

NUC950ADN 32-bit ARM926EJ-S Based Microcontroller Product Data Sheet

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of ARM926-based system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

1

For additional information or questions, please contact: Nuvoton Technology Corporation.

Publication Release Date: Jun. 18, 2010

Table of Contents

1.	GEN	GENERAL DESCRIPTION		
2.	FEAT	TURES		7
3.	PIN	DIAGRA	AM	13
4.	PIN	ASSIGN	MENT	14
5.	PIN	DESCRI	IPTION	20
	5.1	Pin De	escription for Interface	20
	5.2		Share Pin Description	
6.	FUN		AL BLOCK	
7.			AL DESCRIPTION	
	7.1		26EJ-S CPU CORE	
	7.2		m Manager	
	, , , _	7.2.1	Overview	
		7.2.2	System Memory Map	
		7.2.3	Address Bus Generation	36
		7.2.4	AHB Bus Arbitration	36
		7.2.5	Power-On Setting	37
		7.2.6	System Booting	40
		7.2.7	System Global Control Registers Map	40
	7.3	Clock	Controller	52
		7.3.1	Power management	52
		7.3.2	Clock Control Registers Map	54
	7.4	Extern	nal Bus Interface	74
		7.4.1	Overview	74
		7.4.2	Functional Description	75
		7.4.3	EBI Register Mapping	80
		7.4.4	EBI Register Details	81
	7.5	Ethern	net MAC Controller	96
		7.5.1	EMC Descriptors	97
		7.5.2	EMC Register Mapping	111
		7.5.3	EMC Register Details	113
		7.5.4	Operation Notes	164
	7.6	GDMA	Controller	165
		7.6.1	Overview & Features	165
		7.6.2	GDMA Non-Descriptor Functional Description	165

nuvoTon

	7.6.3	GDMA Descriptor Functional Description	165
	7.6.4	GDMA Register Map	170
7.7	USB H	lost Controller (USBH)	189
	7.7.1	Register Mapping	190
	7.7.2	Register Details	192
7.8	USB 2	.0 Device Controller	254
	7.8.1	USB Device Register Group Summary	254
	7.8.2	USB Device Control Registers Map	254
	7.8.3	USB Device Control Registers	258
	7.8.4	DMA Controller (DMAC)	306
	7.8.5	DMA Controller Registers Map	306
	7.8.6	DMAC Registers	307
7.9	Flash I	Memory Interface Controller (FMI)	313
	7.9.1	FMI Controller Registers Map	313
	7.9.2	Register Details	315
7.10	LCD D	Display Interface Controller (LCM)	377
	7.10.1		
	7.10.2	LCD Controller Register Map	379
	7.10.3	LCD Controller Register	381
7.11	Audio	Controller	438
	7.11.1	IIS Interface	438
	7.11.2	AC97 Interface	439
	7.11.3	Audio Controller Register Map	440
7.12	2-D G	Graphic Engine	468
	7.12.1	•	
	7.12.2		
7.13	UART	Controller	499
	7.13.1		
	7.13.2	UART Control Registers Map	501
7.14	TIMER	R Controller	517
	7.14.1	General Timer Controller	
	7.14.2	Watchdog Timer	518
	7.14.3	Timer Control Registers Map	519
7.15	Advan	nced Interrupt Controller	
	7.15.1	·	
7.16		ral-Purpose Input/Output (GPIO)	
,.10	7.16.1		
	7.16.2		
			550

nuvoTon

		7.16.3	GPIO Control Registers Map	552
	7.17	I2C Sy	ynchronous Serial Interface Controller	571
		7.17.1	I2C Serial Interface Control Registers Map	572
	7.18	Univer	rsal Serial Interface Controller (USI)	580
		7.18.1	USI Control Registers Map	581
		7.18.2	Basic Timer Operation	590
		7.18.3	PWM Double Buffering and Reload Automatically	590
		7.18.4	Modulate Duty Ratio	591
		7.18.5	Dead Zone Generator	592
		7.18.6	PWM Register Map	592
	7.19	Keypa	d Interface (KPI)	604
		7.19.1	Keypad Interface Register Map	605
8.	ELEC	TRICAL	SPECIFICATIONS	612
	8.1	Absolu	te Maximum Ratings	612
	8.2	DC Sp	ecifications	612
		8.2.1	Digital DC Characteristics	612
		8.2.2	USB Low-/Full-Speed DC Electrical Specifications	613
		8.2.3	USB High-Speed DC Electrical Specifications	613
	8.3	AC Spe	ecifications	614
		8.3.1	RESET AC Characteristics	614
		8.3.2	Clock Input Characteristics	614
		8.3.3	EBI/SDRAM Interface AC Characteristics	615
		8.3.4	EBI/ (ROM/SRAM/External I/O) AC Characteristics	616
		8.3.5	LCD Interface: MPU Type AC Characteristics	617
		8.3.6	SD Host Interface AC Characteristics	618
		8.3.7	NAND Flash Memory Interface AC Characteristics	619
		8.3.8	Memory Stick Interface AC Characteristics	620
		8.3.9	Audio AC-Link Interface AC Characteristics	621
		8.3.10	Audio I2S Interface AC Characteristics	
		8.3.11	USI (SPI/MW) Interface AC Characteristics	
		8.3.12	USB Transceiver AC Characteristics	
		8.3.13	EMC RMII AC Characteristics	625
9.	PACK	AGE SF	PECIFICATIONS	627
10.	REVI:	SION H	IISTORY	628

1. GENERAL DESCRIPTION

This chip is built around an outstanding CPU core: the 16/32 ARM926EJ-S RISC processor designed by Advanced RISC Machines, Ltd. The ARM926EJ-S core, offers 8K-byte I-cache and 8K-byte D-cache with MMU, is a low power, general-purpose integrated circuits. One 10/100 Mb MAC of Ethernet controller is built-in to reduce total system cost. A TFT type LCD controller and 2D graphics engine with various integrated on chip functions, this micro-controller is suitable for a high end, high performance and low cost related products as well as general purpose applications.

The following integrated on-chip functions are described in detail in this document.

	Main Function
CPU	ARM926EJ-S
Platform	Programmable PLL System Clock Synthesizer
	AMBA Peripherals
	Timer, Watchdog Timer
	Advanced Interrupt Controller
	General DMA Controller
	External Bus Interface Controller
Networking	Ethernet MAC Controller
Display Interface	LCD Controller
Graphics	2D Graphic Engine
Audio Interface	2-Channel I2S Controller
	2-Channel AC97 Controller
USB Interface	USB 1.1/2.0 High/Full/Low Speed Host Controller
	USB 2.0 High/Full Speed Device Controller
Storage Interface	NAND Flash Controller with ECC1/ECC4
	SD/SDIO/MMC Controller
	Memory Stick (MS) Controller
Peripheral & Misc.	• GPIO
	4-Channel PWM
	UART/HS-UART
	USI (SPI/uWire)

Main Function
I2C (Master) Controller
Keypad Scan Controller

2. FEATURES

Architecture

- Efficient and powerful ARM926EJ-S core with fully 16/32-bit RISC architecture
- Little Endian mode supported
- 8K-byte I-cache and 8K-byte D-cache with MMU
- Cost-effective JTAG-based debug solution

Power management

- Programmable clock enable for individual peripherals
- IDLE mode to halt ARM Core and keep peripheral working
- Power-Down mode to stop all clocks included external crystal oscillator.
- Exit IDLE/Power-Down by interrupts

PLI

- Supports two on-chip PLLs
- The external clock can be multiplied by on-chip PLL to provide high frequency system clock
- The input frequency range is 4-30MHz; 15MHz is preferred.
- Programmable clock frequency
- Wakeup by interrupt, USB device.

Advanced Interrupt Controller

- 31 interrupt sources, including 3 external interrupt sources
- Programmable normal or fast interrupt mode (IRQ, FIQ)
- Programmable as either edge-triggered or level-sensitive for 3 external interrupt sources
- Programmable as either low-active or high-active for 3 external interrupt sources
- Priority methodology is encoded to allow for interrupt daisy-chaining
- Automatically mask out the lower priority interrupt during interrupt nesting
- Automatically clear the interrupt flag when the interrupt source is programmed to be edge-triggered

General DMA Controller

2-channel General DMA for memory-to-memory data transfers without CPU intervention

Publication Release Date: Jun. 18, 2010

- Increments or decrements a source or destination address in 8-bit, 16-bit or 32-bit data transfers
- 8-data burst mode

External Bus Interface

- 8/16/32-bit external bus support for ROM/SRAM, flash memory, SDRAM and external I/Os
- Programmable access cycle (0-7 wait cycle)
- Four-word depth write buffer

Ethernet MAC Controller

- 100/10-Mbps operation
- DMA engine with burst mode
- MAC Tx/Rx buffers (256 bytes Tx, 256 bytes Rx)
- Full compliance with IEEE standard 802.3
- RMII interface only
- Station Management Signaling
- On-Chip CAM (up to 16 destination addresses)
- Full-duplex mode with PAUSE feature
- Long/short packet modes

LCD Controller

- Support the 8/12/16/18-bit data interface to connect with 80/68 series MPU type LCM module
- Convert RGB-565, YUV-422 display data to RGB-444, RGB-565, RGB-666, YUV-422 color format for display output
- Support CCIR-656(with vsync / hsync / data enable sync signal) 8/16-bit YUV data output format to connect with external TV encoder
- Support 8/16 bpp OSD data with image overlay function to facilitate the diverse graphic UI.
- Support linear 1X 8X image scaling up function.
- Support Picture-In-Picture display function
- Support hardware cursor.

2-D Graphics Engine

- Color depth 8-bit/16-bit/32-bit in RGB domain or RGB332/RGB565/RGB888 are supported
- Contains 2D Bit Block Transfer (BitBLT) functions as defined in Microsoft GDI. It includes HostBLT, Pattern BLT, Color/Font Expanding BLT, Transparent BLT, Tile BLT, Block Move BLT, Copy File BLT, Color/Font Expansion, and Rectangle Fill, etc.

Publication Release Date: Jun. 18, 2010

- Supports fore/background colors and all Microsoft 256 ternary raster-operation codes (ROP)
- Clipping window can be defined as inside or outside clipping
- Implements the alpha-blending function for source/destination picture overlaying
- Fast Bresenham line drawing algorithm is used to draw solid/textured lines
- Supports rectangular border or frame drawing
- Supports picture re-sizing by $1/255 \sim 254/255$ down-scaling and $1 \sim 1.996$ up-scaling (1+254/255).
- Supports object rotations in different degrees, that is L45/L90/R45/R90/M180/F180/X180, where
 - ♦ L45/L90 means rotate left 45/90 degrees,
 - ◆ R45/R90 means rotate right 45/90 degrees,
 - ♦ M180 means mirror (flop),
 - ♦ F180 means up-side-down (flip) and X180 for rotations by 180 degrees

2-Channel AC97/I2S Controller

- Support I2S interface.
- Support AC97 interface.
- Built-in an 8x32 bits internal buffer.
- Support DMA function for data transfer between internal buffer and system memory.
- Support 16-bit I2S and MSB-justified format.

USB Host Controller with transceiver

- Fully compliant with USB Revision 2.0 specification.
- Enhanced Host Controller Interface (EHCI) Revision 1.0 compatible.
- Open Host Controller Interface (OHCI) Revision 1.0 compatible.
- Supports high-speed (480Mbps), full-speed (12Mbps) and low-speed (1.5Mbps) USB devices.
- Supports Control, Bulk, Interrupt, Isochronous and Split transfers.
- Built-in DMA for real-time data transfer.
- Support two ports (one port transceiver is shared with USB Device Controller)

USB Device Controller with transceiver

- Compliant with USB version 2.0 specification.
- Software control for device remote-wakeup.
- Supports 6 configurable IN/OUT endpoints in addition to Control Endpoint. Each of these endpoints can be configures as IN or OUT with Isochronous, Bulk or Interrupt transfer.
- Three different modes of operation of an in-endpoint (Auto validation mode, manual validation mode, Fly mode.

Publication Release Date: Jun. 18, 2010

• Supports Endpoint Maximum Packet Size up to 1024 bytes.

Flash Memory Interface (FMI)

- Directly connect to Secure Digital (SD, MMC and SDIO) flash memory card, Memory Stick (Memory stick PRO) and NAND type flash memory.
- Supports DMA function to accelerate the data transfer between the internal buffer, external SDRAM, and flash memory card.
- Two 512 bytes internal buffers are embedded inside

12C Master

- Compatible with I²C standard, support master mode only
- Multi Master Operation
- Clock stretching and wait state generation
- Provide multi-byte transmit operation, up to 4 bytes can be transmitted in a single transfer
- Software programmable acknowledge bit
- Arbitration lost interrupt, with automatic transfer cancellation
- Start/Stop/Repeated Start/Acknowledge generation
- Start/Stop/Repeated Start detection
- Bus busy detection
- Supports 7 bit addressing mode
- Software mode I²C.

Universal Serial Interface (USI)

- Support MICROWIRE/SPI master mode
- Support full/half duplex synchronous serial data transfer
- Variable length of transfer word up to 32 bits
- Provide burst mode operation, transmit/receive can be executed up to four times in one transfer
- MSB or LSB first data transfer
- Receive and Transmit on both rising or falling edge of serial clock independently

UART

- Three UART (serial I/O) blocks with interrupt-based operation
- Support for 5-bit, 6-bit, 7-bit or 8-bit serial data transmit and receive
- Programmable baud rates
- 1,1½ or 2 stop bits

Publication Release Date: Jun. 18, 2010

- Odd or even parity
- Break generation and detection
- Parity, overrun and framing error detection
- X16 clock mode
- Support for IrDA and two debug ports

Timers

- Five programmable 24-bit timers with 8-bit pre-scalar
- One programmable 20-bit Watchdog timer
- One-short mode, period mode or toggle mode operation

4-Channel PWM

- Four 16-bit timers
- Two 8-bit pre-scalars & Two 4-bit divider
- Programmable duty control of output waveform (PWM)
- Auto reload mode or one-shot pulse mode
- Dead-zone generator

Keypad Scan Interface

- Scan up to 16x8 with an external 4 to 16 decoder; or 4x8 array without auxiliary component
- Programmable de-bounce time
- One or two keys scan with interrupt and three keys reset function.
- Support low power wakeup function

Programmable I/Os

- Pins individually configurable to input, output or I/O mode for dedicated signals
- I/O ports are Programmable and Configurable for Multiple functions

Operation Voltage Range

• VDD18 for IO Buffer: 1.8V+/-10%

VDD33 for Core Logic: 3.3V+/-10%

USBVDDC0/USBVDDC1/USBVDDT0/USBVDDT1 for USB: 3.3V+/-5%

• PLLVDD18 for PLL: 1.8V+/-10%

Publication Release Date: Jun. 18, 2010

Operation Temperature Range

• -40°C∼+85°C

Operating Frequency

• Up to 200 MHz for ARM926EJ-S CPU

Package Type

• 216-Pin LQFP, Pb free

3. PIN DIAGRAM NUC950ADN Pin Diagram

4. PIN ASSIGNMENT

Table 4.1 NUC950ADN Pins Assignment

Pad Name	NUC950ADN
Clock & Reset	(5 pins)
EXTAL15M	102
XTAL15M	103
EXTAL48MO	209
XTAL48MO	208
nRESET	1
TAP Interface	(5 pins)
TMS	10
TDI	11
TDO	12
тск	13
nTRST	14
External Bus Interface	(71 pins)
MA [21:0]	60-48,46-38
MD [31:0]	100-98,95-88,86,84-78,75-63
nWBE [3:0] /	32-29
SDQM [3:0]	
nSCS [1:0]	23-22
nSRAS	35
nSCAS	36
МСКЕ	33
nSWE	34
MCLK	25
nWAIT	16
nBTCS	21
nECS [2:0]	20-18
nOE	17

Pad Name	NUC950ADN
Ethernet Interface	(10 pins)
PHY_MDC /	172
GPIOF[0]	
PHY_MDIO /	173
GPIOF[1]	
PHY_TXD [1:0] /	175-174
GPIOF[3:2]	
PHY_TXEN /	176
GPIOF[4]	
PHY_REFCLK /	177
GPIOF[5]	
PHY_RXD [1:0] /	179-178
GPIOF[7:6]	
PHY_CRSDV /	180
GPIOF[8]	
PHY_RXERR /	181
GPIOF[9]	
AC97/I2S/PWM	(5 pins)
AC97_nRESET /	184
12S_SYSCLK /	
-/	
GPIOG[12]	
AC97_DATAI /	185
12S_DATAI /	
PWM [0] /	
GPIOG[13]	
AC97_DATAO /	186
12S_DATAO /	
PWM [1] /	
GPIOG[14]	
AC97_SYNC /	187
12S_WS /	
PWM [2] /	
GPIOG[15]	
AC97_BITCLK /	188
12S_BITCLK /	
PWM [3] /	
GPIOG[16]	

USB Interface	(10 pins)
DP0	215
DNO	214
REXTO	212
UPWRO	195
OVI	196
HDS	198
DP1	206
DN1	205
REXT1	203
UPWR1	200
Pad Name	NUC950ADN
12C/USI(SPI/MW)	(4 pins)
SCL0 /	3
SFRM /	
GPIOG[0]	
SDA0 /	4
SSPTXD /	
GPIOG[1]	
SCL1 /	5
SCLK /	
GPIOG[2]	
SDA1 /	6
SSPRXD /	
GPIOG[3]	
Pad Name	NUC950ADN
UART	(6 pins)
TXD0 /	189
GPIOE[0]	
RXD0 /	190
GPIOE[1]	
TXD1(B) /	191
GPIOE[2]	
RXD1(B) /	192
GPIOE[3]	
TXD2(IrDA) /	193
GPIOE[6]	
RXD2(IrDA) /	194
GPIOE[7]	

Publication Release Date: Jun. 18, 2010

Pad Name	NUC950ADN
SDIO(SD)/	(8 pins)
Memory Stick	
SD_CMD /	156
MS_BS /	
GPIOD[0]	
SD_CLK /	157
MS_CLK /	
GPIOD[1]	
SD_DATO /	158
MS_DATO /	
GPIOD[2]	
SD_DAT1 /	159
MS_DAT1 /	
GPIOD[3]	
SD_DAT2 /	160
MS_DAT2 /	
GPIOD[4]	
SD_DAT3 /	161
MS_DAT3 /	
GPIOD[5]	
SD_CDn /	163
MS_CDn /	
GPIOD[6]	
SD_nPWR /	164
MS_nPWR /	
GPIOD[8]	
Pad Name	NUC950ADN
NAND Flash(SM)/KPI	(15pins)
SM_CSOn /	142
KPI_ROW[0] /	
GPIOC[0]	
SM_ALE /	140
KPI_ROW[1]	
GPIOC[1]	
SM_CLE /	141
KPI_ROW[2]	
GPIOC[2]	

SM_WEn /	143
KPI_ROW[3]	
GPIOC[3]	
SM_REn /	144
GPIOC[4]	
SM_WPn /	145
GPIOC[5]	
SM_RBn /	146
GPIOC[6]	
SM_D[7:0] /	154-147
KPI_COL[7:0] /	
GPIOC[14:7]	
Pad Name	NUC950ADN
LCD	(23 pins)
VD [17:0]	130-122,120,118-117,114-109
HSYNC	131
VSYNC	139
VDEN	132
VICLK	133
VOCLK	137
Pad Name	NUC950ADN
Pad Name Miscellaneous	NUC950ADN (6 pins)
Miscellaneous	(6 pins)
Miscellaneous nIRQ [2:0] /	(6 pins)
Miscellaneous nIRQ [2:0] / GPIOH[2:0]	(6 pins)
Miscellaneous nIRQ [2:0] / GPIOH[2:0] nWDOG /	(6 pins)
Miscellaneous nIRQ [2:0] / GPIOH[2:0] nWDOG / GPIOI[16]	(6 pins) 169-167 2
Miscellaneous nIRQ [2:0] / GPIOH[2:0] nWDOG / GPIOI[16] GPIOE13	(6 pins) 169-167 2 165
Miscellaneous nIRQ [2:0] / GPIOH[2:0] nWDOG / GPIOI[16] GPIOE13 TEST	(6 pins) 169-167 2 165 166
Miscellaneous nIRQ [2:0] / GPIOH[2:0] nWDOG / GPIOI[16] GPIOE13 TEST Power/Ground	(6 pins) 169-167 2 165 166 (48 pins)
Miscellaneous nIRQ [2:0] / GPIOH[2:0] nWDOG / GPIOI[16] GPIOE13 TEST Power/Ground VDD18	(6 pins) 169-167 2 165 166 (48 pins) 9,27,76,96,115,135,170,197
Miscellaneous nIRQ [2:0] / GPIOH[2:0] nWDOG / GPIOI[16] GPIOE13 TEST Power/Ground VDD18 VDD33	(6 pins) 169-167 2 165 166 (48 pins) 9,27,76,96,115,135,170,197 15,26,47,62,87,101,119,136,162,182
Miscellaneous nIRQ [2:0] / GPIOH[2:0] nWDOG / GPIOI[16] GPIOE13 TEST Power/Ground VDD18 VDD33 VSS	(6 pins) 169-167 2 165 166 (48 pins) 9,27,76,96,115,135,170,197 15,26,47,62,87,101,119,136,162,182 7,8,24,28,37,61,77,85,97,104,116,121,134,138,155,171,183,199
Miscellaneous nIRQ [2:0] / GPIOH[2:0] nWDOG / GPIOI[16] GPIOE13 TEST Power/Ground VDD18 VDD33 VSS USBVDDC0 (3.3V)	(6 pins) 169-167 2 165 166 (48 pins) 9,27,76,96,115,135,170,197 15,26,47,62,87,101,119,136,162,182 7,8,24,28,37,61,77,85,97,104,116,121,134,138,155,171,183,199 211
Miscellaneous nIRQ [2:0] / GPIOH[2:0] nWDOG / GPIOI[16] GPIOE13 TEST Power/Ground VDD18 VDD33 VSS USBVDDC0 (3.3V) USBVSSC0	(6 pins) 169-167 2 165 166 (48 pins) 9,27,76,96,115,135,170,197 15,26,47,62,87,101,119,136,162,182 7,8,24,28,37,61,77,85,97,104,116,121,134,138,155,171,183,199 211 210
Miscellaneous nIRQ [2:0] / GPIOH[2:0] nWDOG / GPIOI[16] GPIOE13 TEST Power/Ground VDD18 VDD33 VSS USBVDDC0 (3.3V) USBVSSC0 USBVDDT0 (3.3V)	(6 pins) 169-167 2 165 166 (48 pins) 9,27,76,96,115,135,170,197 15,26,47,62,87,101,119,136,162,182 7,8,24,28,37,61,77,85,97,104,116,121,134,138,155,171,183,199 211 210 216
Miscellaneous nIRQ [2:0] / GPIOH[2:0] nWDOG / GPIOI[16] GPIOE13 TEST Power/Ground VDD18 VDD33 VSS USBVDDC0 (3.3V) USBVSSC0 USBVDT0 (3.3V) USBVSST0	(6 pins) 169-167 2 165 166 (48 pins) 9,27,76,96,115,135,170,197 15,26,47,62,87,101,119,136,162,182 7,8,24,28,37,61,77,85,97,104,116,121,134,138,155,171,183,199 211 210 216 213
Miscellaneous nIRQ [2:0] / GPIOH[2:0] nWDOG / GPIOI[16] GPIOE13 TEST Power/Ground VDD18 VDD33 VSS USBVDDC0 (3.3V) USBVSSC0 USBVDDT0 (3.3V) USBVSST0 USBVDDC1 (3.3V)	(6 pins) 169-167 2 165 166 (48 pins) 9,27,76,96,115,135,170,197 15,26,47,62,87,101,119,136,162,182 7,8,24,28,37,61,77,85,97,104,116,121,134,138,155,171,183,199 211 210 216 213 202

Publication Release Date: Jun. 18, 2010

USBVSST1	204
PLLVDD18	108,105
PLLVSS	107,106

5. PIN DESCRIPTION

5.1 Pin Description for Interface

Pin Name	10 Туре	Description	
Clock & Reset (5)			
EXTAL15M	ı	15MHz External Clock / Crystal Input for PLL	
XTAL15M	0	15MHz Crystal Output	
EXTAL48M0	0	48MHz Crystal Output for USB2.0 PHY	
XTAL48M0	I	48MHz Crystal Input for USB2.0 PHY	
nRESET	I	System Reset (Low active)	
TAP Interface (5)			
тск	ID	JTAG Test Clock, internal pull-down	
TMS	IU	JTAG Test Mode Select, internal pull-up	
TDI	IU	JTAG Test Data in, internal pull-up	
TDO	0	JTAG Test Data out	
nTRST	IU	JTAG Reset, active-low, internal pull-up	
External Bus Interface	ce (72)		
MA [21:0]	0	Address Bus of external memory and IO devices.	
		(MA[21:13] are set to input mode when nRESET low active)	
MD [31:0]	10 (D)	Data Bus of external memory and IO device	
		(Pull-down are programmable)	
nWBE [3:0] /	0	Write Byte Enable for specific device (nECS [2:0]).	
SDQM [3:0]		Data Bus Mask signal for SDRAM (nSCS [1:0]), (Low active)	
nSCS [1:0]	0	SDRAM chip select for two external banks, (Low active)	
nSRAS	0	Row Address Strobe for SDRAM, (Low active)	
nSCAS	0	Column Address Strobe for SDRAM, (Low active)	
nSWE	0	SDRAM Write Enable, (Low active)	
MCKE	0	SDRAM Clock Enable	
MCLK	0	System Master Clock Out, SDRAM clock	
nWAIT	ΙU	External Wait, (Low active), internal pull-up	
nBTCS	0	ROM/Flash Chip Select, (Low active)	
nECS [2:0]	0	External I/O Chip Select, (Low active)	
nOE	0	ROM/Flash, External Memory Output Enable, (Low active)	
Ethernet RMII Interf	ace (10)		
PHY_MDC	O(IS)	RMII Management Data Clock	

20

Publication Release Date: Jun. 18, 2010

Pin Name	10 Туре	Description	
PHY_MDIO	IO(D)	RMII Management Data I/O	
		(Pull-down is programmable)	
PHY_TXD [1:0]	O(IU)	RMII Transmit Data bus	
		(Pull-up are programmable)	
PHY_TXEN	O(ID)	RMII Transmit Enable	
		(Pull-down is programmable)	
PHY_REFCLK	O(ID)	RMII Reference Clock.	
		(Pull-down is programmable)	
PHY_RXD [1:0]	I (OU)	RMII Receive Data bus	
		(Pull-up are programmable)	
PHY_CRSDV	I (OD)	RMII Carrier Sense / Receive Data Valid	
		(Pull-down is programmable)	
PHY_RXERR	I (OD)	RMII Receive Data Error	
		(Pull-down is programmable)	
AC97/I2S/PWM (5)			
AC97_nRESET /	O(ID)	AC97 Controller RESET Output.	
12S_SYSCLK		I2S Controller System Clock Output.	
		(Pull-down is programmable)	
AC97_DATAI /	IO(D)	AC97 Controller Data Input.	
12S_DATAI /		12S Controller Data Input.	
PWM [0]		PWM Channel 0 Output.	
		(Pull-down is programmable)	
AC97_DATAO /	O(ID)	AC97 Controller Data Output.	
12S_DATAO /		12S Controller Data Output.	
PWM [1]		PWM Channel 1 Output.	
		(Pull-down is programmable)	
AC97_SYNC /	IO(D)	AC97 Controller Synchronous Pulse Output.	
12S_WS /		12S Controller Word Select.	
PWM [2]		PWM Channel 2 Output.	
		(Pull-down is programmable)	
AC97_BITCLK /	IOSD	AC97 Controller Bit Clock Input.	
I2S_BITCLK / PWM [3]		I 2S Controller Bit Clock.	
1 00101 [3]		PWM Channel 3 Output.	
		(Pull-down with Schmitt trigger input)	
USB Interface (10)	USB Interface (10)		
DP0	10	Differential Positive USB Port0 IO signal	
DNO	10	Differential Negative USB Port0 IO signal	
REXTO	Α	External Resister Connect for Port0	

Publication Release Date: Jun. 18, 2010 Revision: A4

32-DITARW/20L3-3 DAS		
Pin Name	10 Туре	Description
DP1	10	Differential Positive USB Port1 IO signal
DN1	10	Differential Negative USB Port1 IO signal
REXT1	Α	External Resister Connect for Port1
UPWR1	0	USB Port1 Power Control signal
OVI	I	USB Over Current Detection signal
HDS	I	USB PHY 0 Device/Host Mode Select Control signal
UPWR0	0	USB Port0 Power Control signal
		This pin is always driven to Low when USB Port0 is at Device mode (the HDS pin at high state)
I2C/USI(SPI/MW) In	nterface (4)	
SCLO /	IOS	12C Serial Clock Line 0.
SFRM		USI Serial Frame.
		(Input with Schmitt trigger)
SDA0 /	IOS	12C Serial Data Line 0.
SSPTXD		USI Serial Transmit Data.
		(Input with Schmitt trigger)
SCL1 /	IOS	I 2C Serial Clock Line 1.
SCLK		USI Serial Clock.
		(Input with Schmitt trigger)
SDA1 /	IOS	I 2C Serial Data Line 1.
SSPRXD		USI Serial Receive Data.
		(Input with Schmitt trigger)
UARTO/UART1/UART	2 Interface	e (6)
TXD0	IO(D)	UARTO Transmit Data.
		(Pull-down is programmable)
RXD0	IO(D)	UARTO Receive Data.
		(Pull-down is programmable)
TXD1	IO(D)	UART1 Transmit Data
		(Pull-down is programmable)
RXD1	IO(D)	UART1 Receive Data
		(Pull-down is programmable)
TXD2(IrDA)	10(D)	UART2 Transmit Data supporting SIR IrDA.
		(Pull-down is programmable)
RXD2(IrDA)	10(D)	UART2 Receive Data supporting SIR IrDA.
		(Pull-down is programmable)
SD/SDIO/Memory Stick Interface (8)		

22

Pin Name	10 Туре	Description	
SDO_CMD /	10(U)	SD/SDIO Mode - Command/Response (SPI Mode - Data In)	
MSO_BS		Memory Stick Mode – Bus State.	
		(Pull-up is programmable)	
SDO_CLK /	10(U)	SD/SDIO Mode - Clock; (SPI Mode - Clock)	
MSO_CLK		Memory Stick Mode - Clock	
		(Pull-up is programmable)	
SDO_DATO /	10(U)	SD/SDIO Mode – Data Line Bit 0;	
MSO_DATO		Memory Stick Mode - Data Line Bit 0;	
		(Pull-up is programmable)	
SDO_DAT1 /	10(U)	SD/SDIO Mode – Data Line Bit 1;	
MS0_DAT1		Memory Stick Mode – Data Line Bit 1;	
		(Pull-up is programmable)	
SDO_DAT2 /	10(U)	SD/SDIO Mode – Data Line Bit 2;	
MS0_DAT2		Memory Stick Mode – Data Line Bit 2;	
		(Pull-up is programmable)	
SDO_DAT3 /	10(U)	SD/SDIO Mode – Data Line Bit 3;	
MSO_DAT3		Memory Stick Mode - Data Line Bit 3;	
		(Pull-up is programmable)	
SD0_CDn /	10(U)	SD/SDIO Mode - Card Detect.	
MS0_CDn		Memory Stick Mode – Card Detect.	
		(Pull-up is programmable)	
SD_nPWR	10(U)	SD/SDIO Power FET Control Signal Output.	
		(Pull-up is programmable)	
NAND Flash Interface	NAND Flash Interface (15)		
SM_CSOn	O(IU)	NAND Flash Chip Select #0	
		(Pull-up is programmable)	
SM_ALE	O(IU)	NAND Flash Address Latch Enable	
		(Pull-up is programmable)	
SM_CLE	O(IU)	NAND Flash Command Latch Enable	
		(Pull-up is programmable)	
SM_WEn	O(IU)	NAND Flash Write Enable (Low active)	
		(Pull-up is programmable)	
SM_REn	O(IU)	NAND Flash Read Enable (Low active)	
		(Pull-up is programmable)	
SM_WPn	O(IU)	NAND Flash Write Protect (Low active)	
		(Pull-up is programmable)	
SM_RBn	I (OU)	NAND Flash Busy (Low active)	
		(Pull-up is programmable)	

SM_D[7:0]	Pin Name	10 Туре	Description
Keypad Interface (KPI) (12) KPI_COL[7:0] I Keypad Column Scan Input Bus This bus is shared with NAND Flash Interface, which is programmable setting. KPI_ROW[3:0] O Keypad Row Scan Output Bus This bus is shared with NAND Flash Interface, which is programmable setting. LCD Interface (23) VD [17:0] O(IU) LCD Pixel Data Output. (Pull-up is programmable) HSYNC O Horizontal Sync or Line Sync. VSYNC O Vertical Sync or Line Sync. VSYNC O Vertical Sync or Line Sync. VOCLK O Pixel Clock Output. VICLK IU Pixel Clock Output. WICLK IU Pixel Clock Input. Miscellaneous(6) nIRQ[2:0] I (OU) External Interrupt Request (Pull-up is programmable) nWDOG O Watchdog Timer Timeout Flag (Low active) GPI0E13 IO(U) Bit 13 of the GPI0E port TEST I Test Mode This pin has to pull low in normal operation. Power/Ground VDD18 P Core Logic power (1.8V) VDD33 P IO Buffer and Core ground (0V) USBVDDC0 P USB PortO PHY ground (0V) USBVDDC1 P USB PortO PHY ground (0V) USBVDDT0 P USB PortO PHY Transceiver power (3.3V) USBVSST0 G USB PortO PHY Transceiver power (3.3V) USBVSSC1 G USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver power (3.3V)	SM_D[7:0]	10(U)	NAND Flash Data Bus
KPI_COL[7:0] I Keypad Column Scan Input Bus This bus is shared with NAND Flash Interface, which is programmable setting. KPI_ROW[3:0] O Keypad Row Scan Output Bus This bus is shared with NAND Flash Interface, which is programmable setting. LCD Interface (23) VD [17:0] O(IU) LCD Pixel Data Output. (Pull-up is programmable) HSYNC O Horizontal Sync or Line Sync. VSYNC O Vertical Sync or Line Sync. VSYNC O Vertical Sync or Frame Sync. VOCLK O Pixel Clock Output. VICLK IU Pixel Clock Output. WICLK IU Pixel Clock Output. WISCEllaneous(6) nIRQ[2:0] I(OU) External Interrupt Request (Pull-up is programmable) nWDOG O Watchdog Timer Timeout Flag (Low active) GPIOE13 IO(U) Bit 13 of the GPIOE port TEST I Test Mode This pin has to pull low in normal operation. Power/Ground VDD18 P Core Logic power (1.8V) VDD33 P IO Buffer power (3.3V) VSS G IO Buffer and Core ground (0V) USBVDDCO P USB PortO PHY ground (0V) USBVDDTO P USB PortO PHY Transceiver power (3.3V) USBVSSTO G USB PortO PHY Transceiver power (3.3V) USBVSSTO G USB PortO PHY Transceiver power (3.3V) USBVSSTO G USB Port1 PHY power (3.3V) USBVSST1 G USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) USBVDDT1 P USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (0V)			(Pull-up is programmable)
This bus is shared with NAND Flash Interface, which is programmable setting. KPI_ROW[3:0] O Keypad Row Scan Output Bus This bus is shared with NAND Flash Interface, which is programmable setting. LCD Interface (23) VD [17:0] O(IU) LCD Pixel Data Output. (Pull-up is programmable) HSYNC O Horizontal Sync or Line Sync. VSYNC O Vertical Sync or Frame Sync. VDEN O Data Enable or Display Control Signal. VOCLK O Pixel Clock Output. VICLK IU Pixel Clock Input. Miscellaneous(6) nIRQ[2:0] I(OU) External Interrupt Request (Pull-up is programmable) nWDOG O Watchdog Timer Timeout Flag (Low active) GPIOE13 IO(U) Bit 13 of the GPIOE port TEST I Test Mode This pin has to pull low in normal operation. Power/Ground VDD18 P Core Logic power (1.8V) VDD33 P IO Buffer power (3.3V) VSS G IO Buffer and Core ground (0V) USBVDDC0 P USB PortO PHY pround (0V) USBVDDT0 P USB PortO PHY ground (0V) USBVDDT0 P USB PortO PHY Transceiver power (3.3V) USBVSST0 G USB PortO PHY Transceiver ground (0V) USBVDDC1 P USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY Transceiver ground (0V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) USBVSST1 G USB Port1 PHY Transceiver ground (0V)	Keypad Interface (KF	PI) (12)	
Programmable setting. KPI_ROW[3:0] O Keypad Row Scan Output Bus This bus is shared with NAND Flash Interface, which is programmable setting.	KPI_COL[7:0]	I	Keypad Column Scan Input Bus
This bus is shared with NAND Flash Interface, which is programmable setting. LCD Interface (23) VD [17:0] O(IU) LCD Pixel Data Output. (Pull-up is programmable) HSYNC O Horizontal Sync or Line Sync. VSYNC O Vertical Sync or Frame Sync. VDEN O Data Enable or Display Control Signal. VOCLK O Pixel Clock Output. VICLK IU Pixel Clock Input. Miscellaneous(6) nIRQ[2:0] I(OU) External Interrupt Request (Pull-up is programmable) nWDOG O Watchdog Timer Timeout Flag (Low active) GPIOE13 IO(U) Bit 13 of the GPIOE port TEST I Test Mode This pin has to pull low in normal operation. Power/Ground VDD18 P Core Logic power (1.8V) VDD33 P IO Buffer power (3.3V) VSS G IO Buffer and Core ground (OV) USBVDDCO P USB Port0 PHY power (3.3V) USBVSSCO G USB Port0 PHY ground (OV) USBVDDTO P USB Port0 PHY Transceiver power (3.3V) USBVSSTO G USB Port1 PHY Transceiver ground (OV) USBVDDC1 P USB Port1 PHY prower (3.3V) USBVSSC1 G USB Port1 PHY ground (OV) USBVDDT1 P USB Port1 PHY ground (OV) USBVDDT1 P USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB PORT1 PHY Transceiver power (3.3V) USBVSST1 G USB PORT1 PHY Transceiver ground (OV)			
LCD Interface (23) VD [17:0] O(IU) LCD Pixel Data Output. (Pull-up is programmable) HSYNC O Horizontal Sync or Line Sync. VSYNC O Vertical Sync or Frame Sync. VDEN O Data Enable or Display Control Signal. VOCLK O Pixel Clock Output. VICLK IU Pixel Clock Input. Miscellaneous(6) nIRQ[2:0] I(OU) External Interrupt Request (Pull-up is programmable) nWDOG O Watchdog Timer Timeout Flag (Low active) GPI0E13 IO(U) Bit 13 of the GPI0E port TEST I Test Mode This pin has to pull low in normal operation. Power/Ground VDD18 P Core Logic power (1.8V) VDD33 P IO Buffer power (3.3V) VSS G IO Buffer and Core ground (OV) USBVDDCO P USB POrt0 PHY power (3.3V) USBVSSCO G USB POrt0 PHY ground (OV) USBVDDTO P USB Port0 PHY Transceiver power (3.3V) USBVSSTO G USB Port1 PHY power (3.3V) USBVSSC1 G USB POrt1 PHY power (3.3V) USBVSSC1 G USB POrt1 PHY power (3.3V) USBVSSC1 G USB POrt1 PHY power (3.3V) USBVSST1 G USB POrt1 PHY Transceiver power (3.3V) USBVSST1 G USB PORT1 PHY Transceiver ground (OV) USBVDDT1 P USB PORT1 PHY Transceiver power (3.3V) USBVSST1 G USB PORT1 PHY Transceiver ground (OV)	KPI_ROW[3:0]	О	Keypad Row Scan Output Bus
VD [17:0] O(IU) LCD Pixel Data Output. (Pull-up is programmable) HSYNC			·
(Pull-up is programmable) HSYNC	LCD Interface (23)		
HSYNC O Horizontal Sync or Line Sync. VSYNC O Vertical Sync or Frame Sync. VDEN O Data Enable or Display Control Signal. VOCLK O Pixel Clock Output. VICLK IU Pixel Clock Input. Miscellaneous(6) IIRQ[2:0] I(OU) External Interrupt Request (Pull-up is programmable) INWDOG O Watchdog Timer Timeout Flag (Low active) GPIOE13 IO(U) Bit 13 of the GPIOE port TEST I Test Mode This pin has to pull low in normal operation. Power/Ground VDD18 P Core Logic power (1.8V) VDD33 P IO Buffer power (3.3V) VSS G IO Buffer and Core ground (0V) USBVDDCO P USB Port0 PHY power (3.3V) USBVSSCO G USB Port0 PHY ground (0V) USBVDDTO P USB Port0 PHY Transceiver power (3.3V) USBVSSTO G USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY ground (0V) USBVSST1 G USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) PLLVDD18 P PLL power (1.8V)	VD [17:0]	O(IU)	LCD Pixel Data Output.
VSYNC VDEN O Data Enable or Display Control Signal. VOCLK O Pixel Clock Output. VICLK IU Pixel Clock Input. Miscellaneous(6) nIRQ[2:0] I(OU) External Interrupt Request (Pull-up is programmable) nWDOG O Watchdog Timer Timeout Flag (Low active) GPIOE13 IO(U) Bit 13 of the GPIOE port TEST I Test Mode This pin has to pull low in normal operation. Power/Ground VDD18 P Core Logic power (1.8V) VDD33 P IO Buffer power (3.3V) VSS G IO Buffer and Core ground (0V) USBVDDC0 P USB Port0 PHY power (3.3V) USBVSSC0 G USB Port0 PHY ground (0V) USBVDDT0 P USB Port0 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY power (3.3V) USBVSST1 G USB Port1 PHY Transceiver power (3.3V)			(Pull-up is programmable)
VDEN O Data Enable or Display Control Signal. VOCLK O Pixel Clock Output. VICLK IU Pixel Clock Input. Miscellaneous (6) IIRQ[2:0] I (OU) External Interrupt Request (Pull-up is programmable) INWDOG O Watchdog Timer Timeout Flag (Low active) GPIOE13 IO(U) Bit 13 of the GPIOE port TEST I Test Mode This pin has to pull low in normal operation. Power/Ground VDD18 P Core Logic power (1.8V) VDD33 P IO Buffer power (3.3V) VSS G IO Buffer and Core ground (OV) USBVDDCO P USB Porto PHY power (3.3V) USBVSSCO G USB Porto PHY ground (OV) USBVDDTO P USB Porto PHY Transceiver power (3.3V) USBVSSTO G USB Port PHY Transceiver ground (OV) USBVSSC1 G USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY ground (OV) USBVDDT1 P USB Port1 PHY ground (OV) USBVSST1 G USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (OV) PLLVDD18 P PLL power (1.8V)	HSYNC	0	Horizontal Sync or Line Sync.
VOCLK VICLK IU Pixel Clock Input. Miscellaneous(6) IIRQ[2:0] II(OU) External Interrupt Request (Pull-up is programmable) NWDOG O Watchdog Timer Timeout Flag (Low active) GPIOE13 IO(U) Bit 13 of the GPIOE port TEST I Test Mode This pin has to pull low in normal operation. Power/Ground VDD18 P Core Logic power (1.8V) VDD33 P IO Buffer power (3.3V) VSS G IO Buffer and Core ground (0V) USBVDDC0 P USB Port0 PHY power (3.3V) USBVSSC0 G USB Port0 PHY ground (0V) USBVDDT0 P USB Port0 PHY Transceiver power (3.3V) USBVSST0 G USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY ground (0V) USBVSST1 G USB Port1 PHY ground (0V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) PLLVDD18 P PLL power (1.8V)	VSYNC	0	Vertical Sync or Frame Sync.
VICLK IU Pixel Clock Input. Miscellaneous(6) II (OU) External Interrupt Request (Pull-up is programmable) NWDOG O Watchdog Timer Timeout Flag (Low active) GPIOE13 IO(U) Bit 13 of the GPIOE port TEST I Test Mode This pin has to pull low in normal operation. Power/Ground VDD18 P Core Logic power (1.8V) VDD33 P IO Buffer power (3.3V) VSS G IO Buffer and Core ground (OV) USBVDDCO P USB PortO PHY power (3.3V) USBVSSCO G USB PortO PHY ground (OV) USBVDDTO P USB PortO PHY Transceiver power (3.3V) USBVSSTO G USB PortO PHY Transceiver ground (OV) USBVDDC1 P USB PortO PHY Transceiver ground (OV) USBVSSC1 G USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY ground (OV) USBVDDT1 P USB Port1 PHY ground (OV) USBVSST1 G USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (OV) PLLVDD18 P PLL power (1.8V)	VDEN	0	Data Enable or Display Control Signal.
Miscellaneous(6) nIRQ[2:0] I (OU) External Interrupt Request (Pull-up is programmable) nWDOG O Watchdog Timer Timeout Flag (Low active) GPIOE13 IO(U) Bit 13 of the GPIOE port TEST I Test Mode This pin has to pull low in normal operation. Power/Ground VDD18 P Core Logic power (1.8V) VDD33 P IO Buffer power (3.3V) VSS G IO Buffer and Core ground (OV) USBVDDCO P USB PortO PHY power (3.3V) USBVSSCO G USB PortO PHY ground (OV) USBVDDTO P USB PortO PHY Transceiver power (3.3V) USBVSSTO G USB PortO PHY Transceiver ground (OV) USBVDDC1 P USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY power (3.3V) USBVSST1 G USB Port1 PHY ground (OV) USBVSST1 G USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver power (3.3V) PLLVDD18 P PLL power (1.8V)	VOCLK	0	Pixel Clock Output.
nIRQ[2:0] I(OU) External Interrupt Request	VICLK	IU	Pixel Clock Input.
(Pull-up is programmable) nWDOG	Miscellaneous(6)		
nWDOG O Watchdog Timer Timeout Flag (Low active) GPIOE13 IO(U) Bit 13 of the GPIOE port TEST I Test Mode This pin has to pull low in normal operation. Power/Ground VDD18 P Core Logic power (1.8V) VDD33 P IO Buffer power (3.3V) VSS G IO Buffer and Core ground (0V) USBVDDC0 P USB Port0 PHY power (3.3V) USBVSSC0 G USB Port0 PHY ground (0V) USBVDDT0 P USB Port0 PHY Transceiver power (3.3V) USBVSST0 G USB Port0 PHY Transceiver ground (0V) USBVDDC1 P USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver power (3.3V) PLLVDD18 P PLL power (1.8V)	nIRQ[2:0]	I (OU)	External Interrupt Request
GPIOE13 IO(U) Bit 13 of the GPIOE port TEST I Test Mode This pin has to pull low in normal operation. Power/Ground VDD18 P Core Logic power (1.8V) VDD33 P IO Buffer power (3.3V) VSS G IO Buffer and Core ground (0V) USBVDDC0 P USB Port0 PHY power (3.3V) USBVSSC0 G USB Port0 PHY ground (0V) USBVDDT0 P USB Port0 PHY Transceiver power (3.3V) USBVSST0 G USB Port1 PHY Transceiver ground (0V) USBVDDC1 P USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY ground (0V) USBVSST1 G USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) PLLVDD18 P PLL power (1.8V)			(Pull-up is programmable)
TEST I Test Mode This pin has to pull low in normal operation. Power/Ground VDD18 P Core Logic power (1.8V) VDD33 P IO Buffer power (3.3V) VSS G IO Buffer and Core ground (0V) USBVDDC0 P USB Port0 PHY power (3.3V) USBVSSC0 G USB Port0 PHY ground (0V) USBVDDT0 P USB Port0 PHY Transceiver power (3.3V) USBVSST0 G USB Port0 PHY Transceiver ground (0V) USBVDDC1 P USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY ground (0V) USBVSST1 G USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) PLLVDD18 P PLL power (1.8V)	nWDOG	0	Watchdog Timer Timeout Flag (Low active)
This pin has to pull low in normal operation. Power/Ground VDD18 P Core Logic power (1.8V) VDD33 P IO Buffer power (3.3V) VSS G IO Buffer and Core ground (0V) USBVDDC0 P USB Port0 PHY power (3.3V) USBVSSC0 G USB Port0 PHY ground (0V) USBVDDT0 P USB Port0 PHY Transceiver power (3.3V) USBVSST0 G USB Port0 PHY Transceiver ground (0V) USBVDDC1 P USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) PLLVDD18 P PLL power (1.8V)	GPIOE13	10(U)	Bit 13 of the GPIOE port
Power/Ground VDD18 P Core Logic power (1.8V) VDD33 P IO Buffer power (3.3V) VSS G IO Buffer and Core ground (0V) USBVDDC0 P USB Port0 PHY power (3.3V) USBVSSC0 G USB Port0 PHY ground (0V) USBVDDT0 P USB Port0 PHY Transceiver power (3.3V) USBVSST0 G USB Port0 PHY Transceiver ground (0V) USBVDDC1 P USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) PLLVDD18 P PLL power (1.8V)	TEST	I	Test Mode
VDD18 P Core Logic power (1.8V) VDD33 P IO Buffer power (3.3V) VSS G IO Buffer and Core ground (0V) USBVDDC0 P USB Port0 PHY power (3.3V) USBVSSC0 G USB Port0 PHY ground (0V) USBVDDT0 P USB Port0 PHY Transceiver power (3.3V) USBVSST0 G USB Port0 PHY Transceiver ground (0V) USBVDDC1 P USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) PLLVDD18 P PLL power (1.8V)			This pin has to pull low in normal operation.
VDD33 P IO Buffer power (3.3V) VSS G IO Buffer and Core ground (0V) USBVDDC0 P USB Port0 PHY power (3.3V) USBVSSC0 G USB Port0 PHY ground (0V) USBVDDT0 P USB Port0 PHY Transceiver power (3.3V) USBVSST0 G USB Port0 PHY Transceiver ground (0V) USBVDDC1 P USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) PLLVDD18 P PLL power (1.8V)	Power/Ground		
VSS G IO Buffer and Core ground (OV) USBVDDCO P USB Port0 PHY power (3.3V) USBVSSCO G USB Port0 PHY ground (OV) USBVDDTO P USB Port0 PHY Transceiver power (3.3V) USBVSSTO G USB Port0 PHY Transceiver ground (OV) USBVDDC1 P USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY ground (OV) USBVDDT1 P USB Port1 PHY ground (OV) USBVDDT1 P USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (OV) PLLVDD18 P PLL power (1.8V)	VDD18	Р	Core Logic power (1.8V)
USBVDDC0 P USB Port0 PHY power (3.3V) USBVSSC0 G USB Port0 PHY ground (0V) USBVDDT0 P USB Port0 PHY Transceiver power (3.3V) USBVSST0 G USB Port0 PHY Transceiver ground (0V) USBVDDC1 P USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) PLLVDD18 P PLL power (1.8V)	VDD33	Р	IO Buffer power (3.3V)
USBVSSCO G USB Port0 PHY ground (0V) USBVDDTO P USB Port0 PHY Transceiver power (3.3V) USBVSSTO G USB Port0 PHY Transceiver ground (0V) USBVDDC1 P USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) PLLVDD18 P PLL power (1.8V)	VSS	G	IO Buffer and Core ground (0V)
USBVDDTO P USB Port0 PHY Transceiver power (3.3V) USBVSSTO G USB Port0 PHY Transceiver ground (0V) USBVDDC1 P USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) PLLVDD18 P PLL power (1.8V)	USBVDDC0	Р	USB Port0 PHY power (3.3V)
USBVSSTO G USB Port0 PHY Transceiver ground (0V) USBVDDC1 P USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) PLLVDD18 P PLL power (1.8V)	USBVSSC0	G	USB Port0 PHY ground (0V)
USBVDDC1 P USB Port1 PHY power (3.3V) USBVSSC1 G USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) PLLVDD18 P PLL power (1.8V)	USBVDDTO	Р	USB Port0 PHY Transceiver power (3.3V)
USBVSSC1 G USB Port1 PHY ground (0V) USBVDDT1 P USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) PLLVDD18 P PLL power (1.8V)	USBVSST0	G	USB Port0 PHY Transceiver ground (0V)
USBVDDT1 P USB Port1 PHY Transceiver power (3.3V) USBVSST1 G USB Port1 PHY Transceiver ground (0V) PLLVDD18 P PLL power (1.8V)	USBVDDC1	Р	USB Port1 PHY power (3.3V)
USBVSST1 G USB Port1 PHY Transceiver ground (0V) PLLVDD18 P PLL power (1.8V)	USBVSSC1	G	USB Port1 PHY ground (0V)
PLLVDD18 P PLL power (1.8V)	USBVDDT1	Р	USB Port1 PHY Transceiver power (3.3V)
	USBVSST1	G	USB Port1 PHY Transceiver ground (0V)
PLLVSS18 G PLL ground (0V)	PLLVDD18	Р	PLL power (1.8V)
	PLLVSS18	G	PLL ground (0V)

24

5.2 GPIO Share Pin Description

In this chip, there are $GPIOC \sim GPIOH$ groups for general IO control. All of GPIO pins are shared with the other interface and define as the following

GPIO Group	Shared pin function
GPIOC (15 pins)	NAND Flash Interface /
	KPI
GPIOC[0]	SM_CS0n /
	KPI_ROW[0]
GPIOC[1]	SM_ALE /
	KPI_ROW[1]
GPIOC[2]	SM_CLE /
	KPI_ROW[2]
GPIOC[3]	SM_WEn /
	KPI_ROW[3]
GPIOC[4]	SM_REn
GPIOC[5]	SM_WPn
GPIOC[6]	SM_RBn
GPIOC[7]	SM_D[0] /
	KPI_COL[0]
GPIOC[8]	SM_D[1] /
	KPI_COL[1]
GPIOC[9]	SM_D[2] /
	KPI_COL[2]
GPIOC[10]	SM_D[3] /
	KPI_COL[3]
GPIOC[11]	SM_D[4] /
	KPI_COL[4]
GPIOC[12]	SM_D[5] /
	KPI_COL[5]
GPIOC[13]	SM_D[6] /
	KPI_COL[6]
GPIOC[14]	SM_D[7] /
	KPI_COL[7]

GPIOD (8 pins)	SD(SDIO) /
	Memory Stick Interface

GPIOD[0]	SD_CMD /
	MS_BS
GPIOD[1]	SD_CLK /
	MS_CLK
GPIOD[2]	SD_DATO /
	MS_DATO
GPIOD[3]	SD_DAT1 /
	MS_DAT1
GPIOD[4]	SD_DAT2 /
	MS_DAT2
GPIOD[5]	SD_DAT3 /
	MS_DAT3
GPIOD[6]	SD_CDn /
	MS_CDn
GPIOD[8]	SD_nPWR /
	MS_nPWR

GPIOE (7 pins)	UART Interface
GPIOE[0]	TXD0
GPIOE[1]	RXD0
GPIOE[2]	TXD1
GPIOE[3]	RXD1
GPIOE[6]	TXD2(IrDA)
GPIOE[7]	RXD2(IrDA)
GPIOE[13]	GPIOE13

GPIOF (10 pins)	RMII Interface
GPIOF [0]	PHY_MDC
GPIOF [1]	PHY_MDIO
GPIOF [3:2]	PHY_TXD [1:0]
GPIOF [4]	PHY_TXEN
GPIOF [5]	PHY_REFCLK
GPIOF [7:6]	PHY_RXD [1:0]
GPIOF [8]	PHY_CRSDV
GPIOF [9]	PHY_RXERR

PUL

26

GPIOG (9 pins)	I2C/USI
	XDMA,
	AC97/I2S/PWM Interface
GPIOG[0]	SCLO /
	SFRM
GPIOG[1]	SDAO /
	SSPTXD
GPIOG[2]	SCL1 /
	SCLK
GPIOG[3]	SDA1 /
	SSPRXD
GPIOG[12]	AC97_nRESET
	12S_SYSCLK
GPIOG[13]	AC97_DATAI /
	12S_DATAI /
	PWM [0]
GPIOG[14]	AC97_DATAO /
	12S_DATAO /
	PWM [1]
GPIOG[15]	AC97_SYNC /
	12S_WS /
	PWM [2]
GPIOG[16]	AC97_BITCLK /
	12S_BITCLK /
	PWM [3]

GPIOH (3 pins)	nIRQ Interface
GPIOH[2:0]	nIRQ[2:0]

6. FUNCTIONAL BLOCK

7. FUNCTIONAL DESCRIPTION

7.1 ARM926EJ-S CPU CORE

The ARM926EJ-S CPU core is a member of the ARM9 family of general-purpose microprocessors. The ARM926EJ-S CPU core supports the 32-bit ARM and 16-bit Thumb instruction sets, enabling the user to tradeoff between high performance and high code density. The ARM926EJ-S processor has a Harvard cached architecture with MMU and provides a complete high-performance processor subsystem.

7.2 System Manager

7.2.1 Overview

The System Manager has the following functions.

- System memory map
- The width of external memory address
- Data bus connection with external memory
- Product identifier register
- Bus arbitration
- PLL module
- Clock select register
- Power-On setting

7.2.2 System Memory Map

This chip provides 2G bytes memory space (0x0000_0000~0x7FFF_FFFF) for the SDRAM, RAM, ROM and IO Devices, 192M bytes space (0xB000_0000~0xBBFF_FFFF) for On-Chip Peripherals and the other memory spaces are reserved.

The size and location of each SDRAM memory bank is determined by the register settings for "current bank base address pointer" and "current bank size" (SDCONF0 and SDCONF1). Please note that when setting the bank control registers, the address boundaries of consecutive banks must not be overlapped.

Publication Release Date: Jun. 18, 2010

Except On-Chip Peripherals, the start address of each memory bank is not fixed. You can use bank control registers to assign a specific bank start address by setting the bank's base pointer (13 bits). The address resolution is 256K bytes. The bank's start address is defined as "base pointer << 18", and the bank's size is "current bank size". (EXTOCON ~ EXT2CON)

The CPU booting start address is fixed at address 0x0000_0000 after reset or power-on. In the event of an access request to an address outside any programmed bank size, an abort signal is generated. The maximum accessible memory size of each external IO bank is 4MB@8bit (8MB@16bit and 16MB@32bit), and 128M bytes on SDRAM banks.

Publication Release Date: Jun. 18, 2010

31

Publication Release Date: Jun. 18, 2010

Address Space	Token	Modules
0x0000_0000 - 0x7FFF_FFFF		EBI (SDRAM, ROM, RAM, IO) Memory Space
0x8000_0000 - 0xAFFF_FFFF		Reserved Shadow of EBI Memory Space(0x0000_0000~0x2FFF_FFFF)
0xB000_0000 - 0xB000_01FF	GCR_BA	System Global Control Registers
0xB000_0200 - 0xB000_02FF	CLK_BA	Clock Control Registers
0xB000_1000 - 0xB000_1FFF	EBI_BA	EBI Control Registers
0xB000_3000 - 0xB000_3FFF	EMC_BA	Ethernet MAC Control Registers
0xB000_4000 - 0xB000_4FFF	GDMA_BA	GDMA Control Registers
0xB000_5000 - 0xB000_5FFF	USBH_BA	EHCI USB Host Control Registers
0xB000_6000 - 0xB000_6FFF	USBD_BA	USB Device Control Registers
0xB000_7000 - 0xB000_7FFF	USBO_BA	OHCI USB Host Control Registers
0xB000_8000 - 0xB000_8FFF	LCM_BA	Display, LCM Interface Control Registers
0xB000_9000 - 0xB000_9FFF	ACTL_BA	Audio Interface Control Registers
0xB000_A000 - 0xB000_AFFF		Reserved
0xB000_B000 - 0xB000_BFFF	GE_BA	2D Graphic Engine Control Register

Address Space	Token	Modules
0xB000_C000 - 0xB000_CFFF	DMAC_BA	DMA Controller Registers
0xB000_D000 - 0xB000_DFFF	FMI_BA	Flash Memory Interface Control Registers

33

Address Space	Token	Modules	
0xB800_0000 - 0xB800_00FF	UARTO_BA	UART 0 Control Registers	
0xB800_0100 - 0xB800_01FF	UART1_BA	UART 1 Control Registers	
0xB800_0200 - 0xB800_02FF	UART2_BA	UART 2 Control Registers (Tx,Rx for IrDA)	
0xB800_0300 - 0xB800_03FF		Reserved	
0xB800_0400 - 0xB800_04FF		Reserved	
0xB800_1000 - 0xB800_1FFF	TMR_BA	Timer Control Registers	
0xB800_2000 - 0xB800_2FFF	AIC_BA	Interrupt Controller Registers	
0xB800_3000 - 0xB800_3FFF	GPIO_BA	GPIO Control Registers	
0xB800_4000 - 0xB800_4FFF		Reserved	
0xB800_5000 - 0xB800_5FFF		Reserved	
0xB800_6000 - 0xB800_60FF	12C0_BA	I 2C 0 Control Register	
0xB800_6100 - 0xB800_61FF	I2C1_BA	I 2C 1 Control Register	
0xB800_6200 - 0xB800_62FF	USI_BA	Universal Serial Interface Register (USI)	
0xB800_7000 - 0xB800_7FFF	PWM_BA	Pulse Width Modulation(PWM) Control Registers	
0xB800_8000 - 0xB800_8FFF	KPI_BA	Keypad Interface Control Registers	

Address Space	Token	Modules
0xB800_9000 - 0xB800_9FFF		Reserved
0xB800_A000 - 0xB800_AFFF		Reserved

7.2.3 Address Bus Generation

The address bus generation is depended on the required data bus width **(DBWD)** and address bus alignment control bit **(ADRS)** of each IO bank.

Address Bus Generation Guidelines (When ADRS bit = 0)

Data Bus Width	External Address Pins MA [21:0]	Maximum Accessible Memory Size
8-bit	MA21 - MA0 (Internal)	4M bytes
16-bit	MA22 – MA1 (Internal)	8M bytes (4M half-words)
32-bit	MA23 - MA2 (Internal)	16M bytes (4M words)

Address Bus Generation Guidelines (When ADRS bit = 1)

Data Bus Width	External Address Pins MA [21:0]	Maximum Accessible Memory Size
8-bit	MA21 – MA0 (Internal)	4M bytes
16-bit	MA21 – MA0 (Internal)	4M bytes, MA[0] ignored (2M half-words)
32-bit	MA21 – MA0 (Internal)	4M bytes, MA[1:0] ignored (1M words)

AHB Bus Arbitration

The system bus is AHB-compliant and supports modules with standard AHB master or slave interfaces. The AHB arbiter has two priority-decision modes, i.e., the fixed priority mode and the rotate priority mode. In the rotate priority mode, there are three types for AHB-Master bus. The selection of modes and types is determined on the **PRTMOD0** and **PRTMOD1**bits in the Arbitration Control Register. **PRTMOD0** is used to control the fixed priority of AHB1 (CPU AHB-Lite) Bus and **PRTMOD1** is used to control the fixed priority of AHB2 Master Bus.

7.2.4.1 Fixed Priority Mode

Fixed priority mode is selected if PRTMODx = 0. The order of priorities on the AHB mastership among the on-chip master modules is fixed. If two or more master modules request to AHB at the same time, the mastership is always granted to the module with the highest priority.

Publication Release Date: Jun. 18, 2010

AHB Bus Priority Order in Fixed Priority Mode

Priority Sequence	PRTMOD0 = 0 AHB1 Bus	PRTMOD1 = 0 AHB2 Bus
1 (Lowest)	ARM CPU Instruction	AHB Bridge
2	ARM CPU Data	2-D Graphic
3	GDMAO	
4	GDMA1	SDIO(FMI)
5		USB Device
6		USB Host
7		EMC Controller
8		LCD Controller
9 (Highest)		Audio Controller (AC97 & I2S)

The ARM core normally has the lowest priority under the fixed priority mode; however, this chip provides a mechanism to raise the priority to the highest. If the IPEN bit (bit-1 of Arbitration Control Register) is set to 1, the IPACT bit (bit-2 of Arbitration Control Register) will be automatically set to 1 while an unmasked external interrupt occurs. Under this circumstance, the ARM core gains the highest AHB priority.

The programmer can recover the original priority order by directly writing "0" to clear the **IPACT** bit. For example, this can be done that at the end of an interrupt service routine. Note that **IPACT** only can be automatically set to 1 by an external interrupt when **IPEN** = 1. It will not take effect if a programmer to directly write 1 to **IPACT** to raise ARM core's AHB priority.

7.2.4.2 Rotate Priority Mode

Rotate priority mode is selected if PRTMODx = 1. The AHB arbiter uses a round robin arbitration scheme by which every master module can gain the bus ownership in turn.

For AHB2 DMA Master Bus, the Audio and LCD Display, have the higher priority in the rotate type.

Power-On Setting

After power on reset, Power-On setting registers are latched from EBI Address pins (MA [21:13]) to configure this chip.

Publication Release Date: Jun. 18, 2010

Power-On Setting	Pin
Booting Device Select	MA [21:20]
Internal System Clock Select	MA17
GPIO Pin Configuration Select	MA [15:14]
USB PHY0 Mode Select	HDS

MA [21:20] : Booting Device Select

MA[21	1:20]	Booting Device	
Pull-down Pull-down		SPI Flash ROM	
Pull-down Pull-up		NAND-type Flash ROM	
Pull-up	Pull-down	USB ISP	
Pull-up	Pull-up	NOR-type Flash ROM	

MA19: Pull-up is necessary

MA18 : Can either Pull-up or Pull-down

MA17: Internal System Clock Select

If pin MA17 is pull-down, the external clock from EXTAL15M pin is served as internal system clock. If pin MA17 is pull-up, the PLL output clock is used as internal system clock.

MA16 : Pull-down is necessary

MA [15:14] : GPIO Pin Configuration Select

MA[15:14]	5:14] State GPIO Pin Function	
NA	Pull-down	GPIOC/D/E Group Select
MA14	Pull-up	NAND Flash/UART Group Select
NAA45	Pull-down	GPIOF Group Select
MA15	Pull-up	RMII Group Select

MA13: Pull-up is necessary

HDS: USB PHY0 Mode Select

HDS	USB PHY0 Mode		
Pull-down	USB20 Host		
Pull-up	USB20 Device		

System Booting

NUC950ADN supports four kinds of system booting devices, which including

- (1) SPI Flash ROM
- (2) NAND-type Flash ROM
- (3) USB ISP
- (4) NOR-type Flash ROM

Booting Device Select

MA[21	1:20]	Booting Device	
Pull-down Pull-down		SPI Flash ROM	
Pull-down Pull-up		NAND-type Flash ROM	
Pull-up	Pull-down	USB ISP	
Pull-up	Pull-up	NOR-type Flash ROM	

7.2.7 System Global Control Registers Map

Register	Address	R/W	Description	Reset Value			
GCR_BA = 0xB000_0000							
PDID	0xB000_0000	R	Product Identifier Register	0xxx90_09x0			
PWRON	0xB000_0004	R/W	Power-On Setting Register	N/A			
ARBCON	0xB000_0008	R/W	Arbitration Control Register	0x0000_0000			
MFSEL	0xB000_000C	R/W	Multiple Function Pin Select Register	0x0800_0000			
EBIDPE	0xB000_0010	R/W	EBI Data Pin Pull-up/down Enable Register	0xFFFF_FFFF			
LCDDPE	0xB000_0014	R/W	LCD Data Pin Pull-up/down Enable Register	0x0003_FFFF			
GPIOCPE	0xB000_0018	R/W	GPIOC Pin Pull-up/down Enable Register	0x0000_7FFF			
GPIODPE	0xB000_001C	R/W	GPIOD Pin Pull-up/down Enable Register	0x0000_07FF			
GPIOEPE	0xB000_0020	R/W	GPIOE Pin Pull-up/down Enable Register	0x0000_3FFF			
GPIOFPE	0xB000_0024	R/W	GPIOF Pin Pull-up/down Enable Register	0x0000_03FF			
GPIOGPE	0xB000_0028	R/W	GPIOG Pin Pull-up/down Enable Register	0x0001_FFFF			
GPIOHPE	0xB000_002C	R/W	GPIOH Pin Pull-up/down Enable Register	0x0000_00FF			
GTMP1	0xB000_0034	R/W	General Temporary Register 1	N/A			
GTMP2	0xB000_0038	R/W	General Temporary Register 2	N/A			

Publication Release Date: Jun. 18, 2010

GTMP3 0xB000_003C F

Product Identifier Register (PDID)

This register is for only read and enables software to recognize certain characteristics of the chip ID and the version number.

Register	Address	R/W	Description	Reset Value
PDID	0xB000_0000	R	Product Identifier Register	0xxx90_09x0

31	30	29	28	27	26	25	24		
	VERSION								
23	23 22 21 20 19 18 17 16								
	CHPID								
15	15 14 13 12 11 10 9 8								
CHPID									
7	6	5	4	3	2	1	0		
CHPID									

Bits	Descriptions	
[31:24]	VERSION	Version of chip
[23:0]	CHIPID	Chip identifier

Power-On Setting Register (PWRON)

This register latches the chip power-on setting from EBI Address Bus during chip reset.

Register	Address	R/W	Description	Reset Value
PWRON	0xB000_0004	R/W	Power-On Setting Register	Undefined

31	30	29	28	27	26	25	24			
	RESERVED									
23	22	21	20	19	18	17	16			
			RESE	RVED						
15	14	13	12	11	10	9	8			
	R	ESERVED			USBDEN	USBHD	RESERVED			
7	6	5	4	3	2	1	0			
Booting De	Booting Device Select RESERVED GPIOSEL					PLL				

Bits	Descriptions	Descriptions							
		Internal System Clock Select (Read/Write)							
[0]	PLL	Power-O	n value latched	from M	IA17				
[0]		0= the e	external clock fr	om EXT	AL15M pin is served as inte	rnal system clock.			
		1= the F	PLL output clock	is used	l as internal system clock.				
		GPIO P	in Configuration	on Sele	ect(Read Only)				
						_			
			Latched pin	H/L	GPIO Pin Function				
		[[0	GPIOC/D/E				
[2:1]	GPIOSEL	[1]	MA14	1	NF/UART				
		F0.1	B4045	0	GPIOF				
		[2]	MA15	1	RMII				
		NF:	NAND Type F	lash In	terface				
[[.2]	DECEDI/ED	Read Only							
[5:3]	RESERVED	These th	ree bits are rea	id only					

Publication Release Date: Jun. 18, 2010

		Booting Devi	ice Select (R	ead Only)		
		these two bits are power-on reset from MA[21:20]				
[7.6]	Booting	Booting Device Select [7:6]		Booting Device		
[7:6] Device Select	0	0	SPI FI	ash ROM		
	0	1	NAND-typ	e Flash ROM		
		1	0	US	B ISP	
		1	1	NOR-type	e Flash ROM	
		USB PHY0 Mode Select (Read/Write)				
		this bit is pow	er-on reset fro	om HDS		_
[9]	USBHD	USBHD	USB PH	YO Mode	HDS Pin	
		0	USB20 D	evice	External Pull-Up	
		1	USB20 H	lost	External Pull-Down	
		USB PHY0 Er	nable Contro	I for USB Device	Mode (Read/Write)	
		This bit is only	active when	the USBHD bit be	zero (Device Mode)	
[10]	USBDEN	USBDEN	USB PH	Y0 Enable		
,		0	Set Devi	ce PHY at SE0 (No	t active to external host)	
		1		ce PHY controlled rice Controller	by the UTMI interface of t	he

Arbitration Control Register (ARBCON)

Register	Address	R/W	Description	Reset Value
ARBCON	0xB000_0008	R/W	Arbitration Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
	RESERVED									
23	22	21	20	19	18	17	16			
			RESE	RVED						
15	14	13	12	11	10	9	8			
			RESE	RVED						
7	7 6 5 4 3 2 1 0									
F	RESERVED		DGMASK	IPACT	IPEN	PRTMOD1	PRTMOD0			

Bits	Descriptions	
[4]	DGMASK	Default Grant Master Mask Control 0 = AHB-Bridge always be the default grant master (default)
		1 = No default grant master on AHB-2 Bus
		Interrupt Priority Active
[3]	IPACT	When IPEN="1", this bit is set when the ARM core has an unmasked interrupt request.
		This bit is available only when the PRTMOD1 =0 and PRTMOD0 =0.
		Interrupt Priority Enable Bit
[2]	IPEN	0 = the ARM core has the lowest priority.
[4]	I F LIV	1 = enable to raise the ARM core priority to second
		This bit is available only when the PRTMOD =0 and PRTMODO =0.
		Priority Mode Select for AHB2 (AHB Master Bus)
[1]	PRTMOD1	0 = Fixed Priority Mode (default)
		1 = Rotate Priority Mode
		Priority Mode Select for AHB1 (CPU AHB-Lite Bus)
[0]	PRTMODO	0 = Fixed Priority Mode (default)
		1 = Rotate Priority Mode

Publication Release Date: Jun. 18, 2010

Multiple Function Pin Select Register (MFSEL)

Register	Address	R/W	Description	Reset Value
MFSEL	0xB000_000C	R/W	Multiple Function Pin Select Register	0x0800_0000

31	30	29	28	27	26	25	24	
RESE	RVED	USBF	PHY0	YO WDEN R		RESERVED	GPSELH	
23	22	21	20	19	18	17	16	
			GPS	ELG				
15	14	13	12	11	10	9	8	
GPS	ELG			GPS	ELE			
7	6	5	5 4 3 2 1 0					
	GP	SELD		GPS	ELC	GPSELF	G-Option	

Bits	Descriptions						
[29:28]	USBPHY0		USB PHY0 Select Control Register 00 : Normal USB operation mode (Default)				
		GPIOI Pin Fu	nction Select Co	ontrol Register			
		PIN	GPSELI[27]	GPIO Pin Function			
		CDIOL[1/]	0	GPIOI[16]			
[27:26]	WDEN	GPIOI[16]	1	nWDOG			
			d Pin Description fo ult value is 1 for nW	r more detail /DOG (Watch-Dog Timer Output)			
		GPIOH Pin Fu	ınction Select C	ontrol Register			
		PIN	GPSELH[24]	GPIO Pin Function			
[24]	GPSELH	CDIOU[2.0]	0	GPIOH[2:0]			
		GPIOH[2:0]	1	nIRQ[2:0]			
		GPSELH [24] default value is 0 for GPIOH group.					

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	criptions						
		GPIOG Pin Fu	nction Select Co	ntrol Register				
		PIN	GPSELG[23:22]	GPIO Pin Function				
			00	GPIOG[16:12]				
			01	PWM Interface				
		GPIOG[16:12]	10	AC97 Interface				
			11	12S Interface				
		PIN	GPSELG[17:16]	GPIO Pin Function				
			00	GPIOG[3:2]				
			01	I2C Line1				
[23:14]	GPSELG	GPIOG[3:2]	10	USI Interface				
			11	Reserved				
		PIN	GPSELG[15:14]	GPIO Pin Function				
			00	GPIOG[1:0]				
		GPIOG[1:0]	01	I2C Line0				
		GPIOG[1:0]	10	USI Interface				
			11	Reserved				
		See GPIO Shared Pin Description for more detail						
		GPSELG [21-18] are Reserved.						
		(G-Option bit sh	ould be set to 0)					
		GPIOE Pin Function Select Control Register						
		See GPIO Shared Pin Description for more detail						
		GPSELE [13:8] default value is 0 for GPIOE group.						
		GPSELE[13] should be set to 0						
		GPSELE [12:11] s	should be set to 0.					
				GPIO Pin Function				
[13:8]	GPSELE	PIN	GPSELE[10]					
[13.0]	OF SELE	GPIOE[7:4	0	GPIOE[7:6]				
		GI TOLET.	1	UART2(IrDA)				
		PIN	GPSELE[9]					
		GPIOE[3:2	21 0	GPIOE[3:2]				
			1	UART1				
		PIN	GPSELE[8]					
		GPIOE[1:0	0	GPIOE[1:0]				
			1	UARTO				

Publication Release Date: Jun. 18, 2010 Revision: A4

Bits	Descriptions					
		GPIOD Pin Function Select Control Register				
		PIN	GPSELD[7:4]	GPIO Pin Function		
			0000	GPIOD[10:0]		
[7:4]	GPSELD	GPIOD[10:5]	1010	SD 0 Interface		
[/.4]	GFSLLD	GPIOD[10:5]	1111	Memory Stick 0		
			the others	Reserved		
		See GPIO Shared I	Pin Description for	more detail		
		GPSELD[7:4] defa	ult value is depend	on power-on setting		
		GPIOC Pin Fun	ction Select Co	ntrol Register		
		PIN	GPSELC[3:2]	GPIO Pin Function		
		GPIOC[14:0]	00	GPIOC[14:0]		
[3:2]	GPSELC		01	NAND Flash		
[3.2]	OF SELO		10	KPI Interface		
			11	Reserved		
		See GPIO Shared I	Pin Description for	more detail		
		GPSELC[3:2] defai	ult value is depend	on power-on setting		
		GPIOF Pin Fun	ction Select Co	ntrol Register		
		PIN	GPSELF[1]	GPIO Pin Function		
[1]	GPSELF	GPIOF[9:0]	0	GPIOF[9:0]		
[+]	O. SELI	GP10F[9:0]	1	RMII Interface		
		See GPIO Shared Pin Description for more detail				
		GPSELF[1] default	value is depend or	power-on setting		
[0]	G-Option	This bit should be set to 0;				

EBI Data Pin Pull-up/down Enable Register (EBIDPE)

LCD Data Pin Pull-up/down Enable Register (LCDDPE)

GPIOC~GPIOH Pin Pull-up/down Enable Register (GPIOCPE~GPIOHPE)

These registers are used to control the IO pins to be internal pull-up or down, which can avoid the input pins floating if there is no external resistors.

Register	Address	R/W	Description	Reset Value
EBIDPE	0xB000_0010	R/W	EBI Data Pin Pull-down Enable Register	0xFFFF_FFFF
LCDDPE	0xB000_0014	R/W	LCD Data Pin Pull-up Enable Register	0x0003_FFFF
GPIOCPE	0xB000_0018	R/W	GPIOC Pin Pull-up Enable Register	0x0000_7FFF
GPIODPE	0xB000_001C	R/W	GPIOD Pin Pull-up Enable Register	0x0000_07FF
GPIOEPE	0xB000_0020	R/W	GPIOE Pin Pull-up/down Enable Register	0x0000_3FFF
GPIOFPE	0xB000_0024	R/W	GPIOF Pin Pull-up/down Enable Register	0x0000_03FF
GPIOGPE	0xB000_0028	R/W	GPIOG Pin Pull-up/down Enable Register	0x0001_FFFF
GPIOHPE	0xB000_002C	R/W	GPIOH Pin Pull-up Enable Register	0x0000_00FF

31	30	29	28	27	26	25	24	
	PPE							
23	22	21	20	19	18	17	16	
			PF	PE				
15	14	13	12	11	10	9	8	
	PPE							
7	6	5	4	3	2	1	0	
PPE								

Bits	Descriptions			
		Pin Pull-down Enable Register		
[31:0]	PPE	1 = Disable the Pull-high/down for each relative pin (default)		
		0 = Enable the Pull-high/down for each relative pin		

Register	Descriptions
EBIDPE	EBI Data Pin Pull-down Enable Register
EBIDPE	PPE[31:0] Controls the Pull-down of the EBI Data Bus[31:0]
	LCD Data Pin Pull-up Enable Register
LCDDPE	PPE[31:18] is reserved in this register
	PPE[17:0] Controls the Pull-up of the VD[17:0] for LCD Interface
	GPIOC Pin Pull-up Enable Register
GPIOCPE	PPE[31:15] is reserved in this register
	PPE[1:0] Controls the Pull-up of the GPIOC[14:0]
	GPIOD Pin Pull-up Enable Register
GPIODPE	PPE[31:9] is reserved in this register
GPIODPE	PPE[8:0] Controls the Pull-up of the GPIOD[8:0]
	No action : GPIOD[7]
	GPIOE Pin Pull-up/down Enable Register
	PPE[31:14] is reserved in this register
GPIOEPE	PPE[13:0] Controls the Pull-up/down of the GPIOE[13:0]
GFIOLFL	Pull-down : GPIOE[6:0]
	Pull-up : GPIOE[13]
	No action : GPIOE[12:7] and GPIOE[5:4]
	GPI OF Pin Pull-up/down Enable Register
	PPE[31:10] is reserved in this register
GPIOFPE	PPE[9:0] Controls the Pull-up/down of the GPIOF[9:0]
	Pull-down: GPIOF[9:8], GPIOF[5:4], GPIOF[1]
	Pull-up : GPIOF[7:6], GPIOF[3:2]
	No action : GPIOF[0]

Publication Release Date: Jun. 18, 2010

Register	Descriptions					
GPIOGPE	GPIOG Pin Pull-up/down Enable Register PPE[31:17] is reserved in this register PPE[16:0] Controls the Pull-up of the GPIOG[16:0] Pull-up : GPIOG[16:12] No action : GPIOG[5:4], GPIOG[11:6] and GPIOG[3:0]					
GPIOHPE	GPIOH Pin Pull-up Enable Register PPE[31:3] is reserved in this register PPE[2:0] Controls the Pull-up of the GPIOH[2:0]					

1 = Disable the Pull-high/down for each relative pin

0 = Enable the Pull-high/down for each relative pin

General Temporary Register 1 ~ 3 (GTMP1 ~GTMP3)

Register	Address	R/W	Description	Reset Value
GTMP1	0xB000_0034	R/W	General Temporary Register 1	Undefined
GTMP2	0xB000_0038	R/W	General Temporary Register 2	Undefined
GTMP3	0xB000_003C	R/W	General Temporary Register 3	Undefined

31	30	29	28	27	26	25	24	
	DATA							
23	22	21	20	19	18	17	16	
			DA	ГА				
15	14	13	12	11	10	9	8	
	DATA							
7	6	5	4	3	2	1	0	
DATA								

Bits	Descriptions	
[31:0]	DATA	General Temporary Data

7.3 Clock Controller

The clock controller generates all clocks for LCD, Audio, CPU, AMBA and all the engine modules. In this chip includes two PLL modules. The clock source for each module is come from the PLL, or from the external crystal input directly. For each clock there is bit on the CLKEN register to control the clock ON or OFF individually, and the divider setting is on the CLKDIV register. The register can also be used to control the clock enable or disable for power control.

