# $12a_{0463} (K12a_{0463})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$I_1^u = \langle u^{58} + 2u^{57} + \dots + b - 1, -u^{57} - u^{56} + \dots + a + 1, u^{59} + 2u^{58} + \dots - 2u - 1 \rangle$$
  

$$I_2^u = \langle b, -u^2 + a + u - 1, u^4 - u^3 + u^2 + 1 \rangle$$

\* 2 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 63 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{58} + 2u^{57} + \dots + b - 1, \ -u^{57} - u^{56} + \dots + a + 1, \ u^{59} + 2u^{58} + \dots - 2u - 1 
angle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{57} + u^{56} + \dots + u - 1 \\ -u^{58} - 2u^{57} + \dots + u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{9} - 3u^{5} - u \\ u^{9} + u^{7} + 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{57} - u^{56} + \dots + 3u^{2} + 2u \\ u^{58} + 2u^{57} + \dots - 2u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{55} - u^{54} + \dots - u + 1 \\ u^{29} + 3u^{27} + \dots + 4u^{2} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u^{9} + u^{7} + 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} + u \\ u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{9} + 3u^{5} + u \\ u^{11} + u^{9} + 4u^{7} + 3u^{5} + 3u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $4u^{58} + 8u^{57} + \cdots 13u 5$

#### (iv) u-Polynomials at the component

| Crossings                   | u-Polynomials at each crossing            |
|-----------------------------|-------------------------------------------|
| $c_1$                       | $u^{59} + 27u^{58} + \dots - 1984u - 256$ |
| $c_2, c_6$                  | $u^{59} - u^{58} + \dots - 56u + 16$      |
| $c_3, c_{10}$               | $u^{59} + 2u^{58} + \dots - 2u - 1$       |
| $c_4, c_5, c_7$             | $u^{59} - 5u^{58} + \dots + 24u^2 + 1$    |
| $c_8, c_9, c_{11}$ $c_{12}$ | $u^{59} - 12u^{58} + \dots + 2u + 1$      |

