REALNE SPREMENIJIME FUNKCIJE Sepricija. Vaj vo DCR. <u>Realna frukcija realne sponmenljike</u> je pristikana f: D—) R.) memijemo definicijsto obmoije ali nomena. Opourla 1) V funtaji sta ednerina den podaten: domena ini 2) Furtinji fing Ata enati, a mate mate domumo in enas predpis. Jogovor. Funkcijo j labko podamo tudi samo s predpisom.

V tem primeru namemo za definicijih obrnočje

množico vsehx, za batere una predpis smisel. 1) f(x)=\x La defin, obmoise vrameurs [0, 00]. 2) Ali predpisa f(x)= ln(x-1) + lu(x+1) in $J_{y} = (1, \omega), \quad J_{g} = (-\infty, -1) U(1, \omega).$ $J(x) = g(x) \text{ In } x \in J_{f} \text{ Dg}.$ $Nc \quad f \neq g \quad \text{ker} \quad J_{f} \neq J_{g}.$ Definicija Naj Vosta Jing funkciji. Če je Dj. in vdja

f(x)=g(x) za \(\forall x\in \) potem receino, da je g
razointri funkcije j in da je j eozotu funkcije g. Tmines egoraj ?. Depininga. Naj la DCRju J.D. IR frustrija. Mustica

[] = {(x, f(x)), x \in) : CR & se imenie graf fungl.

Fr

Uponda DFunkcija f je s svojim grafom naturko določena. 11: R2-1R 2) Katen podumone SCRXR so graf? $\pi(x,y)=x$.) T(T)=). litt, za katen je proser S ? wars marpieus premico everjenne ena toden. S FUNKCIJAMI OPERACIJE Sutanjanje ali bomporitum funkcij:

J: Dj — R, g: Dg — R.

Gir Zic Dg, poku lahno definiramo

Cir Zic Dg, poku lahno definiramo

(gof): Dj — R s pondpirom (g-f)(x) = g(f(x)). Immer. f(x)=x2+1 $g(x) = \log x^2$ Dy = TR, Dg = R\{0}. $Z_{f} = [1, \infty)$ Day = R (g.f)(x)= log(x2+1)2 Ds.g = R 1203. (fog)(x)= (logx2)2+1 Definicija. Naj bo f:) - R injektima funkcija z zalogo vrednosti Zj. huvenno problearo f! Zz -> R menujumo invena funkcije funkcije f Opender. Ce je J: A-B bijektima prevlizava, potem je univ.

prevlizava J: B-A defin. a predpisou.

J'(b)=a \equiv f(a)=b.

 $f(x) = \frac{2x+3}{3x-1}$ Jy = R\{\f3}. Doloa J-1, ci obstaja. $y = \frac{2x+3}{3x-1} = y(3x-1) = 2x+3 = 0$ 3xy-2x=3+2y $x = \frac{2y+3}{3y-2}$ Tonj: 2a vsat $y \neq \frac{2}{3}$ je $\frac{2y+3}{3y-2}$ tivli x, 2a batenga uha f(x)=yin x je ensam. Tory: fr injultima in = = R \{\frac{2}{3}}. 11: R1 (33 -) R $f(x) = \frac{2x+3}{3x-2}$ Opomba. Naj vo J: Dy -> R injuktima funkcija. Rev je $f(x) = y \iff x = f'(y)$ za $y \in \mathcal{Z}_y$ relia: If = {(x, f(x)); x ∈ Dy 3 = {(f'(y), y); y ∈ Zy } G= { (y, f-1(y)); y =] = = = = 3. Zatoji graf j' malu sura 17 glede na simetralo lihih eva abautor. Depunija. Naj bo f. D - R Jundaja. Prannio, du le <u>f navigor amejona</u>, te je Zj navigor amejona, tj ce obrtaja $\Pi \in \mathbb{R}$: $J(x) \subseteq H$ 22 $\forall x \in$). Funday je mardol omigena, cep Z nardol omigena. Turcija fje omijena, ce je f navzgor in mardl omjena Wempmension je matomina zg. maja Zjan oznacim s sup S. Maxf.

sup S. Maxfic majo. nednot F3

Definique. Naj lo J: D-TR funkcija.

