Normalisasi Bag. 1

Sistem Basis Data Cosmas Haryawan

1

Berapa tabel yang seharusnya kita buat?

2

Karakteristik Relasi (review)

- Tiap baris berisi data tentang sebuah entity
- Kolom-kolom berisi data tentang attribute dari suatu entity
- Satu sel pada tabel berisi satu data tunggal (atomic)
- Seluruh entry pada satu kolom memiliki domain yang sama
- Tiap kolom memiliki nama yang unik
- Urutan kolom tidak penting
- Urutan baris tidak penting
- Tidak ada 2 baris yang identik

Apakah ini Relasi?

NIM		
001	Totok	Kalkulus, Aljabar Linier
002	Titik	Basis Data, Kalkulus
003	Andi	Basis Data, Kalkulus, Pemrograman Web

- TIDAK!
 - Terdapat Cell Data yang tidak atomic/tunggal

Apakah Ini Relasi?

NIM	Nama	Mata Kuliah
001	Totok	Kalkulus
		Aljabar Linier
002	Titik	Basis Data
		Kalkulus
003	Andi	Basis Data
		Kalkulus
		Pemrograman Web

- TIDAK!
 - Terdapat Primary Key yang NULL
 - terdapat Cell data yang NULL

5

Apakah Ini Relasi?

EmployeeNumber	FirstName	LastName	Department	Email	Phone
100	Jerry	Johnson	Accounting	JJ@somewhere.com	236-9987
200	Mary	Abernathy	Finance	MA@somewhere.com	444-8898
300	Liz	Smathers	Finance	LS@somewhere.com	777-0098
400	Tom	Caruthers	Accounting	TC@somewhere.com	236-9987
500	Tom	Jackson	Production	TJ@somewhere.com	444-9980
600	Eleanore	Caldera	Legal	EC@somewhere.com	767-0900
700	Richard	Bandalone	Legal	RB@somewhere.com	767-0900

YA!

6

Normalisasi

- Definisi
 - Normalisasi merupakan teknik analisis data yang mengorganisasikan atribut-atribut data dengan cara mengelompokkan sehingga terbentuk entitas yang nonredundant, stabil, dan fleksible.
- Keterangan
 - Normalisasi dilakukan sebagai uji coba pada suatu relasi secara berkelanjutan untuk menentukan apakah relasi itu sudah baik, yaitu dapat dilakukan proses insert,update,delete, dan modifikasi pada satu atau beberapa atribut tanpa mempengaruhi integritas data dalam relasi tersebut.

Mengapa Normalisasi perlu?

- Karena adanya struktur database yang kurang bagus
 - Data yang sama tersimpan di beberapa tempat (file atau record)
 - Integritas data yang tidak terjamin
 - Terjadi kehilangan informasi
 - Terjadi adanya redundansi (pengulangan) atau duplikasi data sehingga memboroskan ruang penyimpanan dan menyulitkan saat proses updating data
 - Adanya NULL VALUE
 - Adanya atribut yang tidak perlu disimpan (derive attribut)

Tujuan Normalisasi

- 1. Untuk menghilangkan kerangkapan data
- 2. Untuk mengurangi kompleksitas
- 3. Untuk mempermudah pemodifikasian data

9

Proses Normalisasi

- Data diuraikan dalam bentuk tabel, selanjutnya dianalisis berdasarkan persyaratan tertentu ke beberapa tingkat.
- Apabila tabel yang diuji belum memenuhi persyaratan tertentu, maka tabel tersebut perlu dipecah menjadi beberapa tabel yang lebih sederhana sampai memenuhi bentuk yang optimal.

10

Kebergantungan

- Sebelum masuk ke proses normalisasi harus memahami istilah kebergantungan / dependency
- Terdapat 2 yang penting yaitu:
 - Kebergantungan Fungsional (Functional Dependency / FD)
 - Kebergantungan Transitif (Transitif Dependency)

1

Functional Dependency

- Diberikan sebuah relasi R, atribut Y dari R adalah bergantung fungsi pada atribut X dari R jika dan hanya jika setiap nilai X dalam R punya hubungan dengan tepat satu nilai Y dalam R
- Digambarkan : X → Y
 - Sisi kiri (X) disebut sebagai determinan atau penentu
 - Untuk setiap nilai X tertentu pasti akan didapatkan nilai Y yang sama
 - Secara fungsional: X menentukan Y, atau Y tergantung pada X
- Notasi: X → Y atau X x → Y
 - Adalah kebalikan dari Notasi FD di atas

Functional Dependency

Contoh tabel nilai

Namakul	Nrp	nam aMhs	NiHuruf
Struktur Data	980001	Ali Akbar	A
Struktur Data	980004	Indah Susanti	В
Basis Data	980001	Ali Akbar	
Basis Data	980002	Budi Haryanto	
Basis Data	980004	Indah Susanti	
Bahasa Indonesia	980001	Ali Akbar	В
Matematika I	980002	Budi Haryanto	С

