Práctica 2 - continuación:

Espacios vectoriales

A lo largo de esta práctica $(V, \mathbb{K}, +, \cdot)$ es un espacio vectorial sobre el cuerpo de los reales, salvo mención expresa.

- 12. Probar el siguiente enunciado: Sean $U_1, U_2 \subset V$ subespacios. Luego $V = U_1 \oplus U_2$ si y sólo si se verifican las siguientes condiciones:
 - *i*) $V = U_1 + U_2$.
 - *ii*) $U_1 \cap U_2 = \{0\}.$

Encontrar un contraejemplo para demostrar que este resultado no puede extenderse a *m* subespacios.

- 13. Para cada uno de los siguientes conjuntos determinar si es un subespacio de $C(\mathbb{R})$ o explique por que no lo es
 - a) $\{f \in C(\mathbb{R}) : f(x) \leq 0, \forall x \in \mathbb{R}\}.$
 - b) $\{ f \in C(\mathbb{R}) : f(0) = 0, \}.$
 - c) $\{ f \in C(\mathbb{R}) : f(2) = 0, \}.$
 - d) El conjunto de funciones constantes.
 - *e*) $\{\alpha + \beta \operatorname{sen} x : \alpha, \beta \in \mathbb{R}\}.$
- 14. Dar un ejemplo de subespacio no vacío de $U \subset \mathbb{R}^2$ tal que U sea cerrado bajo la multiplicación por escalares, pero que no sea un subespacio de \mathbb{R}^2 .
- 15. Sea $\mathbb{K}[x]$ el espacio vectorial de los polinomios con coeficientes en \mathbb{K} , y sea U el subespacio de $\mathbb{K}[x]$ dado por

$$U = \{ax^2 + bx^5 : a, b \in \mathbb{K}\}.$$

Encontrar un subespacio W de $\mathbb{K}[x]$ tal que $\mathbb{K}[x] = U \oplus W$.

- 16. Sea V un espacio vectorial sobre \mathbb{K} , y sean W_1, W_2, W_3 son subespacios de V. Determinar si son verdaderas o falsas las siguientes afirmaciones
 - i) Si $W_1 + W_3 = W_2 + W_3$ luego $W_1 = W_2$.
 - ii) Si $W_1 \oplus W_3 = W_2 \oplus W_3$ luego $W_1 = W_2$.
- 17. Sean A y B matrices tales que AB = 0. Demostrar que el espacio columna de B está contenido en el espacio nulo de A. ¿Qué sucede con el espacio fila de A y el espacio nulo de B^T ?
- 18. Sean W_1 , W_2 subespacios de V. Demostrar que $W_1 \cup W_2$ es un subespacio de V si y sólo si $W_1 \subset W_2$ o $W_2 \subset W_1$. Comparar con el ejercicio 6 de la primera parte de la práctica.
- 19. Considere el espacio vectorial V de todas las funciones con dominio y codomimio igual a \mathbb{R} (con la suma y producto por escalares usuales).

Sean $V_i = \{ f \in V : f \text{ es un función impar} \}$ y $V_p = \{ f \in V : f \text{ es un función par} \}$. Probar que

- a) V_i y V_p son subespacios de V.
- b) $V_i + V_v = V$.
- c) $V_i \cap V_v = \{0\}.$
- 20. En el espacio vectorial de las matrices reales de orden 3, describir el subespacio generado por cada uno de los siguientes conjuntos:

$$A = \left\{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\},$$

$$B = \left\{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix} \right\},$$

- 21. Sea $\langle S \rangle$ el subespacio generado por un subconjunto S de V. Demostrar las siguientes propiedades
 - *a*) Si $S \subset T$, entonces $\langle S \rangle \subset \langle T \rangle$.
 - *b*) $S \subset \langle S \rangle$.
 - *c*) Si $S \subset T$ y T es un subespacio de V, entonces $\langle S \rangle \subset T$. Es decir que $\langle S \rangle$ es el menor subespacio de V que contiene a S.
 - *d*) S es un subespacio de V si y sólo si $\langle S \rangle = S$.
 - *e*) Si $\langle S \rangle = U$, entonces $\langle U \rangle = U$.
 - *f*) Sea $W \subset V$. Entonces $i)\langle S \cap W \rangle \subset \langle S \rangle \cap \langle W \rangle$, $ii)\langle S \cup W \rangle \subset \langle S \rangle + \langle W \rangle$.
 - *g*) Valen las contenciones inversas en los ítems *a*) y *f*).
- 22. Describir el menor subespacio vectorial de $\mathbb{R}^{2\times 2}$ que contenga a
 - a) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ y $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.
 - b) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.
 - c) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} y \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$
- 23. Sea V el espacio vectorial de los polinomios en $\mathbb{R}[x]$ de grado menor o igual a 3. Considere los siguientes polinomios:

$$p_1(x) = x^3 + 2x^2 + 4,$$
 $p_4(x) = 3x^3 + 6x^2 + 9x + 12,$ $p_5(x) = 2x^3 + 5x^2 + 11x + 8,$ $p_5(x) = x^3 + 3x^2 + 8x + 3.$ $p_5(x) = x^3 + 3x^2 + 8x + 3.$

Para $j \in \{4, 5\}$ determinar si $p_j \in \langle \{p_1, p_2, p_3\} \rangle$.

- 24. Analizar si los siguientes vectores son linealmente independientes
 - a) (1,1,0,0); (1,0,1,0); (0,0,1,1); (0,1,0,1).
 - *b*) (1,1,0); (1,0,0); (0,1,1); (x,y,z) para x,y,z cualesquiera.
- 25. Sea $P = \{(x, y, z, t) \in \mathbb{R}^4 : x 2y + z t = 0\}$. Verificar que P es un espacio vectorial y hallar 3 vectores linealmente independientes en P.
- 26. Probar que
 - a) Todo conjunto de vectores que contenga al vector nulo es *l.d.*
 - *b*) Si *S* es *l.i.* entonces *T* es *l.i.* $\forall T \subset S$.
 - *c*) Si *S* es *l.d.* entonces *T* es *l.d* $\forall T \supset S$.
- 27. Si $\{v_1, v_2, v_3\} \subset V$ es un conjunto *l.i.*, probar que $\{v_1 + v_2, v_1 + v_3, v_2 + v_3\}$ también es *l.i.*