

Amino Acids, Peptides, and Proteins

Amino Acids

- The building blocks of proteins
- Also used as single molecules in biochemical pathways
- 20 standard amino acids (a-amino acids)
- Two functional groups:
 - carboxylic acid group
 - amino group on the alpha (α) carbon
- Have different side groups (R)
 - Properties dictate behavior of AAs

Zwitterions

- Both the –NH₂ and the –COOH groups in an amino acid undergo ionization in water.
- At physiological pH (7.4), a zwitterion forms
 - − Both + and − charges
 - Overall neutral
 - Amphoteric
 - Amino group is protonated
 - Carboxyl group is deprotonated

- Soluble in polar solvents due to ionic character
- Structure of R also influence solubility

Classification of Amino Acids

- Classify by structure of R
 - Nonpolar
 - Polar
 - Aromatic
 - Acidic
 - Basic

Nonpolar Amino Acids

• Hydrophobic, neutral, aliphatic

Polar Amino Acids

• Hydrophilic, neutral, typically H-bond

Disulfide Bonds

Formed from oxidation of cysteine residues

Aromatic Amino Acids

• Bulky, neutral, polarity depend on R

Phenylalanine Tyrosine Tryptophan

Acidic and Basic Amino Acids

Acidic

- R group = carboxylicacid
- Donates H⁺
- Negatively charged

Basic

- R group = amine
- Accepts H⁺
- Positively charged
- His ionizes at pH 6.0

Acid-base Properties

- Remember H₃PO₄ (multiple pK_a's)
- AAs also have multiple pK_a's due to multiple ionizable groups

pH and Ionization

• Consider glycine:

Note that the uncharged species never forms

Titration of Glycine

- pK₁– [cation] = [zwitterion]
- pK₂
 - [zwitterion] = [anion]
- First equivalence point
 - Zwitterion
 - Molecule has no net charge
 - pH = pI (Isoelectric point)
 - pI = average of pK_a's = $\frac{1}{2}$ (pK₁ + pK₂)
 - $pI_{glycine} = \frac{1}{2} (2.34 + 9.60) = 5.97$

Stereochemistry of AAs

• All amino acids (except glycine) are optically active

• Fischer projections:

Non-standard Amino Acids

AA derivatives

- Modification of AA after protein synthesized
- Terminal residues or R groups
- Addition of small alkyl group, hydroxyl, etc.

• D-AAs

- Bacteria

The Peptide Bond

- Chain of amino acids = peptide or protein
- Amino acid residues connected by peptide bonds
- Residue = $AA H_2O$

The Peptide Bond

• A peptide bond (amide bond) is a covalent <u>chemical bond</u> formed between two <u>molecules</u> when the <u>carboxyl group</u> of one molecule reacts with the <u>amine group</u> of the other molecule, thereby releasing a molecule of <u>water</u> (H₂O). This is a <u>dehydration synthesis</u> reaction (also known as a <u>condensation reaction</u>), and usually occurs between <u>amino acids</u>. The resulting C(O)NH bond is called a peptide bond, and the resulting molecule is an <u>amide</u>. The four-atom functional group -C(=O)NH-is called a peptide link. <u>Polypeptides</u> and <u>proteins</u> are chains of <u>amino acids</u> held together by peptide bonds

• Amide linkage is planar, NH and CO are anti

Polypeptides

- Linear polymers (no branches)
- AA monomers linked head to tail
- Terminal residues:
 - Free amino group (N-terminus)
 - Draw on left
 - Free carboxylate group (C-terminus)
 - Draw on right
- pK_a values of AAs in polypeptides differ slightly from pK_a values of free AAs

Naming Peptides

- Name from the free amine (NH_3^+)
- Use -yl endings for the names of the amino acids
- The last amino acid with the free carboxyl group (COO⁻) uses its amino acid name

Protein size

- In general, proteins contain > 40 residues
 - Minimum needed to fold into tertiary structure
- Usually 100-1000 residues
- Percent of each AA varies
- Proteins separated based on differences in size and composition
- Proteins must be pure to analyze, determine structure/function

General Separation Procedure

- Detect/quantitate protein (assay)
- Determine a source (tissue)
- Extract protein
 - Suspend cell source in buffer
 - Homogenize
 - Break into fine pieces
 - Cells disrupted
 - Soluble contents mix with buffer
 - Centrifuge to separate soluble and insoluble
- Separate protein of interest
 - Based on solubility, size, charge, or binding ability

Chromatography

- Mobile phase
 - Mixture dissolved in liquid or solid
- Stationary phase
 - Porous solid matrix
- Components of mixture
 pass through the column at different rates based on properties

Paper

- Stationary phase = filter paper
- Same theory as thin layer chromatography (TLC)
- Components separate based on polarity

High-performance liquid (HPLC)

- Stationary phase = small uniform particles, large surface area
- Adapt to separate based on polarity, size, etc.

Hydrophobic Interaction

- Hydrophobic groups on matrix
- Attract hydrophobic portions of protein

Ion-exchange

- Stationary phase = chemically modified to include charged groups
- Separate based on net charge of proteins
- Anion exchangers
 - Cation groups (protonated amines) bind anions
- Cation exchangers
 - Anion groups (carboxylates)
 bind cations

Proteins move through the column at rates determined by their net charge at the pH being used. With cation exchangers, proteins with a more negative net charge move faster and elute earlier.

Gel-filtration

- Size/molecular exclusion chromatography
- Stationary phase = gelswith pores of particular size
- Molecules separate based on size
 - Small molecules caught in pores
 - Large molecules pass through

Affinity

- Matrix chemically
 altered to include a
 molecule designed to
 bind a particular
 protein
- Other proteins pass through

