

SmartSens™ SC2235 设计应用指南

V1.5

2017.8.31

目录

目录	录	2
1.	芯片简述	3
1.1.	. 芯片概述	3
1.2.	. 芯片内部框架	3
1.3.	. 上电时序	3
2.	芯片引脚与封装信息	5
2.1.	. 芯片引脚信息	5
2.2.	. 芯片脚位图	7
2.3.	. 封装尺寸图	7
3.	典型应用电路	10
4.	基本功能	12
4.1.	. SLAVE MODE	12
4.2.	. AEC/AGC	13
	•	: 的控制策略
4.3.	. 黑电平控制(BLG	20
4.4.	. DPC	21
4.5.	. 视频输出模式	24
		序24 口25
4.6.	. 帧率计算	26
4.7.	. 测试模式	27
5.	光学特性	28

1. 芯片简述

1.1. 芯片概述

SC2235 是监控相机领域先进的数字 CMOS 图像传感器,最高支持 1936H×1096V @50fps 的传输速率。SC2235 输出 raw 格式图像,有效像素窗口为 1936H×1096V,支持复杂的片上操作——例如窗口化、水平或垂直镜像化等。

SC2235 可以通过标准的 I2C 接口进行配置。

SC2235 可以通过 EFSYNC 引脚实现外部控制曝光。

1.2. 芯片内部框架

图 1-1 展示了 SC2235 图像传感器的功能模块。

SC2235 Block Diagram

图 1-1 SC2235 结构图

1.3. 上电时序

在上电过程中,必须对 RESETB 信号进行控制。具体上电时序要求如下:

图 1-2 上电时序图

说明:

- 1) PWDNB 可以悬空(芯片内部上拉到电源)处理,也可以外接 DOVDD。
- 2) T0≥0ms, T1≥0ms, T2≥1ms, T3≥1ms, T4≥1ms。

2. 芯片引脚与封装信息

2.1. 芯片引脚信息

表 2-1 列出了 SC2235 图像传感器的引脚信息及相关描述。

表 2-1SC2235 引脚描述

序号	编号	信号名	引脚类型	描述
1	A1	AVDD	电源	2.8V 模拟电源
2	A2	LREF	输出	DVP 行同步
3	A3	SCL	输入	I2C 时钟线
4	A4	PWDNB	输入	Power Down 信号输入(内置上拉 电阻,低电位有效)
5	A5	NC	_	NC
6	A6	VREF	输出	内部参考电压(外接电容至 GND)
7	A7	AVDD	电源	2.8V 模拟电源
8	B1	AGND	地线	模拟地
9	B2	FSYNC	输出	DVP 帧同步
10	В3	SDA	输入/输出	I2C 数据线(open drain)
11	В5	DVDD	电源	1.5V 数字电源
12	В6	EFSYNC	输入	外部同步触发
13	В7	AGND	地线	模拟地
14	C1	DVDD	电源	1.5V 数字电源
15	C2	EXTCLK	输入	时钟输入
16	С3	DOGND	地线	IO 地
17	C4	RESETB	输入	复位信号输入(内置上拉电阻, 低电位有效)

序号	编号	信号名	引脚类型	描述
18	C5	D11	输出	DVP 输出 bit[11]
19	C6	NC	_	NC
20	C7	AVDD	电源	2.8V 模拟电源
21	D1	D0	输出	DVP 输出 bit[0]
22	D2	DOGND	地线	IO 地
23	D3	D4	输出	DVP 输出 bit[4]
24	D4	DOVDD	电源	1.8V IO 电源
25	D5	D10	输出	DVP 输出 bit[10]
26	D6	DVDD	电源	1.5V 数字电源
27	D7	TXVDD	输出	内部参考电压(外接电容至 GND)
28	E1	D1	输出	DVP 输出 bit[1]
29	E2	DOVDD	电源	1.8V IO 电源
30	E3	D5	输出	DVP 输出 bit[5]
31	E4	D7	输出	DVP 输出 bit[7]
32	E5	D9	输出	DVP 输出 bit[9]
33	E6	DOGND	地线	IO 地
34	E7	VREFH	输出	内部参考电压(外接电容至 GND)
35	F1	D2	输出	DVP 输出 bit[2]
36	F2	D3	输出	DVP 输出 bit[3]
37	F3	D6	输出	DVP 输出 bit[6]
38	F4	PCLK	输出	DVP 时钟
39	F5	D8	输出	DVP 输出 bit[8]
40	F6	DOGND	地线	IO 地
41	F7	VREFN	输出	内部参考电压(外接电容至 GND)

