SAT

SATisfiability

- A well-known decision problem: given a propositional formula, is it SATisfiable?
- Propositional Formula
 - A formula in propositional logic composed of Boolean (decision) variables and the logical operators.
 - ¬ (negation, "not"), ∨ (disjunction, "or"), ∧ (conjunction, "and")
 - \rightarrow (implication, $p \rightarrow q \equiv \neg p \lor q$))
 - \leftrightarrow (bi-implication, $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$)
 - Examples
 - ¬p
 - $(p \lor q)$
 - $\neg (p \land q)$
 - $p \land \neg (p \lor q)$
 - $(p \land q) \lor (r \lor \neg q)$

Satisfiability of a Propositional Formula

 A propositional formula is satisfiable iff it is possible to find a truth assignment to the variables that yields the formula true.

-
$$(p \lor q) \land (\neg p \lor \neg q) \land (p \lor \neg q)$$
 is SAT

•
$$p = T$$
 and $q = F$

-
$$(p \lor q) \land (\neg p \lor \neg q) \land (\neg p \lor q) \land (p \lor \neg q)$$
 is UNSAT

Why SAT?

- The first proven NP-complete decision problem.
 - The Cook-Levin Theorem (1971).
 - The starting point of NP-completeness research.
- A theoretical standard for hard problems.
 - All problems in the complexity class NP, including a wide range of decision and optimization problems, are reducible to SAT in polynomial time (i.e. at most as difficult to solve as SAT).
 - SAT can be used to prove that a problem is NP-complete.
 - Show that the problem is in NP.
 - Show that SAT can be reduced to the problem in polynomial time.

Successful Applications of SAT

Artificial Intelligence

- Combinatorial decision making and optimization
- Automated theorem proving
- Non-monotonic reasoning
- Planning
- Machine learning (verification and explanation of ML models)

Hardware and Software Verification

- Equivalence check in HW optimization (i.e. functional equivalence of the original and optimized combinational circuits)
- Equivalence check in SW optimization (i.e. functional equivalence of original and optimized code)

Brute Force Approach

- Given a formula with n variables, compute the values of the formula for all 2^n ways to choose values T and F for the variables.
 - The formula is SAT iff at least one of the 2^n cases yields true.
 - Simple, always works ©
 - Exponential size in the number of the variables, impractical for big values of $n \otimes$
- We need dedicated SAT solvers for checking the (un)satisfiability of a formula and finding a satisfying assignment.

SAT Solvers

Bad news ⁽³⁾

- Being NP-complete, it is generally believed that no algorithm that can efficiently solves SAT exists.
- Resolving the question of whether SAT has a polynomialtime algorithm is equivalent to the P vs NP problem, which is a famous open problem in the theory of computing.

Good news ©

- Current SAT solvers are successful for big formulas.
 - In mid 90's, SAT solvers could solve formulas with thousands of variables.
 - Nowadays, they can solve formulas with millions of variables and clauses!

SAT Solvers

SAT Competition All Time Winners on SAT Competition 2022 Benchmarks

https://cca.informatik.uni-freiburg.de/satmuseum

Armin Biere and Mathias Fleury and Nils Froleyks and Marijn J.H. Heule. In Proceedings 14th International. Workshop on Pragmatics of SAT (POS'23), vol. 3545, CEUR Workshop Proceedings, pages 72-87, CEUR-WS.org 2023. [paper - bibtex - data - zenodo - ceur - workshop - proceedings]

Problem Solving with SAT

Problem Solving with SAT

Formula Satisfiability vs Validation

- A formula f is satisfiable if there is an assignment of values to the variables under which f evaluates to T.
 - Satisfiability is about finding a solution to a set of constraints.
- A formula f is valid if f always evaluates to T for any assignment of values to the variables.
 - Validity is about finding a proof of a statement.
 - A formula f is **valid** iff $\neg f$ is UNSAT.

