Azzolini Riccardo 2020-11-20

Chiusura dei linguaggi regolari rispetto alle operazioni booleane

1 Chiusura rispetto all'unione

Teorema: Siano L_1 e L_2 linguaggi regolari. Allora, $L_1 \cup L_2$ è un linguaggio regolare.

Questa proprietà, così come le altre proprietà di questo tipo, può essere dimostrata usando uno qualunque dei formalismi che caratterizzano la classe dei linguaggi regolari: i DFA, gli ϵ -NFA o le espressioni regolari. In questo caso, il formalismo più comodo è quello delle espressioni regolari.

Siccome L_1 è regolare, esiste un'espressione regolare E_1 tale che $L(E_1) = L_1$. Analogamente, poiché L_2 è regolare, esiste un'espressione regolare E_2 tale che $L(E_2) = L_2$. Si può quindi costruire l'espressione regolare $E_1 + E_2$, che per la semantica dell'operatore + genera il linguaggio regolare

$$L(E_1 + E_2) = L(E_1) \cup L(E_2) = L_1 \cup L_2$$

ovvero $L_1 \cup L_2$ è un linguaggio regolare.

2 Chiusura rispetto al complemento

Dato un linguaggio $L \subseteq \Sigma^*$, il **complemento** di L è il linguaggio $\overline{L} = \Sigma^* \setminus L$.

Teorema: Se L è un linguaggio regolare, allora \overline{L} è un linguaggio regolare.

Questa volta, la dimostrazione viene fatta utilizzando la caratterizzazione dei linguaggi regolari tramite i DFA. Per definizione, se L è regolare esiste un DFA $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ tale che L(A) = L. Si costruisce poi un altro automa $\overline{A} = \langle Q, \Sigma, \delta, q_0, Q \setminus F \rangle$, che ha tutti gli stessi elementi di A, ad eccezione l'insieme degli stati finali, che in \overline{A} contiene tutti e soli gli stati non finali di A.

Data una stringa $w \in L$, si deduce che

$$w \in L \iff w \in L(A)$$
 [per definizione di A]
$$\iff \hat{\delta}(q_0, w) \in F$$
 [per definizione di accettazione su un DFA]
$$\iff \hat{\delta}(q_0, w) \notin (Q \setminus F)$$
 [per le proprietà di \setminus]
$$\iff w \notin L(\overline{A})$$
 [per definizione di accettazione su un DFA]

cioè che una stringa appartiene a L se e solo se non appartiene a $L(\overline{A})$: questo vuol dire che $L(\overline{A}) = \overline{L}$. Così, si conclude che \overline{L} è un linguaggio regolare, in quanto riconosciuto da un DFA.

2.1 Esempio

Sia L il linguaggio delle stringhe su $\{0,1\}$ che terminano per 01, cioè il linguaggio generato dall'espressione regolare (0+1)*01. Intuitivamente, L è riconosciuto dal seguente DFA A:

 \overline{L} è il linguaggio delle stringhe su $\{0,1\}$ che non terminano per 01, generato dall'espressione regolare $\epsilon+1+(0+1)^*(0+11)$. Per la costruzione vista prima, l'automa \overline{A} che riconosce \overline{L} è ottenuto a partire dall'automa A che riconosce L, semplicemente scambiando i ruoli di stati finali e non finali:

2.2 Uso per dimostrare che un linguaggio non è regolare

Le proprietà dei linguaggi regolari appena viste, così come quelle che verranno presentate successivamente, forniscono ulteriori strumenti per dimostrare che un linguaggio non è regolare.

Ad esempio, il linguaggio

 $L_{eq} = \{ w \in \{0,1\}^* \mid w \text{ contiene lo stesso numero di } 0 \text{ e } 1 \}$

non è regolare, e lo si può dimostrare con la tecnica basata sul pumping lemma, ragionando sulla stringa 0^m1^m , dove $m \geq N$ e N è la costante di pumping (supponendo per assurdo che L_{eq} sia regolare). Il ragionamento è uguale a quello svolto nella dimostrazione del fatto che il linguaggio $\{0^n1^n \mid n \geq 1\}$ non è regolare.

Si consideri ora il linguaggio

$$L_{neq} = \{ w \in \{0,1\}^* \mid w \text{ contiene un numero diverso di } 0 \text{ e } 1 \}$$

I due linguaggi L_{eq} e L_{neq} sono l'uno il complemento dell'altro, quindi in particolare si ha che $\overline{L_{neq}} = L_{eq}$. Allora, se L_{neq} fosse regolare, per la chiusura dei linguaggi regolari rispetto al complemento dovrebbe essere regolare anche L_{eq} , contrariamente a quanto appena dimostrato. Di conseguenza, L_{neq} non è regolare.

3 Chiusura rispetto all'intersezione

Teorema: Siano $L \in M$ due linguaggi regolari. Allora, il linguaggio $L \cap M$ è regolare.

Questo teorema può essere dimostrato semplicemente sfruttando una delle leggi di De Morgan, che permette di definire l'intersezione a partire dalle operazioni di unione e complemento,

$$L\cap M=\overline{\overline{L}\cup\overline{M}}$$

e i risultati precedenti, secondo i quali $\overline{\overline{L} \cup \overline{M}}$ è regolare.

In alternativa, si potrebbe dare una dimostrazione costruttiva sugli automi, mostrando come costruire un automa che riconosca $L \cap M$ a partire dagli automi che riconoscono L e M.

4 Chiusura rispetto alla differenza insiemistica

Teorema: Siano $L \in M$ due linguaggi regolari. Allora, il linguaggio $L \setminus M$ è regolare.

Anche in questo caso, la dimostrazione si basa sul fatto che l'operatore di differenza insiemistica può essere definito a partire dall'intersezione e dal complemento,

$$L \setminus M = L \cap \overline{M}$$

dove $L \cap \overline{M}$ è un linguaggio che si è già dimostrato essere regolare.