Intro to Machine Learning - Week 3



## Classification (Part 2)

Decision Trees Overfitting, Underfitting Ensembles Learning



# What will we focus on?

#### Concepts, Problems

1 hour

#### Google Colab Project

1 hour

#### Schedule



#### **Supervised Learning**

Classification & Regression, Hypothesis Testing

#### **Classification 2**

Information Gain, Decision Trees, Random Forest, Ensembles

#### **Regression 2**

Logistic Regression, Support Vector Machine, Model Tuning

#### **Classification 1**

Conditional Probability, Naive Bayes, Bayesian Learning

#### **Regression 1**

Linear Regression, Loss Function, Gradient Descent, Back Propagation

#### **Model Evaluation**

Accuracy Metrics, Over-& Underfitting, Cross Validation



## Classification

- ◆ Target responses are categorical in nature
- We are going to see decision tree based classification in this session





- Class of algorithms that learn decision rules from a dataset.
- ◆ It generates a tree-like model of decisions and their possible consequences.
- Represented using a flow-chart like structure.
- Since it maps all possible consequences observed in your data, this would represent the hypothesis space.



- ♦ 14 rows
- Class variable play
- Features outlook, temperature, humidity, windy



| outlook  | temperature | humidity | windy | play |
|----------|-------------|----------|-------|------|
| overcast | cool        | normal   | TRUE  | yes  |
| overcast | hot         | high     | FALSE | yes  |
| overcast | hot         | normal   | FALSE | yes  |
| overcast | mild        | high     | TRUE  | yes  |
| rainy    | cool        | normal   | FALSE | yes  |
| rainy    | cool        | normal   | TRUE  | no   |
| rainy    | mild        | high     | FALSE | yes  |
| rainy    | mild        | high     | TRUE  | no   |
| rainy    | mild        | normal   | FALSE | yes  |
| sunny    | cool        | normal   | FALSE | yes  |
| sunny    | hot         | high     | FALSE | no   |
| sunny    | hot         | high     | TRUE  | no   |
| sunny    | mild        | high     | FALSE | no   |
| sunny    | mild        | normal   | TRUE  | yes  |

#### Decision Tree Example

How can we represent categorical values?

Let us ignore temperature for this.



#### Decision Tree Example

How can we represent continuous values?

Let us assume humidity and wind are continuous for this.



#### How does it work?



#### **Elements in a Decision Tree**





# How to build a Decision Tree

Decision tree is built top-down from a root node and involves partitioning the data into subsets that contain instances with similar values (homogenous)

How do we decide which feature is the root of the tree?



## Entropy

How do we decide which feature is the root of the tree?

- Entropy is used to calculate homogeneity of a data sample.
- Average rate at which information is produced by a stochastic data source
- Entropy value ranges from 0 1
  - 0 = completely homogeneous
  - ► 1 = more uncertainity



- **♦ 14 rows**
- Features
  - $\mathbf{x}_1 = \text{outlook}$
  - $x_2$  = temperature
  - $\mathbf{x}_3$  = humidity
  - $\mathbf{x}_{4} = \mathbf{windy}$
- ◆ Target
  - $\rightarrow$  y = play
    - ho  $c_1 = yes$
    - $\rightarrow$   $C_2 = no$



| outlook  | temperature | humidity | windy | play |
|----------|-------------|----------|-------|------|
| overcast | cool        | normal   | TRUE  | yes  |
| overcast | hot         | high     | FALSE | yes  |
| overcast | hot         | normal   | FALSE | yes  |
| overcast | mild        | high     | TRUE  | yes  |
| rainy    | cool        | normal   | FALSE | yes  |
| rainy    | cool        | normal   | TRUE  | no   |
| rainy    | mild        | high     | FALSE | yes  |
| rainy    | mild        | high     | TRUE  | no   |
| rainy    | mild        | normal   | FALSE | yes  |
| sunny    | cool        | normal   | FALSE | yes  |
| sunny    | hot         | high     | FALSE | no   |
| sunny    | hot         | high     | TRUE  | no   |
| sunny    | mild        | high     | FALSE | no   |
| sunny    | mild        | normal   | TRUE  | yes  |

#### **Entropy Formula**



$$\mathbf{E}(\mathbf{y}) = \sum_{i=(1,C)} -\mathbf{P}(\mathbf{c}_i) \times \mathbf{log}_2 \mathbf{P}(\mathbf{c}_i)$$

1----

Entropy of **Target Response**  Probability of class c.

