1 Lezione del 11-12-24

1.0.1 Trasformatore reale con ciclo di isteresi

Nel caso dei trasformatori reali, non ammessa la terza ipotesi considerata prima, quindi μ_{fe} non costante nel tempo e il materiale quindi caratterizzato da un ciclo di isteresi, si noterà un effetto non modellizabile matematicamente ma comunque sperimentabile nella realtà.

Dal trasformatore, considerato **a vuoto** (quindi senza carico sul secondario):

disegno trasformatore normale

ricaveremo il circuito magnetico:

circuito quattro resistenze R1 R2 R3 R4 e generatore N1 I1

da cui potremo ricavare, dalla legge di Ohm:

$$N_1I_{10} = f(R_{i_1}\Phi_0)$$

Considerando lo stesso trasformatore, ma stavolta con un impedenza di carico \overline{Z}_C : avremo il circuito magentico:

come sopra ma con il generatore di carico N2 I2 concorde a N1 I1 da cui ricaveremo invece:

$$N_1I_1 + N_2I_2 = f(\mathcal{R}_i, \Phi)$$

Quello che si misura sperimentalmente è che Φ_0 a vuoto è $\approx \Phi$ preso un carico, cioè che in generale il flusso Φ *non dipende dal carico*. Sarà quindi:

$$N_1 I_{10} = N_1 I_1 + N_2 I_2, \quad I_1 = \frac{N_2}{N_1} I_2 + I_{10} = -\frac{1}{n} I_2 + I_{10}$$

Possiamo quindi migliorare il nostro modello di un trasformatore reale introducendo un'altra maglia, dove scorrerà la corrente I_{10} , e su cui si troveranno una resistenza R_m e un'induttanza L_m in parallelo, dette **resistenza di magnetizzazione** e **impedenza di magnetizzazione** e che dipendono dal ciclo di isteresi del materiale.

equivalente trasformatore reale

L'impedenza di magnetizzazione, in particolare, serve a modellizzare il fatto che le correnti sugli avvolgimenti spesso non sono in fase fra di loro, sempre per esperienza sperimentale.

1.0.2 Calcolo dei parametri di un trasformatore reale

Si ha, visto il fatto che i parametri che modellizzano un trasformatore sono effettivamente empirici, che il loro calcolo si fa per prove. Nello specifico si fa:

1. Una **prova a vuoto**, quindi prendendo il ramo a destra (il secondario) come aperto: equivalente trasformatore reale con aperto a destra

In questo caso è immediato che la corrente sugli induttori del mutuo accoppiamento è nulla, e quindi l'unica corrente rimasta è quella sul ramo di magnetizzazione, cioè quello che contiene R_m e L_m . Avremo quindi la possibilità di misurare V_0 , I_0 e P_0 , cioè tensione, corrente e potenza dissipata (con quali strumenti?).

De queste si ricaverà:

$$P_0 = R_m I_r^2 = R_m \left(\frac{V_0}{R_m}\right)^2 = \frac{V_0^2}{R_m} = G_m V_0^2$$

dove G_m è la conduttanza di magnetizzazione $\frac{1}{R_m}$. Si ha quindi:

$$G_m = \frac{P_0}{V_0^2}$$

Per quanto riguarda l'impedenza, invece, prendiamo l'**ammettenza di magnetiz- zazione**:

 $Y_m = \frac{I_0}{V_0}$

Notiamo che non ci è possibile calcolare le grandezze così come sono, cioè in fasori, ma solo come moduli, cioè non si può calcolare:

$$\overline{Y}_m = \frac{\dot{I}_0}{\dot{V}_0} = G_m + jB_m$$

con G_m la conduttanza di prima, e B_m suscettanza di magnetizzazione, ma solo:

$$|\overline{Y}_m| = Y_m$$

notiamo però di aver già trovato la conduttanza G_m , e quindi:

$$B_m = \sqrt{Y_m^2 - G_m^2}$$

$$\overline{Y}_m = \frac{1}{R_m} + \frac{1}{j\omega L_m} = \frac{1}{R_m} - \frac{j}{\omega L_m}$$

$$\overline{Y}_m = G + jB \implies G = \frac{1}{R_m}, \quad B = -\frac{1}{\omega L_m}$$

