Observational evidence of star formation stochasticity in the CALIFA dataset

Nicolás Romero Díaz¹ Advisor: Jaime Forero-Romero¹

> ¹Departamento de Física Universidad de los Andes

Undergraduate thesis advance September 2016

Table of Contents

- Motivation
 - Stochasticity in star formation
 - Measuring stochasticity
- The CALIFA survey
 - CALIFA datacubes
- Oata analysis
 - Preliminary results

Table of Contents

- Motivation
 - Stochasticity in star formation
 - Measuring stochasticity
- 2 The CALIFA survey
 - CALIFA datacubes
- 3 Data analysis
 - Preliminary results

Stochasticity in star formation

Where does stochasticity arise?

- Star formation
 - Initial Mass Function (IMF)
 - \bullet $m_{min} m_{max}$
 - Relative abundance
 - Cluster Mass Function (CMF)
 - Sampling of mass functions SFR
 - Low SFR \rightarrow Stochasticity¹

Stochasticity in star formation

- Example: weighted die
 - Smaller numbers are more likely

Figure: Caption

Motivation

General objective

"Look for observational evidence of stochasticity in star formation processes in the data published by CALIFA".

Specific objectives

- Develop a simple theoretical model to measure the effects of stochasticity in the EW of the H_{α} and O_{H} emission lines
- Analize data from the CALIFA survey collaboration
- Compare results between the observed data and the theoretical model
- Conclude if there is enough evidence to claim that stochastic effects have been detected in CALIFA data

Measuring stochasticity

How does stochasticity translate into observable quantities?

- Stochasticity causes fluctuation $\frac{H_{lpha}}{H_{eta}}$
- SLUG: Stochastically Light Up Galaxies
- "We find that stochasticity alone induces a broad distribution in L_{α} and EW at a fixed SFR, and that the widths of these distributions decrease with increasing SFR" ³

²Fumagalli et. al. 2011

³Forero-Romero, Dijkstra, 2012

Measuring stochasticity

- Balmer decrement
 - Interstellar dust
 - $\frac{H_{\alpha}}{H_{\beta}} = 2.85 \rightarrow \frac{H_{\alpha}}{H_{\beta}} \ge 2.85^4$
 - Interstellar reddening

Figure: https://arxiv.org/pdf/1206.1867v2.pdf⁵

Nicolás Romero Díaz (Uniandes)

⁵Domínguez et. al. 2012

⁴Osterbrock, Astrophysics of Planetary Nebulae and Active Galactic Nuclei, University Science Books, 1989

Table of Contents

- Motivation
 - Stochasticity in star formation
 - Measuring stochasticity
- The CALIFA survey
 - CALIFA datacubes
- 3 Data analysis
 - Preliminary results

The CALIFA survey

- \sim 600 galaxies
- "Largest and most comprehensive wide-field IFU survey of galaxies carried out to date"

Figure: http://califaserv.caha.es/CALIFA/DATA/Figs/CALIFA_HexDR2.png

The CALIFA datacubes

- 2 setups⁷
- V500
 - 3745 7500 Å
 - $^{\lambda}/_{\Delta\lambda}\sim$ 850
- V1200
 - 3700 4800 Å
 - $^{
 m \lambda}/_{\Delta\lambda}\sim 1650$

Table of Contents

- Motivation
 - Stochasticity in star formation
 - Measuring stochasticity
- 2 The CALIFA survey
 - CALIFA datacubes
- Oata analysis
 - Preliminary results

Data analysis

- Fit spectral lines
 - Strong emission lines
 - Weak emission lines

Figure: Spectral fit

Data analysis

- Pipe3D: analysis pipeline⁸
- "The final product of the data reduction from both surveys is a regular grid datacube, with x and y coordinates that indicate the right ascention and declination of the target, and the z coordinate a common step in wavelength..."

⁸Sánchez et. al. 2016

Figure: IC0776

Figure: NGC0036

Figure: NGC7819

Figure: UGC09476

Figure: IC0776

Figure: NGC7819

Figure: UGC09476

Remaining work

Tareas \ Semanas	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	X	X	X													
2			X	X	X											
3					X	X	X									
4								X	X	X	X					
5												X	X			
6													X	X	X	
7											X	X	X	X	X	X

- Task 1: Learn to work with CALIFA data
- Task 2: Calculate intensity ratios for a single galaxy
- Task 3: Redact first draft
- Task 4: Analyze results for all galaxies

- Task 5: Compare results found with theoretical predictions
- Task 6: Conclude if stochastic effects are observed
- Task 7: Redact final documents