Lineare Algebra II (LA) Übungsblatt 12

Erik Achilles, Alexandra Dittmar, Artur Szeczinowski ${\rm Juli~2025}$

Aufgabe 1

a)

Beweis. Für alle $v, w, z \in \mathbb{R}^3$ gilt:

$$\begin{array}{l} v\times(w\times z)=v\times \begin{pmatrix} w_2z_3-w_3z_2\\ w_3z_1-w_1z_3\\ w_1z_2-w_2z_1 \end{pmatrix} \\ &= \begin{pmatrix} v_2(w_1z_2-w_2z_1)-v_3(w_3z_1-w_1z_3)\\ v_3(w_2z_3-w_3z_2)-v_1(w_1z_2-w_2z_1)\\ v_1(w_3z_1-w_1z_3)-v_2(w_2z_3-w_3z_2) \end{pmatrix} \\ &= \begin{pmatrix} v_2w_1z_2-v_2w_2z_1-v_3w_3z_1+v_3w_1z_3\\ v_3w_2z_3-v_3w_3z_2-v_1w_1z_2+v_1w_2z_1\\ v_1w_3z_1-v_1w_1z_3-v_2w_2z_3+v_2w_3z_2 \end{pmatrix} \\ &= \begin{pmatrix} w_1(v_2z_2+v_3z_3)-z_1(v_2w_2+v_3w_3)\\ w_2(v_3z_3+v_1z_1)-z_2(v_3w_3+v_1w_1)\\ w_3(v_1z_1+v_2z_2)-z_3(v_1w_1+v_2w_2) \end{pmatrix} \\ &= \begin{pmatrix} w_1(v_2z_2+v_3z_3+v_1z_1-v_1z_1)-z_1(v_2w_2+v_3w_3+v_1w_1-v_1w_1)\\ w_2(v_3z_3+v_1z_1+v_2z_2-v_2z_2)-z_2(v_3w_3+v_1w_1+v_2w_2-v_2w_2)\\ w_3(v_1z_1+v_2z_2+v_3z_3-v_3z_3)-z_3(v_1w_1+v_2w_2+v_3w_3-v_3w_3) \end{pmatrix} \\ &= \begin{pmatrix} (w_1(v_2z_2+v_3z_3+v_1z_1)-w_1v_1z_1)-(z_1(v_2w_2+v_3w_3+v_1w_1)-z_1v_1w_1)\\ (w_2(v_3z_3+v_1z_1+v_2z_2)-w_2v_2z_2)-(z_2(v_3w_3+v_1w_1+v_2w_2)-z_2v_2w_2)\\ (w_3(v_1z_1+v_2z_2+v_3z_3)-w_3v_3z_3)-(z_3(v_1w_1+v_2w_2+v_3w_3)-z_3v_3w_3) \end{pmatrix} \\ &= \begin{pmatrix} w_1(v_2z_2+v_3z_3+v_1z_1)-z_1(v_2w_2+v_3w_3+v_1w_1+v_2w_2+v_3w_3)-z_3v_3w_3 \end{pmatrix} \\ &= \begin{pmatrix} w_1(v_2z_2+v_3z_3+v_1z_1+v_2z_2)-z_2(v_3w_3+v_1w_1+v_2w_2+v_3w_3) \end{pmatrix} \\ &= \begin{pmatrix} w_1(v_2z_2+v_3z_3+v_1z_1)-z_1(v_2w_2+v_3w_3+v_1w_1+v_2w_2+v_3w_3)-z_3v_3w_3 \end{pmatrix} \\ &= \begin{pmatrix} w_1(v_2z_2+v_3z_3+v_1z_1)-z_1(v_2w_2+v_3w_3+v_1w_1+v_2w_2+v_3w_3)-z_3v_3w_3 \end{pmatrix} \\ &= \begin{pmatrix} w_1(v_2z_2+v_3z_3+v_1z_1)-z_1(v_2w_2+v_3w_3+v_1w_1+v_2w_2+v_3w_3)-z_3v_3w_3 \end{pmatrix} \\ &= \begin{pmatrix} w_1(v_2z_2+v_3z_3+v_1z_1)-z_1(v_2w_2+v_3w_3+v_1w_1+v_2w_2+v_3w_3) \end{pmatrix} \\ &= \begin{pmatrix} w_1(v_2z_2+v_3z_3+v_1z_1)-z_1(v_2w_2+v_3w_3+v_1w_1+v_2w_2+v_3w_3 \end{pmatrix} \\ &= \begin{pmatrix} w_1(v_2z_2+v_3z_3+v_1z_1)-z_1(v_2w_2+v_3w_3+v_1w_1+v_2w_2+v_3w_3 \end{pmatrix} \\ &= \begin{pmatrix} w_1(v_2z_2+v_3z_3+v_1z_1+v_2z_2)-z_2(v_3w_3+v_1w_1+v_2w_2+v_3w_3 \end{pmatrix} \\ &= \begin{pmatrix} w_1(v_$$

b)

Sei $\xi := (1,1,1) \in \mathbb{R}^3$. Die Abbildung $\beta : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}, \beta(v,w) := \langle v \times (\xi \times w), \xi \rangle$ ist eine symmetrische Bilinearform.

