Homework 2

Quantum Mechanics

February 2, 2023

C Seitz

Problem 1. 2.2

Solution.

In general, the matrix representation of A in a basis $|i\rangle$, $|j\rangle$ is such that the matrix element is $A_{ij} = \langle i | A | j \rangle$. Therefore, in the input basis, the matrix representation of A is

$$A = \begin{pmatrix} \langle 0 | A | 0 \rangle & \langle 0 | A | 1 \rangle \\ \langle 1 | A | 0 \rangle & \langle 1 | A | 1 \rangle \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

In the output basis

$$A = \begin{pmatrix} \langle 0 | A | 0 \rangle & \langle 0 | A | 1 \rangle \\ \langle 1 | A | 0 \rangle & \langle 1 | A | 1 \rangle \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

We can choose a different basis, say $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), |-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle).$

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

In this basis A takes the form:

$$A' = UA = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Problem 2. 2.9

Solution.

$$\sigma_z = |1\rangle \langle 1| - |0\rangle \langle 0|$$

$$\sigma_x = |1\rangle \langle 0| + |0\rangle \langle 1|$$

$$\sigma_y = i |0\rangle \langle 1| - i |1\rangle \langle 0|$$

Problem 3. 2.12

Solution. A matrix is diagonalizable if and only if the algebraic multiplicity equals the geometric multiplicity of each eigenvalue. It is easy to show that the characteristic equation here is $(1 - \lambda)^2 = 0$ which only has one solution.

Problem 4. 2.17

Solution.

If H is normal, it must be diagonalizable and has the eigendecomposition

$$H = U\Lambda U^{\dagger}$$

where U is some unitary matrix. The conjugate transpose is

$$H^\dagger = U^\dagger \Lambda^\dagger U$$

If $H = H^{\dagger}$, and Λ is diagonal, then

$$U^{\dagger} \Lambda^{\dagger} U = U \Lambda U^{\dagger}$$

which means $\Lambda=\Lambda^\dagger$ i.e. the eigenvalues are real. Furthermore, if Λ is diagonal and purely real, then clearly $H=H^\dagger.$

Problem 5. 2.18

Solution. For a unitary matrix $U^{\dagger}U = I$, so for an eigenvector $|\alpha\rangle$,

$$\langle \alpha | U^{\dagger} U | \alpha \rangle = \langle \alpha | I | \alpha \rangle = 1$$

and $\langle \alpha | U^{\dagger}U | \alpha \rangle = \lambda^* \lambda$, so $\lambda^* \lambda = 1$.

Problem 6. 2.24

Solution.

Problem 7. Grahm-Schmidt

Solution. It suffices to show that the following matrix has nonzero determinant:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$

And it is straightforward to show that

$$\det(A) = 1$$

Therefore these vectors are indeed linearly independent, but not orthogonal. We can make them orthogonal using the Gram-Schmidt procedure. Let $|0\rangle$, $|1\rangle$, $|2\rangle$ be our non-orthogonal basis vectors.

$$|v_{k+1}\rangle \propto |w_{k+1}\rangle - \sum_{i=1}^{k} \langle v_i | w_{k+1}\rangle |v_i\rangle$$

$$|0'\rangle = |0\rangle$$

$$|1'\rangle = |1\rangle - \langle 0'|1\rangle |0'\rangle$$

$$|2'\rangle = |2\rangle - \langle 0'|2\rangle |0'\rangle - \langle 1'|2\rangle |1'\rangle$$

Problem 8. Normal matrix parameterization

Solution.

Consider first

$$AA^{\dagger} = (a_0 \mathbb{I} + \mathbf{a} \cdot \sigma)(a_0^* \mathbb{I} + \mathbf{a}^* \cdot \sigma^{\dagger})$$

= $|a_0|^2 + a_0(\mathbf{a}^* \cdot \sigma^{\dagger}) + a_0^*(\mathbf{a} \cdot \sigma) +$

Problem 9. 2.26

Solution. Writing out $|\psi\rangle^{\otimes 2}$ explicitly, we have

$$|\psi\rangle^{\otimes 2} = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$

or in terms of tensor products we have

$$|\psi\rangle^{\otimes 2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

Writing out $|\psi\rangle^{\otimes 3}$ explicitly, we have

$$|\psi\rangle^{\otimes 3} = \frac{1}{2^{3/2}} \left(|000\rangle + |001\rangle + |100\rangle + |010\rangle + |101\rangle + |111\rangle + |110\rangle + |011\rangle \right)$$

or in terms of tensor products we have

$$|\psi\rangle^{\otimes 3} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} = \frac{1}{2^{3/2}} \begin{pmatrix} 1\\1\\1\\1\\1\\1 \end{pmatrix}$$

Problem 10. 2.27

Solution.

$$X \otimes Z = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

$$I \otimes X = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$X \otimes I = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Clearly from this last result, the tensor product does not necessarily commute.

Problem 11. 2.33

Solution.

Problem 12. 2.34

Solution.

Problem 13. 2.35

Solution.

First recall that since the Pauli matrices are involutory $(\vec{a} \cdot \vec{\sigma})^k = (\vec{a} \cdot \vec{\sigma})$

$$\exp(i\theta\vec{a}\cdot\vec{\sigma}) = \sum_{k=0}^{\infty} \frac{1}{k!} (i\theta\vec{a}\cdot\vec{\sigma})^k$$

$$= \sum_{k=0}^{\infty} \frac{(i\theta)^k}{k!} (\vec{a}\cdot\vec{\sigma})^k$$

$$= \sum_{k \text{ odd}}^{\infty} \frac{(-1)^k \theta^k}{k!} (\vec{a}\cdot\vec{\sigma})^k + i \sum_{k \text{ even}}^{\infty} \frac{(-1)^k (\theta)^k}{k!} (\vec{a}\cdot\vec{\sigma})^k$$

$$= \cos\theta I + i \sin\theta (\vec{a}\cdot\vec{\sigma})$$

Problem 14. 2.39

Solution.