Scilab Textbook Companion for Optical Fiber Communication by V. S. Bagad¹

Created by
Anurag Muglikar
B.E
Electronics Engineering
University of Pune
College Teacher
R.a. Chavan
Cross-Checked by
Lavitha Pereira and Mukul Kulkarni

January 28, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Optical Fiber Communication

Author: V. S. Bagad

Publisher: Technical Publications, Pune

Edition: 2

Year: 2013

ISBN: 9789350385203

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	List of Scilab Codes		
1	Fiber Optics Communications System	8	
2	Optical Fiber for Telecommunication	27	
3	Optical Sources and Transmitters	41	
4	Optical Detectors and Receivers	53	
5	Design Considerations in Optical Links	63	
6	Advanced Optical Systems	70	

List of Scilab Codes

Exa 1.7.1	To find angle of reflection	8
Exa 1.7.2	To calculate Critical Angle	9
Exa 1.7.3	To find RI and Critical Angle of glass	9
Exa 1.7.4	To find the angle of refraction	10
Exa 1.7.5	To estimate if TIR is possible or not	10
Exa 1.9.1	To find NA Acceptance and Critical Angle	11
Exa 1.9.2	To find NA and Acceptance angle	12
Exa 1.9.3	To find RI of core and cladding	12
Exa 1.9.4	To find NA and acceptance angle	13
Exa 1.9.5	To find NA acceptance and critical angle	14
Exa 1.9.6	To find NA and entrance angle	14
Exa 1.9.7	To find NA	15
Exa 1.9.8	To estimate relative RI	15
Exa 1.9.9	To find NA and solid acceptance angle	16
	To calculate number of modes	16
Exa 1.14.2	To find the NA	17
Exa 1.14.3	To find the normalised frequence	17
Exa 1.14.4	To find diameter of core and the number of modes	18
Exa 1.14.5	To find acceptance and critical angle and the number of	
	modes	19
Exa 1.14.6	To find NA solid acceptance and number of modes	20
Exa 1.14.7	To find cutoff wavelength and core diameter	20
	To find the cutoff wavelength	21
	To find normalised frequency and number of modes	22
Exa 1.14.10	OTo find diameter of core	22
Exa 1.14.1	1To find NA solid acceptance angle and number of modes	23
Exa 1.14.15	2To find normalised frequency and number of modes	24
Exa 1.15.1	To calculate maximum core diameter	25

Exa	1.15.2	To find core diameter
		To find the cutoff wavelength
Exa	2.2.1	Computation for length for different conditions
Exa	2.2.2	To find the output power
Exa	2.2.3	To find overall signal attenuation
Exa	2.2.4	To find minimum optical input power
Exa	2.2.5	To calculate fiber attenuation in different cases
Exa	2.2.6	To calculate length of the fiber
Exa	2.2.7	To find overall signal attenuation
Exa	2.2.8	To find attenuation per km
Exa	2.3.1	To find radius of curvature
Exa	2.5.1	To find the pulse spreading
Exa	2.5.2	To find the material dispersion induced pulse spreading
Exa	2.5.3	To find the material dispersion
Exa	2.5.4	To compute the wave guide dispersion
Exa	2.6.1	To find the bandwidth pulse broadening and bandwidth
		length product
Exa	2.6.2	To find the bandwidth pulse dispersion and bandwidth
		length product
Exa	2.6.3	To find the bandwidth and the puse dispersion
Exa	2.6.4	To estimate rms pulse broadening
Exa	2.6.5	To find the delay difference rms pulse broadening and
		maximum bit rate
Exa	2.6.6	To compute intermodal intramodal and total dispersion
Exa	2.7.1	To find the bandwidth pulse dispersion and bandwidth
		length product
Exa	2.7.2	To find the delay difference and the rms pulse broadening
Exa	2.7.3	To determine modal bifringence
Exa	2.7.4	To estimate maximum possible bandwidth
Exa	2.7.5	To estimate maximum possible bandwidth
Exa	3.2.1	To find the emitted wavelength
Exa	3.2.2	To find the emitted wavelength
Exa	3.2.3	To find total carrier recombination life time and optical
		power generated
Exa	3.2.4	To find bulk recombination life time quantum efficiency
		and internal power
Exa	3.2.5	To estimate external power efficiency

Exa 3.2.6	To find optical power emitted by the device and the
.	external power efficiency
Exa 3.2.7	To find total carrier recombination lifetime and power
_	internally generated
Exa 3.2.8	To find the conversion efficiency
Exa 3.3.1	To find the optical gain
Exa 3.3.2	To calculate the frequency and wavelength spacing 4
Exa 3.3.3	To find the number of longitudinal modes and their fre-
	quency seperation
Exa 3.3.4	To calculate the external power efficiency
Exa 3.3.5	To find the threshold current density and the threshold
	current
Exa 3.3.6	To compare the threshold current densities
Exa 3.4.1	To calculate the optical power coupled
Exa 3.4.2	To find the Fresnel reflection and loss of power
Exa 3.4.3	To find the optical power coupled
Exa 3.4.4	To calculate the optical loss
Exa 3.4.5	To estimate insertion loss in different cases
Exa 4.1.1	To find the cutoff wavelength
Exa 4.1.2	To find the upper cutoff wavelength
Exa 4.1.3	To find the quantum efficiency of the detector 5
Exa 4.1.4	To find generated photocurrent
Exa 4.1.5	To find quantum efficiency and responsivity 5
Exa 4.1.6	Operational wavelength and the incident optical power
	required
Exa 4.1.7	To find the average photon current
Exa 4.1.8	To find the wavelength of operation incident power and
	the responsivity
Exa 4.2.1	To find the bandwidth
Exa 4.2.2	To find the maximum response time
Exa 4.2.3	To find the multiplication factor
Exa 4.3.1	To find the multiplication factor
Exa 4.6.1	To find the various noise terms
Exa 4.8.1	To find the quantum limit 6
Exa 4.8.2	To find minimum optical power 6
Exa 4.8.3	To find Signal Noise ratio
Exa 5.3.1	To design optical fiber link
Exa 5 3 2	Calculate the link power budiet

Exa	5.3.3	Calculate the loss margin 64
Exa	5.3.4	To perform optical power budjet 65
Exa	5.3.5	Perform optical power budget
Exa	5.4.1	To find the system rise time
Exa	5.4.2	To find system rise time and bandwidth 67
Exa	5.4.3	To find maximum bit rate for link when using NRZ and
		RZ 67
Exa	5.4.4	To find if the components give adequate response 68
Exa	5.5.1	To find the maximum bit rates for different cases 69
Exa	6.5.1	To find the maximum input and output power 70
Exa	6.5.2	To find the gain of EDFA
Exa	6.10.1	To compute the performance parameters 71
Exa	6.10.2	To calculate performance parameters
Exa	6.10.3	To find total loss in the coupler
Exa	6.10.4	To compute total loss
Exa	6.11.1	To compute the wave guide length difference

Chapter 1

Fiber Optics Communications System

Scilab code Exa 1.7.1 To find angle of reflection

```
1 // Example 1.7.1 page 1.14
2 //To calculate the angel of refraction if the angle
      of incidence is 30
3
4 clc;
5 clear;
6 n1=1.5; // for glass
7 n2= 1.33; // for water
                            // phi1 is the angel of
8 phi1= (%pi/6);
     incidence
9 // According to Snell's law...
10 // n1*sin(phi1) = n2*sin(phi2);
11 sinphi2 = (n1/n2)*sin(phi1); // phi2 is the angle of
      refraction..
12 phi2 = asind(sinphi2);
13 printf(' The angel of refraction is \%.2\,\mathrm{f} degrees',
     phi2);
```

Scilab code Exa 1.7.2 To calculate Critical Angle

Scilab code Exa 1.7.3 To find RI and Critical Angle of glass

```
1 // Example 1.7.3 page 1.15
2 // To find RI of glass
3 // To find the critical angle for glass...
4
5 clc;
6 clear;
7 phi1 = 33 // Angle of incidence..
8 phi2 = 90 // Angle of refraction..
9 // According to Snell's law...
10 // n1*sin(phi1)= n2*sin(phi2);
11 //a = sin(phi1*%pi/(180));
12 // Assume n1 is the RI of glass and n2 is RI of air
```

