Clustering Districts on Basis of Spatial Variation of Attributes

Recap

- For each attribute, we have a curve that shows variation in attribute as distance from the district hotspot center increases
- We wished to cluster districts on the basis of these curves
- Aim Districts with similar shapes of curves grouped together in same clusters
- 2 Methods of clustering -
 - K-Means
 - Dynamic Time Warping Agglomerative Clustering

Analysing Results - Choosing # of Clusters

3 Common methods for determining number of clusters :-

- Elbow Curve (Only Applicable on KMeans)
- Silhouette Analysis (Applicable on both)
- Gap Statistic (Applicable on both)

We will deal with Elbow Curve and Silhouette Analysis

Elbow Curve

Avg Elbow Curve Across All Attributes

Elbow Curve For All Attributes

Results

- No particularly visible elbow
- A smooth, almost hyperbola like curve for all attributes
- Let's look at other methods of analysis for choosing number of clusters

Silhouette Analysis

Silhouette Analysis

- Developed by <u>Peter J. Rousseeuw (1987)</u>
- Study of separation distance between clusters for choosing # of clusters
- Silhouette measure for 1 point in a particular cluster is a value ranging from
 [-1,1] indicating how far that point is from neighbouring clusters
- Values near +1 indicate point far away from neighbouring cluster
- Values near 0 indicate point on or very close to decision boundary
- Negative values indicate sample possibly assigned to wrong cluster
- Taking average across all points give Avg Silhouette Score for particular clustering. The higher, the better.

Avg Silhouette Score - DTW Clustering

Avg Silhouette Score - KMeans Clustering

Avg of Avg Silhouette Score - KMeans vs DTW

Results

- The higher the avg silhouette score, the better
- For all attributes, 2 clusters gave highest avg silhouette score (for both methods)
- Avg of avg silhouette score across all attributes (KMeans) 0.419
- Avg of avg silhouette score across all attributes (DTW) 0.407
- They are in the same ballpark region, so there is little motivation of choosing DTW (a complicated clustering method) over KMeans (much simpler), according to this method

Results of KMeans with 2 Clusters

- For all attributes, I ran KMeans with 2 clusters, and then for each cluster, I
 plotted the average curve across all districts, ie, the curve obtained by taking
 the average across each district's curve
- The following slides show the results

BF_ADV

BF_INT

FC_ADV

FC_INT

MSW_RUD

Summary

- 2 Clusters explains the data the most according to silhouette analysis
- With two clusters, the algorithm is generally differentiating between districts where the spatial parameter is increasing and the districts where the spatial parameter is decreasing
- But not always, for certain clusters, there is a rise and then a fall/a fall and then a rise.