See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231649569

Fabrication of Eu3 + and Sm3 + Codoped Micro/Nanosized MMoO4 (M= Ca, Ba, and Sr) via Facile Hydrothermal Method and Their Photoluminescence Properties Through Energy Transfer

ARTICLE in THE JOURNAL OF PHYSICAL CHEMISTRY C · MARCH 2008

Impact Factor: 4.77 · DOI: 10.1021/jp800559f

CITATIONS

74

READS

149

6 AUTHORS, INCLUDING:

Ye Jin

Chongqing University of Technology

36 PUBLICATIONS 329 CITATIONS

SEE PROFILE

Xia Zhang

79 PUBLICATIONS **1,247** CITATIONS

SEE PROFILE

Jiahua Zhang

Changchun Institute of Optics, Fine Mechani...

54 PUBLICATIONS **1,191** CITATIONS

SEE PROFILE

Xiaojun Wang

Georgia Southern University

201 PUBLICATIONS 3,993 CITATIONS

SEE PROFILE

Fabrication of Eu^{3+} and Sm^{3+} Codoped Micro/Nanosized MMoO₄ (M = Ca, Ba, and Sr) via Facile Hydrothermal Method and Their Photoluminescence Properties through Energy Transfer

Ye Jin, †; Jiahua Zhang, *,† Shaozhe Lii,† Haifeng Zhao,† Xia Zhang,† and Xiao-jun Wang *,†,§

Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 Eastern South Lake Road, Changchun 130033, China; Graduate School of Chinese Academy of Sciences, Beijing 100039, China; and Department of Physics, Georgia Southern University, Statesboro, Georgia 30460

Received: January 17, 2008; In Final Form: February 27, 2008

Eu³⁺ and Sm³⁺ codoped micro/nanosized MMoO₄ (M = Ca, Ba, Sr) phosphors with various shapes have been synthesized via a facile hydrothermal method with surfactant-free environment. The morphology of the materials was found to be manipulated by the pH value of the precursor solution. MMoO₄:Eu³⁺, Sm³⁺ (M = Ca, Ba, Sr) nanoflakes, microflowers, cubes, and spheres were obtained and characterized by X-ray diffraction and field emission scanning electron microscopy. The luminescent properties of the molybdate phosphors were systematically studied. The introduction of Sm³⁺ into each of the red-emitting phosphors MMoO₄:Eu³⁺ (M = Ca, Ba, Sr) can generate a strong excitation line at 405 nm, originating from the H_{5,2} P_{5,5} transition of Sm³⁺, significantly extending the excitation region for matching the near-ultraviolet light-emitting diodes (~400 nm). Energy transfer from Sm³⁺ to Eu³⁺ was observed in the whole MMoO₄ systems and investigated in detail in CaMoO₄ as a function of Sm³⁺ concentrations. A back-energy transfer was also evidenced by the shortening of the ⁵D₀ lifetimes of Eu³⁺ with increasing Sm³⁺ concentrations.

1. Introduction

Self-assembled microstructure and nanostructures with specific morphology and novel physical and chemical properties have attracted great attention in recent years, owing to their potential applications as advanced materials in the future. 1,2 Lots of one-dimensional (1D), two-dimensional (2D), and threedimensional (3D) assembled superstructures have been synthesized by using various methods.^{3,4} Among them, the frequent one is the surfactant-assistant method, with which a surfactant with other solutions forms oil-in-water or water-in-oil microemulsion to control the morphology of the products.^{5,6} However, there are some points which cannot be neglected: (1) a surfactant is usually organic material which is not good for luminescence; (2) the utilization of the surfactant is a complicated process that restricts the popularization of the techniques in practical applications, and the important one is that it will increase the production cost. So it is a significant work to find a template-free method which is useful in synthesizing of the assembled 1D, 2D, or 3D structures.

