Preliminary Program

Physiological Roles for Calcium A.

Calmodulin kinase and neuronal plasticity in Leslie Griffith: 1. USA Drosophila

Nuclear translocation of calmodulin kinase 2. Howard Schulman: in cardiomyocytes

USA

Patrick McDonough: Electrical pacing of ventricular myocytes 3. causes hypertrophy via a calcium/calmodulin USA

dependent pathway

Calcium entry pathways in yeast define a Kyle Cunningham: 4. functional role for calcineurin USA

Essential roles for calmodulin in yeast 5. Yoshi Ohva: Japan

Nuclear calcium transients Stephen Bolsover: 6. **ŪSA**

Calmodulin mutants in Paramecium define Robert Hinrichsen: 7. cation pumps required for ciliary motility USA

The role of calcineurin in mating factor-8. Martha Cyert: induced cell cycle arrest USA

Calcium mediated pathways in Drosophila 9. Kathy Beckingham: USA

PKC mediated pathways in yeast David Levin: 10. USA

B. Calcium Homeostasis

Molecular characterization of the plasma Ernesto Carafoli: 1. membrane calcium pumping ATPase Switzerland

Molecular Characteristics of the inositol Katsuhiro Mikoshiba: 2. trisphosphate receptor Japan

Molecular characterization of the ryanodine 3. Ludwig Missiaens: receptor Belgium

Single channel characteristics of the IP3 and Barbara Erlich: 4. ryanodine receptors USA

The second messenger characteristics of 5. Michael Berridge: IP_3 UK

B. Calcium Homeostasis (continued)

6. Roger Tsien: Molecular nature of the signal that regulates

USA the capacitive calcium entry pathway

7. Lutz Birnbaumer: Identification and molecular characteristics USA of the capacitive calcium entry channel

8. Robert Malenka: Molecular regulation of LTP and LTD by

USA calcium dependent enzymes

C. Structural Bases for Calcium Regulation

1. Louise Johnson: Crystal structure of the catalytic subunit of phosphorylase kinase

2. Barbara Seaton: The 3 dimensional structure of annexin V USA

3. Franklyn Prendergast: Calmodulin interaction with D-amino acid amphiphilic peptides

4. Bill Cook: 3D structure of Ca²⁺/calmodulin complexed to an antagonist

5. Maria Sunnerhagen: Structural basis for Ca²⁺ binding to Factor X Sweden

6. Carolyn Cohen: Structure of myosin light chains associated with myosin

7. Brian Sykes: Apo and Ca²⁺ bound structures of the NH₂USA terminal domain of Troponin C

8. Bruce Kemp: Structural basis for Ca²⁺ regulated autoinhibition of enzymes

D. Calcium Mediated Pathways and Human Disease

1. David MacLennan: The molecular basis for malignant hyperthermia

2. Edward M. Brown: The calcium sensing receptor and mutations that result in hypocalciuric hypercalcemia and neonatal hyperparathyroidism

3. Stuart Schreiber: Mechanism of action of immunosuppressive drugs

D. Calcium Mediated Pathways and Human Disease (continued)

4.	S. Orrenius: Sweden	Calcium mediated apoptosis
5.	David Brendt: USA	Nitric oxide synthase deficient mice
6.	Donald McDonnell: USA	Hormonal antagonists of osteoporosis
7.	Gregory R. Mundy: USA	The molecular basis for malignancy-associated hypercalcemia
8.	Hiroshi Hidaka: Japan	Inhibitors of calmodulin dependent enzymes