ТЕОРІЯ СТІЙКОСТІ ТА ВАРІАЦІЙНЕ ЧИСЛЕННЯ

За лекціями Горбань Н.

Редактори: Терещенко Д.

Людомирський Ю.

Зміст

1.	Лек	ція 1	3
	1.1.	Нормальні системи диференційних рівнянь	3
	1.2.	Основні поняття теорії стійкості	5
	1.3.	Приклади дослідження на стійкість за означенням	7

1. Лекція 1

1.1. Нормальні системи диференційних рівнянь

$$\begin{cases} x'_1(t) = f_1(t, x_1(t), ..., x_n(t)) \\ x'_2(t) = f_2(t, x_1(t), ..., x_n(t)) \\ \vdots \\ x'_n(t) = f_n(t, x_1(t), ..., x_n(t)) \end{cases}$$
(1)

Системою диф. рівнянь n-го порядку в нормальній формі називається система вигляду (1), де $f_i:D\to\mathbb{R},\quad D\subset\mathbb{R}^{n+1},\quad i=\overline{1,n}.$

Позначення.

$$\overline{x}(t)=\left[egin{array}{c} x_1(t) \\ \dots \\ x_n(t) \end{array}
ight]$$
— невідома вектор-функція, $\overline{f}(t,\overline{x}(t))=\left[egin{array}{c} f_1 \\ \dots \\ f_n \end{array}
ight]$, що

$$D \to \mathbb{R}, \quad D \subset \mathbb{R}^{n+1}$$
, тоді $(1) : \overline{x}'(t) = \overline{f}(t, \overline{x}(t))$.

Означення. Розв'язком системи (1) на (α, β) називається така векторфункція $\overline{x}(t) \in C^1(\alpha, \beta)$, що:

- 1) $(t, x_1(t), \dots, x_n(t)) \in D \quad \forall t \in (\alpha, \beta);$
- 2) $\overline{x}(t)$ перетворює (1) на тотожність на інтервалі (α, β) .

Загальним розв'язком системи (1) називається n-параметрична сім'я розв'язків (1), що охоплює всі розв'язки системи.

Задача Коші. Для заданих $t_0, \overline{x}^0 \in D$ знайти такий розв'язок (1), що $\overline{x}(t_0) = \overline{x}^0$. Нехай $\Pi = \{(t, \overline{x}) \in \mathbb{R} \mid |t - t_0| \le a, ||\overline{x} - \overline{x}_0|| \le b\}$. **Теорема 1.1** (Теорема Пеано). Нехай $\vec{f} \in C(\Pi)$. Тоді розв'язок задачі Коші:

$$\begin{cases} \overline{x}' = \overline{f}(t, \overline{x}) \\ \overline{x}(t_0) = \overline{x}_0 \end{cases}$$

існує принаймні на проміжку $I_h=(t_0-h,t_0+h),$ де $h=\min\{a,\frac{b}{M}\},$ $M=\max_{(t,x)\in\Pi}||\overline{f}(t,\overline{x})||.$

Теорема 1.2 (про продовження). Нехай для системи (1) виконується, що $\overline{f} \in C(D)$, $D \subset \mathbb{R}^{n+1}$ – обмежена область. Тоді $\forall t: (t_0, \overline{x}_0) \in D$ існують такі $t^-, t^+: t^- < t_0 < t^+$, що розв'язок системи (1) з початкової умови $\overline{x}(t_0) = \overline{x}_0$ існує на інтервалі (t^-, t^+) , причому $(t^-, \overline{x}(t^-))$ та $(t^+, \overline{x}(t^+))$ належать межі області D.

Теорема 1.3 (Теорема Пікара). Нехай

- 1) $\overline{f} \in C(\Pi)$;
- 2) $\exists ! L > 0 : \forall (t_1, \overline{x}_1), (t_2, \overline{x}_2) \in \Pi$ справедливо, що $||f(t_1, \overline{x}_1) f(t_2, \overline{x}_2)|| \le L||\overline{x}_1 \overline{x}_2||$ (умова Ліпшиця).

Тоді $\exists !$ розв'язок задачі Коші з початкової умови $\overline{x}(t_0) = \overline{x}_0(t)$, визначений принаймні на $I_h = (t_0 - h, t_0 + h), \quad h = \min\{a, \frac{b}{M}\}, \quad M = \max_\Pi ||f(t, \overline{x})||.$

1.2. Основні поняття теорії стійкості.

