Design and Analysis of Algorithm Module 4.3_ Transitive closure

21CS42 Dr. Avneet Dhingra

CMR Institute of Technology
Bangalore

Reference: Design and Analysis of Algorithms, S Sridhar

Warshall's Algorithm: Transitive Closure

- Computes the transitive closure of a relation
- (Alternatively: all paths in a directed graph/ REACHABILITY MATRIX)
- Example of transitive closure:


```
      1
      2
      3
      4

      1
      0
      0
      1
      0

      2
      1
      0
      0
      1

      3
      0
      0
      0
      0

      4
      0
      1
      0
      0
```

```
      1
      2
      3
      4

      1
      0
      0
      1
      0

      2
      1
      1
      1
      1

      3
      0
      0
      0
      0

      4
      1
      1
      1
      1
```

Warshall's Algorithm using Dynamic Programming

- To find the existence of path between <u>all the pair of vertices</u> in a given <u>weighted connected graph</u>
- Applicable to both directed and undirected weighted graph
- Warshall's Algorithm is to determine Transitive Closure of a Directed graph or all paths in a directed graph using adjacency matrix
- Generate Transitive Closure of a digraph with the help of DFS or BFS
- Applications:
 - Data flow and control flow dependencies
 - Redundancy checking,
 - Inheritance testing in object oriented software

Warshall's Algorithm

Main idea:

- A path exists between two vertices i and j, if and only if
 - There is a n edge from i to j; or
 - There is a path from i to j going through vertex 1 and/or 2;
 - There is a path from I to j going through vertex 1,2, and/or 3; or
 - •
 - There is a path from I to j going through any of the other vertices

Warshall's Algorithm

• On the k^{th} iteration, the algorithm determine if a path exists between two vertices i, j using just vertices among 1, ..., k allowed as intermediate

Warshall's Algorithm: Transitive Closure REACHABILITY MATRIX

Transitive Closure of a directed graph with n vertices can be defined as n x n Boolean matrix $T = \{t_{ij}\}$ in which element in the ith row and jth column is 1 if there exists a non trivial path from ith vertex to jth vertex, otherwise $t_{ii} = 0$.

(a) Digraph. (b) Its adjacency matrix. (c) Its transitive closure.

Warshall's Algorithm (matrix generation)

Recurrence relating elements $R^{(k)}$ to elements of $R^{(k-1)}$ is:

$$R^{(k)}[i,j] = R^{(k-1)}[i,j]$$
 or $(R^{(k-1)}[i,k]$ and $R^{(k-1)}[k,j])$

It implies the following rules for generating $R^{(k)}$ from $R^{(k-1)}$:

- Rule 1 If an element in row i and column j is 1 in $R^{(k-1)}$, it remains 1 in $R^{(k)}$
- Rule 2 If an element in row i and column j is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ if and only if the element in its row i and column k and the element in its column j and row k are both 1's in $R^{(k-1)}$

Warshall's Algorithm: Transitive Closure

Rule for changing zeros in Warshall's algorithm

To check whether there is an existence of path between every pair of vertices

$$R^{(0)} = \begin{array}{c} a & b & c & d \\ \hline 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{array}$$

$$R^{(1)} = \begin{array}{c|cccc} a & b & c & d \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 \\ d & 1 & 1 & 1 & 0 \end{array}$$

$$R^{(2)} = \begin{array}{c} a \\ b \\ c \\ d \end{array} \begin{bmatrix} 0 & 1 & 0 & \mathbf{1} \\ 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 \\ \hline 1 & 1 & \mathbf{1} & \mathbf{1} \end{bmatrix}$$

$$R^{(3)} = \begin{pmatrix} a & b & c & d \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$R^{(4)} = \begin{bmatrix} a & b & c & d \\ 1 & 1 & 1 & 1 \\ b & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ d & 1 & 1 & 1 & 1 \end{bmatrix}$$

Ones reflect the existence of paths with no intermediate vertices $(R^{(0)})$ is just the adjacency matrix; boxed row and column are used for getting $R^{(1)}$.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 1, i.e., just vertex a (note a new path from d to b); boxed row and column are used for getting $R^{(2)}$.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 2, i.e., a and b (note two new paths); boxed row and column are used for getting $R^{(3)}$.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 3, i.e., a, b, and c (no new paths); boxed row and column are used for getting $R^{(4)}$.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 4, i.e., a, b, c, and d (note five new paths).

Step1: Create an adjacency matrix

Step2: Consider path through vertex *a*

Step2: Consider path through vertex **b**

Step3: Consider path through vertex *c*

Step4: Consider path through vertex d

Warshall's Algorithm (pseudocode and analysis)

```
ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
R^{(0)} \leftarrow A

for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j] or (R^{(k-1)}[i, k] and R^{(k-1)}[k, j])
return R^{(n)}
```

Time efficiency: $\Theta(n^3)$

Space efficiency: Matrices can be written over their predecessors

 Warshall Algorithm is used to find whether there is a path from each node to every other node in the given graph

• Floyd's (Warshall) algorithm is used to find the shortest distance from each node to every other node.

