

2001年12月

LF155/LF156/LF256/LF257/LF355/LF356/LF357 JFET输入运算放大器

总体描述

这些是第一个单片JFET输入运算放大器,在同一芯片上将匹配良好的高电压JFET与标准双极晶体管(BI-FET™技术)结合在一起。这些放大器具有低输入偏置和偏移电流/低偏移电压和偏移电压漂移的特点,加上偏移调整,不会降低漂移或共模抑制。这些器件还被设计为高回转率、宽带宽、极快的稳定时间、低电压和电流噪声以及低1/f噪声角。

特点

优势

- 替换昂贵的混合和模块FET运算放大器
- 与MOSFET输入器件相比,坚固的JFET允许无爆裂处理
- 对使用高或低源阻抗的低噪声应用非常好 非常低的1/f 鱼
- 偏移调整不会像大多数单片式放大器那样降低漂移或共模抑制能力
- 新的輸出级允许使用大的电容性负载(5,000 pF)而没有稳定性问题
- 内部补偿和大差分输入电压能力

应用

- 精密的高速集成器
- 快速的D/A和A/D转换器
- 高阻抗缓冲器
- 宽带、低噪音、低漂移的放大器

■ 对数放大器

■ 光电池放大器

■ 采样和保持电路

共同特点

■ 低输入偏置电流。 30pA

■ 低输入失调电流:3pA

■ 高输入阻抗:10 12

■ 低输入噪声电流。 0.01 pA/√Hz

■ 高共模抑制率: 100dB
■ 大的直流电压增益: 106dB

不常见的特征

		LF155/ LF355	LF156/ LF256/	LF257/ LF357	单位
			LF356	$(A_{V} = 5)$	
j	极快的沉淀	4	1.5	1.5	微秒
	时间,以				
	0.01%				
j	快速回转	5	12	50	V/µs
	率				
j	广义增益	2.5	5	20	兆赫
	频带				
j	低输入噪	20	12	12	nV/√Hz
	音				
	电压				

简化示意图

© 2001年美国国家半导体公司 DS005646 www.national.com

*LF357系列为3pF。

BI-FET™、BI-FET II™是美国国家半导体公司的商标。

绝对最大额定值 (注1)

如果需要军事/航空指定的器件,请联系国家半导体销售办公室/经销商,以了解可用性和规格。

	LF155/6	LF256/7/LF356B	LF355/6/7
电源电压	±22V	±22V	±18V
差分输入电压	±40V	±40V	±30V
输入电压范围(注2)	±20V	±20V	±16V 输
出短路时间	连续	连续的	连续TJMAX
H-包装	150°C	115°C	115°C
N-package		100°C	100°C
M-包装		100°C	100°C
在T _A = 25°C时的功率耗散(注1、8)			
H-封装(静止空气)	560 mW	400 mW	400毫瓦
H-包(400 LF/Min空气流量)	1200 mW	1000 mW	1000毫瓦
		N-package670	mW670 mW
		M-Package380	mW380 mW
热阻(典型)JA			
H-包装(静止空气)	160°C/W	160°C/W	160°C/W
H-Package (400 LF/Min 气流)	65°C/W	65°C/W	65°C/W
N-PACKAGE		130°C/W	130°C/W
M-包装		195°C/W	195°C/W
(典型) _{JC}			
H-包装	23°C/W	23°C/W	23°C/W 存
储温度范围	-65°C至+150°C	-65摄氏度至+150摄氏原	度 -65°C 至
+150°C 焊接信息(引线温度)。			
金属罐包装			
焊接(10秒)	300°C	300°C	300°C
双列式封装			
焊接(10秒)	260°C	260°C	260°C
小尺寸封装			
气相(60秒)		215°C	215°C
红外线(15秒)		220°C	220°C
关于焊接表面贴装器件的其他方法,	见AN-450 "表面贴装方法及	其对产品可靠性的影响"。	
ESD耐受性			
(100 pF通过1.5k 放电)	1000V	1000V	1000V

