	Notes
Introduction to Digital Signal Processing	
Digital Signal Processing	
Contents	Notes
Digital Signal Processing What is Digital Signal Processing?	
what is bighar alguar Processing: Phase Phasors and Complex Numbers	
A Digial Signal Processing System	
What is DSP?	
Wildt is DSF:	Notes
Techniques include (e.g.) Example Applications	
 Frequency domain techniques (i.e. Fourier) Audio processing Communication systems 	
■ Time domain techniques ■ Image processing	
Random signalsPredication andVideo processingData compression	
Estimation (e.g. time	
_ · · · · · · · · · · · · · · · · · · ·	

What is a Signal?

A simple example.

Notes

What is a Signal?

Can contain information for

- Communication
- Storage
- Calculation

Notes

Example of What is a Signal?

Information is carried in the

- amplitude, "a";
- period, 'T";
- frequency, "f = 1/T";
- and *phase*, "φ".

Equation for a sine wave:

$$y(x) = a\sin(2\pi f x + \phi)$$

where "x" is time in seconds for this example. Amplitude "a=1" controls the height of the wave.

Frequency and Period

Equation for a sine wave:

 $y(x) = a\sin(2\pi f x + \phi)$

- lacksquare f is the frequency
- Measured in Hertz or Hz
- $\begin{tabular}{ll} \blacksquare & {\sf Here \ period}, \\ T = 0.002 {\sf s} \\ \end{tabular}$
- $\begin{tabular}{ll} \hline & f = 1/T \mbox{ Hz, therefore} \\ & f = 1/0.002 = 500 \mbox{Hz.} \\ \end{tabular}$

	1.50	A simple signal: sinusoidal wave (sine wave)
y (arbitrary amplitude units)	1.00	period .
amplii	0.00	
bitrary	-0.50	- \
y (ar	-1.00	,
	-1.50 0.0	0.002 0.004 0.006 0.008 0.0

Notes

Phase

Equation for a sine wave:

$$y(x) = a\sin(2\pi f x + \phi)$$

- $\ \ \, \phi$ is the phase
- $\blacksquare \ \ \mathsf{Here} \ \phi = 0$

Therefore here,

$$y(x) = y(x, \phi = 0) = a\sin(2\pi fx).$$

Notes

Phase examples

Phase examples cont'd

Notes				

Cosine Vs Sine

Cosine and Sine functions are equivalent except for a phase shift $(1/4 \times \text{period})$.

- $\mathbf{C} \cos(2\pi fx) = \sin(2\pi fx + \phi)$ where $\phi = \pi/2$.
- $\blacksquare \ \sin(2\pi fx) = \cos(2\pi fx + \phi)$ where $\phi = -\pi/2.$

Notes

Angular Frequency

€ 0.0 ^{4Pi} ^{5Pi} ^{6Pi} ω x (seconds)

- $\quad \blacksquare \ \, {\rm Frequency}, \, f=1/T$
- Angular frequency, $\omega = 2\pi f$
- $\blacksquare \ 1$ period or cycle $= 2\pi$

$$y(x) = \sin(2\pi f x + \phi)$$
$$= \sin(\omega x + \phi)$$

Phasor Representation

A cosine (or sine) wave:

$$y(x) = a\cos(\omega x + \phi)$$

can be represented as a phasor. A phasor is a complex number:

$$z = x + jy = a(\cos(\phi) + j\sin(\phi))$$

where \boldsymbol{x} is known as the real part or $\operatorname{Re}(z) = x$ and y is known as the imaginery part or $\mathrm{Im}(z)=y.$

 \boldsymbol{x} and \boldsymbol{y} can be calculated with $x = a\cos(\phi)$ and $y = a\sin(\phi)$.

Also remember $j = \sqrt{-1}$.

Argand or Phasor Diagram:

Notes

Complex Numbers

The square root of minus one is not defined so a symbol, j is used (sometimes i):

$$j = \sqrt{-1}$$
.

Powers:

- $j^2 = -1$

If z = x + jy (rectangular form) then alternative representations are:

- Polar form: $z = a \angle \phi$
- Exponential form: $z = a \exp(j\phi)$

where $a=\sqrt{x^2+y^2}$ and $\phi = \tan^{-1}(y/x).$

Notes

Properties of Complex Numbers

If z=x+jy, $z_1=x_1+jy_1$ and $z_2=x_2+jy_2$ then

- Addition: $z_1 + z_2 = x_1 + x_2 + j(y_1 + y_2)$
- Subtraction:
- $z_1 z_2 = x_1 x_2 + j(y_1 y_2)$
- Multiplication:
- $z_1z_2=a_1a_2\angle(\phi_1+\phi_2)$
- $z_1/z_2=a_1/a_2\angle(\phi_1-\phi_2)$
- ${\color{red} \blacksquare} \ \, \mathsf{Reciprocal:} \ \, 1/z = 1/a \angle (-\phi)$
- \blacksquare Square root: $\sqrt{z}=\sqrt{a}\angle(\phi/2)$
- Complex conjugate:

 $z^* = x - jy = a \angle - \phi$

The polar form simplifies some operations such as multiplication and division of complex numbers.

