

Experimento 1 - Segunda Lei de Newton: Movimento com atrito

OBJETIVOS DO EXPERIMENTO

- ✓ Utilizar a segunda lei de Newton para determinar a aceleração adquirida por um corpo sob a ação de forças constantes atuando sobre ele.
- ✓ Determinar o coeficiente de atrito entre duas superfícies.
- ✓ Discutir situações do dia a dia que envolvem força de atrito.

PREPARAÇÃO

Considere dois corpos de massa **m** e **M** ligados entre si por um fio muito leve e inextensível, de acordo com o esquema mostrado na Figura o1 ao lado. Na <u>parte inicial</u> do movimento, ao serem abandonados, o sistema (corpos **m** e **M** e o fio) terão a mesma aceleração em módulo, até o corpo **M** tocar o solo. Na <u>parte final</u> do movimento, o corpo de massa **m** estará sujeito apenas à força de atrito com a superfície, até parar.

Figura 01: Esquema do experimento. Fonte: Adapatada de Física Experimental I Ufes

Medindo-se a aceleração da parte final do movimento de \mathbf{m} , será possível determinar o coeficiente de atrito cinético μ

entre o corpo e a superfície. Com este valor, será possível verificar também que a aceleração adquirida pelo corpo **m**, na primeira parte do movimento, é proporcional à soma de forças que atuam sobre ele, verificando o que é estabelecido pela segunda lei de Newton

Questionário

Antes de começar as atividades práticas, discuta com seu grupo e responda as perguntas abaixo:

 1 - Descreva qualitativamente o comportamento da posição, velocidade e aceleração ao longo de todo o movimento do corpo de massa m.

Posição:		
Velocidade:		
velocidade.		
Aceleração:		

2 -	Represente todas as forças externas, e suas respectivas reações, nos corpos de massa m e M .
3 -	Aplique a segunda Lei de Newton nos corpos \mathbf{m} e \mathbf{M} e mostre que a aceleração adquirida por \mathbf{m} é dada por $a_i = \left(\frac{M-\mu m}{M+m}\right)g$ (na parte inicial do movimento), onde g é a aceleração da gravidade e μ é o coeficiente de atrito cinético entre \mathbf{m} e a superfície.
4 -	Mostre que na <u>parte final</u> , a aceleração será dada por $a_f=\mu g$.

Referências

É recomendada a leitura das referências abaixo para uma revisão e compreensão da segunda lei de Newton e suas aplicações:

✓ Jearl, HALLIDAY, David; RESNICK, Robert; W. Fundamentos de Física - Vol. 1 - Mecânica,

10° edição. Grupo GEN, 2016. [Grupo GEN]. Ler capítulos 5 e 6.

✓ TIPLER, P. (2000) **Física para Cientistas e Engenheiros**. Vol 1. 4ª Edição. Editora LTC. Rio de Janeiro-RJ. <u>Ler capítulos 5 e 6</u>.

EXECUÇÃO

O material a ser utilizado para a realização deste procedimento experimental está listado abaixo:

- ✓ Uma caixa de creme de leite ou leite moça, no formato de paralelepípedo, com indicação de 200g na embalagem. A massa total da caixa (embalagem+produto) é de m = (208,5 ± 0,5)g. Este deve ser usado como o objeto de massa m (ver Figura 01).
- ✓ Uma caixa de creme de leite ou leite moça, no formato de paralelepípedo, com indicação de 395g na embalagem. A massa total (embalagem+produto) é de M = (408,0 ± 0,5)g. Este deve ser usado como o objeto de massa **M** (ver Figura 01).
- ✓ Barbante.
- ✓ Fita crepe.
- ✓ Régua.
- ✓ Uma câmera filmadora capaz de gravar vídeos de curta duração, que pode ser a do próprio celular.
- Tripé para máquina fotográfica ou celular.
- ✓ Software Tracker instalado em um computador, para a análise do vídeo, disponível para download em https://physlets.org/tracker/.

