Entrepôt de données : Analyse des Données de Football

I. Contexte	2
II. Le modèle de données	2
III. Le datamart	3
A. Dimensions	3
B. Le fait	4
C. Modèle en étoile	4
IV. La qualité des données	5
A. Données manquantes	5
B. Données non uniformes	6
V. Résultats	6
A. Composition des équipes au fil des saisons	6
B. Caractéristiques des joueurs au fil des saisons	9
C. Matchs gagnés par équipes	13
1. Par saison	13
2. Par ligue	15
3. Par équipes	17
D. Buts marqués par équipes	20
1. Par saison	20
2. Par ligue	22
3. Par équipes	25
E. Radar des joueurs par saison	28
1. Par rapport à tous les autres joueurs	28
2. Par rapport à leur équipe	31
V. Les difficultés rencontrées	38

Contexte

Pour ce projet, nous avions accès à une base de données sur les statistiques de football. Cette base contient des informations sur les matchs, les ligues, les pays, les joueurs et les équipes. A partir de cette base, le but est de construire un datamart à l'aide de Talend afin d'extraire des informations pertinentes et réaliser des grâce d'évolution et comparatifs.

II. Le modèle de données

Figure : Modèle de données

Dans un 1er temps, on a construit le modèle de données pour l'exploiter dans Talend. Pour cela, nous nous sommes basées sur le modèle déjà existant. Nous avons simplement ajouté des attributs dans le table "player_attr" qui nous sont nécessaires pour réaliser les radars de compétences des joueurs.

III. Le datamart

Ensuite, nous avons déterminé le schéma du datamart à partir des restitutions qui nous ont été demandées ainsi que du modèle de données.

A. Dimensions

Figure: Tables de dimensions

Dans un premier temps, on a déterminé 4 dimensions:

- league: qui fusionne les tables league et country
- Player qui fusionne les tables player et player_attr
- Time qui contient la saison ainsi que les dates de début et de fin de cette saison
- Team: qui contient le nom des équipes

B. Le fait

Figure : Table de fait

Pour le fait, on a sélectionné la table match et on a supprimé les attributs qui ne nous ont pas servis pour ce projet. En plus des clés étrangères, on a 4 mesures. Pour chaque équipe, on a le nombre de goals et si l'équipe a gagné. Si l'équipe a gagné, la valeur de la mesure est de 1, sinon c'est de 0. Pour déterminer cette valeur, on compare le nombre de goals.

C. Modèle en étoile

IV. La qualité des données

A. Données manquantes

Dans la table MATCH, certaines lignes ne contiennent pas d'informations sur les joueurs qui ont participé :

Figure : données manquantes dans la tables MATCH (partie)

Mais le home_team_api_id et le away_team_id, ainsi que le nombre de buts marqués par chaque équipe pour chaque match sont tous enregistrés :

Figure : Vérification des manques de données avec Talend

Par conséquent, les données dans la table MATCH ne présentent pas de problème pour les analyses liées aux équipes. Pour les analyses des joueurs, ce dont nous avons surtout besoin, ce sont les données des tables PLAYER et PLAYER_ATTRIBUTE. Le rôle de la table MATCH dans l'analyse des joueurs est de trouver l'équipe à laquelle le joueur appartient et ses collègues.

De plus, nous constatons qu'il y un total de huit enregistrements de données dans la table match, tandis que la table PLAYER_ATTRIBUTE contient en tout dix saisons de données.

B. Données non uniformes

Sur la table PLAYER, nous constatons que le format des noms des joueurs (player_name) n'est pas uniforme. Certains joueurs ont leur prénom et nom, certains n'ont que leur prénom ou nom et d'autres ont un chiffre à la fin qui est peut-être leur numéro de maillot.

Figure : player_name ayant un chiffre à la fin

Pour les enregistrements qui n'ont que le prénom, nous devons utiliser player_api_id pour déterminer s'ils appartiennent à la même personne que les autres enregistrements. Pour les enregistrements suivis de chiffres, nous devons enlever ces chiffres, cela sera utile pour notre travail à venir. Pour cela, on a utilisé Excel qui a une fonctionnalité permettant de scinder une colonne en 2 grâce à un caractère de séparation, ici la virgule. Ensuite, on a supprimé la colonne contenant les nombres.

