

Computeranimation

Lesson 4 – Dynamics

Motivation

Topics

- Rigid Transformation
- Animation
- Collision
- Dynamic
- Mass-Spring Simulation
- Rigging and Skeletal Animation
- Motion Capturing using RGB-D Sensor

Kinematics vs. Dynamics

- **Kinematic**: Description of movement without considering accelerating forces
- **Dynamic**: Description of movement as a consequence of forces
- Both are areas of mechanics
- Until now every movement was described as a simple position-orientation-shift per time
- Now we want to include forces

Linear Dynamic Movement

- The description of movements that contain only translation
- No rotation is considered here
- Movements always are triggered by forces at the center of mass

Linear Dynamic Movement

- The **position** of an object at time t is defined as x(t).
- The **velocity** of an object at time t is $v(t) = \dot{x}(t)$.
- The **acceleration** of an object at time t is $a(t) = \dot{v}(t) = \ddot{x}(t)$.

Linear Dynamic Movement

- The *impulse* of an object at time t is $p(t) = m \cdot v(t)$.
- The **change of the impulse** is $\dot{p}(t) = m \cdot \dot{v}(t) = m \cdot a(t)$.

Newton's 2nd law of motion:

$$F = m \cdot a$$

Linear Dynamic Movement - Conclusion

position	x(t)
velocity	$v(t) = \dot{x}(t)$
acceleration	$a(t) = \dot{v}(t) = \ddot{x}(t)$
impulse	$p(t) = m \cdot v(t)$
change of the impulse	$\dot{p}(t) = m \cdot \dot{v}(t) = m \cdot a(t)$

Angular Dynamic Movement

- We describe linear motion in the forementioned context
- What about force induced rotations?
- The **angular orientation** at time t is defined as R(t).
- The **angular velocity** at time t is $\omega(t)$ (unit is $\frac{rad}{s}$).
- Warning: we cannot derive R(t) to get $\omega(t)$.
- Use q(t) (the quaternion-representation of R(t)) instead.
- $\dot{q}(t) = \frac{\partial q(t)}{\partial t} = \frac{1}{2}w(t) \cdot q(t)$ (w(t) is the quaternion-representation of $\omega(t)$).

Angular Quantities

- The **angular momentum**:
- The torque of an object:
- The *inertia tensor*:
- The *angular velocity*:

$$\vec{L}(t) = \vec{r} \times p(t) = \vec{r} \times m \cdot v(t).$$

$$\tau = \dot{L}(t) = \frac{\delta L}{\delta t} = \frac{\delta (r \times p)}{\delta t} = r \times F(t).$$

$$I = \int r^2 dm$$
.

$$\omega = \mathbf{I}^{-1} \cdot \vec{L}(t).$$

State of an Object

- To simulate an objects movement over time in a physical correct way
- We need to solve Ordinary Differential Equations (ODE)
- This way we integrate the path and the rotations of objects

State of an Object

- To simulate an objects movement over time in a physical correct way
- We need to solve Ordinary Differential Equations (ODE)
- This way we integrate the path and the rotations of objects

Constant State:

Mass: m
Inertia tensor: I

Dynamic State:

Position/Orientation: x(t) and q(t)Lin./Ang. velocity: v(t) and w(t)

External Forces: $F_{ext}(t)$

State of an Object

- We have to discretize the time domain into equally distant steps Δt
- Each step we search for $x(t + \Delta t)$ and $q(t + \Delta t)$
- Considering the ODEs' left sides are known at time t
- To solve for the next time step we have to *integrate* the ODEs

$$v(t) = \dot{x}(t)$$

$$\frac{1}{2}w(t)q(t) = \dot{q}(t)$$

$$a(t) = \ddot{x}(t)$$

$$F(t) = \dot{p}(t)$$

$$\tau(t) = \dot{L}(t)$$

Simple Euler Integrator

- given an analytic Function f(x)
- integrate the value $f(x + \Delta x)$ by a linear approximation:

$$f(x_{i+1}) = f(x_i) + \Delta x \cdot f'(x_i)$$

Now we bring this in the context of rigid body simulation!

Integrate Object's State

28.09.2015

14