Aljabar Boolean(Jemakmun)

- Misalkan terdapat
 - Dua operator biner: + dan ·
 - Sebuah operator uner: '.
 - B: himpunan yang didefinisikan pada opeartor +, ·, dan '
 - 0 dan 1 adalah dua elemen yang berbeda dari *B*.

Tupel $(B, +, \cdot, ')$

disebut **aljabar Boolean** jika untuk setiap $a, b, c \in B$ berlaku aksioma-aksioma atau postulat Huntington berikut:

- 1. Closure: (i) $a + b \in B$
 - (ii) $a \cdot b \in B$
- 2. Identitas: (i) a + 0 = a
 - (ii) $a \cdot 1 = a$
- 3. Komutatif: (i) a + b = b + a
 - (ii) $a \cdot b = b \cdot a$
- 4. Distributif: (i) $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
 - (ii) $a + (b \cdot c) = (a + b) \cdot (a + c)$
- 5. Komplemen¹: (i) a + a' = 1
 - (ii) $a \cdot a' = 0$
- Untuk mempunyai sebuah aljabar Boolean, harus diperlihatkan:
 - 1. Elemen-elemen himpunan *B*,
 - 2. Kaidah operasi untuk operator biner dan operator uner,
 - 3. Memenuhi postulat Huntington.

Aljabar Boolean Dua-Nilai

Aljabar Boolean dua-nilai:

- $B = \{0, 1\}$
- operator biner, + dan ·
- operator uner, '
- Kaidah untuk operator biner dan operator uner:

a	b	$a \cdot b$
0	0	0
0	1	0
1	0	0
1	1	1

a	b	a+b
0	0	0
0	1	1
1	0	1
1	1	1

а	a'
0	1
1	0

Cek apakah memenuhi postulat Huntington:

- 1. Closure: jelas berlaku
- 2. Identitas: jelas berlaku karena dari tabel dapat kita lihat bahwa:

(i)
$$0+1=1+0=1$$

(ii)
$$1 \cdot 0 = 0 \cdot 1 = 0$$

- 3. Komutatif: jelas berlaku dengan melihat simetri tabel operator biner.
- 4. Distributif: (i) $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ dapat ditunjukkan benar dari tabel operator biner di atas dengan membentuk tabel kebenaran:

	b	С	b+c	$a \cdot (b+c)$	$a \cdot b$	$a \cdot c$	$(a \cdot b) + (a \cdot c)$
a							
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0

1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

- (ii) Hukum distributif $a + (b \cdot c) = (a + b) \cdot (a + c)$ dapat ditunjukkan benar dengan membuat tabel kebenaran dengan cara yang sama seperti (i).
- 5. Komplemen: jelas berlaku karena Tabel 7.3 memperlihatkan bahwa:

(i)
$$a + a' = 1$$
, karena $0 + 0' = 0 + 1 = 1$ dan $1 + 1' = 1 + 0 = 1$

(ii)
$$a \cdot a = 0$$
, karena $0 \cdot 0' = 0 \cdot 1 = 0$ dan $1 \cdot 1' = 1 \cdot 0 = 0$

Karena kelima postulat Huntington dipenuhi, maka terbukti bahwa $B = \{0, 1\}$ bersama-sama dengan operator biner + dan · operator komplemen ' merupakan aljabar Boolean.

Ekspresi Boolean

- Misalkan $(B, +, \cdot, ')$ adalah sebuah aljabar Boolean. Suatu ekspresi Boolean dalam $(B, +, \cdot, ')$ adalah:
 - (i) setiap elemen di dalam B,
 - (ii) setiap peubah,
 - (iii) jika e_1 dan e_2 adalah ekspresi Boolean, maka $e_1 + e_2$, $e_1 \cdot e_2$, e_1 ' adalah ekspresi Boolean

Contoh:

0

1

a

b

 \mathcal{C}

$$a + b$$

 $a \cdot b$
 $a' \cdot (b + c)$
 $a \cdot b' + a \cdot b \cdot c' + b'$, dan sebagainya

Mengevaluasi Ekspresi Boolean

- Contoh: $a' \cdot (b+c)$ jika a = 0, b = 1, dan c = 0, maka hasil evaluasi ekspresi: $0' \cdot (1+0) = 1 \cdot 1 = 1$
- Dua ekspresi Boolean dikatakan **ekivalen** (dilambangkan dengan '=') jika keduanya mempunyai nilai yang sama untuk setiap pemberian nilai-nilai kepada *n* peubah. Contoh:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

Contoh. Perlihatkan bahwa a + a'b = a + b.

