Math Logic Assignment #3 💯

- ▲ 饶翔云 520030910366
- **②** Wed, Oct 19, 2022 1:51 РМ

1.

Solution:

Suppose ${\cal B}$ is effectively decidable. Assume there is a set C produced by the following algorithm:

```
for i in N:
if i not in Ai:
    i in C
```

Obviously C is a effectively decidable subset of \mathbb{N} . $C=A_k$ for some k.Then:

 $(k,k) \in B$

 \Leftrightarrow k in A_k

 \Leftrightarrow k not in C

 \Leftrightarrow k not in A_k

 \Leftrightarrow (k,k) \notin B

Therefore, B is not effectively decidable for if the input is (k,k) then B can output a valid answer.

2.

Solution:

We will prove it by induction:

Base case:For lpha, it has 1 sentences symbol and 0 binary connectives. So s(lpha)=1=c(lpha)+1 is true in this case.

Inductive case:Suppose for two complex propositions α and β the conclusion is true. That is, $s(\alpha)=c(\alpha)+1$ and $s(\beta)=c(\beta)+1$. Then:

- 1. For proposition $\alpha \vee \beta$: $s(\alpha \vee \beta) = s(\alpha) + s(\beta) = c(\alpha) + c(\beta) + 1 + 1 = c(\alpha \vee \beta) + 1$, conclusion is true for this case.
- 2. For proposition $\alpha \wedge \beta$: $s(\alpha \wedge \beta) = s(\alpha) + s(\beta) = c(\alpha) + c(\beta) + 1 + 1 = c(\alpha \wedge \beta) + 1$, conclusion is true for this case.

- 3. For proposition $\alpha \to \beta$: $s(\alpha \to \beta) = s(\alpha) + s(\beta) = c(\alpha) + c(\beta) + 1 + 1 = c(\alpha \to \beta) + 1$, conclusion is true for this case.
- 4. For proposition $\alpha \leftrightarrow \beta$: $s(\alpha \leftrightarrow \beta) = s(\alpha) + s(\beta) = c(\alpha) + c(\beta) + 1 + 1 = c(\alpha \leftrightarrow \beta) + 1$, conclusion is true for this case.

Therefore, the conclusion is true by my induction.

3.

Solution:

This is the parse tree I construct. The construct is like below:

First we scan the whole proposition, we observe that there is no \neg after (. So we continue scan for a complete proposition with balanced parentheses and followed by connectives. And we get $(A \lor (B \land C))$, and it is the first node in the first layer of parse tree. Then we continue scan to get a proposition with balanced parentheses and followed by), and we get $((A \lor B) \land (A \lor C))$, which is the second node of the first layer. And for nodes in the first layer, we do the same scanning, we get $A, (B \land C), (A \lor B), (A \lor C)$ as the second layer's nodes. And we get B, C, A, B, A, C

In a word, for nodes which have parentheses, we will first judge whether there is \neg . And there is no \neg in this problem. Then we scan the node for a balanced proposition followed by) and a connective. That's the first node the parent node produces. Then we start to scan after the connective for a balanced proposition followed by). And that's the second node the parent node produces.

4.

Solution:

If $(P \wedge Q) \to R$ is false iff $(P \wedge Q)$ is true and R is false, that is, P,Q is true, R is false. Then $(P \to R) \vee (Q \to R)$ is false iff $(P \to R)$ and $(Q \to R)$ are false. Then we know P,Q is true and R is false. And we can easily know that for other truth assignments they are both true. So if a truth assignment satisties $(P \wedge Q) \to R$, then it also satisfies $(P \to R) \vee (Q \to R)$. That is $(P \wedge Q) \to R$ tautologically implies $(P \to R) \vee (Q \to R)$, and $(P \to R) \vee (Q \to R)$ tautologically implies $(P \wedge Q) \to R$.

Therefore, $(P \land Q) \to R$ tautologically implies $(P \to R) \lor (Q \to R)$, and they are tautologically equivalent.

5.

Solution:

- 1. Suppose $((P \to Q) \to P) \to P$ is false. $((P \to Q) \to P) \to P$ is false iff $(P \to Q) \to P$ is true and P is false. But we know if P is false then $(P \to Q)$ is true, then $(P \to Q) \to P$ is false, contradictory! **Therefore,** $((P \to Q) \to P) \to P$ **is a tautology.**
- 2. Suppose $(A \leftrightarrow B) \to \neg((A \to B) \to \neg(B \to A))$ is false. $(A \leftrightarrow B) \to \neg((A \to B) \to \neg((A \to B) \to \neg(B \to A))$ is false iff $(A \leftrightarrow B)$ is true and $\neg((A \to B) \to \neg(B \to A))$ is flase. From $(A \leftrightarrow B)$ is true we know A = B. Then if A is true: $(A \to B)$ is true and $(B \to A)$ is true. Then $\neg((A \to B) \to \neg(B \to A))$ is true. And if A is true, then $(A \to B)$ is true and $(B \to A)$ is true. Then $\neg((A \to B) \to \neg(B \to A))$ is true, contradictory! **Therefore,** $(A \leftrightarrow B) \to \neg((A \to B) \to \neg(B \to A))$ is a tautology.

6.

Solution:

- 1. Proof: $\Sigma \models \alpha \leftrightarrow$ for every truth assignment satisfies Σ , it also satisfies α . If a truth assignment satisfies α , it also satisfies $\beta \to \alpha$ because $\beta \to \alpha$ is always true when α is true. Therefore, $\Sigma \models \beta \to \alpha$.
- 2. Proof:(necessity): $\Sigma, \beta \models \alpha$, that is $(\Sigma \land \beta) \models \alpha$. Then if a truth assignment satisfies Σ and β , then it also satisfies α . If a truth assignment satisfies Σ and β , it also satisfies α . Then $\beta \to \alpha$ will also be satisfied by the same truth assignment because β and α will both be satisfied by the same truth assignment which satisfied Σ and β . Therefore, if $\Sigma, \beta \models \alpha$ then $\Sigma \models \beta \to \alpha$.

(sufficiency): $\Sigma \models \beta \to \alpha$, that is if a truth assignment satisfies Σ , then it also satisfies $\beta \to \alpha$. That means if a truth assignment satisfies Σ , it satisfies α when it satisfied β . Therefore, we can know that if a truth assignment satisfies Σ and β , it also satisfies α . That is Σ , $\beta \models \alpha$.