Topologia *

Mateusz Zugaj, Michal Zmyslowski

Listopad 2017

1 Podstawowe przykłady topologii i ich własności.

Definicja 1 (Topologie na prostej). W zbiorze liczb rzeczywistych \mathbb{R} zdefiniujmy rodziny podzbiorów \mathcal{T}_i :

- 1. $\mathcal{T}_1 = \mathcal{P}(\mathbb{R})$ topologia dyskretna
- 2. $\mathcal{T}_2 = \{U \subset \mathbb{R} : \forall_{s \in U} \exists_{t > s} [s, t) \subset U\}$ topologia prawej strzałki
- 3. $\mathcal{T}_3 = \{U \subset \mathbb{R} : \forall_{s \in U} \exists_{t \leq s} (t, s] \subset U\}$ topologia lewej strzałki
- 4. $\mathcal{T}_4 = \{U \subset \mathbb{R} : \forall_{s \in U} \exists_{r < s < t}(r, t) \subset U\}$ topologia euklidesowa
- 5. $\mathcal{T}_5 = \{\emptyset\} \cup \{\mathbb{R}\} \cup \{(-\infty, x) \colon x \in \mathbb{R}\}$ topologia lewych przedziałów
- 6. $\mathcal{T}_6 = \{\emptyset\} \cup \{\mathbb{R}\} \cup \{(x, +\infty) : x \in \mathbb{R}\}$ topologia prawych przedziałów
- 7. $\mathcal{T}_7 = \{\emptyset\} \cup \{\mathbb{R}\} \cup \{U \subset \mathbb{R} \colon \mathbb{R} \setminus U \text{ jest zbiorem skończonym}\}$ topologia Zariskiego
- 8. $\mathcal{T}_8 = \{\emptyset\} \cup \{\mathbb{R}\}$ topologia antydyskretna

Zadanie 1. Niech \mathcal{T}_i będą rodzinami podzbiorów prostej rzeczywistej opisanymi w Definicji 1.

- a) Sprawdź, że rodziny T_i są topologiami.
- b) Porównaj topologie \mathcal{T}_i , rysując diagram inkluzji tych Topologii i zbadaj ich przeciecia.
- c) Zbadaj, które topologie T_i mają własność Hausdorffa.
- d) O których parach przestrzeni $(\mathbb{R}, \mathcal{T}_i)$, $(\mathbb{R}, \mathcal{T}_j)$ potrafisz powiedzieć, że są lub nie są homeomorficzne? Narysuj i wypełnij tabelkę.

Rozwiązanie

b) Ewidentnie $\mathcal{T}_2 \subset \mathcal{T}_1$ i $\mathcal{T}_3 \subset \mathcal{T}_1$. Następnie $[0,1) \in \mathcal{T}_2$, ale $[0,1) \not\in \mathcal{T}_3$. Podobnie $(0,1] \in \mathcal{T}_3$, ale $(0,1] \not\in \mathcal{T}_2$. Mamy, że $(0,1) \in \mathcal{T}_4$, jak również $(0,1) \in \mathcal{T}_3$ i $(0,1) \in \mathcal{T}_2$. Jednak $[0,1) \not\in \mathcal{T}_4$ i $(0,1] \not\in \mathcal{T}_4$. Czyli $\mathcal{T}_4 \subset \mathcal{T}_2$ i $\mathcal{T}_4 \subset \mathcal{T}_3$. Teraz $(-\infty,1) \in \mathcal{T}_5$, jak również $(-\infty,1) \in \mathcal{T}_4$. Podobnie $(1,\infty) \in \mathcal{T}_6$ i $(1,\infty) \in \mathcal{T}_4$. Jednak $(0,1) \not\in \mathcal{T}_5$ i $(0,1) \not\in \mathcal{T}_6$. Tak więc, $\mathcal{T}_5 \subset \mathcal{T}_4$ i $\mathcal{T}_6 \subset \mathcal{T}_4$. Mamy $(-\infty,1) \not\in \mathcal{T}_7$

