Particle spectrograph

Wave operator and propagator

Spin-parity form Covariant form	variant form	Multiplicities
$\begin{array}{c} *2 \\ 0^+ \tau == 0 \end{array} \qquad \partial_{\beta^i}$	$\partial_{\beta}\partial_{\alpha} t^{\alpha\beta} = 0$	1
$0^{+} \sigma == 0 \qquad \partial_{\beta}$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}:=0$	1
$\frac{*2}{1} \frac{\alpha}{r} == 0 \qquad \partial_{\chi} \alpha$	$\partial_{\lambda}\partial_{\rho}\partial^{\alpha}t^{\beta\chi}=\partial_{\lambda}\partial_{\beta}t^{\alpha\beta}$	e e
$\frac{*1}{1} \frac{\alpha}{r} == 0 \qquad \partial_{\chi} \alpha$	$\partial_{\lambda}\partial_{\rho}\partial^{\alpha}t^{\beta\chi}=\partial_{\lambda}\partial_{\rho}t^{\beta\alpha}$	e e
$\frac{*2}{1} \frac{\alpha}{\sigma} == 0 \qquad \partial_{\chi} \alpha$	$\partial_{\lambda}\partial_{\beta}\sigma^{\alpha\beta\lambda}=0$	e e
$\frac{*1}{1} \frac{\alpha}{\sigma} == 0 \qquad \partial_{\chi} e^{\alpha}$	$\partial_{\lambda}\partial^{\alpha}\sigma^{\beta\chi}_{\beta}+\partial_{\lambda}\partial^{\chi}\sigma^{\alpha\beta}_{\beta}=\partial_{\lambda}\partial_{\beta}\sigma^{\alpha\beta\chi}$	e e
$ 1 + \frac{\pi^1}{\tau} \alpha \beta = 0 $	$\partial_{\lambda}\partial^{\alpha}t^{\beta\chi} + \partial_{\lambda}\partial^{\beta}t^{\chi\alpha} + \partial_{\lambda}\partial^{\chi}t^{\alpha\beta} = = \partial_{\alpha}\partial^{\alpha}t^{\chi\beta} + \partial_{\lambda}\partial^{\beta}t^{\alpha\chi} + \partial_{\lambda}\partial^{\chi}t^{\beta\alpha}$	3
$ 1^{+2} \alpha^{\beta} == 0 \qquad \partial_{\delta^{\alpha}} $	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta}\chi^{\delta}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi}==\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	8
$1 + \frac{\pi 1}{\sigma} \alpha \beta == 0 \qquad \partial_{\delta} \alpha$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\chi\beta} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha}$	3
	$\partial_{\delta}\partial^{\beta}\partial^{\alpha}\sigma^{X\delta}_{ X} + 3\left(\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha X\beta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta X\alpha}\right) = =$	5
	$3\partial_{o}\partial_{\chi}\partial^{a}\sigma^{eta\chi_{o}}+3\partial_{o}\partial_{\chi}\partial^{b}\sigma^{\alpha\chi_{o}}+2\eta^{\alpha\beta}\partial_{e}\partial^{e}\partial_{o}\sigma^{\chi_{o}}$	
$ \frac{*1}{2} \alpha^{\beta \chi} == 0 3 \dot{c} $	$\partial_{\varepsilon}\partial_{\delta}\partial^{\chi}\partial^{\alpha}\sigma^{\beta\delta\varepsilon} + 3\ \partial_{\varepsilon}\partial^{\varepsilon}\partial^{\chi}\partial^{\alpha}\sigma^{\beta\delta}_{\delta} + 2\ \partial_{\varepsilon}\partial^{\varepsilon}\partial_{\delta}\partial^{\beta}\sigma^{\alpha\chi\delta} + 4\ \partial_{\varepsilon}\partial^{\varepsilon}\partial_{\delta}\partial^{\beta}\sigma^{\alpha\delta\chi} +$	5
	$2\partial_{\varepsilon}\partial_{\varepsilon}\partial_{\sigma}\partial^{k}\sigma^{\chi\delta\alpha} + 4\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\sigma}\partial^{\chi}\sigma^{\alpha\beta\delta} + 2\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\sigma}\partial^{\chi}\sigma^{\alpha\delta\beta} + 2\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\sigma}\partial^{\delta}\sigma^{\beta\chi\alpha} +$	
	$3\ \eta^{\beta\chi}\ \partial_\phi\partial^\phi\partial_\varepsilon\partial^\alpha\sigma^{\delta\varepsilon}_{\delta}+3\ \eta^{\alpha\chi}\ \partial_\phi\partial^\phi\partial_\varepsilon\partial_\sigma\sigma^{\beta\delta\varepsilon}+3\ \eta^{\beta\chi}\ \partial_\phi\partial^\phi\partial_\varepsilon\partial^\varepsilon\sigma^{\alpha\delta}_{\delta}==$	
	$3\partial_{\varepsilon}\partial_{\delta}\partial^{\chi}\partial^{\beta}\sigma^{\alpha\delta\varepsilon} + 3\partial_{\varepsilon}\partial^{\varepsilon}\partial^{\chi}\partial^{\beta}\sigma^{\alpha\delta}_{\delta} + 2\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\beta\chi\delta} + 4\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\beta\delta\chi} +$	
	$2\partial_{\varepsilon}\partial_{\varepsilon}\partial_{\sigma}\partial^{\alpha}\sigma^{\chi\delta\beta} + 2\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\sigma}\partial^{\chi}\sigma^{\beta\delta\alpha} + 4\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\sigma}\partial^{\beta}\sigma^{\alpha\beta\chi} + 2\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\sigma}\partial^{\delta}\sigma^{\alpha\chi\beta} +$	
	$3 \eta^{\alpha\chi} \partial_\phi \partial^\phi \partial_\varepsilon \partial^\beta \sigma^{\delta\varepsilon} + 3 \eta^{\beta\chi} \partial_\phi \partial^\phi \partial_\varepsilon \partial_\delta \sigma^{\alpha\delta\varepsilon} + 3 \eta^{\alpha\chi} \partial_\phi \partial^\phi \partial_\varepsilon \partial^\varepsilon \sigma^{\beta\delta}$	
Total expected gauge generators:	ge generators:	33
$S == \iiint (f_{\alpha \beta})^{1}$	$S == \iiint (f^{lphaeta} \ t_{lphaeta} + \mathcal{A}^{lphaeta\chi} \ \sigma_{lphaeta\chi} +$	
	$\beta_{1}\left(-4\mathcal{A}_{\alpha\chi}^{ \chi}\partial_{\beta}f^{\alpha\beta}+4\partial_{\beta}\mathcal{A}^{\alpha\beta}_{ \alpha}+4\mathcal{A}_{\beta\chi}^{ \chi}\partial^{\beta}f^{\alpha}_{ \alpha}-2\partial_{\beta}f^{\chi}_{ \chi}\partial^{\beta}f^{\alpha}_{ \alpha}-2\partial_{\beta}f^{\alpha\beta}\partial_{\gamma}f^{ \chi}+$	$\partial_{\chi} f_{\alpha}^{\chi} +$
	$4\partial^{\beta}f_{\alpha}^{\alpha} \partial_{x}f_{\beta}^{x} - 4 \ f^{\alpha\beta} \ (\partial_{\beta}\mathcal{A}_{\alpha}^{x} - \partial_{x}\mathcal{A}_{\alpha\beta}^{x}) - 4 \ f^{\alpha}_{\alpha} \ \partial_{x}\mathcal{A}^{\beta\chi}_{\beta} + 4 \ \mathcal{A}_{\alpha\chi\beta} \ \partial^{\chi}f^{\alpha\beta} -$	$_{\beta}$ $\partial^{\chi}f^{\alpha\beta}$ -
	$2\partial_{\alpha}f_{\beta\chi}\partial^{\chi}f^{\alpha\beta} - \partial_{\alpha}f_{\chi\beta}\partial^{\chi}f^{\alpha\beta} + \partial_{\beta}f_{\alpha\chi}\partial^{\chi}f^{\alpha\beta} + \partial_{\chi}f_{\alpha\beta}\partial^{\chi}f^{\alpha\beta}) +$	$^{i\chi}f^{\alphaeta}$)+
	$\frac{1}{2} \alpha_3 (4 \partial_{\beta} \mathcal{A}_{m,s} - 2 \partial_{\beta} \mathcal{A}_{m,s} + 2 \partial_{\beta} \mathcal{A}_{m,s} - \partial_{x} \mathcal{A}_{m,s} + \partial_{\delta} \mathcal{A}_{m,s} - 2 \partial_{\delta} \mathcal{A}_{m,s})$	

