Assignment 11, Discrete Mathematics

Oleg Sivokon

<2015-03-21 Sat>

Contents

1	Pro	blems																3
	1.1	Proble	em 1															3
		1.1.1	Answer	1		•	•	•				•	 •	•	•			3
	1.2	Proble	em 2			•		•	•		•	•	 •	•	•			4
		1.2.1	Answer	2			•											4
		1.2.2	Answer	3			•											4
		1.2.3	Answer	4														4
	1.3	Proble	em 3															5
		1.3.1	Answer	5														5
	1.4	Proble	em 4															5
		1.4.1	Answer	6		•		•						•	•			6

1.4.2	Answer 7	 •	•	 •		•	 •	•		•	•		•	7
1.4.3	Answer 8									•			•	7
1.4.4	Answer 9						 •	•		•				7
1 / 5	Angwor 10													ς

1 Problems

1.1 Problem 1

In all questions that follow, establish whether $x \in y$ or $x \subseteq y$.

- 1. $x = \{1, 2\}, y = \{1, 2, 3\}.$
- 2. $x = \{3\}, y = \{\{1\}, \{2\}, \{3\}\}.$
- 3. $x = \{1, 2\}, y = \{\{1, 2\}, 3\}.$
- 4. $x = \{1, 3\}, y = \{\{1, 2\}, 3\}.$
- 5. $x = \emptyset, y = \emptyset$.
- 6. $x = \{\emptyset\}, y = \{\emptyset\}.$
- 7. $x = \{1\}, y = \{1, 2\}.$
- 8. $x = \emptyset, y = P(\{1, 2, 3\}).$

1.1.1 Answer 1

- 1. $x \subseteq y$.
- $2. x \in y.$
- 3. $x \in y$.
- $4. \ x \not\in y \land x \not\subseteq y.$
- 5. $x \subseteq y$.
- 6. $x \subseteq y$.
- 7. $x \subseteq y$.
- 8. $x \subseteq y$.

1.2 Problem 2

Prove or disprove:

- 1. $(A \setminus B) \setminus B = A \setminus B$.
- 2. $A \setminus (B \setminus A) = A$.
- 3. $A \subseteq P(A)$.

1.2.1 Answer 2

The statement is true. Suppose for contradiction that there is a $b \in A \setminus B$ s.t. $b \notin (A \setminus B) \setminus B$. Then, we know that $b \in A$ and $b \notin B$. But we assumed $b \notin A \vee b \in B$. This is a contradiction, hence $(A \setminus B) \setminus B = A \setminus B$. Additionally, it is easy to see that set subtraction is idempotent (i.e. if applied repeatedly, will yield the same result after first application).

1.2.2 Answer 3

The statement is true. Suppose for contradiction there was an $a \in A$, which is not in $A \setminus (B \setminus A)$. Then such a would have to be in A, but not in $(B \setminus A)$. I will now show that no elements of $(B \setminus A)$ is in A, thus subtracting this group would not remove any elements of A, i.e. $A \cap (B \setminus A) = \emptyset$. Suppose b was in A and in $(B \setminus A)$ at the same time, then it would have to be in A, but A is excluded from $(B \setminus A)$. This is in contradiction to the previous assumtion. Therefore $A \setminus (B \setminus A) = A$.

1.2.3 Answer 4

This statement isn't true in general. An example which disproves it would be an assignment: $A = \{1, 2\}$. $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$. $A \nsubseteq P(A)$.

1.3 Problem 3

Prove the following identity using $A \setminus B = A \cap B'$: $(A_1 \cup A_2) \setminus (B_1 \cap B_2) = (A_1 \cup B_1) \cup (A_1 \cup B_2) \cup (A_2 \cup B_1) \cup (A_2 \cup B_2)$.

1.3.1 Answer 5

The proof doesn't require discussion. It is accomplished by simple settheoretical manipulations.

$$(A_1 \cup A_2) \setminus (B_1 \cap B_2) \iff \qquad \qquad \text{Given}$$

$$A_1 \setminus (B_1 \cap B_2) \cup A_2 \setminus (B_1 \cap B_2) \iff \qquad \text{Union over subtraction}$$

$$A_1 \cap (B_1 \cap B_2)' \cup A_2 \cap (B_1 \cap B_2)' \iff \qquad \text{Required identity}$$

$$A_1 \cap (B_1' \cup B_2') \cup A_2 \cap (B_1' \cup B_2') \iff \qquad \text{De Morgan's law}$$

$$(A_1 \cap B_1') \cup (A_1 \cap B_2') \cup (A_2 \cap B_1') \cup (A_2 \cap B_2') \iff \qquad \text{Union over subtraction}$$

$$(A_1 \setminus B_1) \cup (A_1 \setminus B_2) \cup (A_2 \setminus B_1) \cup (A_2 \setminus B_2) \iff \qquad \text{Required identity}$$

1.4 Problem 4

Given $\forall n \in \mathbb{N} : A_n = \{x \in \mathbb{R} | 4 \le x \le 2n+2\}$ and $\forall n \in \mathbb{N} : B_n = A_{n+1} \setminus A_n$. For the purpose of this exercise \mathbb{N} contains zero.

