

Программно управляемый генератор звука (SSG)

Обзор

SSG - (Software controlled Sound Generator) это большая интегральная микросхема, выполненная по технологии NMOS и разработанная для генерации звуков. От микропроцессора и микроконтроллера (CPU) требуется только инициализация массива регистров, что уменьшает загрузку CPU. Генерация звука производиться тремя генераторами прямоугольных волн, генератором шума и генератором огибающей.

Характеристики

- Одно напряжение питания 5 вольт.
- Лёгкое сопряжение с 8 и 16 битными процессорами.
- Лёгкое сопряжение с внешней системой через два восьмибитных порта ввода-вывода.
- Широкий диапазон голосов в восемь октав.
- Плавное затухание на 5 битном генераторе огибающей.
- Встроенный 5 битный цифро-аналоговый преобразователь.
- Удвоенная частота, поданная на тактовый вход, может быть поделена встроенным делителем.
- TTL совместимые уровни сигналов.
- Низкое потребление (125 мвт).
- 40 штырьковый пластмассовый DIL корпус.
- Совместимость по ножкам с AY-3-8910 производства General Instruments.

Распиновка								
Vss(GND)	Распиновка 1 2 3 4 5 6	40	Vcc(+5V)					
N.C.		39	TEST1					
AN ALOG CHANNEL B		38	ANALOG CHANNEL C					
AN ALOG CHANNEL A		37	DAO					
N.C.		36	DA1					
1087		35	DA2					
1086 1085 1084 1083 1082 1081 1080 10A7	7 8 9 10 11 12 13 14	33 32 31 30 29 28 27 26	DA2 DA3 DA4 DA5 DA6 DA7 BC1 BC2 BDIR SEL					
IOA5	16	25	A8					
IOA4	17	24	A9					
IOA3	18	23	RESET					
IOA2	19	22	CLOCK					
IOA1	20	21	IOAO					

Блок схема

Описание выводов

DA7~DA0

Восьмибитная двунаправленная шина данных, используется для передачи данных и адресов между SSG и CPU. В режимах чтения и записи DA7 \sim DA0 обмениваются байтами с массивом регистров R7 \sim R0. В адресном режиме DA3 \sim DA0 адресует регистры, а DA7 \sim DA4 используются вместе с \mid A9 и A8 для старших адресов.

А8 и |А9

Линии старших адресов. A8 подтянут резистором к высокому потенциалу, а |A9 к низкому. Если эти выводы не используются, необходимо подать на A8 +5 вольт, на |A9 - общий.

|RESET

Активный уровень напряжения - низкий. Устанавливает содержимое всех регистров в "0". Этот вывод подтянут резистором к высокому потенциалу.

CLOCK

Вход тактовых импульсов на генераторы звука и огибающей. Оснащён делителем частоты с коэффициентом деления 2, который позволяет использовать для тактирования частоту в два раза меньшую, чем та, что подается на вход.

• |SEL

Когда на |SEL подан высокий уровень, входная частота принимается как есть. При низком уровне на |SEL, тактовая частота получается делением на два входящей частоты. Этот вывод

подтянут резистором к высокому потенциалу для сохранения совместимости по выводам с AY-3-8910 производства General Instruments, когда этот вывод ни к чему не подключен.

BDIR, BC1, BC2

Управляют внешней (DA7~DA0) и внутренней шиной SSG. Контроллер шины может находиться в одном из четырёх состояний. Управление избыточно и BC2 может быть подключен $\kappa +5V$.

BDIR	BC2	BC1	Режим
0	0	0	Неактивный
0	0	1	Адресный
0	1	0	Неактивный
0	1	1	Чтение
1	0	0	Адресный
1	0	1	Неактивный
1	1	0	Запись
1	1	1	Адресный

Дешифрация BDIR, BC1, BC2.

Неактивный режим: DA7~DA0 в высокоимпедансном состоянии.

Адресный режим: с DA7~DA0 снимается адрес (номер) регистра и устанавливается как текущий.

Режим записи: данные с DA7~DA0 записываются в текущий регистр. **Режим чтения:** содержимое текущего регистра выводится на DA7~DA0.

ANALOG CHANNEL A, B, C

Каждый канал имеет цифро-аналоговый преобразователь, преобразующий цифровые величины в аналоговые сигналы.