7.3.1 Power management

This chip provides three power management scenarios to reduce power consumption. The peripheral clocks can be enabled / disabled individually by controlling the corresponding bit in CLKSEL control register. Software can turn-off the unused modules' clock for power saving. It also provides **IDLE** and **Power-down** modes to reduce the power consumption.

Publication Release Date: Jun. 18, 2010

IDLE MODE

If the IDLE bit in Power Management Control Register (PMCON) is set, the ARM CORE clock source will be halted after 256 cycles, and then the ARM core will stop. The AHB or APB clocks are still active except the clock to cache controller and ARM core. This ARM core will exit from this mode when a nIRQ or nFIQ signals from any peripheral, such as Keypad and Timer overflow interrupts. The memory controller can also be forced to enter idle state if both the MIDLE and IDLE bits are set.

Case2. IDLE=1, PD=0, MIDLE=1

Power-Down Mode

The mode provides the minimum power consumption. When the system is not working or waiting an external event, software can write PD bit to turn off all the clocks includes system crystal oscillator and PLL to let ARM core to enter sleep mode after 256 clock cycles. In this state, all peripherals are also in sleep mode since the clock source is stopped. This system will exit from this mode when external interrupts (nIRQ signals) are detected; this chip provides external interrupts, USB device and Keypad to wakeup the clock.

Case3. IDLE=0, PD=1, MIDLE=0

7.3.2 Clock Control Registers Map

Register	Address	R/W	Description	Reset Value			
CLK_BA = 0xB00	CLK_BA = 0xB000_0200						
CLKEN	0xB000_0200	R/W	Clock Enable Register	0x0408_0834			
CLKSEL	0xB000_0204	R/W	Clock Select Register	0x0000_0FFX			
CLKDIV	0xB000_0208	R/W	Clock Divider Control Register	0x0400_0000			
PLLCONO	0xB000_020C	R/W	PLL Control Register 0	0x0000_2B63			
PLLCON1	0xB000_0210	R/W	PLL Control Register 1	0x0001_4F64			
PMCON	0xB000_0214	R/W	Power Management Control Register	0x0000_0000			

Publication Release Date: Jun. 18, 2010

IRQWAKECON	0xB000_0218	R/W	IRQ Wakeup Control Register	0x0000_0000
IRQWAKEFLAG	0xB000_021C	R/W	IRQ Wakeup Flag Register	0x0000_0000
IPSRST	0xB000_0220	R/W	IP Software Reset Register	0x0000_0000
CLKEN1	0xB000_0224	R/W	Clock Enable Register	0x0000_0000
CLKDIV1	0xB000_0228	R/W	Clock Divider Control 1 Register	0x0000_0000

Clock Enable Register (CLKEN)

Register	Address	R/W	Description	Reset Value
CLKEN	0xB000_0200	R/W	Clock Enable Register	0x0408_0834

31	30	29	28	27	26	25	24
12C1	12C0	USI	RESERVED	GDMA	WDT	KPI	RESERVED
23	22	21	20	19	18	17	16
TIMER4	TIMER3	TIMER2	TIMER1	TIMERO	PWM	RESERVED	
15	14	13	12	11	10	9	8
RESI	ERVED	UART2	UART1	UARTO	G2D	USBH	USBD
7	6	5	4	3	2	1	0
EMC	RESERVED	DMAC	FMI	RESE	RVED	Audio	LCD

Bits	Descriptions			
[31]	I 2C Interface 1 Clock Enable Bit 0 = Disable I2C-1 clock 1 = Enable I2C-1 clock			
[30]	1200	I 2C Interface O Clock Enable Bit 0 = Disable I2C-0 clock 1 = Enable I2C-0 clock		
[29]	USI	USI Clock Enable Bit 0 = Disable USI clock 1 = Enable USI clock		
[28]	Reserved	Reserved, write 0 is recommended.		
[27]	GDMA	GDMA Clock Enable Bit 0 = Disable GDMA clock 1 = Enable GDMA clock		
[26]	WDT	WDT Clock Enable Bit 0 = Disable WDT counting clock 1 = Enable WDT counting clock		

Publication Release Date: Jun. 18, 2010 Revision: A4

Bits	Descriptions					
[25]	КРІ	Keypad Cock Enable Bit 0 = Disable keypad clock 1 = Enable keypad clock				
[24]	Reserved	Reserved, write 0 is recommended.				
[23]	TIMER4	Timer4 Clock Enable Bit 0 = Disable Timer clock 1 = Enable Timer clock				
[22]	TIMER3	Timer3 Clock Enable Bit 0 = Disable Timer clock 1 = Enable Timer clock				
[21]	TIMER2	Timer2 Clock Enable Bit 0 = Disable Timer clock 1 = Enable Timer clock				
[20]	TIMER1	Timer1 Clock Enable Bit 0 = Disable Timer clock 1 = Enable Timer clock				
[19]	TIMERO	Timer0 Clock Enable Bit 0 = Disable Timer clock 1 = Enable Timer clock				
[18]	PWM	PWM Clock Enable Bit 0 = Disable PWM clock 1 = Enable PWM clock				
[17:14]	Reserved	Reserved, write 4'b0000 is recommended.				
[13]	UART2	UART2 Clock Enable Bit 0 = Disable UART2 clock 1 = Enable UART2 clock				
[12]	UART1	UART1 Clock Enable Bit 0 = Disable UART1 clock 1 = Enable UART1 clock				

Bits	Descriptions	
[11]	UARTO	UARTO Clock Enable Bit 0 = Disable UARTO clock 1 = Enable UARTO clock
[10]	G2D	2D Graphic Controller Clock Enable Bit 0 = Disable 2D Graphic Controller clock 1 = Enable 2D Graphic Controller clock
[9]	USBH	USB Clock Enable Bit 0 = Disable USB Host Controller clock 1 = Enable USB Host Controller clock
[8]	USBD	USB Device Clock Enable Bit 0 = Disable USB Device Controller clock 1 = Enable USB Device Controller clock
[7]	ЕМС	EMC Clock Enable Bit 0 = Disable EMC Controller clock 1 = Enable EMC Controller clock
[6]	Reserved	Reserved, write 0 is recommended.
[5]	DMAC	DMAC Clock Enable Bit 0 = Disable DMAC Controller clock 1 = Enable DMAC Controller clock
[4]	FMI	FMI Clock Enable Bit 0 = Disable FMI Controller clock 1 = Enable FMI Controller clock
[3:2]	Reserved	Reserved, write 2'b00 is recommended.
[1]	Audio	Audio Controller Clock Enable Bit 0 = Disable Audio Controller clock 1 = Enable Audio Controller clock
[0]	LCD	LCD Clock Enable Bit 0 = Disable LCD Controller clock 1 = Enable LCD Controller clock

58

Clock Select Register (CLKSEL)

Register	Address	R/W	Description	Reset Value
CLKSEL	0xB000_0204	R/W	Clock Select Register	0x0000_0FFX

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
			RESERVED)			MSDSEL		
15	14	13	12	11	10	9	8		
	MSDSEL			RESERVED UAR			1SEL		
7	6	5	4	3	2	1	0		
VC	VCKSEL ACKSEL		RESE	RVED	CPUC	KSEL			

Bits	Descriptions							
		MS/SD En	MS/SD Engine Clock Source Select Bit [16:15]					
		MSDSEL	[16:15]	Clock Source	1			
		0	0	PLL0 Clock	Ì			
[16:12]	MSDSEL	0	1	PLL1 Clock				
		1	0	EXTAL15M pin				
		1	1	EXTAL15M pin (Default)				
		[14:12] Selected PL	L0 source (divided from 1 to 8.				
		UART1 CI	ock Source	e Select Bit				
		UART	1SEL	Clock Source				
[9:8]	UART1SEL	0	0	PLL0 Clock				
		0	1	PLL1 Clock				
		1	0	EXTAL15M pin				
		1	1	EXTAL15M pin (Default)				

Descriptions						
	LCD Clock Source S	LCD Clock Source Select Bit				
	VCKSEL	Clock Source				
VCKSEL	0 0	PLL0 Clock				
	0 1	PLL1 Clock				
	1 0	VICLK pin				
	1 1	EXTAL15M pin (Default)				
	ACKSEL	Clock Source				
ACKSEL	0 0	PLL0 Clock				
	0 1	PLL1 Clock				
	1 0	I2S_BITCLK pin				
	1 1	EXTAL15M pin (Default)				
			-			
CPUCKSEL			•			
	0 1					
	1 0					
	1 1	EXTAL15M pin	•			
	VCKSEL	VCKSEL	VCKSEL			

Publication Release Date: Jun. 18, 2010

Clock Divider Control Register (CLKDIV)

Register	Address	R/W	Description	Reset Value
CLKDIV	0xB000_0208	R/W	Clock Divider Control Register	0x0400_0000

31	30	29	28	27	26	25	24		
RESERVED	G2DDIV	RESE	RVED	APBCKDIV		AHBCKDIV			
23	22	21	20	19	18	17	16		
	RESERVED				UART1DIV				
15	14	13	12	11	10	9	8		
	VCKDIV				ACKDIV				
7	6	5	4	3	2	1	0		
RESERVED					CPUC	KDIV			

Bits	Descriptions						
[30]	G2DDIV	0: divider 2	G2D Clock Divider Control Register 0: divider 2 1: divider 1				
[29:28]	RESERVED						
		AMBA APE	AMBA APB Clock Divider Control Register				
		APBCKDIV		Clock Frequency			
[27:26]	APBCKDIV	0 0		Reserved			
		0	1	AHBCLK/2			
		1	0	AHBCLK/4			
		1	1	AHBCLK/8			
		AMBA AHE	3 Clock (A	AHBCLK) Divider Control Register	_		
		AHBC	KDIV	Clock Frequency			
[25:24]	AHBCKDIV	0	0	CPUCLK/1			
		0	1	CPUCLK/2			
		1	0	CPUCLK/4			
		1	1	CPUCLK/8			

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		UART1 Clock Source Divider Control Register
[19:16]	UART1DIV	UART1CK = UART1 clock/(UART1DIV +1)
		Where (1) UART1DIV is 0~15
		(2) UART1 clock is the clock source output by UART1SEL control reg.
		LCD Clock Source Divider Control Register
[15:12]	VCKDIV	LCD_CLK = VCK clock/(VCKDIV +1)
		Where (1) VCKDIV is 0~15
		(2) VCK clock is the clock source output by VCKSEL control register
		Audio Clock Source Divider Control Register
[11:8]	ACKDIV	Audio_CLK = ACK clock/(ACKDIV +1)
		Where (1) ACKDIV is 0~15
		(2) ACK clock is the clock source output by ACKSEL control register
		CPU Clock Source Divider Control Register
[3:0]	CPUCKDIV	CPUCLK = CCK clock/(CPUCKDIV +1)
		Where (1) CPUCKDIV is 0~15
		(2) CCK clock is the clock source output by CPUCKSEL control register

PLL Control Register 0 (PLLCON0)

PLL Control Register 1 (PLLCON1)

Register	Address	R/W	Description	Reset Value
PLLCON0	0xB000_020C	R/W	PLL Control Register 0	0x0000_2B63
PLLCON1	0xB000_0210	R/W	PLL Control Register 1	0x0001_4F64

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
			RESERVED				PWDEN		
15	14	13	12	11	10	9	8		
	FBDV								
7	6	5	4	3	2	1	0		
FBDV	DV OTDV			INDV					

Bits	Descriptions						
		Power Down Mode Enable					
[16]	PWDEN	0 = PLL is in nor	mal mode (defa	ault)			
		1 = PLL is in pov	ver down mode				
[15:7]	FBDV	PLL VCO Outpu	ıt Clock Feedb	ack Divider			
[13.7]	TBBV	Feedback Divide	Feedback Divider divides the output clock from VCO of PLL.				
		PLL Output Clock Divider					
		OTDV	Divided by				
[6.5]	OTDV	0 0	1				
[6:5]	OTDV	0 1	2				
		1 0	2				
		1 1	4				
F4 01	111517	PLL Input Clock Divider					
[4:0] IN	INDV	Input Divider divides the input reference clock into the PLL.					

Publication Release Date: Jun. 18, 2010 Revision: A4

The formula of output clock of PLL is:

Fout = Fin
$$*\frac{NF}{NR}*\frac{1}{NO}$$

FOUT: Output clock of Output Divider

FIN: External clock into the Input Divider

NR : Input divider value (NR = INDV + 2)

NF : Feedback divider value (NF = FBDV + 2)

NO : Output divider value (NO = OTDV)

Example Case:

The input clock frequency of EXTAL15M pin is 15MHz

PLL Output Frequency	200MHz	166MHz	133MHz	100MHz
PLLCON Reg.	0x0000_4F24	0x0000_4124	0x0000_22A2	0x0000_4F64

PLL Output Frequency	66MHz	169.34MHz	122.88MHz	
		(44.1K*3840)	(48K*2560)	
PLLCON Reg.	0x0000_2B63	0x0000_4E25	0x0000_92E7	

Power Management Control Register (PMCON)

Register	Address	R/W	Description	Reset Value
PMCON	0xB000_0214	R/W	Power Management Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	RESERVED								
15	14	13	12	11	10	9	8		
	RESERVED								
7	6	5	4	3	2	1	0		
RESERVED			RESET	MIDLE	PD	IDLE			

Bits	Descriptions	
[3]	RESET	Software Reset This is a software reset control bit. Set logic 1 to generate an internal reset pulse. This bit is auto-clear to logic 0 at the end of the reset pulse.
[2]	MIDLE	Memory Controller IDLE enable Setting this bit HIGH to enable memory controller enter IDLE mode, the clock source of memory controller will be halted while ARM CORE enter IDLE mode. 1 = Memory controller will enter IDLE mode when IDLE bit is set. 0 = Memory controller still active when IDLE bit is set.
[1]	PD	Power Down Enable Setting this bit HIGH, this chip enters power saving mode. The clock source 15M crystal oscillator and PLL both will stop to generate clock. User can use nIRQ [2:0], USB device, Keypad and external nRESET to wakeup chip. 1 = Power down mode enable 0 = Normal mode

Publication Release Date: Jun. 18, 2010

Descriptions	
	CPU IDLE mode Enable
IDLE	Setting this bit HIGH, ARM CPU Core enters power saving mode. The peripherals still working if the clock enable bit in CLKSEL is set. Any nIRQ or nFIQ to ARM core will let ARM core to exit IDLE state.
	1 = CPU IDLE mode enable 0 = Normal mode
	·

IRQ Wakeup Control Register (IRQWAKECON)

Register	Address	R/W	Description	Reset Value
IRQWAKECON	0xB000_0218	R/W	IRQ Wakeup Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	RESERVED								
15	14	13	12	11	10	9	8		
RESERVED					IRQWAKEUPPOLO				
7 6 5 4 3					2	1	0		
RESERVED			IR	QWAKEUPE	VO				

Bits	Descriptions			
[10:8]	IRQWAKEUPPOLO	Wakeup Polarity for nIRQ[2:0] 1 = nIRQx is high level wakeup 0 = nIRQx is low level wakeup		
[2:0]	IRQWAKEUPENO	Wakeup Enable for nIRQ[2:0] 1 = nIRQx wakeup enable 0 = nIRQx wakeup disable		

The reserved bit has to keep on logical 0.

Publication Release Date: Jun. 18, 2010

IRQ Wakeup Flag Register (IRQWAKEFLAG)

Register	Address	R/W	Description	Reset Value
IRQWAKEFLAG	0xB000_021C	R/W	IRQ Wakeup Flag Register	0x0000_0000

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	RESERVED								
15	14	13	12	11	10	9	8		
	RESERVED								
7	6	5	4	3	2	1	0		
RESERVED			11	ROWAKEFLA	G				

Bits	Descriptions		
		Wakeup Flag for nIRQ[2:0]	
[2:0]	IRQWAKEFLAG	After power down wakeup, software should check these flags to identify which IRQ is used to wakeup the system. And clear the flags in IRQ interrupt service routine.	
		1 = CPU is wakeup by nIRQx	
		0 = not wakeup	

Publication Release Date: Jun. 18, 2010

IP Software Reset Register (IPSRST)

Register	Address	R/W	Description	Reset Value
IPSRST	0xB000_0220	W	IP Software Reset Register	0x0000_0000

31	30	29	28	27	26	25	24
RESERVED	I2C	USI	RESERVED		KPI	RESERVED	
23	22	21	20	19	18	17	16
RESERVED				TIMER	PWM	RESERVED	
15	14	13	12	11	10	9	8
RESERVED				UART	G2D	USBH	USBD
7	6	5	4	3	2	1	0
EMC	RESERVED	DMAC	FMI	GDMA	RESERVED	Audio	LCD

Bits	Descriptions			
[30]	I2C Interface Software Reset Control Bit 0 = write 0 is no action for both I2C0 and I2C1 1 = write 1 , a reset pulse is generated to reset both I2C0 and I2C1, and This bit will be auto clear to zero.			
[29]	usı	USI Software Reset Control Bit 0 = write 0 is no action for USI 1 = write 1, a reset pulse is generated to reset USI, and This bit will be auto clear to zero.		
[25]	КРІ	Keypad Software Reset Control Bit 0 = write 0 is no action for Keypad Controller 1 = write 1 , a reset pulse is generated to reset Keypad Controller, and This bit will be auto clear to zero.		
[19]	TIMER Timer Software Reset Control Bit 0 = write 0 is no action for all of TIMERs and WDT 1 = write 1 , a reset pulse is generated to reset all of TIMERs and WDT, and This bit will be auto clear to zero.			

Publication Release Date: Jun. 18, 2010

Bits	Descriptions			
[18]	PWM	PWM Software Reset Control Bit 0 = write 0 is no action for PWM Controller 1 = write 1 , a reset pulse is generated to reset PWM Controller, and This bit will be auto clear to zero.		
[11]	UART	UART Software Reset Control Bit 0 = write 0 is no action for all of UARTs 1 = write 1, a reset pulse is generated to reset all of UARTs, and This bit will be auto clear to zero.		
[10]	G2D	2D Graphic Controller Software Reset Control Bit 0 = write 0 is no action for 2D graphic Controller 1 = write 1, a reset pulse is generated to reset 2D Graphic Controller, and This bit will be auto clear to zero.		
[9]	USBH	USB Software Reset Control Bit 0 = write 0 is no action for USB Host Controller 1 = write 1 , a reset pulse is generated to reset USB Host Controller, and This bit will be auto clear to zero.		
[8]	USBD	USB Device Software Reset Control Bit 0 = write 0 is no action for USB Device Controller 1 = write 1 , a reset pulse is generated to reset USB Device Controller, and This bit will be auto clear to zero.		
[7]	ЕМС	EMC Software Reset Control Bit 0 = write 0 is no action for EMC Controller 1 = write 1 , a reset pulse is generated to reset EMC Controller, and This bit will be auto clear to zero.		
[5]	DMAC	DMAC Software Reset Control Bit 0 = write 0 is no action for DMA Controller 1 = write 1 , a reset pulse is generated to reset DMA Controller, and This bit will be auto clear to zero.		

Bits	Descriptions			
[4]	FMI	FMI Software Reset Control Bit 0 = write 0 is no action for FMI Controller 1 = write 1, a reset pulse is generated to reset FMI Controller, and This bit will be auto clear to zero.		
[3]	GDMA	GDMA Software Reset Control Bit 0 = write 0 is no action for GDMA Controller 1 = write 1, a reset pulse is generated to reset GDMA Controller, and This bit will be auto clear to zero.		
[1]	Audio	Audio Controller Software Reset Control Bit 0 = write 0 is no action for Audio Controller 1 = write 1, a reset pulse is generated to reset Audio Controller, and This bit will be auto clear to zero.		
[0]	LCD	LCD Controller Software Reset Control Bit 0 = write 0 is no action for LCD Controller 1 = write 1 , a reset pulse is generated to reset LCD Controller, and This bit will be auto clear to zero.		

Clock Enable 1 Register (CLKEN1)

Register	Address R/W		Description	Reset Value		
CLKEN1	0xB000_0224	R/W	Clock Enable Register	0x0000_0000		

31	30	29	28	27	26	25	24					
RESERVED												
23	22	21	20	19	18	17	16					
	RESERVED											
15	9	8										
			RESE	RVED								
7	6	5	3	2	1	0						
	F	RESERVED	RMH	SD	MS							

Bits	Descriptions	
		RMII Clock Enable Bit
[2]	RMII	0 = Disable RMII clock
		1 = Enable RMII clock
		SD Clock Enable Bit
[1]	SD	0 = Disable SD clock
		1 = Enable SD clock
		MS Clock Enable Bit
[0]	MS	0 = Disable MS clock
		1 = Enable MS clock

Clock Divider Control 1 Register (CLKDIV1)

Register	Address R/W		Description	Reset Value		
CLKDIV1	0xB000_0228	R/W	Clock Divider Control 1 Register	0x0000_0000		

31	30	29	28	27	26	25	24					
	RESERVED											
23	23 22 21 20 19 18 17 16											
	RESERVED											
15	15 14 13 12 11 10 9 8											
			SD_	DIV								
7	7 6 5 4 3 2 1 0											
	MS_DIV											

Bits	Descriptions	
[15:8]	SD_DIV	SD_CLK = Source Clock/(SD_DIV +1) Where Source Clock selection is controlled by MSDSEL of register CLKSEL.
[7:0]	MS_DIV	MS_CLK = Source Clock/(MS_DIV +1) Where Source Clock selection is controlled by MSDSEL of register CLKSEL.

7.4 **External Bus Interface**

7.4.1 Overview

This chip supports External Bus Interface (EBI), which controls the access to the external memory

Publication Release Date: Jun. 18, 2010

(ROM/FLASH, SDRAM) and External I/O devices. The **EBI** has chip select signals to select one ROM/FLASH bank, two SDRAM banks, and three External I/O banks with 22-bit address bus. It supports 8-bit, 16-bit, and 32-bit external data bus width for each bank.

The EBI has the following functions:

- SDRAM controller
- EBI control register
- ROM/FLASH interface
- External I/O interface

7.4.2 Functional Description

SDRAM Controller

The SDRAM controller module contains configuration registers, timing control registers, common control register and other logic to provide 8, 16 or 32 bits SDRAM interface with a single 8, 16 or 32 bits SDRAM device or two 8-bit devices wired to give a 16-bit data path or two 16-bit devices wired to give a 32-bit data path.

The SDRAM controller has the following features:

- Supports up to 2 external SDRAM banks
- Maximum size of each SDRAM bank is 128M bytes
- 8, 16 or 32-bit data interface
- Programmable CAS Latency: 1 \ 2 and 3
- Fixed Burst Length: 1
- Sequential burst type
- Write Burst Length mode is Burst
- Auto Refresh Mode and Self Refresh Mode
- Adjustable Refresh Rate
- Power up sequence

7.4.2.2 SDRAM Components Supported

Publication Release Date: Jun. 18, 2010

таble: SDRAM Components supported

Size	Туре	Banks	Row Addressing	Column Addressing
1 CM -:	2Mx8	2	RA0~RA10	CA0~CA8
16M bits	1Mx16	2	RA0~RA10	CA0~CA7
	8Mx8	4	RA0~RA11	CA0~CA8
64M bits	4Mx16	4	RA0~RA11	CA0~CA7
	2Mx32	4	RA0~RA10	CA0~CA7
	16Mx8	4	RA0~RA11	CA0~CA9
128M bits	8Mx16	4	RA0~RA11	CA0~CA8
	4Mx32	4	RA0~RA11	CA0~CA7
25CM 11	32Mx8	4	RA0~RA12	CA0~CA9
256M bits	16Mx16	4	RA0~RA12	CA0~CA8
C12M bit-	64Mx8	4	RA0~RA12	CA0~CA9,CA11
512M bits	32Mx16	4	RA0~RA12	CA0~CA9

AHB Bus Address Mapping to SDRAM Bus

Note: * indicates the signal is not used; ** indicates the signal is fixed at logic 0 and is not used;

The HADDR prefixes have been omitted on the following tables.

MA14 ~ MA0 are the Address pins of the EBI interface;

MA14 and MA13 are also the bank selected signals of SDRAM.

SDRAM Data Bus Width: 32-bit

Total	Туре	R×C	R/C	MA14 (BS1)	MA13 (BS0)	MA12	MA11	MA10	MA9	MA8	MA7	MA6	MA5	MA4	MA3	MA2	MA1	MA0
16M	2Mx8	11x9	R	**	11	**	11*	22	21	20	19	18	17	16	15	14	13	12
			С	**	11	**	11*	AP	25*	10	9	8	7	6	5	4	3	2
16M	1Mx16	11x8	R	**	10	**	10*	11	21	20	19	18	17	16	15	14	13	12
			С	**	10	**	10*	AP	25*	10*	9	8	7	6	5	4	3	2
64M	8Mx8	12x9	R	11	12	11*	23	22	21	20	19	18	17	16	15	14	13	24
			С	11	12	11*	23*	AP	25*	10	9	8	7	6	5	4	3	2
64M	4Mx16	12x8	R	11	10	11*	23	22	21	20	19	18	17	16	15	14	13	12
			С	11	10	11*	23*	AP	25*	24*	9	8	7	6	5	4	3	2
64M	2Mx32	11x8	R	11	10	11*	23*	22	21	20	19	18	17	16	15	14	13	12
			С	11	10	11*	23*	AP	25*	24*	9	8	7	6	5	4	3	2
128M*	16Mx8	12x10	R	11	12	11*	23	22	21	20	19	18	17	16	15	14	13	24
			С	11	12	11*	23*	AP	25	10	9	8	7	6	5	4	3	2
128M	8Mx16	12x9	R	11	12	11*	23	22	21	20	19	18	17	16	15	14	13	24
			С	11	12	11*	23*	AP	25*	10	9	8	7	6	5	4	3	2
128M	4Mx32	12x8	R	11	10	11*	23	22	21	20	19	18	17	16	15	14	13	12
			С	11	10	11*	23*	AP	25*	10*	9	8	7	6	5	4	3	2
256M*	32Mx8	13x10	R	11	12	24	23	22	21	20	19	18	17	16	15	14	13	25
			С	11	12	24*	23*	AP	26	10	9	8	7	6	5	4	3	2
256M*	16Mx16	13x9	R	11	12	24	23	22	21	20	19	18	17	16	15	14	13	25
			С	11	12	24*	23*	AP	26*	10	9	8	7	6	5	4	3	2
512M*	64Mx8	13x11	R	11	12	24	23	22	21	20	19	18	17	16	15	14	13	25
			С	11	12	24*	27	AP	26	10	9	8	7	6	5	4	3	2
512M*	32Mx16	13x10	R	11	12	24	23	22	21	20	19	18	17	16	15	14	13	25
			С	11	12	24*	23*	AP	26	10	9	8	7	6	5	4	3	2

77

SDRAM Data Bus Width: 16-bit

Total	Туре	RxC	R/C	MA14 (BS1)	MA13 (BS0)	MA12	MA11	MA10	MA9	MA8	MA7	MA6	MA5	MA4	MA3	MA2	MA1	MA0
16M	2Mx8	11x9	R	**	10	**	10*	21	20	19	18	17	16	15	14	13	12	11
			С	**	10	**	10*	AP	24*	9	8	7	6	5	4	3	2	1
16M	1Mx16	11x8	R	**	9	**	9*	10	20	19	18	17	16	15	14	13	12	11
			С	**	9	**	9*	AP	24*	9*	8	7	6	5	4	3	2	1
64M	8Mx8	12x9	R	10	11	10*	22	21	20	19	18	17	16	15	14	13	12	23
			С	10	11	10*	22*	AP	24*	9	8	7	6	5	4	3	2	1
64M	4Mx16	12x8	R	10	9	10*	22	21	20	19	18	17	16	15	14	13	12	11
			С	10	9	10*	22*	AP	24*	23*	8	7	6	5	4	3	2	1
64M	2Mx32	11x8	R	10	9	10*	22*	21	20	19	18	17	16	15	14	13	12	11
			С	10	9	10*	22*	AP	24*	23*	8	7	6	5	4	3	2	1
128M	16Mx8	12x10	R	10	11	10*	22	21	20	19	18	17	16	15	14	13	12	23
			С	10	11	10*	22*	AP	24	9	8	7	6	5	4	3	2	1
128M	8Mx16	12x9	R	10	11	10*	22	21	20	19	18	17	16	15	14	13	12	23
			С	10	11	10*	22*	AP	24*	9	8	7	6	5	4	3	2	1
128M	4Mx32	12x8	R	10	9	10*	22	21	20	19	18	17	16	15	14	13	12	11
			С	10	9	10*	22*	AP	24*	9*	8	7	6	5	4	3	2	1
256M*	32Mx8	13x10	R	10	11	23	22	21	20	19	18	17	16	15	14	13	12	24
			С	10	11	23*	22*	AP	25	9	8	7	6	5	4	3	2	1
256M	16Mx16	13x9	R	10	11	23	22	21	20	19	18	17	16	15	14	13	12	24
	_		С	10	11	23*	22*	AP	25*	9	8	7	6	5	4	3	2	1
512M	64Mx8	13x11	R	10	11	23	22	21	20	19	18	17	16	15	14	13	12	24
			С	10	11	23*	26	AP	25	9	8	7	6	5	4	3	2	1
512M	32Mx16	13x10	R	10	11	23	22	21	20	19	18	17	16	15	14	13	12	24
			С	10	11	23*	22*	AP	25	9	8	7	6	5	4	3	2	1

SDRAM Data Bus Width: 8-bit

Total	Туре	R×C	R/C	MA14 (BS1)	MA13 (BS0)	MA12	MA11	MA10	MA9	MA8	MA7	MA6	MA5	MA4	MA3	MA2	MA1	MA0
16M	2Mx8	11x9	R	**	9	**	9*	20	19	18	17	16	15	14	13	12	11	10
			С	**	9	**	9*	AP	23*	8	7	6	5	4	3	2	1	0
16M	1Mx16	11x8	R	**	8	**	8*	9	19	18	17	16	15	14	13	12	11	10
			С	**	8	**	8*	AP	23*	8*	7	6	5	4	3	2	1	0
64M	8Mx8	12x9	R	9	10	9*	21	20	19	18	17	16	15	14	13	12	11	22
			С	9	10	9*	21*	AP	23*	8	7	6	5	4	3	2	1	1
64M	4Mx16	12x8	R	9	8	9*	21	20	19	18	17	16	15	14	13	12	11	10
			С	9	8	9*	21*	AP	23*	22*	7	6	5	4	3	2	1	0
64M	2Mx32	11x8	R	9	8	9*	21*	20	19	18	17	16	15	14	13	12	11	10
			С	9	8	9*	21*	AP	23*	22*	7	6	5	4	3	2	1	0
128M	16Mx8	12x10	R	9	10	9*	21	20	19	18	17	16	15	14	13	12	11	22
			С	9	10	9*	21*	AP	23	8	7	6	5	4	3	2	1	0
128M	8Mx16	12x9	R	9	10	9*	21	20	19	18	17	16	15	14	13	12	11	22
			С	9	10	9*	21*	AP	23*	8	7	6	5	4	3	2	1	0
128M	4Mx32	12x8	R	9	8	9*	21	20	19	18	17	16	15	14	13	12	11	10
			С	9	8	9*	21*	AP	23*	8*	7	6	5	4	3	2	1	0
256M	32Mx8	13x10	R	9	10	22	21	20	19	18	17	16	15	14	13	12	11	23
			С	9	10	22*	21*	AP	24	8	7	6	5	4	3	2	1	0
256M	16Mx16	13x9	R	9	10	22	21	20	19	18	17	16	15	14	13	12	11	23
			С	9	10	22*	21*	AP	24*	8	7	6	5	4	3	2	1	0
512M	64Mx8	13x11	R	9	10	22	21	20	19	18	17	16	15	14	13	12	11	23
			С	9	10	22*	25	AP	24	8	7	6	5	4	3	2	1	0
512M	32Mx16	13x10	R	9	10	22	21	20	19	18	17	16	15	14	13	12	11	23
			С	9	10	22*	21*	AP	24	8	7	6	5	4	3	2	1	0

SDRAM Power-Up Sequence

The default value of the mode register is not defined, therefore the mode register must be written after power up to operate the SDRAM. This chip supports the function of Power-Up Sequence, that is, after system power on, the SDRAM Controller automatically executes the commands needed for Power-Up sequence and set the mode register of each bank to default value. The default value is:

- Burst Length = 1
- Burst Type = Sequential (fixed)
- CAS Latency = 2
- Write Burst Length = Burst (fixed)

The value of mode register can be changed after power up sequence by setting the value of corresponding

79

bank's configuration register "LENGTH" and "LATENCY" bits and set the MRSET bit enable to execute the Mode Register Set command.

7.4.3 EBI Register Mapping

Register	Offset	R/W	Description	Reset Value
(EBI_BA=0	xB000_1000)			
EBICON	0xB000_1000	R/W	EBI control register	0x0001_0001
ROMCON	0xB000_1004	R/W	ROM/FLASH control register	0x0000_0FFX
SDCONFO	0xB000_1008	R/W	SDRAM bank 0 configuration register	0x0000_0800
SDCONF1	0xB000_100C	R/W	SDRAM bank 1 configuration register	0x0000_0800
SDTIMEO	0xB000_1010	R/W	SDRAM bank 0 timing control register	0x0000_0000
SDTIME1	0xB000_1014	R/W	SDRAM bank 1 timing control register	0x0000_0000
EXTOCON	0xB000_1018	R/W	External I/O 0 control register	0x0000_0000
EXT1CON	0xB000_101C	R/W	External I/O 1 control register	0x0000_0000
EXT2CON	0xB000_1020	R/W	External I/O 2 control register	0x0000_0000
CKSKEW	0xB000_102C	R/W	Clock skew control register (for testing)	0xXXXX_0048

7.4.4 EBI Register Details

EBI Control Register (EBICON)

Register	Address	R/W	Description	Reset Value		
EBICON	0xB000_1000	R/W	EBI Control Register	0x0001_0001		

31	30	29	28	27	26	25	24
		RESERVED	EXBE2	EXBE1	EXBEO		
23	22	21	20	19	18	17	16
		Reserved			REFEN	REFMOD	CLKEN
15	14	13	12	11	10	9	8
			REFR	RAT			
7	6	5	4	3	2	1	0
		REFRAT	WA	ITVT	LITTLE		

Bits	Descriptions	
[26]	EXBE2	EXBE2: External IO Bank 2 Byte Enable 0: nWBE[3:0] pin is byte write strobe signal
[20]		1: nWBE[3:0] pin is byte enable signals, nSWE will be used as write strobe signal to SRAM
		EXBE1: External IO Bank 1 Byte Enable
[25]	EXBE1	0: nWBE[3:0] pin is byte write strobe signal
[23]		1: nWBE[3:0] pin is byte enable signals, nSWE will be used as write strobe signal to SRAM
		EXBE0: External IO Bank 0 Byte Enable
[24]	EXBEO	0: nWBE[3:0] pin is byte write strobe signal
[24]		1: nWBE[3:0] pin is byte enable signals, nSWE will be used as write strobe signal to SRAM
[23:19]	Reserved	Write 0 for normal operation
		Enable SDRAM refresh cycle for SDRAM bank0 & bank1
[18]	REFEN	This bit set will start the auto-refresh cycle to SDRAM. The refresh rate is according to REFRAT bits.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions							
[17]	REFMOD	The refresh mode of SDRAM for SDRAM bank Defines the refresh mode type of external SDRAM bank 0 = Auto refresh mode 1 = Self refresh mode						
[16]	CLKEN	Clock enable for SDRAM Enables the SDRAM clock enable (CKE) control signal 0 = Disable (power down mode) 1 = Enable (Default)						
[15:3]	REFRAT	Refresh count value for SDRAM $ \label{eq:controller} $						
[2:1]	WAITVT	Valid time of nWAIT signal This bit recognizes the nEWAIT signal at the next "nth" MCLK rising edge after the nOE or nWBE active cycle. WAITVT bits determine the n. WAITVT [2:1]						
[0]	LITTLE	Little Endian mode This bit always set to a logic 1 (Read Only)						

ROM/Flash Control Register (ROMCON)

Register	Address	R/W	Description	Reset Value
ROMCON	0xB000_1004	R/W	ROM/FLASH Control Register	0x0000_0FFX

31	30	29	28	27	26	25	24		
			BASA	ADDR					
23	22	21	20	19	18	17	16		
		BASADDR			SIZE				
15	14	13	12	11	10	9	8		
SIZE		Reserved			tF	PA			
7	6	5	4	3	2	1	0		
tACC			BTS	IZE	PGM	IODE			

Bits	Descriptions										
[31:19]	BASADDR	Base Address Pointer of ROM/Flash Bank The start address is calculated as ROM/Flash bank base pointer << 18. The base address pointer together with the "SIZE" bits constitutes the whole address range of each bank.									
		Size of	ROM/FL	ASH Mem	nory						
			SIZE	[18:15]		Byte					
		0	0	0	0	256K					
		0	0	1	0	512K					
		0	1	0	0	1M					
[18:15]	SIZE	0	1	1	0	2M					
		1	0	0	0	4M					
		1	0	1	0	8M					
		1	1	0	0	16M					
			C	thers		Reserved					

83

Publication Release Date: Jun. 18, 2010

Bits	Descriptions											
		Page Mode Access Cycle Time										
			tPA[[11:8]		MCL K	I			MCL K		
		0	0	0	0	1	1	0	0	0	10	
		0	0	0	1	2	1	0	0	1	12	
[11:8]	tPA	0	0	1	0	3	1	0	1	0	14	
		0	0	1	1	4	1	0	1	1	16	
		0	1	0	0	5	1	1	0	0	18	
		0	1	0	1	6	1	1	0	1	20	
		0	1	1	0	7	1	1	1	0	22	
		0	1	1	1	8	1	1	1	1	24	
		Access	Cycle	Time								
			tACC	C[7:4]		MCLK		tACC[7:4]		MCLK		
	tACC	0	0	0	0	3	1	0	0	0	10	
		0	0	0	1	3	1	0	0	1	12	
[7:4]		0	0	1	0	3	1	0	1	0	14	
[7.4]		0	0	1	1	4	1	0	1	1	16	
		0	1	0	0	5	1	1	0	0	18	
		0	1	0	1	6	1	1	0	1	20	
		0	1	1	0	7	1	1	1	0	22	
		0	1	1	1	8	1	1	1	1	24	
		This RO	OM/Flas t addre	h bank ess. The	is desig		bus wid				determine power-on	
[3:2]	BTSIZE	E	BTSIZE	[3:2]				Bus W	/idth			
[]		0		0				8-b	oit			
		0		1		16-bit						
		1		0				32-	bit			
		1		1				RESEF	RVED			

Publication Release Date: Jun. 18, 2010 Revision: A4

Bits	Descriptions									
		Page Mode Configuration								
		PGMOI	DE [1:0]	Mode						
F4 01	D0110D5	0	0	Normal ROM						
[1:0]	PGMODE	0	1	4 word page						
		1	0	8 word page						
		1	1	16 word page						

ROM/FLASH Read Operation Timing

ROM/FLASH Page Read Operation Timing

SDRAM Configuration Register (SDCONF0/1)

The configuration registers enable software to set a number of operating parameters for the SDRAM controller. There are two configuration registers SDCONF0 or SDCONF1 for SDRAM bank 0 or bank 1 respectively. Each bank can have a different configuration.

Register	Address	R/W	Description	Reset Value
SDCONF0	0xB000_1008	R/W	SDRAM Bank 0 Configuration Register	0x0000_0800
SDCONF1	0xB000_100C	R/W	SDRAM Bank 1 Configuration Register	0x0000_0800

31	30	29	28	27	26	25	24
23	22	21	20	19	18	17	16
		BASADDR			RESERVED		
15	14	13	12	11	10	9	8
MRSET	RESERVED	AUTOPR	LATE	NCY		RESERVED	
7	6	5	4	3	2	1	0
СОМРВК	DB\	ND	COL	UMN		SIZE	

Bits	Descriptions					
[31:19]	BASADDR	Base Address Pointer of SDRAM Bank 0/1 The start address is calculated as SDRAM bank 0/1 base pointer << 18. The SDRAM base address pointer together with the "SIZE" bits constitutes the				
		whole address range of each SDRAM bank.				
[15] MRSET		SDRAM Mode Register Set Command for SDRAM Bank 0/1				
[13]	WKSLI	This bit set will issue a mode register set command to SDRAM.				
		Auto Pre-charge Mode of SDRAM for SDRAM Bank 0/1				
[13]	AUTOPR	Enable the auto pre-charge function of external SDRAM bank 0/1				
[13]	AUTOPK	0 = Auto pre-charge				
		1 = No auto pre-charge				

86

Publication Release Date: Jun. 18, 2010

Bits	Descriptions										
			The CAS Latency of SDRAM Bank 0/1								
		Defines the CAS latency of external SDRAM bank 0/1									
		LATENCY [12:1									
[12:11]	LATENCY	0	0	1							
		0	0	2 3							
		1		_							
		1	1	REVERSED							
[7]	СОМРВК	Indicates bank 0/1. 0 = 2 ban	Number of Component Bank in SDRAM Bank 0/1 Indicates the number of component bank (2 or 4 banks) in external SDRAM bank 0/1. 0 = 2 banks 1 = 4 banks								
		Indicates If DBWD disable.	= 00, the	th SDRAM bank 0/1 signal is not generated i.e.							
[6:5]	DBWD		[6:5]	Bits							
		0	0	Bank disable							
		0	0	8-bit (byte)							
		1	1	16-bit (half-word) 32-bit (word)							
		Indicates		Address bits in SDRAM B of column address bits in e Bits							
[4:3]	COLUMN	0	0	8]						
		0	1	9							
		1	0	10							
		1	1	11							

Bits	Descriptions									
		Size of SDRAM Bank 0/1								
			es the		ory size of external SDRAM ba	nk 0/1 				
		0	0	0	Bank disable					
		0	0	1	2M					
[2:0]	SIZE	0	1	0	4M					
		0	1	1	8M					
		1	0	0	16M					
		1	0	1	32M					
		1	1	0	64M					
		1	1	1	128M					

SDRAM Timing Control Register (SDTIMEO/1)

Register	Address	R/W	Description	Reset Value
SDTIME0	0xB000_1010	R/W	SDRAM bank 0 timing control register	0x0000_0000
SDTIME1	0xB000_1014	R/W	SDRAM bank 1 timing control register	0x0000_0000

31	30	29	28	27	26	25	24					
	Reserved											
23	22	21	20	19	18	17	16					
	Reserved											
15	14	13	12	12 11 10 9		8						
		Reserved			tRCD							
7	6	5	4	3	2 1		0					
tRDL tRP					tRAS							

Bits	Descriptions									
		SDRAM Bank 0/1, /RAS to /CAS Delay								
		tRo	CD [10	:8]	MCLK					
		0	0	0	1					
		0	0	1	2					
[10.0]	+DCD	0	1	0	3					
[10:8]	tRCD	0	1	1	4					
		1	0	0	5					
		1	0	1	6					
		1	1	0	7					
		1	1	1	8					
		SDRAN	/I Bank	0/1, L	ast Data in to Pre-charge C	ommand				
		tR	DL [7:	6]	MCLK					
[7.6]	4DDI	0		0	1					
[7:6]	tRDL	0		1	2					
		1		0	3					
		1		1	4					

Bits	Descriptions										
		SDRAM	SDRAM Bank 0/1, Row Pre-charge Time								
		t	RP [5:3	3]	MCLK						
		0	0	0	1						
		0	0	1	2						
[5:3]	tRP	0	1	0	3						
[5.5]	LIKI*	0	1	1	4						
		1	0	0	5						
		1	0	1	6						
		1	1	0	7						
		1	1	1	8						
		SDRAM Bank 0/1, Row Active Time									
		tF	RAS [2:	0]	MCLK						
		0	0	0	1						
		0	0	1	2						
[2:0]	tRAS	0	1	0	3						
[2.0]	IIIAS	0	1	1	4						
		1	0	0	5						
		1	0	1	6						
		1	1	0	7						
		1	1	1	8						

Fig. Access timing 1 of SDRAM

Fig. Access timing 2 of SDRAM

External I/O Control Registers (EXTOCON – EXT2CON)

Register	Address	R/W	Description	Reset Value
EXT0CON	0xB000_1018	R/W	External I/O 0 control register	0x0000_0000
EXT1CON	0XB000_101C	R/W	External I/O 1 control register	0x0000_0000
EXT3CON	0xB000_1020	R/W	External I/O 2 control register	0x0000_0000

31	30	29	28	27	26	25	24				
	BASADDR										
23	22	21	20	19	18	17	16				
		BASADDR	SIZE								
15	14	13	12	11	10	9	8				
ADRS		tA	СС		tCOH						
7	6	5	4	3	2	1	0				
tACS			tCOS			DBWD					

Bits	Descriptions										
		Base Address Pointer of External I/O Bank 0~2									
[31:19]	BASADDR	pointer	The start address of each external I/O bank is calculated as "BASADDR" bas pointer << 18. Each external I/O bank base address pointer together with th "SIZE" bits constitutes the whole address range of each external I/O bank.								
		The Siz	ze of th	ne Exte	rnal I/O Bank 0~2	2					
		SIZ	E [18:	16]	Byte						
		0	0	0	256K						
		0	0	1	512K						
		0	1	0	1M						
[18:16]	SIZE	0	1	1	2M						
		1	0	0	4M						
		1	0	1	8M						
		1	1	0	16M						
		1	1	1	Reserved						
			•			•					

92

Publication Release Date: Jun. 18, 2010

Bits	Descriptions											
[15]	ADRS	Address Bus Alignment for External I/O Bank 0~2 When ADRS is set, EBI bus is alignment to byte address format, and ignores DBWD [1:0] setting.										
		Access Cycles (nOE or nSWE active time) for External I/O Bank 0~2										
			tACC[14:11]	MCLK		tACC[14:11]	MCLK	
		0	0	0	0	Reversed	1	0	0	0	9	
		0	0	0	1	1	1	0	0	1	11	
[14:11]	tACC	0	0	1	0	2	1	0	1	0	13	
[11.11]	LAGO	0	0	1	1	3	1	0	1	1	15	
		0	1	0	0	4	1	1	0	0	17	
		0	1	0	1	5	1	1	0	1	19	
		0	1	1	0	6	1	1	1	0	21	
		0	1	1	1	7	1	1	1	1	23	
		Chip Selection Hold-On Time on nOE or nWBE for External I/O Bank 0~2										
		tCC	OH [10	:8]		MCLK	CLK					
		0	0	0		0						
		0	0	1		1						
[10.0]	10011	0	1	0		2						
[10:8]	tCOH	0	1	1		3						
		1	0	0		4						
		1	0	1		5						
		1	1	0		6						
		1	1	1		7						

Bits	Descriptions	Descriptions										
		Addres	s Set-ւ	ир Ве	efore nECS for Exter	nal I/O bank 0~2						
		tA	CS [7:	5]	MCLK							
		0	0	0	0							
		0	0	1	1							
[7:5]	tACS	0	1	0	2							
[7.5]	iAos	0	1	1	3							
		1	0	0	4							
		1	0	1	5							
		1	1	0	6							
		1	1	1	7							
		Chip Selection Set-up Time on nOE or nWBE for External I/O Bank 0~2										
					onfigured, the access tew signal is activated.	o its bank stretches chip selection time						
		tCOS [4:2]		2]	MCLK							
		0	0	0	0							
		0	0	1	1							
[4:2]	tCOS	0	1	0	2							
		0	1	1	3							
		1	0	0	4							
		1	0	1	5							
		1	1	0	6							
		1	1	1	7							
		Progra	mmabl	le Da	ta Bus Width for Ex	ternal I/O Bank 0~2						
		DBW	D [1:0]] \	Width of Data Bus							
F4 63		0	0		Disable bus							
[1:0]	DBWD	0	1		8-bit							
		1	0		16-bit							
		1	1		32-bit							

Publication Release Date: Jun. 18, 2010

Fig. External I/O Write operation timing

Fig. External I/O Read operation timing

Publication Release Date: Jun. 18, 2010 Revision: A4

Clock Skew Control Register (CKSKEW)

Register	Address	R/W	Description	Reset Value
CKSKEW	0xB000_102C	R/W	Clock Skew Control Register	0xXXXX_0048

31	30	29	28	27	26	25	24				
Reserved											
23	22	22 21 20 19 18 17									
	Reserved										
15	14	13	13 12		10	9	8				
			Reserved				SWPON				
7	6	5	4	3	2	1	0				
	DLH_CL	K_SKEW		MCLK_O_D							

Bits	Descriptions	
[8]	SWPON	SDRAM Initialization by Software Trigger Set this bit will issue a SDRAM power on default setting command, this bit will be auto-clear by hardware
[7:4]	DLH_CLK_SKEW	Data Latch Clock Skew Adjustment
[3:0]	MCLK_O_D	MCLK Output Delay Adjustment

7.5 Ethernet MAC Controller

Overview

This chip provides an Ethernet MAC Controller (EMC) for WAN/LAN application. This EMC has its DMA controller, transmit FIFO, and receive FIFO.

The Ethernet MAC controller consists of IEEE 802.3/Ethernet protocol engine with internal CAM function for Ethernet MAC address recognition, Transmit-FIFO, Receive-FIFO, TX/RX state machine controller and status controller. The EMC only supports RMII (Reduced MII) interface to connect with PHY operating on 50MHz REF_CLK.

Publication Release Date: Jun. 18, 2010

Features

- Supports IEEE Std. 802.3 CSMA/CD protocol.
- Supports both half and full duplex for 10M/100M bps operation.
- Supports RMII interface.
- Supports MII Management function.
- Supports pause and remote pause function for flow control.
- Supports long frame (more than 1518 bytes) and short frame (less than 64 bytes) reception.
- Supports 16 entries CAM function for Ethernet MAC address recognition.
- Supports internal loop back mode for diagnostic.
- Supports 256 bytes embedded transmit and receive FIFO.
- Supports DMA function.

EMC Descriptors

A link-list data structure named as descriptor is used to keep the control, status and data information of each frame. Through the descriptor, CPU and EMC exchange the information for frame reception and transmission.

Two different descriptors are defined in NUC950ADN. One named as Rx descriptor for frame reception and the other names as Tx descriptor for frame transmission. Each Rx descriptor consists of four words. There is much information kept in the descriptors and details are described as below.

Publication Release Date: Jun. 18, 2010

7.5.1.1 Rx Buffer Descriptor

3 3 2	1	1				
1 0 9	6	5	0			
0	Rx Status	Receive Byte Count				
	Receive Buffer Sta	rting Address	во			
	Reserved					
	Next Rx Descripto	r Starting Address				

Rx Descriptor Word 0

31	30	29	28	27	26	25	24		
Owner Reserved									
23	22	21	21 20 19 18 17 16						
Reserved	RP	ALIE	RXGD	PTLE	Reserved	CRCE	RXINTR		
15	14	13	12	11	10	9	8		
			RI	ВС					
7	6	5	4	3	2	1	0		
			RI	ВС					

Bits	Descriptions	
		Ownership The ownership field defines which one, the CPU or EMC, is the owner of each Rx descriptor. Only the owner has right to modify the Rx descriptor
		and the others can read the Rx descriptor only.
		00: The owner is CPU
		01: Undefined
		10: The owner is EMC
[31:30]	Owner	11: Undefined
		If the O=2'b10 indicates the EMC RxDMA is the owner of Rx descriptor and the Rx descriptor is available for frame reception. After the frame reception completed, if the frame needed NAT translation, EMC RxDMA modify ownership field to 2'b11. Otherwise, the ownership field will be modified to 2'b00.
		If the O=2′b00 indicates the CPU is the owner of Rx descriptor. After the CPU completes processing the frame, it modifies the ownership field to 2′b10 and releases the Rx descriptor to EMC RxDMA.

Bits	Descriptions	
[29:23]	Rx Status	Receive Status This field keeps the status for frame reception. All status bits are updated by EMC. In the receive status, bits 29 to 23 are undefined and reserved for the future.
[22]	RP	Runt Packet The RP indicates the frame stored in the data buffer pointed by Rx descriptor is a short frame (frame length is less than 64 bytes). 1'b0: The frame is not a short frame. 1'b1: The frame is a short frame.
[21]	ALIE	Alignment Error The ALIE indicates the frame stored in the data buffer pointed by Rx descriptor is not a multiple of byte. 1'b0: The frame is a multiple of byte. 1'b1: The frame is not a multiple of byte.
[20]	RXGD	Frame Reception Complete The RXGD indicates the frame reception has completed and stored in the data buffer pointed by Rx descriptor. 1'b0: The frame reception not complete yet. 1'b1: The frame reception completed.
[19]	PTLE	Packet Too Long The PTLE indicates the frame stored in the data buffer pointed by Rx descriptor is a long frame (frame length is greater than 1518 bytes). 1'b0: The frame is not a long frame. 1'b1: The frame is a long frame.
[17]	CRCE	CRC Error The CRCE indicates the frame stored in the data buffer pointed by Rx descriptor incurred CRC error. 1'b0: The frame doesn't incur CRC error. 1'b1: The frame incurred CRC error.

Bits	Descriptions	
[16]	RXINTR	Receive Interrupt The RXINTR indicates the frame stored in the data buffer pointed by Rx descriptor caused an interrupt condition. 1'b0: The frame doesn't cause an interrupt. 1'b1: The frame caused an interrupt.
[15:0]	RBC	Receive Byte Count The RBC indicates the byte count of the frame stored in the data buffer pointed by Rx descriptor. The four bytes CRC field is also included in the receive byte count. But if the SPCRC of register MCMDR is enabled, the four bytes CRC field will be excluded from the receive byte count.

Release Date: Jun. 18, 2010 Revision: A4

Rx Descriptor Word 1

31	30	29	28	27	26	25	24	
			RXI	BSA				
23	22	21	20	19	18	17	16	
			RXI	BSA				
15	14	13	12	11	10	9	8	
	RXBSA							
7	6	5	4	3	2	1	0	
RXBSA					В	0		

Bits	Descriptions	
[31:2]	RXBSA	Receive Buffer Starting Address The RXBSA indicates the starting address of the receive frame buffer. The RXBSA is used to be the bit 31 to 2 of memory address. In other words, the starting address of the receive frame buffer always located at word boundary.
[1:0]	во	Byte Offset The BO indicates the byte offset from RXBSA where the received frame begins to store. If the BO is 2'b01, the starting address where the received frame begins to store is RXBSA+2'b01, and so on.

Rx Descriptor Word 2

31	30	29	28	27	26	25	24						
	Reserved												
23	22	21	20	19	18	17	16						
			Rese	rved									
15	14	13	12	11	10	9	8						
			Rese	rved									
7	6	5	4	3	2	1	0						
			Rese	rved		Reserved							

The Rx descriptor word 2 keeps obsolete information for MAC translation. Therefore, these information bits are undefined and should be ignored.

Rx Descriptor Word 3

31	30	29	28	27	26	25	24		
	NRXDSA								
23	22	21	20	19	18	17	16		
			NRX	DSA					
15	14	13	12	11	10	9	8		
	NRXDSA								
7	6	5	4	3	2	1	0		
			NRX	DSA					

Bits	Descriptions	
		Next Rx Descriptor Starting Address
[31:0]	NRXDSA	The Rx descriptor is a link-list data structure. Consequently, NRXDSA is used to keep the starting address of the next Rx descriptor. The bits [1:0] will be ignored by EMC. So, all Rx descriptor must locate at word boundary memory address.

7.5.1.2 Tx Buffer Descriptor

Next Tx Descriptor Starting Address						
Tx Status Transmit Byte Count						
	Transmit Buffer Starting Address					
О	O Reserved					
1 0	6	5	3 2	1 0		
3 3	1	1				

Tx Descriptor Word 0

31	30	29	28	27	26	25	24
Owner				Reserved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
Reserved							
7	6	5	4	3	2	1	0
Reserved				IntEn	CRCApp	PadEn	

Bits	Descriptions				
[31]	Owner	Ownership The ownership field defines which one, the CPU or EMC, is the owner of each Tx descriptor. Only the owner has right to modify the Tx descriptor and the other can read the Tx descriptor only. 0: The owner is CPU 1: The owner is EMC If the O=1'b1 indicates the EMC TxDMA is the owner of Tx descriptor and the Tx descriptor is available for frame transmission. After the frame transmission completed, EMC TxDMA modify ownership field to 1'b0 and return the ownership of Tx descriptor to CPU. If the O=1'b0 indicates the CPU is the owner of Tx descriptor. After the CPU prepares new frame to wait transmission, it modifies the ownership field to 1'b1 and releases the Tx descriptor to EMC TxDMA.			
[2]	IntEn	Transmit Interrupt Enable The IntEn controls the interrupt trigger circuit after the frame transmission completed. If the IntEn is enabled, the EMC will trigger interrupt after frame transmission completed. Otherwise, the interrupt doesn't be triggered. 1'b0: Frame transmission interrupt is masked. 1'b1: Frame transmission interrupt is enabled.			

104

Dublica

Publication Release Date: Jun. 18, 2010

Bits	Descriptions				
[1]	CRCApp	CRC Append The CRCApp control the CRC append during frame transmission. If CRCApp is enabled, the 4-bytes CRC checksum will be appended to frame at the end of frame transmission. 1'b0: 4-bytes CRC appending is disabled. 1'b1: 4-bytes CRC appending is enabled.			
[0]	PadEN	Padding Enable The PadEN control the PAD bits appending while the length of transmission frame is less than 60 bytes. If PadEN is enabled, EMC does the padding automatically. 1'b0: PAD bits appending is disabled. 1'b1: PAD bits appending is enabled.			

Publication Release Date: Jun. 18, 2010

Tx Descriptor Word 1

31	30	29	28	27	26	25	24
	TXBSA						
23	22	21	20	19	18	17	16
	TXBSA						
15	14	13	12	11	10	9	8
	TXBSA						
7	6	5	4	3	2	1	0
TXBSA						В	0

Bits	Descriptions	
[31:2]	TXBSA	Transmit Buffer Starting Address The TXBSA indicates the starting address of the transmit frame buffer. The TXBSA is used to be the bit 31 to 2 of memory address. In other words, the starting address of the transmit frame buffer always located at word boundary.
[1:0]	во	Byte Offset The BO indicates the byte offset from TXBSA where the transmit frame begins to read. If the BO is 2'b01, the starting address where the transmit frame begins to read is TXBSA+2'b01, and so on.

Tx Descriptor Word 2

31	30	29	28	27	26	25	24
	CCNT				SQE	PAU	TXHA
23	22	21	20	19	18	17	16
LC	TXABT	NCS	EXDEF	TXCP	Reserved	DEF	TXINTR
15	14	13	12	11	10	9	8
	TBC						
7	6	5	4	3	2	1	0
	TBC						

Bits	Descriptions			
[31:28]	CCNT CCNT The CCNT indicates the how many collisions occurred consecutively during a packet transmission. If the packet incurred 16 consecutive collisions during transmission, the CCNT will be 4'h0 and bit TXABT will be set to 1.			
[26]	SQE	SQE Error The SQE indicates the SQE error found at end of packet transmission on 10Mbps half-duplex mode. The SQE error check will only be done while both bit EnSQE of MCMDR is enabled and EMC is operating on 10Mbps half-duplex mode. 1'b0: No SQE error found at end of packet transmission. 1'b0: SQE error found at end of packet transmission.		
[25]	PAU	Transmission Paused The PAU indicates the next normal packet transmission process will be paused temporally because EMC received a PAUSE control frame, or S/W set bit SDPZ of MCMDR and make EMC to transmit a PAUSE control frame out. 1'b0: Next normal packet transmission process will go on. 1'b1: Next normal packet transmission process will be paused.		

Bits	Descriptions					
		P Transmission Halted				
[24]	TXHA	The TXHA indicates the next normal packet transmission process will be halted because the bit TXON of MCMDR is disabled be S/W.				
		1'b0: Next normal packet transmission process will go on.				
		1'b1: Next normal packet transmission process will be halted.				
[23]	LC	Late Collision The LC indicates the collision occurred in the outside of 64 bytes collision window. This means after the 64 bytes of a frame has transmitted out to the network, the collision still occurred. The late collision check will only				
		be done while EMC is operating on half-duplex mode.				
		1'b0: No collision occurred in the outside of 64 bytes collision window.				
		1'b1: Collision occurred in the outside of 64 bytes collision window.				
[22]	ТХАВТ	Transmission Abort The TXABT indicates the packet incurred 16 consecutive collisions durin transmission, and then the transmission process for this packet aborted. The transmission abort is only available while EMC is operating on half-duplex mode. 1'b0: Packet doesn't incur 16 consecutive collisions during transmission. 1'b1: Packet incurred 16 consecutive collisions during transmission.				
	NCS	No Carrier Sense				
[21]		The NCS indicates the MII I/F signal CRS doesn't active at the start of or during the packet transmission. The NCS is only available while EMC is operating on half-duplex mode. 1'b0: CRS signal actives correctly. 1'b1: CRS signal doesn't active at the start of or during the packet transmission.				
		Defer Exceed				
[20]	EXDEF	The EXDEF indicates the frame waiting for transmission has deferred over 0.32768ms on 100Mbps mode, or 3.2768ms on 10Mbps mode. The deferral exceed check will only be done while bit NDEF of MCMDR is disabled, and EMC is operating on half-duplex mode.				
		1'b0: Frame waiting for transmission has not deferred over 0.32768ms (100Mbps) or 3.2768ms (10Mbps).				
		1'b1: Frame waiting for transmission has deferred over 0.32768ms (100Mbps) or 3.2768ms (10Mbps).				

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[19]	ТХСР	Transmission Complete The TXCP indicates the packet transmission has completed correctly. 1'b0: The packet transmission doesn't complete. 1'b1: The packet transmission has completed.
[17]	DEF	Transmission Deferred The DEF indicates the packet transmission has deferred once. The DEF is only available while EMC is operating on half-duplex mode. 1'b0: Packet transmission doesn't defer. 1'b1: Packet transmission has deferred once.
[16]	TXINTR	Transmit Interrupt The TXINTR indicates the packet transmission caused an interrupt condition. 1'b0: The packet transmission doesn't cause an interrupt. 1'b1: The packet transmission caused an interrupt.
[15:0]	твс	Transmit Byte Count The TBC indicates the byte count of the frame stored in the data buffer pointed by Tx descriptor for transmission.

Tx Descriptor Word 3

31	30	29	28	27	26	25	24		
	NTXDSA								
23	22	21	20	19	18	17	16		
	NTXDSA								
15	14	13	12	11	10	9	8		
NTXDSA									
7	6	5	4	3	2	1	0		
	NTXDSA								

Bits	Descriptions	
[31:0]	NTXDSA	Next Tx Descriptor Starting Address The Tx descriptor is a link-list data structure. Consequently, NTXDSA is used to keep the starting address of the next Tx descriptor. The bits [1:0] will be ignored by EMC. So, all Tx descriptor must locate at word boundary memory address.

7.5.2 EMC Register Mapping

The EMC implements many registers and the registers are separated into three types, the control registers, the status registers and diagnostic registers. The control registers are used by S/W to pass control information to EMC. The status registers are used to keep EMC operation status for S/W.

EMC Registers

Register	Address	R/W	Description	Reset Value
EMC_BA =	0xB000_3000	-	_	_
Control Rec	gisters (44)			
CAMCMR	0xB000_3000	R/W	CAM Command Register	0x0000_0000
CAMEN	0xB000_3004	R/W	CAM Enable Register	0x0000_0000
САМОМ	0xB000_3008	R/W	CAM0 Most Significant Word Register	0x0000_0000
CAMOL	0xB000_300C	R/W	CAMO Least Significant Word Register	0x0000_0000
CAM1M	0xB000_3010	R/W	CAM1 Most Significant Word Register	0x0000_0000
CAM1L	0xB000_3014	R/W	CAM1 Least Significant Word Register	0x0000_0000
CAM2M	0xB000_3018	R/W	CAM2 Most Significant Word Register	0x0000_0000
CAM2L	0xB000_301C	R/W	CAM2 Least Significant Word Register	0x0000_0000
САМЗМ	0xB000_3020	R/W	CAM3 Most Significant Word Register	0x0000_0000
CAM3L	0xB000_3024	R/W	CAM3 Least Significant Word Register	0x0000_0000
CAM4M	0xB000_3028	R/W	CAM4 Most Significant Word Register	0x0000_0000
CAM4L	0xB000_302C	R/W	CAM4 Least Significant Word Register	0x0000_0000
CAM5M	0xB000_3030	R/W	CAM5 Most Significant Word Register	0x0000_0000
CAM5L	0xB000_3034	R/W	CAM5 Least Significant Word Register	0x0000_0000
САМ6М	0xB000_3038	R/W	CAM6 Most Significant Word Register	0x0000_0000
CAM6L	0xB000_303C	R/W	CAM6 Least Significant Word Register	0x0000_0000
САМ7М	0xB000_3040	R/W	CAM7 Most Significant Word Register	0x0000_0000
CAM7L	0xB000_3044	R/W	CAM7 Least Significant Word Register	0x0000_0000
CAM8M	0xB000_3048	R/W	CAM8 Most Significant Word Register	0x0000_0000
CAM8L	0xB000_304C	R/W	CAM8 Least Significant Word Register	0x0000_0000
САМ9М	0xB000_3050	R/W	CAM9 Most Significant Word Register	0x0000_0000
CAM9L	0xB000_3054	R/W	CAM9 Least Significant Word Register	0x0000_0000

Publication Release Date: Jun. 18, 2010 Revision: A4

Register	Address	R/W	Description	Reset Value
CAM10M	0xB000_3058	R/W	CAM10 Most Significant Word Register	0x0000_0000
CAM10L	0xB000_305C	R/W	CAM10 Least Significant Word Register	0x0000_0000
CAM11M	0xB000_3060	R/W	CAM11 Most Significant Word Register	0x0000_0000
CAM11L	0xB000_3064	R/W	CAM11 Least Significant Word Register	0x0000_0000
CAM12M	0xB000_3068	R/W	CAM12 Most Significant Word Register	0x0000_0000
CAM12L	0xB000_306C	R/W	CAM12 Least Significant Word Register	0x0000_0000
CAM13M	0xB000_3070	R/W	CAM13 Most Significant Word Register	0x0000_0000
CAM13L	0xB000_3074	R/W	CAM13 Least Significant Word Register	0x0000_0000
CAM14M	0xB000_3078	R/W	CAM14 Most Significant Word Register	0x0000_0000
CAM14L	0xB000_307C	R/W	CAM14 Least Significant Word Register	0x0000_0000
CAM15M	0xB000_3080	R/W	CAM15 Most Significant Word Register	0x0000_0000
CAM15L	0xB000_3084	R/W	CAM15 Least Significant Word Register	0x0000_0000
TXDLSA	0xB000_3088	R/W	Transmit Descriptor Link List Start Address Register	0xFFFF_FFFC
RXDLSA	0xB000_308C	R/W	Receive Descriptor Link List Start Address Reg.	0xFFFF_FFFC
MCMDR	0xB000_3090	R/W	MAC Command Register	0x0000_0000
MIID	0xB000_3094	R/W	MII Management Data Register	0x0000_0000
MIIDA	0xB000_3098	R/W	MII Management Control and Address Register	0x0090_0000
FFTCR	0xB000_309C	R/W	FIFO Threshold Control Register	0x0000_0101
TSDR	0xB000_30A0	W	Transmit Start Demand Register	Undefined
RSDR	0xB000_30A4	W	Receive Start Demand Register	Undefined
DMARFC	0xB000_30A8	R/W	Maximum Receive Frame Control Register	0x0000_0800
MIEN	0xB000_30AC	R/W	MAC Interrupt Enable Register	0x0000_0000
Status Regi	sters (11)			
MISTA	0xB000_30B0	R/W	MAC Interrupt Status Register	0x0000_0000
MGSTA	0xB000_30B4	R/W	MAC General Status Register	0x0000_0000
MPCNT	0xB000_30B8	R/W	Missed Packet Count Register	0x0000_7FFF
MRPC	0xB000_30BC	R	MAC Receive Pause Count Register	0x0000_0000
MRPCC	0xB000_30C0	R	MAC Receive Pause Current Count Register	0x0000_0000
MREPC	0xB000_30C4	R	MAC Remote Pause Count Register	0x0000_0000
DMARFS	0xB000_30C8	R/W	DMA Receive Frame Status Register	0x0000_0000
CTXDSA	0xB000_30CC	R	Current Transmit Descriptor Start Address Reg.	0x0000_0000
CTXBSA	0xB000_30D0	R	Current Transmit Buffer Start Address Register	0x0000_0000

112

Publication Release Date: Jun. 18, 2010

Register	Address	R/W	Description	Reset Value
CRXDSA	0xB000_30D4	R	Current Receive Descriptor Start Address Reg.	0x0000_0000
CRXBSA	0xB000_30D8	R	Current Receive Buffer Start Address Register	0x0000_0000

7.5.3 EMC Register Details

CAM Command Register (CAMCMR)

The EMC of NUC950ADN supports CAM function for destination MAC address recognition. The CAMCMR control the CAM comparison function, and unicast, multicast, and broadcast packet reception.

Register	Address	R/W	Description	Reset Value
CAMCMR	0xB000_3000	R/W	CAM Command Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
Reserved										
7	6	5	4	3	2	1	0			
Rese	Reserved RMII ECMP CCAM ABP AMP AUP									

Bits	Descriptions					
[5]	RMII	Enable RMII Input Data Sampled by Negative Edge of REFCLK 1'b0: PHY_CRSDV and PHY_RXD[1:0] are sampled by the positive edge of REFCLK 1'b1: PHY_CRSDV and PHY_RxD[1:0] are sampled by the negative edge of REFCLK				
[4]	ЕСМР	Enable CAM Compare The ECMP controls the enable of CAM comparison function for destination MAC address recognition. If S/W wants to receive a packet with specific destination MAC address, configures the MAC address into anyone of 16 CAM entries, then enables that CAM entry and set ECMP to 1. 1'b0: Disable CAM comparison function for destination MAC address recognition. 1'b1: Enable CAM comparison function for destination MAC address recognition.				

Publication Release Date: Jun. 18, 2010

Bits	Descriptions						
		Complement CAM Compare					
[3]	ССАМ	The CCAM controls the complement of the CAM comparison result. If the ECMP and CCAM are both enabled, the incoming packet with specific destination MAC address configured in CAM entry will be dropped. And the incoming packet with destination MAC address doesn't configured in any CAM entry will be received.					
		1'b0: The CAM comparison result doesn't be complemented.					
		1'b1: The CAM comparison result will be complemented.					
		Accept Broadcast Packet					
[2]	АВР	The ABP controls the broadcast packet reception. If ABP is enabled, EMC receives all incoming packet its destination MAC address is a broadcast address.					
		1'b0: EMC receives packet depends on the CAM comparison result.					
		1'b1: EMC receives all broadcast packets.					
		Accept Multicast Packet					
[1]	АМР	The AMP controls the multicast packet reception. If AMP is enabled, EMC receives all incoming packet its destination MAC address is a multicast address.					
		1'b0: EMC receives packet depends on the CAM comparison result.					
		1'b1: EMC receives all multicast packets.					
		Accept Unicast Packet					
[0]	AUP	The AUP controls the unicast packet reception. If AUP is enabled, EMC receives all incoming packet its destination MAC address is a unicast address.					
		1'b0: EMC receives packet depends on the CAM comparison result.					
		1'b1: EMC receives all unicast packets.					

CAMCMR Setting and Comparison Result

The following table is the address recognition result in different CAMCMR configuration. The column Result shows the incoming packet type that can pass the address recognition in specific CAM configuration. The C, U, M and B represents the:

- C: It indicates the destination MAC address of incoming packet has been configured in CAM entry.
- *U*: It indicates the incoming packet is a unicast packet.
- M: It indicates the incoming packet is a multicast packet.
- B: It indicates the incoming packet is a broadcast packet.

Publication Release Date: Jun. 18, 2010

ECMP	CCAM	AUP	AMP	ABP	Resu	Result	
0	0	0	0	0	No Pa	acket	
0	0	0	0	1	В		
0	0	0	1	0	М		
0	0	0	1	1	М В		
0	0	1	0	0	C U		
0	0	1	0	1	C U	В	
0	0	1	1	0	C U	М	
0	0	1	1	1	C U	М	В
0	1	0	0	0	C U	М	В
0	1	0	0	1	C U	М	В
0	1	0	1	0	C U	М	В
0	1	0	1	1	C U	М	В
0	1	1	0	0	C U	М	В
0	1	1	0	1	C U	М	В
0	1	1	1	0	C U	М	В
0	1	1	1	1	C U	М	В
1	0	0	0	0	С		
1	0	0	0	1	СВ		
1	0	0	1	0	C M	l	
1	0	0	1	1	C N	В	
1	0	1	0	0	C U		
1	0	1	0	1	C U	В	
1	0	1	1	0	C U	М	
1	0	1	1	1	C U	М	В
1	1	0	0	0	U M	ΙВ	
1	1	0	0	1	U M	ΙВ	
1	1	0	1	0	U M	ΙВ	
1	1	0	1	1	U M	ΙВ	
1	1	1	0	0	C U	М	В
1	1	1	0	1	C U	М	В
1	1	1	1	0	C U	М	В
1	1	1	1	1	C U	М	В

115

Publication Release Date: Jun. 18, 2010

CAM Enable Register (CAMEN)

The CAMEN controls the validation of each CAM entry. Each CAM entry must be enabled first before it can participate in the destination MAC address recognition.

Register	Address	R/W	Description	Reset Value
CAMEN	0xB000_3004	R/W	CAM Enable Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
CAM15EN	CAM14EN	CAM13EN	CAM12EN	CAM11EN	CAM10EN	CAM9EN	CAM8EN			
7 6 5 4 3 2 1 0										
CAM7EN	CAM6EN	CAM5EN	CAM4EN	CAM3EN	CAM2EN	CAM1EN	CAMOEN			

Bits	Descriptions						
[x]	CAMxEN	CAM Entry x Enable The CAMxEN controls the validation of CAM entry x. The x can be 0 to 15. The CAM entry 13, 14 and 15 are for PAUSE control frame transmission. If S/W wants to transmit a PAUSE control frame out to network, the enable bits of these three CAM entries all must be enabled first. 1'b0: CAM entry x is disabled. 1'b1: CAM entry x is enabled.					

CAM Entry Registers (CAMxx)

In the EMC of NUC950ADN, there are 16 CAM entries. In these 16 CAM entries, 13 entries (entry $0\sim12$) are to keep destination MAC address for packet recognition, and the other 3 entries (entry $13\sim15$) are for PAUSE control frame transmission. Each CAM entry consists of 6 bytes. Consequently, 2 register ports are needed for each CAM entry.

For packet recognition, a register pair {CAMxM, CAMxL} represents a CAM entry and can keep a destination MAC address. The corresponding CAM enable bit CAMxEN of CAMEN register is also needed be enabled. The x can be the 0 to 12.

For PAUSE control frame transmission, first, S/W must configure destination MAC address of control frame into the register pair {CAM13M, CAM13L}, source MAC address into the register pair {CAM14M, CAM14L}, and configure length/type, op-code and operand of control frame into the register pair {CAM15M, CAM15L}. The bit CAM13EN, CAM14EN and CAM15EN of CAMEN register are also needed be enabled. Then, enable the bit SDPZ of MCMDR register.

Register	Address	R/W	Description	Reset Value
CAMON	0xB000_3008		CAM0 Most Significant Word Register	0x0000_0000
CAM0L :	MOL 0xB000_300C :		CAM0 Least Significant Word Register	0x0000_0000 :
CAM15M	0xB000_3080	,	:	0x0000_0000
CAM15L	0xB000_3084		CAM15 Most Significant Word Register	0x0000_0000
			CAM15 Least Significant Word Register	

Publication Release Date: Jun. 18, 2010

CAMxM

31	30	29	28	27	26	25	24		
MAC Address Byte 5 (MSB)									
23	22	21	20	19	18	17	16		
			MAC Addr	ess Byte 4					
15	14	13	12	11	10	9	8		
	MAC Address Byte 3								
7	7 6 5 4 3 2 1 0								
	MAC Address Byte 2								

Bits	Descriptio	Descriptions					
[31:0]	САМхМ	CAMx Most Significant Word The CAMxM keeps the bit 47~16 of MAC address. The x can be the 0~14. The register pair {CAMxM, CAMxL} represents a CAM entry and can keep a MAC address. For example, if the MAC address 00-50-BA-33-BA-44 is kept in CAM entry 1, the register CAM1M is 32'h0050_BA33 and CAM1L is 32'hBA44_0000.					

CAMxL

31	30	29	28	27	26	25	24			
MAC Address Byte 1										
23	22	21	20	19	18	17	16			
	MAC Address Byte 0 (LSB)									
15	14	13	12	11	10	9	8			
	Reserved									
7 6 5 4 3 2 1 0										
	Reserved									

Bits	Descriptio	Descriptions					
[31:0]	CAMxL	CAMx Least Significant Word The CAMxL keeps the bit 15~0 of MAC address. The x can be the 0~14. The register pair {CAMxM, CAMxL} represents a CAM entry and can keep a MAC address. For example, if the MAC address 00-50-BA-33-BA-44 is kept in CAM entry 1, the register CAM1M is 32'h0050_BA33 and CAM1L is 32'hBA44_0000.					

CAM15M

31	30	29	28	27	26	25	24				
	Length/Type (MSB)										
23	22	21	20	19	18	17	16				
	Length/Type										
15	14	13	12	11	10	9	8				
	OP-Code (MSB)										
7 6 5 4 3 2 1 0											
	OP-Code										

Bits	Descriptions	
[31:16]	Length/Type	Length/Type Field of PAUSE Control Frame In the PAUSE control frame, a length/type field is defined and will be 16'h8808.
[15:0]	OP-Code	OP Code Field of PAUSE Control Frame In the PAUSE control frame, an op code field is defined and will be 16'h0001.

120

CAM15L

31	30	29	28	27	26	25	24			
	Operand (MSB)									
23	22	21	20	19	18	17	16			
	Operand									
15	14	13	12	11	10	9	8			
	Reserved									
7 6 5 4 3 2 1 0										
	Reserved									

Bits	Descriptions	
[31:16]	Operand	Pause Parameter In the PAUSE control frame, an operand field is defined and controls how much time the destination Ethernet MAC Controller is paused. The unit of the operand is the slot time, the 512 bits time.

121

Transmit Descriptor Link List Start Address Register (TXDLSA)

The Tx descriptor defined in EMC is a link-list data structure. The TXDLSA keeps the starting address of this link-list. In other words, the TXDLSA keeps the starting address of the $1^{\rm st}$ Tx descriptor. S/W must configure TXDLSA before enable bit TXON of MCMDR register.

	Register Address R/W		R/W	Description	Reset Value
Ī	TXDLSA	0xB000_3088	R/W	Transmit Descriptor Link List Start Address Register	0xFFFF_FFFC

31	30	29	28	27	26	25	24
			TXD	LSA			
23	22	21	20	19	18	17	16
			TXD	LSA			
15	14	13	12	11	10	9	8
	TXDLSA						
7	6	5	4	3	2	1	0
	TXDLSA						

Bits	Descriptions	
[31:0]	TXDLSA	Transmit Descriptor Link-List Start Address The TXDLSA keeps the start address of transmit descriptor link-list. If the S/W enables the bit TXON of MCMDR register, the content of TXDLSA will be loaded into the current transmit descriptor start address register (CTXDSA). The TXDLSA doesn't be updated by EMC. During the operation, EMC will ignore the bits [1:0] of TXDLSA. This means that each Tx descriptor always
		must locate at word boundary memory address.

Receive Descriptor Link List Start Address Register (RXDLSA)

The Rx descriptor defined in EMC is a link-list data structure. The RXDLSA keeps the starting address of this link-list. In other words, the RXDLSA keeps the starting address of the $1^{\rm st}$ Rx descriptor. S/W must configure RXDLSA before enable bit RXON of MCMDR register.

