26.06.2022.

PREDISPITNE OBAVEZE 2

• Zaokružiti osobine integrala (za proizvoljne $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}, h: \mathbb{R} \to \mathbb{R}, i \alpha, \beta \in \mathbb{R}$)

1)
$$\int f(x)dx = F(x) + c \Leftrightarrow F'(x) = f(x)$$
 2) $\int f(x)dx = F(x) + c \Leftrightarrow f'(x) = \int F(x)dx$ 3) $\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$ 4) $\int \alpha f(x)dx = \alpha \int f(x)dx$

5)
$$\int \alpha f(x)dx = (\alpha + 1) \int f(x)dx$$
 6)
$$\int (\alpha f(x) + \beta g(x))dx = \alpha \int f(x)dx + \beta \int g(x)dx$$

• Ako je
$$\int f(x) = \ln(x^2 + 1) + c$$
, tada je $f(x) =$

• Izračunati:

• Izračunati:

1)
$$\int \frac{\sin x}{\cos x - 2} dx =$$
 2)
$$\int x \sin x dx =$$

- Neka je $f:(a,b) \to \mathbb{R}$ gde je a < b. Zaokružiti tačne iskaze.
 - 1) Ako je f neprekidna, tada je f integrabilna na (a,b), 2) Ako je f integrabilna, tada je f neprekidna na (a,b), 3) Ako je f ograničena na (a,b), tada je f integrabilna na (a,b), tada je f ograničena na (a,b).
- Napisati formulu za dužinu luka krive $y = f(x), x \in [1, 2]$:

 $\ell =$ _____

- Ako je 3 dvostruki karakteristični koren homogene linearne jednačine, tada se među njenim fundamentalnim rešenjima nalaze i funkcije:
- Opšte rešenje diferencijalne jednačine y' = y je: _____
- Zaokruži rešenja diferencijalne jednačine y'' + y = y':
 - **1)** $y(x) = \cos^2 x$ **2)** $y(x) = e^x$ **3)** y(x) = 1 **4)** y(x) = 0 **5)** y(x) = x

ZADACI

- 1. Izračunati $I = \int \frac{\sqrt{x}}{1 \sqrt[3]{x}} dx$.
- 2. Izračunati zatvorenu površinu koju zaklapa kružnica $x^2 + y^2 = 2$ sa parabolom $y(x) = x^2$, i to onu zatvorenu površinu koja se nalazi iznad parabole.
- 3. Dokazati da je $(x + y + 1)dx + (x y^2 + 3)dy = 0$, jednačina totalnog diferencijala, rešiti je, i naći ono partikularno rešenje koje zadovoljava početni uslov y(1) = 0.

1. Smenom $x=t^6$, pri čemu je tada $dx=6t^5dt, \sqrt{x}=t^3, \sqrt[3]{x}=t^2$, dobijamo

$$I = \int \frac{t^3}{1 - t^2} 6t^5 dt = -6 \int \frac{t^8}{t^2 - 1} dt,$$

što je integral racionalne funkcije. Deljenjem polinoma t^8 sa t^2-1 dobijamo količnik $t^6+t^4+t^2+1$ i ostatak 1, te je dalje

$$I = -6 \int \left(t^6 + t^4 + t^2 + 1 + \frac{1}{t^2 - 1} \right) dt$$

$$= -6 \int t^6 dt - 6 \int t^4 dt - 6 \int t^2 dt - 6 \int dt - 6 \int \frac{1}{(t - 1)(t + 1)} dt$$

$$= -\frac{6}{7} t^7 - \frac{6}{5} t^5 - 2t^3 - 6t - 6 \int \left(\frac{A}{t - 1} + \frac{B}{t + 1} \right) dt.$$