- i $(1, \infty) \notin \mathcal{T}_7$. Teraz $\mathbb{R} \setminus \{1\} \in \mathcal{T}_7$, ale $\mathbb{R} \setminus \{1\} \notin \mathcal{T}_5$ i $\mathbb{R} \setminus \{1\} \notin \mathcal{T}_6$. Jednak $\mathbb{R} \setminus \{1\} \in \mathcal{T}_4$. Czyli $\mathcal{T}_7 \subset \mathcal{T}_4$. Ostatecznie $\mathcal{T}_8 \subset \mathcal{T}_5$, $\mathcal{T}_8 \subset \mathcal{T}_6$, $\mathcal{T}_8 \subset \mathcal{T}_7$. c) Weźmy dowolne $x, y \in \mathbb{R}$ takie, że x < y. Teraz \mathcal{T}_1 ma własność Hausdorffa, bo $\{x\}, \{y\} \in \mathcal{T}_1$. Następnie dobierzmy $s, t, r \in \mathbb{R}$, że $x \in (s, t)$ i $y \in (t, r)$. Teraz $(s, t) \in \mathcal{T}_4$ i $(t, r) \in \mathcal{T}_4$. Więc \mathcal{T}_2 , \mathcal{T}_3 i \mathcal{T}_4 mają własność Hausdorffa. Przestrzenie \mathcal{T}_i dla i = 5, 6, 7, 8 nie mają własności Hausdorffa.
- d) Od razu można powiedzieć, że każda \mathcal{T}_i dla i=1,2,3,4 nie jest homeomorficzna z żadną z \mathcal{T}_j dla j=5,6,7,8, bo wcześniejsze mają własność Hausdorffa, a późniejsze nie. Również \mathcal{T}_1 nie jest homeomorficzna z \mathcal{T}_8 , bo moc pierwszej jest większa od drugiej, co wiadomo ze Wstępu do Matematyki.

Zadanie 2 (Bukiet prostych). Niech J będzie dowolnym zbiorem. W zbiorze $\mathbb{R} \times J$ rozpatrzmy relację równoważności

$$(t,i) \sim (s,j)$$
 wtedy i tylko wtedy gdy $t=s=0$ lub $(t,i)=(s,j)$

a zbiór klas abstrakcji oznaczmy $\mathbb{R} \wedge J^+$. Zauważmy, że $\mathbb{R} \wedge J^+ = \mathbb{R} \times J/0 \times J$ tzn. powstaje z iloczynu $\mathbb{R} \times J$ przez utożsamienie do punktu podzbioru $0 \times J$. W zbiorze $\mathbb{R} \wedge J^+$ rozpatrzymy dwie topologie:

- 1. Topologię \mathcal{T}_k wyznaczoną przez metrykę węzła $d_k((t,i),(s,j)) = \begin{cases} |t-s| \ jeśli \ i=j \\ |t| + |s| \ jeśli \ i \neq j \end{cases}$
- 2. Topologię słabą \mathcal{T}_w tzn. taką, że zbiór $U \subset \mathbb{R} \wedge J^+$ jest otwarty wtedy i tylko wtedy gdy dla każdego $i \in J$ zbiór $U \cap \mathbb{R} \times \{i\}$ jest otwarty w topologii euklidesowej prostej.

Zauważ, że

- 1. $T_k \subset T_w$
- Jeśli |J| ≥ ℵ₀, to topologia słaba nie spełnia pierwszego aksjomatu przeliczalności.
- 3. Jeśli $|J| \ge \aleph_0$, to topologia słaba jest niemetryzowalna.

Rozwiązanie

- 1. Niech $U \in \mathcal{T}_k$. Zauważmy, że kule B((x,i),r) w metryce d_k występują w dwóch postaciach
 - (a) B((x,i),r) dla $r \leq |x|$ jest odcinkiem otwartym na i-tej prostej, tj.

$$B((x,i),r) \cap (\mathbb{R} \times i) = \underbrace{(x-r,x+r)}_{\text{przedział otwarty!}} \times \{i\}$$

(b) Dla r>|x| jest to suma dwóch zbiorów, odcinka otwartego zdefiniowanego tak samo jak wyżej ["patyczka"]

$$B((x,i),r)\cap (\mathbb{R}\times i)=\underbrace{(x-r,x+r)}_{\text{przedział otwarty!}}\times \{i\}$$

oraz zbioru ["lizaka"]

$$(-(r-|x|), r-|x|) \times (J \setminus \{i\})$$

Z definicji przestrzeni wyznaczanej przez metrykę każdy zbiór otwarty jest sumą kul w tej metryce, tj. $U = \bigcup_{u \in U} B_u$, gdzie $B_u = B(u, r)$ są zawarte w U.

Chcemy pokazać, że $U \in \mathcal{T}_w$, czyli że dla każdego i zbiór $U \cap (\mathbb{R} \times \{i\})$ jest otwarty w topologii euklidesowej. Skoro $U = \bigcup B_u$ to wystarczy, że B_u będzie otwarte w \mathcal{T}_w - wtedy U jako suma zbiorów otwartych w \mathcal{T}_w będzie otwarta.