Pravnio, da r x ED milla funkcije f, ci je f(x)=0. Definicija. Naj bosta fing: D > TK Junkciji. Funkcije ftg, f-g, j.g., D - JK definivamo s pridpiri. (f+g)(x) = f(x) + g(x) (g-g)(x) = f(x) - g(x) (g-g)(x) = f(x) - g(x) (g-g)(x) = f(x) - g(x)(4. g)(x) = f(x). g(x). (e)($g(x) \neq 0$ in war $x \in D$, lable of $f(x) \rightarrow R$ s predpison f(x) = f(x) $x \in D$. Ishiniya. Naj bosta f,g:) - R funkciji. Ishinamo funkciji max { J,g 3, min { J,g 3:) - R s prapiromu max $\{j,g\}(x) = \max \{j(x),g(x)\}, x\in \}$ $\min \{j,g\}(x) = \min \{j(x),g(x)\}, x\in \}$. ifmicia Naj los l'mmorica in Js: D > R funkcija za vsah & P.

Ce je Ra vsal XE) musocica { Jo(x): 8 + 13 managor

Omejena, potem labbo definiramo funkcijo supfs:) -) R s pridpisour (supfo)(x) = supfo(x) (xe). $f_8(x) = \frac{1}{1+8x^2}$, $g \in (0, \infty)$. supfo(x)=1 en txER $\inf_{x \in \mathbb{R}} \int_{\mathbb{R}^n} f(x) = \begin{cases} 0, & x \neq 0 \\ 1, & x = 0 \end{cases}$

74

£ . Z z . V = 0
Primeri mecuruih fimitaj: 1) $f(x) = \begin{cases} 0, x < 2 \\ 1, x \ge 2 \end{cases}$ 2) $g(x) = \begin{cases} 1/x, x < 0 \\ 2+x, x \ge 0 \end{cases}$
a) oddaljenost projekcije od originala pri projekciji ma neruvu zaslon
Nemare frukcije so take, pri katerih, majhna" sprimenta neodnime sprimenljike poveroči veliko" sprimento frukcijski vedinosti.
Fundaya J: D - IR je wenn v toch all, again
Jefnincya Naj vo DCR in f.) -> R funkcija, a E). Tunkcija fir wima n tockia E), a ra nsak E70 obetaja fir wima n tockia E), a ra nsak E70 obetaja fir wima n tockia E), neja f(x)-f(a) K E. a 320, da za vse xE), 1x-a Ko, neja f(x)-f(a) K E. a
7 minur 1) $f(x) = \{A_1 \times 32\}$ in weenan took .
$\mathcal{E} = \frac{1}{2} \cdot \int (2) = 1$ Na vsakun intervaln $(2-\sqrt{3}, 2+\sqrt{5})$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$
Elvivalentna definició: Naj to DCR, y D-R funcioja in a el. Naj to DCR, y D-R funcioja in a el. Trubuja je meno v tochi a, ci za vsal 270 obstaja Trubuja je meno v tochi a, ci za vsal 270 obstaja 170, da j providen 8 obstico tochi a v E stochico toche fla 170, da j providen 8 obstico tochi a v E stochico tochi a forma
Definicija Naj lo a ED C TR. Fransis, da je V okolica toiria a obstrja kalisma d okolica toire a ND, ki leživ U.

Emi valentna definicija mrusti. Najto JCR, ac) in J.) -> R Junkcija. Fukcija Ji everna v stotkia, ce za vsako okolico fla) obstanja okolica V od a v D, da je f(v)c V. Opis womorti 2 raportdji: Naj to DCR, a ED in f. D -) TR [funkcija. Naj lo Xn konnergentres rapondje z limito a, XnED Hn. Tedaj ap. f(xn) kouvergira proti f(a). Dobar ich. E>O. Kerje Juma v tochia,
obetaja 570: ci x e (a-5, a+8) (1), potem Kerji Xn komingentino, obitaja mo: ap man-, potem je /xn-a/J. Tonj velja If(xn)-f(a) < 2 in wat n> no. Int. Najbo DCR, acD in f. D-R funkcin.

