Module Interface Specification for 2D Localizer

Aliyah Jimoh

April 17, 2025

1 Revision History

Date V	Version	Notes
2025/03/19 1 2025/04/18 1	0	Initial Draft Implement Feedback

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at https://github.com/AliyahJimoh/2D-Localizer/blob/main/docs/SRS/SRS.pdf. The symbols used in this document are mentioned below.

Symbol	Description
2D Localizer	2D Localization Solution
CRLB	Cramer-Rao Lower Bound
FIM	Fisher Information Matrix
map	String of the map image's name
N	Number of beacons used
p	Number of positions the robot has in its trajectory
a	$\mathbb{R}^{N\times 2}$ matrix of beacon coordinates
\mathbf{C}	$\mathbb{R}^{2\times 2}$ CRLB
$\mathcal{I}(\mathbf{\hat{x}})$	$\mathbb{R}^{2 imes2}$ FIM
\mathbf{T}_{mf}	\mathbb{R}^3 pose of fiducial marker in map frame (x, y, θ)
\mathbf{T}_{rf}	\mathbb{R}^3 pose of fiducial marker in robot frame (x, y, θ)
$egin{array}{c} \mathbf{T}_{rf} \ ilde{\mathbf{d}} \ ilde{\mathbf{D}} \end{array}$	\mathbb{R}^N vector of a set of range measurements
$ ilde{\mathbf{D}}$	$\mathbb{R}^{p\times N}$ matrix of range measurements in all positions
$\hat{\mathbf{x}}$	\mathbb{R}^3 estimated robot pose
x	\mathbb{R} x coordinate of robot
y	\mathbb{R} y coordinate of robot
θ	\mathbb{R} orientation of robot (radians)
σ^2	\mathbb{R}^N vector of range noise variances

Table 1: Symbol Definitions Used in Access Routines

Contents

1	Rev	vision History								
2	Symbols, Abbreviations and Acronyms									
3	Introduction									
4	Not	tation								
5	Mo	dule Decomposition								
6	MIS of Control Module									
	6.1	Module								
	6.2	Uses								
		6.2.1 Exported Constants								
		6.2.2 Exported Access Programs								
	6.3	Semantics								
		6.3.1 State Variables								
		6.3.2 Environment Variables								
		6.3.3 Assumptions								
		6.3.4 Access Routine Semantics								
7	MIS	S of GTSAM Module								
	7.1	Module								
	7.2	Uses								
	7.3	Syntax								
		7.3.1 Exported Constants								
		7.3.2 Exported Access Programs								
	7.4	Semantics								
		7.4.1 State Variables								
		7.4.2 Environment Variables								
		7.4.3 Assumptions								
		7.4.4 Access Routine Semantics								
8	MIS	S of Input Format Module								
	8.1	Module								
	8.2	Uses								
	8.3	Syntax								
		8.3.1 Exported Constants								
		8.3.2 Exported Access Programs								
	8.4	Semantics								
		8.4.1 State Variables								
		8.4.2 Environment Variables								

		8.4.3	Assumptions	 . 8
		8.4.4	Access Routine Semantics	 . (
9	мтс	of Sin	mulation Module	10
9	9.1		le	
	9.1			
	_			
	9.3	•	X	
		9.3.1	Exported Constants	
	0.4	9.3.2	Exported Access Programs	
	9.4			
		9.4.1	State Variables	
		9.4.2	Environment Variables	
		9.4.3	Assumptions	
		9.4.4	Access Routine Semantics	 . 1
10	MIS	of Lo	ocalization Module	12
	10.1	Module	le	 . 12
	10.2	Uses .		 . 12
			X	
		10.3.1	Exported Constants	 . 12
		10.3.2	Exported Access Programs	 . 15
	10.4		ntics	
			State Variables	
			Environment Variables	
			Assumptions	
			Access Routine Semantics	
11	мтс	l of Ac	ccuracy Evaluation Module	13
			x	
			Exported Constants	
	11 /		Exported Access Programs	
	11.4		ntics	
			State Variables	
			Environment Variables	
			Assumptions	
		11.4.4	Access Routine Semantics	 . 13
12	MIS	of Ou	utput Module	15
	12.1	Module	le	 . 15
	12.2	Uses .		 . 1
		Crentar		11