Molybdate with a sheelite-type structure has been of practical interest for a long time because of its attractive luminescence property with the promising applications in photoluminescence, optical fibers, and scintillators. Recently, Eu³+ doped CaMoO₄ has been investigated extensively as a red-emitting phosphor for near-ultraviolet (UV) GaN chip (390–410 nm) based white-light-emitting diodes (W-LEDs). 12,13 This phosphor demonstrates strong red fluorescence, originating from $^5D_0 \rightarrow$

⁷F₂ transition of Eu³⁺ upon near-UV excitation into the ⁵L₆ state of Eu³⁺ at 395 nm. It also exhibits more stable physical and chemical properties than the well-known red phosphor, Y₂O₂S: Eu³⁺, and no concentration quenching. ^{14,15} A few significant investigations have been done to further improve the luminescent properties of this phosphor by codoping other metal ions. In our previous work, the luminescent enhancement of Eu³⁺ in CaMoO₄ was observed by codoping Bi³⁺. ¹⁶ To extend the near-UV excitation lines for effectively covering the near-UV LED source in the spectral range, Sm³⁺ was codoped into CaMoO₄: Eu³⁺.¹⁷ In this case, energy transfer between Sm³⁺ and Eu³⁺ occurs, resulting in the appearance of a new excitation line at 405 nm, originating from ${}^{6}\text{H}_{5/2} \rightarrow {}^{6}\text{P}_{5/2}$ transition of Sm³⁺. The study on dynamical processes in energy transfer between Sm³⁺ and Eu^{3+} in MMoO₄ (M = Ca, Sr, Ba), however, has not been demonstrated. In this paper, we systematically report the synthesis and luminescent properties of the nano- and microsized $MMoO_4$: Eu^{3+} , Sm^{3+} (M = Ca, Sr, Ba) system. 2D $CaMoO_4$: Eu³⁺, Sm³⁺ nanoflakes and its self-assembly into microflowers in surfactant-free environment, SrMoO₄:Eu³⁺, Sm³⁺ microspheres, and BaMoO₄:Eu³⁺, Sm³⁺ microflowers are demonstrated. The energy transfer in CaMoO₄:Eu³⁺, Sm³⁺ is mainly studied by analyzing the change of excitation spectra and fluorescence lifetimes of Eu³⁺ with different Sm³⁺ concentrations. The optimal composition of CaMoO₄:20% Eu³⁺, 3% Sm³⁺ is finally determined.

2. Experimental Section

The nanostructure and microstructure $MMoO_4$ (M = Ca, Sr, Ba) were synthesized via a facile hydrothermal method. The required device is a 50 mL Teflon-lined stainless steel autoclave. All the raw chemical materials were used without further

^{*} Corresponding authors: Tel/Fax +86-431-8617-6317; e-mail zhangjh@ciomp.ac.cn or xwang@georgiasouthern.edu.

[†] Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

[‡] Graduate School of Chinese Academy of Sciences.

[§] Georgia Southern University.

Figure 1. XRD patterns of Eu^{3+} and Sm^{3+} codoped $MMoO_4$ (M = Ca, Sr, Ba) materials.

purification. The detail of reaction procedure is as follows: Na₂-MoO₄•H₂O was used to offer MoO₄²⁻, and it was prepared by adding 2 mmol of Na₂MoO₄·H₂O into 20 mL of deionized water. Meanwhile, 2 mmol of MO (M = Ca, Sr, Ba) was solved in 20 mL of thin nitrate to be M(NO₃)₂ solution. Then, the dopant ions were added into M(NO₃)₂ solution by dropping appreciated Eu(NO₃)₃ (0.1 M) or Sm(NO₃)₃ (0.01 M) solution, which was prepared in advance. The Na₂MoO₄ solution was dropped into M(NO₃)₂:Eu³⁺, Sm³⁺ solution slowly under vigorous stirring. A white precipitate was observed in the glass beaker. The pH value was adjusted to an appropriate constant with diluted ammonia or diluted nitric acid, which is a key factor to the morphology of the product. The vigorous stirring was continued for 30 min. Finally, the precursor solution was transferred into a 50 mL Teflon-lined stainless steel autoclave, which was subsequently sealed and maintained at 130 °C for 6 h. After that, the autoclave was cooled to room temperature naturally. The product was collected by filtering and washing several times with deionized water and absolute ethanol. Then, the powder was obtained after being dried in air at 100 °C for 2 h.

