Source Meridian

Temas de la charla

- Repaso sesión anterior
- Spark Session
- Spark context
- Spark config
- Transformaciones y Acciones en Spark
- Modo de Despliegue:
 StandAlone/Client/Cluster
- Demo
 - o Particiones en spark en cada nodo

Componentes de Spark I

Driver: mantener información sobre la aplicación de Spark; responder al programa o entrada de un usuario; y analizar, distribuir y programar el trabajo en los ejecutores

Ejecutor: ejecutar el código asignado por el driver y reportar el estado de la computación en ese ejecutor de vuelta al nodo driver

Apache Spark components

Modos de Despliegue: Cluster

Un modo de ejecución te permite determinar dónde se encuentran físicamente los recursos mencionados cuando vayas a ejecutar tu aplicación.

Muestra que el clúster manager colocó nuestro controlador en un nodo trabajador y los ejecutores en otros nodos trabajadores.

Modos de Despliegue: Client

se puede ver que el controlador se está ejecutando en una máquina fuera del clúster, pero que los trabajadores están ubicados en máquinas del clúster

Modo Cliente	Modo Cluster	
En modo cliente, los registros se generan en la máquina cliente. Es fácil de depurar y adecuado para cargas de trabajo de desarrollo.	En modo cluster, los registros se generan en el archivo Stdout o Stderr. Es adecuado para cargas de trabajo de producción.	
La latencia de la red es alta	La latencia de la red es baja	
El controlador desaparece una vez que el servidor de nodo de borde se desconecta o cierra	El proceso seguirá ejecutándose en el clúster incluso si los servidores de borde están cerrados	
El controlador puede quedarse sin memoria debido a que muchos usuarios utilizan el mismo nodo de borde	Es poco probable que el controlador se quede sin memoria	

Configurar Spark

Spark Session:

SparkSession spark = SparkSession.builder()
.appName("CSV to DB")
.master("local")
.getOrCreate();

Ofrecer una API más conveniente y unificada para trabajar con datos estructurados. Está diseñado para trabajar con DataFrames y Datasets, que proporcionan operaciones más estructuradas y optimizadas que los RDD.

Spark Context:

Spark conf = SparkConf()
.setAppName("CSV to DB")
.setMaster("local[*]")

Proporciona la conexión a un clúster Spark y es responsable de coordinar y distribuir las operaciones en ese clúster. SparkContext se utiliza para la programación de RDD (Resilient Distributed Dataset) a bajo nivel.

Transformaciones y Acciones

Transformaciones y Acciones

Las acciones son operaciones que devuelven un resultado al controlador a partir de una ejecución en un clúster

Hay tres tipos de acciones:

- Acciones para ver datos en la consola
- Acciones para recopilar datos en objetos nativos en el lenguaje correspondiente
- Acciones para escribir en fuentes de datos de salida

Lista completa de acciones en spark: https://spark.apache.org/docs/latest/api/scala/org/apache/s park/sql/Dataset.html

Source Meridian

RDD vs Dataset vs Dataframe

Característica	RDD (Resilient Distributed Dataset)	DataFrame	Dataset
Nivel de API	Bajo nivel	Alto nivel	Alto nivel
Tipo de datos	Objetos JVM	Tablas estructuradas	Tablas estructuradas con tipos
Verificación de tipos	No hay verificación de tipos en tiempo de compilación	No es de tipo seguro	Verificación de tipos en tiempo de compilación (Type-safe)
Optimización	No optimizado (sin Catalyst)	Optimizado a través de Catalyst	Optimizado a través de Catalyst con ventajas adicionales
Uso de memoria	Más control sobre la memoria	Usa optimizaciones internas para reducir el uso de memoria	Usa optimizaciones internas para reducir el uso de memoria
Velocidad de ejecución	Más lento debido a la falta de optimizaciones	Más rápido que RDD debido a Catalyst	Más rápido que DataFrame debido a la generación de bytecode en JVM
Transformaciones	Amplias transformaciones disponibles	Limitado a transformaciones basadas en columnas	Limitado a transformaciones basadas en columnas, pero con tipos seguros
Acceso a datos	Orientado a objetos	Orientado a SQL/Columnas	Orientado a SQL/Columnas con tipos seguros
Casos de uso común	Procesamiento de datos complejos, cuando se necesita un control fino sobre la distribución y el paralelismo	Consultas SQL, análisis de datos, ETL Source Merid	Consultas SQL, análisis de datos, ETL con tipos seguros