Logarithmic Functions

Exercise 1:

Solve the following:

- 1) 2Ln(x+1) = 8
- 2) $\ln (x^2 3x + 2) = \ln(x+2)$
- 3) $\ln (x-2) \le 2$
- 4) (x-3)Ln(x-1) = 0

Exercise 2:

Simplify:

$$\mathbf{1)} \ln \left(\frac{e}{a} \right) + \ln \left(ae^3 \right) - 2$$

2)
$$\ln(\sqrt{3}+1)^2 + \ln(\sqrt{3}-1)^2$$

3)
$$ln25 - \ln \frac{1}{5} + \ln (5e) - 2\ln \sqrt{5} - 1$$

Exercise 3:

A: Consider the function f defined over]-1, $+\infty$ [by: $f(x) = \frac{1}{x+1} - \ln(x+1)$

- 1) Calculate $\lim_{x\to +\infty} f(x)$ and $\lim_{x\to -1} f(x)$. Deduce an asymptote to (C).
- 2) Determine f(x) and set up the table of variation of f.
- 3) Show that f(x) = 0 admits a unique root \propto and $0.7 < \propto < 0.8$.
- 4) Plot (C).

B: Consider the function g defined on]-1, $+\infty$ [by: $g(x) = x + 1 - x \ln(x+1)$

- 1) Calculate $\lim_{x\to -1} f(x)$. Deduce an asymptote to (C).
- 2) Calculate lim f(x).
 3) Show that g'(x) = f(x) and set up the table of variation of g.
- 4) Show that $g(\propto) = \frac{\alpha^2 + \alpha + 1}{\alpha + 1}$.
- 5) Plot (Cg). Take $\propto = 0.77$