~----/

$$\mathbf{E}(\mathbf{y},\mathbf{X}) = \sum_{\mathbf{c} \in \mathbf{X}} \mathbf{P}(\mathbf{c}_{\mathbf{i}}) \times \mathbf{E}(\mathbf{c}_{\mathbf{i}})$$

Entropy of target class for input feature  $x \in X$ 

1\_----

Probability of class c of x, class c of x,

~-----

Entropy of



**Entropy of the target response** 

Unique values of target y

| у                     | count | probability |
|-----------------------|-------|-------------|
| <b>y</b> <sub>1</sub> |       |             |
| <b>y</b> <sub>2</sub> |       |             |
|                       |       |             |
| y <sub>Y</sub>        |       |             |
| total                 |       |             |



Entropy of the feature class with respect to target response



## E(play)



| play  | count | probability |
|-------|-------|-------------|
| yes   | 9     | 0.64        |
| no    | 5     | 0.36        |
| total | 14    | 1           |

$$E(y) = \sum_{i=(1,C)} -P(c_i) \times log_2 P(c_i)$$
Entropy of Target Response

Probability of class  $c_i$ 

$$E(play) = -0.64\log_2(0.64) - 0.34\log_2(0.34)$$
$$= 0.94$$

## E(play,outlook)



| $E(y,X) = \sum_{i=1}^{N} E(y_i,X_i)$                         | $\mathbf{E}_{c \in \mathbf{X}} \mathbf{P}(\mathbf{c}_i) \times \mathbf{E}(\mathbf{c}_i)$                                      | ) |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---|
| Entropy of target class for input feature x <sub>i</sub> ∈ X | $\begin{array}{ccc} \text{Probability of} & \text{Entropy of} \\ \text{class c of } x_i & \text{class c of } x_i \end{array}$ | , |

TRUE

ves

|          |       |     |    |        | LICOIT VA |
|----------|-------|-----|----|--------|-----------|
| outlook  | count | yes | no | P(yes) | P(no)     |
| sunny    | 5     | 3   | 2  | 0.6    | 0.4       |
| overcast | 4     | 4   | 0  | 1      | 0         |
| rainy    | 5     | 2   | 3  | 0.4    | 0.6       |
|          |       |     | •  |        |           |

|          | input feature x <sub>i</sub> e |          | class c of x <sub>i</sub> | class c of x |
|----------|--------------------------------|----------|---------------------------|--------------|
| outlook  | temperature                    | humidity | windy                     | play         |
| overcast | cool                           | normal   | TRUE                      | yes          |
| overcast | hot                            | high     | FALSE                     | yes          |
| overcast | hot                            | normal   | FALSE                     | yes          |
| overcast | mild                           | high     | TRUE                      | yes          |
| rainy    | cool                           | normal   | FALSE                     | yes          |
| rainy    | cool                           | normal   | TRUE                      | no           |
| rainy    | mild                           | high     | FALSE                     | yes          |
| rainy    | mild                           | high     | TRUE                      | no           |
| rainy    | mild                           | normal   | FALSE                     | yes          |
| sunny    | cool                           | normal   | FALSE                     | yes          |
| sunny    | hot                            | high     | FALSE                     | no           |
| sunny    | hot                            | high     | TRUE                      | no           |
| sunny    | mild                           | high     | FALSE                     | no           |

