Elements of Astrophysics

7 ottobre 2022

Indice

1	Contenuti	1
2	Introduzione	1
3	Struttura stellare	6

Lezione 1

Contenuti mar 27 set 2022 08:30

Si vedono:

1

- introduzione
- struttura ed evoluzione stellare (incluso supernove)
- oggetti compatti:
 - ♦ nane bianche (incluso equazione di stato ed equazioni di struttura)
 - ♦ stelle di neutroni (incluso pulsar, magnetar, osservazioni)
 - ♦ buchi neri (incluso processi di accrescimento)
- onde gravitazionali (non fa parte dell'esame)
- galassie (incluso classificazione, morfologia, AGN)
- cosmologia (incluso scala delle distanze, legge di Hubble, equazione di FLRW, CMB)

Essi sono gli argomenti chiesti all'esame.

2 Introduzione

Si studia tutto l'intervallo di onde elettromagnetiche: dalle onde radio ai raggi gamma. Si studiano i corpi celesti tramite il loro spettro di corpo nero. A terra si vedono bene gli intervalli ottico, infrarosso e radio. Gli altri sono schermati dall'atmosfera.

Sviluppo dei metodi osservativi. Solamente nel XIX secolo si è sviluppata l'astronomia nell'infrarosso. Nel 1930 si comincia l'osservazione tramite segnali radio, ma è nel 1960 che nasce l'astronomia nell'ultravioletto, nei raggi X e nei raggi gamma. Dal 2015 si utilizzano le osservazioni tramite le onde gravitazionali.

Tecniche osservative. La risoluzione angolare in base al diametro D del telescopio e la lunghezza d'onda λ da osserva è

 $\theta \approx 1.22 \frac{\lambda}{D}$

Nel visibile, si possono distinguere a occhio nudo due oggetti distanti almeno 60 arcsec. Gli effetti atmosferici peggiorano la risoluzione, mentre varie tecniche interferometriche la possono migliorare. Di un oggetto celeste, si può misurare il flusso (in fotometria tramite il vettore di Poynting), lo spettro (spettroscopia), la polarizzazione (polarimetria).

Coordinate celesti. Esistono due sistemi di coordinate. Le coordinate celesti sono utilizzate nell'astronomia amatoriale. La posizione è definita in coordinate polari: ascensione retta (right ascension, RA, α), declinazione (declination, DEC, δ). L'ascensione retta si misura in ore da 0 a 24. La declinazione si misura in gradi da -90° a 90° .

In astronomia professionale, si utilizzano le coordinate galattiche il cui riferimento è il piano della galassia. L'origine delle coordinate è nel centro galattico. La longitudine l e la latitudine b sono entrambe definite in gradi.

Proiezioni. Si possono utilizzare due proiezioni. La proiezione azimutale equidistante presenta minime distorsioni, ma rappresenta solamente metà del cielo. La proiezione di Hammer-Aitoff rappresenta completamente il cielo, ma distorce fortemente i poli.

Onde infrarosse. Nel visibile, il centro galattico è oscurato da polveri galattiche. L'assorbimento nel piano galattico è una funzione della lunghezza d'onda e colpisce più la luce visibile dell'infrarosso

$$I = I_0 e^{-\alpha r}, \quad \alpha \propto \lambda^{-1}$$

L'infrarosso è assorbito dall'atmosfera, eccetto per alcune lunghezze d'onda in micrometri (J 1.25, H 1.65, K 2.2, L 3.45, M 4.7, N 10, Q 20, Z 35, nome lunghezza). Bisogna porre attenzione al rumore termico, in particolare per oggetti circa a $T=300\,\mathrm{K}$.

Microonde. Si osserva una radiazione uniforme di microonde a $T=2.728\,\mathrm{K}$. Sono presenti delle piccole misotropie, delle variazioni di circa $\Delta T=3.353\,\mathrm{mK}$ per effetto doppler di rotazione del Sole attorno al centro galattico. Rimuovendo tale effetto, si può ottenere il fondo di radiazione cosmica ($\Delta T=18\,\mu\mathrm{K}$). Questo indica che, all'inizio, l'universo non era perfettamente omogeneo e tali differenze hanno permesso la nascita di varie strutture celesti.

