ADAPTIVE NEURAL TREES

"Adaptive Neural Trees", by R. Tanno et al. , from arxiv.org/pdf/1807.06699.pdf

2019 ICLR International Conference on Learning Representations

by R. Tanno et al.

Presented by

61605041 Lada Phonrungwong

ADAPTIVE NEURAL TREES

2019 ICLR International Conference on Learning Representations

"Adaptive Neural Trees", by R. Tanno et al., from arxiv.org/pdf/1807.06699.pdf

by
Ryutaro Tanno
Kai Arulkumaran
Daniel C. Alexander
Antonio Criminisi
Aditya Nori

OUTLINE

1. ANTs?

6. Refinement Phase

2. Model Topology

7. Algorithm

3. Model Operations

8. Compare

4. Loss Function

9. Training Time

5. Growth Phase

10. Discovered Architectures

1. ANTS?

ADAPTIVE NEURAL TREES

source: en.m.wikipedia.org/wiki/Neural_network

DECISION TREE

source: www.geeksforgeeks.org/decision-tree

- โครงสร้าง ตาม ข้อมูลฝึกสอน
- พึ่ง feature engineering มาก
- ตอนใช้ คำนวณแค่บางส่วน
- คน สามารถ เข้าใจ ที่มาผลลัพธ์

NEURAL NETWORK

- โครงสร้าง ตาม ที่กำหนดไว้ล่วงหน้า
- ไม่พึ่ง feature engineering มาก
- ตอนใช้ คำนวณทำหมด
- คน เข้าใจ ที่มาผลลัพธ์ ยาก

 $source: en.m. wikipedia.org/wiki/Neural_network$

ADAPTIVE NEURAL TREES

ANTs = DT + NN

DECISION TREE

NEURAL NETWORK

2. Model Topology

Model Topology

Binary Trees

$$\mathbb{T}:=\{\mathcal{N},\mathcal{E}\}$$

"Adaptive Neural Trees", by R. Tanno et al., from arxiv.org/pdf/1807.06699.pdf

3. Model Operations

Model Operations

$$\mathbb{O}=(\mathcal{R},\mathcal{T},\mathcal{S})$$
 $\Theta=(oldsymbol{ heta},oldsymbol{\psi},oldsymbol{\phi})$
Routers Transformers Solvers
 $r_j^{oldsymbol{ heta}}$ $t_e^{oldsymbol{\psi}}$ $s_l^{oldsymbol{\phi}}$

Model Operations

Model Operations : Routers

"Adaptive Neural Trees", by R. Tanno et al. , from arxiv.org/pdf/1807.06699.pdf

Model Operations: Transformers

Transformers

E.g. a single convolutional layer followed by ReLU

Model Operations : Solvers

$$\mathcal{X}_l \to \mathcal{Y}$$

Solvers E.g. A linear classifier

4. Loss Function

Loss Function

- 1) growth phase Learn model architecture -> local optimisation
- 2) refinement phase-> global optimisation

For both phases, use the negative log-likelihood (NLL) to minimise:

$$-\log p(\mathbf{Y}|\mathbf{X},\Theta) = -\sum_{n=1}^{N} \log \left(\sum_{l=1}^{L} \pi_{l}^{\boldsymbol{\theta},\boldsymbol{\psi}}(\mathbf{x}^{(n)}) \, p_{l}^{\boldsymbol{\phi},\boldsymbol{\psi}}(\mathbf{y}^{(n)}) \right)$$

Loss Function

$$oxed{\mathbf{X}} = \{\mathbf{x}^{(1)},...,\mathbf{x}^{(N)}\}, \; \mathbf{Y} = \{\mathbf{y}^{(1)},...,\mathbf{y}^{(N)}\}$$

$$-\text{log } p(\mathbf{Y}|\mathbf{X},\Theta) = -\sum_{n=1}^{N} \text{log } (\sum_{l=1}^{L} \pi_{l}^{\boldsymbol{\theta},\boldsymbol{\psi}}(\mathbf{x}^{(n)}) \, p_{l}^{\boldsymbol{\phi},\boldsymbol{\psi}}(\mathbf{y}^{(n)}))$$

