-> Diffusion Approximation

Diffusion approximation for his in an n-type semiconductor * Consider transport equation for es

$$J_n = nq M_n E + q D_n \frac{\partial n}{\partial x}$$

Diffusion approximation for es in p-type semicenductor

- The drift component depends on corrier concentration and applied electric field.
- -> But the diffusion component depends only on concentration gradient.
- > There is a possibility that the corrier concentration is small, but concentration gradient is large, where the diffusion approximation is valid.

The diffusion approximation is applicable for minority carriers.

The consequences of diffusion approximation

-> Consider continuity equation for holes

$$\frac{\partial \mathcal{S}p}{\partial t} = -\frac{1}{9} \frac{\partial \mathcal{J}p}{\partial x} + \mathcal{S}^{1} - \frac{\mathcal{S}p}{\mathcal{C}}$$

$$\mathcal{J}_{\phi} = \mathcal{P}\mathcal{J}_{\phi}\mathcal{E} - \mathcal{P}\mathcal{D}_{\phi}\frac{\partial \mathcal{P}}{\partial x}$$

 $\overline{J_p} = pq M_p E - q D_p \frac{\partial p}{\partial x}$ Under diffusion approximation $\Rightarrow J_p \sim -q D_p \frac{\partial p}{\partial x}$

$$\frac{\partial \delta \rho}{\partial t} = D \rho \frac{\partial^2 \rho}{\partial x^2} + \zeta' - \frac{\delta \rho}{C}$$

The G' is uniform (G' is not varying with distance in or uniform volume generation)

$$\frac{\partial^2(\mathrm{Sp}-\mathrm{G'D})}{\partial x^2} = \frac{(\mathrm{Sp}-\mathrm{G'D})}{\mathrm{DpT}}$$

T - Average life time of excess corniers

Average life time of minority corniers

$$\frac{\partial^2 (S \beta - G^1 C_{\beta})}{\partial x^2} = \frac{(S \beta - G^1 C_{\beta})}{D \beta C_{\beta}}$$

$$\begin{array}{ccc}
\mathcal{L}_{p}^{2} &=& \mathcal{D}_{p} \mathcal{C}_{p} \\
\Rightarrow & & & \\
\mathcal{L}_{p} &=& & & \\
\mathcal{L}_{n} &=& & & \\
\mathcal{L}_{n} &=& & & \\
\end{array}$$

Diblusion length of the holes ACE

Diffusion length of the electrons

$$|P = |P_0 + Sp| = |P_0 + \Delta p| e^{-x/Lp}$$

$$|\Delta p| = |Sp|_{x=0}$$

$$|N = |N_0 + Sn| = |N_0 + \Delta n| e^{-x/Ln}$$

$$|\Delta n| = |Sn|_{x=0}$$

-> Under low level injection assumption, the injected minority carrier current for an extrinsic semiconductor is essentially the

- (a) diffusion current
 - (b) diff current
 - (c) recombination current
 - (d) induced current

> Electron mobility and life time in a semiconductor at room temperature are respectively $0.36 \frac{m^2/v-s}{2}$ and $\frac{340 \, \mu s}{2}$. The diffusion length is _____ Mn

$$L_{n} = \sqrt{D_{n}C_{n}}$$

$$\frac{D_{n}}{M_{n}} = V_{T}$$

$$L_{n} = 1.78 \text{ mm}$$

$$D_{n} = M_{n} V_{T}$$

-> In a very long p-type Si bar with cross-sectional area $\frac{40.5 \text{ cm}^2}{0.5 \text{ cm}^2}$ and $\frac{10^{17}/\text{cm}^3}{0.5 \text{ cm}^2}$ We inject holes such that the steady state excess hole concentration is

- $OP = 5 \times 10^{16} / \text{cm}^3$ at x = 0.

 (1) What is the steady state separation between Eff and Ec at x = 1000 Å? (2) What is the hole current there?

 - (3) How much is the excess stored hade charge? Assume that $M_b = 500 \text{ cn}/v-s$ and $V_b = 10^{10} \text{s}$, Eq = 1.1eV and N; = 1.5×10¹⁰/cm².

(2)
$$I_p = ?$$
 $\chi = 1000 \text{ Å}$

$$J_p = -9 Dp \frac{\partial p}{\partial x} \Rightarrow I_p = -A9 Dp \frac{\partial p}{\partial x}$$

$$ACE$$

$$I_p = -A9 Dp \frac{\partial}{\partial x} (P_0 + \Delta p e^{-x/L_p}) = \frac{A9 Dp}{L_p} \Delta p e^{-x/L_p}$$

$$= \frac{0.5 \times 1.6 \times 10^{-19} \times 13}{3.6 \times 10^{-5}} \times 5 \times 10^{-105/3.6 \times 10^{-5}}$$

$$= 1.09 \times 10^3 A$$

Space change Neutrality

It means that "
$$\rho = 0$$
"

Consider Gams law $\Rightarrow \frac{\partial E}{\partial x} = \frac{\rho}{\epsilon}$
 $\frac{\partial E}{\partial x} = 0$ E is constant

