Provas Finais Modelo

Prova Final Modelo 1 – páginas 202 a 205 Caderno 1

1.

- 1.1. Como ao selecionar ao acaso um dos elementos da equipa, a probabilidade de o elemento selecionado ser rapariga é 50%, então nessa equipa existem tantas raparigas como rapazes. De entre as três equipas, a única com esta característica é a equipa B.
- 1.2. Como é escolhido um elemento da equipa A e um elemento da equipa B, podemos organizar todos os pares de elementos que podem ser escolhidos, com recurso a uma tabela:

		Equipa B					
		Rapaz	Rapaz	Rapariga	Rapariga		
А	Rapaz	∂ ∂	∂ ∂	3° ₽	₹ ₽		
Equipa A	Rapaz	∂ ∂	∂ ∂	3° ₽	₹ ₽		
Eq	Rapariga	₽3	₽3	φφ	99		

Assim, podemos observar que existem 12 pares diferentes que podem ser escolhidos, dos quais apenas 4 são compostos por dois rapazes. Assim, pela lei de Laplace, a probabilidade de os dois capitães serem ambos rapazes é:

$$P = \frac{\text{número de casos favoráveis}}{\text{número de casos possíveis}} = \frac{4}{12} = \frac{1}{3}$$

2.

2.1. O plano JDE é estritamente paralelo ao plano que contém a face [GHBA] do prisma.

2.2.
$$\overline{OB} = \overline{OC} = \overline{BC} = 2 \text{ cm}$$

Logo,
$$\overline{BM} = \frac{\overline{BC}}{2} = 1$$
 cm.

Como [BOM] é um triângulo retângulo em M, pelo teorema de Pitágoras, temos:

$$\overline{BO}^2 = \overline{BM}^2 + \overline{OM}^2 \Leftrightarrow 2^2 = 1^2 + \overline{OM}^2$$

$$\Leftrightarrow \overline{OM}^2 = 4 - 1$$

$$\Leftrightarrow \overline{OM} = \sqrt{3} \text{ cm}, \overline{OM} > 0$$

2.3. O volume do prisma [ABCDEFGHIJKL] é igual a $A_b \times$ altura. A base é um hexágono regular, logo a área é igual a $\frac{\text{perímetro} \times \text{apótema}}{2}$, ou seja: $\frac{2 \times 6 \times \sqrt{3}}{2} = 6\sqrt{3} \text{ cm}^2$

$$\frac{2 \times 6 \times \sqrt{3}}{2} = 6\sqrt{3} \text{ cm}^2$$

Como as faces laterais do prisma são quadrados, a altura é 2 cm.

 $V_{[ABCDEFGHIJKL]} = 6\sqrt{3} \times 2 = 12\sqrt{3} \text{ cm}^3$, ou seja,

3. Como a > b, -5 < 0, -3 < 0 e -5 < -3, então -5a < -3b.

Assim, a opção correta é a [D].

- **4.** 20 milhões = 20×10^6
- $\frac{6}{5}$ de 20 milhões é igual a $\frac{6}{5} \times 20 \times 10^6 = 24 \times 10^6$.

Escrevendo o número em notação científica, temos 2.4×10^{7} .

O custo real do centro comercial foi 2.4×10^7 euros.

5. Como o ângulo ABC é reto, então o triângulo [ABC] é retângulo em B. Relativamente ao ângulo BAC, o lado [AB] é o cateto adjacente e o lado [AC] é a hipotenusa. Usando a definição de cosseno, temos:

$$\cos B\hat{A}C = \frac{\text{medida do cateto adjacente}}{\text{medida da hipotenusa}}$$

$$\Leftrightarrow \cos B\hat{A}C = \frac{\overline{AB}}{\overline{AC}} \Leftrightarrow \cos 35^{\circ} = \frac{\overline{AB}}{46}$$

$$\Leftrightarrow \overline{AB} = 46 \times \cos 35^{\circ}$$

Como cos $35^{\circ} \approx 0.82$, vem que:

$$\overline{AB} \approx 46 \times 0.82 \approx 37.72 \text{ m}$$

Assim, como $\overline{AB} = \overline{EF}$ (porque os triângulos [ABC] e [DEF] são iguais, pelo critério LAL), e $\overline{BF} = \overline{CD}$, temos que:

$$\overline{AE} = \overline{AB} + \overline{BF} + \overline{EF} \Leftrightarrow \overline{AE} = 2 \times \overline{AB} + \overline{CD}$$

$$\Leftrightarrow \overline{AE} - 2 \times \overline{AB} = \overline{CD}$$

Como $\overline{AE} = \overline{AC} + \overline{ED} = 46 + 46 = 92 \text{ m e } \overline{AB} \approx 37,72 \text{ m}$ então a distância entre os pontos C e D, em metros, arredondada às unidades, é:

$$\overline{CD} \approx 92 - 2 \times 37,72 \approx 16,56 \approx 17 \text{ m}$$

Caderno 2

- 6. 1ª figura: 2 círculos pretos, 2ª figura: 3 círculos pretos, 3ª figura: 4 círculos pretos, ..., ou seja, a figura que tem 11 círculos pretos é a 10ª Então:
- 1.ª figura: 3 círculos brancos
- **2ª** figura: 3 + 3 = 6 círculos brancos
- **3. figura:** 6 + 4 = 10 círculos brancos
- **4.** figura: 10 + 5 = 15 círculos brancos
- 5. figura: 15 + 6 = 21 círculos brancos

6. figura: 21 + 7 = 28 círculos brancos

7. figura: 28 + 8 = 36 círculos brancos

8. figura: 36 + 9 = 45 círculos brancos

9.ª figura: 45 + 10 = 55 círculos brancos

10^a figura: 55 + 11 = 66 círculos brancos

A opção correta é a [D].

7.

7.1.
$$-2\pi \approx -6,28$$
 e $\sqrt{3} \approx 1,73$

O menor número inteiro pertencente a A é -6 e o maior é 1.

7.2. [A]
$$A \cap \mathbb{R} = A$$

[B]
$$A \cap \mathbb{R}^+ = [0, \sqrt{3}]$$

[C]
$$A \cap]0, +\infty[=]0, \sqrt{3}[$$

[D]
$$A \cap [0, \sqrt{3}] = [0, \sqrt{3}]$$

Logo, a opção correta é a [D].

8.

8.1. A função g é uma função de proporcionalidade inversa, ou seja, do tipo $y = \frac{a}{r}$, x > 0.

Como o ponto A pertence ao gráfico da função f, $f(2) = \frac{3}{4} \times 2^2 = 3$, ou seja, o ponto A tem coordenadas (2, 3). Logo, $g(x) = \frac{a}{x}$, x > 0, em que $a = 2 \times 3 = 6$. Assim, $g(x) = \frac{6}{x}$, x > 0.

8.2. Para determinar as abcissas dos pontos, basta igualar $-\frac{3}{4}x + \frac{3}{2}a\frac{3}{4}x^2$, ou seja:

$$-\frac{3}{4}x + \frac{3}{2} = \frac{3}{4}x^2 \Leftrightarrow \frac{3}{4}x^2 + \frac{3}{4}x - \frac{3}{2} = 0$$
$$\Leftrightarrow 3x^2 + 3x - 6 = 0$$

Recorrendo à fórmula resolvente, com a = 3, b = 3 e c = -6, tem-se que:

$$x = \frac{-3 \pm \sqrt{3^2 - 4 \times 3 \times (-6)}}{2 \times 3} \Leftrightarrow x = \frac{-3 \pm \sqrt{9 + 72}}{6}$$

$$\Leftrightarrow x = \frac{-3 \pm \sqrt{81}}{6}$$

$$\Leftrightarrow x = \frac{-3 \pm 9}{6}$$

$$\Leftrightarrow x = \frac{-12}{6} \lor x = \frac{6}{6}$$

$$\Leftrightarrow x = -2 \lor x = 1$$

$$C.S. = \{-2, 1\}$$

As abcissas dos pontos são -2 e 1.

9.
$$\frac{3-8x}{2} < 2(x+4) \Leftrightarrow \frac{3-8x}{2} < 2x+8$$

$$\Leftrightarrow 3-8x < 4x+16$$

$$\Leftrightarrow -8x-4x < 16-3$$

$$\Leftrightarrow -12x < 13$$

$$\Leftrightarrow 12x > -13$$

$$\Leftrightarrow x > -\frac{13}{12}$$

$$C.S. = \left] -\frac{13}{12}; +\infty \right[$$

10. Temos que:

- [AC] é um diâmetro da circunferência, logo $\widehat{AC} = 180^{\circ}$.
- o ângulo \overrightarrow{ABD} é o ângulo ao centro relativo ao arco \overrightarrow{AD} , logo \overrightarrow{AD} = 130°.

•
$$\widehat{DC} + \widehat{AD} = \widehat{AC} \Leftrightarrow \widehat{DC} + 130^{\circ} = 180^{\circ}$$

 $\Leftrightarrow \widehat{DC} = 180^{\circ} - 130^{\circ}$
 $\Leftrightarrow \widehat{DC} = 50^{\circ}$

Como o ângulo *DEC* é o ângulo inscrito relativo ao arco *DC*, a amplitude do ângulo é metade da amplitude do arco, ou seja:

$$\widehat{DEC} = \frac{\widehat{DC}}{2} = \frac{50}{2} = 25^{\circ}$$

11

$$\begin{cases} 2x - y = 4 \\ \frac{x + y}{2} = 13 \end{cases} \Leftrightarrow \begin{cases} 2x - y = 4 \\ x + y = 26 \end{cases} \Leftrightarrow \begin{cases} 2(26 - y) - y = -4 \\ x = 26 - y \end{cases}$$

$$\Leftrightarrow \begin{cases} 52 - 2y - y = 4 \\ \\ \\ \end{cases} \Leftrightarrow \begin{cases} -3y = -48 \\ \\ \\ \end{cases}$$

$$\Leftrightarrow \begin{cases} y = 16 \\ \\ x = 26 - 16 \end{cases} \Leftrightarrow \begin{cases} y = 16 \\ \\ x = 10 \end{cases}$$

$$C.S. = \{(10, 16)\}$$

O par ordenado que é solução do sistema é o par (10, 16).

12.

12.1.
$$\overline{AB} = 2 \times k$$

12.2.
$$\frac{\overline{CD}}{k} = 2$$

12.3.
$$\overline{BG} = \frac{1}{2} \times \overline{AB}$$

12.4.
$$\frac{\overline{BE}}{\overline{AD}} = \frac{k}{2k} = \frac{1}{2}$$

Prova Final Modelo 2 – páginas 206 a 209 **Caderno 1**

1.

1.1. Como o número total de alunos é 80, então

$$4 + 14 + 40 + a = 80 \Leftrightarrow a = 22$$

P("escolher um aluno com altura superior a 155 cm") =

$$= \frac{\text{número de casos favoráveis}}{\text{número de casos possíveis}} = \frac{40 + 22}{80} = \frac{62}{80} = \frac{31}{40} = 0,775, \text{ ou seja, } 77,5\%.$$

1.2. Como são 80 elementos (número par), para determinar o 1º quartil, fazemos $\frac{80}{2}$ = 40, ou seja, o

1º quartil é a mediana do subconjunto de dados de ordem inferior ou igual a 40. O 1º quartil é 160 cm. A opção correta é a [C].

2.

2.1. Determinemos \overline{JK} , considerando que o cubo tem aresta a:

$$\overline{JK^2} = \left(\frac{a}{2}\right)^2 + \left(\frac{a}{2}\right)^2 \Leftrightarrow \overline{JK^2} = \frac{a^2}{4} + \frac{a^2}{4}$$
$$\Leftrightarrow \overline{JK^2} = \frac{a^2}{2}$$
$$\Leftrightarrow \overline{JK} = \frac{a}{\sqrt{2}}$$

$$V_{\text{pirâmide}} = \frac{1}{3} \times \left(\frac{a}{\sqrt{2}}\right)^2 \times a = \frac{a^3}{6}$$

Como $V_{\text{cubo}} = a^3$, então:

$$a^{3} + \frac{a^{3}}{6} = 21 \Leftrightarrow 6a^{3} + a^{3} = 126$$
$$\Leftrightarrow 7a^{3} = 126$$
$$\Leftrightarrow a^{3} = \frac{127}{7}$$
$$\Leftrightarrow a^{3} = 18$$

O volume do cubo é 18 u.v.

- 2.2. a) Por exemplo, ABC e HGF.
- **b**) Por exemplo, *GF*.
- c) Por exemplo, AD.
- d) Por exemplo, CE.
- **2.3.** a) Ponto *C*
- **b**) [*CB*]
- 3. Como $2\pi \approx 6,283$ e $2\sqrt{10} \approx 6,325$, então o único número que pertence ao intervalo $[2, 2\sqrt{10}]$ é 6,32. A opção correta é a [C].

4. 1º processo

 $10.5 \text{ mil} = 10 500 = 1.05 \times 10^4$

O dobro de $1,05 \times 10^4$ é igual a:

$$2 \times 1,05 \times 10^4 = 2,1 \times 10^4$$

A quantidade total de aço necessária é:

$$1,05 \times 10^4 + 2,1 \times 10^4 = (1,05 + 2,1) \times 10^4 =$$

= 3,15 × 10⁴

2º processo

10.5 mil = 10500

$$10\ 500 \times 3 = 31\ 500 =$$
$$= 3.15 \times 10^{4}$$

Na construção dos dois arranha-céus foram utilizados $3,15 \times 10^4$ toneladas de aço.

5.

5.1. O ponto A é o ponto de interseção da reta r com o eixo Ox. Então:

$$2x + 4 = 0 \Leftrightarrow 2x = -4 \Leftrightarrow x = -2$$

O ponto A tem coordenadas (-2, 0), logo \overline{OA} = 2 u.c. Como o ponto B tem coordenadas (4, 0), \overline{OB} = 4 u.c. Os eixos Ox e Oy são perpendiculares, logo o triângulo [OAB] é retângulo em O.

Usando a definição de tangente, temos:

tg
$$O\hat{A}B = \frac{\text{medida do cateto oposto a } O\hat{A}B}{\text{medida do cateto adjacente a } O\hat{A}B} = \frac{\overline{OB}}{\overline{OA}} = \frac{4}{2} = 2$$

Assim:

$$O\hat{A}B = tg^{-1}(2) \Leftrightarrow O\hat{A}B \approx 63^{\circ}$$

5.2. A equação da reta $r \notin y = 2x + 4$. Como r // s, as retas têm o mesmo declive. Logo, s: y = 2x + b. O ponto (–5, 0) pertence à reta s, logo:

$$2 \times (-5) + b = 0 \Leftrightarrow b = 10$$

Assim, y = 2x + 10 é uma equação da reta s.

Caderno 2

6. Sequência do número de bolas cor de laranja: 0; 1; 4; 9; ..., ou seja, segue a lei de formação $(n-1)^2$.

$$(n-1)^2 = 100 \Leftrightarrow n-1 = -\sqrt{100} \lor n-1 = \sqrt{100}$$

$$\Leftrightarrow n = -9 \lor n = 11$$

$$\Leftrightarrow n = 11, n > 0$$

O termo de ordem 11 tem 100 bolas cor de laranja.

7.

7.1. O ponto *A* pertence ao gráfico cartesiano de *g*, com abcissa 6. Como $g(x) = \frac{1}{2}x$, então:

$$g(6) = \frac{1}{2} \times 6 = 3$$

Logo, A(6, 3).

