scRNA-seq

Differential expression analyses

Olga Dethlefsen

olga.dethlefsen@nbis.se

NBIS, National Bioinformatics Infrastructure Sweden

May 2018

• Introduction: what is so special about scRNA-seq DE?

- Introduction: what is so special about scRNA-seq DE?
- Common methods: what is out there?

- Introduction: what is so special about scRNA-seq DE?
- Common methods: what is out there?
- Performance: how do we know what is best?

- Introduction: what is so special about scRNA-seq DE?
- Common methods: what is out there?
- Performance: how do we know what is best?
- Practicalities: what to do in real life?

- Introduction: what is so special about scRNA-seq DE?
- Common methods: what is out there?
- Performance: how do we know what is best?
- Practicalities: what to do in real life?
- Summary: what to remember from this hour?

Let's get to know each other

Go to www.menti.com and use the code 70 52 87

https://www.menti.com

Introduction

Figure: Simplified scRNA-seq workflow [adapted from Wikipedia]

Figure: Simplified scRNA-seq workflow [adapted from Wikipedia]

adapted from Wu et al. 2017

Differential expression means

- taking read count data &
- performing statistical analysis to discover quantitative changes in expression levels between experimental groups
- i.e. to decide whether, for a given gene, an observed difference in read counts is significant (greater than what would be expected just due to natural random variation)

adapted from Wu et al. 2017

Differential expression means

- taking read count data &
- performing statistical analysis to discover quantitative changes in expression levels between experimental groups
- i.e. to decide whether, for a given gene, an observed difference in read counts is significant (greater than what would be expected just due to natural random variation)

Differential expression is an old "problem"

- known from bulk RNA-seq and microarray studies
- in fact building on one of the most common statistical problems, i.e comparing groups for statistical differences

Differential expression is an old problem. So what is all the commotion about?

https://www.menti.com & 70 52 87

Differential expression is an old problem. So what is all the commotion about?

https://www.menti.com & 70 52 87

scRNA-seq: special characteristics

- high noise levels (technical and biological factors)
- low library sizes
- low amount of available mRNAs results in amplification biases and "dropout events"
- 3' bias, partial coverage and uneven depth (technical)
- stochastic nature of transcription (biological)
- multimodality in gene expression; presence of multiple possible cell states within a cell population (biological)

Based on tutorial data

Common methods

apply 2 or more DE scRNA-seq methods and compare

develop a new DE scRNA-seq method

Olga (NBIS) scRNA-seq DE May 2018 11 / 43

Generic

- parametric tests, e.g. t-test
- non-parametric tests, e.g. Kruskal-Wallis

Generic

- o parametric tests, e.g. t-test
- non-parametric tests, e.g. Kruskal-Wallis

RNA-seq based

- edgeR
- limma
- DEseq2

Generic

- parametric tests, e.g. t-test
- non-parametric tests, e.g. Kruskal-Wallis

RNA-seq based

- edgeR
- limma
- DEseq2

scRNA-seq specific

- MAST, SCDE, Monocle
- D3E, Pagoda

Method	Model	Input	Platform	Threshold	Run time	Ref.
SCDE	Poisson and negative binomial model	Read counts matrix	R(package)	p-value	Minutes	[13]
monocle	Generalized additive models	Read counts matrix	R(package)	p-value	Minutes	[14]
D3E	Non-parametric (test of distribution)	Read counts matrix	Python(package)	p-value	1 hour	[15]
BPSC	Beta-Poisson model	Read counts matrix	R(package)	p-value	1 hour	[16]
DESeq	Negative binomial model	Read counts matrix	R(package)	p-value	Minutes	[10]
edgeR	Negative binomial model	Read counts matrix	R(package)	p-value	Minutes	[11]
baySeq	Negative binomial model	Read counts matrix	R(package)	Likelihood	12 hours	[24]
NBPSeq	Negative binomial model	Read counts matrix	R(package)	p-value	Minutes	[25]
Cuffdiff	Beta negative binomial model	Sam file	Linux	p-value	13 hours	[26]
DEGseq	Poisson model	Read counts matrix	R(package)	p-value	Minutes	[12]
TSPM	Poisson model	Read counts matrix	R(script)	p-value	1 hour	[27]
limma	Linear models	Read counts matrix	R(package)	p-value	Seconds	[28]
ballgown	Nested linear models	Read counts matrix /ctab file	R(package)	p-value	Seconds	[29]
SAMseq	Non-parametric (resampling)	Read count matrix	R(package)	p-value	Minutes	[30]

Run time is measured by one experiment of 40 samples vs 40 samples, and the used parameters and settings are shown in the materials and methods part.

Miao and Zhang 2016

Short name	Method	Software version	Input	Available from	Refere
BPSC	BPSC	BPSC 0.99.0/1	CPM	GitHub	[11]
D3E	D3E	D3E 1.0	raw counts	GitHub	[12]
DESeq2	DESeq2	DESeq2 1.14.1	raw counts	Bioconductor	[13]
DESeq2betapFALSE	DESeq2 without beta prior	DESeq2 1.14.1	raw counts	Bioconductor	[13]
DESeq2census	DESeq2	DESeq2 1.14.1	Census counts	Bioconductor	[13]
DESeq2nofilt	DESeq2 without the built-in in- dependent filtering	DESeq2 1.14.1	raw counts	Bioconductor	[13]
DEsingle	DEsingle	DEsingle 0.1.0	raw counts	GitHub	[14]
edgeRLRT	edgeR/LRT	edgeR 3.19.1	row counts	Bioconductor	15-17
edgeRLRTcensus	edgeR/LRT	edgeR 3.19.1	Census counts	Bioconductor	[15-1]
edgeRLRTdeconv	edgeR/LRT with deconvolution normalization	edgeR 3.19.1, scran 1.2.0	raw counts	Bioconductor	[15, 17
${\it edgeRLRT}{\it robust}$	edgeR/LRT with robust disper- sion estimation	edgeR 3.19.1	raw counts	Bioconductor	[15-17
edgeRQLF	edgeR/QLF	edgeR 3.19.1	raw counts	Bioconductor	[15, 16
edgeRQLFDetRate	edgeR/QLF with cellular detec- tion rate as covariate	edgeR 3.19.1	raw counts	Bioconductor	[15, 16
limmatrend	limma-trend	limma 3.30.13	log ₂ (CPM)	Bioconductor	[21, 2
MASTepm	MAST	MAST 1.0.5	log ₂ (CPM+1)	Bioconductor	[23]
MASTcpmDetRate	MAST with cellular detection rate as covariate	MAST 1.0.5	$log_2(CPM+1)$	Bioconductor	[23]
MASTtpm	MAST	MAST 1.0.5	log ₂ (TPM+1)	Bioconductor	[23]
MASTtpmDetRate	MAST with cellular detection rate as covariate	MAST 1.0.5	$log_2(TPM+1)$	Bioconductor	[23]
metagenomeSeq	metagenomeSeq	metagenomeSeq 1.16.0	raw counts	Bioconductor	[24]
monocle	monocle (tobit)	monocle 2.2.0	TPM	Bioconductor	[25]
monoclecensus	monocle (Negative Binomial)	monocle 2.2.0	Census counts	Bioconductor	[25, 2
monoelecount	monocle (Negative Binomial)	monocle 2.2.0	raw counts	Bioconductor	[25]
NODES	NODES	NODES 0.0.0.9010	raw counts	Author- provided link	[27]
ROTScpm	ROTS	ROTS 1.2.0	CPM	Bioconductor	[28, 2
ROTStpm	ROTS	ROTS 1.2.0	TPM	Bioconductor	28, 2
ROTSvoom	ROTS	ROTS 1.2.0	voom-transformed raw counts	Bioconductor	[28, 25
SAMseq	SAMseq	samr 2.0	raw counts	CRAN	[30]
scDD	scDD	scDD 1.0.0	raw counts	Bioconductor	[31]
SCDE	SCDE	sede 2.2.0	raw counts	Bioconductor	[32]
SeuratBimod	Seurat (bimod test)	Seurat 1.4.0.7	raw counts	GitHub	[33, 3
ScuratBimodnofilt	Seurat (bimod test) without the internal filtering	Seurat 1.4.0.7	raw counts	GitHub	[33, 3
${\bf SeuratBimodIsExpr2}$	Seurat (bimod test) with internal expression threshold set to 2	Seurat 1.4.0.7	raw counts	GitHub	[33, 3
SeuratTobit	Scurat (tobit test)	Seurat 1.4.0.7	TPM	GitHub	[25, 3
ttest	t-test	stats (R v 3.3)	TMM-normalized TPM	CRAN	[16, 3
voomlimma	voom-limma	limma 3.30.13	raw counts	Bioconductor	[21, 2
Wilcoxon	Wilcoxon test	stats (R v 3.3)	TMM-normalized TPM	CRAN	[16, 30

