$\begin{array}{c} {\tt Math~4301~Mathematical~Analysis~I} \\ {\tt Lecture~7} \end{array}$

Topic: Topology of Real Numbers

- Open and Closed Sets Review Open Sets
- Open disk

In the real line \mathbb{R} , an open disk is just an open interval

$$D(x_0, \epsilon) = \{x \in \mathbb{R} : |x - x_0| < \epsilon\}$$
$$= (x_0 - \epsilon, x_0 + \epsilon).$$

- We define open set as follows: We say that $U \subseteq \mathbb{R}$ is called open if,
- for every $x_0 \in U$, there is $\epsilon > 0$, such that

$$D(x_0, \epsilon) \subseteq U$$
.

Examples: Open disk = open interval in \mathbb{R}

Theorem: If U_{α} is open for all $\alpha \in \Gamma$,

then $\bigcup_{\alpha \in \Gamma} U_{\alpha}$ is also open

• **Theorem**: If $U_1, U_2, ..., U_n$ are open,

then $\bigcap_{i=1}^{n} U_i$ is also open.

• Notice that \emptyset , \mathbb{R} are open.

Closed Sets

• We say that $A \subseteq \mathbb{R}$ is closed if $\mathbb{R} \backslash A = A^c$ is open

Examples: Closed interval [a, b] is closed.

Examples: Finite sets are closed,

$$A = \{x_1, x_2, x_3, ..., x_n\} \subseteq \mathbb{R}$$

Examples: $\mathbb{Z} \subseteq \mathbb{R}$ is closed but

$$\mathbb{Q}\subseteq\mathbb{R}$$

is not closed.

Theorem: If A_{α} is closed for all $\alpha \in \Gamma$,

then $\bigcap_{\alpha \in \Gamma} A_{\alpha}$ is also closed.

Theorem: If $A_1, A_2, ..., A_n$ are closed

then $\bigcup_{i=1}^{n} A_i$ is also closed.

Topology of Real Numbers

Definition Let $A \subseteq \mathbb{R}$ and $x \in \mathbb{R}$.

Then x is:

• An *interior* point of A if there exists $\delta > 0$ such that

$$D(x,\delta) \subseteq A$$

- An isolated point of A if x ∈ A and there exists δ > 0 such that,
 x is the only point in A that belongs to D (x, δ).
- A boundary point of A if for every $\delta > 0$ the

$$D(x, \delta) \cap A \neq \emptyset$$
 and $D(x, \delta) \cap A^c \neq \emptyset$.

• An accumulation point of A if for every $\delta > 0$ the

$$A \setminus \{x\} \cap D(x, \delta) \neq \emptyset.$$

Remark: We define

Int
$$(A) = \{x \in A : x \text{ is an interior point of } A\}$$

 $\partial A = \{x \in \mathbb{R} : x \text{ is a boundary point of } A\}$
 $A' = \{x \in \mathbb{R} : x \text{ is an accumulation point of } A\}$

Closure of $A \subseteq \mathbb{R}$

- Using the properties of closed sets, we can define closure of $A \subseteq \mathbb{R}$ as follows.
- Let

$$C(A) = \{C \mid A \subseteq C \text{ and } C \text{ is closed}\}\$$

 \bullet and then the *closure of* A in X is defined as follows:

$$\overline{A} = \bigcap_{C \in \mathcal{C}(A)} C.$$

From the definition of \overline{A} it follows immediately that

- **1.** \overline{A} is closed in X and $A \subseteq \overline{A}$.
- **2.** If C is closed and $A \subseteq C$,

then $\overline{A} \subseteq C$ (therefore, \overline{A} is the smallest closed subset of \mathbb{R} that contains A).

3. If C is closed,

then $\overline{C} = C$, in particular, we have

$$\overline{\overline{A}} = \overline{A}.$$

• Example Let

$$A = (a, b) \subset \mathbb{R}.$$

Find \overline{A} using the definition of the closure.

Notice that A is not closed, because

$$\mathbb{R}\backslash A = A^c = (-\infty, a] \cup [b, \infty)$$

is not open, since

$$D(a, \epsilon) \cap A \neq \emptyset$$
,

for all $\epsilon > 0$.

• Since in analogous way we can show that

are not closed,

- the minimal closed subset of \mathbb{R} that contains A is [a, b].
- Therefore, we see that

$$\overline{A}=\left[a,b\right] .$$

Proposition Let $A, B \subseteq \mathbb{R}$.

