

Cloud Platform Comparison

AWS Athena, Google BigQuery, Snowflake, Databricks

Outline

- Recall
- Updated Benchmark Results
- Introduction to Databricks
- Databricks Demo
- Query Comparison
- Follow-up Features

Recall

- ~ 2.5 TB GDELT dataset located in Amazon S3
- 8 queries involving table joins, recasting data types,
 aggregating, string matching, Common Table Expressions
- Snowflake outperformed AWS Athena and Google
 BigQuery in terms of query speed and cost
- Snowflake data is partitioned and columnarly-compressed by default

Updated Benchmark Results

Query Speed

Databricks (Spark.SQL) > Snowflake > Databricks (Native SQL) > BQ Native > Athena Column > BQ External > Athena Row

Data Scanned

Snowflake < Athena Column < BQ Native < BQ External = Athena Row

Cost

Databricks (Spark.SQL) < Snowflake < Databricks (Native SQL) < Athena Column < BQ Native < BQ External = Athena Row

Overview

- Partnerships with AWS and Microsoft Azure
- An analytics platform that runs Spark on AWS machines
- Can choose machine type and use spot pricing
- Two infrastructure types: cluster or serverless pool
- Two modes: interactive (notebooks, for data analytics) and non-interactive (scripts and jobs for data engineering)

Standard Cluster	Serverless Pool
Autoscaling available	Autoscaling available
Needs manual configuration	Auto-configuration for performance, fault isolation and high concurrency
Can choose different driver/worker instance type	Same driver/worker instance types
Supports Python, R, SQL, Scala	Supports Python, SQL
Auto-terminate available	Auto-terminate not available

Overview

- To allow auto-scaling: provide the min and max number of instances and cluster/pool scales based on workload
- Cluster supports PySpark, SparkSQL, native SQL, native Python, Scala, R; some R/Python packages are pre-installed, others can be installed by user
- Serverless pool supports PySpark, SparkSQL, native SQL and native Python only
- Native Python ML models will not be distributed. SparkML should be used instead for better performance.

Remarks on Benchmarking Results

- SparkSQL runs faster than native SQL, but the latter outputs query results in the notebook and lets you visualize results based on sample without running an additional Spark job.
- Some type of caching might occur: same query gets faster after successive runs in the same notebook; not true if you change notebooks
- The cluster/pool scales based on workload: a max of 4
 workers does not mean all 4 are leveraged for each query.
 (Contrast this to Snowflake, where a 4-node cluster uses all 4
 nodes.)

Data In

- Reads from S3: no data out charges, fast read time
- Data load: load from S3 > create Dataframe (exists only in the notebook) > write as table (persistent)
- Error-handling: can store bad files and records and reasons from the exception logs to a specified filepath for later investigation

Data Out

- Saving query output:
 - Native SQL: use create table as to save output to database in Parquet format
- Use PySpark to write output to database or another destination (S3/local) in any format (Parquet/csv)
- Database is stored in the Databricks File System (DBFS) tied to your account. DBFS is independent of your notebook and cluster, hence data persists across different notebook/cluster instatiations.
- Can interact with DBFS through the Databricks CLI.

Pricing

- Per-second billing
- Pay for underlying machinery + Databricks cost
- AWS costs billed directly to AWS account
- Databricks on Azure is currently on preview for 50% of AWS cost.

Pricing

	Non-Interactive	Interactive		
Databricks AWS	\$0.20 per hour per Databricks Unit (DBU) + AWS cost \$0.40 per hour p Databricks Unit (DI AWS cost			
Operational Security Package	+ \$0.15 per Databricks Unit (DBU)			

Takeaways

- Cheaper and faster than Snowflake
- Not a data warehousing tool
- Everything done through scripting
- Key feature is elasticity + auto-scaling
- Notebooks support different languages
- Can execute entire analytics workflow (ETL + modelling)
 in the same notebook

Databricks Demo

version 2.63.904

Introduction to Apache Spark on Databricks

Databricks for Data Scientists

Introduction to Structured Streaming

New

- Notebook
- ₩ Job
- ♣ Cluster
- Library

Documentation

- Databricks Guide
- Python, R, Scala, SQL
- Importing Data

Open Recent

- --- Iranı.

What's new?

- Important: Cluster API backwardsincompatible changes
- · Edit cluster configuration
- · Databricks CLI for clusters and jobs
- · Jobs limits

Latest release notes

Q1: Select all records where theme includes 'terror'

	DB Spark SQL	SF	DB Native SQL	BQ Native	Athena Columnar	BQ External	Athena Row
Runtime (min)	0.38	35.22	0.59	59.9	71.98	74.60	82.02
Data Scanned (GB)		924.4	0.12	2380	2370	2380	2380
Cost (\$)	0.03	4.70	0.04	11.90	11.85	11.90	11.90

^{*} Options with smallest run time, data scanned and cost highlighted.