Soneson and Robinson 2018

More detailed examples

MAST

- uses generalized linear hurdle model
- designed to account for stochastic dropouts and bimodal expression distribution in which expression is either strongly non-zero or non-detectable
- The rate of expression Z, and the level of expression Y, are modeled for each gene g, indicating whether gene g is expressed in cell i (i.e., $Z_{ig} = 0$ if $y_{ig} = 0$ and $z_{ig} = 1$ if $y_{ig} > 0$)
- A logistic regression model for the discrete variable Z and a <u>Gaussian linear model</u> for the continuous variable (Y|Z=1):

$$logit(P_r(Z_{ig}=1)) = X_i\beta_g^D$$

$$P_r(Y_{ig}=Y|Z_{ig}=1) = N(X_i\beta_q^C,\sigma_q^2), \text{ where } X_i \text{ is a design matrix}$$

- Model parameters are fitted using an empirical Bayesian framework
- Allows for a joint estimate of nuisance and treatment effects
- DE is determined using the likelihood ratio test

Olga (NBIS) scRNA-seq DE May 2018 16 / 43

SCDE

- models the read counts for each gene using a mixture of a NB, negative binomial, and a Poisson distribution
- NB distribution models the transcripts that are amplified and detected
- <u>Poisson distribution</u> models the unobserved or background-level signal of transcripts that are not amplified (e.g. dropout events)
- subset of robust genes is used to fit, via <u>EM</u> algorithm, the parameters to the mixture of models
- For DE, the posterior probability that the gene shows a fold expression difference between two conditions is computed using a Bayesian approach

Olga (NBIS) scRNA-seq DE May 2018 17 / 43

Monocole

- Originally designed for ordering cells by progress through differentiation stages (pseudo-time)
- The mean expression level of each gene is modeled with a GAM, generalized additive model, which relates one or more predictor variables to a response variable as

 $g(E(Y)) = \beta_0 + f_1(x_1) + f_2(x_2) + ... + f_m(x_m)$ where Y is a specific gene expression level, x_i are predictor variables, g is a link function, typically log function, and f_i are non-parametric functions (e.g. cubic splines)

- The observable expression level Y is then modeled using GAM,
- $E(Y) = s(\varphi_t(b_x, s_i)) + \epsilon$ where $\varphi_t(b_x, s_i)$ is the assigned pseudo-time of a cell and s is a cubic smoothing function with three degrees of freedom. The error term ϵ is normally distributed with a mean of zero
 - The DE test is performed using an approx. χ^2 likelihood ratio test

Olga (NBIS) scRNA-seq DE May 2018 18 / 43

Let's stop for a minute...

Olga (NBIS) scRNA-seq DE May 2018 19 / 43

The key

$$Outcome_i = (Model_i) + error_i$$

- we collect data on a sample from a much larger population
- <u>statistics</u> lets us to make inferences about the population from which sample was derived
- we try to predict the outcome given a model fitted to the data

Olga (NBIS) scRNA-seq DE May 2018 20 / 43

The key

$$t = \frac{x_1 - x_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Olga (NBIS) scRNA-seq DE May 2018 21 / 43

Generic recipe

- model data e.g. gene expression
- fit model to the data and/or data to the model
- estimate model parameters
- use model for prediction and/or inference

Olga (NBIS) scRNA-seq DE May 2018 22 / 43

MAST (revisited)

- uses generalized linear hurdle model
- designed to account for stochastic dropouts and bimodal expression distribution in which expression is either strongly non-zero or non-detectable
- The rate of expression Z, and the level of expression Y, are modeled for each gene g, indicating whether gene g is expressed in cell i (i.e., Z_{ig} = 0 if y_{ig} = 0 and z_{ig} = 1 if y_{ig} > 0)
- A logistic regression model for the discrete variable Z and a <u>Gaussian linear model</u> for the continuous variable (Y|Z=1):

$$logit(P_r(Z_{ig}=1)) = X_i \beta_g^D$$

$$P_r(Y_{ig}=Y|Z_{ig}=1) = N(X_i \beta_q^C, \sigma_q^2), \text{ where } X_i \text{ is a design matrix}$$

