Частотные характеристики систем

Для линейных систем, принимая в качестве сигнала на входе системы собственную функцию $x(k\Delta t) = B(\omega) \exp(j\omega k\Delta t)$, мы вправе ожидать на выходе системы сигнал $y(k\Delta t) = A(\omega) \exp(j\omega k\Delta t)$. Подставляя эти выражения в разностное уравнение системы (3.10), получаем:

$$\sum_{m=0}^{M} a_m A(\omega) \exp(j\omega k\Delta t - j\omega m\Delta t) = \sum_{n=0}^{N} b_n B(\omega) \exp(j\omega k\Delta t - j\omega n\Delta t);$$

$$A(\omega)\exp(j\omega k\Delta t)\sum_{m=0}^{M}a_{m}\exp(-j\omega m\Delta t)=B(\omega)\exp(j\omega k\Delta t)\sum_{n=0}^{N}b_{n}\exp(-j\omega n\Delta t);$$

$$A(\omega) \sum_{m=0}^{M} a_m \exp(-j\omega m \Delta t) = B(\omega) \sum_{n=0}^{N} b_n \exp(-j\omega n \Delta t).$$
 (3.29)

Отсюда, частотная передаточная функция системы (частотная характеристика при нормировке к a_o =l):

$$H(\omega) = \frac{A(\omega)}{B(\omega)} = \frac{\sum_{n=0}^{N} b_n \exp(-j\omega n\Delta t)}{1 + \sum_{m=0}^{M} a_m \exp(-j\omega m\Delta t)}.$$
 (3.30)

Нетрудно убедиться, что подстановкой $z = exp(j \omega \Delta t)$ в выражение передаточной функции H(z) (3.24) может быть получено абсолютно такое же выражение для частотной характеристики, т.е.:

$$H(\omega) = H(z)$$
, при $z = \exp(j\omega \Delta t)$.

При обратном преобразовании H(z) во временную область с использованием выражений (3.26) отсюда следует также, что частотная характеристика системы представляет собой Фурье-образ ее импульсной реакции, и наоборот. При $\Delta t = 1$:

$$H(\omega) = \sum_{n=-\infty}^{\infty} h(n) \exp(-j\omega n); \qquad (3.31)$$

$$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(\omega) \exp(j\omega n) d\omega . \qquad (3.32)$$

В общем случае $H(\omega)$ является комплексной функцией, модуль которой $R(\omega)$ называется амплитудно-частотной характеристикой системы (АЧХ), а аргумент $\varphi(\omega)$ - фазочастотной характеристикой (ФЧХ).

$$A(\omega) = |H(\omega)| = \sqrt{\operatorname{Re}^2[H(\omega)] + \operatorname{Im}^2[H(\omega)]};$$

$$\varphi(\omega) = arctg\left(\frac{\operatorname{Im}[H(\omega)]}{\operatorname{Re}[H(\omega)]}\right).$$

Физический смысл частотной характеристики системы достаточно прост. Произвольный сигнал на входе системы может рассматриваться в виде суммы гармонических составляющих с различным набором амплитуд и начальных фазовых углов. Амплитудно-частотной характеристикой системы устанавливаются коэффициенты усиления системой (коэффициенты передачи) этих частотных составляющих, а фазочастотной характеристикой - сдвиг фаз этих частотных составляющих в выходном сигнале относительно начальных фаз во входном сигнале.

Основные свойства частотных характеристик систем:

- 1. Частотные характеристики являются непрерывными функциями частоты.
- 2. При дискретизации данных по интервалам Δt функция $H(\omega)$ является периодической. Период функции $H(\omega)$ равен частоте дискретизации входных данных $F = 1/\Delta t$. Первый низкочастотный период (по аргументу ω от $-\pi/\Delta t$ до $\pi/\Delta t$, по f от $-1/2\Delta t$ до $1/2\Delta t$) называется главным частотным диапазоном передачи сигнала. Граничные частоты главного частотного диапазона соответствуют частоте Найквиста $\pm \omega_N$, $\omega_N = \pi/\Delta t$. Частота Найквиста определяет предел частотной разрешающей способности системы по обработке данных.
- 3. Для систем с вещественными коэффициентами импульсной реакции $h(n \Delta t)$ функция АЧХ является четной, а функция ФЧХ нечетной. С учетом этого частотные характеристики систем обычно задаются только на интервале положительных частот $0-\omega_N$ главного частотного диапазона. Значения функций на интервале отрицательных частот являются комплексно сопряженными со значениями на интервале положительных частот.