AD	

CONTRACT NUMBER DAMD17-96-C-6104

TITLE: Clinical and Technical Evaluation of Full-Field Digital Mammography

PRINCIPAL INVESTIGATOR: R. Edward Hendrick, Ph.D.

CONTRACTING ORGANIZATION: University of Colorado

Health Science Center Denver, Colorado 80262

REPORT DATE: January 1998

TYPE OF REPORT: Annual

PREPARED FOR: Commander

U.S. Army Medical Research and Materiel Command Fort Detrick, Frederick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release;

distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

19980408 062

DTIC QUALITY INCREMENT

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	January 1998	Annual (30 De	c 96 - 29 Dec 97)
4. TITLE AND SUBTITLE Clinical and Technical E Mammography	valuation of Full	-Field Digital	5. FUNDING NUMBERS DAMD17-96-C-6104
6. AUTHOR(S) R. Edward Hendrick, Ph.I).		
7. PERFORMING ORGANIZATION NAM University of Colorado H Denver, Colorado 80262		ter	8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGENC Commander U.S. Army Medical Resear Fort Detrick, Frederick,	ch and Materiel C	ommand	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
12a. DISTRIBUTION / AVAILABILITY S	TATEMENT		12b. DISTRIBUTION CODE
Approved for public rele	ase; distribution	unlimited	
This annual report year study to evaluate fur breast cancer. The first technical evaluation of the Medical Systems, Inc.). contrast-detail phantoms acquisition and display mantoms also were use mammography (SFM) for clinical study comparing women accrued between	Il-field digital mamnyear's work on this wo prototype full-field in addition to compawere used to evaluate for the detected to compare the per low-contrast lesion SFM to FFDM as se	nography (FFDM) as project was devoted d digital mammogra- lete acceptance tes uate and compare d tion of low-contrast erformance of FFDM n detection. Prelimi creening tools for be	I to acquisition and aphy systems (GE ting of each FFDM unit, ifferent FFDM image lesions. Contrast detail I with that of screen-film nary results of our reast cancer, including

15. NUMBER OF PAGES 14. SUBJECT TERMS Breast Cancer 87 Digital mammography Breast cancer, screening 16. PRICE CODE Mammography, radiation dose Mammography, image quality 20. LIMITATION OF ABSTRACT 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION OF REPORT OF THIS PAGE OF ABSTRACT

2

Unclassified NSN 7540-01-280-5500 Unclassified

Unlimited

Unclassified

FOREWORD

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.

REMendick 2/3/98
PI - Signature Date

TABLE OF CONTENTS

	Page Number
FRONT COVER	1
REPORT DOCUMENTATION PAGE (SF 298)	2
FOREWORD	3
TABLE OF CONTENTS	4
INTRODUCTION	5-6
BODY OF REPORT	7-14
CONCLUSIONS	15
REFERENCES	16
APPENDIX:	17-26
Table 1	17-18
Figures 1-8	19-26
ATTACHMENT A	
ATTACHMENT B	

INTRODUCTION

This report summarizes the work performed in year one of a three-year study to evaluate full-field digital mammography (FFDM) as a screening tool for breast cancer. The first year's work on this project was devoted to acquisition and technical evaluation of two prototype full-field digital mammography systems, comparison of low-contrast lesion detection using FFDM with that of screen-film mammography, and implementation of a clinical study comparing screen-film and FFDM in screening for breast cancer.

This project began on December 30, 1996. The first stages of the project were the development of software for recording and evaluating radiographic outcomes for screen-film and digital mammography, room renovation, and preparation for installation of two FFDM units, one at the University of Massachusetts Medical Center (UMMC) and another at the University of Colorado Health Sciences Center (UCHSC). The University of Massachusetts received the second prototype GE Medical Systems FFDM unit in March 1997; the University of Colorado Health Sciences Center received the third prototype FFDM unit in April 1997 (the first prototype GE-FFDM unit went to MGH approximately 6 months earlier). A complete acceptance test of each FFDM unit was conducted by board certified medical physicists, Dr. Andrew Karellas at the University of Massachusetts Medical Center (UMMC), Dr. R. Edward Hendrick at the University of Colorado Health Sciences Center (UCHSC). Copies of the acceptance test reports for each unit are contained in the Appendix as Attachment A. We are also in the process of developing a complete quality control (QC) program for FFDM. This program is for both radiologic technologists and medical physicists, and is being developed and tested in conjunction with GE Medical Systems, Inc. An outline of the QC program and data collection forms is included in the Appendix as Attachment B.

Institutional review board approval was received at each institution in April 1996. Training of radiologists in the use of the GE Advantage Workstation was done at the time of system delivery in March and April 1997. Additional training was done prior to the start of clinical imaging by Ms. Kathy Priday, GE Global Applications Specialist. Technologist training in use of the equipment was conducted in June 1997 at both sites by Ms. Kathy Priday. Clinical imaging under the IRB protocol began in August 1997. As of December 31,1997, 503 women had been imaged under this protocol at UCHSC, and 463 had been imaged under this protocol at UMMC.

The goal of this project is to evaluate FFDM as a screening tool for breast cancer. The project is designed to compare FFDM to screen-film mammography (SFM) in a large group of women being screened for breast cancer. Women seeking screening at UMMC or UCHSC are informed of the research project and

asked to consent to both SFM and FFDM of each breast. For women consenting to the study, cranio-caudal (CC) view and medio-lateral oblique (MLO) view FFDM images are acquired of each breast at the same technique factors and radiation doses as for SFM. Images from each modality are read independently by board certified, MQSA-qualified radiologists with the same information (patient history and prior mammograms when available) available for interpretation of each modality. Any discrepancies between outcome recommendations are resolved by two radiologists reviewing both the images and interpretations from FFDM and SFM simultaneously and jointly making a single recommendation for follow-up. In general, unless an explanation for a finding can be determined by looking at the other modality, findings seen on either modality are worked up. This process is designed to remove bias about follow-up of one modality over another. Interpretation results are entered on computer and maintained at each facility. Results have been merged between facilities and analyzed both separately and collectively in a preliminary analysis for this report.

BODY OF REPORT

The body of this report contains Methods and Results of the first year's progress in this project on full-field digital mammography. The Methods for all experiments are listed first, then the corresponding Results.

I. Methods

Optimization of Mammographic Technique Factors for FFDM

In addition to acceptance testing, a contrast-detail (CD) phantom of our own design (Figure 1) was used to quantitatively evaluate image quality over the full range of compressed breast thicknesses (2-8 cm) for average breast composition (50% fatty/50% glandular). First, different digital image receptor options were used with identical technique factors matched to the target-filter, kVp, and mAs obtained using screen-film mammography on the GE-DMR operating in AOP-Contrast mode for each breast thickness. The digital image receptor options considered were: 50 micron pixels without grid, 50 micron pixels with grid, 100 micron pixels without grid, 100 micron pixels with grid. The CD phantom consists of a 9 by 9 array of low-contrast circular test objects milled into a D-shaped 1 cm thick section of breast equivalent material, to which additional 1 cm thick sections of D-shaped breast materials were added to give the total thicknesses of 2, 4, 6, and 8 cm. Each row of the CD pattern contained 9 low-contrast targets at a fixed level of contrast (ranging from 0.29% to 3.95%). Each column had a different object diameter ranging from 0.25 mm to 4 mm (see Figure 2). FFDM phantom images were read using soft-copy display on the same GE Advantage Workstation used for interpretation of digital mammograms.

Three medical physicists trained in scoring the phantom under standardized viewing conditions independently evaluated CD phantom images. Reviewers read the phantom independently starting with the row of objects with highest contrast, and reading from largest to smallest detectable in that row. Once an object was too faint to "detect", counting was stopped and the number of consecutively visible objects for that row was totaled. Reviewers were instructed not to skip over an undetected object in a given row. They were also instructed to compare marginally detected objects to the background of the phantom and to not count objects that were no more visible than artifacts. Since the locations of the objects in the phantom were known in advance, this guarded against overscoring the phantom and provided greater consistency in scoring. The CD score for each reviewer under each imaging condition was determined by summing the area of detected objects in contrast-detail space (Figure 3). Thus, the more low-contrast objects of a given size and level of contrast detected, the higher the CD score. If all 81 objects in the CD phantom were detected, a maximum score of 17.34 would be obtained. If no objects in the CD phantom were detected, a minimum score of zero would occur.

Comparison of FFDM to SFM: Low-contrast Lesion Detection

The same CD phantom described above was used for the comparison of FFDM and SFM. All SFM image acquisition was done on a GE-DMR mammography unit using automatic optimization of parameters (AOP) mode. Kodak Min R-2000 film was used with a set of three Kodak Min R-2000 cassettes matched for optical densities. Films were processed on a Kodak M8 processor with Kodak chemistry and autoloading. SFM phantom images were obtained with a narrow range of background film optical densities yielding maximum low-contrast detection (1.60-1.70). SFM was performed first and technique factors were recorded for each breast thickness (2, 4, 6, and 8 cm) and composition (100% fatty, 70% fatty/30% glandular, 50% fatty/50% glandular, 30% fatty/70% glandular, and 100% glandular except for 1 cm of fat-equivalent tissue). Based on the SFM techniques, identical target-filter and kVp settings were used for each simulated breast thickness and composition when FFDM was performed. When available on FFDM, the same mAs setting was used. When an exact match was unavailable, the next lower mAs setting was used for FFDM as had been used for SFM.

SFM images were independently read by the same three medical physicist readers who scored FFDM images. SFM was read using standardized viewing conditions, as were FFDM images. Readers were aware of the modality, but were blinded to the particular exposure conditions of each image. As above, results were quantitated in terms of CD scores: the area of detected objects in contrast-detail space (see **Figure 3**).

Preliminary Analysis of Clinical Study Data

The study population for the clinical comparison of FFDM and SFM is defined as all women who enter a participating facility (UCHSC or UMMC) for 2-view mammography of both breasts. Women excluded from the study include women under the age of 40 years, women with breast implants, and women with breasts too large to be adequately positioned on the 24x30 cm screen-film image receptor. All qualifying women entering mammography at each participating facility are asked to participate in the study and are informed of the study design and potential risks. Those women who meet entry criteria, who are willing to sign an informed consent form, and who successfully undergo both SFM and FFDM of both breasts at the study site are included in the study population.

Women participating in the study are examined by screen-film mammography using phototimed techniques (AOP Contrast Mode) prior to examination by FFDM. Technique factors (target material, filtration material, kVp, and mAs), compression force, and compressed breast thickness are recorded for each view of each breast in screen-film mammography. FFDM is then be

performed using technique factors that produce equal or slightly lower average glandular breast doses for each view of each breast. Technique factors for FFDM, including compression force and compressed breast thickness, are also recorded for each view of each breast. All FFDM image acquisitions employ a grid (as do all screen-film images) and 100 micron pixel sizes.

For each case, screen-film and digital mammograms are independently interpreted by different MQSA-qualified interpreting physicians. Each interpreting physician has the same prior knowledge of the case, which includes a patient history form and any prior mammograms available for the woman. Interpreting physicians read an approximately equal number of screen-film mammograms and digital mammograms.

ACR BIRADS categories are used to assess findings for each modality. These ACR BIRADS categories are:

ACR BIRADS Category	<u>Finding</u>
0	Additional evaluation needed
1	Normal
2	Abnormal - benign
3	Abnormal - probably benign
4	Suspicious for cancer
5	Highly suspicious for cancer

Digital mammograms are interpreted using soft-copy display on a GE-FFDM Advantage Workstation with two high resolution, high luminance monitors, a SUN UltraSPARC computer. This is done to take advantage of the ability to manipulate digital data in a manner that permits visualization of the entire breast or enhanced visualization of possible suspicious findings within a region of the breast.

A preliminary analysis of the women screened between the start of the clinical study (August 1997) and December 31, 1997 was performed. This provided both an evaluation of our patient database storage and retrieval software and a preliminary evaluation of the clinical study. Independent radiologist readings of FFDM and SFM were analyzed. In cases where there was a discrepancy between SFM and FFDM, the discrepancies were also analyzed.

Results were based on the evaluating radiologist's follow-up recommendations. Radiologist's results in ACR BIRADS categories 0 (needs further diagnostic evaluation), 4 (suspicious for malignancy), and 5 (highly suspicious for malignancy) were considered positive. Radiologist's results in ACR categories 1 (normal), 2 (benign), or 3 (probably benign) were considered negative. Agreement between FFDM and SFM was assessed in a two-by-two table of positive and negative outcomes, as shown below:

Truth about positivity and negativity of breast cancer, and therefore truth about digital and SF assessment is established through follow-up data. Relatively immediate follow-up results are available for cases that are SFM positive, FFDM positive, or both (categories **a**, **b**, or **c** in the chart above). The truth about cases assessed to be negative by both modalities is determined only by long-term follow-up and by linkage with cancer registries in Colorado and Massachusetts to determine false negative results. A more detailed analysis is presented on cases where disagreement exists between FFDM and SFM (categories **a** and **b** above). Analyses are presented collectively and separately for the two institutions (UCHSC and UMMC) to assess possible differences in clinical practice or assessment thresholds.

II. Results

Optimization of Mammographic Technique Factors for FFDM

Optimization studies to date have evaluated the performance of different detector resolution and grid combinations with identical technique factors. Technique factors for different breast thicknesses were matched to the target-filter, kVp, and mAs obtained using screen-film mammography on the GE-DMR operating in AOP-Contrast Mode. Detector resolution and grid options studied included: 50 micron pixels without grid, 50 micron pixels with grid, 100 micron pixels without grid, and 100 micron pixels with grid. **Figure 4** summarizes contrast-detail (CD) results of these digital image acquisition modes for 2-8 cm thick compressed breasts. Error bars on each data point represent one standard deviation in CD scores determined from three independent readers scoring each image. T-tests for statistical significance of differences revealed marginally higher scores using 100 micron pixels without grid for 2 cm thick breasts, no differences among acquisition modes for 4 cm thick breasts, and marginally significantly higher CD scores using 100 micron pixels with grid for 6 and 8 cm thick breasts. These

results indicate that best results would be obtained using 100 micron acquisition mode for all breasts, without grid for compressed breasts under 5 cm and with grid for compressed breasts thicker than 5 cm. Unfortunately, the grid is not removed or replaced in a simple fashion on the current GE-FFDM prototype system. Changing grid use requires a service person or medical physicist to remove the image receptor assembly cover by removing external attachment screws, attaching or detaching the grid using a set of attachment screws, and replacing the assembly cover with additional attachment screws. As a result of this CD phantom testing and the equipment constraint mentioned above, we have opted to use 100-micron pixels with grid exclusively for our clinical protocol. This yields improved low-contrast lesion detection for thicker breasts (average compressed breast thickness at UCHSC was determined to be 5.5 cm), while incurring substantially the same image quality as 100 micron non-grid techniques for thin to average breasts. These results were presented in a scientific paper presented at the 1997 Annual Meeting of the Radiological Society of North America.

