





## Apprentissage supervisé

Deux grandes familles d'applications

**Classification :** la cible est un indice de classe  $t ∈ \{1, ..., K\}$ 

• Exemple : reconnaissance de caractères

 $\checkmark$   $\vec{x}$ : vecteur des intensités de tous les pixels de l'image

✓ t : identité du caractère

**Régression :** la cible est un nombre réel  $t \in \mathbb{R}$ 

Exemple : prédiction de la valeur d'une action à la bourse

 $\sqrt{\vec{x}}$ : vecteur contenant l'information sur l'activité économique de la journée

✓ t: valeur d'une action à la bourse le lendemain

# Apprentissage supervisé avec CNN



5

## Supervisé vs non supervisé

Apprentissage supervisé : il y a une cible

$$D = \{ (\vec{x}_1, t_1), (\vec{x}_2, t_2), \dots, (\vec{x}_N, t_N) \}$$

Apprentissage non-supervisé : la cible n'est pas fournie

$$D = \left\{ \vec{x}_1, \vec{x}_2, \dots, \vec{x}_N \right\}$$

# Apprentissage non supervisé Comprendre la distribution sous-jacente de données non-étiquettées Applications : clustering, visualization, comprehension, etc. Exemple : visualization de la distribution des images MNIST Tound 65536: train in latent space | Color | Col

Apprentissage non supervisé

Souvent, l'apprentissage non-supervisé inclut un (ou des) variables latentes.

Variable latente: variable aléatoire non observée mais sous-jacente à la distribution des données

Ex: clustering = retrouver la variable latente "cluster"

Pourquoi une variable latente?

Plus facile de représenter  $p(\vec{x}, y), p(\vec{x} \mid y), p(y)$  que  $p(\vec{x})$ 

Plus d'info au tableau.

L'apprentissage non-supervisé par réseaux de neurones s'appuie sur 2 propriétés









Comment utiliser un réseau de neurones pour apprendre la **configuration sous-jacente** de données non étiquetées?























```
Autoencodeur jouet de MNIST
      class autoencoder (nn.Module):
          def __init__(self):
               super(autoencoder, self).__init__()
               self.encoder = nn.Sequential(
                   nn.Linear(28 * 28, 128), nn.ReLU(True),
                   nn.Linear(128, 64), nn.ReLU(True),
                                                               Espace latent 2D
               nn.Linear(64, 12), nn.ReLU(True),
nn.Linear(12, (2))
self.decoder = nn.Sequential(
                   nn.Linear(2, 12), nn.ReLU(True),
                   nn.Linear(12, 64), nn.ReLU(True),
                   nn.Linear(64, 128), nn.ReLU(True),
                   nn.Linear(128, 28 * 28))
           def forward(self, x):
               z = self.encoder(x)
               x_prime = self.decoder(z)
               return x_prime
```

```
Autoencodeur jouet de MNIST
            class autoencoder(nn.Module):
               def __init__(self):
                   super(autoencoder, self).__init__()
                   self.encoder = nn.Sequential(
                     nn.Linear(28 * 28, 128), nn.ReLU(True),
                    nn.Linear(128, 64), nn.ReLU(True),
                    nn.Linear(64, 12), nn.ReLU(True),
                      nn.Linear(12, 2))
symétrie
                 self.decoder = nn.Sequential(
                       nn.Linear(2, 12), nn.ReLU(True),
                     nn.Linear(12, 64), nn.ReLU(True),
                     unn.Linear(64, 128), nn.ReLU(True),
                     nn.Linear(128, 28 * 28))
               def forward(self, x):
                   z = self.encoder(x)
                   x_prime = self.decoder(z)
                   return x_prime
```



































Au lieu d'apprendre à reproduire un signal d'entrée...

Apprendre à reproduire une **distribution**  $p(\bar{z})$  **connue** de sorte qu'un **point échantillonné et décodé** de cette distribution correspond à un signal reconstruit valable













































```
Autoencodeur variationnel jouet MNIST: d=32 dim

class VAE(nn.Module):
    def _init__(self):
        super(VAE, self).__init__()

    self.encoder = nn.Sequential(
        nn.Linear(28 * 28, 128), nn.ReLU(True),
        nn.Linear(128, 64), nn.ReLU(True),
        nn.Linear(128, 64), nn.ReLU(True),
        nn.Linear(128, 24), nn.ReLU(True),
        nn.Linear(128, 28 * 28))

def reparameterize(self, nu, logvar):
    std = torch.exp(0.51cgvar)
    eps = torch.randn_like(std)
    return mu + eps*std

def forward(self, x):
    enc x = self.encoder(x)
    mu = enc x[:, :32]
    logvar = enc x[:, :32]
    return self.decoder(z), mu, logvar)
    return self.decoder(z), mu, logvar)
```

```
Autoencodeur variationnel jouet MNIST : d=32 dim

\begin{array}{c} \text{def } \underset{12 \text{ = nn. MSELoss}}{\text{ols}} (\text{recon_x}, \text{ x, mu, logvar}): \\ \text{L2 = nn. MSELoss} (\text{recon_x}, \text{ x}) \\ \text{KLD = -0.5 * torch. sum} (1 + \text{logvar - mu.pow}(2) - \text{logvar.exp}()) \\ \text{return KLD + self.lambda*L2} \\ \\ Loss = \frac{1}{2} \sum_{i=1}^{d} \left( 1 + \log \left( \sigma_i^2 \right) - \mu_i^2 - \sigma_i^2 \right) - \lambda \left\| \vec{x} - \vec{x}' \right\|^2 \end{array}
```







