k-contact reduction

B.M. Zawora (joint work with J. de Lucas, X. Rivas, and S. Vilariño) in progress

> Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw

Universidad de Zaragoza · Zaragoza 19.01.2024

Outline

- k-symplectic manifolds
- k-symplectic reduction
 - k-contact manifolds
- k-contact reduction of the geometry
- k-contact reduction of the dynamics
- an example of k-contact reduction

Let M be an n-dimensional manifold and let TM be its tangent bundle.

Let M be an n-dimensional manifold and let TM be its tangent bundle. Consider the Whitney sum of k copies of its tangent bundle, $\bigoplus^k TM = TM \oplus_M \overset{(k)}{\cdots} \oplus_M TM$, and the natural projections

$$\operatorname{pr}^{\alpha} : \bigoplus^{k} TM \to TM, \quad \operatorname{pr}_{M} : \bigoplus^{k} TM \to M, \quad \alpha = 1, \dots, k,$$

where $\operatorname{pr}^{\alpha}$ denotes the projection onto the α -th component of the Whitney sum.

Let M be an n-dimensional manifold and let TM be its tangent bundle. Consider the Whitney sum of k copies of its tangent bundle, $\bigoplus^k TM = TM \oplus_M \overset{(k)}{\cdots} \oplus_M TM$, and the natural projections

$$\operatorname{pr}^{\alpha}: \bigoplus^{k} TM \to TM, \quad \operatorname{pr}_{M}: \bigoplus^{k} TM \to M, \quad \alpha = 1, \dots, k,$$

where $\operatorname{pr}^{\alpha}$ denotes the projection onto the $\alpha\text{-th}$ component of the Whitney sum.

Definition

A k-vector field on a manifold M is a section $X: M \to \bigoplus^k TM$ of the projection pr_M . Then, $\mathfrak{X}^k(M)$ denotes the set of all k-vector fields on M.

$$TM \stackrel{\operatorname{pr}_{\alpha}}{\longleftarrow} \bigoplus^{k} TM$$

$$X_{\alpha} \downarrow \qquad \qquad X$$

Let M be an n-dimensional manifold and let TM be its tangent bundle. Consider the Whitney sum of k copies of its tangent bundle, $\bigoplus^k TM = TM \oplus_M \overset{(k)}{\cdots} \oplus_M TM$, and the natural projections

$$\operatorname{pr}^{\alpha}: \bigoplus^{k} TM \to TM, \quad \operatorname{pr}_{M}: \bigoplus^{k} TM \to M, \quad \alpha = 1, \dots, k,$$

where $\operatorname{pr}^{\alpha}$ denotes the projection onto the $\alpha\text{-th}$ component of the Whitney sum.

Definition

A k-vector field on a manifold M is a section $X: M \to \bigoplus^k TM$ of the projection pr_M . Then, $\mathfrak{X}^k(M)$ denotes the set of all k-vector fields on M.

Taking into account the diagram above, a k-vector field $\mathbf{X} \in \mathfrak{X}^k(M)$ amounts to some vector fields $X_1, \ldots, X_k \in \mathfrak{X}(M)$ given by $X_\alpha = \operatorname{pr}^\alpha \circ \mathbf{X}$ with $\alpha = 1, \ldots, k$.

Definition

Let $h \in C^{\infty}(M)$ be a Hamiltonian function. A k-contact Hamiltonian k-vector field is $\mathbf{X} = (X_1, \dots, X_k) \in \mathfrak{X}^k(M)$ satisfying

$$\begin{cases} \iota_{X_{\alpha}} d\eta^{\alpha} = dh - (R_{\alpha}h)\eta^{\alpha}, \\ \iota_{X_{\alpha}} \eta^{\alpha} = -h. \end{cases}$$

Definition

Let $h \in C^{\infty}(M)$ be a Hamiltonian function. A k-contact Hamiltonian k-vector field is $\mathbf{X} = (X_1, \dots, X_k) \in \mathfrak{X}^k(M)$ satisfying

$$\begin{cases} \iota_{X_{\alpha}} d\eta^{\alpha} = dh - (R_{\alpha}h)\eta^{\alpha}, \\ \iota_{X_{\alpha}} \eta^{\alpha} = -h. \end{cases}$$

Theorem

Let $\mathbf{X}^h = (X_1^h, \dots, X_k^h)$ be a k-contact Hamiltonian k-vector field associated with a G-invariant function $h \in C^{\infty}(M)$ relative to the Lie group action Φ .

