运输问题的典型情况是:

设某物资有m个产地 A_1 、 A_2 、...、 A_m ; 有n个销地 B_1 、 B_2 、...、 B_n ;

 a_i 表示产地 A_i 的产量; b_i 表示销地 B_i 的销量;

 c_{ii} 表示把物资从产地 A_{i} 运往销地 B_{i} 的单位运价。

设 x_{ij} 为从产地 A_i 运往销地 B_j 的运输量,

用表格表示如下:

运输表:

 c_{ij} 为 A_{ij} 到 B_{ij} 的单位运价

销 产 地	B 1		B_{n}	产量
$A_{\rm l}$:	c ₁₁ :	***	$c_{_{1n}}$	<i>a</i> ₁ :
A_m	C m 1	•••	C_{mn}	a_m
销量	b_1	• • •	b_n	$\sum_{i=1}^{m} a_i = \sum_{j=i}^{n} b_j$
			产绍3	/ /

广珀半衡

平衡表、运价表合二为一:

销产	B ₁	B ₂		B_n	产量
A ₁	c_{11} x_{11}	$\begin{array}{ c c }\hline c_{12}\\ x_{12}\\ \end{array}$		c_{1n}	a ₁
A_2	x ₂₁	c_{22} x_{22}		c_{2n} x_{2n}	a_2
i	i	i	i	i	ŀ
A_m	c_{m1} x_{m1}	c_{m2} x_{m2}		C _{mn}	a_m
销量	<i>b</i> ₁	<i>b</i> ₁	•••	b_n	

运输问题的模型为:

$$\min z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\begin{cases}
\sum_{j=1}^{n} x_{ij} = a_i, & i = 1, \dots, m \\
\sum_{j=1}^{m} x_{ij} = b_j, & j = 1, \dots, n
\end{cases}$$

$$\frac{1}{n} \sum_{j=1}^{m} a_i = \sum_{j=1}^{n} b_j$$

$$\frac{1}{n} \sum_{j=1}^{m} a_j = \sum_{j=1}^{n} b_j$$

运输问题约束条件的系数矩阵

随西种核大学 BEANAL SHYRKETY OF SCIENCE & TECHNOLOGY

特征:

- 1、平衡运输问题必有可行解,也必有最优解;
- 2、运输问题基可行解中包括 m+n-1个基变量。

表上作业法

表上作业法的求解思路

表上作业法是一种求解运输问题的特殊方法,

其实质是单纯形法。

步骤	描述	方法
第一步	求初始基行可行解(初始调运方案)	最小元素法、 西北角法、 沃格尔法
第二步	求检验数并判断是否得到最优解。当非基变量的检验数 σ_{ij} 全都非负 (Why) 时得到最优解,若存在检验数 σ_{ij} < 0 ,说明还没有达到最优,转第三步。	闭回路法、 位势法
第三步	调整运量,即确定换入变量、换出变量,转入 第二步	

美国种核大学

例1 某运输问题如下表所示:

销 地产地	B_1	B_2	B_3	B_4	产量
A_1	3	11	3	10	7
A_2	1	9	2	8	4
A_3	7	4	10	5	9
销量	3	6	5	6	

问: 应如何调运可使总运输费用最小?

方法1: 最小元素法

基本思想是就近供应,即从运价最小的地方开始供应,然后次小,直到最后供完为止。

	B ₁	B ₂	B ₃	B ₄	产量
$\mathbf{A_1}$	3	11	4	3 10	7
\mathbf{A}_2	3	9	1 2	8	4
\mathbf{A}_3	7	6	10	3	- 9
销量	3	6	5	6	

总运输费=(3×1)+(6×4)+(4×3)+(1×2)+(3×10)+(3×5)=86元

练习最小元素法

销地 产地	В	1	В	2	В	3	В	4	产量
A1	1	6		7	.,	5	13	3	14
A2	2	8	13	4	12	2		7	27
A3	19	5		9		10		6	19
销量	2	2	1	3	1	2	13	3	

