LPO 9952

Model Design

We'll be working today with the wage2 dataset, which includes monthly wages of male earners along with a variety of characteristics. We'll be attempting to esimtate some fairly standard wage models, but we'll also try to answer the most vexing question for many students: what variables should I put in my model?

The most important answer to that question is to use theory. Theory and previous results are our only guide—the data simply can't tell you by themselves what belongs in the model and what doesn't. However, we can use a combination of theory and applied data analysis to come up with a model that fits the data well and says something interesting about theory.

```
. version 15 /* Can set version here, use the most recent as default */
. capture log close /* Closes any logs, should they be open */
. log using "model_design_do.log",replace /*Open up new log */
     name: <unnamed>
      log: /Users/doylewr/lpo_prac/lessons/s2-06-model_design/model_design_do.log
 log type: text
opened on: 11 Mar 2021, 08:52:19
. clear
. clear matrix
. graph drop _all
. estimates clear /* Clears any estimates hanging around */
. set more off /*Get rid of annoying "more" feature */
. ssc install nnest
checking nnest consistency and verifying not already installed...
all files already exist and are up to date.
. bcuse wage2, clear
Contains data from http://fmwww.bc.edu/ec-p/data/wooldridge/wage2.dta
  obs:
                 935
vars:
                  17
                                              26 Jan 2000 12:16
```

variable name	•	display format	variable	label
wage	float	%9.0g		
hours	float	%9.0g		
IQ	float	%9.0g		
KWW	float	%9.0g		
educ	float	%9.0g		
exper	float	%9.0g		
tenure	float	%9.0g		
age	float	%9.0g		
married	float	%9.0g		
black	float	%9.0g		
south	float	%9.0g		
urban	float	%9.0g		
sibs	float	%9.0g		
brthord	float	%9.0g		
meduc	float	%9.0g		
feduc	float	%9.0g		
lwage	float	%9.0g		

Sorted by:

- . label variable wage "Wages from work in last month"
- . label variable hours "Weekly hours"
- . label variable IQ "IQ test"
- . label variable KWW "Knowledge of world of work"
- . label variable educ "Years of education"
- . label variable tenure "Months in current job"
- . label variable age "Age"
- . label variable married "Married"
- . label variable black "African-American"
- . label variable south "South"
- . label variable urban "Urban"

```
. label variable sibs "No. Siblings"
```

- . label variable brthord "Birth order"
- . label variable meduc "Mother's years of school"
- . label variable feduc "Father's years of education"
- . label variable lwage "ln Wage"
- . renvars *, lower
- . save wage2, replace
 file wage2.dta saved
- . local sig=.05
- . local sigtail=`sig'/2
- . graph twoway scatter wage educ
- . graph export "wage_educ.pdf", replace
 (file /Users/doylewr/lpo_prac/lessons/s2-06-model_design/wage_educ.pdf written in PDF
- . graph twoway qfit wage age | | scatter wage age
- . graph export "wage_age.pdf", replace
 (file /Users/doylewr/lpo_prac/lessons/s2-06-model_design/wage_age.pdf written in PDF :

Missing Data

Let's talk again about how Stata handles missing data. Let's assume that we want to estimate several nested models, first with hours, education and age, then the same model with mother's education, then the same model with father's education, then a final model with all variables. Our results look like this.

```
. di _N
935
```

. reg lwage hours educ age

Source	l SS	df	MS	Number of obs	=	935
	+			F(3, 931)	=	46.91

Model	21.7514568	3	7.25048559	Prob	> F	= 0.0000
Residual	143.904838	931	.15457018	R-sq	uared	= 0.1313
+				- Adj	R-squared	= 0.1285
Total	165.656294	934	.177362199	Root	MSE	= .39315
lwage	Coef.	Std. Err.		P> t		. Interval]
hours	0047011	.0017887		0.009	0082115	0011906
educ	.0616404	.0058814	10.48	0.000	.0500981	.0731827
age	.0227339	.0041411	5.49	0.000	.0146069	.0308608
_cons	5.403279	.1732026	31.20	0.000	5.063366	5.743191

. reg lwage hours educ age meduc

Source	SS	df	MS	Number o F(4, 852		857 38.47
Model Residual	22.8514162 126.509635	4 852	5.71285406 .148485487	Prob > F R-square	= d =	0.0000
Total	149.361051	856	. 174487209	Adj R-sq Root MSE		
lwage	Coef.	Std. Err.	t	 P> t [95% Conf.	Interval]
hours educ age meduc _cons	0058052 .0525597 .0243798 .0184424 5.33402	.0018374 .0064521 .0042747 .0049725 .1776844	8.15 5.70 3.71	0.000 . 0.000 . 0.000 .	0094115 0398957 0159896 0086826 4.98527	0021989 .0652236 .03277 .0282022 5.682771

. reg lwage hours educ age feduc

Source	SS	df	MS	Number of obs	=	741
+				F(4, 736)	=	34.17
Model	20.2139719	4	5.05349299	Prob > F	=	0.0000
Residual	108.836202	736	. 147875274	R-squared	=	0.1566
+				Adj R-squared	=	0.1521
Total	129.050173	740	.174392126	Root MSE	=	.38455
lwage	Coef.	Std. Err.	t	P> t [95% Co	onf.	<pre>Interval]</pre>

•	007041			0.000		0031855
educ	.0475258	.0070026	6.79	0.000	.0337785	.0612732
age	.0262759	.0045806	5.74	0.000	.0172834	.0352685
feduc	.0172076	.0047569	3.62	0.000	.0078689	.0265462
_cons	5.421121	.1897058	28.58	0.000	5.048692	5.79355

. reg lwage hours educ age feduc meduc

Source	SS	df	MS		per of obs		722
+-				- F(5,	716)	=	27.64
Model	20.519095	5	4.10381899	Prob	> F	=	0.0000
Residual	106.292836	716	.148453682	R-sc	quared	=	0.1618
+-				- Adj	R-squared	l =	0.1560
Total	126.811931	721	.1758834	l Root	MSE	=	.3853
lwage	Coef.	Std. Err.	t 	P> t		Conf.	Interval]
hours	0071408	.0019821	-3.60	0.000	01103	321	0032495
educ	.046006	.0072322	6.36	0.000	.03180	71	.0602049
age	.0249456	.0046705	5.34	0.000	.01577	62	.034115
feduc	.0114239	.0055571	2.06	0.040	.00051	.38	.022334

2.10

28.02

0.036

0.000

.0008543

5.026024

.0256285

5.783539

The results are extermely problematic because each set of results is on a different sample! The first set has 857 observations, the second 741, and down to 722 for the final one. Stata performs casewise deletion when running regressions, and doesn't adjust unless you tell it to. In this case none of the standard tests of model fit are relevant, because it's not the same sample.

