Stats 315B: Homework 3

Joe Higgins, Austin Wang, Jessica Wetstone $Due\ 5/20/2018$

Question 1

Consider a multi-hidden layer neural network trained by sequential steepest-descent using the weight updating formula $w_t = w_{t-1} - \eta G(w_{t-1})$ Here t labels the observations presented in sequence (time) and G(w) is the gradient of the squared-error criterion evaluated at w. Derive a recursive "back-propagation" algorithm for updating all of the network weights at each step. With this algorithm the update for an input weight to a particular hidden node is computed using only the value of its corresponding input (that it weights), the value of the output of the hidden node to which it is input, and an "error signal" from each of the nodes in the next higher layer to which this node is connected. Thus, each node in the network can update its input weights using information provided only by the nodes to which it is connected.

Question 2

Consider a radial basis function network with spherical Gaussian basis of the form $B(x|\mu_m,\sigma_m)=\left(-\frac{1}{2\sigma_m^2}\sum_{j=1}^n(x_j-\mu_{jm})^2\right)$, with the function approximation given by $\hat{F}(x)=\sum_{m=1}^M a_m B(x|\mu_m,\sigma_m)$ and sum-of-squares error criterion. Derive expressions for the gradient G(x) with respect to all (types of) parameters in the network.

Question 3

Question 4

Question 5

Describe K—fold cross-validation. What is it used for. What are the advantages of using more folds (increasing K). When does cross—validation estimate the performance of the actual predicting function being used.

Question 6

Suppose there are several outcome variables $\{y_1, y_2, ..., y_M\}$ associated with a common set of predictor variables $x = \{x_1, x_2, ..., x_n\}$. One could train separate single output neural networks for each outcome y_m or train a single network with multiple outputs, one for each y_m. What are the relative advantages/disadvantages of these two respective approaches. In what situations would one expect each to be better than the other.

Question 7

Spam Email. The data sets spam_stats315B_train.csv, spam_stats315B_test.csv and documentation for this problem are the same as in Homework 2 and can be found in the class web page. You need first to standardize predictors and choose all the weights starting values at random in the interval [-0.5, 0.5].

```
see: https://piazza.com/class/jfehm8n4ied2w9?cid=256
```

```
rm(list = ls())
```

```
#Utility functions
#qet overall accuracy of a model for a given threeshold
get_accuracy <- function(y_hat, y, threshold){</pre>
 y_hat[y_hat > threshold] <- 1</pre>
  y_hat[y_hat <= threshold] <- 0</pre>
 correct <- y_hat == y</pre>
 pct_correct = sum(correct)/length(correct)
 return(pct_correct)
#returns misclassification rates for overall and each class for a given threshold
get_misclassification_rates <- function(model, threshold){</pre>
 y_hat <- predict(model, test_scaled_X)</pre>
 y_hat[y_hat > threshold] <- 1</pre>
 y_hat[y_hat <= threshold] <- 0</pre>
  correct <- y_hat == test_y</pre>
  correct_spam <- correct[test_y == 1]</pre>
  correct_nonspam <- correct[test_y == 0]</pre>
  misclassification_rate <- 1 - sum(correct)/length(correct)</pre>
  spam_misclassification_rate <- 1 - sum(correct_spam)/length(correct_spam)</pre>
  nonspam_misclassification_rate <- 1 - sum(correct_nonspam)/length(correct_nonspam)</pre>
 return(c(
    misclassification_rate,
    spam_misclassification_rate,
    nonspam_misclassification_rate)
}
#display numeric as percent
percent <- function(x, digits = 2, format = "f", ...) {</pre>
 paste0(formatC(100 * x, format = format, digits = digits, ...), "%")
set seed <- function(){</pre>
 set.seed(123)
#remove all variables except for functions
rm(list = setdiff(ls(), lsf.str()))
#data labels
rflabs<-c("make", "address", "all", "3d", "our", "over", "remove",
  "internet", "order", "mail", "receive", "will",
  "people", "report", "addresses", "free", "business",
  "email", "you", "credit", "your", "font", "000", "money",
  "hp", "hpl", "george", "650", "lab", "labs",
  "telnet", "857", "data", "415", "85", "technology", "1999",
  "parts", "pm", "direct", "cs", "meeting", "original", "project",
  "re", "edu", "table", "conference", ";", "(", "[", "!", "$", "#",
  "CAPAVE", "CAPMAX", "CAPTOT", "type")
```

```
#load the data
data_path <- paste(getwd(),'/data',sep='')</pre>
setwd(data path)
train <- read.csv(file="spam stats315B train.csv", header=FALSE, sep=",")
test <- read.csv(file="spam_stats315B_test.csv", header=FALSE, sep=",")
colnames(train)<-rflabs</pre>
colnames(test)<-rflabs</pre>
#scale the predictors (X) in train and test by the train data
num_cols <- dim(train)[2]</pre>
train_X <- train[,c(1:(num_cols-1))]</pre>
train_X_means <- apply(train_X,2,mean)</pre>
train_X_sds <- apply(train_X,2,sd)</pre>
train_scaled_X <- train_X</pre>
train_scaled_X <- sweep(train_scaled_X, 2, train_X_means, "-")</pre>
train_scaled_X <- sweep(train_scaled_X, 2, train_X_sds, "/")</pre>
test_X <- test[,c(1:(num_cols-1))]</pre>
test scaled X <- test X
test_scaled_X <- sweep(test_scaled_X, 2, train_X_means, "-")</pre>
test_scaled_X <- sweep(test_scaled_X, 2, train_X_sds, "/")</pre>
#create y vectors
train_y <- data.frame(train[,'type'])</pre>
test_y <- data.frame(test[,'type'])</pre>
```

