Functional Programming. Colloquium

DistSys

2021

Содержание

1	λ -термы. β -редукция.	2	
2	Свойство Чёрча-Россера (конфлюэнтность).	2	
3	Нормальная форма. Сильная и слабая нормализуемость. Примеры термов с разными свойствами нормализуемости.	2	
4	Нормальная стратегия редукций, теорема об успешности нормальной стратегии.		
5	Комбинаторы неподвижной точки, пример: комбинатор Ү.	3	
6	Слабая головная нормальная форма.	3	
7	Исчисление типизации $\lambda_{ ightarrow}$ по Карри.	4	
8	Контекст типизации. Понятие наиболее общего типа для терма u в контексте Γ . Примеры: комбинаторы B и K.	4	
9	Безопасность типов при β -редукции.	5	
10	Исчисление типизации $\lambda 2$ (система F). Пример типизуемого терма, не имеющего наиболее общего типа.	5	
11	Система типов Хиндли-Милнера. Let-полиморфизм.	6	
12	Полезные материалы.	7	
13	Раздел для разработчиков.	8	

1 λ -термы. β -редукция.

Def: λ-термы — это выражения, строящиеся из переменных путём применения операций:

- Если x переменная, то x терм.
- Применение: u и v термы, то (uv) терм.
- λ -абстракция: u терм, x переменная, то $(\lambda x.u)$ терм.

Def: β -редукция — $(\lambda x.u)v \to_{\beta} u[x:=v]$, то есть подстановка v вместо свободных x в u. При корректной подстановке ранее свободные переменные не становятся связанными.

2 Свойство Чёрча-Россера (конфлюэнтность).

Th. Свойство Чёрча–Россера (конфлюэнтность). Если $u \twoheadrightarrow_{\beta} v_1$ и $u \twoheadrightarrow_{\beta} v_2$, тогда $\exists w$, что $v_1 \twoheadrightarrow_{\beta} w$ и $v_2 \twoheadrightarrow_{\beta} w$.

Сог. Из-за свойства Чёрча-Россера, если НФ существует, то она единственна.

3 Нормальная форма. Сильная и слабая нормализуемость. Примеры термов с разными свойствами нормализуемости.

Def: Нормальная форма — терм без β -редексов (нельзя далее редуцировать).

Сог. Из-за свойства Чёрча-Россера, если НФ существует, то она единственна.

Def: Сильно нормализуемые термы — термы, которые приводимы к нормальной форме при любой последовательности (пути) редукций.

Def: Слабо нормализуемые термы — термы, которые приводимы к нормальной форме при одной последовательности (пути) редукций, а при другой редукции не завершаются (путь бесконечен).

Ех. $\omega = \lambda x.(xx)$, $\Omega = \omega \omega$. Терм Ω сводится редукциями к себе, следовательно он не нормализуем.

$$\Omega = \omega \omega = (\lambda x.(xx))(\lambda x.(xx)) \rightarrow_{\beta} (\lambda x.(xx))(\lambda x.(xx)) = \omega \omega = \Omega$$

Ех. $(\lambda x.y)\Omega$ является слабо нормализуемым. Если редуцируем сначала Ω , то попадаем в бесконечный цикл, иначе сразу получаем НФ.

Ex. $(\lambda x.x)y$ является сильно нормализуемым

4 Нормальная стратегия редукций, теорема об успешности нормальной стратегии.

Def: Один редекс левее другого — когда λ первого редекса расположена левее (в записи терма) λ второго редекса.

Это означает, что либо первый редекс целиком расположен левее второго, либо второй редекс находится внутри первого.

Def: Нормальная стратегия редукций – всегда редуцируй самый левый редекс.

При этом это не обязательно самая левая λ - левее могут быть лямбды, не образующие β -редексов.

Th. Успешность нормальной стратегии. Если терм можно привести к нормальной форме, то нормальная стратегия добьётся этого.

