PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Integnationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07K 16/00

A2

(11) Internationale Veröffentlichungsnummer: WO 99/57150

(43) Internationales

Veröffentlichungsdatum: 11. November 1999 (11.11.99)

(21) Internationales Aktenzeichen:

PCT/DE99/01350

(22) Internationales Anmeldedatum:

5. Mai 1999 (05.05.99)

(30) Prioritätsdaten:

198 19 846.9

5. Mai 1998 (05.05.98)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US):

DEUTSCHES KREBSFORSCHUNGSZENTRUM
STIFTUNG DES ÖFFENTLICHEN RECHTS [DE/DE];
Im Neuenheimer Feld 280, D-69120 Heidelberg (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): LITTLE, Melvyn [GB/DE]; Fritz-von-Briesen-Strasse 10, D-69151 Neckargemund (DE), KIPRIYANOV, Sergej [RU/DE]; Furtwänglerstrasse 3, D-69121 Heidelberg (DE).
- (74) Anwalt: HUBER, Bernard; Huber & Schüssler, Truderinger Strasse 246, D-81825 München (DE).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK.

ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

- (54) Title: MULTIVALENT ANTIBODY CONSTRUCTS
- (54) Bezeichnung: MULTIVALENTE ANTIKÖRPER-KONSTRUKTE

(57) Abstract

The invention relates to a multivalent F_{ν} antibody construct comprising at least four variable domains which are connected to one another via peptide linkers 1, 2 and 3. The invention also relates to expression plasmids which code for such an F_{ν} antibody construct. In addition, the invention relates to a method for producing the F_{ν} antibody constructs and to the use thereof.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein multivalentes F_V-Antikörper-Konstrukt mit mindestens vier variablen Domänen, die über die Peptidlinker 1, 2 und 3 miteinander verbunden sind. Ferner betrifft die Erfindung Expressionsplasmide, die für ein solches F_V-Antikörper-Konstrukt codieren, und ein Verfahren zur Herstellung der F_V-Antikörper-Konstrukte sowie deren Verwendung.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litapen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien .	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	brael	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
C1	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neusecland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumanien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	Li	Liechtenstein	SD	Sudan		
DK	Danemark	LK	Sri Lanka	SE	Schweden		
EB	Estland	LR	Liberia	SG	Singapur		•

Multivalente Antikörper-Konstrukte

Die vorliegende Erfindung betrifft multivalente F_v -Antikörper-Konstrukte, sie kodierende Expressionsplasmide, und ein Verfahren zur Herstellung der F_v -Antikörper-Konstrukte sowie ihre Verwendung.

Natürliche Antikörper sind Dimere und werden daher als bivalent bezeichnet. Sie weisen vier variable Domänen, nämlich zwei V_{H^-} und zwei V_L -Domänen, auf. Die variablen Domänen dienen als Bindungsstellen für ein Antigen, wobei eine Bindungsstelle aus einer V_{H^-} und einer V_L -Domäne ausgebildet ist. Natürliche Antikörper erkennen jeweils ein Antigen, wodurch sie auch als monospezifisch bezeichnet werden. Ferner weisen sie auch konstante Domänen auf. Diese tragen zur Stabilität der natürlichen Antikörper bei. Andererseits sind sie auch für unerwünschte Immunreaktionen mitverantwortlich, die entstehen, wenn natürliche Antikörper verschiedener Tierarten wechselseitig verabreicht werden.

Zur Vermeidung solcher Immunreaktionen werden Antikörper konstruiert, denen die konstanten Domänen fehlen. Insbesondere sind dies Antikörper, die nur noch die variablen Domänen aufweisen. Solche Antikörper werden mit F_v-Antikörper-Konstruten bezeichnet. Diese liegen häufig in Form einzelkettiger, sich miteinander gepaarter Monomere vor.

Es hat sich allerdings gezeigt, daß F_v-Antikörper-Konstrukte nur eine geringe Stabilität aufweisen. Ihre Verwendbarkeit für therapeutische Zwecke ist daher stark eingeschränkt.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, einen Antikörper bereitzustellen, mit dem unerwünschte Immunreaktionen vermieden werden können. Ferner soll er eine Stabilität aufweisen, die ihn für therapeutische Zwecke

2

PCT/DE99/01350

einsetzbar macht.

Erfindungsgemäß wird dies durch die Gegenstände in den Patentansprüchen erreicht.

Gegenstand der vorliegenden Erfindung ist somit ein multivalentes F_v -Antikörper-Konstrukt, das eine große Stabilität aufweist. Ein solches eignet sich für diagnostische und therapeutische Zwecke.

Die vorliegende Erfindung beruht auf den Erkenntnissen des Anmelders, daß die Stabilität eines F_v-Antikörper-Konstruktes erhöht werden kann, wenn dieses in Form eines einzelkettigen Dimeres vorliegt, bei dem die vier variablen Domänen über drei Peptidlinker miteinander verbunden sind. Ferner hat der Anmelder erkannt, daß sich das F_v-Antikörper-Konstrukt mit sich selbst faltet, wenn der mittlere Peptidlinker eine Länge von etwa 10 - 30 Aminosäuren aufweist. Des weiteren hat der Anmelder erkannt, daß sich das F_v-Antikörper-Konstrukt mit anderen F_v-Antikörper-Konstrukten zusammenfaltet, wenn der mittlere Peptidlinker eine Länge von etwa bis zu 10 Aminosäuren aufweist, wodurch ein multimeres, d.h. multivalentes, F_v-Antikörper-Konstrukt erhalten wird. Auch hat der Anmelder erkannt, daß das F_v-Antikörper-Konstrukt multispezifisch sein kann.

Erfindungsgemäß werden die Erkenntnisse des Anmelders genutzt, ein multivalentes F_v -Antikörper-Konstrukt bereitzustellen, das mindestens vier variable Domänen umfaßt, die über die Peptidlinker 1, 2 und 3 miteinander verbunden sind.

Der Ausdruck "F_v-Antikörper-Konstrukt" weist auf einen Antikörper hin, der variable Domänen, nicht aber konstante Domänen aufweist.

Der Ausdruck "multivalentes F_v-Antikörper-Konstrukt" weist auf einen F_v-Antikörper hin, der mehrere variable Domänen, jedoch mindestens vier aufweist. Solches wird erreicht, wenn sich das einzelkettige F_v-Antikörper-Konstrukt mit sich selbst faltet, wodurch vier variable Domänen gegeben sind, oder sich mit anderen einzel-

3

PCT/DE99/01350

kettigen F_v-Antikörper-Konstrukten zusammenfaltet. In letzterem Fall liegt ein F_v-Antikörper-Konstrukt vor, das 8, 12, 16, etc. variable Domänen aufweist. Günstig ist es, wenn das F_v-Antikörper-Konstrukt vier oder acht variable Domänen aufweist, d.h. es ist bi- oder tetravalent (vgl. Fig. 1). Ferner können die variablen Domänen gleich oder verschieden voneinander sein, wodurch das Antikörper-Konstrukt ein oder mehrere Antigene erkennt. Vorzugsweise erkennt das Antikörper-Konstrukt ein oder zwei Antigene, d.h. es ist mono- bzw. bispezifisch. Beispiele solcher Antigene sind die Proteine CD19 und CD3.

Der Ausdruck "Peptidlinker 1, 3" weist auf einen Peptidlinker hin, der geeignet ist, variable Domänen eines F_v-Antikörper-Konstruktes miteinander zu verbinden. Der Peptidlinker kann jegliche Aminosäuren enthalten, wobei die Aminosäuren Glycin (G), Serin (S) und Prolin (P) bevorzugt sind. Die Peptidlinker 1 und 3 können gleich oder verschieden voneinander sein. Ferner kann der Peptidlinker eine Länge von etwa 0 - 10 Aminosäuren aufweisen. In ersterem Fall ist der Peptidlinker lediglich eine Peptidbindung aus dem COOH-Rest einer der variablen Domänen und dem NH₂-Rest einer anderen der variablen Domänen. Vorzugsweise weist der Peptidlinker die Aminosäuresequenz GG auf.

Der Ausdruck "Peptidlinker 2" weist auf einen Peptidlinker hin, der geeignet ist, variable Domänen eines F_v-Antikörper-Konstruktes miteinander zu verbinden. Der Peptidlinker kann jegliche Aminosäuren enthalten, wobei die Aminosäuren Glycin (G), Serin (S) und Prolin (P) bevorzugt sind. Femer kann der Peptidlinker eine Länge von etwa 3 -10 Aminosäuren, insbesondere 5 Aminosäuren, und ganz besonders die Aminosäuresequenz GGPGS, aufweisen, wodurch erreicht wird, daß sich das einzelkettige F_v-Antikörper-Konstrukt mit anderen einzelkettigen F_v-Antikörper-Konstrukten zusammenfaltet. Des weiteren kann der Peptidlinker eine Länge von etwa 11 - 20 Aminosäuren, insbesondere 15 - 20 Aminosäuren, und ganz besonders die Aminosäuresequenz (G₄S)₄, aufweisen, wodurch erreicht wird, daß sich das einzelkettige F_v-Antikörper-Konstrukt mit sich selbst faltet.

4

Ein erfindungsgemäßes F_v-Antikörper-Konstrukt kann durch übliche Verfahren hergestellt werden. Günstig ist ein Verfahren, bei dem für die Peptidlinker 1, 2 und 3 kodierende DNAs mit für die vier variablen Domänen eines F_v-Antikörper-Konstruktes kodierenden DNAs ligiert werden derart, daß die Peptidlinker die variablen Domänen miteinander verbinden, und das erhaltene DNA-Molekül in einem Expressionsplasmid exprimiert wird. Es wird auf die Beispiele 1 - 6 verwiesen. Hinsichtlich der Ausdrücke "F_v-Antikörper-Konstrukt" und "Peptidlinker" wird auf vorstehende Ausführungen verwiesen. Ergänzend wird auf Maniatis, T. et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory 1982, verwiesen.

DNAs, die für ein erfindungsgemäßes F_v-Antikörper-Konstrukt kodieren, sind ebenfalls Gegenstand der vorliegenden Erfindung. Ferner sind Expressionsplasmide, die solche DNAs enthalten, auch Gegenstand der vorliegenden Erfindung. Bevorzugte Expressionsplasmide sind pDISC3x19-LL, pDISC3x19-SL, pPIC-DISC-LL, pPIC-DISC-SL, pDISC5-LL und pDISC6-SL. Die ersteren vier wurden bei der DSMZ (Deutsche Sammlung für Mikroorganismen und Zellen) am 30. April 1998 unter DSM 12150, DSM 12149, DSM 12152 bzw. DSM 12151 hinterlegt.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kit, umfassend:

- (a) ein erfindungsgemäßes F_v-Antikörper-Konstrukt, und/oder
- (b) ein erfindungsgemäßes Expressionsplasmid, sowie
- (c) übliche Hilfsstoffe, wie Puffer, Lösungsmittel und Kontrollen.

Von den einzelnen Komponenten können ein oder mehrere Vertreter vorliegen.

