Höhere Mathematik

STOFFZUSAMMENFASSUNG

 $\begin{array}{c} Lukas\ Bach\\ 14.\ August\ 2016 \end{array}$

zu den Modulen HÖHERE MATHEMATIK I UND II am KARLSRUHER INSTITUT FÜR TECHNOLOGIE

Inhaltsverzeichnis

1	Notizen		3	
2	2 Mengen und Zahlen		4	
	=	<u> </u>		
	_	reelle Zahlen		
	2.3 Allgemeine Formeln für	komplexe Zahlen	6	
3	3 Folgen und Konvergenz		6	
	3.1 Allgemeine Konvergenz,	Grenzwerte, Monotonie	6	
	3.2 Teilfolgen und Häufungs	swerte	7	
4	Reihen		8	
	4.1 Grundlegendes zu Reihe	en	8	
	4.2 Konvergenzkriterien		8	
	4.3 Potenzreihen		9	
5	5 Funktionen	Funktionen		
	5.1 Grenzwerte		10	
	5.2 Stetigkeit		10	
	5.3 Monotonie und Umkehrl	barkeit	11	
	5.4 Funktionsfolgen und -rei	ihen	11	
6	Differentialrechnung		12	
7	7 Integral		14	
			14	
	9			
8	8 Fourier Reihen		17	

1 Notizen

Übersprungene Inhalte

- g-adische Entwicklung.
- Satz 7.5 auf Seite 72, Verkettung punktweise stetiger Funktionen sind in demselben Punkt stetig.
- Satz 9.9 auf Seite 97, Differenzierbarkeit der Umkehrfunktion.
- \bullet Satz 9.43 auf Seite 115, Taylorpolynom ist an f angenähert.
- Definition 10.1 auf Seite 119, Definition des Riemannintegrals via Unter- und Obersummen, alle weiteren Formeln bis zur Einführung des Riemann Integrals.
- Satz 10.10, ..
- Satz 10.37, Vertauschen von Limes und Ableitung von Funktionsfolge unter Vorraussetzung gleichmäßiger Konvergenz der Ableitungen
- Kapitel 11, 12, 13

2 Mengen und Zahlen

2.1 Mengendefinitionen

$$\emptyset \neq M \subset \mathbb{R}, A \subset M$$

 $\mbox{Menge M nach oben beschränkt } \exists \gamma \in \mathbb{R} \ \forall x \in M : x \leq \gamma$

 \Leftarrow A ist nach oben beschränkt und $\sup A \leq \sup M$

 $\mbox{Menge M nach unten beschränkt} \quad \exists \gamma \in \mathbb{R} \ \forall x \in M : x \geq \gamma$

 \Leftarrow A ist nach unten beschränkt und inf $A \leq \inf M$

Menge M ist beschränkt M ist nach oben und nach unten beschränkt.

$$\Leftrightarrow \exists c > 0 \ \forall x \in M : |M| \le c$$

$$\Rightarrow \inf M \leq \sup M$$

 γ ist Superior von $M \Leftrightarrow \forall \epsilon > 0 \ \exists x \in M : x > \gamma - \epsilon$

 γ ist Inferior von $M \Leftrightarrow \forall \epsilon > 0 \ \exists x \in M : x < \gamma + \epsilon$

Menge M ist endlich \exists surjektive Abbildung $\varphi : \{1, \dots, n\} \to M \ (n \in \mathbb{N})$

 $\textbf{Menge M ist abz\"{a}hlbar } \ \exists \ \mathrm{surjektive \ Abbildung} \ \varphi: \{1,\dots,n\} \to M \ (n \in \mathbb{N} \cup \{\infty\})$

Menge M ist überabzählbar M ist nicht abzählbar.

Menge M ist abgeschlossen \forall konvergente Folge $(x_n) \in D$ gilt $\lim_{n \to \infty} x_n \in D$.

Menge M ist kompakt M ist beschränkt und abgeschlossen.

 \Leftrightarrow jede Folge $(x_n) \in D$ enthält eine konvergente Teilfolge (x_{n_k}) mit $\lim_{k \to \infty} x_{n_k} \in D$.

 $\Rightarrow \min D$ und $\max D$ existieren.

 ϵ -Umgebung von x_0 $U_{\epsilon}(x_0):=\{x\in\mathbb{R}:|x-x_0|<\epsilon\}=(x_0-\epsilon,x_0+\epsilon) \text{ für } x_0\in\mathbb{R},\epsilon>0$

2.2 Allgemeine Formeln für reelle Zahlen

Binomialkoeffizienten $\binom{n}{k}=\frac{n!}{k!(n-k)!},\,\binom{n}{0}=1=\binom{n}{n}$

Bernoullische Ungleichung $(1+x)^n \ge 1 + nx$ für $x \in \mathbb{R}, x \ge -1, n \in \mathbb{N}$

Bernoullischer Lehrsatz $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$

Dreiecksungleichung $|a+b| \le |a| + |b|$

Dreiecksungleichung für Reihen $|\sum_{k=1}^n a_k| \leq \sum_{k=1}^n |a_k|$

Dreiecksungleichung für Integrale $\left|\int_{\alpha}^{\beta}f(x)dx\right|\leq \int_{\alpha}^{\beta}|f(x)|dx$ für $\alpha\in\mathbb{R}\cup\{-\infty\},\beta\in\mathbb{R}\cup\{\infty\}$

Eulersche Zahl
$$e:=\lim_{n\to\infty}(n+\frac{1}{n})^n=\lim_{n\to\infty}\sum_{k=0}^n\frac{1}{k!}=e$$
 $\forall a\in\mathbb{R}:\lim_{x\to\infty}\left(1+\frac{a}{x}\right)^x=e^a$

Allgemeine Potenz $\forall a > 0, x \in \mathbb{R} : a^x = E(x \log a), \text{ für } a = e : e^x = E(x \log e) = E(x)$

Für Potenzen gilt :

- $x \mapsto a^x$ stetig auf \mathbb{R} .
- $a^x > 0$
- $\bullet \ a^{x+y} = a^x \cdot a^y$
- $\bullet \ a^{-x} = \frac{1}{a^x}$
- $\log a^x = x \log a$
- $\bullet \ (a^x)^y = a^{xy}$
- $x < y \Leftrightarrow x^n < y^n$

Exponentialfunktion $E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ hat folgende Eigenschaften $(x, y \in \mathbb{R}, r \in \mathbb{Q})$:

 $E(x+y) = E(x) \cdot E(y), E(x) > 0, E(-x) = \frac{1}{E(x)}, E(r) = e^r$ und ist streng monoton wachsend.

