Alberto Andrés Valdés González.

Degree: Mathematical Engineer.
Work position: ML-Engineer.

 ${\bf Mail:} \ anval des@uc.cl/alberto.val des.gonzalez.96@gmail.com$

Location: Santiago, Chile.

Prim Algorithm

Minimum Spanning Tree (MST)

A minimum spanning tree (MST) is a subset of the edges of a <u>connected</u>, <u>undirected graph</u> that connects all the vertices with the most negligible possible total <u>weight</u> of the edges.

Step 0: We have a graph with the corresponding values to the edges.

Step 1: Pick a node.

Step 2: Expand the graph by one edge.

Visited Nodes: $\{A\}$

Step 3: Choose the edge with the minimum value which don't create a cycle and wasn't visited before.

<u>Visited Nodes:</u> $\{A, B\}$

Step 4: Expand the graph by one edge.

<u>Visited Nodes:</u> $\{A, B\}$

Step 5: Choose the edge with the minimum value which don't create a cycle and wasn't visited before.

 $\underline{\text{Visited Nodes:}}\ \{A,B,C\}$

Step 6: Expand the graph by one edge.

Visited Nodes: $\{A, B, C\}$

Step 7: Choose the edge with the minimum value which don't create a cycle and wasn't visited before.

Visited Nodes: $\{A, B, C, E\}$

Step 8: Expand the graph by one edge.

Visited Nodes: $\{A, B, C, E\}$

Step 9: Choose the edge with the minimum value which don't create a cycle and wasn't visited before.

 $\underline{\text{Visited Nodes:}}\ \{A,B,C,E,D\}$

Step 10: Expand the graph by one edge.

Visited Nodes: $\{A, B, C, E, D\}$

Step 11: Choose the edge with the minimum value which don't create a cycle and wasn't visited before.

Visited Nodes: $\{A, B, C, E, D, F\}$

Step 12: Expand the graph by one edge.

Visited Nodes: $\{A, B, C, E, D, F\}$

Step 13: Choose the edge with the minimum value which don't create a cycle and wasn't visited before.

Visited Nodes: $\{A, B, C, E, D, F, G\}$

Step 14: We finally have the minimum spanning tree.

