Tarea #1

Renato Flores, 201709244
31 de agosto de 2020

Ejercicio 0

1.1. Datos

$$p = 25$$

$$c3 = 50$$

$$r = 3000$$

$$c1 = 0.3*p$$

■ prices =
$$[((0, 39), p), ((40, 69), 0.9*p), ((70, oo), 0.85*p)]$$

$$q \text{ in } [0,39] p = 25$$

$$Q = \sqrt{2} \sqrt{\frac{c_3 r}{c_1}}$$

$$Q = \sqrt{2}\sqrt{\frac{(50)(3000)}{(7,5000)}}$$

$$Q = 200,0$$
 $Ct = \frac{Qc_1}{2} + pr + \frac{c_3r}{Q}$

$$Ct = \frac{(39)(7,5000)}{2} + (25)(3000) + \frac{(50)(3000)}{(39)}$$

$$Ct = 78992,375$$

q in
$$[40,69]$$
 p = 22.5000

$$Q = \sqrt{2}\sqrt{\frac{c_3r}{c_1}}$$

$$Q = \sqrt{2}\sqrt{\frac{(50)(3000)}{(6,7500)}}$$

$$Q = 210,818$$
 $Ct = \frac{Qc_1}{2} + pr + \frac{c_3r}{Q}$

$$Ct = \frac{(69)(6,7500)}{2} + (22,5000)(3000) + \frac{(50)(3000)}{(69)}$$
$$Ct = 69906,781$$

q in [70,00] p = 21.2500

$$Q = \sqrt{2} \sqrt{\frac{c_3 r}{c_1}}$$

$$Q = \sqrt{2}\sqrt{\frac{(50)(3000)}{(6,3750)}}$$

$$Q = 216,93$$
 $Ct = \frac{Qc_1}{2} + pr + \frac{c_3r}{Q}$

$$Ct = \frac{(216,9304)(6,3750)}{2} + (21,2500)(3000) + \frac{(50)(3000)}{(216,9304)}$$
$$Ct = 65132,932$$

Resumen

Cantidad	Descuento	Precio	q^*	Q^*	Costo
0-39	0%	25	200.0	39	78992.375
40-69	10.0000%	22.5000	210.8184	69	69906.7812
70-00	15,0000%	21 2500	216 9304	216 9304	65132 9317

Ejercicio 1

Ciclo productivo con faltantes permitidos

6.1. Datos

- r = 1666.6667
- k = 2500
- c1 = 0.15
- c3 = 500

Inventario Optimo (Q)

$$Q = \sqrt{2} \sqrt{\frac{c_3 r(c_1 + c_2)}{c_1 c_2 \left(1 - \frac{r}{k}\right)}}$$

$$Q = \sqrt{2} \sqrt{\frac{(500)(1666,6667)((0,15) + (1,6666666666666667))}{(0,15)(1,6666666666666666666667)\left(1 - \frac{(1666,6667)}{(2500)}\right)}}$$

$$Q = 6027,714$$

Inventario Maximo (S)

$$S = \sqrt{2} \sqrt{\frac{c_2 c_3 r \left(1 - \frac{r}{k}\right)}{c_1 \left(c_1 + c_2\right)}}$$

$$S = \sqrt{2} \sqrt{\frac{(1,66666666666666666667)(500)(1666,6667)\left(1 - \frac{(1666,6667)}{(2500)}\right)}{(0,15)((0,15) + (1,666666666666666667))}}$$

$$S = 1843,338$$

Costo Normal (C)

$$C = \sqrt{2} \sqrt{\frac{c_1 c_2 c_3 r \left(1 - \frac{r}{k}\right)}{c_1 + c_2}}$$

$$C = \sqrt{2} \sqrt{\frac{(0,15)(1,6666666666666666667)(500)(1666,6667)\left(1 - \frac{(1666,6667)}{(2500)}\right)}{(0,15) + (1,666666666666666667)}}$$

$$C = 276,501$$

Carencia Maxima (D)

$$D = Q - S$$

$$D = (6027,714) - (1843,3375)$$

$$D = 4184,377$$

Tiempo en agotarse el inventario (t2)

