

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Publication number : **0 436 242 B1**

⑫

EUROPEAN PATENT SPECIFICATION

⑯ Date of publication of patent specification :
20.04.94 Bulletin 94/16

⑮ Int. Cl.⁵ : **E21B 21/08, E21B 47/10,
E21B 49/00**

⑯ Application number : **90203119.4**

⑯ Date of filing : **26.11.90**

⑭ Method of analysing and controlling a fluid influx during the drilling of a borehole.

⑯ Priority : **20.12.89 GB 8928795**

⑯ Date of publication of application :
10.07.91 Bulletin 91/28

⑯ Publication of the grant of the patent :
20.04.94 Bulletin 94/16

⑯ Designated Contracting States :
DE DK FR IT NL

⑯ References cited :
**EP-A- 0 302 558
US-A- 4 606 415
US-A- 4 840 061
US-A- 4 867 254**

⑯ Proprietor : **SERVICES PETROLIERS SCHLUMBERGER, (formerly Société de Prospection Electrique Schlumberger)
42, rue Saint-Dominique
F-75007 Paris (FR)**

⑯ Inventor : **Thompson, Martin
9 Cottenham Road
Histon, Cambridge CB4 4ES (GB)**

⑯ Representative : **Hyden, Martin Douglas
c/o Schlumberger Cambridge Research Limited, High Cross, PO Box 153
Cambridge CB3 OHG (GB)**

EP 0 436 242 B1

Note : Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

The invention relates to a method of analysis and control, in real time, of a fluid influx into a hydrocarbon well which occurs during drilling. When, during the drilling of a well, after passing through an impermeable layer, a permeable formation is reached containing a liquid or gaseous fluid under pressure, this fluid tends to flow into the well if the column of drilling fluid, known as drilling mud, contained in the well is not able to balance the pressure of the fluid in the aforementioned formation. The fluid then pushes the mud upwards. There is said to be a fluid influx or "kick". Such a phenomenon is unstable: as the fluid from the formation replaces the mud in the well, the mean density of the counter-pressure column inside the well decreases and the unbalance become greater. If no steps are taken, the phenomenon runs away, leading to a blow-out.

This influx of fluid is in most cases detected early enough to prevent the blow-out occurring, and the first emergency step taken is to close the well at the surface by means of a blow-out preventer.

Once this valve is closed, the well is under control, but only as long as the well pressure does not exceed the formation fracture pressure, otherwise there can result an underground blow-out. A choke valve is used at the surface to relieve, in a controlled manner, the pressure which has been building up in the well. There is a conflict between the need to close the outlet choke valve sufficiently to ensure that the bottomhole pressure remains high enough to be above the formation pressure and so avoid a further influx but low enough to avoid the risk of fracturing the formation higher up the wellbore, the result of which would be an underground blow-out. In addition the well pressure must build up sufficiently to be able to determine enough information about the influx to ensure that subsequent control of the choke valve will be correct. The information that is of particular value to the driller is:

- The formation pressure, so that the correct mud weight to be used for the mud circulated to replace the original fluid can be selected and so that the choke valve can be operated to maintain downhole pressure above the formation pressure and so ensure no further influx occurs.
- Details of the influx: the crucial information is whether it consists of gas or water or oil. This decides subsequent action in circulating out the influx. The density of the influx if it is gas and the rate at which it is rising up the annulus is sufficient to determine the maximum attainable pressure at the casing shoe and so decide whether or not fracture will occur. Also the volume of the influx is important in determining the subsequent well kill operations as the orig-

inal volume estimate, which is taken from the surface pit gain, is notoriously inaccurate.

- As the pressure builds up in a shut-in well, the influx flow rate falls away until eventually it ceases. It is vitally important to know when the influx has ceased because any further delay in operating the choke valve to reduce wellbore pressure can result in fracturing the formation. However a premature operation of the choke valve would result in a further influx of gas with possible disastrous consequences.

Once the well is under control under the operation of the choke valve, the formation fluid can be safely circulated out and the mud then weighted to enable drilling to continue without danger. If the formation fluid that has entered the well is a liquid (brine or hydrocarbons, for example), the circulation of this fluid does not present any specific problems, since this fluid scarcely increases in volume during its rise to the surface and, therefore, the hydrostatic pressure exercised by the drilling mud at the bottom of the well remains more or less constant. If on the other hand the formation fluid is gaseous, it expands on rising and this creates a problem in that the hydrostatic pressure gradually decreases. To avoid fresh influxes of formation fluid being induced during "circulation" of the influx, in other words while the gas is rising to the surface, a pressure greater than the pressure of the formation has to be maintained at the bottom of the well. To do this, the annulus of the well, this being the space between the drill string and the well wall, must be kept at a pressure such that the bottom pressure is at the desired value. It is therefore very important for the driller to know as early as possible, during circulation of the influx, if a dangerous incident is on the point of occurring, such as a fresh influx of fluid or the commencement of mud loss due to the fracture of the formation.

