

- 1) Prove that:
 - $\frac{1}{2}$ n (n-1) = $\Theta(n^2)$
 - $15n^3 + n^2 + 4 = O(n^3)$
 - $\bullet \quad n^3 + 4n^2 = \Omega(n^2)$
 - $n^2/2 3n = \Theta(n^2)$
 - $2^{n+1} = O(2^n)$
 - $n^{3=}\Omega(n^2)$
- 2) Order the following functions by growth rate (fastest is first) (all log base 2)

1)
$$f(n) = n^{\log 7}$$
 2) $f(n) = \sqrt{e^{\log n} + n^3}$ 3) $f(n) = \sum_{i=1}^{n} i$
4) $f(n) = \log^k n$ 5) $f(n) = n^3$ 6) $f(n) = \sqrt[3]{7^{\log n}}$
7) $f(n) = n$ 8) $f(n) = 4^{\log n}$ 9) $\frac{1}{\sqrt{\log n}}$

$$10) f(n) = n \times \log(\log(n))$$

3) Write the big-⊕ expression (tight bound) to describe the number of operations required for the following C++ code:

Note:

- Delivery of Assignment (1)
 - Due date: MO 23-NOV

By: Eng. Asmaa Hamad