Chapitre I - Les suites

Bacomathiques — https://bacomathiqu.es

Table des matières

1.	Définition
2.	Suites arithmétiques
3.	Suites géométriques
- Ét	ude des suites
1.	Sens de variation
2.	Limites
3.	Opérations sur les limites
4.	Majoration, minoration et bornes
5.	Encadrement

I - Qu'est-ce-que qu'une suite?

1. Définition

On appelle **suite** une fonction (et plus précisément application) de $\mathbb N$ dans $\mathbb R$: cette fonction va prendre des éléments d'un ensemble de départ $\mathbb N$ et va les amener dans un ensemble d'arrivée $\mathbb R$.

Il y a plusieurs manières de définir une suite :

- Par récurrence : On donne le premier terme de la suite ainsi que le terme au rang n+1.
- Par son terme général : On "explicite" la suite (comme pour les fonctions).

```
Exemple : On définit les suites u_n et v_n ainsi : u_n=n pour tout n\in\mathbb{N}. v_n:\left\{\begin{array}{l} v_0=0\\ v_{n+1}=v_n+1 \end{array}\right.
```

On remarque que bien que définies différemment, u_n et v_n sont égales.

2. Suites arithmétiques

Une suite u_n est dite $\operatorname{arithm\'etique}$ si elle est de la forme :

```
u_{n+1} = u_n + r \text{ avec } r \in \mathbb{R}.
```

Le réel r est la **raison** de la suite (si r > 0, u_n est strictement croissante, si r < 0, u_n est strictement décroissante et si r = 0, u_n est constante). Toute suite arithmétique a pour terme général :

On note p le rang initial de la suite (celui à partir duquel la suite est définie) : $u_n=u_p+(n-p)\times r$

Et si u_n est définie à partir du rang 0 (on a p=0) : $u_n=u_0+(n-0)\times r=u_0+n\times r$

La somme des termes d'une suite arithmétique est donnée par la formule suivante (on note S cette somme) :

$$S = \frac{(\text{Premier terme} + \text{Dernier terme}) \times (\text{Nombre de termes})}{2}$$

Astuce : Pour trouver le nombre de termes, on prends le rang jusqu'auquel on souhaite calculer cette somme. On y soustrait l'indice du premier terme et on y ajoute 1.

Exemple : Soit une suite
$$u_n$$
 définie par u_n :
$$\begin{cases} u_1=10 \\ u_{n+1}=u_n+5 \end{cases}$$
 pour $n\in\mathbb{N}$ et $n\geq 1$.

La raison r est égale à 5. Le premier terme est $u_1=10$ d'indice p=1. Le terme général de cette suite est donc $u_n=u_1+(n-1)\times r$.

Par conséquent, on a : $u_n = 10 + (n-1) \times 5$. On souhaite calculer la somme des termes de cette suite jusqu'au rang n.

Par l'astuce précédente, il y a n-1+p=n termes. On peut calculer la somme S :

$$S = \frac{(u_1 + u_n) \times (n)}{2} = \frac{(20 + (n-1) \times 5)(n)}{2} = \frac{5n^2 + 15n}{2}.$$

3. Suites géométriques

Une suite v_n est dite **géométrique** si elle est de la forme :

$$v_{n+1} = v_n \times q \text{ avec } q \in \mathbb{R}.$$

Le réel q est la **raison** de la suite (si q > 1, v_n est strictement croissante, si 0 < q < 1, v_n est strictement décroissante et si q = 1 ou 0, v_n est constante).

Toute suite géométrique a pour terme général :

On note p le rang initial de la suite (celui à partir duquel la suite est définie) : $v_n = u_n \times a^{n-p}$

Et si v_n est définie à partir du rang 0 (on a p=0) : $v_n=u_0\times q^{n-0}=u_0\times q^n$

La somme des termes d'une suite géométrique est donnée par la formule suivante (on note S cette somme):

$$S = (\text{Premier terme}) \times \frac{1 - q^{\text{Nombre de termes}}}{1 - q}$$

Astuce: Pour trouver le nombre de termes, on prends le rang jusqu'auquel on souhaite calculer cette somme.

On y soustrait l'indice du premier terme et on y ajoute 1.

