الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الرطني لاستحانات والمسابقات

وزازة التربية الوطنية

دورة: جوان 2009

امتحان شهادة بكاثوريا التعليم الثانوي

الشعبة : رياضيات

اللهة: 04 ساعات ونصف

العنبار في مادة : الرياضيات

على المترشح أن يختار أحد الموطنوعين التاليين : التيوضوع الأول

ئىرىن 1: (4 ئقاط)

ير عدد طبيعي أكبر من ا بر عدد طبيعي

 $_A=\overline{5566}$ ين بنظام التحداد ذي الأساس $_X$ بالشكل $_{ar{6}}$

نَا انْشِر الْعِبَارَةَ (x+i)(x+i) ثَمْ أُوجِد عَلَّقَةً تَرْبِطُ بَيْنَ x و y إِذَا عَلَمْتُ أَنَّ $A = (5x^2+6)(2+2y^2)$. $A = (5x^2+6)(2+2y^2)$

لب العسب الدو الو (1) علمت أنّ البر عدد أوثلي أصنغر من 12 ، ثمّ اكتب تبعة تذلك العدد البراقي فظام التحاد العشراي.

2) أ- عين الأعداد الطبيعية التي مربعاتها تقسم العدد 584.

ب- عبن الأعداد الطبيعية م و 1 حيث الاح الذي تحقق:

$$\begin{cases} a+b=32\\ a^2+b^2=584 \end{cases}$$

تعرین 2: (5 تعاط)

كيس به 10 كريك متماثلة لا تميز بينها عند اللمس منها 4 ببضاء و 6 حمر اه،

ا) نسخب عشوانياً من الكيس 3 كريات في أن واحد.

أ- أحسب احتمال المعمول على 3 كريات ببعضاء.

ب- احمب احتمال الحمنول على الأقل على كرية حمراء.

- ليكن لا المعتفير العشوائي الذي يرفق بكل عملية سحب عدد الكريات البيضاء المسحوبة.
 عرف قانون الاحتمال للمنفير العشوائي لا والحسب أمله الرياضي (X) .
- 3) تسحب من الكيس في أن والحد 3 كريات خمس مرات بلني النوالي مع الإعادة (الإرجاع).
 احسب احتمال المصول على 3 كريات بيضاء مرتين بالضبط.

الفضاء مزود بالمعلم للمتعامد والمشجانس $(O(ilde{t}, f, k))$.

نعتبر النقطتين Aig(2,1,2) و Big(0,2,-1) و المستقيم Big(0,1,-1) و المعاليل الوسيطي

$$t \in \mathbb{R} \quad \text{and} \quad \begin{cases} x = 2 + 3t \\ y = 1 - t \\ z = 2t \end{cases}$$

(AB) اكتب تمثيلا وسيطيا للمستثيم (AB).

آئيت أنّ(D) و (AB)لا ينتميان إلى نفس المستوي.

AB) يعتبر المستوي P الذي يشمل المستقم AB ويوازري المستقيم P

I(P) عمودي على المستوي I(P,5,1) عمودي على المستوي I(P)

ب - اكتب معلالة المستوي (P).

Mج - بيّن أنّ المسافة بين تقطة M من D والمستري P مستقلة عن موضع .

 $_{*}$ ($_{VOZ}$) مع المستوي ($_{P}$) مع المستوي ($_{e}$

تعرين 4: (6 نقاط)

 $f(x) = \frac{1}{2} \left(x + \frac{5}{x} \right)$ فعرف الذالة العددية f على المجال [1,5] بالعبارة: (1

ليكن (C) مُمَثِّطِها الهزافي في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(ar{f},ar{f},ar{f}).$

الوحدة على السعورين 20m.

أد ادر س تغير إن الذالة ﴿

ديم أنشئ المنحنى البياني (C) والمستقيم (Δ) الذي معادلته $y=\chi$ في نفس المعلم

ي نعثير المتتالية العدبية (U_n) المعرافة على $\mathbb N$ المحدم الأول U_0+5 و بالعبارة: U_0+5

$$U_{n+1} = \frac{1}{2} \left(U_n + \frac{5}{U_n} \right)$$

 $U_2 \colon U_1 \hookrightarrow A$

به استعملُ العقمقي (C) والعستقيم (Δ) التعثيل الحدود $U_1 \cdot U_1 \cdot U_2$ على محور الفواصل.

 $U_n\geqslant \sqrt{5}$. n د بر هن آنه من اجل کل عند طبیعی n: 3

 $\mathfrak{l}(U_n)$ بــ بين أنّ المثقالية (U_n) مثقالصة تماما, ماذا تستنج بالنسبة إلى تقارب U_n

 $\left(U_{\rm init} - \sqrt{5}\right) \leqslant \frac{1}{2} \left(U_{n} \sim \sqrt{5}\right)$: قان: n فان: (4) أد بر هن أنه مهما وكن العدد الطبيعي n فإن:

ب الكنتج ال U_a ما هي $\left(U_a-\sqrt{5}\right)$ \leqslant $\left(\frac{1}{2}\right)^n\left\{U_0-\sqrt{5}\right\}$ ما هي ۽ الكنتج الكنتج

المويضوع الثلتي

<u>تعرين 1:</u> (4 نفلط)

 $f(z)=rac{z-i}{z+1}$ خبث: f(z) خبث السده المركب السدة المركب المباد عبد مركب المباد المباد المركب المباد المب

(45+45i)f(z) = 23+45i = 2z المعانفة: \mathbb{C} المعانفة: الأعداد العركبة \mathbb{C} المعانفة: الأعداد العركبة الأعداد العركبة الأعداد العركبة العراكبة العراكبة

 $(O; \pi, \nu)$ لئكن M صبورة العدد المركب π في الصنتوي للمنسوب إلى المعلم المتعامد والمتجانس M لئكن M بحيث بكون M عندا حفيقيا سائباً بُماماً.

