Truly Supercritical Trade-offs for Resolution, Cutting Planes, Monotone Circuits and Weisfeiler-Leman

Jakob Nordström University of Copenhagen & Lund University

> Dagstuhl March 2025

joint with

Susanna F. de Rezende

Noah Fleming

Duri Andrea Janett

Shuo Pang

What Is a Trade-off Result?

Computational model with two complexity measures μ, ν (e.g. μ = time and ν = space)

- brute force algorithm can achieve worst case
- can optimize ν , but then μ bad
- can optimize μ , but then ν bad
- impossible to optimize both

A New Kind of Trade-off [Razborov '16]

 \rightarrow Optimizing μ pushes ν way beyond brute-force worst case

Supercritical Trade-offs Through Hardness Condensation

- Take medium-hard input in variables $x_1, ..., x_n$
- «Condense» by substituting x_i by XORs over subsets of variables $y_1, ..., y_m$
- Show hardness is nearly preserved
- But measured in $m \ll n$: supercritical

[Razborov '16, Berkholz-Nordström '20, Fleming-Pitassi-Robere '22, Berkholz-Nordström '23, ...]

Supercritical in What?

All trade-offs supercritical in # variables only, except [Berkholz '12, BBI '12/'16, BNT '13]

Are there trade-offs *truly* supercritical in input size?

Overview of Our Results (Informal)

Truly supercritical trade-offs for

- depth vs width in resolution
- size vs width in tree-like resolution
- size vs depth in resolution and cutting planes
- size vs depth for monotone circuits
- dimension vs iteration number for Weisfeiler-Leman

Answering open questions in [Razborov '16, GGKS '18, FGIPRTW '21, FPR '22, GLNS '23]

Next up:

- More precise statement of the results
- Preliminaries to make sense of statements

Resolution Proof System

Goal: prove CNF formula unsatisfiable Proof of unsatisfiability: Refutation

Resolution rule:

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$$

```
size = #nodes = 11 (worst case \leq 2^{O(\#variables)})
width = max clause size = 4 (worst case \leq \#variables)
```


Our Results: Resolution

Theorem (depth-width trade-off for resolution)

- \exists CNF formulas F_n on n variables s.t.
- Refuted by resolution in width w = poly(log(n))
- But width $\leq 1.9w \implies$ supercritical depth superlinear(|F|)

Theorem (size-depth trade-off for resolution)

- \exists CNF formulas F_n on n variables s.t.
- Refuted by resolution in size s = quasipoly(|F|)

Theorem (size-width trade-off for tree

- \exists CNF formulas F_n on n variables s.t All results supercritical in input size \bullet Refuted by treelike resolution:
 - But width $\leq w + \sqrt{w} \implies$ supercritical size exp(superpoly(|F|))

Cutting Planes Proof System

• Translate clause $\bar{x} \lor y \lor z$ to linear inequality $(1-x)+y+z \ge 1$

Derivation rules:

• Addition:
$$\frac{\sum a_i x_i \ge A, \quad \sum b_i x_i \ge B}{\sum a_i x_i + \sum b_i x_i \ge A + B}$$

• Multiplication:
$$\frac{\sum a_i x_i \ge A}{\sum c a_i x_i \ge cA}$$
, $c \in \mathbb{N}^+$

• Division:
$$\frac{\sum c a_i x_i \ge A}{\sum a_i x_i \ge [A/c]}, c \in \mathbf{N}^+$$

size
$$=$$
 #nodes(worst case $\leq 2^{O(\#variables)}$)depth $=$ max path length(worst case $\leq \#variables$)

Tseitin Formulas (Handshake Lemma)

- Graph G = (V, E)
- Labelling $lbl(v) \in \{0, 1\}$ for $v \in V$ s.t. $\sum_{v} lbl(v)$ odd
- Edges $e \in E \Leftrightarrow \text{variables } x_e$
- Constraints $\sum_{e \ni v} x_e \equiv \text{lbl}(v) \pmod{2}$

- Extensive study since [Tseitin '68]
- Exponential resolution size lower bound [Urguhart '87]
- Also studied for sum-of-squares (SoS), bounded-depth Frege, stabbing planes, ...

Supercritical trade-offs for Tseitin Formulas?

 Long-standing conjecture: Tseitin formulas exponentially hard for cutting planes FALSE!

```
Theorem [Dadush, Tiwari '20]
Exist size-n^{O(\log n)} cutting planes proofs for Tseitin
```

- Cutting planes requires depth $\geq \Omega(n)$ [FGIPRTW '21]
- But [Dadush, Tiwari '20] refutations have supercritical depth $n^{O(\log n)}$

Do Tseitin formulas yield supercritical trade-offs for size vs depth in cutting planes?

