編譯原理教材第63頁367912題

軟件 1804 8209180438 黃柏曛 2020 年 3 月 24 日

1 P63 第 3 题

1.1 使用 C 或是 Pascal 的语言编写过程 GetChar、GetBC 和 Concat

1.1.1 GetChar

```
void Getchar()
{
    if(flag == 0)
    {
        if((fp = fopen("1.txt","r")) == NULL)
        {
            printf("cannot open this file\n");
            exit(0);
        }
    }
    flag++;
    character = fgetc(fp);
    if(character == EOF) {
        fclose(fp);
    }
}
```

1.1.2 GetBC

```
void Getbc()
{
  if(character == EOF)
    return;
  while(character == ' ' || character == '\n' || character == '\t')
    Getchar();
}
```

1.1.3 Concat

```
void Concat()
{
    if(i == 0)
    {
        token[0] = character;
        token[1] = '/0';
        i = 1;
    }
    else
    {
        token[i] = character;
        i++;
        token[i] = '/0';
    }
}
```

2 P63 第 6 题

2.1 令 A、B 和 C 是任意正规式,证明以下关系成立

$$A \mid A = A$$
$$(A^*)^* = A^*$$
$$A^* = \varepsilon \mid AA^*$$
$$(AB)^*A = A(BA)^*$$

$$(A \mid B)^* = (A^*B^*)^* = (A^* \mid B^*)^*$$

 $A = b \mid aA$ 当且仅当 $A = a^*b$

2.1.1
$$A \mid A = A$$

抽取律

$$L(A \mid A) = L(A) \cup L(A) = L(A)$$

2.1.2 $(A^*)^* = A^*$

证:

$$L(A^* \cdot A^* \cdots A^*) = L(A^*)$$

$$\iff L(A \cdot A \cdot A \cdot A \cdots A) = L(A \cdots A)$$

$$\iff L(A^*) = L((A^*)^*)$$

2.1.3 $A^* = \varepsilon \mid AA^*$

证:

$$\begin{split} L(\varepsilon \mid AA^{\star}) &= L(\varepsilon) \cup L(A)L(A^{\star}) \\ &= L(\varepsilon) \cup L(A)(L(A))^{\star} \\ &= L(\varepsilon) \cup L(A) \cup (L(A)) \cup \cdots \cup \cdots \\ &= (L(A))^{\star} = L(A^{\star}) \end{split}$$

综合上述,所以原式成立。

2.1.4
$$(AB)^*A = A(BA)^*$$

证:

$$((AB^0) \mid (AB^1) \cdots ((AB)^N)) \cdot A = \varepsilon A \mid A \cdot (AB)^1 \cdots$$
$$= A \cdot \varepsilon \mid A(BA)^1 \mid \cdots$$
$$= A(BA)^*$$

2.1.5
$$(A \mid B)^* = (A^*B^*)^* = (A^* \mid B^*)^*$$
if:

证明
$$(A \mid B)^* = (A^*B^*)^*$$

 $L(A) \subseteq L(A^*)L(B^*)$
 $L(B) \subseteq L(A^*)L(B^*)$
 $L(A) \cup L(B) \subseteq L(A^*)L(B^*)$
 $(L(A) \cup L(B))^* \subseteq (L(A^*)L(B^*))^*$
又 $:: L(A) \subseteq L(A) \cup L(B)$
 $L(B) \subseteq L(A) \cup L(B)$
 $:: L(A)^* \cdot L(B^*) \subseteq ((L(A) \cup L(B))^*)^2$
 $L(A)^* \cdot L(B^*) \subseteq (L(A) \cup L(B))^*$
 $(L(A)^* \cdot L(B^*))^* \subseteq (L(A) \cup L(B))^*$
 $:: (L(A) \cdot L(B))^* = (L(A^*) \cup L(B^*))^*$
 $:: (A \mid B)^* = (A^*B^*)^*$ 成立

证明
$$(A \mid B)^* = (A^* \mid B^*)^*$$
 $L(A) \subseteq L(A^*) \cup L(B^*)$
 $L(B) \subseteq L(A^*) \cup L(B^*)$
 $L(A) \cup L(B) \subseteq L(A^*) \cup L(B^*)$
 $(L(A) \cup L(B) \subseteq (L(A^*))^* \cup L(B^*))^*$
 $\mathbb{X} : L(A^*) \subseteq (L(A) \cup L(B))^*$
 $L(B^*) \subseteq (L(A) \cup L(B))^*$
 $(L(A^*) \cup L(B^*))^* \subseteq (L(A) \cup L(B))^*$

综合上述 $\therefore (A \mid B)^* = (A^* \mid B^*)^*$ 成立 所以原式成立

2.1.6
$$A = b \mid aA$$
 当且仅当 $A = a^*b$ 若 $A = a^*b$ 则 $A = b \mid aA$

$$\begin{split} L(A) &= L(a)^*L(b) \\ &= L(\varepsilon)L(b) \cup L(a)^*L(b) \\ &= L(b) \cup L(a)^*L(b) \\ &= L(b) \cup L(a)L(a)^*L(b) \\ &= L(b \mid aA) \end{split}$$
再证当 $A = b \mid aA$ 则 $A = a^*b$ $L(A) = L(b) \cup L(aA) \\ &= L(b)L(\varepsilon) \cup L(a)L(A) \\ &= L(a)^*L(b) \end{split}$

综上原式成立

3 P63 第 7 题

3.1 构造下列正则相应的 DFA

3.1.1 $1(0 \mid 1) \times 101$

3.1.2 1(1010*11(010)*1)*0

3.1.3 0*10*10*10*

3.1.4 $(00 \mid 11)^{\star}((01 \mid 10)(00 \mid 11)^{\star}(01 \mid 10)(00 \mid 11)^{\star})^{\star}$

4 P63 第 9 题

对下面情况给出 DFA 及正规表达式。

4.1 0,1 上的含有子串 010 的所有串

4.2 0,1 上不含子串 010 的所有串

5 P63 第 12 题

5.1 a 确定化与最小化

解:

确定化

最小化

5.2 b 确定化与最小化

确定化

显然此 NFA 已确定化。

最小化