Ale każda kula jest otwarta w \mathcal{T}_w . Dla dowolnej zachodzi

$$B((x,j),r) \cap (\mathbb{R} \times \{i\}) = \begin{cases} (x-r,x+r) & r < |x| \lor j = i \\ (-(r-|x|),r-|x|) & r \geqslant |x| \land j \neq i \end{cases}$$

W każdym przypadku, iloczyn jest przedziałem otwartym w topologii euklidesowej. Zatem $B((x,j),r) \in \mathcal{T}_w$, więc $U \in \mathcal{T}_w$ zgodnie z tym co wcześniej ustaliliśmy.

2. Udowodnimy, że topologia słaba nie ma punktowej bazy przeliczalnej w 0. Załóżmy, że istnieje taka baza = $\{U_1, U_2, U_3, \cdots\}$. Niech $J_0 \subseteq J$ będzie zbiorem przeliczalnym w J i $J_0 = \{j_1, j_2, \cdots\}$. Skonstruujemy taki zbiór otwarty U, że $0 \in V$ ale $\forall k \in \mathbb{N}$ $U_k \not\subseteq V$. Mianowicie bierzemy zbiory

$$V_k \subseteq U_k \cap (\mathbb{R} \times \{j_k\})$$

I teraz $V = \bigcup V_k \cup ((J \setminus J_0) \times \mathbb{R})$. Widzimy, że gdyby $U_k \subseteq V$, to musiałoby być $U_k \cap (\mathbb{R} \times \{j_k\}) \subseteq V \cap (\mathbb{R} \times \{j_k\}) = V_k$, co jest sprzeczne z definicji V_k . Zatem założenie o istnieniu bazy przeliczalnej w zerze jest fałszywe.

3. Gdyby przestrzeń była metryzowalna, to zbiór kul o promieniach wymiernych o środku w 0 byłaby bazą punktową przeliczalną w zerze, co przy tych założeniach jest niemożliwe na mocy poprzedniego podpunktu.

2 Przestrzenie topologiczne a przestrzenie metryczne.

Zadanie 3. Niech d_i dla i = 1, 2 będą dwoma metrykami w zbiorze X. Następujące warunki są równoważne:

- 1. Topologia wyznaczona przez d_2 jest drobniejsza niż wyznaczona przez d_1 , tzn. $\mathcal{T}(d_1) \subset \mathcal{T}(d_2)$.
- 2. Dla każdej kuli $\mathcal{B}_{d_1}(x,r_1)$ istnieje liczba $r_2 > 0$ taka, że $\mathcal{B}_{d_2}(x,r_2) \subset \mathcal{B}_{d_1}(x,r_1)$. 3. Jeśli ciąg jest zbieżny w metryce d_2 to jest zbieżny w metryce d_1 do tej samej granicy.

Rozwiązanie

 $1 \implies 2$

Załóżmy, że $\mathcal{T}(d_1) \subset \mathcal{T}(d_2)$. Niech $\mathcal{B}_{d_1}(x,r_1) \in \mathcal{T}(d_1)$. Z założenia $\mathcal{B}_{d_1}(x,r_1) \in \mathcal{T}(d_2)$. Z definicji topologii $\mathcal{T}(d_2)$ istnieje $r_2 > 0$ takie, że $\mathcal{B}_{d_2}(x,r_2) \subset \mathcal{B}_{d_1}(x,r_1)$.

 $2 \implies 1$

Załóżmy, że dla każdej kuli $\mathcal{B}_{d_1}(x,r_1)$ istnieje liczba $r_2>0$ taka, że $\mathcal{B}_{d_2}(x,r_2)\subset\mathcal{B}_{d_1}(x,r_1)$. Weźmy dowolny $y_s\in\mathcal{B}_{d_1}(x,r_1)$. Z definicji topologii $\mathcal{T}(d_1)$ istnieje r>0 takie, że $\mathcal{B}_{d_1}(y_s,r)\subset\mathcal{B}_{d_1}(x,r_1)$. Z założenia istnieje $r_s>0$ takie, że $\mathcal{B}_{d_2}(y_s,r_s)\subset\mathcal{B}_{d_1}(y_s,r)$. Z tego wynika, że $\bigcup_s\mathcal{B}_{d_2}(y_s,r_s)=\mathcal{B}_{d_1}(x,r_1)\in\mathcal{T}(d_1)$. Z definicji topologii $\bigcup_s\mathcal{B}_{d_2}(y_s,r_s)\in\mathcal{T}(d_2)$. Tak, więc $\mathcal{T}(d_1)\subset\mathcal{T}(d_2)$. $1\Longrightarrow 3$