Die vorliegende Erfindung stellt ein multivalentes F_v-Antikörper-Konstrukt bereit, bei dem die variablen Domänen über Peptidlinker miteinander verbunden sind. Ein solches Antikörper-Konstrukt zeichnet sich dadurch aus, daß es keine Teile enthält, die zu unerwünschten Immunreaktionen führen können. Ferner weist es eine große Stabilität auf. Des weiteren ermöglicht es mehrere Antigene gleichzeitig zu binden. Das erfindungsgemäße F_v-Antikörper-Konstrukt eignet sich daher bestens nicht nur für diagnostische, sondern auch für therapeutische Zwecke verwendet zu werden.

5

PCT/DE99/01350

Solche Zwecke können hinsichtlich jeder Erkrankung, insbesondere einer viralen, bakteriellen oder Tumor-Erkrankung, gesehen werden.

Kurze Beschreibung der Zeichnungen:

Fig. 1 zeigt die genetische Organisation eines erfindungsgemäßen F_v -Antikörper-Konstruktes (A) und Schemata zur Bildung eines bivalenten (B) bzw. tetravalenten F_v -Antikörper-Konstruktes (C). Ag: Antigen; His_e: sechs C-terminale Histidinreste; Stop: Stoppcodon (TAA); V_H und V_L : variable Region der schweren und der leichten Kette.

Fig. 2 zeigt das Schema zur Konstruktion der Plasmide pDISC3x19-LL und pDISC3x19-SL. c-myc: Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E1 erkannt wird, His₆: Sequenz, die für sechs C-terminale Histidinreste kodiert; PelB: Signalpeptidsequenz der bakteriellen Pectatlyase (PelB-Leader); rbs: Ribosomenbindungsstelle; Stop: Stoppcodon (TAA); V_H und V_L: variable Region der schweren und der leichten Kette.

Fig. 3 zeigt ein Diagramm des Expressionsplasmids pDISC3x19-LL. 6xHis: Sequenz, die für sechs C-terminale Histidinreste kodiert; bla: Gen, das für β-Lactamase kodiert, die für Ampicillinresistenz verantwortlich ist; bp: Basenpaare; *c-myc*. Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E10 erkannt wird; ColE1: Origin der DNA-Replikation; f1-IG: intergenische Region des Bakteriophagen f1; Lac P/O: wt *lao*-Operon-Promotor/Operator; Linker 1: Sequenz, die für ein GlyGly-Dipeptid kodiert, das die V_H- und V_L-Domänen verknüpft; Linker 2: Sequenz, die für ein (Gly₄Ser)₄-Polypeptid kodiert, das die hybriden scFv-Fragmente verknüpft; Pel-B-Leader: Signalpeptidsequenz der bakteriellen Pectatlyase; rbs: Ribosomenbindungsstelle; V_H und V_L: variable Region der schweren und der leichten Kette.

Fig. 4 zeigt ein Diagramm des Expressionsplasmids pDISC3x19-SL. 6xHis: Sequenz, die für sechs C-terminale Histidinreste codiert; bla: Gen. das für β --

PCT/DE99/01350

6

Lactamase kodiert, die für Ampicillinresistenz verantwortlich ist; bp: Basenpaare; *c-myc*. Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E10 erkannt wird; ColE1: Origin der DNA-Replikation; f1-IG: intergenische Region des Bakteriophagen f1; Lac P/O: wt *lao*-Operon-Promotor/Operator; Linker 1: Sequenz, die für ein GlyGly-Dipeptid codiert, das die V_H- und V_L-Domänen verknüpft; Linker 3: Sequenz, die für ein GlyGlyProGlySer-Oligopeptid codiert, das die hybriden scFv-Fragmente verknüpft; Pel-B-Leader: Signalpeptidsequenz der bakteriellen Pectatlyase; rbs: Ribosomenbindungsstelle; V_H und V_L: variable Region der schweren und der leichten Kette.

Fig. 5 zeigt die Nukleotid- und die davon abgeleitete Aminosäuresequenz des durch das Expressionsplasmid pDIS3x19-LL kodierten bivalenten F_v-Antikörper-Konstruktes. *c-myo*-Epitop: Sequenz, kodierend für ein Epitop, das von dem Anti-körper 9E10 erkannt wird; CDR: Komplementarität bestimmende Region; Gerüst: Gerüstregion (Framework-Region); His6-Schwanz, Sequenz, die für sechs C-terminale Histidinreste kodiert; PelB-Leader: Signalpeptidsequenz der bakteriellen Pectalyase; RBS: Ribosomenbindungsstelle; V_H und V_L: variable Region der schweren und der leichten Kette.

Fig. 6 zeigt die Nukleotid- und die abgeleitete Aminosäuresequenz des durch das Expressionsplasmid pDISC3x19-SL kodierten tetravalenten F_v-Antikörper-Konstruktes. *c-myo*-Epitop: Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E10 erkannt wird; CDR: Komplementarität bestimmende Region, Gerüst: Gerüstregion (Framework-Region); His6-Schwanz, Sequenz, die für sechs C-terminale Histidinreste kodiert; PelB-Leader: Signalpeptidsequenz der bakteriellen Pectalyase; RBS: Ribosomenbindungsstelle; V_H und V_L: variable Region der schweren und der leichten Kette.

Fig. 7 zeigt die Nukleotid- und die abgeleitete Aminosäuresequenz einer Verbindung zwischen einem Gen, das für eine α -Faktor-Leadersequenz kodiert, und einem Gen, das für das tetravalente F_v -Antikörper-Konstrukt codiert, in dem *Pichia*-Expressionsplasmid pPIC-DISC-SL. Alpha-Faktor-Signal: Leaderpeptidsequenz des

PCT/DE99/01350

7

Saccharomyces cerevisiae- α -Faktor-Sekretionssignals; V_H : variable Region der schweren Kette. Rauten zeigen die Signalspaltstellen an.

Fig. 8 zeigt die Nukleotid- und die abgeleitete Aminosäuresequenz einer Verbindung zwischen einem Gen, das für eine α -Faktor-Leadersequenz kodiert, und einem Gen, das für das bivalente F_v -Antikörper-Konstrukt codiert, in dem *Pichia*-Expressionsplasmid pPIC-DISC-LL. Alpha-Faktor-Signal: Leaderpeptidsequenz des *Saccharomyces cerevisiae-\alpha*-Faktor-Sekretionssignals; V_H : variable Region der schweren Kette. Rauten zeigen die Signalspaltstellen an.

Fig. 9 zeigt ein Diagramm des Expressionsplasmids pDISC5-LL. 6xHis: Sequenz, die für sechs C-terminale Histidinreste kodiert; bla: Gen, das für β -Lactamase kodiert, die für Ampicillinresistenz verantwortlich ist; bp: Basenpaare; c-myc. Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E10 erkannt wird; hok-sok: Plasmid-stabilisierender DNA-Locus; Lacl: Gen, das für den Lac-Repressor kodiert; Lac P/O: wt lac-Operon-Promotor/Operator; LacZ': Gen, das für das &-Peptid von B-Galactosidase kodiert; Linker 1: Sequenz, die für ein GlyGly-Dipeptid kodiert, das die V_{H} - und V_{L} -Domänen verknüpft; Linker 2: Sequenz, die für ein (Gly₄Ser)₄-Polypeptid kodiert, das die hybriden scFv-Fragmente verknüpft; M13 IG: intergenische Region des Bakteriophagen M13; pBR322ori: Ursprung der DNA-Replikation; Pel-B-Leader: Signalpeptidsequenz der bakteriellen Pectatlyase; rbs: Ribosomenbindungsstelle, die von dem E. coli lacZ Gen (lacZ), von dem Bakteriophagen T7 Gen 10 (T7g10) oder von dem E. coli skp Gen (skp) stammt; skp: Gen, das für den bakteriellen periplasmatischen Faktor Skp/OmpH kodiert; tHP: starker Transkriptions-Terminator; tIPP: Transkriptions-Terminator; V_H und V_L : variable Region der schweren und der leichten Kette.

Fig. 10 zeigt ein Diagramm des Expressionsplasmids pDISC6-SL. 6xHis: Sequenz, die für sechs C-terminale Histidinreste codiert; bla: Gen, das für β-Lactamase kodiert, die für Ampicillinresistenz verantwortlich ist; bp: Basenpaare; c-myc: Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E10 erkannt wird; hok-sok: Plasmid-stabilisierender DNA-Locus; Lacl: Gen, das für den Lac-Re-

8

pressor kodiert; Lac P/O: wt lac-Operon-Promotor/Operator; LacZ': Gen, das für das α -Peptid von β -Galactosidase kodiert; Linker 1: Sequenz, die für ein GlyGly-Dipeptid kodiert, das die V_H- und V_L-Domänen verknüpft; Linker 3: Sequenz, die für ein GlyGlyProGlySer-Oligopeptid kodiert, das die hybriden scFv-Fragmente verknüpft; M13 IG: intergenische Region des Bakteriophagen M13; pBR322ori: Ursprung der DNA-Replikation; Pel-B-Leader: Signalpeptidsequenz der bakteriellen Pectatlyase; rbs: Ribosomenbindungsstelle, die von dem E. coli lacZ Gen (lacZ), von dem Bakteriophagen T7 Gen 10 (T7g10) oder von dem E. coli skp Gen (skp) stammt; skp: Gen, das für den bakteriellen periplasmatischen Faktor Skp/OmpH kodiert; tHP: starker Transkriptions-Terminator; tlPP: Transkriptions-Terminator; V_H und V_L : variable Region der schweren und der leichten Kette.

Die Erfindung wird durch die nachfolgenden Beispiele erläutert.

Beispiel 1: Konstruktion der Plasmide pDISC3x19-LL und pDISC3x19-SL zur Expression von bivalenten, bispezifischen bzw. tetravalenten, bispezifischen F_v-Antikörper-Konstrukten in Bakterien

Die Plasmide pHOG-αCD19 und pHOG-dmOKT3, welche für die scFv-Fragmente kodieren, die von dem Hybridom HD37, das für menschliches CD19 (Kipriyanov *et al.*, 1996, *J. Immunol. Meth.* 196, 51-62) spezifisch ist, bzw. von dem Hybridom OKT3, das für menschliches CD3 (Kipriyanov *et al.*, 1997, *Protein Eng.* 10, 445-453) spezifisch ist, abgeleitet sind, wurde zur Konstruktion von Expressionsplasmiden für ein einzelkettiges F_v-Antikörper-Konstrukt verwendet. Ein PCR-Fragment 1 der V_H-Domäne von Anti-CD19, gefolgt von einem Segment, das für einen GlyGly-Linker codiert, wurde unter Verwendung der Primer DP1, 5'-TCA-CACAGAATTCTTAGATCTATTAAAGAGGGAGAAATTAACC, und DP2, 5'-AGCACACGATATCACCGCCAAGCTTGGGTTGTTTTGGC, erzeugt (vgl. Fig. 2). Das PCR-Fragment 1 wurde mit *Eco*RI und *Eco*RV gespalten und mit dem mit *Eco*RI/*Eco*RV linearisierten Plasmid pHOG-dmOKT3 ligiert, wodurch der Vektor pHOG19-3 erzeugt wurde. Das PCR-Fragment 2 der V_L-Domäne von Anti-CD19,

