

BOOSTING

КУХАЛЬСКИЙ НИКОЛАЙ ГЕННАДЬЕВИЧ

Вопросы занятия

- 1. Бустинг и его виды;
- 2. Реализация бустинга;

3. Особенности XGBoost;

4. Особенности CatBoost.

В конце занятия научимся:

- понимать как работает бустинг;
- применять нужный алгоритм бустинга на практике;
- использовать XGBoost и настраивать его параметры
- использовать CatBoost и настраивать его параметры.

BOOSTING и ezo виды

БУСТИНГ И ЕГО ВИДЫ

БУСТИНГ: ОСНОВНАЯ ИДЕЯ

- ансамбль слабых базовых алгоритмов (weak learner);
- слабый алгоритм точность чуть лучше случайного;
- базовые алгоритмы обучаются последовательно;
- на каждом следующем шаге учитывается ошибка предыдущего;

Последовательное обучение в методе AdaBoost с обновлением весов образцов

ВИЗУАЛИЗАЦИЯ ADABOOST

* https://habr.com/company/ods/blog/327250/ (подробная математика по ссылке)

ГРАДИЕНТНЫЙ БУСТИНГ

- gradient boosting machine (GBM);
- на каждом шаге базовый алгоритм настраивается на минимизацию ошибки алгоритма, полученного на предыдущем шаге;

ГРАДИЕНТНЫЙ СПУСК

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

ОБОЗНАЧЕНИЯ

Алгоритм вида $\hat{f}(x) = \sum_{i=0}^{M} \hat{f}_i(x)$ Функция потерь L(y,f)Базовый алгоритм вида: $h(x,\theta)$,

АЛГОРИТМ

- 1. Инициализировать GBM константным значением $\ \hat{f}\left(x
 ight) =\hat{f}_{\ 0},$
- 2. Для каждой итерации $t=1,\ldots,M$
 - а. Посчитать псевдо-остатки $r_{it} = \left[rac{\partial L(y_i, f(x_i))}{\partial f(x_i)}
 ight]_{f(x) = \hat{f}(x)}$
 - b. Обучить новый базовый алгоритм $h_t(x)$ на псевдо-остатках
 - с. Найти оптимальный коэффициент при относительно исходной функции потерь $ho_t = rg \min_{a} \ \sum_{i=1}^n L(y_i, \hat{f}(x_i) + \rho \cdot h(x_i, \theta))$
 - d. $\hat{f}_t(x) = \rho_t \cdot h_t(x)$
 - е. Обновить текущее приближение $\hat{f}(x) \leftarrow \hat{f}(x) + \hat{f}_t(x)$
- 3. Итоговая GBM модель:

$$\hat{f}(x) = \sum_{i=0}^{M} \hat{f}_i(x)$$

БУСТИНГ И ЕГО ВИДЫ

РАЗДЕЛЯЮЩАЯ ПЛОСКОСТЬ

SKLEARN ADABOOST

Реализация sklearn.ensemble.AdaBoostClassifier/Regressor

- base_estimator базовый алгоритм (не обязательно дерево)
- n_estimators кол-во базовых алгоритмов
- learning_rate шаг бустинга

SKLEARN GBM

Реализация sklearn.ensemble.GradientBoostingClassifier/Regressor

- n_estimators кол-во деревьев
- max_features доля признаков
- subsample доля объектов
- max_depth максимальная глубина дерева
- min_samples_leaf минимальное число объектов в листе
- learning_rate шаг бустинга

КОЛИЧЕСТВО ДЕРЕВЬЕВ

ПРОДВИНУТЫЕ РЕАЛИЗАЦИИ

	XGBoost	LightGBM	CatBoost
Разработчик	 независимый разработчик 	Microsoft	Yandex
Плюсы	скоростькачествоинтерфейс	 скорость (самый быстрый) 	 работа с категориальными переменными
Минусы		недостаточно гибкиплохой интерфейс	й

ПРАКТИКА

XGBoost.ipynb

TOHKOCTU XGBOOST

ПОЧЕМУ ВСЕ ЛЮБЯТ XGBOOST

- очень хорошее качество;
- большой выбор параметров для настройки;
- быстрая, параллельная реализация;
- продвинутый алгоритм оптимизации;
- возможность оптимизации кастомной функции;
- встроенная оценка важности признаков;

ТОНКОСТИ XGBOOST

ПАРАМЕТРЫ ДЕРЕВЬЕВ

Реализация xgboost.XGBClassifier

- max_depth максимальная глубина дерева (обычно 3-10, больше глубина -> больше риск переобучения)
- min_child_weight минимальное число объектов в листе (обычно до 20, больше объектов -> меньше риск переобучения, но должен быть согласован с глубиной дерева)
- gamma минимально необходимый прирост качества для разбиения листа (редко используется)

ТОНКОСТИ XGBOOST

ПАРАМЕТРЫ БУСТИНГА

Реализация xgboost.XGBClassifier

- objective оптимизируемый функционал (встроен для классификации и регрессии, можно написать свой дифференцируемый)
- n_estimators кол-во базовых алгоритмов (чем меньше learning_rate, тем больше деревьев)
- learning_rate шаг создания ансамбля (зависит от n_estimators, но обычно 0.01 0.1)