直流电气特性

(注3)

符号参数		条件	LF155/6			LF256/7 LF356B			LF355/6/7			单位
			闵行 区	类型	最大	闵行 区	类型	最大	闵行 区	类型	最大	·
VOS	输入失调电压	rs =50, t =25°c _A 超温		3	5 7		3	5 6.5		3	10 13	mV mV
V _{os} /T	输入的平均TC	R _S =50		5			5			5		μV/°C

© 2001年美国国家半导体公司 DS005646 www.national.com

	偏置电压								
TX/V _{OS}	平均TC的变化 与Vos 调整	R _s =50, (注4)。	0.5		0.5		0.5		μV/°C 每毫伏
IOS	输入偏移电流	T」=25°C, (注3, 5) TJ _{THIGH}	3	20 20	3	20 1	3	50 2	pA nA
			ı	ı					

直流电特性 (续) (注3)

符号	参数	条件	LF155/6		LF256/7 LF356B			LF355/6/7			単位	
			闵行区	类型	最大	闵行区	类型	最大	闵行区	类型	最大	
I _B	输入偏置电流	T _J =25°C, (注3, 5) TJ _{THIGH}		30	100 50	<u> </u>	30	100 5	<u> </u>	30	200	pA nA
RIN	输入电阻	T =25°C _J		1012			1012			1012		
AVOL	大信号电压增益	$V_S = \pm 15V, T_A = 25^{\circ}C$ $V_O = \pm 10V, R = 2k_L$	50	200		50	200		25	200		V/mV
		超温	25			25			15			V/mV
Vo	输出电压摆幅	$V_S = \pm 15V, R = 10k_L$ $V_S = \pm 15V, R = 2k_L$	±12 ±10	±13 ±12		±12 ±10	±13 ±12		±12 ±10	±13 ±12		V V
VCM	输入共模 电压范围	V _S =±15V	±11	+15.1 -12		±11	±15.1		+10	+15.1 -12		V V
混凝土结构 物(CMRR	共模 拒绝率		85	100		85	100		80	100		分贝
ĀĀĀ	电源电压 拒绝率	(注6)	85	100		85	100		80	100		分贝

★ ₩	LF155		LF355		LF156/256/257/356B		LF356		LF357		
参数	类型	最大	类型	最大	类型	最大	类型	最大	类型	最大	单位
供应	2	4	2	4	5	7	5	10	5	10	毫

符号	参数	条件	LF155/355	LF156/256/ 356B	LF156/256/356/ LF356B	LF257/357	单位
			类型	闵行区	类型	类型	
ÄÄÄ	回转率	LF155/6 _°	5	7.5	12		V/µs
		A _V =1 _°					
		LF357 _° A =5 _V				50	V/µs
GBW	增益带宽产品		2.5		5	20	兆赫
t _s	沉降时间到0.01%	(注7)	4		1.5	1.5	微秒
e _n	等效输入噪声电压	R _S =100					
		f=100赫兹	25		15	15	
		f=1000赫兹	20		12	12	
i _n	等效输入电流噪声	f=100赫兹	0.01		0.01	0.01	
		f=1000赫兹	0.01		0.01	0.01	

直流电气特性

 $t_A = t_J = 25^{\circ}C, v_S = \pm 15v$

交流电气特性

 $t_A = t_J = 25^{\circ}C, v_S = \pm 15v$

nV/√Hz

 $nV/\sqrt{\text{Hz}}$

pA/√Hz

pA/√Hz

电气特性说明

注1:这些器件的最大功率耗散必须在高温下减弱,由_{TJMAX、JA}和环境温度_{TA}决定。任何温度下的最大可用功率耗散是_{PD=}(TJMAX.TA)_JJA或25°C的_{PdMAX},以较低者

注2:除非另有规定,绝对的最大负输入电压等于负电源电压。

注3:除非另有说明,这些测试条件适用。

电气特性说明 (寒)

