ME361 – Manufacturing Science Technology

Oblique Cutting

Dr. Mohit Law

mlaw@iitk.ac.in

Orthogonal and oblique cutting geometry

Cutting velocity is perpendicular to cutting edge

Cutting velocity is inclined at an acute angle *i* to the cutting edge

Altintas, Mfg. Automation

Oblique cutting geometry

Considerations:

- 1. Cutting edge is perfectly sharp and no edge rubbing
- 2. Continuous chip with no built upedge
- 3. Tool subjected to 3D system of cutting forces because of angle of obliquity, *i*
- 4. Non-plane strain deformation (treated however as a modified plane strain problem)
- 5. Uniform stress distribution on shear plane

Recalling orthogonal cutting

- Plane normal to the cutting edge, and aligned with the cutting velocity V is the normal plane P_n
- Because of plane strain deformation (and no side spread), shearing and chip motion are identical on all normal planes \parallel to V and \bot to the cutting edge
- Hence, all velocities V, V_s , and V_c are all \bot to the cutting edge and lie in the velocity plane P_v \parallel to or coincident with P_n
- Resultant force F_c , along with other forces acting on the shear and chip-rake face contact zone, also lie in the normal plane P_n
- No cutting force \perp to P_n , and edge forces = 0

Oblique cutting geometry

- Cutting velocity is inclined at an acute angle i to the cutting edge, hence direction of shear, friction, chip flow, and resultant force vectors have components in all there Cartesian coordinates (x, y, z)
- Plane normal to the cutting edge, and inclined at an acute angle i with the cutting velocity V is the normal plane P_n
- x is ⊥ to the cutting edge, but lies on cut surface y is aligned with cutting edge z is ⊥ to xy plane
- Important planes are shear plane, rake face, cut surface xy normal plane xz (or P_n), and the velocity plane P_v

Oblique cutting geometry

- Assume that mechanics of oblique cutting in the normal plane P_n are equivalent to orthogonal cutting. Hence project velocities and forces into normal plane
- Angle between shear and xy plane is the normal shear angle ϕ_n
- Shear velocity lies on shear plane but makes an oblique shear angle ϕ_i with the vector normal to the cutting edge on the normal plane
- Sheared chip moves over rake face with a chip flow angle of η measured from a vector on the rake face but normal to cutting edge
- Angle between z axis and normal vector on rake face is the normal rake angle α_n

Force diagram – oblique cutting

- Friction force on the rake face \vec{F}_u and normal force to the rake \vec{F}_v form a resultant cutting force \vec{F}_c with a friction angle β_a
- This resultant $\vec{F_c}$ has an acute projection angle of θ_i with the normal plane P_n , which in turn has an in-plane angle of $\theta_n + \alpha_n$ with the normal force $\vec{F_v}$
- Where θ_n is the angle between the x axis and the projection of $\vec{F_c}$ on P_n

Can derive the following geometric relations

$$F_u = F_c \sin \beta_a = F \frac{\sin \theta_i}{\sin \eta} \rightarrow \sin \theta_i = \sin \beta_a \sin \eta$$

$$F_u = F_v \tan \beta_a = F_v \frac{\tan(\theta_n + \alpha_n)}{\cos \eta} \rightarrow \tan(\theta_n + \alpha_n) = \tan \beta_a \cos \eta$$

Velocity diagram – oblique cutting

Defining each velocity vector by its Cartesian components:

$$\vec{V} = (V \cos i, V \sin i, 0),$$

$$\vec{V}_c = (V_c \cos \eta \sin \alpha_n, V_c \sin \eta, V_c \cos \eta \cos \alpha_n),$$

$$\vec{V}_s = (-V_s \cos \phi_i \cos \phi_n, -V_s \sin \phi_i, V_s \cos \phi_i \sin \phi_n)$$
Eliminate V, V_c , and V_s

$$\vec{V}_s = \vec{V}_c - \vec{V}$$

rearranging, following geometric relation between shear and chip flow directions

$$\tan \eta = \frac{\tan i \cos(\phi_n - \alpha_n) - \cos \alpha_n \tan \phi_i}{\sin \phi_n}$$

Solving for oblique cutting parameters

$$\sin \theta_i = \sin \beta_a \sin \eta$$

$$\tan(\theta_n + \alpha_n) = \tan\beta_a \cos\eta$$

$$\tan \eta = \frac{\tan i \cos(\phi_n - \alpha_n) - \cos \alpha_n \tan \phi_i}{\sin \phi_n}$$

Five unknown oblique cutting parameters that define the directions of resultant force (θ_n, θ_i) , shear velocity (ϕ_n, ϕ_i) , and chip flow (η) .