9

PCT/DE99/01350

gefolgt von einem Segment, das für ein c-myo-Epitop und einen Hexahistidinylschwanz codiert, wurde unter Verwendung der Primer DP3, 5'-AGCACA-CAAGCTTGGCGGTGATATCTTGCTCACCCAAACTCCA, und DP4, 5'-AGCA-CACTCTAGAGACACACAGATCTTTAGTGATGGTGATGGTGATGTGAGTTTAGG. erzeugt. Das PCR-Fragment 2 wurde mit HindIII und Xbal gespalten und mit dem durch HindIII/Xbal linearisierten Plasmid pHOG-dmOKT3 ligiert, wodurch der Vektor pHOG3-19 erhalten wurde (vgl. Fig. 2). Das für das hybride scFv-3-19 codierende Gen in dem Plasmid pHOG3-19 wurde mittels PCR mit den Primern Bi3sk, 5'-CAGCCGGCCATGGCGCAGGTGCAACTGCAGCAG und entweder Li-1, 5'-TATA-TACTG<u>CAGCTG</u>CACCTGGCTACCACCAC-AGCGGCCGCAGCATCAGCCCG, zur Erzeugung eines langen flexiblen (Gly₄Ser)₄inter-scFv-Linkers (PCR-Fragment 3, vgl. Fig. 2) oder Li-2, 5'-TATA-TACTGCAGCTGCACCTGGGCCACCAGCGGCCGCAGCATCAGCCCG, zur Erzeugung eines kurzen, starren GGPGS-Linkers (PCR-Fragment 4, vgl. Fig. 2) amplifiziert. Die Expressionsplasmide pDISC3x19-LL und pDISC3x19-SL wurden durch Ligierung des Ncdl/Pvull-Restriktionsfragments aus pHOG19-3, umfassend das Vektorgerüst und die Ncd/Pvull-gespaltenen PCR-Fragmente 3 bzw. 4 konstruiert (vgl. Fig. 3, 4). Die vollständige Nukleotid- und Proteinsequenzen der bivalenten bzw. tetravalenten F_v-Antikörper-Konstrukte sind in den Figuren 5 bzw. 6 angegeben.

Beispiel 2: Konstruktion der Plasmide pPIC-DISC-LL und pPIC-DISC-SL zur Expression von bivalenten, bispezifischen bzw. tetravalenten, bispezifischen F_v-Antikörper-Konstrukten in Hefe

(A) Konstruktion von pPIC-DISC-SL

Der Vektor pPICZαA (Invitrogen BV, Leek, Niederlande) zur Expression und Sekretion von rekombinanten Proteinen in der Hefe *Pichia pastoris* wurde als Ausgangsmaterial verwendet. Er enthält ein Gen, das für das *Saccharomyces cerevi*-

10

siae α-Faktor-Sekretionssignal codiert, gefolgt von einem Polylinker. Die Sekretion dieses Vektors beruht auf dem dominanten selektierbaren Marker, Zeocin™, der sowohl in *Pichia* als auch in *E. coli* bifunktionell ist. Das Gen, das für das tetravalente F_v-Antikörper-Konstrukt (scDia-SL) codiert, wurde mittels PCR von der Matrize pDISC3x19-SL unter Verwendung der Primer 5-PIC, 5'-CCGTGAAT-TCCAGGTGCAACTGCAGCAGTCTGGGGCTGAACTGGC, und pSEXBn 5'-GGTC-GACGTTAACCGACAAACAACAGATAAAACG amplifiziert. Das so erhaltene PCR-Produkt wurde mit *Eco*RI und *Xba*l gespalten und in mit *Eco*RI/*Xba*l linearisiertes pPICZαA ligiert. Es wurde das Expressionsplasmid pPIC-DISC-SL erhalten. Die Nukleotid- und Proteinsequenzen des tetravalenten F_v-Antikörper-Konstruktes sind in Fig. 7 gezeigt.

(B) Konstruktion von pPIC-DISC-LL

Die Konstruktion von pPIC-DISC-LL wurde auf der Grundlage von pPICZαA (Invitrogen BV, Leek, Niederlande) und pDISC3x19-LL (vgl. Fig. 3) durchgeführt. Die Plasmid-DNA pPICZαA wurde mit *Eco*RI gespalten. Die überstehenden 5'-Enden wurden unter Verwendung eines Klenow-Fragments der *E. coli*-DNA-Polymerase I aufgefüllt. Die so erhaltene DNA wurde mit *Xba*l gespalten, und das große Fragment, umfassend den pPIC-Vektor, wurde isoliert. Analog wurde die DNA von pDISC3x19-LL mit *Nco*I gespalten und mit einem Klenow-Fragment behandelt. Nach der Spaltung mit *Xba*l wurde ein kleines Fragment, umfassend ein für den bivalenten F_v-Antikörper kodierendes Gen, isoliert. Dessen Ligierung mit einer pPIC-abgeleiteten Vektor-DNA ergab das Plasmid pPIC-DISC-LL. Die Nukleotid-und Proteinsequenz des bivalenten F_v-Antikörper-Konstruktes sind in Fig. 8 gezeigt.

Beispiel 3: Expression des tetravalenten bzw. bivalenten F_v -Antikörper-Konstruktes in Bakterien

E. coli-XL1-Blue-Zellen (Stratagene, La Jolla, CA), die mit den Expressionsplasmiden pDISC3x19-LL bzw. pDISC3x19-SL transformiert worden waren, wurden

11

PCT/DE99/01350

über Nacht in 2xYT-Medium mit 50 μ g/ml Ampicillin und 100 mM Glucose (2xYT_{cs}) bei 37°C gezüchtet. 1:50-Verdünnungen der Übernachtkulturen in 2xYT_{GA} wurden als Kolbenkulturen bei 37°C unter Schütteln mit 200 UpM gezüchtet. Als die Kulturen einen OD₆₀₀-Wert von 0,8 erreicht hatten, wurden die Bakterien durch 10minütige Zentrifugation mit 1500 g bei 20°C pelletiert und in dem gleichen Volumen eines frischen 2xYT-Mediums, das 50 μg/ml Ampicillin und 0,4 M Saccharose enthielt, resuspendiert. IPTG wurde bis zu einer Endkonzentration von 0,1 mM zugesetzt, und das Wachstum wurde bei Raumtemperatur (20-22°C) 18-20 h fortgesetzt. Die Zellen wurden durch 10minütige Zentrifugation mit 5000 g bei 4°C geerntet. Der Kulturüberstand wurde zurückgehalten und auf Eis gelagert. Um die löslichen periplasmatischen Proteine zu isolieren, wurden die pelletierten Bakterien in 5% des Anfangsvolumens an eiskalter 50 mM Tris-HCl, 20% Saccharose, 1 mM EDTA, pH 8,0, resuspendiert. Nach einer 1stündigen Inkubation auf Eis unter gelegentlichem Rühren wurden die Sphäroplasten mit 30.000 g 30 min bei 4°C zentrifugiert, wobei der lösliche periplasmatische Extrakt als Überstand und die Sphäroplasten mit dem unlöslichen periplasmatischen Material als Pellet erhalten wurden. Der Kulturüberstand und der lösliche periplasmatische Extrakt wurden vereinigt, durch weitere Zentrifugation (30.000 g, 4°C, 40 min) geklärt. Das rekombinante Produkt wurde durch Ammoniumsulfatfällung (Endkonzentration 70% Sättigung) eingeengt. Das Proteinpräzipitat wurde durch Zentrifugation (10.000 g, 4°C, 40 min) gewonnen und in 10% des Anfangsvolumens an 50 mM Tris-HCl, 1 M NaCl, pH 7,0, aufgelöst. Eine immobilisierte Metallaffinitätschromatographie (IMAC) wurde bei 4°C unter Verwendung einer 5 ml Säule an chelatierender Sepharose (Pharmacia), die mit Cu2+ beladen war und mit 50 mM Tris-HCl, 1 M NaCl, pH 7,0 (Startpuffer) equilibriert worden war, durchgeführt. Die Probe wurde durch ihr Leiten über die Säule aufgeladen. Sie wurde dann mit zwanzig Säulenvolumina Startpuffer, gefolgt von Startpuffer mit 50 mM Imidazol, bis die Absorption bei 280 nm des Effluenten minimal war, gewaschen (etwa dreißig Säulenvolumina). Das absorbierte Material wurde mit 50 mM Tris-HCl, 1 M NaCl, 250 mM Imidazol, pH 7,0, eluiert.

Die Proteinkonzentrationen wurden mit dem Bradford-Farbstoffbindungstest (1976,

12

Anal. Biochem., 72, 248-254) unter Verwendung des Bio-Rad(München, Deutschland)-Proteinassaykits bestimmt. Die Konzentrationen der gereinigten tetravalenten bzw. bivalenten F_v -Antikörper-Konstrukte wurden aus den A_{280} -Werten unter Verwendung der Extinktionskoeffizienten $\epsilon^{1mg/ml} = 1,96$ bzw. 1,93 bestimmt.

Beispiel 4: Expression des tetravalenten bzw. bivalenten Antikörper-Konstruktes in der Hefe *Pichla pastoris*

Kompetente *P. pastoris* GS155-Zellen (Invitrogen) wurden in Gegenwart von 10 μ g Plasmid-DNA von pPIC-DISC-LL bzw. pPIC-DISC-SL, die mit *Sad* linearisiert worden war, elektroporiert. Die Transformanten wurden 3 Tage bei 30°C auf YPD-Platten, die 100 μ g/ml ZeocinTM enthielten, selektiert. Die Klone, die bivalente bzw. tetravalente F_v-Antikörper-Konstrukte sezemierten, wurden durch Plattenscreening unter Verwendung eines anti-c-*myo*-mAk 9E10 (IC Chemikalien, Ismaning, Deutschland) selektiert.

Zur Expression der bivalenten bzw. tetravalenten F_v-Antikörper-Konstrukte wurden die Klone in YPD-Medium in Schüttelkolben 2 Tage bei 30°C unter Rühren gezüchtet. Die Zellen wurden zentrifugiert, in dem gleichen Volumen des Mediums, das Methanol enthielt, resuspendiert und weitere 3 Tage bei 30°C unter Rühren inkubiert. Die Überstände wurden nach der Zentrifugation gewonnen. Das rekombinante Produkt wurde durch Ammoniumsulfatfällung, gefolgt von IMAC, wie vorstehend beschrieben. isoliert.

Beispiel 5: Charakterisierung des tetravalenten bzw. bivalenten F_v Antikörper-Konstruktes

(A) Größenausschlußchromatographie

Eine analytische Gelfiltration der F_v-Antikörper-Konstrukte wurde in PBS unter Verwendung einer Superdex-200-HR10/30-Säule (Pharmacia) durchgeführt. Das

13

PCT/DE99/01350

Probenvolumen und die Fließgeschwindigkeit betrugen 200 μ l/min bzw. 0,5 ml/min. Die Säule wurde mit hoch- und niedermolekularen Gelfiltrations-Kalibrationskits (Pharmacia) kalibriert.