$$t2 = \sqrt{2} \sqrt{\frac{c_2 c_3 \left(1 - \frac{r}{k}\right)}{c_1 r (c_1 + c_2)}}$$

$$t2 = \sqrt{2}\sqrt{\frac{(1,6666666666666666667)(500)\left(1 - \frac{(1666,6667)}{(2500)}\right)}{(0,15)(1666,6667)((0,15) + (1,66666666666666667))}}$$

$$t2 = 1,106$$

Tiempo de produccion (t1)

$$t1 = \sqrt{\frac{rt_2}{k-r}}$$

$$t1 = \sqrt{\frac{(1666,6667)(1,106)}{(2500) - (1666,6667)}}$$

$$t1 = 1,487$$

Tiempo incurrido en faltantes (t3)

$$t3 = \sqrt{2} \sqrt{\frac{c_1 c_3 \left(1 - \frac{r}{k}\right)}{c_2 r \left(c_1 + c_2\right)}}$$

$$t3 = \sqrt{2} \sqrt{\frac{(0,15)(500)\left(1 - \frac{(1666,6667)}{(2500)}\right)}{(1,6666666666666666667)(1666,6667)((0,15) + (1,66666666666667))}}$$

$$t3 = 0.1$$

Tiempo en recuperar los faltantes (t4)

$$t4 = \sqrt{\frac{rt_3}{k-r}}$$

$$t4 = \sqrt{\frac{(1666,6667)(0,0995)}{(2500) - (1666,6667)}}$$

$$t4 = 0,446$$

Tiempo de produccion (tp)

$$tp = \frac{Q}{k}$$

$$tp = \frac{(6027,714)}{(2500)}$$

$$tp = 2,411$$

tiempo de consumo (tc)

$$tc = \frac{Q}{r}$$

$$tc = \frac{(6027,714)}{(1666,6667)}$$

$$tc = 3,617$$

Tiempo total (tt)

$$tt = tc + tp$$

$$tt = (3,6166) + (2,4111)$$

$$tt = 6,028$$

Ejercicio 2

Ciclo productivo sin faltantes

18.1. Datos

- r = 600
- k = 1440
- c1 = 0.0042
- c3 = 750

Inventario Optimo (Q)

$$Q = \sqrt{2} \sqrt{\frac{c_3 r}{c_1 \left(1 - \frac{r}{k}\right)}}$$

$$Q = \sqrt{2} \sqrt{\frac{(750)(600)}{(0,0042)\left(1 - \frac{(600)}{(1440)}\right)}}$$

$$Q = 19166,297$$

Inventario Maximo (S)

$$S = \sqrt{2} \sqrt{\frac{c_3 r \left(1 - \frac{r}{k}\right)}{c_1}}$$

$$S = \sqrt{2} \sqrt{\frac{(750)(600)\left(1 - \frac{(600)}{(1440)}\right)}{(0,0042)}}$$

$$S = 11180,34$$

Costo Normal (C)

$$C = \sqrt{2}\sqrt{c_1c_3r\left(1 - \frac{r}{k}\right)}$$

$$C = \sqrt{2}\sqrt{(0,0042)(750)(600)\left(1 - \frac{(600)}{(1440)}\right)}$$

$$C = 46,957$$

Tiempo en agotarse el inventario (t2)

$$t2 = \sqrt{2}\sqrt{\frac{c_3\left(1 - \frac{r}{k}\right)}{c_1 r}}$$

$$t2 = \sqrt{2} \sqrt{\frac{(750)\left(1 - \frac{(600)}{(1440)}\right)}{(0,0042)(600)}}$$

$$t2 = 18,634$$

Tiempo de produccion (tp)

$$tp = \frac{Q}{k}$$

$$tp = \frac{(19166, 2969)}{(1440)}$$

$$tp = 13,31$$

tiempo de consumo (tc)

$$tc = \frac{Q}{r}$$

$$tc = \frac{(19166,2969)}{(600)}$$

$$tc = 31,944$$

Tiempo total (tt)

$$tt = tc + tp$$

$$tt = (31,9438) + (13,3099)$$

$$tt = 45,254$$