Data Booklet

for

Chemistry (Advanced Level)

For use from 2017 in all papers, except practical examinations, for the 9729 H2 Chemistry and 9813 H3 Chemistry syllabuses.

For use from 2018 in all papers, for the 8873 H1 Chemistry syllabus.

Contents: Tables of Chemical data

- 1 Important values, constants and standards
- 2 Ionisation energies (1st, 2nd, 3rd and 4th) of selected elements in kJ mol⁻¹
- 3 Bond energies
- 4 Standard electrode potential and redox potentials, E^{\odot} at 298 K (25 °C)
- 5 Atomic and ionic radii
- 6 Typical proton (1 H) chemical shift values (δ) relative to TMS = 0
- 7 Characteristic infra-red absorption frequencies for some selected bonds
- 8 The orientating effect of groups in aromatic substitution reactions
- 9 Qualitative Analysis Notes
- 10 The Periodic Table of Elements

1 Important values, constants and standards

molar gas constant	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
the Faraday constant	$F = 9.65 \times 10^4 \mathrm{C \ mol^{-1}}$
the Avogadro constant	$L = 6.02 \times 10^{23} \text{ mol}^{-1}$
the Planck constant	$h = 6.63 \times 10^{-34} \mathrm{J s}$
speed of light in a vacuum	$c = 3.00 \times 10^8 \mathrm{m \ s^{-1}}$
rest mass of proton, ¹ ₁ H	$m_{\rm p} = 1.67 \times 10^{-27} \mathrm{kg}$
rest mass of neutron, ${}^1_0 n$	$m_{\rm n} = 1.67 \times 10^{-27} \mathrm{kg}$
rest mass of electron, $_{-1}^{0}e$	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
electronic charge	$e = -1.60 \times 10^{-19} \text{ C}$
molar volume of gas	$V_{\rm m}$ = 22.7 dm ³ mol ⁻¹ at s.t.p. $V_{\rm m}$ = 24 dm ³ mol ⁻¹ at r.t.p. (where s.t.p. is expressed as 10 ⁵ Pa [1 bar] and 273 K [0 °C], r.t.p. is expressed as 101325 Pa [1 atm] and 293 K [20 °C])
ionic product of water	$K_{\rm w}$ = 1.00 × 10 ⁻¹⁴ mol ² dm ⁻⁶ (at 298 K [25 °C])
specific heat capacity of water	= $4.18 \text{ kJ kg}^{-1} \text{ K}^{-1}$ (= $4.18 \text{ J g}^{-1} \text{ K}^{-1}$)

2 Ionisation energies (1st, 2nd, 3rd and 4th) of selected elements, in kJ mol⁻¹

	Proton Number	First	Second	Third	Fourth
Н	1	1310	_	_	-
Не	2	2370	5250	_	_
Li	3	519	7300	11800	-
Ве	4	900	1760	14800	21000
В	5	799	2420	3660	25000
С	6	1090	2350	4610	6220
N	7	1400	2860	4590	7480
0	8	1310	3390	5320	7450
F	9	1680	3370	6040	8410
Ne	10	2080	3950	6150	9290
Na	11	494	4560	6940	9540
Mg	12	736	1450	7740	10500
Al	13	577	1820	2740	11600
Si	14	786	1580	3230	4360
Р	15	1060	1900	2920	4960
S	16	1000	2260	3390	4540
Cl	17	1260	2300	3850	5150
Ar	18	1520	2660	3950	5770
K	19	418	3070	4600	5860
Са	20	590	1150	4940	6480
Sc	21	632	1240	2390	7110
Ti	22	661	1310	2720	4170
V	23	648	1370	2870	4600
Cr	24	653	1590	2990	4770
Mn	25	716	1510	3250	5190
Fe	26	762	1560	2960	5400
Со	27	757	1640	3230	5100
Ni	28	736	1750	3390	5400
Cu	29	745	1960	3350	5690

