TREC & KREC of twins: Decomposing the covariance matrix

Henrique Aparecido Laureano* Wagner Hugo Bonat[†] Stéfanne Maria Jeha Bortoletto[‡] Carolina Cardoso de Mello Prando[§]

August, 2022

Abstract

Keywords:

^{*}Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil

[†]Laboratório de Estatística e Geoinformação, Universidade Federal do Paraná, Curitiba, Paraná, Brazil

[‡]Faculdades Pequeno Príncipe & Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil

[§]Faculdades Pequeno Príncipe & Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil

Introduction

Methods

Data

Figure 1: Graph A) TREC and KREC boxplots with their means in asterisks; Graph B) TREC and KREC scatterplot with tendency curve in solid black; Graph C) Twins scatterplots per TREC and KREC with tendency curves in solid black.

Figure 2: Graphs A) and B) are the boxplots of the numerical variables with their means in asterisks; Graphs C), D) and E) are the barplots of the categorial variables with their level frequencies and respective sample percentages.

Statistical analysis

The statistical analysis was performed through the R (R Core Team 2022) language and environment for statistical computing.

Modelos multivariados de regressão feitos para lidar com as interrelações genéticas e ambientais de dados de gêmeos (Bonat and Hjelmborg 2022) foram aplicados para entender a dinâmica das medidas de TREc e KREC.

The main used R packages are: {dplyr} (Wickham et al. 2022), {tidyr} (Wickham and Girlich 2022), {ggplot2} (Wickham 2016), patchwork (Pedersen 2020), {kableExtra} (Zhu 2021), {Matrix} (Bates, Maechler, and Jagan 2022) and {mglm4twin} (Bonat 2022, 2018; Bonat and Hjelmborg 2022; Bonat and Jorgensen 2016).

Results

Modelamos as medidas de TREC e KREC conjuntamente em duas frentes: na média e na variância. Como temos mais de uma variável e vamos também modelar a correlação entre elas,

chamamos de covariância.

Para estudar a herdabilidade e o relacionamento genético e ambiental das medidas, usamos um modelo chamado de ACE. Basicamente, decompomos a matriz de variância-covariância (a partir daqui chamaremos simplesmente de matriz de covariância) em três matrizes:

- A: efeito/componente genético/herdabilidade;
- C: efeito/componente mútuo do ambiente (common environment);
- E: efeito/componente único do ambiente (unique environment).

Além de considerarmos essa decomposição da covariância podemos também colocar covariáveis nela.

Tanto na média quanto na covariância usamos/testamos o efeito de seis covariáveis:

- Peso:
- Idade gestacional;
- Tipo de parto;
- Sexo;
- Zigocidade;
- Gêmeo (1 ou 2, para ver se realmente existe uma aleatoriedade na disposição sdos dados).

A zigocidade é um termo chave dessa modelagem, dado que precisamos informar quantos pares de gêmeos são monozigotos e dizigotos. Portanto, o par que não tem essa informação foi descartado. Ficamos/usamos 198 gêmeos.

Começamos com um modelo bivariado ACE, modelando TREC e KREC conjuntamento. Contudo, observamos valores-p muito altos para o componente C. Tal fato indica que tal componente não é necessário. Portanto, ajustamos um modelo AE e vemos se é melhor ficar com ele. Abaixo temos algumas medidas de qualidade do ajuste dos dois modelos.

De modo geral, o modelo ACE apresenta melhores medidas. Contudo ele tem três parâmetros a mais. A diferença das medidas entre os modelos não é grande o suficiente para justificar permanecermos com um modelo maior sendo que o componente C não é estatisticamente significativo. Assim, ficamos com o modelo bivariado AE.

Agora, a seleção de variáveis. Começamos pela média. Das seis variáveis ficamos com apenas duas, ou seja, das seis apenas duas se mostram significativas. As medidas do modelo inicial e do final são apresentadas abaixo.

Vemos que as medidas dos modelos são bem similares, apesar do modelo final ter praticamente metade dos parâmetros do modelo inicial. No modelo final ficamos com duas covariáveis como significativas para o TREC e com uma variável significativa para o KREC.

