Introducción a Packet Tracer

Matías Haspert mati2002haspert@gmail.com

Agosto 23, 2024

1. Packet Tracer

Packet Tracer es una herramienta que permite simular redes reales. Proporciona tres menús principales que puede utilizar para lo siguiente:

- Puede agregar dispositivos y conectarlos a través de cables o de forma inalámbrica.
- Puede seleccionar, eliminar, inspeccionar, etiquetar y agrupar componentes dentro de la red.
- Administrar su red

El menú de administración de red le permite hacer lo siguiente:

- Abrir una red existente/de muestra
- Guarda tu red actual
- Modifica tu perfil de usuario o tus preferencias

Presenta los siguientes modos de operación:

- Modo de simulación: Permite observar el flujo de datos a través de la red en tiempo real, mostrando detalles como el contenido de los paquetes.
- Modo en tiempo real: Simula el funcionamiento de la red en tiempo real sin mostrar el proceso detallado de los paquetes.

2. Dispositivos finales

En esta sección enuncio los principales dispositivos con una breve descripción sobre los mismos:

Figura 1: Dispositivos Finales

- PC (Computadora Personal): Representa un dispositivo final típico en una red, como una computadora de escritorio o portátil. Se utiliza para simular tareas como la navegación web, transferencia de archivos, y envío de correos electrónicos. En Packet Tracer, puedes configurar la dirección IP, la puerta de enlace predeterminada y otros parámetros de red.
- Laptop: Similar al PC, pero con la posibilidad de simular conexiones tanto por cable como inalámbricas (Wi-Fi). Esto es útil para entender cómo funcionan las redes inalámbricas y cómo se integran con redes cableadas.
- Servidor: Representa un dispositivo que proporciona servicios a otros dispositivos en la red, como servidores web, de correo, o DNS.
- Teléfono IP: Simula un dispositivo de VoIP (Voice over IP) que se usa para realizar llamadas de voz a través de la red IP. Este dispositivo es importante para estudiar cómo se integran las comunicaciones de voz en las redes de datos.
- Impresora: Representa un dispositivo de salida final que se conecta a la red para recibir trabajos de impresión desde cualquier dispositivo final en la misma red.

3. Dispositos de red

Los dispositivos emulables disponibles Packet Tracer y sus aspectos importantes son los siguientes:

Figura 2: Dispositivos de red

1. Router:

- Firmware: Los routers en Packet Tracer están equipados con un sistema operativo basado en Cisco IOS, que permite la configuración avanzada de enrutamiento, NAT, ACLs, y otros servicios de red.
- Módulos de ampliación: Los routers suelen tener ranuras para agregar módulos adicionales como interfaces seriales, Ethernet, o módulos para VoIP. Estos módulos permiten personalizar el router según las necesidades de la red.
- Tarjetas disponibles: Entre las tarjetas disponibles están las interfaces FastEthernet, GigabitEthernet, Serial, y también módulos WAN para conexiones más avanzadas.

2. Switch:

- Firmware: Los switches utilizan un firmware basado en IOS que soporta funcionalidades como VLANs, STP, y QoS. La configuración de estos dispositivos se realiza a través de la CLI (Command Line Interface).
- Módulos de ampliación: Algunos modelos de switches permiten la adición de módulos de expansión como interfaces adicionales o módulos de alimentación redundante.
- Tarjetas disponibles: Los switches suelen venir con tarjetas de puertos FastEthernet o GigabitEthernet, y en algunos casos, módulos SFP para enlaces de fibra óptica.

4. Cableado

A continuacion se describen las caracteristicas de los diferentes tipos de cables disponibles en Packet Tracer y su uso práctico dentro de la plataforma. El cableado es fundamental para establecer las conexiones físicas entre los dispositivos de red, y cada tipo de cable tiene un propósito específico.

Figura 3: Cableado

1. Cable de Par Trenzado (Cobre):

- Cable directo (Straight-through): Se utiliza para conectar dispositivos de diferente tipo, como un PC a un switch o un switch a un router. Es el tipo de cable más comúnmente utilizado en redes LAN para establecer conexiones básicas entre dispositivos finales y dispositivos de red.
- Cable cruzado (Crossover): Se emplea para conectar dispositivos del mismo tipo, como un switch a otro switch, o un PC a otro PC. Útil en escenarios donde se requiere la conexión directa entre dos dispositivos sin necesidad de un switch intermedio.
- Cable de consola (Rollover): Se utiliza para conectar un PC al puerto de consola de un router o switch, permitiendo la configuración del dispositivo mediante la interfaz de línea de comandos (CLI). Es fundamental para la configuración inicial de dispositivos de red, especialmente en entornos de aprendizaje o cuando no hay acceso a la red para configuraciones remotas.
- 2. Cable de Fibra Óptica: Se utiliza en enlaces troncales dentro de una red que requieren alta velocidad de transmisión y baja latencia. Tambien en infraestructuras de red donde se requiere una gran capacidad de ancho de banda y conexiones a larga distancia.
- 3. Cable Coaxial: Aunque su uso ha disminuido en redes modernas, sigue siendo relevante en ciertas aplicaciones como redes de televisión por cable o algunos sistemas de banda ancha.
- 4. Cables Serie: Se emplea para establecer conexiones punto a punto entre routers, especialmente en enlaces WAN (Wide Area Network).

5. Actividad práctica

Finalmente se realizará una actividad práctica interconectando dos PCs via una simple conexión cruzada, observando los elementos necesarios, que tipo de estudios se pueden llevar a cabo e indicando las limitaciones que serán superadas durante el avance de la materia.

Al conectar dos PCs vía un cable de conexion cruzada se conectan perfectamente, pero tengo una limitacion a la hora de conectar otra PC a la misma red porque el cable cruzado solo permite la conexion entre dos dispositivos.

6. Referencias

- $\verb| https://skillsforall.com/course/getting-started-cisco-packet-tracer?courseLang=en-US \\$
- $\hbox{\color{red} \bullet$ $https://github.com/MatiasHaspert/RedesDeLasComputadorasI}$