Comparison of FFDM to SFM: Low-contrast Lesion Detection

Comparison of FFDM to SFM was done using the same CD phantom described above. Technique factors were determined to be those chosen by the GE-DMR in AOP Contrast Mode. AEC set-up dictated that these techniques maintained constant optical densities between 1.60 and 1.70. These optical densities were found to maximize CD scores in a series of independent experiments using the same screen-film combination. FFDM technique factors were matched identically to the target-filter and kVp settings used in screen-film mammography. mAs values selected for FFDM were identical to those selected for SFM when possible; when a particular mAs used in screen-film was unavailable for FFDM, the next lowest mAs was selected manually for FFDM. This ensured that the radiation dose for FFDM was equal to or slightly less than that for SFM.

CD scores for SFM and FFDM with a grid for breast thicknesses ranging from 2-8 cm are shown in **Figures 5-7**, each figure for a different breast composition. Analyzed collectively, these data show a statistically significantly higher CD score for FFDM than for SFM (p<0.01). Comparison of CD scores using SFM and FFDM without a grid is shown in **Figure 8**. It should be noted, however, that the dose was reduced to approximately half in the case of SFM to yield optical densities in the optimum 1.60-1.70 range. These results showed FFDM to have significantly better low contrast lesion detection than SFM (p < 0.05). These results were also presented in a scientific paper presented at the 1997 Annual Meeting of the Radiological Society of North America.

Preliminary Analysis of Clinical Study Data

From August through December 31, 1997, both sites combined have examined 966 women (503 at UCHSC and 463 at UMMC). Of these 966 women,

21 are awaiting completion of follow-up; 945 women were read as negative in both exams or have completed follow-up for positive assessment by one or both modalities. At entry, 923 of these 945 were asymptomatic, 22 were symptomatic. The following two-by-two table of outcomes compares the independent assessment of FFDM and SFM (by different interpreting physicians) in these 945 women:

		Screen-film	Assessment	
		+	-	Digital Totals
Digital	+	61	66	ND+ = 127
Assessm	ent -	106	712	ND- = 818
Screen- Totals	 -Film	NSF+ = 167	NSF- = 778	

Of the 61 cases interpreted as positive using both SFM and FFDM, 2 were true positives and 59 were false positives. Of the 66 cases interpreted as positive using FFDM, but negative using SFM, all 66 were found to be negative at follow-up. Of the 106 cases interpreted as positive by SFM, but negative by FFDM, 104 were found to be negative and 2 were found to be positive at follow-up.

After independent readings by different radiologists, all discrepancies between screen-film and digital mammography interpretations were resolved by discrepancy evaluations, with completion of a discrepancy form. In the case of the two cancers detected by SFM and missed by FFDM, both were detected based on calcifications. In one case, the calcifications were more visible on SFM than FFDM due to superposition of other tissues on the FFDM and not on SFM. In the other case, in retrospect the lesion was more visible on FFDM that SFM, but a detection error occurred in evaluation of FFDM. This suggests that there may have been a problem with the method of image review being used in soft-copy evaluation of the FFDM.

Recasting these preliminary data in terms of 2 by 2 truth tables separately for SFM and FFDM yields the following results.

SFM Results:

Truth (pending additional follow-up)

	+	-	
			Screen-Film Totals
Screen-Film +	4	163	NSF+ = 167
Assessment -	0	778	NSF- = 778
Totals	4	941	945 cases

FFDM Results:

Truth (pending additional follow-up)

		+		Digital Totals
Digital	+	2	125	ND+ = 127
Assessme	ent - -	2	816	ND- = 818
Totals		4	941	945 cases

These results translate to the following comparative statistics between FFDM and SFM:

Effectiveness	Re	sults
<u>Parameter</u>	<u>SFM</u>	<u>FFDM</u>
Sensitivity	100%	50%
Specificity	83%	87%
PPV	2%	2%
NPV	100%	100%

It should be noted that the number of cases, and in particular the number of cancers, is too small at this point to draw statistically valid conclusions from these results. In addition, sufficient time must elapse to have the opportunity to accrue false negatives, which will tend to lower both sensitivity and NPV for each modality.

A major concern about FFDM is the concern that it may generate an excessive number of false positive mammograms. This concern does not appear to supported by the preliminary statistics cited above, which show 163 false positive interpretations by SFM, 125 by FFDM. These preliminary results indicate the potential of this study to discriminate between the performance of SFM and FFDM in an essentially screening population. **Table 1** includes additional details of the clinical results accumulated collectively and at UCHSC and Ummc individually as of December 31, 1997.

It has been noted that accrual of examinees for the first six months of this project has not been at the level estimated in our proposal. This has been due to the delay in beginning the clinical protocol which was in part due to a 3-4 month delay in installation of the two prototype GE FFDM units. These delays resulted from detector production delays and room renovation delays. Additionally, we have not been able to accrue patients at the rates estimated in our proposal due to the time required to learn to use the FFDM system efficiently, the additional time required to perform SFM and FFDM and complete all required paperwork for the protocol, and due to cancellations and no-show examinees. The project Executive Committee (Dr. Hendrick, Dr. Lewin, Ms. Vance, and Dr. D'Orsi via telephone) held a day-long meeting in early January concerning these issues and developed a number of measures that are now being taken to increase the numbers of examinees participating in the protocol. These include altering the daily schedule to open up more digital mammography slots at each site, including information about the digital mammography project in patient reminder letters and mentioning it in reminder telephone calls. Staffing is being increased at UCHSC to support these additional activities and we are attempting to get similar staffing increases at ummc. Throughput of examinees will be monitored carefully on a month-by-month basis to evaluate the effect of these changes on the number of examinees at each site. We have also had preliminary discussions with two other sites where prototype GE-FFDM units have recently been installed (University of Pennsylvania and University of Chicago) to explore the possibility of extending this protocol to those sites. Additional funding will have to be sought and obtained to ensure their participation.

CONCLUSIONS

Our technical evaluation results indicate that the imaging parameters that maximize low contrast lesion detection for FFDM are 100 micron pixels without grid for thin compressed breasts and 100 micron pixels with grid for thicker compressed breasts. No difference was observed for intermediate breast thicknesses. FFDM with 100 micron pixels was superior to SFM in the detection of low contrast lesions when compared over a wide range of breast thicknesses and compositions using identical technique factors (p<0.01). 966 women received both FFDM and SFM under this protocol from August 1997 to December 31, 1997. Preliminary data have been analyzed on the 945 women with complete follow-up as of January 31, 1998. Preliminary results to date indicate that FFDM has fewer false positives than SFM, but also has lower sensitivity to breast cancer than SFM. These preliminary lack statistical power due to the few breast cancer cases included in the study protocol to date.

REFERENCES

(not cited by reference number in text)

- 1. Feig SA, Yaffe MJ. Current status of digital mammography. Semin. Ultrasound, CT, MR 1996; 17: 424-443.
- 2. Schmidt RA, Nishikawa RM. Clinical use of digital mammography: the present and the prospects. J. Digit. Imaging 1995; 8 (Supplement 1): 74-79.
- 3. Fletcher SW, Black W, Harris R, Rimer BK, Shapiro S. Report of the International Workshop on Screening for Breast Cancer. JNCI 1993; 85: 1644-56.
- 4. Elwood JM, Cox B, Richardson AK. The effectiveness of breast cancer screening by mammography in younger women. Online Journal Curr. Clin. Trials 1993; 1: 32-227.
- 5. Bird RE, Wallace TW, Yankaskas BC. Analysis of cancers missed at screening mammography. Radiology 1992; 184: 613-617.
- 6. Jackson VP, Hendrick RE, Feig SA, Kopans DB. Imaging of the radiographically dense breast. Radiology 1993; 188: 297-301.
- 7. Bassett LW, Gold RH, Kimme-Smith C. History of the technical development of mammography, in Syllabus: A Categorical Course in Physics: Technical Aspects of Breast Imaging, 3rd Edition, Eds. AG Haus and MJ Yaffe, 1994: 9-20.
- 8. Johns PC, Yaffe MJ. X-ray characterization of normal and neoplastic breast tissues. Phys. Med. Biol. 1987; 32: 675-695.
- 9. Cohen G, McDaniel DL, Wagner LK. Analysis of variations in contrast-detail experiments. Medical Physics 1984; 11: 469- 473.
- 10. Robson KJ, Kotre CJ, Faulkner K. The use of a contrast-detail test object in the optimization of optical density in mammography. The British Journal of Radiology 1995; 68: 277- 282.
- 11. Law J. Improved image quality for dense breasts in mammography. The British Journal of Radiology 1992; 65: 50-55.
- 12. Hendrick RE, Bassett LW, Butler PA, et. al., Mammography Quality Control: Radiologist's Manual, Radiologic Technologist's Manual, Medical Physicist's Manual, American College of Radiology, Revised Edition, 1994.

APPENDIX

TABLE 1

FFDM-SFM COMPARISON STUDY DATA SUMMARY

1/31/98

Both	Sites	Com	hin	ed
DULL	OILUS	CUIII	10.111	··

Total exams performed through 12/31/97: 966

(945 have been entered into database as of 1/31/98 - 21 are awaiting completion of workup of findings)

Screening (asymptomatic): 923

Diagnostic (symptomatic or annual follow-up of lumpectomy or probably benign lesion): 22

Negative/Benign on both modalities (BIRADS 1 or 2): 712

Additional Evaluation Required, Probably Benign or Biopsy on at least one modality (BIRADS 0,3,4 or 5): 233

Exams with agreement between Film and Digital:

Negative/Benign (truth to be assessed by long-term surveillance): 712

False Positive: 59
True Positive: 2

Exams with disagreement between Film and Digital:

False Positive on Digital / True Negative on Film: 66
False Positive on Film / True Negative on Digital: 104
True Positive on Digital / False Negative on Film: 0
True Positive on Film/ False Negative on Digital: 2

University of Colorado Only

Total exams performed through 12/31/97: 503

(498 have been entered into database as of 1/31/98 - 5 are awaiting completion of workup of findings)

Screening (asymptomatic): 483

Diagnostic (symptomatic or annual follow-up of lumpectomy or probably benign lesion): 15

Negative/Benign on both modalities (BIRADS 1 or 2): 367

Additional Evaluation Required, Probably Benign or Biopsy on at least one modality (BIRADS 0,3,4 or 5): 131

Exams with agreement between Film and Digital:

Negative/Benign (truth to be assessed by long-term surveillance): 367

False Positive: 35
True Positive: 1

Exams with disagreement between Film and Digital:

False Positive on Digital / True Negative on Film: 28
False Positive on Film / True Negative on Digital: 66
True Positive on Digital / False Negative on Film: 0
True Positive on Film/ False Negative on Digital: 1

University of Massachusetts Only

Total exams performed through 12/31/97: 463

(447 have been entered into database as of 1/31/98 - 16 are awaiting completion of workup of findings)

Screening (asymptomatic): 440

Diagnostic (symptomatic or annual follow-up of lumpectomy or probably benign lesion): 7

Negative/Benign on both modalities (BIRADS 1 or 2): 345

Additional Evaluation Required, Probably Benign or Biopsy on at least one modality (BIRADS 0,3,4 or 5): 102

Exams with agreement between Film and Digital:

Negative/Benign (truth to be assessed by long-term surveillance): 345

False Positive: 24
True Positive: 1

Exams with disagreement between Film and Digital:

False Positive on Digital / True Negative on Film: 38
False Positive on Film / True Negative on Digital: 38
True Positive on Digital / False Negative on Film: 0
True Positive on Film/ False Negative on Digital: 1

Figure1: The contrast-detail (CD) phantom developed and used in these experiments. The same 1 cm thick CD test pattern was used with different compositions and thicknesses of breast-equivalent materials.

Figure 2: Each point in the grid indicates the % contrast and size of one test object in the contrast-detail CD phantom (81 total objects).

to objects not detected (smaller points). The area of objects detected in size-contrast space (shaded area) Figure 3: CD phantom scoring by physicist readers determines objects detected (larger points) compared is the CD score.

Full-field Digital Technique Comparison 50% Glandular Breast Tissue

Figure 4: CD scores at simulated breast thicknesses ranging from 2-8 cm for FFDM using different combinations of detector resolution and grid use. Technique factors were identical for the different combinations at each breast thickness.

Contrast Detail Score

for SFM and FFDM, both using a grid. Technique factors were identical for the different modalities Figure 5: CD scores at simulated breast thicknesses of 100% fatty breasts ranging from 2-8 cm at each breast thickness.

Full-field Digital (100 um) vs. Screen-film

from 2-8 cm for SFM and FFDM, both using a grid. Technique factors were identical for the different Figure 6: CD scores at simulated breast thicknesses of 50% glandular/50% fatty breasts ranging modalities at each breast thickness.

Figure 7: CD scores at simulated breast thicknesses of 100% glandular breasts ranging from 2-8 cm for SFM and FFDM, both using a grid. Technique factors were identical for the different modalities at each breast thickness.

Full-field Digital (100 um) vs. Screen-film 50% Glandular/50% Fatty - Non-Grid

Figure 8: CD scores at simulated breast thicknesses of 50% glandular/50% fatty breasts ranging from 2-8 cm for SFM and FFDM without a grid. Technique factors for FFDM used identical target-filter and kVp, with approximately twice the mAs, as those for SFM for each breast thickness.

