

Numerical Computing

2023

Student: FULL NAME

Discussed with: FULL NAME

Bonus assignment Due date: Wednesday, 22 November 2023, 11:59 PM

Numerical Computing 2023 — Submission Instructions (Please, notice that following instructions are mandatory: submissions that don't comply with, won't be considered)

- Assignments must be submitted to iCorsi (i.e. in electronic format).
- Provide both executable package and sources (e.g. C/C++ files, MATLAB). If you are using libraries, please add them in the file. Sources must be organized in directories called:

 $Project_number_lastname_firstname$

and the file must be called:

 $project_number_lastname_firstname.zip\\project_number_lastname_firstname.pdf$

- The TAs will grade your project by reviewing your project write-up, and looking at the implementation you attempted, and benchmarking your code's performance.
- You are allowed to discuss all questions with anyone you like; however: (i) your submission
 must list anyone you discussed problems with and (ii) you must write up your submission
 independently.

Exercise 1: Inconsistent systems of equations [10 points]

Consider the following inconsistent systems of equations:

(a)
$$A_1x = b_1$$
, where

$$A_1 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix} b_1 = \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}$$

(b)
$$A_2x = b_2$$
, where

$$A_2 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix} b_2 = \begin{bmatrix} 2 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

Find the least squares solution x^* and compute the Euclidean norm of the residual, SE and RMSE.

solution:

Least Square solution x^* can be obtained by solving the following equation:

$$A^T A x = A^T b (1)$$

Then from the x^* obtained, we can get the residual vector as following and from it, we can calculate the Euclidean norm and proceed to SE (Sum of Square Residuals) and RMSE (Root Mean Squared Error):

$$r = Ax^* - b \tag{2}$$

$$EuclideanNorm = ||r||_2 \tag{3}$$

$$SE = ||r||_2^2 \tag{4}$$

$$RMSE = \sqrt{\frac{SE}{m}} \tag{5}$$

Where m is the number of rows in residual vector.

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} x = \begin{bmatrix} 11 \\ 0 \end{bmatrix}$$
$$x^* = \begin{bmatrix} 3.6667 \\ 0 \end{bmatrix}$$
$$r^* = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 3.6667 \\ 0 \end{bmatrix} - \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} -1.3333 \\ 1.6667 \\ -0.3333 \end{bmatrix}$$

 $EuclideanNorm = ||r||_2 = \sqrt{(-1.3333)^2 + (1.6667)^2 + (-0.3333)^2} = \sqrt{4.6667} \approx 2.1602$

$$SE = ||r||_2^2 = (-1.3333)^2 + (1.6667)^2 + (-0.3333)^2 \approx 4.6667$$

$$RMSE = \sqrt{\frac{||r||_2^2}{m}} \approx \sqrt{\frac{4.6667}{3}} \approx 1.2472$$

(b)

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 3 & 2 \\ 3 & 6 & 3 \\ 2 & 3 & 3 \end{bmatrix} x = \begin{bmatrix} 9 \\ 10 \\ 9 \end{bmatrix}$$

If we re-arrange the formula for x^* we get:

$$x^* = (A_2^T A_2)^{-1} A_2^T b_2 (6)$$

and the resulting x^* will be

$$x^* = \begin{bmatrix} 2 \\ -0.3333 \\ 2 \end{bmatrix}$$

$$r = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -0.3333 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} -0.3333 \\ -0.3333 \\ 0.3333 \\ 0 \end{bmatrix}$$

 $EuclideanNorm = ||r||_2 = \sqrt{(-0.3333)^2 + (-0.3333)^2 + (0.3333)^2 + (0)^2} = \sqrt{0.3333} \approx 0.5774$

$$SE = ||r||_2^2 = (-0.3333)^2 + (-0.3333)^2 + (0.3333)^2 + (0)^2 = 0.3333$$

$$RMSE = \sqrt{\frac{||r||_2^2}{m}} \approx \sqrt{\frac{0.3333}{4}} \approx 0.2887$$

- Exercise 2: Polynomials models for least squares [20 points]
- **Exercise 3: Analysis of periodic data [20 points]**
- Exercise 4: Data linearization and Levenberg-Marquardt method for the exponential model [20 points]
- **Exercise 5: Tikhonov regularization [15 points]**