	连续傅里叶变换	ì	生续拉普拉斯变换(单边)		离散 Z 变换(单边)		离散傅里叶变换
	$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$		$F(s) = \int_{0_{-}}^{\infty} f(t)e^{-st}dt$	1	$F(z) = \sum_{k=0}^{\infty} f(k)z^{-k}$		$F(e^{j\theta}) = \sum_{k=-\infty}^{\infty} f(k)e^{-j\theta k}$
	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) e^{j\omega t} d\omega$		$f(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} F(s) e^{st} ds$	j	$f(k) = \frac{1}{2\pi j} \oint_{L} F(z) z^{k-1} dz, k \ge 0$		$f(k) = \frac{1}{2\pi} \int_{2\pi} F(e^{j\theta}) e^{j\theta k} d\theta$
线性	$af_1(t) + bf_2(t) \leftrightarrow aF_1(j\omega) + bF_2(j\omega)$	线性	$af_1(t) + bf_2(t) \leftrightarrow aF_1(s) + bF_2(s)$	线性	$af_1(k) + bf_2(k) \leftrightarrow aF_1(z) + bF_2(z)$	线性	$af_1(k) + bf_2(k) \leftrightarrow aF_1(e^{j\theta}) + bF_2(e^{j\theta})$
时移	$f(t \pm t_0) \leftrightarrow e^{\pm j\omega t_0} F(j\omega)$	时移	$f(t \pm t_0) \leftrightarrow e^{\pm st_0} F(s)$	时移	$f(k\pm m) \leftrightarrow z^{\pm m} F(z)$ (双边)	时移	$f(k \pm m) \leftrightarrow e^{\pm j\theta m} F(e^{j\theta})$
频移	$e^{\pm j\omega_0 t} f(t) \leftrightarrow F(j(\omega \mp \omega_0))$	频移	$e^{\pm s_0 t} f(t) \leftrightarrow F(s \mp s_0)$	频移	$e^{\pm j\omega_0 k} f(k) \leftrightarrow F(e^{\mp j\omega_0} z)$ (尺度变换)	频移	$e^{\pm jk\theta_0}f(k) \leftrightarrow F(e^{j(\theta\mp\theta_0)})$
尺度变换	$f(at+b) \leftrightarrow \frac{1}{ a } e^{i\frac{b}{a}\omega} F(i\frac{\omega}{a})$	尺度 变换	$f(at+b) \leftrightarrow \frac{1}{ a } e^{\frac{b}{a}s} F(\frac{s}{a})$	尺度 变换	$a^k f(k) \leftrightarrow F(\frac{z}{a})$	尺度 变换	$f_{(n)}(k) = \begin{cases} f(k/n) \\ 0 \end{cases} \leftrightarrow F(e^{jn\theta})$
反转	$f(-t) \leftrightarrow F(-j\omega)$	反转	$f(-t) \leftrightarrow F(-s)$	反转	$f(-k) \leftrightarrow F(z^{-1})$ (仅限双边)	反转	$f(-k) \leftrightarrow F(e^{-j\theta})$
时域 卷积	$f_1(t) * f_2(t) \leftrightarrow F_1(j\omega) F_2(j\omega)$	时域 卷积	$f_1(t) * f_2(t) \leftrightarrow F_1(s) F_2(s)$	时域 卷积	$f_1(t)^*f_2(t) \leftrightarrow F_1(z)F_2(z)$	时域 卷积	$f_1(k) * f_2(k) \leftrightarrow F_1(e^{j\theta}) F_2(e^{j\theta})$
频域 卷积	$f_1(t)f_2(t) \leftrightarrow \frac{1}{2\pi}F_1(j\omega) * F_2(j\omega)$	时域	$f'(t) \leftrightarrow sF(s) - f(0_{-})$	时域	$f(k-1) \leftrightarrow z^{-1}F(z) + f(-1)$ $f(k-2) \leftrightarrow z^{-2}F(z) + z^{-1}f(-1) + f(-2)$	频域 卷积	$f_1(k)f_2(k) \leftrightarrow \frac{1}{2\pi} \int_{2\pi} F_1(e^{j\psi}) F_2(e^{j(\psi-\theta)}) d\psi$
时域微分	$f'(t)/f^{(n)}(t) \leftrightarrow j\omega F(j\omega)/(j\omega)^n F(j\omega)$	微分	$f''(t) \leftrightarrow s^2 F(s) - sy(0) - y'(0)$	差分	$f(k+1) \leftrightarrow zF(z) - zf(0)$ $f(k+2) \leftrightarrow z^2F(z) - z^2f(0) - zf(1)$	时域 差分	$f(k) - f(k-1) \leftrightarrow (1-e^{j\theta})F(e^{j\theta})$
频域 微分	$tf(t)/(-jt)^n f(t) \leftrightarrow j \frac{dF(j\omega)}{d\omega} / \frac{d^n F(j\omega)}{d\omega^n}$	S 域 微分	$tf(t)/(-t)^n f(t) \leftrightarrow -F'(s)/\frac{d^n F(s)}{ds^n}$	Z 域 微分	$kf(k) \leftrightarrow -z \frac{dF(z)}{dz}$	频域 微分	$kf(k) \leftrightarrow j \frac{dF(e^{j\theta})}{d\theta}$
时域 积分	$\int_{-\infty}^{t} f(x)dx, f(-\infty) = 0 \leftrightarrow \frac{F(j\omega)}{j\omega} + \pi F(0)\delta(\omega)$	时域 积分	$\int_{-\infty}^{t} f(x)dx \leftrightarrow \frac{F(s)}{s} + \frac{f^{(-1)}(0_{-})}{s}$	部分 求和	$f(k) * \varepsilon(k) = \sum_{i=-\infty}^{k} f(i) \leftrightarrow \frac{z}{z-1}$	时域 累加	$\sum_{k=-\infty}^{\infty} f(k) \leftrightarrow \frac{F(e^{j\theta})}{1 - e^{j\theta}} + \pi F(e^{j0}) \sum_{k=-\infty}^{\infty} \delta(\theta - 2\pi k)$
频域 积分	$\pi f(0)t + \frac{f(t)}{(-jt)} \leftrightarrow \int_{-\infty}^{\infty} F(j\tau)d\tau, F(-\infty) = 0$	S 域 积分	$\frac{f(t)}{t} \leftrightarrow \int_{s}^{\infty} F(\eta) d\eta$	Z 域 积分	$\frac{f(k)}{k+m} \leftrightarrow z^m \int_z^\infty \frac{F(\eta)}{\eta^{m+1}} d\eta$		$f(0) = \lim_{z \to \infty} F(z)$, $f(1) = \lim_{z \to \infty} [zF(z) - zf(0)]$
对称	$F(jt) \leftrightarrow 2\pi f(-\omega)$	初值	$f(0_+) = \lim_{s \to \infty} sF(s), F(s)$ 为真分式	初值	$f(M) = \lim_{z \to \infty} z^M F(z)$ (右边	- . 信号) ,	$f(M+1) = \lim_{z \to \infty} [z^{M+1}F(z) - zf(M)]$
帕斯瓦尔	$E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) ^2 d\omega$	终值	$f(\infty) = \lim_{s \to 0} sF(s), s = 0$ 在收敛域内	终值	$f(\infty) = \lim_{z \to 1} (z - 1)F(z)$ (右边信号)	帕斯瓦尔	$\sum_{k=-\infty}^{\infty} f(k) ^2 = \frac{1}{2\pi} \int_{2\pi} F(e^{j\theta}) ^2 d\theta$

常用连续傅里叶变换、拉普拉斯变换、Z变换对一览表

连续傅	里叶变换对	拉普拉斯变换对(〔单边)		Z变换对	(单边)	
$F(j\omega) =$	$\int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$	$F(s) = \int_{0_{-}}^{\infty} f(t)e^{-t}$	$e^{-st}dt$		$F(z) = \sum_{k=1}^{\infty}$	$\int_{0}^{\infty} f(k)z^{-k}$	
函数 f(t)	傅里叶变换 <i>F(jω</i>)	函数 f(t)	象函数 F(s)	函数 f(k),k≥0	象函数	函数 f(k),k≥0	象函数
$\delta(t)/1$	$1/2\pi\delta(\omega)$	$\delta(t)$	1	$\delta(k)$	1	$\delta(k-m), m \ge 0$	z^{-m}
$\delta'(t) / \delta^{(n)}(t)$	$j\omega/(j\omega)^n$	$\delta'(t)$	s	1	$\frac{z}{z-1}$	$\varepsilon(k-m), m \ge 0$	$\frac{z}{z-1} \cdot z^{-m}$
arepsilon(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$	$\mathcal{E}(t)$	$\frac{1}{s}$	$\varepsilon(k)$	$\frac{z}{z-1}$	$k^2 \varepsilon(k)$	$\frac{z^2+z}{(z-1)^3}$
tarepsilon(t)	$j\pi\delta'(\omega) - \frac{1}{\omega^2}$	$t\varepsilon(t)/t^n\varepsilon(t)$	$\frac{1}{s^2} \bigg/ \frac{n!}{s^{n+1}}$	karepsilon(k)	$\frac{z}{(z-1)^2}$	$(k+1)a^k\varepsilon(k)$	$\frac{z^2}{(z-a)^2}$
$e^{-\alpha t} \varepsilon(t) / t e^{-\alpha t} \varepsilon(t), \alpha > 0$	$\frac{1}{\alpha + j\omega} \bigg/ \frac{1}{(\alpha + j\omega)^2}$	$e^{-\alpha t} \varepsilon(t) / t e^{-\alpha t} \varepsilon(t)$	$\frac{1}{s+\alpha}\bigg/\frac{1}{(s+\alpha)^2}$	$a^k \varepsilon(k)$	$\frac{z}{z-a}$	$ka^{k-1}\varepsilon(k)$	$\frac{z}{(z-a)^2}$
$\cos(\omega_0 t)$ $\sin(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$ $j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	$\cos(\beta t)\varepsilon(t)$	$\frac{s}{s^2 + \beta^2}$	$e^{\alpha k} \mathcal{E}(k)$	$\frac{z}{z-e^{\alpha}}$	$ka^k \varepsilon(k)$	$\frac{az}{\left(z-a\right)^2}$
$\frac{1}{t}$	$-j\pi\operatorname{sgn}(\omega)$	$\sin(\beta t)\varepsilon(t)$	$\frac{\beta}{s^2 + \beta^2}$	$e^{jeta\!k}arepsilon(k)$	$\frac{z}{z - e^{j\beta}}$	$k^2a^k\varepsilon(k)$	$\frac{az^2 + a^2z}{(z-a)^3}$
t	$-\frac{2}{\omega^2}$	$\cosh(\beta t)\varepsilon(t)$	$\frac{s}{s^2 - \beta^2}$	$\frac{a^k - (-a)^k}{2a} \varepsilon(k)$	$\frac{z}{z^2 - a^2}$	$\frac{a^k + (-a)^k}{2a} \varepsilon(k)$	$\frac{z^2}{z^2 - a^2}$
$e^{\pm j\omega_0 t}$	$2\pi\delta(\omega\mp\omega_0)$	$\sinh(\beta t)\varepsilon(t)$	$\frac{\beta}{s^2 - \beta^2}$	$\frac{k(k-1)}{2}\varepsilon(k)$	$\frac{z}{(z-1)^3}$	$\frac{(k+1)k}{2}\varepsilon(k)$	$\frac{z^2}{(z-1)^3}$
$e^{-\alpha t}\cos(\beta t)\varepsilon(t)$	$\frac{j\omega + \alpha}{\left(j\omega + \alpha\right)^2 + \beta^2}$	$e^{-\alpha t}\cos(\beta t)\varepsilon(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\beta^2}$	$\frac{a^k - b^k}{a - b} \varepsilon(k)$	$\frac{z}{(z-a)(z-b)}$	$\frac{a^{k+1} - b^{k+1}}{a - b} \varepsilon(k)$	$\frac{z^2}{(z-a)(z-b)}$
$e^{-\alpha t}\sin(\beta t)\varepsilon(t)$	$\frac{\beta}{(j\omega+\alpha)^2+\beta^2}$	$e^{-\alpha t}\sin(\beta t)\varepsilon(t)$	$\frac{\beta}{\left(s+\alpha\right)^2+\beta^2}$	$\cos(\beta k)\varepsilon(k)$	$\frac{z(z-\cos\beta)}{z^2-2z\cos\beta+1}$	$\sin(\beta k)\varepsilon(k)$	$\frac{z\sin\beta}{z^2 - 2z\cos\beta + 1}$