(B) Durchflußzytometrie

Die menschliche CD3 $^+$ /CD19-akute-T-Zell-Leukämielinie Jurkat und die CD19 $^+$ /CD3-B-Zellinie JOK-1 wurden für die Durchflußzytometrie verwendet. 5 x 10 6 Zellen in 50 μ l RPMI 1640-Medium (GIBCO BRL, Eggestein, Deutschland), das mit 10% FCS und 0,1% Natriumazid supplementiert war (als vollständiges Medium bezeichnet), wurden mit 100 μ l der F $_v$ -Antikörper-Präparate 45 min auf Eis inkubiert. Nach Waschen mit dem vollständigen Medium wurden die Zellen mit 100 μ l 10 μ g/ml anti-c-myo-Mak 9E10 (IC Chemikalien) in dem gleichen Puffer 45 min auf Eis inkubiert. Nach einem zweiten Waschzyklus wurden die Zellen mit 100 μ l des FITC-markierten Ziege-anti-Maus-IgG (GIBCO BRL) unter den gleichen Bedingungen wie vorher inkubiert. Die Zellen wurden dann erneut gewaschen und in 100 μ l 1 μ g/ml-Propidiumiodid-Lösung (Sigma, Deisenhofen, Deutschland) in vollständigem Medium unter Ausschluß von toten Zellen resuspendiert. Die relative Fluoreszens der gefärbten Zellen wurde unter Verwendung eines FACScan-Durchflußzytometers (Becton Dickinson, Mountain View, CA) gemessen.

(C) Cytotoxizitätstest

Die CD19-exprimierende Burkitt-Lymphoma-Zellinie Raji und Namalwa wurden als Zielzellen verwendet. Die Zellen wurden in RPMI 1640 (GIBCO BRL), das mit 10% hitzeinaktiviertem FCS (GIBCO BRL), 2 mM Glutamin und 1 mM Pyruvat supplementiert war, bei 37°C in einer befeuchteten Atmosphäre mit 7,5% $\rm CO_2$ inkubiert. Die cytotoxischen T-Zell-Tests wurden in RPMI-1640-Medium, das mit 10% FCS, 10 mM HEPES, 2 mM Glutamin, 1 mM Pyruvat und 0,05 mM 2-ME supplementiert war, durchgeführt. Die cytotoxische Aktivität wurde unter Verwendung eines Standard[51 Cr]-Freisetzungstests bewertet; 2 x 10 6 Zielzellen wurden mit 200 μ Ci

14

PCT/DE99/01350

Na[51 Cr]O $_4$ (Amersham-Buchler, Braunschweig, Deutschland) markiert und 4mal gewaschen und anschließend in Medium in einer Konzentration von 2 x 10^5 /ml resuspendiert. Die Effektorzellen wurden auf eine Konzentration von 5 x 10^6 /ml eingestellt. Zunehmende Mengen an CTLs in $100~\mu$ l wurden auf 10^4 Zielzellen/Vertiefung in $50~\mu$ l titriert. $50~\mu$ l Antikörper wurden jeder Vertiefung zugesetzt. Der gesamte Test wurde dreifach angesetzt und 4 h bei 37° C inkubiert. $100~\mu$ l des Überstands wurden gewonnen und auf [51 Cr]-Freisetzung in einem gamma-Zähler (Cobra Auto Gamma; Canberra Packard, Dreieich, Deutschland) getestet. Die maximale Freisetzung wurde durch Inkubation der Zielzellen in 10% SDS bestimmt, und die spontane Freisetzung wurde durch Inkubation der Zellen in Medium allein bestimmt. Die spezifische Lyse (%) wurde berechnet als: (experimentelle Freisetzung - spontane Freisetzung) x 100.

Beispiel 6: Konstruktion der Plasmide pDISC5-LL und pDISC6-SL zur Expression von bivalenten, bispezifischen bzw. tetravalenten, bispezifischen F_v-Antikörper-Konstrukten in Bakterien durch Hoch-Zelldichte-Fermentation

Es wurden Expressionsvektoren hergestellt, die das hok/sok Plasmid-freie Zell"suicide"-System und ein Gen enthielten, das für den Skp/OmpH periplasmatischen
Faktor für eine größere Herstellung rekombinanter Antikörper kodiert. Das skp Gen
wurde durch PCR mittels der Primer skp-1, 5'-CGA ATT CTT AAG ATA AGA AGG
AGT TTA TTG TGA AAA AGT GGT TAT TAG CTG CAG G und skp-2, 5'-CGA ATT
AAG CTT CAT TAT TTA ACC TGT TTC AGT ACG TCG G unter Verwendung des
Plasmids pGAH317 (Holck and Kleppe, 1988, Gene 67, 117-124) amplifiziert. Das
erhaltene PCR-Fragment wurde mit AfIII und HindIII gespalten und in das mit
AfIII/HindIII linearisierte Plasmid pHKK (Horn et al., 1996, Appl. Microbiol.
Biotechnol. 46, 524-532) inseriert, wodurch der Vektor pSKK erhalten wurde. Die in
den Plasmiden pDISC3x19-LL und pDISC3x19-SL enthaltenen und für die scFvAntikörper-Konstrukte kodierenden Gene wurden durch PCR mittels der Primer fe-

5

WO 99/57150

PCT/DE99/01350

15

1, 5'-CGA ATT TCT AGA TAA GAA GGA GAA ATT AAC CAT GAA ATA CC und fe-2, 5'-CGA ATT CTT AAG CTA TTA GTG ATG GTG ATG GTG ATG TGA G amplifiziert. Die Xbal/AfIII gespaltenen PCR-Fragmente wurden in pSKK vor dem skp Insert inseriert, wodurch die Expressionsplasmide pDISC5-LL bzw. pDISC6-SL erhalten wurden, die tri-cistronische Operons unter der Kontrolle des lac Promotor/Operator-Systems enthalten (vgl. Fig. 9, 10).

PCT/DE99/01350

16

K 2675

10

25

Patentansprüche

- Multivalentes F_v-Antikörper-Konstrukt mit mindestens vier variablen Domänen, die über die Peptidlinker 1, 2 und 3 miteinander verbunden sind.
 - F_v-Antikörper-Konstrukt nach Anspruch 1, wobei die Peptidlinker 1 und 3 0 -10 Aminosäuren aufweisen.
 - 3. F_v-Antikörper-Konstrukt nach Anspruch 2, wobei die Peptidlinker 1 und 3 die Aminosäuresequenz GG aufweisen.
- F_v-Antikörper-Konstrukt nach einem der Ansprüche 1-3, wobei das F_v-Anti körper-Konstrukt bivalent ist.
 - F_v-Antikörper-Konstrukt nach Anspruch 4, wobei der Peptidlinker 2 11-20
 Aminosäuren aufweist.
- 20 6. F_v-Antikörper-Konstrukt nach Anspruch 4 oder 5, wobei der Peptidlinker 2 die Aminosäuresequenz (G₄S)₄ aufweist.
 - 7. F_v -Antikörper-Konstrukt nach einem der Ansprüche 1-3, wobei das F_v -Antikörper-Konstrukt tetravalent ist.
 - 8. F_v-Antikörper-Konstrukt nach Anspruch 7, wobei der Peptidlinker 2 3-10 Aminosäuren aufweist.
- 9. F_v-Antikörper-Konstrukt nach Anspruch 7 oder 8, wobei der Peptidlinker 2
 30 die Aminosäuresequenz GGPGS aufweist.

25

WO 99/57150

PCT/DE99/01350

17

- F_v-Antikörper-Konstrukt nach einem der Ansprüche 1-9, wobei das F_v-Antikörper-Konstrukt multispezifisch ist.
- 11. F_v-Antikörper-Konstrukt nach Anspruch 10, wobei das F_v-Antikörper Konstrukt bispezifisch ist.
 - 12. F_v-Antikörper-Konstrukt nach einem der Ansprüche 1-9, wobei das F_v-Antikörper-Konstrukt monospezifisch ist.
- 13. Verfahren zur Herstellung des multivalenten F_v-Antikörper-Konstruktes nach einem der Ansprüche 1-12, wobei für die Peptidlinker 1, 2 und 3 kodierende DNAs mit für die vier variablen Domänen eines F_v-Antikörper-Konstruktes kodierenden DNAs ligiert werden derart, daß die Peptidlinker die variablen Domänen miteinander verbinden, und das erhaltene DNA-Molekül in einem Expressionsplasmid exprimiert wird.
 - 14. Expressionsplasmid, kodierend für das multivalente F_v-Antikörper-Konstrukt nach einem der Ansprüche 1-12.
- 20 15. Expressionsplasmid nach Anspruch 14, nämlich pDISC3x19-LL.
 - 16. Expressionsplasmid nach Anspruch 14, nämlich pDISC3x19-SL.
 - 17. Expressionsplasmid nach Anspruch 14, nämlich pPIC-DISC-LL.
 - 18. Expressionsplasmid nach Anspruch 14, nämlich pPIC-DISC-SL.
 - 19. Expressionsplasmid nach Anspruch 14, nämlich pDISC5-LL.
- 20. Expressionsplasmid nach Anspruch 14, nämlich pDISC6-SL.

5

WO 99/57150

PCT/DE99/01350

18

- 21. Verwendung des multivalenten F_v -Antikörper-Konstruktes nach einem der Ansprüche 1-12 zur Diagnose und/oder Therapie von Erkrankungen.
- 22. Verwendung nach Anspruch 21, wobei die Erkrankungen virale, bakterielle oder Tumor-Erkrankungen sind.

PCT/DE99/01350

PCT/DE99/01350

2/10

Linkers:

L1 = GG

 $L2 = (G_4S)_4$

L3 = GGPGS

PCT/DE99/01350

PCT/DE99/01350

PCT/DE99/01350

EcoRI RBS 2elB lazcar
1 GAATTCATTAAAGACGAGAAATTAACCATGAAATTACCTATTGCCTTACGGCAGCCGGTTGGCTGGC
Franse-mi VH and CD2
92 CGCAGGTGCAACTGCAGCAGTCTGGGGCTGAACTGGCCAAGACTTGGGGGTGTAAGATGAAGATGTGAAGATGTGAAGATGTGGGGGG
- AND CALCAL ARROAS ARROAS CALCOVER
CUR-01 5/2me-22 000.00
183 TAGGTACACGATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCTGGAATGGATTGGATTAAATCCTAGCCGTGGTTATAC
52) R Y T M H W V K Q R P G Q G L E W I G Y I N P S R G Y T
Frame-H3 267 TAATTACAATCAGAAGTTCAAGGACAAGGCCCACATCACTCCAGCAAATCCTCCAGCACAGCCTACATGCAAGCAA
30) N Y N Q K F K I K A T L T T D K S S S T A Y N Q L S S L T
CDD-H2 11.
354 ALCICAGASCICIGAGICIATIACCIATACAMMANCAMCAMCAMCACCAMACACMACACMACACACAC
and dada a vitch a v v b b a v s t b v w g b g m n
United 1 Francia 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
440 CAGTOTOCTCAGCCAAAACBAACBACACCCAAAGCTTGGGGGGTGATATCTTGCTCACCCAAACTCCAGCTTTOTTTGGGCGGTGATATCTTGCTCACCCAAACTCCAGCTTTOTTTGGGCTGTGTCTCACGCAGA
CDB-C:
Frame-L2 530 GGGCCACCATCTCCTGCAAGGCCAAGCCAAAAGTGTTGATTATGATGGTGATATTTTGAACTGTACCAACAGTTCCAGGAC
158 R A T I S C K A S I S V D Y D G D S Y L N W Y 2 Q I F G
SSE4.2 Enmal 2
614 ACCCACCOAAACTCCTCATCTATGATSCATCCAAATCTAGTTTCTCCCAACCATCCCACGTTTAGTCCCACGACTCCCCACCACTT
196 Q P P K L L T Y D A S N L Y S G T P P R F S G S G S G T D F
702 CACCOTCAACATCCATCCTGTGGAGAAGGTGGATCCTGCAACACACAC
225) T L N I H F V E K V D A A T Y H C Q Q S T E D F W T F G G
El varra Noti
790 GGCACCAAGCTGGAAATCAAACGGGCTGATGCTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGT
255) G T K L E I Y R A D A A A A G G G G G G G G G G G G G G
874 TCCGGTGGTGGTAGCCAGGTCCAGCTGCAGCAGTCTTCGCCCTTCAGCTTCTTCAGCCTTCAGCTTCA
283) S G G G G S Q 7 Q L Q Q 5 G A E L V R P G S S V X I S C X
CDR-H1 Frame-H2 coope
962 CTTCTGGCTATGCATTCAGTAGCTACTGGATGAACTGGGTGAAGCAGAGCCTGGACAGGGTCTTGAGTGGACAGGACAGATTTGGC 312 A S 3 Y A F S S Y W M W W W Q R P G Q G L E W I G Q I W
PStl Frame-H3
1049 CTGGAGATGGTGATACTAACTACAATGGAAAGTTCAAGGGTAAACCCACTCTCACCACCACTCCACCACCACCACCACCA
341) P G D G D T N Y N G K F K G K A T L T A D E S S S T A Y
CDR-H3
1133 TGC:ACTC:AGC:AGC:ATCTG:AGG:ACTCTGCGGTCTATTTCTGTGC:AGG:AGG:AGA:CTA:CGA:CGGTA:GGCCGTTATTACTAT 369 M
Frame-H4 CU1 Links to Fire 1 to
1219 GCTATGGACTACTGGGGTCAAGGAACCTCAGTCACCTCAGCCAAACACACCCCAAGCTTCAGCTCAAGCCAAACACACCCCAAGCTTCAGCTCAGCTCAAGCCAAACACACCCCAAGCTCAGCTCAGCTCAAGCCAAACACACCCCAAGCTTCAGCTCAGCTCAGCTCAAGCCAAACACCCCAAGCTCAAGCCAAACACCCCAAGCTCAGCTCAAGCCAAACACCCCAAGCTCAAGCCAAACACCCCAAGCCAAACACCCCAAGCCTCAGCCCAAGCCAAACACCCCAAGCCTCAGCCCAAGCCCAAGCCCAAGCCAAACACCCCAAGCCTCAGCCCAAGCCAAGCCAAGCCAAAACCAAACCAAAACCAAAACAAACAAACAAACAAAA
SOUNT TO THE CONTROL OF THE CONTRACTOR OF THE
VL anti-CD3
1307 AGTCTCCAGCAATCATGTCTGCATCTCCAGGGAGAAGGTCACCATGACCTGCAGTGCCAGGTCAAGTGTAAGTTACATGAACTGG
427 Q S P A I M S A S P G E X V T M T C S A S S S V S Y M N W
CDR-L2 Frame-L3 1393 TACCAGCAGAAGTCAGGCACCTCCCCCCAAAAGATGGATTTTATGACAGATCCAAAGTGGGTTCTGGAGTCCTCACTTCAGGGGCA
456) Y Q Q X S G T S F E R W I Y D T S X L A S G V P A H F R G
CD0 12
1481 GTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCGGCATGGAGGCTGAAGATGCTGCCAACTATTTACTCCCAACTAGTTACTCAACTAGTTAA
401, 2 2 E L Z Z Z L L Z Z C W E Y E D Y Y L L L C O O M R R N
Frame-I 4
Frame-L4 C kappa c-myc epitope 1569 CCCATTCACGTTCGCCCCCCCACCAACTACCCAAATAAACCCCCCTCCATTCCAACTACCAACTACAAAAAA
Frame-L4 C kappa c-myc epitope 1569 CCCATTCACGTTCGCCCCCCACAAAAGCTGCAAAAAAGCTGATCTCAG 514) PFFFGSGTCCCCCCCCCACACAAAAGCTGATCTCAG His6 'ail Xhal
Frame-L4 C kappa c-myc epitope 1569 CCCATTCACGMCGGCCCGGACAAGTTGGAAAAACCTGGATCTGATCT
Frame-L4 C kappa c-myc epitope 569 CCCATTCACGTTCGCGCGCACAAGTTGGAAATAAACCTCGCTCATACTCGCAACTGGATCCGAACAAAAGCTGATCTCAG 514 P F T F G S G T K L E I N R A D T A P T G S E Q K L I S

PCT/DE99/01350

EcoRI RBS PelB leager	
Noc RESECTORISTICAL DESTRUCTION OF THE PROPERTY OF THE PROPERTY AND	m
LY M X Y L L P T A A A G L L L A A Q .P A	M.
se compare to the feet of the	TAC
CORNE CORNE CAR S G A S V K M S C K A S G Y T F	7
CDR-H1 Frame-H2 CDR-H2 193 TAGGTACACGATGCACTCCGTAAAACAGACCCTGCACACGGGTCTGCAATGGATTCGATACATTAATCCTAGCCGTGGTTAT 52 R V T M V V V V V V V V V V V V V V V V V	
52) R Y T M H W V X Q R P G Q G L E W I G Y I N P S R F Y	<u>3C</u>
257 TAATTACAATCAGAAGTTCAAGGAGAGAGAGAGAGAGAGA	
30) N Y N Q K F K D K A T L T T D K S S S T A Y M Q L S S L	
COR-H3 Frame-H4	•
COR-H3 Frame-H4 154 ATCTGAGGACTCTGCAGTCTATTACTGCCAGATATTATGATGATGATGATTACAGCCTTGACTACTGCCCCCAAGCCACCACCTCTCT 109	T.A
CHA	,
440 CAGTCTCCTCAGCCAAACAACACCCCAAGCTTTTTTTTTT	
138 T V S S A K T T F K L G G D I J L T Q T F A S J A V S L G Q	G.A.
GDB6:	
JUV GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	:20
	;
Frame-L3 614 AGCCACCCAAACTCCTCATCTATGATGCATCGAATCTAGTTTCTCCGATCCCACCCA	
104 CACCUICAACAICCAICCAIGTEGAGAICCAICCAICCAICCAICCAICCAICCAICCAICCA	72
	;
LX2002 NOT Links 2 miles 4	
790 GGC-CC-AGCTGGAAATC:AACGGGTGATGCGGCGGCTGGTGGCCCAGGGTCGCAGGTGCAGCAGCAGCTGCAGCAGCTGAG	C.
255 G T K L E I K R A D A A A A G G P G S Q V Q L Q Q S G A E VH anti-CD19	
879 GGTEAGGCCTGGGTCCTCAGTEAAGATTTCCTTCTAAGATTTCCTTTTTTCCTTTAGTCTTTTCCTTTTTTCCTTTTTCCTTTTTCCTTTTTCCTTTT	
284) V R P G S S V K I S C K A S G Y A F S S Y W M N W V K Q R	GC.
CDB.W2	
968 CTGGACAGGGTTTGAGTGGATTGGAGAGATTGGCCTGGAGATGGTGATACTAACTA	\approx
314) P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K .	7
1051 ACTOTEACTGCAGACGAATCOTTCCAGCACAGCCTIACAACTCAGCAGCCTAGCAATCTGAGGACTCTGCGGTCTATTTTCTGTGCAAGA	_
342) T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R	<u>.c</u>
CDH•P13	
1142 GGGAGACTACGACGGTAGGCCGTTATTACTATGCTATGGACTACTCCCCTCACCCCCCCC	,
- TO TO TO THE TO THE TO THE TO THE TERM T	7
Linker 1 Frame-11 VI anti-CD2	
1226 CAACACCTAGGGGGGATATCTTGCTCACTCAGTCTCCAGGCATCATCTCCAGGGGACAAGGTCACCATGACCTGC	₹
1316 GTGCCAGCTCAAGTGTAAGTTACATGAACTXGTACCAGAAGTTACCACCACACACACACACACACACACAC	-2
430°S A S S S V S Y M N W Y Q Q K S G T S P K R W I Y D T S	
	χ Γ3
Frame-13	х
Frame-L3 1401 ACTGGCTTCTGGAGTCCCTCCTCACTCAGGCCCAGTGCAGTTCTCAGGCCAGGCCAGTTCTCAGGCCCAGTTCTCAGGCCCAGTTCTCAGGCCAGTTCTCAGGCCCAGTTCTCAGGCCAGGCCAGTTCTCAGGCCAGGCCAGTTCTCAGGCCAGGCCAGTTCTCAGGCCAGGCCAGTTCTCAGGCCAGGCCAGTTCTCAGGCCAGGCCAGTTCTCAGGCAGGCCAGGCAGGCAGGCAGGCAGGCAGGCAGGCCAGGCAG	x
Frame-L3 1401 <u>ACTGGCTTCTGGAGTCCCTGCTCACTCACCACTGGGACCTCTTACTCTCTCACAATCAGGGGGATGGAGGCTGAAGATCAGGGGGAGGAGGACCACTGAAGATCAGGGGGAGGAGGACCACTGAAGATCAGGGGGAGGAGGACCACTGAAGATCAGGGGGAGGAGGAGGATGAAGATCAGGGGGAGGAGGAGGATGAAGATCAGGGGGAGGAGGAGGATGAAGATCAGGGGGAGGAGGATGAAGATCAGGGGGAGGAGGATGAAGATCAGGGGGAGGAGGATGAAGATCAGGGGGAGGAGGATGAAGATCAGGGGGAGGAGGATGAAGATCAGGGGAGGATGAAGATCAGGGGGAGGAGGATGAAGATCAGGGGAGGAGGATGAAGATCAGGGGGAAGATCAGGAGGAGGATGAAGATCAGGGGGAAGGATGAAGATCAGGGGGAGGAGGATGAAGATCAGGGGGAGGAGGATGAAGATCAGGGGAGGAGGATGAAGATCAGGGGGAGGAGGATGAAGATCAGGAGGAGGATGAAGATCAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG</u>	x
Frame-L3 1401 ACTGGCTTCTGGAGTCCTGCTCTCACAATCAGGGGCAGGAGGCTGAAGATC 458 L A S G V P A H F R G S G S G T S Y S L T I S G M E A E D CDR-L3 CDR-L3 COR-L3	K K A
Frame-L3 1401 ACTGGCTTCTGGAGTCCTGCTCACTTCAGGGCAGGGGGGAGGCTGAGGATC 458 L A S G V P A F R G S G S G T S Y S L T I S G M E A E D CDR-L3 1491 TGCCACTTATTACTGCGAGGAGTAGGAGTAAGGCATTCACGTTCAGGGGGGGAGTAAGATCAGGTAGGAGTAAGGCATTCACGTTCGGGGGGAAGGAA	K A
Frame-L3 1401 ACTGGCTTCTGGAGTCCTGCTCACTTCAGGGCAGTGGGCAGGCTGAAGATCAGGGCAGGCCTGAAGATCAGGGCTGAAGATCAGGGCTGAAGATCAGGGCTGAAGATCAGGCTGAAGATCAGGGCTGAAGATCAGGGCTGAAGATCAGGGCTGAAGATCAGGGCTGAAGATCAGGCTGAAGATCAGGCTGAAGATCAGGCTGAAGATCAGGTTGAAATCAGGCAGG	K A
Frame-L3 1401 ACTGGCTTCTGGAGTCCTGCTCACTCACCACTGGAGCACTGAACATCACGGGCATGGAGCACTGAACATCACGGGCATGGAGCACTGAACATCACGGGCATGGAGCACTGAACATCACGGGCATGGAGCACTGAACATCACGGCATGGAGCACTGAACATCACGGCACGAACATCACGGCACGAACATCACGGCACGAACATCACGGCACGAACATTACTGCAACATCACGGAGGAGGAACATCACGGTTCGGCACCAAAGTTGGAAATAAACCGGCTGATACTCACGATGGAAAAAAACGGAGAGAAGAAGAAGAAGAAGAAGAAGAAG	K A
Frame-L3 1401 ACTGGCTTCTGGAGTCCCTCACTCACTCAGGGGCAGGGGGGGG	K A