5 Комбинаторы неподвижной точки, пример: комбинатор Ү.

Для достижения полноты по Тьюрингу требуется рекурсия. Мы не хотим, чтобы функция определялась через саму себя, поэтому требуется комбинатор неподвижной точки.

Def: Неподвижная точка функции f – такой терм F, что для функции f выполнено $F =_{\beta} fF$.

Символ $=_{\beta}$ означает β -эквивалентность $-a =_{\beta} b$, если $\exists c : a \to_{\beta} c \land b \to_{\beta} c$

Def: Комбинатор неподвижной точки – функция высшего порядка, вычисляющая неподвижную точку другой функции.

Ех (**Y-комбинатор**). Основное свойство $\mathbf{Y} f =_{\beta} f(\mathbf{Y} f)$.

$$\mathbf{Y} = \lambda f. ((\lambda x. f(xx))(\lambda x. f(xx)))$$

Imp! Функция с Y комбинатором не может быть сильно нормализуемой, поэтому важна нормальная стратегия из вопроса 4.

Ех. Факториал можно выразить следующим образом:

Fact =
$$\mathbf{Y}(\lambda g.\lambda x.(\text{if Zero } x \text{ then } 1 \text{ else } (g(\text{Prev } x) \cdot x))),$$

где Zero – проверка на 0, а Prev – предыдущее число (тут используются нумералы Чёрча).

6 Слабая головная нормальная форма.

Def: Слабая головная нормальная форма (WHNF) — это терм вида:

- 1. $\lambda x.u$:
- $2. xv_1v_2\ldots v_n$, где x переменная, а $v_1\ldots v_n$ термы.

Def: thunk – недоредуцированный редекс.

Imp! Всякая $H\Phi$ является $C\Gamma H\Phi$, но не наоборот.

Imp! В Haskell понятие СГНФ отличается.

Imp! СГН Φ не вычисляет то, что может не пригодиться (в отличие от Н Φ):

- 1. функцию, которая еще не применена (λ снаружи);
- 2. переменные обозначающие неизвестные функции.

7 Исчисление типизации λ_{\rightarrow} по Карри.

Def: Стрельчатый тип — функциональный тип $(A \to B)$.

Типы собираются из переменных по типам (r_1, r_2, \ldots) и констант по типам (p_1, \ldots) только с помощью операции $\to (A, B - \text{типы}, \text{ то } A \to B - \text{тип}).$

Ограничение только на применение: (vu) корректно $\leftrightarrow u$ имеет тип A, а v имеет тип $A \to B$.

 λ -абстракция может применяться всегда, образуя стрельчатый тип.

Типы переменных указываются в контексте $\Gamma = x_1 : A_1, x_2 : A_2, \dots$

Def: Типизация по Карри — полиморфная система типов. Терм в контексте может иметь много различных типов.

Ітр! Типизация термов со свободными переменными осуществляется в контексте.

Def: Утверждение о типизуемости — запись вида $\Gamma \vdash u : B$, которая обозначает, что B — допустимый тип для u в контексте Γ .

Эти утверждения могут доказываться.

Терм u не типизируем в Γ , если не доказуемо $\Gamma \vdash u : B$ ни для какого B.

Для доказательства типизируемости используются следующие правила исчисления типизации по Карри.

$$\frac{\Gamma, x: A \vdash x: A}{\Gamma, x: A \vdash u: B} Abs$$

$$\frac{\Gamma, x: A \vdash u: B}{\Gamma \vdash (\lambda x. u): (A \to B)} Abs$$

$$\frac{\Gamma \vdash u: (A \to B) \quad \Gamma \vdash v: A}{\Gamma \vdash (uv): B} App$$

То что ниже, наверное, можно и не рассказывать.

Th. О нормализуемости Любой типизируемый терм сильно нормализуем.

Cor. Комбинатор неподвижной точки **Y** в λ_{\to} не типизируем. Это можно исправить, если ввести константу \mathbb{Y} с полиморфным типом $(r \to r) \to r$ и σ -редукцию $\mathbb{Y}u \to_{\sigma} u(\mathbb{Y}u)$.