Beweis. Die Abbildung ist eine Verkettung von bil
inearen Abbildung (Kreuzprodukt, Skalarprodukt) und ist daher ebenfalls bil
inear. Wir zeigen nun Symmetrie. Dazu nutzen wir a) und die Symmetrie des Skalarprodukts:

$$\beta(v,w) = \langle v \times (\xi \times w), \xi \rangle \stackrel{a)}{=} \langle \langle v, w \rangle \xi - \langle v, \xi \rangle w, \xi \rangle = \langle v, w \rangle \langle \xi, \xi \rangle - \langle v, \xi \rangle \langle w, \xi \rangle$$
$$= \langle w, v \rangle \langle \xi, \xi \rangle - \langle w, \xi \rangle \langle v, \xi \rangle = \langle \langle w, v \rangle \xi - \langle w, \xi \rangle v, \xi \rangle \stackrel{a)}{=} \langle w \times (\xi \times v), \xi \rangle = \beta(w, v).$$

Aufgabe 2

Zu $M \in \operatorname{Mat}(n, K)$ definieren wir $M^{\pm} := \frac{1}{2}(M \pm M^{t}) \in \operatorname{Mat}(n, K)$.

a)

Es gilt $M^{\pm} \in \operatorname{Mat}^{\pm}(n, K)$.

Beweis. Fall I Gelte $M^{\pm} = \frac{1}{2}(M+M^t)$. Dann ist

$$(M^\pm)^t = (\frac{1}{2}(M+M^t))^t = \frac{1}{2}(M+M^t)^t = \frac{1}{2}(M^t+M) = \frac{1}{2}(M+M^t) = \frac{1}{2}(M+M^t) = M^\pm.$$

Fall II Gelte $M^{\pm} = \frac{1}{2}(M - M^t)$. Analog folgt $(M^{\pm})^t = M^{\pm}$. Also ist $M^{\pm} \in \{A \in \operatorname{Mat}(n, K) | A^t = \pm A\} = \operatorname{Mat}^{\pm}(n, K)$.

Es gilt $Mat(n, K) = Mat^{+}(n, K) \oplus Mat^{-}(n, K)$.

Beweis. Da $\operatorname{Mat}^+(n,K), \operatorname{Mat}^-(n,K) \subset \operatorname{Mat}(n,K), \text{ ist } \operatorname{Mat}(n,K) \supseteq \operatorname{Mat}^+(n,K) \oplus \operatorname{Mat}^-(n,K).$ Wir zeigen " \subseteq ".

Sei $M \in \operatorname{Mat}(n, K)$ beliebig, dann gilt für passende $A \in \operatorname{Mat}^+(n, K), B \in \operatorname{Mat}^-(n, K)$: M = A + B, denn für alle $i, j \leq n \in \mathbb{N}$ ist

$$M_{ij} = A_{ij} + B_{ij}$$

$$\wedge \qquad M_{ji} = A_{ji} + B_{ji} = A_{ij} - B_{ij}.$$

Dieser Ausdruck lässt sich als LGS schreiben:

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} A_{ij} \\ B_{ij} \end{pmatrix} = \begin{pmatrix} M_{ij} \\ M_{ji} \end{pmatrix}.$$

Da $\det\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = -2 \neq 0$ hat das LGS für alle i, j genau eine Lösung, d.h. A und B sind eindeutig bestimmt. Also gilt $\operatorname{Mat}(n, K) \subseteq \operatorname{Mat}^+(n, K) \oplus \operatorname{Mat}^-(n, K)$ und es folgt Gleichheit.

b)

Sei $\beta: K^m \times K^n \to K$ eine Bilinearform. Wir definieren $M(\beta) \in \text{Mat}(m \times n, K)$ durch $M(\beta)ij := \beta(e_i, e_j)$. Für alle $x \in K^m, y \in K^n$ gilt $\beta(x, y) = x^t \cdot M(\beta) \cdot y$.

Beweis. Es gilt aufgrund der Biliniarität von β :

$$x^{t} \cdot M(\beta) \cdot y = \sum_{i=1}^{m} x_{i} \sum_{j=1}^{n} y_{j} \beta(e_{i}, e_{j}) \stackrel{bilin.}{=} \sum_{i=1}^{m} x_{i} \beta(e_{i}, \sum_{j=1}^{n} y_{j} e_{j}) \stackrel{bilin.}{=} \beta(\sum_{i=1}^{m} x_{i} e_{i}, \sum_{j=1}^{n} y_{j} e_{j}) = \beta(x, y)$$

Die Aussage "Sind $M, M' \in \operatorname{Mat}(n, K)$ und gilt für alle $x \in K^n : x^t \cdot M \cdot x = x^t \cdot M' \cdot x$, so folgt M = M'." ist im Allgemeinen falsch.

$$\begin{aligned} \textit{Beweis.} \ \text{Seien} \ x \in K^n := \mathbb{R}^2 \ \text{und} \ M := \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}. \ \text{Dann ist} \\ x^t \cdot M \cdot x &= 1 \cdot x_1 x_1 + 1 \cdot x_1 x_2 + (-1) \cdot x_2 x_1 + 1 \cdot x_2 x_2 \\ &= 1 \cdot x_1 x_1 + (-1) \cdot x_1 x_2 + 1 \cdot x_2 x_1 + 1 \cdot x_2 x_2 \\ &= x^t \cdot M^t \cdot x \end{aligned}$$

aber $M \neq M^t$. Die Aussage ist wiederlegt.