Then the closure satisfies the following properties.

i) If $A \subseteq B$ then

$$\overline{A} \subseteq \overline{B}$$
.

- ii) $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- iii) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$

Proof. We prove for instance i).

- Notice that $B \subseteq \overline{B}$.
- Since

$$A \subseteq B$$
, then $A \subseteq \overline{B}$

• Since \overline{B} is closed and it contains A,

$$\overline{A} \subseteq \overline{B}$$
.

- We prove for instance ii)
- We see that, by i)

$$A \subseteq \overline{A}$$
 and $B \subseteq \overline{B}$,

• thus

$$A \cup B \subseteq \overline{A} \cup \overline{B}$$

• Since $\overline{A} \cup \overline{B}$ is closed and

$$A \cup B \subseteq \overline{A} \cup \overline{B}$$
,

then

$$\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$$

- since $\overline{A \cup B}$ is the smallest closed set that contains $A \cup B$. Conversely
- We see that

$$A \subseteq A \cup B$$
, so by $i) \overline{A} \subseteq \overline{A \cup B}$

and

$$B \subseteq A \cup B$$
, so by $i) \overline{B} \subseteq \overline{A \cup B}$.

• Therefore,

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$

which finishes our proof.

Exercise show iii). ■

- Remark The converse inclusion given in property
 (iii) A∩B ⊆ A∩B is not true.
- For instance, let $A=(0,1)\subset \mathbb{R}$ and $B=(1,2)\subset \mathbb{R}.$
- Then

$$\overline{A} = [0, 1]$$
 and $\overline{B} = [1, 2]$

therefore

$$A \cap B = \emptyset$$
, so $\overline{A \cap B} = \emptyset$

but

$$\overline{A} \cap \overline{B} = \{1\}$$
.

• Therefore, the inclusion

$$\overline{A\cap B}\subseteq \overline{A}\cap \overline{B}$$

• can be proper, i.e.

$$\overline{A\cap B}\subset \overline{A}\cap \overline{B}.$$

Proposition Let $A \subseteq \mathbb{R}$.

Then

$$x \in \overline{A} \Leftrightarrow \forall \epsilon > 0, \ D(x, \epsilon) \cap A \neq \emptyset.$$

Proof. We will prove an equivalent statement,

• that is

$$x \notin \overline{A} \Leftrightarrow \exists \epsilon > 0, \ D(x, \epsilon) \cap A = \emptyset.$$

- Suppose that $x \notin \overline{A}$, then $x \in \mathbb{R} \setminus \overline{A}$.
- $\bullet \ \, \text{But} \,\, \overline{A} \,\, \text{is closed, so} \,\, \mathbb{R} \backslash \overline{A} \,\, \text{is open,}$
- therefore, there is $\epsilon > 0$, such that

$$D\left(x,\epsilon\right)\subseteq\mathbb{R}\backslash\overline{A},$$

 \bullet thus

$$D\left(x,\epsilon\right) \cap\overline{A}=\emptyset.$$

• However, $A \subseteq \overline{A}$, so

$$D(x, \epsilon) \cap A \subseteq D(x, \epsilon) \cap \overline{A} = \emptyset$$
, so $D(x, \epsilon) \cap A = \emptyset$.

Conversely

• Assume that, there is $\epsilon > 0$, such that

$$D(x,\epsilon) \cap A = \emptyset.$$

• Therefore, we see that

$$\begin{array}{ccc} A & \subseteq & \mathbb{R} \backslash D\left(x,\epsilon\right), \text{ so} \\ \overline{A} & \subseteq & \overline{\mathbb{R}} \backslash D\left(x,\epsilon\right), \end{array}$$

but $\mathbb{R}\backslash D\left(x,\epsilon\right)$ is closed since it is a complement of an open set.

• Therefore,

$$\overline{A} \subseteq \overline{\mathbb{R}\backslash D\left(x,\epsilon\right)} = \mathbb{R}\backslash D\left(x,\epsilon\right), \text{ so } \overline{A}\cap D\left(x,\epsilon\right) = \emptyset$$

• Since $x \in D(x, \epsilon)$, then

$$x\notin \overline{A}.$$

This finishes our proof. ■

• **Example** We find the closures for the following subsets of \mathbb{R} :

a. $A = \mathbb{Z}$.

