第二节 求导法则和基本初等函数求导公式

第三节 高阶导数

第四节 隐函数及由参数方程所确定的函数的导数

第五节 函数的微分

▶ 导数的概念 1/35

第二节 求导法则和基本初等函数求导公式

第三节 高阶导数

第四节 隐函数及由参数方程所确定的函数的导数

第五节 函数的微分

第二节 求导法则和基本初等函数求导公式

第三节 高阶导数

第四节 隐函数及由参数方程所确定的函数的导数

第五节 函数的微分

▷ 高阶导数 3/35

第二节 求导法则和基本初等函数求导公式

第三节 高阶导数

第四节 隐函数及由参数方程所确定的函数的导数

第五节 函数的微分

第二节 求导法则和基本初等函数求导公式

第三节 高阶导数

第四节 隐函数及由参数方程所确定的函数的导数

第五节 函数的微分

▶ 函数的微分 5/35

第五节	函数的微分
5.1	微分的定义
5.2	微分的几何意义
5.3	基本初等函数的微分公式与微分运算法则
5.4	微分在近似计算中的应用
5.5	小结 思考题

函数的改变量

例 1 一块正方形金属薄片受热后,其边长由 x_0 增加到 $x_0 + \Delta x$. 求此薄片面积的改变量 Δy .

解 正方形面积为 $y = f(x) = x^2$. 则面积改变量为

$$\Delta y = (x_0 + \Delta x)^2 - x_0^2 = 2x_0 \Delta x + (\Delta x)^2.$$

比如, 当 $x_0 = 1$, $\Delta x = 0.1$ 时,

$$\Delta y = 2 \cdot 1 \cdot 0.1 + 0.1^2 = 0.2 + 0.01.$$

注记 若 Δx 很小,则 $2x_0\Delta x$ 远比 $(\Delta x)^2$ 大。因此

微分的定义

定义 2 对于自变量在点 x_0 处的改变量 Δx ,如果函数y = f(x)的相应改变量 Δy 可以表示为

$$\Delta y = A\Delta x + o(\Delta x) \qquad (\Delta x \to 0)$$

其中A与 Δx 无关,则称y = f(x)在点 x_0 处可微,并称 $A\Delta x$ 为函数y = f(x) 在点 x_0 处(相应于自变量增量 Δx)的微分,记为

$$dy|_{x=x_0} \stackrel{d}{\otimes} df(x_0),$$

即

$$dy|_{x=x_0} = A\Delta x$$
.

注记 微分dy叫做函数增量Δy的线性主部.

微分的定义

由定义知:

- (1) dy 是自变量的改变量 Δx 的线性函数;
- (2) $\Delta y dy = o(\Delta x)$ 是比 Δx 高阶无穷小;
- (3) 当 $A \neq 0$ 时,有

$$\frac{\Delta y}{\mathrm{d}y} = 1 + \frac{o(\Delta x)}{A \cdot \Delta x} \to 1 \quad (\Delta x \to 0),$$

即dy 与 Δy 是等价无穷小;

- (4) A 是与 Δx 无关的常数,但与 f(x) 和 x_0 有关;
- (5) 当 |Δx| 很小时, Δy ≈ dy (线性主部).

可微的条件

定理 y = f(x)在点 x_0 处可微 $\iff y = f(x)$ 在点 x_0 处可导,且 $A = f'(x_0)$.

证明.

(1) 必要性: 由f(x) 在点 x_0 可微可得

$$\Delta y = A \cdot \Delta x + o(\Delta x),$$

所以

$$\frac{\Delta y}{\Delta x} = A + \frac{o(\Delta x)}{\Delta x}.$$

于是

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = A + \lim_{\Delta x \to 0} \frac{o(\Delta x)}{\Delta x} = A$$

即函数 f(x) 在点 x_0 可导, 且 $A = f'(x_0)$.

可微的条件

续.

