

- How do we configurate our floats?
- Do we change configuration during lifetime?
- Is there a best configuration? How configuration affects life expectancy?

Presentation outline

- Sample
- Number of configuration parameters
- Number of missions

- Some configuration parameters
- Increase floats lifetime: EA-RISE project

CTD/O2 ARVOR and PROVOR (including Deep) deployed from 2008

# floats	# operational floats	ARGOS	IRIDIUM	ARVOR	PROVOR	Deep
2038	816	1399	625	1462	530	46

Floats last position

- OPERATIONAL
- INACTIVE
- CLOSED

Generated by www.jcommops.org

Number of configuration parameters

Number of configuration parameters per float depending on dac

Number of missions

- When does mission change?
- Most of the floats have 2 missions
- 22 % of floats used > 2 missions (bi-mission, Iridium)

NUMBER OF MISSIONS PER FLOAT

Number of missions

Number of missions for ARVOR –PROVOR floats

- 1 missions
- 2 missions
 - 3 missions
- 4 missions
- 5 missions
 - 6 missions
- 7 missions
- 8 missions
- 9 missions
- 10 -------
- 10 missions
- > 10 missions

Configuration parameters

- Some configuration parameters ...
 - Parking pressure
 - Profile pressure
 - Cycle Period
 - CTD points in profile

Parking pressure

- 5,8 % of floats changed this parameter (in last years)
- Most of cycles go to 1000 dbar and 8,9% to 350 (Italy)

Profile pressure

- 13 % of floats changed this parameter (alternate profiles)
- Most of cycles go to 2000 dbar, 14% to 2020 dbar (Japan) and 5 % to 700 dbar (Italy)

Cycle Period

- 9,9 % of floats changed this parameter
- 65,4% of cycles do 10 days periods and 26,3% 5 days periods (Italy, Japan, France)

Cycle period for ARVOR – PROVOR floats

CTD points

- 23,8 % of floats changed this parameter (in last years)
- Better resolution in last years

CTD points for ARVOR - PROVOR floats

- < 101 points</p>
- 101 points
- 101-110 points
- 110-120 points
- 120-200 points
- 200-600 points
- 600-1000 points
- > 1000 points

CTD points (only Iridium)

- Higher resolutions (> 600 points) from 2016
- Deep floats configurated with 162 540 points

CTD points (only Iridium)

- Higher resolutions (> 600 points) from 2016
- Deep floats configurated with 162 540 points

To sum up

How do we use our floats? Standard argo configuration still the most used

	Standard Argo configuration		"Exotic" configurations	
	Value	% cycles	% cycles	
Parking pressure	1000 dbar	77.7 %	22.3 %	
Profile pressure	2000 dbar	71 %	29 %	
Cycle Period	10 days	65.4 %	34,6 %	

But

What is the cost in terms of life expectancy of using "exotic" configurations?

Not only mission parameters: what is the cost of using high resolution? What about other configuration parameters as number of CTD measurements during park? Or second GPS point?

Increase floats lifetime: EA-RISE project (WP2 task 2.1)

Using statistics

- Look for the configuration that improves life expectancy of floats
- Identify config. params which can be important for battery consumption
- Smaller sample: ARVOR Iridium floats, standard configuration, global ocean (sample size: 288 floats) or groups of similar configurations using machine learning
- Calculation of survival rates

Using energy budget

- Calculate the cost in cycles of choosing a specific configuration parameter
- More than configuration: Impact of other events like groundings

Main conclusions

- Floats configurations can be also used to improve floats lifetime
- "Exotic" configurations will be used, and we should know what is the cost in terms of float lifetime (number of cycles) to make the correct choices

24/01/19 EURO-ARGO.EU

Merci

Methodology to explore our data

- Calculate survival rates for each configuration parameter value
 - Using number of cycles
 - Using vertical km: 2x max depth

 $\frac{Floats > x \ cycles}{Floats > x \ cycles + death \ floats < x \ cycles}$

Analyze results

CONFIG_CycleTime_days

Park sampling period