• IOA7~IOA0, IOB7~IOB0

Это два восьмибитных порта ввода/вывода. Наличие портов позволяет поместить SSG между внешней системой и центральным процессором для передачи данных. Выводы подтянуты резисторами к высокому потенциалу.

TEST1

Вывод для тестирования устройства. Никуда не подключен.

• V_{cc}

Вывод питания +5V.

 \bullet V_{ss}

Вывод земли.

Расшифровка функций

Все функции SSG контролируются 16 внутренними регистрами. Центральный процессор должен только записывать данные в эти регистры, а SSG самостоятельно генерирует звук. Генерация звука производиться следующими модулями:

- **Генератор тона (Music generator):** генерирует квадратные колебания различной частоты отдельно для каждого канала (A, B и C).
- Генератор шума (Noise generator): генерирует псевдослучайный сигнал переменной частоты.

- Смеситель (Mixer): смешивает выходы тона и шума раздельно по трем каналам (A, B и C).
- **Регулятор громкости (Level control):** задает постоянный или переменный уровень громкости для каждого из трех каналов (A, B и C). Постоянный уровень устанавливается центральным процессором, а переменный генератором огибающей.
- Генератор огибающей (Envelope generator): формирует различные типы затухания (единичное и повторяющиеся затухания).
- **Цифро-аналоговый преобразователь (D/A convertor):** звук формируется изменением уровня сигнала на каждом из трех каналов (A, B и C).

Центральный процессор может читать содержимое внутренних регистров, не внося изменений в генерируемый звук.

Массив регистров

A9	A8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
0	1	0	0	0	0	0	0	0	0
						₹.	S	S	S
0	1	0	0	0	0	1	1	1	1
	Upper addresses (chip select)						ower ac egister		

В десяти битном адресе младшие адреса DA3~DA0 используются для выбора 16 внутренних регистров из массива регистров. Старшие адреса |A9, A8 и DA7~DA4 используются для выбора кристалла. В случае, когда на них присутствует комбинация отличная от 010000b двунаправленные буферы переводятся в высокоимпедансное состояние.

Структура массива регистров (номера регистров представлены в шестнадцатиричной системе).

Ren	ister Bit	B7	B6	B5	B4	В3	B2	B1	BO	
RO	<u></u>	8 bit fine ton				e adiust	ment			
R1	Frequency of channel A		O Bit line tolle			4 bit rough tone adjustment				
R2			8 bit fine tone adjustment							
R3	Frequency of channel B					4 bit rough tone adjustment				
R4				8 bit 1	fine ton	e adjust	ment	-		
R5	Frequency of channel C					4 bit ro	ough ton	e adjus	tment	
R6	Frequency of noise	5 bit noise frequency								
R7	I/O port and mixer		I/O No			ise Tone				
K/	Settings	IOB	IOA	С	В	Α	C	В	Α	
R8	Level of channel A		М				L2	L1	LO	
R9	Level of channel B		М				L2	L1	LO	
RA	Level of channel C		М				L2	L1	LO	
RB	Frequency of envelope	8 bit fine adjustment								
RC	Frequency of envelope	8 bit rough adjustment								
RD	Shape of envelope	CONT ATT ALT HOLD								
RE	Data of I/O port A	8 bit data								
RF	Data of I/O port B	8 bit data								

• Частота тона (задается регистрами R0~R5)

Частота прямоугольных импульсов производимых генераторами тона трех каналов (A, B и C) задается регистрами с R0 по R5. R0 и R1 управляют каналом A, R2 и R3 используются для канала B, R4 и R5 для канала C. Частота колебаний осциллятора $f_{\rm T}$ получается следующим образом из значения регистра TP:

$$f_{\rm T} = f_{\rm Master} / (16 \text{ TP})$$

где $f_{
m Master}$ - тактовая частота, равная входящей частоте при высоком уровне на $|{
m SEL}\>$ и $^1\!\!/_2$ входящей частоты при низком уровне.