Funkcija fje mena v tooki acD natanko tedaj, kadar

ta viako zapondje x.c.), ki komrajia proti a,

zapondje f(xn) komrajia proti f(a). Velja tudi obratus: Dogar (=) à venno

Timer 1) $f(x) = \{0, x \in \mathbb{R} \mid \mathbb{Q} \}$ Dirichletova funtaija fil nomun v sodi tothi XER. 2) $f: (0,1) \rightarrow \mathbb{R}$

 $J(x) = \begin{cases} \frac{1}{k}, & x = \frac{m}{k}, & \text{hjur } | \frac{m}{k} & \text{obrasjan ularnos} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$

Je wina v vsch x∈R\Q in newina v vsch x∈Q

[Int. Naj tota fing taki futaji, daji Zz C. Dz.

Ce je f wema v totia e Dz in g nema v tota fla),

potan ji g of wema v tota a.

Dotar. Naj bo xne Dz zapondje, ti komergin proti a.

Ker je f mana v tota a, je lun f(xn) = flal.

Torij je f(xn) e Dz konvergentno zapondje, ti konung. proti

fla) e Dz. Ker je g mema v fla), je

lun g (f(xn)) = g(fla)!.

Torij velja: lungo f) (xn) = (gof) (a) za vsako zapondje

xu, hi konvergen putia.

Torij je gof mema va.

Definicija. Naj vo f funkcija. Če je francus v rsaki točki a E),

potem pravnino, da je francus funkcija.

Primeri. 1) f(x) = c Konstanta je roma funkcija.

2) f(x) = x Identiteta je mena funkcija.

Odtod sledi, da so polinovin in racionalne funkcije zvrevi.

Ŧ8

Primer. $f(x) = \frac{1}{x}$

J je werna ma (0,∞).

Torij za vsna a∈ (0, 0) in vsar €70 obstaja da 70: ravour $x \in (a - \delta_a, a + \delta_a) \cap (0, \infty)$ rulia $|f(x) - f(a)| < \varepsilon$. Ne obstaja pa d, ki bi bil "dober za use a, tj. da bi viljalo: à je |x-a| = 5 in x∈ (0, ∞), potem

|f(x)-f(a)|<€.

Ce bi tat 070 obstajal, labba BZS privrameuro, daje d< Z. Naj lo ndaj Oca < Jim x = 2a.

Tedaj ja $x \in (0, \infty) \cap (a - \delta, a + \delta)$. $||f(x) - f(a)| = |\frac{1}{2a} - \frac{1}{a}| = \frac{1}{2a} \quad ||f(x)|| = |\frac{1}{2a} - \frac{1}{a}| = \frac{1}{2a} \quad ||f(x)|| = ||f($

Tory pri danem E>0 m obstaja J70, ti bi bil urtnam Zu N81 a. ** upri E=1

Definicija. Naj vo j.) -> R funkcija. Pravnio. da je j enakomemo wemo ma) in za vsak E 70 obstaja 070, da za vsak X1, X2E), ka za vsak E 70 obstaja J(x1)

1x1-x2 Ko, oclia f(x1)-f(x1)&

Oponba 1/8ti dje dober za vse x.

Tork. Naj lo junkcija j definirana ma [a,b]. Ce je j vorna, potem je j enakomemo verna.

Opoully Everna Judicija na zaptem intervalue je errorom morno.

Lema o potritis. Dan je zupod viterval [a,b] in 2a V_sub_s $x \in [a,b]$ neh J(x) > 0. Ornacium $z = Q_z = (x-J(x), x+J(x))$. J(x)-obstico točki x. Tedaj x dniram obstic $\{Q_x, x \in [a,b]\}$.

obstaja boučno šterilo obstic, zi potrijejo [a,b], T_i :

obstaja $m \in \mathbb{N}$ in $x_1, ..., x_n \in [a,b]$, da_i : $[a,b] \subset Q_x \cup Q_x \cup ... \cup Q_x$

Johan. Oa pobnje vsah internal [a, c], bjer je c<atola).

