

NLP Programming Tutorial 6 - Advanced Discriminative Learning

Graham Neubig
Nara Institute of Science and Technology (NAIST)

Review: Classifiers and the Perceptron

Prediction Problems

Given x, predict y

Example we will use:

- Given an introductory sentence from Wikipedia
- Predict whether the article is about a person

This is binary classification

Mathematical Formulation

$$y = sign(\mathbf{w} \cdot \mathbf{\varphi}(\mathbf{x}))$$

= $sign(\sum_{i=1}^{I} \mathbf{w}_i \cdot \mathbf{\varphi}_i(\mathbf{x}))$

- x: the input
- $\phi(x)$: vector of feature functions $\{\phi_1(x), \phi_2(x), \dots, \phi_1(x)\}$
- w: the weight vector {w₁, w₂, ..., w₁}
- y: the prediction, +1 if "yes", -1 if "no"
 - (sign(v) is +1 if v >= 0, -1 otherwise)

Online Learning

```
create map w
for / iterations
  for each labeled pair x, y in the data
    phi = create_features(x)
    y' = predict_one(w, phi)
    if y' != y
        update_weights(w, phi, y)
```

- In other words
 - Try to classify each training example
 - Every time we make a mistake, update the weights
- Many different online learning algorithms
 - The most simple is the perceptron

Perceptron Weight Update

$$w \leftarrow w + y \varphi(x)$$

- In other words:
 - If y=1, increase the weights for features in $\varphi(x)$
 - Features for positive examples get a higher weight
 - If y=-1, decrease the weights for features in $\varphi(x)$
 - Features for negative examples get a lower weight
 - → Every time we update, our predictions get better!

```
update_weights(w, phi, y)
for name, value in phi:
    w[name] += value * y
```


Stochastic Gradient Descent and Logistic Regression

Perceptron and Probabilities

- Sometimes we want the probability P(y|x)
 - Estimating confidence in predictions
 - Combining with other systems
- However, perceptron only gives us a prediction

$$y = sign(w \cdot \varphi(x))$$

The Logistic Function

 The logistic function is a "softened" version of the function used in the perceptron

$$P(y=1|x) = \frac{e^{w \cdot \varphi(x)}}{1 + e^{w \cdot \varphi(x)}}$$

- Can account for uncertainty
- Differentiable

Logistic Regression

- Train based on conditional likelihood
- Find the parameters w that maximize the conditional likelihood of all answers y given the example x

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmax}} \prod_{i} P(\mathbf{y}_{i} | \mathbf{x}_{i}; \mathbf{w})$$

How do we solve this?

Stochastic Gradient Descent

 Online training algorithm for probabilistic models (including logistic regression)

```
create map w
for I iterations
for each labeled pair x, y in the data
w += \alpha * dP(y|x)/dw
```

- In other words
 - For every training example, calculate the gradient (the direction that will increase the probability of y)
 - Move in that direction, multiplied by learning rate α

Gradient of the Logistic Function

Take the derivative of the probability

$$\frac{d}{dw}P(y=1|x) = \frac{d}{dw}\frac{e^{w\cdot\varphi(x)}}{1+e^{w\cdot\varphi(x)}}$$

$$= \varphi(x)\frac{e^{w\cdot\varphi(x)}}{(1+e^{w\cdot\varphi(x)})^2}$$

$$\frac{d}{dw}P(y=-1|x) = \frac{d}{dw}\left(1 - \frac{e^{w \cdot \varphi(x)}}{1 + e^{w \cdot \varphi(x)}}\right)$$
$$= -\varphi(x)\frac{e^{w \cdot \varphi(x)}}{\left(1 + e^{w \cdot \varphi(x)}\right)^2}$$

Example: Initial Update

Set α=1, initialize w=0

unigram "Kyoto"

$$x = A$$
 site, located in Maizuru, Kyoto $y = -1$

$$\mathbf{w} \cdot \mathbf{\varphi}(\mathbf{x}) = 0 \qquad \frac{d}{d \, w} P(\mathbf{y} = -1 | \mathbf{x}) = -\frac{e^0}{(1 + e^0)^2} \mathbf{\varphi}(\mathbf{x})$$
$$= -0.25 \mathbf{\varphi}(\mathbf{x})$$

$$w \leftarrow w + -0.25 \varphi(x)$$

$$W_{unigram "Maizuru"} = -0.25$$
 $W_{unigram "A"} = -0.25$ $W_{unigram "site"} = -0.25$ $W_{unigram "in"} = -0.25$ $W_{unigram "located"} = -0.25$

Example: Second Update

$$\mathbf{x} = \text{Shoken}$$
, monk born in Kyoto
$$\mathbf{w} \cdot \mathbf{\phi}(x) = -1$$

$$\frac{d}{dw} P(y=1|x) = \frac{e^1}{(1+e^1)^2} \mathbf{\phi}(x)$$

$$= 0.196 \mathbf{\phi}(x)$$

$$w \leftarrow w + 0.196 \varphi(x)$$

```
= -0.25
                                                     = -0.25
                                                                                    = 0.196
                                                                 W
unigram "Shoken"
  unigram "Maizuru"
                                    unigram "A"
                  = -0.304
W
                                                     = -0.25
                                                                                    = 0.196
                                  W
                                                                  W
  unigram ","
                                    unigram "site"
                                                                    unigram "monk"
                  = -0.054
W
                                                     = -0.25
                                                                                    = 0.196
  unigram "in"
                                                                    unigram "born"
                                    unigram "located"
                  = -0.054
W
  unigram "Kyoto"
```


SGD Learning Rate?

