3	20-P-MOM-DY-41
	A m= 1500 kg rocket has 1000kg of its mass dedicated
	to tuck purply thight it is discovered that there is a
	puncture that allows the fuel to leak from the system at
	-2 Ms. relative to the rocket. Determine if the rocket has
	enough fuel to still escape earth's atmosphere Of = 50 0 0 0 kg Q = 100 kg vfc = 15 km/s
	m m
	A
	Q_{i}
	v _t VQ _t
	of NO Of
	Solution: 1 ZF = mdv - ve/r dt = -W = mdv - ve/r dt - ve/r dt
	$m = m - \left(\frac{dm_t}{dt}\right)t - \left(\frac{dm_t}{dt}\right)t = m_0 - ft - Lt$
	- (mo-ft-lt)g= (mo-ft-lt)dy - Vfn f - vvrl
	VAMF + VLM L- (My-ft-Lt)q.
	of (verif + veril - g) dt = of dv mo-(f+l)t
	W) 0 1 C
	$V = \frac{\left(\sqrt{f_{fr}} + \sqrt{y_{r}} \right) \left(\sqrt{m_{o}} - \left(\sqrt{f_{+}} \right) \right) - gt}{\left(\sqrt{f_{+}} \right)}$
	(f+L)
	mf = dmf t = ft t = mf
	(Vf/rf + Vival) Mo / L) inf
	V= (+1) n (m - mf =) f+1
	V= 16 446 W3