ECON 703 - ANSWER KEY TO HOMEWORK

(1) Way1: Let x ∈ A^o. Then by the definition of an interior point, there exists a neighborhood N(x) of x s.t. N(x) ⊂ A. If N(x) is not included in A^o, then ∃ y ∈ N(x) such that y ∉ A^o. y ∉ A^o means there exists no n.h.d N(y) of y s.t. N(y) ⊂ A. But this contradicts N(x) being an open set and N(x) ⊂ A. So N(x) ⊂ A^o. N(x) is open, and N(x) ⊂ A^o, so ∀x ∈ A^o, ∃B(x,r) ⊂ A^o. Therefore, A^o is open. Way2: For any x ∈ A^o, there exists a n.h.d N(x) s.t. N(x) ⊂ A. N(x) is open, then for any

way2. For any $x \in A$, there exists a ninit N(x) s.t. $N(x) \subset A$. N(x) is open, then for any $y \in N(x), \exists B(y,r) \subset N(x) \subset A$. So y is also an interior point of A, therefore, $y \in A^o$. So $\forall y \in N(x)$, we have $y \in A^o$. So $N(x) \subset A^o$. Therefore, A^0 is open.

- (2)(\Rightarrow) Since A is open, for all $x \in A$ there exists a neighborhood $B(x,r) \in A$, so $x \in A^{\circ}$. Thus $A \subset A^{\circ}$. Also by definition $A^{\circ} \subset A$. So $A = A^{\circ}$.
- (\Leftarrow) Way1: we know from (1) that A^o is open. $A=A^o$, so A is also open.

Way2: $A=A^o$, so $\forall x \in A$, we have $x \in A^o$. Therefore, $\exists n.h.dN(x) \subset A$. N(x) open implies $\exists B(x,r) \subset N(x)$. So for all $x \in A$, $\exists B(x,r) \subset A$. Hence, A is open.

- (3) Since B is open and $B \subset A$, so $\forall x \in B, \exists B(x,r) \subset B \subset A$. Therefore, every $x \in B$ is an interior point of A. So $x \in A^{\emptyset}$.
- 2. Let $\{E_{\alpha}\}_{\alpha\in A}$ be an open cover of K. In particular, there exists an $\alpha_0\in A$, such that $0\in E_{\alpha_0}$. Since E_{α_0} is open, we can find a B(0,r) such that $B(0,r)\subset E_{\alpha_0}$. Then $\{\frac{1}{n}:n>N\geq \frac{1}{r},n\in\mathbb{Z}_{++}\}\subset E_{\alpha_0}$. Also there exist $E_{\alpha_1},\,E_{\alpha_2},\,...,\,E_{\alpha_N}$ which cover $1,\,\frac{1}{2},\,...,\,\frac{1}{N}$ respectively. Thus for every open cover $\{E_{\alpha}\}$ of K we find a finite subcover $\{E_{\alpha_0},...,E_{\alpha_N}\}$. This proves that K is compact.
- 3. A is not open because for every neighborhood $B((\frac{3}{2},\frac{3}{2}),r)$ of $(\frac{3}{2},\frac{3}{2})$, the point $(\frac{3}{2},\frac{3}{2}+\frac{r}{2})\in B((\frac{3}{2},\frac{3}{2}),r)$ but $\notin A$.

A is bounded because $A \subset B((0,0),2)$.

A is not compact because it is not closed: (1,1) is a limit point of A but $\notin A$. To see this, observe that for all r > 0, B((1,1),r) contains the point $(1+\frac{r}{2},1+\frac{r}{2}) \neq (1,1)$, and $(1+\frac{r}{2},1+\frac{r}{2}) \in A$.

(We can also find an open cover which has no finite subcover. $\{G_n\} = \{(x,y) \in \mathbb{R}^2 : 1 + 1/n < x < 2, n \ge 2\}$ is an open cover of A, but it has no finite subcover.)

