

Computer Vision

Klausur – Überblick

Overview

- Klausur findet statt am Donnerstag, den 24. Juli um 11:30 Uhr 12:30 Uhr
 - https://www.hs-offenburg.de/studium/waehrend-des-studiums/pruefungen
- Wir schreiben in A213

24.07.2025 Donnerstag 11:30 12:30 Computer Vision

AKI, AKI6

A213

- Es wird zwischen 50 70 Punkte geben
 - 100% ergeben eine 1,0
 - 50% ergeben eine 4,0
 - Dazwischen liegt ein linearer Verlauf vor

Themen

Im Prinzip alles aus der Vorlesung und dem Labor (aber nicht mehr!)

 Die Übungsaufgaben auf den Übungsblättern und die Aufgaben in CAT entsprechen ungefähr den Anforderungen

- Das Labor hat den Fokus auf:
 - Histogram, Filter
 - Kantenerkennung, Hough-Transformation
 - Clustering, morphologische Operation

- DL: Klassifikation (VGG)
- DL: Segmentierung (U-Net)
- DL: Objekterkennung (YOLO V1)

Überblick über die Vorlesungen – Was haben wir alles gelernt!?

Digitalisierung und Bildbearbeitung Low-Level (3 Vorlesungen)

- 1. Digitalisierung: Bildentstehung, Histogramme
- 2. Lineare Filter: Faltung, Tiefpass und Hochpass, Frequenzfilter
- 3. Nichtlineare Filter: Median Filter, Morphologische Operatoren
- 4. Kantendetektion : Sobel, LoG, Canny

Bildbearbeitung Merkmale und Segmentierung (3 Vorlesungen)

- 1. Hough-Transformation
- Segmentierung: Otsu, Pixel, k-Means, (Graph-basiert)

Bildbearbeitung Deep Learning (6 Vorlesungen)

- l. Klassifikation
- 2. Semantische Segmentierung
- 3. Objekterkennung: einstufige Methoden
- 4. Objekterkennung: zweistufige Methoden

Was Sie wissen müssen: klassische Methoden

- Algorithmen und Themen, welche man auch rechnen können muss
 - Histogramme (Erstellung, Ausgleich)
 - Lineare Filter (Faltung, Korrelation), Rangordnungsfilter, Tiefpassfilter, Hochpassfilter
 - Prewitt , Sobel, LoG
 - Morphologische Operatoren (Öffnung, Schließung, Hit-or-Miss)
 - Segmentierung: k-means, Isodata, Otsu
 - Hough-Transformation (Linien, Kreis)
 - nur Schwerpunkte. Diese Liste kann unvollständig sein.

Was Sie wissen müssen: klassische Methoden

- Algorithmen, Schritte und Prinzipien (Schwächen, Stärken, Vergleich gegen Alternativen, Eigenschaften ...)
 - DFT, Filterung im Frequenzbereich: Eigenschaften, Schritten
 - Aliasing
 - Canny Filter
 - Segmentierung Ansätze (pixelbasiert, farbbasiert, lokale Schwellwerte, Region Growing)
 - Superpixels: SLIC
 - nur Schwerpunkte. Diese Liste kann unvollständig sein.

Was Sie wissen müssen: Deep Learning

- Algorithmen und Themen, welche man auch rechnen können muss
 - Convolution, Deconvolution, Dilated Convolution
 - Cross-entropy, Mean-squared-error
 - IoU, Field-of-View, Non-Maximum Suppression
 - U-Net: Struktur, Ausgangstensor, Zielfunktion
 - Region Proposal Network
 - YOLO V1: Struktur, Ausgangstensor, Zielfunktion
 - FCOS
 - nur Schwerpunkte. Diese Liste kann unvollständig sein.

Was Sie wissen müssen: Deep Learning

- Algorithmen, Schritte und Prinzipien (Schwächen, Stärken, Vergleich gegen Alternativen, Eigenschaften ...)
 - AlexNet, ResNet, GoogleNet, VGG, ViT, CLIP
 - FCN, U-Net, DeepLab
 - Sliding Window, R-CNN, Fast R-CNN, Faster R-CNN
 - Feature pyramid network, Retina network
 - SSD, FCOS
 - nur Schwerpunkte. Diese Liste kann unvollständig sein.

Aufgabenstil

Insgesamt ist mit 6 – 10 Aufgaben zu rechnen

- Geplante Aufteilung:
 - 3 5 Rechnung: Histogramm, Transformationen, K-Means, Hough, Morphologie,
 Filter, Deconvolution, Cross Entropie, ...
 - 3 5 Wissen: Multiple Choice oder Ja/Nein oder Freitext, z.B.:
 - Nennen Sie 3 Netzwerkarchitekturen für Objekterkennung
 - Beschreiben Sie die Schritte zum Filtern eines Bildes im Frequenzbereich
 - Erklären Sie die Bedeutung der einzelnen Ziffern des Ausgangstensors des YOLO
 - Erklären Sie, wie CLIP funktioniert

Grundlegend

Ein Taschenrechner ist erlaubt

- Keine Formelsammlung zur Bildverarbeitung, die grundlegenden Formeln müssen auswendig bekannt sein, komplexere werden mit angegeben
- Keine Bücher oder Skripte oder mathematische Formelsammlungen
- **Keine** Smartphones oder Mobilgeräte
- Kein Bleistift

Meine Vorschläge

- Sie müssen es verstehen, aber nicht auswendig lernen.
- Um die Prüfung zu bestehen:
 - Konzentrieren Sie sich auf die grundlegenden Abläufe, Methoden, Prinzipien und Ideen.
 - Wenige Punkte für klassische Methoden (LV01-06) zu verlieren
- Um eine gute Note zu bekommen:
 - achten Sie auf die Übungsblätter
 - achten Sie darauf, was ich an der Tafel gezeigt habe
 - ein gutes Verständnis und Überblick über die vorgestellten tiefen Netzwerke

Viel Erfolg!!