DEEP LEARNING APRENDIZADO PROFUNDO

Prof. André Backes | @progdescomplicada

Aprendizado de Máquina

- Como programar um computador para resolver problemas muito complexos?
 - Tarefa difícil e que depende do problema a ser resolvido
- Aprendizado de Máquina
 - Estuda como dar aos computadores a capacidade de aprender a partir dos dados

Aprendizado de Máquina

- Tarefa simples de se resolver
 - Reconhecer um objeto tridimensional
- Tarefa difícil de se resolver
 - Reconhecer um objeto tridimensional mudando o ponto de vista ou as condições de iluminação

Motivação

- Apesar das melhorias recentes, os algoritmos de aprendizagem tem dificuldades para:
 - Entender cenas e descrevê-las em linguagem natural
 - Inferir conceitos semânticos suficientes a ponto de interagir com humanos

Motivação

- Como extrair informações de imagens?
 - Tradicionalmente, processamos seus pixels de modo a obter representações mais abstratas
 - Presença de bordas
 - Presença de objetos com determinadas formas
 - etc
 - Alta variabilidade de tipos de estruturas presentes

Motivação

- Como extrair informações de imagens?
 - Geralmente as imagens demandam uma combinação de estratégias
 - Cor dos gatos
 - Textura do camaleão
 - Etc

(c) (d)

- Ou Aprendizado Profundo
- É uma sub área do aprendizado de máquina
 - Utiliza algoritmos de aprendizado que extraem significado dos dados usando uma hierarquia de múltiplas camadas que imitam as redes neurais do nosso cérebro

- Busca aprender representações de dados
 - Eficácia excepcional em padrões de aprendizagem

- As camadas não são projetadas por engenheiros humanos
 - As camadas são aprendidas a partir dos dados
 - Utiliza um procedimento de aprendizado para fins gerais

- É inspirado na forma como o cérebro funciona
 - Muitos neurônios conectados
 - A força das conexões representa um conhecimento de longo prazo
- É indicado para tarefas cujo espaço de entrada seja localmente estruturado
 - Estrutura espacial ou temporal
 - Imagens, linguagem etc.

- Neurônios organizados em camadas hierárquicas
 - Cada camada transforma os dados de entrada em representações cada vez mais abstratas
 - Atributos de baixo nível até conceitos mais abstratos
 - Exemplo: borda -> nariz -> face
 - A camada de saída combina esses recursos para fazer previsões

- O cérebro humano funciona dessa forma
 - Primeira hierarquia (dados do córtex visual)
 - sensibilidade às bordas
 - Regiões mais abaixo são sensíveis às estruturas mais complexas
 - Exemplo: rostos

- Processo de aprendizagem que descobre múltiplos níveis de abstração
 - Representações mais abstratas permitem extrair informações mais úteis para os classificadores
 - A profundidade está associada ao número de operações não lineares aprendidas

- Podemos usar uma rede MLP tendo como entrada uma imagem?
 - Tamanho da entrada em geral é muito grande!
 - Uma imagem de 200 x 200: 40000 unidades de entrada
 - Considerando as várias camadas ocultas, pode-se chegar a bilhões de parâmetros a serem ajustados

- Podemos usar uma rede MLP tendo como entrada uma imagem?
 - Redes são iniciadas com pesos aleatórios. Geralmente ficavam presas a mínimos locais
 - Aumento da profundidade da rede tornava difícil obter uma boa generalização

- Convolutional Neural Network CNN
- Proposta por Yann LeCun e Yoshua Bengio em 1995
 - É um tipo especial de rede neural com múltiplas camadas, como a MLP
 - É inspirada na sensibilidade local e orientação seletiva do cérebro humano
 - Projetada para extrair características relevantes da entrada

- É uma rede do tipo feed-forward
 - Similar ao sistema visual humano, é projetada para extrair propriedades topológicas da entrada
 - Aprendem múltiplas camadas de transformações
 - As camadas são aplicadas umas sobre as outras
- Treinamento é feito utilizando o algoritmo de back-propagation (ou suas variações)
 - Necessitam de grandes quantidades de dados

- Um conjunto de pixels de entrada se transforma em um conjunto de votos nas classes possíveis
 - São redes capazes de reconhecer dados com muita variabilidade
 - Exemplo: caracteres escritos a mão

Impacto na classificação de imagens

ImageNet: The "computer vision World Cup"

Fonte: https://www.dsiac.org/sites/default/files/journals/dsiac-winter-2017-volume-4-number-1.pdf

- Hubel e Wiesel, 1962
 - Estudos com o sistema visual de gatos

- Hubel e Wiesel, 1962
 - Estudos com o sistema visual de gatos
 - Descoberta do papel importante dos Campos Receptivos
 - Atuam como como filtros locais
 - Filtragem Espacial
 - 2 tipos de comportamentos
 - Simple Cells: Respondem a padrões de bordas na imagem;
 - Complex Cells: Possuem campos receptivos grandes e são invariantes à posição do padrão.

