CS2102 Database Systems

Relational Calculus

Leading The World With Asia's Best

Background

- The concept of relational calculus was first proposed by Edgar F. Codd. See http://en.wikipedia.org/wiki/Edgar_F._Codd
- Relational calculus is based on predicate calculus, and operates on relations
- ❖ It is used to measure the power of relational languages. A language that can be used to produce any relation which can be derived using relational calculus is said to be *relationally complete*.

Relational Calculus

- * Relational calculus is declarative
 - Describes a relation in terms of one or more database relations
 - Query languages, like SQL, are similar in construction to relational calculus

- Relational algebra is procedural
 - Describes how to build a new relation from one or more relations in the database

Relational Calculus

- Basic concepts: variables, constants, comparison ops, logical connectors, quantifiers
- Two variants
 - Tuple Relational Calculus (TRC)
 - Variables range over tuples
 - e.g. $\{C \mid C \in Course \land C.credit \ge 4\}$
 - Domain Relational Calculus (DRC)
 - Variables range over attribute domain values

e.g.
$$\{ < I, N, C > | < I, N, C > \in Course \land C > 4 \}$$

Relational Calculus

- Expressions in a calculus are called formulas
- An answer tuple is an assignment of constants to variables that make the formula evaluate to true

e.g. $\{C \mid C \in Course \land C.credit \ge 4\}$

Tuple Relational Calculus

- \diamond Query has the form $\{T \mid p(T)\}$
 - T is a tuple variable
 - p(T) is a formula that describes T
 - Result of query is the set of all tuples t for which the formula p(T) evaluates to true with T = t

e.g. $\{C \mid C \in Course \land C.credit \ge 4\}$

Simple TRC Queries

Find all lecturers

 $\{T \mid T \in Lecturer\}$

Lecturer

id	name	
9876	Stephane Bressan	
9865	Mong Li Lee	
9843	Shen Hengtao	
9821	Ling Tok Wang	

* Find courses where the credit is at least 4

 $\{C \mid C \in Course \land C.credit \ge 4\}$

Course

id	name	credit
1234	Intro to computing	2
2107	Intro to DB	4
2234	Intro to OS	2
3604	Advanced OS	4

Syntax of TRC Queries

- An atomic formula is one of the following:
 - \blacksquare R \in Rel
 - R.a op S.b
 - R.a op constant

where

- Rel is a relation name
- R, S are tuple variables with attributes a and b respectively
- op is an operator in the set {>, <, =, ≥, ≤, ≠}
 e.g. {C | C ∈ Course ∧ C.credit ≥ 4}

Syntax of TRC Queries

- ❖ A formula is recursively defined as one of the following:
 - Any atomic formula
 - ¬ p, p ∧ q, p ∨ q, p \Rightarrow q where p and q are formulas
 - \exists R (p(R)) where R is a tuple variable and p(R) is a formula in which R appears
 - \forall R (p(R)) where R is a tuple variable and p(R) is a formula in which R appears
 - e.g. $\{C \mid C \in Course \land C.credit \ge 4\}$

Combination of Formulas

p	q	¬р	$p \wedge q$	$p \vee q$	$p \Rightarrow q$
T	T	F	T	T	Т
T	F	F	F	T	F
F	Т	Т	F	Т	Т
F	F	Т	F	F	Т

Example Database

- Sailors (<u>sid</u>, name, rating, age)
- Boats (bid, bname, color)
- * Reserves (sid, bid, day)

Sailors

sid	sname	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorbia	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63

Boats

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Reserves

sid	bid	date
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

❖ Find the names and ages of sailors with a rating above 7

```
{P | \exists S (S \in Sailors \land S.rating > 7 \land
P.name = S.sname \land P.age = S.age) }
```

- > P is a tuple variable with two fields, name and age
- Result of query is a relation with two fields, name and age
- ➤ Atomic formula P.name=S.sname and P.age=S.age give values to the fields of an answer tuple P

❖ Find the names and ages of sailors with a rating above 7

$$\{P \mid \exists S (S \in Sailors \land S.rating > 7 \land A\}$$

P.name = S.sname \land P.age = S.age)

Sailors

sid	sname	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorbia	10	16
74	Horatio	9	35
85	Art	3	25
95	Bob	3	63

name	age
Lubber	55
Andy	25
Rusty	35
Zorbia	16
Horatio	35

❖ Find the names and ages of sailors with a rating above 7

```
\{P \mid \exists S (S \in Sailors \land S.rating > 7 \land P.name = S.sname \land P.age = S.age) \}
```

Compare to SQL:

SELECT S.sname, S.age FROM Sailors S WHERE S.rating > 7

Find the sailor name, boat id and reservation date for each reservation

```
\{ P \mid \exists R \exists S (R \in Reserves \land S \in Sailors \land R.sid = S.sid \land P.bid = R.bid \land P.date = R.date \land P.sname = S.sname) \}
```

- > For each Reserves tuple, look for a Sailors tuple with the same sid
- > For each pair of such tuples, construct answer tuple P with fields sname, bid and day by copying values from the corresponding fields from the two tuples

