Einführung in die Plasmaphysik

Coulomb-Stöße

Wolfgang Suttrop, Max-Planck-Institut für Plasmaphysik, Garching

Elementare Wechselwirkungsprozesse

Wesentliche Beispiele, nach Edukten (Pfeile: Hauptwirkrichtung)

Elementare Wechselwirkungsprozesse

Wesentliche Beispiele, nach Edukten (Pfeile: Hauptwirkrichtung)

Elastische und inelastische Stöße

1. Inelastische Stöße

(inelastic collisions)

Durch den Stoßprozess von Plasmateilchen wird kinetische Energie der Stoßpartner in innere Anregung umgewandelt.

Beispiele:

- Anregung von gebundenen Elektronen
- Ionisation von Atomen durch Stoß von Elektronen

2. Elastische Stöße

(elastic collisions)

Gesamte kinetische Energie und Impuls bleiben beim Stoßprozess erhalten.

Coulomb-Stöße zwischen geladenen Plasmateilchen

→ Thermalisierung, endlicher elektrischer Widerstand

Elektrischer Widerstand

Im neutralen Plasma tragen (meist) die Elektronen den elektrischen Strom $\vec{j} = -e \, n_e \, \overline{\vec{v_e}}$.

Kraft auf ein Elektron im elektrischen Feld:

$$m_e \frac{\mathrm{d}\vec{v_e}}{\mathrm{d}t} = q\vec{E} - \underbrace{\frac{\mathrm{d}}{\mathrm{d}t} \left(m_e \vec{v_e}\right)}_{\text{Abbremskraft } \vec{R}}$$

Abbremsung erfolgt durch Ablenkung der Teilchenbahn durch Stöße.

In Richtung der Beschleunigung ($\|\vec{E}$):

$$R = \underbrace{(m_e v_e)}_{\text{Impuls}}$$
 $\underbrace{v_{90^{\circ}}}_{\text{Impulsverlust-Rate}}$

ν_{90°}: "Effektive 90°-Stoßfrequenz"

Realität:

Statistische Impulsänderung bei jedem Stoß

Modell:

Vollständiger Impulsverlust je (90°)-Stoß

Aufgabe: Berechne v₉₀∘ für Coulomb-Stösse

Stoß im 1/r-Zentralpotenzial (klassische Mechanik)

Kraft zum/vom Streu-Zentrum:

$$F = \frac{q_1 q_2}{4\pi \varepsilon_0 r^2} = \frac{Ze^2}{4\pi \varepsilon_0 r^2}$$

 r_0 : Stoßparameter

χ: Ablenkwinkel

 $d\Omega$: Differentieller Raumwinkel

σ: Wirkungsquerschnitt

Zusammenhang $r_0 \leftrightarrow \chi$

(z.B. H. Goldstein, Klass. Mechanik, Kap. 3.7)

$$\tan(\chi/2) = \frac{Ze^2}{4\pi\varepsilon_0 mv^2 r_0}$$

Sonderfall: Stoßparameter für $\chi = 90^{\circ}$ -Stoß

$$r_{0,\perp} = \frac{Ze^2}{4\pi\epsilon_0 mv^2}$$

Differenzieller Wirkungsquerschnitt (Rutherford-Streuformel):

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\chi) = \left(\frac{Ze^2}{4\pi\epsilon_0}\right)^2 \left(\frac{1}{2mv^2}\right)^2 \frac{1}{\sin^4(\chi/2)}$$

dσ: Querschnittsfläche für Ablenkung in das Raumwinkel-Element d $\Omega = 2\pi \sin \chi d\chi$

Abbremsung durch Coulomb-Stöße (1)

Wenn es nur 90°-Stösse gäbe ...

Stoßfrequenz (an $n_i = n/Z$ Ionen):

$$v_{90^{\circ}} = n_i \sigma_{90^{\circ}} v \sim n_i v \pi r_{0,\perp}^2 = \frac{nZe^4}{16\pi \epsilon_0^2 m^2 v^3}$$

⇒ Abbremskraft:

$$R = \frac{d(mv)}{dt} = (mv)v_{90^{\circ}} = \frac{nZe^4}{16\pi\epsilon_0^2 mv^2}$$

Tatsächlich dominieren aber akkumulierte Kleinwinkelstösse die Abbremsung!

$$(r_0 \ge r_{0,\perp}, \quad \chi < \frac{\pi}{2})$$

Stoßkinetik bei beliebiger Ablenkung

Berechne den Geschwindigkeitsverlust in Ausbreitungsrichtung für geg. Streuwinkel

Betrag der Geschwindigkeitsänderung:

$$|\delta v| = 2 v \sin \chi / 2$$

dto. in z-Richtung:

$$|\delta v_z| = |\delta v| \sin \chi/2 = 2 v \sin^2 \chi/2$$

Abbremsung durch Coulomb-Stöße (2)

Abbremskraft für Stösse mit $\chi = \chi_{\min} \dots \pi$:

$$R = \Sigma_{\text{alleTeilchen}} \left(\frac{d(mv)}{dt} \right) = m \int_{\chi = \chi_{\min}}^{\pi} \delta v_z \frac{d\dot{N}}{d\sigma} d\sigma$$

