

الدرس

مجموعة الأعداد النسبية

تمهيد

• درست في المرحلة الابتدائية بعض مجموعات الأعداد مثل:

* مجموعة الأعداد الطبيعية ط = { . ، ، ، ، ، ، ، ، ، ، ، ، . . . }

* مجموعة الأعداد الصحيحة ص= { ... ، ٣ ، ٢ ، ١ ، ، ، -١ ، -٢ ، -٣ ، ...}

• وفي هذه الوحدة ستتعرف على مجموعة أخرى من الأعداد تُسمى

« مجموعة الأعداد النسبية » ويُرمز لها بالرمز « ك »

الأعداد النسبية

الأعداد : ٢ ، - ٨ ، ٣ ، صفر ، ٣ ، ٧ ، ٠ ، ٥ ، ٢ ، ١٥ ٪ جميعها أعداد نسبية.

تعريف العدد النسبى

العدد النسبي هو العدد الذي يمكن التعبير عنه في صورة قسمة عدد صحيح على عدد صحيح أخر لا يساوي الصفر.

أى أن: الأعداد النسبية هي جميع الأعداد التي يمكن وضعها على الصورة بالمن التي يمكن وضعها على الصورة بالمناد وسميح الأعداد عدد صحيح لا يساوي الصفر

، ويُسمى ؟ ، ب حدى العدد النسبى ب

• مما سبق يمكن التعبير عن مجموعة الأعداد النسبية كالتالى:

• بناءً على التعريف السابق ، يمكننا أن نقول :

🐧 جميع الأعداد والكسور العشرية هي أعداد نسبية.

لأن أي عدد أو كسر عشري بمكن التعبير عنه

أمثلة

- **۲٫**0 عدد نسبی حیث یمکن التعبیر عنه فی صورة ۲<u>۰</u> أو ۲<u>۰۰</u> أو ...
- عدد نسبی حیث یمکن التعبیر عدد فی صورة $\frac{V}{V}$ أو ...

🕜 جميع النسب المئوية هـ، أعداد نسبية.

حيث : ۱ ، ب عددان صحيحان ، ب خ ٠

في صورة م

لأن أى نسبة مئوية يمكن التعبير عنها فى صورة م

حيث : ۲ ، ب عددان صحيحان ، ب ≠ ٠

😙 جميع الأعداد الصحيحة هـn أعداد نسبية.

مجموعة الأعداد الصحيحة مجموعة جزئية من مجموعة الأعداد النسبية.

لُى لُن : صح ⊂ ق

يوضح ذلك.

وحيث إن : ط رص فإن : ط رص رن والشكل المقابل

- عدد نسبی حیث یمکن التعبیر عنه $\frac{\mathbf{r}}{\mathbf{r}}$ أو $\frac{\mathbf{r}}{\mathbf{r}}$ أو $\frac{\mathbf{p}}{\mathbf{r}}$ أو ...
- و $\frac{\alpha \dot{k}}{\alpha}$ عدد نسبی حیث یمکن التعبیر عنه فی صورة $\frac{\alpha \dot{k}}{\gamma}$ أو $\frac{\alpha \dot{k}}{\gamma}$ أو $\frac{\alpha \dot{k}}{\gamma}$ أو ...
- عدد نسبی حیث یمکن التعبیر عنه فی صورة $-\frac{17}{7}$ أو $-\frac{77}{7}$ أو $-\frac{8}{7}$ أو ...

ا ملاحظـة

كل عدد صحيح هو عدد نسبى ولكن ليس كل عدد نسبى هو عدد صحيح.

