Base Model

The base model for Rocky is an inverted pendulum. It is approximated to a long rod of an effective length l_{eff} . Also, it has two wheels and an axle at the bottom, which are connected to a motor. The motor is controlled by a control system, which takes in the angle (displacement) of the system and outputs a rotational force on the axle, preferably one that helps the inverted pendulum stabilize itself.

We have two main measures for determining the success of our control system.

- 1. Rocky should not fall if given a disturbance of 30° or less. This disturbance would have a magnitude of $<30^\circ$ degrees and last about 0.1 seconds. We believe this is an achievable goal and should protect Rocky from most common disturbances in the environment.
- 2. Rocky should stabilize to an oscillation no greater than 1° 2 seconds after a disturbance. This would prove that Rocky can effectively reach a steady state in a short period of time.

Parameter Specifications

Gyroscope Test

A gyroscope test was conducted to determine some physical characteristics of the rocky system. The "Rocky" was hung from its top and swung as a (non-inverted) pendulum to observe its oscillation frequency and effective length.

Natural Frequency

A standard pendulum oscillates with a natural frequency of $\sqrt{\frac{g}{l}}$, where g is acceleration due to gravity and l is the length of the pendulum. Our team determined the period of oscillation of Rocky as if it were a standard pendulum by observing how much time elapsed between each oscillation, represented by the elapsed time from the local maxima on a graph of angle versus time.

Figure 1: Angle over Time for an Oscillating Rocky

The value of ω_n , or natural frequency, is the mean of the elapsed times between each peak, or $4.4142\,\mathrm{rad/s}$

This is the natural frequency at which Rocky oscillates as a normal pendulum.

Effective Length

Now that we have the natural frequency of the pendulum, the length can be calculated using $\omega_n=\sqrt{\frac{g}{l_{eff}}}$. Since we know $\omega_n=4.4142~\mathrm{rad/s}$, simplifying the equation reveals that $l_{eff}=0.5035~\mathrm{m}$, which is almost 20"

Motor Test

The motor test is designed to determine the characteristics of the motor and inverted pendulum system. This specific test is a step response for Rocky comparing an input motor signal to the output velocity. The characteristics of this motion help determine the motor gain K and time constant τ .

Motor Gain

The motor's gain is the ratio of an input motor signal to an output velocity response. In this test, the input signal has a magnitude of 200 and we must solve for the steady state response.

The input signal is constant, and similar to charging a capacitor, the velocity over time exponentially approaches the steady state response as shown: $v(t) = -200K(1-e^{-t/\tau})$. Note that since K is the ratio of the output and input signals, the input signal multiplied by K is the magnitude of the output signal, or velocity. An exponential fit in this form determines the velocity as a function of time to be about $-200 \cdot (0.0017) \cdot (1-e^{-\frac{t}{0.0611}})$, shown in Figure 2.

This means that the magnitude of the gain, K is about 0.0017.

Time Constant

Using the same data as above, we can determine how fast the inverted pendulum approaches the steady state by extracting τ from the line of best fit. In this case, $\tau=0.0611~\mathrm{s}$.

Figure 2: Velocity over Time with a Stepper Input