

概率论与数理统计课程组

CHAPTER 3

多维随机 变量及其 分布

- § 3.1 二维随机变量及其联合分布函数
- § 3. 2 二维离散型随机变量及其联合分布律
- § 3. 3 二维连续型随机变量及其联合概率密度
- § 3.4 边缘分布
- § 3.5 条件分布
- § 3. 6 随机变量的独立性
- § 3.7 二维随机变量函数及其分布

3.4 边缘分布

上节将二维随机变量视为一个整体,讨论F(x,y),但X、Y 也是一个随机变量,他们各自的分布函数如何?

定义

X、Y的分布函数记为 $F_X(x)$ 和 $F_Y(y)$ 称为边缘分布函数

$$\begin{cases} F_X(x) = F(x,+\infty) \\ F_Y(y) = F(+\infty,y) \end{cases}$$

因为
$$F_X(x) = P(X \le x) = P(X \le x, Y \le +\infty)$$

令联合分布函数 F(x, y) 中的 $y \to +\infty$ 得到 $F_X(x)$

二维离散型随机变量

(X, Y) 联合分布律为 $P(X = x_i, Y = y_j) = p_{ij}, i, j = 1, 2, \cdots$

X、Y的边缘分布函数为

$$F_X(x) = F(x,+\infty) = \sum_{x_i \le x} \sum_{j=1}^{\infty} p_{ij}$$
 $F_Y(y) = F(+\infty,y) = \sum_{y_j \le y} \sum_{i=1}^{\infty} p_{ij}$

因为
$$X$$
的分布律 $P(X=x_i)=P(X=x_i,Y<+\infty)=\sum_j p_{ij}$ 记为 $==p_{i\bullet}$ $i=1,2,\cdots$

因为
$$Y$$
的分布律 $P(Y=y_j)=P(X<+\infty,Y=y_j)=\sum_i p_{ij}$ 记为 $==p_{\bullet,i}$ $j=1,2,\cdots$

由联合分布律的表格写出边缘分布律

X^{Y}	y_1	$y_2 \dots$	y_j	$P(X=x_i)$
$\overline{x_1}$	p_{11}	p_{12}	p_{1j}	<i>p</i> _{1•}
x_2	p_{21}	p_{22}	p_{1j} p_{2j} \vdots	p _{2•}
r	n	$p_{\cdot a}$: p	\boldsymbol{n} .
		• • • • • • • • • • • • • • • • • • •	$\stackrel{\boldsymbol{\cdot}}{p}_{ij}$	P _i •
$P(Y = y_j)$	$p_{\bullet 1}$	<i>p</i> •2	$p_{\bullet j}$	1

记号 p_i . 中·表示 p_i . 是由 p_{ij} 关于j 求和后得到的;同样 p_{ij} 是由 p_{ij} 关于i 求和后得到的

对一群体的吸烟及健康状况进行调查,引入随机变量X和Y如下:

X^{Y}	0	10	20
0	0.35	0.04	0.025
1	0.35 0.025	0.15	0.04
2.	0.020	0.10	0.25

根据调查结果, $\mathcal{A}(X, Y)$ 的如下的联合分布律:

- (i) 关于X和Y的边缘分布律:

(i)
$$X \mid 0$$
 1 2 $Y \mid 0$ 10 20 $P \mid 0.415 \mid 0.215 \mid 0.370$ $P \mid 0.395 \mid 0.290 \mid 0.315$

$$\frac{Y \mid 0}{P \mid 0.395 \mid 0.290 \mid 0.315}$$

(ii)
$$P(X = 2|Y = 20) = \frac{P(X = 2, Y = 20)}{P(Y = 20)} = \frac{0.25}{0.315} = 0.794$$

例

已知(X, Y)的联合分布律为

已知P(Y=1|X=1)=0.5,求:

- (i) a、b的值;
- (ii) X、Y的边缘分布律; (iii) 求P(X=1|Y=1)。

X^{Y}	-1	0	1
1	0.1	a	0.2
2	0.1	0.2	b

解

(i) 由分布律性质知 a+b+0.6=1 即a+b=0.4

$$P(Y = 1|X = 1) = \frac{0.2}{0.3 + a}$$
 $\Rightarrow \frac{0.2}{0.3 + a} = \frac{1}{2}$ $\Rightarrow a = 0.1, b = 0.3$