Para TREC as variáveis significativas são a idade gestacional e o sexo, i.e. a idade gestacional e o sexo do gêmeo tem uma associação significativa com o valor de TREC. Para o KREC,

Table 1: AE bivariate model summary

	Estimates	std.error	z value	$\Pr(> z)$
TREC				
(Intercept)	-97.1912	127.8171	-0.7604	0.4470
id_gest	8.0203	3.5627	2.2512	0.0244
sexoMasculino	-34.7133	15.0805	-2.3019	0.0213
KREC				
(Intercept)	-160.7853	126.7882	-1.2681	0.2047
id_gest	7.7597	3.5385	2.1929	0.0283

apenas a idade gestacional é significativa, o sexo é irrelevante (sem diferença significativa de um sexo para outro).

Para o TREC, o intercepto corresponde a um gêmeo de idade gestacional média e do sexo feminino. Conforme aumentamos a idade gestacional aumentamos seu TREC no valor de seu coeficiente estimado (8.0203). Se o gêmeo é do sexo masculino, estimamos que seu TREC diminua 34.7133, em relação ao intercepto. Mesma ideia para o KREC e a idade gestacional.

Agora, a covariância. Decompomos a variância do TREC (1.3698107×10^4) , a variância do KREC (1.3787069×10^4) e a covariância entre os dois (4392.4173) da seguinte maneira.

Table 2: AE bivariate model covariance components / dispersion

tage z value $Pr(> z)$
1019 1.3492 0.1773
0955 0.3394 0.7343
6407 1.7576 0.0788
5385 2.5820 0.0098
4603 1.7373 0.0823
9521 2.4147 0.0157

Temos as estimativas divididas pelos componentes ambiental e genético. Como podemos ver pela coluna percentage, a soma das estimativas (do TREC, por exemplo) não dá 1. Isso quer dizer que nem toda a variabilidade observada é explicada pelo componente ambiental ou genético. Vemos que o componente genético é muito mais significativo, principalmente no TREC.

Abaixo temos as medidas de ambientalidade e herdabilidade. Vemos que apenas a herdabilidade é significativa, para ambos TREC e KREC.

Table 3: AE bivariate model covariance components / estimates

	Estimates	$\operatorname{std.error}$	z value	$\Pr(>\! z)$
Environn				
TREC	0.2990	0.2096	1.4267	0.1537
KREC	0.1223	0.3634	0.3365	0.7365
Heritabil	ity			
TREC	0.7010	0.2096	3.3449	0.0008
KREC	0.8777	0.3634	2.4155	0.0157

Table 4: AE bivariate model covariance components / cross

	Estimates	std.error	z value	$\Pr(> z)$
Bivariate environmentability	0.2468	0.1580	1.5619	0.1183
Environment correlation	0.3795	0.5943	0.6386	0.5231
Bivariate heritability	0.7532	0.1580	4.7676	0.0000
Genetic correlation	0.2824	0.1397	2.0209	0.0433

A única correlação significativa é a genética, a ambiental não é. Seguindo a mesma ideia, a herdabilidade bivariada/conjunta é significativa. A ambiental não é.

Tentamos verificar o efeito das covariáveis também na covariância, mas não conseguimos. Não conseguimos convergência. Solução? Ajustar modelos univariados. Os componentes de média se mantém exatamente os mesmos.

TREC

Partimos do modelo AE com idade gestacional e sexo como covariáveis na média e fizemos a seleção de covariáveis na covariância. Das seis covariáveis nenhuma é significativa no componente E, ambiental. No componente A, genético, a variável parto é significativa.

26% da variabilidade observada é explicada/atribuída pelo componente ambiental. O tipo de parto é significativo no componente genético. Com um gêmeo que teve parto do tipo cesaria, o componente genético explica 72% da variabilidade. Ou seja, os componentes ambiental e genético explicam cerca de 98% de toda a variabilidade da variável TREC. Agora, num gêmeo que teve parto normal, (o poder de) explicação cai 80%. Ou seja, num gêmeo com parto normal o componente genético não explica nada da variabilidade. Isso é justificado pela (baixa) representatividade nos dados, 7.0707071% apenas dos gêmeos tiveram parto normal.