Sinusfunktion $\sin x := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$ konvergiert absolut.

Cosinusfunktion $\cos x := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = x - \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots$ konvergiert absolut.

Zu Sinus und Cosinus sind die Additionstheoreme definiert:

- $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$
- cos(x + y) = cos(x)cos(y) sin(x)sin(y)
- $1 = \cos(x)^2 + \sin(x)^2$

Weiter gilt:

- $\cos x = 0 \Leftrightarrow \exists k \in \mathbb{Z} : x = (2k+1)\frac{\pi}{2}$
- $\sin x = 0 \Leftrightarrow \exists k \in \mathbb{Z} : x = k\pi$
- $\sin \Rightarrow^{\text{ableiten}} \cos \Rightarrow^{\text{ableiten}} \sin \Rightarrow^{\text{ableiten}} \cos \Rightarrow^{\text{ableiten}} \sin$

Tangensfunktion $\tan x := \frac{\sin x}{\cos x} \ \forall x \in \mathbb{R} \backslash \left\{ (2k+1) \frac{\pi}{2} : k \in \mathbb{Z} \right\}$

Sinus Hyperbolicus $\sinh x := \frac{1}{2}(e^x - e^{-1})$

Cosinus Hyperbolicus $\cosh x := \frac{1}{2}(e^x + e^{-1})$

Ableitung und Additionstheoreme (abgesehen davon dass beim 2. das Plus nicht invertiert wird) sind genauso wie bei sin und cos.

Besondere Grenzwerte
$$\lim_{n \to 0+} \sqrt[n]{n^x} = 1$$

$$\lim_{n \to 0+} \frac{\sin n}{n} = 1$$

2.3 Allgemeine Formeln für komplexe Zahlen

Grundlegendes Für
$$z:=x+yi, z, w\in\mathbb{C}, \varphi\in\mathbb{R}$$
 gilt: $|z|:=\sqrt{x^2+y^2}, \bar{z}:=x-iy, z\cdot\bar{z}=|z|^2, |z\cdot w|=|z|\cdot|w|, e^{\bar{i}\pi}=e^{-i\varphi}, \cos z=\frac{1}{2}(e^{iz}+e^{-iz}), \sin z=\frac{1}{2i}(e^{iz}-e^{-iz})$

Exponential function $E(z) = e^z := e^x \cdot (\cos(y) + i\sin(y))$ für $z = x + yi \in \mathbb{C}$.

Periodizität der komplexen e Funktion $e^{z+2\pi ik}=e^z \ \forall k\in\mathbb{Z}$

Winkel $\cos \varphi = \frac{x}{|z|}, \sin \varphi = \frac{y}{|z|}.$

Polarkoordinatendarstellung $z = re^{i\varphi}$ mit $r = |z|, \varphi = argz$.

Formel von de Moivre $(\cos \varphi + i \sin \varphi)^n = \cos(n\varphi) + i \sin(n\varphi)$.

$$\omega_k \text{ ist } n\text{-te Wurzel aus } a = re^{i\varphi} \ \Leftrightarrow \omega_k = \sqrt[n]{|a|} \cdot e^{i\left(\frac{\arg(a) + 2k\pi}{n}\right)} \text{ für } k = 0, 1, 2, \dots, n-1$$

3 Folgen und Konvergenz

 (a_n) sei eine reelle, meist auch komplexe Folge.

3.1 Allgemeine Konvergenz, Grenzwerte, Monotonie

- (a_n) ist nach oben/unten beschränkt Die Menge $\{a_1, a_2, \dots\}$ ist nach oben/unten beschränkt.
- (a_n) konvergiert gegen $a \quad \forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : |a_n a| < \epsilon$

$$\Leftrightarrow a = \lim_{n \to \infty} a_n$$
$$\Leftrightarrow |a_n - a| \to 0$$

$$\Rightarrow |a_n| \to a$$

- (a_n) ist konvergent Ein solches a existiert, andernfalls ist (a_n) divergent.
- (a_n) ist konvergent a ist eindeutig bestimmt und (a_n) ist beschränkt.

Allgemeine Rechengesetze $a_n \to a, b_n \to b, a'_n \to a, (a_n), (b_n), (c_n), a, b, \alpha \in \mathbb{R}$, dann gilt:

$$a_n + b_n \rightarrow a + b$$

$$\alpha \cdot a_n \to \alpha \cdot a$$

$$a_n \cdot b_n \to a \cdot b$$

$$\left(\frac{a_n}{b_n}\right)_{n=m}^{\infty} \to \frac{a}{b}, \text{ falls } (b \neq 0) \Rightarrow (\exists m \in \mathbb{N} \ \forall n \in \mathbb{N} \ \forall n \geq m : b_n \neq 0)$$

$$a_n \leq b_n$$
 für fast alle $n \in \mathbb{N} \Rightarrow a \leq b$

$$a_n \leq b_n \leq a'_n$$
 für fast alle $n \in \mathbb{N} \Rightarrow (b_n) \to b = a$

- (a_n) ist eine Cauchy-Folge $\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n, m \geq n_0 : |a_n a_m| < \epsilon \Leftrightarrow (a_n)$ ist konvergent (Cauchy-Kriterium)
- **Komplexe Konvergenz** $z_n := x_n + iy_n \text{ mit } (x_n), (y_n) \in \mathbb{R} \text{ und } w = u + iv. \text{ Dann:}$ $z_n \to w \Leftrightarrow x_n \to u \text{ und } y_n \to v(n \to \infty).$
- (a_n) ist monoton wachsend/fallend $\forall n \in \mathbb{N} (a_n \leq a_{n+1})$ bzw. $(a_n \geq a_{n+1})$
- (a_n) ist streng monoton wachsend/fallend Gleichheit gilt im obigen Fall nicht.

