Homework 4

Problem 1. 1. Determine the coefficient of x^{50} in $(x^7 + x^8 + x^9 + x^{10} + \cdots)^6$

- 2. Determine the coefficient of x^3 in $(2+x)^{\frac{3}{2}}/(1-x)$
- 3. Determine the coefficient of x^4 in $(2 + 3x)^5 \sqrt{1 x}$

Solution.

1. = $x^{42}(1 + x + x^2 + x^3 + \cdots)^6$ = $x^{42} \prod_{i=1}^{6} (1 + x + x^2 + x^3 + \cdots)_i$

The coefficient of x^{50} is $\binom{8+6-1}{6-1} = \binom{13}{5}$.

2. $= (x+2)^{3/2}(1+x+x^2+\cdots)$ $= \sum_{k=0}^{\infty} {3/2 \choose k} x^k (2)^{3/2-k} (1+x+x^2+\cdots)$

The coefficient of x^3 is $\sum_{k=0}^{3} {3/2 \choose k} (2)^{3/2-k}$. Then use the Newton formula

3. $= \sum_{k=0}^{5} {5 \choose k} 2^k (3x)^{5-k} \sum_{j=0}^{\infty} {1/2 \choose j} (-x)^j$

The coefficient of x^4 is $\sum_{k=1}^{5} {5 \choose k} 2^k (3)^{5-k} {1/2 \choose k-1} (-1)^{k-1}$

Problem 2. Find generating functions for the following sequences (express them in a closed form, without infinite series!):

- 1. $0, 0, 0, 0, -6, 6, -6, 6, -6, \cdots$
- 2. $1, 0, 1, 0, 1, 0, \cdots$
- *3.* 1, 2, 1, 4, 1, 8 ····

Solution.

Sequence	Generating Function
$(1, 1, 1, 1, \ldots)$	<u>1</u> 1-x
$(1,-1,1,-1,\ldots)$	$\frac{1}{1+x}$
$(-6, 6, -6, 6, \ldots)$	$\frac{-6}{1+x}$
$(0,0,0,0,-6,6,-6,6,\ldots)$	$\frac{-6x^4}{1+x}$
$(1,0,1,0,\ldots)$	$\frac{\frac{1}{1-x} + \frac{1}{1+x}}{2} = \frac{1}{1-x^2}$
$(0, 1, 0, 1, \ldots)$	$\frac{\frac{1}{1-x} - \frac{1}{1+x}}{2} = \frac{x}{1-x^2}$
$(1, 2, 4, 8, \ldots)$	$\frac{1}{1-2x}$
$(2,4,8,\ldots)$	$\frac{\frac{1}{1-2x}-1}{x} = \frac{2}{1-2x}$
$(1,0,2,0,4,0,8,\ldots)$	$\frac{1}{1-2x^2}$
$(1, 1, 2, 1, 4, 1, 8, \ldots)$	$\frac{1}{1-2x^2} + \frac{x}{1-x^2}$
(1, 2, 1, 4, 1, 8,)	$\frac{\frac{1}{1-2x^2} + \frac{x}{1-x^2} - 1}{x} = -\frac{2x^3 + 2x^2 - 2x - 1}{(1-2x^2)(1-x^2)}$

Problem 3. Let a_n be the number of ordered triples (i, j, k) of integer numbers such that $i \ge 0$, $j \ge 1$, $k \ge 1$, and i + 3j + 3k = n. Find the generating function of the sequence $(a_0, a_1, a_2, \dots$ and calculate a formula for a_n .

tution.

$$(1 + x + x^2 + x^3 + \cdots)(x^3 + x^6 + x^9 + \cdots)(x^3 + x^6 + x^9 + \cdots)$$

$$= \frac{1}{1-x} \frac{x^3}{1-x^3} \frac{x^3}{1-x^3}$$

$$= \frac{x^6(1+x+x^2)}{(1-x^3)^3} = x^6(1+x+x^2)(1-x^3)^{-3}.$$
Then use the generalized binomial theorem.

Problem 4. Express the nth term of the sequences given by the following recurrence relations

1.
$$a_0 = 2, a_1 = 3, a_{n+2} = 3a_n - 2a_{n+1}$$
 $(n = 0, 1, 2, ...)$.

2.
$$a_0 = 1, a_{n+1} = 2a_n + 3 (n = 0, 1, 2, ...).$$

 \therefore the *n*-th term is f_n .

Solution.

- 1. Characteristic function is $x^2 + 2x 3 = (x + 3)(x 1) = 0$. Let $f_n = a(-3)^n + b \cdot 1^n$. Then $\begin{cases} 2 = a + b \\ 3 = -3a + b \end{cases} \Rightarrow a = -1/4, b = 9/4.$
- 2. Characteristic function for the homogeneous part is x = 2. Take $a_n = p2^n + \lambda$ $a_0 = 1, a_1 = 5$. Now $\begin{cases} 1 & = p + \lambda \\ 5 & = 2p + \lambda \end{cases} \Rightarrow p = 4, \lambda = -3.$

Problem 5. Solve the recurrence relation $a_{n+2} = \sqrt{a_{n+1}a_n}$ with initial conditions $a_0 = 2$, $a_1 = 8$ and find $\lim_{n\to\infty} a_n$.

Solution. Consider the sequence $b_n = \log_2 a_n$. Then

$$2\log_2 a_{n+2} = \log_2 a_{n+1} + \log_2 a_n$$

i.e. $2b_{n+2} = b_{n+1} + b_n$. $b_0 = 1, b_1 = 3$. One can find $b_n = (-\frac{4}{3})(-\frac{1}{2})^n + \frac{7}{3}$. $\therefore a_n = 2^{(-\frac{4}{3})(-\frac{1}{2})^n + \frac{7}{3}}$. $\lim_{n \to \infty} a_n = 2^{\frac{7}{3}}$.