Grundlagen der Rechnerarchitektur Wintersemester 20/21

Übung 6

Die Abgabe erfolgt als Datei-Upload in Moodle, **gruppenweise** bis spätestens **20.12.2020** um **24:00**. Beschriften Sie die Abgaben mit Vor- und Nachnamen von beiden Gruppenmitgliedern. Das Übungsblatt gilt als bestanden, wenn mindestens 10 der maximal 20 Punkte erreicht werden. Die zu erreichenden Punkte werden schwerpunktmäßig auf den Rechenweg gegeben.

Aufgabe 1: Quine McCluskey 3 + 3 Punkte

Gegeben ist die folgende Wahrheitstabelle:

Bits	x_2	$, x_0$	Funktionen		
x_2	x_1	x_0	f	g	
0	0	0	1	0	
0	0	1	0	1	
0	1	0	0	0	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	1	
1	1	0	1	0	
1	1	1	1	1	

- a) Bestimmen Sie grafisch mittels des Verfahrens nach QuineMc-Cluskey (kurz: QMC-Verfahren) die Schaltfunktion f_{QMC} . Brechen Sie den Algorithmus ab, sobald Sie alle Primterme ermittelt haben.
- b) Bestimmen Sie grafisch mittels des QMC-Verfahrens die Schaltfunktion g_{QMC} . Brechen Sie den Algorithmus ab, sobald Sie alle Primterme ermittelt haben.
- c) Zeichnen Sie die Funktionen f_{QMC} und g_{QMC} als Gatterschaltung.

In dieser Aufgabe werden Sie einen Dezimal-zu-Aiken-Code Umcodierer entwerfen.

Gegeben ist dafür die folgende Wertetabelle:

Dezimal	Binär			Aiken-Code				
d	x_1	x_2	x_3	x_4	y_1	y_2	y_3	y_4
0	0	0	0	0				
1	0	0	0	1				
2	0	0	1	0	0	0	1	0
3	0	0	1	1				
4	0	1	0	0				
5	0	1	0	1				
6	0	1	1	0				
7	0	1	1	1	1	1	0	1
8	1	0	0	0				
9	1	0	0	1				
10	1	0	1	0				
11	1	0	1	1				
12	1	1	0	0				
13	1	1	0	1				
14	1	1	1	0				
15	1	1	1	1				

- a) Vervollständigen Sie die Wertetabelle zur Codierung einer binär-codierten Dezimalzahl im Aiken Code. Achten Sie auf die Einschränkungen dieses Codes.
- b) Geben Sie für y_1 , y_2 , y_3 und y_4 jeweils die DKNF an.
- c) Minimieren Sie die Funktionen aus Teilaufgabe b mit KV-Diagrammen.
- d) Auch XOR und AND stellen zusammen eine vollständige Basis dar. Stellen Sie die minimierten Funktionen aus Teilaufgabe c nur unter der Verwendung von XOR und AND dar. Zeichnen Sie die Funktionen anschließend als Gatterschaltung. Verwenden Sie dabei ebenfalls nur XOR- und AND-Gatter.

Aufgabe 3: Das RS-Flipflop......
$$1+1+1+0.5$$
 Punkte

Das RS-Flipflop ist gemäß folgender Tabelle definiert:

R	S	Q_t	\overline{Q}_t		
0	0	Q_{t-1}	\overline{Q}_{t-1}		
0	1	1	0		
1	0	0	1		
1	1	Х	Х		

- a) Beschreiben Sie die jeweiligen Zustände der Wahrheitstabelle in Abhängigkeit der Eingänge und erklären Sie (schriftlich oder graphisch) was der Zustand mit S=R=1 für das RS-FF bedeutet.
- b) Zeichnen Sie ein RS-FF mit NOR-Gattern.
- c) Zeichnen Sie ein RS-FF mit NAND-Gattern.
- d) Vervollständigen Sie den Signalverlauf des RS-FF:

- a) Zeichnen Sie ein D-Latch und ein positiv taktzustandsgesteuertes D-Flipflop aus Gattern ihrer Wahl.
- b) Erklären Sie mit eigenen Worten, was ein D-Latch und was ein D-FF ist.
- c) Vervollständigen Sie den Signalsverlauf des D-FF:

