ECHO-AWARE signal processing for audio scene analysis

Diego DI CARLO November 17, 2020

suprevisors: Antione DELEFORGE, Nancy BERTIN

collaborators: Clément ELVIRA, Robin SCHEIBLER, Ivan DOKMANIĆ, Sharon GANNOT, Pini A

INRIA IRISA

Introduction

Sound recorded by microphones carries information:

- · Semantic information about source nature and semantic content
- Spatial information about due to sound propagation
- · Temporal information about event

Audio Scene Analysis

is the extraction and organization of all the information in the sound

Typical problems

- · What?
 - Sound Source Separation
 - · Speech Enhancement (denoising, dereverberation)
 - · Automatic Speech Recognition
 - ٠ ..
- · Where?
 - Sound Source Localization (DOA estimation, Mic calibration)
 - Room Geometry Estimation
- · When?
 - · Speaker Diarization
 - Text/Lyrics alignment
- · How?
 - · Acoustic Channel Estimation
 - Acoustic Measurements

Also known as auditory scene analysis or computer auditory scene analysis. Inverse and Forward problems Blind and Informed problems

Everything is connected

Signal Processing

Offer mathematical models, frameworks and tools to tackle such ASA problems

General Pipeline

- · (Mathematical Models)
- Signal representation (STFT, Features)
- · Enhancement (denoising, dereverberation)
- · Parameter Estimation (DOA, Localization)
- Adaptive Processing (Filtering)

Acoustic Echoes

- · Product of the sound propagation
- · Sound repetition
 - · "same" content: can be integrated
 - · "different" sounds: carry info about the reflection
 - · different direction of arrival: spatial information

Echo-aware processing between anechoic processing and reverberant processing

Turning echoes into friends

Typically reverberation is considered as "foe" for the processing.

Thesis objective

- provide new methodologies and data to process and estimate acoustic echoes
- 2. extend previous classical methods for audio scene analysis

Motivation Outline From Physics to Digital Signal Processing Acoustic Echo Estimation Introduction Echo-aware signal Blaster processing Lantern for audio scene Interim conclusion (2/4) analysis Echo-aware Application introduction mirage interim conclusion Echo-aware Dataset Dataset creation

Introduction

Modeling

Echoes and Room Acoustics

Sound propagates and interacts with space

- it travels with a certain speed and it is attenuated;
- it is absorbed and reflected by surfaces;
- · and it is scattered, diffracted, etc.

This is describe by the so called RIRs

Elements of reverberation

- · Direct path
- Early Echoes
- · Reverberation tails

7

Echoes and Room Impulse Response

RIRs can be modeled with the Image Methods

- specular reflection only
- · "playing billiard in a concert hall"
- for shoebox room it is is the solution for physics
- · in frequency domain it writes as

RIRs accounts for the geometry of the room

- Room shape and size
- Mic and Source position
- · presence of objects

the acoustic properties of the audio scene

- surface materials
- · objects materials

Echoes in (Digital) Signal Processing

Room Impulse Response

$$\tilde{x}_i = (\tilde{h}_i * \tilde{s})(t) \longrightarrow \tilde{X}_i(f) = \tilde{H}_{ij}(f) \tilde{S}(f)$$

the linear filtering effect due to the propagation of sound from a source to a microphone in a indoor space

Observation

Our vision is limited both in time (finite and discrete) and in frequency (finite and discrete)

$$x_i[n] = \dots (1)$$

Signal model in the frequency domain

$$x_i = (h_i * s)(t) \ \longrightarrow \ X(f) = H_i(f)S(f)$$

Approximations

- · Narrowband Approximation
- · DTFT echo model in the DFT

9

Interim Conclusion I

Approximations

- Echoes are well described by specular reflection
- Echoes are off-grid by nature
- · Sampling and quantization make them hard
- Processing in the discrete frequency domain, but with continuous time echo model

Acoustic Echo Estimation

Acoustic Echo Retrieval

Given the echo model

$$H_{ij}(f) = \sum_{r=0}^R \alpha e^{2\pi},$$

The acoustic echoes retrieval (AER) problem

Estimating early (strong) acoustic reflections:

- \cdot their time of arrivals o TOAs Estimation
- their amplitude \hookrightarrow closed-from knowing τ [?]