2.2. 芯片脚位图

图 2-1 为 SC2235 封装引脚图。

Top View

(A1) AVDD	(A2) LREF	(A3) SCL	(A4) PWDNB	(A5) NC	(A6) VREF	(A7) AVDD
(B1) AGND (C1)	(B2) FSYNC (C2)	(B3) SDA (C3)	(C4)	(B5) DVDD (C5)	(B6) EFSYNC (C6)	(B7) AGND (C7)
DVDD (D1) D0	EXTCLK (D2) DOGND	DOGND (D3)	RESETB (D4) DOVDD	D11 (D5) D10	NC (D6) DVDD	AVDD (D7) TXVDD
(E1) D1	(E2) DOVDD	(E3) D5	(E4) D7	(E5)	(E6)	(E7) VREFH
(F1) D2	(F2)	(F3) D6	(F4) PCLK	(F5) D8	(F6)	(F7) VREFN

图 2-1 SC2235 封装引脚图

2.3. 封装尺寸图

SC2235 提供 41pin CSP 的封装, 封装尺寸图如图 2-2 所示。

图 2-2 SC2235 封装示意图

注: 芯片的 BGA 中心与光学中心不重合,Array Center 等于 Optical Center。图中单位为: um。

Side view

表 2-2 封装尺寸表

Parameter	Symbol	Nominal	Min	Max	Nominal	Min	Max	
		М	Millimeters			Inches		
Package Body Dimension X	A	6.48	6.455	6.505	0.25512	0.25413	0.2561	
Package Body Dimension Y	В	4.666	4.641	4.691	0.1837	0.18272	0.18469	
Package Height	С	0.71	0.75	0.87	0.03189	0.02953	0.03425	
Ball Height	C1	0.15	0.12	0.18	0.00591	0.00472	0.00709	

Parameter	Symbol	Nominal	Min	Max	Nominal	Min	Max
Package Body Thickness	C2	0.56	0.625	0.695	0.02598	0.02461	0.02736
Thickness from top glass surface to wafer	С3	0.345	0.425	0.465	0.01752	0.01673	0.01831
Ball Diameter	D	0.3	0.27	0.33	0.01181	0.01063	0.01299
Total Ball Count	N	41(2NC)	_	_	_	_	_
Pins Pitch X axis	J1	0.73	_	_	_	_	_
Pins Pitch Y axis	J2	0.65	_	_	_	_	_
Edge to Pin Center Distance along X1	S1	1.05	1.02	1.08	0.0413	0.0402	0.0425
Edge to Pin Center Distance along Y1	S2	0.737	0.707	0.767	0.029	0.0278	0.0302
Edge to Pin Center Distance along X2	S3	1.05	1.02	1.08	0.0413	0.0402	0.0425
Edge to Pin Center Distance along Y2	S4	0.679	0.649	0.709	0.0267	0.0256	0.0279

3. 典型应用电路

图 3-1 为 SC2235 的典型应用电路。

图 3-1 SC2235 典型应用电路

SC2235 电源连接情况如下图 3-2。

图 3-2 电源供电和滤波连接方式

SC2235 的供电设计如下所示, DOVDD 推荐使用 1.8V 供电。

图 3-3 SC2235 推荐 Power Tree

注意:

- 1) SC2235 芯片分三路电源供电: DOVDD 外接 1.8V, AVDD 外接 2.8V,DVDD 外接 1.5V, 其中 AVDD 必须单独外接 2.8V 电源。并且在每路电源供给芯片靠近引脚处需要分别放 三个电容,分别滤除低频和高频的电源纹波。电容大小可参考图 3-2 提供的电容大小数据。
- 2) VREFH、VREFN、VREF、TXVDD 必须外接三个电容至地,电容需要靠近芯片引脚,分别 滤除低频和高频的电源纹波,并且尽可能远离 I/O 翻转信号,如 EXTCLK、PCLK、FSYNC、LREF、DATA 信号。
- 3) EXTCLK、PCLK、FSYNC、LREF 的走线之间采用地线屏蔽或远离;
- 4) SCL、SDA 的走线应该尽可能远离 EXTCLK、PCLK、D0、D1(低位高频数据 pin)或用地线屏蔽:
- 5) RESETB、PWDNB、AVDD的走线尽可能远离 EXTCLK、PCLK、DATA 信号。
- 6) PWDNB、RESETB 和 EFSYNC 由主控芯片控制。
- 7) System_CLK 可以采用有源晶振供给 EXTCLK 端,也可以由系统直接给 EXTCLK 端提供时 钟信号。信号频率范围 6-27MHz。
- 8) 打×引脚悬空不接。

4. 基本功能

4.1. SLAVE MODE

Slave Mode 是一种外部控制同步读出的模式。当外部触发信号发生时,芯片开始输出 图像数据,此时帧率受外部控制。

SC2235 支持 Slave Mode,当芯片工作在 Slave Mode,由外部通过芯片 EFSYNC PAD 控制芯片数据输出,具体时序如图 4-1。

图 4-1 Slave 模式时序图

注释:

- 1) 只有当芯片处于 Active state 的时候,外部触发信号 EFSYNC 才有效;
- 2) Extra Delays = 4 PIXCLK

Slave 模式下的曝光实现如图 4-2。

图 4-2 Slave 模式曝光实现图

注释:

- 1. F_Length 表示帧长,F_Length= RB Rows + Active Rows + Blank Rows。
- 2. 当芯片工作在 slave 模式下,曝光时间需要小于 F_Length,为了留一定余量,我们建议曝光时间最大为帧长 F_Length-4。
- 3. Active state 时,芯片停止输出及停止 Row reset 操作,如上图所示,会导致一帧图像 Row1~Rowe 行与 Row (e+1) ~Rown 行的曝光时间不同,上方 e 行的曝光时间比下方 n-e 行的曝光时间大,大的时间为 Active state 时间即图中 Reset Option time,为避免这种曝光差异,要求外部高精度控制 EFSYNC,使 Active state 控制在 20 个 PIXCLK 以内。

功能	寄存器地址	·····································		
		Slave mode 使能控制		
Slave mode enable	16'h3228[4]	1∼slave mode		
		0~master mode		
RB rows	{16'h3226,16'h3227}	Row Before Read 控制寄存器		
A.C. D	{16'h3202,16'h3203}	Active Rows = {16'h 3206, 16'h 3207} –		
Active Rows	{16'h3206,16'h3207}	{16'h 3202, 16'h 3203} + 1		
Blank Rows	{16'h3218,16'h3219}	Blank Rows 控制寄存器		

表 4-1 Slave mode 控制寄存器

4.2. AEC/AGC

AEC/AGC 都是基于亮度进行调节的,AEC 调节曝光时间,AGC 调节增益值,最终使图像亮度落在设定亮度阈值范围内。

4.2.1. AEC/AGC 的控制策略

SC2235 本身没有 AEC 功能,需要通过后端平台实现 AEC/AGC。

在整个 AEC/AGC 过程中,不是独立的调整 sensor 的曝光时间或者增益,调整策略为:曝光时间优先,曝光时间已经最长无法继续调整时,调整增益。

以图像过暗的情况为例,调控的先后顺序为: ①不开启任何增益,直到曝光时间达到上限; ②曝光时间达到上限后,再开始调用自动增益控制。需要明确指出的是,增益开启,将直接导致平均噪声呈倍数放大;而曝光时间加大,则有助于提升信噪比。

