

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment 1

Lie Groups

Author: Edward McDonald

Student Number: 3375335

Question 1

Let R be a commutative ring, and A is an R algebra. Suppose X and Y are R-linear derivations on A, that is $X, Y : A \to A$ and for all $f, g \in A$ and $r \in R$,

$$X(fg) = X(f)g + fX(g)$$

$$X(f+g) = X(f) + X(g)$$

$$X(rf) = rX(f)$$

and similarly for Y.

Theorem 1. The commutator [X,Y] = XY - YX is an R-linear derivation on A.

Proof. Clearly [X,Y] is R-linear, since it is a sum of compositions of R-linear maps.

Now suppose $f, g \in A$. Then we simply must expand out,

$$\begin{split} [X,Y](fg) &= XY(fg) - YX(fg) \\ &= X(Y(f)g + fY(g)) - Y(X(f)g + fX(g)) \\ &= X(Y(f)g) + X(fY(g)) - Y(X(f)g) - Y(fX(g)) \\ &= (XY)(f)g + Y(f)X(g) + X(f)Y(g) + f(XY)(g) - (YX)(f)g - X(f)Y(g) - Y(f)X(g) - f(YX)(g) \\ &= [X,Y](f)g + f[X,Y](g) \end{split}$$

Note that we did not need to assume the commutativity of A.

Question 2

For this question, M and M' are smooth manifolds and $f: M \to M'$ is smooth. We say that vector fields $X \in \mathfrak{X}(M)$ and $X' \in \mathfrak{X}(M')$ are f-related if $df_p(X) = X'_{f(p)}$ for all $p \in M$.

Theorem 2. If $X, Y \in \mathfrak{X}(M)$ are f-related to $X', Y' \in \mathfrak{X}(M')$ respectively, then [X, Y] is f-related to [X', Y'].

Proof. We must compute $df_p[X,Y]$. To do this, let $h \in C^{\infty}(M')$ and $p \in M$. Then by definition,

$$\begin{split} df_p[X,Y](h) &= [X,Y](h\circ f)(p) \\ &= (XY)(h\circ f)(p) - (YX)(h\circ f)(p) \\ &= X(df(Y)(h))(p) - Y(df(X)(h))(p) \\ &= X(Y'(h)\circ f)(p) - Y(X'(h)\circ f)(p) \\ &= df_p(X)(Y'(h)) - df_p(Y)(X'(h)) \\ &= X'Y'(h\circ f) - Y'X'(h\circ f) \\ &= [X',Y'](h(f(p))) \end{split}$$

Hence, $df_p[X, Y] = [X', Y']_{f(p)}$.

Question 3

For this question, G and H are Lie groups with identity elements e_G and e_H respectively. We denote the Lie algebras $T_{e_G}G$ and $T_{e_H}H$ as \mathfrak{g} and \mathfrak{h} respectively.

Theorem 3. If $f: G \to H$ is a Lie group homomorphism, then $df_{e_G}: \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra homomorphism.

Proof. We already know that df_{e_G} is a linear map between vector spaces $\mathfrak g$ and $\mathfrak h$. It remains to prove that

$$df_{e_G}[X,Y] = [df_{e_G}X, df_{e_H}Y].$$

For $X,Y\in\mathfrak{g}$. However this is precisely the result of question 2, so df_{e_G} is a Lie algebra homomorphism.

Question 4

For this question, $\mathbb H$ is the set of real 3×3 upper triangular matrices equal to 1 on the main diagonal.

(a)

Lemma 1. \mathbb{H} is a Lie subgroup of $GL(n,\mathbb{R})$.

Proof. Clearly $\mathbb{H} \subset GL(n,\mathbb{R})$ since each element of \mathbb{H} has determinant 1. We also see the identity matrix is in \mathbb{H} .

Thus it is sufficient to prove that \mathbb{H} is closed under matrix multiplication. Let $a, b, c, d, e, f \in \mathbb{R}$, then

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+d & e+b+af \\ 0 & 1 & f+c \\ 0 & 0 & 1 \end{pmatrix}$$

Hence $\mathbb H$ is closed under matrix multiplication so is a Lie subgroup of $GL(n,\mathbb R)$

(b)

Now that we know $\mathbb H$ is a Lie group, denote its Lie algebra by $\mathfrak h.$

Lemma 2. The tangent space at the identity $T_I\mathbb{H}$ can be described by the set of matrices

$$\begin{pmatrix}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{pmatrix}$$

for $a, b, c \in \mathbb{R}$.

Proof. \Box

Theorem 4. Thus the Lie Bracket on h is given by

(c)

Lemma 3. $[\mathfrak{h},\mathfrak{h}] = \mathbb{R}e_2$

Proof. \Box

Lemma 4. $[\mathfrak{h}, [\mathfrak{h}, \mathfrak{h}]] = 0.$

Proof. \Box