Розглянем систему диференційних рівнянь $\overline{x}' = \overline{f}(t, \overline{x})$ (1), де $f: D \to \mathbb{R}^n$ та $D = [a, +\infty] \times G$, $G \subset \mathbb{R}^n$. Нехай при цьому \overline{f} задавольняє умовам існування та єдиності розв'язку задачі Коші в будь-якій точці $(t_0, \overline{x}_0) \in D$

Означення. Розв'язок $\overline{x} = \overline{\varphi}(t)$ системи (1) називається **стійким** за Ляпуновим, якщо

- 1) $\overline{x} = \overline{\varphi}(t)$ \exists на $[a, +\infty]$ (відсутніть вертикальних асимптот)
- 2) $\forall \varepsilon > 0 \quad \forall t_0 \geq a \quad \exists \delta > 0 : \forall$ розв'язку $\overline{x}(t)$ системи (1) такого, що $||\overline{x}(t_0) \overline{\varphi}(t_0)|| < \delta$ виконується наступне, що $\overline{x}(t)$ існує на $[t_0, +\infty]$ та $||\overline{x}(t) \overline{\varphi}(t)|| < \varepsilon \quad \forall t \geq t_0$.

Означення. Розв'язок $\overline{x}=\overline{\varphi}(t)$ системи (1) називається **асимптотично стій- ким** за Ляпуновим, якщо

- 1) $\overline{x} = \overline{\varphi}(t)$ стійкий;
- 2) $\forall t_0 \geq a \quad \exists \delta > 0 : \forall$ розв'язку $\vec{x}(t)$ с-ми (1) такого, що $||\vec{x}(t_0) \vec{\varphi}(t_0)|| < \delta$ справедливо, що $||\vec{x}(t_0) \vec{\varphi}(t_0)|| \to 0$ при $t \to +\infty$.

Роз'язок $\vec{\varphi}(t)$ називається **нестійким за Ляпуновим**, якщо він не є стійким, тобто:

- 1) Або $\overline{x}=\overline{\varphi}(t)$ \nexists на $[a,+\infty]$ (вертикальні асимптоти);
- 2) Або $\exists \varepsilon > 0: \exists t_0 \geq a: \forall \delta > 0$ існує розв'язок $\vec{x}(t)$ системи (1) такий, що $||\vec{x}(t_0) \vec{\varphi}(t_0)|| < \delta, \text{ але } ||\vec{x}(t_0) \vec{\varphi}(t_0)|| > \varepsilon$

1.3. Приклади дослідження на стійкість за означенням.

Приклад. Дослідити на стійкість розв'язок задачі Коші:

$$\begin{cases} x' = 1 \\ x(0) = 0 \end{cases}$$

1) Знайдемо розв'язок заданої задачі Коші: $x=1 \Rightarrow x=t+C$ - загальний розв'язок.

Підставимо: $x(0) = 0 \implies 0 = 0 + C \implies C = 0 \implies \varphi(t) = t$ – розв'язок, який будемо досліджувати. Зазначений розв'язок не має вертикальних асимптот та \exists на \mathbb{R} .

2) Знайдемо розв'язок довільної задачі Коші $x(t_0) = x_0$.

$$x_0 = t_0 + C$$
 \Rightarrow $C = x_0 - t_0$ \Rightarrow $x(t) = t + x_0 - t_0$

3) Нехай $|x(t_0)-\varphi(t_0)|=|x_0-t_0|<\delta$, тоді $|x(t)-\varphi(t)|=|x_0-t_0|<\varepsilon=\delta$. Таким чином, розв'язок є стійким, але не є асимптотично стійким.

Приклад. Дослідити на стійкість розв'язок З.К.:

$$\begin{cases} \dot{x} = 1 + t - x \\ x(0) = 0 \end{cases}$$

1. Знайдемо розв'язок даної задачі Коші:

$$\dot{x} = -x + 1 + t = |$$
 методом Бернуллі $| = t + Ae^{-t}$

7

Знайшли загальний розв'язок. Підставимо умову із з. К.: $A=0 \Rightarrow \varphi(t)=t$

2. Знайдемо розв'язок довільної З.К.:

$$x(t_0) = x_0$$
 $x_0 = t_0 + Ae^{-t_0}$ $A = (x_0 - t_0)e^{t_0}$

$$x(t) = t + (x_0 - t_0)e^{t_0 - t}$$
 — загальний розв'язок з. К.

3. Нехай $|x(t_0)-\varphi(t_0)|=|x_0-t_0|<\delta$. Розглядаємо: $\forall t\geq t_0$:

$$|x(t) - \varphi(t)| = |t + (x_0 - t_0) \cdot e^{t_0 - t} - t| = |x_0 - t_0| < \delta \to 0 \quad (t \to +\infty)$$

Отримали, що знайдений розв'язок є асимптотично стійким.

Перейдемо знов до систем диф. рівнянь: $\overline{x}' = \overline{f}(t, \overline{x})$ (1).

 $\overline{x}=\overline{arphi}(t)$ - розв'язок, який ми маємо дослідити на стійкість.

Заміна $\overline{z}(t) = \overline{x}(t) - \overline{\varphi}(y)$. Отримаємо систему:

$$\overline{z}' + \overline{\varphi}' = \overline{f}(t, \overline{z} + \overline{\varphi})(t)$$

$$\overline{f}'(t) = \overline{f}(t, \overline{\varphi}) \Longrightarrow \boxed{\overline{z}' = \overline{\varphi}(t, \overline{z} + \overline{\varphi}(t)) - \overline{f}(t, \varphi(t))}$$