Machine Learning Methods

Yeganeh Jalalpour

Brute Force

- Collect training instances in a bag.
- Pick matching training instance from bag, and classify target identically
- Problems:
 - no/multiple matches
 - huge bag
 - slow classification

Minimum Distance Voting (k-Nearest Neighbor)

- Help with some of the problems of brute force
- Pick k "closest" instances from bag
 - Metric for boolean features is usually "Hamming Distance"
 - $H(v1, v2) = sum[i](v1[i] \oplus v2[i])$
 - Example:
 - 111 ⊕ 101 = 010 and H(111,101) = 1
- Vote the instances

Naïve Bayesian learning

- (We've already looked at this)
- Binary setting: Count the number of occurrences of each feature in positive and negative setting
- Compare underestimates of probabilities using products
- Take logs to turn products into sums
- Use m-separation to get accurate products

Decision Trees and ID3

- Want to build a "binary decision tree" that splits training set on binary features for a binary class
- ID3 (Quinlan) idea:
 - Greedily pick a feature that splits the training set "as well as possible" into positive and negative subsets.
 - For each subset, recurse: pick a remaining feature to try to improve the split
 - Stop when the current subset is (almost) all one class

Information Gain

- Select next feature f in tree to maximize information gain
 - Recall
 - U(S) = sum[x in 0, 1] -pr(x in S) log pr(x in S)
 - Where pr(x in S) = |S[c=x]| / |S|
 - Now compute information gain Δu for each feature f
 - S+=S[f=1]
 - S-=S[f=0]
 - $\Delta u = u(S) (|S+|/|S|) u(S+) (|S-|/|S|) u(S-)$
- Avoid overfitting (gain is probably just training set anomaly)
- Greedy is not optimal: mild independence assumption

Perceptrons

- "Artificial Neuron" (Papert et al): basis of neural nets
- Handles continuous inputs and outputs well: (we binarize)
- Idea: predict the binary class as a thresholded weighted sum of the features
- c = sum[i] w[i] x[i] + w0 > 0

Perceptron Training

- Training consists of learning appropriate weights w
 - Assign some initial weights
 - Feed each training instance through the perceptron
 - Adjust the weights "toward the true classification"
 - w[i] += a (c y) x[i]
 - w0 += a (c y)
 where y is the unthresholded output. Remember that c and x are 0 or 1.
 a is the "learning rate": smaller (a < 0.1) means more reliable convergence, larger a can mean faster learning or divergence
 - Run all the training instances repeatedly until the average accuracy isn't getting better