normal

mild

sunny

sunny
 5
 3
 2
 0.6
 0.4

 overcast
 4
 4
 0
 1
 0

 rainy
 5
 2
 3
 0.4
 0.6

$$E(\text{play,outlook}) = \frac{P(\text{sunny}) \times E(\text{sunny})}{F(\text{sunny})} + \frac{P(\text{overcast}) \times E(\text{overcast})}{F(\text{sunny})} \times \frac{F(\text{sunny})}{F(\text{sunny})} = \frac{5}{14} \times \frac{F(\text{sunny})}{F(\text{sunny})} + \frac{5}{14} \times \frac{F(\text{sunny})}{F(\text{sunny})} = \frac{5}{14} \times \frac{F(\text{sunny})}{F(\text{sunny})} + \frac{F(\text{sunny})}{F(\text{sunny})} = \frac{5}{14} \times \frac{F(\text{sunny})}{F(\text{sunny})} = \frac{F(\text{sunny})}{F(\text{sunny}$$

 $E(4,0) = -1\log_2 1 - 0\log_2 0 = 0$ 

E(2,3) = E(3,2) = 0.971

= 
$$\frac{0.357 \times 0.971}{0.286 \times 0} + \frac{0.357 \times 0.971}{0.357 \times 0.971}$$
  
= 0.693  
E(play, outlook) = 0.693

 $E(3,2) = -\frac{1}{9}\log_{2}\% - \frac{1}{9}\log\% = -(0.6 \times 0.737) - (0.4 \times 0.529) = 0.971$ 

## E(play,temperature)



| $E(y,X) = \sum_{i=1}^{N} E(y,X_i)$              | $\sum_{c \in X} P(c_i) >$                | E(c <sub>i</sub> )                   |
|-------------------------------------------------|------------------------------------------|--------------------------------------|
| Entropy of target class for input feature x₁∈ X | Probability of class c of x <sub>1</sub> | Entropy of class c of x <sub>i</sub> |

| temperature | count | yes | no | P(yes) | P(no) |
|-------------|-------|-----|----|--------|-------|
| hot         | 4     | 2   | 2  | 0.5    | 0.5   |
| mild        | 6     | 4   | 2  | 0.67   | 0.33  |
| cool        | 4     | 3   | 1  | 0.75   | 0.25  |

| outlook  | temperature | humidity | windy | play |
|----------|-------------|----------|-------|------|
| overcast | cool        | normal   | TRUE  | yes  |
| overcast | hot         | high     | FALSE | yes  |
| overcast | hot         | normal   | FALSE | yes  |
| overcast | mild        | high     | TRUE  | yes  |
| rainy    | cool        | normal   | FALSE | yes  |
| rainy    | cool        | normal   | TRUE  | no   |
| rainy    | mild        | high     | FALSE | yes  |
| rainy    | mild        | high     | TRUE  | no   |
| rainy    | mild        | normal   | FALSE | yes  |
| sunny    | cool        | normal   | FALSE | yes  |
| sunny    | hot         | high     | FALSE | no   |
| sunny    | hot         | high     | TRUE  | no   |
| sunny    | mild        | high     | FALSE | no   |
| sunny    | mild        | normal   | TRUE  | yes  |

$$E(\text{play,temp}) = \frac{P(\text{hot}) \times E(\text{hot}) + P(\text{mild}) \times E(\text{mild})}{P(\text{cool}) \times E(\text{cool})}$$

$$= \frac{4}{14} \times E(2,2) + \frac{6}{14} \times E(4,2) + \frac{4}{14} \times E(3,1)$$

$$E(2,2) = -\frac{2}{4} \log_2 \frac{2}{4} - \frac{2}{4} \log_2 \frac{2}{4} = 1.0$$

$$E(4,2) = -\frac{4}{6} \log_2 \frac{4}{6} - \frac{2}{6} \log_2 \frac{2}{6} = 1.811$$

$$E(3,1) = -\frac{3}{4} \log_2 \frac{3}{4} - \frac{1}{4} \log_2 \frac{1}{4} = 0.918$$

$$= \frac{0.286 \times 1.0}{0.429 \times 1.811} + \frac{0.286 \times 0.918}{0.286 \times 0.911}$$