(ii)
$$X \mid 1 \quad 2 \quad Y \mid -1 \quad 0 \quad 1 \\ p_{i} \mid 0.4 \quad 0.6 \quad p_{j} \mid 0.2 \quad 0.3 \quad 0.5$$

(iii)
$$P(X=1|Y=1) = \frac{P(X=1,Y=1)}{P(Y=1)} = \frac{0.2}{0.5} = 0.4$$

二维连续型随机变量

(X, Y) 联合概率密度为f(x, y), 联合分布函数为 $F(x, y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u, v) du dv$

X、Y的边缘概率密度为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy \qquad f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx$$

因为
$$F_X(x) = F(x, +\infty) = \int_{-\infty}^x \left[\int_{-\infty}^{+\infty} f(t, y) dy \right] dt = \int_{-\infty}^x f_X(t) dt$$

因为
$$F_Y(y) = F(+\infty, y) = \int_{-\infty}^{y} \left[\int_{-\infty}^{+\infty} f(x, t) dx \right] dt = \int_{-\infty}^{y} f_Y(t) dt$$

 $f_X(x)$ 和 $f_Y(y)$ 是(X,Y)关于X和关于Y的边缘概率密度

设G是平面上的有界区域,其面积为A,若二维随机变量 (X, Y)具有联合概率密度

$$f(x,y) = \begin{cases} 1/A, & (x,y) \in G \\ 0, & 其他 \end{cases}$$

则称(X,Y)在G上服从均匀分布。现设(X,Y)在有界 区域 $x^2 \le y \le x$ 上服从均匀分布,其联合概率密度为

$$f(x,y) = \begin{cases} 6, & x^2 \le y \le x \\ 0, & \text{其他} \end{cases}$$
 求边缘概率密度 $f_X(x)$ 和 $f_Y(y)$

解
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_{x^2}^x 6 dy = 6(x - x^2), & 0 \le x \le 1 \\ 0, & 其他 \end{cases}$$

二维均匀分布 $(X,Y)\sim U(G)$:

例) 若二维随机变量(X, Y)具有联合概率密度

$$f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} \times \exp\left\{\frac{-1}{2(1-\rho^{2})} \left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}} - 2\rho\frac{(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right]\right\} \qquad \left(-\infty < x < +\infty, -\infty < y < +\infty\right)$$

其中 μ_1 、 μ_2 、 σ_1 、 σ_2 都是常数,且 $\sigma_1>0$ 、 $\sigma_2>0$ 、-1< $\rho<1$ 。称(X,Y)服从参数为 μ_1 、 μ_2 、 σ_1 、 σ_2 、 ρ 的二维正态分布,记为 $(X,Y) \sim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho)$,求二维正态分布的边缘概率密度。

$$\begin{split} & \underbrace{ \left\{ f_{X}(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \int_{-\infty}^{+\infty} \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} \exp\left\{ \frac{-1}{2(1-\rho^{2})} \left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}} - 2\rho \frac{(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}} \right] \right\} dy \\ & = \int_{-\infty}^{+\infty} \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} e^{-\frac{(x-\mu_{1})^{2}}{2\sigma_{1}^{2}}} e^{-\frac{1}{2(1-\rho^{2})} \left[\frac{y-\mu_{2}}{\sigma_{2}} - \rho \frac{x-\mu_{1}}{\sigma_{1}} \right]^{2}} dy = \frac{1}{\sqrt{2\pi}\sigma_{1}} e^{-\frac{(x-\mu_{1})^{2}}{2\sigma_{1}^{2}}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma_{2}\sqrt{1-\rho^{2}}} e^{-\frac{1}{2\sigma_{2}^{2}(1-\rho^{2})} \left\{ y - \left[\mu_{2} + \rho \frac{\sigma_{2}}{\sigma_{1}}(x-\mu_{1}) \right] \right\}^{2}} dy \\ & = \frac{1}{\sqrt{2\pi}\sigma_{1}} e^{-\frac{(x-\mu_{1})^{2}}{2\sigma_{1}^{2}}} - \infty < x < +\infty \end{split}$$

$$= \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} - \infty < x < +\infty$$

