Air University (Mid-Term Examination: Fall-2024)

Subject:

Discrete Structures

Course Code: MA-216 Class:

BS-CYS

Semester:

Section:

HoD's Signature:_

A, B (Afternoon Session)

Total Marks:

50

Date: Time:

Duration:

2 Hours

FM Name:

Mr. Umair Habib

FM's Signature:

Note:

All questions must be attempted. Understanding the question is part of the examination.

This examination carries 25% weight towards the final grade.

Scientific calculator is allowed.

Q. N	o. 1 (CLO-1) (PLO-2)	15 Marks
a	Demonstrate (show) that $(p \land q) \rightarrow (p \leftrightarrow q)$ is a Tautology by using truth table.	5
B	Show that $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$ by constructing a membership table.	5
9	Find the cartesian product of $A, B, and C$ where $A = \{a, b\}$, $B = \{c, d\}$, $C = \{e, f\}$.	5
Q. No. 2 (CLO-2) (PLO-3)		15 Marks
a	Apply the series of logical equivalences steps to prove that: $\sim (p \vee (\sim p \wedge q))$ and $(\sim p \wedge \sim q)$ are logically equivalent. (Note: Do not make use of truth table).	8
B	Apply a direct proof strategy to show that "the product of two odd numbers is odd."	7
Q. No. 3 (CLO-4) (PLO-3)		20 Marks
at .	Apply the Binary Search algorithm to search for "13" in the list 1, 3, 4, 5, 7, 9, 11, 13, 14, 17.	10
18	Execute the Bubble Sort algorithm to sort the list of elements d, f, k, m, a, b showing the lists obtained at each step.	10