算法图论

云南大学数学系

李建平

2015年9月

第六章 染色

6.1 边染色(edge-coloring)

定义6.1 给定一个无向图G=(V,E),图G的k 边染色是指对图G的边安排k种颜色,使得每条边 安排一种颜色。也即,把图G的边集合E划分为不 同的子集合 E_1 , E_2 ,…, E_k ,使得每个 E_i 染同种 颜色。

定义6.2 图G的正常边染色(proper k-edge-coloring)是指相邻的边染不同的颜色。也即,对图G的边集合E划分为不同的子集合E₁,E₂,…, E_1 ,每个 E_1 ,每个 E_2 ,一个匹配(边无关集)。这样的

最小正整数k称为图G的边染色数,记为 $\chi'(G)$ 。

边染色数问题:

- 1. 设G=(V, E)为一个图, 求最小的正整数k, 使得图G存在一个正常k边染色,即求边染色数 $\chi'(G)$
- 2. 设G=(V, E)是一个图, k是给定的正整数, 问G是否存在一个正常的k边染色?
- 一般地,图的边染色数问题NP-完备性问题 ,目前还没有多项式算法找到它们的最优解. 但 是,二部图的边染色数问题可以利用二部图匹配 算法找到最优解。

定理6.1:设G=(S, T; E)是一个二部图,则 $\chi'(G) = \Delta(G)$,其中 $\Delta(G)$ 为G的最大的度.

引理6.1(定理5.3)设G=(S,T;E)是二部图,一定存在一个最大匹配M,使得所有的最大度点都是饱和点。

定理6.1之证明:对于给定的二部图G,利用二部图匹配算法求得G的一个最大匹配 M_1 ,对 G_1 =G- M_1 再二部图匹配算法求得G1的一个最大匹配 M_2 ,…,这样可以得到图G的边子集被划分为 Δ (G)个集合 M_1 , M_2 ,…, M_{\triangle} ,从而可对G进行 Δ 染色,说明 $\chi'(G) \leq \Delta(G)$ 。另方面,易知 $\chi'(G) \geq \Delta(G)$ 。故定理6.1得证。

设G=(V, E)为一个图, $\varepsilon = \{E_1, E_2, \cdots E_k\}$ 为G的正常k边染色,若顶点 v_j 的关联中至少有一条边 e_i 属于 E_i ,称该边 e_i 为i色边,也称颜色i在顶点 v_j 处出现.记 $G[i,j] = G[E_i \cup E_j]$,在G[i,j] 中包含顶点v的连通分图记为 $G_v[i,j]$.用 $A(v,\varepsilon)$ 表示在顶点v处未出现的颜色构成的集合.

定理6.1之证明二:对边数 |E| 进行归纳证明,即:若e是一条边, G-e是 \triangle (G-e)可染色的,则G是 \triangle (G)可染色的;若 \triangle (G-e)= \triangle (G)-1,则结论成立。

当 $\Delta(G-e) = \Delta(G)$ 时,设e=uv, ε 是G-e的一个边 $\Delta(G)$ 正常染色,则 $A(u,\varepsilon) \neq \phi$ 和 $A(v,\varepsilon) \neq \phi$ 。

- (1) 若 $A(u,\varepsilon) \cap A(v,\varepsilon) \neq \phi$,设 $j \in A(u,\varepsilon) \cap A(v,\varepsilon)$ 则用颜色j来染边e,则G用 ε 能够得到正常的 $\Delta(G)$ 边染色。
- (2) 若 $A(u,\varepsilon) \cap A(v,\varepsilon) = \phi$, 令 $\alpha \in A(u,\varepsilon)$ 和 $\beta \in A(v,\varepsilon)$, 则 α 在v处出现, β 在u 处出现。

因为G是二部图,有 $u \notin G_{\nu}[\alpha,\beta]$ 。把 $G_{\nu}[\alpha,\beta]$ 中的 α,β 两色互相交换,则得到G-e的另一个正常染色 ε' ,可知 $\alpha \in A(\nu,\varepsilon')$ 。

因为 $\alpha \in A(u, \varepsilon')$,于是把边e染色 α ,就得到G的一个正常 $\Delta(G)$ 边染色。

定理6.2(Vizing, Gupta)设G=(V, E)是简单图,则 $\Delta \leq \chi'(G) \leq \Delta + 1$ 。

证明: 只要证明 $\chi'(G) \leq \Delta + 1$ 即可。

对|E|进行归纳。设e₁是一条边,不妨设

 $\Delta(G-e_1)=\Delta(G)=\Delta$ 。设**G-e**₁是 $\Delta+1$ 边染色的,现证**G**也是 $\Delta+1$ 边染色的。

