Recuperació del Segon Parcial de IIP - ETSInf Data: 28 de gener de 2014. Duració: 2:30 hores.

1. 6.5 punts Es disposa de la classe Sensor que representa un sensor de temperatura conectat a un dispositiu tèrmic de manera que, a més de mesurar la temperatura actual, pot també augmentar i reduir la temperatura (mesurada en graus centrígrads) del dispositiu. A més, és possible definir la temperatura ideal a la qual l'usuari desitja que estiga la zona on es troba el sensor. Tot seguit es mostra un resum de la seua documentació:

Method Summary Methods	
void	augmentaTempΛctual () Augmenta la temperatura actual en una quantitat determinada (aleatòria) de graus.
boolean	equals(java.lang.0bject o) Comprova si el Sensor en curs es igual a un altre donat; és a dir, si coincideixen en el nom.
java.lang.String	getNom()
double	getTempActual()
double	getTempIdeal()
void	redueixTempActual () Redueix la temperatura actual en una quantitat determinada (aleatòria) de graus.
java.lang.String	toString() Torna un String amb la informació del Sensor en curs.

Es demana: implementar la classe CasaDomotica què, com indica el seu nom, representa una casa domòtica en la qual poden haver-hi múltiples sensors ubicats a diferents llocs. Es representa mitjançant els components (atributs i mètodes) que s'indiquen a continuació.

- a) (0.5 punts) Atributs:
 - MAX_SENSORS, constant que representa el nombre màxim de sensors d'una casa domòtica: 100.
 - nombreSensors, un enter en l'interval [0..MAX_SENSORS] que representa el nombre de sensors que té en cada moment la casa domòtica.
 - sensors, un array amb tipus base Sensor, de capacitat MAX_SENSORS i on els sensors s'emmagatzemen seqüencialment, en posicions consecutives des de la 0 fins a la nombreSensors-1.
 - maxGrausDesviacio, un valor decimal que representa la màxima desviació en graus que l'usuari desitja per als sensors de la casa domòtica.
 - nombreSensorsAmbDesviacio, que representa el nombre de sensors de la casa domòtica que tenen actualment una desviació en graus, en valor absolut, superior a maxGrausDesviacio.
- b) (0.5 punts) Un constructor general que, donat un valor de màxima desviació en graus, crea una casa domòtica buida, amb 0 sensors, i el valor de màxima desviació en graus indicat.
- c) (1 punt) Un mètode amb perfil: private boolean existeixSensor(Sensor s) que, donat un Sensor s, indica si existeix o no aquest Sensor en la casa domòtica.
- d) (0.5 punts) Un mètode amb perfil: private boolean sensorAmbDesviacio(Sensor s) que, donat un Sensor s, torna true si el Sensor presenta una desviació de la seua temperatura actual front a la seua temperatura ideal superior a la màxima desviació en graus definida per a la casa domòtica. En cas contrari torna false.
- e) (1 punt) Un mètode amb perfil: public int registraSensor(Sensor s) que torna la posició en la que s'ha afegit el Sensor s donat en l'array de la casa domòtica. Si s no cap o ja està en l'array, el mètode torna -1 per advertir que no s'ha pogut afegir a l'array. Cal fer ús del mètode privat existeixSensor(Sensor) per cercar el Sensor. També cal fer ús del mètode privat sensorAmbDesviacio (Sensor) per actualitzar, si cal, l'atribut nombreSensorsAmbDesviacio.

- f) (1 punt) Un mètode amb perfil: public Sensor[] sensorsAmbDesviacio() que torna un array de Sensor amb els sensors que presenten desviació de la seua temperatura actual front a la seua temperatura ideal, considerant la màxima desviació en graus definida per a la casa domòtica. La longitud d'aquest array serà igual al nombre de sensors que hi presenten desviació, o 0 si no hi ha cap. Cal fer ús del mètode sensorAmbDesviacio(Sensor).
- g) (1 punt) Un mètode amb perfil: public void ajustaTemperatura() que regula la temperatura de tots els Sensor que presenten desviació en la seua temperatura actual front a la seua temperatura ideal d'acord amb la desviació definida per a la casa domòtica. La regulació es farà per a cada Sensor que presente desviació, s'han d'utilitzar els corresponents mètodes de la classe Sensor per ajustar la temperatura actual, fins que no hi presente desviació.
- h) (1 punt) Un mètode amb perfil: public Sensor sensorAmbMajorTemperatura() que torna el Sensor que tinga la major temperatura actual al moment d'invocar aquest mètode, o null si la casa domòtica no té cap Sensor registrat.