## (v) Riley Polynomials at the component

| Crossings                   | Riley Polynomials at each crossing            |
|-----------------------------|-----------------------------------------------|
| $c_1$                       | $y^{59} + 3y^{58} + \dots - 2207744y - 65536$ |
| $c_2, c_6$                  | $y^{59} + 27y^{58} + \dots - 1984y - 256$     |
| $c_3, c_{10}$               | $y^{59} + 12y^{58} + \dots + 2y - 1$          |
| $c_4, c_5, c_7$             | $y^{59} - 53y^{58} + \dots - 48y - 1$         |
| $c_8, c_9, c_{11}$ $c_{12}$ | $y^{59} + 72y^{58} + \dots + 50y - 1$         |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.343246 + 0.929430I |                                       |                     |
| a = 0.23393 + 2.03837I    | -2.90400 - 0.48534I                   | -3.04622 - 0.93099I |
| b = 0.385366 - 0.992201I  |                                       |                     |
| u = -0.343246 - 0.929430I |                                       |                     |
| a = 0.23393 - 2.03837I    | -2.90400 + 0.48534I                   | -3.04622 + 0.93099I |
| b = 0.385366 + 0.992201I  |                                       |                     |
| u = -0.530651 + 0.868709I |                                       |                     |
| a = -1.04989 + 1.47863I   | -3.01197 + 4.86238I                   | -3.57054 - 6.43781I |
| b = 0.958742 - 0.452365I  |                                       |                     |
| u = -0.530651 - 0.868709I |                                       |                     |
| a = -1.04989 - 1.47863I   | -3.01197 - 4.86238I                   | -3.57054 + 6.43781I |
| b = 0.958742 + 0.452365I  |                                       |                     |
| u = 0.512834 + 0.819534I  |                                       |                     |
| a = -2.07477 - 1.14802I   | -2.20006 - 2.45590I                   | -5.34282 + 5.82388I |
| b = 0.344806 - 0.832765I  |                                       |                     |
| u = 0.512834 - 0.819534I  |                                       |                     |
| a = -2.07477 + 1.14802I   | -2.20006 + 2.45590I                   | -5.34282 - 5.82388I |
| b = 0.344806 + 0.832765I  |                                       |                     |
| u = 0.517835 + 0.901720I  |                                       |                     |
| a = 2.57194 + 0.49149I    | -0.05687 - 6.75762I                   | 0. + 9.22820I       |
| b = -0.571645 + 0.989887I |                                       |                     |
| u = 0.517835 - 0.901720I  |                                       |                     |
| a = 2.57194 - 0.49149I    | -0.05687 + 6.75762I                   | 0 9.22820I          |
| b = -0.571645 - 0.989887I |                                       |                     |
| u = -0.431886 + 0.855275I |                                       |                     |
| a = 0.42205 - 1.46717I    | 1.17445 + 2.04675I                    | 3.24024 - 3.82120I  |
| b = -0.622029 + 0.574005I |                                       |                     |
| u = -0.431886 - 0.855275I |                                       |                     |
| a = 0.42205 + 1.46717I    | 1.17445 - 2.04675I                    | 3.24024 + 3.82120I  |
| b = -0.622029 - 0.574005I |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.104023 + 0.946889I |                                       |                     |
| a = -2.13002 - 1.92768I   | -1.60171 + 5.75877I                   | 0.24744 - 6.03089I  |
| b = 0.550439 + 1.057570I  |                                       |                     |
| u = -0.104023 - 0.946889I |                                       |                     |
| a = -2.13002 + 1.92768I   | -1.60171 - 5.75877I                   | 0.24744 + 6.03089I  |
| b = 0.550439 - 1.057570I  |                                       |                     |
| u = 0.731988 + 0.763169I  |                                       |                     |
| a = 0.800342 + 0.062233I  | -9.65537 - 2.66883I                   | -9.83468 + 3.25272I |
| b = -0.112548 + 1.197950I |                                       |                     |
| u = 0.731988 - 0.763169I  |                                       |                     |
| a = 0.800342 - 0.062233I  | -9.65537 + 2.66883I                   | -9.83468 - 3.25272I |
| b = -0.112548 - 1.197950I |                                       |                     |
| u = 0.537997 + 0.944744I  |                                       |                     |
| a = -2.66911 - 0.07381I   | -5.25013 - 10.71760I                  | -4.54465 + 9.45987I |
| b = 0.647369 - 1.158890I  |                                       |                     |
| u = 0.537997 - 0.944744I  |                                       |                     |
| a = -2.66911 + 0.07381I   | -5.25013 + 10.71760I                  | -4.54465 - 9.45987I |
| b = 0.647369 + 1.158890I  |                                       |                     |
| u = -0.057586 + 0.882777I |                                       |                     |
| a = 2.31101 + 1.39500I    | 3.06980 + 2.34027I                    | 6.64897 - 4.48405I  |
| b = -0.592455 - 0.810374I |                                       |                     |
| u = -0.057586 - 0.882777I |                                       |                     |
| a = 2.31101 - 1.39500I    | 3.06980 - 2.34027I                    | 6.64897 + 4.48405I  |
| b = -0.592455 + 0.810374I |                                       |                     |