Writ x, where $\rho = 0$

* Quasi-neutrality
$$\rightarrow P \simeq 0$$
, $Sp \simeq Sn$
 $Sn, Sp >> |Sn - Sp| \Rightarrow P \simeq 0$

* Depletion approximation

$$P = 9 (P + N_D^{\dagger} - N - N_A^{\dagger})$$

$$= 9 (P - N_D^{\dagger} - N_A^{\dagger})$$

$$P = 9 (N_D^{\dagger} - N_A^{\dagger})$$

$$P = 9 (N_D^{\dagger} - N_A^{\dagger})$$

$$P = 9 (N_D^{\dagger} - N_A^{\dagger})$$
Depletion approximation

* Debye Length (LD)

* Debye Length (LD)

Consider an n-type semiconductor

$$P = Q(P-N+N_D^+-N_A^-)$$

Under depletion approximation

 $P = Q(N_D^+-N_A^-)$
 $P = Q(N_D^+-N_A^-)$

Page 101 approximation
$$\frac{\partial \psi}{\partial x^{2}} = -\frac{9N_{D}}{\varepsilon}$$

$$\frac{\partial^{2} \psi}{\partial x^{2}} = -\left(\frac{9N_{D}^{+}}{\varepsilon V_{T}}\right) V_{T}$$
Consider the Gauss law
$$\frac{\partial E}{\partial x} = \frac{\rho}{\varepsilon}$$

$$\frac{\partial E}{\partial x} = \frac{\rho}{\varepsilon}$$

P 2 9 ND
Consider the Game law

$$\frac{\partial E}{\partial x} = \frac{P}{E}$$

$$\frac{1}{L_D^2} = \frac{9N_D^+}{\epsilon V_T}$$

$$L_D = \sqrt{\frac{\epsilon V_T}{9 N_D^+}}$$
 Debye length
LD depends on doping

 $\frac{\partial V}{\partial x^2} = -\frac{V_T}{L_D^2}$ \Rightarrow The Debye length describes the variation of the potential with distance in space change region (on depletion region)

* In and Lp describes variation of camer concentration with distance.

Change Sheet Approximation

* This approximation is usually used to describe AC:
free carriers near the surface (or) interface.

Accumulated Es (Attracted by E)

- It the carrier concentration is very high close to the surface and decreases very radiply when moving away from the surface within a small distance. So it can be considered as sheet of charge.
 - * This approximation is used in Mos capacitors

Gradual Chunnel Approximation

- * It is used to convert a 2D situation into 1D situation approximately.
- * This approximation is used in MOSFETS

Consider Gams law in 2D
$$\frac{\partial E_{x}}{\partial x} + \frac{\partial E_{y}}{\partial y} = \frac{\rho}{\epsilon}$$
If $\frac{\partial E_{x}}{\partial x} >> \frac{\partial E_{y}}{\partial y}$ then

Procedure for Device Analysis - Summany

Step(1) Same set of approximations may not hold over the entire device volume. Hence, partition the device into different regions.

Step(2) Analyse each region using a suitable set of approximations and boundary anditions to obtain 1, P. Jn, Jp and E in that region. Approximations for different regions may be different.

Step(3) Combine the information regarding n, p, Jn, Jp and E obtained in different regions, ensuing "Continuity of these parameters" across boundaries separating the regions to obtain the complete picture.

Basic Device Building Blocks (1) Metal - Seniconductor Interface

Metal

Semicon ductor

(Schottky barrier)

- -> Rectifying contacts Allows current only in one direction
- → Ohmic contacts Allows current in both the (Non-vectifying contacts) directions with neglisible voltage drop.

(2) pn Junction

p-type n-type Semiconductor Semiconductor

- * BJT -> pnp, npn
- * Thyristar -> pnpn

(3) Heterojunction

Ex: GaAS AlAs

Semiconductor-A Semiconductor-B

These are key components in high-speed and optoelectronic devices

(4) Metal-Oxide-Semiconductor structure

Metal Oxide Semiconductor

- * Mos Capacitor/ Junction/ Diode
- * MOSFET

pn Junction

- -> Equilibrium (zero bias or open circuit)
- -> Ideal V-I characteristics
- -> Variation of V-I characteristics with temporature
- -> Diode resistance
- -> Diode equivalent circuits
- -> Breakdown mechanisms
- -> Junction capacitance
- -> Small signal characteristics
- -> Switching times of the diode

Equilibrium Analysis Qualitative Ace M. P. Jn. Jp and E * Width of the depletion region * Built-in potential (on Contact potential * Meximum electric field * Change stored in the depletion region

The consider space charge $\beta = 9(\beta - n + N_D^+ - N_A^-)$ Let all the impurities are ionized $\beta = 9(\beta - n + N_D - N_A)$ Apply complete depletion approximation $|\beta - n| < |N_D - N_A| \Rightarrow |\beta| \approx 9(N_D^- N_A)$ Depletion approximation