In [90]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pandas.tools.plotting import autocorrelation_plot
from statsmodels.graphics.tsaplots import plot_pacf
from statsmodels.tsa.arima_model import ARIMA, ARMAResults
import datetime
import sys
import seaborn as sns
import statsmodels
import statsmodels.stats.diagnostic as diag
from statsmodels.tsa.stattools import adfuller
from scipy.stats.mstats import normaltest
from matplotlib.pyplot import acorr
plt.style.use('fivethirtyeight')
%matplotlib inline
```

In [91]:

```
#importing stock data using Unix Epoch TimeStamp

df = pd.read_csv('C:\\Users\\techane\\Desktop\\data_stocks.csv')

df.head()
```

Out[91]:

	DATE	SP500	NASDAQ.AAL	NASDAQ.AAPL	NASDAQ.ADBE	NASDAQ.ADI	NASDA
0	1491226200	2363.6101	42.3300	143.6800	129.6300	82.040	1(
1	1491226260	2364.1001	42.3600	143.7000	130.3200	82.080	1(
2	1491226320	2362.6799	42.3100	143.6901	130.2250	82.030	1(
3	1491226380	2364.3101	42.3700	143.6400	130.0729	82.000	1(
4	1491226440	2364.8501	42.5378	143.6600	129.8800	82.035	1(

5 rows × 502 columns

In [92]:

```
#Convert Unix Time to DateTime
df['DATE']= pd.to_datetime(df["DATE"], unit='s')
```

In [93]:

```
# setting DATE column as Index
df = df.set_index('DATE')
```

```
In [99]:
```

```
df.isnull().sum().head()
Out[99]:
SP500
                  0
NASDAQ.AAL
                  0
NASDAQ.AAPL
                  0
NASDAQ.ADBE
                  0
NASDAQ.ADI
                  0
dtype: int64
In [100]:
df.index
Out[100]:
DatetimeIndex(['2017-04-03 13:30:00', '2017-04-03 13:31:00',
                  '2017-04-03 13:32:00', '2017-04-03 13:33:00',
                  '2017-04-03 13:34:00', '2017-04-03 13:35:00', '2017-04-03 13:36:00', '2017-04-03 13:37:00',
                  '2017-04-03 13:38:00', '2017-04-03 13:39:00',
                  '2017-08-31 19:51:00', '2017-08-31 19:52:00',
                  '2017-08-31 19:53:00', '2017-08-31 19:54:00', '2017-08-31 19:55:00', '2017-08-31 19:56:00',
                  '2017-08-31 19:57:00', '2017-08-31 19:58:00', '2017-08-31 19:59:00', '2017-08-31 20:00:00'],
                 dtype='datetime64[ns]', name='DATE', length=41266, freq=None)
In [101]:
#keep importan columns and remove rest
col_list = ['NASDAQ.AAPL','NASDAQ.ADP','NASDAQ.CBOE','NASDAQ.CSCO','NASDAQ.EBAY']
df = df[col list]
```

In [102]:

```
# retaining not-null values in dataset and converting to time series
ts=df[pd.Series(pd.to_datetime(df.index,errors='coerce')).notnull().values]
ts.head()
```

Out[102]:

NASDAQ.AAPL NASDAQ.ADP NASDAQ.CBOE NASDAQ.CSCO NASDAQ.EBAY

DATE					
2017-04-03 13:30:00	143.6800	102.2300	81.03	33.7400	33.3975
2017-04-03 13:31:00	143.7000	102.1400	81.21	33.8800	33.3950
2017-04-03 13:32:00	143.6901	102.2125	81.21	33.9000	33.4100
2017-04-03 13:33:00	143.6400	102.1400	81.13	33.8499	33.3350
2017-04-03 13:34:00	143.6600	102.0600	81.12	33.8400	33.4000

In [103]:

#no need to drop any record as all columns have equal number of non-null vavlues ts.index

Out[103]:

In [104]:

```
# analyse the mean of values for all companies
avg_stock = np.mean(ts,axis=0)
col_list = ['NASDAQ.AAPL','NASDAQ.ADP','NASDAQ.CBOE','NASDAQ.CSCO','NASDAQ.EBAY']
fig = plt.figure(figsize = (16,9))
x_label = col_list
x_tick = np.arange(len(col_list))
plt.bar(x_tick, avg_stock, align = 'center', alpha = 0.5)
plt.xticks(x_tick, x_label, fontsize = 20)
plt.yticks(fontsize = 20)
```

Out[104]:

```
(array([ 0., 20., 40., 60., 80., 100., 120., 140., 160.]), <a list of 9 Text yticklabel objects>)
```


In [105]:

avg_stock

Out[105]:

NASDAQ.AAPL 150.453566 NASDAQ.ADP 103.480398 NASDAQ.CBOE 89.325485 NASDAQ.CSCO 32.139336 NASDAQ.EBAY 34.794506

dtype: float64

In [106]:

```
ts.index
```

Out[106]:

In [107]:

```
ts.isnull().sum()
```

Out[107]:

NASDAQ.AAPL 0
NASDAQ.ADP 0
NASDAQ.CBOE 0
NASDAQ.CSCO 0
NASDAQ.EBAY 0
dtype: int64

In [159]:

ts.head()

Out[159]:

NASDAQ.AAPL NASDAQ.ADP NASDAQ.CBOE NASDAQ.CSCO NASDAQ.EBAY

DATE

2017-04-03 13:30:00	143.6800	102.2300	81.03	33.7400	33.3975
2017-04-03 13:31:00	143.7000	102.1400	81.21	33.8800	33.3950
2017-04-03 13:32:00	143.6901	102.2125	81.21	33.9000	33.4100
2017-04-03 13:33:00	143.6400	102.1400	81.13	33.8499	33.3350
2017-04-03 13:34:00	143.6600	102.0600	81.12	33.8400	33.4000

In [292]:

```
# minutely total stock
mts = ts.groupby([pd.TimeGrouper('H')]).sum()
mta = mts['NASDAQ.AAPL'] # hourly total stock aapl (hta)
mta.head()
```

Out[292]:

```
DATE
2017-04-03 13:00:00 4316.4602
2017-04-03 14:00:00 8632.0092
2017-04-03 15:00:00 8611.5377
2017-04-03 16:00:00 8605.6159
2017-04-03 17:00:00 8613.5614
```

Freq: H, Name: NASDAQ.AAPL, dtype: float64

In [293]:

```
# applying forcasting model
import statsmodels
import statsmodels.api as sm
from statsmodels.tsa.stattools import coint, adfuller
```

In [294]:

```
#Graphycally test stationary
plt.plot(mta)
```

Out[294]:

[<matplotlib.lines.Line2D at 0x22ef4008fd0>]

there is trend and seasonlality hence we need to make dataset stationary

In [295]:

```
#Test stationarity using DFtest
def TestStationaryPlot(ts):
    rol_mean = ts.rolling(window = 60, center = False).mean()
    rol_std = ts.rolling(window = 60, center = False).std()

plt.plot(ts, color = 'blue',label = 'Original Data')
    plt.plot(rol_mean, color = 'red', label = 'Rolling Mean')
    plt.plot(rol_std, color = 'black', label = 'Rolling Std')
    plt.xticks(fontsize = 10)
    plt.yticks(fontsize = 10)

plt.xlabel('Time in Min', fontsize = 10)
    plt.ylabel('Total Stock value', fontsize = 10)
    plt.legend(loc='best', fontsize = 10)
    plt.title('Rolling Mean & Standard Deviation', fontsize = 10)
    plt.show(block= True)
```

In [296]:

```
def TestStationaryAdfuller(ts, cutoff = 0.01):
    ts_test = adfuller(ts)
    print(ts_test)
    ts_test_output = pd.Series(ts_test[0:2], index=['Test Statistic','p-value'])

for key,value in ts_test[4].items():
    ts_test_output['Critical Value (%s)'%key] = value
    print(ts_test_output)

if ts_test[1] <= cutoff:
    print("Strong evidence against the null hypothesis, reject the null hypothesis. Dat else:
    print("Weak evidence against null hypothesis, time series has a unit root, indicati</pre>
```

In [297]:

```
TestStationaryAdfuller(mta)
```

```
(-7.940939030845537, 3.3153735319876844e-12, 30, 3577, {'1%': -3.43217946574
43268, '5%': -2.8623483552705715, '10%': -2.5672003006136257}, 59556.1763609
892)
Test Statistic
                       -7.940939e+00
p-value
                        3.315374e-12
Critical Value (1%)
                       -3.432179e+00
Critical Value (5%)
                       -2.862348e+00
Critical Value (10%)
                       -2.567200e+00
dtype: float64
Strong evidence against the null hypothesis, reject the null hypothesis. Dat
a has no unit root, hence it is stationary
```

In [298]:

TestStationaryPlot(mta)

In [299]:

