Лабораторная работа

ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЦЕПЯХ ПЕРВОГО ПОРЯДКА

При подготовке к выполнению лабораторной работы необходимо:

- а) получить допуск к выполнению лр на этапе моделирования переходных процессов в мультисиме.
- б) получить допуск к выполнению лр на стенде ni elvis 2.
 - Для этого необходимо:
 - прочитать по учебнику теоретические сведения
 - изучить описание работы
 - выполнить предварительный расчет и заготовить проект к пояснительной записки ответить на вопросы и тестовые задачи

Цель работы: изучить переходные процессы в цепях первого порядка при подключении линейной электрической цепи к источнику постоянного напряжения, и генератора прямоугольных импульсов.

Теоретические сведения

Подключение цепи с RL-элементами к источнику постоянного напряжения

$$\begin{cases} I_{1} = I_{2} + I_{3}; \\ U_{L} + I_{3}R_{3} = E; \\ I_{2}R_{2} = R; \end{cases}$$

Электрический ток второй ветви равен $I_2 = E/R_2$;

Для вычисления тока в третьей ветви необходимо решить дифференциальное уравнение первого порядка:

$$L\frac{di_3}{dt} + R_3 i_3 = E;$$

Электрический ток определяется в виде суммы двух составляющих: $i_3^{(t)=i_{np}+i_{cg}}$; Здесь $^{i}_{np}$ — принужденный ток и $^{i}_{ce}$ — свободный ток

Постоянная времени $\tau = \frac{L}{R_2} = -\frac{1}{p}$

Свободный ток равен $i_{cs} = Ae^{-\frac{t}{\tau}} = Ae^{pt}$; Принужденный ток равен $i_{np} = \frac{E}{R_2}$;

Итого получаем значение тока в третьей ветви из решения дифференциального уравнения $i_3(t) = \frac{E}{R_2} + Ae^{pt};$

Используя законы коммутации, найдем постоянную интегрирования: $i_L(0-) = i_L(0+) = 0$

Тогда получим
$$i_L(0+) = \frac{E}{R_3} + Ae^0 = 0$$
 Hаходим: $A = -\frac{E}{R_3}$;

Следовательно получаем уравнение тока для индуктивности $i_3(t) = \frac{E}{R_3}(1 - e^{pt});$

Определим напряжение на индуктивности $U_L(t) = L \frac{di_3}{dt} = \frac{E}{R_3} L \frac{R_3}{L} e^{pt} = E e^{pt}$

Отключение цепи с RL-элементами от источника постоянного напряжения Запишем дифференциальное уравнение при отключени индуктивности на разрядное сопротивление R_2

$$L\frac{di}{dt} + (R_3 + R_2)i = 0;$$

Решение дифференциального уравнения будет состоять только из свободного затухающего тока $i(t) = i_{cs} = Ae^{pt}$;

Определим постоянную интегрирования:

$$i_L(0-) = i_L(0+) = \frac{E}{R_3} = Ae^0$$
; получаем $A = \frac{E}{R_3}$;

Уравнение переходного процесса электрического тока определяется по формуле

$$i(t) = \frac{E}{R_3} e^{pt}$$
; . Постоянная по времени равна $\tau = -\frac{1}{p} = \frac{L}{(R_3 + R_2)}$;

Напряжение на индуктивности можно определить по формуле

$$U_L(t) = L\frac{di}{dt} = \frac{E}{R_3}Lpe^{pt} = \frac{E}{R_3}L\frac{R_3 + R_2}{L}e^{pt} = E\frac{R_3 + R_2}{R}e^{pt}$$

Моделирование в среде Multisim

Рисунок 2: ПЭС для моделирования в Multisim

Нужные нам компоненты:

Нужные нам компоненты:	
Путь к компоненту Вставить \rightarrow Компонент	Условные обозначения
Раздел Basic→Семейство Resistor →Выбираем нужный	
Раздел Basic→Семейство Capacitor →Выбираем нужный	⊣⊢
Раздел Basic→Семейство Inductor →Выбираем нужный	
Раздел Source→Семейство Power Source→Выбираем Ground	
Раздел Source→Семейство Signal Voltage Source→Выбираем Clock Voltage	T E 1kHz 5 V
Моделирование→Приборы→4-х канальный осциллограф	хsс1 ф ф ф ф
Раздел Source→Controlled Voltage Sources →Выбираем Current Controlled Voltage Source	± V 5
Раздел Source →Signal Voltage Sources → Выбираем Bipolar Voltage	+ E 0V -15V 50kHz

Наименование	Значение параметра во время действия t						
	Импульса мкс			Паузы мкс			
параметра	0	5	10	0	5	10	
$I_L(t)$							
U _L (t)							