2. Una **prova in cortocircuito**, qunidi prendendo il secondario come chiuso. In questo caso possiamo trascurare il ramo di magnetizzazione, in quanto abbiamo già calcolato resistenza e impedenza di magnetizzazione.

yada yada

A questo punto riportiamo, con le formule dell'adattamento di impedenza, l'impedenza al secondario sul ramo del primario, quindi introduciamo la resistenza n^2R_{2d} e l'induttanza n^2X_{1d} ?? non ne ho la più pallida idea

Troveremo quindi la resistenza e l'induttanza complessive R_{cc} e X_{cc} , semplicemente come le somme delle resistenze delle induttanze sul ramo. Attraverso le stesse misure di prima, potremo poi dire:

$$P_{cc} = R_{cc}I_{cc}^2 \implies R_{cc} = \frac{P_{cc}}{I_{cc}^2}$$
$$\frac{V_{cc}}{I_{cc}} = Z_{cc}$$
$$X_{cc} = \sqrt{Z_{cc}^2 - R_{cc}^2}$$

notiamo che non possiamo mai separare l'impedenza sul primario e sul secondario, ma questo non ci interessa se vogliamo calcolare la potenza complessivamente dissipata sul trasformatore. Allo stesso modo, non potremo calcolare i flussi magnetici dispersi sul primario o sul secondario, ma solo i flussi dispersi complessivamente. quassù caos

1.1 Macchine elettriche

conflitto con ultima lezione Vediamo quindi le **macchine elettriche** vere e proprie, che in questo caso intendiamo come tali perchè comportano effettivamente movimento meccanico. Le macchine elettriche comportano trasferimento di **potenza**, **elettrica** e **meccanica**, detto proceso di *conversione elettromagnetomeccanica* (?). Una macchina che trasforma potenza elettrica in potenza meccanica si dice **motore**, mentre una macchina che trasforma potenza meccanica in potenza elettrica si dice **generatore**.

1.1.1 Trasduttore a bobina mobile

Consideriamo un circuito formato da una resistenza R e un generatore v, con un lato aperto su cui si trova una bobina mobile di lunghezza l e massa m. Il circuito si trova inoltre in un campo magnetico entrante nella pagina.

Possiamo considerare la forza di Lorentz:

1.1: Forza di Lorentz

$$F = qv \times B$$

La corrente nel circuito sarà:

$$i = \frac{dq}{dt}$$

che possiamo moltiplicare da entrambi i lati per dl distanza infinitesima sulla barretta:

$$dl i = \frac{dq}{dt}dl = dq \cdot v'$$

con v' velocità della singola carica sulla bobina mobile. Integrando a destra e a sinistra si ha:

$$Bli = qv'B = F \Rightarrow F = Bli$$

riguarda serway

$$\frac{Fl}{a} = vBl$$

$$\varepsilon = Blv$$

dove ε è la fem indotta.

quindi si ricava $V - Ri - \varepsilon = 0$ ecc ecec

Il circuito studiato si comportta, a seconda del segno di *i*, come:

- *i* > 0: motore;
- i = 0: caso ideale;
- i < 0: generatore.

Si introduce la **forza resistente** F_r :

$$\begin{cases} V - Ri - \varepsilon = 0 \\ F - F_r = m \frac{di}{dt} = 0 \end{cases}$$

$$F_r = F = Blv = Bl\frac{V - \varepsilon}{R} = Bl\frac{Blv_0 - Blv}{R}$$

$$F_r = \frac{B^2l^2}{R}(v_0 - v)$$

$$v_0 - v = \frac{RF_r}{B^2l^2}$$

$$v = v_0 - \frac{RF_r}{B^2l^2}$$