.0063094

.1929204

.0132414

5.404781

The solution is to use the e(sample) command to limit the sample to the relevant analysis sample. First, run the model that restricts the data the most (has the most missing data), then limit subsequent models using the statement if e(sample) == 1.

. gen analytic_sample_flag=e(sample)

meduc |

_cons |

. reg lwage hours educ age if analytic_sample_flag==1

722	=	Number of obs	MS	df	SS	Source
39.52	=	F(3, 718)				+
0.0000	=	Prob > F	5.99074834	3	17, 972245	Model

Residual	108.839686	718	.151587307	R-squared Adj R-square	= 0.1417 $= 0.1381$
Total	126.811931	721	.1758834	Root MSE	= .38934
lwage	Coef.	Std. Err.		/> t [95%	Conf. Interval]
hours	0067617	.0019997	-3.38 0	.0010106	68770028357
educ	.0593979	.0065158	9.12 0	.000 .0466	.0721902
age	.0236215	.0046986	5.03 0	.000 .014	.0328461
_cons	5.50891	.1932456	28.51 0	.000 5.129	9516 5.888304

. reg lwage hours educ age meduc if analytic_sample_flag==1

Source	SS	df	MS	Number of obs	=	722
				F(4, 717)	=	33.35
Model	19.8917203	4	4.97293007	Prob > F	=	0.0000
Residual	106.920211	717	.149121633	R-squared	=	0.1569
	·			Adj R-squared	=	0.1522
Total	126.811931	721	.1758834	Root MSE	=	.38616

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
hours	0071587	.0019865	-3.60	0.000	0110588	0032587
educ	.050238	.0069486	7.23	0.000	.036596	.0638801
age	.0240817	.004662	5.17	0.000	.014929	.0332345
meduc	.0196873	.0054874	3.59	0.000	.008914	.0304606
_cons	5.423663	.1931347	28.08	0.000	5.044485	5.80284

- . gen meduc_flag=meduc==.
- . gen feduc_flag=feduc==.
- . tab meduc_flag feduc_flag

meduc_flag		feduc_flag 0	1	1	Total
0		722 19	135 59	 	857 78

The log transformation

The variable lwage is the natural log of wages. This means that it has been transformed by taking the natural log of the underlying variable:

$$log_e(y_i) = x \equiv e^x = y_i$$

Where e is Euler's constant,

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = \frac{1}{1} + \frac{1}{1 \times 2} + \frac{1}{1 \times 2 \times 3} \dots$$

The log transformation is used all the time, and particularly in econometrics. It's useful whenever you have a variable that follows some kind of exponential distribution, with widely disparate levels. Earnings, school sizes, revenues of instititions of higher education and state populations are all examples of these kinds of situations.

When the dependent variable is log transformed but the independent variable is not, this is called a log-level regression. In a log-level regression, the following applies:

$$log(y_i) = \beta_o + \beta_1 x_i + \epsilon_i$$

Which implies that

$$y_i = e^{\beta_o + \beta_1 x_i + \epsilon_i}$$

And . . .

$$\frac{dy}{dx} = \beta e^{\beta_0 + \beta_1 x_1 + \epsilon} = \beta_1 y$$

Which means that the coefficient, β_1

$$\beta_1 = \frac{dy}{dx} \frac{1}{y}$$

This changes our interpretation to mean that for a one unit increase in x, y is predicted to increase by β_1 proportion of y or more commonly by $100 * \beta_1$

percent. It changes the scale of the dependent variable to be on the 1/y scale as opposed to the y scale, so everything is about a proportional (or percentage) increase in y.

Quick Exercise

Interpret the coefficients from the basic earnings regression of log wages on years of education.

```
. preserve
. clear
. di log(0)
. di log(1)
. di log(10)
2.3025851
. di log(100)
4.6051702
. di log(1000)
6.9077553
. set obs 1000
number of observations (_N) was 0, now 1,000
. egen fakenumber= fill(1(10)1000)
. gen log_fakenumber=log(fakenumber)
. graph twoway line log_fakenumber fakenumber
. restore
```

Stepwise Regression: Proceed with Caution

When selecting variables for a model, students are sometimes tempted by the dark side of stepwise regression, which is a step on the path toward the greater evil that is data mining. I will illustrate why this is a bad idea. The basic idea with stepwise regression is to eliminate variables from the model one at a

time—if the variable is not significant, it gets dropped. However, this method is very sensitive to the overall group of variables used, essentially just pushing decisions one step back, and then using an arbitrary non-theoretical standard for variable inclusion. There is no good theoretical reason to use this procedure.

In data science, these approaches are used all of the time with the assumption that we won't learn anything meaningful about the parameters, but instead will get an accurate prediction. In cases where all we want is an accurate prediction, this approach is ok, but stepwise regression isn't used in modern practice any more.

. stepwise, pr(.2): reg lwage hours educ age meduc feduc tenure south married black up begin with full model

```
p = 0.3500 >= 0.2000 removing feduc
```

 $p = 0.2712 \ge 0.2000$ removing sibs

p = 0.2237 >= 0.2000 removing brthord

Source	SS	df	MS	Number of obs	=	663
+				F(11, 651)	=	23.26
Model	31.7400529	11	2.88545936	Prob > F	=	0.0000
Residual	80.7431222	651	.124029374	R-squared	=	0.2822
+				Adj R-squared	=	0.2700
Total	112.483175	662	.169914162	Root MSE	=	.35218

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
hours	0067126	.0019326	-3.47	0.001	0105074	0029177
educ	.0332989	.0078237	4.26	0.000	.0179361	.0486617
age	.0157517	.005244	3.00	0.003	.0054545	.0260488
meduc	.0134071	.0053659	2.50	0.013	.0028706	.0239437
kww	.0034485	.0023844	1.45	0.149	0012335	.0081305
tenure	.0081709	.0028567	2.86	0.004	.0025613	.0137804
south	0585439	.0305602	-1.92	0.056	1185524	.0014646
married	.2077864	.0461308	4.50	0.000	.1172033	. 2983696
black	0938556	.054557	-1.72	0.086	2009845	.0132733
urban	.1980571	.0312361	6.34	0.000	.1367215	.2593928
iq	.0034329	.001223	2.81	0.005	.0010314	.0058343
_cons	5.151168	.2180037	23.63	0.000	4.723092	5.579243

