CODE

 $P\Delta$ secondary moment due to lateral deflection, N·mm

factored load per unit area, N/m²

Q = stability index for a story

radius of gyration of cross section, mm

= bend radius at the inside of a bar, mm r_b

R = cumulative load effect of service rain load

= center-to-center spacing of items, such as longi-S tudinal reinforcement, transverse reinforcement, tendons, or anchors, mm

center-to-center spacing of reinforcement in the i-th S_i direction adjacent to the surface of the member, mm

center-to-center spacing of transverse reinforce- S_o ment within the length ℓ_o , mm

= sample standard deviation, MPa S_S

 S_{w} = clear distance between adjacent webs, mm

center-to-center spacing of longitudinal shear or S_2 torsional reinforcement, mm

S = effect of service snow load

= 5 percent damped, spectral response acceleration parameter at short periods determined in accordance with the general building code

 S_e moment, shear, or axial force at connection corresponding to development of probable strength at intended yield locations, based on the governing mechanism of inelastic lateral deformation, considering both gravity and earthquake effects

 S_m elastic section modulus, mm³

= nominal moment, shear, axial, torsion, or bearing strength

yield strength of connection, based on f_v of the connected part, for moment, shear, torsion, or axial force, MPa

= wall thickness of hollow section, mm

thickness of flange, mm

thickness of shear lug, mm

cumulative effects of service temperature, creep, shrinkage, differential settlement, and shrinkagecompensating concrete

= cracking torsional moment, N·mm

= total test load, N

= threshold torsional moment, N·mm

= nominal torsional moment strength, N·mm

= factored torsional moment at section, N·mm

strength of a member or cross section required to resist factored loads or related internal moments and forces in such combinations as stipulated in this Code

stress corresponding to nominal two-way shear v_c strength provided by concrete, MPa

COMMENTARY

reaction, N

tension force acting on a nodal zone in a strut-andtie model, N (T is also used to define the cumulative effects of service temperature, creep, shrinkage, differential settlement, and shrinkage-compensating concrete in the load combinations defined in 5.3.6.)

tensile force in general zone acting ahead of the anchorage device caused by spreading of the anchorage force, N