Table 5: TREC AE model covariance components

	Estimates	Std.error	Percentage
Environment component (E)	3534.162	2773.739	25.8004
Genetic component (A)			
partoCesariana	9851.598	3647.523	71.9194
partoNormal	-10976.948	3140.646	-80.1348

KREC

Partimos do modelo AE com idade gestacional como covariável na média e fizemos a seleção de covariáveis na covariância. Das seis covariáveis, tipo de parto e zigocidade são significativas no componente E, ambiental. No componente A, genético, a variável parto é significativa.

Table 6: KREC AE model covariance components

	Estimates	Std.error	Percentage
Environment component (E)			
$parto Cesariana. zigo cida de \overline{DZ}$	-8562.138	3940.7251	-62.1027
partoNormal	9185.825	4003.8748	66.6264
${ m zigocidade MZ}$	9829.275	609.2463	71.2934
Genetic component (A)			
partoCesariana	22781.346	3823.2523	165.2371
partoNormal	-22636.617	3909.9002	-164.1873

Num gêmeo com parto tipo cesaria e dizigoto, nada da variabilidade do KREC é explicada pelo componente ambiental (-62%). Contudo, se mudamos para um gêmeo de parto normal a explicação cresce 66%, ou seja, 4% (-62 + 66) da variabilidade é explicada pelo componente ambiental. Num gêmeo monozigoto o percentual explicado é 9% (-62 + 71).

Quando olhamos para o componente genético a diferença entre tipos de parto é abismal. Num gëmeo dizigoto de parto tipo cesaria temos 103% (-62 + 165) da variabilidade unicamente explicada pelo componente genético. Tal efeito é tão grande mas ao mesmo incerto, que o percentual estoura. No caso de parto normal temos exatamente o contrário. O desbalancemento das frequências de tipo de parto na base de dados acaba gerando esses resultados "estranhos".

References

Bates, Douglas, Martin Maechler, and Mikael Jagan. 2022. Matrix: Sparse and Dense Matrix Classes and Methods. R package version 1.4-1. https://CRAN.R-project.org/package=Matrix.

- Bonat, Wagner Hugo. 2018. "Multiple Response Variables Regression Models in R: The mcglm Package." Journal of Statistical Software 84 (4): 1–30. https://doi.org/10.18637/jss.v084.i04.
- ———. 2022. mglm4twin: Multivariate Generalized Linear Models for Twin Data. R package version 0.3.0. https://github.com/wbonat/mglm4twin.
- Bonat, Wagner Hugo, and Jacob V. B. Hjelmborg. 2022. "Multivariate Generalized Linear Models for Twin and Family Data." *Behavior Genetics* 52 (2): 123–40. https://doi.org/10.1007/s10519-021-10095-3.
- Bonat, Wagner Hugo, and Bent Jorgensen. 2016. "Multivariate Covariance Generalized Linear Models." *Journal of Royal Statistical Society Series C* 65: 649–75.
- Pedersen, Thomas Lin. 2020. patchwork: The Composer of Plots. R package version 1.1.1. https://CRAN.R-project.org/package=patchwork.
- R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Wickham, Hadley. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.org.
- Wickham, Hadley, Romain François, Lionel Henry, and Kirill Müller. 2022. dplyr: A Grammar of Data Manipulation. R package version 1.0.9. https://CRAN.R-project.org/package=dplyr.
- Wickham, Hadley, and Maximilian Girlich. 2022. *tidyr: Tidy Messy Data*. R package version 1.2.0. https://CRAN.R-project.org/package=tidyr.
- Zhu, Hao. 2021. kableExtra: Construct Complex Table with 'kable' and Pipe Syntax. R package version 1.3.4. https://CRAN.R-project.org/package=kableExtra.