

Università di Verona Dipartimento di Informatica

Architettura degli Elaboratori: esame 06/07/01

Cogno Note:	nme:
esec asse l'istr indi	ncare le micro istruzioni (insieme dei segnali di controllo) relative alla complete ruzione (caricamento, decodifica, esecuzione) della seguente istruzione embler (Intel 80386 AT&T), assumendo che la CPU abbia TRE BUS , che ruzione sia composta da una sola parola, che %EAX rappresenti un metodo di rizzamento diretto a registro e che il salto sia di tipo indiretto (usare solamente le e necessarie):
	CALL %EAX
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
11.	
12.	
13.	
14.	
15.	
ι	Descrivere lo schema di controllo di una CPU cablata. Esemplificare lo schem utilizzando la fase di <i>fetch</i> dell'istruzione precedente costruendo gli opporturi segnali.

2)	Quali	sono	le	scelte,	sull	'architettura	di	una	CPU,	necessarie	a	permettere	di
	raggiu	ngere	l'o	biettivi (di un	CPI medio u	ıgu	ale a	1?				

• Si consideri una CPU con una pipeline a 4 stadi (F, D, E, W). Si riporti nel seguente diagramma, per ogni istruzione, lo stadio della pipeline coinvolto in ogni istante di clock. Si ipotizzi che la pipeline sia vuota al tempo 1 e che jz faccia riferimento all'istruzione sub1.

Clock/istruzione	1	2	3	4	5				
Addl %eax, %ebx									
Movl %eax, %ecx									
Subl %ebx, %ecx									
jz loop									

• Per quale motivo può essere utile avere *cache* per i dati e per le istruzioni separate?.

3) Si consideri il seguente circuito sequenziale.

• Si estragga dal circuito lo STG della macchina a stati finiti ipotizzando che lo stato di reset sia 00.

• Si risintetizzi il circuito sequenziale, a partire dallo STG estratto, rappresentando la funzione di uscita e la funzione stato prossimo in somma di prodotti.

• Si dia la definizione di stato equivalente e di stato compatibile.

	si consideri il problema della sintesi automatica di circuiti digitali combinatori.	
•	Spiegare con un esempio l'utilizzo del <i>don't care set</i> nella sintesi esatta a due livelli.	
•	Si spieghi perché nella sintesi a due livelli la minimizzazione per area coincide	
	con la minimizzazione per ritardo.	