ISyE/CS/Math 728: Integer Optimization Trees and Submodular Polyhedra Total Dual integrality

Trees and Submodular Polyhedra

UW-Madison

Spring 2021

Outline

- ► Maximum weight trees/forests
- ► Generalization of formulation: Submodular polyhedra ⇒ Proof that max weight forest polyhedron is integral
- ► Total Dual Integrality

Outline

Maximum weight trees

Submodular function and polyhedra

Maximum Weight Tree Problem

Tree?

Consider a graph G = (V, E)

- ▶ A subgraph G' = (V, E') of G is a forest if it contains no cycles
- A subgraph G' = (V, E') is a tree if it is a forest and is connected.

Maximum weight forest (tree) problem:

Given a graph G = (V, E) and edge weights c_e for $e \in E$, find a maximum subgraph that is a forest (tree).

► Common variant: *Minimum spanning tree* – find a tree with minimum cost

Notation and some definitions

Let G = (V, E) be an undirected graph:

▶ For
$$S \subseteq V$$
, let $E(S) = \{e = \{i, j\} \in E : i \in S, j \in S\}$

We'll need these definitions later.

- G is connected if there exists a path between every pair of nodes in V
- ▶ Given a graph G = (V, E), its connected components, $(V_i, E(V_i)), i = 1, ..., k$, are disjoint subgraphs of G such that $V = \bigcup_{i=1}^k V_i, E = \bigcup_{i=1}^k E(V_i)$, and $(V_i, E(V_i))$ are connected for i = 1, ..., k

Is it an integer programming problem?

Maximum weight forest (tree) problem:

Given a graph G = (V, E) and edge weights c_e for $e \in E$, find a maximum subgraph that is a forest (tree).

Theorem

A graph G = (V, E') is a tree if and only if E' has no cycles and |E'| = |V| - 1.

Now we can formulate them as an integer programming problems (as in your homework!)

Maximum weight forest formulation

The LP relaxation of this IP formulation is an integral polyhedron

- ► This is far from obvious (but we'll prove it later!)
- It is sufficient to solve the LP relaxation

The separation problem for these inequalities can be solved in polynomial-time

So, the optimization problem can be solved in polynomial-time by the ellipsoid algorithm

But it can be solved much more easily!

Solution: Be greedy!

Kruskal's Algorithm (Greedy algorithm)

Initialize: Start with $T^0=\emptyset$, Order edges by nonincreasing weight: $c_1\geq c_2\geq \cdots \geq c_m$, where c_t is cost of edge e_t Iteration t: If $T^{t-1}\cup\{e_t\}$ contains no cycle, set $T^t=T^{t-1}\cup\{e_t\}$. Otherwise set $T^t=T^{t-1}$. If $|T^t|=n-1$, Stop.

- ▶ Stop if $c_t \le 0$ to obtain maximum weight forest
- Proof of correctness: Special case of later result
- ▶ It is polynomial time: $O(m \log m)$
 - First sort the edges
 - ► Then step through the edges in decreasing order key work here is determining whether adding an edge creates a cycle – can be done in log(n) time
- ► That's quite a bit better than the ellipsoid algorithm!

Outline

Maximum weight trees

Submodular function and polyhedra

Submodular set function

Notation:

▶ Given a ground set N, we let 2^N denote all possible subsets of N

Definition

A set function $f: 2^N \to \mathbb{R}$ is submodular if:

$$f(A) + f(B) \ge f(A \cap B) + f(A \cup B)$$
 for all $A, B \subseteq N$

Definition

A set function $f: 2^N \to \mathbb{R}$ is nondecreasing if:

$$f(A) \le f(B)$$
 for all A, B with $A \subset B \subseteq N$

Submodular set function

Equivalent Definition

A set function $f: 2^N \to \mathbb{R}$ is submodular if for all $A \subseteq B$ and $i \in N \setminus B$

$$f(A \cup \{i\}) - f(A) \ge f(B \cup \{i\}) - f(B)$$

Examples of a submodular function

Given a graph (V, E):

