Sayısal Sistemler-H5CD2

Kombinasyonel Devreler-2

Dr. Meriç Çetin

versiyon161022

Bu derste öğreneceklerimiz

4 Combinational Logic

	4.1	Introduction	125
	4.2	Combinational Circuits	125
	4.3	Analysis Procedure	126
	4.4	Design Procedure	129
	4.5	Binary Adder–Subtractor	133
	4.6	Decimal Adder	144
	4.7	Binary Multiplier	146
	4.8	Magnitude Comparator	148
	4.9	Decoders	150
	4.10	Encoders	155
	4.11	Multiplexers	158
	4.12	HDL Models of Combinational Circuits	164

Çıkarıcı Devreleri

- İki ikili sayının çıkarılması, çıkarılanın tümleyenini alıp eksiye ekleyerek gerçekleştirilebilir.
- Bu yöntemle, çıkarma işlemi, makine uygulaması için tam toplayıcılar gerektiren bir toplama işlemi haline gelir.
- Bu yöntemle, sayının her bir çıkarılan biti, bir fark biti oluşturmak için karşılık gelen önemli eksi bitinden çıkarılır.
- Yarım ve tam toplayıcılar olduğu gibi, yarı ve tam çıkarıcılar da vardır.

Çıkarıcı Devreleri

- Yarı çıkarıcı, iki biti çıkaran ve bunların farklılıklarını üreten bir birleşimsel devredir.
- Ayrıca, 1'in ödünç alınıp alınmadığını belirten bir çıktıya sahiptir.
- x y'yi gerçekleştirmek için, x ve y'nin göreli büyüklüklerini kontrol etmeliyiz.
 - Eğer x> y ise, üç olasılığımız vardır:
 - 0 0 = 0, 1 0 = 1 ve 1 1 = 0. Sonuç, fark biti olarak adlandırılır.
 - Eğer x <y ise, 0-1'e sahibiz ve bir sonraki yüksek aşamadan bir 1 ödünç almak gerekir.
- Bir yarı çıkarıcının girdi-çıktı ilişkileri için doğruluk tablosu şu şekilde türetilebilir:

Yarı Çıkarıcı Devre

$$D = x'y + x y'$$
$$B = x'y$$

x	У	В	D
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

Yarı Çıkarıcı Devre

x	У	В	D
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

$$D = x'y + x y'$$
$$B = x'y$$

Tam Çıkarıcı Devre

x	у	Z	В	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$B = x'y + x'z + yz$$

Maps for full-subtractor

Tam Çıkarıcı Devre

(W+x)-(y+2) işlemini hesaplayacak montik devresini yan teplayıcı, yanı cıkarcı ve tam cıkancı devrelen ilc tasanlayın

$$\frac{\pm x}{E_1T_1} = \frac{y}{E_2T_2} = \frac{E_1T_1}{F_2F_1}$$

Karşılaştırıcı Devreler

- İki sayının karşılaştırılması, bir sayının diğer sayıdan büyük, küçük veya ona eşit olup olmadığını belirleyen bir işlemdir.
- Bir büyüklük karşılaştırıcısı, iki A ve B sayısını karşılaştıran ve göreli büyüklüklerini belirleyen bir birleşimsel devredir.
- Karşılaştırmanın sonucu, A > B, A = B veya A < B olup olmadığını gösteren üç ikili değişkenle belirtilir.
- A = B ve A ≠ B durumunlarını içeren karşılaştırıcı devre yarı karşılaştırıcıdır,
- A > B, A = B veya A < B olup olmadığını gösteren karşılaştırıcı devre tam karşılaştırıcıdır.

Karşılaştırıcı Devreler

Karşılaştırıcı Devreler