The usual means of analysis and control available to the driller comprise the mud level in the mud tank, the mud injection pressure into the drill pipes, and the well annulus surface pressure. These three data allow the driller to calculate the volume and nature of the influx, and also the formation pressure. It is on this information that he bases his influx circulation programme.

Interpreting the data nevertheless poses some problems. Firstly, the assessment of the volume of the influx, which is important in order to determine the nature of that influx, is inaccurate. It is in fact made by comparing the mud level in the tank with a "normal" level, i.e. the level that would occur in the absence of the influx. But this reference is difficult to determine: on one hand the mud level changes constantly during drilling, because part of the mud is ejected with the well cuttings; on the other, the mud level in the pits rises when the well is closed, because the mud return lines empty. The estimate of the influx

volume is therefore approximate. As a result, determining the nature of the influx is also uncertain. The influx density calculations thus often lead to the conclusion that the influx is a mixture of gas and liquid (oil or water) whereas it may in fact be a gas or a liquid only. It should also be noted that this calculation can not be made when the influx is in a horizontal part of the well.

For all these reasons, influx analysis is not regarded as a reliable technique today.

Several methods have already been proposed for analysing and/or controlling fluid influxes into an oil well from an underground formation being drilled. For example, in US patent 4,867,254 the value of the mass of gas in the annulus is monitored in order to determine either a fresh gas entry into the annulus or a drilling mud loss into the formation being drilled. In EP patent application 0,302,558, the variations of the flow rate or the pressure of the inlet drilling mud are compared with the variations of the flow rate or the pressure of the outlet mud and, from the comparison, the nature and volume of the influx are determined. Other examples of methods for detecting and/or controlling a fluid influx can be found in US patents 4,840,061; 3,740,739; 3,760,891; 4,253,530 and 4,606,415.

However, the methods of the prior art are often not sufficiently accurate to allow a correct determination of the parameters characterizing the influx and the well conditions. For example, the precise time to open the choke valve in order to control the well is either not described or predicted as being later than necessary.

The present invention offers a method of deriving the required information to analyse and control a fluid influx in a borehole from an analysis of the surface inlet or outlet pressure monitored on a continuous basis when the well is shut-in and operating the choke valve at the right time and in the correct manner. The proposed method may be applied in deviated and even horizontal wells.

More precisely, the invention relates to a method of real time analysis and control of a fluid influx from an underground formation into a wellbore being drilled with a drillstring, a drilling mud circulating from the surface down to the bottomhole into the drillstring and flowing back to the surface in the annulus defined between the wall of the wellbore and the drillstring, wherein the well is shut-in when the influx is detected and wherein the mud pressure, which is the inlet pressure p_i of the drilling mud, is repeatedly measured as a function of time at surface, the method being characterized by determining, from the increase of the mud pressure measurement, the time t_c corresponding to the minimum gradient in the increase of the mud pressure when the relationship:

$$p_i = A(1 - e^{-Ct}) \quad \text{for } t \leq t_c \quad (1)$$

is no longer valid and the relationship

$p_i = B + C_1(t - t_c) \quad \text{for } t \geq t_c \quad (2)$

starts to apply, wherein A , B , C , and C_1 are constants t and is the time at which time the inlet pressure p_i is substantially equal to the difference between the formation pressure p_f and the hydrostatic pressure p_H the drilling mud and controlling the well from said time t_c .

When inlet pressure p_i is measured, time t_c corresponds to the time when the inlet pressure p_i is substantially equal to the difference between the formation pressure p_f and the hydrostatic pressure p_H created by the density of the drilling mud. The formation pressure p_f is derived by adding the inlet pressure p_i at time t_c to the hydrostatic pressure p_H . The rate of change dp_i of the inlet pressure p_i is monitored at time t_c , said rate of change being compared with a predetermined value, and the type of influx is determined from said comparison. In addition, the volume and the density of the influx can be derived from the determination of time t_c .

The invention applies as well to analysis based on continuously monitored outlet pressure p_o . For illustrative purposes only the inlet pressure will be mentioned from now on.

The characteristics and advantages of the invention will be seen more clearly from the description that follows, with reference to the attached drawings, of a non-limitative example of the method mentioned above.

Figure 1 shows schematically the drilling mud circuit of a well during control of an influx.

Figure 2 shows in diagram form the hydraulic circuit of a well during control of a gas influx.