$e^{-\alpha t }\varepsilon(t), \alpha>0$	$\frac{2\alpha}{\alpha^2 + \omega^2}$	$(b_0t+b_1)\varepsilon(t)$	$\frac{b_0 + b_1 s}{s^2}$	$\cos(\beta k + \theta)\varepsilon(k)$	$\frac{z^2 \cos \theta - z \cos(\beta - \theta)}{z^2 - 2z \cos \beta + 1}$	$\sin(\beta k + \theta)\varepsilon(k)$	$\frac{z^2 \sin \theta + z \sin(\beta - \theta)}{z^2 - 2z \cos \beta + 1}$
t/t^n	$j2\pi\delta'(\omega)/2\pi(j)^n\delta^{(n)}(\omega)$	$\frac{b_0}{\alpha} - (\frac{b_0}{\alpha} - b_1)e^{-\alpha t}\varepsilon(t)$	$\frac{b_1 s + b_0}{s(s+\alpha)}$	$a^k \cos(\beta k) \varepsilon(k)$	$\frac{z(z-a\cos\beta)}{z^2-2az\cos\beta+a^2}$	$a^k \sin(\beta k) \varepsilon(k)$	$\frac{az\sin\beta}{z^2 - 2az\cos\beta + a^2}$
$\operatorname{sgn}(t)$	$\frac{2}{j\omega}$	$\frac{1}{\beta^3} [\beta t - \sin(\beta t)] \varepsilon(t)$	$\frac{1}{s^2(s^2+\beta^2)}$	$a^k \cosh(\beta k) \varepsilon(k)$	$\frac{z(z - a\cosh\beta)}{z^2 - 2az\cosh\beta + a^2}$	$a^k \sinh(\beta k)\varepsilon(k)$	$\frac{az\sinh\beta}{z^2 - 2az\cosh\beta + a^2}$
$\begin{cases} -e^{\alpha t}, t < 0 \\ e^{-\alpha t}, t > 0 \end{cases}, (\alpha > 0)$	$-j\frac{2\omega}{\alpha^2+\omega^2}$	$\frac{1}{2\beta^3}[1-\beta t)]\sin(\beta t)\varepsilon(t)$	$\frac{1}{(s^2+\beta^2)^2}$	$\frac{a^k}{k}\varepsilon(k), k>0$	$\ln\left(\frac{z}{z-a}\right)$	$\frac{a^k}{k!}\varepsilon(k)$	$e^{rac{a}{z}}$
$f(t) = \begin{cases} \cos(\frac{\pi}{\tau}t), t < \frac{\tau}{2} \\ 0, t > \frac{\tau}{2} \end{cases}$	$\frac{\pi\tau}{2} \cdot \frac{\cos(\frac{\omega\tau}{2})}{(\frac{\pi}{2})^2 - (\frac{\omega\tau}{2})^2}$	$\frac{1}{2\beta}t\sin(\beta t)\varepsilon(t)$	$\frac{s}{(s^2+\beta^2)^2}$	$\frac{(\ln a)^k}{k!}\varepsilon(k)$	$\frac{1}{a^z}$	$\frac{1}{(2k)!}$	$ \cosh\sqrt{\frac{1}{z}} $
$\sum_{n=-\infty}^{\infty} F_n e^{jn\Omega t}$	$2\pi \sum_{n=-\infty}^{\infty} F_n \delta(\omega - n\Omega), \Omega = \frac{2\pi}{T}$	$\frac{1}{2\beta}[\sin(\beta t) + \beta t \cos(\beta t)]\varepsilon(t)$	$\frac{s^2}{(s^2+\beta^2)^2}$	$\frac{1}{k+1}\varepsilon(k)$	$z \ln \left(\frac{z}{z-1} \right)$	$\frac{1}{2k+1}\varepsilon(k)$	$\frac{1}{2}\sqrt{z}\ln\frac{\sqrt{z}+1}{\sqrt{z}-1}$
$\delta_T(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\delta_{\Omega}(\omega) = \Omega \sum_{n=-\infty}^{\infty} \delta(\omega - n\Omega)$ $\Omega = \frac{2\pi}{T}$	$t\cos(\beta t)\varepsilon(t)$	$\frac{s^2 - \beta^2}{(s^2 + \beta^2)^2}$	$\left[\frac{b_0 - b_1 \alpha}{\beta - \alpha} e^{-\alpha t} + (-1)^{\alpha t}\right] = \frac{b_0 - b_1 \alpha}{\beta - \alpha} e^{-\alpha t} + (-1)^{\alpha t}$	$\frac{b_0 - b_1 \beta}{\beta - \alpha} e^{-\beta t}] \varepsilon(t)$	$\frac{b}{(s+}$	$\frac{1s + b_0}{\alpha)(s + \beta)}$
$g_{\tau}(t) = \begin{cases} 1, t < \frac{\tau}{2} \\ 0, t > \frac{\tau}{2} \end{cases}$	$\tau Sa\left(\frac{\omega\tau}{2}\right) = \frac{2}{\omega}\sin\left(\frac{\omega\tau}{2}\right)$	$[(b_0 - b_1 \alpha)t + b_1]e^{-\alpha t}$	$\frac{b_1 s + b_0}{\left(s + \alpha\right)^2}$	$\left[\frac{b_0 - b_1 \alpha + b_2 \alpha^2}{(\beta - \alpha)(\gamma - \alpha)} e^{-\alpha t} + \frac{b_0 - b_1 \gamma + b_2 \gamma^2}{(\alpha - \gamma)(\beta - \gamma)} e^{-\gamma t}\right]$		$\frac{b_2 s^2}{(s+\alpha)!}$	$+b_1s+b_0 \\ (s+\beta)(s+\gamma)$
$\frac{W}{\pi}Sa(Wt) = \frac{\sin(Wt)}{\pi t}$	$F(j\omega) = \begin{cases} 1, \omega < \frac{W}{2} \\ 0, \omega > \frac{W}{2} \end{cases}$	$Ae^{-\alpha t}\sin(\beta t + \theta)\varepsilon(t)$,其中 $Ae^{j\theta} = \frac{b_0 - b_1(\alpha - j\beta)}{\beta}$	$\frac{b_1 s + b_0}{\left(s + \alpha\right)^2 + \beta^2}$	$ \begin{bmatrix} \frac{b_0 - b_1 \beta + b_2 \beta^2}{(\alpha - \beta)^2} e^{-\beta t} + \frac{b_0 - b_1 \beta + b_2 \alpha (2\beta - \alpha)}{(\beta - \alpha)^2} \end{bmatrix} $		$\frac{b_2s^2}{(s+\epsilon)}$	$\frac{+b_1s + b_0}{(\alpha)^2(s+\beta)}$
$f_{\Delta}(t) = \begin{cases} 1 - \frac{2 t }{\tau}, t < \frac{\tau}{2} \\ 0, t > \frac{\tau}{2} \end{cases}$	$\frac{\tau}{2}Sa^2\left(\frac{\omega\tau}{4}\right)$	$\begin{aligned} [b_{2}e^{-\alpha t} + (b_{1} - 2b_{2}\alpha)te^{-\alpha t} + \\ \frac{1}{2}(b_{0} - b_{1}\alpha + b_{2}\alpha^{2})t^{2}e^{-\alpha t}]\varepsilon(t) \end{aligned}$	$\frac{b_2s^2 + b_1s + b_0}{\left(s + \alpha\right)^3}$	$\left[\frac{b_0 - b_1 \gamma + b_2 \gamma^2}{\gamma^2 + \beta^2} e^{-\beta}\right]$ 其中 $Ae^{j\theta} = \frac{(b_0)^2}{2}$		$\frac{b_2s^2}{(s+\gamma)}$	$+b_1 s + b_0$ $y)(s^2 + \beta^2)$