- Hubel e Wiesel, 1962
 - Redes convolucionais s\u00e3o um tipo especial de redes MLP que usam o conceito de campo receptivo local
 - Explora as correlações espaciais focando em conectividade entre unidades de processamento próximas

- Definição
 - Também conhecidos como operadores locais ou filtros locais
 - Combinam a intensidade de um certo número de pixels, para gerar a intensidade da imagem de saída.

- São técnicas baseadas na convolução de
 - templates
 - janelas, matrizes
 - tuplas
 - conjunto de pixels

- Uma grande variedade de filtros digitais podem ser implementados através da convolução no domínio do espaço
 - São os operadores locais mais utilizados em processamento de imagens, com diversas aplicações
 - Pré-processamento
 - Eliminação de ruídos
 - Suavização
 - Segmentação

- Refere-se ao plano da imagem
 - Envolve a manipulação direta dos pixels da imagem utilizando uma máscara espacial (kernels, templates, janelas)

	1	1	1
$\frac{1}{9}$ ×	1	1	1
	1	1	1

-1	0	1
-2	0	2
-1	0	1

- Valores das máscaras são chamados de coeficientes
 - O processo de filtragem é similar a um operação matemática denominada convolução

- Processo de filtragem
 - Cada elemento da máscara é multiplicado pelo valor do pixel correspondente na imagem f
 - A soma desses resultados é o novo valor do nível de cinza na imagem g
 - Exemplo: $w \in \text{uma janela de } n \times n = k \text{ pixels. O processo de filtragem para cada pixel na imagem } g(x,y) \text{ será dada por }$

$$g(x, y) = \sum_{i=1}^{k} w_i . f(x, y)$$

- Processo de filtragem
 - (a,b,c,d,e,f,g,h,i): são os valores dos níveis de cinza na vizinhança de f(x,y)
 - (w₁ a w₂): são os coeficientes da máscara
 - O valor do pixel g(x,y) é dado por

$$g(x,y) = w_1 \cdot a + w_2 \cdot b + w_3 \cdot c + w_4 \cdot d + w_5 \cdot e + w_6 \cdot f + w_7 \cdot g + w_8 \cdot h + w_9 \cdot i$$

Imagem --- f(x,y)

a b c

d e f

g h i

$$k = 3 \times 3 = 9$$

\mathbf{w}_1	\mathbf{w}_2	W ₃
\mathbf{W}_{4}	\mathbf{w}_{5}	w ₆
w ₇	w ₈	w ₉

Processo de filtragem

- A esse processo de filtragem dá-se o nome de convolução
 - Desloca-se a máscara (espelhada) sobre a imagem e calcula-se a soma dos produtos em cada local
 - A equação devem ser aplicada sobre todas as posições x e y da imagem

$$w(x,y) * f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$

$$a = (m-1)/2$$
 $b = (n-1)/2$

Espelhamento ou rotação, feito na imagem

Exemplo de Convolução

Conjunto de operações

Desloca, Multiplica, Soma

máscara

1	0
0	1

Imagem

1	1	3	3	4
1	1	4	4	3
2	1	3	3	3
1	1	1	4	4

11	10	0 3	10 3	0 4	0
01	011	0 4	014	0 3	1
2	1	3	3	3	
1	1	1	4	4	

Resultado

2	5	7	6	*
2	4	7	7	*
3	2	7	7	*
*	*	*	*	*

A imagem resultado é menor do que a imagem original. Os valores marcados com * não podem ser calculados.

Convolução

- Convenção
 - Nas máscaras de tamanho par (2 x 2, 4 x 4, ...) o resultado é colocado sobre o primeiro pixel
 - Nas máscaras de tamanho ímpar (3 x 3, 5 x 5, ...) o resultado é colocado sobre o pixel central
 - A imagem resultante da convolução não necessita obrigatoriamente ser menor do que a imagem original
 - Convolução aperiódica
 - Gabarito truncado

Convolução aperiódica

O valor 0 é atribuído aos resultados não calculáveis

Gabarito truncado

 Centra-se a máscara com o primeiro pixel da imagem atribuindo o valor 0 aos valores inexistentes na imagem

Custo da convolução

- O custo computacional da convolução é alto
 - Em um imagem de tamanho M x M e máscara N x N, o número de multiplicações é de M²N²
 - Exemplo: imagem de 512 x 512 e máscara de 16 x 16 = 67.108.864 multiplicações.
- Problema "resolvido" com o uso de GPUs