Phasor Representation

Euler's identity:

 $\exp(j\phi) = \cos(\phi) + j\sin(\phi)$

Therefore

- ${\color{red} \bullet} \; \cos(\phi) = \mathrm{Re}(\exp(j\phi)) \longrightarrow$ or the real part, x
- $\blacksquare \ \sin(\phi) = \operatorname{Im}(\exp(j\phi)) \longrightarrow$ or the imaginary part, y

Recall the cosine wave:

$$y(x) = \cos(\omega x + \phi)$$

which can be written as:

$$y(x) = \operatorname{Re}(a\exp(j(\omega x + \phi))) = \operatorname{Re}(a\exp(j\omega x)\exp(j\phi))$$

$$= \operatorname{Re}(A \exp(j\omega x))$$

where \boldsymbol{A} is the phasor representation of $\boldsymbol{y}(\boldsymbol{x})$ given by

$$A=a\exp(j\phi)=a\angle(\phi).$$

Notes

Complex Exponentials, Sines and Cosines

Civen

- $y_1(x) = b \exp(j\omega x) = b \cos(\omega x) + jb \sin(\omega x)$
- $y_2(x) = b \exp(-j\omega x) = b \cos(\omega x) + jb \sin(-\omega x)$
 - $\cos(-\omega x) = \cos(\omega x)$ (even function) $\sin(-\omega x) = -\sin(\omega x)$ (odd function)

Then

$$y_1(x) + y_2(x) = 2b\cos(\omega x).$$

So that

$$b\cos(\omega x) = \frac{a}{2}\exp(j\omega x) + \frac{a}{2}\exp(-j\omega x).$$

A similar approach can be used to derive a sine function.

Notes

A Typical Digital Signal Processing System

- Input Analog Filter (antialiasing):
 Limits frequency range
- Analog to Digital Converter Converts signal to digital samples
- Digital Signal Processor Storage, Communication and or Calculations
- Digital to Analog Converter

 Convert to continuous signal
- Output Analog Filter
 Removes sharp transitions

Notes			

Analog to Digital Converter

- Real world is typically analog (continuous)
- Digital signal approximates analog signal with discrete quantised samples
- ADC converts an analog signal to a digital signal
- Signal is digitised in two ways:
 - Signal is sampled at a sampling rate or frequency: Information is collected about the signal at regular intervals.
 The continuous or analog signal is then quantised: i.e. put into
 - digital form, where only a finite set of numbers are represented.

Notes				

Quantisation using Truncation

- Signal can be quantised using e.g. truncation where numbers following specified position are removed.
- Examples:
 - 5.7 truncated to integer is 5
 - 5.11 truncated to 1 decimal place is 5.1
- Negative numbers are truncated in the same way (note different to the common floor function in matlab), e.g.
 - -5.78 truncated to integer is -5
 - -5.135 truncated to 2 decimal places is -5.13

Notes			

Truncation Quantisation examples

■ Errors can be seen between the sampled and the sampled and quantized signals.

Notes			

Quantisation using Rounding

- Rounding can be a quantization method associated with smaller errors, e.g.
 - lacksquare 5.7 rounded to nearest integer is 6
 - 5.11 rounded to 1 decimal place is 5.1
 - -5.78 rounded to nearest integer is -6
 - -5.135 rounded to 2 decimal places is -5.14

Notes

Rounding Quantisation examples

 Errors can be seen between the sampled and the sampled and quantized signals.

Notes			
·			

Sampling

- Sampling also affects the quality of the digitised signal.
- Higher sampling rate reduces error and enables better representation of the original analog signal in digital form.

Sampling 1.5	frequency=6.0x origi	inal signal frequency
19	•	Original signal —— Reconstructed signal ——
x (auptrary units) (25 mple point sample point or 1.0		
-1.5	0.002 0 X (seconds	.003 0.004 0.0)

Notes			

Sampling examples

Notes			

Sampling examples cont'd

Notes			

Input Analog Filter: Antialiasing Filter

- Analog to Digital Converter (ADC) requires signal below a particular frequency (Nyquist Frequency)
- \blacksquare ... Limit frequency range to below Nyquist frequency ($f_s/2)$ before Analog to Digital Conversion.

- Otherwise next stage produces frequency errors (i.e. aliasing)
- Sampling produces copies of signal at multiples of sampling frequency
- Aliasing occurs when copies of signal overlap each other

Notes		

Digital Signal Processor

- After digitisation (with the ADC) digital signal processing may then be performed on the digitised signal.
- Simple example
 - Averaging filter:

$$y[n] = \frac{x[n] + x[n-1] + \ldots + x[n-k+1]}{k}$$

for window width k=3

$$y[n] = \frac{x[n] + x[n-1] + x[n-2]}{3}$$

where $\boldsymbol{x}[n]$ is an input value at sample time n and $\boldsymbol{y}[n]$ is an output at sample time n

Notes

Averaging Filter *Examples*

Window width k controls the response of the filter. If k is too low, there is little benefit on output signal.

Notes

Averaging Filter Examples cont'd

Window width k controls the response of the filter. If k is too high, the filter removes all of the output signal.

Notes			

Summary

,	Notes
■ Definition of digital signal processing	
Description of phase	
■ Cosine and Sine functions	
■ Complex numbers and alternative representations	
■ A typical digital signal processing system	
	Notes
	Notes