

RESTAURANT RATING PREDICTION

Problem Statement

- Nicole has a restaurant at BTM in Bangalore, India.
- she is thinking of joining Zomato as new restaurant to increase her sales.
- but before joining she would like to know if her restaurant will be able to get at least rate 4 over 5.
- she doesn't think of moving her restaurant since she just renovated.
- Other than that, any suggestion can achieve the goal?

Objective

- Using Machine Learning technique to predict her restaurant rating at Zomato platform.
- And identify the important features that for high rating.

Agenda

- Methodology
 - Datasets, Models, Metrics, Tools
- Process Workflow
 - EDA
 - Data preparation
 - Data analysis
 - ML model training/evaluation
- Metrics
 - R square, MSE, MAE
- Conclusion
 - How it helps with business case
 - Recommendations
 - Interesting insight
- Future Opportunities
- Appendix

Methodology

Source of dataset

- From Kaggle
- Zomato is a platform that provides information, menu and user-reviews of restaurant as well as food delivery options from partner restaurant in select cities.
- This data is scraped and accurate to that available on the Zomato website until 15 March 2019.

Model, Metrics and Tools

- Supervised Machine Learning Regression Problem
- · Model: Linear Regression, Lasso, Decision Tree and Random Forest Regression.
- Metrics: R square, MSE, MAE.
- Tools: mssql, powerbi, jupyter notebook, python, pandas, numpy, matplotlib, seaborn, scikit learn, etc

Extract Transform Load (ETL)

	feature	null	dtype	uni_value	max_len
0	url	0	object	51717	538.0
1	address	0	object	11495	346.0
2	name	0	object	8792	159.0
3	online_order	0	object	2	3.0
4	book_table	0	object	2	3.0
5	rate	7775	object	64	6.0
6	votes	0	int64	2328	0.0
7	phone	1208	object	14926	34.0
8	location	21	object	93	29.0
9	rest_type	227	object	93	29.0
10	dish_liked	28078	object	5271	134.0
11	cuisines	45	object	2723	86.0
12	approx_cost(for two people)	346	object	70	5.0
13	reviews_list	0	object	22513	1284117.0
14	menu_item	0	object	9098	24897.0
15	listed_in(type)	0	object	7	18.0
16	listed_in(city)	0	object	30	21.0

- 17 columns 51717 rows.
- url is the unique value.
- In the 'rate' column (initially look like 4.1/5) and contained '-' and 'New'. I will remove the value, change the type to int and treat it as new restaurant that will be predicted later.
- Drop 'review' column, since there is already 'rate' column.

Entity Relationship Diagram (ERD)

- Create an ER diagram.
- Use **pyodbc** to store the tables in ms sql database.
- For rating prediction, I will use rest_rating table.

Exploratory Data Analysis (EDA)

	feature	null	dtype	uni_value	max_len	
Û	uri_id	0	int04	51717	0.0	_
-	url	0	object	51717	530.0	
2	online_order	0	object	2	3.0	
3	book_table	0	object	2	3.0	
4	rate	10052	float64	31	0.0	
5	votes	10027	float64	2327	0.0	
-6	phono	0	object	14027	31.0	-
_ 7	location	21	object	03	20.0	_
8	rest_type	227	object	93	29.0	
-0	dish_liked	20070	object	5271	134.0	-
10	cuisines	45	object	2723	86.0	
11	avg_cost	346	float64	70	0.0	
12	menu_item		object	9095	0000.0	-
13	name_id	0	int64	0743	0.0	
14	types_id	0	int64	7	0.0	
-15	city_id	-	int64		0.0	_
10	branch_id	0	int04	11400	0.0	-

- So here is some information from the rest_rating table.
- Remove url, phone, name_id, branch_id.
- I will remove those location and city also, since Nicole has no intention to change location.
- I don't need menu and dish_liked as well.
- After removing unnecessary data, there are still some null values which I will treat it later.

