

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/588,411	06/06/2000	Roger Wolff	13237-2575(MS-149368.1)	9449
27488	7590	02/06/2007	EXAMINER	
MERCHANT & GOULD (MICROSOFT) P.O. BOX 2903 MINNEAPOLIS, MN 55402-0903			RUTLEDGE, AMELIA L	
		ART UNIT	PAPER NUMBER	
		2176		

SHORTENED STATUTORY PERIOD OF RESPONSE	MAIL DATE	DELIVERY MODE
3 MONTHS	02/06/2007	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

If NO period for reply is specified above, the maximum statutory period will apply and will expire 6 MONTHS from the mailing date of this communication.

Office Action Summary	Application No.	Applicant(s)
	09/588,411	WOLFF ET AL.
	Examiner	Art Unit
	Amelia Rutledge	2176

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 24 November 2006.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-3,6-8,10-14,16-19,21 and 24-27 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-3, 6-8, 10-14, 16-19, 21, and 24-27 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|---|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ |
| 3) <input checked="" type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08)
Paper No(s)/Mail Date <u>See Continuation Sheet</u> . | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| | 6) <input type="checkbox"/> Other: _____ |

Continuation of Attachment(s) 3). Information Disclosure Statement(s) (PTO/SB/08), Paper No(s)/Mail Date
5/18/06;7/3/06;8/18/06;8/28/06;8/31/06;9/25/06;
10/23/06;11/13/06;11/16/06;11/24/06;12/18/06;.

Art Unit: 2176

DETAILED ACTION

1. This action is responsive to communications: Amendment, filed 11/24/2006, Request for Continued Examination, filed 11/24/2006; and Information Disclosure Statements filed 05/18/2006, 07/03/2006, 08/18/2006, 08/28/2006, 08/31/2006, 09/25/2006, 10/23/2006, 11/13/2006, 11/16/2006, 11/24/2006, 12/18/2006.
2. Claims 1-3, 6-8, 10-14, 16-19, 21, and 24-27 are pending in the case. Claims 1, 10, 19, and 27 are independent claims.

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 11/24/2006 has been entered.

Information Disclosure Statement

If an item of information in an IDS fails to comply with all the requirements of 37 CFR 1.97 and 37 CFR 1.98, that item of information in the IDS will not be considered and a line should be drawn through the citation to show that it has not been considered. However, other items of information that do comply with all the requirements of 37 CFR 1.97 and 37 CFR 1.98 will be considered by the examiner. If information listed in the

Art Unit: 2176

specification rather than in a separate paper, or if the other content requirements as discussed in MPEP § 609.04(a) are not complied with, the information need not be considered by the examiner, in which case, the examiner should notify applicant in the next Office action that the information has not been considered (*MPEP 609.05 (a)*).

In this case, the Information Disclosure Statements filed 05/18/2006, 07/03/2006, 08/18/2006, 08/28/2006, 08/31/2006, 09/25/2006, 10/23/2006, 11/13/2006, and 12/18/2006 include listings of U.S. Office Actions, and communications from the European Patent Office, which were not published prior art, and are not proper content for the IDS according to 37 CFR 1.98 and MPEP 609.05. A line has been drawn through the citations of the U.S. Office Actions, which will not be listed on the face of any patent issued. The Information Disclosure statements filed 08/31/2006, 11/13/2006, and 11/24/2006 have not been considered for the same reasons, and contain only listings of the improper content, and therefore have not been signed, but will be placed in the application file.

Claim Rejections - 35 USC § 103

2. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

3. **Claims 1-3, 6-8, 10-14, 16-19, 21, and 24-27 are rejected under 35 U.S.C. 103(a) as being unpatentable over Beauregard et al. (hereinafter “Beauregard”),**

U.S. Patent No. 5,974,413 filed 07/03/1997, in view of Johnson et al. (hereinafter "Johnson"), U.S. Patent No. 6,553,385 B2, filed September 1998.