ТОНКОСТИ XGBOOST

ПАРАМЕТРЫ БУСТИНГА

Реализация xgboost.XGBClassifier

- colsample_bytree доля признаков, случайно выбирающихся для построения дерева
- subsample доля объектов, случайно выбирающихся для построения дерева
- n_jobs кол-во потоков для одновременного построения деревьев

TOHKOCTU XGBOOST

ВАЖНОСТЬ ПРИЗНАКОВ

- weight суммарное кол-во раз, когда признак использовался для разбиения вершины
- gain средний прирост качества, когда признак использовался для разбиения вершины
- cover среднее кол-во объектов, которые попадали в разбиение по признаку, когда он использовался для разбиения вершины

ПРАКТИКА

XGBoost.ipynb (настройка параметров)

Преимущества использования CatBoost:

- CatBoost позволяет проводить обучение на нескольких GPU.
- Библиотека позволяет получить отличные результаты с параметрами по умолчанию, что сокращает время, необходимое для настройки гиперпараметров.
- Обеспечивает повышенную точность за счет уменьшения переобучения.
- Возможность быстрого предсказания с применением модели CatBoost.
- Умеет под капотом обрабатывать пропущенные значения.
- Может использоваться для регрессионных и классификационных задач.

- loss_function или objective показатель, используемый для обучения. Есть регрессионные показатели, такие как среднеквадратичная ошибка для регрессии и logloss для классификации.
- eval_metric метрика, используемая для обнаружения переобучения.
- **Iterations** максимальное количество построенных деревьев, по умолчанию 1000. Альтернативные названия num_boost_round, n_estimators и num_trees.
- learning_rate или eta скорость обучения, которая определяет насколько быстро или медленно модель будет учиться. Значение по умолчанию обычно равно 0.03.
- random_seed или random_state— случайное зерно, используемое для обучения.
- I2_leaf_reg или reg_lambda коэффициент при члене регуляризации L2 функции потерь. Значение по умолчанию 3.0.
- bootstrap_type определяет метод сэмплинга весов объектов, например это может быть Байес, Бернулли, многомерная случайная величина или Пуассон.
- **depth** = глубина дерева.

- grow_policy определяет, как будет применяться жадный алгоритм поиска. Может стоять в значении SymmetricTree, Depthwise или Lossguide. По умолчанию SymmetricTree. В SymmetricTree дерево строится уровень за уровнем, пока не достигнет необходимой глубины. На каждом шаге листья с предыдущего дерева разделяются с тем же условием. При выборе параметра Depthwise дерево строится шаг за шагом, пока не достигнет необходимой глубины. Листья разделяются с использованием условия, которое приводит к лучшему уменьшению потерь. В Lossguide дерево строится по листьям до тех пор, пока не будет достигнуто заданное количество листьев. На каждом шаге разделяется нетерминальный лист с лучшим уменьшением потерь.
- min_data_in_leaf или min_child_samples это минимальное количество обучающих сэмплов в листе. Этот параметр используется только с политиками роста Lossguide и Depthwise.
- max_leaves или num_leaves этот параметр используется только с политикой Lossguide и определяет количество листьев в дереве.
- ignored_features указывает на признаки, которые нужно игнорировать в процессе обучения.
- nan_mode метод работы с пропущенными значениями. Параметры Forbidden, Min и Max. При использовании Forbidden наличие пропущенных значений вызовет ошибку. При использовании параметра Min пропущенные значения будут приняты за минимальные значения для данного признака. В Max пропущенные значения будут приняты как максимальные значения для данного признака.

- •leaf_estimation_backtracking тип бэктрекинга, использующийся при градиентном спуске. По умолчанию используется Anylmprovement. Anylmprovement уменьшает шаг спуска до того, как значение функции потерь будет меньшим, чем оно было на последней итерации.
- •boosting_type схема бустинга. Она может быть простой для классической схемы градиентного бустинга или упорядоченной, что обеспечит лучшее качество на небольших наборах данных.
- •score_function тип оценки, используемой для выбора следующего разбиения при построении дерева. Cosine используется по умолчанию. Другие доступные варианты L2, NewtonL2 и NewtonCosine.
- •early_stopping_rounds если стоит True, устанавливает тип детектора переобучения в lter и останавливает обучение, когда достигается оптимальное значение.

- classes_count количество классов для задач мультиклассификации.
- task_type используете вы CPU или GPU. По умолчанию стоит CPU.
- **devices** идентификаторы устройств GPU, которые будут использоваться для обучения.
- cat_features массив с категориальными столбцами.
- **text_features** используется для объявления текстовых столбцов в задачах классификации.

ПРАКТИКА

XGBoost.ipynb (CatBoost)

ЧТО МЫ СЕГОДНЯ УЗНАЛИ

- Какие бывают виды бустингов;
- В чем преимущество XGBoost;
- Как оценивать важность признаков в XGBoost;
- Как правильно настраивать параметры XGBoost

BOOSTING

КУХАЛЬСКИЙ НИКОЛАЙ ГЕННАДЬЕВИЧ