CS685: Data Mining Bayesian Classifiers

Arnab Bhattacharya arnabb@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~cs685/

 $1^{\rm st}$ semester, 2018-19 Mon, Thu 1030-1145 at RM101

Bayes' Theorem

$$P(C|O) = \frac{P(O|C)P(C)}{P(O)}$$

- P(C|O) is the probability of class C given object O posterior probability
- P(O|C) is the probability that O is from class C likelihood probability
- P(C) is the probability of class C prior probability
- P(O) is the probability of object O evidence probability

$$posterior = \frac{\textit{likelihood} \times \textit{prior}}{\textit{evidence}}$$

- Naïve Bayes classifier or Simple Bayes classifier
- To classify a new object O_q , compute posterior probabilities $P(C_i|O_q)$ for all classes C_i , i = 1, ..., k

$$P(C_i|O_q) = \frac{P(O_q|C_i)P(C_i)}{P(O_q)}$$

• Bayes decision rule: The class with the *highest* posterior probability is chosen

- Naïve Bayes classifier or Simple Bayes classifier
- To classify a new object O_q , compute posterior probabilities $P(C_i|O_q)$ for all classes C_i , $i=1,\ldots,k$

$$P(C_i|O_q) = \frac{P(O_q|C_i)P(C_i)}{P(O_q)}$$

- Bayes decision rule: The class with the highest posterior probability is chosen
- ullet $P(O_q)$ is constant for all classes and, therefore, can be removed

- Naïve Bayes classifier or Simple Bayes classifier
- To classify a new object O_q , compute posterior probabilities $P(C_i|O_q)$ for all classes C_i , $i=1,\ldots,k$

$$P(C_i|O_q) = \frac{P(O_q|C_i)P(C_i)}{P(O_q)}$$

- Bayes decision rule: The class with the highest posterior probability is chosen
- ullet $P(O_q)$ is constant for all classes and, therefore, can be removed
- Since it maximizes posterior probability, it is called maximum a posteriori (MAP) method

- Naïve Bayes classifier or Simple Bayes classifier
- To classify a new object O_q , compute posterior probabilities $P(C_i|O_q)$ for all classes C_i , $i=1,\ldots,k$

$$P(C_i|O_q) = \frac{P(O_q|C_i)P(C_i)}{P(O_q)}$$

- Bayes decision rule: The class with the highest posterior probability is chosen
- ullet $P(O_q)$ is constant for all classes and, therefore, can be removed
- Since it maximizes posterior probability, it is called maximum a posteriori (MAP) method
- If priors are unknown or same, this essentially maximizes the likelihood $P(O_a|C_i)$
- This is called maximum likelihood (ML) method

ullet In general, O_q has m features $O_q = \langle O_{q_1}, \dots, O_{q_m}
angle$

$$P(O_{q}|C_{i}) = P(O_{q_{1}}, O_{q_{2}}, \dots, O_{q_{m}}|C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}, \dots, O_{q_{m}}|O_{q_{1}}, C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}|O_{q_{1}}, C_{i}) \times P(O_{q_{3}}, \dots, O_{q_{m}}|O_{q_{1}}, O_{q_{2}}, C_{i})$$

ullet In general, O_q has m features $O_q = \langle O_{q_1}, \dots, O_{q_m}
angle$

$$P(O_q|C_i) = P(O_{q_1}, O_{q_2}, \dots, O_{q_m}|C_i)$$

$$= P(O_{q_1}|C_i) \times P(O_{q_2}, \dots, O_{q_m}|O_{q_1}, C_i)$$

$$= P(O_{q_1}|C_i) \times P(O_{q_2}|O_{q_1}, C_i) \times P(O_{q_3}, \dots, O_{q_m}|O_{q_1}, O_{q_2}, C_i)$$

• Simple or naïve assumption is now applied: All class conditional probabilities are independent

ullet In general, O_q has m features $O_q = \langle O_{q_1}, \dots, O_{q_m}
angle$

$$P(O_{q}|C_{i}) = P(O_{q_{1}}, O_{q_{2}}, ..., O_{q_{m}}|C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}, ..., O_{q_{m}}|O_{q_{1}}, C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}|O_{q_{1}}, C_{i}) \times P(O_{q_{3}}, ..., O_{q_{m}}|O_{q_{1}}, O_{q_{2}}, C_{i})$$

