

Reinforcement Learning for Automated Trading

Pierpaolo Necchi pierpaolo.necchi@gmail.com

September 26, 2016

- 1. Basics of Reinforcement Learning
- 2. Asset Allocation with Transaction Costs
- 3. Implementation
- 4. Numerical Results
- 5. Conclusions and Future Developments

- 1. Basics of Reinforcement Learning
- 2. Asset Allocation with Transaction Costs
- 3. Implementation
- 4. Numerical Results
- 5. Conclusions and Future Developments

Markov Decision Processes

Reinforcement Learning

General class of algorithms that allow an agent to learn how to behave in a stochastic and possibly unknown environment by trial-and-error.

Markov Decision Process (MDP)

stochastic dynamical system specified by $<\mathbb{S},\mathbb{A},\mathcal{P},\mathcal{R},\gamma>$

- 1. $(\mathbb{S}, \mathcal{S})$ is a measurable state space
- 2. $(\mathbb{A}, \mathcal{A})$ is a measurable action space
- 3. $\mathcal{P}: \mathbb{S} \times \mathbb{A} \times \mathcal{S} \to \mathbb{R}$ is a Markov transition kernel
- 4. $\mathcal{R}: \mathbb{S} \times \mathbb{A} \to \mathbb{R}$ is a reward function
- 5. $0 < \gamma < 1$ is the discount factor.

Interaction Between Agent and Environment

Policy and Value Function

Policy

A policy is a function $\pi: \mathbb{S} \times \mathbb{A} \to \mathbb{R}$ such that, $\forall s \in \mathbb{S}$, $C \mapsto \pi(s, C)$ is a probability distribution over $(\mathbb{A}, \mathcal{A})$

Return

$$G_t = \sum_{t=0}^{\infty} \gamma^t R_{t+k+1}$$

Value Function

$$V_{\pi}(s) = \mathbb{E}_{\pi}\left[G_t|S_t = s\right]$$

Agent's goal

Select a policy π^* that maximizes his expected return in all possible states. This policy is called *optimal*.

Policy Gradient Methods

Key idea

 π_* is approximated using a parametrized policy $\pi_{\theta^*}(s,a)$, where

$$\theta^* = rg \max_{\theta \in \Theta} J(\theta) = V_{\pi_{\theta}}(s_0)$$

Using gradient descent, we have the following update scheme

$$\theta_{k+1} = \theta_k + \alpha_k \nabla_\theta J(\theta_k)$$

Policy Gradient Theorem

Let π_{θ} be a differentiable policy. The policy gradient for the average reward formulation is given by

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\substack{S \sim d^{\theta} \\ A \sim \pi_{\theta}}} \left[\nabla_{\theta} \log \pi_{\theta}(S, A) Q_{\theta}(S, A) \right]$$

 d^{θ} is the stationary distribution of the Markov chain induced by π_{θ} .

Monte-Carlo Policy Gradient Method

Algorithm 1 GPOMDP

Input:

- Initial policy parameters $\theta_0 = (\theta_0^1, \dots, \theta_0^{D_\theta})^T$
- Learning rate $\{\alpha_k\}$
- Number of trajectories M

Output: Approximation of the optimal policy $\pi_{\theta^*} \approx \pi_*$

- 1: Initialize k = 0
- 2: repeat
- 3: Sample M trajectories $h^{(m)} = \{(s_t^{(m)}, a_t^{(m)}, r_{t+1}^{(m)}\}_{t=0}^{T^{(m)}} \text{ of the MDP under policy } \pi_{\theta_k}$
- 4: Compute the optimal baseline

$$\widehat{b}_{k}^{n} = \frac{\sum_{m=1}^{M} \left[\sum_{i=0}^{T^{(m)}} \partial_{\theta_{k}} \log \pi_{\theta} \left(s_{i}^{(m)}, a_{i}^{(m)} \right) \right]^{2} \sum_{j=0}^{T^{(m)}} \gamma^{j} r_{j+1}^{(m)}}{\sum_{m=1}^{M} \left[\sum_{i=0}^{T^{(m)}} \partial_{\theta_{k}} \log \pi_{\theta} \left(s_{i}^{(m)}, a_{i}^{(m)} \right) \right]^{2}}$$

