1 INTRODUCTION

The Traveling Salesman Problem (TSP) is an NP-Complete computational problem which has been studied extensively for several decades [1]. In this paper, techniques for obtaining/approximating the solution to the symmetric Traveling Salesman Problem are developed and compared. A branch-and-bound algorithm using a minimum spanning tree to inform a lower bound on subproblems is presented; which, given enough time, produces an exact solution to the problem. The use of approximation algorithms proves more prudent for larger problems while sacrificing solution quality; a fact which motivated the development of a greedy local search algorithm which explores 1-exchange neighbors.

PROBLEM DEFINITION

The symmetric traveling salesman optimization problem is formalized as follows:

Given a connected undirected graph G consisting of n nodes, $\{v_0, \ldots, v_{n-1}\}$, with edge weights d_{ij} between nodes i and j. Find a Hamiltonian Cycle, a path P* where each node has degree 2, with minimum weight.

```
In this paper, nodes in a 2 dimensional space were considered: v_i = \begin{bmatrix} v_{ix} \\ v_{iy} \end{bmatrix} \in \mathbb{R}^2 \quad \forall i \in [0, n-1]
```

With edge weights calculated using the Euclidean distance: $e_{ij} = ||v_i, v_j||_2 = \sqrt{(v_{ix} - v_{jx})^2 + ((v_{iy} - v_{jy}^2))} \quad \forall i \neq j, i \in [0, n-1], j \in [0, n-1]$

The solution is an element in the set of vertex sequences which are Hamiltonian Cycles given by:

```
\begin{split} \mathcal{H} &= \{(v_i)_{i=0}^{n-1} : v_0 = v_{n-1}, v_i \neq v_j \quad \forall i, j \in [0, n-1] \} \\ \text{The symmetric TSP is given by following optimization problem:} \\ &\underset{i=0}{\operatorname{argmin}} \\ P^* &= (v_i^*)_{i=0}^{n-1} = \quad (v_i)_{i=0}^{n-1} \in \mathcal{H} \quad \sum_{i=0}^{n-2} ||v_i, v_{i+1}|| + ||v_0, v_{n-1}|| \end{split}
```

RELATED WORK

ALGORITHMS

Algorithm 1 BnB($\{v_0, \ldots, v_{n-1}\}$): Find minimum cost Hamiltonian Cycle for euclidean distances

```
Data: \{v_0,\ldots,v_{n-1}\} set of 2-D points for all Unordered Pairs \{i,j\} do

Construct edge e=(v_i,v_j,d_{ij})

Add e to list E of edges in increasing weight order: E=E\cup\{e\}

end for
```

Algorithm 2 2-Opt Local Search($\{v_0, \ldots, v_{n-1}\}$): Approximate the minimum cost Hamiltonian Cycle for euclidean distances

```
Data: \{v_0, \ldots, v_{n-1}\} set of 2-D points
for all Unordered Pairs \{i, j\} do
  Construct edge e = (v_i, v_i, d_{ij})
  Add e to list E of edges in increasing weight order: E = E \cup \{e\}
end for
while Unassigned nodes in v do
  Assign Nodes to Route based on Greedy Nearest Neighbor implementation
end while
for i = 1 to length(Route Matrix) do
  for i = i+1 to length(Route Matrix) do
     reverse route[i] to route[j] and add it to newroute[i] to newroute[j]
     if cost(newroute) < cost(route) then</pre>
       route \leftarrow newroute
     end if
  end for
end for
```

1

Table 1: Approx Algorithm Performance Table

	Time[s]	Solution Quality	Relative Error
Instance			
Atlanta	0.00	2488307	0.2418
Berlin	0.02	10114	0.3410
Boston	0.00	1107063	0.2390
Champaign	0.02	64760	0.2302
Cincinnati	0.00	318227	0.1449
Denver	0.03	129206	0.2865
NYC	0.02	1927253	0.2393
Philadelphia	0.00	1697409	0.2159
Roanoke	0.27	796030	0.2145
SanFrancisco	0.03	1085013	0.3392
Toronto	0.06	1652074	0.4046
UKansasState	0.00	70318	0.1168
UMissouri	0.05	170427	0.2842

Table 2: BnB Algorithm Performance Table

	Time[s]	Solution Quality	Relative Error
Instance		•	
Atlanta	0.02	2003763	0.0000
Berlin	0.55	8087	0.0723
Boston	402.47	958728	0.0730
Champaign	42.53	60181	0.1432
Cincinnati	52.53	277952	0.0000
Denver	570.83	112944	0.1246
NYC	1.55	1783236	0.1467
Philadelphia	177.14	1482811	0.0622
Roanoke	541.27	757720	0.1560
SanFrancisco	6.59	857727	0.0587

Table 3: LS1 Algorithm Performance Table

	Time[s]	Solution Quality	Relative Error
Instance			
Atlanta	0.01	2003763	0.0000
Berlin	0.41	8087	0.0723
Boston	0.04	999953	0.1191
Champaign	0.54	61010	0.1589
Cincinnati	5.34	214510	0.2282
Denver	2.84	116743	0.1624
NYC	0.80	1783236	0.1467
Philadelphia	0.05	1498008	0.0731
Roanoke	19.65	782292	0.1935
SanFrancisco	2.54	857727	0.0587
Toronto	6.34	1218693	0.0362
UKansasState	2.09	42791	0.3204
UMissouri	1.84	153554	0.1571

Table 4: LS2 Algorithm Performance Table

	Time[s]	Solution Quality	Relative Error
Instance	[0]	2 · · · · · · · · · · · · · · · · · · ·	
Atlanta	0.03	2003763	0.0000
Berlin	9.51	7712	0.0225
Boston	10.35	908113	0.0163
Champaign	11.01	53896	0.0238
Cincinnati	0.01	280282	0.0084
Denver	7.67	109965	0.0949
NYC	9.36	1666127	0.0714
Philadelphia	9.50	1396495	0.0004
Roanoke	7.14	757971	0.1564
SanFrancisco	9.31	845412	0.0435
Toronto	8.63	1212031	0.0305
UKansasState	0.00	63664	0.0111
UMissouri	13.48	147505	0.1115

EMPIRICAL EVALUATION DISCUSSION CONCLUSION REFERENCES

 $^{[1] \}begin{tabular}{l} Gilbert Laporte. 1992. The traveling salesman problem: An overview of exact and approximate algorithms. {\it European Journal of Operational Research 59, 2 (1992), 231$ A$S247. https://doi.org/10.1016/0377-2217(92)90138-y \end{tabular}$