Двойственное пространство и линейные функции

Пусть V - линейное пространство, $l: V \to \mathbb{K}$ - линейные функции $\Rightarrow V'$ - двойственное пространство. $\dim V = \dim V': e_1, \ldots, e_n$ - базис $V \Rightarrow \varepsilon^1, \ldots, \varepsilon^n$ - двойственный базис в $V', l_i = l(e_i)$.

Лемма 1. l_i - координаты линейной функции l в базисе $\varepsilon^1, \ldots, \varepsilon^n$.

 \square Линейные функции: $l_1\varepsilon^1 + \ldots + l_n\varepsilon^n$, $f = g \Leftrightarrow f(x) = g(x)$, $\forall x$.

Пусть $x \in V \Rightarrow$ подставим в l и в линейную функцию:

$$x = x^{1}e_{1} + \dots + x^{n}e_{n} \Rightarrow (l_{1}\varepsilon^{1} + \dots + l_{n}\varepsilon^{n})(x) = (l_{1}\varepsilon^{1} + \dots + l_{n}\varepsilon^{n})(x^{1}e_{1} + \dots + x^{n}e_{n}) =$$

$$= l_{1}\varepsilon^{1}(x^{1}e_{1} + \dots + x^{n}e_{n}) + \dots + l_{n}\varepsilon^{n}(x^{1}e_{1} + \dots + x^{n}e_{n}) = x^{1}l_{1} + \dots + x^{n}l_{n}$$

Знаем, что $\varepsilon^i(e_j)=\delta^i_j=\begin{cases} 1, & i=j\\ 0, & i\neq j \end{cases}$ - символ Кронекера.

$$l(x) = l(x^1e_1 + \dots + x^ne_n) = x^1l(e_1) + \dots + x^nl(e_n) = x^1l_1 + \dots + x^nl_n \Rightarrow$$

 \Rightarrow функции совпадают $\Rightarrow l = l_1 \varepsilon^1 + \ldots + l_n \varepsilon^n \Rightarrow l_1, \ldots, l_n$ - координаты l в базисах $\varepsilon^1, \ldots, \varepsilon^n$.

Сокращенная форма записи: $l(x) = x^i l_i$.

Пусть e_1, \ldots, e_n и $\tilde{e}_1, \ldots, \tilde{e}_n$ - базисы в $V, \ \tilde{e}_i = c_i^j e_j, \ c_i^j$ - элементы матрицы перехода. $\varepsilon^1, \ldots, \varepsilon^n$ - двойственный к (e) базис, $\tilde{\varepsilon}^1, \ldots, \tilde{\varepsilon}^n$ - двойственный к (\tilde{e}) базис.

В базисе (ε) функция l имеет координаты l_1,\ldots,l_n .

В базисе $(\tilde{\varepsilon})$ функция l имеет координаты $\tilde{l}_1, \dots, \tilde{l}_n$.

$$\tilde{l}_i = l(\tilde{e}_i) = l(c_i^j e_j) = c_i^j l_j = c_i^1 l_1 + \ldots + c_i^n l_n$$

Лемма 2. Координаты линейной функции при переходе от одного базиса к другом меняются по формуле $\tilde{l}_i = c_i^j l_i$.

Rm: 1. $x^i = c^i_j \tilde{x}^j$.

Пример: Двойственно пространство к $\mathbb{K}_n[t]$. Пусть p(t) - многочлен, $p(t_0)$ - число. Можно утверждать следующее:

- ullet подставить ightarrow сложить два многочлена \Leftrightarrow сложить два многочлена ightarrow подставить;
- подставить \rightarrow умножить \Leftrightarrow умножить \rightarrow подставить;

Таким образом, функция, сопоставляющая многочленам их значения в t_0 - линейная:

$$ev_{t_0}(p) = p(t_0)$$

Лемма 3. Пусть t_0, t_1, \ldots, t_n - попарно различны, тогда $ev_{t_0}, ev_{t_1}, \ldots, ev_{t_n}$ - образуют базис в двойственном пространстве ($\mathbb{K}_n[t]$)'.