5: Approximate policy gradient

$$\frac{\partial}{\partial \theta^n} J_{\text{start}}(\theta_k) \approx \widehat{g}_k^n = \frac{1}{M} \sum_{m=1}^M \sum_{i=0}^{T^{(m)}} \frac{\partial}{\partial \theta^n} \log \pi_{\theta_k} \left(s_i^{(m)}, a_i^{(m)} \right) \left(\sum_{j=i}^{T^{(m)}} \gamma^j r_{j+1}^{(m)} - \widehat{b}_k^n \right)$$

- 6: Update actor parameters $\theta_{k+1} = \theta_k + \alpha_k \hat{g}_k$.
- 7: $k \leftarrow k + 1$
- 8: until converged

- 1. Basics of Reinforcement Learning
- 2. Asset Allocation with Transaction Costs
- 3. Implementation
- 4. Numerical Results
- 5. Conclusions and Future Developments

Asset Allocation with Transaction Costs

Goal

How to dynamically invest the available capital in a portfolio of different assets in order to maximize the expected total return or another relevant performance measure.

Reward function: portfolio log-return with transaction costs

$$R_{t+1} = \log \left\{ 1 + \sum_{i=0}^{I} \left[a_t^i X_{t+1}^i - \delta_i \left| a_t^i - \tilde{a}_t^i \right| - \delta_s (a_t^i)^-
ight] - \delta_f \mathbf{1}_{a_t
eq \tilde{a}_{t-1}}
ight\}$$

Actions: Portfolio weights

$$\{a_t^i\}_{i=0}^I$$
 s.t. $\sum_{j=0}^I a_t^j = 1$ $\forall t \in \{0, 1, 2, \ldots\}$

State: assets past returns and current allocation

$$S_t = \{X, X_t, X_{t-1}, \dots, X_{t-P}, \tilde{a}_t\}$$

- 1. Basics of Reinforcement Learning
- 2. Asset Allocation with Transaction Costs
- 3. Implementation
- 4. Numerical Results
- 5. Conclusions and Future Developments

PyBrain's Architecture for a RL Problem

Experiment

Agent-Environment Interaction in C++

Adapting PyBrain's Architecture

- 1. Defined standard interfaces via pure abstract classes
- 2. Achieved modularity via polymorphic composition

Agent's Architecture in C++

Execution Pipeline

experiment_launcher.py

- 1. Program execution is handled by a Python script
- 2. Responsible for analyzing the output of the C++ engine

- 1. Basics of Reinforcement Learning
- 2. Asset Allocation with Transaction Costs
- 3. Implementation
- 4. Numerical Results
- 5. Conclusions and Future Developments

Synthetic Asset

Goal

Evaluate different RL algorithms in a controlled environment, i.e. on a synthetic asset with profitably tradable features

The synthetic asset price is given by

$$Z_t = \exp\left(\frac{z_t}{\max_t z_t - \min_t z_t}\right)$$

where $\{z_t\}$ is a random walk with autoregressive trend $\{\beta_t\}$

$$z_t = z_{t-1} + \beta_{t-1} + \kappa \epsilon_t$$
$$\beta_t = \alpha \beta_{t-1} + \nu_t$$

Convergence of RL algorithms

Backtest Performance of the Trading Strategies Learned

Impact of Transaction Costs

- 1. Basics of Reinforcement Learning
- 2. Asset Allocation with Transaction Costs
- 3. Implementation
- 4. Numerical Results
- 5. Conclusions and Future Developments

Conclusions and Future Developments

Conclusion

- Applied state-of-the-art RL algos to find a profitable long-short trading strategy
- 2. RL strategies outperform the simple B&H for a synthetic asset
- 3. RL strategies are able to adapt to transaction costs
- 4. RL seems suitable to deal with many financial decision problems

Future Developments

- 1. Improve the algos performance on historical data
- 2. Developing more complex features for the trading strategy
- 3. Apply RL techniques to other financial problems

Thank you for your attention!

References

- Joshi, M. S. (2008).
 - C++ design patterns and derivatives pricing, volume 2. Cambridge University Press.
- Moody, J., Wu, L., Liao, Y., and Saffell, M. (1998).

 Performance functions and reinforcement learning for trading systems and portfolios.

 Journal of Forecasting, 17:441–470.
- Peters, J. and Schaal, S. (2008).
 Reinforcement learning of motor skills with policy gradients.

 Neural networks, 21(4):682–697.
- Sutton, R. S. and Barto, A. G. (1998).

 Introduction to reinforcement learning, volume 135.

 MIT Press Cambridge.