		12.3.1 Exported Constants	15
		12.3.2 Exported Access Programs	15
	12.4		15
			15
		12.4.2 Environment Variables	15
			15
		•	15
13	MIS	S of Plotting Module	17
	13.1	Module	17
	13.2	Uses	17
	13.3	Syntax	17
			17
			17
	13.4		17
			17
			17
			17
			18
			18

3 Introduction

The following document details the Module Interface Specifications for 2D Localizer, a program that implements various sensors to help localize mobile robots on a 2D plane in enclosed environments.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at https://github.com/AliyahJimoh/2D-Localizer.

4 Notation

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by 2D Localizer.

Data Type	Notation	Description
character	char	a single symbol or digit
factor	Factor	a constraint in a factor graph that relates variables
factor graph	Graph	a collection of factors defining an optimization problem
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
noise Model	Model	a model that defines uncertainty in a measurement
real	\mathbb{R}	any number in $(-\infty, \infty)$
string	String	more than one symbol put together
values	Values	a container that stores variable estimates in a factor graph

The specification of 2D Localizer uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, 2D Localizer uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification. 2D Localizer also uses data types from the Georgia Tech Smoothing and Mapping (GTSAM) library which is used for solving estimation problems using factor graphs. Factor graphs are a

way to represent relationships between variables using "factors" (pieces of information gotten from sensors or motion)

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	
Behaviour-Hiding Module	Input Format Module Simulation Module Output Module Localization Module Control Module Accuracy Evaluation Module
Software Decision Module	GTSAM Module Plotting Module

Table 2: Module Hierarchy

6 MIS of Control Module

6.1 Module

main

6.2 Uses

- Input Format Module (Section 8)
- Localization Module (Section 10)
- Accuracy Evaluation Module (Section 11)
- Plotting Module (Section 13)
- Output Module (Section 12)
- Python multiprocessing Library (Queue, Process)

6.2.1 Exported Constants

None

6.2.2 Exported Access Programs

Name	In	Out	Exceptions
main	-	-	=

6.3 Semantics

6.3.1 State Variables

None

6.3.2 Environment Variables

None

6.3.3 Assumptions

None

6.3.4 Access Routine Semantics

main():

• transition: Modifying data_queue with each iteration of range measurements as the Plotting and Output modules get updated

```
# Get Data
input = InputData() # Abstract Data Type from Input Format Module
# Start the Output Data
data_queue = Queue()
process = Process(target=run_gui, args=(data_queue,))
process.start()
m=p # Number of positions the robot has in the map
# Getting estimated pose for each set of measurements
for t in range(1,m):
    \hat{\mathbf{x}} := \text{localize}(\mathbf{a}, T_{mf}, T_{rf}, \tilde{\mathbf{D}}[t,:])
    # Computing FIM & CRLB
    fim = compute\_fim(\hat{\mathbf{x}}, \mathbf{a}, variances(\boldsymbol{\sigma}^2))
    crlb = compute_crlb(fim) # Will be printed
    update\_trajectory(\mathbf{\hat{x}})
    data\_queue.put((t, \hat{\mathbf{x}}.x(), \hat{\mathbf{x}}.y(), \hat{\mathbf{x}}.theta()))
# Plot on the map
plot_localization_live(\mathbf{a}, T_{mf}, \text{map})
```

