HARBOUR SPACE

UNIVERSITY

HOME TOP CONTESTS GYM PROBLEMSET GROUPS RATING API HELP CALENDAR

PROBLEMS SUBMIT CODE MY SUBMISSIONS STATUS HACKS STANDINGS CUSTOM INVOCATION

A. DIY Wooden Ladder

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input output: standard output

Let's denote a k-step ladder as the following structure: exactly k+2 wooden planks, of which

- ullet two planks of length **at least** k+1 the base of the ladder;
- *k* planks of length **at least** 1 the steps of the ladder;

Note that neither the base planks, nor the steps planks are required to be equal.

For example, ladders 1 and 3 are correct 2-step ladders and ladder 2 is a correct 1-step ladder. On the first picture the lengths of planks are [3,3] for the base and [1] for the step. On the second picture lengths are [3,3] for the base and [2] for the step. On the third picture lengths are [3,4] for the base and [2,3] for the steps.

Educational Codeforces Round 69 (Rated for Div. 2)

Finished

→ Practice?

Want to solve the contest problems after the official contest ends? Just register for practice and you will be able to submit solutions.

Register for practice

→ Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ACM-ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you - solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

You have n planks. The length of the i-th planks is a_i . You don't have a saw, so you can't cut the planks you have. Though you have a hammer and nails, so you can assemble the improvised "ladder" from the planks.

The question is: what is the maximum number k such that you can choose some subset of the given planks and assemble a k-step ladder using them?

Input

The first line contains a single integer T ($1 \le T \le 100$) — the number of queries. The queries are independent.

Each query consists of two lines. The first line contains a single integer n ($2 \le n \le 10^5$) — the number of planks you have.

The second line contains n integers a_1, a_2, \ldots, a_n ($1 \le a_i \le 10^5$) — the lengths of the corresponding planks.

It's guaranteed that the total number of planks from all queries doesn't exceed $10^5\,$.

Output

Print T integers — one per query. The i-th integer is the maximum number k, such that you can choose some subset of the planks given in the i-th query and assemble a k-step ladder using them.

Print 0 if you can't make even 1-step ladder from the given set of planks.

Example

```
input

Copy

4
4
1 3 1 3
3
3 3 2
5
2 3 3 4 2
3
1 1 2

output

Copy

2
1
2
0
```

Note

Examples for the gueries 1-3 are shown at the image in the legend section.

The Russian meme to express the quality of the ladders:

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov
The only programming contests Web 2.0 platform
Server time: Jul/30/2019 14:25:51^{uTC} (e2).
Desktop version, switch to mobile version.

Privacy Policy

Supported by

