

# CSE 151A Intro to Machine Learning

Lecture 09 – Part 01
About the Midterm

#### The Midterm

- First midterm is Friday.
- Covers everything from Weeks 01 04.
  - excluding logistic regression.
- Focus is on the essentials.

#### **Format**

- Canvas quiz.
  - Random order/subset, you can change answers.
- Multiple choice, T/F, short answer.
  - Result of simple calculation, explanation, etc.
- Open book, open notes, open Google, etc.
  - No proctoring software/webcam needed.
- ► However, **no collaboration**.

### Logistics

- Exam will be posted on Canvas at 00:00 AM PST.
- Exam will disappear at 22:30 PM PST.
- You can start whenever, you'll have 1.5 hours.
- Open book, open notes, open Google, etc.
  - Exam designed to take ≈ 50 minutes.

#### **Corrections and Clarifications**

- This makes clarifications/corrections difficult to do fairly.
- Unfortunately, no corrections/clarifications can be made.

Of course, if a question contains an error, it will be thrown out after the fact.

# **Studying**

- No practice exam.
- ► Focus is on **essentials**.
- Here's a sample question:

A straight line is fit to a data set  $\{(x_i, y_i)\}$  using least squares regression; the slope is found to be m. The data is changed by adding 10 to each y to create a new data set  $\{(x_j, y_i + 10)\}$ , and least squares is used again. The new slope is m. Which is true?

a) 
$$m = m'$$
 b)  $m < m'$  c)  $m > m'$ 



# CSE 151A Intro to Machine Learning

Lecture 09 – Part 02 Motivating Gradient Descent

#### Last time...

- Set up logistic regression as optimization problem.
- Claimed: we can't solve it explicitly.
- ► Today: solve it using gradient descent.

#### **But first...**

Minimize  $f(x) = e^x - 100x^2$ 



# **Minimizing via Calculus**

► Try setting derivative to zero, solving:

# **Minimizing via Calculus**

- ► *f* is differentiable.
- ▶ But there is **no explicit solution** for f'(x) = 0.
- Can we use the derivative in some other way?

## **Meaning of the Derivative**

- Meaning of differentiable: locally, f looks linear.
- f'(x) is a function; it gives the slope at x.



## **Key Idea Behind Gradient Descent**

- Derivative at x tells us which way to go.
  - If the slope of f at x is **positive** then moving to the **left** decreases the value of R.



## **Key Idea Behind Gradient Descent**

- Derivative at x tells us which way to go.
  - If the slope of f at x is **negative** then moving to the **right** decreases the value of R.



### **Key Idea Behind Gradient Descent**

- Derivative at x tells us which way to go.
  - If the slope of f at x is **zero** then we are at a local optimum.



# **Taking a Step**

- Suppose we are at  $x_0$ . Where do we go next?
- $\triangleright$  Slope at  $x_0$  negative? Then **increase**  $x_0$ . Step right.
- $\triangleright$  Slope at  $x_0$  positive? Then **decrease**  $x_0$ .
  - Step left.
- This will work:

$$x_1 = x_0 - f'(x_0)$$

#### **Gradient Descent**

- $\triangleright$  Pick  $\alpha$  to be a positive number.
  - ► It is the **learning rate**.

- $\triangleright$  Pick a starting guess,  $x_0$ .
- ► On step *i*, perform update  $x_i = x_{i-1} \alpha \cdot f'(x_{i-1})$
- Repeat until convergence
  - when x doesn't change much
  - equivalently, when  $f'(x_i)$  is small



```
def gradient_descent(derivative, x, alpha, tol=1e-12):
    """Minimize using gradient descent."""
    while True:
        x next = x - alpha * derivative(x)
```

if abs(x next - x) < tol:</pre>

break
x = x next

return x



#### **Gradient Ascent**

- $\triangleright$  Pick  $\alpha$  to be a positive number.
  - ► It is the **learning rate**.

- $\triangleright$  Pick a starting guess,  $x_0$ .
- ► On step *i*, perform update  $x_i = x_{i-1} + \alpha \cdot f'(x_{i-1})$
- Repeat until convergence
  - when h doesn't change much
  - $\triangleright$  equivalently, when  $f'(x_i)$  is small

## Ascent vs. Descent

 $\blacktriangleright$  Maximizing f is equivalent to minimizing -f.

ASCEIR VS. DESCEIR



# CSE 151A Intro to Machine Kearning

**Lecture 09 – Part 02 Logistic Regression** 

## **Recall: Logistic Regression**

Predict probability that person has heart disease.

Prediction rule:

$$H_{\vec{w}}(\vec{x}) = \sigma(\vec{w} \cdot \text{Aug}(\vec{x}))$$

where

$$\sigma(t) = \frac{1}{1 + e^{-t}}$$

is the logistic function.

