

ISSUED BY Shenzhen BALUN Technology Co., Ltd.

FOR

Wireless Headset

ISSUED TO REGAL DISTRIBUTORS

FLAT/RM C BLK 17 3/F, SCENEWAY GARDEN, LAMTIN, KL, HONGKONG

Tested by: Date Approved Liao Jianming (Technical Director) Date Dec. 16.615 Report No.: EUT Type:

Model Name: Brand Name:

FCC ID:

Test Standard:

Maximum SAR:

Test Conclusion: Test Date:

Date of Issue:

BL-SZ15C0017-701

Wireless Headset

WH-H43

N/A

2AFVHWH-H43

FCC 47 CFR Part 2.1093

ANSI C95.1: 1999

IEEE 1528: 2013

Body (1 g): 0.0486W/kg (50% Duty cycle)

Pass

Dec. 3, 2015

Dec. 16, 2015

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. BALUN Laboratory. Any objections should be raised within thirty days from the date of issue. To validate the report, please visit BALUN website.

Version

Rev. 01

Rev. 02

Revision History Revisions Dec. 4, 2015 Initial Issue Dec. 14, 2015 The Second Issue Add KDB643646 D01 v01r03 Describe the exact configuration in

section 6 and make exact measurement procedure in section 7.5 according to KDB inquiry tracking number 652093

Rev. 03 Dec. 16, 2015 Third Issue

Issue Date

The position have changed to head at

chapter 3.3

TABLE OF CONTENTS

1 GENERAL INFORMATION	4
1.1 Identification of the Testing Laboratory	4
1.2 Identification of the Responsible Testing Location	4
1.3 Test Environment Condition	4
1.4 Announce	5
2 PRODUCT INFORMATION	6
2.1 Applicant Information	6
2.2 Manufacturer Information	6
2.3 Factory Information	6
2.4 General Description for Equipment under Test (EUT)	6
2.5 Ancillary Equipment	7
2.6 Technical Information	7
3 SUMMARY OF TEST RESULTS	8
3.1 Test Standards	8
3.2 Device Category and SAR Limit	9
3.3 Test Result Summary	10
3.4 Test Uncertainty	11
4 SAR MEASUREMENT SYSTEM	13
4.1 Definition of Specific Absorption Rate (SAR)	13
4.2 SATIMO SAR System	13
5 SYSTEM VERIFICATION	21

5.1 Antenna Port Test Requirement	21
5.2 Purpose of System Check	21
5.3 System Check Setup	21
6 EUT TEST POSITION CONFIGURATUONS	22
6.1 Head Exposure Condition	22
7 SAR MEASUREMENT PROCEDURES	23
7.1 SAR Measurement Process Diagram	23
7.2 SAR Scan General Requirements	24
7.3 SAR Measurement Procedure	25
7.4 Area & Zoom Scan Procedures	25
7.5 PTT MEASUREMENT PROCEDURES	25
8 CONDUCTED RF OUPUT POWER	26
9 TEST RESULTS	27
9.1 Test Result (1g value)	27
10 SAR Measurement Variability	28
11 TEST EQUIPMENTS LIST	29
ANNEX A SIMULATING LIQUID VERIFICATION RESULT	30
ANNEX B SYSTEM CHECK RESULT	31
ANNEX C TEST DATA	34
ANNEX D EUT EXTERNAL PHOTOS	40
ANNEX E SAR TEST SETUP PHOTOS	40
ANNEX F CALIBRATION REPORT	41
F.1 E-Field Probe	41
F.2 450MHz Dipole	51
F.3 Dielectric Probe	62

1 GENERAL INFORMATION

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.	
Address	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,	
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China	
Phone Number	+86 755 6685 0100	
Fax Number	+86 755 6182 4271	

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.
Addraga	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China
	The laboratory has been listed by Industry Canada to perform
	electromagnetic emission measurements. The recognition numbers of
	test site are 11524A-1.
	The laboratory has been listed by US Federal Communications
	Commission to perform electromagnetic emission measurements. The
	recognition numbers of test site are 832625.
Accreditation Certificate	The laboratory has met the requirements of the IAS Accreditation
	Criteria for Testing Laboratories (AC89), has demonstrated compliance
	with ISO/IEC Standard 17025:2005. The accreditation certificate
	number is TL-588.
	The laboratory is a testing organization accredited by China National
	Accreditation Service for Conformity Assessment (CNAS) according to
	ISO/IEC 17025. The accreditation certificate number is L6791.
	All measurement facilities used to collect the measurement data are
Description	located at Block B, FL 1, Baisha Science and Technology Park, Shahe
Decompliant	Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R.
	China 518055

1.3 Test Environment Condition

Ambient Temperature	20 to 23°C
Ambient Relative	27 to 420/
Humidity	37 to 43%
Ambient Pressure	100 to 102KPa

1.4 Announce

- (1) The test report reference to the report template version v2.1.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	REGAL DISTRIBUTORS
Address	FLAT/RM C BLK 17 3/F, SCENEWAY GARDEN, LAMTIN, KL,
	HONGKONGA

2.2 Manufacturer Information

Manufacturer	Regal Industries
Address	Floor 3, North Unit, Block 10, Jindouling Industrial Zone, Yantian
	District, Shenzhen, China

2.3 Factory Information

Factory	Regal Industries	
Address	Floor 3, North Unit, Block 10, Jindouling Industrial Zone, Yantian	
	District, Shenzhen, China	

2.4 General Description for Equipment under Test (EUT)

EUT Type	Wireless Headset
Model Name Under Test	WH-H43
Series Model Name	WH-H41
Description of Model Name Differentiation	All models are same with electrical parameters and internal circuit structure but only differ in model name which for the different marketing sales area.
Hardware Version	N/A
Software Version	N/A
Dimensions (Approx)	Please refer to EUT EXTERNAL PHOTOS (BL-SZ15B0070-AW.PDF)
Weight (Approx)	440.29 g
Modulation Mode	FM (analog)

2.5 Ancillary Equipment

	Battery	
Ancillary Equipment 1	Brand Name	N/A
	Model No.	103040-3.7v
	Serial No.	N/A
	Capacitance	1100 mAh
	Rated Voltage	3.7 V
	Limit Charge Voltage	4.2 V
	Charger 1	
Ancillary Equipment 2	Brand Name	N/A
	Model No.	SP-08
	Rated Input	100-240 V~, 0.3 A, 50/60 Hz
	Rated Output	5 V=, 2 A

2.6 Technical Information

The requirement for the following technical information of the EUT was tested in this report:

Operating Mode	Transmitting	
Fraguency Dange	GMRS: 462.5625 MHz ~ 462.7125 MHz	
Frequency Range	FRS: 467.5625 MHz ~ 467.7125 MHz	
GMRS: 1/ 2/ 3/ 4/ 5/ 6/ 7		
Channels FRS: 8/ 9/ 10/ 11/ 12/ 13/ 14		
Antenna Type	External Antenna	
Exposure Category	General Population/Uncontrolled Exposure	
Normal Operation	Head	
EUT Stage	Portable Device	
Draduot	Туре	
Product	☑ Production unit	☐ Identical prototype

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title		
1	47 CFR§2.1093	Radio frequency Radiation Exposure Evaluation: Portable Devices		
2	ANSI/IEEE Std.	IEEE Standard for Safety Levels with Respect to Human Exposure to		
	C95.1-1999	Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz		
IEEE OU		Recommended Practice for Determining the Peak Spatial-Average		
3	IEEE Std.	Specific Absorption Rate (SAR) in the Human oHead from Wireless		
	1528-2013	Communications Devices: Measurement Techniques		
4	FCC KDB	Mobile and Portable Device RF Exposure Procedures and		
4	447498 D01 v06	Equipment Authorization Policies		
	FCC KDB			
5	643646 D01	SAR Test Reduction Considerations for Occupational PTT Radios		
	v01r03			
	FCC KDB			
6	865664 D01	SAR Measurement 100 MHz to 6 GHz		
	v01r04			
	FCC KDB			
7	865664 D02	RF Exposure Reporting		
	v01r02			
	FCC KDB			
8	648474 D04	SAR Evaluation Considerations for Wireless Handsets		
	V01r03			
	OET Inquiry			
9	System Inquiry	Llaing a flat phontom with head liquid to simulate the actual usage		
9	Tracking Number	Using a flat phantom with head liquid to simulate the actual usage.		
	652093			

