ΣΤΟΙΧΕΙΑ ΦΟΙΤΗΤΩΝ

Δαμιανός Ιακωβίδης, A.M.:3170051, email:p317005@dias.aueb.gr

Νίκος Κουντουριώτης, A.M.:3170195, email:p3170195@dias.aueb.gr

Ιάσονας Χριστοφιλάκης, A.M.:3170182, email:p3170182@dias.aueb.gr

Πέτρος Χάνας, A.M.:3170173, email:p3170173@dias.aueb.gr

ΠΡΟΒΛΗΜΑ 1

x1	x2	хЗ	х4	х5	f	g	Minterm
0	0	0	0	0	0	1	m0
0	0	0	0	1	1	1	m1
0	0	0	1	0	0	1	m2
0	0	0	1	1	0	0	m3
0	0	1	0	0	1	1	m4
0	0	1	0	1	1	1	m5
0	0	1	1	0	0	0	m6
0	0	1	1	1	0	0	m7
0	1	0	0	0	0	1	m8
0	1	0	0	1	0	0	m9
0	1	0	1	0	d	d	m10
0	1	0	1	1	1	d	m11
0	1	1	0	0	d	d	m12
0	1	1	0	1	0	0	m13
0	1	1	1	0	d	1	m14
0	1	1	1	1	d	1	m15
1	0	0	0	0	0	1	m16
1	0	0	0	1	0	0	m17
1	0	0	1	0	0	1	m18
1	0	0	1	1	0	0	m19
1	0	1	0	0	d	1	m20
1	0	1	0	1	0	0	m21
1	0	1	1	0	0	0	m22
1	0	1	1	1	0	0	m23
1	1	0	0	0	0	1	m24
1	1	0	0	1	0	0	m25
1	1	0	1	0	0	1	m26
1	1	0	1	1	1	d	m27
1	1	1	0	0	1	1	m28

1	1	1	0	1	0	0	m29
1	1	1	1	0	0	0	m30
1	1	1	1	1	d	1	m31

	x_1x_2						
X_3X_4		00	01	11	10		
	00	m0	m8	m24	m16		
	01	m2	m10	m26	m18		
	11	m6	m14	m30	m22		
	10	m4	m12	m28	m20		
		$x_5 = 0$					

	X_1X_2				
X_3X_4		00	01	11	10
	00	m1	m9	m25	m17
	01	m3	m11	m27	m19
	11	m7	m15	m31	m23
	10	m5	m13	m29	m21
				_ 1	

Γενική μορφή

ΣΥΝΑΡΤΗΣΗ f: ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ POS

x1x2 x3x4	00	01	11	10
00	0	0	0	0
01	0	d	0	0
11	0	d	0	0
10	1	d	1	d

x1x2 x3x4	00	01	11	10
00	1	0	0	0
01	0	1	1	0
11	0	d	d	D
10	1	0	0	0

$$f' = x3'x5' + x2'x4 + x4x5' + x1x2' + x2x4'x5$$

$$άρα f = (x3 + x5) (x2 + x4') (x4' + x5) (x1' + x2) (x2' + x4 + x5')$$

ΣΥΝΑΡΤΗΣΗ g: ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ POS

x1x2 x3x4	00	01	11	10
00	1	1	1	1
01	1	d	1	1
11	0	1	0	0

10	1	d	1	1

x1x2 x3x4	00	01	11	10	
00	1	0	0	0	
01	0	d	d	0	
11	0	1	1	0	
10	0	0	0	0	

g' = x2'x4x5 + x2'x3x4 + x2x4'x5 + x1x2'x5 + x1x3x4x5'

 $\alpha \rho \alpha g = (x^2 + x^4 + x^5)(x^2 + x^3 + x^4)(x^2 + x^4 + x^5)(x^1 + x^2 + x^5)(x^1 + x^3 + x^4 + x^5)$

ΣΥΓΚΡΙΣΕΙΣ ΚΟΣΤΟΥΣ: f = > 11 είσοδοι + 5 πύλες + 5 έξοδοι/είσοδοι πυλών + 1 πυλη out = 22

g=>16 είσοδοι + 5 πύλες + 5 έξοδοι/είσοδοι + 1 πύλη out = 27

Άρα το σύνολο για ξεχωριστή υλοποίηση είναι 50.

Σε ενιαίο κύκλωμα αφαιρούμε τον ενιαίο όρο x2'+x4+x5' δηλαδή μείον 3x2 εισόδους και μια πυλη και μία έξοδο/είσοδο για μεταφορά στην επόμενη πύλη.

Συνεπώς το κόστος για την υλοποίηση σε ενιαίο ισούται με 42.

Σημ: Επειδή οι είσοδοι δόθηκαν στην κανονική τους μορφή οι πύλες NOT δεν προσμετρήθηκαν στο κόστος.