Figure 3 shows an example of inlet pressure p_i as a function of time, as predicted by the prior art and as observed during a numerical simulation of a gas kick, in accordance with the present invention.

Figure 1 shows the mud circuit of a well 1 during a formation fluid influx control operation. The bit 2 is attached to the end of a drill string 3. The mud circuit comprises a tank 4 containing drilling mud 5, a pump (or several pumps) 6 sucking mud from the tank 4 through a pipe 7 and discharging it into the well 1, through a rigid pipe 8 and flexible hose 9 connected to the tubular drill string 3 via a swivel 17. The mud escapes from the drill string when it reaches the bit 2 and returns up the well through the annulus 10 between the drill string and the well wall. In normal operation the drilling mud flows through a blow-out preventer 12, which is open, into the mud tank 4 through a line 24 and through a vibratory screen not shown in the diagram to separate the cuttings from the mud. When a fluid influx is detected, the blow-out preventer 12 is closed. Having returned to the surface, the mud flows through a choke valve 13 and a degasser 14 which separates the gas from the liquid. The drilling mud then returns to the tank 4 through line 15. The mud inlet flow rate Q_i may be measured by

means of a flow meter 16 and the mud density is measured by means of a sensor 21, both of these fitted in line 8. The inlet pressure p_i is measured by means of a sensor 18 on rigid line 8. The outlet pressure p_o is measured by means of a sensor 19 fitted between the blow-out preventer 12 and the choke 13. The mud level in the tank 4 is measured by means of a level sensor 20 fitted in the tank 4. This level will increase if a kick is taken and this pit gain is a simple and basic estimate of the volume of the influx. The sensors are connected to a data acquisition and processing system 22.

In order to exploit the present invention it is sufficient to measure at least p_i or p_o during the shut-in phase, before the choke valve begins to be operated.

Figure 2 represents in simplified form hydraulic circuit of a well when the operator is preparing to circulate the fluid influx 30 that has entered the well. The gas influx 30 produced by the formation being drilled has been represented, rising in the annulus 10. The arrows represented in the drill string 3, the drill bit 2 and the annulus 10 indicate the circulation of the mud when the pumps 6 are working. Immediately after detecting an influx, the pumps are shut down and the blow-out preventer 12 and choke 13 are closed. The well is thus isolated or "shut-in" and the drilling mud is immobilized in the well. The driller then measures at the surface the inlet pressure p_i in the pipes by means of the sensor 8 and the outlet pressure p_o in the annulus by means of sensor 19 between the wellhead and the control choke 13.

For the sake of clarity in explaining the method it is assumed here that the section of the annulus has a constant area A from the bottom to the top of the well. But the method may be used even if this section is not of constant area.

Figure 3 shows the variations of the mud inlet pressure p_i as a function of time t during a kick, which is detected and controlled by closing the blow-out preventer 12. Curve 30 represented in plain line represents the usual field expectation of variation of p_i , and curve 32 in dashed lines represents the expected variation of p_i in accordance with the present invention. The kick begins at time t_1 . Before that the inlet pressure p_i is relatively constant. From time t_1 to t_2 , p_i decreases very slightly until time t_2 when the kick is detected. The period of time ($t_2 - t_1$) between the start of the kick and its detection could be, say 5 minutes depending on formation productivity. At time t_2 , the mud pumps are stopped. The inlet pressure p_i falls sharply during a few seconds down to a minimum pressure p_{min} at time t_3 . The blow-out preventer is fully closed at time t_4 which is usually called the shut-in time. The elapsed time between t_2 and t_4 is the time it takes to close the blow-out preventer (about 1 minute). At time t_4 the inlet pressure p_i rises until it reaches a constant value equal to the difference between the formation pressure p_f and the hydrostatic pres-

sure p_H . The period of time to reach this value is of the order of 5 to 10 minutes depending on formation productivity and includes the recovery time of the formation. The well is shut-in completely since the pumps 6 are stopped and the blow-out preventer 12 and the choke valve 13 are closed. From the time t_4 the well is shut-in, the pressure p_i begins to increase for two reasons:

- 10 a) The mass of the fluid influx in the wellbore keeps increasing as long as more and more fluid is produced by the formation into the wellbore. Since the volume of the wellbore is constant, the pressure p_i will increase until the influx shuts itself off.
- 15 b) If the influx is gas, it rises up the annulus at some slip velocity relative to the mud. As it rises within a fixed volume (the well is shut-in), the pressure increases as the gas can only expand a very limited amount.

20 The manner in which the pressure builds up is a function of the volume and compressibility of the mud system and of the influx, the rate at which the influx was flowing from the formation when the blow-out preventer was closed as well as the rate of rise of the influx fluid in the annulus if it is gas.

