Continuité et dérivabilité d'une fonction

Interprétation graphique

Exercice 1

À l'aide de la représentation graphique cicontre de la fonction f, donner les valeurs de :

- a) f(0), f(-1) et f(2).
- b) f'(0), f'(-1) et f'(2).

Exercice 2

La courbe $\mathscr C$ ci-contre est la courbe représentative d'une fonction f définie sur $\mathbb R$ et dérivable sur $\mathbb R - \{-1, 1\}$

L'une des courbes ci-dessous est-elle susceptible de représenter f'?

PAUL MILAN 1 TERMINALE S

Exercice 3

À l'aide de la calculatrice, on a représenté les courbes d'équations :

$$y_1 = \sqrt{x^2 - x + 1} \quad \text{et}$$

$$y_2 = -\frac{1}{4}x^2 + x + \frac{1}{4}$$

- 1) Que pouvez-vous conjecturer pour ces deux courbes au point d'abscisse 1?
- 2) On pose, f et g les fonctions définies sur \mathbb{R} par :

$$f(x) = \sqrt{x^2 - x + 1}$$
 et $g(x) = -\frac{1}{4}x^2 + x + \frac{1}{4}$

Démontrer votre conjecture

Exercice 4

Dans chacun des cas, $\mathscr C$ est la courbe d'une fonction f. A est le point de $\mathscr C$ d'abscisse 2. On a tracé les éventuelles tangentes ou demi-tangentes à $\mathscr C$ en A.

Dans chacun des 4 cas dites si la fonction f

- est continue 2. Si oui que vaut f(2).
- est dérivable en 2. Si oui que vaut f'(2).
 Si non, est-elle dérivable à gauche? Est-elle dérivable à droite? Préciser dans l'affirmative les nombres dérivées à droite et à gauche

Théorème des valeurs intermédiaires et fonction auxiliaire

Exercice 5

- 1) Soit la fonction u définie sur \mathbb{R} par : $u(x) = 2x^3 3x^2 1$.
 - a) Déterminer la fonction dérivée *u'* puis dresser le tableau de variation de la fonction *u*. (On ne demande pas de calculer les limites en l'infini).
 - b) Démontrer que l'équation u(x) = 0 admet une unique solution α dans \mathbb{R} et que $1 < \alpha < 2$.
 - c) A l'aide de l'algorithme de dichotomie, déterminer un encadrement de α à 10^{-3} . On donnera le nombre de boucles nécessaires à cet encadrement.
 - d) En déduire le signe de u(x) suivant les valeurs de x.
- 2) Soit la fonction f définie sur]-1; $+\infty[$ par : $f(x) = \frac{1-x}{1+x^3}$.
 - a) Déterminer les limites de f en -1 et en $+\infty$
 - b) Déterminer la fonction dérivée f' et montrer que : $f'(x) = \frac{u(x)}{(1+x^3)^2}$
 - c) Déterminer le signe de f' sur $]-1;+\infty[$ puis dresser le tableau de variation de la fonction f sur $]-1;+\infty[$.
 - d) En remarquant que $2\alpha^3 3\alpha^2 1 = 0$ montrer que $f(\alpha) = \frac{2(1-\alpha)}{3(\alpha^2+1)}$.
- 3) On donne les fonctions g et h définies respectivement sur \mathbb{R} et \mathbb{R}^* par : g(x) = x(x-1) et $h(x) = \frac{1}{2}\left(x + \frac{1}{x}\right)$
 - a) Conjecturer avec une calculatrice les positions des courbes \mathscr{C}_g et \mathscr{C}_h représentatives des fonction g et h. On pourra prendre comme fenêtre $x \in [-4; 4]$ et $y \in [-5; 5]$
 - b) Montrer que $g(x) h(x) = \frac{u(x)}{2x}$ puis à l'aide d'un tableau de signes, déterminer le signe de g h sur \mathbb{R}^*
 - c) En déduire la véracité de votre conjecture.

Exercice 6

Soit la fonction f définie sur $I =]-2; +\infty[$ par : $f(x) = \frac{-x^3}{x+2}$

- a) Déterminer les limites de f en -2 et en $+\infty$
- b) Déterminer la fonction dérivée f' et montrer que $f'(x) = -\frac{2x^2(x+3)}{(x+2)^2}$
- c) En déduire le tableau de variation de la fonction f sur $]-2;+\infty[$
- d) Démontrer que l'équation f(x) = 2 admet une unique solution α dans l'intervalle]-2; $+\infty$ [puis montrer que -1, $5 < \alpha < 0$.
- e) A l'aide de l'algorithme de dichotomie donner un encadrement à 10^{-4} de α ainsi que le nombre de boucles nécessaires pour l'obtenir.

