1

Experimento 6: Segunda Lei de Newton para movimento de rotação

Objetivos

- ✓ Medir a relação momento de inércia/massa de um objeto cilíndrico descendo uma rampa.
- ✓ Verificar a validade da Segunda lei de Newton para o movimento de rotação de um objeto em torno de um eixo paralelo ao seu eixo principal.
- ✓ Compreender o conceito de momento de inércia.

PREPARAÇÃO

Momento de Inércia

A massa de um corpo pode ser entendida como a medida da dificuldade para se alterar o estado de movimento de translação de um corpo. No caso de um corpo extenso rígido, ele pode ter movimento de translação e de rotação. O momento de inércia pode ser entendido como a medida da dificuldade para se alterar o estado de movimento de rotação do corpo. Para um sistema discreto de partículas, o momento de inércia pode ser determinado a partir da relação:

Sistema discreto de partículas:

$$I = \sum_{i} m_i R_i^2$$

Sistema contínuo de partículas:

$$I=\int R^2dm$$

Esta definição sugere que o valor do momento de inércia de um corpo depende da distribuição de massa do corpo e do eixo em torno do qual está sendo executada a rotação. O valor de R é a distância do elemento de massa dm ao eixo de rotação.

Para um cilindro de densidade constante, o momento de inércia em relação a um eixo principal de rotação, é dado por:

$$I_{cilindro} = \frac{1}{2}MR^2$$

Note que o eixo principal do cilindro passa pelo centro de massa do mesmo. Neste caso, este valor pode ser chamado de $I_{cilindro} = I_{CM} = \frac{1}{2}MR^2$.

Figura: Eixo de rotação principal do cilindro e respectivo momento de inércia. **Fonte:** Halliday Vol1, 10^a Ed.

Se o cilindro está descendo uma rampa, por exemplo, então o interesse é conhecer o momento de inércia I em relação a este eixo específico de rotação. Este problema pode ser facilmente solucionado, caso o referido eixo de rotação seja paralelo a um eixo de rotação

que passa pelo centro de massa, cujo momento de inércia seja conhecido. Neste caso, o teorema dos eixos paralelos garante que:

$$I = I_{CM} + ML^2$$

Onde, h é uma medida do deslocamento do eixo de rotação em relação ao eixo que passa pelo centro de massa.

Figura: Eixo de rotação principal do cilindro e respectivo momento de inércia.

Fonte: Halliday Vol1, 10^a Ed.

Para um <u>cilindro maciço</u> descendo uma rampa, pode ser mostrado que o momento de inércia em relação a um eixo de rotação paralelo ao eixo principal e distante R unidades dele, é dado por:

$$I_{cilindro\ maciço} = \frac{3mR^2}{2}$$
 ou ainda $\frac{I_{cilindro\ maciço}}{m} = \frac{3R^2}{2}$

Para uma <u>casca cilíndrica</u> descendo uma rampa, pode ser mostrado que o momento de inércia em relação a um eixo de rotação paralelo ao eixo principal e distante R unidades dele, é dado por:

$$I_{casca\ cilindrica} = 2mR^2$$
 ou ainda $\frac{I_{casca\ cilindrica}}{m} = 2R^2$

Segunda Lei de Newton para Movimento de Rotação

Em analogia com a segunda Lei de Newton para um movimento de translação, para o movimento de rotação temos:

$$\sum \tau_{ext} = I\alpha$$

onde $\sum \tau_{ext}$ significa a soma de todos os torques externos ao corpo, I é o momento de inércia do corpo e α é a aceleração angular. Se todos os torques externos são conhecidos e a aceleração angular puder ser medida, é possível determinar o momento de inércia do corpo. Para o caso de um objeto cilíndrico descendo uma rampa com inclinação θ , tal como ilustrado na figura ao lado, teremos:

Figura 06: Esquema do experimento.

$$I = \frac{R^2 mgsen(\theta)}{a}$$
 ou ainda $\frac{I}{m} = \frac{R^2 gsen(\theta)}{a}$,

Esta expressão permite medir a relação momento de inércia/massa de um objeto que descreve um movimento de rotação tal como ilustrado na figura acima.

