This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

353116601 A OCT 1978 7810

6601 1978

(54) HIGH SPEED TIRE FOR CONSTRUCTION VEHICLE

(11) Kokai No. 53-116601 (43) 10 12 1078 (19) JP (21) Appl. No. 52-27351 (22) 3.12.1977

(71) TOYO GOMU KOGYO K.K.

(72) TOSHIYUKI SHIBAYAMA(1)

(52) JPC: 77B511 (51) Int. Cl². B60C11/00

PURPOSE: To improve the radiating effect of a high speed tire for a construction vehicle by specifying the size of the raised portion of the tread of the tire.

CONSTITUTION: The width of the tread of this high speed tire is divided equally into eight divisions. Assuming that the depth of the tread grooves is represented by h at the positions on the circumferences displaced by 1/8 and 1/4 from the end of the tread toward the center at the shoulder of the tire and the diameter of the maximum circle is by a within the (aised portions 1) of the tread resulting in a/h = k, the size of the raised portions 1 of the tread is so determined that the values k become 1.3 to 1.0 and 1.6 to 1.0 at the positions of 1/8 and 1/4 from the end of the tread. In addition, the grounding area of the raised portions with respect to the groove area is rated at 60 to 75%.

HIS PAGE BLANK (USPTO)

ないあずメ **19日本国特許庁**

- メルトで名画の**の特許出願公開**って

昭53—116601

. DInt. Cl.2 B 60 C 11/00

77 B 511

7166-37

識別記号 ②日本分類 1 庁内整理番号 ②公開 昭和53年(1978)10月12日 4

発明の数 1 審査請求 有 () () () () () ()

\$2. 高囊丛刺湿的油温激性用5.4.4 こうのであるの後をサンクン(全、数算)

医乙基苯甲甲烷酯苯酚酚

和特 昭52—27351

· 产②由 编 昭52(1977)3月12日 "

(全**@発下明^人者等集山俊之** (2014年 2015年 2014年 2014

- ベミュスコメウタ豊中市柴原町 5 丁目 4 ―19

「大学」と 本本の一はなるとのは あいとなる 「 100 大学 「 100 大学 100 大学

ないまなり、小路台籍・中央安安をおうのでしまずにおり、中市 こ

THE STATE OF THE STATE OF THE STATE OF

人 東岸 3 五 東株式会社

、大阪市西区江戸堀上通2丁目5 マン・マルテク 権権できる場所によるとことで

0代理 入了并理上^发大島武夫 外1名

对公司教育者 衛衛衛衛衛衛衛衛衛 一年最初也不 ついたなんないかのはままするままはおおりのは

1600-85 以上のスタンダードタイプ及び 205-25 以上のワイドペースタイプの大量連設 車 両用一般排尿さのパイアスタイヤにかいて、ト レツド雄(8B)よりトレツド概の言わよび元だけ中 央方向に寄つたそれぞれの円貫上の位置を言点。 indとし、トレツド央部(I)内において、それぞれ の点の位置線上に中心を有し且つトレツド突部の 傷内に沿掛する最大円の底径をまとし、この円の 中心を通り、タイヤの舞方向と直角で、タイヤの 軸線方向断面上にあり且つその断面のカーカス表 面に垂直となる方向に過定される。トレッド表面 さをねとし、 4/4 = まとすると、 🖥 点にかける k の値が 15~10 で、1 点にかける 2 の値が 16 ~ 10 となるように、トレツド央部の大きさを定め

且つ装集面積比3/18 0分7.8% の集別にあるラグ量。 セミラグ無いプロツグ値のトレッド複様を有する 建設車開用高速等が発する。(3) チェを発する さい セミラグ量、プロック量のトレッド機器のリ ブ部せたはグロック書のトレンド央部の個内に沿

兼する最大円の中心が(できなかなび) 点の円周上 の位置と一致しない場合、『それぞれの円角上の位 位置点と見ましていかーカス表面に垂直とせる方 内に黄定される。 トレツド 安留とアン ダートレッ ド外部間との距離するから特殊さをほとして 2/4

との発明は、大型雑数車両用の一枚排泄をタイ

ヤドÞいて、一般のパイアスプライ構造と同等の での発熱水 は高い。そづて、森敦本質用パイ カーカスを し、且つ、一畝のパイアスプライタ イヤ並みの機械的繰り返し疲労性能、タイヤ関性。 耐摩託性 の各性能を有しながら、放散効果にす ぐれた高温走行の可能なタイヤをうることを目的 とするものである。

従来、艦数車両用の高温走行用タイヤとして、 ラジブルプライタイヤが用いられているが、その 耐久性をよびタイヤ関性の不足より生する機能性 蛇に欠けるところがあり、使用される条件によつ ・ては、建設車両用タイヤとしての性能を充分満足 し得ない欠陥がある。

また、一方、一枚のパイアスプライタイヤでは、 高発熱性のため、高速使用にかいては、熱による セパレーション故障の発生率が高く、高速走行に は不適当であつた。

すなわち、一枚のパイアスプライ構造タイヤは、 その構造上、タイヤの目転中における負荷かよび 旅青の圧離伸張によるプライコードの角度変化の ため、ラジアルプライタイヤに比べ、同一仕事会

特開昭53-116601(2) スプライタイヤの耐熱性向上対策として、従来者 度され実施されて来たものは、トレツドの配合内 春の変更、カーカス構造の変更等、発熱量能少を 主根としたものがほとんどを占め、一部アンダー トレツド厚の減少による放熱量増加を企配するも のもあつたが、それらの従来の対策では、耐熱性 は高高30多額度の向上にしか過ぎをかつた。

因つて、との発明の職数車両用高速タイヤにか いては、臭好を性能を維持しなから放散効果に増 厳し、その内上を企業したもので、トレッド央部 (ラグ部、リブ等、ブロック等)の大きさの資法 株成を、袋送のある条件下に株成するととによっ て、タイヤの温度を下げ、高温走行を可能とする ものである。 \$44.2 m

との発明の建設車両用タイヤは、1600-25 以上のスタンダードタイプをよび 205-25 以上 のワイドペースタイプの大道艦数車両用一般議長 さタイヤを対象とするものである。(進収率両用タ イヤには、一枚排除さタイヤ、保养タイヤ(一枚

养の 1.5 倍の保さ) かよび超汞排タイヤ (一般集 の25倍の乗さ)の5種類があるが。乗券タイヤ **ひよび起来書タイヤは、トレツド厚がわまりにも**. 厚く、高進走行用としては不適点である。)・

車両用タイヤの場合、その使用条件上、けん引力 が要求されるため、円屑方向の厳粛を有するリブ 型は一般的に不向をであり、従つて、機器を有す るラグ型、独立したプロック模様を有するプロッ ク重、横帯と厳奪を有するセミラグ量(ラグ重と リブ型の両型のトレツド央部を有する)が用いら ns.

また、タイヤのカーカス構造については、パイ アスプライタイヤを対象とするものである。たと えば、ゴム引きされた有機繊維のタイヤコードの 方向が、タイヤの周方向に対して26~~44°の値 囲のコード角度に≯いて、複数プライが交互に反 対方向に交差して構成されるものである。

なお、トレツドゴムの好をしい物性は、第1表 に示すような範囲のものである。

硬 俊	50~75°
引張り強度	200~5004/2
# 0	500~700 €
引要を強度	80~1504/a
500ダモジュラス	50~800 W/d
3. A. ★	10~50 C

(注) ※ 発熱試験は、《ASTM D623 化準じ、若含 118 9、ストローク 64 5m 、 祭恩 包含 度 40°C の試験条件の下に行をつたもの T86.

