SIR Model with natural deaths and births 1

Let's rewrite our system of equations (??) – (??) with an addition of the death and birth processes. Consider these rates are equal to each other, we introduce new variable D:

$$\left(\frac{ds(t)}{dt} = -\frac{\beta}{N}s(t)i(t) + D(N - s(t))\right) \tag{1}$$

$$\begin{cases}
\frac{ds(t)}{dt} = -\frac{\beta}{N}s(t)i(t) + D(N - s(t)) \\
\frac{di(t)}{dt} = (\frac{\beta}{N}s(t) - \gamma - D)i(t) \\
\frac{dr(t)}{dt} = \gamma i(t) - Dr(t)
\end{cases} \tag{2}$$

$$\frac{dr(t)}{dt} = \gamma i(t) - Dr(t) \tag{3}$$

As we did before, we rewrite it into one equation:

$$i = \frac{s' - D(N - s)}{-\tilde{\beta}s} \tag{4}$$

Again we differentiate both sides (with $\tilde{\beta} = \frac{\beta}{N}$ substitution):

$$i' = -\frac{1}{\tilde{\beta}} \left(\frac{(s'' + Ds')s - (s' + Ds - DN)s'}{s^2} \right), \tag{5}$$

$$i' = -\frac{1}{\tilde{\beta}} \left(\frac{s''}{s} - \frac{s'^2 - DNs'}{s^2} \right) \tag{6}$$

Now we can insert (4) into (2):

$$i' = (\tilde{\beta}s - \gamma - D)(\frac{s' - D(N - s)}{-\tilde{\beta}s}) \tag{7}$$

$$i' = -\frac{1}{\tilde{\beta}s}(\tilde{\beta}s - \gamma - D)(s' + Ds - DN)$$
(8)

And comparing (8) and (6) we get next equation:

$$ss'' - s'^2 + (-\tilde{\beta}s^2 + (\gamma + D)s + DN)s' - \tilde{\beta}Ds^3 - (\tilde{\beta}DN + D(\gamma + D))s^2 - (\gamma + D)DNs = 0$$
 (9)

We can see that coefficients at s^3, s^2 and s are consts so we substitute them with $A = -\tilde{\beta}D, B = -(\tilde{\beta}DN + D(\gamma + D)), C = -(\gamma + D)DN$:

$$ss'' - s'^2 + (-\tilde{\beta}s^2 + (\gamma + D)s + DN)s' + As^3 + Bs^2 + Cs = 0$$
(10)

Now we introduce a function $\phi = \frac{dt}{ds}$, so the equation will be:

$$-\phi' - \frac{\phi}{s} + (-\tilde{\beta}s^2 + (\gamma + D)s + DN)\frac{\phi^2}{s} + (As^2 + Bs + C)\phi^3 = 0$$
 (11)

And by substitution $v = \phi s, v' = \phi' s + \phi$ the following equation occur:

$$v' + (-\tilde{\beta} + \frac{(\gamma + D)}{s} + \frac{DN}{s^2})v^2 + (A + \frac{B}{s} + \frac{C}{s^2})v^3 = 0$$
 (12)

Then we assume these three substitutions:

$$\begin{cases} r(s) = \frac{1}{v(s)}, \\ \xi(s) = (\tilde{\beta} - \frac{(\gamma + D)}{s} - \frac{DN}{s^2}), \\ \eta(s) = -(A + \frac{B}{s} + \frac{C}{s^2}) \end{cases}$$
(13)

$$\xi(s) = (\tilde{\beta} - \frac{(\gamma + D)}{s} - \frac{DN}{s^2}),\tag{14}$$

$$\eta(s) = -(A + \frac{B}{s} + \frac{C}{s^2}) \tag{15}$$

and we get Abel-type first-order second-kind equation:

$$rr' = \xi(s)r + \eta(s) \tag{16}$$