مثال 🚺

وضح لماذا يكون كل من الأعداد الآتية عددًا نسبيًا:

الحسل

کل من الأعداد الأربعة السابقة عدد نسبى لأنه يمكن كتابة كل منها على صورة $\frac{1}{2}$ حيث $\frac{1}{2}$ ، $\frac{1}{2}$ عددان صحيحان ، $\frac{1}{2}$ كما يلى :

$$\frac{1 \vee}{1 \cdot \cdot \cdot} - = \cdot, 1 \vee - \Gamma$$

$$\frac{1 \vee}{1 \cdot \cdot \cdot} = \frac{1}{1 \cdot \cdot} = \frac$$

ملاحظـة

إذا كان :
$$\frac{9}{2}$$
 عددًا نسبيًا فإن : 2 صفر

مثال 👔

اختر الإجابة الصحيحة من بين الإجابات المعطاة:

العدد
$$\frac{\circ}{Y-U}$$
 في إذا كانت : $-U \neq \cdots$

باذا کان:
$$\frac{-\upsilon-1}{-\upsilon+7}$$
 عددًا نسبيًا فإن: $-\upsilon$

العدد
$$\frac{7-u-7}{7-u-3}$$
 لا يكون نسبيًا إذا كانت : $-u = \dots$

الحال

$$7- \neq 0$$
 عدد نسبی إذن: $-0+7 \neq 0$ أي أن $+7+7 \neq 0$ عدد نسبی إذن: $-0+7 \neq 0$ أي أن: $-0+7 \neq 0$

حاول بنفسك ١

أكمل الجدول التالي:

۲ س س	<u>۷</u> ۸	٣ - ح	۰ ۳ – ۷ –	العدد
**********	*********		arminis.	یعبر عن عدد نسبی إذا کانت س ≠

ملاحظــة

إذا كان العدد النسبى
$$\frac{9}{2}$$
 = صفر فإن : 9 = صفر

مثال ۳

إذا كان العدد النسبى
$$\frac{-v-v}{-v+v}$$
 = صفر ، فأوجد قيمة $-v$

الحال

حاول بنفسك

أكمل الجدول التالي:

۲ - س - ۲	۲ س + ه	۲ – س س – ٤	<u>۲ - </u>	العدد النسبي
				یساوی صفر إذا كانت س =

العدد النسبي الموجب والعدد النسبي السالب

ز أى أن:

مجموعة الأعداد النسبية ن = ن ل {صفر } ∪ ف_

حيث : ف_ مجموعة الأعداد النسبية الموجبة ، ف_ مجموعة الأعداد النسبية السالبة

 $\emptyset = \bigcup_{\omega} \bigcap_{\omega} \bigcup_{\omega} \cup \bigcup_{\omega} \bigcup_{$

حاول بنفسك ٣

بيِّن أى الأعداد التالية موجب وأيها سالب وأيها يساوى صفرًا:

$$(\circ-)$$
 , $\frac{\sqrt{-}}{11}$, $|\frac{1}{\sqrt{-}}|$, $\frac{-\frac{\sqrt{-}}{\sqrt{-}}}{2}$, $\frac{\sqrt{-}}{2}$

صور مختلفة للعدد النسبى

يمكن كتابة العدد النسبى ﴿ في صورة عدد نسبى آخر ﴿ مساوٍ له وذلك تبعًا للخاصية الآتية :

_خاصية

العدد النسبي على لا تتغير قيمته إذا ضُرب حداه (في) أو قُسما (على) عدد واحد لا يساوى الصفر.

•
$$\frac{37}{77} = \frac{37 \div 7}{77 \div 7} = \frac{37}{11} \Rightarrow \frac{37}{77} = \frac{37}{77} = \frac{71}{77} = \frac{71}{$$

رُى أَن: $\frac{37}{77}$ ، $\frac{7}{1}$ ، $\frac{7}{9}$ صور مختلفة لعدد نسبى واحد.

جاول بنفسك ع

7

اكتب ثلاث صور مختلفة تعبر عن كل من العددين النسبيين الآتيين:

كتابة العدد النسبى 📩 في أبسط صورة

يُقال لأى عدد نسبى على صورة لله أي إنه فى أبسط صورة إذا كان كل من حديه له أصغر قدمة ممكنة.

 $\frac{1}{7} = \frac{17}{77}$ لذلك ، فهما يعبران عن نفس العدد النسبي

ولافظ أن: ١٦٠ ، ٢٠ يعبران عن نفس العدد النسبي.