设计应用指南

反之,当图像过亮时,则优先关闭增益,当所有增益关闭,图像仍旧过亮,才会降低曝 光时间。

曝光时间与增益是一个交互的调节体系,在调试的时候,应该综合考虑。

4.2.2. AEC/AGC 控制寄存器说明

AEC/AGC 的控制寄存器如表 4-2 所示。

表 4-2 增益/曝光的手动控制寄存器

功能	寄存器地址	说明		
曝光时间	{16'h 3e01[7:0], 16'h 3e02[7:4]}	手动曝光时间.		
		Distilla ACC manual	0: manual disable	
AEC 手动控制	161 2 0251 01	Bit[1]:AGC manual	1:manual enable	
AEC 于幼径刺	16'h 3e03[1:0]	Dist[0]. AEC manual	0: manual disable	
		Bit[0]:AEC manual	1:manual enable	

AEC 控制说明如下:

- 1) AEC 的调节步长为一行曝光时间,一行曝光时间等于行长乘以 TPIXCLK(其中的 TPIXCLK)为 $Pixel clock 的一个周期),行长 = 寄存器{16'h320c, 16'h320d}的值。$
- 2) 曝光时间及增益都是在第一帧(第 N 帧)写入,第三帧(第 N+2 帧)生效。
- 3) 曝光时间上限不能超过当前帧长减去 4 行,帧长 = 寄存器{16'h320e,16'h320f}的值,即在同一时刻,写入的{16'h3e01,16'h3e02[7:4]}值最大为{16'h320e,16'h320f}-4。如果曝光时间大于等于帧长,为了避免时序错误而闪烁,sensor 会自动加大真实帧长(此时真实帧长会在{16'h320e,16'h320f}基础上按需加一个值),以避免闪烁,但同时也带来帧率的下降。

AGC 控制方法有两种,具体说明如下:

- 1) 16'h3e03 设置为 8'h03 时的 gain mapping: 此时真实的 gain 值 = {16'h3e08, 16'h3e09}/8'h10。最大 gain 值为 240.25,对应{16'h3e08, 16'h3e09}=16'h0f04。
- 2) 16'h3e03 设置为 8'h0b 此时详细的 Gain mapping 如表 4-3。
 Sensor Digital gain 信噪比优于外部主控 Digital gain, 该表格 Digital gain X1 到 X2、X2
 到 X4、X4 到 X8 的过渡调用了 Sensor 模拟 fine gain, 但实际使用 Digital gain 时,建议使用外部主控数字 fine gain 实现增益过渡,以获得更优的信噪比。

表 4-3 增益控制寄存器

	Digital	coarse gain	fine	gain	
items	gain(16' h3e07[0]	(16' h3E08)	(16' h	13E09)	total gain
	16' h3e08[7:5])	bit[4:2]	bit[7:0]	
			寄存器值	增益	
			10	1	1
			11	1.0625	1.0625
			12	1.125	1.125
			13	1.1875	1.1875
			14	1.25	1.25
			15	1.3125	1.3125
		增益 X1	16	1.375	1.375
			17	1.4375	1.4375
		寄存器值: 0	18	1.5	1.5
	DGainX1		19	1.5625	1.5625
增益控制	Some		1a	1.625	1.625
	ц (т ш 		1b	1.6875	1.6875
			1c	1.75	1.75
			1d	1.8125	1.8125
			1e	1.875	1.875
			1f	1.9375	1.9375
			10	1	2
		增益 X2	11	1.0625	2.125
		·恒皿 A 2	12	1.125	2.25
		寄存器值:1	13	1.1875	2.375
		可行辞阻: 1	14	1.25	2.5
			15	1.3125	2.625

	Digital	coarse gain	fine	gain	
items	gain(16' h3e07[0]	(16' h3E08)	(16' h	13E09)	total gain
	16' h3e08[7:5])	bit[4:2]	bit[7:0]	
			16	1.375	2.75
			17	1.4375	2.875
			18	1.5	3
			19	1.5625	3.125
			1a	1.625	3.25
			1b	1.6875	3.375
			1c	1.75	3.5
			1d	1.8125	3.625
			1e	1.875	3.75
			1f	1.9375	3.875
			10	1	4
			11	1.0625	4.25
			12	1.125	4.5
			13	1.1875	4.75
			14	1.25	5
			15	1.3125	5.25
		增益 X4	16	1.375	5.5
		寄存器值: 3	17	1.4375	5.75
		可付命阻: 3	18	1.5	6
			19	1.5625	6.25
			1a	1.625	6.5
			1b	1.6875	6.75
			1c	1.75	7
			1d	1.8125	7.25