[.] stepwise, pr(.05): reg lwage hours educ age meduc feduc tenure south married black to begin with full model

p = 0.3500 >= 0.0500 removing feduc

p = 0.2712 >= 0.0500 removing sibs

p = 0.2237 >= 0.0500 removing brthord

p = 0.1486 >= 0.0500 removing kww

p = 0.0689 >= 0.0500 removing south

Source	SS	df	MS			663
Model	31.0680934	 9	3.45201038	F(9, 653) Prob > F		27.69 0.0000
Residual	81.4150818					0.2762
+-				Adj R-squared		0.2662
Total	112.483175	662	.169914162	Root MSE	=	.3531
lwage	Coef.	Std. Err.	t	P> t [95% Co	nf.	Interval]
	0004600	0010207	2 24	0.004		0000050
hours		.0019327		0.001010255		0026659
educ	.0347812	.0076565	4.54	0.000 .019746	9	.0498156
age	.0195908	.0047192	4.15	0.000 .010324	2	.0288574
meduc	.0150286	.0053333	2.82	0.005 .00455	6	.0255011
iq	.0040984	.0011802	3.47	0.001 .001780	9	.0064159
tenure	.0088182	.0028499	3.09	0.002 .003222	1	.0144143
urban	.2102756	.0308692	6.81	0.000 .149660	7	.2708905
married	.2095021	.0461979	4.53	0.000 .118787	7	.3002164
black	1163507	.0538301	-2.16	0.031222051	6	0106498
_cons	5.000151	.206967	24.16	0.000 4.5937	5	5.406552

. stepwise, pr(.2) : reg lwage south brthord iq kww sibs feduc tenure married black to begin with full model

p = 0.3500 >= 0.2000 removing feduc

 $p = 0.2712 \ge 0.2000$ removing sibs

p = 0.2237 >= 0.2000 removing brthord

Source	SS	df	MS	Number F(11,	of obs = 651) =	663 23.26
Model Residual	31.7400529 80.7431222	11 651	2.88545936 .124029374	Prob >	F =	0.0000
	112.483175	662	.169914162	•	squared = SE =	0.2700
lwage	Coef.	Std. Err.	t :	 P> t 	 [95% Conf.	Interval]
south educ	0585439 .0332989 .0034329	.0305602 .0078237 .001223	4.26	0.056 0.000 0.005	1185524 .0179361 .0010314	.0014646 .0486617 .0058343
iq kww age	.0034485	.0023844	1.45	0.149	0012335	.0081305
meduc	.0134071	.0053659		0.013	.0028706	.0239437

```
0.004
 tenure |
            .0081709
                        .0028567
                                     2.86
                                                       .0025613
                                                                   .0137804
                        .0461308
                                            0.000
married |
            .2077864
                                    4.50
                                                      .1172033
                                                                   .2983696
  black |
           -.0938556
                        .054557
                                    -1.72
                                            0.086
                                                      -.2009845
                                                                   .0132733
  urban |
            .1980571
                        .0312361
                                    6.34
                                            0.000
                                                       .1367215
                                                                   .2593928
  hours |
           -.0067126
                        .0019326
                                    -3.47
                                            0.001
                                                      -.0105074
                                                                  -.0029177
            5.151168
                        .2180037
                                    23.63
                                            0.000
                                                       4.723092
                                                                   5.579243
  _cons |
```

- . stepwise, pr(.05): reg lwage south brthord iq kww sibs feduc tenure married black to begin with full model
- p = 0.3500 >= 0.0500 removing feduc
- p = 0.2712 >= 0.0500 removing sibs
- p = 0.2237 >= 0.0500 removing brthord
- p = 0.1486 >= 0.0500 removing kww
- p = 0.0689 >= 0.0500 removing south

Source	SS	df	MS	Number of obs	=	663
+-				F(9, 653)	=	27.69
Model	31.0680934	9	3.45201038	Prob > F	=	0.0000
Residual	81.4150818	653	.124678533	R-squared	=	0.2762
+-				Adj R-squared	=	0.2662
Total	112.483175	662	.169914162	Root MSE	=	.3531

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
urban educ iq hours age meduc tenure	.2102756 .0347812 .0040984 0064609 .0195908 .0150286 .0088182	.0308692 .0076565 .0011802 .0019327 .0047192 .0053333 .0028499	6.81 4.54 3.47 -3.34 4.15 2.82 3.09	0.000 0.000 0.001 0.001 0.000 0.005 0.002	.1496607 .0197469 .0017809 0102559 .0103242 .004556	. 2708905 . 0498156 . 0064159 0026659 . 0288574 . 0255011 . 0144143
married	.2095021	.0461979	4.53	0.000	.1187877	.3002164
black _cons	1163507 5.000151	.0538301 .206967	-2.16 24.16	0.031	2220516 4.59375	0106498 5.406552
-						

- . stepwise, pr(.2): reg lwage south brthord kww sibs feduc tenure married black he begin with full model
- $p = 0.5103 \ge 0.2000$ removing sibs
- p = 0.2146 >= 0.2000 removing brthord

Source	SS	df	MS	Number of obs	=	663
				F(10, 652)	=	19.75
Model	26.1546559	10 2	.61546559	Prob > F	=	0.0000

```
Residual | 86.3285193
                          652 .132405704
                                          R-squared
                                                            0.2325
-----
                          -----
                                          Adj R-squared
                                                             0.2207
   Total | 112.483175
                          662 .169914162
                                          Root MSE
                                                             .36388
                                 t P>|t|
                                               [95% Conf. Interval]
   lwage |
              Coef.
                     Std. Err.
   south | -.0886972
                     .0312376
                              -2.84 0.005
                                               -.1500357
                                                         -.0273588
                                              .0015551
                     .0053403
                                                         .0225275
          .0120413
                               2.25 0.024
    age |
          .0066253
                     .0023708
                                2.79 0.005
                                                .00197
                                                         .0112805
    kww |
   meduc |
                                1.70 0.090
          .0106574
                     .0062851
                                               -.0016842
                                                           .0229989
                                               -.0025224
   feduc |
           .0084136
                     .0055693
                                 1.51
                                      0.131
                                                           .0193497
                                               .0020157
          .0078097
                     .0029507
                                2.65 0.008
                                                         .0136036
  tenure |
 married |
          .1987501
                     .0476411
                                4.17 0.000
                                               .1052016
                                                         . 2922985
   black | -.0799257
                     .0545557
                                -1.47
                                      0.143
                                               -.1870519
                                                           .0272004
   hours |
          -.006741
                     .0019951
                                -3.38
                                       0.001
                                               -.0106585
                                                          -.0028235
          .0412033
                     .0075936
                                5.43
                                      0.000
                                                .0262926
                                                           .0561141
    educ |
   _cons | 5.508661
                     .2030461
                                27.13
                                       0.000
                                                5.109958
                                                           5.907365
```

