Capítulo 5: Formas canónicas de endomorfismos

• Equivalencia lineal: Sea V un \mathbb{K} -espacio vectorial y sean f y g dos endomorfismos de V. Se dice que f y g son linealmente equivalentes si existe un endomorfismo $h \in GL(V)$, donde GL(V)es el grupo general lineal de V, tal que :

$$f = h^{-1} \circ g \circ h$$

Equivalentemente dos endomorfismos son linealmente equivalentes si sus matrices en una base dada $\mathcal{B} = \{v_1, \dots, v_n\}$, digamos A y B, son semejantes. Es decir, existe una matriz regular $P \in \mathcal{M}_n(\mathbb{K})$ tal que:

$$A = P^{-1}BP$$

- Invariante lineal: son las propiedades que comparten dos endomorfismos linealmente equivalentes, es decir, que permanecen invariantes por cambios de base.
- Autovalor y autovector: Sea V un \mathbb{K} —espacio vectorial, $\lambda \in \mathbb{K}$ y $f: V \to V$ un endomorfismo de V. Diremos que λ es un autovalor de f si existe un $v \in V$, con $v \neq 0$, tal que :

$$f(v) = \lambda v$$

Un vector $v' \in V$ se dice que es **autovector**, asociado al autovalor λ , **si y sólo si** $f(v') = \lambda v'$.

• Subespacio propio: Sea V un \mathbb{K} —espacio vectorial, $f:V\to V$ un endomorfismo de V y $\lambda\in\mathbb{K}$ un autovalor de f. Se denomina subespacio propio al subespacio vectorial:

$$V_{\lambda} := \{ v \in v : f(v) = \lambda v \}$$

$$p(f) := \det(A - \lambda I)$$

• Endomorfismo diagonalizable, matriz diagonalizable: Sea f un endomorfismo del \mathbb{K} -espacio vectorial V de dimensión n. Se dice que f es un endomorfismo diagonalizable si existe una base \mathcal{B} de V tal que la matriz de f en esa base, $A = \mathfrak{M}_{\mathcal{B}}(f)$, es una matriz diagonal. Por otro lado, una matriz $A \in \mathcal{M}_n(\mathbb{K})$ se

dice **diagonalizable** si es semejante a alguna matriz diagonal D, es decir:

$$A = P^{-1}DP$$

- Multiplicidad algebraica y geométrica de un autovalor: Sea V un espacio vectorial de dimensión n y f : V → V un endomorfismo de V. Sea λ_i ∈ K un autovalor, se denomina:
 - 1. Multiplicidad algebraica a la multiplicidad de $\lambda_i \in \mathbb{K}$ como raíz del polinomio característico p(f). Se denota a_i .
 - 2. Multiplicidad geométrica a la dimensión del subespacio propio V_{λ_i} se denota g_i . Es decir, $g_i = \dim(V_{\lambda_i}) = n \operatorname{rg}(A \lambda_i I)$.

La multiplicidad geoétrica de un autovalor es siempre menor que la multiplicidad algebraica.

- Bloque de Jordan. Matriz de Jordan: Sea $\lambda \in \mathbb{K}$. Un bloque de Jordan de orden n, denotado por $B_n(\lambda)$, es una matriz cuadrada de orden n que verifica:
 - 1. $b_{ii} = \lambda \quad \forall i \in \{1, \dots, n\}.$
 - 2. $b_{i,i-1} = 1 \quad \forall i \in \{2, \dots, n\}.$
 - 3. $b_{i,j} = 0$ en otro caso.

Una matriz de Jordan es una matriz diagonal por bloques de modo que cada bloque de la diagonal es un bloque de Jordan.

- Forma canónica de Jordan: Sea f: V → V un endomorfismo del K-espacio vectorial V.
 Se dice que f admite una forma canónica de Jordan si existe una base B tal que la matriz de f, M_B(f), es una matriz de Jordan. A esta matriz, que es única salvo permutaciones de bloques, se le denomina forma canónica de jordan.
- Forma de Jordan real: Sea $f: V \to V$ un endomorfismo de un \mathbb{R} -espacio vectorial V. Supongamos que el polinomio característico $p_f(\lambda)$ no tiene todas sus raíces en \mathbb{R} por lo que f no admite una forma canónica de Jordan. En tal caso se considera la **complejificación de** f:

$$\hat{f}: \hat{V} \to \hat{V}$$

$$v = u + iw \mapsto \hat{f}(v) = f(u) + if(w)$$

El endomorfismo \hat{f} sí admite una representación con la **forma canónica de Jordan** en \hat{V} . Se tendrá que para cada valor propio λ su conjugado $\overline{\lambda}$ también es autovalor, y tendrán

asociados los bloques $B_r(\lambda)$ y $B_r(\overline{\lambda})$ respectivamente. Para cada pareja de bloques consideraremos el bloque real $C_{2r}(\lambda)$ en cuya diagonal se encuentra repetida r veces la matriz $C(\lambda) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ y en la diagonal inferior los 1s de los bloques de jordan se reemplazan por $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. La matriz que se forma al reemplazar cada pareja de bloques de autovalores conjugados por $C_{2r}(\lambda)$ se denomina forma de Jordan real y se denota $J_{\mathbb{R}}(f)$.

Capítulo 6: Subespacios invariantes

- Subespacio invariante: Sea V un \mathbb{K} —espacio vectorial, $f: V \to V$ un endomorfismo y $U \subseteq V$ un subespacio vectorial. Se dice que U es un subespacio invariante por f o f—invariante si: $f(U) \subseteq U$. De modo equivalente, $U = L(v_1, \ldots, v_k)$ es f—invariante si y sólo si $f(v_i) \in U$ $\forall i \in \{1, \ldots, k\}$.
- Base asociada a un Bloque de Jordan: Sea $\lambda \in \mathbb{K}$ valor proprio del endomorfismo $f: V \to V$. Sea $v \in \operatorname{Ker}(f \lambda \operatorname{Id})^r \operatorname{Ker}(f \lambda \operatorname{Id})^{r-1}$, entonces la base:

$$\mathcal{B} = \{v, (f - \lambda \mathrm{Id})(v), \dots, (f - \lambda \mathrm{Id})^{r-1}(v)\}\$$

Es la base asociada al bloque de jordan $B_r(\lambda)$.

• Subespacio r-cíclico: Sea $\lambda \in \mathbb{K}$ un valor propio del endomorfismo $f: V \to V$. Sea $v \in \operatorname{Ker}(f - \lambda \operatorname{Id})^r - \operatorname{Ker}(f - \lambda \operatorname{Id})^{r-1}$ con $r \geq 1$. Se denomina subespacio r-cíclico generado por v y asociado a $(f - \lambda \operatorname{Id})$ al subespacio:

$$U = L(v, (f - \lambda \operatorname{Id})(v), \dots, (f - \lambda \operatorname{Id})^{r-1}(v))$$

- Subespacio generalizado. subespacio máximo: Sea $\lambda \in \mathbb{K}$ un valor propio del endomorfismo f de V. Se denomina subespacio propio generalizado i-ésimo, asociado a λ , al subespacio $K^i := \operatorname{Ker}(f \lambda \operatorname{Id})^i$. Los subespacios propios satisfacen la siguiente propiedad: $K^i(\lambda) \subseteq K^{i+1}(\lambda)$. Se denomina subespacio máximo al subespacio $M(\lambda) := K^k(\lambda)$, donde k es el menor entero para el que se cumple que : $K^j(\lambda) = K^{j+1}(\lambda)$.
- Subespacio invariante reducible e irreducible: Sea f un endomorfismo de V, y sea U ⊆ V un subespacio f-invariante. Diremos que U es un subespacio invariante reducible si existen dos subespacios no triviales

y f-invariantes, U_1 y U_2 , tales que:

$$U = U_1 \oplus U_2$$

Si no es posible descomponer U como suma de subespacios invariantes de menor dimensión entonces diremos que U es un subespacio invariante irreducible.

• Polinomio anulador de un endomorfismo: Sea $p(t) \in \mathbb{K}[t]$ un polinomio en la incógnita t con coeficientes en \mathbb{K} y sea $f: V \to V$ un endomorfismo sobre el \mathbb{K} -espacio vectorial V. Se define el endomorfismo $p(f): V \to V$ como:

$$p(f) = a_n f^n + a_{n-1} f^{n-1} + \dots + a_1 f + a_0$$

Diremos que p(t) es un **polinomio anulador** del endomorfismo f si:

$$p(f)(v) = 0 \quad \forall v \in V$$

• Teorema de Cayley-Hamilton: Sea $f: V \to V$ un endomorfismo del \mathbb{K} -espacio vectorial V cuya matriz dada una base \mathcal{B} es A. El polinomio característico de f, $p(t) := \det(A - tI)$, es un polinomio anulador de f.