O procedimento experimental proposto a seguir permitirá fazer a medida da aceleração adquirida por um objeto cilíndrico de raio R e massa m descendo uma rampa. Com isso, será possível determinar a relação momento de inércia/massa e comparar o valor medido com o valor teórico previsto pelas expressões do momento de inércia.

Questionário

Antes de começar as atividades práticas, responda as perguntas abaixo:

1 -	Aplique o teorema dos eixos paralelos para mostrar que o valor previsto do momento de inércia de um cilindro maciço rotacionando em um eixo paralelo ao eixo principal, distante R unidades do seu centro de massa é dado por $I_{cilindro} = \frac{3}{2} mR^2$.
2 -	Aplique o teorema dos eixos paralelos para mostrar que o valor previsto do momento de inércia de uma casca cilíndrica rotacionando em um eixo paralelo ao eixo principal, distante R unidades do seu centro de massa é dado por $I_{casca\ cilíndrica}=2mR^2$.
3 -	Aplique a segunda lei de Newton para rotações para mostrar que o momento de inércia de um objeto cilíndrico descendo uma rampa com inclinação θ pode ser calculado por $I=\frac{R^2mgsen(\theta)}{a}$, onde a é a aceleração do centro de massa do objeto.

Referências

A leitura das referências abaixo é recomendada para uma revisão e compreensão dos conceitos e teorias envolvidas no movimento de rotação de cum orpo e para ajudar a responder as perguntas do questionário:

- ✓ HALLIDAY, RESNICK & WALKER, Fundamentos de Física, Vol. 1, 10^a edição, LTC. Capítulo 10.
- ✓ TIPLER P. A. **Mecânica, Oscilações e Ondas, Termodinâmica**, Vol. 1, 4ª edição, LTC. Capítulo 9.

EXECUÇÃO

O material a ser utilizado para a realização deste procedimento experimental está listado abaixo:

- ✓ Mínimo de 1 lata de extrato de tomate cilíndrica, de tamanho 130g, compradas em supermercado. Caso seja necessário regravar vídeos, sugere-se a compra de 3 latas iguais;
- ✓ Abridor de latas;
- √ Tábua de cortar carne ou livro de capa dura ou tábua de madeira;
- ✓ Caixa de leite condensado;
- ✓ Régua;
- ✓ Fita crepe;
- ✓ Tesoura;
- ✓ Caneta marca CD;
- ✓ Tripé para câmera filmadora;
- ✓ Uma câmera filmadora capaz de gravar vídeos de curta duração, que pode ser a do próprio celular;
- ✓ Software Tracker instalado em um computador, para a análise do vídeo, disponível para download em https://physlets.org/tracker/;
- ✓ Software SciDAVIs instalado em um computador. Disponível para download em: http://scidavis.sourceforge.net/. Um tutorial sobre este programa pode ser baixado em: http://hpc.ct.utfpr.edu.br/~rsilva/Tutorial_SciDaVis.pdf.

Para realizar o experimento e coletar os dados, proceda da seguinte forma:

- 4 Use a caixa de leite condensado como base para fazer uma "rampa" com o livro ou tábua de cortar carne.
- 5 Posicione a régua de modo paralelo a esta rampa.
- 6 Use o tripé para posicionar o celular de modo que possa gravar um breve vídeo do objeto cilíndrico descendo a rampa. Tome cuidado de posicionar a câmera no mesmo nível do movimento da metade do caminho de descida do cilindro.
- 7 Use a caneta marca CD para fazer uma marca exatamente no centro, sinalizando o ponto por onde passa o eixo de rotação principal do objeto cilíndrico.
- 8 Posicione-o na parte de cima da rampa, acione o gravador de vídeo e abandone-o. (Sugestão: Fazer o vídeo de dia e com incidência direta da luz solar sobre o objeto que será filmado. Sugere-se garantir a iluminação com uma luminária.).
- 9 Certifique-se de que as imagens do vídeo do "cilindro maciço" estejam de boa qualidade e permitam a análise com o Tracker.
- 10 Use o abridor de latas para retirar totalmente a tampa e o conteúdo (que pode ser aproveitado no preparo dos alimentos) da lata. Tome cuidado para não se ferir ao executar esta operação.

