ЛЕКЦИЯ 11 Глава 4. МЕТОДЫ ДЛЯ ЗАДАЧ УСЛОВНОЙ ОПТИМИЗАЦИИ И КОМПЛЕМЕНТАРНЫХ ЗАДАЧ (продолжение)

Содержание лекции

- Методы активного множества
 - Идентификация активных ограничений
 - Оценки расстояния до множества решений

Идея для задачи, включающей в себя неравенства: идентификация неравенств, активных (т.е. выполняющихся как равенства) в искомом решении, и учет их как равенств на последующих итерациях.

С равенствами проще иметь дело с вычислительной точки зрения.

Многие методы автоматически идентифицируют активные неравенства при достаточном приближении к решению, по крайней мере в случае выполнения условия строгой дополнительности. Но эти методы сами по себе не выдают надежного «сертификата» («знака»), что правильная идентификация наступила.

Здесь речь идет о намеренной и явной идентификации. Методы, включающие в себя такие процедуры и явно использующие оценки множеств активных неравенств, — методы активного множества.

Часто используются эвристические процедуры идентификации. Здесь: теоретически обоснованные процедуры идентификации, использующие оценки расстояния до множества решений.

В случае комплементарных задач после идентификации активных неравенств могут применяться ньютоновские методы для уравнений, а в случае задач оптимизации — методы для задач оптимизации с ограничениями-равенствами. Ограничимся случаем задачи оптимизации с ограничениями-неравенствами; наличие ограничений-равенств не создает дополнительных трудностей в этом контексте. Для комплементарных задач принципы те же.

Типичные примеры методов активного множества для задач оптимизации:

- симплекс-метод для задач линейного программирования;
- метод особых точек и другие подобные методы для задач квадратичного программирования.

Эти методы — конечные: после правильной идентификации активного множества сразу находится точное решение (как решение соответствующей системы линейных уравнений). Для более общих (нелинейных, неквадратичных) задач оптимизации методы активного множества — бесконечношаговые.

Задача оптимизации

Задача

$$f(x) \to \min, \quad x \in D,$$
 (1)

$$D = \{ x \in \mathbb{R}^n \mid G(x) \leqslant 0 \}, \tag{2}$$

где

- \bullet $f: \mathbb{R}^n \to \mathbb{R}$ заданная функция;
- ullet $G:\mathbb{R}^n o \mathbb{R}^m$ заданное отображение.

Если для искомой стационарной точки $\bar{x} \in \mathbb{R}^n$ задачи (1), (2) идентифицировать $A(\bar{x}) = \{i = 1, \ldots, m \mid g_i(\bar{x}) = 0\}$, то \bar{x} будет стационарной в задаче оптимизации с ограничениями-равенствами

$$f(x) \to \min, \quad x \in \bar{D},$$

$$\bar{D} = \{x \in \mathbb{R}^n \mid g_i(x) = 0, i \in A(\bar{x})\}.$$

Идентифицировать $A(\bar{x})$ нужно без точного знания \bar{x} : можно использовать информацию, доступную в имеющемся приближении $x \in \mathbb{R}^n$ к \bar{x} , а также (возможно) имеющееся приближение $\mu \in \mathbb{R}^m$ к некоторому отвечающему \bar{x} множителю Лагранжа.

Система Каруша-Куна-Таккера задачи (1), (2)

$$\frac{\partial L}{\partial x}(x,\,\mu) = 0,\tag{3}$$

$$\mu \geqslant 0$$
, $G(x) \leqslant 0$, $\langle \mu, G(x) \rangle = 0$, (4)

где

$$L: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}, \quad L(x, \mu) = f(x) + \langle \mu, G(x) \rangle,$$

функция Лагранжа.

Множество отвечающих стационарной точке \bar{x} множителей Лагранжа

$$\mathcal{M}(\bar{x}) = \{ \mu \in \mathbb{R}^m \mid (\bar{x}, \mu) \text{ удовлетворяет (3), (4)} \}.$$

Если для данного $\bar{\mu} \in \mathcal{M}(\bar{x})$ выполнено условие строгой дополнительности

$$\bar{\mu}_i > 0 \quad \forall i \in A(\bar{x}),$$

то локальная идентификация не составляет труда: найдется окрестность U точки $(\bar{x}, \bar{\mu})$ такая, что

$$A(\bar{x}) = A(x, \mu) \quad \forall (x, \mu) \in U,$$

где

$$A(x, \mu) = \{i = 1, \ldots, m \mid \mu_i \geqslant -g_i(x)\}, \quad x \in \mathbb{R}^n, \mu \in \mathbb{R}^m.$$

Доказательство

Если $i \in A(\bar{x})$, то $g_i(\bar{x}) = 0$ и $\bar{\mu}_i > 0$, и поэтому для любого (x, μ) , достаточно близкого к $(\bar{x}, \bar{\mu})$, имеет место $\mu_i \geqslant -g_i(x)$, а значит, $i \in A(x, \mu)$, т.е. $A(\bar{x}) \subset A(x, \mu)$.

Если $i \in \{1, \ldots, m\} \setminus A(\bar{x})$, то $g_i(\bar{x}) < 0$ и $\bar{\mu}_i = 0$, и поэтому для любого (x, μ) , достаточно близкого к $(\bar{x}, \bar{\mu})$, имеет место $\mu_i < -g_i(x)$, а значит, $i \notin A(x, \mu)$, т.е. $A(\bar{x}) \supset A(x, \mu)$.

Без строгой дополнительности можно гарантировать лишь

$$A(x, \mu) \subset A(\bar{x}) \quad \forall (x, \mu) \in U.$$

Если $\mathcal{M}(\bar{x}) = \{\bar{\mu}\}$ (т.е. выполнено строгое условие Мангасариана-Фромовица), то

$$A_{+}(\bar{x}) \subset A(x, \mu) \subset A(\bar{x}) \quad \forall (x, \mu) \in U,$$

где

$$A_{+}(\bar{x}) = \{ i \in A(\bar{x}) \mid \bar{\mu}_{i} > 0 \}.$$

Далее ни строгая дополнительность, ни строгое условие Мангасариана-Фромовица не предполагаются.

Идея: сравнивать значения $-g_i(x)$ не с μ_i , $i=1,\ldots,m$, а со значениями «идентифицирующей функции», в основе определения которой лежит некоторая оценка расстояния до $\{\bar{x}\} \times \mathcal{M}(\bar{x})$.

Функция $r: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}_+$ оценивает расстояние до $\{\bar{x}\} \times \mathcal{M}(\bar{x})$ вблизи $\bar{\mu} \in \mathcal{M}(\bar{x})$, если $r(\bar{x}, \mu) = 0$ для всех $\mu \in \mathcal{M}(\bar{x})$, r непрерывна на $\{\bar{x}\} \times \mathcal{M}(\bar{x})$, и существуют c > 0, $\nu > 0$ и окрестность U точки $(\bar{x}, \bar{\mu})$ такие, что

$$\operatorname{dist}((x, \mu), \{\bar{x}\} \times \mathcal{M}(\bar{x})) \leqslant c(r(x, \mu))^{\nu} \quad \forall (x, \mu) \in U. \tag{5}$$

Константы c и ν обычно неизвестны, но их знание для идентификации и не требуется.

Оценки расстояния до решений и их использование

- условия квадратичного роста и связанные с ними оценки в п. 3.1.2;
- теорема 4.4.2 об оценке расстояния до изолированного нуля негладкого отображения;
- теорема 4.6.6 будет использовать оценку расстояния до допустимого множества для анализа скорости сходимости методов штрафа.

Положим

$$A(x, \mu) = \{i = 1, \dots, m \mid \rho(r(x, \mu)) \geqslant -g_i(x)\}, \ x \in \mathbb{R}^n, \mu \in \mathbb{R}^m, (6)$$

с функцией

$$ho: \mathbb{R}_+ \to \mathbb{R}, \quad
ho(t) = \left\{ egin{array}{ll} -1/\ln \hat{t}, \; ext{если} \; t \geqslant \hat{t}, \\ -1/\ln t, \; ext{если} \; t \in (0, \; \hat{t}), \\ 0, \; ext{если} \; t = 0, \end{array}
ight.$$
 (7)

где $\hat{t} \in (0, 1)$ — параметр.

Эта функция стремится к нулю при $t \to 0+$ медленнее, чем t^{ν} при любом $\nu > 0$.

Предложение 1

Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ и отображение $G: \mathbb{R}^n \to \mathbb{R}^m$ дифференцируемы в точке $\bar{x} \in \mathbb{R}^n$. Пусть \bar{x} — стационарная точка задачи (1), (2), причем функция $r: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}_+$ оценивает расстояние до множества $\{\bar{x}\} \times \mathcal{M}(\bar{x})$ вблизи $\bar{\mu} \in \mathcal{M}(\bar{x})$.

Тогда найдется окрестность U точки $(\bar{x}, \bar{\mu})$ такая, что для заданного формулами (6), (7) множества индексов справедливо

$$A(x, \mu) = A(\bar{x}) \quad \forall (x, \mu) \in U.$$
 (8)

Доказательство

Аналогично случаю строгой дополнительности, но с использованием липшицевости G относительно \bar{x} и соотношения $\lim_{t\to 0+} t^{\nu}/\rho(t)=0$ для любого $\nu>0$.

Если функция r оценивает расстояние до $\{\bar{x}\} \times \mathcal{M}(\bar{x})$ вблизи любого $\bar{\mu} \in \mathcal{M}(\bar{x})$, и в точке \bar{x} выполнено условие регулярности Мангасариана—Фромовица, то существует $\delta > 0$ такое, что (8) имеет место при

$$U = \{(x, \mu) \in \mathbb{R}^n \times \mathbb{R}^m \mid \operatorname{dist}((x, \mu), \{\bar{x}\} \times \mathcal{M}(\bar{x})) \leq \delta\}.$$

Это следует из компактности $\mathcal{M}(\bar{x})$.

Если $\mathcal{M}(\bar{x}) = \{\bar{\mu}\}$ (т.е. выполнено строгое условие Мангасариана—Фромовица), то можно идентифицировать и множество $A_+(\bar{x})$, а значит и $A_0(\bar{x}) = A(\bar{x}) \setminus A_+(\bar{x})$, и сразу положить $\mu_i = 0$, $i \in A_0(\bar{x})$.

Положим

$$A_{+}(x, \mu) = \{i = 1, \dots, m \mid \mu_{i} \geqslant \rho(r(x, \mu))\}, \ x \in \mathbb{R}^{n}, \ \mu \in \mathbb{R}^{m}.$$
(9)

Предложение 2

В предположениях предложения 1, если стационарной точке \bar{x} задачи (1), (2) отвечает единственный множитель Лагранжа $\bar{\mu}$, то найдется окрестность U точки $(\bar{x}, \bar{\mu})$ такая, что для заданного формулами (7), (9) множества индексов $A_+(x, \mu)$ справедливо

$$A_+(x, \mu) = A_+(\bar{x}) \quad \forall (x, \mu) \in U.$$

Вместо функции ρ из (7) в предложениях 1 и 2 можно использовать

$$\rho: \mathbb{R}_+ \to \mathbb{R}, \quad \rho(t) = t^{\theta},$$

где $\theta \in (0, \nu)$. При этом также выполняется ключевое свойство $\lim_{t\to 0+} t^{\nu}/\rho(t)=0$.

Такой способ предполагает знание ν в (5).

Обычно оценивающая расстояние до множества $\{\bar{x}\} \times \mathcal{M}(\bar{x})$ функция r определяется через невязку системы Каруша–Куна–Таккера (3), (4):

$$r(x, \mu) = \|\Psi(x, \mu)\|, \quad x \in \mathbb{R}^n, \, \mu \in \mathbb{R}^m, \tag{10}$$

где отображение $\Psi: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^s$ непрерывно и таково, что множество решений системы (3), (4) совпадает с множеством решений уравнения

$$\Psi(x,\,\mu)=0.$$

Согласно теореме 4.4.2, для r из (10) оценка (5) имеет место при $\nu=1$, если Ψ локально липшицево и дифференцируемо в точке $(\bar{x},\bar{\mu})$ по любому направлению, и

$$\{(\xi,\,\zeta)\in\mathbb{R}^n\times\mathbb{R}^m\mid \Psi'((\bar{x},\,\bar{\mu});\,(\xi,\,\zeta))=0\}=\{(0,\,0)\}. \tag{11}$$

Подразумевает, что $\mathcal{M}(\bar{x}) = \{\bar{\mu}\}.$

Если $\psi: \mathbb{R} imes \mathbb{R} o \mathbb{R}$ — функция дополнительности, то можно взять s=n+m и

$$\Psi(x,\,\mu) = \left(\frac{\partial L}{\partial x}(x,\,\mu),\,\psi(\mu,\,-G(x))\right),\quad x \in \mathbb{R}^n,\,\mu \in \mathbb{R}^m. \tag{12}$$

Как и для комплементарных задач в разд. 4.4.4, для случаев, когда ψ — функция естественной невязки или функция Фишера—Бурмайстера, известны критерии выполнения (11).

Более тонкий результат:

Теорема 1

Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ и отображение $G: \mathbb{R}^n \to \mathbb{R}^m$ дважды дифференцируемы в точке $\bar{x} \in \mathbb{R}^n$. Пусть \bar{x} — стационарная точка задачи (1), (2), а $\bar{\mu} \in \mathbb{R}^m$ — отвечающий ей множитель Лагранжа, причем выполнено достаточное условие второго порядка оптимальности

$$\left\langle \frac{\partial^2 L}{\partial x^2}(\bar{x}, \bar{\mu})\xi, \xi \right\rangle > 0 \quad \forall \, \xi \in C(\bar{x}) \setminus \{0\},$$

где $C(\bar{x}) = \{ \xi \in \mathbb{R}^n \mid \langle g_i'(\bar{x}), \xi \rangle \leqslant 0, i \in A(\bar{x}), \langle f'(\bar{x}), \xi \rangle \leqslant 0 \}$ — критический конус задачи в точке \bar{x} .

Теорема 1 (завершение)

Тогда для функции $r: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}_+$, вводимой согласно (10), (12), где ψ — функция естественной невязки или функция Фишера—Бурмайстера, имеет место оценка (5) при $\nu=1$ для некоторого c>0 и некоторой окрестности U точки $(\bar{x},\bar{\mu})$.

Здесь не подразумевается единственность множителя Лагранжа.

Оценки расстояния другого типа: для вещественно-аналитических f и G оценка (5) имеет место при некотором (неизвестном!) $\nu>0$ для r из (10) при s=n+2m+1 и

$$\Psi(x, \mu) = \left(\frac{\partial L}{\partial x}(x, \mu), \min\{\mu, 0\}, \max\{G(x), 0\}, \langle \mu, G(x) \rangle\right)$$

без всяких условий регулярности.