```
from statsmodels.tsa.seasonal import seasonal_decompose
decomposition = seasonal_decompose(mta,freq=30)
trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid
plt.subplot(411)
plt.plot(mta, label='Original')
plt.legend(loc='best')
plt.subplot(412)
plt.plot(trend, label='Trend')
plt.legend(loc='best')
plt.subplot(413)
plt.plot(seasonal, label='Seasonality')
plt.legend(loc='best')
plt.subplot(414)
plt.plot(residual, label='Residuals')
plt.legend(loc='best')
plt.tight_layout()
```


In [300]:

```
mte_decompose = residual
mte_decompose.dropna(inplace=True)
TestStationaryPlot(mte_decompose)
TestStationaryAdfuller(mte_decompose)
```


(-20.424700701901862, 0.0, 30, 3547, {'1%': -3.4321949503139497, '5%': -2.86

2355195057042, '10%': -2.5672039419049475}, 58159.60749904477)

Test Statistic -20.424701
p-value 0.000000
Critical Value (1%) -3.432195
Critical Value (5%) -2.862355
Critical Value (10%) -2.567204

dtype: float64

Strong evidence against the null hypothesis, reject the null hypothesis. Dat a has no unit root, hence it is stationary

In [301]:

```
mte_seasonal_difference = mta - mta.shift(24)
TestStationaryPlot(mte_seasonal_difference.dropna(inplace=False))
TestStationaryAdfuller(mte_seasonal_difference.dropna(inplace=False))
```


(-10.445708710495136, 1.4820815427222967e-18, 28, 3555, {'1%': -3.4321907955 23353, '5%': -2.8623533598218875, '10%': -2.5672029648817754}, 59398.2608171 6412)

Test Statistic -1.044571e+01 p-value 1.482082e-18 Critical Value (1%) -3.432191e+00 Critical Value (5%) -2.862353e+00 Critical Value (10%) -2.567203e+00

dtype: float64

Strong evidence against the null hypothesis, reject the null hypothesis. Dat a has no unit root, hence it is stationary

In [302]:

mte_first_difference = mta - mta.shift(1)
TestStationaryPlot(mte_first_difference.dropna(inplace=False))

In [303]:

```
TestStationaryAdfuller(mte_first_difference.dropna(inplace=False))
```

dtype: float64

Strong evidence against the null hypothesis, reject the null hypothesis. Dat a has no unit root, hence it is stationary

In [304]:

mte_seasonal_first_difference = mte_first_difference - mte_first_difference.shift(24)
TestStationaryPlot(mte_seasonal_first_difference.dropna(inplace=False))

In [305]:

```
# as per Akfuler test the timeseries is stationary
import statsmodels
import statsmodels.api as sm
from statsmodels.tsa.stattools import coint, adfuller
```

In [306]:

```
#Find optimal parameters and build SARIMA model
fig = plt.figure(figsize=(12,8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(mte_first_difference.iloc[24:], lags=40, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(mte_first_difference.iloc[24:], lags=40, ax=ax2)
```


In [307]:

```
arma_mod10 = sm.tsa.ARMA(mta, (1,1)).fit()
print(arma_mod10.params)
```

const 1720.791808 ar.L1.NASDAQ.AAPL 0.785860 ma.L1.NASDAQ.AAPL 0.270964

dtype: float64

In [308]:

```
print(arma_mod10.aic)
```

64118.400026427276

In [309]:

```
from scipy import stats
resid20 = arma_mod10.resid
stats.normaltest(resid20)
# This function tests the null hypothesis that a sample comes
# from a normal distribution.
```

Out[309]:

NormaltestResult(statistic=1476.1457328640672, pvalue=0.0)

In [310]:

print(resul	ts.summary())				
			Statespace	Model Resul	lts	
			========	:=======	========	======
Dep. Variab 3608			NASDAÇ	AAPL No.	. Observations	:
Model: -29684.109	SARI	[MAX(1, 1,	1)x(1, 1, 1	., 24) Log	g Likelihood	
Date: 59378.218			Wed, 01 May	2019 AIC		
Time: 59409.101			20:	40:12 BIG		
Sample:			04-03	3-2017 HQ	IC	
59389.230	T		- 08-31			
Covariance	Type:			opg		
=======================================			=======			
	coef	std err	Z	P> z	[0.025	0.97
5]					<u>-</u>	
ar.L1	0.0155	0.383	0.040	0.968	-0.736	0.7
67						
ma.L1	0.1699	0.382	0.445	0.656	-0.579	0.9
19	0 2202	0.000	42.465	0.000	0 242	0.2
ar.S.L24 43	0.3282	0.008	42.165	0.000	0.313	0.3
ma.S.L24 68	-0.9919	0.012	-80.095	0.000	-1.016	-0.9
sigma2 06	1.409e+06	2.35e+04	59.963	0.000	1.36e+06	1.46e+
=======	=======		========			======
====== Ljung-Box (Q):		711.21	Jarque-Ber	ra (JB):	7
9423.32 Prob(Q):			0.00	Prob(JB):		
0.00 Heteroskeda	sticity (H)	:	1.09	Skew:		
1.15 Prob(H) (tw 26.03	o-sided):		0.13	Kurtosis:		
	========		========	:=======	-=======	======
=====						
Warnings: [1] Covariance matrix calculated using the outer product of gradients (compl ex-step).						
4						•

In []:

```
mta=0.01(mta-1) + 0.17(et-1) + 0.32(Set-1)
```

In [311]:

results.resid.plot(figsize=(12,8))

Out[311]:

<matplotlib.axes._subplots.AxesSubplot at 0x22ea8619ef0>

In [324]:

```
mta.head(50)
```

Out[324]:

```
DATE
2017-04-03 13:00:00
                       4316.4602
2017-04-03 14:00:00
                       8632.0092
2017-04-03 15:00:00
                        8611.5377
2017-04-03 16:00:00
                        8605.6159
2017-04-03 17:00:00
                        8613.5614
2017-04-03 18:00:00
                        8614.1209
2017-04-03 19:00:00
                        8626.8028
                         143.7000
2017-04-03 20:00:00
2017-04-03 21:00:00
                           0.0000
2017-04-03 22:00:00
                           0.0000
2017-04-03 23:00:00
                           0.0000
2017-04-04 00:00:00
                           0.0000
2017-04-04 01:00:00
                           0.0000
2017-04-04 02:00:00
                           0.0000
2017-04-04 03:00:00
                           0.0000
2017-04-04 04:00:00
                           0.0000
2017-04-04 05:00:00
                           0.0000
2017-04-04 06:00:00
                           0.0000
2017-04-04 07:00:00
                           0.0000
2017-04-04 08:00:00
                           0.0000
2017-04-04 09:00:00
                           0.0000
2017-04-04 10:00:00
                           0.0000
2017-04-04 11:00:00
                           0.0000
2017-04-04 12:00:00
                           0.0000
2017-04-04 13:00:00
                        4309.4105
2017-04-04 14:00:00
                        8634.5008
2017-04-04 15:00:00
                        8660.0546
2017-04-04 16:00:00
                        8655.2145
2017-04-04 17:00:00
                        8654.8081
2017-04-04 18:00:00
                        8679.5834
2017-04-04 19:00:00
                        8681.9234
                         144.7700
2017-04-04 20:00:00
2017-04-04 21:00:00
                           0.0000
2017-04-04 22:00:00
                           0.0000
2017-04-04 23:00:00
                           0.0000
2017-04-05 00:00:00
                           0.0000
2017-04-05 01:00:00
                           0.0000
2017-04-05 02:00:00
                           0.0000
2017-04-05 03:00:00
                           0.0000
2017-04-05 04:00:00
                           0.0000
2017-04-05 05:00:00
                           0.0000
2017-04-05 06:00:00
                           0.0000
2017-04-05 07:00:00
                           0.0000
2017-04-05 08:00:00
                           0.0000
2017-04-05 09:00:00
                           0.0000
2017-04-05 10:00:00
                           0.0000
2017-04-05 11:00:00
                           0.0000
2017-04-05 12:00:00
                           0.0000
2017-04-05 13:00:00
                        4343.2011
2017-04-05 14:00:00
                        8700.0926
Freq: H, Name: NASDAQ.AAPL, dtype: float64
```

In [321]:

```
#The dynamic=False argument ensures that we produce one-step ahead forecasts, meaning that
#generated using the full history up to that point.
pred = results.get_prediction(start = 3008, end = 3608, dynamic=False)
pred_ci = pred.conf_int()
pred_ci.head()
```

Out[321]:

lower NASDAQ.AAPL upper NASDAQ.AAPL

2017-08-06 21:00:00	-1649.626508	3009.273521
2017-08-06 22:00:00	-2443.871816	2215.028213
2017-08-06 23:00:00	-2310.012718	2348.887311
2017-08-07 00:00:00	-2332.752163	2326.147866
2017-08-07 01:00:00	-2328.889012	2330.011017

In [322]:

```
# check accuacy
ax = mta['2017-04-03 13:00:00':].plot(label='observed')
pred.predicted_mean.plot(ax=ax, label='One-step ahead forecast', alpha=.7)
```

Out[322]:

<matplotlib.axes._subplots.AxesSubplot at 0x22ea8612fd0>


```
In [323]:
```