Para a realização do experimento, visando a coleta de dados, proceda da seguinte forma:

- 5 Amarre o barbante entre as caixas de massas m e M, de acordo com o esquema da Figura 01. O comprimento deverá ser ajustado de acordo com a mesa a ser usada para a realização do experimento. Veja o vídeo disponível no link (https://drive.google.com/file/d/1VtjqyyXs7XeyXuEd4KiwYBQA28eNIo78/view?usp=sh aring) para ter uma orientação mais precisa.
- 6 Utilize uma mesa com superfície lisa e nivelada. Isso pode ser verificado colocando-se uma bolinha de gude sobre a mesa. Ela permanecendo em repouso, é um bom indício de que a mesa esteja nivelada.
- 7 Posicione a câmera, de preferência usando um tripé fixo simples, de modo que o plano da lente e da linha que contém o movimento do corpo m sejam paralelos entre si. Siga as orientações contidas no vídeo citado acima.

- 8 Fixe a régua de modo que fique visível no vídeo, e bem próxima do corpo **m**. Cole um pedaço de fita crepe no corpo **m** e faça uma pequena marca com caneta de tinta preta (isso serve para facilitar a coleta dos dados com o software Tracker).
- 9 Inicie a gravação do vídeo e abandone o sistema de corpos. (OBS: O ambiente precisa estar bem iluminado, para garantir um vídeo de boa qualidade. Para isso, sugere-se fazer o vídeo de dia e com incidência direta da luz solar sobre o corpo que será filmado).
- 10 Certifique-se de que as imagens dos vídeos estejam de boa qualidade e permitam a futura análise com o software Tracker. (Obs: Pode ser necessário regravar o vídeo.)

ANÁLISE DOS **D**ADOS

11 - Utilize software Tracker para marcar os pontos e coletar dados da velocidade e do tempo, tanto da <u>parte inicial</u> quanto da <u>parte final</u> do movimento do corpo de massa **m** (corpo sobre a mesa). Cada integrante do grupo deverá fazer separadamente este procedimento, usando o mesmo vídeo. Veja orientações disponíveis neste link (https://drive.google.com/file/d/1AjFS5KZ2EKzU283YZzyBhRa4dem76Ql7/view?usp=sharing) para realizar esse procedimento de coleta de dados:

12 - Anote os valores <u>da parte inicial do movimento</u> na tabela abaixo:

Dados do aluno 1					
Ponto i	$t_{1i}(s)$	v_{1i} (mm/s)			
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

Dados do aluno 2					
Ponto i	$t_{2i}(s)$	v_{2i} (mm/s)			
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

Dados do aluno 3					
Ponto i	$t_{3i}(s)$	v_{3i} (mm/s)			
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

- 13 Use algum programa de planilha eletrônica para plotar os gráficos de $v \ x \ t$ da parte inicial do movimento do corpo **m**.
- 14 Utilize os recursos de <u>adicionar linha de tendência</u> para obter a equação de cada um dos gráficos e em seguida obtenha o valor da aceleração:

Aceleração; (aluno1) = _____

Aceleração; (aluno2) = ____

Aceleração; (aluno3) = _____

15 -	- De posse desses valores, determine o valor médio da aceleração do corpo m , e de sua respectiva incerteza, na parte inicial do movimento.				de sua				
	Α	celeraçã	ío corpo de ma	assa m, <u>part</u>	<u>e inicial</u> :	±_		m/s²	
16 - Comente sobre os fatores que podem influenciar no valor da incerteza determinada neste experimento.				incerteza (que foi				
17 -			ssos anteriore n o Tracker na			ial do movi	mento.	Anote os	valores
	[Dados do al	uno 1	D	ados do alu	no 2		Dados do a	uno 3
F	onto i	$t_{1i}(s)$	v_{1f} (mm/s)	Ponto i	$t_{2i}(s)$	v_{2f} (mm/s)	Pont		v_{1f} (mr
	1			1			1		
	2			2			2		
	3 4			4			3		+
	5			5			5		
	6			6			6		
	7			7			7		
	8			8			8		
	9 10			9 10			<u>9</u> 10	1	+
	Utilizados g Acelea Acelea	do movir e os recu ráficos e ração _f (a ração _f (a	rograma de pla mento do corp ursos de <u>adicio</u> e em seguida o luno1) = luno2) = luno3) =	o m. onar linha d btenha o va -	e tendêr	n <u>cia</u> para ob			•
20 -	De po	osse dess ectiva inc	ses valores, de erteza, na par ío corpo de ma	termine o v te final do r	novimen	ito.	•	•	de sua
21 -	atrito (use d abaix	cinético valor do o.	da aceleração o entre a supe e referência do ±	rfície e o co	rpo de r	nassa m a p	artir da	expressão	$a = \mu g$