Monotoniekriterium (a_n) monoton und beschränkt $\Rightarrow (a_n)$ ist konvergent.

3.2 Teilfolgen und Häufungswerte

Teilfolge $(a_{n_k})_{k \in \mathbb{N}}$ ist Teilfolge von (a_n) mit $n_1 < n_2 < \dots$ Beispiele: (a_2, a_4, a_6, \dots) und $(a_1, a_4, a_9, a_16, \dots)$ sind TF von (a_n) mit $n_k = 2k$ bzw. $n_k = 2^k$.

Häufungswert a heißt HW von (a_n) $\Leftrightarrow \exists$ Teilfolge (a_{n_k}) mit $\lim_{n\to\infty} a_{n_k} = a$ $\Leftrightarrow \forall \epsilon > 0 : a_n \in U_{\epsilon}(a)$

Satz von Bolzano-Weierstrass Jede beschränkte Folge hat mindestens einen Häufungswert.

- Teilfolgen (a_{n_k}) von konvergenten Folgen (a_n) sind wieder konvergent, beider Limes ist dann gleich $(\lim_{k\to\infty}a_{n_k}=\lim_{k\to\infty}a_n)$. Dann gilt $HW(a_n)=\left\{\lim_{n\to\infty}a_n\right\}$.
- Jede Folge hat eine monotone Teilfolge.
- (a_n) ist beschränkt $\Rightarrow HW(a_n)$ ist beschränkt und $\sup HW(a_n)$ und $\inf HW(a_n)$ existieren.

Limes superior/inferior $\limsup_{n\to\infty} a_n = \max HW(a_n)$, $\liminf_{n\to\infty} a_n = \min HW(a_n)$

Limes sup/inf **Rechenregeln** (a_n) ist beschränkt

$$\Rightarrow \forall \alpha \geq 0 : \limsup_{n \to \infty} (\alpha \cdot a_n) = \alpha \cdot \limsup_{n \to \infty} (a_n)$$

$$\Rightarrow \forall \alpha \geq 0 : \liminf_{n \to \infty} (\alpha \cdot a_n) = \alpha \cdot \liminf_{n \to \infty} (a_n)$$

$$\Rightarrow \limsup_{n \to \infty} (-a_n) = -\liminf_{n \to \infty} (a_n)$$

4 Reihen

4.1 Grundlegendes zu Reihen

Definition unendlicher Reihen Sei $(a_n) \in \mathbb{R}$ Folge, $s_n := \sum_{k=1}^n a_k$, $(s_n) = \sum_{k=1}^\infty a_k$ ist eine unendliche Reihe, s_n ist die n-te Teilsumme. Konvergenz der Reihe wird wie für (s_n) als Folge definiert, Reihenwert $= \lim_{n \to \infty} s_n = \sum_{k=1}^\infty a_k$.

$$\sum a_k$$
 ist konvergent $\Leftrightarrow \lim_{k \to \infty} a_k = 0$.

 $\sum a_k$ ist absolut konvergent $\sum |a_k|$ ist konvergent $[\Rightarrow \sum a_k$ konvergent].

Rechenregeln für Reihenkonvergenz $\sum a_k, \sum b_k$ konvergieren, $\alpha, \beta \in \mathbb{R}$ $\Rightarrow \sum (\alpha a_k + \beta b_k) = \alpha \sum a_k + \beta \sum b_k$ konvergieren.

Geometrische Reihe $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ wenn $[|x| < 1 \Leftrightarrow \sum \text{ konvergent}]$

Harmonische Reihe $\sum_{k=0}^{\infty} \frac{1}{k}$ ist divergent.

Alternierend harmonische Reihe $\sum_{k=0}^{\infty} (-1)^{k+1} \frac{1}{k}$ ist konvergent.

• Reihen von Umordnungen von (absolut) konvergenten Folgen sind wieder (absolut) konvergent, der Limes bleibt derselbe.

Cauchy Produkt zweier Reihen $\sum a_n$ und $\sum b_n$ ist $\sum_{n=0}^{\infty} c_n$ mit $c_n = \sum_{k=0}^n a_k b_{n-k} = a_0 b_n + a_1 b_{n-1} + a_2 b_{n-2} + \cdots \quad \forall n \in \mathbb{N}$ $\sum a_n$ und $\sum b_n$ absolut konvergent \Rightarrow Cauchyprodukt $\sum c_n$ absolut konvergent und $\sum_{n=0}^{\infty} = (\sum_{n=0}^{\infty} a_n) \cdot (\sum_{n=0}^{\infty} b_n)$

4.2 Konvergenzkriterien

Monotoniekriterium $\forall k \in \mathbb{N} : a_k \geq 0, (s_n)$ nach oben beschränkt $\Rightarrow \sum_{k=1}^{\infty} a_k$ konvergent.

Cauchykriterium $\sum\limits_{k=1}^{\infty}a_k$ konvergent $\Leftrightarrow \ \forall \epsilon>0 \ \exists n_0\in\mathbb{N} \ \forall m>n\geq n_0: \left|\sum\limits_{m}^{k=n}a_k\right|<\epsilon$

Leibniz-Kriterium Sei (b_n) monoton fallende Folge ≥ 0 , $\lim_{n\to\infty} b_n = 0$, $a_n := (-1)^{n+1}b_n$ $\Rightarrow \sum_{n=1}^{\infty} a_n$ ist konvergent. (vgl. alternierende harmonische Reihe)

Majorantenkriterium (a_n) , (b_n) Folgen, $|a_n| \le b_n$ ffa $n \in \mathbb{N}$, $\sum_{n=1}^{\infty} b_n$ konvergent. $\Rightarrow \sum_{n=1}^{\infty} a_n$ ist absolut konvergent.

