

Fundamentos de Confusion Matrix

Prof. Jhoan Steven Delgado V.

Intro

Edad	Ingresos	Tiene carro?
24	1'200.000	NO
23	4'500.000	SI
45	1'250.000	SI
32	1'100.000	NO

Confusion Matrix (Matriz de confusión)

*Una matriz de dimensión nxn donde n es la cantidad de clases (o categorías) de la variable objetivo

Número de personas que sí ienen carro y que el modelo correctamente predijo que SI. VP)		Predicción	
		Tiene Carro	No tiene carro
Realidad	Tiene Carro	142 (VP)	22 (FN)
	No tienen Carro	29 (FP)	110 (VN)

Número de personas que sí tienen carro y que el modelo incorrectamente predijo que NO. (FN - TIPO II)

Número de personas que no tienen carro y que el modelo incorrectamente predijo que SI. (FP - TIPO I) Número de personas que no tienen carro y que el modelo correctamente predijo NO. (VN)

Confusion Matrix (Matriz de confusión)

		Predicción	
KNN		Tiene Carro	No tiene carro
Realidad	Tiene Carro	142	29
	No tiene Carro	22	110

		Predicción	
Logistic Regression		Tiene Carro	No tiene carro
Realidad	Tiene Carro	139	32
	No tiene Carro	20	112

Accuracy

Accuracy= (VP+VN)/(VP+VN+FP+FN) (Fracción de clasificaciones correctas)

Accuracy KNN = (142+110)/(142+110+22+29) = 0.83 -> 83 % de todas las predicciones fueron correctas

Realida
Logistic
Realida

		Predicción	
	KNN	Tiene Carro	No tiene carro
Realidad	Tiene Carro	142 (VP)	29 (FN)
	No tiene Carro	22 (FP)	110 (VN)
		Predicción	
ogistic Regression		Tiene Carro	No tiene carro
Realidad	Tiene Carro	139 (VP)	32 (FN)
	No tiene	30 (ED)	442 (\M\

Carro

20 (FP)

112 (VN)

Recall (Sensitivity), Specificity

• Recall (Sensitivity): Porcentaje de verdaderos **positivos** que fueron correctamente predichos por nuestro modelo

Recall (Sensitivity) = VP / (VP+FN) -> TRP (True Positive Rate)

 Specificity: Porcentaje de verdaderos negativos que fueron correctamente predichos por nuestro modelo

Specificity = VN / (VN+FP) -> TNR (True Negative Rate)

Recall (Sensitivity) KNN= 142/(142+29)=0.83 -> 83% de las personas con carro, fueron correctamente predichas por nuestro modelo KNN.

Specificity LR = 112/(112+20) = 0.85 -> 85% de las personas sin carro, fueron correctamente predichas por nuestro modelo LR.

Precision

 Precision: Porcentaje de los positivos predichos de nuestro modelo que fueron correctamente predichos (correctos)

Precision = VP / (VP+FP)

Precision KNN=142/(142+22) = 0.87 -> De las 164 personas que predecimos que tenían carro, solo el 87% realmente tienen carro.

Precision nos da una noción de la calidad de los positivos predichos

	KNN	Tiene Carro	No tiene carro
Realidad	Tiene Carro	142 (VP)	29 (FN)
	No tiene Carro	22 (FP)	110 (VN)
		Predi	cción
Logistic Reg	ression	Predic	No tiene carro
Logistic Reg Realidad	ression Tiene Carro		No tiene

Predicción

F1 Score

Favorece a los clasificadores que tienen alto recall y precision.

F1 Score = 2*{Precision*Recall)/(Precision+Recall)}

		Predicción	
	KNN	Tiene Carro	No tiene carro
Realidad	Tiene Carro	142 (VP)	29 (FN)
	No tiene Carro	22 (FP)	110 (VN)
		Predicción	
Logistic Regression		Tiene Carro	No tiene carro
Realidad	Tiene Carro	139 (VP)	32 (FN)
	No tiene	30 (ED)	112 (\/\)

Carro

112 (VN)

20 (FP)

Resumen

- Accuracy = (VP+VN)/(VP+VN+FP+FN) (Fracción de clasificaciones correctas)
- Mala clasificación = (FP+FN)/(VP+VN+FP+FN): (Fracción de clasificaciones incorrectas)
- Precisión= VP / (VP+FP): (Fracción de verdaderos positivos a positivos predichos)
- Recall (sensibilidad o TPR)= VP / (VP+FN)(Fracción de verdaderos positivos sobre todos los positivos)
- Especificidad (o TNR) = VN / (VN+FP): (Fracción de verdaderos negativos sobre todos los negativos)
- Tasa de falsos positivos (o FPR) = FP / (VN+FP)=1 TNR

Referencias

- Notas de clase, Prof. Javier Díaz, Fundamentos de analitica.
- The Statquest Ilustrated guide to Machine Learning, Josh Starmer.