Lecture 7-2: Heap

Sunghyun Cho

Professor
Division of Computer Science
chopro@hanyang.ac.kr

HANYANG UNIVERSITY

Recall Priority Queue ADT

- A priority queue stores a collection of entries
- Each entry is a pair (key, value)
- Main methods of the Priority Queue ADT
 - insert(k, x)
 inserts an entry with key k
 and value x
 - removeMin()
 removes and returns the
 entry with smallest key

- Additional methods
 - min()
 returns, but does not remove,
 an entry with smallest key
 - size(), isEmpty()
- Applications:
 - Standby flyers
 - Auctions
 - Stock market

HANYANG UNIVERSITY

Recall PQ Sorting

- We use a priority queue
 - Insert the elements with a series of insert operations
 - Remove the elements in sorted order with a series of removeMin operations
- The running time depends on the priority queue implementation:
 - Unsorted sequence gives selection-sort: O(n²) time
 - Sorted sequence gives insertion-sort: O(n²) time
- Can we do better?

```
Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted in
increasing order according to C
P ← priority queue with
comparator C
while ¬S.isEmpty ()
e ← S.remove (S. first ())
P.insertItem(e, e)
while ¬P.isEmpty()
e ← P.removeMin().getKey()
S.addLast(e)
```


HANYANG UNIVERSITY

Problems of Selection / Insertion Sort

- The Phases
 - Phase 1: build a queue from a input set
 - Phase 2: build a priority queue
- Problems
 - Selection sort: fast Phase 1 but very slow Phase 2
 - Insertion sort: very slow Phase 1 but fast Phase 2
- How can we balance the running times of the two phases?
 - An efficient realization of a priority queue uses a data structure called a heap.

HANYANG UNIVERSITY

Heap Data Structures

- \blacksquare Heap: A binary tree $\mathcal T$ satisfies two additional properties
 - relational property and structural property
 heap-order prop
 Compe bin tree prop
- (1) **Heap-order Property**: in a heap *T*, for every node ν other than the root, the key stored at ν is greater than or equal to the key stored at ν 's parent Child은 반드시 부모 노드보다 크거나 같은 값을 자져야한다 자식들간의 상관관계를 가진 키값을 가지지 않는다
- (2) Complete binary tree property: in a heap T with height h
 - levels of 0,1,2,...,h-1 of T have the maximum number of nodes possible (level i has 2^i nodes , for $0 \le i \le h-1$)
 - in the level h, all the internal nodes are to the left of the external node and there at most one node with one child, which must be a left child.

Complete Binary: 현재 최대층의 노드를 다채우기 전까지 다음 층에 저장할 수 없음 이때 추가시 인덱스 순차적으로 추가

9.3.1 The Heap Data Structure

HANYANG UNIVERSITY

Heap Data Structures (cont.)

Figure 7.3: Example of a heap storing 13 entries with integer keys. The last node is the one storing entry (8, W).

□ The last node of a heap is the rightmost node of maximum depth

9.3.1 The Heap Data Structure

HARYANG UNIVERSITY

Height of a Heap

- **Theorem**: A heap storing n keys has height $O(\log n)$ Proof: (we apply the complete binary tree property)
 - Let h be the height of a heap storing n keys
 - Since there are 2^i keys at depth i = 0, ..., h-1 and at least one key at depth h, we have $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$
 - Thus, $n \ge 2^h$, i.e., $h \le \log n$

7

9.3.1 The Heap Data Structure

HANYANG UNIVERSITY

Heaps and Priority Queues

- We can use a heap to implement a priority queue
- We store a (key, element) item at each internal node
- We keep track of the position of the last node (definitely including the position of the root)

Insertion into a Heap

- Method insertItem of the priority queue ADT corresponds to the insertion of a key k to the heap
- The insertion algorithm consists of three steps
 - Find the insertion node z (the new last node)
 - Store k at z

– Restore the heap-order up-heap 이라고도함-> property (discussed next)

9

9.3.2 Implementing a Priority Queue with a Heap

HANYANG UNIVERSITY

Upheap

- \blacksquare After the insertion of a new key k, the heap-order property may be violated
- \blacksquare Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- If Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

Example of Insertion

9.3.2 Implementing a Priority Queue with a Heap

HANYANG UNIVERSITY

Removal from a Heap

- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap
- The removal algorithm consists of three steps
 - Replace the root key with the key of the last node w
 - Remove w
 - Restore the heap-order property (discussed next)

last node

new last node

Downheap

- \blacksquare After replacing the root key with the key k of the last node, the heap-order property may be violated
- \blacksquare Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- In Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time

9.3.2 Implementing a Priority Queue with a Heap

HANYANG UNIVERSITY

Example of Removal

Updating the Last Node

- The insertion node can be found by traversing a path of $O(\log n)$ nodes
 - Go up until a left child or the root is reached
 - If a left child is reached, go to the right child
 - Go down left until a leaf is reached
- Similar algorithm for updating the last node after a removal

15

9.3.2 Implementing a Priority Queue with a Heap

HANYANG UNIVERSITY

Bottom-up Heap Construction

- We can construct a heap storing n given keys in using a bottom-up construction with log n phases
- In phase i, pairs of heaps with $2^{i}-1$ keys are merged into heaps with $2^{i+1}-1$ keys

Example

Example (contd.)

Example (contd.)

Example (end)

Analysis

- We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path)
- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is O(n)
- In Thus, bottom-up heap construction runs in O(n) time
- \blacksquare Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort

9.3.4 Bottom-Up Heap Construction

HANYANG UNIVERSITY

Heap-Sort

- Consider a priority queue with n items implemented by means of a heap
 - the space used is O(n)
 - methods insert and removeMin take O(log n) time
 - methods size, isEmpty,
 and min take time O(1)
 time

- Using a heap-based priority queue, we can sort a sequence of n elements in $O(n \log n)$ time
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort

9.4.2 Heap Sort

In-Place Heap Sort

- Assume the sequence is implemented by means of an array.
 - Speed up heap-sort
 - Reduce its space requirement by a constant factor
 - ➤ Rearrange elements of the sequence instead of transferring them out of the sequence and then back in.

In-Place Heap-Sort Algorithm

- At any time during the execution of the algorithm, we use the left portion of S, up to a certain rank i-1, to store the entries of the heap, and the right portion of S, from rank i to n, to store the unsorted entries of the sequence. Thus, the first i elements of S (at rank 1,....,i) provide the vector representation of the heap.
- Start with an empty heap and move the boundary between the heap and the sequence from left to right, one step at a time. In step I (i=1,....n), we expand the heap by adding the element at the rank i.

9.4.2 Heap Sort HANYANG UNIVERSIT

In-Place Heap Sort (cont.)

Merging Two Heaps

- We are given two heaps and a key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform downheap to restore the heaporder property

25 9.4.2 Heap Sort HANYARG UNIVERSITY

