Unit 5: Quiz

Due Mar 4 at 11:59pm **Points** 8 **Questions** 8 **Available** until Mar 5 at 2:59am **Time Limit** 60 Minutes

This quiz was locked Mar 5 at 2:59am.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	10 minutes	8 out of 8

Score for this quiz: **8** out of 8 Submitted Mar 2 at 2:20pm This attempt took 10 minutes.

Question 1 1 / 1 pts

Given the following HMM model, where symbols X, Y and Z represent the possible observations in the states. In a circle representing a state, the symbols are equally possible observations in that state. What is the value of $b_3(Z)$ in the observation probability matrix?

- 0
- 1/3

Correct!

1/2

2/3

Question 2 1 / 1 pts

Given the following HMM model, where symbols X, Y and Z represent the possible observations in the states. In a circle representing a state, the symbols are equally possible observations in that state. Suppose π 1 =1/2, what is the value of P(Q), Q = S1S3S3?

1/2

2/3

Correct!

0 1/9

1/3

Question 3 1 / 1 pts

Given the following HMM model, where symbols X, Y and Z represent the possible observations in the states. In a circle representing a state, the symbols are equally possible observations in that state. How much is P(O1=Y, O2=X, O3=Z|S2S3S3)?

Correct!

1/8

O 2/3		
0 1/2		
1/4		

Given the following HMM model, where symbols X, Y and Z represent the possible observations in the states. In a circle representing a state, the symbols are equally possible observations in that state. How many states are there in the model?

0 2

Correct!

3

0 1

0 4

Question 5	1 / 1 pts
Question e	•

The Viterbi Algorithm for state prediction is a dynamic programming solution.

Correct!

True

False

	Question 6 1 / 1 pts
	Given an HMM Λ ={ Θ , Ω , A , B , π }, which matrix represents the set of output (observation)?
	○ A
Correct!	
	○ Θ
	ОВ

Question 7 1 / 1 pts To learn the probabilities in graphical models, which of the following may be used? (Select all that apply Correct! ☑ Use the MLE principle for estimation. Correct! ☑ Make proper assumption about the priors. Correct! ☑ Use relative frequency to estimate probability.

	Suppose that the first state is S1, and we have a path of length 100, how many different possible state paths are there in total?
	O 3^100
Correct!	3^99
	O 4^99
	O 4^100

Quiz Score: 8 out of 8