13

FD dari Tabel Nilai

- Nrp → namaMhs
 - Karena untuk setiap nilai nrp yang sama, maka nilai namaMhs juga sama.
- {Namakul, nrp} → NiHuruf
 - Karena attribut Nihuruf tergantung pada Namakul dan nrp secara bersama-sama. Dalam arti lain untuk Namakul dan nrp yang sama, maka NiHuruf juga sama, karena Namakul dan nrp merupakan key (bersifat unik).
- NamaKul → nrp
- Nrp → NiHuruf

14

Kebergantungan Fungsional Penuh

- Full Functional Dependency
- Atribut Y pada relasi R dikatakan tergantung fungsional penuh pada atribut X pada relasi R, jika Y tidak tergantung pada subset dari X (bila X adalah key gabungan).
- Suatu atribut Y mempunyai dependensi sepenuhnya terhadap atribut X jika
 - Y mempunyai dependensi terhadap X
 - Y tidak mempunyai dependensi terhadap bagian dari X

.5

Contoh Full FD

• Tabel Kirim(kodesup,namasup,kodebrg,jumlah)

Kodesup	Namasup	Kodebrg	Jumlah
P01	Bahana	B01	1000
P01	Bahana	B02	1400
P01	Bahana	B03	2000
P02	Sinar Mulia	B03	1000
P03	Harapan	B02	2000

- Full FD:
 - Kodesup → namasup
 - {kodebrg, kodesup} → jumlah
- Bukan Full FD
 - {kodebrg,kodesup,namasup} → jumlah
 - Karena jumlah hanya tergantung pada kodebrg+kodesup, jadi tidak perlu ada namasup

Kebergantungan Transitif / Transitif Dependency

- Atribut Z pada relasi R dikatakan tergantung transitif pada atribut X , jika atribut Y tergantung pada atribut X pada relasi R dan atribut Z tergantung pada atribut Y pada relasi R. (X → Y, Y → Z , maka X →Z)
- Suatu atribut Z mempunyai dependensi transitif terhadap X jika:
 - Y memiliki dependensi terhadap X dan
 - Z memiliki dependensi terhadap Y

17

Contoh Dependensi Transitif

Kuliah	Ruang	Tempat	Waktu
Jaringan Komputer	Merapi	Gedung Utara	Senin, 08.00-09.50
Pengantar Basis Data	Merbabu	Gedung Utara	Selasa, 08.00-09.50
Matematika I	Rama	Gedung Selatan	Rabu, 10.00-11.50
Sistem Pakar	Sinta	Gedung Selatan	Kamis, 08.00-09.50
Kecerdasan Buatan	Merapi	Gedung Utara	Selasa, 10.00-11.50

Kuliah
$$\rightarrow$$
 { Ruang, Waktu }
Ruang \rightarrow Tempat Kuliah \rightarrow Ruang \rightarrow Tempat

18

Contoh Lain Dependensi Transitif

No_Pesan	No_Urut	Kode_Item	Nama_Item	Jumlah
06008	1	P1	Pensil	5
06008	2	P2	Buku Tulis	10
06008	3	P3	Penggaris	6
06008	4	P4	Penghapus	4
06009	1	P3	Penggaris	1
06009	2	P5	Pulpen	10
06009	3	P6	Spidol	5
06010	1	P1	Pensil	4
06010	2	P2	Buku Tulis	10

Contoh Lain Dependensi Transitif

Id_Pelanggan	Nama	Salesman	Area
A-001	Andi	Farkan	Jateng
A-002	Kurnia Jati	Dian	Jabar
B-001	Fika Dewi	Joned	Jatim
B-002	Gani Wirawan	Farkan	Jateng
C-001	Cici Kusuma	Joned	Jatim
		<u> </u>	_

Problem pada Dependensi Transitif

Id_Pelanggan	Nama	Salesman	Area
A-001	Andi	Farkan	Jateng
A-002	Kurnia Jati	Dian	Jabar
B-001	Fika Dewi	Joned	Jatim
B-002	Gani Wirawan	Farkan	Jateng
C-001	Cici Kusuma	Joned	Jatim

• Anomali Penyisipan

- Seorang salesman baru yang bertugas di Jateng tidak dapat dimasukkan dalam tabel sampai salesman tersebut mendapatkan seorang pelanggan
- ▶ Karena Salesman Bergantung Fungsional pada Id-Pelanggan

21

Problem pada Dependensi Transitif

ld_Pelanggan	Nama	Salesman	Area
A-001	Andi	Farkan	Jateng
A-002	Kurnia Jati	Dian	Jabar
B-001	Fika Dewi	Joned	Jatim
B-002	Gani Wirawan	Farkan	Jateng
C-001	Cici Kusuma	Joned	Jatim

