nominal stress
$$S = \frac{P}{(W-d)t}$$

nominal strain $e = \frac{S}{E}$

nominal stress
$$S = \frac{P}{(W-d)t}$$

nominal strain
$$e = \frac{S}{E}$$

needed in strain life approach

local strain $\,arepsilon\,$

local stress σ

nominal strain
$$S = \frac{P}{(W-d)t}$$

nominal strain

needed in strain life approach

local stress σ

local strain ε

nominal stress
$$S = \frac{P}{(W-d)t}$$
 nominal strain $e = \frac{S}{E}$ local stress σ

needed in strain life approach

local strain $\,arepsilon\,$

nominal stress
$$S = \frac{P}{(W-d)t}$$

nominal strain
$$e = \frac{S}{E}$$

local stress $\,\sigma\,$

local strain $\,arepsilon\,$

$$\sqrt{k_{\sigma}k_{\varepsilon}} = k_t$$

nominal stress
$$S = \frac{P}{(W-d)t}$$

nominal strain $e = \frac{S}{E}$

local stress $\,\sigma\,$

local strain ε

Neuber's rule:

$$\sqrt{k_{\sigma}k_{\varepsilon}}=k_{t}$$

stress concentration

stress concentration

$$\sigma\varepsilon = \frac{(S \cdot k_t)^2}{E}$$

Ramberg-Osgood stress-strain curve

$$\varepsilon = \frac{\sigma}{E} + \left(\frac{\sigma}{K}\right)^{1/n}$$

$$\frac{\sigma^2}{E} + \sigma \left(\frac{\sigma}{K}\right)^{1/n} = \frac{(S \cdot k_t)^2}{E}$$

 σ is only unknown, can be solved numerically

$$\frac{\sigma^2}{F} + \sigma \left(\frac{\sigma}{K}\right)^{1/n} = \frac{(S \cdot k_t)^2}{F}$$

 σ is only unknown, can be solved numerically

Ramberg-Osgood stress-strain curve

$$\varepsilon = \frac{\sigma}{E} + \left(\frac{\sigma}{K}\right)^{1/n}$$

arepsilon can be solved by substituting σ