3.2 Device Category and SAR Limit

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

Table of Exposure Limits:

	SAR Valu	SAR Value (W/Kg)				
Body Position	General Population/	Occupational/				
	Uncontrolled Exposure	Controlled Exposure				
Whole-Body SAR	0.08	0.4				
(averaged over the entire body)	0.08	0.4				
Partial-Body SAR	1.60	8.0				
(averaged over any 1 gram of tissue)	1.00	8.0				
SAR for hands, wrists, feet and						
ankles	4.0	20.0				
(averaged over any 10 grams of tissue)						

NOTE:

General Population/Uncontrolled: Locations where there is the exposure of individuals who have no knowledge or control of their exposure. General population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Occupational/Controlled: Locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

3.3 Test Result Summary

3.3.1 Highest SAR (1 g Value)

Band	Position	Ch.	Freq. (MHz)	Maximum Measurement SAR (W/kg) 50% duty cycle	Maximum Report SAR (W/kg)	Limit (W/kg)
GMRS	Head	1	462.5625	0.0445	0.0453	4.0
FRS	Head	14	467.7125	0.0480	0.0486	1.6
Verdict	Pass					

3.4 Test Uncertainty

3.4.1 Measurement uncertainly evaluation for SAR test

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528 This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Feasible Probe calibration Season Probe calibration Season Sea	Uncertainty Component	Tol	Prob.	Div.	Ci	Ci	1g Ui	10g Ui	Vi
Probe calibration	Unicertainty Component	(+- %)	Dist.	DIV.	(1g)	(10g)	(+-%)	(+-%)	VI
Axial Isotropy 3.5 R √3 0.7 0.7 1.41 1.41 ∞ Hemispherical Isotropy 5.9 R √3 0.7 0.7 2.38 2.38 ∞ Boundary effect 1.0 R √3 1 1 0.58 0.58 ∞ Linearity 4.7 R √3 1 1 1 0.58 0.58 ∞ Linearity 4.7 R √3 1 1 1 0.58 0.58 ∞ System detection limits 1.0 R √3 1 1 1 0.58 0.58 ∞ System detection limits 1.0 R √3 1 1 1 0.50 0.50 ∞ Readout Electronics 0.5 N 1 1 1 1 0.50 0.50 ∞ Response Time 0.0 R √3 1 1 1 0.60 0.50 ∞ Integration Time 1.4 R √3 1 1 1 0.81 0.81 ∞ RF ambient Conditions - Noise 3.0 R √3 1 1 1 0.81 0.81 ∞ Frobe positioning Nechanical Tolerance 1.4 R √3 1 1 1 0.81 0.81 ∞ Probe positioning with respect to Phantom Shell 1.4 R √3 1 1 0.81 0.81 0.81 ∞ Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation Test Sample Related Test Sample Related Test Sample Positioning 2.6 N 1 1 1 0.8 0.81 0.81 ∞ Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation Test Sample Positioning 2.6 N 1 1 1 0.80 0.80 0.80 ∞ SAR scaling 2.00 R √3 1 1 1 0.81 0.80 0.80 ∞ Extrapolation SAR drift measurement 5.0 R √3 1 1 1 0.81 0.81 0.81 ∞ Extrapolation SAR drift measurement 5.0 R √3 1 1 1 0.81 0.81 0.81 ∞ Extrapolation SAR drift measurement 5.0 R √3 1 1 1 0.81 0.81 0.81 ∞ Extrapolation SAR drift measurement 5.0 R √3 1 1 1 0.80 0.00 0.00 0.00 0.00 0.00 0.0	Measurement System								
Hemispherical Isotropy	Probe calibration	5.8	N	1	1	1	5.80	5.80	∞
Boundary effect	Axial Isotropy	3.5	R	$\sqrt{3}$	0.7	0.7	1.41	1.41	∞
Linearity	Hemispherical Isotropy	5.9	R	$\sqrt{3}$	0.7	0.7	2.38	2.38	∞
System detection limits	Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Readout Electronics 0.5 N 1 1 1 0.50 0.50 ∞ Response Time 0.0 R √3 1 1 0.00 0.00 ∞ Integration Time 1.4 R √3 1 1 0.81 0.81 ∞ RF ambient Conditions - Noise 3.0 R √3 1 1 1.73 1.73 ∞ RF ambient Conditions - Reflections 3.0 R √3 1 1 1.73 1.73 ∞ Probe positioning Mechanical Tolerance 1.4 R √3 1 1 0.81 ∞ Probe positioning with respect to Phantom Shell 1.4 R √3 1 1 0.81 ∞ Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation 2.3 R √3 1 1 0.81 ∞ 1 1 1.33 1.33 ∞ Extrapolation, interpolation in integration Algoritms for Max. SAR Evaluation 2.3 R	Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	8
Response Time	System detection limits	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Integration Time	Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞
RF ambient Conditions - Noise 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 ∞ RF ambient Conditions - Reflections 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 ∞ Probe positioning Mechanical Tolerance 1.4 R $\sqrt{3}$ 1 1 0.81 ∞ Probe positioning with respect to Phantom Shell 1.4 R $\sqrt{3}$ 1 1 0.81 ∞ Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation 2.3 R $\sqrt{3}$ 1 1 0.81 ∞ Test Sample Related Test Sample positioning 2.6 N 1 1 1 2.60 N-1 Device Holder Uncertainty 1.0 N 1 1 1 1.00 N-1 Output power Variation - SAR drift measurement 5.0 R $\sqrt{3}$ 1 1 1.15 1.15 ∞ SAR scaling 2.00 R $\sqrt{3}$ 1 1 1.15 1.15 ∞ Phantom Uncertainty (Shape and thickness tolerances) 4.	Response Time	0.0	R	$\sqrt{3}$	1	1	0.00	0.00	∞
RF ambient Conditions - Reflections 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 ∞ Probe positioner Mechanical Tolerance 1.4 R $\sqrt{3}$ 1 1 0.81 0.81 ∞ Probe positioning with respect to Phantom Shell 1.4 R $\sqrt{3}$ 1 1 0.81 0.81 ∞ Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation 2.3 R $\sqrt{3}$ 1 1 1 1.33 1.33 ∞ Max. SAR Evaluation 2.3 R $\sqrt{3}$ 1 1 1 2.60 2.60 N-1 Device Holder Uncertainty 1.0 N 1 1 1 1 2.60 2.60 N-1 Output power Variation - SAR drift measurement 5.0 R $\sqrt{3}$ 1 1 1.15 1.15 ∞ Phantom and Tissue Parameters 2.00 R $\sqrt{3}$ 1 1 2.31 2.31 ∞ Liquid conductivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.64 0.43 0.92 0.62 ∞ Liquid conductivity - measurement uncertainty 5.0 N 1 0.64 0.43 3.20 2.15 M Liquid permittivity - measurement uncertainty 5.0 N 1 0.60 0.49 3.00 2.45 M Combined Standard Uncertainty RSS 10.14 9.67 Expanded Uncertainty	Integration Time	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioner Mechanical Tolerance 1.4 R $\sqrt{3}$ 1 1 0.81 0.81 ∞ Probe positioning with respect to Phantom Shell 1.4 R $\sqrt{3}$ 1 1 0.81 0.81 ∞ Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation 2.3 R $\sqrt{3}$ 1 1 1 1.33 1.33 ∞ Test Sample Related Test sample positioning 2.6 N 1 1 1 2.60 2.60 N-1 Device Holder Uncertainty 1.0 N 1 1 1 1 1.00 1.00 N-1 Output power Variation - SAR drift measurement 5.0 R $\sqrt{3}$ 1 1 1.289 2.89 ∞ SAR scaling 2.00 R $\sqrt{3}$ 1 1 1.15 1.15 ∞ Phantom and Tissue Parameters Phantom Uncertainty (Shape and thickness tolerances) 4.0 R $\sqrt{3}$ 1 1 2.31 2.31 ∞ Liquid conductivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.64 0.43 0.92 0.62 ∞ Liquid conductivity - measurement uncertainty 5.0 N 1 0.64 0.43 3.20 2.15 M Liquid permittivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.60 0.49 0.87 0.71 ∞ Liquid permittivity - measurement uncertainty 5.0 N 1 0.60 0.49 3.00 2.45 M Combined Standard Uncertainty RSS 10.14 9.67 Expanded Uncertainty	RF ambient Conditions - Noise	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioning with respect to Phantom Shell 1.4 R $\sqrt{3}$ 1 1 0.81 0.81 ∞ Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation 2.3 R $\sqrt{3}$ 1 1 1 1.33 1.33 ∞ 1.34 ∞ 1.34 ∞ 1.35 ∞ 1.35 ∞ 1.35 ∞ 1.37 ∞ 1.39 ∞ 1.39 ∞ 1.39 ∞ 1.39 ∞ 1.30 ∞	RF ambient Conditions - Reflections		R	$\sqrt{3}$	1	1	1.73	1.73	∞
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	Probe positioner Mechanical Tolerance		R	$\sqrt{3}$	1	1	0.81	0.81	∞