Onde radio. Tramite le onde radio, si sono scoperti segnali con intervalli sempre identici: la prima osservazione di radio pulsar. Inoltre, si sono osservate anche i quasar (i nuclei galattici attivi).

Raggi X. Si hanno avute le prime evidenze dei buchi neri (in particolare Cygnus X-1).

Raggi gamma. Si osservano i gamma-ray bursts. I flussi misurati sono costituiti da pochi fotoni a causa della lontananza.

Onde gravitazionali. Le onde gravitazionali sono predette dalla relatività generale. Esse sono distorsioni dello spazio-tempo come si propagano come un'onda. Sistemi binari di oggetti compatti sono le sorgenti più luminose. Anche le onde gravitazionali sono emesse a frequenze a seconda delle sorgenti.

Tramite le onde gravitazionali si è potuto osservare la presenza di buchi neri sopra le venti masse solari, limite per i buchi neri che emettono radiazione elettromagnetica?.

Lezione 2

Oltre a misurare l'intensità della radiazione di un corpo celeste, si può anche osservare la 2022 13:30

Oltre a misurare l'intensità della radiazione di un corpo celeste, si può anche osservare la radiazione in ogni banda di frequenza. Per la legge di Planck, la densità di energia ad una particolare frequenza è

$$u_{\nu} = \frac{8\pi\nu^2}{c^3} \frac{h\nu}{e^{\frac{h\nu}{k_B T}} - 1}$$

La densità di energia totale è

$$u = \int_0^\infty u_\nu \, d\nu = aT^4, \quad a \approx 7.6 \times 10^{-15} \text{ erg cm}^{-3} \text{K}^{-4}$$

dove a è la costante di radiazione. Un corpo nero emette radiazione con un flusso f_{ν} ad una particolare frequenza. In astronomia, si utilizzano le unità CGS

$$[f_{\nu}] = \mathrm{erg} \, \mathrm{s}^{-1} \mathrm{cm}^{-2} \mathrm{Hz}^{-1}$$

dove

$$1 \, \mathrm{W} = 10^7 \, \mathrm{erg \, s^{-1}}$$

Il flusso totale (detto bolometrico in quanto integrato su tutte le frequenze) è

$$f = \int_0^\infty f_\nu \, d\nu = \sigma T^4, \quad \sigma \approx 5.7 \times 10^{-5} \, \text{erg s}^{-1} \text{cm}^{-2} \text{K}^{-4}$$

dove σ è la costante di Stefan-Boltzmann. La potenza emessa ad una frequenza da una stella è

$$L_{\nu} = f_{\nu}(r_{\star})4\pi r_{\star}^{2}, \quad [L] = \text{erg s}^{-1} \text{Hz}^{-1}$$

dove r_{\star} è il raggio della stella. La luminosità, cio
è la potenza irradiata, è

$$L = f(r_{\star})4\pi r_{\star}^{2}, \quad [L] = \text{erg s}^{-1}$$

Il flusso ad una distanza d è

$$f(d) = f(r_{\star}) \left(\frac{r_{\star}}{d}\right)^2 = f(r_{\star}) \frac{4\pi r_{\star}^2}{4\pi d^2} = \frac{L}{4\pi d^2}$$

Il flusso è una quantità che si misura sempre. Sapendo la distanza con la stella, si può ricavare la sua luminosità

$$L = 4\pi d^2 f(d)$$

Esistono vari modi per misurare la distanza con una stella. Si vede il metodo della parallasse. Per una stella all'interno della galassia, si nota che, durante l'orbita della Terra, la stella si sposta. Sapendo di quanto si è spostata la Terra, e misurando gli angoli con la stella, si può ricavare la distanza per relazioni trigonometriche. Infatti, si consideri una stella sopra il sole rispetto la direzione perpendicolare al piano dell'eclittica. La distanza tra la stella ed il sole è

$$d\alpha \approx d_{\odot}$$

dove d_{\odot} è la distanza tra la Terra ed il sole, mentre α è l'angolo che la Terra ed il sole formano, prendendo la stella come vertice.

