DM₃

Exercice 1 (Maximum d'entropie). Soit X une variable aléatoire réelle de densité f_X . Son entropie de Boltzmann-Shannon est définie par

$$H(X) := -\int f_X(x) \ln(f_X(x)) dx$$

(avec la convention $0 \ln(0) = 0$) lorsque la fonction $f_X \ln(f_X)$ est intégrable. On dit dans ce cas que X est d'entropie finie.

- 1. Montrer que si X est d'entropie finie alors pour tout $a \neq 0$ et $b \in \mathbb{R}$, $H(aX+b) = H(X) + \ln(|a|)$.
- 2. Calculer H(X) dans chacun des cas suivants :
 - (a) $X_1 \sim \mathcal{N}(m, \sigma^2), m \in \mathbb{R}, \sigma > 0$;
 - (b) $X_2 \sim \mathcal{U}([a, b]), a < b$;
 - (c) $X_3 \sim \mathcal{E}(\lambda), \lambda > 0.$
- 3. On considère une variable aléatoire X admettant une densité de la forme $f_X(x) = e^{-V(x)} \mathbb{1}_I(x)$ avec I un intervalle de \mathbb{R} et $V: I \to \mathbb{R}$ une fonction mesurable telle que $\int_I e^{-V(x)} \, \mathrm{d}x = 1$.
 - (a) Soit Y une variable aléatoire à valeurs dans I et d'entropie finie. On suppose que Y admet une densité notée f_Y telle que V(Y) est intégrable et vérifie $\mathbb{E}(V(Y)) = \mathbb{E}(V(X))$. Montrer que

$$H(X) - H(Y) = -\int_{\{f_Y > 0\}} \ln(f_X(x)/f_Y(x)) f_Y(x) dx.$$

En appliquant l'inégalité de Jensen, en déduire que $H(Y) \leq H(X)$.

(b) En déduire que X_1 est la variable aléatoire d'entropie maximale parmi les variables Y d'entropie finie telles que $Var(Y) = \sigma^2$. Enoncer une propriété analogue pour les variables X_2 et X_3 .