	Digital	coarse gain	fine	gain	
items	gain(16' h3e07[0]	(16' h3E08)	(16' h	3E09)	total gain
	16' h3e08[7:5])	bit[4:2]	bit[7:0]	
			1e	1.875	7.5
			1f	1.9375	7.75
			10	1	8
			11	1.0625	8.5
			12	1.125	9
			13	1.1875	9.5
			14	1.25	10
			15	1.3125	10.5
		I% 24 TTO	16	1.375	11
		增益 X8	17	1.4375	11.5
		安左照法 3	18	1.5	12
		寄存器值:7	19	1.5625	12.5
			1a	1.625	13
			1b	1.6875	13.5
			1c	1.75	14
			1d	1.8125	14.5
			1e	1.875	15
			1f	1.9375	15.5
			10	1	16
		1% 24 7	11	1.0625	17
	DGainX2	增益 X8	12	1.125	18
	寄存器值: 1	安士叩供 -	13	1.1875	19
		寄存器值:7	14	1.25	20
			15	1.3125	21

	Digital	coarse gain	fine	gain	
items	gain(16' h3e07[0]	(16' h3E08)	(16' ł	13E09)	total gain
	16' h3e08[7:5])	bit[4:2]	bit[7:0]	
			16	1.375	22
			17	1.4375	23
			18	1.5	24
			19	1.5625	25
			1a	1.625	26
			1b	1.6875	27
			1c	1.75	28
			1d	1.8125	29
			1e	1.875	30
			1f	1.9375	31
			10	1	32
			11	1.0625	34
			12	1.125	36
			13	1.1875	38
			14	1.25	40
		14.46.770	15	1.3125	42
	DGainX4	增益 X8	16	1.375	44
	寄存器值: 3	寄存器值:7	17	1.4375	46
		奇仔 裔诅: /	18	1.5	48
			19	1.5625	50
			1a	1.625	52
			1b	1.6875	54
			1c	1.75	56
			1d	1.8125	58

	Digital	coarse gain	fine	gain	
items	gain(16' h3e07[0]	(16' h3E08)	(16' h	13E09)	total gain
	16' h3e08[7:5])	bit[4:2]	bit[7:0]	
			1e	1.875	60
			1f	1.9375	62
			10	1	64
			11	1.0625	68
			12	1.125	72
			13	1.1875	76
			14	1.25	80
			15	1.3125	84
		IM A ALO	16	1.375	88
	DGainX8	增益 X8	17	1.4375	92
	寄存器值:7	安方现估 7	18	1.5	96
		寄存器值:7	19	1.5625	100
			1a	1.625	104
			1b	1.6875	108
			1c	1.75	112
			1d	1.8125	116
			1e	1.875	120
			1f	1.9375	124
			10	1	128
		1% 24	11	1.0625	136
	DGainX16	增益 X8 寄存器值: 7	12	1.125	144
			13	1.1875	152
	寄存器值: f		14	1.25	160
			15	1.3125	168

items	Digital gain(16' h3e07[0] 16' h3e08[7:5])	coarse gain (16' h3E08) bit[4:2]	fine (16' h bit[13E09)	total gain
			16	1.375	176
			17	1.4375	184
			18	1.5	192
			19	1.5625	200
			1a	1.625	208
			1b	1.6875	216
			1c	1.75	224
			1d	1.8125	232
			1e	1.875	240
			1f	1.9375	248

4.3. 黑电平控制(BLC)

SC2235 像素阵列包含 8 条黑行,这些黑行可以为补偿消除算法提供数据。数字图像处理首先要减去黑电平数据,BLC 算法可以从黑行数据中估算黑电平的补偿值,而彩色像素的值会减去各自色彩通道的黑电平补偿值。如果在一些特定的像素点,这样的减法得到了负值,那么将结果置 0。