The structures of samples were characterized by X-ray diffraction (XRD) (Rigaku D/max-rA powder diffractometer with Cu target radiation resource ($\lambda = 1.54078 \text{ Å}$)). The morphology was investigated by using field emission scanning electron microscopy (FE-SEM) (Hitachi S-4800). Fluorescence and excitation spectra were recorded at room temperature using a Hitachi F-4500 spectrophotometer equipped with a 150 W Xe-arc lamp. The emission spectra were measured at a fixed band-pass of 0.2 nm with the same instrument parameters. Luminescent decay curves were recorded by an oscillograph (Tektronix, TDS 3052, 500 MHz, 5 Gs/s), with a 266 nm light as excitation source. It was generated from the fourth-harmonic generator pumped by the pulsed Nd:YAG laser, with a line width of 1.0 cm⁻¹, pulse duration of 10 ns, and repetition frequency of 10 Hz.

3. Results and Discussion

The structures of the samples were characterized by XRD patterns, which are shown in Figure 1. The XRD patterns of CaMoO₄:20% Eu³⁺, 2% Sm³⁺, BaMoO₄:20% Eu³⁺, 2% Sm³⁺, and SrMoO₄:20% Eu³⁺, 2% Sm³⁺ are consistent with JCPDS No. 29-0193, No. 08-0482, and No. 85-0585, respectively. All the reflection peaks were labeled in Figure 1. No additional peaks can be found in the patterns, indicating that the dopant ions did not change the structure of hosts.

Figure 2 shows the typical SEM images of CaMoO₄:Eu³⁺, Sm³⁺ samples prepared in different reaction conditions. Figure

Figure 2. Typical SEM images of CaMoO₄:20% Eu³⁺, 2% Sm³⁺ under different conditions. (a) pH \sim 3-4 of the precursor solution. (b) pH \sim 4-5. (c) pH \sim 5-6. (d) The sample shown in (b) after annealing at 200 °C for 4 h.

Figure 3. Room temperature excitation (A) and emission (B) spectra of CaMoO₄:20% Eu³⁺, 2% Sm³⁺ with different shapes.

2a is the quasi-hexagonal CaMoO₄:Eu³⁺, Sm³⁺ nanoflakes with 500 nm width and 100 nm thickness (inset), which were obtained in the precursor solution with pH value around 3-4. When the pH value was adjusted to 4-5, the morphology was quadrangle with about 500 nm width and 50 nm thickness, as shown in Figure 2b. As the pH value was adjusted to 5-6, a flowerlike shape was obtained, as shown in Figure 2c. Figure 2d shows the cubes converted from the quadrangles shown in Figure 2b after annealing at 200 °C for 4 h. From all the images of Figure 2, the thickness of all the flakes is almost uniform around 100 nm, and the nanoflakes are linked together by either edge-to-edge or edge-to-surface conjunction.

In our experiment, it was found that the pH value of the precursor solution plays a crucial role in shape and size controlling of these building subunits. The shapes of flakes can be restricted by pH value of the precursor, and it is also affected whether the flakes aggregated to flowerlike products.

Figure 3A,B illustrates the excitation and emission spectra of these CaMoO₄:20% Eu³⁺, 2% Sm³⁺ samples with different shapes, as illustrated in Figure 2. The excitation spectra monitoring the red emission line at 612 nm are composed of an intense broad band and some sharp lines. The broad band in the range of 200-350 nm is assigned to the combination of the charge-transfer transition of $O^{2-} \rightarrow Mo^{6+}$ and $O^{2-} \rightarrow Eu^{3+}$. For the microflower sample, it can be seen that a new broad excitation band appears at 325 nm. The sharp line around 405 nm corresponds to the ${}^{6}\text{H}_{5/2} \rightarrow {}^{6}\text{P}_{5/2}$ transition of Sm³⁺, 17 and the other sharp lines including the strong one at 395 nm correspond to the transitions of Eu³⁺ ions. The appearance of the 405 nm excitation line indicates the performance of energy transfer from Sm³⁺ to Eu³⁺.

Figure 4. Reflection spectra of CaMoO₄ host and rare earth doped CaMoO₄.

The diffused reflectance spectra of the samples with different dopant ions were measured, as shown in Figure 4. An absorption edge at 300 nm owing to MoO^{2-} is clearly presented in all the samples, and the Eu^{3+} absorption peaks corresponding to $^{7}\text{F}_{0} \rightarrow ^{5}\text{L}_{6}$ transition at 395 nm, $^{7}\text{F}_{0} \rightarrow ^{5}\text{D}_{2}$ transition at 465 nm, and Sm^{3+} ($^{1}\text{H}_{5}$) $^{2-}$ ($^{1}\text{P}_{5}$) transition at 405 nm are also observed. It can be found that the Eu^{3+} -free samples exhibit a sharp absorption edge, and the Eu^{3+} doped samples, however, show additional absorbance in the range of 300–350 nm, making the absorption edge very slow. In view of the results of the diffused reflectance spectra, the additional broad excitation band at 325 nm in microflower CaMoO₄:20% Eu^{3+} , 2% Sm^{3+} is considered to be related to Eu^{3+} . In molybdates, the changes of $\text{O} \rightarrow \text{Mo}$ CTB owing to the influence of Eu^{3+} ions were also reported in the literature. 13

Characteristic emission peaks of Eu^{3+} within the wavelength range from 580 to 620 nm, corresponding to the transitions from the excited 5D_0 to 7F_J (J=1,2) levels, were observed in the emission spectra (Figure 3B). The relative intensities of the $^5D_0 \rightarrow ^7F_2$ transition to $^5D_0 \rightarrow ^7F_1$ emission range from 3.6 to 7.2; that of cubic CaMoO₄: Eu^{3+} , Sm³⁺ is the strongest, and that of the flowerlike one is the weakest. The emission of Sm³⁺ ions did not appear even under direction excitation of Sm³⁺. It means the occurrence of efficient energy transfer from Sm³⁺ ions to Eu^{3+} ions. A possible four-step energy transfer mechanism from Sm³⁺ ions to Eu^{3+} ions has been elaborated. ¹⁷ It was described that the electron was excited from the ground state $^6H_{5/2}$ to $^6P_{5/2}$, and it jumped down to $^5G_{5/2}$ of Sm³⁺ ions and transferred to $^5D_0 \rightarrow ^7F_2$ transition of Eu^{3+} ions was observed.

From Figure 3A,B, the most intense luminescence is from the cubic CaMoO₄:20% Eu³⁺, 2% Sm³⁺ under 405 nm excitation. It means that the energy transfer in cubic CaMoO₄:20% Eu³⁺, 2% Sm³⁺ is the most efficient. The most probable reason is that the sample had been annealed at 200 °C for 4 h, which may eliminate many defects that block the energy transfer between Sm³⁺ and Eu³⁺.

For the energy transfer between Sm³⁺ ions and Eu³⁺ ions, the investigation in CaMoO₄ host with microflower shape in detail has been done, and the excitation and emission spectra are shown in parts A and B of Figure 5, respectively. Excitation spectra were recorded by monitoring the emission of Eu³⁺ ions at 612 nm, and emission spectra were performed under 405 nm excitation. In CaMoO₄, the concentration of Eu³⁺ ions was fixed at 20%, and the concentrations of Sm³⁺ ranged from 0 to 5%. In the excitation spectrum of Eu³⁺ singly doped CaMoO₄ in the near-UV range of 390–410 nm, only a strong line at 395

Figure 5. Excitation (A) and emission (B) spectra of CaMoO₄:20% Eu^{3+} , $x Sm^{3+}$ (x = 0-5%).

Figure 6. Dependence of ratio of I_{405} to I_{395} and integrated intensity of ${}^5\mathrm{D}_0 \rightarrow {}^7\mathrm{F}_2$ transition of Eu³⁺ ions on the concentration of Sm³⁺ ions in CaMoO₄ ($\lambda_{\mathrm{ex}} = 405$ nm).

nm appears. The introduction of Sm^{3+} into $CaMoO_4:Eu^{3+}$ generates an excitation line at 405 nm. The excitation peaks at 395 nm and at 405 nm grow with the increasing of the Sm^{3+} concentrations up to 3% and then decrease as the Sm^{3+} concentration beyond 3%. As a result, it is speculated that there exists a back-energy transfer from Eu^{3+} to Sm^{3+} .