- How to set the learning rate α?
- Usually decay over time:

$$\alpha = \frac{1}{C+t}$$
parameter number of samples

 Or, use held-out data, and reduce the learning rate when the likelihood rises

Classification Margins

Choosing between Equally Accurate Classifiers

Which classifier is better? Dotted or Dashed?

Choosing between Equally Accurate Classifiers

Which classifier is better? Dotted or Dashed?

- Answer: Probably the dashed line.
- Why?: It has a larger margin.

What is a Margin?

 The distance between the classification plane and the nearest example:

Support Vector Machines

- Most famous margin-based classifier
 - Hard Margin: Explicitly maximize the margin
 - Soft Margin: Allow for some mistakes
- Usually use batch learning
 - Batch learning: slightly higher accuracy, more stable
 - Online learning: simpler, less memory, faster convergence
- Learn more about SVMs: http://disi.unitn.it/moschitti/material/Interspeech2010-Tutorial.Moschitti.pdf
- Batch learning libraries:
 LIBSVM, LIBLINEAR, SVMLite

Online Learning with a Margin

Penalize not only mistakes, but also correct answers under a margin

```
create map w
for / iterations
  for each labeled pair x, y in the data
    phi = create_features(x)
    val = w * phi * y
    if val <= margin
        update_weights(w, phi, y)</pre>
```

(A correct classifier will always make w * phi * y > 0) If margin = 0, this is the perceptron algorithm

Regularization

Cannot Distinguish Between Large and Small Classifiers

- For these examples:
 - -1 he saw a bird in the park
 - +1 he saw a robbery in the park
- Which classifier is better?

Classifier 1	Classifier 2
he +3	bird -1
saw -5	robbery +1
a +0.5	
bird -1	
robbery +1	
in +5	
the -3	
park -2	

Cannot Distinguish Between Large and Small Classifiers

- For these examples:
 - -1 he saw a bird in the park
 - +1 he saw a robbery in the park
- Which classifier is better?

Classifier 1	Classifier 2
he +3	bird -1
saw -5	robbery +1
a +0.5	
bird -1	
robbery +1	
in +5	
the -3	
park -2	

Probably classifier 2!
It doesn't use irrelevant information.

Regularization

- A penalty on adding extra weights
- L2 regularization:
 - Big penalty on large weights, small penalty on small weights
 - High accuracy
- L1 regularization:
 - Uniform increase whether large or small
 - Will cause many weights to become zero → small model

L1 Regularization in Online Learning

After update, reduce the weight by a constant c

```
update_weights(w, phi, y, c)

★ for name, value in w:
    if abs(value) < c:
        w[name] = 0

★ else:
    w[name] -= sign(value) * c
    for name, value in phi:
    w[name] += value * y</pre>
If abs. value < c, set weight to zero

If value > 0, decrease by c

If value < 0, increase by c
```


Example

Every turn, we <u>Regularize</u>, <u>Update</u>, <u>Regularize</u>, <u>Update</u>

```
Regularization: c=0.1
  Updates: \{1, 0\} on 1^{st} and 5^{th} turns
                       {0, -1} on 3<sup>rd</sup> turn
                                        R_2
Change: \{0, 0\} \{\underline{1}, 0\} \{\underline{-0.1}, 0\} \{0, 0\} \{\underline{-0.1}, 0\} \{0, \underline{-1}\}
            \{0, 0\}
                    \{1, 0\} \{0.9, 0\} \{0.9, 0\} \{0.8, 0\} \{0.8, -1\}
W:
                                        R_{_{5}}
Change:\{-0.1, 0.1\} \{0, 0\} \{-0.1, 0.1\} \{1, 0\} \{-0.1, 0.1\} \{0, 0\}
          \{0.7, -0.9\}\{0.7, -0.9\}\{0.6, -0.8\}\{1.6, -0.8\}\{1.5, -0.7\}\{1.5, -0.7\}
W:
```


Efficiency Problems

- Typical number of features:
 - Each sentence (phi): 10~1000
 - Overall (w): 1,000,000~100,000,000

```
update_weights(w, phi, y, c)
for name, value in w:
    if abs(value) <= c:
        w[name] = 0
    else:
        w[name] -= sign(value) * c
for name, value in phi:
    w[name] += value * y</pre>
```

This loop is VERY SLOW!

Efficiency Trick

Regularize only when the value is used!

```
getw(w, name, c, iter, last)
  if iter != last[name]: # regularize several times
     c size = c * (iter - last[name])
     if abs(w[name]) \le c size:
        w[name] = 0
     else:
        w[name] -= sign(w[name]) * c size
     last[name] = iter
  return w[name]
```

This is called "lazy evaluation", used in many applications

Choosing the Regularization Constant

- The regularization constant c has a large effect
- Large value
 - small model
 - lower score on training set
 - less overfitting
- Small value
 - large model
 - higher score on training set
 - more overfitting
- Choose best regularization value on development set
 - e.g. 0.0001, 0.001, 0.01, 0.1, 1.0

Exercise

Exercise

- Write program:
 - train-svm/train-Ir: Create an svm or LR model with L2 regularization constant 0.001
- Train a model on data-en/titles-en-train.labeled
- Predict the labels of data-en/titles-en-test.word
- Grade your answers and compare them with the perceptron
 - script/grade-prediction.py data-en/titles-en-test.labeled your_answer
- Extra challenge:
 - Try many different regularization constants
 - Implement the efficiency trick

Thank You!