. stepwise, pr(.05): reg lwage south brthord kww sibs feduc tenure married black he begin with full model

p = 0.5103 >= 0.0500 removing sibs

p = 0.2146 >= 0.0500 removing brthord

p = 0.1434 >= 0.0500 removing black

p = 0.1099 >= 0.0500 removing feduc

Г								
	Source	l SS	df	MS		DOI OI ODD	=	663
		+			- F(8	, 654)	=	24.00
	Model	25.5304974	8	3.19131217	' Pro	b > F	=	0.0000
	Residual	86.9526778	654	.132955165	R-s	quared	=	0.2270
		+			- Adj	R-squared	=	0.2175
	Total	112.483175	662	.169914162	2 Roo	t MSE	=	.36463
	lwage	Coef.	Std. Err.	t	P> t	[95% Conf		Interval]
		+						
	south	1005921	.0307895	-3.27	0.001	1610502		040134
	age	.0108531	.0053138	2.04	0.042	.000419		.0212872
	kww	.0074534	.0023359	3.19	0.001	.0028667		.0120401
	meduc	.0161784	.0055007	2.94	0.003	.0053773		.0269795
	hours	0066665	.0019986	-3.34	0.001	0105909		0027422
	tenure	.0077155	.002955	2.61	0.009	.0019132		.0135178
	married	.2023529	.0476962	4.24	0.000	.1086967		.2960091
	educ	.0438651	.0073657	5.96	0.000	.0294018		.0583284
	cons	l 5.4996	.2016607	27.27	0.000	5.10362		5.895581

F Test

In choosing among model specifications that are nested, the F test is our basic guide. The F test looks at whether a linear restriction in the fully specified model results in a statistically significant decrease in model fit.

. reg lwage south brthord kww sibs feduc tenure married black hours educ age meduc

Source	SS	df	MS	Number of obs	=	663
 +				F(12, 650)	=	16.63
Model	26.416293	12	2.20135775	Prob > F	=	0.0000
Residual	86.0668822	650	.132410588	R-squared	=	0.2348
 +				Adj R-squared	=	0.2207
Total	112.483175	662	.169914162	Root MSE	=	.36388

lwage	1	Coef.	St	d. Err.	•	t	P> t	[95% Cor	nf.	Interval]
south	I	0838	. (314578		-2.66	 0.008	 145571	1	0220289
brthord	-	0167837	. (119862		-1.40	0.162	04032	2	.0067526
kww	1	.0067305	. (0023903		2.82	0.005	.0020369	9	.0114241
sibs	1	.0053631	. (0081421		0.66	0.510	0106248	3	.021351
feduc	1	.0079674	. (055787		1.43	0.154	002987	7	.0189218
tenure	1	.0078633		002952		2.66	0.008	.0020668	3	.0136598
married	1	.1967992	. (476677		4.13	0.000	.1031979	9	.2904005
black	-	0846613	. (558859		-1.51	0.130	1944	4	.0250775
hours	-	0069189	. (019991		-3.46	0.001	0108444	4	0029934
educ	1	.0409417	. (076049		5.38	0.000	.0260086	6	.0558747
age	1	.0118407	. (053439		2.22	0.027	.0013473	3	.0223341
meduc	1	.0096308	. (063914		1.51	0.132	0029196	ŝ	.0221812
_cons	l	5.560053	. 2	2098306		26.50	0.000	5.14802	5	5.97208

- . test meduc feduc
- (1) meduc = 0
- (2) feduc = 0

$$F(2, 650) = 4.01$$

 $Prob > F = 0.0187$

. test meduc=feduc

```
(1) - feduc + meduc = 0

F(1, 650) = 0.03
Prob > F = 0.8711
```

. test educ tenure hours

- (1) educ = 0
- (2) tenure = 0
- (3) hours = 0

$$F(3, 650) = 15.51$$

 $Prob > F = 0.0000$

RESET Test

One question that comes up frequently is whether one or more variables ought to be expressed as quadratic or higher-order polynomials in the equation. The RESET test can help with this problem. Specifying the RESET test without any options means that Stata will fit the model with the second, third and fourth powers of \hat{y} . Specifying the option rhs will use powers of the individual regressors.

In Stata, we would run:

. reg lwage hours age educ

Source	SS	df	MS	Numb	er of obs	=	935
+-				- F(3,	931)	=	46.91
Model	21.7514568	3	7.2504855	9 Prob	> F	=	0.0000
Residual	143.904838	931	.1545701	8 R-sc	_l uared	=	0.1313
+-				- Adj	R-squared	=	0.1285
Total	165.656294	934	.17736219	9 Root	MSE	=	.39315
			·				
lwage	Coef.	Std. Err.		P> t		onf.	Interval]
hours	0047011	.0017887	-2.63	0.009	008211		0011906
nours							
age	.0227339	.0041411	5.49	0.000	.014606	39	.0308608
educ	.0616404	.0058814	10.48	0.000	.050098	31	.0731827

31.20

0.000

5.063366

5.743191

_cons | 5.403279 .1732026

[.] estat ovtest

Ramsey RESET test using powers of the fitted values of lwage $$\operatorname{\textsc{Ho}}$:$$ model has no omitted variables

F(3, 928) = 0.32Prob > F = 0.8089

. estat ovtest, rhs

Ramsey RESET test using powers of the independent variables $$\operatorname{Ho}\colon$}$ model has no omitted variables

F(9, 922) = 2.12Prob > F = 0.0255

The result of the first test is not significant, but the result of the second test is. This indicates that we might want to include some additional powers of the right hand variables. Let's begin by introducing a quadratic function of age:

- . gen agesq=age^2
- . label var agesq "Age squared"
- . reg lwage hours educ age agesq

Source	SS	df	MS	Number of obs	=	935
 +				F(4, 930)	=	35.15
Model	21.7551592	4	5.43878981	Prob > F	=	0.0000
Residual	143.901135	930	.154732403	R-squared	=	0.1313
 +				Adj R-squared	=	0.1276
Total	165.656294	934	.177362199	Root MSE	=	.39336

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
hours	0047	.0017897	-2.63	0.009	0082123	0011876
educ	.0615585	.0059083	10.42	0.000	.0499634	.0731536
age	.0388675	.1043805	0.37	0.710	1659811	.2437162
agesq	0002425	.0015678	-0.15	0.877	0033193	.0028343
_cons	5.138356	1.721371	2.99	0.003	1.760134	8.516578

- . test age agesq
- (1) age = 0
- (2) agesq = 0

F(2, 930) = 15.07

$$Prob > F = 0.0000$$

The two terms for age are jointly significant, but it looks like we could safely exclude age squared from the model without any loss of model fit.