Sendo a função f uma função de proporcionalidade inversa, então $f(x) = \frac{a}{x}$, x > 0. O ponto A pertence ao gráfico da função f, logo:

$$3 = \frac{a}{6} \Leftrightarrow a = 3 \times 6 \Leftrightarrow a = 18$$

Assim, $f(x) = \frac{18}{x}$, $x > 0$.

A opção correta é a [B].

7.2. Como o ponto *C* pertence ao gráfico de função g, tem coordenadas $\left(x, \frac{1}{2}x\right)$.

A área do triângulo é igual a 36 u.a., logo:

$$\left(x \times \frac{1}{2}x\right) : 2 = 36 \Leftrightarrow \frac{x^2}{4} = 36$$

$$\Leftrightarrow x^2 = 144$$

$$\Leftrightarrow x = \pm \sqrt{144}$$

$$\Leftrightarrow x = -12 \lor x = 12$$

$$C.S. = \{-12, 12\}$$

O ponto C encontra-se no 1º quadrante, ou seja, a abcissa é positiva. Logo, x = 12.

$$g(12) = \frac{1}{2} \times 12 = \frac{12}{2} = 6$$

As coordenadas do ponto C são (12, 6).

8. Como x é o preço, em euros, do livro *Aventuras* e y é o preço, sem desconto, em euros, do livro *Biografias*, e os três exemplares custam, no total, 39 euros, temos que x + 2y = 39.

Como o livro *Biografias* estava com um desconto de 4 euros, o preço de cada exemplar, nestas condições, é y-4, pelo que dois exemplares do livro *Aventuras* (2x) e três exemplares do livro *Biografias* (3(x-4)) terem um preço total de 50 euros, corresponde a 2x + 3(x-4) = 50.

Assim, um sistema de equações que permita determinar o preço do livro *Aventuras* e o preço, sem desconto, do livro *Biografias* é:

$$\begin{cases} x + 2y = 39 \\ 2x + 3(x - 4) = 50 \end{cases}$$

9.
$$2(1-x) < \frac{x}{2} + 12 \Leftrightarrow 2 - 2x < \frac{x}{2} + 12$$

 $\Leftrightarrow 4 - 4x < x + 24$
 $\Leftrightarrow -4x - x < 24 - 4$
 $\Leftrightarrow -5x < 20$
 $\Leftrightarrow 5x > -20$
 $\Leftrightarrow x > -4$

C.S. =
$$]-4, +\infty[$$

10.
$$4x^2 + 8x = 5 \Leftrightarrow 4x^2 + 8x - 5 = 0$$

Recorrendo à fórmula resolvente, com a = 4, b = 8 e c = -5, temos:

$$\Rightarrow x = \frac{-8 \pm \sqrt{8^2 - 4 \times 4 \times (-5)}}{2 \times 4}$$

$$\Rightarrow x = \frac{-8 \pm \sqrt{64 + 80}}{8}$$

$$\Rightarrow x = \frac{-8 \pm \sqrt{144}}{8}$$

$$\Rightarrow x = \frac{-8 \pm 12}{8}$$

$$\Rightarrow x = -\frac{5}{2} \lor x = \frac{1}{2}$$

C.S. =
$$\left\{-\frac{5}{2}, \frac{1}{2}\right\}$$

11. O ângulo $B\widehat{A}D$ é inscrito no arco \widehat{BD} , logo:

$$B\hat{A}D = \frac{\hat{B}\hat{D}}{2} = \frac{45^{\circ}}{2} = 22,5^{\circ}$$

$$C\hat{E}A = E\hat{O}A + O\hat{A}E \Leftrightarrow 65^{\circ} = E\hat{O}A + 22,5^{\circ}$$

$$\Leftrightarrow E\hat{O}A = 65^{\circ} - 22,5^{\circ}$$

$$\Leftrightarrow E\hat{O}A = 42,5^{\circ}$$

Prova Final Modelo 3 – páginas 210 a 213 Caderno 1

1.

1.1. No saco existem 10 bolas: 6 bolas vermelhas e 4 bolas azuis

P("retirar uma bola azul") =

$$= \frac{\text{número de casos favoráveis}}{\text{número de casos possíveis}} = \frac{4}{10} = \frac{2}{5}$$

1.2.
$$\overline{x} = 32 \Leftrightarrow \frac{x_1 + x_2 + \dots + x_{10}}{10} = 32$$

 $\Leftrightarrow x_1 + x_2 + \dots + x_{10} = 320$

Por exemplo:

$$\frac{x_1 + x_2}{2} = 28 \Leftrightarrow x_1 + x_2 = 56$$

Então:

$$56 + x_3 + \dots + x_{10} = 320 \Leftrightarrow x_3 + \dots + x_{10} = 320 - 56$$

$$\Leftrightarrow x_3 + \dots + x_{10} = 264$$

$$\Leftrightarrow \frac{x_3 + \dots + x_{10}}{8} = \frac{264}{8}$$

$$\Leftrightarrow \frac{x_3 + \dots + x_{10}}{8} = 33$$

2. $VAC = 180^{\circ} - 110^{\circ} = 70^{\circ}$

Como o triângulo [ACV] é retângulo em C, então:

sen
$$70^{\circ} = \frac{\text{medida do cateto oposto a } V \hat{A} C}{\text{medida da hipotenusa}}$$

$$\Leftrightarrow$$
 sen $70^{\circ} = \frac{\overline{CV}}{10}$

$$\Leftrightarrow \overline{CV} = 10 \times \text{sen } 70^{\circ}$$

$$\Leftrightarrow \overline{CV} \approx 9,397 \text{ cm}$$

$$\cos 70^{\circ} = \frac{\text{medida do cateto adjacente a } V \hat{A} C}{\text{medida da hipotenusa}}$$

$$\Leftrightarrow$$
 cos $70^{\circ} = \frac{\overline{AC}}{10}$

$$\Leftrightarrow \overline{AC} = 10 \cos 70^{\circ}$$

$$\Leftrightarrow \overline{AC} \approx 3,420 \text{ cm}$$

O volume da semiesfera é igual a:

$$\left(\frac{4}{3} \pi \times r^3\right)$$
: 2 = $\left(\frac{4}{3} \pi \times (3,420)^3\right)$: 2 \approx 83,780 cm³

O volume do cone é igual a:

$$\frac{1}{3} A_b \times \text{altura} = \frac{1}{3} \times \pi \times r^2 \times \text{altura} =$$

$$= \frac{1}{3} \times \pi \times 3,420^2 \times 9,397 =$$

$$\approx 115,099 \text{ cm}^3$$

O volume do sólido é $83,780 + 115,099 \approx 199 \text{ cm}^3$.

3. $10,28 \text{ milhões} = 10,28 \times 10^6$

5% de $10,28 \times 10^6$ é igual a:

$$0.05 \times 10.28 \times 10^6 = 0.514 \times 10^6 =$$

= 5.14×10^5 habitantes

4. Como as grandezas são inversamente proporcionais, então $x \times y = 7.2 \times 21.6 = 155.52$.

Assim,
$$k = \frac{155,52}{18} = 8,64$$
.

- 5. $x \rightarrow$ número de alunos do 5º ano
- y → número de alunos do 6º ano

 $x + y \rightarrow$ número total de alunos

 $\frac{2}{3}x - \frac{2}{3}$ do número de alunos do 5º ano.

$$\begin{cases} x + y = 170 \\ y = \frac{2}{3}x \end{cases}$$

6.
$$(x-3)^2 = x^2 + 2 \times x \times (-3) + (-3)^2 =$$
Quadrado de um binómio $(a-b)^2 = a^2 - 2ab + b^2$

$$= x^2 - 6x + 9$$

$$m = -6 \text{ e } n = 9$$

A opção correta é a [C].

7.
$$\frac{(-2-x)^2}{2} = 3(x+2) \Leftrightarrow \frac{4+4x+x^2}{2} = 3x+6$$

 $\Leftrightarrow 4+4x+x^2 = 6x+12$
 $\Leftrightarrow x^2+4x-6x+4-12=0$
 $\Leftrightarrow x^2-2x-8=0$

Recorrendo à fórmula resolvente, com a = 1, b = -2e c = -8, temos:

$$x^{2} - 2x - 8 = 0 \Leftrightarrow x = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4 \times 1 \times (-8)}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{2 \pm \sqrt{4 + 32}}{2}$$

$$\Leftrightarrow x = \frac{2 \pm \sqrt{36}}{2}$$

$$\Leftrightarrow x = \frac{2 \pm 6}{2}$$

$$\Leftrightarrow x = -2 \vee x = 4$$

Caderno 2

 $C.S. = \{-2, 4\}$

- O termo **8.** 1º termo: $1b + 1p \rightarrow 2$ triângulos
- **2º termo:** $2b + 3p \rightarrow 5$ triângulos geral é
- 3º termo: $3b + 5p \rightarrow 8$ triângulos 3n - 1.
- **8.1.** $3 \times 20 1 = 60 1 = 59$ triângulos
- 8.2. A sequênca do número de triângulos pretos é: 1; 3; 5; ...; 2n-1

pretos é 2n - 1, então:

- $2 \times 85 1 = 169$ triângulos 8.3. Como o termo geral do número de triângulos
- $2n-1=201 \Leftrightarrow 2n=202 \Leftrightarrow n=101$

A sequência tem 101 termos.

9. $\hat{CAD} = \frac{\hat{BD}}{2} = \frac{80^{\circ}}{2} = 40^{\circ}$, pois é um ângulo ins-

crito no arco BD.

$$D\hat{C}A = 180^{\circ} - C\hat{A}D - A\hat{D}C =$$

= $180^{\circ} - 40^{\circ} - 30^{\circ} =$
= 110°

10.

10.1. [A]]13,
$$+\infty$$
[\cup]-4, 15[=]-4, $+\infty$ [[B]]13, $+\infty$ [\cap]-4, 15[=]13, 15[

[C]
$$]13, +\infty[\cap]-4, +\infty[=]13, +\infty[$$

[D] $]13, +\infty[\cup]-4, +\infty[=]-4, +\infty[$

A opção correta é a [C].

10.2.
$$2 + \frac{4x}{3} > \frac{6 + 2(x + 13)}{3}$$

$$\Leftrightarrow 2 + \frac{4x}{3} > \frac{6 + 2x + 26}{3}$$

$$\Leftrightarrow 2 + \frac{4x}{3} > \frac{32 + 2x}{3}$$

$$\Leftrightarrow$$
 6 + 4 x > 32 + 2 x

$$\Leftrightarrow 4x - 2x > 32 - 6$$

$$\Leftrightarrow 2x > 26$$

$$\Leftrightarrow x > \frac{26}{2}$$

$$\Leftrightarrow x > 13$$

$$C.S. =]13, +\infty[$$

Logo, C é o conjunto-solução da inequação.

11.
$$\frac{7^{5}}{7^{-2} \times (7^{3})^{4}} = \frac{7^{5}}{7^{-2} \times 7^{12}} =$$

$$= \frac{7^{5}}{7^{-2} + 12} =$$

$$= \frac{7^{5}}{7^{10}} =$$

$$= 7^{5} - 10 =$$

$$= 7^{-5} =$$

$$= \left(\frac{1}{7}\right)^{5}$$

12.

- **12.1.** Por exemplo, os pontos *C* e *D*, porque [*CD*] é perpendicular ao eixo *Oy*.
- **12.2.** O ponto C tem coordenadas (4, f(4)).

Então, como $f(4) = \frac{1}{2} \times 4 = \frac{4}{2} = 2$, C tem coordenadas (4, 2).

O ponto B tem coordenadas (2, g(2)).

Então, como $g(2) = 2 \times 2^2 = 8$, B tem coordenadas (2, 8).

Os pontos *A* e *B* têm a mesma ordenada, logo *A* tem coordenadas (0, 8).

Os pontos *C* e *D* têm a mesma ordenada, logo *D* tem coordenadas (0, 2).

Concluímos, então, que $\overline{CD} = 4$, $\overline{AB} = 2$ e $\overline{AD} = 6$ (diferença entre as ordenadas de A e de D).

Assim:

$$A_{\text{trap\'ezio}} = \frac{\text{base maior} + \text{base menor}}{2} \times \text{altura} = \frac{\overline{CD} + \overline{AB}}{2} \times \overline{AD}$$

$$A_{\text{trapézio}} = \frac{2+4}{2} \times 6 = \frac{6}{2} \times 6 =$$

$$= 3 \times 6 =$$

$$= 18$$

A área do trapézio [ABCD] é 18 u.a.

Prova Final Modelo 4 – páginas 214 a 217 **Caderno 1**

1. Como os dados da tabela já estão ordenados, podemos verificar que os valores centrais são 70 e 74.

Logo, a mediana do conjunto de dados é:

$$\tilde{x} = \frac{70 + 74}{2} = 72$$

A opção correta é a [B].

2.

2.1.
$$V_{\text{prisma}} = A_b \times \text{altura} = \overline{EB} \times \overline{BC} \times \overline{CD} = 100 \times 40 \times 25 = 100 \ 000 \ \text{m}^3$$

$$V_{\text{metade cilindro}} = \frac{A_b \times \text{altura}}{2} = \frac{\pi \times 20^2 \times 100}{2} =$$

$$= 20~000\pi~m^3$$

V_{sólido} = Volume prisma + Volume metade do cilindro =

$$= \frac{\pi r^2 \times \text{altura}}{2} = \frac{\pi \times \frac{\overline{BC}}{2} \times \overline{EB}}{2} =$$

$$= 100\ 000 + 20\ 000\pi \approx 162\ 831.9$$

O volume do sólido da figura 2 é, aproximadamente, $162 831.9 \text{ m}^3$.

- **2.2.** [A] Falsa, porque *DC* é perpendicular ao plano *FAD*.
- [B] Falsa, porque BG é concorrente ao plano FAD.
- [D] Falsa, porque *GH* é perpendicular ao plano *FAD*. A opção correta é a [C].
- **2.3.** Como a reta *AF* é paralela à reta *CH*, e sendo *s* // *AF*, então *s* // *CH*.

3. 9,2 milhões = 9 200 000
9 200 00 × 35% = 9 200 000 ×
$$\frac{35}{100}$$
 = = 3 220 000 = = 3,22 × 10⁶

As florestas portuguesas têm $3,22 \times 10^6$ ha.

4. 4.1.
$$\overline{AC} = \frac{1}{6} \times 1.2 \text{ m} =$$

= 0.2 m
= 20 cm

O triângulo [ABC] é retângulo. Relativamente ao ângulo α , o lado [AC] é o cateto oposto e o lado [AB] é a hipotenusa. Usando a definição de seno, temos:

$$\operatorname{sen} \alpha = \frac{\operatorname{medida} \operatorname{do} \operatorname{cateto} \operatorname{oposto} \operatorname{a} \alpha}{\operatorname{medida} \operatorname{da} \operatorname{hipotenusa}} \Leftrightarrow \operatorname{sen} \alpha = \frac{\overline{AC}}{\overline{AB}}$$

$$\Leftrightarrow \operatorname{sen} \alpha = \frac{20}{25}$$

$$\Leftrightarrow \operatorname{sen} \alpha = \frac{4}{5}$$

$$\Leftrightarrow \alpha = \operatorname{sen}^{-1}\left(\frac{4}{5}\right)$$

$$\Leftrightarrow \alpha \approx 53^{\circ}$$

4.2. sen
$$\beta = \frac{3}{5}$$

Recorrendo à fórmula fundamental da trigonometria, como β é um ângulo agudo, então $\cos \beta > 0$.