22 -	Usando os valores teóricos (e suas respectivas incertezas) conhecidos de m, M e
	$g=(9,79\pm0,03)$ m/ s^2 , e o valor de μ calculado acima, determine o valor da aceleração na
	parte inicial e final do movimento, bem como suas respectivas incertezas:

Aceleração da parte inicial do movimento $a_i = \left(\frac{M-\mu m}{M+m}\right)g = \underline{\qquad} \pm \underline{\qquad} m/s^2$

Aceleração da parte final do movimento $a_f = \mu g =$ ____ \pm ____ m/s^2

DISCUSSÕES E CONCLUSÕES

23 -	Compare o valor da aceleração obtido de modo "teórico" e de modo experimental,	na
	parte inicial do movimento do corpo de massa m.	

	Valor teórico	Valor experimental
Aceleração parte inicial	±	±

Faça a representação gráfica destes valores, de acordo com as orientações na página 40, para facilitar a comparação entre eles.

24 -	Levando-se em consideração as respectivas incertezas, o grupo deve constatar que
	esses valores não são iguais. Fundamentado na previsão da segunda Lei de Newton, e
	nas condições em que o experimento foi realizado, discuta e explique porque isso
	ocorre.

25 - Discuta em grupo melhorias ou modificações que podem ser feitas no procedimento experimental para encontrar o valor esperado da aceleração na parte inicial do movimento. Sugere-se colocar a(s) modificação(ões) em prática e verificar se realmente produz(em) os resultados esperados. Descreva abaixo o que o grupo fez e os resultados que encontrou.

26 - Ao longo do movimento, houve algum momento em que a aceleração do corpo **m** foi igual a zero? Explique sua resposta.

27 -	Se a massa do corpo m fosse aumentada (que pode ser feito colocando uma segunda caixa em cima da primeira), o que aconteceria com o coeficiente de atrito cinético entre o corpo e a superfície? Vai aumentar, diminuir ou permanecer o mesmo? Explique suas respostas. (OBS: Uma análise com base na segunda Lei de Newton possibilita responder essa pergunta. Adicionalmente, o grupo pode explorar essa situação gravando um segundo vídeo e confirmando a resposta apresentada. Sugiro que façam essa verificação.)
28 -	Descreva pelo menos três situações do nosso dia a dia em que o atrito entre uma superfície e um corpo seja diminuído por causa de um produto existente entre eles. Discuta também as possíveis implicações práticas de cada umas das situações.
29 -	Escreva um breve relato da execução do experimento e das dificuldades encontradas pelo grupo na realização das atividades.
A TIVID <i>A</i>	ADES ADICIONAL 1 - OPCIONAL
30 -	Este procedimento permite determinar o coeficiente de atrito cinético entre o corpo m e a mesa. Discutam modificações/ajustes que podem ser feitas no experimento e que permitam calcular também o coeficiente de atrito estático entre a superfície e o corpo.

Sugere-se colocar tal proposta em prática e verificar se realmente produz os resultados esperados. Registre os comentários no espaço abaixo.
ADES ADICIONAL 2 - OPCIONAL
Coloque uma fina camada de talco sobre a mesa, para diminuir o coeficiente de atrito entre as superfícies, e grave um novo vídeo do movimento
Considerando os movimentos do corpo m , sem e com o talco, descreva as diferenças observadas nos valores da velocidade e aceleração. (OBS: O grupo deve refazer alguns dos passos anteriores para determinar experimentalmente a velocidade e a aceleração, facilitando a descrição sugerida nessa questão.)
Sugere-se colocar tal proposta em prática e verificar se realmente produz os resultados esperados. Registre os comentários no espaço abaixo.