S:= { ce [a,b]; internal [a, c] je mogoci pobnti
s tonan obsticani iz dnižine obsticas

- · S ≠ Ø, kur so toite medain atolo N S.
- ·Sc[a,b], rato je S mangor omigena.
- · M:= sup S ∈ [a, b].
- ·MES; M-J(M)<M, 2nto obstaga C∈S:

pobniti a boucino rumo go clamicami chrisini Q. Ce tun dodamo se (M-JM), H+J(M), dobrino boncino pobnje [a,M]. Ton MES.

Tonj je $M = b \cdot Okolice O_{x_1, \dots} O_{x_m} poknjego [a, M].$ $O_{x_1, \dots} O_{x_m}, O_{x_m} poknjego [a, C]$ $O_{x_1, \dots} O_{x_m}, O_{x_m} poknjego [a, C]$ $O_{x_1, \dots} O_{x_m}, O_{x_m} poknjego [a, M].$ $O_{x_1, \dots} O_{x_m} O_{x_m} poknjego [a, M].$ $O_{x_1, \dots} O_{x_m} O_{x_m} poknjego [a, M].$ $O_{x_1, \dots} O_{x_1, \dots} O_{x_1$

Dotar imha. Durino, da je j werna ma [a, b]. Ichemino pos: 200. Za usak xe [a,b] obstuja d(x): Ce je x'∈ (x-25(x), x+25(x)) N[a,b], polum 1 f(x)-f(x) K /2. $O_{x} := (x - \delta(x), x + \delta(x)).$ to leuri o poenitjih obstaja me Win xa, ..., xm E[a,b], da: $[a,b] \subset \mathcal{O}_{x_1} \cup \cdots \cup \mathcal{O}_{x_m} . \qquad (x)$ Naj lo di=min { d(x1), ..., d(xm)}. Ce x, x'e[a,b], 1x-x 1<5, potem po (x) obstayaj: $|x'-x_j|=|x'-x+x-x_j| \le |x'-x|+|x-x_j| \le \delta + \delta(x_j) \le 2\delta(x_j)$ $|J(x)-J(x')|=|J(x)-J(x_j)+J(x_j)-J(x')| \leq$ $\leq |\int_{\mathbb{R}^{2}} |x|^{2} |x|^{2} + |\int_{\mathbb{R}^{2}} |x|^{2} |x|^{2} = \sum_{i=1}^{\infty} |x-x_{i}|^{2} |x|^{2} = \sum_{i=1}^{\infty} |x-x_{i}|^{2} = \sum_{i=1}^{\infty$ Tosledica (lune o pobritish) Naj lo K=[a,b] zaport internal. Iz vsakega potnitja K z odportimi intervali je mogoča idrati boucus podpolnitje. T., ce II, 8 € 13 dnisma tanh odportile intervalor Is, da velja Fotern obstaja mEIN, SI, ..., SmEP, du velja KC Is U Is U. V Ism Dokur. 2a vsak xe K obstaja S(x): X = Ix(x). Ker je Ix(x) odpot interned, obstuja J(x)>0: (x-J(x), x+J(x)) C Istx). To lewi o pokritjih obstaja me IN in X1,... Xm: KC (x,-J(x), x+J(x)) U-U(xm-J(xm), xm+J(xm)) F11 LASTNOSTT ZVEZNIH FUNKCI

Int (bisekcija) Naj lo Jenera junkcija apokun intervalu [a, b].

(l vina j v benjišcih marprotno predznačeni vrednosti,
potan vina j miclo. Natancinje, cik j(a). j(b)<0,
pokun obstaja de[a,b]: j(d)=0.

Dobar Metoda bishkije: C= a+b

Ceji f(c)=0, toucamo.

