### Lecture 1

텍스트 마이닝 기초

# 텍스트 마이닝 (Text Mining)이란?

- Wikipedia: the process of deriving high-quality information from text.
- High-quality information is typically derived through the devising of patterns and trends through means such as statistical pattern learning.
- The overarching goal is, essentially, to **turn text into data for analysis**, via application of natural language processing (NLP) and analytical methods.
- 텍스트 데이터에서 자연어처리(Natural Language Processing, NLP) 기술을 바탕으로 유의미한 패턴 또는 지식을 추출하는 과정

# 텍스트 마이닝 (Text Mining)이란?

- Turn unstructured text into structured data,
  - 일정한 길이 (sparse or dense) 의 vector로 변환 (임베딩)
- and use the structured data in various tasks such as
  - text classification, clustering, sentiment analysis, document summarization, translation, prediction, etc.
  - 변환된 vector에 머신러닝 (딥러닝) 기법을 적용

# 텍스트 마이닝 유형

- 1. 설명적 마이닝(descriptive mining): 텍스트 집합에 있는 의미나 개념을 찾아내거나 이해를 돕는 형태 (분류, 검색, 여론조사 등)
- 2. 예측적 마이닝(predictive mining): 텍스트에 내포된 정보를 의사결정에 활용하는 형태 (질문 자동답변, 구매 예측, 주가예측, 스팸분류 등)

| 텍스트 마이닝 유형                    | <del>활용분</del> 야 |           |
|-------------------------------|------------------|-----------|
|                               | 실무               | 연구        |
| 검색 (Information Retrieval)    | 스팸 필터링           | 사회동향 분석   |
| 분류 (Classification)           | 이슈 검출/트래킹        | 소셜미디어 분석  |
| 군집화 (Clustering)              | 정보검색             | 이슈 트래킹    |
| 웹마이닝 (Web Mining)             | 자살률 예측           | 온라인 행동 분석 |
| 정보추출 (Information Extraction) | 주가 예측            | 연구분야 탐색   |
| 개념추출 (Concept Extraction)     | 소비자 인식 조사        | 질병관계 예측   |
| <del>자연어처리 (NLP)</del>        | 경쟁사 분석           | 정책전략 수립   |

# 텍스트 마이닝이 중요한 이유

- 비정형 데이터의 폭발적 증가
  - 잠재적 가치를 포함하는 비정형 데이터(unstructured data)가 대규모로 생성됨과 동시에 비정형 데이터 속에서 미래의 의사결정에 관련된 유용한 정보를 찾아내어 활용하는 작업이 매우 중요해짐
  - 실제로 생산되는 데이터의 70~80 는 비정형 테이터에 해당함 (기사, 블로그, 문서, 보고서등)
- 텍스트 데이터의 폭발적 증가
  - 소셜 네트워크 서비스(Social Network Service, SNS)를 통한 온라인 양방향 커뮤니케이션이 활성화됨
  - 4차산업혁명과 사물 인터넷(Internet of Things, IoT) 등 빅데이터 관련 기술이 급진적으로 발전함

# 텍스트 마이닝이 중요한 이유



# 텍스트 마이닝이 중요한 이유

- 가장 흔하고 접하기 쉬운 데이터
- 텍스트가 존재하지 않는 곳은 없으며, 다양한 서비스를 통해 수많은 텍스트 데이터가 생산됨
- 온라인 비정형 텍스트 데이터의 대부분이 SNS에서 발생함 (Twitter, Facebook, YouTube, 블로그, 커뮤니티 등)
- 웹에서 사용자들은 주로 텍스트 데이터를 활용해 콘텐츠를 생성하고 의사소통함
- 다양한 형태의 비정형 데이터(오디오, 비디오, 각종 센서 등)가 텍스트 형태로 변형되어 활용됨 → 음성-텍스트 변환(Speech to Text, STT)
- 웹 크롤링(web crawling), Open API(Application Programming Interface) 등의 활성화로 텍스트 데이터 수집 및 확보가 용이해짐

