6/1/24, 1:47 PM DS_NPC

Il problema DS è NP-completo

Dato un grafo non orientato G=(V,E), un sottoinsieme D di nodi tale che ogni nodo che non è in D ha almeno un vicino in D è un dominating set di G

Un DS è un insieme di nodi che domina tutti i nodi del grafo.

Un vertex cover V' è sempre un dominating set: se ogni arco ha un estremo in V', ogni nodo non in V' ha un vicino in V'.

Ma non sempre un dominating set è un vertex cover :

in figura vediamo un dominating set che non è un vertex cover: infatti, l'arco (C,D) non è coperto dal nodo H.

Nel problema Dominating Set vogliamo trovare un sottoinsieme di nodi "piccolo" che domini tutti i nodi di un grafo.

Dati un grafo non orientato G=(V,E) ed un intero $k\in\mathbb{N}$, esiste un sottoinsieme di al più k nodi tale che ogni nodo che non è in quel sottoinsieme ha un vicino in esso?

- $\mathcal{I}_{DS} = \{ \langle G = (V, E), k \rangle : G \text{ è un grafo connesso non orientato e } k \text{ un intero positivo } \}.$
- $S_{DS}(G, k) = \{ D \subset V \}.$
- $\pi_{DS}(G, k, \mathcal{S}_{DS}(G, k)) = \exists D \in \mathcal{S}_{DS}(G, k) : |D| \leq k \land \forall u \in V D[\exists v \in D : (u, v) \in E].$

Il primo passo, per dimostrare la \mathbf{NP} -completezza di DS, è dimostrare che $DS \in \mathbf{NP}$.

Un certificato è un sottoinsieme D di V .

Per verificare che D è effettivamente un Dominating Set per G, ossia che D soddisfa $\pi_{DS}(G,k,\mathcal{S}_{DS}(G,k))$, dobbiamo esaminare ciascun nodo u in V-D e verificare che esiste un nodo v in D tale che $(u,v)\in E$. Perciò, verifichiamo un certificato in tempo O(|V|2|E|).

Dimostriamo che DS è completo per ${\bf NP}$ riducendo polinomialmente VC a DS.

Trasformiamo una istanza $\langle G=(V,E),k\rangle$ di VC nell'istanza $\langle G_D=(V_D,E_D),k\rangle$ di DS: in cui $V_D=V\cup W$, con $W=\{uv:(u,v)\in E\}$ e in cui $E_D=E\cup F$, con $F=\{(u,uv),(v,uv):(u,v)\in E\}$

Trasformiamo una istanza $\langle G=(V,E),k\rangle$ di VC nell'istanza $\langle G_D=(V_D,E_D),k\rangle$ di DS, in cui $V_D=V\cup W, conW=uv:(u,v)\in E$ e $E_D=E\cup F, conF=\{(u,uv),(v,uv):(u,v)\in E\}$

Se G ha un vertex cover V' con $|V'| \le k$, allora, V' è un dominating set per G_D , infatti: $V' \subseteq V \subseteq V_D$; inoltre, comunque scegliamo un nodo u in V_D :

- se $u \in V-V'$: poiché G è connesso esiste un arco (u,v) in E, e poiché V' è un vertex cover per G allora $v \in V'$
- ullet se $u=xy\in W$, poiché V' è un vertex cover per G allora $x\in V$ ' o $y\in V$

6/1/24, 1:47 PM DS_NPC

Trasformiamo una istanza $\langle G=(V,E),k\rangle$ di VC nell'istanza $\langle G_D=(V_D,E_D),k\rangle$ di DS, in cui $V_D=V\cup W$, con $W=\{uv:(u,v)\in E\}$ e $E_D=E\cup F$, con $F=\{(u,uv),(v,uv):(u,v)\in E\}$. Se G_D ha un dominating set D con $|D|\leq k$, allora,

- 1. trasformiamo D in un nuovo dominating set D' per G_D tale che $D' \subseteq V$ e |D'| = |D|
 - se D contiene qualche $uv \in W$, sostituiamo uv con u (o con v, è indifferente)
 - poiché uv domina solo u e v, quello che otteniamo è un nuovo insieme dominante

2. D' è un vertex cover per G, infatti: per ogni arco $(u,v) \in E$, $uv \in W$ poiché D' è un dominating set per G_D allora $u \in D'$ oppure $v \in D'$ oppure $uv \in D'$ e poiché D' non contiene nodi di W, ossia $uv \notin D'$ allora $u \in D'$ oppure $v \in D'$.

Quindi, abbiamo dimostrato che $\langle G=(V,E),k\rangle$ è una istanza sì di VC se e solo se $\langle G_D=(V_D,E_D),k\rangle$ è una istanza sì di DS.

Infine, poiché calcolare $\langle G_D=(V_D,E_D),k \rangle$ richiede tempo polinomiale in $|\langle G=(V,E),k \rangle|$, questo completa la prova che $VC \leq DS$