A causa delle grandi distanze tra gli oggetti celesti, si utilizza il parsec:

$$1\,\mathrm{pc} \approx 3.3\,\mathrm{ly}$$

esso è la distanza alla quale un oggetto ha spostamento nel cielo pari ad un arcosecondo, $\alpha=1\,\mathrm{arcsec}$. La stella più vicina è Proxima Centauri a $d\approx1.3\,\mathrm{pc}$. Il metodo della parallasse funziona per stelle fino a 100 pc (per riferimento, il raggio della Via Lattea è 10 kpc). Per stelle più distanti, non si riesce a distinguere lo spostamento nel cielo. In alcuni casi, si può misurare la luminosità

solamente usando informazioni dal flusso, ad esempio come varia oppure il suo spettro. Per stelle di cui si sa misurare la distanza, si ha

$$L = 4\pi d^2 f(d) = 4\pi r_{\star}^2 f(r_{\star})$$

Una stella emette una radiazione di corpo nero. Di esso, si conosce la relazione tra il flusso e la temperatura per

$$L = 4\pi r_{\star}^2 \sigma T^4$$

Si misura il flusso in funzione della frequenza, si misura la distanza e si ottiene la luminosità. Tramite lo spettro di corpo nero (legge di Wien oppure fittare la legge di Planck) si ricava la temperatura. Così, dalla relazione precedente, si ottiene il raggio della stella.

Magnitudine. Gli antichi greci classificavano le stelle in base alla luminosità. Il valore zero è attribuito alla stella più luminosa, mentre cinque la stella meno luminosa a occhio nudo. Nel XIX secolo, la magnitudine (apparente) viene legata al logaritmo del flusso

$$m = k - 2.5 \log_{10} f$$

Si sceglie la costante k in modo da fissare lo zero. In un primo sistema, la costante è scelta tale per cui la magnitudine m sia zero per la stella Vega:

$$m = -2.5 \log_{10} \frac{f}{f_{\text{Vega}}}$$

La stella più luminosa del cielo, Sirio, ha magnitudine m=-1.56. La magnitudine del sole è m=-26.73. Un fastidio è conoscere il flusso di Vega in ogni banda. Il sistema AB risolve tale problema:

$$m = -2.5 \log_{10} \frac{f}{f_0}$$

dove f_0 è fissato ed è lo stesso per ogni frequenza. Questo sistema è utilizzato nell'astronomia ottica.

Contrapposta alla magnitudine apparente, c'è quella assoluta M. Essa è la magnitudine di un oggetto a distanza di dieci parsec:

$$M \equiv m - 5\log_{10}\frac{d}{10\,\mathrm{pc}} = M_{\odot} - 2.5\log_{10}\frac{L}{L_{\odot}}$$

dove $M_{\odot} \approx 4.75$ e $L_{\odot} \approx 3.8 \times 10^{26} \, \mathrm{W}$ sono la magnitudine assoluta e la luminosità del sole.

Bande di frequenza. Le bande di frequenza sono denotate da pedici corrispondenti, ad esempio M_B . In ordine crescente di lunghezze d'onda:

- U, $0.365\,\mu\mathrm{m}$ con larghezza $\Delta\lambda = 0.068\,\mu\mathrm{m}$, ultravioletto;
- B, $0.44\,\mu\mathrm{m}$ con larghezza $\Delta\lambda = 0.098\,\mu\mathrm{m}$, blu-violetto;
- V, $0.55\,\mu\mathrm{m}$ con larghezza $\Delta\lambda = 0.089\,\mu\mathrm{m}$, verde;
- R, $0.70 \,\mu\text{m}$ con larghezza $\Delta \lambda = 0.22 \,\mu\text{m}$, rosso;
- I, $0.90 \,\mu\mathrm{m}$ con larghezza $\Delta \lambda = 0.24 \,\mu\mathrm{m}$, infrarosso vicino;
- J, H, K, L, M, N, Q, tutte nell'infrarosso.

Si utilizza anche il colore: la differenza tra le magnitudini, apparenti o assolute, di due bande. Ad esempio, un colore è indicato come B-V ed è un numero puro. Esso è legato alla temperatura superficiale di una stella. Equivale al rapporto tra i flussi in due bande di frequenza.

