Test 1 Info Sheet

Stat 341 - Spring 2017

Logistics

- In-class test: Friday, March 3
- Take-home test: Due Monday, March 6
- Both portions cover through chapter 5 of Statistical Rethinking

Topics

This list isn't meant to be exhaustive, but I hope it is useful in preparing for the test.

Techniques

- 1. Grid Method
- 2. Quadratic approximation using map()
- 3. Posterior sampling
 - a. manually (for example, when using the grid method)
 - b. using extract.samples()
- 4. Using posterior samples to investigate
 - a. model paramters
 - b. model predictions (for averages and for individuals)
 - Creating counterfactual data (for example, for use with link() and sim()
- 5. Centering
- 6. A non-exhaustive list of R commands you should know
 - Plotting commands (lattice, ggplot2, or ggformula versions) for the types of plots we have been making.
 - from rethinking: map(), alist(), precis(), extract.samples(), link(), sim(), chainmode()
 - apply()
 - working with data frames: data_frame(), expand.grid(), mutate(), filter()
 - distributions: dnorm(), dbinom(), dunif(), rnorm(), rbinom(), runif()
 - miscelaneous: zscore(), str(), head(), sample()

Concepts

- 1. Conditional probability and connections to Bayesian inference
 - definition of conditional probability
 - problems like the pandas problem
- 2. posterior $\propto \operatorname{prior} \cdot \operatorname{likelihood}$

- 3. What grid approximation is, how it works, and why it is limited to models with only a few parameters.
- 4. What posterior sampling is and what can be done with posterior samples.
- 5. Why quadratic approximation is called that and roughly how it works.
 - potential problems with quadratic approxiation (and why we will need a third method eventually)
- 6. Creating models
 - selecting priors that are reasonable
 - creating a model relationship (equation with variables and parameters)
 - (additive) linear models
 - handling categorical variables

7. Interpreting models

- interpreting model coefficients (and their uncertainty).
- interpreting model predictions (and their uncertainty).
- interpreting σ in models where the resonnse is modeled with a normal distribution
- plots for models (especially those with multiple predictors)
- residuals
- masking, spurious relationships and other issues that can be revealed by fitting models with multiple predictors.
- 8. Why and how to center variables used in models