Register	Address	R/W	Description	Reset Value
RXDLSA	0xB000_308C	R/W	Receive Descriptor Link List Start Address Register	0xFFFF_FFFC

31	30	29	28	27	26	25	24
			RXD	LSA			
23	22	21	20	19	18	17	16
			RXD	LSA			
15	14	13	12	11	10	9	8
	RXDLSA						
7	6	5	4	3	2	1	0
	RXDLSA						

Bits	Descriptions	
[31:0]	RTXDLSA	Receive Descriptor Link-List Start Address The RXDLSA keeps the start address of receive descriptor link-list. If the S/W enables the bit RXON of MCMDR register, the content of RXDLSA will be loaded into the current receive descriptor start address register (CRXDSA). The RXDLSA doesn't be updated by EMC. During the operation, EMC will ignore the bits [1:0] of RXDLSA. This means that each Rx descriptor always must locate at word boundary memory address.

MAC Command Register (MCMDR)

The MCMDR provides the control information for EMC. Some command settings affect both frame transmission and reception, such as bit FDUP, the full/half duplex mode selection, or bit OPMOD, the 100/10M bps mode selection. Some command settings control frame transmission and reception separately, likes bit TXON and RXON.

Register	Address	R/W	Description	Reset Value
MCMDR	0xB000_3090	R/W	MAC Command Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
Rese	erved	LBK	OPMOD	EnMDC	FDUP	EnSQE	SDPZ
15	14	13	12	11	10	9	8
	Reserved NDEF						TXON
7	6	5	4	3	2	1	0
Rese	Reserved SPCRC AEP ACP ARP ALP						RXON

Bits	Descriptions	
[24]	SWR	Software Reset The SWR implements a reset function to make the EMC return default state. The SWR is a self-clear bit. This means after the software reset finished, the SWR will be cleared automatically. Enable SWR can also reset all control and status registers, exclusive of these two bits EnRMII and OPMOD of MCMDR register. The EMC re-initial is needed after the software reset completed. 1'b0: Software reset completed. 1'b1: Enable software reset.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Internal Loop Back Select
[21]	LBK	The LBK enables the EMC operating on internal loop-back mode. If the LBK is enabled, the packet transmitted out will be loop-backed to Rx. If the EMC is operating on internal loop-back mode, it also means the EMC is operating on full-duplex mode and the value of FDUP of MCMDR register is ignored. Beside, the LBK doesn't be affected by SWR bit.
		1'b0: The EMC operates in normal mode.
		1'b1: The EMC operates in internal loop-back mode.
		Operation Mode Select
[20]	OPMOD	The OPMOD defines the EMC is operating on 10M or 100M bps mode. The OPMOD doesn't be affected by SWR bit.
		1'b0: The EMC operates on 10Mbps mode.
		1'b1: The EMC operates on 100Mbps mode.
		Enable MDC Clock Generation
[19]	EnMDC	The EnMDC controls the MDC clock generation for MII Management Interface. If the EnMDC is set to 1, the MDC clock generation is enabled. Otherwise, the MDC clock generation is disabled. Consequently, if S/W wants to access the registers of external PHY through MII Management Interface, the EnMDC must be set to high.
		1'b0: Disable MDC clock generation.
		1'b1: Enable MDC clock generation.
[18]	FDUP	Full Duplex Mode Select The FDUP controls that EMC is operating on full or half duplex mode. 1'b0: The EMC operates on half duplex mode. 1'b1: The EMC operates on full duplex mode.
		Enable SQE Checking
[17]	EnSQE	The EnSQE controls the enable of SQE checking. The SQE checking is only available while EMC is operating on 10M bps and half duplex mode. In other words, the EnSQE cannot affect EMC operation, if the EMC is operating on 100M bps or full duplex mode.
		1'b0: Disable SQE checking while EMC is operating on 10Mbps and half duplex mode.
		1'b1: Enable SQE checking while EMC is operating on 10Mbps and half duplex mode.

	_	32-BIT ARIVI920LJ-3 BASED WCO
Bits	Descriptions	
		Send PAUSE Frame
		The SDPZ controls the PAUSE control frame transmission.
		If S/W wants to send a PAUSE control frame out, the CAM entry 13, 14 and 15 must be configured first and the corresponding CAM enable bit of CAMEN register also must be set. Then, set SDPZ to 1 enables the PAUSE control frame transmission.
[16]	SDPZ	The SDPZ is a self-clear bit. This means after the PAUSE control frame transmission has completed, the SDPZ will be cleared automatically.
		It is recommended that only enables SPDZ while EMC is operating on full duplex mode.
		1'b0: The PAUSE control frame transmission has completed.
		1'b1: Enable EMC to transmit a PAUSE control frame out.
	NDEF	No Defer
[9]		The NDEF controls the enable of deferral exceed counter. If NDEF is set to high, the deferral exceed counter is disabled. The NDEF is only useful while EMC is operating on half duplex mode.
		1'b0: The deferral exceed counter is enabled.
		1'b1: The deferral exceed counter is disabled.
		Frame Transmission ON
		The TXON controls the normal packet transmission of EMC. If the TXON is set to high, the EMC starts the packet transmission process, including the Tx descriptor fetching, packet transmission and Tx descriptor modification.
[8]	TXON	It is must to finish EMC initial sequence before enable TXON. Otherwise, the EMC operation is undefined.
		If the TXON is disabled during EMC is transmitting a packet out, the EMC stops the packet transmission process after the current packet transmission finished.
		1'b0: The EMC stops packet transmission process.
		1'b1: The EMC starts packet transmission process.
		Strip CRC Checksum
[5]	SPCRC	The SPCRC controls if the length of incoming packet is calculated with 4 bytes CRC checksum. If the SPCRC is set to high, 4 bytes CRC checksum is excluded from length calculation of incoming packet.
		1'b0: The 4 bytes CRC checksum is included in packet length calculation.
		1'b1: The 4 bytes CRC checksum is excluded in packet length calculation.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Accept CRC Error Packet
[4]	AEP	The AEP controls the EMC accepts or drops the CRC error packet. If the AEP is set to high, the incoming packet with CRC error will be received by EMC as a good packet.
		1'b0: The CRC error packet will be dropped by EMC.
		1'b1: The CRC error packet will be accepted by EMC.
		Accept Control Packet
[3]	АСР	The ACP controls the control frame reception. If the ACP is set to high, the EMC will accept the control frame. Otherwise, the control frame will be dropped. It is recommended that S/W only enable AEP while EMC is operating on full duplex mode.
		1'b0: The control frame will be dropped by EMC.
		1'b1: The control frame will be accepted by EMC.
		Accept Runt Packet
	ARP	The ARP controls the runt packet, which length is less than 64 bytes, reception. If the ARP is set to high, the EMC will accept the runt packet.
[2]		Otherwise, the runt packet will be dropped.
		1'b0: The runt packet will be dropped by EMC.
		1'b1: The runt packet will be accepted by EMC.
		Accept Long Packet
[1]	ALP	The ALP controls the long packet, which packet length is greater than 1518 bytes, reception. If the ALP is set to high, the EMC will accept the long packet.
		Otherwise, the long packet will be dropped.
		1'b0: The long packet will be dropped by EMC.
		1'b1: The long packet will be accepted by EMC.

Bits	Descriptions				
[0]	RXON	Frame Reception ON The RXON controls the normal packet reception of EMC. If the RXON is set to high, the EMC starts the packet reception process, including the Rx descriptor fetching, packet reception and Rx descriptor modification. It is must to finish EMC initial sequence before enable RXON. Otherwise, the EMC operation is undefined. If the RXON is disabled during EMC is receiving an incoming packet, the EMC stops the packet reception process after the current packet reception finished. 1'b0: The EMC stops packet reception process. 1'b1: The EMC starts packet reception process.			

Publication Release Date: Jun. 18, 2010

MII Management Data Register (MIID)

The EMC provides MII management function to access the control and status registers of the external PHY. The MIID register is used to store the data that will be written into the registers of external PHY for write command or the data that is read from the registers of external PHY for read command.

Register	Address	R/W	Description	Reset Value
MIID	0xB000_3094	R/W	MII Management Data Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	MIIData									
7	6	5	4	3	2	1	0			
			MIII	Data						

Bits	Descriptions	
[15:0]	MIIData	MII Management Data The MIIData is the 16 bits data that will be written into the registers of external PHY for MII Management write command or the data from the registers of external PHY for MII Management read command.

MII Management Control and Address Register (MIIDA)

The EMC provides MII management function to access the control and status registers of the external PHY. The MIIDA register is used to keep the MII management command information, like the register address, external PHY address, MDC clocking rate, read/write etc.

Register	Address	R/W	Description	Reset Value
MIIDA	0xB000_3098	R/W	MII Management Control and Address Register	0x0090_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	MD	CCR		MDCON	PreSP	BUSY	Write			
15	14	13	12	11	10	9	8			
	Reserved				PHYAD					
7	6	5	4	3	2	1	0			
Reserved					PHYRAD					

Bits	Descriptions
2	

Publication Release Date: Jun. 18, 2010

Bits	Descriptions								
		MDC C	lock Rating (Defa	ult Value: 4'h9)					
		The MDCCR controls the MDC clock rating for MII Management I/F.							
		Depend on the IEEE Std. 802.3 clause 22.2.2.11, the minimum period for MDC shall be 400ns. In other words, the maximum frequency for MDC is 2.5MHz. The MDC is divided from the AHB bus clock, the HCLK. Consequently, for different HCLK the different ratios are required to generate appropriate MDC clock.							
					en HCLK and MDC clock in tes the period of HCLK.				
			MDCCR [23:20]	MDC Clock Period	MDC Clock Frequency				
			4'b0000	4 x T _{HCLK}	HCLK/4				
			4'b0001	6 x T _{HCLK}	HCLK/6				
			4'b0010	8 x T _{HCLK}	HCLK/8				
[23:20]	MDCCR		4'b0011	12 x T _{HCLK}	HCLK/12				
			4'b0100	16 x T _{HCLK}	HCLK/16				
			4'b0101	20 x T _{HCLK}	HCLK/20				
			4'b0110	24 x T _{HCLK}	HCLK/24				
			4'b0111	28 x T _{HCLK}	HCLK/28				
			4'b1000	30 x T _{HCLK}	HCLK/30				
			4'b1001	32 x T _{HCLK}	HCLK/32				
			4'b1010	36 x T _{HCLK}	HCLK/36				
			4'b1011	40 x T _{HCLK}	HCLK/40				
			4'b1100	44 x T _{HCLK}	HCLK/44				
			4'b1101	48 x T _{HCLK}	HCLK/48				
			4'b1110	54 x T _{HCLK}	HCLK/54				
			4'b1111	60 x T _{HCLK}	HCLK/60				
		MDC C	lock ON Always						
[19]	MDCON	The MDC controls the MDC clock generation. If the MDCON is set to high, the MDC clock actives always. Otherwise, the MDC will only active while S/W issues a MII management command.							
		1′b0: ¯	The MDC clock will command.	only active while S/N	W issues a MII management				
		1′b1: T	he MDC clock activ	es always.					

Publication Release Date: Jun. 18, 2010

Bits	Descriptions			
		Preamble Suppress		
[18]	PreSP	The PreSP controls the preamble field generation of MII management frame. If the PreSP is set to high, the preamble field generation of MII management frame is skipped.		
		1'b0: Preamble field generation of MII management frame is not skipped.		
		1'b1: Preamble field generation of MII management frame is skipped.		
		Busy Bit		
[17]	BUSY	The BUSY controls the enable of the MII management frame generation S/W wants to access registers of external PHY, it set BUSY to high and E generates the MII management frame to external PHY through Management I/F. The BUSY is a self-clear bit. This means the BUSY will cleared automatically after the MII management command finished.		
		1'b0: The MII management has finished.		
		1'b1: Enable EMC to generate a MII management command to external PHY.		
		Write Command		
[16]	Write	The Write defines the MII management command is a read or write.		
[10]		1'b0: The MII management command is a read command.		
		1'b1: The MII management command is a write command.		
		PHY Address		
[12:8]	PHYAD	The PHYAD keeps the address to differentiate which external PHY is the target of the MII management command.		
		PHY Register Address		
[4:0]	PHYRAD	The PHYRAD keeps the address to indicate which register of external PHY is the target of the MII management command.		

MII Management Function Frame Format

In IEEE Std. 802.3 clause 22.2.4, the MII management function is defined. The MII management function is used for the purpose of controlling the PHY and gathering status from the PHY. The MII management frame format is shown as follow.

		Management frame fields							
	PRE	PRE ST OP PHYAD REGAD TA DATA						IDLE	
READ	11	01	10	AAAAA	RRRRR	ZO	DDDDDDDDDDDDD	Z	
WRITE	11	01	01	AAAAA	RRRRR	10	DDDDDDDDDDDDDD	Z	

MII Management Function Configure Sequence

	Read	Write		
1.	Set appropriate MDCCR.	1.	Write data to MIID register	
2.	Set PHYAD and PHYRAD.	2.	Set appropriate MDCCR.	
3.	Set Write to 1'b0	3.	Set PHYAD and PHYRAD.	
4.	Set bit BUSY to 1'b1 to send a MII	4.	Set Write to 1'b1	
	management frame out.		Set bit BUSY to 1'b1 to send a	
5.	Wait BUSY to become 1'b0.		MII management frame out.	
6.	Read data from MIID register.	6.	Wait BUSY to become 1'b0.	
7.	Finish the read command.	7.	Finish the write command.	

Publication Release Date: Jun. 18, 2010

FIFO Threshold Control Register (FFTCR)

The FFTCR defines the high and low threshold of internal FIFO, including TxFIFO and RxFIFO. The threshold of internal FIFO is related to EMC request generation and when the frame transmission starts. The FFTCR also defines the burst length of AHB bus cycle for system memory access.

Register	Address	R/W	Description	Reset Value
FFTCR	0xB000_309C	R/W	FIFO Threshold Control Register	0x0000_0101

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
Rese	Reserved BLength Rese					rved				
15	14	13	12	11	10	9	8			
		Rese	rved			TxT	THD			
7	6	5	4	3	2	1	0			
		RxT	ΓHD							

Bits	Descriptions	
[21:20]	Blength	DMA Burst Length The Blength defines the burst length of AHB bus cycle while EMC accesses system memory. 2'b00: 4 words 2'b01: 8 words 2'b10: 16 words 2'b11: 16 words

Publication Release Date: Jun. 18, 2010

		TxFIFO Low Threshold
[9:8]	ТхТНО	Default Value: 2'b01
		The TxTHD controls when TxDMA requests internal arbiter for data transfer between system memory and TxFIFO. The TxTHD defines not only the low threshold of TxFIFO, but also the high threshold. The high threshold is the twice of low threshold always. During the packet transmission, if the TxFIFO reaches the high threshold, the TxDMA stops generate request to transfer frame data from system memory to TxFIFO. If the frame data in TxFIFO is less than low threshold, TxDMA starts to transfer frame data from system memory to TxFIFO.
		The TxTHD also defines when the TxMAC starts to transmit frame out to network. The TxMAC starts to transmit the frame out while the TxFIFO first time reaches the high threshold during the transmission of the frame. If the frame data length is less than TxFIFO high threshold, the TxMAC starts to transmit the frame out after the frame data are all inside the TxFIFO.
		2'b00: Undefined.
		2'b01: TxFIFO low threshold is 64B and high threshold is 128B.
		2'b10: TxFIFO low threshold is 80B and high threshold is 160B.
		2'b11: TxFIFO low threshold is 96B and high threshold is 192B.
		RxFIFO High Threshold
		Default Value: 2'b01
[1:0]	RxTHD	The RxTHD controls when RxDMA requests internal arbiter for data transfer between RxFIFO and system memory. The RxTHD defines not only the high threshold of RxFIFO, but also the low threshold. The low threshold is the half of high threshold always. During the packet reception, if the RxFIFO reaches the high threshold, the RxDMA starts to transfer frame data from RxFIFO to system memory. If the frame data in RxFIFO is less than low threshold, RxDMA stops to transfer the frame data to system memory.
		2'b00: Depend on the burst length setting. If the burst length is 8 words, high threshold is 8 words, too.
		2'b01: RxFIFO high threshold is 64B and low threshold is 32B.
		2'b10: RxFIFO high threshold is 128B and low threshold is 64B.
		2'b11: RxFIFO high threshold is 192B and low threshold is 96B.

Publication Release Date: Jun. 18, 2010

Transmit Start Demand Register (TSDR)

If the Tx descriptor is not available for use of TxDMA after the TXON of MCMDR register is enabled, the FSM (Finite State Machine) of TxDMA enters the Halt state and the frame transmission is halted. After the S/W has prepared the new Tx descriptor for frame transmission, it must issue a write command to TSDR register to make TxDMA leave Halt state and contiguous frame transmission. The TSDR is a write only register and read from this register is undefined. The write to TSDR register has took effect only while TxDMA stayed at Halt state.

Register	Address	R/W	Description	Reset Value
TSDR	0xB000_30A0	W	Transmit Start Demand Register	Undefined

31	30	29	28	27	26	25	24			
	TSD									
23	22	21	20	19	18	17	16			
			TS	SD						
15	14	13	12	11	10	9	8			
	TSD									
7 6 5 4 3 2 1 0										
	TSD									

Bits	Descriptions	
[31:0]	TSD	Transmit Start Demand

Receive Start Demand Register (RSDR)

If the Rx descriptor is not available for use of RxDMA after the RXON of MCMDR register is enabled, the FSM (Finite State Machine) of RxDMA enters the Halt state and the frame reception is halted. After the S/W has prepared the new Rx descriptor for frame reception, it must issue a write command to RSDR register to make RxDMA leave Halt state and contiguous frame reception. The RSDR is a write only register and read from this register is undefined. The write to RSDR register has took effect only while RxDMA stayed at Halt state.

Register	Address	R/W	Description	Reset Value
RSDR	0xB000_30A4	W	Receive Start Demand Register	Undefined

31	30	29	28	27	26	25	24			
	RSD									
23	22	21	20	19	18	17	16			
			RS	SD						
15	14	13	12	11	10	9	8			
	RSD									
7	7 6 5 4 3 2 1 0									
	RSD									

Bits	Descriptions	
[31:0]	RSD	Receive Start Demand

137

Maximum Receive Frame Control Register (DMARFC)

The DMARFC defines the maximum frame length for a received frame that can be stored in the system memory. It is recommend that only use this register while S/W wants to receive a frame which length is greater than 1518 bytes.

Register	Address	R/W	Description	Reset Value
DMARFC	0xB000_30A8	R/W	Maximum Receive Frame Control Register	0x0000_0800

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	RXMS									
7 6 5 4 3 2 1 0										
	RXMS									

Bits	Descriptions	
		Maximum Receive Frame Length
		Default Value: 16'h0800
[15:0]	RXMS	The RXMS defines the maximum frame length for received frame. If the frame length of received frame is greater than RXMS, and bit EnDFO of MIEN register is also enabled, the bit DFOI of MISTA register is set and the Rx interrupt is triggered.
		It is recommended that only use RXMS to qualify the length of received frame while S/W wants to receive a frame which length is greater than 1518 bytes.

Publication Release Date: Jun. 18, 2010

MAC Interrupt Enable Register (MIEN)

The MIEN controls the enable of EMC interrupt status to generate interrupt. Two interrupts, RXINTR for frame reception and TXINTR for frame transmission, are generated from EMC to CPU.

Register	Address	R/W	Description	Reset Value
MIEN	0xB000_30AC	R/W	MAC Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved					EnTxBErr	
23	22	21	20	19	18	17	16
EnTDU	EnLC	EnTXABT	EnNCS	EnEXDEF	EnTXCP	EnTXEMP	EnTXINTR
15	14	13	12	11	10	9	8
Reserved	EnCFR	Rese	rved	EnRxBErr	EnRDU	EnDEN	EnDFO
7	6	5	4	3	2	1	0
EnMMP	EnRP	EnALIE	EnRXGD	EnPTLE	EnRXOV	EnCRCE	EnRXINTR

Bits	Descriptions	
		Enable Transmit Bus Error Interrupt
[24]	EnTxBErr	The EnTxBErr controls the TxBErr interrupt generation. If TxBErr of MISTA register is set, and both EnTxBErr and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnTxBErr or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the TxBErr of MISTA register is set.
		1'b0: TxBErr of MISTA register is masked from Tx interrupt generation.
		1'b1: TxBErr of MISTA register can participate in Tx interrupt generation.
	EnTDU	Enable Transmit Descriptor Unavailable Interrupt
[23]		The EnTDU controls the TDU interrupt generation. If TDU of MISTA register is set, and both EnTDU and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnTDU or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the TDU of MISTA register is set.
		1'b0: TDU of MISTA register is masked from Tx interrupt generation.
		1'b1: TDU of MISTA register can participate in Tx interrupt generation.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions		
		Enable Late Collision Interrupt	
[22]	EnLC	The EnLC controls the LC interrupt generation. If LC of MISTA register is set, and both EnLC and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnLC or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the LC of MISTA register is set.	
		1'b0: LC of MISTA register is masked from Tx interrupt generation.	
		1'b1: LC of MISTA register can participate in Tx interrupt generation.	
	EnTXABT	Enable Transmit Abort Interrupt	
[21]		The EnTXABT controls the TXABT interrupt generation. If TXABT of MISTA register is set, and both EnTXABT and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnTXABT or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the TXABT of MISTA register is set.	
		1'b0: TXABT of MISTA register is masked from Tx interrupt generation.	
		1'b1: TXABT of MISTA register can participate in Tx interrupt generation.	
	EnNCS	Enable No Carrier Sense Interrupt	
[20]		The EnNCS controls the NCS interrupt generation. If NCS of MISTA register is set, and both EnNCS and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnNCS or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the NCS of MISTA register is set.	
		1'b0: NCS of MISTA register is masked from Tx interrupt generation.	
		1'b1: NCS of MISTA register can participate in Tx interrupt generation.	
	EnEXDEF	Enable Defer Exceed Interrupt	
[19]		The EnEXDEF controls the EXDEF interrupt generation. If EXDEF of MISTA register is set, and both EnEXDEF and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnEXDEF or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the EXDEF of MISTA register is set.	
		1'b0: EXDEF of MISTA register is masked from Tx interrupt generation.	
		1'b1: EXDEF of MISTA register can participate in Tx interrupt generation.	
[18]	EnTXCP	Enable Transmit Completion Interrupt	
		The EnTXCP controls the TXCP interrupt generation. If TXCP of MISTA register is set, and both EnTXCP and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnTXCP or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the TXCP of MISTA register is set.	
		1'b0: TXCP of MISTA register is masked from Tx interrupt generation.	
		1'b1: TXCP of MISTA register can participate in Tx interrupt generation.	

Publication Release Date: Jun. 18, 2010

Bits	Descriptions		
[17]	EnTXEMP	Enable Transmit FIFO Underflow Interrupt	
		The EnTXEMP controls the TXEMP interrupt generation. If TXEMP of MISTA register is set, and both EnTXEMP and EnTXINTR are enabled, the EMC generates the Tx interrupt to CPU. If EnTXEMP or EnTXINTR is disabled, no Tx interrupt is generated to CPU even the TXEMP of MISTA register is set.	
		1'b0: TXEMP of MISTA register is masked from Tx interrupt generation.	
		1'b1: TXEMP of MISTA register can participate in Tx interrupt generation.	
	EnTXINTR	Enable Transmit Interrupt	
		The EnTXINTR controls the Tx interrupt generation.	
[16]		If EnTXINTR is enabled and TXINTR of MISTA register is high, EMC generates the Tx interrupt to CPU. If EnTXINTR is disabled, no Tx interrupt is generated to CPU even the status bits 17~24 of MISTA are set and the corresponding bits of MIEN are enabled. In other words, if S/W wants to receive Tx interrupt from EMC, this bit must be enabled. And, if S/W doesn't want to receive any Tx interrupt from EMC, disables this bit.	
		1'b0: TXINTR of MISTA register is masked and Tx interrupt generation is disabled.	
		1'b1: TXINTR of MISTA register is unmasked and Tx interrupt generation is enabled.	
	EnCFR	Enable Control Frame Receive Interrupt	
[14]		The EnCFR controls the CFR interrupt generation. If CFR of MISTA register is set, and both EnCFR and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnCFR or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the CFR of MISTA register is set.	
		1'b0: CFR of MISTA register is masked from Rx interrupt generation.	
		1'b1: CFR of MISTA register can participate in Rx interrupt generation.	
[11]	EnRxBErr	Enable Receive Bus Error Interrupt	
		The EnRxBErr controls the RxBerr interrupt generation. If RxBErr of MISTA register is set, and both EnRxBErr and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnRxBErr or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the RxBErr of MISTA register is set.	
		1'b0: RxBErr of MISTA register is masked from Rx interrupt generation. 1'b1: RxBErr of MISTA register can participate in Rx interrupt generation.	

Bits	Descriptions		
		Enable Receive Descriptor Unavailable Interrupt	
[10]	EnRDU	The EnRDU controls the RDU interrupt generation. If RDU of MISTA register is set, and both EnRDU and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnRDU or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the RDU of MISTA register is set. 1'b0: RDU of MISTA register is masked from Rx interrupt generation.	
		1'b1: RDU of MISTA register can participate in Rx interrupt generation.	
		Enable DMA Early Notification Interrupt	
[9]	EnDEN	The EnDEN controls the DENI interrupt generation. If DENI of MISTA register is set, and both EnDEN and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnDEN or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the DENI of MISTA register is set.	
		1'b0: DENI of MISTA register is masked from Rx interrupt generation.	
		1'b1: DENI of MISTA register can participate in Rx interrupt generation.	
[8]	EnDFO	Enable Maximum Frame Length Interrupt	
		The EnDFO controls the DFOI interrupt generation. If DFOI of MISTA register is set, and both EnDFO and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnDFO or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the DFOI of MISTA register is set.	
		1'b0: DFOI of MISTA register is masked from Rx interrupt generation.	
		1'b1: DFOI of MISTA register can participate in Rx interrupt generation.	
	EnMMP	Enable More Missed Packet Interrupt	
[7]		The EnMMP controls the MMP interrupt generation. If MMP of MISTA register is set, and both EnMMP and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnMMP or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the MMP of MISTA register is set.	
		1'b0: MMP of MISTA register is masked from Rx interrupt generation.	
		1'b1: MMP of MISTA register can participate in Rx interrupt generation.	
[6]		Enable Runt Packet Interrupt	
	EnRP	The EnRP controls the RP interrupt generation. If RP of MISTA register is set, and both EnRP and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnRP or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the RP of MISTA register is set.	
		1'b0: RP of MISTA register is masked from Rx interrupt generation.	
		1'b1: RP of MISTA register can participate in Rx interrupt generation.	

Publication Release Date: Jun. 18, 2010

Bits	Descriptions			
[5]	EnALIE	Enable Alignment Error Interrupt The Enalie controls the Alie interrupt generation. If Alie of MISTA register is set, and both Enalie and Entxintr are enabled, the EMC generates the Rx interrupt to CPU. If Enalie or Entxintr is disabled, no Rx interrupt is generated to CPU even the Alie of MISTA register is set. 1'b0: Alie of MISTA register is masked from Rx interrupt generation. 1'b1: Alie of MISTA register can participate in Rx interrupt generation.		
[4]	EnRXGD	Enable Receive Good Interrupt The EnRXGD controls the RXGD interrupt generation. If RXGD of MISTA register is set, and both EnRXGD and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnRXGD or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the RXGD of MISTA register is set. 1'b0: RXGD of MISTA register is masked from Rx interrupt generation. 1'b1: RXGD of MISTA register can participate in Rx interrupt generation.		
[3]	EnPTLE	Enable Packet Too Long Interrupt The EnPTLE controls the PTLE interrupt generation. If PTLE of MISTA register is set, and both EnPTLE and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnPTLE or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the PTLE of MISTA register is set. 1'b0: PTLE of MISTA register is masked from Rx interrupt generation. 1'b1: PTLE of MISTA register can participate in Rx interrupt generation.		
[2]	EnRXOV	Enable Receive FIFO Overflow Interrupt The EnRXOV controls the RXOV interrupt generation. If RXOV of MISTA register is set, and both EnRXOV and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnRXOV or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the RXOV of MISTA register is set. 1'b0: RXOV of MISTA register is masked from Rx interrupt generation. 1'b1: RXOV of MISTA register can participate in Rx interrupt generation.		
[1]	EnCRCE	Enable CRC Error Interrupt The EnCRCE controls the CRCE interrupt generation. If CRCE of MISTA register is set, and both EnCRCE and EnTXINTR are enabled, the EMC generates the Rx interrupt to CPU. If EnCRCE or EnTXINTR is disabled, no Rx interrupt is generated to CPU even the CRCE of MISTA register is set. 1'b0: CRCE of MISTA register is masked from Rx interrupt generation. 1'b1: CRCE of MISTA register can participate in Rx interrupt generation.		

Publication Release Date: Jun. 18, 2010

Bits	Descriptions		
[0]	EnRXINTR	Enable Receive Interrupt The EnRXINTR controls the Rx interrupt generation. If EnRXINTR is enabled and RXINTR of MISTA register is high, EMC generates the Rx interrupt to CPU. If EnRXINTR is disabled, no Rx interrupt is generated to CPU even the status bits 1~14 of MISTA are set and the corresponding bits of MIEN are enabled. In other words, if S/W wants to receive Rx interrupt from EMC, this bit must be enabled. And, if S/W doesn't want to receive any Rx interrupt from EMC, disables this bit. 1'b0: RXINTR of MISTA register is masked and Rx interrupt generation is disabled. 1'b1: RXINTR of MISTA register is unmasked and Rx interrupt generation is enabled.	

MAC Interrupt Status Register (MISTA)

The MISTA keeps much EMC statuses, like frame transmission and reception status, internal FIFO status and also NATA processing status. The statuses kept in MISTA will trigger the reception or transmission interrupt. The MISTA is a write clear register and write 1 to corresponding bit clears the status and also clears the interrupt.

Register	Address	R/W	Description	Reset Value
MISTA	0xB000_30B0	R/W	MAC Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						TxBErr
23	22	21	20	19	18	17	16
TDU	LC	TXABT	NCS	EXDEF	TXCP	TXEMP	TXINTR
15	14	13	12	11	10	9	8
Reserved	CFR	Rese	rved	RxBErr	RDU	DENI	DFOI
7	6	5	4	3	2	1	0
MMP	RP	ALIE	RXGD	PTLE	RXOV	CRCE	RXINTR

Bits Descriptions	
Transmit Bus Error Interrupt The TxBErr high indicates the memory controller replies ERI while EMC access system memory through TxDMA d transmission process. Reset EMC is recommended while TxI high. If the TxBErr is high and EnTxBErr of MIEN register is enable will be high. Write 1 to this bit clears the TxBErr status. 1'b0: No ERROR response is received. 1'b1: ERROR response is received.	during packet BErr status is

Bits	Descriptions				
		Transmit Descriptor Unavailable Interrupt			
[23]	TDU	The TDU high indicates that there is no available Tx descriptor for packet transmission and TxDMA will stay at Halt state. Once, the TxDMA enters the Halt state, S/W must issues a write command to TSDR register to make TxDMA leave Halt state while new Tx descriptor is available.			
		If the TDU is high and EnTDU of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the TDU status.			
		1'b0: Tx descriptor is available.			
		1'b1: Tx descriptor is unavailable.			
		Late Collision Interrupt			
[22]	LC	The LC high indicates the collision occurred in the outside of 64 bytes collision window. This means after the 64 bytes of a frame has transmitted out to the network, the collision still occurred. The late collision check will only be done while EMC is operating on half-duplex mode. If the LC is high and EnLC of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the LC status.			
		1'b0: No collision occurred in the outside of 64 bytes collision window.			
		1'b1: Collision occurred in the outside of 64 bytes collision window.			
	ТХАВТ	Transmit Abort Interrupt			
[21]		The TXABT high indicates the packet incurred 16 consecutive collisions during transmission, and then the transmission process for this packet is aborted. The transmission abort is only available while EMC is operating on half-duplex mode.			
[]		If the TXABT is high and EnTXABT of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the TXABT status.			
		1'b0: Packet doesn't incur 16 consecutive collisions during transmission.			
		1'b1: Packet incurred 16 consecutive collisions during transmission.			
		No Carrier Sense Interrupt			
[20]	NCS	The NCS high indicates the MII I/F signal CRS doesn't active at the start of or during the packet transmission. The NCS is only available while EMC is operating on half-duplex mode. If the NCS is high and EnNCS of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the NCS status.			
		1'b0: CRS signal actives correctly.			
		1'b1: CRS signal doesn't active at the start of or during the packet transmission.			

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Defer Exceed Interrupt
		The EXDEF high indicates the frame waiting for transmission has deferred over 0.32768ms on 100Mbps mode, or 3.2768ms on 10Mbps mode. The deferral exceed check will only be done while bit NDEF of MCMDR is disabled, and EMC is operating on half-duplex mode.
[19]	EXDEF	If the EXDEF is high and EnEXDEF of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the EXDEF status.
		1'b0: Frame waiting for transmission has not deferred over 0.32768ms (100Mbps) or 3.2768ms (10Mbps).
		1'b1: Frame waiting for transmission has deferred over 0.32768ms (100Mbps) or 3.2768ms (10Mbps).
	ТХСР	Transmit Completion Interrupt
		The TXCP indicates the packet transmission has completed correctly.
[18]		If the TXCP is high and EnTXCP of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the TXCP status.
		1'b0: The packet transmission doesn't complete.
		1'b1: The packet transmission has completed.
		Transmit FIFO Underflow Interrupt
[17]	ТХЕМР	The TXEMP high indicates the TxFIFO underflow occurred during packet transmission. While the TxFIFO underflow occurred, the EMC will retransmit the packet automatically without S/W intervention. If the TxFIFO underflow occurred often, it is recommended that modify TxFIFO threshold control, the TxTHD of FFTCR register, to higher level.
		If the TXEMP is high and EnTXEMP of MIEN register is enabled, the TxINTR will be high. Write 1 to this bit clears the TXEMP status.
		1'b0: No TxFIFO underflow occurred during packet transmission.
		1'b0: TxFIFO underflow occurred during packet transmission.

147

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Transmit Interrupt
		The TXINTR indicates the Tx interrupt status.
	TXINTR	If TXINTR high and its corresponding enable bit, EnTXINTR of MISTA register, is also high indicates the EMC generates Tx interrupt to CPU. If TXINTR is high but EnTXINTR of MISTA is disabled, no Tx interrupt is generated.
[16]		The TXINTR is logic OR result of the bits 17~24 in MISTA register do logic AND with the corresponding bits in MIEN register. In other words, if one of the bits 17~24 in MISTA register is high and its corresponding enable bit in MIEN register is also enabled, the TXINTR will be high. Because the TXINTR is a logic OR result, clears bits 17~24 of MISTA register makes TXINTR be cleared, too.
		1'b0: No status of bits $17\sim24$ in MISTA is set or no enable of bits $17\sim24$ in MIEN is turned on.
		1'b1: At least one status of bits 17~24 in MISTA is set and its corresponding enable bit is turned on.
		Control Frame Receive Interrupt
	CFR	The CFR high indicates EMC receives a flow control frame. The CFR only available while EMC is operating on full duplex mode.
[14]		If the CFR is high and EnCFR of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the CFR status.
		1'b0: The EMC doesn't receive the flow control frame.
		1'b1: The EMC receives a flow control frame.
	RxBErr	Receive Bus Error Interrupt
[11]		The RxBErr high indicates the memory controller replies ERROR response while EMC access system memory through RxDMA during packet reception process. Reset EMC is recommended while RxBErr status is high.
		If the RxBErr is high and EnRxBErr of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the RxBErr status.
		1'b0: No ERROR response is received.
		1'b1: ERROR response is received.

148

Bits	Descriptions	Descriptions				
	RDU	Receive Descriptor Unavailable Interrupt				
[10]		The RDU high indicates that there is no available Rx descriptor for packet reception and RxDMA will stay at Halt state. Once, the RxDMA enters the Halt state, S/W must issues a write command to RSDR register to make RxDMA leave Halt state while new Rx descriptor is available.				
		If the RDU is high and EnRDU of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the RDU status.				
		1'b0: Rx descriptor is available.				
		1'b1: Rx descriptor is unavailable.				
		DMA Early Notification Interrupt				
	DENI	The DENI high indicates the EMC has received the Length/Type field of the incoming packet.				
[9]		If the DENI is high and EnDENI of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the DENI status.				
		1'b0: The Length/Type field of incoming packet has not received yet.				
		1'b1: The Length/Type field of incoming packet has received.				
	DFOI	Maximum Frame Length Interrupt				
[8]		The DFOI high indicates the length of the incoming packet has exceeded the length limitation configured in DMARFC register and the incoming packet is dropped. If the DFOI is high and EnDFO of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the DFOI status.				
		1'b0: The length of the incoming packet doesn't exceed the length limitation configured in DMARFC.				
		1'b1: The length of the incoming packet has exceeded the length limitation configured in DMARFC.				
		More Missed Packet Interrupt				
[7]	ММР	The MMP high indicates the MPCNT, Missed Packet Count, has overflow. If the MMP is high and EnMMP of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the MMP status.				
		1'b0: The MPCNT has not rolled over yet.				
		1'b1: The MPCNT has rolled over yet.				

Bits	Descriptions	
		Runt Packet Interrupt
		The RP high indicates the length of the incoming packet is less than 64 bytes, and the packet is dropped. If the ARP of MCMDR register is set, the short packet is regarded as a good packet and RP will not be set.
[6]	RP	If the RP is high and EnRP of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the RP status.
		1'b0: The incoming frame is not a short frame or S/W wants to receive a short frame.
		1'b1: The incoming frame is a short frame and dropped.
		Alignment Error Interrupt
[5]	ALIE	The ALIE high indicates the length of the incoming frame is not a multiple of byte. If the ALIE is high and EnALIE of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the ALIE status.
		1'b0: The frame length is a multiple of byte.
		1'b1: The frame length is not a multiple of byte.
	RXGD	Receive Good Interrupt
		The RXGD high indicates the frame reception has completed.
[4]		If the RXGD is high and EnRXGD of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the RXGD status.
		1'b0: The frame reception has not complete yet.
		1'b1: The frame reception has completed.
	PTLE	Packet Too Long Interrupt
[3]		The PTLE high indicates the length of the incoming packet is greater than 1518 bytes and the incoming packet is dropped. If the ALP of MCMDR register is set, the long packet will be regarded as a good packet and PTLE will not be set.
		If the PTLE is high and EnPTLE of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the PTLE status.
		1'b0: The incoming frame is not a long frame or S/W wants to receive a long frame.
		1'b1: The incoming frame is a long frame and dropped.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	Descriptions					
		Receive FIFO Overflow Interrupt					
[2]	RXOV	The RXOV high indicates the RxFIFO overflow occurred during packet reception. While the RxFIFO overflow occurred, the EMC drops the current receiving packer. If the RxFIFO overflow occurred often, it is recommended that modify RxFIFO threshold control, the RxTHD of FFTCR register, to higher level.					
		If the RXOV is high and EnRXOV of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the RXOV status.					
		1'b0: No RxFIFO overflow occurred during packet reception.					
		1'b0: RxFIFO overflow occurred during packet reception.					
		CRC Error Interrupt					
	CRCE	The CRCE high indicates the incoming packet incurred the CRC error and the packet is dropped. If the AEP of MCMDR register is set, the CRC error packet will be regarded as a good packet and CRCE will not be set.					
[1]		If the CRCE is high and EnCRCE of MIEN register is enabled, the RxINTR will be high. Write 1 to this bit clears the CRCE status.					
		1'b0: The frame doesn't incur CRC error.					
		1'b1: The frame incurred CRC error.					
	RXINTR	Receive Interrupt					
		The RXINTR indicates the Rx interrupt status.					
		If RXINTR high and its corresponding enable bit, EnRXINTR of MISTA register, is also high indicates the EMC generates Rx interrupt to CPU. If RXINTR is high but EnRXINTR of MISTA is disabled, no Rx interrupt is generated.					
[0]		The RXINTR is logic OR result of the bits $1{\sim}14$ in MISTA register do logic AND with the corresponding bits in MIEN register. In other words, if one of the bits $1{\sim}14$ in MISTA register is high and its corresponding enable bit in MIEN register is also enabled, the RXINTR will be high.					
		Because the RXINTR is a logic OR result, clears bits $1{\sim}14$ of MISTA register makes RXINTR be cleared, too.					
		1'b0: No status of bits $1\sim14$ in MISTA is set or no enable of bits $1\sim14$ in MIEN is turned on.					
		1'b1: At least one status of bits $1\sim14$ in MISTA is set and its corresponding enable bit is turned on.					

MAC General Status Register (MGSTA)

The MGSTA also keeps the statuses of EMC. But the statuses in the MGSTA will not trigger any interrupt. The MGSTA is a write clear register and write 1 to corresponding bit clears the status.

Register	Address	R/W	Description	Reset Value
MGSTA	0xB000_30B4	R/W	MAC General Status Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	22 21 20 19 18 17 16					
	Reserved						
15	14	13	12	11	10	9	8
	Reserved				SQE	PAU	DEF
7	7 6 5 4				2	1	0
CCNT				Reserved	RFFull	RXHA	CFR

Bits	Descriptions	
		Transmission Halted
		Default Value: 1'b0
[11]	ТХНА	The TXHA high indicates the next normal packet transmission process will be halted because the bit TXON of MCMDR is disabled be S/W.
		1'b0: Next normal packet transmission process will go on.
		1'b1: Next normal packet transmission process will be halted.
		Signal Quality Error
		Default Value: 1'b0
[10]	SQE	The SQE high indicates the SQE error found at end of packet transmission on 10Mbps half-duplex mode. The SQE error check will only be done while both bit EnSQE of MCMDR is enabled and EMC is operating on 10Mbps half-duplex mode.
		1'b0: No SQE error found at end of packet transmission.
		1'b0: SQE error found at end of packet transmission.

152

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Transmission Paused
		Default Value: 1'b0
[9]	PAU	The PAU high indicates the next normal packet transmission process will be paused temporally because EMC received a PAUSE control frame, or S/W set bit SDPZ of MCMDR and make EMC to transmit a PAUSE control frame out.
		1'b0: Next normal packet transmission process will go on.
		1'b1: Next normal packet transmission process will be paused.
		Deferred Transmission
		Default Value: 1'b0
[8] DE	DEF	The DEF high indicates the packet transmission has deferred once. The DEF is only available while EMC is operating on half-duplex mode.
		1'b0: Packet transmission doesn't defer.
		1'b1: Packet transmission has deferred once.
	CCNT	Collision Count
l		Default Value: 4'h0
[7:4]		The CCNT indicates the how many collisions occurred consecutively during a packet transmission. If the packet incurred 16 consecutive collisions during transmission, the CCNT will be 4'h0 and bit TXABT will be set to 1.
		RxFIFO Full
		Default Value: 1'b0
[2]	RFFull	The RFFull indicates the RxFIFO is full due to four 64-byte packets are kept in RxFIFO and the following incoming packet will be dropped.
		1'b0: The RxFIFO is not full.
		1'b1: The RxFIFO is full and the following incoming packet will be dropped.
		Receive Halted
[1]		Default Value: 1'b0
	RXHA	The RXHA high indicates the next normal packet reception process will be halted because the bit RXON of MCMDR is disabled be S/W.
		1'b0: Next normal packet reception process will go on.
		1'b1: Next normal packet reception process will be halted.

153

Bits	Descriptions	
		Control Frame Received Default Value: 1'b0
[0]	CFR	The CFR high indicates EMC receives a flow control frame. The CFR only available while EMC is operating on full duplex mode.
		1'b0: The EMC doesn't receive the flow control frame.
		1'b1: The EMC receives a flow control frame.

Missed Packet Count Register (MPCNT)

The MPCNT keeps the number of packets that were dropped due to various types of receive errors. The MPCNT is a read clear register. In addition, S/W also can write an initial value to MPCNT and the missed packet counter will start counting from that initial value. If the missed packet counter is overflow, the MMP of MISTA will be set.

Register	Address	R/W	Description	Reset Value
MPCNT	0xB000_30B8	R/W	Missed Packet Count Register	0x0000_7FFF

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	MPC									
7 6 5 4 3 2 1 0										
	MPC									

Bits	Descriptions	
[15:0]	MPC	Miss Packet Count Default Value: 16'h7FFF The MPC indicates the number of packets that were dropped due to various types of receive errors. The following type of receiving error makes missed packet counter increase: Incoming packet is incurred RxFIFO overflow. Incoming packet is dropped due to RXON is disabled. Incoming packet is incurred CRC error.

MAC Receive Pause Count Register (MRPC)

The EMC of NUC950ADN supports the PAUSE control frame reception and recognition. If EMC received a PAUSE control frame, the operand field of the PAUSE control frame will be extracted and stored in the MRPC register. The MRPC register will keep the same while Tx of EMC is pausing due to the PAUSE control frame is received. The MRPC is read only and write to this register has no effect.

Register	Address	R/W	Description	Reset Value
MRPC	0xB000_30BC	R	MAC Receive Pause Count Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	MRPC									
7 6 5 4 3 2 1 0										
	MRPC									

Bits	Descriptions	
		MAC Receive Pause Count
[15:0]	MDDC	Default Value: 16'h0
[15:0] MRPC	The MRPC keeps the operand field of the PAUSE control frame. It indicates how many slot time (512 bit time) the Tx of EMC will be paused.	

MAC Receive Pause Current Count Register (MRPCC)

The EMC of NUC950ADN supports the PAUSE control frame reception and recognition. If EMC received a PAUSE control frame, the operand field of the PAUSE control frame will be extracted and stored into a down count timer. The MRPCC shows the current value of that down count timer for S/W to know how long the Tx of EMC will be paused. The MRPCC is read only and write to this register has no effect.

Register	Address	R/W	Description	Reset Value
MRPCC	0xB000_30C0	R	MAC Receive Pause Current Count Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	MRPCC									
7 6 5 4 3 2 1 0										
	MRPCC									

Bits	Descriptions	
		MAC Receive Pause Current Count Default Value: 16'h0
[15:0]	MRPCC	The MRPCC shows the current value of that down count timer. If a new PAUSE control frame is received before the timer count down to zero, the new operand of the PAUSE control frame will be stored into the down count timer and the timer starts count down from the new value.

MAC Remote Pause Count Register (MREPC)

The EMC of NUC950ADN supports the PAUSE control frame transmission. After the PAUSE control frame is transmitted out completely, a timer starts to count down from the value of operand of the transmitted PAUSE control frame. The MREPC shows the current value of this down count timer. The MREPC is read only and write to this register has no effect.

Register	Address	R/W	Description	Reset Value
MREPC	0xB000_30C4	R	MAC Remote Pause Count Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	23 22 21 20 19 18 17 16								
	Reserved								
15	14	13	12	11	10	9	8		
	MREPC								
7 6 5 4 3 2 1 0									
	MREPC								

Bits	Descriptions	
[15:0]	MREPC	MAC Remote Pause Count Default Value: 16'h0 The MREPC shows the current value of the down count timer that starts to count down from the value of operand of the transmitted PAUSE control frame.

DMA Receive Frame Status Register (DMARFS)

The DMARFS is used to keep the Length/Type field of each incoming Ethernet packet. This register is write-clear and writes 1 to corresponding bit clears the bit.

Register	Address	R/W	Description	Reset Value
DMARFS	0xB000_30C8	R/W	DMA Receive Frame Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	23 22 21 20 19 18 17 16								
	Reserved								
15	14	13	12	11	10	9	8		
			RX	FLT					
7 6 5 4 3 2 1 0									
	RXFLT								

Descriptions	
RXFLT	Receive Frame Length/Type Default Value: 16'h0 The RXFLT keeps the Length/Type field of each incoming Ethernet packet. If the bit EnDEN of MIEN is enabled and the Length/Type field of incoming packet has received, the bit DENI of MISTA will be set and trigger interrupt. And, the content of Length/Type field will be stored in RXFLT.

Current Transmit Descriptor Start Address Register (CTXDSA)

Register	Address	R/W	Description	Reset Value
CTXDSA	0xB000_30CC	R	Current Transmit Descriptor Start Address Register	0x0000_0000

31	30	29	28	27	26	25	24			
CTXDSA										
23	23 22 21 20 19 18 17 16									
	CTXDSA									
15	14	13	12	11	10	9	8			
			СТХ	DSA						
7 6 5 4 3 2 1 0										
	CTXDSA									

Bits	Descriptions	
[31:0]	CTXDSA	Current Transmit Descriptor Start Address Default Value: 32'h0 The CTXDSA keeps the start address of Tx descriptor that is used by TxDMA currently. The CTXDSA is read only and write to this register has no effect.

Current Transmit Buffer Start Address Register (CTXBSA)

Register	Address	R/W	Description	Reset Value
CTXBSA	0xB000_30D0	R	Current Transmit Buffer Start Address Register	0x0000_0000

31	30	29	28	27	26	25	24			
CTXBSA										
23	23 22 21 20 19 18 17 16									
	CTXBSA									
15	14	13	12	11	10	9	8			
	CTXBSA									
7 6 5 4 3 2 1 0										
	CTXBSA									

Bits	Descriptions	
[31:0]	CTXBSA	Current Transmit Buffer Start Address Default Value: 32'h0 The CTXDSA keeps the start address of Tx frame buffer that is used by TxDMA currently. The CTXBSA is read only and write to this register has no effect.

Current Receive Descriptor Start Address Register (CRXDSA)

Register	Address	R/W	Description					Reset Value
CRXDSA	0xB000_30D4	R	Current Register	Receive	Descriptor	Start	Address	0x0000_0000

31	30	29	28	27	26	25	24		
CRXDSA									
23	22	21	20	19	18	17	16		
	CRXDSA								
15	14	13	12	11	10	9	8		
	CRXDSA								
7	6	5	4	3	2	1	0		
			CRX	DSA					

Bits	Descriptions	
[31:0]	CRXDSA	Current Receive Descriptor Start Address Default Value: 32'h0 The CRXDSA keeps the start address of Rx descriptor that is used by RxDMA currently. The CRXDSA is read only and write to this register has no effect.

Current Receive Buffer Start Address Register (CRXBSA)

Register	Address	R/W	Description	Reset Value
CRXBSA	0xB000_30D8	R	Current Receive Buffer Start Address Register	0x0000_0000

31	30	29	28	27	26	25	24		
CRXBSA									
23	22	21	20	19	18	17	16		
	CRXBSA								
15	14	13	12	11	10	9	8		
	CRXBSA								
7	6	5	4	3	2	1	0		
	CRXBSA								

Bits	Descriptions	
[31:0]	CRXBSA	Current Receive Buffer Start Address Default Value: 32'h0 The CRXBSA keeps the start address of Rx frame buffer that is used by RxDMA currently. The CRXBSA is read only and write to this register has no effect.

Publication Release Date: Jun. 18, 2010

7.5.4 Operation Notes

MII Management Interface

The operation mode between EMC and external PHY must be identically. Consequently, S/W has to access control register of external PHY through MII management interface to get operation information of PHY. To issue MII management command to access external PHY, the MIID and MIIDA registers can be used. And, while using MII management interface, the EnMDC of MCMDR register must be set to high.

EMC Initial

If S/W wants to enable EMC for packet transmission and reception, the TXON and RXON of MCMDR register must be enabled. But, before enabling TXON and RXON, the following issues must be noted.

For packet transmission, the Tx descriptor link list and Tx frame buffer must be prepared and TXDLSA must be configured.

For incoming packet destination MAC address recognition, the CAMCMR, CAMEN, CAMXM and CAMXL registers must be configured. For incoming packet's buffering, the Rx descriptor link list and Rx frame buffer must be prepared and RXDLSA register must be configured.

Besides, the interrupt status that S/W wants to know must be enabled through MIEN register.

Finally, the EMC operation mode control bits of MCMDR must be configured and TXON and RXON must be enabled.

MAC Interrupt Status Register (MISTA)

The MISTA register keeps the status of EMC operation. It is recommended that S/W must enable four interrupt statuses at least. They are TxBErr, RxBErr, TDU and RDU.

While EMC accesses memory, it reports the memory error through TxBErr or TxBErr status. If any of them actives, the reset EMC is recommended.

For packet transmission, a valid Tx descriptor is required, and for packet reception, a valid Rx one is. If EMC cannot find a valid Tx or Rx descriptor, it sets TDU or RDU to high respectively. After S/W releases a valid Tx or Rx descriptor to EMC, writing TSDR or RSDR register to enable packet transmission and reception again is needed.

Pause Control Frame Transmission

The EMC supports the PAUSE control frame transmission for flow control while EMC is operating on full-duplex mode. The register CAM13M, CAM13L, CAM14M, CAM14L, CAM15M and CAM15L are designed for this purpose.

For PAUSE control frame transmission, first, S/W must configure destination MAC address of control frame into the register pair {CAM13M, CAM13L}, source MAC address into the register pair {CAM14M, CAM14L}, and configure length/type, op-code and operand of control frame into the register pair {CAM15M, CAM15L}. The bit CAM13EN, CAM14EN and CAM15EN of CAMEN register are also needed be enabled. Then, set bit SDPZ of MCMDR register to high to enable PAUSE control frame transmission. After the PAUSE control frame transmission completed, the SDPZ will be cleared automatically.

Internal Loop-back

If the LBK of MCMDR register is set, the EMC operates on internal loop-back mode. While EMC operates on internal loop-back mode, it also means EMC operates on full-duplex mode, and the value of FDUP of

Publication Release Date: Jun. 18, 2010

MCMDR register is ignored.

7.6 GDMA Controller

7.6.1 Overview & Features

The chip has a two-channel general DMA controller with or without descriptor fetch operation, called the GDMA. The two-channel GDMA performs the following data transfers without the CPU intervention:

- Memory-to-memory (memory to/from memory)
- Memory -to IO
- IO- to -memory

The on-chip GDMA can be started by the software. Software can also be used to restart the GDMA operation after it has been stopped. The CPU can recognize the completion of a GDMA operation by software polling or when it receives an internal GDMA interrupt. The GDMA controller can increment source or destination address, decrement them as well, and conduct 8-bit (byte), 16-bit (half-word), or 32-bit (word) data transfers.

7.6.2 GDMA Non-Descriptor Functional Description

The GDMA directly transfers data between source and destination. The GDMA starts to transfer data after it receives service requests from software. When the entire data have been transferred completely, the GDMA becomes idle. Nevertheless, if another transfer is needed, then the GDMA must be programmed again.

7.6.3 GDMA Descriptor Functional Description

The descriptor-fetch function works when run-bit (bit-3) is set and non-dsptrmode-bit (bit-2) is cleared in Descriptor Register (GDMA_DADRx) and the GDMA_CTLx bit setting as following table. The Non-descriptor-fetch function works when software triggers the [softreq] bit (bit-16) and the [gdmaen] bit (bit-0) in GDMA_CTLx Register. If the [softreq] set to zero and the [GDMAMS] (bit2-3) set as 01 or 10 will start the I/O to memory function. Software can also be used to restart the GDMA operation after it has been stopped. The CPU can recognize the completion of a GDMA operation by software polling or when it receives an internal GDMA interrupt. The GDMA controller can increase source or destination address, decrease them as well, and conduct 8-bit (byte), 16-bit (half-word), or 32-bit (word) data transfers.

Operation Mode	Enable bit
Non-Descriptor Mode with SW Enable	GDMA_CTLx : gdmaen[0] softreq[16] gdmams[3:2]
Non-Descriptor Mode with I/O Enable	GDMA_CTLx : gdmaen[0] gdmams[3:2]

Publication Release Date: Jun. 18, 2010

Descriptor Mode with SW Enable	GDMA_DADRx : run[3] non-dsptrmode[2];
	GDMA_CTLx in Descriptor List : gdmaen[0] gdmams[3:2]
Descriptor Mode with I/O Enable	GDMA_DADRx : run[3] non-dsptrmode[2];
	GDMA_CTLx in Descriptor List: gdmaen[0] gdmams[3:2]

7.6.3.1 Descriptor Fetch Function

The Illustration of Descriptor list fetches:

Publication Release Date: Jun. 18, 2010

Descriptor-based function (GDMA_DADRx [NON_DSPTRMODE] = 0) operate in the following condition:

Memory to Memory

- 1. Software can write a value 0x04 to current GDMA_DADRx register to reset the register and disable Descriptor based function first.
- 2. Then software can program the bits of [Descriptor Address], [RUN], [NON_DSPTRMODE] and [ORDEN] to the GDMA_DADRx register to enable Descriptor based function. (The Descriptor can only work when the [RUN] [3] is set and [NON_DSPTRMODE] [2] bit is cleared properly.)
- 3. After sets current GDMA_DADRx register, the GDMA will fetch four-word information from memory immediately which contains the next Descriptor address, Source Address, Destination Address and Command information. (Command information consists of control and counter registers)

NOTE: GDMA will read the descriptor list from memory such the diagram above and write back to GDMA internal register (next GDMA_DADRx), GDMA_SRCBx, GDMA_DSTBx, GDMA_CTLx and GDMA_TCNTx registers. The most important one of write back is command information, which will separate some bits of command information into control and counter registers respectively. The first fourteen bits of the MSB of the Command information in Descriptor list will be written back to GDMA_TCNTx register, and the others bits of the Command information will be written back to GDMA_CTLx register. The control register part of the Command information will update the GDMA_CTLx register during every descriptor fetch. The allocation of command information is described at GDMA Register Descriptions.

The Allocation of Command Information in Descriptor List:

31	30	29	28	27	26	25	24			
	GDMA_TCNTx[13:6] ← Command Info[31:24]									
23	22	21	20	19	18	17	16			
	GDMA_TC	$NTx[5:0] \leftarrow Con$	nmand Info[23:18]		BLOCK	SOFTREQ			
15	14	13	12	11	10	9	8			
TV	VS	RESER	VED	D_INTS	D_INTS	RESE	RVED			
7	6	5	4	3	2	1	0			
SAFIX	DAFIX	SADIR	DADIR	GDMAMS		BME	GDMAEN			

- 4. GDMA will depend on the information to request a bus ownership and start the data transfer when GDMA has gotten a bus grant from the arbiter, otherwise, it will wait until get bus grant. The data transfer direction is dependent on the Control register.
- 5. The GDMA transfers data and releases bus at every burst transfer. The GDMA will stop transfer for current descriptor when the counter is decreased to zero. The current GDMA_DADRx will be updated by next GDMA_DADRx at end of each descriptor transfer.
- 6. The GDMA is running consecutively unless the next GDMA_DADRx[RUN] bit is zero or interrupt status bit of GDMA_INTCS register is cleared. The CPU can recognize the completion of a GDMA descriptor fetch operation by polling the current GDMA_DADRx[NON_DSPTRMODE] bit or set the GDMA_CTLx[D_INTS] to receive a interrupt from GDMA.(Note: The recommendation is the [NON_DSPTRMODE] bit in list is set at

Publication Release Date: Jun. 18, 2010

the same time)

7. When an error occurs in the descriptor operation, GDMA will clear [RUN] bit and stop channel operation immediately. Software can reset the channel, and sets the current GDMA_DADRx [RUN] register to start again.

Memory to I/O and I/O to Memory

- 1. Software must set the [REQ_ATV], [ACK_ATV] and [GDMAMS] bits in GDMA_CTLx register corresponding to I/O pin with pull high or pull low properly first, and then set the current GDMA_DADRx to start the I/O to Memory with descriptor fetch transfer.
- 2. The descriptor lists stop transfer until the RUN bit was zero in descriptor list when external I/O request triggered once. The RUN bit can be set when external I/O request triggered again under the NON_DSPTRMODE bit was zero in descriptor list. The trigger period of the external I/O has a timing limitation whatever the GDMA was in single or burst mode, and the periodic trigger of the external I/O must be less than 38 MCLK.
- 3. Each GDMA lists can operate after clearing interrupt status. The descriptor lists stop transfer until the RUN bit was zero or interrupt status was set.
- 4. The next Descriptor address, Source Address, Destination Address and Command information must be set properly in every Descriptor list. Especially, every bit of the Command information will update the GDMA_CTLx and GDMA_TCNTx registers at every initiation of descriptor list.

NOTE: The [BLOCK] bit of GDMA_CTLx register is disabled when the descriptor mode of the I/O to memory is enabled.

NOTE: GDMA can change mode with following description:

Descriptor-fetch of each channel can be stopped until the current transfer list done. Software can change Descriptor mode to Non-Descriptor mode by writing 0x04 to GDMA_DADRx register during the current descriptor transfer operating.

Non-Descriptor fetch can be stopped until current transfer count finished when software programs the GDMA_CTLx register with gdmaen bit cleared or softreq cleared.

NOTE: Once software programs the current GDMA_DADRx register, GDMA will fetch the descriptor list from memory and fill the data to next GDMA_DADRx, current GDMA_SRCBx, current GDMA_DSTBx, current GDMA_CTLx and current GDMA_TCNTx registers automatically. The fourth word in descriptor list includes the information for GDMA_CTLx and GDMA_TCNTx registers.

NOTE: The descriptor fetch function only occurs when current GDMA_DADRx [RUN] bit is set and GDMA_DADRx [NON_DSPTRMODE] is cleared. The current GDMA_DADRx will be updated by next GDMA_DADRx at every descriptor stops.

Publication Release Date: Jun. 18, 2010

7.6.3.2 Ordering function in Descriptor fetch mode

This function determines the source of next descriptor address. If [ORDEN] is set, the GDMA controller fetches the next descriptor from current GDMA DADRx [Descriptor Address] + 16 bytes.

If this bit is cleared, GDMA fetches the next descriptor from the current GDMA_DADRx [Descriptor Address].

GDMA_DADRx [ORDEN] is only relevant to descriptor-fetch function (GDMA_DADRx [NON_DSPTRMODE] = 0).

7.6.3.3 Channel Reset

The Channel reset is turned on when the bit-0 of GDMA_DADRx is set. This function will clear all status and stop the descriptor based function relative to individual channel. The GDMA_DADRx register value is 0x05h when reset bit is set.

7.6.3.4 Non-Descriptor Fetch Function

The non-descriptor-fetch function will take place when current GDMA_DADRx [NON_DSPTRMODE] is set and the GDMA_DADRx register will have no any intention for the GDMA controller.

The default value of GDMA_DADRx is 0x04. Software can clear GDMA_DADRx with value 0x04 as well. In this mode, software should write a valid source address to the GDMA_SRCBx register, a destination address to the GDMA_DSTBx register, and a transfer count to the GDMA_TCNTx register. Next, the GDMA_CTLx of [gdmaen] and [softreq] bits must be set. A non-descriptor fetch is performed when bus granted. After transferring a number of bytes or words correspond with burst mode or not, the channel either waits for the next request or continues with the data transfer until the GDMA_CTCNTx reaches zero. When GDMA_CTCNTx reaches zero, the channel stops operation.

When an error occurs during the GDMA operation, the channel stops unless software clears the error condition and sets the GDMA_CTLx of [gdmaen] and [softreq] bits field to start again.

7.6.4 GDMA Register Map

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register	Address	R/W	Description	Reset Value				
GDMA_BA = 0xB0	GDMA_BA = 0xB000_4000							
GDMA_CTL0	0xB000_4000	R/W	Channel 0 Control Register	0x0000_0000				
GDMA_SRCB0	0xB000_4004	R/W	Channel 0 Source Base Address Register	0x0000_0000				
GDMA_DSTB0	0xB000_4008	R/W	Channel 0 Destination Base Address Register	0x0000_0000				
GDMA_TCNTO	0xB000_400C	R/W	Channel 0 Transfer Count Register	0x0000_0000				

Publication Release Date: Jun. 18, 2010

				-
GDMA_CSRC0	0xB000_4010	R	Channel 0 Current Source Address Register	0x0000_0000
GDMA_CDST0	0xB000_4014	R	Channel 0 Current Destination Address Reg.	0x0000_0000
GDMA_CTCNTO	0xB000_4018	R	Channel 0 Current Transfer Count Register	0x0000_0000
GDMA_DADR0	0xB000_401C	R/W	Channel 0 Descriptor Address Register	0x0000_0004
GDMA_CTL1	0xB000_4020	R/W	Channel 1 Control Register	0x0000_0000
GDMA_SRCB1	0xB000_4024	R/W	Channel 1 Source Base Address Register	0x0000_0000
GDMA_DSTB1	0xB000_4028	R/W	Channel 1 Destination Base Address Register	0x0000_0000
GDMA_TCNT1	0xB000_402C	R/W	Channel 1 Transfer Count Register	0x0000_0000
GDMA_CSRC1	0xB000_4030	R	Channel 1 Current Source Address Register	0x0000_0000
GDMA_CDST1	0xB000_4034	R	Channel 1 Current Destination Address Reg.	0x0000_0000
GDMA_CTCNT1	0xB000_4038	R	Channel 1 Current Transfer Count Register	0x0000_0000
GDMA_DADR1	0xB000_403C	R/W	Channel 1 Descriptor Address Register	0x0000_0004
GDMA_INTBUFO	0xB000_4080	R	GDMA Internal Buffer Word 0	0x0000_0000
GDMA_INTBUF1	0xB000_4084	R	GDMA Internal Buffer Word 1	0x0000_0000
GDMA_INTBUF2	0xB000_4088	R	GDMA Internal Buffer Word 2	0x0000_0000
GDMA_INTBUF3	0xB000_408C	R	GDMA Internal Buffer Word 3	0x0000_0000
GDMA_INTBUF4	0xB000_4090	R	GDMA Internal Buffer Word 4	0x0000_0000
GDMA_INTBUF5	0xB000_4094	R	GDMA Internal Buffer Word 5	0x0000_0000
GDMA_INTBUF6	0xB000_4098	R	GDMA Internal Buffer Word 6	0x0000_0000
GDMA_INTBUF7	0xB000_409C	R	GDMA Internal Buffer Word 7	0x0000_0000
GDMA_INTCS	0xB000_40A0	R/W	Interrupt Control and Status Register (2 Channels)	0x0000_0000

Channel 0/1 Control Register (GDMA_CTL0, GDMA_CTL1)

Register	Address R/W		Description	Reset Value
GDMA_CTL0	0xB000_4000	R/W	Channel 0 Control Register	0x0000_0000
GDMA_CTL1	0xB000_4020	R/W	Channel 1 Control Register	0x0000_0000

The control registers has two formats for descriptor fetch and non-descriptor fetch function respectively. The functionality of each control bit is described in following table.

1. Non-Descriptor fetches Mode

31	30	29	28	27	26	25	24
RESERVED							RESERVED
23	22	21	20	19	18	17	16
RESERVED	SABNDERR	DABNDERR	RESERVED	AUTOIEN	RESERVED	BLOCK	SOFTREQ
15	14	13	12	11	10	9	8
RESERVED	RESERVED	ΤV	vs		RESE	ERVED	
7	6	5	4	3	2	1	0
SAFIX	DAFIX	SADIR	DADIR	GDM	IAMS	BME	GDMAEN

2. Descriptor fetches Mode

31	30	29	28	27	26	25	24
	RESERVED						RESERVED
23	22	21	20	19	18	17	16
RESERVED	SABNDERR	DABNDERR	RESERVED			BLOCK	SOFTREQ
15	14	13	12	11	10	9	8
RESE	RVED	TW	S	RESERVED	D_INTS	RESE	RVED
7	6	5	4	3	2	1	0
SAFIX	DAFIX	SADIR	DADIR	GDM	AMS	BME	GDMAEN

NOTE:

- □ The bit [REQ_ATV] and [ACK_ATV] must be set first before using I/O to Memory mode with Descriptor fetch transfer. These two bits cannot do any setup in command information within descriptor list configuration. The [SABNDERR], [DABNDERR], [GDMAERR] can also be read at descriptor fetch mode.
- Regardless of GDMA operate in descriptor mode or non-descriptor mode, when transfer width is 16-bit (half word) and the address with decrement function enable for starting source address or destination address or both are used should set the least two bit of addresses is 0xF.

Publication Release Date: Jun. 18, 2010

Control Register of Non-Descriptor fetches Mode:

Bits	Descriptions	
[22]	SABNDERR	Source Address Boundary Alignment Error Flag If TWS [13:12]=10, GDMA_SRCB [1:0] should be 00 If TWS [13:12]=01, GDMA_SRCB [0] should be 0 Except the SADIR function enabled. The address boundary alignment should be depended on TWS [13:12]. 0 = the GDMA_SRCB is on the boundary alignment. 1 = the GDMA_SRCB not on the boundary alignment The SABNDERR register bits just can be read only.
[21]	DABNDERR	Destination Address Boundary Alignment Error Flag If TWS [13:12]=10, GDMA_DSTB [1:0] should be 00 If TWS [13:12]=01, GDMA_DSTB [0] should be 0 Except the SADIR function enabled. The address boundary alignment should be depended on TWS [13:12]. 0 = the GDMA_DSTB is on the boundary alignment. 1 = the GDMA_DSTB not on the boundary alignment The DABNDERR register bits just can be read only.
[19]	AUTOIEN	Auto initialization Enable 0 = Disables auto initialization 1 = Enables auto initialization, the GDMA_CSRCO/1, GDMA_CDSTO/1, and GDMA_CTCNTO/1 registers are updated by the GDMA_SRCO/1, GDMA_DSTO/1, and GDMA_TCNTO/1 registers automatically when transfer is complete. GDMA will start another transfer when SOFTREQ set again.
[17]	BLOCK	Bus Lock 0 = Unlocks the bus during the period of transfer 1 = locks the bus during the period of transfer

173

Publication Release Date: Jun. 18, 2010

Bits	Descriptions			
		Software Triggered GDMA Request		
[16]	SOFTREQ	Software can request the GDMA transfer service by setting this bit to 1. This bit is automatically cleared by hardware when the transfer is completed. This bit is available only while GDMAMS [3:2] register bits are set on software mode (memory to memory and memory to I/O).		
		Transfer Width Select		
		00 = One byte (8 bits) is transferred for every GDMA operation		
		01 = One half-word (16 bits) is transferred for every GDMA operation		
[13:12]	TWS	10 = One word (32 bits) is transferred for every GDMA operation		
		11 = Reserved		
		The GDMA_SCRB and GDMA_DSTB should be alignment under the TWS selection		
		Source Address Fixed		
	SAFIX	0 = Source address is changed during the GDMA operation		
[7]		1 = Do not change the destination address during the GDMA operation. This feature can be used when data were transferred from a single source to multiple destinations.		
		Destination Address Fixed		
	DAFIX	0 = Destination address is changed during the GDMA operation		
[6]		1 = Do not change the destination address during the GDMA operation. This feature can be used when data were transferred from multiple sources to a single destination.		
		Source Address Direction		
[5]	DADIR	0 = Source address is incremented successively		
		1 = Source address is decremented successively		
		Destination Address Direction		
[4]	DADIR	0 = Destination address is incremented successively		
		1 = Destination address is decremented successively		
		GDMA Mode Select		
		00 = Software mode		
[3:2]	GDMAMS	01 = Reserved		
		10 = Reserved		
		11 = Reserved		

Publication Release Date: Jun. 18, 2010 Revision: A4

Bits	Descriptions	
		Burst Mode Enable
		0 = Disables the 8-data burst mode
		1 = Enables the 8-data burst mode
[1]	ВМЕ	If there are 8 words to be transferred, and the BME $[1] = 1$, the GDMA_TCNTx should be 0x01. However, if BME $[1] = 0$, the GDMA_TCNTx should be 0x08.
		It has to set BME $[1] = 0$ for I/O device access.
		GDMA Enable
		0 = Disables the GDMA operation
		1 = Enables the GDMA operation; this bit will be clear automatically when the transfer is complete on AUTOIEN [19] register bit is on Disable mode.
[0]	GDMAEN	Note:
		When operate in Non-Descriptor mode, this bit determines the Memory-to Memory, Memory-to-I/O and I/O-to-Memory operation or not.
		When operate in Descriptor mode, this bit is determined in descriptor list.
		Note: Channel reset will clear this bit.

Descriptor fetches mode of Control Register:

Bits	Descriptions	
[22]	SABNDERR	Source Address Boundary Alignment Error Flag If TWS [13:12]=10, GDMA_SRCB [1:0] should be 00 If TWS [13:12]=01, GDMA_SRCB [0] should be 0 Except the SADIR function enabled. The address boundary alignment should be depended on TWS [13:12]. 0 = the GDMA_SRCB is on the boundary alignment. 1 = the GDMA_SRCB not on the boundary alignment The SABNDERR register bits just can be read only.
[21]	DABNDERR	Destination Address Boundary Alignment Error Flag If TWS [13:12]=10, GDMA_DSTB [1:0] should be 00 If TWS [13:12]=01, GDMA_DSTB [0] should be 0 Except the DADIR function enabled. The address boundary alignment should be depended on TWS [13:12]. 0 = the GDMA_DSTB is on the boundary alignment. 1 = the GDMA_DSTB not on the boundary alignment The DABNDERR register bits just can be read only.
[17]	ВLОСК	Bus Lock 0 = Unlocks the bus during the period of transfer 1 = locks the bus during the period of transfer
[13:12	TWS	Transfer Width Select 00 = One byte (8 bits) is transferred for every GDMA operation 01 = One half-word (16 bits) is transferred for every GDMA operation 10 = One word (32 bits) is transferred for every GDMA operation 11 = Reserved The GDMA_SCRB and GDMA_DSTB should be alignment under the TWS selection
[10]	D_INTS	Descriptor Fetch Mode Interrupt Select 0 = The interrupt will take place at every end of descriptor fetch transfer. 1 = The interrupt only take place at the last descriptor fetch transfer. NOTE: this bit is only available in descriptor mode and lists intention.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Source Address Fixed
		0 = Source address is changed during the GDMA operation
[7]	SAFIX	$1 = \mbox{Do not}$ change the source address during the GDMA operation. This feature can be used when data were transferred from a single source to multiple destinations.
		Destination Address Fixed
		0 = Destination address is changed during the GDMA operation
[6]	DAFIX	1 = Do not change the destination address during the GDMA operation. This feature can be used when data were transferred from multiple sources to a single destination.
		Source Address Direction
[5]	SADIR	0 = Source address is incremented successively
		1 = Source address is decremented successively
		Destination Address Direction
[4]	DADIR	0 = Destination address is incremented successively
		1 = Destination address is decremented successively
		GDMA Mode Select
	GDMAMS	00 = Software mode
[3:2]		01 = Reserved
		10 = Reserved
		11 = Reserved
		Burst Mode Enable
	вме	0 = Disables the 8-data burst mode
543		1 = Enables the 8-data burst mode
[1]		If there are 8 words to be transferred, and the BME $[1] = 1$, the GDMA_TCNTx should be 0x01. However, if BME $[1] = 0$, the GDMA_TCNTx should be 0x08.
		It has to set BME [1] = 0 for I/O device access.

Bits	Descriptions	
		GDMA Enable
		0 = Disables the GDMA operation
		1 = Enables the GDMA operation; this bit will be clear automatically when the transfer is complete on AUTOIEN [19] register bit is on Disable mode.
[0]	[0] GDMAEN	When operate in Non-Descriptor mode, this bit determines the Memory-to-Memory, Memory-to-I/O and I/O-to-Memory operation or not.
		When operate in Descriptor mode, this bit determines the I/O-to-Memory operation or not.
		Channel reset will clear this bit.

Channel 0/1 Source Base Address Register (GDMA_SRCB0, GDMA_SRCB1)

Register	Address	R/W	Description	Reset Value
GDMA_SRCB0	GDMA_SRCB0 0xB000_4004		Channel 0 Source Base Address Register	0x0000_0000
GDMA_SRCB1	0xB000_4024	R/W	Channel 1 Source Base Address Register	0x0000_0000

31	30	29	28	27	26	25	24		
	SRC_BASE_ADDR [31:24]								
23	22	21	20	19	18	17	16		
	SRC_BASE_ADDR [23:16]								
15	14	13	12	11	10	9	8		
		S	RC_BASE_A	ADDR [15:8	3]				
7 6 5 4 3 2 1 0									
	SRC_BASE_ADDR [7:0]								

Bits	Descriptions					
[31:0]	SRC_BASE_ADDR	32-bit Source Base Address The GDMA channel starts reading its data from the source address as defined in this source base address register.				

Channel 0/1 Destination Base Address Register (GDMA_DSTB0, GDMA_DSTB1)

Register	Address	R/W	Description	Reset Value
GDMA_DSTB0	0xB000_4008	R/W	Channel 0 Destination Base Address Register	0x0000_0000
GDMA_DSTB1	0xB000_4028	R/W	Channel 1 Destination Base Address Register	0x0000_0000

31	30	29	28	27	26	25	24		
	DST_BASE_ADDR [31:24]								
23	22	21	20	19	18	17	16		
	DST_BASE_ADDR [23:16]								
15	14	13	12	11	10	9	8		
		D	ST_BASE_A	ADDR [15:8	3]				
7 6 5 4 3 2 1 0									
	DST_BASE_ADDR [7:0]								

Bits	Descriptions	
[31:0]	DST_BASE_ADDR	32-bit Destination Base Address The GDMA channel starts writing its data to the destination address as defined in this destination base address register. During a block transfer, the GDMA determines successive destination addresses by adding to or subtracting from the destination base address.

Publication Release Date: Jun. 18, 2010

Channel 0/1 Transfer Count Register (GDMA_TCNT0, GDMA_TCNT1)

Register	Address	R/W	Description	Reset Value
GDMA_TCNT0	0xB000_400C	R/W	Channel 0 Transfer Count Register	0x0000_0000
GDMA_TCNT1	0xB000_402C	R/W	Channel 1 Transfer Count Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
TFR_CNT [23:16]							
15	14	13	12	11	10	9	8
TFR_CNT [15:8]							
7	6	5	4	3	2	1	0
	TFR_CNT [7:0]						

Bits	Descriptions	
[23:0]	TFR_CNT	Transfer Count Non-Descriptor Mode:24-bit TFR_CNT [23:0] The TFR_CNT represents the required number of GDMA transfers. The maximum transfer count is 16M -1.
		Descriptor Mode: 14-bit TFR_CNT [13:0] The TFR_CNT represents the required number of GDMA transfers. The maximum transfer count is 16K -1.

Publication Release Date: Jun. 18, 2010

Channel 0/1 Current Source Register (GDMA_CSRC0, GDMA_CSRC1)

Register	Address	R/W	Description	Reset Value	
GDMA_CSRC0	0xB000_4010	R	Channel 0 Current Source Address Register	0x0000_0000	
GDMA_CSRC1	0xB000_4030	R	Channel 1 Current Source Address Register	0x0000_0000	

31	30	29	28	27	26	25	24
CURRENT_SRC_ADDR [31:24]							
23	22	22 21 20 19 18 17 16					
CURRENT_SRC_ADDR [23:16]							
15	14	13 12 11 10 9 8					8
CURRENT_SRC_ADDR [15:8]							
7	6	5	4	3	2	1	0
	CURRENT_SRC_ADDR [7:0]						

	Bits	Descriptions	
[31:0] CURRENT_SRC_ADDR GDMA determines the successive source addresses by adding or subtracting from the source base address. Depending on settings you make to the control register, the current source base address.	[31:0]	CURRENT_SRC_ADDR	The CURRENT_SRC_ADDR indicates the source address where the GDMA transfer is just occurring. During a block transfer, the GDMA determines the successive source addresses by adding to or subtracting from the source base address. Depending on the settings you make to the control register, the current source address will remain the same or will be incremented or

Channel 0/1 Current Destination Register (GDMA_CDST0, GDMA_CDST1)

Register	Address	R/W	Description	Reset Value
GDMA_CDST0	0xB000_4014	R	Channel 0 Current Destination Address Register	0x0000_0000
GDMA_CDST1	0xB000_4034	R	Channel 1 Current Destination Address Register	0x0000_0000

31	30	29	28	27	26	25	24
CURRENT_DST_ADDR [31:24]							
23	22	22 21 20 19 18 17 16					
CURRENT_DST_ADDR [23:16]							
15	14	14 13 12 11 10 9 8					8
CURRENT_DST_ADDR [15:8]							
7	6	5	4	3	2	1	0
	CURRENT_DST_ADDR [7:0]						

Bits	Descriptions	
[31:0]	CURRENT_DST_ADDR	32-bit Current Destination Address The CURRENT_DST_ADDR indicates the destination address where the GDMA transfer is just occurring. During a block transfer, the GDMA determines the successive destination addresses by adding to or subtracting from the destination base address. Depending on the settings you make to the control register, the current destination address will remain the same or will be incremented or
		decremented.