Definition

Let $h \in C^{\infty}(M)$ be a Hamiltonian function. A k-contact Hamiltonian k-vector field is $\mathbf{X} = (X_1, \dots, X_k) \in \mathfrak{X}^k(M)$ satisfying

$$\begin{cases} \iota_{X_{\alpha}} d\eta^{\alpha} = dh - (R_{\alpha}h)\eta^{\alpha}, \\ \iota_{X_{\alpha}} \eta^{\alpha} = -h. \end{cases}$$

Theorem

Let $\boldsymbol{X}^h = (X_1^h, \dots, X_k^h)$ be a k-contact Hamiltonian k-vector field associated with a G-invariant function $h \in C^\infty(M)$ relative to the Lie group action Φ . Assume that $\Phi_{g*}\boldsymbol{X}^h = \boldsymbol{X}^h$ for every $g \in G$ and \boldsymbol{X}_h is tangent to $\mathbf{J}^{-1}(\mathbb{R}^\times \mu)$.

Definition

Let $h \in C^{\infty}(M)$ be a Hamiltonian function. A k-contact Hamiltonian k-vector field is $\mathbf{X} = (X_1, \dots, X_k) \in \mathfrak{X}^k(M)$ satisfying

$$\begin{cases} \iota_{X_{\alpha}} d\eta^{\alpha} = dh - (R_{\alpha}h)\eta^{\alpha}, \\ \iota_{X_{\alpha}} \eta^{\alpha} = -h. \end{cases}$$

Theorem

Let $\mathbf{X}^h = (X_1^h, \dots, X_k^h)$ be a k-contact Hamiltonian k-vector field associated with a G-invariant function $h \in C^\infty(M)$ relative to the Lie group action Φ . Assume that $\Phi_{g*}\mathbf{X}^h = \mathbf{X}^h$ for every $g \in G$ and \mathbf{X}_h is tangent to $\mathbf{J}^{-1}(\mathbb{R}^\times \mu)$. Then, for every $\alpha = 1, \dots, k$, the flow F_s^α of X_α^h leave $\mathbf{J}^{-1}(\mathbb{R}^\times \mu)$ invariant and induces a unique flow F_s^α on $\mathbf{J}^{-1}(\mathbb{R}^\times \mu)/K_\mu$ satisfying $\pi_\mu \circ F_s^\alpha = F_s^\alpha \circ \pi_\mu$.

Consider a manifold $M = \bigoplus^2 T^* \mathbb{R} \times \mathbb{R}^2$ with coordinates $(q^1, q^2, p_1^t, p_2^t, p_1^x, p_2^x, s^t, s^x)$.

Consider a manifold $M = \bigoplus^2 T^* \mathbb{R} \times \mathbb{R}^2$ with coordinates $(q^1, q^2, p_1^t, p_2^t, p_1^x, p_2^x, s^t, s^x)$. Then, (M, η) is a two-contact manifold, where

$$\eta = \eta^t \otimes e_1 + \eta^x \otimes e_2 = (ds^t - p_1^t dq^1 - p_2^t dq^2) \otimes e_1 + (ds^x - p_1^x dq^1 - p_2^x dq^2) \otimes e_2.$$

Consider a manifold $M = \bigoplus^2 T^* \mathbb{R} \times \mathbb{R}^2$ with coordinates $(q^1, q^2, p_1^t, p_2^t, p_1^x, p_2^x, s^t, s^x)$. Then, (M, η) is a two-contact manifold, where

$$\eta = \eta^t \otimes e_1 + \eta^x \otimes e_2 = (ds^t - p_1^t dq^1 - p_2^t dq^2) \otimes e_1 + (ds^x - p_1^x dq^1 - p_2^x dq^2) \otimes e_2.$$

The Reeb vector fields associated with η^t and η^x are $R_t = \frac{\partial}{\partial s^x}$ and $R_x = \frac{\partial}{\partial s^x}$, respectively.

