## General Discrete Random Variables Calculator Assumed

Time: 45 minutes Total Marks: 45 Your Score: / 45



Question One: [2, 2, 3 = 7 marks] ₹

random variable. Determine, with reasoning, whether each of the following represent a discrete

| 61.0 | 60.0 | 4.0 | 1.0 | £.0 | (X=X)d |
|------|------|-----|-----|-----|--------|
| t    | 3    | 2   | ī   | О   | X      |

(q)

| 6.0 | 9.0 | £.o- | 0  | 2.0 | (X=X)d |
|-----|-----|------|----|-----|--------|
| 9   | 8   | ī    | I- | 2-  | X      |

.... 
$$f(x = X) = \int_{0}^{x} \int_{0}^{x} f(x = X) dx$$

www.educationequals.com

Question Six: [3, 2, z = 7 marks] **CA** Mathematics Methods Unit 3

The probability distribution for X is given by:

$$\begin{vmatrix} 2.7.0 = x & \frac{1+x}{\lambda} \\ 4x & \frac{x\lambda - 002}{228} \end{vmatrix} = (x = X)q$$

(a) Determine the value of k.

$$I = \frac{1}{12} + \frac{1}{$$

(b) Calculate E(X)

$$E(X) = 0 \times \frac{1}{10} + 1 \times \frac{2}{10} + 2 \times \frac{3}{10} + 3 \times \frac{170}{825} + 4 \times \frac{160}{825}$$

(c) Calculate  $(2 \le X \mid E > X)^{q}$ 

$$\frac{\frac{2}{01}}{\frac{8}{228} + \frac{2}{01}} = 0.4286$$

www.educationequals.com

Question Two: [1, 2, 2, 2, 1, 2 = 10 marks] CA

A regular 8-sided dice is rolled.

- (a) Explain why this experiment yields a uniform discrete random variable.
- (b) Define the cumulative probability function of this random variable in a table below.
- (c) In the long run, what is the value we expect to obtain on one roll of the dice?
- (d) What is the standard deviation of these outcomes?
- (e) If instead of an 8-sided dice, we roll a 16-sided dice, by what scale do each of the probability values change?

$$E(aX + b) = aE(X) + b$$

(f) Would the rule hold in this situation. Explain your answer.

Mathematics Methods Unit 3

$$=\frac{0.4}{0.65}=0.6154$$

$$P(Y > 2 | Y \le 4)$$

(e)

$$=\frac{0.4}{0.8}=0.5$$

11

Question Three: [1, 2, 3, 2 = 8 marks]

Each of the following represent discrete probability functions. Determine the value of

CA

(a) 
$$P(x) = \frac{1}{\lambda} = 1, 2, 3, \dots 12$$

(q)

$$P(x) = \frac{x}{2k - 1}; x = 1, 2, 3, 4, 5, 6$$

(X=X)d

3

Ą

7

УZ

3

www.educationequals.com

9

Question Four: [4 marks] Mathematics Methods Unit 3

Consider the discrete probability function represented in the table below.

| £.0 | 81.0 | q        | 2.0 | В | (X=X)d |
|-----|------|----------|-----|---|--------|
| Z   | 2    | <b>t</b> | 3   | I | X      |

CA

Determine the values of a and 
$$b$$
 such that

68.0 = q + p

 $\checkmark$  22.1= d + D

**№** 20.0= p

**√** E.0= d

A probability distribution for Vis: [1, 2, 2, 2, 2 = 9 marks]Question Five:

69.0 ₽.0 1.0 (∧5<sub>A</sub>)d 8.0 G ħ

**K**⊃

10

Determine:

(a) b(X=3)

22.0=

 $b(2 \le Y < 4)$ 

(q)

35.0 = 32.0 + 5.0 =

1

 $b(X < Y \cap Y > 4)$ 

(o)

(p)

E.0 = 2.0 + 1.0 =

 $b(X \le Z \mid X \le 3)$ 

www.educationequals.com

Question Four: [4 marks] CA

Consider the discrete probability function represented in the table below.

| X      | 1 | 3   | 4 | 5    | 7   |
|--------|---|-----|---|------|-----|
| P(X=x) | a | 0.2 | b | 0.15 | 0.3 |

$$E(X) = 4.7$$

Determine the values of a and b such that

Question Five: [1, 2, 2, 2, 2 = 9 marks] CA

A probability distribution for *Y* is:

| У                                | 1   | 2   | 3    | 4   | 5 |
|----------------------------------|-----|-----|------|-----|---|
| <i>P</i> ( <i>Y</i> ≤ <i>y</i> ) | 0.1 | 0.4 | 0.65 | 0.8 | 1 |

Determine:

$$P(Y = 3)$$
 (a)

 $P(2 \le Y < 4)$ 

$$P(Y < 2 \cup Y > 4)$$
 (c)

$$P(Y \le 2 \mid Y \le 3)$$

(d)

#### Mathematics Methods Unit 3

Question Three: [1, 2, 3, 2 = 8 marks] CA

Each of the following represent discrete probability functions. Determine the value of k for each.

