1. خصائص المتجهة تساوى متجهتين:

المتجهات التي لها نفس اتجاه المتجهة \overline{MN} هي : \overline{FI} ؛ $\overline{\dots}$; \overline{FI}

المتجهات التي لها نفس اتجاه $\overline{ ext{MN}}$ ومنحى معاكس لمنحى

 $\overrightarrow{MN} = \overrightarrow{MN}$: نستنجه التي لها نفسخصاءص المتجهة \overrightarrow{MN} هي :

	•	
المتجهتين المتساويتين	المتجهتين المتقابلتين	المتجهتين المستقيميتين
و $\overrightarrow{f V}$ متساويتان يعني أن لهما نفس الإتجاه و نفس المنحى ونفس المنظم	و $\overset{ ightarrow}{f V}$ متقابلتان يعني أن لهما $\overset{ ightarrow}{f U}$	و $\overrightarrow{ extbf{V}}$ مستقیمیتان یعنی أن لهما $\overrightarrow{ extbf{U}}$
نفس الإتجاه و نفس المنحي ونفس المنظم	نفس الإتجاه و منحيان متعاكسان ويعني كذلك	نفس الإتجاه ويعني كذلك أن:
ويعني كذلك أن:	أن:	$\overrightarrow{\mathbf{U}} = \mathbf{k'. \overrightarrow{V}}$ او $\overrightarrow{\mathbf{V}} = \mathbf{k. \overrightarrow{U}}$
$\overrightarrow{\mathbf{U}} = \overrightarrow{\mathbf{V}}$	$\overrightarrow{\mathbf{V}} = -\overrightarrow{\mathbf{U}}$	

2. خصائص المتجهتين المستقيميتين:

- (\mathbf{EF}) و $\overrightarrow{\mathbf{V}}=\overrightarrow{\mathbf{EF}}$ مستقیمیتان غیر منعدمتان یعنی أن لهما نفس الإتجاه و هذا یعنی أن المستقیمان $\overrightarrow{\mathbf{V}}=\overrightarrow{\mathbf{EF}}$ و $\overrightarrow{\mathbf{U}}=\overrightarrow{\mathbf{AB}}$ متوازیان.
 - ه مستقیمیتان غیر منعدمتان یعنی أن $\overrightarrow{\mathbf{V}} = \overrightarrow{\mathbf{EF}}$ و $\overrightarrow{\mathbf{V}} = \overrightarrow{\mathbf{AB}}$ ه مستقیمیتان غیر منعدمتان یعنی أن $\overrightarrow{\mathbf{V}} = \mathbf{k}$. $\overrightarrow{\mathbf{U}}$
 - $\mathbf{EF} = |\mathbf{k}| \cdot \mathbf{AB}$ ان ن $||\overrightarrow{\mathbf{V}}|| = |\mathbf{k}| \cdot ||\overrightarrow{\mathbf{U}}||$ (a
 - ا إذا كان \mathbf{k} \mathbf{w} فإن \mathbf{U} و \mathbf{V} لهما نفس المنحى \mathbf{v} و إذا كان \mathbf{k} فإن \mathbf{V} و \mathbf{V} لهما منحيان متعاكسان

3. جمع المتجهات / علاقة شال:

4. حالة متجهتين غير مستقيميتن:

کل متجهتان غیر منعدمتان و غیر مستقیمیتان و و و عیر مستقیمیتان عیر مستقیمیتان المستوی المستوی المستوی المستوی المستوی علی علی المستوی المستوی علی علی المستوی المستوی