Consider a manifold $M = \bigoplus^2 T^* \mathbb{R} \times \mathbb{R}^2$ with coordinates $(q^1, q^2, p_1^t, p_2^t, p_1^x, p_2^x, s^t, s^x)$. Then, (M, η) is a two-contact manifold, where

$$\eta = \eta^t \otimes e_1 + \eta^x \otimes e_2 = \left(ds^t - p_1^t dq^1 - p_2^t dq^2 \right) \otimes e_1 + \left(ds^x - p_1^x dq^1 - p_2^x dq^2 \right) \otimes e_2.$$

The Reeb vector fields associated with η^t and η^x are $R_t = \frac{\partial}{\delta s^x}$ and $R_x = \frac{\partial}{\partial s^x}$, respectively. Consider a Lie group action

$$\begin{aligned} \Phi : \mathbb{R}^2 \times M \ni \left(\lambda_1, \lambda_2; q^1, q^2, p_1^t, p_2^t, p_1^x, p_2^x, s^t, s^x\right) \\ & \mapsto \left(q^1 + \lambda_1, q^2 + \lambda_1, p_1^t, p_2^t, p_1^x, p_2^x, s^t, s^x + \lambda_2\right) \in M. \end{aligned}$$

Consider a manifold $M = \bigoplus^2 T^* \mathbb{R} \times \mathbb{R}^2$ with coordinates $(q^1, q^2, p_1^t, p_2^t, p_1^x, p_2^x, s^t, s^x)$. Then, (M, η) is a two-contact manifold, where

$$\eta = \eta^t \otimes \mathsf{e}_1 + \eta^\mathsf{x} \otimes \mathsf{e}_2 = \left(\mathsf{d} \mathsf{s}^t - \mathsf{p}_1^t \mathsf{d} \mathsf{q}^1 - \mathsf{p}_2^t \mathsf{d} \mathsf{q}^2 \right) \otimes \mathsf{e}_1 + \left(\mathsf{d} \mathsf{s}^\mathsf{x} - \mathsf{p}_1^\mathsf{x} \mathsf{d} \mathsf{q}^1 - \mathsf{p}_2^\mathsf{x} \mathsf{d} \mathsf{q}^2 \right) \otimes \mathsf{e}_2.$$

The Reeb vector fields associated with η^t and η^x are $R_t = \frac{\partial}{\delta s^x}$ and $R_x = \frac{\partial}{\partial s^x}$, respectively. Consider a Lie group action

$$\begin{split} \Phi : \mathbb{R}^2 \times M \ni (\lambda_1, \lambda_2; q^1, q^2, p_1^t, p_2^t, p_1^x, p_2^x, s^t, s^x) \\ & \mapsto (q^1 + \lambda_1, q^2 + \lambda_1, p_1^t, p_2^t, p_1^x, p_2^x, s^t, s^x + \lambda_2) \in M. \end{split}$$

The fundamental vector fields associated with $\Phi: \mathbb{R}^2 \times M \to M$ read

$$\xi_M^1 = \frac{\partial}{\partial s^x}, \qquad \xi_M^2 = \frac{\partial}{\partial q^1} + \frac{\partial}{\partial q^2},$$

B.M. Zawora

Consider a manifold $M = \bigoplus^2 T^* \mathbb{R} \times \mathbb{R}^2$ with coordinates $(q^1, q^2, p_1^t, p_2^t, p_1^x, p_2^x, s^t, s^x)$. Then, (M, η) is a two-contact manifold, where

$$\eta = \eta^t \otimes e_1 + \eta^x \otimes e_2 = \left(\textit{ds}^t - \textit{p}_1^t \textit{dq}^1 - \textit{p}_2^t \textit{dq}^2 \right) \otimes e_1 + \left(\textit{ds}^x - \textit{p}_1^x \textit{dq}^1 - \textit{p}_2^x \textit{dq}^2 \right) \otimes e_2.$$

