Correction - Évaluation n°2

(Calculatrice autorisée)

Cette évaluation est composée de 3 exercices indépendants.

Exercice 1

1.
$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$
 et $\lim_{x \to 0^+} x \ln(x) = 0$
2. \overrightarrow{u} et \overrightarrow{v} sont orthogonaux si $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.

Exercice 2

1. **a.** Notons d'abord que
$$\lim_{x\to 0^+} \ln(x^2) = -\infty$$
 et $\lim_{x\to +\infty} \ln(x^2) = +\infty$. On a donc que $\lim_{x\to 0^+} g(x) = -\infty$ et $\lim_{x\to +\infty} g(x) = +\infty$

 ${\bf b}$. Puisque g est dérivable, on peut étudier sa dérivée. Pour tout $x \in]0, +\infty[$, on a $g'(x) = \frac{2x}{x^2} + 1 = \frac{2}{x} + 1 > 0$. Puisque g' est strictement positive sur $]0, +\infty[$, alors g est croissante sur $]0, +\infty[$.

2. On considère la fonction f définie sur]0, $+\infty[$ par :

$$f(x) = \frac{x-2}{x}\ln(x)$$

On note C_f sa courbe représentative dans un repère orthonormé.

a. En
$$+\infty$$
: Pour tout $x \in \mathbb{R}_+^*$, on a $\frac{x-2}{x} = \frac{x\left(1-\frac{2}{x}\right)}{x} = 1-\frac{2}{x} \xrightarrow[x \to +\infty]{} 1$. Puisque $\lim_{x \to +\infty} \ln(x) = +\infty$, alors $\lim_{x \to +\infty} f(x) = +\infty$.

En 0 : On a
$$\lim_{x\to 0^+} \frac{x-2}{x} = -\infty$$
 et $\lim_{x\to 0^+} \ln(x) = -\infty$ donc $\lim_{x\to 0^+} f(x) = +\infty$.
b. Puisque g est dérivable, on peut étudier sa dérivée. Pour tout $x \in]0, +\infty[$, on a :

$$f'(x) = \frac{x - (x - 2)}{x^2} \ln(x) + \frac{x - 2}{x} \times \frac{1}{x} = \frac{2\ln(x) + x - 2}{x^2} = \frac{\ln(x^2) + x - 2}{x^2} = \frac{g(x)}{x^2}$$

c. Pour tout x > 0, on a $f'(x) = \frac{g(x)}{x^2}$ du même signe que g(x) puisque $x^2 > 0$. On a donc le tableau de variations suivant :

x	$-\infty$		α		$+\infty$
f'(x)		_	0	+	
f	+∞ _		$f(\alpha)$		$+\infty$

3. a. Soit x > 0, on a $f(x) - \ln(x) = \frac{x-2}{x} \ln(x) - \ln(x)$. Ainsi :

$$f(x) - \ln(x) = \left(1 - \frac{2}{x}\right)\ln(x) - \ln(x) = \ln(x) - \frac{2}{x}\ln(x) - \ln(x) = -\frac{2}{x}\ln(x)$$

Puisque x > 0, on a donc :

$$f(x) - \ln(x) \geqslant 0 \iff -\frac{2}{x} \ln(x) \geqslant 0 \iff \frac{2}{x} \ln(x) \leqslant 0 \iff \ln(x) \leqslant 0 \iff x \leqslant 1$$

- **b.** On note \mathcal{C} la courbe représentative de ln. D'après ce qui précède, on a que \mathcal{C}_f est au dessus de \mathcal{C} sur]0,1], et en dessous de \mathcal{C} sur $[1,+\infty[$.
- **Exercice 3** 1. On a $\overrightarrow{AB}(0,3,-1)$ et en comparant la première coordonnée avec celle de \overrightarrow{u} , on en déduit que ces vecteurs ne sont pas colinéaires.

On en déduit qu'ils définissent un plan de l'espace.

- 2. $\overrightarrow{AB} \cdot \overrightarrow{u} = 0 \times 1 + 3 \times 2 1 \times 1 = 6 1 = 5$.
- 3. D'autre part, on a $\overrightarrow{AB} \cdot \overrightarrow{u} = \|\overrightarrow{AB}\| \times \|\overrightarrow{u}\| \times \cos\left(\overrightarrow{AB}, \overrightarrow{u}\right) \operatorname{donc} \cos\left(\overrightarrow{AB}, \overrightarrow{u}\right) = \frac{\overrightarrow{AB} \cdot \overrightarrow{u}}{\|\overrightarrow{AB}\| \times \|\overrightarrow{u}\|}.$ Or $\|\overrightarrow{AB}\| = \sqrt{0^2 + 3^2 + (-1)^2} = \sqrt{10} \text{ et } \|\overrightarrow{u}\| = \sqrt{1^2 + 2^2 + 1^2} = \sqrt{6}.$ Donc $\cos\left(\overrightarrow{AB}, \overrightarrow{u}\right) = \frac{5}{\sqrt{10}\sqrt{6}} = \frac{\sqrt{5}}{\sqrt{2}\sqrt{6}} \text{ et alors } \left(\overrightarrow{AB}, \overrightarrow{u}\right) = \arccos\left(\frac{\sqrt{5}}{\sqrt{2}\sqrt{6}}\right) \approx 50^o$
- 4. On pose $\overrightarrow{n}(x,y,z)$. Ce vecteur est normal à \mathcal{P} si et seulement si :

$$\begin{cases} \overrightarrow{n} \cdot \overrightarrow{AB} = 0 \\ \overrightarrow{n} \cdot \overrightarrow{u} = 0 \end{cases} \iff \begin{cases} 3y - z = 0 \\ x + 2y + z = 0 \end{cases} \iff \begin{cases} z = 3y \\ x + 2y + 3y = 0 \end{cases} \iff \begin{cases} z = 3y \\ x = -5y \end{cases}$$

En prenant y = 1, on pose alors $\overrightarrow{n}(-5, 1, 3)$. Vérifions que \overrightarrow{n} est effectivement normal au plan :

$$\overrightarrow{n} \cdot \overrightarrow{AB} = 1 \times 3 - 3 \times 1 = 0$$
 et $\overrightarrow{n} \cdot \overrightarrow{u} = -5 \times 1 + 1 \times 2 + 3 \times 1 = 0$

Donc $\overrightarrow{n}(-5,1,3)$ est effectivement normal au plan \mathcal{P} .