$$f(t) = \begin{cases} \frac{1}{\tau} (t + \frac{\tau}{2}), |t| < \frac{\tau}{2} \\ 0, |t| > \frac{\tau}{2} \end{cases}$$

$$j\frac{1}{\omega} \left[e^{-j\frac{\omega\tau}{2}} - Sa\left(\frac{\omega\tau}{2}\right) \right]$$

$$\Rightarrow \frac{8}{\omega^{2}(\tau - \tau_{1})} \sin\left[\frac{\omega(\tau + \tau_{1})}{4}\right] \times \sin\left[\frac{\omega(\tau - \tau_{1})}{4}\right]$$

$$\frac{|t|}{\omega} \left[\frac{b_{0} - b_{1}\gamma + b_{2}\gamma^{2}}{(\alpha - \gamma)^{2} + \beta^{2}} e^{-\gamma t} + Ae^{-\alpha t} \sin(\beta t + \theta)]\varepsilon(t)}{(\beta - \gamma)^{2} + \beta^{2}} \right]$$

$$\Rightarrow \frac{8}{\omega^{2}(\tau - \tau_{1})} \sin\left[\frac{\omega(\tau + \tau_{1})}{4}\right] \times \sin\left[\frac{\omega(\tau - \tau_{1})}{4}\right]$$

$$\Rightarrow \frac{1}{\omega} \left[\frac{b_{0} - b_{1}\gamma + b_{2}\gamma^{2}}{(\alpha - \gamma)^{2} + \beta^{2}} e^{-\gamma t} + Ae^{-\alpha t} \sin(\beta t + \theta)]\varepsilon(t)}{\beta(\gamma - \alpha + j\beta)}$$

$$\Rightarrow \frac{8}{\omega^{2}(\tau - \tau_{1})} \sin\left[\frac{\omega(\tau + \tau_{1})}{4}\right] \times \sin\left[\frac{\omega(\tau - \tau_{1})}{4}\right]$$

双边拉普拉斯变换与双边 Z 变换对一览表

双注	拉拉普拉斯变换对	双边 2	"变换 对
F($f(s) = \int_{-\infty}^{\infty} f(t)e^{-st}dt$	$F(z) = \sum_{k}^{\infty}$	$\sum_{=-\infty}^{\infty} f(k) z^{-k}$
函数	象函数 $F(s)$ 和收敛域	函数	象函数 $F(z)$ 和收敛域
$\delta(t)$	1,整个S平面	$\delta(k)$	1,整个Z平面
$\delta^{\scriptscriptstyle(n)}(t)$	s", 有限 S 平面	$\Delta^n \mathcal{S}(k)$	$\frac{z^n}{(z-1)^n}, z > 0$
$\mathcal{E}(t)$	$\frac{1}{s}, \operatorname{Re}\{s\} > 0$	arepsilon(k)	$\frac{z}{z-1}, z > 1$
tarepsilon(t)	$\frac{1}{s^2}, \operatorname{Re}\{s\} > 0$	$(k+1)\varepsilon(k)$	$\frac{z^2}{\left(z-1\right)^2}, \mid z \mid > 1$
$\frac{t^{n-1}}{(n-1)!}\varepsilon(t)$	$\frac{1}{s^n}, \operatorname{Re}\{s\} > 0$	$\frac{(k+n-1)!}{k!(n-1)!}\varepsilon(k)$	$\frac{z^n}{(z-1)^n}, z > 1$
$-\varepsilon(-t)$	$\frac{1}{s}, \operatorname{Re}\{s\} < 0$	$-\varepsilon(-k-1)$	$\frac{z}{z-1}$, $ z < 1$
$-t\mathcal{E}(-t)$	$\frac{1}{s^2}, \operatorname{Re}\{s\} < 0$	$-(k+1)\varepsilon(-k-1)$	$\frac{z^2}{\left(z-1\right)^2}, \mid z \mid < 1$
$-\frac{t^{n-1}}{(n-1)!}\varepsilon(-t)$	$\frac{1}{s^n}, \operatorname{Re}\{s\} < 0$	$-\frac{(k+n-1)!}{k!(n-1)!}\varepsilon(-k-1)$	$\frac{z^n}{(z-1)^n}, z < 1$
$e^{-at}arepsilon(t)$	$\frac{1}{s+a}, \operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$	$a^k \varepsilon(k)$	$\frac{z}{z-a}$, $ z > a $
$te^{-at}\mathcal{E}(t)$	$\frac{1}{(s+a)^2}, \operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$	$(n+1)a^n\varepsilon(k)$	$\frac{z^2}{(z-a)^2}, z > a $
$\frac{t^{n-1}}{(n-1)!}e^{-at}\varepsilon(t)$	$\frac{1}{(s+a)^n}, \operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$	$\frac{(k+n-1)!}{k!(n-1)!}a^n\varepsilon(k)$	$\frac{z^{n}}{(z-a)^{n}}, z > a $
$-e^{-at}\varepsilon(-t)$	$\frac{1}{s+a}, \operatorname{Re}\{s\} < \operatorname{Re}\{-a\}$	$-a^k \varepsilon(-k-1)$	$\frac{z}{z-a}$, $ z < a $
$-\frac{t^{n-1}}{(n-1)!}e^{-at}\varepsilon(-t)$	$\frac{1}{(s+a)^n}, \operatorname{Re}\{s\} < \operatorname{Re}\{-a\}$	$-\frac{(k+n-1)!}{k!(n-1)!}a^n\varepsilon(-k-1)$	$\frac{z^{n}}{(z-a)^{n}}, z < a $
$\cos(\beta t)\varepsilon(t)$	$\frac{s}{s^2 + \beta^2}, \operatorname{Re}\{s\} > 0$	$\cos(\beta k)\varepsilon(k)$	$\frac{z^2 - z\cos\beta}{z^2 - 2z\cos\beta + 1}$
$\sin(\beta t)\varepsilon(t)$	$\frac{\beta}{s^2 + \beta^2}, \operatorname{Re}\{s\} > 0$	$\sin(\beta k)\varepsilon(k)$	$\frac{z\sin\beta}{z^2 - 2z\cos\beta + 1}$
$e^{-\alpha t}\cos(\beta t)\varepsilon(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\beta^2}, \operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$	$a^k \cos(\beta k) \varepsilon(k)$	$\frac{z^2 - za\cos\beta}{z^2 - 2za\cos\beta + 1}$
$e^{-\alpha t}\sin(\beta t)\varepsilon(t)$	$\frac{\beta}{(s+\alpha)^2+\beta^2}, \operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$	$a^k \sin(\beta k) \varepsilon(k)$	$\frac{za\sin\beta}{z^2 - 2za\cos\beta + 1}$
$e^{-\alpha t }, \operatorname{Re}\{a\} > 0$	$\frac{-2a}{s^2 - a^2}$, Re{a} > Re{s} > Re{-a}	$a^{ k }, a < 1$	$\frac{(a^2 - 1)z}{(z - a)(az - 1)}, a < z < \frac{1}{a} $
$e^{-\alpha t }\operatorname{sgn}(t),$ $\operatorname{Re}\{a\} > 0$	$\frac{2s}{s^2 - a^2}$, Re{a} > Re{s} > Re{-a}	$a^{ k }$ sgn, $ a < 1$	$\frac{a(z^2 - z)}{(z - a)(az - 1)}, a < z < \frac{1}{a} $