V. Résultats

A. Composition des équipes au fil des saisons

Le 1er résultat qu'on a cherché à obtenir est la composition des équipes au fil des saisons. Pour faire cela, on a d'abord créé un Excel où chaque ligne contient une saison et les identifiants d'un joueur et de son équipe qui a joué pendant cette saison. Il n'y a pas de doublons (ce fichier se trouve dans la partie V.Résultats - E.radar des joueurs par saison - 2. Par rapport aux autres équipes à la page 31)

season	~	team_api_id		-	player_id 🔻
2008/2009		team_api_iu	86	=	34480
2008/2009			86		106013
2008/2009			86		38388
2008/2009			86		26458
2008/2009			86		13423
2008/2009			86		38389
2008/2009			86		38798
2008/2009			86		30949
2008/2009			86		38253
2008/2009			86		38383
2008/2009			86		46552
2008/2009			99		37937
2008/2009			99		38780
2008/2009			99		38293
2008/2009			99		148313
2008/2009			99		104411
2008/2009			99		148314
2008/2009			99		37202
2008/2009			99	87	43158
2008/2009			99		9307
2008/2009			99	87	42153
2008/2009			99	87	32690
2008/2009			99	87	38782

Figure : Fichier Excel qui associe à chaque saison un joueur et son équipe

Ensuite, avec Talend, on a réalisé une jointure avec les dimensions team et player pour obtenir les noms.

Figure: Traitement du fichier Excel des joueurs par saison dans Talend

Figure : Récupération des noms des joueurs et des équipes

On souhaitait obtenir tous les joueurs d'une équipe pour une saison donnée sur une seule ligne. Donc on a utilisé tAggregateRow pour regrouper par équipe et par saison. Comme fonction d'agrégation, on a choisi "liste", qui donne la liste de tous les joueurs dans une seule variable.

On a donc obtenu, le fichier Excel suivant où pour chaque ligne, on a le nom de l'équipe, la saison et la liste de tous les joueurs de cette saison pour cette équipe. Comme ce format n'était pas exploitable, on a séparé la colonne des joueurs en plusieurs colonnes. Pour cela, on a utilisé la fonctionnalité d'Excel permettant de scinder une colonne en plusieurs grâce à un séparateur.

Figure : Fichier Excel donnant la liste de tous les joueurs dans une équipe pendant une saison

Finalement, on a affiché le résultat avec PowerBI sous la forme d'un tableau. Il y a aussi un filtre sur les saisons pour sélectionner une saison en particulier.