Determinazione della massa. Si sfruttano i sistemi binari. La metà delle stelle come il sole fanno parte di un sistema binario. Si consideri un sistema binario. Le due stelle ruotano attorno al centro di massa sullo stesso piano. Si visualizzino le orbite perpendicolarmente (si noti che le stelle sono diametralmente opposte nelle proprie orbite). Sia r_i la distanza tra il centro di massa e la stella M_i . Per definizione di centro di massa si ha

$$r_1 M_1 = r_2 M_2$$

La distanza tra le due stelle è

$$a = r_1 + r_2$$

Per Keplero, la velocità angolare di rivoluzione è

$$\omega^2 = G \frac{M_1 + M_2}{a^3}$$

Riuscendo a risolvere le due stelle nel cielo, si può misurare la separazione angolare (dal centro di massa)

$$r_1=\theta_1 d, \quad r_2=\theta_2 d \implies rac{r_1}{r_2}=rac{\theta_1}{\theta_2}=rac{M_2}{M_1}$$

dove d è la distanza con la Terra. Se si può misurare la distanza con il sistema, allora si ricava r_i e dunque a da cui pure la massa totale del sistema tramite Keplero.

Questo metodo non funzione per una stella isolata. In generale, è difficile misurarne la massa. Inoltre, il caso visto è semplice perché si guarda il sistema in modo perpendicolare, altrimenti bisogna anche considerare la direzione di vista rispetto la normale al piano dell'orbita.

Alle volte non si può risolvere la presenza di un sistema binario, tuttavia si può studiare lo spettro di emissione per dedurne la presenza. Ad esempio, si vedono comparire delle righe di assorbimento dell'idrogeno, elemento presente nelle stelle. In quanto, una delle due stelle si muove rispetto l'altra, si osserva un effetto doppler delle righe di assorbimento. Studiando lo spostamento periodico si può inferire la presenza di una stella.

Un altro caso, sono le binarie osservate di taglio rispetto al piano orbitale: una stella eclissa l'altra. Questo modo è utile per rilevare esopianeti: si misurano le eclissi dovute al passaggio dei pianeti di fronte la stella.

Lezione 3

mar 04 ott 2022 08:33

Per stelle con masse M tra 1 e 10 masse solari, la luminosità è proporzionale alla massa $M^{3.5}$.

Diagramma Hertzsprung-Russell. Nel diagramma Hertzsprung-Russell si rappresentano stelle a distanze note. Si pone il colore B-V sull'asse delle ascisse, mentre sull'asse delle ordine si pone la magnitudine assoluta in banda V. La temperatura cresce andando verso sinistra. Andando verso l'alto si hanno luminosità più alte. Si nota una diagonale discendente detta sequenza principale (main sequence) a cui appartengono la maggior parte delle stelle perché in questa zona esse trascorrono la maggior parte della propria vita. Tutte le stelle nella sequenza principale sono sostenute dalla fusione nucleare, in particolare fondendo idrogeno in elio. Esiste una frazione di stelle che si trovano sulla diagonale principale al di sopra della sequenza principale: questo è il ramo delle giganti (giant branch), le stelle in questa parte hanno raggi molto maggiori rispetto le altri. Ricordando che il colore è legato alla temperatura (in questo caso, maggiore verso sinistra), le stelle giganti hanno stessa luminosità delle stelle che piccano nel blu, ma hanno temperature più basse, per questo hanno un raggio maggiore secondo

$$L = 4\pi R^2 \sigma T^4$$

Sono presenti poche stelle nel ramo delle giganti perché è una fase breve di vita rispetto la sequenza principale.

Sono presenti degli oggetti compatti in basso a sinistra del diagramma: sono le nane bianche (white dwarves). Esse hanno stessa luminosità delle stelle che piccano nel rosso, ma hanno

temperatura molto maggiore; per questo hanno raggi più piccoli (domande d'esame!). Le nane bianche sono l'unico oggetto compatto mostrabile nel diagramma H-R [r].

