Eksperiment 4 - Substitusjonsreaksjoner. Alkylhalider.

Sammendrag

Effekt av ulike hastighetsbestemmende faktorer i nukleofile substitusjonsreaksjoner er blitt undersøkt i S_N2 og S_N1 reaksjoner med ulike alkylhalider.

1 Teori

Nukleofile substitusjonsreaksjoner er klassen av reaksjoner hvor en nukleofil reaktant substituerer en substituent i et organsik molekyl. Dette skjer gjennom 2 hovedmekanismer avhengig av reaktivitet og struktur av reaktanter. ^[1]

$1.1 S_N 2$ reaksjoner

 S_N2 mekanismen er en ettstegsmekanisme hvor en nukleofil «angriper» et karbonatom i substratet og substitueres inn (eksempel på mekansime 1.1). Denne mekanismen har en bimolekylær reaksjonskinetikk siden det hastighetsbestemende (og eneste) steget avhenger både av konsentrasjonen av nukleofilen og substratet. Reaksjonshastigheten til en S_N2 reaksjon er hovedsakelig påvirket av 3 faktorer; konsentrasjon av reaktant, reaktivitet av utgående og nukleofile grupper i det aktuelle løsemidlet og struktur av substrat og nukleofil (sterisk hindring). Reaksjonshastigheten er av første orden for konsentrasjon av substrat og nukleofil. All sterisk hindring virker negativt for S_N2 reaksjoner dvs. primære substrater reagerer raskere enn sekundære og tertiære substrater reagerer ikke med S_N2 mekanisme. Sterisk hindring av nukleofil vil også virke negativt da f.eks. t-butyloksid vil ikke kunne reagere i S_N2 med sekundære substrater. Løsningsmidlet vil ha en effekt på reaktiviteten av nukleofil. Aprotiske løsningsmidler (f.eks. aceton) vil være favorisert for S_N2 reaksjoner da protiske løsningsmidler stabiliterer nukleofilen og minker reaktivitete.

1.2 S_N1 reaksjoner

 S_N1 mekanismen skjer i 2 steg (eksempel på mekanisme 1.2) hvor det hastighetsbestemende trinnet er dannelse av et karbokation. I motsetning til S_N2 reaksjoner har konsentrasjon og reaktivitet av nukleofil ikke ha mye å si for hastighet da det hastighetsbestemende trinnet kun avhenger av substratet. Protiske løsningsmidler vil være favorisert da det vil stabilisere karbokationet. Strukur av substratet som gir mer stabile karbokationer vil også virke positivt for reaksjonshastigheten [1].

1.3 Reaksjonsligninger

1.3.1 mekanismer

1.3.2 S_N2 reaksjoner

$$Br + NaI \xrightarrow{Aceton} I + NaBr(s)$$
 (1.3)

$$+ \text{NaI} \xrightarrow{\text{Aceton}} + \text{NaBr(s)}$$
 (1.4)

$$+ \text{NaI} \xrightarrow{\text{Aceton}} + \text{NaBr(s)}$$

$$(1.5)$$

$$\operatorname{Br}$$
 + NaI \longrightarrow + NaBr(s) (1.6)

$$Cl + NaI \xrightarrow{Aceton} I + NaCl(s)$$
 (1.7)

1.3.3 S_N1 reaksjoner

$$\begin{array}{c} \text{Br} \\ \hline \\ \text{OH} \end{array} \begin{array}{c} \text{AgNO}_3 \\ \hline \\ \text{OH} \end{array} + \text{HNO}_3 + \text{AgBr(s)} \end{array}$$

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\$$

$$\begin{array}{c|c} Cl & & \\ \hline & AgNO_3 \\ \hline & OH \end{array} + HNO_3 + AgCl(s) \end{array}$$
 (1.11)

2 Eksperimentelt og resultater

Det ble utført 20 reaksjoner, vist i Tabell 2.1 og Tabell 2.2. For alle reaksjonene, unntatt prøve nr. 17 og 18 ble saltløsningen tilsatt først i et reagensrør, og deretter ble alkylhalidet tilsatt. For prøve 17 og 18 var rekkefølgen omvendt.

Tabell 2.1: Resultater fra S_N2 reaksjoner mellom ulike alkylhalider og natriumjodid i aceton

Prøve nr. (Lign.)	Alkylhalid (kons., volum)	NaI i aceton (kons., volum)	Observasjoner
1 (1.3)	1-brombutan (4 dråper)	15% , $5~\mathrm{mL}$	Rask reaksjon, momentant bunnfall.
2(1.4)	2-brombutan (4 dråper)	$15\%,5~\mathrm{mL}$	Mininmalt til ingen bunnfall.
3(1.5)	2-brom-2-metylpropan (4 dråper)	$15\%,5~\mathrm{mL}$	Ingen bunnfall, litt gulfarge.
4(1.3)	1-brombutan (5 dråper)	$15\%,5~\mathrm{mL}$	Rask reaksjon, momentant bunnfall.
5(1.6)	1-brom-2,2-dimetylpropan (5 dråper)	15%, 5 mL	ingen reaksjon.
6(1.3)	1-brombutan (5 dråper)	15% , $5~\mathrm{mL}$	Rask reaksjon, momentant bunnfall.
7(1.7)	1-klorbutan (5 dråper)	15% , $5~\mathrm{mL}$	Mininmalt til ingen bunnfall.
8(1.3)	1-brombutan $(0.02 \text{ M}, 2 \text{ mL})$	$15\%,2~\mathrm{mL}$	Mininmalt til ingen bunnfall.
9(1.3)	1-brombutan $(0,2 M, 2 mL)$	$15\%,2~\mathrm{mL}$	Rask reaksjon, bunnfall etter under ett minutt
10 (1.3)	1-brombutan (1 M, 5 mL)	$1,5\%,5\;\mathrm{mL}$	Minimalt til ingen bunnfall.
11 (1.3)	1-brombutan (1 M, $5 mL$)	$15\%,2~\mathrm{mL}$	Rask reaksjon, momentant bunnfall

