1

ASSIGNMENT 1

EE22BTECH11050 - Snehil Singh

Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} -6 \\ -6 \end{pmatrix}$$
 (1)

1 VECTORS

Fig. 1: triangle plotted using python

parameters	values	description
m_1	$\begin{pmatrix} 1 \\ -8 \end{pmatrix}$	AB
m_2	$\begin{pmatrix} -9 \\ -2 \end{pmatrix}$	BC
m_3	$\begin{pmatrix} 8\\10 \end{pmatrix}$	CA
A - B	8.06	length of AB
B-C	9.21	length of BC
C - A	12.81	length of CA
	3	non collinear
n_1	$\begin{pmatrix} -8 \\ -1 \end{pmatrix}$	AB
c_1	-12	
n ₂	$\begin{pmatrix} -2\\9 \end{pmatrix}$	BC
c_2	30	
n ₃	$\begin{pmatrix} 10 \\ -8 \end{pmatrix}$	CA
c_3	-108	
Area	37	Area of Triangle
$\angle A$	45.78°	
$\angle B$	95.40°	Angles
$\angle C$	38.81°	

TABLE 1: Vectors.

2 MEDIAN

parameters	value	description
D	$\begin{pmatrix} -1.5 \\ -5 \end{pmatrix}$	BC midpoint
E	(-2,-1)	CA midpoint
F	$\begin{pmatrix} 2.5 \\ 0 \end{pmatrix}$	AB midpoint
$\mathbf{m_4}$	$\begin{pmatrix} -3.5 \\ -9 \end{pmatrix}$	4.0
$\mathbf{n_4}$	$\begin{pmatrix} -9\\3.5 \end{pmatrix}$	AD
c_4	-4	
${ m m_5}$	$\begin{pmatrix} -5 \\ 3 \end{pmatrix}$	D.E.
n_5	$\begin{pmatrix} 3 \\ 5 \end{pmatrix}$	BE
c ₅	-11	
m_{6}	$\begin{pmatrix} 8.5 \\ 6 \end{pmatrix}$	CF
${f n_6}$	$\begin{pmatrix} 6 \\ -8.5 \end{pmatrix}$	
c_6	15	
G	$\begin{pmatrix} -0.33 \\ -2 \end{pmatrix}$	Centroid
$\begin{array}{c} BG\\ \overline{GE}\\ \\ \underline{CG}\\ \overline{GF}\\ \\ \underline{AG}\\ \overline{GD}\\ \end{array}$	2	Division ratio by G
$ \frac{\operatorname{rank}\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{D} & \mathbf{G} \end{pmatrix}}{\operatorname{rank}\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{B} & \mathbf{E} & \mathbf{G} \end{pmatrix}} $	2	collinear
$\operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{C} & \mathbf{F} & \mathbf{G} \end{pmatrix}$		

TABLE 2: Median.

3 ALTITUDE

parameters	value	description
$\mathbf{D_1}$	$\begin{pmatrix} 3.74 \\ -3.83 \end{pmatrix}$	Foot of altitude from A
$\mathbf{E_1}$	(-1.51, -0.39)	Foot of altitude from ${f B}$
$\mathbf{F_1}$	$\begin{pmatrix} 3.11 \\ -4.86 \end{pmatrix}$	Foot of altitude from C
m_7	$\begin{pmatrix} 1.74 \\ -7.83 \end{pmatrix}$	AD_1
n ₇	$\begin{pmatrix} -7.83 \\ -1.74 \end{pmatrix}$	AD_1
c_7	-8.7	
m_8	$\begin{pmatrix} -4.51\\3.61 \end{pmatrix}$	DE
n ₈	$\begin{pmatrix} 3.61 \\ 4.51 \end{pmatrix}$	BE_1
c_8	-7.21	
$ m m_9$	$\begin{pmatrix} 9.1 \\ 1.14 \end{pmatrix}$	CF_1
n ₉	$\begin{pmatrix} 1.14 \\ -9.1 \end{pmatrix}$	CF_1
c_9	47.82	
Н	$\begin{pmatrix} 3.95 \\ -4.76 \end{pmatrix}$	Orthocentre

TABLE 3: Altitude.