Regarding independent claim 1, Beauregard teaches receiving a string of text in a recognizer after the entire string of text has been entered in the electronic document library in fig. 7, col. 5 lines 12-56, and col. 36 line 63 – col. 37 line 7. Beauregard teaches transmitting a string of text to a plurality of recognizer software modules in fig. 4-7 and col. 36 line 63 – col. 37 line 7. Beauregard does not explicitly teach, but suggests, the use of plug-ins, because Beauregard teaches that a user may purchase and download additional ActiveWords applications via a website, and further teaches installing and registering the downloaded application with the disclosed invention (col.. 50, l. 9-68), consistent with the use of plug-ins which was common at the time of the invention. Further, Beauregard teaches that the additional downloaded applications contain recognizer libraries (col. 50, l. 35-38). However, Johnson explicitly teaches transmitting the string of text to a plurality of recognizer plug-ins (col. 5, l. 52-63; col. 3, l. 14-18; col. 5, l. 64-col. 6, l. 6), and suggests transmitting the string of text to a plurality of recognizer plug-ins during an idle time, since Johnson teaches an extensible API (Application Program Interface) which could be adapted to allow flexibility of sequencing and flow of control, which would allow the framework to make program calls at idle time, which was well known in the art at the time of the invention to allow the more efficient processing of program calls.

Beauregard teaches in each of the plurality of recognizer software modules, annotating the string of text to determine a plurality of labels, wherein the plurality of

labels is determined based at least on the context of the string of text in the electronic document in fig. 7, col. 5 lines 12-56, and col. 25 line 11 – col. 26 line 29. Beauregard teaches transmitting the plurality of labels from the recognizer modules to the recognizer dynamic-link library and transmitting the plurality of labels to the application program module in fig. 4-7, col. 5 lines 12-56, and col. 36 line 63 – col. 37 line 7; also see col. 35, l. 5-34 where Beauregard discloses that agents are dynamic link libraries (DLLs), especially l. 13-16. Beauregard teaches automatically receiving the string of text in a recognizer agent, i.e., DLL, after the string has been entered in the electronic document, since Beauregard teaches that the archiving agent captures all text input during a session (Col. 32, l. 28-55).

While Beauregard does not explicitly teach compiling the labels into a plurality of semantic categories at the recognizer DLL, and transmitting the semantic categories to the application program module such that each label is associated with the string of text, Johnson teaches a framework for information extraction from natural language documents (Abstract; col. 1, l. 64-col. 2, l. 28; col. 5, l. 1-42), which compiles the labels into a plurality of semantic categories at the recognizer DLL. Specifically, Johnson teaches that the information extraction framework comprises an information extraction engine, which includes control conditions for extractor modules, with sub-engines including a parser, a classification engine, and a helper which extracts information using heuristic techniques (col. 3, l. 30-65). Johnson teaches that the information extraction engine is a DLL and all extractors are DLLs (col. 6, l. 47-55). Johnson teaches

transmitting the semantic categories to the application program module such that each label is associated with the string of text (col. 4, l. 10-45).

Therefore, since Johnson discloses a classification engine, and a helper which extracts information using heuristic techniques, for extracting text labels and classifying the text labels into a plurality of semantic categories, and Johnson discloses that the engines and extractors are DLLs, Johnson discloses compiling the labels into a plurality of semantic categories at the recognizer DLL, and transmitting the semantic categories to the application program module such that each label is associated with the string of text. Both Beauregard and Johnson are directed toward the semantic labeling of text in electronic document editing systems. It would have been obvious to one of ordinary skill in the art at the time of the invention to apply the information extraction engine and framework disclosed by Johnson to the semantic user interface disclosed by Beauregard, so that Beauregard would have the benefit of an adaptable and easily extended framework (Johnson col. 6, l. 38-46), by providing new libraries exporting certain simple functions (col. 2, l. 24-29).

Regarding dependent claim 2, Beauregard teaches synchronizing the labels received from the recognizer module before transmitting the plurality of labels to the application program module in col. 42 line 27 – col. 43 line 21. The labels are synchronized in order to be presented simultaneously to the user in a menu by the recognized word.

