Behavioural Functions Goods Market Reference

Economics 2: Growth Setting up the Solow Model

Kumar Aniket

Lecture 2, Week 6

Government

► Assumption: Ignore the government

$$G = 0$$

$$T = 0$$

 Government does not influence the long run of the economy growth

Consumption Function

Short-run:
$$C = C_0 + (1 - s)(Y - T)$$

where s: marginal propensity to save

Long-run:
$$C = (1 - s) \cdot Y$$

Assume: $C_0 = 0$ (simplification)

T = 0 (ignoring the role of government)

⇒ people consume a constant proportion of their income

Saving Function

Short-run:
$$S = -S_0 + s(Y - T)$$

Long-run:
$$S = s \cdot Y$$

Assume: $C_0 = 0$ (simplification)

T = 0 (ignoring the role of government)

⇒ people save a constant proportion of their income

Investment Function

Short-run:
$$I = I_0 - b \cdot r$$

*I*₀: exogenous "business expectations"

b: negative relation with interest rate

Long-run: Assume:
$$b = 0$$
, $I_0 = 0$

 \Rightarrow all the saving in the economy gets invested

Depreciation

- ► Depreciation: capital replaced due to wear and tear machinery needs to be serviced in order to be brought back to its original condition
- Capital depreciates at the rate of δ
- ► Capital Formation: Any addition to capital stock first gets absorbed by depreciation and the residual gets added to capital stock.

Government Consumption Saving Investment Capital Formation Worksheet

Two kinds of Investment

Replacement Investment: compensates for depreciation

Assumption: δK depreciates every period

Net Investment: brand new capital stock
 new machinery for the economy

Capital Formation

• Today's investment is tomorrow's capital

$$I = K_{t+1} - K_t + \delta K_t$$
$$= \Delta K_t + \delta K_t$$

Investment today \rightarrow

Compensation for Depreciation: δK_t

Addition to capital Stock: $\Delta K_t = K_{t+1} - K_t$

Worksheet 2, Figure 1

$$y = f(k)$$

- ► Show graphically that output per worker (y) increase concomitantly with capital stock per worker (k)
- \triangleright Is there a clear relationship between growth of k and growth of y?
- ▶ Is there a limit to growth of *k* and *y*?

Goods Market Equilibrium

Short-run:
$$Y = C + I + G + NX$$

Long-run:
$$Y = C + I$$

Assumption: ignore G, T, NX

$$Y-C=I$$

$$S = I$$

Saving & Investment

$$S = I$$

$$sY = \Delta K_t + \delta K_t$$

divide both sides by L and rearrange

Fundamental equation: $\Delta k_t = sy - \delta k_t$

Worksheet 2, Figure 2

- ► Start from an arbitrary capital stock per worker *k*₀ and find the net increase in *k* per period
- Do you notice a pattern in the rate at which capital stock per worker (k) grows?
- Over time, what do you think would happen to rate at which output per worker (y) grows?

Reference

1. Factor Markets, Behaviourial Functions

Mankiw: Section 3-1 to 3-3

2. Solow Growth Model

Mankiw: Chapter 7, Section 8-1 to 8-3

Burda: Section 3.1 to 3.6

Jones: Chapter 2

Mankiw: Macroeconomics (Fifth Edition), N Gregory Mankiw

Burda: Macroeconomics, A European Text (Fourth Ediiton),

Michael Burda and Charles Wyplosz

Jones: Introduction to Economic Growth, Charles Jones