Restricted Boltzmann Machines and the Renormalization Group: Learning Relevant Information in Statistical Physics

Jesse Hoogland

Amsterdam University College

05-06-2019

Introduction

This talk will revolve around the intersection of:

- ► The Renormalization Group (RG) of Statistical Physics
- Deep Neural Networks (DNNs) in Machine Learning
- ► Information and Probability Theory

Introduction

- ▶ We derive a more exact correspondence between RG and RBMs than previous works.
- We provide a new implementation of an existing algorithm that learns optimal RG transformations and calculate the Ising model's correlation length critical exponent.
- We describe a generalization of this algorithm to arbitrary lattice systems.

Outline

Introduction

Statistical Physics

Ferromagnetism and the Ising Model Critical Phenomena The Renormalization Group

Machine Learning

Neural Networks and Restricted Boltzmann Machines Phase Classification and Gibbs Sampling

RG = RBM?

A Correspondence between Kadanoff's Variational RG and Generative RBMs

Misconceptions

Relevant Information

Calculating the Correlation-Length Critical Exponent Generalization

Discussion and Conclusions

References

Introduction to Statistical Physics

(a) Ludwig Boltzmann [1]

(b) James Clerk Maxwell [2]

(c) Rudolf Clausius [3]

The Boltzmann Distribution

$$P(s) = \frac{1}{Z}e^{-\beta E(s)}$$
 $Z = \sum_{s} e^{-\beta E(s)}$ $\beta = \frac{1}{kT}$

Ferromagnetism

Figure 2: Ferromagnetism, the process by which materials like iron form permanent magnets [4].

The Ising Model

$$oldsymbol{s} = egin{pmatrix} s_1 \ s_2 \ dots \ s_N \end{pmatrix} \quad s_i \in \{-1,1\}$$

Figure 3: The Ising model [5].

The Ising Hamiltonian

$$P(s) = \frac{1}{Z}e^{-\beta E(s)}$$
 $Z = \sum_{s} e^{-\beta E(s)}$

$$E(s) = -B\sum_{i} s_{i} - J\sum_{\langle i,j\rangle} s_{i}s_{j}$$

- 1. B: The external magnetic field.
- 2. *J*: The interaction strength between neighboring spins.

Markov-Chain Monte Carlo (MCMC) Methods

- Perform ensemble average over a subset of (representative) samples.
- Relative probabilities are easier to evaluate than absolute probabilities.

$$P(s) = \frac{1}{Z}e^{-\beta E(s)}$$
 $Z = \sum_{s} e^{-\beta E(s)}$

Mean-Field Theory (MFT)

- Approximates the value at each spin by an average over its neighbors.
- ▶ Yields interesting predictions about *critical behavior*.

Figure 4: MFT predicts a *critical point*, below which the system *spontaneously magnetizes*. At the critical point, MFT predicts a divergence of the correlation length.

Mean-Field Theory Critical Exponents

Defining t is the *reduced temperature*: $t := (T - T_c)/T_c$, MFT predicts:

$$\boxed{ \langle \mathcal{M} \rangle_{|B=0} \sim |t|^{-1/2} }$$

$$\boxed{ \xi \sim |t|^{-1/2} }$$

Mean-Field Theory Critical Exponents

Defining t is the *reduced temperature*: $t := (T - T_c)/T_c$, MFT predicts:

$$\boxed{ \left. \langle M \rangle \right|_{B=0} \not \bowtie \left| t \right|^{-1/2} }$$

$$\boxed{ \left. \xi \not \bowtie \left| t \right|^{-1/2} \right| }$$

The Renormalization Group

Instead of computing $Z = \sum_{s} e^{-\beta E(s)}$ explicitly, try to reexpress Z in a simpler form. We follow Cardy's derivations [6].

$$\sum_{\mathbf{s}'} e^{-H'(\mathbf{s}')} = \sum_{\mathbf{s}} e^{-H(\mathbf{s})}$$

For example, decimation:

$$e^{-H'(\mathbf{s}')} = \sum_{\mathbf{s}_2, \mathbf{s}_4, \dots, \mathbf{s}_N} e^{-H(\mathbf{s})},$$

Majority-Rule Block-Spin Renormalization

Figure 5: Three steps of majority-rule block-spin renormalization, preceding left to right (block size b = 2).

