

Simulation and mining of social networks in a pandemic context

Aldi Topalli

Technische Universität München

Faculty of Informatics

Chair of Social Computing

Garching, 10.05.2021

Outline

- Generation of long-term social network
- Action-based risk prediction

Objective

- Generate a real-world graph
- Model long-term relationships
- Store work and home facility

Watts-Strogatz model

Edge types

Based on node attributes

Random assignment

Node classification [1]

- Assign given facility to a random node
- Propagate attribute: Close nodes should have similar attributes

Results

Results

Outline

- Generation of long-term social network
- Action-based risk prediction

Daily "sentence"

Daily "sentence"

Experiment

- Train concept embeddings
- Train a bidirectional LSTM on the concept embeddings
- Cluster the embedding space
- Discover risk clusters

Results

- Results from embeddings → not good
- Second approach necessary
- Idea
 - Distribute the risk based on each person doing the action
 - Normalize for each person to lower influence of highly active people

Bag of actions

Create a timeline of actions per person (14 days)

- Distribute risk based on:
 - Group size
 - Duration
- Normalize (Softmax) actions per person
- Sum all same actions to get the risk for the specific action
- Rank the actions in the timeline

More detail

- Risk_{it} = group_size + duration (j-th action, t-th person)
- Risk[']_{jt} = Softmax_j(Risk_t)
- Risk_t = $\sum_{t} Risk'_{j,t}$
- Riskiest action for person t = maximum Risk_i of the timeline

More detail

- Risk_{it} = group_size + duration (j-th action, t-th person)
- Risk_{jt} = Softmax(Risk_t)
- Risk_j = $\sum_{t} Risk'_{j,t}$
- Riskiest action for person t = maximum Risk; of the timeline

Result ~ 40 % accuracy

Discussion and interpretation

- ML in the context of data
- Fine grained information (ML related, Discriminative model)
- Patterns should be visible at an earlier stage
- Enable god-like mode

End