La massa cresce andando verso alto sinistra, ma esiste un limite superiore che causa l'implosione. Per stelle sulla sequenza principale, masse più grandi corrispondono a raggi più grandi. La vita decresce verso alto a sinistra, tali stelle sono più luminose, ma consumano più idrogeno per unità di tempo.

Si può analizzare lo spettro di una galassia per inferire la sua età: se sono presenti solo stelle rosse e non si formano stelle blu, allora la galassia è antica.

Classificazione. Le stelle sono classificate in base alla posizione nel diagramma H-R ed allo spettro di assorbimento del materiale sulla superficie della stella. In base allo spettro di assorbimento si assegnano delle lettere (OBAFGKM) ed esiste una correlazione tra lo spettro e la temperatura superficiale (O \leftrightarrow 40 000 K e M \leftrightarrow 2400 K). Si aggiunge un numero romano per indicare la posizione, ad esempio il sole è G2V, dove G2 \approx 5800 K. [immagine]

3 Struttura stellare

Il sole è composto in massa al 71% di idrogeno, al 27% di elio ed il restante 2% sono gli elementi più pesanti come carbonio, azoto, ossigeno, ferro, detti metalli in quanto più pesanti dell'elio (ma non sono metalli in senso chimico proprio). Le stelle sulla sequenza principale fondono idrogeno in elio rilasciando energia: lo 0.7% della massa dell'idrogeno diventa energia.

Si formulano delle ipotesi per semplificare il modello di struttura stellare [r]

- simmetria sferica;
- si trascura la rotazione, la velocità del fluido all'interno delle stelle non si muove?;
- si trascurano gli effetti di un campo magnetico;

Free-fall timescale – tempo scala di caduta libera. Si studia il moto di una particella sulla superficie di una stella quando si rimuove la pressione di radiazione. Tale particella ha un'energia potenziale

$$\mathrm{d}U = -\frac{GM\,\mathrm{d}m}{R}$$

La particella cade verso il centro e trasforma l'energia potenziale in energia cinetica

$$\frac{1}{2} dm (d_t r)^2 = \frac{GM dm}{r} - \frac{GM dm}{R}$$

Il tempo necessario per collassare è

$$\begin{split} \tau &= -\int_{R}^{0} \left[2GM \left(\frac{1}{r} - \frac{1}{R} \right) \right]^{-\frac{1}{2}} \, \mathrm{d}r = -\frac{1}{\sqrt{2GM}} \int_{R}^{0} \sqrt{\frac{Rr}{R - r}} \, \mathrm{d}r \\ &= -\frac{1}{\sqrt{2GM}} \int_{R}^{0} \sqrt{\frac{r}{1 - \frac{r}{R}}} \, \mathrm{d}r, \quad x \equiv \frac{r}{R}, \quad \mathrm{d}x = \frac{\mathrm{d}r}{R} \\ &= \frac{1}{\sqrt{2GM}} \int_{0}^{1} \sqrt{\frac{xR}{1 - x}} R \, \mathrm{d}x = \left[\frac{R^{3}}{2GM} \right]^{\frac{1}{2}} \int_{0}^{1} \sqrt{\frac{x}{1 - x}} \, \mathrm{d}x = \left[\frac{R^{3}}{2GM} \right]^{\frac{1}{2}} \frac{\pi}{2} \end{split}$$

Si definisce la densità media come

$$\overline{\rho} = \frac{M}{\frac{4}{3}\pi R^3}$$

Da cui

$$\tau = \left[\frac{3\pi}{32G\overline{\rho}} \right]^{\frac{1}{2}}, \quad \tau \propto \frac{1}{\sqrt{\overline{\rho}}}$$

Per le stelle di neutroni è importante la dipendenza del tempo di caduta libera τ dalla densità media $\overline{\rho}$. Per il sole si ha $\tau \approx 30\,\mathrm{min}$. Rispetto il tempo tipico di vita, l'implosione è immediata.

