Computing Methods for Experimental Physics and Data Analysis

Data Analysis in Medical Physics

Lecture 2: intro to MATLAB

Alessandra Retico alessandra.retico@pi.infn.it INFN - Pisa

Course Calendar

- 1. Thursday, November 19 9->11
- 2. Monday, November 23 9->11
- 3. Monday, November 23 16->18
- 4. Thursday, November 26 9->11
- 5. (Monday, November 30 9->11) → Friday, November 27 9->11
- 6. Monday, November 30 16->18 MedPhys + HEP
- 7. Thursday, December 3 9->11
- 8. Monday, December 7 9->11
- 9. Monday, December 7 16->18
- 10. Thursday, December 10 9->11
- 11. Monday, December 14 9->11
- 12. Monday, December 14 16->18
- 13. Monday, December 17 9->11

Brief introduction to MATLAB

- MATLAB (MATrix LABoratory) integrates computation, visualization, and programming in an easy-to-use environment.
- MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, C#, Java, Fortran and Python.
- MATLAB users come from various backgrounds of engineering, science, and economics.

• First of all: download and install on your laptop: https://start.unipi.it/personale-t-a/strumenti-di-lavoro/strumenti-informatici/software-e-servizi-cloud/software-matlab/

Current stable release

is R2020b

System requirements and useful MATLAB toolboxes

- System requirements for installation:
 - Administrative rights
 - **Processors Minimum**: any Intel or AMD x86-64 processor
 - RAM Minimum: 3.3 GB. Recommended: 8 GB
 - DISK Minimum: 3.3 GB of HDD space for MATLAB only, 5-8 GB for a typical installation. Recommended: An SSD is recommended
- During the installation you have to specify the products to be installed, i.e. the MATLAB toolboxes.
- You may add some toolboxes you like to the suggested ones (e.g. the Image Processing, Curve Fitting, Wavelet and Deep Learning toolboxes we will use in the exercises)
- You can add more toolboxes, whenever you need, from the Add-Ons drop down menu from the MATLAB desktop HOME tab.

Getting started with matlab

Multidimensional Matlab arrays

A multidimensional array in MATLAB® is an array with more than two dimensions. In a matrix, the two dimensions are represented by rows and columns.

	column			
	(1,1)	(1,2)	(1,3)	(1,4)
row	(2,1)	(2,2)	(2,3)	(2,4)
	(3,1)	(3,2)	(3,3)	(3,4)
ļ	(4,1)	(4,2)	(4,3)	(4,4)

Each element is defined by two subscripts, the row index and the column index. Multidimensional arrays are an extension of 2-D matrices and use additional subscripts for indexing. A 3-D array, for example, uses three subscripts. The first two are just like a matrix but the third dimension represents *pages* or *sheets* of elements.

Basic image processing

- Basic operations with images:
 - imread(), imshow(), imwrite()
 - Histogram operations
 - Morphological Operations
 - Image filtering
 - Contrast (C), noise (N), signal-to-noise (SNR) and contrast-to-noise (CNR) ratio
 - ...
- A large variety of functions for image processing are available in the MATLAB Image Processing toolbox

See demo code:

- Lecture2_demo2_image_read_display.mlx
- Lecture2_demo3_read_dicom.m

Matlab m-files and user-defined functions

- Matlab programs can be written with any ASCII text editor, using the *.m file extension.
- M-files can be executed from the matlab command line:

```
% plot_sin.m
% this script plots the sinus function
x=linspace(0,10*pi,200);
y=sin(x);
plot(y)
```

```
>> plot_sin  % it works both with and without specifying the .m extension
```

• User defined functions work just like commands in Matlab:

```
function [avg,st_dev]= show_stats(x) % This function (show_stats.m) computes the basic statistics (average and standard deviation) n = length(x); avg = sum(x) / n; st_dev = sqrt(sum((x - avg ).^2)/n);
```

```
>> v1 = randn(100,1)
>> [avg_v1,sd_v1]= show_stats(v1)
```

Matlab & git

- The best place to share your MATLAB projects is <u>File</u>
 <u>Exchange</u> because of its popularity with the MATLAB user community
- GitHub is one of the most popular websites that host Git repositories
- Since R2014b File Exchange is integrated with GitHub
- In addition to what you already know about GitHub usage, you have to follow the instructions to Register Binary Files with Git
 - https://it.mathworks.com/help/matlab/matlab_prog/set-up-git-sourcecontrol.html

You have to add some lines in the .gitattributes hidden file in your git repository

The .gitattributes file is already correctly set in the https://github.com/retico/cmepda_medphys repository

Add these lines to the .gitattributes file:

- *.fig binary
- *.mat binary
- *.mlx binary

References and sources

Books

- Digital Image Processing for Medical Applications, Geoff Dougherty
- Handbook of Medical Image Processing and Analysis, Isaac N. Bankman
- Image Processing and Acquisition using Python, Ravishankar Chityala & Sridevi Pudipeddi

Sources

- https://start.unipi.it/personale-t-a/strumenti-di-lavoro/strumenti-informatici/software-e-servizi-cloud/software-matlab/
- https://it.mathworks.com/help/matlab/getting-started-with-matlab.html
- https://it.mathworks.com/videos/
- https://it.mathworks.com/help/matlab/external-language-interfaces.html
- https://it.mathworks.com/help/matlab/matlab prog/set-up-git-source-control.html
- https://blogs.mathworks.com/community/2014/10/20/matlab-and-git/