نقول أن (x,y) هو زوج إحداثيتي النتقطة M ونكتب M(x,y) أو M(x,y) في المعلم M(x,y) اذا وفقط إذا تحقق الشرط

$$\mathbf{AM} = \mathbf{x} \cdot \mathbf{e}_1 + \mathbf{y} \cdot \mathbf{e}_2$$

$$\overrightarrow{AM} = x \cdot \overrightarrow{e_1} + y \cdot \overrightarrow{e_2}$$
 . 7 . 1

$$\vec{EF} = \vec{AF} - \vec{AE} = \begin{pmatrix} x_F \cdot \vec{e_1} + y_F \cdot \vec{e_2} \end{pmatrix} - \begin{pmatrix} x_E \cdot \vec{e_1} + y_E \cdot \vec{e_2} \end{pmatrix} = (x_F - x_E) \cdot \vec{e_1} + (y_F - y_E) \cdot \vec{e_1}$$

$$\vec{EF} \begin{pmatrix} x_F - x_E \\ y_F - y_E \end{pmatrix} : \vec{e_1} + (y_F - y_E) \cdot \vec{e_1} + (y_F - y_E) \cdot \vec{e_2} = \vec{e_1} + \vec{e_2} + \vec{e_2} = \vec{e_1} + \vec{e_2} + \vec{e_2} = \vec{e_2} + \vec{e_2} = \vec{e_1} + \vec{e_2} = \vec{e_2} + \vec{e_2} = \vec{e_2} = \vec{e_1} + \vec{e_2} = \vec{e_2} =$$

ین:
$$\overrightarrow{EI} = \overrightarrow{IF}$$
 ومنه نستنتج أن : $[EF]$ هو منتصف القطعة $Iigg(f{x_I}{y_I}igg)$ ومنه نستنتج أن

$$\left\{egin{array}{ll} \mathbf{x_I} & = rac{\mathbf{x_E} + \mathbf{x_F}}{2} \ \mathbf{y_I} & = rac{\mathbf{y_E} + \mathbf{y_F}}{2} \end{array}
ight. : \left\{egin{array}{ll} \mathbf{x_I} & -\mathbf{x_E} = \mathbf{x_F} & -\mathbf{x_I} \ \mathbf{y_I} & -\mathbf{y_E} = \mathbf{y_F} & -\mathbf{y_I} \end{array}
ight. : \left\{egin{array}{ll} \mathbf{x_I} & -\mathbf{x_E} \ \mathbf{y_I} & -\mathbf{y_E} \end{array}
ight. = \left(egin{array}{ll} \mathbf{x_F} & -\mathbf{x_I} \ \mathbf{y_F} & -\mathbf{y_I} \end{array}
ight)
ight.$$

 $egin{aligned} egin{aligned} oldsymbol{\mathrm{X}}_{\mathrm{E}} & + oldsymbol{\mathrm{X}}_{\mathrm{F}} \ oldsymbol{\mathrm{Y}}_{\mathrm{E}} & + oldsymbol{\mathrm{Y}}_{\mathrm{F}} \ oldsymbol{\mathrm{Z}} \end{aligned} : \begin{bmatrix} \mathbf{E}\mathbf{F} \end{bmatrix}$: المحداثياتي منتصف القطعة

8. $\frac{2}{\text{aida}}$ area $\frac{2}{\text{aida}}$ area $\frac{2}{\text{aoida}}$ $\frac{2}{\text{aoida}}$ and $\frac{2}{\text{aoida}}$ are $\frac{2}{\text{a$

$$\mathbf{E}\mathbf{F}^2 = \mathbf{E}\mathbf{D}^2 + \mathbf{D}\mathbf{F}^2$$

$$\mathbf{E}\mathbf{F}^2 = (\mathbf{x}_{\mathbf{F}} - \mathbf{x}_{\mathbf{E}})^2 + (\mathbf{y}_{\mathbf{F}} - \mathbf{y}_{\mathbf{E}})^2$$

$$\mathbf{EF}^2 = \sqrt{(\mathbf{x}_{F} - \mathbf{x}_{E})^2 + (\mathbf{y}_{F} - \mathbf{y}_{E})^2}$$

$$\mathbf{det} \stackrel{\rightarrow}{(U,V)} = \begin{vmatrix} a & c \\ b & d \end{vmatrix} = ad - bc$$
 في المعلم $\mathbf{V} \stackrel{\rightarrow}{(c)} = \mathbf{V} \stackrel{\rightarrow}{(d)} = \mathbf{V} \stackrel{\rightarrow}{$