$$= \frac{0.911}{0.911}$$

## E(play, humidity)

outlook

overcast

overcast

overcast

overcast

rainy

rainy

rainy

rainy

rainy

sunny

sunny

sunny

sunny

sunny

mild

mild



| $E(y,X) = \sum_{i=1}^{N} E(y,X_i)$                           | $\mathbf{C}_{\mathbf{c}\in\mathbf{X}}\mathbf{P(c_i)}\times$ | $E(c_{i})$              |
|--------------------------------------------------------------|-------------------------------------------------------------|-------------------------|
| 1                                                            |                                                             |                         |
| Entropy of target class for input feature x <sub>i</sub> ∈ X | Probability of class c of x <sub>i</sub>                    | Entropy of class c of x |
|                                                              |                                                             |                         |

| humidity | count | yes | no | P(yes) | P(no) |
|----------|-------|-----|----|--------|-------|
| normal   | 7     | 6   | 1  | 0.86   | 0.14  |
| high     | 7     | 3   | 4  | 0.43   | 0.57  |

high 7 3 4 0.43 0.57

$$E(\text{play,humidity}) = P(\text{normal}) \times E(\text{normal}) + P(\text{high}) \times E(\text{high})$$

$$= 7/14 \times E(6,1) + 7/14 \times E(3,4)$$

$$E(3,2) = -6/7\log_{10}6/7 - 1/7\log_{1/7} = 0.985$$

**FALSE** 

TRUE

no

yes

high

normal

$$= 7/14 \times E(6,1) + 7/14 \times E(3,4)$$

$$E(3,2) = -6/7\log_{2}6/7 - 1/7\log_{1/7} = 0.985$$

$$E(3,4) = -3/7\log_{2}3/7 - 4/7\log_{4/7} = 0.592$$

$$= 0.5 \times 0.985 + 0.5 \times 0.592$$

$$= 0.788$$

E(play, humidity) = 0.788

## E(play,windy)

cool

hot

hot

mild

mild

outlook

overcast overcast overcast overcast rainy rainy rainy rainy rainy

sunny

sunny

sunny

sunny

sunny



| E(y,X) = 2                                      | $\sum_{c \in X} P(c_i) \times$  | $E(c_{i})$              |
|-------------------------------------------------|---------------------------------|-------------------------|
| 1                                               |                                 |                         |
| Entropy of target class for input feature x ∈ X | Probability of class c of $x_i$ | Entropy of class c of x |
|                                                 |                                 |                         |

| windy | count | yes | no | P(yes) | P(no) |
|-------|-------|-----|----|--------|-------|
| TRUE  | 6     | 3   | 3  | 0.5    | 0.5   |
| FALSE | 8     | 6   | 2  | 0.75   | 0.25  |

| Entropy of target class for input feature x <sub>i</sub> ∈ X |          | $\begin{array}{ll} \text{Probability of} & \text{Entropy of} \\ \text{class c of } x_i & \text{class c of } x_i \end{array}$ |      |  |
|--------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------|------|--|
| temperature                                                  | humidity | windy                                                                                                                        | play |  |
| cool                                                         | normal   | TRUE                                                                                                                         | yes  |  |
| hot                                                          | high     | FALSE                                                                                                                        | yes  |  |
| hot                                                          | normal   | FALSE                                                                                                                        | yes  |  |
| mild                                                         | high     | TRUE                                                                                                                         | yes  |  |
| cool                                                         | normal   | FALSE                                                                                                                        | yes  |  |
| cool                                                         | normal   | TRUE                                                                                                                         | no   |  |
| mild                                                         | high     | FALSE                                                                                                                        | yes  |  |
| mild                                                         | high     | TRUE                                                                                                                         | no   |  |
| mild                                                         | normal   | FALSE                                                                                                                        | yes  |  |