The intensity ratios of the 405 nm peak to the 395 nm peak (I_{405}/I_{395}) increase monotonously with increasing the Sm³⁺ concentrations, demonstrating enhanced energy transfer efficiency, as shown in Figure 6A. The dependence of the ratio of I_{405}/I_{395} on the concentration of Sm³⁺ ions is close to a linear relationship as Sm³⁺ concentration lower than 3%. When the product was under continuous excitation into Sm³⁺ at 405 nm, we have the following equations:

$$f\sigma_1 c_1 = \gamma_1 n_1 + W_{12} n_1 c_2 - W_{21} n_2 c_1 \tag{1}$$

$$W_{12}n_1c_2 = \gamma_2n_2 + W_{21}n_2c_1 \tag{2}$$

where f is the excitation density; σ_i , c_i , γ_i , and n_i are absorption cross section, doping concentration, relaxation rate, and excited-state populations, respectively, for dopant i (i = 1 for Sm³⁺ and 2 for Eu³⁺); W_{12} and W_{21} denote the energy transfer coefficients from Sm³⁺ to Eu³⁺ and back-transfer from Eu³⁺ to Sm³⁺, respectively. From eqs 1 and 2, one has

$$n_2 = \frac{f\sigma_1 c_1 W_{12} c_2}{\gamma_1 \gamma_2 + \gamma_1 W_{21} c_1 + W_{12} c_2 \gamma_2}$$
 (3)

Similarly, when Eu^{3+} is continuously excited by 395 nm, we have the two equations

$$f\sigma_2 c_2 = \gamma_2 n_2' + W_{21} n_2' c_1 - W_{12} n_1' c_2 \tag{4}$$

$$W_{21}n_2'c_1 = \gamma_1n_1' + W_{12}n_1'c_2 \tag{5}$$

From eqs 4 and 5, the population of Eu³⁺ is written as

$$n_2' = \frac{f\sigma_2 c_2 (\gamma_1 + W_{12} c_2)}{\gamma_1 \gamma_2 + \gamma_2 W_{12} c_2 + \gamma_1 W_{21} c_1}$$
(6)

The ratio is

$$\frac{I_{405}}{I_{395}} = \frac{n_2}{n_2'} = \frac{\sigma_1 c_1 W_{12}}{\sigma_2 (c_2 W_{12} + \gamma_1)} \tag{7}$$

Therefore, the ratio of I_{405}/I_{395} is basically a linear dependence on c_1 , the concentration of Sm³⁺ ions. From eq 7, a linear dependence of I_{405}/I_{395} on c_1 is expected if γ_1 is independent of c_1 . Figure 6A, however, demonstrates a deviation from linear dependence as Sm³⁺ concentration higher than 3%. It is considered that the energy diffusion among Sm³⁺ is rapidly speeded up with increasing Sm³⁺ concentrations and thus dominates the relaxation rate, γ_1 , at higher Sm³⁺ concentrations.

Figure 6B shows the dependence of luminescence intensity on Sm³⁺ concentrations upon 405 nm excitation in CaMoO₄: 20% Eu³⁺, 3% Sm³⁺. It can be seen the luminescence reaches the maximum at Sm³⁺ concentration of 3%. From eq 3, the continued increasing of Sm³⁺concentration c_1 can possibly cause the maximum intensity of n_2 due to γ_1 in the denominator of eq 3. The optimal composition of CaMoO₄:20% Eu³⁺, 3% Sm³⁺ is finally determined.

The back-energy transfer was studied by measuring the lifetimes of the Eu³+ emission at 612 nm as a function of Sm³+concentration, shown in Figure 7. When the concentration of Sm³+ ions was lower than 3%, the lifetimes of Eu³+ ions change slowly. As the concentration was more than 3%, the lifetime was obviously shortened, indicating the effect of back-transfer from the 5D_0 level of Eu³+ to the $^4G_{5/2}$ level of Sm³+.

BaMoO₄:Eu³⁺, Sm³⁺ microflowers and SrMoO₄:Eu³⁺, Sm³⁺ microspheres have been also synthesized by adjusting pH value to 3 and 5, respectively. Under the same hydrothermal condition as that of CaMoO₄:Eu³⁺, Sm³⁺, the morphology of BaMoO₄:Eu³⁺, Sm³⁺ is also microflowers, similarly to that of CaMoO₄:Eu³⁺, Sm³⁺, except the size growing up, while the shape of SrMoO₄:Eu³⁺, Sm³⁺ is 800 nm diameter microspheres, as displayed in Figure 8. Figure 8a is the low-magnification SEM image of BaMoO₄:Eu³⁺, Sm³⁺, and Figure 8b is high-magnification SEM image, which suggests that the flakes composed of microflower are some anomalous flakes. Figure 8c is the general view of the product SrMoO₄:Eu³⁺, Sm³⁺, suggesting that most of the product is microspheres. Figure 8d depicts the high magnification of the spherical SrMoO₄:Eu³⁺, Sm³⁺, sm³⁺, and the diameter of SrMoO₄:Eu³⁺, Sm³⁺ is about 800 mm.