	Proton Number	First	Second	Third	Fourth
Zn	30	908	1730	3828	5980
Ga	31	577	1980	2960	6190
Ge	32	762	1540	3300	4390
Br	35	1140	2080	3460	4850
Rb	37	403	2632	3900	5080
Sr	38	548	1060	4120	5440
Ag	47	731	2074	3361	_
Sn	50	707	1410	2940	3930
I	53	1010	1840	3200	4030
Cs	55	376	2420	3300	_
Ва	56	502	966	3390	_
Pb	82	716	1450	3080	4080

3 Bond energies

3(a) Bond energies in diatomic molecules (these are exact values)

Homonuclear

Bond	Energy / kJ mol ⁻¹
н—н	436
D—D	442
N≡N	944
O=O	496
F—F	158
C <i>l</i> —C <i>l</i>	244
Br—Br	193
I—I	151

Heteronuclear

Bond	Energy / kJ mol ⁻¹
H—F	562
H—C1	431
H—Br	366
H—I	299
C≡O	1077

3(b) Bond energies in polyatomic molecules (these are average values)

Homonuclear

Bond	Energy / kJ mol ⁻¹
C—C	350
C=C	610
C≡C	840
CC (benzene)	520
N—N	160
N=N	410
0—0	150
Si—Si	222
P—P	200
S—S	264

Heteronuclear

Bond	Energy / kJ mol⁻¹
C—H	410
C—F	485
C—Cl	340
C—Br	280
C—I	240
C—N	305
C=N	610
C≡N	890
C—O	360
C=O	740
C=O in CO ₂	805
N—H	390
N—C1	310
О—Н	460
Si—C <i>l</i>	359
Si—H	320
Si—O (in SiO ₂ (s))	460
$Si=O$ (in $SiO_2(g)$)	640
P—H	320
P—C1	330
P—0	340
P=O	540
S—H	347
S—C1	250
S—0	360
S=O	500

Standard electrode potential and redox potentials, E^{\ominus} at 298 K (25 °C)

For ease of reference, two tabulations are given:

- (a) an extended list in alphabetical order;
 (b) a shorter list in decreasing order of magnitude, i.e. a redox series.

4(a) *E*[⊕] in alphabetical order

Electro	de re	eaction	E [⊕] / V
Ag+ + e-	\rightleftharpoons	Ag	+0.80
Al ³⁺ + 3e ⁻	=	Al	-1.66
Ba ²⁺ + 2e ⁻	=	Ва	-2.90
Br ₂ + 2e ⁻	=	2Br	+1.07
Ca ²⁺ + 2e ⁻	=	Са	-2.87
Cl ₂ + 2e ⁻	=	2Cl ⁻	+1.36
2HOC <i>l</i> + 2H ⁺ + 2e ⁻	=	C12 + 2H2O	+1.64
ClO ⁻ + H ₂ O + 2e ⁻	=	C1-+2OH-	+0.81
Co ²⁺ + 2e ⁻	=	Со	-0.28
Co ³⁺ + e ⁻	=	Co ²⁺	+1.89
[Co(NH ₃) ₆] ²⁺ + 2e ⁻	=	Co + 6NH ₃	-0.43
Cr ²⁺ + 2e ⁻	=	Cr	-0.91
Cr ³⁺ + 3e ⁻	=	Cr	-0.74
Cr ³⁺ + e ⁻	=	Cr ²⁺	-0.41
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+1.33
Cu⁺ + e⁻	=	Cu	+0.52
Cu ²⁺ + 2e ⁻	=	Cu	+0.34
Cu ²⁺ + e ⁻	=	Cu⁺	+0.15
[Cu(NH ₃) ₄] ²⁺ + 2e ⁻	=	Cu + 4NH ₃	-0.05
F ₂ + 2e ⁻	=	2F-	+2.87
Fe ²⁺ + 2e ⁻	=	Fe	-0.44
Fe ³⁺ + 3e ⁻	=	Fe	-0.04