 ${\bf Tabell~2.2:}$ Resultater fra $S_{\rm N}1$ reaksjoner mellom ulike alkylhalider og sølvnitrat i etanol

Observasjoner	Treg reaksjon, lang tid før bunnfall. Middele med mederien bunnfall	Rask reaksjon, momentant bunnfall.	Rask reaksjon, gult bunnfall.	Rask reaksjon sølvfarget bunnfall.	Ingen reaksjon.	Rask reaksjon, momentant bunnfall.	Treg reaksjon, litt bunnfall.	Ingen reaksjon.
AgNO ₃ i etanol (kons., volum)	$AgNO_3 (0.1 \text{ M}, 5 \text{ mL})$	$ m AgNO_3~(0,1~M,~5~mL) \ AgNO_3~(0,1~M,~5~mL)$	$AgNO_3$ (0,1 M, 5 mL)	$AgNO_3$ (0,1 M, 5 mL)	$AgNO_3$ (0,1 M, 2 mL)	$AgNO_3$ (0,1 M, 2 mL)	$AgNO_3$ (0,1 M, 4 mL)	$AgNO_3 (0.1 M, 2 mL) + etanol (2 mL, 96\%)$
Alkylhalid (kons., volum)	1-brombutan (4 dråper)	2-brom-2-metylpropan (4 dråper)	2-brom-2-metylpropan (4 dråper)	2-klor-2-metylpropan (5 dråper)	2-klor-2-metylpropan $(0,002 \text{ M}, 5 \text{ mL})$	2-klor- 2 -metylpropan (0,2 M, 5 mL)	2-klor- 2 -metylpropan (0,02 M, 2 mL)	2-klor- 2 -metylpropan (0,02 M, 2 mL)
Prøve nr. (Lign.)	12 (1.8)	13 (1.9) $14 (1.10)$	15(1.10)	16(1.11)	17 (1.11)	18 (1.11)	18 (1.11)	18 (1.11)

3 Diskusjon

Svar på spørsmål i eksperimentelt delen:

3.1 S_N2 reaksjoner

De tre første reaksjonene (tabell 2.1) reagerer primært alkylhalid fortere enn sekundært som reagerer fortere enn tertiert som ikke reagerer via $S_N 2$ på grunn av sterisk hindring.

Reaksjon for de to neste alkylhalidene er veldig forskjellig selv om begge er primære på grunn av sterisk hindring fra metylgruppene.

De to følgende reaksjonene viser at brom er en bedre utgående gruppe enn klor da alkylbromiden reagerte mye fortere enn alkylkloriden

De siste reaksjonene viser at konsentrasjon av både substrat og nukleofil påvirker reaktiviteten i reaksjonen.

3.2 S_N1 reaksjoner

I de tre første reaksjonene (tabell 2.2) ser vi at strukturen har motsatt effekt på reaksjonshastigheten fra $S_N 2$ som skyldes stabilitet av karbokation

De to neste reaksjonene viser fortsatt at brom er en bedre utgående gruppe som gir høyere reaksjonshastighet. Alkyl-jodid ville dannet karbokation lettere som ville økt reaksjonshastighet, men det ville ikke felt ut like bra som kunne påvirket reaksjonshastighet. Generelt sett er tyngre halider bedre utgående grupper på grunn av synkende basestyrke som følge av økende størrelse.

De fire siste reaksjonene viser at som i S_N2 har konsentrasjon av substrat mye å si for reaksjonshastighet, men at konsentrasjon av nukleofil ikke har mye å si.

Trondheim, 26. februar 2018

Referanser

[1] Solomons Graham, T.W., Fryhle B. Craig, Snyder A. Scott, *Solomons' Organic Chemistry*. Wiley, 12th ed., 2016. s. 242-266

Vedlegg A: Svar på kontrollspørsmål

1.
$$r = k[R - X][Nu^-]$$

2.
$$r = k[R - X]$$

- 3. De viktiske faktorene for om reaksjonen går via S_N2 eller S_N1 er reaktivitet av nukleofil og løsningsmidlet. Siden S_N2 reaksjoner avhenger av nukleofilen og økt reaktivitet av nukleofil (som inkluderer aprotisk løsningsmiddel) vil være gunstig for S_N2 reaksjon. Et protisk løsningsmiddel vil favorisere S_N1 da det vil stabilisere karbokationet og redusere reaktivitet av nukleofil.
- 4. Alkylfluorider er veldig dårlige substrater fordi fluor er en veldig dårlig utgående gruppe, da den er liten og danner sterke bindinger.
- 5. En god utgående gruppe er ofte en svak base og en svak nukleofil. De er som regel store molekyler med svak binding til karbonatomet.
- 6. Ag
N ${\rm O_3}$ hjelper for å felle ut Ag Br og Ag Cl som er tungtløselige og forsky
ver likevektene mot høyre