Exemple : Soit une suite v_n définie par $v_n:$ $\begin{cases} v_2=1\\ v_{n+1}=v_n\times 2 \end{cases} \quad \text{pour } n\in\mathbb{N} \text{ et } n\geq 2.$ La raison q est égale à 2. Le premier terme est $v_2=1$ d'indice p=2. Le terme général

de cette suite est donc $v_n = v_2 \times q^{n-2}$.

Par conséquent, on a : $v_n = 2^{n-2}$. On souhaite calculer la somme des termes de cette suite jusqu'au rang n.

Par l'astuce précédente, il y a n-1+p=n+1 termes. On peut calculer la somme

$$S = v_2 \times \frac{1 - q^{n-1}}{1 - q} = -(1 - 2^{n-1}) = 2^{n-1} - 1.$$

II - Étude des suites

1. Sens de variation

Une suite u_n est **croissante** si on a :

$$u_{n+1} \ge u_n$$
 ou $u_{n+1} - u_n \ge 0$.

À l'inverse, une suite u_n est **décroissante** si on a :

$$u_{n+1} \le u_n \text{ ou } u_{n+1} - u_n \le 0.$$

Une suite est dite **constante** si on a pour $c \in \mathbb{R}$:

$$u_n = u_{n+1} = c.$$

Si une suite est croissante ou décroissante et ne change pas de variation, alors elle est dite **monotone**.

2. Limites

On dit qu'une suite u_n converge vers une limite finie l si pour tout $\epsilon>0$, on a $|u_n-l|<\epsilon$. Ce terme est un peu technique mais cela signifie qu'il existe une infinité de réels entre u_n et l. On dit que u_n est convergente et on note alors :

$$\lim_{n \to +\infty} u_n = l$$

Attention! On dit que u_n converge vers l mais **jamais** u_n n'atteindra l quand n tend vers $+\infty$

La suite u_n peut également diverger vers une limite infinie. On dit à ce moment là que u_n est **divergente**. On note ainsi :

$$\lim_{n \to +\infty} u_n = \pm \infty$$

Il est possible d'écrire une définition semblable à celle de la convergence.

Ainsi, si u_n diverge vers $+\infty$ quand n tend vers $+\infty$, cela signifie que pour tout réel h et à partir d'un certain rang M, on aura $u_M>h$.

Et si u_n diverge vers $-\infty$ quand n tend vers $+\infty$, cela signifie que pour tout réel h et à partir d'un certain rang m, on aura $u_m < h$.

Limite d'une suite géométrique								
Si on a pour $q \in \mathbb{R}$	-1 < q < 1	1 < q	$q \leq -1$	q = 1				
La suite q^n a pour limite	0	$+\infty$	Pas de limite	1				

À savoir que si une suite à une limite, alors cette limite est unique.

3. Opérations sur les limites

Dans tout ce qui suit, u_n et v_n sont deux suites. Ces tableaux sont à connaître et sont requis pour pouvoir travailler sur les limites.

Limite d'une somme									
Si la limite de u_n quand n tend vers $+\infty$ est	l	l	l	$+\infty$	$-\infty$	$+\infty$			
Et la limite de v_n quand n tend vers $+\infty$ est	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$			
Alors la limite de $u_n + v_n$ quand n tend vers $+\infty$ est	l + l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$?			

Limite d'un produit									
Si la limite de u_n									
${\sf quand}$ n tend vers	l	l > 0	l > 0	l < 0	l < 0	$+\infty$	$+\infty$	$-\infty$	0
$+\infty$ est									
Et la limite de v_n									
${\sf quand}$ n tend ${\sf vers}$	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$	$\pm \infty$
$+\infty$ est									
Alors la limite de $u_n \times$									
v_n quand n tend vers	$l \times l'$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$?
$+\infty$ est									

Limite d'un quotient									
Si la limite de u_n									
quand n tend vers	l	l	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$\pm \infty$	l	0
$+\infty$ est									
Et la limite de v_n									
quand n tend vers	$l' \neq 0$	$\pm \infty$	l' > 0	l' < 0	l' > 0	l' < 0	$\pm \infty$	0_+	0
$+\infty$ est									
Alors la limite de $\frac{u_n}{v_n}$									
quand n tend vers	$\frac{l}{l'}$	0	$+\infty$	$-\infty$	$-\infty$	$+\infty$?	$\pm \infty$?
$+\infty$ est									