3 沃格尔(Vogel)法——罚数法

最小元素法的缺点是:为了节省一处的费用,有时造成在其他处要多花更多的运费。

沃格尔法考虑到,若一产地的产品不能按最小运费供应,就应考虑次小运费,这就有一个差额,称之为罚数。

罚数越大,则说明不能按最小运费调运时,运费将会增加越多。

因而对罚数最大处, 就应当采用最小运费调运。

销地 产地	B1	B2	В3	B4	产量	行罚数
A1	3	11	3	10	7	3-3=0
A2	1	9	2	8	4	2-1=1
A3	7	6	10	5	9	5-4=1
销量	3	6	5	6		
列罚数	3-1=2	9-4=5	3-2=1	8-5=3		

销地 产地	B1	B2	В3	B4	产量	行罚数
A1	3	11	3	10	7	3-3=0
A2	1	9	2	8	4	2-1=1
A3	7	6	10	3	9	7-5=2
销量	3	6	5	6		

产品种核大学

销地 产地	B1		B2	В3	В	4	产量	行罚数
A1		3	11	3		10	7	3-3=0
A2	3	1	9	2		8	4	2-1=1
A3		7	6	10	3	-5	9	
销量	3		6	5	(6		
列罚数	3-1=	2		3-2=1	10-	-8= 2		

销地 产地	B1	В2	В3	B4	产量	行罚数
A1		1	5	10	7	10-3=7
A2	3	9	2	8	4	8-2=6
A3		6	10	3	9	
销量	3	6	5	6		
列罚数			3-2=1	10-8=2		

销地 产地	B1	B2	В3	B4	产量	行罚数
A1	3	11	5	10	7	10-10=0
A2	3	9	2	1	. 4	8-8=0
A3	7	6	-1 <mark>0</mark>	3	9	
销量	3	6	5	6		
列罚数				10-8=2		

B1	B2	В3	B4	产量	行罚数
3	11	5	2	7	
3	9	2	1	4	
7	6	10	3	9	
3	6	5	6		
	3 7	1 9 3 7 6	5 2 3 3 4 10 6	5 2 8 3 1 7 4 10 5	3 11 3 10 7 5 2 8 4 3 1 1 5 9 6 3

 $(1\times3) + (4\times6) + (3\times5) + (2\times10) + (1\times8) + (3\times5) = 85$

练习: 用沃格尔法求下面运输问题的初始可行解

销 地 产地	В1		B2	В3	B4	产量	行差额	
A1		4	12	4	11	16	0	
A2		2	10	3	9	10	1	
A3		8	5	11	6	22	1	
销量	8		14	12	14	48		
列差额	2		5	1	3			

练习:用沃格尔法求下面运输问题的初始可行解

销地 产地	В	В1		2	В	3	В	4	产量
A1		6		7		5		3	14
Ai	1						13		3 th Ta
A2		8		4		2		7	27
AZ	2		13		12				21
A3		5		9		10		6	19
AS	19		1						19
销量	2	2	1	3	1	2	1.	3	

第2步 解的最优性检验

求检验数的方法有两种:

- ♦ 闭回路法
- ◆ 对偶变量法(也称位势法)

(1) 闭合回路法:

运输表中有调运量的,即数字格为基变量, 没有调运量的,即空格为非基变量, 基变量的检验数 σ_{ii} =0,非基变量的检验数 $\sigma_{ij} \geq 0$

闭回路: 从空格出发顺时针(或逆时针)画水平(或垂直)直线,遇到基变量格时转90°,然后继续前进,直到到达出发的空格所形成的闭合回路。

注: 1. 每一空格有且仅有一条闭回路;

2. 如果某数字格有闭回路,则此解不是可行解。

销地 产地	B1	B2	В3	B4	产量
A1	3	11	3	10 3	7
A2	3	9	2	8	4
A3	7	<mark>4</mark>	10	5 3	9
销量	3	6	5	6	

$$\sigma_{11} = c_{11} - c_{21} + c_{31} - c_{41} = 3 - 3 + 2 - 1 = 1 \qquad \text{for all } 4 + 5 = 1 + 2 + 2 + 2 = 1 + 2 + 2 = 1 + 2 + 2 = 1 + 2 + 2 = 1 +$$