令 $e_1 = vw_1$,且 ε_1 是 $G - e_1$ 的一个 $\Delta + 1$ 边染色,那么 $A(v, \varepsilon_1) \neq \phi$, $A(w_1, \varepsilon_1) \neq \phi$ 。不妨设

$$A(v, \varepsilon_1) \cap A(w_1, \varepsilon_1) = \phi$$

令 $\alpha \in A(v, \varepsilon_1), \beta_1 \in A(w_1, \varepsilon_1)$ 则 β_1 在v处出现,设 $e_2 = vw_2$ 是 β_1 色边,去掉边 e_2 的染色,把边 e_1 染为 β_1 色,得 $G - e_2$ 的 $\Delta + 1$ 边染色 ε_2 。

在 $G-e_2$ 中有 $\beta_1 \in A(w_2, \varepsilon_2)$ 。不妨设 v, w_1, w_2 属于 $G[\alpha,\beta_1]$ 的同一分图。(否则把 $G_{w_2}[\alpha,\beta_1]$ 中 边的染色互换一下,而边 e_2 染成 α 色,可得 **G**的 $\Delta+1$ 边染色)。因此在 ε_2 中,点 w_2 处最 |多出现 $\Delta-1$ 种颜色,故存在 $\beta_2 \in A(w_2, \varepsilon_2)$ 。 不妨设 β_2 在 ν 出现,设 $e_3 = vw_3$ 是染为 β_2 色 的边。现去掉边 e_3 上的染色,把 e_5 染成 β , 色,得到 $G-e_3$ 的 $\Delta+1$ 边染色 \mathcal{E}_3 , $\beta_2 \in A(w_3, \mathcal{E}_3)$

同样不妨设 v, w_2, w_3 在 $G[\alpha, \beta_2]$ 的同一个分图

中。重复着一过程,在某一步得到 $G - e_k$ 的一个 $\Delta + 1$ 边染色 $\varepsilon_k(e_k = vw_k)$,色 α 在 w_k 处出现,并存在某个 i < k 使 $\beta_i \in A(w_k, \varepsilon_k)$,($\beta_k = \beta_i$)

同时 $\beta_i \in A(w_{i+1}, \varepsilon_k), ..., \beta_{k-1} \in A(w_k, \varepsilon_k)$

不妨设 v, w_i, w_{i+1} 在 $G[\alpha, \beta_i]$ 的同一个分图H中(否则,把 $G_{w_i}[\alpha_1, \beta_i]$ 中的颜色互换,并染

 vw_{i+1} 为色 α , vw_{i+2} 为 β_{i+1} , · · · , vw_k 为 β_{k-1} , 得到**G**的 $\Delta+1$ 边染色)。因为 $\alpha \in A(v, \varepsilon_k)$

 $\beta_i \in A(w_{i+1}, \varepsilon_k)$,故H是一条过 w_i 的 $v-w_{i+1}$ 路。

因为 $\beta_{i}(=\beta_{k}) \in A(w_{k}, \varepsilon_{k})$,所以 $w_{k} \notin H$,从而 $G_{w_{k}}[\alpha, \beta_{i}]$ 与H是点不交的。把 $G_{w_{k}}[\alpha, \beta_{i}]$ 中的颜色互换,得 $G-e_{k}$ 的 $\Delta+1$ 边染色 ε_{k} ',使 $\alpha \in A(w_{k}, \varepsilon_{k}$ ')用 α 染边 $e_{k}=vw_{k}$,则由 ε_{k} '就得到G的一个 $\Delta+1$ 正常染色。

定理**6.3 (Thomason,1978)** 图**K**_{1,k}是仅有的唯一**k**边可染色图(**k**≥**4**).

6.2 点染色(vertex-coloring)

定义6.3 给定一个无向图G=(V,E),图Ghk 点染色是指对图Ghy 点安排k种颜色,使得每个顶点安排一种颜色。也即,把图Ghy 点集合V 划分不同的子集合 V_1 , V_2 , …, V_k , 使得每个 V_i 中的元素染同种颜色。

定义6.4 图G的正常边染色 (proper k-coloring) 是指相邻的顶点染不同的颜色。也即,对图G的顶点集合V划分为不同的子集合 V_1 , V_2 , …, V_k , 每 V_i 是一个独立集。这样的最小正整数k称为图G的点染色数, 记为 $\chi(G)$ 。

点染色数问题:

- 1. 设G=(V, E) 为一个图, 求最小的正整数k, 使得图G存在一个正常k点染色,即求点染色数 $\chi(G)$
- 2. 设G=(V, E)是一个图, k是给定的正整数, 问G是否存在一个正常的k点染色?
- 一般地,图的点染色数问题NP-完备性问题,目前还没有多项式算法找到它们的最优解。当图G=(V,E)为二部图,有 $\chi(G)=2$ 。对一般图G=(V,E),有 $2 \le \chi(G) \le \Delta(G)+1$ 。