Now let's try education squared:

- . gen educsq=educ^2
- . la var educsq "Education squared"
- . reg lwage hours age educ educsq

Source	SS	df	MS	Number of obs	=	935
 +-				F(4, 930)	=	36.27
Model	22.3576551	4	5.58941378	Prob > F	=	0.0000
Residual	143.298639	930	.154084558	R-squared	=	0.1350
 +-				Adj R-squared	=	0.1312
Total	165.656294	934	.177362199	Root MSE	=	.39254

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
hours	004608	.0017866	-2.58	0.010	0081141	0011018
age	.0243563	.0042147	5.78	0.000	.0160848	.0326278
educ	.2161619	.0781252	2.77	0.006	.0628397	.369484
educsq	0054912	.0027685	-1.98	0.048	0109245	
_cons	4.286926	.5887928	7.28	0.000	3.13141	5.442443

- . test educ educsq
- (1) educ = 0
- (2) educsq = 0

$$F(2, 930) = 57.06$$

 $Prob > F = 0.0000$

This does result in a statistically significant increase in model fit. The way I would prefer approaching this problem is to fully specify the model, then restrict it appropriately, like so:

. reg lwage hours age agesq educ educsq

Source	SS	df	MS	Number of obs	=	935
 +-				F(5, 929)	=	29.00
Model	22.3674226	5	4.47348452	Prob > F	=	0.0000

Residual	143.288872	929	.154239905	R-squared Adj R-squar	= 0.1350 ed = 0.1304
Total	165.656294	934	.177362199	3 1	= .39273
lwage	Coef.	Std. Err.		 P> t [95%	Conf. Interval]
hours age agesq educ educsq _cons	0046056 .050602 0003944 .2169837 0055252 3.849225	.0017875 .1043806 .0015672 .0782328 .0027732 1.836393	0.48 -0.25 2.77 -1.99	0.010008 0.62815 0.801003 0.006 .063 0.047010 0.036 .245	4247 .255451 4699 .0026812 4502 .3705171 9676 0000828

. test age agesq

$$(2)$$
 agesq = 0

$$F(2, 929) = 16.71$$

 $Prob > F = 0.0000$

. test educ educsq

$$(1)$$
 educ = 0

(2) educsq = 0

$$F(2, 929) = 56.44$$

 $Prob > F = 0.0000$

Davidson-Mackinnon Test

In many situations, models are based on competing hypotheses, and so they don't nest within one another. Let's say we have one model that posits education as the key to wages, another that posits iq as the key to wages. To test whether one is better than the other, we use the Davidson-Mackinnon test:

. reg lwage hours iq

Source		SS	df	MS	Number of obs	=	935
 	+-				F(2, 932)	=	54.14
Model	1	17.2420918	2	8.62104588	Prob > F	=	0.0000
Residual		148.414203	932	.159242707	R-squared	=	0.1041

+- Total	165.656294		.177362199	•	squared = SE =	0.1022
lwage	Coef.	Std. Err.		P> t		Interval]
hours iq _cons	0041302 .0089535 6.053607	.0018124 .0008698 .1150416	-2.28 10.29 52.62	0.023 0.000 0.000	007687 .0072465 5.827837	0005734 .0106606 6.279378

. nnest educ age

Competing Models									
<pre>M1 : Y = [lwage] X = [hours iq] M2 : Y = [lwage] Z = [educ age] </pre>									
•	Dist Stat P> Stat H0:M1 / H1:M2 t(931) 8.18 0.000 H0:M2 / H1:M1 t(931) 6.77 0.000								
Cox-Pesar	an test for	non-nested	models						
HO:M1 / H1:M2 HO:M2 / H1:M1		Stat -12.47 -10.17	P> Stat 0.000 0.000						

The results of this test indicate that it would be better to include both of these models, in a sort of "super" model.

Binary-Binary Interaction

Let's say we're interested in whether marriage is associated with wages differently for black and white men. The specification of an interaction between the two binary variables of white and married would look like this:

- . gen black_marry=black*married
- . eststo black_marry: reg lwage hours age educ i.black##i.married iq meduc south urba

Source	SS	df	MS		ber of obs	=	857
Model	38.9381574	10	3.8938157		0, 846) b > F	=	_0.00
Residual	110.422894		.13052351		quared		
+				- Adj	R-squared	=	0.2520
Total	149.361051	856	.17448720	9 Roo	t MSE	=	.36128
lwage	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
hours	0063301			0.000			0029398
age	.0220385		5.45	0.000	.01409		.0299792
educ	.0363765	.0068217	5.33	0.000	.02298	71	.0497659
1.black	2750052	.1036788	-2.65	0.008	4785	03	0715073
1.married	.1817023	.0438419	4.14	0.000	.09565	06	.267754
black#							
married							
1 1	.153022	.1108707	1.38	0.168	06459	19	.3706359
İ							
iq	.0039649	.0010438	3.80	0.000	.00191	62	.0060137
meduc	.0104632	.0047967	2.18	0.029	.00104	83	.0198781
south	0729291	.0276262	-2.64	0.008	12715	31	0187051
urban	.179466	.0280946	6.39	0.000	.12432	28	.2346092
cons	5.084363	.1866763	27.24	0.000	4.7179		5.450766

Quick Exercise

Run a regression with an interaction between urban and south. Interpret the results.

Continuous-Binary Interaction

Let's say we're interested in whether education affects wages differently for black and white men. If possible, we should start by plotting the data to see if these patterns are evident.

```
. gen educ_adj=educ+.2
```

```
. graph twoway (scatter wage educ if black==0, msize(small) mcolor(red)) ///
     (scatter wage educ_adj if black==1, msize(small) mcolor(blue))
         (lfit wage educ if black==0, lcolor(red)) ///
             (lfit wage educ if black==1, lcolor(blue)), ///
                        legend(order(1 "White" 2 "Black"))
```

. graph export interact1.pdf, replace
(file /Users/doylewr/lpo_prac/lessons/s2-06-model_design/interact1.pdf written in PDF

The specification of an interaction between a binary variable and a continous variable would look like this:

****/

. eststo black_educ: reg lwage hours age i.black##c.educ married iq meduc south urban

Source	SS	df	MS		per of obs		857
+				- F(10), 846)	=	29.69
Model	38.7974052	10	3.8797405	2 Prol	> F	=	0.0000
Residual	110.563646	846	.13068988		quared	=	0.2598
+					R-squared	l =	0.2510
Total	149.361051	856	.17448720	9 Root	MSE	=	.36151
lwage	Coef.	Std. Err.	t	P> t	Г95% C	Conf.	Interval]
+							
hours	0063045	.00173	-3.64	0.000	00970	001	002909
age	.0215072	.0040455	5.32	0.000	.01356	669	.0294476
1.black	.1034702	.2766783	0.37	0.709	43958	362	.6465265
educ	.0378404	.0069883	5.41	0.000	.02412	239	.0515569
I							
black#c.educ							
1	0196117	.0215854	-0.91	0.364	06197	'89	.0227554
1							
married	.2051596	.0402851	5.09	0.000	.12608	392	.28423
iq	.0040191	.0010442	3.85	0.000	.00196	95	.0060687
meduc	.0102747	.0047964	2.14	0.032	.00086	604	.0196889
south	069586	.0276172	-2.52	0.012	12379	922	0153798
urban	.179133	.0281112	6.37	0.000	.12395	72	.2343088
_cons	5.05532	.187864	26.91	0.000	4.6865		5.424055

```
. test 1.black educ 1.black#c.educ
```

```
(1) 1.black = 0
```

