Logica

6: Semantica classica della logica proposizionale

Claudio Sacerdoti Coen

<sacerdot@cs.unibo.it>

Universitá di Bologna

14-15/11/2019

Outline

Semantica classica della logica proposizionale

Semantica

Wikipedia: "La semantica é quella parte della linguistica che studia il significato delle parole (semantica lessicale), degli insiemi delle parole, delle frasi (semantica frasale) e dei testi. Sintassi = descrizione dell'insieme di tutte le connotazioni alle quali associamo una denotazione (semantica)

Semantica = ciò che viene associato alle connotazioni in un particolare dominio di interpretazione; insieme delle denotazioni

(Funzione) semantica (o interpretazione) = funzione che associa a ogni connotazione una denotazione in un dominio di interpretazione fissato

Semantica

Esempi:

semantica di un linguaggio di programmazione semantica di una logica semantica della lingua italiana

- È la semantica che determina il significato di un linguaggio
- Possiamo dare semantiche totalmente diverse allo stesso linguaggio
- In genere vi è una semantica "naturale" o "principale", detta semantica intesa
- Semantiche alternative tanto più interessanti quanto distinte da quella intesa (e.s. interpreto f(x) con il tempo necessario ad eseguire f sull'input x e un ciclo while con una sommatoria)
- Semantiche (della verità) in funzione dei mondi (o interpretazioni)

La semantica classica della logica proposizionale

$$F ::= \bot \mid \top \mid A \mid B \mid \ldots \mid \neg F \mid F \land F \mid F \lor F \mid F \Rightarrow F$$

- Semantica classica: associa a ogni denotazione il suo valore di verità in un qualche mondo (p.e. il falso a ⊥)
- Il mondo determina il valore di verità delle variabili proposizionali A, B, . . . (p.e. A è vero nel mondo x, falso nel mondo y)
- La semantica dei connettivi è invece fissata
- Quando si assume la semantica classica, la logica si dice logica proposizionale classica

I mondi della logica classica

Logica classica: assunzioni sul mondo Visione "Platonica": in ogni mondo (preso singolarmente)

- Ogni enunciato è vero o falso
- Un enunciato non può essere vero e falso allo stesso tempo (non contraddizione)
- Il valore di verità non muta (staticità)
- Il valore di verità di un enunciato è sempre determinato (determinatezza)
- Staticità e determinatezza segnano un solco fra verità (classica) e conoscenza (non statica, ma monotona; possibilmente indeterminata)
- Staticità segna un solco fra verità e risorse (che si consumano)

Vedremo altre semantiche corrispondenti ad altre logiche.

Interpretazione classica

Useremo i naturali 0 e 1 per le denotazioni classiche di falsità e verità.

La scelta di usare naturali è di comodo (permette manipolazioni aritmetiche). Esempio di alternativa: i booleani.

Definizione: una (funzione di) interpretazione (classica) o mondo è una funzione dall'insieme delle variabili proposizionali $\{A,B,\ldots\}$ verso $\{0,1\}$

Indicheremo le interpretazioni con v, v', v_1 , v_2 , ...

Esempio: se v(A) = 1 e v'(A) = 0 allora A denota il vero nel mondo v e il falso nel mondo v'.

Semantica della logica classica proposizionale

Definizione: data un'interpretazione (o mondo) v, la semantica $[\![\cdot]\!]^{\nu}: \mathcal{F} \to \{0,1\}, \ \dot{e} \ definita per induzione strutturale sulle$ connotazioni come segue:

$$\begin{bmatrix}
\bot \end{bmatrix}^{V} & = 0 \\
\llbracket \top \end{bmatrix}^{V} & = 1 \\
\llbracket A \rrbracket^{V} & = V(A) \\
\llbracket \neg F \rrbracket^{V} & = 1 - \llbracket F \rrbracket^{V} \\
\llbracket F_{1} \wedge F_{2} \rrbracket^{V} & = \min\{\llbracket F_{1} \rrbracket^{V}, \llbracket F_{2} \rrbracket^{V}\} \\
\llbracket F_{1} \vee F_{2} \rrbracket^{V} & = \max\{\llbracket F_{1} \rrbracket^{V}, \llbracket F_{2} \rrbracket^{V}\} \\
\llbracket F_{1} \Rightarrow F_{2} \rrbracket^{V} & = \max\{1 - \llbracket F_{1} \rrbracket^{V}, \llbracket F_{2} \rrbracket^{V}\}$$

Nota: nel libro $[\![F]\!]^v$ viene indicata con v(F) facendo (volutamente) confusione fra la *v* come interpretazione e la *v* come semantica. Si dice che la v come semantica estende l'interpretazione v dal dominio delle variabili a quello delle formule.

Semantica della logica classica proposizionale

Esercizi: dimostrare

- $\llbracket A \lor \top \Rightarrow B \land \top \rrbracket^{v} = \llbracket B \rrbracket^{v}$ Soluzione: $\llbracket A \lor \top \Rightarrow B \land \top \rrbracket^{v} = \max\{1 - \llbracket A \lor \top \rrbracket^{v}, \llbracket B \land \top \rrbracket^{v}\} = 0$ $\max\{1 - \max\{\|A\|^{\nu}, \|\top\|^{\nu}\}, \min\{\|B\|^{\nu}, \|\top\|^{\nu}\}\} =$ $\max\{1 - \max\{v(A), 1\}, \min\{v(B), 1\}\} =$ $\max\{1-1, v(B)\} = v(B) = [\![B]\!]^v$
- $\llbracket A \Rightarrow \neg A \Rightarrow B \rrbracket^v = 1$
- $\llbracket (B \Rightarrow B) \Rightarrow A \land \neg A \rrbracket^v = 0$

Tabelle di verità

Poichè $[\cdot]^v$ è definita per ricorsione strutturale e poichè i connettivi hanno un numero finito n = 0,1,2 di argomenti e questi possono denotare solamente due valori, è possibile rappresentarne la semantica con una tabella di verità con 2^n righe (possibili semantiche delle sottoformule immediate) e valori in $\{0,1\}$ (semantica dell'intera formula).