В	1	F	32	E	33]	B4	产量
	3		11		3		10	7
				4		-3		,
	1	***********	9		2		8	4
3				1				**
	7		4	***********	10		5	9
(1)		-6				_3		
		3	3 1 3	3 11 1 9 3 7 4	3 11 4-1 9 3 1 1 7 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 11 3 1 9 2 3 7 4 10	3 11 3 3 1 3 1 3 1 3 1 3 1 1 9 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 11 3 10 4 3 1 9 2 8 5 1 7 4 10 5

$$\sigma_{31} = c_{31} - c_{21} + c_{23} - c_{13} + c_{14} - c_{34} = 10 \qquad \text{for all the super of contract of the c$$

销地 产地	B1	B2	В3	B4	产量
A1	3	11	3	10	7
41			4	3	
A2	1	9	2	8	4
A2	3		1	4	7
A3	7	4	10	5	9
AG		6		3	,
销量	3	6	5	6	

$$\sigma_{24} = 8 - 10 + 3 - 2 = -1 < 0$$
, ... 当前解非最优解 神祇大学

(2) 对偶变量法(位势法)

$$\min z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
 其对偶问题模型为:
$$\begin{cases} \sum_{j=1}^{n} x_{ij} = a_i \ , & i = 1, \cdots, m \end{cases} & \max w = \sum_{i=1}^{m} a_i u_i + \sum_{j=1}^{n} b_j v_j \\ s.t. \begin{cases} \sum_{i=1}^{m} x_{ij} = b_j \ , & j = 1, \cdots, n \end{cases} & s.t. \quad u_i + v_j \le c_{ij} \\ u_i \ , v_j$$
 $t = 1, \cdots, m$ $t = 1, \cdots, n$

对偶变量为: $Y = (u_1, u_2, ..., u_m, v_1, v_2, ..., v_n)$

则运输问题变量 x_{ij} 的检验数为:

$$\begin{split} \sigma_{ij} &= c_{ij} - z_{ij} \\ &= c_{ij} - YP_{ij} \\ &= c_{ij} - (u_1, u_2, ..., u_m, v_1, v_2, ..., v_n)P_{ij} \\ &= c_{ij} - (u_i + v_j) \end{split}$$

用位势法对初始方案进行最优性检验的方法:

设行位势为 u_i ,列位势为 v_j , 检验数计算公式为 $\sigma_{ij} = c_{ij} - u_i - v_j$,

由基变量的 $\sigma_{ij} = 0$, 可知对数字格有 $c_{ij} = u_i + v_j$, 由此可以解出 u_i 和 v_j , 再由此计算非基变量的检验数。

销地 产地	В	1	В	32	В	3	ı	B4	产量	行位势U
A1		3		11		3		10	7	U_1
		1		9	4	2	3	8		
A2	3				1				4	U_2
A3		7		4	************	10		5	9	U_3
			6				3			
销量	3	3	¥	6	5	5		6		
列位势 V_j	I	, 1	Į	2	Į	3	j	V_4		

解的改进——闭回路调整法

销地 产地	В	1	В	32	В	33	1	34	产量
A1		3	··········	11	4	3	3	10	7
A2	3	1		9	1	2		8	4
A3		7	6	4		10	3	5	9
销量		3		6	;	5		6	

医 族品种核大学

解的改进——闭回路调整法

销地 产地	В	B1 B2		В	33		B4	产量	
A1		3	,,,,,,,,,,,,	11	5	3	2	10	7
A2	3	1		9		2	1	8	4
A3		7	6	4		10	3	5	9
销量	3				5				