Calculs de dérivées

Exercice 7

Dans chaque cas, donner le domaine de dérivabilité puis calculer la fonction dérivée de la fonction f.

1)
$$f(x) = \frac{x^3 - 3x^2 + x - 1}{6}$$

$$6) f(x) = \left(\frac{x+1}{x+2}\right)^3$$

$$2) \ f(x) = \frac{1 - 2x}{x - 2}$$

$$7) \ f(x) = \cos 2x$$

3)
$$f(x) = x - 6 + \frac{9}{x - 1}$$
 (factoriser f')

$$8) \ f(x) = \sqrt{4 - x}$$

4)
$$f(x) = \frac{x^2 + x - 2}{x^2 + x + 1}$$
 (factoriser f')

9)
$$f(x) = \sqrt{\frac{x+1}{2-x}}$$

5)
$$f(x) = (x^2 + 2x - 3)^2$$

10)
$$f(x) = \frac{x+1}{\sqrt{x^2+x+1}}$$

Équation de la tangente

Exercice 8

Dans chacun des cas, écrire l'équation de la tangente à la courbe \mathcal{C}_f de f au point d'abscisse indiqué.

1)
$$f(x) = x^3 + x^2 - 3x$$
 $a = 1$

2)
$$f(x) = \frac{x}{x^2 + 1}$$
 $a = 2$

EXERCICE 9

Soit la fonction f définie sur $\mathbb{R} - \{-1\}$ par : $f(x) = \frac{x^2 - 3x + 1}{x + 1}$

- 1) Calculer les limites en -1 et en $+\infty$ et $-\infty$
- 2) Calculer la fonction dérivée de la fonction f.
- 3) Dresser le tableau de variation de la fonction f. On calculera les valeurs approchées des extremum de la fonction f à 10^{-2} .
- 4) Existe-t-il des tangentes à \mathcal{C}_f parallèles à la droite d'équation y = -4x 5? Si oui, donner l'équation de cette ou ces tangente(s).
- 5) Existe-t-il des tangentes à \mathcal{C}_f parallèles à la droite d'équation 3x 2y = 0? Si oui, donner l'équation de cette ou ces tangente(s).
- 6) Vérifier ces résultats sur votre calculatrice. On prendra comme fenêtre $x \in [-15; 13]$ et $y \in [-20; 10]$ et comme graduation 5 sur les deux axes.

Exercice 10

Problème d'immersion

On dispose d'un récipient cylindrique de rayon 40 cm contenant de l'eau dont la hauteur est 20 cm. On y plonge une bille sphérique de diamètre d (en cm) et on constate que le niveau de l'eau est tangent à la bille. Le but de cet exercice est de calculer le diamètre d de la bille.

On rappelle que

- le volume V d'un cylindre de rayon r et de hauteur h est égal à : $V = \pi r^2 h$
- le volume V d'une sphère de rayon r est égal à : $V = \frac{4}{3}\pi r^3$

- 1) Vérifier que d est solution du système : $\begin{cases} 0 \le d \le 80 \\ d^3 9600d + 192000 = 0 \end{cases}$
- 2) f est la fonction sur [0; 80] par : $f(x) = x^3 9600x + 192000$
 - a) Déterminer la dérivée de la fonction f. En déduire le signe de la dérivée puis dresser le tableau de variation de la fonction f sur l'intervalle [0;80].
 - b) Démontrer que l'équation f(x) = 0 a une solution unique d sur [0; 80].
 - c) A l'aide de l'algorithme de dichotomie donner un encadrement à 10^{-2} de d ainsi que le nombre de boucles nécessaires pour l'obtenir.

Exercice 11

Vrai-Faux

Pour chacune des affirmations suivantes, préciser si elle est vraie ou fausse. Justifier votre réponse.

Soit la fonction f définie par : $f(x) = \sqrt{x^3 - 3x + 3}$

- a) **Proposition 1 :** L'équation $x^3 3x + 3 = 0$ admet une unique solution α sur \mathbb{R}
- b) **Proposition 2 :** La fonction f est dérivable sur] α ; $+\infty$ [
- c) **Proposition 3 :** Pour tout réel m positif ou nul l'équation f(x) = m admet une unique solution sur \mathbb{R}