Practice Problems: Lesson 9 - Direction Fields and Isoclines

Master the visualization of ODEs!

Part A: Basic Concepts (6 problems)

- 1. For $\frac{dy}{dx} = x + y$, find the isoclines for slopes c = 0, 1, -1, 2.
- 2. Identify all equilibrium points for $\frac{dy}{dx} = (x-1)(y+2)$.
- 3. Sketch the direction field for $\frac{dy}{dx} = -y$ on the region $[-2, 2] \times [-2, 2]$.
- 4. Given a direction field, how can you identify points where solutions have horizontal tangents?
- 5. For $\frac{dy}{dx} = x^2$, explain why all isoclines are vertical lines.
- 6. True or False: A solution curve can cross an isocline at most once. Explain.

Part B: Core Techniques (6 problems)

- 7. Construct the direction field for $\frac{dy}{dx} = \frac{y}{x}$ (exclude x = 0). What are the isoclines?
- 8. For $\frac{dy}{dx} = xy$, find equations for all isoclines and sketch the nullcline.
- 9. Draw the direction field for $\frac{dy}{dx} = y x^2$ and identify regions where solutions are increasing.
- 10. Given $\frac{dy}{dx} = \sin(x) y$, find the isocline for slope 0 and sketch nearby solution behavior.
- 11. For $\frac{dy}{dx} = \frac{x}{y}$, describe the direction field along the axes. What's special about these points?
- 12. Sketch solution curves for $\frac{dy}{dx} = 2x$ passing through (0,0), (1,1), and (-1,2).

Part C: Applications (5 problems)

- 13. A direction field shows all arrows pointing toward the line y = 2x + 1. What can you conclude about long-term behavior?
- 14. For the logistic equation $\frac{dy}{dx} = y(1-y)$, analyze the direction field to determine stability of equilibria.
- 15. Given $\frac{dy}{dx} = (x-1)^2 + (y-1)^2 1$, describe the direction field on the circle centered at (1,1) with radius 1.
- 16. For $\frac{dy}{dx} = -x/y$, explain why solution curves must be circles centered at the origin.
- 17. A chemical reaction follows $\frac{dy}{dx} = k(a-y)(b-y)$ where a > b > 0. Analyze the direction field behavior.

Part D: Advanced/Theoretical (5 problems)

- 18. Prove that if f(x, y) is continuous, solution curves cannot cross except at equilibrium points.
- 19. For $\frac{dy}{dx} = f(y)$ (autonomous equation), explain why all isoclines are horizontal lines.
- 20. Show that if a direction field has a line of symmetry, solution curves respect this symmetry.
- 21. Given two ODEs with direction fields that differ only in magnitude (not direction) of arrows, how do their solution curves relate?
- 22. Prove that near a saddle point, there exist exactly four special solution curves (separatrices).

Part E: Exam-Style Questions (6 problems)

- 23. [Prof. Ditkowski Special] Sketch the complete direction field for $\frac{dy}{dx} = x^2 y^2$. Find all equilibria, draw five distinct isoclines, and sketch three solution curves showing different behaviors.
- 24. Given only the direction field (figure provided on exam), determine the ODE from:
 - a) $\frac{dy}{dx} = x y$
 - b) $\frac{dy}{dx} = x + y$
 - c) $\frac{dy}{dx} = xy$
 - d) $\frac{dy}{dx} = x/y$
- 25. For $\frac{dy}{dx} = y^2 x$, without solving:

- a) Find all nullclines
- b) Determine regions where solutions are concave up
- c) Sketch the solution passing through (1,1)
- d) Describe behavior as $x \to \infty$
- 26. [Multi-part] Consider $\frac{dy}{dx} = (x-1)(y-1)(y+1)$:
 - a) Find all equilibrium points
 - b) Classify stability of each equilibrium using the direction field
 - c) Identify all separatrices
 - d) Sketch the complete phase portrait
- 27. A direction field shows spiraling arrows converging to a point. Which ODE could produce this?
 - a) $\frac{dy}{dx} = -x y$
 - $b) \frac{dy}{dx} = x^2 + y^2$
 - c) $\frac{dy}{dx} = xy$
 - d) Cannot determine
- 28. [Conceptual] Explain how to determine from a direction field alone whether an ODE has periodic solutions. Apply your method to analyze $\frac{dy}{dx} = -x + y^3$.

Answer Key with Hints

Problem 1: y = -x (slope 0), y = -x + 1 (slope 1), y = -x - 1 (slope -1), y = -x + 2 (slope 2)

Problem 2: Single equilibrium at (1, -2)

Problem 7: Isoclines are rays from origin: y = cx

Problem 13: Along y = 2x + 1, slope equals 0, so this is an attractor

Problem 19: Horizontal isoclines mean f doesn't depend on x explicitly

Problem 24: Use nullclines $y = \pm 1$ and x = 1 to divide plane into regions