Załóżmy, że $\mathcal{T}(d_1) \subset \mathcal{T}(d_2)$. Niech ciąg $\{x_n\}_{n=1}^{\infty}$ będzie zbieżny do x w metryce d_2 . Załóżmy, że $\{x_n\}_{n=1}^{\infty}$ nie jest zbieżny do x w metryce d_1 . Z tego wynika, że istnieje $\epsilon > 0$, taki, że dla każdego n_{ϵ} istnieje $n > n_{\epsilon}$, że $x_n \notin \mathcal{B}_{d_1}(x, \epsilon)$. Z założenia $\mathcal{T}(d_1) \subset \mathcal{T}(d_2)$ wynika jednak, że istnieje liczba r > 0 taka, że $\mathcal{B}_{d_2}(x,r) \subset \mathcal{B}_{d_1}(x,\epsilon)$. Jako, że $\{x_n\}_{n=1}^{\infty}$ jest zbieżny do x w metryce d_2 , to z

definicji zbieżności prawie wszystkie wyrazy $\{x_n\}_{n=1}^{\infty}$ znajdują się w $\mathcal{B}_{d_2}(x,r)$, co jest sprzeczne z faktem, że $x_n \notin \mathcal{B}_{d_1}(x,\epsilon)$. Z tego wynika, że $\{x_n\}_{n=1}^{\infty}$ jest zbieżny do x w metryce d_1 .

 $3 \implies 1$

Załóżmy, że jeśli ciąg jest zbieżny w metryce d_2 to jest zbieżny w metryce d_1 . Zawieranie się topologii jest równoważne zawieraniu się rodziny zbiorów domkniętych, tzn. $\mathcal{F}_{\mathcal{T}(d_1)} \subset \mathcal{F}_{\mathcal{T}(d_2)} \Longleftrightarrow \mathcal{T}(d_1) \subset \mathcal{T}(d_2)$. Udowodnimy ten fakt w "prawą" stronę. Niech $A \in \mathcal{F}_{\mathcal{T}(d_1)}$. Jako, że A jest zbiorem domkniętym to $X \setminus A$ jest zbiorem otwartym, więc $X \setminus A \in \mathcal{T}(d_1)$. Z założenia wynika, że $A \in \mathcal{F}_{\mathcal{T}(d_2)}$, więc również $X \setminus A \in \mathcal{T}(d_2)$. Niech $M \in \mathcal{F}_{\mathcal{T}(d_1)}$. Z definicji domknięcia dostajemy, że $M \subset cl_{\mathcal{T}(d_2)}(M)$. Jeżeli $x \in cl_{\mathcal{T}(d_2)}(M)$, to istnieje $\{x_n\}_{n=1}^{\infty} \subset M$, taki, że $d_2(x_n,x) \to 0$. Z założenia dostajemy, że $d_1(x_n,x) \to 0$. Z tego wynika, że $x \in cl_{\mathcal{T}(d_1)}(M)$. M jest domknięty w $\mathcal{T}(d_1)$, czyli $M = cl_{\mathcal{T}(d_1)}(M)$. A z tego mamy, że $x \in M$, co daje $cl_{\mathcal{T}(d_2)}(M) \subset M$. Wtedy $cl_{\mathcal{T}(d_2)}(M) = M$, a z tego wynika, że $M \in \mathcal{F}_{\mathcal{T}(d_2)}$, czyli $\mathcal{F}_{\mathcal{T}(d_1)} \subset \mathcal{F}_{\mathcal{T}(d_2)}$. Tak więc, na mocy faktu, który wcześniej udowodniliśmy $\mathcal{T}(d_1) \subset \mathcal{T}(d_2)$.

Definicja 2. Niech (X, \mathcal{T}) będzie przestrzenią topologiczną. Przez C(X) oznaczamy zbiór funkcji ciągłych $f: (X, \mathcal{T}) \to (\mathbb{R}, \mathcal{T}_e)$, a przez $C_b(X)$ jego podzbiór składający się z funkcji ograniczonych. Dla dowolnej funkcji $f \in C_b(X)$ definiujemy $||f||_{sup} := \sup\{|f(x)| : x \in X\}$ oraz $||f||_{L^1} := \int_0^1 |f(t)| dt$.

Zadanie 4. Porównać topologię wyznaczoną przez normę $||f||_{sup}$ z topologią wyznaczoną przez normę $||f||_{L^1}$.

Rozwiązanie

Niech

$$f_n(x) := \begin{cases} 1 - nx , & x \in [0, \frac{1}{n}] \\ 0 , & x \in (\frac{1}{n}, 1) \end{cases}$$

Wtedy $f_n \in C_b([0,1])$ i $||f_n(x)||_{L^1} = \frac{1}{2n} \to 0$, ale $||f_n(x)||_{sup} = 1 \neq 0$. Rozważmy $g_n \in C_b([0,1])$ taką, że $||g_n(x)||_{sup} \to 0$. Wtedy na mocy 9.31 $||g_n(x)||_{L^1} \leqslant \sup(|g_n(x)|)(1-0) \to 0$.