The Reeb vector fields associated with η^t and η^x are $R_t = \frac{\partial}{\delta s^x}$ and $R_x = \frac{\partial}{\partial s^x}$, respectively. Consider a Lie group action

$$\begin{split} \Phi : \mathbb{R}^2 \times M \ni (\lambda_1, \lambda_2; q^1, q^2, p_1^t, p_2^t, p_1^x, p_2^x, s^t, s^x) \\ & \mapsto (q^1 + \lambda_1, q^2 + \lambda_1, p_1^t, p_2^t, p_1^x, p_2^x, s^t, s^x + \lambda_2) \in M. \end{split}$$

The fundamental vector fields associated with $\Phi: \mathbb{R}^2 \times M \to M$ read

$$\xi_M^1 = \frac{\partial}{\partial s^x}, \qquad \xi_M^2 = \frac{\partial}{\partial q^1} + \frac{\partial}{\partial q^2},$$

and the contact momentum map J is given by

$$\mathbf{J}: M\ni x\longmapsto \boldsymbol{\mu}=\boldsymbol{\mu}^1\otimes e_1+\boldsymbol{\mu}^2\otimes e_2=(0,1)\otimes e_1-(\boldsymbol{p}_1^t+\boldsymbol{p}_2^t,\boldsymbol{p}_1^x+\boldsymbol{p}_2^x)\otimes e_2\in (\mathbb{R}^2)^{*2}.$$

B.M. Zawora k-contact reduction

Consider a manifold $M = \bigoplus^2 T^* \mathbb{R} \times \mathbb{R}^2$ with coordinates $(q^1, q^2, p_1^t, p_2^t, p_1^x, p_2^x, s^t, s^x)$. Then, (M, η) is a two-contact manifold, where

$$\boldsymbol{\eta} = \boldsymbol{\eta}^t \otimes \boldsymbol{e}_1 + \boldsymbol{\eta}^x \otimes \boldsymbol{e}_2 = \left(\textit{ds}^t - \textit{p}_1^t \textit{dq}^1 - \textit{p}_2^t \textit{dq}^2 \right) \otimes \boldsymbol{e}_1 + \left(\textit{ds}^x - \textit{p}_1^x \textit{dq}^1 - \textit{p}_2^x \textit{dq}^2 \right) \otimes \boldsymbol{e}_2.$$

The Reeb vector fields associated with η^t and η^x are $R_t = \frac{\partial}{\delta s^x}$ and $R_x = \frac{\partial}{\partial s^x}$, respectively. Consider a Lie group action

$$\begin{split} \Phi : \mathbb{R}^2 \times M \ni (\lambda_1, \lambda_2; q^1, q^2, p_1^t, p_2^t, p_1^x, p_2^x, s^t, s^x) \\ & \mapsto (q^1 + \lambda_1, q^2 + \lambda_1, p_1^t, p_2^t, p_1^x, p_2^x, s^t, s^x + \lambda_2) \in M. \end{split}$$

The fundamental vector fields associated with $\Phi:\mathbb{R}^2 imes M o M$ read

$$\xi_M^1 = \frac{\partial}{\partial s^x}, \qquad \xi_M^2 = \frac{\partial}{\partial q^1} + \frac{\partial}{\partial q^2},$$

and the contact momentum map ${f J}$ is given by

$$\mathbf{J}: M\ni x\longmapsto \boldsymbol{\mu}=\boldsymbol{\mu}^1\otimes e_1+\boldsymbol{\mu}^2\otimes e_2=(0,1)\otimes e_1-(\boldsymbol{p}_1^t+\boldsymbol{p}_2^t,\boldsymbol{p}_1^x+\boldsymbol{p}_2^x)\otimes e_2\in (\mathbb{R}^2)^{*2}.$$

Let us fix $\mu=\mu_1\otimes e_1$ and recall that

$$T_x \mathbf{J}^{-1}(\mathbb{R}^{\times} \boldsymbol{\mu}) = \{ v_x \in T_x M : T_x \mathbf{J}(v_x) = \lambda \boldsymbol{\mu}, \quad \lambda \in \mathbb{R}^{\times} \},$$

for every $x \in \mathbf{J}^{-1}(\mathbb{R}^{\times} \boldsymbol{\mu})$.