Assim:

Assim.

$$sen^{2}\beta + cos^{2}\beta = 1 \Leftrightarrow \left(\frac{3}{5}\right)^{2} + cos^{2}\beta = 1$$

$$\Leftrightarrow \frac{9}{25} + cos^{2}\beta = 1$$

$$\Leftrightarrow cos^{2}\beta = 1 - \frac{9}{25}$$

$$\Leftrightarrow cos^{2}\beta = \frac{16}{25}$$

$$\Leftrightarrow cos \beta = \sqrt{\frac{16}{25}}$$

$$\Leftrightarrow cos \beta > 0$$

$$\Leftrightarrow cos \beta = \frac{4}{5}$$

Caderno 2

5.

5.1. *P*("sair o número oito") =

$$= \frac{\text{número de casos favoráveis}}{\text{número de casos possíveis}} = \frac{1}{4}$$

O acontecimento complementar de "sair o número oito" é o acontecimento "não sair o número oito". P("não sair o número oito") = 1 - P("sair o número oito") = 0

$$= 1 - \frac{1}{4} =$$

$$= \frac{3}{4}$$

5.2.	Produto	2	5	7	8
	2	_	10	14	16
	5	10	_	35	40
	7	14	35	_	56
	8	16	40	56	_

O número de casos favoráveis é igual ao número de produtos ímpares. Assim:

Número de casos favoráveis: 2 Número de casos possíveis: 12

Logo:

P("sair um número ímpar") =

$$= \frac{\text{número de casos favoráveis}}{\text{número de casos possíveis}} = \frac{2}{12} = \frac{1}{6}$$

6. 1 mesa
$$\rightarrow$$
 6 cadeiras \rightarrow +4 2 mesas \rightarrow 10 cadeiras \rightarrow +4 3 mesas \rightarrow 14 cadeiras \rightarrow +4

6.1. 4 mesas
$$\longrightarrow$$
 14 + 4 = 18

$$5 \text{ mesas} \longrightarrow 18 + 4 = 22$$

6 mesas
$$\rightarrow$$
 22 + 4 = 26 cadeiras

Se se utilizarem seis mesas, serão necessárias 26 cadeiras.

6.2. Como a expressão geral do número de cadernos é 4n + 2, então:

$$4n + 2 = 34 \Leftrightarrow 4n = 34 - 2$$

$$\Leftrightarrow n = \frac{32}{4}$$

$$\Leftrightarrow n = 8$$

Se se utilizarem 34 cadeiras, serão necessárias oito mesas.

$$7. -\frac{x-3}{4} \ge -2(x-4) + 3 \Leftrightarrow -\frac{x-3}{4} \ge -2x + 8 + 3$$

$$\Leftrightarrow -x + 3 \ge -8x + 32 + 12$$

$$\Leftrightarrow -x + 8x \ge 32 + 12 - 3$$

$$\Leftrightarrow 7x \ge 41$$

$$\Leftrightarrow x \ge \frac{41}{7}$$

$$C.S. = \left\lceil \frac{41}{7}, +\infty \right\rceil$$

8.

8.1. Como o ponto A tem abcissa -2 e pertence ao gráfico da função h, temos que a sua ordenada é a imagem do objeto -2 pela função h, ou seja,

$$h(-2) = 3 \times (-2) = -6.$$

Assim, temos que as coordenadas do ponto A são (-2, -6). Como o ponto A também pertence ao gráfico da função f, substituindo as coordenadas na expressão

algébrica da função, podemos calcular o valor de a:

$$f(-2) = -6 \Leftrightarrow a \times (-2)^2 = -6 \Leftrightarrow a = \frac{-6}{4} \Leftrightarrow a = -\frac{3}{2}$$
8.2. $f(x) = 3x - 36 \Leftrightarrow -\frac{3}{2} x^2 = 3x - 36$

$$\Leftrightarrow -\frac{3}{2} x^2 - 3x + 36 = 0$$

$$\Leftrightarrow -3x^2 - 6x + 72 = 0$$

Recorrendo à fórmula resolvente, com a = -3, b = -6e c = 72, temos:

$$-3x^{2} - 6x + 72 = 0 \Leftrightarrow x = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4 \times (-3) \times 72}}{2 \times (-3)}$$

$$\Leftrightarrow x = \frac{6 \pm \sqrt{36 + 864}}{-6}$$

$$\Leftrightarrow x = \frac{6 \pm \sqrt{900}}{-6}$$

$$\Leftrightarrow x = \frac{6 \pm 30}{-6}$$

$$\Leftrightarrow x = \frac{36}{-6} \lor x = \frac{-24}{-6}$$

$$\Leftrightarrow x = -6 \lor x = 4$$

$$C.S. = \{-6, 4\}$$

8.3. Como a função g é uma função de proporcionalidade inversa, então $g(x) = \frac{k}{x}$, x > 0

Como o ponto B tem ordenada 12 e pertence ao gráfico da função h, temos que a sua abcissa é o objeto cuja imagem é 12, pela função h, ou seja:

$$h(x) = 12 \Leftrightarrow 3x = 12 \Leftrightarrow x = \frac{12}{2} \Leftrightarrow x = 4$$

Assim, temos que as coordenadas do ponto B são (4, 12). Como o ponto B também pertence ao gráfico da função g, substituindo as coordenadas na expressão algébrica da função, podemos calcular o valor de *k*:

$$g(4) = 12 \Leftrightarrow \frac{k}{4} = 12 \Leftrightarrow k = 4 \times 12 \Leftrightarrow k = 48$$

Uma expressão que define a função $g \notin y = \frac{48}{x}, x > 0$. A opção correta é a [B].

9. O ângulo AOB é um ângulo ao centro e partilha o mesmo arco de circunferência, AB, do ângulo inscrito ACB. Assim, $A\hat{O}B = 2 \times 30^{\circ} = 60^{\circ}$.

Desta forma, $\frac{\widehat{AB}}{5} = \frac{360^{\circ}}{P_c}$, onde P_c é o perímetro do círculo.

Logo:

$$\frac{60}{5} = \frac{360}{P_c} \Leftrightarrow P_c = \frac{360 \times 5}{60} \Leftrightarrow P_c = 30$$

O perímetro do círculo é 30 cm.

Prova Final Modelo 5 – páginas 218 a 221 Caderno 1

1.	1º termo	2º termo	3º termo	nº termo
Número de círculos cinzentos	1	2	3	 n
Número de círculos brancos	3	5	7	 2n + 1
Número total de círculos	4	7	10	 3n + 1

O termo com 110 círculos cinzentos é o termo de ordem 110.

Logo, esse termo terá $3 \times 110 + 1 = 331$ círculos.

2.	P	2	3	4
	2	4	5	6
	3	5	6	7
	4	6	7	8
	7	9	10	11

2.1. Número de casos favoráveis: 5

Número de casos possíveis: 12

P("soma dos números inscritos nas cartas retiradas ser um número primo") = número de casos favoráveis = número de casos possíveis

2.2. a) *P*("sair preta") =

$$= \frac{\text{número de casos favoráveis}}{\text{número de casos possíveis}} = 0.3 = \frac{3}{10}$$

Como continuam a ser três cartas pretas, então:

$$\frac{3}{x} = \frac{3}{10} \Leftrightarrow 30 = 3x \Leftrightarrow x = 10$$

Se 10 é o número de casos possíveis, é necessário acrescentar três cartas vermelhas.

b) P("sair vermelha") = 0.25

$$\Rightarrow \frac{\text{número de casos favoráveis}}{\text{número de casos possíveis}} = 0,25 \Leftrightarrow \frac{4}{x} = 0,25$$
$$\Rightarrow x = 4 \times 4 \Leftrightarrow x = 16$$

$$4 + 3 = 7$$

$$16 - 7 = 9$$

Se 16 é o número de casos possíveis, então é necessário acrescentar nove cartas.

3.1. $\angle ABC = 90^{\circ}$, porque BC é tangente à circunferência no ponto B e AB é um raio da circunferência.

$$C\hat{A}B = 180^{\circ} - 90^{\circ} - 27^{\circ} = 63^{\circ}$$

 $D\hat{A}E = C\hat{A}B = 63^{\circ}$, porque são ângulos verticalmente opostos. Como DÂE é um ângulo ao centro, então $\widehat{DE} = D\widehat{AE} = 63^{\circ}$.

A opção correta é a [B].

3.2. $B\hat{A}D = 180^{\circ} - D\hat{A}E$, ou seja,

$$B\hat{A}D = 180^{\circ} - 63^{\circ} = 117^{\circ}.$$

$$A_{\text{setor circular}} = \frac{x \times \pi \times r^2}{360^{\circ}} = \frac{B\hat{A}D \times \pi \times \overline{AB^2}}{360^{\circ}}$$

$$A_{\text{setor circular}} = \frac{117^{\circ} \times \pi \times 10^{2}}{360^{\circ}} = 32,5\pi \approx 102,1$$

A área da região colorida é 102,1 cm².

4.

4.1. Sendo a a medida da aresta do cubo, as dimensões do paralelepípedo são $a = \overline{BE}$, $2a = \overline{AB}$ e

$$\frac{1}{3}a = \overline{BI}$$
. Logo:

$$V_{\text{paralelepípedo}} = \overline{BE} \times \overline{AB} \times \overline{BI} = a \times 2a \times \frac{1}{3} \ a = \frac{2}{3} \ a^3$$

Assim, como
$$V_{\text{cubo}} = \overline{BE^3} = a^3$$
, então $V_{\text{sólido}} = a^3 + \frac{2}{3}a^3$.

Como o volume total do sólido é 25 cm³, temos:

$$a^{3} + \frac{2}{3} a^{3} = 25 \Leftrightarrow 3a^{3} + 2a^{3} = 75$$
$$\Leftrightarrow a^{3} = 15$$
$$\Leftrightarrow a = \sqrt[3]{15}$$

Assim, $a = \sqrt[3]{15}$ cm.

4.2. [A] Falso, porque os planos LCD e BCD são concorrentes oblíquos.

[B] Falso, porque os planos LCD e AIJ são concorrentes oblíquos. É verdadeiro, os planos LCD e LNM são perpendiculares.

[C] Verdadeiro, os planos LCD e ENM são perpendiculares.

[D] Falso, porque os planos LCD e BLK são concorrentes oblíquos.

Logo, a opção correta é a [C].

Como o triângulo é retângulo, usando a definição de seno, temos:

sen
$$15^{\circ} = \frac{\text{medida do cateto oposto}}{\text{medida da hipotenusa}} \Leftrightarrow \text{sen } 15^{\circ} = \frac{90}{x}$$

$$\Leftrightarrow x = \frac{90}{\text{sen } 15^{\circ}} \Leftrightarrow x \approx 348$$

O comprimento mínimo da rampa é 348 cm.

Caderno 2

6.
$$\sqrt{26}$$
 ≈ 5,1

Representando na reta real os conjuntos A e B, temos:

Assim:

$$A \cap B = [4, \sqrt{26}]$$

7. Como a função f é uma função de proporcionalidade inversa, então $f(x) = \frac{k}{x}, x > 0$.

O ponto B pertence ao gráfico da função f e as medidas dos lados do retângulo [DBEO] coincidem com as coordenadas do ponto B, que são $(\overline{OE}; \overline{OD})$. Como a área é igual a 30 u.a., $\overline{OE} \times \overline{OD} = 30$, ou seja, $f(x) = \frac{30}{x}, x > 0.$

O triângulo [OAC] tem dimensões \overline{AC} e \overline{OC} , em que $\overline{AC} = \overline{OD}$ e $\overline{OC} = \overline{OE}$. Podemos, então, dizer que a área do triângulo [OAC] é igual a metade da área do retângulo [DBEO], ou seja, 15 u.a.

8. O ponto *A* pertence ao gráfico cartesiano de *f* e tem coordenadas (-2, 12), ou seja:

$$12 = a \times (-2)^2 \Leftrightarrow a = \frac{12}{4} \Leftrightarrow a = 3$$

Uma expressão que define a função $f \notin f(x) = 3x^2$.

O gráfico da função g é simétrico do gráfico da função f, relativamente ao eixo Oy, ou seja, a concavidade da parábola passa para baixo e o valor do coeficiente de x^2 na expressão passa ao simétrico, $g(x) = -3x^2.$

$$f(3) - g(-1) = 3 \times 3^{2} - (-3 \times (-1)^{2}) =$$

$$= 27 - (-3) =$$

$$= 27 + 3 =$$

$$= 30$$

9.
$$x(2x-10) = -12 \Leftrightarrow 2x^2 - 10x + 12 = 0$$

Recorrendo à fórmula resolvente, em que a = 2,

$$b = -10 \text{ e } c = 12$$
, temos:

$$b = -10 \text{ e } c = 12, \text{ temos:}$$

$$2x^2 - 10x + 12 = 0 \Leftrightarrow x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4 \times 2 \times 12}}{2 \times 2}$$

$$\Leftrightarrow x = \frac{10 \pm \sqrt{100 - 96}}{4}$$

$$\Leftrightarrow x = \frac{10 \pm 2}{4}$$

$$\Leftrightarrow x = \frac{8}{4} \lor x = \frac{12}{4}$$

 $\Leftrightarrow x = 2 \lor x = 3$

$$C.S. = \{2, 3\}$$

10.
$$x - \frac{2+4x}{5} > \frac{x}{2} \Leftrightarrow 10x - 4 - 8x > 5x$$

$$\stackrel{(\times 10)}{\Leftrightarrow} 10x - 8x - 5x > 4$$

$$\Leftrightarrow -3x > 4$$

$$\Leftrightarrow 3x < -4$$

$$\Leftrightarrow x < -\frac{4}{3}$$

$$C.S. = \left[-\infty, -\frac{4}{3} \right]$$

123

$$\begin{cases} x = -2y \\ y = \frac{3x+1}{2} - 3 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{2y} = 3x+1-6 \end{cases}$$

$$\Leftrightarrow \begin{cases} -3(-2y) + 2y = -5 \end{cases} \Leftrightarrow \begin{cases} \frac{10}{8} \\ y = -\frac{5}{8} \end{cases} \Leftrightarrow \begin{cases} x = \frac{5}{4} \\ y = -\frac{5}{8} \end{cases}$$

$$C.S. = \left\{ \left(\frac{5}{4}, -\frac{5}{8} \right) \right\}$$

O par ordenado que é solução do sistema é o par $\left(\frac{5}{4}, -\frac{5}{8}\right)$.

12.
$$16^{c+3} \times \frac{32^{c+1}}{8} = (2^4)^{c+3} \times \frac{2^{5(c+1)}}{2^3} =$$

$$= 2^{4c+12} \times \frac{2^{5c+5}}{2^3} =$$

$$= 2^{4c+5c+12+5-3} = 2^{9c+14}$$

A opção correta é a [B].

13. Os triângulos [ADE] e [ABC] são semelhantes, pelo critério AA ($E\hat{D}A = C\hat{B}A = 90^{\circ}$ e $D\hat{A}E = B\hat{A}E$, porque são ângulos verticalmente opostos).

Assim, os lados correspondentes são diretamente proporcionais.

Desta forma,
$$\frac{\overline{AB}}{\overline{AD}} = \frac{\overline{BC}}{\overline{DF}} = \frac{4}{2} = 2$$
.