Figure 9 shows the excitation and emission spectra of MMoO₄:20% Eu³⁺, 2% Sm³⁺ (M = Ca, Sr, Ba). As can be seen, the 405 nm excitation line also appears in BaMoO₄:Eu³⁺, Sm³⁺ and SrMoO₄:Eu³⁺, Sm³⁺, indicating the performance of energy transfer from Sm³⁺ to Eu³⁺. While both the emission at 612 nm and the excitation band at 325 nm grow up with changing host in the order of BaMoO₄, SrMoO₄, and CaMoO₄, in molybdates the central Mo⁶⁺ metal ion is coordinated to four oxygen atoms in tetrahedral symmetry (T_d) and the cations with eight oxygen atoms form different tetrahedrons. The ionic radii of Eu³⁺ (r = 1.07 Å when coordination number (CN) = 8) and Sm³⁺ are close to that of Ca²⁺ (r = 1.12 Å when CN = 8) rather than those of Sr²⁺ (r = 1.20 Å when CN = 8) and Ba²⁺

Figure 7. Room temperature luminescent decay curves of ${}^5D_0 \rightarrow {}^7F_2$ transitions at 612 nm of Eu³⁺ ions of CaMoO₄:20% Eu³⁺, x Sm³⁺ (x = 0–5%). Inset: dependence of the lifetime at 612 nm of Eu³⁺ ions on the concentration of Sm³⁺ ions in CaMoO₄.

Figure 8. SEM images of BaMoO₄:Eu³⁺, Sm³⁺ and SrMoO₄:Eu³⁺, Sm³⁺. SEM image of BaMoO₄:Eu³⁺, Sm³⁺ in low magnification (a) and in high magnification (b). SEM image of SrMoO₄:Eu³⁺, Sm³⁺ in low magnification (c) and in high magnification (d).

Figure 9. Excitation and emission spectra of $MMoO_4$:20% Eu^{3+} , 2% Sm^{3+} (M = Ca, Sr, Ba).

 $(r = 1.38 \text{ Å when CN} = 8).^{16}$ The lattice distortion due to substitution of Eu³⁺ and Sm³⁺ for M²⁺ (M = Ba, Sr, Ca) sites reasonably becomes smaller with M changing from Ba to Sr and Ca. The strongest luminescence and the excitation band at 325 nm in CaMoO₄, therefore, are expected.

The luminescent dynamics of Eu³⁺ ions in the three hosts have been also investigated. Figure 10 shows the fluorescence decay patterns in CaMoO₄:20% Eu³⁺, 2% Sm³⁺, BaMoO₄:20%

Figure 10. Room temperature luminescent decay curves of 5D_0 of Eu³⁺ ions of MMoO₄:20% Eu³⁺, 2% Sm³⁺ (M = Ca, Sr, Ba).

 Eu^{3+} , 2% Sm^{3+} , and $SrMoO_4$:20% Eu^{3+} , 2% Sm^{3+} . The decay curves are nonexponential and well fitted into a two-exponential function

$$I = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$$

where τ_1 and τ_2 are time constants and A_1 and A_2 are constants. The average lifetimes were calculated by using the formula

$$\langle \tau \rangle = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$

As can be seen, the average lifetime in $CaMoO_4$: Eu^{3+} , Sm^{3+} was the longest and that in the $BaMoO_4$: Eu^{3+} , Sm^{3+} is the shortest. This result further reflects the effect of lattice distortion, which perhaps results in nonradiative relaxation channels and reduction of the 5D_0 lifetime in the three materials. The nonexponential decay can be also caused by the nonradiative relaxation channels with different rates or the back energy transfer from Eu^{3+} to Eu^{3+} to Eu^{3+} .