Channel 0/1 Current Transfer Count Register (GDMA_CTCNT0, GDMA_CTCNT1)

Register	Address	R/W	Description	Reset Value
GDMA_CTCNT0	0xB000_4018	R	Channel 0 Current Transfer Count Register	0x0000_0000
GDMA_CTCNT1	0xB000_4038	R	Channel 1 Current Transfer Count Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
CURENT_TFR_CNT [23:16]							
15	14	13	12	11	10	9	8
CURRENT_TFR_CNT [15:8]							
7	6	5	4	3	2	1	0
	CURRENT_TFR_CNT [7:0]						

Bits	Descriptions	
	Current Transfer Count	
[23:0]	[23:0] CURRENT_TFR_CNT	The Current transfer count register indicates the number of transfer being performed.
		Non-Descriptor Mode: 24-bit CURENT_TFR_CNT [23:0]
		Descriptor Mode : 14-bit CURENT_TFR_CNT [13:0]

Publication Release Date: Jun. 18, 2010

Channel 0/1 Descriptor Register (GDMA_DADR0/1)

	Address	R/W	Description	Reset Value
GDMA_DADRO	0xB000_401C	R/W	Channel 0 Control Register	0x0000_0004
GDMA_DADR1	0xB000_403C	R/W	Channel 1 Control Register	0x0000_0004

31	30	29	28	27	26	25	24			
	Descriptor Address[31:24]									
23	22	21	20	19	18	17	16			
			Descrip	tor Addres	s[23:16]					
15	14	13	12	11	10	9	8			
	Descriptor Address[15:8]									
7	6	5	4	3	2	1	0			
Descriptor Address[7:4]				RUN	NON_DSPTRMODE	ORDEN	RESET			

Bits	Descriptions	
[31:4]	Descriptor	Descriptor Address
[31.4]	Address	Contains address of next descriptor.
[3]	RUN	Run The RUN bit can be cleared during descriptor data transfer, and set RUN bit to starts the stopped channel under [Descriptor Address] and [Non-DSPTRMODE] bits are set properly. When RUN bit is cleared and the NON_DSPTRMODE bit is set that non-descriptor fetch occurs whether a valid descriptor address is written to register GDMA_DADRx or not. This bit will reset automatically when each descriptor transfer stopped or the bit in descriptor list is zero. The Descriptor interrupt is determined by bit-10 of the GDMA_CTLx Register. 0 = Stops the channel. 1 = Starts the channel. Note: must co-operate to [NON_DSPTRMODE] to start the channel with Descriptor fetch function.

Bits	Descriptions	
		Non-Descriptor-Fetch
[2]	NON_DSPTRMODE	When NON_DSPTRMODE is set, the channel is considered as a channel with no descriptors. In this mode, the GDMA does not initiate descriptor fetching and software can program the SCRBx, DSTBx, CTRx and TCNTx registers to transfer data until the TCNTx reaches zero. The GDMA_DADRx register is not used in non-descriptor mode. If NON_DSPTRMDOE is cleared under [RUN] and [Descriptor Address] are set properly, GDMA controller initiates descriptor-fetching. The descriptor fetch transfer stops when the counter for the current transfer reaches zero, [RUN] bit is cleared and [NON_DSPTRMODE] is set base on the bits of the descriptor list.
		0 = Descriptor-fetch transfer
		1 = NON-descriptor-fetch transfer
		Note: this bit = 1 will disable Descriptor function regardless of the RUN bit is 1 or not.
		Enable Ordering Execution for Descriptor List
		The GDMA_DADRx [ORDEN] determine which the next descriptor address will be fetched. If [ORDEN] is set, the GDMA controller fetches the next descriptor from Current GDMA_DADRx [Descriptor Address] + 16 bytes.
		If this bit is cleared, GDMA fetches the next descriptor address from the current GDMA_DADRx [Descriptor Address] register.
[1]	ORDEN	$GDMA_DADRx$ [ORDEN] is relevant only for descriptor-fetch function (GDMA_DADRx [NON_DSPTRMODE] = 0).
		$0=$ Disable descriptor ordering. Fetch the next descriptor from register GDMA_DDADRx [Descriptor Address].
		1 = Enable descriptor ordering.
		Reset Channel
[0]	RESET	0 = Disable channel reset.
		1 = Enable channel status reset and disable descriptor based function.

186

Channel 0/1 GDMA Internal Buffer Register (GDMA_INTBUF0/1)

Software can set the [17-16] bit of GDMA_INTCS to select channels and watch the value which has read from memory.

Register	Address	R/W	Description	Reset Value
GDMA_INTBUFO	0xB000_4080	R	GDMA Internal Buffer Word 0	0×0000_0000
GDMA_INTBUF1	0xB000_4084	R	GDMA Internal Buffer Word 1	0x0000_0000
GDMA_INTBUF2	0xB000_4088	R	GDMA Internal Buffer Word 2	0x0000_0000
GDMA_INTBUF3	0xB000_408C	R	GDMA Internal Buffer Word 3	0x0000_0000
GDMA_INTBUF4	0xB000_4090	R	GDMA Internal Buffer Word 4	0x0000_0000
GDMA_INTBUF5	0xB000_4094	R	GDMA Internal Buffer Word 5	0×0000_0000
GDMA_INTBUF6	0xB000_4098	R	GDMA Internal Buffer Word 6	0×0000_0000
GDMA_INTBUF7	0xB000_409C	R	GDMA Internal Buffer Word 7	0×0000_0000

31	30	29	28	27	26	25	24		
	DATA_BUFFER [31:24]								
23	22	21	20	19	18	17	16		
	DATA_BUFFER [23:16]								
15	14	13	12	11	10	9	8		
	DATA_BUFFER [15:8]								
7	6	5	4	3	2	1	0		
			DATA_BU	FER [7:0]					

Bits	Descriptions	
[31:0]	DATA_BUFFER	Internal Buffer Register Each channel has its own internal buffer from Word 0 to Word 7. The [17-16] bit of GDMA_INTCS will determine the values of channels mapping to GDMA_INTBUF0~7. NOTE: The GDMA_INTBUF0~7 are available when burst mode used, otherwise, only the GDMA_INTBUFO available.

Publication Release Date: Jun. 18, 2010 Revision: A4

Channel 0/1 GDMA Interrupt Control and Status Register (GDMA_INTCS)

Register	Address	R/W	Description	Reset Value
GDMA_INTCS	0xB000_40A0	R/W	Interrupt Control and Status Register (2 Chs)	0×0000_0000

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
		RESER	VED			BUF_RD_SEL			
15	14	13	12	11	10	9	8		
	RESE	RVED		TERR1F	TC1F	TERROF	TCOF		
7	6	5	4	3	2	1	0		
	RESERVED				TC1EN	TERROEN	TCOEN		

Bits	Descriptions	
		Internal Buffer Read Select
		00 = Read Internal Buffer for Channel 0
[17:16]	BUF_RD_SEL	01 = Read Internal Buffer for Channel 1
		10 = RESERVED
		11 = RESERVED
		Channel 1 Transfer Error
	TERR1F	O = No error occurs
[11]		1 = Hardware sets this bit on a GDMA transfer failure
		This bit will be cleared when write logic 1.
		Transfer error will generate GDMA interrupt
		Channel 1 Terminal Count
		0 = Channel does not expire
[10]	TC1F	1 = Channel expires; this bit is set only by GDMA hardware, and clear by software to write logic 1.
		TC1 is the GDMA interrupt flag. TC1 or GDMATERR1 will generate interrupt

188

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[9]	TERROF	Channel O Transfer Error O = No error occurs 1 = Hardware sets this bit on a GDMA transfer failure This bit will be cleared when write logic 1. Transfer error will generate GDMA interrupt
[8]	TCOF	Channel O Terminal Count 0 = Channel does not expire 1 = Channel expires; this bit is set only by GDMA hardware, and clear by software to write logic 1. TC0 is the GDMA interrupt flag. TC0 or GDMATERRO will generate interrupt
[3]	TEER1EN	Channel 1 Interrupt Enable for Transfer Error 0 = Disable Interrupt 1 = Enable Interrupt
[2]	TC1EN	Channel 1 Interrupt Enable for Terminal Count 0 = Disable Interrupt 1 = Enable Interrupt
[1]	TEEROEN	Channel O Interrupt Enable for Transfer Error 0 = Disable Interrupt 1 = Enable Interrupt
[0]	TCOEN	Channel O Interrupt Enable for Terminal Count 0 = Disable Interrupt 1 = Enable Interrupt

7.7 USB Host Controller (USBH)

The **Universal Serial Bus (USB)** is a fast, bi-directional, isochronous, low-cost, dynamically attachable serial interface standard intended for USB devices. The USB is a 4-wire serial cable bus that supports serial data exchange between a Host Controller and a network of peripheral devices. The attached peripherals share USB bandwidth through a host-scheduled, token-based protocol. Peripherals may be attached, configured, used, and detached, while the host and other peripherals continue operation (i.e. hot plug and unplug is supported).

Publication Release Date: Jun. 18, 2010

A major design goal of the USB standard was to allow flexible, plug-and-play networks of USB devices. In any USB network, there will be only one host, but there can be many devices and hubs.

The USB Host Controller includes the following features

- Fully compliant with USB Revision 2.0 specification.
- Enhanced Host Controller Interface (EHCI) Revision 1.0 compatible.
- Open Host Controller Interface (OHCI) Revision 1.0 compatible.
- Supports high-speed (480Mbps), full-speed (12Mbps) and low-speed (1.5Mbps) USB devices.
- Supports Control, Bulk, Interrupt, Isochronous and Split transfers.
- Integrated a port routing logic to route full/low speed device to OHCI controller.
- Built-in DMA for real-time data transfer.

7.7.1 Register Mapping

Register	Offset	R/W	Description	Reset Value			
Capability F	Registers (USBI	H_BA =	0xB000_5000)				
EHCVNR	0xB000_5000	R	EHCI Version Number Register	0x0095_0020			
EHCSPR	0xB000_5004	R	EHCI Structural Parameters Register	0x0000_0012			
EHCCPR	0xB000_5008	R	EHCI Capability Parameters Register	0x0000_0000			
Operational	Operational Registers						
UCMDR	0xB000_5020	R/W	USB Command Register	0x0008_0000			
USTSR	0xB000_5024	R/W	USB Status Register	0x0000_1004			
UIENR	0xB000_5028	R/W	USB Interrupt Enable Register	0x0000_0000			
UFINDR	0xB000_502C	R/W	USB Frame Index Register	0x0000_0000			
UPFLBAR	0xB000_5034	R/W	USB Periodic Frame List Base Address Register	0x0000_0000			
UCALAR	0xB000_5038	R/W	USB Current Asynchronous List Address Register	0x0000_0000			
UASSTR	0xB000_503C	R/W	USB Asynchronous Schedule Sleep Timer Register	0x0000_0BD6			
UCFGR	0xB000_5060	R/W	USB Configure Flag Register	0x0000_0000			
UPSCR0	0xB000_5064	R/W	USB Port 0 Status and Control Register	0x0000_2000			
UPSCR1	0xB000_5068	R/W	USB Port 1 Status and Control Register	0x0000_2000			
Miscellaneo	us Registers						
USBPCR0	0xB000_50C4	R/W	USB PHY 0 Control Register	0x0000_0060			

190

Publication Release Date: Jun. 18, 2010

Register	Offset	R/W	Description	Reset Value
USBPCR1	0xB000_50C8	R/W	USB PHY 1 Control Register	0x0000_0020
OHCI Regis	ters (USBO_BA	= OxBC	000_7000)	
HcRev	0xB000_7000	R	Host Controller Revision Register	0x0000_0010
HcControl	0xB000_7004	R/W	Host Controller Control Register	0x0000_0000
HcComSts	0xB000_7008	R/W	Host Controller Command Status Register	0x0000_0000
HcIntSts	0xB000_700C	R/W	Host Controller Interrupt Status Register	0x0000_0000
HcIntEn	0xB000_7010	R/W	Host Controller Interrupt Enable Register	0x0000_0000
HcIntDis	0xB000_7014	R/W	Host Controller Interrupt Disable Register	0x0000_0000
HcHCCA	0xB000_7018	R/W	Host Controller Communication Area Register	0x0000_0000
HcPerCED	0xB000_701C	R/W	Host Controller Period Current ED Register	0x0000_0000
HcCtrHED	0xB000_7020	R/W	Host Controller Control Head ED Register	0x0000_0000
HcCtrCED	0xB000_7024	R/W	Host Controller Control Current ED Register	0x0000_0000
HcBlkHED	0xB000_7028	R/W	Host Controller Bulk Head ED Register	0x0000_0000
HcBlkCED	0xB000_702C	R/W	Host Controller Bulk Current ED Register	0x0000_0000
HcDoneH	0xB000_7030	R/W	Host Controller Done Head Register	0x0000_0000
HcFmIntv	0xB000_7034	R/W	Host Controller Frame Interval Register	0x0000_2EDF
HcFmRem	0xB000_7038	R	Host Controller Frame Remaining Register	0x0000_0000
HcFNum	0xB000_703C	R	Host Controller Frame Number Register	0x0000_0000
HcPerSt	0xB000_7040	R/W	Host Controller Periodic Start Register	0x0000_0000
HcLSTH	0xB000_7044	R/W	Host Controller Low Speed Threshold Register	0x0000_0628
HcRhDeA	0xB000_7048	R/W	Host Controller Root Hub Descriptor A Register	0x0100_0002
HcRhDeB	0xB000_704C	R/W	Host Controller Root Hub Descriptor B Register	0x0000_0000
HcRhSts	0xB000_7050	R/W	Host Controller Root Hub Status Register	0x0000_0000
HcRhPrt1	0xB000_7054	R/W	Host Controller Root Hub Port Status [1]	0x0000_0000
HcRhPrt2	0xB000_7058	R/W	Host Controller Root Hub Port Status [2]	0x0000_0000
OHCI USB C	Configuration R	egister		
OpModEn	0xB000_7204	R/W	USB Operational Mode Enable Register	0X0000_0000

191

Publication Release Date: Jun. 18, 2010

7.7.2 Register Details

EHCI Version Number Register (EHCVNR)

Register	Address	R/W	Description	Reset Value
EHCVNR	0xB000_5000	R	EHCI Version Number Register	0x0095_0020

31	30	29	28	27	26	25	24		
	Version								
23	22	21	20	19	18	17	16		
	Version								
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
	CR_Length								

Bits	Descriptions	
[31:16]	Version	Host Controller Interface Version Number This is a two-byte register containing a BCD encoding of the EHCI revision number supported by this host controller. The most significant byte of this register represents a major revision and the least significant byte is the minor revision.
[7:0]	CR_Length	Capability Registers Length This register is used as an offset to add to register base to find the beginning of the Operational Register Space.

EHCI Structural Parameters Register (EHCSPR)

Register	Address	R/W	Description	Reset Value
EHCSPR	0xB000_5004	R	EHCI Structural Parameters Register	0x0000_0012

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	N_CC				N_F	PCC			
7	6	5	4	3 2 1 0			0		
Reserved PI			PPC		N_P	ORTS			

Bits	Descriptio	Descriptions				
		Number of Companion Controller				
		This field indicates the number of companion controllers associated with this USB 2.0 host controller.				
[15:12]	N_CC	A zero in this field indicates there are no companion host controllers. Portownership hand-off is not supported. Only high-speed devices are supported on the host controller root ports.				
		A value larger than zero in this field indicates there are companion USB 1.1 host controller(s). Port-ownership hand-offs are supported. High, Full- and Low-speed devices are supported on the host controller root ports.				
		Number of Ports per Companion Controller				
		This field indicates the number of ports supported per companion host controller. It is used to indicate the port routing configuration to system software.				
[11:8]	N_PCC	For example, if N_PORTS has a value of 6 and N_CC has a value of 2 then N_PCC could have a value of 3. The convention is that the first N_PCC ports are assumed to be routed to companion controller 1, the next N_PCC ports to companion controller 2, etc. In the previous example, the N_PCC could have been 4, where the first 4 are routed to companion controller 1 and the last two are routed to companion controller 2.				
		The number in this field must be consistent with N_PORTS and N_CC.				

Publication Release Date: Jun. 18, 2010

elease Date: Jun. 18, 2010 Revision: A4

Bits	Descriptio	Descriptions				
[4]	PPC	Port Power Control This field indicates whether the host controller implementation includes port power control. A one in this bit indicates the ports have port power switches. A zero in this bit indicates the port do not have port power stitches. The value of this field affects the functionality of the <i>Port Power</i> field in each port status and control register.				
[3:0]	N_PORTS	Number of Physical Downstream Ports This field specifies the number of physical downstream ports implemented on this host controller. The value of this field determines how many port registers are addressable in the Operational Register Space. Valid values are in the range of 1H to FH. A zero in this field is undefined.				

EHCI Capability Parameters Register (EHCCPR)

Register	Address	R/W	Description	Reset Value
EHCCPR	0xB000_5008	R	EHCI Capability Parameters Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
EECP									
7	6	5	4	3	2	1	0		
ISO_SCH_TH				Reserved	ASPC	PFList	64B		

Bits	Descriptions			
[15:8]	EECP	EHCI Extended Capabilities Pointer (EECP) 8'h0: No extended capabilities are implemented.		
[7:4]	ISO_SCH_TH Isochronous Scheduling Threshold			
[2]	ASPC	Asynchronous Schedule Park Capability 1'b0: This EHCI host controller doesn't support park feature of high-speed queue heads in the Asynchronous Schedule.		
[1]	PFList	Programmable Frame List Flag 1'b0: System software must use a frame list length of 1024 elements with this EHCI host controller.		
[0]	64B	64-bit Addressing Capability 1'b0: Data structure using 32-bit address memory pointers.		

USB Command Register (UCMDR)

Register	Address	R/W	Description	Reset Value
UCMDR	0xB000_5020	R/W	USB Command Register	0x0008_0000

31	30	29	28	27	26	25	24
			Rese	rved			
23	22	21	20	19	18	17	16
			INT_T	H_CTL			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved	AsynADB	ASEN	PSEN FLSize HCRE		HCRESET	RunStop	

Bits	Descriptions				
		Interrupt Threshold Control (R/W)			
	This field is used by system software to select the maximum rate at which the host controller will issue interrupts. The only valid values are defined below. If software writes an invalid value to this register, the results are undefined. Value Maximum Interrupt Interval				
		00h Reserved			
		01h 1 micro-frame			
		02h 2 micro-frames			
[23:16]	INT_TH_CTL	04h 4 micro-frames			
		08h 8 micro-frames (default, equates to 1 ms)			
		10h 16 micro-frames (2 ms)			
		20h 32 micro-frames (4 ms)			
		40h 64 micro-frames (8 ms)			
		Any other value in this register yields undefined results.			
		Software modifications to this bit while HCHalted bit is equal to zero results in undefined behavior.			

Bits	Descriptions				
		Interrupt on Async Advance Doorbell (R/W)			
		This bit is used as a doorbell by software to tell the host controller to issue an interrupt the next time it advances asynchronous schedule. Software must write a 1 to this bit to ring the doorbell.			
[6]	AsynADB	When the host controller has evicted all appropriate cached schedule state, it sets the <i>Interrupt on Async Advance</i> status bit in the USBSTS register. If the <i>Interrupt on Async Advance Enable</i> bit in the USBINTR register is a one then the host controller will assert an interrupt at the next interrupt threshold.			
		The host controller sets this bit to a zero after it has set the <i>Interrupt on Async Advance</i> status bit in the USBSTS register to a one.			
		Software should not write a one to this bit when the asynchronous schedule is disabled. Doing so will yield undefined results.			
		Asynchronous Schedule Enable (R/W)			
[5]	ASEN	This bit controls whether the host controller skips processing the Asynchronous Schedule. Values mean:			
		0b Do not process the Asynchronous Schedule			
		1b Use the ASYNCLISTADDR register to access the Asynchro-nous Schedule			
	PSEN	Periodic Schedule Enable (R/W)			
[4]		This bit controls whether the host controller skips processing the Periodic Schedule. Values mean:			
		0b Do not process the Periodic Schedule			
		1b Use the PERIODICLISTBASE register to access the Periodic Schedule			
		Frame List Size (R/W or RO)			
12.23	FLSize	This field is R/W only if <i>Programmable Frame List Flag</i> in the HCCPARAMS registers is set to a one. This field specifies the size of the frame list. The size the frame list controls which bits in the Frame Index Register should be used for the Frame List Current index. Values mean:			
[3:2]		00b 1024 elements (4096 bytes) Default value			
		01b 512 elements (2048 bytes)			
		10b 256 elements (1024 bytes) – for resource-constrained environment			
		11b Reserved			

Bits	Descriptions	
		Host Controller Reset (HCRESET) (R/W)
	HCRESET	This control bit is used by software to reset the host controller. The effects of this on Root Hub registers are similar to a Chip Hardware Reset.
		When software writes a one to this bit, the Host Controller resets its internal pipelines, timers, counters, state machines, etc. to their initial value. Any transaction currently in progress on USB is immediately terminated. A USB reset is not driven on downstream ports.
[1]		All operational registers, including port registers and port state machines are set to their initial values. Port ownership reverts to the companion host controller(s), with the side effects. Software must reinitialize the host controller in order to return the host controller to an operational state.
		This bit is set to zero by the Host Controller when the reset process is complete. Software cannot terminate the reset process early by writing a zero to this register.
		Software should not set this bit to a one when the HCHalted bit in the USBSTS register is a zero. Attempting to reset an actively running host controller will result in undefined behavior.
		Run/Stop (R/W)
[0]	RunStop	1=Run. 0=Stop. When set to a 1, the Host Controller proceeds with execution of the schedule. The Host Controller continues execution as long as this bit is set to a 1. When this bit is set to 0, the Host Controller completes the current and any actively pipelined transactions on the USB and then halts. The Host Controller must halt within 16 micro-frames after software clears the Run bit. The HC Halted bit in the status register indicates when the Host Controller has finished its pending pipelined transactions and has entered the stopped state. Software must not write a one to this field unless the host controller is in the Halted state (i.e. HCHalted in the USBSTS register is a one). Doing so will yield undefined results.

USB Status Register (USTSR)

Register	Address	R/W	Description	Reset Value
USTSR	0xB000_5024	R/W	USB Status Register	0x0000_1000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
ASSTS	ASSTS PSSTS RECLA HCHalted Reserved						
7	6	5	4	3	2	1	0
Reserved IntAsyn.		IntAsynA	HSERR	FLROVER	PortCHG	UERRINT	USBINT

Bits	Descriptions	
[15]	Asynchronous Schedule Status (RO) The bit reports the current real status of the Asynchronous Schedule bit is a zero then the status of them Asynchronous Schedule is disthis bit is a one then the status of the Asynchronous Schedule is The Host Controller is not required to immediately disable or en Asynchronous Schedule when software transitions the Asynchronous Schedule when software transitions the Asynchronous Schedule Enable bit are the same value, the Asynchronous Schedule is either r enabled (1) or disabled (0).	
[14]	PSSTS	Periodic Schedule Status (RO) The bit reports the current real status of the Periodic Schedule. If this bit is a zero then the status of the Periodic Schedule is disabled. If this bit is a one then the status of the Periodic Schedule is enabled. The Host Controller is not required to <i>immediately</i> disable or enable the Periodic Schedule when software transitions the <i>Periodic Schedule Enable</i> bit in the USBCMD register. When this bit and the <i>Periodic Schedule Enable</i> bit are the same value, the Periodic Schedule is either enabled (1) or disabled (0).
[13]	RECLA	Reclamation (RO) This is a read-only status bit, which is used to detect an empty asynchronous schedule.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		HCHalted (RO)
[12]	HCHalted	This bit is a zero whenever the Run/Stop bit is a one. The Host Controller sets this bit to one after it has stopped executing as a result of the Run/Stop bit being set to 0, either by software or by the Host Controller hardware (e.g. internal error).
		Interrupt on Async Advance (R/WC)
[5]	IntAsynA	System software can force the host controller to issue an interrupt the next time the host controller advances the asynchronous schedule by writing a one to the <i>Interrupt on Async Advance Doorbell</i> bit in the USBCMD register. This status bit indicates the assertion of that interrupt source.
		Host System Error (R/WC)
[4]	HSERR	The Host Controller sets this bit to 1 when a serious error occurs during a host system access involving the Host Controller module.
		Frame List Rollover (R/WC)
[3]	FLROVER	The Host Controller sets this bit to a one when the <i>Frame List Index</i> rolls over from its maximum value to zero. The exact value at which the rollover occurs depends on the frame list size. For example, if the frame list size (as programmed in the <i>Frame List Size</i> field of the USBCMD register) is 1024, the <i>Frame Index Register</i> rolls over every time FRINDEX [13] toggles. Similarly, if the size is 512, the Host Controller sets this bit to a one every time FRINDEX [12] toggles.
		Port Change Detect (R/WC)
[2]	PortCHG	The Host Controller sets this bit to a one when any port for which the Port Owner bit is set to zero has a change bit transition from a zero to a one or a Force Port Resume bit transition from a zero to a one as a result of a J-K transition detected on a suspended port. This bit will also be set as a result of the Connect Status Change being set to a one after system software has relinquished ownership of a connected port by writing a one to a port's Port Owner bit.
		This bit is allowed to be maintained in the Auxiliary power well. Alternatively, it is also acceptable that on a D3 to D0 transition of the EHCI HC device, this bit is loaded with the OR of all of the PORTSC change bits (including: Force port resume, over-current change, enable/disable change and connect status change).
		USB Error Interrupt (USBERRINT) (R/WC)
[1]	UERRINT	The Host Controller sets this bit to 1 when completion of a USB transaction results in an error condition (e.g., error counter underflow). If the TD on which the error interrupt occurred also had its IOC bit set, both this bit and USBINT bit are set.

200

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[0]	USBINT	USB Interrupt (USBINT) (R/WC) The Host Controller sets this bit to 1 on the completion of a USB transaction, which results in the retirement of a Transfer Descriptor that had its IOC bit set. The Host Controller also sets this bit to 1 when a short packet is detected (actual number of bytes received was less than the expected number of bytes).

USB Interrupt Enable Register (UIENR)

Register	Address	R/W	Description	Reset Value
UIENR	0xB000_5028	R/W	USB Interrupt Enable Register	0x0000_0000

	ı						
31	30	29	28	27	26	25	24
			Rese	rved			
23	22	21	20	19	18	17	16
			Rese	rved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Rese	Reserved AsynAEN			FLREN	PCHGEN	UERREN	USBIEN

Bits	Descriptions	
		Interrupt on Async Advance Enable
[5]	AsynAEN	When this bit is a one, and the <i>Interrupt on Async Advance</i> bit in the USBSTS register is a one, the host controller will issue an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the <i>Interrupt on Async Advance</i> bit.
		Host System Error Enable
[4] HSERREN		When this bit is a one, and the Host System Error Status bit in the USBSTS register is a one, the host controller will issue an interrupt. The interrupt is acknowledged by software clearing the Host System Error bit.
		Frame List Rollover Enable
[3]	FLREN	When this bit is a one, and the Frame List Rollover bit in the USBSTS register is a one, the host controller will issue an interrupt. The interrupt is acknowledged by software clearing the Frame List Rollover bit.
		Port Change Interrupt Enable
[2]	PCHGEN	When this bit is a one, and the Port Change Detect bit in the USBSTS register is a one, the host controller will issue an interrupt. The interrupt is acknowledged by software clearing the Port Change Detect bit.

Bits	Descriptions	
[1]	UERREN	USB Error Interrupt Enable When this bit is a one, and the USBERRINT bit in the USBSTS register is a one, the host t controller will issue an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the USBERRINT bit.
[0]	USBIEN	USB Interrupt Enable When this bit is a one, and the USBINT bit in the USBSTS register is a one, the host controller will issue an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the USBINT bit.

Publication Release Date: Jun. 18, 2010

USB Frame Index Register (UFINDR)

Register	Address	R/W	Description	Reset Value
UFINDR	0xB000_502C	R/W	USB Frame Index Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
Rese	Reserved FrameIND								
7	6	5	4	3	2	1	0		
	FrameIND								

Bits	Descriptions	
[13:0]	FrameIND	Frame Index The value in this register increment at the end of each time frame (e.g. micro-frame). Bits [N: 3] are used for the Frame List current index. This means that each location of the frame list is accessed 8 times (frames or micro-frames) before moving to the next index. The following illustrates values of N based on the value of the Frame List Size field in the USBCMD register.

USB Periodic Frame List Base Address Register (UPFLBAR)

Register	Address	R/W	Description	Reset Value
UPFLBAR	0xB000_5034	R/W	USB Periodic Frame List Base Address Register	0x0000_0000

31	30	29	28	27	26	25	24		
	BADDR								
23	22	21	20	19	18	17	16		
	BADDR								
15	14	13	12	11	10	9	8		
	BADDR Reserved								
7	6	5	4	3	2	1	0		
	Reserved								

Bits	Descriptions	
[31:12] BADE	BADDR	Base Address (Low)
	BADDK	These bits correspond to memory address signals [31:12], respectively.

USB Current Asynchronous List Address Register (UCALAR)

Register	Address	R/W	Description	Reset Value
UCALAR	0xB000_5038	R/W	USB Current Asynchronous List Address Register	0x0000_0000

31	30	29	28	27	26	25	24		
			LF	PL					
23	22	21	20	19	18	17	16		
	LPL								
15	14	13	12	11	10	9	8		
LPL									
7	6	5	4	3	2	1	0		
	LPL		Reserved						

Bits	Descriptions	
[31:5]	LPL	Link Pointer Low (LPL) These bits correspond to memory address signals [31:5], respectively. This field may only reference a Queue Head (QH).

USB Asynchronous Schedule Sleep Timer Register

Register	Address	R/W	Description	Reset Value
UASSTR	0xB000_503C	R/W	USB Asynchronous Schedule Sleep Timer Register	0x0000_0BD6

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved ASTMR								
7	6	5	4	3	2	1	0		
	ASTMR								

Bits	Descriptions	
		Asynchronous Schedule Sleep Timer
		This field defines the AsyncSchedSleepTime of EHCI spec.
[11:0]	ASSTMR	The asynchronous schedule sleep timer is used to control how often the host controller fetches asynchronous schedule list from system memory while the asynchronous schedule is empty.
		The default value of this timer is 12'hBD6. Because this timer is implemented in UTMI clock (30MHz) domain, the default sleeping time will be about 100us.

USB Configure Flag Register (UCFGR)

Register	Address	R/W	Description	Reset Value
UCFGR	0xB000_5060	R/W	USB Configure Flag Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	rved			
23	22	21	20	19	18	17	16
	Reserved						
15 14 13 12 11 10 9							
	Reserved						
7	6	5	4	3	2	1	0
			Reserved				CF

Bits	Descriptions	
		Configure Flag (CF)
[0]	CF	Host software sets this bit as the last action in its process of configuring the Host Controller. This bit controls the default port-routing control logic. Bit values and side-effects are listed below.
		Ob Port routing control logic default-routes each port to an implementation dependent classic host controller.
		1b Port routing control logic default-routes all ports to this host controller.

USB Port 0 Status and Control Register (UPSCR0)

Register	Address	R/W	Description	Reset Value
UPSCR0	0xB000_5064	R/W	USB Port 0 Status and Control Register	0x0000_2000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
Reserved PO PP LStatus Reserved PI						PRST	
7	6	5	4	3	2	1	0
Suspend	FPResum	OCCHG	OCACT	PENCHG	PEN	CSCHG	CSTS

Bits	Descriptions	
		Port Owner (R/W)
[13]	РО	This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero.
		System software uses this field to release ownership of the port to a selected host controller (in the event that the attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port.
		Port Power (PP)
[12]	PP	Host controller has port power control switches. This bit represents the Current setting of the switch $(0 = off, 1 = on)$. When power is not available on a port (i.e. <i>PP</i> equals a 0), the port is nonfunctional and will not report attaches, detaches, etc.
		When an over-current condition is detected on a powered port and <i>PPC</i> is a one, the <i>PP</i> bit in each affected port may be transitioned by the host controller from a 1 to 0 (removing power from the port).

Bits	Descriptions	
		Line Status (RO)
		These bits reflect the current logical levels of the D+ (bit 11) and D- (bit 10) signal lines. These bits are used for detection of low-speed USB devices prior to the port reset and enable sequence. This field is valid only when the port enable bit is zero and the current connect status bit is set to a one.
		The encoding of the bits are:
[11:10]	LStatus	Bits[11:10] USB State Interpretation
		00b SE0 Not Low-speed device, perform EHCI reset
		10b J-state Not Low-speed device, perform EHCI reset
		01b K-state Low-speed device, release ownership of port
		11b Undefined Not Low-speed device, perform EHCI reset.
		This value of this field is undefined if Port Power is zero.
	PRST	Port Reset (R/W)
		1=Port is in Reset. 0=Port is not in Reset. Default = 0. When software writes a one to this bit (from a zero), the bus reset sequence as defined in the USB Specification Revision 2.0 is started. Software writes a zero to this bit to terminate the bus reset sequence. Software must keep this bit at a one long enough to ensure the reset sequence, as specified in the USB Specification Revision 2.0, completes. Note: when software writes this bit to a one, it must also write a zero to the Port Enable bit.
[8]		Note that when software writes a zero to this bit there may be a delay before the bit status changes to a zero. The bit status will not read as a zero until after the reset has completed. If the port is in high-speed mode after reset is complete, the host controller will automatically enable this port (e.g. set the Port Enable bit to a one). A host controller must terminate the reset and stabilize the state of the port within 2 milliseconds of software transitioning this bit from a one to a zero. For example: if the port detects that the attached device is high-speed during reset, then the host controller must have the port in the enabled state within 2ms of software writing this bit to a zero.
		The HCHalted bit in the USBSTS register should be a zero before software attempts to use this bit. The host controller may hold Port Reset asserted to a one when the HCHalted bit is a one.
		This field is zero if Port Power is zero.

Bits	Descriptions	
		Suspend (R/W)
		1=Port in suspend state. $0=$ Port not in suspend state. Default = $0.$ Port Enabled Bit and Suspend bit of this register define the port states as follows:
		Bits [Port Enabled, Suspend] Port State
		0X Disable
		10 Enable
		11 Suspend
[7]	Suspend	When in suspend state, downstream propagation of data is blocked on this port, except for port reset. The blocking occurs at the end of the current transaction, if a transaction was in progress when this bit was written to 1. In the suspend state, the port is sensitive to resume detection. Note that the bit status does not change until the port is suspended and that there may be a delay in suspending a port if there is a transaction currently in progress on the USB.
		A write of zero to this bit is ignored by the host controller. The host controller will unconditionally set this bit to a zero when:
		Software sets the Force Port Resume bit to a zero (from a one).
		Software sets the Port Reset bit to a one (from a zero).
		If host software sets this bit to a one when the port is not enabled (i.e. Port enabled bit is a zero) the results are undefined.
		This field is zero if Port Power is zero.

Bits	Descriptions	
		Force Port Resume (R/W)
	FPResum	1= Resume detected/driven on port. 0=No resume (Kstate) detected/driven on port. Default = 0. This functionality defined for manipulating this bit depends on the value of the Suspend bit. For example, if the port is not suspended (Suspend and Enabled bits are a one) and software transitions this bit to a one, then the effects on the bus are undefined.
[6]		Software sets this bit to a 1 to drive resume signaling. The Host Controller sets this bit to a 1 if a J-to-K transition is detected while the port is in the Suspend state. When this bit transitions to a one because a J-to-K transition is detected, the Port Change Detect bit in the USBSTS register is also set to a one. If software sets this bit to a one, the host controller must not set the Port Change Detect bit.
		Note that when the EHCI controller owns the port, the resume sequence follows the defined sequence documented in the USB Specification Revision 2.0. The resume signaling (Full-speed 'K') is driven on the port as long as this bit remains a one. Software must appropriately time the Resume and set this bit to a zero when the appropriate amount of time has elapsed. Writing a zero (from one) causes the port to return to high-speed mode (forcing the bus below the port into a high-speed idle). This bit will remain a one until the port has switched to the high-speed idle. The host controller must complete this transition within 2 milliseconds of software setting this bit to a zero.
		This field is zero if Port Power is zero.
[5]	осснб	Over-current Change (R/WC) Default = 0. 1=This bit gets set to a one when there is a change to Over-current Active. Software clears this bit by writing a one to this bit position.
		Over-current Active (RO)
[4]	OCACT	Default = 0. 1=This port currently has an over current condition. 0=This port does not have an over-current condition. This bit will automatically transition from a one to a zero when the over current condition is removed.
		Port Enable/Disable Change (R/WC)
[3]	PENCHG	1=Port enabled/disabled status has changed. 0=No change. Default = 0. For the root hub, this bit gets set to a one only when a port is disabled due to the appropriate conditions existing at the EOF2 point (See Chapter 11 of the USB Specification for the definition of a Port Error). Software clears this bit by writing a 1 to it.
		This field is zero if Port Power is zero.

Bits	Descriptions	
	PEN	Port Enabled/Disabled (R/W)
		1=Enable. 0=Disable. Default = 0. Ports can only be enabled by the host controller as a part of the reset and enable. Software cannot enable a port by writing a one to this field. The host controller will only set this bit to a one when the reset sequence determines that the attached device is a high-speed device.
[2]		Ports can be disabled by either a fault condition (disconnect event or other fault condition) or by host software. Note that the bit status does not change until the port state actually changes. There may be a delay in disabling or enabling a port due to other host controller and bus events.
		When the port is disabled (0b) downstream propagation of data is blocked on this port, except for reset.
		This field is zero if Port Power is zero.
		Connect Status Change (R/W)
[1]	CSCHG	1=Change in Current Connect Status. 0=No change. Default = 0. Indicates a change has occurred in the port's Current Connect Status. The host controller sets this bit for all changes to the port device connect status, even if system software has not cleared an existing connect status change. For example, the insertion status changes twice before system software has cleared the changed condition, hub hardware will be "setting" an already-set bit (i.e., the bit will remain set). Software sets this bit to 0 by writing a 1 to it.
		This field is zero if Port Power is zero.
		Current Connect Status (RO)
[0]	сѕтѕ	1=Device is present on port. 0=No device is present. Default = 0. This value reflects the current state of the port, and may not correspond directly to the event that caused the Connect Status Change bit (Bit 1) to be set.
		This field is zero if Port Power is zero.

USB Port 1 Status and Control Register (UPSCR1)

Register	Address	R/W	Description	Reset Value
UPSCR1	0xB000_5068	R/W	USB Port 1 Status and Control Register	0x0000_2000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved				Reserved				
15	14	13	12	11	10	9	8	
Reserved		РО	PP	LStatus		Reserved	PRST	
7	6	5	4	3	2	1	0	
Suspend	FPResum	OCCHG	OCACT	PENCHG	PEN	CSCHG	CSTS	

Bits	Descriptions		
[13]	РО	Port Owner (R/W)	
		This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero.	
		System software uses this field to release ownership of the port to a selected host controller (in the event that the attached device is not a high-speed device). Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port.	
[12]	PP	Port Power (PP)	
		Host controller has port power control switches. This bit represents the Current setting of the switch $(0 = off, 1 = on)$. When power is not available on a port (i.e. <i>PP</i> equals a 0), the port is nonfunctional and will not report attaches, detaches, etc.	
		When an over-current condition is detected on a powered port and PPC is a one, the PP bit in each affected port may be transitioned by the host controller from a 1 to 0 (removing power from the port).	

214

Bits	Descriptions				
[11:10]	LStatus	Line Status (RO)			
		These bits reflect the current logical levels of the D+ (bit 11) and D- (bit 10) signal lines. These bits are used for detection of low-speed USB devices prior to the port reset and enable sequence. This field is valid only when the port enable bit is zero and the current connect status bit is set to a one.			
		The encoding of the bits are:			
		Bits[11:10] USB State Interpretation			
		00b SE0 Not Low-speed device, perform EHCI reset			
		10b J-state Not Low-speed device, perform EHCI reset			
		01b K-state Low-speed device, release ownership of port			
		11b Undefined Not Low-speed device, perform EHCI reset.			
		This value of this field is undefined if Port Power is zero.			
[8]	PRST	Port Reset (R/W)			
		1=Port is in Reset. 0=Port is not in Reset. Default = 0. When software writes a one to this bit (from a zero), the bus reset sequence as defined in the USB Specification Revision 2.0 is started. Software writes a zero to this bit to terminate the bus reset sequence. Software must keep this bit at a one long enough to ensure the reset sequence, as specified in the USB Specification Revision 2.0, completes. Note: when software writes this bit to a one, it must also write a zero to the Port Enable bit.			
		Note that when software writes a zero to this bit there may be a delay before the bit status changes to a zero. The bit status will not read as a zero until after the reset has completed. If the port is in high-speed mode after reset is complete, the host controller will automatically enable this port (e.g. set the Port Enable bit to a one). A host controller must terminate the reset and stabilize the state of the port within 2 milliseconds of software transitioning this bit from a one to a zero. For example: if the port detects that the attached device is high-speed during reset, then the host controller must have the port in the enabled state within 2ms of software writing this bit to a zero.			
		The HCHalted bit in the USBSTS register should be a zero before software attempts to use this bit. The host controller may hold Port Reset asserted to a one when the HCHalted bit is a one.			
		This field is zero if Port Power is zero.			

Bits	Descriptions	
		Suspend (R/W)
		1=Port in suspend state. $0=$ Port not in suspend state. Default = 0 . Port Enabled Bit and Suspend bit of this register define the port states as follows:
		Bits [Port Enabled, Suspend] Port State
		0X Disable
		10 Enable
		11 Suspend
[7]	Suspend	When in suspend state, downstream propagation of data is blocked on this port, except for port reset. The blocking occurs at the end of the current transaction, if a transaction was in progress when this bit was written to 1. In the suspend state, the port is sensitive to resume detection. Note that the bit status does not change until the port is suspended and that there may be a delay in suspending a port if there is a transaction currently in progress on the USB.
		A write of zero to this bit is ignored by the host controller. The host controller will unconditionally set this bit to a zero when:
		Software sets the Force Port Resume bit to a zero (from a one).
		Software sets the Port Reset bit to a one (from a zero).
		If host software sets this bit to a one when the port is not enabled (i.e. Port enabled bit is a zero) the results are undefined.
		This field is zero if Port Power is zero.

Bits	Descriptions	
		Force Port Resume (R/W)
	FPResum	1= Resume detected/driven on port. 0=No resume (Kstate) detected/driven on port. Default = 0. This functionality defined for manipulating this bit depends on the value of the Suspend bit. For example, if the port is not suspended (Suspend and Enabled bits are a one) and software transitions this bit to a one, then the effects on the bus are undefined.
[6]		Software sets this bit to a 1 to drive resume signaling. The Host Controller sets this bit to a 1 if a J-to-K transition is detected while the port is in the Suspend state. When this bit transitions to a one because a J-to-K transition is detected, the Port Change Detect bit in the USBSTS register is also set to a one. If software sets this bit to a one, the host controller must not set the Port Change Detect bit.
		Note that when the EHCI controller owns the port, the resume sequence follows the defined sequence documented in the USB Specification Revision 2.0. The resume signaling (Full-speed 'K') is driven on the port as long as this bit remains a one. Software must appropriately time the Resume and set this bit to a zero when the appropriate amount of time has elapsed. Writing a zero (from one) causes the port to return to high-speed mode (forcing the bus below the port into a high-speed idle). This bit will remain a one until the port has switched to the high-speed idle. The host controller must complete this transition within 2 milliseconds of software setting this bit to a zero.
		This field is zero if Port Power is zero.
[5]	осснб	Over-current Change (R/WC) Default = 0. 1=This bit gets set to a one when there is a change to Over-current Active. Software clears this bit by writing a one to this bit position.
		Over-current Active (RO)
[4]	OCACT	Default = 0. 1=This port currently has an over current condition. 0=This port does not have an over-current condition. This bit will automatically transition from a one to a zero when the over current condition is removed.
		Port Enable/Disable Change (R/WC)
[3]	PENCHG	1=Port enabled/disabled status has changed. 0=No change. Default = 0. For the root hub, this bit gets set to a one only when a port is disabled due to the appropriate conditions existing at the EOF2 point (See Chapter 11 of the USB Specification for the definition of a Port Error). Software clears this bit by writing a 1 to it.
		This field is zero if Port Power is zero.

Bits	Descriptions	
		Port Enabled/Disabled (R/W)
	PEN	1=Enable. 0=Disable. Default = 0. Ports can only be enabled by the host controller as a part of the reset and enable. Software cannot enable a port by writing a one to this field. The host controller will only set this bit to a one when the reset sequence determines that the attached device is a high-speed device.
[2]		Ports can be disabled by either a fault condition (disconnect event or other fault condition) or by host software. Note that the bit status does not change until the port state actually changes. There may be a delay in disabling or enabling a port due to other host controller and bus events.
		When the port is disabled (0b) downstream propagation of data is blocked on this port, except for reset.
		This field is zero if Port Power is zero.
		Connect Status Change (R/W)
[1]	сѕснс	1=Change in Current Connect Status. 0=No change. Default = 0. Indicates a change has occurred in the port's Current Connect Status. The host controller sets this bit for all changes to the port device connect status, even if system software has not cleared an existing connect status change. For example, the insertion status changes twice before system software has cleared the changed condition, hub hardware will be "setting" an already-set bit (i.e., the bit will remain set). Software sets this bit to 0 by writing a 1 to it.
		This field is zero if Port Power is zero.
		Current Connect Status (RO)
[0]	CSTS	1=Device is present on port. 0=No device is present. Default = 0. This value reflects the current state of the port, and may not correspond directly to the event that caused the Connect Status Change bit (Bit 1) to be set.
		This field is zero if Port Power is zero.

USB PHY 0 Control Register (USBPCR0)

Register	Address	R/W	Description	Reset Value
USBPCR0	0xB000_50C4	R/W	USB PHY 0 Control Register	0x0000_0060

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved				Res	erved	Suspend		
7	6	5	4	3	2	1	0		
CLK48	REFCLK	CLK_	_SEL	XO_ON	SIDDQ	Rese	erved		

Bits	Descriptions	
	ClkValid	UTMI Clock Valid
[11]		This bit is a flag to indicate if the UTMI clock from USB 2.0 PHY is ready. S/W program must prevent to write other control registers before this UTMI clock valid flag is active.
		1'b0: UTMI clock is not valid
		1'b1: UTMI clock is valid
	Suspend	Suspend Assertion
		This bit controls the suspend mode of USB PHY 0.
		While PHY was suspended, all circuits of PHY were powered down and outputs are tri-stated.
[8]		This bit is 1'b0 in default. This means the USB PHY 0 is suspended in default. It is necessary to set this bit 1'b1 to make USB PHY 0 leave suspend mode before doing configuration of USB host.
		1'b0: USB PHY 0 was suspended.
		1'b1: USB PHY 0 was not suspended.

219

Bits	Descriptions	
		Digital Logic Clock Select
		This bit controls the input signal clk48m_sel of USB PHY 0.
		This signal selects Power-Save mode.
[7]	CLK48	1'b0: Non-Power-Save mode. The PLL and the phase interpolator are powered up. The digital logic uses a 480MHz clock. Non-Power-Save mode is valid in all modes and speeds of operation.
		1'b1: Power-Save mode. The PLL and the phase interpolator are powered down. The digital logic uses a 48MHz clock. Power-Save mode is valid for only FS-Only operation. The CLK_SEL should be set to 2'b10 (48MHz) when this bit is high.
[6]	DEFOLK	Reference Clock Source Select
[6]	REFCLK	This bit has to set to 1.
[5:4]	CKL_SEL	Reference Clock Frequency Select
[3.4]		This field has to set to 2'b10;
		Force XO Block on During a Suspend
	xo_on	This bit controls the input signal xo_on of USB PHY 0.
[3]		1'b0: If all ports are suspended, the XO block is powered up, and the test_clk48m signal is available.
		1'b1: This bit is inactive, and the XO block is powered down when all ports are suspended.
	SIDDQ	IDDQ Test Enable
		This bit controls the input signal siddq of USB PHY 0.
[2]		This signal powers down all analog blocks.
		1'b0: The analog blocks are in normal operation.
		1'b1: The analog blocks are powered down.

USB PHY 1 Control Register (USBPCR1)

Register	Address	R/W	Description	Reset Value
USBPCR1	0xB000_50C8	R/W	USB PHY 1 Control Register	0x0000_0020

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved				Res	erved	Suspend		
7	6	5	4	3	2	1	0		
CLK48	REFCLK	CLK_	_SEL	XO_ON	SIDDQ	Rese	erved		

Bits	Descriptions	
[11]	XO_SEL	Clock Select for XO Block This bit should be set to 0 to define the XO block uses a 48MHz external clock supplied from PHY 0
[8]	Suspend	Suspend Assertion This bit controls the suspend mode of USB PHY 1. While PHY was suspended, all circuits of PHY were powered down and outputs are tri-stated. This bit is 1'b0 in default. This means the USB PHY 1 is suspended in default. It is necessary to set this bit 1'b1 to make USB PHY 1 leave suspend mode before doing configuration of USB host. 1'b0: USB PHY 1 was suspended. 1'b1: USB PHY 1 was not suspended.

Bits	Descriptions	
		Digital Logic Clock Select
		This bit controls the input signal clk48m_sel of USB PHY 1.
		This signal selects Power-Save mode.
[7]	CLK48	1'b0: Non-Power-Save mode. The PLL and the phase interpolator are powered up. The digital logic uses a 480MHz clock. Non-Power-Save mode is valid in all modes and speeds of operation.
		1'b1: Power-Save mode. The PLL and the phase interpolator are powered down. The digital logic uses a 48MHz clock. Power-Save mode is valid for only FS-Only operation. The CLK_SEL should be set to 2'b10 (48MHz) when this bit is high.
[6]	DEFOLK	Reference Clock Source Select
[6] REFCLK		This bit has to set to 0.
[5:4]	CKL_SEL	Reference Clock Frequency Select
[5:4]		This field has to set to 2'b10.
	xo_on	Force XO Block on During a Suspend
		This bit controls the input signal xo_on of USB PHY 1.
[3]		1'b0: If all ports are suspended, the XO block is powered up, and the test_clk48m signal is available.
		1'b1: This bit is inactive, and the XO block is powered down when all ports are suspended.
		IDDQ Test Enable
		This bit controls the input signal siddq of USB PHY 1.
[2]	SIDDQ	This signal powers down all analog blocks.
		1'b0: The analog blocks are in normal operation.
		1'b1: The analog blocks are powered down.

Host Controller Revision Register (HcRev)

Register	Address	R/W	Description	Reset Value
HcRev	0xB000_7000	R	Host Controller Revision Register	0x0000_0010

31	30	29	28	27	26	25	24		
			Rese	erved					
23	22	21	20	19	18	17	16		
			Rese	rved					
15	14	13	12	11	10	9	8		
			Rese	rved					
7	6	5	4	3	2	1	0		
		Rev							

Bits	Descriptions	
[7:0]	Rev	Revision Indicates the Open HCI Specification revision number implemented by the Hardware. Host Controller supports 1.0 specification. (X.Y = XYh)

Host Controller Control Register (HcControl)

Register	Address	R/W	Description	Reset Value
HcControl	0xB000_7004	R/W	Host Controller Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved				RWakeEn	RWake	IntRoute
7	6	5	4	3	2	1	0
HcFunc BlkEn			CtrlEn	ISOEn	PeriEn	CtrlBI	kRatio

Bits	Descriptions	
[10]	RWakeEn	Remote Wakeup Connected Enable
[10]	KVUKCEII	If a remote wakeup signal is supported, this bit enables that operation. Since there is no remote wakeup signal supported, this bit is ignored.
		Remote Wakeup Connected
[9]	RWake	This bit indicated whether the HC supports a remote wakeup signal. This implementation does not support any such signal. The bit is hard-coded to '0.'
		Interrupt Routing
[O]	IntRoute	This bit is used for interrupt routing:
[8]	IntRoute	0: Interrupts routed to normal interrupt mechanism (INT).
		1: Interrupts routed to SMI.
		Host Controller Functional State
		This field sets the Host Controller state. The Controller may force a state change from USBSUSPEND to USBRESUME after detecting resume signaling from a downstream port. States are:
[7:6]	HcFunc	00: USBRESET
		01: USBRESUME
		10: USBOPERATIONAL
		11: USBSUSPEND

Bits	Descriptions				
[5]	BlkEn	Bulk List Enable When set this bit enables processing of the Bulk list.			
[4]	CtrlEn Control List Enable When set this bit enables processing of the Control list.				
[3]	ISOEn	Isochronous List Enable When clear, this bit disables the Isochronous List when the Periodic List is enabled (so Interrupt EDs may be serviced). While processing the Periodic List, the Host Controller will check this bit when it finds an isochronous ED.			
[2]	PeriEn	Periodic List Enable When set, this bit enables processing of the Periodic (interrupt and isochronous) list. The Host Controller checks this bit prior to attempting any periodic transfers in a frame.			
[1:0]	CtrlBlkRatio	Control Bulk Service Ratio Specifies the number of Control Endpoints serviced for every Bulk Endpoint. Encoding is N-1 where N is the number of Control Endpoints (i.e. $`00' = 1$ Control Endpoint; $`11' = 3$ Control Endpoints)			

Host Controller Command Status Register (HcComSts)

Register	Address	R/W	Description	Reset Value
HcComSts	0xB000_7008	R/W	Host Controller Command Status Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
		Rese	erved			SchOv	erRun
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved				OCReq	BlkFill	CtrlFill	HCReset

Bits	Descriptions	
[47.46]	0.1.0	Schedule Overrun Count
[17:16]	SchOverRun	This field is increment every time the SchedulingOverrun bit in <i>HcInterruptStatus</i> is set. The count wraps from `11' to `00.'
		Ownership Chang Request
[3]	OCReq	When set by software, this bit sets the OwnershipChange field in <i>HcInterruptStatus</i> . The bit is cleared by software.
		Bulk List Filled
[2]	BIkFill	Set to indicate there is an active ED on the Bulk List. The bit may be set by either software or the Host Controller and cleared by the Host Controller each time it begins processing the head of the Bulk List.
		Control List Filled
[1]	Set to indicate there is an active ED on the Control List. It may be either software or the Host Controller and cleared by the Host Controlled time it begins processing the head of the Control List.	
		Host Controller Reset
[0] H	HCReset	This bit is set to initiate the software reset. This bit is cleared by the Host Controller, upon completed of the reset operation.

Host Controller Interrupt Status Register (HcIntSts)

Register	Address	R/W	Description	Reset Value
HcIntSts	0xB000_700C	R/W	Host Controller Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved	ОС			Rese	rved		
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved	RHSC	FNOF	UnRecErr	Resume	SOF	WBDnHD	SchOR

Bits	Descriptions					
[30]	ос	Ownership Change This bit is set when the OwnershipChangeRequest bit of HcCommandStatus is set.				
[6]	RHSC	Root Hub Status Change This bit is set when the content of <i>HcRhStatus</i> or the content of any <i>HcRhPortStatus</i> register has changed.				
[5]	FNOF	Frame Number Overflow Set when bit 15 of FrameNumber changes value.				
[4]	UnRecErr	Unrecoverable Error This event is not implemented and is hard-coded to '0.' Writes are ignored.				
[3]	Resume	Resume Detected Set when Host Controller detects resume signaling on a downstream port.				
[2]	SOF	Start Of Frame Set when the Frame Management block signals a 'Start of Frame' event.				
[1]	WBDnHD	Write Back Done Head Set after the Host Controller has written HcDoneHead to HccaDoneHead.				

Publication Release Date: Jun. 18, 2010

Revision: A4

Bits	Descriptions			
[0]	[0] SchOR	Scheduling Overrun		
[0]	SCHOR	Set when the List Processor determines a Schedule Overrun has occurred.		

Revision: A4

Host Controller Interrupt Enable Register (HcIntEn)

Register	Address	R/W	Description	Reset Value
HcIntEn	0xB000_7010	R/W	Host Controller Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
IntEn	OCEn			Rese	erved		
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved	RHSCEn	FNOFEn	URErrEn	ResuEn	SOFEn	WBDHEn	SchOREn

Bits	Descriptions	
[31]	IntEn	Master Interrupt Enable This bit is a global interrupt enable. A write of '1' allows interrupts to be enabled via the specific enable bits listed above.
[30]	OCEn	Ownership Change Enable 0: Ignore 1: Enables interrupt generation due to Ownership Change.
[6]	RHSCEn	Root Hub Status Change Enable 0: Ignore 1: Enables interrupt generation due to Root Hub Status Change.
[5]	FNOFEn	Frame Number Overflow Enable 0: Ignore 1: Enables interrupt generation due to Frame Number Overflow.
[4]	URErrEn	Unrecoverable Error Enable This event is not implemented. All writes to this bit are ignored.
[3]	ResuEn	Resume Detected Enable 0: Ignore 1: Enables interrupt generation due to Resume Detected.

229

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	Descriptions				
[2] SOFEn		Start Of Frame Enable				
[2]	SOFER	0: Ignore 1: Enables interrupt generation due to Start of Frame.				
[1]	WBDHEn	Write Back Done Head Enable 0: Ignore 1: Enables interrupt generation due to Write-back Done Head.				
[0]	SchOREn	Scheduling Overrun Enable 0: Ignore 1: Enables interrupt generation due to Scheduling Overrun.				

Revision: A4

Host Controller Interrupt Disable Register (HcIntDis)

Register	Address	R/W	Description	Reset Value
HcIntDis	0xB000_7014	R/W	Host Controller Interrupt Disable Register	0x0000_0000

31	30	29	28	27	26	25	24
IntDis	OCDis			Rese	rved		
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	rved			
7	6	5	4	3	2	1	0
Reserved	RHSCDis	FNOFDis	URErrDis	ResuDis	SOFDis	WBDHDis	SchORDis

Bits	Descriptions	
[31]	IntDis	Master Interrupt Disable Global interrupt disable. A write of '1' disables all interrupts.
[30]	OCDis	Ownership Change Disable 0: Ignore 1: Disables interrupt generation due to Ownership Change.
[6]	RHSCDis	Root Hub Status Change Disable 0: Ignore 1: Disables interrupt generation due to Root Hub Status Change.
[5]	FNOFDis	Frame Number Overflow Disable 0: Ignore 1: Disables interrupt generation due to Frame Number Overflow.
[4]	URErrDis	Unrecoverable Error Disable This event is not implemented. All writes to this bit are ignored.
[3]	ResuDis	Resume Detected Disable 0: Ignore 1: Disables interrupt generation due to Resume Detected.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	Descriptions				
[2] SOFDis		Start Of Frame Disable 0: Ignore				
		1: Disables interrupt generation due to Start of Frame.				
[1]	WBDHDis	Write Back Done Head Disable 0: Ignore 1: Disables interrupt generation due to Write-back Done Head.				
[0]	SchORDis	Scheduling Overrun Disable 0: Ignore 1: Disables interrupt generation due to Scheduling Overrun.				

Publication Release Date: Jun. 18, 2010

Revision: A4

Host Controller Communication Area Register (HcHCCA)

Register	Address	R/W	Description	Reset Value
HcHCCA	0xB000_7018	R/W	Host Controller Communication Area Register	0x0000_0000

31	30	29	28	27	26	25	24		
	HCCA								
23	22	21	20	19	18	17	16		
	HCCA								
15	14	13	12	11	10	9	8		
	HCCA								
7	7 6 5 4 3 2 1 0								
	Reserved								

Bits	Descriptions	
[31:7] F	HCCA	Host Controller Communication Area
[31.7]	нсса	Pointer to HCCA base address.

Host Controller Period Current ED Register (HcPerCED)

Register	Address	R/W	Description	Reset Value
HcPerCED	0xB000_701C	R/W	Host Controller Period Current ED Register	0x0000_0000

31	30	29	28	27	26	25	24		
	PeriCED								
23	22	21	20	19	18	17	16		
	PeriCED								
15	14	13	12	11	10	9	8		
PeriCED									
7	6	5	4	3	2	1	0		
PeriCED			Reserved						

Bits	Descriptions	
[31:4]	PeriCED	Periodic Current ED
		Pointer to the current Periodic List ED.

Host Controller Control Head ED Register (HcCtrHED)

Register	Address	R/W	Description	Reset Value
HcCtrHED	0xB000_7020	R/W	Host Controller Control Head ED Register	0x0000_0000

31	30	29	28	27	26	25	24		
	CtrlHED								
23	22	21	20	19	18	17	16		
	CtrlHED								
15	14	13	12	11	10	9	8		
CtrlHED									
7	6	5	4	3	2	1	0		
CtrlHED			Reserved						

Bits	Descriptions	
[31:4] CtrIHED	Otall IED	Control Head ED
	Pointer to the Control List Head ED.	

Host Controller Control Current ED Register (HcCtrCED)

Register	Address	R/W	Description	Reset Value
HcCtrCED	0xB000_7024	R/W	Host Controller Control Current ED Register	0x0000_0000

31	30	29	28	27	26	25	24		
CtrlCED									
23	22	21	20	19	18	17	16		
	CtrlCED								
15	14	13	12	11	10	9	8		
CtrlCED									
7	6	5	4	3	2	1	0		
CtrlCED			Reserved						

Bits	Descriptions	
[31:4]	CtrlCED	Control Current Head ED
L- J		Pointer to the current Control List Head ED.

Host Controller Bulk Head ED Register (HcBlkHED)

Register	Address	R/W	Description	Reset Value
HcBlkHED	0xB000_7028	R/W	Host Controller Bulk Head ED Register	0x0000_0000

31	30	29	28	27	26	25	24		
	BIKHED								
23	22	21	20	19	18	17	16		
	BIKHED								
15	14	13	12	11	10	9	8		
BIKHED									
7	6	5	4	3	2	1	0		
BIKHED			Reserved						

Bits	Descriptions	
[31:4]	BIKHED	Bulk Head ED
		Pointer to the Bulk List Head ED.

Host Controller Bulk Current Head ED Register (HcBlkCED)

Register	Address	R/W	Description	Reset Value
HcBlkCED	0xB000_702C	R/W	Host Controller Bulk Current ED Register	0x0000_0000

31	30	29	28	27	26	25	24	
BIKCED								
23	22	21	20	19	18	17	16	
	BIKCED							
15	14	13	12	11	10	9	8	
BIKCED								
7	6	5	4	3	2	1	0	
BIKCED			Reserved					

Bits	Descriptions	
[21.4]	BULCED	Bulk Current Head ED
[31:4] BIKCED		Pointer to the current Bulk List Head ED.

Host Controller Done Head Register (HcDoneH)

Register	Address	R/W	Description	Reset Value
HcDoneH	0xB000_7030	R/W	Host Controller Done Head Register	0x0000_0000

31	30	29	28	27	26	25	24		
DoneH									
23	22	21	20	19	18	17	16		
	DoneH								
15	14	13	12	11	10	9	8		
	DoneH								
7	6	5	4	3	2	1	0		
DoneH			Reserved						

Bits	Descriptions	Descriptions			
[31:4]	DoneH	Done Head			
_		Pointer to the current Done List Head ED.			

Host Controller Frame Interval Register (HcFmIntv)

Register	Address	R/W	Description	Reset Value
HcFmIntv	0xB000_7034	R/W	Host Controller Frame Interval Register	0x0000_2EDF

31	30	29	28	27	26	25	24		
FmIntvT		FSDPktCnt							
23	22	21	20	19	18	17	16		
	FSDPktCnt								
15	14	13	12	11	10	9	8		
Rese	Reserved FmInterval								
7	6	5	4	3	2	1	0		
	FmI nterval								

Bits	Descriptions	
[31]	FmIntvT	Frame Interval Toggle This bit is toggled by HCD when it loads a new value into FrameInterval.
[30: 16]	FSDPktCnt	FS Largest Data Packet This field specifies a value that is loaded into the Largest Data Packet Counter at the beginning of each frame.
[13:0]	FmInterval	Frame Interval This field specifies the length of a frame as (bit times - 1). For 12,000 bit times in a frame, a value of 11,999 is stored here.

Host Controller Frame Remaining Register (HcFmRem)

Register	Address	R/W	Description	Reset Value
HcFmRem	0xB000_7038	R	Host Controller Frame Remaining Register	0x0000_0000

31	30	29	28	27	26	25	24		
FmRemT		Reserved							
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
Rese	Reserved FmRemain								
7	6	5	4	3	2	1	0		
	FmRemain								

Bits	Descriptions	
[31]	FmRemT	Frame Remaining Toggle Loaded with FrameIntervalToggle when FrameRemaining is loaded.
[13:0]	FmRemain	Frame Remaining When the Host Controller is in the USBOPERATIONAL state, this 14-bit field decrements each 12 MHz clock period. When the count reaches 0, (end of frame) the counter reloads with FrameInterval. In addition, the counter loads when the Host Controller transitions into USBOPERATIONAL.

241

Host Controller Frame Number Register (HcFNum)

Register	Address	R/W	Description	Reset Value
HcFNum	0xB000_703C	R	Host Controller Frame Number Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	rved			
15	14	13	12	11	10	9	8
			Fml	Num			
7	6	5	4	3	2	1	0
	FmNum						

Bits	Descriptions	
[15:0]	FmNum	Frame Number This 16-bit incrementing counter field is incremented coincident with the loading of FrameRemaining. The count rolls over from 'FFFFh' to '0h.'

Host Controller Periodic Start Register (HcPerSt)

Register	Address	R/W	Description	Reset Value
HcPerSt	0xB000_7040	R/W	Host Controller Periodic Start Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
Rese	rved			Peri	Start		
7	6	5	4	3	2	1	0
	PeriStart						

Bits	Descriptions	
[13:0]	PeriStart	Periodic Start This field contains a value used by the List Processor to determine where in a frame the Periodic List processing must begin.

Host Controller Root Hub Descriptor A Register (HcRhDeA)

Register	Address	R/W	Description	Reset Value
HcRhDeA	0xB000_7048	R/W	Host Controller Root Hub Descriptor A Register	0x0100_0002

31	30	29	28	27	26	25	24
			Pwr	GDT			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved			ОСРМ	DevType	NPS	PSM
7	6	5	4	3	2	1	0
	DPortNum						

Bits	Descriptions	
[31:24]	PwrGDT	Power On to Power Good Time This field value is represented as the number of 2 ms intervals, which ensuring that the power switching is effective within 2 ms. Only bits [25:24] are implemented as R/W. The remaining bits are read only as '0'. It is not expected that these bits be written to anything other than 1h, but limited adjustment is provided. This field should be written to support system implementation. This field should always be written to a non-zero value.
[12]	NOCP No Over Current Protection This bit should be written to support the external system port over-cuimplementation. 0 = Over-current status is reported 1 = Over-current status is not reported	
[11]	осрм	Over Current Protection Mode This bit should be written 0 and is only valid when NOCP bit is cleared. 0 = Global Over-Current 1 = Individual Over-Current
[10]	DevType	Device Type

Bits	Descriptions	
		No Power Switching
[9]	[9] NPS	This bit should be written to support the external system port power switching implementation.
		0 = Ports are power switched.
		1 = Ports are always powered on.
		Power Switching Mode
[8]	PSM	This bit is only valid when NoPowerSwitching is cleared. This bit should be written '0'.
		0 = Global Switching
		1 = Individual Switching
[7:0]	DPortNum	Number Downstream Ports

Publication Release Date: Jun. 18, 2010

Revision: A4

Host Controller Root Hub Descriptor B Register (HcRhDeB)

Register	Address	R/W	Description	Reset Value
HcRhDeB	0xB000_704C	R/W	Host Controller Root Hub Descriptor B Register	0x0000_0000

31	30	29	28	27	26	25	24
			PP	СМ			
23	22	21	20	19	18	17	16
			PP	СМ			
15	14	13	12	11	10	9	8
			DevRe	emove			
7	6	5	4	3	2	1	0
	DevRemove						

Bits	Descriptions	
Bits [31:16]	PPCM PPCM	Port Power Control Mask Global-power switching. This field is only valid if NoPowerSwitching is cleared and PowerSwitchingMode is set (individual port switching). When set, the port only responds to individual port power switching commands (Set/ClearPortPower). When cleared, the port only responds to global power switching commands (Set/ClearGlobalPower). 0 = Device not removable 1 = Global-power mask Port Bit relationship - Unimplemented ports are reserved, read/write '0'. 0 : Reserved 1 : Port 1 2 : Port 2
		15 : Port 15

Bits	Descriptions			
		Device Removable		
	DevRemove	'	devices. movable	
[15:0]			itionship Reserved	
[13.0]		1 : Port	leserved	
		2 : Port	2	
		 15 : Port 15		
		Unimplemented ports are reserved, read/write '0'.		

Host Controller Root Hub Status Register (HcRhSts)

Register	Address	R/W	2/W Description	
HcRhSts	0xB000_7050	R/W	Host Controller Root Hub Status Register	0x0000_0000

31	30	29	28	27	26	25	24
RWECIr				Reserved			
23	22	21	20	19	18	17	16
	Reserved					OCIC	LPSC
15	14	13	12	11	10	9	8
DRWEn		Reserved					
7	6	5	4	3	2	1	0
	Reserved					ОС	LPS

Bits	Descriptions	
[31]	RWECIr	Clear Remote Wakeup Enable Writing a '1' to this bit clears DeviceRemoteWakeupEnable. Writing a '1' has no effect.
[17]	ocic	Over Current Indicator Change This bit is set when OverCurrentIndicator changes. Writing a '1' clears this bit. Writing a '0' has no effect.
[16]	LPSC	(Read) LocalPowerStatusChange Not supported. Always read '0'. (Write) SetGlobalPower Write a '1' issues a SetGlobalPower command to the ports. Writing a '0' has no effect.
[15]	DRWEn	(Read) DeviceRemoteWakeupEnable This bit enables ports' ConnectStatusChange as a remote wakeup event. 0 = disabled 1 = enabled (Write) SetRemoteWakeupEnable Writing a '1' sets DeviceRemoteWakeupEnable. Writing a '0' has no effect.

248

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Over Current Indicator
[1]	OC NoOverCurrentProtec 0 = No over-current cor	This bit reflects the state of the OVRCUR pin. This field is only valid if NoOverCurrentProtection and OverCurrentProtectionMode are cleared.
		0 = No over-current condition
		1 = Over-current condition
		(Read) LocalPowerStatus
		Not Supported. Always read '0'.
[0]	LPS	(Write) ClearGlobalPower
		Writing a '1' issues a ClearGlobalPower command to the ports. Writing a '0' has no effect.

249

Host Controller Root Hub Port Status (HcRhPrt [1: 2])

Register	Address	R/W	Description	Reset Value
HcRhPrt1	0xB000_7054	R/W	Host Controller Root Hub Port Status [1]	0x0000_0000
HcRhPrt2	0xB000_7058	R/W	Host Controller Root Hub Port Status [2]	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved			POCIC	PSSC	PESC	CSC
15	14	13	12	11	10	9	8
		Rese	rved			LSDev	PPS
7	6	5	4	3	2	1	0
Reserved			PR	POC	PS	PE	СС

Bits	Descriptions	
[20]	PRSC	Port Reset Status Change This bit indicates that the port reset signal has completed. 0 = Port reset is not complete. 1 = Port reset is complete.
[19]	POCIC	Port Over Current Indicator Change This bit is set when OverCurrentIndicator changes. Writing a '1' clears this bit. Writing a '0' has no effect.
[18]	PSSC	Port Suspend Status Change This bit indicates the completion of the selective resume sequence for the port. 0 = Port is not resumed. 1 = Port resume is complete.
[17]	PESC	Port Enable Status Change This bit indicates that the port has been disabled due to a hardware event (cleared PortEnableStatus). 0 = Port has not been disabled. 1 = PortEnableStatus has been cleared.

250

Publication Release Date: Jun. 18, 2010

Revision: A4

Bits	Descriptions	
		Connect Status Change
		This bit indicates connect or disconnect event has been detected. Writing a '1' clears this bit. Writing a '0' has no effect.
[16]	CSC	0 = No connect/disconnect event.
		1 = Hardware detection of connect/disconnect event.
		Note: If DeviceRemoveable is set, this bit resets to '1'.
		(Read) LowSpeedDeviceAttached
		This bit defines the speed (and bud idle) of the attached device. It is only valid when CurrentConnectStatus is set.
[9]	LSDev	0 = Full Speed device
		1 = Low Speed device
		(Write) ClearPortPower
		Writing a '1' clears PortPowerStatus . Writing a '0' has no effect
		(Read) PortPowerStatus
		This bit reflects the power state of the port regardless of the power switching mode.
[O]	200	0 = Port power is off.
[8]	PPS	1 = Port power is on.
		Note: If NoPowerSwitching is set, this bit is always read as '1'.
		(Write) SetPortPower
		Writing a '1' sets PortPowerStatus . Writing a '0' has no effect.
		(Read) PortResetStatus
		0 = Port reset signal is not active.
[4]	PR	1 = Port reset signal is active.
		(Write) SetPortReset
		Writing a '1' sets PortResetStatus . Writing a '0' has no effect.

Bits	Descriptions	
		(Read) PortOverCurrentIndicator
		table of none-2 supports global over-current reporting. This bit reflects the state of the OVRCUR pin dedicated to this port. This field is only valid if NoOverCurrentProtection is cleared and OverCurrentProtectionMode is set.
[3]	POC	0 = No over-current condition
		1 = Over-current condition
		(Write) ClearPortSuspend
		Writing a '1' initiates the selective resume sequence for the port. Writing a '0' has no effect.
		(Read) PortSuspendStatus
	PS 0 = Port is not suspended 1 = Port is selectively suspended (Write) SetPortSuspend	0 = Port is not suspended
[2]		1 = Port is selectively suspended
		(Write) SetPortSuspend
		Writing a '1' sets PortSuspendStatus . Writing a '0' has no effect.
		(Read) PortEnableStatus
		0 = Port disabled.
[1]	PE	1 = Port enabled.
		(Write) SetPortEnable
		Writing a '1' sets PortEnableStatus . Writing a '0' has no effect.
		(Read) CurrentConnectStatus
[0]		0 = No device connected.
	СС	1 = Device connected.
[,		NOTE: If DeviceRemoveable is set (not removable) this bit is always '1'.
		(Write) ClearPortEnable
		Writing '1' a clears PortEnableStatus . Writing a '0' has no effect.

USB Operational Mode Enable Register (OpModEn)

Register	Address	R/W	Description	Reset Value
OpModEn	0xB000_7204	R/W	USB Operational Mode Enable Register	0X0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						SIEPDis
7	6	5	4	3	2	1	0
Reserved				OCALow	Reserved	ABORT	DBR16

Bits	Descriptions	
		SIE Pipeline Disable
[8]	SIEPDis	When set, waits for all USB bus activity to complete prior to returning completion status to the List Processor. This is a failsafe mechanism to avoid potential problems with the clk_dr transition between 1.5 MHz and 12 MHz.
		Over Current Active Low
[3] OCAL ow	This bit controls the polarity of over current flag from external power IC.	
[3]	OCALOW	0: Over current flag is high active
		1: Over current flag is low active
		AHB Bus ERROR Response
[1]	ABORT	This bit indicates there is an ERROR response received in AHB bus.
[1]	ABORT	0: No ERROR response received
		1: ERROR response received
		Data Buffer Region 16
[0] DBR16		When set, the size of the data buffer region is 16 bytes. Otherwise, the size is 32 bytes.

7.8 USB 2.0 Device Controller

The NUC950ADN USB Device Controller is compliant to the USB Specification version 2.0. It also supports the software control for device remote-wakeup and 6 configurable endpoints in addition to Control Endpoint. Each of these endpoints can be Isochronous, Bulk or Interrupt and they can be either of IN or OUT direction with maximum packet size up to 1024 bytes. Three different modes of operation (Auto validation mode, manual validation mode and Fly mode) are supported for IN-endpoint.

7.8.1 **USB Device Register Group Summary**

Register Groups	Description
Main Control Registers	These set of registers control the global enable of interrupts and maintain the status of the interrupts
USB Control Registers	These set of registers control the USB related events to/from the USB host and hold the status of the USB events.
Control Endpoint Registers	These set of registers direct the control endpoint in handling the USB requests from the host and hold the status information of the transactions.
Non control Endpoint Registers	These set of registers configure, control and exhibit the status of the non-control endpoints' operation
DMA Registers	These registers are responsible for the DMA related operations

7.8.2 **USB Device Control Registers Map**

Register	Address	R/W	Description	Reset Value
USBD_BA = 0xB000	_6000			
IRQ_STAT	0xB000_6000	R	Interrupt Register	0x0000_0000
IRQ_ENB_L	0xB000_6008	R/W	Interrupt Enable Low Register	0x0000_0001
USB_IRQ_STAT	0xB000_6010	R/W	USB Interrupt Status register	0x0000_0000

254

Publication Release Date: Jun. 18, 2010

Register	Address	R/W	Description	Reset Value
USB_IRQ_ENB	0xB000_6014	R/W	USB Interrupt Enable register	0x0000_0040
USB_OPER	0xB000_6018	R/W	USB operational register	0x0000_0002
USB_FRAME_CNT	0xB000_601C	R	USB frame count register	0x0000_0000
USB_ADDR	0xB000_6020	R/W	USB address register	0x0000_0000
CEP_DATA_BUF	0xB000_6028	R/W	Control-ep Data Buffer	0x0000_0000
CEP_CTRL_STAT	0xB000_602C	R/W	Control-ep Control and Status	0x0000_0000
CEP_IRQ_ENB	0xB000_6030	R/W	Control-ep Interrupt Enable	0x0000_0000
CEP_IRQ_STAT	0xB000_6034	R/W	Control-ep Interrupt Status	0x0000_1000
IN_TRNSFR_CNT	0xB000_6038	R/W	In-transfer data count	0x0000_0000
OUT_TRNSFR_CNT	0xB000_603C	R	Out-transfer data count	0x0000_0000
CEP_CNT	0xB000_6040	R	Control-ep data count	0x0000_0000
SETUP1_0	0xB000_6044	R	Setupbyte1 & byte0	0x0000_0000
SETUP3_2	0xB000_6048	R	Setupbyte3 & byte2	0x0000_0000
SETUP5_4	0xB000_604C	R	Setupbyte5 & byte4	0x0000_0000
SETUP7_6	0xB000_6050	R	Setupbyte7 & byte6	0x0000_0000
CEP_START_ADDR	0xB000_6054	R/W	Control EP RAM start address	0x0000_0000
CEP_END_ADDR	0xB000_6058	R/W	Control EP RAM end address	0x0000_0000
DMA_CTRL_STS	0xB000_605C	R/W	DMA control and status register	0x0000_0000
DMA_CNT	0xB000_6060	R/W	DMA count register	0x0000_0000
EPA_DATA_BUF	0xB000_6064	R/W	Endpoint A data register	0x0000_0000
EPA_IRQ_STAT	0xB000_6068	R/W	Endpoint A Interrupt status register	0x0000_0002
EPA_IRQ_ENB	0xB000_606C	R/W	Endpoint A Interrupt enable register	0x0000_0000
EPA_DATA_CNT	0xB000_6070	R	Data count available in endpoint A buffer	0x0000_0000
EPA_RSP_SC	0xB000_6074	R/W	Endpoint A response register set/clear	0x0000_0000
EPA_MPS	0xB000_6078	R/W	Endpoint A maximum packet size register	0x0000_0000
EPA_CNT	0xB000_607C	R/W	Endpoint A transfer count register	0x0000_0000
EPA_CFG	0xB000_6080	R/W	Endpoint A configuration register	0x0000_0012
EPA_START_ADDR	0xB000_6084	R/W	Endpoint A RAM start address	0x0000_0000
EPA_END_ADDR	0xB000_6088	R/W	Endpoint A RAM end address	0x0000_0000

255

Publication Release Date: Jun. 18, 2010

Register	Address	R/W	Description	Reset Value
EPB_DATA_BUF	0xB000_608C	R/W	Endpoint B data register	0x0000_0000
EPB_IRQ_STAT	0xB000_6090	R/W	Endpoint B Interrupt status register	0x0000_0002
EPB_IRQ_ENB	0xB000_6094	R/W	Endpoint B Interrupt enable register	0x0000_0000
EPB_DATA_CNT	0xB000_6098	R	Data count available in endpoint B buffer	0x0000_0000
EPB_RSP_SC	0xB000_609C	R/W	,	0x0000_0000
EPB_MPS	0xB000_60A0	R/W	Endpoint B maximum packet size register	0x0000_0000
EPB_TRF_CNT	0xB000_60A4	R/W	Endpoint B transfer count register	0x0000_0000
EPB_CFG	0xB000_60A8	R/W	Endpoint B configuration register	0x0000_0022
EPB_START_ADDR	0xB000_60AC	R/W	Endpoint B RAM start address	0x0000_0000
EPB_END_ADDR	0xB000_60B0	R/W	Endpoint B RAM end address	0x0000_0000
EPC_DATA_BUF	0xB000_60B4	R/W	Endpoint C data register	0x0000_0000
EPC_IRQ_STAT	0xB000_60B8	R/W	Endpoint C Interrupt status register	0x0000_0002
EPC_IRQ_ENB	0xB000_60BC	R/W	Endpoint C Interrupt enable register	0x0000_0000
EPC_DATA_CNT	0xB000_60C0	R	Data count available in endpoint C buffer	0x0000_0000
EPC_RSP_SC	0xB000_60C4	R/W	Endpoint C response register set/clear	0x0000_0000
EPC_MPS	0xB000_60C8	R/W	Endpoint C maximum packet size register	0x0000_0000
EPC_TRF_CNT	0xB000_60CC	R/W	Endpoint C transfer count register	0x0000_0000
EPC_CFG	0xB000_60D0	R/W	Endpoint C configuration register	0x0000_0032
EPC_START_ADDR	0xB000_60D4	R/W	Endpoint C RAM start address	0x0000_0000
EPC_END_ADDR	0xB000_60D8	R/W	Endpoint C RAM end address	0x0000_0000
EPD_DATA_BUF	0xB000_60DC	R/W	Endpoint D data register	0x0000_0000
EPD_IRQ_STAT	0xB000_60E0	R/W	Endpoint D Interrupt status register	0x0000_0002
EPD_I RQ_ENB	0xB000_60E4	R/W	Endpoint D Interrupt enable register	0x0000_0000
EPD_DATA_CNT	0xB000_60E8	R	Data count available in endpoint D buffer	0x0000_0000
EPD_RSP_SC	0xB000_60EC	R/W		0x0000_0000
EPD_MPS	0xB000_60F0	R/W	Endpoint D maximum packet size register	0x0000_0000

256

Register	Address	R/W	Description	Reset Value
EPD_TRF_CNT	0xB000_60F4	R/W	Endpoint D transfer count register	0x0000_0000
EPD_CFG	0xB000_60F8	R/W	Endpoint D configuration register	0x0000_0042
EPD_START_ADDR	0xB000_60FC	R/W	Endpoint D RAM start address	0x0000_0000
EPD_END_ADDR	0xB000_6100	R/W	Endpoint D RAM end address	0x0000_0000
EPE_DATA_BUF	0xB000_6104	R/W	Endpoint E data register	0x0000_0000
EPE_IRQ_STAT	0xB000_6108	R/W	Endpoint E Interrupt status register	0x0000_0002
EPE_IRQ_ENB	0xB000_610C	R/W	Endpoint E Interrupt enable register	0x0000_0000
EPE_DATA_CNT	0xB000_6110	R	Data count available in endpoint E buffer	0x0000_0000
EPE_RSP_SC	0xB000_6114	R/W	Endpoint E response register set/clear	0x0000_0000
EPE_MPS	0xB000_6118	R/W	Endpoint E maximum packet size register	0x0000_0000
EPE_TRF_CNT	0xB000_611C	R/W	Endpoint E transfer count register	0x0000_0000
EPE_CFG	0xB000_6120	R/W	Endpoint E configuration register	0x0000_0052
EPE_START_ADDR	0xB000_6124	R/W	Endpoint E RAM start address	0x0000_0000
EPE_END_ADDR	0xB000_6128	R/W	Endpoint E RAM end address	0x0000_0000
EPF_DATA_BUF	0xB000_612C	R/W	Endpoint F data register	0x0000_0000
EPF_IRQ_STAT	0xB000_6130	R/W	Endpoint F Interrupt status register	0x0000_0002
EPF_IRQ_ENB	0xB000_6134	R/W	Endpoint F Interrupt enable register	0x0000_0000
EPF_DATA_CNT	0xB000_6138	R	Data count available in endpoint F buffer	0x0000_0000
EPF_RSP_SC	0xB000_613C	R/W	, ,	0x0000_0000
EPF_MPS	0xB000_6140	R/W	Endpoint F maximum packet size register	0x0000_0000
EPF_TRF_CNT	0xB000_6144	R/W	Endpoint F transfer count register	0x0000_0000
EPF_CFG	0xB000_6148	R/W	Endpoint F configuration register	0x0000_0062
EPF_START_ADDR	0xB000_614C	R/W	Endpoint F RAM start address	0x0000_0000
EPF_END_ADDR	0xB000_6150	R/W	Endpoint F RAM end address	0x0000_0000
USB_DMA_ADDR	0xB000_6700	R/W	AHB_DMA address register	0x0000_0000
USB_PHY_CTL	0xB000_6704	R/W	USB PHY control register	0x0000_0260

7.8.3 USB Device Control Registers

Interrupt Register (IRQ)

Register	Address	R/W	Description	Default Value
IRQ	0xB000_6000	R	Interrupt Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	rved			
23	22	21	20	19	18	17	16
			Rese	rved			
15	14	13	12	11	10	9	8
			Rese	rved			
7	6	5	4	3	2	1	0
EPF_INT	EPE_INT	EPD_INT	EPC_INT	EPB_INT	EPA_INT	CEP_INT	USB_INT

Bits	Descriptio	Descriptions					
[7]	EPF_INT	This bit conveys the interrupt for Endpoints F. When set, the corresponding Endpoint F's interrupt status register should be read to determine the cause of the interrupt.					
[6]	EPE_INT	This bit conveys the interrupt for Endpoints E. When set, the corresponding Endpoint E's interrupt status register should be read to determine the cause of the interrupt.					
[5]	EPD_INT	This bit conveys the interrupt for Endpoints D. When set, the corresponding Endpoint D's interrupt status register should be read to determine the cause of the interrupt.					
[4]	EPC_INT	This bit conveys the interrupt for Endpoints C. When set, the corresponding Endpoint C's interrupt status register should be read to determine the cause of the interrupt.					