Como $\overline{BD} = a$, vem que $\overline{AD} = a - \overline{AB}$.

$$\frac{\overline{AB}}{a - \overline{AB}} = 2 \Leftrightarrow \overline{AB} = 2a - 2 \overline{AB}$$
$$\Leftrightarrow 3 \overline{AB} = 2a$$
$$\Leftrightarrow \overline{AB} = \frac{2}{3} a$$

Prova Final Modelo 6 – páginas 222 a 225

Caderno 1

1.
1.1.
$$\overline{x} = \frac{1 \times 2 + 2 \times 4 + 3 \times 3 + 4 \times 4 + 5 \times 2 + 6 \times 3}{18} = \frac{63}{18} = 3.5$$

1.2. Número de casos favoráveis: 4 + 3 + 4 + 2 = 13Número de casos possíveis: 2 + 4 + 3 + 4 + 2 + 3 = 18

Logo, P("obter pontuação inferior ou igual a 4") = $\frac{\text{número de casos favoráveis}}{\text{número de casos favoráveis}} = \frac{13}{13}$ números de casos possíveis

1.3. Para que a mediana dos 19 dados seja 3, é necessário que o valor central seja 3. Desta forma, os valores possíveis são 1, 2 ou 3.

O número de casos favoráveis é 3 e o número de casos possíveis é 6. Logo, P("obter 3 como valor da mediana") = $\frac{\text{número de casos favoráveis}}{\text{números de casos possíveis}} = \frac{3}{6} = \frac{1}{2}$.

2. Como o gráfico é de uma função de proporcionalidade inversa, então $f(x) = \frac{k}{r}$, x > 0. Como (2, 3) pertence ao gráfico de f, então $k = 2 \times 3 = 6$.

$$f(6) = a \Leftrightarrow \frac{6}{6} = a \Leftrightarrow a = 1$$

3. O conjunto A tem exatamente quinze números inteiros, como se ilustra na representação.

 $-\sqrt{n}$ < -4 e, como $\sqrt{16}$ = 4, então $A = \left[-\sqrt{17}; 10\right]$. Assim, n = 17.

4.1.
$$\frac{15}{0.9144} \approx 16,4042 = 1,640 \ 42 \times 10$$

15 metros equivalem a 1,640 42 × 10 jardas.

4.2. $160 \text{ km} = 160\ 000 \text{ m} = 1.6 \times 10^5$

$$\frac{1.6 \times 10^5}{0.9144} = 174\,\,978,128$$

$$\frac{1}{3} \times 174\ 978,128 \approx 58\ 326 = 5,8326 \times 10^4$$

160 km equivalem a $5,8326 \times 10^4$ pés.

5.

5.1. A única face do prisma triangular que não interseta as restantes, segundo um ângulo reto, é a face correspondente ao painel solar, ou seja, a face [ACDE]. Assim, o plano que não é perpendicular ao plano que contém a face [ABFE] é o plano que contém a face [ACDE], ou seja o plano EAC.

A opção correta é a [B].

5.2. a) Como $V_{\text{prisma}} = A_b \times h$, começamos por determinar a área da base do prisma [ABCDEF], ou seja, por exemplo, a área do triângulo [ABC].

$$A_{\text{base}} = A_{[ABC]} = \frac{\overline{AB} \times \overline{BC}}{2} = \frac{78 \times 58,5}{2} = 2281,5 \text{ cm}^2$$

Assim, podemos determinar a altura do prisma, *x*, recorrendo à fórmula do volume:

$$V_{[ABCDEF]} = A_{\text{base}} \times \text{altura} \Leftrightarrow V_{[ABCDEF]} = A_{[ABC]} \times x$$

 $\Leftrightarrow 445\ 000 = 2281,5 \times x$
 $\Leftrightarrow x = \frac{445\ 000}{2281,5}$
 $\Rightarrow x \approx 195,05\ \text{cm}$

Desta forma, a área do painel solar, ou seja, a área do retângulo [ACDE], é:

$$A_{[ACDE]} = \overline{AE} \times \overline{DE} = x \times 97,5$$

$$\approx 195,05 \times 97,5$$

$$\approx 19 \ 017 \ \text{cm}^2$$

b) Como o triângulo [ABC] é retângulo, usando a definição de tangente, temos:

tg
$$B\hat{A}C = \frac{\text{medida do cateto oposto a } B\hat{A}C}{\text{medida do cateto adjacente a } B\hat{A}C}$$

$$\Leftrightarrow$$
 tg $B\hat{A}C = \frac{58.5}{78} \Leftrightarrow B\hat{A}C = \text{tg}^{-1}(0.75) \Leftrightarrow B\hat{A}C \approx 37^{\circ}$

Caderno 2

6.
$$(3^5)^{-2} \times 3^{10} + 5^{-1} + 3^{-2} = 3^{-10} \times 3^{10} + \frac{1}{5} + \frac{1}{3^2} =$$

$$= 3^0 + \frac{1}{5} + \frac{1}{9} =$$

$$= 1 + \frac{1}{5} + \frac{1}{9} =$$

$$= \frac{45}{45} + \frac{9}{45} + \frac{5}{45} =$$

$$= \frac{59}{45}$$

7.

7.1.
$$\hat{APD} = \hat{CPB} = 70^{\circ}$$
 (ângulos verticalmente opostos) $\hat{DAC} = \frac{\hat{DC}}{2} = \frac{60^{\circ}}{2} = 30^{\circ}$ (\hat{DAC} é um ângulo inscrito no arco \hat{DC}).

Então,
$$B\hat{D}A = 180^{\circ} - 70^{\circ} - 30^{\circ} = 80^{\circ}$$
.

7.2. $B\hat{C}A = B\hat{D}A = 80^{\circ}$, porque são ângulos inscritos no mesmo arco (\widehat{BA}) .

Logo, pelo critério AA de semelhança de triângulos, os triângulos [BCP] e [ADP] são semelhantes. $B\hat{D}A = B\hat{C}A = 80^{\circ}$ e $C\hat{P}B = D\hat{P}A = 70^{\circ}$.

8.
$$-x^2 + ax - 16 = 0$$

8.1. Se a equação só tem uma solução, então:

$$\Delta = 0 \Leftrightarrow b^2 - 4ac = 0$$
$$\Leftrightarrow a^2 - 4 \times (-1) \times (-16) = 0$$

$$\Leftrightarrow a^2 - 64 = 0$$

$$\Leftrightarrow a^2 = 64$$

$$\Leftrightarrow a = \pm \sqrt{64}$$

$$\Leftrightarrow a = -8 \lor a = 8$$
C.S. = {-8, 8}

8.2.
$$-x^2 + 10x - 16 = 0$$

Recorrendo à fórmula resolvente, com a = -1, b = 10 e c = -16, temos:

$$-x^{2} + 10x - 16 = 0 \Leftrightarrow x = \frac{-10 \pm \sqrt{10^{2} - 4 \times (-1) \times (-16)}}{2 \times (-1)}$$

$$\Leftrightarrow x = \frac{-10 \pm \sqrt{100 - 64}}{-2}$$

$$\Leftrightarrow x = \frac{-10 \pm \sqrt{36}}{-2}$$

$$\Leftrightarrow x = \frac{-10 \pm 6}{-2}$$

$$\Leftrightarrow x = \frac{-10 - 6}{-2} \lor x = \frac{-10 + 6}{-2}$$

$$\Leftrightarrow x = \frac{-16}{-2} \lor x = \frac{-4}{-2}$$

$$\Leftrightarrow x = 8 \lor x = 2$$

$$C.S. = \{2, 8\}$$

$$9. \ 2 - \frac{3 - x}{5} \le 2\left(x + \frac{1}{3}\right)$$

$$\Leftrightarrow 2 - \frac{3 - x}{5} \le 2x + \frac{2}{3}$$

$$\Leftrightarrow 30 - 9 + 3x \le 30x + 10$$

$$\Leftrightarrow 3x - 30x \le -11$$

$$\Leftrightarrow -27x \le -11$$

$$\Leftrightarrow 27x \ge 11$$

$$C.S. = \left[\frac{11}{27}, +\infty\right[$$

10. $x \rightarrow$ número de caiaques de um lugar $y \rightarrow$ número de caiaques de dois lugares $x + y \rightarrow$ número total de caiaques $2y \rightarrow$ número de pessoas em caiaques de dois lugares $\begin{cases} x + y = 28 \\ x = 2y + 4 \end{cases}$

11. Como o triângulo [ABC] é equilátero, então:

$$\overline{AB} = \overline{BC} = \overline{AC} = \frac{3a - 12}{3} = a - 4$$

Então, a área de cada quadrado é igual a $(a - 4)^2$.

125

Como são três quadrados, então:

$$3 \times (a-4)^2 = 3 \times (a^2 - 8a + 16) =$$

= $3a^2 - 24a + 48$

Logo, a opção correta é a [C].

12.
$$\overrightarrow{AB} + \overrightarrow{FE} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

A opção correta é a [D].

Prova Final Modelo 7 – páginas 226 a 229

Caderno 1

1.

1.1. A percentagem de elementos do grupo B é:

$$6,9 + 1,2 = 8,1$$

Logo,
$$P(\overline{B}) = 1 - P(B) = 1 - 0.081 = 91.9\%$$
.

1.2. a) Como a percentagem de elementos do grupo O é 35,4 + 6,7 = 42,1%, então:

$$2000 \times 42,1\% = 842$$

É de esperar que 842 alunos tenham sangue do grupo O.

b) Tipo B: 6.9 + 1.2 = 8.1%

P("ser Rhesus negativo") =

=
$$\frac{\text{número de casos favoráveis}}{\text{números de casos possíveis}} = \frac{1,2}{8,1} \approx 0,15$$

A probabilidade é, aproximadamente, 15%.

2. 1ª figura
$$\rightarrow$$
 2 hexágonos \rightarrow +5

2ª figura → 7 hexágonos

3ª figura → 12 hexágonos

Podemos utilizar a expressão 5n - 3 para determinar o número de total de hexágonos. Então:

$$5n - 3 = 122 \Leftrightarrow 5n = 122 + 3$$

$$\Leftrightarrow 5n = 125$$

$$\Leftrightarrow n = \frac{125}{5}$$

$$\Leftrightarrow n = 25$$

A 25ª figura tem 122 hexágonos.

1ª figura → 1 hexágono cinzento

2ª figura → 4 hexágonos cinzentos

3ª figura → 7 hexágonos cinzentos

Podemos utilizar a expressão 3n - 2 para determinar o número de hexágonos cinzentos.

$$3 \times 25 - 2 = 75 - 2 = 73$$

O 25° termo tem 73 hexágonos cinzentos.

3. Como o círculo está inscrito num quadrado, a medida do diâmetro do círculo é igual ao comprimento do lado do quadrado.

Como
$$P = 24$$
 cm, então $\ell = \frac{24}{4} = 6$ cm.

Sendo d = 6 cm, então r = 3 cm.

Assim, $A_{\text{círculo}} = \pi \times r^2 = 9\pi \approx 28.3$.

Logo, a opção correta é a [B].

4.

4.1. Trata-se de uma relação de proporcionalidade inversa, com $k = 4 \times 7.5 = 30$.

30:6=5

30:10=3

30:2=15

30:1,5=20

30:25=1,2

Número de participantes	4	5	10	15	20	25
Valor da participação (€)	7,5	6	3	2	1,5	1,2

4.2.
$$n \times v = 30$$

Logo, a opção correta é a [C].

5.

5.1. Como o triângulo [ABC] é retângulo, usando a definição de tangente, temos:

$$tg 40^{o} = \frac{\text{medida do cateto oposto}}{\text{medida do cateto adjacente}}$$

$$\Leftrightarrow$$
 tg $40^{\circ} = \frac{\overline{AB}}{8} \Leftrightarrow \overline{AB} = 8 \text{ tg } 40^{\circ}$

$$A_{[ABCD]} = 8 \times 8 \text{ tg } 40^{\circ} =$$

= 64 tg 40° =
\$\approx 53,7\$

A área do retângulo [ABCD] é, aproximadamente, $53,7 \text{ cm}^2$.

5.2.
$$V_{\text{cilindro}} = A_b \times h = \pi \times r^2 \times \overline{BC}$$

 $V_{\text{cilindro}} = \pi \times (8 \text{ tg } 40^{\circ})^2 \times 8 \approx 1132,5$

O volume do cilindro é, aproximadamente, 1133 cm³.

6. [A]
$$28 = 2^2 \times 7$$

$$25 = 5^2$$

 $28 \times 25 = 700$, afirmação falsa.

[B]
$$10 = 2 \times 5$$

$$126 = 2 \times 3 \times 21$$

10 e 126 não são primos entre si.

[C]
$$28 = 2^2 \times 7$$

$$45 = 3^2 \times 5$$

28 e 45 são primos entre si e $28 \times 45 = 1260$.

[D]
$$15 = 3 \times 5$$

$$84 = 2^2 \times 3 \times 7$$

15 e 84 não são primos entre si.

Logo, a opção correta é a [C].

7.
$$-3\pi \approx -9{,}43 \text{ e } \sqrt{625} = 25$$

Representando o intervalo na reta numérica, temos:

$$24 - (-9) + 1 = 34$$

No conjunto A existem 34 números inteiros.

Caderno 2

8. Se
$$\overline{AB} = 2 \times \overline{DE}$$
, então $r = 2$.

$$\frac{P_{[ABC]}}{P_{[DEF]}} = r \Leftrightarrow P_{[ABC]} = 2 \times 40$$
$$\Leftrightarrow P_{[ABC]} = 80 \text{ cm}$$

Logo, a opção correta é a [C].

9. A abcissa do ponto $B \in 2$ e a abcissa do ponto $A \in 4$. Como o triângulo [OAB] é isósceles $(\overline{OB} = \overline{AB})$, então a altura relativamente ao lado [OA] pertence à bissetriz desse lado.

Como o ponto B é o ponto do gráfico de f que tem abcissa 2, podemos calcular a sua ordenada (y_B) , recorrendo à expressão algébrica da função f:

$$y_B = f(2) = 4 \times 2^2 = 4 \times 4 = 16$$

Assim, temos que área do triângulo [OAB] é:

$$A_{[OAB]} = \frac{\overline{OA} \times f(2)}{2} = \frac{x_A \times y_B}{2} =$$

$$= \frac{4 \times 16}{2} =$$

$$= \frac{64}{2} =$$

$$= 32 \text{ u.a.}$$

10. $n \rightarrow$ número de *pins*

$$p \rightarrow$$
 número de postais

$$\begin{cases} 3n + 2p = 6.6 \\ 2n + 4p = 7.6 \end{cases}$$

11.
$$2n^{-5} = \frac{2}{n^5}$$

Logo, a opção correta é a [C].

12. 1º processo

$$(-6x + 3)^2 - 25 = 0 \Leftrightarrow (-6x + 3)^2 - 5^2 = 0$$

Como se trata de uma diferença de quadrados, fica (-6x + 3 - 5)(-6x + 3 + 5) = 0.