Scilab code Exa 1.7.4 To find the angle of refraction

```
// Example 1.7.4 page 1.15
// To find the angle of refraction..

clc;
clear;
n1= 1.5 // TheRi of medium 1
n2= 1.36 // the RI of medium 2
phi1= 30; // The angle of incidence
// According to Snell's law...
// n1*sin(phi1)= n2*sin(phi2);
phi2 = asind((n1/n2)*sind(phi1));
printf('The angel of refraction is %.2f degrees from normal',phi2);
```

Scilab code Exa 1.7.5 To estimate if TIR is possible or not

```
1 // Example 1.7.5 page 1.16
2 // Will total internal reflection take place?
```

```
4 clc;
5 clear;
7 n1 = 3.6; // RI of GaAs...
                 // RI of AlGaAs..
8 n2 = 3.4;
              // Angle of Incidence..
9 \text{ phi1} = 80;
10 // According to Snell's law...
11 // n1*sin(phi1) = n2*sin(phi2);
12 //At critical angle phi2 = 90...
13 phiC = asind((n2/n1)*sind(90));
14 printf('The Critical angel is %.2f degrees',phiC);
15 printf('\n\nFor total internal reflection to take
     place angle\n of incidence should be greater than
      the critical angle. \nFrom the calculations, we
     can thus conclude that Total internal reflection
      will take place');
```

Scilab code Exa 1.9.1 To find NA Acceptance and Critical Angle

```
1 // Example 1.91 page 1.22
2 // To calculate Numerical Aperture (NA), Acceptance
      angle (phiA), critical Angle (phiC)...
3
4 clc;
5 clear;
                // RI of medium 1
7 \text{ n1} = 1.5;
  n2 = 1.45;
               // RI of medium 2
9
10 del= (n1-n2)/n1;
11 NA = n1*(sqrt(2*del));
12 printf ('The Numerical aperture is \%.2 \, \text{f} ', NA);
13 \text{ phiA} = asind(NA);
14 printf('\n\nThe Acceptance angel is %.2f degrees',
      phiA);
```

Scilab code Exa 1.9.2 To find NA and Acceptance angle

```
1 // Example 1.9.2 page 1.23
2 // To calculate Numerical aperture and Acceptance angle...
3
4 clc;
5 clear;
6
7 n1= 1.5 // RI of core
8 n2 = 1.48 // RI of cladding..
9
10 NA = sqrt((n1^2)-(n2^2));
11 printf('The Numerical Aperture is %.2f',NA);
12
13 phiA = asind(NA);
14 printf('\n\nThe Critical angel is %.2f degrees', phiA);
```

Scilab code Exa 1.9.3 To find RI of core and cladding

```
1 //Example 1.9.3 page 1.23
2 // To calculate RI of core and cladding..
3
4 clc;
5 clear;
6
7 NA = 0.35; //Numerical Aperture
```

Scilab code Exa 1.9.4 To find NA and acceptance angle

```
1 //Example 1.9.4
                  page 1.24
2
4 clc;
5 clear;
6 Vc = 2.01*10^8; // velocity of light in core in
      m/sec...
                      // Critical angle in degrees...
7 phiC= 80;
9 // RI of Core (n1) is given by (Velocity of light in
      air/ velocity of light in air)...
10 n1 = 3*10^8/Vc;
11 // From critical angle and the value of n1 we
     calculate n2...
12 n2 = sind(phiC)*n1; // RI of cladding...
13 NA = sqrt(n1^2-n2^2);
14 printf ('The Numerical Aperture is %.2f', NA);
15 phiA = asind(NA);
                            // Acceptance angle ...
16 printf('\n\nThe Acceptance angel is %.2f degrees',
     phiA);
```

Scilab code Exa 1.9.5 To find NA acceptance and critical angle

```
1 // Example 1.9.5 page 1.25
2 // To calculate critical angle accepatance angle and
      numerical aperture...
4 clc;
5 clear;
7 \text{ n1} = 1.4; //RI of Core...
8 n2 = 1.35; //RI of Cladding
10 phiC = asind(n2/n1);
                                  // Critical angle...
11 printf('The Critical angel is %.2f degrees',phiC);
12
                           // numerical Aperture...
13 NA = sqrt(n1^2-n2^2);
14 printf('\n\nThe Numerical Aperture is \%.2 \, f', NA);
15
16 phiA = asind(NA);
                           // Acceptance angle ...
17 printf('\n\nThe Acceptance angel is %.2f degrees',
     phiA);
```

Scilab code Exa 1.9.6 To find NA and entrance angle

```
//Example 1.9.6 page 1.25
//To calculate The Numerical Aperture and maximum angle of entrance of light into air...

clc;
clear;
n1 = 1.48; // RI of core..
n2 = 1.46; // RI of Cladding..

NA = sqrt(n1^2-n2^2); //Numerical Aperture..
printf('The Numerical Aperture is %.3f',NA);
```

Scilab code Exa 1.9.7 To find NA

Scilab code Exa 1.9.8 To estimate relative RI

```
//Example 1.9.8 page 1.26
//To finf relative RI difference..

clc;
clear;

phiA = 8 // accepatance angle in degrees...
n1 =1.52; //RI of core...

NA = sind(phiA); //Numerical Aperture...
```

Scilab code Exa 1.9.9 To find NA and solid acceptance angle

```
1 //Example 1.9.9 page 1.27
2 // Calculate NA and solid acceptance angle. Also
     find critical angle ...
3
4 clc;
5 clear;
7 del = 0.01; // relative RI difference..
                   // RI of core...
8 \text{ n1} = 1.48;
10 NA = n1*(sqrt(2*del)); //Numerical Aperture...
11 printf('The Numerical Aperture is %.3f', NA);
12
                           //Solid Acceptance angle ...
13 theta = \%pi*NA^2;
14 printf('\n\nThe Solid Acceptance angel is %.4f
     degrees', theta);
15
16 \text{ n2} = (1-\text{del})*\text{n1};
17 phiC = asind(n2/n1); // Critical Angle...
18 printf('\n\nThe Critical angel is %.2f degrees',
     phiC);
19 printf("\n\nCritical angle wrong due to rounding off
      errors in trignometric functions..\n Actual
     value is 90.98 in book.");
```

Scilab code Exa 1.14.1 To calculate number of modes

Scilab code Exa 1.14.2 To find the NA

```
//Example 1.14.2 page 1.42
//to find the Numerical aperture..

clc;
clear;
V = 26.6; //Normalised frequency..
lamda = 1300*10^-9; //wavelenght of operation
a = 25*10^-6; // radius of fibre.
NA = V*lamda/(2*%pi*a); //Numerical Aperture..
printf("The Numerical Aperture is %.3f",NA);
```

Scilab code Exa 1.14.3 To find the normalised frequence

```
1 //Example 1.14.3
2 // to calculate the normalise frequency..
```

```
3
4 clc;
5 clear;
7 a = 40*10^-6; //radius of core...
8 del = 0.015; //relative RI difference...
9 lamda= 0.85*10^-6; //wavelength of operation...
10 n1=1.48;
                  //RI of core..
11
12 NA = n1*sqrt(2*del); //Numerical Aperture...
13 printf(" The Numerical Aperture is %.4f", NA);
14 V = 2*\%pi*a*NA/lamda; //normalised frequency
15 printf(" \n Normalised frequency is \%.2 f", V);
16
                  //number of modes..
17 M = V^2/2;
18 printf("\n\nThe number of modes in the fibre are %d"
     , M);
```