Notice that

$$A^c = \bigcup_{i \in \mathbb{Z}} \left(i, i+1 \right)$$

is open as a union of open sets,

so A is closed by the definition.

It follows that

$$\overline{A} = \overline{\mathbb{Z}} = \mathbb{Z}.$$

b. $A = \mathbb{Q}$.

We see that \mathbb{Q} is not closed and

the minimal closed subset of $\mathbb R$ that contains $\mathbb Q$ is $\mathbb R$, so

$$\overline{\mathbb{Q}} = \mathbb{R}$$
.

Another way to see this,

we notice that $\mathbb{Q} \subseteq \overline{\mathbb{Q}}$ and if $x \in \mathbb{R}$,

then

$$D(x,\epsilon) \cap \mathbb{Q} \neq \emptyset$$
,

for any $\epsilon > 0$, b/c any open interval in \mathbb{R} contains a rational number.

• Therefore, by previous theorem

$$x \in \overline{\mathbb{Q}}$$
, so $\mathbb{R} \subseteq \overline{\mathbb{Q}}$, so $\overline{\mathbb{Q}} = \mathbb{R}$.

Proposition $A \subseteq \mathbb{R}$.

Then $x \in \overline{A}$ if and only if there is a sequence $\{x_n\}$ in A such that

$$x_n \to x$$
.

Proof. Assume $x \in \overline{A}$, then

• for every $\epsilon > 0$,

$$D(x, \epsilon) \cap A \neq \emptyset$$
.

• We take $\epsilon = 1, \frac{1}{2}, ...,$ so

$$D\left(x,\frac{1}{k}\right)\cap A\neq\emptyset$$

• so there is

$$x_k \in D\left(x, \frac{1}{k}\right) \cap A,$$

for k = 1, 2,

• Since

$$x_k \in D\left(x, \frac{1}{k}\right) \cap A,$$

so $x_k \in A$.

• Consider sequence $\{x_k\}$, as we see

$$\{x_k\} \subset A$$
.

• We show that this sequence converges.

• Take $\epsilon > 0$, there is $K \in \mathbb{N}$, such that

$$\frac{1}{K} < \epsilon$$
.

• If k > K, then

$$\frac{1}{k} < \frac{1}{K}.$$

• Therefore, since

$$x_k \in D\left(x, \frac{1}{k}\right) \subseteq D\left(x, \frac{1}{K}\right),$$

thus

$$|x-x_k| < \frac{1}{k} < \frac{1}{K} < \epsilon$$
, for all $k > K$.

• This give us that $x_n \to x$.

• Suppose that there is a sequence $\{x_n\}$ in A, such that

$$x_n \to x$$
.

• Take $\epsilon > 0$, then there is $K \in \mathbb{N}$, such that, for k > K,

$$|x_k - x| < \epsilon,$$

i.e. $x_k \in D(x, \epsilon)$, for $k > K$.

• Since $x_k \in A$,

$$x_k \in D(x, \epsilon) \cap A$$
.

• In particular, for any $\epsilon > 0$,

$$D(x,\epsilon) \cap A \neq \emptyset$$
,

so $x \in \overline{A}$

This finishes our proof \blacksquare

- As we see from the examples above, for any $A \subseteq X$, there are two types of points in \overline{A} :
- 1) $x \in A$ and
- 2) $x \in \overline{A}$ and $x \notin A$.
- It is desirable, especially when we want to define limit of a function at a point x₀ ∈ A, to describe the later points as accumulation points or limit points of A.

Accumulation Points of $A \subseteq \mathbb{R}$

Definition Let $A \subseteq \mathbb{R}$.

We say that $x \in \mathbb{R}$ is a an accumulation point of A, if

$$\forall \epsilon > 0, \ D(x, \epsilon) \cap (A \setminus \{x\}) \neq \emptyset.$$

The set of all accumulation points of A is denoted by A'.

Example Let $A = (a, b) \subseteq \mathbb{R}$.

Find all accumulation points of A.

