

D0 Cut Optimization

Brandon McKinzie, Alex Schmah

Heavy Flavour Meeting

Data

- Full preview 2 dataset with ~70M events (minimum bias).
- Based on LBNL picoDSTs.
- D0 event tree from Alex, using 2D vertex finding + linear approximation.
- Mixed event is using 13 bins in z-vertex with Delta z ~ 20 cm.
- Mixed event statistics limited so far (on purpose).

Strategy

- Vary topological cuts (next slide) on datasets to obtain invariant mass histograms for same- and mixed-events (for ALL possible cut combinations) per p_⊤ bin.
- Total number of histograms:
 - \circ N = 6[p_T bins] * 6⁵ [cut combinations] = 46, 656
- Normalize associated same- and mixed-event histograms to each other.
 Perform same-minus-mixed to obtain signal.
- Calculate signal significance for each.

Cuts Varied

	900711 P _T 1.9	00t B: 1:0 P _T 2:0
Cut Name	Cut Range - Set A	Cut Range - Set B
Kaon DCA	20 - 95	60 - 135
Pion DCA	20 - 95	60 - 135
Kaon-Pion DCA*	40 - 90	40 - 80
Primary-to-Decay-Vertex Distance	50 - 200	120 - 370
$\cos(\theta)$	0.98 - 0.986	0.986 - 0.996

Set A: 1 < p₋ < 1.5

Set B: $1.5 < p_{-} < 2.5$

^{*} These are upper-limit cuts

Set A: $1 < p_T < 1.5$ [BEFORE]

Significance 5.784

Set A: $1 < p_T < 1.5$ **[AFTER]**

Significance 5.911

Optimized Topological Cuts:

dcaA: 35

dcaB: 35

VerdistX: 110

 $\cos(\theta) \times 10^4$: 9800

dcaAB: 50

Set B: $1.5 < p_{T} < 2.5$ [BEFORE]

Significance 11.205

dcaA: 119

dcaB: 86

VerdistX: 216

 $\cos(\theta) \times 10^4$: 9905

dcaAB: 185

Set B: $1.5 < p_T < 2.5$ [AFTER]

Significance 11.875

dcaA: 120

dcaB: 75

VerdistX: 170

 $\cos(\theta) \times 10^4$: 9880

dcaAB: 64

Summary and Conclusions

- Performed systematic scan of D0 topology cuts for optimal signal significance per-p_T-interval. Cut resolution increased about (apparent) relative minimum.
- D0 signal noticeably strongest in range: $1.5 < p_T < 2.5$.
- Further increasing cut resolution yields small improvements.
- Similar plans for D+/-

Optional Slides

Past Results

Initial Scans: Low p_T

 p_T : 0.0 - 0.5 GeV Significance: 0

 p_T : 0.5 - 1.0 GeV Significance: 4.047

Initial Scans : Middle p_T

 p_T : 1.5 - 2.5 GeV Significance: 6.818

 p_T : 2.5 - 5 GeV Significance: 10.740

Initial Scans : High p_T

p_T : 5 - 10 GeV

Significance: 10.194

p_T : 5 - 10 GeV Significance: **10.190**