Scilab code Exa 1.14.4 To find diameter of core and the number of modes

Scilab code Exa 1.14.5 To find acceptance and critical angle and the number of modes

```
1 //Example 1.14.5 page 1.44
2 //To find acceptance angle; critical angle; number
     of modes...
3
4 clc;
5 clear;
7 NA = 0.2; //Numerical Aperture..
8 n2= 1.59; // RI of cladding...
9 n0= 1.33; // RI of water...
                             // wavelength ...
10 \quad lamda = 1300*10^-9;
11 a = 25*10^-6; // radius of core...
12 n1 = sqrt(NA^2+n2^2); //RI of core..
13 phiA = asind(sqrt(n1^2-n2^2)/n0); //Acceptance
      angle...
14 printf("The Acceptance angle is %.2f", phiA);
15
16 phiC= asind(n2/n1); // Critical angle...
17 printf("\nnThe critical angle is %.2f",phiC);
18 V = 2*\%pi*a*NA/lamda;
                         // normalisd frequency
19 M = V^2/2;
                   //number of modes
20 printf("\n\nThe number of modes in the fibre are %d"
```

Scilab code Exa 1.14.6 To find NA solid acceptance and number of modes

```
1 //Example 1.14.6 page 1.46
2 // To find Numerical Aperture, solid acceptance
     angle, and number of modes.
3
4 clc;
5 clear;
7 V= 26.6; // Normalised frequency...
  lamda= 1300*10^-9; //wavelength of operation...
9 a= 25*10^-6; // radius of core...
10
11 NA = V*lamda/(2*\%pi*a); // Numerical Aperture...
12 printf ('The Numerical Aperture is %.2f', NA);
13 theta = \%pi*NA^2;
                           //solid Acceptance Angle...
14 printf('\n\nThe solid acceptance angle is \%.3 f
     radians', theta);
15
16 M = V^2/2;
                   //number of modes...
17 printf("\n nThe number of modes in the fibre are %.2
     f", M);
```

Scilab code Exa 1.14.7 To find cutoff wavelength and core diameter

```
1 //Example 1.14.7 page 1.47
2 // Cutoff wavelength, MAx core diameter for single mode operation..
```

```
3
4 clc;
5 clear;
7 \text{ n1} = 1.49; //
                  RI of core.
8 n2=1.47;
                  //RI of cladding...
            //radius of core in um..
9 a = 2;
10 NA = sqrt(n1^2-n2^2); // Numerical Aperture...
11 // The maximum V number for single mode operation is
       2.4...
12 V = 2.4;
               //Normalised frequency...
13
14 lamda = 2*%pi*a*NA/V; // Cutoff wavelength...
15 printf('The cutoff wavelength is \%.2 f um', lamda);
16
17
18 lamda1 = 1.310; // Givenn cutoff wavelength in um...
19 d= V*lamda1/(%pi*NA); // core diameter...
20 printf('\n'nThe core diameter is \%.2 \, \text{f um',d});
```

Scilab code Exa 1.14.8 To find the cutoff wavelength

```
1 //Example 1.14.8 page 1.47
2 //To find cutoff wavelength..
3
4 clc;
5 clear;
6 n1= 1.48; //RI of core..
7 a= 4.5; //core radius in um..
8 del= 0.0025; //Relative RI difference..
9 V= 2.405; //For step index fibre..
10 lamda= (2*%pi*a*n1*sqrt(2*del))/V; //cutoff wavelength..
11 printf('The cutoff wavelength is %.2 f um ',lamda);
```

Scilab code Exa 1.14.9 To find normalised frequency and number of modes

```
1 //Example 1.14.9
2 //To find normalised frequency and the number of
     modes for the fibre..
3
4 clc;
5 clear;
7 \text{ lamda} = 0.82*10^-6;
                         //wavelength of operation.
8 a= 2.5*10^-6; //Radius of core..
9 n1= 1.48; //RI of core..
10 n2= 1.46; //RI of cladding
11 NA= sqrt(n1^2-n2^2);
                             //Numerical Aperture...
12 V= 2*%pi*a*NA/lamda; //Normalisd frequency...
13 printf('The normalised frequency is \%.3 \, f', V);
14 M= V^2/2; //The number of modes...
15 printf("\nnThe number of modes in the fibre are %.2
     f",M);
```

Scilab code Exa 1.14.10 To find diameter of core

Scilab code Exa 1.14.11 To find NA solid acceptance angle and number of modes

```
1 //Example 1.14.11
2 //To find Numerical Aperture, Solid Acceptance angle,
     Normalised frequency, Number of modes..
3
4 clc;
5 clear;
7 n1= 1.5; // RI of core...
8 n2= 1.38; //RI of cladding...
9 a= 25*10^-6; //radius of core...
10 lamda= 1300*10^-9; // wavelength of operation...
11 NA= sqrt(n1^2-n2^2); //Numerical Aperture...
12 printf ('The Numerical Aperture of the given fibre is
      \%.4 f', NA);
13 V= 2*%pi*a*NA/lamda; //Normalised frequency...
14 printf('\n'nThe normalised frequency is \%.2 \, f', V);
15
                           //Solid acceptance anglr..
16 theta= asind(NA);
17 printf('\n\nThe Solid acceptance angle is %d degrees
     ',theta);
18 M = V^2/2;
                   //Number of modes..
19 printf("\n\nThe number of modes in the fibre are %d"
20 printf("\n\n***Number of modes wrongly calculated in
      the book..");
```

Scilab code Exa 1.14.12 To find normalised frequency and number of modes

```
1 //Example 1.14.12
2 //To find noramlised frequency and number of modes
3
4 clc;
5 clear;
6
7 lamda= 850*10^-9; //waveled
//Radius of core
                         //wavelength of operation.
                //RI of Core...
9 \text{ n1} = 1.48;
10 n2= 1.46; //RI of cladding..
11
12 NA = sqrt(n1^2-n2^2); // Numerical Aperture
13
14 V= 2*%pi*a*NA/lamda; //Normalised frequency...
15 printf('The normalised frequency is \%.2 \, \text{f}', V);
16
17 lamda1= 1320*10^-9; // wavelength changed...
18 V1= 2*%pi*a*NA/lamda1; //Normalised frequency at
     new wavelength ...
19
20 M = V1^2/2;
                   //Number of modes at new wavelength
21 printf("\nnThe number of modes in the fibre at 1320
     um are %d",M);
22 lamda2= 1550*10^-9; //wavelength 2...
23 V2= 2*%pi*a*NA/lamda2; //New normalised frequency...
24 M1= V2^2/2; // number of modes...
25 printf("\nnThe number of modes in the fibre at 1550
     um are \%d", M1);
```

Scilab code Exa 1.15.1 To calculate maximum core diameter

```
//Example 1.15.1 page 1.56..
// Maximum core diameter..

clc;
clear;
n1= 1.48; //RI of core..
del= 0.015; //relative RI differencr..
lamda= 0.85; //wavelength of operation..

V= 2.4; // for single mode of operation..

a= V*lamda/(2*%pi*n1*sqrt(2*del)); //radius of core..

printf('The raduis of core is %.2f um',a);
printf('\n\nThe maximum possible core diameter is %.2f um',2*a);
```

Scilab code Exa 1.15.2 To find core diameter

```
// Example 1.15.2
// to find maximum core diameter for single mode..

clc;
clear;

n1= 1.5; //RI of core..

del= 0.01; //Relative RI difference...

lamda= 1.3; //Wavelength of operation...

V= 2.4*sqrt(2); // Maximum value of V for GRIN...

a= V*lamda/(2*%pi*n1*sqrt(2*del)); //radius of core
...

printf('The radius of core is %.2 f um',a);
printf('\n\nThe maximum possible core diameter is % .2 f um',2*a);
```

Scilab code Exa 1.15.3 To find the cutoff wavelength

Chapter 2

Optical Fiber for Telecommunication

Scilab code Exa 2.2.1 Computation for length for different conditions

```
1 // Example 2.2.1 page 2.4
3 clc;
4 clear;
6 alpha= 3; // average loss
                                 Power decreases by
      50\% \text{ so } P(0)/P(z) = 0.5
7 lamda= 900*10^-9; //wavelength
8 z= 10*log10(0.5)/alpha; //z is the length
9 z = z * -1;
10 printf ("The length over which power decreases by 50
     \%\% is =\%.2 \text{ f Kms}, z);
11
12 z1 = 10 * log10(0.25) / alpha;
                               //Power decreases by
      75\% \text{ so } P(0)/P(z) = 0.25
13 z1=z1*-1; //as distance cannot be negative...
14 printf("\n\nThe length over which power decreases by
       75\%\% is =\%.2 f Kms", z1);
```