• Anomali Penghapusan

- ► Jika pelanggan A-002 dihapus, informasi bahwa Dian menangani daerah Jabar ikut hilang
- ▶ Karena Salesman Bergantung Fungsional pada Id-Pelanggan

22

Problem pada Dependensi Transitif

Id_Pelanggan	Nama	Salesman	Area
A-001	Andi	Farkan	Jateng
A-002	Kurnia Jati	Dian	Jabar
B-001	Fika Dewi	Joned	Jatim
B-002	Gani Wirawan	Farkan	Jateng
C-001	Cici Kusuma	Joned	Jatim

• Anomali Pengupdatean

- Jika katakanlah Farkan mendapat penugasan baru untuk menangani daerah Kalimantan, maka sejumlah baris harus ikut diupdate agar data tetap konsisten (disebut dependency preservation)
- Karena Area bergantung fungsional pada Salesman dan Salesman Farkan terdapat lebih dari 1 baris

Tabel Universal

 Tabel Universal (Universal / Star Table) → sebuah tabel yang merangkum semua kelompok data yang saling berhubungan, bukan merupakan tabel yang baik.

nin	nana_mia	alin_mils	gjjatr	Hode_sul	Hann_gul	shs	seneste	Met_dal	MSHIU	Rusing	Warm_das	Alanal_das
,000f	A Albar	« Werdeke no ")	1207/979	F-11:	and:	T	1	÷	811,000 - 00,000m	Jac.	Jr . 181 #411	u Barus Yort, alka 1942/2
		.∌::la4d2f			油				96".00-"£			
900d	A Adar	. Merdel a no 1 J	(3/11/109)	FRE.	Basis Duba	ī	2		Basaj 10 TT - 11 40 dan	garj :	Orthanke n	v Garcia Noti vallada 425 (c
		.#ela#0121							jurel (0,00+0.4)			
2004	A Miar	. Werdeke no ')	00/99	EJM1	Ati.	i	2	В	R abi j (5.00+11.90	Nac'y	3945/35(%)	J. Braik: 14 Merkenily
		a#e1a#0121			udone:a							
11110	Ð	. Geer Made	(9/07)88	Fatt	385 (VIa	1	ş		3668 10 CI - 11 40 dan	gar.∷	ir nerkir	。(Cance Not Lebets 42))
	łań:-	979 Mars.							jimaļ (8.00-(84))			
		80										
3000	E)	c Japan Mada	(6-7/97)	MA1.2	4a¥e1a¥a	5	1	Ç	Rain(1500-1450 par	Rage	:1845m	Februarie pyakier 35
	Haryart.	Rúdata,							ng.ja.00 - 450			Ego;48ff1
		#*))										
900C	can Sura di	. Atilika 193	(150)	F/ft.	385 Julia	1	7		Besag Micco-ff Godyn	ga.	Jrung Adr	. (auto follodate 47)
		Engor (C212							unal (0.00 (0.4)			
:mir	105180511	CAHO (2)	20399	F-11:	Nu:21)	1	В	801, 1944-1940 a n	38 (:	3 de Kur	J. 6arce 961, e86164201
		Eggr (02)2			海				enig* .00 ± .52			

- Dari table universal tersebut, dengan memperhatikan kesamaan dan ketidak samaan data diantara baris-baris data juga dengan memahami hubungan alamiah antar data, kita dapat membentuk FD sebagai berikut:
- Nim \rightarrow nama mhs
- Nim \rightarrow alamat mhs
- Nim → tgl_lahir
- Kode_kul → nama_kul
- Kode_kul → sks
- Kode kul → semester
- Kode kul → waktu
- Kode_kul → tempat
- Kode kul→ nama dos
- Nama dos → alamat dos
- Nim, kode kul → indeks nilai

26

3 Kelemahan dari tabel universal

- Pengulangan informasi (redundansi)
- Yang terjadi pada atribut nama_mhs, alamat_mhs dan tgl_lahir yang dinyatakan berulang-ulang sesuai dengan data atribut nim, begitu juga dengan atribut nama_kul, tempat, waktu dan seterusnya.
- Potensi inkonsistensi data pada operasi pengubahan
 - Yang terjadi jika ada perubahan pada data nama_mhs, dimana perubahan ini harus dijalarkan keseluruh baris data pada table tersebut untuk nim yang sama. Jika perubahan ini tidak dilakukan, maka FD yang telah ditetapkan akan tergangu, karena kelak akan ada 2 row atau lebih dengan nim yang sama, tapi nama mhs nya berbeda.

27

Kelemahan...