Niech $d_{sup}(f,g) = ||f-g||_{sup}$ i $d_{L^1}(f,g) = ||f-g||_{L^1}$. Rozpatrzmy $(C_b(X), d_{sup})$ i $(C_b(X), d_{L^1})$. Jeżeli f_n jest zbieżny do f w przestrzeni $(C_b(X), d_{sup})$, tzn. $d_{sup}(f_n, f) \to 0$, to z wcześniejszych obserwacji $d_{L^1}(f_n, f) \to 0$, czyli jest zbieżny, również do f, w $(C_b(X), d_{L^1})$. Z poprzedniego zadania wiemy już, że wtedy $\mathcal{T}(d_{L^1}) \subset \mathcal{T}(d_{sup})$.

3 Konstrukcje topologiczne.

3.1 Iloczyn topologii.

Zadanie 5. Wykaż, że dla dowolnych przestrzeni (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) , $(X_i, \mathcal{T}_{X_i})_{i \in I}$ podzbiorów $A \subseteq X$, $B \subseteq Y$ i rodzin podzbiorów $\mathcal{A} = \{A_i \mid A_i \subseteq X_i\}$ zachodzi

- 1. $Int(A \times B) = Int(A) \times Int(B)$
- 2. $\operatorname{Int}(\prod A) \subseteq \prod \{\operatorname{Int}(A_i) \mid A_i \in A\}, + kontrprzykład braku zawierania w drugą stronę$
- 3. $\operatorname{cl}(A \times B) = \operatorname{cl}(A) \times \operatorname{cl}(B)$
- 4. $\operatorname{cl}(\prod A) = \prod \{\operatorname{cl}(A_i) \mid A_i \in A\}$

Rozwiązanie

1. \subseteq : Niech $x \in \text{Int}(A \times B)$. Skoro tak, to istnieje otwarte otoczenie $U \ni x$ i $U \subseteq A \times B$, z definicji wnętrza. Teraz użyjemy faktu, że rzutowania na współrzędne p_X oraz p_Y są otwarte, tj. obrazy zbiorów otwartych w tych przekształceniach są otwarte. [Wniosek 5.4.1]

Zatem $p_X(x) \in p_X[U] \in \mathcal{T}_X$, co dowodzi że $p_X(x) \in \text{Int}(A)$, gdyż $p_X[U] \subseteq A$ jest otwartym otoczeniem x. Analogiczne $p_Y(x) \in \text{Int}(B)$. Zatem

$$x = (p_X(x), p_Y(x)) \in Int(A) \times Int(B)$$

⊇: Niech $(x,y) \in \text{Int}(A) \times \text{Int}(B)$, czyli $x \in \text{Int}(A) \land y \in \text{Int}(B)$. W takim razie istnieją dwa otoczenia, $U_x \ni x$, $U_y \ni y$ i dostajemy

$$(x,y) \in p_X^{-1}[U_X] \cap p_Y^{-1}[U_Y]$$

przy czym prawa strona jest otwarta jako przecięcie dwóch zbiorów otwartych.

2. Dowód na zawieranie w prawą stronę pozostaje w większości taki sam jak w przypadku skończonym, wystarczy uwzględnić nieskończoność; że dla każdego $i \in I$ mamy $p_i[U] \in \mathcal{T}_{X_i}$ i wtedy

$$p_1(x) \in p_1[U], p_2(x) \in p_2[U], p_3(x) \in p_3[U], \dots$$

zatem mamy

$$p_1(x) \in \text{Int}(A_1), p_2(x) \in \text{Int}(A_2), p_3(x) \in \text{Int}(A_3), \dots$$

czyli z tego wynika

$$x = (p_1(x), p_2(x), \dots) \in \operatorname{Int}(A_1) \times \operatorname{Int}(A_2) \times \dots = \prod \{ \operatorname{Int}(A_i) \mid A_i \in \mathcal{A} \}$$

W drugą stronę dowód upada w momencie przecięcia przeciwobrazów - przecięcie nieskończonej liczby zbiorów otwartych nie musi być otwarte. Niech $\forall i \in I \ X_i = \mathbb{R}$. Udowodnimy, że

$$\operatorname{Int}\left(\prod_{i=0}^{\infty}(0,1)\right) = \varnothing$$

czyli że zbiór pod operatorem wnętrza nie jest otwarty. Gdyby był otwarty, to zawierałby zbiór z bazy standardowej (tj. z [Stwierdzenia 5.4.1 (2)]) gdzie, jak widzimy, jest napisane że

 $U_i = Y_i (= \mathbb{R})$ dla ipoza pewnym skończonym zbiorem indeksów

innymi słowy, w takim iloczynie pojawi się nieskończenie wiele \mathbb{R} ; w szczególności pojawi się na co najmniej raz:

$$U_1 \times U_2 \times \ldots \times \mathbb{R} \times U_{i+1} \times \cdots \subseteq \prod_{i=0}^{\infty} (0,1)$$

co jest sprzecznością, gdyż prawa strona nie zawiera $\mathbb R$ na żadnej współrzednej.

