Title

D. Zack Garza

Monday 10th August, 2020

Contents

1	Mod	dules			
	1.1	General Questions			
		1.1.1	Fall 2019 Final #2	1	
		1.1.2	Spring 2018 #6	1	
		1.1.3	Fall 2018 #6 ⋈	2	
		1.1.4	Spring 2018 #7	3	
		1.1.5	Fall 2016 #6	3	
		1.1.6	Spring 2016 #4	3	
		1.1.7	Spring 2015 #8	3	
		1.1.8	Fall 2012 #6	3	
		1.1.9	Fall 2019 Final #1	3	
	1.2	Torsio	on and the Structure Theorem	4	
		1.2.1	* Fall 2019 #5 ⋈	4	

1 Modules

1.1 General Questions

1.1.1 Fall 2019 Final #2

Consider the \mathbb{Z} -submodule N of \mathbb{Z}^3 spanned by $f_1 = [-1, 0, 1], f_2 = [2, -3, 1], f_3 = [0, 3, 1], f_4 = [3, 1, 5]$. Find a basis for N and describe \mathbb{Z}^3/N .

1.1.2 Spring 2018 #6.

Let

$$M = \{(w, x, y, z) \in \mathbb{Z}^4 \mid w + x + y + z \in 2\mathbb{Z}\},\$$

and

$$N = \{(w, x, y, z) \in \mathbb{Z}^4 \mid 4 \mid (w - x), 4 \mid (x - y), 4 \mid (y - z)\}.$$

- a. Show that N is a \mathbb{Z} -submodule of M .
- b. Find vectors $u_1, u_2, u_3, u_4 \in \mathbb{Z}^4$ and integers d_1, d_2, d_3, d_4 such that

$$\{u_1, u_2, u_3, u_4\}$$

is a free basis for M, and

$$\{d_1u_1, d_2u_2, d_3u_3, d_4u_4\}$$

is a free basis for N .

c. Use the previous part to describe M/N as a direct sum of cyclic \mathbb{Z} -modules.

1.1.3 Fall 2018 #6 ⋈

Let R be a commutative ring, and let M be an R-module. An R-submodule N of M is maximal if there is no R-module P with $N \subsetneq P \subsetneq M$.

- a. Show that an R-submodule N of M is maximal $\iff M/N$ is a simple R-module: i.e., M/N is nonzero and has no proper, nonzero R-submodules.
- b. Let M be a \mathbb{Z} -module. Show that a \mathbb{Z} -submodule N of M is maximal $\iff \#M/N$ is a prime number.
- c. Let M be the \mathbb{Z} -module of all roots of unity in \mathbb{C} under multiplication. Show that there is no maximal \mathbb{Z} -submodule of M.

Solution.

a

By the correspondence theorem, submodules of M/N biject with submodules A of M containing N.

So

- M is maximal:
- \iff no such (proper, nontrivial) submodule A exists
- \iff there are no (proper, nontrivial) submodules of M/N
- $\iff M/N$ is simple.

h

Identify \mathbb{Z} -modules with abelian groups, then by (a), N is maximal $\iff M/N$ is simple $\iff M/N$ has no nontrivial proper subgroups.

By Cauchy's theorem, if |M/N| = ab is a composite number, then $a \mid ab \implies$ there is an element (and thus a subgroup) of order a. In this case, M/N contains a nontrivial proper cyclic subgroup, so M/N is not simple. So |M/N| can not be composite, and therefore must be prime.

Let $G = \{x \in \mathbb{C} \mid x^n = 1 \text{ for some } n \in \mathbb{N} \}$, and suppose H < G is a proper subgroup.

Then there must be a prime p such that the $\zeta_{p^k} \notin H$ for all k greater than some constant m – otherwise, we can use the fact that if $\zeta_{p^k} \in H$ then $\zeta_{p^\ell} \in H$ for all $\ell \leq k$, and if $\zeta_{p^k} \in H$ for all p and all p then p and all p then p is p and p and p and p and p and p are p in p and p in p in p and p in p and p in p in p in p and p in p in

But this means there are infinitely many elements in $G \setminus H$, and so $\infty = [G : H] = |G/H|$ is not a prime. Thus by (b), H can not be maximal, a contradiction.

1.1.4 Spring 2018 #7.

Let R be a PID and M be an R-module. Let p be a prime element of R. The module M is called $\langle p \rangle$ -primary if for every $m \in M$ there exists k > 0 such that $p^k m = 0$.