- Model parameters are <u>fitted</u> using an empirical Bayesian framework
- Allows for a joint estimate of nuisance and treatment effects
- DE is determined using the likelihood ratio test

Generic recipe

- model e.g. gene expression with random error
- fit model to the data and/or data to the model, estimate model parameters
- use model for prediction and/or inference

Important implication

the better model fits to the data the better statistics

Olga (NBIS) scRNA-seq DE May 2018 24 / 43

Common distributions

Olga (NBIS) scRNA-seq DE May 2018 25 / 43

Common distributions

Olga (NBIS) scRNA-seq DE May 2018 26 / 43

Performance

Performance

-							
-		BPSC	BPSC	BPSC 0.99.0/1	CPM	GitHub	[11]
-		D3E	D3E	D3E 1.0	raw counts	GitHub	[12]
		DESeq2	DESeq2	DESeq2 1.14.1	raw counts	Bioconductor	[13]
-		DESeq2betapFALSE	DESeq2 without beta prior	DESeq2 1.14.1	raw counts	Bioconductor	[13]
-		DESeq2census	DESeq2	DESeq2 1.14.1	Census counts	Bioconductor	[13]
		DESeq2nofilt	DESeq2 without the built-in in- dependent filtering	DESeq2 1.14.1	raw counts	Bioconductor	[13]
-		DEsingle	DEsingle	DEsingle 0.1.0	raw counts	GitHub	[14]
-		edgeRLRT	edgeR/LRT	edgeR 3.19.1	raw counts	Bioconductor	[15-17]
		edgeRLRTcensus	edgeR/LRT	edgeR 3.19.1	Census counts	Bioconductor	[15-17]
		edgeRLRTdeconv	edgeR/LRT with deconvolution normalization	edgeR 3.19.1, scran 1.2.0	raw counts	Bioconductor	[15, 17, 18]
	-	${\it edgeRLRT} robust$	edgeR/LRT with robust disper- sion estimation	edgeR 3.19.1	raw co	Bioconductor	[15-17, 19]
		edgeRQLF	edgeR/QLF	edgeR 3.19.1	raw counts	Bioconductor	[15, 16, 20]
	•	${\it edge RQLFDetRate}$	edgeR/QLF with cellular detec- tion rate as covariate	edgeR 3.19.1	raw coun	Bioconductor	[15, 16, 20]
-		limmatrend	limma-trend	limma 3.30.13	$log_2(CPM)$	Bioconductor	[21, 22]
-		MASTcpm	MAST		$log_2(CF)$	Bioconductor	[23]
	•	${\bf MASTcpmDetRate}$	MAST with cellular rate as covariate		$log_2(CPM+1)$	Bioconductor	[23]
-		MASTtpm	MAST		$log_2(TPM+1)$	Bioconductor	[23]
	•	MASTtpmDetRate		1	$log_2(TPM+1)$	Bioconductor	[23]
		metagenomeSeq				Rioconductor	[24]
		monocle	2		45	conductor	[25]
_		monoclecensus	₹.		•,	conductor	[25, 26]
		monoclecount	\sim			conductor	[25]
	-	NODES	NODES	0.0.0.9010	raw counts	hor- provided link	[27]
-		ROTScpm	ROTS	ROTS 1.2.0	CPM	Bioconductor	[28, 29]
_		ROTStpm	ROTS	ROTS 1.2.0	TPM	Bioconductor	[28, 29]
	•	ROTSvoom	ROTS	ROTS 1.2.0	voom-transformed raw counts	Bioconductor	[28, 29]
-		SAMseq	SAMseq	samr 2.0	raw counts	CRAN	[30]
-		scDD	scDD	scDD 1.0.0	raw counts	Bioconductor	[31]
i		SCDE	SCDE	enda 9.9.0	raw counts	Bioconductor	[50]

Known data

using data we know something about to get "positive controls"

Known data

using data we know something about to get "positive controls"

Simulated data

null-data sets by re-sampling, modeling data sets based on various distributions

Known data

using data we know something about to get "positive controls"

Simulated data

null-data sets by re-sampling, modeling data sets based on various distributions Comparing between methods and scenarios

Comparing numbers of DEs incl. as a function of group size

Known data

using data we know something about to get "positive controls"

Simulated data

null-data sets by re-sampling, modeling data sets based on various distributions

Comparing between methods and scenarios

Comparing numbers of DEs incl. as a function of group size

Investigating results

How does the expression and distributions of detected DEs look like?