(2) 充分性: 因为函数f(x) 在点 x_0 可导, 因此

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0) \Longrightarrow \frac{\Delta y}{\Delta x} = f'(x_0) + \alpha$$

其中 $\alpha \rightarrow 0$ ($\Delta x \rightarrow 0$), 从而

$$\Delta y = f'(x_0) \cdot \Delta x + \alpha \cdot (\Delta x) = f'(x_0) \cdot \Delta x + o(\Delta x).$$

由可微的定义可知函数 f(x) 在点 x_0 可微,且 $A = f'(x_0)$.

函数 y = f(x) 在任意点 x 的微分,称为函数的微分,记作 dy 或 df(x), 即 d $y = f'(x)\Delta x$.

导数与微分的区别

1. 函数 f(x) 在点 x_0 处的导数是一个定数 $f'(x_0)$, 而微分 $dy = f'(x_0)(x-x_0)$ 是 $x-x_0$ 的线性函数,它的定义域是R. 注意到 $\lim_{\substack{x \to x_0 \\ x \to x_0}} dy = \lim_{\substack{x \to x_0 \\ x \to x_0}} f'(x_0)(x-x_0) = 0,$

因此, dy是当 $x \rightarrow x_0$ 时的无穷小.

2. 从几何意义上来看, $f'(x_0)$ 是曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处切线的斜率,而微分 d $y = f'(x_0)$ $(x - x_0)$ 是曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线方程在点 x_0 的纵坐标增量.

微分的计算

$$\mathbf{H}$$
 dy = $(x^2)'\Delta x = 2x\Delta x$,所以

$$dy \Big|_{\substack{x=2\\ \Delta x = 0.01}} = 2 \times 2 \times 0.01 = 0.04.$$

通常把自变量x的增量 Δx 称为自变量的微分记作 dx, 即 $dx = \Delta x$. 于是我们有

$$dy = f'(x)dx \Longrightarrow \frac{dy}{dx} = f'(x)$$

即函数的微分dy与自变量的微分dx之商等于该函数的导数. 导数也叫"微商".

微分的计算

练习1 求微分: (1)
$$y = xe^x$$
; (2) $y = \sin(3x + 2)$.

$$M = (1) dy = y'_y dx = (xe^x)'_y dx = (x+1)e^x dx.$$

(2)
$$dy = y'_x dx = (\sin(3x + 2))'_x dx$$
.
= $3\cos(3x + 2) dx$

第五节	函数的微分
5.1	微分的定义
5.2	微分的几何意义
5.3	基本初等函数的微分公式与微分运算法则
5.4	微分在近似计算中的应用
5.5	小结 思考题

微分的几何意义

当 Δx 很小时,切线纵坐标对应的增量dy可以近似替代曲线纵坐标对应的增量 Δy .

▷ 函数的微分 ▷ 微分的几何意义

第五节	函数的微分
5.1	微分的定义
5.2	微分的几何意义
5.3	基本初等函数的微分公式与微分运算法则
5.4	微分在近似计算中的应用
5.5	小结 思考题

基本初等函数的微分公式与微分运算法则

由dy = f'(x)dx可知,要计算函数的微分,只需计算函数的导数,乘以自变量的微分.

1.基本初等函数的微分公式

$$d(C) = 0 d(x^{\mu}) = \mu x^{\mu - 1} dx$$

$$d(\sin x) = \cos x dx d(\cos x) = -\sin x dx$$

$$d(\tan x) = \sec^2 x dx d(\cot x) = -\csc^2 x dx$$

$$d(\sec x) = \sec x \tan x dx d(\csc x) = -\csc x \cot x dx$$

基本初等函数的微分公式

$$d(a^{x}) = a^{x} \ln a dx \qquad d(e^{x}) = e^{x} dx$$

$$d(\log_{a} x) = \frac{1}{x \ln a} dx \qquad d(\ln x) = \frac{1}{x} dx$$

$$d(\arcsin x) = \frac{1}{\sqrt{1 - x^{2}}} dx \qquad d(\arccos x) = -\frac{1}{\sqrt{1 - x^{2}}} dx$$

$$d(\arctan x) = \frac{1}{1 + x^{2}} dx \qquad d(\operatorname{arccot} x) = -\frac{1}{1 + x^{2}} dx$$

微分运算法则

2. 函数和、差、积、商的微分法则

$$d(u \pm v) = du \pm dv \qquad d(Cu) = Cdu$$

$$d(uv) = vdu + udv \qquad d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}$$

微分的形式不变性

- 若y = f(u), 则有dy = f'(u)du;
- 若y = f(u), u = g(x), 则仍有dy = f'(u) du。

例4 $[\sin x]' = \cos x$, 但是 $[\sin 2x]' \neq \cos 2x$.

