Examenul național de bacalaureat 2022 Proba E. c) Matematică M_{st-nat}

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 7

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$m_a = \frac{a+b}{2} = \frac{20 - \sqrt{21} + 22 + \sqrt{21}}{2} =$	3p
	$=\frac{42}{2}=21$	2p
2.	f(a) = a - 1, pentru orice număr real a	2p
	$g(a) = 3 - a \Rightarrow f(a) + g(a) = a - 1 + 3 - a = 2$, pentru orice număr real a	3 p
3.	$7x-6=x^2 \Rightarrow x^2-7x+6=0$	2p
	x=1 sau $x=6$, care convin	3 p
4.	Cifra unităților se poate alege în 2 moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor se poate alege în câte 4 moduri, deci se pot forma $2 \cdot 4 = 8$ numere	3p
5.	M(3,3)	2p
	$OM = 3\sqrt{2}$, $AM = 3\sqrt{2}$, de unde obținem că triunghiul AOM este isoscel	3 p
6.	Măsura unghiului ACB este egală cu 30°	2p
	Dacă AD este înălțimea din vârful A a triunghiului ABC , atunci triunghiul ACD este	
	dreptunghic, cu unghiul ACD de 30° , de unde obținem $AD = \frac{AC}{2} = 2$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} = 1 \cdot 2 - (-1) \cdot 1 =$	3p
	=2+1=3	2p
b)	$A(-1) = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}, A(2) = \begin{pmatrix} 1 & -2 \\ 2 & 3 \end{pmatrix} \Rightarrow A(-1) \cdot A(2) - A(-1) = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} =$	3 p
	$= \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 2I_2$	2 p
c)	$A(x) \cdot A(-x) + xA(x) = \begin{pmatrix} 1+x^2 & x^2 \\ -x^2 & 1 \end{pmatrix} + \begin{pmatrix} x & -x^2 \\ x^2 & x^2+x \end{pmatrix} = \begin{pmatrix} 1+x+x^2 & 0 \\ 0 & 1+x+x^2 \end{pmatrix} = (x^2+x+1)I_2,$	3 p
	pentru orice număr real x	
	$(x^2 + x + 1)I_2 = 3I_2$, de unde obținem $x^2 + x - 2 = 0$, deci $x = -2$ sau $x = 1$	2 p
2.a)	$1 \circ 2 = 4(1 \cdot 2 + 1) - 3(1 + 2) =$	3 p
	=12-9=3	2p
b)	$a \circ 3 = 9a - 5$, deci $9a - 5 = 4$, de unde obținem $a = 1$	3 p
	$a \circ (-a) = 1 \circ (-1) = 4(-1+1) - 3(1-1) = 0$	2p

	Central Paysonal de l'Ontre 31 Evaluate in Educaçõe	
c)	$x \circ 1 = x + 1$, $(x \circ 1) \circ (x - 1) = 4x^2 - 6x$, pentru orice număr real x	3 p
	$4x^2 - 6x \le 4$, de unde obţinem $x \in \left[-\frac{1}{2}, 2 \right]$	2p

SUBIECTUL al III-lea (30 de puncte)

	Secretar III-lea (Soute pa	
1.a)	$f'(x) = 4x + 1 - \frac{5}{x} =$	3p
	$= \frac{4x^2 + x - 5}{x} = \frac{(x - 1)(4x + 5)}{x}, \ x \in (0, +\infty)$	2p
b)	$\lim_{x \to +\infty} \frac{f(x) + 5\ln x}{3 - x - x^2} = \lim_{x \to +\infty} \frac{2x^2 + x + 3}{3 - x - x^2} = \lim_{x \to +\infty} \frac{x^2 \left(2 + \frac{1}{x} + \frac{3}{x^2}\right)}{x^2 \left(\frac{3}{x^2} - \frac{1}{x} - 1\right)} =$	3p
	$= \lim_{x \to +\infty} \frac{2 + \frac{1}{x} + \frac{3}{x^2}}{\frac{3}{x^2} - \frac{1}{x} - 1} = -2$	2p
c)	$f'(x) = 0 \Rightarrow x = 1; f'(x) \le 0$, pentru orice $x \in (0,1] \Rightarrow f$ este descrescătoare pe $(0,1]$ și	2
	$f'(x) \ge 0$, pentru orice $x \in [1, +\infty) \Rightarrow f$ este crescătoare pe $[1, +\infty)$, deci $f(x) \ge f(1)$, pentru orice $x \in (0, +\infty)$	3 p
	$f(1)=6$, deci $2x^2+x+3-5\ln x \ge 6$, de unde obținem $2x^2+x \ge 3+5\ln x$, pentru orice $x \in (0,+\infty)$	2p
	$\int_{0}^{1} \frac{f(x)}{e^{x}} dx = \int_{0}^{1} (3 - 2x) dx = \left(3x - 2 \cdot \frac{x^{2}}{2} \right) \Big _{0}^{1} =$	3p
b)	$ \begin{vmatrix} 3-1=2 \\ \int_{0}^{2} f(x) dx = \int_{0}^{2} (3-2x)e^{x} dx = (3-2x)e^{x} \begin{vmatrix} 2 \\ 0 \end{vmatrix} + 2e^{x} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = $	2p 3p
c)	$= -e^{2} - 3 + 2e^{2} - 2 = e^{2} - 5$ $\int_{a}^{1} \frac{e^{3x}}{f^{3}(x)} dx = \int_{a}^{1} \frac{1}{(3 - 2x)^{3}} dx = -\frac{1}{2} \int_{a}^{1} \frac{(3 - 2x)^{3}}{(3 - 2x)^{3}} dx = \frac{1}{4} \cdot \frac{1}{(3 - 2x)^{2}} \Big _{a}^{1} = \frac{1}{4} \cdot \left(1 - \frac{1}{(3 - 2a)^{2}}\right), \text{ pentru}$	2p 3p
	orice $a \in (-\infty, 1)$ $\frac{1}{4} \cdot \left(1 - \frac{1}{(3 - 2a)^2}\right) = \frac{2}{9} \text{ si, cum } a \in (-\infty, 1), \text{ obținem } a = 0$	2p