

# Programming a Radiation Detection Robot April 18, 2023

Undarmaa Ganbaatar, Emeline Hanna, Katie Olivas, Isaac Reichow

David Goodman, Zhong He, Brian Kitchen

**NERS 492** 

### Motivation



**Nuclear Accidents** (Fukushima)

What's our current emergency response?



Radiation workers clean-up accident sites





Radiation Detection Robot

How do we fix this?



Why is this a problem?

High-levels of radiation have damaging health effects

### Design Objective

Using a provided robot and detector, we will develop algorithms to successfully identify the location of and information about radioactive sources.

#### Hardware Provided Radical Robotics' Tasks Cs-137 600 400 Counts 200 200 600 800 400 Energy (keV) Rosbot & H3D M400 Program Spectra & Radiation Heat Map Detector

### **Approach**



# Methods

### **Methods Overview**

Compton and Count Rate Imaging



### Count Rate Imaging

- Rosbot provides positional data, detector provides count data
- Least squares method to localize source

Theoretical count rates at each discrete point measured against

actual recorded count rates

$$S_{x,y,I} = \sum_{i=1}^{n} \frac{1}{e^2} \left( R_{rec} - \frac{\epsilon_{int} \epsilon_{emis} I A_{det}}{4\pi r^2} \right)^2$$



### Compton Imaging

- Rosbot provides a .bif file of Compton imaging line spectrum
- Data is extracted from the line spectrum
  - Array created storing probability of source location at degree values
- Compton cone projected for each array







### Isotope Identification

- Peak finding using SciPy
   Comparison of found peaks to peak in isotope database
  - Height
  - Prominence
  - Width



- Atomic number
- Element symbol
- Mass number

- Gamma peaks
- Emission probability
- X-ray peaks



### **Activity Analysis**

- Calibrate efficiency of detector as a function of angle
- Use distance and direction obtained from imaging



- Peak count information
  - Background continuum
  - Determine peak region of interest



# Results

## Light Detection and Ranging (LiDAR) maps



Orion Radiation Measurement Lab



Baer Room

**Count Rate Imaging Results** 

- Multiple hotspots detected
- Inaccurate localization
  - Test inaccurate by 1.8 ± 0.9 m
- Current methodology not useful if multiple sources are present
  - More testing needed



- Projections correctly localized
   Cs-137 source within:
  - $\circ$  0.21 ± 0.05 m
- Compton cones correctly estimated source direction within:
  - o 7.81 ± 3.05°



- Projections correctly localized
   Cs-137 source within:
  - $\circ$  0.21 ± 0.05 m
- Compton cones correctly estimated source direction within:
  - o 7.81 ± 3.05°



- Projections correctly localized
   Cs-137 source within:
  - $\circ$  0.21 ± 0.05 m
- Compton cones correctly estimated source direction within:
  - o 7.81 ± 3.05°



- Projections correctly localized
   Cs-137 source within:
  - $\circ$  0.21 ± 0.05 m
- Compton cones correctly estimated source direction within:
  - o 7.81 ± 3.05°



- Projections correctly localized
   Cs-137 source within:
  - $\circ$  0.21 ± 0.05 m
- Compton cones correctly estimated source direction within:
  - o 7.81 ± 3.05°



## **Isotope Identification Results**

100% accuracy for 160 spectra

Isotope dataset includes 160 spectra of 13 isotopes





**Isotopes:** Am-241, Ba-133, Co-60, Cs-137, Ga-67, Ra-226, Tc-99m, Tl-201, I-131, Th-232, Depleted uranium (DU), Highly enriched uranium (HEU), Weapons grade plutonium (WGPU), Ga-67 + HEU, I-131 + WGPU, Cs-137 + DU

### Isotope Identification Results

- Background dataset includes 3002 spectra
  - Bootstrapping method

Isotope identified: None Found peaks 15 Counts 10 500 1000 1500 2000 2500 3000 Energy (keV)

99.6% accuracy for 3002 spectra

Meets IAEA National Standard Identification Criteria (N42.34) background false alarm rate requirements

### **Activity Analysis Results**

#### **Detector Efficiency:**

- Highest efficiency at 90° (in front of detector)
- Photon energy dependence on gamma ray interaction cross sections



### **Activity Analysis Results**

#### **Activity Analysis:**

- Use photopeak information and isotope guess
- Test Cs-137
  measurement of
  ~76 µCi source
  - Known location and direction
  - Estimated activity
     96.2% of real
     activity



# **Conclusions and Future Work**

### Conclusions

- Radiation detection robots can be utilized to localize a source within
   0.21 ± 0.05 meters of a true source location
  - Benefits include lowering occupational dose, scanning hard to reach areas, and rapid deployment of radiation survey devices
- Radiation detection robots can be used to visualize radiation hot spots
  - Compton imaging uses projected Compton cones to determine relative hotspot locations
  - Count rate imaging may be inaccurate for identifying an exact source position, but can identify general radioactive locations
- Radiation detection robots can employ methods to characterize sources
  - Isotope identification can determine the isotopes present using gamma spectroscopy
  - Activity analysis is used to roughly estimate the source activity based on efficiencies

### **Future Work**

- Autonomous mapping
  - Develop a further iteration of processing scripts to instantly process measurement data
- Multi-isotope localization
  - Additional real world testing of environments with multiple sources
- Timing capabilities of system
  - Determine the minimal time the detector and Rosbot need to collect data in order to accurately localize and identify a source



### References

[1] "FUKUSHIMA DAIICHI DISASTER," Olivia's Blog, 31-Oct-2014.