4. f is separately continuous: For each fixed t_0 , f is a function of s only.

$$f(s,t_0) == \begin{cases} \frac{2s}{t_0} &, s \in [0,t_0/2] \\ 2 - \frac{2s}{t_0} &, s \in (t_0/2,t_0] \\ 0 &, s \in (t_0,1] \end{cases}$$

Observe that $f(s,t_0)$ is linear or constant (so is continuous) in each sub-domain $[0,\frac{t_0}{2}]$, $(\frac{t_0}{2},t_0]$ and $(t_0,1]$. So the discontinuity would occur only at $s=\frac{t_0}{2}$ and $s=t_o$. We know that $f(\frac{t_0}{2}_-,t_0)=\lim_{s\to\frac{t_0}{2}_-}f(s,t_0)=\lim_{s\to\frac{t_0}{2}_+}f(s,t_0)=\lim_{s\to\frac{t_0}{2}_+}(2-\frac{2s}{t_0})=1$, so we have $f(\frac{t_0}{2}_+,t_0)=f(\frac{t_0}{2}_+,t_0)=1=f(\frac{t_0}{2},t_0)$. Therefore, $f(s,t_0)$ is continuous at $s=\frac{t_0}{2}$. Similarly, $f(s,t_0)$ is continuous at $s=t_0$. So $f(s,t_0)$ is continuous in [0,1].

For fixed value of s, we can rewrite f as follows:

$$f(0,t) = 0, \ \forall t \in [0,1],$$

and for $s_0 > 0$,

$$f(s_0, t) = \begin{cases} \frac{2s_0}{t} & , t \in [2s_0, 1] \\ 2 - \frac{2s_0}{t} & , t \in [s_0, 2s_0) \\ 0 & , t \in [0, s_0). \end{cases}$$

(Note: if $s_0 = 1$, $f(s_0, t) = 0$ for $t \in [0, 1]$. if $s_0 = 0$, $f(s_0, t) = 0$ for $t \in [0, 1]$)

Then the similar arguments apply: $f(s_0,t)$ is continuous in each sub-domain $[0,s_0)$, $[s_0,2s_0)$ and $[2s_0,1]$ since $\frac{2s_0}{t}$, and $2-\frac{2s_0}{t}$ are continuous functions of t except at t=0. Also, since $f(s_0,2s_{0-})=f(s_0,2s_{0+})=1=f(s_0,2s_0)$ and $f(s_0,s_{0-})=f(s_0,s_{0+})=0=f(s_0,s_0)$, $f(s_0,t)$ is continuous at $t=2s_0$ and $t=s_0$ respectively.

f is not joint continuous: Let $(s_n, t_n) = (\frac{1}{2n}, \frac{1}{n})$. Then $f(s_n, t_n) \to 1$, but $f(\lim(s_n, t_n)) = f(0, 0) = 0$.

5. E is closed in \mathbb{Q} : We show this by proving that E^c is open. $E^c = \{x \in \mathbb{Q} : x^2 \geq 3 \text{ or } x^2 \leq 2\}$. But since $\pm \sqrt{2}, \pm \sqrt{3} \notin \mathbb{Q}$, for all $x \in E^c$, $x^2 > 3$ or $x^2 < 2$. Then by choosing r > 0 small enough, we can make sure that B(x,r) contains no points in E. If $-\sqrt{2} < x < \sqrt{2}$, then choose $r = \min\{x + \sqrt{2}, \sqrt{2} - x\}$. (Note that $B(x,r) = \{y \in \mathbb{Q} : |y - x| < r\}$.) For $x > \sqrt{3}$, we can choose $r = x - \sqrt{3}$. For $x < -\sqrt{3}$, we can choose $r = -\sqrt{3} - x$. Hence E^c is open, and then E is closed.

E is bounded since $E \subset B(0,3)$.

E is not compact: we can construct a monotonically increasing sequence $\{x_n\}$ in E such that $x_n \to \sqrt{3}$. e.g. $\{x_n\} = 1.7, 1.73, 1.732, 1.7320, 1.73205...$ But $\sqrt{3} \notin \mathbb{Q}$, $\{x_n\}$ has no convergent subsequence. So E is not compact. We can also find a infinite subset of E which has no limit point in \mathbb{Q} . e.g. set $\{1.7, 1.73, 1.732, 1.7320, 1.73205...\}$, this is an infinite subset of E, and it has no limit point in \mathbb{Q} . So the set E is not compact.

This is an example in which the Heine-Borel Theorem does not hold because the space in consideration is not \mathbb{R}^n .

E is open since for all $x \in E$, there exists r > 0 small enough, such that $B(x, r) \subset E$. The construction is similar to that in proving E is closed.