- 1. Calculate A_0, A_1, A_2, A_3 and B_0, B_1, B_2 .
- 2. Write closed-form formula for B_n .
- 3. Calculate $\bigcup_{2 \le n \in \mathbb{N}} B_n$. Prove the result using set containment relation.
- 4. Using general rules for set subtraction and union as well as De Morgan laws as applied to universal and existential quantifiers, prove the generalized formulae for $\bigcup_{i\in I}(A')$ and $\bigcap_{i\in I}(A')$.
- 5. Let $D_n = \mathbb{R} \setminus B_n$. Calculate $\bigcup_{2 \leq n \in \mathbb{N}} D_n$.

1.4.1 Answer 6

It is easy to do the calculation by hand, but to make it more interesting I wrote some Prolog code to do it. An intuitive way to see what is going on is to observe that every consequent A will contain the entire previous set and two more members, which are greater than the maximal element of the previously collected set.

```
:- use_module(library(clpfd)).
set_A(N, Set) :-
    High is N * 2 + 2,
    X in 4..High,
    findall(X, indomain(X), Set).
set_B(N, Set) :-
    set_A(N, A_n),
    N1 is N + 1,
    set_A(N1, A_n1),
    subtract(A_n1, A_n, Set).
all_sets(N, Pred, Answer) :-
    X in 1..N, indomain(X),
    call (Pred, X, Answer).
zip(X, Y, [X, Y]).
join(_, [X], X) :- !.
join(Sep, [X | Xs], S) :-
    join(Sep, Xs, Sx),
    string_concat(Sep, Sx, Sy),
    string_concat(X, Sy, S).
question_1(Na, Nb, As, Bs):-
    findall(As, all_sets(Na, set_A, As), As),
    findall(Bs, all_sets(Nb, set_B, Bs), Bs),
    X in 1..Na,
    Y in 1..Nb,
    findall(X, indomain(X), Nas),
findall(Y, indomain(Y), Nbs),
    maplist(join(','), As, Jas),
    maplist(join(','), Bs, Jbs),
    maplist(zip, Nas, Jas, Zas),
    maplist(zip, Nbs, Jbs, Zbs),
```

$$A_1 = \{4\}$$

$$A_2 = \{4, 5, 6\}$$

$$A_3 = \{4, 5, 6, 7, 8\}$$

$$B_1 = \{5, 6\}$$

$$B_2 = \{7, 8\}$$

$$B_3 = \{9, 10\}$$

1.4.2 Answer 7

$$B = \{x \in \mathbb{R} | 2(n+1) < x \le 2(n+2) \}.$$

1.4.3 Answer 8

First, let me make the claim that $\bigcup_{2 \le n \in \mathbb{N}} = A_{n+1}$. Below, is the proof that doesn't require division in two cases (it peruses the definition of B_n and the general technique of extraction of the last term of a sequence).

$$\bigcup_{2 \le n \in \mathbb{N}} B_n = \bigcup_{2 \le n \in \mathbb{N}} A_{n+1} \setminus A_n$$

$$= \bigcup_{2 \le n \in \mathbb{N}} A_{n+1} \setminus \bigcup_{2 \le n \in \mathbb{N}} A_n$$

$$= \bigcup_{2 \le n \in \mathbb{N}} A_n \setminus \bigcup_{2 \le n \in \mathbb{N}} A_n \cup A_{n+1}$$

$$= A_{n+1}$$

1.4.4 Answer 9

First, let me reiterate De Morgan's law for first-order quantifiers:

$$\neg \forall x. \phi \iff \exists x. \neg \phi.$$

Combining it with the definitions of union of complement sets and intersection of complement sets gives us the following proof:

$$x \in \bigcap_{i \in I} (A_i)' \iff \forall i (i \in I \implies x \in A')$$

 $\iff \exists i (i \in I \implies x \in A)'$
 $\iff x \in (\bigcup_{i \in I} A_i)'.$

Note that the proof treats negation equivalently to complementation.

The proof for the union is symmetrical:

$$x \in \bigcup_{i \in I} (A_i)' \iff \exists i (i \in I \implies x \in A')$$

 $\iff \forall i (i \in I \implies x \in A)'$
 $\iff x \in (\bigcap_{i \in I} A_i)'.$

1.4.5 Answer 10

Reusing definitions and conclusions derived above gives:

$$D_n = \mathbb{R} \setminus B_n = \mathbb{R} \cap (B_n)'.$$

$$\bigcap_{2 \le n \in \mathbb{N}} D_n = \bigcap_{2 \le n \in \mathbb{N}} \mathbb{R} \cap (B_n)'$$

$$= \mathbb{R} \cap \bigcap_{2 \le n \in \mathbb{N}} (B_n)'$$

$$= \mathbb{R} \cap (\bigcup_{2 \le n \in \mathbb{N}} B_n)'$$

$$= \mathbb{R} \cap (\bigcup_{2 \le n \in \mathbb{N}} A_{n+1} \setminus A_n)'$$

$$= \mathbb{R} \cap (\bigcup_{2 \le n \in \mathbb{N}} A_{n+1} \setminus \bigcup_{2 \le n \in \mathbb{N}} A_n)'$$

$$= \mathbb{R} \cap (\bigcup_{2 \le n \in \mathbb{N}} A_{n+1} \cap (\bigcup_{2 \le n \in \mathbb{N}} A_n)')'$$

$$= \mathbb{R} \cap (\bigcup_{2 \le n \in \mathbb{N}} A_{n+1})' \cup (\bigcup_{2 \le n \in \mathbb{N}} A_n)'$$

$$= \mathbb{R} \cap (A_{n+1})'$$

$$= \mathbb{R} \setminus A_{n+1}$$