Data Science for Speech Therapy Clinical Research Methodology for details

ST Benjamin C Clinical Sharing for Continuous Education

1

Content, details

- what is ML?
 ML vs stats

 ML vs stats

- · ML in Speech Pathology
- wata Science

 What is data science?

 What is MI? · Workflow of ML (prediction extubation success)
 - Use case of ML in Speech Pathology (dysarthria severity)
 - Barriers to ML

ML vs stats

	Statistics	Machine learning
Approach	Inference	Prediction
Measurement	P-value, effect size	More than just p-value
Assumption of the dataset	Sample relates to population	Past dataset can used to predict future, unseen data
Dataset	Use all observations	Train/test split Make statements for each observation
	Unable to comment on individual observations	Make statements for each observation
C aM	Unable to comment on individual observations Presentation.	Contact

7

	Statistics. Contact me for details Machine Learning							
	Statistics	Machine Learning						
Technique	Simple Model	Simple model/ complex model						
# of techniques	1 specific simple model	As many models as you desire						
Pre-processing	Typically left out	Typically done						
Capturing complex relationship	Not as effective	Better						
Transparency	Interpretable	More opaque						
Observations: Predictors	Observations>> predictors	Observations > predictors Predictors> observations						

Popularity of ML in clinical research

- No known literature review in speech
- Reviews in other medical fields

Sample Presentation. Contact me for details

ML in speech pathology

- An evaluation of measures to dissociate language and communication disorders from healthy controls using machine learning techniques
- Automatic classification of unequal lexical stress patterns using machine learning algorithms
- Pathological Voice Signal Analysis Using Machine **Learning Based**
- Calculation of upper esophageal sphincter restitution time from high resolution manometry data using machine learning

11

Medical topics related to ST's work

• Data Science for Extubation Prediction and

Data Science for Extubation Prediction and Value of Information in SICU (2019)

- Crash course clinical aspect of extubation
- ML workflow
- Clinical and ML findings

Sample Presentation. Contact me for details

13

clinical aspects of extubation

- Parameters of respiratory physiology guide weaning RLIT + hours. weaning BUT they may not support predicting extubation well
- No systematic approach on decision to extubate
- 1. Use routine clinical measurements
- 2. More ICU specific measurements
- 3. Readiness test
- 4. Clinical experience

More specific ICU measurements (APACHE)

- Acute Physiology And Chronic Health Evaluation II
- Scored within 24hour of ICU admission
- higher scores correspond to more severe disease and a higher risk of death

Sample Presentation. Contact m

15

More specific ICU measurements (RSBI)

- Rapid Shallow Breathing Index
 handheld spirometer attached to the ETT while a patient breathes on PA for 1 min without a way. breathes on RA for 1 min without any ventilator ple Presenta assistance.
- Powho cannot tolerate independent breathing tend to breathe rapidly and shallowly and will therefore have a high RSBI.
- A lower RSBI (<65) → readiness to extubate

Issue w current practice

- 6-47% pt have extubation failure and required reintubation
 - probability of mortality from 25 to 50%; details
 - increased duration of mechanical ventilation and prolonged ICU stay
- → Use ML to predict candidacy for extubation

17

						for deta	:15
		Table 2. The rest	ilts of va	riable selection met	hods	1eta	TIP
		THE TEST		index selection me	Troctor	Car Olor	
Multivariate Adaptive Regression Splines		Stepwise Logistic Regression		Random Forest		Total Frequency	
Variables	Freq.	Variables	Freq.	Variables	Freq.	Variables	Freq.
ApacheII	98	ApacheII	94	ApacheII	100	ApacheII	292
Eye_Opening	42	Eye_Opening °	64	WBC	74	WBC	155
WBC	41	WBC	40	Glu	59	Eye_Opening	114
Heart_Rate	36	RSB	32	Na	58	Heart_Rate	111
Glu	30	Het (ABG)	25	Heart_Rate	54	Glu	108
Na 1	030	Heart_Rate	21	Hct (ABG)	53	Na	103
RSBI	25	Glu	19	pO_2 Fi O_2	38	Hct (ABG)	100
Placele's	24	Na	15	Weight	36	RSBI	90
Gender_men	24	PT_INR	11	ARTmean_BP	35	Platelets	64
Hct (ABG)	22	Verbal_Response	9	PT_INR	35	Weight	62
Verbal_Response	19	Gender_men	9	Platelets	33	Verbal_Response	61
Weight	17	Weight	9	RSBI	33	PT_INR	59
ARTmean_BP	13	Platelets	7	Verbal_Response	33	ARTmean_BP	54
PT_INR	13	ICU_Emergency	7	PIMAX	32	pO_2 _ FiO_2	53
pO_2 _ FiO_2	12	ARTmean_BP	6	Eye_Opening	8	PIMAX	44
ICU_Emergency	12	PIMAX	5	Gender_men	3	Gender_men	36
PIMAX	7	pO2_FiO2	3			ICU_Emergency	19
					$\overline{}$		

ML findings

- Time and effort processing the variables pays off
- Using multiple models allow us to chose one

Clinical findings

- · Using curated predictors and the best model, the algorithm saves 0.625 days in ICU compared to clinical judgement alone
- Curated predictors reveal influential predictors

Sample Presentation. Contact me for S

25

Towards an automatic evaluation of the dysarthria level of patients w PD (2018)

Clinical component

Create an ax to measure dysarthria speech in RD Contact me for det

ML component

Use ML to predict axiscores

Sample Presentaxiscores

Create an ax to measure dysarthria speech in PD

- Most PD assessment battery not specific to
- An assessment which does not need physical consultations entails Sample F

Use ML to predict ax scores

Acoustic signals from mFDA --> Jacure
Ja

- i. I-vector

- i-vectors were the most accurate to quantify the dysarthria level
- correlations of up to 0.69 between the real m-FDA scores (assigned by the clinician) and the predicted ones tation Sample Presentation

Harvard Business Review (2019)

- Al Can Outperform Doctors. So Why Don't
- Adopting Al in Health Care Will Be Slow and Difficult Presentation

Harvard Business Review (2019)

- Al Can Outperform Doctors. So Why Don't
- Adopting Al in Health Care Will Be Slow and Difficult

Sample Presentation. Contact

33

Adopting AI in Health Care Will Be Slow and Difficult (HBR 2019)

1. Regulatory Framework

Singapore releases AI model governance framework at World Economic E

2. Approval of developed AI/ML

An A.I. for the eye: New tech cuts time for del spotting signs of diabetic eye disease.

Enrolled nurse Abel Kwan (far left) using a specialised camera, known as a Fundus, at a mock screening session with the Selena+ Al. The system will address the need for increased manpower to tackle diabetes and related eye diseases.ST PHOTO: GIN TAY

Self-learning retinal screening tech cuts time needed to spot signs of diabetic eye disease

35

Adopting AI in Health Care Will Be Slow and Difficult (HBR 2019)

- 3. Black box medicine
 Identify variables that influence prediction at global level AND at its 100 period global level AND at individual level
- ? Individualized treatment