Control Systems

Chapter 7

Outline

- Introduction
- Open and Closed Loop Control System Overview
- General Control Systems and PID Controllers
- Software Coding of PID Controller
- PID Tuning
- Practical issues Related to Computer-Based Control
- Benefits of Computer-Based Control Implementations

Introduction

- Control physical system's output
 - By setting physical system's input
- Tracking
- E.g.
 - Air Conditioner, automobiles.
- Difficulty due to
 - Disturbance: wind, road, tire, brake; opening/closing door...
 - Human interface: feel good, feel right

Tracking

Open-Loop and Closed-Loop Control Systems Overview

- Plant
 - Also known as process
 - Physical system to be controlled
 - Example: Automobiles, fan, heater, disk
- Output
 - The particular physical system aspect we want to control
 - Example: Speed, temperature
- Reference
 - Input value that is desired to be seen at the output

- - -

- Actuator
 - Device used to control the input of the plant
 - Example: Motors
- Controller
 - System that computes input to the plant so as to achieve desired output from the plant
- Disturbance
 - Additional undesirable inputs

Open Loop Control Systems

- System in which output has no influence on control action of input signal
- Feed-forward control or non feed
- Delay in actual change of the output
- Controller doesn't know how well thing goes
- Simple
- Best use for predictable systems
 - Model is accurate and disturbance effect is minimal

Figure: Simple Block Diagram of Open Loop Systems

Close Loop Control Systems

- Feedback control systems
- Minimize tracking error
- Additional Components
 - Sensor
 - Measure the plant output
 - Error detector
 - Detect Error

Figure: Simple Block Diagram of Closed Loop Systems

General Control Systems and PID Controllers

- Objective
 - Causing output to track a reference even in the presence of
 - Measurement noise, Model error, Disturbances
- Objectives evaluated through several metrics
 - Stability: All variables in the system remain bounded
 - **Performance**: How well an output tracks the reference
 - **Disturbance rejection**: cannot eliminate but can reduce its impact
 - Robustness: Ability to tolerate modeling error of the plant

Aspects of Performance

- Rise time: Time it takes to change from 10% to 90%
- Peak time: Time required to reach the first peak
- Overshoot: Percentage by which Peak exceed final value
- Settling time: Time it takes to reach 1% of final value

Modeling Real Physical Systems

- Real Physical Systems
 - Respond as continuous variables and as continuous function of time
 - Plant dynamic model is usually a differential equation
 - Sampling period selection much smaller than reaction time
 - Much more complex
 - Our model may not include all nonlinear effects, all system states, or all state interactons

Controller Design

- Proportional controller
 - A controller that multiplies the tracking error by a constant
 - $u_t = P * (r_t v_t) = P * e_t$
- P affects
 - Transient response, steady state tracking, disturbance rejection
 - Trade offs
 - Reduce oscillation and improve convergence with worse steady-state error

- Proportional and Derivative control (PD)
 - $u_t = P * (r_t v_t) + D * ((r_t v_t) (r_{t-1} v_{t-1})) = P * e_t + D * (e_t e_{t-1})$
 - P: Proportional Constant
 - D: Derivative Constant
 - u₊: Output
 - e_t: measured error
 - $e_t e_{t-1}$: derivative of the error
- Allow greater flexibility in the optimization

- Derivative term used to predict the future
 - Looks the difference between two successive time instances
- More Complex Controller
 - Need to keep track of error derivative
- PD give more flexibility
 - P term for best tracking and disturbance control
 - D term effects transient response only
 - Control oscillation, overshoot and rate of convergence

- - -
- PI Control Proportional plus Integral Control
 - $u_t = P * e_t + I * (e_0 + e_1 + ... + e_t)$
- Sum up error over time
 - Ensure reaching desired output, eventually
 - v_{ss} will not be reached until e_{ss} =0
- Use P to control disturbance
- Use I to ensure steady state convergence and convergence rate

- PID Control
 - Combine Proportional, integral, and derivative control
 - $u_t = P * e_t + I * (e_0 + e_1 + ... + e_t) + D * (e_t e_{t-1})$
- Select the PID gains to achieve the desired stable transient behavior

Software Coding of a PID Controller

- Initialization
 - Initialize P, I, D gain
- Main function loops forever, during each iteration
 - Read plant output sensor
 - May require A2D
 - Read current desired reference input
 - Determine actuator value
 - Set actuator value
 - May require D2A

Pseudo code for design

- Set the values of Pgain, Dgain, Igain.
- Initialize prior error=0 and integral=0
- Repeat following steps
 - sensorValue=getValueFromSensor();
 - refValue=getReferenceValue();
 - Error=sensorValue-refValue;
 - Integral=integral+error*iterationTime
 - Derivative=(error-prior_error)/iterationTime
 - Output=Pgain*error+ Igain*integral+Dgain*derivative
 - setActuator(output)
 - Prior_error=error
 - Wait(iterationTime)

PID tuning

- Values of P, I, and D can be determined through quantitative analysis
- Quantitative analysis not necessary when
 - Safety is not a concern
 - Cost of using plant is not a concern
 - PID values selected using ad hoc process
- Advantages of Ad hoc tuning
 - Model of plant may be too complex to analyze quantitatively
 - Model may not available

- . . .
- Ad hoc method for getting "reasonable" P, I, D
 - Start with a small P, I=D=0
 - Increase D, until seeing oscillation
 - Reduce D a bit by 2 to 4 factor
 - Increase P, until seeing oscillation or excessive overshoot
 - Reduce P a bit
 - Increase I, until seeing oscillation or excessive overshoot
- The above steps are repeated until satisfactory performance is achieved

P, I and D summary

- A <u>proportional controller</u> (Kp) will have the effect of reducing the rise time and will reduce, but never eliminate, the steady-state error.
- An **integral control (Ki)** will have the effect of eliminating the steady-state error, but it may make **the transient response worse**.
- A derivative control (Kd) will have the effect of increasing the stability of the system, reducing the overshoot, and improving the transient response but little effect on rise time
- A <u>PD Controller</u> could add damping to a system, but the steady-state response is not affected.(steady state error is not eliminated)
- A <u>PI Controller</u> could improve relative stability and eliminate steady state error at the same time, but the settling time is increased(System response sluggish)

Practical Issues with Computer-Based Control

- Quantization
- Overflow
- Aliasing
- Computation Delay

Quantization

- It occurs when machine number is altered to fit the constraints of memory
 - Arithmetic results requiring more precision than original values 0.50 x0.25 = 0.125
 - Analog signals from sensors quantized by ADC
- If 0.36 were to be stored as a 4-bit fraction
 - 0.75, 0.50, 0.25, 0.00, -0.25, -0.50, -0.75, -1.00 possible
 - Saved number would be 0.25 with error of 0.11

Overflow

- Operation outputs large magnitude number
 - Can't store 0.75+0.50 = 1.25 as 4-bit fractional number

Aliasing

- Reconstructed signal different from original signal
- Causes different signals to become indistinguishable
- Example
 - Sampling at 2.5 Hz, period of 0.4, the following are indistinguishable
 - $y(t)=1.0*\sin(6\pi t)$, frequency 3 Hz
 - $y(t)=1.0*\sin(\pi t)$, frequency of 0.5 Hz
 - In fact, with sampling frequency of 2.5 Hz
 - Can only correctly sample signal below Nyquist frequency 2.5/2 = 1.25 Hz

Computation Delay

- Delay results in control signal being applied later than desired
- Too much delay results in performance degradation
- Need to characterize implementation delay to make sure it is negligible
- Hardware delay is usually easy to characterize
 - Synchronous design
- Software delay is harder to predict
 - Should organize code carefully so delay is predictable and minimized
 - Write software with predictable timing behavior (be like hardware)

Benefit of Computer Control

- Repeatability, Reproducibility and stability
 - Analog circuits more prone to aging, temperature and manufacturing tolerance effects – results may vary with time
 - Digital systems will compute identical results
- Programmability
 - Allows advanced features to be implemented easily
 - Adaptive behavior, data storage, on-line performance evaluation and so on