

Autonomous UAV Capstone Status Presentation V

1/c Domenico Bulone 1/c Cody Meyers

1/c Matthew Kim 1/c Jacob Schellman

1/c Gavin McGahey 1/c Ryan Von Brock

Advisors:

Professor Hartnett

Lieutenant Blanco

Professor Swaszek

April 5th, 2022

Mission Needs Statement

- To design a low cost, open architecture, and cooperative autonomous quadcopter.
 - USCG missions: supplement the ScanEagle.
 - RoboBoat competition.
- Key Performance Parameters:
 - Stable, autonomous flight
 - Transporting small payloads
 - Coordinate objectives with the ASV
 - Takeoff and landing from the ASV

Major Developmental Systems

Communications

Computer Vision

Drone Control

Satellite Navigation

Landing Assembly

Payload Delivery

Drone Hardware & Physical Specifications

- Built on S500 Platform (Total Weight = 3.4 lb)
- Flight Controller: PixHawk 2.4.8
- Microprocessor: Raspberry Pi 4
- Communications: Xbee Series 3, RC XMIT/RCV
- Navigation: LIDAR, ZED-FP9, Raspberry Pi Camera
- Power Supply: 11.1 V LiPo Battery
- Total Weight: 3.4 lbs
- Total Reproduction Cost: ~\$900
- Battery Life: 6-10.7 Minutes

Minimum Battery Life						
Battery Capacity (Ah)		Amperage Draw			Battery Life (Minutes)	
4.2		MT2213 Motor x4	38.4		6.00	
		Raspberry Pi	3			
		Xbee	0.017			
		Zed F9P	0.12			
		LIDAR	0.085			
		Pixhawk	0.28			
		PiCam	0.095			
		Total	41.997			

Average Battery Life						
Battery Capacity (Ah)		Amperage Draw			Battery Life (Minutes)	
4.2		MT2213 Motor x4	20		10.68	
		Raspberry Pi	3			
		Xbee	0.017			
		Zed F9P	0.12			
		LIDAR	0.085			
		Pixhawk	0.28			
		PiCam	0.095			
		Total	23.597			

Drone Control

- Connects the 6 major systems
- Pixhawk Flight Controller
 - Hardware
- PX4 Autopilot
 - Software
- Flight Modes
- Testing

Communications

- Digi DigiMesh®
 - Mesh Networking
 - Communication with ASV
 - RTCM Corrections
- Digi XBee 3 DigiMesh 2.4 RF Modules

Satellite Navigation with RTK

- 2 Receivers
 - Base Station
 - Rover Receiver
- Improved accuracy
 - Control finely tuned movements
 - Not location, but accuracy for landing pad

Receiver Placement

ZED-F9R Rover Receiver

Base Station

RTK Testing Development

GPS: +/- 60 cm

RTK (QGroundControl): +/- 6 cm

UBX - NAV (Navigation) - HPPOSECEF (High Precision Position ECEF)					
Time of week	417853.000	[s]			
ECEF-X	1473304.6442	[m]			
ECEF-Y	-4561312.0588	[m]			
ECEF-Z	4193547.4200	[m]			
ECEF Invalid					
Accuracy Estimate Position 3D 0.0173 [m]					

RTK: +/- 1.73 cm

Computer Vision Workflow

- Raspberry Pi4 + PiCam
 - 480p @ 15-20 FPS
- Detection Method
 - ArUco Markers

Dual ArUco Marker Landing Solution

- 2' x 2' Velcro ArUco Marker
 - Smaller 4" x 4" marker in center
- Successful detection in real-world and simulated tests
- Large marker detectable up to at least 50'
- Small marker detectable at up to ~13'

Landing Platform

- 2.5 x 2.5 ft. Plywood
- Velcro ArUco Marker
- Creates enough friction to secure drone and allow takeoff

Payload Delivery

- Scoop Mechanism
- Servo Actuated

Major Milestones

- Implementation of autonomous search, identification, and landing.
- 15 Oct. 2021: Stable Flight Achieved
- 3 Nov. 2021: Autonomous Flight Achieved
- 26 Mar. 2022: Autonomous Landing Achieved

System Integration – Stable Flight

Stability During Disturbance Inputs

Tuning Flight Controller Gains on Test Bed

System Integration – Autonomous Flight

System Integration – SITL Testing

- Software-in-the-Loop
 - Virtual world, virtual drone.
 - Identify states of the landing sequence.
 - Low risk, rapid testing.

Autonomous Landing in Simulation

System Integration – Autonomous Landing

- Real-World Testing
 - Combine all workflows.
 - High risk.
 - Time-consuming testing.
- Generally High Reward
 - Relevant information immediately.

Autonomous Landing (26 Mar. 2022)

Future Development

- Improved AruCo detection.
 - Stabilized Camera
- Optimized RasPi scripts.
- In-flight RTK integration.
- Expanded drone capabilities
 - Multi-drone communications
 - Mapping
 - Hardware optimization

Questions?

The RoboBoat Competition

- RoboBoat is an international competition where an autonomous surface vessel performs navigating and docking tasks.
- Each ASV is allowed to cooperate with a UAV.
- Our role as the UAV:
 - Takeoff from and land on the ASV.
 - Locate and deliver a payload.
 - Fly desired search patterns.
 - Communicate findings with the ASV.

Budget

Major Costs:

- S500 Frame: \$59
- Motors: \$100
- Raspberry Pi 3B+: \$55
- Pixhawk 2.4.8: \$75
- RTK: \$350
- Oak I Camera: \$180

Future Costs:

- No anticipated additions to drone
- Maintenance costs

Approximate Drone Cost: \$900

Platform Requirements

Requirement	Solution
Weigh less than 10 pounds (T), ideally 5 pounds (O).	Small Platform: 3.4 pounds.
Be capable of precision navigation, ideally 10cm (O).	Equipped with GPS-RTK, Lidar, and a camera.
Capable of transporting small objects.	Servo Actuated close/release scoop mechanism.
Positively buoyancy in water for 120 seconds (T), or indefinitely (O).	Foam outriggers underneath propellers. 5.1 lbs of buoyant force.
Safety guidelines: remote kill switch, not exceed 60 V DC.	Remote kill switch configured on RC transmitter. Utilizes an 11.1 V LiPo battery.
Total cost to reproduce less than \$1,000 (O).	Current sum of components is approximately \$900.