• العدد النسبي على أبسط صورة ولا يمكن اختصاره لصورة أبسط من ذلك.

لوضع العدد النسبى ألى في أبسط صورة ، نقسم كلاً من حديه على العامل المشترك الأعلى (ع. م. أ) بينهما.

مثال ع

ضع كلاً من العددين الآتيين في أبسط صورة :

1 1

الحال

- ع. م. أ للعددين Λ ، ۱۲ هو ٤ وبقسمة حدى العدد $\frac{\Lambda}{17}$ على ٤ $\frac{7}{7} = \frac{1}{12}$ ينتج أن:
- ا ع. م. أ للعددين ١٢ ، ٣٦ هو ١٢ ويقسمة حدى العدد $-\frac{17}{77}$ على ١٢ $\frac{1}{m} - = \frac{17}{m} = -\frac{1}{m}$ ينتج أن :

حاول بنفسك ٥

أكمل الجدول التالي:

1 1 1 1 -	<u>YV</u> <u>80</u>	7-	<u>°</u>	العدد
			***************************************	أبسط صورة له

كتابة العدد النسبي في صورة نسبة مئوية

لكتابة العدد النسبي في صورة نسبة مئوية نعبر عنه في صورة به والتي تعني ٢ ٪

مثال ٥

اكتب كلًا من الأعداد الآتية في صورة نسبة مئوية:

$$7.50 = \frac{50}{1..} = \frac{0 \times 9}{0 \times 7.} = \frac{9}{7.}$$

$$7.80 = \frac{80}{1..} = \frac{1.. \times \frac{9}{7.}}{1..} = \frac{9}{7.}$$
 يا الم

$$% 1, V = \frac{1, V}{1...} = \frac{1... \times \frac{1V}{1...}}{1...} = \frac{1V}{1...}$$

$$7.0.9, 7 = \frac{7.9.7}{1.0.0} = \frac{7.9.7}{1.0.0} = \frac{7.9.0}{1.0.0} = 7.9.0$$

$$% \mathbf{r} \mathbf{r} \cdot \mathbf{r} = \frac{\mathbf{r} \mathbf{r} \cdot \mathbf{r}}{\mathbf{r} \cdot \mathbf{r}} = \frac{\mathbf{r} \cdot \mathbf{r}}{\mathbf{r} \cdot \mathbf{r}} = \frac{\mathbf{r} \mathbf{r}}{\mathbf{r}} = \mathbf{r}, \mathbf{r}$$

حاول بنفسك

اكتب كلًا من الأعداد الآتية في صورة نسبة مئوية:

تحویل العدد النسبی من صورة ځ إلی صورة عدد عشری

يمكن تحويل بعض الأعداد النسبية من صورة على صورة عدد عشرى منته.

فمثلا:

- العدد النسبي ب يمكن كتابته على الصورة ٦,٠
- العدد النسبي ٢٠ يمكن كتابته على الصورة ١,٥

$$\frac{9\times7}{0\times7} = \frac{\Gamma}{\cdot I} = \Gamma_{,} \cdot$$

$$\sqrt{0} = \frac{\sqrt{0}}{\sqrt{0}} = \frac{0 \times 7}{0 \times 7}$$

ولکتابة العدد النسبی $\frac{9}{2}$ فی صورة عدد عشری منته نجعل مقامه ۱۰ أو ۱۰۰ أو ۱۰۰۰ أو ...

مثال 🚺

اكتب كلًا من الأعداد الآتية على صورة عدد عشرى منته:

$$\left|\frac{\varphi}{\lambda}\right|$$

الحال

$$\cdot$$
, $\xi = \frac{\xi}{1 \cdot \cdot} = \frac{\Upsilon \times \Upsilon}{\Upsilon \times \circ} = \frac{\Upsilon}{\circ}$

$$\cdot$$
, $\forall \lor \circ = \frac{\forall \lor \circ}{\lor \cdot \cdot \cdot} = \frac{\lor \lor \circ \times \lor}{\lor \lor \circ \times \lor} = \frac{\forall}{\lor \lor} = \left| \frac{\forall}{\lor \lor} - \right|$

$$Y, YA = Y \frac{YA}{1 \cdot \cdot \cdot} = Y \frac{\xi \times V}{\xi \times Y_0} = Y \frac{V}{Y_0} = Y \frac{V}{Y_0}$$