- (2) educ = 0
- (3) 1.black#c.educ = 0

$$F(3, 846) = 12.94$$

 $Prob > F = 0.0000$

Interactions with two continuous variables

Finally let's say we think that eductation will affect your wages differently depending on your age. The specification of an interaction between two continous variables would look like this:

. eststo age_educ : reg lwage hours age educ c.age#c.educ black married iq meduc south

Source	SS	df	MS Number of obs		=	857
 +-				F(10, 846)	=	30.08
Model	39.1769054	10	3.91769054	Prob > F	=	0.0000
Residual	110.184146	846	.130241307	R-squared	=	0.2623
 +-				Adj R-squared	=	0.2536
Total	149.361051	856	.174487209	Root MSE	=	.36089

lwage	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
hours	0066151	.0017294	-3.83	0.000	0100095	0032208
age	0280105	.0260076	-1.08	0.282	0790575	.0230364
educ	0876756	.0645406	-1.36	0.175	2143541	.0390029
c.age#c.educ	.0037019	.0019136	1.93	0.053	0000542	.0074579
black	1466181	.0430343	-3.41	0.001	2310847	0621515
married	.2063299	.0402134	5.13	0.000	.1274003	. 2852596
iq	.0040003	.0010423	3.84	0.000	.0019545	.0060461
meduc	.0100804	.0047844	2.11	0.035	.0006897	.019471
south	06698	.0276104	-2.43	0.015	121173	012787
urban	.182844	.02813	6.50	0.000	.1276312	.2380569
_cons	6.747921	.8848456	7.63	0.000	5.011171	8.484672

. estimates replay black_marry

W. 1. 2. 2. 3.

Model black_marry

Source	SS	df	MS		per of obs		857 29.83
Model Residual			3.89381574 .13052351	4 Prol 5 R-sc	o > F quared	=	0.0000 0.2607
Total	149.361051	856	.174487209	•	R-squared t MSE	=	0.2520 .36128
lwage	Coef.	Std. Err.	t	P> t	[95% Con	 f.	Interval]
hours	0063301	.0017273	-3.66	0.000	0097204		0029398
age	.0220385	.0040456	5.45	0.000	.0140979		.0299792
•		.0068217		0.000			
1.black		.1036788		0.008			0715073
1.married			4.14	0.000	.0956506		.267754
1.1111111111111111111111111111111111111	.1017020	.0100110	1.11	0.000	.0000000		.201101
black# married							
•	152000	1100707	1 20	0 160	0645010		2706250
1 1	.153022	.1108707	1.38	0.168	0645919		.3706359
iq	.0039649	.0010438	3.80	0.000	.0019162		.0060137
meduc	.0104632	.0047967	2.18	0.029	.0010483		.0198781
south	0729291	.0276262	-2.64	0.008			0187051
urban	.179466	.0280946	6.39	0.000	.1243228		.2346092
cons	5.084363	.1866763	27.24	0.000	4.717961		5.450766
							

[.] estimates restore black_marry
(results black_marry are active now)

- . local mydf=e(df_r)
- . quietly margins , predict(xb) at(black=(1 0) married=(0 1) south=1 urban=1 (mean) here.
- . mat mypred=e(b)'
- . mata: st_matrix("mypred", exp(st_matrix("mypred")))

```
. svmat mypred
. mat mypred1=e(b)'
. svmat mypred1
. local no_predict=rowsof(mypred)
. di "no of preds is `no_predict'"
no of preds is 4
. egen mycount=fill(1(1)`no_predict')
. graph twoway bar mypred1 mycount in 1/4, barw(.6) base(0) ytick(100(100)1000) ylabe
. estimates restore black_marry
(results black_marry are active now)
. quietly margins , predict(stdp) at((mean) _all black=(1 0) married=(0 1) south=1 url
. mat mystdp=e(b)'
. svmat mystdp
. gen ub_log=mypred11+ (invttail(`mydf',`sigtail')*mystdp)
(931 missing values generated)
. gen lb_log=mypred11- (invttail(`mydf',`sigtail')*mystdp)
(931 missing values generated)
. gen ub=exp(ub_log)
(931 missing values generated)
. gen lb=exp(lb_log)
(931 missing values generated)
. graph twoway (bar mypred1 mycount if mycount == 1, barw(.6) base(0) ytick(100(100)1000
               (bar mypred1 mycount if mycount==2, barw(.6) base(0) ytick(100(100)1000
                (bar mypred1 mycount if mycount==3, barw(.6) base(0) ytick(100(100)100
                 (bar mypred1 mycount if mycount==4, barw(.6) base(0) ytick(100(100)10
```

(rcap ub lb mycount in 1/`no_predict'), ///

xlabel(1 "Unmarried, Black" 2 "Married, Black" 3 "Unmarried,

- . drop mypred*
- . drop mystdp*
- . drop ub*
- . drop lb*
- . drop mycount
- . eststo urban_south: reg lwage hours age educ black married iq meduc i.south##i.urban

Source	SS	df	MS	Number of obs	=	857 30.26
Model	39.3509478		3.93509478	F(10, 846) Prob > F	=	0.0000
•	110.010103		.130035583	R-squared	=	0.2635
+				Adj R-squared	=	0.2548
Total	149.361051	856	.174487209	Root MSE	=	.3606

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
hours	0064086	.0017237	-3.72	0.000	0097919	0030252
age	.0223906	.0040422	5.54	0.000	.0144567	.0303244
educ	.0366152	.0068088	5.38	0.000	.0232511	.0499793
black	1413414	.0430185	-3.29	0.001	225777	0569058
married	.2032162	.0401949	5.06	0.000	.1243228	.2821096
iq	.0041836	.0010445	4.01	0.000	.0021334	.0062338
meduc	.0111274	.0048022	2.32	0.021	.0017018	.020553
1.south	.0219466	.0494206	0.44	0.657	0750549	.118948
1.urban	.2284794	.0355802	6.42	0.000	.1586435	.2983153
ĺ						
south#urban						
1 1	1307251	.0579628	-2.26	0.024	2444928	0169573
İ						
_cons	4.985266	.1903604	26.19	0.000	4.611632	5.3589

[.] local mydf=e(df_r)