Minorantenkriterium (a_n) , (b_n) Folgen, $0 \le |b_n| \le a_n$ ffa $n \in \mathbb{N}$, $\sum_{n=1}^{\infty} b_n$ divergent. $\Rightarrow \sum_{n=1}^{\infty} a_n$ ist divergent.

Wurzelkriterium (a_n) Folge. Wenn $\sqrt[n]{|a_n|}$ beschränkt ist und $\alpha := \limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1$, so ist $\sum a_n$ absolut konvergent, wenn $\alpha = 1$ ist keine allgemeine Aussage möglich, sonst ist $\sum a_n$ divergent.

Quotientenkriterium (a_n) Folge mit $a_n \neq 0$ ffa $n \in \mathbb{N}$. $\sum a_n$ ist divergent, falls min. eine der folgenden Aussagen wahr ist:

$$\bullet \left| \frac{a_{n+1}}{a_n} \right| \ge 1 \text{ ffa } n$$

•
$$\liminf \left| \frac{a_{n+1}}{a_n} \right| > 1$$

• $\liminf \left| \frac{a_{n+1}}{a_n} \right| > 1$ $\sum a_n \text{ ist konvergent, wenn } \left(\frac{a_{n+1}}{a_n} \right) \text{ beschränkt und } \lim \sup \left| \frac{a_{n+1}}{a_n} \right| < 1.$

4.3 Potenzreihen

Definition einer Potenzreihe $\sum_{n=0}^{\infty} a_n (x-x_0)^n = a_0 + a_1 (x-x_0) a_2 (x-x_0)^2 + \cdots$ $= a_0 x^0 + a_1 x^1 + a_2 x^2 + \cdots \text{ mit } x_0 \text{ als Entwicklungspunkt.}$

Konvergenzreihe r einer Potenzreihe Sei $x_0 = 0$, also $x = x - x_0$.

$$r := \begin{cases} 0, & \text{falls } \sqrt[n]{|a_n|} \text{ unbeschränkt} \\ & \text{Die Potenzreihe konvergiert dann nur für } x = 0 \\ \infty, & \text{falls } \sqrt[n]{|a_n|} \to 0 \\ & \text{Die Potenzreihe konvergiert dann } \forall x \in \mathbb{R} \\ \frac{1}{|\lim\sup \sqrt[n]{|a_n|}}, & \text{falls } \sqrt[n]{|a_n|} \text{ beschränkt und } \limsup \sqrt[n]{|a_n|} > 0 \\ & F \ddot{u}r \ |x| < r \ konvergiert \ dann \ die \ Potenzreihe \ absolut. \\ & F \ddot{u}r \ |x| > r \ divergiert \ dann \ die \ Potenzreihe. \\ & F \ddot{u}r \ |x| = r \ ist \ dann \ keine \ allgemeine \ Aussage \ möglich. \end{cases}$$
 (4.3.1)

Es gilt: $r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$, falls dieser lim existiert und ffa n gilt: $a_n \neq 0$. Sowie: Der Konvergenzradius des Cauchyprodukts zweier Potenzreihen ist größer-

gleich dem kleineren Konvergenzradius beider Potenzreihen und es gilt:

gleich dem kleineren Konvergenzradius beider Potenzreihen und es gilt:
$$\left(\sum_{n=0}^{\infty} a_n (x-x_0)^n\right) \left(\sum_{n=0}^{\infty} b_n (x-x_0)^n\right) = \left(\sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} a_k b_{n-k}\right)\right) (x-x_0)^n$$

5 Funktionen

5.1 Grenzwerte

 $x_0 \in \mathbb{R}$ ist Häufungspunkt von $D \subset \mathbb{R}$ falls \exists Folge $(x_n) \in D$ mit $\forall n \in \mathbb{N} : x_n \neq x_0$ und $\lim_{n\to\infty} x_n = x_0$.

Formale Definition von Funktionsgrenzwert $f:D\to\mathbb{R}, a\in\mathbb{R}.$ $\lim_{x\to x_0}f(x)=a$ $\Leftrightarrow \forall \epsilon > 0 \; \exists \delta > 0 \; \forall x \in D_{\delta}(x_0) : |f(x) - a| < \epsilon \; \text{mit} \; D_{\delta}(x_0) := U_{\delta}(x_0) \cap (D \setminus \{x_0\}.$

Cauchy-Kriterium für Funktionen $\lim_{x \to x_0} f(x)$ existiert $\Leftrightarrow \ \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x,y \in D_\delta(x_0): |f(x) - f(y)| < \epsilon$

$$\Leftrightarrow \forall \epsilon > 0 \; \exists \delta > 0 \; \forall x, y \in D_{\delta}(x_0) : |f(x) - f(y)| < \epsilon$$

Rechengesetze für Funktionsgrenzwerte $\lim_{x \to x_0} f(x) := a, \lim_{x \to x_0} g(x) := b \text{ und } \alpha, \beta \in \mathbb{R}$

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} (\alpha f(x) + \beta g(x)) = \alpha \cdot a + \beta \cdot b$$

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} (f(x) \cdot g(x)) = a \cdot b$$

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} \frac{f(x)}{g(x)} = \frac{a}{b} \text{ falls } b \neq 0$$

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} |f(x)| = |a|$$

$$\exists \delta > 0 \ \forall x \in D_{\delta}(x_0) : f(x) \leq h(x) \leq g(x) \text{ und } a = b \Rightarrow \lim_{\substack{x \to x_0 \\ x \to x_0}} h(x) = a = b$$

5.2 Stetigkeit

$$f: D \to \mathbb{R}$$
 heißt stetig \forall Folgen $(x_n) \in D$ mit $x_n \to x_0$ gilt: $f(x_n) \to f(x_0)$ $\Leftrightarrow \forall \epsilon > 0 \; \exists \delta > 0 \; \forall x \in D \left[|x - x_0 < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon \right] \; "\epsilon - \delta$ -Definition"

f ist stetig in x_0 und x_0 ist Häufungspunkt von $D \Rightarrow \lim_{x \to x_0} f(x) = f(x_0)$

 $f: D \to \mathbb{R}$ heißt stetig auf D f ist in jedem $x_0 \in D$ stetig $\Rightarrow f \in C(D) := \{g : D \to \mathbb{R} : g \text{ ist stetig auf } D\} = \text{Menge der stetigen Funktionen}$ auf D.