表上作业法计算中的问题

(1)若有多个非基变量的检验数为负,可取它们中任一变量作为换入变量,但通常取 σ_{ij} <0中最小者作为换入变量。

(2) 无穷多最优解

产销平衡的运输问题必定存在最优解。如果存在 非基变量的 $\sigma_{ii}=0$,则该问题有无穷多最优解。

(3) 退化解

- ➤ 表格中一般要有(m+n-1)个数字格。但有时在分配运量时会同时划去一行和一列,这就出现了退化。
- ▶ 当退化时,需要补一个0,以保证有(m+n-1)个数字格作为基变量。一般可在划去的行和列的任意空格处加一个0即可。

产销不平衡的运输问题

当产大于销时, 即:
$$\sum_{i=1}^{m} a_i > \sum_{i=1}^{n} b_i$$

数学模型为:
$$\min z = \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$$

增加假想产地 B_{n+1} ,从而产销平衡

销产	B_1	•••	$B_{\rm n}$	B_{n+1}	产量
A_1	c_{11} x_{11}		c_{1n}	$x_{1, n+1}$	a_1
A_2	c_{21} x_{21}		c_{2n} x_{2n}	$x_{2, n+1}$	<i>a</i> ₂
i	į.	•••	į	1	1
A_{m}	c_{m1}		c_{m2}	$x_{m, n+1}$	a _m
销量	b_1		b_n	b_{n+1}	

例 某市有三个造纸厂 A_1 , A_2 , A_3 , 其纸的产量分别为8, 5, 9个单位,有4个集中用户 B_1 , B_2 , B_3 , B_4 , 其需用量分别为4, 3, 5, 6个单位。由各造纸厂到各用户的单位运价如下表所示,请确定总运费最少的调运方案。

销地 产地	B ₁	\mathbf{B}_{2}	\mathbf{B}_3	$\mathrm{B_4}$	产量
A ₁	3	12	3	4	8
A ₂	11	2	5	9	5
A ₃	6	7	1	5	9
销量	4	3	5	6	经品种核

因为产大于销, 故增加假想产地 B₅, 从而产销平衡

销地 产地	$\mathbf{B_1}$	B ₂	\mathbf{B}_3	$\mathbf{B_4}$	B ₅ (存贮)	产量
$\mathbf{A_1}$	3	12	3	4	0	8
$\mathbf{A_2}$	11	2	5	9	0	5
A_3	6	7	1	5	0	9
销量	4	3	5	6	22-18=4	

利用Vogel法求解,结果如下

销地 产地	I	31	1	3_2	В	3	В	34	B ₅ (₹	字贮)	产量
Δ.		3		12		3		4		0	8
A_1	4						2		2		o
Α		11		2		5		9		0	_
$\mathbf{A_2}$			3						2		5
		6		7		1		5		0	0
$\mathbf{A_3}$					5		4				9
销量	1	4		3	5	;	(5	22-1	.8=4	

例2(课本105页) 求运费最节省的化肥调运方案

销地 产地	B ₁	\mathbf{B}_2	\mathbf{B}_3	$\mathbf{B_4}$	产量
$\mathbf{A_1}$	16	13	22	17	50
\mathbf{A}_2	14	13	19	15	60
$\mathbf{A_3}$	19	20	23	_	50
最低需求	30	70	0	10	
最高需求	50	70	30	不限	

前三个销地的需求量区间是[100, 150], 按最低需求,在现有产量下,B₄最多可分配到60, 于是所有地区总的最高需求为210,

大于总产量160, 销量大于产量, 需要假想产地A₄, 其产量为50.