Formula Validation Using SAT

Let's prove deMorgan's law:

$$- \overline{(a \wedge b)} \equiv \neg a \vee \neg b$$

- Given $a \wedge b \equiv \overline{(a \wedge b)}$, we need to show that:
 - $a \wedge b \leftrightarrow \overline{(\neg a \vee \neg b)}$
- How?
 - $f_1 \leftrightarrow f_2$ iff $\neg (f_1 \leftrightarrow f_2)$ is UNSAT
- Show that $(a \land b \leftrightarrow \overline{(\neg a \lor \neg b)})$ is UNSAT.

Encoding for Validation

- Let's encode a logic puzzle. Consider the following clues:
 - 1. Good-natured tenured professors are dynamic.
 - 2. Grumpy student advisors play slot machines.
 - 3. Smokers wearing a cap are phlegmatic.
 - 4. Comical student advisors are professors.
 - 5. Smoking untenured members are nervous.
 - 6. Phlegmatic tenured members wearing caps are comical.
 - 7. Student advisors who are not stock market players are scholars.
 - 8. Relaxed student advisors are creative.
 - 9. Creative scholars who do not play slot machines wear caps.
 - 10. Nervous smokers plat slot machines.
 - 11. Student advisors who play slot machines do not smoke.
 - 12. Creative good-natured stock market players wear caps.
- Can we conclude that no student advisor is smoking?

• Give a name for every notion to be formalized.

Name	Meaning	Opposite
а	good-natured	grumpy
b	tenured	
С	professor	
d	dynamic	phlegmatic
e	wearing a cap	
f	smoke	
g	comical	
h	relaxed	nervous
i	play stock market	
j	scholar	
k	creative	
l	play slot machine	
m	student advisor	

Write down each property as a formula. E.g.,
 Good-natured tenured professors are dynamic

 $a \qquad \qquad b \qquad \qquad c \qquad \qquad d$

leads to $(a \land b \land c) \rightarrow d$.

1.
$$(a \land b \land c) \rightarrow d$$

2.
$$(\neg a \land m) \rightarrow l$$

3.
$$(f \land e) \rightarrow \neg d$$

4.
$$(g \land m) \rightarrow c$$

$$5. \qquad (f \land \neg b) \to \neg h$$

6.
$$(\neg d \land b \land e) \rightarrow g$$

7.
$$(\neg i \land m) \rightarrow j$$

8.
$$(h \land m) \rightarrow k$$

9.
$$(k \wedge j \wedge \neg l) \rightarrow e$$

10.
$$(\neg h \land f) \rightarrow l$$

11.
$$(l \land m) \rightarrow \neg f$$

12.
$$(k \land a \land i) \rightarrow e$$

$$\neg (m \land f)$$
?

Prove that the following formula is UNSAT.

$$(a \land b \land c) \rightarrow d \qquad \land$$

$$(\neg a \land m) \rightarrow l \qquad \land$$

$$(f \land e) \rightarrow \neg d \qquad \land$$

$$(g \land m) \rightarrow c \qquad \land$$

$$(f \land \neg b) \rightarrow \neg h \qquad \land$$

$$(\neg d \land b \land e) \rightarrow g \qquad \land m \land f$$

$$(\neg i \land m) \rightarrow j \qquad \land$$

$$(h \land m) \rightarrow k \qquad \land$$

$$(k \land j \land \neg l) \rightarrow e \qquad \land$$

$$(\neg h \land f) \rightarrow l \qquad \land$$

$$(l \land m) \rightarrow \neg f \qquad \land$$

$$(k \land a \land i) \rightarrow e \qquad \land$$

Encoding for Satisfaction

 Can we assign a color to the regions such that adjacent regions have different colors?

Graph Coloring in SAT

 Can we assign a color to the regions such that adjacent regions have different colors?

Variables

- A Boolean variable x_{ic} for each possible color $c \in \{1, ..., k\}$ and region $v_i \in V$.
 - $x_{ic} = T$ means region v_i is assigned to the color c.

