Apache Spark Fundamentals

Dilip K. Prasad

Outline

Introduction **Spark Fundamentals** Spark Architecture Spark and it's Ecosystem Spark vs Hadoop RDD Fundamentals Spark Transformations, Actions and Operations

Introduction

```
2009 AMPLab (Berkley) – resource/cluster manager
2009
              No YARN
              MESOS
Created framework to test Mesos – Spark was created (which is a in memory
execution) - huge RAM requirement
2010/11
              SPARK further development started
              Apache Spark ->
2012
                                          Databricks
2015
              It got traction and more support system came up
              INF2220 Cloud and Big Data Technology started
2021
Spark version 0
              1.6
              2.7
              3.2.0
Best book – Spark the definitive guide – Mathe Zaharia (don't buy it its not text
```

Changing Big Data World

INF2220

Introduction to Spark

Monitoring

Introduction to Spark

Hadoop Vs Spark

DISTRIBUTORS

APPLICATIONS

III Pivotal ORACLE

MOMDATA DISTRIBUTE APERVI IIIINUBE

於 Atigeo 2 日志易 **ZALON**i **季** Typesafe

How spark program get executed

Sort Competition

	Hadoop MR	Spark	
	Record (2013)	Record (2014)	Spark, 3x
Data Size	102.5 TB	100 TB	faster with 1/10 the
Elapsed Time	72 mins	23 mins	nodes
# Nodes	2100	206	
# Cores	50400 physical	6592 virtualized	
Cluster disk throughput	3150 GB/s (est.)	618 GB/s	
Network	dedicated data center, 10Gbps	virtualized (EC2) 10Gbps network	
Sort rate	1.42 TB/min	4.27 TB/min	
Sort rate/node	0.67 GB/min	20.7 GB/min	

Sort benchmark, Daytona Gray: sort of 100 TB of data (1 trillion records) http://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html

Resilient Distributed Datasets (RDDs)

- RDDs (Resilient Distributed Datasets) is Data Containers
- All the different processing components in Spark share the same abstraction called RDD
- As applications share the RDD abstraction, you can mix different kind of transformations to create new RDDs
- Created by parallelizing a collection or reading a file
- Fault tolerant

RDD

RDD

DataFrames & SparkSQL

- DataFrames (DFs) is one of the other distributed datasets organized in named columns
- Similar to a relational database, Python Pandas Dataframe or R's DataTables
 - Immutable once constructed
 - Track lineage
 - Enable distributed computations
- How to construct Dataframes
 - Read from file(s)
 - Transforming an existing DFs(Spark or Pandas)
 - Parallelizing a python collection list
 - Apply transformations and actions

DataFrame example

```
// Create a new DataFrame that contains "students"
students = users.filter(users.age < 21)
//Alternatively, using Pandas-like syntax
students = users[users.age < 21]
//Count the number of students users by gender
students.groupBy("gender").count()
// Join young students with another DataFrame called logs
students.join(logs, logs.userId == users.userId,
"left outer")
```

RDDs vs. DataFrames

- RDDs provide a low level interface into Spark
- DataFrames have a schema
- DataFrames are cached and optimized by Spark
- DataFrames are built on top of the RDDs and the core Spark API

Example: performance

Spark Operations

Transformations (create a new RDD)	map filter sample groupByKey reduceByKey sortByKey intersection	flatMap union join cogroup cross mapValues reduceByKey
Actions (return results to driver program)	collect Reduce Count takeSample take lookupKey	first take takeOrdered countByKey save foreach

Error, ts, msg1 Error, ts, msg3 Error, ts, msg1

Error, ts, msg4 Error, ts, msg1 errorsRDD

(input/base RDD)

Transformation

Actions

What is an action?