25 It is usual field practice, in recognition of phenomenon (a) above, to wait until the surface pressure ceases to increase (when $p_i = p_f + p_H$ on Figure 3 after the time t_4) and to identify this instant as the time at which the influx ceased. From the value of the surface pressure at this time, the formation pressure, the influx density and the manner in which to control the choke valve are determined.

30 However all of this information is deficient in the case of a gas influx, as recognised in the present invention, because the shut-in pressure never actually ceases to increase due to the phenomenon (b) above mentioned. The influx density calculation can consequently be grossly in error and the formation pressure estimate wrong.

35 The usual field practice described above stems from the knowledge that the bottomhole pressure p_w is lower than the formation pressure p_f (since an influx is flowing from the formation into the borehole) and the bottomhole pressure p_w increases until it meets the formation pressure p_f , beyond which time there is no further influx of fluid from the formation into the borehole. At that time, the inlet pressure p_i is equal to the formation pressure p_f minus the hydrostatic pressure p_H . The formation pressure p_f and the hydrostatic pressure p_H being constant, the inlet pressure p_i reaches a constant value equal to $(p_f - p_H)$. This is illustrated by the curve 30 in plain line, after the time t_4 , on Figure 3.

40 However, this is not realistic and the inventor of the present invention has demonstrated that in fact the inlet pressure p_i can be given by the following two equations:

$$p_i = A(1 - e^{-\frac{t}{c_2}}) \quad (1)$$

from the time $t = t_s$ to the time $t = t_c$, and

$$p_i = B + c_1(t - t_c) \quad (2)$$

from and after the time t_c , wherein A, B, c_1 and c_2 are constants.

By taking:

$$A = (p_f - p_H) + c_1/c_2$$

$$B = (p_f - p_H)$$

the two first equations become:

$$p_i = \left\{ (p_f - p_H) + \frac{c_1}{c_2} \right\} \left(1 - e^{-\frac{t}{c_2}} \right) \quad (1a)$$

from the time $t = t_s$ to the time $t = t_c$, and

$$p_i = (p_f - p_H) + c_1(t - t_c) \quad (2a)$$

from and after the time t_c .

The time t_c is defined as the time when the influx stops and therefore the time when $p_i = p_w$, c_1 and c_2 are constants defined hereafter.

A non-uniform geometry modifies the detail of these expressions but not the principle being described.

As a fact, it is then necessary to add on the right member of equation (2) a third term equal to $+ E(t - t_c)^2$, E being an arbitrary coefficient introduced to account for the departure from linearity of equation (2) caused by changes in area as the gas leaves the region of the drill collars.

In Figure 3, curve 32 in dash lines represents the variation of inlet pressure p_i during a shut-in period, in accordance with equations (1) and (2).

The time t_c can be determined directly from the measurement of the inlet pressure p_i , as the inflection point 34 of curve 32 or the point of minimum gradient. This is because the minimum gradient in the increase of p_i versus time occurs precisely for $t = t_c$ (point 34). The determination of the minimum gradient can be done for example by plotting the curve 32 with the pressure measurement versus time or with the help of a computer.

Another way to determine t_c is to do it by computational means. The way to do so is to match the measured data p_i versus time with predictions of p_i from equations (1) and (2) based on assumed values of c_1 , c_2 , A and B and refining the assumed values until a good match is obtained. The match is obtained when the limit t_c is found for the two equations (1) and (2), when equation (1) is not valid anymore and equation (2) starts to apply. The same curve fitting process can obviously apply starting from equations (1a) and (2a).

When equation (1) applies, for times less than t_c , we have unknown parameters p_i , c_1 , c_2 and when equation (2) applies, for times exceeding t_c , we have unknown parameters c_1 and p_i .

A value for the time t_c is first assumed. Then it is a straightforward matter to use least squares or some other appropriate curve fitting method to determine

p_i , c_1 , c_2 from the region $0 < t < t_c$, comparing measurements with predictions of equations (1a) and c_1 , p_i from the region $t_c < t$ comparing measurements with predictions of equation (2a). Having done this with the assumed value of t_c , there are several further conditions to be met. Namely that the two curves must coincide at time t_c and that gradients of the curves at time t_c must match. Furthermore the parameters p_i and c_1 found from the curve fitting process with equation (1a), on the one hand, and from the curve fitting process with equation (2a) on the other hand, must be consistent. If these conditions are not met, then the time t_c is adjusted. The process is repeated iteratively until these conditions are met and then all the parameters t_c , c_1 , c_2 and p_i are known.

