企業財務状況の機械学習による 増配銘柄の予測可能性

Predictability of Increasing Dividends Using Machine Learning of Corporate Financial Conditions

田村空生1,望月孝太郎1,加唐丈裕2,鈴木智也1,2

1茨城大学工学部機械システム工学科

2大和アセットマネジメント株式会社

(※) 本発表は所属組織の公式見解ではございません.

目次

- 1 背景
- 2 検証
 - 増配の傾向分析
 - 増配の予測精度向上可能性
 - ・ポートフォリオ運用への応用可能性
- 3 まとめ

背景

2023年:東京証券取引所

- PBR1倍割れの上場企業に対して資本効率の改善を求める方針を発表

━→ 市場での評価が低い

PBR = 株価 1株当たりの純資産

資本効率の現状

· 東証1部上場企業の約半数がPBR1倍未満

国際比較の課題

PBR1倍未満の割合は諸外国と比較して非常に高い

市場の信頼

資本効率の低さにより、日本企業への市場の信頼性の低下 →外国人投資家の撤退リスクが高まる

背景

企業の対応策

資本効率を改善するために 増配・自社株買いを行う企業 プ 増加

- 増配に着目

→ 前期決算時に企業による予想配当金が発表される

予想配当金:将来の業績見込みに基づいた予測値 →実現するとは限らない

目的

- 上場企業にとって<u>増配を行う動機がある</u>
- 何らかのメカニズムがありそう(先行研究)
- 予想配当金の不確実性

財務データや増配実績を用いて機械学習することで 将来の増配予測を高精度化できるか検証

目的

先行研究より増配は株価を上昇させる効果を期待できる

【業務支援@資産運用】

増配が予想される企業を 優先的に株式ポートフォリオに組み入れる

- ①増配の発生確率
- ② 増配前後の株価変化

使用データ

分析対象

• 東証1部上場銘柄(約2,000銘柄)

使用データ

- ・株価等の市場データ,各企業の財務データ(日経 NEEDS-FinancialQUEST)
- ・各企業の業績予想データ(東洋経済データサービス)

①増配の発生確率

增配発生確率
$$=$$
 $\frac{$ 発生件数 $}{$ 企業数

増配割合→徐々に上昇傾向

2020年に

- 一時的に減少
- 新型感染症が顕在化
- 不測の事態に備えて 余剰資金を内部留保

①増配の発生確率

- 時価総額が高い大型企業 → 増配が発生し易い
- ・時価総額が低い小型企業 → 増配が発生し難い

小型企業ほど余剰資金を 増配ではなく 設備投資に用いることが合理的

②増配前後の株価変化

増配発生年を基準にし,前後3年間の株価変化率を算出

全期間において株価は上昇傾向

増配後も安定して株価が上昇

- 全期間を通じ株価は上昇傾向
- 増配後も安定して株価が上昇

- 先行研究と同様に、増配は株価を上昇させる効果を期待できる
- · <u>増配が予測できれば</u>, 資産運用業務等に活用できる可能性

- ① ROC曲線による汎化性能
- ② 従来手法との比較
- ③ 各説明変数の貢献度

機械学習モデル: XGBoost (ハイパーパラメータを最適化)

目的変数:今後1年間における配当実績(増配・減配・維持)

説明変数:先行研究+独自に選出

ハイパーパラメータ		探索範囲
learning_rate	学習率	0.01, 0.3
n_estimators	決定木の数	100, 1000
max_depth	決定木の最大深さ	3, 10
min_child_weight	子ノードの最小重み	1, 10
subsample	各木のサンプル割合	0.5, 1.0
colsample_bytree	各木の特徴量の割合	0.5, 1.0
gamma	損失減少の最小値	0, 5
reg_alpha	L1正則化項の重み	0, 1
reg_lambda	L2正則化項の重み	0, 1