Equilibrio idrostatico. [r] Si tiene conto anche della radiazione di pressione. Si consideri un elemento infinitesimo di volume A dr e di massa dm posto su di una sfera di raggio r, la stella. La forza gravitazionale sull'elemento è

$$-\frac{GM(r)\,\mathrm{d}m}{r^2}$$

Tale forza è bilanciata dal gradiente di pressione di radiazione all'interno della stella. Dunque

$$-\frac{GM(r)\,\mathrm{d}m}{r^2} = \mathrm{d}P\,A$$

Considerato

$$dm = \rho(r)A dr$$

si ottiene

$$-\frac{GM(r)\rho(r)A\,\mathrm{d}r}{r^2} = \mathrm{d}P\,A \implies \boxed{\mathrm{d}_r P = -\frac{GM(r)\rho(r)}{r^2}}$$

Questa è l'equazione di equilibrio idrostatico. Le equazioni di struttura sono equazioni differenziali ordinarie accoppiate: non si possono risolvere analiticamente, ma solo numericamente.

Conservazione della massa. La massa di un guscio sferico è

$$dM = \rho(r)4\pi r^2 dr \implies \boxed{d_r M = \rho(r)4\pi r^2}$$

Questa è l'equazione di conservazione della massa.

Teorema. Si introduce il teorema del Viriale. Dall'equazione di equilibrio idrostatico si ottiene

$$\begin{split} \int_0^{r_\star} 4\pi r^3 \mathrm{d}_r P \, \mathrm{d}r &= -\int_0^{r_\star} 4\pi r^3 \frac{GM(r)\rho(r)}{r^2} \, \mathrm{d}r = -\int_0^{r_\star} 4\pi r^2 \frac{GM(r)\rho(r)}{r} \, \mathrm{d}r \\ &= -\int_0^{M_\star} \frac{GM(r) \, \mathrm{d}M}{r} = E_{\mathrm{grav}} < 0 \end{split}$$

cioè l'energia potenziale gravitazionale della stella. Inoltre, il primo membro diventa

$$\int_{0}^{r_{\star}} 4\pi r^{3} d_{r} P dr = \left[P(r) 4\pi r^{3} \right]_{0}^{r_{\star}} - 3 \int_{0}^{r_{\star}} 4\pi r^{2} P(r) dr \equiv E_{\text{grav}}$$

Il punto in cui la pressione si annulla è definito come il raggio della stella. Si trova un legame tra l'energia interna e l'energia gravitazionale. Si ipotizza che la stella sia costituita da un gas perfetto. Pertanto vale

$$P = (\gamma - 1)e$$

[r] dove e è la densità di energia interna. Dunque

$$E_{\text{grav}} = -3 \int_{0}^{r_{\star}} 4\pi r^{2} (\gamma - 1) e(r) dr = -3(\gamma - 1) E_{\text{thermal}}$$

Per un gas monoatomico classico, la pressione è

$$P = nk_BT$$
, $e = \frac{3}{2}nk_BT = \frac{P}{\gamma - 1} \implies \gamma = \frac{5}{3}$

dove n è il numero di particelle per unità di volume. Dunque

$$E_{\rm gr} = -3(\gamma - 1)E_{\rm th} = -2E_{\rm th}$$

Questo è il teorema del Viriale. La seconda uguaglianza è la sua conseguenza per una stella costituita da gas monoatomico classico.

L'energia totale è la somma dell'energia termica e dell'energia potenziale. Si noti che il fluido non si muove e la stella non ruota: non si ha energia cinetica. Quindi, per un gas monoatomico classico

$$\boxed{E = E_{\rm gr} + E_{\rm th} = -E_{\rm th}} < 0$$

cioè la stella è un sistema stabile, legato. La relazione tra energia gravitazionale ed energia termica implica che il sole è un reattore termonucleare stabile, in grado di auto-controllo. Se aumenta l'energia termica, allora la stella si espande, l'energia gravitazionale diminuisce in modulo e per

$$-2E_{\rm th} = E_{\rm gr}$$

allora pure $E_t h$ deve diminuire in modulo, quindi si stabilizza. [r] Ipotizzando una pressione dovuta ai fotoni, si ottiene

$$P = \frac{1}{3}e, \quad \gamma = \frac{4}{3}$$

Da cui

$$-E_{\rm th} = E_{\rm gr}$$

L'energia totale è nulla, quindi il sistema è marginalmente legato, una perturbazione causa l'esplosione della stella.