Three equations – what to do? ——— Empirical, model based?

Minimum energy principle

Recall – Merchant's approach to predict shear angle by applying the principle of minimum energy principle to orthogonal cutting

Power consumed during cutting:

$$P_{tc} = VF_{tc} \longrightarrow \frac{dP_{tc}}{d\phi_c} = 0 \rightarrow \phi_c = \frac{\pi}{4} - \frac{\beta_a - \alpha_r}{2}$$

Extend the same principle here for oblique cutting

First need shear force (primary power consumption is during shearing)

Represent shear force as a projection of resultant \vec{F}_c in the direction of shear:

$$F_s = F_c[\cos(\theta_n + \phi_n)\cos\theta_i\cos\phi_i + \sin\theta_i\sin\phi_i]$$

Minimum energy principle

Represent shear force as a projection of resultant \vec{F}_C in the direction of shear:

$$F_s = F_c[\cos(\theta_n + \phi_n)\cos\theta_i\cos\phi_i + \sin\theta_i\sin\phi_i]$$

Representing shear force as a product of shear stress and shear plane area

$$F_S = \tau_S A_S = \tau_S \frac{b}{\cos i} \frac{h}{\sin \phi_n}$$

$$F_c = \frac{\tau_s bh}{\left[\cos(\theta_n + \phi_n)\cos\theta_i\cos\phi_i + \sin\theta_i\sin\phi_i\right]\cos i\sin\phi_n}$$
 (a)

Power consumed during cutting:

or

$$P_{t'} = \frac{P_{tc}}{V\tau_{s}bh} = \frac{\cos\theta_{n} + \tan\theta_{i}\tan i}{[\cos(\theta_{n} + \phi_{n})\cos\phi_{i} + \tan\theta_{i}\sin\phi_{i}]\sin\phi_{n}}$$

Minimum energy principle

Power
$$P_t'$$
:
$$P_t' = \frac{P_{tc}}{V\tau_s bh} = \frac{\cos\theta_n + \tan\theta_i \tan i}{[\cos(\theta_n + \phi_n)\cos\phi_i + \tan\theta_i \sin\phi_i]\sin\phi_n}$$

Minimum energy principle dictates that the cutting power must be minimum for a unique shear angle solution. Since τ_s , b, h, and V is constant, and since the direction of shear is characterized by ϕ_n and ϕ_i , we have:

$$\frac{\partial P_t'}{\partial \phi_n} = 0; \frac{\partial P_t'}{\partial \phi_i} = 0 \tag{4-5}$$

Which gives us two additional equations, in addition to the earlier three to solve for five unknowns

Recalling the earlier three

$$\sin \theta_i = \sin \beta_a \sin \eta \qquad (1)$$

$$\tan(\theta_n + \alpha_n) = \tan \beta_a \cos \eta \qquad (2)$$

$$\tan \eta = \frac{\tan i \cos(\phi_n - \alpha_n) - \cos \alpha_n \tan \phi_i}{\sin \phi_n}$$
 (3)

Solving for oblique cutting parameters

Solving five equations analytically for five unknowns is not trivial, hence numerical iteration techniques are instead used

Empirical solutions to oblique cutting parameters

Three equations five unknowns $(\phi_n, \phi_i, \eta, \theta_i, \theta_n)$

$$\sin \theta_i = \sin \beta_a \sin \eta \qquad (1)$$

$$\tan(\theta_n + \alpha_n) = \tan\beta_a \cos\eta \tag{2}$$

$$\tan \eta = \frac{\tan i \cos(\phi_n - \alpha_n) - \cos \alpha_n \tan \phi_i}{\sin \phi_n}$$
 (3)

Assume:

- 1. Shear velocity is collinear with shear force from Stabler's work
- 2. Chip length ratio in oblique is same as in orthogonal from experiments

$$\tan(\phi_n + \beta_n) = \frac{\cos \alpha_n \tan i}{\tan \eta - \sin \alpha_n \tan i}$$

$$\beta_n = \theta_n + \alpha_n$$

$$\tan \beta_n = \tan \beta_a \cos \eta \quad (2a)$$

$$\phi_n = \tan^{-1} \left(\frac{r_c(\cos \eta / \cos i) \cos \alpha_n}{1 - r_c(\cos \eta / \cos i) \sin \alpha_n} \right)$$
(3a)

Solve Eq. (1a) – (3a) numerically to get η , ϕ_n and β_n .