 \square Найдем в $\mathbb{K}_n[t]$ базис для которого этот базис $(ev_{t_0}, ev_{t_1}, \dots, ev_{t_n})$ будет двойственным:

$$p_0, p_1, \dots, p_n \in \mathbb{K}_n[t] : ev_{t_0}(p_i) = \begin{cases} 1, & i = 0 \\ 0, & i \neq 0 \end{cases}, \dots, ev_{t_n}(p_i) = \begin{cases} 1, & i = n \\ 0, & i \neq n \end{cases} \Leftrightarrow p_j(t_i) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Построим многочлен $(t-t_1)\cdot\ldots\cdot(t-t_n)\Rightarrow (t_0-t_1)\cdot\ldots\cdot(t_0-t_n)\neq 0\Rightarrow$

$$p_0(t) = \frac{(t - t_1) \cdot \dots \cdot (t - t_n)}{(t_0 - t_1) \cdot \dots \cdot (t_0 - t_n)}, \dots, p_n(t) = \frac{(t - t_0) \cdot \dots \cdot (t - t_{n-1})}{(t_n - t_0) \cdot \dots \cdot (t_n - t_{n-1})}, p_i(t) = \frac{\prod_{j \neq i} (t - t_j)}{\prod_{j \neq i} (t_i - t_j)} \Rightarrow p_j(t_i) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Возьмем линейную комбинацию $\lambda_0 ev_{t_0} + \ldots + \lambda_n ev_{t_n} = 0$ (равенство двух линейных функций: лин. комбинации и нуля), подставим $p_i \Rightarrow \lambda_0 ev_{t_0}(p_i) + \ldots + \lambda_n ev_{t_n}(p_n) = \lambda_i ev_{t_i}(p_i) = \lambda_i = 0, \ \forall i = \overline{1,n} \Rightarrow$ линейно независимы. Так как $\dim \mathbb{K}_n[t] = n+1 = \dim (\mathbb{K}_n[t])' \Rightarrow$ линейная независимость и максимальный набор \Rightarrow базис.

Упр. 1. Доказать, что p_0, p_1, \ldots, p_n - базис в $\mathbb{K}_n[t]$.

Линейные функции на V'

Пусть $x \in V$, $l \in V'$, $\varphi_x(l) \coloneqq l(x)$, $\varphi_x \colon V' \to \mathbb{K}$. Будут выполнены следующие выражения:

- (1) Пусть $l, l' \in V'$, тогда $\varphi_x(l+l') = (l+l')(x) = l(x) + l'(x) = \varphi_x(l) + \varphi_x(l')$;
- (2) Пусть $l \in V'$, $\lambda \in \mathbb{K}$, тогда $\varphi_x(\lambda \cdot l) = (\lambda \cdot l)(x) = \lambda \cdot l(x) = \lambda \cdot \varphi_x(l)$;

Таким образом, каждый $x \in V$ задает линейную функцию на V'.

 $V \to V' \to (V')'$, $\varphi_x(l) \in (V')'$ - второе двойственное пространство. $\dim(V')' = \dim V' = \dim V$. $\forall x \in V$ сопоставляем $\varphi_x \in (V')' \Rightarrow$ получаем отображение:

$$F \colon x \mapsto \varphi_x, \ F \colon V \to (V')'$$

Лемма 4. F является изоморфизмом $V \simeq (V')'$.

<u>Линейность</u>: $\forall x, x' \in V$, $F(x + x') = \varphi_{x+x'}$, $F(x) + F(x') = \varphi_x + \varphi_{x'}$, так как это функции \Rightarrow нужно подставлять аргументы:

- 1) $\varphi_{x+x'}(l) = l(x+x') = l(x) + l(x'), \ (\varphi_x + \varphi_{x'})(l) = \varphi_x(l) + \varphi_{x'}(l) = l(x) + l(x') = \varphi_{x+x'}(l) \Rightarrow$ совпадают;
- 2) $\forall x \in V$, $\forall \lambda \in \mathbb{K}$, $F(\lambda x) = \varphi_{\lambda x}$, $\lambda F(x) = \lambda \varphi_x \Rightarrow \varphi_{\lambda x}(l) = l(\lambda x) = \lambda l(x)$, $\lambda \varphi_x(l) = \lambda l(x) \Rightarrow$ совпадают;

Таким образом, F - линейное отображение.

<u>Инъективность</u>: $x, y \in V$, $F(x) = \varphi_x = \varphi_y = F(y)$, функции равны \Leftrightarrow они равны на каждом аргументе, то есть

$$\varphi_x(l) = \varphi_y(l), \forall l \in V' \Leftrightarrow l(x) = l(y), \forall l \in V' \Leftrightarrow l(x-y) = 0, \forall l \in V'$$

Если $x - y \neq 0$ возьмем базис $e_1 = x - y \neq 0, e_2, \dots, e_n$, пусть $l = \varepsilon^1$, поскольку утверждение выше верно для любой линейной функции $(\forall l \in V') \Rightarrow \varepsilon^1(e_1) = 1 \Rightarrow$ противоречие $\Rightarrow x = y$.