Sicu omaciono $2 [a_1, b_1]$, tistega od podicitenalos [a, c], [c, b], ma buterem una $\int v$ brajisch mas protro predrucceu i vednosti $[a_1 + b_1]$ in poetopet madalpijomo.

Postoper se labro vestavi in smo miclo mári, ali pa ne.
V sem primera dobino zaporedje stočanih intervalor

[a,b]>[a,b]).

Ta kuknga velja $b_n - a_n = \frac{b-a}{2^n}$ in $f(a_n) \cdot f(b_n) < 0$.

Venno, da obstaja matanto ena tocka d, bije usubovana N vah intervalih (po ivnen od prij).

Faradi numati: $\lim_{n\to\infty} f(a_n) = f(a) = \lim_{n\to\infty} f(b_n)$.

Ker veja $f(a_n) \cdot f(b_n) < 0$, je $\lim_{n\to\infty} f(a_n) f(a_n) = f(a) = f(a) < 0$.

Stedi J(d)=0

Opomba. $f(x) = \begin{cases} -1, & 2 \le x \le 4 \\ 1, & 4 < x \le 7 \end{cases}$ En j: [2,7] → R ient nevelja. Opentla Bintaja je mutoda za priblizm istanje micel. Mr. Naj bo f zuma funkcija na supskum intervalu [a,b]. Poten je of mejena. Omacimo m=in/j in M=supf. Obstrijata todi $x_m, x_n \in [a,b]$, da vrlja $f(x_m) = m$, $f(x_m) = M$. <u>Spourle</u>. Zourre Junkcija na zujodem internala dosesi minimum in maksimum. John. Dennirs, da fini maregoi omejura. Potem za vsar nEIN obstaja xnE[a,b]: f(xn)>n. tapondje xn je omijeno, rato ina steralisče x∈[a,b]. Obstrya boursgentno padrapondix xm x >00. Kerje f weme, velja f(xne) 2000 f(x). Ker vilja $J(x_m) \ge n_m \ \forall k$, to eapor mi omejens \times Torry je of omejena in maj bo M= supf. Velja f(x)≤N za vsak x∈ [a,b]. Deumis, da f me doseie undnoen 17, tj. M-f(x) >0 vsal xe(a,b)

Ker ji f wrmo, Sta funkcije M-f in M-j wrenze na [a,b]

Po pravbar dobaranem je n-j omejema: $0 < \frac{1}{11-j} \le A$, xe[a,b]. Odtod Medi: M-J > \$\frac{1}{A}, ouroma \$f \leq \vec{17}{-}\frac{1}{A} \square kurk M= supf. 12 Tony obstaja xn: f(xm)=M.

Posledica. Naj lo J: [a,b] - R zurna funkcija in $m = \inf f$, $M = \sup f$. Polem f zansame vs. wednesti med m in M, f. en usar $c \in [m, 11]$ obstap $x_c \in [a,b]$: $f(x_c) = c$. John ajem=MJ sicu m< c< Min definiramo g(x)=f(x)-c. Naj la I zaport internal o brajiščema Xm in XM. Potem jeng v brajisch I masprotru predenacem vrednosti. Po inven o bischeiji mina g mx I miclo, i in velja f(xe)=c. MONOTONE ZVEZNÉ FUNECIJE Jefinicija. Naj bo I CIR interval in J: I-> IR frankcija.

Praumo, da je f marascajoca, če za x1, x2 E I, x1 \le x2 vilja f(x1) \le f(x2) \le f(x3) \le f(x3 Yodobno padajoia in Mogo padajoia. Funkcija Ji monotona, ce je narasčajoca ali padajoča. 12nh. Naj lo J strogo monctona mena funkcija na [a,b]. Potem je J wena funkcija. Dotar. Damino, da pe f Mr. marascapia.

Tedaj je f mjektimu in dosere un inducti od majmanje f(a)

do majvecje f(b). Invenua funkcija f obstaja in

Min [f(a), f(b)] ma [a,b].