Contrast Detail Score

MAMMOGRAPHY EQUIPMENT EVALUATION

Site:	University Hospitl - East Pavilion	Date: 6/10/97
	4701 E. 9th Avenue	
	Denver, CO. 80262	
		 Model / Type
X-ray unit:	•	Full Field Digital - DMR
Processor:		N/A
Screen:	N/A	N/A
Film:	N/A	N/A

Note: Technique chart was made during inspection of new unit.

Clinical Technque Factors:

Breast	Exposure	Target /	kVp	mAs	Photo-	Grid
Thickness	Mode	Filter			timed	Use
2 cm	Manual	Mo/Mo	25	50	No	No
4 cm	Manual	Mo/Mo	25	100	No	No
6 cm	Manual	Mo/Rh	27	125	No	No
> 7 cm	Manual	Rh/Rh	28	280	No	No

Mammographic Unit Assembly Evaluation:

✓ Free-standing dedicated unit is mechanically stable.
All moving parts move smoothly, without obstructions to motion.
✓ All locks and detents work properly.
Image receptor holder assembly is free from vibrations.
Image receptor held securely by assembly in any orientation.
N/A Image receptor slides smoothly into holder assembly.
✓ Compression scale is accurate to +/- 0.5 cm, reprod. to +/- 2mm.
Patient or operator is not exposed to sharp edges or other hazards.
Operator technique control charts are posted.
Operator protected during exposure by adequate radiation shielding.

2. Collimator Assessment

Source to image distance (SID)=

660.00

mm

DEVIATION BETWEEN X-RAY FIELD AND LIGHT FIELD:

COLLIMATOR	18x24 cm
Left Edge Deviation	5.0 mm
Right Edge Deviation	1.0 mm
Sum of Lt & Rt Edge Deviation	6.0 mm
Sum as % of SID	0.9%
ACR Compliance < =2%	Yes
Anterior Edge Deviation	1.0 mm
Chest Edge Deviation	2.0 mm
Sum of Ant. & Chest Deviations	3.0 mm
Sum as a % of SID	0.5%
ACR Compliance <= 2%	Yes

X-ray Field within Image Receptor Holder Assembly left, right, anterior:

Yes

DEVIATION BETWEEN X-RAY FIELD & IMAGE RECEPTOR AT CHEST WALL

COLLIMATOR	18x24 cm
Diff of rad. field vs film at chest wall	6.0 mm
% of SID	0.9%
ACR Compliance <=2%	Yes

ALIGNMENT OF CHEST WALL EDGES OF COMPRESSION PADDLE & IMAGE RECEPTOR

COLLIMATOR	18x24 cm
Diff of paddle & film at chest wall	4.1 mm
% of SID	0.6%
ACR Compliance <=1%	Yes

3. Evaluation of Focal Spot Measurement

Slit Camera Measurement Of Focal Spot Size:

	Mo/Mo	Mo/Mo	Rh/Rh	Rh/Rh
Nominal focal spot size (mm)	0.3	0.1	0.3	0.1
Nominal kVp setting	28	28	28	28
Nominal mA setting	40	75	0	40
mAs	160	160	160	160
Image Size (mm) I	129.1	129.1	125.96	125.96
Object Size (mm) O	45	45	45	45
Enlargement Factor, E=(I/O)-1	1.87	1.87	1.80	1.80
Measured Slit d _{parallel}	0.6	0.2	0.5	0.2
Image Widths d _{perp}	0.8	0.35	1	0.4
Slit Width (mm) s	0.00001	0.00001	0.00001	0.00001
Calculated Focal Spot Size (mm)		ļ		
$ m f_{perp}$	0.287	0.048	0.248	0.050
${ m f_{parallel}}$	0.383	0.084	0.497	0.100
Max Limit Perp	0.450	0.150	0.450	0.150
Max Limit Parallel	0.645	0.150	0.645	0.150
Pass/Fail	Pass	Pass	Pass	Pass

Action Limit: If $f_{parallel}$ exceeds 1.5 x f_{nom} for f_{nom} <0.3mm, or if $f_{parallel}$ exceeds 2.15 x f_{nom} for f_{nom} >/= 0.3mm, or if f_{perp} exceeds 1.5 x f_{nom} , then seek service adjustment or tube relacement.

Note: This DMR is only being used for large spot imaging.

4. kVp Accuracy / ReproducibilityEquipment: Keithley 35050A Dosimetry System

Equipment. Retuney 3303011 2001111					1	
Nominal kVp Setting	22	23	24	25	26	27
Nominal Focal Spot Size	0.3	0.3	0.3	0.3	0.3	0.3
mA / mAs	20	20	20	20	20	20
Exposure time (sec)						····
Measured kVp values						
kVp1	22.9	23.9	24.7	25.4	26.2	27.2
kVp2	23.1	23.9	24.8	25.4	26.3	27.1
kVp3	23.0	23.9	24.7	25.4	26.3	27.1
kVp4	23.0	23.8	24.8	25.5	26.2	27.1
kVp5						
kVp6						
kVp7						
kVp8						
kVp9						
kVp10						
Mean kVp	23.0	23.9	24.8	25.4	26.3	27.1
Std Dev.	0.082	0.050	0.058	0.050	0.058	0.050
ACR Test: Accuracy < 5% of Nor	ninal					
Mean - Nominal kVp	1.0	0.9	0.8	0.4		0.1
5% of Nominal	1.10	1.15	1.20	1.25		
ACR Compliance	Yes	Yes	Yes	Yes	Yes	Yes
ACR Test: Reproducibility <	2%					
StDev/Mean	0.35%	0.21%	0.23%	0.20%		
ACR Compliance	Yes	Yes	Yes	Yes	Yes	Yes

4. kVp Accuracy / ReproducibilityEquipment: Keithley 35050A Dosimetry System

28	29	i		1	33
0.3	0.3	0.3	0.3	0.3	0.3
20	20	20	20	20	20
28.0	28.9	29.8	30.7	31.6	32.6
28.0	28.7	29.8	30.7	31.6	32.6
28.0	28.7	29.8	30.6	31.6	32.5
28.1	29.0	29.9	30.8	31.7	32.6
:					
28.0	28.8	29.8	30.7	31.6	32.6
0.050	0.150	0.050	0.082	0.050	0.050
minal					
0.0	0.2	0.2	0.3	0.4	0.4
1.40	1.45	1.50	1.55	1.60	
Yes	Yes	Yes	Yes	Yes	Yes
2%					
0.18%	0.52%	0.17%	0.27%	0.16%	
Yes	Yes	Yes	Yes	Yes	Yes
	28.0 28.0 28.0 28.0 28.1 28.1 0.050 minal 0.0 1.40 Yes 2% 0.18%	28.0 28.9 28.0 28.7 28.0 28.7 28.0 28.7 28.1 29.0 28.0 0.050 0.150 minal 0.0 0.2 1.40 1.45 Yes Yes 2% 0.18% 0.52%	0.3 0.3 0.3 20 20 20 28.0 28.9 29.8 28.0 28.7 29.8 28.1 29.0 29.9 28.1 29.0 29.9 28.1 29.0 29.9 28.1 29.0 29.9 28.1 29.0 29.9 29.9 29.9 29.9 29.0 29.9 29.9 29.0 29.9 29.9 29.0 29.9 29.9 29.0 29.9 29.8 29.0 29.9 29.9 29.0 29.9 29.9 29.0 29.9 29.9 29.0 29.9 29.8 29.0 29.9 29.9 29.0 29.9 29.8 29.0 29.9 29.8 29.0 29.9 29.8 29.0 29.9 29.8 29.0 29.9 29.8 29.0 29.9 29.8 29.0 29.9 29.8	0.3 0.3 0.3 0.3 20 20 20 28.0 28.9 29.8 30.7 28.0 28.7 29.8 30.6 28.1 29.0 29.9 30.8 28.1 29.0 29.9 30.8 0.050 0.150 0.050 0.082 minal 0.0 0.2 0.2 0.3 1.40 1.45 1.50 1.55 Yes Yes Yes Yes 2% 0.18% 0.52% 0.17% 0.27%	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 20 31.6 28.0 28.7 29.8 30.6 31.6 31.6 28.1 29.0 29.9 30.8 31.7 31.6 20 20 20 30.8 31.7 31.6 20

4. kVp Accuracy / Reproducibility

Nominal kVp Setting	34	35
Nominal Focal Spot Size	0.3	0.3
mA / mAs	20	20
Exposure time (sec)		
Measured kVp values		
kVp1	33.4	34.4
kVp2	33.4	34.4
kVp3	33.4	34.4
kVp4	33.4	34.4
kVp5		
kVp6		
kVp7		
kVp8		
kVp9		
kVp10		
Mean kVp	33.4	34.4
Std Dev.	0.000	0.000
ACR Test: Accuracy < 5% of Nor	minal	
Mean - Nominal kVp	0.6	0.6
5% of Nominal	1.70	1.75
ACR Compliance	Yes	Yes
ACR Test: Reproducibility <	2%	
StDev/Mean	0.00%	0.00%
ACR Compliance	Yes	Yes

5. Beam Quality Measurements (HVL)

Nominal kVp	22	23	24	25	26	27
mA setting	100	100	100	100	100	100
Time/mAs setting	63	63	63	63	63	63
Target/Filter	Mo/Mo	Mo/Mo	Mo/Mo	Mo/Mo	Mo/Mo	Mo/Mo
Exposure Med	asurements (n	nR)				
0.00 mm Al	314.5	366.0	428.0	491.0	553.0	644.0
0.20 mm Al	199.9	241.1	285.0	330.0	373.0	445.0
0.30 mm Al	163.7	199.2	236.5	277.0	313.0	374.0
0.40 mm Al	135.5	165.8	198.9	235.2	267.3	322.0
Calculations						
HVL (mm Al)	0.32	0.35	0.36	0.37	0.37	0.39
Tar/Filt constant:	0.12	0.12	0.12	0.12	0.12	0.12
Lower Limit	0.25	0.26	0.27	0.28	0.29	0.30
Upper Limit	0.34	0.35	0.36	0.37	0.38	0.39
ACR Compliance	Yes	Yes	Yes	Yes	Yes	Yes
Nominal kVp	28	29	30	31	32	33
mA setting	100	100	100	100	100	100
Time/mAs setting	l	63	63	63	63	32
Target/Filter	Mo/Mo	Mo/Mo	Mo/Mo	Mo/Mo	Mo/Mo	Mo/Mo
Exposure Med	asurements (n	nR)	*************************************		144	
0.00 mm Al	722.0	804.0	885.0	974.0	1059.0	533.0
0.30 mm Al	422.0	478.0	530.0	587.0	650.0	324.0
0.40 mm Al	361.0	411.0	457.0	509.0	562.0	285.0
0.50 mm Al	316.0	353.0	395.0	441.0	486.0	247.8
Calculations						
HVL (mm Al)	0.40	0.41	0.42	0.43	0.44	0.45
Tar/Filt constant:	0.12	0.12	0.12	0.12	0.12	0.12
Lower Limit	0.31	0.32	0.33	0.34	0.35	0.36
Upper Limit	0.40	0.41	0.42	0.43	0.44	0.45
ACR Compliance	Yes	Yes	Yes	Yes	Yes	Yes

Nominal kVp	34	35
mA setting	100	100
Time/mAs setting	32	32
Target/Filter	Mo/Mo	Mo/Mo
Exposure Med	asurements (n	ıR)
0.00 mm Al	627.0	675.0
0.30 mm Al	388.0	419.0
0.40 mm Al	337.0	364.0
0.50 mm Al	297.0	323.0
Calculations		
HVL (mm Al)	0.45	0.46
Tar/Filt constant:	0.12	0.12
Lower Limit	0.37	0.38
Upper Limit	0.46	0.47
ACR Compliance	Yes	Yes

5. Beam Quality Measurements (HVL)

<u> </u>			00	20	2.1	32
Nominal kVp	27	28	29	30	31	
mA setting	100	100	100	100	100	100
Time/mAs setting	40	40	40	40	40	40
Target/Filter	Mo/Rh	Mo/Rh	Mo/Rh	Mo/Rh	Mo/Rh	Mo/Rh
Exposure Med	asurements (n	nR)				
0.00 mm Al	330.0	373.0	415.0	460.0	507.0	554.0
0.30 mm Al	208.1	236.5	265.0	298.0	325.0	356.0
0.40 mm Al	180.3	205.4	230.8	259.8	288.0	316.0
0.50 mm Al	156.9	179.4	203.0	227.2	253.0	278.9
Calculations						
HVL (mm Al)	0.46	0.47	0.48	0.49	0.50	0.51
Tar/Filt constant:	0.19	0.19	0.19	0.19	0.19	0.19
Lower Limit	0.30	0.31	0.32	0.33	0.34	0.35
Upper Limit	0.46	0.47	0.48	0.49	0.50	0.51
ACR Compliance	Yes	Yes	Yes	Yes	Yes	Yes

		2.4	2.5			
Nominal kVp	33	34	35			
mA setting	100	100	100			
Time/mAs setting	40	40	40			
Target/Filter	Mo/Rh	Mo/Rh	Mo/Rh			
Exposure Measurements (mR)						
0.00 mm Al	605.0	653.0	705.0			
0.30 mm Al	393.0	427.0	461.0			
0.40 mm Al	344.0	374.0	405.0			
0.50 mm Al	306.0	330.0	358.0			
Calculations						
HVL (mm Al)	0.50	0.51	0.51			
Tar/Filt constant:	0.19	0.19	0.19			
Lower Limit	0.36	0.37	0.38			
Upper Limit	0.52	0.53	0.54			
ACR Compliance	Yes	Yes	Yes			

5. Beam Quality Measurements (HVL)

Nominal kVp	27	28	29	30	31	32
mA setting	100	100	100	100	100	100
Time/mAs setting	40	40	40	40	40	40
Target/Filter	Rh/Rh	Rh/Rh	Rh/Rh	Rh/Rh	Rh/Rh	Rh/Rh
Exposure Med	asurements (n	nR)				
0.00 mm Al	334.0	375.0	416.0	459.0	505.0	550.0
0.40 mm Al	180.0	206.1	230.7	257.8	291.0	319.0
0.50 mm Al	156.9	179.0	202.9	227.7	257.2	284.0
0.60 mm Al		157.7	179.9	203.0	227.4	253.0
Calculations				,		
HVL (mm Al)	0.45	0.47	0.48	0.49	0.51	0.53
Tar/Filt constant:	0.22	0.22	0.22	0.22	0.22	0.22
Lower Limit	0.30	0.31	0.32	0.33	0.34	0.35
Upper Limit	0.49	0.50	0.51	0.52	0.53	0.54
ACR Compliance	Yes	Yes	Yes	Yes	Yes	Yes