Bits	Descriptio	Descriptions					
[3]	EPB_INT	This bit conveys the interrupt for Endpoints B. When set, the corresponding Endpoint B's interrupt status register should be read to determine the cause of the interrupt.					
[2]	EPA_INT	This bit conveys the interrupt for Endpoints A. When set, the corresponding Endpoint A's interrupt status register should be read to determine the cause of the interrupt.					
[1]	CEP_INT	Control Endpoint Interrupt. This bit conveys the interrupt status for control endpoint. When set, Controlep's interrupt status register should be read to determine the cause of the interrupt.					
[0]	USB_INT	USB Interrupt. The interrupt status for USB specific events endpoint. When set, USB interrupt status register should be read to determine the cause of the interrupt.					

Interrupt Enable Low Register (IRQ_ENB_L)

Register	Address	R/W	Description	Default Value
IRQ_ENB_L	0xB000_6008	R/W	Interrupt Enable Low Register	0x0000_0001

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
EPF_IE	EPE_IE	EPD_IE	EPC_IE	EPB_IE	EPA_IE	CEP_IE	USB_IE			

Bits	Descriptions	Descriptions						
[7]	EPF_IE	Interrupt Enable for Endpoint F. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint F						
[6]	EPE_IE	Interrupt Enable for Endpoint E. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint E						
[5]	EPD_IE	Interrupt Enable for Endpoint D. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint D						
[4]	EPC_IE	Interrupt Enable for Endpoint C. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint C						
[3]	EPB_IE	Interrupt Enable for Endpoint B. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint B						

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	Descriptions					
[2]	EPA_IE	Interrupt Enable for Endpoint A. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the endpoint A.					
[1]	CEP_IE	Control Endpoint Interrupt Enable. When set, this bit enables a local interrupt to be generated when an interrupt is pending for the control endpoint.					
[0]	USB_IE	USB Interrupt Enable. When set, this bit enables a local interrupt to be generated when a USB event occurs on the bus.					

USB Interrupt Status Register (USB_IRQ_STAT)

Register Address		R/W	Description	Default Value
USB_IRQ_STAT	0xB000_6010	R/W	USB Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	7 6 5 4 3 2 1 0									
Reserved	TCLKOK_IS	DMACOM_IS	HISPD_IS	SUS_IS	RUM_IS	RST_IS	SOF_IS			

Bits	Descriptions	
[6]	TCLKOK_IS	Usable Clock Interrupt. This bit is set when usable clock is available from the transceiver. Writing '1" clears this bit.
[5]	DMACOM_IS	DMA Completion Interrupt. This bit is set when the DMA transfer is over. Writing '1" clears this bit.
[4]	HISPD_IS	High Speed Settle. This bit is set when the valid high-speed reset protocol is over and the device has settled is high-speed. Writing `1" clears this bit.
[3]	sus_is	Suspend Request. This bit is set as default and it has to be cleared by writing '1' before the USB reset. This bit is also set when a USB Suspend request is detected from the host. Writing '1' clears this bit.
[2]	RUM_IS	Resume. When set, this bit indicates that a device resume has occurred. Writing a '1' clears this bit.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[1]	RST_IS	Reset Status. When set, this bit indicates that either the USB root port reset is end. Writing a '1' clears this bit.
[0]	SOF_IS	SOF. This bit indicates when a start-of-frame packet has been received. Writing a `1' clears this bit.

USB Interrupt Enable Register (USB_IRQ_ENB)

Register	Address	R/W	Description	Default Value
USB_IRQ_ENB	0xB000_6014	R/W	USB Interrupt Enable Register	0x0000_0040

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
Reserved										
7 6 5 4 3 2 1 0							0			
Reserved	TCLKOK_IE	DMACOM_IE	HISPD_IE	SUS_IE	RUM_IE	RST_IE	SOF_IE			

Bits	Descriptions	
[6]	TCLKOK_IE	Usable Clock Interrupt. This bit enables the usable clock interrupt.
[5]	DMACOM_IE	DMA Completion Interrupt. This bit enables the DMA completion interrupt
[4]	HISPD_IE	High Speed Settle. This bit enables the high-speed settle interrupt.
[3]	SUS_IE	Suspend Request. This bit enables the Suspend interrupt.
[2]	RUM_IE	Resume. This bit enables the Resume interrupt.
[1]	RST_IE	Reset Status. This bit enables the USB-Reset interrupt.
[0]	SOF_IE	SOF Interrupt. This bit enables the SOF interrupt.

Publication Release Date: Jun. 18, 2010

USB Operational Register (USB_OPER)

Register	Address	R/W	Description	Default Value
USB_OPER	0xB000_6018	R/W	USB Operational Register	0x0000_0002

31	30	29	28	27	26	25	24		
31	30	2,			20	23	27		
			Rese	rved					
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7 6 5 4 3 2 1						0			
Reserved					CUR_SPD	SET_HISPD	GEN_RUM		

Bits	Descriptions	
[2]	CUR_SPD	USB Current Speed. When set, this bit indicates that the DEVICE CONTROLLER has settled in High Speed and a zero indicates that the device has settled in Full Speed
[1]	SET_HISPD	USB High Speed. When set to one, this bit indicates the DEVICE CONTROLLER to initiate a chirp-sequence during reset protocol. When set to zero, it indicates the DEVICE CONTROLLER to suppress the chirp-sequence during reset protocol, thereby allowing the DEVICE CONTROLLER to settle in full-speed, even though it is connected to a USB2.0 Host.
[0]	GEN_RUM	Generate Resume. Writing a 1 to this bit causes a Resume sequence to be initiated to the host if device remote wakeup is enabled. This bit is self-clearing.

USB Frame Count Register (USB_FRAME_CNT)

Register	Address	R/W	Description	Default Value
USB_FRAME_CNT	0xB000_601C	R	USB Frame Count Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
Rese	erved			FRAMI	E_CNT					
7 6 5 4 3 2 1 0						0				
	FRAME_CNT			N	IFRAME_CN	IT				

Bits	Descriptions	
[13:3]	FRAME_CNT	FRAME COUNTER. This field contains the frame count from the most recent start-of-frame packet.
[2:0]	MFRAME_CNT	MICRO FRAME COUNTER. This field contains the micro-frame number for the frame number in the frame counter field.

USB Address Register (USB_ADDR)

Register	Address	R/W	Description	Default Value
USB_ADDR	0xB000_6020	R/W	USB Address Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21 20 19 18 17								
	Reserved									
15	14	13	13 12 11 10				8			
	Reserved									
7	7 6 5 4 3 2 1 0									
Reserved	red ADDR									

Bits	Descriptions	Descriptions					
[6:0]	ADDR	This field contains the current USB address of the device. This field is cleared when a root port reset is detected.					

267

Control-ep Data Buffer (CEP_DATA_BUF)

Register	Address	R/W	Description	Default Value
CEP_DATA_BUF	0xB000_6028	RW	Control-ep Data Buffer	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	3 22 21 20 19 18 17 16									
	Reserved									
15	14	13	12	11	10	9	8			
	DATA_BUF									
7 6 5 4 3 2 1 0							0			
	DATA_BUF									

Bits	Descriptions	Descriptions					
[15:0]	DATA_BUF	Control-ep Data Buffer. Bits [15:8] of this register provide the high order byte and bits [7:0] of this register provide the lower order byte for the buffer transaction (read or write).					

Control-ep Control and Status (CEP_CTRL_STAT)

Register	Address	R/W	Description	Default Value
CEP_CTRL_STAT	0xB000_602C	RW	Control-ep Control and Status	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
			Res	erved				
15	14	13	12	11	10	9	8	
	Reserved							
7	7 6 5 4 3 2 1 0							
Reserved				FLUSH	ZEROLEN	STLALL	NAK_CLEAR	

Bits	Descriptions	
[3]	FLUSH	CEP-FLUSH Bit. Writing 1 to this bit cause the packet buffer and its corresponding CEP_AVL_CNT register to be cleared. This bit is self-cleaning.
[2]	ZEROLEN	ZEROLEN Bit. This bit is valid for auto validation mode only. When this bit is set, DEVICE CONTROLLER can send a zero length packet to the host during Data stage to an IN token. This bit gets cleared once the zero length data packet is sent. So, the local CPU need not write again to clear this bit.
[1]	STLALL	STALL. This bit is a read/write bit. When this stall bit is set, the control endpoint sends a stall handshake in response to any in or out token thereafter. This is typically used for response to invalid/unsupported requests. When this bit is being set the NAK clear bit has to be cleared at the same time since the NAK clear bit has highest priority than STALL. It is automatically cleared on receipt of a next setup-token. So, the local CPU need not write again to clear this bit. NOTE: ONLY when CPU write data [1:0] is 2'b10 or 2'b00, this bit can be updated.

269

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[0]	NAK_CLEAR	NAK_CLEAR. This is a read/write bit. This bit plays a crucial role in any control transfer. It bit is set to one by the DEVICE CONTROLLER, whenever a setup token is received. The local CPU can take its own time to finish off any house-keeping work based on the request and then clear this bit. Unless the bit is being cleared by the local CPU by writing zero, the DEVICE CONTROLLER will be responding with NAKs for the subsequent status phase. This mechanism holds the host from moving to the next request, until the local CPU is also ready to process the next request. NOTE: ONLY when CPU write data [1:0] is 2'b10 or 2'b00, this bit can be updated.

Control Endpoint Interrupt Enable (CEP_IRQ_ENABLE)

Register	Address	R/W	Description	Default Value
CEP_IRQ_ENABLE	0xB000_6030	R/W	Control Endpoint Interrupt Enable	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
Reserved			EMPTY_IE	FULL_IE	STACOM_IE	ERR_IE	STALL_IE		
7	6	5	4	3	2	1	0		
NAK_IE	DATA_RxED_IE	DATA_TxED_IE	PING_IE	IN_TK_IE	OUT_TK_IE	SETUP_PK_IE	SETUP_TK_IE		

Bits	Descriptions	
[12]	EMPTY_IE	Buffer Empty Interrupt. This bit enables the buffer empty interrupt.
[11]	FULL_IE	Buffer Full Interrupt. This bit enables the buffer full interrupt.
[10]	STACOM_IE	Status Completion Interrupt. This bit enables the Status Completion interrupt.
[9]	ERR_IE	USB Error Interrupt. This bit enables the USB Error interrupt.
[8]	STALL_IE	STALL Sent Interrupt. This bit enables the STALL sent interrupt
[7]	NAK_IE	NAK Sent Interrupt. This bit enables the NAK sent interrupt.
[6]	DATA_RxED_IE	Data Packet Received Interrupt. This bit enables the data received interrupt.

271

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	Descriptions					
[5]	DATA_TxED_IE	Data Packet Transmitted Interrupt. This bit enables the data packet transmitted interrupt.					
[4]	PING_IE	Ping Token Interrupt. This bit enables the ping token interrupt.					
[3]	IN_TK_IE	In Token Interrupt. This bit enables the in token interrupt					
[2]	OUT_TK_IE	Out Token Interrupt. This bit enables the out token interrupt.					
[1]	SETUP_PK_IE	Setup Packet Interrupt. This bit enables the setup packet interrupt.					
[0]	SETUP_TK_IE	Setup Token Interrupt Enable. This bit enables the setup token interrupt.					

Publication Release Date: Jun. 18, 2010

Control-Endpoint Interrupt Status (CEP_IRQ_STAT)

Register	Address	R/W	Description	Default Value
CEP_IRQ_STAT	0xB000_6034	R/W	Control-ep Interrupt Status	0x0000_1000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
Reserved EMPTY_IS FULL_IS STACOM_IS ERR_IS ST						STALL_IS			
7	6	5	4	3	2	1	0		
NAK_IS	DATA_RxED_IS	DATA_TxED_IS	PING_IS	IN_TK_IS	OUT_TK_IS	SETUP_PK_IS	SETUP_TK_IS		

Bits	Descriptions	
[12]	EMPTY_IS	Buffer Empty Interrupt. (Read Only) This bit is set when the control-ednpt buffer is empty.
[11]	FULL_IS	Buffer Full Interrupt. (Write "1" Clear) This bit is set when the control-endpt buffer is full.
[10]	STACOM_IS	Status Completion Interrupt. (Write "1" Clear) This bit is set when the status stage of a USB transaction has completed successfully.
[9]	ERR_IS	USB Error Interrupt. (Write "1" Clear) This bit is set when an error had occurred during the transaction.
[8]	STALL_IS	STALL Sent Interrupt. (Write "1" Clear) This bit is set when a stall-token is sent in response to an in/out token
[7]	NAK_IS	NAK Sent Interrupt. (Write "1" Clear) This bit is set when a nak-token is sent in response to an in/out token

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[6]	DATA_RxED_IS	Data Packet Received Interrupt. (Write "1" Clear) This bit is set when a data packet is successfully received from the host for an out-token and an ack is sent to the host.
[5]	DATA_TxED_IS	Data Packet Transmitted Interrupt. (Write "1" Clear) This bit is set when a data packet is successfully transmitted to the host in response to an in-token and an ack-token is received for the same.
[4]	PING_IS	Ping Token Interrupt. (Write "1" Clear) This bit is set when the control-endpt receives a ping token from the host.
[3]	IN_TK_IS	In Token Interrupt. (Write "1" Clear) This bit is set when the control-endpt receives an in token from the host.
[2]	OUT_TK_IS	Out Token Interrupt. (Write "1" Clear) This bit is set when the control-endpoint receives an out token from the host.
[1]	SETUP_PK_IS	Setup Packet Interrupt. (Write "1" Clear) This bit is set when a setup packet has been received from the host. This bit must be cleared (by writing a 1) before the next setup packet can be received. If the bit is not cleared, then the successive setup packets will be overwritten in the setup packet buffer.
[0]	SETUP_TK_IS	Setup Token Interrupt. (Write "1" Clear) This bit indicates when a setup token is received. Writing a 1 clears this status bit

In-transfer data count (IN_TRF_CNT)

Register	Address	R/W	Description	Default Value
IN_TRF_CNT	0xB000_6038	R/W	In-transfer data count	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			Rese	rved				
7	6	5	4	3	2	1	0	
	IN_TRF_CNT							

Bits	Descriptions			
[7:0]	IN_TRF_CNT	In-transfer data count. There is no mode selection for the control endpoint (but it operates like manual mode). The local-CPU has to fill the controlendpoint buffer with the data to be sent for an in-token and to write the count of bytes in this register. When zero is written into this field, a zero length packet is sent to the host. When the count written in the register is more than the MPS, the data sent will be of only MPS.		

Out-transfer data count (OUT_TRF_CNT)

Register	Address	R/W	Description	Default Value
OUT_TRF_CNT	0xB000_603C	R	Out-transfer data count	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			OUT_TI	RF_CNT					
7	6	5	4	3	2	1	0		
		OUT_TRF_CNT							

Bits	Descriptions	
[15:0]	OUT_TRF_CNT	Out-Transfer Data Count. The DEVICE CONTROLLER maintains the count of the data received in case of an out transfer, during the control transfer.

Control- Endpoint data count (CEP_CNT)

Register	Address	R/W	Description	Default Value
CEP_CNT	0xB000_6040	R	Control-ep data count	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	CEP_CNT								
7	6	5	4	3	2	1	0		
	CEP_CNT								

Bits	Descriptions	
[15:0]	CEP_CNT	Control-ep Data Count. The DEVICE CONTROLLER maintains the count of the data of control-ep.

Setup1 & Setup0 bytes (SETUP1_0)

Register	Address	R/W	Description	Default Value
SETUP1_0	0xB000_6044	R	Setup1 & Setup0 bytes	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	SETUP1							
7	6	5	4	3	2	1	0	
			SET	UP0				

Bits Descriptions

			32-DIT AKWI720LJ-3 DAJLD I	
		Setup Byte 1[
			rovides byte 1 of the last setup packet received. For Device Request, the following bRequest Cooreturned.	
		Code	Descriptions	
		0x00	Get Status	
		0x01	Clear Feature	
		0x02	Reserved	
	L5:8] SETUP1	0x03	Set Feature	
[15:8]		0x04	Reserved	
[13.0]	SEIGFI	0x05	Set Address	
		0x06	Get Descriptor	
		0x07	Set Descriptor	
		0x08	Get Configuration	
		0x09	Set Configuration	
		0x0A	Get Interface	
		0x0B	Set Interface	
		0x0C	Synch Frame	

	Setup Byte O[7:0]. This register provides byte 0 of the last setup packet received. Fa Standard Device Request, the following bmRequestTylinformation is returned.					
	Bits	Descriptions				
	[7]	Direction	0 = host to device;			
		1 = device to host		1 = device to host		
		[6:5]	Type 0 = Standard,			
[7:0]	SETUP0			1 = Class,		
				2 = Vendor,		
				3 = Reserved		
		[4:0]	Recipient	0 = Device,		
				1 = Interface,		
				2 = Endpoint,		
				3 = Other,		
				4-31 Reserved		

Setup3 & Setup2 bytes (SETUP3_2)

Register	Address	R/W	Description	Default Value
SETUP3_2	0xB000_6048	R	Setup3 & Setup2 bytes	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23 22 21 20 19 18 17 16										
Reserved										
15	14	13	12	11	10	9	8			
	SETUP3									
7 6 5 4 3 2 1 0							0			
	SETUP2									

Bits	Descriptions	
[15:8]	SETUP3	Setup Byte 3 [15:8]. This register provides byte 3 of the last setup packet received. For a Standard Device Request, the most significant byte of the wValue field is returned.
[7:0]	SETUP2	Setup Byte 2 [7:0]. This register provides byte 2 of the last setup packet received. For a Standard Device Request, the least significant byte of the wValue field is returned.

Setup5 & Setup4 bytes (SETUP5_4)

Register	Address	R/W	Description	Default Value
SETUP5_4	0xB000_604C	R	Setup5 & Setup4 bytes	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23 22 21 20 19 18 17 16										
Reserved										
15	14	13	12	11	10	9	8			
	SETUP5									
7 6 5 4 3 2 1 0							0			
	SETUP4									

Bits	Descriptions	
[15:8]	SETUP5	Setup Byte 5[15:8]. This register provides byte 5 of the last setup packet received. For a Standard Device Request, the most significant byte of the wIndex field is returned.
[7:0]	SETUP4	Setup Byte 4[7:0]. This register provides byte 4 of the last setup packet received. For a Standard Device Request, the least significant byte of the wIndex is returned.

Setup7 & Setup6 bytes (SETUP7_6)

Register	Address	R/W	Description	Default Value
SETUP7_6	0xB000_6050	R	Setup7 & Setup6 bytes	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23 22 21 20 19 18 17 16										
Reserved										
15	14	13	12	11	10	9	8			
			SET	UP7						
7	6	5	4	3	2	1	0			
	SETUP6									

Bits	Descriptions	
[15:8]	SETUP7	Setup Byte 7[15:8]. This register provides byte 7 of the last setup packet received. For a Standard Device Request, the most significant byte of the wLength field is returned.
[7:0]	SETUP6	Setup Byte 6[7:0]. This register provides byte 6 of the last setup packet received. For a Standard Device Request, the least significant byte of the wLength field is returned.

Control Endpoint RAM Start Address Register (CEP_START_ADDR)

Register	Address	R/W	Description	Default Value
CEP_START_ADDR	0xB000_6054	R/W	Control EP RAM Start Address Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
		Reserved			CEP	_START_AI	ODR			
7 6 5 4 3 2 1 0										
	CEP_START_ADDR									

Bits	Descriptions	
[10:0]	CEP_START_ADDR	This is the start-address of the RAM space allocated for the control-endpoint

Control Endpoint RAM End Address Register (CEP_END_ADDR)

Register	Address	R/W	Description	Default Value
CEP_END_ADDR	0xB000_6058	R/W	Control EP RAM End Address Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
		Reserved		CE	P_END_AD	DR		
7	6	5	4	3	2	1	0	
	CEP_END_ADDR							

Bits	Descriptions	
[10:0]	CEP_END_ADDR	This is the end-address of the RAM space allocated for the control-endpoint

DMA Control Status Register (DMA_CTRL_STS)

Register	Address	R/W	Description	Default Value
DMA_CTRL_STS	0xB000_605C	R/W	DMA Control Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
RST_DMA	SCAT_GA_EN	DMA_EN	DMA_RD	DMA_ADDR					

Bits	Descriptions	
[7]	RST_DMA	Reset DMA state machine.
[6]	SCAT_GA_EN	Scatter gather function enable
[5]	DMA_EN	DMA Enable Bit
[4]	DMA_RD	DMA Operation Bit. If `1', the operation is a DMA read and if `0' the operation is a DMA write.
[3:0]	DMA_ADDR	DMA ep_addr Bits

When enable scatter gather DMA function, SCAT_GA_EN needs to be set high and DMA_CNT set to 8 bytes. Then DMA will enable to fetch the descriptor which describes the real memory address and length. The descriptor will be a

8-byte format, like the following:

[31]	[30]	[30] [29:0]					
	MEM_ADDR[31:0]						
EOT	EOT RD reserved count[19:0]						

MEM_ADDR: It specifies the memory address (AHB address).

EOT: end of transfer. When this bit sets to high, it means this is the last descriptor.

RD: "1" means read from memory into buffer. "0" means read from buffer into memory.

Publication Release Date: Jun. 18, 2010

DMA Count Register (DMA_CNT)

Register	Address	R/W	Description	Default Value
DMA_CNT	0xB000_6060	R/W	DMA Count Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Re	eserved		DMA_CNT				
15	14	13	12	11	10	9	8	
	DMA_CNT							
7	6	5	4	3	2	1	0	
	DMA_CNT							

Bits	Descriptions	
[19:0]	DMA_CNT	The transfer count of the DMA operation to be performed is written to this register.

Endpoint A~F Data Register (EPA_DATA_BUF~ EPF_DATA_BUF)

Register	Address	R/W	Description	Default Value
EPA_DATA_BUF	0xB000_6064	R/W	Endpoint A Data Register	0x0000_0000
EPB_DATA_BUF	0xB000_608C	R/W	Endpoint B Data Register	0x0000_0000
EPC_DATA_BUF	0xB000_60B4	R/W	Endpoint C Data Register	0x0000_0000
EPD_DATA_BUF	0xB000_60DC	R/W	Endpoint D Data Register	0x0000_0000
EPE_DATA_BUF	0xB000_6104	R/W	Endpoint E Data Register	0x0000_0000
EPF_DATA_BUF	0xB000_612C	R/W	Endpoint F Data Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	rved			
15	14	13	12	11	10	9	8
			EP_DA	ΓA_BUF			
7	6	5	4	3	2	1	0
	EP_DATA_BUF						

Bits	Descriptions		
[15:0]	EP_DATA_BUF	Endpoint A~F Data Register. Bits [15:8] of this register provide the high order byte and bits [7:0] of this register provide the lower order byte for the buffer transaction (read or write).	

Endpoint A~F Interrupt Status Register (EPA_IRQ_STAT~ EPF_IRQ_STAT)

Register	Address	R/W	Description	Default Value
EPA_IRQ_STAT	0xB000_6068	R/W	Endpoint A Interrupt Status Register	0x0000_0002
EPB_IRQ_STAT	0xB000_6090	R/W	Endpoint B Interrupt Status Register	0x0000_0002
EPC_IRQ_STAT	0xB000_60B8	R/W	Endpoint C Interrupt Status Register	0x0000_0002
EPD_IRQ_STAT	0xB000_60E0	R/W	Endpoint D Interrupt Status Register	0x0000_0002
EPE_IRQ_STAT	0xB000_6104	R/W	Endpoint E Interrupt Status Register	0x0000_0002
EPF_IRQ_STAT	0xB000_6130	R/W	Endpoint F Interrupt Status Register	0x0000_0002

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserve	d	O_SHORT_PKT_IS	ERR_IS	NYET_IS	STALL_IS	NAK_IS
7	6	5	4	3	2	1	0
PING_IS	IN_TK_IS	OUT_TK_IS	DATA_RxED_IS	DATA_TxED_IS	SHORT_PKT_IS	EMPTY_IS	FULL_IS

Bits	Descriptions		
[12]	O_SHORT_PKT_IS	Bulk Out Short Packet Received (Writing a '1' clears this bit.) Received bulk out short packet (including zero length packet)	
[11]	ERR_IS	ERR Sent . (Writing a `1' clears this bit.) This bit is set when there occurs any error in the transaction.	
[10]	NYET_IS	NYET Sent. (Writing a '1' clears this bit.) This bit is set when the space available in the RAM is not sufficient to accommodate the next on coming data packet.	

Bits	Descriptions	
[9]	STALL_IS	USB STALL Sent. (Writing a '1' clears this bit.) The last USB packet could not be accepted or provided because the endpoint was stalled, and was acknowledged with a STALL.
[8]	NAK_IS	USB NAK Sent. (Writing a '1' clears this bit.) The last USB IN packet could not be provided, and was acknowledged with a NAK.
[7]	PING_IS	PING Token Interrupt . (Writing a `1' clears this bit.) This bit is set when a Data IN token has been received from the host.
[6]	IN_TK_IS	Data IN Token Interrupt. (Writing a `1' clears this bit.) This bit is set when a Data IN token has been received from the host.
[5]	OUT_TK_IS	Data OUT Token Interrupt. (Writing a '1' clears this bit.) This bit is set when a Data OUT token has been received from the host. This bit also set by PING tokens (in high-speed only).
[4]	DATA_RxED_IS	Data Packet Received Interrupt. (Writing a `1' clears this bit.) This bit is set when a data packet is received from the host by the endpoint.
[3]	DATA_TxED_IS	Data Packet Transmitted Interrupt. (Writing a '1' clears this bit.) This bit is set when a data packet is transmitted from the endpoint to the host.
[2]	SHORT_PKT_IS	Short Packet Transferred Interrupt. (Writing a '1' clears this bit.) This bit is set when the length of the last packet was less than the Maximum Packet Size (EP_MPS).
[1]	EMPTY_IS	Buffer Empty. (READ ONLY) For an IN endpoint, a buffer is available to the local side for writing up to FIFO full of bytes. This bit is set when the endpoint buffer is empty. For an OUT endpoint, the currently selected buffer has a count of 0, or no buffer is available on the local side (nothing to read).

291

Bits	Descriptions	
[0]	FULL_IS	Buffer Full. (READ ONLY) This bit is set when the endpoint packet buffer is full. For an IN endpoint, the currently selected buffer is full, or no buffer is available to the local side for writing (no space to write). For an OUT endpoint, there is a buffer available on the local side, and there are FIFO full of bytes available to be read (entire packet is available for reading).

Endpoint A~F Interrupt Enable Register (EPA_IRQ_ENB~ EPF_IRQ_ENB)

Register	Address	R/W	Description	Default Value
EPA_IRQ_ENB	0xB000_606C	R/W	Endpoint A Interrupt Enable Register	0x0000_0000
EPB_IRQ_ENB	0xB000_6094	R/W	Endpoint B Interrupt Enable Register	0x0000_0000
EPC_IRQ_ENB	0xB000_60BC	R/W	Endpoint C Interrupt Enable Register	0x0000_0000
EPD_IRQ_ENB	0xB000_60E4	R/W	Endpoint D Interrupt Enable Register	0x0000_0000
EPE_IRQ_ENB	0xB000_610C	R/W	Endpoint E Interrupt Enable Register	0x0000_0000
EPF_IRQ_ENB	0xB000_6134	R/W	Endpoint F Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
			R	eserved			
23	22	21	20	19	18	17	16
			R	eserved			
15	14	13	12	11	10	9	8
	Reserve	d	O_SHORT_PKT_IE	ERR_IE	NYET_IE	STALL_IE	NAK_IE
7	6	5	4	3	2	1	0
PING_IE	IN_TK_IE	OUT_TK_IE	DATA_RxED_IE	DATA_TxED_IE	SHORT_PKT_IE	EMPTY_IE	FULL_IE

Bits	Descriptions			
[12]	O_SHORT_PKT_IE	Bulk Out Short Packet Interrupt Enable When set, this bit enables a local interrupt to be set whenever bulk out short packet occurs on the bus for this endpoint.		

Bits	Descriptions	
[11]	ERR_IE	ERR interrupt Enable. When set, this bit enables a local interrupt to be set whenever ERR condition occurs on the bus for this endpoint.
[10]	NYET_IE	NYET Interrupt Enable. When set, this bit enables a local interrupt to be set whenever NYET condition occurs on the bus for this endpoint.
[9]	STALL_IE	USB STALL Sent Interrupt Enable. When set, this bit enables a local interrupt to be set when a stall token is sent to the host.
[8]	NAK_IE	USB NAK Sent Interrupt Enable. When set, this bit enables a local interrupt to be set when a nak token is sent to the host.
[7]	PING_IE	PING Token Interrupt Enable. When set, this bit enables a local interrupt to be set when a ping token has been received from the host.
[6]	IN_TK_IE	Data IN Token Interrupt Enable. When set, this bit enables a local interrupt to be set when a Data IN token has been received from the host.
[5]	OUT_TK_IE	Data OUT Token Interrupt Enable. When set, this bit enables a local interrupt to be set when a Data OUT token has been received from the host.
[4]	DATA_RxED_IE	Data Packet Received Interrupt Enable. When set, this bit enables a local interrupt to be set when a data packet has been transmitted to the host.
[3]	DATA_TxED_IE	Data Packet Transmitted Interrupt Enable. When set, this bit enables a local interrupt to be set when a data packet has been received from the host.
[2]	SHORT_PKT_IE	Short Packet Transferred Interrupt Enable. When set, this bit enables a local interrupt to be set when a short data packet has been transferred to/from the host.

Bits	Descriptions					
[1]	EMPTY_IE	Buffer Empty Interrupt. When set, this bit enables a local interrupt to be set when a buffer empty condition is detected on the bus.				
[0]	FULL_IE	Buffer Full Interrupt. When set, this bit enables a local interrupt to be set when a buffer full condition is detected on the bus.				

Endpoint A~F Data Available count register (EPA_DATA_CNT~ EPF_DATA_CNT)

Register	Address	R/W	Description	Default Value
EPA_DATA_CNT	0xB000_6070	R	Endpoint A Data Available count register	0x0000_0000
EPB_DATA_CNT	0xB000_6098	R	Endpoint B Data Available count register	0x0000_0000
EPC_DATA_CNT	0xB000_60C0	R	Endpoint C Data Available count register	0x0000_0000
EPD_DATA_CNT	0xB000_60E8	R	Endpoint D Data Available count register	0x0000_0000
EPE_DATA_CNT	0xB000_6110	R	Endpoint E Data Available count register	0x0000_0000
EPF_DATA_CNT	0xB000_6133	R	Endpoint F Data Available count register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved				DMA_LOOP	ı				
23	22	21	20	19	18	17	16		
			DMA_	LOOP					
15	14	13	12	11	10	9	8		
	DATA_CNT								
7	6	5	4	3	2	1	0		
	DATA_CNT								

Bits	Descriptions	
[30:16]	DMA_LOOP	This register is the remaining DMA loop to complete. Each loop means 32-byte transfer.
[15:0]	DATA_CNT	For an OUT / IN endpoint, this register returns the number of valid bytes in the endpoint packet buffer.

Endpoint A~F Response Set/Clear Register (EPA_RSP_SC~ EPF_RSP_SC)

Register	Address	R/W	Description	Default Value
EPA_RSP_SC	0xB000_6074	R/W	Endpoint A Response Set/Clear Register	0x0000_0000
EPB_RSP_SC	0xB000_609C	R/W	Endpoint B Response Set/Clear Register	0x0000_0000
EPC_RSP_SC	0xB000_60C4	R/W	Endpoint C Response Set/Clear Register	0x0000_0000
EPD_RSP_SC	0xB000_60EC	R/W	Endpoint D Response Set/Clear Register	0x0000_0000
EPE_RSP_SC	0xB000_6114	R/W	Endpoint E Response Set/Clear Register	0x0000_0000
EPF_RSP_SC	0xB000_613C	R/W	Endpoint F Response Set/Clear Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	rved						
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
DIS_BUF	PK_END	ZEROLEN	HALT	TOGGLE	MODE		BUF_FLUSH			

Bits	Descriptions	
[7]	DIS_BUF	Disable Buffer This bit is used to disable buffer (set buffer size to 1) when received a bulk out short packet.
[6]	PK_END	Packet End. This bit is applicable only in case of Auto-Validate Method. This bit is set to validate any remaining data in the buffer which is not equal to the MPS of the endpoint, and happens to be the last transfer.

Bits	Descriptions					
[5]	ZEROLEN	token. When this bit	Zerolen In . This bit is used to send a zero-length packet n response to an intoken. When this bit is set, a zero packet is sent to the host on reception of an in-token.			
[4]	HALT	Endpoint Halt. This bit is used to send a stall handshake as response to the token from the host. When an Endpoint Set Feature (ep_halt) is detected by the local CPU, it must write a '1' to this bit.				
[3]	TOGGLE	bit returns the current The local CPU may used incase of reception of (ep_halt) request from	ear the endpoint data toggle bit. Reading that state of the endpoint data toggle bit. Use this bit, to initialize the end-point's toggon a Set Interface request or a Clear Feature of the host. Only when toggle bit is "1", this less inversed write data bit [3].	gle ire		
[2:1]	MODE	MODE[2:1] 2'b00 2'b01 2'b10 2'b11 These bits are not mode will be activate	the mode of operation of the in-endpoint. Mode Description Auto-Validate Mode Manual-Validate Mode Fly Mode Reserved. valid for an out-endpoint. The auto validad when the reserved mode is selected. plained detailed in later sections)	ate		
[0]	BUF_FLUSH	(These modes are explained detailed in later sections) Buffer Flush. Writing a 1 to this bit causes the packet buffer to be flushed and the corresponding EP_AVAIL register to be cleared. This bit is self-clearing. This bit should always be written after a configuration event.				

Endpoint A~F Maximum Packet Size Register (EPA_MPS~ EPF_MPS)

Register	Address	R/W	Description	Default Value
EPA_MPS	0xB000_6078	R/W	Endpoint A Maximum Packet Size Register	0x0000_0000
EPB_MPS	0xB000_60A0	R/W	Endpoint B Maximum Packet Size Register	0x0000_0000
EPC_MPS	0xB000_60C8	R/W	Endpoint C Maximum Packet Size Register	0x0000_0000
EPD_MPS	0xB000_60F0	R/W	Endpoint D Maximum Packet Size Register	0x0000_0000
EPE_MPS	0xB000_6118	R/W	Endpoint E Maximum Packet Size Register	0x0000_0000
EPF_MPS	0xB000_6140	R/W	Endpoint F Maximum Packet Size Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	rved						
15	14	13	12	11	10	9	8			
		Reserved				EP_MPS				
7	6	5	4	3	2	1	0			
	EP_MPS									

Bits	Descriptions			
[10:0]	EP_MPS	Endpoint Maximum Packet Size. This field determines the Endpoint Maximum Packet Size.		

Endpoint A~F Transfer Count Register (EPA_TRF_CNT~ EPF_TRF_CNT)

Register	Address	R/W	Description	Default Value
EPA_TRF_CNT	0xB000_607C	R/W	Endpoint A Transfer Count Register	0x0000_0000
EPB_TRF_CNT	0xB000_60A4	R/W	Endpoint B Transfer Count Register	0x0000_0000
EPC_TRF_CNT	0xB000_60CC	R/W	Endpoint C Transfer Count Register	0x0000_0000
EPD_TRF_CNT	0xB000_60F4	R/W	Endpoint D Transfer Count Register	0x0000_0000
EPE_TRF_CNT	0xB000_611C	R/W	Endpoint E Transfer Count Register	0x0000_0000
EPF_TRF_CNT	0xB000_6144	R/W	Endpoint F Transfer Count Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
					E	P_TRF_CN	Т			
7	6	5	4	3	2	1	0			
	EP_TRF_CNT									

Bits	Descriptions	
[10:0]	EP_TRF_CNT	For IN endpoints, this field determines the total number of bytes to be sent to the host in case of manual validation method. For OUT endpoints, this field has no effect

Endpoint A~F Configuration Register (EPA_CFG~ EPF_CFG)

Register	Address	R/W	Description	Default Value
EPA_CFG	0xB000_6080	R/W	Endpoint A Configuration Register	0x0000_0012
EPB_CFG	0xB000_60A8	R/W	Endpoint B Configuration Register	0x0000_0022
EPC_CFG	0xB000_60D0	R/W	Endpoint C Configuration Register	0x0000_0032
EPD_CFG	0xB000_60F8	R/W	Endpoint D Configuration Register	0x0000_0042
EPE_CFG	0xB000_6120	R/W	Endpoint E Configuration Register	0x0000_0052
EPF_CFG	0xB000_6148	R/W	Endpoint F Configuration Register	0x0000_0062

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
		Rese	erved			EP_N	MULT			
7	6	5	4	3	2	1	0			
	EP_NUM				EP_	TYPE	EP_VALID			

Bits	Descriptions	Descriptions					
		MULT Field. This field indic single micro fra	carried out in one				
		[9:8]	Description				
[9:8]	EP_MULT	0x00	One transaction				
		0x01	Reserved				
		0x10	Reserved				
		0x11	Invalid				

300

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	Descriptions					
[7:4]	EP_NUM	_	Endpoint Number. This field selects the number of the endpoint. Valid numbers 1 to 15.				
[3]	EP_DIR	EP_DIR = 0 - 0 IN to Device)	Endpoint Direction. EP_DIR = 0 - OUT EP (Host OUT to Device) EP_DIR = 1- IN EP (Host IN to Device) Note that a maximum of one OUT and IN endpoint is allowed for each endpoint number.				
		Endpoint Type. This field selects the type of this endpoint. Endpoint 0 is forced to a Control type.					
[2:1]	EP_TYPE	[2:1]	Description				
	_	0x00	Reserved				
		0x01	Bulk				
		0x10	Interrupt				
		0x11	Isochronous				
[0]	EP_VALID	Endpoint Valid. When set, this bit enables this endpoint. This bit has no effect on Endpoint 0, which is always enabled.					

Endpoint A~F RAM Start Address Register (EPA_START_ADDR~ EPF_START_ADDR)

Register	Address	R/W	Description	Default Value
EPA_START_ADDR	0xB000_6084	R/W	Endpoint A RAM Start Address Register	0x0000_0000
EPB_START_ADDR	0xB000_60AC	R/W	Endpoint B RAM Start Address Register	0x0000_0000
EPC_START_ADDR	0xB000_60D4	R/W	Endpoint C RAM Start Address Register	0x0000_0000
EPD_START_ADDR	0xB000_60FC	R/W	Endpoint D RAM Start Address Register	0x0000_0000
EPE_START_ADDR	0xB000_6124	R/W	Endpoint E RAM Start Address Register	0x0000_0000
EPF_START_ADDR	0xB000_614C	R/W	Endpoint F RAM Start Address Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
					EP.	_START_AD	DR		
7	6	5	4	3	2	1	0		
EP_START_ADDR									

Bits	Descriptions	
[10:0]	EP_START_ADDR	This is the start-address of the RAM space allocated for the endpoint $A{\sim}F$.

Endpoint A~F RAM End Address Register (EPA_END_ADDR~ EPF_END_ADDR)

Register	Address	R/W	Description	Default Value
EPA_END_ADDR	0xB000_6088	R/W	Endpoint A RAM End Address Register	0x0000_0000
EPB_END_ADDR	0xB000_60B0	R/W	Endpoint B RAM End Address Register	0x0000_0000
EPC_END_ADDR	0xB000_60D8	R/W	Endpoint C RAM End Address Register	0x0000_0000
EPD_END_ADDR	0xB000_6100	R/W	Endpoint D RAM End Address Register	0x0000_0000
EPE_END_ADDR	0xB000_6128	R/W	Endpoint E RAM End Address Register	0x0000_0000
EPF_END_ADDR	0xB000_6150	R/W	Endpoint F RAM End Address Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
					EF	P_END_ADE)R		
7	6	5	4	3	2	1	0		
	EP_END_ADDR								

Bits	Descriptions	
[10:0]	EP_END_ADDR	This is the end-address of the RAM space allocated for the endpoint $A{\sim}F.$

USB Address Register (USB_DMA_ADDR)

Register	Address	R/W	Description	Default Value
USB_DMA_ADDR	0×B000_6700	R/W	USB DMA address register	0x0000_0000

31	30	29	28	27	26	25	24		
	USB_DMA_ADDR								
23	22	21	20	19	18	17	16		
	USB_DMA_ADDR								
15	14	13	12	11	10	9	8		
	USB_DMA_ADDR								
7	6	5	4	3	2	1	0		
	USB_DMA_ADDR								

Bits	Descriptions	
[31:0]	USB_DMA_ADDR	It specifies the address from which the DMA has to read / write. The address must WORD (32-bit) aligned.

USB PHY Control (USB_PHY_CTL)

Register	Address	R/W	Description	Default Value
USB_PHY_CTL	0xB000_6704	R/W	USB PHY control register	0x0000_0260

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Re	eserved					
15	14	13	12	11	10	9	8		
		Rese	erved			Phy_suspend	Reserved		
7	6	5	4	3	2	1	0		
	Reserved								

Bits	Descriptions	
[9]	Phy_suspend	Set this bit low will cause USB PHY suspended.

7.8.4 DMA Controller (DMAC)

The DMA Controller provides a DMA (Direct Memory Access) function for FMI to exchange data between system memory (ex. SDRAM) and shared buffer (one 2048 bytes). Software just simply fills in the starting address and enables DMAC, and then you can let DMAC to handle the data transfer automatically.

There is one 2048 bytes shared buffer inside DMAC, separate into four 512 bytes ping-pong FIFO. It can provide multi-block transfers using ping-pong mechanism for FMI. Software can access these shared buffers directly when FMI is not in busy.

7.8.5 DMA Controller Registers Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value				
Shared Buffer	Shared Buffer (DMAC_BA = 0xB000_C000)							
FB_0	0XB000_C000							
		R/W	Shared Buffer (FIFO)	N/A				
FB_511	0xB000_C7FC							
DMAC Registe	$rs (DMAC_BA = 0)$	xB000	_C000)					
DMACCSR	0xB000_C800	R/W	DMAC Control and Status Register	0x0000_0000				
DMACSAR2	0xB000_C808	R/W	DMAC Transfer Starting Address Register 2	0x0000_0000				
DMACBCR	0xB000_C80C	R	DMAC Transfer Byte Count Register	0x0000_0000				
DMACIER	0xB000_C810	R/W	DMAC Interrupt Enable Register	0x0000_0001				
DMACISR	0xB000_C814	R/W	DMAC Interrupt Status Register	0x0000_0000				

7.8.6 DMAC Registers

DMAC Control and Status Register (DMACCSR)

Register	Offset	R/W	Description	Reset Value
DMACCSR	0xB000_C800	R/W	DMAC Control and Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
		Rese	erved			FMI_BUSY	Reserved		
7 6 5 4 3 2						1	0		
Reserved				SG_EN2	Reserved	SW_RST	DMACEN		

Bits	Descriptions	
		FMI DMA Transfer is in progress
[9]	FMI_BUSY	This bit indicates if FMI is granted and doing DMA transfer or not.
[2]	1 1011	0 = FMI DMA transfer is not in progress.
		1 = FMI DMA transfer is in progress.
		Enable Scatter-Getter Function for FMI
	SG_EN2	Enable DMA scatter-getter function or not.
[3]		0 = Normal operation. DMAC will treat the starting address in DMACSAR2 as starting pointer of a single block memory.
		1 = Enable scatter-getter operation. DMAC will treat the starting address in DMACSAR2 as a starting address of Physical Address Descriptor (PAD) table. The format of these PADs will be described later.
		Software Engine Reset
		0 = Writing 0 to this bit has no effect.
[1]	SW_RST	1 = Writing 1 to this bit will reset the internal state machine and pointers. The contents of control register will not be cleared. This bit will auto clear after few clock cycles.

Publication Release Date: Jun. 18, 2010 Revision: A4

Bits	Descriptions	
		DMAC Engine Enable
		Setting this bit to 1 enables DMAC's operation. If this bit is cleared, DMAC will ignore all DMA request from FMI and force Bus Master into IDLE state.
[0] DMACEN	0 = Disable DMAC.	
		1 = Enable DMAC.
		NOTE: If target abort is occurred, DMACEN will be cleared.

Publication Release Date: Jun. 18, 2010

DMAC Transfer Starting Address Register 2 (DMACSAR2)

Register	Offset	R/W	Description	Reset Value
DMACSAR2	0xB000_C808	R/W	DMAC Transfer Starting Address Register 2	0x0000_0000

31	30	29	28	27	26	25	24			
	DMACSA[31:24]									
23	23 22 21 20 19 18 17 16									
			DMACS	SA[23:16]						
15	14	13	12	11	10	9	8			
	DMACSA[15:8]									
7 6 5 4 3 2 1 0										
	DMACSA[7:0]									

Bits	Descriptions	
		DMA Transfer Starting Address for FMI
[31:0]	DMACSA	This field indicates a 32-bit starting address of system memory (SRAM/SDRAM) for DMAC to retrieve or fill in data (for FMI engine).
		If DMAC is not in normal mode, this field will be interpreted as a starting address of Physical Address Descriptor (PAD) table.

NOTE: Starting address should be word alignment, for example, 0x0000_0000, 0x0000_0004...

The format of PAD table must like below. Note that the total sector count of all PADs must be equal to or greater than the sector count filled in FMI engine. EOT should be set to 1 in the last descriptor.

309

Physical Base Address: 32-bit, word aligned Sector Count: 1 sector = 512 bytes, 0 means 65536

sectors (bit 15~0)

EOT: End of PAD Table (bit 31)

Publication Release Date: Jun. 18, 2010

DMAC Transfer Byte Count Register (DMACBCR)

Register	Offset	R/W	Description	Reset Value
DMACBCR	0xB000_C80C	R	DMAC Transfer Byte Count Register	0x0000_0000

31	30	29	28	27	26	25	24		
		BCNT[25:24]						
23	22	21	20	19	18	17	16		
			BCNT[23:16]					
15	14	13	12	11	10	9	8		
	BCNT[15:8]								
7 6 5 4 3 2 1 0									
	BCNT[7:0]								

Bits	Descriptions				
[25:0]	BCNT	DMA Transfer Byte Count (Read Only) This field indicates the remained byte count of DMAC transfer. The value of			
		This field indicates the remained byte count of DMAC transfer. The value of this field is valid only when FMI is busy; otherwise, it is zero.			

Publication Release Date: Jun. 18, 2010

DMAC Interrupt Enable Register (DMACIER)

Register	gister Offset R/W		Description	Reset Value
DMACIER	0xB000_C810	R/W	DMAC Interrupt Enable Register	0x0000_0001

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Res	served						
15	14	13	12	11	10	9	8			
	Reserved									
7	6	1	0							
	Reserved						TABORT_IE			

Bits	Descriptions	
		Wrong EOT Encountered Interrupt Enable
[1] WEOT_IE	WEOT_IE	• 0 = Disable interrupt generation when wrong EOT is encountered.
		• 1 = Enable interrupt generation when wrong EOT is encountered.
		DMA Read/Write Target Abort Interrupt Enable
[0]	TABORT_IE	0 = Disable target abort interrupt generation during DMA transfer.
		1 = Enable target abort interrupt generation during DMA transfer.

Publication Release Date: Jun. 18, 2010

DMAC Interrupt Status Register (DMACISR)

Register	Offset	R/W	Description	Reset Value
DMACISR	0xB000_C814	R/W	DMAC Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	1	0							
	Reserved						TABORT_IF			

Bits	Descriptions	
		Wrong EOT Encountered Interrupt Flag
F43	WEOT_IF	When DMA Scatter-Getter function is enabled, and EOT of the descriptor is encountered before DMA transfer finished (that means the total sector count of all PAD is less than the sector count of FMI), this bit will be set.
[1]		0 = No EOT encountered before DMA transfer finished.
		1 = EOT encountered before DMA transfer finished.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.
		DMA Read/Write Target Abort Interrupt Flag
[0]	TARORT IF	0 = No bus ERROR response received.
[0]	TABORT_IF	1 = Bus ERROR response received.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.

NOTE: When DMAC's bus master received ERROR response, it means that target abort is happened. DMAC will stop transfer and respond this event to software, FMI; and then go to IDLE state. When target abort occurred or WEOT_IF is set, suggest software reset DMAC and IP, and then transfer those data again.

Publication Release Date: Jun. 18, 2010

7.9 Flash Memory Interface Controller (FMI)

The Flash Memory Interface (FMI) supports Secure Digital (SD and SDIO), Memory Stick (Memory stick PRO) and NAND-type flash. FMI is cooperated with DMAC to provide a fast data transfer between system memory and cards. There is one single 2048-byte buffer embedded in DMAC for temporary data storage. Due to DMAC only has single channel, that means only one interface can be active at the same time.

7.9.1 FMI Controller Registers Map

R: read only, W: write only, R/W: both read and write

Register	Address	R/W	Description	Reset Value				
FMI Global Re	gisters (FMI_BA	= 0xB0	00_D000)					
FMICSR	0xB000_D000	R/W	Global Control and Status Register	0x0000_0000				
FMIIER	0xB000_D004	R/W	Global Interrupt Control Register	0x0000_0001				
FMIISR	0xB000_D008	R/W	Global Interrupt Status Register	0x0000_0000				
Secure Digital	Registers							
SDCSR	0xB000_D020	R/W	SD Control and Status Register	0x0101_0000				
SDARG	0xB000_D024	R/W	SD Command Argument Register	0x0000_0000				
SDIER	0xB000_D028	R/W	SD Interrupt Control Register	0x0000_0000				
SDISR	0xB000_D02C	R/W	SD Interrupt Status Register	0x000X_008C				
SDRSP0	0xB000_D030	R	SD Receiving Response Token Register 0	0x0000_0000				
SDRSP1	0xB000_D034	R	SD Receiving Response Token Register 1	0x0000_0000				
SDBLEN	0xB000_D038	R/W	SD Block Length Register	0x0000_01FF				
Memory Stick	Registers							
MSCSR	0xB000_D060	R/W	Memory Stick Control and Status Register	0x0000_0008				
MSIER	0xB000_D064	R/W	Memory Stick Interrupt Control Register	0x0000_0000				
MSISR	0xB000_D068	R/W	Memory Stick Interrupt Status Register	0x0000_0000				
MSBUF1	0xB000_D06C	R/W	Memory Stick Register Buffer 1	0x0000_0000				
MSBUF2	0xB000_D070	R/W	Memory Stick Register Buffer 2	0x0000_0000				
NAND-type FI	NAND-type Flash Registers							
SMCSR	0xB000_D0A0	R/W	NAND Flash Control and Status Register	0x0600_0080				
SMTCR	0xB000_D0A4	R/W	NAND Flash Timing Control Register	0x0001_0105				
SMIER	0xB000_D0A8	R/W	NAND Flash Interrupt Control Register	0x0000_0000				

313

Publication Release Date: Jun. 18, 2010

Register	Address	R/W	Description	Reset Value
SMISR	0xB000_D0AC	R/W	NAND Flash Interrupt Status Register	0x000X_0000
SMCMD	0xB000_D0B0	W	NAND Flash Command Port Register	N/A
SMADDR	0xB000_D0B4	W	NAND Flash Address Port Register	N/A
SMDATA	0xB000_D0B8	R/W	NAND Flash Data Port Register	N/A
SMECC0	0xB000_D0BC	R	NAND Flash Error Correction Code 0 Register	0x0000_0000
SMECC1	0xB000_D0C0	R	NAND Flash Error Correction Code 1 Register	0x0000_0000
SMECC2	0xB000_D0C4	R	NAND Flash Error Correction Code 2 Register	0x0000_0000
SMECC3	0xB000_D0C8	R	NAND Flash a Error Correction Code 3 Register	0x0000_0000
SMRA_0 SMRA_15	0xB000_D0CC 0xB000_D108	R/W	NAND Flash Redundant Area Register	0xFFFF_FFFF
SMECCAD0	0xB000_D10C	R	NAND Flash ECC Correction Address 0	0x0000_0000
SMECCAD1	0xB000_D110	R	NAND Flash ECC Correction Address 1	0x0000_0000
ECC4ST	0xB000_D114	R	ECC4 Correction Status	0x0000_0000
ECC4F1A1	0xB000_D118	R	ECC4 Field 1 Error Address 1	0x0000_0000
ECC4F1A2	0xB000_D11C	R	ECC4 Field 1 Error Address 2	0x0000_0000
ECC4F1D	0xB000_D120	R	ECC4 Field 1 Error Data	0x0000_0000
ECC4F2A1	0xB000_D124	R	ECC4 Field 2 Error Address 1	0x0000_0000
ECC4F2A2	0xB000_D128	R	ECC4 Field 2 Error Address 2	0x0000_0000
ECC4F2D	0xB000_D12C	R	ECC4 Field 2 Error Data	0x0000_0000
ECC4F3A1	0xB000_D130	R	ECC4 Field 3 Error Address 1	0x0000_0000
ECC4F3A2	0xB000_D134	R	ECC4 Field 3 Error Address 2	0x0000_0000
ECC4F3D	0xB000_D138	R	ECC4 Field 3 Error Data	0x0000_0000
ECC4F4A1	0xB000_D13C	R	ECC4 Field 4 Error Address 1	0x0000_0000
ECC4F4A2	0xB000_D140	R	ECC4 Field 4 Error Address 2	0x0000_0000
ECC4F4D	0xB000_D144	R	ECC4 Field 4 Error Data	0x0000_0000

7.9.2 Register Details

Global Control and Status Register (FMICSR)

Register	Address	R/W	Description	Reset Value
FMICSR	0xB000_D000	R/W	Global Control and Status Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved CF_			CF_EN	SM_EN	MS_EN	SD_EN	SW_RST			

Bits	Descriptions	
		NAND-type Flash Functionality Enable
[3]	SM_EN	0 = Disable SM functionality of FMI.
		1 = Enable SM functionality of FMI.
		Memory Stick Functionality Enable
[2]	[2] MS_EN	0 = Disable MS functionality of FMI.
		1 = Enable MS functionality of FMI.
		Secure Digital Functionality Enable
[1]	SD_EN	0 = Disable SD functionality of FMI.
		1 = Enable SD functionality of FMI.
		Software Engine Reset
[0]	SW_RST	0 = Writing 0 to this bit has no effect.
[0]	511_K61	1 = Writing 1 to this bit will reset all FMI engines. The contents of control register will not be cleared. This bit will auto clear after few clock cycles.

Publication Release Date: Jun. 18, 2010

NOTE: Software can enable only one engine at one time, or FMI will work abnormal.

Publication Release Date: Jun. 18, 2010

Global Interrupt Control Register (FMIIER)

Register	Address	R/W	Description	Reset Value
FMIIER	0xB000_D004	R/W	Global Interrupt Control Register	0x0000_0001

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
Reserved										
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved							DTA_IE			

Bits	Descriptions	
		DMAC READ/WRITE Target Abort Interrupt Enable
[0]	DTA_IE	0 = Disable DMAC READ/WRITE target abort interrupt generation.
		1 = Enable DMAC READ/WRITE target abort interrupt generation.

Publication Release Date: Jun. 18, 2010

Global Interrupt Status Register (FMIISR)

Register	Address	R/W	Description	Reset Value
FMIISR	0xB000_D008	R/W	Global Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved							DTA_IF			

Bits	Descriptions	
		DMAC READ/WRITE Target Abort Interrupt Flag (Read Only)
[0]	[0] DTA_IF	This bit indicates DMAC received an ERROR response from internal AHB bus during DMA read/write operation. When Target Abort is occurred, please reset all engine.
[0]		0 = No bus ERROR response received.
		1 = Bus ERROR response received.
		NOTE: This bit is read only, but can be cleared by writing `1' to it.

NOTE: No matter interrupt enable is turn on or not, the interrupt flag will be set when target condition is occurred.

Publication Release Date: Jun. 18, 2010

SD Control and Status Register (SDCSR)

Register	Address	R/W	Description	Reset Value
SDCSR	0xB000_D020	R/W	SD Control and Status Register	0x0101_0000

31	30	29	28	27	26	25	24		
Reserved	SDPORT		Reserved		SDNWR				
23	22	21	20	19	18	17	16		
	BLK_CNT								
15	14	13	12	11	10	9	8		
DBW	SW_RST			CMD_C	ODE				
7	6	5	4	3	2	1	0		
CLK_KEEPO	CLK8_OE	CLK74_OE	R2_EN	DO_EN	DI_EN	RI_EN	CO_EN		

Bits	Descriptions		
[30:29]	SDPORT	SD Port Selection This field should be set to 00	
[27:24]	SDNWR	N _{WR} Parameter for Block Write Operation This value indicates the N_{WR} parameter for data block write operation in clock counts. The actual clock cycle will be SDNWR+1.	
[23:16]	BLK_CNT	Block Counts to Be Transferred or Received This field contains the block counts for data-in and data-out transfer. For READ_MULTIPLE_BLOCK and WRITE_MULTIPLE_BLOCK command, software can use this function to accelerate data transfer and improve performance. Note that only when SDBLEN=0x1FF, this field is valid. Otherwise, block counts will be set to 1 inside SD host engine. NOTE: Value 0x0 in this field means 256.	
[15]	DBW	SD Data Bus Width 0 = Data bus width is 1-bit. 1 = Data bus width is 4-bit.	

Publication Release Date: Jun. 18, 2010

Bits	Descriptions					
		Software Engine Reset				
	SW_RST	0 = Writing 0 to this bit has no effect.				
[14]		1 = Writing 1 to this bit will reset the internal state machine and counters. The contents of control register will not be cleared (but RI_EN, DI_EN, DO_EN and R2_EN will be cleared). This bit will be auto cleared after few clock cycles.				
540.07		SD Command Code				
[13:8]	CMD_CODE	This register contains the SD command code ($0x00 - 0x3F$).				
		SD Clock Enable for Port 0				
[7]	CLK_KEEPO	0 = Disable SD clock generation.				
		1 = SD clock always keeps free running.				
	CLK8_OE	Generating 8 Clock Cycles Output Enable				
[6]		0 = No effect.				
[0]		1 = Enable, SD host will output 8 clock cycles.				
		NOTE: When this operation is finished, this bit will be cleared automatically.				
	CLK74_OE	Initial 74 Clock Cycles Output Enable				
[5]		0 = No effect.				
		1 = Enable, SD host will output 74 clock cycles to SD card.				
		NOTE: When this operation is finished, this bit will be cleared automatically.				
		Response R2 Input Enable				
		0 = No effect. (Please use SDCSR [SW_RST] to clear this bit.)				
[4]	R2_EN	1 = Enable, SD host will wait to receive a response R2 from SD card and store the response data into DMAC's flash buffer (exclude CRC-7).				
		NOTE : When the R2 response is finished, this bit is cleared automatically.				
		Data Output Enable				
[3]	DO_EN	0 = No effect. (Please use SDCSR [SW_RST] to clear this bit.)				
[3]		1 = Enable, SD host will transfer block data and the CRC-16 value to SD card.				
		NOTE : When the output operation is finished, this bit is cleared automatically.				

Bits	Descriptions	
		Data Input Enable
		0 = No effect. (Please use SDCSR [SW_RST] to clear this bit.)
[2]	DI_EN	1 = Enable, SD host will wait to receive block data and the CRC-16 value from SD card.
		NOTE : When the input operation is finished, this bit will be cleared automatically.
	RI_EN	Response Input Enable
F43		0 = No effect. (Please use SDCSR [SW_RST] to clear this bit.)
[1]		1 = Enable, SD host will wait to receive a response from SD card.
		NOTE : When the response operation is finished, this bit is cleared automatically.
	CO_EN	Command Output Enable
[0]		0 = No effect.
[0]		1 = Enable, SD host will output a command to SD card.
		NOTE: When the command operation is finished, this bit is cleared automatically.

SD Command Argument Register (SDARG)

Register	Address	R/W	Description	Reset Value
SDARG	0xB000_D024	R/W	SD Command Argument Register	0x0000_0000

31	30	29	28	27	26	25	24
			SD_CM	D_ARG			
23	22	21	20	19	18	17	16
			SD_CM	D_ARG			
15	14	13	12	11	10	9	8
	SD_CMD_ARG						
7	6	5	4	3	2	1	0
	SD_CMD_ARG						

Bits	Descriptions					
[31:0]	SD_CMD_ARG	SD Command Argument This register contains a 32-bit value specifies the argument of SD command from host controller to SD card.				

SD Interrupt Control Register (SDIER)

Register	Address R/W		Description	Reset Value
SDIER	0xB000_D028	R/W	SD Interrupt Control Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved	CDOSRC			Rese	erved		
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
Reserved	WKUP_EN	DITO_IE	RITO_IE	Reserved	SDIO0_IE	Reserved	CD0_IE
7	6	5	4	3	2	1	0
	Reserved CRC_IE BLKD_I					BLKD_IE	

Bits	Descriptions		
		SD0 Card Detect Source Selection	
[30]	CDOSRC	• 0 = From SD0 card's DAT3 pin.	
		• 1 = From GPIO pin.	
		Wake-Up Signal Generating Enable	
[14]	WKUP_EN	Enable/Disable wake-up signal generating of SD host when SDIO card (current using) issues an interrupt (wake-up) via DAT [1] to host.	
		0 = Disable.	
		1 = Enable.	
	DITO_IE	Data Input Time-out Interrupt Enable	
[13]		Enable/Disable interrupt generation of SD controller when data input time-out. Time-out value is specified at SDTMOUT .	
		0 = Disable.	
		1 = Enable.	

Bits	Descriptions			
[12]	RITO_IE Response Time-out Interrupt Enable Enable/Disable interrupt generation of SD controller when receiving response or R2 time-out. Time-out value is specified at SDTMOUT. 0 = Disable. 1 = Enable.			
[10]	SDIO0_IE	SDIO Interrupt Enable for Port 0 Enable/Disable interrupt generation of SD host when SDIO card 0 issues an interrupt via DAT [1] to host. 0 = Disable. 1 = Enable.		
[8]	CDO_IE	SDO Card Detection Interrupt Enable Enable/Disable interrupt generation of SD controller when card 0 is inserted or removed. 0 = Disable. 1 = Enable.		
[1]	CRC_IE	CRC-7, CRC-16 and CRC Status Error Interrupt Enable 0 = SD host will not generate interrupt when CRC-7, CRC-16 and CRC status is error. 1 = SD host will generate interrupt when CRC-7, CRC-16 and CRC status is error.		
[0]	BLKD_IE	Block Transfer Done Interrupt Enable 0 = SD host will not generate interrupt when data-in (out) transfer done. 1 = SD host will generate interrupt when data-in (out) transfer done.		

SD Interrupt Status Register (SDISR)

Register	Address	R/W	Description	Reset Value
SDISR	0xB000_D02C	R/W	SD Interrupt Status Register	0x000X_008C

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Res	erved		Reserved	SD0DAT1	Reserved	CDPS0		
15	14	13	12	11	10	9	8		
Reser	rved	DITO_IF	RITO_IF	Reserved	SDIO0_IF	Reserved	CD0_IF		
7	6	5	4	3	2	1	0		
SDDAT0		CRCSTAT		CRC-16	CRC-7	CRC_IF	BLKD_IF		

Bits	Descriptions	
[18]	SD0DAT1	DAT1 Pin Status of SD0 (Read Only) This bit is the DAT1 pin status of SD0.
54.67		Card Detect Pin Status of SD0 (Read Only) This bit is the DAT3 pin status of SD0, and it is using for card detection.
[16]	CDPS0	When there is a card inserted in or removed from SDO, software should check this bit to confirm if there is really a card insertion or remove.
		Data Input Time-out Interrupt Flag (Read Only)
		This bit indicates that SD host counts to time-out value when receiving data (waiting start bit).
[13]	DITO_IF	0 = Not time-out.
		1 = Data input time-out.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.

Bits	Descriptions	
		Response Time-out Interrupt Flag (Read Only)
		This bit indicates that SD host counts to time-out value when receiving response or R2 (waiting start bit).
[12]	RITO_IF	0 = Not time-out.
		1 = Response time-out.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.
		SDIO 0 Interrupt Flag (Read Only)
		This bit indicates that SDIO card 0 issues an interrupt to host.
[10]	SDIO0_IF	0 = No interrupt is issued by SDIO card 0.
		1 = An interrupt is issued by SDIO card 0.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.
	CDO_IF	SD0 Card Detection Interrupt Flag (Read Only)
		This bit indicates that SD card 0 is inserted or removed. Only if SDIER [CD0_IE] is set to 1, this bit is active.
[8]		0 = No card is inserted or removed.
		1 = There is a card inserted in or removed from SD0.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.
[7]	CDDATO	DATO Pin Status of Current Selected SD (Read Only)
[7]	SDDAT0	This bit is the DATO pin status of current selected SD port.
		CRC Status Value of Data-out Transfer (Read Only)
		SD host will record CRC status of data-out transfer. Software could use this value to identify what type of error is during data-out transfer.
[6:4]	CRCSTAT	010 = Positive CRC status.
		101 = Negative CRC status
		111 = SD card programming error occurs.

Bits	Descriptions	
		CRC-16 Check Status of Data-in Transfer (Read Only)
[2]	000.47	SD host will check CRC-16 correctness after data-in transfer.
[3]	CRC-16	0 = Fault.
		1 = OK.
		CRC-7 Check Status (Read Only)
[2]	CRC-7	SD host will check CRC-7 correctness during each response in. If that response does not contain CRC-7 information (R3), then software should turn off SDIER [CRC_IE] and ignore this bit.
		0 = Fault.
		1 = OK.
	CRC_IF	CRC-7, CRC-16 and CRC Status Error Interrupt Flag (Read Only)
[1]		This bit indicates that SD host has occurred CRC error during response in, data-in or data-out (CRC status error) transfer. When CRC error is occurred, software should reset SD engine. Some response (ex. R3) doesn't have CRC-7 information with it; SD host will still calculate CRC-7, get CRC error and set this flag. In this condition, software should ignore CRC error and clears this bit manually.
		0 = No CRC error is occurred.
		1 = CRC error is occurred.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.
		Block Transfer Done Interrupt Flag (Read Only)
503		This bit indicates that SD host has finished data-in or data-out block transfer. If there is a CRC-16 error or incorrect CRC status during multiple block data transfer, the transfer will be broken and this bit will be set.
[0]	BLKD_IF	0 = Not finished yet.
		1 = Done.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.

SD Receiving Response Token Register 0 (SDRSP0)

Register	Address	R/W	Description	Reset Value
SDRSP0	0xB000_D030	R	SD Receiving Response Token Register 0	0x0000_0000

31	30	29	28	27	26	25	24	
			SD_RS	P_TKO				
23	22	21	20	19	18	17	16	
			SD_RS	P_TK0				
15	14	13	12	11	10	9	8	
	SD_RSP_TK0							
7 6 5 4 3 2 1 0								
	SD_RSP_TKO							

Bits	Descriptions	
[31:0]	SD_RSP_TKO	SD Receiving Response Token 0 SD host controller will receive a response token for getting a reply from SD card when SDCSR [RI_EN] is set. This field contains response bit 47-16 of the response token.

SD Receiving Response Token Register 1 (SDRSP1)

Register	Address	R/W	Description	Reset Value
SDRSP1	0xB000_D034	R	SD Receiving Response Token Register 1	0x0000_0000

31	30	29	28	27	26	25	24	
			Rese	rved				
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
	SD_RSP_TK1							

Bits	Descriptions	
[7:0]	SD_RSP_TK1	SD Receiving Response Token 1 SD host controller will receive a response token for getting a reply from SD card when SDCSR [RI_EN] is set. This register contains the bit 15-8 of the response token.

SD Block Length Register (SDBLEN)

Register	Address	R/W	Description	Reset Value
SDBLEN	0xB000_D038	R/W	SD Block Length Register	0x0000_01FF

31	30	29	28	27	26	25	24	
			Rese	rved				
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
			SDB	LEN				

Bits	Descriptions	
[8:0]	SDBLEN	SD BLOCK LENGTH in Byte Unit A 9-bit value specifies the SD transfer byte count. The actual byte count is equal to SDBLEN+1.
		04001 to 0552211 11

SD Response/Data-in Time-out Register (SDTMOUT)

Register	Offset	R/W	Description	Reset Value
SDTMOUT	0xB000_D03C	R/W	SD Response/Data-in Time-out Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			SDTN	IOUT					
15	14	13	12	11	10	9	8		
	SDTMOUT								
7	6	5	4	3	2	1	0		
	SDTMOUT								

Bits	Descriptions	
[23:0]	SDTMOUT	SD Response/Data-in Time-out Value A 24-bit value specifies the time-out counts of response and data input. SD host controller will wait start bit of response or data-in until this value reached. The time period is depended on SD engine clock frequency. Do not write a small number into this field, or you may never get response or data due to time-out. NOTE: Fill 0x0 into this field will disable hardware time-out function.
		NOTE. This oxo into this field will disable flataware time out function.

Memory Stick Control and Status Register (MSCSR)

Register	Address	R/W	Description	Reset Value
MSCSR	0xB000_D060	R/W	Memory Stick Control and Status Register	0x0000_0008

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Rese	erved	MSPORT	DS	IZE DCNT				
15	14	13	12	11	10	9	8	
	Rese	erved		TPC				
7	7 6 5 4 3 2 1				0			
Reserved				SERIAL	MSPRO	MS_GO	SW_RST	

Bits	Descriptions			
[24]	MCDODT	Memory Stick Port Selection		
[21]	MSPORT	This bit should be set to 0		
		Data Size for Transfer (for Memory Stick PRO Only)		
		This field defines how many bytes should be transferred of following TPC codes. Data will be obtained from (stored in) DMAC's FIFO.		
		READ_SHORT_DATA and WRITE_SHORT_DATA.		
[20:19]	DSIZE	00 = 32 Bytes.		
		01 = 64 Bytes.		
		10 = 128 Bytes.		
		11 = 256 Bytes.		
		NOTE: This field is invalid when other TPC codes are executed.		

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Data Count Number (in Byte Unit)
		This field defines how many bytes should be transferred of following TPC codes. Data will be obtained from (stored in) MSBUF1 and MSBUF2.
[18:16]	DCNT	READ_REG, GET_INT, WRITE_REG, SET_R/W_REG_ADRS, SET_CMD and EX_SET_CMD.
[10:10]	20.1.	For example, when software wants to use SET_R/W_REG_ADRS, you should write 0x4 into this field; when you want to use SET_CMD, you should write 0x1 into this field, etc.
		NOTE : Value 0x0 means 8 bytes should be transferred, and it is the largest length this core can provide.
		TPC Code of the Packet
[11:8]	TPC	This field defines the TPC code of the packet which software wants to transfer. This core supports all TPC code of Memory Stick and Memory Stick PRO specification. The lower 4 bits of TPC (TPC Check Code) will be generated by hardware automatically.
		Serial or Parallel Mode
[3]	SERIAL	0 = MS host is working at parallel mode.
		1 = MS host is working at serial mode (Default).
		Memory Stick or Memory Stick PRO
[2]	MSPRO	0 = Type of the card is Memory Stick.
		1 = Type of the card is Memory Stick PRO.
		Trigger Memory Stick Core to Transfer Packet
		0 = Writing 0 to this bit has no effect.
[1]	MS_GO	1 = Trigger Memory Stick core to transfer packet. When TPC code is READ_REG, GET_INT, WRITE_REG, SET_R/W_REG_ADRS, SET_CMD or EX_SET_CMD, data will be obtained from (stored in) MSBUF1 and MSBUF2. When TPC code is READ_LONG_DATA (READ_PAGE_DATA), READ_SHORT_DATA, WRITE_LONG_DATA (WRITE_PAGE_DATA) or WRITE_SHORT_DATA, data will be obtained from (stored in) DMAC's FIFO.

Bits	Descriptions	
		Software Engine Reset
		0 = Writing 0 to this bit has no effect.
[0]	SW_RST	1 = Writing 1 to this bit will reset the internal state machine and counters. The contents of control register will not be cleared. This bit will be auto cleared after few clock cycles.

Memory Stick Interrupt Control Register (MSIER)

Register	Address	R/W	Description	Reset Value
MSIER	0xB000_D064	R/W	Memory Stick Interrupt Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
		Res	served			Reserved	CD0_IE		
15	14	13	12	11	10	9	8		
			Re	served					
7	6	5	4	3	2	1	0		
	Reserved		CRC_IE	BSYTO_IE	INTTO_IE	MSINT_IE	PKT_IE		

Bits	Descriptions	
		MS Card Detection 0 Interrupt Enable
[16]	CDO_IE	Enable/Disable Interrupt generation of MS controller when card 0 is inserted or removed.
	_	0 = Disable.
		1 = Enable.
		CRC-16 Error Interrupt Enable
[4]	CRC_IE	0 = the core will not generate interrupt when CRC-16 is error.
		1 = the core will generate interrupt when CRC-16 is error.
		Busy to Ready Check Timeout Interrupt Enable
[3]	BSYTO_IE	0 = Disable Busy to Ready check timeout interrupt.
		1 = Enable Busy to Ready check timeout interrupt.
	INTTO_IE	INT Response Timeout Interrupt Enable
[2]		0 = Disable INT response timeout interrupt generation.
		1 = Enable INT response timeout interrupt generation.

335

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
	MSINT_IE	Memory Stick Card's Interrupt Enable
		0 = the core will not generate interrupt when MS card generates INT.
[1]		1= the core will generate interrupt when MS card generates INT.
		NOTE: Software should set MSIER[INTTO_IE] to `1' to enable INT detection function of the core, and set this bit to `1' if you want to get INT from MS card.
		Packet Transfer Done Interrupt Enable
[0]	PKT_IE	0 = the core will not generate interrupt when packet transfer is done.
		1 = the core will generate interrupt when packet transfer is done.

Memory Stick Interrupt Status Register (MSISR)

Register	Address	R/W	Description	Reset Value
MSISR	0xB000_D068	R/W	Memory Stick Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24
		Reserved	CD0_				
23	22	21	20	19	18	17	16
		Re	served			Reserved	CD0_IF
15	14	13	12	11	10	9	8
	Res	erved		CMDNK	BREQ	ERR	CED
7 6 5 4				3	2	1	0
Reserved CRC_IF				BSYTO_IF	INTTO_IF	MSINT_IF	PKT_IF

Bits	Descriptions	
		Pin Status of MS Card Detection 0 (Read Only)
[24]	CDO_	This is the pin status of MS card detection 0. When there is a card insertion or removal, software should check this bit to confirm if it is really a card insertion or removal.
		NOTE: Software should perform de-bounce for card detection function.
		MS Card Detection 0 Interrupt Flag (Read Only)
	CDO_IF	This bit indicates that MS card 0 is inserted or removed. Only if MSIER [CD0_IE] is set, this bit is active; otherwise, this bit is invalid.
[16]		0 = No card is inserted or removed.
		1 = There is a card inserted in or removed from MS0.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.
		INT Status of Memory Stick PRO (Read Only)
	CMDNK	These 4 bits indicates the INT status of Memory Stick PRO card (only for
[11:8]	BREQ	parallel mode). When MSIER [INTTO_IE] is set, the core will wait for INT signal from card. If the card is working at parallel mode; after INT is
	ERR	occurred (MSISR [MSINT_IF] is set), the contents of INT register can be informed by these bits.
	CED	NOTE: These bits are valid in parallel mode only.
		THOTE. These sits are valid in parallel mode only.

Publication Release Date: Jun. 18, 2010 Revision: A4

Bits	Descriptions	
		CRC-16 Error Interrupt Flag (Read Only)
[4]	0D0 15	When the packet transfer is done, the core will compare the value of CRC-16 which it calculated and received. If CRC-16 value is not the same, this flag will be set. The comparison executes only for READ packet.
[4]	CRC_IF	0 = CRC-16 ok.
		1 = CRC-16 failed.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.
		Busy to Ready Check Timeout Interrupt Flag (Read Only)
[3]	BSYTO_IF	This bit indicates that the core cannot detect RDY signal on DATA [0] pin during Handshake State. It means some errors are occurred during packet transfer. The maximum timeout duration for RDY signal is 16 SCLKs.
[3]		0 = No RDY timeout occurred.
		1 = RDY timeout occurred.
		NOTE : This bit is read only, but can be cleared by writing $1'$ to it.
		INT Response Timeout Interrupt Flag (Read Only)
[2]	INTTO_IF	This bit indicates that the core cannot detect INT signal of MS card after a period of time. In Memory Stick, the maximum period is 100ms. In Memory Stick PRO, the maximum period is 3500ms. If INT timeout is occurred, it means the card maybe malfunction.
		0 = INT detection is not timeout.
		1 = INT detection is timeout, no INT signal occurred.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.
		Memory Stick Card's Interrupt Flag (Read Only)
[1]	MSINT_IF	Memory Stick will generate INT signal after some TPC codes are executed, ex. SET_CMD. This bit indicates that Memory Stick has generated INT signal after TPC code execution. This core will check INT for software only when MSIER [INTTO_IE] is set to '1', or this bit is invalid.
		0 = No INT signal is detected.
		1 = INT signal is detected.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Packet Transfer Done Interrupt Flag (Read Only)
	PKT_IF	This bit indicates that the whole packet transfer is done. The four states of Memory Stick are BS1, BS2, BS3 and BS0.
[0]		0 = Packet transfer is not done yet.
		1 = Packet transfer is done.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.

NOTE: No matter interrupt is enabled or not, the interrupt flag is set when target condition is occurred.

