Exercise Sheet 5: Data Science Methods

Technische Universität München Winter semester 2024-2025

Instructions

You can hand in your solutions during the next tutorial on 30/01/25 or submit them earlier at the group office 1269 in the Physics Department.

1 Exercise: Conjugate Distributions

- 1.1 Let the likelihood for one observation x be $p(x|\mu,\sigma) \sim \mathcal{N}(\mu,\sigma)$, for given σ . Furthermore, choose a normally distributed prior $p(\mu) \sim \mathcal{N}(\mu_0,\sigma_0)$, where μ_0 and σ_0 are known. Compute the posterior distribution $p(\mu|x,\sigma)$.
- 1.2 Now generalize your result for multiple observations $\vec{x} = (x_1, \dots, x_n)$ (i.i.d.) instead of only one observation x, i.e. determine the posterior $p(\mu|\vec{x}, \sigma)$.

2 Exercise: Jeffreys Prior

The **Fisher information matrix** for a vector of parameters $\vec{\theta} = (\theta_1, \theta_2, \dots, \theta_k)$ is defined as:

$$\mathcal{I}_{ij}(\vec{\theta}) = \mathbb{E}\left[\frac{\partial \log f\left(x \mid \vec{\theta}\right)}{\partial \theta_i} \frac{\partial \log f\left(x \mid \vec{\theta}\right)}{\partial \theta_j}\right],$$

where $f\left(x\mid\vec{\theta}\right)$ is the likelihood function.

The **Jeffreys prior** for $\vec{\theta}$ is then defined as:

$$\pi\left(\vec{\theta}\right) \propto \sqrt{\det \mathcal{I}\left(\vec{\theta}\right)}.$$

Now, determine the Jeffreys prior, assuming that the likelihood is given by a normal distribution with unknown mean μ and variance σ^2 .

3 Exercise: Maximum a Posteriori (MAP) Estimator

The Maximum a Posteriori (MAP) estimator finds the parameter value that maximizes the posterior probability.

- 1.1 Argue that for a uniformly distributed prior, the MAP estimator is equivalent to the MLE in classical statistics.
- 1.2 Consider again the situation of Exercise 1 with multiple observations $\vec{x} = (x_1, \dots, x_n)$. Determine the MAP estimator and compare it to the well-known MLE from the frequentist approach.