即二维正态分布的两个边缘分布都是一维正态 分布,且都不依赖于参数 ρ ;反推不成立

如果只知道关于X和关于Y的边缘概率分布, 一般不能推导出X和Y的联合概率分布

本节回顾

口 边缘分布函数

X、Y的分布函数记为 $F_X(x)$ 和 $F_Y(y)$ 称为边缘分布函数 $\begin{cases} F_X(x) = F(x, +\infty) \\ F_Y(y) = F(+\infty, y) \end{cases}$

$$\begin{cases} F_X(x) = F(x, +\infty) \\ F_Y(y) = F(+\infty, y) \end{cases}$$

□ 二维离散型随机变量的边缘分布律

(X, Y) 联合分布律为 $P(X = x_i, Y = y_i) = p_{ii}, i, j = 1, 2, \cdots$

$$P(X = x_i) = P(X = x_i, Y < +\infty) = \sum_{j} p_{ij} \stackrel{\text{id}}{==} p_{i\bullet} \qquad i = 1, 2, \cdots$$

$$P(Y = y_j) = P(X < +\infty, Y = y_j) = \sum_{i} p_{ij} \stackrel{\text{id}}{==} p_{\bullet j} \qquad j = 1, 2, \cdots$$

□ 二维连续型随机变量的边缘概率密度

(X, Y) 联合概率密度为f(x, y),联合分布函数为 $F(x, y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u, v) du dv$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

$$X$$
、 Y 的边缘概率密度为
$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy \qquad f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$$

CHAPTER 3

多维随机 变量及其 分布

- § 3.1 二维随机变量及其联合分布函数
- § 3. 2 二维离散型随机变量及其联合分布律
- § 3. 3 二维连续型随机变量及其联合概率密度
- § 3.4 边缘分布
- § 3.5 条件分布
- § 3. 6 随机变量的独立性
- § 3.7 二维随机变量函数及其分布

3.5 条件分布

之前定义了条件概率,两事件 $A \times B$,若P(A)>0,则可考虑在A发生前提下B发生的概率:

$$P(B|A) = \frac{P(AB)}{P(A)}$$

对二维随机变量,也可类似分析

$$(X, Y)$$
联合分布律为 $P(X = x_i, Y = y_j) = p_{ij}, i, j = 1, 2, \cdots$

边缘分布律为
$$P(X = x_i) = p_{i\bullet} = \sum_i p_{ij}$$

$$P(Y = y_j) = p_{\bullet j} = \sum_i p_{ij}$$

定义

若
$$P(Y = y_j) = p_{\bullet j} > 0$$

考虑条件概率 $P(X = x_i | Y = y_i)$, $i, j = 1, 2, \cdots$

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{\bullet j}}, i = 1, 2, \dots$$

称为 $Y=y_i$ 条件下,随机变量X的条件分布律

同理, 若 $P(X = x_i) = p_{i \bullet} > 0$

$$P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)} = \frac{p_{ij}}{p_{i\bullet}}, j = 1, 2, \dots$$

例

盒子里装有3只黑球,4只红球,3只白球,在其中任取2球,以X表示取到黑球的数目、Y表示取到红球的只数。

求: (i) $X \times Y$ 的联合分布律; (ii) X=1时Y 的条件分布律;

(iii) Y=0时X 的条件分布律。

解

(i) X、Y的联合分布律为

X^{Y}	0	1	2
0	1/15	4/15	2/15
1	3/15	4/15	0
2	1/15	0	0

(iii)
$$X = 0 \quad 1 \quad 2$$

 $P(X=k \mid Y=0) \quad 1/5 \quad 3/5 \quad 1/5$

(ii) 由于 *P*(*X*=1)=7/15 故在*X*=1时*Y* 的条件分布

$$P(Y = 0 | X = 1) = 3/7$$
 $P(Y = 1 | X = 1) = 4/7$
 $P(Y = 2 | X = 1) = 0$

例

一射手进行射击,击中目标的概率为p(0 ,射击直至击中目标两次为止,设以<math>X 表示首次击中目标所进行的射击次数,以Y 表示总共进行的射击次数,试求X 和Y 的联合分布律和条件分布律。