Однако возникнет проблема, что его потребуется включить в контекст, где r зафиксируется.

8 Контекст типизации. Понятие наиболее общего типа для терма u в контексте Γ . Примеры: комбинаторы $\mathbf B$ и $\mathbf K$.

Def: Контекст — множество $x_i : A_i$, т.е. присвоений типов для свободных переменных.

Def: В σ – применение подстановки $\sigma = [r_1 := A_1, \ldots]$ к типу B.

Тип B — более общий, а $B\sigma$ — более конкретный.

Def: B_0 — наиболее общий тип для u_0 в контексте Γ_0 , если:

- 1. $\Gamma_o \vdash u_0 : B_0$;
- 2. $\Gamma_o \vdash u_0 : B \Rightarrow \exists \sigma : B = B_0 \sigma$.

Th. Для любых Γ_0 и u_0 либо существует наиболее общий тип для u_0 контексте Γ_0 , либо u_0 не типизуем в контексте Γ_0 .

Cor. Задача выведения типов = задача поиска наиболее общего типа.

Def: Комбинатор — замкнутые (без свободных переменных) термы чистого λ -исчисления.

Комбинатор $B = \lambda fgx.f(gx)$. HOT: $(B \to A) \to ((C \to B) \to (C \to A))$.

Комбинатор $K = \lambda x.\lambda y.x.$ HOT: $A \to (B \to A).$

Подходят Char \rightarrow (Bool \rightarrow Char), (Int \rightarrow Bool) \rightarrow (Char \rightarrow (Int \rightarrow Bool)), ...

Проверьте. Я не совсем понял, что от нас хотят услышать про комбинаторы.

9 Безопасность типов при β -редукции.

Def: Свойство безопасности типов при β **-редукции** — если $\Gamma \vdash u : B$ и $u \twoheadrightarrow_{\beta} u'$, то $\Gamma \vdash u' : B$

Это означает, что в процессе вычислений можно не контролировать типы, достаточно (статической) проверки в начале.

Imp! В обратную сторону условие не гарантируется: если $u \to_{\beta} u'$ и $\Gamma \vdash u' : B$, не обязательно $\Gamma \vdash u : B$. Может оказаться, что u вообще не типизируем, либо у него меньше корректных типов, чем у u'.

Ex. Возможно всё-таки стоит привести пример когда обратное условие не выполняется. Если кто-то придумает такой пример - напишите его сюда пожалуйста.

Думаю, что подойдет $(\lambda x.y)\Omega$ про не типизируемость и $(\lambda ft.(\lambda xy.y)f(42)t))$ для меньшего числа корректных типов, т.к. после редукции внутреннеко редекса f может быть любым термом, а не только Int->smth

10 Исчисление типизации $\lambda 2$ (система F). Пример типизуемого терма, не имеющего наиболее общего типа.

Def: Система \mathbf{F} — система типов поверх λ -исчисления.

Типы получаются из базовых конструкциями $A \to B$ и $\forall r.A.$

Правила типизации

$$\frac{\Gamma, x : A \vdash u : B}{\Gamma, x : A \vdash x : A} Ax; \frac{\Gamma, x : A \vdash u : B}{\Gamma \vdash (\lambda x. u) : (A \to B)} Abs; \frac{\Gamma \vdash u : (A \to B) \ \Gamma \vdash v : A}{\Gamma \vdash (uv) : B} App;$$

$$\frac{\Gamma \vdash u : A}{\Gamma \vdash u : (\forall r. A)} Gen; \frac{\Gamma \vdash u : (\forall r. B)}{\Gamma \vdash u : B[r := A]} Inst;$$

Imp! Позволяет применить функцию к себе $x: \forall r.(r \to r) \vdash (xx): \forall r.(r \to r)$, но все еще все типизируемые термы обладают свойством сильной нормализуемости, а следовательно $\Omega = (\lambda x.(xx))(\lambda x.(xx))$ не типизируем.

