Laplace Transform

a)  $F(s) = \int_0^\infty f(t)e^{-st}$ b) Integrate, remove any u(t). Only values on the positive side of x-axis are important. Remove u(t), change integral limits.

integral limits. c) Linearity: 
$$c_1f_1(t) + c_2f_2(t) = c_1F_1(s) + c_2F_2(s)$$
 d) Time Shift:  $f(t-t_0)u(t-t_0) = e^{-st_0}F(s)$  d) IVT. Multiply by s first. If  $\frac{\infty}{\infty}$ , divide top and bottom

by s. Solve for  $s = \infty$ .

e) FVT: Multiply by s first. Solve for s = 0.

f) Unit Step: Unit step is the integral of the unit sample.

The unit sample is the derivative of the unit step.

# Inverse Laplace

Inverse Laplace

1.a) Standard form: decreasing powers of s, coefficient
of largest power in den = 1.

1.b) Make Ratio Proper: Power of s in num must be
less than or equal to den. If not true, use long division.

1.c) Find Poles (roots of den): Factor or use quadratic
formula. Roots can be real/unique, real/prepeated, or
complex/unique. Real parts for roots should be less
than or count to 0. than or equal to 0.

1.d) Break Into Sums:

1.d) Break Into Sums: For real/unique, use sums of 
$$\frac{A}{(s+k)} + \frac{B}{(s+k)}$$
 ... For real/repeated, use sums of  $\frac{A}{(s+k)^2} + \frac{B}{(s+k)}$  ... For every complex/unique,  $s = -\alpha + -j\omega$  and do the sums of  $\frac{A}{s+\alpha-j\omega} + \frac{A^s}{s+\alpha+j\omega}$ . For calc use cSolve(blah+x=0,x) to get complex roots.

# 1.e) Solve A. B. C ...

Find A, B, etc. \* Unique real pole 3 = -k: cover up that term in the den and avaluate the factored egn substituting S = -k Unique read pole S = 4. Court up then from in the deal content called the fathered pole about the form S = 4.

Ex  $(S = \frac{1}{4}(S = \frac{1}{4}S = \frac{1}{4}S = \frac{1}{4})$ A  $(S = \frac{1}{4}(S = \frac{1}{4}S = \frac{1}{4}S$ 

Fix.  $\frac{-12}{5^3+65+13}$  a) poles  $-3\pm j$   $2 \Rightarrow \frac{-12}{(6+3-j)^2(5+3+j)^2} = \frac{A}{5^3+32} + \frac{A^4}{5+3-j}$  $A = \frac{(-3+j2)+3+j2}{-13} = \frac{-13}{j} = -3 \frac{180}{2}$ 

⇒ 2141e-+tos(6++0) = 6e-2+cos(2++90+) v(+)

**Convolution** 2.a)  $y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = x(t)*h(t)$  2.b) Get rid of u(t). Great new piece-wise function for t  $\geq 0$  and  $t \leq 0$ . 2.c) Can be replaced by Laplace, via Y(s) = X(s)H(s). Then follow 1.a to 1.e.

# Circuit Elements and Laplace



3.b) Transform the circuit to the frequency domain.
3.c) Use nodal or mesh to solve given problem.
3.d) Reduce and the perform inverse Laplace transform.

# Transfer Functions 4.a) Convert circuit to the time domain. 4.b) Solve for the $\frac{Vont}{Vm}$ which equals H(s).



