

Операционные системы

Лекция 1 Введение. История ВТ

Устройство ВС

Что такое операционная система?

Операционная система — программа, контролирующая выполнение прикладных программ и исполняющая роль интерфейса между приложениями и аппаратным обеспечением компьютера

Операционная система – менеджер ресурсов

SOFTWARE OPERATING SYSTEM HARDWARE

Что такое операционная система?

Операционная система — программа, контролирующая выполнение прикладных программ и исполняющая роль интерфейса между приложениями и аппаратным обеспечением компьютера

Операционная система – менеджер ресурсов

Пространство пользователя

Пространство ядра

Аппаратное обеспечение

Архитектура ОС GNU/Linux

Пользовательское пространство

Приложения (офисные, графические, браузеры, утилиты и т.д.)

Службы (веб-сервер, СУБД, Х сервер и т.д.)

Системные библиотеки (glibc и др.)

Пространство ядра

Системные вызовы (system calls)				
Подсистема ввода/вывода			Подсистема процессов	
Виртуальная файл	овая система Сетевой сте		Межпроцессное взаимодействие	
Драйверы файловых систем	Драйверы символьных устройств	Драйверы сетевых устройств	Управление памятью	Планировщик процессов
Драйверы блочных устройств			Архитектурно-зависимый код	

Аппаратное обеспечение

Что было до?

Первый период (1945-1955гг) Ламповые машины.

Операционных систем нет

- Программирование на машинном языке
- Организация вычислительного процесса вручную каждым программистом с пульта управления
- Загрузка программы с помощью панели переключателей, либо перфокарт
- ВС выполняет одновременно только одну операцию (ввод-вывод, либо собственно вычисления)
- Возникают первые компиляторы Fortran, Assembler для IBM-701

Строго последовательная обработка данных!

Второй период (1955г. – начало 60-х гг.) Транзисторные машины Пакетные операционные системы

Появление полупроводниковых элементов:

- •Повышение надежности
- •Снижение потребления электроэнергии
- •Уменьшение размеров
- •Снижение стоимости

Появляются первые системы пакетной обработки!

Третий период (начало 60-х — 1980г.) Компьютеры на основе интегральных микросхем.

Первые многозадачные ОС

ТРАНЗИСТОРЫ

ИНТЕГРАЛЬНЫЕ СХЕМЫ

- ВС становится более надежной и дешевой
- Повышается производительность процессоров
- Растет сложность и количество решаемых задач

Мультипрограммирование - пока одна программа выполняет операцию ввода-вывода, процессор выполняет другую программу

Четвертый период (с 1980г. по настоящее время) Персональные компьютеры.

Классические сетевые и распределенные системы

Резкое возрастание интеграции и снижение стоимости микросхем

Массовость, общедоступность

Первоначально персональные компьютеры предназначались для использования одним пользователем в однопрограммном режиме, что повлекло за собой деградацию архитектуры этих ЭВМ и их ОС (например пропала необходимость защиты файлов памяти, планирования заданий)

В середине 80-х развитие сетей компьютеров => развитие сетевых и распределенных ОС

Пятый период. Суперкомпьютеры.

Параллельные вычисления и системы искусственного интеллекта

В то время как предыдущие поколения совершенствовались за счёт увеличения количества элементов на единицу площади (миниатюризации), компьютеры пятого поколения должны были для достижения сверхпроизводительности интегрировать огромное количество процессоров.

Компьютеры Cray стали классикой в области векторно-конвейерных суперкомпьютеров. Первые сверхвысокопроизводительные векторные компьютеры: Cray-1 (1976 год), ILLIAC-IV, STAR-100, ASC.

Итоги лекции

Операционная система — программа, контролирующая выполнение прикладных программ и исполняющая роль интерфейса между приложениями и аппаратным обеспечением компьютера

Традиционно, развитие ВТ делится на 5 этапов:

- Ламповые машины.
- Транзисторные машины
- Компьютеры на основе интегральных микросхем
- Персональные компьютеры
- Суперкомпьютеры

Домашняя работа

Прочитать:

- Таненбаум Глава 1 (1.1, 1.2)
- Карпов/Коньков Глава 1
- Столлингс Глава 1 (обзорно), Глава 2 (2.1, 2.2)

Подумать:

• Как вы видите операционные системы будущего? Какие задачи им предстоит решать?

Ответ на вопрос присылать на почту

sergei.balabaev@mail.ru

Тема письма: ОС ДЗ

Дедлайн: 27 сентября 23:59

Спасибо за внимание!

Вопросы?

Если стесняемся, то можно сюда: @sergeybalabaev