Distance Measures:

The distance between two pixels in a given image can be given by three different types of measures and they are-

- 1. Euclidean distance
- 2. D₄ distance
- 3. D₈ distance

For pixels p, q, and z, with coordinates (x, y), (s, t), and (v, w), respectively, D is a distance function or metric if

(a)
$$D(p,q) \ge 0$$
 $(D(p,q) = 0$ iff $p = q)$,

(b)
$$D(p,q) = D(q,p)$$
, and

(c)
$$D(p,z) \le D(p,q) + D(q,z)$$
.

The **Euclidean distance** between p and q is defined as

$$D_e(p,q) = [(x-s)^2 + (y-t)^2]^{\frac{1}{2}}.$$

For this distance measure, the pixels having a distance less than or equal to some value r from(x,

y) are the points contained in a disk of radius r cantered at (x, y).

The D4 distance (also called city-block distance) between p and q is defined as

$$D_4(p, q) = |x - s| + |y - t|.$$

In this case, the pixels having a D_4 distance from (x, y) less than or equal to some value r form a diamond centered at (x, y). For example, the pixels with D4 distance . 2 from (x, y) (the center point) form the following contours of constant distance:

The pixels with $D_4 = 1$ are the 4-neighbors of (x, y).

The D8 distance (also called chessboard distance) between p and q is defined as

$$D_8(p,q) = \max(|x-s|, |y-t|).$$

In this case, the pixels with D8 distance from(x, y) less than or equal to some value r form a square centered at (x, y). For example, the pixels with D8 distance \leq 2 from(x, y) (the center point) form the following contours of constant distance:

The pixels with $D_8=1$ are the 8-neighbors of (x, y).

Question: Let $V = \{0,1\}$, compute D_4 , D_8 distances between p and q