Rechenregeln für Stetigkeit $f, g: D \to \mathbb{R}$ stetig in $x_0 \in D$ und $\alpha, \beta \in \mathbb{R}$, so gilt: $\alpha f + \beta g, f \cdot g, |f| \text{ sind stetig in } x_0.$ Gilt auch $g(x_0) \neq 0$, so ist $\frac{\tilde{f}}{g} : \{x \in D : g(x) \neq 0\} := \tilde{D} \to \mathbb{R}$ stetig in $x_0 \in \tilde{D}$.

 $f: D \to \mathbb{R}$ gleichmäßig stetig auf $D: \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x, z \in D: [|x-z| < \delta \Rightarrow |f(x) - f(z)| < \epsilon]$ $\Leftarrow D$ kompakt und f stetig auf D.

Also: δ hängt nur von ϵ ab, nicht von z. \sqrt{x} ist glm. stetig, x^2 nicht.

Folgendefinition: \forall Folgen $(x_n), (y_n) \in D, x_n - y_n \to 0 : f(x_n) - f(y_n) \to 0.$

 $f: D \to \mathbb{R}$ Lipschitz stetig auf $D: \exists L \geq 0 \ \forall x, z \in D: |f(x) - f(z)| \leq L|x - z|$

Also: Sekantensteigung von f ist immer kleinergleich L.

Also: "Dehnungsbeschränkung": Lipschitz-beschränkte Funktionen können sich nur beschränkt schnell ändern.

Allgemein gilt Lipschitz'sche Stetigkeit ⇒ Gleichmäßige Stetigkeit ⇒ Stetigkeit

- **Potenzreihenfunktion** $\sum a_n(x-x_0)^n$ sei Potenzreihe mit Konvergenzradius $r, D := (x_0-r,x_0+r), f(x) := \sum a_n(x-x_0)^n \ \forall x \in D, \text{ so gilt } f(x) \in C(D).$ $\Rightarrow \text{ insbesondere } E(x), \sin x, \cos x \in C(\mathbb{R}).$
- Zwischenwertsatz Seien $f \in C[a, b], y_0$ zwischen a und $b \Rightarrow \exists x_0 \in [a, b] : f(x_0) = y_0$. Also: Wenn eine Funktion auf einem Bereich stetig ist, so ist jeder Funktionswert auf diesem Funktionsbereich definiert.
- Nullstellensatz von Bolzano Seien $f \in C[a, b], f(a) \cdot f(b) < 0 \Rightarrow \exists x_0 \in [a, b] : f(x_0) = 0$ Also: Ist zusätzlich das Vorzeichen von f(a) und f(b) verschieden, so existiert dazwischen min. eine Nullstelle.

5.3 Monotonie und Umkehrbarkeit

Abgeschlossenheit und Kompaktheit bei Mengen siehe Kapitel 2 (Seite 4).

$$f:D\to\mathbb{R}$$
 heißt beschränkt $f(D)$ ist beschränkt $\Leftrightarrow \exists c>0 \ \forall x\in D: |f(x)|\leq c$

- f heißt streng monoton wachsend/fallend $\forall x_1, x_2 \in D : [x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2)]$ Oder nicht streng, falls auch Gleichheit gelten kann.
- Umkehrfunktion $f^{-1}: f(D) \to D, f^{-1}(y) = x$ existiert $\Leftarrow f: I \to \mathbb{R}, f(x) = y$ injektiv Strenge Monotonie \Leftrightarrow Injektivität der Funktion $f^{-1} \circ f = id$ $f \in C(I)$ und streng monoton $\Rightarrow f^{-1} \in C(f(I))$

5.4 Funktionsfolgen und -reihen

- Funktionsfolge (f_n) bzw. -reihe $\sum f_n$ heißt punktweise konvergent auf $D: \forall x \in D: [(f_n(x))_{n \in \mathbb{N}} \text{ bzw. } \sum f_n(x)] \text{ konvergent.}$ $\Leftrightarrow \forall x \in D \ \forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0: |f_n(x) f(x)| < \epsilon$ Also: Z.b. konvergiert $(f_n(4))_{n \in \mathbb{N}} = (f_1(4), f_2(4), \dots)$ gegen f(4)
- (f_n) bzw. $\sum f_n$ gleichmäßig konvergent gegen f/s auf D: $\Leftrightarrow \forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 \ \forall x \in D: |f_n(x) f(x)| < \epsilon$ Also: n_0 hängt nur noch von ϵ und nicht von x ab.