Publication Release Date: Jun. 18, 2010

Memory Stick Register Buffer 1 (MSBUF1)

Memory Stick Register Buffer 2 (MSBUF2)

Register	Address	R/W	Description	Reset Value
MSBUF1	0xB000_D06C	R/W	Memory Stick Register Buffer 1	0x0000 0x0000
MSBUF2	0xB000_D070	K) VV	Memory Stick Register Buffer 2	0x0000_0x0000

31	30	29	28	27	26	25	24	
	DATA[31:24]							
23	22	21	20	19	18	17	16	
	DATA[23:16]							
15	14	13	12	11	10	9	8	
	DATA[15:8]							
7	6	5	4	3	2	1	0	
	DATA[7:0]							

Bits	Descriptions
------	--------------

Bits	Descriptions						
Bits	Descriptions	Data Content of Packet Transfer This field contains the data of READ/WRITE TPC codes. When software uses following TPC codes, data will be obtained from (stored in) this field. READ_REG, GET_INT, WRITE_REG, SET_R/W_REG_ADRS, SET_CMD and EX_SET_CMD. This core will always send (store) data from MSB of MSBUF2. For example, if software wants to WRITE a packet with 1 byte data, you should put the data at MSBUF2 [31:24] and write 0x1 into MSCSR [DCNT] then trigger the core.					
[31:0]	DATA	The order of transfer will be MSBUF2 [31], MSBUF2 [30], MSBUF2 [you want to WRITE a packet with 6 bytes data, you should put the of MSBUF2 [31:0] and MSBUF1 [31:16] and write 0x6 into MSCSR [then trigger the core. The order of transfer will be MSBUF2 [31: MSBUF2 [7:0], MSBUF1 [31:24], MSBUF1 [23:16]. The same order applied to READ packet.					
		MSBUF1	MSBUF2	1			
		BYTE 5 BYTE 1 BYTE 6 BYTE 2					
		BYTE 7 BYTE 3					
		BYTE 8	BYTE 4				

NAND Flash Control and Status Register (SMCSR)

Register	Address	R/W	Description	Reset Value
SMCSR	0xB000_D0A0	R/W	NAND Flash Control and Status Register	0x0600_0080

31	30	29	28	27	26	25	24
	Reserved					SM_CS	
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Rese	rved			ME	CC4	
7 6 5 4				3	2	1	0
ECC4CHK	Reserved	ECC4_EN	DBW	PSIZE	DWR_EN	DRD_EN	SW_RST

Bits	Descriptions	
		NAND Flash Select
[26.25]	CNA OC	00 = Select card 0. (-CE0 will be active)
[26:25]	SM_CS	01 = Reserved
		11 = No card will be selected.
		Write Protect Pin Control
[24]	WP_	0 = Force –WP pin to LOW (0) level.
		1 = Force -WP pin to HIGH (1) level.
		Mask ECC4 During Write Page Data
[11:8]	MECC4	These 4 bits indicate NAND controller to write out ECC4 checksum or just 10 bytes 0xFF for each field.
		0 = Do not mask the ECC4 checksum for each field.
		1 = Mask ECC4 checksum and write out 10 bytes 0xFF to NAND.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		None Used Field ECC4 Check After Read Page Data
		0 = Disable. NAND controller will always check ECC4 result for each field, no matter it is used or not.
[7]	ECC4CHK	1 = Enable. NAND controller will check 1's count for byte 2, 3 of redundant data in each field. If count value is greater than 8, NAND controller will treat this field as none used field; otherwise, it's used. If that field is none used field, NAND controller will ignore its ECC4 check result.
		ECC Algorithm Selection
[5]	ECC4_EN	This bit is used to select the ECC algorithm for data protecting. There are two ECC algorithms inside this NAND controller, one is the standard used in SmartMedia's specification and the other is Reed-Solomon code.
		0 = Using standard algorithm in SmartMedia specification.
		1 = Using Reed-Solomon code encode/decode.
		SM Data Bus Width
5.47	DBW	0 = Data bus width of NAND is 8-bit.
[4]		1 = Data bus width of NAND is reserved for 16-bit.
		This bit should be set to 0.
		Page Size of NAND-type Flash
[2]	DC1.7E	This bit indicates the page size of NAND. Only two sizes are supported.
[3]	PSIZE	0 = Page size is 512 Bytes. (512+16B)
		1 = Page size is 2048 Bytes. (2048+64B)
		DMA Write Data Enable
		This bit enables the SM host to transfer data from DMAC's embedded frame buffer into SmartMedia card or NAND type flash.
[2]	DWR_EN	0 = No effect.
		1= Enable DMA read data transfer.
		NOTE: When DMA transfer completed, this bit will be cleared automatically.

Bits	Descriptions	
	DRD_EN	DMA Read Data Enable
		This bit enables the SM host to transfer data from SmartMedia card or NAND type flash into DMAC's embedded frame buffer.
[1]		0 = No effect.
		1 = Enable DMA read data transfer.
		NOTE: When DMA transfer completed, this bit will be cleared automatically.
		Software Engine Reset
	SW_RST	0 = Writing 0 to this bit has no effect.
[0]		1 = Writing 1 to this bit will reset the internal state machine and counters (include SMCSR [DWR_EN] and SMCSR [DRD_EN]). The contents of control register will not be cleared. This bit will be auto cleared after few clock cycles.

NAND Flash Timing Control Register (SMTCR)

Register	Address	R/W	Description	Reset Value
SMTCR	0xB000_D0A4	R/W	NAND Flash a Timing Control Register	0x0001_0105

31	30	29	28	27	26	25	24	
31	30	27	20	21	20	23	24	
			Rese	rved				
23	22	21	20	19	18	17	16	
Reserved				CALE_SH				
15	14	13	12	11	10	9	8	
			HI_	WID				
7	6	5	4	3	2	1	0	
	LO_WID							

Bits	Descriptions	
		CLE/ALE Setup/Hold Time
		This field controls the CLE/ALE setup/hold time to -WE.
		The setup/hold time can be calculated using following equation:
[22:16]	CALE_SH	$t_{CLS} = (CALE_SH+1)*T_{AHB}$
		$t_{CLH} = ((CALE_SH*2)+2)*T_{AHB}$
		$t_{ALS} = (CALE_SH+1)*T_{AHB}$
		$t_{ALH} = ((CALE_SH*2)+2)*T_{AHB}$
		Read/Write Enable Signal High Pulse Width
[15:8]	HI_WID	This field controls the high pulse width of signals –RE and –WE while H/W mode page access is enabled. The pulse width is a multiple of period of AHB bus clock. (The actual width time will be [clock period*(HI_WID+1)])
		NOTE: Value of this field can not be 0x0.
		Read/Write Enable Signal Low Pulse Width
[7:0]	LO_WID	This field controls the low pulse width of signals –RE and –WE while H/W mode page access is enabled. The pulse width is a multiple of period of AHB bus clock. (The actual width time will be [clock period*(LO_WID+1)])
		NOTE: Value of this field can not be 0x0.

345

Publication Release Date: Jun. 18, 2010

NOTE1: The reset value is calculated base on 100MHz AHB Clock. Timing Effect of Above 3 Registers

NAND Flash Interrupt Control Register (SMIER)

Register	Address	R/W	Description	Reset Value
SMIER	0xB000_D0A8	R/W	NAND Flash Interrupt Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
		Reserved			RB_IE	Reserved	CD0_IE
7	6	1	0				
Reserved					ECC_IE	DMA_IE	

Bits	Descriptions	
		Ready/-Busy Rising Edge Detect Interrupt Enable
[10]	RB_IE	0 = Disable R/-B rising edge detect interrupt generation.
		1 = Enable R/-B rising edge detect interrupt generation.
		NAND Flash # 0 Detection Interrupt Enable
[8]	CD0_IE	Enable/Disable interrupt generation of the controller when NAND Flash $\#\ 0$ is inserted or removed.
	_	0 = Disable.
		1 = Enable.
		ECC Check Error Interrupt Enable
[1]	ECC_IE	When reading data from SM card, SM host will check the ECC code inside redundant area with the ECC code which calculated by itself. Enable this bit to generate interrupt when there is an ECC code mismatch.
		0 = Disable.
		1 = Enable.

Bits	Descriptions	
		DMA Read/Write Data Complete Interrupt Enable
[0]	DMA_IE	0 = Disable DMA read/write data complete interrupt generation.
		1 = Enable DMA read/write data complete interrupt generation.

NAND Flash Interrupt Status Register (SMISR)

Register	Address	R/W	Description	Reset Value
SMISR	0xB000_D0AC	R/W	NAND Flash Interrupt Status Register	0x000X_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved				RB_	Reserved	CDO_
15	14	13	12	11	10	9	8
		Reserved			RB_IF	Reserved	CD0_IF
7	6	5	4	3	2	1	0
Reserved					ECC_IF	DMA_IF	

Bits	Descriptions	
[10]	DD	Ready/-Busy Pin Status (Read Only)
[18]	RB_	This bit reflects the Ready/-Busy pin status of SmartMedia card.
		Card Detect Pin Status of SMO (Read Only)
[16]	CDO_	This bit is the card detect pin status of SM0, and it is using for card detection. When there is a card inserted in or removed from SM0, software should check this bit to confirm if there is really a card insertion or remove.
		Ready/-Busy Rising Edge Detect Interrupt Flag (Read Only)
[40]	55.15	0 = R/-B rising edge is not detected.
[10]	RB_IF	1 = R/-B rising edge is detected.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.
		SM Card 0 Detection Interrupt Flag (Read Only)
		This bit indicates that SM card 0 is inserted or removed. Only if SMIER [CD0_IE] is set to 1, this bit is active.
[8]	CDO_IF	0 = No card is inserted or removed.
		1 = There is a card inserted in or removed from SM0.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.

349

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		ECC Check Error Interrupt Flag (Read Only)
F47	[1] ECC_IF	0 = No ECC mismatch occurred.
		1 = ECC mismatch occurred.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.
		DMA Read/Write Data Complete Interrupt Flag (Read Only)
503	5144 15	0 = DMA read/write transfer is not finished yet.
[0]	DMA_IF	1 = DMA read/write transfer is done.
		NOTE: This bit is read only, but can be cleared by writing '1' to it.

NAND Flash Command Port Register (SMCMD)

Register	Address	R/W	Description	Reset Value
SMCMD	0xB000_D0B0	W	NAND Flash Command Port Register	N/A

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
Reserved								
7 6 5 4 3 2 1 0								
	SMCMD							

Bits	Descriptions	
[7:0]	SMCMD	NAND Flash Command Port When CPU writes this port, SM H/W circuit will send a command to NAND Flash.

NAND Flash Address Port Register (SMADDR)

Register	Address	R/W	Description	Reset Value
SMADDR	0xB000_D0B4	W	NAND Flash Address Port Register	N/A

31	30	29	28	27	26	25	24
EOA				Reserved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	7 6 5 4 3 2 1 0						
SMADDR							

Bits	Descriptions	
		End of Address
[31]	EOA	Writing to this bit to tell SM host if this address is the last one or not. When software first writes to address port with this bit cleared, SM host will set ALE pin to active (HIGH). After the last address is written (with this bit set), SM host will set ALE pin to inactive (LOW).
		0 = Not the last address.
		1 = The last one address.
		NAND Flash Address Port
[7:0] SMA	SMADDR	When CPU writes this port, SM H/W circuit will send an address to NAND Flash.

NAND Flash Data Port Register (SMDATA)

Register	Address	R/W	Description	Reset Value
SMDATA	0xB000_D0B8	R/W	NAND Flash Data Port Register	N/A

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	7 6 5 4 3 2 1 0							
	SMDATA							

Bits	Descriptions	
[7.0]	[7:0] SMDATA	NAND Flash Data Port
[7:0]		CPU can access NAND Flash memory through this data port.

NAND Flash Error Correction Code 0 Register (SMECCO)

Register	Address	R/W	Description	Reset Value
SMECCO	0xB000_D0BC	R	NAND Flash Error Correction Code 0 Register	0x0000_0000

31	30	29	28	27	26	25	24		
			Rese	rved					
23	22	21	20	19	18	17	16		
SMECCO									
15	14	13	12	11	10	9	8		
SMECCO									
7	6	5	4	3	2	1	0		
		SMECCO							

escriptions	
SMECCO	NAND Flash ECC 0 For 512+16 bytes/page models, this area contains a 3-byte ECC for page data from data byte 0 through byte 255. [23:16]: CP5 ~ CP0, 0x3 [15:8]: LP15 ~ LP08 [7:0]: LP07 ~ LP00 For 2048+64 bytes/page models, this area contains a 3-byte ECC for page data from data byte 0 through byte 511. [23:16]: CP5 ~ CP0, LP17 ~ LP16 [15:8]: LP15 ~ LP08 [7:0]: LP07 ~ LP00

NAND Flash Error Correction Code 1 Register (SMECC1)

Register	Address	R/W	Description	Reset Value
SMECC1	0xB000_D0C0	R	NAND Flash Error Correction Code 1 Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
SMECC1								
15	14	13	12	11	10	9	8	
SMECC1								
7	6	5	4	3	2	1	0	
	SMECC1							

Bits	Descriptions	
Bits [23:0]	Descriptions SMECC1	NAND Flash ECC 1 For 512+16 bytes/page models, this area contains a 3-byte ECC for page data from data byte 256 through byte 511. [23:16]: CP5 ~ CP0, 0x3 [15:8]: LP15 ~ LP08 [7:0]: LP07 ~ LP00 For 2048+64 bytes/page models, this area contains a 3-byte ECC for page data from data byte 512 through byte 1023. [23:16]: CP5 ~ CP0, LP17 ~ LP16
		[23:16]: CP5 ~ CP0, LP17 ~ LP16 [15:8]: LP15 ~ LP08 [7:0]: LP07 ~ LP00

NAND Flash Error Correction Code 2 Register (SMECC2)

Register	Address	R/W	Description	Reset Value
SMECC2	0xB000_D0C4	R	NAND Flash Error Correction Code 2 Register	0x0000_0000

31	30	29	28	27	26	25	24	
			Rese	erved				
23	22	21	20	19	18	17	16	
	SMECC2							
15	14	13	12	11	10	9	8	
SMECC2								
7	6	5	4	3	2	1	0	
	SMECC2							

Bits Descriptions	
NAND Flash ECC 2 For 2048+64 bytes/page models only, this area contains a 3-page data from data byte 1024 through byte 1535. [23:0] SMECC2 [23:16]: CP5 ~ CP0, LP17 ~ LP16 [15:8]: LP15 ~ LP08 [7:0]: LP07 ~ LP00	-byte ECC for

NAND Flash Error Correction Code 3 Register (SMECC3)

Register	Address	R/W	Description	Reset Value
SMECC3	0xB000_D0C8	R	NAND Flash Error Correction Code 3 Register	0x0000_0000

31	30	29	28	27	26	25	24	
			Rese	erved				
23	22	21	20	19	18	17	16	
	SMECC3							
15	14	13	12	11	10	9	8	
SMECC3								
7	6	5	4	3	2	1	0	
	SMECC3							

Bits Descriptions	
NAND Flash ECC 3 For 2048+64 bytes/page models only, this area contains a 3-byt page data from data byte 1536 through byte 2047. [23:0] SMECC3 SMECC3 [23:16]: CP5 ~ CP0, LP17 ~ LP16 [15:8]: LP15 ~ LP08 [7:0]: LP07 ~ LP00	e ECC for

NAND Flash Redundant Area Register (SMRA)

Register	Address	R/W	Description	Reset Value
SMRA_0	0xB000_D0CC	R/W	NAND Flash Redundant Area Register	0xFFFF_FFFF
 SMRA_15	 0xB000_D108			

31	30	29	28	27	26	25	24
	RArea						
23	22	21	20	19	18	17	16
RArea							
15	14	13	12	11	10	9	8
RArea							
7	6	5	4	3	2	1	0
RArea							

Bits	Descriptions	
		Redundant Area
		This field keeps the 64 bytes data of redundant area for flash memory whose page size is 2K bytes.
[31:0]	RArea	For 512+16 byte/page models, only the 16 bytes redundant area is required. (I.e. Those 16 bytes redundant data must be programmed into SMRA_0, SMRA_1, SMRA_2 and SMRA_3.)
		For 2048+64 byte/page models, the redundant data is programmed into SMRA_0 to SMRA_15.

NAND Flash ECC Correction Address 0 (SMECCAD0)

Register	Address	R/W	Description	Reset Value
SMECCADO	0xB000_D10C	R	NAND Flash ECC Correction Address 0	0x0000_0000

31	30	29	28	27	26	25	24
F2_9	F2_STAT Reserved		F2_ADDR				
23	22	21	20	19	18	17	16
			F2_ <i>F</i>	ADDR			
15	14	13	12	11	10	9	8
F1_9	STAT	Reserved			F1_ADDR		
7	6	5	4	3	2	1	0
F1_ADDR							

Bits	Descriptions				
		ECC Status of ECC-Field 2			
		This field contains the ECC correction status of ECC-field 2 (for page size $512+16B$ and $2048+64B$).			
[31:30]	F2_STAT	• 00 = No error.			
		• 01 = Correctable error.			
		• 10 = Uncorrectable error.			
		• 11 = ECC Code error (for 1-bit code error only).			
		Error Location of Received Data (Field 2)			
[27:16]	F2_ADDR	This field contains the error address result after ECC correct calculation. F2_ADDR $[11:3]$ contains the bit address of 256/512 bytes data.			
		ECC Status of ECC-Field 1			
		This field contains the ECC correction status of ECC-field 1 (for page size $512+16B$ and $2048+64B$).			
[15:14]	F1_STAT	• 00 = No error.			
		• 01 = Correctable error.			
		• 10 = Uncorrectable error.			
		• 11 = ECC Code error (for 1-bit code error only).			

359

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Error Location of Received Data (Field 1)
[11:0]	F1_ADDR	This field contains the error address result after ECC correct calculation. F1_ADDR [11:3] contains the byte address and F1_ADDR [2:0] contains the bit address of 256/512 bytes data. For example, if F1_ADDR = 0x01E, the error bit will be located at byte 3, bit 6. Software can correct the data by inverting that bit.

NOTE: NAND Flash host provide 1-bit error correction and 2-bit error detection. If there are more than two data error bits, the status could be correctable or uncorrectable. And also, if there are two or more code error bits, the status could be uncorrectable or ECC code error.

NAND Flash ECC Correction Address 1 (SMECCAD1)

Register	Address	R/W	Description	Reset Value
SMECCAD1	0xB000_D110	R	NAND Flash ECC Correction Address 1	0x0000_0000

31	30	29	28	27	26	25	24		
F4_STAT		Rese	erved		F4_A	DDR			
23	22	21	20	19	18	17	16		
			F4_ <i>P</i>	ADDR					
15	14	13	12	11	10	9	8		
F3_9	STAT	Rese	erved		F3_A	DDR			
7 6 5 4 3 2 1							0		
F3_ADDR									

Bits	Descriptions	
		ECC Status of ECC-Field 4
		This field contains the ECC correction status of ECC-field 4 (for page size 2048+64B).
[31:30]	F4_STAT	• 00 = No error.
		• 01 = Correctable error.
		• 10 = Uncorrectable error.
		• 11 = ECC Code error (for 1-bit code error only).
	6] F4_ADDR	Error Location of Received Data (Field 4)
[27:16]		This field contains the error address result after ECC correct calculation. F4_ADDR $[11:3]$ contains the byte address and F4_ADDR $[2:0]$ contains the bit address of 512 bytes data.
		ECC Status of ECC-Field 3
		This field contains the ECC correction status of ECC-field 3 (for page size 2048+64B).
[15:14]	F3_STAT	• 00 = No error.
		• 01 = Correctable error.
		• 10 = Uncorrectable error.
		• 11 = ECC Code error (for 1-bit code error only).

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Error Location of Received Data (Field 3)
[11:0]	F3_ADDR	This field contains the error address result after ECC correct calculation. F3_ADDR [11:3] contains the byte address and F3_ADDR [2:0] contains the bit address of 512 bytes data.

NOTE: NAND Flash host provide 1-bit error correction and 2-bit error detection. If there are more than two data error bits, the status could be correctable or uncorrectable. And also, if there are two or more code error bits, the status could be uncorrectable or ECC code error.

ECC4 Correction Status (ECC4ST)

Register	Address	R/W	Description	Reset Value
ECC4ST	0xB000_D114	R	ECC4 Correction Status	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved			F4_ECNT			F4_STAT	
23	22	21	20	19	18	17	16	
	Reserved		F3_ECNT			F3_STAT		
15	14	13	12	11	10	9	8	
	Reserved		F2_ECNT			F2_STAT		
7	6	5	4	3	2	1	0	
Reserved			F1_ECNT			F1_STAT		

Bits	Descriptions	
		Error Count of ECC-Field 4
[28:26]	F4_ECNT	This field contains the error counts after ECC4 correct calculation. For this ECC4 core, it can correct up to 4 errors in a single field. Only when $\mathbf{F4_STAT}$ equals to $0x01$, the value in this field is meaningful. The value could be $0x1 \sim 0x4$; it means one error to four errors. The error address will be put at $\mathbf{ECC4F4A1}$ and $\mathbf{ECC4F4A2}$.
		ECC4 Status of ECC-Field 4
	F4_STAT	This field contains the ECC4 correction status of ECC-field 4 (for page size 2048+64B).
[25:24]		00 = No error.
		01 = Correctable error.
		10 = Uncorrectable error.
	8] F3_ECNT	Error Count of ECC-Field 3
[20:18]		This field contains the error counts after ECC4 correct calculation. For this ECC4 core, it can correct up to 4 errors in a single field. Only when ${\bf F3_STAT}$ equals to 0x01, the value in this field is meaningful. The value could be 0x1 \sim 0x4; it means one error to four errors. The error address will be put at ECC4F3A1 and ECC4F3A2.

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		ECC4 Status of ECC-Field 3
		This field contains the ECC4 correction status of ECC-field 3 (for page size 2048+64B).
[17:16]	F3_STAT	00 = No error.
		01 = Correctable error.
		10 = Uncorrectable error.
		Error Count of ECC-Field 2
[12:10]	F2_ECNT	This field contains the error counts after ECC4 correct calculation. For this ECC4 core, it can correct up to 4 errors in a single field. Only when $F2_STAT$ equals to $0x01$, the value in this field is meaningful. The value could be $0x1 \sim 0x4$; it means one error to four errors. The error address will be put at $ECC4F2A1$ and $ECC4F2A2$.
	F2_STAT	ECC4 Status of ECC-Field 2
		This field contains the ECC4 correction status of ECC-field 2 (for page size 2048+64B).
[9:8]		00 = No error.
		01 = Correctable error.
		10 = Uncorrectable error.
	F1_ECNT	Error Count of ECC-Field 1
[4:2]		This field contains the error counts after ECC4 correct calculation. For this ECC4 core, it can correct up to 4 errors in a single field. Only when ${\bf F1_STAT}$ equals to 0x01, the value in this field is meaningful. The value could be 0x1 \sim 0x4; it means one error to four errors. The error address will be put at ECC4F1A1 and ECC4F1A2.
		ECC4 Status of ECC-Field 1
		This field contains the ECC4 correction status of ECC-field 1 (for page size 512+16B and 2048+64B).
[1:0]	F1_STAT	00 = No error.
		01 = Correctable error.
		10 = Uncorrectable error.

ECC4 Field 1 Error Address 1 (ECC4F1A1)

Register	Address	R/W	Description	Reset Value
ECC4F1A1	0xB000_D118	R	ECC4 Field 1 Error Address 1	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	F1_ADDR2						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
			F1_A	DDR1			

Bits	Descriptions	
		ECC4 Error Address 2 of ECC-Field 1
[24:16]] F1_ADDR2	This field contains a 9-bit ECC4 error address 2 of ECC-field 1 (for page size 512+16B and 2048+64B). If it is a correctable error, software can read the error data at ECC4F1D [15:8] for correcting this error.
		ECC4 Error Address 1 of ECC-Field 1
[8:0]	F1_ADDR1	This field contains a 9-bit ECC4 error address 1 of ECC-field 1 (for page size 512+16B and 2048+64B). If it is a correctable error, software can read the error data at ECC4F1D [7:0] for correcting this error.

365

ECC4 Field 1 Error Address 2 (ECC4F1A2)

I	Register	Address	R/W	Description	Reset Value
İ	ECC4F1A2	0xB000_D11C	R	ECC4 Field 1 Error Address 2	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	F1_ADDR4							
15	14	13	12	11	10	9	8	
Reserved							F1_ADDR 3	
7	6	5	4	3	2	1	0	
	F1_ADDR3							

Bits	Descriptions	
		ECC4 Error Address 4 of ECC-Field 1
[24:16]	F1_ADDR4	This field contains a 9-bit ECC4 error address 4 of ECC-field 1 (for page size 512+16B and 2048+64B). If it is a correctable error, software can read the error data at ECC4F1D [31:24] for correcting this error.
	F1_ADDR3	ECC4 Error Address 3 of ECC-Field 1
[8:0]		This field contains a 9-bit ECC4 error address 3 of ECC-field 1 (for page size 512+16B and 2048+64B). If it is a correctable error, software can read the error data at ECC4F1D [23:16] for correcting this error.

ECC4 Field 1 Error Data (ECC4F1D)

Register	Address	R/W	Description	Reset Value
ECC4F1D	0xB000_D120	R	ECC4 Field 1 Error Data	0x0000_0000

31	30	29	28	27	26	25	24	
			F1_0	ATA4				
23	22	21	20	19	18	17	16	
			F1_0	DATA3				
15	14	13	12	11	10	9	8	
	F1_DATA2							
7	6	5	4	3	2	1	0	
	F1_DATA1							

Bits	Descriptions					
		ECC4 Error Data 4 of ECC-Field 1				
[31:24]	F1_DATA4	This field contains an 8-bit ECC4 error data 4 of ECC-field 1 (for page size 512+16B and 2048+64B). If it is a correctable error, software can read out the error data in this field and doing bitwise XOR with received data locating at address F1_ADDR4; the result will be the correct data.				
		ECC4 Error Data 3 of ECC-Field 1				
[23:16]	F1_DATA3	This field contains an 8-bit ECC4 error data 3 of ECC-field 1 (for page size 512+16B and 2048+64B). If it is a correctable error, software can read out the error data in this field and doing bitwise XOR with received data locating at address F1_ADDR3; the result will be the correct data.				
		ECC4 Error Data 2 of ECC-Field 1				
[15:8]	F1_DATA2	This field contains an 8-bit ECC4 error data 2 of ECC-field 1 (for page size 512+16B and 2048+64B). If it is a correctable error, software can read out the error data in this field and doing bitwise XOR with received data locating at address F1_ADDR2; the result will be the correct data.				
	F1_DATA1	ECC4 Error Data 1 of ECC-Field 1				
[7:0]		This field contains an 8-bit ECC4 error data 1 of ECC-field 1 (for page size 512+16B and 2048+64B). If it is a correctable error, software can read out the error data in this field and doing bitwise XOR with received data locating at address F1_ADDR1; the result will be the correct data.				

367

Publication Release Date: Jun. 18, 2010

ECC4 Field 2 Error Address 1 (ECC4F2A1)

Register	Address	R/W	Description	Reset Value
ECC4F2A1	0xB000_D124	R	ECC4 Field 2 Error Address 1	0x0000_0000

					1			
31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			F2_A	DDR2				
15	14	13	12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
	F2_ADDR1							

Bits	Descriptions			
		ECC4 Error Address 2 of ECC-Field 2		
[24:16]	F2_ADDR2	This field contains a 9-bit ECC4 error address 2 of ECC-field 2 (for page size 2048+64B). If it is a correctable error, software can read the error data at ECC4F2D [15:8] for correcting this error.		
		ECC4 Error Address 1 of ECC-Field 2		
[8:0]	F2_ADDR1	This field contains a 9-bit ECC4 error address 1 of ECC-field 2 (for page size 2048+64B). If it is a correctable error, software can read the error data at ECC4F2D [7:0] for correcting this error.		

ECC4 Field 2 Error Address 2 (ECC4F2A2)

Register	Address	R/W	Description	Reset Value
ECC4F2A2	0xB000_D128	R	ECC4 Field 2 Error Address 2	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			F2_A	DDR4				
15	14	13	12	11	10	9	8	
Reserved							F2_ADDR 3	
7	6	5	4	3	2	1	0	
	F2_ADDR3							

Bits	Descriptions	
		ECC4 Error Address 4 of ECC-Field 2
[24:16]	F2_ADDR4	This field contains a 9-bit ECC4 error address 4 of ECC-field 2 (for page size 2048+64B). If it is a correctable error, software can read the error data at ECC4F2D [31:24] for correcting this error.
	F2_ADDR3	ECC4 Error Address 3 of ECC-Field 2
[8:0]		This field contains a 9-bit ECC4 error address 3 of ECC-field 2 (for page size 2048+64B). If it is a correctable error, software can read the error data at ECC4F2D [23:16] for correcting this error.

ECC4 Field 2 Error Data (ECC4F2D)

Register	Address	R/W	Description	Reset Value
ECC4F2D	0xB000_D12C	R	ECC4 Field 2 Error Data	0x0000_0000

31	30	29	28	27	26	25	24		
	F2_DATA4								
23	22	21	20	19	18	17	16		
	F2_DATA3								
15	14	13	12	11	10	9	8		
	F2_DATA2								
7	6	5	4	3	2	1	0		
	F2_DATA1								

Bits	Descriptions				
		ECC4 Error Data 4 of ECC-Field 2			
[31:24]	F2_DATA4	This field contains an 8-bit ECC4 error data 4 of ECC-field 2 (for page size 2048+64B). If it is a correctable error, software can read out the error data in this field and doing bitwise XOR with received data locating at address F2_ADDR4; the result will be the correct data.			
		ECC4 Error Data 3 of ECC-Field 2			
[23:16]	F2_DATA3	This field contains an 8-bit ECC4 error data 3 of ECC-field 2 (for page size 2048+64B). If it is a correctable error, software can read out the error data in this field and doing bitwise XOR with received data locating at address F2_ADDR3; the result will be the correct data.			
		ECC4 Error Data 2 of ECC-Field 2			
[15:8]	F2_DATA2	This field contains an 8-bit ECC4 error data 2 of ECC-field 2 (for page size 2048+64B). If it is a correctable error, software can read out the error data in this field and doing bitwise XOR with received data locating at address F2_ADDR2; the result will be the correct data.			
	F2_DATA1	ECC4 Error Data 1 of ECC-Field 2			
[7:0]		This field contains an 8-bit ECC4 error data 1 of ECC-field 2 (for page size 2048+64B). If it is a correctable error, software can read out the error data in this field and doing bitwise XOR with received data locating at address F2_ADDR1; the result will be the correct data.			

370

Publication Release Date: Jun. 18, 2010

ECC4 Field 3 Error Address 1 (ECC4F3A1)

Register	Address	R/W	Description	Reset Value
ECC4F3A1	0xB000_D130	R	ECC4 Field 3 Error Address 1	0x0000_0000

		1						
31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			F3_A	DDR2				
15	14	13	12	11	10	9	8	
Reserved							F3_ADDR 1	
7	6	5	4	3	2	1	0	
	F3_ADDR1							

Bits	Descriptions			
		ECC4 Error Address 2 of ECC-Field 3		
[24:16]	F3_ADDR2	This field contains a 9-bit ECC4 error address 2 of ECC-field 3 (for page size 2048+64B). If it is a correctable error, software can read the error data at ECC4F3D [15:8] for correcting this error.		
	F3_ADDR1	ECC4 Error Address 1 of ECC-Field 3		
[8:0]		This field contains a 9-bit ECC4 error address 1 of ECC-field 3 (for page size 2048+64B). If it is a correctable error, software can read the error data at ECC4F3D [7:0] for correcting this error.		

ECC4 Field 3 Error Address 2 (ECC4F3A2)

Register	Address	R/W	Description	Reset Value
ECC4F3A2	0xB000_D134	R	ECC4 Field 3 Error Address 2	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			F3_A	DDR4				
15	14	13	12	11	10	9	8	
Reserved							F3_ADDR 3	
7	6	5	4	3	2	1	0	
	F3_ADDR3							

Bits	Descriptions			
		ECC4 Error Address 4 of ECC-Field 3		
[24:16]	F3_ADDR4	This field contains a 9-bit ECC4 error address 4 of ECC-field 3 (for page s 2048+64B). If it is a correctable error, software can read the error data ECC4F3D [31:24] for correcting this error.		
	F3_ADDR3	ECC4 Error Address 3 of ECC-Field 3		
[8:0]		This field contains a 9-bit ECC4 error address 3 of ECC-field 3 (for page size 2048+64B). If it is a correctable error, software can read the error data at ECC4F3D [23:16] for correcting this error.		

ECC4 Field 3 Error Data (ECC4F3D)

Register	Address	R/W	Description	Reset Value
ECC4F3D	0xB000_D138	R	ECC4 Field 3 Error Data	0x0000_0000

31	30	29	28	27	26	25	24		
	F3_DATA4								
23	22	21	20	19	18	17	16		
			F3_C	DATA3					
15	14	13	12	11	10	9	8		
	F3_DATA2								
7	6	5	4	3	2	1	0		
	F3_DATA1								

Bits	Descriptions		
		ECC4 Error Data 4 of ECC-Field 3	
[31:24]	F3_DATA4	This field contains an 8-bit ECC4 error data 4 of ECC-field 3 (for page siz 2048+64B). If it is a correctable error, software can read out the error dat in this field and doing bitwise XOR with received data locating at addres F3_ADDR4; the result will be the correct data.	
		ECC4 Error Data 3 of ECC-Field 3	
[23:16]	F3_DATA3	This field contains an 8-bit ECC4 error data 3 of ECC-field 3 (for page size 2048+64B). If it is a correctable error, software can read out the error data in this field and doing bitwise XOR with received data locating at address F3_ADDR3; the result will be the correct data.	
		ECC4 Error Data 2 of ECC-Field 3	
[15:8]	F3_DATA2	This field contains an 8-bit ECC4 error data 2 of ECC-field 3 (for page size 2048+64B). If it is a correctable error, software can read out the error data in this field and doing bitwise XOR with received data locating at address F3_ADDR2; the result will be the correct data.	
	F3_DATA1	ECC4 Error Data 1 of ECC-Field 3	
[7:0]		This field contains an 8-bit ECC4 error data 1 of ECC-field 3 (for page size 2048+64B). If it is a correctable error, software can read out the error data in this field and doing bitwise XOR with received data locating at address F3_ADDR1; the result will be the correct data.	

373

Publication Release Date: Jun. 18, 2010

ECC4 Field 4 Error Address 1 (ECC4F4A1)

Register	Address	R/W	Description	Reset Value
ECC4F4A1	0xB000_D13C	R	ECC4 Field 4 Error Address 1	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	F4_ADDR2								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	F4_ADDR1								

Bits	Descriptions	
524.463		ECC4 Error Address 2 of ECC-Field 4 This field contains a 9-bit ECC4 error address 2 of ECC-field 4 (for page size
[24:16]	F4_ADDR2	2048+64B). If it is a correctable error, software can read the error data at ECC4F4D [15:8] for correcting this error.
		ECC4 Error Address 1 of ECC-Field 4
[8:0]	F4_ADDR1	This field contains a 9-bit ECC4 error address 1 of ECC-field 4 (for page size 2048+64B). If it is a correctable error, software can read the error data at ECC4F4D [7:0] for correcting this error.

ECC4 Field 4 Error Address 2 (ECC4F4A2)

Register	Address	R/W	Description	Reset Value
ECC4F4A2	0xB000_D140	R	ECC4 Field 4 Error Address 2	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	F4_ADDR4							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
	F4_ADDR3							

Bits	Descriptions	
	F4_ADDR4	ECC4 Error Address 4 of ECC-Field 4
[24:16]		This field contains a 9-bit ECC4 error address 4 of ECC-field 4 (for page size 2048+64B). If it is a correctable error, software can read the error data at ECC4F4D [31:24] for correcting this error.
		ECC4 Error Address 3 of ECC-Field 4
[8:0]	F4_ADDR3	This field contains a 9-bit ECC4 error address 3 of ECC-field 4 (for page size 2048+64B). If it is a correctable error, software can read the error data at ECC4F4D [23:16] for correcting this error.

ECC4 Field 4 Error Data (ECC4F4D)

Register	Address	R/W	Description	Reset Value
ECC4F4D	0xB000_D144	R	ECC4 Field 4 Error Data	0x0000_0000

31	30	29	28	27	26	25	24			
	F4_DATA4									
23	22	21	20	19	18	17	16			
			F4_0	DATA3						
15	14	13	12	11	10	9	8			
	F4_DATA2									
7	6	5	4	3	2	1	0			
	F4_DATA1									

Bits	Descriptions						
		ECC4 Error Data 4 of ECC-Field 4					
[31:24]	F4_DATA4	This field contains an 8-bit ECC4 error data 4 of ECC-field 4 (for page size 2048+64B). If it is a correctable error, software can read out the error data in this field and doing bitwise XOR with received data locating at address F4_ADDR4; the result will be the correct data.					
		ECC4 Error Data 3 of ECC-Field 4					
[23:16]	F4_DATA3	This field contains an 8-bit ECC4 error data 3 of ECC-field 4 (for page size 2048+64B). If it is a correctable error, software can read out the error data in this field and doing bitwise XOR with received data locating at address F4_ADDR3; the result will be the correct data.					
	F4_DATA2	ECC4 Error Data 2 of ECC-Field 4					
[15:8]		This field contains an 8-bit ECC4 error data 2 of ECC-field 4 (for page size 2048+64B). If it is a correctable error, software can read out the error data in this field and doing bitwise XOR with received data locating at address F4_ADDR2; the result will be the correct data.					
		ECC4 Error Data 1 of ECC-Field 4					
[7:0]	F4_DATA1	This field contains an 8-bit ECC4 error data 1 of ECC-field 4 (for page size 2048+64B). If it is a correctable error, software can read out the error data in this field and doing bitwise XOR with received data locating at address F4_ADDR1; the result will be the correct data.					

Publication Release Date: Jun. 18, 2010 Revision: A4

7.10LCD Display Interface Controller (LCM)

The main purpose of Display Controller is used to display the image data to LCD device or connect with external TV-encoder. The input data format of the display controller can be packet YUV422, packet RGB444, packet RGB565, and packet RGB666. The OSD (On Screen Display) function supports packet YUV422 and 8/16 direct-color mode. The LCD controller supports both sync-type and MPU-type LCD Module. This LCD Controller is a bus master and can transfer display data from system memory (SDRAM) without CPU intervention.

Features

- Input data format
 - ♦ YUV422, YUV444
 - ◆ RGB444, RGB565, RGB666
- Output format
 - ◆ YUV422, YUV444
 - ◆ RGB444, RGB565, RGB666
- Display size: Maximum size 1024x600
- Image resize
 - ♦ Horizontal up-scaling 1~8X in fractional steps
 - ♦ Vertical up-scaling 1~8X in fractional steps
- Convert RGB565, YUV422 display data to RGB444, RGB565, RGB666
- Convert full range YUV to CCIR601
- Windowing support for three OSD graphic or text overlay
- Support CCIR-656 (with header), CCIR-601(with hsync and vsync) 8/16-bit YUV data output format to connect with external TV encoder
- Support both sync-type and MPU-type LCM (with v-sync or not)
- Support the 8/9/16/18-bit data output to connect with 80/68 series MPU type LCM module
- Convert YUV422, YUV444, RGB565, YUV444, display data to RGB444, RGB565, RGB666, YUV422, YUV444

The LCD Controller includes the following main functions:

Image post-processing

Publication Release Date: Jun. 18, 2010

- Display & overlay control
- Image output control
- Hardware cursor control

7.10.1 LCD Controller Function Description

7.10.1.1 VPOST Processor

The Display Engine is used to scale-up the image for display. The image can be arbitrarily up-scaled to full-screen size in horizontal and vertical direction by programming the scaling-factor registers *VA_SCALE*. Similarly, the OSD function also supports up-scaling in horizontal and vertical direction. But it only supports 2X and 4X up-scaling.

7.10.1.2 Display & Overlay Control

The Display Control unit includes timing controller and overlay controller. The timing controller generates the required horizontal and vertical timing for display device. The display timing is defined in the control registers, CRTC_SIZE~CRTC_VR and OSD_WINS~OSD_WINE. The following figure specifies the registers definition.

7.10.1.3 Digital Display Output Control

Various digital image output modes are supported:

- (1) 8-bit/16-bit YUV output for external TV-encoder;
- (2) 8-bit RGB output for sync-based TFT-LCD device;
- (3) 8-bit/16-bit/18-bit RGB output for high-color sync-based TFT-LCD device;
- (4) 8-bit/9-bit/16-bit/18-bit RGB output for MPU-interfaced LCD device.

The display device is defined in register *DEVICE_CTRL* [DEVICE]. The data bus 8-bit/16-bit or 9-bit/18-bit is selected by *DEVICE_CTRL* [DBWORD]. For the MPU-interfaced LCD, 68-series and 80-series MPU interface are supported. The display color formats can be 4096 (RGB444), 65536 (RGB565), and 262144 (RGB666) colors both in 8-bit and 16-bit or 9-bit and 18-bit data bus modes. The related control signals for MPU-interfaced LCD are defined in register *DEVICE_CTRL*. In addition, the image source color format can be YUV or RGB by setting register *DCCS* [VA_SRC].

7.10.1.4 Display Pin Assignment

Pad name	VD [17:0]	HSYNC	VSYNC	VDEN	VICLK	VOCLK
Sync mode	LCD data bus(O)	HSYNC(O)	VSYNC(O)	Data enable(O)	Clock in (I)	Clock out (O)
MPU80	LCD data bus(I/O)	Write (WR) (O)	Read (RD) (O)	MPU-LCD (RS) (O)	Non used	Chip select(CS) (O)
MPU80+VSync	LCD data bus(I/O)	Write (WR) (O)	Read (RD) (O)	MPU-LCD (RS) (O)	Vsync (O)	Chip select(CS) (O)

Publication Release Date: Jun. 18, 2010

MPU80+FMARK	LCD data bus(I/O)	Write (WR) (O)	Read (RD) (O)	MPU-LCD (RS) (O)	FMARK (I)	Chip select(CS) (O)
MPU68	LCD data bus(I/O)	Read/Write (RW) (O)	Enable (EN) (O)	MPU-LCD (RS) (O)	Non used	Chip select(CS) (O)
MPU68+VSync	LCD data bus(I/O)	Read/Write (RW) (O)	Enable (EN) (O)	MPU-LCD (RS) (O)	Vsync (O)	Chip select(CS) (O)
MPU68+FMARK	LCD data bus(I/O)	Read/Write (RW) (O)	Enable (EN) (O)	MPU-LCD (RS) (O)	FMARK (I)	Chip select(CS) (O)

7.10.2 **LCD Controller Register Map**

Control and Status Registers

Register	Offset	R/W	Description	Reset Value		
(LCM_BA = 0xBC	000_8000)					
DCCS	0xB000_8000	R/W	Display Controller Control/Status Register	0x0000_0000		
DEVICE_CTRL	0xB000_8004	R/W	Display Output Device Control Register	0x0000_00E0		
MPULCD_CMD	0xB000_8008	R/W	MPU-Interface LCD Write Command	0x0000_0000		
INT_CS	0xB000_800C	R/W	Interrupt Control/Status Register	0x0000_0000		
CRTC_SIZE	0xB000_8010	R/W	CRTC Display Size Control Register	0x0000_0000		
CRTC_DEND	0xB000_8014	R/W	CRTC Display Enable End	0x0000_0000		
CRTC_HR	0xB000_8018	R/W	CRTC Internal Horizontal Retrace Control Register	0x0000_0000		
CRTC_HSYNC	0xB000_801C	R/W	CRTC Horizontal Sync Control Register	0x0000_0000		
CRTC_VR	0xB000_8020	R/W	CRTC Internal Vertical Retrace Control Reg.	0x0000_0000		
VA_BADDRO	0xB000_8024	R/W	Image Stream Frame Buffer-0 Starting Address.	0x0000_0000		
VA_BADDR1	0xB000_8028	R/W	Image Stream Frame Buffer-1 Starting Address.	0x0000_0000		
VA_FBCTRL	0xB000_802C	R/W	Image Stream Frame Buffer Control Register	0x0000_0000		
VA_SCALE	0xB000_8030	R/W	Image Stream Scaling Control Register	0x0000_0000		
VA_WIN	0xB000_8038	R/W	Image Stream Active Window Coordinates	0x0001_07FF		
VA_STUFF	0xB000_803C	R/W	Image Stream Stuff Pixel	0x0000_0000		
OSD_WINS	0xB000_8040	R/W	OSD Window Starting Coordinates	0x0000_0000		
379 Publication Release Date: Jun. 18, 2010						

OSD_WINE	0xB000_8044	R/W	OSD Window Ending Coordinates	0x0000_0000
OSD_BADDR	0xB000_8048	R/W	OSD Stream Frame Buffer Starting Address	0x0000_0000
OSD_FBCTRL	0xB000_804C	R/W	OSD Stream Frame Buffer Control Register	0x0000_0000
OSD_OVERLAY	0xB000_8050	R/W	OSD Overlay Control Register	0x0000_0000
OSD_CKEY	0xB000_8054	R/W	OSD Overlay Color-Key Pattern Register	0x0000_0000
OSD_CMASK	0xB000_8058	R/W	OSD Overlay Color-Key Mask Register	0x0000_0000
OSD_SKIP1	0xB000_805C	R/W	OSD Window Skip1 Register	0x0000_0000
OSD_SKIP2	0xB000_8060	R/W	OSD Window Skip2 Register	0x0000_0000
OSD_SCALE	0xB000_8064	R/W	OSD horizontal up scaling control register	0x0000_0000
MPU_VSYNC	0xB000_8068	R/W	MPU Vsync control register	0x0000_0000
HC_CTRL	0xB000_806C	R/W	Hardware cursor control Register	0x0000_0000
HC_POS	0xB000_8070	R/W	Hardware cursor tip point position on va picture	0x0000_0000
HC_WBCTRL	0xB000_8074	R/W	Hardware Cursor Window Buffer Control Register	0x0000_0000
HC_BADDR	0xB000_8078	R/W	Hardware cursor memory base address register	0x0000_0000
HC_COLORO	0xB000_807C	R/W	Hardware cursor color ram register mapped to bpp = 0	0x0000_0000
HC_COLOR1	0xB000_8080	R/W	Hardware cursor color ram register mapped to bpp = 1	0x0000_0000
HC_COLOR2	0xB000_8084	R/W	Hardware cursor color ram register mapped to bpp = 2	0x0000_0000
HC_COLOR3	0xB000_8088	R/W	Hardware cursor color ram register mapped to bpp = 3	0x0000_0000

7.10.3 LCD Controller Register

Display Controller Control/Status Register (DCCS)

The register includes Display-Output-Control, Stream-Control and Display-Image-Source-Format-Control registers.

Register	Address	R/W	Description	Reset Value
DCCS	0xB000_8000	R/W	Display Controller Control and Status Register	0x0000_0000

31	30	29	28	27	26	25	24
Res	Reserved		VSYNC	HACT	VACT	DISP_ON	Reserved
23	22	21	20	19	18	17	16
	Reserved				OSD_HUP OSD_		
15	14	13	12	11	10	9	8
ITU_EN	ITU_EN OSD_SRC			Reserved		VA_SRC	
7	6	5	4	3	2	1	0
SINGLE	FIELD_INTR	CMD_ON	DISP_INT_EN	DISP_OUT_EN	OSD_EN	VA_EN	ENG_RST

Bits	Descriptions	
[29]	LACE_F	Interlace Mode Display Field Status (Read-Only) 0 = Current displayed field is even field 1 = Current displayed field is odd field
[28]	VSYNC	Internal Vertical Sync Status (Read Only) When DEVICE_CTRL[V_POL] = 1 (high active) 0 = Display operation is not within vertical sync period 1 = Display operation is within vertical sync period When DEVICE_CTRL[V_POL] = 0 (low active) 0 = Display operation is within vertical sync period 1 = Display operation is not within vertical sync period

Publication Release Date: Jun. 18, 2010

Bits	Descriptions				
[27]	НАСТ	Display Horizontal Line (Read Only) 0 = Display Controller is not operating for horizontal line display 1 = Display Controller is operating for horizontal line display			
[26]	VACT	Display Image Frame (Read Only) 0 = Display Controller is not operating for Image frame display 1 = Display Controller is operating for Image frame display			
[25]	DISP_ON	Display Controller Active(Read Only) 0 = Display Controller is active 1 = Display Controller is off			
[19:18]	OSD_HUP	OSD Stream Horizontal Up-Scaling 00 = Original 01 = 2X 10 = Reserved 11 = Reserved			
[17:16]	OSD_VUP	OSD Stream Vertical Up-scaling $00 = 1X$ $01 = 2X$ $10 = 4X$ $11 = Reserved$			
[15]	ITU_EN	ITU656 format header encode: when DEVICE_CTRL[DEVICE] = 000 and DEVICE_CTRL[DBWORD] = 0 0 = Disable 1 = Enable			
[14:12]	OSD_SRC	OSD Stream Source Color Format 000 = YUV422 001 = YCBCR422 010 = Reserved 011 = RGB666 100 = RGB565 101 = RGB444 Low: {4'h0,R,G,B} 111 = RGB444 High: {R,G,B,4'h0} 110 = RGB332			

382 Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Image Stream Source Color Format
		000 = YUV422
		001 = YCBCR422
		010 = Reserved
[10:8]	VA_SRC	011 = RGB666
		100 = RGB565
		101 = RGB444 Low: {4'h0,R,G,B}
		111 = RGB444 High: {R,G,B,4'h0}
		110 = Reserved
		Display Single Frame Mode
[7]	SINGLE	0 = Display continuous Image frame
[,]	STIVOLE	1= Display single picture frame, the Display Controller will stop operating after finishing display one frame.
		Interrupt Mode Control
		0 = Interrupt signal responses at each frame display complete
[6]	FIELD_INTR	1 = Interrupt signal responses at each field display complete
		Note: The setting for this is only meaningful when the display mode is operated at interlaced mode.
		Command Mode
[5]	CMD_ON	0 = Normal Image display mode
		1 = Turn-on command mode for sending LCD command or parameter data
		Display controller interrupt output enable
[4]	DISP_INT_EN	0 = Disable
		1 = Enable
		Display-relative Output Pins Tri-state Mode
[3]	DISP_OUT_E N	0 = Output disabled, output pins in tri-state mode (default)
		1 = Display output enable, normal mode
		OSD Data Fetch Control
[2]	OSD_EN	0 = Disable
[2]		1 = Enable

Bits	Descriptions	Descriptions			
[1]	VA_EN	I mage 0 = Disable 1 = Enable			
[0]	ENG_RST	Display Engine Reset (except Display Control Registers) 0: Disable, normal operation 1: Reset the Display Engine, but the value of the display control registers keep no change			

Display Device Control Register (DEVICE_CTRL)

The type of external output device is controlled by this register.

Register	Address	R/W	Description	Reset Value
DEVICE_CTR L	0xB000_8004	R/W	Display Controller Control and Status Register	0x0000_00E0

31	30	29	28	27	26	25	24
CMD_LO W	CM16t18	CMD16	DE_POL	MCU68	DBWORD	RGB_	SCALE
23	22	21	20	19	18	17	16
LACE	VR_LACE	V_POL	H_POL	FAL_D	LCD_ODD	SEL_ODD	YUV2CCI R
15	14	13	12	11	10	9	8
			LCD_	DDA			
7	6	5	4	3	2	1	0
DEVICE			RGB_	SHIFT	SWAP_	_YCbCr	Reserved

Bits	Descriptions	
		Command Low
[31]	CMD_LOW	0 = Output pin RS = 1: command data, 0 : display/parameter data
		1 = Output pin RS = 0: command data, 1: display/parameter data
		Command Mapping From 16-bit to 18-bit or 8-bit to 9-bit data bus
	CM16t18	Used for 18-bit/9-bit RGB666 MPU-Interfaced LCD device mode.
		0 = For 18-bit data bus mode,
		$Data[17:0] = \{Command[15:8], 1'b0, Command[7:0], 1'b0\};$
[30]		For 9-bit data bus mode,
		Data $[8:0] = \{Command[7:0], 1'b0\};$
		1 = For 18-bit data bus mode,
		Data[17:0] = $\{2'b00, Command[15:0]\};$
		For 9-bit data bus mode,
		Data[8:0] = $\{1'b0, Command[7:0]\};$

385

Publication Release Date: Jun. 18, 2010

Bits	Descriptions				
[29]	Command Data 16-bit Mode 0 = The command data is 8-bit 1 = The command data is 16-bit Note: The 16-bit command mode is only valid when [DBWORD] is active.				
[28]	DE_POL/ IM_262K (Share bit) Active Polarity of Display Output Enable for Sync-Type LCM 0 = Active high 1 = Active low Interface Mode Selection for 262K MPU-Interface LCM 0 = 9/18 bit data bus 1 = 8/16 bit data bus				
[27]	MPU68	MPU Interface Selection 0 = 80-series MPU interface 1 = 68-series MPU interface			

386

Bits	Descriptions				
[26]	DBWORD	Digital LCD Data Bus Width Selection (Data bus width is equal to WORD length): 0 = bus width is equal to half-word, two bus transactions are required for single pixel 1 = bus width is equal to word, one bus transaction is required for single pixel For YUV422 output mode: 0 = Data bus is 8-bits 1 = Data bus is 16-bits For 256/4096/65536 colors mode: 0 = Data bus is 8-bits 1 = Data bus is 16-bits For 262144 colors mode: 0 = Data bus is 8/9-bits 1 = Data bus is 16/18-bits For 1677721 colors mode: This bit should be set to 0. 0 = Data bus is 8-bits - 3 cycles per pixel at DEVICE[SWAP_YCbCr[1]] = 0 4 cycles per pixel at DEVICE[SWAP_YCbCr[1]]			
[25:24]	RGB_SCALE	RGB Color Type 00 = 4096 colors mode 01 = 65536 colors mode 10 = 262144 colors mode 11 = 16777216 colors mode			
[23]	LACE	Display Data Output Mode 0 = Non-interlace 1 = Interlace			
[22]	VR_LACE	Sync (Horizontal and Vertical Sync) Interlace 0 = Non-interlace 1 = Interlace			

387

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[21]	V_POL	<pre>V_POL (Vertical Polarity) 0 = Low Active 1 = High Active</pre>
[20]	H_POL	H_POL (Horizontal Polarity) 0 = Low Active 1 = High Active
[19]	FAL_D	FAL_D 0 = Falling Latch Out 1 = Rising Latch Out
[18:17]	[LCD_ODD: SEL_ODD]	Control LCD Line Data Out 00 = First line data is RGB, second line data is GBR 01 = First line data is BGR, second line data is RBG 10 = First line data is GBR, second line data is RGB 11 = First line data is RBG, second line data is BGR
[16]	YUV2CCIR	1 = Convert full range YUV to CCIR601 0 = No operation
[15:8]	LCD_DDA	Generate LCD Clock Frequency for TFT-LCD Panel Note: Only for DEBICE_CTRL[DEVICE] "100" and "110" Set LCD_DDA = 0 will disable DDA operation.

Bits	Descriptions						
[7:5]	DEVICE	DEVICE Setting 000 = Packed YUV422 001 = Packed YUV444 100 = Sync-based TFT-LCD (UNIPAC) 101 = Sync-based TFT-LCD (SEIKO EPSON) 110 = Sync-based High-color TFT-LCD (RGB565/RGB666) 111 = MPU-Interfaced LCD (RGB332/RGB444/RGB565/RGB666)(default) Notes: 1. Device "000" is supported both in 8-bit and 16-bit data bus. 2. Device "110" is supported both in 16-bit and 18-bit. The 16-bit and 18-bit data bus is selected by DEVICE_CTRL [RGB_SCALE]. 3. Device "111" is supported in 8-bit, 9-bit, 16-bit, and 18-bit data bus. 4. The 8-bit/16-bit or 9-bit/18-bit data bus is selected by the combination of DEVICE_CTRL[DBWORD], DEVICE_CTRL[RGB_SCALE] and DEVICE_CTRL[DE_POL]					

RGB Data Output Shift for Sync-type LCD Panel When DEBICE_CTRL[DEVICE] = 100, 101 00 = Not Shift 01 = Shift One Cycle 10 = Shift 2 Cycle 11 = Not Defined	Bits
RGB Data Output Arrangement for 262K MPU-Interface LCM When DEBICE_CTRL[DEVICE] = 111, and 16-bit data bus mode (*derdon't care bit) 00 = RRRRRRGGGGGGBBBB, ****************************	

Bits	Descriptions					
[2-1]	SWAP_YcbCr (share_bit DEVICE_CTRL[DEV ICE] = 000)	YUV Data Output Swap (for Packed YUV mode) When DEVICE_CTRL[DEVICE] = 000 00 = UYVY 01 = YUYV 10 = VYUY 11 = YVYU				
[2]	SWAP_YcbCr[1](share_bit DEVICE_CTRL[DEV ICE] = 100)	Delay control: make the cycle of reading data from FIFO to be delay one cycles per two pixel so the output rate is 1.5 cycles per pixel .When DEVICE_CTRL[DEVICE] = 100, 8-bit data bus , DEVICE_CTRL [SWAP_YcbCr[0]] = 0, and DEVICE [DBWORD] = 1(Pixel data read from FIFO is 1 cycle per pixel), => Unipac sub-sampling one component from each RGB pixel 0 = 1/3 sub-sampling, per pixel is sub-sampling a component Seq: R0G1B2, R3G4B5 output 1 cycles per pixel For 960x240 panel, (source are expand from 320x240 to 960x240) 1= 1/2 sub-sampling, even pixel is sub sampled two components and odd pixel is sub sampled one components Seq: R0G0B1,R2G3B3,R4G4B5 output 1.5 cycles per pixel For 480x240 (source is 320x240)				
[1]	SWAP_YcbCr[0](share_bit DEVICE_CTRL[DEV ICE] = 100)	Read cycles per pixel control: When DEVICE_CTRL[DEVICE] = 100, 8-bit data bus, DEVICE[DBWORD] = 0, and DEVICE_CTRL [SWAP_YcbCr[1]] = 0, 0 = Pixel data read from FIFO is 2 cycles per pixel, Seq: R0G0B1,R1G2B2,R3G3B,4R4 2 cycles per pixel For 640 x240 panel (source 320x240) 1 = Pixel data read from FIFO is 3 cycles per pixel, Seq: R0G0B0,R1G1B1,R2G2B2,R3G3B3 3 cycles per pixel For 960x240 panel, (source is 320x240)				

Publication Release Date: Jun. 18, 2010

Bits	Descriptions					
		RGB_Dumy format (for Sync-based High-color TFT-LCD -interfaced LCD) When DEVICE_CTRL[DEVICE] = 110, 8-bit data bus & 16M-color				
[2]	SWAP_YCbCr[1] (share_bit	mode, DEVICE [DBWORD] = 0, SWAP_YCbCr[0] = x 0 = RGB - output 8bit data in the sequence of "R0G0B0R1G1B1", 3				
	DEVICE_CTRL[DE VICE] = 110)	cycles per pixel				
		1 = RGBX- output 8bit data in the sequence of "R0G0B0XR1G1B1X", 4 cycles per pixel				
		RGB Data Output Swap (for 65536-color LCD & 262144-color LCD)				
		When DEVICE_CTRL[DEVICE] = 110 , 8-bit data bus & 65536-color, 9-bit data bus & 256K-color mode and SWAP_YCbCr[1] = 0				
[1]	SWAP_YCbCr[0] (share_bit DEVICE_CTRL[DE VICE] = 110)	0 = the high-byte of 16-bit RGB565 pixel data is output first, the low-byte data is output secondly; the msb 9-bit of 18-bit RGB666 pixel data is output first, the LSB 9-bit data is output secondly				
		1 = the low-byte of 16-bit RGB565 pixel data is output first, the low-byte data is output secondly;				
		the LSB 9-bit of 18-bit RGB666 pixel data is output first, the msb 9-bit data is output secondly				
	01445 7401 0 543	RGB Data Output Swap (for MPU-interfaced LCD)				
[2]	(share_bit DEVICE_CTRL[DE VICE] = 111)	When DEVICE_CTRL[DEVICE] = 111 , 16-bit data bus & 4096-color mode				
		$0 = Data format of DDATA[15:0] is {R,G,B,4'h0} in 4096-color mode$				
	,	1 = Data format of DDATA[15:0] is {4'h0,R,G,B} in 4096-color mode				
		RGB Data Output Swap (for 65536-color LCD & 262144-color LCD)				
	SWAP_YCbCr[0] (share_bit DEVICE_CTRL[DE VICE] = 111)	When DEVICE_CTRL[DEVICE] = 111 , 8-bit data bus & 65536-color, 9-bit data bus & 256K-color mode				
[1]		0 = the high-byte of 16-bit RGB565 pixel data is output first, the low-byte data is output secondly; the msb 9-bit of 18-bit RGB666 pixel data is output first, the LSB 9-bit data is output secondly				
		1 = the low-byte of 16-bit RGB565 pixel data is output first, the low-byte data is output secondly;				
		the LSB 9-bit of 18-bit RGB666 pixel data is output first, the msb 9-bit data is output secondly				

Data bus arrangement for different pixel and bus for MPU-Interface LCM

Gray Scale Selection (RGB_SCALE)	Bus Interface Mode(DBWORD, IM_262K)	SWAP_YCbCr	Data Mode for 262K panels (DM_262K)	Data bus arrangement ("*" denote don't care bit)	Note
12 bits/pixel (00)	8 bits	**	**	RRRRGGGG BBBBRRRR GGGGBBBB	3xfer/2pixels
	16 bits	0*	**	RRRRGGGGBBBB****	1xfer/1pixel
	16 bits	1*	**	****RRRGGGGBBBB	1xfer/1pixel
16 bits/pixel (01)	8 bits	*0	**	RRRRRGGG GGGBBBBB	2xfer/1pixel
	8 bits	*1	**	GGGBBBBB RRRRGGG	2xfer/1pixel
	16 bits	**	**	RRRRGGGGGBBBBB	1xfer/1pixel
18 bits/pixel (10)	8 bits	**	*0	RRRRRR** GGGGGG** BBBBBB**	3xfer/1pixel
		**	*1	RRRRRGG GGGBBBB *****BB	3xfer/1pixel
	9 bits	*0	**	RRRRRGGG GGGBBBBBB	2xfer/1pixel
	9 bits	*1	**	GGGBBBBBB RRRRRGGG	2xfer/1pixel
	16 bits	**	00	RRRRRGGGGGBBBB ******BB	2xfer/1pixel
		**	01	**************************************	2xfer/1pixel
		**	10	RRRRRR**GGGGGG** ******BBBBBB**	2xfer/1pixel
		**	11	RRRRR**GGGGGG** BBBBBB******	2xfer/1pixel
	18 bits		**	RRRRRGGGGGBBBBB B	1xfer/1pixel

393

Publication Release Date: Jun. 18, 2010

Data bus arrangement for different pixel for Unipac - Interface LCM at 16 M colors and 8bits data bus

Gray					Data bus arrangement		Note	
Scale Selection	Interface Mode		Line Data Out	("*" denote do bit)	n't care	("*" denote don't care bit) second line(even line)		
Sciection	(DBWORD)		[LCD_ODD:	First line(odd line	2)			
			SEL_ODD]	This mic (dad mic)		, , , , , , , , , , , , , , , , , , ,		
24 bits/pixel	1	00	00	RRRRRRRRO 0)	(pixel	GGGGGGGO 0)	(pixel	1xfer/ 1pixel
				GGGGGGGG1 1)	(pixel	BBBBBBBB1 1)	(pixel	
				BBBBBBBB2 2)	(pixel	RRRRRRR2 2)	(pixel	
	1	00	01	BBBBBBBB 0)	(pixel	RRRRRRRRO 0)	(pixel	1xfer/ 1pixel
				GGGGGGG1 1)	(pixel	BBBBBBBB1 1)	(pixel	
				RRRRRRR2 2)	(pixel	GGGGGGG2 2)	(pixel	
	1	00	10	GGGGGGGO 0)	(pixel	RRRRRRRRO 0)	(pixel	1xfer/ 1pixel
				BBBBBBBB1 1)	(pixel	GGGGGGG1 1)	(pixel	
				RRRRRRR2 2)	(pixel	BBBBBBBB2 2)	(pixel	
	1	00	11	RRRRRRRRO 0)	(pixel	BBBBBBBB 0)	(pixel	1xfer/ 1pixel
				BBBBBBBB1 1)	(pixel	GGGGGGG1 1)	(pixel	
				GGGGGGG2 2)	(pixel	RRRRRRR2 2)	(pixel	
	1	10	00	RRRRRRRRO 0)	(pixel	GGGGGGGO 0)	(pixel	1.5xfer / 1pixel
				GGGGGGGG 0)	(pixel	BBBBBBBB 0)	(pixel	
				BBBBBBBB1 2)	(pixel	RRRRRRRR1 1)	(pixel	

1	10	01	BBBBBBBB 0)	(pixel	RRRRRRRRO 0)	(pixel	1.5xfer / 1pixel
			GGGGGGGO 0)	(pixel	BBBBBBBB0 0)	(pixel	
			RRRRRRRR1 1)	(pixel		(pixel RRRR2	
			BBBBBBBB2 2)	(pixel	(pixel 2) BBBBBBBB2	(pixel	
			GGGGGGGG2 2)	(pixel	2) GGGGGGGG3	(pixel	
			RRRRRRRR3 3)	(pixel	3)	••	
1	10	10	GGGGGGGO 0)	(pixel	RRRRRRRO 0)	(pixel	1.5xfer / 1pixel
			BBBBBBBBO 0)	(pixel	GGGGGGGG 0)	(pixel	
			RRRRRRRR1 1)	(pixel	BBBBBBBB1 1)	(pixel	
1	10	11	RRRRRRRRO 0)	(pixel	BBBBBBBB0 0)	(pixel	1.5xfer / 1pixel
			BBBBBBBB 0)	(pixel	GGGGGGGO 0)	(pixel	
			GGGGGGGG1 1)	(pixel	RRRRRRRR1 1)	(pixel	
0	00	00	RRRRRRRRO 0)	(pixel	GGGGGGGO 0)	(pixel	2xfer/ 1pixel
			GGGGGGGO 0)	(pixel	BBBBBBBB0 0)	(pixel	
			BBBBBBBBB1 1)	(pixel	RRRRRRRR1 1)	(pixel	
0	00	01	BBBBBBBB 0)	(pixel	RRRRRRRO 0)	(pixel	2xfer/ 1pixel
			GGGGGGGO 0)	(pixel	BBBBBBBB0 0)	(pixel	
			RRRRRRRR1 1)	(pixel	GGGGGGG1 1)	(pixel	

0	00	10	GGGGGGGO 0)	(pixel	RRRRRRRRO 0)	(pixel	2xfer/ 1pixel
			BBBBBBBB 0)	(pixel	GGGGGGGG 0)	(pixel	
			RRRRRRRR1 1)	(pixel	BBBBBBBB1 1)	(pixel	
0	00	11	RRRRRRRRO 0)	(pixel	BBBBBBBB 0)	(pixel	2xfer/ 1pixel
			BBBBBBBB 0)	(pixel	GGGGGGGG 0)	(pixel	
			GGGGGGGG1 1)	(pixel	RRRRRRRR1 1)	(pixel	
0	01	00	RRRRRRRRO 0)	(pixel	GGGGGGGO 0)	(pixel	3xfer/ 1pixel
			GGGGGGGO 0)	(pixel	BBBBBBBB0 0)	(pixel	
			BBBBBBBB 0)	(pixel	RRRRRRRRO 0)	(pixel	
0	01	01	BBBBBBBB 0)	(pixel	RRRRRRRRO 0)	(pixel	3xfer/ 1pixel
			GGGGGGGG 0)	(pixel	BBBBBBBB0 0)	(pixel	
			RRRRRRRO 0)	(pixel	GGGGGGGG 0)	(pixel	
0	01	10	GGGGGGGO 0)	(pixel	RRRRRRRO 0)	(pixel	3xfer/ 1pixel
			BBBBBBBBO 0)	(pixel	GGGGGGGO 0)	(pixel	
			RRRRRRRRO 0)	(pixel	BBBBBBBB0 0)	(pixel	
0	01	11	RRRRRRRRO 0)	(pixel	BBBBBBBBO O)	(pixel	3xfer/ 1pixel
			BBBBBBBB0 0)	(pixel	GGGGGGGO 0)	(pixel	
			GGGGGGGG 0)	(pixel	RRRRRRRRO 0)	(pixel	

Data bus arrangement for different pixel for TFT High colors device - Interface LCM at 16 M colors and 8bits data bus

Gray Scale Selection	Bus Interface Mode (DBWORD)	SWAP_YCbCr	Control LCD Line Data Out [LCD_ODD : SEL_ODD]	Data bus arrangement ("*" denote don't care bit)	Note
24 bits data bus	1	00	**	RRRRRRRGGGGGGGBBBBBBBBBBBBBBBBBBBBBBBB	1xfer/ 1pixel
8 bits data bus	0	00 **		BBBBBBBB (pixel 0) GGGGGGGO (pixel 0) RRRRRRRO (pixel 0) BBBBBBBB (pixel 1) GGGGGGG1 (pixel 1) RRRRRRRR (pixel 1)	3xfer/ 1pixel
	0	10	**	BBBBBBBB (pixel 0) GGGGGGGO (pixel 0) RRRRRRRO (pixel 0) ******** (pixel 0) BBBBBBBB (pixel 1) GGGGGGGG (pixel 1) RRRRRRRR (pixel 1) ********* (pixel 1)	4xfer/ 1pixel

Data bus arrangement for different pixel for TFT High colors device - Interface LCM at 16 M colors and 8bits data bus

Gray Scale Selection	Bus Interface Mode (DBWORD)	SWAP_YCbCr	Control LCD Line Data Out [LCD_ODD : SEL_ODD]	Data bus arrangement ("*" denote don't care bit)	Note
8 bits data bus	0	00	**	BBBBBBBB (pixel 0) GGGGGGGO (pixel 0) RRRRRRRO (pixel 0) BBBBBBBBB (pixel 1) GGGGGGGG (pixel 1) RRRRRRRR (pixel 1)	3xfer/1pixel
	0	10	**	BBBBBBBB (pixel 0) GGGGGGGO (pixel 0) RRRRRRRO (pixel 0) ******** (pixel 0) BBBBBBBB (pixel 1) GGGGGGGG (pixel 1) RRRRRRRR (pixel 1) ******** (pixel 1)	4xfer/1pixel

MPU-Interfaced LCD Write Command Register (MPULCD_CMD)

When DEVICE = 111, a 16-bit value represents MPU-interfaced LCD command/parameter data. For 8-bit data bus or 16-bit data bus with 8-bit command mode, the MPULCD_CMD [15:8] is discarded. When writing data to this register (MPULCD_CMD[7:0]), Display Controller will switch to command mode and write this data to LCM if DCCS[CMD_ON] is enabled and Display Controller is not outputting display data. You can read DCCS [HACT] and DCCS [VACT] to get display status.

Register	Address	R/W	Description	Reset Value	
MPULCD_CM D	0xB000_8008	R/W	MPU-Interface LCD Write Command	0x0000_0000	

31	30	29	28	27	26	25	24		
CMD_BUS Y	WR_RS	READ	Reserved						
23	22	21	20	19	18	17	16		
Reserved					MPULCD_CMD[17:16]				
15	14	13	12	11	10	9	8		
	MPULCD_CMD[15:8]								
7	6	5	4	3	2	1	0		
	MPULCD_CMD[7:0]								

Bits	Descriptions	
		Command Interface is Busy
[31]	CMD_BUSY	0 = Command interface is ready for next command
		1 = Command interface is busy for writing/reading pending command
		Write/Read RS Setting
[30] WR_RS	WR_RS	0 = Output pin RS = 0 when sending command/parameter via MPULCD_CMD
		$1=$ Output pin RS $=1$ when sending command/parameter via MPULCD_CMD
		Read Status or Data
		0 = Write command/parameter LCM
[30]	READ	1 = Read status/data from LCM
		Note: Data will be stored in MPULCD_CMD[17:0], when CMD_BUSY is inactive after read operation
[17:16]	MPULCD_CMD	MPU-interfaced LCD read data (READ ONLY)

399

Publication Release Date: Jun. 18, 2010

[15:0] MPULCD_CMD MPU-interfaced LCD command/parameter data, read data	[15:0]	MPULCD_CMD	MPU-interfaced LCD command/parameter data, read data
--	--------	------------	--

Publication Release Date: Jun. 18, 2010

Interrupt Control/Status Register (INT_CS)

Interrupts are the communication method for Display Controller-initiated communication with the Display Controller Driver. There are several events that may trigger an interrupt from the Display Controller. Each specific event sets a specific bit in the INT_CS register. The Display Controller requests an interrupt when all three of the following conditions are met:

- The **DISP_INT_EN** bit in *DCCS* is set to '1'.
- A status bit in INT_CS is set to '1'.
- The corresponding enable bit in *INT_CS* for the *Status* bit is set to `1'.

Register	Address	R/W	Description	Reset Value
INT_CS	0xB000_800C	R/W	Interrupt Control/Status Register	0x0000_0000

31	30	29	28	27	26	25	24	
DISP_F_INT	DISP_F_STATUS	UNDERRUN_INT	BUS_ERROR_INT	Reserved				
23	22	21	20	19 18 17		17	16	
	Reserved							
15	14	13 12 11 10		10	9	8		
			Reserved					
7	6	5	4	3	2	1	0	
Reserved						UNDERRUN_EN	DISP_F_EN	

Bits	Descriptions	
[31]	DISP_F_INT	Frame Display Complete Interrupt Status, (Write-Clear) When write "1" value on the bit, the interrupt will be cleared. (This status bit can be internally written no matter DISP_F_EN is enable or not)
[30]	DISP_F_STATUS	Frame Display Complete Internal Status (2), (Write-Clear) When write "1" value on the bit, it will be cleared. (This status bit can be internally written only if DISP_F_EN is enable) Note: The interrupt status can be programmed for indicating frame displayed complete or field displayed complete by DCCS [FIELD_INTR].

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[29]	UNDERRUN_INT	FIFO under-run Interrupt Status (Write-Clear) When write "1" value on the bit, the interrupt will be cleared.
[28]	BUS_ERROR_INT	Bus Error Interrupt (Write-Clear) When DMA bus master receive an error response from slaves, this bit will be set. When write "1" value on the bit, the interrupt will be cleared. Note: This interrupt is always enabled
[1]	UNDERRUN_EN	FIFO under-run Interrupt Enable 0 = Disable 1 = Enable
[0]	DISP_F_EN	Frame Display Complete Interrupt Enable 0 = Disable 1 = Enable

CRTC Display Size Register (CRTC_SIZE)

This register controls the display size. It includes Horizontal-Total (HTT) and Vertical-Total (VTT) registers. The value of HTT specifies the total number of pixels in the CRTC horizontal scan line interval including retrace time. And the value of VTT specifies the total number of scan line for each field (frame), including the retrace time.

Register	Address	R/W	Description	Reset Value
CRTC_SIZE	0xB000_8010	R/W	CRTC Display Size	0x0000_0000

31	30	29	28	27	26	25	24
Reserved						VTT[10:8]	
23	22	21	20	19	18	17	16
VTT[7:0]							
15	14	13	12	11	10	9	8
Reserved						HTT[10:8]	
7	6	5	4	3	2	1	0
HTT[7:0]							

Bits	Descriptions	
[26:16]	VTT[10:0]	CRTC Vertical Total Scan Lines An 11-bits value specifies the total number of scan line for each field, including the retrace time
[10:0]	HTT[10:0]	CRTC Horizontal Total Pixels An 11-bits value specifies the total number of pixels in the CRTC horizontal scan line interval including the retrace time

CRTC Display Enable End Register (CRTC_DEND)

This register controls the actual display size of the output device. It includes HDEND and VDEND registers. The value of HDEND specifies the total number of displayed pixels for a scan line. And the value of VDEND specifies the total number of displayed scan line for each field (frame).

Register	Address	R/W	Description	Reset Value
CRTC_DEND	0xB000_8014	R/W	CRTC Display Enable End	0x0000_0000

31	30	29	28	27	26	25	24
		Reserved	\	/DEND[10:8]		
23	22	21	20	19	18	17	16
			VDEN	D[7:0]			
15	14	13	12	11	10	9	8
		Reserved			ŀ	HDEND[10:8]
7	6	5	4	3	2	1	0
HDEND[7:0]							

Bits	Descriptions	
[26:16]	VDEND[10:0] CRTC Vertical Display Enable End An 11-bits value specifies the total number of displayed scan line for field.	
[10:0]	HDND[10:0]	CRTC Horizontal Display Enable End An 11-bits value specifies the total number of displayed pixels for scan line.

CRTC Internal Horizontal Retrace Timing Register (CRTC_HR)

The internal horizontal retrace timing can be controlled by properly setting the values of retrace starting (HRS) and ending (HRE) registers included in this register. The values are programmed in number of pixels.

Register	Address	R/W	Description	Reset Value
CRTC_HR	0xB000_8018	R/W	CRTC Internal Horizontal Retrace Timing	0x0000_0000

31	30	29	28	27	26	25	24
		Reserved		HRE[10:8]			
23	22	21	20	19	18	17	16
			HRE	[7:0]			
15	14	13	12	11	10	9	8
		Reserved				HRS[10:8]	
7	6	5	4	3	2	1	0
HRS[7:0]							

Bits	Descriptions	
[26:16]	HRE[10:0]	CRTC Internal Horizontal Retrace End Low An 11-bits value programmed in pixels, at which the Internal Horizontal Retrace becomes inactive
[10:0]	HRS[10:0]	CRTC Internal Horizontal Retrace Start Timing An 11-bits value programmed in pixels, at which the Internal Horizontal Retrace becomes active

CRTC Horizontal Sync Timing Register (CRTC_HSYNC)

The horizontal sync timing can be controlled by properly setting the values of starting (HSYNC_S) and ending (HSYNC_E) registers included in this register. The values are programmed in numbers of pixel.

Register	Address	R/W	Description	Reset Value
CRTC_HSYNC	0xB000_801C	R/W	CRTC Horizontal Sync Timing	0x0000_0000

31	30	29	28	27	26	25	24
HSYNC_SHIFT [1:0]			Reserved		H	SYNC_E[10:	8]
23	22	21	20	19	18	17	16
			HSYNC.	_E[7:0]			
15	14	13	12	11	10	9	8
		Reserved			H:	SYNC_S[10:	8]
7	6	5	4	3	2	1	0
	HSYNC_S[7:0]						

Bits	Descriptions
Dits	Descriptions

Bits	Descriptions	
		Hsync signal adjustment for multi-cycles per pixel mode of Sync- based Unipac-LCD
		When DEVICE_CTRL[DEVICE] = 100,8-bit data bus, DEVICE[DBWORD]= 0, and DEVICE_CTRL[SWAP_YcbCr[1]]=0,
		If DEVICE_CTRL[SWAP_YcbCr[0]]= 0, it means that 2 cycles per pixel, so hsync's hrs would move three cycles if hrs added or subtracted 1.In order to adjust hsync signal in pclk unit, RGB_SHIFT shared register aids this function in -LCD with 8 bits data bus mode.
		HSYNC_SHIFT = 0 : hsync will not move
		HSYNC _SHIFT = 1 : hsync will left move 1 pclk cycle
		If DEVICE_CTRL[SWAP_YcbCr[0]] = 1, it means that 3 cycles per pixel, so hsync's hrs would move three cycles if hrs added or subtracted 1.In order to adjust hsync signal in pclk unit, RGB_SHIFT shared register aids this function in High-color TFT-LCD with 8 bits data bus mode.
		RGB_SHIFT = 0 : hsync will not move
		HSYNC _SHIFT = 1 : hsync will left move 1 pclk cycle
		HSYNC _SHIFT = 2 : hsync will left move 2 pclk cycle
[31-30]	HSYNC_SHIFT [1:0]	Hsync signal adjustment for multi-cycles per pixel mode of Sync- based High-color TFT-LCD
		When DEVICE_CTRL[DEVICE] = 110 , DEVICE_CTRL[RGB_SCALE]=3(16M-color mode) and DEVICE[DBWORD]= 0,
		If DEVICE_CTRL[SWAP_YcbCr[1]] = 0, it means that 3 cycles per pixel, so hsync's hrs would move three cycles if hrs added or subtracted 1.In order to adjust hsync signal in pclk unit, RGB_SHIFT shared register aids this function in High-color TFT-LCD with 8 bits data bus mode.
		HSYNC _SHIFT = 0 : hsync will not move
		HSYNC _SHIFT = 1 : hsync will left move 1 pclk cycle
		HSYNC _SHIFT = 2 : hsync will left move 2 pclk cycle
		If DEVICE_CTRL[SWAP_YcbCr[1]] = 1, it means that 4 cycles per pixel, so hsync's hrs would move three cycles if hrs added or subtracted 1.In order to adjust hsync signal in pclk unit, RGB_SHIFT shared register aids this function in High-color TFT-LCD with 8 bits data bus mode.
		HSYNC _SHIFT = 0 : hsync will not move
		HSYNC _SHIFT = 1 : hsync will left move 1 pclk cycle
		HSYNC _SHIFT = 2 : hsync will left move 2 pclk cycle
		HSYNC _SHIFT = 3 : hsync will left move 3 pclk cycle
		407 Publication Release Date: Jun. 18, 2010

Bits	Descriptions					
[26:16]	HSYNC_E[10:0]	CRTC Horizontal Sync End Timing An 11-bits value programmed in pixels, at which the Horizontal Sync Signal becomes inactive				
[10:0]	HSYNC_S[10:0]	CRTC Horizontal Sync Start Timing An 11-bits value programmed in pixels, at which the Horizontal Sync signal becomes active				

Publication Release Date: Jun. 18, 2010

CRTC Internal Vertical Retrace Timing Register (CRTC_VR)

The vertical retrace timing can be controlled by properly setting the values of starting (VRS) and ending (VRE) registers included in this register. The values are programmed in numbers of scan-line.

