

Department of Aerospace Engineering Indian Institute of Technology, Kanpur AE333: AEROSPACE STRUCTURES I

Practice Set #1 August 16, 2024

Instructions

• Note that these questions are intended for your practice and are not required to be submitted anywhere.

Questions

Problem 1: Listed below are varying combinations of stresses acting at a point and referred to axes x and y in an elastic material. Using Mohr's circle of stress determine the principal stresses at the point and their directions for each combination.

	σ_x (N/mm ²)	$\sigma_{\rm y}~({\rm N/mm^2})$	τ_{xy} (N/mm ²)
(i)	+54	+30	+5
(ii)	+30	+54	-5
(iii)	-60	-36	+5
(iv)	+30	-50	+30

Problem 2: A rectangular plate is under a uniform state of plane stress in the \mathbf{xy} plane. It is known that the maximum tensile stress acting on any face (whose normal lies in the \mathbf{xy} plane) is 75 MN/m^2 . It is also known that on a face perpendicular to the \mathbf{x} axis there is acting a compressive stress of 15 MN/m^2 and no shear stress. No explicit information is available as to the values of the normal stress σ_y , and the shear stress τ_{yx} acting on the face perpendicular to the \mathbf{y} axis. Find the stress components acting on the faces perpendicular to the \mathbf{a} and \mathbf{b} axes which are located as shown in the lower sketch. Report your results in a Mohr's circle.

Problem 3: A state of stress is characterized by its unknown x-y components on the stress element shown below. When the stress element is rotated through an angle of 120°, the state of stress has the n-t components shown below right.

- 1. Draw the Mohr's circle for this state of stress on the axes provided below. Carefully label the center of the circle as well as its radius. Show the x-axis on the Mohr's circle.
- 2. What is the maximum in-plane shear stress?
- 3. What are the σ_x, σ_y and τ_{xy} components of this state of stress?

Solutions

Solution 1:

Solution 2:

Shear Stress = 0.
$$Czy = 0$$

 $Oy = 75 \ MN/m^2$, $Ox = -15 \ My_2$
 $O_1 = -15 + 75 + -15 - 75 \cos(-60^\circ)$
 $= 7.5 (MN/m^2)$
 $O_0 = 30 + 45 \cos(-60^\circ) = 52.5 (MN/m^2)$
 $C_0 = 45 \sin(-60^\circ)$
 $= -38.97 (MN/m^2)$
 $O_0 = 52.5 \ MN/m^2$
 $O_0 = 52.5 \ MN/m^2$
 $O_0 = -38.97 \ MN/m^2$

Solution 3:

$$\sigma_{ave} = \frac{\sigma_{P1} + \sigma_{P2}}{2} = \frac{22 + 12}{2} = 17 \text{ ksi}$$

$$R = \frac{\sigma_{P1} - \sigma_{P2}}{2} = \frac{22 - 12}{2} = 5 \text{ ksi}$$

$$|\tau|_{max, in-plane} = R = 5 \text{ ksi}$$

From Mohr's circle shown:

$$\sigma_x = \sigma_{ave} - Rcos60^\circ = 17 - (5)cos60^\circ = 14.5 \text{ ksi}$$

$$\sigma_y = \sigma_{ave} + Rcos60^\circ = 17 + (5)cos60^\circ = 19.5 \text{ ksi}$$

$$\tau_{xy} = -R \sin 60^{\circ} = -(5) \sin 60^{\circ} = -4.33 \text{ ksi}$$