اكتب كلًا من العددين النسبيين الآتيين على صورة عدد عشرى منته:

1 3

ملاحظة

بعض الأعداد النسبية لا يمكن كتابتها في صورة عدد عشرى منته مثل:

العدد النسبى $\frac{1}{m}$ فباستخدام الآلة الحاسبة نجد أن : $\frac{1}{m} = \cdots \, 77777777$ العدد

وتكتب (٠, ٣) وتُقرأ (٣,٠ دائر) حيث النقطة فوق الرقم تعنى أن العدد دائر.

مثال γ

باستخدام الآلة الحاسبة اكتب كلاً من الأعداد النسبية الآتية على صورة عدد عشرى دائرى:

الحسل

$$\cdot$$
 , $\dot{i} = \frac{7}{7}$: أي أن \dot{i} أي أن \dot{j} \dot{j} باستخدام الآلة الحاسبة نجد أن \dot{j} \dot{j}

$$\dot{\lambda} = \frac{7}{11}$$
 باستخدام الآلة الحاسبة نجد أن : $\frac{7}{11} = \frac{7}{11}$ باستخدام الآلة الحاسبة نجد أن : $\frac{7}{11}$

٣ باستخدام الآلة الحاسبة نجد أن:

. ,
$$Y \mid T \mid T \mid T \mid T \mid T = \frac{V \mid T}{T \mid T}$$

$$\frac{V1}{r} = 0 \frac{V1}{r}$$
 أي أن : $\frac{V1}{r}$ ه

لاحظ أن

وضع نقطة فوق الرقم الأول والرقم الأخير معناه أن الرقمين وما بينهما دائر.

0,714

حاول بنفسك 🔥

اکتب علی صورة عدد عشری دائری کلاً مما یأتی :

71

ا ملاحظـة

يمكن كتابة العدد العشرى الدائرى على صورة $\frac{4}{2}$ وذلك باستخدام آلة حاسبة علمية من النوع CASIO fx-95ES plus أن بعض الآلات الحاسبة العلمية لا يمكنها إجراء مثل هذه العملية.

، ۲۱۲۱۲۱۲۱۲۱۲۱ ، ثم نضغط (فنحصل على العدد النسبي \ \ \ على العدد النسبي \ \ \ \ \ \ على العدد النسبي \ \ \ \ \ \ \ على العدد النسبي العدد الع

• لكتابة العدد ١٣١، • على صورة $\frac{9}{2}$ ندخل الأعداد التالية بالآلة الحاسبة حتى تمتلئ الشاشة : ١٣٦٣٦٣٦٣٦٣٦، • ثم نضغط (فنحصل على العدد النسبى $\frac{7}{77}$

حاول بنفسك

استخدم الآلة الحاسبة لكتابة كل مما يأتي على صورة 🖰:

السئلة كتاب الوزارة

🖧 حل مشکلات

وتذكر وفهم ⊙تطليق

🚺 أكمل ما بأتي:

الشرط اللازم ليكون
$$\frac{7}{4-7}$$
 عددًا نسبيًا هو أن 4 \pm

العدد
$$\frac{-u-\pi}{7-u+7}$$
 یکون نسبیًا إذا کانت $-u\neq \dots$

العدد
$$\frac{9-7}{9-3}$$
 لا يكون نسبيًا إذا كانت $9=\dots$

العدد النسبى
$$\frac{-0}{-0}$$
 = صفر إذا كانت $\frac{-0}{-0}$

العدد النسبى
$$\frac{3-7}{7}=$$
 صفر إذا كانت $\frac{7}{7}=$

العدد النسبى
$$\frac{6-0+6}{-0-6}=$$
 صفر إذا كانت $\frac{8}{-0}=$

$$-\frac{3}{4}$$
 إذا كان : $-\frac{3}{4}$ ليس عددًا نسبيًا فإن : $-\frac{3}{4}$ اليس عددًا نسبيًا