| u = 0.714820 + 0.495375I  |                                       |                     |
| a = 0.447234 - 0.136210I  | -6.70702 + 6.08853I                   | -8.24622 - 3.55476I |
| b = -0.585668 - 1.188170I |                                       |                     |
| u = 0.714820 - 0.495375I  |                                       |                     |
| a = 0.447234 + 0.136210I  | -6.70702 - 6.08853I                   | -8.24622 + 3.55476I |
| b = -0.585668 + 1.188170I |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.566605 + 0.649388I  |                                       |                     |
| a = -0.266615 - 1.188520I | -2.75909 - 1.65966I                   | -8.41788 + 3.66504I |
| b = -0.124692 - 0.867050I |                                       |                     |
| u = 0.566605 - 0.649388I  |                                       |                     |
| a = -0.266615 + 1.188520I | -2.75909 + 1.65966I                   | -8.41788 - 3.66504I |
| b = -0.124692 + 0.867050I |                                       |                     |
| u = -0.611622 + 0.577390I |                                       |                     |
| a = 1.131410 - 0.440626I  | -3.94508 - 0.54490I                   | -6.77151 - 0.50771I |
| b = -0.956464 - 0.308436I |                                       |                     |
| u = -0.611622 - 0.577390I |                                       |                     |
| a = 1.131410 + 0.440626I  | -3.94508 + 0.54490I                   | -6.77151 + 0.50771I |
| b = -0.956464 + 0.308436I |                                       |                     |
| u = 0.629823 + 0.513947I  |                                       |                     |
| a = -0.474587 + 0.552020I | -1.28323 + 2.43963I                   | -4.50558 - 3.22204I |
| b = 0.472585 + 0.971110I  |                                       |                     |
| u = 0.629823 - 0.513947I  |                                       |                     |
| a = -0.474587 - 0.552020I | -1.28323 - 2.43963I                   | -4.50558 + 3.22204I |
| b = 0.472585 - 0.971110I  |                                       |                     |
| u = 0.050655 + 0.809073I  |                                       |                     |
| a = -2.80210 - 0.73123I   | 0.057074 - 1.043030I                  | 3.86720 + 0.46567I  |
| b = 0.654760 + 0.520162I  |                                       |                     |
| u = 0.050655 - 0.809073I  |                                       |                     |
| a = -2.80210 + 0.73123I   | 0.057074 + 1.043030I                  | 3.86720 - 0.46567I  |
| b = 0.654760 - 0.520162I  |                                       |                     |
| u = 0.802556 + 0.909873I  |                                       |                     |
| a = 0.645306 - 0.524552I  | -9.57681 - 3.00894I                   | 0                   |
| b = 0.073782 + 0.922649I  |                                       |                     |
| u = 0.802556 - 0.909873I  |                                       |                     |
| a = 0.645306 + 0.524552I  | -9.57681 + 3.00894I                   | 0                   |
| b = 0.073782 - 0.922649I  |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = 0.878048 + 0.900066I  |                                       |                    |
| a = -0.608654 - 0.248494I | -6.92983 - 1.93819I                   | 0                  |
| b = 0.743403 - 0.349469I  |                                       |                    |
| u = 0.878048 - 0.900066I  |                                       |                    |
| a = -0.608654 + 0.248494I | -6.92983 + 1.93819I                   | 0                  |
| b = 0.743403 + 0.349469I  |                                       |                    |
| u = -0.908427 + 0.893152I |                                       |                    |
| a = -0.394230 - 0.515132I | -9.26800 - 2.97267I                   | 0                  |
| b = 0.548605 - 1.127370I  |                                       |                    |
| u = -0.908427 - 0.893152I |                                       |                    |
| a = -0.394230 + 0.515132I | -9.26800 + 2.97267I                   | 0                  |
| b = 0.548605 + 1.127370I  |                                       |                    |
| u = 0.862553 + 0.938272I  |                                       |                    |
| a = 0.210045 + 0.711663I  | -6.80919 - 4.50807I                   | 0                  |
| b = -0.759924 - 0.382114I |                                       |                    |
| u = 0.862553 - 0.938272I  |                                       |                    |
| a = 0.210045 - 0.711663I  | -6.80919 + 4.50807I                   | 0                  |
| b = -0.759924 + 0.382114I |                                       |                    |
| u = -0.350516 + 0.631281I |                                       |                    |
| a = -0.830854 + 0.196340I | 0.162716 + 1.132970I                  | 2.90169 - 5.38040I |
| b = 0.379823 + 0.257914I  |                                       |                    |
| u = -0.350516 - 0.631281I |                                       |                    |
| a = -0.830854 - 0.196340I | 0.162716 - 1.132970I                  | 2.90169 + 5.38040I |
| b = 0.379823 - 0.257914I  |                                       |                    |
| u = -0.922367 + 0.885921I |                                       |                    |