 Simple or naïve assumption is now applied: All class conditional probabilities are independent

$$\begin{split} P(O_{q_j}, O_{q_k} | C_i) &= P(O_{q_j} | C_i) \times P(O_{q_k} | O_{q_j}, C_i) \\ &= P(O_{q_j} | C_i) \times P(O_{q_k} | C_i) \quad [\because O_{q_j}, O_{q_k} \text{ are independent}] \end{split}$$

ullet In general, O_q has m features $O_q = \langle O_{q_1}, \dots, O_{q_m}
angle$

$$P(O_{q}|C_{i}) = P(O_{q_{1}}, O_{q_{2}}, ..., O_{q_{m}}|C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}, ..., O_{q_{m}}|O_{q_{1}}, C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}|O_{q_{1}}, C_{i}) \times P(O_{q_{3}}, ..., O_{q_{m}}|O_{q_{1}}, O_{q_{2}}, C_{i})$$

 Simple or naïve assumption is now applied: All class conditional probabilities are independent

$$P(O_{q_j}, O_{q_k} | C_i) = P(O_{q_j} | C_i) \times P(O_{q_k} | O_{q_j}, C_i)$$

$$= P(O_{q_j} | C_i) \times P(O_{q_k} | C_i) \quad [\because O_{q_j}, O_{q_k} \text{ are independent}]$$

$$P(O_q|C_i) = P(O_{q_1}|C_i) \times P(O_{q_2}|C_i) \times P(O_{q_3}, \dots, O_{q_m}|O_{q_1}, O_{q_2}, C_i)$$
or,
$$P(O_q|C_i) = P(O_{q_1}, O_{q_2}, \dots, O_{q_m}|C_i) = \prod_{i=1}^m P(O_{q_i}|C_i)$$

• How to estimate $P(O_{q_i}|C_i)$

- How to estimate $P(O_{q_i}|C_i)$
- Examine all training objects pertaining to class C_i

- How to estimate $P(O_{q_i}|C_i)$
- Examine all training objects pertaining to class C_i
- ullet If O_{q_i} is categorical, then relative empirical frequencies are estimates

$$P(O_{q_j} = v | C_i) = \frac{|\{O_k \in C_i : O_{k_j} = v\}|}{|\{O_k \in C_i\}|}$$

• A particular discrete distribution can also be assumed

- How to estimate $P(O_{q_i}|C_i)$
- Examine all training objects pertaining to class C_i
- ullet If O_{q_i} is categorical, then relative empirical frequencies are estimates

$$P(O_{q_j} = v | C_i) = \frac{|\{O_k \in C_i : O_{k_j} = v\}|}{|\{O_k \in C_i\}|}$$

- A particular discrete distribution can also be assumed
- ullet If O_{q_i} is numerical, then a certain continuous distribution is assumed
- ullet Generally, Gaussian or normal distribution $N(\mu,\sigma)$
- ullet μ and σ are estimated from training objects in C_i

$$P(O_{q_j} = v | C_i) = N(v; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(v-\mu)^2}{2\sigma^2}}$$

- How to estimate $P(O_{q_i}|C_i)$
- Examine all training objects pertaining to class C_i
- ullet If O_{q_i} is categorical, then relative empirical frequencies are estimates

$$P(O_{q_j} = v | C_i) = \frac{|\{O_k \in C_i : O_{k_j} = v\}|}{|\{O_k \in C_i\}|}$$

- A particular discrete distribution can also be assumed
- If O_{q_i} is numerical, then a certain continuous distribution is assumed
- ullet Generally, Gaussian or normal distribution $N(\mu, \sigma)$
- μ and σ are estimated from training objects in C_i

$$P(O_{q_j} = v | C_i) = N(v; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(v-\mu)^2}{2\sigma^2}}$$

• $P(C_i)$ is just the empirical estimate $|C_i|/|D|$

Example: training

Class	Rank	Motivated	Exam marks
	2	Y	78.3
Successful	99	Y	70.3
(S)	5	N	88.5
	87	Y	75.1
	1	N	76.3
Unsuccessful (U)	90	N	66.2
	9	Y	68.1
	62	N	75.4

Example: training

Class	Rank	Motivated	Exam marks
	2	Y	78.3
Successful	99	Y	70.3
(S)	5	N	88.5
	87	Y	75.1
	1	N	76.3
Unsuccessful	90	N	66.2
(U)	9	Y	68.1
	62	N	75.4

Likelihoods

Class	Rank	Rank Motivated	
S	$\mu = 48.25$	P(Y) = 0.75	$\mu = 78.05$
3	$\sigma = 51.92$	P(N) = 0.25	$\sigma = 7.70$
U		P(Y) = 0.25	$\mu = 71.50$
	$\sigma = 42.68$	P(N) = 0.75	$\sigma = 5.10$