(a) Fit on the training set one hidden layer neural networks with 1, 2,..., 10 hidden units and different sets of starting values for the predictors (obtain in this way one model for each number of units). Which structural model performs best at classifying on the test set?

The structural model with 4 hidden units performs best at classifying the test set, achieving an estimated (test set) accuracy of 92.24%. The second best was 3 hidden units, achieving 91.66% accuracy.

reference: https://piazza.com/class/jfehm8n4ied2w9?cid=235

```
#remove all except functions and data
to_keep <- ls()[!(ls() %in% c('train_scaled_X','train_y','test_scaled_X','test_y'))]
rm(list = setdiff(to_keep, lsf.str()))

#set parameters
num_neurons <- seq(1:10)
num_reps <- 10
wt_rang = 0.5
threshold <- .50
accuracies <- c()

#for each structural model
for(size in num_neurons){
    sum_accuracy <- 0
    #average accuracy over num_reps random initializations
    for(i in c(1:num_reps)){</pre>
```

```
set_seed()
    model <- nnet(</pre>
        train_scaled_X, train_y, size=num_neurons[size],
        linout = FALSE, entropy = FALSE, softmax = FALSE,
        censored = FALSE, skip = FALSE, rang = wt_rang, decay = 0,
        maxit = 100, Hess = FALSE, trace = FALSE
    )
    y_hat <- predict(model, test_scaled_X)</pre>
    sum_accuracy <- sum_accuracy + get_accuracy(y_hat, test_y, threshold)</pre>
  }
  accuracies <- c(accuracies, sum_accuracy/num_reps)
}
#get the num_neurons corresponding with model that produced highest average accuracy
best_performing_idx <- which.max(accuracies)</pre>
best_performing_num_neurons <- num_neurons[best_performing_idx]</pre>
best2_performing_idx <- which.max(accuracies[accuracies!=max(accuracies)])</pre>
best2_performing_num_neurons <- num_neurons[best2_performing_idx]</pre>
#Report output
cat("Best performing number of hidden layer neurons: ",
    best_performing_num_neurons, "\n",
    "Accuracy: ",
    percent(accuracies[best_performing_idx]),"\n")
cat("2nd best performing number of hidden layer neurons: ",
    best2_performing_num_neurons, "\n",
    "Accuracy: ",
    percent(accuracies[best2_performing_idx]),"\n")
## Best performing number of hidden layer neurons: 4
## Accuracy: 92.24%
## 2nd best performing number of hidden layer neurons: 3
```

(b) Choose the optimal regularization (weight decay for parameters 0,0.1,...,1) for the structural model found above by averaging your estimators of the misclassification error on the test set. The average should be over 10 runs with different starting values. Describe your final best model obtained from the tuning process: number of hidden units and the corresponding value of the regularization parameter. What is an estimation of the misclassification error of your model?

Our best model uses 4 neurons, and a weight decay of 0.1. It has an overall estimated (test set) misclassification rate of 4.69% (spam 5.34%, and nonspam 4.26%). We see this is an improvement over the unregularized version, which had an estimated misclassification rate of 7.76%.

see: https://piazza.com/class/jfehm8n4ied2w9?cid=223

Accuracy: 91.66%

```
#remove all except functions, data and best structural info
to_keep <- ls()[
  !(ls() %in% c('train_scaled_X','train_y','test_scaled_X','test_y','best_performing_num_neurons'))
]
rm(list = setdiff(to_keep, lsf.str()))
#set parameters</pre>
```

```
weight_decays <- seq(0,1,.1)</pre>
num_reps <- 10</pre>
wt_rang = 0.5
threshold <- .50
accuracies <- c()
#for each weight decay
for(weight_decay in weight_decays){
  sum_accuracy <- 0</pre>
  #average over several random initializations
  for(i in c(1:num_reps)){
    set_seed()
    model <- nnet(</pre>
        train_scaled_X, train_y, size= best_performing_num_neurons,
        linout = FALSE, entropy = FALSE, softmax = FALSE,
        censored = FALSE, skip = FALSE, rang = wt_rang, decay = weight_decay,
        maxit = 100, Hess = FALSE, trace = FALSE
    )
    y_hat <- predict(model, test_scaled_X)</pre>
    sum_accuracy <- sum_accuracy + get_accuracy(y_hat, test_y, threshold)</pre>
  }
  accuracies <- c(accuracies, sum_accuracy/num_reps)</pre>
#get the weight decay corresponding with model that produced highest average accuracy
best_performing_idx <- which.max(accuracies)</pre>
best_performing_weight_decay <- weight_decays[best_performing_idx]</pre>
#get misclassification rates for our best chosen parameters
set_seed()
model <- nnet(</pre>
    train_scaled_X, train_y, size= best_performing_num_neurons,
    linout = FALSE, entropy = FALSE, softmax = FALSE,
    censored = FALSE, skip = FALSE, rang = wt_rang, decay = best_performing_weight_decay,
    maxit = 100, Hess = FALSE, trace = FALSE
misclassification_rates <- get_misclassification_rates(model, threshold)
#Report output
cat("Best number of hidden units: ", best_performing_num_neurons, "\n")
cat("Best weight decay for chosen structure: ", best_performing_weight_decay, "\n\n")
cat("Misclassifiction rates: ","\n")
cat(percent(misclassification_rates[1]), ": Overall","\n")
cat(percent(misclassification_rates[2]), ": Spam","\n")
cat(percent(misclassification_rates[3]), ": Nonspam","\n")
```

