Compact forms for MARSS models with covariates

Mark D. Scheuerell

Northwest Fisheries Science Center National Oceanic and Atmospheric Administration Seattle, WA USA mark.scheuerell@noaa.gov

Standard MARSS model

There is growing interest in the use of first-order vector autoregressive, or VAR(1), models in ecology where they are often referred to as multivariate autoregressive, or MAR(1), models¹.

Process equation

The underlying process in a MAR(1) model is a discrete time version of a multivariate Gompterz equation for n "species", which is typically written as

$$\mathbf{x}_t = \mathbf{B}\mathbf{x}_{t-1} + \mathbf{w}_t,$$

where \mathbf{x}_t is an $n \times 1$ vector of state variates at time t, \mathbf{B} is an $n \times n$ matrix of interaction strengths, and \mathbf{w}_t is an $n \times 1$ vector of multivariate normal process errors; $\mathbf{w}_t \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$.

Often we would like to include the effects of some number p of external drivers of the system, whether they be environmental (e.g., temperature) or anthropogenic (i.e., harvest). In those cases, the model is expanded to

$$\mathbf{x}_t = \mathbf{B}\mathbf{x}_{t-1} + \mathbf{C}\mathbf{c}_{t-h} + \mathbf{w}_t,$$

where **C** is an $n \times p$ matrix of covariate effects, and \mathbf{c}_t is a $p \times 1$ vector of covariates at time t - h where $0 \le h \le T$.

Observation equation

This process model can be used within a state-space framework wherein we add a second model for the observed data \mathbf{y} , such that

$$\mathbf{x}_t = \mathbf{B}\mathbf{x}_{t-1} + \mathbf{C}\mathbf{c}_{t-h} + \mathbf{w}_t,$$

$$\mathbf{y}_t = \mathbf{x}_t + \mathbf{a} + \mathbf{v}_t,$$

a is an $n \times 1$ vector of offsets, and \mathbf{v}_t is an $n \times 1$ vector of observation errors; $\mathbf{v}_t \sim \text{MVN}(\mathbf{0}, \mathbf{R})$.

¹See Ives et al. (2003) Ecol Monogr 73:301–330)

Compact MARSS model: Option 1

Process equation

The above MARSS model can be rewritten in a more compact form, if we make some assumptions about the time lag h for the covariates. Beginning with the process equation, if h = 1 and all of the covariates have been scaled to have zero mean and unit variance, then we can redefine the MAR(1) model as

$$\mathbf{x}_{t}^{*} = \mathbf{B}^{*}\mathbf{x}_{t-1}^{*} + \mathbf{w}_{t}^{*} \text{ with } \mathbf{w}_{t}^{*} \sim \text{MVN}(\mathbf{0}, \mathbf{Q}^{*}),$$

with the following definitions:

$$\mathbf{x}_t^* = \begin{bmatrix} \mathbf{x}_t \\ \mathbf{c}_t \end{bmatrix},$$

$$\mathbf{B}^* = \begin{bmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}, \text{ and }$$

$$\mathbf{Q}^* = egin{bmatrix} \mathbf{Q} & \mathbf{0} \ \mathbf{0} & \mathbf{I}_p \end{bmatrix}.$$

Here \mathbf{I}_p is a $p \times p$ identity matrix. Thus, these vectors and matrices will have new dimensions, such that \mathbf{x}_t^* is $(n+p) \times 1$, \mathbf{B}_t^* is $(n+p) \times (n+p)$, and \mathbf{Q}_t^* is also $(n+p) \times (n+p)$.

Observation equation

The observation equation is then rewritten as

$$\mathbf{y}_t^* = \mathbf{x}_t^* + \mathbf{v}_t^* \text{ with } \mathbf{v}_t^* \sim \text{MVN}(\mathbf{0}, \mathbf{R}^*),$$

and

$$\mathbf{y}_t^* = \begin{bmatrix} \mathbf{y}_t \\ \mathbf{c}_t \end{bmatrix}$$
 and

$$\mathbf{R}^* = egin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

These new vectors and matrices will have dimensions where \mathbf{y}_t^* is $(n+p) \times 1$ and \mathbf{Q}_t^* is $(n+p) \times (n+p)$.

Compact MARSS model: Option 2

If the covariates have not been scaled, then the state-space model must instead be written as

$$\begin{aligned} \mathbf{x}_t^* &= \mathbf{B}^* \mathbf{x}_{t-1}^* + \mathbf{w}_t^* \text{ with } \mathbf{w}_t^* \sim \text{MVN}(\mathbf{0}, \mathbf{Q}^*) \\ \mathbf{y}_t^* &= \mathbf{x}_t^* + \mathbf{a}^* + \mathbf{v}_t^* \text{ with } \mathbf{v}_t^* \sim \text{MVN}(\mathbf{0}, \mathbf{R}^*), \end{aligned}$$

wherein

$$\mathbf{Q}^* = \begin{bmatrix} \mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{S} \end{bmatrix}, \text{ and }$$

$$\mathbf{S} = \begin{bmatrix} \operatorname{Var}(c_1) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \operatorname{Var}(c_p) \end{bmatrix}.$$

The $p \times p$ matrix **S** contains the variances of each of the p covariates along the diagonal and 0's elsewhere (i.e., they are input and not estimated). To allow for non-zero means in the covariates, an $n \times 1$ vector **a** containing covariate means must be included in \mathbf{a}^* , such that

$$\mathbf{a}^* = egin{bmatrix} \mathbf{0} \\ \mathbf{a} \end{bmatrix}.$$