7 MIS of GTSAM Module

7.1 Module

 $gtsam_wrapper$

7.2 Uses

None

7.3 Syntax

7.3.1 Exported Constants

None

7.3.2 Exported Access Programs

Name	In	Out	Exceptions
Pose2	$x: \mathbb{R}, y: \mathbb{R}, \theta: \mathbb{R}$	\mathbb{R}^3	-
Point2	$x:\mathbb{R},y:\mathbb{R}$	\mathbb{R}^2	-
symbol	char: char, int: \mathbb{Z}	String	-
${\bf Nonlinear Factor Graph}$	-	Graph	-
PriorFactorPose2	$key: \mathbb{Z}, \mathbf{pose}: \mathbb{R}^3, noise: Model$	Factor	-
PriorFactorPoint2	$key: \mathbb{Z}, \mathbf{pose}: \mathbb{R}^2, noise: Model$	Factor	-
RangeFactor2D	$key1: \mathbb{Z}, key2: \mathbb{Z}, d: \mathbb{R}, noise:$	Factor	-
	Model		
$noise Model_I sotropic_Sigma$	$dim: \mathbb{Z}, \sigma: \mathbb{R}$	Model	-
${\bf Levenberg Marquardt Optimizer}$	graph: Graph, values: Values	Values	-
Values	-	Values	-
insert	$values: Values, key: \mathbb{Z}, value:$	-	-
	Pose2 or Point2		
atPose2	$result: Values, key: \mathbb{Z}$	\mathbb{R}^3	-
compose	$T_{mf}:\mathbb{R}^3,T_{rf}:\mathbb{R}^3$	\mathbb{R}^3	-
inverse	$T_{rf}:\mathbb{R}^3$	\mathbb{R}^3	-

7.4 Semantics

7.4.1 State Variables

None

7.4.2 Environment Variables

None

7.4.3 Assumptions

None

7.4.4 Access Routine Semantics

Pose $2(x, y, \theta)$:

- output: $out := [x, y, \theta]$ (A 2D pose with orientation)
- exception: None

Point2(x, y):

- output: out := [x, y] (2D position)
- exception: None

symbol(char, int):

- output: out := x1(pose), a1, a2, a3(beacons)
- exception: None

NonlinearFactorGraph():

- ullet output: out:= An empty factor graph
- exception: None

 ${\bf PriorFactorPose2} (key, pose, noise_model) :$

- ullet output: out := Factor (A prior factor on a 2D pose)
- exception: None

 ${\bf PriorFactorPoint2}(key, point, noise_model):$

- \bullet output: out := Factor (A prior factor on a 2D point)
- exception: None

 $RangeFactor 2D(\textit{key}_1, \textit{key}_2, \textit{measured}, \textit{noise_model}) :$

- \bullet output: out := Factor (A range factor between two keys)
- exception: None

noiseModel_Isotropic_Sigma (dim, σ) :

- output: out := Model (An isotropic noise model)
- exception: None

LevenbergMarquardtOptimizer(graph, values):

- output: out := Values (Optimized results from factor graph)
- exception: None

Values():

- output: out := Values (An empty values container)
- exception: None

insert(Values, key, value):

- transition: Adds point/pose into a Values variable according to its id (key)
- exception: None

atPose2(result, key):

- output: $out := \hat{\mathbf{x}}$
- exception: None

compose(T_{mf}, T_{rf}):

- output: $out := T_{mr}$ (The composition of two poses)
- exception: None

inverse (T_{rf}) :

- output: $out := T_{fr}$
- exception: None

8 MIS of Input Format Module

8.1 Module

 $input_format$

8.2 Uses

• Simulation Module (Section 9)

8.3 Syntax

8.3.1 Exported Constants

None

8.3.2 Exported Access Programs

These functions are methods of the 'InputData' class instance, which must be initialized before use (example shown in section 6.3.4).

Name	In	Out	Exceptions
load_input	self	-	FileNotFoundError,
			ValueError
$get_beacons$	self	$\mathbb{R}^{N imes 2}$	-
$\operatorname{get_fmMap}$	self	\mathbb{R}^3	-
$get_fmRobots$	self	\mathbb{R}^3	_
$\operatorname{get_map}$	self	String	_
get_ranges	self	\mathbb{R}^N	_
$get_variances$	self	\mathbb{R}^N	-

8.4 Semantics

8.4.1 State Variables

- input_file: A string representing the path to the user input file (user_input.yaml).
- data: A dictionary storing parsed YAML input data.