- 1. Divide configuration into j (3x3) "blocks," $\mathbf{v}^{(j)} = (v_1^{(j)}, \cdot, v_9^{(j)})$).
- 2. For each block, create a new *coarse-grained* spin h_j , according to the *majority-rule*:

$$h_j = \operatorname{sgn} \sum_{i=1}^9 v_i$$

3. Rescale our coarse-grained configuration to the original size.

General Theory of RG

Suppose $J' = \mathcal{R}(J)$, then a critical point is such that $J^* = \mathcal{R}(J^*)$. In its vicinity:

$$J' pprox \mathcal{R}(J^*) + \mathcal{R}'(J^*)(J - J^*) = J^* + b^y(J - J^*),$$

where b is the block size and

$$y \equiv \frac{\ln \mathcal{R}'(J^*)}{\ln b}.$$

Knowing that

$$\xi(J) \sim A(J-J^*)^{-\nu}$$
,

we determine:

$$\nu = \frac{1}{y}$$

Relevant Operators

$$y \rightarrow \{y_i\}$$

- $y_i > 0$: **relevant**, repeated RG iterations bring us away from fixed point value.
- $ightharpoonup y_i < 0$: **irrelevant**, repeated RG iterations bring us closer to fixed point value.
- $y_i = 0$: **marginal**, linearized equations do not provide enough information.

The Consequences and Implementation of RG

Consequences:

- ► *RG-flow*: Critical exponents are expressed as derivatives of RG transformations.
- Scaling relations: we can express critical exponents in terms of one another.
- Universality: there are finitely many fixed points, and many microscopic theories are indistinguishable macroscopically.

In practice:

- ▶ 4ϵ expansion.
- MCMC methods and finite-size scaling.
- ► Kadanoff's mnethod $e^{-H'(s')} = \sum_{s} e^{T_{\lambda}(s',s) H(s)}$.

Partition Functions or Probability Distributions

Statistical Physics

$$H(s) \to Z \to S$$
 (1)

$$\frac{P(s)}{P(s')} o S_{data}$$
 (2)

Machine Learning

$$S \to P(s)$$
 (3)

$$\mathcal{S} o P(\mathbf{s})$$
 (3)
 $\mathcal{S}_{data} o P_{\theta}(\mathbf{s})$

Feed-Forward Neural Networks

Figure 6: A neural network consists of alternating linear and non-linear transformations [7].

Restricted Boltzmann Machines (RBMs)

Figure 7: RBMs are a bidirectional neural network of binary-valued units [8].

$$E_{ heta}(oldsymbol{v},oldsymbol{h}) := -\sum_{i} a_{i}v_{i} - \sum_{j} b_{j}h_{j} - \sum_{ij} w_{ij}v_{i}h_{j}$$

$$P_{\theta}(\boldsymbol{v},\boldsymbol{h}) := \frac{1}{Z} e^{-E_{\theta}(\boldsymbol{v},\boldsymbol{h})} \quad Z := \sum_{\boldsymbol{v}',\boldsymbol{h}'} e^{E_{\theta}(\boldsymbol{v}',\boldsymbol{h}')}$$

Phase Classifier

$$P_{ heta}(oldsymbol{h}|oldsymbol{v}) = \prod_{j=1}^{M} rac{1}{1 + e^{-h_j(\sum_i w_{ij}v_i + b_j)}}$$

Figure 8: We can use $P_{\theta}(\mathbf{h}|\mathbf{v})$ as a phase classifer.

Gibbs Sampling

Figure 9: RBMs can implement a MCMC sampling technique known as Gibbs sampling [9].

RG = RBM?

Figure 10: Two iterations of block renormalization and a deep Boltzmann machine of three layers.

An Exact Correspondence between Kadanoff's Variational RG and RBMs

$$egin{aligned} oldsymbol{T}_{\lambda}(oldsymbol{v},oldsymbol{h}) &= -oldsymbol{E}_{ heta}(oldsymbol{v},oldsymbol{h}) + oldsymbol{H}(oldsymbol{v}), \ P_{ heta}(x) &= P_{ ext{true}}(x) \iff Z'_{ ext{Kadanoff}} &= Z \end{aligned}$$

Do RBMs Learn Block Spin RG?

Figure 11: The receptive fields of hidden units in DBMs [10]

Surprisingly, this local block spin structure emerges from the training process, suggesting the [deep neural network] is self-organizing to implement block spin renormalization [10].

Do RBMs Learn Block Spin RG?

General block spin tranformations are **NOT** all appropriate RG procedures.

Extra conditions on RG Transformations

[T]he usefulness (and practicality) of the RG procedure depends on choosing [the transformation] ... such that the effective Hamiltonian... remains as short range as possible. [11]

Misconceptions

- Locality
- ► Translation Invariance
- Physically-Relevant Information

1. Locality

Figure 12: RBMs are invariant under any permutation of the hidden layer $\left[8\right]$

.

