

Plano de Ensino para o Ano Letivo de 2020

IDENTIFICAÇÃO						
Disciplina:				Código da Disciplina:		
Introdução à Análise de Falha	ıs			EMC817		
Course:				!		
Introduction to Failure Analysi	S					
Materia:						
Introducción al análisis de fall	as					
Periodicidade: Anual	Carga horária total:	80	Carga horária semanal: 01 - 00 - 01			
Curso/Habilitação/Ênfase:	<u>'</u>		Série:	Período:		
Engenharia Mecânica			6	Noturno		
Engenharia Mecânica			5	Diurno		
Professor Responsável:		Titulação - Gradua	ção	Pós-Graduação		
Marcelo Ferreira Moreira		Engenheiro Metalúrgico		Mestre		
Professores:		Titulação - Graduação		Pós-Graduação		
Marcelo Ferreira Moreira		Engenheiro Metalúrgico		Mestre		
OBJ	ETIVOS - Conhec	imentos, Habili	dades, e Atitude	es		

O curso objetiva introduzir o aluno aos procedimentos de análises de falhas em componentes mecânicos. Serão abordados os aspectos organizacionais, metodológicos e técnicos necessários para a condução de uma análise de falha.

EMENTA

Introdução à análise de falhas; protocolo e procedimentos de uma análise de falhas; técnicas empregadas na análise de falha; importância da fractografia na análise de falha; mecanismos de falha por sobrecarga: fraturas dúcteis e fraturas frágeis; modos de carregamento e aspecto da fratura; introdução aos conceitos de tenacidade à fratura (KIC); mecanismo de falha por fadiga; mecanismos de falha assistidos pelo meio: corrosão-fadiga e corrosão sob tensão. Mecanismos de falha por desgaste; mecanismo de falha por fragilização por hidrogênio. Falhas de elementos de máquinas: falhas em engrenagens; falhas em rolamentos; falhas em parafusos. Diretrizes para a elaboração de um relatório de uma análise de falha. Diagramas causa-efeito e matrizes para análise de causa raiz.

SYLLABUS

Introduction to failure analysis; protocol and procedures for a failure analysis; techniques employed in failure analysis; importance of fractography in failure analysis; failure mechanisms overload fractures: ductile and brittle fractures; loading modes and fracture appearance; introduction to the concepts of fracture toughness (KIC); failure mechanism: fatigue; failure mechanism: environmentally-assisted failures (corrosion-fatigue and stress corrosion cracking). failure mechanism: wear; failure mechanism: hydrogen embrittlement. Machine element failures: gears failures; bearing failures; fasteners failures. Guidelines for the failure analysis report. Cause-effect diagrams and failure mode assessment chart.

2020-EMC817 página 1 de 8

TEMARIO

Introducción al análisis de fallas; protocolo y procedimientos para un análisis de fallas; técnicas empleadas en el análisis de fallas; importancia de la fractografía en el análisis de fallos; mecanismos de falla sobrecarga fracturas: fracturas dúctiles y quebradizas; modos de carga y apariencia de fractura; Introducción a los conceptos de tenacidad a la fractura (KIC); mecanismo de falla: fatiga; mecanismo de falla: fallas asistidas por el medio ambiente (corrosión-fatiga y agrietamiento por corrosión bajo tensión). mecanismo de falla: desgaste; Mecanismo de fallo: fragilización por hidrógeno. Fallas de elementos de la máquina: fallas de engranajes; fallas en los rodamientos; Fallas en los cierres. Pautas para el informe de análisis de fallos. Diagramas causa-efecto y cuadro de evaluación del modo de falla.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Sim

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Ensino Híbrido
- Experimentação

METODOLOGIA DIDÁTICA

A metodologia didática do curso envolverá aulas expositivas, debates, painéis e aulas práticas na forma de oficinas para consolidação de conhecimentos. A proposta é que nestas oficinais, grupos formados por 3 a 5 alunos receberão um caso de análise de falha em um componente mecânico. Caberá aos alunos a elaboração de um protocolo de ensaios e análises para verificar se o material atende a sua especificação, determinar o mecanismo de fratura ou dano e identificar as prováveis causas da falha. O histórico da operação do componente e os resultados de análises químicas serão fornecidos aos grupos. Os ensaios mecânicos, exames fractográficos e metalográficos serão conduzidos pelos alunos nos laboratórios de materiais da Escola. Com os resultados, os alunos deverão apresentar um relatório técnico da falha, contendo o protocolo proposto, resultados, uma discussão e conclusões sobre as possíveis causas da falha.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

São necessários conhecimentos das disciplinas de materiais de construção mecânica, elementos de máquinas e resistência dos materiais.

CONTRIBUIÇÃO DA DISCIPLINA

O curso objetiva introduzir o aluno aos procedimentos e protocolos de análises de falhas em componentes mecânicos. Estas análises visam determinar o mecanismo de fratura ou de dano e as prováveis causas da falha. As descobertas decorrentes das análises de falhas contribuem para a evolução do projeto mecânico e permitem aumentar sua durabilidade, reduzir seu custo e conservar recursos materiais e energéticos.

Adicionalmente, o curso contribui com metodologias e técnicas para a redação de textos e relatórios técnicos claros e objetivos.