[2] M. Yamaguchi, "An ex-fukushima worker is the first confirmed to have cancer from radiation," Business Insider, 20-Oct-2015. [Online]. Available: https://www.businessinsider.com/an-ex-fukushima-worker-is-the-first-confirmed-to-have-cancer-from-radiation-2015-10.

[3] "U.S. EPA Radiation Education Activities: Radiation Exposure." United States Environmental Protection Agency.

[4] "Rosbot Mini," Oz Robotics. [Online]. Available: https://ozrobotics.com/shop/rosbot-robot-car-for-ros-beginners-and-experienced-developers.

[5] "M400 Custom Integrable Detector Module." H3D, Ann Arbor, 2017.

[6] "How Does Gamma-Ray Imaging Work?" H3D, Ann Arbor.

[7] "Cesium-137," nuclear-news, Dec. 03, 2011. https://nuclear-news.net/2011/12/03/high-radioactive-cesium-levels-in-abukumagawa-river-japan/cesium-137/

### **Credit Statement**

- Undarmaa Ganbaatar: Software, Data Processing, Methodology, Visualization, Formal Analysis
- Emeline Hanna: Methodology, Software, Data Processing, Validation, Formal Analysis,
   Writing
- Katie Olivas: Software, Data Processing, Image Development, Experimental Procedures, Organization
- Isaac Reichow: Software, Data Processing, Image Development, Experimental Procedures
- David Goodman: Conceptualization, Methodology, Software, Resources, Supervision, Project Administration, Funding Acquisition, Data Curation
- **Zhong He:** Conceptualization
- Brian Kitchen: Conceptualization, Methodology, Software, Resources, Supervision,
   Project Administration, Funding Acquisition, Data Curation



Thank you! Questions?



### **Extra Slides**

- Projections correctly localized
   Cs-137 source within:
  - $\circ$  0.21 ± 0.05 m
- Compton cones correctly estimated source direction within:
  - o 7.81 ± 3.05°



### H3D M400 Spec Sheet

- Energy Resolution at 25°C:
  - ≤ 1.1 % FWHM at 662 keV (coincident interactions combined)
  - ≤ 0.9 % FWHM at 662 keV (coincident interactions separated)
- Sensitivity:
  - Detects 10 μCi Cs-137 at 1m (≅ 3 μR/hr) in < 22 s (in natural background)</li>
- Spectroscopy Range
  - o 50 keV to 3 MeV
- Spatial Resolution
  - <0.5 mm (≥ 140 keV)
    </p>
- Count-Rate Limit:
  - o 1 rem/hr (10 mSv/hr) bare Cs-137 equivalent
- Maximum Event Rate:
  - o 75 kcps at < 0.5-mm spatial resolution 1
  - o 50 kcps at <2-mm spatial resolution

### H3D M400 Spec Sheet

- Compton Imaging Option (M400i)
- Image Energy Range:
  - o 250 keV to 3 MeV
- Field of View:
  - 4π (360°) omnidirectional
- Angular Precision:
  - $\circ$  ±1° source localization for all  $4\pi$  (real time)
- Angular Resolution:
  - $\circ$  ~30° FWHM for all  $4\pi$  (real time; >250 keV)
  - $\sim$  ~20° FWHM for all 4 $\pi$  (post processing; >250 keV)
- Sensitivity:
  - Localize point source of 137Cs producing ~3 μR/hr in <90 s</li>
- Data API Options:
  - Each interaction 3D position (x, y, z)

#### Compton Cone Projection Map



#### Weighted Average Projection Map





### Literature Review

- Lancaster University Neutron Laboratory
  - Use of Gaussian process regression for radiation mapping of a nuclear reactor with a mobile robot
  - SLAM generated radiation map with CeBr3 detector



[5]

- Limitations
  - Known <sup>252</sup>Cf source used (no isotope identification)
  - CeBr3 was only responsive to gammas, not 0 neutrons

- State Key Lab of Fluid Power & Mechatronic Systems, Zhejiang University, China
  - Radioactive source recognition with moving Compton camera imaging robot using Geant4
  - Testing compton reconstruction image quality based on robot angles and distances



[6]

- Key Takeaways:
  - Image reconstruction precision is improved when the robot is closer to the source.
  - Image reconstruction is improved when the robot 0 moves around the source with a large angle distribution, and it is important to include positions with 90° angles

### **Detector Orientation**



### Count Rate Imaging - Data Processing Workflow



### Compton Imaging - Data Processing Workflow



### Isotope Identification - Data Processing Workflow



### Activity Analysis - Data Processing Workflow