<u>Сюръективность</u>: Пусть e_1, \ldots, e_n - базис в V, рассмотрим $\varphi_{e_1}, \ldots, \varphi_{e_n}$ - проверим их линейную независимость $\lambda_1 \varphi_{e_1} + \ldots + \lambda_n \varphi_{e_n} = 0$ - на каждом аргументе. Подставим $\varepsilon^i \Rightarrow \lambda_1 \varphi_{e_1}(\varepsilon^i) + \ldots + \lambda_n \varphi_{e_n}(\varepsilon^i) = 0 \Rightarrow$

$$\lambda_1 \varepsilon^i(e_1) + \ldots + \lambda_i \varepsilon^i(e_i) + \ldots + \lambda_n \varepsilon^i(e_n) = \lambda_i = 0, \ \forall i = \overline{1, n}$$

Таким образом, эти линейные функции линейно независимы. Так как, $\dim(V')' = \dim V = n \Rightarrow \varphi_{e_1}, \dots, \varphi_{e_n}$, образуют базис (V')'. Тогда

$$\forall \varphi \in (V')', \ \varphi = \lambda_1 \varphi_{e_1} + \ldots + \lambda_n \varphi_{e_n} = \varphi_{\lambda_1 e_1 + \ldots + \lambda_n e_n} \Rightarrow \varphi = F(\underbrace{\lambda_1 e_1 + \ldots + \lambda_n e_n}_{\in V})$$

то есть, линейные функции - сюръективны \Rightarrow получим биекцию $\Rightarrow F$ является изоморфизмом.

Опр: 1. Если данный изоморфизм не зависит от выбора системы координат - инвариантным спосбом, то такие изоморфизмы будем называть каноническими.

Опр: 2. Отображение F определено <u>инвариантно</u> относительно системы координат \Rightarrow от неё не зависит.

Сумма и пересечение подпространств

 L_1, L_2 - линейные подпространства в $V, L_1 \cap L_2$ - линейное подпространство в V. Проверим это:

- $(1) \ a,b \in L_1 \cap L_2 \Rightarrow a,b \in L_1, \ a,b \in L_2 \Rightarrow a+b \in L_1, \ a+b \in L_2 \Rightarrow a+b \in L_1 \cap L_2;$
- $(2) \ a \in L_1 \cap L_2 \Rightarrow a \in L_1, \ a \in L_2 \Rightarrow \lambda a \in L_1, \ \lambda a \in L_2, \ \lambda \in \mathbb{K} \Rightarrow \lambda a \in L_1 \cap L_2;$

таким образом, $L_1 \cap L_2$ - линейное подпространство в V.

 $L_1 \cup L_2$ - линейное подпространство $\Leftrightarrow L_1 \subset L_2 \vee L_2 \subset L_1$, иначе $L_1 \cup L_2$ - не линейное подпространство в общем случае.

Пример: $a \in L_1, b \in L_2, a + b \notin L_1 \cup L_2$.

Рис. 1: $L_1 \cup L_2$ не является линейным подпространством.

Опр: 3. Суммой линейных подпространств $L_1 + L_2 = \langle L_1, L_2 \rangle = \{ a + b : a \in L_1, b \in L_2 \}.$

Лемма 5. $L_1 + L_2$ является линейным подпространством.

 \square Пусть $a, b \in L_1 + L_2 \Rightarrow \exists a_1 \in L_1, a_2 \in L_2 : a = a_1 + a_2, \exists b_1 \in L_1, b_2 \in L_2 : b = b_1 + b_2$, тогда

$$a + b = a_1 + a_2 + b_1 + b_2 = \underbrace{(a_1 + b_1)}_{\in L_1} + \underbrace{(a_2 + b_2)}_{\in L_2} \in L_1 + L_2$$

Пусть $a \in L_1 + L_2$, $\lambda \in \mathbb{K} \Rightarrow \exists a_1 \in L_1, a_2 \in L_2 : a = a_1 + a_2$, тогда

$$\lambda \cdot a = \underbrace{\lambda \cdot a_1}_{\in L_1} + \underbrace{\lambda \cdot a_2}_{\in L_2} \in L_1 + L_2$$

таким образом, это линейное подпространство.

Теорема 1. $\dim (L_1 + L_2) + \dim (L_1 \cap L_2) = \dim L_1 + \dim L_2$.