Aplicando a lei do anulamento do produto, temos:

$$-6x + 3 - 5 = 0 \lor -6x + 3 + 5 = 0$$

$$\Leftrightarrow$$
 $-6x = -3 + 5 \lor -6x = -3 - 5$

$$\Leftrightarrow$$
 $-6x = 2 \lor -6x = -8$

$$\Leftrightarrow x = -\frac{1}{3} \lor x = \frac{4}{3}$$

C.S. =
$$\left\{-\frac{1}{3}, \frac{4}{3}\right\}$$

2º processo

$$(-6x + 3)^2 - 25 = 0 \Leftrightarrow 36x^2 - 36x + 9 - 25 = 0$$
$$\Leftrightarrow 36x^2 - 36x - 16 = 0$$

Recorrendo à fórmula resolvente, com a = 36,

$$b = -36 \text{ e } c = -16$$
, temos:

$$36x^{2} - 36x - 16 = 0$$

$$\Leftrightarrow x = \frac{-(-36) \pm \sqrt{(-36)^{2} - 4 \times 36 \times (-16)}}{2 \times 36}$$

$$\Leftrightarrow x = \frac{36 \pm \sqrt{1296 + 2304}}{72}$$

$$\Leftrightarrow x = \frac{36 \pm 60}{72}$$

$$\Leftrightarrow x = \frac{96}{72} \lor x = -\frac{24}{72}$$

$$\Leftrightarrow x = \frac{4}{3} \lor x = -\frac{1}{3}$$

C.S. =
$$\left\{-\frac{1}{3}, \frac{4}{3}\right\}$$

13.
$$\frac{4(5-x)}{3} > 4 \Leftrightarrow \frac{20-4x}{3} > 4$$

$$\Leftrightarrow 20 - 4x > 12$$

$$\Leftrightarrow -4x > 12 - 20$$

$$\Leftrightarrow$$
 $-4x > -8$

$$\Leftrightarrow 4x < 8$$

$$\Leftrightarrow x < \frac{8}{4}$$

$$\Leftrightarrow x < 2$$

C.S. =]-
$$\infty$$
, 2[

14.

$$A + \frac{1}{2} \overrightarrow{BL} = A + \overrightarrow{BF} =$$

$$= A + \overrightarrow{AG} =$$

$$= G$$

127

14.2. O quadrado [*GFKJ*].

15. Como o ângulo *BDA* é o ângulo inscrito relativo ao arco *AB*, a amplitude do ângulo é metade da amplitude do arco, ou seja:

$$B\hat{D}A = \frac{\widehat{AB}}{2} = \frac{60^{\circ}}{2} = 30^{\circ}$$

Como, num triângulo, a lados iguais opõem-se ângulos com a mesma amplitude e $\overline{AD} = \overline{BD}$, então $D\hat{B}A = B\hat{A}D$. Como a soma dos ângulos internos de um triângulo é 180°, vem que:

$$D\hat{B}A + B\hat{A}D + B\hat{D}A = 180^{\circ}$$

$$\Leftrightarrow D\hat{B}A + D\hat{B}A + 30^{\circ} = 180^{\circ}$$

$$\Leftrightarrow 2 D\hat{B}A = 180^{\circ} - 30^{\circ}$$

$$\Leftrightarrow D\hat{B}A = \frac{150}{2}$$

$$\Leftrightarrow D\hat{B}A = 75^{\circ}$$

Desta forma, como $\angle CBD = 20^{\circ}$, vem que:

$$C\hat{B}A = D\hat{B}A + C\hat{B}D = 75^{\circ} + 20^{\circ} = 95^{\circ}$$

Prova Final Modelo 8 – páginas 230 a 233 **Caderno 1**

1. Cinco cartões

1.1. *A*: "sair vogal"

$$P(A) = \frac{\text{número de casos favoráveis}}{\text{número de casos possíveis}} = \frac{2}{5}$$

O acontecimento complementar de *A* é igual a:

$$P(\overline{A}) = 1 - P(A) = 1 - \frac{2}{5} = \frac{3}{5}$$

1.2. Como a Susana retirou uma consoante, agora só existem duas consoantes, ou seja, o número de casos favoráveis é 2 e o número de casos possíveis é 4.

$$P(\text{"sair consoante"}) = \frac{\text{número de casos favoráveis}}{\text{número de casos possíveis}} = \frac{2}{4} = \frac{1}{2}$$

2.

2.1. Organizando os pagamentos do André aos pais e o montante em dívida numa tabela, temos:

Data	Pagamento	Montante em dívida
31 dez 2019	-	178 – 50 = 128
1 jan 2020	8	128 – 8 = 120
1 fev 2020	8	120 – 8 = 112
1 Mar 2020	8	112 – 8 = 104
1 abr 2020	8	104 – 8 = 96
2 abr 2020	-	96

A opção correta é a [D].

2.2. Como em cada prestação, o André paga 8 euros, então, ao fim de n prestações, terá pago $n \times 8 = 8n$ euros.

Observando que a dívida inicial era de 178 - 50 = 128 euros, temos que uma expressão que representa a quantia, em euros, que o André ficará a dever aos pais, após pagar n prestações, é 128 - 8n.

3. Cada arco de circunferência tem amplitude 72° , pois 360° : $5 = 72^{\circ}$.

Assim, $216^{\circ}: 72^{\circ} = 3$.

Logo, trata-se do triângulo [OEA].

A opção correta é a [A].

4. 1º processo

$$x(x + 1) - 4(x + 1) = 0$$

Colocando x + 1 em evidência, temos:

$$(x + 1)(x - 4) = 0$$

Aplicando a lei do anulamento do produto, temos:

$$x + 1 = 0 \lor x - 4 = 0 \Leftrightarrow x = -1 \lor x = 4$$

$$C.S. = \{-1, 4\}$$

2º processo

$$x^2 + x - 4x - 4 = 0 \Leftrightarrow x^2 - 3x - 4 = 0$$

Recorrendo à fórmula resolvente, com a = 1, b = -3

e
$$c = -4$$
, temos:

$$x^{2} - 3x - 4 = 0 \Leftrightarrow x = \frac{-(-3) \pm \sqrt{(-3)^{2} - 4 \times 1 \times (-4)}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{3 \pm \sqrt{9 + 16}}{2}$$

$$\Leftrightarrow x = \frac{3 \pm \sqrt{25}}{2}$$

$$\Leftrightarrow x = \frac{3 \pm 5}{2}$$

$$\Leftrightarrow x = \frac{3 - 5}{2} \lor x = \frac{3 + 5}{2}$$

$$\Leftrightarrow x = \frac{-2}{2} \lor x = \frac{8}{2}$$
$$\Leftrightarrow x = -1 \lor x = 4$$

$$C.S. = \{-1, 4\}$$

5.

5.1. Como o plano definido pelas retas *AG* e *BF* é o plano *AFG*, ou seja, o plano que contém a face lateral [*AFGB*] do paralelepípedo retângulo, então, qualquer reta que contenha uma aresta de uma base do paralelepípedo que não pertença a esta face nem seja paralela, é perpendicular a este plano, como, por exemplo, a reta *AD*.

5.2. Recorrendo à fórmula do volume da esfera, podemos calcular o raio *r* de cada tanque esférico:

$$V_{\text{esfera}} = \frac{4}{3} \pi r^3 \Leftrightarrow 33 \ 750 = \frac{4}{3} \pi r^3$$
$$\Leftrightarrow \frac{33 \ 750 \times 3}{4\pi} = r^3$$
$$\Leftrightarrow \sqrt[3]{\frac{33 \ 750 \times 3}{4\pi}} = r$$
$$\Rightarrow r \approx 20.05 \text{ m}$$

Como os quatro tanques esféricos estão encostados sem serem deformados, o valor de x corresponde a quatro diâmetros dos tanques, ou seja, $2 \times 4 = 8$ diâmetros, pelo que o valor de x em metros, arredondado às unidades, é:

$$x = 8r \approx 8 \times 20,05 \approx 160,4 \approx 160 \text{ m}$$

Caderno 2

6. Como a função f é uma função de proporcionalidade inversa, então $f(x) = \frac{k}{x}$, x > 0.

Como $f(4) = \frac{3}{2}$, então o valor da constante de proporcionalidade k pode ser calculado, substituindo as coordenadas do ponto na expressão algébrica da função f:

$$\frac{3}{2} = \frac{k}{4} \Leftrightarrow \frac{3 \times 4}{2} = k$$
$$\Leftrightarrow k = 6$$

Assim, uma expressão que define a função f é:

$$f(x) = \frac{6}{x}, \, x > 0$$

7.

7.1. O ponto *A* pertence aos gráficos das funções f e g e tem abcissa 4. Então, g(4) = 4.

Assim, as coordenadas do ponto *A* são (4, 4). Substituindo as coordenadas na expressão algébrica da função *f*, calculamos o valor de *a*:

$$f(4) = 4 \Leftrightarrow a \times 4^2 = 4$$
$$\Leftrightarrow 16a = 4$$
$$\Leftrightarrow a = \frac{4}{16}$$
$$\Leftrightarrow a = \frac{1}{4}$$

7.2. Como a reta s é paralela à reta definida pela função g, então têm o mesmo declive, ou seja, 1.

A reta s passa no ponto B, ou seja, tem ordenada na origem 6. Então, s: y = x + 6.

A opção correta é a [A].

8. Como *BDC* é um ângulo inscrito no arco \widehat{BC} = 154°, então:

$$B\hat{D}C = \frac{154^{\circ}}{2} = 77^{\circ}$$

Como a soma das amplitudes dos ângulos internos de um triângulo é igual a 180°, então:

$$\angle CBD = 180^{\circ} - (77^{\circ} + 51^{\circ}) = 52^{\circ}$$

9. Substituindo x por -2 e y por 1, obtemos:

$$\begin{cases}
-2 (-2 - 4) = \frac{-3 \times 1 + 1}{2} \\
5 \times (-2) + 10 \times 1 = 0
\end{cases} \Leftrightarrow \begin{cases}
-2 \times (-6) = \frac{-2}{4} \\
-10 + 10 = 0
\end{cases}$$

$$\Leftrightarrow \begin{cases}
12 = -\frac{1}{2} \text{ (F)} \\
0 = 0 \text{ (V)}
\end{cases}$$

O par ordenado (-2, 1) não é solução do sistema porque não é solução da 1ª equação.

10. 1º Traçar uma circunferência de centro na casa do Rui e raio igual à distância da casa do Rui ao estádio do Dragão.

2º Traçar a mediatriz do segmento de reta que liga o Marquês à Praça Velasquez.

3º Marcar o ponto *E*, ponto de interseção da mediatriz com a circunferência.

11. As retas *r*, *s* e *t* são concorrentes num ponto. Seja I o ponto de interseção das três retas.

Assim, os triângulos [UXI] e [VYI] são semelhantes. Logo:

$$\frac{\overline{XI}}{\overline{YI}} = \frac{\overline{UX}}{\overline{VY}} \Leftrightarrow \frac{\overline{XI}}{\overline{YI}} = \frac{9}{4}$$

Os triângulos [XWI] e [YZI] também são semelhantes. Logo:

$$\frac{\overline{XW}}{\overline{YZ}} = \frac{\overline{XI}}{\overline{YI}} \Leftrightarrow \frac{\overline{XW}}{\overline{YZ}} = \frac{9}{4}$$

A opção correta é a [C].

Prova Final Modelo 9 – páginas 234 a 237 Caderno 1

1.

1.1. Como no total são 200 jornalistas, então:

$$200 - (12 + 4 + 24 + 12 + 12 + 12 + 12 + 20 + 33 + 15 + 14) =$$

Assim, a = 30.

1.2. Número de casos favoráveis: 12

Número de casos possíveis: 200

Logo, P("selecionar um português do sexo masculino") =

$$= \frac{\text{número de casos favoráveis}}{\text{número de casos possíveis}} = \frac{12}{200} = \frac{3}{50} = 0,06$$

1.3. Ordenando as idades dos jornalistas, podemos identificar a posição dos quartis da distribuição:

$$\underbrace{26\ 28\ 29\ 32\ 32\ 33\ 34\ 35}_{8}\underbrace{37\ 38\ 38\ 40\ 40\ 42\ 42\ 50}_{8}$$

Logo o 3º quartil deste conjunto de dados corresponde à média das 12ª e 13ª idades, ou seja,

$$\frac{40+40}{2} = 40.$$

2.

2.1. Cada construção é constituída por quadrados divididos em dois triângulos do tipo dos que são contados.

Verificamos que:

- na 1ª construção existe 1 quadrado e, por isso, $2 \times 1 = 2$ triângulos;

 na 2ª construção existem 2² = 4 quadrados e, por isso, $2 \times 4 = 8$ triângulos;

 na 3^a construção existem 3² = 9 quadrados e, por isso, $2 \times 9 = 18$ triângulos.

Então, na 5ª construção existem 5² = 25 quadrados e, por isso, $2 \times 25 = 50$ triângulos.

2.2. De acordo com a alínea anterior, na *n*-ésima construção existem n² quadrados e, por isso,

$$2 \times n^2 = 2n^2$$
 triângulos.

Logo, a opção correta é a [D].

3. Como a < b, então $-a > -b \Leftrightarrow -\frac{a}{2} > -\frac{b}{2}$ A opção correta é a [D].

4.1. O volume da cisterna pode ser dado pela soma dos volumes do cilindro e das duas semiesferas (ou de uma esfera com o mesmo diâmetro).

Volume do cilindro

$$V_{\text{cilindro}} = A_b \times h$$

$$\uparrow$$

$$\textbf{Cálculo auxiliar}$$

$$h = 6,4-2,4=4$$

$$A_b = \pi \times (1,2)^2$$

$$V_{\text{cilindro}} = 1.44\pi \times 4 =$$
$$= 5.75\pi$$

Volume da esfera

$$V_{\text{esfera}} = \frac{4}{3} \pi r^{3}$$

$$\begin{array}{c} \textbf{Cálculo auxiliar} \\ r = \frac{2,4}{2} = 1,2 \end{array}$$

$$V_{\text{esfera}} = \frac{4}{3} \pi \times 1,2^{3} = \frac{4}{3}$$

$$V_{\text{esfera}} = \frac{4}{3}\pi \times 1,2^3 =$$

= 2,304 π

$$V_{\text{cisterna}} = 5.76\pi + 2.304\pi \approx 25.3$$

O volume da cisterna é, aproximadamente, 25,3 m³.

4.2. [ABC] é um triângulo retângulo em B. Assim, pelo teorema de Pitágoras:

$$\overline{AC^2} = \overline{AB^2} + \overline{BC^2} \Leftrightarrow \overline{AC^2} = 6,4^2 + 2,4^2$$

$$\Leftrightarrow \overline{AC^2} = 40,96 + 5,76$$

$$\Leftrightarrow \overline{AC} = \pm \sqrt{46,72}$$

Como
$$\overline{AC} > 0$$
, $\overline{AC} \approx 6.8$
Assim, $\overline{AC} = 6.8$ m.

5. Como $C -\sqrt{2}$ e $B -2\sqrt{2}$ e $-2\sqrt{2} < 1 - 2\sqrt{2} < -\sqrt{2}$, então $1 - 2\sqrt{2}$ pertence ao segmento de reta [*CB*]. Logo, a opão correta é a [A].

Caderno 2

6.
$$\frac{2^{-3} \times 64 \times (2^{2})^{3}}{2^{-4} \times 8} = \frac{2^{-3} \times 2^{6} \times 2^{6}}{2^{-4} \times 2^{3}} =$$
$$= \frac{2^{-3} + 6 + 6}{2^{-4} + 3} =$$
$$= \frac{2^{9}}{2^{-1}} =$$
$$= 2^{9 - (-1)} =$$
$$= 2^{10}$$

7. $a \rightarrow$ número de automóveis

 $b \rightarrow$ número de bicicletas

4a → número de rodas dos automóveis

 $2b \rightarrow$ número de rodas das bicicletas

Como há 252 rodas, então 4a + 2b = 252.

