Problem Set 4

CS 340 - Theory of Computation 7 November 2018

- 1. Are recursive sets and recursively enumerable sets closed under the operations: union, intersection and Kleene star (*)?
- 2. Are the following sets "recursive", "recursively enumerable but not recursive" or "not recursively enumerable":
 - (a) $A = \{M \# q \mid M \text{ is a turing machine and } q \text{ is state in } M \text{ that is never reached on any input}\}$
 - (b) $B = \{M \mid M \text{ is a turing machine that accepts at least 3 inputs}\}$
- 3. Is the following statement True?
 - (a) If A is a recursive and $B \subseteq A$, then B is also recursive.
- 4. Prove or disprove the following statements:
 - (a) For every recursive set L, there exists a deterministic total TM M with a single tape along with five states q_{start} , q_{aux1} , q_{aux2} , q_{accept} and q_{reject} such that L(M) = L.
 - (b) For every recursive set, L there exists a total TM M which does not write on any cell (in other words, it does not change the content of the tape) such that L(M) = L.
- 5. Let L_1 and L_2 be two recursive sets. Let L_3 and L_4 be two recursively enumerable sets. Which of the following statements are False? Justify your answer.
 - (a) $(L_1 \cup L_2) \setminus L_3$ is recursively enumerable.
 - (b) $L_2 \setminus (L_3 \cup L_4)$ is recursively enumerable.
 - (c) $L_3 \setminus L_1$ is recursive.
 - (d) $L_3 \setminus L_2$ is recursive.
- 6. State whether the following sets are recursive.
 - (a) $L_1 = \{M \mid M \text{ is a single tape TM that on any input } x \text{ does not change the input content of the tape}\}$
 - (b) $L_2 = \{M \mid M \text{ is a single tape TM that on any input } x \text{ does not change any part of the tape}\}$