Pri tome je

$$\frac{1}{(t-1)(t+1)} = \frac{A}{t-1} + \frac{B}{t+1} = \frac{A(t+1) + B(t-1)}{(t-1)(t+1)} = \frac{(A+B)t + A - B}{(t-1)(t+1)}$$

odakle sledi da je A+B=0 i A-B=1. Rešavanjem ovog sistema jednačina dobijamo $A=\frac{1}{2}$ i $B=-\frac{1}{2}$, te je dalje

$$\begin{split} I &= -\frac{6}{7}t^7 - \frac{6}{5}t^5 - 2t^3 - 6t - 6\int \left(\frac{\frac{1}{2}}{t-1} + \frac{-\frac{1}{2}}{t+1}\right)dt \\ &= -\frac{6}{7}t^7 - \frac{6}{5}t^5 - 2t^3 - 6t - 3\int \frac{1}{t-1}dt + 3\int \frac{1}{t+1}dt \\ &= -\frac{6}{7}t^7 - \frac{6}{5}t^5 - 2t^3 - 6t - 3\ln|t-1|dt + 3\ln|t+1| \\ &= -\frac{6}{7}t^7 - \frac{6}{5}t^5 - 2t^3 - 6t + 3\ln\left|\frac{t+1}{t-1}\right|. \end{split}$$

Vraćanjem smene $x=t^6$ odnosno $t=\sqrt[6]{x}$ konačno dobijamo

$$I = -\frac{6}{7}\sqrt[6]{x^7} - \frac{6}{5}\sqrt[6]{x^5} - 2\sqrt[6]{x^3} - 6\sqrt[6]{x} + 3\ln\left|\frac{\sqrt[6]{x} + 1}{\sqrt[6]{x} - 1}\right| + c.$$

2. Preseke parabole sa kružnicom nalayimo rešavanje sistema njihovih jednačina.

$$\begin{array}{lll} y = x^2 & \Leftrightarrow & y = x^2 \\ x^2 + y^2 = 2 & \Leftrightarrow & y + y^2 = 2 & \Leftrightarrow & y^2 + y - 2 = 0 \\ & y = x^2 \\ \Leftrightarrow & y_{1,2} = \frac{-1 \pm \sqrt{1 + 8}}{2} = \{-2, 1\} \\ \Leftrightarrow & \left(\left(y = -2 \ \wedge \ x^2 = -2 \right) \ \vee \ \left(y = 1 \ \wedge \ x^2 = 1 \right) \right) & \Leftrightarrow & \left(y = 1 \ \wedge \ x^2 = 1 \right) \\ \Leftrightarrow & \left(y = 1 \ \wedge \ x \in \{-1, 1\} \right). \end{array}$$

Dakle, tačke preseka su (-1,1) i (1,1), što su tačke na gornjoj polukružnici kružnice $x^2+y^2=2$, dakle na polukružnici $y\left(x\right)=+\sqrt{2-x^2}$. Stoga je tražena površina

$$P = \int_{-1}^{1} \left(\sqrt{2 - x^2} - x^2 \right) dx = \int_{-1}^{1} \sqrt{2 - x^2} dx - \int_{-1}^{1} x^2 dx = \int_{-1}^{1} \sqrt{2 - x^2} dx - \int_{-1}^{1} x^2 dx$$

$$= \int_{-1}^{1} \frac{2 - x^2}{\sqrt{2 - x^2}} dx - \frac{1}{3} x^3 \Big|_{-1}^{1} dx = -\int_{-1}^{1} \frac{x^2 - 2}{\sqrt{2 - x^2}} dx - \frac{1}{3} (1 - (-1)) dx = -\int_{-1}^{1} \frac{x^2 - 2}{\sqrt{2 - x^2}} dx - \frac{2}{3}.$$

Rešenje poslednjeg neodređenog integrala tražimo u obliku

$$\int \frac{x^2 - 2}{\sqrt{2 - x^2}} dx = (Ax + B)\sqrt{2 - x^2} + \lambda \int \frac{1}{\sqrt{2 - x^2}} dx.$$

Diferenciranjem prethodne jednakosti dobijamo

$$\frac{x^2 - 2}{\sqrt{2 - x^2}} = A\sqrt{2 - x^2} + (Ax + B)\frac{-2x}{2\sqrt{2 - x^2}} + \lambda \frac{1}{\sqrt{2 - x^2}}$$
$$= A\sqrt{2 - x^2} - (Ax + B)\frac{x}{\sqrt{2 - x^2}} + \lambda \frac{1}{\sqrt{2 - x^2}},$$

i množenjem prethodne sa $\sqrt{2-x^2}$ dobijamo

$$x^{2} - 2 = A(2 - x^{2}) - (Ax^{2} + Bx) + \lambda = -2Ax^{2} - Bx + 2A + \lambda.$$