(a) 
$$P(x) = \frac{1}{k}$$
;  $x = 1, 2, 3, ... 12$   
 $k = 12$ 

$$k = 1 - 0.2 - 0.3 - 0.1 - 0.15$$
  
 $k = 0.25$ 

$$P(x) = \frac{x}{2k-1}$$
;  $x = 1, 2, 3, 4, 5, 6$ 

$$1 = \frac{1+2+3+4+5+6}{2k-1}$$

$$1 = \frac{21}{2k-1}$$

$$k = 11$$

(d)

 X
 1
 2
 3
 5
 7

 P(X=x)
 2k
 k
 k
 5k
 6k

$$2k+k+k+5k+6k=1$$

$$k = \frac{1}{15}$$

 $b(X > 5 | X \leq t)$ Mathematics Methods Unit 3

[1, 2, 2, 2, 1, 2 = 10 marks]Ouestion Two: **CA** Mathematics Methods Unit 3

A regular 8-sided dice is rolled.

Explain why this experiment yields a uniform discrete random variable.

all add to 1, making it a DRV. The chance of each outcome is the same (1/8) therefore making it uniform, and they

Define the cumulative probability function of this random variable in a table

| Ţ | g√8.0   | o92·o | 0.625 | <b>6.</b> 0 | 975.0 | 0.250 | 0.125 | (x5X)d |
|---|---------|-------|-------|-------------|-------|-------|-------|--------|
| 8 | <u></u> | 9     | 9     | <b>b</b>    | 8     | 2     | ī     | X      |

(c) In the long run, what is the value we expect to obtain on one roll of the dice?

$$E(X) = 0.125(1+2+3+4+5+6+7+8)$$
  
 $E(X) = 4.5$   
 $\therefore 4015 \checkmark$ 

What is the standard deviation of these outcomes?

$$\nabla_{s} = \frac{1}{2} (2.5)^{2} + \frac{1}{2} (2.5)^{2$$

the probability values change? (e) If instead of an 8-sided dice, we roll a 16-sided dice, by what scale do each of

Multiplied by a half

(f) hold in this situation. Explain your Would the rule E(aX + b) = aE(X) + b

no change from one unit to another. Instead, the number of outcomes have No. There has been no change of scale or origin in this situation, for example,

doubled.

answer.

www.educationequals.com

www.educationequals.com

9

## Question Six: [3, 2, 2 = 7 marks] CA

The probability distribution for X is given by:

$$P(X = x) = \begin{cases} \frac{x+1}{k} & x = 0,1,2\\ \frac{200 - kx}{825} & x = 3,4 \end{cases}$$

(a) Determine the value of k.

(b) Calculate E(X)

$$P(X < 3 | X \ge 2)$$

(c) Calculate

www.educationequals.com

6



### SOLUTIONS Calculator Assumed General Discrete Random Variables

Time: 45 minutes Total Marks: 45 Your Score: / 45

## Question One: [2, 2, 3 = 7 marks]

Determine, with reasoning, whether each of the following represent a discrete random variable.

(a)

|   | X      | 0   | 1   | 2   | 3    | 4    |
|---|--------|-----|-----|-----|------|------|
| Ī | P(X=x) | 0.3 | 0.1 | 0.4 | 0.05 | 0.15 |

CA

Yes this table does represent a DRV, all probabilities add to 1 and there are no negative values.

(b)

| X      | -2  | -1 | 1    | 3   | 5   |
|--------|-----|----|------|-----|-----|
| P(X=x) | 0.2 | 0  | -0.3 | 0.6 | 0.5 |

No, this table does not represent a DRV. Despite all the probability values adding to 1, as one is negative, this cannot represent a DRV.  $\checkmark\checkmark$ 

$$P(X = x) = \left(\frac{1}{2}\right)^{x}$$
;  $x = 1, 2, 3, 4...$ 

(c)

$$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16} \dots \checkmark$$

$$S_{\infty} = \frac{0.5}{1 - 0.5} = 1 \checkmark$$

The sequence of probabilities is:

Therefore all probabilities will add to 1, and none are negative.

www.educationequals.com