The determination of t_c calls for several remarks. In the method usually applied in the field, the time t_c to open the choke valve when p_i does not increase anymore (when $p_i = p_f - p_H$ on Figure 3) is difficult to determine with accuracy since p_i rises asymptotically toward a plateau. The driller is therefore not really sure of the right instant to open the choke valve. By comparison, the curve 32 cuts the horizontal line ($p_i - p_H$) at point 34, going over that line. Time t_c , which corresponds to the point of minimum gradient at the intersection between this horizontal line and curve 32, is therefore easy to determine. The driller, who in accordance with the present invention, opens the choke valve at time t_c , knows perfectly well the right instant to do it.

A second remark is that the inlet pressure p_i continues to increase (curve 32) after the time t_c , contrary to the usual belief that p_i reaches a constant value and stops rising for a while.

Another remark is that time t_c occurs before time t_d of the prior art. As a consequence, there is a higher risk to fracture the formation with the usual field practice, particularly since p_i continues to increase after time t_c . It is therefore very important to determine precisely the time t_c . In addition, the accuracy of other parameter values depends on the precision in determining t_c , since t_c is used later on to determine other parameters. It may be noted that the use of both equations (1) and (2) to determine t_c implies that time t_c is passed before it is determined. This is true but is not of any consequence. The driller will then know the true t_c and would always delay for a short period the opening of the choke in order to give a margin of safety in controlling the downhole pressure to be not just at the formation pressure but marginally above it.

When time t_c has been determined, in accordance with the present invention, the inlet pressure p_i is determined at time t_c , for example directly from the pressure measurement. If no measurement was made at that particular time t_c , then the value of p_i at time t_c is extrapolated from the measurement made right before and after t_c .

Then the formation pressure p_f at time t_c is calcu-

lated in order to better control the opening of the choke valve and to determine the mud density sufficient to kill the well. The formation pressure is given by:

$$p_r = p_i + p_h$$

Any error on the determination of t_c and subsequently p_i leads to a same error on the value of p_r . This is important since the driller has to keep the bottom-hole pressure at least equal to the formation pressure, and therefore the inlet pressure p_i large enough, by adjusting the opening of the choke valve. Any error on the value of p_r leads therefore to a wrong control of the choke valve. The hydrostatic pressure p_h is determined, as known in the art, from the density d_m of the mud presently in the well and from the true vertical depth.

It must be realized that, if the curve fitting method has been used to obtain t_c , as explained previously, then the value of p_r is also obtained at the same time, together with the values for c_1 and c_2 .

In order to determine the type of influx, gas or liquid, the rate of change of inlet pressure dp_i is computed from the measured data at the time t_c . If the rate dp_i is very small, less than say 0.03 bar/min, then the influx is not gas. This can be ascertained even in a horizontal well.

In accordance with one characteristic of the invention, the volume of influx V_o is determined. The inventor has determined that the constant c_1 of equation (1) is given by:

$$c_1 = \frac{V_o d_m g v_g}{V_o + p_h X_m V_m} \quad (3)$$

wherein p_h is the hydrostatic pressure, X_m the compressibility of the mud in the well, V_m the volume of the mud in the well (drill string and annulus) d_m is the density of the mud, g is the gravitational acceleration and v_g is the rate of rise of the gas in the annulus. The value of v_g is obtained from experimental conditions in flow simulators and is therefore known.

From the time derivative of equation (2), the rate of change dp_i of inlet pressure is:

$$dp_i = c_1$$

c_1 can thus be determined by determining the rate of change of p_i at time t_c .

Writing equation (3) for V_o and substituting c_1 by dp_i , one obtains:

$$V_o = \frac{p_h X_m V_m dp_i}{d_m g v_g - dp_i} \quad (4)$$

The compressibility X_m of the mud is known or can be determined easily. The rate of rise dp_i of the inlet pressure has been determined previously and, the other parameters of equation (4) being known, then the value of V_o can be computed. The volume of influx so determined is a better estimate than the one obtained with the usual pit gain measurement.

There will be situations where the operator is more confident in the pit gain measurement than in

the value of V_o derived from equation (4) wherein an estimate of rate of rise of gas v_g is inferred. In that case, the value of v_g is obtained from equation (4) using for V_o the pit gain.

However, if the difference $(Q_o - Q_i)$ between the outlet flow rate Q_o and inlet flow rate Q_i has been measured between times t_2 and t_s on Figure 3, then the volume V_o of influx can be estimated from the following expression, derived by the inventor, of the constant c_2 of equation (1):

$$c_2 = \frac{(Q_o - Q_i)}{(p_r - p_h)} \frac{1}{V_o/p_h + X_m V_m} \quad (5)$$

so that:

$$V_o = p_h \frac{(Q_o - Q_i)}{c_2 (p_r - p_h)} - p_h X_m V_m \quad (6)$$

According to a further aspect of the invention, the density of the influx d_g is determined, even if the well is deviated from the vertical, as follows:

In a well with constant annulus area S the density of the influx d_g is determined from a comparison of the inlet and outlet pressure at time t_c :

$$p_o - p_i - p_{fr} = (d_m - d_g) g \frac{V_o}{S} \cos a \quad (7)$$

where a is the angle of inclination of the drill collars from vertical, and the frictional pressure drop P_{fr} is due to the relative motion of the gas with respect to the mud. This term is small and would be ignored if no test work was available to give an estimate of the value.