Electro	de reaction	<i>E</i> [⊕] / V
Fe ³⁺ + e ⁻	≓ Fe ²⁺	+0.77
[Fe(CN) ₆] ³⁻ + e ⁻	≓ [Fe(CN) ₆] ⁴⁻	+0.36
Fe(OH) ₃ + e ⁻	≓ Fe(OH) ₂ + OH ⁻	-0.56
2H+ + 2e-	≓ H ₂	0.00
I ₂ + 2e ⁻	≓ 2I-	+0.54
K+ + e-	≓ K	-2.92
Li ⁺ + e ⁻	≓ Li	-3.04
Mg ²⁺ + 2e ⁻	≓ Mg	-2.38
Mn ²⁺ + 2e ⁻	≓ Mn	-1.18
Mn ³⁺ + e ⁻	≓ Mn²+	+1.54
MnO ₂ + 4H ⁺ + 2e ⁻		+1.23
MnO ₄ - + e-	≓ MnO ₄ ²⁻	+0.56
MnO ₄ ⁻ + 4H ⁺ + 3e ⁻	\Rightarrow MnO ₂ + 2H ₂ O	+1.67
MnO ₄ ⁻ + 8H ⁺ + 5e ⁻	\Rightarrow Mn ²⁺ + 4H ₂ O	+1.52
NO ₃ ⁻ + 2H ⁺ + e ⁻	\Rightarrow NO ₂ + H ₂ O	+0.81
NO ₃ ⁻ + 3H ⁺ + 2e ⁻	≓ HNO ₂ + H ₂ O	+0.94
NO ₃ -+ 10H+ + 8e-		+0.87
Na⁺ + e⁻	≓ Na	-2.71
Ni ²⁺ + 2e ⁻	≓ Ni	-0.25
[Ni(NH ₃) ₆] ²⁺ + 2e ⁻	≓ Ni + 6NH₃	-0.51
H ₂ O ₂ + 2H ⁺ + 2e ⁻	≓ 2H ₂ O	+1.77
HO ₂ -+ H ₂ O + 2e-	≓ 30H-	+0.88
O ₂ + 4H ⁺ + 4e ⁻	≓ 2H ₂ O	+1.23
O ₂ + 2H ₂ O + 4e ⁻	≓ 40H⁻	+0.40
O ₂ + 2H ⁺ + 2e ⁻	≓ H ₂ O ₂	+0.68

Electro	de reaction	E [⊕] / V
O ₂ + H ₂ O + 2e ⁻		-0.08
2H ₂ O + 2e ⁻		-0.83
Pb ²⁺ + 2e ⁻	≓ Pb	-0.13
Pb ⁴⁺ + 2e ⁻	≓ Pb ²⁺	+1.69
PbO ₂ + 4H ⁺ + 2e ⁻	\Rightarrow Pb ²⁺ + 2H ₂ O	+1.47
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	⇒ SO ₂ + 2H ₂ O	+0.17
S ₂ O ₈ ²⁻ + 2e ⁻	≥ 2SO ₄ ²⁻	+2.01
S ₄ O ₆ ²⁻ + 2e ⁻	\rightleftharpoons 2S ₂ O ₃ ²⁻	+0.09
Sn ²⁺ + 2e ⁻	≓ Sn	-0.14
Sn ⁴⁺ + 2e ⁻	≓ Sn ²⁺	+0.15
V ²⁺ + 2e ⁻	⇒ V	-1.20
V ³⁺ + e ⁻	⇒ V ²⁺	-0.26
VO ²⁺ + 2H ⁺ + e ⁻		+0.34
VO ₂ + + 2H+ + e-		+1.00
VO ₃ ⁻ + 4H ⁺ + e ⁻		+1.00
Zn ²⁺ + 2e ⁻	≓ Zn	-0.76

All ionic states refer to aqueous ions but other state symbols have been omitted.

4(b) E^{Θ} in decreasing order of oxidising power (a selection only – see also the extended alphabetical list on the previous pages)