Regarding dependent claim 3, Beauregard teaches receiving the labels in an action library in fig. 7 and col. 5 lines 12-56. Beauregard teaches displaying a menu displaying a plurality of actions based on a label in fig. 9. Beauregard does not teach using action plug-in software. However, the disclosure of plug-ins is inherent in Beauregard, because Beauregard teaches that a user may purchase and download additional ActiveWords applications via a website, and further teaches installing and registering the downloaded application with the disclosed invention (col.. 50, l. 9-68), consistent with the use of plug-ins which was common at the time of the invention. Further, Beauregard teaches that the additional downloaded applications contains recognizer libraries (col. 50, l. 35-38).

Regarding dependent claim 6, Beauregard teaches performing a text string service in fig. 7 and col. 5 lines 12-56 which would have modified the electronic document being worked on.

Regarding dependent claim 7, Beauregard teaches causing the application program module to fire an event within an object model of the application program module and causing a piece of code associated with the event to be executed when at least one of the labels is determined in fig. 7, 9, and col. 5 lines 12-56.

Regarding dependent claim 8, Beauregard teaches determining the language of the text string based on the user profile and selecting different methods based on

language precedence, and turning applications on and off based on language (Col. 25, l. 10-Col. 26, l. 19).

Regarding independent claim 10, Beauregard teaches determining whether an entered string of text matches one of a plurality of stored strings and determining an action if the string is matched in fig. 7, col. 5 lines 12-56, and col. 36 line 63 – col. 37 line 7. Beauregard teaches determining a label associated with the matched stored string, wherein the label is determined based at least on the context of the string of text in the electronic document in fig. 7, col. 5 lines 12-56, and col. 25 line 11 – col. 26 line 29. Beauregard teaches transmitting the plurality of labels from the recognizer modules to the recognizer dynamic-link library and transmitting the plurality of labels to the application program module in fig. 4-7, col. 5 lines 12-56, and col. 36 line 63 – col. 37 line 7; also see col. 35, l. 5-34 where Beauregard discloses that agents are dynamic link libraries (DLLs), (especially l. 13-16). Beauregard teaches automatically receiving the string of text in a recognizer agent, i.e., DLL, after the string has been entered in the electronic document, since Beauregard teaches that the archiving agent captures all text input during a session (Col. 32, l. 28-55). Beauregard further discloses annotating the text strings with labels and associating each label with the text string, since Beauregard teaches that each record in the archive contains the actual text stream and a tag, i.e., label, identifying the associated application and file, timestamp (Col. 32, l. 28-55, especially l. 46-60). Beauregard discloses automatic recording of the text string into the archive (Col. 34, l. 42-43).

While Beauregard does not explicitly teach automatically receiving the string of text in a recognizer dynamic link library during an idle time after the string of text has been entered in the electronic document and determining whether the string of text matches one of a plurality of stored strings according to semantic categories, Johnson teaches a framework for information extraction from natural language documents (Abstract; col. 1, l. 64-col. 2, l. 28; col. 5, l. 1-42), which compiles the labels into a plurality of semantic categories at the recognizer DLL. Johnson suggests automatically receiving the string of text in a recognizer dynamic link library during an idle time, since Johnson teaches an extensible API (Application Program Interface) which could be adapted to allow flexibility of sequencing and flow of control, which would allow the framework to make program calls at idle time, which was well known in the art at the time of the invention to allow the more efficient processing of program calls.

Johnson teaches that the information extraction framework comprises an information extraction engine, which includes control conditions for extractor modules, with sub-engines including a parser, a classification engine, and a helper which extracts information using heuristic techniques (col. 3, l. 30-65). Johnson teaches that the information extraction engine is a DLL and all extractors are DLLs (col. 6, l. 47-55). Johnson teaches transmitting the semantic categories to the application program module such that each label is associated with the string of text (col. 4, l. 10-45).