Izjednačavanjem koeficijenata polinoma dobijamo i rešavamo sistem jednačina

Odatle dobijamo

$$\int \frac{x^2 - 2}{\sqrt{2 - x^2}} dx = -\frac{1}{2} x \sqrt{2 - x^2} - \int \frac{1}{\sqrt{2 - x^2}} dx = -\frac{1}{2} x \sqrt{2 - x^2} - \arcsin \frac{x}{\sqrt{2}} + c,$$

i njegovim uvrštavanjem konačno dobijamo

$$P = -\left(-\frac{1}{2}x\sqrt{2-x^2} - \arcsin\frac{x}{\sqrt{2}}\right) \Big|_{-1}^{1} - \frac{2}{3} = \left(\frac{1}{2}x\sqrt{2-x^2} + \arcsin\frac{x}{\sqrt{2}}\right) \Big|_{-1}^{1} - \frac{2}{3}$$

$$= \left(\frac{1}{2}\sqrt{2-1^2} + \arcsin\frac{1}{\sqrt{2}}\right) - \left(-1 \cdot \frac{1}{2}\sqrt{2-(-1)^2} + \arcsin\frac{-1}{\sqrt{2}}\right) - \frac{2}{3}$$

$$= \left(\frac{1}{2} + \frac{\pi}{4}\right) - \left(-\frac{1}{2} + \left(-\frac{\pi}{4}\right)\right) - \frac{2}{3} = \frac{1}{3} + \frac{\pi}{2}.$$

3. Za funkcije P(x,y) = x + y + 1 i $Q(x,y) = x - y^2 + 3$ imamo da je $\frac{\partial}{\partial y} P(x,y) = 1 = \frac{\partial}{\partial x} Q(x,y)$, te data diferencijalna jednačina jeste jednačina totalnog diferencijala. Nalazimo funkciju F(x,y) čiji je totalni diferencijal data diferencijalna jednačina. Iz $\frac{\partial}{\partial x} F(x,y) = P(x,y)$ sledi

$$F(x,y) = \int P(x,y)dx + s(y) = \int (x+y+1)dx + s(y)$$

$$= \int xdx + (y+1)\int dx + s(y) = \frac{1}{2}x^2 + (y+1)x + s(y)$$

$$= \frac{1}{2}x^2 + x + xy + s(y).$$
[*]

Iz
$$\frac{\partial}{\partial y}F(x,y) = Q(x,y)$$
 sledi

$$\frac{\partial}{\partial y}F\left(x,y\right) = x + s'\left(y\right) = Q\left(x,y\right) = x - y^{2} + 3$$

dobijamo

$$x + s'(y) = x - y^2 + 3 \implies s'(y) = -y^2 + 3 \implies s(y) = \int (-y^2 + 3) dy$$

 $\Rightarrow s(y) = -\int y^2 dy + 3 \int dy = -\frac{1}{3}y^3 + 3y + c.$

Uvrštavanjem s(y) u [*] dobijamo $F(x,y) = \frac{1}{2}x^2 + x + xy - \frac{1}{3}y^3 + 3y + c$, te je sa

$$\frac{1}{2}x^2 + x + xy - \frac{1}{3}y^3 + 3y + c = 0$$

implicitno određeno opšte rešenje polazne diferencijalne jednačine. Uvrštavanjem početnog uslova y(1)=0, odnosno za x=1 i y=0 dobijamo $\frac{1}{2}\cdot 1+1+c=0$ odnosno $c=-\frac{3}{2}$, te je sa

$$\frac{1}{2}x^2 + x + xy - \frac{1}{3}y^3 + 3y - \frac{3}{2} = 0$$

implicitno određeno ono partikularno rešenje koje zadovoljava početni uslov y(1) = 0.