Máscaras de convolução

- O tamanho da máscara e os valores de seus coeficientes definem o tipo de filtragem produzido
- Alguns exemplos
 - Filtro Passa Baixa e média espacial (suavização)
 - Filtro Passa Alta (realce)
 - Gradientes (robert, sobel, etc): detectores de borda

Remoção de ruído

Realce

Suavização

Detectores de Bordas

Estrutura da Rede

- Uma Rede Neural Convolucional é formada pela combinação de 4 tipos de camadas
 - Camada de Convolução
 - Camada ReLU
 - Camada de Pooling
 - Camada Fully Connected

- Utiliza a ideia de Campos Receptivos Locais
 - A camada calcula a saída dos neurônios conectados a regiões locais da entrada
 - Trata-se de um detector de atributos
 - Aprende automaticamente a filtrar as informações não necessárias de uma entrada usando um filtro de convolução

- Os filtros são aprendidos pelo algoritmo
 - A inicialização dos filtros é aleatória
 - O pesos dos filtros são os mesmo em qualquer uma das regiões do mapa
 - A convolução é linear
 - Facilita o paralelismo do processo

• Uma imagem permite gerar um conjunto de imagens

Permite aprender diferentes tipos de atributos em cada camada

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

- Do inglês, Rectified Linear Units
 - Função de ativação ponto-a-ponto
 - É a função de ativação usada nas redes convolucionais
 - Treino mais muito rápido
 - Mais expressiva que a função logística
 - Evita o problema do gradiente de fuga

- Gradiente de Fuga ou Dissipação do Gradiente
 - O gradiente em redes neurais profundas é instável
 - Com isso, ele tende a explodir ou a desaparecer nas camadas anteriores
 - Atualização dos pesos da rede é proporcional à derivada parcial da função de erro com respeito ao peso em cada iteração
 - Gradiente extremamente pequeno impede o peso de ser alterado

Exemplo de aplicação nos dados

Exemplo de aplicação em uma "imagem"

- Também chamada de downsample
 - Reduz o tamanho das imagens de entrada
 - Reduz a sensibilidade a deslocamentos e outras formas de distorção
 - Torna a convolução invariante a translação, rotação e shifting (janelamento)
 - Ajuda a detectar objetos em alguns locais incomuns e reduz o tamanho da memória

- Existem vários tipos de pooling
 - Min
 - Max
 - Média
- Mais utilizado: max-pooling
 - Seleciona-se a maior ativação para propagar na região de interesse
 - Permite capturar semelhanças em imagens mesmo que elas estejam um pouco deslocadas

- Algoritmo max-pooling
 - Selecione o tamanho da janela e o passo (stride)
 - 2 x 2, com passo 2
 - 3 x 3, com passo 3
 - Deslize sua janela sobre a imagem
 - Para cada janela, selecione o maior valor

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8	
3	4	

Camada Fully Connected

- Também chamada de camada Dense
 - Trabalha como uma Rede Multilayer Perceptron
 - Os neurônios atuam sobre todos os dados fornecidos pelas camadas anteriores
 - Cada neurônio da camada de saída representa uma classe do problema

Camada Fully Connected

- Camada Convolucional
 - Extração de atributos de alto nível da imagem
- Camada Fully Connected
 - Busca aprender como classificar esses atributos em um conjunto de classes

Camada Fully Connected

- Função softmax
 - Utilizada quando a rede é voltada para tarefas de classificação
 - Permite interpretar os valores da camada de saída como uma distribuição de probabilidades

Treinamento

- Error back-propagation ou Retropropagação do erro
- Funcionamento
 - Saída produzida pela rede é diferente do resultado esperado
 - Determina o grau de responsabilidade de cada parâmetro da rede
 - Valor do parâmetro é alterado com o propósito de reduzir o erro produzido

Treinamento

- Error back-propagation ou Retropropagação do erro
 - Sentido direto (forward)
 - Cálculo da saída e do erro
 - Sentido inverso (backward)
 - Propagação do erro
 - Erro = (resposta obtida) (resposta correta)

Treinamento

- Error back-propagation ou Retropropagação do erro
 - Utiliza a regra da cadeia para calcular o quão rápido o erro muda quando mudamos a ativação de uma unidade oculta
 - Pesos são ajustados para que as previsões fiquem mais precisas

Dropout

- Desligamento de neurônios
 - Consiste em eliminar aleatoriamente (e temporariamente) alguns dos neurônios ocultos na rede
 - Os neurônios de entrada e saída não são afetados
 - Permite aprender descritores mais robustos dos dados

Dropout

Desligamento de neurônios

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.

