IV.5. Overflows in Operations on Fixed-point Representations

Overflows

- not enough bits, on the integer part, for the number to be represented
 - the number is outside the representable interval
- problem
 - given two numbers within the representable interval, the result of an operation performed on them may fall outside the interval *overflow*
 - when does this occur and how do we detect it?

Moving to Longer Representations

- given the n-bit representation of a number, what is its n+k-bit representation?
 - append non-significant digits to the integer part;
 the fractional part is left unchanged
- A+S: append *k* digits of value 0 to the right of the sign digit
- C₁, C₂: repeat *k* times the sign digit to its right

Examples

	number		
encoding	51	-51	
$A + S^{8,0}$	00110011	10110011	
A+S ^{16,0}	000000000110011	100000000110011	
$C_1^{8,0}$	00110011	11001100	
$C_1^{16,0}$	000000000110011	1111111111001100	
$C_2^{8,0}$	00110011	11001101	
$C_2^{16,0}$	000000000110011	1111111111001101	

Moving to Shorter Representations

- we use these results to answer the inverse question
- given the *n*-bit representation of a number, can in be represented on *n*-*k* bits?
 - yes, if and only if the first k bits to the right of the sign bit have the values as shown before
 - in that case, those k bits can be eliminated from the representation

Operations in C₂

- in the sequel we will only discuss C₂
 - the most widely used representation
- restrictions introduced by the computer on representation-based operations
 - addition: the operands and the result are represented on the same number of bits
 - multiplication: the operands are represented on the same number of bits, and the result is represented on double that number of bits

Overflow - Definition

- let there be a given representation and an operation *op* on numbers
- on n+m bits, numbers can be represented within an interval [min; max]
- let there be two numbers $a, b \in [min; max]$
- operation op performed on a and b causes overflow if

 $a op b \notin [min; max]$

Examples (1)

• in the sequel we will use the C_2 representation with n=4, m=0

$$11111 + 11111 = 111110 \rightarrow 11110$$

- the "additional" bit is ignored (only 4 bits)
- that is in fact the carry out bit

$$val_{C_2}^{4,0}(1111) = -1$$

$$\operatorname{val}_{C_2}^{4,0}(1110) = -2$$

- the result is correct - no overflow

Examples (2)

$$0111 + 0111 = 1110 \rightarrow 1110$$

no "additional" bit (carry out is 0)

$$val_{C_2}^{4,0}(0111)=7$$

$$\operatorname{val}_{C_2}^{4,0}(1110) = -2$$

- incorrect result overflow occurs
- conclusion the carry out bit does not provide information about overflow
 - we must find another detection method

Overflow Condition

- we cannot use directly the definition
 - the numbers (operands) are not available
- observation
 - overflow may occur on addition only when both operands have the same sign
 - and representation of the result has the opposite sign
- homework: overflow may not occur when adding two numbers of opposite signs

Algebraic Sum in C_2 (1)

- Theorem 1 if numbers a and b can be represented in $C_2^{n,m}$, then a \pm b can be represented in $C_2^{n+1,m}$
- Lemma

if
$$a=val_{C_2}^{n+1,m}(\alpha_n\alpha_{n-1}...\alpha_1\alpha_0\alpha_{-1}...\alpha_{-m})$$
 and $\alpha_n=\alpha_{n-1}$ then $a=val_{C_2}^{n,m}(\alpha_{n-1}...\alpha_1\alpha_0\alpha_{-1}...\alpha_{-m})$

Algebraic Sum in C_2 (2)

consider the representations

$$\begin{split} \alpha &= \alpha_{n\text{-}1} \alpha_{n\text{-}2} ... \alpha_{1} \alpha_{0} \alpha_{\text{-}1} ... \alpha_{\text{-}m} \\ \beta &= \beta_{n\text{-}1} \beta_{n\text{-}2} ... \beta_{1} \beta_{0} \beta_{\text{-}1} ... \beta_{\text{-}m} \end{split}$$

• we define their formal sum $\gamma = \alpha + \beta$ as

$$\gamma = \gamma_{n} \gamma_{n-1} \gamma_{n-2} ... \gamma_{1} \gamma_{0} \gamma_{-1} ... \gamma_{-m}$$
that is
$$\sum_{i=-m}^{n} (\gamma_{i} \times 2^{i}) = \sum_{i=-m}^{n-1} \left((\alpha_{i} + \beta_{i}) \times 2^{i} \right)$$

