Adopted Levels, Gammas

History							
Type Author		Citation	Literature Cutoff Date				
Full Evaluation	M. Shamsuzzoha Basunia	NDS 111,2331 (2010)	30-Jun-2010				

 $Q(\beta^{-})=-1.850\times10^{4} \text{ syst}; S(n)=1.897\times10^{4} 5; S(p)=4395.5 7; Q(\alpha)=-9343.0 4$ 2012Wa38

Note: Current evaluation has used the following Q record -18506 syst 18974 50 4399 3 -9343 4 2009AuZZ.

 $\Delta Q(\beta^{-}) = 196(\text{syst}) (2009 \text{AuZZ}).$

 $Q(\beta^{-})=18510\ 200(\text{syst}),\ S(n)=18970\ 50,\ S(p)=4399\ 3,\ S(\alpha)=-9343\ 4\ (2003\text{Au03}).$

 $^{1}\text{H}(^{30}\text{S},^{30}\text{S})$, E=53 MeV/u: 2000Bl25,2001Kh17 and 2001Bl17 (same group): measured recoil proton spectra, deduced $\sigma(\text{E},\theta)$.

 1 H(31 S, 30 S), E=71 MeV/u: 2008Ga07 and 2007Ga46 (same group): measured Ey, particle- γ coincidence, reported 1192 γ , 2210 γ and 3402 γ .

³⁰S Levels

Cross Reference (XREF) Flags

- A 31 Ar β^+ p decay
- B $^{28}\text{Si}(^{3}\text{He,n}\gamma), ^{28}\text{Si}(^{3}\text{He,n})$
- C Coulomb excitation
- D $^{32}S(p,t)$

E(level) [†]	\mathbf{J}^{π}	T _{1/2} @	L	XREF	Comments		
0	0+	1.178 s 5		ABCD	$\%\varepsilon + \%\beta^{+} = 100$		
					J^{π} : L=0 in (p,t).		
2210 6 7 5	2+	156.5.0		A D CD	$T_{1/2}$: From 1980Wi13. Others: 1.22 s 3 (1971Mo27), 1.18 s 4 (1967Ba36).		
2210.6 [‡] 5	2+	156 fs 9		ABCD	J^{π} : L=2 in (p,t). T _{1/2} : Weighted average of 158 fs <i>12</i> (³ He,n γ) and 153 fs <i>13</i> (Coul. Ex.).		
3402.6 [‡] 5	2+	109 fs <i>12</i>		AD D			
3402.6° 3 3667.5 [‡] 10	2.			AB D	J^{π} : L=2 in (p,t).		
		>1 ps		AB			
3676 [‡] <i>3</i>	(1^+)	97 fs <i>55</i>		AB D	J^{π} : Angular distribution consistent with 1^+ , does not agree with 0^+ in (p,t).		
4704 5	(3^{+})			D	E(level), J^{π} : Energy and angular distribution consistent with 3^{+} assignment; less likely possibility is 2^{+} (p,t).		
4814 <i>3</i>	(2^{+})			D	J^{π} : From comparison of the 2+3 state location with the prediction by		
					isobaric multiple mass equation (IMME) ((p,t) - 2010Se07).		
5136 [‡] 2	(3^{+})	38 fs <i>14</i>		AB D	J^{π} : From comparison of the 3+2 state location with the prediction by IMME		
5160 6	(44)		4 0	_	((p,t) - 2010Se07).		
5168 6	(4+)		4+0	D	J^{π} : L=4+0 for doublet in (p,t).		
5217.4 [#] 7	(0^{+})			A D	XREF: D(5226).		
					E(level): From 31 Ar β^+ p decay.		
5318 <i>4</i>	(3-)			В D	J^{π} : L=4+0 for doublet in (p,t). XREF: B(5288).		
3310 4	(3)			ט ט	J^{π} : L=3 (3 He,n) and prediction of the 3 $^{-}$ state location (p,t).		
5389 [#] 2	(2^{+})			A D	J^{π} : From prediction and L=3,(2) in (p,t).		
5843 <i>5</i>	(1^{-})			A D	J^{π} : L=(1) in (p,t) and also L=2,3,4 are possible.		
5945 <i>3</i>	(-)			A	· · - (-) · · · (1 ,·) · · · · · · · · · · · · · · · · · ·		
6071 <i>11</i>				A D			
6202 <i>3</i>				A			
6280.1 <i>12</i>				A			
6341 5				A D			
6532 13				A D			
6643 <i>3</i>				A			

Adopted Levels, Gammas (continued)

³⁰S Levels (continued)

E(level) [†]	J^{π}	L	XREF	Comments
6766 10	2+	2	A D	J^{π} : L=2 in (p,t).
6855 <i>4</i>			Α	
6927 <i>4</i>			Α	
7074 9			A D	
7123 10			AB	
7295 14			AB	
7352 8			AB	
7485 <i>4</i>			AB	
7598 <i>4</i>			Α	
7693 <i>4</i>			Α	
7924 5			A	

 $^{^{\}dagger}$ From $^{32}S(p,t),$ except otherwise noted or when only one ref dataset. ‡ From $^{28}Si(^{3}He,n\gamma).$ # From ^{31}Ar $\beta^{+}p$ decay.
@ From $(^{3}He,n\gamma),$ except otherwise noted.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡
2210.6	2+	2210.6 5	100	0	0+	E2
3402.6	2+	1192.0 5	100 4	2210.6	2+	
		3402.6 <i>13</i>	25 4	0	0^{+}	Q
3667.5		1456.6 <i>11</i>	100	2210.6	2+	
3676	(1^+)	1466 <i>3</i>	67 <i>17</i>	2210.6	2+	
		3676 <i>3</i>	100 17	0	0^{+}	D
5136	(3^{+})	2925 2	100	2210.6	2+	Q

[†] From (3 He,n γ).

[‡] From (3 He, $n\gamma$), based on γ -ray angular correlations.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