Naj to y. \(\) [f(a), f(b)] in označimo \(\) = f'(yb).

Idmino \(\) \(\) Priveti smemo, da \(\) Kerje J. M. marriscapia, relja: J(x-E)< J(x)=40 < J(x0+E) J:= min { J(xo+E)-yo, yo-J(xo-E)}

LIMITA FUNKCIDE

Radi bi opisali obraisaije prukcije, ki je definirama n obolici toike a in me migno va:

lunita ne obstaja, ber mi take mednosti, ri bi si ji finscijsti motnovi polj.

linx 8m =0.

Definición Naj lo pruncija of definirana na probodeni obstici toine a, p. obstaja i rzo, da je of definirana ma (a-r, atr) Vas Sterilo L unemyemo Crimita frukcije f, to gn x protia, à za vsak E70 obstaja 570, da velja 1/(x)-L/2, amje /x-a/<5, x+a. V tem primer piscino: lin f(x)=L.

Opombu!) Nikjer v definiciji ni omipjena vrdnost f(a)
(miti ni potrelno, da bi bila J v todia definirana).

Trabor. Naj lo Juntaja of definirana v obolici totle a. Furtija fje mena v točki a \ lim f(x)=f(a).

Sudi suposadro po definiaji. Posledita Naj lo Junicija J defin N polodeni okolnisti a. Ce obstopa plin (k)=L, potan je torana

of. limits fra obstaja in $\widetilde{J}(x) = \{ L, x = \alpha \}$ $\widetilde{J}(x) = \{ L, x = \alpha \}$

Odtod sledi tonk. Naj vo funkcija j definirana v prebodeni obolici točke a.
Livita funkcije j, ko gn x proti a ! natanko
tedaj, kadar za vsato zaporedje x, v U, ki komergin protia, supondie ((xn) boungin proti L. Zato en racimanje z limitani uljajo enaka pravila kot la racunnye 2 bientami zaporchij: 1mh. Naj vosta frukciji jing definirani v prekodeni obolici točkia in demino, da obstajota lini /(x) in lini g(x). Potem obstajojo lini (j+g)(x) in lini (j-g)(x) x>n in velya: lin (ftg/x) = linf(x) + ling(x). lui (f.g)(x)=(ling(x)) (ling(x)). (i) ling(x) = 0, potem obstaje lin(\$)(x) in velja $\lim_{x \to a} (\frac{f}{g})(x) = \lim_{x \to a} f(x)$ Definiaja. Naj lo f definirana ma (a-r, a) en ner r70.

Pramino, da je L leva limita prukcije f v točkia

ci za 4270 obetaja tar 570, da je f(x)-L/E, cim XE (a-J, a). V tun primeru piscino: f(a-)=lin f(x)=L. Podobno dima limita Irdin. Naj lo f definirana v probodeni obolici todia. Icday buin f(x) obstaga matanto tedaj, kadar obstajata desna liunta in sta enari. Den 2 defin.

tent. Nay bo of monotona ma [a,b]. Tedaj za Nsur Cela,b) Obstajata J(c-) in f(c+). Funkcija j je, novema v touri c motrules tedaj, kadarje f(c-)=f(c+). a je of marasiajoca, re f(c-) = f(c) = f(c+), ci je spadajoca, je f(d) = f(c) = f(c). Definija Ci monotona frukcija Ina [a,b] ni varna v totri c, potem f(c+)-f(c-) inimizems kok fukcije I v c. John. maj lo J narasiajea in a < c < b.

Tedaj je f(x) = f(c) za nsak $x \in [a, c]$ ento

Obstaja sup $\{f(x), [x < c] = A$. [w. 270. Po defin. sup $\exists x \in [a, c) : f(x_0) > A - E$.

