Analyse des données

TP 1 (Suite)

Exercice 1

Considérons la matrice des données X suivante, résultat de 4 observations sur 10 individus.

$\begin{array}{ c c c c }\hline & J \\ \hline & I \\ \hline \end{array}$	Moyenne	Age	Taille	Poids
Enfant 1	14	13	1.50	45
Enfant 2	16	13	1.60	50
Enfant 3	15	13	1.65	50
Enfant 4	9	15	1.75	60
Enfant 5	10	14	1.70	60
Enfant 6	7	14	1.70	60
Enfant 7	8	14	1.60	70
Enfant 8	13	13	1.60	65
Enfant 9	17	15	1.55	60
Enfant 10	11	14	1.70	65

Pour le graphisme

1. Représenter graphiquement le nuage des individus dans le plan des couples :

(Moyenne, Taille), et (Age, Poids).

Présenter les deux graphes dans une même fenêtre. C'est-à-dire *partitionner* la fenêtre de visualisation en *deux sous fenêtres* (horizontales ou verticales à vous de choisir). Dans la première sous fenêtre, présenter le graphe des individus dans le premier plan et le deuxième graphe dans la deuxième sous fenêtre. N'oublier pas de *nommer* (légender) les axes pour les deux graphes et de donner un *titre* pour chaque graphe.

2. Interprétez les graphes obtenus.

Pour les mesures de liaison

- 1) Mesurer la proximité entre les couples des individus suivants : (*Enfant 4, Enfant 5*), (*Enfant 5, Enfant 6*) et (*Enfant 4, Enfant 6*).

 Oue signifient ces mesures ? Interpréter les résultats obtenus.
- En convertiseant les volours de le verieble Teille en contimètre
- 2) En *convertissant* les valeurs de la variable Taille en *centimètres*, recalculer les mesures demandées précédemment. Interpréter les résultats obtenus.
- 3) Que pouvez-vous conclure ? Expliquer et déduire.
- 4) Afficher la matrice centrée réduite des données.

Master 1, Informatique Visuelle (MIV)

Exercice 2

Considérons la matrice des données suivante :

	X^1	X^2	X^3	X^4	X^5	<i>X</i> ⁶	X^7	<i>X</i> ⁸	
	/10	10	10	8	8.04	9.14	7.46	6.58 \	
	8	8	8	8	6.95	8.14	6.77	5.76	
	13	13	13	8	7.58	8.14	12.74	7.71	İ
	9	9	9	8	8.81	8.77	7.11	8.84	İ
	11	11	11	8	8.33	9.26	7.81	8.47	İ
X =	14	14	14	8	9.96	8.10	8.84	7.04	
	6	6	6	8	7.24	6.13	6.08	5.25	İ
	4	4	4	19	4.26	3.10	5.39	12.50	İ
	12	12	12	8	10.84	9.13	8.15	5.56	
	\ 7	7	7	8	4.82	7.26	6.42	7.91	1
	√ 5	5	5	8	5.68	4.74	5.73	6.89	

Analyse des données

- 1) Ecrire une fonction qui calcule la moyenne arithmétique des 8 variables de la matrice donnée. Prenez 6 chiffres décimaux.
- 2) Déterminer le centre de gravité et afficher le.
- 3) Ecrire une fonction qui calcule la variance des 8 variables de la matrice donnée. Prenez 6 chiffres décimaux.
- 4) Déterminer la matrice des covariances. Afficher le résultat.
- 5) Calculer les coefficients de corrélation des couples de variables suivantes : $(X^1, X^5), (X^2, X^6), (X^3, X^7), (X^4, X^8)$.

Que remarquez-vous?

6) Représenter graphiquement les individus dans l'espace \Re^2 des couples des variables : $(X^1, X^5), (X^2, X^6), (X^3, X^7), (X^4, X^8)$.

Partitionner la fenêtre de présentation en 4 sous fenêtres (2 lignes et 2 colonnes).

7) Interpréter les graphes obtenus.

Exercice 3

Considérons la matrice des données suivante :

$$X = \begin{pmatrix} 8 & 30 & 55 \\ 2 & 6 & 40 \\ 5 & 15 & 30 \\ 7 & 22 & 40 \end{pmatrix}.$$

Faites un **Programme** qui calcule et affiche :

- a) Le centre de gravité du nuage de points.
- b) La matrice des données centrées-réduites.

Analyse des données

- c) La matrice des corrélations.
- d) Les valeurs propres de la matrice des corrélations.
- e) Représentation graphique des valeurs propres obtenues. A discuter et à interpréter.

Afficher une matrice à trois colonnes qui nous retourne les informations suivantes :

- a) Les valeurs propres obtenues sur la première colonne.
- b) Le **pourcentage** (par rapport à l'inertie totale) de **l'information retenue** par chaque **axe principal** sur la 2^{ème} colonne.
- c) Le **pourcentage cumulé** de l'information retenue obtenu en sommant les variances expliquées (pourcentages) obtenues précédemment successivement sur la dernière colonne.

Que pouvez -vous déduire ?

Déterminer les axes principaux du meilleur plan ajustant le nuage de points.

a) Comment pouvons nous déterminer la projection des individus sur les axes principaux.