Capítulo 7: Formas bilineales y cuadráticas

- Forma bilineal. Matriz de una forma bilineal: Sea $f: V \times V \to \mathbb{K}$ una aplicación. Diremos que f es una forma bilineal si $\forall u, v, w \in V$ y $\forall \lambda, \mu \in \mathbb{K}$ se cumple:
 - 1. $f(\lambda u + \mu v, w) = \lambda f(u, w) + \mu f(v, w)$
 - 2. $f(u, \lambda v + \mu w) = \lambda f(u, v) + \mu f(u, w)$

Es decir, f es lineal en ambas componentes. Supongamos ahora que V es de dimensión finita, y $\mathcal{B} = \{v_1, \ldots, v_n\}$ es una base de V. Sean $x, y \in V$ tales que $x = (x_1, \ldots, x_n)_{\mathcal{B}}$ y $y = (y_1, \ldots, y_n)_{\mathcal{B}}$ entonces:

$$f(x,y) = f(\sum_{i=1}^{n} x_i v_i, \sum_{j=1}^{n} y_j v_j)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j f(v_i, v_j)$$

Entonces diremos que $\mathfrak{M}_{\mathcal{B}}(f) = (f(v_i, v_j))$ es la matriz de la forma bilineal en la base \mathcal{B} .

• Matrices congruentes: Sean $A, B \in \mathcal{M}_n(\mathbb{K})$, diremos que son matrices congruentes si existe una matriz regular P tal que:

$$B = P^t A P$$

• Rango de una forma bilineal: Sea $f: V \times V \to \mathbb{K}$ una forma bilineal; el rango de f es el rango de cualquiera de sus representaciones matriciales.

Forma bilineal simétrica y antisimétrica: Sea f una forma bilineal, diremos que f es:

- 1. Simétrica: si $f(u,v) = f(v,u) \ \forall u,v \in V$.
- 2. Antisimétrica: si $f(u,v) = -f(v,u) \ \forall u,v \in V.$
- Forma cuadrática. Forma polar: Se denomina forma cuadrática, asociada a la forma bilineal f, a la aplicación $\Phi: V \to \mathbb{K}$ definida por:

$$\Phi(v) := f(v, v)$$

Puede demostrarse que una aplicación es una forma cuadrática si y sólo si verifica:

- 1. $\Phi(\lambda v) = \lambda^2 \Phi(v) \ \forall v \in V, \lambda \in \mathbb{K}.$
- 2. La aplicación $f_{\Phi}: V \times V \to \mathbb{K}$ denominada como **forma polar** de Φ y definida por $f_{\Phi}:=\frac{1}{2}(\Phi(u+v)-\Phi(u)-\Phi(v))$, es una **forma bilineal simétrica** .

La forma polar es la única forma bilineal simétrica asociada a la forma cuadrática Φ .

Matriz de una forma cuadrática: Sea Φ:
 V → K una forma cuadrática. La matriz de la forma cuadrática Φ en la base B es la matriz de su forma polar, es decir:

$$\mathfrak{M}_{\mathcal{B}}(\Phi) := \mathfrak{M}_{\mathcal{B}}(f_{\Phi})$$

• Expresión analítica de una forma cuadrática: Sea $x \in V$ y $X \in \mathcal{M}_{n1}(\mathbb{K})$ la matriz columna cuyas componentes son las coordenadas del vector x en la base \mathcal{B} . Entonces, si $\mathfrak{M}_{\mathcal{B}}(\Phi)$ es la matriz de la forma cuadrática $\Phi: V \to \mathbb{K}$ diremos que su expresión analítica es la ecuación:

$$\Phi(x) = X^t \mathfrak{M}_{\mathcal{B}}(\Phi) X$$

- Vectores conjugados. vector autoconjugado: Sea f una forma bilineal simétrica, los vectores $u, v \in V$ se dicen **conjugados** respecto a f si f(u,v) = 0. Por otro lado, un vector $v \in V$ se dice autoconjugado si f(v,v) = 0 y $v \neq 0$.
- Núcleo o radical: Sea f una forma bilineal simétrica. Se denomina núcleo o radical de f al conjunto:

$$Ker(f) := \{v^* \in V : f(v, v^*) = 0, \ \forall v \in V\}$$

- Forma bilineal simétrica no degenerada:
 Una forma bilineal simétrica es no degenerada si Ker(f) = {0}.
- Conjugado de un subconjunto. Propiedades de la conjugación: Sea $f: V \times V \to \mathbb{K}$ una forma bilineal simétrica y sea $S \subseteq V$ un subconjunto de V. Se define el conjugado de S respecto a f como:

$$S^c := \{ v^* \in V : f(v, v^*) = 0, \ \forall v \in S \}$$

Por otro lado, sean $U, W \subseteq V$ dos subespacios vectoriales de V. Entonces se verifican las siguientes propiedades:

- $1. \ U \subseteq W \implies W^c \subseteq U^c$
- $2. \ U^c + W^c \subseteq (U \cap W)^c$
- 3. $(U+W)^c = U^c \cap W^c$
- 4. $U \subseteq (U^c)^c$
- Base de vectores conjugados: Sea f una forma bilineal simétrica del \mathbb{K} -e.v. V de dimensión finita. Diremos que la base $\mathcal{B} = \{v_1, \ldots, v_n\}$ de V es una base de vectores conjugados si:

$$f(v_i, v_j) = \delta_{ij} \ \forall i, j \in \{1, \dots, n\}$$

• Forma cuadrática diagonalizada: Sea Φ : $V \to \mathbb{K}$ una forma cuadrática y $\mathcal{B} = \{v_1, \dots, v_n\}$ una base de V. Diremos que Φ está diagonalizada si su matriz en la base \mathcal{B} es diagonal, es decir:

$$\mathfrak{M}_{\mathcal{B}}(\Phi) = D = \begin{pmatrix} d_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_n \end{pmatrix}$$

Si este es el caso diremos que la expresión analítica de Φ está escrita como una **suma de cuadrados** dado que se obtiene:

$$\Phi(x) = X^t D X = d_1 x_1^2 + \dots + d_n x_n^2$$

- Clasificación de formas bilineales simétricas: sea $f: V \times V \to \mathbb{R}$ una forma bilineal simétrica sobre un espacio vectorial real V. Diremos que f es:
 - 1. **Definida positiva:** si $f(v, v) > 0 \ \forall v \in V, v \neq 0$.
 - 2. Semidefinida positiva: si $f(v,v) \ge 0 \ \forall v \in V$ y existe algún vector autoconjugado.
 - 3. Definida negativa: si $f(v, v) < 0 \ \forall v \in V, v \neq 0$.

- 4. Semidefinida negativa: si $f(v,v) \leq 0 \ \forall v \in V$ y existe algún vector autoconjugado.
- 5. **Indefinida:** si f no cumple ninguna de las condiciones anteriores.
- Ley de Inercia. Signatura: Sea $f: V \times V \to \mathbb{R}$ una forma bilineal simétrica y real. Si D es una matriz diagonal de f el número de elementos positivos p y negativos q es el mismo en cualquier representación diagonal de f. Se define la **signatura** de f, o de Φ su forma cuadrática asociada, como el par ordenado $\operatorname{sg}(f) := (p,q)$ que es invariante por cambios de base de vectores conjugados.
- Criterio de Sylvester: Sea $f: V \times V \to \mathbb{R}$ una forma bilineal simétrica real sobre un espacio vectorial de dimensión n y sea $A = \mathfrak{M}_{\mathcal{B}}(f)$ la matriz de f en cierta base \mathcal{B} . Entonces:
 - 1. f es definida positiva si y sólo si $\Delta_k = \det(A_k) > 0$, $\forall k \in \{1, ..., n\}$.
 - 2. f es definida negativa si y sólo si $(-1)^k \Delta_k = (-1)^k \det(A_k) > 0$, $\forall k \in \{1,\ldots,n\}$. En otras palabras, el primer menor es negativo y los signos de los menores subsiguientes se van alternando.

Capítulo 8: Espacio vectorial euclídeo

- Producto escalar: Un producto escalar sobre un espacio vectorial real V es una forma bilineal $<,>:V\times V\to\mathbb{R}$ que es simétrica y definida positiva.
- Norma: Una norma es una aplicación $\|\cdot\|$: $V \to \mathbb{R}$ definida en términos de un producto escalar del siguiente modo: $\|v\| := \sqrt{\langle v, v \rangle}$. Es decir, es la raíz cuadrada de la forma cuadrática asociada a un producto escalar. Un vector $v \in V$ se dice unitario si $\|v\| = 1$.
- Ángulo: Sea (V, <, >) un espacio vectorial euclídeo. Se define como ángulo entre los vectores $u, v \in V$ al número real:

$$\angle(u,v) := \arccos(\frac{< u,v>}{\|u\|\|v\|})$$

Con arccos la aplicación inversa del coseno arccos : $[-1,1] \rightarrow [0,\pi]$.