Then,

Then,

$$\mathbf{J}^{-1}(\mathbb{R}^{\times}\boldsymbol{\mu}) = \{x \in M : p_1^t = -p_2^t, \quad p_1^x = -p_2^x\},$$

$$T_x \mathbf{J}^{-1}(\mathbb{R}^{\times}\boldsymbol{\mu}) = \left\langle \frac{\partial}{\partial s^x}, \frac{\partial}{\partial s^t}, \frac{\partial}{\partial q^1}, \frac{\partial}{\partial q^2}, \frac{\partial}{\partial p_1^x} - \frac{\partial}{\partial p_2^x}, \frac{\partial}{\partial p_1^t} - \frac{\partial}{\partial p_2^t} \right\rangle.$$

$$T_x(K_{\boldsymbol{\mu}}x) = \left\langle \frac{\partial}{\partial q^1} + \frac{\partial}{\partial q^2} \right\rangle.$$

Then,

$$\mathbf{J}^{-1}(\mathbb{R}^{\times}\boldsymbol{\mu}) = \{x \in M : p_{1}^{t} = -p_{2}^{t}, \quad p_{1}^{x} = -p_{2}^{x}\},$$

$$T_{x}\mathbf{J}^{-1}(\mathbb{R}^{\times}\boldsymbol{\mu}) = \left\langle \frac{\partial}{\partial s^{x}}, \frac{\partial}{\partial s^{t}}, \frac{\partial}{\partial q^{1}}, \frac{\partial}{\partial q^{2}}, \frac{\partial}{\partial p_{1}^{x}} - \frac{\partial}{\partial p_{2}^{x}}, \frac{\partial}{\partial p_{1}^{t}} - \frac{\partial}{\partial p_{2}^{t}} \right\rangle.$$

$$T_{x}(K_{\boldsymbol{\mu}}x) = \left\langle \frac{\partial}{\partial q^{1}} + \frac{\partial}{\partial q^{2}} \right\rangle.$$

Then, it follows that the reduced manifold $M_{\mu}=({\sf J}^{-1}(\mathbb{R}^{\times}\mu)/{\cal K}_{\mu},\eta_{\mu})$ is a 2-contact manifold with

$$\boldsymbol{\eta}_{\boldsymbol{\mu}} = \boldsymbol{\eta}_{\boldsymbol{\mu}}^{t} \otimes \boldsymbol{e}_{1} + \boldsymbol{\eta}_{\boldsymbol{\mu}}^{x} \otimes \boldsymbol{e}_{2} = \left(\boldsymbol{ds}^{t} - \boldsymbol{p}^{t} \boldsymbol{dq} \right) \otimes \boldsymbol{e}_{1} + \left(\boldsymbol{ds}^{x} - \boldsymbol{p}^{x} \boldsymbol{dq} \right) \otimes \boldsymbol{e}_{2},$$

Then,

$$\mathbf{J}^{-1}(\mathbb{R}^{\times}\boldsymbol{\mu}) = \{x \in M : p_1^t = -p_2^t, \quad p_1^x = -p_2^x\},$$

$$T_x \mathbf{J}^{-1}(\mathbb{R}^{\times}\boldsymbol{\mu}) = \left\langle \frac{\partial}{\partial s^x}, \frac{\partial}{\partial s^t}, \frac{\partial}{\partial q^1}, \frac{\partial}{\partial q^2}, \frac{\partial}{\partial p_1^x} - \frac{\partial}{\partial p_2^x}, \frac{\partial}{\partial p_1^t} - \frac{\partial}{\partial p_2^t} \right\rangle.$$

$$T_x(K_{\boldsymbol{\mu}}x) = \left\langle \frac{\partial}{\partial q^1} + \frac{\partial}{\partial q^2} \right\rangle.$$

Then, it follows that the reduced manifold $M_{\mu}=({\sf J}^{-1}(\mathbb{R}^{\times}\mu)/{\cal K}_{\mu},\eta_{\mu})$ is a 2-contact manifold with

$$\eta_{\mu} = \eta_{\mu}^{t} \otimes e_{1} + \eta_{\mu}^{x} \otimes e_{2} = (ds^{t} - p^{t}dq) \otimes e_{1} + (ds^{x} - p^{x}dq) \otimes e_{2},$$

where $(q:=q^1-q^2,p^t:=p_1^t-p_2^t,p^x:=p_1^x-p_2^x,s^t,s^x)$ are local coordinates on M_μ .

B.M. Zawora

Then,

$$\mathbf{J}^{-1}(\mathbb{R}^{\times}\boldsymbol{\mu}) = \{x \in M : p_{1}^{t} = -p_{2}^{t}, \quad p_{1}^{x} = -p_{2}^{x}\},$$

$$T_{x}\mathbf{J}^{-1}(\mathbb{R}^{\times}\boldsymbol{\mu}) = \left\langle \frac{\partial}{\partial s^{x}}, \frac{\partial}{\partial s^{t}}, \frac{\partial}{\partial q^{1}}, \frac{\partial}{\partial q^{2}}, \frac{\partial}{\partial p_{1}^{x}} - \frac{\partial}{\partial p_{2}^{x}}, \frac{\partial}{\partial p_{1}^{t}} - \frac{\partial}{\partial p_{2}^{t}} \right\rangle.$$

$$T_{x}(K_{\boldsymbol{\mu}}x) = \left\langle \frac{\partial}{\partial q^{1}} + \frac{\partial}{\partial q^{2}} \right\rangle.$$

Then, it follows that the reduced manifold $M_{\mu}=({\sf J}^{-1}(\mathbb{R}^{\times}\mu)/{\cal K}_{\mu},\eta_{\mu})$ is a 2-contact manifold with

$$\boldsymbol{\eta_{\mu}} = \boldsymbol{\eta_{\mu}^t} \otimes \boldsymbol{e}_1 + \boldsymbol{\eta_{\mu}^x} \otimes \boldsymbol{e}_2 = \left(\textit{ds}^t - \textit{p}^t \textit{dq} \right) \otimes \boldsymbol{e}_1 + \left(\textit{ds}^x - \textit{p}^x \textit{dq} \right) \otimes \boldsymbol{e}_2,$$

where $(q:=q^1-q^2,p^t:=p_1^t-p_2^t,p^x:=p_1^x-p_2^x,s^t,s^x)$ are local coordinates on M_μ . Let $h\in C^\infty(M)$ be a Hamiltonian function defined as

$$h(q^1,q^2,p_1^t,p_2^t,p_1^x,p_2^x,s^t,s^x) = \frac{1}{2} \left((p_1^t)^2 + (p_2^t)^2 - (p_1^x)^2 - (p_1^x)^2 \right) + C(q^1-q^2) + \gamma s^t,$$

B.M. Zawora k-contact reduction

Then,

$$\mathbf{J}^{-1}(\mathbb{R}^{\times}\boldsymbol{\mu}) = \{x \in M : p_1^t = -p_2^t, \quad p_1^x = -p_2^x\},$$

$$T_x \mathbf{J}^{-1}(\mathbb{R}^{\times}\boldsymbol{\mu}) = \left\langle \frac{\partial}{\partial s^x}, \frac{\partial}{\partial s^t}, \frac{\partial}{\partial q^1}, \frac{\partial}{\partial q^2}, \frac{\partial}{\partial p_1^x} - \frac{\partial}{\partial p_2^x}, \frac{\partial}{\partial p_1^t} - \frac{\partial}{\partial p_2^t} \right\rangle.$$

$$T_x(K_{\boldsymbol{\mu}}x) = \left\langle \frac{\partial}{\partial q^1} + \frac{\partial}{\partial q^2} \right\rangle.$$