Penyelesaian:

a	b	a'	a'b	a + a' b	a+b
0	0	1	0	0	0
0	1	1	1	1	1
1	0	0	0	1	1
1	1	0	0	1	1

- Perjanjian: tanda titik (·) dapat dihilangkan dari penulisan ekspresi Boolean, kecuali jika ada penekanan:
 - (i) a(b+c) = ab + ac
 - (ii) a + bc = (a + b) (a + c)
 - (iii) $a \cdot 0$, bukan a0

Prinsip Dualitas

- Misalkan S adalah kesamaan (*identity*) di dalam aljabar Boolean yang melibatkan operator +, \cdot , dan komplemen, maka jika pernyataan S^* diperoleh dengan cara mengganti
 - · dengan +
 - + dengan ·
 - 0 dengan 1
 - 1 dengan 0

dan membiarkan operator komplemen tetap apa adanya, maka kesamaan S^* juga benar. S^* disebut sebagai *dual* dari S.

Contoh.

(i)
$$(a \cdot 1)(0 + a') = 0$$
 dualnya $(a + 0) + (1 \cdot a') = 1$

(ii)
$$a(a'+b) = ab$$
 dualnya $a + a'b = a + b$

Hukum-hukum Aljabar Boolean

1. Hukum identitas:	2. Hukum idempoten:
(i) $a + 0 = a$	(i) $a + a = a$
(ii) $a \cdot 1 = a$	(ii) $a \cdot a = a$
3. Hukum komplemen:	4. Hukum dominansi:
(i) $a + a' = 1$	(i) $a \cdot 0 = 0$
(ii) $aa' = 0$	(ii) $a + 1 = 1$
5. Hukum involusi:	6. Hukum penyerapan:
(i) $(a')' = a$	(i) $a + ab = a$
	(ii) $a(a+b) = a$

7. Hukum komutatif:	8. Hukum asosiatif:
(i) $a+b=b+a$	(i) $a + (b + c) = (a + b) + c$
(ii) $ab=ba$	(ii) $a (b c) = (a b) c$
9. Hukum distributif:	10. Hukum De Morgan:
(i) $a + (b c) = (a + b) (a + c)$	(i) $(a + b)' = a'b'$
(ii) $a (b + c) = a b + a c$	(ii) $(ab)' = a' + b'$
11. Hukum 0/1 (i) 0' = 1 (ii) 1' = 0	

Contoh 7.3. Buktikan (i) a + a'b = a + b dan (ii) a(a' + b) = ab Penyelesaian:

(i)
$$a + a'b = (a + ab) + a'b$$
 (Penyerapan)
 $= a + (ab + a'b)$ (Asosiatif)
 $= a + (a + a')b$ (Distributif)
 $= a + 1 \bullet b$ (Komplemen)
 $= a + b$ (Identitas)

(ii) adalah dual dari (i)

Fungsi Boolean

• Fungsi Boolean (disebut juga fungsi biner) adalah pemetaan dari B^n ke B melalui ekspresi Boolean, kita menuliskannya sebagai

$$f: B^n \to B$$

yang dalam hal ini B^n adalah himpunan yang beranggotakan pasangan terurut ganda-n (ordered n-tuple) di dalam daerah asal B.

• Setiap ekspresi Boolean tidak lain merupakan fungsi Boolean.

• Misalkan sebuah fungsi Boolean adalah

$$f(x, y, z) = xyz + x'y + y'z$$

Fungsi f memetakan nilai-nilai pasangan terurut ganda-3 (x, y, z) ke himpunan $\{0, 1\}$.

Contohnya, (1, 0, 1) yang berarti x = 1, y = 0, dan z = 1 sehingga $f(1, 0, 1) = 1 \cdot 0 \cdot 1 + 1' \cdot 0 + 0' \cdot 1 = 0 + 0 + 1 = 1$.

