Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Normally the first step in debugging is to attempt to reproduce the problem. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Also, specific user environment and usage history can make it difficult to reproduce the problem. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). Computer programmers are those who write computer software. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. Following a consistent programming style often helps readability. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. There exist a lot of different approaches for each of those tasks. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). There are many approaches to the Software development process. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. There exist a lot of different approaches for each of those tasks. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'.