Universidade do Minho

CÁLCULO

FICHA 1-B OUTUBRO DE 2008

Funções trigonométricas inversas

- 1. Calcule:
 - (a) $2\arcsin(-1)$
 - (b) $\cos(\arcsin\frac{1}{2})$
 - (c) $\sin(\arccos\frac{3}{5})$
 - (d) sin(arctan 2)
 - (e) $\arcsin\frac{5\pi}{4}$)
 - (f) $\tan\left(\arccos\left(-\frac{\sqrt{3}}{2}\right)\right)$
 - (g) $\sin(\arcsin(-\frac{5}{13}))$
 - (h) $\sin(\frac{\pi}{3} \arctan\frac{4}{5})$.
- 2. Para cada uma das funções reais de variável real indicadas, determine o domínio e o contradomínio.
 - (a) $f(x) = 2\arcsin(2x 1) + \pi$
 - (b) $g(x) = \cos \pi + 3\arccos(1 4x)$
 - (c) $h(x) = 2\arccos\left(\frac{3}{x+2}\right) + \frac{\pi}{2}$
 - (d) $i(x) = \frac{\pi}{3} + \arctan\left(\frac{1}{x+5}\right)$
- 3. Determine a expressão das derivadas das funções:
 - (a) $f(x) = x \arcsin(4x)$
 - (b) $g(t) = \arctan^2(7t)$
 - (c) $h(y) = \sqrt{\sin y} + \arccos(\frac{1}{y})$
 - (d) $i(x) = \cos(\arctan(3x))$
 - (e) $j(x) = \sqrt{1 + \arctan x}$
 - (f) $l(x) = \frac{1}{\arcsin x}$
 - (g) $m(x) = \arcsin(\tanh x)$
 - (h) $n(x) = \frac{\cosh x}{1 + \tanh x}$
 - (i) $o(x) = e^{3 + \arg \cosh x}$
 - (j) $p(x) = \arg \cosh(2 + \sin(x^2))$
 - (k) $q(x) = (\arcsin(x^2))^{\frac{1}{2}}$
 - (1) $r(x) = x^2 \cdot \sec^{-1}(1+x^2)$

4. Considere a função real de variável real definida por

$$t(x) = \frac{\pi}{4} + \arctan\left(\frac{1}{x+1}\right)$$

- (a) Calcule t(0) + t(-2).
- (b) Determine o domínio e o contradomínio de t.
- (c) Determine o conjunto de soluções de $A = \{x \in \mathbb{R} : t(x) > 0\}$.
- (d) Caracterize a função inversa de t.
- 5. Considere a função real de variável real definida por

$$g(x) = \frac{\pi}{3} + 2\arcsin\left(\frac{1}{x}\right)$$

- (a) Calcule g(1) + g(-2).
- (b) Determine o domínio e o contradomínio de g.
- (c) Determine o conjunto de solução de $A = \{x \in \mathbb{R} : g(x) \leq \frac{2\pi}{3}\}.$
- (d) Caracterize a função inversa de g.
- 6. Considere a função real de variável real definida por

$$g(x) = \frac{\pi}{2} - 2\arctan(3x - 1)$$

- (a) Calcule g(1) + g(-2).
- (b) Determine o domínio, contradomínio e os zeros da função g.
- (c) Caracterize a função inversa de g.
- (d) Determine, sob a forma de intervalos de números reais, o conjunto de solução da condição $g(x) \ge \frac{\pi}{2}$.
- (e) Calcule $\sin(g(1))$.
- (f) Escreva a equação da recta tangente à curva y = g(x) no ponto de ordenada π .
- 7. Considere a função real de variável real definida por

$$g(x) = \frac{\pi}{2} + \operatorname{arccot}\left(\frac{2x+1}{x}\right)$$

- (a) Caracterize a função inversa de g.
- (b) Calcule o valor de $\cos(g(2) \frac{\pi}{3})$.

No final deves ser capaz de:

- 1. Saber o significado das seguintes expressões: domínio de uma função; contradomínio de uma função; função real de variável real; função injectiva; função invertível; função inversa; inverso do valor de uma função.
- 2. Definir correctamente as funções arcsin, arccos, arctan (não esquecer a indicação de domínios e contradomínios).
- 3. Calcular o valor das funções arcsin, arccos, arctan em pontos dados.
- 4. Desenvolver expressões que contenham as funções arcsin, arccos, arctan.
- 5. Obter as derivadas de funções em que intervêm as funções arcsin, arccos, arctan.

