Let $f(x): \mathbb{R} \to \mathbb{R}$ be a general function (typically nonlinear). We may also write $f([a,b]): [a,b] \to \mathbb{R}$ to denote a general function over an interval [a,b]. We also write $C^n(\mathbb{R})$ or $C^n([a,b])$ to denote the *classes* of n-times continuously differentiable functions. We write $C^0(\mathbb{R}) = C(\mathbb{R})$ to mean the class of only continuous functions.

(Example.) f(x) = |x| is continuous but is not differentiable at x = 0. Thus, f(x) = |x| is in $C^0(\mathbb{R})$.

$$f(x) = e^x$$
 is in $C^{\infty}(\mathbb{R})$.

1.1 Taylor Series

Theorem 1.1: Taylor Series with Lagrange Remainder

Let $f \in C^m([a,b])$, with the derivative $f^{(m+1)}$ exists on the open interval (a,b) and with values $x,c \in [a,b]$. Then,

$$f(x) = \sum_{k=0}^{m} \frac{f^{(k)}(c)}{k!} (x - c)^k + E_m(\psi),$$

where $E_m(\psi)$ is the remainder (or error) term. We define

$$E_m(\psi) = \frac{f^{(m+1)}(\psi)}{(m+1)!} (x-c)^{(m+1)},$$

where $c < \psi < x$ or $x < \psi < c$ depending on the values of x and c.

(Example.) Suppose $f(x) = \ln(x)$ with interval [a, b] = [1, 10] and $c = e^1$. Let |x - c| < 1 (i.e., x is relatively close to c). Then,

$$f^{(1)}(x) = f'(x) = \frac{1}{x}.$$

$$f^{(2)}(x) = f''(x) = -\frac{1}{x^2}.$$

$$f^{(3)}(x) = f'''(x) = \frac{2}{x^3}.$$

$$f^{(4)}(x) = -2 \cdot 3 \frac{1}{x^4}.$$

$$f^{(5)}(x) = 2 \cdot 3 \cdot 4 \frac{1}{x^5}.$$

:

$$f^{(k)}(x) = (-1)^{k-1}(k-1)!\frac{1}{x^k}$$

for k = 1, 2, Then,

$$E_m(\psi) = \frac{1}{(m+1)!} f^{(m+1)}(\psi) (x-c)^{m+1}.$$

Using the value of $c = e^1$,

$$f^{(k)}(c) = (-1)^{k-1}(k-1)! \frac{1}{e^k}.$$

Combining everything, we end up with

$$f(x) = \sum_{k=0}^{m} \frac{f^{(k)}(c)}{k!} (x - c)^k + E_m(\psi)$$

$$= 1 + \sum_{k=1}^{m} (-1)^{k-1} \frac{(k-1)!}{k!} \frac{1}{e^k} + E_m(\psi)$$

$$= 1 + \sum_{k=1}^{m} (-1)^{k-1} \frac{1}{k} \frac{1}{e^x} (x - e)^k + \frac{1}{(m+1)} f^{(m+1)}(\psi) (x - e)^{m+1}.$$

How many terms in this approximation do we need in order for the error to be below a certain amount? In other words, what is the minimum m so that a Taylor expansion is accurate up to $\frac{1}{\alpha} \cdot 10^{-9}$? We have

$$|E_m(\psi)| \leq \frac{1}{\alpha} \cdot 10^{-9}$$
.

We already computed the remainder, so

$$\left| \frac{1}{(m+1)} f^{(m+1)}(\psi)(x-e)^{m+1} \right| \le \frac{1}{\alpha} \cdot 10^{-9}.$$

Using |x - e| < 1, we want to find m. Thus, $|\psi| < 1$.