비모수통계학

출생아 사망에 영향을 미치는 생물학적/부모의 사회경제적 요인 분석

2020110467 김민지2021110206 이선재

목차

01	추진배경 및 현황	3
02	변수정의서	4
03	분석계획서	5
04	데이터 분석 결과	6
05	결론	10

1. 프로젝트 개요

추진배경 및 현황

5세 미만 사망률(Under-five mortality rate, U5MR)

WHO, UN 등 세계 주요기관이 매년 발표하는 주요 보건지표 한국의 경우 **정체된 양상**을 보이고 있음

데드 크로스(Dead Cross) 현상

사망자 수가 출생자 수보다 많아 **인구가 자연감소**하는 현상 한국은 **2020년**부터 시작되었음

서울신문 | 2023-12-15

2025년 인구 '데드크로스' 가속… 50년 뒤엔 둘 중 한 명은 고령층

"2025년에 찾아올 데드크로스 현상의 원인은 **저출산**" "앞으로 50년간 한국인구 중 절반은 **63세 이상의 역삼각형 초고령화 형태**"

저출산 시대 건강한 미래인구 확보를 위해선 **5세미만 영유아의 사망에 영향을 미치는 요인을 파악**하는 것이 중요함 따라서 사전에 예방할 수 있도록 사망 관련 요인을 파악하는 것이 필요함

2. 프로젝트 수행 절차

변수정의서

- 통계청 마이크로데이터 5세 미만 영유아 출생-사망 연계자료(2018) Row: 326822, Columns: 44
- 2018년에 출생 후 5년 간 사망여부를 추적한 데이터

П	·생	벼	수

변수명	타입	설명
생존여부	범주형	O : 생존 / 1: 사망(직접적 연계) / 2 : 사망(통계적연계)
모_연령	연속형	산모의 나이
모_직업코드	범주형	산모의 직업을 나타내는 코드
모_교육정도코드	범주형	산모의 최종 학력 수준
임신주수	연속형	임신 유지 기간(주)
다태아코드	범주형	단태아/다태아 코드
출생아체중량	연속형	출생 시 체중(kg)
		•••
생존여부2	범주형	생존여부 데이터를 재범주화 0 : 생존 / 1: 사망
산모연령대	범주형	35세를 기준으로 모_연령 데이터를 범주화
학력	범주형	고등학교를 기준으로 모_교육정도코드 데이터를 범주화 학력낮음 : 무학~고등학교 / 학력높음 : 대학교 이상
출생아사망그룹	범주형	사망 시점에 따라 사망한 출생아를 범주화 (신생아사망/후기신생아사망/1세이상사망)

2. 프로젝트 수행 절차

분석계획서

목적	분석방법	주요내용
생존/사망 그룹 간 체중 분포 비교, 출생아 사망 그룹 간 임신주수에 차이가 있는지 분석	Kerenel Density Estimation Krsukal-Wallis test	생존 여부에 따른 출생아 체중 분포 시각화 출생아 사망그룹별(신생아 사망, 후기신생아 사망, 영아 사망) 임신주기 중위수 검정
출생아 생존여부에 따라 체중량에 유의미한 차이가 있는지 분석	Wilcoxon Ranksum Test Permutation Test Binomial Test	• 출생아 생존여부에 따른 체중의 평균과 중위수 검정
산모의 연령과 사회경제적 특성이 출생아 생존여부와 관련이 있는지 파악	Fisher's exact Test	• 산모 연령대(35세 미만, 35세 이상), 부모 학력(낮음, 높음), 혼인여부(기혼, 미혼)와 출생아 생존여부간의 연관성 분석
출생아와 부모의 정보를 통해 출생아 생존여부를 예측	Decision Tree Logistic Spline	• 출생아 체중, 산모 연령, 부모 직업, 다태아출산순위코드 등을 입력하면 출생아의 생존여부를 예측하는 모델 개발