Or assume $\eta = i$ (Stabler's rule) for analytical solution

Armarego & Whitfield

Prediction of cutting forces

Cutting force components are derived as projections of resultant cutting force F_c after subtracting the edge components F_e from measured resultant F

Expressing force components as a $f(\tau_s, \phi_n, \phi_i, \theta_i, \theta_n)$:

Force in direction of cutting speed

$$F_{tc} = F_c(\cos\theta_i\cos\theta_n\cos\theta_i + \sin\theta_i\sin i) = \frac{\tau_s bh(\cos\theta_n + \tan\theta_i\tan i)}{[\cos(\theta_n + \phi_n)\cos\phi_i + \tan\theta_i\sin\phi_i]\sin\phi_n}$$

Force in direction of thrust

$$F_{fc} = F_c \cos \theta_i \sin \theta_n = \frac{\tau_s b h \sin \theta_n}{[\cos(\theta_n + \phi_n) \cos \phi_i + \tan \theta_i \sin \phi_i] \sin \phi_n}$$

Force in direction of normal

$$F_{rc} = F_c(\sin \theta_i \cos \theta_i - \cos \theta_i \cos \theta_n \sin i) = \frac{\tau_s b h(\tan \theta_i - \cos \theta_n \tan i)}{[\cos(\theta_n + \phi_n) \cos \phi_i + \tan \theta_i \sin \phi_i] \sin \phi_n}$$

Prediction of cutting forces

Expressing force components as a $f(\tau_s, \phi_n, \phi_i, \theta_i, \theta_n)$:

Force in direction of cutting speed

Force in direction of thrust

$$F_{tc} = \frac{\tau_s b h(\cos \theta_n + \tan \theta_i \tan i)}{[\cos(\theta_n + \phi_n)\cos \phi_i + \tan \theta_i \sin \phi_i]\sin \phi_n}$$

$$F_{fc} = \frac{\tau_s b h \sin \theta_n}{\left[\cos(\theta_n + \phi_n)\cos \phi_i + \tan \theta_i \sin \phi_i\right] \sin \phi_n}$$

Force in direction of normal

$$F_{rc} = \frac{\tau_s b h(\tan \theta_i - \cos \theta_n \tan i)}{[\cos(\theta_n + \phi_n)\cos \phi_i + \tan \theta_i \sin \phi_i] \sin \phi_n}$$

Rewriting forces in the convenient form of:
$$K_{tc} = \frac{\tau_s(\cos\theta_n + \tan\theta_i \tan i)}{[\cos(\theta_n + \phi_n)\cos\phi_i + \tan\theta_i \sin\phi_i]\sin\phi_n}$$

$$K_{tc} = \frac{\tau_s\sin\theta_n}{[\cos(\theta_n + \phi_n)\cos\phi_i + \tan\theta_i \sin\phi_i]\sin\phi_n}$$

$$K_{tc} = \frac{\tau_s\sin\theta_n}{[\cos(\theta_n + \phi_n)\cos\phi_i + \tan\theta_i \sin\phi_i]\sin\phi_n}$$

$$K_{tc} = \frac{\tau_sbh(\tan\theta_i - \cos\theta_n \tan i)}{[\cos(\theta_n + \phi_n)\cos\phi_i + \tan\theta_i \sin\phi_i]\sin\phi_n}$$

Prediction of cutting forces - Armarego's model

Expressing force components as a $f(\tau_s, \phi_n, \phi_i, \theta_i, \theta_n)$:

Force in direction of cutting speed

Force in direction of thrust

$$F_{tc} = \frac{\tau_s b h(\cos \theta_n + \tan \theta_i \tan i)}{[\cos(\theta_n + \phi_n)\cos \phi_i + \tan \theta_i \sin \phi_i]\sin \phi_n}$$

$$F_{fc} = \frac{\tau_s bh \sin \theta_n}{\left[\cos(\theta_n + \phi_n)\cos \phi_i + \tan \theta_i \sin \phi_i\right] \sin \phi_n}$$

Force in direction of normal

$$F_{rc} = \frac{\tau_s b h(\tan \theta_i - \cos \theta_n \tan i)}{[\cos(\theta_n + \phi_n)\cos \phi_i + \tan \theta_i \sin \phi_i] \sin \phi_n}$$