- Tersembunyinya informasi tertentu
 - Tabel universal dibangun atas dasar keterkaitan antar item-item data.
 Karena itu table semacam ini tidak akan mampu menampilkan informasi tentang item-item data yang kebetulan belum memiliki keterkaitan dengan item data yang lain. Misalnya, mata kuliah yang tidak diambil mahasiswa tidak akan pernah diketahui

Kelemahan-kelemahan tersebut mengiring kita untuk melakukan dekomposisi, yakni melakukan pemilihan table tersebut menjadi beberapa table dengan mempertimbangkan ketergantungan fungsional yang telah kita dapatkan, dekomposisi dilakukan agar setiap table yang kita gunakan hanya memiliki 1 (satu) FD saja, lebih tepatnya FD minimum

Kriteria Tabel Yang Baik (efisien)

- Sebuah tabel dikatakan baik (efisien) atau normal jika memenuhi 3 kriteria sbb:
 - Jika ada dekomposisi (penguraian) tabel, maka dekomposisinya harus dijamin aman (Lossless-Join Decomposition).
 - Terpeliharanya ketergantungan fungsional pada saat perubahan data (Dependency Preservation).
 - Tidak melanggar Boyce-Code Normal Form (BCNF).
- Jika kriteria ketiga (BCNF) tidak dapat terpenuhi, maka paling tidak tabel tersebut tidak melanggar bentuk normal tahap ketiga (3nd Normal Form/3NF).

29

31

Lossless Join Decomposition

 Dekomposisi merupakan upaya untuk mendapatkan table yang baik, tapi bila tidak berhati-hati upaya ini justru dapat menghasilkan kesalahan. Dekomposisi yang benar terjadi jika table-tabel hasil dekomposisi kita gabungkan kembali dapat menghasilkan table awal sebelum didekomposisi. Dekomposisi yang benar semacam ini disebut Lossless-Join Decomposition atau Lossless Decomposition (dapat di Indonesiakan dengan istilah Dekomposisi Aman).

30

Lossless Join Decomposition

- Berikut sebuah contoh yang menghasilkan dekomposisi yang tidak aman (Lossy-Join Decomposition). Misalnya ada sebuah table ABC, yang didefinisikan dengan 2 buah FD yaitu A→B dan B→C.
- Kedua FD tersebut diperoleh dari pengamatan terhadap data yang kurang memadai atau karena asumsi yang kurang tepat.

Tabel ABC

A	В	С
A1	100	C1
A2	200	C2
A3	300	C3
A4	200	C4

Memang dengan isi seperti itu, pernyatan FD yang kedua B→C tidak sepenuhnya tepat, karena pada row 2 dan row 4, dengan nilai untuk atribut B yang sama, nilai untuk atribut C nva berbeda. Tapi yang ingin kita tekankan disini adalah adanya 2 buah FD itu, mendorong kita untuk medekomposisi table ABC menjadi 2 buah table, yaitu table AB dan Tabel BC sbb:

A	В				
A1	100				
A2	200]]	Hasil gabunga	an table AB dan	вс
A3	300		A	В	C
A4	200	<u> </u>	A1	100	C
	200	1	A1 A2	100 200	-
bel BC		, }			C:
bel BC	С	」 	A2	200	C:
bel BC		」 	A2 A2	200	C: C:

Jika table AB dan table BC digabungkan, hasilnya tidak menghasilkan table awal, sebelum dekomposisi, ini yang disebut dengan *Lossy Join Decomposition*, disini bisa disimpulkan bahwa kesalahan penentuan FD bisa mengakibatkan kesalahan decomposisi

Dependency Preservation

- Dependency preservation (dapat di Indonesia-kan sebagai Pemeliharaan Ketergantungan) merupakan kriteria yang harus dicapai untuk mendapatkan tabel dan basis data yang baik.
- Ketika melakukan perubahan data, maka harus dapat dijamin agar perubahan tersebut tidak menghasilkan inkonsistensi data yang mengakibatkan FD yang sudah benar menjadi tidak terpenuhi tetapi dalam upaya untuk memelihara FD yang ada untuk tetap terpenuhi tersebut, prosesnya harus dapat dilakukan dengan efisien.

33

Sekian

 Bagian 2 akan membahas tahapan-tahapan normalisasi

35

Dependency Preservation

- Jika ditinjau pada table universal yang telah digambarkan sebelumnya, sudah jelas sangat rapuh didalam memenuhi kriteria dependency preservation. Kalaupun ingin dipaksakan (agar FD yang ada tetap dapat terjaga pada saat ada perubahan yang terjadi), maka upaya pemeliharaan FD tersebut akan berlangsung tidak efisien
- Katakanlah ada perubahan data Alamat untuk mahasiswa dengan nim=980001, maka perubahan ini harus juga dilakukan pada atribut alamat_mhs disemua row yang nilai atribut nim nya berisi 980001