Contoh. Contoh-contoh fungsi Boolean yang lain:

- 1. f(x) = x
- 2. f(x, y) = x'y + xy' + y'
- 3. f(x, y) = x' y'
- 4. f(x, y) = (x + y)
- 5. f(x, y, z) = xyz'
 - Setiap peubah di dalam fungsi Boolean, termasuk dalam bentuk komplemennya, disebut **literal**.

Contoh: Fungsi h(x, y, z) = xyz' pada contoh di atas terdiri dari 3 buah literal, yaitu x, y, dan z'.

Contoh. Diketahui fungsi Booelan f(x, y, z) = xy z', nyatakan h dalam tabel kebenaran.

Penyelesaian:

	у	Z	f(x, y, z) = xy z'
$\boldsymbol{\mathcal{X}}$			
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Komplemen Fungsi

1. Cara pertama: menggunakan hukum De Morgan Hukum De Morgan untuk dua buah peubah, x_1 dan x_2 , adalah

Contoh. Misalkan f(x, y, z) = x(y'z' + yz), maka

$$f'(x, y, z) = (x(y'z' + yz))'$$

$$= x' + (y'z' + yz)'$$

$$= x' + (y'z')' (yz)'$$

$$= x' + (y + z) (y' + z')$$

2. Cara kedua: menggunakan prinsip dualitas. Tentukan dual dari ekspresi Boolean yang merepresentasikan *f*, lalu komplemenkan setiap literal di dalam dual tersebut.

Contoh. Misalkan
$$f(x, y, z) = x(y'z' + yz)$$
, maka dual dari f : $x + (y' + z')(y + z)$

komplemenkan tiap literalnya: x' + (y + z)(y' + z') = f'

Jadi,
$$f'(x, y, z) = x' + (y + z)(y' + z')$$

Bentuk Kanonik

- Jadi, ada dua macam bentuk kanonik:
 - 1. Penjumlahan dari hasil kali (sum-of-product atau SOP)
 - 2. Perkalian dari hasil jumlah (*product-of-sum* atau POS)

Contoh: 1.
$$f(x, y, z) = x'y'z + xy'z' + xyz \rightarrow SOP$$

Setiap suku (term) disebut minterm

2.
$$g(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')$$

 $(x' + y + z')(x' + y' + z) \rightarrow POS$

Setiap suku (term) disebut maxterm

• Setiap *minterm/maxterm* mengandung literal lengkap

		M	interm	Maxterm		
x	y	Suku Lambang		Suku	Lambang	
0	0	<i>x</i> ' <i>y</i> '	m_0	x + y	M_0	
0	1	x' y	m_1	x + y	M_1	
1	0	xy'	m_2	x' + y	M_2	
1	1	xy	m_3	x' + y'	M_3	

			M	interm	Max	term
x	y	Z	Suku	Lambang	Suku	Lambang
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x' y ' z	m_1	x+y+z	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'y z	m_3	x + y' + z'	M_3
1	0	0	x y'z'	m_4	x'+y+z	M_4
1	0	1	x y'z	m_5	x'+y+z'	M_5
1	1	0	xyz	m_6	x'+y'+z	M_6
1	1	1	xyz	m_7	x'+y'+z'	M_7

Contoh 7.10. Nyatakan tabel kebenaran di bawah ini dalam bentuk kanonik SOP dan POS.

Tabel 7.10

x	у	Z	<i>f</i> (<i>x</i> , <i>y</i> , <i>z</i>)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0

1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Penyelesaian:

(a) SOP

Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 1 adalah 001, 100, dan 111, maka fungsi Booleannya dalam bentuk kanonik SOP adalah

$$f(x, y, z) = x'y'z + xy'z' + xyz$$

atau (dengan menggunakan lambang minterm),

$$f(x, y, z) = m_1 + m_4 + m_7 = \sum (1, 4, 7)$$

(b) POS

Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 0 adalah 000, 010, 011, 101, dan 110, maka fungsi Booleannya dalam bentuk kanonik POS adalah

$$f(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')$$
$$(x' + y + z')(x' + y' + z)$$

atau dalam bentuk lain,

$$f(x, y, z) = M_0 M_2 M_3 M_5 M_6 = \prod_{i=0}^{\infty} (0, 2, 3, 5, 6)$$

Contoh 7.11. Nyatakan fungsi Boolean f(x, y, z) = x + y'z dalam bentuk kanonik SOP dan POS.