Exploratory Data Analysis (EDA)

- Rate normal distribution.
- No rate data is about 20%. For this portion will keep it for prediction.
- In the average cost, most of the price are within 1k rupee, so for null value I will replace it with median.
- I will remove votes because of the multicollinearity.

Exploratory Data Analysis (EDA)

									_
			online_order	book_table	types_id	avg_cost	rest_type	cuisines	rate
		0	No	Yes	1	3000.0	Fine Dining	Continental, North Indian, Italian, Chinese	4.0
		1	No	Yes	5	3000.0	Fine Dining	Continental, North Indian, Italian, Chinese	4.0
		2	Yes	No	3	250.0	Quick Bites	North Indian, Fast Food, Street Food	3.9
		3	Yes	No	5	250.0	Quick Bites	North Indian, Fast Food, Street Food	3.9
types_id ▼	meal_type 🔻	4	Yes	No	3	250.0	Quick Bites	North Indian, Fast Food, Street Food	3.9
1	Buffet								
2	Cafes	51712	No	No	3	NaN	Takeaway, Delivery	Continental, Italian, Steak, American	4.1
3		51713	No	No	3	200.0	Food Truck	Fast Food	3.4
4		51714	No	No	3	200.0	Food Truck	Fast Food	3.4
5	Dine-out								
6	Drinks & nightlife	51715	No	No	5	200.0	Food Truck	Fast Food	3.4
7	Pubs and bars	51716	No	No	5	200.0	Food Truck	Fast Food	3.4

51717 rows x 7 columns

- This is the table after extracting the attributes for machine learning.
- There are 7 types means Buffet, Café, Delivery, Dessert, Dine-out, Drink & nightlife and Pubs and bars.
- Restaurant type is more detail, for example, Quick Bites, Bakery, Casual Dining, Food Court, Kiosk, Sweet Shop, etc.

Exploratory Data Analysis (EDA)

	types_id	avg_cost	rate
count	51717.000000	51371.000000	41665.000000
mean	3.807375	555.431566	3.700449
std	1.140839	438.850728	0.440513
min	1.000000	40.000000	1.800000
25%	3.000000	300.000000	3.400000
50%	3.000000	400.000000	3.700000
75%	5.000000	650.000000	4.000000
max	7.000000	6000.000000	4.900000

- From the statistical view, the average price are within 40 6000 rupee and the average is around 555 rupee.
- For rate are within 1.8 4.9 and the mean of the rate is around 3.7.

Data preparation

- Replace null in the 'avg_cost' column by median value.
- Replace null in 'rest_type' and 'cuisines' column by random value.
- Label encoding for categorical data.
- After excluded new restaurant from the training set, the remaining data is 41,665.
- Then allocated 80% for training and 20% for testing.

Machine Learning model training/evaluation

 Use Grid Search to find the best parameters and the best R square score.

- Linear Regression
- Lasso
- Decision Tree Regression
- Random Forest Regression

Random Forest	best_params	best_score	model	train_time
0.73	{'max_features': 'auto', 'n_estimators': 500}	0.73	Random Forest	547.14
Decision Tree	{'n_estimators': 500}	0.73	Random Forest	327.67
0.71	{'n_estimators': 600}	0.73	Random Forest	357.58
5.7 1	{'max_features': 'auto', 'n_estimators': 600}	0.73	Random Forest	551.56
Linear Regression	{'max_features': 'auto', 'n_estimators': 200}	0.73	Random Forest	156.54
0.24	{'max_features': 'auto', 'n_estimators': 60}	0.72	Random Forest	63.05
	{'criterion': 'friedman_mse', 'max_depth': None, 'splitter': 'best'}	0.71	Decision Tree	4.41
Lasso	{'criterion': 'mse', 'max_depth': None, 'splitter': 'best'}	0.71	Decision Tree	4.29
0.17	{'criterion': 'mse', 'max depth': None, 'min samples leaf': 1, 'splitter': 'best'}	0.71	Decision Tree	4.16

Restaurant Rating Prediction 14

CROSS VALIDATION GRID SEARCH

Machine Learning model training/evaluation

33332 Train data

- Splitting 80%, 20% to train data and test data. There are 33,332 data is in the training set.
- Random forest and decision tree are the top 2 accuracy model.
- Using Random Forest Regression as the best model for prediction.