Scilab code Exa 2.2.2 To find the output power

```
//Example 2.2.2 page 2.5

clc;
clear;

z=30; //Length of the fibre in kms
alpha= 0.8; //in dB
P0= 200; //Power launched in uW
pz= P0/10^(alpha*z/10);
printf("The output power is:%.4f uW",pz);
```

Scilab code Exa 2.2.3 To find overall signal attenuation

Scilab code Exa 2.2.4 To find minimum optical input power

Scilab code Exa 2.2.5 To calculate fiber attenuation in different cases

Scilab code Exa 2.2.6 To calculate length of the fiber

```
//Example 2.2.6 page 2.8

clc;
clear;

p0=3*10^-3;
pz=3*10^-6;
alpha= 0.5;
z= log10(p0/pz)/(alpha/10);
printf("The Length of the fibre is %.f Km",z);
```

Scilab code Exa 2.2.7 To find overall signal attenuation

```
1 //Example 2.2.7 page 2.9
2
3 clc;
4 clear;
5 z= 10;
6 p0= 100*10^-6; // input power
7 pz=5*10^-6; //output power
8 alpha = 10*log10(p0/pz); //total attenuation
```

Scilab code Exa 2.2.8 To find attenuation per km

```
1 //Example 2.2.8 page 2.15
2
3 clc;
4 clear;
6 Tf = 1400; //fictive temperature
7 \text{ BETA} = 7*10^-11;
8 n = 1.46;
                  //RI
9 p= 0.286; //photo elastic constant
10 Kb = 1.381*10^-23; //Boltzmann's constant
11 lamda = 850*10^-9; //wavelength
12 alpha_scat = 8*\%pi^3*n^8*p^2*Kb*Tf*BETA/(3*lamda^4);
13 l= 1000; //fibre length
14 TL = exp(-alpha_scat*1); //transmission loss
15 attenuation = 10*log10(1/TL);
16 printf ("The attenuation is \%.3 \,\mathrm{f}\,\mathrm{dB/Km}", attenuation);
```

Scilab code Exa 2.3.1 To find radius of curvature

```
//Example 2.3.1 page 2.20

clc;
clear;
alpha = 2;
n1= 1.5;
del= 0.01;
a = 25*10^-6;
lamda= 1.3*10^-6;
M= 0.5;
NA= sqrt(0.5*2*1.3^2/(%pi^2*25^2));
Rc= 3*n1^2*lamda/(4*%pi*NA^3);
Rc=Rc*1000; // converting into um....
printf("The radius of curvature is %.2 f um",Rc);
```

Scilab code Exa 2.5.1 To find the pulse spreading

```
//Example 2.5.1 page 2.25

clc;
clear;

lamda = 850 *10^-9;
sigma= 45*10^-9;
L= 1;
M= 0.025/(3*10^5*lamda);
sigma_m= sigma*L*M;
sigma_m= sigma_m*10^9; // formatting in ns/km...
printf("The Pulse spreading is %.2 f ns/Km", sigma_m);
printf("\n\nNOTE*** - The answer in text book is wrongly calculated..");
```

Scilab code Exa 2.5.2 To find the material dispersion induced pulse spreading

```
//Example 2.5.2 pagw 2.26

clc;
clear;
lamda= 2*10^-9;
sigma = 75;
D_mat= 0.03/(3*10^5*2);
sigma_m= 2*1*D_mat;
sigma_m=sigma_m*10^9; //Fornamtting in ns/Km
printf("The Pulse spreading is %d ns/Km", sigma_m);
D_mat_led= 0.025/(3*10^5*1550);
sigma_m_led = 75*1*D_mat_led*10^9; //in ns/Km
printf("\n\nThe Pulse spreading foe LED is %.2 f ns/Km", sigma_m_led);
```

Scilab code Exa 2.5.3 To find the material dispersion

```
//Example 2.5.3 page 2.26
2
3 clc;
4 clear;
   lamda = 850;
6
    sigma= 20;
    D_{mat} = 0.055/(3*10^5*lamda);
8 sigma_m= sigma*1*D_mat;
9 D_mat=D_mat*10^12; // in Ps...
10 sigma_m=sigma_m*10^9; //in ns////
    printf("The material Dispersion is %.2 f Ps/nm-Km",
11
       D_mat);
12
   printf("\n\nThe Pulse spreading is %.4f ns/Km",
       sigma_m);
```

Scilab code Exa 2.5.4 To compute the wave guide dispersion

```
//Example 2.5.4 page 2.30

clc;
clear;

n2= 1.48;

del = 0.2;

lamda = 1320;

Dw = -n2*del*0.26/(3*10^5*lamda);

Dw=Dw*10^10; //converting in picosecs....
printf("The waveguide dispersion is %.3f picosec/nm.
Km",Dw);
```

Scilab code Exa 2.6.1 To find the bandwidth pulse broadening and bandwidth length product

Scilab code Exa 2.6.2 To find the bandwidth pulse dispersion and bandwidth length product

```
//Example 2.6.2 page 2.34
2
3 clc;
4 clear;
6 t = 0.1*10^-6;
7 L = 10;
8 \text{ B_opt= } 1/(2*t);
9 B_opt=B_opt/1000000; //converting from Hz to MHz
10 printf ("The maximum optical bandwidth is %d MHz.",
      B_opt);
11 del= t/L;
12 del=del/10^-6; //converting in us...
13 printf("\nnThe dispersion per unit length is \%.2 f
      us/Km", del);
14 \text{ BLP= B_opt*L};
15 printf("\n\nThe Bandwidth-Length product is %d MHz.
     Km", BLP);
```

Scilab code Exa 2.6.3 To find the bandwidth and the puse dispersion

```
1 //Example 2.6.3 page 2.25
2
3 clc;
```

Scilab code Exa 2.6.4 To estimate rms pulse broadening

```
//Example 2.6.4 page 2.35

clc;
clear;
lamda = 0.85*10^-6;
rms_spect_width = 0.0012*lamda;
sigma_m = rms_spect_width*1*98.1*10^-3;
sigma_m=sigma_m*10^9; // converting in ns...
printf("The Pulse Broadening due to material dispersion is %.2 f ns/Km", sigma_m);
```

Scilab code Exa 2.6.5 To find the delay difference rms pulse broadening and maximum bit rate

```
1 //Example 2.6.5 page 2.35
2
3 clc;
4 clear;
```

```
5
6 L = 5; //in KM
7 \text{ n1} = 1.5;
8 \text{ del} = 0.01;
9 c = 3*10^8; // in m/s
10 delta_t = (L*n1*del)/c;
11 delta_t=delta_t*10^12; //convertin to nano secs...
12 printf("The delay difference is %.1f ns", delta_t);
13 sigma = L*n1*del/(2*sqrt(3)*c);
14 sigma=sigma*10^12; //convertin to nano secs...
15 printf("\n nThe r.m.s pulse broadening is \%.2 \, f ns",
      sigma);
16 B= 0.2/sigma*1000; //in Mz
17 printf("\n nThe maximum bit rate is %.2 f MBits/sec",
      B);
18 BLP = B*5;
19 printf("\n nThe Bandwidth-Length is \%.2 \text{ f MHz.Km}", BLP
      );
```

Scilab code Exa 2.6.6 To compute intermodal intramodal and total dispersion

Scilab code Exa 2.7.1 To find the bandwidth pulse dispersion and bandwidth length product

```
//Example 2.7.1 page 2.37

clc;
clear;

t = 0.1*10^-6;
L=15;
del= t/L*10^9; //convertin to nano secs...
printf("The Pulse Dispersion is %.2 f ns",del);
B_opt= 1/(2*t)/10^6; //convertin to nano secs...
printf("\n\n The maximum possible Bandwidth is %d MHz",B_opt);
BLP = B_opt*L;
printf("\n\nThe BandwidthLength product is %d MHz.Km ",BLP);
```