Note that an order of r

Taxonomy of Acoustic Echo Estimation

based on the emitted signal knowledge:

Active approaches

- · Signal is emitted and known
- Intrusive
- · Single channel
- Methods: Least-Square estimation, Inverse Filtering (Equalization)
- Application: measurements, calibration, sonars, slam

Passive approaches

- · Emitted signal is not known
- · Not intrusive (for passive listening)
- Multichannel
- Methods:
 blind deconvolution problem ill-posed and ill-conditioned

 ⇒ statistics, sparsity etc
- Application: Robot hearing (Table Top Scenario), Pre-processing step

Taxonomy of Acoustic Echo Estimation

based on the estimated filter:

RIR-based approaches

- RIRs are first estimated as SIMO BCE problem
- Echoes extracted from first part of the RIRs with peak picking and disambiguation

Pros

- SIMO BCE is well studied (elegant framework)

Cons

· Full RIR

Complexity

- dependent of manually tuned peak picking
- Pathological issue (sampling and body-guard

Performed with

 Cross-correlation on-grid, eg. EM, Acoustic Cameras

1. Estimation directly in the echoes parameters space $\{\tau, \alpha\}$

and direction of arrivals can be

 Cross-relation with super-resolution off-grid, [?, ?]

Pro

No need for full RIRs

RIRs-agnostic approaches

used instead

- Sub-sampling accuracy
- Low complexity
- Sparsity and Non-negativity are respected

Cons

Exploratory

AER as discrete SIMO BCE

Key ingredient - Cross relation identity

$$x_i = h_i * s$$

$$h_2 * x_1 = h_2 * h_1 * s = h_1 * h_2 * s = h_1 * x_2$$

Ideas

- 1. Sampled version of x_1, x_2 are available $(\mathbf{x}_1, \mathbf{x}_2)$
- 2. Assume echoes belong to multiples of the sampling frequency
- 3. Identify echoes ightarrow find sparse vectors $\mathbf{h}_1,\mathbf{h}_2$
- 4. Lasso-like problem

$$\widehat{\mathbf{h}}_1, \widehat{\mathbf{h}}_2 \in \mathop{\arg\min}_{\mathbf{h}_1, \mathbf{h}_2 \in \mathbf{R}^n} \|\mathbf{x}_1 * \mathbf{h}_2 - \mathbf{x}_2 * \mathbf{h}_1\|_2^2 + \lambda \mathsf{Reg}(\mathbf{h}_1, \mathbf{h}_2)$$

$$\mathsf{Reg}(\mathbf{h}_1, \mathbf{h}_2) \longrightarrow \mathsf{sparse promoting regularizer}$$

5. Pick picking

Limitations / bottleneck

Limitations

- Echoes are not necessarily "on grid"
- Body guard effect [?]
 - \rightarrow low recall \Rightarrow low accuracy
 - \longrightarrow slow convergence

Increase the sampling frequency, F_s

→ Increase Precision

Computational bottleneck

- · Bigger vectors and matrices
 - → memory usage
- Computational complexity: at best $\mathcal{O}(F_s^2)$ per iteration
- the higher the sampling frequency, the more ill-conditioned
 - \longrightarrow slow convergence

Blaster- Off-grid BCE

Observation 1: the cross relation remains true in the frequency domain

$$\mathcal{F}x_1\cdot\mathcal{F}h_2({}^n\!/{}_{\!F_s})=\mathcal{F}x_2\cdot\mathcal{F}h_1({}^n\!/{}_{\!F_s}) \qquad n=0\dots N-1$$

Observation 2: $\mathcal{F}\delta_{\mathrm{echo}}$ is known in closed-form

Observation 3: \mathcal{F}_{X_i} can be (well) approximated by DFT

$$\mathbf{X}_i = \mathsf{DFT}(\mathbf{x}_i) \simeq \mathcal{F}\mathbf{x}_i(nF_s) \qquad n = 0 \dots N-1$$

Idea: Recover echoes by matching a finite number of frequencies

$$\underset{h_1,h_2 \in \underset{\text{space}}{\text{measure}}}{\arg\min} \ \frac{1}{2} \|\mathbf{X}_1 \cdot \mathcal{F} h_2(f) - \mathbf{X}_2 \cdot \mathcal{F} h_1(f)\|_2^2 + \lambda \|h_1 + h_2\|_{\text{TV}} \quad \text{s.t. } \begin{cases} h_1(\{0\}) = 1 \\ h_l \geq 0 \end{cases}$$

Instance of a BLasso problem [?] (Sliding Frank-Wolfe algorithm)

no Toeplitz matrix

Solutions is a train of Dirac

anchor prevents trivial solution

Blaster- Experiments

Experiments

- simulation data with ISM with Pyroomacoustics
- · 1 source, 2 microphones, random room geometry
- · Full RIRs
- · 2 sources: broadband and speech
- · 2 datasets: different SNR, different RT60

Methods

- BSN: Blind Sparse and Nonnegative SIMO BCE [?]
- IL1C: Iteratively-weighted ℓ_1 Constraint SIME BCE [?]
- Blaster: Proposed off-grid approach

