1

Gate Assignment 2

Yashas Tadikamalla - AI20BTECH11027

Download all python codes from

https://github.com/YashasTadikamalla/EE3900/blob/main/GateAssignment2/codes

and latex-tikz codes from

https://github.com/YashasTadikamalla/EE3900/blob/main/GateAssignment2/GateAssignment2.tex

1 Problem (EC-2010 Q15)

Two discrete time systems with impulse responses $h_1[n] = \delta[n-1]$ and $h_2[n] = \delta[n-2]$ are connected in cascade. The overall impulse response of the cascaded system is

- 1) $\delta[n-1] + \delta[n-2]$
- 2) $\delta[n-4]$
- 3) $\delta[n-3]$
- 4) $\delta[n-1]\delta[n-2]$

2 Solution

Definition 2.1 (Discrete Time Fourier Transform). It is the member of the Fourier transform family that operates on aperiodic, discrete signals. If x[n] is the input signal in time domain, its DTFT is $X(\Omega)$, a complex function in frequency domain.

$$X(\Omega) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\Omega k}$$
 (2.0.1)

Definition 2.2 (Inverse DTFT). If $X(\Omega)$ is the DTFT of x[n], then x[n] is the inverse DTFT of $X(\Omega)$.

Lemma 2.1. For any real c, if $x[n] = \delta[n-c]$, then

$$X(\Omega) = e^{-j\Omega c} \tag{2.0.2}$$

Proof.

$$X(\Omega) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\Omega k} = \sum_{k=-\infty}^{\infty} \delta[k-c]e^{-j\Omega k} \quad (2.0.3)$$

$$=\delta[0]e^{-j\Omega c}=e^{-j\Omega c} \tag{2.0.4}$$

Corollary 2.1.1. For any real c, if $X(\Omega) = e^{-j\Omega c}$, then $x[n] = \delta[n-c]$

Theorem 2.2 (Convolution theorem). If $x[n] = x_1[n] * x_2[n]$, then the DTFT of x[n] can be given by

$$X(\Omega) = X_1(\Omega)X_2(\Omega) \tag{2.0.5}$$

Theorem 2.3. For a cascade system, the overall impulse response is given by

$$h[n] = h_1[n] * h_2[n]$$
 (2.0.6)

Proof. Given, two impulse responses $h_1[n]$, $h_2[n]$ in cascade. The output signal y[n] for the input signal x[n] is given by

$$y[n] = h_2[n] * (h_1[n] * x)$$
 (2.0.7)

$$= (h_2[n] * h_1[n]) * x[n]$$
 (2.0.8)

$$= (h_1[n] * h_2[n]) * x[n]$$
 (2.0.9)

$$= h[n] * x[n]$$
 (2.0.10)

 $h[n] = h_1[n] * h_2[n]$ is overall impulse response. (Convolution is associative and commutative) \square Given,

$$h_1[n] = \delta[n-1] \tag{2.0.11}$$

$$h_2[n] = \delta[n-2] \tag{2.0.12}$$

To find: h(t). We know,

$$h[n] = h_1[n] * h_2[n]$$
 (2.0.13)

From (2.0.5)

$$H(\Omega) = H_1(\Omega)H_2(\Omega) \tag{2.0.14}$$

Using (2.0.2),

$$H(\Omega) = e^{-j\Omega}e^{-2j\Omega} = e^{-3j\Omega}$$
 (2.0.15)

$$\Rightarrow h[n] = \delta[n-3] \tag{2.0.16}$$

Option 3 is the correct answer.

Theorem 2.4. If
$$y[n] = x[n] * \delta[n - n_0]$$
, then $y[n] = x[n - n_0]$

Proof.

$$y[n] = x[n] * \delta[n - n_0]$$
 (2.0.17)

$$= \sum_{k=-\infty}^{\infty} x[k]\delta[n - n_0 - k]$$
 (2.0.18)

$$= x[n - n_0] (2.0.19)$$

Fig. 4: Plot of $h_1[n] = \delta[n-1]$

Fig. 4: Plot of $h_2[n] = \delta[n-2]$

Fig. 4: Plot of $h[n] = \delta[n-3]$