	LF155/156	LF256/257	LF356B	LF355/6/7
电源电压,V _s T _A	±15V V _s ±20V	±15V V _S ±20V	$\pm 15V V_{S} \pm 20V$	V _S = ±15V
	-55°C t _A +125°C	-25°C t _A +85°C	0°C T _A +70°C	0°C T _A +70°C
臀部	+125°C	+85°C	+70°C	+70°C

而vos、IB和IOs是在vcm=0时测量的。

注4:调整后的输入偏移电压的温度系数与原来的未调整值相比,每调整一个mV,仅有少量变化(通常为0.5μV/°C)。共模抑制和开环电压增益也不会受到偏移调整的影响。

注5:输入偏置电流是结点漏电流,结点温度每增加10°C,_{TJ}就会增加大约一倍。由于生产测试时间有限,测量的输入偏置电流与结温相关。在正常操作中,由于内部功率耗散,结温会上升到环境温度以上,Pd。_{TJ} = _{TA} + 9A Pd 其中9A是结点到环境的热阻。如果要将输入偏置电流保持在最低水平,建议使用散热器。

注6:根据惯例, 电源电压抑制是在两个电源幅度同时增加或减少的情况下测量的。

注7:结算时间在此定义,对于使用2 κ 电阻的LF155/6的单一增益反相器连接。它是误差电压(放大器上反相输入引脚的电压)从一个10V的阶跃输入施加到反相器时,稳定到其最终值的0.01%以内所需的时间。对于LF357, $_{AV}$ =-5,从输出到输入的反馈电阻为2 κ ,输出步长为10V(见settling Time测试电路)。

注8:最大。功率耗散是由封装特性决定的。在接近最大功率耗散的情况下操作零件,可能会导致零件的操作超出保证范围。功率耗散可能导致零件在保证范围之外运行。

除非另有规定,典型的直流性能特性曲线是针对LF155和LF156的。

除非另有规定, 典型的直流性能特性曲线是针对LF155和LF156的。(续)

正共模输入电压限制

供应电流

正向电流限制

负共模输入电压限制

00564646

除非另有规定,**典型的直流性能特性**曲线是针对LF155和LF156的。(续)

开环电压增益

输出电压摆幅

典型的交流性能特征

增益带宽

增益带宽

归一化的回转率

输出阻抗

00564652

典型的交流性能特征(续

LF155小信号脉冲响应, A_V = +1

00564653

LF156小信号脉冲响应, A_V = +1

00564606

LF155大信号脉冲响应, A_V = +1

00564608

LF156大信号脉冲 响应,A_V = +1

TIME (1 µs/DIV

00564609

0.5 1.0

SETTLING TIME (μ s)

-10

0

逆变器安顿时间

00564655

5 10

典型的交流性能特征(ቃ

开环频率响应

波德情节

波德图

共模抑制率

00564661

典型的交流性能特征(续

不失真的输出电压摆幅

等效输入噪声电压(扩大的规模

www.national.com

电源拒绝率

等效输入噪声电压

10

详细示意图

*C = LF357系列中的3pF。

连接图 (顶视图)

金属罐包装 (H)

订单号LF155H, LF156H, LF256H, LF257H, LF356BH, LF356H, 或 LF357H 见NS包装号H08C

*按JM38510/11401或JM38510/11402提供。

双嵌套(M和N)

00564629

订单号LF356M、LF356MX、LF355N或LF356N 见NS包装号M08A或N08E

应用提示

这些是带有JFET输入器件的运算放大器。这些JFET从栅极到源极和漏极有很大的反向击穿电压,因此不需要在输入端设置钳子。因此,大的差分输入电压可以很容易地被交流,而无需大量增加输入电流。最大的差分输入电压与电源电压无关。然而,任何一个输入电压都不应该超过电源的负值,因为这将导致大电流的流动,从而导致设备的损坏。

任何一个输入端超过负共模限制都会迫使输出端达到高电 平状态,有可能导致

应用提示(续)

