Problem 6: Plug Flow Reactors in parallel (partial exam 2014-15)

Consider a system of two plug flow reactors in parallel with heat exchange as shown in the figure:

The feed stream consists of a *gaseous* mixture with an initial volumetric flow rate of 2 m³/min at 600°C and 300 kPa, and a composition of 25% B, 22% C, 52% D and 1% E (molar %). This feed stream splits in two: *one third* of the volumetric flow rate enters the first reactor and two thirds enters the second reactor. The outlet streams from both reactors are changed to 600°C by means of heat exchangers before they finally get mixed.

Reactions (elementary)	k₀ (min⁻¹ or m³/(kmol·min))	E (kJ/kmol)	$\Delta H^*_{_{298K}}$ (kJ/kmol)	
$1. C+H \to D+F$	3.0·10 ⁹	136000	-141000	
$2. C+D \to A+E$	9.0·10 ¹³	250000	-290000	
$3. A+B\to E$	7.0·10 ⁴	35000	-132000	
$4. D \to C + H$	9.0·10 ¹³	270000	141000	
$5. B+C \to G$	1.0·10 ⁷	75000	250000	

- Plot the following profiles: temperature, molar flow rate and concentration of each component for each reactor.
- Determine the concentration of each component in the *final* stream.

Other data:

C_p: specific heat capacity for each substance (kJ/(kmol·K)):

Α	В	C	D	E	F	G	Н
35	42	41	55	60	69	75	28

- The system operates at constant pressure.
- Temperature of the heat exchange fluid for each reactor: Tw₁ = 725 °C, Tw₂ = 800 °C.
- Overall heat transfer coefficient for each reactor: $U_1 = 5 \text{ kJ/(min} \cdot \text{m}^2 \cdot \text{K)}$, $U_2 = 3 \text{ kJ/(min} \cdot \text{m}^2 \cdot \text{K)}$.
- Length of each reactor: L₁ = 12 m and L₂= 10 m.
- Cross-sectional area of each reactor: $S_1 = S_2 = 0.2 \text{ m}^2$.
- Make use of just one function file valid for both reactors.

Problema 6: Reactores de flujo pistón en paralelo (examen parcial 2014-15)

Considera un sistema de dos reactores de flujo pistón en paralelo con intercambio de calor como muestra la siguiente figura:

La corriente de alimentación al sistema consiste en una mezcla *gaseosa* con un caudal volumétrico inicial de 2 m³/min a 600°C y 300 kPa y una composición de 25% de B, 22% de C, 52% de D y 1% de E (% molar). Esta corriente de alimentación se divide en dos: al primer reactor entra *un tercio* del caudal volumétrico inicial y al segundo reactor entran los dos tercios restantes. Las corrientes de salida de ambos reactores se llevan mediante intercambiadores de calor a una temperatura de 600 °C antes de mezclarse finalmente.

Reacciones (elementales)	k₀ (min⁻¹ ó m³/(kmol·min))	E (kJ/kmol)	$\Delta H^*_{_{298K}}$ (kJ/kmol)	
$1. C+H \to D+F$	3.0·10 ⁹	136000	-141000	
$2. C+D \to A+E$	9.0·10 ¹³	250000	-290000	
3. $A+B \rightarrow E$	7.0·10 ⁴	35000	-132000	
4. $D \rightarrow C + H$	9.0·10 ¹³	270000	141000	
$5. B+C \to G$	1.0·10 ⁷	75000	250000	

- Representar gráficamente los siguientes perfiles: temperatura, flujos molares y concentraciones de cada componente en cada reactor.
- Determinar las concentraciones de cada componente en la corriente *final* del sistema.

Otros datos:

C_p: capacidad calorífica de cada sustancia (kJ/(kmol·K)):

Α	В	С	D	E	F	G	Н
35	42	41	55	60	69	75	28

- El sistema trabaja a presión constante.
- Temperatura del fluido de calefacción en cada reactor: Tw₁ = 725 °C, Tw₂ = 800 °C.
- Coeficiente global de intercambio de calor en cada reactor: $U_1 = 5 \text{ kJ/(min·m}^2 \cdot \text{K)}$, $U_2 = 3 \text{ kJ/(min·m}^2 \cdot \text{K)}$.
- Longitud de cada reactor: L₁ = 12 m y L₂= 10 m.
- Sección transversal de cada reactor: $S_1 = S_2 = 0.2 \text{ m}^2$.
- Haz uso de un solo archivo de función válido para ambos reactores.