4. Conclusions

In conclusion, CaMoO₄:Eu³⁺, Sm³⁺ nanoflakes, microflowers, cubes, and BaMoO₄:Eu³⁺, Sm³⁺ microflowers and SrMoO₄: Eu³⁺, Sm³⁺ microspheres were synthesized systematically via facile hydrothermal method with surfactant-free environment. The pH value of the precursor was found to be a crucial factor to affect the morphology of the products. For CaMoO₄:Eu³⁺, Sm³⁺, when the pH value was adjusted to be 3–4, it is quasihexagon nanoflakes; when 4–5 and 5–6 they are quadrangles and microflowers, respectively. The red fluorescence of Eu³⁺ and energy transfer from Sm³⁺ to Eu³⁺ in all the products were

observed. In CaMoO₄:20% Eu³⁺, $x \text{ Sm}^{3+}$ (x = 0-5%), the ratio of I_{405}/I_{395} , related to energy transfer efficiency, increases linearly with the concentration of \mbox{Sm}^{3+} up to 3% and increases slowly as Sm3+ concentration higher than 3%, which is attributed to the effect of energy diffusion among Sm³⁺ ions. A back-energy transfer from Eu³⁺ to Sm³⁺ was also observed by measuring the fluorescence lifetimes of Eu³⁺ as a function of Sm³⁺concentrations. Owing to efficient energy transfer, a strong excitation line at 405 nm, originating from ${}^{6}\text{H}_{5/2} \rightarrow {}^{6}\text{P}_{5}$ transition of Sm³⁺, is generated in the excitation spectra of the Eu³⁺ fluorescence. It significantly extends the excitation region of these materials for matching the near-ultraviolet light-emitting diodes (~400 nm). For the aim to use in W-LEDs with high color rendering index and color reproducibility, Eu³⁺ and Sm³⁺ codoped MMoO₄ (M = Ca, Sr, Ba) materials are good choices to afford red-emitting components.

Acknowledgment. This work was financially supported by the MOST of China (2006CB601104 and 2006AA03A138) and the National Natural Science Foundation of China (10774141 and 10574128).

References and Notes

- (1) Wang, Z. L. Adv. Mater. 2003, 15, 432.
- (2) Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Science 2007, 316, 102.
- (3) Zhang, G. Q.; Zhang, T.; Lu, X. L.; Wang, W. J. Phys. Chem. C 2007, 111, 12663.
- (4) Gao, Y. H.; Bao, Y. P.; Beerman, M.; Yasuhara, A.; Shindo, D. *Appl. Phys. Lett.* **2004**, *84*, 3361.
- (5) Gong, Q.; Qian, X. F.; Ma, X. D.; Zhu, Z. K. Cryst. Growth Des. **2006**, *6*, 1821.
- (6) Sun, L.; Guo, Q.; Wu, X.; Luo, S.; Pan, W.; Huang, K.; Lu, J.; Ren, L.; Cao, M.; Hu, C. *J. Phys. Chem. C* **2007**, *111*, 532.
 - (7) Oi, T.; Takagi, K.; Fukazawa, T. *Appl. Phys. Lett.* **1980**, *36*, 278.
- (8) Wang, H.; Medina, F. D.; Zhou, Y. D.; Zhang, Q. N. Phys. Rev. B 1992, 45, 10356.
- (9) Tanaka, K.; Miyajima, T.; Shirai, N.; Zhuang, Q.; Nakata, R. J. Appl. Phys. 1995, 77, 6581.
- (10) Liao, H. W.; Wang, Y. F.; Liu, X. M.; Li, Y. D.; Qian, Y. T. Chem. Mater. 2000, 12, 2819.
- (11) Kwan, S.; Kim, F.; Akana, J.; Yang, P. D. *Chem. Commun.* **2001**, 5, 447.
- (12) Hu, Y. S.; Zhuang, W. D.; Ye, H. Q.; Wang, D. H.; Zhang, S. S.; Huang, X. W. J. Alloys Compd. **2005**, 390, 226.
- (13) Wang Z. L.; Liang, H. B.; Wang, J.; Gong, M. L.; Su, Q. Appl. Phys. Lett. **2006**, 89, 071921.
- (14) Van Vliet, J. P. M.; Blasse, G.; Brixner, L. H. J. Solid State Chem. 1988, 76, 160.
- (15) Yamamoto, H.; Seki, S.; Ishiba, T. J. Solid State Chem. 1991, 94, 396.
- (16) Yan, S.; Zhang, J.; Zhang, X.; Lu, S.; Ren, X.; Nie, Z.; Wang, X. J. Phys. Chem. C 2007, 111, 13256.
- (17) Wang, Z. L.; Liang, H. B.; Gong, M. L.; Su, Q. Electrochem. Solid-State Lett. 2005, 8, H33.