8.4.2 Environment Variables

None

8.4.3 Assumptions

• The module will call on a pre-existing YAML file

8.4.4 Access Routine Semantics

load_input():

- transition: Reads the YAML input file and stores it in 'self.data'.
- exception: FileNotFoundError if the input file is not detected and ValueError if the YAML file is formatted incorrectly

input.get_beacons():

- \bullet output: $out := \mathbf{a}$
- exception: None

get_fmMap():

- output: $out := T_{mf} = Pose2(\mathbb{R}^3)$
- exception: None

get_fmRobot():

- output: $out := T_{rf} = Pose2(\mathbb{R}^3)$
- exception: None

get_map():

- output: out:= String of picture's name
- exception: None

get_ranges():

- ullet output: $out:= ilde{\mathbf{D}}$
- ullet exception: None

get_variances():

- output: $out := \sigma^2$
- $\bullet\,$ exception: None

9 MIS of Simulation Module

9.1 Module

 $input_format$

9.2 Uses

• Simulation Module (Section 9)

9.3 Syntax

9.3.1 Exported Constants

None

9.3.2 Exported Access Programs

Name	In	Out	Exceptions
load_input	self	-	FileNotFoundError,
			ValueError
$get_beacons$	self	$\mathbb{R}^{N imes 2}$	-
get_fmMap	self	\mathbb{R}^3	-
$get_fmRobots$	self	\mathbb{R}^3	-
$\operatorname{get_map}$	self	String	-
get_ranges	self	\mathbb{R}^N	-
$\operatorname{get_variances}$	self	\mathbb{R}^N	-

9.4 Semantics

9.4.1 State Variables

- input_file: A string representing the path to the user input file (user_input.yaml).
- data: A dictionary storing parsed YAML input data.

9.4.2 Environment Variables

None

9.4.3 Assumptions

• The module will call on a pre-existing YAML file

9.4.4 Access Routine Semantics

load_input():

- transition: Reads the YAML input file and stores it in 'self.data'.
- exception: FileNotFoundError if the input file is not detected and ValueError if the YAML file is formatted incorrectly

input.get_beacons():

- \bullet output: $out := \mathbf{a}$
- exception: None

get_fmMap():

- output: $out := T_{mf} = Pose2(\mathbb{R}^3)$
- exception: None

get_fmRobot():

- output: $out := T_{rf} = Pose2(\mathbb{R}^3)$
- exception: None

get_map():

- output: out:= String of picture's name
- exception: None

get_ranges():

- ullet output: $out:= ilde{\mathbf{D}}$
- ullet exception: None

get_variances():

- output: $out := \sigma^2$
- exception: None

10 MIS of Localization Module

10.1 Module

localization

10.2 Uses

- GTSAM Module (Section 7)
- Input Format Module (Section 8)

10.3 Syntax

10.3.1 Exported Constants

None

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
localize	$\mathbf{a}: \mathbb{R}^{N imes 2}, \mathbf{T}_{mf}: \mathbb{R}^3, \mathbf{T}_{rf}: \mathbb{R}^3, \mathbf{ ilde{d}}: \mathbb{R}^N$	\mathbb{R}^3	-

10.4 Semantics

10.4.1 State Variables

None

10.4.2 Environment Variables

None

10.4.3 Assumptions

• GTSAM is installed

10.4.4 Access Routine Semantics

localize($\mathbf{a}, \mathbf{T}_{mf}, \mathbf{T}_{rf}, \tilde{\mathbf{d}}$):

• output: $out := \hat{\mathbf{x}}$

• exception: ValueError if estimation fails or result is not computable

11 MIS of Accuracy Evaluation Module

11.1 Module

accuracy

11.2 Uses

• Localization Module (Section 10)

11.3 Syntax

11.3.1 Exported Constants

None

11.3.2 Exported Access Programs

Name	In	Out	Exceptions
compute_fim	$\hat{\mathbf{x}}: \mathbb{R}^3, \mathbf{a}: \mathbb{R}^{N imes 2}, oldsymbol{\sigma^2}: \mathbb{R}^N$	$\mathbb{R}^{2 imes2}$	-
$compute_crlb$	$oldsymbol{\mathcal{I}}(\hat{\mathbf{x}}): \mathbb{R}^{2 imes 2}$	$\mathbb{R}^{2 imes2}$	-