• If x < a or x > b, then for

$$\epsilon = \min \{a - x, x - b\} > 0,$$

 $D(x, \epsilon) \cap (A \setminus \{x\}) = \emptyset.$

- Therefore, $x \in \mathbb{R} \setminus [a, b]$ is not an accumulation point of A.
- If $x \in [a, b]$, then for all $\epsilon > 0$,

$$D(x, \epsilon) \cap (A \setminus \{x\}) \neq \emptyset.$$

• Indeed, if $x \in (a, b)$, then there is $\epsilon > 0$, such that

$$D(x,\epsilon) \subseteq A$$

we simply take

$$\epsilon = \min \left\{ x - a, b - x \right\} > 0.$$

• Since $D(x, \epsilon)$ is infinite

$$D(x, \epsilon) \cap (A \setminus \{x\}) \neq \emptyset.$$

• If $\delta \geq \epsilon$, then

$$\emptyset \neq D(x,\epsilon) \cap (A \setminus \{x\}) \subseteq D(x,\delta) \cap (A \setminus \{x\})$$

and therefore

$$D(x, \delta) \cap (A \setminus \{x\}) \neq \emptyset.$$

• If $0 < \delta < \epsilon$, then

$$D(x, \delta) \subseteq D(x, \epsilon) \subseteq (a, b) = A$$

and $D(x, \delta)$ is infinite, so

$$D(x, \delta) \cap (A \setminus \{x\}) \neq \emptyset.$$

• It follows that if $x \in A$ then $x \in A'$.

• Furthermore, if x = a, then for $\epsilon > 0$,

$$y = \min \left\{ \frac{a+b}{2}, a + \frac{\epsilon}{2} \right\} \in D(x, \epsilon) \cap (A \setminus \{x\}),$$

so

$$D(x, \epsilon) \cap (A \setminus \{x\}) \neq \emptyset.$$

• If x = b, then

$$y=\max\left\{\frac{a+b}{2},b-\frac{\epsilon}{2}\right\}\in D\left(x,\epsilon\right)\cap\left(A\backslash\left\{x\right\}\right),$$

so

$$D(x, \epsilon) \cap (A \setminus \{x\}) \neq \emptyset.$$

- It follows that $a, b \in A'$.
- Therefore, we prove that

$$A' = [a, b].$$

• The following connection holds between the closure and the set of accumulation points.

Theorem Let $A \subseteq \mathbb{R}$. Then

$$\overline{A} = A \cup A'$$

Proof. We show that $A \cup A' \subseteq \overline{A}$.

• If $x \in A'$, then

$$\forall \epsilon > 0, \ D(x, \epsilon) \cap A \setminus \{x\} \neq \emptyset.$$

• Since

$$D(x, \epsilon) \cap A \setminus \{x\} \subseteq D(x, \epsilon) \cap A,$$

 $\forall \epsilon > 0, \ D(x, \epsilon) \cap A \neq \emptyset,$

hence $x \in \overline{A}$.

• Since
$$A \subseteq \overline{A}$$
,

$$A \cup A' \subseteq \overline{A}$$
.

Conversely

• if $x \in \overline{A}$, then either $x \in A$ or

$$x \notin A \text{ and}$$

 $\forall \epsilon > 0, D(x, \epsilon) \cap A \neq \emptyset.$

• If $x \in A$, then since $A \subset A \cup A'$,

$$x \in A \cup A'$$
.

• If $x \notin A$ and

$$\forall \epsilon > 0, D(x, \epsilon) \cap A \neq \emptyset$$

then, since $x \notin A$,

$$D(x, \epsilon) \cap A = D(x, \epsilon) \cap A \setminus \{x\}$$
, so $\forall \epsilon > 0, D(x, \epsilon) \cap A \setminus \{x\} \neq \emptyset$,

• Consequently,

$$x \in A' \subseteq A \cup A'$$

so again

$$x \in A \cup A'$$
,

We showed that

$$\overline{A} = A \cup A'$$

which finish our argument here. \blacksquare

• Corollary Let $A \subseteq \mathbb{R}$. A is closed in \mathbb{R} $(A = \overline{A})$ if and only if $A' \subseteq A$.

Proof. Since

$$\overline{A} = A \cup A'$$

and $A \subseteq \overline{A}$, then

• if $A' \subseteq A$,

$$\overline{A} = A \cup A' \subseteq A \cup A = A, \text{ so } \overline{A} \subseteq A.$$

• Therefore, since $A \subseteq \overline{A}$,

$$\overline{A} = A$$
,

so A is closed.