Electro	de re	eaction	E [⊕] / V
F ₂ + 2e ⁻	=	2F-	+2.87
S ₂ O ₈ ²⁻ + 2e ⁻	=	2SO ₄ ²⁻	+2.01
H ₂ O ₂ + 2H ⁺ + 2e ⁻	=	2H ₂ O	+1.77
MnO ₄ ⁻ + 8H ⁺ + 5e ⁻	=	Mn ²⁺ + 4H ₂ O	+1.52
PbO ₂ + 4H ⁺ + 2e ⁻	=	Pb ²⁺ + 2H ₂ O	+1.47
Cl ₂ + 2e ⁻	=	2C1-	+1.36
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+1.33
O ₂ + 4H ⁺ + 4e ⁻	=	2H ₂ O	+1.23
Br ₂ + 2e ⁻	=	2Br	+1.07
NO ₃ ⁻ + 10H ⁺ + 8e ⁻	=	NH ₄ ⁺ + 3H ₂ O	+0.87
ClO ⁻ + H ₂ O + 2e ⁻	=	C1-+2OH-	+0.81
NO ₃ ⁻ + 2H ⁺ + e ⁻	=	NO ₂ + H ₂ O	+0.81
Ag+ + e-	=	Ag	+0.80
Fe ³⁺ + e ⁻	=	Fe ²⁺	+0.77
I ₂ + 2e ⁻	=	2I ⁻	+0.54
O ₂ + 2H ₂ O + 4e ⁻	=	40H ⁻	+0.40
Cu ²⁺ + 2e ⁻	=	Cu	+0.34
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	SO ₂ + 2H ₂ O	+0.17
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+0.15
S ₄ O ₆ ²⁻ + 2e ⁻	=	2S ₂ O ₃ ²⁻	+0.09
2H+ + 2e-	=	H ₂	0.00
Pb ²⁺ + 2e ⁻	=	Pb	-0.13
Sn ²⁺ + 2e ⁻	=	Sn	-0.14
Fe ²⁺ + 2e ⁻	=	Fe	-0.44

Electrode reaction	E [⊕] / V
Zn²+ + 2e⁻	-0.76
2H ₂ O + 2e ⁻	-0.83
V ²⁺ + 2e ⁻	-1.20
Mg ²⁺ + 2e ⁻	-2.38
Ca ²⁺ + 2e ⁻	-2.87
K⁺ + e⁻	-2.92

5 Atomic and ionic radii

(a) Period 1	ato	mic / nm		ionic	: / nm	
single covalent	Н	0.037			H-	0.208
van der Waals	He	0.140				
(b) Period 2		,				
metallic	Li	0.152	Li ⁺	0.060		
	Ве	0.112	Be ²⁺	0.031		
single covalent	В	0.080	B ³⁺	0.020		
	С	0.077	C ⁴⁺	0.015	C ⁴⁻	0.260
	N	0.074			N ³⁻	0.171
	0	0.073			O ²⁻	0.140
	F	0.072			F-	0.136
van der Waals	Ne	0.160				
(c) Period 3						
metallic	Na	0.186	Na⁺	0.095		
	Mg	0.160	Mg ²⁺	0.065		
	Al	0.143	Al ³⁺	0.050		
single covalent	Si	0.117	Si ⁴⁺	0.041		
	Р	0.110			P ³⁻	0.212
	S	0.104			S ²⁻	0.184
	Cl	0.099			C1-	0.181
van der Waals	Ar	0.190				
(d) Group 2						
metallic	Ве	0.112	Be ²⁺	0.031		
	Mg	0.160	Mg ²⁺	0.065		
	Ca	0.197	Ca ²⁺	0.099		
	Sr	0.215	Sr ²⁺	0.113		
	Ва	0.217	Ba ²⁺	0.135		
	Ra	0.220	Ra ²⁺	0.140		

(e)	Group 14	atom	ic / nm		ionic	/ nm	
	single covalent	С	0.077				
		Si	0.117	Si ⁴⁺	0.041		
		Ge	0.122	Ge ²⁺	0.093		
	metallic	Sn	0.162	Sn ²⁺	0.112		
		Pb	0.175	Pb ²⁺	0.120		
(f)	Group 17						
	single covalent	F	0.072			F ⁻	0.136
		Cl	0.099			Cl-	0.181
		Br	0.114			Br ⁻	0.195
		I	0.133			I -	0.216
		At	0.140				
(g)	First row d block el	ements					
	metallic	Sc	0.164			Sc ³⁺	0.075
		Ti	0.146	Ti ²⁺	0.086	Ti ³⁺	0.067
		V	0.135	V ²⁺	0.079	V ³⁺	0.064
		Cr	0.129	Cr ²⁺	0.073	Cr ³⁺	0.062
		Mn	0.132	Mn ²⁺	0.083	Mn ³⁺	0.058
		Fe	0.126	Fe ²⁺	0.061	Fe ³⁺	0.055
		Со	0.125	Co ²⁺	0.065	Co ³⁺	0.055
		Ni	0.124	Ni ²⁺	0.069	Ni ³⁺	0.056
		Cu	0.128	Cu ²⁺	0.073		
		Zn	0.135	Zn ²⁺	0.074		