3. 프로젝트 수행 결과

데이터 분석 결과 | 사망요인 분석

생존여부에 따른 체중량 분포

KDE(Kernel Density Estimation)을 활용해 생존그룹/사망그룹별 체중량 분포를 확인

생존여부에 따른 체중량 분포

사망그룹의 체중량 분포는 0~1kg대, 3kg대가 많은 것을 알 수 있음 생존그룹 역시 3kg대가 많기 때문에, 체중과 체중이 아닌 다른 요인이 5세 미만 영유아 사망에 영향을 준다고 볼 수 있음

사망 그룹에 따른 임신주수

	생존일수
신생아사망	0-27일
후기신생아사망	28-364일
1세이상사망	365일 이상

Kruskal-Wallis Test				
귀무가설	세 그룹 간 임신주수 중위수에는 차이가 없다.			
대립가설	적어도 한 그룹의 임신주수 중위수가 다른 그룹과 유의하게 다르다.			
P.value(=0.0001) < 0.05 (귀무가설 기각)				
세 그룹의 출생 당시 임신주수의 분포는 유의하게 다르다.				

*조산 : 20-37주 출산

신생아사망: 임신주수 중위수는 27주로 조산*에 의한 사망 가능성이 큼 1세이상사망: 거의 만삭에 태어났기 때문에, 출생 이후 요인에 의한 사망 가능성이 큼

데이터 분석 결과 | 생존여부에 따른 체중의 대표값 검정

3. 프로젝트 수행 결과

생존여부에 따른 체중량 분포

생존여부에 따른 체중의 대표값 검정 체중량에 대한 정규성 검정 결과, 귀무가설(체중량은 정규분포를 따른다.)을 기각하여 비모수적으로 접근하였음

Wilcoxon Ranksum Test			
귀무가설	두 그룹(생존, 사망)간 체중량의 대표값(중앙값)에 차이가 없다.		
대립가설 두 그룹(생존, 사망)간 체중량의 대표값(중앙값)에 차이가 있다.			
P.value(=2.590e-241) < 0.05 (귀무가설 기각)			
두 그룹(생존, 사망)간 체중량의 대표값(중앙값)에 차이가 있다.			

	Permutation Test			
귀무가설	생존그룹의 평균 체중량과 사망그룹의 평균 체중량은 같다.			
대립가설 생존그룹의 평균 체중량이 사망그룹의 평균 체중량보다 높다				
	P.value(=0.001) < 0.05 (귀무가설 기각)			
생존그룹의 평균 체중량이 사망그룹의 평균 체중량보다 높다.				

Binomial Test*			
귀무가설	생존그룹의 체중량 중위수는 3.5kg이다.		
대립가설 생존그룹의 체중량 중위수는 3.5kg보다 작다.			
P.value(=0.0) < 0.05 (귀무가설 기각)			
생존그룹의 체중량 중위수는 3.5kg보다 작다.(95% 신뢰구간 : [3.21, 3.217])			

^{*}사망그룹 역시 귀무가설 기각하였음(귀무가설 : 사망그룹의 체중량 중위수는 2.5kg이다/대립가설 : 사망그룹의 체중량 중위수는 2.5kg보다 작다.)

^{*}사망그룹 체중량 95% 중위수 신뢰구간 : [2.09., 2.38]

3. 프로젝트 수행 결과

데이터 분석 결과 | 체중 외 사망요인 파악

산모 연령대(35세 미만 vs 35세 이상)

산모 연령대 - 생존여부 교차표 (단위 : 명)

	사망	생존
35세 이상*	415	103698
35세 미만	706	222003

^{*}한국 의료계에서는 35세 이상을 고령 출산이라고 규정

Fisher's exact Test (산모 연령대 - 생존여부)			
 귀무가설	산모 연령대(35세 미만, 35세 이상)와 출생아 생존여부 간에 관련이 없다.		
대립가설 연령대가 높을수록 출생아 사망률이 높아진다.(양의 상관관계가 있다.)			
P.value(=0.0001) < 0.05 (귀무가설 기각)			
연령대가 높을수록 출생아 사망률이 높아진다. <u>(양의 상관관계가 있다.)</u>			