Solució:

```
_ CasaDomotica.java _
/**
* Representa una CasaDomotica, que inclou un array de sensors
* que registren la temperatura de certes zones de la casa.
public class CasaDomotica {
   private Sensor[] sensors;
    private int nombreSensors;
   private int nombreSensorsAmbDesviacio;
   private double maxGrausDesviacio;
   public static final int MAX_SENSORS = 100;
   public CasaDomotica(double maxGrausDesviacio) {
      sensors = new Sensor[MAX_SENSORS];
      nombreSensors = nombreSensorsAmbDesviacio = 0;
      this.maxGrausDesviacio = maxGrausDesviacio;
   private boolean existeixSensor(Sensor s) {
      for (i=0; i<nombreSensors && !sensors[i].equals(s); i++);</pre>
      return i<nombreSensors;</pre>
    }
   private boolean sensorAmbDesviacio(Sensor s) {
      return Math.abs(s.getTempActual() - s.getTempIdeal()) > maxGrausDesviacio;
   public int registraSensor(Sensor s) {
      int res = -1;
      if (!existeixSensor(s) && nombreSensors<MAX_SENSORS) {</pre>
        res = nombreSensors; sensors[nombreSensors++] = s;
        if (sensorAmbDesviacio(s)) nombreSensorsAmbDesviacio++;
      return res;
```

```
public Sensor[] sensorsAmbDesviacio() {
      Sensor[] aux = new Sensor[nombreSensorsAmbDesviacio];
      int k = 0;
      for (int i=0; i<nombreSensors; i++)</pre>
         if (sensorAmbDesviacio(sensors[i])) {
            aux[k] = sensors[i];
            k++;
         }
      return aux;
    }
   public void ajustaTemperatura() {
      for (int i=0; i<nombreSensors; i++) {</pre>
         Sensor s = sensors[i];
         while (sensorAmbDesviacio(s))
           if (s.getTempActual() > s.getTempIdeal()) s.redueixTempActual();
           else s.augmentaTempActual();
      }
      nombreSensorsAmbDesviacio = 0;
    }
   public Sensor sensorAmbMajorTemperatura() {
      Sensor max = sensors[0];
      for (int i=0; i<nombreSensors; i++)</pre>
         if (sensors[i].getTempActual() > max.getTempActual()) max = sensors[i];
      return max;
    }
}
                                    CasaDomotica.java
```

2. 1.5 punts Donat un enter h dins del rang [0..23], es demana un mètode públic i estàtic que escriga en l'eixida estàndard hora a hora i minut a minut, totes les representacions horàries en el format de cinc caràcters hh:mm, des de la 00:00 fins l'últim minut de l'hora h. Cada minut s'ha de mostrar en una línia diferent. Per exemple, si h = 13, s'ha de mostrar el següent:

```
00:00

00:01

00:02

...

00:59

01:00

01:01

01:02

...

01:59

...

13:00

13:01

13:02

...
```

Nota: Per motius d'espai en aquest enunciat, l'exemple anterior s'ha abreujat substituint per punts suspensius bona part de les representacions que el mètode ha de mostrar.

```
Solució:
Primera versió:
/** h pertany al rang [0..23] */
public static void displayHores(int h) {
   for (int i=0; i<=h; i++) {
      String display = i<10 ? "0"+i+":" : i+":";
      for (int j=0; j<=9; j++) System.out.println(display+"0"+j);</pre>
      for (int j=10; j<=59; j++) System.out.println(display+j);</pre>
}
Segona versió:
/** h pertany al rang [0..23] */
public static void displayHores(int h) {
    for (int i=0; i<=h; i++)
        for (int j=0; j<60; j++)
            System.out.printf("\%02d:\%02d\n", i, j);
}
```

3. 2 punts Es demana:

- a) Indicar què mostra per pantalla el següent codi i explicar què fa en dues o tres línies com a molt.
- b) Indicar què passaria si la condició del bucle intern al mètode funcio(int[][]) fóra j<m.length.

```
public class Traza {
    public static void main(String[] args ) {
        int[][] a = { { 1, 2, 2 }, { 0, 1, 2 }, { 0, 0, 1 } };
        funcio(a);
        for (int i=0; i<a.length; i++) {
            for (int j=0; j<a.length; j++)
                System.out.printf( " %3d ", a[i][j] );
            System.out.println();
    public static void funcio(int[][] m) {
        for (int i=0; i<m.length; i++)</pre>
            for (int j=0; j<i; j++)
                intercanvia( m, i, j );
    public static void intercanvia(int[][] m, int a, int b) {
        int aux = m[a][b]; m[a][b] = m[b][a]; m[b][a] = aux;
    }
}
```

Solució:

a) Per pantalla es mostra:

```
1 0 0
2 1 0
2 2 1
```

Calcula la transposada de la matriu a.

b) Deixaria la matriu com estava originalment, doncs fa l'operació de transposar dues vegades.