10) Multiple Linear Regression

Vitor Kamada

January 2020

Reference

Tables, Graphics, and Figures from

An Introduction to Statistical Learning

James et al. (2017): Chapters: 3.1, 3.2, 3.3

Simple Linear Regression

$$Y = \beta_0 + \beta_1 X + \epsilon$$
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x = 7.03 + 0.0475x$$

Residual Sum of Squares (RSS) = $e_1^2 + e_2^2 + ... + e_n^2$

$$RSS = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

$$\frac{\partial \sum_{i=1}^{n} e_i^2}{\partial \hat{\beta}_0} = -2 \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0 = \sum_{i=1}^{n} e_i$$

$$\frac{\partial \sum_{i=1}^{n} e_{i}^{2}}{\partial \hat{\beta}_{1}} = -2 \sum_{i=1}^{n} \left[x_{i} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i}) \right] = 0$$

$$\sum_{i=1}^n x_i e_i = 0$$

Estimating the Coefficients

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

95% Confidence Interval

$$[\hat{eta}_1 - 2SE(\hat{eta}_1), \hat{eta}_1 + 2SE(\hat{eta}_1)]$$

CI for eta_1 is $[0.042, 0.053]$

$$\hat{\beta}_0 \pm 2SE(\hat{\beta}_0)$$

CI for β_0 is [6.130, 7.935]

Standard Errors

$$SE(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2} \right]$$

$$SE(\hat{\beta}_1) = \frac{\sigma^2}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}$$

$$\sigma^2 = Var(\epsilon)$$

$$\sigma = RSE = \sqrt{\frac{RSS}{n-2}}$$

Hypothesis Tests

$$H_0:eta_1=0 ext{ vs } H_a:eta_1
eq 0$$
 $t_{n-2}=rac{\hat{eta}_1-0}{SE(\hat{eta}_1)}$

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

Residual Standard Error

Quantity	Value
Residual standard error	3.26
R^2	0.612
F-statistic	312.1

$$RSE = \sqrt{\frac{RSS}{n-2}} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Multiple Linear Regression

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

Simple vs Multiple Regression

	Coefficient	Std. error	t-statistic	p-value
Intercept	9.312	0.563	16.54	< 0.0001
radio	0.203	0.020	9.92	< 0.0001

	Coefficient	Std. error	t-statistic	p-value
Intercept	12.351	0.621	19.88	< 0.0001
newspaper	0.055	0.017	3.30	0.00115

	Coefficient	Std. error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

Correlation Matrix

$$r = \frac{cov(x,y)}{s_x s_y}$$

	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

F-statistic

$$H_0: \beta_1 = \beta_2 = ... = \beta_p = 0$$
 $H_a: \text{ at least one } \beta_j \neq 0$

$$F = \frac{\frac{TSS - RSS}{p}}{\frac{RSS}{n-p-1}}$$

Quantity	Value
Residual standard error	1.69
R^2	0.897
F-statistic	570

Test if q Coefficients are Zero

$$H_0: \beta_3 = \beta_4 = \beta_5 = 0$$

$$F = rac{RSS_r - RSS_{ur}}{q} rac{RSS_{ur}}{n-p-1}$$

Interaction Effect

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
${\tt TV}{ imes{\tt radio}}$	0.0011	0.000	20.73	< 0.0001

Auto Data Set

Non-linear Relationships

$$mpg = \beta_0 + \beta_1 hp + \beta_2 hp^2 + \epsilon$$

	Coefficient	Std. error	t-statistic	p-value
Intercept	56.9001	1.8004	31.6	< 0.0001
horsepower	-0.4662	0.0311	-15.0	< 0.0001
${\tt horsepower}^2$	0.0012	0.0001	10.1	< 0.0001

Multicollinearity

Y = balance

		Coefficient	Std. error	t-statistic	p-value
	Intercept	-173.411	43.828	-3.957	< 0.0001
Model 1	age	-2.292	0.672	-3.407	0.0007
	limit	0.173	0.005	34.496	< 0.0001
	Intercept	-377.537	45.254	-8.343	< 0.0001
Model 2	rating	2.202	0.952	2.312	0.0213
	limit	0.025	0.064	0.384	0.7012

Scatterplots: Credit Data Set

Credit Data Set

Predictors with Only Two Levels

$$Balance_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
 $\beta_0 + \beta_1 + \epsilon_i$ if Female $\beta_0 + \epsilon_i$ if Male

	Coefficient	Std. error	t-statistic	p-value
Intercept	509.80	33.13	15.389	< 0.0001
<pre>gender[Female]</pre>	19.73	46.05	0.429	0.6690

Predictors with More than Two Levels

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

 $\beta_0 + \beta_1 + \epsilon_i$ if Asian
 $\beta_0 + \beta_2 + \epsilon_i$ if Caucasian
 $\beta_0 + \epsilon_i$ if African American

	Coefficient	Std. error	t-statistic	p-value
Intercept	531.00	46.32	11.464	< 0.0001
ethnicity[Asian]	-18.69	65.02	-0.287	0.7740
ethnicity[Caucasian]	-12.50	56.68	-0.221	0.8260

No Interaction vs Interaction

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \epsilon_i$$
$$\beta_0 + \beta_2 + (\beta_1 + \beta_3) x_{i1} \text{ if student}$$
$$\beta_0 + \beta_1 x_{i1} \text{ if not student}$$