卷积积分一览表

	$f_1(t) * f_2(t) = \int_{-\infty}^{\infty} f_1(\tau) f(t-\tau) d\tau$						
$f_1(t)$	$f_2(t)$	$f_1(t) * f_2(t)$	$f_1(t)$	$f_2(t)$	$f_1(t) * f_2(t)$		
f(t)	$\delta'(t)$	f'(t)	f(t)	$\delta(t)$	f(t)		
f(t)	$\varepsilon(t)$	$\int_{-\infty}^{t} f(\lambda) d\lambda$	$\varepsilon(t)$	$\varepsilon(t)$	tarepsilon(t)		
$e^{-\alpha t}\varepsilon(t)$	$\varepsilon(t)$	$\frac{1}{\alpha}(1-e^{-\alpha t})\varepsilon(t)$	$\mathcal{E}(t)$	$t\varepsilon(t)$	$\frac{1}{2}t^2\varepsilon(t)$		
$e^{-lpha_{1}t}\mathcal{E}(t)$	$e^{-\alpha_2 t} \mathcal{E}(t)$	$\frac{1}{\alpha_2 - \alpha_1} (e^{-\alpha_1 t} - e^{-\alpha_2 t}) \varepsilon(t), \alpha_1 \neq \alpha_2$	$e^{-\alpha t}\varepsilon(t)$	$e^{-\alpha t}\varepsilon(t)$	$te^{-\alpha t}\varepsilon(t)$		
$te^{-lpha_1 t} arepsilon(t)$	$e^{-lpha_{2^t}} arepsilon(t)$	$\left[\frac{(\alpha_2 - \alpha_1)t - 1}{(\alpha_2 - \alpha_1)^2} e^{-\alpha_1 t} + \frac{1}{(\alpha_2 - \alpha_1)^2} e^{-\alpha_2 t}\right] \varepsilon(t)$ $\alpha_2 \neq \alpha_1$	tarepsilon(t)	$e^{-\alpha t}\varepsilon(t)$	$\left(\frac{\alpha t - 1}{\alpha^2} + \frac{1}{\alpha^2} e^{-\alpha t}\right) \varepsilon(t)$		
$e^{-\alpha_1 t} \cos(\beta t + \theta) \varepsilon(t)$	$e^{-\alpha_2 t} \varepsilon(t)$	$\left[\frac{\cos(\beta t + \theta - \varphi)}{\sqrt{(\alpha_2 - \alpha_1)^2 + \beta^2}} e^{-\alpha_1 t} - \frac{\cos(\theta - \varphi)}{\sqrt{(\alpha_2 - \alpha_1)^2 + \beta^2}} e^{-\alpha_2 t}\right] \varepsilon(t)$ $\varphi = \arctan\left(\frac{\beta}{\alpha_2 - \alpha_1}\right)$	$te^{-cat} \mathcal{E}(t)$	$e^{-at}\varepsilon(t)$	$\frac{1}{2}t^2e^{-\alpha t}\varepsilon(t)$		

卷积和一览表

	$f_1(t) * f_2(t) = \sum_{i=-\infty}^{\infty} f_1(i) f(k-i)$							
$f_1(t)$	$f_2(t)$	$f_1(t) * f_2(t)$	$f_1(t)$	$f_2(t)$	$f_1(t) * f_2(t)$			
f(k)	$\delta(k)$	f(k)	f(k)	$\varepsilon(k)$	$\sum_{i=-\infty}^k f(i)$			
$\varepsilon(k)$	$\varepsilon(k)$	$(k+1)\varepsilon(k)$	karepsilon(k)	$\varepsilon(k)$	$\frac{1}{2}(k+1)k\varepsilon(k)$			
$a^k \varepsilon(k)$	$\varepsilon(k)$	$\frac{1-a^{k+1}}{1-a}\varepsilon(k), a \neq 0$	$a_1^k \varepsilon(k)$	$a_2^k \varepsilon(k)$	$\frac{a_1^{k+1} - a_2^{k+1}}{a_1 - a_2} \varepsilon(k), a_1 \neq a_2$			
$a^k \varepsilon(k)$	$a^k \varepsilon(k)$	$(k+1)a^k\varepsilon(k)$	karepsilon(k)	$a^k \varepsilon(k)$	$\frac{k}{1-a}\varepsilon(k) + \frac{a(a^k-1)}{(1-a)^2}\varepsilon(k)$			
karepsilon(k)	karepsilon(k)	$\frac{1}{6}(k+1)k(k-1)\varepsilon(k)$	$a_1^k \cos(\beta k + \theta)\varepsilon(k)$	$a^k \varepsilon(k)$	$\frac{a_1^{k+1}\cos[\beta(k+1)+\theta-\varphi]-a_2^{k+1}\cos(\theta-\varphi)}{\sqrt{a_1^2+a_2^2-a_1a_2\cos\beta}}\varepsilon(k)$ $\varphi = \arctan\left[\frac{a_1\sin\beta}{a_1\cos\beta-a_2}\right]$			