## Plusieurs tutoriels, VAE

- https://ijdykeman.github.io/ml/2016/12/21/cvae.html
- https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/
- https://towardsdatascience.com/deep-latent-variable-models-unravel-hidden-structures-a5df0fd32ae2
- C. Doersch, Tutorial on Variational Autoencoders, arXiv:1606.05908

73

# **GAN**

Generative Adversarial Nets

74

On voudrait générer des images  $\vec{x}$  en échantillonnant  $P(\vec{x})$ 

 $\Rightarrow$  **TROP DIFFICILE** car  $P(\vec{x})$  trop complexe



Comme précédemment, pour simplifier le problème, on pourrait introduire une variable latente  $\vec{z}$  et ainsi modéliser

$$P(\vec{x}, \vec{z}) = P(\vec{x} \mid \vec{z})P(\vec{z})$$

Modèle génératif Distribution *a priori*

76

Comme pour les VAE, on utilisera une **distribution** *a priori* facile à échantillonner : une **gaussienne**!

$$P(\vec{z}) = N(\vec{z}; 0, 1)$$

77

Comment estimer  $P(\vec{x} \mid \vec{z})$  ?

À l'aide d'un réseau de neurones car ce sont **d'excellentes machines** pour estimer des probabilités conditionnelles























Le réseau discriminateur est représenté par la lettre D $L_D = \frac{1}{N} \sum_i -t_i \ln \left( D(\vec{x}_i) \right) - (1 - t_i) \ln \left( 1 - D(\vec{x}_i) \right)$   $\vec{X} \qquad D \qquad D(\vec{x})$ 



Sans perte de généralité, séparer la loss des images réelles et synthétiques  $L_D = -\frac{1}{N_{reel}} \sum_i \ln(D(\vec{x}_i)) - \frac{1}{N_{sym}} \sum_j \ln(1 - D(G(\vec{z}_j)))$ Perte images réelles
Perte images synthétiques  $G(\vec{z})$  D  $-\ln(1 - D(G(\vec{z})))$   $-\ln(D(\vec{x}))$ 

Rappel: Espérance mathématique et approximation Monte Carlo  $IE[x] = \int xp(x)dx$   $IE[f(x)] = \int f(x)p(x)dx$ 

### Rappel: Espérance mathématique et approximation Monte Carlo

$$IE[x] = \int xp(x)dx$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} x_{i} \quad \text{où } x_{i} \sim p(x)$$
approximation
$$Monte Carlo$$

$$IE[f(x)] = \int f(x)p(x)dx$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} f(x_{i}) \quad \text{où } x_{i} \sim p(x)$$

94

#### Rappel: Espérance mathématique et estimateur Monte Carlo

$$L_D = -\underbrace{\frac{1}{N_{reel}} \sum_{i} \ln \left(D(\vec{x}_i)\right)}_{\text{Perte images réelles}} - \underbrace{\frac{1}{N_{syn}} \sum_{j} \ln \left(\mathbf{l} - D(G(\vec{z}_j))\right)}_{\text{Perte images synthétiques}}$$

$$L_{D} = -IE_{\vec{x} \sim P_{red}} \left[ \ln \left( D(\vec{x}) \right) \right] - IE_{\vec{z} \sim P_{z}} \left[ \ln \left( 1 - D(G(\vec{z})) \right) \right]$$

(Loss de GAN dans la littérature)

95

#### Objectif du discriminateur

Paramètres du discriminateur

Ou encore, de façon équivalente (mult par -1)

$$W_D = \arg\max_{W_D} \ IE_{\vec{x} \sim P_{rest}} \left[ \ln \left( D(\vec{x}) \right) \right] + IE_{\vec{z} \sim P_z} \left[ \ln \left( 1 - D(G(\vec{z})) \right) \right]$$





| Objectif du discriminateur: bien distinguer les images réelles des images synthétiques $W_D = \arg\max_{W_D} IE_{\vec{x} \sim P_{red}} \left[ \ln \left( D(\vec{x}) \right) \right] + IE_{\vec{z} \sim P_z} \left[ \ln \left( 1 - D\left( G(\vec{z}) \right) \right) \right]$ |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Objectif du générateur :  produire des images synthétiques indistinguables des images réelle                                                                                                                                                                                  | es |
| $W_G = \arg\min_{W_G} \ IE_{ar{z} \sim P_z} \left[ \ln \left( 1 - D \left( G \left( ar{z}  ight)  ight)  ight)  ight]$                                                                                                                                                        |    |