Register	Address	R/W	Description	Reset Value
CRTC_VR	0xB000_8020	R/W	CRTC Internal Vertical Retrace Timing	0x0000_0000

31	30	29	28	27	26	25	24
Reserved					VRE[10:8]		
23	22	21	20	19	18	17	16
			VRE	[7:0]			
15	14	13	12	11	10	9	8
		Reserved				VRS[10:8]	
7 6 5 4 3 2 1 0					0		
VRS[7:0]							

Bits	Descriptions	
[26:16]	VRE[10:0]	CRTC Vertical Internal Retrace End Low An 11-bits value is programmed in number of scan line, at which the internal vertical retrace becomes inactive.
[10:0]	VRS[10:0]	CRTC Vertical Internal Retrace Start Timing An 11-bits value is programmed in number of scan line, at which the internal vertical retrace becomes active

Image Stream Frame Buffer-0 Starting Address (VA_BADDR0)

The value of this register represents the starting memory address of the frame buffer-0 for Image data stream.

Register	Address	R/W	Description	Reset Value
VA_BADDR0	0xB000_8024	R/W	Image Stream Frame Buffer-0 Starting Address	0x0000_0000

31	30	29	28	27	26	25	24	
	VA_BADDR0[31:24]							
23	22	21	20	19	18	17	16	
			VA_BADD	R0[23:16]				
15	14	13	12	11	10	9	8	
			VA_BADD	R0[15:8]				
7	6	5	4	3	2	1	0	
	VA_BADDR0[7:0]							

Bits	Descriptions	
[31:0]	VA_BADDR0[31:0]	Starting memory address of the frame buffer-0 for Image data stream The value of this register represents the starting memory address of the frame buffer-0 for Image data stream.

Publication Release Date: Jun. 18, 2010

Image Stream Frame Buffer-1 Starting Address (VA_BADDR1)

The value of this register represents the starting memory address of the frame buffer-1 for Image data stream.

Register	Address	R/W	Description	Reset Value
VA_BADDR1	0xB000_8028	R/W	Image Stream Frame Buffer-1 Starting Address	0x0000_0000

31	30	29	28	27	26	25	24	
	VA_BADDR1[31:24]							
23	22	21	20	19	18	17	16	
			VA_BADD	R1[23:16]				
15	14	13	12	11	10	9	8	
			VA_BADE	R1[15:8]				
7	6	5	4	3	2	1	0	
VA_BADDR1[7:0]								

Bits	Descriptions	
[31:0]	VA_BADDR1[31:0]	Starting memory address of the frame buffer-1 for Image data stream The value of this register represents the starting memory address of the frame buffer-1 for Image data stream.

Publication Release Date: Jun. 18, 2010

Image Stream Frame Buffer Control Register (VA_FBCTRL)

The information contained in this register is used to efficiently control the frame buffer operation. The VA_STRIDE shows the word offset of memory address between two vertically adjacent lines. The VA_FF specifies the number of WORD SDRAM access cycle for a horizontal scan line fetching. The data buffer FIFO is divided into two or four regions depending on the value of the IO_REGION_HALF. If IO_REGION_HALF is not asserted, there are four regions of 8 words each. If IO_REGION_HALF is asserted, there are two regions of 16 words each. The size of the region affects the AHB burst transfer size. There are two pointers into the FIFO: one for the display engine data and one for the AHB data. These pointers are maintained in the Data Buffer Control module. When the pointers are not in the same region, an AHB burst cycle is issued to read or write the data in the region pointed to by the AHB pointer.

Register	Address	R/W	Description	Reset Value
VA_FBCTRL	0xB000_802C	R/W	Image Stream Frame Buffer Control	0x0000_0000

31	30	29	28	27	26	25	24
DB_EN	START_BUF	FIELD_DUAL	IO_REGION_HALF	Reserved	V	A_FF[10:8	3]
23	22	21	20	19	18	17	16
	VA_FF[7:0]						
15	14	13	12	11	10	9	8
		Reserved			VA_	STRIDE[1	0:8]
7	6	5	4	3	2	1	0
	VA_STRIDE[7:0]						

Bits	Descriptions	
		Dual Buffer Switch Enable
		0 = Dual buffer switch disable, Always fetch data from address which START_BUF indicated
[31] DB_EN	DB_EN	1 = Dual buffer switch enable. Switch starting address between VA_BADDR0 and VA_BADDR1 at each frame/field starts (controlled by FIELD_DUAL). The first display frame/field address is controlled by START_BUF.
		Starting Buffer of Dual-buffer
[30]	START_BUF	0 = Starting fetch data from VA_BADDR0
		1 = Starting fetch data from VA_BADDR1

412

Publication Release Date: Jun. 18, 2010

Bits	Descriptions					
[29]	FIELD_DUAL	Dual-buffer Switch Control 0 = Switch dual-buffer before each frame starts 1 = Switch dual-buffer before each field starts				
[28]	IO_REGION_HALF	Data Buffer Region Size 0 = 8 words/region 1 = 16 words/region Note: Both VA and OSD FIFO are controlled by this bit.				
[26:16]	VA_FF[10:0]	Image Stream Fetch Finish An 11-bits value specifies the number of WORD SDRAM access cycle for a horizontal scan line fetching of Image data stream.				
[10:0]	VA_STRIDE[10:0]	Image Stream Frame Buffer Stride An 11-bits value specifies the word offset of memory address of vertically adjacent line for Image stream.				

Image Stream Scaling Control Register (VA_SCALE)

This register control the Image up-scaling factors, both horizontal and vertical up-scaling ratios are ranging from 1.0 to 7.99999 in fractional steps. There are two modes of horizontal up-scaling, interpolation and duplication, which can be controlled by setting XCOPY.

Register	Address	R/W	Description	Reset Value
VA_SCALE	0xB000_8030	R/W	CRTC Display Size	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved				VA_SCALE_V[12:8]					
23	22	21	20	19	18	17	16		
	VA_SCALE_V[7:0]								
15	14	13	12	11	10	9	8		
	Reserved			VA_SCALE_H[12:8]					
7	6	5	4	3	2	1	0		
VA_SCALE_H[7:0]									

Bits	Descriptions	
[28:16]	VA_SCALE_V[12:0]	Image Vertical Scaling Control A 13-bits value specifies the vertical scaling factor of 1.0~7.99999. Bits 12-10 specify the integral part and bits 9-0 specifies the decimal part of the scaling factor.
[15]	ХСОРҮ	Image Stream Horizontal Up-scaling Mode 0 = Interpolation 1 = Duplication
[12:0]	VA_SCALE_H[12:0]	Image Horizontal Scaling Control A 13-bits value specifies the horizontal scaling factor of 1.0~7.99999. Bit 12-10 specifies the integral part and bits 9-0 specifies the decimal part of the scaling factor.

Image Stream Active Window Coordinates (VA_WIN)

This pair of registers (VA_WYS, VA_WYE) specifies the area which Image stream will occupy in the screen. It is called Active window for Vide Stream. The pixels outside the active window will be filled with the color specified by VA_STUFF. When the value of VA_WYE is greater than CRTC_DEND [VDEN], the Active window will be actually ended at CRTC_DEND [VDEN],

Register	Address	R/W	Description	Reset Value
VA_WIN	0xB000_8038	R/W	Image Stream Active Window Coordinates	0x0001_07FF

31	30	29	28	27	26	25	24		
		Reserved			VA_WYS[10:8]				
23	22	21	20	19	18	17	16		
	VA_WYS[7:0]								
15	14	13	12	11	10	9	8		
		Reserved			VA_WYE [10:8]				
7	6	5	4	3	2	1	0		
	VA_WYE[7:0]								

Bits	Descriptions	
[26:16]	VA_WYS[10:0]	VA Active Window Y-Start An 11-bit s value specifies the vertical starting scan line of the Active VA window
[10:0]	VA_WYE[10:0]	VA Active Window Y-End An 11-bit value specifies the last vertical scan line of the Active VA window.

Publication Release Date: Jun. 18, 2010

Image Stream Stuff Register (VA_STUFF)

A 24-bit value specifies stuff pattern for non-active window area in Image Stream.

Register	Address	R/W	Description	Reset Value
VA_STUFF	0xB000_8054	R/W	Image Stream Stuff Pixel for non-active area	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	VA_STUFF[23:16]									
15	14	13	12	11	10	9	8			
	VA_STUFF [15:8]									
7	6	5	4	3	2	1	0			
	VA_STUFF [7:0]									

Bits	Descriptions	
[23:16]	VA_STUFF [23:16]	The 8 higher-order bits are used for Y or R component according to the source color format
[15:8]	VA_STUFF [15:8]	The 8 middle-order bits are used for U or G component according to the source color format
[7:0]	VA_STUFF [7:0]	The 8 lower-order bits are used for V or B component according to the source color format

OSD Window Starting Coordinates Register (OSD_WINS)

The starting coordinates of the OSD window is specified in this register. Two values form the coordinates; they are the horizontal starting pixel (OSD_WXS) and the vertical starting scan line (OSD_WYS).

Register	Address R		Description	Reset Value
OSD_WINS	0xB000_8040	R/W	OSD Window Starting Coordinates Timing	0x0000_0000

31	30	29	28	27	26	25	24		
		Reserved			OSD_WYS[10:8]				
23	22	21	20	19	18	17	16		
	OSD_WYS[7:0]								
15	14	13	12	11	10	9	8		
		Reserved		OS	D_WXS [10	:8]			
7	6	5	4	3	2	1	0		
OSD_WXS[7:0]									

Bits	Descriptions	
[26:16]	OSD_WYS	OSD Window Y-Start An 11-bit s value specifies the vertical starting scan line of the OSD window
[10:0]	OSD_WXS	OSD Window X-Start An 11-bits value specifies the horizontal starting pixel position of the OSD window.

417

Publication Release Date: Jun. 18, 2010

OSD Window Ending Coordinates Register (OSD_WINE)

The ending coordinates of the OSD window is specified in this register. Two values form the coordinates; they are the last horizontal pixel (OSD_WXE) and the last vertical scan-line (OSD_WYS).

Register	Address	R/W	Description	Reset Value
OSD_WINE	0xB000_8044	R/W	OSD Window Ending Coordinates Timing	0x0000_0000

31	30	29	28	27	26	25	24		
		Reserved	OSD_WYE[10:8]						
23	22	21	20	19	18	17	16		
	OSD_WYE[7:0]								
15	14	13	12	11	10	9	8		
	Reserved OSD_WXE [10:8]								
7	6	5	4	3	2	1	0		
OSD_WXE[7:0]									

Bits	Descriptions	
[26:16]	OSD_WYE	OSD Window Y-End An 11-bit value specifies the last vertical scan line of the OSD window.
[10:0]	OSD_WXE	OSD Window X-End An 11-bits value specifies the last horizontal pixel position of the OSD window.

Publication Release Date: Jun. 18, 2010

OSD Stream Frame Buffer Starting Address (OSD_BADDR)

The value of this register represents the starting memory address of the frame buffer for OSD data stream.

Register	Address	R/W	Description	Reset Value
OSD_BADDR	0xB000_8048	R/W	OSD Stream Frame Buffer Starting Address	0x0000_0000

31	30	29	28	27	26	25	24			
OSD_BADDR [31:24]										
23	22	21	20	19	18	17	16			
	OSD _BADDR [23:16]									
15	14	13	12	11	10	9	8			
	OSD _BADDR [15:8]									
7	6	5	4	3	2	1	0			
	OSD _BADDR [7:0]									

Bits	Descriptions	
[31:0]	OSD_BADDR	Starting memory address of the frame buffer for OSD data stream The value of this register represents the starting memory address of the frame buffer for OSD data stream.

OSD Stream Frame Buffer Control Register (OSD_FBCTRL)

The information contained in this register is used to efficiently control the frame buffer operation. The OSD_STRIDE shows the word offset of memory address between two vertically adjacent lines. The OSD_FF specifies the number of WORD SDRAM access cycle for a horizontal scan line fetching.

Register	Address	R/W	Description	Reset Value
OSD_FBCTRL	0xB000_804C	R/W	OSD Stream Frame Buffer Control	0x0000_0000

31	30	29	28	27	26	25	24		
		Reserved	OSD_FF[10:8]						
23	22	21	20	19	18	17	16		
	OSD_FF[7:0]								
15	14	13	12	11	10	9	8		
	Reserved OSD _STRIDE[10:8]								
7	6	5	4	3	2	1	0		
	OSD _STRIDE[7:0]								

Bits	Descriptions	
[26:16]	OSD_FF	OSD Stream Fetch Finish An 11-bits value specifies the number of WORD SDRAM access cycle for a horizontal scan line fetching of OSD data stream.
[10:0]	OSD_STRIDE	OSD Stream Frame Buffer Stride An 11-bits value specifies the word offset of memory address of vertically adjacent line for OSD stream.

OSD Overlay Control Register (OSD_OVERLAY)

Setting this register can control the display effect of the overlay area. It can be periodic blanking, VA and OSD data mixing, and VA or OSD data alone.

Register	Address	R/W	Description	Reset Value	
OSD_OVERLA Y	0xB000_8050	R/W	OSD Overlay Control	0x0000_0000	

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	BLINK_VCNT[7:0]								
15	14	13	12	11	10	9	8		
Reserved							CKEY_ON		
7	6	5	4	3	2	1	0		
Reserved	VA_SYNW[2:0]			OCR1	[1:0]	OCRO	[1:0]		

Bits	Descriptions	
[23:16] BLINK_VCNT		OSD Blinking Cycle Time.
[23.10]	BLINK_VCIVI	An 8 bits value specifies the OSD blinking cycle time (unit: Vsync).
		OSD Blinking Control
		0 = Blinking Disable
[9] BLI_ON	BLI_ON	1 = Blinking Enable
		Note: Blinking control mode share the same color-key pattern registers with color-key control mode
		OSD Color-Key Control
[8]	CKEY_ON	0 = Color-Key Disable
		1 = Color-Key Enable
		Synthesis Image Weighting
[6:4]	VA_SYNW	000 = Synthesized Image = Image; otherwise,
		Synthesized Image=((Image \times VA_SYNW)+(OSD \times (8-VA_SYNW))) / 8

421

Publication Release Date: Jun. 18, 2010

Bits	Descriptions						
		Image/OSD Overlay Control 1					
		When (DCCS[WIN_EN:OSD_EN]==2'b11), (OSD_OVERLAY[CKEY_ON]==1), Display region within OSD window, color-key condition match,					
[3:2]	OCR1	00 = Display Image data					
		01 = Display OSD data					
		10 = Display synthesized (Image + OSD) data					
		11 = Reserved					
		Image/OSD Overlay Control 0					
	OCRO	When (DCCS[WIN_EN:OSD_EN]==2'b11), (OSD_OVERLAY[CKEY_ON]==1), Display region within OSD window, color-key condition un-match,					
[1:0]		00 = Display Image data					
		01 = Display OSD data					
		10 = Display synthesized (Image + OSD) data					
		11 = Reserved					

OSD Overlay Color-Key Pattern Register (OSD_CKEY)

A 24-bit value specifies OSD color-key pattern. When 24-bit OSD data is equal to the specified pattern data, the color-key condition is matched.

Register	Address	R/W	Description	Reset Value
OSD_CKEY	0xB000_8054	R/W	OSD Overlay Color-Key Pattern	0x0000_0000

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
	OSD_CKEY[23:16]										
15	14	13	12	11	10	9	8				
			OSD_CK	EY[15:8]							
7	6	5	4	3	2	1	0				
	OSD_CKEY[7:0]										

Bits	Descriptions	
[23:16]	OSD_CKEY	The 8 higher-order bits are used for OSD data comparing of Y or R component according to the source color format
[15:8]	OSD_CKEY	The 8 middle-order bits are used for OSD data comparing of U or G component according to the source color format
[7:0]	OSD_CKEY	The 8 lower-order bits are used for OSD data comparing of V or B component according to the source color format

OSD Overlay Color-Key Mask Register (OSD_CMASK)

A 24-bit value serves as the mask of OSD color-key pattern comparing. The OSD data only compare with the color-key pattern where the mask bits are set as 1.

Register	Address	R/W	Description	Reset Value
OSD_CKEY	0xB000_8058	R/W	OSD Overlay Color-Key Mask	0x0000_0000

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
			OSD_MAS	SK[23:16]							
15	14	13	12	11	10	9	8				
			OSD_ MA	SK [15:8]							
7	6	5	4	3	2	1	0				
			OSD_ MA	ASK [7:0]							

Bits	Descriptions	
[23:16]	OSD_CMASK	The 8 higher-order bits are used for pattern mask of Y or R component according to the source color format
[15:8]	OSD_CMASK	The 8 middle-order bits are used for pattern mask of U or G component according to the source color format
[7:0]	OSD_CMASK	The 8 lower-order bits are used for pattern mask of V or B component according to the source color format

OSD Window Skip1 Register (OSD_SKIP1)

This register is used to separate OSD into two sub-windows. The OSD-data fetching of lines enclosed by this skip region in OSD window is skipped. The value of starting-Y address (OSK_SKIP1_YS) can't be the same with OSD_WYS. The minimum value of it is OSD_WYS+1. In interlace mode, the minimum value of ending address (OSK_SKIP1_YE) is OSD_SKIP1_YS +1.

Register	Address	R/W	Description	Reset Value
OSD_SKIP1	0xB000_805C	R/W	OSD Window SKIP1 Y address	0x0000_0000

31	30	29	28	27	26	25	24	
		OSD_SKIP1_YS[10:8]						
23	22	21	20	19	18	17	16	
			OSD_SKII	P1_YS[7:0]				
15	14	13	12	11	10	9	8	
		Reserv	ed		OSD_	SKIP1_YE	[10:8]	
7	6	2	1	0				
	OSD_SKIP1_YE[7:0]							

Bits	Descriptions	
[26:16]	OSD_SKIP1_YS	OSD Window Skip1 Y-Start An 11-bit value specifies the first vertical scan line of the OSD skip1 window.
[10:0]	OSD_SKIP1_YE	OSD Window X-End An 11-bits value specifies the last vertical scan line of the OSD skip1 window.

OSD Window SKIP2 Register (OSD_SKIP2)

This register is used to separate OSD into two sub-windows. The OSD-data fetching of lines enclosed by this skip region in OSD window is skipped. The value of starting-Y address (OSK_SKIP2_YS) can't be the same with OSD_WYS. The minimum value of it is OSD_WYS+1. In interlace mode, the minimum value of ending address (OSK_SKIP2_YE) is OSD_SKIP2_YS +1.

Register	Address	R/W	Description	Reset Value
OSD_SKIP2	0xB000_8060	R/W	OSD Window SKIP2 Y address	0x0000_0000

31	30	29	28	27	26	25	24			
		OSD_SKIP2_YS[10:8]								
23	22	21	20	18	17	16				
	OSD_SKIP2_YS[7:0]									
15	14	13	12	11	10	9	8			
Reserved OSD_SKIP2_YE[1										
7 6 5 4 3 2 1 0										
	OSD_SKIP2_YE[7:0]									

Bits	Descriptions	
[26:16]	OSD_SKIP2_YS	OSD Window SKIP2 Y-Start An 11-bit value specifies the first vertical scan line of the OSD SKIP2 window.
[10:0]	OSD_SKIP2_YE	OSD Window X-End An 11-bits value specifies the last vertical scan line of the OSD SKIP2 window.

OSD Scaling Control Register (OSD_SCALE)

Register	Address	R/W	Description	Reset Value
OSD_SCALE	0xB000_8064	R/W	OSD Horizontal Up-Scaling Factor	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Rese	rved		OSD	_SCALE_H[1	2:8]				
7 6 5 4 3 2 1 0										
	OSD_SCALE_H[7:0]									

Bits	Descriptions					
[12:0]	OSD_SCALE_H	OSD Horizontal Up-Scaling Factor This register control the OSD up-scaling factor, the horizontal up-scaling ratios are ranging from 1.0 to 7.99999 in fractional steps. There is only one mode of horizontal up-scaling by duplication.				

MPU Vsync Control Register (MPU_VSYNC)

Register	Address	R/W	Description	Reset Value
MPU_VSYNC	0xB000_8068	R/W	MPU Vsync control register	0x0000_0000

This register controls the MPU Vsync output pin.

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved MPU_VSYNC_WIDTH				MPU_VSYNC_POL	MPU_FMARK	MPU_V_EN			

Bits	Descriptions	
[6:3]	MPU_VSYNC _WIDTH	MPU Vsync pulse width: 1 ~15 scanning line 1 - 15 : 1 (default) ~ 15
[2]	MPU_VSYNC _POL	MPU_Vsync polarity , when MPU_VSYNC [MPU_FMARK] = 0 0 = Low Active (default) 1 = High Active FMARK_POL (FMARK Polarity), when MPU_VSYNC[MPU_FMARK] = 1 0 = Low Active 1 = High Active
[1]	MPU_FMARK	MPU FMARK mode: 0: vsync output – output enable will be high, vsync output from VPOST. (default) 1: vsync input – output enable will be low, VPOST receive FMARK(vsync) from mpu device
[0]	MPU_V_EN	MPU Vsync functional enable 0: disable (default) 1: enable

428

Publication Release Date: Jun. 18, 2010

Hardware Cursor Control Register (HC_CTRL)

Register	Address	R/W	Description	Reset Value
HC_CTRL	0xB000_806C	R/W	Hardware cursor control register	0x0000_0000

This register is used to control the modes of hardware cursor. (HC_TIP_X, HC_TIP_Y) specifies which the cursor's tip is located at on hardware cursor block.

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
Rese	rved			HC_TIP_Y [5:0]				
15	14	13	12	11	10	9	8		
Rese	rved			HC_TIP_X [5:0]				
7	6	5	4	3	2	1	0		
Reserved					НС	_MODE[2:	0]		

Bits	Descriptions				
[26:16]	HC_TIP_Y	Y position of Hardware cursor picture's tip on hardware cursor bit map			
[10:0]	HC_TIP_X	X position of Hardware cursor picture's tip on hardware cursor bit map.			
		Hardware Cursor Mode setting:			
		0: 32x32x2bpp – 4 color mode			
		1: 32x32x2bpp – 3 color mode and transparency mode			
[2:0]	HC_MODE	2: 64x64x2bpp – 4 color mode			
		3: 64x64x2bpp – 3 color mode and transparency mode			
		4: 128x128x1bpp - 2 color mode			
		5: 128x128x1bpp - 1 color mode and transparency mode			

HC POSITION Register (HC_POS)

Register	Address	R/W	Description	Reset Value
HC_POSITION	0xB000_8070	R/W	Hardware cursor tip position control register	0x0000_0000

This register is used to control the position of hardware cursor coordinate on va picture. (HC_X, HC_Y) can be changed dynamically at by software setting.

31	30	29	28	27	26	25	24
Reserved				HC_Y[10:8]			
23	22	21	20	19	18	17	16
	HC_Y[7:0]						
15	14	13	12	11	10	9	8
Reserved				HC_X[10:8]			
7	6	5	4	3	2	1	0
HC_X [7:0]							

Bits	Descriptions	
[31:27]	Reserve	
[26:16]	HC_Y	Y position of hardware cursor's tip on va picture
[15:11]	Reserve	
[10:0]	HC_X	X position of hardware cursor's tip on va picture

Hardware Cursor block width and height depend on HC_CTRL [HC_MODE] setting.

 $HC_CTRL\ [HC_MODE] = 0, 1 => hardware\ cursor\ block\ width = hardware\ cursor\ block\ height= 32$

HC_CTRL [HC_MODE] = 2, 3 => hardware cursor block width = hardware cursor block height= 64

HC_CTRL [HC_MODE] = 4, 5 => hardware cursor block width = hardware cursor block height= 128

Publication Release Date: Jun. 18, 2010 Revision: A4

Hardware Cursor Window Buffer Control Register (HC_WBCTRL)

Register	Address	R/W	Description	Reset Value
HC_WBCTRL	0xB000_8074	R/W	Hardware Cursor Window Buffer Control	0x0000_0000

The information contained in this register is used to efficiently control the hardware cursor window buffer operation. The HC_STRIDE shows the word offset of memory address between two vertically adjacent lines. The VA_FF specifies the number of WORD SDRAM access cycle for a horizontal scan line fetching.

	•						
31	30	29	28	27	26	25	24
Reserved				HC_FF[10:8]			
23	22	21	20	19	18	17	16
HC_FF[7:0]							
15	14	13	12	11	10	9	8
Reserved				HC_	_STRIDE[10	D:8]	
7	6	5	4	3	2	1	0
HC_STRIDE[7:0]							

Bits	Descriptions	
[26:16]	HC_FF	Hardware cursor Fetch Finish A 11-bits value specifies the number of WORD SDRAM access cycle for a horizontal scan line fetching of Hardware cursor window
[10:0]	HC_STRIDE Hardware cursor Window Buffer Stride A 11-bits value specifies the word offset of memory add vertically adjacent line for Hardware cursor window	

HC BADDR Register (HC_BADDR)

Register	Address	R/W	Description Reset Value
HC_BADDR	0xB000_8078	R/W	Hardware cursor memory base address ox0000_0000 register

This register is used to control the starting memory address of the frame buffer for Hardware cursor data stream.

31	30	29	28	27	26	25	24
	HC_BADDR[31:24]						
23	22	21	20	19	18	17	16
			HC_BADI	DR[23:16]			
15	14	13	12	11	10	9	8
	HC_BADDR[15:8]						
7	6	5	4	3	2	1	0
HC_BADDR[7:0]							

Bits	Descriptions	
[31:0]	HC_BADDR	Starting memory address of the frame buffer for Hardware cursor data stream The value of this register represents the starting memory address of the
		frame buffer

HC Color RAM 0 Register (HC_COLOR0)

Register	Address	R/W	Description	Reset Value
HC_COLOR0	0xB000_807C	I K/VV	Hardware cursor color ram register mapped to bpp = 0	0x0000_0000

This register is used to control the color of hardware cursor according to bpp value 0.

31	30	29	28	27	26	25	24
			Reserve	d			
23	22	21	20	19	18	17	16
			HC_COLOR	0_R			
15	14	13	12	11	10	9	8
	HC_COLORO_G						
7	6	5	4	3	2	1	0
	HC_COLORO_B						

Bits	Descriptions	
[23:16]	HC_COLORO_R	Hardware cursor color 0 R
[15:8]	HC_COLORO_G	Hardware cursor color 0 G
[7:0]	HC_COLORO_B	Hardware cursor color 0 B

HC Color RAM 1 Register (HC_COLOR1)

Register	Address	R/W	Description	Reset Value
HC_COLOR1	0xB000_8080	I K/VV	Hardware cursor color ram register mapped to bpp = 1	0x0000_0000

This register is used to control the color of hardware cursor according to bpp value 1.

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	HC_COLOR1_R						
15	14	13	12	11	10	9	8
	HC_COLOR1_G						
7	6	5	4	3	2	1	0
	HC_COLOR1_B						

Bits	Descriptions	
[23:16]	HC_COLOR1_R	Hardware cursor color 1 R
[15:8]	HC_COLOR1_G	Hardware cursor color 1 G
[7:0]	HC_COLOR1_B	Hardware cursor color 1 B

HC Color RAM 2 Register (HC_COLOR2)

Register	Address	R/W	Description	Reset Value
HC_COLOR2	0xB000_8084	I K/VV	Hardware cursor color ram register mapped to bpp = 2	0x0000_0000

This register is used to control the color of hardware cursor according to bpp value 2.

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	HC_COLOR2_R							
15	14	13	12	11	10	9	8	
	HC_COLOR2_G							
7	6	5	4	3	2	1	0	
	HC_COLOR2_B							

Bits	Descriptions	
[23:16]	HC_COLOR2_B	Hardware cursor color 2 R
[15:8]	HC_COLOR2_G	Hardware cursor color 2 G
[7:0]	HC_COLOR2_R	Hardware cursor color 2 B

HC Color RAM 3 Register (HC_COLOR3)

Register	Address	R/W	Description	Reset Value
HC_COLOR3	0xB000_8088	I K/VV	Hardware cursor color ram register mapped to bpp = 3	0x0000_0000

This register is used to control the color of hardware cursor according to bpp value 3. When transparency is enabled, this color ram will be ignored.

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	HC_COLOR3_R						
15	14	13	12	11	10	9	8
	HC_COLOR3_G						
7	6	5	4	3	2	1	0
HC_COLOR3_B							

Bits	Descriptions	
[23:16]	HC_COLOR3_R	Hardware cursor color 3 R. When transparency is enabled, this color ram will be ignored.
[15:8]	HC_COLOR3_G	Hardware cursor color 3 G. When transparency is enabled, this color ram will be ignored.
[7:0]	HC_COLOR3_B	Hardware cursor color 3 B. When transparency is enabled, this color ram will be ignored.

437

7.11 Audio Controller

The audio controller consists of IIS/AC-link protocol to interface with external audio CODEC. One 8-level deep FIFO is for read path and write path, and each level has 32-bit width (16 bits for right channel and 16 bits for left channel). One DMA controller handles the data movement between FIFO and memory.

The following are the property of the DMA.

- Always 8-beat incrementing burst
- Always bus lock when 8-beat incrementing burst
- When reach middle and end address of destination address, a DMA_IRQ is requested to CPU automatically

7.11.1 IIS Interface

The 16 bits IIS and MSB-justified format are supported; the timing diagram is shown the following.

Publication Release Date: Jun. 18, 2010

The sampling rate, bit shift clock frequency could be set by the control register ACTL_IISCON.

7.11.2 AC97 Interface

The AC97 interface, called AC-link is supported. For input and output direction, each frame contains a Tag slot and 12 data slots. However, in the 12 data slots, only 4 slots are used in this chip, other 8 slots are not supported, and the control data and audio data are transferred in the 4 valid slots. Each slot contains 20 bits data.

AC97 Interface Signal Format

7.11.3 Audio Controller Register Map

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register	Address	R/W	Description	Reset Value
ACTL_BA = 0xB000_9	0000			
ACTL_CON	0xB000_9000	R/W	Audio control register	0x0000_0000
ACTL_RESET	0xB000_9004	R/W	Sub block reset control register	0x0000_0000
ACTL_RDSTB	0xB000_9008	R/W	DMA destination base address register for record	0x0000_0000
ACTL_RDST_LENGTH	0xB000_900C	R/W	DMA destination length register for record	0x0000_0000
ACTL_RDSTC	0xB000_9010	R	DMA destination current address register for record	0x0000_0000
ACTL_RSR	0xB000_9014	R/W	Record status register	0x0000_0000
ACTL_PDSTB	0xB000_9018	R/W	DMA destination base address register for play	0x0000_0000
ACTL_PDST_LENGTH	0xB000_901C	R/W	DMA destination length register for play	0x0000_0000

Publication Release Date: Jun. 18, 2010

Register	Address	R/W	Description	Reset Value
ACTL_PDSTC	0xB000_9020	R	DMA destination current address register for play	0x0000_0000
ACTL_PSR	0xB000_9024	R/W	Play status register	0x0000_0004
ACTL_IISCON	0xB000_9028	R/W	IIS control register	0x0000_0000
ACTL_ACCON	0xB000_902C	R/W	AC-link control register	0x0000_0000
ACTL_ACOSO	0xB000_9030	R/W	AC-link out slot 0	0x0000_0000
ACTL_ACOS1	0xB000_9034	R/W	AC-link out slot 1	0x0000_0080
ACTL_ACOS2	0xB000_9038	R/W	AC-link out slot 2	0x0000_0000
ACTL_ACISO	0xB000_903C	R	AC-link in slot 0	0x0000_0000
ACTL_ACIS1	0xB000_9040	R	AC-link in slot 1	0x0000_0000
ACTL_ACIS2	0xB000_9044	R	AC-link in slot 2	0x0000_0000
ACTL_COUNTER	0xB000_9048	R/W	DMA counter down values	0xFFFF_FFFF

Audio Control Register (ACTL_CON)

The ACTL_CON register control the basic operation of audio controller.

Register	Address	R/W	Description	Reset Value
ACTL_CON	0xB000_9000	R/W	Audio Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
Re	Reserved			T_DMA_IRQ	Res	erved	IIS_AC_PIN_SEL	
7	6	5	4	3	2	1	0	
FIFO_TH	Reserved		IRQ_DMA_c ounter_EN	IRQ_DMA_D ATA_zero_EN	BLOCK_	_EN[1:0]	Reserved	

Bits	Descriptions			
[12]	R_DMA_IRQ	Recording DMA Interrupt Request Bit. When recording, when the DMA destination current address reach the DMA destination end address or middle address, the R_DMA_IRQ bit will be set to 1 automatically, and this bit could be cleared to 0 by CPU. The bit is hardwired to ARM as interrupt request signal with an inverter.		
		The R_DMA_IRQ bit is read/write (write 1 to clear)		
[11]	T_DMA_IRQ	Transmit DMA Interrupt Request Bit. When DMA current address reach the middle address (((ACTL_DESE - ACTL_DESB)-1)/2 + ACTL_DESB) or reach the end address ACTL_DESB, the bit T_DMA_IRQ will be set to 1, and this bit could be clear to 0 by write "1" by CPU. And the bit is hardwired to ARM as interrupt request signal with an inverter. The T_DMA_IRQ bit is read/write (write 1 to clear).		

Bits	Descriptions				
		IIS or AC-link Pin Selection			
F01	IIS_AC_PIN_SEL	If IIS_AC_PIN_SEL = 0, the pins select IIS			
[8]	[0] IIO_AO_FIN_SEE	If IIS_AC_PIN_SEL = 1, the pins select AC-link			
		The IIS_AC_PIN_SEL bit is read/write			
	71 F150 TU	FIFO Threshold Control Bit			
[7]		If FIFO_TH=0, the FIFO threshold is 8 level			
[7]	FIFO_TH	If FIFO_TH=1, the FIFO threshold is 4 level			
		The FIFO_TH bit is read/write			
		IRQ_DMA counter function enable Bit			
F 43	IRQ_DMA_counter_EN	If IRQ_DMA_counter_EN=0, not allowed to generation T_DMA_IRQ			
[4]		If IRQ_DMA_counter_EN =1, allowed to generation T_DMA_IRQ			
		The IRQ_DMA_counter_EN bit is read/write			
		IRQ_DMA_DATA zero and sign detect enable bit			
[2]	IDO DMA DATA FN	If IRQ_DMA_DATA_zero_EN =0, not allowed to generation T_DMA_IRQ			
[3]	IRQ_DMA_DATA_zero_EN	If IRQ_DMA_DATA_zero_EN =1, allowed to generation T_DMA_IRQ			
		The IRQ_DMA_DATA_zero_EN bit is read/write			
		Audio Interface Type Selection			
[2.1]	DLOCK EN[1,0]	If BLOCK_EN[0]=0/1, IIS interface is disable/enable			
[2:1]	BLOCK_EN[1:0]	If BLOCK_EN[1]=0/1, AC-link interface is disable/enable			
		The BLOCK_EN[1:0] bits are read/write			

Sub-block Reset Control Register (ACTL_RESET)

The value of ACTL_RESET register controls the reset operation in each sub block.

Register	Address	R/W	Description	Reset Value
ACTL_RESET	0xB000_9004	R/W	Sub block reset control	0x0000_0000

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
	Reserved						ACTL_RESET
15	14	13	12	11	10	9	8
RECORI	D_SINGLE	PLAY_	SINGLE		Reserved		AC_RECORD
7	6	5	4	3	2	1	0
AC_PLAY	IIS_RECORD	IIS_PLAY	DMA_count er_EN	DMA_DATA _zero_EN	Reserved	AC_RESET	IIS_RESET

Bits		Descriptions				
		Audio Controller Reset Control Bit				
[4.6]	4 OT! DEGET	If ACTL_RESET = 1, the whole audio controller is reset				
[16]	ACTL_RESET	If $ACTL_RESET = 0$, the audio controller is normal operation				
		The ACTL_RESET bit is read/write				
		Record Single/Dual Channel Select Bits				
	RECORD_SINGLE	If RECORD_SINGLE[1:0]=11, the record is dual channel				
		If RECORD_SINGLE[1:0]=01, the record only select left channel				
[15:14]		If RECORD_SINGLE[1:0]=10, the record only select right channel				
[RECORD_SINGLE[1:0]=00 is reserved				
		Note that, when ADC is selected as record path, it only supported left channel record.				
		The PLAY_SINGLE[1:0] bits are read/write				

Bits		Descriptions
		Playback Single/Dual Channel Select Bits
		If PLAY_SINGLE[1:0]=11, the playback is in stereo mode
[13:12]	PLAY_SINGLE	If PLAY_SINGLE[1:0]=10, the playback is in mono mode
		PLAY_SINGLE[1:0]= 00 & 01 is reserved
		The PLAY_SINGLE[1:0] bits are read/write
		AC link Record Control Bit
[8]	AC DECODD	If AC_RECORD=0, the record path of AC link is disable
[8]	AC_RECORD	If AC_RECORD=1, the record path of AC link is enable
		The AC_RECORD bit is read/write
		AC link Playback Control Bit
[7]	[7] AC_PLAY	If AC_PLAY=0, the playback path of AC link is disable
[/]		If AC_PLAY=1, the playback path of AC link is enable
		The AC_PLAY bit is read/write
		IIS Record Control Bit
[6]	IIS_RECORD	If IIS_RECORD=0, the record path of IIS is disable
[0]	113_RECORD	If IIS_RECORD=1, the record path of IIS is enable
		The IIS_RECORD bit is read/write
		IIS Playback Control Bit
[5]	IIS_PLAY	If IIS_PLAY=0, the playback path of IIS is disable
[5]	II3_FLAT	If IIS_PLAY=1, the playback path of IIS is enable
		The IIS_PLAY bit is read/write
		DMA counter function enable Bit
[4]	DMA_counter_EN	If DMA_counter_EN=0, not enable DMA counter function
[.,]		If DMA_counter_EN =1, enable DMA counter function
		The DMA_counter_EN bit is read/write

Bits		Descriptions
		DMA_DATA zero and sign detect enable bit
[3]	DMA_DATA_zero_EN	If DMA_DATA_zero_EN =0, not enable DMA_DATA zero and sign detect function
	[3] DMA_DATA_zero_EN	If DMA_DATA_zero_EN =1, enable DMA_DATA zero and sign detect function
		The DMA_DATA_zero_EN bit is read/write
		AC link Sub Block RESET Control Bit
F4.7	AO DECET	If AC_RESET=0, release the AC link function block from reset mode
[1]	AC_RESET	If AC_RESET=1, force the AC link function block to reset mode
		The AC_RESET bit is read/write
		IIS Sub Block RESET Control Bit
F01	LLC DECET	If IIS_RESET=0, release the IIS function block from reset mode
[0]	IIS_RESET	If IIS_RESET=1, force the IIS function block to reset mode
		The IIS_RESET bit is read/write

DMA Record Destination Base Address (ACTL_RDSTB)

The value in ACTL_RDSTB register is the record destination base address of DMA, and only could be changed by CPU.

Register	Address	R/W	Description	Reset Value
ACTL_RDSTB	0xB000_9008	R/W	DMA record destination base address	0x0000_0000

31	30	29	28	27	26	25	24		
	AUDIO_RDSTB[31:24]								
23	22	21	20	19	18	17	16		
	AUDIO_RDSTB[23:16]								
15	14	13	12	11	10	9	8		
	AUDIO_RDSTB[15:8]								
7	7 6 5 4 3 2 1 0								
	AUDIO_RDSTB[7:0]								

Bits	Descriptions				
[21,0]	[31:0] AUDIO_RDSTB	32-bit Record Destination Base Address			
[31:0]		The AUDIO_RDSTB [31:0] bits are read/write.			

DMA Destination End Address (ACTL_RDST_LENGTH)

The value in ACTL_RDST_LENGTH register is the record destination address length of DMA, and the register could only be changed by CPU.

Register	Address	R/W	Description	Reset Value
ACTL_RDST_LENGTH	0xB000_900C	R/W	DMA record destination address length	0x0000_0000

31	30	29	28	27	26	25	24		
	AUDIO_RDST_L[31:24]								
23	22	21	20	19	18	17	16		
	AUDIO_RDST_L[23:16]								
15	14	13	12	11	10	9	8		
	AUDIO_RDST_L[15:8]								
7	7 6 5 4 3 2 1 0								
		AL	JDIO_RDST	_L[7:0]					

Bits	Descriptions				
[21,0]	[31:0] AUDIO_RDST_L	32-bit Record Destination Address Length			
[31:0]		The AUDIO_RDST_L [31:0] bits are read/write.			

DMA Destination Current Address (ACTL_RDSTC)

The value in ACTL_RDSTC is the DMA record destination current address; this register could only be read by CPU.

Register	Address	R/W	Description	Reset Value
ACTL_RDSTC	0xB000_9010	R	DMA record destination current address	0x0000_0000

31	30	29	28	27	26	25	24		
	AUDIO_RDSTC[31:24]								
23	22	21	20	19	18	17	16		
	AUDIO_RDSTC[23:16]								
15	14	13	12	11	10	9	8		
	AUDIO_RDSTC[15:8]								
7	7 6 5 4 3 2 1 0								
		Α	UDIO_RDS	ΓC[7:0]					

Bits		Descriptions				
[21.0]	AUDIO DOSTO	32-bit Record Destination Current Address				
[31:0]	[31:0] AUDIO_RDSTC	The AUDIO_RDSTC [31:0] bits are read only.				

Audio Controller Record Status Register (ACTL_RSR)

Register	Address	R/W	Description	Reset Value
ACTL_RSR	0xB000_9014	R/W	Audio controller FIFO and DMA status register for record	0x0000_0000

31	30	29	28	27	26	25	24
RESERVED							
23	22	21	20	19	18	17	16
RESERVED							
15	14	13	12	11	10	9	8
RESERVED							
7	6	5	4	3	2	1	0
RESERVED					R_FIFO_FULL	R_DMA_END_I RQ	R_DMA_MIDDLE_I RQ

Bits		Descriptions				
		Record FIFO Full Indicator Bit				
[2]	D 5150 51111	If R_FIFO_FULL=0, the record FIFO not full				
[2]	R_FIFO_FULL	If R_FIFO_FULL=1, the record FIFO is full				
		The R_FIFO_READY bit is read only				
		DMA End Address Interrupt Request Bit for Record				
		If R_DMA_END_IRQ=0, means record DMA address does not reach the end address				
[1]	R_DMA_END_IRQ	If R_DMA_END_IRQ=1, means record DMA address reach the end address				
		The R_DMA_END_IRQ bit is readable, and only can be clear by write "1" to this bit				

Bits	Descriptions				
		DMA Address Interrupt Request Bit for Record			
		If R_DMA_MIDDLE_IRQ=0, means record DMA address does not reach the middle address			
[0]	R_DMA_MIDDLE_IRQ	If R_DMA_MIDDLE_IRQ=1, means record DMA address reach the middle address			
		The R_DMA_MIDDLE_IRQ bit is readable, and only can be clear by write "1" to this bit			

DMA Play Destination Base Address (ACTL_PDSTB)

The value in ACTL_PDSTB register is the play destination base address of DMA, and only could be changed by CPU.

Register	Address	R/W	Description	Reset Value
ACTL_PDSTB	0xB000_9018	R/W	DMA play destination base address	0x0000_0000

31	30	29	28	27	26	25	24	
	AUDIO_PDSTB[31:24]							
23	22	21	20	19	18	17	16	
	AUDIO_PDSTB[23:16]							
15	14	13	12	11	10	9	8	
AUDIO_PDSTB[15:8]								
7	6	5	4	3	2	1	0	
	AUDIO_PDSTB[7:0]							

Bits	Descriptions			
[21,0]	AUDIO DDSTD	32-bit Play Destination Base Address		
[31:0]	AUDIO_PDSTB	The AUDIO_PDSTB [31:0] bits are read/write.		

DMA Destination End Address (ACTL_PDST_LENGTH)

The value in ACTL_PDST_LENGTH register is the play destination address length of DMA, and the register could only be changed by CPU.

Register	Address	R/W	Description	Reset Value
ACTL_PDST_LENGTH	0xB000_901C	R/W	DMA play destination address length	0x0000_0000

31	30	29	28	27	26	25	24	
	AUDIO_PDST_L[31:24]							
23	22	21	20	19	18	17	16	
	AUDIO_PDST_L[23:16]							
15	14	13	12	11	10	9	8	
AUDIO_PDST_L[15:8]								
7	6	5	4	3	2	1	0	
	AUDIO_PDST_L[7:0]							

	Bits	Descriptions			
	[31:0] AUDIO_PDST	AUDIO DDET I	32-bit Play Destination Address Length		
		AUDIO_PDST_L	The AUDIO_PDST_L [31:0] bits are read/write.		

DMA Destination Current Address (ACTL_PDSTC)

The value in ACTL_PDSTC is the DMA play destination current address; this register could only be read by CPU.

Register	Address	R/W	Description	Reset Value
ACTL_PDSTC	0xB000_9020	R	DMA play destination current address	0x0000_0000

31	30	29	28	27	26	25	24	
	AUDIO_PDSTC[31:24]							
23	22	21	20	19	18	17	16	
	AUDIO_PDSTC[23:16]							
15	14	13	12	11	10	9	8	
	AUDIO_PDSTC[15:8]							
7	6	5	4	3	2	1	0	
	AUDIO_PDSTC[7:0]							

Bits	Descriptions			
[21.0]	1:0] AUDIO_PDSTC	32-bit Play Destination Current Address		
[31:0]		The AUDIO_PDSTC [31:0] bits are read/write.		

Audio Controller Playback Status Register (ACTL_PSR)

Register	Address	R/W	Description	Reset Value
ACTL_PSR	0xB000_9024	R/W	Audio controller FIFO and DMA status register for playback	0x0000_0004

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
				RESERV	ED				
15	14	13	12	11	10	9	8		
				RESERV	ED				
7	6	5	4	3	2	1	0		
			DMA_cou nter_IRQ	DMA_D ATA_zer o_IRQ	P_FIFO_EMP TY	P_DMA_END _IRQ	P_DMA_MID DLE_IRQ		

Bits		Descriptions
		DMA counter IRQ
		If DMA_counter_IRQ=0, not found DMA_counter to zero
[4]	4] DMA_counter_IRQ	If DMA_counter_IRQ =1, DMA_COUNTER counter down to zero
		The DMA_counter_IRQ bit is readable ,
		and only can be clear by write "1" to clear this bit
		DMA_DATA zero IRQ
		If DMA_DATA_zero_IRQ =0, not found DMA DATA is zero or sign change(two channel)
[3]	DMA_DATA_zero_IRQ	If DMA_DATA_zero_IRQ =1, found DMA DATA is zero or sign change (two channel)
		The DMA_DATA_zero_IRQ bit is readable ,
		and only can be clear by write "1" to clear this bit
		Playback FIFO Empty Indicator Bit
[2]	D FLEO FMDTV	If P_FIFO_EMPTY=0, the playback FIFO is not empty
[2]	P_FIFO_EMPTY	If P_FIFO_EMPTY=1, the playback FIFO is empty
		The P_FIFO_EMPTY bit is read only

455

Publication Release Date: Jun. 18, 2010

Bits		Descriptions							
	[1] P_DMA_END_IRQ	DMA End Address Interrupt Request Bit for Playback							
		If P_DMA_END_IRQ=0, means playback DMA address does not reach the end address							
[1]		If P_DMA_END_IRQ=1, means playback DMA address reach the end address							
		The P_DMA_END_IRQ bit is readable, and only can be clear by write "1" to this bit							
		DMA Address Interrupt Request Bit for Playback							
		If P_DMA_MIDDLE_IRQ=0, means playback DMA address does not reach the middle address							
[0]	[0] P_DMA_MIDDLE_IRQ	If P_DMA_MIDDLE_IRQ=1, means playback DMA address reach the middle address							
		The P_DMA_MIDDLE_IRQ bit is readable, and only can be clear by write "1" to this bit							

Play (0xB000_9004;bit7,5)	DMA_DATA_zero_E N (0xB000_9004;bit 3)	DMA_DATA_zero_IR Q (0xB000_9024; bit 3)	
1	0	0	play
1	0	0	Play
1	1	0	Play
1	1	1	Play
			(output 0,DMA not stop)
0	0	0	stop
0	0	0	Stop
0	1	0	Play
0	1	1	Stop
			(DMA stop and output 0 after output data is zero)

IIS Control Register (ACTL_IISCON)

Register	Address	R/W	Description	Reset Value
ACTL_IISCON	0xB000_9028	R/W	IIS control register	0x0000_0000

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	PRS[3:0]								
15	14	13	12	11	10	9	8		
			RESERV	/ED					
7	6	5	4	3	2	1	0		
BCLK_S	BCLK_SEL[1:0] FS_SEL MCLK_SEL					RESERVE	.D		

Bits Descriptions	
-------------------	--

Bits		Descriptions
		IIS Frequency Pre-scalar Selection Bits.
		(FPLL is the Audio Frequency from PLL, IIS_SYSCLK is the output main clock)
		If PSR[3:0]=0000, IIS_SYSCLK=FPLL/1
		If PSR[3:0]=0001, IIS_SYSCLK=FPLL/2
		If PSR[3:0]=0010, IIS_SYSCLK=FPLL/3
		If PSR[3:0]=0011, IIS_SYSCLK=FPLL/4
		If PSR[3:0]=0100, IIS_SYSCLK=FPLL/5
		If PSR[3:0]=0101, IIS_SYSCLK=FPLL/6
		If PSR[3:0]=0110, IIS_SYSCLK=FPLL/7
		If PSR[3:0]=0111, IIS_SYSCLK=FPLL/8
[19·16]	[19:16] PRS	If PSR[3:0]=1000, reserved
[13,10]		If PSR[3:0]=1001, IIS_SYSCLK=FPLL/10
		If PSR[3:0]=1010, reserved
		If PSR[3:0]=1011, IIS_SYSCLK=FPLL/12
		If PSR[3:0]=1100, reserved
		If PSR[3:0]=1101, IIS_SYSCLK=FPLL/14
		If PSR[3:0]=1110, reserved
		If PSR[3:0]=1111, IIS_SYSCLK=FPLL/16
		(when the division factor is $3/5/7$, the duty cycle of MCLK is not 50% , the high duration is $0.5*FPLL$)
		The PSR[3:0] bits are read/write
		IIS Serial Data Clock Frequency Selection Bit
		If BCLK_SEL[1:0]=00, the frequency of bit clock (BCLK) is IIS_SYSCLK/8,
[7:6]	BCLK_SEL	If BCLK_SEL [1:0] =01, the frequency of bit clock (BCLK) is IIS_SYSCLKK/12.
		The BCLK_SEL[1:0] bits are read/write

Bits		Descriptions								
[5]	FS_SEL	If BCLK_SEL frequency If BCLK_SEL frequency If BCLK_SEL frequency (fs is sampling)	IIS_SYSCLK Sample Rate Sample Freq. BCLK_SEL FS_SEL							
		16.934MHz	32fs	44.1KHz	01	0				
[4]	MCLK_SE L	IIS_SYSCLK Output Selection Bit If MCLK_SEL=0, IIS_SYSCLK output will follow the PRS [3:0] setting. If MCLK_SEL=1, IIS_SYSCLK output will be the same with FPLL. The MCLK_SEL bit is read/write								
[3]	FORMAT	If FORMAT=0 If FORMAT=1	IIS Format Selection Bits If FORMAT=0, IIS compatible format is selected If FORMAT=1, MSB-justified format is selected The FORMAT bit is read/write							

AC-link Control Register (ACTL_ACCON)

Register	Address	R/W	Description	Reset Value
ACTL_ACCON	0xB000_902C	R/W	AC-link control register	0x0000_0000

0.1	00	00	00	07	0.1	0.5	0.4				
31	30	29	28	27	26	25	24				
	RESERVED										
23	22	21	20	19	18	17	16				
	RESERVED										
15	14	13	12	11	10	9	8				
	RESERVED										
7	6	5	4	3	2	1	0				
RESE	RVED	AC_BCLK_P U_EN	AC_R_FINI SH	AC_W_FINI SH	AC_W_RES	AC_C_RES	RESERVED				

Bits		Descriptions						
		AC_BCLK Pin Pull-high Resister Enable						
[F]	AC_BCLK_PU_E	If AC_BCLK_PU_EN=0, the AC_BCLK pin pull-high resister will be disabled						
[5]	N	If AC_BCLK_PU_EN=1, the AC_BCLK pin pull-high resister will be enabled						
		The AC_BCLK_PU_EN bit is read/write.						
		AC-link Read Data Ready Bit.						
[4]	AC_R_FINISH	When read data indexed by previous frame is shifted into ACTL_ACIS2, the AC_R_FINISH bit will be set to 1 automatically. After CPU read out the read data, AC_R_FINISH bit will be cleared to 0.						
[4]	AC_R_FINISH	If AC_R_FINISH=0, read data buffer has been read by CPU						
		If AC_R_FINISH=1, read data buffer is ready for CPU read						
		The AC_R_FINISH bit is read only						

460

Publication Release Date: Jun. 18, 2010

Bits		Descriptions			
		AC-link Write Frame Finish Bit.			
		When writing data to register ACTL_ACOS0, the AC_W_FINISH bit will be set to 1 automatically. After AC-link interface shift out the register ACTL_ACOS0, the AC_W_FINISH bit will be cleared to 0.			
[3]	AC_W_FINISH	If AC_W_FINISH=0, AC-link control data out buffer has been shifted out to codec by CPU and data out buffer is empty.			
		If AC_W_FINISH=1, AC-link control data out buffer is ready to be shifted out(After users have wrote data into register ACTL_ACOS0)			
		The AC_W_FINISH bit is read only			
		AC-link Warm Reset Control Bit			
[2]	AC_W_RES	When this bit is set to 1, (AC-link begin warn reset procedure, after warn reset procedure finished, this bit will be cleared automatically) the interface signal AC_SYNC is high, when this bit is set to 0, the interface signal AC_SYNC is controlled by AC_BCLK input when this bit is set to 1. Note the AC-link spec. shows it need at least 10 us high duration of AC_SYNC to warn reset AC97.			
		If AC_W_RES=0, AC_SYNC pin is controlled by AC_BCLK input pin			
		If AC_W_RES=1, AC_SYNC pin is forced to high			
		The AC_W_RES bit is read/write			
		AC-link Cold Reset Control Bit			
[1]	AC_C_RES	When this bit is set to 1, the interface signal AC_RESETB is low, when this bit is set to 0, the signal AC_RESETB is high. Note the AC-link spec. shows it need at least 10 us low duration of AC_RESETB to cold reset AC97.			
		If AC_C_RES=0, AC_RESETB pin is set to 1			
		If AC_C_RES=1, AC_RESETB pin is set to 0			
		The AC_C_RES bit is read/write			

461

AC-link output slot 0 (ACTL_ACOS0)

The ACTL_ACOS0 register store the slot 0 value to be shift out by AC-link. Note that write data to ACTL_ACOS0 register when AC_W_FINISH bit (ACTL_ACCON [3]) set is invalid. Therefore, check AC_W_FINISH bit status before write data into ACTL_ACOS0 register.

Register	Register Address		Description	Reset Value
ACTL_ACOSO	0xB000_9030	R/W	AC-link out slot 0	0x0000_0000

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	RESERVED								
15	14	13	12	11	10	9	8		
	RESERVED								
7	6	5	4	3	2	1	0		
			VALID_ FRAME		SLOT_VA	LID[3:0]			

Bits	Descriptions				
		Frame Valid Indicated Bits			
[4]	[4] VALID_FRAME	VALID_FRAME=1, any one of slot is valid			
[4]		VALID_FRAME=0, no any slot is valid			
		The VALID_FRAME bits are read/write			
		Slot Valid Indicated Bits			
		SLOT_VALID[0]= 1/0, indicate Slot 1 valid/invalid			
F2 01	a. a	SLOT_VALID[1]= 1/0, indicate Slot 2 valid/invalid			
[3:0]	SLOT_VALID[3:0]	SLOT_VALID[2]= 1/0, indicate Slot 3 valid/invalid			
		SLOT_VALID[3]= 1/0, indicate Slot 4 valid/invalid			
		The SLOT_VALID[3:0] bits are read/write			

Publication Release Date: Jun. 18, 2010

The AC-link output slot 1 (ACTL_ACOS1)

The ACTL_ACOS1 register store the slot 1 value to be shift out by AC-link.

Register	Register Address		Description	Reset Value
ACTL_ACOS1	0xB000_9034	R/W	AC-link out slot 1	0x0000_0080

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	RESERVED								
15	14	13	12	11	10	9	8		
	RESERVED								
7	6	5	4	3	2	1	0		
R_WB	R_INDEx[6:0]								

Bits	Descriptions					
		Read/Write Select Bit				
[7]	D 14/D	If R_WB=1, a read specified by R_INDEx[6:0] will occur, and the data will appear in next frame				
[7]	[7] R_WB	If R_WB=0, a write specified by R_INDEx[6:0] will occur, and the write data is put at out slot 2				
		The R_WB bit is read/write				
[6:0]	R_INDEx[6:0]	External AC97 CODEC Control Register Index (address) Bits The R_INDEx[6:0] bits are read/write				

AC-link output slot 2 (ACTL_ACOS2)

The ACTL_ACOS2 register store the slot 2 value to be shift out by AC-link.

Register	Register Address R/W		Description	Reset Value
ACTL_ACOS2	0xB000_9038	R/W	AC-link out slot 2	0x0000_0000

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	RESERVED								
15	14	13	12	11	10	9	8		
	WD[15:8]								
7	6	5	4	3	2	1	0		
			WD[7	:0]					

Bits	Descriptions					
[15:0]	WD[15:0]	AC-link Write Data The WD[15:0] bits are read/write				

AC-link input slot 0 (ACTL_ACISO)

The ACTL_ACISO store the shift in slot 0 data of AC-link.

Register	Address	R/W	Description	Reset Value
ACTL_ACISO	ACTL_ACISO 0xB000_903C R		AC-link in slot 0	0x0000_0000

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	RESERVED								
15	14	13	12	11	10	9	8		
	RESERVED								
7	6	5	4	3	2	1	0		
RESERVED CODEC_READ					SLOT_VA	LID[3:0]			

Bits	Descriptions					
		External AC97 Audio CODEC Ready Bit				
[4]	CODEC_READY	If CODEC_READY=0, indicate external AC97 audio CODEC is not ready				
		If CODEC_READY=1, indicate external AC97 audio CODEC is ready				
		The CODEC_READY bit is read only				
		Slot Valid Indicated Bits				
		SLOT_VALID[0]= 1/0, indicate Slot 1 valid/invalid				
[2.0]	CLOT VALIDIO O	SLOT_VALID[1]= 1/0, indicate Slot 2 valid/invalid				
[3:0]	SLOT_VALID[3:0]	SLOT_VALID[2]= 1/0, indicate Slot 3 valid/invalid				
		SLOT_VALID[3]= 1/0, indicate Slot 4 valid/invalid				
		The SLOT_VALID[3:0] bits are read				

AC-link input slot 1 (ACTL_ACIS1)

Register	Address	R/W	Description	Reset Value
ACTL_ACIS1	0xB000_9040	R	AC-link in slot 1	0x0000_0000

The ACTL_ACIS1 stores the shift in slot 1 data of AC-link.

31	30	29	28	27	26	25	24
			RESI	ERVED			
23	22	21	20	19	18	17	16
	RESERVED						
15	14	13	12	11	10	9	8
	RESERVED						R_INDEx[6]
7	6	5	5 4 3 2 1				
	R_INDEx[5:0]						REQ[1:0]

Bits		Descriptions						
		Register Index.						
[8:2]	R_INDEx[6:0]	The R_INDEx [6:0] echo the register index (address) when a register read has been requested in the previous frame.						
		The R_INDEx[6:0] bits are read only						
		Slot Request.						
		The bits indicate if the external codec need new PCM data that will transfer in next frame.						
[1:0]	SLOT_REQ[1:0]	Any bit in SLOT_REQ[1:0] is set to 1, indicate external codec does not need a new sample in the corresponding slot[3:4] of the next frame						
		Any SLOT_REQ[1:0] is clear to 0, indicate external codec need a new sample in the corresponding slot[3:4] of the next frame						
		The SLOT_REQ[1:0] bits are read only						

Publication Release Date: Jun. 18, 2010

AC-link input slot 2 (ACTL_ACIS2)

The ACTL_ACIS2 stores the shift in slot 2 data of AC-link.

Register	Address	R/W	Description	Reset Value
ACTL_ACIS2	0xB000_9044	R	AC-link in slot 2	0x0000_0000

31	30	29	28	27	26	25	24
			RESER	VED			
23	22	21	20	19	18	17	16
	RESERVED						
15	14	13	12	11	10	9	8
	RD[15:8]						
7	6	5	4	3	2	1	0
	RD[7:0]						

Bits	Descriptions			
[15:0]	RD[15:0]	AC-link Read Data. The RD[15:0] bits are read only		

DOWN_COUNTER Control Register (ACTL_counter)

Register	Address	R/W	Description	Reset Value
ACTL_COUNTER	0xB000_9048	R/W	DMA down counter register	0xFFFF_FFFF

31	30	29	28	27	26	25	24
		A	CTL_COUNTE	ER[31:24]			
23	22	21	20	19	18	17	16
		A	CTL_COUNTE	R[23:16]			
15	14	13	12	11	10	9	8
	ACTL_COUNTER[15:8]						
7	6	5	4	3	2	1	0
	ACTL_COUNTER[7:0]						

Bits		Descriptions				
	ACTL_COUNTE	ACTL_COUNTER is Read and Write Data.				
[31:0]	R	The ACTL_COUNTER [31:0] bits are read and write, When the register is Zero that set DMA_counter_IRQ bit =1.				

7.12 2-D Graphic Engine

A 32-bit 2D Graphics Engine (2D GE) is specially designed to improve the performance of graphic processing. It can accelerate the operation of individual GUI functions such as BitBLTs and Bresenham Line Draw to operate at all pixel depths including 8/16/32 bit-per-pixel. A pixel is the smallest addressable screen element as defined in Microsoft Windows, and lines and pictures are made up by a variety of pixels. 2D GE is used to speed up graphic performance in pixel data moving and line drawing, as well as to accelerate almost all computer graphic Boolean operations by eliminating the CPU overhead. Meanwhile, the functions of rotation and scaling down are implemented for some special applications. In image scaling down function, both programmable horizontal and vertical N/M scaling down factors are provided for resizing the image. For the 2D rotation, it can rotate left or right 45, 90 or 180 degrees, and also supports the flip/flop, mirror or up-side-down pictures.

Publication Release Date: Jun. 18, 2010

7.12.1 2-D Graphic Engine Control Registers Map

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register	Address	R/W	Description	Reset Value
$GE_BA = 0xB000_$	B000			
2D_GETG	0xB000_B000	R/W	Graphic Engine Trigger Control Register	0x0000_0000
2D_GEXYSORG	0xB000_B004	R/W	Graphic Engine XY Mode Source Origin Starting Register	0x0000_0000
2D_TileXY_VHSF	0xB000_B008	R/W	Graphic Engine Tile Width/Height or V/H Scale Factor N/M	0x0000_0000
2D_GERRXY	0xB000_B00C	R/W	Graphic Engine Rotate Reference Point XY Address	0x0000_0000
2D_GEINTS	0xB000_B010	R/W	Graphic Engine Interrupt Status Register	0x0000_0000
2D_GEPLS	0xB000_B014	R/W	Graphic Engine Pattern Location Starting Address Register	0x0000_0000
2D_GEBER	0xB000_B018	R/W	GE Bresenham Error Term Stepping Constant Register	0x0000_0000
2D_GEBIR	0xB000_B01C	R/W	GE Bresenham Initial Error, Pixel Count Major M Register	0x0000_0000
2D_GEC	0xB000_B020	R/W	Graphic Engine Control Register	0x0000_0000
2D_GEBC	0xB000_B024	R/W	Graphic Engine Background Color Register	0x0000_0000
2D_GEFC	0xB000_B028	R/W	Graphic Engine Foreground Color Register	0x0000_0000
2D_GETC	0xB000_B02C	R/W	Graphic Engine Transparency Color Register	0x0000_0000
2D_GETCM	0xB000_B030	R/W	Graphic Engine Transparency Color Mask Register	0x0000_0000
2D_GEXYDORG	0xB000_B034	R/W	Graphic Engine XY Mode Display Origin Starting Register	0x0000_0000
2D_GESDP	0xB000_B038	R/W	Graphic Engine Source/Destination Pitch Register	0x0000_0000
2D_GESSXYL	0xB000_B03C	R/W	Graphic Engine Source Start XY/Linear Address Register	0x0000_0000
2D_GEDSXYL	0xB000_B040	R/W	Graphic Engine Destination Start XY/Linear Register	0x0000_0000
2D_GEDIXYL	0xB000_B044	R/W	Graphic Engine Dimension XY/Linear Register	0x0000_0000
2D_GECBTL	0xB000_B048	R/W	Graphic Engine Clipping Boundary Top/Left Register	0x0000_0000
2D_GECBBR	0xB000_B04C	R/W	Graphic Engine Clipping Boundary Bottom/Right Register	0x0000_0000
2D_GEPTNA	0xB000_B050	R/W	Graphic Engine Pattern A Register	0x0000_0000
2D_GEPTNB	0xB000_B054	R/W	Graphic Engine Pattern B Register	0x0000_0000
2D_GEWPM	0xB000_B058	R/W	Graphic Engine Write Plane Mask Register	0x0000_0000

469

Publication Release Date: Jun. 18, 2010

2D_GEMC 0xB000_B05C R/	Graphic Engine Miscellaneous Control Register	0x0000_0000
-------------------------------	---	-------------

7.12.2 2-D Graphic Engine Control Registers

Graphic Engine Trigger Control Register

Register	Address	R/W	Description	Reset Value
2D_GETG	0xB000_B000	R/W	Graphic Engine Trigger Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Reserve	d					
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
		Reserved							

Bits	Descriptio	Descriptions					
[0]	GO	Trigger Graphics Engine Acceleration 1 = Start GE acceleration, it will automatically be cleared when job completed. 0 = No acceleration or the acceleration is finished.					

Graphic Engine XY Mode Source Memory Origin Starting Address Register

Register	Address	R/W	Description	Reset Value
2D_GEXYSOR G	0xB000_B004	R/W	X/Y Addressing Mode Source Origin Starting Address	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved				X/Y Source Origin starting address				
23	22	21	20	19	18	17	16		
		X/Y Sour	ce Origin sta	rting addı	ess				
15	14	13	12	11	10	9	8		
		X/Y Sour	ce Origin sta	rting addı	ess				
7	6	5	4	3	2	1	0		
	X/Y Source Origin starting address								

Bits	Descriptions					
[27:0]	X/Y Origin Starting Address	28-bit X/Y Mode Origin Starting Address (byte unit) This 28-bit byte address specifies the starting address of an object or a picture in the display memory when addressed by X/Y mode. This value is specified by bytes and should be 16K word (64K bytes) boundary. That is, the bits 15-0 are ignored.				

Publication Release Date: Jun. 18, 2010

Graphic Engine Tile Width/Height Numbers and DDA V/H Scale Up/Down Factors

Register Address		R/W	Description	Reset Value	
2D_TileXY	0xB000_B008	R/W	2D Tile Width X and Tile Height Y Register	0x0000_0000	
2D_VHSF	0xB000_B008	R/W	DDA Vertical and Horizontal Scaling Down Factor N/M	0x0000_0000	

(A)

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Reserve	d						
15	14	13	12	11	10	9	8			
	Tile Height Y [7:0]									
7	6	5	4	3	2	1	0			
		-	Tile Width X	[7:0]						

Bits	Descriptions	
[15:8]	Tile Height Y	8-bit tile height Y value This divider provides the tile height Y value.
[7:0]	Tile Width X	8-bit tile width X value This divider provides the tile width X value.

(B)

31	30	29	28	27	26	25	24			
	VSF_N [7:0]									
23	22	21	20	19	18	17	16			
			VSF_M [7	:0]						
15	14	13	12	11	10	9	8			
	HSF_N [7:0]									
7	6	5	4	3	2	1	0			
	HSF_M [7:0]									

Publication Release Date: Jun. 18, 2010 Revision: A4

Bits	Descriptions	
[31:24]	VSF_N	8-bit Vertical N Scaling Factor An 8-bit value specifies the numerator part (N) of the vertical scaling factor in graphic engine. The output image height will be equal to the input image height x N / M. The value of N must be equal or less than M.
[23:16]	VSF_M	8-bit Vertical M Scaling Factor An 8-bit value specifies the denominator part (M) of the vertical scaling factor in graphic engine. The output image height will be equal to the input image height x N / M. The value of N must be equal or less than M.
[15:8]	HSF_N	8-bit Horizontal N Scaling Factor An 8-bit value specifies the numerator part (N) of the horizontal scaling factor in graphic engine. The output image width will be equal to the input image width x N / M. The value of N must be equal or less than M.
[7:0]	HSF_M	8-bit Horizontal M Scaling Factor An 8-bit value specifies the denominator part (M) of the horizontal scaling factor in graphic engine. The output image width will be equal to the input image width x N / M. The value of N must be equal or less than M.

Graphic Engine Rotate Reference Point XY Register

Register	Address	R/W	Description	Reset Value
2D_GERRXY	0xB000_B00C	\mathbf{R}	Graphic Engine Rotate Reference Point in X/Y (pixel)	0x0000_0000

31	30	29	28	27	26	25	24		
		Rotate Reference Y [10:8]							
23	22	21	20	19	18	17	16		
		Rota	te Referenc	e Y [7:0]					
15	14	13	12	11	10	9	8		
		Reserved			Rotate	Reference	X [10:8]		
7	6	5	4	3	2	1	0		
	Rotate Reference X [7:0]								

Bits	Descriptions	
[26:16]	Rotate Reference Y	11-bit Rotate Reference Y For Rotation in X/Y addressing, this register specifies the reference point Y in pixels.
[10:0]	Rotate Reference X	11-bit Rotate Reference X For Rotation in X/Y addressing, this register specifies the reference point X in pixels.

Graphic Engine Interrupt Status Register

Register	Address	R/W	Description	Reset Value
2D_GEINTS	0xB000_B010	R/W	Graphic Engine Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Reserve	d					
7	6	5	4	3	2	1	0		
	Reserved								

Bits	Description	Descriptions				
[0]	INTS	GE interrupt status 0 = No interrupt occur 1 = Interrupt occur, host writes one to clear INTS.				

Graphic Engine Pattern Location Starting Address Register

Register	Address	R/W	Description	Reset Value
2D_GEPLS	0xB000_B014	R/W	Pattern Location Starting Address	0x0000_0000

31	30	29	28	27	26	25	24		
	Pattern Location [27:24]								
23	22	21	20	19	18	17	16		
	Pattern Location [23:16]								
15	14	13	12	11	10	9	8		
		Pat	tern Locatio	on [15:8]					
7	7 6 5 4 3 2 1 0								
		Pa	ttern Locati	on [7:0]					

Bits	Description	Descriptions					
		28-bit Pattern Location (byte unit)					
[27:0]	Pattern Location	The byte address of 28-bit pattern specifies the beginning location of an 8×8 pixel pattern stored in the off-screen memory when in BitBLT operation. This value must be programmed on an M-byte boundary. M= $8*8*BPP/8$ bytes, where BPP= $8/16/32$.					

Graphic Engine Bresenham Error Term Stepping Constant Register

Register	Address	R/W	Description				Reset Value	
2D_GEBER	0xB000_B018	R/W	Bresenham Register	Error	Term	Stepping	Constant	0x0000_0000

31	30	29	28	27	26	25	24			
Diagonal Error Increment [13:8]										
23	23 22 21 20 19 18 17 16									
	Diagonal Error Increment [7:0]									
15	14	13	12	11	10	9	8			
		Axial	Error Incren	nent [13:8]						
7	7 6 5 4 3 2 1 0									
	Axial Error Increment [7:0]									

Bits	Descriptions	
[29:16]	Diagonal Error Increment For Bresenham line draw, this register specifies the constant to added to the Error Term for diagonal stepping (Error > 0). To initial value is (2 * (delta Y - delta X)) after normalization to find octant.	
[13:0]	Axial Error Increment	14-bit Axial Error Increment For Bresenham line draw, this register specifies the constant to be added to the Error Term for axial stepping (Error < 0). The initial value is (2 * delta Y) after normalization to first octant.

Graphic Engine Bresenham Initial Error, Pixel Count Major - 1 Register

Register	Address	R/W	Description	Reset Value
2D_GEBIR	0xB000_B01C	R/W	Bresenham Initial Error, Pixel Count Major -1 Register	0x0000_0000

31	30	29	28	27	26	25	24
		Init	ial Error Ter	m [13:8]			
23	22	21	20	19	18	17	16
		Ini	tial Error Te	rm [7:0]			
15	14	13	12	11	10	9	8
	Line Pixel Count Major -1 [10:8]						
7	6	5	4	3	2	1	0
	Line Pixel Count Major -1 [7:0]						

Bits	Descriptions	
[29:16]	Initial Error Term	14-bit Initial Error Term For Bresenham line draw, this register specifies the initial Error Term. The initial value is (2 * (delta Y) - delta X) after normalization to first octant.
[10:0]	Line Pixel Count Major -1	11-bit Line Pixel Count Major -1 For Bresenham line draw, this register specifies the pixel count of major axis

Graphic Engine Control Register

Register	Address	R/W	Description	Reset Value
2D_GEC	0xB000_B020	R/W	Graphic Engine Control Register	0x0000_0000

31	30	29	28	27	26	25	24
		ROP ((Raster Opera	tion Code)			
23	22	21	20	19	18	17	16
со	MMAND	ALPHA_BLNE	LINE_STYLE	M/D	LSTP	INT_EN	ADDR_M D
15	14	13	12	11	10	9	8
TR	ANSPARENC	MTS	CTS	СТР	AU	CLIP_EN	CLPC
7	6	5	4	3	2	1	0
SDT	SDT SRCS		PDT		XY Octan	t	DDTO

Bits	Descriptions	
		ROP Code
[31:24]	ROP	It supports all Microsoft 256 Raster Operation Codes. Each raster operation code is an 8-bit value that represents the result of the Boolean operation on pre-defined pattern, source, and destination.
		Graphics Engine Command
		00 = No operation
[23:22]	COMMAND	01 = BitBLT acceleration
		10 = Bresenham Line Draw acceleration
		11 = Rectangle Border drawing
	ALPHA	Alpha Blending Control
[21]	BLENDING	0 = Disable alpha blending
	BLLINDING	1 = Enable alpha blending
	LINE	Line Style Control
[20]	LINE	0 = Disable line style
	STYLE	1 = Enable line style

Publication Release Date: Jun. 18, 2010

Bits	Descriptions			
[19]	M/D	Bresenham Line Move/Draw 0 = Move 1 = Draw		
[18]	LSTP	Last Pixel Draw/Move or Scale Up/Down Rectangular Object 0 = Last pixel of Bresenham line will be drawn; 0 = Scaling down object. 1 = Last pixel of Bresenham line will not be drawn; 1 = Scaling up object.		
[17]	INT_EN	Interrupt Enable When BitBLT/Bresenham Line Draw acceleration is complete or finished.		
[16]	ADDR_MD Graphics Engine Addressing Mode 0 = Linear addressing mode 1 = X/Y addressing mode			
[15:14]	TRANSPX	GE Transparency 00 = Disabled 01 = Mono transparency 10 = Color transparency 11 = Reserved		
[13]	MTS	Mono Transparency Select 0 = Source 1 = Pattern		
[12]	стѕ	Color Transparency Select 0 = Source pixels control transparency 1 = Destination pixels control transparency		
[11]	СТР	Color Transparency Polarity 0 = Matching pixels are transparent 1 = Matching pixels are opaque		
[10]	AU	Auto Update 0 = Disable 1 = Enable. Destination X, Y register is automatically updated at the end of each BitBLT operation.		

Publication Release Date: Jun. 18, 2010 Revision: A4

Bits	Description	s				
[9]	CLIP_EN	Clipping Enable 0 = Disabled 1 = Enabled				
[8]	CLPC	Clipping Control 0 = Only pixels inside the clipping rectangle are drawn 1 = Only pixels outside the clipping rectangle are drawn				
[7]	SDT	Source Data Type D = Color 1 = Mono Note: Source and pattern data are not allowed to be both in mono format.				
[6:5]	SRCS	Source Data Select 00 = Display memory 01 = System memory 10 = GE background color 11 = GE foreground color				
[4]	PDT	Pattern Data Type 0 = Color (from display memory) 1 = Mono (from internal pattern registers)				
[3:1]	XY Octant	It determines the drawing directions for BitBLT, Bresenham line, and Rotate. $000 = \text{Right-down (BitBLT);} + X, + Y, DX \ge DY \text{ (Line);} \text{Scaling Down} \\ 001 = \text{Right-down (BitBLT);} + X, + Y, DX < DY \text{ (Line);} \text{Rotate right 45}^\circ \\ 010 = \text{Left-down (BitBLT);} + X, - Y, DX \ge DY \text{ (Line);} \text{Rotate left 45}^\circ \\ 011 = \text{Left-down (BitBLT);} + X, - Y, DX < DY \text{ (Line);} \text{Rotate left 90}^\circ \\ 100 = \text{Right-up (BitBLT);} -X, + Y, DX \ge DY \text{ (Line);} \text{Up-Side-Down} \\ 101 = \text{Right-up (BitBLT);} -X, + Y, DX < DY \text{ (Line);} \text{Rotate right 90}^\circ \\ 110 = \text{Left-up (BitBLT);} -X, -Y, DX \ge DY \text{ (Line);} \text{Rotate 180}^\circ \\ 111 = \text{Left-up (BitBLT);} -X, -Y, DX < DY \text{ (Line);} \text{Mirror or Flop} \\ \end{cases}$				
[0]	DDTO	Destination Data Direction, new destination data to 0 = Display memory 1 = System memory				

Graphic Engine Background Color Register

Register	Address	R/W	Description	Reset Value
2D_GEBC	0xB000_B024	R/W	Graphic Engine Background Color	0x0000_0000

31	30	29	28	27	26	25	24
			Reserve	d			
23	22	21	20	19	18	17	16
		Back	ground Cold	r [23:16]			
15	14	13	12	11	10	9	8
	Background Color [15:8]						
7	6	5	4	3	2	1	0
	Background Color [7:0]						

=

Bits	Descriptions	
[23:0]	Background Color	24-bit Background Color These bits specify the background color for Graphics Engine. Only the corresponding number of bits-per-pixel in the display mode is required in the register. In RGB 8:8:8 color mode, bits
		23-16 have the red value, bits 15-8 have the green value, and bits 7-0 have the blue value.

Graphic Engine Foreground Color Register

Register	Address	R/W	Description	Reset Value
2D_GEFC	0xB000_B028	R/W	Graphic Engine Foreground Color	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
		Fore	ground Colo	r [23:16]				
15	14	13	12	11	10	9	8	
		Fore	eground Col	or [15:8]				
7	6	5	4	3	2	1	0	
	Foreground Color [7:0]							

Bits	Descriptions	
[23:0]	Foreground Color	Graphics Engine Foreground Color These bits specify the foreground color for Graphics Engine. Only the corresponding number of bits-per-pixel in the display mode is required in the register. In RGB 8:8:8 color mode, bits 23-16 have the red value, bits 15-8 have the green value, and bits 7-0 have the blue value.

Graphic Engine Transparency Color Register

Register	Address	R/W	Description	Reset Value
2D_GETC	0xB000_B02C	R/W	Graphic Engine Transparency Color	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
		Trans	parency Col	or [23:16]					
15	14	13	12	11	10	9	8		
		Tran	sparency Co	lor [15:8]					
7	6	5	4	3	2	1	0		
	Transparency Color [7:0]								

Bits	Descriptions	
		24-bit Transparency Color These bits specify the transparency color for Graphics Engine. Only
[23:0]	Transparency Color	the corresponding number of bits-per-pixel in the display mode is required in the register. In RGB 8:8:8 color mode, bits 23-16 have the red value, bits 15-8 have the green value, and bits 7-0 have the blue value.

