1

Assignment 1

Sujal - AI20BTECH11020

Download all python codes from

https://github.com/sujal100/			
Probability	and	Random	variable/tree/main/

and latex codes from

exercise 1/codes

https://github.com/https://github.com/sujal100/ Probability_and_Random_variable/blob/main /exercise_1/exercise_1_main_tex.tex

1 Problem [6.19]

A die is thrown. If E is the event "the number appearing is a multiple of 3" and F be the event "the number appearing is even" then find whether E and F are independent?

2 Solution

Consider two discrete random variables X and Y. We say that X and Y are independent if

$$Pr(X = x, Y = y) = Pr(X = x)P(Y = y)$$
 (2.0.1)

for all x, y

A die is thrown. We know that the sample space is

$$\mathbf{S} = (1, 2, 3, 4, 5, 6) \tag{2.0.2}$$

Let two events be

E: the number appear is a multiple of 3.

F: the number appearing is even.

$$E: (3,6)\&F: (2,4,6)$$
 (2.0.3)

Bernoulli random variables Say X_1 and X_2

$$Pr(X_1 = 1, X_2 = 1) = Pr(A \in \{6\}) = \frac{1}{6}$$
 (2.0.4)

$$Pr(X_1 = 1) = Pr(A \in \{3, 6\}) = \frac{2}{6} = \frac{1}{3}$$
 (2.0.5)

$$Pr(X_2 = 1) = Pr(A \in \{2, 4, 6\}) = \frac{3}{6} = \frac{1}{2}$$
 (2.0.6)

$$Pr(X_1 = 1)Pr(X_2 = 1) = \frac{1}{3}\frac{1}{2} = \frac{1}{6}$$
 (2.0.7)

$Pr(X_1=1)$	will refer to probability that event E
	occurs
$Pr(X_1 = 0)$	will refer to probability that event E
	not occurs
$Pr(X_2=1)$	will refer to probability that event F
	occurs
$Pr(X_2=0)$	will refer to probability that event F
	not occurs

TABLE 0: Table for Bernoulli random variables.

From above Equations, we get

$$Pr(X_1 = 1, X_2 = 1) = Pr(X_1 = 1)Pr(X_2 = 1)$$
(2.0.8)

Therefore Event E and F are independent events.