Penyelesaian:

(a) SOP

$$x = x(y + y')$$

= $xy + xy'$

$$= xy (z + z') + xy'(z + z')$$

$$= xyz + xyz' + xy'z + xy'z'$$

$$y'z = y'z (x + x')$$

$$= xy'z + x'y'z$$
Jadi $f(x, y, z) = x + y'z$

$$= xyz + xyz' + xy'z + xy'z' + xy'z + x'y'z$$

$$= x'y'z + xy'z' + xy'z + xyz' + xyz$$
atau $f(x, y, z) = m_1 + m_4 + m_5 + m_6 + m_7 = \sum (1,4,5,6,7)$
(b) POS
$$f(x, y, z) = x + y'z$$

$$= (x + y')(x + z)$$

$$x + y' = x + y' + zz'$$

$$= (x + y' + z)(x + y' + z')$$

$$x + z = x + z + yy'$$

$$= (x + y + z)(x + y' + z)$$
Jadi, $f(x, y, z) = (x + y' + z)(x + y' + z')(x + y + z)(x + y' + z')$

$$= (x + y + z)(x + y' + z)(x + y' + z')$$
atau $f(x, y, z) = M_0 M_2 M_3 = \prod (0, 2, 3)$

Konversi Antar Bentuk Kanonik

Misalkan

$$f(x, y, z) = \Sigma (1, 4, 5, 6, 7)$$

dan f'adalah fungsi komplemen dari f,

$$f'(x, y, z) = \Sigma (0, 2, 3) = m_0 + m_2 + m_3$$

Dengan menggunakan hukum De Morgan, kita dapat memperoleh fungsi *f* dalam bentuk POS:

$$f'(x, y, z) = (f'(x, y, z))' = (m_0 + m_2 + m_3)'$$

$$= m_0' \cdot m_2' \cdot m_3'$$

$$= (x'y'z')' (x'yz')' (x'yz)'$$

$$= (x + y + z) (x + y' + z) (x + y' + z')$$

$$= M_0 M_2 M_3$$

$$= \prod (0,2,3)$$

Jadi, $f(x, y, z) = \Sigma (1, 4, 5, 6, 7) = \prod (0,2,3)$. Kesimpulan: $m_j' = M_j$

Contoh. Nyatakan

$$f(x, y, z) = \prod (0, 2, 4, 5) \text{ dan}$$

 $g(w, x, y, z) = \Sigma(1, 2, 5, 6, 10, 15)$

dalam bentuk SOP.

Penyelesaian:

$$f(x, y, z) = \Sigma (1, 3, 6, 7)$$

$$g(w, x, y, z) = \prod (0, 3, 4, 7, 8, 9, 11, 12, 13, 14)$$

Contoh. Carilah bentuk kanonik SOP dan POS dari f(x, y, z) = y' + xy + x'yz'

Penyelesaian:

(a) SOP

$$f(x, y, z) = y' + xy + x'yz'$$

$$= y' (x + x') (z + z') + xy (z + z') + x'yz'$$

$$= (xy' + x'y') (z + z') + xyz + xyz' + x'yz'$$

$$= xy'z + xy'z' + x'y'z + x'y'z' + xyz + xyz' + x'yz'$$

atau
$$f(x, y, z) = m_0 + m_1 + m_2 + m_4 + m_5 + m_6 + m_7$$

(b) POS

$$f(x, y, z) = M_3 = x + y' + z'$$

SOAL-SOAL YANG HARUS DIKERJAKAN DAN JAWABAN HARUS DIKIRIMKAN SEBELUM BATAS WAKTU YANG SUDAH DITENTUKAN.

- 1. Himpunan $B = \{0,1,2\}$ dan dua buah operator, +(jumlah) dan *(kali), selidiki apakah himpunan B dan kedua operator tersebut membentuk Aljabar Boolean.
- 2. Misalkan fungsi f(x, y, z) = x(y'z' + yz), carilah fungsi komplemenya menggunakan metode;
 - a. De Morgan
 - b. Prinsip Dualitas.
- 3. Misalkan fungsi f(x, y, z) = x(y'z' + yz), tentukan nilai-nilai fungsi yang mungkin dengan menggunakan tabel.