关于 $\delta(t)$ 、 $\delta(k)$ 函数公式一览表

$f(t)\delta(t) = f(0)\delta(t)$	$f(t)\delta(t-t_0) = f(t_0)\delta(t-t_0)$	$\delta(-t) = \delta(t)/\delta'(-t) = -\delta'(t)$	$f(t)\delta'(t) = f(0)\delta'(t) - f'(0)\delta(t)$
$\int_{-\infty}^{\infty} f(t)\delta(t)dt = f(0)$	$\int_{-\infty}^{\infty} f(t)\delta(t - t_0)dt = f(t_0)$	$\delta[f(t)] = \sum_{i=1}^{n} \frac{1}{ f'(t_i) } \delta(t - t_i)$	$\int_{-\infty}^{\infty} f(t)\delta^{(n)}(t)dt = (-1)^n f^{(n)}(0)$
$\delta(at) = \frac{1}{\mid a \mid} \delta(t)$	$\int_{-\infty}^{\infty} \delta(t)dt = 1 / \int_{-\infty}^{t} \delta(\tau)d\tau = \varepsilon(t)$	$\int_{-\infty}^{\infty} \delta'(t)dt = 0 / \int_{-\infty}^{t} \delta'(\tau)d\tau = \delta(t)$	$f(t)\delta'(t-t_0) = f(t_0)\delta'(t-t_0) - f'(t_0)\delta(t-t_0)$

$\delta^{(n)}(at) = \frac{1}{ a } \cdot \frac{1}{a^n} \delta^{(n)}(t) $ $\delta($	$S(ak) = \delta(k)/\delta(-k) = \delta(k)$	$f(k)\delta(k) = f(0)\delta(k)$ $\sum_{k=-\infty}^{\infty} f(k)\delta(k) = f(0)$	$\int_{-\infty}^{\infty} f(t)\delta'(t-t_0)dt = -f'(t_0)$
---	--	--	---

常用的连续傅里叶变换对及其对偶关系

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega$$

$$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t} dt$$

	2π -		-0	· · · · · · · · · · · · · · · · · · ·	
	连续傅里叩			生 续傅里叶变换对	
重要	连续时间函数 $f(t)$	傅里叶变换 $F(\omega)$	连续时间函数 $f(t)$	傅里叶变换 F(ω)	重要
√	$\delta(t)$	1	1	$2\pi\delta(\omega)$	√
√	$\frac{d}{dt}\delta(t)$	jω	t	$j2\pi \frac{d}{d\omega}\delta(\omega)$	
	$\frac{d^k}{dt^k}\delta(t)$	$(j\omega)^k$	t^k	$2\pi j^{k} \frac{d^{k}}{d\omega^{k}} \delta(\omega)$	
√	u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$	$\frac{1}{2}\delta(t) - \frac{1}{j2\pi t}$	u(\omega)	
	tu(t)	$j\pi \frac{d}{d\omega} \delta(\omega) - \frac{1}{\omega^2}$			
	$\operatorname{sgn}(t) = \begin{cases} 1, t > 0 \\ -1, t < 0 \end{cases}$	$rac{2}{j\omega}$	$\frac{1}{\pi}, t \neq 0$	$F(\omega) = \begin{cases} -j, \omega > 0 \\ j, \omega < 0 \end{cases}$	
√	$\delta(t-t_{_0})$	$e^{-j\omega t_0}$	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_{_{0}})$	\checkmark
	$\cos \omega_0 t$	$\pi[\delta(\omega+\omega_{\scriptscriptstyle 0})+\delta(\omega-\omega_{\scriptscriptstyle 0})]$	$\delta(t+t_0)+\delta(t-t_0)$	$2\cos\omega t_{_{0}}$	
	$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_{\scriptscriptstyle 0})-\delta(\omega-\omega_{\scriptscriptstyle 0})]$	$\delta(t+t_{\scriptscriptstyle 0})-\delta(t-t_{\scriptscriptstyle 0})$	$j2\sin\omega t_{_{0}}$	
√	$f(t) = \begin{cases} 1, t < \tau \\ 0, t > \tau \end{cases}$	$\tau Sa(\frac{\omega \tau}{2})$	$\frac{W}{\pi}Sa(Wt)$	$F(\omega) = \begin{cases} 1, \omega < W \\ 0, \omega > W \end{cases}$	~
~	$f(t) = \begin{cases} 1 - t /\tau, t < \tau \\ 0, t > \tau \end{cases}$	$\tau Sa^2(\frac{\omega\tau}{2})$	$\frac{W}{2\pi}Sa^2(\frac{Wt}{2})$	$F(\omega) = \begin{cases} 1 - \omega /W, \omega < W \\ 0, \omega > W \end{cases}$	
√	$e^{-at}u(t), \operatorname{Re}\{a\} > 0$	$\frac{1}{a+j\omega}$	$\frac{1}{\tau - jt}$	$2\pi e^{-\tau\omega}u(\omega), \tau>0$	
	$e^{-a t }$, Re $\{a\} > 0$	$\frac{2a}{\omega^2 + a^2}$	$\frac{\tau}{t^2 + \tau^2}$	$\pi e^{-\tau \omega }, \tau > 0$	
√	$e^{-at}\cos\omega_0 tu(t), \operatorname{Re}\{a\} > 0$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$			
√	$e^{-at}\sin\omega_0 tu(t), \operatorname{Re}\{a\} > 0$	$\frac{\omega_{_0}}{\left(a+j\omega\right)^2+\omega_{_0}^2}$			
	$te^{-at}u(t), \operatorname{Re}\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	$\frac{1}{(\tau - jt)^2}, \tau > 0$	$2\pi\omega e^{-\imath\omega}u(\omega)$	
	$\frac{t^{k-1}e^{-at}}{(k-1)!}u(t), \text{Re}\{a\} > 0$	$\frac{1}{(a+j\omega)^k}$			
√	$\delta_{T}(t) = \sum_{l=-\infty}^{+\infty} \delta(t - lT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta(\omega-k\frac{2\pi}{T})$			
√	$e^{-(rac{t}{ au})^2}$	$\sqrt{\pi} \tau e^{-(\frac{\omega \tau}{2})^2}$			
√	$[u(t+\frac{\tau}{2})-u(t-\frac{\tau}{2})]\cos\omega_0 t$	$\frac{\tau}{2} \left[Sa \frac{(\omega + \omega_0)\tau}{2} + Sa \frac{(\omega - \omega_0)\tau}{2} \right]$			
	$\sum_{k=-\infty}^{+\infty} F_k e^{jk\omega_b t}$	$2\pi\sum_{k=-\infty}^{+\infty}F_k\delta(\omega-k\omega_0)$			