ΕΔΩ ΦΑΙΝΕΤΑΙ Η ΚΥΜΑΤΟΜΟΡΦΗ ΤΗΣ ΛΕΙΤΟΥΡΓΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ

ΚΑΙ ΕΔΩ ΦΑΙΝΕΤΑΙ ΤΟ RTL ΔΙΑΓΡΑΜΜΑ

ΠΡΟΒΛΗΜΑ 2

x1	x2	х3	x4	f	Minterm
0	0	0	0	0	m0
0	0	0	1	0	m1
0	0	1	0	0	m2
0	0	1	1	0	m3
0	1	0	0	1	m4
0	1	0	1	0	m5
0	1	1	0	0	m6
0	1	1	1	1	m7
1	0	0	0	1	m8
1	0	0	1	0	m9
1	0	1	0	0	m10
1	0	1	1	1	m11
1	1	0	0	d	m12
1	1	0	1	0	m13
1	1	1	0	0	m14
1	1	1	1	d	m15

Ακολουθούν οι δυνατοί τρόποι ελαχιστοποίησης του κόστους της f, δηλαδή με ελαχιστοποίηση SOP και με ελαχιστοποίηση POS:

ΣΥΝΑΡΤΗΣΗ Γ: ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ SOP

x1x2 x3x4	00	01	11	10
00	0	1	d	1
01	0	0	0	0
11	0	1	d	1
10	0	0	0	0

f = x2x3'x4' + x2x3x4 + x1x3'x4' + x1x3x4

 $KO\Sigma TO\Sigma = 1 OR + 4 AND + 12 EI\Sigma O\Delta OI = 17$

ΣΥΝΑΡΤΗΣΗ f: ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ POS

x1x2 x3x4	00	01	11	10
00	0	1	d	1
01	0	0	0	0
11	0	1	d	1
10	0	0	0	0

f' = x1'x2' + x3'x4 + x3x4'

άρα f = (x1 + x2) (x3 + x4') (x3' + x4)

 $KO\Sigma TO\Sigma = 3 OR + 1 AND + 6 EI\SigmaO\Delta OI = 10$

APA EΠΙΤΥΓΧΑΝΟΥΜΕ ΤΟ ΕΛΑΧΙΣΤΟ ΚΟΣΤΟΣ ΓΙΑ THN f ME ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ PRODUCT OF SUMS KAI ΤΕΛΙΚΑ f = (x1 + x2) (x3 + x4') (x3' + x4)

β) Το σχηματικό διάγραμμα (block/schematic diagram), το οποίο υλοποιεί το κύκλωμα ελαχίστου κόστους που βρήκαμε στο (α) είναι:

γ) Η κυματομορφή της προσομοίωσης λειτουργίας εξόδου είναι:

ΠΡΟΒΛΗΜΑ 3

α) Από το δοσμένο διάγραμμα προκύπτει ο εξής πίνακας αληθείας για τη συνάρτηση f:

x1	x2	х3	f	Minterm	
0	0	0	0	m0: x1'x2'x3'	
0	0	1	1	m1: x1'x2'x3	
0	1	0	1	m2: x1'x2x3'	
0	1	1	1	m3: x1'x2x3	
1	0	0	0	m4: x1x2'x3'	
1	0	1	0	m5: x1x2'x3	
1	1	0	1	m6: x1x2x3'	
1	1	1	1	m7: x1x2x3	

Από τον παραπάνω πίνακα αληθείας κατασκευάζουμε τον πίνακα Karnaugh της συνάρτησης:

x1x2 x3	00	01	11	10
0	0	1	1	0
1	1	1	1	0

Εντοπίζουμε τις παρακάτω ομάδες minterms:

x1x2 x3	00	01	11	10
0	0	1	1	0
1	1	1	1	0

Άρα $f(x1, x3, x3, x4) = \Sigma m(2, 3, 6, 7) + \Sigma m(1, 3)$, όπου:

$$\Sigma$$
m(2, 3, 6, 7) = x1'x2x3' + x1'x2x3 + x1x2x3' + x1x2x3 = x2(x1'x3' + x1'x3 + x1x3' + x1x3) = x2(x1' + x1) = x2

(διότι από την ιδιότητα 14α έχουμε: x1'x3' + x1'x3 = x1' και x1x3' + x1x3 = x1)

Επίσης:

$$\Sigma m(1, 3) = x1'x2'x3 + x1'x2x3 = x1'x3(x2' + x2) = x1'x3$$

Άρα τελικά f(x1, x3, x3, x4) = x2 + x1'x3

β) Η κυματομορφή της προσομοίωσης λειτουργίας εξόδου που προκύπτει με βάση τον κώδικα είναι η εξής:

γ) Το RTL διάγραμμα που προκύπτει είναι (με χρήση του RTL Viewer):