$$\frac{9}{\dots} = \frac{9}{\xi}$$

$$\frac{1}{1} = \frac{17}{1} - 11$$

$$\frac{1}{2}$$
..... $\frac{1}{2}$

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

$$(c) \frac{\delta - \delta}{\delta}$$

$$\frac{\gamma}{\gamma} \left(\Rightarrow \right)$$

$$\frac{7}{9}$$
 (ψ)

أى من الأعداد الآتية يعبر عن عدد صحيح ؟

$$\gamma \frac{1}{\xi} (1)$$
 $\frac{10}{6} (1)$ $\frac{10}{4} (1)$ $\frac{10}{4} (1)$

🕴 أي من الأعداد النسبية الآتية عدد سالب؟

$$(1) \frac{\Delta \dot{\psi}}{T} (1) \qquad (2) \frac{T}{2} (2) \qquad (3) \frac{T}{2} (4)$$

🍦 💈 أي من الأعداد النسبية الآتية عدد موجب ؟

$$\frac{\gamma-}{2}(1) - \frac{\gamma}{2} \qquad (-1) \qquad (-1)$$

ې مما یلی یساوی $\frac{2}{6}$ ؟

 $\frac{7}{1}$ إذا كان: $-\frac{3}{6} = \frac{7}{4}$ فإن: $-\omega = \frac{7}{4}$

• 🔻 العدد النسبى 4 يكون موجبًا إذا كان:

العدد النسبى $\frac{-\sqrt{}}{9}$ يكون موجبًا إذا كان : $\frac{1}{9}$ صفر

$$=(1) > (\div) \leq ((1)$$

العدد النسبى ملى يكون سالبًا إذا كان: من صفر المادة النسبى الماد ا

$$=(1) > (2) > (3)$$

ا إذا كان: $\Upsilon = \Upsilon$ ، $\psi = \Gamma$ فأى من الأعداد الآتية ليس نسبيًا Ψ

$$\frac{\gamma}{\gamma-\rho}(1) \qquad \frac{\gamma}{\rho} = \frac{\gamma}{\rho} \qquad (1) \qquad \frac{\gamma}{\rho} = \frac{\gamma}{\rho} \qquad (1)$$

...... = · , o V 11

$$\frac{19}{77}(2) \qquad \frac{60}{1...}(2) \qquad \frac{60}{99}(2) \qquad \frac{60}{1...}(1)$$

$$\cdots = \left| \frac{\Lambda}{\Upsilon \circ} - \right| \qquad \bullet$$

$$\frac{\Lambda}{70} - (1)$$

٠,٠١٢ (١)

٠,۴(١)

$$\frac{r}{r_0}(\Rightarrow)$$
 1, $r(\psi)$

📸 ضع كلًا من الأعداد الآتية في أبسط صورة :

$$\frac{1}{1} - \frac{3}{1} - \frac{3}$$

√ □ **√**

$$\frac{\circ}{11} \boxed{\circ} \boxed{\frac{\wedge}{9} - \boxed{2}} \boxed{\frac{\circ}{1}} \boxed{\frac{\vee}{7}} \boxed{\frac{\vee}{7}} \boxed{\frac{\vee}{10}} \boxed{\frac{\vee}{10}} \boxed{\frac{\vee}{10}}$$

$$\left| \begin{array}{c|c} 1 & \frac{7}{4} &$$

🔲 🕮 اكتب كلًا من العددين الآتيين على صورة عدد عشرى دائرى:

7

اكتب كلًا من الأعداد الآتية على الصورة
$$\frac{\phi}{2}$$
:

💟 📖 اكتب كلًا من الأعداد النسبية الآتية على صورة عدد عشرى ، ونسبة مئوية :

لا الله الكتب في تعريف العدد النسبى $\frac{9}{4}$ أن $\psi \neq \Delta$ صفر ؟