Les séries numériques — Généralités

- $\mathbf{K} = \mathbf{R}$ ou \mathbf{C}
- $(u_n)_{n\geq 0}$ suite dans **K**
 - \star On forme les sommes

$$S_0 = u_0,$$
 $S_n = u_0 + u_1 + \ldots + u_n = \sum_{k=0}^n u_k$

*
$$u_n = x^n$$
 avec $x \neq 1$, $S_n = 1 + x + x^2 + \ldots + x^n = \frac{1 - x^{n+1}}{1 - x}$

- * Pour x = 1/2, $S_n = 2 2^{-n}$, pour x = 2, $S_n = 2^{n+1} 1$.
- Étude de la suite $(S_n)_{n\geq 0}$
 - * On peut souvent dire si (S_n) est convergente ou pas : cv pour x=1/2, dv x=2
 - * Calcul de la limite difficile en général!

1. Définitions et Exemples.

• Notation : si (u_n) est une suite dans \mathbf{K} , on note

$$S_0 = u_0, \quad \forall n \ge 1, \quad S_n = u_0 + u_1 + \ldots + u_n = \sum_{k=0}^n u_k$$

Définition. Soit $(u_n)_{n\geq 0}$ une suite dans **K**. $S_n = u_0 + \ldots + u_n$.

- 1. Si la suite de t.g. S_n est convergente, on dit que la série de t.g. u_n est convergente ou encore que la série $\sum u_n$ converge.
- 2. Si la suite $(S_n)_{n\geq 0}$ n'est pas convergente, on dit que la série de t.g. u_n est divergente ou que la série $\sum u_n$ diverge.
- $S_n = \text{somme partielle de la série } \sum u_n$

$$\star u_n = 2^{-n}, S_n = 2 - 2^{-n}!$$

• Si la série $\sum u_n$ est convergente, la limite de la suite $(S_n)_{n\geq 0}$ s'appelle la somme de la série $\sum u_n$ et se note

$$\sum_{n=0}^{+\infty} u_n \quad \text{ ou encore, } \quad \sum_{n\geq 0} u_n$$

* $u_n = 2^{-n}, S_n = 2 - 2^{-n}$ et $\lim_{n \to +\infty} S_n = 2$ soit

$$\sum_{n=0}^{+\infty} 2^{-n} = \sum_{k=0}^{+\infty} 2^{-k} = 2.$$

• Étudier la nature de la série $\sum u_n$ c'est dire si cette série est convergente ou divergente

Remarque. 1. Si la suite (u_n) est définie seulement pour $n \ge n_0$, on peut considérer la série $\sum u_n$; les sommes partielles sont alors

$$S_n = u_{n_0} + \ldots + u_n = \sum_{k=n_0}^n u_k$$

Si ces sommes partielles convergent, la limite est $\sum_{k=n_0}^{+\infty}u_k=\sum_{k\geq n_0}u_k$

•
$$u_n = 2^{-n}$$
, $\sum_{k=1}^{n} 2^{-k} = 1 - 2^{-n}$.

2. Soit $n_0 \in \mathbf{N}$. On a, pour $n \geq n_0$,

$$S_n = u_0 + \ldots + u_{n_0} + u_{n_0+1} + \ldots + u_n$$

 (S_n) est cv ssi $(S_n - S_{n_0})$ est cv.

La nature d'une série ne dépend pas des premiers termes de la suite! Par contre, la valeur de la somme si!

$$\sum_{n=0}^{+\infty} 2^{-n} = \lim_{n \to \infty} \left(2 - 2^{-n} \right) = 2, \quad \sum_{n=1}^{+\infty} 2^{-n} = \lim_{n \to \infty} \left(1 - 2^{-n} \right) = 1.$$

3. Lorsque $\sum u_n$ est cv, notons S la limite de (S_n) i.e. $S = \sum_{n \geq 0} u_n$. Pour $n \geq 0$, le reste d'ordre n est

$$R_n = S - S_n = \sum_{k>n} u_k \longrightarrow 0, \text{ si } n \to \infty.$$

Proposition. $Si \sum u_n$ converge, alors $\lim u_n = 0$.

• En effet, $u_n = S_n - S_{n-1}$.

Définition. Lorsque (u_n) ne converge pas vers 0, on dit que la série $\sum u_n$ est grossièrement divergente (GDV).

Remarque. Attention, la réciproque est fausse!!! On peut avoir $\lim u_n = 0$ et $\sum u_n$ divergente.

Exemples fondamentaux.

1. Série géométrique. Soit $z \in \mathbb{C}$. On étudie $\sum z^n$, $u_n = z^n$.

$$S_n = 1 + z + \ldots + z^n = \begin{cases} n+1, & \text{si } z = 1, \\ \frac{1-z^{n+1}}{1-z}, & \text{si } z \neq 1. \end{cases}$$