- 3. analogiczne
- 4. analogicznie, tylko teraz nieskończenie przecięcie zbiorów domkniętych **już jest** zbiorem domkniętym

Zadanie 6. Przestrzeń topologiczna (X, \mathcal{T}_X) jest przestrzenią Hausdorffa wtedy i tylko wtedy gdy przekątna jest podzbiorem domkniętym produktu $(X, \mathcal{T}_X) \times (X, \mathcal{T}_X)$.

Rozwiązanie

 \Rightarrow

Udowodnimy, że $\Delta = \{(x,x) \mid x \in X\}$ jest podzbiorem domkniętym, czyli że $(X \times X) \setminus \Delta$ jest podzbiorem otwartym. Aby to zrobić, weźmiemy punkt spoza przekątnej i pokażemy, że istnieje jego otwarte otoczenie nieprzecinające jej. Niech $(x,y) \notin \Delta$, czyli $x \neq y$. Ale mamy przy tym $x,y \in X$, czyli $działa \ własność \ Hausdorffa$, mianowicie istnieją otwarte otoczenia $U_x \ni x$ oraz $U_y \ni y$ zawarte w X, że $U_x \cap U_y = \varnothing$. Teraz bierzemy

$$U_x \times U_y \in (x,y)$$

Jest to zbiór otwarty, gdyż można go zapisać jako

$$p_X^{-1}[U_x] \cap p_X^{-1}[U_y]$$

czyli przecięcie dwóch zbiorów otwartych - więc otwarte. Ponadto, ten zbiór jest rozłączny z przekątną, gdyż

$$(z,z) \notin U_x \times U_y \Leftrightarrow z \notin U_x \land z \notin U_y \Leftrightarrow z \notin U_x \cap U_y \Leftrightarrow U_x \cap U_y = \emptyset$$
 (1)

jednak wiemy już, że $U_x \cap U_y = \varnothing$.

 \Leftarrow

Dowód powyżej składał się prawie cały z równoważności; po prostu aby znaleźć dwa rozłączne otoczenia punktów $x,y\in X$ (tym samym udowodnić własność Hausdorffa) wystarczy że weźmiemy otwarte otoczenie punktu $(x,y)\in X\times X$ nieprzecinające przekątnej (która jest domknięta, więc zawsze się takie znajdzie) a następnie zrzutować je na obie osie. Te dwa obrazy będą rozłączne (1), czyli to kończy nasze poszukiwania.

3.2 Iloraz topologii.

Definicja 3. Odwzorowanie $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ nazywa się *ilorazowe* jeśli jest

- surjekcją
- ciągłe
- zachodzi implikacja: jeśli przeciwobraz $f^{-1}[V]$ podzbioru $V \subset Y$ jest otwarty w (X, \mathcal{T}_X) , to V jest otwarty w (Y, \mathcal{T}_Y) . Mówimy, że przekształcenie spełniające tę implikację jest *dzielne*.

Innymi słowy, implikacja definiująca odwzorowania ciągłe (jeśli V otwarte to $f^{-1}[V]$ otwarte) staje się równoważnością.

Zadanie 7. Dla ciągłej surjekcji $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ następujące warunki są równoważne:

- 1. f jest przekształceniem ilorazowym
- 2. $\forall V \subset Y \quad V \in \mathcal{T}_Y \iff f^{-1}[V] \in \mathcal{T}_X$
- 3. $\forall B \subset Y \quad B \in \mathcal{F}_Y \iff f^{-1}[B] \in \mathcal{F}_X$
- 4. $T_*(\{f\}) = T_Y$

Rozwiązanie

 $1 \implies 2$

Prosto z definicji, ta równoważność to ciagłość i dzielność jednocześnie.

$$2 \implies i$$

Oczywiście są spełnione wszystkie warunki z definicji przekształcenia ilorazowego - bycie surjekcją jest zapewnione z treści zadania, a ciągłość i dzielność jednocześnie to nasze założenie.

$$2 \implies 3$$

Załóżmy 2. Musimy pokazać równoważność $B \in \mathcal{F}_Y \Leftrightarrow f^{-1}[B]$ dla każdego podzbioru $B \subset Y$.