Allgemein gilt: Gleichmäßige Konvergenz ⇒ Punktweise Konvergenz

- Allgemein gilt: $\exists (\alpha_n)_{n \in \mathbb{N}} \in \mathbb{R} \text{ mit } \lim_{n \to \infty} \alpha_n = 0, \ \exists m \in \mathbb{N} : \ \forall n \geq m \ \forall x \in D : |f_n(x) f(x)| \leq \alpha_n \Rightarrow (f_n) \text{ konvergiert gleichmäßig auf } D \text{ gegen } f.$
- **Allgemein gilt:** (f_n) konv. glm. auf D gegen f, alle f_n stetig in $x_0 \in D \Rightarrow f$ in x_0 stetig. (f_n) konvergiert glm. auf D gegen f, $\forall n \in \mathbb{N} : f_n \in C(D) \Rightarrow f \in C(D)$.
- Majorantenkrit. von Weierstrass $\exists (c_n) \in \mathbb{R}[\exists m \in \mathbb{N} \ \forall n \geq m \ \forall x \in D : |f_n(x)| \leq c_n]$ und $\sum_{n=1}^{\infty} c_n$ konvergent $\Rightarrow \sum_{n=1}^{\infty} f_n$ konvergiert gleichmäßig auf D.
- **Allgemein gilt:** (f_n) konvergiert glm. auf D gegen $f: D \to \mathbb{R}$. $\forall n \in \mathbb{N}: f_n \text{ in } x_0 \in D \text{ stetig} \Rightarrow f \text{ in } x_0 \text{ stetig}$. $\forall n \in \mathbb{N}: f_n \in C(D) \Rightarrow f \in C(D)$.
- Identitätssatz für Potenzreihen $\sum a_n x^n$ und $\sum b_n x^n$ Potenzreihen mit Konvergenzradien $r_1, r_2 > 0$. Setze $r := \min\{r_1, r_2\}$ und D := (-r, r), Funktionen $f, g : D \to \mathbb{R}$ mit $f(x) = \sum a_n x^n$, $g(x) = \sum b_n x^n$. Wenn noch $(x_k)_{k \in \mathbb{N}}$ Nullfolge in $D \setminus \{0\}$ und $f(x_k) = g(x_k) \ \forall k \in \mathbb{N}$, so gilt $a_n = b_n \ \forall n \in \mathbb{N}$.

6 Differentialrechnung

Sei $f: I \to \mathbb{R}$ Funktion, $x_0 \in \mathbb{R}$ Häufungspunkt von I.

f heißt in x_0 differenzierbar $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ existiert und ist reell. Also: Dieser Punkt ist, falls existent, die Steigung der Tangenten an dem Graph von f in x_0 . Falls existent, heißt dieser Punkt erste Ableitung $f'(x_0)$ von f in x_0 .

f heißt auf I differenzierbar f ist in jedem $x_0 \in I$ differenzierbar. $\Leftrightarrow f': I \to \mathbb{R}, x_0 \mapsto f'(x_0)$ existiert.

Allgemein gilt: Differenzierbarkeit ⇒ Stetigkeit

Rechenregeln für Differenzierbarkeit $f, g: I \to \mathbb{R}$ diff'bar in $x_0 \in I$. Dann gilt:

- $\alpha, \beta \in \mathbb{R}, \alpha f'(x_0) + \beta g'(x_0)$ diff'bar in $x_0, (\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0)$
- $f \cdot g$ diff'bar in $x_0, (f \cdot g)'(x_0) = f'(x_0) \cdot g'(x_0) + f(x_0) \cdot g'(x_0)$
- $g(x_0) \neq 0 \Rightarrow \exists$ Intervall $J \subset I \ \forall x \in J : g(x) \neq 0, \frac{f}{g} : J \rightarrow \mathbb{R}$ in x_0 , $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) f(x_0)g'(x_0)}{g(x_0)^2}$
- $g: I \to \mathbb{R}$ diff'bar in $x_0 \in I$, $g(I) \subset J$, $f: J \to \mathbb{R}$ diff'bar in $y_0 := g(x_0) \in J$ $\Rightarrow f \circ g: I \to \mathbb{R}$ diff'bar in x_0 und $(f \circ g)'(x_0) = f'(g(x_0)) \cdot g'(x_0)$

Höhrere Ableitung: klar. $C^n(I)$ ist die Menge der auf I n-mal stetig diff'baren Fkten.

 $x_0 \in M \subset \mathbb{R}$ heißt innerer Punkt von $M \quad \exists \delta > 0 : U_{\delta}(x_0) \subset M$

- $f: D \subset \mathbb{R} \to \mathbb{R}$ hat in $x_0 \in D$ ein relatives Maximum bzw. Minimum : $\exists \delta > 0 \ \forall x \in D \cap U_\delta(x_0): f(x) \leq f(x_0) \ \mathrm{bzw}.$ $\exists \delta > 0 \ \forall x \in D \cap U_\delta(x_0): f(x) \geq f(x_0)$
- x_0 ist ein relatives Extremum von $f \Leftrightarrow f$ hat in x_0 ein rel. Maximum oder -Minimum.
- x_0 ist ein abs. (globales) Maximum/Minimum von $f\Leftrightarrow \forall x\in D: f(x){\stackrel{\leq}{\geq}} f(x_0)$
- Ableitung von Extremstelle $f: I \to \mathbb{R}$ mit relativem Extremum $x_0 \in I$, f diff'bar in x_0, x_0 innerer Punkt von I, dann gilt: $f'(x_0) = 0$.
- Mittelwertsatz der Differentialrechnung $f:[a,b]\to \mathbb{R}$ stetig auf [a,b], diff'bar auf (a,b). Dann: $\exists \xi\in(a,b):f'(\xi)=\frac{f(b)-f(a)}{b-a}$.

Also: Zieht man eine gerade Linie durch zwei Punkte von f, so entspricht die Steigung dieser Linie der Ableitung von mindestens einer Stelle zwischen diesen beiden Punkten.