Scilab code Exa 2.7.2 To find the delay difference and the rms pulse broadening

```
1 //Example 2.7.2 page 2.38
2
3 clc;
4 clear;
5 L= 6;
6 n1= 1.5;
7 del= 0.01;
8 delta_t = L*n1*del/(3*10^8)*10^12; //convertin to nano secs...
9 printf("The delay difference is %d ns",delta_t);
```

Scilab code Exa 2.7.3 To determine modal bifringence

```
1 //Example 2.7.3 page 2.39
2
3 clc;
4 clear;
5
6 Lb= 0.09;
7 lamda= 1.55*10^-6;
8 delta_lamda = 1*10^-9;
9 Bf= lamda/Lb;
10 Lbc= lamda^2/(Bf*delta_lamda);
11 printf("The modal Bifriengence is %.2f meters ",Lbc);
12 beta_xy= 2*%pi/Lb;
13 printf("\n\nThe difference between propagation constants is %.2f", beta_xy);
```

Scilab code Exa 2.7.4 To estimate maximum possible bandwidth

Scilab code Exa 2.7.5 To estimate maximum possible bandwidth

```
1 //Example 2.7.5 page 2.40
```

Chapter 3

Optical Sources and Transmitters

Scilab code Exa 3.2.1 To find the emitted wavelength

```
1 //Example 3.2.1 page 3.10
2
3 clc;
4 clear;
5
6 x= 0.07;
7 Eg= 1.424+1.266*x+0.266*x^2;
8 lamda= 1.24/Eg;
9 printf("The emitted wavelength is %.2f um",lamda);
```

Scilab code Exa 3.2.2 To find the emitted wavelength

```
1 //Example 3.2.2 page 3.10
2
3 clc;
4 clear;
```

```
5 x= 0.26;
6 y=0.57;
7 Eg= 1.35-0.72*y+0.12*y^2;
8 lamda = 1.24/Eg;
9 printf("The wavelength emitted is %.2f um",lamda);
```

Scilab code Exa 3.2.3 To find total carrier recombination life time and optical power generated

```
1 // Example 3.2.3 page 3.12
3 clc;
4 clear;
5 Tr = 60*10^-9; //radiative recombination time
6 Tnr= 90*10^-9; //non radiative recomb time
7 I = 40*10^{-3};
                //current
8 t = Tr*Tnr/(Tr+Tnr);
                          //total recomb time
9 t=t*10^9; //Converting in nano secs...
10 printf("The total carrier recombination life time is
      %d ns",t);
11 t=t/10^9;
12 h = 6.625*10^-34; //plancks const
13 c = 3*10^8;
14 q=1.602*10^-19;
15 \quad lamda = 0.87*10^-6;
16 Pint=(t/Tr)*((h*c*I)/(q*lamda));
17 Pint=Pint*1000; //converting inmW...
18 printf("\n\nThe Internal optical power is %.2 f mW",
     Pint);
```

Scilab code Exa 3.2.4 To find bulk recombination life time quantum efficiency and internal power

```
1 //Example 3.2.4 page 3.13
2 clc;
3 clear;
4 \text{ lamda} = 1310*10^-9;
5 \text{ Tr} = 30*10^-9;
6 Tnr= 100*10^-9;
7 I = 40*10^-3;
8 t= Tr*Tnr/(Tr+Tnr);
9 t=t*10^9; //converting in nano secs...
10 printf("Bulk recombination life time %.2f ns",t);
11 t=t/10^9;
12 n = t/Tr;
13 printf("\n nInternal quantum efficiency is \%.3 f",n);
14 h= 6.625*10^{-34}; //plancks const
15 c = 3*10^8;
16 q=1.602*10^-19;
17 Pint = (0.769*h*c*I)/(q*lamda)*1000;
18 printf("\n\nThe internal power level is %.3 f mW",
      Pint);
19 printf("\n" \n\***NOTE: Internal Power wrong in text
      book.. Calculation Error..");
```

Scilab code Exa 3.2.5 To estimate external power efficiency

```
1 //Example 3.2.5 page 3.14
2
3 clc;
4 clear;
5 nx= 3.6;
6 TF= 0.68;
7 n= 0.3;
8 //Pe=Pint*TF*1/(4*nx^2);
9 //ne= Pe/Px*100 ..eq0
10 //Pe = 0.013*Pint //Eq 1
11 //Pint = n*P; //Eq 2
```

```
12 //substitute eq2 and eq1 in eq0
13 ne = 0.013*0.3*100;
14 printf("The external Power efficiency is %.2f %%", ne);
15 // Wrongly printed in textbook. it should be P instead of Pint in last step
```

Scilab code Exa 3.2.6 To find optical power emitted by the device and the external power efficiency

```
1 //Example 3.2.6 page 3.15
2 clc;
3 clear;
5 \text{ lamda} = 0.85*10^-6;
6 \text{ Nint} = 0.60;
7 I = 20*10^{-3};
8 h= 6.625*10^{-34}; //plancks const
9 c = 3*10^8;
10 e=1.602*10^-19;
11 Pint = Nint*h*c*I/(e*lamda);
12 printf ("The optical power emitted is %.4 f W", Pint);
13
14 \text{ TF} = 0.68;
15 \text{ nx} = 3.6;
16 Pe= Pint*TF/(4*nx^2)*1000000;
17 printf("\n nPower emitted in the air %.1 f uW", Pe);
18 Pe=Pe/1000000;
19 Nep=Pe/Pint*100;
20 printf("\nnExternal power efficiency is %.1f %%",
      Nep);
```

Scilab code Exa 3.2.7 To find total carrier recombination lifetime and power internally generated

```
1 //Example 3.2.7 page 3.16
2
3 clc;
4 clear;
5 \text{ lamda} = 0.87*10^-6;
6 Tr= 50*10^-9;
7 I = 0.04;
8 Tnr= 110*10^-9;
9 t= Tr*Tnr/(Tr+Tnr);
10 t=t*10^9; //converting in ns...
11 printf("Total carrier recombination life time is %.2
      f ns",t);
12 t=t/10^9;
13 h= 6.625*10^{-34}; //plancks const
14 c = 3*10^8;
15 q=1.602*10^-19;
16 \text{ n= t/Tr};
17 printf("\n nThe efficiency is %.3 f %%",n);
18 Pint=(n*h*c*I)/(q*lamda)*1000;
19 printf("\nnInternal power generated is \%.2 \text{ f mW}",
      Pint);
20 printf("\n\n***NOTE- Internal Power wrong in book...
       ");
```

Scilab code Exa 3.2.8 To find the conversion efficiency

```
1 //Examplr 3.2.8 page 3.16
2
3 clc;
4 clear;
5
6 V= 2;
```

```
7  I= 100*10^-3;
8  Pc= 2*10^-3;
9  P= V*I;
10  Npc= Pc/P*100;
11  printf("The overall power conversion efficiency is %d %%", Npc);
```

Scilab code Exa 3.3.1 To find the optical gain

Scilab code Exa 3.3.2 To calculate the frequency and wavelength spacing

```
1 //Example 3.3.2 page 3.27
2 clc;
3 clear;
4 n= 3.7;
5 lamda = 950*10^-9;
6 L= 500*10^-6;
7 c= 3*10^8;
8 DELv = c/(2*L*n)*10*10^-10; //converting in GHz...
9 printf("The frequency spacing is %d GHz", DELv);
```

Scilab code Exa 3.3.3 To find the number of longitudinal modes and their frequency separation

Scilab code Exa 3.3.4 To calculate the external power efficiency

```
1 //Example 3.3.4 page 3.33
2
3 clc;
4 clear;
5
6 Nt= 0.18;
7 V= 2.5;
8 Eg= 1.43;
9 Nep= Nt*Eg*100/V;
10 printf("The total efficiency is %.3f %%", Nep);
```

