Problem Set 2

Due before recitation session on 1397/12/12.

- 1. (a) Prove that each player i's information sets H_i are strictly partially ordered by the precedence ranking \prec^* , where we define $h' \prec^* h$ if there exists $t' \in h'$ and $t \in h$ such that $t' \prec t$.
 - (b) Give an example showing that the set of all information sets is not similarly strictly partially ordered.
 - (c) Prove that if $h' \prec^* h$ for $h', h \in H_i$, then for all $t \in h$, there exists $t' \in h'$ such that $t' \prec t$.
- 2. Suppose $T = \{a, \mathbf{b}, c, \mathbf{d}, e, f, g, \mathbf{h}\}$ and \prec is given by (i) $a \prec b, c, d, e, f, g, h$, (ii) $b \prec c, e$, and (iii) $d \prec f, g$.
 - (a) Draw the implied tree. Be sure to label all nodes.
 - (b) Suppose this is a two player game, with player 2 owning b and d. Specify an action labeling for the game, and a pair of strategies for each of players 1 and 2 with the property that the four resulting strategy profiles have precisely c, f, g as outcomes.
 - (c) Suppose now that player 2 cannot distinguish between the two nodes b and d. Describe player 2's information set(s). Is it possible to specify an action labeling for the game, and a pair of strategies for each of players 1 and 2 with the property that the four resulting strategy profiles have precisely c, f, g as outcomes? Why or why not?
 - (d) What is the implied tree if (ii) is given by $b \prec c, d, e$?
- 3. Suppose $\{(S_i, U_i)_{i=1}^n\}$ is a normal form game, and $\hat{s}_1 \in S_1$ is a weakly dominated strategy for player 1. Let $S'_1 = S_1 \setminus \{\hat{s}_1\}$, and $S'_i = S_i$ for $i \neq 1$. Suppose s is a Nash equilibrium of $\{(S'_i, U_i)_{i=1}^n\}$. Prove that s is a Nash equilibrium of $\{(S_i, U_i)_{i=1}^n\}$.
- 4. Consider the Cournot duopoly example discussed in class. What is the Nash Equilibrium of the *n*-firm Cournot oligopoly? What happens as *n* approaches infinity?
- 5. Consider now the Cournot duopoly where inverse demand is P(Q) = a Q but firms have asymmetric marginal costs: c_i for firm i, i = 1, 2.
 - (a) What is the Nash equilibrium when $0 < c_i < a/2$ for i = 1, 2? What happens to firm 2's equilibrium output when firm 1's costs, c_1 , increase? Can you give an intuitive explanation?
 - (b) What is the Nash equilibrium when $c_1 < c_2 < a$ but $2c_2 > a + c_1$?

6. The number 1000000 is written on a board. A and B take turns, each turn consisting of replacing the number n on the board with n-1 or $\lfloor \frac{n+1}{2} \rfloor$. The player who writes the number 1 wins. Using backward induction, who has a winning strategy?