• Matriz de Gram: Sea (V, <, >) un espacio euclídeo y $\mathcal{B} = \{v_1, \ldots, v_n\}$ una base de V.

La matriz de Gram o matriz métrica, denotada $G_{\mathcal{B}}$, es la matriz del producto escalar $<,>: V \times V \to \mathbb{R}$ en la base \mathcal{B} , es decir:

$$(G_{\mathcal{B}})_{ij} = \langle v_i, v_i \rangle$$

• Expresión analítica de un producto escalar: Dados dos vectores $x, y \in V$ y una base $\mathcal{B} = \{v_1, \dots, v_n\}$ de V, de modo que $x = (x_1, \dots, x_n)_{\mathcal{B}}$ y $y = (y_1, \dots, y_n)_{\mathcal{B}}$; la expresión analítica o ecuación de un producto escalar en la base \mathcal{B} está dada por:

$$\langle x, y \rangle = (x_1, \dots, x_n) G_{\mathcal{B}} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = X^t G_{\mathcal{B}} Y$$

- Propiedades de la norma: Sea (V, <, >) un espacio euclídeo y $u, v \in V$. Entonces se verifican:
 - 1. $|\langle u, v \rangle| \le ||u|| ||v||$ (Designaldad de Cauchy-Schwartz).
 - 2. $||u+v|| \le ||u|| + ||v||$ (Designaldad Triangular).
 - 3. $||u+v||^2 = ||u||^2 + ||v||^2 \iff \langle u, v \rangle = 0$ (Teo. de Pitágoras).
 - 4. $||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2)$ (Ley del paralelogramo).
- Vectores ortogonales. Conjuntos ortogonales: Dos vectores u, v del espacio euclídeo (V, <, >), ambos no nulos, se dicen ortogonales si < u, v >= 0. Un conjunto de vectores $S = \{v_1, \ldots, v_k\}$ se dice ortogonal si los vectores son ortogonales dos a dos respecto al producto escalar.
- Bases ortogonales y ortonormales: Se dice que un conjunto $\mathcal{B} = \{v_1, \dots, v_n\}$ es una base ortogonal si es a la vez una base de V y un conjunto ortogonal. Si además $||v_i|| = 1 \ \forall i \in \{1, \dots, n\}$ entonces se dice que la base es ortonormal.
- Coeficientes de Fourier: Sea $\mathcal{B} = \{v_1, \dots, v_n\}$ una base ortogonal de V. Entonces las coordenadas del vector $v \in V$ respecto a la base \mathcal{B} están dadas por:

$$v = \left(\frac{\langle v, v_1 \rangle}{\|v_1\|}, \dots, \frac{\langle v, v_n \rangle}{\|v_n\|}\right)_{\mathcal{B}}$$

Dichas coordenadas se denominan coeficientes de Fourier de v respecto de \mathcal{B} .

• Método de ortogonalización de Gram-Schmidt: Sea (V, <, >) un espacio vectorial euclídeo y sea $\mathcal{B} = \{v_1, \ldots, v_n\}$ una base de V. El conjunto $\{e_1, \ldots, e_n\}$ de los vectores definidos como:

$$\begin{split} e_1 &= v_1 \\ e_2 &= v_2 - \frac{< v_2, e_1 >}{\|e_1\|^2} e_1 \\ e_i &= v_i - \sum_{k=1}^i \frac{< v_i, e_k >}{\|e_k\|^2} e_k \end{split}$$

Es una base ortogonal de V.

Subespacio ortogonal y proyección ortogonal: Sea un subconjunto S ⊂ V, llamamos ortogonal de S al subconjunto definido como:

$$S^{\perp} := \{ v \in V : \langle v, s \rangle = 0 \ \forall s \in S \}$$

Es decir, es el conjugado de S respecto al producto escalar. Se cumple que si U es un subespacio entonces:

$$V=U\oplus U^\perp$$

Esta propiedad permite definir la **proyección ortogonal** sobre U. En concreto, si $v \in V$ la proyección ortogonal sobre U es el endomorfismo, denotado $\operatorname{proy}_U(v)$, tal que si v puede descomponerse como v = u + w con $u \in U$ y $w \in U^{\perp}$ entonces: $\operatorname{proy}_U(v) = u$.