## **Recall: Logistic Regression**

- Find **most likely**  $\vec{w}$  using data.
- ► Goal: maximize the log likelihood,

$$\log \mathcal{L}(\vec{w}) = -\sum_{i=1}^{n} \log \left[ 1 + e^{-y_i \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)})} \right]$$

#### **Another Example**

- Given the weight of an NBA player.
- Predict probability that they are a forward.

#### **Guards vs. Forwards**



#### **Guards vs. Forwards**



$$H_{\vec{w}}(\vec{x}) = \sigma(\vec{w} \cdot \text{Aug}(\vec{x}))$$
  
=  $\sigma(w_0 + w_1 \times \text{Weight})$ 







# Learning

► Goal: find  $\vec{w}$  maximizing  $f(\vec{w}) = \log L(\vec{w})$ .

Learning

# The Log Likelihood



## **Maximizing**

- Try setting gradient to zero, solving:
  - $f(\vec{w}) = -\sum_{i=1}^{n} \log \left( 1 + \exp \left( -y_i \vec{w} \cdot \vec{x}^{(i)} \right) \right)$

## **Meaning of the Gradient**

- Meaning of differentiable: locally, f looks linear.
- $\nabla f(\vec{w})$  is a function; it returns a vector pointing in direction of steepest ascent.



#### **Gradient Ascent**

- $\triangleright$  Pick  $\alpha$  to be a positive number.
  - ► It is the **learning rate**.
- Pick a starting guess,  $\vec{w}^{(0)}$ .
- ► On step *i*, update  $\vec{w}^{(i)} = \vec{w}^{(i-1)} + \alpha \cdot \nabla f(\vec{w}^{(i-1)})$
- Repeat until convergence
  - when w doesn't change much
  - equivalently, when  $\|\nabla f(\vec{w}^{(i)})\|$  is small

# Gradient Ascent for Logistic Regression

Recall:

$$\nabla f(\vec{w}) = \sum_{k=1}^{n} y_k \vec{x}^{(k)} \frac{e^{-y_k \vec{w} \cdot \vec{x}^{(k)}}}{1 + e^{-y_k \vec{w} \cdot \vec{x}^{(k)}}} = \sum_{k=1}^{n} y_k \vec{x}^{(k)} \frac{1}{1 + e^{y_k \vec{w} \cdot \vec{x}^{(k)}}}$$

► Can show: 
$$\nabla f(\vec{w}) = \sum_{k=1}^{n} y_k \vec{x}^{(k)} H_{\vec{w}}(-y_k \vec{x}^{(k)})$$

# Gradient Ascent for Logistic Regression

► On step *i*, update

$$\vec{w}^{(i)} = \vec{w}^{(i-1)} + \alpha \cdot \sum_{k=1}^{n} y_k \vec{x}^{(k)} H_{\vec{w}^{(i-1)}}(-y_k \vec{x}^{(k)})$$









































#### **Gradient Descent**

- $\triangleright$  Pick  $\alpha$  to be a positive number.
  - ► It is the **learning rate**.
- Pick a starting guess,  $\vec{w}^{(0)}$ .
- ► On step *i*, update  $\vec{w}^{(i)} = \vec{w}^{(i-1)} \alpha \cdot \nabla f(\vec{w}^{(i-1)})$
- Repeat until convergence
  - when w doesn't change much
  - equivalently, when  $\|\nabla f(\vec{w}^{(i)})\|$  is small

if np.linalg.norm(w\_next - w) < tol:</pre>

break
w = w next

return w

#### **Adding Another Feature**

- Use weight and height to predict position.
- Now Aug( $\vec{x}$ )  $\in \mathbb{R}^3$  and  $\vec{w} \in \mathbb{R}^3$ .

### **The Data**



#### **After Gradient Ascent**



## **Making Classifications**

Logistic regression predicts a probability:

$$H_{\vec{w}}(\vec{x}) = \sigma(\vec{w} \cdot \vec{x})$$

Can turn into classification in two ways.

### **Approach 1**

- If  $H_{\vec{w}}(\vec{x}) > 0.5$ , predict class 1; else predict class -1.
- Equivalently, predict class 1 if  $\vec{x} \cdot \vec{w} > 0$ .



#### **Approach 2**

- More generally, predict class 1 if  $H_{\vec{w}}(\vec{x}) > \tau$
- Equivalently, predict class 1 if  $\vec{x} \cdot \vec{w} > t$
- $\blacktriangleright$  How to pick  $\tau/t$ ? Cross-validation!



# CSE 151A Intro to Machine Karning

Lecture 09 – Part 03 Demo: Heart Disease Dataset