$ \llbracket F_1 \rrbracket^{V}$	$[\![F_2]\!]^{V}$	$ \llbracket F_1 \wedge F_2 \rrbracket^v$	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

$\llbracket F \rrbracket^v$	$ \llbracket \neg F \rrbracket^v $
0	1
1	0

	$\llbracket F_1 \rrbracket^v$	$[\![F_2]\!]^v$	$\llbracket F_1 \vee F_2 \rrbracket^v$
ſ	0	0	0
Ī	0	1	1
ſ	1	0	1
ſ	1	1	1

Implicazione materiale

Il connettivo di implicazione materiale ("se ... allora") ha la seguente tabella che non cattura l'usuale nozione di causalità:

$\llbracket F_1 rbracket^v$	$[\![F_2]\!]^v$	$\llbracket F_1 \Rightarrow F_2 bracket^v$	
0	0	1	
0	1	1	
1	0	0	
1 1		1	

Esempi (nel mondo inteso usuale ν):

[se 2+2=5 allora gli asini volano]]
$$^{v} = 1$$
 basta che l'antecedente (2+2=5) sia falso

[se i politici sono onesti allora Berlusconi è stato condannato in cassazione] $^{v} = 1$ basta che il susseguente (Berlusconi) sia vero $^{v} = 1$

Semantica Tarskiana

Con semplici manipolazione algebriche si vede che:

Questa semantica (detta alla Tarski):

- usa i connettivi della meta-logica per spiegare quelli della logica.
- non è molto informativa
- è (troppo) dipendente dalla semantica della meta-logica

Tabelle di verità

È possibile estendere le tabelle di verità dai connettivi a formule generiche?

Sì, ma la dimostrazione non è immediata (vedi prossimi lucidi)

e tale costruzione non scala alla logica del prim'ordine (che comprende i quantificatori universale \forall ed esistenziale \exists)

Variabili

Definizione: la funzione Var(F) (variabili di F, variabili che occorrono in F) è definita per ricorsione strutturale su F come segue:

$$Var(\bot)$$
 = \emptyset
 $Var(A)$ = $\{A\}$
 $Var(\neg F)$ = $Var(F)$
 $Var(F_1 \land F_2)$ = $Var(F_1) \cup Var(F_2)$
 $Var(F_1 \Rightarrow F_2)$ = $Var(F_1) \cup Var(F_2)$
 $Var(F_1 \Rightarrow F_2)$ = $Var(F_1) \cup Var(F_2)$

Teorema: Var(F) è sempre un insieme finito qualunque sia F.

Dimostrazione: per induzione strutturale su *F*.

Casi \perp , \top e A: l'insieme vuoto e i singoletti sono finiti.

Caso $F_1 \wedge F_2$: per ipotesi induttiva $Var(F_1)$ e $Var(F_2)$ sono insiemi finiti e l'unione di insiemi finiti è finita.

←□ → ←□ → ← □ → ← □ → へへ(

Semantica classica

```
Teorema: [F]^v usa solamente la restrizione di v al dominio
Var(F)
Corollario: se v_1 e v_2 sono tali che per ogni X \in Var(F) si ha
v_1(X) = v_2(X), allora [F]^{v_1} = [F]^{v_2}.
Dimostrazione del teorema: per induzione strutturale su F.
   Casi \perp, \top: non usano \nu.
   Caso A: ||A||^{v} = v(A) e Var(A) = \{A\}.
   Caso \neg F:
     Per ipotesi induttiva \llbracket F \rrbracket^v usa solo la restrizione a Var(F).
     Si ha [\neg F]^{v} = 1 - [F]^{v} e Var(\neg F) = Var(F).
   Caso F_1 \wedge F_2 (i casi F_1 \vee F_2 e F_1 \Rightarrow F_2 sono simili):
     Per ipotesi induttiva [F_1]^v usa solo la restrizione a Var(F_1)
     e [F_2]^v usa solo la restrizione a Var(F_2)
     Si ha [F_1 \land F_2]^V = \min\{[F_1]^V, [F_2]^V\}
     che usa v sulla restrizione al dominio di F_1 e a quello di F_2
     e Var(F_1 \wedge F_2) = Var(F_1) \cup Var(F_2).
                                                  ←□ → ←□ → ← = → ← = → へのの
```

Tabelle di verità

In virtù dei precedenti teoremi è possibile rappresentare $[\![F]\!]^v$ al variare del mondo v con una tabella di verità di 2^n righe dove n = |Var(F)|. Ogni riga rappresenta un insieme di mondi che concordano su un numero finito di variabili e il numero di tali insiemi è finito.

V(A)	<i>v</i> (<i>B</i>)	$[A \lor B]^{V}$	$\llbracket B \lor \bot rbracket^v$	$\boxed{ \llbracket A \vee B \Rightarrow B \vee \bot \rrbracket^{v} }$
0	0	0	0	1
0	1	1	1	1
1	0	1	0	0
1	1	1	1	1

Conclusioni

- Logica classica = logica data su mondi statici e totalmente determinati
- Interpretazione (o mondo): assegna un valore di verità a ogni variabile che occorre in una formula
- Le variabili che occorrono in una formula sono in numero finito
- Semantica: estende le interpretazioni fissando la denotazione dei connettivi indipendentemente dai mondi
- Tabelle di verità: usate per rappresentare visivamente le denotazioni di una formula al variare dei mondi