1

EE3900 Assignment - 1

Adhvik Mani Sai Murarisetty - AI20BTECH11015

Download latex-tikz codes from

https://github.com/adhvik24/EE3900/blob/main/ Assignment 1/Assignment 1.tex

Download python codes from

https://github.com/adhvik24/EE3900/blob/main/ Assignment_1/Assignment1.py

1 Ramsey 1.1 on 14

Prove that the middle point of the line joining the points $\begin{pmatrix} -5 \\ 12 \end{pmatrix}$ and $\begin{pmatrix} 9 \\ -2 \end{pmatrix}$ is a point of trisection of the line joining the points $\begin{pmatrix} -8 \\ -5 \end{pmatrix}$ and $\begin{pmatrix} 7 \\ 10 \end{pmatrix}$.

2 SOLUTION

The C that divides A, B in the ratio k:1 is

$$C = \frac{kB + A}{k + 1} \tag{2.0.1}$$

Let C is the middle point of the line joining the points $A = \begin{pmatrix} -5 \\ 12 \end{pmatrix}$ and $B = \begin{pmatrix} 9 \\ -2 \end{pmatrix}$, Then K=1,

$$C = \frac{B+A}{1+1} = \frac{B+A}{2}$$
 (2.0.2)
= $\frac{\binom{9}{-2} + \binom{-5}{12}}{2}$ (2.0.3)

$$\implies C = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \tag{2.0.4}$$

And now we have to find the ratio in which C divides the line joining the points $P = \begin{pmatrix} -8 \\ -5 \end{pmatrix}$ and

 $Q = \begin{pmatrix} 7 \\ 10 \end{pmatrix}$. Let the ratio is k : 1, Then,

$$\implies C = \frac{kQ + P}{k + 1} \tag{2.0.5}$$

$$\binom{2}{5} = \frac{K\binom{7}{10} + \binom{-8}{-5}}{k+1} \tag{2.0.6}$$

$$\binom{2}{5} = \frac{1}{k+1} \binom{7K-8}{10K-5} \tag{2.0.7}$$

$$\implies k = 2 \tag{2.0.8}$$

As k = 2, That implies C divides the line joining the points $P = \begin{pmatrix} -8 \\ -5 \end{pmatrix}$ and $Q = \begin{pmatrix} 7 \\ 10 \end{pmatrix}$ in the ratio 2:1. \therefore C is point of trisection of line joining P and Q.

The middle point of the line joining the points $\begin{pmatrix} -5 \\ 12 \end{pmatrix}$ and $\begin{pmatrix} 9 \\ -2 \end{pmatrix}$ is a point of trisection of the line joining the points $\begin{pmatrix} -8 \\ -5 \end{pmatrix}$ and $\begin{pmatrix} 7 \\ 10 \end{pmatrix}$.