Amendments to the Claims

Please amend claims 1, 7, 11-13, and 19, all as shown below. All pending claims are reproduced below, including those that remain unchanged. This listing of claims will replace all

prior versions, and listings, of claims in the application.

1. (Currently Amended) A method for finding a region of high importance in a video, the video

including a plurality of video frames having pixels, wherein the video is regarded as a three

dimensional volume in a x-y-t space, the t-component of the x-y-t space representing a time axis,

comprising:

determining a kinetic energy for each pixel the pixels within the video;

assigning pixel values to the pixels within the video based on the kinetic energy of each

pixel the pixels;

constructing <u>pixel</u> groups from the pixels having <u>based on the</u> pixel values, <u>wherein the</u>

pixels having pixel values below a threshold value are not included in any pixel group; [[and]]

of high importance comprises a predetermined three-dimensional shape, the predetermined three-

merging pixel groups together to generate regions of high importance, wherein each region

dimensional shape having a three dimensional volume in the x-y-t space. the pixel groups are

merged together provided that they do not fail one or more stopping conditions; and

constructing one or more predetermined three-dimensional shapes to represent the regions

of high importance, the predetermined three-dimensional shapes having three dimensional volumes

in the x-y-t space.

(Cancelled)

(Previously Presented) The method of claim 1 wherein the kinetic energy for each pixel is

determined using pixel luminance values.

-3-

- 4 (Previously Presented) The method of claim 1 wherein assigning pixel values includes: assigning each pixel a value within a predetermined range.
- 5 (Previously Presented) The method of claim 4 wherein the range is zero to one, each pixel assigned a value of one if it has a higher than average kinetic energy.
- 6 (Original) The method of claim 1 wherein assigning pixel values includes: quantizing the pixel values as either having a value of zero or one.
- 7. (Currently Amended) The method of claim 1 wherein constructing pixel groups includes: forming a group of neighboring pixels that have a kinetic energy within a first range.
- 8. (Original) The method of claim 7 wherein neighboring pixels are within 1 pixel from each other.
- 9. (Previously Presented) The method of claim 7 wherein the first range is a higher than average kinetic energy.
- 10. (Cancelled)

12.

- 11. (Currently Amended) The method of claim 1 wherein the one or more predetermined three dimensional shape is a box shapes are boxes having rectangular sides.
- (Currently Amended) The method of claim 1 wherein merging pixel groups includes: merging groups of pixels that meet a minimum energy density threshold. wherein the one or more stopping conditions comprises a minimum threshold energy density
- for the merged pixel groups.
- 13. (Currently Amended) The method of claim 1 wherein merging pixel groups includes: merging groups of pixels that meet a minimum volume threshold. wherein the one or more stopping conditions comprises a maximum threshold volume for
- the merged pixel groups.
- (Previously Presented) The method of claim 1 wherein the video is segmented into at least one clin

15. (Previously Presented) The method of claim 3 wherein obtaining the kinetic energy comprises calculating the change in luminance between video frames.

16. (Previously Presented) The method of claim 15 wherein calculating the change in luminance comprises calculating the change in luminance between video frames in the t-component of the x-y-t space.

17. (Previously Presented) The method of claim 15 wherein calculating the change in luminance comprises calculating the change in luminance for each pixel using all said x-y-t components of the x-y-t space.

 (Previously Presented) The method of claim 1 wherein the kinetic energy determined for each pixel comprises a residual motion velocity.

19. (Currently Amended) A method for finding a region of high importance in a video, the video including a plurality of video frames having pixels, wherein the video is regarded as a three dimensional volume in a x-y-t space, the t-component of the x-y-t space representing a time axis, comprising:

segmenting the video into at least one video clip;

determining a kinetic energy for each pixel the pixels within each video clip, wherein the kinetic energy is determined using pixel luminance values:

assigning pixel values to each pixel the pixels, wherein each pixel having a higher than average kinetic energy for a particular clip is assigned a value of one and the remaining pixels are assigned a value of zero;

constructing <u>pixel</u> groups from pixels having a value of one, wherein the pixels having a value of one are grouped together if they are within one pixel from each other, wherein the <u>pixels</u> having a value of zero are not included in any pixel group; and

merging pixel groups having a minimum energy density threshold and a minimum volume threshold teaether to generate regions of high importance, wherein each region of high importance.

is box-shaped having restangular sides, each region of high importance having a three dimensional volume in the x-y-t space.

merging pixel groups to generate regions of high importance, wherein the pixel groups are merged together provided that they do not fail one or more stopping conditions, wherein the one or more stopping conditions comprises a minimum threshold energy density and a maximum threshold volume for the merged pixel groups; and

constructing one or more three dimensional boxes to represent the regions of high importance, the three dimensional boxes having three dimensional volumes in the x-y-t space.

-6-