

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIDADE ACADÊMICA DE ENGENHARIA ELÉTRICA

PROPOSTA DE TRABALHO DE CONCLUSÃO DE CURSO SOFTWARE PARA A IDENTIFICAÇÃO DE UMA REGIÃO TRIDIMENSIONAL DE ESTABILIDADE DE UM SISTEMA DE CONTROLE ARBITRÁRIO

Flávi	io Fabrício Ventura de Melo Ferreira
	Aluno
	George Acioli Júnior
	Professor Orientador

CAMPINA GRANDE DEZEMBRO DE 2013

1. Introdução

O controlador Proporcional-integral-derivativo (controlador PID) é sem dúvidas o controlador mais comumente utilizado em sistemas de controle industriais. Um controlador PID calcula um valor de erro, erro esse que se trata da diferença entre a medida de uma variável do processo e um valor de referência pré-determinado. O controlador tenta então minimizar esse erro ajustando as entradas de controle do processo.

O algoritmo do controlador PID envolve três parâmetros constantes separados e por essa razão também é conhecido como controlador de três termos: o valor proporcional, o integral e o derivativo, chamados consecutivamente de P, I e D. Estes valores podem ser interpretados em relação ao tempo: P depende do erro atual, I depende do acumulo dos erros acontecidos e D se trata de uma predição de erros que virão a acontecer.

Objetivos

1.1. Objetivo Geral

Extrair um conjunto de parâmetros de um controlador de estabilidade PID a partir da identificação de uma região tridimensional de estabilidade de um sistema arbitrário.

Objetivos Específicos

- Identificação de um sistema a partir de um sinal de entrada aplicado e outro de saída observado.
- Síntese do controle propriamente.
- Geração de gráfico tridimensional da região de estabilidade.
- Extração dos parâmetros de controle a partir da região.

2. Metodologia

Para atingir os objetivos deste trabalho, será realizada primeiramente uma ampla pesquisa bibliográfica na literatura especializada para identificar maneiras normalmente utilizadas para extração e síntese do controle de um sistema a partir de sinais de entrada e saída. Será feita ainda uma revisão a respeito da interface de comunicação padronizada de equipamentos industriais OPC.

A próxima etapa do projeto será a identificação do sistema e síntese do controle utilizando a ferramenta Matlab, verificando desta maneira os valores de referência para futura comparação com a implementação em C#.

Em paralelo com a implementação do código em Matlab estará sendo feito o estudo da linguagem C# para que posteriormente seja possível a implementação do código de identificação e síntese de controle nesta linguagem.

As etapas subsequentes e em alguns momentos paralelas serão de testes de unidade do software e documentação.

A etapa final do projeto será dada por testes finais de controle dos sistemas utilizados.

Espera-se que os resultados obtidos a partir do sistema controlado com os parâmetros extraídos sejam satisfatórios para validação do software. Se possível, ainda espera-se uma melhoria nos algoritmos elaborados em relação aos algoritmos observados na literatura.

Durante toda a realização do projeto, cada etapa será detalhadamente documentada. Ao fim de todas as atividades, um relatório descrevendo cada parte do projeto será elaborado para a defesa de TCC, prevista para a primeira quinzena do mês de Abril.

3. Cronograma

Atividade	Mês															
	Janeiro			Fevereiro			Março			Abril						
Pesquisa Bibliográfica		X	X													
Revisão Padrão de Comunicação OPC			X	X												
Implementação de Código em Matlab					X	X	X	X	X	X						
Estudo Linguagem C#					X	X										
Implementação de Código C#							X	X	X	X						
Testes de Unidade							X	X	X	X						
Documentação do Código							X	X	X	X						
Testes Finais											X					
Elaboração de Relatório												X				
Previsão de Defesa													X	X	X	

Datas importantes:

Início dos trabalhos: 06/01/2014;

Defesa final do TCC: Entre 31/03/2014 a 18/04/2014.

REFERÊNCIAS BIBLIOGRÁFICAS

- Norbert Hohenbichler: All stabilizing PID controllers for time delay systems. <u>Automatica</u> <u>45</u>(11): 2678-2684 (2009)
- Karim Saadaoui, Sami Elmadssia and Mohamed Benrejeb. Stabilizing PID Controllers for a Class of Time Delay Systems, PID Controller Design Approaches - Theory, Tuning and Application to Frontier Areas, Dr. Marialena Vagia (Ed.), ISBN: 978-953-51-0405-6, (2012)