Graph Coloring in SAT

Constraints

- Each region gets at least one color.
 - for all $v_i \in V$, $x_{i1} \lor x_{i2} \lor \cdots \lor x_{ik}$ for all $v_i \in V$,

$$\bigvee\nolimits_{1 \leq c \leq k} x_{ic}$$

- Neighboring regions take different colors.
 - for all $(v_i, v_j) \in E$, for all $c \in \{1, ..., k\}$, $\neg(x_{ic} \land x_{jc})$ for all $(v_i, v_j) \in E$,

$$\bigwedge_{1 \le c \le k} \neg (x_{ic} \land x_{jc})$$

Every region gets at most one color?

Variables

- p_{88}
- A Boolean variable p_{ij} for each nxn position on the board.
 - $p_{ij} = T$ means there is a queen on row i and column j.

Constraints

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

Exactly one queen on each row.

- At least one queen on a row i
 - for all $i \in N$, $p_{i1} \lor p_{i2} \lor \cdots \lor p_{in}$ for all $i \in N$,

$$\bigvee_{1 \le j \le n} p_{ij}$$

- At most one queen on a row i
 - for all $i \in N$, for all $0 < j < k \le n$, $\neg(p_{ij} \land p_{ik})$ for all $i \in N$,

$$\bigwedge_{0 < j < k \le n} \neg (p_{ij} \land p_{ik})$$

Constraints

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

Exactly one queen on each column.

- Column constraints are the same as the row constraints with i and j swapped.
 - At least one queen on each row and column

$$\bigwedge_{1 \leq i \leq n} \bigvee_{1 \leq j \leq n} p_{ij} \quad \bigwedge_{1 \leq j \leq n} \bigvee_{1 \leq i \leq n} p_{ij}$$

At most one queen on each row and column

$$\bigwedge_{1 \leq i \leq n} \bigwedge_{0 < j < k \leq n} \neg (p_{ij} \land p_{ik}) \qquad \bigwedge_{1 \leq j \leq n} \bigwedge_{0 < i < k \leq n} \neg (p_{ij} \land p_{kj})$$

Constraints

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p ₇₃ /	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p ₆₇	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

At most one queen on each diagonal in both directions.

Observation

- p_{ij} and $p_{i'j'}$ are on the same diagonal iff

$$i + j = i' + j'$$
 or $i - j = i' - j'$

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p ₃₇	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p ₇₃ /	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p ₃₆	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p ₆₇	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

At most one queen on each diagonal

$$\bigwedge_{1 \leq i < i' \leq n} \bigwedge_{j,j': i+j=i'+j'} \neg (p_{ij} \wedge p_{i'j'})$$

- How to find all solutions?
 - After finding a solution, add the negation of it to the formula, and repeat this until the formula is UNSAT.

Homework: Sudoku in SAT

Variables

		9	8	5	6			
	8				9			
2					7			
7					1	3	9	6
9				6				5
5	3	6	2					7
			9					1
			3				6	
			6	8	2	4		

- A Boolean variable p_{ijk} for each possible value $\{1, ..., 9\}$ of each 9x9 position on the board.
 - $p_{ijk} = T$ means there is k on row i and column j.

Arithmetics in SAT

• 7 + 21 in SAT?

• 7+21 in SAT?

- Represent each number in base 2 via n Binary variables taking values T = 1 and F = 0.
- a_{n-1} ... a_0 corresponds to a number a in base 10 as:

$$a = \sum_{i=0}^{n-1} a_i * 2^i$$
 $a_i \in \{0,1\}$

- E.g., 01101 represents 1 + 4 + 8 = 13.

- Decision problem
 - Given a and b (represented in binary), find d (represented in binary) satisfying a + b = d.
- Variables
 - $a_{n-1} \dots a_0, b_{n-1} \dots b_0, d_{n-1} \dots d_0$
 - Carries $c_n c_{n-1} \dots c_0$

Example

$$c \rightarrow 0 \quad 0 \quad 1 \quad 1 \quad 0$$
 $a = 7 \rightarrow 0 \quad 0 \quad 1 \quad 1 \quad 1$
 $b = 21 \rightarrow 1 \quad 0 \quad 1 \quad 0 \quad 1$
 $d = 28 \rightarrow 1 \quad 1 \quad 0 \quad 0$

Decision problem

- Given a and b (represented in binary), find d (represented in binary) satisfying a + b = d.