Como o número de automóveis é o quadrúplo do número de bicicletas, então a = 4b.

$$\begin{cases} a = 4b \\ 4a + 2b = 252 \end{cases}$$

8

8.1. $f(x) = ax^2$, $a \ne 0$. Como o ponto C pertence ao gráfico da função f, então:

$$1.5 = a \times 1^2 \Leftrightarrow a = 1.5$$

Logo,
$$f(x) = \frac{3}{2}x^2$$
.

8.2. Como o ponto *A* pertence ao gráfico da função *f* e tem ordenada 6, então:

$$f(x) = 6 \Leftrightarrow 6 = 1.5x^2 \Leftrightarrow x^2 = 4 \Leftrightarrow x = -2, x < 0$$

O ponto A tem coordenadas (-2, 6).

O ponto *B* pertence ao eixo dos *xx* e tem a mesma abcissa que o ponto *C*, logo tem coordenadas (1, 0). Então, a base do triângulo mede 1,5 e a altura é 3. Assim:

$$A_{[ABC]} = \frac{1.5 \times 3}{2} = 2.25 \text{ u.a.}$$

8.3. A reta passa nos pontos A e C. Então:

$$m_{AC} = \frac{6 - 1.5}{-2 - 1} = \frac{4.5}{-3} = -1.5 = -\frac{3}{2}$$

Assim,
$$y = -\frac{3}{2}x + b$$
.

Substituindo, por exemplo, pelas coordenadas de *A*, determinamos a ordenada na origem.

$$6 = -\frac{3}{2} \times (-2) + b \Leftrightarrow b = 6 - 3$$
$$\Leftrightarrow b = 3$$

$$y = -\frac{3}{2}x + 3$$

8.4. Como a representação gráfica da função f é no semiplano não negativo definido pelo eixo Oy, $p \in]-\infty$, 0[.

9.
$$\frac{1}{2} - 3x < \frac{7}{4} + \frac{x}{2} \Leftrightarrow 2 - 12x < 7 + 2x$$
$$\Leftrightarrow -12x - 2x < 7 - 2$$
$$\Leftrightarrow -14x < 5$$
$$\Leftrightarrow 14x > -5$$
$$\Leftrightarrow x > -\frac{5}{14}$$

$$C.S. = \left[-\frac{5}{14}, +\infty \right]$$

10.
$$x(1 + 3x) - 2x = x^2 + 1 \Leftrightarrow x + 3x^2 - 2x = x^2 + 1$$

 $\Leftrightarrow 3x^2 - x^2 + x - 2x - 1 = 0$
 $\Leftrightarrow 2x^2 - x - 1 = 0$

Recorrendo à fórmula resolvente, com a = 2, b = -1 e c = -1, temos:

$$2x^{2} - x - 1 = 0 \Leftrightarrow x = \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \times 2 \times (-1)}}{2 \times 2}$$

$$\Leftrightarrow x = \frac{1 \pm \sqrt{1 + 8}}{4}$$

$$\Leftrightarrow x = \frac{1 \pm \sqrt{9}}{4}$$

$$\Leftrightarrow x = \frac{1-3}{4} \lor x = \frac{1+3}{4}$$

$$\Leftrightarrow x = -\frac{1}{2} \lor x = 1$$

C.S. =
$$\left\{-\frac{1}{2}, 1\right\}$$

11. Como a escala é 2 cm : 60 km, ou seja,

$$\frac{2}{6\ 000\ 000} = \frac{1}{3\ 000\ 000}$$
, então:

 $3.5 \times 3~000~000 = 10~500~000~cm = 105~km$ A distância real entre as duas cidades é 105 km.

12. A área da região sombreada, A_s , pode ser calculada como a diferença entre as áreas dos quadrados de lados [BC] e [AE].

Assim, temos que:

$$A_s = \overline{BC^2} - \overline{AE^2} = (a+1)^2 - (a-1)^2 =$$

= $a^2 + 2 \times a \times 1 + 1^2 - (a^2 - 2 \times a \times 1 + 1^2) =$

$$= a^{2} + 2a + 1 - (a^{2} - 2a + 1) =$$

$$= a^{2} + 2a + 1 - a^{2} + 2a - 1 =$$

$$= a^{2} - a^{2} + 2a + 2a + 1 - 1 =$$

$$= 2a + 2a =$$

$$= 4a$$

Prova Final Modelo 10 – páginas 238 a 241 **Caderno 1**

1.

1.1. Existem 6 casos possíveis (morango, baunilha, chocolate, framboesa, limão e caramelo) e um caso favorável. Recorrendo à lei de Laplace, temos que a probabilidade, escrita na forma de fração, é:

P("selecionar gelado de chocolate") =

$$= \frac{\text{número de casos favoráveis}}{\text{número de casos possíveis}} = \frac{1}{6}$$

1.2. Vamos organizar todos os sabores, com recurso a uma tabela:

	М	В	Ch	F	L	Ca
М	NHM	MB	MCh	MF	ML	MCa
В	ВМ	BB	BCh	BF	BL	ВСа
Ch	ChM	ChB	ChCh	ChF	ChL	(ChCa
F	FM	FB	(FCh)	×	FL	(FCa)
L	LM	LB	LCh	LF	X	(Ca)
Ca	CaM	CaB	(CaC)h	CaF	Cal	CaCa

Assim, é possível verificar que, de entre os 30 casos possíveis, 12 são favoráveis:

Logo $P("n\~ao ter nenhum dos seus sabores favoritos") =$ $= <math>\frac{n\'amero de casos favor\'aveis}{n\'amero de casos poss\'aveis} = \frac{12}{30} = \frac{2}{5}$.

1.3. Identificando, no diagrama, os quartis deste conjunto de dados, temos que $Q_1 = 94$ e $Q_3 = 103$. Logo, a amplitude interquartis do conjunto de dados é:

$$Q_3 - Q_1 = 103 - 94 = 9$$

A opção correta é a [A].

2. Considerando que o primeiro termo é constituído por 4 círculos (2 brancos e 2 cinzentos) e mais 3 círculos (2 cinzentos e 1 branco), e que em cada termo são adicionados mais 3 círculos (2 cinzentos e 1 branco), o termo de ordem *n* terá um total de 4 círculos mais 3 × *n* círculos adicionados, ou seja, um total de:

$$4 + \underbrace{3 + 3 + \dots + 3}_{n \text{ vezes}} = 4 + 3 \times n = 3n + 4 \text{ círculos}$$

A opção correta é a [C].

3.

3.1. Como o triângulo [*ADE*] é retângulo no vértice *E* e, relativamente ao ângulo *DAE*, o lado [*AE*] é o cateto adjacente e o lado [*AD*] é a hipotenusa, usando a definição de cosseno, temos:

$$\cos D\hat{A}E = \frac{\text{medida do cateto adjacente a } D\hat{A}E}{\text{medida da hipotenusa}}$$

$$\Leftrightarrow \cos D\hat{A}E = \frac{\overline{AE}}{\overline{AD}} \Leftrightarrow \cos 32^{\circ} = \frac{\overline{AE}}{0.90}$$
$$\Leftrightarrow \overline{AE} = 0.9 \times \cos 32^{\circ}$$

Como cos $32^{\circ} \approx 0.848$, vem que:

$$\overline{AE} \approx 0.9 \times 0.848 \approx 0.963 \text{ m}$$

Como $\overline{EF} + \overline{AE} = \overline{AF} \Leftrightarrow \overline{EF} = \overline{AF} - \overline{AE}$, temos que a distância, em metros, do vértice D à parede do quarto, arredondado às centésimas, é:

$$\overline{EF} = \overline{AF} - \overline{AE} \approx 1,05 - 0,763 \approx 0,29 \text{ m}$$

3.2. a) Como os dois planos contêm o ponto S e o ponto X e não são coincidentes, a sua interseção é a reta SX.

b) Como o triângulo [*UVS*] é um triângulo retângulo em *V*, recorrendo ao teorema de Pitágoras, temos que:

Como [SXWV] é um quadrado cujos lados têm comprimento 15 cm, temos que \overline{VS} = 15 cm.

Logo, como
$$\overline{UV} = 7$$
 cm, vem que:
 $\overline{US^2} = 7^2 + 15^2 \Leftrightarrow \overline{US^2} = 49 + 225$
 $\Leftrightarrow \overline{US^2} = 274$
 $\Rightarrow \overline{US} = \sqrt{274}$
 $\overline{US} > 0$

Assim, como $\sqrt{274} \approx 16,6$, o valor de \overline{US} , arredondado às décimas, é 16,6 cm.

Caderno 2

4. [A]
$$\left(\frac{\sqrt{5}}{2}\right)^2 = \frac{5}{4}$$
 não é irracional.

[B]
$$\left(\frac{105}{3}\right)^2 = 35^2 = 1225$$
 não é irracional.

[C]
$$(2 - \sqrt{8})(2 + \sqrt{8}) = 4 - 8 = -4$$
 não é irracional.
[D] $(5 - \sqrt{3})^2 = 25 - 10\sqrt{3} + 3 = 28 - 10\sqrt{3}$ é irracional.
Logo, a opção correta é a [D].

5. O ponto *A* pertence ao gráfico da função *f* e tem abcissa 2, logo a ordenada é $y = \frac{8}{2} \Leftrightarrow y = 4$.

O ponto *A* tem coordenadas (2, 4) e pertence ao gráfico da função *g*, logo:

$$4 = a \times 2^2 \Leftrightarrow 4 = a \times 4 \Leftrightarrow a = 1$$

Uma expressão algébrica da função $g \notin g(x) = x^2$.

O ponto *B* pertence ao gráfico da função *g* e tem ordenada 2, então $2 = x^2 \Leftrightarrow x = \pm \sqrt{2}$.

Como a abcissa do ponto B é negativa, então é $-\sqrt{2}$.

$$6. \ 2(3-x) > 4 - \frac{x+3}{2} \Leftrightarrow 6 - 2x > 4 - \frac{x+3}{2}$$

$$\Leftrightarrow 12 - 4x > 8 - x - 3$$

$$\Leftrightarrow -4x + x > 8 - 3 - 12$$

$$\Leftrightarrow -3x > -7$$

$$\Leftrightarrow 3x < 7$$

$$\Leftrightarrow x < \frac{7}{3}$$

C.S. =
$$\left[-\infty, \frac{7}{3}\right]$$

7.
$$-6x^2 + 12 = x \Leftrightarrow -6x^2 - x + 12 = 0$$

Recorrendo à fórmula resolvente, com a = -6, b = -1 e c = 12, temos:

e
$$c = 12$$
, temos:
 $-6x^2 - x + 12 = 0 \Leftrightarrow x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times (-6) \times 12}}{2 \times (-6)}$
 $\Leftrightarrow x = \frac{1 \pm \sqrt{1 + 288}}{-12}$
 $\Leftrightarrow x = \frac{1 \pm 17}{-12}$

$$\Leftrightarrow x = \frac{-16}{-12} \lor x = \frac{18}{-12}$$

$$\Leftrightarrow x = \frac{4}{3} \lor x = -\frac{3}{2}$$
C.S. = $\left\{-\frac{3}{2}, \frac{4}{3}\right\}$

8. $x \rightarrow$ número de rapazes $y \rightarrow$ número de raparigas

 $\frac{1}{3}y \rightarrow \frac{1}{3}$ do número de raparigas

$$\left(x = \frac{1}{3} \right)$$

$$\begin{cases} x = \frac{1}{3}y \\ x+3 = \frac{y+1}{2} \end{cases}$$

9.

9.1. Os triângulos [ABP] e [CDP] são semelhantes, pelo critério \overrightarrow{AA} , $D\widehat{A}B = D\widehat{C}B$ (ângulos inscritos no mesmo arco \widehat{DB}) e $A\widehat{B}C = A\widehat{D}C$ (ângulos inscritos no mesmo arco \widehat{AC}).

9.2. $D\hat{A}B$ é um ângulo inscrito relativo ao arco \widehat{DB} . Assim, a amplitude do ângulo é metade da amplitude

do arco, ou seja,
$$P\hat{A}B = D\hat{A}B = \frac{\widehat{DB}}{2} = \frac{110^{\circ}}{2} = 55^{\circ}$$
.

Temos que:

$$B\hat{P}A + P\hat{A}B + A\hat{B}P = 180^{\circ} \Leftrightarrow B\hat{P}A = 180^{\circ} - 55^{\circ} - 30^{\circ}$$

 $\Leftrightarrow B\hat{P}A = 95^{\circ}$

10. Como \overline{AC} = 3 e \overline{CG} = 1 e o ponto G pertence ao lado [AC], temos que:

$$\overline{AG} + \overline{CG} = \overline{AC} \Leftrightarrow \overline{AG} + 1 = 3$$

 $\Leftrightarrow \overline{AG} = 3 - 1$
 $\Leftrightarrow \overline{AG} = 2$

Como os triângulos [ADG] e [GHC] são semelhantes (pelo critério AA, têm ambos um ângulo reto e os ângulos DAG e HGC são ângulos de lados paralelos), então:

$$\frac{\overline{DG}}{\overline{CH}} = \frac{\overline{AG}}{\overline{CG}} \Leftrightarrow \frac{\overline{DG}}{a} = \frac{2}{1} \Leftrightarrow \overline{DG} = 2a$$

Assim, como $\overline{FG} = a$, temos que a área do retângulo [*DEFG*], em função de a, é:

$$A_{[DEFG]} = \overline{DG} \times \overline{FG} = 2a \times a = 2a^2$$

Prova Final Modelo 11 – páginas 242 a 245 **Caderno 1**

1.

1.1. Existem 4 livros que não são de Gil Vicente, ou seja, existem 4 casos possíveis e 3 que são de Camilo Castelo Branco, ou seja, 3 casos favoráveis. Assim, aplicando a regra de Laplace, a probabilidade, escrita na forma de fração, é:

P("receber um livro de Camilo Castelo Branco") =

- $= \frac{\text{número de casos favoráveis}}{\text{número de casos possíveis}} = \frac{3}{4}$
- **1.2.** Como são selecionados dois dos quatro livros, podemos organizar todos os pares de elementos que podem ser selecionados, com recurso a uma tabela:

	ABI ₁	ABI ₂	Al	FIP
ABI ₁	X	ABI ₁ /ABI ₂	ABI₁/AI	ABI₁/FIP
ABI ₂		X	ABI ₂ /AI	ABI ₂ /FIP
Al			Х	AI/FIP
FIP				Х

Podemos observar que existem 6 pares de livros que podem ser selecionados, dos quais somente um com dois livros iguais. Usando a lei de Laplace, e escrevendo o resultado na forma de uma fração irredutível, temos:

P(selecionar dois livros iguais") =

- $= \frac{\text{número de casos favoráveis}}{\text{número de casos possíveis}} = \frac{1}{6}$
- 2. Como 25% da área total ardida foi extinguida, temos:

3 milhões de hectares $\times \frac{25}{100} = 0,75$ milhões de hec-

tares. Assim, escrevendo este número em hectares e em notação científica, vem:

0,75 milhões de hectares =
$$0.75 \times 10^6$$
 hectares = 7.5×10^5 hectares

3. [BCDE] é um quadrado cuja área é 25 cm², então $\overline{CB} = \overline{CD} = \sqrt{25} = 5$ cm.