- 11 Use a mesma rampa para gravar o vídeo da lata sem tampa e sem conteúdo, ou também chamado "cilindro vazio", descendo a rampa.
- 12 Novamente, certifique-se da boa qualidade das imagens.
- 13 Use novamente o abridor de latas para retirar o fundo da lata. Tome cuidado para não se ferir ao executar esta operação.
- 14 Use um pedaço de fita crepe para permitir fazer uma marca no ponto central desta "casca cilíndrica", de modo que o vídeo possa ser analisado com o Tracker.
- 15 Use a mesma rampa para gravar o vídeo da lata sem tampa e sem fundo, ou também chamado de "casca cilíndrica", descendo a rampa.
- 16 Veja o vídeo disponível no link https://youtu.be/Y6cYxmNQWw4 com as orientações para as montagens. Observação: É possível utilizar uma única lata para fazer os três vídeos. Neste caso, é preciso estar certo de que cada vídeo tenha sido gravado de forma correta e que permita a correta coleta dos dados. Caso contrário, não será possível repetir a gravação de novos vídeos.

17 -	7 - Use uma régua milimetrada para medir o diâmetro do objeto cilíndrico:				
	Diâmetro do objeto cilíndrico $\emptyset = \underline{\hspace{1cm}} \pm \underline{\hspace{1cm}}$ mm				
18 -	3 - Explique como determinou a incerteza desta medida.				

Análise de Dados

Ângulo de inclinação da rampa

- 19 Importe o vídeo do "cilindro maciço" para o Tracker e use a ferramenta <u>Transferidor</u> (disponível em: *Trajetórias> Novo> Ferramentas de Medida> Transferidor*) para medir o ângulo de inclinação entre a superfície horizontal e a rampa. Veja o vídeo no link: https://drive.google.com/file/d/1FMR3YZbfzsBX7aPGPYvvXrTbalrVkbL1/view?usp=sharing com as orientações.
- 20 Para a determinação do valor médio do ângulo, e da respectiva incerteza, cada aluno do grupo deve usar o mesmo vídeo e fazer essa medida. Anote os valores abaixo:

Medida do ângulo de inclinação da rampa do aluno 1 $\theta_{aluno\ 1} =$ ______^o Medida do ângulo de inclinação da rampa do aluno 2 $\theta_{aluno\ 2} =$ ______^o Medida do ângulo de inclinação da rampa do aluno 3 $\theta_{aluno\ 3} =$ ______^o

21 - A partir destes três valores, determine o valor médio do ângulo e sua respectiva incerteza. Anote os valores abaixo:

$$ar{ heta} =$$
 _____ ± ____°

Momento de Inércia dos "corpos cilíndricos"

22 - Use o vídeo do "cilindro maciço" já importado para o Tracker e colete 12 pontos. Em seguida, faça o mesmo com o vídeo do "cilindro vazio" e da "casca cilíndrica". Proceda de acordo com as orientações contidas no vídeo do link acima. Registre os dados na tabela abaixo.

Dontos	Cilindro maciço		Cilin	dro vazio	Casca cilíndrica		
Pontos	Tempo (s)	Vel. (mm/s)	Tempo (s)	Vel. (mm/s)	Tempo (s)	Vel. (mm/s)	
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							

23 - Use um programa de planilha eletrônica ou o SciDAVIs, para fazer o gráfico de velocidade versus tempo do movimento de cada corpo descendo a rampa. Apresente-os no espaço abaixo:

Cilindro maciço	Cilindro vazio	Casca cilíndrica

24 - Em seguida determine a aceleração, e a respectiva incerteza, de cada uns dos corpos. Anote os valores abaixo:

Aceleração do "cilindro maciço" $a_{cilindro\ maciço} =$ _____ \pm ____ mm/s² Aceleração do "cilindro vazio" $a_{cilindro\ vazio} =$ _____ \pm ____ mm/s² Aceleração da "casca cilíndrica" $a_{casca\ ciilíndrica} =$ _____ \pm ____ mm/s²