- Producto vectorial. Producto mixto: Sea (V, <, >) un espacio vectorial euclídeo isomorfo a \mathbb{R}^3 . Sean $u, v \in V$, linealmente independientes, entonces se define el **producto vectorial**, denotado $u \wedge v$, como el vector que cumple:
 - 1) $u \wedge v$ es ortogonal a u y a v.
 - 2) $||u \wedge v|| = ||u|| ||v|| \sin(u, v)$.
 - 3) $\{u,v,u\wedge v\}$ está positivamente orientado.

Si u y v son linealmente dependientes entonces el producto vectorial es el vector cero. El producto **mixto** entre $u, v, w \in V$ se define como:

$$[u, v, w] := \langle u \wedge v, w \rangle$$

$$= \det \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix}$$

• Endomorfismo simétrico: Sea (V,<,>) un espacio euclídeo. Diremos que $f:V\to V$ es un endomorfismo simétrico si:

$$\langle u, f(v) \rangle = \langle f(u), v \rangle \quad \forall u, v \in V$$

• Teorema espectral: Sea (V,<,>) un espacio euclídeo de dimensión finita y $f:V\to V$ un endomorfismo simétrico. Entonces existe una base ortonormal de V formada por valores propios de f. En términos matriciales, toda matriz simétrica real A de orden n es diagonalizable.

Capítulo 9: Isometrías vectoriales

• Isometría vectorial o transformación ortogonal: Sean (V,<,>) y (V',<,>') dos espacios vectoriales euclídeos y sea $f:V\to V'$ una aplicación lineal. Diremos que f es una isometría vectorial o transformación ortogonal si:

$$\langle u, v \rangle = \langle f(u), f(v) \rangle' \ \forall u, v \in V$$

- Grupo ortogonal: Sea (V,<,>) un espacio vectorial euclídeo. Se denomina Grupo ortogonal de V, denotado O(V), a las isometrías vectoriales de V en sí mismo. El grupo ortogonal es un subgrupo del grupo general lineal con respecto a la operación composición de funciones.
- Rotación y reflexión: Sea (V, <, >) un espacio vectorial euclídeo y $f \in \mathcal{O}(V)$ una isometría. Si $A = \mathfrak{M}_{\mathcal{B}}(f)$ es la matriz de f en la base \mathcal{B} , diremos que f es una reflexión si $\det(A) = -1$ y que es una rotación si $\det(A) = +1$.
- Giro: Es una isometría de un espacio euclídeo tridimensional que verifica que dim $V_1 = 1$, es decir, tiene una recta de vectores fijos.
- Simetría ortogonal: Sea (V, <, >) un espacio vectorial euclídeo y σ : V → V una simetría de base B y dirección D. Si los subespacios B y D son tales que V = B ⊕ D entonces decimos que σ es una simetría ortogonal. Una simetría σ es una isometría si y sólo si σ es una simetría ortogonal.
- Simetría ortogonal hiperplano: Sea H un hiperplano del e.v. V de dimensión n y sea $\mathcal{B}_H = v_1, \ldots, v_{n-1}$ una base ortonormal de H. Una simetría ortogonal hiperplano es una simetría ortogonal de base un hiperplano H. Si se completa la base \mathcal{B}_H con v_n para formar una base ortonormal de V, entonces la matriz de la

simetría ortogonal hiperplano es:

$$\mathfrak{M}_{\mathcal{B}}(\sigma) = \begin{pmatrix} 1 & & \dots & 0 \\ & & ^{n-1} & & \vdots \\ 0 & \ddots & & \vdots \\ \vdots & \dots & 1 & 0 \\ 0 & \dots & 0 & -1 \end{pmatrix}$$

• Eje y ángulo de giro, base de simetría:

• Teorema de Cartan-Dieudonné: Sea (V, <,>) un espacio vectorial euclídeo de dimensión finita n. Toda isometría $f \in \mathcal{O}(V)$ se puede descomponer como:

$$f = \sigma_1 \circ \dots \sigma_k, \ k \le n$$

Donde σ_i son simetría ortogonales hiperplano.