默认情况下,改变增益值后会重新进行 BLC 操作。

黑电平有两种计算模式:手动BLC 和自动BLC。在手动模式下,补偿值由寄存器指定;在自动模式下,补偿值通过黑行计算得到。

表 4-4 BLC 控制寄存器

功能	寄存器名	描述
		Bit[0]: blc_enable
BLC 使能	16'h3900	0~ bypass BLC
		1~ BLC enable

设计应用指南

功能	寄存器名	描述
		Bit[6]: blc_auto_en
自动 BLC 使能	16'h3902	0~ manual mode
		1∼ auto mode
		16'h3928[0]:
		0~ use 8 channel offset mode
		1~ use 4 channel offset mode
BLC 通道选择	{16'h3928[0],16'h3905[6]}	16'h3905[6]: one channel
		enable
		0~ use 8 or 4 channel offset
		1~ use one channel mode
BLC 目标值	{16'h3907[4:0],16'h3908}	BLC target

4.4. DPC

SC2235 支持 DPC 功能。SC2235 坏点判断的原理是当前 pixel 值比周围相同颜色的 pixel 值都大(或者小),并且差值都大于设定域值。

SC2235 根据坏点判断的原理把坏点分为亮坏点(white dead pixel),暗坏点(black dead pixel)。SC2235 亮坏点,暗坏点设定阈值单独可调,并且可以根据 gain 值自动调节,具体控 制寄存器如表 4-5.

SC2235 DPC 支持消除单点,相同颜色连续两个坏点,不同颜色相邻两个坏点的坏点排 列,控制寄存器参考表 4-5.

表 4-5 DPC 控制寄存器

功能	寄存器名	描述
		Bit[2]: white dead pixel cancel enable
		0∼ disable
DPC 开关	16'h5000[2:1]	1∼ enable
DI C /I /	10 113000[2.1]	Bit[1]: black dead pixel cancel enable
		0~ disable
		1∼ enable
		Bit[7]: manual mode
		0~auto calculate threshold by gain
DPC 阈值控制	16'h5780[7]	1~white dead pixel threshold equal
DIC MELLIN	10 H3 700[7]	WTHRE0, black dead pixel threshold equal
		BTHRE0
		Bit[5]:same channel enable
		0~disable the removal of same channel
		conneted to defect pixels
		1~enable the removal of the same chanel
DPC 坏点控制	16'h5780[5:4]	connected to defect pixels
DIC 外点证明	10 113700[3.4]	Bit[4]:different channel enable
		0~disable the removal of the different
		channel conneted to defect pixels
		1~enalbe the removal of the defferent
		channel connected to defect pixels
WTHRE0	16'h5781	Bit[7:0] :white dead pixel threshold0
WTHRE1	16'h5782	Bit[7:0] :white dead pixel threshold1
WTHRE2	16'h5783	Bit[7:0] :white dead pixel threshold2
WTHRE3	16'h5784	Bit[7:0] :white dead pixel threshold3

寄存器名 功能 描述 BTHRE0 16'h5785 Bit[7:0] :black dead pixel threshold0 BTHRE1 16'h5786 Bit[7:0] :black dead pixel threshold1 BTHRE2 16'h5787 Bit[7:0] :black dead pixel threshold2 BTHRE3 16'h5788 Bit[7:0] :black dead pixel threshold3 GAIN_THRE1 $\{16'h57a0[3:0],16'h57a1\}$ Gain threshold1 GAIN_THRE2 {16'h57a2[3:0],16'h57a3} Gain threshold2 当前亮坏点 16'h579b AUTO_WTHRE (RO) 设定阈值 当前暗坏点

注释

设定阈值

1.自动计算阈值时需要满足 WTHRE0>= WTHRE1>= WTHRE3,BTHRE0>= BTHRE1>= BTHRE2>= BTHRE3,GAIN_THRE2>=GAIN_THRE1>='h31

16'h579c

2.GAIN 阈值(GAIN_THRE1,GAIN_THRE2)对比的是 16'h3e03 写 8'hB 时的{0x3e08[6:0],0x3e09[7:4]}。