定理6.4设G是一个图,则 $\chi(G) \le \max \delta(G') + 1$,这里对G的所有子图 G' 取最大。

证明: $\Leftrightarrow k = \max \delta(G')$ 。 取G' = G,可知 $k \geq \delta(G)$ 。取点 v_1 满足 $d_G(v_1) \le k$ 。 令 $G_1 = G - v_1$, 由k的定 义,在图 G_1 中存在点 V_2 ,满足 $d_{G_1}(v_2) \leq k$ 。令 $G_2 = G_1 - v_2$,重复上述过程,把V中的顶点排列为 v_1, v_2, \dots, v_n ,并且有性质: v_j 与 $\{v_{j+1}, \dots, v_n\}$ 中至多k 个点相邻, 即 $d_{G_{i-1}}(v_j) \leq k$ 。 下面用k+1种颜色依次 给顶点染色。开始时,用某种颜色染顶点水,,令 $G_{n-1} = G[\{v_n\}]$

设有子图 $G_j = G[\{v_n, v_{n-1}, \dots, v_{j+1}\}]$ 已有正常k+1 点染色, 因为 $d_{G_{j-1}}(v_j) \le k$,说明 $A(v_j, G_j) \ne \emptyset$,从而 用颜色 $\alpha \in A(v_j, G_j)$ 来对顶点 v_j 进行染色, 于是 图 $G_{j-1} = G[\{v_n, v_{n-1}, \dots, v_{j+1}, v_j\}]$ 可正常k+1染色; 重 复上述过程可得到G的正常k+1染色,故 $\chi(G) \le k+1$

定理6.5 设G=(V,E)为一个(连通)图,则 $2 \le \chi(G) \le \Delta(G) + 1$

例如 设 K_n 为n个顶点的完全图,则 $\chi(K_n) = n$, 即 $\chi(K_n) = \Delta(K_n) + 1$ 。

例如 C_n 是具有n个顶点的圈,则(1)当n为偶数时, $\chi(C_n)=2$;(2)当n为奇数时, $\chi(C_n)=3$

完全图和奇圈的点染色数等于△(G)+1;再 没有别的图了。

定理6. 6 (Brooks) 设G=(V, E) 为一个图, 并且 G不是完全图和奇圈, 则 $\chi(G) \leq \Delta(G)$, $\Delta(G)$ 表示G 的顶点的最大度。(证明略)

6.3 区间图的染色

定义6.5(区间图)设G=(V, E)是一个图,称G是一个区间图,如果对于任意 $V \in V$,在直线上对应于一个区间 I_v ,对于每两个顶点 $u, v \in V$,当 $uv \in E$ 当且仅当 $I_v \cap I_u \neq \emptyset$,此时称{ I_u }为区间图G的一种表达方式。

如下图的区间图表达方式:

这里区间图表达方式为: G=(V, E) ,其中 $V=\{v_1, v_2, v_3, v_4, v_5\}$ 和 $E=\{v_1v_2, v_1v_5, v_2v_5, v_2v_3, v_3v_4, v_3v_5, v_4v_5\}$ 可求得 $\chi(G)=3$ 。

问题1:设G是区间图,则 $\chi(G)=?$

问题2:设G是区间图,则最大团数 $\omega(G)$ =?

一般地,设G是任意图,则有 $\omega(G) \le \chi(G)$ 。

问题3:设6是一个区间图,求其最大独立集。

在区间图G中,对于任意顶点 $v \in V$,可取 $I_v = (b_v, d_v)$,可设 b_v, d_v 为正整数。给定区间图G及其表达式,要求G的最大独立集、最大团及染色数。

定理6.7 设G为一个区间图,则 $\omega(G) = \chi(G)$ 。

设*G*为一个区间图,构造一个网络图D(如下),则*G*中的最大独立集的元素个数等于网络*D*中从0到*N*流量为1的最小费用流的费用值的相反数。

(1) 已有最大独立集I,可得到流量为1的最小费用流f费用=-|I|。

网络图的具体构造方法如下:

```
构造一个网络: D=(V_D, A_D, C_D, P_D, 0, N)
V_D=\{0, 1, 2,...,N-1, N\} (N\leq 2n-1)
A_D=(1型)\{(b_i,d_i)\mid 1\leq i\leq n\}\cup\{2型)\{(j,j+1)\mid 1\leq i\leq N-1\}
C_D: A_D\to R^+, 这里 C_D(e)=1
P_D: A_D\to R, (1型) 这里 P_D(e)=-1
(2型) 这里 P_D(e)=0
```

(2)给定D中从0到A的流量值为1的整数流, 来构造区间图G的独立集

 $I = \{ (b_v, d_v) \mid f(b_v, d_v) = 1, v \in V \}$ 则 I是一个独立集,|I|等于流f的费用的相反数。

利用找最大独立集的方法,找到一个最大独立集*L*,把*I*中所有的区间图用颜色1去染色,重复上述过程直到所有区间图被染色,此时的染色数等于最后一个区间图使用的颜色号码。

另一种算法: (Greedy算法)

对区间图中所有的右端点进行排序,如果两个区间图右端点相同则看其左端点。把所有区间排列为 $I_1 \le I_2 \le \cdots \le I_n$;然后从标号最小的区间开始染色:如果区间没有重叠,就用到目前为止的最小标号染色;如果区间有重叠,就用到目前为止未使用的最小标号染色。这样得到的最大标号,就是区间图的染色数。

说明:因为区间图是一种完美图(perfect graph)。