Fig. 2: medians plotted using python

Fig. 3: altitudes plotted using python

4 PERPENDICULAR BISECTOR

parameters	value	description
m ₁₀	$\begin{pmatrix} -2\\9 \end{pmatrix}$	AD_1
n ₁₀	$\binom{9}{2}$	AD_1
c_{10}	-23.50	
$\mathbf{m_{11}}$	$\begin{pmatrix} 10 \\ -8 \end{pmatrix}$	D.F.
n ₁₁	$\begin{pmatrix} -8 \\ -10 \end{pmatrix}$	BE_1
c_{11}	26	
m ₁₂	$\begin{pmatrix} -8 \\ -1 \end{pmatrix}$	C.F.
n ₁₂	$\begin{pmatrix} -1 \\ 8 \end{pmatrix}$	CF_1
c_{12}	-2.5	
О	$\begin{pmatrix} -2.47 \\ -0.62 \end{pmatrix}$	Circumcentre
$\ \mathbf{O} - \mathbf{A}\ $		
$\ \mathbf{O} - \mathbf{B}\ $	6,43	OA = OB = OC = R
$\ \mathbf{O} - \mathbf{C}\ $		
R		
$\angle BOC$	91.57°	, DOG 0 / D 4 G
$\angle BAC$	45.78°	$\angle BOC = 2\angle BAC$
$\angle AOC$	169.19°	$\angle AOC = 2\angle ABC$
$\angle ABC$	95.40°	
$\angle AOB$	282.37°	/ 40D 0/DC4
$\angle BCA$	0	$\angle AOB = 2\angle BCA$

TABLE 4: Perpendicular Bisector.

Fig. 4: perpendicular bisectors plotted using python

5 ANGLE BISECTOR

parameters	value	description
m_{13}	$\begin{pmatrix} -0.5\\1.77 \end{pmatrix}$	AI
$\mathbf{n_{13}}$	$\begin{pmatrix} 1.77 \\ -0.5 \end{pmatrix}$	AI
c_{13}	1.54	
m_{14}	$\begin{pmatrix} -1.10 \\ 0.77 \end{pmatrix}$	BI
m ₁₄	$\begin{pmatrix} -0.77 \\ -1.10 \end{pmatrix}$	ВІ
c_{14}	2.07	
m ₁₅	$\begin{pmatrix} -1.60 \\ -0.99 \end{pmatrix}$	
n ₁₅	$\begin{pmatrix} 0.99 \\ -1.60 \end{pmatrix}$	CI
c_{15}	3.62	
I	$\begin{pmatrix} 0.28 \\ -2.08 \end{pmatrix}$	Incentre
D_3	$\begin{pmatrix} 0.82 \\ -4.49 \end{pmatrix}$	Point of contact with BC
E_3	$\begin{pmatrix} -1.64 \\ -0.55 \end{pmatrix}$	Point of contact with AC
$\mathbf{F_3}$	$\begin{pmatrix} 2.72 \\ -1.78 \end{pmatrix}$	Point of contact with AB
$\ \mathbf{I} - \mathbf{D_3}\ $		
$\ \mathbf{I} - \mathbf{E_3}\ $		
$\ \mathbf{I} - \mathbf{F_3}\ $	2.46	$ID_3 = IE_3 = IF_3 = r$
r	1	
$\angle BAI$		
$\angle CAI$	22.89°	$\angle BAI = \angle CAI$
$\angle ABI$		
$\angle CBI$	47.70°	$\angle ABI = \angle CBI$
$\angle ACI$	10.100	1407 1707
$\angle BCI$	19.40°	$\angle ACI = \angle BCI$

TABLE 5: Angle Bisectors.

Fig. 5: Angle bisectors plotted using python