Lecture 5. Regularisation & Bias-variance Trade-off

COMP90051 Statistical Machine Learning

Lecturer: Jean Honorio

This lecture

- How irrelevant features make optimisation ill-posed
- Regularising linear regression
 - Ridge regression
 - * The lasso
 - Connections to Bayesian MAP
- Regularising non-linear regression
- Bias-variance

Regularisation

Process of introducing additional information in order to solve an ill-posed problem or to prevent overfitting

- Major technique & theme, throughout ML
- Addresses one or more of the following related problems
 - Avoids ill-conditioning (a computational problem)
 - Avoids overfitting (a statistical problem)
 - Introduce prior knowledge into modelling
- This is achieved by augmenting the objective function
- In this lecture: we cover the first two aspects. We will cover more of regularisation throughout the subject

The Problem with Irrelevant Features

Linear regression on rank-deficient data.

Example 1: Feature importance

- Linear model on three features
 - * X is matrix on n = 4 instances (rows)
 - * Model: $y = w_1x_1 + w_2x_2 + w_3x_3 + w_0$

Question: Which feature is more important?

Example 1: Irrelevant features

- Linear model on three features, first two same
 - * X is matrix on n = 4 instances (rows)
 - * Model: $y = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_0$
 - * First two columns of X identical
 - * Feature 2 (or 1) is irrelevant

3	3	7	
6	6	9	
21	21	79	
34	34	2	

 Effect of perturbations on model predictions?

- * Add Δ to w_1
- * Subtract Δ from w_2

Example 1: Irrelevant features

- Linear model on three features, first two same
 - * X is matrix on n = 4 instances (rows)
 - * Model: $y = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_0$
 - * First two columns of X identical
 - * Feature 2 (or 1) is irrelevant

3	3	7	
6	6	9	
21	21	79	
34	34	2	

 Effect of perturbations on model predictions?

- * Add \triangle to w_1
- * Subtract Δ from w_2

Problems with irrelevant features

- In example, suppose $[\widehat{w}_0, \widehat{w}_1, \widehat{w}_2, \widehat{w}_3]'$ is "optimal"
- For any δ new $[\widehat{w}_0, \widehat{w}_1 + \delta, \widehat{w}_2 \delta, \widehat{w}_3]'$ get
 - Same predictions!
 - * Same sum of squared errors!
- Problems this highlights
 - * The solution is not unique
 - * Lack of interpretability
 - * Optimising to learn parameters is ill-posed problem

Irrelevant (co-linear) features in general

- Extreme case: features complete clones
- For linear models, more generally
 - * Feature $\mathbf{X}_{\cdot j}$ is irrelevant if
 - * $\mathbf{X}_{.j}$ is a linear combination of other columns

$$\mathbf{X}_{\cdot j} = \sum_{l \neq j} \alpha_l \, \mathbf{X}_{\cdot l}$$

... for some scalars α_l . Also called multicollinearity

- * Equivalently: Some eigenvalue of X'X is zero
- Even near-irrelevance/colinearity can be problematic
 - V small eigenvalues of X'X
- Not just a pathological extreme; easy to happen!

Example 2: Lack of data

- Extreme example:
 - Model has two parameters (slope and intercept)
 - Only one data point

Underdetermined system

Ill-posed problems

- In both examples, finding the best parameters becomes an ill-posed problem
- This means that the problem solution is not defined
 - * In our case w_1 and w_2 cannot be uniquely identified
- Remember normal equations solution of linear regression: $\widehat{w} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$
- With irrelevant/multicolinear features, matrix X'X has no inverse

convex, but not strictly convex

Mini Summary

- Irrelevant features as collinearity
- Leads to
 - Ill-posed optimisation for linear regression
 - * Broken interpretability
- Multiple intuitions: algebraic, geometric

Next: Regularisation to the rescue!

Regularisation in Linear Models

Ridge regression and the Lasso

Re-conditioning the problem

- Regularisation: introduce an additional condition into the system
- The original problem is to minimise $\|\mathbf{y} \mathbf{X}\mathbf{w}\|_2^2$
- The regularised problem is to minimise

$$\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2$$
 for $\lambda > 0$

The solution is now

$$\widehat{\mathbf{w}} = (\mathbf{X}'\mathbf{X} + \mathbf{\lambda}\mathbf{I})^{-1}\mathbf{X}'\mathbf{y}$$

- This formulation is called ridge regression
 - Turns the ridge into a deep, singular valley
 - * Adds λ to eigenvalues of X'X: makes invertible

strictly convex

Regulariser as a prior

- Without regularisation, parameters found based entirely on the information contained in the training set \mathbf{X}
 - Regularisation introduces additional information
- Recall our probabilistic model $Y = \mathbf{x}'\mathbf{w} + \varepsilon$
 - * Here Y and ε are random variables, where ε denotes noise
- Now suppose that \mathbf{w} is also a random variable (denoted as \mathbf{W}) with a Normal prior distribution

$$\mathbf{W} \sim \mathcal{N}\left(\mathbf{0}, \frac{1}{\lambda}\mathbf{I}\right)$$
 or equivalently $W_i \sim \mathcal{N}\left(0, \frac{1}{\lambda}\right)$

- I.e. we expect small weights and that no one feature dominates
- Is this always appropriate? E.g. data centring and scaling
- * We could encode much more elaborate problem knowledge

Computing posterior using Bayes rule

The prior is then used to compute the posterior

- Instead of maximum likelihood (MLE), take maximum a posteriori estimate (MAP)
- Apply log trick, so that log(posterior) = log(likelihood) + log(prior) log(marg)
- Arrive at the problem of minimising $\|\mathbf{y} \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2$

this term doesn't affect optimisation

Regulariser as a constraint

• For illustrative purposes, consider a modified problem: minimise $\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$ subject to $\|\mathbf{w}\|_2^2 \le \lambda$ for $\lambda > 0$

- Lasso (L₁ regularisation) encourages solutions to sit on the axes
 - → Some of the weights are set to zero → Solution is sparse

Regularised linear regression

Algorithm	Minimises	Regulariser	Solution	Prior
Linear regression	$\ \mathbf{y} - \mathbf{X}\mathbf{w}\ _2^2$	None	$(X'X)^{-1}X'y$ (if inverse exists)	None
Ridge regression	$ \mathbf{y} - \mathbf{X}\mathbf{w} _2^2 + \lambda \mathbf{w} _2^2$	L ₂ norm	$(\mathbf{X}'\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}'\mathbf{y}$	Gaussian prior $e^{-\lambda \ \mathbf{w}\ _2^2}$
Lasso	$\ \mathbf{y} - \mathbf{X}\mathbf{w}\ _2^2 + \lambda \ \mathbf{w}\ _1$	L ₁ norm	No closed-form, but solutions are sparse and suitable for high- dimensional data	Laplacian prior $e^{-\lambda \ \mathbf{w}\ _1}$

Mini Summary

- L₂ regularisation: Ridge regression
 - Re-conditions the optimisation
 - Equivalent to MAP with Gaussian prior on weights
- L₁ regularisation: The Lasso
 - Particularly favoured in high-dimensional, low-example regimes

Next: Regularisation and non-linear regression

Regularisation in Non-Linear Models

Model selection in ML

Example regression problem

How complex a model should we use?

Underfitting (linear regression)

Model class Θ can be **too simple** to possibly fit true model.

Overfitting (non-parametric smoothing)

Model class Θ can be so complex it can fit true model + noise

Actual model ($x\sin x$)

The **right model class** Θ will sacrifice some training error, for test error.

Approach: Explicit model selection

- Try different classes of models. Example, try polynomial models of various degree d (linear, quadratic, cubic, ...)
- Use <u>held out validation</u> (cross validation) to select the model
- 1. Split training data into D_{train} and $D_{validate}$ sets
- 2. For each degree d we have model f_d
 - 1. Train f_d on D_{train}
 - 2. Test f_d on $D_{validate}$
- 3. Pick degree \hat{d} that gives the best test score
- 4. Re-train model $f_{\hat{d}}$ using all data

Approach: Regularisation

Augment the problem:

$$\widehat{\boldsymbol{\theta}} \in \operatorname{argmin} \left(L(data, \boldsymbol{\theta}) + \lambda R(\boldsymbol{\theta}) \right)$$

