Greedy Method

- Most straightforward design technique
 - Most problems have n inputs.
 - **Solution** contains a subset of inputs that satisfies a given constraint.
 - ❖ Feasible solution: Any subset that satisfies the constraint.
 - ❖ Need to find a feasible solution that maximizes or minimizes a given objective function optimal solution.
- > Used to determine a feasible solution that may or may not be optimal
 - ❖ At every point, make a decision that is locally optimal; and hope that it leads to a globally optimal solution.
 - ❖ Leads to a powerful method for getting a solution that works well for a wide range of applications.
 - May not guarantee the best solution.
- ➤ Ultimate goal is to find a *feasible solution* that *minimizes [or maximizes] an objective function*; which is known as an optimal solution

General Abstractions of Greedy Algorithm(for subset paradigm)

```
Algorithm Greedy(a,n)
// a[1:n] contains the n inputs.
         solution:= \Phi; // Initialize the solution.
         for i:=1 to n do
                  x:= Select(a);
                  if Feasible(solution,x) then
                           solution:= Union(solution,x);
         return solution;
```

Select, Feasible and Union functions are implemented depending up on the given problem.

Knapsack Problem(Fractional)

• Given n objects a knapsack or bag. Object i has a weight w_i and the knapsack has a capacity m. If a fraction x_i , $0 < x_i < 1$, of object i is placed into the knapsack, then a profit $p_i x_i$ is earned. The **objective** is to obtain a filling of the knapsack that **maximizes the total profit earned**. Since the knapsack capacity is m, we require the total weight of all chosen objects to be at most m. Formally, the problem can be stated as

$$\begin{aligned} & \underset{1 \leq i \leq n}{\text{maximize}} \sum_{1 \leq i \leq n} p_i x_i \\ & \text{subject to} \sum_{1 \leq i \leq n} w_i x_i \leq m \\ & \text{and } 0 \leq x_i \leq 1, \quad 1 \leq i \leq n \end{aligned}$$

The profits and weights are positive numbers

- A feasible solution is any set $(x_1,x_2,...,x_n)$ satisfying $\sum_{1\leq i\leq n}w_ix_i\leq m$ and $0\leq x_i\leq 1,\quad 1\leq i\leq n$
- An optimal solution is a feasible solution that $\max_{1 \le i \le n} p_i x_i$

Example

Consider the following instance of the knapsack problem n=3, m=20, (p1,p2,p3)=(25,24,15) and (w1,w2,w3)=(18,15,10).

S.No	(x1,x2,x3)	Σw _i x _i	Σp _i x _i
1	(1/2,1/3,1/4)	=18*1/2 +15*1/3+10*1/4 =9+5+2.5 =16.5	=25*1/2+24*1/3*15*1/4 =12.5+8+3.75 =24.25
2	(1,2/15,0)	20	28.2
3	(0,2/3,1)	20	31
4	(0,1,1/2)	20	31.5

Strategy 1: Arrange the objects in the decreasing order of the profits

Object	Profit	Weight
1	25	18
2	24	15
3	15	10

Object	Profit	Weight
1	25	18
2	24	15
3	15	10

Given m = 20, Initialize X =(0,0,0), remaining weight(rw) = m

Object Selected	Is feasible	Profit earned	Remaining Capactiy
Object 1	18 < rw ? Yes	P= 25*1=25	rw = 20-18 =2
Object 2	15< rw ? No partition Object 2	P = 25 + 2/15 *24 = 25 + 3.2 = 28.2	rw = 2 - (2/15) *15 =0

Solution Vector X is (1, 2/15, 0)

Profit earned is 28.2, which is not optimal

Strategy 2: Arrange the objects in the increasing order of the weights

Object	Profit	Weight
3	15	10
2	24	15
1	25	18

Object	Profit	Weight
1	25	18
2	24	15
3	15	10

Given m = 20, Initialize X =(0,0,0), remaining weight(rw) = m

Object Selected	Is feasible	Profit earned	Remaining Capactiy
Object 3	10 < rw ? Yes	P= 15*1=15	rw = 20 - 10 = 10
Object 2	15< rw ? No partition Object 2	P = 15 + 10/15 *24 = 15 + 14.4 = 29.4	rw = 10 - (10/15) *15 =0

Solution Vector X is (0, 2/3, 1)

Profit earned is 29.4 which is not optimal

Strategy 3: Arrange the objects in the decreasing order of the P/W ratios

- Calculate P/W ratio and
- arrange the objects in the decreasing order of P/W ratios

Object	Profit(P _i)	Weight(W _i)	P _i /W _i
1	25	18	1.3
2	24	15	1.6
3	15	10	1.5

Object	Profit(P _i)	Weight(W _i)	P _i /W _i
2	24	15	1.6
3	15	10	1.5
1	25	18	1.3

Given m = 20, Initialize X =(0,0,0), remaining weight(rw) = m

Object Selected	Is feasible	Profit earned	Remaining Capactiy
Object 2	15 < rw ? Yes	P= 24*1=24	rw = 20 - 15 = 5
Object 3	10< rw ? No partition Object 3	P = 24 + 5/10 *15 = 24 + 7.5 = 31.5	rw = 5 - (5/10) *10 =0

Solution Vector X is (0, 1, 1/2)

Profit earned is 31.5 which is optimal

```
Algorithm GREEDY _KNAPSACK(P, W, M, X, n)
//P[1:n] and W[1:n] contain the profits and weights respectively of the n
//objects ordered so that P[i]/W[i] >= P[i + 1]/W[i + 1].
//M is the knapsack size and X[1:n] is the solution vector
       X = 0 //initialize solution to zero
       rw = M // rw = remaining knapsack capacity
       for i = 1 to n do
           if W[i] > rw then
              break;
           X[i] = 1
           rw = rw - W[i]
      if i <= n then
        X[i] = rw/W[i];
```