season	season	team	player1	player2	player3	player4
2008/2009	2008/2009	Aherdeen	Jamie Langfield	Peter Pawlett	Lee Mair	Andrew Considine
2009/2010		AC Bellinzona	Carlo Zotti	Genc Mehmeti	Angelo Raso	lacopo La Rocca
,	,	Académica de Coimbra	Boris Peskovic	Jose Luis Garces	Pedrinho	Orlando
2010/2011		ADO Den Haag	Robert Zwinkels	Bogdan Milic	Ahmed Ammi	Csaba Horvath
2011/2012	2008/2009		Remy Riou	Valter Birsa	Cedric Hengbart	Moussa Narry
2012/2013	2008/2009	Ajax	Maarten Stekelenburg	Santiago Leonardo	Bruno Silva	Oleguer
_ ,	2008/2009	Amadora	Nelson	Hugo Carreira	Hugo Gomes	Nuno Andre Coelho
2013/2014	2008/2009	Arka Gdynia	Norbert Witkowski	Marcin Budzinski	Blazej Telichowski	Bartosz Lawa
2014/2015	2008/2009	Arsenal	Manuel Almunia	Vito Mannone	Bacary Sagna	Kolo Toure
2015/2016	2008/2009	AS Monaco	Stephane Ruffier	Thomas Mangani	Dario Simic	Leandro Cufre
_ 2013/2010	2008/2009	AS Nancy-Lorraine	Gennaro Bracigliano	Joeel Sami	Andre Luiz	Damian Macaluso Roias
	2008/2009	AS Saint-Étienne	Jody Viviani	Sebastien Grax	Efstathios Tavlaridis	Mouhamadou Dabo
	2008/2009	Aston Villa	Brad Friedel	Emile Heskey	Luke Young	Carlos Cuellar
	2008/2009	Atalanta	Ferdinando Coppola	Claudio Rivalta	Gyorgy Garics	Daniele Capelli
	2008/2009	Athletic Club de Bilbao	Gorka Iraizoz Moreno	Eneko Boveda	Andoni Iraola	Aitor Ocio
	2008/2009	Atlético Madrid	Gregory Coupet	Luis Garcia	Luis Perea	Johnny Heitinga
	2008/2009	AZ	Joey Didulica	Brett Holman	Gill Swerts	Kew Jaliens
	2008/2009	Bayer 04 Leverkusen	Rene Adler	Karim Haggui	Gonzalo Castro	Manuel Friedrich
	2008/2009	Beerschot AC	Silvio Proto	Henri Munyaneza	Pieterjan Monteyne	Kurt van Dooren
	2008/2009	Blackburn Rovers	Paul Robinson	Keith Treacy	Andre Ooijer	Christopher Samba
	2008/2009	Bologna	Francesco Antonioli	Luigi Lavecchia	Cristian Zenoni	Vangelis Moras
	2008/2009	Bolton Wanderers	Jussi Jaaskelainen	Euzebiusz Smolarek	Gretar Rafn Steinsson	Gary Cahill
	2008/2009	Borussia Dortmund	Roman Weidenfeller	Robert Kovac	Antonio Rukavina	Neven Subotic
	2008/2009	Borussia Mönchengladbach	Fredric Loehe	Thomas Kleine	Patrick Paauwe	Filip Daems
	2008/2009	BSC Young Boys	Marco Woelfli	Guillermo Ariel Pereyra	Miguel Portillo	Saif Ghezal
	2008/2009	CA Osasuna	Roberto Fernandez	Javier Flano	Cesar Azpilicueta	Miguel Flano
	2008/2009	Cagliari	Federico Marchetti	Cristiano Lupatelli	Carlos Matheu	Diego Luis Breijo Lopez

Figure : Tableau de la composition des équipes filtrées par saison dans PowerBl

B. Caractéristiques des joueurs au fil des saisons

Traitement de la table PLAYER_ATTRIBUTE :

Figure: Traitement de la table PLAYER ATTRIBUTE dans Talend

Dans la table PLAYER_ATTRIBUTE, chaque joueur a plusieurs enregistrements de statistiques de match, et chaque enregistrement a une date. En l'absence d'informations explicites, nous supposons que cela représente les performances d'un joueur lors du match à la date de l'enregistrement. Etant donné que toutes les demandes auxquelles nous devons répondre sont basées sur la saison, lors du traitement des données, nous avons choisi de convertir toutes les dates en saisons.

Nous devons d'abord savoir la date de début et la date de fin pour une saison. En consultant les données de la table MATCH, nous pouvons trouver la date du dernier match de chaque saison :

2008/2009	2008-07-18 00:00:00	2012/2013	2012-07-13 00:00:00
2008/2009	2009-05-31 00:00:00	2012/2013	2013-06-02 00:00:00
2009/2010	2009-07-11 00:00:00	2013/2014	2013-07-13 00:00:00
2009/2010	2010-05-16 00:00:00	2013/2014	2014-05-18 00:00:00
2010/2011	2010-07-17 00:00:00	2014/2015	2014-07-18 00:00:00
2010/2011	2011-05-29 00:00:00	2014/2015	2015-05-31 00:00:00
2011/2012	2011-07-16 00:00:00	2015/2016	2015-07-17 00:00:00
2011/2012	2012-05-23 00:00:00	2015/2016	2016-05-25 00:00:00

Figure : Premier match et dernier match enregistrés pour chaque saison

Nous savons que la date du premier match d'une saison peut différer de la date de début de la saison. Dans la table de dimension SAISON, nous spécifions que la date de début de chaque saison est le 1er juillet de l'année en cours et que la date de fin est le 30 juin de l'année suivante. De cette manière, nous pouvons convertir la date de PLAYER_ATTRIBUTE en saison par une exécution suivante :

Figure : Convertissement de la date à la saison

C'est-à-dire que nous déterminons à quelle saison appartient un enregistrement en vérifiant si la date associée est après juillet.

