

WHAT IS CLAIMED IS:

1 1. A semiconductor interconnection system, comprising:
2 a semiconductor die;
3 first and second conductive contacts, said first conductive contact coupled to a
4 surface of said semiconductor die, and said second conductive contact coupled to an external
5 structure or die;
6 a silver epoxy bond interposed between said first and second conductive contacts,
7 said epoxy bond providing electrical and mechanical interconnection between said
8 semiconductor die and said external structure; and
9 an insulating island configured to prevent migration of silver from said silver epoxy
10 bond to said semiconductor die through said first conductive contact.

1 2. The system of claim 1, wherein said semiconductor die is a photodetector.

1 3. The system of claim 2, wherein said photodetector is a p-i-n photodiode.

1 4. The system of claim 1, wherein said insulating island comprises a layer of
2 oxide.

1 5. The system of claim 1, further comprising:
2 a conductive electrode heavily doped with p-type material at the surface of said
3 semiconductor die to provide electrical connection between said semiconductor die and said
4 external structure.

1 6. The system of claim 5, further comprising an insulator/metal bonding
2 structure disposed above said insulating island, said insulator/metal bonding island providing
3 direct contact between the silver epoxy bond and the conductive electrode, thereby providing
4 required electrical connection between said semiconductor die and said external structure.

1 7. The system of claim 1, wherein said semiconductor die is silicon and the
2 insulating island is thermally grown silicon dioxide.

1 8. The system of claim 1, wherein said insulating island provides reduction in
2 transmission of mechanical stress from said silver epoxy bond into the semiconductor die.

1 9. A semiconductor flip-chip, comprising:
2 a semiconductor die having a plurality of conductive contacts;
3 a plurality of epoxy bonds having a metallic component, said epoxy bonds configured
4 to provide interconnection between said semiconductor die and an external structure, said
5 plurality of epoxy bonds selectively applied to said plurality of conductive contacts on said
6 semiconductor die and corresponding conductive contacts on the external structure; and
7 an array of insulating islands coupled to said plurality of conductive contacts, said
8 insulating islands configured to prevent migration of said metallic substance from said
9 plurality of epoxy bonds to said semiconductor die through said plurality of conductive
10 contacts.

1 10. The flip-chip of claim 9, wherein said metallic substance is silver.

1 11. The flip-chip of claim 9, wherein said semiconductor die is a semiconductor
2 illumination detector chip.

1 12. The flip-chip of claim 9, wherein said plurality of conductive contacts on said
2 semiconductor die forms connections to an array of photodiode pixels.

1 13. The flip-chip of claim 11, wherein said array of insulating islands prevents
2 degradation of low reverse-bias leakage currents in said array of photodiode pixels.

1 14. A method of manufacturing a flip-chip interconnection device, comprising:
2 providing an array of insulating islands on a semiconductor die;
3 applying a plurality of metal contacts over said array of insulating islands; and
4 selectively depositing an array of epoxy bonds on said plurality of metal contacts,
5 where said providing said array of insulating islands prevents migration of metallic substance
6 in said array of epoxy bonds into said semiconductor die.

1 15. The method of claim 14, further comprising:
2 aligning said array of epoxy bonds on top of respective metal contacts on an external
3 structure; and
4 bonding said semiconductor die to said external structure.

1 16. The method of claim 14, wherein said providing said array of insulating
2 islands includes depositing a layer of thermally grown silicon dioxide.

1 17. The method of claim 14, wherein said applying said plurality of metal
2 contacts provides an array of insulator/metal bonding islands disposed on top of said array of
3 insulating islands, said array of insulator/metal bonding islands operating to provide direct
4 electrical contact between the array of epoxy bonds and the semiconductor die.

Add
But