PCT/DE99/01350

7/10

941 ATGAGATTICCTTCAATTITTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTAC

1 M R F P S I F T A V L F A A S S A L A A P V N T T

alpha-factor signal

1015 AACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATG

25 T E D E T A Q I P A E A V I G Y S D L E G D F D

1089 TTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCT

50 V A V L P F S N S T N N G L L F I N T T I A S I A

EcoRI

Xhol

1163 GCTAAAGAAGAAGAAGAGGGTTATCTCTCGAGAAAAGAGGAGGCTGAAGCTGAATTCCAGGTGCAACTGCAGCAGTC

75 A K E E G V S L E K R E A E A E F Q V Q L Q Q S

VH anti-CD3

1234 TGGGGCTGAACTGGCAAGACCTGGGGCCTCAGTGAAGATGTCCTGCAAGGCTTCT

98 G A E L A R P G A S V K M S C K A S

FIGUR 7

PCT/DE99/01350

8/10

941 ATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTAC

1 M R F P S I F T A V L F A A S S A L A A P V N T T

alpha-factor signal

1015 AACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATG

25 T E D E T A Q I P A E A V I G Y S D L E G D F D

1089 TTGCTGTTTTGCCATTTTCCAACAGCACAAATTACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCT

50 V A V L P F S N S T N N G L L F I N T T I A S I A

Xhol

Xhol

EcoRl

YH anti-CD3

1235 CAGTCTGGGGGCTGAAGCTGAAGCTGAAGATGCTGCAAGGCTTCT

99 P Q S G A E L A R P G A S V K M S C K A S

PCT/DE99/01350

FIGUR 9

10/10

PCT/DE99/01350

FIGUR 10

PCT/DE99/01350

SEQUENZPROTOKOLL

- (1) ALLGEMEINE ANGABEN:
 - (i) ANMELDER:
 - (A) NAME: Deutsches Krebsforschungszentrum
 - (B) STRASSE: Im Neuenheimer Feld 280
 - (C) ORT: Heidelberg
 - (E) LAND: Deutschland
 - (F) POSTLEITZAHL: 69120
 - (ii) BEZEICHNUNG DER ERFINDUNG: Multivalente Antikoerper-Konstrukte
 - (iii) ANZAHL DER SEQUENZEN: 17
 - (iv) COMPUTER-LESBARE FASSUNG:
 - (A) DATENTRÄGER: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)
- (2) ANGABEN ZU SEQ ID NO: 1:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1698 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Genom-DNA
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 28..1689
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: mat_peptide
 - (B) LAGE: 28..1689
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

GAATTCATTA AAGAGGAGAA ATTAACC ATG AAA TAC CTA TTG CCT ACG GCA 51 Met Lys Tyr Leu Leu Pro Thr Ala 5

PCT/DE99/01350

2

GCC Ala	GCT Ala	נפדא	TTG Leu	CTC Lev	CTG Leu	CTG Leu 15	Ala	GC1	CAC Glr	CCG Pro	GCC Ala	Met	GCC Ala	CAC Gln	GTG Val		99
CAA Gln 25	Leu	CAC Gln	G CAG	TCT Ser	GGG Gly 30	Ala	GAA Glu	CTC Let	G GCA	AGA Arg 35	Pro	GGG Gly	GCC Ala	TCA Ser	GTG Val 40		147
AAG Lys	ATG Met	TCC	TGC Cys	AAG Lys 45	Ala	TCT Ser	GGC Gly	TAC Tyr	ACC Thr	Phe	ACT Thr	AGG Arg	TAC Tyr	ACG Thr 55	ATG Met		195
CAC His	TGG Trp	GTA Val	AAA Lys 60	CAG Gln	AGG Arg	CCT Pro	GGA Gly	CAG Gln 65	GGT Gly	CTG Leu	GAA Glu	TGG Trp	ATT Ile 70	GGA Gly	TAC Tyr		243
тте	Asn	75	Ser	Arg		Tyr	Thr 80	Asn	Tyr	Asn	Gln	Lys 85	Phe	Lys	Asp	•	291
AAG Lys	GCC Ala 90	ACA Thr	TTG Leu	ACT Thr	ACA Thr	GAC Asp 95	AAA Lys	TCC Ser	TCC Ser	AGC Ser	ACA Thr 100	GCC Ala	TAC Tyr	ATG Met	CAA Gln		339
105	Ser	Ser	Leu	Thr	TCT Ser 110	Glu	Asp	Ser	Ala	Val 115	Tyr	Tyr	Cys	Ala	Arg 120		387
TYT	ıyr	Asp	Asp	H15 125	TAC Tyr	Ser	Leu	Asp	Tyr 130	Trp	Gly	Gln	Gly	Thr 135	Thr		435
Leu	Thr	val	140	Ser	GCC Ala	Lys	Thr	Thr 145	Pro	Lys	Leu	Gly	Gly 150	Asp	Ile		483
Leu	Leu	155	Gln	Thr	CCA Pro	Ala	Ser 160	Leu	Ala	Val	Ser	Leu 165	Gly	Gln	Arg		531
GCC Ala	ACC Thr 170	ATC Ile	TCC Ser	TGC Cys	AAG Lys	GCC Ala 175	AGC Ser	CAA Gln	AGT Ser	Val	GAT Asp 180	TAT Tyr	GAT Asp	GGT Gly	GAT Asp		579
AGT Ser 185	TAT Tyr	TTG. Leu	AAC Asn	TGG Trp	TAC Tyr 190	CAA Gln	CAG Gln	ATT Ile	Pro	GGA Gly 195	CAG Gln	CCA Pro	CCC Pro	AAA Lys	CTC Leu 200		627
CTC Leu	ATC Ile	TAT Tyr	Asp .	GCA Ala 205	TCC . Ser .	AAT Asn	CTA Leu	Val	TCT Ser 210	GGG Gly	ATC Ile	CCA Pro	Pro	AGG Arg 215	TTT Phe		675
AGT Ser	GGC Gly	Ser	GGG (Gly) 220	TCT Ser	GGG / Gly '	ACA (Asp	TTC Phe 225	ACC Thr	CTC . Leu .	AAC Asn	Ile	CAT His 230	CCT Pro	GTG Val		723

3

GAG Glu	AAG Lys	GTC Val 235	AST	GCT Ala	GCA Ala	ACC Thr	TAT Tyr 240	His	TGT Cys	CAC Glr	G CAA	A AGT Ser 245	Thr	GAC	GAT Asp	7	771
CCG Pro	TGG Trp 250	Thr	TTC Phe	GGT Gly	GGA Gly	GGC Gly 255	ACC Thr	AAG Lys	CTG Leu	GAA Glu	ATC 11e 260	Lys	CGG Arg	GCT Ala	GAT Asp	8	319
GCT Ala 265	Ala	GCC Ala	GCT Ala	GGT Gly	GGT Gly 270	Gly	GGT Gly	TCT Ser	GGC Gly	GGC Gly 275	Gly	GGT Gly	AGC Ser	GGT	GGT Gly 280	8	67
GGC Gly	GGC Gly	TCC Ser	GGT	GGT Gly 285	GGT Gly	GGT Gly	AGC Ser	CAG Gln	GTG Val 290	CAG Gln	CTG Leu	CAG Gln	CAG Gln	TCT Ser 295	GGG Gly	9	15
GCT Ala	GAG Glu	CTG Leu	GTG Val 300	AGG Arg	CCT Pro	GGG Gly	TCC Ser	TCA Ser 305	GTG Val	AAG Lys	ATT Ile	TCC Ser	TGC Cys 310	AAG Lys	GCT Ala	9	63
TCT Ser	GGC Gly	TAT Tyr 315	GCA Ala	TTC Phe	AGT Ser	AGC Ser	TAC Tyr 320	TGG Trp	ATG Met	AAC Asn	TGG Trp	GTG Val 325	AAG Lys	CAG Gln	AGG Arg	10	11
CCT Pro	GGA Gly 330	CAG Gln	GGT Gly	CTT Leu	GAG Glu	TGG Trp 335	ATT Ile	GGA Gly	CAG Gln	ATT Ile	TGG Trp 340	CCT Pro	GGA Gly	GAT Asp	GGT Gly	10	59
GAT Asp 345	ACT Thr	AAC Asn	TAC Tyr	AAT Asn	GGA Gly 350	AAG Lys	TTC Phe	AAG Lys	GGT Gly	AAA Lys 355	GCC Ala	ACT Thr	CTG Leu	ACT Thr	GCA Ala 360	110	07
GAC Asp	GAA Glu	TCC Ser	TCC Ser	AGC Ser 365	ACA Thr	GCC Ala	TAC Tyr	ATG Met	CAA Gln 370	CTC Leu	AGC Ser	AGC Ser	CTA Leu	GCA Ala 375	TCT Ser	115	55
GAG Glu	GAC Asp	TCT Ser	GCG Ala 380	GTC Val	TAT Tyr	TTC Phe	TGT Cys	GCA Ala 385	AGA Arg	CGG Arg	GAG Glu	ACT Thr	ACG Thr 390	ACG Thr	GTA Val	120	03
GGC Gly	CGT Arg	TAT Tyr 395	TAC Tyr	TAT Tyr	GCT Ala	ATG Met	GAC Asp 400	TAC Tyr	TGG Trp	GGT Gly	CAA Gln	GGA Gly 405	ACC Thr	TCA Ser	GTC Val	125	51
Thr	GTC Val 410	TCC Ser	TCA Ser	GCC Ala	Lys	ACA Thr 415	ACA Thr	CCC Pro	AAG Lys	CTT Leu	GGC Gly 420	GGT Gly	GAT Asp	ATC Ile	GTG Val	129	9
CTC Leu 425	ACT Thr	CAG Gln	TCT Ser	Pro	GCA Ala 430	ATC Ile	ATG Met	TCT Ser	GCA Ala	TCT Ser 435	CCA Pro	GGG Gly	GAG Glu	AAG Lys	GTC Val 440	134	17
ACC Thr	ATG Met	ACC Thr	TGC Cys	AGT Ser 445	GCC Ala	AGC Ser	TCA . Ser	Ser	GTA Val 450	AGT Ser	TAC Tyr	ATG Met	AAC Asn	TGG Trp 455	TAC Tyr	139	5