Ensuite, nous connectons les données produites par le composant tMap au composant tAggregateRow, en regroupant par player_api_id et la saison, afin de calculer la moyenne de chaque performance :

Figure : Exécution du composant tAggregateRow

Nous appelons la table PLAYER_ATTRIBUTE_ALL_TIME qui prend les données sorties de tAggregateRow. En joignant cette table et la table PLAYER par player_api_id, nous obtenons enfin la dimension PLAYER.

Dans la base de données d'origine, la taille et le poids des joueurs sont stockés dans la table PLAYER et ne varient pas avec la saison, seul l'âge des joueurs change au fil des saisons. Nous spécifions que l'âge d'un joueur pour une saison donnée est celui qu'il a le premier jour de cette saison. Par exemple, si la date de naissance d'un joueur est le 01-01-2000, alors son âge pour la saison 2018/2019 est de 18 ans; si la date de naissance d'un joueur est le 2 juillet 2000, alors son âge pour la saison 2018/2019 est de 17 ans.

Nous connectons la table de dimension PLAYER et la table de dimension TIME via une jointure à l'aide de PLAYER.saison et TIME.season. Nous calculons l'âge d'un joueur pour une saison en fonction de sa date de naissance et de la date de début de la saison :

Nous avons donc une table qui contient les caractères (taille, poids et l'âge pour la saison) des joueurs.

Figure : Exemple des caractéristiques du joueur

C. Matchs gagnés par équipes

1. Par saison

Pour déterminer le nombre de matchs gagnés par équipe par saison, on a récupéré, le nom de l'équipe, la saison et les victoires pour away_team et home_team. On a utilisé les 2 équipes car une même équipe peut être parfois home_team et parfois away_team. Il fallait donc additionner les 2 victoires.

Figure : Création d'un fichier pour obtenir toutes les victoires par saison par équipes

Figure : Récupération de la saison, des victoires des équipes et de leur nom

On a ensuite fait une agrégation par saison et équipes avec pour fonction d'agrégation la somme des 2 victoires.

Sur le fichier Excel obtenu, on a sommé home_team_win et away_team_win pour avoir le nombre total de victoires.

Figure: Fichier résultat

On a donc construit le graphe suivant des victoires en fonction des saison pour une équipe. Il suffit de sélectionner une équipe sur le filtre pour avoir les données de cette équipe.

Figure : Courbe d'évolution des victoires par saison et équipes

2. Par ligue

La méthode pour déterminer les victoires par ligues est exactement la même que celle pour déterminer les victoires par saisons: on a récupéré, le nom de l'équipe, la ligue et les victoires pour away_team et home_team.

Figure : Création d'un fichier pour obtenir toutes les victoires par ligues par équipes

Figure : Récupération des victoires des équipes, de leur ligue et de leur nom

On a ensuite fait une agrégation par saison et équipes avec pour fonction d'agrégation la somme des 2 victoires.

Sur le fichier Excel obtenu, on a sommé home_team_win et away_team_win pour avoir le nombre total de victoires.

	А	В			С				D			E
1	team 🕌	league	~	home_	team	_win	-	away_	_team	_win	-	wins
2	Aberdeen	Scotland Premier League					67				47	114
3	AC Ajaccio	France Ligue 1					16				22	38
4	AC Arles-Avignon	France Ligue 1					2				11	13
5	AC Bellinzona	Switzerland Super League					17				24	41
6	Académica de Coimbra	Portugal Liga ZON Sagres					35				41	76
7	ADO Den Haag	Netherlands Eredivisie					50				47	97
8	AJ Auxerre	France Ligue 1					31				18	49
9	Ajax	Netherlands Eredivisie				1	.03				9	112
10	Amadora	Portugal Liga ZON Sagres					7				4	11
11	Angers SCO	France Ligue 1					6				5	11
12	Arka Gdynia	Poland Ekstraklasa					16				17	33
13	Arsenal	England Premier League					97				21	118
14	AS Monaco	France Ligue 1					53				22	75
15	AS Nancy-Lorraine	France Ligue 1					30				36	66
16	AS Saint-Étienne	France Ligue 1					75				37	112
17	Aston Villa	England Premier League					45				57	102
18	Atalanta	Italy Serie A					55				42	97
19	Athletic Club de Bilbao	Spain LIGA BBVA					80				41	121
20	Atlético Madrid	Spain LIGA BBVA				1	.03				25	128
21	AZ	Netherlands Eredivisie					82				28	110
22	Bari	Italy Serie A					13				15	28
23	Bayer 04 Leverkusen	Germany 1. Bundesliga					76				26	102
24	Beerschot AC	Belgium Jupiler League					30				21	51
25	Birmingham City	England Premier League					14				7	21
20	Disabbura Davora	England Dromier League					20				26	FF