| a = 0.414846 + 0.164365I  | -14.8968 - 7.2841I                    | 0                  |
| b = -0.69639 + 1.25575I   |                                       |                    |
| u = -0.922367 - 0.885921I |                                       |                    |
| a = 0.414846 - 0.164365I  | -14.8968 + 7.2841I                    | 0                  |
| b = -0.69639 - 1.25575I   |                                       |                    |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = 0.906516 + 0.902473I  |                                       |            |
| a = 0.880104 + 0.387890I  | -12.19390 + 0.69942I                  | 0          |
| b = -1.146010 + 0.424597I |                                       |            |
| u = 0.906516 - 0.902473I  |                                       |            |
| a = 0.880104 - 0.387890I  | -12.19390 - 0.69942I                  | 0          |
| b = -1.146010 - 0.424597I |                                       |            |
| u = -0.899151 + 0.910017I |                                       |            |
| a = 0.012912 + 0.933912I  | -11.05620 + 2.06484I                  | 0          |
| b = -0.290358 + 1.086540I |                                       |            |
| u = -0.899151 - 0.910017I |                                       |            |
| a = 0.012912 - 0.933912I  | -11.05620 - 2.06484I                  | 0          |
| b = -0.290358 - 1.086540I |                                       |            |
| u = -0.881614 + 0.946166I |                                       |            |
| a = -1.35992 + 1.22851I   | -10.93940 + 4.50938I                  | 0          |
| b = 0.320527 + 1.080930I  |                                       |            |
| u = -0.881614 - 0.946166I |                                       |            |
| a = -1.35992 - 1.22851I   | -10.93940 - 4.50938I                  | 0          |
| b = 0.320527 - 1.080930I  |                                       |            |
| u = 0.880655 + 0.955668I  |                                       |            |
| a = -0.445587 - 0.984412I | -12.02220 - 7.29324I                  | 0          |
| b = 1.141580 + 0.449582I  |                                       |            |
| u = 0.880655 - 0.955668I  |                                       |            |
| a = -0.445587 + 0.984412I | -12.02220 + 7.29324I                  | 0          |
| b = 1.141580 - 0.449582I  |                                       |            |
| u = -0.875312 + 0.962071I |                                       |            |
| a = 1.78278 - 1.05080I    | -9.04599 + 9.55430I                   | 0          |
| b = -0.569196 - 1.124490I |                                       |            |
| u = -0.875312 - 0.962071I |                                       |            |
| a = 1.78278 + 1.05080I    | -9.04599 - 9.55430I                   | 0          |
| b = -0.569196 + 1.124490I |                                       |            |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.913352 + 0.939543I |                                       |                     |
| a = 0.829208 - 0.487224I  | -19.6434 + 3.3613I                    | 0                   |
| b = -0.01243 - 1.44915I   |                                       |                     |
| u = -0.913352 - 0.939543I |                                       |                     |
| a = 0.829208 + 0.487224I  | -19.6434 - 3.3613I                    | 0                   |
| b = -0.01243 + 1.44915I   |                                       |                     |
| u = -0.877468 + 0.975151I |                                       |                     |
| a = -1.93743 + 0.83023I   | -14.6076 + 13.9156I                   | 0                   |
| b = 0.71000 + 1.24590I    |                                       |                     |
| u = -0.877468 - 0.975151I |                                       |                     |
| a = -1.93743 - 0.83023I   | -14.6076 - 13.9156I                   | 0                   |
| b = 0.71000 - 1.24590I    |                                       |                     |
| u = -0.626785 + 0.171888I |                                       |                     |
| a = 0.501490 - 0.081895I  | -5.26927 + 3.82540I                   | -8.88049 - 3.82555I |
| b = -0.432777 - 1.116070I |                                       |                     |
| u = -0.626785 - 0.171888I |                                       |                     |
| a = 0.501490 + 0.081895I  | -5.26927 - 3.82540I                   | -8.88049 + 3.82555I |
| b = -0.432777 + 1.116070I |                                       |                     |
| u = -0.424302 + 0.237848I |                                       |                     |
| a = -0.692243 + 0.560199I | -0.194105 + 1.203550I                 | -3.60543 - 5.01021I |
| b = 0.363149 + 0.700644I  |                                       |                     |
| u = -0.424302 - 0.237848I |                                       |                     |
| a = -0.692243 - 0.560199I | -0.194105 - 1.203550I                 | -3.60543 + 5.01021I |
| b = 0.363149 - 0.700644I  |                                       |                     |
| u = 0.330842              |                                       |                     |
| a = 2.08280               | -2.22425                              | -4.28740            |
| b = -0.644701             |                                       |                     |