连续傅里叶变换性质及其对偶关系

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega$$

$$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t} dt$$

$$f(0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) d\omega$$

$$F(0) = \int_{-\infty}^{+\infty} f(t)dt$$

		连续傅里叶变	 E A B B B B B B B B B B		相对偶的连	续傅里叶变换对	
重要	名称	连续时间函数 $f(t)$	傅里叶变换 $F(\omega)$	名称	连续时间函数 $f(t)$	傅里叶变换 $F(\omega)$	重要
√	线性	$\alpha f_1(t) + \beta f_2(t)$	$\alpha F_{1}(\omega) + \beta F_{2}(\omega)$				
√	尺度比 例变换	$f(at), a \neq 0$	$\frac{1}{ a }F(\frac{\omega}{a})$				
	对偶性	f(t)	$g(\omega)$		g(t)	$2\pi f(-\omega)$	√
√	时移	$f(t-t_0)$	$F(\omega)e^{-j\omega t_0}$	频移	$f(t)e^{i\omega_0t}$	$F(\omega-\omega_0)$	√
	时域微 分性质	$\frac{d}{dt}f(t)$	$j\omega F(\omega)$	频域微 分性质	-jtf(t)	$\frac{d}{d\omega}F(\omega)$	√
	时域积 分性质	$\int_{-\infty}^{\iota}f(au)d au$	$\frac{F(\omega)}{j\omega} + \pi F(0)\delta(\omega)$	频域积 分性质	$\frac{f(t)}{-jt} + \pi f(0)\delta(t)$	$\int_{-\infty}^{\omega} F(\sigma) d\sigma$	
√	时域卷 积性质	f(t) * h(t)	$F(\omega)H(\omega)$	频域卷 积性质	f(t)p(t)	$\frac{1}{2\pi}F(\omega)*P(\omega)$	~
√	对称性	$f(-t)$ $f^*(t)$	$F(-\omega)$ $F^*(-\omega)$	奇偶虚 实性质	$f(t)$ 是实函数 $f_o(t) = Od\{f(t)\}$ $f_e(t) = Ev\{f(t)\}$	$j\operatorname{Im}\{F(\omega)\}$ $\operatorname{Re}\{F(\omega)\}$	
		f*(-t)	$F^{*}(\omega)$				
	希尔伯 特变换	f(t) = f(t)u(t)	$F(\omega) = R(\omega) + jI(\omega)$ $R(\omega) = I(\omega) * \frac{1}{\pi \omega}$				
√	时域抽 样	$f(t)\sum_{n=-\infty}^{+\infty}\delta(t-nT)$	$\frac{1}{T}\sum_{k=-\infty}^{+\infty}F(\omega-k\frac{2\pi}{T})$	频域抽 样	$\frac{1}{\omega_0} \sum_{n=-\infty}^{+\infty} f(t - n \frac{2\pi}{\omega_0})$	$F(\omega)\sum_{k=-\infty}^{+\infty}\delta(\omega-k\omega_0)$	
√	帕什瓦 尔公式	$\int_{-\infty}^{\infty} \left f(t) \right ^2 dt$	$=\frac{1}{2\pi}\int_{-\infty}^{\infty}\left F(\omega)\right ^{2}d\omega$				

取反-----取反

共轭----共轭取反

共轭取反----共轭