

$f_{1^{-}\alpha}^{\#2}$	0	0	0	0	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{3k^2r_3}{2}$	0	0	0
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>ikt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#_+^2}\alpha\beta$	$\frac{\sqrt{2} t_2}{3}$	t 2 3	$-\frac{1}{3}$ \bar{l} kt_2	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} +^{\alpha\beta}$	$\omega_1^{\#_2} + \alpha^{\beta}$	$f_1^{#1} + \alpha^{\beta}$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#^2} +^\alpha$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{\#2} +^{\alpha}$

$ au_{1}^{\#2}$	0	0	0	0	0	0	0
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{ ext{-}}\alpha}^{\#2}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{2}{3k^2r_3}$	0	0	0
$\tau_1^{\#1}_+ \alpha_\beta$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1^{\bar{-}1}}^{\#_1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$
	S	G					

Source constraints	
SO(3) irreps	#
$\tau_{0+}^{\#2} == 0$	1
$\tau_{0+}^{\#1} == 0$	1
$\sigma_{0^{+}}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$\sigma_1^{\#2\alpha} == 0$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#1}{}^{\alpha\beta} == 0$	3
$\sigma_{1+}^{\#1}{}^{\alpha\beta} = \sigma_{1+}^{\#2}{}^{\alpha\beta}$	3
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5
$\tau_{2^{+}}^{\#1\alpha\beta} == 0$	5
Total #:	28

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	0

$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$						
$\omega_{2}^{\#1} \dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0			
$f_{2^{+}}^{\sharp 1}\dagger^{\alpha\beta}$	0	0	0			
$\omega_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	0			

	$\omega_{0^+}^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0^{+}}^{\#1}$ †	0	0	0	0
$f_{0}^{#1}\dagger$	0	0	0	0
$f_{0^{+}}^{#2}$ †	0	0	0	0
$\omega_{0}^{#1}$ †	0	0	0	$k^2 r_2 + t_2$

	Massive particl	:le	
? $P = 0$?	Pole residue:	$-\frac{1}{r_2} > 0$	
$\frac{3}{2}$	Polarisations:	1	
\vec{k}^{μ}	Square mass:	$-\frac{t_2}{r_2} > 0$	
?	Spin:	0	
·	Parity:	Odd	

 $\frac{\text{Unitarity conditions}}{r_2 < 0 \&\& t_2 > 0}$

(No massless particles)