This finishes our proof. \blacksquare

• Example Let us consider

$$A = [a, b] \subseteq \mathbb{R}$$
.

We observe that

$$A' = [a, b], \text{ so}$$

 $A' \subseteq A, \text{ consequently}$
 $A = \overline{A}.$

Therefore, we have that A is closed.

Boundary of $A \subseteq \mathbb{R}$

Definition Let $A \subseteq \mathbb{R}$.

• We say that $x \in \mathbb{R}$ is a boundary point of A if

$$\forall \epsilon > 0, \ (D(x, \epsilon) \cap A \neq \emptyset) \land (D(x, \epsilon) \cap \mathbb{R} \backslash A \neq \emptyset).$$

• The collection of all boundary points of A in \mathbb{R} is denoted by ∂A and we call it boundary of A.

 $\bf Remark$ It is clear from the definition that,

 $x \in X$ is a boundary point of A iff $x \in \overline{A}$ and $x \in \overline{\mathbb{R} \setminus A}$.

Therefore, the following connection holds between boundary and closure operations:

$$\partial A = \overline{A} \cap \overline{\mathbb{R} \backslash A}.$$

Example Find ∂A for the following subsets A of \mathbb{R} .

a.
$$A = \{x_1, x_2, ..., x_n\}, n \in \mathbb{N}$$

We will use the formula

$$\partial A = \overline{A} \cap \overline{\mathbb{R} \backslash A}$$

- Since A is finite, A is closed.
- Therefore,

$$\overline{A} = A$$
.

• Assume that

$$x_1 < x_2 < \dots < x_n$$
.

• Therefore,

$$\mathbb{R}\backslash A=(-\infty,x_1)\cup(x_1,x_2)\cup...\cup(x_n,\infty)$$
.

- One can check that each x_i , i = 1, 2, ..., n is an accumulation point of $\mathbb{R} \backslash A$.
- It follows that

$$\mathbb{R}\backslash A \cup (\mathbb{R}\backslash A)' \supseteq \mathbb{R}\backslash A \cup A = \mathbb{R}.$$

• Therefore, we see that

$$\overline{\mathbb{R}\backslash A}=\mathbb{R}.$$

 $\bullet\,$ It follows that

$$\begin{aligned}
\partial A &= \overline{A} \cap \overline{\mathbb{R} \backslash A} \\
&= A \cap \mathbb{R} \\
&= A.
\end{aligned}$$

b. $A = \mathbb{Q}$

- Since $\overline{\mathbb{Q}} = \mathbb{R}$ (as we proved today) and as we can show $\overline{\mathbb{R}\backslash\mathbb{Q}} = \mathbb{R}$.
- \bullet Then

$$\begin{array}{rcl} \partial A & = & \overline{A} \cap \overline{\mathbb{R} \backslash A} \\ & = & \overline{\mathbb{Q}} \cap \overline{\mathbb{R} \backslash \mathbb{Q}} \\ & = & \mathbb{R} \cap \mathbb{R} \\ & = & \mathbb{R}. \end{array}$$

Notice that $\mathbb{Q}\varsubsetneq\partial\mathbb{Q}$

Proposition Let $A \subseteq \mathbb{R}$.

Then A is closed in $\mathbb R$ if and only if

$$\partial A \subseteq A$$
.

Proof. We show that the statements are equivalent.

- If A is closed then $\overline{A} = A$.
- Since $\partial A \subseteq \overline{A}$ ($\partial A = \overline{A} \cap \overline{\mathbb{R} \setminus A}$),
- ullet it follows that

$$\partial A \subseteq \overline{A} = A$$
,

so $\partial A \subseteq A$.

- Conversely we show that $\overline{A} = A$.
- Clearly $A \subseteq \overline{A}$, so it suffices to show that $\overline{A} \subseteq A$.
- If $x \in \overline{A}$ and $x \notin A$, then

$$x \in \mathbb{R} \backslash A$$

and

• For all $\epsilon > 0$,

$$D(x, \epsilon) \cap \mathbb{R} \backslash A \neq \emptyset.$$

• Otherwise, there is $\epsilon > 0$, such that

$$D\left(x,\epsilon\right)\cap\mathbb{R}\backslash A=\emptyset,$$

so

$$D(x,\epsilon) \cap A \neq \emptyset$$
,

a contradiction.