Teilchenstrom in Element d σ (bzw. d Ω):

$$\dot{N}d\sigma = nvd\sigma = nv$$
 $\frac{d\sigma}{d\Omega}$ $d\Omega$

Einsetzen: Rutherford, $d\Omega(\chi)$, δv_z

$$R = \frac{nZe^4}{16\pi\epsilon_0^2 mv^2} \int_{\chi_{\min}}^{\pi} \frac{\sin\chi}{\sin^2\chi/2} d\chi$$

Integraltabelle:

$$R = \frac{nZe^4}{4\pi\epsilon_0^2 mv^2} \left[\underbrace{\ln\left(\sin\frac{\pi}{2}\right) - \ln\left(\sin\frac{\chi_{\min}}{2}\right)}_{=0} \right]$$

Abbremskraft $R \to +\infty$ für $\lim \chi_{\min} \to 0$ $(r_0 \to \infty$, "Kleinstwinkel"-Stöße)

Coulomb-Stöße im abgeschirmten Potenzial

Als *Modell-Näherung* kann die Divergenz von σ , R_z behandelt werden, in dem das Coulomb-Potenzial bei $r_0 \geq \lambda_D$ gleich Null gesetzt wird und für Stöße mit $r_0 < \lambda_D$ unabgeschirmt beibehalten wird.

Da normalerweise der 90°-Stoßparameter $r_{0,\perp} \ll \lambda_D$, werden Kleinwinkelstöße nicht unterdrückt.

Bei $r_{0,\text{max}} = \lambda_D$ ist die Ablenkung χ_{min} :

$$\tan(\chi_{\min}/2) = \frac{r_{0,\perp}}{r_{0,\max}} = \frac{r_{0,\perp}}{\lambda_D}$$

Wg. $r_{0,\perp} \ll \lambda_D$: $\tan(\chi/2) \approx \sin(\chi/2) \approx \chi/2$ \rightarrow Abbremskraft:

$$R = \frac{nZe^4}{4\pi\epsilon_0^2 mv^2} \ln \Lambda$$

 $\ln \Lambda = \ln(\lambda_D/r_{0,\perp})$ "Coulomb-Logarithmus"

 \rightarrow Effektive 90°-Stoßfrequenz:

$$v_{90^{\circ}} = \frac{R}{mv} = \frac{nZe^4}{4\pi\epsilon_0^2 m^2 v^3} \ln \Lambda$$

Höher um Faktor $4 \ln \Lambda$ im Vergleich zu reinen 90° -Stößen (s.o.)!

Thermische Geschwindigkeitsverteilung

Bei einer Geschwindigkeitsverteilung der Elektronen muss über diese gemittelt werden.

Für eine Maxwell-Verteilung $(m_e \overline{v^2}/2 = (3/2) k_B T_e)$:

$$v_{ei} = \frac{nZe^4}{64\epsilon_0^2(2\pi m_e)^{1/2}(k_BT_e)^{3/2}}\ln\Lambda; \quad \ln\Lambda = \ln 12\pi n_e\lambda_D^3$$

Herleitung: Stroth, Kap. 8.3; Gurnett/Bhattarcharjee, Kap. 11

Der Coulomb-Logarithmus $\ln \Lambda$ variiert relativ schwach (d.h. ist nicht sehr empfindlich auf die Abschneidebedingung für χ_{min})

	Teilchendichte	Elektronen-	lnΛ
		temperatur	
	(m^{-3})	(eV)	
Gasentladungen	10^{17}	2	9.1
Fusionsexperiment	10^{19}	100	13.7
Fusionsreaktor	10^{21}	10^{4}	16
Laser-Plasma	10^{27}	10^{3}	6.8

Vergleich: Stoßraten in der Ionosphäre

Angenommene Dichte- und Temperatur- Höhenprofile ($T_n = 300 \text{ K}$)

Stösse mit Neutralgas dominieren (unter $\approx 200 \text{ km H\"{o}he}$)

Neutralgasdichte-Modell: https://en.wikipedia.org/wiki/NRLMSISE-00 und Links darin

Zusammenfassung

- In vielen (auch teilweise ionisierten) Plasmen dominieren (elastische) Coulomb-Stöße. Wir haben Stöße von Elektronen an ruhenden Ionen betrachtet (Lorentz-Näherung). Es dominieren Kleinwinkel-Stöße.
- Coulomb-Stöße führen zum Impulsaustausch von geladenen Teilchen:
 - elektrischer Widerstand
 - Abbremsung von schnellen Teilchenstrahlen
 - Thermalisierung der Geschwindigkeitsverteilung
- Ohne Abschirmung durch bewegliche Ladungsträger divergieren für das Coulomb-Potenzial der totale Wirkungsquerschnitt und die Abbremskraft auf Testteilchen!
- Endliche Abbremskraft und elektrischer Widerstand ergeben sich im abgeschirmten Potenzial. Der Effekt von kumulativen Kleinwinklstößen wird beschrieben durch einen zusätzlichen Faktor in der "effektiven" 90°-Stoßfrequenz, den Coulomb-Logarithmus, $\ln \Lambda = \ln \lambda_D/r_0$ (r_0 : Stoßparameter für 90° Ablenkung).