E.g., ridge regression

$$\widehat{\mathbf{w}} \in \underset{\mathbf{w} \in W}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{2}^{2}$$

- Note that regulariser $R(\theta)$ does not depend on data
- Use held out validation/cross validation to choose λ

Example: Polynomial regression

- 9th-order polynomial regression
 - * model of form

$$\hat{f} = w_0 + w_1 x + \dots + w_9 x^9$$

* regularised with $\lambda ||\mathbf{w}||_2^2$ term

Mini Summary

- Overfitting vs underfitting
- Effect of regularisation on nonlinear regression
 - Controls balance of over- vs underfitting
 - * Controlled in this case by the penalty hyperparameter

Next: Bias-variance view for regression

Bias-variance trade-off

Train error, test error and model complexity in supervised regression

Assessing generalisation

- Supervised learning: train the model on existing data, then make predictions on <u>new data</u>
- Training the model: ERM / minimisation of training error
- Generalisation capacity is captured by risk / test error
- Model complexity is a major factor that influences the ability of the model to generalise (vague still)
- In this section, our aim is to explore error in the context of supervised regression. One way to decompose it.

Training error and model complexity

- More complex model training error goes down
- Finite number of points \rightarrow usually can reduce training error to 0 (is it always possible?)

Training data as a random variable

 Putting the three lines one on top of the other...

Training data as a random variable

 Putting the three curves one on top of the other...

Intuition: Model complexity and variance

- simple model → low variance
- complex model → high variance

Intuition: Model complexity and variance

- simple model → high bias
- complex model → low bias

Bias-variance trade-off

- simple model → high bias, low variance
- complex model

 low bias, high variance

(Another) Bias-variance decomposition

- Training data $D = \{x_1, y_1, ..., x_n, y_n\}$, test point x_0
- Squared loss for supervised-regression predictions

$$l\left(Y, \hat{f}_{D}(x_{0})\right) = \left(Y - \hat{f}_{D}(x_{0})\right)^{2}$$

Classification later on

• Lemma: Bias-variance decomposition

$$\mathbb{E}\left[l\left(Y, \hat{f}_{D}(x_{0})\right)\right] = \left(\mathbb{E}[Y] - \mathbb{E}[\hat{f}]\right)^{2} + Var[\hat{f}] + Var[Y]$$

Risk / test error for x_0

(bias)²

variance

irreducible error

Proof sketch (outside scope of COMP90051)

- Here $\hat{f} = \hat{f}_{D}(x_0)$ to de-clutter notation
- $\mathbb{E}\left[\left(Y-\hat{f}\right)^2\right] = \mathbb{E}\left[Y^2 + \hat{f}^2 2Y\hat{f}\right]$
- $= \mathbb{E}[Y^2] + \mathbb{E}[\hat{f}^2] 2\mathbb{E}[Y\hat{f}]$
- = $\operatorname{Var}[Y] + \mathbb{E}[Y]^2 + \operatorname{Var}[\hat{f}] + \mathbb{E}[\hat{f}]^2 2\mathbb{E}[Y]\mathbb{E}[\hat{f}]$
- $= \operatorname{Var}[Y] + \operatorname{Var}[\hat{f}] + \left(\mathbb{E}[Y]^2 2\mathbb{E}[Y]\mathbb{E}[\hat{f}] + \mathbb{E}[\hat{f}]^2\right)$
- $= \operatorname{Var}[Y] + \operatorname{Var}[\hat{f}] + (\mathbb{E}[Y] \mathbb{E}[\hat{f}])^2$

- Property of variance: $Var[Y] = \mathbb{E}[Y^2] - \mathbb{E}[Y]^2$
- Same for \hat{f}

- \mathbb{E} with respect to D and Y only
- *D* independent of *Y*
- Thus \hat{f} independent of Y

Test error and training error

Mini Summary

- Supervised regression: square-loss risk decomposes to bias, variance and irreducible terms
- This trade-off mirrors under/overfitting
- Controlled by "model complexity"
 - * But we've been vague about what this means!?

Next lectures: Bounding generalisation error in ML