Machine Learning for Computer Vision (EE5177) Programming Assignment 3 : Regression Models Problem #2

Akshit Kumar EE14B127

29th March 2017

Contents

1	1.2 Approach	2 2 2 2
2	Feature Extraction 2.1 Approach	2 2 2
3	Linear Regression using HOG features 3.1 ML Estimate	2 2 2
4	Dual Regression using HOG features4.1 ML Estimate4.2 Train and Test Error4.3 Analysis	3 3 3 3
5	•	3 9 9 9 9
6	6.2 Train and Test Error	4 4 4 4 4
7	Comparison 7.1 Comparison of various models in terms of Train and Test RMSE	4 4

1 Introduction

1.1 Goal

The goal of the problem is to estimate the head pose of a face using various regression techniques like Linear Regression, Dual Regression, Linear Regression with PCA, Dual Regression with Kernel Trick.

1.2 Approach

To estimate the head pose of a face, we employ various regression techniques mentioned above on Histogram of Oriented Gradients (HoG) features.

1.3 Analysis

Each regression technique is described here and in conclusion the results obtained from the various regression techniques are evaluted over some test images.

2 Feature Extraction

2.1 Approach

The actual images are first converted to grayscale images, then they are cropped to only contain the faces and then they are resized to be of the dimension 96px X 108 px. After resizing, the images are used to extract the Histogram of Oriented Gradients feature vectors using the matlab code provided.

2.2 Sample Cropped Images

3 Linear Regression using HOG features

3.1 ML Estimate

The ML estimate of the weights can be calculated using

$$\phi = (XX^T)^{-1}Xw$$

where $X = [x_1, x_2, \dots, x_I]$ represents the matrix of HoG features and w represents the world states.

3.2 Train and Test Error

 $\begin{aligned} \text{Train RMSE} &= \textbf{1.1778e-11} \\ \text{Test RMSE} &= \textbf{13.6378} \end{aligned}$

3.3 Analysis

Clearly the model is *overfitting* the data which is reflected by the fact that the train rmse is too low compared to the test rmse which implies that the model doesn't generalise well. Also this method is computationally intensive as XX^T is not full rank and not calculating inverse, we need to take a pseudo inverse.

4 Dual Regression using HOG features

4.1 ML Estimate

The ML estimate of the weights can be calculated using

$$\phi = X(X^T X)^{-1} w$$

where $X = [x_1, x_2, ..., x_I]$ represents the matrix of HoG features and w represents the world states. We can show that this estimate is the same as what we would get in the case of linear regression.

4.2 Train and Test Error

Train RMSE = 3.5667e-11 Test RMSE = 13.6378

4.3 Analysis

Clearly the model is overfitting the data which is reflected by the fact that the train rmse is too low compared to the test rmse which implies that the model doesn't generalise well. This method performs as well as the Linear regression methos but is computationally less intensive as X^TX is full rank and can be easily inverted.

5 Linear Regression using PCA on HOG features

5.1 Choosing the number of components for PCA

5.2 Appropriate value of number of components for PCA

At k = 409, the k largest eigenvalues capture 90% of the variance.

5.3 Train and Test Error

Train RMSE = 7.8429Test RMSE = 10.5769

5.4 Analysis

Linear Regression using PCA doesn't suffer from overfitting like linear regression and dual regression as PCA tries to capture patterns in data by projecting the data along the plane of highest variance giving simpler models.

6 Dual Regression with Kernel Trick

6.1 RBF Kernel

In this case we make use of the RBF Kernel, we replace the dot product of 2 vectors with the kernel function as

$$k[x_i, x_j] = exp[-0.5(\frac{(x_i - x_j)^T(x_i - x_j)}{\lambda^2})]$$

6.2 Train and Test Error

6.2.1 λ_1 as the minimum pairwise distance

 $\begin{aligned} \text{Train RMSE} &= 3.6863e\text{-}13\\ \text{Test RMSE} &= 12.4462 \end{aligned}$

6.2.2 λ_2 as the maximum pairwise distance

 $\begin{aligned} \text{Train RMSE} &= \textbf{1.4214e-11} \\ \text{Test RMSE} &= \textbf{9.6083} \end{aligned}$

6.2.3 λ_3 as the mean of λ_1 and λ_2

 $\begin{array}{l} \text{Train RMSE} = \textbf{2.7439e-12} \\ \text{Test RMSE} = \textbf{8.9713} \end{array}$

6.3 Analysis

Again, all the three models suffer from gross *overfitting*. However this model seems to be performing better than all the other models discussed above as the average value of lambdas gives the least training error and hence generalises best compared to other models discussed above.

7 Comparison

7.1 Comparison of various models in terms of Train and Test RMSE

Model	Train RMSE	Test RMSE
Linear Regression	1.1778e-11	13.6378
Dual Regression	3.5667e-11	13.6378
Linear Regression using PCA	7.8429	10.5769
Dual Regression with Kernel Trick (λ_1)	3.6863e-13	12.4462
Dual Regression with Kernel Trick (λ_2)	1.4214e-11	9.6083
Dual Regression with Kernel Trick (λ_3)	2.7439e-12	8.9713

7.2 Analysis

We can clearly see that Dual Regression with Kernel Trick (λ_3) seems to perform the best in terms of test rmse metric. We also see that all the models apart from PCA suffer from huge *overfitting* problems and hence it is doesn't generalise well. The reason why Dual Regression with kernel trick does better than other models considered is because these models are able to model the non-linearities in data better which linear models can't really capture. The reason λ_3 might be doing better than other λ values is that it is the mean of the λ_1 and λ_2 and is closer to variance than λ_1 and λ_2 and hence models the variance better.

7.3 Pan Angles For Images

Model	test/122.jpg	$\mathrm{test/337.jpg}$	test/405.jpg	$\mathrm{test}/428.\mathrm{jpg}$	$\mathrm{test/550.jpg}$
Linear Regression Angle	74.1186	-51.1052	-66.0633	29.3632	-6.8440
Dual Regression Angle	74.1186	-51.1052	-66.0633	29.3632	-6.8440
Linear Regression using PCA Angle	90.2055	-53.8175	-74.1713	50.6014	3.0786
Dual Regression with Kernel Trick (λ_1) Angle	80.4537	-48.6835	-72.7297	39.0730	5.1508
Dual Regression with Kernel Trick (λ_2) Angle	82.1382	-49.0304	-72.3169	44.5357	-2.9032
Dual Regression with Kernel Trick (λ_3) Angle	82.8429	-48.2168	-74.1274	46.2457	0.4380
True Angle	90	-45	-75	60	0

7.4 Analysis on Sample Test Images

From the sample test images, we can clearly see that PCA and Dual regression with kernel trick (λ_3) seems to be best models for estimation of the head pose angle. Also linear and dual regression perform very badly in estimation which is expected as these models don't capture the variance and non-linearities in the data well.