PAC-Algorithms for Reliability Estimation of Complex Systems

R. Paredes L. Duenas-Osorio

Department of Civil and Environmental Engineering
Rice University

May 31, 2018

Engineering Mechanics Institute Conference Boston, MA. USA.

Outline

- Motivation and Introduction
 - Complex Systems
 - System Reliability
- PAC Reliability Methods
 - PAC Algorithms
 - Hashing Based Sampling
- Concrete Application: Network Reliability
 - The problem
 - Relation to Model Counting
 - Computer Experiments
- 4 Conclusions and Future Work

Complex Systems

Feature:

- Interdependencies
- Large scale
- Uncertain
- Chaotic behavior

Critical Infrastructures:

- Power transmission
- Potable water
- Transportation

System Reliability

Failure probability of system:

$$p_F = \int_{X \in \Omega} I_F(X) Pr[X] dX$$

Challenges:

- Number of dimensions
- Difficult or no explicit I_F
- Small failure probability

System Reliability - Research Outlook

- Real System or Surrogate Model
 - First/Second Order Reliability
 - Machine Learning Classifiers (e.g. SVM)
 - Polynomial Chaos Expansion
 - Kriging
- ② Design of Experiments
 - Space filling (e.g. Latin Hyper Cube sampling)
 - Variance reduction techniques
 - Model informed collection of samples
- Estimators with reduced variance
 - Importance Sampling
 - Multilevel Splitting (AKA Subset Simulation)

Bottom-line:

- Obtain $\hat{p}_F = \bar{X}_N$
- ullet May know sample variance $ar{\mathcal{S}}_{\mathcal{N}}^2$

... but, what is the error and confidence of our estimate \hat{p}_F ?

Bottom-line:

- Obtain $\hat{p}_F = \bar{X}_N$
- ullet May know sample variance $ar{\mathcal{S}}_{\mathcal{N}}^2$

... but, what is the error and confidence of our estimate \hat{p}_F ?

Normal assumption (commonly used):

Confidence $1 - \delta = 0.95$ $\hat{\rho}_F \pm 1.96 \cdot \bar{S}_N / \sqrt{N}$

- Appeals to *CLT* for tail probabilities.
- Uses sample variance, not population variance.

Consider $X \sim Bernoulli(p)$.

Trial experiment:

- Sample size N = 1,000,000
- Confidence level $1 \delta = 0.95$
- Experiment replicas 10,000

Case 1: Fair coin p = 0.5

Consider $X \sim Bernoulli(p)$.

Trial experiment:

- Sample size N = 1,000,000
- Confidence level $1 \delta = 0.95$
- Experiment replicas 10,000

Case 1: Fair coin p = 0.5

fair coin p = 0.5

~\$ python demo1.py

Confidence 1-delta in practice:

Trial 1: 0.953 Trial 2: 0.950

Trial 3: 0.947 Overconfident!

Trial 4: 0.952

Trial 5: 0.946 Overconfident!

Trial 6: 0.951

Trial 7: 0.948 Overconfident!
Trial 8: 0.948 Overconfident!

Trial 9: 0.954

Trial 10: 0.950 Overconfident!

Aggregating all trials: 0.950

Biased coin $p=1 imes 10^{-5}$

~\$ python demo2.py

Confidence 1-delta in practice:

Trial 1: 0.927 Overconfident!
Trial 2: 0.925 Overconfident!
Trial 3: 0.925 Overconfident!
Trial 4: 0.927 Overconfident!
Trial 5: 0.921 Overconfident!
Trial 6: 0.926 Overconfident!
Trial 7: 0.923 Overconfident!
Trial 8: 0.921 Overconfident!
Trial 9: 0.924 Overconfident!
Trial 10: 0.927 Overconfident!

Agregating all trials: 0.925

fair coin p = 0.5

~\$ python demo1.py

Confidence 1-delta in practice:

Trial 1: 0.953 Trial 2: 0.950

Trial 3: 0.947 Overconfident!

Trial 4: 0.952

Trial 5: 0.946 Overconfident!

Trial 6: 0.951

Trial 7: 0.948 Overconfident!
Trial 8: 0.948 Overconfident!

Trial 9: 0.954

Trial 10: 0.950 Overconfident!

Aggregating all trials: 0.950

Probably Approximately Correct (PAC) Reliability Methods

Premise: With high probability (probably), return an estimate that does not deviate too much from the exact one (approximately correct)¹.

Formally:

Definition

For input parameters ϵ and δ . A PAC reliability method returns a failure probability estimate \hat{p}_F such that:

$$\Pr[|\hat{p}_F - p_F|/p_F \le \epsilon] \ge 1 - \delta$$

¹Borrowed from Lestlie G. Valiant's PAC learning framework (2013) A RELIED TO SECTION OF THE PACK TO SECTION OF

PAC Reliability Methods - Algorithms

General purpose (ϵ, δ) -approximations that can be used in PAC reliability:

 Optimal Monte Carlo Simulation for bounded random variables (Dagum, Karp, Luby, & Ross, 1995).

$$N \in O(1/p_F \epsilon^{-2} \log 1/\delta)$$

• Estimator for Bernoulli mean with a Gamma Bernoulli Approximation Schemes (Huber, 2017).

$$N \in O(1/p_F \epsilon^{-2} \log 1/\delta)$$

 MCMC based Poisson point process for system reliability and approximation of the mean of Poisson random variables (Walter, 2017; Schott, 2012).