2020-EMC817 página 2 de 8

BIBLIOGRAFIA

Bibliografia Básica:

Bibliografia Complementar:

AMERICAN Society for Metals. Metals handbook. 8. ed. Ohio: ASM, 1961. v. 11.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos.

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0 \quad k_3: 1,0 \quad k_4: 2,0$

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

Os trabalhos envolvidos na avaliação deste curso serão:

- T1- Avaliação crítica de artigo técnico de análise de falha;
- T2- Plano de trabalho para a análise de falha (protocolo de ensaios);
- T3- Apresentação dos resultados parciais dos casos; e
- T4- Redação do Relatório técnico da análise de falha.

2020-EMC817 página 3 de 8

Ol	JTRAS INFORMAÇÕES

2020-EMC817 página 4 de 8

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

2020-EMC817 página 5 de 8

2020-EMC817 página 6 de 8

PROGRAMA DA DISCIPLINA				
Nº da	Conteúdo	EAA		
semana				
1 T	Semana de recepção de calouros	0		
1 L	(Al) Introdução ao curso: Definição de falha; causas de falhas;	1% a 10%		
	definição de causa raiz: físicas, humanas, latentes, múltiplas.			
	Objetivos de uma análise de falha. Benefícios e economias.			
2 T	(A2) Protocolo de uma análise de falha. Etapas, equipe técnica	1% a 10%		
	envolvida, duração. Organização de uma análise de falha.			
	Procedimentos e cuidados em uma análise de falha.			
2 L	T1 - Avaliação de artigo técnico de análise de falha	91% a		
		100%		
3 L	(A4)Ferramentas para análise de falha: Fractografia. Histórico da	1% a 10%		
	fractografia, cuidados com a fratura. Procedimentos para			
	conservação e limpeza de fraturas.			
3 T	(A3) Ferramentas para a análise de falha: Caracterização.	1% a 10%		
	Análises químicas, exames visuais; END¿s, ensaios mecânicos,			
	microscopia óptica, microscopia eletrônica, difração de raios X.			
4 L	Semana de provas P1	0		
4 T	(A5) Distribuição dos casos de falha e de seu histórico de	91% a		
	operação aos grupos.	100%		
5 T	Dia não letivo	0		
5 L	Elaboração do T2: Planejamento da análise. Protocolo de ensaios a	91% a		
	serem conduzidos.	100%		
6 L	(A7) Mecanismos de fratura: Fraturas por fadiga. Histórico e	1% a 10%		
	definições; características macro e microfractográficas.			
6 T	(A6) Mecanismos de falha por sobrecarga: Fraturas dúcteis e	11% a 40%		
	fraturas frágeis. Condições não usuais: Fratura frágil em			
	materiais dúcteis; efeito da velocidade de deformação; efeito da			
	temperatura; efeito de entalhe e efeito do m			
7 L	SMILE	0		
7 T	(A8) Medição de dureza ou resistência mecânica em amostras	91% a		
	extraídas dos casos em estudo.	100%		
8 T	(A9) Mecanismos de falha: Fraturas intergranulares.	1% a 10%		
8 L	(AlO) Revisão de propriedades mecânicas - Ensaio de tração.	91% a		
		100%		
9 L	(Al2) Mecanismos de fratura assistidos pelo meio: corrosão-fadiga	1% a 10%		
	e corrosão sob tensão.			
9 T	(All) Condução de exames macrofractográficos.	91% a		
		100%		
10 L	Semana de provas P2	0		
10 T	Semana de provas P2	0		
11 T	Semana de provas PSub	0		
11 L	(Al3) Condução dos exames metalográficos em amostras extraídas	91% a		
	dos casos em estudo.	100%		
12 T	(A14) Mecanismos de fratura: Falhas por desgaste abrasivo.	1% a 10%		

2020-EMC817 página 7 de 8

INSTITUTO MAUÁ DE TECNOLOGIA

12 L	(A15) Diretrizes para a elaboração de um relatório de análise de	1% a 10%
	falha.	
13 T	(A16) Mecanismos de falha: fragilização por hidrogênio.	1% a 10%
13 L	(A17) Falhas em elementos de máquinas: Falhas em eixos.	1% a 10%
14 L	Semana de provas P3	0
14 T	T3 - Apresentação dos resultados parciais dos casos em estudo.	91% a
		100%
15 L	(A18) Introdução à mecânica da fratura.	11% a 40%
15 T	T3 - Apresentação dos resultados parciais dos casos em estudo.	91% a
		100%
16 T	(A20) Falhas elementos de máquinas: falhas em rolamentos; falhas	1% a 10%
	em parafusos.	
16 L	Elaboração do T4: Redação de relatórios técnicos e matriz para	91% a
	análise de causa raiz.	100%
17 L	Eureka	0
17 T	Elaboração do T4: Redação de relatórios técnicos e matriz para	91% a
	análise de causa raiz.	100%
18 T	Semana de provas P4	0
18 L	Semana de provas P4	0
19 L	Prova PSub	0
19 T	Revisão das notas de relatórios	91% a
		100%
Legenda	: T = Teoria, E = Exercício, L = Laboratório	

2020-EMC817 página 8 de 8