## « Two player » min-max game

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$ 

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

100

## « Two player » min-max game

Discriminateur veux D(x) = 1 pour les vrais données

Discriminateur veux D(G(x)) = 0 pour les données synthétiques

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{x}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))].$$

Générateur veux
D(G(x)) = 1 pour les
données synthétiques

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

101

NOTE

dans les faits, on ne minimise pas cette loss

$$W_G = \arg\min_{W} \left[ P_z \left[ \ln \left( 1 - D(G(\vec{z})) \right) \right] \right]$$

on maximise plutôt celle-ci

$$W_{\scriptscriptstyle G} = \arg \, \max_{\scriptscriptstyle W_{\scriptscriptstyle G}} \, \mathit{IE}_{\scriptscriptstyle \vec{z} \sim P_z} \left[ \ln \left( D \left( G \left( \vec{z} \right) \right) \right) \right]$$

 $\begin{aligned} & \text{ for number of training iterations do} \\ & \text{ for } k \text{ steps do} \\ & \bullet \text{ Sample minibatch of } m \text{ noise samples } \{\boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(m)}\} \text{ from noise prior } p_g(\boldsymbol{z}). \\ & \bullet \text{ Sample minibatch of } m \text{ examples } \{\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(m)}\} \text{ from data generating distribution } p_{\text{data}}(\boldsymbol{x}). \\ & \bullet \text{ Update the } \underline{\text{discriminator by ascending its stochastic gradient:} \\ & \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[ \log D_{\theta_d}(\boldsymbol{x}^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(\boldsymbol{z}^{(i)}))) \right] \end{aligned} \\ & \text{end for} \\ & \bullet \text{ Sample minibatch of } m \text{ noise samples } \{\boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(m)}\} \text{ from noise prior } p_g(\boldsymbol{z}). \\ & \bullet \text{ Update the } \underline{\text{generator by ascending its stochastic gradient (improved objective):} \\ & \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(D_{\theta_d}(G_{\theta_g}(\boldsymbol{z}^{(i)}))) \end{aligned} \\ & \text{end for} \end{aligned}$ 





## Deep Convolution Generative Adversarial Net (DCGAN)

#### Recommandations discriminateur

- Conv stride>1 au lieu des couches de pooling
- ReLU partout sauf en sortie : tanh

#### Recommandations générateur

- Conv transpose au lieu de upsampling
- LeakyReLU partout

#### **Autre recommandations**

- · BatchNorm partout
- · Pas de FC, juste des conv

Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

106

# Deep Convolution Generative Adversarial Net (DCGAN)

#### Recommandations discriminateur

. 1

## https://github.com/soumith/ganhacks

• (

#### **Autre recommandations**

- · BatchNorm partout
- Pas de FC, juste des conv

Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

107

## Deep Convolution Generative Adversarial Net (DCGAN)







110

#### Problèmes d'instabilité

- Si discriminateur et générateur et n'apprennent pas ensemble:
   disparition des gradients
   effondrement des modes
   on ne peut générer d'images à haute résolution
- Plusieurs solutions proposées:

  Wasserstein GAN (utilise "earth mover distance")

  Least Squares GAN (utilise distance d'erreur quadratique)

  Progressive GAN

### Problèmes d'instabilité • Si discriminateur et générateur et n'apprennent pas ensemble: o disparition des gradients o effondrement des modes o on ne peut générer d'images à haute résolution Si le discriminateur apprend trop vite, le générateur sera systématiquement battu, et n'apprendra rien

### 



# Problèmes d'instabilité • Si discriminateur et générateur et n'apprennent pas ensemble: o disparition des gradients o effondrement des modes o on ne peut générer d'images à haute résolution Solution: les progressive GANs



































### Style GAN

Entraînement progressif comme pour progressive GAN

133



134

## Défi avec les GAN Soit un GAN entraîné sur MNIST, si je décode 10 vecteurs latents pris au hasard, j'aurai les images de 10 caractères aléatoires.



















### Code pytorch pour plus de 30 modèles de GANs

 $\underline{https://github.com/eriklindernoren/PyTorch-GAN}$ 

145

Belle vidéo sur les GANs montrant comment on peut manipuler l'espace latent et comment certains les utilise pour produire des « *deep fake* »

https://www.youtube.com/watch?v = dCKbRCUyop8

146











Open Al's DALL-E3