			0.7	2.6
Nominal kVp	33	34	35	36
mA setting	100	100	100	100
Time/mAs setting	40	40	40	40
Target/Filter	Rh/Rh	Rh/Rh	Rh/Rh	Rh/Rh
Exposure Measurements (mR)				
0.00 mm Al	598.0	647.0	701.0	751.0
0.40 mm Al	345.0	384.0	414.0	446.0
0.50 mm Al	312.0	339.0	370.0	400.0
0.60 mm Al	280.0	307.0	332.0	361.0
Calculations				
HVL (mm Al)	0.54	0.54	0.55	0.56
Tar/Filt constant:	0.22	0.22	0.22	0.22
Lower Limit	0.36	0.37	0.38	0.39
Upper Limit	0.55	0.56	0.57	0.58
ACR Compliance	Yes	Yes	Yes	Yes

6. Automatic Exposure Control (AEC) System Performance

Not Applicable

7. Uniformity of Screen Speed

Not Applicable

8. Breast Entrance Exposure and Average Glandular Dose.

Dosimetry system: Keithley 35050A Dosimetry System

Imaging mode: AEC

Imaging Receptor: 18x 24 cm

SID: 660.00

ACR Phantom: RMI 156-7061

	Clinical ACR				
THK (acr =4.2) cm	4.2	cm			
Nominal kVp	25	kVp			
Target/Filter	Mo/Mo	-			
Density control	0				
mA setting	100	mA			
Meas. HVL	0.37	mmAl			
Entrance expos.	mR	mAs			
Expos #1	816	100			
Expos #2	816	100			
Expos #3	816	100			
Expos #4	816	100			
Mean	816	100			
Std Dev	0.00	0.00			
CV	0.00	0.00			
ACR Compliance: CV < 0.05	Yes	Yes			
Dose conversion factor:	183	mrad / R			
Average Glandular Dose	149	mrad			
ACR Compliance: Dose < 300 mrad	Yes				

Analytical Dose	154	mrad
Calculation	154	IIIIuu

valid for Mo/Mo only

AVERAGE GLANDULAR DOSE CALCS

Dose with BR-12 50/50, Mo/Mo target-filter combination.

Breast Doseimetry in Screen Film Mammography

Data from Barnes & Wu valid for Mo/Mo only!!!!

Thickness	2 cm		6 cm	
Meas. HVL	0.37		0.39	
kVp	25		26	
mAs	50		250	
Target/Filter	Mo/Mo		Mo/Mo	
Focal Spot	0.3		0.3	
Entrance expos mR	380		2500	
A calc	0.054789		-0.00455	
B calc	0.777684		0.369114	
Dose conversion	0.343	mrad /	0.139	mrad /
factor:	0.545	R	0.137	R
Average Glandular	130	mrad	349	mrad
Dose	130	mad	347	

A==K1+K2*EXP(-THK/K3)

B==K4+K5*EXP(-THK/K6)

C==A+B*HVL

DOSE = C * ESE

K1:	-0.007	K4:	0.1563
K2 :	0.3406	K5:	1.0618
K3:	1.1666	K6:	3.7326

curve fit parameters

9. Image Quality Evaluation:

Phantom: CR - RMI 156-7061

Mode: Manual

Detector: N/A

	Previous	Current	ACR Limit
kVp		25	
Phototimed mAs		100	
Background OD		N/A	
OD inside disc		N/A	
OD difference		N/A	
Number of fibers		5.0	Pass
Number of speck groups		4.0	Pass
Number of masses		4.0	Pass

10. Artifact Evaluation

Attenuator: Acrylic Density Ctrl: N/A

Thk: 1 inch Focal Spot: 0.3 mm

kVp: 25

	Mo/Mo	Mo/Rh	Rh/Rh
Image Receptor	18 x 24 cm	18 x 24 cm	18 x 24 cm
Resultant OD	N/A	N/A	N/A
Artifacts visible?	No	No	No
Processor			
Equipment artifact			
Other artifact			

Explaination of artifacts:

NONE

Medical Physicist's Mammography QC Test Summary

Site: University Hospitl - East Pavilion

Report Date:

7/28/97

4701 E. 9th Avenue

Survey Date:

6/10/97

Denver, CO. 80262

X-ray Unit manuf: GE

Model: Full Field Digital - DMR

Film Processor: N/A

Medical Physicist:

Model: N/A

Eric Berns, MS

Medical Physicist:

R. Edward Hendrick, PhD, QI #023

1. Mammographic Unit Assembly Evaluation	PASS
Compression scale NOT accurate to +/- 0.5 cm	
2. Collimator Assessment	
Deviation between x-ray field and light field is less than 2% of SID	PASS
X-ray field is within image receptor at left, right and anterior edges	PASS
X-ray field does not extend beyond chest wall edge of image receptor	
by more than 2% of SID	PASS
Chest wall edge of compression paddle does not extend beyond image	
receptor by more than 1% of SID	PASS
3. Focal Spot Size Measurement	
Measured focal spot is within acceptable limits for large focal spot	PASS
Measured focal spot is within acceptable limits for small focal spot	N/A
4. kVp Accuracy and Reproducibility	
Measured average kVp within +/-5% of nominal kVp	PASS
kVp coefficient of variation <= 0.02	PASS
5. Beam Quality (Half-Value Layer [HVL]) Assessment	
HVL is within acceptable lower and upper limits at all techniques tested	PASS
6. Automatic Exposure Control (AEC) System Performance	
Phototimer compensation for kVp and breast thickness is adequate	N/A
Density control function is adequate	N/A
7. Uniformity of Screen Speed	
Optical density range of all cassettes is within 0.3	N/A

Medical Physicist's Mammography QC Test Summary con't

8. Breast Entrance Exposure and Averge Glandular Dose	
Exposure reproducibility is within acceptable limits	PASS
Average glandular dose for average breast is below 3mGy	PASS
Average glandular dose to a 4.2 cm breast is 149 mrad	
9. Image Quality Evaluation	D A CC
Phantom image quality is acceptable	PASS
Phantom Image Quality scores:	
Fibers= 5 Specks= 4 Masses= 4	
10. Artifact evaluation:	
Artifacts were not apparent or not significant:	PASS
Artifacts Identified:	
Evaluation of Site's Technologist QC Program	-
1. Darkroom cleaniness	PASS
2. Processsor QC	PASS
3. Screen Cleaning	PASS
4. Mammographic phantom imaging	PASS
5. Darkroom Fog	PASS
6. Film-screen contact test	PASS
7. Compression pressure monitored	PASS
8. Repeat analysis	PASS
9. Viewboxes and viewing conditions	PASS
10. Analysis of fixer retention	PASS
11. Visual checklist	PASS

Medical Physicist's Recommendations for Quality Improvement:

None.

Medical Physicist's Mammography QC Test Summary

Site: UNIVERSITY OF MASSACHUSETTS MEDICAL CENTER

Report Date: July 10, 1997

Survey Date: July 9, 1997

X-Ray Unit Manufacturer: GE

Model: DMR-Full Field Digital

Investigational Device

Medical Physicist: Andrew Karellas, Ph.D.

Signature Luch Mall

Medical Physicist's QC Tests

1			
			Pass/Fail
	1.	Mammographic Unit Assembly Evaluation	Р
	2.	Collimator Assessment Deviation between x-ray field and light field is less than 2% of SID X-ray field is within image receptor at left, right, and anterior edges X-ray field does not extend beyond chest wall edge of image receptor	P P
		by more than 1% of SID Chest wall edge of compression paddle does not extend beyond image receptor by more than 1% of SID	P * P
	3.	Focal Spot Size Measurement /Line pair resolution Line pair resolution is within acceptable limits for large focal spots	Р
	4.	kVp Accuracy and Reproducibility Measured average kVp within ± 5% of nominal kVp kVp coefficient of variation ≤ 0.02	P * * P
	5.	Beam Quality (Half-Value Layer [HVL]) Assessment HVL is within acceptable lower and upper limits at all kVp values tested	P P
	6.	Automatic Exposure Control (AEC) System Performance Exposure reproducibility is within acceptable limits Phototimer compensation for kVp and breast thickness is adequate Density control function is adequate	NA NA NA
	7.	Uniformity of Screen Speed Optical density range of all cassettes is within 0.3	NA
	8.	Breast Entrance Exposure and Average Glandular Dose Average glandular dose for average breast is below 3 mGy (300 mrad) Please see detailed dosimetry in the report	Р
- 1	İ		

9. Image Quality Evaluation
Phantom image quality is acceptable
Please see enclosed results

Pass/Fail

Р

10. Artifact Evaluation

Artifacts were deemed acceptable for the clinical trial

Þ

Medical Physicist's Comments and Recommendations

- * The digital detector starts at 4.0 mm from the chest wall for all collimation selections. This is about 2 mm more than encountered with film-screen cassettes. Therefore, 2 mm of breast tissue near the chest wall will not be imaged with the digital detector. This was discussed with GE engineers (Cynthia Landberg) and they are well aware of this limitation.
- ** The kVp was off by about 1 Kv. The unit was recalibrated on July 9, 1997 by GE service. All HVL and mean glandular dose were calculated after the kVp recalibration.

Appendix 3: Data Recording and Analysis Forms (

	Mammo	graphy E	Equipment Evalu	ation			
Site: Univer							
* FULL F	ical C iELD Digi	ENTER TAL MA	MMOGRAPHY IN	JESTIG	ATion	AL 3	DEVICE
Equipment			. 5				_
	ufacturer <u>&E</u> 1	VERAL	ELECTRIC	Model	_D	MR)Digita
Processor man	ufacturer						
Screen manufa	•			• •			
Film manufactu	rer			ıype _			
Clinical Techniqu	ue Factors						
Breast Thickness	Exposure Mode	kVp Setting	Density Control Setting	Photo	otimed	Grid	d Used
				Y	N	Υ	N
				Υ	N	Υ	N
				Y	N	Y	N
				Y	N N	Y	N
				Y	N	Y	N_
1. Mammogra _l	ohic Unit Ass	embly Eva	luation (Y = yes, N = I	10; N/A :	= not a	ppli	cable)
Free-standing ded	licated unit is m	echanically s	table.		\bigcirc	N	N/A
All moving parts r	move smoothly,	without obstr	uctions to motion.		\bigcirc	N	
All locks and dete	ents work proper	ly.			\bigcirc	N	
Image receptor ho	older assembly i	s free from v	ribrations.		\bigcirc	N	
Image receptor is	held securely b	y assembly i	n any orientation.		\bigcirc	Ν	
Image receptor sl	ides smoothly in	to holder ass	sembly.		\bigcirc	N	
Compressed breas	st thickness scal	e is accurate	to ± 0.5 cm, reproducible	to ±2 mm	n. 🕥	N	
Patient or operato	or is not expose	d to sharp or	rough edges or other ha	zards.	\bigcirc	N	
Operator technique	ie control charts	are posted.			Υ	N	
Operator protecte	d during exposu	re by adequa	ate radiation shielding.		\bigcirc	N	

Duplicate these forms so they will be available for repeated use.

1

Appendix 3: Data Recording and Analysis Forms (

DATE: 7.3.97

3. Evaluation of Focal Spot Measurement

ummc

B. High-contrast resolution pattern measurement of limiting resolution

Nominal focal spot size, f _{nom}		0.3mm			
Nominal kVp setting		30			
Nominal mA setting		100			
mAs		50.0			
Magnification factor		CONTACT (4.5cm)	Apove	e film.	
Limiting	bars parallel to A-C axis	204p/m	m		
resolution	bars perpendicular to A-C axis	5 20 ep/n	nm		

* Direct exposure film USED.

Action Limit: If the limiting resolution is <13 line-pairs per mm with the bars parallel to the anode-cathode axis or is <11 line-pairs per mm with the bars perpendicular to the anode-cathode axis, then a more detailed investigation of the reason shound be made using a slit camera.

7.9.97

3*5* 0.3

20. b

35.2 35.2 35.2 35.2 35.2 0.0

t0.2

Appendix 3: Data Recording and A

Univ. of Massachusetts Med. Ctr. Worcester, Mass. 01605

Digital DMR meter seting CP

MolMo

4. kVp Accuracy/Reproducibility

kVp meter used: RMI MAMMOGRAPHIC KVP meter MODEL 232

Nominal kVp setting	25	<i>გ</i> ს	27	28	29	<i>3</i> 0	31	<i>3</i> 2	33	34
Nominal focal spot size (mm)	0.3	0.3	0.3	0.3	0.3	6.0	0.3	0.3	6.3	0.3
Exposure time										
mA (or mAs) setting	20.0	20.0	20.0	20.0	20.0	<i>20.0</i>	20 . C	200	20.0	20.0
Measured kVp values										ŀ
kVp ₁	24.9	<i>as.</i> 8	268	27.9	28.9	30.0	31.1	32.1	33.1	34.1
kVp ₂	1					30.0				
kVp ₃						30.D				
kVp ₄	1 1			ı	4 1	30.0			1 1	
Mean kVp <kvp></kvp>	1 1		1			30.0				1
Standard dev. σ_{kVp}						0.0				
Additional kVp measurements										
(if needed)										
kVp ₅	<u> </u>									
kVp ₆										
kVp ₇						ž				
kVp ₈					<u> </u>					
kVp ₉					<u> </u>					,
kVp ₁₀										
Recalculated:										
Mean kVp <kvp></kvp>	-									
Standard dev. σ_{kVp}										
(using 10 readings)										
<kvp> – Nominal kVp</kvp>	0.1	0.2	0.2	0.1	70.1	0.0	to.1	40.1	+0.1	+0.1
0.05 x Nominal kVp	1.28	1.3	1.35	1,4	1.45	1.5	/· SS	1.6	1.65	ルチ
kVp coefficient σ _{kVp} of variation ———	N.D	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	0-0
<kvp></kvp>	0.0			,						

Action Limit: If <kVp> differs from the nominal kVp by more than ±5% of the nominal kVp, or if the kVp coefficient of variation exceeds 0.02, then seek service correction.