II. 
$$I_2^u = \langle b, -u^2 + a + u - 1, u^4 - u^3 + u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} - u + 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} - u + 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} - u + 2 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} - 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1 \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes =  $3u^2 2u 1$

#### (iv) u-Polynomials at the component

| Crossings        | u-Polynomials at each crossing |
|------------------|--------------------------------|
| $c_1, c_2, c_6$  | $u^4$                          |
| $c_3$            | $u^4 - u^3 + u^2 + 1$          |
| $c_4, c_5$       | $(u-1)^4$                      |
|                  | $(u+1)^4$                      |
| $c_8, c_9$       | $u^4 + u^3 + 3u^2 + 2u + 1$    |
| $c_{10}$         | $u^4 + u^3 + u^2 + 1$          |
| $c_{11}, c_{12}$ | $u^4 - u^3 + 3u^2 - 2u + 1$    |

## (v) Riley Polynomials at the component

| Crossings                   | Riley Polynomials at each crossing |
|-----------------------------|------------------------------------|
| $c_1, c_2, c_6$             | $y^4$                              |
| $c_3, c_{10}$               | $y^4 + y^3 + 3y^2 + 2y + 1$        |
| $c_4, c_5, c_7$             | $(y-1)^4$                          |
| $c_8, c_9, c_{11}$ $c_{12}$ | $y^4 + 5y^3 + 7y^2 + 2y + 1$       |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.351808 + 0.720342I |                                       |                     |
| a = 0.95668 - 1.22719I    | -1.43393 + 1.41510I                   | -1.48175 - 2.96122I |
| b = 0                     |                                       |                     |
| u = -0.351808 - 0.720342I |                                       |                     |
| a = 0.95668 + 1.22719I    | -1.43393 - 1.41510I                   | -1.48175 + 2.96122I |
| b = 0                     |                                       |                     |
| u = 0.851808 + 0.911292I  |                                       |                     |
| a = 0.043315 + 0.641200I  | -8.43568 - 3.16396I                   | -3.01825 + 2.83489I |
| b = 0                     |                                       |                     |
| u = 0.851808 - 0.911292I  |                                       |                     |
| a = 0.043315 - 0.641200I  | -8.43568 + 3.16396I                   | -3.01825 - 2.83489I |
| b = 0                     |                                       |                     |

III. u-Polynomials

| Crossings             | u-Polynomials at each crossing                                    |
|-----------------------|-------------------------------------------------------------------|
| $c_1$                 | $u^4(u^{59} + 27u^{58} + \dots - 1984u - 256)$                    |
| $c_2, c_6$            | $u^4(u^{59} - u^{58} + \dots - 56u + 16)$                         |
| $c_3$                 | $(u^4 - u^3 + u^2 + 1)(u^{59} + 2u^{58} + \dots - 2u - 1)$        |
| $c_4,c_5$             | $((u-1)^4)(u^{59} - 5u^{58} + \dots + 24u^2 + 1)$                 |
| <i>C</i> <sub>7</sub> | $((u+1)^4)(u^{59} - 5u^{58} + \dots + 24u^2 + 1)$                 |
| $c_8, c_9$            | $(u^4 + u^3 + 3u^2 + 2u + 1)(u^{59} - 12u^{58} + \dots + 2u + 1)$ |
| $c_{10}$              | $(u^4 + u^3 + u^2 + 1)(u^{59} + 2u^{58} + \dots - 2u - 1)$        |
| $c_{11}, c_{12}$      | $(u^4 - u^3 + 3u^2 - 2u + 1)(u^{59} - 12u^{58} + \dots + 2u + 1)$ |

IV. Riley Polynomials

| Crossings                   | Riley Polynomials at each crossing                                  |
|-----------------------------|---------------------------------------------------------------------|
| $c_1$                       | $y^4(y^{59} + 3y^{58} + \dots - 2207744y - 65536)$                  |
| $c_2, c_6$                  | $y^4(y^{59} + 27y^{58} + \dots - 1984y - 256)$                      |
| $c_3, c_{10}$               | $(y^4 + y^3 + 3y^2 + 2y + 1)(y^{59} + 12y^{58} + \dots + 2y - 1)$   |
| $c_4, c_5, c_7$             | $((y-1)^4)(y^{59} - 53y^{58} + \dots - 48y - 1)$                    |
| $c_8, c_9, c_{11}$ $c_{12}$ | $(y^4 + 5y^3 + 7y^2 + 2y + 1)(y^{59} + 72y^{58} + \dots + 50y - 1)$ |