Both Beauregard and Johnson are directed toward the semantic labeling of text in electronic document editing systems. It would have been obvious to one of ordinary skill in the art at the time of the invention to apply the information extraction engine and

framework disclosed by Johnson to the semantic user interface disclosed by Beauregard, so that Beauregard would have the benefit of an adaptable and easily extended framework (Johnson col. 6, l. 38-46), by providing new libraries exporting certain simple functions (col. 2, l. 24-29).

Regarding dependent claim 11, Beauregard teaches determining a set of actions associated with a label for a string of text in fig. 7 and 9, and col. 5 lines 12-56.

Regarding dependent claim 12, Beauregard teaches displaying an indication indicating that a label has been found in fig. 9 and col. 5 lines 12-56.

Regarding dependent claim 13, Beauregard teaches determining that a user has selected a string of text and in response, displaying a plurality of actions to the user in fig. 7 and 9, col. 5 lines 12-56, and col. 36 line 63 – col. 37 line 7.

Regarding dependent claim 14, Beauregard teaches receiving an indication that one of the plurality of actions has been selected and in response to receiving an indication that one of the plurality of actions has been selected, then causing the selected action to execute in fig. 7 and 9, and col. 5 lines 12-56.

Regarding dependent claim 16, Beauregard teaches that the selected action is executed by determining whether an action library assigned to the action is available

and if so, then receiving instructions from the action dynamic link library assigned to the selected action in fig. 7 and 9, and col. 5 lines 12-56.

Regarding dependent claim 17, disclosure of plug-ins is inherent in Beauregard, because Beauregard teaches that a user may purchase and download additional ActiveWords applications via a website, and further teaches installing and registering the downloaded application with the disclosed invention (col.. 50, l. 9-68), consistent with the use of plug-ins which was common at the time of the invention. Further, Beauregard teaches that the additional downloaded applications contains recognizer libraries (col. 50, l. 35-38).

Regarding dependent claim 18, Beauregard discloses determining metadata associated with the string of text in the form of seven user definable subcategories which can also be automatically assigned (Col. 32, l. 61-Col. 33, l. 15).

Regarding independent claim 19, Beauregard teaches an application program module for creating an electronic document in col. 5 lines 51-56. Beauregard teaches a recognizer dynamic link library and an action library which are connected to an application program module in fig. 7 and col. 5 lines 12-56. While Beauregard does not specifically teach the use of plug-ins, the use of plug-is is suggested, because Beauregard teaches that a user may purchase and download additional ActiveWords applications via a website, and further teaches installing and registering the downloaded

application with the disclosed invention (col.. 50, l. 9-68), consistent with the use of plug-ins which was common at the time of the invention. Further, Beauregard teaches that the additional downloaded applications contain recognizer libraries (col. 50, l. 35-38). However, Johnson explicitly teaches a framework for information extraction from natural language documents (Abstract; col. 1, l. 64-col. 2, l. 28; col. 5, l. 1-42), which compiles the labels into a plurality of semantic categories at the recognizer DLL. Johnson suggests automatically receiving the string of text in a recognizer dynamic link library during an idle time, since Johnson teaches an extensible API (Application Program Interface) which could be adapted to allow flexibility of sequencing and flow of control, which would allow the framework to make program calls at idle time, which was well known in the art at the time of the invention to allow the more efficient processing of program calls.

Beauregard teaches wherein at least one recognizer software module receives the string and annotates the string to determine a label, wherein the label is determined based on the context of the string in the electronic document in fig. 7, col. 5 lines 12-56, and col. 25 line 11 – col. 26 line 29. Beauregard teaches in each of the plurality of recognizer software modules, annotating the string of text to determine a plurality of labels, wherein the plurality of labels is determined based at least on the context of the string of text in the electronic document in fig. 7, col. 5 lines 12-56, and col. 25 line 11 – col. 26 line 29. Beauregard teaches transmitting the plurality of labels from the recognizer modules to the recognizer dynamic-link library and transmitting the plurality of labels to the application program module in fig. 4-7, col. 5 lines 12-56, and col. 36 line