Lezione 4

Un altro modo di esprimere il teorema del Viriale è tramite la pressione mediata sul volume

 $\begin{array}{ccc} {\rm ven} & 07 & {\rm ott} \\ 2022 & 13{:}30 \end{array}$

$$\overline{P} = \frac{\int_0^{r_\star} P4\pi r^2 \, \mathrm{d}r}{\int_0^{r_\star} 4\pi r^2 \, \mathrm{d}r} \implies \overline{P}V = \int_0^{r_\star} P4\pi r^2 \, \mathrm{d}r$$

Pertanto

$$E_{\rm gr} = -3\overline{P}V \iff \boxed{\overline{P} = -\frac{1}{3V}E_{\rm grav}}$$

In questo modo si può stimare la pressione media di una stella. Per prima cosa bisogna stimare l'energia gravitazionale

$$E_{\rm gr} = -\int_0^{r_\star} \frac{GM\rho 4\pi r^2}{r} \, \mathrm{d}r$$

questa equazione andrebbe calcolata numericamente risolvendo le equazioni di struttura stellare in quanto sia M che ρ dipendono dal raggio. Per risolverla analiticamente, si ipotizza una densità $\rho = \rho_{\star}$ costante. La massa della stella è

$$M = \frac{4}{3}\pi r_{\star}^{3} \rho_{\star}$$

Dunque,

$$E_{\rm gr} = -\int_0^{r_{\star}} \frac{G\left(\frac{4}{3}\pi r^3 \rho_{\star}\right) \rho_{\star} 4\pi r^2}{r} \, \mathrm{d}r = -\frac{3}{5} \frac{G M_{\star}^2}{r_{\star}}$$

L'energia reale dovrebbe essere maggiore in modulo perché al centro si ha una pressione maggiore ed essa pesa di più considerando $\frac{1}{r}$. Pertanto

$$E_{\rm gr} \approx -\frac{GM_{\star}^2}{r_{\star}}$$

La pressione media è

$$\overline{P} = -\frac{1}{3V} E_{\rm gr} \approx \frac{1}{3} \frac{GM_{\star}^2}{r_{\star}} \frac{1}{\frac{4}{3}\pi r_{\star}^3} = \frac{GM_{\star}^2}{4\pi r_{\star}^4}$$

Per il sole si ha $\overline{P}\approx 10^9$ atm. Si può stimare l'energia termica di una stella utilizando

$$E_{\rm th} = -\frac{1}{2}E_{\rm gr} \approx \frac{1}{2}\frac{GM_{\star}^2}{r_{\star}}$$

Si ipotizza gas ideale monoatomico, da cui l'energia termica è

$$E_{\rm th} = \frac{3}{2} N k_B T_{\rm vir}$$

dove N è il numero di particelle e la temperatura calcolata in questo modo è detta temperatura viriale. Inoltre si ha

$$M_{\star} = N\overline{m}$$

dove \overline{m} è la massa media di una particella. Pertanto

$$\frac{3}{2}Nk_BT_{\rm vir} = \frac{1}{2}\frac{GM_{\star}N\overline{m}}{r_{\star}} \implies k_BT_{\rm vir} = \frac{1}{3}\frac{GM_{\star}}{r_{\star}}\overline{m}$$

Il sole è composto principalmente di idrogeno ionizzato (perché si suppone che la temperatura sia alta):

$$\overline{m} = \frac{m_e + m_p}{2} \approx \frac{1}{2} m_p$$

Dunque, la temperatura viriale del sole è

$$T_{\rm vir} \approx 10^6 \, {\rm K}$$

da intendere come una temperatura media.

Tempo scala di Kelvin-Helmholtz. Dal teorema del Viriale, si può anche stimare il tempo di vita di una stella per irraggiare completamente la propria energia interna in assenza di processi interni che creino altra energia. Infatti

$$t_{\mathrm{KH}} pprox rac{E_{\mathrm{KH}}}{L} = -rac{1}{2} rac{E_{\mathrm{gr}}}{L} pprox rac{GM_{\star}^2}{2r_{\star}L}$$

dove L è la luminosità. Per il sole si ha 10^7 yr. Questa è una conferma che esiste un processo che genera continuamente energia in quanto il sistema solare ha circa 5 miliardi di anni, 5×10^9 yr.

