Assignment Project Exam Help

https://eduassistpro.github.

JMR Ch 18

(Note disd: Well-Hilling egg, du_gassist_pr

Where Do Random Numbers Come From?

Assignment Project Exami Help radio-active decay etc)

- https://eduassistpro.github.
 - Hard to model.
- * Camputer get earled control edu_assist_predefine same answ assist_predefine same answ starting point), but looks close to random.

Congruential Generators

$Assignment Project Exam Help \\ X_{n+1} = (AX_n + B)(\mod m)$

https://eduassistpro.github.

- Will only repeat after m steps if
- and A-1 is divisible by prime factors of the divisible by prime factors of
- Need to be cautious; can detect a deterministic relationship.
- But determinism can also be helpful (see later).

Example

JMR recommends

```
X[1] = 3
```

Assignment Project Exam Help

B = 1013

 $m = 2^{3}$

https://eduassistpro.github.

But Take Care

The RANDU generator was shipped with Unix systems in the 1970s, using

Assignment Project Exam Help

 $m = 2^{3}$

Plotthttps://eduassistpro.github.

- Power of 2 used for m because con arthough (vew or tve) article Cu_assist_pr
- RANDU chosen also for convenience prob because simulation results did not match theory.
- Period is $2^{32} = 4,294,967,296$ before repeating numbers; usually enough.

ln R

Assignment Project Exam Help Observable correlation between X and X (eg as in

- https://eduassistpro.github.

 representation for X_k .
- RAsected Marche Contractor edu_assist_pr
 - Period is $2^{19937} 1$ (not storable in R).
 - Plots of 623-dimensional runs (if you can think of this) still look uniform.

Seeds and Repeatability

- Pseudo-random number generators are deterministic: if you
- start them in the same place, you get the same answer.

 Assignments Prosecuting poix; after from Elp
- https://eduassistpro.github. > set.seed(36)
 - `Audda:WeChat.edu_assist_pr

7 / 26

- > runif(5) [1] 0.01990291 0.95542781 0.43666244 0.08922046 0.360519
 - Instead of storing everything in a simulation, this lets you re-run it *exactly*.
 - Often simulation time mitigates against this, but it can be convenient.

R and Seeds

Besides set.seed, R also stores .Random.seed.

Assignment 62 integrated also spxings of telp

https://eduassistpro.github.

- > runif(5)
- [1] 0,80298995 0, 26030899 0.75976074 0. > .Randolded Wale to hat edu_assist_pr
- > runif(5)
- [1] 0.80228995 0.26030829 0.75976074 0.01990291 0.95542781

Also doesn't require you to make up an integer. Works for any simulation (as long as you do exactly the same commands).

From Uniform to Discrete Random Variables

From here on assume we can generate U(0,1) random variables – how do we get to others?

Assignment Project (Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

$$X : F(X - 1) < U < F(X)$$

Then

$$P(F(X-1) < U \le F(X)) = F(X) - F(X-1) = P(X)$$

Example

Simulating from a Poisson:

Assignment Project Exam Help while(ppois(X,3) < U){ X = X+1 }

See C distrint the string of the string o

update F(X) within the while loop:

U = Aud WeChat edu_assist_pr

X = 0

```
FX = dpois(0,3)
while( FX < U){ X = X+1; FX = FX + dpois(X,3) }
```

dpois much cheaper than ppois to calculate.

Some Special Cases

There are often constructive definitions of r.v.'s that can be employed.

Assignmentar project of Education Help sernoulli's: $X \sim Bin(n, p) \Rightarrow X = \prod_{i=1}^{n} Z_i$ where

https://eduassistpro.github. Geometric or negative binomials – see exer Uniform on the integral back with the integral back in the in

- Arda Wechar edu_assist_pr
- > ceil(N*runif(n))
 [1] 75 51 13 27 92 20 45 20 8 61
- We can now generate bootstrap samples:

```
I = ceil( nrow(faithful)*runif(nrow(faithful)) )
faithboot = faithful[I,]
```

Generating Permutations

```
Asstises manner two properties and Help select one item in turn and add it to the new set.
```

```
N = https://eduassistpro.github.l

k = ceil( length(I)*runif(1) )

Ipenm[i] d WeChat edu_assist_pro.github.l
```

You could also do this by swapping elements.

Continuous Random Variables

Assignment Project Exam Help random variables

F(x) https://eduassistpro.github.

Add We hat edu_assist_problem is that F-1(x) easy to obta

Important Special Cases

Uniform U(a,b) Density: $I(x \in [a \ b])/(b-a)$

Assignment of P_{ro} (x) = (x - a)/(b - a) if $a \le x$ Help Exponential $exp(\lambda)$ Density $\lambda e^{-\lambda x}$

https://eduassistpro.github. Uniform Inverse CDF Exponential(1)

Add WeChat edu_assist_pr

Rejection Method

When F^{-1} is not easy to calculate explicitly – could try numerically.