*After calibration 7.9.97

Appendix 3: Data Recording and

Univ. of Massachusetts Med. Ctr. Worcester, Mass. 01605 Digital DMU

35

35.1 35.1 35.1 35.1 35.1

D. D

t0.2 1.25

Rh/Rh

4. kVp Accuracy/Reproducibility

kVp meter used: Tektronia oscilliscope

	Ġ	FES	ser.	ice (G. K	ciste	23 =	ک عبدارد	ر مار ا	SON	
Nominal kVp setting	1 1	1	· · · · · · · · · · · · · · · · · · ·	1		30		- 1	1	34
Nominal focal spot size (mm)	0.3									\rightarrow
Exposure time										
mA (or mAs) setting	20.0	<i>2</i> 0.0								
Measured kVp values										ł
kVp ₁	24.9	a5.8	26.8	27.9	28.9	30.0	31.1	<i>3</i> 2.1	<i>3</i> 3.1	341
kVp ₂	24.9	25.8	aL-8	27.9	28.9	30.0	31-1	32.1	33.1	34.1
kVp ₃	24.9	25.8	३५४	27.9	28-9	30.0	31.1	32.1	33.	34.1
kVp₄	24.9	25.8	26.8	27.9	28.9	300	31.1	32.1	33.1	34.1
Mean kVp <kvp></kvp>	24.9	25.8	26.7	279	28.9	30.0	31.1	32.1	33.1	34.1
Standard dev. σ_{kVp}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Additional kVp measurements										
(if needed)									,	
kVp ₅									<u> </u>	
kVp ₆										
kVp ₇									<u> </u>	
kVp ₈		ļ							ļ	
kVp ₉	ļ									
kVp ₁₀	<u> </u>	ļ	ļ			-				
Recalculated:										
Mean kVp <kvp></kvp>			<u> </u>		<u> </u>					
Standard dev. σ_{kVp}										
(using 10 readings)		ļ		<u> </u>					ļ	
<kvp> - Nominal kVp</kvp>	1	.1	1		1	1	1			10.1
0.05 x Nominal kVp	1.25	11.3	1.35	1.4	1.45	1.5	1.55	1.6	1.65	1.7
kVp coefficient σ _{kVp} of variation	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100	0	0.0	0.0	0.0	0.0	100		0.0
<kvp></kvp>	0.0	10.0	10.0]	0.0	0.0

Action Limit: If <kVp> differs from the nominal kVp by more than ±5% of the nominal kVp, or if the kVp coefficient of variation exceeds 0.02, then seek service correction.

Mammography Quality Control Manual (rev. ed.)

Appendix 3: Data Recording and Analysis Forms

* 7·9·97

32

100

32.0

516

359 304

260

516

0.40

MolMo

5. Beam Quality (HVL) Measurement

Dosimetry system used: MDH ELECTROMETER MODEL 1515

		$\mathbf{v}_{\mathbf{l}}$	<u>-5 M</u>	1A/	M) PR	OBL
Nominal kVp setting	25	- a6	27	28	29	30	3/
mA setting	100	100	100	100	100	100	100
Time or MAS setting	90	0.80.0	71.8	63.0	56.0	50.0	40.0
Exposure measurements:						e B	
No aluminum filtration, E_0	597	8 608	6/2	608	604	595	523
0.2 mm of added aluminum,	E ₂ 390	402	408	i	411		362
0.3 mm of added aluminum,	-	333		345	346	344	306
0.4 mm of added aluminum,	_	7 279		291	294	294	261
9.5 mm of added aluminum,							
Repeat E_0 measurement, E_0 ,	59	8608	612	608	604	595	323
Record thicknesses $(t_a < t_b)$	ta				ĺ	_	
and exposures	t _b						
that bracket $E_0/2$: $(E_a > E_b)$	E _a						
	E _b		-				
Calculated HVL:	0.3	50.35	0.36	0.38	0.38	0.39	0.40

* HULS WERE CALCULATED BY AN EXPONENTIAL CURVE Fit.

Action Limit: If measured HVL
$$< \frac{kVp}{100} + 0.03$$
 (in mm Al) or

if measured HVL
$$> \frac{kVp}{100} + C$$
 (in mm Al),

where C=0.12 for Mo/Mo, C=0.19 for Mo/Rh, and C=0.22 for Rh/Rh,

then seek service correction.

Appendix 3: Data Recording and Analysis Forms

* 7.9.97

100

45.0

527

382

33()

286

528

3 11

MOIRH

5. Beam Quality (HVL) Measurement

Dosimetry system used: MDH ELECTRONETER MODEL 1515
With mammo chamber

Nominal kVp setting	27	28	29	30	3/
mA setting	100	100	100	100	100
Time or mAs setting	90.0	71.0	63.0	56.0	50.0
Exposure measurements:					
No aluminum filtration, $\rm E_{\rm o}$	621	554	550	543	534
0.2 mm of added aluminum, E		394	393	390	385
0.3 mm of added aluminum, E	373	337	337	334	331
0.4 mm of added aluminum, E		290	290	289	287
-0.5 mm of added aluminum, E			<u> </u>		
Repeat E ₀ measurement, E ₀ ,	62/	554	550	543	535
Record thicknesses $(t_a < t_b)$ t_a					
and exposures $\overline{t_b}$					
that bracket $E_0/2$: $(E_a > E_b)$ E_a					
E					
Calculated HVL:	0.42	0.43	0.43	0.44	0.44

* HULD were calculated by an exponential curve fit

Action Limit: If measured HVL
$$< \frac{kVp}{100} + 0.03$$
 (in mm Al)

or
$$kVp$$
 if measured HVL $> \frac{kVp}{100} + C$ (in mm Al),

where C=0.12 for Mo/Mo, C=0.19 for Mo/Rh, and C=0.22 for Rh/Rh,

then seek service correction.

Appendix 3: Data Recording and Analysis Forms (

* 7.9.97

11

RHIRH

5. Beam Quality (HVL) Measurement

Dosimetry system used: MDH ELECTROMETER MODEL 1515

	vithy	mam	mo c	hamk	per_
Nominal kVp setting	28	29	30	31	<i>3</i> a
mA setting	75	75	75	75	75
Time or mAs setting	71.0	63.0	56.0	50.0	40.0
Exposure measurements:					
No aluminum filtration, E _o	598	593	583	573	502
0.2 mm of added aluminum, $\rm E_2$	421	422	418	416	367
0.3 mm of added aluminum, $\rm E_3$	361	362	360	359	319
0.4 mm of added aluminum, $\rm E_4$	311	3/4	3/4	3/3	279
$\overline{\text{0.5}}$ mm of added aluminum, E_{5}	1.				
Repeat E_0 measurement, E_0 ,	597	523	582	572	502
Record thicknesses $(t_a < t_b)$ t_a					
and exposures . t _b					
that bracket $E_0/2$: $(E_a > E_b)$ E_a					
E _b					
Calculated HVL:	0.42	0.43	0.45	0.46	0.47

* HVLs were calculated by an exponential curve fit.

Action Limit: If measured HVL
$$< \frac{kVp}{100} + 0.03$$
 (in mm Al) or

if measured HVL
$$> \frac{\text{kVp}}{100} + \text{C}$$
 (in mm Al),

where C = 0.12 for Mo/Mo, C = 0.19 for Mo/Rh, and C = 0.22 for Rh/Rh,

then seek service correction.

Appendix 3: Data Recording and Analysis Forms

7.9.97

0.	and AEC Reproducibilit	-	idular Dose,	
	Dosimetry system used: MJ Imaging mode: MODE	DH ELECTROM L 1515 with M	ETER Energy corre	ection factor: <u>0,99</u>
	Image receptor: DiGi		Size (cm): _	'8 by 23
	Field restriction:	r23		
	SID (cm): 66.0	CM		
	Phantom: GAMA PHAN	MEX RMT M NTON SERIAL	IAMMOGRAPHIC, #156-15217	2
	Nominal kVp setting:	25	26	27
	Target/Filtration:	Mo/Mo	MolMo	MolMo
	AEC density control setting:	manual	manual	manuaL
	mA setting:	100	100	100
	Measured HVL (mm Al):	0.35	0.35	0.36
	(SECONDS)	> (2.05)	(1.56)	(1.19)
	Measured entrance exposure:	R mAs	R mAs	R mAs
	Exposure #1	1.26 180.0	1.13 140.0	1.00 110.0
	Exposure #2	1.26 180.0	1.13 140.0	1.00 110.0
	Exposure #3 Exposure #4	1.26 180.0	1.13 140.0	1.00 110.0
	(mR/mAs) >	(7.0·)	1.13 140.6 (8.07)	<u>/,00 110,0 </u> (9.1 0)
	Mean values	1.26 180.0	1.13 140.0	1.00 110.0
	Standard deviations (SD)	0.0 0.0	0.0 0.0	0.0 0.0
	Coefficients of variation (CV)	0.0 0.0	0.0 0.0	0.0 0.0
	Energy-corrected exposure: Dose conversion factor	1.25	1.12	0.99
	from Table 1-3 (mrad/R):	175	[76]	182
	Computed average			, <u>, , , , , , , , , , , , , , , , , , </u>
	glandular dose (mrad):	219.0	1970	180.0
Acti		ceeds 300 mrads (3 m		eek service. If average e breast thickness, seek

E

E

E

1

.

Appendix 3: Data Recording and Analysis Forms

8. Breast Entrance Exposure, Average Glandular Dose, Digital DMR and AEC Reproducibility MOIMO Dosimetry system used: MDH FLECTROMETER model 1515 With mammo manual Energy correction factor: 0.99 Image receptor: Size (cm): 18 by 23 DIGITAL Field restriction: 18 x 23 SID (cm): 66.0CM Phantom: GAMMER RMI MAMMOGRAPHIC Phantom Ser. # 156-15217 Nominal kVp setting: 28 30 a9 Target/Filtration: Mo IMo Mo 1 Mo MolMo AEC density control setting: MANUAL MANUAL mA setting: 100 100 100 Measured HVL (mm Al): 0,38 0.38 0.39 (Seconds) -> (0.946) (0.728) (0.628) Measured entrance exposure: R mAs R mAs R mAs Exposure #1 0.923 90.0 0.810 71.0 Exposure #2 0.923 90.0 0.810 71.0 Exposure #3 90.0 0.92.3 0.810 71.0 63.0 Exposure #4 90.0 0.810 0.923 71,0 63.0 (mR/mAs) -> (10.3)C11.4 12.6) Mean values 0.923 90.0 71.0 O. 8/0 63.0 Standard deviations (SD) 0. 0.0 Coefficients of variation (CV) 0.0 Energy-corrected exposure: 0.914 0.802 0.785 Dose conversion factor from Table 1-3 (mrad/R): Computed average glandular dose (mrad): 175.0 1540 If coefficient of variation for either R or mAs exceeds 0.05, seek service. If average Action Limit: glandular dose exceeds 300 mrads (3 mGy) for 4.2-cm effective breast thickness, seek service or technique adjustment.

T.

E

E

E

.

E

E

Appendix 3: Data Recording and Analysis Forms

					- 19			<u> </u>
8. Breast Entrance and AEC Reprod Mo Mo			age Glar	ndular Do	ose,	Die	FITAL :	DMR
Dosimetry system us	ed: MD1	I FI FC	ranner	FER F	neray cor	raction fact	for: A G	。
Dosimetry system us MOD Imaging mode:	EL 151	5 Wit	D MAR	THO CHA	MBER	iection laci	101	<i>L</i>
	DiGIT	A /			tiza (am):	(Naby	77	·
	18x23				ize (CIII).	_/ <i>&</i> by	<u> </u>	ı
-	66,0							
			112		al. A.	44.4		İ
r nanom.	5 779 19 1	SER &	M.I. A.	1 <u>AMM</u> 0 15217	PNAD.	7019		
Nominal kVp setting:		্র	· /		12			1
Target/Filtration:		M	Mo		IMO			1
AEC density control s	setting:	-	UAL	!	NUAL.			1 1
mA setting:			20		00			1 1
Measured HVL (mm /	Al): [40		.40			1
(SEC	(f (seuc		515)		.426)	<u>1</u>		'
Measured entrance ex	xposure:	R	mAs	R ·	mAs	R	mAs	1
Exposure #1		0.692	50.0	0.606	40.0			
Exposure #2	[0.692		0.600	40.0			
Exposure #3	ļ	0.692	50.0	0.600	40.0			
Exposure #4	, [0.692	50.0	0.606	40.0			
CmR/m Mean values			3.8)		5.2)			,
Standard deviations (S	אר אר	0.692	50.6	0.606	40.0	,		
Coefficients of variation		0.0	0.0	0.0	0.0 0.0			
	. (,	<u>U.U.</u>	<u>U.</u> U	[0,0]	0.0		<u> </u>	
Energy-corrected expo	L.	0.685		0.600				
from Table 1-3 (mrad	_	203	-	204				İ
Computed average	<u>L</u>			<u> </u>				
glandular dose (mrac	d): [139.0	ĺ	122,0				
Action Limit: If coefficie	ent of varia	ation for e	ither R or	mAs excee	eds 0.05	seek senii	a If avor	300
glandular o	dose exce	eds 300 m	rads (3 m(Gy) for 4.2-	cm effectiv	e breast th	ickness s	eek
service or	technique	adjustme	nt. `	,,		o Diodot ti		
								1