相位反转到输出。超过两个输入端的负共模限制将迫使放大 器的输出达到高电平状态。在这两种情况下都不会发生锁存 ,因为将输入端提高到共模范围内会再次使输入级,从而使 放大器处于正常工作模式。

单个输入超过正共模限制不会改变输出的相位, 但是, 如果 两个输入都超过限制, 放大器的输出将被强制到一个高电平 状态。

这些放大器将在共模输入电压等于正电源的情况下工作。事 实上, 在整个工作温度范围内, 共模电压可以超过正电源约 100 mV, 与电源电压无关。因此, 正电源可以作为输入的参 考, 例如, 在电源电流监控和/或限制器中。

应采取预防措施,确保集成电路的电源永远不会出现极性颠 倒的情况,或确保该装置不会无意中在插座中装反,因为通 过集成电路内产生的正向二极管的无限电流浪涌可能导致内 部导体熔断, 从而导致装置损坏。

这些放大器的所有偏置电流都由FET电流源设定。因此,这 些放大器的漏极电流基本上与电源电压无关。

与大多数放大器一样, 为了确保稳定性, 应该注意引线的排 列、元件的放置和电源去耦。例如, 从输出端到输入端的电 阻应放置在靠近输入端的位置,以尽量减少 "拾取",并通过 尽量减少输入端到地面的电容, 使回馈极的频率最大化。

当任何放大器周围的反馈是电阻性的,就会产生一个反馈极 。从设备的输入(通常是反相输入)到交流地的并联电阻和 电容设定了极点的频率。在许多情况下,这个极点的频率远 远大于闭环增益的预期3dB频率,因此对稳定性的影响可以 忽略不计。然而,如果反馈极点的频率低于预期3dB频率的 大约6倍,则应在运算放大器的输出端和输入端之间放置一个 引线电容。增加的电容值应使该电容的RC时间常数和它平行 的电阻大于或等于原始反馈极的时间常数。

典型的电路连接

Vos 调整

00564667

- Vos,用25k电位器调节。
- 电位器的刮板被连接到V+
- 对于温度系数为100ppm/°C或更低的电位器、调整后的额 外漂移为 0.5μV/。

°C/mV的调整

典型的整体漂移:5µV/°C±(0.5µV/°C/mV的调整)

驱动电容性负载

* LF155/6 R = 5kLF357 R = 1.25k

> 由于独特的输出级设计, 这些放大器有能力驱动大电 容负载, 并仍然保持稳定。_{CL(MAX)} - 0.01μF。

过冲 20% 安定时间

(t_s) .5µs

LF357。大功率BW放大器

对于失真 1%和20 Vp-p_{VOUT}摆动, 功率带宽为。500kHz。

典型应用

沉降时间测试电路

00564616

- 在LF155/6连接为统一增益反相器和LF357连接为A_V = -5的情况下,测试结算时间。
- 用来隔离探针电容的场效应管
- 输出=10V步长
- A_V = LF357的-5

大信号变频器输出, vout (来自结算时间电路)

00564617

00564619

00564618

低漂移可调节电压基准

- $v_{OUT}/t = \pm 0.002\%/^{\circ}c$
- 所有的电阻和电位器都应该是绕线的
- P1: 漂移调整
- P2: Vout 调整
- 使用LF155用于
 - j低ⅠΒ
 - j 低度漂移
 - j 低供应电流

快速对数转换器

- 动态范围。100 μ A $\,$ I $_{\rm i}$ 1mA (5 decades), $|V_{\rm O}|$ = 1V/十年
- 瞬态响应。3µs for I_i = 1 decade
- C1、C2、R2、R3:增加动态补偿
- Vos 调整LF156以最小化静态误差
- R_T: Tel Labs Q81型 + 0.3%/°C

$$|V_{\text{OUT}}| = \left[1 + \frac{\text{R2}}{\text{R}_{\text{T}}}\right] \frac{\text{kT}}{\text{q}} \text{ in } V_{i} \left[\frac{\text{R}_{r}}{\text{V}_{\text{REF Ri}}}\right] = \log V_{i} \frac{1}{\text{R}_{i} I_{r}} \text{ R2} = 15.7 \text{k, R}_{\text{T}} = 1 \text{k, } 0.3\%/\text{°C (for temperature compensation)}$$

