

RTL_EXERCISE_1 BOUND FLASHER

Author	Trần Anh Tài, Nguyễn Hữu Thông, Võ Thị Hoàng Yến
Date	2024/03/26
Version	1.1

Contents

1. Interface	2
2. Functional implementation.	3
3. Internal implementation.	5
3.1. Overall.	5
3.2. State Machine	6
4. History	7

1. Interface

Figure 1: the figure of Bound Flasher System

Signal	Width	In/Out	Description
flick	1	In	Compare signal
clk	1	In	Clock of system
rst_n	1	In	Negative reset of system
led_state	16	Out	16bit LED's state

Table 1: Description of signals in Bound Flasher

2. Functional implementation.

- Implement a 16-bits LEDs system
- System's Operation base on three input signal
 - Reset
 - Clock
 - Flick
- The system specification
 - Clock signal is provided for system inspire of function status. The function operate state's transition at positive edge of the clock signal.
 - Reset signal:
 - LOW-ACTIVE Reset = 0: System is restarted to Initial State.
 - HIGH-ACTIVE Reset = 1: System is started with initial state.
- Flick signal: special input for controlling state transfer.
- At the initial state, all lamps are OFF. If flick signal is ACTIVE, the flasher start operating:
 - The lamps are turned ON gradually from LEDs [0] to LEDs [15].
 - The LEDSs are turned OFF gradually from LEDs [15] to LEDs [5].
 - The LEDSs are turned ON gradually from LEDs [5] to LEDs [10].
 - The LEDSs are turned OFF gradually from LEDs [10] to LEDs [0].
 - The LEDSs are turned ON gradually from LEDs [0] to LEDs [5].
 - Finally, the LEDs s are turned OFF gradually from LEDSs [5] to LEDSs [0], return to initial state.
- Additional condition: At each kickback point (LEDs [5] and LEDs [0]), if flick signal is
 ACTIVE, the LEDs will go back and repeat that STATE. For simple, kickback point is considered only when the LEDs s are turned OFF gradually, except final state.

- Some insulations:
 - When flick = 0 at kickback points

• When flick = 1 at kickback points (lamp[5])

3. Internal implementation.

3.1. Overall.

Figure 3.1.1:General block diagram of Bound Flasher

Name	Width	Туре	Description	
clk	1	Input	System Clock Source	
rst_n	1	Input	System Negative Reset	
flick	1	Input	Compare Signal	
led_state	16	Output	16 LED's state	
clk_div	1	Wire	Divided Clock	
counter	5	Wire	The counter for the remaining 16-bit LED.	
System Clock	0	Module	Generate clock for system	
Generator				
System Control	0	Module	Generates control signals and contains state machine of	
Block			system	
Decoder	0	Module	Decode 5-bit counter to 16-bit LEDs	

Table 3.1.1: Block diagram of Bound Flasher Description

Figure 3.1.2: System Control Block diagram

Signal	Width	Type	Description
clk_div	1	Input	Divided Clock
rst_n	1	Input	System Negative Reset
flick	1	Input	Compare Signal
counter	16	Output	The counter for the remaining 16-bit LED.
main_state	3	Wire	Current main state
main_state_n	3	Wire	Next main state
kickback_match	1	Wire	Kickback matching
count_state	2	Wire	Current counter's state (Disable/Up/Down)
counter_n	5	Wire	Next counter for 16bit LED
counter_load	5	Wire	Load next state of counter (special case)
counter_load_en	1	Wire	Enable Load next state of counter (special state)

Bound Flasher	0	Sequential	Contains main state register
FSM		Module	
Counter	0	Sequential	Contains counter register
		Module	
Next state	0	Combination	Generate next main state and control signal of
generator		Module	counter
Next counter	0	Combination	Generate next counter
generator		Module	
Kickback match	0	Combination	Kickback detector
generator		Module	

Table 3.1.2: System Control Block Description

Figure 3.1.3: Decoder diagram

Signal	Width	Туре	Description
counter	5	Input	The counter for the remaining 16-bit LED.
led_state	16	Output	16 LED's state
Decoder 5-to-32	0	Combination Module	Decode 5 to 32

Table 3.1.2: Decoder block Description

3.2. State Machine

Figure 3.2: State Machine of Bound Flasher

Variable Name	Width	Description
flick	1	Compare signal
counter	5	The counter for the remaining 16-bit LED.
rst_n	1	System negative reset
clk_div	1	Divided clock of system
kickback_match	1	Kickback matching

Table 3.2: variable name of State machine

State Name	Description
	Clear all parameters
INIT	(counter <= 5'd0), wait
INIT	for asserting flick signal
	to change state
	Gradually turn on the
	lights from 0 to 15.
OnLed0_15	When counter equals 5,
	the main_state is turn
	into OffLed15_5
	Gradually turn off the
	lights from 15 to 5.
	When counter equals 5,
Offlod15 5	the main_state is turn
OffLed15_5	into OnLed5_10. If
	kickback is matched, the
	system will set counter
	to 16
	Gradually turn on the
	lights from 5 to 10.
OnLed5_10	When counter equals
	10, the main_state is
	turn into OffLed10_0
	Gradually turn off the
	lights from 10 to 0.
	When counter equals 0,
OffLed10_0	the main_state is turn
	into OnLed0_5. If
	kickback is matched the
	system will set counter
	to 11
	Gradually turn on the
	lights from 0 to 5. When
OnLed0_5	counter equals 5, the
	main_state is turn into
	OffLed5_0
	Gradually turn off the
Officate 0	lights from 5 to 0. When
OffLed5_0	counter equals 0, the
	main_state is turn into
	INIT state

Table 3.3: state name of State machine

4. History

Date	Author	Modified part	Description
2024/02/27		All	New creation
2024/03/27		System diagram	Adjust system diagram