- Si $|z| \ge 1$, $|u_n| = |z^n| = |z|^n \ge 1$. La série est GDV!
- Si $|z| < 1, z^{n+1} \to 0$ et

$$\lim_{n \to \infty} S_n = \sum_{n=0}^{+\infty} z^n = \frac{1}{1-z}.$$

• Plus généralement, pour |z| < 1 et $l \in \mathbb{N}$,

$$\sum_{n=l}^{+\infty} z^n = \frac{z^l}{1-z}.$$

- 2. Série harmonique. Pour $n \ge 1$, $u_n = 1/n$. On note $H_n = \sum_{k=1}^n \frac{1}{k}$. On a $\lim_{n \to \infty} (1/n) = 0$ et pourtant $\sum_{k=1}^n \frac{1}{k}$ diverge!
 - Puisque $\ln(1+x) \le x$, $\frac{1}{k} \ge \ln\left(1+\frac{1}{k}\right) = \ln(k+1) \ln(k)$ et $H_n \ge \ln(n+1)$.
 - On peut aussi remarquer que

$$H_{2n} - H_n = \frac{1}{n+1} + \ldots + \frac{1}{2n} \ge n \times \frac{1}{2n} = \frac{1}{2}$$

Si $\sum n^{-1}$ convergeait, on a urait $\lim (H_{2n} - H_n) = 0!!$

Proposition. Soit $(a_n)_{n\geq 0}$ une suite de **K**. On note, pour $n\geq 0$, $u_n=a_n-a_{n+1}$. La série $\sum u_n$ est convergente ssi (a_n) est convergente et dans ce cas

$$\sum_{n>0} u_n = a_0 - \lim a_n.$$

• En effet,

$$S_n = \sum_{k=0}^n u_k = (a_0 - a_1) + (a_1 - a_2) + \ldots + (a_{n-1} - a_n) + (a_n - a_{n+1}) = a_0 - a_{n+1}.$$

Exemple. 1. $\sum \frac{1}{n(n+1)} \text{ cv} : \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$.

2.
$$\sum \ln \left(1 + \frac{1}{n}\right)$$
 diverge: $\ln \left(1 + \frac{1}{n}\right) = \ln(n+1) - \ln(n)$

2. Opérations sur les séries.

Proposition. 1. Si les séries $\sum u_n$ et $\sum v_n$ cv, alors $\sum (u_n + v_n)$ cv et

$$\sum_{n \ge 0} (u_n + v_n) = \sum_{n \ge 0} u_n + \sum_{n \ge 0} v_n.$$

2. $Si \sum u_n \ cv, \ alors, \ pour \ tout \ \lambda \in \mathbf{K}, \ \sum (\lambda u_n) \ cv \ et$

$$\sum_{n\geq 0} (\lambda u_n) = \lambda \sum_{n\geq 0} u_n$$

Corollaire. Soit $\lambda \neq 0$. Les séries $\sum u_n$ et $\sum (\lambda u_n)$ ont même nature.

Remarque. 1. La somme d'une série convergente et d'une série divergente est divergente

2. On ne peut rien dire pour la somme de deux séries divergentes :

(a)
$$u_n = v_n = 1/n$$
, $\sum (u_n + v_n)$ diverge

(b)
$$u_n = 1/n$$
, $v_n = -1/(n+1)$, $u_n + v_n = 1/(n(n+1))$, $\sum (u_n + v_n)$ converge

Proposition. Soit (u_n) une suite complexe; $u_n = a_n + ib_n$.

 $\sum u_n \ cv \ ssi \sum a_n \ et \sum b_n \ cv \ et \ dans \ ce \ cas$

$$\sum_{n\geq 0} u_n = \sum_{n\geq 0} a_n + i \sum_{n\geq 0} b_n, \qquad \operatorname{Re}\left(\sum_{n\geq 0} u_n\right) = \sum_{n\geq 0} \operatorname{Re}(u_n), \quad \operatorname{Im}\left(\sum_{n\geq 0} u_n\right) = \sum_{n\geq 0} \operatorname{Im}(u_n).$$

3. Convergence absolue.

Définition. Soit $\sum u_n$ une série dans **K**. Si la série $\sum |u_n|$ est convergente, on dit que la série de t.g. u_n est absolument convergente (ACV).

Théorème. Une série absolument convergente est convergente et $|\sum u_n| \leq \sum |u_n|$

Exemple. La série de t.g. $u_n = \frac{e^{in\theta}}{n(n+1)}$ est cv pour tout $\theta \in \mathbf{R}$ et

$$\left| \sum_{n=1}^{+\infty} \frac{e^{in\theta}}{n(n+1)} \right| \le \sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 1$$

• Attention : la réciproque est fausse.

* Série harmonique alternée.
$$u_n = \frac{(-1)^n}{n}$$
.

Définition. Si la série $\sum u_n$ est convergente et la série $\sum |u_n|$ divergente, on dit que la série de t.g. u_n est semi-convergente (SCV).

• La série harmonique alternée est SCV.

Remarque. Si $\sum |u_n|$ est GDV, $\sum u_n$ est aussi GDV!

Preuve du théorème. • On montre que le suite (S_n) est de Cauchy

- Puisque $\sum |u_n|$ est cv, $T_n = \sum_{k=0}^n |u_k|$ est de Cauchy.
- Soit $\varepsilon > 0$, il existe $p \ge 0$ tel que $|T_n T_m| < \varepsilon$ dès que $p \le n \le m$.

$$|S_n - S_m| = |u_{n+1} + u_{n+2} + \ldots + u_m| \le |u_{n+1}| + |u_{n+2}| + \ldots + |u_m| = |T_n - T_m| < \varepsilon.$$

- On suppose que $\sum |u_n|$ cv.
- Pour l'inégalité, on envoie $n\to\infty,$ dans l'inégalité

$$|S_n| = \left| \sum_{k=0}^n u_k \right| \le |T_n| = \sum_{k=0}^n |u_k|.$$