# Análise de Equivalência e Invariância de Estrutura de Instrumentos Psicológicos



Dr. Felipe Valentini & Dr. Nelson Hauck





#### **Jornada Online**

19 e 20 de novembro de 2020

Avaliação psicológica no contexto das novas tecnologias: Impasses e possibilidades



# Situações de violação da invariância de medida dos itens

- Se a covariável for observada e categórica: CFA multigrupos
- Se a covariável for observada e contínua: MIMIC
- Se a covariável for latente e contínua: SEM
- Se a covariável for latente e categórica: factor mixture model











### Motivos para usar MIMIC

- Útil para detectar o efeito adicional (em relação à variável θ) de uma covariável observada contínua Z nas respostas aos itens
- Identificação dos itens com funcionamento diferencial/violação da invariância
- Estimação do efeito direto de Z na variável θ
  - Inviável na maioria dos procedimentos de testagem de DIF





## Exemplo intuitivo







### Pressuposto central dos modelos fatoriais

- Independência local
  - Os itens são independentes dada a variável latente





#### Local independence

Jeroen K. Vermunt & Jay Magidson

|                |        | Did not |       |
|----------------|--------|---------|-------|
|                | Read A | Read A  | Total |
| Read B         | 260    | 240     | 500   |
| Did not read B | 140    | 360     | 500   |
| Total          | 400    | 600     | 1000  |

• Correlação produto momento para a tabela  $2 \times 2$  ( $\phi$ ) = 0,245



#### Local independence

Jeroen K. Vermunt & Jay Magidson



|                | High education |        |       | Low education |        |       |
|----------------|----------------|--------|-------|---------------|--------|-------|
|                | Did not        |        |       | Did not       |        |       |
|                | Read A         | read A | Total | Read A        | read A | Total |
| Read B         | 240            | 60     | 300   | 20            | 80     | 100   |
| Did not read B | 160            | 40     | 200   | 80            | 320    | 400   |
| Total          | 400            | 100    | 500   | 100           | 400    | 500   |

- Correlação produto momento (φ) em cada grupo educacional = 0,000
- Associação entre ler revista A e ler revista B inteiramente explicada pelo nível educacional



#### Modelo fatorial

$$\mathbf{y}_i = \mathbf{\Lambda} \boldsymbol{\eta}_i + \boldsymbol{\varepsilon}_i$$

- **y**<sub>i</sub> = vetor respostas do indivíduo *i*
- $\eta_i$  = vetor de escores fatoriais nos m fatores  $\eta_i$
- $\varepsilon_i$  = vetor de resíduos
- $\Lambda$  = matriz de cargas fatoriais  $p \times m$

| $/y_{1i}$          | <b>.</b> | $/\lambda_{11}$ | •••   | $\lambda_{1m}$ |   | $/\eta_{1i}$          |  |
|--------------------|----------|-----------------|-------|----------------|---|-----------------------|--|
| :                  | =        | :               | •••   | :              | × | $( \cdot : \cdot )$   |  |
| $\setminus y_{pi}$ |          | $\lambda_{p1}$  | • • • | $\lambda_{pm}$ |   | $\setminus \eta_{mi}$ |  |

| _ ( | $\begin{pmatrix} \varepsilon_{1i} \\ \vdots \end{pmatrix}$ |
|-----|------------------------------------------------------------|
| /   | $\left( arepsilon_{pi}  ight)$                             |

| $\eta_i$ | i    |   |
|----------|------|---|
| η1       | 2.65 | + |
| η2       | 1.23 |   |
|          |      |   |

| Ei | <b>y1</b> | Ţ        |
|----|-----------|----------|
| /1 | .84       | V        |
| /2 | .47       | <u>y</u> |
| /3 | .63       |          |
| /4 | .35       | (8)      |



# Violação da independência local: multidimensionalidade

- O teste avalia, uniformemente ou não, uma habilidade extra
- Escores contêm variância erro sistemática que pode estar confundida ao traço se não controlada





#### MIMIC 1: covariável do fator

$$y_{ij} = V_j + \lambda_j \eta_i + e_j \qquad (1)$$
  
$$\eta_{i=} b_z z_i + e_z \qquad (2)$$

- $v_i$  = Intercepto do item j
- $\lambda_i$  = carga fatorial do item j
- $\eta_i$  = escore fatorial  $\eta$  indivíduo i
- $e_i$  = erro de medida do item j
- z<sub>i</sub> = covariável observada contínua
- b<sub>z</sub> = força de associação entre a covariável Z e a variável latente η
- e<sub>z</sub> = variância residual da predição da variável latente η pela covariável Z





# MIMIC 2: covariável do fator e das respostas aos itens

$$y_{ij} = v_{j} + \lambda_{j} \eta_{i} + b_{z} z_{i} + e_{j}$$

$$\eta_{i} = b_{z} z_{i} + e_{z}$$

$$y_{ij} = v_{j} + (\lambda_{j} b_{z} z_{i}) + (\lambda_{j} e_{z}) + b_{z} z_{i} + e_{j}$$

$$(3)$$

$$(2)$$

$$(4)$$

$$y$$



### Testando MIMIC 1 e 2 em três etapas

- Não é possível estimar todos os parâmetros das equações 3 e 4 simultaneamente
  - Modelo n\u00e3o identificado
  - Graus de liberdade < 0</li>
- Etapa 1
  - Testar se a covariável se associa à variável latente
- Etapa 2
  - Testar se a covariável se associa a k 1 itens controlando a associação com a variável latente
- Etapa 3
  - O mesmo que a Etapa 2, mas substituindo um item por aquele excluído na Etapa 2





### Etapa 1: covariável versus fator

- Modelo CFA (ou ESEM)
- Covariável predizendo fator(es)





# Etapa 2: covariável versus fator e k-1 itens por fator

- Modelo CFA (ou ESEM)
- Covariável predizendo fator(es)
- Covariável predizendo itens do(s) fator(s)
  - Um item por fator com regressão na covariável
     Z fixada em 0





# Etapa 3: covariável versus fator e k-1 itens por fator

- Modelo CFA (ou ESEM)
- Covariável predizendo fator(es)
- Covariável predizendo itens do(s) fator(s)
  - O item de cada fator cuja regressão na covariável Z foi fixada em 0 na Etapa 2 agora é liberado para ser explicado por Z
  - Um cuja regressão em Z foi estimada na Etapa
     2 é fixado em 0
    - Preferencialmente, aquele com o coeficiente padronizado não-significativo e o mais próximo possível de 0





### Outra possibilidade...

- Etapa 1
  - Testar se a covariável se associa à variável latente
- Etapa 2
  - Incluir os efeitos diretos da covariável Z nos itens sugeridos pelos índices de modificação