Using Armarego's classical oblique cutting model, forces are transformed in terms of $f(\tau_s, \beta_n, \phi_n \alpha_n, \eta)$

$$F_t = bh \left[\frac{\tau_s}{\sin \phi_n} \frac{\cos(\beta_n - \alpha_n) + \tan i \tan \eta \sin \beta_n}{\sqrt{\cos^2(\phi_n + \beta_n - \alpha_n) + \tan^2 \eta \sin^2 \beta_n}} \right]$$

$$F_f = bh \left[\frac{\tau_s}{\sin \phi_n \cos i} \frac{\sin(\beta_n - \alpha_n)}{\sqrt{\cos^2(\phi_n + \beta_n - \alpha_n) + \tan^2 \eta \sin^2 \beta_n}} \right]$$

$$F_r = bh \left[\frac{\tau_s}{\sin \phi_n} \frac{\cos(\beta_n - \alpha_n) \cos(\beta_n - \alpha_n) \tan i - \tan \eta \sin \beta_n}{\sqrt{\cos^2(\phi_n + \beta_n - \alpha_n) + \tan^2 \eta \sin^2 \beta_n}} \right]$$

Armarego's force model

Oblique cutting – force coefficients

Practical approach – for force prediction

- Evaluate shear angle ϕ_c , friction angle β_a , and shear stress τ_s from orthogonal cutting tests
- Assume orthogonal shear angle equals normal shear angle, i.e. $\phi_c \equiv \phi_n$
- Assume normal rake angle equals rake angle in orthogonal cutting, i.e. $\alpha_r \equiv \alpha_n$
- Assume chip flow angle equals oblique angle (Stabler's rule), i.e. $\eta \equiv i$
- Assume friction angle in orthognal cutting is same as in oblique, i.e. $\beta_a \equiv \beta_n$
- Assume shear stress remains the same in orthogonal and oblique cutting

Evaluate cutting force coefficients

$$K_{fc} = \left[\frac{\tau_s}{\sin \phi_n \cos i} \frac{\sin(\beta_n - \alpha_n)}{\sqrt{\cos^2(\phi_n + \beta_n - \alpha_n) + \tan^2 \eta \sin^2 \beta_n}} \right]$$

$$K_{tc} = \left[\frac{\tau_s}{\sin \phi_n} \frac{\cos(\beta_n - \alpha_n) + \tan i \tan \eta \sin \beta_n}{\sqrt{\cos^2(\phi_n + \beta_n - \alpha_n) + \tan^2 \eta \sin^2 \beta_n}} \right]$$

$$K_{rc} = \left[\frac{\tau_s}{\sin \phi_n} \frac{\cos(\beta_n - \alpha_n) \cos(\beta_n - \alpha_n) + \tan^2 \eta \sin^2 \beta_n}{\sqrt{\cos^2(\phi_n + \beta_n - \alpha_n) + \tan^2 \eta \sin^2 \beta_n}} \right]$$

Yet another practical approach

Conduct a dedicated series of tests at different feed rates and identify coefficients directly for the tool-workpiece-cutting parameter combination of interest

	Feed Rate	Measured	Measured
Test No:	h [mm/rev]	Ftc [N]	Ffc [N]
1	0.050	101	32
2	0.075	140	35
3	0.100	175	39
4	0.125	213	41

Yet another practical approach

Forces are composed of shearing and edge rubbing force components

$$F_t = F_{tc} + F_{te};$$

$$F_f = F_{fc} + F_{fe};$$

$$F_t = F_{tc} + F_{te};$$
 or $F_t = K_{tc}bh + K_{te}b;$ $F_f = F_{fc} + F_{fe};$

Consider only shearing components (since edge forces do not contribute to cutting):

$$F_{tc} = K_{tc}bh; F_{fc} = K_{fc}bh;$$

Hence the cutting coefficients are:

$$K_{tc} = \frac{F_{tc}}{bh}$$
; $K_{fc} = \frac{F_{fc}}{bh}$;

$$K_{tc} = \frac{F_{tc}}{bh}$$
; $K_{fc} = \frac{F_{fc}}{bh}$; $K_{te} = \frac{F_{te}}{b}$; $K_{fe} = \frac{F_{fe}}{b}$;

Prediction

Force models

linear approximation:

$$F_i = A \cdot b \cdot h + B \cdot b$$

- result of a curve fit
- first part is based on the shear plane theory
- very easy function
- not very precise
- calculations are not sufficiently verified (method is not commonly used)
- Schlesinger (1931)
- Pohl (1934)
- Klein (1938)
- Richter (1954)
- Hucks (1956)
- Thomson (1962)
- Altintas (1998)

potential approximation:

$$F_i = k i_{1,1} \cdot b \cdot h^{(1-m)}$$

- result of a curve fit
- calculation of the cutting force is statistically verified
- very precise

researchers

- no theoretical basis
- calculation of the other force components is not sufficiently verified
 - Taylor (1883/1902)
 - Fischer (1897)
 - Friedrich (1909)
 - Hippler (1923)
 - Salomon(1924)
 - Kronenberg (1927)
 - Klopstock (1932)
 - Kienzle (1952)

WZL Aachen