• Supercritical trade-offs in # variables [Fleming-Pitassi-Robere '22]

Our Result: Cutting Planes

Theorem (size-depth trade-off for cutting planes) in in

Supercritical in input size

- \exists CNF formulas F_n on n variables s.t.
- Refuted by cutting planes in size s = quasipoly(|F|)
- But size $\leq ns \Rightarrow$ supercritical depth superpoly(|F|)

- Does not resolve question for Tseitin formulas
- But Tseitin formulas used to construct formulas with provable trade-offs

Monotone Circuits

- Boolean circuits with AND, OR gates
- Compute Boolean functions $f: \{0,1\}^n \to \{0,1\}$

```
size = #nodes (worst case \leq 2^{O(n)})
depth = max path length (worst case \leq n)
```


Previous work:

Non-supercritical trade-offs: size $O(n) \Rightarrow \text{depth } \Omega(n/\text{polylog}n)$

[KW '90, RM '97, GP '14, dRMNPRV '20]

Our Result: Monotone Circuits

Theorem (supercritical trade-off for monotone circuits)

 \exists monotone functions f_n on n variables s.t.

- Computed by monotone circuit of size s = quasipoly(n)
- But size $\leq ns \Rightarrow$ supercritical depth superpoly(n)

Structure of Proof

• Part I: Base trade-off

• Part II: Use lifting to get other trade-offs

Base Result: Resolution Depth vs Width

Theorem

For any $c < k < \frac{n}{2 \ln n}$ there are 4-CNF formulas s.t.

- formula size $s \approx n^c$
- exists proof in width k + 3
- but width $< k + c \Rightarrow \text{depth} > s^{k/c}$

Variable Compression [Grohe-Lichter-Neuen-Schweitzer 2023]

Substitution with XOR gadgets

Variable substitution (with lots of collisions)

Formula: Tseitin on Cylinder

- Tseitin on long, skinny cylinder (wrap-around vertically, but not horizontally)
- Only 1 labelled vertex at top left

Formula: After Compression

- Vertex equivalence classes $[v_\ell] = \{v_j \mid j \equiv \ell \mod m_i\}$ for modulus m_i chosen for row i (except ends)
- Induces edge equivalence classes [e]
- Compressed formula: $\sum_{[e]\ni[v]}y_{[e]}=1 \mod 2$ iff $[v]=[v_0]$

Edge Equivalence Between Two Rows ($m_1 = 6, m_2 = 15$)

Proof: By Analyzing the Cop-Robber Game [Seymour-Thomas '93]

- Start: K cops, one robber at v_0
- In each round:
 - One cop enters helicopter and signal a vertex v
 - Robber moves
 - Cop lands at v
- Ends when robber is caught (by cop at same vertex)

```
width ≈ # cops
depth ≈ # rounds
```

[GTT '18]

Upper Bounds: Simple Cop Strategy

- k + 1 cops:
 - Place cops on middle column
 - March towards robber in $k \cdot L$ rounds
 - \Rightarrow translates to resolution proof of width k+3, but depth $k \cdot L$
- 3*k* cops:
 - Binary search
 - \Rightarrow translates to resolution proof of width 3k and depth $k \cdot \log L$

Compressed Game [GLNS '23]

- cop at $v \Rightarrow \text{cop at all vertices } u \in [v]$
- K = k + c cops, one robber at v_0
 - Lift a cop and signal a vertex v
 - Robber does a ≡-compressible move
 - Cop lands at [v]
- Cop strategies for uncompressed game still work ⇒ same upper bounds
- But robber has to avoid cop clones ⇒ harder to get lower bounds
- Consider only special type of Robber moves

Moves Translatable to Compressed Setting

- Robber moves only on $|I| \le c + 1$ contiguous rows
- Horizontal moves periodic mod $gcd(m_i: i \in I)$

Idea for Robber Strategy

- Robber stays on cop-free column in left/right part (L/R)
- Slides between L, R using compressible moves
- Problem: cops can form a police cordon

Idea for Robber Strategy

- Keep away from (set of) virtual cordons
- This allows robber to escape in time
- Cordons can only move slowly

Survives n^k rounds against k + c Cops.

Choice of Row Moduli

- Fix $1 \le c \le k-2$ Pick coprime numbers P_1, \dots, P_k where $|P_i| \approx n$ -ith modulus $4k \cdot P_i \cdots P_{i+c}$ $-\text{cylinder length} \quad L \approx 4k \cdot P_1 \cdots P_k$
- Compressed formula size $n^k \to n^{c+1}$

Motivation for Grohe et al: Weisfeiler-Leman (WL) algorithm

Theorem [Grohe-Lichter-Neuen-Schweitzer '23]

 \exists graph pairs k-dimensional WL can distinguish, but only after $n^{k/2}$ iterations.

- Dimension ≈ Width
- Iterations ≈ Depth
- Graph pair ≈ Tseitin
- [GLNS '23] not robust enough to yield proof complexity results

Our Result for Weisfeiler-Leman (WL)

Theorem

For any $1 \le c \le k - 1$, \exists graph pairs of size n

- dimension-k WL can distinguish
- dimension-(k + c 1) WL requires $n^{\frac{k}{c+1}}$ iterations

Structure of Proof

• Part I: Base trade-off

• Part II: Use lifting to get other trade-offs

What is a Lifting Theorem?