11.4 Semantics

11.4.1 State Variables

None

11.4.2 Environment Variables

None

11.4.3 Assumptions

• Noise variances are positive

11.4.4 Access Routine Semantics

compute_fim($\hat{\mathbf{x}}, \mathbf{a}, \boldsymbol{\sigma^2}$):

• output: $out := \mathcal{I}(\hat{\mathbf{x}})$ where $\mathcal{I}(\hat{\mathbf{x}})$ is a 2 × 2 Fisher Information Matrix (FIM) of the estimated pose, computed as:

$$\mathcal{I}(\hat{\mathbf{x}}) = \sum_{j=1}^{N} \frac{1}{\sigma_j^2} \frac{(\hat{\mathbf{x}} - \mathbf{a}_j)(\hat{\mathbf{x}} - \mathbf{a}_j)^T}{\|\hat{\mathbf{x}} - \mathbf{a}_j\|^2}$$

where $\hat{\mathbf{x}}$ only contains x and y (making it \mathbb{R}^2 so it can subtract)

• exception: None

 $\operatorname{compute_crlb}(\boldsymbol{\mathcal{I}}(\hat{\mathbf{x}})):$

• output: $out := A \ 2 \times 2$ CRLB matrix, computed as:

$$\mathcal{C} = \mathcal{I}^{-1}$$

• exception: None

12 MIS of Output Module

12.1 Module

output

12.2 Uses

• Localization Module (Section 10)

12.3 Syntax

12.3.1 Exported Constants

None

12.3.2 Exported Access Programs

Name	In	Out	Exceptions
update_table	-	-	-
run_gui	queue: Queue	-	-

12.4 Semantics

12.4.1 State Variables

None

12.4.2 Environment Variables

- date_queue: A queue storing tuples of estimated pose data (time, x, y, theta).
- display_env: The OS-level display environment variable required to render the Tkinter GUI (e.g., '\$DISPLAY' for Unix-based systems).

12.4.3 Assumptions

• The function 'run_gui()' is executed in a separate process to prevent a stalled execution.

12.4.4 Access Routine Semantics

update_table():

• transition: Retrieves the latest pose estimates from the queue and updates the Graphical User Interface (GUI) table.

run_gui(queue):

16	

 \bullet transition: Initializes and runs the Tkinter GUI while continuously checking for pose

updates.

13 MIS of Plotting Module

13.1 Module

plot

13.2 Uses

• Localization Module (Section 10)

13.3 Syntax

13.3.1 Exported Constants

None

13.3.2 Exported Access Programs

Name	In	Out	Exceptions
plot_localization_live	$\mathbf{a}: R^{N\times 2}, \mathbf{T}_{mf}: R^3, \text{ map: String}$	-	-
update_trajectory	$\hat{\mathbf{x}}: R^3$	-	_

13.4 Semantics

13.4.1 State Variables

• trajectory: A list storing estimated positions over time as (x, y, θ) .

13.4.2 Environment Variables

• plot_env: The Matplotlib interactive rendering backend required to run real-time plotting.

13.4.3 Assumptions

- 'plot_localization_live()' is run in an interactive Matplotlib session.
- 'update_trajectory()' is only called when valid estimated poses exist.
- 'plot_env' supports 'plt.ion()' and 'plt.pause()' for animation updates.
- localize()(Section 10) either returns a valid pose or raises an exception.

13.4.4 Access Routine Semantics

plot_localization_live($\mathbf{a}, \mathbf{T}_{mf}, \text{ map}$):

- transition: Initializes and continuously updates a real-time localization plot. update_trajectory($\hat{\mathbf{x}}$):
 - transition: Adds the latest estimated pose to the trajectory list for the map.

13.4.5 Local Functions

update(frame):

• transition: Retrieves the latest estimated pose from the trajectory and updates the visualization.

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.