Soluções da Ficha 1-B

1. (a)
$$-\pi$$

(b)
$$\frac{\sqrt{3}}{2}$$

(c)
$$\frac{4}{5}$$

(d)
$$\frac{2\sqrt{5}}{5}$$

(e)
$$\frac{3\pi}{4}$$

(f)
$$-\frac{\sqrt{3}}{3}$$

(f)
$$-\frac{\sqrt{3}}{3}$$

(g) $-\frac{5}{13}$

(h)
$$\frac{5\sqrt{3}-4}{2\sqrt{41}}$$

2. (a)
$$D_f = \left[0, \frac{1}{2}\right]; D'_f = [0, 2\pi]$$

(b)
$$D_g = \left[0, \frac{1}{2}\right]; \ D'_g = \left[-1, 3\pi - 1\right]$$

(c)
$$D_h =]-\infty, -5] \cup [1, +\infty[; D'_h = \left[\frac{\pi}{2}, \frac{5\pi}{2}\right] \setminus \left\{\frac{3\pi}{2}\right\}]$$

(d)
$$D_i = \mathbb{R} \setminus \{-5\}; D_i' = \left[-\frac{\pi}{6}, \frac{5\pi}{6} \right] \setminus \left\{ \frac{\pi}{3} \right\}$$

3. (a)
$$\frac{df}{dx}(x) = \arcsin(4x) + \frac{4x}{\sqrt{1 - 16x^2}}$$

(b)
$$\frac{dg}{dt}(t) = \frac{14\arctan(7t)}{1+49t^2}$$

(c)
$$\frac{dh}{dy}(y) = \frac{\cos y}{2\sqrt{\sin y}} + \frac{1}{y^2\sqrt{1 - \frac{1}{y^2}}}$$

(d)
$$\frac{di}{dx}(x) = -\frac{3\sin(\arctan(3x))}{1 + 9x^2}$$

(e)
$$\frac{1}{2\sqrt{1+\arctan(x)}(1+x^2)}$$

(f)
$$-\frac{1}{\arcsin^2(x)\sqrt{1-x^2}}$$

(g)
$$\operatorname{sech}(x)$$

(h)
$$\frac{\sinh(x)\cosh(x)+\sinh^2(x)-1}{\cosh(x)(1+\tanh^2(x))^2}$$

(i)
$$\frac{e^{3+\arg\cosh(x)}}{\sqrt{x^2-1}}$$

(j)
$$\frac{2x\cos(x^2)}{\sqrt{(2+\sin(x^2))^2-1}}$$

(k)
$$\frac{x}{\sqrt{(1-x^4)\arcsin(x^2)}}$$

(1)
$$2x\cos(1+x^2) - 4x^2\sin(1+x^2)$$

4. (a)
$$\frac{\pi}{2}$$

(b)
$$D_t = \mathbb{R} \setminus \{-1\}; \ D'_t = \left[-\frac{\pi}{4}, \frac{3\pi}{4} \right] \setminus \left\{ \frac{\pi}{4} \right\}$$

(c)
$$A =]-\infty, -2[\cup]-1, +\infty[$$

(d)

$$t^{-1}: \left] -\frac{\pi}{4}, \frac{3\pi}{4} \left[\left(\left\{ \frac{\pi}{4} \right\} \right) \right] \rightarrow \mathbb{R} \left\{ -1 \right\}$$

$$x \mapsto \cot(y - \pi/4) - 1$$

5. (a)
$$\frac{4\pi}{3}$$

(b)
$$D_g =]-\infty, -1] \cup [1, +\infty[; D'_g = \left[-\frac{2\pi}{3}, \frac{4\pi}{3}\right] \setminus \left\{\frac{\pi}{3}\right\}$$

(c)
$$A = [1, 2]$$

(d)
$$D_{g^{-1}} = \left[-\frac{2\pi}{3}, \frac{4\pi}{3} \right] \setminus \left\{ \frac{\pi}{3} \right\}; \quad D'_{g^{-1}} = \left[-\infty, -1 \right] \cup \left[1, +\infty \right[; \ g^{-1}(y) = \csc\left(\frac{y}{2} - \frac{\pi}{6} \right).$$

6. (a)
$$\frac{\pi}{4} - 2(\arctan(2) + \arctan(-7))$$

(b)
$$D_g = \mathbb{R} \ D'_g = \left[-\frac{\pi}{2}, \frac{3\pi}{2} \right]$$

(c)
$$A = [1, 2]$$

(d)

$$g^{-1}: \left[-\frac{\pi}{2}, \frac{3\pi}{2} \right] \to \mathbb{R}$$

$$x \mapsto \frac{1}{3} \tan \left(\frac{\pi}{4} - \frac{y}{2} \right)$$

(e)
$$]-\infty,\frac{1}{3}]$$

(f)
$$-\frac{3}{5}$$

(g)
$$y = -\frac{6}{1 + (3\pi - 1)^2}(x - \pi) + \frac{\pi}{2} - 2\arctan(3\pi - 1)$$

$$g^{-1}: \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \setminus \left\{\frac{\pi}{2}\operatorname{arccot}(2)\right\} \quad \to \quad \mathbb{R} \left\{0\right\}$$

$$x \qquad \qquad \mapsto \quad \frac{1}{\cot(y-\pi/2)-2}$$

(b)
$$\frac{3\sqrt{3}}{2\sqrt{29}}$$