

National University of Computer & Emerging Sciences MT-1003 Calculus and Analytical Geometry

INTEGRATION BY SPECIAL SUBSTITUTION

For rational functions of sin x and cos x:

Functions that consist of finitely many sums, differences, quotients, and products of $\sin x$ and $\cos x$ are called *rational functions of* $\sin x$ *and* $\cos x$. Some examples are

$$\frac{\sin x + 3\cos^2 x}{\cos x + 4\sin x}$$
, $\frac{\sin x}{1 + \cos x - \cos^2 x}$, $\frac{3\sin^5 x}{1 + 4\sin x}$

The Endpaper Integral Table gives a few formulas for integrating rational functions of $\sin x$ and $\cos x$ under the heading *Reciprocals of Basic Functions*. For example, it follows from Formula (18) that

$$\int \frac{1}{1+\sin x} dx = \tan x - \sec x + C \tag{2}$$

However, since the integrand is a rational function of $\sin x$, it may be desirable in a particular application to express the value of the integral in terms of $\sin x$ and $\cos x$ and rewrite (2) as

$$\int \frac{1}{1+\sin x} \, dx = \frac{\sin x - 1}{\cos x} + C$$

Many rational functions of $\sin x$ and $\cos x$ can be evaluated by an ingenious method that was discovered by the mathematician Karl Weierstrass (see p. 102 for biography). The idea is to make the substitution

$$u = \tan(x/2), \quad -\pi/2 < x/2 < \pi/2$$

from which it follows that

$$x = 2 \tan^{-1} u$$
, $dx = \frac{2}{1 + u^2} du$

To implement this substitution we need to express $\sin x$ and $\cos x$ in terms of u. For this purpose we will use the identities

$$\sin x = 2\sin(x/2)\cos(x/2) \tag{3}$$

$$\cos x = \cos^2(x/2) - \sin^2(x/2) \tag{4}$$

and the following relationships suggested by Figure 7.6.1:

$$\sin(x/2) = \frac{u}{\sqrt{1+u^2}}$$
 and $\cos(x/2) = \frac{1}{\sqrt{1+u^2}}$

Substituting these expressions in (3) and (4) yields

$$\sin x = 2\left(\frac{u}{\sqrt{1+u^2}}\right)\left(\frac{1}{\sqrt{1+u^2}}\right) = \frac{2u}{1+u^2}$$

$$\cos x = \left(\frac{1}{\sqrt{1+u^2}}\right)^2 - \left(\frac{u}{\sqrt{1+u^2}}\right)^2 = \frac{1-u^2}{1+u^2}$$
A Figure 7.6.1

In summary, we have shown that the substitution $u = \tan(x/2)$ can be implemented in a rational function of $\sin x$ and $\cos x$ by letting

$$\sin x = \frac{2u}{1+u^2}, \quad \cos x = \frac{1-u^2}{1+u^2}, \quad dx = \frac{2}{1+u^2}du$$
 (5)

Example 5 Evaluate
$$\int \frac{dx}{1 - \sin x + \cos x}.$$

Solution. The integrand is a rational function of $\sin x$ and $\cos x$ that does not match any of the formulas in the Endpaper Integral Table, so we make the substitution $u = \tan(x/2)$. Thus, from (5) we obtain

$$\int \frac{dx}{1 - \sin x + \cos x} = \int \frac{\frac{2 \, du}{1 + u^2}}{1 - \left(\frac{2u}{1 + u^2}\right) + \left(\frac{1 - u^2}{1 + u^2}\right)}$$

$$= \int \frac{2 \, du}{(1 + u^2) - 2u + (1 - u^2)}$$

$$= \int \frac{du}{1 - u} = -\ln|1 - u| + C = -\ln|1 - \tan(x/2)| + C \blacktriangleleft$$

EXERCISE SET 7.6

65–70 (a) Make *u*-substitution (5) to convert the integrand to a rational function of *u*, and then evaluate the integral. (b) If you have a CAS, use it to evaluate the integral (no substitution), and then confirm that the result is equivalent to that in part (a).

$$65. \int \frac{dx}{1 + \sin x + \cos x}$$

66.
$$\int \frac{dx}{2 + \sin x}$$

67.
$$\int \frac{d\theta}{1-\cos\theta}$$

68.
$$\int \frac{dx}{4\sin x - 3\cos x}$$

69.
$$\int \frac{dx}{\sin x + \tan x}$$

70.
$$\int \frac{\sin x}{\sin x + \tan x} dx$$

SOLUTION SET

65.
$$u = \tan(x/2)$$
, $\int \frac{1}{1 + \frac{2u}{1 + u^2} + \frac{1 - u^2}{1 + u^2}} \frac{2}{1 + u^2} du = \int \frac{1}{u + 1} du = \ln|\tan(x/2) + 1| + C$.

67.
$$u = \tan(\theta/2), \int \frac{d\theta}{1 - \cos \theta} = \int \frac{1}{u^2} du = -\frac{1}{u} + C = -\cot(\theta/2) + C.$$

69.
$$u = \tan(x/2), \ \frac{1}{2} \int \frac{1-u^2}{u} du = \frac{1}{2} \int (1/u - u) du = \frac{1}{2} \ln|\tan(x/2)| - \frac{1}{4} \tan^2(x/2) + C.$$