Scilab code Exa 3.3.5 To find the threshold current density and the threshold current

```
1 //Example 3.3.5 page 3.33
3 clc;
4 clear;
5 n = 3.6;
6 BETA = 21*10^-3;
7 alpha= 10;
8 L = 250*10^-4;
9
10 r= (n-1)^2/(n+1)^2;
11 Jth= 1/BETA * (alpha + (log(1/r)/L));
12 Jth=Jth/1000; //converting for displaying...
13 printf ("The threshold current density is \%.2 \, \mathrm{fx} 10\,^3",
      Jth);
14 Jth=Jth*1000;
15 Ith = Jth*250*100*10^-8;
16 Ith=Ith*1000; //converting into mA...
17 printf("\n The threshold current is %.1 f mA", Ith);
```

Scilab code Exa 3.3.6 To compare the threshold current densities

```
1 //Exapmle 3.3.6 page 3.34
2 clc;
3 clear;
5 T = 305;
6 \text{ TO} = 160;
7 T1 = 373;
9 \quad Jth_32 = \exp(T/T0);
10 Jth_100 = \exp(T1/T0);
11 R_{j} = Jth_{100}/Jth_{32};
12 printf ('Ratio of current densities at 160K is %.2f",
      R_{-j});
  printf("\n\n***NOTE- Wrong in book...\nJth(100)
13
      calculated wrongly ... ");
14 \text{ To} = 55;
15 Jth_32_new = exp(T/To);
16 Jth_100_new = exp(T1/To);
17 R_{j-new} = Jth_{100-new}/Jth_{32-new};
18 printf("\n\nRatio of current densities at 55K is %.2
      f", R_{-j}new);
19 //wrong in book...
```

Scilab code Exa 3.4.1 To calculate the optical power coupled

```
1 //Example 3.4.1 page .342
2
3 clc;
4 clear;
5
6 Bo= 150;
7 rs= 35*10^-4;
8 a1= 25*10^-6;
```

Scilab code Exa 3.4.2 To find the Fresnel reflection and loss of power

```
//Example 3.4.2 page 3.43

clc;
clear;

n= 1.48;
n1= 3.6;
R= (n1-n)^2/(n1+n)^2;
printf("The Fresnel Reflection is %.4f",R);
L= -10*log10(1-R);
printf("\n\nPower loss is %.2f dB",L);
```

Scilab code Exa 3.4.3 To find the optical power coupled

```
1 //Example 3.4.3 page 3.44
2
3 clc;
4 clear;
```

```
6 NA= 0.20;
7 Bo= 150;
8 rs= 35*10^-6;
9 Pled = %pi^2*rs^2*Bo*NA^2;
10 Pled=Pled*10^10; //convertin in uW for displaying...
11 printf("The optical power coupled is %.2 f uW", Pled);
```

Scilab code Exa 3.4.4 To calculate the optical loss

```
//Example 3.4.4 page 3.44

clc;
clear;

n1= 1.5;
n=1;
R= (n1-n)^2/(n1+n)^2;
L= -10*log10(1-R);
//Total loss is twice due to reflection
L= L+L;
printf("Total loss due to Fresnel Reflection is %.2fdB",L);
```

Scilab code Exa 3.4.5 To estimate insertion loss in different cases

```
1 //Example 3.4.5 page 3.51
2
3 clc;
4 clear;
5 n1= 1.5;
6 n=1;
7 y=5;
8 a= 25;
```

```
9 temp1=(1-(y/(2*a)^2))^0.5;
10 temp1=temp1*(y/a);
11 temp=2*acosd(0.9996708);// it should be acos(0.1)
      actually ... due to approximations
12
      // answer varies a lot...
13 temp=temp-temp1;
14 / \text{temp=temp};
15 tem= 16*(1.5^2)/(2.5^4);
16 tem=tem/%pi;
17 temp=temp*tem;
18 Nlat= temp;
19 printf("The Coupling efficiency is %.3f", Nlat);
20 L = -10*log10(Nlat);
21 printf("\nnThe insertion loss is %.2f dB",L);
22 temp1=(1-(y/(2*a)^2))^0.5;
23 temp1=temp1*(y/a);
24 temp=2*acosd(0.9996708); // it should be a\cos(0.1)
      actually ... due to approximations
      // answer varies a lot...
25
26 temp=temp-temp1;
27 temp=temp/%pi;
28 \text{ N_new = temp};
29 printf("\n\nEfficiency when joint index is matched
      is \%.3 \, f", N_new);
30 L_new= -10*log10(N_new);
31 printf("\nnThe new insertion loss is \%.2 \, f \, dB",L_new
      );
```

Chapter 4

Optical Detectors and Receivers

Scilab code Exa 4.1.1 To find the cutoff wavelength

```
//Example 4.1.1 page 4.5

clc;
clear;

Eg= 1.1;
lamda_c = 1.24/Eg;
printf("The cut off wavelength is %.2 f um",lamda_c);

Eg_ger =0.67;
lamda_ger= 1.24/Eg_ger;
printf("\n\nThe cut off wavelength for Germanium is %.2 f um",lamda_ger);
```

Scilab code Exa 4.1.2 To find the upper cutoff wavelength

```
1 //Example 4.1.2 page 4.5
2
3 clc;
4 clear;
5 Eg = 1.43;
6 lamda = 1.24/Eg;
7 lamda=lamda*1000; //converting in nm
8 printf("The cut off wavelength is %.2 f nm",lamda);
```

Scilab code Exa 4.1.3 To find the quantum efficiency of the detector

```
1 //Example 4.1.3 page 4.3
2
3 clc;
4 clear;
5
6 P = 6*10^6;
7 Eh_pair= 5.4*10^6;
8 n= Eh_pair/P*100;
9 printf("The quantum efficiency is %d %%",n);
```

Scilab code Exa 4.1.4 To find generated photocurrent

```
1 //Example 4.1.4 page 4.6
2
3 clc;
4 clear;
5
6 R= 0.65;
7 P0= 10*10^-6;
8 Ip= R*P0;
9 Ip=Ip*10^6; //convertinf in uA...
10 printf("The generated photocurrent is %.1f uA",Ip);
```

Scilab code Exa 4.1.5 To find quantum efficiency and responsivity

```
1 //Example 4.1.5 page 4.6
2
3 clc;
4 clear;
6 Ec= 1.2*10^11;
7 P = 3*10^11;
8 \text{ lamda} = 0.85*10^-6;
9 n = Ec/P*100;
10 printf("The efficiency is %d %%",n);
11
12 q = 1.602*10^-19;
13 h= 6.625*10^{-34};
14 c = 3*10^8;
15 n = n/100;
16 R= n*q*lamda/(h*c);
17 printf("\n\nThe Responsivity of the photodiode is %
      .4 f A/W', R);
```

Scilab code Exa 4.1.6 Operational wavelength and the incident optical power required

```
1 //Example 4.1.6 page 4.7
2
3 clc;
4 clear;
5
6 n= 0.65;
7 E= 1.5*10^-19;
```

Scilab code Exa 4.1.7 To find the average photon current

```
//Example 4.1.7 page 4.8

clc;
clear;
Iin= 1;
lamda= 1550*10^-9;
q= 1.602*10^-19;
h= 6.625*10^-34;
c= 3*10^8;
n=0.65;
Ip=n*q*lamda*Iin/(h*c);
Ip=Ip*1000; //converting in mA for displaying...
printf("The average photon current is %d mA", Ip);
```

Scilab code Exa 4.1.8 To find the wavelength of operation incident power and the responsivity

```
1 //Example 4.1.8 page 4.9
3 clc;
4 clear;
5 n = 0.70;
6 Ip= 4*10^-6;
7 e= 1.602*10^-19;
8 h = 6.625*10^{-34};
9 c = 3*10^8;
10 E= 1.5*10^-19
11 lamda = h*c/E;
12 lamda=lamda*10^6; //converting um for displaying...
13 printf("The wavelength is %.2f um", lamda);
14 R= n*e/E;
15 Po= Ip/R;
16 Po=Po*10^6; //converting um for displaying...
17 printf("\n\nIncident optical Power is %.2 f uW", Po);
```

