Table of Contents

Read in the file
Create object for playing audio
Plot audio
spectrum
pass filter)
signal and the band limited signal 4 AM modulation of the recorded signal
4
Spectrum of modulated signal
Detection based on Hilbert Transform and then FFT
between the original signal and the transmitted message
signal + Noise 8
Spectrum of modulated signal
Detection based on Hilbert Transform and then FFT for noise signal 10 the average
error between the original signal and the transmitted message
Create object for playing audio
Plot audio
Plot audio
Plot audio
Plot audio
Plot audio
Plot audio
Plot audio
Plot audio
Plot audio
Plot audio

Read in the file

```
[m, Fs] = audioread('test_message.mp3');
T = 1 / Fs; L =
length(m); t =
(0:L-1) * T;
```

Create object for playing audio

```
pl = audioplayer(m,Fs); % original signal
%pl.play;
```

Plot audio

```
N = size(m, 1); figure;
stem(t, m);
```


Plot the spectrum

```
dm = Fs / N; w = (-(N/2):(N/2)-1)*dm; y = fft(m) / N;
% For normalizing y2 = fftshift(y); figure; plot(w,
abs(y2)); title(' Amplitude Spectrum');
xlabel('Frequency(Hz)');
```


filtering at 4K Hz (Low pass filter)

lowpass(m,4000,Fs); filter_m =
lowpass(m,4000,Fs);

the average error between the original signal and the band limited signal.

```
err = immse(m,filter_m);
disp("the error =") disp
(err)

the error =
5.2813e-09
```

AM modulation of the recorded signal

AM modulate signal = ammod(m,Fs,1000000);

Spectrum of modulated signal

spectrumAM = fft(AM modulate signal);

lengthOfSignal = length(m); normalizedSpectrumAm=
abs(spectrumAM/lengthOfSignal); frequencySpectrumAm=
normalizedSpectrumAm(1:lengthOfSignal/2+1);
frequencySpectrumAm(2:end-1) = 2*frequencySpectrumAm(2:end-1);
figure; plot(frequencySpectrumAm); title(' Spectrum of AM signal'); xlabel('Frequency(Hz)');

Envelope Detection based on Hilbert Transform and then FFT

```
envelope = abs (hilbert (AM_modulate_signal));
figure; plot(envelope); title(' Spectrum of AM signal');
```


the average error between the original signal and the transmitted message.

```
err = immse(m,envelope);
disp("the error =") disp
(err)

the error =
0.0423
```

signal with noise

```
Noise signal = awgn(m, 10);
```

AM modulation of the recorded signal + Noise

```
AM modulate noise signal = ammod(Noise signal, Fs, 1000000);
```

Spectrum of modulated signal

```
spectrumAM = fft(AM_modulate_noise_signal); lengthOfSignal =
length(m); normalizedSpectrumAm= abs(spectrumAM/lengthOfSignal);
frequencySpectrumAm= normalizedSpectrumAm(1:lengthOfSignal/2+1);
frequencySpectrumAm(2:end-1) = 2*frequencySpectrumAm(2:end-1);
figure; plot(frequencySpectrumAm); title(' Spectrum of AM noise
signal'); xlabel('Frequency(Hz)');
```


Envelope Detection based on Hilbert Transform and then FFT for noise signal

envelope = abs (hilbert (AM_modulate_noise_signal));
figure; plot(envelope); title('AM noise signal');

the average error between the original signal and the transmitted message.

```
err = immse(m,envelope);
disp("the error =") disp
(err)

the error =
0.1421
```

FM modulatiom Read in the file

```
[m, Fs] = audioread('test_message.mp3');
T = 1 / Fs; L =
length(m); t =
(0:L-1) * T;
```

Create object for playing audio

```
pl = audioplayer(m,Fs); % original signal
```

%pl.play;

Plot audio

N = size(m, 1); figure; stem(t, m); title('message Timedomain'); xlabel('time(seconds)');

Plot the spectrum

```
dm = Fs / N; w = (-(N/2):(N/2)-1)*dm; y = fft(m) / N;
% For normalizing y2 = fftshift(y); figure; plot(w,
abs(y2)); title(' Amplitude Spectrum');
xlabel('Frequency(Hz)');
```


filtering at 4K Hz (Low pass filter)

lowpass(m,4000,Fs); filter_m =
lowpass(m,4000,Fs);

the average error between the original signal and the band limited signal.

```
err = immse(m,filter_m);
disp("the error =") disp
(err)

the error =
5.2813e-09
```

FM modulation of the recorded signal

FM modulate signal = fmmod(m,Fs,1000000,2);

Spectrum of modulated signal

spectrumFM = fft(FM modulate signal);

lengthOfSignal = length(m); normalizedSpectrumFm=
abs(spectrumFM/lengthOfSignal); frequencySpectrumFm=
normalizedSpectrumFm(1:lengthOfSignal/2+1);
frequencySpectrumFm(2:end-1) = 2*frequencySpectrumFm(2:end-1);
figure; plot(frequencySpectrumFm); title(' Spectrum of FM signal'); xlabel('Frequency(Hz)');

10

Frequency (kHz)

15

20

0

5

Envelope Detection based on Hilbert Transform and then FFT

```
envelope = abs (hilbert (FM_modulate_signal));
figure; plot(envelope); title(' Spectrum of FM signal');
```


with noise

Noise signal = awgn(m, 10);

AM modulation of the recorded signal + Noise

FM modulate noise signal = fmmod(Noise signal, Fs, 1000000, 2);

Spectrum of modulated signal

spectrumFM = fft(AM_modulate_noise_signal); lengthOfSignal =
length(m); normalizedSpectrumFm= abs(spectrumFM/lengthOfSignal);
frequencySpectrumFm= normalizedSpectrumFm(1:lengthOfSignal/2+1);
frequencySpectrumFm(2:end-1) = 2*frequencySpectrumFm(2:end-1);
figure; plot(frequencySpectrumFm); title(' Spectrum of FM noise
signal'); xlabel('Frequency(Hz)');

Envelope Detection based on Hilbert Transform and then FFT for noise signal

```
envelope = abs (hilbert (AM_modulate_noise_signal));
figure; plot(envelope); title('FM noise signal');
```


Published with MATLAB® R2021a