4

CAG Gln	CAG Gln	AAG Lys	TCA Ser 460	GGC Gly	ACC Thr	TCC Ser	CCC Pro	AAA Lys 465	AGA Arg	TGG Trp	ATT Ile	TAT Tyr	GAC Asp 470	ACA Thr	TCC Ser	1443
AAA Lys	CTG Leu	GCT Ala 475	TCT Ser	GGA Gly	GTC Val	CCT Pro	GCT Ala 480	CAC His	TTC Phe	AGG Arg	GGC Gly	AGT Ser 485	GGG Gly	TCT Ser	GGG Gly	1491
ACC Thr	TCT Ser 490	TAC Tyr	TCT Ser	CTC Leu	ACA Thr	ATC Ile 495	AGC Ser	GGC Gly	ATG Met	GAG Glu	GCT Ala 500	GAA Glu	GAT Asp	GCT Ala	GCC Ala	1539
ACT Thr 505	Tyr	TAC Tyr	TGC Cys	CAG Gln	CAG Gln 510	TGG Trp	AGT Ser	AGT Ser	AAC Asn	CCA Pro 515	TTC Phe	ACG Thr	TTC Phe	GGC Gly	TCG Ser 520	1587
GGG Gly	ACA Thr	AAG Lys	TTG Leu	GAA Glu 525	ATA Ile	AAC Asn	CGG Arg	GCT Ala	GAT Asp 530	ACT Thr	GCA Ala	CCA Pro	ACT Thr	GGA Gly 535	TCC Ser	1635
GAA Glu	CAA Gln	AAG Lys	CTG Leu 540	ATC Ile	TCA Ser	GAA Glu	GAA Glu	GAC Asp 545	CTA Leu	AAC Asn	TCA Ser	CAT His	CAC His 550	CAT His	CAC His	1683
CAT His		TAAT	CTAG	A												1698

(2) ANGABEN ZU SEQ ID NO: 2:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 554 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

Met Lys Tyr Leu Leu Pro Thr Ala Ala Gly Leu Leu Leu Leu Ala 1 5 10

Ala Gln Pro Ala Met Ala Gln Val Gln Leu Gln Gln Ser Gly Ala Glu
20 25 30

Leu Ala Arg Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly 35 40 45

Tyr Thr Phe Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly 50 60

Gln Gly Leu Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr 65 70 75 80

5

Asn Tyr Asn Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp 105 Ser Ala Val Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Ser Leu Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Ala Lys Thr Thr Pro Lys Leu Gly Gly Asp Ile Leu Leu Thr Gln Thr Pro Ala Ser Leu Ala Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln 180 185 190 Ile Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr 245 250 255Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Ala Ala Gly Gly Gly 260 265 270 Ser Gly Gly Gly Ser Gly Gly Gly Gly Gly Gly Gly Gly Ser 275 280 285 Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser 290 295 300 Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr 305 310 315 320Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 325 330 335 Gly Gln Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe 340 345 350Lys Gly Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala Tyr 360

6

Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys 370 375 380

Ala Arg Arg Glu Thr Thr Val Gly Arg Tyr Tyr Ala Met Asp 385 390 395

Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Ala Lys Thr Thr 405 410 415

Pro Lys Leu Gly Gly Asp Ile Val Leu Thr Gln Ser Pro Ala Ile Met 420 425 430

Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser 435 440 445

Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro 450 460

Lys Arg Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala 465 470 475 480

His Phe Arg Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser 485 490 495

Gly Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser 500 505 510

Ser Asn Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Asn Arg 515 520 525

Ala Asp Thr Ala Pro Thr Gly Ser Glu Gln Lys Leu Ile Ser Glu Glu
530 540

Asp Leu Asn Ser His His His His His 545

- (2) ANGABEN ZU SEQ ID NO: 3:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1653 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Genom-DNA
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE:28..1644

PCT/DE99/01350

7

(ix) MERKMAL:

(A) NAME/SCHLÜSSEL: mat_peptide (B) LAGE:28..1644

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

GAA	TTC	ATTA	AAG	AGGA	GAA .	ATTA.	ACC.	ATG Met 1	AAA Lys	TAC Tyr	CTA Leu	TTG Leu 5	CCT Pro	ACG Thr	GCA Ala	51
Aza	10))	Let	r re:	ı Let	1 Let	1 A.L.	a Al	a Gl:	n Pr	o Al. 2	a Me O	t Ala	a Gl:	G GTG n Val	99
25	Dec	GII.	I Gil	ser	30	/ A16	t GI	ı Le	ı Alá	a Arg	g Pro	c Gl	y Ala	a Se:	A GTG Val 40	147
пуs	Met	Jer	Cys	45	YT9	Ser	. GT?	/ Tyr	Th:	Phe	e Thi	r Arq	i Tyi	7h:		195
1112	נידד	val	60 60	Gin	Arg	, 520	Gly	Glr 65	Gly	Leu	Gli	Tr	70	Gly	TAC Tyr	243
716	VOII	75	ser	Arg	GTĀ	Tyr	Thr 80	Asn	Tyr	Asn	Gln	Lys 85	Phe	ŗŅs	GAC Asp	291
БŽS	90	THE	Leu	Tnr	Thr	Asp 95	Lys	Ser	Ser	Ser	Thr 100	Ala	Tyr	Met	CAA Gln	339
105	261	Set	Leu	Thr	110	Giu	Asp	Ser	Ala	Val 115	Tyr	Tyr	TGT Cys	Ala	Arg 120	387
TAT Tyr	ığı	Asp	ASD	125	Tyr	Ser	Leu	Ąsp	Tyr 130	Trp	Gly	Gln	Gly	Thr 135	Thr	435
CTC . Leu '	1111	vai	140	ser	Ala	Lys	Thr	Thr 145	Pro	Lys	Leu	Gly	Gly 150	qzA	Ile	483
TTG (Leu 1	ueu	ACC Thr 155	CAA Gln	ACT Thr	CCA Pro	GCT Ala	TCT Ser 160	TTG Leu	GCT Ala	GTG Val	TCT Ser	CTA Leu 165	GGG Gly	CAG Gln	AGG Arg	531
GCC A Ala 1	ACC Thr 170	ATC Ile	TCC Ser	TGC Cys	Lys	GCC Ala 175	AGC Ser	CAA Gln	AGT Ser	GTT Val	GAT Asp 180	TAT Tyr	GAT Asp	GGT Gly	GAT Asp	579

PCT/DE99/01350

AG: Sei 189	· • ·	T TT r Le	G AA u As:	C TG	G TAC D Ty: 190	GII	A CAC	AT'	r cca	A GG/ 5 Gl ₃ 195	y Gli	G CC	A CCC	C AA.	A CTC s Leu 200		627
		- 4y.	L AS	205	5	ASI	. Leu	va.	210	Gly	/ Ile	e Pro	o Pro	21:	_		675
SCI		, 26.	220) , sei	. Gly	. Thr	Asp	225	Thr	Leu	. Asn	ı Ile	230	Pro	r GTG Val		723
010	. _	235)	, Ale	. ATG	inr	1yr 240	HIS	Cys	Gln	Gln	Ser 245	Thr	Glu	GAT Asp		771
	250	, 1111	FILE	. GIÀ	GIY	255	Thr	Lys	Leu	Glu	11e 260	Lys	Arg	Ala	GAT Asp		819
265	n10	Ald	. MIG	GIY	270	Pro	GIA	Ser	Gln	Val 275	Gln	Leu	Gln	Gln	TCT Ser 280		867
Cly	AIG	Giu	rea	285	Arg	Pro	GIŞ	Ser	Ser 290	Val	Lys	Ile	Ser	Cys 295			915
AIG	261	GIŸ	300	GCA Ala	hue	Ser	Ser	Tyr 305	Trp	Met	Asn	Trp	Val 310	Lys	Gl'n	•	963
11 . g	110	315	GIII	GGT Gly	Leu	GIU	320	Ile	Gly	Gln	Ile	Trp 325	Pro	Gly	Asp		1011
Oly	330	1111	ASII	TAC Tyr	Asn	335	Lys	Phe	Lys	Gly	Lys 340	Ala	Thr	Leu	Thr		1059
345	nap	Giu	Ser	TCC Ser	350	Thr	Ala	Tyr	Met	Gln 355	Leu	Ser	Ser	Leu	Ala 360		1107
TCT Ser	GAG Glu	GAC Asp	TCT Ser	GCG Ala 365	GTC Val	TAT Tyr	TTC Phe	TGT Cys	GCA Ala 370	AGA Arg	CGG Arg	GAG Glu	ACT Thr	ACG Thr 375	ACG Thr		1155
Vai	GIY	Arg	380		Tyr .	Ala :	Met .	Asp 385	Tyr	Trp	Gly	Gln	Gly 390	Thr	Ser		1203
GTC Val	1117	GTC Val 395	TCC Ser	TCA Ser	GCC . Ala :	rāz ,	ACA I Thr 1	ACA Thr	CCC . Pro	AAG Lys	Leu	GGC Gly 405	GGT Gly	GAT Asp	ATC Ile		1251

WO 99/57150 PCT/DE99/01350

9

GTG Val	CTC Leu 410	Thr	CAG Gln	TCT Ser	CCA Pro	GCA Ala 415	ATC Ile	ATG Met	TCT Ser	GCA Ala	TCT Ser 420	CCA Pro	GGG Gly	GAG Glu	AAG Lys	1299
GTC Val 425	ACC Thr	ATG Met	ACC Thr	TGC Cys	AGT Ser 430	GCC Ala	AGC Ser	TCA Ser	AGT Ser	GTA Val 435	AGT Ser	TAC Tyr	ATG Met	AAC Asn	TGG Trp 440	1347
TAC Tyr	CAG Gln	CAG Gln	AAG Lys	TCA Ser 445	GGC Gly	ACC Thr	TCC Ser	CCC Pro	AAA Lys 450	AGA Arg	TGG Trp	ATT Ile	TAT Tyr	GAC Asp 455	ACA Thr	1395
TCC [.] Ser	AAA Lys	CTG Leu	GCT Ala 460	TCT Ser	GGA Gly	GTC Val	CCT Pro	GCT Ala 465	CAC His	TTC Phe	AGG Arg	GGC Gly	AGT Ser 470	GGG Gly	TCT Ser	1443
GGG Gly	ACC Thr	TCT Ser 475	TAC Tyr	TCT Ser	CTC Leu	ACA Thr	ATC Ile 480	AGC Ser	GGC	ATG Met	GAG Glu	GCT Ala 485	GAA Glu	GAT Asp	GCT Ala	1491
GCC Ala	ACT Thr 490	TAT Tyr	TAC Tyr	TGC Cys	CAG Gln	CAG Gln 495	TGG Trp	AGT Ser	AGT Ser	AAC Asn	CCA Pro 500	TTC Phe	ACG Thr	TTC Phe	GGC Gly	1539
TCG Ser 505	GGG Gly	ACA Thr	AAG Lys	TTG Leu	GAA Glu 510	ATA Ile	AAC Asn	CGG Arg	GCT Ala	GAT Asp 515	ACT Thr	GCA Ala	CCA Pro	ACT Thr	GGA Gly 520	1587
TCC Ser	GAA Glu	CAA Gln	Lys	CTG Leu 525	ATC Ile	TCA Ser	GAA Glu	GAA Glu	GAC Asp 530	CTA Leu	AAC Asn	TCA Ser	His	CAC His 535	CAT His	1635
CAC His	CAT His	CAC His	TAAT	CTAG	A											1653

