Contrôle n°1 de Physique

Les calculatrices et les documents ne sont pas autorisés.

QCM (3 points-pas de points négatifs).

Entourer la bonne réponse

1- Soit la fonction potentiel électrique $V(r) = a.re^{-\frac{b}{r}}$; a et b étant des constantes. Le champ électrique qui dérive de ce potentiel sera d'expression :

a) $\vec{E} = ae^{-\frac{b}{r}} \left(1 - \frac{b}{r} \right) \overrightarrow{u_r}$ b) $\vec{E} = ae^{-\frac{b}{r}} \left(-1 - \frac{b}{r} \right) \overrightarrow{u_r}$ c) $\vec{E} = ae^{-\frac{b}{r}} \overrightarrow{u_r}$

2- La différence de potentiel entre A et B s'écrit :

a) $V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{l}$ b) $V_B - V_A = \int_A^B \vec{E} \cdot d\vec{l}$ c) Aucune des deux précédentes propositions

3- La force électrostatique est une force :

a) Toujours attractive

b) Toujours répulsive

c) Toujours conservative

4-Soit un anneau de rayon R et d'axe (Oz), chargé avec une densité linéique λ supposée constante . La charge élémentaire dQ d'un élément de longueur dl de l'anneau s'exprime par :

a) $dQ = \lambda d\theta$

b) $dQ = \lambda dR$ c) $dQ = \lambda Rd\theta$

d) $dQ = \lambda dRd\theta$

5- Une charge q_A exerce une force électrique sur la charge q_B . Le vecteur force $\overrightarrow{F_{A/B}}$ s'écrit:

 $(\vec{u}: vecteur unitaire)$

a) $\overrightarrow{F_{A/B}} = k \frac{q_A}{(AB)^2} \vec{u}$ b) $\overrightarrow{F_{A/B}} = -k \frac{q_A q_B}{(AB)^2} \vec{u}$ c) $\overrightarrow{F_{A/B}} = k \frac{|q_A q_B|}{(AB)^2} \vec{u}$ d) $\overrightarrow{F_{A/B}} = k \frac{q_A q_B}{(AB)^2} \vec{u}$

6- Le champ électrique créé par un fil infini uniformément chargé, en un point M extérieur au fil est

- 1 -

a) orthogonal au fil

b) Parallèle au fil

c) non défini

Exercice 1 Distributions de charges discrètes. (7 points)

Trois charges ponctuelles (+q, -q, -q) sont situées respectivement aux sommets A, B et C d'un triangle équilatéral de côté a.

On rappelle que les angles aux sommets du triangle équilatéral ABC sont égaux à 60° et les droites (OA), (OB) et (OC) sont bissectrices et médiatrices.

1- Représenter sur la figure ci-dessus les vecteurs champs électriques $\overrightarrow{E_A}(0)$, $\overrightarrow{E_B}(0)$ et $\overrightarrow{E_C}(0)$ créés au centre du triangle.

2- a) Exprimer les normes de chacun de ces vecteurs en fonction de k, q, a. On pose q > 0

b) En déduire la norme du vecteur résultant $\vec{E}(0)$, en fonction de k, q et a.
- 2 -

3- Exprimer le potentiel électrique $V(0)$ créé au point O, en fonction de k, q et a.	
Faire l'application numérique. On donne : $q = 4.10^{-9}C$, a = 2cm et $k = 9.10^{9}$ S	S.I

4	- a) Exprimer le potentiel électrique au point A, en fonction de k, q et a.
	b) En déduire l'énergie potentielle électrique au même point A, en fonction de k, q et a.
Г	Faire l'application numérique. On donne : $q = 4.10^{-9}C$, a = 2cm et $k = 9.10^{9}$ S.I
-	

(Ox) d'origine O. Tels que : $x_M = x$ et $x_A = 0A = d$. On pose q > 0 et x > 0.

(4 points)

Exercice 2

$$O(q) \qquad x \qquad M(-q) \qquad A(3q)$$

$$d = 1m$$

1- Représenter sur le schéma ci-dessus, les forces électriques $\vec{F}_{A/M}$ et $\vec{F}_{O/M}$ exercées sur la charge négative placée au point M.

On considère trois charges ponctuelles (q, -q et 3q) placées respectivement aux points O, M et A d'un axe

2- Exprimer les normes de chacune des forces en fonction de k, q, d et x.			
3- En déduire la norme de la force résultante au point M, en fonction de k, q, d et x.	a		
4- Où doit-on placer le point M pour que la force totale exercée sur la charge (-q) au point M soit nulle (On pose : d = 1m. et x > 0.			
On pose : u = 1m. et x > 0.			

Exercice 3 Distribution de charges continue. (6 points)

Un anneau de rayon R et d'axe (Oz) est chargé avec une densité linéique λ constante et positive.

symetrie de cette en un point M de	repartition de ci	narges, pour en c	leduire la directi	ion du champ ei	ectrique cree
ii uii poiiit ivi uc	T dAC (OZ).				

- 2- a) Exprimer le champ électrique élémentaire dE_z (composante sur l'axe (Oz) du vecteur $d\vec{E}$), créé au point M, par un élément de charge dQ.
 - b) En déduire l'expression du champ électrique E(M) créé par l'anneau, en fonction de k, R, λ et z.

3-	a) Exprimer le potentiel élémentaire $dV(M)$, créé au point M, par un élément de charge dQ . b) En déduire le potentiel $V(M)$ créé par l'anneau, en fonction de k, R λ et z.
4-	Retrouver l'expression du champ électrique établie à la question (2b), en utilisant la relation cham potentiel. On donne les composantes de l'opérateur gradient en coordonnées cylindriques :
	potentiel. On donne les composantes de l'opérateur gradient en coordonnées cylindriques :
Г	
1	