EXPONENTIAL FUNCTIONS AND LOGARITHMS

STUDENT RESOURCE

Functions of the form $f(x) = a^x$ are called exponential functions. You are going to explore graphs of $y = a^x$ for different values of a.

- Draw the graph of $y = 2^x$. How is the graph of $y = a^x$ different from $y = 2^x$ for bigger integer values of a? What happens when a = 1? What happens for other values of a?
- Now explore functions of the form a^{-x} in the same way.
- Now consider the function 2^{x+3} . What is the connection between this function and the function 2^{x} ? How do the graphs of $y = 2^{x+3}$ and $y = 2^x$ relate to one another?
- Explore other simple exponential functions.
- Draw graphs of $y = 10^x$ and $y = log_{10} x$ on the same axes.

 Describe what you see.
- Draw the graph of y = 2* and y = k log₁₀ x on the same axes, putting k = 1 initially.
 Using trial and improvement, find the value of k you need so that the combined image is symmetrical about the line y = x.

Challenge

Draw the graph of $y = a^x$ and $y = k \log_{10} x$ for other values of a, putting k = 1 initially.

Using trial and improvement, find the value of k you need, so that for different values of a the combined image is symmetrical about the line y = x. Tabulate values of k against a until you have a conjecture about how to predict the value of a from the value of a.

STUDENT RESOURCE 5—Graphs of Functions