Deep Learning for Natural Language Processing

Autoregressive Sequence Models

CHALMERS

Richard Johansson

richard.johansson@gu.se

structured prediction: basic terminology

- sequence labeling is a structured prediction task
- ▶ input: a sequence x
- ightharpoonup output: a sequence $m{y}$ of the same length as $m{x}$

Algorithmic approaches

Exhaustive search

Cast structured prediction as a combinatorial optimisation problem over the set of target representations.

Viterbi algorithm, Eisner algorithm

Greedy search

Cast structured prediction as a sequence of classification problems: at each point in time, predict one of several options.

window-based part-of-speech tagging, arc-standard algorithm

Algorithmic approaches

Exhaustive search

Cast structured prediction as a combinatorial optimisation problem over the set of target representations.

Viterbi algorithm, Eisner algorithm

Greedy search

Cast structured prediction as a sequence of classification problems: at each point in time, predict one of several options.

window-based part-of-speech tagging, arc-standard algorithm

RNN-based sequence labeling

a limitation of our current model

- our output decisions don't affect each other
- can we model the interdependency between labels?
 - ▶ for instance, that B-LOC+I-LOC is good
 - but B-LOC+I-ORG is bad

implementation of autoregressive sequence models

example of a model that depends on the previous output

if the prediction model is an RNN, it depends on the full history

training autoregressive sequence models

how do we train a model that depends on its own predictions?

- the classical solution is to use the gold-standard label
- this idea is called teacher forcing

implementing teacher forcing

after training: running the system

- at prediction time, we run the system incrementally
- ▶ in this case, the previous label is a predicted label

limitations of teacher forcing

- training-time and prediction time data distributions are different
 - ▶ at prediction time, some of the previous labels will be incorrect
- if we make a mistake, the system might be in a situation it has never seen before!
 - this is called exposure bias
- risk of compounding errors

limitations of autoregressive models

the predictions are influenced by past predictions but not by future predictions

```
Paris Hilton is a media celebrity B-LOC I-PER O O O O
```

- because the prediction algorithm is greedy, the model can't change its mind!
- in the next lecture, we will see a non-greedy approach

exercise 2

we will continue our NER experiments

Manchester	United	will	return	to	the	United	States
B-ORG	I-ORG	Ο	0	Ο	Ο	B-LOC	I-LOC

 we will investigate autoregressive models and conditional random fields (next lecture)