Assignment pot to jet $(x \mapsto x \text{ an Help})$ The Generate (x, b) and $(x \mapsto x \text{ and } x \text{ and }$

https://eduassistpro.github.

Add WeChat edu_assist pr

Because
$$Y, Z$$
 uniform on the square.

←□ → ←□ → ← = → ← = → □ = →

```
In Code
```

wh

We'll use a Beta(1, 1.3) distribution. This has maximum value 1.3.

```
Assignment Project Exam Help
   Accept = FALSE
```

```
https://eduassistpro.github.
if(Z < dbeta(Y,1,1.3))
```

```
Add WeChatedu_assist_pr
```

```
Y = runif(1000)
X[i] = Y
                            Z = runif(1000, 0, 1.3)
                            Accept = Z < dbeta(Y,1,1.3)
```

X = Y[Accept]4 中 x 4 御 x 4 差 x 4 差 x 三 差 16/26

Generalized Rejection Method

■ For densities on the whole real line, we can't use a uniform distribution.

Assignmental Projecter Enxam Help

Add WeChat edu_assist_pr

https://eduassistpro.github.

Call kh(x) the envelope for f(x).

- **I** Generate $Y \sim h(\cdot)$
- 2 Generate $Z \sim U(0, kh(Y))$

Justification

General rejection method is justified because the (Y, Z) pairs are

Assignment Project Exam Help

https://eduassistpro.github.

 $\underbrace{ A_{\text{because } P(Z \in \{z, z+dz\}) | Y}^{=dzdy/k} \text{WeChat edu_assist_pr} }_{\text{because } P(Z \in \{z, z+dz\}) | Y \in \{v, v\} \text{ edu_assist_pr}$ $[0 \ kh(y)].$

This means the points we accept are uniformly distributed on the region under f(x) and therefore the x-coordinates have density f(x)

Example

Assignment strong Laplace distribution $h(x) = \frac{1}{2}e^{-|x|}$ To generate from Laplace, use V B(0.5) and U U(0,1),

https://eduassistpro.github.

 \blacksquare To find k, ratio of densities is

Add
$$\underbrace{\underbrace{WeC}}_{\frac{1}{2}e^{-|x|}} = \underbrace{\underbrace{assist}}_{\pi}$$
 pr

Note: JMR does 1/2 normal, and then uses 2(V-0.5) to symmetrize.

Example Continued

We'll fix the size of Y and Z and just see how many X we get after rejection:

```
Assignment Project Exam Help

U = runif(1000)
Y = V*10

https://eduassistpro.github.

Z = runif(100)*exp(-abs(Y))*sqrt(2*
```

Which ddac We Chat edu_assist_predicted = Z < dnorm(Y)

```
# Now we get our sample
```

```
# Now we get our sample
X = Y[Accept]
```

Efficiency

- In last example above, we accept about 75% of tries.
- Assignmente probability = less computational work probability = less
 - https://eduassistpro.github.

 Add WeChat edu_assist_pr
 - Choice of *k*.
 - See optimizing Gamma in book (and on the board).

Normal Random Variable Methods

Note if $X \sim N(0,1)$, then $\sigma X + \mu \sim N(\mu, \sigma^2)$, easy once we can generate N(0,1).

Assignment many U(0, U) = U(0, U) = U(0, U) = U(0, U)• We can also throw away V and just decide to make Y

https://eduassistpro.github.

otherwise repeat.

Addi We Chat edu_assist_pr

$$\left(\sum_{i=1}^{12} U_i\right) - 6 \approx N(0,1).$$

12 is a bit small; could add more terms + rescale, but this is computationally expensive.

Constructive Methods

Assignment Project Exam Help Exponential $(\log U)/\lambda$ if U = U(0,1).

https://eduassistpro.github. $B(n,p) = Z_i \text{ if } Z_1, \ldots, Z_n \sim B(p)$

Add A comparation and the control of the control of

Many many other relationships; some derived, some constructed.

Box-Muller for Gaussians

Assignment Project Exam Help

• https://eduassistpro.github.

This yields the following Chat edu_assist_pr

2 $X = \sqrt{-2 \log U_1} \cos(2\pi U_2), Y = \overline{-2 \log U_1} \sin(2\pi U_2)$

To obtain independent normal $X, Y \sim N(0, 1)$.

More Efficient Box-Muller

Assignment in the project of with polar coordinates (S, Ψ) , $S^2 = A^2 + B^2$ U(0, 1) (again not obvious).

https://eduassistpro.github.

Improved algorithm is

- ** Add We compared u_assist_pr
 - 3 Set $W = \sqrt{(-2 \log S^2)/S^2}$
 - X = UW, Y = VW.

Summary

Assignment Project Exam Help

- https://eduassistpro.github.
 - 1 transforms rejection methods
- Ardre ver Were Chat edu_assist_present Next: Monte Carlo integration.