Metrics

- RMSE
- · Precision

Blaster- Results

Lantern- data-driven AER

Observation 1: Mapping from observation to echo is extremely difficult Later echoes are not considered, may help

Observation 2: We have acoustic simulators Acoustic simulators based on ISM source position, room ← reverberation elements ← annotation for free

Observation 3: (Deep) Learning-based methods successful for localization Echoes are strongly related to the source position

Idea: Use Deep Learning for AER

- · Extend previous work on source localization for Echo Estimation
- Estimate the first echo TOA

 ⇒ simple case, but with important application in SSL

Lantern- Data & Models

Data

- · train:
 - ⇔ artificially generated RIR
 - \hookrightarrow white noise + noise
- · test:
 - ⇔ artificially generated RIR

Architecture

- · models: MLP, CNN
- · loss: Multi-class regression problem
 - $\hookrightarrow \mathsf{RMSE}$
 - Gaussian regression + uncertainty

Lantern- Experiments & Resuls

Experiments

- 1. MLP
- 2. CNN
- 3. CNN + Noise
- 4. CNN + Gaussian
- 5. CNN + Student

Results

- 1. MLP
- 2. CNN
- 3. CNN + Noise
- 4. CNN + Gaussian
- 5. CNN + Student

Interim conclusion (2/4)

on Acoustic Echo Retrieval:

- Most of the literature is on Passive and RIR-based, with on-grid approaches
- On-grid approaches suffers by the off-grid nature of the echoes (complexity, sampling)

on Blaster:

- ✓ off-grid parameter-free which exploit dirac closed-form model (non negativity and sparsity)
- ✓ smaller RMSE due to super-resolution, better for small # of echoes
- **X** source dependent and on number of echoes
- validate only on synthetic data
- → Multichannel and RTF-based extention

on Lantern:

- ✓ promising results for first echo estimation
- ✓ direct application for table top application

Echo-aware Application

Audio signal processing and sound propagation

Sound propagation is [?]

$$\begin{aligned} x_i(t) &= (h*s)(t) \\ h(t) &= h^d(t) + h^e(t) + h^r(t) \\ H(f) &= \sum_{r=0}^R \alpha_i^{(r)}(f) \mathrm{e}^{-\mathrm{i} 2\pi \tau_i^{(r)} f_k} \end{aligned}$$

- · completely ignored
 - $\hookrightarrow h(t) = 1$
- \cdot assumed direct path (anechoic case)

$$\hookrightarrow h(t) = h^d(t) + \varepsilon(t)$$

fully modeled (reverberant case)

$$\hookrightarrow h(t) = h^d(t) + h^e(t) + h^l(t) + \varepsilon(t)$$

• early echoes (multipath case)

$$\hookrightarrow h(t) = h^d(t) + h^e(t) + \varepsilon(t)$$

strong early reflection and strong reverberation level

detrimentally affect typical Audio Scene Analysis algorithm

Echo-aware Application

What: echoes as sound repetition

- Sound Source Separation
- Speech Enhancement
 → Dereverberation, Denoising, Room Equalization
- · Speaker Verification

Where: echoes as new sound direction

- Sound Source Localization
- · Microphone Calibration
- · Room Geometry Reconstruction

How: echoes as element of sound propagation

- Blind Acoustic Channel Estimation as initialization for other methods
- Acoustic Measurements

Echo-aware Application

What: echoes as sound repetition

- Sound Source Separation
- Speech Enhancement
 → Dereverberation, Denoising, Room Equalization
- · Speaker Verification

Where: echoes as new sound direction

- Sound Source Localization
- · Microphone Calibration
- · Room Geometry Reconstruction

How: echoes as element of sound propagation

- Blind Acoustic Channel Estimation as initialization for other methods
- · Acoustic Measurements

Mirage- Sound Source Locatization with Echoes

The Picnic Scenario:

- Microphone close to a surface (table-top scenario)
- · Clear definition of the echo
- · One source

Mirage Array

How to access the image microphone

Each pair is augmented with echoes

Mirage- Sound Source Locatization with Echoes

1D SSL

- Estimate the TDOA between two microphones signals with GCC
- Map the TDOA to angles knowing the array geometry

2D SSL

- For each pair:
 1D-SSI
- Compute a global angular spectrum by "fusing" together the estimation of each pairs

Baseline:

GCC-PHAT on true microphones

Proposed Approach: Using DNN-based TDOA estimation problem: real value not estimation

Echo-aware Dataset

Echo-aware Speech Enhancement

Room Geometry Estimation

Interim conclusion (3/4)

Annotation

Usage

Conclusion

2D Outline

Thesis outline with projects