Figure: Fichier résultat

On a donc construit 2 graphes:

 celui des victoires en fonction des équipes pour une ligue. Il suffit de sélectionner une ligue sur le filtre pour avoir les données de cette ligue. Nous voulions initialement uniquement tracer l'évolution des victoires en fonction des ligues mais chaque équipe n'était associée qu'à une seule ligue. Le graphe ne contenait juste qu'un point, ce qui ne semblait pas pertinent. On a donc aussi tracé ce graphe.

Figure : Courbe d'évolution des victoires par équipe sur une lique

- celui des victoires par équipes par ligues. Le filtre permet de filtrer par équipe. Chaque graphe filtré contient donc un seul point.

Figure : Nuage de points des victoires par ligues et par équipes

3. Par équipes

La méthode pour déterminer les victoires par équipes est presque la même que celles pour déterminer les victoires par saisons et ligues: on a créé 2 output. Dans le 1er, on a le nom de l'équipe home, la ligue et les victoires pour away_team et home_team. Dans le 2ème, on a le nom de l'équipe away, la ligue et les victoires pour away_team et home_team. Pour le 2ème, on a aussi échangé le nom des variables entre home_team et away_team pour avoir le même nom de colonnes

<u>Figure</u>: Création d'un fichier pour obtenir toutes les victoires par équipes par rapport aux autres équipes

Figure : Récupération des victoires et des noms des 2 équipes

On a donc obtenu 2 fichiers Excel pour chaque output du tmap après regroupement par équipes. Les fichiers ont été fusionnés en gardant seulement les colonnes home_team_win. Puis les 2 colonnes restantes ont été additionnées pour avoir le nombre de victoires total.

Figure: 1er fichier résultat

	А	В	С	D
1	home_team	away_team	home_team_win	away_team_win
2	Liverpool	Chelsea	4	2
3	Wolverhampton Wanderers	Portsmouth	0	1
4	FC Zürich	FC Basel	2	10
5	FC Köln	Karlsruher SC	1	0
6	Stade Rennais FC	OGC Nice	3	4
7	Manchester City	Swansea City	2	1
8	Sunderland	Leicester City	0	1
9	Borussia Dortmund	FC Ingolstadt 04	1	0
10	Sparta Rotterdam	De Graafschap	0	0
11	Dundee FC	Inverness Caledonian Thistle	0	2 2
12	Legia Warszawa	Piast Gliwice	2	2
13	Hertha BSC Berlin	VfB Stuttgart	1	3
14	Sporting CP	FC Paços de Ferreira	3	2 2
15	Hull City	Manchester City	0	2
16	FC Augsburg	Hertha BSC Berlin	0	1
17	Angers SCO	AS Monaco	0	1
18	Tubize	KSV Cercle Brugge	0	1
19	Waasland-Beveren	Royal Excel Mouscron	1	1
20	Real Valladolid	Xerez Club Deportivo	0	1
21	CD Numancia	Getafe CF	0	1
22	Olympique Lyonnais	Girondins de Bordeaux	3	4
23	FC Basel	AC Bellinzona	4	1
24	Sunderland	Swansea City	1	1
25	Stade Rennais FC	Olympique Lyonnais	2	2
~-	Damasia Marada an ala disa di	\(\mathbb{E}\) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	^	-

