Задачи второго семинара.

Ех. 1. Юниверсум — натуральные числа ($U = \mathbb{N}$). Опишите неформально на русском языке множества:

- (a) $\{1, 3, 5, \ldots\}$;
- (б) $\{n | | \exists k \in \mathbb{N} : n = 2k + 1\};$
- (B) $\{n || (\exists m : n = 2m) \land (\exists k : n = 3k) \}.$

Ех. 2. Множество А задано формулой $(U = \mathbb{N})$:

$$A = \{n | | \exists k \in \mathbb{N}: n = k^2 \}$$
. Верно ли, что $A = \{1, 4, 9\}$?

Ех. 3. Докажите, что для любых множеств A, B, C выполняются равенства

- (a) $A \setminus (A \setminus B) = A \cap B$;
- (6) $B \cup (A \setminus B) = A \cup B$.

Ех. 4. Докажите равенство для любых A_i , B_i

$$(A_1 \cap A_2 \cap \ldots \cap A_n) \setminus (B_1 \cup B_2 \cup \ldots \cup B_n) =$$

$$= (A_1 \setminus B_1) \cap (A_2 \setminus B_2) \cap \ldots \cap (A_n \setminus B_n).$$

- **Еж. 5.** Пусть A, B, C, D такие отрезки прямой, что $A \triangle B = C \triangle D$ (симметрические разности равны). Верно ли, что выполняется включение $A \cap B \subseteq C$?
- **Ех. 6.** Известно, что истинны утверждения $A \lor (B \land \neg C)$ и $\neg A \land (B \lor C)$. Какие из утверждений A, B, C истинны, а какие ложны?
- **Ех. 7.** Докажите, что если ab не делится на n, то a не делится на n и b не делится на n, a, b, $n \in \mathbb{N}$.
- Ех. 8. Какое из утверждений сильнее:

а)
$$\forall x \exists y : P(x,y)$$
 или б) $\exists y \forall x : P(x,y)$?

Ех. 9. Докажите, что 1 можно представить в виде суммы 2019 различных обыкновенных дробей с числителем 1 и положительными знаменателями.

Задачи второго семинара.

Ех. 1. Юниверсум — натуральные числа ($U = \mathbb{N}$). Опишите неформально на русском языке множества:

- (a) $\{1, 3, 5, \ldots\}$;
- (б) $\{n | | \exists k \in \mathbb{N} : n = 2k + 1\};$
- (B) $\{n || (\exists m : n = 2m) \land (\exists k : n = 3k) \}.$

Ех. 2. Множество А задано формулой $(U = \mathbb{N})$:

$$A = \{n | | \exists k \in \mathbb{N}: n = k^2 \}$$
. Верно ли, что $A = \{1, 4, 9\}$?

Ех. 3. Докажите, что для любых множеств A, B, C выполняются равенства

- (a) $A \setminus (A \setminus B) = A \cap B$;
- (6) $B \cup (A \setminus B) = A \cup B$.

Ех. 4. Докажите равенство для любых A_i , B_i

$$(A_1 \cap A_2 \cap \ldots \cap A_n) \setminus (B_1 \cup B_2 \cup \ldots \cup B_n) =$$

$$= (A_1 \setminus B_1) \cap (A_2 \setminus B_2) \cap \ldots \cap (A_n \setminus B_n).$$

- **Еж. 5.** Пусть A, B, C, D такие отрезки прямой, что $A \triangle B = C \triangle D$ (симметрические разности равны). Верно ли, что выполняется включение $A \cap B \subseteq C$?
- **Ех. 6.** Известно, что истинны утверждения $A \lor (B \land \neg C)$ и $\neg A \land (B \lor C)$. Какие из утверждений A, B, C истинны, а какие ложны?
- **Ех. 7.** Докажите, что если ab не делится на n, то a не делится на n и b не делится на n, a, b, $n \in \mathbb{N}$.
- Ех. 8. Какое из утверждений сильнее:

а)
$$\forall x \exists y : P(x,y)$$
 или б) $\exists y \forall x : P(x,y)$?

Ех. 9. Докажите, что 1 можно представить в виде суммы 2019 различных обыкновенных дробей с числителем 1 и положительными знаменателями.