精密电流监测器

- $V_0 = 5 R1/R2 (V/mA of I)_s$
- R1, R2, R3: 0.1%的电阻
- 使用LF155用于
 - j共模范围到电源范围
 - j低ⅠΒ
 - j 低Vos
 - j 低电源电流

具有对称偏移二进制操作的8位D/A转换器

- R1, R2应在±0.05%范围内匹配
- 满量程响应时间。3µs

Eo	B1	B2	В3	B4	B5	В6	B7	B8	评论
+9.920	1	1	1	1	1	1	1	1	正面的满刻度
+0.040	1	0	0	0	0	0	0	0	(+) 零刻度
-0.040	0	1	1	1	1	1	1	1	(-)零刻度
-9.920	0	0	0	0	0	0	0	0	负的满刻度

宽波段低噪声、低漂移放大器

00564670

• Power BW:
$$f_{MAX} = \frac{S_r}{2\pi V_p} \cong 191 \text{ kHz}$$

• 寄生输入电容C1. (LF155、LF156和LF357为3pF,加上任何额外的布局电容)与反馈元件相互作用,并产生不理想的高频极。为了补偿,添加C2,以便R2 C2.R1 C1.

用电流放大器提升LF156的性能

• IOUT_(MAX) - 150mA(将驱动R_L 100)

•
$$\frac{\Delta V_{OUT}}{\Delta T} = \frac{0.15}{10^{-2}} \text{ V/}\mu\text{s (with C}_{L} \text{ shown)}$$

• 没有电流放大器增加的额外相移

 $f = \frac{V_C (R8 + R7)}{(8 V_{PU} R8 R1) C'} 0 \le V_C \le 30V, 10 Hz \le f \le 10 kHz$

R1、R4匹配。20年内线性度为0.1%。

隔离大型电容性负载

0056462

- 超标6%
- t_s 10µs
- 当驱动大CL, Vout 的回转率由CL和IOUT_(MAX)决定。

$$\frac{\Delta V_{\rm OUT}}{\Delta T} = \frac{I_{\rm OUT}}{C_{\rm L}} \cong \frac{0.02}{0.5} \, \text{V}/\mu \text{s} = 0.04 \, \text{V}/\mu \text{s} \, (\text{with } C_{\rm L} \, \text{shown})$$

低漂移峰值检测器

00564623

- 通过添加D1和 R_f ,在保持模式下 V_{D1} =0。D2的漏电由反馈路径提供,通过 R_f 。
- 电路的泄漏基本上是I_b (LF155, LF156) 加上电容的泄漏Cp。
- 二极管D3将Vour (A1)箝制在V_{IN}-V_{D3},以提高速度并限制D2的反向偏压。
- 最大的输入频率应该是 $<< ^12^R ^C_{D2}$ 其中 C_{D2} 是D2的并联电容。

LF157的非反转统一增益操作

00564675

$$R1C \ge \frac{1}{(2\pi) (5 \text{ MHz})}$$

$$R1 = \frac{R2 + R_S}{4}$$

$$A_{V(DC)} = 1$$

$$f_{-3 \text{ dB}} \approx 5 \text{ MHz}$$

LF157的反转统一增益

0056462

$$R1C \ge \frac{1}{(2\pi) (5 \text{ MHz})}$$

$$R1 = \frac{R2}{4}$$

$$A_{V(DC)} = -1$$

$$f_{-3 \text{ dB}} \approx 5 \text{ MHz}$$

高阻抗、低漂移的仪器仪表放大器

• $V_{OUT} = \frac{R3}{R} \left[\frac{2R2}{R1} + 1 \right] \Delta V$, $V^- + 2V \le V_{IN}$ common-mode $\le V^+$