Ех. Рассмотрим терм $\lambda x.(xx)$.

У него есть две несравнимых типизации: $(\forall r.(r \to r)) \to (\forall r.(r \to r))$ и $(\forall r.((r \to r) \to (r \to r))) \to (\forall r.((r \to r) \to (r \to r)))$. Например, $\lambda f.\lambda g.\lambda x.fgx$ имеет тип 2, но не тип 1. Функция $\lambda f.\lambda z.(\lambda xz.z)(f0)$ – наоборот. Следовательно у терма нет наиболее общего типа в системе F.

Задача типизации в системе F алгоритмически неразрешима.

11 Система типов Хиндли–Милнера. Let-полиморфизм.

В предыдущих пунктах λ_{\to} не позволяла адекватно реализовать полиморфизм, а F не имела наиболее общего типа. Система типов Хиндли–Милнера является чем-то «между» двумя системами выше. По сути в F добавили ограничение + let in.

Def: Система типов Хиндли–Милнера – система типов поверх λ-исчисления.

Типы — безкванторный (мономорфные) типы λ_{\to} и типы $\forall r_1. \forall r_2..... \forall r_k. A$, где A — мономорфный тип. λ -абстракция разрешена только для мономорфных типов.

Также система X-M вводит новый конструктор термов **let in**, например **let** x = v **in** u, и редукцию **let** x = v **in** $u \to u$ [x := v]. Без типов это равносильно $(\lambda x.u)v$ (в типах в let y x может быть полиморфный тип).

Правила типизации

$$\frac{\Gamma}{\Gamma, x: A \vdash x: A} Ax; \frac{\Gamma \vdash u: (A \to B) \ \Gamma \vdash v: A}{\Gamma \vdash (uv): B} App;$$

 $\frac{\Gamma,x:A\vdash u:B}{\Gamma\vdash (\lambda x.u):(A\to B)}Abs$ – только для безкванторного типа A;

$$\frac{\Gamma \vdash v : A \ \Gamma, x : A \vdash u : B}{\Gamma \vdash (\mathbf{let} \ \mathbf{x} = \mathbf{v} \ \mathbf{in} \ \mathbf{u}) : B} Let$$

$$\frac{\Gamma \vdash u : A}{\Gamma \vdash u : (\forall r.A)} Gen; \frac{\Gamma \vdash u : (\forall r.B)}{\Gamma \vdash u : B[r := A]} Inst - если подстановка корректна A;$$

Ex. $\lambda f.(ftrue, f0)$ не типизируется, т.к. f — мономорфный.

 $let f = \lambda x.xin(ftrue, f0)$ типизируется.

Imp! В системе X-M у типизируемого терма существует наиболее общий тип, а задача его нахождения разрешима.

Imp! Система типов Haskell является расширенной системой типов Хиндли–Милнера (Алг. типы, классы типов, рекурсивный let).

12 Полезные материалы.

Oсновная страница курса: http://www.mi-ras.ru/~sk/lehre/fp_hse2021/.

Немного конспектов за 2020 год: http://www.mi-ras.ru/~sk/lehre/fp_hse2020/

Теория за 2018 год: http://www.mi-ras.ru/~sk/lehre/fp_hse2018/

13 Раздел для разработчиков.

Def: Автомобиль – дом на колёсах.

Ех. Квадрат является примером прямоугольника.

Ітр! Важный момент, который нельзя забывать!

Тh. О равенстве полов Пифагоровы штаны во все стороны летят.

Доказательство. Помахали руками, готово.

[:|||:]

Cor. Следует из теоремы.

St. Утверждение (можно доказать).

Пример того, как вставить картинку:

Histogram of arrivals

Пример гистограммы.

Пример таблицы:

	 Δ_i	
Н	 n_i	
О	 $n p_i$	