Then, it follows that the reduced manifold $M_{\mu}=(\mathbf{J}^{-1}(\mathbb{R}^{\times}\mu)/\mathcal{K}_{\mu},\eta_{\mu})$ is a 2-contact manifold with

$$\boldsymbol{\eta_{\mu}} = \boldsymbol{\eta_{\mu}^t} \otimes \boldsymbol{e_1} + \boldsymbol{\eta_{\mu}^x} \otimes \boldsymbol{e_2} = \left(\textit{ds}^t - \textit{p}^t \textit{dq} \right) \otimes \boldsymbol{e_1} + \left(\textit{ds}^x - \textit{p}^x \textit{dq} \right) \otimes \boldsymbol{e_2},$$

where $(q:=q^1-q^2,p^t:=p_1^t-p_2^t,p^x:=p_1^x-p_2^x,s^t,s^x)$ are local coordinates on M_μ . Let $h\in C^\infty(M)$ be a Hamiltonian function defined as

$$h(q^1, q^2, p_1^t, p_2^t, p_1^x, p_2^x, s^t, s^x) = \frac{1}{2} \left((p_1^t)^2 + (p_2^t)^2 - (p_1^x)^2 - (p_1^x)^2 \right) + C(q^1 - q^2) + \gamma s^t,$$

where $C(q^1 - q^2)$ is a coupling function between the two strings.

B.M. Zawora k-contact reduction 6

The integral sections of the two-vector field \boldsymbol{X} associated with h satisfy equations

The integral sections of the two-vector field \boldsymbol{X} associated with h satisfy equations

$$\begin{split} \frac{\partial^2 q^1}{\partial t^2} - \frac{\partial^2 q^1}{\partial x^2} &= -\gamma \frac{\partial q^1}{\partial t} - \frac{\partial C}{\partial q} \,, \\ \frac{\partial^2 q^2}{\partial t^2} - \frac{\partial^2 q^2}{\partial x^2} &= -\gamma \frac{\partial q^2}{\partial t} + \frac{\partial C}{\partial q} \,. \end{split}$$

The integral sections of the two-vector field \boldsymbol{X} associated with h satisfy equations

$$\begin{split} \frac{\partial^2 q^1}{\partial t^2} - \frac{\partial^2 q^1}{\partial x^2} &= -\gamma \frac{\partial q^1}{\partial t} - \frac{\partial C}{\partial q} \,, \\ \frac{\partial^2 q^2}{\partial t^2} - \frac{\partial^2 q^2}{\partial x^2} &= -\gamma \frac{\partial q^2}{\partial t} + \frac{\partial C}{\partial q} \,. \end{split}$$

This system of PDEs corresponds to two coupled damped vibrating strings.

The integral sections of the two-vector field \boldsymbol{X} associated with h satisfy equations

$$\begin{split} \frac{\partial^2 q^1}{\partial t^2} - \frac{\partial^2 q^1}{\partial x^2} &= -\gamma \frac{\partial q^1}{\partial t} - \frac{\partial C}{\partial q} \,, \\ \frac{\partial^2 q^2}{\partial t^2} - \frac{\partial^2 q^2}{\partial x^2} &= -\gamma \frac{\partial q^2}{\partial t} + \frac{\partial C}{\partial q} \,. \end{split}$$

This system of PDEs corresponds to two coupled damped vibrating strings. After the k-contact reduction we get

$$\frac{\partial^2 q}{\partial t^2} - \frac{\partial^2 q}{\partial x^2} = \gamma \frac{\partial q}{\partial t} - 2 \frac{\partial C}{\partial q},$$

which is the equation of a single damped string with an external force acting on it.

Thank you for your attention

Thank you for your attention

Literature:

- de Lucas J., Rivas X., Vilarińo S., Zawora B.M. k-Contact Marsden-Weinstein reduction, work in progress.
- J. C. Marrero, N. Román-Roy, M. Salgado, and S. Vilariño, Reduction of polysymplectic manifolds, J. Phys. A 48 (2015) 055206, 43.
- Grabowska K., Grabowski J. Reductions: precontact versus presymplectic, Annali di Matematica Pura ed Applicata, 202 (2023), 2803–2839.
- Willett C. Contact reduction. Trans. Amer. Math. Soc., 10 (2002), 4245–4260.
- Gaset J., Gràcia X., Muñoz-Lecanda M.C., Rivas X., Román-Roy N. A contact geometry framework for field theories with dissipation, Ann. Physics, 414 (2020), 168092.