

Preference-grounded Token-level Guidance for Language Model Fine-tuning

Full Paper

| Paper |

Shentao Yang, Shujian Zhang, Congying Xia, Yihao Feng, Caiming Xiong, Mingyuan Zhou

Motivation

- Sequence-level preference v.s. Token-level training loss (Preference) The longer, the better!

 $Pr(This \mid <sos>) \times Pr(is \mid This) \times Pr(a \mid This is) \times Pr(sequence \mid This is a)$

- Problem: Granularity mismatch ←→ Delayed feedback

Results: Prompt Generation

- Task: Generate text prompts to ask a LLM to classify texts
- No supervised data → Use REINFORCE + Max-Entropy

		SST-2	Yelp P.	AG News
Finetuning	Few-shot Finetuning	80.6 (3.9)	88.7 (4.7)	84.9 (3.6)
	Soft Prompt Tuning	73.8 (10.9)	88.6 (2.1)	82.6 (0.9)
Continuous	BB Tuning-50	89.1 (0.9)	93.2 (0.5)	83.5 (0.9)
Prompt	AutoPrompt	75.0 (7.6)	79.8 (8.3)	65.7 (1.9)
	Manual Prompt	82.8	83.0	76.9
	In-Context Demo	85.9 (0.7)	89.6 (0.4)	74.9 (0.8)
	Instructions	89.0	84.4	54.8
Discrete	GrIPS	87.1 (1.5)	88.2 (0.1)	65.4 (9.8)
Prompt	RLPrompt	90.5 (1.5)	94.2 (0.7)	79.7 (2.1)
	Ours (AVG)	92.6 (1.7)	94.7 (0.6)	82.8 (1.5)
	Ours (MIN)	91.9 (1.8)	94.4 (0.8)	82.4 (1.1)
	Ours (MAX)	91.2 (2.5)	94.8 (0.5)	83.3 (1.4)

- Competitive and stable results on all datasets
- Examples of generated prompt:
- "newsIntroduction Comments Tags Search"
- "newsTopic Blog Support Category"
- Topic-classifying keyword → soft-maximum aggregation ✓

Proposed Method Sketch

- Alternate training process
- ① Ground sequence-level preference into token-level training guidance \rightarrow token-level "reward" $r_{\phi}\left(s_{t},a_{t}\right)$
 - Is it good to select this word here?
- 2 Improve the LM using the learned guidance
 - Select the next word that has a high reward!

Results: Text Summarization

- With supervised data → Use Reward-weighted MLE

- Perform favorably against strong baselines (under T5-base)

§ Performance under different aggregation functions $f(\cdot)$

Algorithm	ROUGE-1	ROUGE-2	ROUGE-L	Meteor	BertScore
Ours - AVG	43.09 (0.06)	20.17 (0.04)	39.99 (0.07)	35.23 (0.06)	89.61 (0.12)
Ours - SUM	42.86 (0.08)	19.92 (0.08)	39.76 (0.11)	34.74 (0.37)	89.24 (0.11)
Ours - MIN	42.92 (0.14)	20.01 (0.02)	39.84 (0.08)	34.88 (0.13)	89.33 (0.07)
Ours - MAX	42.38 (0.17)	19.49 (0.02)	39.34 (0.09)	34.13 (0.32)	89.09 (0.19)

- Unequal sequence-lengths → Average ✓ Summation 💢
- Overall text-quality → Soft Minimum ✓ Soft Maximum 💢
- $\bullet \bullet$ Importance of customizing $f(\cdot)$ for specific LM task $\bullet \bullet$

Preference-grounded Token-level Guidance

- (A) Sample: Use LM π_{θ} to generate $K \geq 2$ text sequences $(\mathbf{a}^1, ..., \mathbf{a}^K)$
- (B) Score: Let r_{ϕ} to produce reward for each step of each sequence
- (C) Aggregate: Use $f(\cdot)$ to aggregate the token-level rewards into parametrized sequence evaluation $e_{\phi}(\mathbf{a}^k) = f(\{r_{\phi}(s_t^k, a_t^k)\}_{t=0}^{T^k-1})$
- (D) Align: Align the ordering of all $\{e_{\phi}(\mathbf{a}^k)\}_{k=1}^K$ with true preference

Aggregation function $f(\cdot)$: LM specific, Summation $\sum (\cdot)$

• Our proposal: Average, Soft Maximum, Soft Minimum

Alignment Loss: Plackett–Luce choice model $\min_{\phi} \mathcal{L}(\phi) \triangleq -\log P(\text{ord} \mid \{e_{\phi}(\mathbf{a}^k)\}_{k=1}^K),$ $P\left(\text{ord} \mid \{e_{\phi}(\mathbf{a}^k)\}_{k=1}^K\right) = \prod_{i=1}^K \left\{\exp\left(e_{\phi}(\mathbf{a}^k)\right) \middle/ \sum_{i=1}^K \exp\left(e_{\phi}(\mathbf{a}^i)\right)\right\}$

where ord = (1,...,K) is the assumed true preference

2 LM π_{θ} Improving

Setting 1: No Supervised Data — REINFORCE + Max-Entropy $\mathbb{E}_{t \sim \text{Uniform}\{0,...,T-1\}} \left\{ \mathbb{E}_{a_t \sim \pi_{\theta}(\cdot \mid s_t)} [r_{\phi}(s_t, a_t) \times \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)] + \alpha \times \nabla_{\theta} \mathcal{H}(\pi_{\theta}(\cdot \mid s_t)) \right\}$ where $\mathcal{H}(\pi_{\theta}(\cdot \mid s_t))$ denotes entropy and α is a hyperparameter

Setting 2: With Supervised Data — Reward-weighted MLE $\min_{\theta} - \mathbb{E}_{(x,y)\sim \mathcal{D}} \left[\sum_{t=0}^{|y|-1} w_t \times \log \pi_{\theta}(y_t \mid s_t) \right], \text{ with } w_t = \frac{r_{\phi}(s_t, y_t)}{\sum_{t'=0}^{|y|-1} r_{\phi}(s_{t'}, y_{t'})}$

Takeaway

Train a sequential-decision-making model: **dense** guidance can be more effective **LLL** than **sparse** delayed feedback **QQQ**