#### 언어적 한계점

- 사람들이 작성한 문장은 맞춤법과 철자가 틀리고, 단어를 섞어 쓰고, 축약되는 등 규칙을 지키지 않음
- 동의어, 동형(동음) 이의어가 포함되거나 약어의 의미가 분야별로 다를 수 있음
- 문맥(context) 에 따라서 의미가 많이 달라지며, 애매한 표현이 많이 나타남 → 추상적 개념의 모호함

### 데이터적 한계점

- 텍스트는 비정형 데이터로서, 일반적인 필드와 레코드 구조를 가지고 있지 않음 → 전처리 과정이 복잡하고 어려움
- 텍스트의 형태와 특징에 따라 전처리 과정과 분석방법에 대한 접근을 다르게 고려해야함
- 자연어처리에 대한 이해가 필요하고, 분석시간이 길어 잠재적 가치에도 불구하고 충분히 활용하지 못하고 있음
- 방대한 양, 데이터의 규모 증가, 그리고 그 형태의 비정형성으로 인하여 그 분석과 활용이 어려움

| 구분            | 내용                                                                                                                                                                                                   |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 오탈자           | "헝거게임 <mark>잼잇써요완전</mark> 대신 이전편 <mark>꼭바여"</mark><br>"솔까 타노스 보석 하나도 못구했을때 다들 <mark>머했음</mark> ? 3개 얻었을때도 그렇게 <mark>안쌔 뵈더만"</mark>                                                                   |
| 동의어,<br>동음이의어 | 한혜진:1. 모델 한혜진 (달심), 2. 배우 한혜진 (기성용 부인), 3. 가수 한혜진 (트로트 가수)<br>Close:1. Opposite of open, 2. A preposition meaning not far<br>IS : 1. Information System, 2. Islamic State, 3. International Standard |
| 전처리           | 분석 데이터의 언어를 파악하고 언어의 특징 (교착어, 굴절어 등)에 맞는 전처리 작업 진행<br>댓글 단위로 분석할지, 문장 단위로 분석할지에 따라서 데이터 분리작업 진행                                                                                                      |
| 정보추출          | 해시 태그 (hash tag) 추출 : '#' + (문자)<br>핸드폰 번호 추출 '010' - (4자리 숫자) - (4자리 숫자)                                                                                                                            |



### 복잡한 한국어 텍스트 분석

- 한국어 텍스트 분석은 언어학적 특성으로 인해 전처리와 분석과정이 까다로움
  - i. 초성, 중성, 종성의 조합이 하나의 음절을 형성함
  - ii. 첨가어로 첨용과 활용의 케이스가 매우 많음 → 조사와 접사가 붙어 문법적 관계를 형성함
- 용언이 변하는 경우의 수가 매우 많고 그 과정이 하나의 개념으로 확인하기가 어려움
- 형태소 분석기의 한계 및 미비한 어휘사전 → 신조어, 미등록어, 새로운 용어의 조합을 반영하기 어려움

# 복잡한 한국어 텍스트 분석

한계점 예시 모르다 용언의 변형 → 모르네, 모르데, 모르지, 모르더라, 모르리라, 모르는구나, 모르니, 모르고, ... "비비크림 빠빠빠~립스틱을 마마마" → 비/NNG + 비/NNG + 크림/NNG + 빠빠빠/UN + ~/SO + 립스틱/NNG + 을/JX + 마/NNG + 마마/NNG "황민현에게 트렌치코트는 정말 존멋♥" → 황민/NNG + 현/NNG + 에게/JKM + 트렌치/NNG + 코트/NNG + 는/JX 형태소 분석 + 정말/MAG + 졸/VV + ∟/ETD + 멋/NNG + ♥/SW "자다가 퇴근했음 좋게따 외냐면 내일 사랑니 째러 가야 되니까는…" → 자/VV + 다가/ECD + 퇴근/NNG + 하/XSV + 었/EPT + 음/ETN + 좋/VA + 게/ECD + 따/VV + 아/ECS + 외/NNG + 이/VCP + 냐/EFQ + 면/NNG + 게/ECD + 사랑니/NNG + 째/VV + 러/ECD + 가/VV + 아야/ECD + 되/VV + ··· 지카 바이러스, 오백따리, 트둥이, 울와(우리 트와이스), 팬코(팬 코스프레 유저) 신조어 출현

# 복잡한 한국어 텍스트 분석



I just got here.