Dropout

- Desligamento de neurônios = rede mais robusta
 - Eliminar neurônio equivale a treinar redes neurais diferentes
 - Diminui o overfitting
 - Reduz co-adaptações complexas de neurônios
 - Um neurônio não pode confiar na presença de outros neurônios em particular, pois podem estar desligados
 - O neurônio é forçado a aprenda atributos mais robustos e úteis em conjunto com outros neurônios aleatoriamente selecionados

Batch Normalization

- Normalização em Lote
- Durante o treinamento, os dados são normalizados
 - No entanto, os dados são transformados a medida que passam pelas diferentes camadas da rede
 - Isso pode fazer com que os dados voltem a ficar desnormalizados

Batch Normalization

- Esse problema é conhecido como mudança de covariável interna (internal covariate shift)
 - Aumenta o tempo necessário para treinar a rede
 - Aumenta as chances de dissipação do gradiente
 - Se torna pior a medida que a rede fica mais profunda

Batch Normalization

- Consiste em normalizar os dados fornecidos a cada camada oculta
- Vantagens
 - Reduz a dependência da inicialização
 - Melhora o fluxo de gradiente em redes profundas
 - Diminui o tempo de treinamento
 - Diminuição de 14 vezes na quantidade de épocas necessárias para treinar a rede

Projetando a Rede

- Como deve ser a estrutura da rede?
 - Quantas camadas?
 - Quais tipos de camadas usar?
 - Qual a ordem das camadas?
 - Qual tipo de filtro?
 - Qual tipo de normalização?
 - Taxa de Dropout?

Projetando a Rede | Exemplos

- AlexNet (Krizhevsky, 2012)
 - 60 milhões de parâmetros
 - Entrada: 224 x 224
 - conv1: 96 filtros de 11 x 11 x 3, stride 4
 - conv2: 256 filtros de 5 x 5 x 48
 - conv3: 384 filtros de 3 x 3 x 256
 - conv4: 384 filtros de 3 x 3 x 192
 - conv5: 256 filtros de 3 x 3 x 192
 - fc1 e fc2: 4096 neurônios

Projetando a Rede | Exemplos

- VGG 19 (Simonyan 2014)
 - +camadas, -filtros = menos parâmetros
 - Entrada: 224 x 224
 - Filtros: todos 3 x 3
 - conv 1-2: 64 filtros + maxpool
 - conv 3-4: 128 filtros + maxpool
 - conv 5-6-7-8: 256 filtros + maxpool
 - conv 9-10-11-12: 512 filtros + maxpool
 - conv 13-14-15-16: 512 filtros + maxpool
 - fc1 fc2: 4096 neurônios

Projetando a Rede | Exemplos

- GoogLeNet (Szegedy, 2014)
 - 22 camadas
 - Inicia com 2 camadas convolucionais
 - Camada Inception ("filter bank")
 - Filtros 1 x 1, 3 x 3, 5 x 5 + max pooling 3 x 3
 - Reduz a dimensionalidade usando filtros 1 x 1
 - 3 classificadores em diferentes partes

Projetando a Rede

- Residual Network ResNet (He et al, 2015)
 - -filtros, +camadas (34-1000)
 - Arquitetura residual
 - Adicionar mais camadas não melhora o desempenho
 - Dificuldade de treinar
 - Dissipação do Gradiente
 - Skip Connection: adiciona a entrada original a saída de um bloco de convolução

Projetando a Rede

- Residual Network ResNet (He et al, 2015)
 - O modelo aprende uma função identidade de modo que as camadas mais altas nunca terão um desempenho inferior as camadas mais baixas

Utilizando uma rede pré-treinada

- Finetuning
 - Dados similares a ImageNet
 - Manter o treinamento das camadas convolucionais
 - Treinar apenas as camadas FC

Utilizando uma rede pré-treinada

- Finetuning
 - Dados diferentes da ImageNet
 - Manter o treinamento das camadas convolucionais inferiores
 - Treinar as outras camadas convolucionais e as camadas FC

Utilizando uma rede pré-treinada

- Extração de atributos
 - Pegar os valores de ativação das últimas camadas de convolução ou FC
 - Utilizar um classificador externo: SVM, k-NN, Naive Bayes etc

Agradecimentos

- Agradeço aos professores
 - Prof. Anderson Soares Universidade Federal de Goiás (UFG)
 - Anderson Tenório Universidade Federal de Pernambuco (UFPE)
 - Prof. Moacir Ponti Universidade de São Paulo (USP)
 - Prof. Eduardo Bezerra (CEFET/RJ)
- pelo material disponibilizado