Example: testing

•
$$O_q = (70, Y, 67.3)$$

Example: testing

• $O_q = (70, Y, 67.3)$

$$\begin{split} P(O_q|S) &= P(70|S) \times P(Y|S) \times P(67.3|S) \times P(S) \\ &= N(70;48.25,51.92) \times 0.75 \times N(67.3;78.05,7.70) \times 0.5 \\ &= 0.00704 \times 0.75 \times 0.0195 \times 0.5 \\ &= 5.16 \times 10^{-5} \\ P(O_q|U) &= P(70|U) \times P(Y|U) \times P(67.3|U) \times P(U) \\ &= N(70;40.50,42.68) \times 0.25 \times N(67.3;71.50,5.10) \times 0.5 \\ &= 0.00736 \times 0.25 \times 0.0597 \times 0.5 \\ &= 5.49 \times 10^{-5} \end{split}$$

• Therefore, O_a is from class U

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages
 - Incremental

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages
 - Incremental
 - Robust to noise

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages
 - Incremental
 - Robust to noise as probability of noise is low

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages
 - Incremental
 - Robust to noise as probability of noise is low
 - Robust to irrelevant attributes

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages
 - Incremental
 - Robust to noise as probability of noise is low
 - Robust to irrelevant attributes as their probability tends to be uniform across classes
- Disadvantages

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages
 - Incremental
 - Robust to noise as probability of noise is low
 - Robust to irrelevant attributes as their probability tends to be uniform across classes
- Disadvantages
 - Treats attributes as independent and ignores any correlation information
 - Two redundant attributes contribute twice the weight

Bayesian Networks

- Bayesian networks or Bayesian belief networks or Bayes nets or belief nets
- Takes into account the correlations of attributes by modeling them as conditional probabilities
- Forms a directed acyclic graph (DAG)
- Edges model the dependencies
- Parent is the *cause* and children are the *effects*

Bayesian Networks

- Bayesian networks or Bayesian belief networks or Bayes nets or belief nets
- Takes into account the correlations of attributes by modeling them as conditional probabilities
- Forms a directed acyclic graph (DAG)
- Edges model the dependencies
- Parent is the cause and children are the effects
- A node is conditionally independent of all its non-descendants given its parents
- For every node, there is a conditional probability table (CPT) that describes its values given its parents' values
- CPT for node X is of the form P(X|parents(X))

- CPTs: rows are values; columns are parents (i.e., conditionals)
- Last rows can be inferred, and therefore, omitted

- CPTs: rows are values; columns are parents (i.e., conditionals)
- Last rows can be inferred, and therefore, omitted

Exercise (E)	Ф
regular (r)	0.70
irregular (i)	0.30

- CPTs: rows are values; columns are parents (i.e., conditionals)
- Last rows can be inferred, and therefore, omitted

Exercise (E)	Ф
regular (r)	0.70
irregular (i)	0.30

Diet (D)	Φ
healthy (h)	0.25
unhealthy (u)	0.75

- CPTs: rows are values; columns are parents (i.e., conditionals)
- Last rows can be inferred, and therefore, omitted

Exercise (E)	Ф	
regular (r)	0.70	
irregular (i)	0.30	

Diet (D)	Φ
healthy (h)	0.25
unhealthy (u)	0.75

Heart disease (H)	$\mid E = r, \; D = h$	E=r, D=u	E=i, D=h	E=i, $D=u$
yes (y)	0.25	0.40	0.55	0.80
no (n)	0.75	0.60	0.45	0.20

- CPTs: rows are values; columns are parents (i.e., conditionals)
- Last rows can be inferred, and therefore, omitted

Exercise (E)	Ф
regular (r)	0.70
irregular (i)	0.30

Diet (D)	Φ
healthy (h)	0.25
unhealthy (u)	0.75

Heart disease (H)	E=r, D=h	E=r, $D=u$	E=i, D=h	E=i, $D=u$
yes (y)	0.25	0.40	0.55	0.80
no (n)	0.75	0.60	0.45	0.20

Blood pressure (B)	H=y	H=n		
normal (I)	0.15	0.80		
high (g)	0.85	0.20		

- CPTs: rows are values; columns are parents (i.e., conditionals)
- Last rows can be inferred, and therefore, omitted

Exercise (E)	Ф	Diet (D)	Ф
regular (r)	0.70	healthy (h)	0.25
irregular (i)	0.30	unhealthy (u)	0.75

