DEVOIR DE MAISON N°2

Exercice 1

On considère un système constitué de n mol d'un gaz parfait à T et P.

- 1. Exprimer dG.
- 2. Montrer que $\left(\frac{\partial \mu}{\partial P}\right)_{T,n} = V_m$.
- 3. Exprimer $\left(\frac{\partial \mu}{\partial P}\right)_{T,n}$ en fonction de P et T dans le cas d'un gaz parfait.
- 4. Intégrer entre un état quelconque et l'état standard pour établir l'expression de $\mu(T,P)$.

Exercice 2

On considère l'équilibre de Boudouard : $C(gr) + CO_2(g) = 2 CO(g)$.

La température et la pression totale sont maintenues constantes et égales respectivement à 1100 K et 1 bar. L'enthalpie libre standard de la réaction est alors de $\Delta_r G^\circ = -4,2$ kJ.mol⁻¹.

On prépare un mélange contenant 0,8 mol de monoxyde de carbone, 0,2 mol de dioxyde de carbone et 0,4 mol de carbone graphite.

- 1. Utilisation de l'affinité chimique
- 1.1. Calculer l'affinité standard de la réaction a 1100 K.
- 1.2. Calculer l'affinité du système.
- 1.3. Le système évolue-t-il ? Du graphite va-t-il se former ?
- 2. Utilisation du quotient réactionnel
- **2.1.** Calculer la constante d'équilibre K°.
- 2.2. Calculer le quotient réactionnel Q.
- 2.3. Le système évolue-t-il ? Du graphite va-t-il se former ?

Donnée:

$$R = 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$$

Exercice 3:

On etudie a 25°C, sous 5 bar, l'équilibre d'isomérisation entre l'isobutane A (gaz) et la butane B (gaz).

$$A(g) = B(g)$$

Données:

$$\mu^{\circ} A = -17.98 \text{ kJ.mol}^{-1}$$

$$\mu^{\circ}$$
 B = -15,71 kJ.mol⁻¹

On part de 1 mol d'isobutane pur.

- 1. Calculer $\Delta_r G^{\circ}(298)$.
- **2.** Exprimer l'enthalpie libre G_{syst} du système chimique étudié, pour un avancement ξ a l'instant t.
- 3. Exprimer l'enthalpie libre de réaction $\Delta_r G$ et l'affinité chimique A au même instant t.
- **4.** Tracer le graphe G_{syst} en fonction de ξ (pour cela compléter le tableau de variation suivant).

ξ	0		X	•	1
dG/dξ	X	X	X	X	X
G	X	X	X	X	x

Tracer le graphe A en fonction de ξ .

6. En déduire la valeur de ξ_e et la constante d'équilibre K° à 25°C.

Exercice 4

Les quatre équilibres suivants peuvent avoir lieu simultanément :

(1)
$$C_{(gr)} + 1/2 O_{2(g)} = CO_{(g)}$$

(2)
$$CO_{(g)} + 1/2 O_{2(g)} = CO_{2(g)}$$

(3)
$$C_{(gr)} + O_{2(g)} = CO_{2(g)}$$

(4)
$$C_{(gr)} + CO_{2(g)} = 2 CO_{(g)}$$

- 1. Exprimer (3) puis (4) en fonction de (1) et (2).
- **2.** En déduire $\Delta_r G^{\circ}_3$ puis $\Delta_r G^{\circ}_4$ en fonction de $\Delta_r G^{\circ}_1$ et $\Delta_r G^{\circ}_2$.
- 3. En déduire K°3 et K° 4 en fonction de K°1 et K°2.

Exercice 5

On étudie la réaction : 2 $NO(g) + O_2(g) = 2 NO_2(g)$

Afin de déterminer expérimentalement la constante d'équilibre de cette réaction, on place dans une enceinte initialement vide, a température maintenue constante de 700 K, sous la pression constante de

1 bar, du monoxyde d'azote et du dioxygène dans les proportions stœchiométriques. Lorsque l'équilibre est atteint, la composition molaire du mélange gazeux est la suivante : NO : 20 % ; O₂ : 10 % ; NO₂ : 70 %.

En déduire la valeur de la constante d'équilibre a 700 K.

Exercice 6

On considère l'équilibre suivant : $2 SO_{2(g)} + O_{2(g)} = 2 SO_{3(g)}$.

1. Calculer la constante d'équilibre a 298 K, notée K°(298).

On se place dans le cadre de l'approximation d'Ellingham.

- **2.** Déterminer K°(1100) de deux manières différentes (par calcul de l'enthalpie libre standard de réaction a 1100 K ou par la loi de Van t'Hoff).
- **3.** Calculer la température d'inversion T_i pour laquelle $K^{\circ}(T_i) = 1$.

Données à 298 K:

	$SO_{2(g)}$	$O_{2(g)}$	SO _{Mg)}
$\Delta_t H^{\circ} (kJ.mol^{-1})$	- 297		- 396
S° _m (J.K ⁻¹ .mol ⁻¹)	248	205	257

Exercice 7

Le système réactionnel est initialement constitué d'un mélange homogène : 1 mol de $H_{2(g)}$ et 1 mol de $Cl_{2(g)}$ sous $T_0=298$ K et $P_0=1$ bar.

II se produit la réaction : $H_{2(g)} + CI_{2(g)} = 2 HCI_{(g)}$

On donne:

 $\Delta_r H^{\circ} = -185 \text{ kJ.mol}_{-1} \text{ et } \Delta_r S^{\circ} = 20 \text{ J.K}_{-1}.\text{mol}_{-1}$

 $R = 8,314 \text{ J.K}_{-1}.\text{mol}_{-1}$

- 1. Calculer la constante d'équilibre K° a 298 K. Que peut-on en déduire pour l'état d'équilibre.
- **2.** Calculer la variation d'enthalpie ΔH du système. Commenter son signe.
- **3.** Exprimer la variation d'enthalpie libre Δ G du système en fonction de Δ _rG°, R et T₀. Calculer Δ G.
- **4.** Exprimer S_c en fonction de ΔG et T_0 . Calculer S_c .
- **5.** Calculer la variation d'entropie ΔS du système.
- **6.** Commenter les signes de S_c et de ΔS