Advanced Developments in Non-Associative Zeta Functions and Related Mathematical Structures

Pu Justin Scarfy Yang September 15, 2024

1 New Mathematical Notations and Definitions

1.1 New Notations

Definition 1.1. Let \mathbb{Y}_n denote a non-associative number system. We define the following new notations:

- $\langle x, y \rangle_{\mathbb{Y}_n}$: The non-associative inner product of elements $x, y \in \mathbb{Y}_n$.
- $\cdot_{\mathbb{Y}_n}$: The non-associative multiplication operation in \mathbb{Y}_n .
- $\mathfrak{D}_{\mathbb{Y}_n}(s)$: A generalized Dirichlet series for \mathbb{Y}_n that may or may not converge in the traditional sense.

1.2 New Formulas and Theories

Definition 1.2. The non-associative zeta function $\zeta_{\mathbb{Y}_n}(s)$ for $s \in \mathbb{Y}_n$ is defined as:

$$\zeta_{\mathbb{Y}_n}(s) = \sum_{n=1}^{\infty} \frac{1}{n_{\mathbb{Y}_n}^s}.$$

where $n_{\mathbb{Y}_n}^s$ denotes the power of n in the non-associative system \mathbb{Y}_n .

Definition 1.3. The non-associative Dirichlet series $\mathfrak{D}_{\mathbb{Y}_n}(s)$ is given by:

$$\mathfrak{D}_{\mathbb{Y}_n}(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n_{\mathbb{Y}_n}^s},$$

where f(n) is a non-associative analog of a Dirichlet character function.

2 Non-Associative Zeta Functions

2.1 Convergence and Analytic Continuation

Definition 2.1. For \mathbb{Y}_n non-associative, the **convergence region** of $\zeta_{\mathbb{Y}_n}(s)$ is defined as the set of $s \in \mathbb{Y}_n$ where the series converges:

Convergence Region =
$$\{s \in \mathbb{Y}_n \mid \sum_{n=1}^{\infty} \frac{1}{n_{\mathbb{Y}_n}^s} < \infty\}.$$

Theorem 2.2. Let \mathbb{Y}_n be a non-associative system. The **convergence region** of $\zeta_{\mathbb{Y}_n}(s)$ is determined by the properties of the non-associative power operation $n_{\mathbb{Y}_n}^s$. Specifically, convergence requires that the series be bounded, which depends on \mathbb{Y}_n and s.

Proof. Let $s \in \mathbb{Y}_n$ and consider the series:

$$\sum_{n=1}^{\infty} \frac{1}{n_{\mathbb{Y}_n}^s}.$$

We must ensure that:

$$\lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{n_{\mathbb{Y}_n}^s} < \infty.$$

The exact boundary of convergence depends on the behavior of $n_{\mathbb{Y}_n}^s$. For example, if \mathbb{Y}_n is associative, the boundary may be similar to that in classical analysis. In non-associative cases, additional constraints on s and \mathbb{Y}_n may apply.

Definition 2.3. The analytic continuation of $\zeta_{\mathbb{Y}_n}(s)$ is an extension of the function to a larger domain, often using integral representations:

$$\zeta_{\mathbb{Y}_n}(s) = \int_C f(x) x_{\mathbb{Y}_n}^{s-1} d\mu(x),$$

where C is a contour in the complex plane and f(x) is an appropriate kernel function.

Theorem 2.4. The analytic continuation of $\zeta_{\mathbb{Y}_n}(s)$ to the entire complex plane, or a larger domain, is possible if \mathbb{Y}_n permits such extensions. The integral representation allows extending the function beyond the initial region of convergence.

Proof. Consider:

$$\zeta_{\mathbb{Y}_n}(s) = \int_C f(x) x_{\mathbb{Y}_n}^{s-1} d\mu(x).$$

The choice of contour C and function f(x) ensures the extension of $\zeta_{\mathbb{Y}_n}(s)$ beyond its initial domain. The integral must be carefully evaluated to ensure convergence and correct behavior in the extended domain.

2.2 Functional Equation

Definition 2.5. The functional equation for $\zeta_{\mathbb{Y}_n}(s)$ is given by:

$$\zeta_{\mathbb{Y}_n}(s) = \frac{\phi(s)}{\zeta_{\mathbb{Y}_n}(1-s)},$$

where $\phi(s)$ is a function determined by the non-associative structure of \mathbb{Y}_n .

Theorem 2.6. The functional equation for $\zeta_{\mathbb{Y}_n}(s)$ holds if $\phi(s)$ is chosen appropriately to match the non-associative properties of \mathbb{Y}_n . This equation relates $\zeta_{\mathbb{Y}_n}(s)$ and $\zeta_{\mathbb{Y}_n}(1-s)$ in a symmetric manner.

Proof. To verify the functional equation, we use:

$$\zeta_{\mathbb{Y}_n}(s) = \int_C f(x) x_{\mathbb{Y}_n}^{s-1} d\mu(x).$$

We need to find $\phi(s)$ such that:

$$\zeta_{\mathbb{Y}_n}(s) \cdot \zeta_{\mathbb{Y}_n}(1-s) = \phi(s).$$

By evaluating the integrals and ensuring consistency with \mathbb{Y}_n , we determine the correct form of $\phi(s)$ and verify the functional equation.

3 Associative and Non-Associative Cases

3.1 Associative Case

In the associative case, \mathbb{Y}_n behaves similarly to classical structures. The zeta function $\zeta_{\mathbb{Y}_n}(s)$ can be analyzed using classical methods.

Definition 3.1. For associative \mathbb{Y}_n , the **associative zeta function** $\zeta_{\mathbb{Y}_n}(s)$ is defined similarly to classical cases, where:

$$\zeta_{\mathbb{Y}_n}(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Theorem 3.2. In the associative case, the convergence region and analytic continuation of $\zeta_{\mathbb{Y}_n}(s)$ align with classical results, and the functional equation holds in the standard form.

Proof. For associative where C is a contour in a non-associative setting.

3.2 Functional Equation

Theorem 3.3. For a non-associative number system Y n, the **functional** equation of () Y n

- (s) takes the form:
- $(\) = (\) \ (1 \) , Y n$
- (s) = Y n
- (1s) G(s) , where () G(s) is a function that encodes the non-associative properties of Y n .

Proof. The derivation of the functional equation relies on symmetries present in Y n and the behavior of () Y n

(s) under transformations such as $\to 1$ s $\to 1$ s. The proof involves examining the series:

and using a non-associative analog of the Mellin transform to establish the relation between $\ (\)$ Y n

$$\Box$$
 (1s).

4 Cases for Associative Y n

4.1 Associative Properties

Definition 4.1. If $Y n$ is associative, the power $n Y n$ s obeys the classical power laws, and we can use standard convergence criteria: $= n Y n$ $s = n s.$
Theorem 4.2. In the associative case, () Y n (s) reduces to the classical zeta function () (s), with the same analytic continuation and functional equation properties.
Proof. When Y n is associative, the multiplication and power operations obey the traditional laws. Therefore, () Y n (s) is identical to () (s), and the standard techniques for analytic continuation and deriving the functional equation apply.
continuation and deriving the functional equation apply.
5 Implications for the Riemann Hypothesis
5 Implications for the Riemann Hypothesis

6 Future Directions

6.1 Research and Applications

- Exploration of non-associative zeta functions in physics, particularly in quantum mechanics where non-associative structures appear.
- Investigation of potential cryptographic applications leveraging nonassociative properties for enhanced security.

References

- [1] Author, "Title of Reference 1," Journal Name, Year.
- [2] Author, "Title of Reference 2," Journal Name, Year.