Figure : 2ème fichier résultat

	Α	В	С	D	Е
1	home_team -1	away_team -	home_team_win	home_team_win	wins 🔻
2	Aberdeen	Dundee FC	4	3	7
3	Aberdeen	Hamilton Academical FC	6	3	9
4	Aberdeen	Dundee United	5	7	12
5	Aberdeen	Kilmarnock	9	6	15
6	Aberdeen	St. Johnstone FC	4	5	9 5
7	Aberdeen	Heart of Midlothian	3	2	5
8	Aberdeen	Motherwell	4	3	7
9	Aberdeen	Celtic	4	5	9
10	Aberdeen	St. Mirren	6	0	
11	Aberdeen	Dunfermline Athletic	2	1	3
12	Aberdeen	Partick Thistle F.C.	2	4	6
13	Aberdeen	Ross County FC	4	2	6
14	Aberdeen	Rangers	1	0	1
15	Aberdeen	Falkirk	2		3
16	Aberdeen	Inverness Caledonian Thistle	6		3 8 5
17	Aberdeen	Hibernian	5	0	5
18	AC Ajaccio	ES Troyes AC	0	0	0
19	AC Ajaccio	Dijon FCO	1	0	1
20	AC Ajaccio	Paris Saint-Germain	0	0	0
21	AC Ajaccio	Toulouse FC	0	2	2
22	AC Ajaccio	FC Sochaux-Montbéliard	1	1	2
	AC Ajaccio	Stade Brestois 29	1	0	1
24	AC Ajaccio	Girondins de Bordeaux	1	0	1
	AC Ajaccio	Stade Rennais FC	2		2
20	AC Aisocio	Ohompique de Marceille	1		4

Figure : Fichier final résultat de la fusion des 2 fichiers obtenus

On a donc obtenu le graphe suivant des victoires en fonction des autres équipes pour une équipe. Il suffit de sélectionner une équipe sur le filtre pour avoir les données de cette équipe

Figure : Courbe d'évolution du nombre de victoires par équipes par rapport aux autres équipes

D. Buts marqués par équipes

1. Par saison

Pour déterminer le nombre de buts marqués par équipe par saison, on a récupéré, le nom de l'équipe, la saison et les goals pour away_team et home_team. On a utilisé les 2 équipes car une même équipe peut être parfois home_team et parfois away_team. Il fallait donc additionner les 2 goals.

Figure: Création d'un fichier pour obtenir tous les goals par saison par équipes

Figure : Récupération des buts des équipes et de leur nom

On a ensuite fait une agrégation par saison et équipes avec pour fonction d'agrégation la somme des 2 goals.

Sur le fichier Excel obtenu, on a sommé home_team_goal et away_team_goal pour avoir le nombre total de goals.

Figure: Fichier résultat

On a donc construit le graphe suivant du nombre de buts en fonction des saisons pour une équipe. Il suffit de sélectionner une équipe sur le filtre pour avoir les données de cette équipe.

Figure : Courbe d'évolution des buts par saison et équipes

2. Par ligue

Pour déterminer les goals par ligue, on a récupéré, le nom de l'équipe, la ligue et les goals pour away_team et home_team.

Figure : Création d'un fichier pour obtenir tous les buts par ligues par équipes

Figure : Récupération des goals des équipes, de leur lique et de leur nom

On a ensuite fait une agrégation par saison et équipes avec pour fonction d'agrégation la somme des 2 goals.

Sur le fichier Excel obtenu, on a sommé home_team_goal et away_team_goal pour avoir le nombre total de goals.

Figure: Fichier résultat

On a donc construit 2 graphes:

 celui des buts en fonction des équipes pour une ligue. Il suffit de sélectionner une ligue sur le filtre pour avoir les données de cette ligue. Nous voulions initialement uniquement tracer l'évolution des buts en fonction des ligues mais chaque équipe n'était associée qu'à une seule ligue. Le graphe ne contenait juste qu'un point, ce qui ne semblait pas pertinent. On a donc aussi tracé ce graphe.

Figure : Courbe d'évolution des goals par équipe sur une ligue

 celui des buts par équipes par ligues. Le filtre permet de filtrer par équipe. Chaque graphe filtré contient donc un seul point.

Figure : Nuage de points des goals par liques et par équipes

3. Par équipes

Pour déterminer les goals par équipes, on a créé 2 output. Dans le 1er, on a le nom de l'équipe home, la ligue et les goals pour away_team et home_team. Dans le 2ème, on a le nom de l'équipe away, la ligue et les goals pour away_team et home_team. Pour le 2ème, on a aussi échangé le nom des variables entre home_team et away_team pour avoir le même nom de colonnes.