- **Verallgemeinerter Mittelwertsatz** $f,g:[a,b]\to\mathbb{R}$ stetig auf [a,b], diff'bar auf (a,b), $\forall x\in(a,b):g'(x)\neq0$, dann gilt: $g(a)\neq g(b),\ \exists\xi\in(a,b):\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}.$
- $f: I \to \mathbb{R}$ diff'bar heißt streng monoton fallend/wachsend $\Leftrightarrow f' \leq 0$ Oder nicht streng, wenn auch Gleichheit gelten kann.
- Regeln von l'Hospital $f,g: \mathbb{R} \cup \{\pm\infty\} \ni (a,b) \to \mathbb{R}$ diff'bar auf $(a,b), \forall x \in (a,b):$ $g'(x) \neq 0$. Gilt zusätzlich $\lim_{x \to a} f(x)$ bzw. g(x) = 0 bzw. $\lim_{x \to a} g(x) = \pm\infty$, so gilt: $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$. Analog ist die Bewegung gegen b möglich. Also: Also wenn der Limes eines Bruches berechnet wird, kann, sofern der Nenner gegen (minus) unendlich oder Nenner und Zähler gegen 0 gehen, beide Teile des Bruches abgeleitet werden, und es kommt derselbe Limes heraus. Das kann mehrfach hintereinander durchgeführt werden.
- Gliedweise differenzierung einer Potenzreihe $f(x)=\sum\limits_{n=0}^{\infty}a_nx^n$ mit KR r>0 auf I=(-r,r) f ist diff'bar auf I mit $\forall x\in I: f'(x)=\sum\limits_{n=1}^{\infty}a_nnx^{n-1}=\sum\limits_{n=0}^{\infty}(n+1)a_{n+1}x^n,$ diese gliedweise differenzierte Potenzreihe hat denselben KR r.
- **Abelscher Grenzwertsatz** Potenzreihe $\sum_{n=0}^{\infty} a_n (x-x_0)^n := f(x) \ \forall x \in (x_0-r,x_0+r)$ bzw. $x \in [x_0-r,x_0+r)$ mit KR $0 < r < \infty$ konvergent in x_0+r bzw. x_0-r . Dann gilt: f ist stetig in x_0+r bzw. x_0-r .
- **Taylor-Reihe** Sei $\epsilon > 0, f \in C^{\infty}(U_{\epsilon}(x_0)), x_0 \in \mathbb{R}$. Dann heißt $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x x_0)^n$ Taylorreihe zu f und x_0 .

Also: f wird durch die Taylor-Reihe angenähert um als Potenzreihe dargestellt zu werden, Gleichheit ist allerdings noch nicht gewährleistet.

Satz von Taylor Sei $f \in C^n(I)$ mit $n \in \mathbb{N}, I \subset \mathbb{R}$ Intervall $f^{(n+1)}$ existiert auf $I, x, x_0 \in I$. Dann: $\exists \xi = \xi(x_0, x) \in (x, x_0)$ bzw. (x_0, x) und:

$$f(x) = \underbrace{\left(\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k\right)}_{n+1} + \underbrace{\left(\frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}\right)}_{n+1}$$

Also: f wird mit Taylor-Reihe und jetzt zusätzlich Restglied exakt angenähert.

n-tes Taylor-Polynom $T_n(x;x_0)$ von f Sei $I \subset \mathbb{R}$ Intervall, $n \in \mathbb{N}_0, f \in C^n(I), x_0 \in I$. Dann: $T_n(x;x_0) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$

Extrema durch Nullstellen bestimmen Sei $I \subset \mathbb{R}$ Intervall mit innerem Punkt $x_0, n \in \mathbb{N}, f \in C^n(I)$. Wenn gilt: $f'(x_0) = f''(x_0) = \cdots = f^{(n-1)}(x_0) = 0, f^n(x_0) \neq 0$. Dann gilt:

- n gerade, $f^{(n)}(x_0) < 0 \Rightarrow f$ hat lokales Maximum in x_0 .
- n gerade, $f^{(n)}(x_0) > 0 \Rightarrow f$ hat lokales Minimum in x_0 .
- n ungerade $\Rightarrow f$ hat kein lokales Extremum in x_0 .

Also: Wird f erst nach einer geraden Zahl von Ableitungen null, so existiert ein lokales Extremum, sonst nicht.

7 Integral

7.1 Riemann Integral

Zerlegung $Z = \{x_0, x_1, x_2, \dots, x_n\}$ **von** $[a, b] \Leftrightarrow a = x_0 < x_1 < x_2 < \dots < x_n = b$

Untersumme, Obersumme

 $f:[a,b]\to\mathbb{R}$ ist Riemann integrierbar *Tatsächliche Definition fehlt noch* $\Leftarrow f$ ist monoton.

Riemann-Integral Falls f über [a, b] Riemann-integrierbar ist, ist das Riemann Integral: $\int_a^b f(x)dx$, es gilt: $f \in R[a, b]$

Riemann Integrierbarkeit f ist auf kompaktem Intervall [a,b] integrierbar, wenn f auf [a,b] beschränkt und fast überall stetig ist, oder wenn f monoton ist, oder wenn f stetig ist.

Rechenregeln für Riemann Integrale Sei $f, g \in R[a, b], \alpha, \beta \in \mathbb{R}$

•
$$\alpha f + \beta g \in R[a, b], \int_{a}^{b} (\alpha f + \beta g)(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

•
$$\forall x \in [a, b] : f(x) \le g(x) \Rightarrow \int_a^b f(x) dx \le \int_a^b g(x) dx$$

(dh. $\int \in Hom(R[a, b], \mathbb{R})$)

- $h: f([a,b])^* \to \mathbb{R}$, dann gilt: $h \circ f \in R[a,b]$ (*beschränkt, da f beschränkt).
- $f \cdot g \in R[a, b]$
- $\forall x \in [a,b] : \frac{f}{g} \in R[a,b]$
- $|f| \in R[a,b]$
- $\left| \int_{a}^{b} f(x) dx \right| = \int_{a}^{b} |f(x)| dx$

Riemannsches Integrabilitätskriterium $f \in R[a,b] \Leftrightarrow \forall \epsilon > 0 \; \exists Z \; \text{Zerlegung von} \; [a,b] \; \text{sodass:} \; S_f(Z) - s_f(Z) < \epsilon$

Riemannsche Summe

Stammfunktion Seien $G, g: I \to \mathbb{R}$. G heißt Stammfunktion von g auf I, falls G diff'bar auf I ist und $G' \equiv g$ auf I. Schreibweise: $G(x) = \int g(x) dx$

Aufteilen eines Integrals $b \in [a,c], f \in R[a,c] \Rightarrow \int\limits_a^c f dx = \int\limits_a^b f dx + \int\limits_b^c f dx$

Konvergenz der Grenzfunktion einer Funktionsfolge Sei $(f_n) \in R[a,b] \ \forall n \in \mathbb{N}$.

- f_n glm. konv. auf [a, b] gegen $f: [a, b] \to \mathbb{R}$ $\Rightarrow f \in R[a, b], \lim_{n \to \infty} \int_a^b f_n dx = \int_a^b \lim_{n \to \infty} f_n dx = \int_a^b f dx$
- $\sum f_n$ glm. konv. auf [a, b] gegen $s : [a, b] \to \mathbb{R}$ $\Rightarrow s \in R[a, b], \sum_{n=0}^{\infty} \int_a^b f_n dx = \int_a^b \sum_{n=0}^{\infty} f_n dx = \int_a^b s dx$
- 1. Hauptsatz der Differential- und Integralrechnung Sei $f \in R[a,b], f$ hat auf [a,b] eine Stammfunktion $F:[a,b] \to \mathbb{R}$, dann gilt: $\int\limits_a^b f(x)dx = F(b) F(a) =: [F(x)]_a^b$
- 2. Hauptsatz der Differential- und Integralrechnung Sei $f \in R[a,b], F:[a,b] \to \mathbb{R}, x \mapsto \int \lim_{x \to a}^{x} f(t)dt, x \in [a,b]$. Dann:
 - $\forall x, y \in [a, b] : F(y) F(x) = \int_x^y f(t) dt$ Also: auf Teilintervallen integrierbar
 - F ist stetig, sogar Lipschitz-stetig auf [a, b].
 - f stetig $\Rightarrow F$ Stammfunktion von f auf [a,b], also: $\forall x \in [a,b] : F'(x) = f(x)$

Partielle Integration Seien $f, g \in C^1(I), I = [a, b].$

Unbestimmtes Integral $\int f'gdx = fg - \int fg'dx$

Riemann Integral
$$\int\limits_a^b f'gdx = [f(x)g(x)]_a^b - \int\limits_a^b fg'dx$$

Integration durch Substitution Seien
$$I = [a,b], J = [\alpha,\beta], f \in C(I), g \in C^1(J), g(\alpha) = a, g(\beta) = b, \text{ dann: } \int\limits_a^b f(x) dx = \int\limits_\alpha^\beta f(g(t)) \cdot g'(t) dt$$

Integralgleichheit bei fast gleichen Funktionen $f \in R[a,b], g:[a,b] \to \mathbb{R}$ beschränkt, $f(x) = g(x)ffax \in [a,b], \, \mathrm{dann} \colon g \in R[a,b], \int_a^b f(x)dx = \int_a^b g(x)dx.$

Mittelwertsatz der Integralrechnung $f,g\in R[a,b],g\geq 0$ auf [a,b]. Dann: $\exists \mu\in f([a,b])$ mit $\int\limits_a^b fgdx=\mu\int\limits_a^b gdx$.

7.2 Uneigentliche Integrale

Sei im folgenden $f:I\to\mathbb{R}, f\in R(I), a,b\in\mathbb{R}, \alpha\in\mathbb{R}\cup\{-\infty\}, \beta\in\mathbb{R}\cup\{\infty\}.$

Uneigentliches Integral $\int_{\alpha}^{\beta}f(x)dx$ ist konvergent :

$$\Leftrightarrow \lim_{\substack{r_a \to \alpha \\ r_b \to \beta}} \int_{r_a}^{r_b} f(x) dx \in \mathbb{R} \text{ existiert}$$

$$\Leftrightarrow \exists c \in (\alpha, \beta) : \int_{\alpha}^{c} f dx \text{ und } \int_{c}^{\beta} f dx \text{ konvergent, dann } \int_{\alpha}^{\beta} f dx := \int_{\alpha}^{c} f dx + \int_{c}^{\beta} f dx$$

 $\int_a^b f(x) dx$ heißt absolut konvergent $\Leftrightarrow \int_{\alpha}^{\beta} |f(x)| dx$ konvergiert $\Rightarrow \int_{\alpha}^{\beta} f(x) dx$ konv.

$$\textbf{Cauchy-Kriterium} \int\limits_a^\beta \text{konv.} \Leftrightarrow \ \forall \epsilon > 0 \ \exists c = c(\epsilon) \in (a,\beta) \ \forall u,v \in (c,\beta) : \left| \int\limits_u^v f(x) dx \right| \leq \epsilon.$$

Majorantenkriterium Sei $g:[a,\beta)\to\mathbb{R},\ \forall t\in(a,\beta):g\in R[a,t],\ \forall x\in[a,\beta):|f(x)|\leq g(x), \int_a^\beta g(x)dx$ konvergent, dann: $\int_a^\beta f(x)dx$ ist absolut konvergent und $\int_a^\beta |f(x)|dx\leq \int_a^\beta g(x)dx.$

Minorantenkriterium g wie bei Majorantenkriterium, mit $\forall x \in [a, \beta) : f(x) \ge g(x) \ge 0$, $\int_a^\beta g(x) dx$ sei divergent, dann: $\int_a^\beta f(x) dx$ ist divergent.

Integralkriterium Sei $f:[1,\infty)\to\mathbb{R},\ \forall x\in[1,\infty):f(x)>0,f$ monoton fallend (Also: $f\in R[1,t]\ \forall t>1$). Dann: $\int\limits_{1}^{\infty}f(x)dx$ konvergent $\Leftrightarrow\sum\limits_{k=1}^{\infty}f(k)$ konvergent.

8 Fourier Reihen

Orthogonalitätsrelationen
$$\int\limits_{-\pi}^{\pi}\sin(nx)\sin(kx)dx = \int\limits_{-\pi}^{\pi}\cos(nx)\cos(kx)dx = \begin{cases} 0, & \text{falls } n\neq k\\ \pi & \text{falls } n=k \end{cases}$$
 und
$$\int\limits_{-\pi}^{\pi}\sin(nx)\cos(nx)dx = 0 \text{ für } n,k\in\mathbb{N}_0.$$

Trigonometrische Reihe Seien
$$(a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty} \in \mathbb{R}.$$
 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$ heißt trigonometrische Reihe.