

I/Q SYSTEM

KHOA CÔNG NGHỆ THÔNG TIN TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIỀN

What will you learn?

- □ I/O devices
- I/O Modules
- I/O Register Mapping
- I/O Data transfer

- I/O Command
- Life cycle of an I/O request
- ☐ I/O Bus
- ☐ Typical x86 PC I/O System

I/O devices

- Can be typify by:
 - Behavior: input, output, storage
 - Partner: human / machine
 - Data rate: bytes/sec, transfer/sec

☐ Character & Block devices
The device interface gives the illusion
that devices support the same API —

character stream and block access

application/user:	read character from device	naming, protection read, write
operating system:	character & block API	hardware specific
hardware:	keyboard, mouse, etc.	PIO, interrupt handling, or DMA

I/O Modules

- Interface to the processor and memory via the system bus or control switch
- Interface to one or more peripheral devices

I/O Register Mapping

■ Memory-mapped I/O

- Registers are addressed in same space as memory
- Address decoder distinguishes between them
- OS uses address translation mechanism to make them only accessible to kernel

I/O Register Mapping

- ☐ Isolated I/O
 - Separate instructions to access I/O registers
 - ☐ Can only be executed in kernel mode

I/O Data Transfer

- Data transfer between CPU and I/O devices can be handled in generally three types of modes:
 - Programed I/O
 - ☐ Interrupt Driven I/O
 - Direct Memory Access

I/O Commands

- I/O devices are managed by I/O Controller hardware
- □ The processor issues an address, specifying I/O module and device, and an I/O command. The commands are:
 - Control
 - Test
 - Read
 - Write

Life cycle of an I/O request

I/O Bus Types

- ☐ Processor-Memory buses
 - ☐ Short, high speed
 - Design is matched to memory organization
- ☐ I/O buses
 - Longer, allowing multiple connections
 - Connect to processor-memory bus through a bridge

I/O Bus Example

	Firewire	USB 2.0	PCI Express	Serial ATA	Serial Attached SCSI
Intended use	External	External	Internal	Internal	External
Devices per channel	63	127	1	1	4
Data width	4	2	2/lane	4	4
Peak bandwidth	50MB/s or 100MB/s	0.2MB/s, 1.5MB/s, or 60MB/s	250MB/s/lan e 1×, 2×, 4×, 8×, 16×, 32×	300MB/s	300MB/s
Hot pluggable	Yes	Yes	Depends	Yes	Yes
Max length	4.5m	5m	0.5m	1m	8m
Standard	IEEE 1394	USB Implementer s Forum	PCI-SIG	SATA-IO	INCITS TC T10

Typical X86 PC I/O System

How to classify I/O device?

- A. Behavior
- B. Partner
- C. Data rate
- D. All of them

Which part of CPU is the role of the I/O controller hub?

- A. North Bridge
- B. South Bridge

How can data transfer be handled between CPU and I/O devices?

- A. Programed I/O
- B. Interrupt Driven I/O
- C. Direct Memory Access

Which is a set of wires and a well-defined protocol that specifies messages sent over the wires?

- A. Port
- B. Bus
- C. Controller