Best number of hidden units: 4

```
## Best weight decay for chosen structure: 0.1
##
## Misclassifiction rates:
## 4.69% : Overall
## 5.34% : Spam
## 4.26% : Nonspam
```

(c) As in the previous homework the goal now is to obtain a spam filter. Repeat the previous point requiring this time the proportion of misclassified good emails to be less than 1%.

Our best filter requiring the proportion of misclassified nonspam to be less than 1% has a hidden layer size of 6 and weight decay of 0.2. This achieves an overall misclassification rate of 6.58% (spam: 14.89%, nonspam: 0.98%). We find the best filter by fitting a model for each combination of a number of hidden units in $\{1, 2, ..., 10\}$ and the weight decay in $\{0.0, 0.1, ..., 1.0\}$. We then find the minimum threshold that misclassifies at most 1% of nonspam emails for each model. By applying to each model it's own threshold, we find the model and threshold combination that yields the lowest overall misclassification rate while maintaining a nonspam misclassification rate of at most 1%.

See: https://piazza.com/class/jfehm8n4ied2w9?cid=257

```
#remove all except functions and data
to_keep <- ls()[!(ls() %in% c('train_scaled_X', 'train_y', 'test_scaled_X', 'test_y'))]</pre>
rm(list = setdiff(to_keep, lsf.str()))
#function that finds threshold for a 1% or lower nonspam misclassification rate
#for a given model
find_threshold <- function(model){</pre>
  thresholds \leftarrow seq(0,1,0.01)
  y_hat <- predict(model, test_scaled_X)</pre>
  for(thresh in thresholds){
    y_hat_nonspam <- y_hat[test_y == 0]</pre>
    y_hat_nonspam[y_hat_nonspam > thresh] <- 1</pre>
    y_hat_nonspam[y_hat_nonspam <= thresh] <- 0</pre>
    nonspam_misclassification_rate <- sum(y_hat_nonspam)/length(y_hat_nonspam)</pre>
    if(nonspam_misclassification_rate <= 0.01) {break}</pre>
  }
  return(thresh)
}
#set parameters
num_neurons <- seq(1:10)</pre>
weight_decays <- seq(0,1,.1)</pre>
wt_rang = 0.5
#fit a model to each set of parameters
models <- list()
for(i in c(1:length(num_neurons))){
  for(j in c(1:length(weight_decays))){
    set_seed()
    model <- nnet(</pre>
        train_scaled_X, train_y, size=num_neurons[i],
```

```
linout = FALSE, entropy = FALSE, softmax = FALSE,
        censored = FALSE, skip = FALSE, rang = wt_rang, decay = weight_decays[j],
        maxit = 100, Hess = FALSE, trace = FALSE
    )
    models[[paste(i,j,sep="_")]] <- model</pre>
 }
}
#find the threshold that returns < 1% nonspam misclassification rate for each model
model_thresholds <- lapply(models, function(x) {find_threshold(x)})</pre>
#qet the overall, spam, and non-spam misclassification rates at each threshold
misclassification_rates <- mapply(get_misclassification_rates, models, model_thresholds)
#find the model with the lowest overall misclassification rate
#(using forced < 1% nonspam threshold)
best_model_idx <- which.min(misclassification_rates[1,])</pre>
best_model <- models[[best_model_idx]]</pre>
best_misclassification_rates <- misclassification_rates[,best_model_idx]</pre>
#report best model
cat("Best model: ","\n")
cat("Hidden layer size: ", best_model$n[2], "\n")
cat("Decay: ", best_model$decay, "\n\n")
cat("Misclassifiction rates: ","\n")
cat(percent(best_misclassification_rates[1]), ": Overall","\n")
cat(percent(best_misclassification_rates[2]), ": Spam","\n")
cat(percent(best_misclassification_rates[3]), ": Nonspam","\n")
## Best model:
## Hidden layer size: 6
## Decay: 0.2
## Misclassifiction rates:
## 6.58% : Overall
## 14.89% : Spam
## 0.98% : Nonspam
```