 \square Пусть e_1,\ldots,e_r - базис $L_1\cap L_2\Rightarrow \dim\left(L_1\cap L_2\right)=r.$

 $L_1 \cap L_2 \subset L_1 \Rightarrow$ по лемме можно дополнить до базиса $L_1 \Rightarrow e_1, \dots, e_r, e_{r+1}, \dots, e_p$ - базис L_1 . Тогда размерность подпространства dim $L_1 = p$.

 $L_1 \cap L_2 \subset L_2 \Rightarrow$ по лемме можно дополнить до базиса $L_2 \Rightarrow e_1, \dots, e_r, e_{p+1}, \dots, e_q$ - базис L_2 . Тогда размерность подпространства dim $L_2 = q - p + r$.

Рассмотрим набор $e_1, \ldots, e_r, e_{r+1}, \ldots, e_p, e_{p+1}, \ldots, e_q$ - это базис $L_1 + L_2$ -? \Rightarrow нужно проверить линейную независимость и максимальность.

Линейная независимость: Рассмотрим линейную комбинацию:

$$\lambda_{1}e_{1} + \ldots + \lambda_{r}e_{r} + \lambda_{r+1}e_{r+1} + \ldots + \lambda_{p}e_{p} + \lambda_{p+1}e_{p+1} + \ldots + \lambda_{q}e_{q} = 0 \Rightarrow$$

$$\Rightarrow \underbrace{\lambda_{1}e_{1} + \ldots + \lambda_{r}e_{r} + \lambda_{r+1}e_{r+1} + \ldots + \lambda_{p}e_{p}}_{\in L_{1}} = -(\underbrace{\lambda_{p+1}e_{p+1} + \ldots + \lambda_{q}e_{q}}_{\in L_{2}}) \Rightarrow$$

$$\Rightarrow -(\lambda_{p+1}e_{p+1} + \ldots + \lambda_{q}e_{q}) \in L_{1} \cap L_{2}$$

разложим этот набор по базису пересечения, тогда $\exists \mu_1, \dots, \mu_r$:

$$-(\lambda_{p+1}e_{p+1} + \ldots + \lambda_q e_q) = \mu_1 e_1 + \ldots + \mu_r e_r \Rightarrow \mu_1 e_1 + \ldots + \mu_r e_r + \lambda_{p+1} e_{p+1} + \ldots + \lambda_q e_q = 0$$

таким образом, получили базис в $L_2 \Rightarrow \mu_1 = \ldots = \mu_r = \lambda_{p+1} = \ldots = \lambda_q = 0.$

Тогда $\lambda_1 e_1 + \ldots + \lambda_r e_r + \lambda_{r+1} e_{r+1} + \ldots + \lambda_p e_p = 0 \Rightarrow$ так как это базис в $L_1 \Rightarrow \lambda_1 = \ldots = \lambda_p = 0$.

Получили, что $\lambda_1 = \ldots = \lambda_q = 0 \Rightarrow$ набор линейно независим.

Максимальность: Пусть $a \in L_1 + L_2 \Rightarrow a = a_1 + a_2, a_1 \in L_1, a_2 \in L_2 \Rightarrow$

$$a_{1} = \alpha_{1}e_{1} + \ldots + \alpha_{r}e_{r} + \alpha_{r+1}e_{r+1} + \ldots + \alpha_{p}e_{p}, \ a_{2} = \beta_{1}e_{1} + \ldots + \beta_{r}e_{r} + \beta_{p+1}e_{p+1} + \ldots + \beta_{q}e_{q} \Rightarrow$$

$$a = (\alpha_{1} + \beta_{1})e_{1} + \ldots + (\alpha_{r} + \beta_{r})e_{r} + \alpha_{r+1}e_{r+1} + \ldots + \alpha_{p}e_{p} + \beta_{p+1}e_{p+1} + \ldots + \beta_{q}e_{q}$$

Таким образом, e_1, \ldots, e_q - базис $L_1 + L_2 \Rightarrow$

$$\dim (L_1 + L_2) + \dim (L_1 \cap L_2) = q + r = p + (q - p + r) = \dim L_1 + \dim L_2$$

Опр: 4. Если $L_1 \cap L_2 = \{0\}$, то сумма $L_1 + L_2$ называется прямой суммой и обозначается, как $L_1 \oplus L_2$. Следствие 1. $\dim (L_1 \oplus L_2) = \dim (L_1) + \dim (L_2)$.