<u>Figure</u>: Création d'un fichier pour obtenir tous les goals par équipes par rapport aux autres <u>équipes</u>

Figure : Récupération des goals et des noms des 2 équipes

On a donc obtenu 2 fichiers Excel pour chaque output du tmap après regroupement par équipes. Les fichiers ont été fusionnés en gardant seulement les colonnes home_team_goal. Puis les 2 colonnes restantes ont été additionnées pour avoir le nombre de goals total.

Figure: 1er fichier résultat

Figure : 2ème fichier résultat

	A	В	С	D	E
1	home_team 🖵	away_team 🔻	home_team_goal	home_team_goal 🕝	total 🕝
2	Aberdeen	Dundee FC	9	11	20
3	Aberdeen	Hamilton Academical FC	16	10	26
4	Aberdeen	Dundee United	18	17	35
5	Aberdeen	Kilmarnock	20	17	37
6	Aberdeen	St. Johnstone FC	11	14	25
7	Aberdeen	Heart of Midlothian	7	11	18
8	Aberdeen	Motherwell	15	12	27
9	Aberdeen	Celtic	18	17	35
10	Aberdeen	St. Mirren	16	1	17
11	Aberdeen	Dunfermline Athletic	5	3	8
12	Aberdeen	Partick Thistle F.C.	6	9	15
13	Aberdeen	Ross County FC	11	6	17
14	Aberdeen	Rangers	5	3	8
15	Aberdeen	Falkirk	3	2	5
16	Aberdeen	Inverness Caledonian Thistle	14	9	23
17	Aberdeen	Hibernian	12	0	12
18	AC Ajaccio	ES Troyes AC	0	2	2
19	AC Ajaccio	Dijon FCO	2	1	3
20	AC Ajaccio	Paris Saint-Germain	2	2	4
21	AC Ajaccio	Toulouse FC	4	7	11
22	AC Ajaccio	FC Sochaux-Montbéliard	3	2	5
23	AC Ajaccio	Stade Brestois 29	1	2	3
24	AC Ajaccio	Girondins de Bordeaux	2	3	5
25	AC Ajaccio	Stade Rennais FC	6	2	8
	AC Ainesia	Objections de Managilla	2		

Figure : Fichier final résultat de la fusion des 2 fichiers obtenus

On a donc obtenu le graphe suivant des buts marqués en fonction des autres équipes pour une équipe. Il suffit de sélectionner une équipe sur le filtre pour avoir les données de cette équipe

Figure : Courbe d'évolution du nombre de buts par équipes par rapport aux autres équipes

E. Radar des joueurs par saison

1. Par rapport à tous les autres joueurs

Nous utilisons la moyenne des autres joueurs comme la comparaison. En d'autres termes, si les données de performances de X joueurs sont enregistrées pour une saison, et que nous voulons visualiser le "radar" d'un joueur Y, nous souhaitons obtenir la moyenne des données de performances des X - 1 autres joueurs, qui sera affichée conjointement avec les données de Y sur le même radar. Donc nous ne pouvons pas calculer directement la moyenne des données des joueurs pour chaque saison, mais plutôt en soustrayant les données du joueur Y avant de calculer la moyenne.

Nous commençons d'abord par la table dimension PLAYER en effectuant les opérations suivantes : regrouper par saison à l'aide du composant tAggregateRow, calculer le nombre total de joueurs pour chaque saison, ainsi que la somme respective des autres données :

Figure : Préparation pour le calcul de la moyenne des données

Ensuite, nous connectons la table résultante avec la table de dimension PLAYER par saison. Pour chaque donnée de performance, nous soustrayons les données d'un joueur de l'ensemble des données, puis nous divisons par le nombre total de joueurs moins un :

Figure: Jointure en saison

Figure: Calcul de la moyenne, exemple de "overall rating"

Figure: output du traitement

Ainsi, nous avons une table enregistrant les données individuelles des joueurs ainsi que les moyennes des données des autres joueurs.

2. Par rapport à leur équipe

Nous avons besoin de savoir quels joueurs sont dans chaque équipe. Les informations sur les joueurs et les équipes sont stockées dans la table de fait MATCH, mais elle stocke à la fois les équipes à domicile (home_team_api_id) et à l'extérieur (away_team_api_id), ainsi que les joueurs à domicile (home_team) et à l'extérieur (away_team). Nous savons qu'une équipe peut apparaître en tant que home_team_api_id ou away_team_api_id dans différents matchs.