25 - Use e a expressão $\frac{I_{cilindro\ maciço}}{m}=\frac{3R^2}{2}$ e o valor do raio R do cilindro para determinar o valor teórico da razão momento de inércia/massa do "cilindro maciço" e a respectiva incerteza:

 $\frac{I_{cilindro\ maciço\ teorico}}{m} = \underline{\qquad} \pm \underline{\qquad} \text{mm}^2$

26 - Use a expressão $\frac{I}{m} = \frac{R^2 gsen(\theta)}{a}$, o valor de R, de g=(9790±80)mm/s², do ângulo θ medido e da aceleração determinada com o Tracker, para calcular o valor medido da razão momento de inércia/massa do "cilindro maciço". Anote o valor abaixo:

$$\frac{I_{cilindro \ maciço \ medido}}{m} = \underline{\qquad} \pm \underline{\qquad} \text{mm}^2$$

27 - Use e a expressão $\frac{I_{cilindro\,vazio}}{m}=2R^2$ e o valor do raio R do cilindro para determinar o valor teórico da razão momento de inércia/massa do "cilindro vazio" e a respectiva incerteza. Observação: Esta expressão se justifica, uma vez que o "cilindro vazio" em questão se assemelha mais a uma casca cilíndrica do que a um cilindro maciço:

$$\frac{I_{cilindro\ vazio\ teorico}}{m} = \underline{\qquad} \pm \underline{\qquad} \text{mm}^2$$

28 - Use a expressão $\frac{I}{m} = \frac{R^2gsen(\theta)}{a}$, o valor de R, de g=(9790±80)mm/s², do ângulo θ medido e da aceleração determinada com o Tracker, para calcular o <u>valor medido</u> da razão momento de inércia/massa do "cilindro vazio". Anote o valor abaixo:

$$\frac{I_{cilindro\ vazio\ medido}}{m} = \underline{\qquad} \pm \underline{\qquad} mm^2$$

- 29 Observe que o cálculo realizado anteriormente com a expressão $\frac{I_{cilindro\,vazio}}{m}=2R^2$ e o valor do raio R do cilindro, para determinar o <u>valor teórico</u> da razão momento de inércia/massa, também é adequado para "casca cilíndrica". Portanto, não é necessário repetir o cálculo deste valor para a "casca cilíndrica".
- 30 Use a expressão $\frac{I}{m} = \frac{R^2 g sen(\theta)}{a}$, o valor de R, de g=(9790±80)mm/s², do ângulo θ medido e da aceleração determinada com o Tracker, para calcular o <u>valor medido</u> da razão momento de inércia/massa do "casca cilíndrica". Anote o valor abaixo:

$$\frac{I_{casca\ cilindrica\ medido}}{m} = \underline{\qquad} \pm \underline{\qquad} \text{mm}^2$$

CONCLUSÕES

31 - Para facilitar a comparação, escreva o valor e a incerteza da razão momento de inércia/massa dos três cálculos realizados acima.

	Grandeza		Cilindro maciço		Cilindro vazio		Casca cilíndrica	
Grandeza		Unidade	Valor	Incerteza	Valor	Incerteza	Valor	Incerteza
Momento de	e Inércia teórico/m	mm^2						
Momento de	e Inércia medido/m	mm^2						

32 - Compare o <u>valor calculado</u> com o <u>valor medido</u> para cada caso. É esperado que sejam iguais entre si? São, de fato, iguais? Se algum valor ficou acima ou abaixo do esperado, o que isso significa? Explique <u>as respostas</u>, tendo em vista o que é previsto pela segunda Lei de Newton para o movimento de rotação, o significado do conceito de momento de inércia e as condições em que o experimento foi realizado.

Resposta e explicações sobre o "cilindro maciço"		
Resposta e explicações sobre o "cilindro vazio"		
Resposta e explicações sobre a "casca cilíndrica"		

Atividades adicionais (opcional)

- 33 Utilize latas com outras substâncias e repita todo o roteiro. Sugere-se lata de extrato de tomate maior (350g), ou de ervilhas, ou de atum em conserva.
- 34 Compare os resultados encontrados com as diferentes latas. São equivalentes? São diferentes? Comente e explique suas respostas.