산모 학력(학력낮음 vs 학력높음)

산모 학력 - 생존여부 교차표 (단위 : 명)

	사망	생존
학력낮음	349	66071
학력높음	631	254439

^{*}산모의 학력이 미상인 경우 제외하였음

Fisher's exact Test (산모 학력 - 생존여부)		
 귀무가설	산모 학력(낮음, 높음)과 출생아 생존여부 간에 관련이 없다.	
대립가설	학력이 낮을수록 출생아 사망률이 높아진다.(양의 상관관계가 있다.)	
P.value(=2.028e-27) < 0.05 (귀무가설 기각)		
학력이 낮을수록 출생아 사망률이 높아진다. <u>(양의 상관관계가 있다.)</u>		

산모 혼인여부(기혼 vs 미혼)

산모 혼인여부 - 생존여부 교차표 (단위 : 명)

	사망	생존
기혼	988	318459
미혼	73	7091

Fisher's exact Test (혼인여부 - 생존여부)			
 귀무가설	혼인여부(기혼, 미혼)와 출생아 생존여부 간에 관련이 없다.		
대립가설	기혼인 경우 출생아 사망률이 낮아진다.(음의 상관관계가 있다.)		
P.value(=3.87e-17) < 0.05 (귀무가설 기각)			
기혼인 경우 출생아 사망률이 낮아진다. <u>(음의 상관관계가 있다.)</u>			

체중량 외에도 **산모 연령대, 학력, 혼인여부** 모두 출생아 사망과 연관이 있음 따라서, **산모의 사회경제적 배경**을 고려한 맞춤형 지원이 중요함

데이터 분석 결과 | 출생아 생존여부 예측

Tree 모델 성능 요약

Recall (실제 사망자 중 사망으로 예측한 비율) 중심의 모델 평가 진행

	Recall	Accuracy
Tree	0.66	0.8955

Tree 모델 변수 중요도

임신주수, 출생아체중량, 모_연령, 부_연령모_직업코드, 부_직업코드, 모_교육정도코드, 부_교육정도코드, 출생자성별코드, 다태아분류코드, 출생장소코드, 혼인중또는혼인외자녀코드

주요 변수인 출생아체중량 기준으로 성능 구간 분석

	<= 2.5kg	> 2.5kg
Recall	0.87	0.34

2.5kg 초과 시 Recall이 급감하여 다른 요인의 영향 가능성 시사

Spline 모델 성능 요약

변수 중요도 결과, 출생아체중량이 주요 요인으로 나타나 단일 변수 기반 예측 실험

	Recall	Accuracy
출생아체중량	0.56	0.9130
연속형변수	0.62	0.9329

*연속형 변수: 임신주수, 출생아체중량, 모_연령, 부_연령

출생아체중량에 따른 사망 확률

저체중일수록 사망 확률이 급증하며, **출생아체중량만으로도 경향성 포착 가능**

결론

프로젝트 목적

출생아 사망에 영향을 미치는 생물학적/부모의 사회경제적 요인 분석

5세 미만 영유아 사망은 체중과 체중 외의 요인 2가지로 인해 발생

생존여부에 따라 체중의 대표값에 차이가 있고, 생존그룹에 비해 사망그룹의 체중량이 낮아 **체중량이 사망의 요인**이라고 볼 수 있음

산모 연령대, 학력, 혼인여부 모두 출생아 사망과 연관이 있음

출생아 생존여부 예측을 통해 사망 고위험군 사전 파악 가능

저체중 출생 예방뿐만 아니라 산모의 연령, 학력, 혼인 상태 등 다양한 요인에 대한 **다각적인 개입이 병행**되어야 함

감사합니다

2020110467 김민지 2021110206 이선재