 $d(\sin x) = \cos x dx \implies d(\sin 2x) = \cos 2x d(2x).$

求微分举例

例 5 设
$$y = \ln(x + e^{x^2})$$
, 求 dy.

$$\mathbf{W} : y' = \frac{1 + 2xe^{x^2}}{x + e^{x^2}}, \quad \therefore dy = \frac{1 + 2xe^{x^2}}{x + e^{x^2}} dx$$

例 6 设 $y = e^{1-3x} \cos x$, 求 dy.

解 易知dy =
$$\cos x \cdot d(e^{1-3x}) + e^{1-3x} \cdot d(\cos x)$$
. 因为
$$(e^{1-3x})' = -3e^{1-3x}, (\cos x)' = -\sin x$$

所以

$$dy = \cos x \cdot (-3e^{1-3x}) dx + e^{1-3x} \cdot (-\sin x) dx$$
$$= -e^{1-3x} (3\cos x + \sin x) dx$$

求微分举例

例 7 设
$$y = \sin(2x + 1)$$
, 求 dy.

$$\mathbf{H} \quad \because y = \sin u, u = 2x + 1.$$

$$\therefore dy = \cos u \, du = \cos(2x+1) \, d(2x+1)$$
$$= \cos(2x+1) \cdot 2 \, dx = 2 \cos(2x+1) \, dx$$

例8 设
$$y = e^{-ax} \sin bx$$
, 求 dy.

$$dy = e^{-ax} \cdot \cos bx \, d(bx) + \sin bx \cdot e^{-ax} \, d(-ax)$$

$$\mathbf{m} = e^{-ax} \cdot \cos bx \cdot b \, dx + \sin bx \cdot e^{-ax} \cdot (-a) \, dx$$
$$= e^{-ax} (b \cos bx - a \sin bx) \, dx$$

求微分举例

例 9 在下列等式左端的括号中填入适当的函数,使等式成立.

(1) d() =
$$\cos \omega t dt$$
 (2) d($\sin x^2$) = () d(\sqrt{x})

 \mathbf{M} (1) 因为d($\sin \omega t$) = $\omega \cos \omega t \, dt$, 所以

$$\cos \omega t \, dt = \frac{1}{\omega} \, d(\sin \omega t) = d\left(\frac{1}{\omega} \sin \omega t\right)$$

从而 $d\left(\frac{1}{\omega}\sin\omega t + C\right) = \cos\omega t dt$

$$(2) :: \frac{d(\sin x^2)}{d(\sqrt{x})} = \frac{2x \cos x^2 dx}{\frac{1}{2\sqrt{x}} dx} = 4x\sqrt{x} \cos x^2$$

$$\therefore d(\sin x^2) = (4x\sqrt{x}\cos x^2)d(\sqrt{x})$$

第五节	函数的微分
5.1	微分的定义
5.2	微分的几何意义
5.3	基本初等函数的微分公式与微分运算法则
5.4	微分在近似计算中的应用
5.5	小结 思考题

若 y = f(x) 在点 x_0 处的导数 $f'(x_0) \neq 0$, 且 $|\Delta x|$ 很小时,

$$\Delta y|_{x=x_0} \approx dy|_{x=x_0} = f'(x_0) \cdot \Delta x.$$

1. 求 f(x) 在点 $x = x_0$ 附近的近似值

由
$$\Delta y = f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \cdot \Delta x$$
 得:

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \cdot \Delta x.$$

2.求 f(x) 在点 x = 0 附近的近似值

$$\Rightarrow x_0 = 0, \Delta x = x. \quad \because f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \cdot \Delta x$$
$$\therefore f(x) \approx f(0) + f'(0) \cdot x$$

例 10 计算cos60°30′的近似值.

