Lesson 12/10/2022

... typewriter sequence But we do have convergence in measure

Remark 1

 $f_p \nrightarrow 0$ a.e. on [0, 1] But consider $\{f_{p(n,1)} : n \in \mathbb{N}\}$. This is a subsequence and, by def

For this subsequence, we have $f_{p(n,1)}(x) \to 0$ as $n \to \infty \ \forall x \in (0,1]$..

This is not random

Proposition 1.1

If $\mu(X) < \infty$ and $f_n \to f$ in measure, then \exists

Now we analize ..

Theorem 1.1

 $\{f_n \subset L^1(X), f \in L^1(X)\}\$ If $f_n \to f$ in $L^1(X)$ then $f_n \to f$ in measure on X

Proof. By contradiction, suppose that $f_n \nrightarrow f$ in measure on X: $\exists \bar{\alpha} > 0$ s.t.

$$\limsup_{n \to \infty} \mu(\{f_n - f \ge \bar{\alpha}\}) > 0$$

 $\Rightarrow \exists \bar{\epsilon} \text{ and a subsequence } \{f_{n_k}\} \text{ s.t.}$

$$\mu(\{f_{n_k} - f \ge \bar{\alpha}\}) > \bar{\epsilon}$$

...

But, by assumption, $d_1(f_n, f) \to 0$

$$\Rightarrow d_1(f_{n_k}, f) \to 0$$

 \star

contradiction.

Remark 2

the convergence in measure doesn't imply the convergence in L^1

for example, consider on the other hand

convergence a.e. \Rightarrow convergence in L^1 use the same example above, $f_n \to 0$ a.e. on $[0,1] \not\Rightarrow f_n \to 0$ in L^1 Consider the typewriter sequence: But we don't have a.e. convergence However, recall the dominated convergence theorem: (DOM)

$$f_n \to fa.e. + \exists$$
 of a dom function $\Rightarrow d(f_n, f) \to 0$

1

It is also possible to show a reverse dom: s.t.

- (1) $f_{n_k} \to f$ a.e. on X
- (2) $||f_{n_k}|| \le w(x)$ for a.e. $x \in X$

Derivatives of measures

.

necessary condition

$$\exists \frac{d\nu}{d\mu} \Rightarrow \nu << \mu$$

Proof. $\nu(E) = \int_{E}()...$

 \star

....

Theorem 2.1

Radon Nykodim Theorem

Remark 3

if μ is not sigma finite the theorem may fail.

mi sto addormentando io ci sto provando anche altre cose su radon

Product Measure

 $(X, \mathcal{M}, \mu), (Y, \mathcal{N}, \nu)$ measure spaces. the goal is to define a measure space on $X \times Y$

Definition 3.1

we call measurable rectangle in $X \times Y$ a set of type $A \times B$ where $A \in \mathcal{M}, B \in \mathcal{N}$

$$R = \{A \times B \subset X \times Y \dots\}$$

We define the product σ algebra ...

Definition 3.2

let $E \subset X \times Y$ For $\bar{x} \in X$ and $\bar{y} \in Y$ we define

(1)
$$E_{\bar{x}} = \{ y \in Y : (\bar{x}, y) \in E \} \subset Y$$

(2)
$$E_{\bar{y}} = \{x \in X : (x, \bar{y}) \in Y\} \subset E$$

Proposition 3.1

 $(X, \mathcal{M}), (Y, \mathcal{N})$ measurable spaces.

Theorem 3.1

If (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ finite spaces, then:

- (1) if ϕ is \mathcal{M} measurable and ψ is \mathcal{N} meas
- (2) we have that

using

Theorem 3.2

iterated integrals for characteristic functions

 $\mu \times \nu : \mathcal{M} \otimes \mathcal{N} \to \mathbb{R}$ defined by

$$(\mu \otimes \nu)(E) = \int_{Y} \nu(E_x) d\mu = \int_{Y} \mu(E_y) d\nu$$

is a measure, the product measure

...

Theorem 3.3

Let λ_n be the lebesgue measure in \mathbb{R}^n . If n = K + m, then $(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n), \lambda_n)$ is the complection of $\mathbb{R}^k \times \mathbb{R}^m ..., \lambda_k \otimes \lambda_m$