❖ Find the sailor name, boat id and reservation date for each reservation

 $\{ P \mid \exists R \exists S \mid (R \in Reserves \land S \in Sailors \land R.sid = S.sid \land P.bid = R.bid \land P.date = R.date \land P.sname = S.sname) \}$

Sailors

sid rating sname age 22 Dustin 7 45 29 Brutus 1 33 Lubber 31 8 55 32 Andy 8 25 58 Rusty 10 35 64 Horatio 7 35 Zorbia 71 10 16 Horatio 74 35 Art 25 85 3 95 Bob 63

Reserves

sid	bid	date
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

bid	date	sname
101	10/10/98	Dustin
102	10/10/98	Dustin
103	10/8/98	Dustin
104	10/7/98	Dustin
102	11/10/98	Lubber
103	11/6/98	Lubber
104	11/12/98	Lubber
101	9/5/98	Horatio
102	9/8/98	Horatio
103	9/8/98	Horatio

❖ Find the names of sailors who have reserved boat 103

```
\{ P \mid \exists S \exists R \ (S \in Sailors \land R \in Reserves \land R.sid = S.sid \land R.bid = 103 \land P.sname = S.sname) \}
```

- > For each Sailors tuple, look for a tuple in Reserves that shows that this sailor has reserved boat 103
- > Answer tuple P contains just one field, sname

❖ Find the names of sailors who have reserved boat 103

$$\{ P \mid \exists S \exists R (S \in Sailors \land R \in Reserves \land R.sid = S.sid \land R.bid = 103 \land P.sname = S.sname) \}$$

Sailors

sid	sname	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorbia	10	16
74	Horatio	9	35
85	Art	3	25
95	Вов	3	63

Reserves

sid	bid	date
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

sname	
Dustin	
Lubber	
Horatio	

Find the names of sailors who have reserved boat 103

```
\{ P \mid \exists S \exists R \ (S \in Sailors \land R \in Reserves \land R.sid = S.sid \land R.bid = 103 \land P.sname = S.sname) \}
```

Compare to SQL:

SELECT S.sname FROM Sailors S, Reserves R WHERE S.sid= R.sid AND R.bid = 103

Find the names of sailors who have reserved a red boat

```
\{P \mid \exists S \exists R \exists B \ (S \in Sailors \land R \in Reserves \land B \in Boats \land R.sid = S.sid \land R.bid = B.bid \land B.color = 'red' \land P.sname = S.sname) \}
```

Retrieve all sailor tuples S for which there exist tuples R in Reserves and B in Boats such that S.sid=R.sid, R.bid=B.bid and B.color='red'

Find the names of sailors who have reserved a red boat

 $\{P \mid \exists S \exists R \exists B (S \in Sailors \land R \in Reserves \land B \in Boats\}\}$

 \land R.sid = S.sid \land R.bid = B.bid \land B.color = 'red' \land

P.sname = S.sname) }

Sailors

sid	sname	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorbia	10	16
74	Horatio	9	35
85	Art	3	25
95	Вов	3	63

Reserves

sid	bid	date
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Boats

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

sname
Dustin
Lubber
Horatio

Find the names of sailors who have reserved at least two boats

```
\{ P \mid \exists S \exists R1 \exists R2 \ (S \in Sailors \land R1 \in Reserves \land R2 \in Reserves \land S.sid = R1.sid \land R1.sid = R2.sid \land R1.bid \neq R2.bid \land P.sname = S.sname) \}
```

❖ Find the names of sailors who have reserved at least two boats

 $\{P \mid \exists S \exists R1 \exists R2 (S \in Sailors \land R1 \in Reserves \land R1 \in Reserves \land R1 \in Reserves \land R1 \in Reserves \land R1 \in R1 \}$

 $R2 \in Reserves \land S.sid = R1.sid \land R1.sid = R2.sid \land$

 $R1.bid \neq R2.bid \land P.sname = S.sname$

Sailors

sid	sname	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorbia	10	16
74	Horatio	9	35
85	Art	3	25
95	Вов	3	63

Reserves

sid	bid	date
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

sname
Dustin
Lubber
Horatio

Find the names of sailors who have reserved all boats

```
\{P \mid \exists S \forall B \exists R \ (S \in Sailors \land (B \in Boats \Rightarrow (R \in Reserves \land S.sid = R.sid \land R.bid = B.bid)) \land P.sname = S.sname)\}
```

Retrieve sailors S such that for all boats B there is a Reserves tuple showing that sailor S has reserved boat B

Find the names of sailors who have reserved all boats

$$\{P \mid \exists S \forall B \exists R (S \in Sailors \land Sa$$

 $(B \in Boats \Rightarrow (R \in Reserves \land S.sid = R.sid \land R.bid = B.bid))$

 \land P.sname = S.sname) }

Sailors

sid	sname	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorbia	10	16
74	Horatio	9	35
85	Art	3	25
95	Вов	3	63

Reserves

sid	bid	date
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Boats

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

sname Dustin

Find the names of sailors who have reserved all red boats

For each candidate sailor tuple, if a boat is red, then the sailor must have reserved it.