This expression for the influx density d_g will indicate whether there is gas, oil or water entering the wellbore. When non-constant area annuli are considered then due account would need to be taken of the area changes in the relationship (7).

The preferred mode of the invention has been described with respect to measuring inlet pressure p_i . However, the invention may also be practised in an equivalent manner by measuring outlet pressure p_o as it varies with time. Equation (7) is a relationship between outlet pressure p_o and inlet pressure p_i during the shut-in, but only as long as the annulus area is constant. This expression contains unknown terms such as the fluid density d_g , the frictional pressure p_{fr} and the volume of influx V_o is often poorly estimated by pit gain measurements. However, even with a non-constant annulus cross sectional area, to a good approximation

$$p_o - p_i = \text{constant},$$

where the constant is at present unknown. Thus all of the subsequent discussion relating to the use of p_i to determine t_c , p_r , c_1 , c_2 can be applied to p_o where the unknown constant will be determined from the difference

$$(p_o - p_i) \text{ at time } t_c.$$

As an example, the variation of the outlet pressure p_o versus time, after the shut-in time t_s , follows a curve similar to curve 32 on Figure 3. From this p_o

curve, time t_c is determined corresponding to the point of minimum gradient, and the values of the constants C_1 and C_2 are derived from this p_o curve, as before. Then, if p_i has also been measured, the formation pressure p_f , the volume V_o and density d_m are determined as previously.

Claims

1. A method of real time analysis and control of a fluid influx from an underground formation into a wellbore being drilled with a drillstring, a drilling mud circulating from the surface down to the bottomhole into the drillstring and flowing back to the surface in the annulus defined between the wall of the wellbore and the drillstring, wherein the well is shut-in when the influx is detected and wherein the mud pressure, which is the inlet pressure p_i of the drilling mud, is repeatedly measured as a function of time at surface, the method being characterized by determining, from the increase of the mud pressure measurement, the time t_c corresponding to the minimum gradient in the increase of the mud pressure when the relationship:

$$p_i = A(1 - e^{-C_2 t}) \quad \text{for } t \leq t_c \quad (1)$$

is no longer valid and the relationship

$$p_i = B + C_1(t - t_c) \quad \text{for } t \geq t_c \quad (2)$$

starts to apply, wherein A , B , C_1 and C_2 are constants and t is the time at which time the inlet pressure p_i is substantially equal to the difference between the formulation pressure p_f and the hydrostatic pressure p_H of the drilling mud and controlling the well from said time t_c .

2. The method of claim 1, wherein the hydrostatic pressure p_H is computed from the mud density d_m and the drilled depth and wherein the formation pressure p_f is derived by adding the inlet pressure p_i at time t_c with the hydrostatic pressure p_H .
3. The method of preceding claims 1 or 2, wherein the rate of change d_p of the mud pressure is monitored at time t_c , said rate of change is compared with a predetermined value and the type of influx is determined from said comparison.
4. The method of any preceding claim, wherein the time t_c is determined by matching the measurement of inlet pressure p_i versus time with predictions of p_i values from equations (1) and (2) based on assumed values of A , B , C_1 and C_2 and refining the assumed values until a good match is obtained.
5. The method of claim 4, wherein

$$A = (p_f - p_H) + \frac{C_1}{C_2}$$

$$B = p_f - p_H$$

in which p_f is the formation pressure and p_H is the hydrostatic pressure of the mud.

6. The method of any preceding claim, wherein the rate of change d_p of the inlet pressure p_i is determined at time t_c and the value of C_1 is taken equal to said rate of change d_p .

7. The method of any one of the preceding claims, wherein the rate of change d_p of the mud pressure is determined at time t_c and the volume V_o of the influx is computed from the equation:

$$V_o = \frac{p_H X_m V_m d_p}{d_m g v_g - d_p}$$

in which p_H is the hydrostatic pressure of the mud, X_m is the compressibility of the mud, v_m is the volume of the mud in the wellbore, d_m is the density of the mud, g is the gravitational acceleration and v_g is the mean rate of rise in the influx in the wellbore.