Max. SAR Evaluation 2.3 R √3 1 1 1.33 1.33 ∞ Test Sample Related Test sample positioning 2.6 N 1 1 1 2.60 2.60 N-1 Device Holder Uncertainty 1.0 N 1 1 1 1.00 1.00 N-1 Output power Variation - SAR drift measurement 5.0 R √3 1 1 2.89 2.89 ∞ SAR scaling 2.00 R √3 1 1 1.15 1.15 ∞ Phantom and Tissue Parameters Phantom Uncertainty (Shape and thickness tolerances) 4.0 R √3 1 1 2.31 ∞ Liquid conductivity (deviation from target values) 2.5 N √3 0.64 0.43 0.92 0.62 ∞ Liquid permittivity (deviation from target values) 2.5 N √3 0.60 0.49 0.87 0.71 ∞ Liquid per	Probe positioning with respect to Phantom Shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Max. SAR Evaluation Zest Sample Related Test sample positioning 2.6 N 1 1 1 2.60 2.60 N-1 Device Holder Uncertainty 1.0 N 1 1 1 1.00 1.00 N-1 Output power Variation - SAR drift measurement 5.0 R √3 1 1 2.89 2.89 ∞ SAR scaling 2.00 R √3 1 1 1.15 1.15 ∞ Phantom and Tissue Parameters Phantom Uncertainty (Shape and thickness tolerances) 4.0 R √3 1 1 2.31 2.31 ∞ Liquid conductivity (deviation from target values) 2.5 N √3 0.64 0.43 0.92 0.62 ∞ Liquid conductivity - measurement uncertainty 5.0 N 1 0.64 0.43 3.20 2.15 M Liquid permittivity (deviation from target values) 2.5 N √3 0.60 0.49 0.87 0.71 ∞ <td>Extrapolation, interpolation and integration Algoritms for</td> <td>0.0</td> <td>1</td> <td>75</td> <td>4</td> <td>4</td> <td>4.00</td> <td>4.00</td> <td></td>	Extrapolation, interpolation and integration Algoritms for	0.0	1	75	4	4	4.00	4.00	
Test sample positioning 2.6 N 1 1 1 2.60 2.60 N-1 Device Holder Uncertainty 1.0 N 1 1 1 1.00 1.00 N-1 Output power Variation - SAR drift measurement 5.0 R $\sqrt{3}$ 1 1 2.89 2.89 ∞ SAR scaling 2.00 R $\sqrt{3}$ 1 1 1.15 1.15 ∞ Phantom and Tissue Parameters Phantom Uncertainty (Shape and thickness tolerances) 4.0 R $\sqrt{3}$ 1 1 2.31 2.31 ∞ Liquid conductivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.64 0.43 0.92 0.62 ∞ Liquid conductivity - measurement uncertainty 5.0 N 1 0.64 0.43 3.20 2.15 M Liquid permittivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.60 0.49 0.87 0.71 ∞ Liquid permittivity - measurement uncertainty 5.0 N 1 0.60 0.49 3.00 2.45 M Combined Standard Uncertainty 8.8 10.14 9.67	Max. SAR Evaluation	2.3	К	√3	1	1	1.33	1.33	
Device Holder Uncertainty 1.0 N 1 1 1 1.00 1.00 N-1 Output power Variation - SAR drift measurement 5.0 R $\sqrt{3}$ 1 1 2.89 2.89 ∞ SAR scaling 2.00 R $\sqrt{3}$ 1 1 1.15 1.15 ∞ Phantom and Tissue Parameters Phantom Uncertainty (Shape and thickness tolerances) 4.0 R $\sqrt{3}$ 1 1 2.31 2.31 ∞ Liquid conductivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.64 0.43 0.92 0.62 ∞ Liquid conductivity - measurement uncertainty 5.0 N 1 0.64 0.43 3.20 2.15 M Liquid permittivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.60 0.49 0.87 0.71 ∞ Liquid permittivity - measurement uncertainty 5.0 N 1 0.60 0.49 3.00 2.45 M Combined Standard Uncertainty RSS 10.14 9.67	Test Sample Related							,	
Output power Variation - SAR drift measurement 5.0 R $\sqrt{3}$ 1 1 2.89 2.89 ∞ SAR scaling 2.00 R $\sqrt{3}$ 1 1 1.15 1.15 ∞ Phantom and Tissue Parameters Phantom Uncertainty (Shape and thickness tolerances) 4.0 R $\sqrt{3}$ 1 1 2.31 2.31 ∞ Liquid conductivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.64 0.43 0.92 0.62 ∞ Liquid conductivity - measurement uncertainty 5.0 N 1 0.64 0.43 3.20 2.15 M Liquid permittivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.60 0.49 0.87 0.71 ∞ Liquid permittivity - measurement uncertainty ∞ RSS 10.14 9.67 Expanded Uncertainty	Test sample positioning	2.6	N	1	1	1	2.60	2.60	N-1
SAR scaling 2.00 R $\sqrt{3}$ 1 1 1.15 1.15 ∞ Phantom and Tissue Parameters Phantom Uncertainty (Shape and thickness tolerances) 4.0 R $\sqrt{3}$ 1 1 2.31 2.31 ∞ Liquid conductivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.64 0.43 0.92 0.62 ∞ Liquid conductivity - measurement uncertainty 5.0 N 1 0.64 0.43 3.20 2.15 M Liquid permittivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.60 0.49 0.87 0.71 ∞ Liquid permittivity - measurement uncertainty 5.0 N 1 0.60 0.49 3.00 2.45 M Combined Standard Uncertainty RSS 10.14 9.67	Device Holder Uncertainty	1.0	N	1	1	1	1.00	1.00	N-1
Phantom and Tissue Parameters Phantom Uncertainty (Shape and thickness tolerances) 4.0 R $\sqrt{3}$ 1 1 2.31 2.31 ∞ Liquid conductivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.64 0.43 0.92 0.62 ∞ Liquid conductivity - measurement uncertainty 5.0 N 1 0.64 0.43 3.20 2.15 M Liquid permittivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.60 0.49 0.87 0.71 ∞ Liquid permittivity - measurement uncertainty 5.0 N 1 0.60 0.49 3.00 2.45 M Combined Standard Uncertainty RSS 10.14 9.67 Expanded Uncertainty	Output power Variation - SAR drift measurement	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
Phantom Uncertainty (Shape and thickness tolerances) 4.0 R $\sqrt{3}$ 1 1 2.31 2.31 ∞ Liquid conductivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.64 0.43 0.92 0.62 ∞ Liquid conductivity - measurement uncertainty 5.0 N 1 0.64 0.43 3.20 2.15 M Liquid permittivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.60 0.49 0.87 0.71 ∞ Liquid permittivity - measurement uncertainty 5.0 N 1 0.60 0.49 3.00 2.45 M Combined Standard Uncertainty RSS 10.14 9.67	SAR scaling	2.00	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Liquid conductivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.64 0.43 0.92 0.62 ∞ Liquid conductivity - measurement uncertainty 5.0 N 1 0.64 0.43 3.20 2.15 M Liquid permittivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.60 0.49 0.87 0.71 ∞ Liquid permittivity - measurement uncertainty 5.0 N 1 0.60 0.49 3.00 2.45 M Combined Standard Uncertainty RSS 10.14 9.67 Expanded Uncertainty	Phantom and Tissue Parameters								
Liquid conductivity - measurement uncertainty 5.0 N 1 0.64 0.43 3.20 2.15 M Liquid permittivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.60 0.49 0.87 0.71 ∞ Liquid permittivity - measurement uncertainty 5.0 N 1 0.60 0.49 3.00 2.45 M Combined Standard Uncertainty RSS 10.14 9.67 Expanded Uncertainty	Phantom Uncertainty (Shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.31	2.31	∞
Liquid permittivity (deviation from target values) 2.5 N $\sqrt{3}$ 0.60 0.49 0.87 0.71 ∞ Liquid permittivity - measurement uncertainty 5.0 N 1 0.60 0.49 3.00 2.45 M Combined Standard Uncertainty RSS 10.14 9.67 Expanded Uncertainty	Liquid conductivity (deviation from target values)	2.5	N	$\sqrt{3}$	0.64	0.43	0.92	0.62	∞
Liquid permittivity - measurement uncertainty 5.0 N 1 0.60 0.49 3.00 2.45 M Combined Standard Uncertainty RSS 10.14 9.67 Expanded Uncertainty	Liquid conductivity - measurement uncertainty	5.0	N	1	0.64	0.43	3.20	2.15	M
Combined Standard Uncertainty RSS 10.14 9.67 Expanded Uncertainty k 20.29 19.35	iquid permittivity (deviation from target values)		N	$\sqrt{3}$	0.60	0.49	0.87	0.71	∞
Expanded Uncertainty k 20.29 19.35	Liquid permittivity - measurement uncertainty	5.0	N	1	0.60	0.49	3.00	2.45	M
k 20.29 19.35	Combined Standard Uncertainty		RSS				10.14	9.67	
(95% Confidence interval)	Expanded Uncertainty		l _r				20.20	10.25	
	(95% Confidence interval)		, K				20.29	19.33	

