EP2 - Método de Monte Carlo

George Othon NUSP 103xxxxx

March 2020

1 Introdução

Este relatório tem como objetivo analisar os resultados obtidos pelo Método de Monte Carlo nas suas 4 variações ao integrar f(x).

$$f(x) = e^{-ax} \cos bx$$

Com a = 0.RG e b = 0.NUSP, no intervalo [0,1]. (Com RG = 399xxxxxx e NUSP = 103xxxxx, logo, a = 0.399xxxxxx e b = 103xxxxx).

2 Bibliotecas

Para nos axiliar no manuseio das listas, gerar os números aleatórios e para utilzar funções matemáticas e estatísticas que não temos nas built-in do Python, foi necessário importar as seguintes bibliotecas com as seguintes funções:

1. Numpy

- (a) exp() Função exponecial
- (b) cos() Cosseno
- (c) std() Desvio padrão
- (d) sqrt() Raíz quadrada
- (e) mean() Média
- (f) random.beta() Gera números aleatórios com distribuição beta
- (g) cov() Covariância
- (h) var() Variância

2. Random

- (a) random() Gera números aleatórios entre 0 e 1
- 3. Scipy
 - (a) stats.beta.pdf() Função de densidade de probabilidade

3 Critério de parada

Como critério de parada utilizamos o erro padrão, onde a cada iteração verificamos se o erro é menor que 1%, e assim que atendesse o critério, ele calcula a média das iterações e retorna como resultado final.

4 Método Crud

Este foi o primeiro método que testamos e o mais simples onde apenas calculamos $\frac{1}{n}\sum_{i=1}^{n} f(x)$, que rendeu bons resultados, e teve desvio padrão de $\sigma = 0.0203$

5 Método Hit or miss

Ao tentar aproximar a integral de f(x) no intervalo [0,1] geramos diversos pares ordenados (x,y) e verificamos se y \leq f(x), ou seja, se o par ordenado tem imagem acima ou abaixo da função f, e usamos essa proporção para aproximar $\int_0^1 f(x)dx$. Apresentou desvio padrão $\sigma = 0.0108$

6 Método Importance Sampling

No método em questão, utilizamos um gerador de números pseudo-aleatórios com distribuição beta. Após diversos testes tivemos os melhores resultados com os parâmetros $\alpha=0.9$ e $\beta=1.0$. Nessas condições tivemos boas aproximações, e com diversos testes o desvio padrão foi de $\sigma=0.0048$

7 Método Control Variate

No Control Variate, após algumas análises escolhemos como uma aproximação para f(x), a função $g(x) = e^{-ax}$, com a = 0.399104525. Como g(x) > f(x), $\forall x \in [0,1]$, e g(x) é extremamente próxima à f(x).

Dividimos este método em duas partes. Na primeira calculamos o resultado da integral pelo método Crud para f(x) e para g(x). Na segunda parte, calculamos o fator c dado por

$$c = \frac{-Cov[f(x), g(x)]}{Var[g(x)]}$$

e em seguida calculamos

$$Crud(f(x)) + c * (Crud(g(x) - \int_0^1 g(x)dx)$$

onde $\int_0^1 g(x)dx = 0.824$, para obter a aproximação final, que teve excelentes resultados apresentando desvio padrão $\sigma = 0.0006$

8 Comparando os métodos

Rodamos cada método 1000 vezes e fizemos o seguinte resumo estatístico com o auxílio da biblioteca pandas.

Utilizamos o jupiter notebook para gerar a tabela a seguir, e incluimos como uma imagem no artigo. Para a criação da tabela foram usadas as funções DataFrame() e describe().

	Crud	Hit or miss	Importance Sampling	Control Variate
count	1000.000000	1000.000000	1000.000000	1000.000000
mean	0.822487	0.824923	0.823170	0.822733
std	0.020304	0.010854	0.004848	0.000667
min	0.680146	0.791621	0.807193	0.821175
25%	0.815592	0.817249	0.819918	0.822233
50%	0.823014	0.824620	0.823348	0.822722
75%	0.830016	0.831905	0.826457	0.823220
max	0.984073	0.866772	0.840504	0.824516

Figure 1: Análise Descritiva (n = 1000)

Ao análisar a tabela acima percebemos que para todos os métodos a média e a mediana (50%) fica próximo à 0.82. O método Crud foi o que teve a maior variação e o Control Variate teve a menor. Mas escolhemos o desvio padrão para analisar o desempenho de cada método, e com base nesse parametro fizemos a seguinte classificação dos métodos.

	Método	Desvio padrão
1	Control Variate	0.0006
2	Importance Sampling	0.0048
3	Hit or miss	0.0108
4	Crud	0.0203

Table 1: Classificação dos métodos

Portanto, dentre os quatro métodos que implementamos, o que retornou os melhores resultados foi o Método Control Variate utilizando a função g como aproximação para f.

References

- [1] https://numpy.org/doc/
- $[2]\ https://docs.python.org/3/library/random.html$
- [3] https://docs.scipy.org/doc/scipy/reference/stats.html
- [4] Cognitive Constructivism and the Epistemic Significance of Sharp Statistical Hypotheses in Natural Sciences Julio Stern