Heart disease (H)	E=r, D=h 0.25 0.75		$\mid E = r, \; D = u \mid$		D=u	E=i, D=l	า E=i	$\mid E=i, D=u \mid$	
yes (y)			0.40		40	0.55		0.80	
no (n)			0.60		60	0.45).20	
Blood pressure (B)	H=y	H=	-n		Chest	pain (C)	Н=у	H=n	
normal (I)	0.15	3.0	30		normal (m)		0.70	0.45	
high (g)	0.85	0.2	20		pain (p)		0.30	0.55	

Classification using Bayesian Networks

- Given no prior information, is a person suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that no other information (e.g., chest pain, etc.) are known
- Compute P(H = y); if it is greater than P(H = n), then predict "heart disease"

Classification using Bayesian Networks

- Given no prior information, is a person suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that no other information (e.g., chest pain, etc.) are known
- Compute P(H = y); if it is greater than P(H = n), then predict "heart disease"

$$P(H = y) = \sum_{\alpha,\beta} [P(H = y | E = \alpha, D = \beta).P(E = \alpha, D = \beta)]$$

$$= \sum_{\alpha,\beta} [P(H = y | E = \alpha, D = \beta).P(E = \alpha).P(D = \beta)]$$

$$= 0.25 \times 0.70 \times 0.25 + 0.40 \times 0.70 \times 0.75$$

$$+ 0.55 \times 0.30 \times 0.25 + 0.80 \times 0.30 \times 0.75$$

$$= 0.475$$

- Given a person has high blood pressure, is she suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that not all information (e.g., chest pain, etc.) are known
- Compute P(H = y|B = g); if it is greater than P(H = n|B = g), then predict "heart disease"

- Given a person has high blood pressure, is she suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that not all information (e.g., chest pain, etc.) are known
- Compute P(H = y|B = g); if it is greater than P(H = n|B = g), then predict "heart disease"

$$P(H = y | B = g) = \frac{P(B = g | H = y).P(H = y)}{P(B = g)}$$

$$= \frac{P(B = g | H = y).P(H = y)}{\sum_{\alpha} [P(B = g | H = \alpha).P(H = \alpha)]}$$

$$= \frac{0.85 \times 0.475}{0.85 \times 0.475 + 0.20 \times 0.525}$$

$$= 0.794$$

- Given a person has high blood pressure, unhealthy diet and irregular exercise, is she suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that not all information (e.g., chest pain, etc.) are known
- Compute P(H = y | B = g, D = u, E = i); if it is greater than P(H = n | B = g, D = u, E = i), then predict "heart disease"

- Given a person has high blood pressure, unhealthy diet and irregular exercise, is she suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that not all information (e.g., chest pain, etc.) are known
- Compute P(H = y | B = g, D = u, E = i); if it is greater than P(H = n | B = g, D = u, E = i), then predict "heart disease"

$$P(H = y|B = g, D = u, E = i)$$

$$= \frac{P(B = g|H = y, D = u, E = i).P(H = y|D = u, E = i)}{P(B = g|D = u, E = i)}$$

$$= \frac{P(B = g|H = y).P(H = y|D = u, E = i)}{\sum_{\alpha} [P(B = g|H = \alpha).P(H = \alpha|D = u, E = i)]}$$

$$= \frac{0.85 \times 0.80}{0.85 \times 0.80 + 0.20 \times 0.20}$$

$$= 0.944$$

Two important steps

- Two important steps
- Learning the network topology
 - Which edges are present?

- Two important steps
- Learning the network topology
 - Which edges are present?
 - Domain knowledge from human experts

- Two important steps
- Learning the network topology
 - Which edges are present?
 - Domain knowledge from human experts
- Learning the CPTs

- Two important steps
- Learning the network topology
 - Which edges are present?
 - Domain knowledge from human experts
- Learning the CPTs
 - Same method as naïve Bayes
 - Empirical probabilities
 - If not categorical, use Gaussian

Models reality better

- Models reality better
- Dependence or correlation does not indicate which is cause and which is effect
 - Class is boring and not paying attention

- Models reality better
- Dependence or correlation does not indicate which is cause and which is effect
 - Class is boring and not paying attention
- Topology of network is very important

- Models reality better
- Dependence or correlation does not indicate which is cause and which is effect
 - Class is boring and not paying attention
- Topology of network is very important
- For large CPTs, require lots of training data

- Models reality better
- Dependence or correlation does not indicate which is cause and which is effect
 - Class is boring and not paying attention
- Topology of network is very important
- For large CPTs, require lots of training data
- Naïve Bayes is a special case

- Models reality better
- Dependence or correlation does not indicate which is cause and which is effect
 - Class is boring and not paying attention
- Topology of network is very important
- For large CPTs, require lots of training data
- Naïve Bayes is a special case
 - Class is parent and attributes are children