FALSE

**FALSE** 

TRUE

**FALSE** 

TRUE

ves

no

no

no

yes

normal

high

high

high

normal

| E(play,windy) | $= P(TRUE) \times E(TRUE) + P(I$                                       | FALSE) × E(FALSE) |
|---------------|------------------------------------------------------------------------|-------------------|
|               | = $6/14 \times E(3,3) + 8/14 \times E(6)$                              | 5,2)              |
|               | $og_{23}/6 - 3/6log_{3}/6 = 1.0$<br>$og_{26}/8 - 2/8log_{2}/8 = 0.811$ |                   |
|               | = 0.428 × 1.0 + 0.571 × 0                                              | 0.811             |
|               | = 0.892                                                                |                   |

E(play, windy) = 0.892

#### What do we have till now?





Calculate the information gain of each input feature



Information gain of input feature x,∈ X

Entropy of **Target Response** 

ンーー・ニーノ

Entropy of target class for input feature  $x_i \in X$ 

\\_\_\_\_/



#### Calculate the information gain of each input feature

```
y = play

x<sub>1</sub> = outlook

x<sub>2</sub> = temperature

x<sub>3</sub> = humidity

x<sub>4</sub> = windy
```

Gain(play, windy) = E(play) - E(play, windy)

= 0.94 - 0.892 = 0.048



Pick the feature with highest information gain for first split

Gain(play, outlook) = 0.247 Gain(play, temp) = 0.029 Gain(play, humidity) = 0.152 Gain(play, windy) = 0.048



#### **Decision Tree - Next Steps**



 Filter the data samples based on previous decision.

Recursively conduct
 Step 1 - 3 for every
 decision required.



- ◆ Filter on outlook=sunny
- ◆ Conduct Step 1 3 on this data sample

- ◆ Filter on outlook=rainy
- ◆ Conduct Step 1 3 on this data sample

## Homework #1





Complete the decision tree from the previous slide. Data sample listed below:

| outlook  | temperature | humidity | windy | play |
|----------|-------------|----------|-------|------|
| overcast | cool        | normal   | TRUE  | yes  |
| overcast | hot         | high     | FALSE | yes  |
| overcast | hot         | normal   | FALSE | yes  |
| overcast | mild        | high     | TRUE  | yes  |
| rainy    | cool        | normal   | FALSE | yes  |
| rainy    | cool        | normal   | TRUE  | no   |
| rainy    | mild        | high     | FALSE | yes  |
| rainy    | mild        | high     | TRUE  | no   |
| rainy    | mild        | normal   | FALSE | yes  |
| sunny    | cool        | normal   | FALSE | yes  |
| sunny    | hot         | high     | FALSE | no   |
| sunny    | hot         | high     | TRUE  | no   |
| sunny    | mild        | high     | FALSE | no   |
| sunny    | mild        | normal   | TRUE  | yes  |



Assumption



- Feature values are required to be categorical to calculate information gain
  - Continuous data can be discretized easily.
    - Eg. Bucketing ages, splitting based on quantile, etc



Advantages



- Easy to understand/explain
  - Intuitive way to make decisions
- Features are not assumed to be equally important to the target response (hint: Naive Bayes)



#### **Variations**



- Iterative Dichotomiser 3 (ID3)
- **◆** C4.5
- Chi-squared Automatic Interaction Detection (CHAID)
- ◆ CART



## ID3

- Mainly used to produce Classification Trees
- Uses the Information Gain metric to select the most useful attributes for classification
  - ► The example we solved is ID3!



## C4.5

- Can be used for both classification and regression trees
- Uses the Gain Ratio metric to select the most useful attributes for classification
  - Information gain that takes into account the number and size of the branches when choosing an attribute (IG shows unfair favoritism towards attributes with many outcomes)
  - Basically "normalizes" the Information Gain by using a split information value.