8. The method of any one of the claims 1 to 6, wherein the rate of change d_p of the mud pressure is determined at time t_c , the pit gain volume V_o is measured and the mean rate of rise v_g of the influx in the wellbore is computed from the equation:

$$V_o = \frac{p_H(Q_o - Q_i)}{C_2(p_f - p_H)} - p_H X_m V_m$$

in which p_H is the hydrostatic pressure of the mud, p_f is the formation pressure, X_m is the compressibility of the mud, V_m is the volume of the mud in the wellbore.

Patentansprüche

1. Ein Verfahren der in Realzeit erfolgenden Analyse und Steuerung eines Fluideinstroms aus einer untertägigen Formation in ein Bohrloch während dessen Abteufens mittels eines Bohrstrangs, wobei eine Bohrspülung von über Tage nach unten zur Sohle in dem Bohrstrang zirkuliert und zur Oberfläche in den Ringraum, begrenzt zwischen der Wandung des Bohrlochs und dem Bohrstrang, zurückfließt, wobei das Bohrloch gesperrt wird, wenn der Einstrom erkannt wird, und wobei der Spülungsdruck, bei dem es sich um den Einlaßdruck p_i der Bohrspülung handelt, wiederholt als eine Funktion der Zeit über Tage gemessen wird, welches Verfahren gekennzeichnet ist durch die Bestimmung, aus der Zunahme der Spülungsdruckmessungen, der Zeit t_c entsprechend dem Minimumgradienten in der Zunahme

des Spülungsdruckes, wenn die Beziehung
 $p_i = A(1 - e^{-C_2})$ für $t \leq t_c$ (1)

nicht mehr gültig ist und die Beziehung

$$p_i = B + C_1(t - t_c) \quad \text{für } t \geq t_c \quad (2)$$

wirksam zu werden beginnt, wobei A, B, C₁ und C₂ Konstanten sind und t die Zeit ist, bei welcher der Einlaßdruck p_i im wesentlichen gleich ist der Differenz zwischen dem Formationsdruck p_f und dem hydrostatischen Druck p_H der Bohrspülung, und Steuern des Bohrlochs von der Zeit t_c.

2. Das Verfahren nach Anspruch 1, bei dem der hydrostatische Druck p_H berechnet wird aus der Spülungsdichte d_m und der abgeteuften Tiefe, und bei dem der Formationsdruck p_f abgeleitet wird durch Addieren des Einlaßdrucks p_i zum Zeitpunkt t_c mit dem hydrostatischen Druck p_H.

3. Das Verfahren der vorangehenden Ansprüche 1 oder 2, bei dem die Änderungsrate d_p des Spülungsdrucks zum Zeitpunkt t_c überwacht wird, welche Änderungsrate verglichen wird mit einem vorbestimmten Wert und der Typ des Einstroms bestimmt wird aus diesem Vergleich.

4. Das Verfahren nach einem der vorangehenden Ansprüche, bei dem der Zeitpunkt t_c bestimmt wird durch Anpassen der Messung des Einlaßdrucks p_i über der Zeit an Voraussagen von p_f Werten aus Gleichungen (1) und (2), basierend auf angenommenen Werten von A, B, C₁ und C₂, und Verbessern der angenommenen Werte, bis eine gute Anpassung erzielt ist.

5. Das Verfahren nach Anspruch 4, bei dem

$$A = (p_f - p_H) + \frac{C_1}{C_2}$$

$$B = p_f - p_H$$

wobei p_f der Formationsdruck ist und p_H der hydrostatische Druck der Spülung.

6. Das Verfahren nach einem der vorangehenden Ansprüche, bei dem die Änderungsrate dp_i des Einlaßdrucks p_i zum Zeitpunkt t_c bestimmt wird und der Wert von C₁ gleich der Änderungsrate dp_i gewählt wird.

7. Das Verfahren nach einem der vorangehenden Ansprüche, bei dem die Änderungsrate d_p des Spülungsdrucks zum Zeitpunkt t_c bestimmt wird und das Volumen V_e des Einstroms berechnet wird aus der Gleichung:

$$V_e = \frac{p_H X_m V_m dp}{d_m g v_g - dp}$$

worin p_H der hydrostatische Druck der Spülung ist, X_m die Kompressibilität der Spülung ist, V_m das Volumen der Spülung im Bohrloch ist, d_m die

Dichte der Spülung ist, g die Erdbeschleunigung ist und v_g die mittlere Anstiegsrate des Einstroms in das Bohrloch ist.