次に、との発明のタイヤの放船効果を上げるた めのトレツド央部の大きさのとり方について世明

第1回のラグ型トレッド及び第8回のセミラグ 避トレツドの一例を示す器器に基づいて具体的に

第1回~A、毎8回~Aは、ラグ雅トレツド及 びセミラグ重のトレツド艦の右角半分のトレッド

央部模様の一個の模様を示す部分予展開で、第1 図ーB、第8回-Bは、第1回-A→Lび第8回 - Aに対応する。タイヤの雑様方角の要都の部分 新羅因を示するので、心はトレッド央幕(ラグ部、 リブ帝、プロック書)、(18)はトレッド表面、(3 は雑都、(A)はアンダートレッド、(Se)は 神の底部 に放当するアンダートレッドの外幕間、(4)はカー カス部で、タイヤコードの補強は日示を省略した ものであり、(40)はカーカス表面である。

ノトレッド権(82)とり一大け中央方向に寄った円昇 上の位置を言葉として書するからだけ中央方向 化等つた円両上の位置を一点とするように各円両 上の位置点の位置表のを行ない。その円周上の位 最級上に中心を有し、トレッド央海(1)の偏内(ラ グ重の場合は相対する辺に内装)に収集する最大 円の直接を、こし、この円の中心を添り、タイヤ の月方向と宣介でいた。その職業方向新疆上にあっ 方向に概定される。トレフド表書 (1e)とアンダー

特問料53-11660代3) トレッド外移面(5e)との距離するわら非常さを A とし、 $\frac{1}{6}$ 点、 $\frac{1}{6}$ 点、 $\frac{5}{6}$ 点にかける h を $h(\frac{1}{6})$ $h(\frac{1}{4})$ ・ 4(音) と 格配する。

また、首配同様、カーカス表面 (4s)に垂直とせ "る方向に何定されるアンダートレツド外部前 (5a) とカーカス表面(40)までの距離をすとし、上記問 機、 1 点 点 、 1 点 点 、 5 点 化 かける かを 、 か(10) か(10) - J(S)と 略配する。また。同様に各分割の位置点 $_{\lambda}$ の円の電紙。をそれぞれ。 $(\frac{1}{6}\lambda$ 。 $(\frac{1}{4}\lambda$ 。 $(\frac{3}{6})$ とする。 まず、トレストの概をは無念し、お耳ルダ森の、、ことできたの性をも(各分割位置点のおは、前配 同様を信える(合)をする」としてもかの性をフ [各分類位置点の1世、パ(音)、パ(音)とする)

ただし、毎8回のセミラグ重のトレツド央部の リブ部は、そのトレブド央部の個内に収集する景 大円の虫心が、円肩上の位置点と一致しまり場合。 が超とりうるととがあまうる。この場合は、円井 上の位置点に近い石装円の中心を通る器をそれで シ且つその順調のカーカス要無(4e)に動画となる。incom れの位置点と見なして。首配同様。カーカス要要 (40) に垂直となる方向に得定されるトレツド表面

(1e)とアンダートレッド外部間(5e)との距離する わち寄の果させるとして、VA=Aとする。また。 プロツク重のトレッド央部のプロック部の場合も

同様に処理されるものとする。 では、サイヤ内での単位時間はり、単位長さ 当り発生する熱量かよびタイヤ表面(1s)から逃げ る熱量(単位回義、単位時間、単位温度当り)を 一定とすれば、走行中にかけるタイヤ重度は下配 の(1) 大化て示する変化数子とほぼ比例する。

$$f = \frac{4\pi}{58} h^{\frac{1}{4} + \frac{1}{4}} h^{\frac{1}{4} + \frac{1}{4}} h^{\frac{1}{4} + \frac{1}{4} + \frac{1}{4}} h^{\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} h^{\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} h^{\frac{1}{4} + \frac{1}{4} + \frac{1}{4} h^{\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} h^{\frac{1}{4} h^{\frac{1}{4} + \frac{1}{4} h^{\frac{1}{4} h^{\frac{1}{4} + \frac{1}{4} h^{\frac{1}{4} h$$

文中、 Eu はスツセルト数 (EUSSELT EUMBER)

従つて、1と 和の値が定されば、タイヤの暴度 はよの二次高数で表わされる。因つて、 4(4>0) が増加するに使い了の彼は単興に増加する。ゆえ に、人の住が小さい程、丁の住は小さくなり、タ イヤ電波は低くまる(音分割位置点にかける温度

