Eksperymenty z całkowaniem Monte Carlo

Jakub Kogut

1 Wstęp

Sprawozdanie do zadania domowego 1.

2 Opis Zadania

Dane są następujące całki, które należy przybliżyć:

- $\int_0^8 3\sqrt{x} dx$
- $\int_0^\pi \sin(x) dx$
- $\int_0^1 4x(1-x)^3 dx$

Dla każdej z tych całek przeprowadzono eksperymenty, wykonując algorytm Monte Carlo dla $n=50,100,\ldots,5000$ z k=5 oraz k=50 niezależnymi powtórzeniami. Eksperymenty obejmowały również aproksymację liczby π przy użyciu tej samej metody Monte Carlo.

3 Metodologia

Metoda całkowania Monte Carlo została przeprowadzona w następujący sposób:

- 1. Generowano losowe punkty w obrębie prostokąta obejmującego wykres funkcji całkowanej.
- 2. Zliczano punkty, które znalazły się pod wykresem funkcji.
- 3. Stosunek punktów pod wykresem do całkowitej liczby punktów użyto do oszacowania wartości całki.

4 Wyniki

Wyniki eksperymentów przedstawiono na poniższych wykresach, gdzie:

- Niebieskie punkty reprezentują wyniki poszczególnych powtórzeń.
- \bullet Czerwone kropki przedstawiają średnią wartość dla każdego n.

 \bullet Zielona linia oznacza dokładną wartość całki lub $\pi.$

Rysunek 1: Całka $\int_0^8 3\sqrt{x}\,dx$ dla k=5powtórzeń

Rysunek 2: Całka $\int_0^8 3\sqrt{x}\,dx$ dla k=50powtórzeń

Rysunek 3: Całka $\int_0^\pi \sin(x)\,dx$ dla k=5powtórzeń

Rysunek 4: Całka $\int_0^\pi \sin(x)\,dx$ dla k=50powtórzeń

Rysunek 5: Całka $\int_0^1 4x (1-x)^3 \, dx$ dla k=5 powtórzeń

Rysunek 6: Całka $\int_0^1 4x (1-x)^3 \, dx$ dla k=50powtórzeń

Rysunek 7: Aproksymacja liczby π dla k=50powtórzeń

Rysunek 8: Aproksymacja liczby π dla k=5powtórzeń