• Thus,

$$x \in \overline{A} \cap \overline{\mathbb{R} \backslash A} = \partial A \subseteq A$$
,

SO

- Hence, $x \in A$.
- It follows that $\overline{A} \subseteq A$. So A is closed.

This finishes our proof. \blacksquare

• Example Let A = [a, b].

Then A' = [a, b] but

$$\partial A = \{a, b\}$$

so $\partial A \subset A'$.

Interior of $A \subseteq \mathbb{R}$

 \bullet Let

$$\mathcal{U}(A) = \{ U \subseteq \mathbb{R} \mid U \subseteq A \text{ and } U \text{ is open} \}.$$

 \bullet Define interior of A as follows

$$\operatorname{Int}(A) = \bigcup_{U \in \mathcal{U}(A)} U.$$

- \bullet It is clear that Int (A) satisfies the following properties:
- 1. Int (A) is open in \mathbb{R} and

Int
$$(A) \subseteq A$$
.

2. If U is open and $U \subseteq A$, then

$$U \subseteq \operatorname{Int}(A)$$
.

3. If U is open in \mathbb{R} , then

$$\operatorname{Int}(U) = U$$

and, in particular,

for any $A \subseteq X$,

$$\operatorname{Int}\left(\operatorname{Int}\left(A\right)\right)=\operatorname{Int}\left(A\right).$$

• Before, we show some examples of computations related to Int(A), it is useful to discuss characterization of the points from the interior.

Proposition 0.1 Let $A \subseteq \mathbb{R}$. Then

$$x \in \text{Int}(A) \Leftrightarrow \exists \epsilon > 0 \ni D(x, \epsilon) \subseteq A.$$

Proof. We show that if

$$x \in \text{Int}(A) \Rightarrow \exists \epsilon > 0 \ni D(x, \epsilon) \subseteq A.$$

• If $x \in Int(A)$, then since

$$\operatorname{Int}(A) = \bigcup_{U \in \mathcal{U}(A)} U,$$

there is $U\subseteq A,\, U$ - open, such that

$$x \in U$$
.

 \bullet Since U is open, then

$$\exists \epsilon > 0 \ni D(x, \epsilon) \subseteq U.$$

• Since $U \subseteq A$,

$$\exists \epsilon > 0 \ni D(x, \epsilon) \subseteq A.$$

Conversely

we show that, if $\exists \epsilon > 0 \ni D\left(x, \epsilon\right) \subseteq A$ then $x \in \text{Int}\left(A\right)$

• If $\exists \epsilon > 0 \ni D(x, \epsilon) \subseteq A$, then

$$D(x, \epsilon) \subseteq \operatorname{Int}(A)$$

since $\operatorname{Int}(A)$ is the largest open subset of A and $D(x,\epsilon)$ is an open subset of A.

• Since $x \in D(x, \epsilon)$,

$$x \in \operatorname{Int}(A)$$
.

This finishes our argument. \blacksquare

• Example Let $A \subseteq \mathbb{R}$.

We find $\operatorname{Int}(A)$ for the following subsets A of \mathbb{R} .

- 1. $A = \{x\}$
- We notice that

Int
$$(A) \subseteq A$$
, so

if $y \in Int(A)$ then

$$y \in A = \{x\},\,$$

so y = x.

• Take $\epsilon > 0$ and notice that

$$D(x,\epsilon) = (x - \epsilon, x + \epsilon)$$

$$\nsubseteq \{x\}$$

$$= A.$$

- Therefore, $x \notin \text{Int}(A)$.
- Therefore, we see that

Int
$$(A) = \emptyset$$
.

We can also see it as follows:

• Int (A) is the largest open subset of A.

- Since A is finite,
 it cannot contain any non-trivial open set
 (b/c open set must contain an open disk and disk is infinite).
- It follows that largest open subset of A is the empty set \emptyset .
- Therefore,

$$\operatorname{Int}(A) = \emptyset.$$

- $2. \ A = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\}$
- Since Int $(A) \subseteq A$, if $x \in Int(A)$, then

$$x = \frac{1}{n},$$

for some $n \in \mathbb{N}$.

• However, we see that

$$D\left(\frac{1}{n},\epsilon\right) \nsubseteq A = \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}$$

since $D\left(\frac{1}{n},\epsilon\right)$ is uncountable while A is countable.