- 系统Vos,通过A2 Vos调整。
- 修整R3,将CMRR提升到120dB。推荐使用仪表放大器电阻阵列,以获得最佳精度和最低漂移。

00564633

- 两个放大器(A1、A2)的反馈回路都单独关闭,反应稳定(过冲可忽略不计)。
- 采集时间TA, 估计为。

$$T_{A} \cong \left[\frac{2R_{ON}, V_{IN}, C_{h}}{S_{r}} \right] 1/2 \text{ provided that:}$$

$$V_{IN}$$
 < $2\pi S_r R_{ON} C_h$ and T_A > $\frac{V_{IN} C_h}{I_{OUT(MAX)}}$, R_{ON} is of SW1

If inequality not satisfied: T_A
$$\cong \frac{V_{IN}C_h}{20\,\text{mA}}$$

- LF156为V_{IN} 1V开发全S_r 输出能力
- 加入SW2后,将SW1上的压降置于反馈环路内,从而提高了精度。
- 系统的总体精度由A1和A2两个放大器的精度决定

髙精度的采样和保持

00564627

- 通过A2的闭环, Vout 的精度将由A1唯一决定。A2不需要调整Vos。
- T_A 可以通过与之前相同的考虑来估计,但是,由于反馈环路(A2)中增加了传播延迟, 所以过冲是不可忽略的。
- 整体系统比快速采样和保持慢
- R1, Cc: 额外补偿
- 使用LF156用于
 - j 快速沉降时间
 - j 低Vos

高Q值带通滤波器

00564628

- 通过添加正反馈(R2)的方式
- Q增加到40
- f_{BP} = 100 kHz

$$\frac{V_{OUT}}{V_{IN}} = 10\sqrt{\overline{Q}}$$

- 建议采用简洁的布局
- 对1Vp-p音爆的响应:300µs

高Q值槽口过滤器

• 2R1 = R = 10M 2C = C1 = 300pF

- 电容应该匹配以获得高Q值
- f_{NOTCH} = 120 Hz, 凹槽 = -55 dB, Q > 100
- 使用LF155用于
 - j低ⅠΒ
 - j 低供应电流

除非另有说明,物理尺寸为英寸(毫米)。

金属罐包装(H) 订单号LF155H, LF156H, LF256H, LF257H, LF356BH, LF356H或LF357H NS包装号H08C

小尺寸封装(M)订单号LF356M 或LF356MX NS包装号M08A

除非另有说明, 物理尺寸为英寸(毫米)(续)。

模压双列组合(N) 订单号LF356N NS包装号N08E

生命支持政策

没有国家半导体公司总裁和总法律顾问的明确书面批准,国家的产品不被授权作为生命支持设备或系统的关键部件使用。在此使用。

- 1. 生命支持设备或系统是指(a)用于手术植入身体,或 (b)支持或维持生命的设备或系统,当按照标签中提供 的使用说明正确使用时,其故障可合理地预期会导致 用户受到重大伤害。
- 2. 关键部件是指生命支持设备或系统的任何部件, 其性 能的失效可以合理地预期会导致生命支持设备或系统 的失效, 或影响其安全或有效性。

	美国国家半导体公司	美国国家半导体欧洲公司	美国国家半导体公司亚太	国家半导体日本有限公司
	美洲 电子邮件:	传真: +49 (0) 180-530 85 86 电子邮件:	区客户响应小组 电话:65-2544466	电话: 81-3-5639-7560 传真: 81-3-5639-7507
	support@nsc.com	europe.support@nsc.com Deutsch 电话:	传真:65-2504466	N. S. 1 0 0000 7007
www	national.com	+49 (0) 69 9508 6208 英语 电话:+44 (0) 870 24 0 2171 法语 电话:+33 (0) 1 41 91 8790	电子邮件: ap.support@nsc.com	