An Example Latex Document

Brooks Emerick

September 5, 2024

1 Section 1 Title

Hi, my name is Brooks. You can use "section", "subsection", and "subsubsection" to separate your write-up into appropriate sections. Notice how I'm typing quotations!

1.1 This is the title for subsection 1.1

1.1.1 This is the title for subsubsection 1.1.1

If you wish to suppress the label of the section, you can put a "*" next to the word "section" like so:

This is the title for a subsection without a label

This is how you make a bulleted list:

- Project 1
- Project 2
- Project 3

This is how you make an enumerated list:

- 1. Stuff 1
- 2. Stuff 2

This is how you make an enumerated list with your very own enumeration scheme:

- (1.) Stuff 1
- (2.) Stuff 2

2 Math Stuff

The fundamental theorem of calculus part 2 is

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Let α be any real number between 0 and 1. Let $\beta = \frac{1}{2}$. Notice how the fraction $\frac{1}{2}$ is the same size as the text that surrounds it. If you want it to be bigger, do this $\frac{1}{2}$.

Consider the following system of equations:

$$\frac{dx}{dt} = 3x + 2y\tag{1}$$

$$\frac{dy}{dt} = 2x - 3y\tag{2}$$

This is how you reference any equations: Remember Equation (1) was a differential equation?

3 Figures

This is how you call a figure and include it in your text. Page close attention to the "textwidth" command because that will dictate the size of your figure.

Me using
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 to find roots of $x^2 - 1 = 0$.

Figure 1: This is Bill Gates with a giant ping pong paddle.

Suppose you want to put two figures side by side:

Me using
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 to find me using $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ to find roots of $x^2 - 1 = 0$.

Figure 2: This is Bill Gates with a giant ping pong paddle.

Remember the quadratic formula (e.g. Figure 2)??

4 Tables

This is how you insert a table:

Table 1: Accuracy score statistics for the random forest model.

Statistic	Academic Discipline	Career Interests
Minimum	0.83	0.69
Maximum	0.94	0.76
Mean	0.90	0.71
Median	0.92	0.72
Standard Deviation	0.022	0.011