

Agenda

Dataset Introduction

Dataset Objective

Masks Explanation

Problems with Masks

Possible Workflow Processes

Evaluation Criteria

Questions from my Side

Deep Learning Algorithms in Predicting Prostate Cancer

Dataset Introduction

Dataset

~21,000 H&E stained prostate biopsy images

• **Size:** 383 GB

• Format: TIFF (high resolution)

• Labels: Yes (labelled by pathologists)

• Masks: Yes (labelled areas of interest by pathologists)

Source from Organizations ~(50:50)

*Note that these 2 sources have different masking techniques

Dataset Objective

Pathologist Labelling Process and response variable

Masking Explanation

Radbound

Mask colors and description

- 0: background (non tissue) or unknown
- 1: stroma (connective tissue, non-epithelium tissue)
- 2: healthy (benign) epitheliun
- 3: cancerous epithelium (Gleason 3)
- 4: cancerous epithelium (Gleason 4
- 5: cancerous epithelium (Gleason 5)

Karolinska

Mask colors and description

- [0]: background (non tissue) or unknown
- [1]: benign tissue (stroma and epithelium combined)
- [2]: cancerous tissue (stroma and epithelium combined

Problems with Masks

Masks are not the same

- From previous slide, obvious that both sources have different masking techniques
- If want to use masks, need to find way to standardize these masks such that they will be close to similar

No masks in production

- In production, just the image will be available and no masks will be available
- A segmentation model must be trained to produce/predict masks of the images
- If predict using mask in test set, already considered data leakage

Possible Workflow Processes

One Stage Model (No Mask)

Evaluation – Quadratic Weighted Kappa (QWK)

QWK with **N** classes

$$\kappa = 1 - rac{\sum_{i,j} w_{i,j} O_{i,j}}{\sum_{i,j} w_{i,j} E_{i,j}}$$

Observed Confusion Matrix

N x N confusion matrix of prediction classification

Expected Confusion Matrix

N x N confusion matrix under the assumption of no correlation among classes. Outer product of actual and predicted labels.

E = np.outer(actual, predicted)

Penalty matrix, N x N

$$w_{i,j} = \frac{(i-j)^2}{(N-1)^2}$$

N x N confusion matrix of penalties. If predicted is equal to actual, zero penalty.

Why use QWK?

- Allocate a higher penalty score if our prediction is further away from the actual value.
- Hierarchy matters in this case. Predicting ISUP grade 1 for sample supposedly grade 5 has huge consequences.

isup_grade
0
1
2
4
3
5

$$\frac{(2-1)^2}{(5-1)^2} = 0.0625$$

$$\frac{(2-4)^2}{(5-1)^2} = 0.25$$

Evaluation – Quadratic Weighted Kappa (QWK)

QWK Values Interpretation

Range of Quadratic Weighted Kappa	Concordance
Negative	poor
0.01-0.20	slight
0.21-0.40	fair
0.41-0.60	moderate
0.61-0.80	substantial
0.81-1	almost perfect

Usage in Python

From sklearn library

```
cohen_kappa_score(actual, pred, labels=None, weights= 'quadrati
c', sample_weight=None)
```

Questions from my side

- Is the project name flexible? Or must I follow back the original one in the STAT 8002 Project list? If not, I was thinking of **Deep Learning Algorithms in Predicting Prostate Cancer.** Feel free to suggest otherwise.
- Based on your experience, is using or not using mask in modelling better?
- Is a triweekly (once in 3 weeks) catchup alright with you? With emails in between if needed (e.g significant findings/breakthrough, quick questions for you)
- Is there anything you feel I missed out in this session that you would like to know?

Project Outline Recap (Flexible)

Introduction

- Dataset information
- Refresh on domain knowledge of prostate cancer

Exploratory Data Analysis (EDA)

- EDA on ISUP score labels to see distribution of labels
- Label distributions for age / other demographics
- Images EDA
- Masks EDA
- Data cleansing process

Modelling & Algorithms

- Benchmark using Resnet/VGG/etc to get benchmark score on test set
- Try a self built model to improve the results
- Highlight structure of self built models
- Compare the results of possible models used
- Evaluated using quadratic weighted kappa or f1-weighted score

Explainability of model results (using best model)

- use SHAP to derive some explainability
- visually show why/how the model makes the classification

•Transfer Learning Potential (optional and if time permits)

- see if can be applied to similar H&E stained biopsy images of breast cancer
- evaluate performance

Potential Improvements

Conclusions