$$(\stackrel{
ightarrow}{e_1}\stackrel{
ightarrow}{,\stackrel{
ightarrow}{e_2}})$$
 يسمى محددة المتجهتين $\stackrel{
ightarrow}{U}\!\!\begin{pmatrix} c \\ d \end{pmatrix}$ و $\stackrel{
ightarrow}{V}\!\!\begin{pmatrix} a \\ b \end{pmatrix}$ يسمى محددة المتجهتين $\det(\stackrel{
ightarrow}{U},\stackrel{
ightarrow}{V})$

$$\overrightarrow{V}=k.\overrightarrow{U}$$
 و $\overrightarrow{V}=k.\overrightarrow{U}$ مستقیمیتان یعنی اُن $\overrightarrow{V}=k.\overrightarrow{U}$ و بالتالی $\overrightarrow{V}=k.\overrightarrow{U}$ و بالتالی $\overrightarrow{V}=k.\overrightarrow{U}$ ای $\overrightarrow{V}=k.\overrightarrow{U}$ انهایه شرط استقامیه $\overrightarrow{V}=k.\overrightarrow{U}$ و بالتالی $\overrightarrow{V}=k.\overrightarrow{U}$

$$\det (\overset{
ightarrow}{\mathbf{U}},\overset{
ightarrow}{\mathbf{V}}) = \begin{vmatrix} \mathbf{a} & \mathbf{c} \\ \mathbf{b} & \mathbf{d} \end{vmatrix} = \mathbf{ad} - \mathbf{bc} = \mathbf{0}$$
 مستقیمیتان یعنی اُن $\overset{
ightarrow}{\mathbf{V}} \begin{pmatrix} \mathbf{c} \\ \mathbf{d} \end{pmatrix}$ و $\overset{
ightarrow}{\mathbf{U}} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$

توازي مستقيمين / استقامية ثلاث نقط:

.
$$\mathbf{F} \begin{pmatrix} \mathbf{X}_{\mathbf{D}} \\ \mathbf{y}_{\mathbf{D}} \end{pmatrix}$$
 و $\mathbf{C} \begin{pmatrix} \mathbf{X}_{\mathbf{C}} \\ \mathbf{y}_{\mathbf{C}} \end{pmatrix}$ و $\mathbf{B} \begin{pmatrix} \mathbf{X}_{\mathbf{B}} \\ \mathbf{y}_{\mathbf{B}} \end{pmatrix}$ و $\mathbf{A} \begin{pmatrix} \mathbf{X}_{\mathbf{A}} \\ \mathbf{y}_{\mathbf{B}} \end{pmatrix}$ و (b) في الأساس (C) و \mathbf{e}_{1} و (D) و (D) و (D)

$$\det(\overset{
ightarrow}{\mathbf{U}},\overset{
ightarrow}{\mathbf{V}}) = \begin{vmatrix} \mathbf{a} & \mathbf{c} \\ \mathbf{b} & \mathbf{d} \end{vmatrix} = \mathbf{ad} - \mathbf{bc}$$
 لدينا

 $\overset{
ightarrow}{\mathbf{V}}=\mathbf{k}.\overset{
ightarrow}{\mathbf{U}}$ أن $\overset{
ightarrow}{\mathbf{V}}$ و $\overset{
ightarrow}{\mathbf{V}}$ مستقيميتان يعني أن

ومنه
$$bc - ad = 0$$
 ومنه $d = k.ab$ انهاية شرط استقامية متحهتين كالتالي :

$$\det (\overset{
ightarrow}{U},\overset{
ightarrow}{V}) = \begin{vmatrix} a & c \\ b & d \end{vmatrix} = ad-bc = 0$$
 مستقیمیتان یعنی اُن $\overset{
ightarrow}{V} \begin{pmatrix} c \\ d \end{pmatrix}$, $\overset{
ightarrow}{U} \begin{pmatrix} a \\ b \end{pmatrix}$