销地 产地	B ₁	B ₂	B ₃	\mathbf{B}_4	产量
A ₁	16	13	22	17	50
A ₂	14	13	19	15	60
A ₃	19	20	23	_	50
最低需求	30	70	0	10	
最高需求	50	70	30	不限	斜核大学

销地 ^{产地}	B ₁	\mathbf{B}_{1}^{\prime}	\mathbf{B}_2	\mathbf{B}_3	\mathbf{B}_4	B' ₄	产量
A ₁	16	16	13	22	17	17	50
A ₂	14	14	13	19	15	15	60
A ₃	19	19	20	23	M	М	50
$\mathbf{A_4}$	M	0	M	0	M	0	50
需求	30	20	70	30	10	50	212.000

应用举例1——生产与储存问题

例6、某厂按合同规定须于当年每个季度末分别提供10、15、25、20台同一规格的柴油机。已知该厂各季度的生产能力及生产每台柴油机的成本如右表。如果生产出来的柴油机当季不交货,每台每积压一个季度需储存、维护等费用0.15万元。试求在完成合同的情况下,使该厂全年生产总费用为最小的决策方案。

	生产能力(台)	单位成本 (万元)
一季度	25	10.8
二季度	35	11.1
三季度	30	11.0
四季度	10	11.3

解: 设 x_{ii} 为第i季度生产的第j季度交货的柴油机数目,那么应满足:

交货: x_{11} = 10 生产: $x_{11} + x_{12} + x_{13} + x_{14} \le 25$ $x_{12} + x_{22}$ = 15 $x_{22} + x_{23} + x_{24} \le 35$ $x_{13} + x_{23} + x_{33}$ = 25 $x_{33} + x_{34} \le 30$ $x_{14} + x_{24} + x_{34} + x_{44} = 20$ $x_{44} \le 10$

把第 i 季度生产的柴油机数目看作第 i 个生产厂的产量; 把第 j 季度交货的柴油机数目看作第 j 个销售点的销量; 成本加储存、维护等费用看作运费。可构造下列产销平衡问题:

目标函数: Minf=10.8 x_{11} +10.95 x_{12} +11.1 x_{13} +11.25 x_{14} +11.1 x_{22} +11.25 x_{23} +11.4 x_{24} +11.0 x_{33} +11.15 x_{34} +11.3 x_{44}

	一季度	二季度	三季度	四季度	D	产量
第一季度	10.80	10.95	11.10	11.25	0	25
第二季度	M	11.10	11.25	11.40	0	35
第三季度	M	M	11.00	11.15	0	30
第四季度	M	M	M	11.30	0	10
销量	10	15	25	20	30	100
<u> </u>	1	-	1			次多种核为

应用举例2——有转运的的运输问题

假设m个产地 A_1 、 A_2 、···、 A_m 和n个销地 B_1 、 B_2 、···、 B_n 都可以作为中转站使用,从而产地、销地都有m+n个。

a;:第i个产地的产量(净供应量)

 b_i :第j个销地的销量(净需要量)

x;;:从第i个发送地运往第j个接收地的运输量

 c_{ii} : 从第i个发送地运往第j个接收地的单位运价

t_i:由第 i 个地点转运物品的数量

 c_i :第i个地点转运单位物品的费用

$$\min z = \sum_{\substack{i=1 \ i \neq j}}^{m+n} \sum_{\substack{j=1 \ i \neq j}}^{m+n} c_{ij} x_{ij} + \sum_{i=1}^{m+n} c_{i} t_{i}$$

$$\sum_{\substack{j=1 \ j \neq i}}^{m+n} x_{ij} = a_{i} + t_{i} , \quad i = 1, \cdots, m \quad \text{从m个产地运往各地}$$

$$\sum_{\substack{j=1 \ j \neq i}}^{m+n} x_{ij} = t_{i}, \quad i = m+1, \cdots, m+n \quad \text{从n个销地运往各地}$$
 $s.t$

$$\sum_{\substack{i=1 \ i \neq j}}^{m+n} x_{ij} = b_{j} + t_{j}, \quad j = 1, \cdots, n \quad \text{从各地运往原n个销地}$$

$$\sum_{\substack{i=1 \ i \neq j}}^{m+n} x_{ij} = t_{j}, j = n+1, \cdots, n+m \quad \text{从各地运往原m个产地}$$

$$x_{ij} \geq 0, i, j = 1, \cdots, m+n, i \neq j$$