O triângulo [ABC] é retângulo em A. Relativamente ao ângulo CBA, o lado [AB] é o cateto adjacente e o lado [BC] é a hipotenusa. Assim, usando a definição de cosseno, temos:

 $\cos C\hat{B}A = \frac{\text{medida do cateto adjacente a } C\hat{B}A}{\text{medida da hipotenusa}}$

$$\Leftrightarrow \cos C\hat{B}A = \frac{\overline{AB}}{\overline{BC}} \Leftrightarrow \cos 45^{\circ} = \frac{\overline{AB}}{5}$$

$$\Leftrightarrow \overline{AB} = 5 \times \frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \overline{AB} = \frac{5}{2}\sqrt{2}$$

Relativamente ao ângulo *CBA*, o lado [*AC*] é o cateto oposto e o lado [*BC*] é a hipotenusa. Usando a definição de seno, temos:

sen
$$C\hat{B}A = \frac{\text{medida do cateto oposto a } C\hat{B}A}{\text{medida da hipotenusa}}$$

$$\Leftrightarrow \operatorname{sen} C\widehat{B}A = \frac{\overline{AC}}{\overline{BC}} \Leftrightarrow \operatorname{sen} 45^{\circ} = \frac{\overline{AC}}{5}$$

$$\Leftrightarrow \overline{AC} = 5 \operatorname{sen} 45^{\circ}$$

$$\Leftrightarrow \overline{AC} = \frac{5}{2}\sqrt{2}$$

Como o volume de um prisma pode ser calculado como o produto da área da base pela altura, começamos por determinar a área de base do prisma [ABCDEF], ou seja, por exemplo, a área do triângulo

[ABC]:

$$A_{\text{base}} = A_{[ABC]} = \frac{\overline{AB} \times \overline{AC}}{2} =$$

$$= \frac{\frac{5}{2}\sqrt{2} \times \frac{5}{2}\sqrt{2}}{2} =$$

$$= \frac{\frac{50}{4}}{2} =$$

$$= \frac{50}{8} =$$

$$= \frac{25}{4} =$$

$$= 6.25 \text{ cm}^2$$

Desta forma:

$$V_{[ABCDEF]} = A_{\text{base}} \times \text{altura} = 6.25 \times \overline{CD} =$$

$$= 6.25 \times 5 =$$

$$= 31.25$$

$$\approx 31 \text{ cm}^3$$

4. Como $\frac{1}{27}$ e $\frac{1}{3}$ são razões de números inteiros, então são números racionais, ou seja, representam-se por dízimas finitas ou infinitas periódicas.

Como $\sqrt{25}$ = 5 é um número inteiro, então não é uma dízima infinita não periódica. $\sqrt{3}$ é um número irracional, pelo que a sua representação na forma de dízima corresponde a uma dízima infinita não periódica.

A opção correta é a [D].

5.

5.1. Como o triângulo [ABC] é um triâgulo retângulo em A, recorrendo ao teorema de Pitágoras, podemos afirmar que:

$$\overline{BC}^2 = \overline{AB}^2 + \overline{AC}^2$$

Logo, substituindo os valores dados, vem que:

$$\overline{BC^2} = 6^2 + 9^2 \Leftrightarrow \overline{BC^2} = 36 + 81$$

 $\Leftrightarrow \overline{BC^2} = 117$
 $\Rightarrow \overline{BC} = \sqrt{117} \text{ cm}$
 $\overline{BC} > 0$

A opção correta é a [B].

5.2. Como o quadrilátero [AFED] é um retângulo e o ponto F pertence ao segmento de reta [AB], podemos afirmar que os ângulos BAC e BFE são ambos retos (BÂC = BFE).

Como os ângulos CBA e EBF são coincidentes, também são iguais $(C\hat{B}A = E\hat{B}F)$.

Assim, pelo critério AA (ângulo-ângulo), podemos afirmar que os triângulos [ABC] e [FBE] são semelhantes.

5.3. Como os triângulos [*ABC*] e [*FBE*] são semelhantes, podemos afirmar que a razão entre os lados correspondentes é diretamente proporcional, ou seja:

$$\frac{\overline{FE}}{\overline{AC}} = \frac{\overline{FB}}{\overline{AB}}$$

Logo, substituindo os valores dados, vem que:

$$\frac{\overline{FE}}{9} = \frac{4}{6} \Leftrightarrow \overline{FE} = \frac{9 \times 4}{6} \Leftrightarrow \overline{FE} = \frac{36}{6}$$
$$\Leftrightarrow \overline{FE} = 6$$

Como $\overline{AB} = \overline{AF} + \overline{FB}$, temos que:

$$6 = \overline{AF} + 4 \Leftrightarrow 6 - 4 = \overline{AF} \Leftrightarrow 2 = \overline{AF}$$

Assim, como $\overline{AD} = \overline{FE}$ e $\overline{AF} = \overline{DE}$, o perímetro do retângulo [AFED] é:

$$P_{[AFED]} = 3 \times \overline{FE} + 2 \times \overline{AF} =$$

= 2 × 6 + 2 × 2 =
= 12 + 4 =
= 16 cm

Caderno 2

6.
$$\frac{(12^5)^2 \times 12^6}{4^{16}} = \frac{12^{10} \times 12^6}{4^{16}} =$$
$$= \frac{12^{16}}{4^{16}} =$$
$$= 3^{16}$$

7. Como o perímetro do quadrado [*OBCD*] é 24 cm, o comprimento do lado é $\frac{24}{4}$ = 6 cm, ou seja, o ponto

B tem coordenadas (6, 0), o ponto *D* tem de coordenadas (0, 6) e o ponto *C* tem coordenadas (6, 6).

A função f é uma função de proporcionalidade inversa, ou seja, é da forma $f(x) = \frac{k}{x}$, x > 0. Assim, podemos

calcular o valor da constante de proporcionalidade, ou seja, o valor de k, substituindo as coordenadas do ponto C (que pertence ao gráfico da função f):

$$g(6) = 6 \Leftrightarrow 6 = \frac{k}{6} \Leftrightarrow k = 36$$

Desta forma, como a função f é definida por $f(x) = \frac{36}{x}$, x > 0, substituindo a abcissa 6 na expressão f, podemos calcular o valor da ordenada, ou seja, $f(6) = \frac{36}{6} = 6$.

8.
$$4(1-x) \le \frac{x}{2} + 3 \Leftrightarrow 4 - 4x \le \frac{x}{2} + 3$$

$$(\times 2) \quad (\times 2) \quad (\times 2) \quad (\times 2)$$

$$\Leftrightarrow 8 - 8x \le x + 6$$

$$\Leftrightarrow -8x - x \le 6 - 8$$

$$\Leftrightarrow -9x \le -2$$

$$\Leftrightarrow 9x \ge 2$$

$$\Leftrightarrow x \ge \frac{2}{9}$$

$$C.S. = \left\lceil \frac{2}{9}, +\infty \right\rceil$$

9.
$$(x-1)(x+1) = 4x - 4 \Leftrightarrow x^2 - 1 = 4x - 4$$

 $\Leftrightarrow x^2 - 4x - 1 + 4 = 0$
 $\Leftrightarrow x^2 - 4x + 3 = 0$

Recorrendo à fórmula resolvente, com a = 1, b = -4 e c = 3, temos:

e
$$c = 3$$
, ternos:

$$x^{2} - 4x + 3 = 0 \Leftrightarrow x = \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \times 1 \times 3}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{4 \pm \sqrt{16 - 12}}{2}$$

$$\Leftrightarrow x = \frac{4 \pm \sqrt{4}}{2}$$

$$\Leftrightarrow x = 1 \lor x = 3$$

$$C.S. = \{1, 3\}$$

10. Observando que $\overrightarrow{FG} = \overrightarrow{EH}$ (porque são vetores com a mesma direção, o mesmo sentido e o mesmo comprimento), então temos que:

$$\overrightarrow{BF} + \overrightarrow{EH} = \overrightarrow{BF} + \overrightarrow{FG} = \overrightarrow{BG}$$

A opção correta é a [A].

11. Analisando as representações geométricas apresentadas, podemos verificar que, relativamente à reta de equação y = x - 3, todas apresentam uma reta com declive positivo (m = 1).

Relativamente à reta y = 2, podemos observar que apenas as opções [B] e [C] apresentam uma reta horizontal de equação y = 2.

Em relação à reta y = x - 3, a opção [B] apresenta uma reta com ordenada na origem igual a -3. A opção correta é a [B].

12. Como a reta t é tangente à circunferência no ponto B, $A\hat{B}O = 90^{\circ}$.

$$O\hat{A}B + A\hat{B}O + B\hat{O}A = 180^{\circ} \Leftrightarrow B\hat{O}A = 180^{\circ} - 40^{\circ} - 90^{\circ}$$

 $\Leftrightarrow B\hat{O}A = 50^{\circ}$

Como [CO] e [OB] são raios de circunferência,

$$\overline{CO} = \overline{OB}$$
. Então, $O\hat{CB} = C\hat{B}O = \frac{180^{\circ} - 50^{\circ}}{2} = 65^{\circ}$.

O ângulo BOC é um ângulo ao centro, logo o arco correspondente $\widehat{BC} = B\widehat{OC} = 50^{\circ}$.

O ângulo $D\hat{C}B$ é inscrito no arco DB e $D\hat{C}B = 40^{\circ}$, $\log_{10} D\hat{C}B = 2 \times 40^{\circ} = 80^{\circ}$.

O arco maior *CD* tem amplitude $360^{\circ} - 50^{\circ} - 80^{\circ} = 230^{\circ}$.

13. Como a reta r contém os pontos de coordenadas (0, 0) e (4, -1), então podemos calcular o valor do declive:

$$m_r = \frac{-1-0}{4-0} = \frac{-1}{4} = -\frac{1}{4}$$

Como a reta *s* é paralela à reta *r*, os respetivos declives são iguais, pelo que uma equação da reta *s* é da forma:

$$y = -\frac{1}{4}x + b$$

Substituindo as coordenadas do ponto da reta s, (8, -5), podemos determinar o valor da ordenada na origem (b):

$$-5 = -\frac{1}{4} \times 8 + b \Leftrightarrow -5 = -2 + b$$
$$\Leftrightarrow 2 - 5 = b$$
$$\Leftrightarrow -3 = b$$

Assim, a equação da reta s é:

$$y = -\frac{1}{4}x - 3$$

Prova Final Modelo 12 – páginas 246 a 249 **Caderno 1**

1.

1.1. Observando os dados do gráfico, podemos concluir que o número total de alunos é 2 + 10 + 8 + 3 = 23, dos quais 11 (8 + 3) têm pelo menos 15 anos. Existem 11 casos favoráveis para que um aluno escolhido tenha pelo menos 15 anos e 23 casos possíveis. Utilizando a regra de Laplace, temos que a probabilidade de escolher ao acaso um aluno da turma com pelo menos 15 anos é igual a:

$$P = \frac{\text{número de casos favoráveis}}{\text{número de casos possíveis}} = \frac{11}{23}$$

1.2. Como a moda das idades é 14, os dois alunos que entraram têm 14 anos, pelo que a média das idades dos alunos é:

$$\overline{x} = \frac{13 \times 2 + 14 \times 12 + 15 \times 8 + 16 \times 3}{25} = \frac{362}{25} = 14,48$$

2.

2.1. Por observação dos quatro primeiros termos, é possível afirmar que o termo de ordem *n* tem *n* azulejos brancos, pelo que o termo de ordem 2012, ou o 2012° termo, terá 2012 azulejos brancos.

A opção correta é a [B].

- **2.2.** Calculando o número total de azulejos em cada termo, como a soma dos azulejos brancos e cinzentos, temos:
- 1º termo: 1 branco e 1 × 2 cinzentos, 1 + 1 × 2 = 3 azulejos
- **2º termo:** 2 brancos e 2 × 3 cinzentos, 2 + 2 × 3 = 8 azulejos
- 3º termo: 3 brancos e 3×4 cinzentos, $3 + 3 \times 4 = 15$ azulejos

• **4º termo:** 4 brancos e 4 × 5 cinzentos, 4 + 4 × 5 = 24 azulejos

Assim, identificando a regularidade, podemos calcular o número total de azulejos do 9º termo da sequência: **9º termo:** 9 brancos e 9×10 cinzentos, $9 + 9 \times 10 = 99$ azulejos

3.
$$4 \times x^{18} + \frac{8}{x^{-6}} = 4 \times (x^6)^3 + 8 \times x^6$$
, com $x^6 = 2$
= $4 \times 2^3 + 8 \times 2 =$
= $4 \times 8 + 16 =$
= 48

4. Como $\overline{AB} = \overline{BC}$, então o triângulo [ABC] é isósceles. O ângulo $B\widehat{C}A$ é inscrito no arco \widehat{BA} , logo

$$B\hat{C}A = \frac{120^{\circ}}{2} = 60^{\circ} = C\hat{A}B.$$

Então, $A\hat{B}C = 180^{\circ} - 60^{\circ} - 60^{\circ} = 60^{\circ}$.

Pelo teorema de Pitágoras:

$$4^{2} = 2^{2} + x^{2} \Leftrightarrow x^{2} = 16 - 4$$
$$\Leftrightarrow x^{2} = 12$$
$$\Leftrightarrow x = \pm \sqrt{12}$$

Como x > 0, então $x = \sqrt{12} \Leftrightarrow x = 2\sqrt{3}$ cm.

A área do triângulo [ABC] é igual a:

$$\frac{\text{base} \times \text{altura}}{2} = \frac{4 \times 2\sqrt{3}}{2} =$$
$$= 4\sqrt{3} \text{ cm}^2$$

5.

- **5.1.** Comparando cada uma das retas com o plano *ADH*, temos que:
- a reta AB não é paralela ao plano ADH, porque se intersetam no ponto A;
- a reta IE não é paralela ao plano ADH, porque se intersetam no ponto E;
- como a face [ABFE] é um retângulo, então a reta BF é paralela à reta AE, e como a reta AE pertence ao plano ADH, então a reta BF é paralela ao plano ADH;
- a reta *EG* não é paralela ao plano *ADH*, porque se intersetam no ponto *E*.

A opção correta é a [C].

5.2.

Começamos por determinar a altura da pirâmide [EFGHI]. Como o triângulo [JKI] é retângulo em K, recorrendo ao teorema de Pitágoras, temos que:

$$\overline{IK^2} + \overline{KJ^2} = \overline{IJ^2}$$

Como $\overline{KJ} = \frac{\overline{AD}}{2} = \frac{1.2}{2} = 0.6$ m, substituindo os valores

conhecidos na equação anterior, vem que:

$$\overline{IK^2} + 0.6 = 1^2 \Leftrightarrow \overline{IK^2} + 0.36 = 1$$

$$\Leftrightarrow \overline{IK^2} = 1 - 0.36$$

$$\Leftrightarrow \overline{IK^2} = 0.64$$

$$\Rightarrow \overline{IK} = \sqrt{0.64}$$

$$\overline{IK} > 0$$

Assim, temos que $\overline{IK} = 0.8$.

Podemos agora determinar o volume da pirâmide:

$$V_{[EFGHI]} = \frac{1}{3} \times A_{[EFGH]} \times \overline{IK} =$$

$$= \frac{1}{3} \times 1,2^2 \times 0,8 =$$

$$= 0.384 \text{ m}^3$$

Determinando o volume do prisma, vem que:

$$V_{[ABCDEFGH]} = \overline{DA} \times \overline{AB} \times \overline{DH} =$$

$$= 1.2 \times 1.2 \times 1.7 =$$

$$= 2.448 \text{ m}^3$$

Logo, podemos determinar o volume total do sólido V_T , como a soma dos volumes da pirâmide e do prisma:

$$V_T = V_{[EFGHI]} = V_{[ABCDEFGH]} =$$

= 0,384 + 2,448 =
= 2,832 m³

Caderno 2

6. A área de qualquer retângulo é igual a: comprimento × largura

137

Nesta situação:

$$c \times \ell = 20 \Leftrightarrow \ell = \frac{20}{c}, c > 0$$
, ou seja trata-se de uma

função de proporcionalidade inversa, cujo gráfico é uma hipérbole. Podemos assim excluir as opções [A] e [C].