- The final stage of the workflow
- Triggers the execution of the DAG
- Returns the results to the driver
- Or writes the data to HDFS or to a file

Spark Actions

Directed Acyclic Graphs (DAG)

- > nodes are RDDs
- > arrows are Transformations

Spark DAG

Spark DAG

Narrow Vs. Wide transformation

Spark Workflow

Python RDD API Examples

Word count

Logistic Regression

```
# Every record of this DataFrame contains the label and
# features represented by a vector.

df = sqlContext.createDataFrame(data, ["label", "features"])
# Set parameters for the algorithm.
# Here, we limit the number of iterations to 10.

lr = LogisticRegression(maxIter=10)
# Fit the model to the data.
model = Ir.fit(df)
# Given a dataset, predict each point's label, and show the results.
model.transform(df).show()
```

RDD Persistence and Removal

Broadcast Variables and Accumulators (Shared Variables)

 Broadcast variables allow the programmer to keep a read-only variable cached on each node, rather than sending a copy of it with tasks

```
>broadcastV1 = sc.broadcast([1, 2, 3,4,5,6])
>broadcastV1.value
[1,2,3,4,5,6]
```

 Accumulators are variables that are only "added" to through an associative operation and can be efficiently supported in parallel

```
accum = sc.accumulator(0)
accum.add(x)
accum.value
```

Spark's Main Use Cases

- Streaming Data
- Machine Learning
- Interactive Analysis
- Data Warehousing
- Batch Processing
- Exploratory Data Analysis
- Graph Data Analysis
- Spatial (GIS) Data Analysis
- And many more

Spark in the Real World (I)

Uber – the online taxi company gathers terabytes of event data from its mobile users every day.

By using Kafka, Spark Streaming, and HDFS, to build a continuous ETL pipeline Convert raw unstructured event data into structured data as it is collected Uses it further for more complex analytics and optimization of operations

Pinterest – Uses a Spark ETL pipeline

Leverages Spark Streaming to gain immediate insight into how users all over the world are engaging with Pins—in real time.

Can make more relevant recommendations as people navigate the site Recommends related Pins

Determine which products to buy, or destinations to visit

Spark in the Real World (II)

Here are Few other Real World Use Cases:

Conviva – 4 million video feeds per month

This streaming video company is second only to YouTube.

Uses Spark to reduce customer churn by optimizing video streams and managing live video traffic

Maintains a consistently smooth, high quality viewing experience.

Capital One – is using Spark and data science algorithms to understand customers in a better way.

Developing next generation of financial products and services Find attributes and patterns of increased probability for fraud

Netflix – leveraging Spark for insights of user viewing habits and then recommends movies to them.

User data is also used for content creation

Spark: when not to use

Even though Spark is versatile, that doesn't mean Spark's in-memory capabilities are the best fit for all use cases:

- For many simple use cases Apache MapReduce and Hive might be a more appropriate choice
- Spark was not designed as a multi-user environment
- Spark users are required to know that memory they have is sufficient for a dataset
- Adding more users adds complications, since the users will have to coordinate memory usage to run code

HPC and Big Data Convergence

- Clouds and supercomputers are collections of computers networked together in a datacenter
- Clouds have different networking, I/O, CPU and cost trade-offs than supercomputers
- Cloud workloads are data oriented vs. computation oriented and are less closely coupled than supercomputers
- Principles of parallel computing same on both
- Apache Hadoop and Spark vs. Open MPI

HPC and Big Data K-Means example

MPI definitely outpaces Hadoop, but can be boosted using a hybrid approach of other technologies that blend HPC and big data, including Spark and HARP. Dr. Geoffrey Fox, Indiana University. (http://arxiv.org/pdf/1403.1528.pdf)

PGAS Vs MPI vs openMP

	Thread Count	Memory Count	Nonlocal Access
Traditional	1	1	N/A
OpenMP	Either 1 or p	1	N/A
MPI	р	р	No. Message required.
C+CUDA	1+p	2 (Host/device)	No. DMA required.
UPC, CAF, pMatlab	р	p	Supported.
X10, Asynchronous PGAS	р	q	Supported.