解 设
$$f(x) = \cos x$$
, 则 $f'(x) = -\sin x$, $(x 为弧度)$.
 $\cos 60^{\circ}30' = \cos\left(\frac{\pi}{3} + \frac{\pi}{360}\right) \approx \cos\frac{\pi}{3} - \sin\frac{\pi}{3} \cdot \frac{\pi}{360}$

$$= \frac{1}{2} - \frac{\sqrt{3}}{2} \cdot \frac{\pi}{360} \approx 0.4924$$

例 11 半径10厘米的金属圆片加热后,半径伸长了 0.05厘米,问面 积增大了多少?

解 设
$$A = \pi r^2$$
, $r = 10$ 厘米, $\Delta r = 0.05$ 厘米. 则
$$\Delta A \approx dA = 2\pi r \cdot \Delta r = 2\pi \times 10 \times 0.05 = \pi (\mathbb{E} \mathbb{E}^2).$$

常用近似公式

当 |x| 很小时, 有

- (1) $\sqrt[n]{1+x} \approx 1 + \frac{1}{n}x$;
- (2) sin x ≈ x (x 为弧度);
- (3) $tan x \approx x (x 为弧度);$
- (4) $e^x \approx 1 + x$
- (5) $ln(1+x) \approx x$

例 12 计算下列各数的近似值,

- $(1) \sqrt[3]{998.5}$
- (2) $e^{-0.03}$.

(2)
$$e^{-0.03} \approx 1 - 0.03 = 0.97$$
.

第五节	函数的微分
5.1	微分的定义
5.2	微分的几何意义
5.3	基本初等函数的微分公式与微分运算法则
5.4	微分在近似计算中的应用
5.5	小结 思考题

小结

微分学所要解决的两类问题:

∫ 函数的变化率问题 ⇒ 导数的概念∫ 函数的增量问题 ⇒ 微分的概念

求导数与微分的方法,叫做微分法. 研究微分法与导数理论及其应用的科学,叫做微分学.

导数与微分的联系:可导⇔可微.

小结

若 y = f(x) 在点 x_0 处的导数 $f'(x_0) \neq 0$, 且 $|\Delta x|$ 很小时,

$$\Delta y|_{x=x_0} \approx dy|_{x=x_0} = f'(x_0) \cdot \Delta x.$$

1. f(x) 在点 $x = x_0$ 附近的近似值为:

$$f(x) \approx f(x_0) + f'(x_0) \cdot (x - x_0).$$

2.f(x) 在点 x = 0 附近的近似值为:

$$f(x) \approx f(0) + f'(0) \cdot x$$

▷ 函数的微分 ▷ 小结 思考题

思考题

思考 某家有一机械挂钟,钟摆的周期为1秒.在冬季,摆长缩短了0.01厘米,这只钟每天大约快多少?

(单摆的周期公式为: $T=2\pi\sqrt{\frac{l}{g}}$ (l为摆长, 单位: cm, g 取 980 cm/s².)

解 由
$$T = 2\pi \sqrt{\frac{l}{g}}$$
,可得 $\frac{dT}{dl} = \frac{\pi}{\sqrt{gl}}$. 当 $|\Delta l| << l$ 时,
$$\Delta T \approx dT = \frac{\pi}{\sqrt{gl}} \Delta l.$$

▷ 函数的微分 ▷ 小结 思考题

思考题

解(续) 据题设,摆的周期是1秒,由此可知摆的原长为 $\frac{g}{(2\pi)^2}$ (cm). 现摆长的改变量 $\Delta l = -0.01$ cm,于是周期的改变量为 π

$$\Delta T \approx dT = \frac{\pi}{\sqrt{g \cdot \frac{g}{(2\pi)^2}}} \times (-0.01)$$
$$= \frac{2\pi^2}{g} \times (-0.01) \approx -0.0002(s)$$

也就是说,由于摆长缩短了0.01cm,钟摆的周期便相应缩短了大约0.0002秒,即每秒约快0.0002 秒,从而每天约快 0.0002×24× $60 \times 60 = 17.289(s)$.

▷ 函数的微分 ▷ 小结 思考题