Niech $B \in \mathcal{F}_Y$. To znaczy, że $Y \setminus B \in \mathcal{T}_Y$. Ale wtedy $f^{-1}[Y \setminus B] \in \mathcal{T}_X$, z założenia 1. Ale zachodzi tożsamość przeciwobrazów

$$f^{-1}[Y \setminus B] = f^{-1}[Y] \setminus f^{-1}[B]$$

[Guzicki, Zakrzewski, Twierdzenie 3.16 (8)]. Oczywiście $f^{-1}[Y] = X$, zatem dostajemy $f^{-1}[Y \setminus B] = X \setminus f^{-1}[B] \in \mathcal{T}_X$, a więc $f^{-1}[B] \in \mathcal{F}_X$.

Każde wynikanie powyżej było tak naprawdę równoważnością, włącznie z założeniem $\it 1$. Zatem równoważność jest udowodniona.

$$3 \implies 2$$

Dowód identyczny jak powyżej, wystarczy \mathcal{T} i \mathcal{F} zamienić miejscami.

$$2 \implies 4$$

Wiemy, że $\mathcal{T}_*(\{f\}) = \{V \subseteq Y \mid f^{-1}[V] \in \mathcal{T}_X\}$, więc musimy udowodnić, że

$$\{V \subseteq Y \mid f^{-1}[V] \in \mathcal{T}_X\} = \mathcal{T}_Y$$

 \subseteq : Niech $U \in \{V \subset Y \mid f^{-1}[V] \in \mathcal{T}_X\}$. Zatem $f^{-1}[U] \in \mathcal{T}_X$. Z ze strony \Leftarrow implikacji 2 mamy $U \in \mathcal{T}_Y$. To dowodzi zawierania w lewą stronę.

 \supseteq : Niech $U \in \mathcal{T}_Y$. Zatem ze strony \Rightarrow implikacji 2 mamy $f^{-1}[U] \in \mathcal{T}_X$. Z definicji dostajemy $U \in \{V \subset Y \mid f^{-1}[V] \in \mathcal{T}_X\}$.

$$4 \implies 1$$

To, że f jest surjekcją mamy z treści zadania. f jest również ciągła w \mathcal{T}_Y z definicji \mathcal{T}_* .

Pozostaje udowodnić dzielność. Kluczowym faktem tutaj jest to, że $\mathcal{T}_*(\{f\})$ jest największą topologią taką, że f jest ciągłe. Gdyby $f^{-1}[V] \in \mathcal{T}_X \not\Rightarrow V \in \mathcal{T}_Y$ to istniałaby topologia $\mathcal{T}_Y' = \mathcal{T}_Y \cup \{V\}$ ściśle większa od \mathcal{T}_Y dla które f nadal byłoby ciągłe, gdyż $V \in \mathcal{T}_Y'$ i $f^{-1}[V] \in \mathcal{T}_X$. Sprzeczność. Zatem f jest dzielne.

Definicja 4. Przekształcenie ciągłe $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ nazywamy otwartym (domkniętym) jeśli obraz dowolnego zbioru otwartego (domkniętego) w (X,\mathcal{T}_X) jest otwarty (domknięty) w (Y,\mathcal{T}_Y) .

Zadanie 8. Jeśli $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ jest otwartą lub domkniętą ciąglą surjekcją, to f jest przekształceniem ilorazowym.

Rozwiązanie

Ciągłość i surjektywność mamy z treści zadania. Pozostaje sprawdzić

$$f^{-1}[V] \in \mathcal{T}_X \implies V \in \mathcal{T}_Y$$

Załóżmy, że $f^{-1}[V] \in \mathcal{T}_X$. Jeśli f jest otwarte, to znaczy że $f[f^{-1}[V]] \in \mathcal{T}_Y$. Ale $f[f^{-1}[V]] = V$ [Guzicki, Zakrzewski, Twierdzenie 3.15 (3)], zatem $V \in \mathcal{T}_Y$. W przypadku, kiedy f jest domknięte korzystamy z równoważnego warunku udowodnionego w zadaniu 7:

$$f^{-1}[B] \in \mathcal{F}_X \implies B \in \mathcal{F}_Y$$

Definicja 5. Jeśli $A \subset X$ jest podzbiorem przestrzeni topologicznej (X, \mathcal{T}_X) to przez $X/\{A\}$ lub X/A oznaczamy przestrzeń ilorazową relacji równoważności takiej, że $x \sim y \iff x = y$ lub $x, y \in A$ z topologią popchniętą przez projekcję $p: X \to X/A, \ p(x) = p(y) \Leftrightarrow x \sim y.$

Zadanie 9. Jeśli $A \subset X$ jest podzbiorem domkniętym (otwartym), to projekcja $p \colon X \to X/A$ jest odwzorowaniem domkniętym (otwartym).

