Brief Description of Ecology and Designing Successful Field Studies

Jake Dittel and Chris Moore

Bio 322: Experimental Field Ecology

6 June 2012

Ecology

- Ecology *is not* synonymous with environmentalism, natural history, or environmental science.
- Ecology **is** the study of the relations that living organisms have with respect to each other and their natural environment.

Environmentalism

• Broad philosophy, ideology, and social movement concerning the environmental conservation and health of the environment.

Natural History

- Observational study of plants or animals.
 - Can also include photography, painting, and other art forms

Environmental Science

• Interdisciplinary field that includes ecology, physics, chemistry, biology, soil science, geology, atmospheric science, and geography.

What is the point of doing a study?

- Not as obvious as the question appears
- How and why questions seldom create a clear answer
 - "Experiments can do something for ecology that no other approach can do: establish cause and effect. But they don't tell you what questions to ask, or whether you are testing your questions appropriately" William Resetarits

- Are there spatial or temporal differences in variable Y?
 - Produces survey data
 - NOT EXPERIMENTAL
 - Starting point of most ecological studies
 - You cannot ask "how" until you ask "if"

- Are there spatial or temporal differences in variable Y?
 - Has a simple null hypothesis
 - "Does this differ than random?"
 - Simple answer
 - "Yes" or "no"
 - Easily analyzed with ANOVA or regressions

- What is the affect of factor X on the variable Y?
 - Answered by manipulative experiments
 - Usually associated with a p-value
 - Factor X does (not) influence variable Y, and the signal of Factor X is (not) greater than the "noise."

- Are the measurements of variable Y consistent with the predictions of hypothesis H?
 - Does theory match data and vice versa?
 - Inductive: H is modified to fit data
 - Deductive: H is falsified and discarded if it does not fit the data
 - Can use experimental or observational data

- Are the measurements of variable Y consistent with the predictions of hypothesis H?
 - Not an easy question to ask simply
 - Most hypothesis do not create simple falsifiable predictions
 - Hypothesis predictions are rarely unique
 - Cannot definitively test H using only data collected on Y

- Using the measurements of variable Y, what is the best estimate of parameter $\boldsymbol{\Theta}$ in model Z?
 - Can we take a measurement in Y and make a prediction how a population/community will react using a model?

The Control

- It is a portion of the study that we do not alter
 - Attempt to hold constant
- What the system "should" look like
- What we compare our treatment to

Manipulative Experiments

- Manipulate one factor and then measure how one or more variables react
 - Tests for cause and effect
- Can be performed in the field or laboratory
- Test a hypothesis (H_a) against null hypothesis (H₀)

Manipulative Experiment

• Do snakes control small rodent populations?

Press vs. Pulse

- Press
 - Treatment (X) is maintained through out the experiment
 - Measures resistance to constant environmental change
 - Low resistance = large response
 - High resistance = small response

Press vs. Pulse

- Pulse
 - Treatment is applied once at beginning and not re-applied
 - System is a allowed to "recover"
 - Measures resilience of the system to the treatment in a changing environment
 - Low resilience = long (if ever) recovery to control conditions
 - High resilience = quick return to control

Pulse vs. Press

Natural Experiments

- Not a "true" experiment
 - Observe differences in naturally occurring variance
 - No true control

Snapshot vs. Trajectory

- Snapshot
 - Replicated in space
 - Multiple locations measured one time
 - Majority of ecological data are snapshots
 - Mainly due to funding and thesis/dissertation lengths
 - Advantage: replicates are statistically more independent
 - Disadvantage: No power of prediction

Snapshot vs. Trajectory

- Trajectory
 - Replicated in time
 - One location is measured multiple times
 - Some of the best data are trajectory
 - Long term experimental research
 - Best type of data for model building
 - Advantage: reveals how a system changes over time
 - Disadvantage: Limited to one system

Independence

• Do not want any of the replicates to influence another

Independence

- Ideal World
 - Best defense is sufficient space and time between control and treatment
- Reality
 - Increased distance decreases homogeneity
 - Large distances can also create logistic problems
 - Small distance increases homogeneity but decreases independence

Independence

- Use common sense
- Pilot studies
- It is an issue that is often "ignored" by ecologists

Confounding Factors

• Factors in which the effects cannot be disentangled from one another

Confounding Factors

- Factors which effects cannot be disentangled from one another
- In reality, many factors are unmeasured or just unknown
 - Do the best we can
- In natural experiments we are just stuck with them

Replication and Randomization

• Attempt to minimize confounding factors and issues of nonindependence

- How much?
 - Hardest question in ecology
 - Depends on the variance in the data and effect size
 - Hard to estimate
 - Often requires a pilot study

- Pilot studies
 - Generally not very feasible and potentially expensive
 - Field seasons are short
 - Grant money is small
- Generally we have to make an estimate based on previous work and discussions with colleagues

- First have to decide what can be afforded
 - Experiments take time, labor, and material
 - All = \$\$
 - The more time it takes to collect data the more variation due to time
- Consider the spatial scale of the experiment
 - Larger experiments are better but are harder to replicate

- Rule of 10
 - Perfect for small scale studies
 - Not based on anything other than experience
 - Always a good starting point
 - Things happen
 - Better to have too many than not enough

- Before-After, Control-Impact (BACI)
 - More suited for large scale experiments
 - Extensively collect data before and after treatment

Randomization

• Decrease confounding factors

Issues with Manipulative

- Hard to perform on large scale
 - \bullet Over 80% of field experiments performed on an area <1 m²
 - Replication is hard at large scale
 - Small scale results do not necessarily infer large scale processes

Issues with Manipulative

- Often restricted to small bodied and short lived organisms that are easy to manipulate
- Difficult to only change only one variable, and control for others
 - Confounding factors
- Standard designs are not realistic for field experiments
 - Species interactions

Issues with Natural

- Lack of confidence in the interpretation of results
 - 4 hypothesis could explain our rodent snake interaction

Issues with Natural

1

)

Designing an Experiment

- Is the study area large enough to ensure realistic results?
- What is the grain and extent of the study?
 - Grain = smallest unit of the study
 - Extent = total area encompassed by study area

Designing an Experiment

• "Best" is small grain with medium to large extent

Designing an Experiment

- Have appropriate controls been established to ensure the results only reflect variation in the factor of interest?
- Have all replications been manipulated the same way for the intended treatment?

Summary

- Clear Question
- Proper experiment design
 - Manipulative vs. natural
- Randomization and confounding factors
 - Proper knowledge of ecology and nat. history of system
- Established controls

Summary

• "Only by combining careful experimental design with long periods spent observing ecosystems and their inhabitants - what field researchers call 'muddy-boots biology'- can ecologists come up with truly meaningful results." - *Joseph Bernardo*