• Частота шума (задается регистром R6)

Частота шума f_N определяется регистром NP по следующей формуле:

• Установки смесителя и портов ввода/вывода (задается регистром R7)

Смеситель используется для комбинирования компонентов тона и шума. Различные комбинации определяются битами B5~B0 регистра R7. Звук выводиться, когда в регистре содержится "0". Таким образом, когда биты соответствующие тону и шуму установлены в "0" смеситель смешивает их на выходе. Когда шуму соответствует "0" и тону "1", выводиться только шум и наоборот. Если все биты, отвечающие за тон и шум, установлены в "1" звук не воспроизводиться. Выбор режима портов ввода/вывода определяется битами B7 и B6 регистра R7. Порт настраиваются на ввод когда в соответствующий бит, записан "0", иначе на вывод.

• Уровень громкости (задается регистром R8~RA)

Громкость звука на выходе ЦАП для трех каналов $(A, B \ u \ C)$ регулируется регистрами $R8, R9 \ u$ RA.

Режим М определяет, будет ли уровень громкости фиксированый (при М="0") или переменным (при М="1"). Когда М="0", уровень громкости устанавливается в одно из 16 значений и определяется битами L3, L2, L1 и L0. Когда М="1" уровень громкости определяется пятью битами E4, E3, E2, E1 и E0 генератора огибающей.

• Частота огибающей (задается регистрами RB и RC)

Частота повторения огибающей $f_{\rm E}$ определяется периодом огибающей EP:

Фактический период огибающей $^{1}/_{f_{\rm EA}}$ есть $^{1}/_{32}$ периода $^{1}/_{f_{\rm E}}$ (На сколько я понимаю, f_{EA} используется для формирования огибающей посредством пятиразрядного ЦАП, следовательно

плавное возрастание/убывание сигнала происходит за $^{1}/_{fE}$, т. е. за 32 такта f_{EA} . В [1] информация по звуковому генератору вообще скудная и неверная, что, кстати, привело к ошибке в процедуре выключения звука "музыкального звонка", а в [2] по этому поводу сказано следующее: "Генератор формы огибающей путем деления частоты огибающей на 16 образует и выдает на регулятор амплитуды форму огибающей, представленную шестнадцатью фиксированными уровнями напряжений на один цикл, закодированными в четырехразрядном выходном счетчике", что также противоречит данному документу - примечание переводчика).

• Форма огибающей (задается регистром RD)

Счетчик генератора огибающей синхронизируется частотой огибающей $f_{\rm EA}$ 32 раза за период огибающей. Уровень огибающей определяется пятью битами (E4 \sim E0) счётчика огибающей. Форма огибающей создается увеличением, уменьшением, высоким или низким уровнем и повторением этого счетчика. Форма огибающей управляется битами B3 \sim B0 регистра RD (Вероятно под "счетчиком" понимается пяти разрядный счетчик входящий в генератор огибающей, который управляет ЦАПом и могущий работать как на возрастание так и на убывание в зависимости от установок регистра RD. Тактируется он частотой f_{EA} и

переполняется за время $^{1}/_{f_{E}}$ - примечание переводчика).

В зависимости от сигналов CONT, ATT, ALT и HOLD огибающая может принимать формы, представленные в следующей таблице.

В3	B2	B1	BO	Envelope shape		
CONT	ATT	ALT	HOLD	Envelope shape		
0	0	×	×			
0	1	×	×			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			
\rightarrow 1/ $f_{\rm E}$ Repetition period of envelope						

• Данные портов ввода/вывода (регистры RE и RF)

Регистры RE и RF используются для хранения содержимого портов ввода/вывода. RE отождествлен с IOA и RF с IOB.

ЦАП устройства имеет логарифмическую шкалу 0 - 1B, т. е. фактически регулирует громкость звука, что обеспечивает широкий динамический диапазон выходного сигнала.

Электрические характеристики

• Максимально допустимые значения параметров

Параметр	Диапазон	Еденица измерения
Напряжение на выводах	-0,3 ~ +7,0	Вольт
Диапазон рабочих температур	0 ~ 70	°C
Температура хранения	-50 ~ 125	°C

• Рекомендуемые значения параметров

Параметр	Символ обозначения	Мин.	Cp.	Макс.	Еденица измерения
Напряжение питания	V_{cc}	4,75	5	5,25	Вольт
	$ m V_{ss}$	0	0	0	Вольт

Продолжение не последует. Это конец.