Homework 1

- 1. Suppose that we have a tandem ququeing system with two stations. Station 1 has two identicial servers with service-time distribution being Exp(1), and Station 2 has only one server with service-time distribution being Exp(2). The arrival to the system follows a Poisson process with rate λ . Assume that the system follows the first-come first-serve queueing rule.
 - (a) Write a discrete-event simulation algorithm/pseudocode to simulate the system, and code the algorithm in either Python or Matlab.
 - (b) Set $\lambda = 1.8$. Collect 1000 observations of the customer sojourn time after a warm-up period of 3000 time units. Plot the histogram of the sojourn time, calculate the average sojourn time and compare it to the Jackson network formula.
 - (c) Change the service-time distribution of Station 2 to a normal distribution with $\mu = 0.5$ and $\sigma = 0.15$ (ignore negative service times if encountered). Repeat the task in (b).
 - (d) Plot the average sojourn time against λ with $0 < \lambda < 2$ for the service-time distribution in (c).