(2) ANGABEN ZU SEQ ID NO: 4:

- (i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 539 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala 1 5 10 15 15

Ala Gl
n Pro Ala Met Ala Gl
n Val Gl
n Leu Gl
n Gl
n Ser Gly Ala Glu 20 25 30

Leu Ala Arg Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly 35 40 45

PCT/DE99/01350

10

Tyr Thr Phe Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr 65 70 75 80 Asn Tyr Asn Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp 105 Ser Ala Val Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Ser Leu Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Ala Lys Thr Thr Pro Lys Leu Gly Gly Asp Ile Leu Leu Thr Gln Thr Pro Ala Ser 145 150 155 160 Leu Ala Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser 165 170 175Gln Ser Val Asp Tyr Asp Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu 195 . 200 205 Val Ser Gly Ile Pro Pro Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp 210 215 220 Phe Thr Leu Asn Ile His Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr 245 250 255 Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Ala Ala Gly Gly Pro Gly 260 265 270Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser 290 295 300 Tyr Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp 305 310 315 Ile Gly Gln Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys

PCT/DE99/01350

1

Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala 340 345 350

Tyr Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe 355 360 365

Cys Ala Arg Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Ala Met 370 380

Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Ala Lys Thr 385 390 395 400

Thr Pro Lys Leu Gly Gly Asp Ile Val Leu Thr Gln Ser Pro Ala Ile 405 410 415

Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser 420 425 430

Ser Ser Val Ser Tyr Met Asn Tro Tyr Gln Gln Lys Ser Gly Thr Ser 435 440 445

Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro 450 460

Ala His Phe Arg Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile 465 470 475 480

Ser Gly Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp 485 490 495

Ser Ser Asn Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Asn 500 505 510

Arg Ala Asp Thr Ala Pro Thr Gly Ser Glu Gln Lys Leu Ile Ser Glu 515 520 525

Glu Asp Leu Asn Ser His His His His His His 530 535

- (2) ANGABEN ZU SEQ ID NO: 5:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 57 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure
 (A) BESCHREIBUNG: /desc = "Primer"
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN

PCT/DE99/01350

12	
(with Charles and	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:	
TATATACTGC AGCTGCACCT GCGACCCTGG GCCACCAGCG GCCGCAGCAT CAGCCCG	57
(2) ANGABEN ZU SEQ ID NO: 6:	
 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 45 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 	
<pre>(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"</pre>	
(iii) HYPOTHETISCH: NEIN	
(iv) ANTISENSE: NEIN	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:	
CCGTGAATTC CAGGTGCAAC TGCAGCAGTC TGGGGCTGAA CTGGC	45
(2) ANGABEN ZU SEQ ID NO: 7:	
 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 34 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 	
<pre>(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"</pre>	
(iii) HYPOTHETISCH: NEIN	
(iv) ANTISENSE: NEIN	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:	
GGTCGACGTT AACCGACAAA CAACAGATAA AACG	34
(2) ANGABEN ZU SEQ ID NO: 8:	
(i) SEQUENZKENNZEICHEN:(A) LÄNGE: 348 Basenpaare(B) ART: Nucleotid(C) STRANGFORM: Einzelstrang	

WO 99/57150 PCT/DE99/01350

13

			(D)	OPOI	JOGIE	E: li	near	.								
	(ii	L) AF	RT DE	es mo	LEKÜ	ts:	Gend	m-DN	IA.							
	(iii	.) ну	POTE	ETIS	CH:	NEIN	ī									
	(iv	r) AN	TISE	NSE :	NEI	:N										
	(ix	(L: IAME/ AGE:			L: C	DS								
	(ix	(RKMA A) N B) L	L: AME/ AGE:	SCHL 13	ÜSSE 48	L: m	at_p	epti	de						
	(xi) SE	QUEN	ZBES	CHRE	IBUN	G: S	EQ I	D NO	: 8:						
ATG Met 1	Arg	TTT Phe	CCT Pro	TCA Ser 5	ATT Ile	TTT	ACT Thr	GCT Ala	GTT Val 10	Leu	TTC Phe	GCA Ala	GCA Ala	TCC Ser 15	TCC Ser	48
GCA Ala	TTA Leu	GCT Ala	GCT Ala 20	CCA Pro	GTC Val	AAC Asn	ACT Thr	ACA Thr 25	ACA Thr	GAA Glu	GAT Asp	GAA Glu	ACG Thr 30	GCA Ala	CAA Gln	96
ATT Ile	CCG Pro	GCT Ala 35	GAA Glu	GCT Ala	GTC Val	ATC Ile	GGT Gly 40	TAC Tyr	TCA Ser	GAT Asp	TTA Leu	GAA Glu 45	GGG Gly	GAT Asp	TTC Phe	144
GAT Asp	GTT Val 50	GCT Ala	GTT Val	TTG Leu	CCA Pro	TTT Phe 55	TCC Ser	AAC Asn	AGC Ser	ACA Thr	AAT Asn 60	AAC Asn	GGG Gly	TTA Leu	TTG Leu	192
TTT Phe 65	ATA Ile	AAT Asn	ACT Thr	ACT Thr	ATT Ile 70	GCC Ala	AGC Ser	ATT Ile	GCT Ala	GCT Ala 75	AAA Lys	GAA Glu	GAA Glu	GGG Gly	GTA Val 80	240
TCT Ser	CTC Leu	GAG Glu	AAA Lys	AGA Arg 85	GAG Glu	GCT Ala	GAA Glu	GCT Ala	GAA Glu 90	TTC Phe	CAG Gln	GTG Val	CAA Gln	CTG Leu 95	CAG Gln	288
CAG Gln	TCT Ser	GGG Gly	GCT Ala 100	GAA Glu	CTG Leu	GCA Ala	AGA Arg	CCT Pro 105	GGG Gly	GCC Ala	TCA Ser	GTG Val	AAG Lys 110	ATG Met	TCC Ser	336
	AAG Lys															348

(2) ANGABEN ZU SEQ ID NO: 9:

PCT/DE99/01350

14

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 116 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:

Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser 1 5 10 15

Ala Leu Ala Ala Pro Val Asn Thr Thr Thr Glu Asp Glu Thr Ala Gln
20 25 30

Ile Pro Ala Glu Ala Val Ile Gly Tyr Ser Asp Leu Glu Gly Asp Phe 35 40 45

Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu 50 55 60

Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val 65 70 75 80

Ser Leu Glu Lys Arg Glu Ala Glu Ala Glu Phe Gln Val Gln Leu Gln 85 90

Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val Lys Met Ser 100 105 110

Cys Lys Ala Ser 115

- (2) ANGABEN ZU SEQ ID NO: 10:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 354 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Genom-DNA
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE:1..354
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: mat_peptide
 - (B) LAGE:1..354

PCT/DE99/01350

336

354

15

	(xi) SE	QUEN	ZBES	CHRE	IBUN	G: S	EQ I	D NO	: 10	:					
ATG Met 1	AGA Arg	TTT Phe	CCT Pro	TCA Ser 5	ATT Ile	TTT Phe	ACT Thr	GCT Ala	GTT Val 10	TTA Leu	TTC Phe	GCA Ala	GCA Ala	TCC Ser 15	TCC Ser	48
GCA Ala	TTA Leu	GCT Ala	GCT Ala 20	CCA Pro	GTC Val	AAC Asn	ACT Thr	ACA Thr 25	ACA Thr	GAA Glu	GAT Asp	GAA Glu	ACG Thr 30	GCA Ala	CAA Gln	96
ATT Ile	CCG Pro	GCT Ala 35	GAA Glu	GCT Ala	GTC Val	ATC Ile	GGT Gly 40	TAC Tyr	TCA Ser	GAT Asp	TTA Leu	GAA Glu 45	GGG Gly	GAT Asp	TTC Phe	144
GAT Asp	GTT Val 50	GCT Ala	GTT Val	TTG Leu	CCA Pro	TTT Phe 55	TCC Ser	AAC Asn	AGC Ser	ACA Thr	AAT Asn 60	AAC Asn	GGG Gly	TTA Leu	TTG Leu	192
TTT Phe 65	ATA Ile	AAT Asn	ACT Thr	ACT Thr	ATT Ile 70	GCC Ala	AGC Ser	ATT Ile	GCT Ala	GCT Ala 75	AAA Lys	GAA Glu	GAA Glu	GGG Gly	GTA Val 80	240
TCT Ser	CTC Leu	GAG Glu	AAA Lys	AGA Arg 85	GAG Glu	GCT Ala	GAA Glu	GCT Ala	GAA Glu 90	TTC Phe	ATG Met	GCG Ala	CAG Gln	GTG Val 95	CAA Gln	288

(2) ANGABEN ZU SEQ ID NO: 11:

100

ATG TCC TGC AAG GCT TCT

Met Ser Cys Lys Ala Ser 115

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 118 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:

Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser

CTG CAG CAG TCT GGG GCT GAA CTG GCA AGA CCT GGG GCC TCA GTG AAG

Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val Lys

105

Ala Leu Ala Ala Pro Val Asn Thr Thr Glu Asp Glu Thr Ala Gln

Ile Pro Ala Glu Ala Val Ile Gly Tyr Ser Asp Leu Glu Gly Asp Phe

PCT/DE99/01350

16

Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu 50 60

Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val 65 70 75 80

Ser Leu Glu Lys Arg Glu Ala Glu Ala Glu Phe Met Ala Gln Val Gln 85 90 95

Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val Lys 100 105 110

Met Ser Cys Lys Ala Ser 115

- (2) ANGABEN ZU SEQ ID NO: 12:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 42 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure
 (A) BESCHREIBUNG: /desc = "Primer"
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:

TCACACAGAA TTCTTAGATC TATTAAAGAG GAGAAATTAA CC

- (2) ANGABEN ZU SEQ ID NO: 13:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 40 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure
 (A) BESCHREIBUNG: /desc = "Primer"
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN

WO 99/57150 PCT/DE99/01350

17

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:

AGCACACGAT ATCACCGCCA AGCTTGGGTG TTGTTTTGGC

40

- (2) ANGABEN ZU SEQ ID NO: 14:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 43 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:

AGCACACAG CTTGGCGGTG ATATCTTGCT CACCCAAACT CCA

43

- (2) ANGABEN ZU SEQ ID NO: 15:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 57 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear

 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15:

AGCACACTCT AGAGACACAC AGATCTTTAG TGATGGTGAT GGTGATGTGA GTTTAGG

- (2) ANGABEN ZU SEQ ID NO: 16:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 33 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 (D) TOPOLOGIE: linear

w	n	00	/57	15	٦

PCT/DE99/01350

4	
ı	~
	·

- (iii) HYPOTHETISCH: NEIN (iv) ANTISENSE: NEIN
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16: CAGCCGGCCA TGGCGCAGGT GCAACTGCAG CAG

- (2) ANGABEN ZU SEQ ID NO: 17:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 102 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17: TATATACTGC AGCTGCACCT GGCTACCACC ACCACCGGAG CCGCCACCAC CGCTACCACC 60 GCCGCCAGAA CCACCACCAC CAGCGGCCGC AGCATCAGCC CG 102

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

D	efects in the images include but are not limited to the items checked:
	☐ BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
/	FADED TEXT OR DRAWING
/	BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.