Boosted Trees for Risk Prognosis

UNIVERSITY OF OXFORD

Alexis Bellot* and Mihaela van der Schaar*, † , † Alan Turing Institute, * University of Oxford

OBJECTIVE

• Survival Analysis: Predict event probabilities over time with the aim of providing a *fully individualized survival function* for each patient,

$$S(t|\boldsymbol{x}_i) = \mathbb{P}(T_i > t|\boldsymbol{x}_i) \tag{1}$$

Important use as a risk score based on which clinicians design therapies for patients.

• Example: Survival prognosis for chronic or multi-morbid patients whose risk factors are poorly understood (e.g. cardiovascular diseases and elderly patients).

PROBLEM: HETEROGENEITY

- Major Challenge: Large variability among patients in heterogeneous populations is the result of complex relationships between covariates and survival.
 - ► Leads to misdiagnoses in patients with atypical disease presentation or risk factors = **major source of patient harm**.
- Current methods impose modelling assumptions that limit S to reflect the behaviour of the *average* patient and as a result are inefficient for large portions of the population.

OUR APPROACH

Focus on complex patterns and subgroups of patients that are consistently being misdiagnosed

- We train shallow survival trees on **re-weighted** samples of the patient population such as to iteratively improve prognosis of misdiagnosed patients.
 - > Efficient scheme for learning in high-dimensional settings
 - No a-priori assumptions on patient behaviour
 - Very flexible and thus provides individualized predictions

BOOSTING SURVIVAL TREES

• Measuring Misdiagnoses We propose an aggregate measure that quantifies the error in survival estimation as follows,

$$\frac{1}{\tau} \int_0^{\tau} \mathbb{E}\left[\left(I(T_i > t) - \hat{h}(t; \boldsymbol{X}_i)\right)^2\right] dt \tag{2}$$

- Survival Tree Construction Trees are composed of leaves and nodes.
 - Nodes partition the sample space into more homogeneous subgroups using the deviance as splitting criterion.
 - ▶ Leaves estimate survival distributions with the Kaplan Meier estimator.

- Ensemble by Boosting In each iteration of the algorithm,
 - \triangleright Compute the error e_i for each patient, given by (2).
 - Increased weight w_i is subsequently assigned to patients for which the error is largest, and lowered weight for more accurate predictions.
 - ➤ Final survival estimates result from a weighted average of individual survival trees, weighted by a measure of overall accurateness of individual trees.
- Covariate importance We measure covariate importance by examining the improvement in goodness of fit given by each split involving a given variable.

EXPERIMENTS

We investigate the discriminative ability of our methods on patients at various stages of the trajectory of cardiovascular diseases.

- Preventive Care: UK Biobank and MAGGIC
- Cancer diagnosed patients: SEER
- Baseline Algorithms: Cox, boosting approaches based on Cox (CBL, CBM, Cindex-Boost), bagging approaches (SRF, CSRF).

			Table 1: C-index (higher better).		
Models	UNOS	MAGGIC	UK Biobank	SEER-I	SEER-II
Cox	0.603 ± 0.04	0.645 ± 0.01	0.679 ± 0.02	0.772 ± 0.03	0.740 ± 0.03
CBL CBM CindexBoost	0.605 ± 0.04 0.635 ± 0.03 0.564 ± 0.06	0.644 ± 0.01 0.625 ± 0.01 0.592 ± 0.01	0.679 ± 0.02 0.673 ± 0.02 0.655 ± 0.03	0.774 ± 0.03 0.768 ± 0.03 0.764 ± 0.03	0.738 ± 0.04 0.740 ± 0.04 0.742 ± 0.04
SRF CSRF	0.634 ± 0.04 0.635 ± 0.05	0.642 ± 0.01 0.652 ± 0.02	0.627 ± 0.01 0.638 ± 0.02	0.686 ± 0.03 0.755 ± 0.03	0.680 ± 0.01 0.717 ± 0.04
SurvivalBoost.R SurvivalBoost.T	0.636 ± 0.03 0.647 ± 0.04	0.676 ± 0.02 0.675 ± 0.04	0.702 ± 0.02 0.725 ± 0.03	0.780 ± 0.03 0.775 ± 0.04	0.752 ± 0.03 0.740 ± 0.04

IMPACT

- Technical Significance First nonparametric extension of boosting architectures to survival analysis.
 - New notion of prediction "correctness" which successfully improves predictions of mis-estimated patients.
 - New insights into covariate importance with a novel procedure derived from our model.
- Medical Relevance Contribution towards "precision medicine".
 - ▶ Patient heterogeneity is one of the major reasons for the large share of misdiagnoses in chronic diseases.
 - Individualized predictions from our model will improve long term prognosis, even for atypical patients.

Try our App: mlhcprojects.shinyapps.io/survival_boosting_app