第6章 芳香族化合物

主要内容-1

- > 苯的结构
- > 单环芳烃的构造异构和命名
- 单环芳烃的来源和物理性质
- ▶ 芳香性和 Hückel 4n+2 理论(重点)

芳香族化合物的来源:

❖ 早期: 櫻桃、梨和杏仁——苯甲醛 妥鲁香香液——甲苯 煤蒸馏——苯

具有芳香气味 芳香族化合物

❖ 天然产物、具生物活性的芳香族化合物

日

❖ 从煤和石油中获得

1

2

什么是芳香族化合物?

芳香族化合物 (Aromatic Compounds): 一些 具有特殊稳定性和化学性质的环状化合物。具体指 苯及其衍生物以及具有类似苯环结构和性质的一类 化合物。

芳香性: 芳香族化合物具有的特殊稳定性及特殊的 化学性质——不易加成、不易氧化,容易发生亲电 取代反应的特性。 根据是否含有苯环以及所含苯环的数目和连接方

芳香族化合物: 具有芳香性的碳氢化合物

3

4

6.1 苯的结构、稳定性和共振结构式

> 苯的分子式

1825年,由法拉弟 (M. Farady) 从照明气中首 先分离得到苯,并测得其组成元素: C和H。

1833年,米歇尔利希 (E. Mitscherlich) 采用蒸汽密度法确定了苯的分子式: C_6H_6 。

苯的分子式是: C_6H_6 , U=4, 应该是一种高度 不饱和的结构,似乎应具有不饱和烃的相关反应 特性。 苯的化学性质较为稳定

与亲电试剂发生取代反应。而不发生加成反应

5

(

最为人们所普遍接受的是共轭环己三烯苯

Kekulé 苯

共振体

共振体

共振杂化体

Kekulé 苯能解释苯的一些现象:

(a) 苯的一取代物只有一种

8

7

(b) 苯可以加氢还原成环己烷

(c) 在光照下, 苯可以和三分子氯气加成

8

Kekulé苯结构式不能解释的现象:

- 苯容易发生取代,却难于发生加成和氧化反应。
- 按照Kekulé苯结构式,邻位二取代苯应有两个异构体,但实际上只有一个。

• 不能解释苯的氢化热远低于环己三烯的结构。

10

9

10

苯的氢化热低(稳定)

额外稳定性: 共振能

> 苯分子结构的近代概念

根据红外光谱和电子衍射等物理方 H-C 法测定,苯分子中的十二个原子处 于同一平面上,碳碳键键角为120°。

价键理论

轨道杂化理论认为:苯分子中,每个碳原子以 sp^2 杂化,其中两个 sp^2 杂化轨道与相邻碳原子的 sp^2 杂化轨道形成碳碳 σ 键,一个 sp^2 杂化轨道与一个氢原子的s轨道形成碳氢 σ 键。每个碳原子上剩余的一个垂直于分子平面的p轨道,它们相互平行,侧面交盖形成一个闭合共轭体系。

12

11

12

15 16

17 18

19 20

21 22

单环芳烃的物理性质

- ▶苯及其同系物一般为无色液体,相对密度小于1。
 不溶于水,是一类很好的有机溶剂。
- ▶在二取代苯的三个异构体中,由于对位异构体的 对称性最大,能很好地填入晶格中,因此熔点比 其它两个异构体高。
- ▶苯环上有烷基取代基时,其稳定性增加(可以从生成热比较)。邻二甲苯比对二甲苯稳定性稍差(空间位阻)。

24

23 24

6.3 芳香性和 Hückel 4n+2 规则

- 环状结构的共轭分子;
- 氢化热比预期的环己三烯少,比环己三烯稳定;
- 平面六边形结构,键角120°,所有键长都均为139 ppm,介于碳碳双键和单键之间;
- 只能发生亲电取代反应,保持共轭体系不变,而 不能发生亲电加成反应;
- 共振杂化分子, 其结构介于两个共振杂化体之间。

无法说明苯的芳香性。

26

1931年,德国科学家E Hückel 提出的Hückel 4n+2 规则,对苯的芳香性作出了解释,并可判断一般分子的芳香性。

一个环状化合物具有<u>共平面</u>的离域 体系,且 π 电子数为 4n+2 时 (n = 0, 1, 2...),具有芳香性。

反芳香性: 若一个分子具有平面环状 共轭体系,但其 π 电子数为 4n 个, 其 π 电子离域造成的结果与芳香性分 子正好相反,使分子更不稳定,称为 反芳香性分子。

26

25

◆ 苯

3 个双键 6 个 π 电子

平面、环状、共轭分子, π 电子数符合Hückel 4n+2 芳香性规则,n=1,是一个芳香性分子。

27

29

思考题: 判断芳香性

H₂C=CH-CH=CH-CH=CH₂

非环状

电子数为4,不符合4n+2

无封闭的离域体系

封闭共平面的离域体系 电子数为10,符合4n+2

一个环状化合物具有封闭共平面的离域体系且 π 电子数为4n+2时(n = 0,1,2,整数),就具有芳香性。

28

27 28

1. 单环多烯化合物芳香性的判别 (★★)

4	化合物	环丙烯 正离子	环丁 二烯	环戊二烯 负离子	环庚三烯 正离子	环辛三烯 双负离子	环辛 四烯
绉	构式	(H)	\Diamond	(a)	(0)		
休克尔规则	4n+2 π电子	2 符合	4 不符合	6 符合	6 符合	10 符合	8 不符合
	单环平 面结构	符合	符合	符合	符合	符合	澡盆型 不符合
	封闭共 轭多烯	符合	符合	符合	符合	符合	符合
3	结论	芳香性	非芳性	芳香性	芳香性	芳香性	非芳性

29 30

33 34

35 36

2. 轮烯芳香性的判别(★)

轮烯

单、双键交替出现的单环共轭多烯,通式为 C_nH_n ,此类化合物可用n碳m烯、[n]轮烯或n-轮烯来命名,n为成环碳原子总数,m为环中碳碳双键的总数。

十碳五烯、[10]轮烯或10-轮烯

39

38

(1) 轮烯有环内氢与环外氢。 氢在低场时,有芳香性。 (2) 环碳必须处在同一平面内 (3) 符合4 <i>n</i> +2规则。	
HH	пн
[10]轮烯因环内氢的相互作用,使C不能同处在同一平面内,无芳香性。	[14]轮烯有芳香性 环内氢 0 ppm 环外氢 7.6 ppm

39 40

3. 多环体系芳香性的判别
周边共轭体系化合物: 在环状共轭多烯的环内引入
一个或若干个原子,使环内原子与若干个成环的碳
原子以单键相连的化合物。
直接用4n+2规则判别芳香性

π电子数 12 10 14
无芳香性 有芳香性 有芳香性

41 42

7

44

43

鄭的亲电取代反应(知识拓展)

SO₃/(O)
HNO₃
Ac₂O
CH₃CCI
AlCl₃

OC
CH₃CCI
AlCl₃

Ac₂O
CH₃CCI
AlCl₃

Ac₃CO
CH₃CCI
AlCl₃CCI
A

45 46

典型题型举例

选择题:

▶下列化合物中,具有芳香性的是()。 不具有芳香性、符合Hückel规则、 不符合Hückel规则

简答题:

▶***化合物是否(<mark>不)具有芳香性</mark>,为什么?

▶***化合物是否(不)<mark>具有酸性(</mark>碱性),为 什么?

47