is that the voltage at the non-inverting pin of the comparator is equal to $1.25V+V_{OUT}$, then $Vpin5 = V_{OUT} * R2/(R1+R2) = 1.25V+V_{OUT}$, so the output voltage can be decided by $V_{OUT} = -1.25 * (R1+R2)/R1$ (V).

AZ34063A

Mechanical Dimensions

SOIC-8 Unit: mm(inch)

AZ34063A

Mechanical Dimensions (continued)

DIP-8 Unit: mm(inch)

http://www.bcdsemi.com

BCD Semiconductor Corporation

3170 De La Cruz Blvd, Suite # 105 Santa Clara, CA 95054-2411, U.S.A Tel: +1-408-988 6388, Fax: +1-408-988 6386

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.

800 Yi Shan Road, Shanghai 200233, PRC Tel: +86-21-6485-1491, Fax: +86-21-5450-0008

Advanced Analog Circuits (Shanghai) Corporation

8F, B Zone, 900 Yi Shan Road, Shanghai 200233, PRC Tel: +86-21-6495 9539, Fax: +86-21-6485 9673

BCD Semiconductor (Taiwan) Company Limited

Room 2210, 22nd Fl, 333, Keelung Road, Sec. 1, TaiPei (110), Taiwan Tel: +886-2-2758 6828, Fax: +886-2-2758 6892

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.