増配の有無(今後1年間)	0 or 1	flg_up
減配の有無(今後1年間)	0 or 1	flg_down
維持の有無(今後1年間)	0 or 1	flg_stay
配当予想値(公開情報) 「今期予想 –前期実績」 の配当利回り[%]	連続値	DiffYLD
log(時価総額)	連続値	LnMV
予想配当利回り[%]	標準化得点	YQ204
予想キャッシュフロー/株価	標準化得点	YQ205
キャッシュリッチレシオ	標準化得点	Q2171
予想総資産税引利益率[%]	標準化得点	YQ304
予想自己資本税引利益率(ROE)[%]	標準化得点	YQ308
予想売上高営業利益率[%]	標準化得点	YQ311
予想ROA成長率[%]	標準化得点	YQ408
予想ROE成長率[%]	標準化得点	YQ409
平均経常利益成長率(5年)[%]	標準化得点	Q4252
流動比率[%]	標準化得点	Q5011
固定長期適合率[%]	標準化得点	Q5061
自己資本比率[%]	標準化得点	Q5121
有利子負債依存度[%]	標準化得点	Q5171
総キャピタリゼーション比率[%]	標準化得点	Q5251
有利子負債/売上高[%]	標準化得点	Q5291
60日リターン(3ヶ月)	連続値	R60
240日リターン(1年)	連続値	R240
240日ボラティリティ(1年)	連続値	STD1_240

【機械学習&精度評価】

①ROC曲線による汎化性能

左上に歪曲→予測可能性アリ

増配の有無を キレイに分離できている

②従来手法との比較

配当予測値(公開情報) 「今期予測-前期実績」の配当利回り[%]

增配:配当予測值>0 維持:配当予測值=0

減配:配当予測值<0

配当予測(機械学習)

		予測		
		増配	維持	減配
	増配	6495	2050	179
実際	維持	1445	5401	204
	減配	324	533	581

予測 減配 増配 維持 増配 5518 2516 690 実際 維持 880 663 5507 減配 903 179 356

正解率: 0.693

適合率:0.632

再現率: 0.681

F値: 0.656

予測精度の向上

正解率:0.725 適合率:0.688 再現率:0.638

F値: 0.662

③説明変数の貢献度

【説明変数毎のFeatureImportance】

【上位の変数】

説明変数	名称
配当予想値(公開情報)	DiffYLD
維持の有無(直近1年)	fig_stay_1
増配の有無(直近1年)	fig_up_1
予想自己資本税引利益率 (ROE)[%]	YQ308
予想総資産税引利益率[%]	YQ304
240日リターン(1年)	R240
維持の有無(直近1~2年)	flg_stay_2
予想売上高営業利益率[%]	YQ311

③説明変数の貢献度

- ·配当予測值(DiffYLD)
 - →配当予測値が高いほど増配しやすい
- 株価純資産倍率(PBR)
 - →PBRが低いほど増配しやすい

東京証券取引所: PBR1倍割れ企業に資本効率改善要求 →低PBR企業が増配を通じて資本効率を改善

③説明変数の貢献度

- ·配当予測值(DiffYLD)
 - →配当予測値が低いほど減配しやすい
- 予想配当利回り(YQ204)
 - →YQ204が高いほど減配しやすい

- 予想配当利回りが高い企業
- →株価の低迷や過剰な配当負担により 将来的に配当を持続するのが困難な可能性

配当利回り=1株当たり配当金:株価

③説明変数の貢献度

- 配当予測値(DiffYLD)→配当予測値が0に近いほど維持しやすい
- 直近1年間の配当維持フラグ(flg_stay_1)→flg_stay_1が高いほど維持しやすい

過去1年間に配当を維持した企業
→引き続き配当を維持する傾向

ポートフォリオ構築イメージ(東証1部上場銘柄)

予測結果からスコアを算出

スコア=(増配確率×1)-(減配確率×1)+(維持確率×0.5)

予測結果

スコア

銘柄コード	増配確率	減配確率	維持確率	
1333	0.2	0.6	0.2	
:	:	:	:	_
5555	0.3	0.2	0.5	
:	:	:	:	
9989	0.8	0.1	0.1	

銘柄コード	スコア
1333	-0.3
:	:
5555	0.35
:	:
9989	0.75

ポートフォリオ構築イメージ(東証1部上場銘柄)

企業規模で3分位したポートフォリオ運用

【企業規模毎の運用成績】

⇒投資対象を大型銘柄(時価総額上位)にするほど悪く, 小型銘柄にするほど良い.

まとめ

【背景】資本効率改善の解決策として、増配する企業が増えている

- 増配予測を高精度化できた.
- 各説明変数が増配に寄与する様子を確認できた。
- 資産運用業務への応用可能性を検証した。

【今後の課題】

- ・スコア算出方法の検討
- 予測モデルの更なる精度向上