Variables

$$- a_{n-1} \dots a_0, b_{n-1} \dots b_0, d_{n-1} \dots d_0$$

- Carries
$$c_n c_{n-1} \dots c_0$$

•
$$0 + 0 + 0 = 0$$
, carry = 0

$$\bullet$$
 0 + 0 + 1 = 1, carry = 0

$$\bullet$$
 0 + 1 + 1 = 0, carry = 1

$$\bullet$$
 1 + 1 + 1 = 1, carry = 1

- Decision problem
 - Given a and b (represented in binary), find d (represented in binary) satisfying a + b = d.
- Variables
 - $a_{n-1} \dots a_0, b_{n-1} \dots b_0, d_{n-1} \dots d_0$
 - Carries $c_n c_{n-1} \dots c_0$
- Constraints
 - Compute d_i from right to left starting from $c_0 = 0$.

Example

$$c \rightarrow 0 \quad 0 \quad 1 \quad 1 \quad 0$$
 $a = 7 \rightarrow 0 \quad 0 \quad 1 \quad 1 \quad 1$
 $b = 21 \rightarrow 1 \quad 0 \quad 1 \quad 0 \quad 1$
 $d = 28 \rightarrow 1 \quad 1 \quad 0 \quad 0$

•
$$d_i = a_i + b_i + c_i \mod 2$$
, $i = 0, ..., n-1$
 $a_i \leftrightarrow b_i \leftrightarrow c_i \leftrightarrow d_i$

•
$$c_{i+1} = 1 \leftrightarrow a_i + b_i + c_i > 1$$
, $i = 0, ..., n-1$
 $c_{i+1} \leftrightarrow (a_i \land b_i) \lor (a_i \land c_i) \lor (b_i \land c_i)$

• $c_n = 0$ (to fit in n bits) and $c_0 = 0$ (initial carry) $\neg c_n \wedge \neg c_0$

- Let f be the conjunction of all these formulas.
- To compute a + b = d, the final formula is:

$$f \wedge \bigwedge_{i=0}^{n-1} [\neg] a_i \wedge \bigwedge_{i=0}^{n-1} [\neg] b_i$$

• E.g., when a = 13, b = 7, we have:

$$f \land \neg a_1 \land a_2 \land a_3 \land \neg a_4 \land a_5 \land \neg b_1 \land \neg b_2 \land b_3 \land b_4 \land b_5$$

$$a = 13 = 01101 \qquad b = 7 = 00111$$

for which a SAT solver would return the result:

$$\frac{d_1 \land \neg d_2 \land d_3 \land \neg d_4 \land \neg d_5}{d = 20 = 10100}$$

- If d does not fit in n digits, c_n will be forced to be 1, and the result will be UNSAT.
 - Solution: expand the formula with leading bits in a and b set to zero.

$$c_n = 1$$
, $a_n = 0$, $b_n = 0$

Subtraction in Propositional Logic

- \bullet $a + b = d \leftrightarrow b = d a$
- Compute *b* using the previous *f*.

$$f \wedge \bigwedge_{i=0}^{n-1} [\neg] a_i \wedge \bigwedge_{i=0}^{n-1} [\neg] d_i$$

Homework: Multiplication in SAT

• mul(a, b, r) which encodes a * b = r

Arithmetic in Propositional Logic

- Multiplication for factorizing a number
 - $f(r) = mul(a, b, r) \land a > 1 \land b > 1$
 - How can we express a>1 \land b>1 ? $(a_{n-1} \lor a_{n-2} \lor \dots a_1) \land (b_{n-1} \lor b_{n-2} \lor \dots b_1)$
- Prime number
 - r is a prime number iff f(r) is UNSAT.
 - E.g., f(1234567891) is proved UNSAT, while f(1234567897) is proved SAT.