Scilab code Exa 4.2.1 To find the bandwidth

Scilab code Exa 4.2.2 To find the maximum response time

```
1 //Example 4.2.2 page 4.15
2
3 clc;
4 clear;
5
6 W= 25*10^-6;
7 Vd= 3*10^4;
8 Bm= Vd/(2*%pi*W);
9 RT= 1/Bm;
10 RT=RT*10^9; //converting ns for displaying...
11 printf("The maximum response time is %.2 f ns",RT);
```

Scilab code Exa 4.2.3 To find the multiplication factor

```
//Example 4.2.3. pahe 4.15

clc;
clear;
e = 1.602*10^-19;
h = 6.625*10^-34;
v = 3*10^8;
n = 0.65;
I = 10*10^-6;
lamda = 900*10^-9;
R = n*e*lamda/(h*v);
Po = 0.5*10^-6;
Ip = Po*R;
M = I/Ip;
printf("The multiplication factor is %.2f",M);
```

Scilab code Exa 4.3.1 To find the multiplication factor

```
1 //Example 4.3.1 page 4.18
```

```
2
3 clc;
4 clear;
5
6 n=0.65;
7 \text{ lamda} = 900*10^-9;
8 Pin= 0.5*10^-6;
9 \text{ Im} = 10*10^-6;
10 q = 1.602*10^-19;
11 h = 6.625*10^{-34};
12 c = 3*10^8;
13 R= n*q*lamda/(h*c);
14 Ip = R*Pin;
15 M = Im/Ip;
16 printf("The multiplication factor is %.2f", M);
17 printf("\n\cdotn***NOTE-Answer wrong in textbook...");
```

Scilab code Exa 4.6.1 To find the various noise terms

```
1 //Example 4.6.1 page 4.34
2
3 clc;
4 clear;
5 \text{ lamda} = 1300*10^-9;
6 Id= 4*10^-9;
7 n=0.9;
8 Rl = 1000;
9 Pincident = 300*10^-9;
10 BW = 20*10^6;
11 q = 1.602*10^-19;
12 h= 6.625*10^-34;
13 v = 3*10^8;
14 Iq= sqrt((q*Pincident*n*lamda)/(h*v));
15 Iq= sqrt(Iq);
16 Iq=Iq*100; //converting in proper format for
```

Scilab code Exa 4.8.1 To find the quantum limit

```
1 //Example 4.8.1 page 4.39
2
3 clc;
4 clear;
                                   //meters
5 \text{ lamda} = 850*10^-9;
6 BER= 1*10^-9;
7 \text{ N_bar} = 9*log(10);
                               //joules-sec
8 h = 6.625*10^{-34};
9 v = 3*10^8;
                               //meters/sec
10 n = 0.65;
                               // assumption
11 E=N_bar*h*v/(n*lamda);
                          ///converting in proper format
12 E=E*10^18;
      for displaying ...
13 printf ("The Energy received is \%.2 \, \text{fx} 10^-18 Joules", E
      );
```

Scilab code Exa 4.8.2 To find minimum optical power

```
//Example 4.8.2 page 4.39

clc;
clear;

lamda = 850*10^-9;
ER = 1*10^-9;
BT=10*10^6;
h= 6.625*10^-34;
c= 3*10^8;
Ps= 36*h*c*BT/lamda;
Ps=Ps*10^12;///converting in proper format for displaying...

printf("The minimum incidental optical power required id %.2 f pW", Ps);
```

Scilab code Exa 4.8.3 To find Signal Noise ratio

```
1 //Example 4.8.3 page 4.40
2
3 clc;
4 clear;
5
6 C= 5*10^-12;
7 B =50*10^6;
8 Ip= 1*10^-7;
9 e= 1.602*10^-19;
10 k= 1.38*10^-23;
11 T= 18+273;
12 M= 1;
```

```
13 Rl= 1/(2*%pi*C*B);
14 S_N= Ip^2/((2*e*B*Ip)+(4*k*T*B/R1));
15 S_N = 10*log10(S_N); //in db
16 printf("The S/N ratio is %.2 f dB",S_N);
17 M=41.54;
18 S_N_new= (M^2*Ip^2)/((2*e*B*Ip*M^2.3)+(4*k*T*B/R1));
19 S_N_new = 10*log10(S_N_new); //in db
20 printf("\n\nThe new S/N ratio is %.2 f dB",S_N_new);
21 printf("\n\nImprovement over M=1 is %.1 f dB",S_N_new -S_N);
```

Chapter 5

Design Considerations in Optical Links

Scilab code Exa 5.3.1 To design optical fiber link

```
1 //Example 5.3.1 page 5.7
2
3 clc;
4 clear;
5
6 B= 15*10^-6;
7 L= 4;
8 BER= 1*10^-9;
9 Ls= 0.5;
10 Lc= 1.5;
11 alpha= 6;
12 Pm= 8;
13 Pt= 2*Lc +(alpha*L)+(Pm);
14 printf("The actual loss in fibre is %d dB",Pt);
15 Pmax = -10-(-50);
16 printf("\n\nThe maximum allowable system loss is %d dBm",Pmax);
```

Scilab code Exa 5.3.2 Calculate the link power budjet

```
1 //Example 5.3.2 page 5.8;
2
   clc;
3
    clear;
4
   Ps = 0.1;
6
   alpha = 6;
   L = 0.5;
   Ps = 10*log10(Ps);
   NA = 0.25;
10
    Lcoupling = -10*log10(NA^2);
    Lf = alpha*L;
12 \ 1c = 2*2;
13 Pm = 4;
14 Pout = Ps-(Lcoupling+Lf+lc+Pm);
15 printf("The actual power output is %d dBm", Pout);
16 \text{ Pmin} = -35;
17 printf("\n\nMinimum input power required is %d dBm",
      Pmin);
18 printf("\n Pmin > Pout, system will perform
      adequately over the system operating life.");
```

Scilab code Exa 5.3.3 Calculate the loss margin

```
1 //Example 5.3.3 page 5.8;
2
3 clc;
4 clear;
5
6 Ps= 5;
7 Lcoupling = 3;
```

Scilab code Exa 5.3.4 To perform optical power budjet

```
//Example 5.3.4 page 5.9
3 clc;
4 clear;
6 LED_output = 3;
7 \text{ PIN\_sensitivity} = -54;
8 allowed_loss= LED_output -(-PIN_sensitivity);
9 Lcoupling = 17.5;
10 cable_atten = 30;
11 power_margin_coupling= 39.5;
12 power_margin_splice=6.2;
13 power_margin_cable=9.5;
14 final_margin= power_margin_coupling+
      power_margin_splice+power_margin_cable;
15 printf ("The safety margin is %.2f dB", final_margin)
16 //Answer in book is wrong...
17 printf("\n\n***NOTE- Answer wrong in book...");
```

Scilab code Exa 5.3.5 Perform optical power budget

```
//Example 5.3.5 page 5.10

clc;
clear;

optical_power=-10;
receiver_sensitivity=-41;
total_margin= optical_power-receiver_sensitivity;
cable_loss= 7*2.6;
splice_loss= 6*0.5;
connector_loss= 1*1.5;
safety_margin= 6;
total_loss= cable_loss+splice_loss+connector_loss+safety_margin;
excess_power_margin= total_margin-total_loss;
printf("The system is viable and provides %.1f dB excess power_margin.", excess_power_margin);
```

Scilab code Exa 5.4.1 To find the system rise time

```
1 //Example 5.4.1 page 5.13
2
3 clc;
4 clear;
5
6 Ttx= 15;
7 Tmat=21;
8 Tmod= 3.9;
9 BW= 25;
10 Trx= 350/BW;
```

```
11
12 Tsys = sqrt(Ttx^2+Tmat^2+Tmod^2+Trx^2);
13 printf("The system rise time is %.2 f ns.", Tsys);
```