Q2: Select all events where the confidence score >= 100

	DB Spark SQL	SF	DB Native SQL	BQ Native	Athena Columnar	BQ External	Athena Row
Runtime (min)	0.99	1.32	3.10	5.10	7.88	74.60	10.36
Data Scanned (GB)		14.9	0.21	80.6	36.1	158.0	157.8
Cost (\$)	0.07	0.18	0.22	0.40	0.18	0.79	0.79

Q4: All mentions where actor 1, actor 2, or action is located in US and event occurred in 2017; using a 'where in' clause

	DB Spark SQL	SF	DB Native SQL	BQ Native	Athena Columnar	BQ External	Athena Row
Runtime (min)	4.68	1.12	5.19	10.05	11.60	12.93	13.50
Data Scanned (GB)		14.3	17.61	97.6	57.5	158.0	157.8
Cost (\$)	0.32	0.15	0.35	0.49	0.29	0.79	0.79

Q8: Number of rows per combination of 27 column & join of three tables (Exhausted Resources Error query)

	DB Spark SQL	SF	DB Native SQL	BQ Native	Athena Columnar	BQ External	Athena Row
Runtime (min)	2.06	3.88	2.09	4.00	Failed	7.05	Failed
Data Scanned (GB)		4.2	2.2	20.3	-	158.0	-
Cost (\$)	0.14	0.52	0.14	0.10	-	0.79	-

See <u>here</u> for more details

8 Spark SQL queries run on Databricks using different pool sizes

Query		Time (min)	Quer	y Cost (\$)
Query	4 nodes	20 nodes	4 nodes	20 nodes
1	0.38	0.44	0.03	0.13
2	0.99	0.59	0.07	0.17
4	4.68	2.06	0.32	0.59
8	2.09	0.84	0.14	0.24

Remarks

- On the 4-node cluster, queries run right after data load jobs took longer than queries run as the first jobs on a "fresh" cluster. This could be related to "depleted" EC2 <u>CPU Credit Balance</u>.
- On the 20-node cluster, a "fresh" cluster yielded slower query times than a "working" one. This could be because previous tasks force the cluster to scale up, and subsequent queries leveraged a larger pool of resources before it could scale down again.

Follow-Up Features

Permissioning

Google BigQuery	Snowflake	Databricks
 User- or role-based Available for objects and actions Securable at database level Table and column-level permissioning proxied via securable views TANFORD LICINITY	 User- or role-based Available for objects and actions Actions: cluster management, SQL Objects: cluster, database, table Securable at table level Column-level permissioning proxied via securable views 	 User-based access control Available for objects and actions Actions: cluster management, SQL Objects: cluster, database, table, notebook Data securable at table level Notebook securable at cell level Column-level permissioning proxied via securable views

Follow-Up Features

Security

Google BigQuery	Snowflake	Databricks		
Data is encryptedMFA available	Data is encryptedMFA available	Data not encryptedMFA available		

Ability to tag users

Google BigQuery	Snowflake	Databricks
 Audit logs to track down actions and acting user Can add labels to datasets, tables, and views to trace cos Can set cost quota for projects and individual user 	 Can be achieved by spinning up separate warehouses for each user's compute efforts This will add cost since pricing is based on warehouse-second 	 Notebooks are user-based Since cluster is linked to AWS, you can track instance costs on AWS dashboard

Follow-Up Features

Single Sign On

Google BigQuery	Snowflake	Databricks
Already in place	 Supported 	 Supported

"Easy-Environment" Options

Google BigQuery	Snowflake	Databricks
 Nice web UI with drop menu options CLI and client libraries available TANFORD SERRED LICINIES CRAPE LICINIES CONTROLLES CONTR	 Admin can set relevant privileges for warehouse Option to set warehouse to auto-suspend after certain amount of time and auto-resume when query is run 	 Admin can configure cluster and data access settings Provide pre-configured notebooks Option to auto-suspend cluster (but no serverless pool) after period of inactivity

DBFS CLI

```
♠ booranium — -bash — 104×34
                                                                                                       Ongs-MacBook-Pro:~ booranium$ dbfs
Usage: dbfs [OPTIONS] COMMAND [ARGS]...
 Utility to interact with DBFS.
 DBFS paths are all prefixed with dbfs:/. Local paths can be absolute or
  local.
Options:
  -v, --version 0.4.1
 -h, --help Show this message and exit.
Commands:
  configure Configures host and authentication info for the CLI.
            Copy files to and from DBFS.
  Ср
            List files in DBFS.
  ls
 mkdirs
           Make directories in DBFS.
            Moves a file between two DBFS paths.
 mv
            Remove files from dbfs.
  rm
Ongs-MacBook-Pro:~ booranium$
```


DBFS CLI

```
n booranium — -bash — 104×34
                                                                                                          Ongs-MacBook-Pro:~ booranium$ dbfs ls
FileStore
databricks-results
mnt
tmp
user
Ongs-MacBook-Pro:~ booranium$ dbfs ls dbfs:/user/hive/warehouse/
actor type2
event type
events
gkg
gkg errors
mentions
tbl actor type
test out
test out2
Ongs-MacBook-Pro:~ booranium$
```


Intro to Amazon Aurora

- An relational DB managed by Amazon RDS (fully managed: updates, security patches, data replication, etc)
- Supports both MySQL (5x faster) and Postgres (3x faster)
- Auto-scaling up to 64 TB
- "Database cluster": multiple DB instances
- Data stored in replicas across multiple availability zones for increased availability + fault tolerance
- Requires setting up a VPC with subnets in at least two availability zones

Change lives. Change Organizations. Change the world.