NP完全问题

Jun Wu

wujun@yzu.edu.cn

May 16, 2018

- ① P与NP
- 2 多项式时间归约
- ③ NP完全问题
- 4 NPC问题证明

决策问题vs. 优化问题

- 决策问题: 问题的答案是"是"或"否"的一类问题。
 - 问题的提法一般是: 给定…, 问是否…?
 - 例如: 给定布尔表达式*F*,问是否存在变量赋值使得*F*成 真?
- 优化问题:问题有许多可行解,每个可行解关联一个值,优化问题要求找出具有最优关联值的可行解。
 - 问题的提法一般是: 给定…, 求最…?
 - 例如: 给定G = (V, E)和边的权函数c,以及点 $s, t \in V$,求s到t的最短路径?
- 复杂性理论一般只考虑决策问题。

为什么决策问题

- 任何优化问题均有相应的决策问题版本。
- 最短路问题: 给定G = (V, E)和边的权函数c,以及点 $s, t \in V$,问是否存在s到t的长度K以内的路径?
- 通常,相应的决策问题能有效求解,也能有效计算其优化问题。
- 若优化问题能被有效求解,相应的决策问题必然可以有效求解。
- 我们将一个具体问题的输入称作该问题的一个<mark>实例</mark>,如上述最短路问题中的G, c, s, t, K。
- 通常,我们将问题视作该问题所有可能的实例的集合。
- 一个决策问题自然地将所有实例分成了两类。
- 因此,可以形式化的定义:问题=所有答案为Yes的实例集合。

P类与NP类

- 容易的问题类: P类: 可以在多项式时间内求解的问题类。
- 困难的问题类?
- 可能包含困难问题的类: NP类: 可以在多项式时间内验证问题解的问题类。显然, $P \subseteq NP$ 。

图: Hamiltonian cycles

- ① P与NP
- 2 多项式时间归约
- ③ NP完全问题
- 4 NPC问题证明

多项式时间归约

Definition 1

决策问题 L_1 和 L_2 ,存在算法P将任意 L_1 的实例转换为 L_2 的实例。若P满足:

- P是多项式时间算法;

则称 L_1 可以多项式时间规约到 L_2 ,记作 $L_1 \leq_P L_2$ 。

图: 多项式时间规约示意图

多项式时间归约的意义

- 多项式时间归约提供了比较问题难易的手段(从复杂性角度);
- 若 $L_1 \leq_P L_2$, 那么
- L_2 存在多项式时间算法则 L_1 必存在多项式时间算法;
- L_1 不存在多项式时间算法则 L_2 必不存在多项式时间算法;
- 即L₁比L₂容易。

- ① P与NP
- 2 多项式时间归约
- 3 NP完全问题
- 4 NPC问题证明

NP完全问题

Definition 2 (NP-complete)

若问题L满足:

- ① $L \in NP$,并且
- $2 \forall L' \in NP : L' \leq_P L_\circ$

则问题L是NPC的,若L只满足条件2则称问题是NP-hard的。

- NP完全问题,从复杂性角度,是所有NP类问题中最困难的问题;
- NP类并不涵盖所有可能的问题,不在NP类中的困难问题是NPhard问题。
- NP完全问题可以不止一个。

Cook定理

Theorem 3 (Cook定理)

CIRCUIT-SAT问题是NPC问题。

• Cook定理给出第一个NPC问题,从而打开了计算复杂性理论的大 门。

NP完全问题的证明方法

Lemma 4

 $L' \leq_P L$, 若L'是NPC, 那 么L是NP-hard问 题; 且 若 $L \in NP$,则L是NPC。

- 证明问题L是NPC的步骤:
 - ① 证明 $L \in NP$;
 - ② 找一已知的NPC问题L',设计归约算法P;
 - \odot 证明P是多项式时间的;
 - **4** 证明 $\forall \alpha \in L_1 : L_1(\alpha) = \text{Yes} \Leftrightarrow L_2(P(\alpha)) = \text{Yes}$.