[.] quietly margins , predict(xb) at(urban=(1 0) south=(0 1) black=1 married=1 (mean) ho

[.] mat mypred=e(b)'

[.] mata: st_matrix("mypred", exp(st_matrix("mypred")))

```
. svmat mypred
. mat mypred1=e(b)'
. svmat mypred1
. local no_predict=rowsof(mypred)
. di "no of preds is `no_predict'"
no of preds is 4
. egen mycount=fill(1(1)`no_predict')
. graph twoway bar mypred1 mycount in 1/4, barw(.6) base(0) ytick(100(100)1000) ylabe
. estimates restore black_marry
(results black_marry are active now)
. quietly margins , predict(stdp) at((mean) _all urban=(1 0) south=(0 1) black=1 marr:
. mat mystdp=e(b)'
. svmat mystdp
. gen ub_log=mypred11+ (invttail(`mydf',`sigtail')*mystdp)
(931 missing values generated)
. gen lb_log=mypred11- (invttail(`mydf', `sigtail')*mystdp)
(931 missing values generated)
. gen ub=exp(ub_log)
(931 missing values generated)
. gen lb=exp(lb_log)
(931 missing values generated)
. graph twoway (bar mypred1 mycount if mycount==1, barw(.6) base(0) ytick(100(100)1000
               (bar mypred1 mycount if mycount==2, barw(.6) base(0) ytick(100(100)1000
                (bar mypred1 mycount if mycount==3, barw(.6) base(0) ytick(100(100)100
                 (bar mypred1 mycount if mycount == 4, barw(.6) base(0) ytick(100(100)10
```

(rcap ub lb mycount in 1/`no_predict'), ///

xlabel(1 "Urban, Non-South" 2 "Urban, South" 3 "Non-Urban, No

- . drop mypred*
- . drop mystdp*
- . drop ub*
- . drop lb*
- . sum age, detail

		Age		
	Percentiles	Smallest		
1%	28	28		
5%	29	28		
10%	29	28	Obs	935
25%	30	28	Sum of Wgt.	935
50%	33		Mean	33.08021
		Largest	Std. Dev.	3.107803
75%	36	38		
90%	38	38	Variance	9.658441
95%	38	38	Skewness	.1185453
99%	38	38	Kurtosis	1.743208

- . local mymin=r(min)
- . local mymax=r(max)
- . foreach myeduc of numlist 10(2)16{
- . estimates restore age_educ
- . quietly margins, predict(xb) at((mean) _all age=(`mymin'(1)`mymax') educ=`myeduc')
- . mat pred_ed`myeduc'=e(b)'
- . svmat pred_ed`myeduc'
- . estimates restore age_educ
- . quietly margins, predict(stdp) at((mean) _all age=(`mymin'(1)`mymax') educ=`myeduc'
- . mat pred_se_ed`myeduc'=e(b)'
- . svmat pred_se_ed`myeduc'
- . }

(results age_educ are active now)

```
(results age_educ are active now)
(results age_educ are active now)
(results age_educ are active now)
. foreach myeduc of numlist 10(2)16{
      gen exp_pred`myeduc'=exp(pred_ed`myeduc'1)
      gen ub`myeduc'=exp(pred_ed`myeduc'+(invttail(`mydf',`sigtail')*pred_se_ed`myeduc
      gen lb`myeduc'=exp(pred_ed`myeduc'-(invttail(`mydf',`sigtail')*pred_se_ed`myeduc'
. }
(924 missing values generated)
(924 missing values generated)
(924 missing values generated)
(924 missing values generated)
(924 missing values generated)
(924 missing values generated)
(924 missing values generated)
(924 missing values generated)
(924 missing values generated)
(924 missing values generated)
(924 missing values generated)
(924 missing values generated)
. egen age_levels=fill(`mymin'(1)`mymax')
. twoway line exp_pred10 exp_pred12 exp_pred14 exp_pred16 age_levels in 1/11, ///
        legend(order(1 "10 Years" 2 "12 Years" 3 "14 Years" 4 "16 Years")) ytitle("Wa
. twoway (rarea ub10 lb10 age_levels in 1/11, color(gs14)) ///
     (rarea ub16 lb16 age_levels in 1/11, color(gs14)) ///
         (line exp_pred10 age_levels in 1/11, lcolor(blue) ) ///
             (line lb10 age_levels in 1/11, lcolor(blue) lwidth(thin) lpattern(dash))
                 (line ub10 age_levels in 1/11, lcolor(blue) lwidth(thin) lpattern(das
                     (line exp_pred16 age_levels in 1/11, lcolor(red) ) ///
                         (line ub16 age_levels in 1/11, lcolor(red) lwidth(thin) lpat
                             (line lb16 age_levels in 1/11, lcolor(red) lwidth(thin)
                                 legend(order( 3 "Less than HS" 6 "College Grad")) x
. drop lb* ub* exp_pred* pred* pred_ed* pred_se_ed*
. eststo ten_educ: reg lwage hours age black married iq meduc c.tenure##c.educ
      Source |
                                           MS
                     SS
                                  df
                                                   Number of obs
                                                                            857
```

Model Residual + Total	115.836746	9 847 856	.13676121	3 Pro 1 R-s - Adj	, 847) b > F quared R-squared t MSE	= = = = =	27.24 0.0000 0.2245 0.2162 .36981
lwage	 Coef. 	Std. Err.	 t 	P> t	 [95% C	onf.	Interval]
hours	0059456	.0017729	-3.35	0.001	00942	54	0024658
age	.0185637	.0042976	4.32	0.000	.01012	85	.0269989
black	1269117	.0433577	-2.93	0.004	21201	29	0418105
married	.1838169	.0412587	4.46	0.000	.10283	55	.2647982
iq	.0043803	.0010608	4.13	0.000	.00229	83	.0064623
meduc	.0118471	.0048859	2.42	0.016	.00225	72	.0214371
tenure	.0056798	.0165314	0.34	0.731	02676	74	.0381271
educ	.0375757	.0115939	3.24	0.001	.01481	94	.0603319
c.tenure#							
c.educ	.0002596	.0012336	0.21	0.833	00216	17	.0026809
ĺ							
_cons	5.14412	.2228437	23.08	0.000	4.7067	29	5.58151

. sum educ, detail

Years of education

	Percentiles	Smallest		
1%	9	9		
5%	11	9		
10%	12	9	Obs	935
25%	12	9	Sum of Wgt.	935
50%	12		Mean	13.46845
		Largest	Std. Dev.	2.196654
75%	16	18		
90%	17	18	Variance	4.825288
95%	18	18	Skewness	.5477959
99%	18	18	Kurtosis	2.262651