- Use composition to relate (different) models of computation:
 - Complexity of f in (weak) model A corresponds to
 - \Rightarrow Complexity of composed problem $f \circ g$ in (strong) model B
- Example
- F requires large resolution width
- \Rightarrow $F \circ g$ requires large resolution/cutting planes/monotone circuit size

Lifting with Indexing Gadget (for Functions)

- $f: \{0,1\}^n \to \{0,1\}$
- Compose with IND: $[m] \times \{0,1\}^m \rightarrow \{0,1\}$, IND $(x,y) = y_x$

Alice: $x \in [m]^n$

1	3	1	2	2	1	3	2
---	---	---	---	---	---	---	---

Bob: $y \in \{0,1\}^{mn}$

0	0	1	1	0	1	0	1
1	0	0	1	1	0	0	0
0	1	1	1	0	1	0	0

Lifting Resolution to Monotone Circuits [Garg-Göös-Kamath-Sokolov '18]

• Resolution width-depth trade-off ⇒ monotone circuit size-depth trade-off

Theorem [GGKS '18]

For CNF formula F and large enough m, can construct function $f_{F,m}$ s.t. size- m^w , depth-d monotone circuit for $f_{F,m}$

- \Rightarrow width-O(w), depth-O(dw) resolution proof for F
- Crucial issue: #variables of function ≈ #clauses in formula
 - Previous supercritical trade-offs do not work
 - Crucial that depth-width trade-off is truly supercritical
- Need tighter lifting theorem than [GGKS '18] with better constants

Tight Lifting Theorem

Best possible theorem (dream)

For CNF formula F and large enough m, can construct function $f_{F,m}$ s.t. size- m^w , depth-d monotone circuit for $f_{F,m}$

 \Rightarrow width-w, depth-d resolution proof for F

→ Intermediate goal: tight lifting for resolution

Tight Lifting for Resolution

Theorem

- size- $(m/2)^w$, depth-d resolution refutation for $F \circ IND_m$
- \Rightarrow width-w, depth-d resolution refutation of F
- Essentially optimal
- Simple proof via random restriction

Corollary (size-depth trade-off for resolution)

 \exists a CNF formula F on ℓ clauses s.t.

- ∃ resolution refutation of F in size s
- But size $\leq \ell s \Rightarrow$ superpolynomial (in ℓ) depth

Tight Lifting for Monotone Circuits

Theorem

size- $m^{(1-\epsilon)w}$, depth-d monotone circuit for $f_{F,m}$

- \Rightarrow width-w, depth-wd resolution refutation of F
- Also almost optimal
- Applies also to cutting planes (and monotone real circuits)

Corollary (size-depth trade-off for monotone circuits)

 \exists function f on n variables s.t.

- \exists a monotone circuit for f of size s
- size $\leq ns \Rightarrow$ superpolynomial depth

Lifting for Treelike Resolution

Theorem

size-s, width-w tree-like resolution refutation for $F \circ XOR_{m+1}$ \Rightarrow depth-(logs), width-(w/m) resolution refutation of F

Note that width is also reduced

Corollary (size-width trade-off for treelike resolution)

 \exists a CNF formula F on n variables s.t.

- \exists a treelike resolution refutation of width w = poly(log(n))
- But width $\leq w + \sqrt{w} \implies \exp(\operatorname{superpoly}(|F|))$ size

Concurrent Work [Göös-Maystre-Risse-Sokolov '24]

- Independently obtained supercritical size-depth trade-offs
- Natural formulas formalizing interesting combinatorial principle
- More robust trade-offs
- Can use existing lifting theorems as black box

Our work

- Different parameter regime, with trade-offs kicking in earlier
- Robust supercritical trade-offs also for Weisfeiler-Leman
- Formula compression technique in [GLNS '23] worth investigating further
- Tighter lifting theorems also of independent interest

Open Problems

- Further applications of compression in proof complexity
 - Can pebbling formulas be compressed?
 - Can we find other graph compressions?
- Prove more supercritical trade-offs
 - Size vs space or similar
 - Unified parameter range with [GMRS '24]
- Complexity of Tseitin for cutting planes
 - Is there a supercritical trade-off?
- Complexity of perfect matching for monotone circuits
 - Superpolynomial lower bound known [Razborov '85]
 - Linear depth necessary [Raz-Wigderson '92]
 - Is there a supercritical trade-off?

Conclusion

- We give truly supercritical (in terms of size) trade-offs for
 - depth vs width in resolution
 - size vs width in tree-like resolution
 - size vs depth in resolution and cutting planes
 - size vs depth for monotone circuits
 - dimension vs iteration number for Weisfeiler-Leman
- Proven via lifting base trade-off (depth vs width)
 - Depth vs width: compressed Tseitin
 - Analysis via Cop-Robber game
 - Also need improved (nearly tight) lifting theorems

Directions for Future Research

- Compression of other formulas?
- Compression of other graphs than cylinders?
- Supercritical trade-offs for other measures such as size vs space?
- Supercritical size-depth trade-offs for Tseitin formulas?
- Supercritical monotone circuit trade-offs for perfect matching?

Thanks for your attention!