Appendix 3: Data Recording and Analysis Forms

7.9.94

8.	Breast Entrance Exposur and AEC Reproducibility	e, Averaç	ge Gland	dular Dos	se,	١١٠٥١١	AL DI	"\
	Mo/Rh							
	Dosimetry system used: MJ	H EL	ECTRO	METERE	nergy_corre	ction factor	r: <u>0.9</u> 0	7
	Imaging mode: MANUA	515 W	ith M.	AMMO I	prout			
	Image receptor: DiGiTA	L		Si	ze (cm): _/	18 by <u>2</u>	3	
	Field restriction:	3						
	SID (cm): 66.0 c	Μ						
	Phantom: GAMME SER	X RM	E MA	MWO F	OTUAHC	M		
	SER	LIAL #2 /	56-13	2/+		T		
	Nominal kVp setting:	2	7	a	8	2	9	
	Target/Filtration:	M	o/Rh	Mo	/Rh_	Mo	Rh	
	AEC density control setting:	MAN	JAL	MA	<u>iuAL</u>		JUAL	
	mA setting:	10			00		0	
	Measured HVL (mm Al):		42		.43		43	
	(seconds) 4		772)	· · · · · · · · · · · · · · · · · · ·	747)		.644)	
	Measured entrance exposure:	R	mAs_	R	mAs	R . 682	mAs	
	Exposure #1 Exposure #2	0.655	90.0 90.0	0.585	71.0	0.583 0.583	63.0 63.0	
	Exposure #3	0.655	90.0	0.585	71.0	0.583	63.0	
	Exposure #4	0.655	90.0	0.585	71.0	0.583		
	(mR/mAs)-		.3)	<u> </u>			.3)	l
	Mean values	0.655	90.0	0.585	71.0	0.583	63.0	
	Standard deviations (SD) Coefficients of variation (CV)	0.0	0.0	0.0	0.0	0.0	0.0	
	Coefficients of variation (OV)	0.0	0.0	0.0	0.0	0.0	0.0	J
	Energy-corrected exposure:	0.648		0.579		0.577		
	Dose conversion factor			[A]	· 	2/2		
	from Table 1-3 (mrad/R): Computed average	2/2		217		218		
	glandular dose (mrad):	137.0		126.0		126.	0	
Ad	etion Limit: If coefficient of va glandular dose exc service or technique	eeds 300 n	nrads (3 <mark>m</mark>	r mAs exce nGy) for 4.2	eeds 0.05, cm effective	seek servi ve breast tl	ce. If aver hickness, s	age seek

Appendix 3: Data Recording and Analysis Forms

7.9.97 DIGITAL DMR

3.	and AEC I	trance Exposur Reproducibility							
	Dosimetry sy	rstem used: M.D. Madel 151 le: Manual	H ELEC	TROM	ETER EN	ergy_corrections	ction factor	0.99	1
					 Siz	ze (cm):	R by 2.	3	
	Image recept	-	•			()-			
	Field restricti								
	SID (cm):	66.0	CM		- 1.2 m	-1-	\ .		
	Phantom:	GAMI	MEX S	RMI ERIAL	mamm £ 156-1.	10 phar 52/7	110 M		
	Nominal kVp	settina:	31	\cap	3/		32		l
	Target/Filtrat	_	Ma	IRh		IRh	Mol	Rh_	
	U	control setting:	MANU		MAN		MAN		
	mA setting:	control county.	10	1		100	10	1	
	-	\/ /mm \/\\:		44		44		45	
		VL (mm Al):	<u>_</u>			.463)		426)	-
		(SECONDS) >		<u>49チ)</u> mAs	R	mAs	R	mAs	1
		ntrance exposure:	R			45.0	0.496	40.0	ĺ
	Exposure		0.513	50.0	0.509		0.496	40.0	
	Exposure		0.5/3	50.0	0.509	45.0	0.496	40.0	İ
	Exposure		0.5/3	50.0	0.509	45.0	0.496	40.0	
	Exposure		0.513	50.0	0.509			(4)	j
	Mean val	luas (mRlmAs) >	0.513	50.0	0.509	45.0	0.496	40.0	
		eviations (SD)	0.0	0.0	0.0	0.0	0.0	0.0]
		of variation (CV)	0.0	0.0	0.0	0.0	0.0	0.0	
	Cosmolomo	or randing (5 1)		1	1				
	Energy-corr	ected exposure:	0.508		0.504		0.491		
		ersion factor		•		_		1	
	from Table	e 1-3 (mrad/R):	222]	223		227		
	Computed a							1	
	glandular	dose (mrad):	11.3.0)	1120		111.0	ļ	
Α	ction Limit:	If coefficient of va	riation for ceeds 300 r	either R o mrads (3 n	r mAs exco	eeds 0.05, 2-cm effecti	seek servi ve breast tl	ice. If ave hickness, s	rage seek

service or technique adjustment.

Appendix 3: Data Recording and Analysis Forms (

7.9.97

5.		ntrance Exposul Reproducibility	•	ge Glan	aular Do	se,	U16	117400	
	Rh IRI	•							
		•	OL FI	FCTA	METER	nerav corra	ection facto	r: 099)
	Imaging mo	system used: MJ ode: MANUA	5 With	MAMM	OCHAM	nergy corre	SUMULT INCLU	··· <u>· · · · · ·</u>	·
	Image rece				Si	ize (cm): _	<u>18</u> by <u>⊒</u>	3	
	Field restric	•				` ,			
	SID (cm):	(0(0 ()	CM		_		`		
	Phantom:	GAMI	1EX R Ser.#	MI N 156-	1 <u>AM</u> MC 15217	phan	JON		
	Nominal kV		28			29		38	
	Target/Filtra		Rh	IRh	Rb	IRh	R	hIRh	
	AEC densit	y control setting:	MAN	UAL	MAN	WAL	MAL	JUAL	
	mA setting:		7.	5	`	-5		75	
		HVL (mm AI):	<u> </u>	42		43_		45	
		SECONDS) >		<u> 786)</u>		0.615)		0.480)	
		entrance exposure:	R	mAs	R	mAs	R	mAs	
	Exposure Exposure		0.497	56.0	0.446	45.0	0.394	36.0	
	Exposure		0.497	56.0 56.0	0.446	45.0	0.374	36.0	
	Exposure		0.497	56,0	0.440	45.0	0.394	36.0	
		(mR/mAs) +	(8.9	3)		.9)	(10.	<u>.9) </u>	
	Mean va		0.497		0.446	45.0	0.394	36,0	
		eviations (SD) of variation (CV)	0.0	0.0	0.0	00	0.0	0.0	
	ODEIIIGEIIIS	o or variation (OV)	0.0	0.0	0.0	0.0	0.0	\mathcal{O},\mathcal{O}	
		ected exposure: ersion factor	0.492		0.442	[0.390		
	from Table Computed a	e 1-3 (mrad/R): average	224		230	[241		
	glandular	dose (mrad):	110.0		102	<u>ه</u> [94.0		
cti	on Limit:	If coefficient of var glandular dose exce service or techniqu	eeds 300 m	ırads (3 m		-			

Univ. of Massachusetts Med. Ctr. Worcester, Mass. 01605

Appendix 3: Data Recording and Analysis Forms (

			alysis Form	1/8		<u></u>	<u> 9-9</u> .
	Entrance Exposu C Reproducibility २∖.	•	andular Dose,	Ţ	DìGi	TAL	DME
, ,	• •	THE ELECTRON	IT+EØ Energy	, correcti	on facto	r. 10 90)
Imaging m	system used: MI model 1515 node: MANUA	with MAMI	40 Chambe	Confecti	un iacio	1.0-1	<u></u>
Image rec			 Size (cm): <u>/8</u>	hv 3	2	
Field restr		r 23	Oize (i	5111). <u>7 5</u>	_ Uy <u>~~</u> _	2	
SiD (cm):							
Phantom:	_	EX RMI	MANNA	OH AAS	TAM		
· namonn	SE	R. # 156-15	317		,		
Nominal k	Vp setting:	31	32				7
Target/Filt	ration:	RhIRh		Rh			7
AEC dens	ity control setting:	MANUAL	MANU				7
mA setting	ງ :	75	75				
Measured	HVL (mm Al):	0.46	0.47	Z			1
	(SECONDS) >	(0.439)			-		_
Measured	entrance exposure:	R mAs		As	R	mAs	
Exposu		0.387 39.0	0.371 2	8.0			
Exposu		0.387 32.0		3.0			4
Exposu Exposu		0.387 32.0		8.0			-
Lxposu	(mRlm As) >	(/2.1)	5 0.37/1 2	8.01 N			J
Mean v			00.37/28	7.0		*** ***	7
Standard of	deviations (SD)	0.0 0.0		.0			
Coefficient	s of variation (CV)	0.0 0.0	0.0 0.	0]
• • • • • • • • • • • • • • • • • • • •	rrected exposure:	0.383	0.367				
from Tab Computed	le 1-3 (mrad/R): average	246	251				-
glandular	dose (mrad):	94.0	92.0				
Action Limit:	If coefficient of var glandular dose exce service or techniqu	eeds 300 mrads (3					

Digital Mammo Image Eval. 97

RMI Mammographic (all performed with Target/Filter Mo/Mo Rh/Rh	c Phanto	om serial #156-	hy Phantom Image E 15217 WW/WL settings 574/506 279/97	Date: 7	% Speck group 3 (5/6)	Masses
(all performed with Target/Filter Mo/Mo	h grid in mAs 110	kVp 27	WW/WL settings 574/506	6		
Target/Filter Mo/Mo	mAs 110	kVp 27	574/506	6		
Mo/Mo	110	27	574/506		3 (5/6)	
			279/97	l		4
				4	3 (1/6)	3
i	1					
		lm	age Evaluation			
RMI Mammographi	ic Phanto			(all perfo	ormed with grid	in)
Target/Filter	mAs	kVp	WW/WL settings	Fibers	Speck group	Masses
Mo/Mo	25	27	137/100	3	3 (2/6)	3
Mo/Mo	50	27	146/239	4	3	4
Mo/Mo	100	27	162/510	5	3 (3/6)	4
Mo/Mo	140	27	163/748	5	3 (5/6)	4
Mo/Mo	200	27	266/1088	5	4	4
Мо/Мо	250	27	281/1339	5	4 (1/6)	4
Target/Filter	mAs	kVp	WW/WL settings	Fibers	Speck group	Masses
Rh/Rh	25	28	207/4	2	2 (4/6)	2
Rh/Rh	50	28	205/70	4	3	3
Rh/Rh	100	28	211/228	5	3 (4/6)	4
Rh/Rh	140	28	216/346	5	3 (4/6)	4
Rh/Rh	200	28	217/521	6	3 (5/6)	4
Rh/Rh	250	28	148/488	5	4	4
*Note: This ir	mage wa	ıs taken with a	pprox. 1.0cm added	acrylic to	o 4.5 cm mamn	no phante
Target/Filter	mAs	kVp	WW/WL settings	Fibers	Speck group	Masses
Rh/Rh	125	28	178/141	4	3	3
*00.0 m 4	e ie ueed	on our other th	e DMR with film/scre	en at 27 k	Vn and Mo/Mo	target filte

meter setting (3)

Mo/Mo

4. kVp Accuracy/Reproducibility

kVp meter used: RMT_ mammographic KVp meter MODEL 233

						24	3/	32
Nominal kVp setting		a6	27	28		<u>30</u>	0.3	1 1
Nominal focal spot size (mm)	0.3	0.3	0.3	0.3	0.3	0.3	0.0	0.0
Exposure time	_				20 4	28.0	28.0	280
mA (or mAs) setting	28.0	28.0	28.0	28.0	28.0	28.0	1000	20.0
Measured kVp values					0	201	214	32.6
kVp ₁	a4.1	253	26.4	27.6	28.9	30,1	1	33.6
kVp ₂	34.1	25.3	26.4	27.6	38.9	30.1		32.6
kVρ ₃	34.1	1 25.3	26.4	27.6	28.7	30.1	1	32.4
kVp ₄	34.	1253	26.4	127.0	38.7	30.1	- G. F	
Mean kVp <kvp></kvp>		 			 		+-	!
Standard dev. σ_{kVp}					 		_	
Additional kVp measurements								
(if needed)								
kVp ₅								
kVp ₆								
kVp ₇					+-			
kVp ₈			-		-	1		
kVp ₉					-			
kVp ₁₀		-	-					
Recalculated:								14 32.1
Mean kVp <kvp></kvp>	2	4.1/25	3 26	/ 25	1.4 2	39 30.		7 04.
Standard dev. σ_{kVp}						0.0	a	000
(using 10 readings)		00			00.	,		4 +0.6
<kvp> – Nominal kVp</kvp>			7 -0.	0 -0	10	• 1		55/10
0.05 x Nominal kVp	/	125/1	30 /	35 1.	y U 1.	75 /		
kVp coefficient σ _{kVp}								.00.0
of variation ——— <kvp></kvp>	1	0 010	0.0	o p	00	0.0	0 1	-

If <kVp> differs from the nominal kVp by more than $\pm 5\%$ of the nominal kVp, or if the kVp coefficient of variation exceeds 0.02, then seek service correction. Action Limit:

- Before colibration Digital ummo

Appendix 3: Data Recording and Analysis Forms (7.9.97

35

28.0

Rh/Rh

Before calibration

4. kVp Accuracy/Reproducibility

kVp meter used: <u>Tektronic</u> X 223 2 performed by g.E. service) G. Kevster)

		ster		,						
Nominal kVp setting	25	ab	27	28	29	30	3/	32	33	34
Nominal focal spot size (mm)	1		1	1 .	1			1		i
Exposure time								<u> </u>		
mA (or mAs) setting	28.0	28.0	280	281	28.0	28.1)	28.0	28.0	28.0	28.0
Measured kVp values										
kVp ₁	24.1	25,3	26.4	27.6	28.9	30.1	31.4	32.6		
kVp ₂	1	25.3	1	1				1	l l	
kVp ₃		25,3								
kVp ₄	1	25,3						i .		
Mean kVp _ <kvp></kvp>						,				
Standard dev. σ_{kVp}										
Additional kVp measurements										
(if needed)			!							
kVp ₅										
kVp ₆		*						-		
kVp ₇						·				
kVp ₈										
kVp ₉										
kVp ₁₀										
Recalculated:										
Mean kVp <kvp></kvp>	24.	25.3	26.4	276	28.9	30.1	.3). 4	321		
Standard dev. σ_{kVp}	J	J.O 4		<i>U</i>	40.	.,,	011-1			
(using 10 readings)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
<kvp> – Nominal kVp</kvp>	1	70.7			i					
0.05 x Nominal kVp	4	1.30)	
kVp coefficient σ_{kVp}										
of variation <kvp></kvp>										
- KAP-]

If <kVp> differs from the nominal kVp by more than ±5% of the nominal kVp, or if the Action Limit: kVp coefficient of variation exceeds 0.02, then seek service correction.

