17-uarch-notes

Microarchitecture

Agenda

- 0. Re-Orienting
- 1. Terms
- 2. Correspondence to Homeworks
- 3. Correspondence to the textbook (Fig 4.23)
- 4. Valves and Knobs
- 5. rmmovl %eax, 23(%ebx)
- 6. The FSM

Here are the slides (https://ssl.cs.dartmouth.edu/~sws/cs51-s15/17-uarch/slides.pdf)

0. Re-Orienting

The computer scientist thinks about algorithms and programs in a high-level language.

Special software (e.g., compilers) turns that into low-level assembly for an ISA

And then (e.g., assemblers) into machine language

(nits and caveats)

Which then executes on hardware!

Which is typically a specially structured sequential logic circuit

Of Boolean gates

Built out of transistors

1. Terms

Datapath

Control path

Microarchitecture

- the datapath elements
- the knobs and valves
- the machine that drives the knobs and valves

2. Correspondence to Homeworks

ISHIM

DSHIM

Register File

- split in two, for LogiSim
- External registers let you read and change values

ALU

Cnd, Microsequencer

3. Correspondence to the textbook (Fig 4.23)

icode, ifun, rA, rB, valC

PCincrement, valP

valA, valB, srcA, srcB

dstE, dstM

aluA, aluB, alu fun

CC, valE

Addr, Data, ValM

4. Valves and Knobs

Fetch	
Decode	
Execute	
Memory	
PC	
5. rmmovl %eax, 23(%ebx)	
6. The FSM	

States

Implementation