. $arg\left(f\left(z_{0}\right)\right)=rac{3\pi}{2}$ ب $\left|f\left(z_{0}\right)^{1}\cdot1\right|$ بحيث: 1 بحيث: 1 بحيث

3) في الصنتوي المركب نعتبر النقط 6 ، 8 و C صنور الأعداد للمركبة 1 ، 1 و 2 على للترتيب. أ- ما نوع المثلث ABC "

ب- عين النقطة D نظيرة C بالنسبة إلى المستقيم (AB) و استنتج طبيعة الرّفاعي ACBD .

تمرين 2: (5 نقاط)

، $U_{n,n}=3U_n+2n-1$: n المنتالية المعرفة بحدها الأول $U_n=0$ و من أجل كلّ عدد طبيعي المنتالية المعرفة بحدها الأول

المنتائية المعرقة من أجل كل عند طبيعي μ كما يلي : U_{π} = U_{π} حيث μ و η عددان حقيقيا V_{π}

، عَيْنَ lpha و eta بحيث تكون المتثنية (V_{a}) متثالية هندسية، يطلب حساب أساسها وحدّها الأرّل lpha

 $v_{i} \in \mathbb{N}$ بهسب کلا من $V_{i} \in V_{i}$ بد \mathbb{N} هر را بدراه هر (2

 $S' = U_0 + U_1 + U_2 + ... + U_{a-2}$ و $S = V_0 + V_1 + V_2 + ... + V_{a-1}$ حيث (3 حيث S' = S الحصيب الأمجمو عين S' = S'

4) أ- عَيْنَ حَمْدِ قِع شَعْدُ الطَّبِيعِي ﴿ وَاقْيَ القَسْمَةُ الْإِقْلِيدِيةُ لَلْعَدُ ﴿ 3 عَلَى 5 .

ب- عين فيم العدد الطبيعي n الذي يكون من أجلها $H_{\rm p}$ مضاعفاً للعدد 5 .

<u>تعرين 3:</u> (4 نقاط)

نعتبر في الفضاء المنسوب إلى المعلم المتعامد والمتجانس $(O(\overline{I},\overline{f},\overline{k}))$ ، المستويين (P_1) و (P_2) هيئي في الفضاء المستوى (P_3)

$$\{x=1+2lpha+eta\}$$
د $\{x=1+2lpha+eta\}$ تمثیل رسیطی المستوی $\{y=1+lpha\}$; $\{lpha,eta\}\in \mathbb{R}^2$ $\{z=5+lpha+eta\}$

 (P_n) اكتب معادلة للمسترى (P_n) .

 \widetilde{R}_1 عَيْنَ شَعَاتَهُ بَالطَّمِيا \widetilde{n}_1 للمستوى (P_1) وشعاعًا بالظّميا عَلَمُ للمستوى \widetilde{n}_2 .

 (P_1) بيّن أنْ للمستويين (P_1) و (P_1) متعامدان.

أ- A(3,1,1) نقطة من الفضاء، عين المسافة d_1 بين النقطة A والمستوي A(3,1,1) ثم المسافة d_1 بين d_2 بين d_3

 $P_{i}(P_{i})=P_{i}$ بين الكلطة P_{i} والمستقيم P_{i} تقاطع المستويين P_{i}

5) أ- عنون تمثيلاً وسيطياً بدلالة ثم للعسطيم (۵) حيث ثم عند حقيقي.

A بن A بن A بن A بن A بدلالة A مستنجا نانبة المسافة بين A و A ب A بدلالة A مستنجا نانبة المسافة بين A

بَع<u>رون 4</u>: (7 نقاط)

 $f(x)=x-rac{2}{\sqrt{x+1}}$: كما بائي $f(x)=x-rac{2}{\sqrt{x+1}}$ الذَّالَةُ العنديةُ المعرَّفَةُ على تُمجال أَنْ

. $(O:\overline{i}_+,\overline{j})$ منطى الذالة f في المستوي المتسوب إلى المعلم المتعامد والمشجانين f

ادرس تغیرات الدالة ع. . .

، y=x (2) معادثه C_{j} بقبل مستقیمین مقار بین آخذهسا (C_{j}) معادثه -1

 \cdot ب – (C_{+}) و (C_{+}) و المنطق (C_{+}) و (D)

جـــ ارسم: (Δ) و (C_{r}) في نفس المعلم،

4) أوجد الدّللة الأصلية للدّالة / والتي نتحام من أجل القيمة 0 للمتغير x .

. g(x)=|f(x)| بالخالة العددية المعرقة على المجال [-1] بالحارة: g(x)=|f(x)| منحنى الذالة g في المعلم السابق. C_x

. بيّن كيف يمكن إنشاء $(C_{_{eta}})$ قطلاقا من $(C_{_{eta}})$ ، ثمّ ارسمه في نفس المطم المثابق.

 $g(x) + m^2 : x$ المجهول المجهول m عند والثمارة حلول المعادلة ذات المجهول $x \in \mathcal{G}$