Floyd's Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between every pair of vertices

Same idea: construct solution through series of matrices $D^{(0)}$, ..., $D^{(n)}$ using increasing subsets of the vertices allowed as intermediate

• Example:

Floyd's Algorithm: Matrix Generation

On the k-th iteration, the algorithm determines shortest paths between every pair of vertices i, j that use only vertices among $1, \ldots, k$ as intermediate

$$D^{(k)}[i,j] = \min \{D^{(k-1)}[i,j], D^{(k-1)}[i,k] + D^{(k-1)}[k,j]\}$$

Example:

(a) Digraph. (b) Its weight matrix. (c) Its distance matrix.

$$D^{(1)} = \begin{pmatrix} a & b & c & d \\ 0 & \infty & 3 & \infty \\ 2 & 0 & \mathbf{5} & \infty \\ \infty & 7 & 0 & 1 \\ d & 6 & \infty & \mathbf{9} & 0 \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} a & b & c & d \\ 0 & \infty & 3 & \infty \\ 2 & 0 & 5 & \infty \\ 2 & 0 & 5 & \infty \\ \mathbf{9} & 7 & 0 & 1 \\ 6 & \infty & 9 & 0 \end{pmatrix}$$

$$D^{(3)} = \begin{bmatrix} a & b & c & d \\ 0 & 10 & 3 & 4 \\ 2 & 0 & 5 & 6 \\ 9 & 7 & 0 & 1 \\ \hline 6 & 16 & 9 & 0 \end{bmatrix}$$

$$D^{(4)} = \begin{bmatrix} a & b & c & d \\ 0 & 10 & 3 & 4 \\ 2 & 0 & 5 & 6 \\ 7 & 7 & 0 & 1 \\ 6 & 16 & 9 & 0 \end{bmatrix}$$

Lengths of the shortest paths with no intermediate vertices $(D^{(0)})$ is simply the weight matrix).

Lengths of the shortest paths with intermediate vertices numbered not higher than 1, i.e. just a (note two new shortest paths from b to c and from d to c).

Lengths of the shortest paths with intermediate vertices numbered not higher than 2, i.e. a and b (note a new shortest path from c to a).

Lengths of the shortest paths with intermediate vertices numbered not higher than 3, i.e. a, b, and c (note four new shortest paths from a to b, from a to d, from b to d, and from d to b).

Lengths of the shortest paths with intermediate vertices numbered not higher than 4, i.e. a, b, c, and d (note a new shortest path from c to a). **Step1**: Generate the cost adjacency matrix

Step2: Consider shortest path through *a* $b,c = min\{ (b->c), (b->a + a->c) \}$ $= min\{ inf, 2+3 \} = 5$

Step3: Consider shortest path through **b** $c,a = min\{c->a, c->b+b->a\}$

 $= min \{ inf, 7+2 \} = 9$

Step4: Consider shortest path through *c* $a,d = min\{a->d, a->c+c->d\}$ $= min \{ inf, 3 + 1 \} = 4$

Step5: Consider shortest path through d

Lengths of the shortest paths with no intermediate vertices $(D^{(0)})$ is simply the weight matrix).

Path Matrix

Lengths of the shortest paths with intermediate vertices numbered not higher than 1, i.e. just *a* (note two new shortest paths from *b* to *c* and from *d* to *c*).

а			
b		1	
С			
d		1	

 $P^{(1)}$

$$D^{(2)} = \begin{pmatrix} a & b & c & d \\ 0 & \infty & 3 & \infty \\ 2 & 0 & 5 & \infty \\ 2 & 0 & 5 & \infty \\ \mathbf{9} & 7 & 0 & 1 \\ 6 & \infty & 9 & 0 \end{pmatrix}$$

Lengths of the shortest paths with intermediate vertices numbered not higher than 2, i.e. a and b (note a new shortest path from c to a).

а			
b		1	
С	2		
d		1	

 $P^{(2)}$

		_ a	D	C	u.	
D ⁽³⁾ =	а	0	10	3	4	
	ь	2	0	5	6	
	c	9	7	0	1	
	d	6	16	9	0	
	ı					_

Lengths of the shortest paths with intermediate vertices numbered not higher than 3, i.e. a, b, and c (note four new shortest paths from a to b, from a to d, from b to d, and from d to b).

а		3		3
b			1	3
С	2			
d		3	1	

P(3)

		_ a	Ь	C	ď
D ⁽⁴⁾ =	а	0	10	3	4
	b	2	0	5	6
D(4) =	С	7	7	0	1
	d	6	16	9	0
		L			_

Lengths of the shortest paths with intermediate vertices numbered not higher than 4, i.e. a, b, c, and d (note a new shortest path from c to a).

 $P^{(4)}$

Floyd's Algorithm (Pseudocode and Analysis)

```
ALGORITHM Floyd(W[1..n, 1..n])
    //Implements Floyd's algorithm for the all-pairs shortest-paths problem
    //Input: The weight matrix W of a graph with no negative-length cycle
    //Output: The distance matrix of the shortest paths' lengths
    D \leftarrow W //is not necessary if W can be overwritten
    for k \leftarrow 1 to n do
         for i \leftarrow 1 to n do
              for j \leftarrow 1 to n do
                  D[i, j] \leftarrow \min\{D[i, j], D[i, k] + D[k, j]\}
    return D
```

Time efficiency: $\Theta(n^3)$

Space efficiency: Matrices can be written over their predecessors

Shortest Path Reconstruction

```
Algorithm path_reconstruct(P,i, j)
//Input: Path matrix P
//Output: Recostructed Path
  if (i==j) output i;
  else if (P[i,j]==0)
       { output 'No path exists';}
       else
          path reconstruct(P, i, P[i,j])
          output the value of j
   endif
Here, P[][] is a path matrix which stores the predecessor node for path from I to j.
It is computed alongwith computation of matrix D. It records the value of k which gives the minimum value at every iteration.
P[i][j] = 0 if i=j and if no path exists between i and j
```

Apply Warshall algorithm and find transitive closure for the graph shown below:

 $R^{(k)}[i,j] = R^{(k-1)}[i,j]$ or $(R^{(k-1)}[i,k]$ and $R^{(k-1)}[k,j])$

Floyd's Algorithm Practice:

$$D^{(k)}[i,j] = \min \{D^{(k-1)}[i,j], D^{(k-1)}[i,k] + D^{(k-1)}[k,j]\}$$