Scilab code Exa 5.4.2 To find system rise time and bandwidth

```
1 //Example 5.4.2 page 5.14
2
3 clc;
4 clear;
5 Ttrans = 1.75*10^-9;
6 Tled = 3.50*10^-9;
7 Tcable=3.89*10^-9;
8 Tpin= 1*10^-9;
9 Trec= 1.94*10^-9;
10 Tsys= sqrt(Ttrans^2+Tled^2+Tcable^2+Tpin^2+Trec^2);
11 Tsys=Tsys*10^9;//converting in ns for dislaying...
12 printf("The system rise time is %.2 f ns",Tsys)
13 Tsys=Tsys*10^-9;
14 BW= 0.35/Tsys;
15 BW=BW/1000000;//converting in MHz for dislaying...
16 printf("\n\nThe system bandwidth is %.2 f MHz",BW);
```

Scilab code Exa 5.4.3 To find maximum bit rate for link when using NRZ and RZ

```
1 //Example 5.4.3 page 5.14
2
3 clc;
4 clear;
5
6 Ttx= 8*10^-9;
7 Tintra= 1*10^-9;
```

```
8 Tmodal=5*10^-9;
9 Trr= 6*10^-9;
10 Tsys= sqrt(Ttx^2+(8*Tintra)^2+(8*Tmodal)^2+Trr^2);
11
12 BWnrz= 0.7/Tsys;
13 BWnrz=BWnrz/1000000; //converting in ns for dislaying
...
14 BWrz=0.35/Tsys;
15 BWrz=BWrz/1000000; //converting in ns for dislaying
...
16 printf("Maximum bit rate for NRZ format is %.2 f Mb/sec", BWnrz);
17 printf("\n\nMaximum bit rate for RZ format is %.2 f
Mb/sec", BWrz);
```

Scilab code Exa 5.4.4 To find if the components give adequate response

```
1 //Example 5.4.4 page 5.15
3 clc;
4 clear;
5 \text{ Ts} = 10*10^-9;
6 Tn = 9 * 10^-9;
7 Tc = 2*10^-9;
8 Td=3*10^-9;
9 BW= 6*10^6;
10 Tsyst= 1.1*sqrt(Ts^2+(5*Tn)^2+(5*Tc)^2+Td^2);
11 Tsyst=Tsyst*10^9; //converting in ns for displying ...
12 Tsyst_max = 0.35/BW;
13 Tsyst_max=Tsyst_max*10^9; //converting in ns for
      displying ...
14 printf("Rise system of the system is %.2f ns", Tsyst)
15 printf("\n\nMaximum Rise system of the system is %.2
      f ns",Tsyst_max)
16 printf("\n\nSpecified components give a system rise
```

time which is \n adequate for the bandwidth and distance requirements of the optical fibre link."

Scilab code Exa 5.5.1 To find the maximum bit rates for different cases

```
1 //Example 5.5.1 page 5.18
2
3 clc;
4 clear;
5 \text{ del_t_1} = 10*100*10^-9;
6 \text{ Bt_nrz_1} = 0.7/(\text{del_t_1}*1000000);
7 Bt_rz_1 = 0.35/(del_t_1*1000000);
8 printf("First case. \n");
9 printf("Bit rate for nrz is:%.1f Mb/sec", Bt_nrz_1);
10 printf("\nBit rate for rz is:\%.2 f Mb/sec", Bt_rz_1);
11 \text{ del_t_2} = 20*1000*10^-9;
12 Bt_nrz_2 = 0.7/(del_t_2*1000000);
13 Bt_rz_2 = 0.35/(del_t_2*1000000);
14 printf("\n\nSecond case");
15 printf("\nBit rate for nrz is:\%.3 f Mb/sec", Bt_nrz_2)
16 printf("\nBit rate for rz is:%.4f Mb/sec", Bt_rz_2);
17 \text{ del_t_3} = 2*2000*10^-9;
18 Bt_nrz_3 = 0.7/(del_t_3*1000);
19 Bt_rz_3 = 0.35/(del_t_3*1000);
20 printf("\n\nThird case");
21 printf("\nBit rate for nrz is:%d BITS/sec", Bt_nrz_3)
22 printf("\nBit rate for rz is:%.1f BITS/sec",Bt_rz_3
      );
```

Chapter 6

Advanced Optical Systems

Scilab code Exa 6.5.1 To find the maximum input and output power

```
//Example 6.5.1 page 6.11

clc;
clear;

lamda_p= 980*10^-9;
lamda_s=1550*10^-9;
P_in=30; // in mW....

G=100;

Ps_max= ((lamda_p*P_in)/lamda_s)/(G-1);
printf("\nMaximum input power is:%.5 f mW",Ps_max);

Ps_out= Ps_max + (lamda_p*P_in/lamda_s);
Ps_out= 10*log10(Ps_out);
printf("\n\nOutput power is:%.2 f dBm",Ps_out);
```

Scilab code Exa 6.5.2 To find the gain of EDFA

Scilab code Exa 6.10.1 To compute the performance parameters

```
1 // Example 6.10.1 page 6.22
3 clc;
4 clear;
6 \text{ PO} = 200;
7 P1 = 90;
8 P2=85;
9 P3=6.3;
10 // All powers in uW...
11 coupling_ratio = P2/(P1+P2)*100;
12 printf("\n\n Coupling Ratio is %.2 f %%",
      coupling_ratio);
13 excess_ratio= 10*log10(P0/(P1+P2))
14 printf("\n\n The Excess Ratio is %.4f dB",
      excess_ratio);
15 insertion_loss=10*log10(P0/P1);
16 printf("\n\n The Insertion Loss (from Port 0 to Port
       1) is \%.2 \, f \, dB", insertion_loss);
```

```
17 insertion_loss1=10*log10(P0/P2);
18 printf("\n\n The Insertion Loss (from Port 0 to Port
        2) is %.2f dB",insertion_loss1);
19 cross_talk=10*log10(P3/P0);
20 printf("\n\n The Cross Talk is %.d dB",cross_talk);
21 printf("\n\n***NOTE: Cross Talk calculated wrognly
        in book... Value of P3 wrognly taken");
```

Scilab code Exa 6.10.2 To calculate performance parameters

```
1 // Example 6.10.2 page 6.23
3 clc;
4 clear;
6 \text{ PO} = 300;
7 P1 = 150;
8 P2=65;
9 P3=8.3*10^-3;
10 // All powers in uW...
11 splitting_ratio = P2/(P1+P2)*100;
12 printf("\n\n Splitting Ratio is %.2 f %%",
      splitting_ratio);
13 excess_ratio = 10*log10(P0/(P1+P2))
14 printf("\n\n The Excess Ratio is %.4f dB",
      excess_ratio);
15 insertion_loss=10*log10(P0/P1);
16 printf("\n\n The Insertion Loss (from Port 0 to Port
       1) is \%.2 \, f \, dB", insertion_loss);
17 cross_talk=10*log10(P3/P0);
18 printf("\n The Cross Talk is \%.2 \, f \, dB", cross_talk);
```

Scilab code Exa 6.10.3 To find total loss in the coupler

Scilab code Exa 6.10.4 To compute total loss

```
1 //Example 6.10.4 page 6.28
2
3 clc;
4 clear;
5
6 N=10;
7 L=0.5;
8 alpha=0.4;
9 Lthru=0.9;
10 Lc=1;
11 Ltap=10;
12 Li=0.5;
13 Total_loss= N*(alpha*L +2*Lc +Lthru+Li)-(alpha*L) -(2*Lthru)+(2*Ltap);
14 printf("The total loss in the coupler is :%d dB", Total_loss);
```

Scilab code Exa 6.11.1 To compute the wave guide length difference

```
1 //Example 6.11.1 page 6.33
```

```
2
3 clc;
4 clear;
5
6 del_v=10*10^9;
7 N_eff= 1.5;
8 c=3*10^11; // speed of light in mm/sec
9
10 del_L= c/(2*N_eff*del_v);
11 printf("The wave guide length differenc is %d mm", del_L);
```