Lecture 7: Effective Conductivity of Layered Media Logistics: HWZ due Thursday P1: 7/12 P3: 0/12 Note: Problem 3 is updated Last time: Dirichlet BC & Constraints head/unknown is prescribed on bud PDE: <u>Lh=fs</u> <u>L</u> system matrix BC: Bh = 9 B constraint matrix => eliminate unhuowns • solve a reduced system: L-h-=fs,r => - N_L - N_L - N, P - - N, P = N_L t. N is orthonormal bossis for nul space of B · Solution strategy: h = ho + he Problem 2 1) BBThp = 3 -> hp = BThpr 2) \(\frac{1}{2} \h_0 = \frac{1}{5} \frac{1}{5} \h_p = \frac{1}{5} \h_0 = \frac{1}{5} \h Layered media Today:

Geologic media an lagered an all scales
The smallor scales cannot be resolved in
numerical model?

Layer calu:

Stack of N layers
with thick wers SL;
and conductivity K,

N

E SI: = SI

Cau look at two limiting cases:

- 1) Flow along lay es (parallel)
- 2) Flow across luyers (perpendicular)

To un destaud the effect of layering en flow we try to find effétive K* that represents the entire streck (upsaling) fine sale coarse scale

=> K* will depend on flow direction

Fine scale: $K = K(\underline{x})$ heterogeneous (changes will boardout)

Coarse scale: K^{**} anisotropse (changes with ottr.)

(=> K is a leusar)

1) Flow along layers

Top & boltom are impermable

Apply 'Sh across sample

Sh = h_R - h_L

\$\Rightarrow\$ flow is ID along each layer

\$\Rightarrow\$ consider each layer separately each layer has same \$\rightarrow\$ AL

Parcy's law in ith layer: Q; = - Dw; K; AL

Dorcy's law for whole stach: $Q = -DW K^{2} \Delta h$ $Q = \sum_{i=1}^{N} Q_{i} \qquad W = \sum_{i=1}^{N} w_{i}$ unknown

Q = \(\subseteq \mathbb{Q}' = \subseteq \subseteq -D \omega_i \kappa_i \\ \frac{\Delta k}{\Delta k} = -D \omega_k \\ \frac{\Delta k}{\Delta k} = -D \omega_k \\ \frac{\Delta k}{\Delta k} \\ \frac{\Delta k}{\Delta k} = -D \omega_k \\ \frac{\Delta k}{\Delta k} \\ \frac{\Delta k}{\Delta k} = -D \omega_k \\ \frac{\Delta k}{\Delta k} \\ \frac{\Delta k}{\Delta k} = -D \omega_k \\ \frac{\Delta k}{\Delta k} \\ \frac{\Delta k}{\Delta k} = -D \omega_k \\ \frac{

- DW K" AG = - D AG \(\sum_{in} \omega_i \k;

 \Rightarrow $K_{\parallel}^* = \sum_{i=1}^{N} \frac{\omega_i}{W} K_i$ weighted arithmetic average.

⇒ high K layers dominale

most of roch is K=0 fractus imparmeable but du to siegle ligh-k fractive Ky is high ?

2) Flow across layers

Davey for whole stack:
$$q = -K_{\perp}^{*} \frac{\Delta h}{\Delta l}$$

$$\Delta h = \sum_{i=1}^{N} \Delta h_{i}; \qquad \Delta l = \sum_{i=1}^{N} \Delta l_{i}; \qquad \text{authors}$$

$$\Delta h = \sum_{i=1}^{N} -\frac{q \Delta l_{i}}{K_{i}^{*}}$$

$$K_{\perp}^{\dagger} = -\frac{9\Delta L}{\Delta h} = \frac{9\Delta L}{\frac{2}{2}9\Delta L}$$

Effective conductivity

for flow across layers

pharmonic average

weighted

⇒ lowest k layer will dominate

K* = 0 if any k; = 0

Compare Kill and KI

3 layer system

Auisotropy:

