Estructuras de datos y

algoritmos

Importancia

Los topicos vistos durante el semestre fueron muy enriquecedores debido a que son algoritmos usados en nuestra vida diaria sin que uno se de cuenta. Estos algoritmos nosotors los utilizaremos a futuro para poder desarrollar algoritmos superiores y poder realizar tareas que ayuden a acelerar diversos procesos

Ordenamiento

Lineal, Bubble, Merge Sort, y Quick Sort. En el primer modulo del semestre vimos diferentes algoritmos de ordenamiento, siendo Merge Sort el mas rapido y el que mas me termino gustando

Busqueda

Vimos tambien la busqueda secuencial y busqueda binaria. La busqueda binaria fue un algoritmo que nos dio una pequeña prueba de como se puede acelerar procesos que pensamos no pueden ser mas eficaces

Linked Lists

Las linked lists fueron la primera estructura de datos que aprendimos a programar desde cero. Aqui juntamos los diferentes algoritmos de busqueda y de ordenamiento para poder crear nuestro propio "super vector". Con esta fuimos capaces de crear "Queues" y "Stacks"

Arboles BST

Los abroles BST fueron una de las posibles estructuras que podiamos crear a partir de las linked lists que habiamos creado previamente. Lograr crear un priority queue fue complicada pero resulto muy enriquecedor y gratificante

Grafos

La teoria de grafos nos permitio visualizar como compañias como Google logran crear aplicaciones como "Google Maps". Dicha teoria puede ser aplicada a varios sectores y nos servira en algoritmos desarrollados mas adelante

Hash

Por ultimo y no menos importante: Hash. Esta estructura de datos es la que mas me intereso debido a que su manera de crear llaves para los datos introducidos siempre me habia llamado mucho la atencion. Aunque logre entender como funcionaba, me hubiera gustado dedicarle mas tiempo a esta estructura debido a su gran utilidad

