

North South University Department of Electrical & Computer Engineering LAB REPORT-06

Course Code: CSE231L

Course Title: Digital Logic Design Lab

Section: 09

Lab Number: 03

Experiment Name:

Introduction to Multiplexers & 3 to 8 line Decoder

Experiment Date: 17th April, 2024

Date of Submission: 8th May, 2024

Submitted by Group Number: 02

Group members:

Name	ID	Obtained Mark Simulation [5]	Obtained Mark Lab Report [15]
1. Sudipto Roy (W)	2222756042		
2.			
3.			
4.			

Course Instructor: Omar Ibne Shahid

Submitted To: Pritthika Dhar

Experiment Name: Introduction to Multiplexers and 3 to 8 line Decoder.

Objectives :

- 1) Recognize the multiplexing concept in relation to digital logic circuits
- 2 Use multiplexers to implement digital logic functions
- 3 Acquire knowledge of digital multiplexer's internal logic.
- @ Examine and evaluate the 3 to 8 Line Decoder's functioning.

Printer office

Apparatus:

- 1) Trainer Board
- 2 1 x 1c 7404 Hex Inventer
- 3 2 x 1c 4073 3-input AND gates
- 4) 1 × 1c 7432 2-input or gates
- (8:1 Multiplexer)
- 6 1 x 1c 74138 (3:8 Line Decoder)
- 1 Connecting wines

Theory :

multiplexer: A multiplexer (often abbreviated as MUX) is a combinational circuit that selects one of several data inputs and forwards it to the output.

A₁ one

Multiplexer has 2n input lines and a single output line.

And multiplexer consists of 'n' selection lines.

Example: 8 ×1 Multiplexer
16 ×1 Multiplexer etc

2 × 1 Multiplexer

In 2×1 multiplexer, there are two inputs, i.e., A. and selection line i.e., S. and a single output, i.e., Y.

Block Diagram:

Truth Table:

Output (7)
Ao
Aı

Here, Y = SA. + SA.

mod principle

Logic circuit:

being clob forever to mo horse both horse house,

he has the per business by

Decoder: Decoder is a combinational circuit that has 'n' input lines and maximum of 2ⁿ output lines. One of these outputs will be active High based on the combination of inputs present, when the decoder is enabled. This means decoder detects a particular code.

Example: 2 to 4 Decoders
3 to 8 Decoder etc.

2 to 4 Decoder:

In 2 to 4 decoder, there are two inputs A_1 and A_0 and four outputs Y_3 , Y_2 , Y_1 , and Y_0 .

Block Diagram:

Truth Table :

Inpu	ıts		1		
A ₁	Ao	D_3	D ₂	D ₁	Do
0	0,	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Here,
$$D_3 = A_1 A_0$$
 $D_1 = \overline{A}_1 A_2$
 $D_2 = A_1 \overline{A}_0$ $D_0 = \overline{A}_1 \overline{A}_2$

Logic Circuit:

Circuit Diogram :

Logic cincuit for JOB-1

10

0

0

Pinout of 1074151

Pinout of 1074138

Experimental Procedure:

JOB 1 Circuit diagram of Our took is to implement this function using 1 A:1 MUX $F(A,B,c) = \Sigma(0,1,5,7)$

= mo+m,+ m5+m7

2) First we have to find out which MUX to use.

In function, number of variables (35) = 3

$$\therefore n = \text{varpiable } -1$$

$$= 3 - 1 = 2$$

Here, 2 is the number of select lines.

:. For, Mux = $2^n = 2^2 = 4$ So, we will use 4:1 mux.

- 3) Then we will made table 01 for all combinations.
- 1 Since A is given as input bit, our next step-

We filled this data inputs in table -1. And we are considering B and C as select bit.

Block Diagram:

necessary gates and circuit diagram of (a) Then we implemented the circuit using \$\$\mathbb{R}\$ 4:1 MUX.

And checked all the possible inputs using data table -01.

JOB 2

O our task was to implement following function using 8:1

MUX.

$$F(A,B,C,D) = \Sigma(0,1,3,5,8,9,14,15)$$

= $m_0 + m_1 + m_3 + m_5 + m_8 + m_9 + m_4 + m_{15}$

@ First we have to find out which MUX to use.

In this function, number of variable = 4

Hene, 3 means the number of the select lines For Mux, $2^n = 2^3 = 8$

So, we will use 8:1 MUX.

- 3) Then we made table 02 for all combinations.
- @ Since we have to keep A as input bit, our next step-

We filled this data inputs in table-2. And we one considering B, C and D as select bit.