6 Typical proton (1 H) chemical shift values (δ) relative to TMS = 0

Type of proton	Environment of proton	Example structures	Chemical Shift range (δ)		
	alkane	-CH ₃ , -CH ₂ -, CH-	0.9–1.7		
	alkyl next to C=O	CH ₃ -C=O, -CH ₂ -C=O, CH-C=O	2.2–3.0		
	alkyl next to aromatic ring	CH ₃ —Ar, —CH ₂ —Ar, CH—Ar	2.3–3.0		
C–H	alkyl next to electronegative atom	CH ₃ -O, -CH ₂ -O, -CH ₂ -C <i>l</i> ,	3.2–4.0		
	attached to alkyne	≡С–Н	1.8–3.1		
	attached to alkene	=CH ₂ , =CH-	4.5–6.0		
	attached to aromatic ring	—Н	6.0–9.0		
	aldehyde	O R-C H	9.3–10.5		
	alcohol	RO-H	0.5–6.0		
O-H (see note	phenol	ОН	4.5–7.0		
`below)	carboxylic acid	R-C O-H	9.0–13.0		
	alkyl amine	R-NH-	1.0–5.0		
N-H	aryl amine	NH ₂	3.0–6.0		
(see note below)	amide	R-C N-H	5.0–12.0		

Note: δ values for -O-H and -N-H protons can vary depending on solvent and concentration.

7 Characteristic infra-red absorption frequencies for some selected bonds

Bond	Functional groups containing the bond	Absorption range (in wavenumbers) / cm ⁻¹	Appearance of peak (s = strong, w = weak)
C-C1	chloroalkanes	700–800	s
C-O	alcohol ether ester carboxylic acids	970–1260 1000–1310 1050–1330 1210–1440	s s s
C=C	aromatic alkenes	1475–1625 1635–1690	s w
C=O	amides ketones and aldehydes carboxylic acids esters	1640–1690 1670–1740 1680–1730 1710–1750	и и и и
C≡C	alkynes	2150–2250	w unless conjugated
C≡N	nitriles	2200–2250	w
C–H	alkanes, CH ₂ —H alkenes/arenes, =C—H	2850–2950 3000–3100	s w
N–H	amines, amides	3300–3500	w
O–H	carboxylic acid, RCO ₂ —H H-bonded alcohol/phenol, RO—H free alcohol, RO—H	2500–3000 3200–3600 3580–3650	s and very broad s s and sharp

8 The orientating effect of groups in aromatic substitution reactions

The position of the incoming group, **E**, is determined by the nature of the group, **G**, already bonded to the ring, and not by the nature of the incoming group **E**.

G	-alkyl -OH or -OR -NH ₂ , -NHR or -NR ₂ -NHCOR	−C <i>l</i> , −Br, −I	-CHO, -COR -CO ₂ H, -CO ₂ R -NH ₃ + -NO ₂ , -CN		
Reactivity of ring (compared to benzene)	Activated	Deactivated	Deactivated		
Position of E (relative to position of G)	2- and/or 4-	2- and/or 4-	3-		

Qualitative Analysis Notes [ppt. = precipitate] 9

9(a) Reactions of aqueous cations

cation	reaction	on with			
Cation	NaOH(aq)	NH₃(aq)			
aluminium, A <i>l</i> ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess			
ammonium, NH ₄ + (aq)	ammonia produced on heating	_			
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.			
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.			
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess			
copper(II), Cu ²⁺ (aq),	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution			
iron(II), Fe ²⁺ (aq)	green ppt., turning brown on contact with air insoluble in excess	green ppt., turning brown on contact with air insoluble in excess			
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess			
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess			
manganese(II), Mn²+(aq)	off-white ppt., rapidly turning brown on contact with air insoluble in excess	off-white ppt., rapidly turning brown on contact with air insoluble in excess			
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess			