Como $c \times \ell = 20$, por exemplo, o ponto de coordenadas (1, 20) pertence ao gráfico da opção [D] e não ao gráfico da opção [B].

A opção correta é a [D].

7. Temos que:

- a reflexão do quadrado 5, relativamente ao eixo CD, é o quadrado 2;
- a translação do quadrado 2 associada ao vetor \overrightarrow{AB} é o quadrado 3.

Assim, a imagem do quadrado 5 pela reflexão deslizante de eixo CD e vetor \overrightarrow{AB} é o quadrado 3.

A opção correta é a [B].

8.
$$1 - \frac{x-4}{2} < 3x + 2 \Leftrightarrow 2 - x + 4 < 6x + 4$$

 $\Leftrightarrow -x - 6x < 4 - 2 - 4$
 $\Leftrightarrow -7x < -2$
 $\Leftrightarrow 7x > 2$
 $\Leftrightarrow x > \frac{2}{7}$

C.S. =
$$\left| \frac{2}{7}, +\infty \right|$$

9.
$$\frac{x+3}{2} = x^2 \Leftrightarrow x+3 = 2x^2$$

$$(\times 2) \Leftrightarrow 2x^2 - x - 3 = 0$$

Usando a fórmula resolvente, com a = 2, b = -1 e

$$c = -3$$
, temos:
 $2x^2 - x - 3 = 0 \Leftrightarrow x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 2 \times (-3)}}{2 \times 2}$
 $\Leftrightarrow x = \frac{1 \pm \sqrt{1 + 24}}{4}$
 $\Leftrightarrow x = \frac{1 \pm \sqrt{25}}{4}$
 $\Leftrightarrow x = \frac{1 \pm 5}{4}$

$$\Leftrightarrow x = \frac{-4}{4} \lor x = \frac{6}{4}$$
$$\Leftrightarrow x = -1 \lor x = \frac{3}{2}$$

$$\Leftrightarrow x = -1 \quad \lor$$

$$C.S. = \left\{-1, \frac{3}{2}\right\}$$

10.

10.1. Como o ponto A é o ponto de interseção das retas de equações y = 2x + 1 e y = -x + 3, tem-se:

$$2x + 1 = -x + 3 \Leftrightarrow 2x + x = 3 - 1$$
$$\Leftrightarrow 3x = 2$$

$$\Rightarrow x = \frac{2}{3}$$
, ou seja, o ponto a tem

abcissa $\frac{2}{3}$.

Para obter o valor da ordenada, substituímos o valor de x numa das equações:

$$y = 2 \times \frac{2}{3} + 1 = \frac{4}{3} + 1 =$$

$$= \frac{4}{3} + \frac{3}{3} =$$

$$= \frac{7}{3}$$

O ponto A tem coordenadas $\left(\frac{2}{3}, \frac{7}{3}\right)$.

10.2. Se B é o ponto de interseção da reta s com o eixo *Ox*, a ordenada é zero:

$$-x + 3 = 0 \Leftrightarrow -x = -3$$

 $\Leftrightarrow x = 3$, ou seja, o ponto B tem coordenadas (3, 0).

C é o ponto de interseção da reta s com o eixo Oy, então a abcissa é zero, logo:

 $y = -0 + 3 \Leftrightarrow y = 3$, ou seja, o ponto C tem coordenadas (0, 3).

D é o ponto de interseção da reta r com o eixo Oy, então a abcissa é zero, logo:

 $y = 2 \times 0 + 1 \Leftrightarrow y = 1$, ou seja, o ponto D tem coordenadas (0, 1).

Concluímos que $\overline{CD} = 3 - 1 = 2$ e $\overline{BO} = 3$, ou seja a área do triângulo [BCD] é igual a:

$$\frac{\text{base} \times \text{altura}}{2} = \frac{2 \times 3}{2} = 3 \text{ u.a.}$$

11. Pelo algoritmo da divisão, obtém-se:

$$-\frac{5}{3} = -1,(6), \log_{10} -1,70 < -1,(6).$$

A opção correta é a [B].

Prova Final – 2023 (1.ª Fase) – páginas 254 a 260

1.
$$\frac{\sqrt{17}}{5} \approx 0.82462...$$
 $\frac{\pi}{2} \approx 1.57079...$

$$\frac{\pi}{2} \approx 1,57079...$$

$$\frac{13}{17} \approx 0.76470..$$

$$\frac{13}{17} \approx 0,76470...$$
 $\frac{\sqrt{13}}{11} \approx 0,32777...$

Como $\frac{13}{17}$ é uma razão de números inteiros, é um

número racional, e, por isso, uma dízima finita ou infinita periódica.

A opção correta é a [C].

2. 30,5 milhões = 30 500 000 60% de 30 500 000 é 30 500 000 $\times \frac{60}{100}$ = 18 300 000.

Assim, em 2023, a estimativa para o número de dormidas em estabelecimentos de alojamento turístico em Portugal é:

$$48\ 800\ 000 = 4{,}88 \times 10^7$$
 (em notação científica)

3.

3.1. Existem 6 amigos, dos quais 4 preferem fazer atividades no mar e os restantes 2 preferem atividades em rios.

Assim, pela regra de Laplace, a probabilidade de a pessoa selecionada preferir fazer atividades em rios é

$$p = \frac{2}{6} = \frac{1}{3}$$
.

A opção correta é a [B].

3.2. Sendo S, B, W, P, M e C os nomes das atividades, organizando todas as atividades numa tabela, vamos observar todos os pares de atividades diferentes que se podem organizar:

	S	В	W	P	М	С
S	_	S + B	S+W	S + P	S + M	S + C
В	_	_	B+W	B + P	B + M	B + C
W	_	_	_	W + P	W + M	W + C
Р	_	_	_	_	P + M	P + C
М	_	_	_	_	_	M + C
С	_	_	_	_	_	_

Assim, existem 15 pares de atividades diferentes (número de casos possíveis), sendo que 6 deles (número de casos favoráveis) são constituídos por duas atividades que se realizam com prancha. Assim, pela regra de Laplace, e apresentando o resultado na forma de fração irredutível, a probabilidade pedida é

$$p = \frac{6}{15} = \frac{2}{5}$$
.

4. Como $\sqrt{50}$ ≈ 7,071 e $\sqrt{51}$ ≈ 7,141, então $\sqrt{50}$ < 7,14 < $\sqrt{51}$.

A opção correta é a [C].

5. A área do triângulo [ABC] é:

$$A_{[ABC]} = \frac{\overline{BC} \times \overline{AM}}{2} = \frac{15 \times 12}{2} = 90$$

Como os triângulos [ABC] e [AED] são semelhantes (têm um ângulo comum e os lados opostos são paralelos), a razão das áreas é o quadrado da razão de semelhança, ou seja:

$$r^2 = \frac{A_{[ABC]}}{A_{[AED]}} \Leftrightarrow r^2 = \frac{90}{10} \Leftrightarrow r^2 = 9 \Rightarrow r = \sqrt{9} \Leftrightarrow r = 3$$

Assim, como [AP] e [AM] são as alturas dos dois triângulos, temos que:

$$r = \frac{\overline{AM}}{\overline{AP}} \Leftrightarrow 3 = \frac{12}{\overline{AP}} \Leftrightarrow \overline{AP} = \frac{12}{3} \Leftrightarrow \overline{AP} = 4$$

Como $\overline{EF} = \overline{PM}$, temos que:

$$\overline{AP} + \overline{PM} = \overline{AP} \Leftrightarrow 4 + \overline{EF} = 12 \Leftrightarrow \overline{EF} = 12 - 4 \Leftrightarrow \overline{EF} = 8$$

_			
6.	Ordem	Nº de quadrados cinzentos	Nº total de quadrados
	1	$1 = 1^2$	$9 = 3^2 = (1 + 2)^2$
	2	$4 = 2^2$	$16 = 4^2 = (2 + 2)^2$
	3	$9 = 3^2$	$25 = 5^2 = (3 + 2)^2$
	4	$16 = 4^2$	$36 = 6^2 = (4+2)^2$
	5	$25 = 5^2$	$49 = 7^2 = (5 + 2)^2$
	n	n^2	$(n + 2)^2$

Assim:

$$(n+2)^2 = 529 \Leftrightarrow n+2 = \sqrt{529} \Leftrightarrow n+2 = 23$$
$$\Leftrightarrow n = 21$$

O número de quadrados brancos desta sequência é igual a $4 \times 21 + 4 = 88$.

7. Uma equação do segundo grau da forma $ax^2 + bx + c = 0$ tem duas soluções reais distintas se $b^2 - 4ac > 0$. No caso da equação apresentada, temos que a = 1 e b = -4, pelo que:

$$(-4)^{2} - 4 \times 1 \times c > 0 \Leftrightarrow 16 - 4c > 0 \Leftrightarrow -4c > -16$$

$$\Leftrightarrow 4c < 16$$

$$\Leftrightarrow c < \frac{16}{4}$$

$$\Leftrightarrow c < 4$$

Desta forma, de entre os valores apresentados, o único que gera uma equação com duas soluções reais distintas é o 3.

A opção correta é a [A].

8.
$$V_{[ABCDEF]} = V_{\text{total}} - V_{[BCEFGHIJ]} = 134,1 - V_{[BCEFGHIJ]} = 134,1 - A_{[GHIJ]} \times \overline{BH} = 134,1 - 25,8 \times 4 = 134,1 - 103,2 = 30,9 \text{ m}^3$$

9. Como a reta que representa a função f contém os pontos (-1, -2) e (0, 2), o seu declive é:

$$\frac{-2-2}{-1-0} = 4$$

Assim, f(x) = 4x + 2.

A opção correta é a [D].

10. Como D pertence à semirreta $\dot{A}C$, então $D\hat{C}A = 180^{\circ}$, pelo que $B\hat{C}A = D\hat{A}C - B\hat{C}D = 180 - 100 = 80^{\circ}$. Como o ângulo BAC é o ângulo inscrito relativo ao arco AB, a amplitude do arco é o dobro da amplitude do ângulo, ou seja, $\widehat{BA} = 2 \times B\widehat{CA} = 2 \times 80 = 160^{\circ}$. Assim, temos que $\widehat{BCA} = 360 - \widehat{BA} = 360 - 160 = 200^{\circ}$.

11.

11.1.
$$M$$
 é o ponto médio de $[AB]$, logo $\overline{MB} = \frac{\overline{AB}}{2} = \frac{2,2}{2} = 1,1$ m.

O triângulo [CBM] é retângulo em M (porque o triângulo [ABC] é isósceles), logo, pelo teorema de Pitágoras:

$$\overline{BC}^{2} = \overline{CM}^{2} + \overline{MB}^{2} \Leftrightarrow \overline{BC}^{2} = 1.82 + 1.12$$

$$\Leftrightarrow \overline{BC}^{2} = 3.24 + 1.21$$

$$\Leftrightarrow \overline{BC}^{2} = 4.45$$

$$\Rightarrow \overline{BC} = \sqrt{4.45} \text{ m}$$

Como $\sqrt{4,45} \approx 2,1$, o valor de \overline{BC} , em metros, arredondado às unidades, é 2 m.

11.2.

O triângulo [PMC] é retângulo em M, logo o lado [MP] é o cateto adjacente ao ângulo CPM e o lado

[CM] é o cateto oposto ao mesmo ângulo, pelo que, como $\overline{CM} = 1.8$, temos:

$$tg(\widehat{CPM}) = \frac{\overline{CM}}{\overline{PM}} \Leftrightarrow tg \ 42^{\circ} = \frac{1.8}{\overline{PM}} \Leftrightarrow \overline{PM} = \frac{1.8}{tg \ 42^{\circ}}$$

$$\Leftrightarrow \overline{PM} \approx 1.9991$$

Assim,
$$\overline{PB} = \overline{PM} - \overline{MB} = 1,9991 - 1,1 \approx 0,9 \text{ m}.$$

12.
$$\frac{3(1-x)}{4} \ge \frac{x}{3} + 1 \Leftrightarrow \frac{3-3x}{4 \atop (\times 3)} \ge \frac{x}{3 \atop (\times 4)} + \frac{1}{1 \atop (\times 12)}$$
$$\Leftrightarrow \frac{9-9x}{12} \ge \frac{4x}{12} + \frac{12}{12}$$
$$\Leftrightarrow 9-9x \ge 4x + 12$$
$$\Leftrightarrow -9x - 4x \ge 12 - 9$$
$$\Leftrightarrow -13x \ge 3$$
$$\Leftrightarrow x \le -\frac{3}{13}$$

$$C.S. = \left[-\infty, -\frac{3}{13} \right]$$

- 13. Observando os dois gráficos, temos que:
- o gráfico A não representa a função f porque, no início da viagem, d deveria ser O e, no gráfico A, é 1.
- o gráfico B também não representa a função f porque o barco fica parado no cais durante a visita pedestre à ilha, pelo que d deveria manter-se igual a 9,2 e, no gráfico B, d vai variando.
- **14.** Recorrendo à expressão algébrica da função f, vamos determinar a ordenada do ponto A:

$$f(2) = 3 \times 2^2 = 3 \times 4 = 12$$

Como o ponto A também pertence ao gráfico da função g, temos que g(2) = 12, pelo que, substituindo as coordenadas do ponto na expressão algébrica da função g, temos:

$$g(2) = \frac{a}{2} \Leftrightarrow 12 = \frac{a}{2} \Leftrightarrow 12 \times 2 = a \Leftrightarrow a = 24$$

15. Como a média dos valores registados na tabela é 1122, temos que:

$$\bar{x} = 1122 \Leftrightarrow \frac{770 + k + 2900 + 1500 + 262 + 1000}{6} = 1122$$

 $\Leftrightarrow k + 6432 = 1122 \times 6$
 $\Leftrightarrow k + 6432 = 6732$
 $\Leftrightarrow k = 6732 - 6432$
 $\Leftrightarrow k = 300$

16. Calculando o aumento do número de dormidas, de 2020 para 2021, nas diferentes regiões, temos:

	Número d (mil			
Regiões (Portugal Continental)	2020	2021	Aumento	
Alentejo	0,3	0,5	0,5-0,3=0,2	Menor aumento
Algarve	4,1	5,6	5,6 - 4,1 = 1,5	
Área Metropolitana de Lisboa (AML)	3,3	5,1	5,1 - 3,3 = 1,8	Maior aumento
Centro	0,7	1,4	1,4 - 0,7 = 0,7	Aumentou 100%
Norte	1,6	2,5	2,5 - 1,6 = 0,9	

Assim, podemos verificar que:

- (1) A região onde o aumento foi mais elevado foi na Área Metropolitana de Lisboa.
- (2) A região onde o aumento foi menor foi no Alentejo.
- (3) Na região Centro o número duplicou, o que corresponde a um aumento de 100%.

		Alentejo	Algarve	AML	Centro	Norte
(1)	Região onde o aumento do número de dormidas, em milhões, de 2020 para 2021, foi o mais elevado.			х		
(2)	Região onde o aumento do número de dormidas, em milhões, de 2020 para 2021, foi o mais baixo.	х				
(3)	Região onde o aumento do número de dormidas, de 2020 para 2021, aumentou 100%.				х	