Planare Graphen - Coloring

Manuel Frohn

RWTH Aachen University, Aachen, Germany

?

Inhaltsverzeichnis

Relevanz

Planare Graphen

Einführung

Minore

Wichtige Sätze

Der Algorithmus

Komponente, Separator, Bikomponente

Palmtree

Außen Aktive Knoten

Die Datenstruktur

WalkUp, WalkDown

Relevanz

- 1. Real auftretene Klasse
- 2. Wichtig für Chip Design und Städteplanung
- 3. Bedingung für Algorithmen und Sätze

Planare Graphen

Definition

Ein Graph G heißt planar, wenn man in der Lage ist, den Graphen so auf eine Ebene zu zeichnen, dass sich seine Kanten nicht schneiden.

Minor

Definition

 $\mbox{\bf M}$ heißt Minor von $\mbox{\bf G}$ wenn $\mbox{\bf M}$ aus einem Teilgarphen von $\mbox{\bf G},$ durch Kantenkontaktion hervorgeht.

Eulerscher Polyedersatz

Satz

Gegeben ein planarer Graph G=(V,E) und die Anzahl seiner Gebiete |F| gilt: |V|-|E|+|F|=2

Eulerscher Polyedersatz

Satz

Gegeben ein planarer Graph G=(V,E) und die Anzahl seiner Gebiete |F| gilt: |V|-|E|+|F|=2

Satz

G Planar
$$\Leftrightarrow |E| \leq 3|V| - 6 \land |F| \leq 2|V| - 4$$

Gebiete

Satz von Kuratowski

Satz

Ein Graph ist genau dann planar, wenn er weder den K3,3 noch den K_5 als Minor enthält

Komponente

Definition

Ein maximale Teilgraph $G'=(V',G')\subset G$ mit $\forall v\in V'\forall w\in V':v\stackrel{*}{\Rightarrow}w$ heißt Komponente von G

Definition

Definition

Definition

Definition

Definition

Definition

Definition

Definition

Der Algorithmus

1. Erstelle den Palmtree zu G

Der Algorithmus

- 1. Erstelle den Palmtree zu G
- 2. Berechne die Lowpoint-Werte der Knoten
- 3. Erstelle für alle Knoten v eine AdjacencyList, welche die Kinder von v sortiert nach Lowpoint enthält

Außen Aktive Knoten

$$L(4) = 2$$

$$L(4) = 2$$

 $L(3) = 0$

$$L(4) = 2$$

 $L(3) = 0$
 $L(2) = 0$

$$L(4) = 2$$

 $L(3) = 0$
 $L(2) = 0$
 $L(1) = 0$

$$L(4) = 2$$

 $L(3) = 0$
 $L(2) = 0$
 $L(1) = 0$
 $L(0) = 0$

Lemma

Lemma

$$\frac{\mathsf{p} = 2:}{\mathsf{L}(\mathsf{p}) < 1 \Leftrightarrow 0 < 1}$$

 $\Rightarrow 2 \text{ ist Außen Aktiv}$

Lemma

$$\frac{p=3:}{L(p) < 1 \Leftrightarrow 0 < 1}$$

 $\Rightarrow 3 \text{ ist Außen Aktiv}$

Lemma

$$\begin{array}{l} {
m p}=4: \\ {\it L}(p)<1\Leftrightarrow 2<1 \\ {
m AdjacencyList\ von\ 4\ ist\ leer} \\ {
m \Rightarrow\ 4\ ist\ nicht\ außen\ Aktiv} \end{array}$$

Lemma

Der Algorithmus

- 1. Erstelle den Palmtree zu G
- 2. Berechne die Lowpoint-Werte der Knoten
- 3. Erstelle für alle Knoten v eine AdjacencyList, welche die Kinder von v sortiert nach Lowpoint enthält
- 4. Erstelle für alle Kanten e des DFS-Baums eine Bikomponente B und bette e in diese ein

Der Algorithmus

- 1. Erstelle den Palmtree zu G
- 2. Berechne die Lowpoint-Werte der Knoten
- 3. Erstelle für alle Knoten v eine AdjacencyList, welche die Kinder von v sortiert nach Lowpoint enthält
- 4. Erstelle für alle Kanten e des DFS-Baums eine Bikomponente B und bette e in diese ein
- 5. Für alle Knoten v in inverser DFI-Ordnung:
- Performe für alle Kanten, die von einem DFS Nachkommen von w nach v führen WalkUp

Suche einen Pfad von w nach v über die außen liegenden Knoten

Suche einen Pfad von w nach v über die außen liegenden Knoten

Beachte:

Außenaktive Knoten dürfen nicht traversiert werden

Suche einen Pfad von w nach v über die außen liegenden Knoten

Beachte:

Wird eine Wurzel aus Zwei Au-Benaktiven Bikomponenten, oder aus zwei Richtungen beschritten, müssen zwei Pfade über die außen liegenden Knoten gefunden werden

Suche einen Pfad von w nach v über die außen liegenden Knoten

Beachte:

Eine Außen Aktive Wurzel, die nicht durch die Bikomp aus der man kommt außenaktiv ist, darf nur von einer Richtung aus beschritten werden

Relevante Bikomponente

Definition

Eine Bikomponente heißt relevent, wenn man wärend des WalkUps aus ihr herausgetreten ist

Der Algorithmus

- 1. Erstelle den Palmtree zu G
- 2. Berechne die Lowpoint-Werte der Knoten
- 3. Erstelle für alle Knoten v eine AdjacencyList, welche die Kinder von v sortiert nach Lowpoint enthält
- 4. Erstelle für alle Kanten e des DFS-Baums eine Bikomponente B und bette e in diese ein
- 5. Für alle Knoten v in inverser DFI-Ordnung:
- Performe für alle Kanten, die von einem DFS Nachkommen von w nach v führen WalkUp
- 7. Performe für die gefundenen Pfade WalkDown

Walk Down

Performe DFS auf den Graphen, der durch die Pfade aus dem WalkUp induziert wird

Beachte jedoch

- Füge zuerst die Kante zu einbettung hinzu, die an dem Knoten anliegt, indem du gerade bist
- Gibt es eine relevante Bikomponte, ohne außen aktive Knoten von der der Momentane Knoten die Wurzel ist, schreite in diese Bikomponente hinein
- 3. Gibt es eine relevante Bikomponte, mit außen aktive Knoten von der der Momentane Knoten die Wurzel ist, schreite in diese Bikomponente hinein

Kuratowski Minore - Walk Up

Vielen Dank für ihre Aufmersamkeit