Find the names of sailors who have reserved all red boats

$$\{P \mid \exists S \forall B \exists R \ (S \in Sailors \land (B \in Boats \land B.color = 'red') \Rightarrow (R \in Reserves \land S.sid = R.sid \land R.bid = B.bid)\}$$

\land P.sname = S.sname) }

Sailors

sid	sname	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35
64	Horatio	7	35
71	Zorbia	10	16
74	Horatio	9	35
85	Art	3	25
95	Вов	3	63

Reserves

sid	bid	date
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Boats

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

sid	sname	rating	age
22	Dustin	7	45
31	Lubber	8	55

Domain Relational Calculus

- Query has the form $\{<x_1, ..., x_n> | p(x_1, ..., x_n)\}$
 - Each x_i is a domain variable or a constant
 - $p(x_1, ..., x_n)$ is a DRC formula
 - Result of query is the set of all tuples $\langle x_1, ..., x_n \rangle$ for which the formula evaluates to true

Syntax of DRC Queries

- An atomic formula in DRC is one of the following:
 - $\langle x_1, ..., x_n \rangle \in \text{Rel}$
 - X op Y
 - X op constant

where

- Rel is a relation with n attributes
- Each x_i is a variable or a constant
- X, Y are domain variables
- op is an operator in the set $\{>, <, =, \ge, \le, \ne\}$

Syntax of DRC Queries

- ❖ A formula in DRC is recursively defined as one of the following:
 - Any atomic formula
 - ¬ p, p ∧ q, p ∨ q, p \Rightarrow q where p and q are formulas
 - \exists X (p(X)) where X is a domain variable and p(X) is a formula in which X appears
 - \forall X (p(X)) where X is a domain variable and p(X) is a formula in which X appears

Find all sailors with a rating above 7

```
\{ < I, N, T, A > | < I, N, T, A > \in Sailors \land T > 7 \}
```

- > Each attribute is given a variable name
- \gt Condition \lt I, N, T, A \gt \in Sailors ensures that domain variables are restricted to the fields of the same tuple
- Compare to TRC

```
TRC: \{P \mid \exists S (S \in Sailors \land S.rating > 7 \land P.name = S.sname \land P.age = S.age) \}
```

- Specify T > 7 instead of S.rating > 7
- Specify tuple <I, N, T, A> in result instead of S

Find the names of sailors who have reserved boat 103

```
\{ < N > \mid \exists I \exists T \exists A \exists I_R \exists B_R \exists D 
( < I, N, T, A > \in Sailors \land < I_R, B_R, D > \in Reserves \land I = I_R \land B_R = 103 ) \}

OR
\{ < N > \mid \exists I \exists T \exists A \exists D 
( < I, N, T, A > \in Sailors \land < I, 103, D > \in Reserves ) \}
```

Only the sname field is retained in answer

Find the names of sailors who have reserved a red boat

```
\{ < N > | \exists I \exists T \exists A \exists B \exists D \exists BN 
( < I, N, T, A > \in Sailors \land < I, B, D > \in Reserves \land < B, BN, 'red' > \in Boats ) \}
```

Find the names of sailors who have reserved at least two boats

```
\{ < N > | \exists I \exists T \exists A \exists B1 \exists B2 \exists D1 \exists D2 
(< I, N, T, A > \in Sailors \land < I, B1, D1 > \in Reserves \land 
< I, B2, D2 > \in Reserves \land B1 \neq B2 ) \}
```

Repeated use of variable I ensures that the same sailor has reserved both the boats

Find the names of sailors who have reserved all boats

```
\{ < N > | \exists I \exists T \exists A \forall B \forall BN \forall C \exists D 
( < I, N, T, A > \in Sailors \land 
( < B, BN, C > \in Boats \Rightarrow < I, B, D > \in Reserves) ) \}
OR
\{ < N > | \exists I \exists T \exists A \forall B \forall BN \forall C \exists D 
( Sailors (I, N, T, A) \land 
( Boats (B, BN, C) \Rightarrow Reserves (I, B, D) ) ) \}
```

Find the names of sailors who have reserved all red boats

```
\{ < N > | \exists I \exists T \exists A \forall B \forall BN \forall C \exists D 
( < I, N, T, A > \in Sailors \land 
( ( < B, BN, C > \in Boats \land C = 'red') \Rightarrow < I, B, D > \in Reserves) ) \}
```

> Find all sailors such that, for every red boat, there is a tuple in Reserves that shows the sailor has reserved it.

Safety of Queries in Relational Calculus

- * A query is **safe** if the evaluation result is a finite set of tuples; otherwise, it is **unsafe**.
- ❖ Query $\{S \mid \neg (S \in Sailors)\}\$ is unsafe
 - Ask for all tuples S such that S is not in Sailors
 - Answer set is infinite

Summary

- Relational calculus is a non-procedural formal query language
- Relational calculus has the same expressive power as relational algebra
 - Every query that can be expressed in relational algebra can be expressed as a safe query in TRC/DRC; and vice versa
- * A query language (e.g. SQL) is relationally complete if it can express every query that is expressible in relational algebra/calculus