El algoritmo ADIOS

Contenido

- ¿Qué es?
- Ventajas
- Ideas generales
- Conceptos útiles
- El procedimiento MEX, caminos generalizados
- Esquema del algoritmo
- Dificultades e implementación. Aplicaciones

¿Qué es?

El problema:

Inferir reglas subyacentes en corpus no anotados.

ADIOS: Automatic Distillation of Structure Z. Solan, D. Horn, E. Ruppin, S. Edelman (TAU)

```
* Cindy thinks that George likes football #
```

- * Cindy tries that George plays handball #
- * Cindy attempt that George is bored #
- * Cindy believes that Ana is bored #
- * Cindy enjoy that playing piano is hard #

```
Patrón: P21 (Cindy,E22,that)
Clase de equivalencia: E22 {attempt,believes,enjoy,thinks,tries}
```

Ventajas y características

Ventajas y características

- No supervisado
- Corpus no estructurado
- Combina probabilidades y reglas

Desventajas

• Infiere sólo gramáticas limitadas

Ideas generales del algoritmo

Dos

Corpus, léxico, símbolos especiales

Léxico Cindy thinks that George likes footba símbolos * Cindy tries that George plays Ana hard especiales: is Cindy attempt that George is b George likes Cindy believes that Ana is borbelieves playing begin Cindy enjoy that playing piand bored plays that football thinks handball tries end

Cargar el corpus en un pseudografo

Ideas generales del algoritmo

En cada camino:

Detección de patrones y reescritura del grafo

clases de equivalencia y caminos generalizados

Conceptos útiles

Definición de P_R y P_L

Dado un camino de búsqueda $S = (e_1 \rightarrow e_2 \rightarrow ... \rightarrow e_k) = (e_1; e_k)$

$$P_R(e_i; e_j) = p(e_j | e_i e_{i+1} e_{i+2} \dots e_{j-1}) = \frac{l(e_i; e_j)}{l(e_i; e_{j-1})} \text{ (si } i < j)$$

$$P_R(e_i; e_i) = \frac{l(e_i)}{\sum_{x=0}^{N} l(e_x)}$$
 IDEM p/ \mathbf{P}_L

Más conceptos útiles

Matriz M

$$egin{aligned} \mathbf{iZ} \ \mathbf{M} \ M_{ij}(\mathbf{S}) &= \left\{ egin{array}{ll} P_R(e_i;e_j) & ext{if } i > j \ P(e_i) & ext{if } i < j \ P(e_j|e_j) & ext{p}(e_j|e_j) & ext{$$

• D_R y D_L (Relaciones de decrecimiento)

$$D_R(e_i; e_j) = P_R(e_i; e_j) / P_R(e_i; e_{j-1})$$

Prueba de significación

$$B(e_i; e_j) = \sum_{x=0}^{l(e_i; e_j)} Binom(x, l(e_i; e_{j-1}), \eta P_R(e_i; e_{j-1})) < \alpha; \alpha \ll 1.$$

El procedimiento MEX (simplificado)

Sea p el camino a analizar

- Calcular P_R y P_L para cada subcamino $e_i \to ... \to e_j$ de p
- Construir $Dr_candidatos$: por cada comienzo posible e_i de un subcamino
 - Por cada final posible e_i de ese subcamino:
 - Si $D_R(e_i; e_j) < \eta$ y la prueba de significación indica que la muestra es significante entonces marcar ese par como un sección candidata.
- Hacer lo mismo de derecha a izquierda (calculo de D_L significantes).
- Buscar las secciones candidatas que pueden definir un patrón: si $D_R(a,b)$ y $D_L(d,c)(c < d)$ son secciones candidatas, deben cumplir:

$$d \ge b - 1 \land c \ge a - 1 \land c < b - 2 \land \neg(c < 0 \land b \ge \#p - 1)$$

Retornar el patrón candidato con menor significación

Esquema del algoritmo:

Inicializacion:

Repetir hasta el

fin del archivo:

- Leer el archivo hasta encontrar el final de una secuencia
- Cargar los símbolos encontrados como un nuevo camino en el pseudografo

- Inicialización
- Destilación de patrones
- Generalización: primer paso
- Generalización: bootstrap (repetir)

Destilación de patrones

Con cada camino:

- Ejecutar MEX en ese camino
- Si se obtuvo un patrón reescribir (rewire) el grafo

Esquema del algoritmo:

- Gen: primer paso
- Con cada camino:
- Por cada posición posible de una ventana de largo L:
 - Considerar todos los huecos posibles en esa ventana y ejecutar MEX para cada caso
- Seleccionar el mejor patrón encontrado y reescribir el grafo (nueva clase de equiv)

- Inicialización
- Destilación de patrones
- Generalización: primer paso
- Generalización: bootstrap (repetir)

Esquema del algoritmo:

Gen: bootstrap

Con cada camino:

- Con cada posición de una ventana de largo L
 - Construir el camino generalizado
 - Reducir el camino generalizado
 - Realizar MEX sobre el camino generalizado reducido
- Si se detectó un patrón:
 - ¿nueva clase de equiv?
 - Reescribir el grafo

- Inicialización
- Destilación de patrones
- Generalización: primer paso
- Generalización: bootstrap (repetir)

Dificultades

- Calculo de la binomial
- Especificación del algoritmo
- Definición de camino generalizado
- Adios-lite
- Prueba de significación

Software utilizado

- cvs
- eclipse
- JDK 6
- Librerias de apache y Jgraph
- ArgoUML

Diseño

Diseño

Experiencias de la implementación

- Algo de documentación
- Testing
- Problemas con la especificación
- Resultados del diseño OO

Bibliografía

- Z. Solan, D. Horn, E. Ruppin and S. Edelman, Unsupervised learning of natural languages. Editado por James L. McClelland, Carnegie Mellon University, Pittsburgh, PA, y aprobado June 14, 2005.
- D. S. Moore, Estadística aplicada básica, Antoni Bosch editor, 1995.
- M. Triola, Estadística elemental, Addison Wesley Longman, 7ma. ed., 2000.
- D. K. Hildebrand, L. Ott, Estadística aplicada a la administración y a la economía, Addison Wesley Longman, 3ra. ed, 1998.
- J. Makkonen, H. Ahonen-Myka and Marko Salmenkivi, Applying Semantic Classes in Event Detection and Tracking.
- J. Weeds, D. Weir and D. McCarthy, Characterising Measures of Lexical Distributional Similarity.

Bibliografía

- J. Brookshear, Lenguajes formales, autómatas y complejidad. Addison-Wesley Iberoamericana.
- L. A. Ballesteros, Resolving ambiguity for cross-language information retrieval: A dictionary approach, Univ. of Massachusetts, 2001.
- N. K. Bosa, P. Liang, Neural Network Fundamentals with Graphs, Algorithms, and Applications.
- P. G. Hoel, S. C. Port, C. J. Stone, Introduction to Stochastic Proceses, Waveland Press, 1987.
- C. M. Grinstead, J. L. Snell, Introduction to Probability, AMS, second revised edition, 1997.
- G. Infante Lopez, Two level grammars for natural language parsing, Soluciones Gráficas, 2005.

Agradecimientos y preguntas

