2. Übung zur Vorlesung

Modellierung und Simulation im WS 2019/2020

Aufgabe 1: Splines

Gegeben sind die Stützpunkte (0,1), (1,3), und (3,2). Bestimmen Sie mit der Zusatzbedingung $g'_1(0) = 1$ für die gegebenen Stützpunkte eine quadratische Spline-Funktion

$$g(x) = \begin{cases} g_1(x) = a_{12}x^2 + a_{11}x + a_{10} & \text{für } 0 \le x \le 1\\ g_2(x) = a_{22}x^2 + a_{21}x + a_{20} & \text{für } 1 \le x \le 3 \end{cases}$$

Aufgabe 2: Splines

Gegeben sind die Stützpunkte (-2,0), (-1,3) und (0,4).

a) Stellen Sie zur Bestimmung der kubischen Spline-Funktionen

$$g(x) = \begin{cases} g_1(x) = a_{13}x^3 + a_{12}x^2 + a_{11}x + a_{10} & \text{für} \quad -2 \le x \le -1\\ g_2(x) = a_{23}x^3 + a_{22}x^2 + a_{21}x + a_{20} & \text{für} \quad -1 \le x \le 0 \end{cases}$$

die erforderlichen 8 Bedingungen aus Stetigkeit, Differenzierbarkeit und natürlichen Randbedingungen $g_1''(x_1) = 0$, $g_2''(x_3) = 0$ auf.

b) Stellen Sie das bestimmende Gleichungssystem für die Koeffizienten a_{ij} auf.

Aufgabe 3: Nullstellenverfahren

Gegeben ist die Funktion $f(x) = 3x^3 - 4x^2 - 2x + 2$. Die drei Nullstellen dieses Polynoms liegen bei $x_1^* = 0.60225$, $x_2^* = 1.48$ und $x_3^* = -0.75$.

- a) Verwenden Sie die Startwerte $x_1 = 0$ und $x_2 = 1$ und erläutern Sie die ersten beiden Iterationsschritte des Bisektionsverfahrens. Bestimmen Sie ausgehend vom Startintervall [0,1] die Intervalle der ersten beiden Iterationsschritte.
- b) Berechnen Sie ebenfalls zu den Startwerten $x_0 = 0$ und $x_1 = 1$ den ersten Näherungswert x_2 des Sekantenverfahrens (regula falsi).
- c) Stellen Sie nun die Newtonformel auf und berechnen Sie für den Startwert $x_0=1$ den ersten Iterationsschritt.

Aufgabe 4: Nullstellenverfahren

Gegeben ist die Funktion $f(x) = (1 + 2x)^3$.

- a) Berechnen Sie die Nullstelle f(x) = 0 explizit (ohne Newton-Verfahren).
- b) Führen Sie mit dem Startwert $x_0 = 0$ die ersten zwei Schritte des Newton-Verfahrens zur Bestimmung der Nullstelle durch.