상기 문장은 영어로 "나 막 도착했어" 가 된다. 자연스럽게 위 문장을 바꿀 수 있는 경우는

I have just arrived 하나 정도다.

한국어에서 저 just라는 표현은 대체 수십 가지로 가능하다.

나 막 왔어.

나 방금 왔어.

나 지금 왔어.

나 금방 왔어.

나 온 지 조금/좀 됐어. (조금에 강세)

나 온 지 별로/얼마 안 됐어.

나 이제 왔어.

나 바로 막 왔어.

게다가 위의 모든 표현의 '왔어'를 "도착했어"로 바꿔도 말이 된다.

• 시밬ㅋ, 시발 ㅋㅋ : 웃김

• 오 시발 : 놀라움

• 마 시발 : 아쉬움

시발...: 슬픔

• 시발! : 분노

시발; : 머미없음

• 시발ㅜㅜ: 격한슬픔

• 시발;;;당황스러움

시바리:급함

• ㅅㅂ : 더욱 급함

• tlakf : 정말로 급함

#### 사생활 침해와 보안 (Privacy)

- 트위터, 페이스북, 블로그 등의 텍스트는 개인의 정보와 생각을 그대로 반영
- 자칫 무분별한 개인정보의 수집 및 활용으로 사생활 침해 등의 문제를 야기 할 수 있음
- 데이터 분석 전 데이터에서 반드시 개인정보를 제거 또는 마스킹(masking) 처리하는 전처리 과 정이 필요함

### 정확도 측정과 평가 (Accuracy & Validation)

- 정확도, 신뢰도 등 분석결과를 정량적으로 평가하기 어려움
- 정형 데이터를 활용하는 데이터 마이닝에 비해 분석결과가 충분하지 않거나 정확성이 떨어지는 경향이 있음
- 오피니언 리더들의 영향력이 과도하게 작용해 분석결과가 편향될 가능성이 있음

# 텍스트 마이닝의 패러다임 변화

- 카운트 기반의 문서 표현
  - Vector Space Model에 기반
  - Bag of Words, TFIDF
  - 주로 통계적 기법을 사용
- 시퀀스 기반의 문서 표현
  - 단어의 시퀀스로 문서를 표현
  - 각 단어를 임베딩하고 문서를 임베딩된 단어의 시퀀스로 표현
  - 주로 딥러닝 기법을 사용
- (기타)문서를 일정 길이의 벡터로 직접 임베딩
  - 보통 단어 시퀀스로부터 출발

# 텍스트 마이닝의 이해를 위한 기본요구지식

- 자연어 처리 기본 도구
  - o tokenize, normalize, POS-tagging 등
- 통계학 & 선형대수
  - 조건부 확률, 벡터, 선형결합 등
- 머신러닝
  - 회귀분석의 개념
  - 머신러닝의 다양한 기법(나이브 베이즈, 로지스틱 회귀, Decision Tree, SVM, ...)
- 딥러닝
  - 딥러닝의 개념
  - 딥러닝의 다양한 기법(CNN, RNN, ...)

# 텍스트 마이닝 방법

- NLP(Natural Language Processing) 기본도구
  - Tokenize, stemming, lemmatize
  - Chunking
- 카운트 기반의 문서 표현과 활용
  - BOW, TFIDF sparse representation
  - Naïve Bayes, Logistic egression, Decision tree, SVM
- 딥러닝 기반의 문서 표현과 활용
  - Embedding(Word2Vec, Doc2Vec) dense representation
  - RNN(LSTM), Attention, Transformer, BERT, GPT