#### **CHAID**

- Chi-square tests check if there is a relationship between two variables
- Applied at each stage of the DT to ensure that each branch is significantly associated with a statistically significant predictor of the response variable.
- For classification trees, it uses the Chi squared test. For regression trees, it uses f-test
  - If the test fails, the nodes are merged into one



#### CART

- Produces binary classification/regression trees.
- Uses a metric called **Gini Impurity** to create decision points for classification tasks.
  - Classification Measure of how mixed the classes are in groups created by the split.
     This has to be minimized.
  - Regression minimizes the sum of the squared distances (or deviations) between the observed values and the predicted values (Least Square Deviation)



#### Disadvantages



- Calculations become complicated if there are many class labels
- Cannot estimate missing data
- Overfitting
  - Biased towards class value with more data samples (bias vs. variance)
  - Biased on data samples in the training data (pruning)



Overcoming Disadvantages



- Understanding your data
  - Bias vs. Variance Trade-Off
- Understanding the algorithm
  - Overfitting and underfitting
- Understanding the Decision Tree
  - Pruning
  - Ensemble Learning



#### **Terminology**

#### **Overfitting**

When the model isn't generalizable and contain biases from the dataset it was built on.

- eg. The relationship between play and outlook - there are no examples in the dataset of outlook=overcast and play=no.
  - A model is as good as its data





### What is a good fit?





#### **Terminology**

#### **Bias**

- Bias is the tendency of a statistic to overestimate or underestimate a parameter.
- Assumptions made to make the target function easier to learn.
  - Low Bias: Suggests less assumptions about the form of the target function.
  - High-Bias: Suggests more assumptions about the form of the target function.



### **Terminology**

#### **Variance**

- Variance measures how far a set of numbers are spread out from their average value.
- Variance error is the amount that the estimate of the target function will change if different training data was used.
  - High Variance: Machine learning algorithms that have a high variance are strongly influenced by the specifics of the training data.
  - Low Variance: Suggests small changes to the estimate of the target function with changes to the training dataset.



Bias and variance are 2 sources of errors in supervised learning problems.

A models goal is to minimize the error



- Bias is an erroneous assumption made by the algorithm
  - High bias can lead to missing relevant relations between features and targets (underfitting).
- Variance is an error from sensitivity to small fluctuations in the training set.
  - High variance can lead to modeling the random noise in the training data, rather than the intended outputs (overfitting).



# Bias vs. Variance Trade-off

- Models with a lower bias have a higher variance across samples
- Models with a higher bias have a lower variance across samples



Low Bias = High Variance

High Bias = Low Variance







Low Bias = High Variance

High Bias = Low Variance



- If our model is too simple and has very few parameters then it may have high bias and low variance.
- On the other hand if our model has large number of parameters then it's going to have high variance and low bias.
- This tradeoff in complexity is why there is a tradeoff between bias and variance. An algorithm can't be more complex and less complex at the same time.
- So we need to find the right/good balance without overfitting and underfitting the data.







- Pruning is a technique used to deal with overfitting, that reduces the size of DTs by removing sections of the Tree that provide little predictive or classification power.
  - Reduces complexity of final classifier
  - Overcome overfitting → improve accuracy



#### **Pruning Example**





**Original Tree** 

Pruned Tree



## Pruning Strategies

#### Pre-pruning

 When you stop growing DT branches when information becomes unreliable.

#### Post-pruning

In a fully grown DT, removing leaf nodes only if it results in a better model performance.



## Ensemble Learning

- Ensemble learning is a machine learning paradigm where multiple models (or "weak learners") are trained to solve the same problem and combined to get better results.
- The main hypothesis is that when weak models are correctly combined we can obtain more accurate and/or robust models.



How to combine models?



- ◆ Bagging considers homogeneous weak learners, learns them independently from each other and combines them following some kind of deterministic averaging process.
- Boosting considers homogeneous weak learners, learns them sequentially in a very adaptative way (a base model depends on the previous ones) and combines them following a deterministic strategy
- ▶ Stacking considers heterogeneous weak learners, learns them in parallel and combines them by training a meta-model to output a prediction based on the different weak models predictions



Bagging

**Bootstrap** generates samples of size B from an dataset of size N by randomly drawing with replacement B observations.



ensemble model (kind of average

of the weak learners)



weak learners fitted on

each bootstrap sample

L bootstrap samples

initial dataset

## Ensemble Learning

Boosting









- Adaboost updates weights of the observations at each iteration.
  - Weights of well classified observations decrease relatively to weights of misclassified observations.
  - Models that perform better have higher weights in the final ensemble model.