Algebraic Sum in C_2 (3)

• Theorem 2

if the algebraic sum of numbers represented by α and β does not cause overflow, then the representation of the result is

$$\gamma_{n-1}\gamma_{n-2}...\gamma_1\gamma_0\gamma_{-1}...\gamma_{-m}$$

• Theorem 3

the algebraic sum of numbers represented by α and β does not cause overflow if carry digits C_{n-1} and C_n of the result are equal

Consequences

- addition in C₂ can be performed by using a "classic" adder
 - the sigs bits are added just as any other bits
- overflow in C₂ can be tested by attaching an NXOR gate to the adder
 - whose inputs are the carry digits C_{n-1} and C_n
 - it is thus not necessary to know the operands

IV.4. Floating-point Representations

Problems with Fixed-point Representations

- total length n+m is fixed by hardware
- but, in fixed-point representations, both *n* and *m* are also fixed
 - so magnitude and precision are predetermined and cannot be changed
 - what if we need better precision and are willing to decrease magnitude for that?
 - or the opposite

Scientific Notation

- same number many ways of writing it $571.42 \times 10^2 = 5.7142 \times 10^4 = 571420 \times 10^{-1} = \dots$
- normalized writing
 - exactly one significant digit to the left of the decimal point unique for each number
 5.7142 × 10⁴

Scientific Notation in Base 2

- the significant digit before the decimal point can only be 1
 - no need to memorize it in practice
- exception representation of number 0
 - only digits with value 0
- normalized writing (non-zero number)
 - $1.xx...x \times 2^y$
 - base 2 is implicit also no need to memorize it

Floating-point Representations

- components
 - sign (S): 0 or 1 (+ or -)
 - mantissa (M): 1.xx...x
 - usually, only the fractional part (f) is memorized

$$M = 1 + f$$
; $f = 0.xx...x$

- characteristic (scale)
 - excess representation of the exponent

$$N = (-1)^S \times 1.f \times 2^{C - excess}$$

Limits

- the length of the characteristic is fixed
 - so there are a minimal and a maximal value of the exponent
- overflow exponent too big
 - the number is considered $\pm \infty$
- underflow exponent too small
 - the number is considered 0
- the error type does not depend on the sign

Standardization

- essential for portability
- standard IEEE 754/1985
 - established between 1977 and 1985
 - first commercial implementation: Intel 8087
- 2 main variants
 - single precision (32 bits)
 - double precision (64 bits)
 - some extensions have also been designed

Single Precision

- corresponds to data type float in C/C++
- limits in base 10
 - minimum: ≈ 1.2×10^{-38}
 - any number with smaller module is considered 0
 - maximum: $\approx 3.4 \times 10^{38}$
 - any number with bigger module is considered $\pm \infty$

Double Precision

63 62 51 0

S C = exponent + 1023 f = fractional part of the mantissa

- corresponds to data type double in C/C++
- limits in base 10
 - minimum: ≈ 1.7×10^{-308}
 - maximum: $\approx 1.7 \times 10^{308}$
- higher magnitude
- higher precision

Structure

- in fact, the floating-point representation is made of two fixed-point representations
 - sign and mantissa: sign-magnitude
 - characteristic: excess
- why are fields memorized in order (S,C,f)?
 - to compare two representations, fields must be considered in this order

Representations in IEEE 754/1985

	single precision	double precision
Bits sign+mantissa	24	53
Maximal exponent	128	1024
• finite numbers	127	1023
Minimal exponent	-127	-1023
• normalized numbers	-126	-1022
Characteristic: excess	127	1023

Example 1

- consider number -23.25
 - what is its single precision representation?
- sign: 1 (negative)
- writing in base 2: $-23.25_{(10)} = -10111.01_{(2)}$
- normalization: $10111.01 = 1.011101 \times 2^4$
- characteristic: $4 + 127 = 131 = 10000011_{(2)}$
- representation
 - 1 10000011 0111010... $0_{(2)} = C1BA0000_{(16)}$

Example 2

• which number has the single precision representation $42D80000_{(16)}$?