- . local mymin=r(min)
- . local mymax=r(max)

```
. foreach mytenure of numlist 0(5)20{
      estimates restore ten_educ
  quietly margins, predict(xb) at((mean) _all educ=(`mymin'(1)`mymax') tenure=`myte
     mat pred_ed`mytenure'=e(b)'
     svmat pred_ed`mytenure'
. estimates restore ten_educ
. quietly margins, predict(stdp) at((mean) _all educ=(`mymin'(1)`mymax') tenure=`myten
      mat pred_se_ed`mytenure'=e(b)'
      svmat pred_se_ed`mytenure'
. }
(results ten_educ are active now)
(results ten_educ are active now)
(results ten_educ are active now)
(results ten educ are active now)
(results ten_educ are active now)
. foreach mytenure of numlist 0(5)20{
      gen exp_pred`mytenure'=exp(pred_ed`mytenure'1)
      gen ub`mytenure'=exp(pred_ed`mytenure'+(invttail(`mydf',`sigtail')*pred_se_ed`mytenure'
      gen lb`mytenure'=exp(pred_ed`mytenure'-(invttail(`mydf',`sigtail')*pred_se_ed`m
. }
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
. egen educ levels=fill(`mymin'(1)`mymax')
. twoway line exp_pred0 exp_pred5 exp_pred10 exp_pred15 exp_pred15 educ_levels in 1/10
```

legend(order(1 "0 Years" 2 "5 Years" 3 "10 Years" 4 "15 Years" 5 "20 Years"))

. eststo age_iq : reg lwage hours age iq c.iq#c.age black married meduc south urban

Source	SS	df	MS		er of obs 847)	=	857 28.99
Model Residual		9 847	3.90847273 .134810858	Prob R-sq	-	=	0.0000 0.2355
Total	149.361051	856	.174487209	•	-	=	
lwage	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
hours	0060656	.0017613	-3.44	0.001	009522	5	0026086
age	014751	.0297362	-0.50	0.620	073116	3	.0436144
iq 	0056246	.0095494	-0.59	0.556	0243679	9	.0131188
c.iq#c.age 	.0003674	.000288	1.28	0.202	0001978	3	.0009327
black	1364958	.0438374	-3.11	0.002	222538	5	0504531
married	. 1935177	.0408545	4.74	0.000	.113329	3	.2737057
meduc	.0162645	.0047216	3.44	0.001	.00699	7	.0255319
south	0631237	.0280021	-2.25	0.024	118085	3	0081621
urban	.1892403	.0285395	6.63	0.000	.133223	9	. 2452567
_cons	6.43898	.9981104	6.45	0.000	4.4799	2	8.39804

. sum iq, detail

IQ test

	Percentiles	Smallest		
1%	64	50		
5%	74	54		
10%	82	55	Obs	935
25%	92	59	Sum of Wgt.	935
50%	102		Mean	101.2824
		Largest	Std. Dev.	15.05264
75%	112	134		
90%	120	134	Variance	226.5819
95%	125	137	Skewness	3404246
99%	132	145	Kurtosis	2.977035

. sum iq, detail

IQ test

	Percentiles	Smallest		
1%	64	50		
5%	74	54		
10%	82	55	Obs	935
25%	92	59	Sum of Wgt.	935
50%	102		Mean	101.2824
		Largest	Std. Dev.	15.05264
75%	112	134		
90%	120	134	Variance	226.5819
95%	125	137	Skewness	3404246
99%	132	145	Kurtosis	2.977035

- . scalar iqlo=round(r(p10))
- . scalar iqhi=round(r(p90))
- . local iqhi=round(r(p90))
- . scalar diff=iqhi-iqlo
- . scalar step=round(diff/10)
- . local iqlo=iqlo
- . local iqhi=iqhi
- . local step=step
- . foreach myiq of numlist `iqlo'(`step')`iqhi'{
- . estimates restore age_iq
- . quietly margins, predict(xb) at((mean) _all age=(`mymin'(1)`mymax') iq=`myiq') post
- . mat pred_ed`myiq'=e(b)'
- . svmat pred_ed`myiq'
- . estimates restore age_iq
- . quietly margins, predict(stdp) at((mean) _all age=(`mymin'(1)`mymax') iq=`myiq') nos
- . mat pred_se_ed`myiq'=e(b)'
- . svmat pred_se_ed`myiq'
- . }

(results age_iq are active now)
(results age_iq are active now)

31

```
(results age_iq are active now)
(results age_iq are active now)
(results age_iq are active now)
(results age_iq are active now)
(results age_iq are active now)
(results age_iq are active now)
(results age_iq are active now)
(results age_iq are active now)
(results age_iq are active now)
(results age_iq are active now)
(results age_iq are active now)
(results age_iq are active now)
(results age_iq are active now)
(results age iq are active now)
(results age_iq are active now)
(results age iq are active now)
(results age_iq are active now)
(results age_iq are active now)
. foreach myiq of numlist `iqlo'(`step')`iqhi'{
      gen exp_pred`myiq'=exp(pred_ed`myiq'1)
      gen ub`myiq'=exp(pred_ed`myiq'+(invttail(`mydf',`sigtail')*pred_se_ed`myiq'1))
      gen lb`myiq'=exp(pred_ed`myiq'-(invttail(`mydf',`sigtail')*pred_se_ed`myiq'1))
. }
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
```

```
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
(925 missing values generated)
. local iqhi=118
. twoway line exp_pred`iqlo' exp_pred90 exp_pred102 exp_pred`iqhi' age_levels in 1/11
        legend(order(1 "10 Years" 2 "12 Years" 3 "14 Years" 4 "16 Years")) ytitle("Wa
     twoway (rarea ub`iqlo' lb`iqlo' age_levels in 1/11, color(gs14)) ///
                 (line exp_pred`iqlo' age_levels in 1/11, lcolor(blue) ) ///
                     (line ub`iqlo' age_levels in 1/11, lcolor(blue) lwidth(thin) lpat
                         (line lb`iqlo' age_levels in 1/11, lcolor(blue) lwidth(thin)
                             (rarea ub`iqhi' lb`iqhi' age_levels in 1/11, color(gs14))
                                  (line exp_pred`iqhi' age_levels in 1/11, lcolor(red)
                                      (line ub`iqhi' age_levels in 1/11, lcolor(red)
                                          (line lb`iqhi' age_levels in 1/11, lcolor(re
                                              legend(order( 2 "10th Percentile" 6 "90"
```

Not-So-Quick Exercise

(925 missing values generated) (925 missing values generated) (925 missing values generated) (925 missing values generated)

In pairs, I would like you to estimate the best possible model using the wage2 dataset. Think about model specification and functional form, with an eye toward possible non-linearities and other issues. Generate a do file that walks through your process of identifying the best model. Generate a fancy graph that shows the predictions made by your model.

. exit