3.4.2 Measurement uncertainly evaluation for system check

This measurement uncertainty budget is suggested by IEEE 1528. The break down of the individual uncertainties is as follows:

Uncertainty Component	Tol	Prob.	Div.	Ci	Ci	1g Ui	10g Ui	Vi
Measurement System	(+- %)	Dist.		(1g)	(10g)	(+-%)	(+-%)	
Probe calibration	5.8	N	1	1	1	5.80	5.80	
	3.5	R	$\sqrt{3}$	0.7	0.7	1.41	1.41	∞
Axial Isotropy Hemispherical Isotropy	5.9	R	$\sqrt{3}$	0.7	0.7	2.38	2.38	∞
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
	4.7	R	$\sqrt{3}$		1		2.71	∞
Probe Linearity			$\sqrt{3}$	1		2.71		∞
System detection limits	1.0	R		1	1	0.58	0.58	
Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞
Reponse Time	0.0	R	$\sqrt{3}$	1	1	0.00	0.00	∞
Integration Time	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	
RF ambient Conditions - Noise	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF ambient Conditions - Reflections	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner Mechanical Tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with respect to Phantom Shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation, interpolation and integration Algoritms for	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	∞
Max. SAR Evaluation			,,,					
Dipole			T	T	T	Г		Г
Deviation of experimental dipole	5.5	R	$\sqrt{3}$	1	1	3.20	3.20	∞
Dipole axis to liquid distance	2.0	R	1	1	1	1.20	1.20	∞
Power drift	4.7	R	$\sqrt{3}$	1	1	2.70	2.70	∞
Phantom and Tissue Parameters								
Phantom Uncertainty (Shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.31	2.31	∞
Liquid conductivity (deviation from target values)	2.5	N	$\sqrt{3}$	0.64	0.43	0.92	0.62	∞
Liquid conductivity - measurement uncertainty	5.0	N	1	0.64	0.43	3.20	2.15	M
Liquid permittivity (deviation from target values)		N	$\sqrt{3}$	0.60	0.49	0.87	0.71	∞
Liquid permittivity - measurement uncertainty	5.0	N	1	0.60	0.49	3.00	2.45	M
Combined Standard Uncertainty		RSS				10.22	9.75	
Expanded Uncertainty (95% Confidence interval)		k				20.44	19.50	

4 SAR MEASUREMENT SYSTEM

4.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational / controlled exposure limits are higher than the limits for general population /uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue,

 ρ is the mass density of the tissue and E is the RMS electrical field strength.

4.2 SATIMO SAR System

4.2.1 SATIMO SAR System Diagram

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 850 mm), which positions the probes with a positional repeatability of better than \pm 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit.

The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in SAR standard with accuracy of better than ±10%. The spherical isotropy was evaluated with the procedure described in SAR standard and found to be better than ±0.25 dB. The phantom used was the SAM Phantom as described in FCC supplement C, IEEE P1528.

4.2.2 Robot

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

4.2.3 E-Field Probe

For the measurements the Specific Dosimetric E-Field Probe SN 34/15 EPGO 265 with following specifications is used

-- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 2.5 mm

 Lower detection limit: 7 mW/kg (repeatability better than +/- 1mm)

- Probe linearity: +/- 0.07 dB

- Calibration range: 450 MHz to 5800 MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line: less than 30°

E-Field Probe Calibration Process

Probe calibration is realized, in compliance with CENELEC EN 62209-1/-2 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the IEC62209-1/2 annexe technique using reference guide at the five frequencies.

$$SAR = \frac{4(P_{fw} - P_{bw})}{ab\sigma} \cos^{2}\left(\pi \frac{y}{a}\right) c^{(2\pi/\sigma)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide dimensions

= Skin depth

Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/Vlin(N)$$
 (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N)=V(N)^*(1+V(N)/DCP(N)) \qquad (N=1,2,3)$$

Where the DCP is the diode compression point in mV.

4.2.4 Phantoms

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

Photo of Phantom SN 30/13 SAM103

Photo of Phantom SN 30/13 SAM104

Serial Number	Positionner Material	Permittivity	Loss Tangent
SN 30/13 SAM103	Gelcoat with fiberglass	3.4	0.02
SN 30/13 SAM104	Gelcoat with fiberglass	3.4	0.02

Serial Number		Left Head		Right Head		Flat Part
	2	2.00	2	2.03	1	2.09
	3	2.02	3	2.05	2	2.10
	4	2.04	4	2.04	3	2.09
CN 20/42 CAM402	5	2.04	5	2.07	4	2.11
SN 30/13 SAM103	6	2.02	6	2.07	5	2.11
	7	2.01	7	2.09	6	2.09
	8	2.04	8	2.10	7	2.11
	9	2.02	9	2.09	-	-
	2	2.05	2	2.06	1	2.03
	3	2.08	3	2.03	2	2.03
	4	2.05	4	2.03	3	2.01
CN 20/42 CAM404	5	2.06	5	2.02	4	2.03
SN 30/13 SAM104	6	2.08	6	2.02	5	2.03
	7	2.06	7	2.04	6	2.00
	8	2.07	8	2.04	7	1.98
	9	2.07	9	2.05	-	-

4.2.5 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

Serial Number	Holder Material	Permittivity	Loss Tangent
SN 25/13 MSH87	Deirin	3.7	0.005
SN 25/13 MSH88	Deirin	3.7	0.005

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

4.2.6 Simulating Liquid

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5%.

