2nd Assignment

Subject: Computer Network

Roll-call: WRC078BEI048

Q1. Differences Between OSI Model & TCP/IP model.

Ans: The differences between OSI model and TCP/IP model are:-

OSI model	TCP/IP model
It is seven layered reference model.	It is four layered model.
Online work is not supported	Working on the Internet relies on TCP/IP
The difference between	This model cannot distinguish
services, interfaces, and	between protocols, interfaces,
protocols is clearly defined	and services.
The network layer provides	The internet layer provides
both connection-oriented and	connectionless services.
connectionless services.	
The transport layer offers only	The transport layer provides
connection-oriented services.	both connection-oriented and
	connectionless services.
In the OSI model, protocols	Because they are not
are more easily	concealed, TCP/IP protocols
interchangeable and are	are challenging to replace.
preferably kept hidden.	

Q2. Differences between client server and peer to peer network.

Ans: The differences between client server and peer to peer network are: -

Client server network	Peer to peer network
A central server supplies	Every node (peer) in the
resources and services to	network possesses equal
multiple clients, which rely on	status and can function as
it for their operations.	both clients and servers.
Servers oversee resources and	Resources and services are
manage client requests, while	distributed among all peers,
clients request and utilize the	with each node having the
services offered by the server.	potential to share its own
	resources.
Centralized control facilitates	The absence of a central
easier management and	authority can make security
enforcement of security	more intricate, necessitating
measures.	cooperation among peers for
	implementing security
	measures.
Usually scaled through	Horizontal scaling is achieved
upgrades in server hardware	by adding more peers,
and software; more	resulting in increased
manageable when centralized.	resources as additional nodes
	join.

Q3. What are the seven layers of OSI model, What is the function of each layer?

Ans: The OSI (Open Systems Interconnection) model has seven layers, each with specific functions:

1. Physical Layer:

- Function: It encompasses the physical connection between devices, involving the transmission of raw bitstreams over a physical medium. It specifies hardware components such as cables, switches, and network interface cards.

2. Data Link Layer:

- Function: It facilitates node-to-node data transfer, error detection and correction, and flow control. It governs the link between directly connected nodes and frames the data.

3. Network Layer:

- Function: It oversees the routing and forwarding of data packets between nodes on distinct networks. It identifies the optimal path for data transfer and oversees logical addressing (IP addresses).

4. Transport Layer:

- Function: It guarantees dependable data transfer between end systems, incorporating error recovery and flow control. It furnishes end-to-end communication services and oversees data segmentation and reassembly.

5. **Session Layer**:

- Function: Manages sessions or connections between applications. It establishes, maintains, and terminates sessions, ensuring orderly data exchange and synchronization.

6. Presentation Layer:

- Function: It translates data between the application layer and the network. It manages data encryption, compression, and the conversion of data formats (e.g., from EBCDIC to ASCII).

7. Application Layer:

- Function: It furnishes network services directly to end-user applications. This encompasses protocols for specific data communications services on a network, such as HTTP for web browsing, FTP for file transfer, and SMTP for email.

Q4. What are the principles behind OSI model.

Ans: The OSI model is based on several key principles:

1. **Layered Approach**: The model is segmented into seven distinct layers, each tasked with specific functions, aiming to reduce complexity by compartmentalizing various network tasks.

- 2. **Interoperability**: It ensures interoperability among hardware and software from different vendors by adhering to standardized protocols.
- 3. **Modularity**: Each layer functions independently, meaning modifications in one layer generally do not impact others, facilitating easier updates and enhancements.
- 4. **Encapsulation**: Data is packaged with the necessary protocol information as it moves through the layers, allowing each layer to add its own headers and trailers.
- 5. **Decoupling**: The network architecture is segmented into layers, enabling services provided by one layer to be designed and modified independently of others.
- 6. **Standardization**: Encourages the adoption of universally accepted protocols and interfaces, simplifying communication and integration across diverse systems.
- 7. **Comprehensive Model**: Encompasses all facets of network communications, spanning from physical connections to application-level interactions, offering a comprehensive framework for comprehending and crafting networks.