 $2^{+1} \sigma_{\alpha\beta} \quad 2^{+1} \tau_{\alpha\beta} \quad 2^{-1} \sigma_{\alpha\beta\chi}$

 $\frac{1}{2\beta_1 k^2}$

0 0

0 2 β₁ κ²

 $\overset{\#1}{2}^{+}f \dagger$

0

0

0

0 0

0 0

0 0

0 0

0 0

0

0

0

0 0 0

0

0

0

0 0 0 0 0

0

0

0

 $1^{#2}_{1}\sigma^{\alpha\beta}_{1}$ $1^{*1}_{1}\tau^{\alpha\beta}_{1}$

0

0 0 0

0

0 0 0

0 0 0 0

 $\begin{array}{c} *1 \\ 1 \\ 0 \\ \end{array}$ $\begin{array}{c} \alpha \\ 1 \\ 0 \\ \end{array}$

0

0

 $\frac{#1}{1}r + \frac{\alpha}{\alpha}$

 $0^{+1} \sigma \quad 0^{+1} \tau \quad 0^{+2} \tau \quad 0^{-1} \sigma$

 $4 \beta_1 k^2$

#1 0⁺ σ†

 $0^{#1}$

#1 0⁺ A †

#2 0⁺ f †

 $\overset{\#1}{0}$ \mathcal{A} †

> #1 1 A †

 $\overset{\#2}{1}\mathcal{A}\dagger^{\alpha}$

 $1^{1}f$

 $\frac{^{\#2}}{1}f + ^{\alpha}$

 $\partial^{\delta}\mathcal{R}^{\alpha\beta\chi}$)[t, x, y, z]d z d y d x d t

0

0

0

 $2^{+1} \sigma \uparrow$

 $2^{+1} \tau^{\alpha\beta}$

 $\overset{\#1}{2} \sigma + \overset{\alpha\beta\chi}{}$

 $\mathcal{A}_{\alpha eta \chi}$

 $\mathcal{A}_{\alpha\beta}$

0

2#1

0

0

0 | +1

0

0 0

0

0

0

0

0

0

 $-4 \beta_1 k^2$

0

Massive and massless spectra

Unitarity conditions