▶ Let N = E, for $A \subseteq E$ let $(V_1, E(V_1)), \dots, (V_k, E(V_k))$ denote the connected components of the graph induced by the edges A, and define

$$f^{G}(A) = \sum_{i=1}^{K} (|V_{i}| - 1)$$

ightharpoonup Claim: f^G is submodular

Other examples

- ▶ Coverage function: $f(S) = |\bigcup_{i \in S} E_i|$ for $S \subseteq \{1, ..., n\}$ where $E_i \subseteq \Omega$, i = 1, ..., n
- ▶ Shannon entropy h(S) where S is index set of subset of random variables from X_1, \ldots, X_n
- ► Cut function in a graph G = (V, E): $f(S) = |\delta(S)|$, for $S \subseteq V$

Submodular polyhedra

Definition

Given a submodular and nondecreasing function f with $f(\emptyset) = 0$, the submodular polyhedron associated with f is the set:

$$P(f) := \{x \in \mathbb{R}^n_+ : \sum_{j \in Q} x_j \le f(Q) \text{ for } Q \subseteq N\}.$$

Such a set is also sometimes called a polymatroid

Claim

Given a connected graph G = (V, E), the associated maximum weight forest polyhedron is equivalent to $P(f^G)$.

Optimization over submodular polyhedra

Given a nondecreasing submodular function f with $f(\emptyset) = 0$, and cost vector $c \in \mathbb{R}^m$, where m = |N|, we are often interested in the following linear optimization problem:

$$\max\{cx: x \in P(f)\}\tag{1}$$

Greedy algorithm

- (i) Order the variables so that
 - $c_1 \geq c_2 \geq \cdots \geq c_r > 0 \geq c_{r+1} \geq \cdots \geq c_m$.
- (ii) Set $\bar{x}_i = f(S^i) f(S^{i-1})$ for i = 1, ..., r and $\bar{x}_j = 0$ for j > r, where $S^i = \{1, ..., i\}$ for i = 1, ..., r and $S^0 = \emptyset$.

Theorem

The greedy algorithm solves (1).

Integrality of the maximum weight forest polyhedron

Corollary

The maximum weight forest inequalities, $x \ge 0$ and

$$\sum_{e \in E(S)} x_e \le |S| - 1, \quad \text{ for } S \subseteq N$$

define an integral polyhedron.

Proof:

- For any extreme point x of a polyhedron, there exists a cost vector $c \in \mathbb{Z}^m$ such that x is the unique optimal solution to $\max\{cx : x \in P(f^G)\}$
- ► Greedy algorithm constructs an optimal solution with either $x_i = 0$, or $x_i = f(S^i) f(S^{i-1})$
- ▶ f(S) is integer for all $S \subseteq E$, and hence $x \in \mathbb{Z}^m$

Another condition for integral polyhedra

We showed polyhedron defined by max forest problem formulation is integral

Example of another way to prove a polyhedron is integral For a polyhedron P and $c \in \mathbb{R}^n$, define the LP:

$$z_{LP} = \max\{cx : x \in P\} \tag{LP}$$

Theorem

Let P be a pointed polyhedron. Then, the following are equivalent:

- 1. P is integral (i.e., $P = conv(P \cap \mathbb{Z}^n)$).
- 2. (LP) has an integral optimal solution for all $c \in \mathbb{R}^n$ for which it has an optimal solution.
- 3. (LP) has an integral optimal solution for all $c \in \mathbb{Z}^n$ for which it has an optimal solution.
- 4. z_{LP} is integral for every $c \in \mathbb{Z}^n$ for which (LP) has an optimal solution.

Application: TDI

Definition

A set of linear inequalities $Ax \leq b$ is called Totally Dual Integral (TDI) if, for all $c \in \mathbb{Z}^n$ for which the linear program $\max\{cx: Ax \leq b\}$ has a finite optimal value, the dual linear program

$$\min\{yb: yA = c, y \ge 0\}$$

has an optimal solution with y integral.

- ▶ If A is TU, then Ax < b is TDI
- ▶ Inequalities defining a submodular polyhedron are TDI.

Theorem

If $Ax \le b$ is TDI, b is an integer vector, and $P = \{x \in \mathbb{R}^N : Ax \le b\}$ is pointed, then P is an integral polyhedron.

TDI: An inequality system property

Careful!

▶ TDI is a property of inequality description $Ax \le b$, not of the polyhedron $P = \{x : Ax \le b\}$

Proposition

Every polyhedron P can be represented by a TDI linear inequality system.

► Integral polyhedra are precisely those for which there is a TDI representation with the right-hand side *b* integral