1–12. Perform the following binary multiplications:

(a)
$$1101 \times 1011$$
 (b) 0101×1010 (c) 100111×011011

x x x

x x x x

1001

1001

100000

- **1–14.** A limited number system uses base 12. There are at most four integer digits. The weights of the digits are 12^3 , 12^2 , 12, and 1. Special names are given to the weights as follows: 12 = 1 dozen, $12^2 = 1$ gross, and $12^3 = 1$ great gross.
 - (a) How many beverage cans are in 6 great gross + 8 gross + 7 dozen + 4?
 - **(b)** Find the representation in base 12 for 7569₁₀ beverage cans.

a)
$$6 \times 1728 + 8 \times 144 + 7 \times 12 + 4 = ...$$

- **1–16.** *In each of the following cases, determine the radix *r*: **(a)** (BEE)_r = $(2699)_{10}$ **(b)** $(365)_r = (194)_{10}$
 - a) $2699_{10} = (2.10^3) + (6.10^2) + (9.10^6) = 2699$ BEE, = $(11.1^2) + (14.1^4) + (14.1^6)$ $11.1^2 + 14.1 + 14 = 2699$ $11.1^2 + 14.1 + 14 = 2699$

(11, +179) (, -15) = 0

(= 19, - 179 but r>0 and Integer so r= 15

b) $194_{10} = (1 \cdot 10^2) + (9 \cdot 10^1) + (4 \cdot 10^0) = 194$ $363_r = (3 \cdot r^2) + (6 \cdot r') + (5 \cdot r') + 3r^2 + 6r + 5$ $3r^2 + 6r + 5 = 194$ $3r^2 + 6r - 189 = 0$ $r^2 + 2r - 63 = 0$ (r + 9)(r - 7) = 0r = 9.7 Let r > 0 so r = 7