University of Massachusetts

Department of Radiology University of Massachusetts Medical Center 55 Lake Avenue North, S2-825 Worcester, MA 01655 (508) 856-2069 FAX: (508) 856-4669

Andrew Karellas, Ph.D. Associate Professor of Radiology Director, Radiologic Physics

September 29, 1997

R. Edward Hendrick, Ph.D.
Division of Radiological Sciences
Department of Radiology, C278
4200 East Ninth Avenue
Denver, CO 80262

Via Fax: (303) 315-8993

Dear Ed:

The following are the data you requested on the output of the digital and film DMR units which are located in our digital mammography room. All measurements were recorded with a calibrated MDH 1515 detector using a mammographic chamber. The chamber was placed at 4.5 cm above the breast holding platform and about 3 cm from the chest wall. The ACR phantom was used and the compression plate was above the phantom and detector. The exposure was recorded from 22 - 35 kVp for both film and digital units. All data are for Mo/Mo target filter combinations for both units. I will be happy to conduct additional measurements for other combinations if you wish.

We also recorded the exposure time in milliseconds for each exposure and calculated the mR/mAs. All exposures were taken at a fixed mAs setting of 100 mAs. Figure 1 shows the measured exposure as a function of kVp. Please note that the power dependence of the exposure versus kVp is about 3.2 as shown in the curve fits in Figure 1. This is contrary to what we observed with standard well-filtered x-ray tubes which have typically a kVp power dependence of close to 2.0 - 2.1. Figure 2 shows the measured exposure time using the MDH 1515 in the pulse mode as a function of kVp. Note the increase in exposure time beyond 30 kVp in Figure 2; this must be caused by the automatic decrease in mA from 100 to approximately 80 kVp at settings >30 kVp. The date of all the above measurements was Sepember 17, 1997.

Please call me if you have any questions.

Sincerely,

Andrew Karellas, Ph.D.

Associate Professor of Radiology Director, Radiologic Physics

AK/rl Enclosure !ak\mischendrick.003!

	kVp	Film mR	Film time(ms)	Film mR/mAs	Dig mR	Dig Time(ms)	Dig mR/mAs
0	22.000	454.00	1.2500	4.5000	425.00	1.2500	4.3000
	23.000	540.00	1.2150	5.4000	505.00	1.2060	5.1000
2	24.000	634.00	1.1790	6.3000	594.00	1,1690	5.9000
3	25.000	738.00	1.1430	7.4000	689.00	1.1440	6.9000
4	26,000	843.00	1.1120	8.4000	789.00	1.1120	7.9000
5	27,000	958.00	1.0800	9.6000	898.00	1.0810	9.0000
6	28.000	1080.0	1.0530	10.800	1008.0	1.0520	10.100
7	29.000	1203.0	1.0270	12.000	1126.0	1.0250	11.300
8	30,000	1333.0	0.99000	13.300	1247.0	1.0000	12.500
9	31.000	1472.0	1.0350	14.700	1374.0	1.0320	13.700
10	32.000	1602.0	1.0680	16.000	1504.0	1.0660	15.000
11	33.000	1743.0	1.1020	17.400	1642.0	1.0950	16.400
12	34.000	1890.0	1.1350	18.900	1773.0	1.1300	17.700
13	35,000	2030.0	1.1700	20.300	1922.0	1.1620	19.200

Figure 1. Measured Exposure as a function of kVp at 100 mAs

Full Field Digital Mammography

Technologists Quality Control Minimum Test Frequencies

Test	Minimum Frequency
Phantom Image Acquisition	Daily
Nitrogen Tank Inspection	Daily
Water Tank Inspection	Daily
Hose and Cable Inspection	Daily
Shutdown & Reboot	Weekly
Calibrate	Weekly
Flat-Field Uniformity	Weekly
SNR	Weekly
Display Monitor Clean	Weekly
Viewing Conditions	Weekly
Unit Visual Checklist	Monthly
Compression	Quarterly
Repeat Analysis	Quarterly

Laser Printer Tests - if images are read from film.

Test	Minimum Frequency
SMPTE Test Pattern	Daily
Darkroom Cleanliness	Daily
Phantom Image	Weekly
Viewboxes and Viewing Conditions	Weekly
Darkroom Fog	Semi-annually
Analysis of Fixer Retention	Semi-annually

સ ဓ 8 8 22 92 52 74 23 ដ Daily QC Requirements For Full Field Digital Mammography 2 8 5 8 Month: Room: Year: 16 5 4 5 4 Ξ 우 30C +/- 2C 200 Nitrogen Tank PSI: Water Tank Temp: Masses Action Limit: Fibers ا کو کو mAs: Date --> Initials Acquisition OK Speck Groups Artifacts Remarks: Facility: Target / Filter_ Hoses and Cabling Unobstructed Day --> Water Tank Level Nitrogen Tank PSI ACR Phantom Water Tank Temp.

Weekly QC Requirements For Full Field Digital Mammography Room:

Facility:			Room:						
Year:			Comp	ression F	Paddle:	Out For A	II Tests		
Date>									
Day>									
Initials									
Shutdown & Reboot									
Pre-Calibration Images									
1 inch acrylic, 25 kV, 50 mAs									
Patient ID									
100 um - Mo/Mo									
100 um - Mo/Rh									
100 um - Rh/Rh									
Calibration Files (Bad Pixel)									
100 um Bad Pixel (Grid Out)									
Number of Bad Pixels									
Clusters, Bad DL's, etc., All Zero? Y/N									
If not 0, description:									
Conversion Factor (Grid out)									
C.F. per incident X-ray									
Calibration Files (Gain Files)									
100 um - Mo/Mo (Grid In, 1 inch Ac.)									
100 um - Mo/Rh (1 inch Acrylic)									
100 um - Rh/Rh (2 inch Acrylic)									
MTF									
MTF at 2 lp/mm									
MTF at 5 lp/mm									
Post-Calibration Images									
1 inch acrylic, 25 kV, 50 mAs									
100 um - Mo/Mo									
100 um - M o/Rh									
100 um - Rh/Rh									
Subtraction Completed						ļ			
100 um - M o/Mo									
100 um - Mo/Rh									
100 um - Rh/Rh									
Subtraction Images OK							-		ļ
100 um - Mo/Mo						<u> </u>			ļ
100 um - Mo/Rh									
100 um - Rh/Rh							-		
Flat Field Uniformity									
Bkgd Signal Mo/Mo									
Bkgd St. Dev. Mo/Mo								<u> </u>	
SNR Mo/Mo								!	<u> </u>
Bkgd Signal Mo/Rh								<u> </u>	
Bkgd St. Dev. Mo/Rh								ļ	
SNR Mo/Rh									
Bkgd Signal Rh/Rh					!			<u> </u>	
Bkgd St. Dev. Rh/Rh								<u> </u>	<u> </u>
SNR Rh/Rh									
Display Monitor Clean									

Monthly and Quarterly QC for Full Field Digital Mammography

Year				
Month				
Date				
Initials				
Visual Inspection			77.3	170 (1.50 V # 1.50)
Repeat Analysis				
Compression	and the second of the second o	The second secon	to and transcention to the same air constraint of the College	
Radiologist Review				
Physicist Review				

Full Field Digital Mammography QC Visual Checklist

Frequency: Monthly		
Room:	Unit:	

	Year				 	 1		
	Month						_	
	Date		-					
	Initials							
	SID indicator or marks				 			
	Angulation indicator							
C-ARM	Locks (all)					_		
	Field light					 		
	Smoothness of motion							
	Inspect all paddles for cracks							
CONTROL	Panel switches/lights/meters			-				
воотн	Technique charts							
OTHER	Cleaning solution							

Pass: P

Fail: F

Does Not Apply: NA

Full Field Digital Mammography Medical Physicists Tests

	Test	Frequency
1	Conversion Factor	Monthly
2	MTF	Monthly
3	Image Quality - ACR Phantom	Quarterly
4	Image Quality - SMPTE Pattern	Quarterly
5	Unit Assembly Evaluation	Yearly
6	Collimation Assessment	Yearly
7	Evaluation Of Focal Spot	Yearly
8	Sytem Limiting Resolution	Yearly
9	kVp Accuracy/Reproducibility	Yearly
10	Beam Quality (HVL)	Yearly
11	Breast Entrance Exposure	Yearly
12	Artifact Evaluation/Flat Field Uniformity	Yearly
13	Detector Signal to Noise Ratio Measurement	Yearly
14	Geometric Distortion, Resolution Uniformity	Yearly
15	Detector Contrast Function	Yearly

	Laser Printer - If Applicable	Frequency	
1 2 3 4	Image Quality - ACR Phantom Image Quality - SMPTE Pattern Artifact Evaluation/Flat Field Uniformity System Limiting Resolution	Yearly Yearly Yearly Yearly	

1. Conversion Factor	
Grid: Out	
kVp:	
mAs:	
Target/Filter: Rh/Rh	
Conversion Factor Per Incident X-ra	ay:
Action Limit:	C.F. must be greater than 110.

2. MTF

1st two images: No bar.

3rd image: With Bar.

MTF lp/mm	MTF
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

Phantom Used	•	
	Previous Image	Current Image
kVp setting		
Target/Filter		
mAs		
Number of fibers seen		
Fiber change		
Number of speck groups seen		
Speck group change		
Number of masses seen		
Mass change		

Action Limit:

If fiber, speck group, or mass score changes, the scource of change should be identified and corrected.

4. Image Quality Evaluation - SMPTE test pattern

	Previous Image	Current Image
All steps of SMPTE discernible?		
Low contrast targets of SMPTE		
discemible?		
Luminance:		

Action Limit:

If the SMPTE test pattern and low contrast targets are not discernible, the scource of change should be identified and corrected.

Equipment C-Ray Unit Manufacturer								Date:		
Acrea Unit Manufacturer	ite <u>:</u>							_a		
Acrea Unit Manufacturer	-									
All locks and detents work properly. All locks and detents work properly. Compressed breast thickness scale is accurate to +/- 0.5 cm, reproducible to +/- 0.2 cm. Patient or operator is not exposure type. All Operator technique charts are posted. Operator technique charts are posted. Model Model Italian Itali	qui	pment								
Breast Exposure kVp mAs Target/Filter I.R. Size Grid Used Thickness Mode Setting Setting Combination 2 cm Manual 18 x 24 Yes 6 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 7 Yes 8 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 7 Yes 8 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 7 Yes 8 cm Manual 18 x 24 Yes 9 cm Manual 18 x 24 Yes 9 cm M	-Ra	y Unit Manu	ıfacturer _					Model _		
Breast Exposure kVp mAs Target/Filter I.R. Size Grid Used Thickness Mode Setting Setting Combination 2 cm Manual 4 cm Manual 6 cm Manual 8 cm Manual 18 x 24 Yes 18 x 24 Yes 18 x 24 Yes 18 x 24 Yes 18 x 24 Yes 18 cm Manual 7 x 24 Yes 18 x 24 Yes								Model _		
Thickness Mode Setting Setting Combination 2 cm Manual 18 x 24 Yes 4 cm Manual 18 x 24 Yes 6 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 7 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 9 cm Manual 18 x 24 Yes 28 x x x x x x x x x x x x x x x x x x x								_		
Thickness Mode Setting Setting Combination 2 cm Manual 18 x 24 Yes 4 cm Manual 18 x 24 Yes 6 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 7 Setting Combination 18 x 24 Yes 18 x 24 Yes 18 x 24 Yes 18 x 24 Yes 18 x 24 Yes 18 x 24 Yes 18 x 24 Yes 18 x 24 Yes 7 Setting Combination 18 x 24 Yes 24 xes 18 x 24 Yes 25 x x x x x x x x x x x x x x x x x x x	ſ	Breast	Exposure	kVp	mAs	Target/Filter	I.R. Size	Grid Used		
2 cm Manual 18 x 24 Yes 4 cm Manual 18 x 24 Yes 6 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 5. Full Field Digital Mammographic Unit Assembly Evaluation Free standing unit is mechanically stable. All moving parts move smoothly, without obstructions to motion. Y All locks and detents work properly. Image receptor is free from vibrations during exposure. Compressed breast thickness scale is accurate to +/- 0.5 cm, reproducible to +/- 0.2 cm. Y Patient or operator is not exposed to sharp or rough edges or other hazards. Y Operator technique charts are posted. Y Nitrogen tank, water bath, and hoses are securely fastened and safely placed.			-	· 1					ı	
4 cm Manual 18 x 24 Yes 6 cm Manual 18 x 24 Yes 8 cm Manual 18 x 24 Yes 5. Full Field Digital Mammographic Unit Assembly Evaluation Free standing unit is mechanically stable. All moving parts move smoothly, without obstructions to motion. Y All locks and detents work properly. Image receptor is free from vibrations during exposure. Compressed breast thickness scale is accurate to +/- 0.5 cm, reproducible to +/- 0.2 cm. Y Patient or operator is not exposed to sharp or rough edges or other hazards. Y Operator technique charts are posted. Y Nitrogen tank, water bath, and hoses are securely fastened and safely placed.							18 x 24	Yes		
8 cm Manual 18 x 24 Yes 5. Full Field Digital Mammographic Unit Assembly Evaluation Free standing unit is mechanically stable. All moving parts move smoothly, without obstructions to motion. Y All locks and detents work properly. Image receptor is free from vibrations during exposure. Compressed breast thickness scale is accurate to +/- 0.5 cm, reproducible to +/- 0.2 cm. Y Patient or operator is not exposed to sharp or rough edges or other hazards. Y Operator technique charts are posted. Y Nitrogen tank, water bath, and hoses are securely fastened and safely placed.							18 x 24	Yes	!	
5. Full Field Digital Mammographic Unit Assembly Evaluation Free standing unit is mechanically stable. All moving parts move smoothly, without obstructions to motion. Y All locks and detents work properly. Image receptor is free from vibrations during exposure. Y Compressed breast thickness scale is accurate to +/- 0.5 cm, reproducible to +/- 0.2 cm. Y Patient or operator is not exposed to sharp or rough edges or other hazards. Y Operator technique charts are posted. Y Nitrogen tank, water bath, and hoses are securely fastened and safely placed. Y		6 cm	Manual					<u> </u>		
Free standing unit is mechanically stable. All moving parts move smoothly, without obstructions to motion. Y All locks and detents work properly. Image receptor is free from vibrations during exposure. Compressed breast thickness scale is accurate to +/- 0.5 cm, reproducible to +/- 0.2 cm. Y Patient or operator is not exposed to sharp or rough edges or other hazards. Y Operator technique charts are posted. Y Nitrogen tank, water bath, and hoses are securely fastened and safely placed. Y		8 cm	Manual				18 x 24	Yes		
All locks and detents work properly. Image receptor is free from vibrations during exposure. Compressed breast thickness scale is accurate to +/- 0.5 cm, reproducible to +/- 0.2 cm. Patient or operator is not exposed to sharp or rough edges or other hazards. Operator technique charts are posted. Operator protected during exposure by adequate radiation shielding. Y Nitrogen tank, water bath, and hoses are securely fastened and safely placed.	Free	e standing u	nit is mechar	nically stable	e.		Evaluatio	n		N
Image receptor is free from vibrations during exposure. Compressed breast thickness scale is accurate to +/- 0.5 cm, reproducible to +/- 0.2 cm. Patient or operator is not exposed to sharp or rough edges or other hazards. Operator technique charts are posted. Operator protected during exposure by adequate radiation shielding. Y Nitrogen tank, water bath, and hoses are securely fastened and safely placed.	ı IIA	noving parts	s move smoo	othly, withou	ıt obstructio	ons to motion.			·	N
Compressed breast thickness scale is accurate to +/- 0.5 cm, reproducible to +/- 0.2 cm. Yeatient or operator is not exposed to sharp or rough edges or other hazards. Yeatient or operator is not exposed to sharp or rough edges or other hazards. Yeatient or operator is not exposed to sharp or rough edges or other hazards. Yeatient or operator is not exposed to sharp or rough edges or other hazards. Yeatient or operator is not exposed to sharp or rough edges or other hazards. Yeatient or operator is not exposed to sharp or rough edges or other hazards. Yeatient or operator is not exposed to sharp or rough edges or other hazards. Yeatient or operator is not exposed to sharp or rough edges or other hazards. Yeatient or operator is not exposed to sharp or rough edges or other hazards. Yeatient or operator is not exposed to sharp or rough edges or other hazards. Yeatient or operator is not exposed to sharp or rough edges or other hazards. Yeatient or operator is not exposed to sharp or rough edges or other hazards. Yeatient or operator is not exposed to sharp or rough edges or other hazards. Yeatient or operator is not exposed to sharp or rough edges or other hazards. Yeatient or operator is not exposed to sharp or rough edges or other hazards. Yeatient or operator is not exposed to sharp or rough edges or other hazards. Yeatient or operator is not exposed to sharp or rough edges or other hazards. Yeatient or operator is not exposed to sharp or rough edges or other hazards.	411 1	ocks and de	tents work p	roperly.					Υ	N
Patient or operator is not exposed to sharp or rough edges or other hazards. Y Operator technique charts are posted. Y Operator protected during exposure by adequate radiation shielding. Y Nitrogen tank, water bath, and hoses are securely fastened and safely placed.	ma	ge receptor	is free from	vibrations d	uring expos	sure.			Υ	N
Operator technique charts are posted. Operator protected during exposure by adequate radiation shielding. Y Nitrogen tank, water bath, and hoses are securely fastened and safely placed.	Con	npressed bro	east thicknes	ss scale is a	ccurate to	+/- 0.5 cm, repr	oducible to	+/- 0.2 cm.	Y	N
Operator technique charts are posted. Operator protected during exposure by adequate radiation shielding. Y Nitrogen tank, water bath, and hoses are securely fastened and safely placed. Y	Pati	ent or opera	ator is not ex	posed to sh	arp or rougl	h edges or othe	er hazards.		Υ	N
Nitrogen tank, water bath, and hoses are securely fastened and safely placed.									Y	N
Nitrogen tank, water bath, and hoses are securely fastened and safely placed.	Оре	erator protec	ted during e	xposure by	adequate ra	adiation shieldi	ng.		Y	N
								1.	Y	N
I IVVALEI DALII LEIMPETALUIE IS SLADIE AND CONTECT (SUC 17- 10).									Υ	N