False positives (type I error) vs. false negatives (type II error) Sensitivity and specificity Precision and recall

adapted from Wikipedia

False positives (type I error) vs. false negatives (type II error) Sensitivity and specificity Precision and recall

Dal Molin, Baruzzo, and Di Camillo 2017: 2 conditions of 100 cells each simulated with 10 000 genes, out of which 2 000 set to DEs (based on NB and bimodal distributions)

Consistency

Miao et al. 2017

And so much more...

Bias, robustness and scalability in single-cell differential expression analysis

- 36 statistical approaches for DE analysis to compare the expression levels in the two groups of cells
- based on 9 data sets, with 11 21 separate instances (sample size effect)
- extensive evaluation metrics incl. number of genes found, characteristics of the false positive detections, robustness of methods, similarities between methods etc.
- conquer, a collection of consistently processed, analysis-ready public scRNA-seq data sets

Soneson and Robinson 2018

Practicalities

Getting to know your data

Example data: 46,078 genes x 96 cells 22,229 genes with no expression at all

Choosing DE methods

Soneson and Robinson 2018

Rembering the bigger picture

Stegle, Teichmann, and Marioni 2015

QC filtering

Cell-cycle phase

Normalization of cell-specific biases

Confounding factors, incl. batch effects

Detection rate, i.e the fraction of detected genes per cell

Imputations strategies for dropout values

What is pragmatic: programming language, platform, speed, collaborative workflows etc.

Staying critical

What to remember from this hour?

https://www.menti.com & 70 52 87

Growing field

Angerer et al. 2017

Olga (NBIS) scRNA-seq DE May 2018 40 / 43

Growing field

https://www.scrna-tools.org/tools

Zappia, Phipson, and Oshlack 2018

Summary

- scRNA-seq is a rapidly growing field
- DE is a common task so many newer and better methods will be developed
- understanding basic statistical concepts enables one to think more like a statistician: to choose and evaluate methods given data set
- staying critical, staying updated, staying connected

- Wu, Zhijin, et al. 2017. "Two-phase differential expression analysis for single cell RNA-seq". Bioinformatics 00 (00): 1–9. ISSN: 1367-4803. doi:10.1093/bioinformatics/bty329.
- Miao, Zhun, and Xuegong Zhang. 2016. "Differential expression analyses for single-cell RNA-Seq: old questions on new data". *Quantitative Biology* 4 (4): 243–260. ISSN: 20954697. doi:10.1007/s40484-016-0089-7.
- Soneson, Charlotte, and Mark D. Robinson. 2018. "Bias, robustness and scalability in single-cell differential expression analysis". *Nature Methods* 15 (4): 255–261. ISSN: 15487105. doi:10.1038/nmeth.4612. http://dx.doi.org/10.1038/nmeth.4612.
- Dal Molin, Alessandra, Giacomo Baruzzo, and Barbara Di Camillo. 2017. "Single-cell RNA-sequencing: Assessment of differential expression analysis methods". *Frontiers in Genetics* 8 (MAY). ISSN: 16648021. doi:10.3389/fgene.2017.00062.
- Miao, Zhun, et al. 2017. "DEsingle for detecting three types of differential expression in single-cell RNA-seq data", no. May: 1–2. ISSN: 1367-4803. doi:10.1093/bioinformatics/bty332. arXiv: 103549.
- Stegle, Oliver, Sarah A Teichmann, and John C Marioni. 2015. "Computational and analytical challenges in single-cell transcriptomics." *Nature reviews. Genetics* 16 (January 2014): 133–145.
- Angerer, Philipp, et al. 2017. "Single cells make big data: New challenges and opportunities in transcriptomics". *Current Opinion in Systems Biology* 4:85–91. ISSN: 24523100. doi:10.1016/j.coisb.2017.07.004. http://dx.doi.org/10.1016/j.coisb.2017.07.004.

Olga (NBIS) scRNA-seq DE May 2018 43 / 43