The following table gives the recipes for tissue simulating liquid and the theoretical Conductivity/Permittivity.

	Head (Reference IEEE1528)							
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ	3
450	38.56	56.62	0.98	3.95	0.19	0	0.87	43.5
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.4	40.0
2450	55.0	0	0	0.1	0	44.9	1.80	39.2
2600	54.9	0	0	0.1	0	45.0	1.96	39.0
Fraguera (MIII-)	Water	Н	exyl Carbit	ol	Triton	X-100	Conductivity	Permittivity
Frequency(MHz)	(%)		(%)		(%	6)	σ	3
5200	62.52		17.24		17.	24	4.66	36.0
5800	62.52		17.24		17.24		5.27	35.3
		Body (Fro	m instrun	nent man	ufacturer)			
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ	3
450	63.07	0	0	0.72	0	36.22	0.94	55.8
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0.1	0	31.3	1.95	52.7
2600	68.2	0	0	0.1	0	31.7	2.16	52.5

Frequency(MHz)	Water	DGBE (%)	Salt (%)	Conductivity	Permittivity
5200	78.60	21.40	1	5.54	47.86
5800	78.50	21.40	0.1	6.0	48.20

5 SYSTEM VERIFICATION

5.1 Antenna Port Test Requirement

The SATIMO SAR system is equipped with one or more system validation kits. These units together with the predefined measurement procedures within the SATIMO software enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

5.2 Purpose of System Check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

5.3 System Check Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

6 EUT TEST POSITION CONFIGURATUONS

According to KDB inquiry tracking number 652093, headsets are tested for SAR compliance in head configurations described in the following subsections.

6.1 Head Exposure Condition

Head exposure is limited to next to the ear voice mode operations. Generally, head SAR compliance is tested according to the test positions defined in IEEE Std 1528-2013 using the SAM phantom. However, the SAM (head) phantom is generally unacceptable for testing the SAR of other head and body exposure conditions. The EUT tested in this report is headset. According to KDB inquiry tracking number 652093, this PTT two-way radio should be placed against the flat phantom filled with head tissue simulating liquid to simulate the head exposure condition. And push the head-mounted PTT two-way radios so hard that the foam is compressed as mush as possible.

7 SAR MEASUREMENT PROCEDURES

7.1 SAR Measurement Process Diagram

7.2 SAR Scan General Requirements

Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013.

			≤3GHz	>3GHz	
Maximum distance from o		•	5±1 mm	½·δ·ln(2)±0.5 mm	
1	(geometric center of probe sensors) to phantom surface				
Maximum probe angle fro	•	s to phantom surface	30°±1°	20°±1°	
normal at the measureme	ent location			-	
			≤ 2 GHz: ≤ 15 mm	3–4 GHz: ≤ 12 mm	
			2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm	
			When the x or y dimension of t	he test device, in the	
Maximum area scan spat	ial resolutior	n: Δx Area , Δy Area	measurement plane orientation	n, is smaller than the above, the	
			measurement resolution must	be \leq the corresponding x or y	
			dimension of the test device wi	th at least one measurement	
			point on the test device.		
Maximum zoom agan and	Maximum zoom scan spatial resolution: Δx Zoom , Δy Zoom		≤ 2 GHz: ≤ 8 mm	3–4 GHz: ≤ 5 mm*	
Waximum 200m Scan Spa	iliai resolulio	п. Дх 200111 , Ду 200111	2 –3 GHz: ≤ 5 mm*	4 – 6 GHz: ≤ 4 mm*	
				3–4 GHz: ≤ 4 mm	
	unifor	m grid: Δz Zoom (n)	≤ 5 mm	4–5 GHz: ≤ 3 mm	
				5–6 GHz: ≤ 2 mm	
Maximum zoom scan		△ z Zoom (1): between		3–4 GHz: ≤ 3 mm	
spatial resolution,		1st two points closest	≤ 4 mm	4–5 GHz: ≤ 2.5 mm	
normal to phantom	graded	to		5–6 GHz: ≤ 2 mm	
surface	grid	phantom surface		3 3 3	
	g	∆ z Zoom (n>1):	≤ 1.5·Δz 2	Zoom (n-1)	
between subsequent					
		points			
Minimum zoom				3–4 GHz: ≥ 28 mm	
scan volume		x, y, z	≥30 mm	4–5 GHz: ≥ 25 mm	
233 1314113				5–6 GHz: ≥ 22 mm	

Note:

- 1. δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.
- 2. * When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

7.3 SAR Measurement Procedure

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

7.4 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

7.5 PTT MEASUREMENT PROCEDURES

The operating configurations of head-mounted PTT two-way radios generally require SAR testing for headset exposure conditions.

A duty factor of 50% should be applied to determine compliance for radios with maximum operating duty factors \leq 50%. Radios with higher duty factors must apply the maximum duty factor supported by the device to determine compliance. For example, up to 100% duty factor may be required for certain radios that support operator-assisted PSTN calls. A duty factor of 75% may be applied for PTT radios with Bluetooth or voice activated transmission capabilities to avoid the justification required for using a lower duty factor supported by certain features built-in within the radio. When TDMA applies, the time slot inherent duty factor should also be taken into consideration.

For head-mounted PTT radios, according to KDB inquiry tracking number 652093, SAR test exclusion may be applied for headset exposure conditions according to the SAR Test Exclusion Threshold conditions and duty factor compensated maximum conducted output power.

A test separation distance of 0 mm must be applied for headset SAR test exclusion and SAR measurements. The head-mounted PTT two-way radios are placed against the flat phantom filled with head tissue simulating liquid. And push the head-mounted PTT two-way radios so hard that the foam is compressed as mush as possible. When occupational exposure limits apply, the procedures in KDB 643646 are applicable.

8 CONDUCTED RF OUPUT POWER

Band	Channel	Frequency	Conducted P	ower 'ower
Danu	Channel	(MHz)	(dBm)	(mW)
	1	462.5625	28.52	711.21
	2	462.5875	28.52	711.21
	3	462.6125	28.51	709.58
GMRS	4	462.6375	28.51	709.58
	5	462.6625	28.49	706.32
	6	462.6875	28.47	703.07
	7	462.7125	28.48	704.69
	8	467.5625	28.54	714.50
	9	467.5875	28.55	716.14
	10	467.6125	28.55	716.14
FRS	11	467.6375	28.55	716.14
	12	467.6625	28.55	716.14
	13	467.6875	28.55	716.14
	14	467.7125	28.55	716.14

Tune-up power range

Item	Tune-up power(dBm)	Tune-up power range(dBm)
GMRS	28.40 ± 0.2	28.20 ~ 28.60
FRS	28.50 ± 0.1	28.40 ~ 28.60

9 TEST RESULTS

9.1 Test Result (1g value)

Band	Position	Dst. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	Meas. SAR 100% duty cycle (W/Kg)	50% duty cycle (W/Kg)	Meas. Power (dBm)	Max. tune-up Power (dBm)	Scalig Factor	Scaled SAR (W/Kg)	Meas. No.
Body												
		0	1	462.5625	-2.27	0.089	0.0445	28.52	28.60	1.019	0.0453	1#
GMRS	Front Side	0	2	462.5875	-1.36	0.085	0.0425	28.52	28.60	1.019	0.0428	2#
	Olde	0	7	462.7125	-3.02	0.082	0.0410	28.48	28.60	1.028	0.0421	3#
		0	8	467.5625	-3.30	0.089	0 .0445	28.54	28.60	1.014	0.0451	4#
FRS	FRS Side	0	11	467.6375	3.49	0.082	0.0410	28.55	28.60	1.012	0.0415	5#
	Oluc	0	14	467.7125	-2.80	0.096	0.0480	28.55	28.60	1.012	0.0486	6#

Note 1: According to OET inquiry system inquiry tracking number 652093, we used a flat phantom with head liquid to simulate the actual usage.