Ker je J narasiajo in, za $x \in (x_0, c)$ vedja Tony μ lim f(x) = A. Imr. Monotona findaja J ma [a, b] ma breigenn stano mnogo toch nervinosti. Ibear. Naj la N musica tock neuvenosti odf. Za war $c \in (a,b) \cap \mathcal{N} \exists r \in \mathbb{Q} : r \in \{f(c-), f(c+)\}.$ taradi monotoworti la C+d velja rc+ rd. Tonj je pravisava CHTE injektura, rabje N-D W kregorun Ham.

FZZ

Définición. Naj lo fruteja J definirana ma (a, 00) za nisa ER. Sterito l je limita frakcije J, to go x cer vse meje, ce la Nort 870 obetaja METR: 2a v8 x>M vcga (f(x)-1/< E. Pisium luin f(x)=[. Yodobno lun f(x) V the primers je y= (redorma armiphola Definicija. Naj Us funkcija j definirana na pododeni obstici tothe a. Krumio, da Jizpolminje Candinjer popularia, ce Yx,x', O</x-a/cd, O</x'-a/cd 10 TOE OC34 M $=) |f(x)|f(x')| |\mathcal{E}|.$ Yokobno Canchy por poggin os ju-00. to your houter. Non ho funkcija f definirana v prevodeni obslici
foire a. Funkcija j una limito v točki a metanelo tedaj, kadas j izpolinjuje Candujiu pogoj pona. (relja tradi za a=00, -00). Definiza. Naj bo J definizana v proboderin obstici toda a. Potempe limite Annecye f, to gn x proti a meteoricino, a m THER 3570: YXE (50, a+5) (603=) =) If(W) 1>17. bodobno za Ceve, deme in No. Truis lin /(x) = co

72

Primieri . 1) lim
$$\frac{\sin x}{x} = 1$$
.

 $x \to 0$
 x

3)
$$\lim_{h\to 0} \frac{a^h-1}{h} = \ln a$$
.
 $a^h = 1 + \frac{1}{x}$ $h\to 0, h\to 0, x\to \infty$
 $h = \log_{A}(1 + \frac{1}{x})$
 $\frac{a^h-1}{h} = \frac{1}{x} \cdot \log_{A}(1 + \frac{1}{x}) = \log_{A}(1 + \frac{1}{x}) \times \log_{A}(1 + \frac{1}{x}) \times \log_{A}(1 + \frac{1}{x}) = \log_{A}(1 + \frac{1}{x}) \times \log_{A}(1 +$

f(x= z)< y< f(x= tz) Ce je ly-yol<d, potem je X.-Z<f(y)<X.+E. in caradi str. mar. : Tony of raly-yole of Medi 15-1/y)-5-1/y)/<E. Podobno za robne tocke. Timer. f(x)=xn: " ce je m sod, je K→ TX werna ma [0, ∞). Posledica. J(x)=x'je verna junkcija ma (0,∞) za vsak r∈ Q. (aji 170 je wena na [0, ∞). ZVEZNOST POSEBNIH FUNKCI) Elesponentra francoja. Naj vo a 70.

Ta vsur x \in TR seur ze definirali \(\alpha \tan \) (x = lim r, | rn \in \(\alpha \) in

\[a^{\text{x}} = lim \(a^{\text{rn}} \). \[\alpha \) pravi (za racunanje z racionalnimi

\[a^{\text{x}} = lim \(a^{\text{rn}} \). \[\alpha \] pravi (za racunanje z racionalnimi

\[a^{\text{y}} = a^{\text{x}} \].

\[\alpha \) potencami \(\text{s} \) pravi (a \text{pravi (za racunanje z racionalnimi

\]

\[\alpha \) potencami \(\text{s} \) pravi (a \text{pravi (za racunanje z racionalnimi

\]

\[\alpha \) potencami \(\text{s} \) pravi (a \text{pravi (za racunanje z racionalnimi

\]

\[\alpha \) \[\alpha \] \[\alpha \) \[\alpha \] \[\alpha hur. Naj boa >0, a #1. Eksponentna frukcija x -> ax je svena ma R, njena saloga vrednostije (0, 0). Ce je a > 1, potem je marasicajoia, ci je a < 1, je padajoja.

