

IIC1253 — Matemáticas Discretas — 1' 2020

PAUTA TAREA 5

Pregunta 1

Pregunta 1.1

Respuesta: $R^{\downarrow t}$ NO existe para todo $R \subseteq A \times A$.

En efecto, consideremos $R = \{(a,b), (b,a)\}$, con $a,b \in A; a \neq b$. Notamos que $R_1 = \{(a,b)\}$, $R_2 = \{(b,a)\}$ son relaciones transitivas y cumplen $R_1 \subseteq R$, $R_2 \subseteq R$. Sin embargo, R_1, R_2 no cumplen $R_1 \subseteq R_2$ ni $R_2 \subseteq R_1$. Así, ambos son subconjuntos transitivos maximales de R, y no hay un máximo $R^{\downarrow t}$.

Observación: Implícitamente asumimos que |A| > 1 para que funcione la demostración (en la construcción de R consideramos dos elementos distintos de A). De hecho, si $A = \{a\}$, $R^{\downarrow t}$ siempre existe, ya que R podría ser \emptyset o $\{(a,a)\}$ y en ambos casos se cumple $R = R^{\downarrow t}$. Este caso (|A| = 1) no es considerado en el puntaje.

Dado lo anterior el puntaje asignado es el siguiente:

- (4 Puntos) por contraejemplo correcto y justificado.
- (3 Puntos) sólo por contraejemplo correcto.
- (0 Puntos) en otro caso.

Pregunta 1.2

Respuesta: $R^{\downarrow t}$ si existe para todo $R \subseteq A \times A$.

Sea $R^* = \{(a,b) \in R \mid (b,a) \in R\} = R \cap R^{-1}$. Demostraremos que $R^* = R^{\downarrow t}$:

- 1. $R^* \subseteq R$: por definición de R^* .
- 2. R^* es simétrica: por definición de R^* .
- 3. Para todo $R' \subseteq R$, con R' simétrica, se tiene que $R' \subseteq R^*$. Sea $R' \subseteq R$ cualquiera y simétrica. Tenemos que considerar dos casos:
 - Si $R' = \emptyset$ es trivial que $R' \subseteq R^*$.
 - Si $R' \neq \emptyset$, sea $(a,b) \in R'$. Como $R' \subseteq R$ entonces $(a,b) \in R$. Como R' simétrica y contiene a (a,b), entonces $(b,a) \in R'$. Además, de la contención de R' en R, se sigue que $(b,a) \in R$. Así, $\{(a,b),(b,a)\} \subseteq R$. Luego, por definición de R^* , se tiene que $(a,b) \in R^*$. Por lo tanto, $R' \subseteq R^*$.

Dado lo anterior el puntaje asignado es el siguiente:

- (4 Puntos) por demostrar que $R^* = R^{\downarrow t}$ (la expresión encontrada era correcta).
- (3 Puntos) por encontrar una expresión para $R^{\downarrow t}$.
- (0 Puntos) en otro caso.

Pregunta 2

Pregunta 2.1

Sea $n \in \mathbb{N}$ arbitrario y A un conjunto infinito, entonces como A es infinito, existen elementos $a_1, a_2, ..., a_{n-1}$ tal que $a_i \in A$, $\forall i \in \{1, ..., n-1\}$ y $a_i \neq a_j$, $\forall i, j \in \{1, ..., n-1\}$, $i \neq j$. Luego se define la partición $S_n = \{\{a_1\}, \{a_2\}, ..., \{a_{n-1}\}, A \setminus \bigcup_{i=1}^{n-1} \{a_i\}\}$ Se verifica que S_n cumple las siguientes propiedades:

- 1. $|S_n| = n$
- 2. Si $X, Y \in S_n$ y $X \neq Y \Rightarrow X \cap Y = \emptyset$
- 3. $\bigcup S_n = (\bigcup_{i=1}^{n-1} \{a_i\}) \cup (A \setminus \bigcup_{i=1}^{n-1} \{a_i\}) = A$
- 4. $\forall X \in S_n, X \neq \emptyset$

Luego por 2, 3 y 4, S_n es una partición de A. Se define luego la relación $\sim_n \subseteq A \times A$ de la siguiente forma:

$$\forall a, b \in A, \ a \sim_n b \Leftrightarrow \exists X \in S_n, \ a \in X \land b \in X$$

Veremos que se cumple que $A/\sim_n = S_n$: Sea $a \in A$, hay dos opciones:

- 1. $\exists i \in \{1, ..., n-1\}. a_i = a$, entonces $[a_i]_{\sim_n} = \{a_i\}$, ya que el único conjunto que contiene a a_i es $\{a_i\}$, pues S_n es una partición
- 2. $a \neq a_i, \forall i \in \{1, ..., n-1\}$, luego $a \in A \setminus \bigcup_{i=1}^{n-1} \{a_i\}$ y entonces $[a]_{\sim_n} = A \setminus \bigcup_{i=1}^{n-1} \{a_i\}$

Luego como $A/\sim_n = S_n$, entonces $|A/\sim_n| = n$. Ahora falta por ver que \sim_n es una relación de equivalencia:

- 1. \sim_n es refleja: $\forall a \in A, \exists X \in S_n$ tal que $a \in X \land a \in X$ (pues S_n es una partición de A) $\Rightarrow a \sim_n a$
- 2. \sim_n es simétrica: si $a \sim_n b$ entonces por definición de \sim_n existe $X \in S_n$ tal que

$$a \in X \land b \in X$$

$$\Rightarrow b \in X \land a \in X$$

$$\Rightarrow b \sim_n a$$

3. \sim_n es transitiva: si $a \sim_n b$ y $b \sim_n c$, entonces $\exists X_1 \in S_n, \ a \in X_1 \land b \in X_1$ y $\exists X_2 \in S_n, \ b \in X_2 \land c \in X_2$. Sabemos que $b \in X_1$ y $b \in X_2$, luego $X_1 \cap X_2 \neq \emptyset$. Como S_n es una partición, esto solo es posible si $X_1 = X_2 = X$. Entonces

$$\exists X \in S_n. a \in X \land c \in X$$
$$\Rightarrow a \sim_n c$$

Luego $\sim_n \subseteq A \times A$ es una relación de equivalencia y $|A/\sim_n| = n$.

Dado lo anterior el puntaje asignado es el siguiente:

- (4 Puntos) Por demostración completa y correcta
- (3 Puntos) Por demostración con errores menores
- (0 Puntos) Por demostración incompleta o incorrecta

Pregunta 2.2

 (\Rightarrow) Supongamos que A es numerable, entonces existe una lista (finita o infinita) de A:

 $a_0 \, a_1 \, a_2 \, a_3 \dots$

tal que

- 1. $\forall i, a_i \in A$
- 2. $\forall i, j, i \neq j \rightarrow a_i \neq a_j$
- 3. $\forall a \in A, \exists i, a_i = a$

Definimos $S = \{\{a_0\}, \{a_1\}, ...\} = \{\{a_i\} | i \ge 0\}$

P.D: S es una partición finita

- 1. $\forall X \in S, X \neq \emptyset$, esto se desprende directamente de la definición
- 2. $\forall X, Y \in S, X \neq Y \to X \cap Y = \emptyset$. Esto pues si $X \neq Y$, entonces $\exists i, j$ tal que $X = \{a_i\}, Y = \{a_j\}$ y como $a_i \neq a_j$ (por propiedad 2 de la lista de A) entonces $X \cap Y = \emptyset$.
- 3. $\bigcup S = A$. Demostramos por doble contención:
 - $(\subseteq) \ \forall X \in S, \ X \subseteq A$ por definición de S, luego $\bigcup S \subseteq A$.
 - (⊇) Sea $a \in A$, luego $\exists i, \ a_i = a$, luego $\exists X = \{a_i\} \in S$ tal que $a \in X$. Entonces $A \subseteq \bigcup S$ Por 1, 2 y 3 se tiene que S es una partición de A.
- 4. S es partición finita numerable.
 - a) $\forall X \in S, |X| = 1 \in \mathbb{N}$, luego cada conjunto en S es finito.
 - b) $|S| = |\mathbb{N}|$: Sea $f: S \to \mathbb{N}$ definida por $f(\{a_i\}) = i$, es claro que f es una biyección, luego $|S| = |\mathbb{N}|$. Otra forma de verlo es que existe una lista de S:

$$\{a_1\}\{a_2\}\dots$$

Que cumple con las propiedades 1, 2 y 3 que cumple la lista de A, luego S es numerable.

(\Leftarrow) Supongamos que A tiene una partición finita numerable \mathcal{P} . Como \mathcal{P} es numerable entonces existe una lista

$$S_0 S_1 S_2 ...$$

de elementos de \mathcal{P} tal que $|S_i| = n_i \in \mathbb{N}$, es decir, cada conjunto en \mathcal{P} es finito. Entonces $S_i = \{a_1^i, a_2^i, ..., a_{n_i}^i\}$. Entonces podemos poner en la siguiente lista los elementos de A:

$$a_1^0\,a_2^0\dots a_{n_0}^0\,a_1^1\,a_2^1\dots = b_0\,b_1\,b_2\dots \qquad \text{(Cambiamos las variables por simpleza de notación.)}$$

Demostraremos que esta lista es tal que A es numerable:

- 1. $\forall r, b_r \in A$: Para cualquier r, existen i, j tales que $b_r = a_i^j$ (por construcción de la lista). Luego como $\mathcal{P} \subseteq 2^A$, entonces $a_i^j \in A$, luego $b_r \in A$
- 2. Si $r \neq p \Rightarrow b_r \neq b_p$: Supongamos, por contradicción, que existen r y p, $r \neq p$, tal que $b_r = b_p$. Luego existe $S \in \mathcal{P}$ tal que $b_r \in S \land b_p \in S$. Luego como $b_r = b_p$ necesariamente se tiene r = p ya que S no tiene elementos repetidos por ser un conjunto.
- 3. $\forall a \in A, \exists r.b_r = a$: sea $a \in A$, luego como \mathcal{P} es partición, existe $S_i \in \mathcal{P}$ tal que $a \in S_i$. Luego existe $j \in \{1, ..., n_i\}$ tal que $a = a^i_j$. Luego debe existir r tal que $b_r = a^i_j = a$ (por contrucción de la lista de los b_r)

Concluyendo que A es numerable.

Dado lo anterior el puntaje asignado es el siguiente:

- (4 Puntos) Por demostración correcta
- (3 Puntos) Por demostración correcta con errores menores
- (0 Puntos) Por demostración incorrecta o incompleta