$$\pi_{l}^{\boldsymbol{\psi},\boldsymbol{\theta}}(\mathbf{x}) = \prod_{r_{j}^{\boldsymbol{\theta}} \in \mathcal{P}_{l}} r_{j}^{\boldsymbol{\theta}}(\mathbf{x}_{j}^{\boldsymbol{\psi}})^{\mathbb{1}_{l \swarrow j}} \cdot \left(1 - r_{j}^{\boldsymbol{\theta}}(\mathbf{x}_{j}^{\boldsymbol{\psi}})\right)^{1 - \mathbb{1}_{l \swarrow j}}$$

$$\underbrace{p(\mathbf{y} | \mathbf{x}, z_{l} = 1, \boldsymbol{\phi}, \boldsymbol{\psi})}_{\text{Leaf-specific prediction. } p_{l}^{\boldsymbol{\phi}, \boldsymbol{\psi}}}$$

$$p(\mathbf{y}|\mathbf{x}, z_l = 1, \boldsymbol{\phi}, \boldsymbol{\psi})$$

5. Growth Phase

Growth Phase

Evaluate 3 choices at each leaf node

- (1) split data by splitting the node with a new router R
- (2) deepen transform increases depth edge by adding a new transformer T
- (3) keep retains the current model

And minimising NLL via gradient descent

Growth Phase

select the model with the lowest NLL

This process is repeated until no more "split data" or "deepen transform" operations pass the validation test

"Adaptive Neural Trees", by R. Tanno et al. , from arxiv.org/pdf/1807.06699.pdf

6. Refinement Phase

Refinement Phase

After growth phase, performing global optimisation to refine the parameters of the model

Gradient descent on the NLL with respect to the parameters of all modules in the graph

"Adaptive Neural Trees", by R. Tanno et al. , from arxiv.org/pdf/1807.06699.pdf

path probabilities (blue)

(b) After refinement

"Adaptive Neural Trees", by R. Tanno et al., from arxiv.org/pdf/1807.06699.pdf

7. Algorithm

Algorithm

Algorithm 1 ANT Optimisation

Initialise topology \mathbb{T} and parameters $\mathbb{O} \quad \triangleright \mathbb{T}$ is set to a root node with one solver and one transformer

Set the root node "suboptimal"

while true do

 \triangleright Growth of \mathbb{T} begins

Freeze all parameters O

Pick next "suboptimal" leaf node $l \in \mathcal{N}_{leaf}$ in the breadth-first order

Add (1) router to l and train new parameters

▷ Split data

Add (2) transformer to l and train new parameters \triangleright Deepen transform

Add (1) or (2) to \mathbb{T} if validation error decreases, otherwise set l to "optimal"

Add any new modules to \mathbb{O}

if no "suboptimal" leaves remain then

Break

Unfreeze and train all parameters in O

 \triangleright Global refinement with fixed \mathbb{T}

8. Compare

Compare

"Adaptive Neural Trees", by R. Tanno et al., from arxiv.org/pdf/1807.06699.pdf

9. Training Time

Training Time

A single Titan X GPU

	Growth		Fine-tune	
Model	Time	Epochs	Time	Epochs
All-CNN (baseline)	_	_	1.1 (hr)	200
ANT-CIFAR10-A	1.3 (hr)	236	1.5 (hr)	200
ANT-CIFAR10-B	0.8 (hr)	313	0.9 (hr)	200
ANT-CIFAR10-C	0.7 (hr)	285	0.8 (hr)	200

"Adaptive Neural Trees", by R. Tanno et al., from arxiv.org/pdf/1807.06699.pdf

10. Discovered Architectures

"Adaptive Neural Trees", by R. Tanno et al. , from arxiv.org/pdf/1807.06699.pdf

"Adaptive Neural Trees", by R. Tanno et al., from arxiv.org/pdf/1807.06699.pdf

Routers separate examples based on their classes (red histograms)

Most architectures learn a few levels of features before first splits

"Adaptive Neural Trees", by R. Tanno et al. , from arxiv.org/pdf/1807.06699.pdf

All architectures are unbalanced ->Some samples be easier to classify than others

->Traditional DT algorithms, but not NN models that prespecified architectures

Summary

"Adaptive Neural Trees", by R. Tanno et al., from arxiv.org/pdf/1807.06699.pdf

Thank You & Discussion