R SQUARE by TIME SERIES

AVERAGE TRAINING TIME by MODEL

R SQUARE by MODEL

MSE & MAE by MODEL

Machine Learning model training/evaluation

8,333 Test data

10,052 New restaurants

3.51
Average of pred_rate

ACTUAL VS PREDICTED

number	actual	predicted
0	4.00	4.00
1	3.10	3.23
2	3.90	3.86
3	3.10	3.35
4	3.40	3.74
5	3.90	3.90
6	3.70	3.74
7	3.50	3.50
8	3.40	3.40
9	4.20	4.20
10	3.70	3.74
11	3.90	3.72
12	3.80	3.64
13	4.40	4.40
14	4.10	4.10
15	3.90	3.44
16	4.30	4.25
17	3.20	3.68
18	3.70	3.72
19	3.60	3.07
20	3.60	3.53

NICOLE's RESTAURANT INFO.

American, Cafe, Continental, French, Burger, Mexican, No 0 Buffet 450.00 Bakery, Sweet Shop	cuisines	online_order	book_table	type	avg_cost	rest_type
Desserts, Pizza		No	0	Buffet	450.00	Bakery, Sweet Shop

- Using Random Forest Regression as the best model.
- tested the 8333 data.
- The average rating of new restaurants is 3.5,
- Nicole's restaurant rate prediction is 3.7.

Conclusion

- The predicted rate 3.7 which is lower than Nicole's expectation.
- In order to get higher rate, I suggest her to reference the feature importance and make some adjustment to her restaurant's data.
- Like for example, she can fine tweak on her restaurant cuisines; consider to provide the 'book table' service or even increase her food price since the mean of the avg_cost is around 555 rupee.

Future Opportunities

- Inverse encoding.
- Coming up will look into more detail on the existing features, there is 2723 unique value in the cuisines columns, I wonder if label encoding is the best approach to encoding my categorical data.
- Scrape the data from different country, so I can analyst by region.
- I would explore more on the review column in order to better understand the customer feedback.

Appendix

- https://www.kaggle.com/himanshupoddar/zomato-bangalore-restaurants
- Wiki: https://en.wikipedia.org/wiki/Zomato
- tools: sql server data tool, ms sql, ssms, jupyter notebook, python, ssis(etl), external ssis installation through vscode => https://www.mssqltips.com/sqlservertip/6481/install-sql-server-integration-services-in-visual-studio-2019/
- internal ssis installation => https://www.mssqltips.com/sqlservertip/6635/install-ssis/ connect python to sql server using pyodbc: https://datatofish.com/how-to-connect-python-to-sql-server-using-pyodbc/
- ssis tutorial: https://www.youtube.com/watch?v=0ikNnenDyNw ssms import data from CSV File through ssis: https://www.youtube.com/watch?v=wozqnFbjyYc
- Feature importance: https://towardsdatascience.com/explaining-feature-importance-by-example-of-a-random-forest-d9166011959e
- https://www.kaggle.com/thiagopanini/predicting-the-success-of-a-restaurant/?scriptVersionId=42278583
- https://medium.com/analytics-vidhya/zomato-bangalore-restaurant-analysis-and-rating-prediction-101fd635ab15
- https://towardsdatascience.com/zomato-bangalore-data-analysis-6ee83652890f
- https://medium.com/@shubh1795/starting-a-new-restaurant-in-bangalore-heres-what-you-should-know-e53bbce55a8
- https://datatofish.com/pie-chart-matplotlib/

Special Thanks

Aditya

Gouri

Tong Wei

Fredy

David Liu

Adrian

An Ting

Aza

Billy

Chris

Kenny

Linda

Noel

Michelle

Zaleha

Thank you