9(b) Reactions of anions

anion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))
bromide, Br ⁻ (aq)	gives pale cream ppt. with Ag⁺(aq) (partially soluble in NH₃(aq))
iodide, I ⁻ (aq)	gives yellow ppt. with Ag⁺(aq) (insoluble in NH₃(aq))
nitrate, NO ₃ - (aq)	NH₃ liberated on heating with OH⁻(aq) and A <i>l</i> foil
nitrite, NO ₂ ⁻ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and $A\mathit{l}$ foil; NO liberated by dilute acids (colourless $NO \rightarrow (pale)$ brown NO_2 in air)
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻ (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in dilute strong acids)

9(c) Tests for gases

gas	test and test result				
ammonia, NH₃	turns damp red litmus paper blue				
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)				
chlorine, Cl ₂	bleaches damp litmus paper				
hydrogen, H ₂	"pops" with a lighted splint				
oxygen, O ₂	relights a glowing splint				
sulfur dioxide, SO ₂	turns aqueous acidified potassium manganate(VII) from purple to colourless				

9(d) Colour of halogens

halogen	colour of element	colour in aqueous solution	colour in hexane
chlorine, Cl ₂	greenish yellow gas	pale yellow	pale yellow
bromine, Br ₂	reddish brown gas / liquid	orange	orange-red
iodine, I ₂	black solid / purple gas	brown	purple

10 The Periodic Table of Elements

Group																	
1	2											13	14	15	16	17	18
							1										2
							Н										He
				Key			hydrogen 1.0										helium 4.0
3 4 atomic number]	1.0					5	6	7	8	9	10	
Li	т Ве	atomic symbol									B	Č	Ň	Ö	F	Ne	
lithium	beryllium		att	name	001							boron	carbon	nitrogen	oxygen	fluorine	neon
6.9	9.0		relati	ive atomic r	mass							10.8	12.0	14.0	16.0	19.0	20.2
11	12					•						13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
sodium	magnesium	3	4	5	6	7	8	9	10	11	12	aluminium	silicon	phosphorus	sulfur	chlorine	argon
23.0 19	24.3	21	22	23	24	25		27	28		30	27.0 31	28.1 32	31.0 33	32.1 34	35.5 35	39.9 36
K	20 Ca	Sc	Ti	V 23	Cr	∠5 Mn	26 Fe	Co	Ni	29 Cu	Zn	Ga	Ge	As	Se	35 Br	зо Kr
potassium	calcium	scandium	titanium	v vanadium	chromium	manganese	re iron	cobalt	nickel	copper	ZII zinc	gallium	germanium	arsenic	selenium	bromine	r\i krypton
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
85.5	87.6	88.9	91.2	92.9	95.9	_	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	lanthanoids	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	T <i>1</i>	Pb	Bi	Ро	At	Rn
caesium 132.9	barium 137.3		hafnium 178.5	tantalum 180.9	tungsten 183.8	rhenium 186.2	osmium 190.2	iridium 192.2	platinum 195.1	gold 197.0	mercury 200.6	thallium 204.4	lead 207.2	bismuth 209.0	polonium —	astatine —	radon —
87	88	89–103	104	100.9	106	100.2	108	192.2	110	111	112	204.4	114	209.0	116	_	
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		F <i>l</i>		Lv		
francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium		darmstadtium	•			flerovium		livermorium		
_	_		_	_	_	_	_	_	_	_			_		-		
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
lanthanoi	ide	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
ananano	40	lanthanum	cerium	praseodymium	•	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
		138.9	140.1	140.9	144.2	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0	
		89	90 T b	91 De	92	93 N.:-	94	95	96	97 Dia	98	99 - -	100	101	102	103	
actinoids		Ac actinium	Th thorium	Pa protactinium	U uranium	Np	Pu plutonium	Am americium	Cm curium	Bk berkelium	Cf californium	Es einsteinium	Fm fermium	Md mendelevium	No nobelium	Lr	
		— actimum —	232.0	231.0	238.0	neptunium —	– piutonium	–	– Cunum	–	— —	einsteinium –	–	–	–	lawrencium —	