解

$$(X, Y)$$
的联合分布律为 $P(X = m, Y = n) = p^2 q^{n-2}, q = 1 - p, n = 2, 3, \dots, m = 1, 2, \dots n-1$

$$X$$
的边缘分布律为 $P(X=m)=\sum_{n=m+1}^{\infty}P(X=m,Y=n)=\sum_{n=m+1}^{\infty}p^2q^{n-2}=pq^{m-1},\ m=1,2,\cdots$

Y的边缘分布律为
$$P(Y=n) = \sum_{m=1}^{n-1} P(X=m,Y=n) = \sum_{m=1}^{n-1} p^2 q^{n-2} = (n-1)p^2 q^{n-2}, n=2,3,\cdots$$

于是,对于每一 $(n=2,3,\cdots), P(Y=n)>0$ 在Y=n条件下,X的条件分布律为

$$P(X=m|Y=n) = \frac{P(X=m,Y=n)}{P(Y=n)} = \frac{p^2q^{n-2}}{(n-1)p^2q^{n-2}} = \frac{1}{n-1}, \qquad m=1, 2, \dots, n-1$$

对于每一 $m(m=1,2,\cdots), P(X=m)>0$ 在X=m条件下,Y的条件分布律为

$$P(Y = n | X = m) = \frac{P(X = m, Y = n)}{P(X = m)} = \frac{p^2 q^{n-2}}{pq^{m-1}} = pq^{n-m-1}, \qquad n = m+1, m+2, \dots$$

二维连续型随机变量的条件分布

对任意x和y,均有 P(X=x)=0、P(Y=y)=0 无法定义"条件分布函数"? 不能用下式

$$F_{X|Y}(x|y) = P(X \le x|Y = y) = \frac{P(X \le x, Y = y)}{P(Y = y)}$$

虽然P(Y=y)=0,但可设 $\varepsilon>0$,对于任意x,考虑条件概率 $P(X \le x | y < Y \le y + \varepsilon)$

设
$$P(y < Y \le y + \varepsilon) > 0$$
 则 $P(X \le x | y < Y \le y + \varepsilon) = \frac{P(X \le x, y < Y \le y + \varepsilon)}{P(y < Y \le y + \varepsilon)} = \int_{-\infty}^{x} \left[\int_{y}^{y + \varepsilon} f(t, y) dv \right] dt / \int_{y}^{y + \varepsilon} f_{Y}(y) dy$

当
$$\varepsilon > 0$$
 时,上式为 $F_{X|Y}(x|y) = P(X \le x|y < Y \le y + \varepsilon) = \int_{-\infty}^{x} \left[\int_{y}^{y+\varepsilon} f(t,v) dv \right] dt / \int_{y}^{y+\varepsilon} f_{Y}(v) dv$

$$\approx \frac{\varepsilon \int_{-\infty}^{x} f(t,y)dt}{\varepsilon f_{Y}(y)} = \int_{-\infty}^{x} \frac{f(t,y)}{f_{Y}(y)}dt$$

对比一维随机变量的概率密度 $F(x) = \int_{-\infty}^{x} f(t)dt$

可见 $\frac{f(x,y)}{f_y(y)}$ 是二维随机变量的条件概率密度

由定义
$$f_{X|Y}(x|y) = \frac{\partial}{\partial x} F_{X|Y}(x|y) \Rightarrow f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

事实上
$$\frac{\partial}{\partial x} F_{X|Y}(x|y) = \frac{\partial}{\partial x} \lim_{\varepsilon \to 0^+} \frac{P(X \le x, y < Y \le y + \varepsilon)}{P(y < Y \le y + \varepsilon)}$$

$$= \frac{\partial}{\partial x} \lim_{\varepsilon \to 0^{+}} \frac{F(x, y+\varepsilon) - F(x, y)}{F_{Y}(y+\varepsilon) - F_{Y}(y)}$$

$$= \frac{\partial}{\partial x} \lim_{\varepsilon \to 0^{+}} \frac{\frac{F(x, y + \varepsilon) - F(x, y)}{\varepsilon}}{\frac{F_{Y}(y + \varepsilon) - F_{Y}(y)}{\varepsilon}} = \frac{\partial}{\partial x} \frac{\frac{\partial F(x, y)}{\partial y}}{\frac{\partial F_{Y}(y)}{\partial y}}$$

$$= \frac{\partial^2 F(x,y)}{\partial x \partial y} = \frac{f(x,y)}{f_Y(y)}$$

定义

若 $(X \setminus Y)$ 联合概率密度为f(x, y), $(X \setminus Y)$ 关于Y的边缘概率密度为 $f_Y(y)$,若对于固定y, $f_Y(y)>0$,则称