Dobar. prumis, du je navasicapia. 2a a > 1:

axi-xi>1 (ker je res za racionalme priblièr).

X1 < X2 : a x2 = a x2-x1 a x1. Ker 10 x2-X1>0, 10

F15

wenned: maj la a 71. iel. E>O. veux ie, da obstaja 5>0, daje la"-1/< €, ūm je h ∈ Q, 1h/<5. Ker je a' marascajoia, stedi, da la"-11<€ velja za h∈ IR,1hks. Tonj je a nuna v x=0. Naj to Xo E K poljubena E70. dozumjem w v xo. $|f(x)-f(x_0)| = |a^x-a^{x_0}| = |a^x-a^{x_0}| = |a^{x_0}-a^{x_0}| = |a^{x_0}-a^{x_0}|$ obstaja 270: à MIST, potem la 11 / 2/20. a pr |x-xol < 5, ocura Medi. Venno, da je luna = o in luna = 0. Na nitervalu [-m,m] doscie à ve industi med à in a m, tory na PR dosin in indnosti. " na (0,00). Poslidia. Naj lo a >0, a = 1. Potem velya (ax) = axy za tx, y e R. John pn -> x pn & Q $g_m \rightarrow y \quad g_m \in \mathbb{Q}$. Velya $(a^{p_n})^{2m} = a^{p_n \cdot 2m}$ Vn,m. w. Xm Jo po defin. potence $(\alpha^{x})^{gm} = \alpha^{xgm}$ I wat podefin ; ajexel ot. depor. by I'm sier aprilm -> axy $\left(\alpha_{x} \right)_{\lambda}$ lev je a arun, po buterun Toxedia.

+16

Stringer. Naj le a \((0,00), a \(1. Invenuo frukcijo funtaje X a memjem loganturka frikcija 2 osnovo a in ... cama cum loga. Logantim 2 Oponda loga prodita (0, 00) bijektitna ma TR in po definiciji invenne Junkaje velja: (x) $y = log_{\alpha} \times \iff \alpha^{y} = x$. 1mh. ". Furkcija loga je mena ma (0,00). a je a > 1, je strogo marastajoca, ci je a <1 je strogo spadajoca. Velja: loga (x,y) = loga x + loga y, x, y e (0,00) loga (x) = > logax, XE (0,0), ZER. Dokur. Ker jeax mena injektime una meen inverz. Enaroti dedita iz (x) in pravil za vacimanjes potarcam logax=Gin logay=Cz=) aG=xin aG=y

=) aG·aG=xy=) aG+G=xy =) Cx+Cz=loga(xy) Politics. YER. X >> XY je woma.

XY = e lixy = e yenx je woma

F17

TRIGONOMETRIČNE FUNKCIJE

f kot (bi ga menvis v radianih) cos for, sin f za $f \in [0, 2\pi)$

madeljujemo periodiciro.

Ker je sin (+ =) = cost je za izpeljano omornih lastnosti (mps. 2 veznost,..) doralj obramavatieno.

tant = sint

Omoine Castrosti: proseumar A.

B V bromen icolu str dolini stranic loinx-sinx-1 in cosx-cosx.1 tor

dolina lota 1x-xol.

Eatordja: | smx-smx.|≤|x-xo| in | cosx-cosxo|≤|x-xo|

Int. Sims je wenne frutzija ma R.

Dokur. Ich. Xoe R in E70.

Ker je 18in x - 8in xol \(|x-x| < \delta = \epsilon

Cahro veamens \(\delta = \epsilon . \(\beta \)

Posledica Funcije cornus, tangensin botangens so zume

CI KLOMETRIÕNE 8m/[-12, 1] je injektima. mumo finkcijo inemijemo Atros sinus in omačimo arcsin. arcsin: [-1,1]—) R. Po inven je aroin mena fureuje. (ws [O,T] is injectioning lmenn J. in. arteus kommes. arccos: [-1,1] -> R je woma finkcija. tan (一堂, 至) k injetishna. hm. fmh ije inieunjeuno asctan: R-R