Варианты заданий для RL-цепи

Вариант	E , B	R_1 , кОм	R_2 , кОм	R ₃ , Ом	R ₄ ,кОм	L , мГн
1	48	1.4	8	0.01	2	60
2	48	1.6	12	0.01	3	40
3	48	2.5	15	0.01	3	40
4	48	0.8	16	0.01	4	40
5	48	1	20	0.01	5	60
6	36	1.4	8	0.01	2	60
7	36	0.6	12	0.01	3	40
8	50	2.5	15	0.01	3	40
9	50	1.8	16	0.01	4	40
10	50	1	18	0.01	4.5	40
11	36	2	9	0.01	3	60
12	36	1.2	12	0.01	4	72
13	36	2.5	15	0.01	5	72
14	36	1.2	16	0.01	3.2	50
15	48	2	18	0.01	6	72
16	36	2	20	0.01	8	60
17	36	0.6	10	0.01	2.5	60
18	36	0.4	9	0.01	3	40
19	24	1.2	8	0.01	3.2	80
20	24	1	6	0.01	1.5	40
21	24	1.5	9.6	0.01	2.4	40
22	24	1.3	10	0.01	2.5	50
23	24	1.5	12	0.01	4	40
24	24	1.6	14	0.01	3.5	40
25	36	0.4	9	0.01	3	80

Переходные процессы в цепях с RC-элементами

При подключении резистивно-емкостной цепи без начального запаса энергии к источнику постоянного напряжения с ЭДС Е напряжение на конденсаторе Uc изменяется по экспоненциальному закону, ток і нарастает, а убывает по экспоненте.

Алгоритм решения задач сводится к следующему:

- составляют систему уравнений в интегральной или дифференциальной форме по законам Кирхгофа.
- методом замены переменных получают дифференциальное уравнение первого порядка, если в цепи один накопитель, а затем его решают

Рисунок 3: Резистивно-емкостная цепь Составим систему уравнений для электрической цепи (см рисунок 4)

$$\begin{cases} E = I_1 \cdot R_1 + I_2 \cdot R_2; \\ U_C + I_3 \cdot R_3 - I_2 \cdot R_2 = 0; \\ I_1 - I_2 - I_3 = 0. \end{cases}$$

Заменяя переменные, получим следующие уравнения:

$$\begin{cases} i_3 R_1 + i_3 (R_1 + R_2) = E; \\ i_2 = \frac{E}{(R_1 + R_2)} - i_3 \frac{R_1}{R_1 + R_2}; \\ U_C + i_3 (R_3 + \frac{R_1 \cdot R_2}{R_1 + R_2}) = E \frac{R_3}{R_1 + R_2}. \end{cases}$$

Во второй ветви ток проходит через конденсатор и определяется дифференциальной зависимостью между током и напряжением: $i_3 = C \frac{dU_C}{dt}$

Получив дифференциальное уравнение первго порядка с разделяющимися переменными:

Решение дифференциального уравнения как общее (правая часть равняется нулю), так и частичное, найдем, зная функцию правой части. Разделение на две составляющие напряжения на конденсаторре исходит только из математического решения дифференциального уравнения:

$$U_C(t) = U_{Cnn} + U_{Ccc};$$

При подключении резистивно-емкостной цепи без начального запаса энергии к источнику постоянного напряжения с ЭДС Е (рисунок 4) напряжение на конденсаторе Uc изменяется по экспоненциальному закону, ток і нарастает, а убывает по экспоненте:

$$U_C(t) = E(1 - E^{-\frac{t}{RC}}) i(t) = \frac{E}{R} e^{-\frac{t}{RC}}$$
 при t>0

Постоянной времени цепи называют время, в течение которого свободная составляющая тока или свободная составляющая напряжения уменьшается в е раз.

В неразветвленных RL-цепях τ =L/R, а в цепях τ =RC. При включении цепи к источнику постоянного напряжения ток I (в RL-цепи) или напряжение Uc (в RC-цепи) за время τ достигает 0,63 от установившегося значение тока I (в RL-цепи) или напряжения Uc (в RC-цепи) устанавливается через бесконечно большое время.

Существуют различные критерии определения времени окончания переходного процесса. За время t=3 τ напряжение на конденсаторе (ток в индуктивной катушке) достигает 0,95 от установившегося значения, а через время t=5 τ -более 0,99. Аналогичные процессы происходят и при отключении напряжения питания.

Рисунок 4: ПЭС для моделирования в Multisim

По результатам моделирования заполняем таблицу.

Рисунок 5: Напряжения и токи на разных элементах

Варианты заданий для RC-цепи

Варианты	E , B	R ₁ , кОм	R ₂ , кОм	R ₃ , Ом	R ₄ , Ом	С, мкФ
1	5	1.6	2	0.01	1	0.1
2	10	1.5	2	0.01	1	0.1
3	15	1.7	2	0.01	1	0.1
4	6	1.6	2	0.01	1	0.1
5	11	1.5	2	0.01	1	0.1
6	16	1.7	2	0.01	1	0.1
7	4	1.6	2	0.01	1	0.1
8	9	1.5	2	0.01	1	0.1
9	14	1.7	2	0.01	1	0.1
10	5	1.5	2	0.01	1	0.1
11	10	1.6	2	0.01	1	0.1
12	15	1.7	2	0.01	1	0.1
13	6	1.5	2	0.01	1	0.1
14	11	1.7	2	0.01	1	0.1
15	16	1.6	2	0.01	1	0.1
16	4	1.6	2	0.01	1	0.1
17	9	1.5	2	0.01	1	0.1
18	14	1.7	2	0.01	1	0.1
19	5	1.6	2	0.01	1	0.1
20	10	1.6	2	0.01	1	0.1
21	15	1.5	2	0.01	1	0.1
22	6	1.7	2	0.01	1	0.1
23	11	1.6	2	0.01	1	0.1
24	16	1.7	2	0.01	1	0.1
25	4	1.6	2	0.01	1	0.1