.

6. Collimation	on Assessment		Source to Ima	ge Receptor	Distance (SID):
Deviation b	etween X-ray field and light	field:			
	Collimator				
	Left Edge: Deviation				
	Right Edge Deviation				
!	Sum of magnitudes of				
	left and right edge				
	deviations				
	Sum as % if SID				
	Anterior Ed Deviation				
	Chest Edg Deviation Sum of magnitudes of				
	left and right edge				
	deviations				
	Sum as % if SID				
X-ray field	2% of the SID, seek service within image receptor left, ri			Y	N
Difference	between X-ray field and ima	age recep	tor at chest wa	11:	
	Collimator				
	Difference between				
	X-ray image receptor at chest				
	Difference as % of SID	<u> · · · · · · · · · · · · · · · · · </u>			
Action Limit:	If X-ray field extends beyo extends beyond the chest service adjustment.	nd the im wall edge	age receptor (I of image rece	eft, right, or ptor by more	anterior) or if X-ray field e than 2% of SID, seek
Alignment	of chest wall edges of comp	oression p	addle and ima	ge receptor:	1
	Collimator				
	Difference between				
	compression paddle edge and image receptor				
	at chest wall				
	Difference as % of SID				
Action Limi	it: If chest wall edge of comp	oression p image re	addle is within ceptor by more	the image rethan 1% of	eceptor or projects beyond SID, seek service correction.

7.	Evaluation	of	Focal	Spot	Measurement
----	-------------------	----	--------------	-------------	-------------

High Contrast resolution pattern measurement of limiting resolution

Nominal Focal Spot Size,	f _{nom}	:	
Nominal kVp setting			
Nominal mA setting			
mAs			
Magnification Factor		Contact	
Limiting	bars parallel to A-C axis		
Resolution	bars perpendicular to A-C axis		

Action Limit:

If the limiting resolution is <13 line-pairs per mm with the bars parallel to the anode-cathode axis or is <11 line-pairs per mm with the bars perpendicular to the anode-cathode axis, then a more detailed investigation of the reason should be made using a slit camera.

8. System Limiting Resolution

Resolution Test Tool:

	Large	Small	
Focal Spot Size			
kVp			
mAs			
mA			
lp/mm			

Action Limit:

If the limiting resolution is <0.45/p lp/mm, then more detailed investigation of the reason should be made.

kVp meter used: Nominal kVp setting Nominal focal spot size Exposure time mA (or mAs) setting kVp 1 Measured Values kVp2 kVp 3 kVp 4 Mean kVp Standard Deviation Mean kVp - Nominal kVp 0.05 x Nominal kVp kVp coefficient of variation (Std. dev. / mean kVp)

If mean kVp differs from the nominal by more than +/-5% of the nominal kVp, or if the kVp coefficient

of variation exceeds 0.02, then seek service adjustment.

9. kVp Accuracy/Reproducibility

Action Limit:

10. Beam Quality (HVL) Measurement

Dosimetry system used:

Nominal kVp setting				
Nominal focal spot size				
Nominal rocal oper size				
Target/Filter				
mAs setting				
No Aluminum Filtration, E₀				
0.2 mm of added Aluminum, E ₂				
0.3 mm of added Aluminum, E ₃				
0.4 mm of added Aluminum, E ₄				
0.5 mm of added Aluminum, E ₅				
0.6 mm of added Aluminum, E ₆				

Record thickness and exposures that bracket $\ensuremath{E_{\text{o}}}\xspace/2$

ta < tb ta	а			
tt	b			
Ea > Eb Ea	a			-
E	b			
Calculated HVI	L			

Calculated HVL = (tb In(2Ea/Eo) - ta In(2Eb/Eo)) / In(Ea/Eb)

Action Limit:

If measured HVL < kVp/100 +0.03mm (in mm Al)

or

If measured HVL > kVp/100 + C (in mm Al)

Where C=

0.12 for Mo/Mo

0.19 for Mo/Rh

0.22 for Rh/Rh

then seek service.

Dosimetry system used: Imaging receptor size: Field restriction: SID (cm) Phantom ID:					
Phantom type and thickness	4.2 cm ACR	2 cm	4 cm	6 cm	8 cm
Nominal kVp setting					
Target/Filter			·		
mAs setting					
Measured HVL (mm Al)					
			<u> </u>		
Measured Entrance Exposure	R	R	R	R	R
Exposure #1					
Exposure #2					
Exposure #3					
Exposure #4	1				l
Mean Values					
Standard Deviations (SD					
Coefficients of variation (CV)					
Energy Corrected Exposure					
Dose Conversion Factor (mrad/R)				
Computed Average Glandular Dose	e				
(mrad)				

Action Limit:

If coefficient of variation for either R or mAs exceeds 0.05, seek service. If average glandular dose exceeds 300 mrads (3 mGy) for a 4.2-cm effective breast thickness, seek service or technique adjustment.

Type of Attenuator					-	
Thickness of Attenuator					-	
kVp Setting					_	
mAs Setting					_	
Focal Spot Size					-	
Image Receptor Size						
					T	
	Mo/Mo		Mo/Rh		Rh/Rh	
	CRT	Detector	CRT	Detector	CRT	Detector
Artifact Visible?						
Equipment Artifact?						
Detector?						
Grid?						
Phantom Defect?						
Other						
Low Frequency Uniformity						
Description of Artifacts:					<u> </u>	

. . .

3. Detector Signal To Noise R	atio Meası	ırement			D:	anlay Mani	tor	
Type of Attenuate	or			. [וט	splay Moni	ioi	
Thickness of Attenuate	or				(1)		(2)	
kVp Settir	ng							
	ng					(3)		
Focal Spot Siz					(4)		(5)	
Image Receptor Siz								
			Mo/Rh			Rh/Rh		
	Mo/Mo	t		<u></u>	rrent	Previous	Current	\dashv
Background Signal and Std. Dev.	Previous	Current	Previous	Cu	Hent	rievious	Oditelia	一
Location 1 Signal			£1.				2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\dashv
Location 1 Standard Deviation	and another a second constitution	<u> </u>		-				
Location 1 SNR		<u> </u>		_				_
SNR Change (Number & %)	Marries and a second single of	%			%			%
Location 2 Signal								
Location 2 Standard Deviation		G 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8						
Location 2 SNR				_				
SNR Change (Number & %)		%			%			%
Location 3 Signal				in the second				
Location 3 Standard Deviation								
Location 3 SNR							ļ <u>.</u>	
SNR Change (Number & %)		%			%			%
Location 4 Signal								
Location 4 Standard Deviation								
Location 4 SNR								
SNR Change (Number & %)		%			%			%
Location 5 Signal								
Location 5 Standard Deviation								
Location 5 SNR						<u> </u>		
SNR Change (Number & %)		9/	5		%			%

Object Signal			
Object Standard Deviation			
Object SNR			
SNR Change (Number & %)	%	%	%

Action Limit: If signal change exceeds +/-8% or object change exceeds +/-10% the source of change should be identified

14. Detector Dynamic Range	
Phantom Material:	

				Bkgd	Bkgd	Bkgd	Object	Object	Object
Thickness	kVp	mAs	T/F	Signal	Std. Dev	SNR	Signal	Std. Dev	SNR
2 cm									
4 cm									
					:				
4.2 cm									
6 cm									
8 cm									

Action Limit:

Vp setting: As Sarid? Mo/Mo Mo/Rh Rh/Rh Uniform Resolution over image area? Pattern not distorted? Description of distortion:	creen mesh used:		_		
Mo/Mo Mo/Rh Rh/Rh Uniform Resolution over image area? Pattern not distorted? Description of distortion:			_		
Mo/Mo Mo/Rh Rh/Rh Pattern not distorted? Description of distortion:			_		
Iniform Resolution over image area? Pattern not distorted? Description of distortion:	irid?		_		
Uniform Resolution over image area? Pattern not distorted? Description of distortion:					
Iniform Resolution over image area? Pattern not distorted? Description of distortion:				 _	
escription of distortion:		Mo/Mo	Mo/Rh	Rh/Rh	
escription of distortion:	niform Resolution over image area?				
Description of distortion:					
	attern not distorted?				
ction Limit:					
Action Limit:					
	Action Limit:				
	Action Limit:				
	Action Limit:				
	Action Limit:				
	Action Limit:				
	Action Limit:				

16. Laser Printer - If Available

1. Image Quality - SMPTE Test Pattern

	Previous Imag	Current Image
kVp setting		
mAs		
All steps of SMPTE discernible?		
Low contrast targets of SMPTE	ĺ	
discernible?		
OD Position 1		
OD Position 2		
OD Position 3		
OD Position 4		
OD Position 5		
OD Position 6		
OD Position 7		
OD Position 8		
OD Position 9		
OD Position 10)	
OD Low Contrast Targets	<u>;</u>	

2. Image Quality - ACR Phantom

	Previous Imag	urrent Image
kVp setting		
Target/Filter		
mAs		
Number of fibers:		
Fiber change		
Number of speck groups:		
Speck group change		
Number of masses:		
Mass change		

Phantom:	

Action Limit:

If the SMPTE test pattern and low contrast targets are not discernible, the source of change should be identified and corrected.

Action Limit:

If fiber, speck group, or mass score changes, the source of change should be identified and corrected.

3. Artifact Evaluation / Flat Field Uniformity Evaluation

Type of Attenuator	
Thickness of Attenuator	
kVp Setting	
mAs Setting	
Focal Spot Size	

	Mo/Mo	Mo/Rh	Rh/Rh	
OD				, · · · · · · · · · · · · · · · · · · ·
Artifact Visible?				
Equipment Artifact?				
Grid?				
Phantom Defect?				
Other		L		

If significant artifacts are visible, contact the appropriate person maintaining or servicing the processor or X-ray equipment.

4. System Limiting Resolution

Resolution Test Tool:

v. Oyotom zmmig	Large	Small		
Focal Spot Size				
kVp				
mAs				
mA				
lp/mm				

If the limiting resolution is <0.45/p lp/mm, then more detailed investigation of the reason should be made.