- ① P与NP
- 2 多项式时间归约
- ③ NP完全问题
- 4 NPC问题证明

SAT和3-SAT

- SAT问题:
- 实例: 布尔表达式φ;
- 问题:是否存在变量的赋值使得φ的值为真?
- \emptyset], $\phi = ((x_1 \to x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$
- SAT问题是NPC,Circuit-SAT \leq_P SAT。
- 3-SAT问题:
- 实例: 3-CNF表达式φ;
- 问题:是否存在变量的赋值使得φ的值为真?
- \emptyset , $\phi = (x_1 \lor \bar{x}_3 \lor \bar{x}_2) \land (x_3 \lor x_2 \lor x_4) \land (\bar{x}_1 \lor \bar{x}_3 \lor \bar{x}_4)$

$SAT \leq_P 3-SAT$

Theorem 5

3-SAT是NPC问题。

证明思路:

- 3-SAT $\in NP$.
- SAT \leq_P 3-SAT \circ
 - 给定SAT实例 ϕ ,构造 ϕ 的语法树;
 - 根据语法树,将 ϕ 等价地变换为若干子句的合取连接 ϕ' ;
 - 利用真值表,去除 ϕ '中不符合CNF范式的运算符,得 ϕ ";
 - 将 ϕ "不足3个字的子句变换为每个子句3个字的形式 ϕ ";
 - 证明φ可满足当且仅当φ‴可满足。

ϕ 的语法树和 ϕ'

$$\phi = ((x_1 \to x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$$

真值表和 ϕ''

设
$$\phi_1' = (y_1 \leftrightarrow (y_2 \land \bar{x}_2))$$
。

<i>y</i> ₁	y ₂	<i>x</i> ₂	$(y_1 \leftrightarrow (y_2 \land \neg x_2))$			
1	1	1	0			
1	1	0	1			
1	0	1	0			
1	0	0	0	7		
0	1	1	1			
0	1	0	0			
0	0	1	1			
0	0	0	1			

- ϕ'' 已基本是3-CNF范式公司了,唯一区别
- 有部分子句不足3个字。
- 如 y_1 。通过增加变量p,q,将其等价变换为

$$y_1 \equiv (y_1 \lor p \lor q)$$

$$\land (y_1 \lor p \lor \bar{q})$$

$$\land (y_1 \lor \bar{p} \lor q)$$

$$\land (y_1 \lor \bar{p} \lor \bar{q})$$

- 由于三步变换皆是恒等变换,因此 ϕ 可满足当且仅当 ϕ ""可满足;
- 三步均是线性时间的变换。

П

最大团问题

Definition 6

 $CLIQUE = \{ \langle G, k \rangle | G$ 中存在规模为k的团 $\}$ 。

最大团问题

Definition 7

 $CLIQUE = \{ \langle G, k \rangle | G$ 中存在规模为k的团 $\}$ 。

 $\S: 3-SAT \leq_P CLIQUE$

最小顶点覆盖

Definition 8

 $VERTEX-COVER=\{ < G, k > | G$ 中具有规模为k的顶点覆盖 $\}$ 。

最小顶点覆盖

Definition 9

 $VERTEX-COVER=\{ < G, k > | G$ 中具有规模为k的顶点覆盖 $\}$ 。

 \boxtimes : CLIQUE \leq_P VERTEX-COVER

汉密尔顿回路与旅行商问题

Definition 10

HAM-CYCLE={G|G是汉密尔顿的}。

VERTEX-COVERPHAM-CYCLE

Definition 11

 $TSP=\{<G,c,k>|G$ 是完全图,c是边的权值函数且G中存在长度为k的汉密尔顿回路}.

• HAM-CYCLE \leq_P TSP $_\circ$

子集和问题

Definition 12

$$\textit{SUBSET-SUM} = \{ < S, t > | \exists S' \subseteq S : t = \sum_{s \in S'} s \}_{\circ}$$

子集和问题

Definition 13

SUBSET-SUM=
$$\{\langle S, t \rangle | \exists S' \subseteq S : t = \sum_{s \in S'} s \}$$
.

		x_1	x_2	x_3	C_1	C_2	C_3	C_4
v_1	=	1	0	0	1	0	0	1
v_1'	=	1	0	0	0	1	1	0
v_2	=	0	1	0	0	0	0	1
v_2'	=	0	1	0	1	1	1	0
v_3	=	0	0	1	0	0	1	1
v_3'	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
s_2	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
S3	=	0	0	0	0	0	1	0
s_3'	=	0	0	0	0	0	2	0
s_4	=	0	0	0	0	0	0	1
s_4'	=	0	0	0	0	0	0	2
t	=	1	1	1	4	4	4	4

$3-SAT \leq_P SUBSET-SUM$

$$C_1 = (x_1, \bar{x}_2, \bar{x}_3)$$

$$C_2=(\bar{x}_1,\bar{x}_2,\bar{x}_3)$$

$$C_3 = (\bar{x}_1, \bar{x}_2, x_3)$$

$$C_4 = (x_1, x_2, x_3)$$

关于P和NP的看法

图: 四种可能的关系