2. Translational Invariance

We should apply the same transformation to each block of spins. Consider the following transformations:

Figure 13: Translation invariance is not respected by compression RBMs, but it is respected by block-spin RG.

Convolutional architecture

We can recover these conditions using a convolutional architecture:

Figure 14: LeNet-5, an example of a convolutional neural network used for digit recognition and a seminal architecture [12].

3. Long-Distance Information

To train compression RBMs, we use the Kullback-Leibler Divergence

$$D_{\mathit{KL}}(P_{\mathit{data}}(\mathbf{x})||P_{\theta}(\mathbf{x})) = \sum_{\mathbf{x} \in \mathcal{X}_{\mathit{data}}} P_{\mathit{data}}(\mathbf{x}) \ln \left(\frac{P_{\mathit{data}}(\mathbf{x})}{P_{\theta}(\mathbf{x})} \right)$$

Information Theory and Relevant Information

Relevant information is the information contained in one signal x about another y. This is quantified with the mutual information:

$$I(\mathbf{x};\mathbf{y}) = \sum_{\mathbf{x},\mathbf{y}} P(\mathbf{x},\mathbf{y}) \log \left(\frac{P(\mathbf{x},\mathbf{y})}{P(\mathbf{x})P(\mathbf{y})} \right)$$

The Real-Space Mutual Information (RSMI) Maximization Algorithm

Figure 15: We partition the system into a visible block, buffer zone, and environmental area.[11]

$$I(\boldsymbol{h}; \boldsymbol{e}) = \sum_{\boldsymbol{h}, \boldsymbol{e}} P(\boldsymbol{h}, \boldsymbol{e}) \log \left(\frac{P(\boldsymbol{h}, \boldsymbol{e})}{P(\boldsymbol{h})P(\boldsymbol{e})} \right)$$

A Recalculation of the Correlation-Length Critical Exponent

$$\nu\approx 0.79\pm 0.39$$

Figure 16: Finite-size collapse curve for our implementation of the RSMI algorithm.

Generalization to n-Spin and O(n) Models

Models	Symmetry of order parameter	α	β	γ	δ	ν	η
2-d Ising	2 -component scalar	0	1/8	7/4	15	1	1/4
		(log)					
3−d Ising	2 -component scalar	0.10	0.33	1.24	4.8	0.63	0.04
2-d Potts,	q -component scalar	1/3	1/9	13/9	14	5/6	4/15
q=3							
3-d X-Y	2-d vector	0.01	0.34	1.30	4.8	0.66	0.04
3-d	3−d vector		0.36	1.39	4.8	0.71	0.04
Heisenberg		-0.12					
Mean field		0	1/2	1	3	1/2	0
		(dis)					

Figure 17: Universality classes for different numbers of dimensions d and spin components n [13].

Discussion and Conclusions

- Information theory as conceptual framework for comparing ML and RG and devising optimal procedures: e.g. the RSMI algorithm.
- Symmetries of our systems as restricting allowed RG and ML transformations and enabling understanding of "black box" neural networks: e.g. convolutional architectures.
- (Unsupervised) Machine learning as guiding the "physical reasoning process," going beyond data analysis alone: e.g. calculating critical exponents [11].

References

- [1] JT. Top 10 scientists who committed suicide, oct 2007.
- [2] Who2 Biographies. James clerk maxwell biography.
- [3] Sarah Griffiths. From child prodigies to playwrights, the world's 40 smartest people of all time revealed, Aug 2016.
- [4] Eurico Zimbres FGEL/UERJ. Magnetez, 2005.
- [5] JGTechSol. Optical computing, Feb 2017.
- [6] John Cardy. Scaling and Renormaliztion in Statistical Physics. Cambridge University Press, Cambridge, United Kingdom, 1996.
- [7] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre G. R. Day, Clint Richardson, Charles K. Fisher, and David J. Schwab. A high-bias. low-variance introduction to machine learning for physicists. arXiv e-prints. page arXiv:1803.08823. Mar 2018.
- [8] Marc-Alexandre Côté and Hugo Larochelle. An infinite restricted boltzmann machine. Neural Computation, 28:1265–1288, 2016.
- [9] Theano Development Team. Restricted boltzmann machines, 2013.
- [10] Pankaj Mehta and David J. Schwab. An exact mapping between the variational renormalization group and deep learning. arXiv e-prints, page arXiv:1410.3831, Oct 2014.
- Maciej Koch-Janusz and Zohar Ringel. Mutual information, neural networks and the renormalization group. Nature Physics 14:578–582, Jun 2018.
- [12] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
- [13] Sitangshu B. Santra. Advanced statistical mechanics models and universality, November 2013.