従つて、 連切なるの値を求める必要がある。 因つ て、トレツド央部(1)の強度とよの隹との関係を見 るに、とのトレッド央部に働く広力では、けん引 カドよって生ずるタイヤ月方向力をラ、トレッド 痛せる。神の果さん(トレッド表面 (1e)とアング ートレッド外部員(Se)との距離)とすると、下記 8. 大龙旗直击在。1912年,2012年,在成为海南南京。

$$=\frac{6P}{8h}\times\frac{1}{h^2}\qquad (2)$$

通常タイヤサイズにかかわらずDは50~70~20~

$$\therefore \sigma = \frac{D}{h^2} \quad \text{i. s. s. s. s. s. } \quad (3)$$

となり、トレツド央部(1)に働く応力は 🎤 に 反比: 例する(音分割位置点におけるトレッドに働く応 力曲幕を示す第4回参照)。数多くのトレッド配。 合ゴムの繰り返し引張り圧縮疲労試験かよびモデ、 ルタイヤでの試験結果より、第1表程度の配合ゴ ムを使用すれば、♪≥1でもれば、トレツド央部) の強度は充分で ることが判明した。

せた。トレツドのテツピングとの関係を試験し

- た前景を次に示す。テストは、1800-86,86 PR のタイヤを用い、雑種の重のよ雀のタイヤド ついて、享責に取り付け先定款級を行をつたもの . . .

《 飲飲は、金長1年に浄石を乗る詰めた路面にか いて、タイヤの空気圧を軽/山、荷貫5590時、地 行通度 \$ 5 %/hr. の条件の下に、500時間の発動 によるタイヤの重量減少率級化で評価した。

着果は第5個のチツピング音楽に示すとかりて ある。際は、機能により低を、繊維にタイヤ重量 女子事質を示している。 とのモンピング会議に示 : 」 するうに、トポン以下になると血管にデツビング 」が進むととお物別した。

以上の各民政策景から、4/4-1の性。 $f \neq b \neq b$, $h(\frac{1}{2}) = 1.5 \sim 10$

 $k(\frac{1}{2}) = 16 \sim 10$ となるようにドレツド央部の大きさを定めるとと - 最小展 # 情以上増加し且の表来のオフ・ザ・ロー 一ド用タイヤとしてのすべての情報を換足するタイ

特別以53−116601(4 º ヤが可能となるものである。なか、トレツド央部 の大きをは、第1型のラグ車の場合、トレッド場 方向かよび中央方向は、 1mm 点点と2mm の 円 (a(2)) e(n)) に外装する線を延長して定める。

との発明のタイヤと従来タイヤとの、 $\frac{1}{6}$ と $\frac{1}{4}$ の 分割位数にかけるもの値を次に示す。

本発明タイヤ $h(\frac{1}{R})=18\sim 10$, $h(\frac{1}{4})=18\sim 10$. 美来タイヤ A(=)=30~15,A(=)=30~17 なか、トレツド表面の全表面表に対し、トレッ ド央部の表頭数の占める割合、すまわち、姜油質ご 秋比は、 世来から用油にかいて大体一定の 範囲が ある。すなわち、長勢用で16~5.0%。トラクジ ヨンタイプで 50~60g、ロックタイプで 60~ 75 ぎ である。本発明のタイヤはロックタイプと 門等を 60~75 5の範囲化形成するものである。

なか。タイヤのトレツド央部において、信水10 ■以上で乗さが主義の50多以上を越える顕微を 有する場合は、南郷底をアンダートレッド外郭田 と保定し、関係と主義資かよび商券と関係時での e、 a かよび Fを求め、(i) 文化で計算された! ő

1997年,在一个国际教工教育的中华中的专家的 値が、主導化かける上記との範囲で計算された発 産価数!の範疇におればよい。 EGR/OBEKSTHIN. ***・ 税未の1600-##以上のスタンダードタ イプタよび 3 05-88 以上 のウイドベースティブ の構成の各要因の範囲は第3要のようでものでも A Commence of the second