Rozwiazanie

Niech $A \in \mathcal{F}_X$ i skoro $\forall x, y \in A$ p(x) = p(y) =: a to mamy $\{a\} = p[A]$. Zgodnie z definicją [Definicja 5.3.1] mamy (zamieniając zbiory otwarte na domknięte)

$$\mathcal{F}_{X/A} = \{ B \subset X/A \mid p^{-1}[B] \in \mathcal{F}_X \}$$

Niech $B_0\in\mathcal{F}_X$. Musimy udowodnić, że $p[B_0]\in\mathcal{F}_{X/A}$. Na mocy definicji powyżej, to jest równoważne udowodnieniu

$$p[B_0] = B$$
, takie że $p^{-1}[B] \in \mathcal{F}_X$

Czyli, innymi słowy

$$p^{-1}[p[B_0]] \in \mathcal{F}_X$$

Nie zachodzi w ogólności równość; $C \neq f^{-1}[f[C]]$, nie wystarczy to do udowodnienia powyższego należenia.

Musimy rozważyć dwa przypadki:

1. $B_0 \cap A = \emptyset$ Wtedy $p^{-1}[p[B_0]] = B_0$, dlatego bo $p|_{X \setminus A} = \text{id. Zatem}$

$$p^{-1}[p[B_0]] = B_0 \in \mathcal{F}_X$$

2. $B_0 \cap A \neq \emptyset$ Zachodzą następujące równości:

$$(B_0 \setminus A) \cap A = \emptyset$$

oraz

$$(B_0 \setminus A) \cup (B_0 \cap A) = B_0$$

Używając też związku $p[C \cup D] = p[C] \cup p[D]$ [Tw. 3.16 (3)] dostajemy

$$p[B_0] = p[(B_0 \setminus A) \cup (B_0 \cap A)] = p[B_0 \setminus A] \cup p[B_0 \cap A]$$

Skoro $p|_{X\setminus A}=\mathrm{id}$, to $p[B_0\setminus A]=B_0\setminus A$. $B_0\cap A$ to podzbiór A, zatem p na każdym elemencie tego zbioru będzie wynosiło a, z definicji projekcji. Mamy zatem

$$p[B_0 \setminus A] \cup p[B_0 \cap A] = (B_0 \setminus A) \cup \{a\}$$

Teraz używając związku $p^{-1}[C\cup D]=p^{-1}[C]\cup p^{-1}[D]$ [Tw. 3.16 (6)] mamy

$$p^{-1}[p[B_0]] = p^{-1}[(B_0 \setminus A) \cup \{a\}] = p^{-1}[B_0 \setminus A] \cup p^{-1}[\{a\}] = (B_0 \setminus A) \cup A = B_0 \in \mathcal{F}_X$$

Dla przypadku otwartego, każdy symbol $\mathcal F$ w dowodzie powyżej należy zastąpić symbolem $\mathcal T$; dowód jest po prostu analogiczny.

Zadanie 10. Podaj przykład odwzorowania ilorazowego, które nie jest ani domknięte, ani otwarte.

Rozwiązanie

Patrząc na wcześniejsze zadanie wystarczy dojść do wniosku, że jeśli A nie jest ani otwarte, ani domknięte to nie możemy udowodnić otwartości lub domkniętości p. Wykorzystamy to.

Niech $X = \mathbb{R}$ z topologią euklidesową \mathcal{T}_e . Niech A = [0, 1). Bierzemy przestrzeń X/A z zadaną projekcją

$$p(x) = \begin{cases} x & x \notin [0, 1) \\ a & x \in [0, 1) \end{cases}$$

gdzie a=[0], czyli klasa abstrakcji zera; mianowicie punkt do którego został zwinięty przedział [0,1). p jest przekształceniem ilorazowym jako przekształcenie które zadaje przestrzeń ilorazową zgodnie z zadaniem 7.

Jednak p nie jest otwarte ani domknięte. Zacznijmy od tego, że $\{a\} \notin \mathcal{T}_{X/A}$ ani $\{a\} \notin \mathcal{F}_{X/A}$, gdyż $p^{-1}[\{a\}] = A = [0,1) \notin \mathcal{T}_{(X/A)} \cup \mathcal{F}_{(X/A)}$. Mamy z tego

$$\left[\frac{1}{4},\frac{1}{2}\right] \in \mathcal{F}_X \wedge p\left[\left[\frac{1}{4},\frac{1}{2}\right]\right] = \{a\} \notin \mathcal{F}_{X/A}, \text{ czyli } p \text{ nie jest domknięte}$$

$$\left(\frac{1}{4},\frac{1}{2}\right) \in \mathcal{T}_X \wedge p\left[\left(\frac{1}{4},\frac{1}{2}\right)\right] = \{a\} \notin \mathcal{T}_{X/A}, \text{ czyli } p \text{ nie jest otwarte}$$