 $\frac{f(x,y)}{f_{y}(y)}$ 为Y=y 条件下随机变量X 的条件概率密度

记为
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

函数
$$\int_{-\infty}^{x} f_{X|Y}(t|y)dt = \int_{-\infty}^{x} \frac{f(t,y)}{f_{Y}(y)}dt$$

为Y=y条件下随机变量X的条件分布函数,记为 $F_{X|Y}(x|y)=P(X \le x|Y=y)$

设二维随机变量(X,Y)在区域 $\{(x,y): |y| < x < 1\}$ 内均匀分布, 求条件概率密度 $f_{X|Y}(x|y)$ 和 $P(X > \frac{2}{3}|Y = \frac{1}{2})$

解 据题意, (X, Y) 的联合概率密度为 $f(x,y) = \begin{cases} 1, & |y| < x < 1 \\ 0, & \text{其他} \end{cases}$

Y 的边缘概率密度为
$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{|y|}^{1} dx = 1 - |y|, & -1 < y < 1 \\ 0, & 其他 \end{cases}$$

1 x

于是给定
$$y(-1 < y < 1)$$
, X 的条件概率密度为 $f_{X|Y}(x|y) = \begin{cases} \frac{1}{1-|y|}, & |y| < x < 1 \\ 0, & 其他 \end{cases}$

$$P(X > \frac{2}{3} | Y = \frac{1}{2}) = \int_{2/3}^{+\infty} f_{X|Y}(x | \frac{1}{2}) dx = \int_{2/3}^{1} 2 dx = \frac{2}{3}$$

二维均匀分布的条件分布仍为均匀分布

例

设数X 在区间(0,1)上随机取值,当观察到X=x (0< x< 1)时,数Y 在区间(x,1)上随机取值,求Y的概率密度 $f_{Y}(y)$

解

设数为求Y的概率密度,就要先求(X,Y)的联合概率密度;

而根据X 的边缘概率密度和Y在X 给定下的条件概率密度,即可求得求(X,Y)的联合概率密度

$$X$$
的边缘概率密度是 $f_X(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{其他} \end{cases}$

지引起物体平面及是 $J_X(x)$ [0 其他 对于任意x (0<x<1)时,在X=x 条件下,Y 条件概率密度为 $f_{Y|X}(y|x) = \begin{cases} \frac{1}{1-x} & x < y < 1 \\ 0 & 其他 \end{cases}$

$$(X, Y)$$
的联合概率密度为 $f(x,y) = f_X(x) f_{Y|X}(y|x) = \begin{cases} \frac{1}{1-x} & x < y < 1, \ 0 < x < 1 \\ 0 & 其他 \end{cases}$

所以Y的边缘概率密度为
$$f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_0^y \frac{1}{1-x} dx = -\ln(1-y) & 0 < y < 1 \\ 0 &$$
其他

联合分布、边缘分布和条件分布小结

二维随机变量的分布函数

联合分布函数
$$F(x,y) = P\{(X \le x) \cap (Y \le y)\} \stackrel{\text{记成}}{==} P(X \le x, Y \le y)$$
 $-\infty < x < +\infty$, $-\infty < y < +\infty$

$$F(-\infty, -\infty) = 0, F(+\infty, +\infty) = 1$$

对任意固定 $y, F(-\infty, y) = 0$; 对任意固定 $x, F(x, -\infty) = 0$

F(x, y)关于x, y是不减函数、右连续

若
$$x_1 < x_2$$
, $y_1 < y_2$, 则 $F(x_2, y_2) - F(x_2, y_1) + F(x_1, y_1) - F(x_1, y_2) \ge 0$

边缘分布函数
$$F_X(x) = F(x,+\infty) = P(X \le x)$$
 $F_Y(y) = F(+\infty,y) = P(Y \le y)$