Art Unit: 2176

63 – col. 37 line 7; also see p. 35, l. 5-34 where Beauregard discloses that agents are dynamic link libraries (DLLs), especially l. 13-16. Beauregard teaches automatically receiving the string of text in a recognizer agent, i.e., DLL, after the string has been entered in the electronic document, since Beauregard teaches that the archiving agent captures all text input during a session (Col. 32, l. 28-55). Beauregard further discloses annotating the text strings with labels and associating each label with the text string, since Beauregard teaches that each record in the archive contains the actual text stream and a tag, i.e., label, identifying the associated application and file, timestamp (Col. 32, l. 28-55, especially l. 46-60). Beauregard discloses automatic recording of the text string into the archive (Col. 34, l. 42-43).

Johnson teaches that the information extraction framework comprises an information extraction engine, which includes control conditions for extractor modules, with sub-engines including a parser, a classification engine, and a helper which extracts information using heuristic techniques (col. 3, l. 30-65), thereby annotating the string to determine a label according to semantic categories. Johnson teaches that the information extraction engine is a DLL and all extractors are DLLs (col. 6, l. 47-55). Johnson teaches transmitting the semantic categories to the application program module such that each label is associated with the string of text (col. 4, l. 10-45).

Both Beauregard and Johnson are directed toward the semantic labeling of text in electronic document editing systems. It would have been obvious to one of ordinary skill in the art at the time of the invention to apply the information extraction engine and framework disclosed by Johnson to the semantic user interface disclosed by

Art Unit: 2176

Beauregard, so that Beauregard would have the benefit of an adaptable and easily extended framework (Johnson col. 6, l. 38-46), by providing new libraries exporting certain simple functions (col. 2, l. 24-29).

Regarding dependent claim 21, Beauregard teaches the use of third party software in fig. 7, but does not specifically teach the use of plug-ins. However, the disclosure of plug-ins is inherent in Beauregard, because Beauregard teaches that a user may purchase and download additional ActiveWords applications via a website, and further teaches installing and registering the downloaded application with the disclosed invention (col.. 50, l. 9-68), consistent with the use of plug-ins which was common at the time of the invention.

Regarding dependent claim 24, Beauregard teaches comparing the string of text with a plurality of stored strings to determine a match and labeling the string of text with the associated stored label of the matched stored string in fig. 7, col. 5 lines 12-56, and col. 36 line 63 – col. 37 line 7.

Regarding dependent claim 25, Beauregard teaches wherein the at least one recognizer software module compares the string to a plurality of stored strings to determine whether the string matches any of the stored strings, according to semantic categories in col. 38, l. 44-65; fig. 7, col. 5 lines 12-56, and col. 36 line 63 – col. 37 l. 7.

Regarding dependent claim 26, Beauregard teaches wherein the label is associated with a matched stored string in fig. 7, col. 5 lines 12-56, and col. 36 line 63 – col. 37 line 7.

Regarding independent claim 27, Beauregard teaches receiving a string of text in a recognizer after the entire string of text has been entered in the electronic document library in fig. 7, col. 5 lines 12-56, and col. 36 line 63 – col. 37 line 7. Beauregard teaches transmitting a string of text to a plurality of recognizer software modules in fig. 4-7 and col. 36 line 63 – col. 37 line 7. Beauregard teaches that the additional downloaded applications contains recognizer libraries (col. 50, l. 35-38). Beauregard does not explicitly teach, but suggests, the use of plug-ins, because Beauregard teaches that a user may purchase and download additional ActiveWords applications via a website, and further teaches installing and registering the downloaded application with the disclosed invention (col.. 50, l. 9-68), consistent with the use of plug-ins which was common at the time of the invention. However, Johnson explicitly teaches transmitting the string of text to a plurality of recognizer plug-ins (col. 5, l. 52-63; col. 3, l. 14-18; col. 5, l. 64-col. 6, l. 6), and suggests transmitting the string of text to a plurality of recognizer plug-ins during an idle time, since Johnson teaches an extensible API (Application Program Interface) which could be adapted to allow flexibility of sequencing and flow of control, which would allow the framework to make program calls at idle time, which was well known in the art at the time of the invention to allow the more efficient processing of program calls.

Johnson teaches that the information extraction framework comprises an information extraction engine, which includes control conditions for extractor modules, with sub-engines including a parser, a classification engine, and a helper which extracts information using heuristic techniques (col. 3, l. 30-65), thereby annotating the string to determine a label according to semantic categories. Johnson teaches that the information extraction engine is a DLL and all extractors are DLLs (col. 6, l. 47-55). Johnson teaches transmitting the semantic categories to the application program module such that each label is associated with the string of text (col. 4, l. 10-45). Johnson teaches that the external plug and play extractors contain constraints on extracting information (col. 6, l. 1-46), and thereby provide additional modules to semantically process collections of documents and semantically categorize text (col. 5, l. 44-62).

Beauregard teaches in each of the plurality of recognizer software modules, annotating the string of text to determine a plurality of labels, wherein the plurality of labels is determined based at least on the context of the string of text in the electronic document in fig. 7, col. 5 lines 12-56, and col. 25 line 11 – col. 26 line 29. Beauregard teaches transmitting the plurality of labels from the recognizer modules to the recognizer dynamic-link library and transmitting the plurality of labels to the application program module in fig. 4-7, col. 5 lines 12-56, and col. 36 line 63 – col. 37 line 7. Beauregard teaches receiving the plurality of labels in an action dynamic link library, transmitting the plurality of labels to a plurality of action software modules, and determining, in the action software modules, a plurality of actions based on the labels

and displaying a plurality of actions received from the plurality of action software modules in fig. 7, col. 5 lines 12-56, col. 36 line 63 – col. 37 line 7, and col. 42 line 27 – col. 43 line 21.

Beauregard teaches transmitting the plurality of labels from the recognizer modules to the recognizer dynamic-link library and transmitting the plurality of labels to the application program module in fig. 4-7, col. 5 lines 12-56, and col. 36 line 63 – col. 37 line 7; also see p. 35, l. 5-34 where Beauregard discloses that agents are dynamic link libraries (DLLs), especially l. 13-16. Beauregard teaches automatically receiving the string of text in a recognizer agent, i.e., DLL, after the string has been entered in the electronic document, since Beauregard teaches that the archiving agent captures all text input during a session (Col. 32, l. 28-55). Beauregard further discloses annotating the text strings with labels and associating each label with the text string, since Beauregard teaches that each record in the archive contains the actual text stream and a tag, i.e., label, identifying the associated application and file, timestamp (Col. 32, l. 28-55, especially l. 46-60). Beauregard discloses automatic recording of the text string into the archive (Col. 34, l. 42-43).

Both Beauregard and Johnson are directed toward the semantic labeling of text in electronic document editing systems. It would have been obvious to one of ordinary skill in the art at the time of the invention to apply the information extraction engine and framework disclosed by Johnson to the semantic user interface disclosed by Beauregard, so that Beauregard would have the benefit of an adaptable and easily

extended framework (Johnson col. 6, l. 38-46), by providing new libraries exporting certain simple functions (col. 2, l. 24-29).

Response to Arguments

4. Applicant's arguments with respect to claims have been considered but are moot in view of the new ground(s) of rejection. The new ground of rejection includes the addition of the Johnson patent, which is being relied upon to teach the newly claimed limitations; *transmitting the string of text to a plurality of recognizer plug-ins during an idle time;... compiling the labels into a plurality of semantic categories at the recognizer dynamic-link library; and transmitting the semantic categories to the application program module such that each label is associated with the string of text* (Claim 1), and the similar newly claimed limitations of independent claims 1, 10, 19, and 27.
5. The newly claimed limitation of dependent claim 25 is disclosed by Beauregard.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Amelia Rutledge whose telephone number is 571-272-7508. The examiner can normally be reached on Monday - Friday 9:30 - 6:00.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Heather Herndon can be reached on 571-272-4136. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 2176

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

AR

Doug Hutton
Primary Examiner
Technology Center 2100