Block Diagram :

6 Then we implemented the circuit using 8:1 MUX. And checked all the possible inputs using data table -02.

JOB 3

By using necessary guides, we wired up the 10 74138 to start our task-03, 3 to 8 line decoder. Then set the necessary values for the Enable inputs. Both G2A and G2B Should be set to low, while G1 should be set to high. Then, we wired up three inputs (CBA) to three binary switches, and the eight outputs to individual LEDs. Then, we tested our circuit using Function Table from lab manual.

the transfer has desired to the knowledge to a decide of the second of t

Α	В	C	F (Theonitical)		Data Inputs	F (Practical)
0	0	0	1		I K	1
0	0	1	1	1	$\Gamma_o = \overline{A}$	1 /
0	1	0	0	A Property of		0
0	1	1	0		I ₁ = 1	0
1	0	0	0			0
1	0	1	1 1		I ₂ = 0	1 1
1	1	0	0	E. R.	T .	0 1
	31				= A	A Secretary and Association an
1	1	1	1		Γ ₃ = A	1
Table	01 : Ti	outh Tob	le for	4:1	Multiplexero	
Table A	01 : Ti	outh Tob	le for	4:1	Multiplexera	F (Practical
Table	01 : Ti	c O	le for	4:1	Multiplexero	F (Phactical
Table A O	01 : Ti	outh Tob	le for	4:1 F(Theoritical)	Multiplexero Data Inputs Io= 1	F (Practical
Table A O O	01 : Ti	c O	D (1)	4:1 F(Theoritical) 1 1	Multiplexero Data Inputs	F (Phactical
Table A O O	01 ; Ti	c O O 1	D (1) 0 1 0	4:1 F(Theoritical) 1 0	Multiplexero Data Inputs Io= 1 I1 = 1	F (Practical 1 1
Table A O O O	01 : Ti	c O O 1	D (1) 0 1 0 1	4:1 F(Theoritical) 1 0 1	Multiplexero Data Inputs Io= 1	F (Phactical 1 1 1
Table A O O O O	01 ; Ti	c O O I I O	D (1) 0 1 0 1 0	4:1 F(Theoridical) 1 0 1 0	Multiplexero Data Inputs Io= 1 I1 = 1	F (Phactical 1 1 0 1
Table A O O O O O	01 : Tr	0 0 1 1 0 0	D (1) 0 1 0 1 1	4:1 F(Theoritical) 1 0 1 0 1	Multiplexero Data Inputs Io= 1 I1 = 1	F (Practical 1 1 0 1 0
Table A O O O O O	01 : Tr	0 0 1 1 0 0 1	D (1) 0 1 0 1 0 1 0	4:1 F(Theoritical) 1 0 1 0 1 0	Multiplexero Data Inputs Io= 1 I1 = 1	F (Phactica) 1 1 0 1 0 1 0

 $I_5 = \overline{A}$

76 = A

Enol		150	lect npu-	S				Outputs				
G ₁ 1	<u>G2</u>	С	В	Α	Y.	Y_1	Y ₂	Y ₃	Y4	Y ₅	Y ₆	Y7
×	Н	X	X	X	Н	H	H	Н	Н	H	Н	Н
L	Х	X	X	X	Н	Н	Ή	Н	Н	Н	H	H
Н	L	L	L	L	IL I	Н	H	H	Н	Н	H	Н
Н	L	L	L	Н	Н	L	H	Н	Н	Н	H	Н
Н	L	L	H	L	Н	H	AL	H	Н	Н	H	H
Н	L	L	Н	+1	Н	Н	Н	J-nL	Н	Н	H	H
Н	L	H	L	L	Н	Н	Н	уН	L	Н	Н	H
Н		H	L	H	H	Н	Н	H	H	L	Н	Н
Н	L	Н	H	L	H	Н	Н	Н	H	H	L	Н
Н	L-	H	Н	Н	H	i.t	H	H	H	Н	H	L

De til Charleton Dol Top of

Results:

du hall K

We got the outputs according to the Truth Table/ Function Table.

1 Shilling

Way.

The Third in

Disscussion: We learned about multiplexers and decoders in this lab.

Any circuit can be converted to a multiplexer-implemented circuit.

A multiplexer is a device that accepts numerous inputs but produces only one output. And decoder is a multiple-input, multiple-output logic circuit that converts coded inputs into coded outputs.

Our tosk-01 was to build a 4:1 multiplexer. We implemented function, $F(A,B,C) = \sum (0,1,5,7)$ using 4:1 MUX. Using data table we also verified the experiment. All the outputs was occurate. In our task-02, we built, $F(A,B,C,D) = \sum (0,1,3,5,8,9,14,15)$ using 8:1 Mux. And we also checked the outputs using data table-02. In task-03 we implemented 3 to 8 line decoders by using 1C 74138. We checked the outputs using the given function table in Lab Manual.

In this lab, we didn't faced any kind of faultness in Ic. All Ic worked well. Sometimes we faced problem during applying inputs because of the bad behaviour of input switches in the Analog and Digital Training System.

Moreover, this lab has helped us get to know Multiplexers and Decoders practically and enriched our knowledge of digital togic design.