Analisi Matematica

Alessandro Monticelli

A.A. 2021/2022

Contents

In	Introduzione			
1	Insiemi			
	1.1	Defini	izione	. 4
	1.2	Conce	etti di base e operatori	. 4
		1.2.1	Inclusione	. 4
		1.2.2	Unione	. 4
		1.2.3	Intersezione	. 5
		1.2.4	Differenza	. 5
		1.2.5	Differenza Simmetrica	. 5
		1.2.6	Prodotto Cartesiano	. 6
		1.2.7	Insieme Vuoto	. 6
2	Proposizioni			
	2.1	Defini	izione	. 6
	2.2	Quant	tificatori	. 7
	2.3	Defini	izioni, teoremi ed enunciati	. 7
	2.4	Princi	ipio di induzione	. 8

Introduzione

Appunti di Analisi matematica - corso di Ingegneria e Scienze Informatiche.

1 Insiemi

1.1 Definizione

Un insieme è una collezione di elementi. Per ogni elemento si può dire se esso appartiene all'insieme, o no.

Notazioni: Un insieme si esprime con una lettera maiuscola {A,B,C,...}, un elemento si esprime con una lettera minuscola{a,b,c,...}.

1.2 Concetti di base e operatori

1.2.1 Inclusione

$$A \subseteq B$$

Tutti gli elementi di A appartengono a B

Esempio:

$$A = \{2, 5, 6, 7\}$$

$$B = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$A \subseteq B$$

Il sottoinsieme si dice improprio se A coincide con B, altrimenti si dice proprio.

1.2.2 Unione

$$A \cup B$$

Tutti gli elementi del primo insieme e tutti gli elementi del secondo

Definizione:

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

1.2.3 Intersezione

$$A \cap B$$

Tutti gli elementi comuni al primo e al secondo insieme

Definizione:

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

1.2.4 Differenza

$$A \backslash B$$

Elementi appartenenti solo ad A e non a B

Definizione:

$$A \setminus B = \{x \mid x \in A \land x \notin B\}$$

Osservazione:

$$A \setminus B \neq B \setminus A$$

1.2.5 Differenza Simmetrica

$$A \triangle B$$

Definizione:

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

Osservazione:

$$A \triangle B = B \triangle A$$

1.2.6 Prodotto Cartesiano

$$A \times B$$

Definizione:

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

Osservazione:

$$(a,b) \neq (b,a) \Rightarrow A \times B \neq B \times A$$

1.2.7 Insieme Vuoto

Notazione:

$$A = \emptyset$$

2 Proposizioni

2.1 Definizione

Una proposizione è un'affermazione che è falsa o vera e che può implicare altre affermazioni.

Con p, q proposizioni:

Se p implica q e q implica p si dicono equivalenti

2.2 Quantificatori

- $\bullet \ \forall$ per ogni
- $\bullet~\exists~-~esiste$
- \bullet $\exists !$ esiste ed è unico
- ∄ non esiste

2.3 Definizioni, teoremi ed enunciati

Definizione:

Descrizione univoca di un oggetto.

Teorema:

Affermazione che coinvolge oggetti già definiti

Enunciato:

Un affermazione da dimostrare composta da un'ipotesi e da una tesi.

Dimostrazione:

Una dimostrazione è l'insieme dei passaggi logici e di calcolo che verificano un enunciato.

2.4 Principio di induzione

Teorema

Sia p(n) un insieme di proposizioni al variare di $n \in \mathbb{N}$. Supponiamo che:

- p(0) sia vera
- $\forall n \in \mathbb{N}, p(n) \text{ vera} \Rightarrow p(n+1) \text{ vera.}$

Esempio

Dimostrare:

$$1 + 2 + 3 + \dots + n \Rightarrow \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Dimostrazione per induzione:

$$p(1) \Rightarrow \frac{1(2)}{2} = 1 \Rightarrow vera$$
 (1)

$$\sum_{k=1}^{n+1} k = \frac{(n+1)(n+2)}{2} ? (2)$$

$$\sum_{k=1}^{n+1} k = 1 + 2 + 3 + \dots + n + (n+1) = \frac{n(n+1)}{2} + (n+1) =$$

$$= n + 1(\frac{n}{2} + 1) = n + 1(\frac{n+2}{2}) = \frac{(n+1)(n+2)}{2} \implies p(n+1) \ vera$$

La proposizione è verificata.