비행기의 수증기 응축현상에 대해서

4조 박수진 서은주 신지훈 심규석

목차

- 1. 연구동기
- 2. 이론적 배경
 - 응축현상이란?
 - fluid dynamics of airfoil
- 3. 연구 과정 및 결과
- 4. 결론
- 5. aplication

연구동기

- ✔ 대적점연구의 실패
- ✓ 사람들이 소닉붐과 양력에 의한 수증기 응축현상을 혼동한다는 것을 알게됨
 - ✓ 대기 열역학적으로 설명이 가능한 수증기 응축현상을 연구

* 엄밀히 말하면 소닉붐이 일어날 때의 구름도 수 증기 응축현상이라고 함. 하지만 구분을 위해서 여 기서 사용되는 '수증기 응축현상'은 양력에 의해 발생되는 응축현상을 의미한다.

2. 이론적 배경

응축현상이란?

2. 이론적 배경

Fluid dynamics of airfoil

2. 이론적 배경

$$\frac{dP}{dR} = \rho \frac{v^2}{R}$$

응축현상이 생길 조건 구하기

$$\begin{split} \frac{T-T_{dew}}{TT_{dew}} &= Aln \frac{T_{LCL}}{T} + (\frac{1}{T_{LCL}} - \frac{1}{T}) \\ A &= (\frac{\gamma}{\gamma-1})/(\frac{l_v}{R_v}) \\ T_{LCL} &= \frac{1}{1 - \frac{1}{\ln r}} + 55 \end{split} \qquad \begin{split} TP^{\frac{1-\gamma}{\gamma}} &= T_{LCL} P_{LCL} \\ P_{LCL} \\ P_{LCL} &= T_{LCL} P$$

T-55 2840

$$\begin{split} TP^{\frac{1-\gamma}{\gamma}} &= T_{LCL} \, P_{LCL}^{\frac{1-\gamma}{\gamma}} \\ P_{LCL} &= P(\frac{T}{T_{LCL}})^{\frac{\gamma}{1-\gamma}} \\ \end{split}$$

$$\begin{split} P' + \frac{1}{2}\rho(\frac{D'}{D}v)^2 &= P + \frac{1}{2}\rho v^2 \\ P' &= P - \frac{1}{2}\rho v^2((\frac{D'}{D})^2 - 1) \end{split}$$

D`과 D의 비가 일정하면 airfoil의 크기와 관계없이 P`은 일정 -> airfoil의 모양만 같으면 크기는 응축현상의 유무에 관여하지 않는다.

- PLCL와 P의 차이가 적어야 한다.(PLCL이 커야한다.)
- r=1에 가까워야 한다.
- Airfoil에서 위아래의 압력차가 커야 된다. (이륙할 때)
- 비행기의 속도가 빨라야 된다.
- 대기의 밀도가 높아야 한다. 양력이 커지 므로 (저고도 일 때 잘 생긴다)
- Airfoil의 크기는 무관

Simulation으로 응축현상 예측

PLCL 구하기

Т	Td	r	PLCL
15	14	0.937	998
15	13	0.878	983
15	12	0.822	968
15	11	0.77	954
15	10	0.72	940
15	9	0.673	926
15	8	0.629	912
15	7	0.587	898

* Skew-T log-P diagram 을 이용하는 방법

1013mb가 기 준이므로 13씩 더해줘야함 900mb

950mb

1000mb

비행기의 속도에 따라

- P=1013mb T=15 Td=12 r=82.2% 일 때 -> PLCL=968mb
- Flat bottom shape, angle=5degree

압력 분포 모양은 속도에 관계 없이 같다. ->stream line모양이 변하지 않으므로

Km/h	upper pressure	lower pressure
50	1010.72	1013.94
100	1004.21	1017.1
150	993.36	1022.37
200	978.16	1029.73
250	958.63	1039.21
300	934.75	1050.79
350	906.53	1064.47
400	874.67	1079.93

속도가 증가할 수록 기압차가 급속히 커진다. 약 200~250km/h 의 속도에서 응결현상이 시작(비행기 이륙시 속력과 비슷)

받음각(angle)에 따라

- P=1013mb T=15 Td=12 r=82.2% 일 때 -> PLCL=968mb
- Flat bottom shape, speed=200km/h

0도 5도 10도

degree	upper pressure	lower pressure
1	992.2	
2	989.64	
3	986.42	
4	982.65	1030.39
5	978.16	1029.73
6	972.09	1031.06
7	965.6	1031.71
8	956.4	1031.69
9	946.64	1031.01
10	937.42	1030.69

역시 받음각이 커질수록 압력차가 빠르게 증가한다. 아래쪽 압력은 크게 변하지 않는 경향성을 보인다. 6-7도 부터 응축현상이 일어난다.

Airfoil의 모양에 따라

- P=1013mb T=15 Td=12 r=82.2% 일 때 -> PLCL=968mb
- angle=5degree , speed=200km/h

High camber 에서만 응축현상이 나타남!

Airfoil의 휘어진 정도가 증가할수록 streamline이 많이 휘어지고 결과적으로 압력차가 증가한다. 또한 휘어질수록 응축현상이 일어날 수 있는 범위가 증가한다.

결론

- 수증기 응축현상은 습도가 높을 때,(보통 80%이상) 비행기의 속력이 빠를 때, airfoil이 많이 휘고 받음각이 클 때잘 발생한다.
- 따라서 이륙시, 급선회시 잘 발생한다.

• 하지만 널리 알려진 것과 달리 날개의 크기와는 관련이

적다.

응축현상의 이용

- 비행기의 무게 구하기?

날개 위 아래 압력차 = 양력/면적 =중력/면적

상대습도 85% 일 때 응축현상 발생 시작 -> 이 때의 P-PLCL 값이 날개의 위아래 압력차와 같다.

$$P - P_{LCL} = \frac{mg}{A}$$

$$m = \frac{A(P - P_{LCL})}{g}$$

온도와 상대습도, 압력만 알면 PLCL을 구할 수 있으므로 비행 기의 무게를 구하는 것이 가능

참고문헌

- http://www.grc.nasa.gov/WWW/k-12/airplane/foil3u.html (air foil simulation)
- http://www.sundogpublishing.com/AtmosTher mo/Resources/SkewT.html (skewT diagram)
- An introduction to Atmospheric thermodynamics
- Frank m white fluid Mechanics 4th edition