10 SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

- 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once.
- 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

Note: The highest measured 50% duty cycle SAR is 0.0480 W/kg, which less than 0.8 W/kg, repeated measurement is not required.

11 TEST EQUIPMENTS LIST

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
PC	Dell	N/A	N/A	N/A	N/A
450MHz Dipole	SATIMO	SID 450	S/N 25/13 DIP 0G450-252	2015/03/16	2016/03/15
E-Field Probe	MVG	SSE2	S/N 34/15 EPGO 265	2015/10/12	2016/10/11
Antenna	SATIMO	ANTA3	SN 17/13 ZNTA45	N/A	N/A
Phantom1	SATIMO	SAM	SN 30/13 SAM103	N/A	N/A
Phantom2	SATIMO	SAM	SN 30/13 SAM104	N/A	N/A
Dielectric Probe Kit	SATIMO	SCLMP	SN 25/13 OCPG56	2015/08/17	2016/08/16
MultiMeter	Keithley	MultiMeter	4024022	2015/07/16	2016/07/15
Wattiweter	Retuncy	2000	4024022	2013/07/10	2010/01/13
Signal Generator	R&S	SMF100A	1167.0000k02/104260	2015/07/16	2016/07/15
Power Meter	Agilent	E4419B	GB40201833	2015/10/14	2016/10/13
Power Sensor	R&S	NRP-Z21	103971	2015/07/16	2016/07/15
Power Amplifier	SATIMO	6552B	22374	N/A	N/A
Network Analyzer	R&S	ZVL-6	101380	2015/07/16	2016/07/15
Attenuator	COM-MW	ZA-S1-31	1305003187	N/A	N/A
Directional coupler	AA-MCS	AAMCS-UDC	000272	N/A	N/A

ANNEX A SIMULATING LIQUID VERIFICATION RESULT

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an SCLMP Dielectric Probe Kit.

(S/m) (S/m)	(S/m)	(S/m)	(3)	(σ) (S/m)	(3)	(%)	(%)
2015.12.03 Head 450 22.5 0.86 43.65 0.87 43.50 -1.15	ad 450 22.5 0.86	0.86 43	43.65	0.87	43.50	-1.15	0.34

Note: The tolerance limit of Conductivity and Permittivity is ± 5%.

ANNEX B SYSTEM CHECK RESULT

Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10%(for 1 g).

Date	Liquid Type	Freq. (MHz)	Power (mW)	Measured SAR (W/kg)	Normalized SAR (W/kg)	Dipole SAR (W/kg)	Tolerance (%)	Targeted SAR(W/kg)	Tolerance (%)
2015.12.03	Head	450	100	0.464	4.64	4.73	-1.90	4.58	1.31
Note: The tolerance limit of System validation ±10%.									

System Performance Check Data(450MHz Head)

Type: Phone measurement (Complete) E-Field Probe: SN 34/15 SSE2 EPGO265 Area scan resolution: dx=8mm, dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2015.12.03

Measurement duration: 14 minutes 46 seconds

Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Validation plane			
Band	450MHz			
Signal	CW			
Frequency (MHz)	450.000000			
Relative permittivity (real part)	43.647852			
Conductivity (S/m)	0.863471			
Power drift (%)	1.46000			
Ambient Temperature:	22.8°C			
Liquid Temperature:	22.5°C			
ConvF:	1.85			
Crest factor:	1:1			

Maximum location: X=0.00, Y=0.00 SAR Peak: 0.68 W/kg

SAR 10g (W/Kg)	0.317427
SAR 1g (W/Kg)	0.464432

ANNEX C TEST DATA

MEAS. 1 Body Plane with Front Side on Low Channel in GMRS mode

Test Date: 3/12/2015

Signal: GMRS, f=462.5625 MHz, Duty Cycle: 1:1.0 **Liquid Parameters:** Permittivity: 43.56; Conductivity: 0.87 S/m

Test condition: Ambient Temperature: 22.8°C, Liquid Temperature: 22.5°C

Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.85Area Scan:sam_direct_droit2_surf12mm.txt, h= 5.00 mmZoom Scan:5x5x7,dx=8mm, dy=8mm, dz=5mm,Complete

Maximum location: X=-4.000000, Y=-12.000000

SAR 10g (W/Kg): 0.065404 SAR 1g (W/Kg): 0.088956 Power drift (%): -2.27

3D screen shot

MEAS. 2 Body Plane with Front Side on Middle Channel in GMRS mode

Test Date: 3/12/2015

Signal: GMRS, f=462.5875 MHz, Duty Cycle: 1:1.0
Liquid Parameters: Permittivity: 43.54; Conductivity: 0.87 S/m

Test condition: Ambient Temperature: 22.8° C, Liquid Temperature: 22.5° C

Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.85Area Scan:sam_direct_droit2_surf12mm.txt, h= 5.00 mmZoom Scan:5x5x7,dx=8mm, dy=8mm, dz=5mm,Complete

Maximum location: X=-16.000000, Y=-12.000000

SAR 10g (W/Kg): 0.065156 SAR 1g (W/Kg): 0.085125 Power drift (%): -1.36

3D screen shot

MEAS. 3 Body Plane with Front Side on High Channel in GMRS mode

Test Date: 3/12/2015

Signal: GMRS, f=462.7125 MHz, Duty Cycle: 1:1.0 **Liquid Parameters:** Permittivity: 43.53; Conductivity: 0.88 S/m

Test condition: Ambient Temperature: 22.8° C, Liquid Temperature: 22.5° C

Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.85Area Scan:sam_direct_droit2_surf12mm.txt, h= 5.00 mmZoom Scan:5x5x7,dx=8mm, dy=8mm, dz=5mm,Complete

Maximum location: X=-16.000000, Y=-24.000000

SAR 10g (W/Kg): 0.062543 SAR 1g (W/Kg): 0.081638 Power drift (%): -3.02

3D screen shot

MEAS. 4 Body Plane with Front Side on Low Channel in FRS mode

Test Date: 3/12/2015

Signal: FRS, f=467.5625 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 43.46; Conductivity: 0.88 S/m

Test condition: Ambient Temperature: 22.8° C, Liquid Temperature: 22.5° C

Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.85Area Scan:sam_direct_droit2_surf12mm.txt, h= 5.00 mmZoom Scan:5x5x7,dx=8mm, dy=8mm, dz=5mm,Complete

Maximum location: X=-16.000000, Y=-24.000000

SAR 10g (W/Kg): 0.070152 SAR 1g (W/Kg): 0.089104 Power drift (%): -3.30

3D screen shot

Z Axis Scan

MEAS. 5 Body Plane with Front Side on Middle Channel in FRS mode

Test Date: 3/12/2015

Signal: FRS, f=467.6375 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 43.44; Conductivity: 0.88 S/m

Test condition: Ambient Temperature: 22.8° C, Liquid Temperature: 22.5° C

Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.85Area Scan:sam_direct_droit2_surf12mm.txt, h= 5.00 mmZoom Scan:5x5x7,dx=8mm, dy=8mm, dz=5mm,Complete

Maximum location: X=-16.000000, Y=-24.000000

SAR 10g (W/Kg): 0.062688 SAR 1g (W/Kg): 0.082289 Power drift (%): 3.49

3D screen shot

Z Axis Scan

MEAS. 6 Body Plane with Front Side on High Channel in FRS mode

Test Date: 3/12/2015

Signal: FRS, f=467.7125 MHz, Duty Cycle: 1:1.0 **Liquid Parameters:** Permittivity: 43.41; Conductivity: 0.89 S/m

Test condition: Ambient Temperature: 22.8° C, Liquid Temperature: 22.5° C

Probe:SN 34/15 SSE2 EPGO265, ConvF: 1.85Area Scan:sam_direct_droit2_surf12mm.txt, h= 5.00 mmZoom Scan:5x5x7,dx=8mm, dy=8mm, dz=5mm,Complete

Maximum location: X=-16.000000, Y=-24.000000

SAR 10g (W/Kg): 0.064827 SAR 1g (W/Kg): 0.095788 Power drift (%): -2.80

3D screen shot

Z Axis Scan

ANNEX D EUT EXTERNAL PHOTOS

Please refer the document "BL-SZ15C0017-AW.pdf".