Pour intégrer les informations sur les équipes et les joueurs, nous les séparons pour chaque match. Les joueurs de chaque match sont convertis en une chaîne de caractères séparée par des point-virgules :

Figure : Séparation des équipes

Figure : Convertissement de Integer en String pour les joueurs

Figure : Concaténation des joueurs

Ensuite, nous normalisons les de sortie, avec le point-virgule comme séparateur d'éléments, afin que chaque identifiant de joueur corresponde à une saison et à un identifiant d'équipe respectifs :

Figure: Normalisation des joueurs avec tNoemalize

En raison du fait que dans la table MATCH, les informations de certains joueurs pour certains matchs n'ont pas été enregistrées, certaines chaînes de caractères de joueurs sont vides. Nous devons filtrer ces lignes vides :

Figure : Implémentation de tFilterRow

Enfin, en supprimant les doublons de saison - ID d'équipe - ID de joueur, nous obtenons les identifiants d'équipe et de joueur des équipes à domicile et à l'extérieur pour chaque saison :

Figure: Supprimer les doublons par tUniqRow

Répéter les exécutions de jointure, normalisation et suppression de doublons pour obtenir la table d'informations sur les joueurs de chaque équipe pour chaque saison :

Figure : Opérations pour obtenir la table de joueurs de chaque équipe pour chaque saison

```
season;team_api_id;player_id
2008/2009;8635;34480
2008/2009;8635;106013
2008/2009;8635;38388
2008/2009;8635;26458
2008/2009;8635;13423
2008/2009;8635;38389
2008/2009;8635;38798
2008/2009;8635;38949
2008/2009;8635;38949
2008/2009;8635;38253
2008/2009;8635;38383
2008/2009;8635;46552
```

Figure : Table de sortie (partie)

Récupérer les données de performances par la jointure avec la table de fait PLAYER :

Figure: Jointure avec PLAYER

Ensuite, effectuer les opérations de la même manière que lors du calcul précédent de toutes les données des joueurs :

Figure : Agrégation des données

Figure : Ajout de l'équipe pour un joueur

Figure : Table contenant les données de joueurs et les données moyennes de son équipe

Nous fusionnons cette table avec la table des données moyennes de tous les joueurs. Dans cette nouvelle table, nous avons player_api_id, player_name, team_api_id, saison, données de performances des joueurs, données de performances de l'équipe des joueurs.

En donnant une saison et un nom (ou un player_api_id), nous pouvons tirer une ligne de données et gérer le diagramme radar en Excel. Par exemple, pour le joueur Bruno Pereirinha en saison 2012/2013 :

```
player_na saison overall_ra potential finishing heading_a short_pas dribbling sprint_spe balance shot_pow.jumping stamina strength positioning_penalties sliding_tackle
Bruno Pert 2012/2013 71.14286 75.28571 60.42857 53.71429 69.57143 74.42857 76.57143 78.71429 66 73.14286 83.14286 62.85714 63 67.28571 70.28571
all_avg 2012/2013 68.10162 72.52689 47.78074 56.20935 61.51774 57.29245 66.63178 63.85452 61.08678 66.62674 66.07583 67.73607 52.72929 53.09422 46.87769
team_avg 2012/2013 74.1078 80.85075 51.50419 61.75926 68.15917 67.50309 74.34911 70.65093 68.43761 69.35212 70.19422 67.35714 61.47994 58.82275 56.67989
```


Figure : exemple de radar

V. Les difficultés rencontrées

Une première difficulté rencontrée concerne la création des radars. Nous voulions utiliser Power BI pour afficher les graphiques radar, mais comme nous n'avons pas trouvé de tutoriel adapté à la forme de nos données, nous avons opté pour Excel.

Une autre difficulté que nous avons rencontrée concerne les courbes d'évolutions des matchs gagné/buts par équipes par rapport aux autres équipes. En utilisant une simple agrégation, on avait seulement le total quand l'équipe était en home_team ou le total quand l'équipe était en away_team. Pour résoudre ce problème, on a donc décidé de créer 2 fichiers Excel. Ainsi, on avait les 2 cas de figures et il suffisait de fusionner les 2 fichiers en récupérant les colonnes qui nous intéressaient.