4. Majoration, minoration et bornes

Soient une suite u_n et deux réels m et M :

- On dit que que m est un **minorant** de u_n si : $u_n > m$.
- On dit que que M est un **majorant** de u_n si : $u_n < M$.
- On dit que que u_n est **bornée** si elle est à la fois majorée et minorée.
- Si u_n est croissante et est majorée, alors elle est convergente. Si elle n'est pas majorée, u_n diverge vers $+\infty$.
- Si u_n est décroissante et est minorée, alors elle est convergente. Si elle n'est pas minorée, u_n diverge vers $-\infty$.

Toute suite convergente est également bornée.

5. Encadrement

Soient deux suites u_n et v_n telles que $u_n < v_n$ à partir d'un certain rang. On a :

```
\begin{split} & - \lim_{n \to +\infty} u_n = +\infty, \text{ alors } \lim_{n \to +\infty} v_n = +\infty. \\ & - \lim_{n \to +\infty} v_n = -\infty, \text{ alors } \lim_{n \to +\infty} u_n = -\infty. \\ & - \lim_{n \to +\infty} u_n = l \text{ et } \lim_{n \to +\infty} v_n = l' \text{ alors } l < l'. \end{split}
```

Soient deux suites u_n , v_n et w_n telles que $u_n < v_n < w_n$ à partir d'un certain rang et que u_n et w_n convergent vers le réel l. Alors :

```
\lim_{n \to +\infty} v_n = l
```

Ce théorème est appelé théorème des gendarmes.

III -Raisonnement par récurrence

Si on souhaite montrer qu'une propriété est vraie pour tout $n \in \mathbb{N}$ à partir d'un certain rang

Initialisation : On teste la propriété au rang p. Si elle est vérifiée, on passe à l'étape

Hérédité: On démontre que si la propriété est vraie au rang p, alors elle est vraie au rang p+1.

Conclusion: On explique que l'on vient de démontrer la propriété au rang p+1et que comme celle-ci est initialisée et héréditaire, alors elle est vraie à partir de ce rang p et pour tout $n \geq p$.

Exemple : Soit une suite u_n définie par u_n : $\begin{cases} u_0 = 4 \\ u_{n+1} = \frac{4u_n + 17}{u_n + 4} \end{cases}$. On souhaite montrer

que pour tout $n \in \mathbb{N}$, on a $4 \le u_n \le 5$.

On note P_n la propriété $P_n: 4 \leq u_n \leq 5$. On constate également que $u_{n+1}=\frac{4u_n+17}{u_n+4}=\frac{4(u_n+4)+1}{u_n+4}=4+\frac{1}{u_n+4}$.

Initialisation : On teste la propriété au rang 0 :

 $P_0: 4 \le u_0 \le 5 \iff 4 \le 4 \le 5$. C'est vrai.

La propriété est vraie au rang 0, on souhaite vérifier que la propriété est vraie au rang n+1.

Hérédité:

D'après $P_n: 4 \leq u_n \leq 5$. Donc on a :

$$\iff 4 \le u_n \le 5$$

$$\iff 4+4 \le u_n+4 \le 5+4$$

 \iff $\frac{1}{9} \leq \frac{1}{u_n+4} \leq \frac{1}{8}$ (la fonction inverse est décroissante sur \mathbb{R}^+ donc on change l'inégalité)

$$\iff 4 + \frac{1}{9} \le 4 + \frac{1}{u_0 + 4} \le 4 + \frac{1}{8}$$

 $\iff 4 + \frac{1}{9} \le 4 + \frac{1}{u_n + 4} \le 4 + \frac{1}{8}$ Or $4 + \frac{1}{9} \approx 4.111 > 4$ et $4 + \frac{1}{8} = 4.125 < 5$. On a donc bien :

$$4 \le u_{n+1} \le 5$$

Conclusion:

La propriété est initialisée et héréditaire. Ainsi, P_n est vraie pour tout $n \in \mathbb{N}$.

Le raisonnement par récurrence est très utilisé en mathématiques et ne se limite pas qu'à l'étude des suites.