 $N \in O(\log(1/p_F)\epsilon^{-2}\log 1/\delta)$, but ignores MCMC mixing time

PAC Reliability Methods - Hashing Sampling

²(Duenas-Osorio, Meel, Paredes, & Vardi, 2017; Paredes, Duenas-Osorio, Meel, & Vardi, 2018)

PAC Reliability Methods - Hashing Sampling

- Break into roughly equally small cells (not trivial²).
- Solve exact problem for small cell using an *Oracle*.

²(Duenas-Osorio et al., 2017; Paredes et al., 2018)

PAC Reliability Methods - Hashing Sampling

Taking $N \in O(\epsilon^{-2} \log 1/\delta)$ samples delivers: Efficient! (See e.g. FPRAS)

$$\Pr[|\hat{p}_F - p_F|/p_F \le \epsilon] \ge 1 - \delta$$

Application to Network Reliability - The Problem

Graph G(V, E, K)

V node set

E link set

 $\mathcal{K} \subseteq V$ terminal set

Links can fail $X \in \{0,1\}^{|E|}$

$$I_F(X) = \begin{cases} 1, & \text{if } \mathcal{K} \text{ gets disconnected} \\ 0, & \text{otherwise.} \end{cases}$$

$$p_F = \sum_{X \in \Omega} I_F(X) \Pr[X]$$

Mapping Network Reliability to Model Counting

Define propositional variables $z_u, \forall u \in V$ and $x_{e_i}, \forall e_i \in E$, then:²

$$F_{\mathcal{K}} = \exists S(\bigvee_{j \in \mathcal{K}} z_j \wedge \bigvee_{k \in \mathcal{K}} \neg z_k \wedge \bigwedge_{e_i \in E} C_{e_i})$$

with:

$$S = \{z_u | u \in V\}$$

$$C_{e_i} = (z_u \wedge x_{e_i} \rightarrow z_v) \wedge (z_v \wedge x_{e_i} \rightarrow z_u), \forall e_i \in E$$

Equivalence:

$$p_F = \#F_{\mathcal{K}}/2^{|E|}$$

²See details of K-RelNet in our work (Paredes et al., 2018). $\langle a \rangle$

Mapping Network Reliability to Model Counting

Define propositional variables $z_u, \forall u \in V$ and $x_{e_i}, \forall e_i \in E$, then:²

$$F_{\mathcal{K}} = \exists S(\bigvee_{j \in \mathcal{K}} z_j \wedge \bigvee_{k \in \mathcal{K}} \neg z_k \wedge \bigwedge_{e_i \in E} C_{e_i})$$

with:

$$S = \{z_u | u \in V\}$$

$$C_{e_i} = (z_u \wedge x_{e_i} \rightarrow z_v) \wedge (z_v \wedge x_{e_i} \rightarrow z_u), \forall e_i \in E$$

Equivalence:

$$p_F = \#F_{\mathcal{K}}/2^{|E|}$$

Hashing:

- Efficient random XOR-constraints
- Oracle in practice is a SAT-Solver (handles up to million variables)

²See details of \mathcal{K} -RelNet in our work (Paredes et al., 2018).

Network Reliability via Hashing Sampling

Square grid networks $N \times N$

Network Reliability via Hashing Sampling

Square grid networks $N \times N$ (edge failure probabilities 2^{-i})

 \mathcal{K} -RelNet with $\epsilon = 0.8$ and $\delta = 0.2$

Network Reliability via Hashing Sampling

Power Transmission Networks for cities in the U.S.:

Conclusions and Future Work

In contrast to traditional methods, PAC reliability methods:

- deliver proven guarantees of approximation
- empower lay users with input error-confidence parameters
- when efficient, they rigorously mean it!

Conclusions and Future Work

In contrast to traditional methods, PAC reliability methods:

- deliver proven guarantees of approximation
- empower lay users with input error-confidence parameters
- when efficient, they rigorously mean it!

Future work:

- Constrained programming for higher level modeling (e.g. linear and quadratic programming)
- Hybrid domains for handling both continuous and discrete systems
- Improve guarantees of approximation, currently somewhat conservative

Acknowledgements

Joint work with:

K.S. Meel, Computer Science Department, National University of Singapore, Singapore. M.Y. Vardi, Department of Computer Science, Rice University, Houston, Texas, USA

email: roger.paredes@rice.edu

URL (slides and pertinent papers): github.com/paredesroger/emi2018

References I

- Dagum, P., Karp, R., Luby, M., & Ross, S. (1995, jan). An optimal algorithm for Monte Carlo estimation. In *Proceedings of ieee 36th annual foundations of computer science* (Vol. 29, pp. 142–149). IEEE Comput. Soc. Press.
- Duenas-Osorio, L., Meel, K. S., Paredes, R., & Vardi, M. Y. (2017). Counting-based Reliability Estimation for Power-Transmission Grids. In *Proceedings of aaai conference on artificial intelligence*. San Francisco.
- Paredes, R., Duenas-Osorio, L., Meel, K. S., & Vardi, M. Y. (2018). Network Reliability Estimation in Theory and Practice. *Preprint submitted to: Reliability Engineering & System Safety*.
- Schott, S. (2012). *TPA : A new method for approximate counting* (PhD thesis). Duke University.
- Walter, C. (2017, jan). Point process-based Monte Carlo estimation. *Statistics and Computing*, *27*(1), 219–236.