- a. Suppose M is $\langle p \rangle$ -primary. Show that if $m \in M$ and $t \in R$, $t \notin \langle p \rangle$, then there exists $a \in R$ such that atm = m.
- b. A submodule S of M is said to be *pure* if $S \cap rM = rS$ for all $r \in R$. Show that if M is $\langle p \rangle$ -primary, then S is pure if and only if $S \cap p^k M = p^k S$ for all $k \geq 0$.

1.1.5 Fall 2016 #6

Let R be a ring and $f: M \longrightarrow N$ and $g: N \longrightarrow M$ be R-module homomorphisms such that $g \circ f = \mathrm{id}_M$. Show that $N \cong \mathrm{im} f \oplus \ker g$.

1.1.6 Spring 2016 #4

Let R be a ring with the following commutative diagram of R-modules, where each row represents a short exact sequence of R-modules:

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C' \longrightarrow 0$$

Prove that if α and γ are isomorphisms then β is an isomorphism.

1.1.7 Spring 2015 #8

Let R be a PID and M a finitely generated R-module.

a. Prove that there are R-submodules

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = M$$

such that for all $0 \le i \le n-1$, the module M_{i+1}/M_i is cyclic.

b. Is the integer n in part (a) uniquely determined by M? Prove your answer.

1.1.8 Fall 2012 #6

Let R be a ring and M an R-module. Recall that M is Noetherian iff any strictly increasing chain of submodule $M_1 \subsetneq M_2 \subsetneq \cdots$ is finite. Call a proper submodule $M' \subsetneq M$ intersection-decomposable if it can not be written as the intersection of two proper submodules $M' = M_1 \cap M_2$ with $M_i \subsetneq M$.

Prove that for every Noetherian module M, any proper submodule $N \subseteq M$ can be written as a finite intersection $N = N_1 \cap \cdots \cap N_k$ of intersection-indecomposable modules.

1.1.9 Fall 2019 Final #1

Let A be an abelian group, and show A is a \mathbb{Z} -module in a unique way.

1.2 Torsion and the Structure Theorem

1.2.1 ★ Fall 2019 #5 ⋈

Let R be a ring and M an R-module.

Recall that the set of torsion elements in M is defined by

$$\operatorname{Tor}(m) = \{ m \in M \mid \exists r \in R, \ r \neq 0, \ rm = 0 \}.$$

- a. Prove that if R is an integral domain, then Tor(M) is a submodule of M.
- b. Give an example where Tor(M) is not a submodule of M.
- c. If R has zero-divisors, prove that every non-zero R-module has non-zero torsion elements.

Solution.

One-step submodule test.

a It suffices to show that

$$r \in R, t_1, t_2 \in \text{Tor}(M) \implies rt_1 + t_2 \in \text{Tor}(M).$$

We have

$$t_1 \in \text{Tor}(M) \implies \exists s_1 \neq 0 \text{ such that } s_1 t_1 = 0$$

 $t_2 \in \text{Tor}(M) \implies \exists s_2 \neq 0 \text{ such that } s_2 t_2 = 0.$

Since R is an integral domain, $s_1s_2 \neq 0$. Then

$$s_1s_2(rt_1 + t_2) = s_1s_2rt_1 + s_1s_2t_2$$

= $s_2r(s_1t_1) + s_1(s_2t_2)$ since R is commutative
= $s_2r(0) + s_1(0)$
= 0 .

b Let $R = \mathbb{Z}/6\mathbb{Z}$ as a $\mathbb{Z}/6\mathbb{Z}$ -module, which is not an integral domain as a ring. Then $[3]_6 \curvearrowright [2]_6 = [0]_6$ and $[2]_6 \curvearrowright [3]_6 = [0]_6$, but $[2]_6 + [3]_6 = [5]_6$, where 5 is coprime to 6, and thus $[n]_6 \curvearrowright [5]_6 = [0] \Longrightarrow [n]_6 = [0]_6$. So $[5]_6$ is *not* a torsion element. So the set of torsion elements are not closed under addition, and thus not a submodule.

c Suppose R has zero divisors $a, b \neq 0$ where ab = 0. Then for any $m \in M$, we have $b \curvearrowright m := bm \in M$ as well, but then

$$a \curvearrowright bm = (ab) \curvearrowright m = 0 \curvearrowright m = 0_M$$

so m is a torsion element for any m.