$$42D80000_{(16)} = 0 10000101 10110000...0_{(2)}$$

 $S = 0 \rightarrow positive number$

$$C = 10000101_{(2)} = 133_{(10)} \Rightarrow e = 133 - 127 = 6$$

$$M = 1 + 0.1011 = 1.1011$$

• number: $+1.1011 \times 2^6 = 1101100_{(2)} = 108_{(10)}$

Extended Arithmetic

- common real-number arithmetic, plus
 - representation for ∞ and elementary computation rules with it
 - x / ∞ , $x \times \infty$, $\infty \pm \infty$
 - representations for the result of undefined operations (NaN - Not a Number) and propagation rules
 - NaN $op x = NaN, \forall op$
- usage mathematical libraries

Example

• computing function arccos with the formula

$$\arccos(x)=2 \cdot \arctan \sqrt{(1-x)/(1+x)}$$

• what is the value of arccos(-1)?

$$x=-1 \Rightarrow (1-x)/(1+x) = 2/0=\infty \Rightarrow$$

$$\Rightarrow \arctan\sqrt{(1-x)/(1+x)} = \pi/2$$

- answer: $arccos(-1) = \pi$
 - impossible to reach it without extended arithmetic

Types of Floating-point Values

value type	exponent (e)	f	value
normalized	e _{min} <e <e<sub="">max</e>	any value	$(-1)^{S} \times 1.f \times 2^{e}$
denormalized	$e = e_{\min}$	$f \neq 0$	$(-1)^{S} \times 0.f \times 2^{e}$
zero	$e = e_{\min}$	f = 0	S 0 (=0)
infinity	$e = e_{max}$	f = 0	$S \propto (\pm \infty)$
NaN	$e = e_{max}$	f ≠ 0	NaN

Exceeding the Limits

- underflow
 - in the normalized form of the number, the negative exponent cannot be represented by the characteristic
 - the number is considered 0
- overflow
 - in the normalized form of the number, the positive exponent is too large to be represented by the characteristic
 - the number is considered $\pm \infty$, depending on the sign

De-normalized Representations

- a number that is smaller in module than the smallest (non-zero) normalized representation
 - the mantissa is no longer normalized
 - so it is going to be 0.f, instead of 1.f
 - while the exponent will have the smallest value
 - single precision: -127
 - double precision: -1023

Approximations (1)

- underflow is actually an approximation
 - a very small non-zero number is considered 0
- what is the precision of floating-point representation?
 - depends on the exponent
 - single precision: 2^{e-23}
 - double precision: 2^{e-52}
- very big exponent very poor precision

Approximations (2)

- example: e = 123
 - distance between two consecutive numbers that can be represented exactly: $2^{123-23} = 2^{100} \approx 10^{30}$
- what can be represented exactly?
 - rational (not real) numbers only part of them

Floating-point Arithmetic

given two numbers

$$x=m_x \cdot 2^{e_x}$$
$$y=m_y \cdot 2^{e_y}$$

elementary arithmetic operations

$$x+y=(m_x\cdot 2^{e_x-e_y}+m_y)\cdot 2^{e_y}$$
, if $e_x\le e_y$
 $x-y=(m_x\cdot 2^{e_x-e_y}-m_y)\cdot 2^{e_y}$, if $e_x\le e_y$
 $x\cdot y=(m_x\cdot m_y)\cdot 2^{e_x+e_y}$
 $x:y=(m_x:m_y)\cdot 2^{e_x-e_y}$

Floating-point Addition

- compare the exponents
 - shift one mantissa until they become equal
- add the mantissas
 - in two's complement
- normalize the sum (if necessary)
 - if overflow/underflow occurs stop
- round the sum's mantissa to the number of bits available

Floating-point Multiplication

- add the exponents
- multiply the mantissas
- normalize the product
 - if overflow/underflow occurs stop
- round the product's mantissa to the number of bits available
- determine the sign of the result

Homework

- follow the steps of the floating-point addition of the representations of the numbers written in base 10 as -0.75 and 0.375
- the same for the multiplication of the two numbers above
- IEEE 754, single precision representation will be considered

V. Computer Architecture and Organization

The von Neumann Computer (1)

- memorized program
 - instruction codes are stored in the same memory as the data
- memory
 - infinite (ideally), equal access time to all locations
- upon execution, instruction *i* is followed by
 - the instruction memorized right after i
 - the instruction indicated by i (branch)

The von Neumann Computer (2)

- the address of the next instruction is permanently maintained by the processor
 - into a dedicated register PC (Program Counter)
 - and permanently updated, depending on the instruction type ("normal" or branch)
- at each moment, only one instruction is loaded for execution

Computing System - Architecture

Computer Organization