AUTO_BTHRE (RO)

图 4-3 DPC 阈值自动计算示意图

4.5. 视频输出模式

4.5.1. 读取顺序

图 4-4 提供了芯片工作的时候,第一个读取的 pixel 位置,以及整个 array 的结构示意图。此图是在 A1pin 脚置于左上方的时候得到(top view)。

图 4-4 像素阵列图一

图 4-5 给出了 first pixel 的数据颜色格式。

图 4-5 像素阵列图二

SC2235 提供镜像模式和倒置模式。前者会水平颠倒传感器的数据读出顺序;而后者会垂直颠倒传感器的读出顺序。如图 4-6 所示。

F 7 E 3

原始图像

镜像图像

倒置图像

镜像及倒置图像

图 4-6 镜像和倒置实例

表 4-6 镜像和倒置模式控制寄存器

功能	寄存器地址	寄存器值	描述
			Bit[2:1]: mirror ctrl
镜像模式	0x 3221	0x06	2'b00~mirror off
			2'b11~mirror on
			Bit[6:5]: flip ctrl
倒置模式	0x 3221	0x60	2'b00∼filp off
			2'b11∼flip on

4.5.2. 输出窗口

表 4-7 输出窗口寄存器

地址	寄存器名	描述
16'h3208	窗口宽度	Bit[7:0]: 输出窗口宽度的高八位
16'h3209	窗口宽度	Bit[7:0]: 输出窗口宽度的低八位
16'h320a	窗口高度	Bit[7:0]: 输出窗口高度的高八位
16'h320b	窗口高度	Bit[7:0]: 输出窗口高度的低八位
16'h3210	列起始	Bit[7:0]:输出窗口列起始位置的高八位
16'h3211	列起始	Bit[7:0]:输出窗口列起始位置的高八位
16'h3212	行起始	Bit[7:0]:输出窗口行起始位置的高八位

地址	寄存器名	描述
16'h3213	行起始	Bit[7:0]: 输出窗口行起始位置的低八位

4.6. 帧率计算

图 4-7 为有效输出示意图,可以按照以下公式来计算图像帧率: 帧率 =F_{PIXCLK}/(行长*帧长)。其中 F_{PIXCLK} 指的是 pixel clk 的时钟频率,行长包括图像水平方向上,有效区域宽度以及行消隐区宽度之和;帧长包括图像竖直方向上,有效区域高度以及帧消隐区高度之和。

图 4-7 视频有效输出示意图

表 4-8 帧率相关寄存器

地址	寄存器名	描述
16'h320c	行长	Bit[7:0]: 行长的高八位
16'h320d	行长	Bit[7:0]: 行长的低八位
16'h320e	帧长	Bit[7:0]: 帧长的高八位
16'h320f	帧长	Bit[7:0]: 帧长的低八位

4.7. 测试模式

为方便测试, SC2235 提供一种递增测试模式, 递增的步长设置为 1, 如图 4-8 所示。

图 4-8 测试模式表 4-9 测试模式控制寄存器

功能	寄存器地址	寄存器值	描述	
	16'h4501	8'hc8	Bit[3]: incremental pattern enable	
			0~ normal image	
左			1~ incremental pattern	
灰度渐变模式	16'h3902	8'h05	Bit[6]: blc zuto enable	
			0~ manual BLC	
			1∼ aoto BLC	

5. 光学特性

SC2235 光谱响应曲线如图 5-1 所示。

图 5-1SC2235 光谱曲线

联系我们:

总部:

地址: 上海市徐汇区宜山路 900 号 A 座 1101 室

电话: 021-64853570

传真: 021-64853572-8004

邮箱: sales@smartsenstech.com

美国分公司:

地址: 3080 Olcott Street,SuiteA05,Santa Clare CA 95054

深圳分公司:

地址:深圳市龙华新区梅陇路南贤商业广场 B 座 801B

电话: 0755-23739713

思特威技术支持邮箱:

support@smartsenstech.com