

Communications and Computer Engineering Communications I (ELCN 306)

PART I: PCM QUANTIZATION

Consider the system shown in Fig. 1

Fig. 1: PCM System with Discrete Input

You are required to write software programs and implement a GUI to help users quantize¹ an analog discrete signal.

GUI Description

Your 'Quantizer' function and GUI should have the option that the user chooses between:

- 1) Uniform quantizer, where the user specifies the number of levels, L, the peak quantization level, m_p , and whether the quantizer in mid-rise or mid-tread
- 2) Non-Uniform μ -Law quantizer, where the user specifies μ , L and m_p

The GUI should **allow the user to input a signal** to be quantized. That signal will be in the form of two vectors, a time vector and an amplitude vector.

The GUI should also display the following:

- 1) A figure showing the input signal and the quantized signal, on the same plot, with proper legend. **Note:** Display the input signal as a continuous signal, and display the quantized signal as a continuous staircase signal.
- 2) The value of the mean square quantization error, i.e. $\mathcal{E}\{(m-\nu)^2\}$

¹You will implement the Quantizer only

Communications and Computer Engineering

Communications I (ELCN 306) Project - PCM and DPCM

Fig. 2: Sample GUI

Testing your Simulator and GUI

Test your quantizer GUI for the input signal m[k] for the following cases

$$m[k] = 5\cos\left(2\pi f_m k\right),$$
 where $f_m = 10~Hz,$ for one complete cycle of the signal

		Case 1		Case 2		Case 3		Case 4
Sampling Frequency		$f_s = 40 \ Hz$		$f_s = 20 \ Hz$	$ f_s$	=15~Hz		$f_s = 20 \ Hz$
Quantizer	μ =	$= 0, L = 8, m_p =$	5 μ =	$=0, L=32, m_p=5$	$\mu = 0, I$	$L = 16, m_p = 5$	$\mu =$	$100, L = 32, m_p =$

Deliverable - Part I

Deliver the following in a .zip file

- 1) The GUI files.
 - This will be used to test your system with arbitrary parameters and for arbitrary input signals
- 2) Source codes (.m files) of functions and main files.
- 3) Source code of main script used for the 4 test cases.
- 4) Screenshots of the GUI's output for the 4 test cases.
- 5) For each of the 4 cases, make a brief comment on your findings
- 6) A single .pdf project report with a cover page.

Communications and Computer Engineering

Communications I (ELCN 306) Project - PCM and DPCM

PART II: DPCM ENCODER AND DECODER

Consider the system shown in Fig. 3

Fig. 3: DPCM Encoder and Decoder

You are required to write software programs and implement a GUI to encode and decode an analog discrete signal using DPCM.

GUI Description

Your 'DPCM' encoder and decoder functions as well as the GUI should have the option that **the user specifies** the following:

- 1) The step size, Δ and whether the quantizer in mid-rise or mid-tread. **Note:** Only uniform quantizers are used. You may re-use files you created in Part I.
- 2) The order of the **predictor**:
 - First-order predictor
 - Second-order averaging predictor

The GUI should **allow the user to input a signal** to be encoded. That signal will be in the form of two vectors, a time vector and an amplitude vector.

The GUI should also display the following:

- 1) A figure with two subplots:
 - **Subplot 1** shows the input signal to the encoder and the output signal of the decoder, on the same plot, with proper legend.
 - **Note:** Display the input signal as a continuous signal, and display the output signal as a continuous staircase signal.
 - Subplot 2 shows the difference signal d[k] and the quantized signal $d_q[k]$, on the same plot, with proper legend.
 - These can be shown as discrete functions (using the **stem** command).
- 2) The value of the mean square quantization error, i.e. $\mathcal{E}\{(m-m_q)^2\}$

Testing your Simulator and GUI

Test your DPCM GUI for the input signal m[k] as in Part I for Cases 1, 2 and 3.

Communications and Computer Engineering

Communications I (ELCN 306) Project - PCM and DPCM

Deliverable - Part II

Deliver the following in a .zip file

1) The GUI files.

This will be used to test your system with arbitrary parameters and for arbitrary input signals

- 2) Source codes (.m files) of functions and main files.
- 3) Source code of main script used for the 3 test cases.
- 4) Screenshots of the GUI's output for the 3 test cases.
- 5) For each of the 3 cases, make a brief comment on your findings
- 6) A single .pdf project report with a cover page.

GENERAL INSTRUCTIONS

- You can work this reports in teams of $3 \sim 5$ members per team.
- Write a full report including all the deliverable items.
- Late submissions are not allowed.
- All team members should expect to be asked about all the report parts.
- Teams are not expected to have used the same exact FECs, nor similar GUIs.
- Duplicate reports will be penalized by zero grade.
- Grading of the project will depend on:
 - 70%: Completeness and correctness of the deliverable items (as per the .pdf report)
 - 20%: Clarity of figures, and proper labeling (as per the .pdf report)
 - 20%: Report writing and organization.