• Therefore,

$$\frac{1}{n} \notin \text{Int}(A).$$

• It follows that

$$\operatorname{Int}(A) = \emptyset.$$

- c. $A = \mathbb{Q}$.
- If $x \in \text{Int}(A)$, the $x \in \mathbb{Q}$.
- However,

$$D(x,\epsilon) \nsubseteq \mathbb{Q}$$

since $D(x, \epsilon)$ contains irrational number $(D(x, \epsilon)$ is not countable and \mathbb{Q} is countable).

ullet It follows that

$$\operatorname{Int}\left(A\right) =\emptyset.$$

- d. A = (a, b]
- Since the largest open subset of (a, b] is (a, b), then

Int
$$((a, b]) = (a, b)$$
.

Proposition Let $A, B \subseteq \mathbb{R}$.

Then the following is true

i) If $A \subseteq B$ then

$$\operatorname{Int}(A) \subseteq \operatorname{Int}(B)$$

ii)
$$\operatorname{Int}(A \cup B) \supseteq \operatorname{Int}(A) \cup \operatorname{Int}(B)$$

iii)
$$\operatorname{Int}(A \cap B) = \operatorname{Int}(A) \cap \operatorname{Int}(B)$$

Proof. We prove i) and we leave ii) and iii) as an exercise.

• For instance, for i):

• Since

$$\operatorname{Int}(A) \subseteq A$$

and $A \subseteq B$, then

$$\operatorname{Int}(A) \subseteq B$$

and Int(A) is open.

• Since Int(B) is the largest subset of B then

$$\operatorname{Int}(A) \subseteq \operatorname{Int}(B)$$
.

This finishes our proof. \blacksquare

• Exercise Find Int ([1, 3])

Since, as we can show,

(1,3) is the largest open subset of [1, 3], then

Int
$$([1, 3]) = (1,3)$$
.

Proposition Let $A \subseteq \mathbb{R}$. Then

$$\overline{A} = \operatorname{Int}(A) \cup \partial A$$
,

in particular,

$$Int (A) = \overline{A} \backslash \partial A
= \overline{A} \backslash \left(\overline{\mathbb{R} \backslash A} \right).$$

Proof. We show that

$$\overline{A} \supseteq \operatorname{Int}(A) \cup \partial A$$
.

 \bullet Since

$$\overline{A} \supseteq \operatorname{Int}(A)$$

and $\overline{A} \supseteq \partial A$,

$$\overline{A} \supseteq \operatorname{Int}(A) \cup \partial A$$

Conversely, we show that

$$\operatorname{Int}(A) \cup \partial A \supseteq \overline{A}$$

• If $x \in \overline{A}$, then

$$\forall \epsilon > 0, \ D(x, \ \epsilon) \cap A \neq \emptyset.$$

• We consider two cases

1)
$$\exists \epsilon > 0 \ni D(x, \epsilon) \subseteq A$$

or

2)
$$\forall \epsilon > 0, D(x, \epsilon) \cap (\mathbb{R} \backslash A) \neq \emptyset$$
.

• In the first case, clearly

$$x \in \text{Int}(A)$$
.

• In the second case,

$$\forall \epsilon > 0, \ (D(x, \epsilon) \cap A \neq \emptyset) \land (D(x, \epsilon) \cap (\mathbb{R} \backslash A) \neq \emptyset),$$

so $x \in \partial A$.

• Therefore,

$$x \in \text{Int}(A) \text{ or } x \in \partial A.$$

ullet It follows that

$$\overline{A} \subseteq \operatorname{Int}(A) \cup \partial A$$
.

 \bullet Hence

$$\overline{A} = \operatorname{Int}(A) \cup \partial A.$$

- It is easy to see that
- if $x \in \text{Int}(A)$ then $x \notin \partial A$ thus

$$\operatorname{Int}(A) \cap \partial A = \emptyset.$$

• Therefore,

$$\operatorname{Int}(A) = \overline{A} \backslash \partial A$$

$$= \overline{A} \backslash \left(\overline{A} \cap \overline{\mathbb{R} \backslash A} \right)$$

$$= \overline{A} \backslash \overline{\mathbb{R} \backslash A}, \text{ hence}$$

$$\operatorname{Int}(A) = \overline{A} \backslash \overline{\mathbb{R} \backslash A}.$$

The last identity completes our proof. \blacksquare