ANNEX E SAR TEST SETUP PHOTOS

Please refer the document "BL-SZ15C0017-AS.pdf".

ANNEX F CALIBRATION REPORT

F.1 E-Field Probe

COMOSAR E-Field Probe Calibration Report

Ref: ACR.299.1.15.SATU.A

SHENZHEN BALUN TECHNOLOGY CO.,LTD.

BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY PARK, SHAHE XI ROAD,

NANSHAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA 518055

MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 34/15 EPGO265

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 10/12/2015

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

Ref: ACR,299.J.15.SATU.A

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	10/26/2015	JS
Checked by:	Jérôme LUC	Product Manager	10/26/2015	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	10/26/2015	We distributed

	Customer Name
Distribution:	SHENZHEN
	BALUN
	TECHNOLOGY
	Co.,Ltd.

Issue	Date	Modifications	
A	10/26/2015	Initial release	

Page: 2/10

Ref: ACR.299.J.15.SATU.A

TABLE OF CONTENTS

1	De	rice Under Test4	
2	Pro	duct Description	
	2.1	General Information	4
3	Me	asurement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	_ 5
	3.3	Lower Detection Limit	5
	3.4	Isotropy	.5
	3.5	Boundary Effect	5
4	Me	asurement Uncertainty	
5	Cal	ibration Measurement Results6	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	Lis	of Equipment10	

Page: 3/10

Ref: ACR.299.J.15.SATU.A

1 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE			
Manufacturer	MVG			
Model	SSE2			
Serial Number	SN 34/15 EPGO265			
Product Condition (new / used)	New			
Frequency Range of Probe	0.45 GHz-6GHz			
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.192 MΩ			
	Dipole 2: R2=0.230 MΩ			
	Dipole 3: R3=0.205 MΩ			

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 - MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm	
Length of Individual Dipoles	2 mm	
Maximum external diameter	8 mm	
Probe Tip External Diameter	2.5 mm	
Distance between dipoles / probe extremity	1 mm	

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01 W/kg to 100 W/kg.

Page: 4/10

Ref: ACR.299.1.15.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0° - 180°) in 15° increments. At each step the probe is rotated about its axis (0° - 360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	√3 [1	1.732%
Reflected power	3,00%	Rectangular	$-\sqrt{3}$	1	1.732%
Liquid conductivity	5,00%	Rectangular	$-\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$-\sqrt{3}$	1	2,309%
Field homogeneity	3.00%	Rectangular	$-\sqrt{3}$	1	1.732%
Field probe positioning	5,00%	Rectangular	$\sqrt{3}$	1	2.887%

Page: 5/10

Ref: ACR.299.1.15.SATU.A

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

	Calibration Parameters			
Liquid Temperature	21 °C			
Lab Temperature	21 °C			
Lab Humidity	45 %			

5.1 SENSITIVITY IN AIR

Normx dipole 1 (μV/(V/m) ²)		
0.72	0.81	0.85

DCP dipole 1	DCP dipole 2	DCP dipole 3	
(mV)	(mV)	(mV)	
92	90	95	

Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula:

$$E = \sqrt{E_1^{-2} + E_2^{-2} + E_3^{-2}}$$

Page: 6/10

Ref: ACR.299.1.15.SATU.A

5.2 LINEARITY

Linearity.0+/-1.61% (+/-0.07dB)

5.3 SENSITIVITY IN LIQUID

Liquid	Frequency (MHz */- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL450	450	44.12	0.88	1.85
BL450	450	58.92	1.00	1.90
HL750	750	42.24	0.90	1.81
BL750	750	56.85	0.99	1.88
HL850	835	43.02	0.90	2.04
BL850	835	53.72	0.98	2.12
HL900	900	42.47	0.99	1.86
BL900	900	56.97	1.09	1.92
HL1800	1800	42.24	1.40	2.04
BL1800	1800	53.53	1.53	2.08
HL1900	1900	40.79	1.42	2.35
BL1900	1900	54.47	1.57	2.42
HL2000	2000	40.52	1.44	2.23
BL2000	2000	54.18	1.56	2.32
HL2450	2450	38.73	1.81	2.47
BL2450	2450	53.23	1.96	2.55
HL2600	2600	38.54	1.95	2.36
BL2600	2600	52.07	2.23	2.43
HL5200	5200	36.80	4.84	1.81
BL5200	5200	51.21	5.16	1.85
HL5400	5400	36.35	4.96	2.04
BL5400	5400	50.51	5:70	2.11
HL5600	5600	35.57	5,23	2.08
BL5600	5600	49.83	5.91	2.15
HL5800	5800	35.30	5.47	1.88
BL5800	5800	49.03	6.28	1.93

LOWER DETECTION LIMIT: 7mW/kg

Page: 7/10

Ref: ACR.299.1.15.SATU.A

5.4 ISOTROPY

HL900 MHz

- Axial isotropy: 0.04 dB
- Hemispherical isotropy: 0.06 dB

HL1800 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.06 dB

Page: 8/10

Ref: ACR.299.1.15.SATU.A

HL5600 MHz

- Axial isotropy:

0.06 dB

- Hemispherical isotropy: 0.09 dB

Page: 9/10

Ref. ACR.299.J.15.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated No ca required		
COMOSAR Test Bench	Version 3	NA.	Validated. No cal required.	Validated No ca required		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016		
Reference Probe	MVG	EP 94 SN 37/08	10/2015	10/2016		
Multimeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2013	12/2016		
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.		
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated, No cal required.		
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		

Page: 10/10

F.2 450MHz Dipole

SAR Reference Dipole Calibration Report

Ref: ACR.75.6.15.SATU.A

SHENZHEN BALUN TECHNOLOGY CO.,LTD. BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY PARK, SHAHE XI ROAD,

NANSHAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA 518055

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 450 MHZ

SERIAL NO.: SN 25/13 DIP 0G450-252

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

03/16/2015

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR.75.6.15.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	3/16/2015	35
Checked by:	Jérôme LUC	Product Manager	3/16/2015	25
Approved by:	Kim RUTKOWSKI	Quality Manager	3/16/2015	dam Parthonyin

	Customer Name
Distribution:	SHENZHEN
	BALUN
	TECHNOLOGY
	Co.,Ltd.

Issue	Date	Modifications	
A	3/16/2015	Initial release	

Page: 2/11

Ref: ACR.75.6.15.SATU:A

TABLE OF CONTENTS

1	Inti	oduction4	
2	De	vice Under Test	
3	Pro	duct Description4	
	3.1	General Information	-4
4	Me	asurement Method5	
	4,1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Val	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment	

Page: 3/11

Ref: ACR.75.6.15.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 450 MHz REFERENCE DIPOLE			
Manufacturer	MVG			
Model	SID450			
Serial Number	SN 25/13 DIP 0G450-252			
Product Condition (new / used)	Used			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/11

Ref. ACR.75.6.15.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Los	
400-6000MHz	0.1 dB	

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length	
3 - 300	0.05 mm	

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEVIEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %

Page: 5/11

Ref: ACR.75.6.15.SATU.A

10 0	20.1%
10 =	20.1

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
450	-43.03	-20	49.7 Ω - 0.6 jΩ

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
450	-33.70	-20	47.6 Ω - 0.4 jΩ

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Le	Lmm		h mm		d mm	
	required	measured	required	measured	required	measured	
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %		