## Ensemble Learning

Stacking



initial dataset

L weak learners (that can be non-homogeneous)

meta-model (trained to output predictions based on weak learners predictions)

## Random Forest





- Random Forest is an extension over bagging.
- It builds models on random subsets of data (bootstrapping)
  - Additionally, it also takes a random selection of features rather than using all to grow DTs.
- Each individual tree in the random forest outputs a class prediction and the class with the most votes becomes our model's prediction.



## Random Forest





Advantages



- This model can estimate missing data
  - maintains accuracy when large proportion of the data is missing
- Bagging balances errors in data sets where classes are imbalanced.
- Powerful due to the number of combinations it considers



Disadvantages



#### No interpretability

- Feels like a "black box" approach since we have very little control on what the model does
- ▶ Time consuming due to the number of combinations considers and computations it does.

## Theory Recap



#### Decision Trees

- Entropy, Information Gain
- Example
- Advantages
- Variations
- Disadvantages

#### Overcoming Disadvantages

- Overfitting
- Bias vs. Variance
- Pruning
- Ensemble Learning

#### Random Forest



# Google Colab Project

# Homework #1





Complete the decision tree from the previous slide. Data sample listed below:

| outlook  | temperature | humidity | windy | play |
|----------|-------------|----------|-------|------|
| overcast | cool        | normal   | TRUE  | yes  |
| overcast | hot         | high     | FALSE | yes  |
| overcast | hot         | normal   | FALSE | yes  |
| overcast | mild        | high     | TRUE  | yes  |
| rainy    | cool        | normal   | FALSE | yes  |
| rainy    | cool        | normal   | TRUE  | no   |
| rainy    | mild        | high     | FALSE | yes  |
| rainy    | mild        | high     | TRUE  | no   |
| rainy    | mild        | normal   | FALSE | yes  |
| sunny    | cool        | normal   | FALSE | yes  |
| sunny    | hot         | high     | FALSE | no   |
| sunny    | hot         | high     | TRUE  | no   |
| sunny    | mild        | high     | FALSE | no   |
| sunny    | mild        | normal   | TRUE  | yes  |



# Homework #2

Try to solve an end-to-end project on the <u>Titanic</u> <u>dataset</u>. This table has multiple columns which can be used to predict if a passenger survived or not.

For your ease, we have uploaded the titanic dataset to our github and you can use the below URL as the parameter to read\_csv to load the dataset in Google Colab

https://github.com/WomenWhoCode/WWCodeDa taScience/tree/master/Intro\_to\_MachineLearning /data/titanic

Note: The dataset has already been split into train and test

https://www.machinelearningplus.com/predictive-modeling/how-naive-bayes-algorithm-works-with-example-and-full-code/



Note: You have to download these datasets from links and host it on your Google Drive. This video will help you get set up!



Our leaders have curated 2 other datasets you can try out your classification skills on.

| Dataset                          | Link                                           | Task Description                                                                                                                                                                                           |
|----------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wids 2020<br>hospital<br>Dataset | https://www.kaggle.com/c/widsdatathon2020/data | This dataset has patient details such as heart rate, temperature and few other essential measurements from 1st 24 hours in a Intensive care unit. The task is to build a model to predict patient survival |
| Credit card fraud Dataset        | https://www.kaggle.com/mlg-ulb/creditcardfraud | This dataset has credit card transaction details which have been anonymized using PCA. The task is to identify fraudulent transactions from others                                                         |



## See you next week!

#### **Questions?**

Join us on slack (<a href="mailto:bit.ly/wwcodedatascience-slack">bit.ly/wwcodedatascience-slack</a>) and post it on our #help-me channel.

#### Register?

Register for all sessions at <a href="linktr.ee/wwcodedatascience">linktr.ee/wwcodedatascience</a> <a href="registration">registration</a>