Trasporto di energia. Per un gas, l'energia si può trasportare per convezione o radiazione (trasporto convettivo e radiativo). Nella convezione, l'energia è trasportata dalle particelle stesse. Nella radiazione, l'energia è trasportata dai fotoni.

Il trasporto convettivo è dominante in stelle più grandi del sole, viceversa per le stelle più piccole. Si studia l'equazione del trasporto radiativo.

Un fotone che trasporta l'energia radiativa viene continuamente assorbito da elettroni e poi riemesso: il fotone non è sempre il medesimo. Qua, però, si parla di urti per semplificare la trattazione. Sia n la densità volumica di numero d'urti. Allora il numero d'urti è

$$N = nd\sigma$$

dove d è la distanza percorsa e σ è la sezione d'urto (cross-section).

Si definisce il libero cammino medio l (mean free path). Essa è la distanza media tra due urti successivi. Dunque

$$l = \frac{1}{n\sigma}$$

Questa espressione va bene per un solo tipo di molecole (che determina n) ed un solo tipo di processo fisico (che determina la sezione d'urto). In generale si ha

$$l = \frac{1}{\sum_{i} n_{i} \sigma_{i}} = \frac{1}{\rho k}, \quad [k] = \text{cm}^{2} \text{g}^{-1}$$

dove ρ è la densità del gas e k è l'opacità. Questa dipende dalla densità, temperatura ed altri fattori.

Si può calcolare il tempo che un fotone impiega per arrivare in superficie. Si considera il sole. Si supponga che sia composto da elettroni e protoni: si ipotizza un processo di diffusione di Thomson la cui sezione d'urto è

$$\sigma_T = \frac{8\pi}{3} \left(\frac{l^2}{m_e c^2}\right)^2 \approx 6.7 \times 10^{-25} \,\mathrm{cm}^2$$

Si noti che, a causa della dipendenza dalla massa, la sezione d'urto con il protone è trascurabile rispetto a quella con l'elettrone. La densità di numero di elettroni è

$$n_e = \frac{\rho}{m_{\rm H}}, \quad \rho \approx 1.4 \,\mathrm{g \, cm^{-3}}$$

Il libero cammino medio risulta essere

$$l = \frac{1}{n_e \sigma_T} \approx 2 \, \text{cm}$$

Il tempo per arrivare alla superficie del sole è

$$\tau = \frac{l}{c} \left(\frac{R_{\odot}}{l} \right)^2 = \frac{R_{\odot}^2}{lc} \approx 52\,000\,\mathrm{yr}$$

dove le parentesi provengono dal random walk ed è il numero di urti per percorrere il raggio del sole.

Si deriva la l'equazione del trasporto di energia. Un flusso emesso di fotoni viene assorbito e varia secondo

$$\mathrm{d}f = -k\rho f\,\mathrm{d}r$$

tutte le quantità sono funzioni del raggio. Inoltre, si sa

$$L(r) = f(r)4\pi r^2$$

Alla variazione di flusso corrisponde una variazione di pressione di radiazione

$$\mathrm{d}P = -\frac{\mathrm{d}f}{c} = -\frac{k\rho f}{c}\,\mathrm{d}r$$

La pressione di radiazione di un corpo nero è

$$P = \frac{1}{3}aT^4 \implies \mathrm{d}_T P = \frac{4}{3}aT^3 = \mathrm{d}_r P \, \mathrm{d}_T r = -\frac{k\rho f}{c} \, \mathrm{d}_T r$$

dove a è la costante di radiazione. Da cui risulta

$${\rm d}_r T = -\frac{3}{4} \frac{k \rho f}{a c T^3} = -\frac{3}{16} \frac{k \rho L}{\pi a c T^3 r^2}$$

L'equazione del trasporto radiativo è

$$\boxed{\mathbf{d}_r T = -\frac{3}{16} \frac{k\rho}{\pi a c T^3 r^2} L}$$