人名 建筑管理等超过多数形态影像 化化 一点可引力在推荐官等的或辩论或事中心之

女性を決する後の無利用 とはなればなり S. J. Bank v. O. S. Bank S. 呼称タイヤ語 。 Yu 🗱 D 🗮 1400 BLE 805 ME 0 0 Eg/ Ar (Eq/al) 1600 27-50 025-04 28-40 014-04 25-50 30~70 1800 8.5.6 30~35 51~54 2 1.0 0 2 4.5 34~37 50~61 37-44 ... 58~47 ... 41~45 48-74 57.26 37.0 45~60 . 000 40~81 8 5.00 60~84 60~0B

次に、実施の一何として、1600-85,24PR 成と従来タイヤとの比較を示す。 实施例

4) 「本発明タイヤの外籍輸売(タイヤの空気圧 5 Eq/al)

外長:1493回、 福.449回 、 ・ シュー トレツド痛(直/曲)570/385、4(音) 47=。 $h(\frac{1}{8})$ 41=, $h(\frac{1}{8})$ 115, $g(\frac{1}{4})$ 515=, $h(\frac{1}{4})$ 54m, $h(\frac{1}{4})$ 181, トレッド全装置表 17500点。 プロック部の表面表 11400 al。 整集整理比 64.

カーカスプライ…66 ナイロンコード、18604/s

.. インナープライ ユムプライ アウタープライ 4プライ

上記の構成タイヤの $k(\frac{1}{6})=6.1$ m $f(\frac{1}{6})=0.86$.

プレーカー・66ナイロンコード、8604/8 コード角度…560~550

- 4 -

 $\frac{1}{8}(\frac{1}{8}) = 1.18$ であり、又フセルト教は次の文化と つて求めた。

 $g_0 = \frac{Aa}{\lambda} = 4.8708$ 但し、 α と λ の値は次の数値を用いた。 $\alpha = 6.85 \times 10^{-4} \ ceV$ d - m - C $\lambda = 6.0 \times 10^{-4} \ ceV$ d - m - C

 特開 昭53-116601(5)

に展定するものである。

上記の本発明タイヤムと従来のタイヤBとの塩 内皮行テスト(ドラムテスト)の熱果は、第7日 に示すとかりである。本間は、複雑に、荷盒(ト ン)×適度(En/Ar)の表をとり、複雑にタイヤ第二 度を示したもので、タイヤの発熱と耐久性を比較 したものである。

飲飲条件は、タイヤの空気圧 5.0 kg/d。 有意 7586 kg (一定)、速度は、18kgから6.8 時間 どとに収縮的に5 kg ナン増大、ドラムは17018 mot のドラムを使用して行なった。

その前来は、本発明のAタイヤは、14日後の 86回/hr. の遺皮調道時にトレツドセパレーションを発生し、従来のBタイヤは、8日後の87時4。 の道度調道時にトレツドセパレーションを発生した。

すなわち、両者の対比にかいて、本発明のタイヤは、異なる選皮条件の下にかいて、さらに、日 数にかいて前3倍、温度にかいて、他の条件差が あり、もし同一選及にて使用した場合、その耐人

性の無常はもからて大きなものとなるものである。 従って、セパレーション発生率の温度数だけを単 純化対比しても、耐久性能(耐熱性能)は今なく とても微似上の向上が認められ、地質単同用の高 通クイヤとして、ものめてお客をグイヤを発度す。 るものである。

4回車の信単な製物

時との重内地行テストにかける温度と発熱耐久性 比較固定さる。 (I)…トレッド央部(ラグ部、リブ等、ブロック部) (1e)…トレッド映画 (D)…非都 (D)…アンダートレッド

(50)…アンダートレッドの外幕面

(I) ... n - n x = . . .

代理人 分理士 大 島 武 央 外1名

自発手 続 補 正 書

特許庁長官 片 山 石

1.事件の表示

昭和 5 8 年特許顧第 27351 污

2. 発明の名称

職設車両用高速タイヤ

3. 補正をする者

事件との関係 特許出願人

(314) 東洋ゴム工業株式会社

弁理士 大 島

5. 補正命令又は拒絶理由通知の日付

特開昭53-116601(ざ)

- ||春祭16页第18行目の「16日」とあ