条件分布函数
$$F_{X|Y}(x|y) = P(X \le x|Y = y)$$
 为 $Y=y$ 条件下随机变量 X 的条件分布函数

$$F_{Y|X}(y|x) = P(Y \le y|X = x)$$
 为 $X=x$ 条件下随机变量 Y 的条件分布函数

二维离散型随机变量

联合分布律
$$P(X = x_i, Y = y_j) = p_{ij}, i, j = 1, 2, \dots$$

联合分布函数
$$F(x,y) = \sum_{x_i \le x} \sum_{y_i \le y} p_{ij}$$

边缘分布律

$$P(X = x_i) = P(X = x_i, Y \le +\infty) = \sum_{j=1}^{\infty} p_{ij} \stackrel{\text{id}}{==} p_{i\bullet} \qquad i = 1, 2, \dots$$

$$P(Y = y_j) = P(X \le +\infty, Y = y_j) = \sum_{j=1}^{\infty} p_{ij} \stackrel{\text{id}}{==} p_{\bullet j} \qquad j = 1, 2, \dots$$

X^{Y}	y_1	<i>y</i> ₂	y_j	$P(X=x_i)$
x_1	p_{11}	$p_{12} \dots$	p_{1j}	<i>p</i> _{1•}
\boldsymbol{x}_{2}	p_{21}	$p_{12} \dots p_{22} \dots \vdots$	p_{2j}	p _{2•}
•	n	'n	i n	
x_i	P_{i1}	p_{i2}	P_{ij}	$p_{i\bullet}$
$P(Y = y_j)$				

边缘分布函数
$$F_X(x) = F(x, +\infty) = \sum_{x_i \le x} \sum_{j=1}^{\infty} p_{ij}$$
 $F_Y(y) = F(+\infty, y) = \sum_{y_j \le y} \sum_{i=1}^{\infty} p_{ij}$

条件分布律

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{\bullet j}}, i = 1, 2, \dots$$
 为 $Y = y_j$ 条件下,随机变量 X 的条件分布律

二维连续型随机变量

联合概率密度与联合分布函数 $F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv$

边缘概率密度
$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$$
 $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$

边缘分布函数
$$F_X(x) = F(x,+\infty) = \int_{-\infty}^x \left[\int_{-\infty}^{+\infty} f(t,y) dy \right] dt = \int_{-\infty}^x f_X(t) dt$$

$$F_{Y}(y) = F(+\infty, y) = \int_{-\infty}^{y} \left[\int_{-\infty}^{+\infty} f(x, t) dx \right] dt = \int_{-\infty}^{y} f_{Y}(t) dt$$

条件概率密度 $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$ 为Y=y条件下随机变量X的条件概率密度

条件分布函数 $F_{X|Y}(x|y) = \int_{-\infty}^{x} f_{X|Y}(t/y)dt$ 为Y=y 条件下随机变量X 的条件分布函数

联合分布 = 边缘分布 × 条件分布

二维离散型随机变量

条件分布律
$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{\bullet j}}, i = 1, 2, \dots$$
 为 $Y = y_j$ 条件下,随机变量 X 的条件分布律

联合分布律
$$P(X = x_i, Y = y_j) = P(Y = y_j) P(X = x_i | Y = y_j) = i, j = 1, 2, \dots$$

二维连续型随机变量

条件概率密度 $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$ 为Y=y条件下随机变量X的条件概率密度

联合概率密度 $f(x,y) = f_Y(y)f_{X|Y}(x|y)$

本节回顾

口 二维离散型随机变量的条件分布律

若
$$P(Y = y_j) = p_{\bullet j} > 0$$

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{\bullet j}}, i = 1, 2, \dots$$
 称为 $Y = y_j$ 条件下,随机变量 X 的条件分布律

□ 二维连续型随机变量的条件概率密度

 $\Xi(X \setminus Y)$ 联合概率密度为f(x, y), $(X \setminus Y)$ 关于Y的边缘概率密度为 $f_Y(y)$, 若对于固定y, $f_{y}(y)>0$, 则称

$$\frac{f(x,y)}{f_Y(y)}$$
 为 $Y=y$ 条件下随机变量 X 的条件概率密度 记为 $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$