8. Das Verfahren nach einem der Ansprüche 1 bis 6, bei dem die Änderungsrate d_p des Spülungsdrucks zum Zeitpunkt t_c bestimmt wird, das Tankgewinnvolumen V_e gemessen wird und die mittlere Rate des Anstiegs v_g des Einstroms in das Bohrloch berechnet wird aus der Gleichung:

$$V_e = \frac{p_H (Q_o - Q_l)}{C_2(p_f - p_H)} - p_H X_m V_m$$

worin p_H der hydrostatische Druck der Spülung ist, p_f der Formationsdruck ist, X_m die Kompressibilität der Spülung ist, V_m das Volumen der Spülung im Bohrloch ist.

Revendications

1. Un procédé d'analyse et de réglage, en temps réel, d'un influx de fluide venant d'une formation souterraine vers un puits de forage en cours de forage à l'aide d'une chaîne de forage, une boue de forage circulant depuis la surface en descendant vers le fond du trou à l'intérieur de la chaîne de forage et en s'écoulant en retour vers la surface dans l'anneau défini entre la paroi du trou de forage et la chaîne de forage, dans lequel le puits est fermé lorsque l'influx est détecté et dans lequel la pression de boue, qui est la pression d'admission p_i de la boue de forage, est mesurée de façon répétée en fonction du temps, le procédé étant caractérisé par les étapes consistant à: déterminer, à partir de l'augmentation de la mesure de pression de la boue, le temps t_c correspondant au gradient minimal de l'augmentation de la pression de boue lorsque la relation:

$$p_i = A(1 - e^{-C_2 t}) \text{ pour } t \leq t_c \quad (1)$$

n'est plus valide et que la relation

$$p_i = B + C_1(t - t_c) \text{ pour } t \geq t_c \quad (2)$$

commence à s'appliquer, où A, B, C₁ et C₂ sont des constantes et t est le temps auquel la pression d'admission p_i est sensiblement égal à la différence entre la pression de formation p_f et la pression hydrostatique p_H de la boue de forage, et à régler le puits à partir dudit temps t_c.

2. Le procédé selon la revendication 1, dans lequel la pression hydrostatique p_H est calculée à partir de la densité d_m de la boue et de la profondeur forée et dans lequel la pression de formation p_f est dérivée en ajoutant à la pression hydrostatique p_H la pression d'admission p_i à l'instant t_c.

3. Le procédé selon l'une des revendications 1 ou 2, dans lequel la vitesse de variation d_p de la pres-

sion de la boue est surveillée à l'instant t_c , ladite vitesse de variation est comparée à une valeur prédéterminée et le type d'influx est déterminé à partir de ladite comparaison.

5

4. Le procédé selon l'une des revendications précédentes quelconque, dans lequel le temps t_c est déterminé en faisant concorder la mesure de la pression d'admission p_f en fonction du temps avec des prédictions de valeurs p_f venant des équations (1) et (2) basées sur des valeurs supposées de A, B, C₁ et C₂ et en affinant les valeurs supposées jusqu'à ce qu'une bonne concordance soit obtenue .

15

5. Le procédé selon la revendication 4 dans lequel

$$A = (p_f - p_H) + \frac{C_1}{C_2}$$

$$B = p_f - p_H$$

20

dans laquelle p_f est la pression de formation et p_H est la pression hydrostatique de la boue.

6. Le procédé selon une revendication précédente quelconque, dans lequel la vitesse de variation dp_f de la pression d'admission P_f est déterminée à l'instant t_c et la valeur de C₁ est prise égale à ladite vitesse de variation dp_f .

25

7. Le procédé selon l'une des revendications précédentes quelconque, dans lequel la vitesse de variation d_p de la pression de la boue est déterminée à un instant t_c et le volume V_o de l'influx est calculé par l'équation:

30

$$V_o = \frac{p_H X_m V_m dp}{d_m g v_g - dp}$$

35

dans laquelle p_H est la pression hydrostatique de la boue, X_m est la compressibilité de la boue, V_m est le volume de la boue dans le puits de forage, d_m est la densité de la boue, g est l'accélération due à la pesanteur et v_g est la vitesse moyenne d'élévation de l'influx dans le puits de forage.

40

8. Le procédé selon l'une quelconque des revendications 1 à 6, dans lequel la vitesse de variation d_p de la pression de la boue est déterminée à l'instant t_c , le volume V_o de gain de puits est mesuré et la vitesse moyenne d'élévation v_g de l'influx dans le puits de forage est calculée à partir de l'équation:

45

$$V_o = \frac{p_H (Q_0 - Q_1) - p_H X_m V_m}{C_2 (p_f - p_H)}$$

50

dans laquelle p_H est la pression hydrostatique de la boue, p_f est la pression de formation, X_m est la compressibilité de la boue, V_m est le volume de la boue dans le puits de forage.

55

Fig. 1

Fig. 2

Fig. 3