Page: 6/11

Ref: ACR.75.6.15.SATU.A

450	290.0 ±1 %.	PASS	166.7 ±1 %.	PASS	6.35 ±1 %.	PASS
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1±1%.		51.7±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %,		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %		3.6 ±1 %.	
2450	51.5±1%.		30.4 ±1 %		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %		3.6 ±1 %.	
3500	37.0±1 %.		26.4±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEVIEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s _r ')		Conductivity (a) S/m	
	required	measured	required	measured
300	45,3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %	PASS	0.87 ±5 %	PASS
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0,90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1,23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1,37 ±5 %	100

Page: 7/11

Ref: ACR.75.6.15.SATU.A

1800	40.0 ±5 %	1,40 ±5 %
1900	40.0 ±5 %	1.40 ±5 %
1950	40.0 ±5 %	1,40±5%
2000	40.0 ±5 %	1.40 ±5 %
2100	39.8 ±5 %	1,49 ±5 %
2300	39.5 ±5 %	1.67 ±5 %
2450	39,2 ±5 %	1.80 ±5 %
2600	39.0 ±5 %	1.96±5%
3000	38.5 ±5 %	2,40 ±5 %
3500	37.9 ±5 %	2,91 ±5 %

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values: eps': 43.7 sigma: 0.87		
Distance between dipole center and liquid	15.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx 8mm/dy 8m/dz 5mm		
Frequency	450 MHz		
Input power	20 dBm		
Liquid Temperature	21.°C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1,94	
450	4.58	4.73 (0.47)	3.06	3.04 (0.30)
750	8.49		5,55	
835	9.56		6,22	
900	10.9		6.99	
1450	29	11	16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4	-	19.3	
1800	38.4		20.1	

Page: 8/11

Ref: ACR.75.6.15.SATU.A

1900	39.7	20.5
1950	40.5	20.9
2000	41,1	21.1
2100	43.6	21.9
2300	48.7	23.3
2450	52,4	24
2600	55.3	24.6
3000	63.8	25.7
3500	67.1	25

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s,')		Conductiv	ity (a) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %	PASS	0.94 ±5 %	PASS
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97±5%	
900	55.0 ±5 %	1	1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1,40 ±5 %	1
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %	1	1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	

Page: 9/11

Ref: ACR.75.6.15.SATU.A

2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51,3 ±5 %	3.31 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48,9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5,53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48,5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00±10%

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Body Liquid Values: eps': 58.3 sigma: 0.99		
Distance between dipole center and liquid	15.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm		
Frequency	450 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
450	4.81 (0.48)	3.11 (0.31)	

Page: 10/11

Ref: ACR.75.6.15.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016		
Calipers	Carrera	CALIPER-01	12/2013	12/2016		
Reference Probe	MVG	EPG122 SN 18/11	10/2014	10/2015		
Multimeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2013	12/2016		
Power Sensor	HP ECP-E26A	US37181460	12/2013 12/201			
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015		

Page: 11/11

F.3 Dielectric Probe

Dielectric Probe Calibration Report

Ref: ACR.219.12.13.SATU.A

SHENZHEN BALUN TECHNOLOGY CO., LTD.

ROOM 601, EAST TOWER, NANSHAN SOFTWARE PARK, 10128 SHENNAN ROAD, SHENZHEN, 518084, CHINA SATIMO LIMESAR DIELECTRIC PROBE

> FREQUENCY: 0.3-6 GHZ SERIAL NO.: SN 25/13 OCPG56

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

17/08/2015

Summary:

This document presents the method and results from an accredited Dielectric Probe calibration performed in SATIMO USA using the LIMESAR test bench. All calibration results are traceable to national metrology institutions.

Ref. ACR 219.12.13.SATU.A

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	8/17/2015	25
Checked by :	Jérôme LUC	Product Manager	8/17/2015	25
Approved by :	Kim RUTKOWSKI	Quality Manager	8/17/2015	Kim Puzzmacinsky

	Customer Name		
Distribution :	Shenzhen BALUN Technology Co., Ltd.		

Date	Modifications
8/17/2015	Initial release

Page: 2/7

Ref: ACR 219 12.13.SATU.A

TABLE OF CONTENTS

1 In	ntroduction4	
2 D	evice Under Test4	
3 P	roduct Description4	
3.1	General Information	4
4 N	Ieasurement Method	
4.1	Liquid Permittivity Measurements	5
5 N	feasurement Uncertainty	
5.1	Dielectric Permittivity Measurement	5
6 C	alibration Measurement Results	
6.1	Liquid Permittivity Measurement	6
7 L	ist of Equipment	

Page: 3/7

Ref: ACR 219.12.13.SATU.A

1 INTRODUCTION

This document contains a summary of the suggested methods and requirements set forth by the IEEE 1528 and CEI/IEC 62209 standards for liquid permittivity measurements and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	LIMESAR DIELECTRIC PROBE			
Manufacturer	Satimo			
Model	SCLMP			
Serial Number	SN 25/13 OCPG56			
Product Condition (new / used)	New			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's Dielectric Probes are built in accordance to the IEEE 1528 and CEI/IEC 62209 standards. The product is designed for use with the LIMESAR test bench only.

Figure 1 – Satimo LIMESAR Dielectric Probe

Page: 4/7

Ref. ACR 219/12/13/SATU A

4 MEASUREMENT METHOD

The IEEE 1528-2003, OET 65 Bulletin C and CEI/IEC 62209-1 & 2 standards outline techniques for dielectric property measurements. The LIMESAR test bench employs one of the methods outlined in the standards, using a contact probe or open-ended coaxial transmission-line probe and vector network analyzer. The standards recommend the measurement of two reference materials that have well established and stable dielectric properties to validate the system, one for the calibration and one for checking the calibration. The LIMESAR test bench uses De-ionized water as the reference for the calibration and either DMS or Methanol as the reference for checking the calibration. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 LIQUID PERMITTIVITY MEASUREMENTS

The permittivity of a liquid with well established dielectric properties was measured and the measurement results compared to the values provided in the fore mentioned standards.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 DIELECTRIC PERMITTIVITY MEASUREMENT

The following uncertainties apply to the Dielectric Permittivity measurement:

ERROR SOURCES	Uncertainty value (+/-%)	Probability Distribution	Divisor	ci	Standard Uncertainty (+/-%)
Repeatability (n repeats, mid-band)	4.00%	N	-1	1	4.000%
Deviation from reference liquid	5.00%	R	√3	1	2.887%
Network analyser-drift, linearity	2.00%	R	√3	1	1.155%
Test-port cable variations	0.00%	U	√2	1	0.000%
Combined standard uncertainty					5.066%
Expanded uncertainty (confidence level of 95%, k = 2)					10.0%

ERROR SOURCES	Uncertainty value (+/-%)	Probability Distribution	Divisor	ci	Standard Uncertainty (+/-%)
Repeatability (n repeats, mid-band)	3.50%	N	1	1	3.500%
Deviation from reference liquid	3.00%	R	√3	1	1.732%
Network analyser-drift, linearity	2.00%	R	√3	- 1	1.155%
Test-port cable variations	0.00%	U	√2	1	0.000%
Combined standard uncertainty					4.072%
Expanded uncertainty (confidence level of 95%, k = 2)					8.1%

Page: 5/7

Ref: ACR.219.12.13.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

Measurement Condition

Software	LIMESAR	
Liquid Temperature	21°C	
Lab Temperature	21°C	
Lab Humidity	44%	

6.1 LIQUID PERMITTIVITY MEASUREMENT

A liquid of known characteristics (methanol at 20°C) is measured with the probe and the results (complex permittivity ε^{γ} + $j\varepsilon^{\gamma}$) are compared with the well-known theoretical values for this liquid.

Ref: ACR 219 12 13 SATU.A

7 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
LIMESAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2012	02/2015		
Methanol CAS 67-56-1	Alpha Aesar	Lot D13W011	Validated. No cal required.	Validated, No ca required.		
Temperature and Humidity Sensor	Control Company	11-661-9	3/2015	3/2017		

Page: 7/7

This document shall not be reproduced, except in field or in part, without the written approval of SATIMO.

The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

--END OF REPORT--