Graphic Engine Transparency Color Mask Register

Register	Address	R/W	Description	Reset Value
2D_GETCM	0xB000_B030	R/W	Graphic Engine Transparency Color Mask	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
		Transpa	rency Color	Mask [23:	16]				
15	14	13	12	11	10	9	8		
		Transpa	arency Color	Mask [15:	8]				
7	6	5	4	3	2	1	0		
	Transparency Color Mask [7:0]								

Bits	Descriptions	
[23:0]	Transparency Color Mask	24-bit Transparency Color Mask These bits specify a mask for use in comparison against the transparency color. Only the corresponding number of bits-per-pixel in the display mode is required in the register.

Graphic Engine XY Mode Display Memory Origin Starting Address Register

Register	Address	R/W	Description	Reset Value
2D_GEXYDORG	0xB000_B034	R/W	X/Y Addressing Mode Display Origin Starting Address	0x0000_0000

31	30	29	28	27	26	25	24		
	X/Y Display Origin starting address [27:24]								
23	22	21	20	19	18	17	16		
		X/Y Display C	Origin startir	ng address	[23:16]				
15	14	13	12	11	10	9	8		
		X/Y Display	Origin starti	ng address	[15:8]				
7	6	5	4	3	2	1	0		
	X/Y Display Origin starting address [7:0]								

Bits	Description	าร
[27:0]	X/Y Origin Starting Address	28-bit X/Y Mode Origin Starting Address (byte unit) This 28-bit byte address specifies the starting address of an object or a picture in the display memory when addressed by X/Y mode. This value is specified by bytes.

Graphic Engine Source/Destination Pitch Register

Register	Address	R/W	Description	Reset Value
2D_GESDP	0xB000_B038	R/W	Graphic Engine Source/Destination Pitch	0x0000_0000

31	30	29	28	27	26	25	24		
	Destination Pitch [12:8]								
23	23 22 21 20 19 18 17 16								
		De	stination Pit	ch [7:0]					
15	14	13	12	11	10	9	8		
	Source Pitch [12:8]								
7	6	5	4	3	2	1	0		
	Source Pitch [7:0]								

Bits	Descriptions	
[28:16]	Destination Pitch	Bits 28-16 Destination Pitch This 13-bit register specifies the destination pitch in bytes in linear addressing mode, and in X/Y addressing by pixels.
[12:0]	Source Pitch	Bits 12-0 Source Pitch This 13-bit register specifies the source pitch in bytes in linear addressing mode, and in X/Y addressing by pixels.

Graphic Engine Source Start XY/Linear Addressing Register

Register	Address	R/W	Description	Reset Value
2D_GESSXY	0xB000_B03C	R/W	Graphic Engine Source Start in X/Y addressing (pixel)	0x0000_0000
2D_GESSL	0xB000_B03C	R/W	Graphic Engine Source Start in linear addressing (byte)	0x0000_0000
(A)				

31	30	29	28	27	26	25	24		
	Source Start Y [10:8]								
23	22	21	20	19	18	17	16		
		S	ource Start	Y [7:0]					
15	14	13	12	11	10	9	8		
	Source Start X [10:8]								
7	6	5	4	3	2	1	0		
		Source Start X [7:0]							

Bits	Descriptions	
[26:16]	Source Start Y	11-bit Source Start Y For BitBLTs in X/Y addressing, this register specifies the source start Y in pixels.
[10:0]	Source Start X	11-bit Source Start X For BitBLTs in X/Y addressing, this register specifies the source start X in pixels.

(B)

31	30	29	28	27	26	25	24			
	Source Linear Start Address [27:24]									
23	23 22 21 20 19 18 17 16									
	Source Linear Start Address [23:16]									
15	14	13	12	11	10	9	8			
	Source Linear Start Address [15:8]									
7	6	5	4	3	2	1	0			
	Source Linear Start Address [7:0]									

488

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[27:0]	Source Linear Starting Address	28-bit Source Start Address For BitBLTs in linear addressing, this 28-bit byte address specifies the beginning location of the source.

Graphic Engine Destination Start XY/Linear Register

Register	Address	R/W	Description	Reset Value
2D_GEDSXY	0xB000_B040	R/W	Graphic Engine Destination Start X/Y addressing (pixel)	0x0000_0000
2D_GEDSL	0xB000_B040	R/W	Graphic Engine Destination Start Linear address (byte)	0x0000_0000
(A)				

31	30	29	28	27	26	25	24		
	Destination Start Y [10:8]								
23	23 22 21 20 19 18 17 16								
	Destination Start Y [7:0]								
15	14	13	12	11	10	9	8		
		Dest	ination Star	t X [10:8]					
7	6	5	4	3	2	1	0		
	Destination Start X [7:0]								

Bits	Descriptions	
[26:16]	Destination Start Y	11-bit Destination Start Y For BitBLTs and Bresenham line draw in X/Y addressing, this register specifies the destination start Y in pixels.
[10:0]	Destination Start X	11-bit Destination Start X For BitBLTs and Bresenham line draw in X/Y addressing, this register specifies the destination start X in pixels.

(B)

31	30	29	28	27	26	25	24		
Destination Linear Start Address [27:24]									
23	22	21	20	19	18	17	16		
	Destination Linear Start Address [23:16]								
15	14	13	12	11	10	9	8		
		Destination	Linear Star	t Address	[15:8]				
7	6	5	4	3	2	1	0		
	Destination Linear Start Address [7:0]								

490

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	Descriptions					
[27:0	Destination Linear Starting Address	28-bit Destination Linear Starting Address For BitBLTs in linear addressing mode, this register specifies the destination linear starting address in bytes.					

Graphic Engine Dimension for XY/Linear Modes Register

Register	Address	R/W	Description	Reset Value
2D_GEDIXYL	0xB000_B044	R/W	Graphic Engine Dimension in XY (pixel) or linear (byte)	0x0000_0000

Bits	Descriptions	
[26:16]	Dimension Y	11-bit Dimension Y For BitBLTs, this register specifies the height of rectangle in X/Y addressing (by pixel) or in linear addressing (by byte).
[10:0]	Dimension X	11-bit Dimension X For BitBLTs, this register specifies the width of rectangle in X/Y addressing (by pixel) or in linear addressing (by byte).

Graphic Engine Clipping Boundary Top/Left Register

Register	Address		Description	Reset Value
2D_GECBTL	0xB000_B048	R/W	Graphic Engine Clipping Boundary Top/Left (by X/Y pixel)	0x0000_0000

31	30	29	28	27	26	25	24		
	Clipping Boundary Top [10:8]								
23	22	21	20	19	18	17	16		
	Clipping Boundary Top [7:0]								
15	14	13	12	11	10	9	8		
	Clipping Boundary Left [10:8]								
7	6	5	4	3	2	1	0		
		Clipping Boundary Left [7:0]							

Bits	Descriptions					
[26:16]	Clipping Boundary Top	11-bit Clipping Boundary Top This register specifies the top of the clipping rectangle.				
[10:0]	Clipping Boundary Left	11-bit Clipping Boundary Left This register specifies the left limit of the clipping rectangle.				

Graphic Engine Clipping Boundary Bottom/Right Register

Register	Address	R/W D	escription				Re	set Value
2D_GECBBR	0xB000_B0		R/W Graphic Engine Clipping Boundary Bottom/Right (pixel)		0x0	0000_0000		
31	30	29	28	27	26	2!	5	24
	Clipping Boundary Bottom [10:8]							
23	22	21	20	19	18	17	7	16
		Clippin	g Boundary	Bottom [7:	0]			
15	14	13	12	11	10	9		8
	Clipping Boundary Right [10:8]							
7	6	5	4	3	2	1		0
	Clipping Boundary Right [7:0]							

Bits	Descriptions					
[26:16]	Clipping Boundary Bottom	11-bit Clipping Boundary Bottom This register specifies the bottom of the clipping rectangle.				
[10:0]	Clipping Boundary Right	11-bit Clipping Boundary Right This register specifies the right limit of the clipping rectangle.				

Graphic Engine Pattern Group A Register

Register	Address	R/W	Description	Reset Value
2D_GEPTNA	0xB000_B050	R/W	Graphic Engine Pattern Group A	0x0000_0000

31	30	29	28	27	26	25	24	
			Pattern:	3				
23	22	21	20	19	18	17	16	
	Pattern2							
15	14	13	12	11	10	9	8	
	Pattern1							
7	6	5	4	3	2	1	0	
	Pattern0							

Bits	Descriptions					
Bits [31:0]	Pattern Group A	Bits 31-24 Pattern 3 Register When pattern is monochrome, this is the 4th line of the 8×8 pattern. Bits 23-16 Pattern 2 Register When pattern is monochrome, this is the 3rd line of the 8×8 pattern. Bits 15-8 Pattern 1 Register				
		When pattern is monochrome, this is the 2nd line of the 8×8 pattern. Bits 7-0 Pattern 0 Register				
		When pattern is monochrome, this is the 1st line of the 8×8 pattern.				

Graphic Engine Pattern Group B Register

Register	Address	R/W	Description	Reset Value
2D_GEPTNB	0xB000_B054	R/W	Graphic Engine Pattern Group B	0x0000_0000

31	30	29	28	27	26	25	24
			Pattern?	7			
23	22	21	20	19	18	17	16
			Pattern	6			
15	14	13	12	11	10	9	8
	Pattern5						
7	6	5	4	3	2	1	0
	Pattern4						

Bits	Descriptions	
[31:0]	Pattern Group B	Bits 31-24 Pattern 7 Register This is the 8th line of the 8×8 pattern. Bits 23-16 Pattern 6 Register This is the 7th line of the 8×8 pattern. Bits 15-8 Pattern 5 Register This is the 6th line of the 8×8 pattern. Bits 7-0 Pattern 4 Register This is the 5th line of the 8×8 pattern.

Graphic Engine Write Plane Mask Register

Register	Address	R/W	Description	Reset Value
2D_GEWPM	0xB000_B058	R/W	Graphic Engine Write Plane Mask	0x0000_0000

31	30	29	28	27	26	25	24
			Reserve	d			
23	22	21	20	19	18	17	16
		Writ	e Plane Mas	k [23:16]			
15	14	13	12	11	10	9	8
	Write Plane Mask [15:8]						
7	6	5	4	3	2	1	0
	Write Plane Mask [7:0]						

Bits	Descriptions	
		24-bit Write Plane Mask
[23:0]	Write Plane Mask	These bits specify which bits within each pixel are subject to update by the Graphics Engine. A one enable writing to the corresponding bit plane and a 0 inhibits writing to the corresponding bit plane. Only the corresponding number of bits-per-pixel in the display mode is required in the register.

Graphic Engine Miscellaneous Control Register

Register	Address	R/W	Description	Reset Value
2D_GEMC	0xB000_B05C	R/W	Graphic Engine Miscellaneous Control	0x0000_0000

31	30	29	28	27	26	25	24
	LIN	IE STYLE PATT	ERN 1/ Alph	na Blending	g Source K	S	
23	22	21	20	19	18	17	16
	LINE	STYLE PATTER	N 0/ Alpha	Blending D	estination	Kd	
15	14	13	12	11	10	9	8
FIFO STATUS			EMPTY	FULL	BitBItSTS	BUSY	
7	6	5	4	3	2	1	0
RST_GE2D	RST_FIFO	ВР	P	BLT_MD		BLT_TYPE	

Bits	Descriptions	
[31:16]	Line Style Pattern1 Line Style Pattern0	Bits 31-16 16-bit line style pattern for Bresenham line drawing.
[31:16]	Alpha Blending Ks and Kd	Bits 31-24 Bits 23-16 8-bit alpha blending factor Ks for source data and 8-bit alpha blending factor Kd for destination data.
[15:12]	FIFO Status	GE FIFO counter status $0000 \sim 0111 = \text{FIFO current level}$ $0000 = \text{empty and } 1000 = \text{full}$
[11]	EMPTY	FIFO empty status 0 = Not empty 1 = Empty
[10]	FULL	FIFO full status 0 = Not full 1 = Full

498

Publication Release Date: Jun. 18, 2010

[9]	BitBLT_STS	GE BitBLT operation complete status 0 = No complete status occur 1 = BitBLT operation complete status occur
[8]	BUSY	GE Operation status 0 = Ready, No GE operation 1 = Busy, GE operation is still under working
[7]	RST_GE2D	Bit 7 1 = Reset GE2D.
[6]	RST_FIFO	Bit 6 1 = Reset FIFO.
[5:4]	Bit Per Pixel	Bits 5-4 Graphics Engine Pixel Depth 00 = 8-bit 01 = 16-bit 10 = 32-bit 11 = reserved
[3]	BLT_MODE	0 = BitBLT type is according to GEC control bits 1 = BitBLT type follows BLT_TYPE[2:0] setting as below
[2:0]	BLT_TYPE	Bits 2-0 BitBLT Type Setting 000 = HostBLT (write mode) 001 = HostBLT (read mode) 010 = SolidFillBLT 011 = PatternBLT 100 = BlockMoveBLT 101 = Color/Font Expansion BLT 110 = Monochrome Transparent BLT 111 = Color Transparent BLT

7.13UART Controller

The Universal Asynchronous Receiver/Transmitter (UART) performs a serial-to-parallel conversion on data characters received from the peripheral, and a parallel-to-serial conversion on data characters received from the CPU. There are three UART blocks and accessory logic in this chip.

Publication Release Date: Jun. 18, 2010

7.13.1 UART Feature Description

7.13.1.1 UARTO

UARTO is a general UART block without Modem I/O signals.

UARTO	
Clock Source	External Crystal
UART Type	General UART
FIFO Number	16-byte receiving FIFO and 16 byte transmitting FIFO
Modem Function	None
Accessory Function	None
I/O pin	TXD0, RXD0

7.13.1.2 UART1

UART1 is a high speed UART. The FIFO has 64-byte for receiving and 64-byte for transmitting. The clock source is programmable in chip clock generator.

UART1	
Clock Source	External Crystal or internal PLL (Programmable)
UART Type	High speed UART
FIFO Number	64-byte receiving FIFO and 64 byte transmitting FIFO
Modem Function	None
Accessory Function	None
I/O pin	TXD1, RXD1

7.13.1.3 UART2

UART2 is a general UART with IrDA SIR.

UART2	
Clock Source	External Crystal
UART Type	General UART
FIFO Number	16-byte receiving FIFO and 16 byte transmitting FIFO
Modem Function	none
Accessory Function	IrDA SIR

Publication Release Date: Jun. 18, 2010

I/O pin	TXD2, RXD2

UART Control Registers Map 7.13.2

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register	Offset	R/W	Description Condit		Reset Value
UARTO : U	ART_BA = 0xB800	_0000			
RBR	0xB800_0100	R	Receive Buffer Register	DLAB = 0	Undefined
THR	0xB800_0100	W	Transmit Holding Register	DLAB = 0	Undefined
IER	0xB800_0104	R/W	Interrupt Enable Register	DLAB = 0	0x0000_0000
DLL	0xB800_0100	R/W	Divisor Latch Register (LS)	DLAB = 1	0x0000_0000
DLM	0xB800_0104	R/W	Divisor Latch Register (MS)	DLAB = 1	0x0000_0000
IIR	0xB800_0108	R	Interrupt Identification Register		0x8181_8181
FCR	0xB800_0108	W	FIFO Control Register		Undefined
LCR	0xB800_010C	R/W	Line Control Register		0x0000_0000
LSR	0xB800_0114	R	Line Status Register		0x6060_6060
TOR	0xB800_011C	R/W	Time Out Register		0x0000_0000
UART1 : U	ART_BA = 0xB800	_0100			
RBR	0xB800_0100	R	Receive Buffer Register	DLAB = 0	Undefined
THR	0xB800_0100	W	Transmit Holding Register	DLAB = 0	Undefined
IER	0xB800_0104	R/W	Interrupt Enable Register	DLAB = 0	0x0000_0000
DLL	0xB800_0100	R/W	Divisor Latch Register (LS)	DLAB = 1	0x0000_0000
DLM	0xB800_0104	R/W	Divisor Latch Register (MS)	DLAB = 1	0x0000_0000
IIR	0xB800_0108	R	Interrupt Identification Register		0x8181_8181
FCR	0xB800_0108	W	FIFO Control Register		Undefined
LCR	0xB800_010C	R/W	Line Control Register		0x0000_0000
LSR	0xB800_0114	R	Line Status Register		0x6060_6060
TOR	0xB800_011C	R/W	Time Out Register		0x0000_0000

UART2 : UART_BA = 0xB800_0200						
RBR	0xB800_0200	R	Receive Buffer Register	DLAB = 0	Undefined	
THR	0xB800_0200	W	Transmit Holding Register	DLAB = 0	Undefined	

501

Publication Release Date: Jun. 18, 2010

IER	0xB800_0204	R/W	Interrupt Enable Register	Interrupt Enable Register DLAB = 0	
DLL	0xB800_0200	R/W	Divisor Latch Register (LS)	DLAB = 1	0x0000_0000
DLM	0xB800_0204	R/W	Divisor Latch Register (MS)	DLAB = 1	0x0000_0000
IIR	0xB800_0208	R	Interrupt Identification Register		0x8181_8181
FCR	0xB800_0208	W	FIFO Control Register		Undefined
LCR	0xB800_020C	R/W	Line Control Register		0x0000_0000
LSR	0xB800_0214	R	Line Status Register		0x6060_6060
TOR	0xB800_021C	R/W	Time Out Register		0x0000_0000
IRCR	0xB800_0220	R/W	IrDA Control Register		0x0000_0040

Receive Buffer Register (RBR)

Register	Offset	R/W	Description	Reset Value
RBR	0XB800_0x00	R	Receive Buffer Register (DLAB = 0)	Undefined

7	6	5	4	3	2	1	0
8-bit Received Data							

Bits		Descriptions
[7:0]	8-bit Receive d Data	By reading this register, the UART will return an 8-bit data received from SIN pin (LSB first).

Transmit Holding Register (THR)

Register	offset	R/W	Description	Reset Value
THR	0XB800_0x00	W	Transmit Holding Register (DLAB = 0)	Undefined

7	6	5	4	3	2	1	0
	8-bit Transmitted Data						

Bits	Descriptions							
[7:0]	8-bit Transmitte d Data	By writing to this register, the UART will send out an 8-bit data through the SOUT pin (LSB first).						

Interrupt Enable Register (IER)

Register	offset	R/W	Description	Reset Value
IER	0XB800_0x04	R/W	Interrupt Enable Register (DLAB = 0)	0x0000.0000

7	6	5	4	3	2	1	0
RESERVED			MSIE	RLSIE	THREIE	RDAIE	

Bits		Descriptions
[3]	MSIE	MODEM Status Interrupt (Irpt_MOS) Enable ■ 0 = Mask off Irpt_MOS ■ 1 = Enable Irpt_MOS
[2]	RLSIE	Receive Line Status Interrupt (Irpt_RLS) Enable • 0 = Mask off Irpt_RLS • 1 = Enable Irpt_RLS
[1]	THREIE	Transmit Holding Register Empty Interrupt (Irpt_THRE) Enable • 0 = Mask off Irpt_THRE • 1 = Enable Irpt_THRE
[0]	RDAIE	Receive Data Available Interrupt (Irpt_RDA) Enable and Time-out Interrupt (Irpt_TOUT) Enable • 0 = Mask off Irpt_RDA and Irpt_TOUT • 1 = Enable Irpt_RDA and Irpt_TOUT

Divider Latch (Low Byte) Register (DLL)

Register	Offset	R/W	Description	Reset Value
DLL	0XB800_0x00	R/W	Divisor Latch Register (LS) (DLAB = 1)	0x0000_0000

7	6	5	4	3	2	1	0
	Baud Rate Divider (Low Byte)						

Bits	Descriptions		
[7:0]	Baud Rate Divisor (Low Byte)	The low byte of the baud rate divider	

506

Publication Release Date: Jun. 18, 2010

Divisor Latch (High Byte) Register (DLM)

Register	Offset	R/W	Description	Reset Value
DLM	0XB800_0x04	R/W	Divisor Latch Register (MS) (DLAB = 1)	0x0000_0000

7	6	5	4	3	2	1	0
Baud Rate Divider (High Byte)							

Bits	Descriptions		
[7:0]	Baud Rate Divisor (High Byte)	The high byte of the baud rate divider	

This 16-bit divider {DLM, DLL} is used to determine the baud rate as follows

Baud Rate = Crystal Clock / {16 * [Divisor + 2]}

Note: This definition is different from 16550

Interrupt Identification Register (IIR)

Register	Offset	R/W	Description	Reset Value
IIR	0XB800_0x08	R	Interrupt Identification Register	0x8181_8181

7	6	5	4	3	2	1	0
FMES	RFTLS		DMS		IID		NIP

Bits	Description	ns
		FIFO Mode Enable Status
[7]	[7] FMES	This bit indicates whether the FIFO mode is enabled or not. Since the FIFO mode is always enabled, this bit always shows the logical 1 when CPU is reading this register.
		Rx FIFO Threshold Level Status
[6:5]	[6:5] RFTLS	These bits show the current setting of receiver FIFO threshold level (RTHO). The meaning of RTHO is defined in the following FCR description.
		DMA Mode Select
[4]	[4] DMS	The DMA function is not implemented in this version. When reading IIR, the DMS is always returned 0.
[2:1]	IID	Interrupt Identification
[3.1]	[3:1] IID	The IID together with NIP indicates the current interrupt request from UART.
[0]	NUD	No Interrupt Pending
[0]	NIP	There is no pending interrupt.

Interrupt Control Functions

IIR [3:0]	Priority	Interrupt Type	Interrupt Source	Interrupt Reset control
1		None	None	
0110	Highest	Receiver Line Status (Irpt_RLS)	Overrun error, parity error, framing error, or break interrupt	Reading the LSR

508

Publication Release Date: Jun. 18, 2010

IIR [3:0]	Priority	Interrupt Type	Interrupt Source	Interrupt Reset control		
0100	Second	Received Data Available (Irpt_RDA)	Receiver FIFO threshold level is reached	Receiver FIFO drops below the threshold level		
1100	Second	Receiver FIFO Time- out (Irpt_TOUT)	Receiver FIFO is non- empty and no activities are occurred in the receiver FIFO during the TOR defined time duration	Reading the RBR		
0010	Third	Transmitter Holing Register Empty (Irpt_THRE)	egister Empty register empty			
0000	Fourth	MODEM Status (Irpt_MOS)	The CTS bits are changing state.	Reading the MSR (optional)		

Note: These definitions of bit 7, bit 6, bit 5, and bit 4 are different from the 16550.

FIFO Control Register (FCR)

Register	Offset	R/W	Description	Reset Value
FCR	0XB800_0x08	W	FIFO Control Register	Undefined

7	6	5	4	3	2	1	0
	RF	ITL		DMS	TFR	RFR	FME

Bits	Description	criptions										
		Rx FIFO	Rx FIFO Interrupt (Irpt_RDA) Trigger Level									
			RFITL [7:4]	Trigger Level			RFITL[7:4]	Trigger Level				
		UARTO	00xx	01 bytes			0000	01 bytes				
		UARIZ	01xx	04 bytes			0001	04 bytes				
[7:4]	RFITL		10xx	08 bytes			0010	08 bytes				
[]			11xx	14 bytes		UART1	0011	14 bytes	•			
							0100	30 bytes	,			
							0101	46 bytes	•			
							others	62 bytes				
[2]	DMC	DMA Mod	de Select									
[3]	DMS	The DMA	function is not	implemente	d in this	s version						
		Tx FIFO	Reset									
[2]	TFR	becomes		nter is rese	t to 0) a	after suc	se to reset Tx th reset. This b					
		Rx FIFO	Reset									
[1]	RFR	becomes		nter is rese	t to 0) a	after suc	se to reset Rx h reset. This b					

Publication Release Date: Jun. 18, 2010

Bits De	Descriptions							
[0]	FME	FIFO Mode Enable Because UART is always operating in the FIFO mode, writing this bit has no effect while reading always gets logical one. This bit must be 1 when other FCR bits are written to; otherwise, they will not be programmed.						

Line Control Register (LCR)

Register	offset	R/W	Description	Reset Value
LCR	0XB800_0x0C	R/W	Line Control Register	0x0000_0000

7	6	5	4	3	2	1	0
DLAB	ВСВ	SPE	EPE	PBE	NSB	WLS	

Bits		Descriptions
		Divider Latch Access Bit
[7]	DLAB	0 = It is used to access RBR, THR or IER.
		$1 = \text{It is used to access Divisor Latch Registers } \{\text{DLL, DLM}\}.$
		Break Control Bit
[6]	ВСВ	When this bit is set to logic 1, the serial data output (SOUT) is forced to the Spacing State (logic 0). This bit acts only on SOUT and has no effect on the transmitter logic.
		Stick Parity Enable
		0 = Disable stick parity
[5]	SPE	1 = Parity bit is transmitted and checked as a logic 1 if bit 4 is 0 (odd parity), or as a logic 0 if bit 4 is 1 (even parity). This bit has effect only when bit 3 (parity bit enable) is set.
		Even Parity Enable
[A]	EPE	0 = Odd number of logic 1's are transmitted or checked in the data word and parity bits.
[4]	EPE	1 = Even number of logic 1's are transmitted or checked in the data word and parity bits.
		This bit has effect only when bit 3 (parity bit enable) is set.
		Parity Bit Enable
[3]	PBE	0 = Parity bit is not generated (transmit data) or checked (receive data) during transfer.
		1 = Parity bit is generated or checked between the "last data word bit" and "stop bit" of the serial data.

512

Publication Release Date: Jun. 18, 2010

Bits		Descriptions									
		Numl	ber of "STOP	bit"							
		0=	One " STOP b	it" is generated in the	transmitted data						
[2]	NSB		One and a hal	_	ted in the transmitted data when 5-bit word						
		Two "	Two "STOP bit" is generated when 6-, 7- and 8-bit word length is selected.								
		Word	l Length Sele	ct							
			WLS[1:0]	Character length							
[1:0]	WLS		00	5 bits							
			01	6 bits							
			10	7 bits							
			11	8 bits							

Line Status Control Register (LSR)

Register	Offset	R/W	Description	Reset Value
LSR	0XB800_0x14	R	Line Status Register	0x6060_6060

7	6	5	4	3	2	1	0
ERR_Rx	TE	THRE	BH	FEI	PEI	OEI	RFDR

Bits	Description	ons
		Rx FIFO Error
F = 7.1	EDD D	0 = Rx FIFO works normally
[7]	ERR_Rx	1 = There is at least one parity error (PE), framing error (FE), or break indication (BI) in the FIFO. ERR_Rx is cleared when CPU reads the LSR and if there are no subsequent errors in the Rx FIFO.
		Transmitter Empty
[6]	TE	0 = Either Transmitter Holding Register (THR - Tx FIFO) or Transmitter Shift Register (TSR) are not empty.
		1 = Both THR and TSR are empty.
		Transmitter Holding Register Empty
		0 = THR is not empty.
[5]	THRE	1 = THR is empty.
		THRE is set when the last data word of Tx FIFO is transferred to Transmitter Shift Register (TSR). The CPU resets this bit when the THR (or Tx FIFO) is loaded. This bit also causes the UART to issue an interrupt (Irpt_THRE) to the CPU when IER $[1] = 1$.
		Break Interrupt Indicator
[4]	ВП	This bit is set to a logic 1 whenever the received data input is held in the "spacing state" (logic 0) for longer than a full word transmission time (that is, the total time of "start bit" + data bits + parity + stop bits) and is reset whenever the CPU reads the contents of the LSR.
		Framing Error Indicator
[3]	FEI	This bit is set to logic 1 whenever the received character does not have a valid "stop bit" (that is, the stop bit following the last data bit or parity bit is detected as a logic 0), and is reset whenever the CPU reads the contents of the LSR.

Publication Release Date: Jun. 18, 2010

Bits	Description	Descriptions						
		Parity Error Indicator						
[2]	[2] PEI	This bit is set to logic 1 whenever the received character does not have a valid "parity bit", and is reset whenever the CPU reads the contents of the LSR.						
		Overrun Error Indicator						
[1] OEI	OEI	An overrun error will occur only after the Rx FIFO is full and the next character has been completely received in the shift register. The character in the shift register is overwritten, but it is not transferred to the Rx FIFO. OE is indicated to the CPU as soon as it happens and is reset whenever the CPU reads the contents of the LSR.						
		Rx FIFO Data Ready						
[0]	RFDR	0 = Rx FIFO is empty						
		1 = Rx FIFO contains at least 1 received data word.						

LSR [4:2] (BII, FEI, PEI) are revealed to the CPU when its associated character is at the top of the Rx FIFO. These three error indicators are reset whenever the CPU reads the contents of the LSR.

LSR [4:1] (BII, FEI, PEI, OEI) are the error conditions that produce a "receiver line status interrupt" (Irpt_RLS) when IER [2] =1. Reading LSR clears Irpt_RLS. Writing LSR is a null operation (not suggested).

Publication Release Date: Jun. 18, 2010

Time-Out Register (TOR)

Register	offset	R/W	Description	Reset Value
TOR	0XB800_0x1C R/W		Time Out Register	0x0000_0000

7	6	5	4	3	2	1	0
TOIE				TOIC			

Bits		Descriptions					
[7]	TOIE	Time Out Interrupt Enable The feature of receiver time out interrupt is enabled only when TOR [7] = IER [0] = 1.					
[6:0]	тоіс	Time Out Interrupt Comparator The time out counter resets and starts counting (the counting clock = baud rate) whenever the Rx FIFO receives a new data word. Once the content of time out counter (TOUT_CNT) is equal to that of time out interrupt comparator (TOIC), a receiver time out interrupt (Irpt_TOUT) is generated if TOR [7] = IER [0] = 1. A new incoming data word or Rx FIFO empty clears Irpt_TOUT.					

Publication Release Date: Jun. 18, 2010

IrDA Control Register (IRCR)

Register	Offset	R/W	Description	Reset Value
IRCR	0xB800_0220	R/W	IrDA Control Register for UART2	0x0000_0040

7	6	5	4	3	2	1	0
Reserved	INV_Rx	INV_Tx		Reserved		Tx_SELECT	IrDA_EN

Bits		Descriptions					
[6]	INV_Rx	INV_Rx 1: Inverse Rx input signal 0: No inversion					
[5]	INV_Tx	INV_Tx 1: Inverse Tx output signal 0: No inversion					
[1]	Tx_SELECT	Tx_SELECT 1: Enable IrDA transmitter 0: Enable IrDA receiver					
[0]	IrDA_EN	IrDA_EN 1: Enable IrDA block 0: Disable IrDA block					

7.14 TIMER Controller

7.14.1 General Timer Controller

The timer module includes five channels, $TIMER0 \sim TIMER4$, they can easily be implemented as counting scheme. The timer can perform functions like frequency measurement, event counting, interval

Publication Release Date: Jun. 18, 2010

measurement, pulse generation, delay timing, and so on. The timer possesses features such as adjustable resolution, programmable counting period, and detailed information. The timer can generate an interrupt signal upon timeout, or provide the current value of count during operation.

The general TIMER Controller includes the following features

- Five channels with a 24-bit down counter and an interrupt request each
- Independent clock source for each channel
- Maximum uninterrupted time = (1 / 15 MHz) * (255) * (2^24 1), if TCLK = 15 MHz

7.14.2 Watchdog Timer

The purpose of watchdog timer is to perform a system restart after the software running into a problem. This prevents system from hanging for an indefinite period of time. It is a free running timer with programmable time-out intervals. When the specified time internal expires, a system reset can be generated. If the watchdog timer reset function is enabled and the watchdog timer is not being reset before timing out, then the watchdog reset is activated after 1024 WDT clocks. Setting **WTE** in the register **WTCR** enables the watchdog timer.

The WTR should be set before making use of watchdog timer. This ensures that the watchdog timer restarts from a know state. The watchdog timer will start counting and time-out after a specified period of time. The time-out interval is selected by two bits, WTIS [1:0]. The WTR is self-clearing, i.e., after setting it, the hardware will automatically reset it. When timeout occurs, Watchdog Timer interrupt flag is set. Watchdog Timer waits for an additional 1024 WDT clock cycles before issuing a reset signal, if the WTRE is set. The WTRF will be set and the reset signal will last for 15 WDT clock cycles long. When used as a simple timer, the interrupt and reset functions are disabled. Watchdog Timer will set the WTIF each time a timeout occurs. The WTIF can be polled to check the status, and software can restart the timer by setting the WTR.

Publication Release Date: Jun. 18, 2010

7.14.3 Timer Control Registers Map

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register	Address	R/W/C	Description	Reset Value
TMR_BA =	0xB800_1000			
TCSRO	0xB800_1000	R/W	Timer Control and Status Register 0	0x0000_0005
TCSR1	0xB800_1004	R/W	Timer Control and Status Register 1	0x0000_0005
TICRO	0xB800_1008	R/W	Timer Initial Control Register 0	0x0000_0000
TICR1	0xB800_100C	R/W	Timer Initial Control Register 1	0x0000_0000
TDRO	0xB800_1010	R	Timer Data Register 0	0x0000_0000
TDR1	0xB800_1014	R	Timer Data Register 1	0x0000_0000
TISR	0xB800_1018	R/C	Timer Interrupt Status Register	0x0000_0000
WTCR	0xB800_101C	R/W	Watchdog Timer Control Register	0x0000_0400
TCSR2	0xB800_1020	R/W	Timer Control and Status Register 2	0x0000_0005
TCSR3	0xB800_1024	R/W	Timer Control and Status Register 3	0x0000_0005
TICR2	0xB800_1028	R/W	Timer Initial Control Register 2	0x0000_0000
TICR3	0xB800_102C	R/W	Timer Initial Control Register 3	0x0000_0000
TDR2	0xB800_1030	R	Timer Data Register 2	0x0000_0000
TDR3	0xB800_1034	R	Timer Data Register 3	0x0000_0000
TCSR4	0xB800_1040	R/W	Timer Control and Status Register 4	0x0000_0005
TICR4	0xB800_1048	R/W	Timer Initial Control Register 4	0x0000_0000
TDR4	0xB800_1050	R	Timer Data Register 4	0x0000_0000

Timer Control and Status Register 0~4 (TCR0~TCR4)

Register	Address	R/W/C	Description	Reset Value
TCSR0	0xB800_1000	R/W	Timer Control and Status Register 0	0x0000_0005
TCSR1	0xB800_1004	R/W	Timer Control and Status Register 1	0x0000_0005
TCSR2	0xB800_1020	R/W	Timer Control and Status Register 2	0x0000_0005
TCSR3	0xB800_1024	R/W	Timer Control and Status Register 3	0x0000_0005
TCSR4	0xB800_1040	R/W	Timer Control and Status Register 4	0x0000_0005

31	30	29	28	27	26	25	24
RESERVED	CE	IE	МС	DE	CRST	CACT	RESERVED
23	22	21	20	19	18	17	16
			RES	ERVED			
15	14	13	12	11	10	9	8
	RESERVED						
7	6	5	4	3	2	1	0
	PRESCALE						

Bits	Descriptions					
[30]	CE	Counter Enable 0 = Stops counting 1 = Starts counting				
[29]	IE	Interrupt Enable 0 = Disables timer interrupt 1 = Enables timer interrupt. If timer interrupt is enabled, the timer asserts its interrupt signal when the associated counter decrements to zero.				

		Timer Operating	Mode			
		MODE [28:27]	Timer Operating Mode			
		00	The timer is operating in the one-shot mode. The associated interrupt signal is generated once (if IE is enabled) and CE is automatically cleared then.			
[28:27]	MODE	01	The timer is operating in the periodic mode. The associated interrupt signal is generated periodically (if IE is enabled).			
		10	The timer is operating in the toggle mode. The associated interrupt signal is changing back and forth (if IE is enabled) with 50% duty cycle.			
		11	Reserved for further use			
		Counter Reset				
[26]	CRST	Set this bit will reset the TIMER counter, and also force CEN to 0 .				
		0 = No effect. 1 = Reset Timer's	pre-scale counter, internal 24-bit counter and CEN.			
		Timer is in Active				
			the counter status of timer.			
[25]	CACT	0 = Timer is not a				
		1 = Timer is in ac	tive.			
		Clock Pre-scale	Divide Count			
[7:0]	PRESCALE		ided by PRESCALE + 1 before it is fed to the counter (here idered as a decimal number). If PRESCALE = 0, then there is			

Timer Initial Count Register 0~4 (TICR0~TICR4)

Register	Address	R/W/C	Description	Reset Value
TICRO	0xB800_1008	R/W	Timer Initial Control Register 0	0x0000_00FF
TICR1	0xB800_100C	R/W	Timer Initial Control Register 1	0x0000_00FF
TICR2	0xB800_1028	R/W	Timer Initial Control Register 2	0x0000_00FF
TICR3	0xB800_102C	R/W	Timer Initial Control Register 3	0x0000_00FF
TICR4	0xB800_1048	R/W	Timer Initial Control Register 4	0x0000_00FF

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	TIC[23:16]								
15	14	13	12	11	10	9	8		
	TIC[15:8]								
7	6	5	4	3	2	1	0		
	TIC[7:0]								

Bits		Descriptions				
[23:0]	TIC	Timer Initial Count This is a 24-bit value representing the initial count. Timer will reload this value whenever the counter is decremented to zero. NOTE: (1) Never write 0x0 in TIC, or the core will run into unknown state. (2) No matter CEN is 0 or 1, whenever software write a new value into this register, Timer will restart counting using this new value and abort previous count.				

Timer Data Register 0~4 (TDR0~TDR4)

Register	Address	R/W/C	Description	Reset Value
TDR0	0xB800_1010	R	Timer Data Register 0	0x0000_00FF
TDR1	0xB800_1014	R	Timer Data Register 1	0x0000_00FF
TDR2	0xB800_1030	R	Timer Data Register 2	0x0000_00FF
TDR3	0xB800_1034	R	Timer Data Register 3	0x0000_00FF
TDR4	0xB800_1050	R	Timer Data Register 4	0x0000_00FF

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	TDR[23:16]								
15	14	13	12	11	10	9	8		
	TDR[15:8]								
7	6	5	4	3	2	1	0		
	TDR[7:0]								

Bits		Descriptions				
[23:0]	TDR	Timer Data Register The current count is registered in this 24-bit value. NOTE: Software can read a correct current value on this register only when CEN = 0, or the value represents here could not be a correct one.				

Timer Interrupt Status Register (TISR)

Register	Address	R/W/C	Description	Reset Value
TISR	0xB800_1018	R/C	Timer Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24	
			RESE	RVED				
23	22	21	20	19	18	17	16	
	RESERVED							
15	14	13	12	11	10	9	8	
	RESERVED							
7	6	5	4	3	2	1	0	
	RESERVED			TIF3	TIF2	TIF1	TIFO	

Bits		Descriptions					
		Timer Interrupt Flag 4					
[4]	TIF4	0 = It indicates that the timer 4 does not count down to zero yet. Software can reset this bit after the timer interrupt 4 had occurred.					
		1 = It indicates that the counter of timer 4 is decremented to zero;					
		NOTE: This bit is read only, but can be cleared by writing 1 to this bit.					
		Timer Interrupt Flag 3					
[3]	TIF3	0 = It indicates that the timer 3 does not count down to zero yet. Software can reset this bit after the timer interrupt 3 had occurred.					
		1 = It indicates that the counter of timer 3 is decremented to zero;					
		NOTE: This bit is read only, but can be cleared by writing 1 to this bit.					
		Timer Interrupt Flag 2					
[2]	TIF2	0 = It indicates that the timer 2 does not count down to zero yet. Software can reset this bit after the timer interrupt 2 had occurred.					
		1 = It indicates that the counter of timer 2 is decremented to zero;					
		NOTE: This bit is read only, but can be cleared by writing 1 to this bit.					

524

Publication Release Date: Jun. 18, 2010

[1]	TIF1	Timer Interrupt Flag 1 0 = It indicates that the timer 1 does not count down to zero yet. Software can reset this bit after the timer interrupt 1 had occurred. 1 = It indicates that the counter of timer 1 is decremented to zero; NOTE: This bit is read only, but can be cleared by writing 1 to this bit.
[0]	TIFO	Timer Interrupt Flag 0 0 = It indicates that the timer 0 does not count down to zero yet. Software can reset this bit after the timer interrupt 0 had occurred. 1 = It indicates that the counter of timer 0 is decremented to zero; NOTE: This bit is read only, but can be cleared by writing 1 to this bit.

Watchdog Timer Control Register (WTCR)

Register	Address	R/W/C	Description	Reset Value
WTCR	0xB800_101C	R/W	Watchdog Timer Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			RE	SERVED			
23	22	21	20	19	18	17	16
			RE	SERVED			
15	14	13	12	11	10	9	8
	RESERVED				WTCLK	RESERVI	D
7	6	5	4	3	2	1	0
WTE	WTIE	WTIS		WTIF	WTRF	WTRE	WTR

Bits	Descriptions				
		Watchdog Timer Clock			
		This bit is used for deciding whether the Watchdog timer clock input is divided by 256 or not. Clock source of Watchdog timer is Crystal input.			
[10]	WTCLK	0 = Using original clock input			
		1 = The clock input will be divided by 256			
		NOTE: When WTTME = 1, set this bit has no effect on WDT clock (using original clock input).			
		Watchdog Timer Enable			
[7]	WTE	0 = Disable the watchdog timer			
		1 = Enable the watchdog timer			
		Watchdog Timer Interrupt Enable			
[6]	WTIE	0 = Disable the watchdog timer interrupt			
		1 = Enable the watchdog timer interrupt			

JZ-DI I AKIVI7ZULJ-J DAJLD IVICU								
		Watchdog Timer Interval Select These two bits select the interval for the watchdog timer. No matter which interval is chosen, the reset time-out is always occurred 1024 clocks later than the interrupt time-out.						
[5:4]	[5:4] WTIS		Interrupt Timeout	Reset Timeout	Real Time Interval (CLK=15MHz/256)			
		00	2 ¹⁴ clocks	2 ¹⁴ + 1024 clocks	0.28 sec.			
		01	2 ¹⁶ clocks	2 ¹⁶ + 1024 clocks	1.12 sec.			
		10	2 ¹⁸ clocks	2 ¹⁸ + 1024 clocks	4.47 sec.			
		11	2 ²⁰ clocks	2 ²⁰ + 1024 clocks	17.9 sec.			
[3]	WTIF	If the watch indicate that not enabled $0 = \text{Watchd}$ $1 = \text{Watchd}$	Watchdog Timer Interrupt Flag If the watchdog interrupt is enabled, then the hardware will set this bit to indicate that the watchdog interrupt has occurred. If the watchdog interrupt is not enabled, then this bit indicates that a time-out period has elapsed. 0 = Watchdog timer interrupt does not occur 1 = Watchdog timer interrupt occurs NOTE: This bit is read only, but can be cleared by writing 1 to this bit.					
[2]	WTRF	When the wall flag can be responsible timer has n 0 = Watchc	Watchdog Timer Reset Flag When the watchdog timer initiates a reset, the hardware will set this bit. This flag can be read by software to determine the source of reset. Software is responsible to clear it up manually. If WTRE is disabled, then the watchdog timer has no effect on this bit. 0 = Watchdog timer reset does not occur 1 = Watchdog timer reset occurs					
[1]	WTRE	Setting this 0 = Disable 1 = Enable	Watchdog Timer Reset Enable Setting this bit will enable the watchdog timer reset function. 0 = Disable watchdog timer reset function 1 = Enable watchdog timer reset function NOTE: This bit is read only, but can be cleared by writing 1 to this bit.					

		Watchdog Timer Reset
[0]	WTR	This bit brings the watchdog timer into a known state. It helps reset the watchdog timer before a time-out situation occurring. Failing to set WTR before time-out will initiates an interrupt if WTIE is set. If WTRE is set, a watchdog timer reset will be generated 512 clocks after time-out. This bit is self-clearing.
		0 = No operation
		1 = Reset the contents of the watchdog timer

7.15 Advanced Interrupt Controller

An *interrupt* temporarily changes the sequence of program execution to react to a particular event such as power failure, watchdog timer timeout, transmit/receive request from Ethernet MAC Controller, and so on. The CPU processor provides two modes of interrupt, the **Fast Interrupt (FIQ)** mode for critical session and the *Interrupt* (IRQ) mode for general purpose. The IRQ request is occurred when the nIRQ input is asserted. Similarly, the FIQ request is occurred when the nFIQ input is asserted. The FIQ has privilege over the IRQ and can preempt an ongoing IRQ. It is possible to ignore the FIQ and the IRQ by setting the F and I bits in the **current program status register (CPSR)**.

The Advanced Interrupt Controller (AIC) is capable of processing the interrupt requests up to 32 different sources. Currently, 23 interrupt sources are defined. Each interrupt source is uniquely assigned to an *interrupt channel*. For example, the watchdog timer interrupt is assigned to channel 1. The AIC implements a proprietary eight-level priority scheme that categories the available 23 interrupt sources into eight priority levels. Interrupt sources within the priority level 0 is the highest priority and the priority level 7 is the lowest. In order to make this scheme work properly, a certain priority level must be specified to each interrupt source during power-on initialization; otherwise, the system shall behave unexpectedly. Within each priority level, interrupt source that is positioned in a lower channel has a higher priority. Interrupt source that is active, enabled, and positioned in the lowest channel with priority level 0 is promoted to the FIQ. Interrupt sources within the priority levels other than 0 are routed to the IRQ. The IRQ can be preempted by the occurrence of the FIQ. Interrupt nesting is performed automatically by the AIC.

Though interrupt sources originated from the chip itself are intrinsically high-level sensitive, the AIC can be configured as either low-level sensitive, high-level sensitive, negative-edge triggered, or positive-edge triggered to each interrupt source.

The advanced interrupt controller includes the following features:

- External interrupts can be programmed as either edge-triggered or level-sensitive
- External interrupts can be programmed as either low-active or high-active
- Flags to reflect the status of each interrupt source
- Individual mask for each interrupt source
- Proprietary 8-level interrupt scheme to employ the priority scheme.
- Priority methodology is adopted to allow for interrupt daisy-chaining
- Automatically masking out the lower priority interrupt during interrupt nesting
- Automatically clearing the interrupt flag when the external interrupt source is programmed to be edgetriggered

Publication Release Date: Jun. 18, 2010

Priority	Name	Mode	Source
1 (Highest)	WDT_INT	Positive Level	Watch Dog Timer Interrupt
2	nIRQ_Group0	Positive Level	External Interrupt Group 0
3	nIRQ_Group1	Positive Level	ICE COMMTX/RX Interrupt
4	ACTL_INT	Positive Level	Audio Controller Interrupt
5	LCD_INT	Positive Level	LCD Controller Interrupt
6			Reserved
7	UART_INTO	Positive Level	UART Interrupt0
8	UART_INT1	Positive Level	UART Interrupt1
9	UART_INT2	Positive Level	UART Interrupt2
10			Reserved
11			Reserved
12	T_INTO	Positive Level	Timer Interrupt 0
13	T_INT1	Positive Level	Timer Interrupt 1
14	T_INT_Group	Positive Level	Timer Interrupt Group
15	USBH_INT_Group	Positive Level	USB Host Interrupt Group
16	EMCTx_I NT	Positive Level	EMC Tx Interrupt
17	EMCRx_INT	Positive Level	EMC Rx Interrupt
18	GDMA_INT_Group	Positive Level	GDMA Interrupt Group
19	DMAC_INT	Positive Level	DMAC Interrupt
20	FMI_INT	Positive Level	FMI Interrupt
21	USBD_INT	Positive Level	USB Device Interrupt
22			Reserved
23	G2D_INT	Positive Level	2D Graphic Engine Interrupt
24			Reserved
25			Reserved
26	I2C_INT_Group	Positive Level	I2C Interrupt Group
27	USI_INT	Positive Level	USI Interrupt
28	PWM_INT	Positive Level	PWM Timer Interrupt
29	KPI_INT	Positive Level	Keypad Interrupt
30			Reserved
31			Reserved

530

Publication Release Date: Jun. 18, 2010

Interrupt Group	Interrupt Sources
External Interrupt Group 0	External Pins: nIRQ[2:0]
External Interrupt Group 1	ICE Signals : COMMRX,COMMTX
Timer Interrupt Group	TIMER2, TIMER3, and TIMER4
USB Host Interrupt Group	OHCI and EHCI USB Host Controller
GDMA Interrupt Group	GDMA0 and GDMA1
I2C interrupt Group	I2C Line 0 and I2C Line 1

7.15.1 AIC Registers Map

Register	Address	R/W	Description	Reset Value
AIC_BA = OxE	3800_2000			
AIC_SCR1	0xB800_2004	R/W	Source Control Register 1	0x0000_0047
AIC_SCR2	0xB800_2008	R/W	Source Control Register 2	0x0000_0047
AIC_SCR3	0xB800_200C	R/W	Source Control Register 3	0x0000_0047
AIC_SCR4	0xB800_2010	R/W	Source Control Register 4	0x0000_0047
AIC_SCR5	0xB800_2014	R/W	Source Control Register 5	0x0000_0047
AIC_SCR7	0xB800_201C	R/W	Source Control Register 7	0x0000_0047
AIC_SCR8	0xB800_2020	R/W	Source Control Register 8	0x0000_0047
AIC_SCR9	0xB800_2024	R/W	Source Control Register 9	0x0000_0047
AIC_SCR12	0xB800_2030	R/W	Source Control Register 12	0x0000_0047
AIC_SCR13	0xB800_2034	R/W	Source Control Register 13	0x0000_0047
AIC_SCR14	0xB800_2038	R/W	Source Control Register 14	0x0000_0047
AIC_SCR15	0xB800_203C	R/W	Source Control Register 15	0x0000_0047
AIC_SCR16	0xB800_2040	R/W	Source Control Register 16	0x0000_0047
AIC_SCR17	0xB800_2044	R/W	Source Control Register 17	0x0000_0047
AIC_SCR18	0xB800_2048	R/W	Source Control Register 18	0x0000_0047
AIC_SCR19	0xB800_204C	R/W	Source Control Register 19	0x0000_0047
AIC_SCR20	0xB800_2050	R/W	Source Control Register 20	0x0000_0047
AIC_SCR21	0xB800_2054	R/W	Source Control Register 21	0x0000_0047
AIC_SCR23	0xB800_205C	R/W	Source Control Register 23	0x0000_0047
AIC_SCR26	0xB800_2068	R/W	Source Control Register 26	0x0000_0047

531

Publication Release Date: Jun. 18, 2010

Register	Address	R/W	Description	Reset Value
AIC_SCR27	0xB800_206C	R/W	Source Control Register 27	0x0000_0047
AIC_SCR28	0xB800_2070	R/W	Source Control Register 28	0x0000_0047
AIC_SCR29	0xB800_2074	R/W	Source Control Register 29	0x0000_0047
AIC_IRQSC	0xB800_2080	R/W	External Interrupt Control Register	0x0000_0000
AIC_GEN	0xB800_2084	R/W	Interrupt Group Enable Control Register	0x0000_0000
AIC_GASR	0xB800_2088	R	Interrupt Group Active Status Register	0x0000_0000
AIC_GSCR	0xB800_208C	W/R	Interrupt Group Status Clear Register	0x0000_0000
AIC_IRSR	0xB800_2100	R	Interrupt Raw Status Register	0x0000_0000
AIC_IASR	0xB800_2104	R	Interrupt Active Status Register	0x0000_0000
AIC_ISR	0xB800_2108	R	Interrupt Status Register	0x0000_0000
AIC_IPER	0xB800_210C	R	Interrupt Priority Encoding Register	0x0000_0000
AIC_ISNR	0xB800_2110	R	Interrupt Source Number Register	0x0000_0000
AIC_IMR	0xB800_2114	R	Interrupt Mask Register	0x0000_0000
AIC_OISR	0xB800_2118	R	Output Interrupt Status Register	0x0000_0000
AIC_MECR	0xB800_2120	W	Mask Enable Command Register	N/A
AIC_MDCR	0xB800_2124	W	Mask Disable Command Register	N/A
AIC_EOSCR	0xB800_2130	W	End of Service Command Register	N/A

AIC Source Control Registers (AIC_SCR1 ~ AIC_SCR29)

Register	Address	R/W	Description	Reset Value
AIC_SCR1	0xB800_2004	R/W	Source Control Register 1	0x0000_0047
AIC_SCR2	0xB800_2008	R/W	Source Control Register 2	0x0000_0047
• • •	• • •	• • •	• • •	• • •
AIC_SCR29	0xB800_2074	R/W	Source Control Register 29	0x0000_0047

31	30	29	28	27	26	25	24
			RESE	RVED			
23	22	21	20	19	18	17	16
	RESERVED						
15	14	13	12	11	10	9	8
	RESERVED						
7	6	5	4	3	2	1	0
SRC	SRCTYPE RESERVED				PRIORITY		

Bits	Descriptions					
		Interrupt Source Type Whether an interrupt source is considered active or not by the AIC is subje to the settings of this field. Interrupt sources should be configured as lev sensitive during normal operation unless in the testing situation.				
[7:6]	SRCTYPE	SRCTY	PE [7:6]	Interrupt Source Type		
		0	0	Low-level Sensitive		
		0 1 High-level Sensitive				
		1 0 Negative-edge Triggered				
		1	1	Positive-edge Triggered		

Publication Release Date: Jun. 18, 2010

Bits		Descriptions			
[2:0]	PRIORITY	Priority Level Every interrupt source must be assigned a priority level during initiation. Among them, priority level 0 has the highest priority and priority level 7 the lowest. Interrupt sources with priority level 0 are promoted to FIQ. Interrupt sources with priority level other than 0 belong to IRQ. For interrupt sources			
		of the same priority level, which located in the lower channel number has higher priority.			

External Interrupt Control Register (AIC_IRQSC)

Register	Address	R/W	Description	Reset Value
AIC_IRQSC	0xB800_2080	R/W	External Interrupt Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	RESERVED								
15	14	13	12	11	10	9	8		
	RESERVED								
7	6	5	4	3	2	1	0		
RESE	RESERVED nI RQ2 nI		nIRQ2		RQ1	nIR	Q0		

Bits				Descriptions			
		External	External Interrupt Source Type				
		nl	RQx	Interrupt Source Type			
		0	0	Low-level Sensitive			
[5:0]	nlRQ <i>x</i>	0	1	High-level Sensitive			
		1	0	Negative-edge Triggered			
		1	1	Positive-edge Triggered			

Interrupt Group Enable Control Register (AIC_GEN)

Register	Address	R/W	Description	Reset Value
AIC_GEN	0xB800_2084	R/W	Interrupt Group Enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
RESE	RVED	RESE	RVED	I2C		RESE	RESERVED	
23	22	21	20	19	18	17	16	
COMMTX	COMMRX	GD	MA	RESERVED		TIMER		
15	14	13	12	11	10	9	8	
		RESE	RVED			US	ВН	
7	6	5	4	3	2	1	0	
RESERVED					nIRQ[2:0]			

Bits		Descriptions
[27:26]	12C	I 2C Controller Interrupt Group Bit[27] is for I2C Line 1, Bit[26] is for Line 0 1: Interrupt Enable for each bit
[23]	соммтх	0: Interrupt Disable for each bit ICE Communications Channel Transmit Interrupt 1: COMMTX Interrupt Enable
		0: COMMTX Interrupt Disable
[22]	COMMRX	1: COMMRX Interrupt Enable 0: COMMRX Interrupt Disable
[21:20]	GDMA	GDMA Controller Interrupt Group Bit[21] is for GDMA Channel 1, Bit[20] is for GDMA Channel 0 1: Interrupt Enable for each bit 0: Interrupt Disable for each bit

Publication Release Date: Jun. 18, 2010

Bits	Descriptions					
[18:16]	TIMER	TIMER Controller Interrupt Group Bit[18] is for TIMER4, Bit[17] is for TIMER3, and Bit[16] is for TIME2 1: Interrupt Enable for each bit 0: Interrupt Disable for each bit				
[9:8]	USBH	USB Host Controller Interrupt Group Bit[9] is for OHCI Host Controller, Bit[9] is for EHCI Host Controller 1: Interrupt Enable for each bit 0: Interrupt Disable for each bit				
[2:0]	nIRQ[2:0]	External Interrupt Group 0 1: Interrupt Enable for each bit 0: Interrupt Disable for each bit				

Interrupt Group Active Status Register (AIC_GASR)

Register	Address	R/W	Description	Reset Value
AIC_GASR	0xB800_2088	R	Interrupt Group Active Status Register	0x0000_0000

31	30	29	28	27	26	25	24	
RESE	RESERVED		RESERVED		12C		RESERVED	
23	22	21	20	19	18	17	16	
COMMTX	COMMRX	GDMA		RESERVED		TIMER		
15	14	13	12	11	10	9	8	
		RESE	RVED			US	ВН	
7	6	5	4	3	2	1	0	
RESERVED					nIRQ[2:0]			

Bits		Descriptions
[27:26]	12C	I2C Controller Interrupt Group Bit[27] is for I2C Line 1, Bit[26] is for Line 0
[23]	соммтх	ICE Communications channel transmit Interrupt This bit denotes that the comms channel transmit buffer is empty.
[22]	COMMRX	ICE Communications channel Receive Interrupt This bit denotes that the comms channel receive buffer contains valid data waiting to be read.
[21:20]	GDMA	GDMA Controller Interrupt Group Bit[21] is for GDMA Channel 1, Bit[20] is for GDMA Channel 0
[18:16]	TIMER	TIMER Controller Interrupt Group Bit[18] is for TIMER4, Bit[17] is for TIMER3, and Bit[16] is for TIME2
[9:8]	USBH	USB Host Controller Interrupt Group Bit[9] is for OHCI Host Controller, Bit[9] is for EHCI Host Controller
[2:0]	nIRQ[2:0]	External Interrupt Group 0

Publication Release Date: Jun. 18, 2010

Interrupt Group Status Clear Register (AIC_GSCR)

Register	Address	R/W	Description	Reset Value
AIC_GSCR	0xB800_208C	R/W	Interrupt Group Status Clear Register	0x0000_0000

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	RESERVED								
15	14	13	12	11	10	9	8		
	RESERVED								
7	6	5	4	3	2	1	0		
	RESERVED				nIRQ[2:0]				

Bits	Descriptions		
[2:0]	nIRQ[2:0] External Interrupt Group 0 Write 1: Clear the relative status bit, and this bit is auto clear to 0 Write 0: No action		

Publication Release Date: Jun. 18, 2010

AIC Interrupt Raw Status Register (AIC_IRSR)

Register	Address	R/W	Description	Reset Value
AIC_IRSR	0xB800_2100	R	Interrupt Raw Status Register	0x0000_0000

31	30	29	28	27	26	25	24
IRS31	IRS30	IRS29	IRS28	IRS27	IRS26	IRS25	IRS24
23	22	21	20	19	18	17	16
IRS23	IRS22	IRS21	IRS20	IRS19	IRS18	IRS17	IRS16
15	14	13	12	11	10	9	8
IRS15	IRS14	IRS13	IRS12	IRS11	IRS10	IRS9	IRS8
7	6	5	4	3	2	1	0
IRS7	IRS6	IRS5	IRS4	IRS3	IRS2	IRS1	RESERVED

Bits	Descriptions		
[31:1]	IRS <i>x</i>	Interrupt Status Indicate the intrinsic status of the corresponding interrupt source 0 = Interrupt channel is in the voltage level 0 1 = Interrupt channel is in the voltage level 1	

This register records the intrinsic state within each interrupt channel.

:

Publication Release Date: Jun. 18, 2010

AIC Interrupt Active Status Register (AIC_IASR)

This register indicates the status of each interrupt channel in consideration of the interrupt source type as defined in the corresponding Source Control Register, but regardless of its mask setting.

Register	Address	R/W	Description	Reset Value
AIC_IASR	0xB800_2104	R	Interrupt Active Status Register	0x0000_0000

31	30	29	28	27	26	25	24
IAS31	IAS30	IAS29	IAS28	IAS27	IAS26	IAS25	IAS24
23	22	21	20	19	18	17	16
IAS23	IAS22	IAS21	IAS20	IAS19	IAS18	IAS17	IAS16
15	14	13	12	11	10	9	8
IAS15	IAS14	IAS13	IAS12	IAS11	IAS10	IAS9	IAS8
7	6	5	4	3	2	1	0
IAS7	IAS6	IAS5	IAS4	IAS3	IAS2	IAS1	RESERVED

Bits	Descriptions			
		Interrupt Active Status		
[21.1]	[31:1] IAS <i>x</i>	Indicate the status of the corresponding interrupt source		
[31:1]		0 = Corresponding interrupt channel is inactive		
		1 = Corresponding interrupt channel is active		

541

:

Publication Release Date: Jun. 18, 2010

AIC Interrupt Status Register (AIC_ISR)

This register identifies all interrupt channels whose are both active and enabled.

Register	Address	R/W	Description	Reset Value
AIC_ISR	0xB800_2108	R	Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24
IS31	IS30	IS29	IS28	IS27	IS26	IS25	IS24
23	22	21	20	19	18	17	16
IS23	IS22	IS21	IS20	IS19	IS18	IS17	IS16
15	14	13	12	11	10	9	8
IS15	IS14	IS13	IS12	IS11	IS10	IS9	IS8
7	6	5	4	3	2	1	0
IS7	IS6	185	154	IS3	IS2	IS1	RESERVED

Bits	Descriptions				
[31:1]	IS <i>x</i>	Interrupt Status Indicates the status of corresponding interrupt channel 0 = Two possibilities: (1) The corresponding interrupt channel is inactive no matter whether it is enabled or disabled; (2) It is active but not enabled 1 = Corresponding interrupt channel is both active and enabled (can assert an interrupt)			

AIC IRQ Priority Encoding Register (AIC_IPER)

When the AIC generates the interrupt, **VECTOR** represents the interrupt channel number that is active, enabled, and has the highest priority. If the representing interrupt channel possesses a priority level 0, then the interrupt asserted is FIQ; otherwise, it is IRQ. The value of **VECTOR** is copied to the register AIC_ISNR thereafter by the AIC. *This register was restored a value 0 after it was read by the interrupt handler*. This register can help indexing into a branch table to quickly jump to the corresponding interrupt service routine.

Register	Address	R/W	Description	Reset Value
AIC_IPER	0xB800_210C	R	Interrupt Priority Encoding Register	0x0000_0000

31	30	29	28	27	26	25	24
0	0	0	0	0	0	0	0
23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
RESERVED	VECTOR					0	0

Bits		Descriptions					
[6:2]	VECTOR	<pre>Interrupt Vector 0 = no interrupt occurs 1 ~ 31 = representing the interrupt channel that is active, enabled, and having the highest priority</pre>					

543

AIC Interrupt Source Number Register (AIC_ISNR)

The purpose of this register is to record the interrupt channel number that is active, enabled, and has the highest priority.

Register	Address	R/W	Description	Reset Value
AIC_ISNR	0xB800_2110	R	Interrupt Source Number Register	0x0000_0000

31	30	29	28	27	26	25	24
0	0	0	0	0	0	0	0
23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
0	0	0	IRQID				

Bits		Descriptions			
[4:0]	IRQID	IRQ Identification Stands for the interrupt channel number			

Publication Release Date: Jun. 18, 2010

AIC Interrupt Mask Register (AIC_IMR)

Register	Address	R/W	Description	Reset Value
AIC_IMR	0xB800_2114	R	Interrupt Mask Register	0x0000_0000

31	30	29	28	27	26	25	24
IM31	IM30	IM29	IM28	IM27	IM26	IM25	IM24
23	22	21	20	19	18	17	16
IM23	IM22	IM21	IM20	IM19	IM18	IM17	IM16
15	14	13	12	11	10	9	8
IM15	IM14	IM13	IM12	IM11	IM10	IM9	IM8
7	6	5	4	3	2	1	0
IM7	IM6	IM5	IM4	IM3	IM2	IM1	RESERVED

Bits		Descriptions			
[31:1]	IM <i>x</i>	Interrupt Mask This bit determines whether the corresponding interrupt channel is enabled or disabled. Every interrupt channel can be active no matter whether it is enabled or disabled. If an interrupt channel is enabled, it does not definitely mean it is active. Every interrupt channel can be authorized by the AIC only when it is both active and enabled. 0 = Corresponding interrupt channel is disabled 1 = Corresponding interrupt channel is enabled			

:

AIC Output Interrupt Status Register (AIC_OISR)

The AIC classifies the interrupt into FIQ and IRQ. This register indicates whether the asserted interrupt is FIQ or IRQ. If both IRQ and FIQ are equal to 0, it means there is no interrupt occurred.

Register	Address	R/W	Description	Reset Value
AIC_OISR	0xB800_2118	R	Output Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24	
	RESERVED							
23	22	21	20	19	18	17	16	
RESERVED								
15	14	13	12	11	10	9	8	
RESERVED								
7	6	5	4	3	2	1	0	
RESERVED						IRQ	FIQ	

Bits		Descriptions				
[1]	IRQ	Interrupt Request 0 = nIRQ line is inactive. 1 = nIRQ line is active.				
[0]	FΙQ	Fast Interrupt Request 0 = nFIQ line is inactive. 1 = nFIQ line is active				

AIC Mask Enable Command Register (AIC_MECR)

Register	Address	R/W	Description	Reset Value
AIC_MECR	0xB800_2120	W	Mask Enable Command Register	Undefined

31	30	29	28	27	26	25	24
MEC31	MEC30	MEC29	MEC28	MEC27	MEC26	MEC25	MEC24
23	22	21	20	19	18	17	16
MEC23	MEC22	MEC21	MEC20	MEC19	MEC18	MEC17	MEC16
15	14	13	12	11	10	9	8
MEC15	MEC14	MEC13	MEC12	MEC11	MEC10	MEC9	MEC8
7	6	5	4	3	2	1	0
MEC7	MEC6	MEC5	MEC4	MEC3	MEC2	MEC1	RESERVED

Bits		Descriptions					
[31:1]	MEC <i>x</i>	Mask Enable Command 0 = No effect 1 = Enables the corresponding interrupt channel MEC6, MEC10, MEC11, MEC22, MEC24, MEC29, MEC30 and MEC31 have to set 0 for the reserved interrupt source. They should not be enabled the corresponding interrupt channels.					

:

AIC Mask Disable Command Register (AIC_MDCR)

Register	Address	R/W	Description	Reset Value
AIC_MDCR	0xB800_2124	W	Mask Disable Command Register	Undefined

31	30	29	28	27	26	25	24
MDC31	MDC30	MDC29	MDC28	MDC27	MDC26	MDC25	MDC24
23	22	21	20	19	18	17	16
MDC23	MDC22	MDC21	MDC20	MDC19	MDC18	MDC17	MDC16
15	14	13	12	11	10	9	8
MDC15	MDC14	MDC13	MDC12	MDC11	MDC10	MDC9	MDC8
7	6	5	4	3	2	1	0
MDC7	MDC6	MDC5	MDC4	MDC3	MDC2	MDC1	RESERVED

Bits		Descriptions			
[31:1]	MDC <i>x</i>	Mask Disable Command 0 = No effect 1 = Disables the corresponding interrupt channel			

AIC End of Service Command Register (AIC_EOSCR)

This register is used by the interrupt service routine to indicate that it is completely served. Thus, the interrupt handler can write any value to this register to indicate the end of its interrupt service.

Register	Address	R/W	Description	Reset Value
AIC_EOSCR	0xB800_2130	W	End of Service Command Register	N/A

31	30	29	28	27	26	25	24
23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0

7.16 General-Purpose Input/Output (GPIO)

7.16.1 Overview

The General-Purpose Input/Output (**GPIO**) module possesses 54 pins, and serves as multiple function purposes. Each port can be easily configured by software to meet various system configurations and design requirements. Software must define which function of each pin is used before starting the main program. If a pin is not used for multiplexed functions, the pin can be configured as I/O ports.

These 52 IO pins are divided into 6 groups according to its peripheral interface definition.

• PortC: 15-pin input/output port

• PortD: 8-pin input/output port

PortE: 7-pin input/output port

PortF: 10-pin input/output port

PortG: 9-pin input/output port

PortH: 3-pin input/output port

Publication Release Date: Jun. 18, 2010

7.16.2 GPIO Multiplexed Functions Table

GPIO Group	Shared Interface
GPIOC (15 pins)	NAND Flash /
	KPI Interface
GPIOC[0]	SM_CSOn / KPI_ROW[0]
GPIOC[1]	SM_ALE / KPI_ROW[1]
GPIOC[2]	SM_CLE / KPI_ROW[2]
GPIOC[3]	SM_WEn / KPI_ROW[3]
GPIOC[4]	SM_REn
GPIOC[5]	SM_WPn
GPIOC[6]	SM_RBn
GPIOC[7]	SM_D[0] / KPI_COL[0]
GPIOC[8]	SM_D[1] / KPI_COL[1]
GPIOC[9]	SM_D[2] / KPI_COL[2]
GPIOC[10]	SM_D[3] / KPI_COL[3]
GPIOC[11]	SM_D[4] / KPI_COL[4]
GPIOC[12]	SM_D[5] / KPI_COL[5]
GPIOC[13]	SM_D[6] / KPI_COL[6]
GPIOC[14]	SM_D[7] / KPI_COL[7]
GPIOD (8 pins)	SD(SDIO) Interface
GPIOD[0]	SD_CMD
GPIOD[1]	SD_CLK
GPIOD[2]	SD_DAT0
GPIOD[3]	SD_DAT1
GPIOD[4]	SD_DAT2
GPIOD[5]	SD_DAT3
GPIOD[6]	SD_CDn
GPIOD[8]	SD_nPWR
GPIOE (7 pins)	UART Interface
GPIOE[0]	TXD0
GPIOE[1]	RXD0

GPIOE[2]	TXD1
GPIOE[3]	RXD1
GPIOE[6]	TXD2(IrDA)
GPIOE[7]	RXD2(IrDA)
GPIOE[13]	GPIOE13
GPIOF (10 pins)	RMII Interface
GPIOF[0]	PHY_MDC
GPIOF [1]	PHY_MDIO
GPIOF [3:2]	PHY_TXD [1:0]
GPIOF [4]	PHY_TXEN
GPIOF [5]	PHY_REFCLK
GPIOF [7:6]	PHY_RXD [1:0]
GPIOF [8]	PHY_CRSDV
GPIOF [9]	PHY_RXERR
GPIOG (9 pins)	I2C/USI
	AC97/12S/PWM Interface
GPIOG[0]	SCLO /
	SFRM
GPIOG[1]	SDA0 /
	SSPTXD
GPIOG[2]	SCL1 /
	SCLK
GPIOG[3]	SDA1 /
	SSPRXD
GPIOG[12]	AC97_nRESET /
001001407	12S_SYSCLK
GPIOG[13]	AC97_DATAL /
	I2S_DATAI / PWM [0]
GPIOG[14]	AC97_DATAO /
0.100[17]	I2S_DATAO /
	PWM [1]
GPIOG[15]	AC97_SYNC /
	12S_WS /
	PWM [2]

GPIOG[16]	AC97_BITCLK /
	12S_BITCLK /
	PWM [3]
GPIOH (3 pins)	nIRQ Interface
GPIOH[2:0]	nIRQ[2:0]

7.16.3 GPIO Control Registers Map

Register	Address	R/W	Description	Reset Value
GPIO_BA = 0xB800	0_3000			
GPIOC_DIR	0xB800_3004	R/W	GPIO portC direction control register	0x0000_0000
GPIOC_DATAOUT	0xB800_3008	R/W	GPIO portC data output register	0x0000_0000
GPIOC_DATAIN	0xB800_300C	R	GPIO portC data input register	N/A
GPIOD_DIR	0xB800_3014	R/W	GPIO portD direction control register	0x0000_0000
GPIOD_DATAOUT	0xB800_3018	R/W	GPIO portD data output register	0x0000_0000
GPIOD_DATAIN	0xB800_301C	R	GPIO portD data input register	N/A
GPIOE_DIR	0xB800_3024	R/W	GPIO portE direction control register	0x0000_0000
GPIOE_DATAOUT	0xB800_3028	R/W	GPIO portE data output register	0x0000_0000
GPIOE_DATAIN	0xB800_302C	R	GPIO portE data input register	0x0000_0000
GPIOF_DIR	0xB800_3034	R/W	GPIO portF direction control register	0x0000_0000
GPIOF_DATAOUT	0xB800_3038	R/W	GPIO portF data output register	0x0000_0000
GPIOF_DATAIN	0xB800_303C	R	GPIO portF data input register	N/A
GPIOG_DIR	0xB800_3044	R/W	GPIO portG direction control register	0x0000_0000
GPIOG_DATAOUT	0xB800_3048	R/W	GPIO portG data output register	0x0000_0000
GPIOG_DATAIN	0xB800_304C	R	GPIO portG data input register	N/A
GPIOH_DBNCE	0xB800_3050	R/W	GPIO portH input de-bounce control reg.	0x0000_0000
GPIOH_DIR	0xB800_3054	R/W	GPIO portH direction control register	0x0000_0000
GPIOH_DATAOUT	0xB800_3058	R/W	GPIO portH data output register	0x0000_0000
GPIOH_DATAIN	0xB800_305C	R	GPIO portH data input register	N/A

Publication Release Date: Jun. 18, 2010

GPIO PortC Direction Control Register (GPIOC_DIR)

Register	Address	R/W	Description	Reset Value
GPIOC_DIR	0xB800_3004	R/W	GPIO portC in/out direction control register	0x0000_0000

31	30	29	28	27	26	25	24			
	RESERVED									
23	22	21	20	19	18	17	16			
	RESERVED									
15	14	13	12	11	10	9	8			
RESERVE D										
7	6	5	4	3	2	1	0			
	OUTEN									

Bits	Descriptio	Descriptions					
[14:0]	OUTEN	GPIO PortC Output Enable Control Each GPIO pin can be enabled individually by setting the corresponding control bit. 0 = Input Mode 1 = Output Mode					

Publication Release Date: Jun. 18, 2010

GPIO PortC Data Output Register (GPIOC_DATAOUT)

Register	Address	R/W	Description	Reset Value
GPIOC_DATAOUT	0xB800_3008	R/W	GPIO portC data output register	0x0000_0000

31	30	29	28	27	26	25	24			
	RESERVED									
23	22	21	20	19	18	17	16			
	RESERVED									
15	14	13	12	11	10	9	8			
RESERVE D										
7	6	5	4	3	2	1	0			
	DATAOUT									

Bits	Description	s
[14:0]	DATAOUT	GPIO PortC Data Output Value Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective.

GPIO PortC Data Input Register (GPIOC_DATAIN)

Register	Address	R/W	Description	Reset Value
GPIOC_DATAIN	0xB800_300C	R	GPIO portC data input register	N/A

31	30	29	28	27	26	25	24			
	RESERVED									
23	22	21	21 20		18	17	16			
	RESERVED									
15	14	13	12	11	10	9	8			
RESERVE D										
7	6	5	4	3	2	1	0			
	DATAIN									

Bits	Descriptio	Descriptions					
[14:0]	DATAIN	GPIO PortC Data Input Value The DATAIN indicates the status of each GPIO portC pin regardless of its operation mode. The reserved bits will be read as "0".					

GPIO PortD Direction Control Register (GPIOD_DIR)

Register	Address	R/W	Description	Reset Value
GPIOD_DIR	0xB800_3014	R/W	GPIO portD in/out direction control register	0x0000_0000

31	30	29	28	27	26	25	24			
	RESERVED									
23	22	21	20	19	18	17	16			
	RESERVED									
15	14	13	12	11	10	9	8			
RESERVED										
7	6	5	4	3	2	1	0			
	OUTEN									

Bits	Descriptio	Descriptions					
[8:0]	OUTEN	GPIO PortD Output Enable Control Each GPIO pin can be enabled individually by setting the corresponding control bit. 0 = Input Mode					
		1 = Output Mode Bit7 is no action					

Publication Release Date: Jun. 18, 2010

GPIO PortD Data Output Register (GPIOD_DATAOUT)

Register	Address	R/W	Description	Reset Value
GPIOD_DATAOUT	0xB800_3018	R/W	GPIO portD data output register	0x0000_0000

31	30	29	28	27	26	25	24			
31	30	2,			20	23	27			
	RESERVED									
23	22	21	20	19	18	17	16			
	RESERVED									
15	14	13	12	11	10	9	8			
	RESERVED									
7	6	5	4	3	2	1	0			
	DATAOUT									

Bits	Description	Descriptions					
		GPIO PortD Data Output Value					
[8:0]	DATAOUT	Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective.					
		Bit7 is no action					

557

GPIO PortD Data Input Register (GPIOD_DATAIN)

Register	Address	R/W	Description	Reset Value
GPIOD_DATAIN	0xB800_301C	R	GPIO portD data input register	N/A

31	30	29	28	27	26	25	24			
	RESERVED									
23	22	21	20	19	18	17	16			
	RESERVED									
15	14	13	12	11	10	9	8			
RESERVED										
7	6	5	4	3	2	1	0			
	DATAIN									

Bits	Descriptio	Descriptions					
[8:0]	DATAIN	GPIO PortD Data Input Value The DATAIN indicates the status of each GPIO portD pin regardless of its operation mode. The reserved bits will be read as "0". Bit7 is reserved.					

GPIO PortE Direction Control Register (GPIOE_DIR)

Register	Address	R/W	Description	Reset Value
GPIOE_DIR	0xB800_3024	R/W	GPIO portE in/out direction control register	0x0000_0000

31	30	29	28	27	26	25	24	
	RESERVED							
23	22	21	20	19	18	17	16	
	RESERVED							
15	14	13	12	11	10	9	8	
RESE	RVED			OU ⁻	TEN			
7	6	5	4	3	2	1	0	
	OUTEN							

Bits	Descriptio	Descriptions						
[13:0]	OUTEN	GPIO PortE Output Enable Control Each GPIO pin can be enabled individually by setting the corresponding control bit. 0 = Input Mode 1 = Output Mode Bit12-bit8 and bit5-bit4 are no action						

559

Publication Release Date: Jun. 18, 2010

GPIO PortE Data Output Register (GPIOE_DATAOUT)

Register	Address	R/W	Description	Reset Value
GPIOE_DATAOUT	0xB800_3028	R/W	GPIO portE data output register	0x0000_0000

31	30	29	28	27	26	25	24	
	RESERVED							
23	22	21	20	19	18	17	16	
	RESERVED							
15	14	13	12	11	10	9	8	
RESE	RVED			DATA	AOUT			
7	6	5	4	3	2	1	0	
	DATAOUT							

Bits	Description	Descriptions					
		GPIO PortE Data Output Value					
[13:0]	DATAOUT	Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective.					
		Bit12-bit8 and bit5-bit4 are no action					

GPIO PortE Data Input Register (GPIOE_DATAIN)

Register	Address	R/W	Description	Reset Value
GPIOE_DATAIN	0xB800_302C	R	GPIO portE data input register	N/A

31	30	29	28	27	26	25	24
	RESERVED						
23	22	21	20	19	18	17	16
	RESERVED						
15	14	13	12	11	10	9	8
RESE	RVED			DAT	AIN		
7	6	5	4	3	2	1	0
	DATAIN						

Bits	Descriptions					
		GPIO PortE Data Input Value				
[13:0]	DATAIN	The DATAIN indicates the status of each GPIO portE pin regardless of its operation mode. The reserved bits will be read as "0".				
		Bit12-bit8 and bit5-bit4 are reserved				

Publication Release Date: Jun. 18, 2010

GPIO PortF Direction Control Register (GPIOF_DIR)

Register	Address	R/W	Description	Reset Value
GPIOF_DIR	0xB800_3034	R/W	GPIO portF in/out direction control register	0x0000_0000

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	RESERVED								
15	14	13	12	11	10	9	8		
		RESE	RVED			OU ⁻	TEN		
7	6	5	4	3	2	1	0		
	OUTEN								

Bits	Descriptions					
		GPIO PortF Output Enable Control				
[9:0]	[9:0] OUTEN	Each GPIO pin can be enabled individually by setting the corresponding control bit. 0 = Input Mode				
		1 = Output Mode				

Publication Release Date: Jun. 18, 2010

GPIO PortF Data Output Register (GPIOF_DATAOUT)

Register	Address	R/W	Description	Reset Value
GPIOF_DATAOUT	0xB800_3038	R/W	GPIO portF data output register	0x0000_0000

31	30	29	28	27	26	25	24	
	RESERVED							
23	22	21	20	19	18	17	16	
	RESERVED							
15	14	13	12	11	10	9	8	
	RESERVED DATAOUT							
7	6	5	4	3	2	1	0	
	DATAOUT							

Bits	Description	Descriptions					
[9:0]	DATAOUT	GPIO PortF Data Output Value Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective.					

Publication Release Date: Jun. 18, 2010

GPIO PortF Data Input Register (GPIOF_DATAIN)

Register	Address	R/W	Description	Reset Value
GPIOF_DATAIN	0xB800_303C	R	GPIO portF data input register	0xxxxx_xxxx

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	RESERVED								
15	14	13	12	11	10	9	8		
	RESERVED DATAIN								
7	6	5	4	3	2	1	0		
	DATAIN								

Bits	Descriptio	Descriptions			
[9:0]	DATAIN	GPIO PortF Data Input Value The DATAIN indicates the status of each GPIO portF pin regardless of its operation mode. The reserved bits will be read as "0".			

Publication Release Date: Jun. 18, 2010

GPIO PortG Direction Control Register (GPIOG_DIR)

Register	Address	R/W	Description	Reset Value
GPIOG_DIR	0xB800_3044	R/W	GPIO portG in/out direction control register	0x0000_0000

31	30	29	28	27	26	25	24	
	RESERVED							
23	22	21	20	19	18	17	16	
	RESERVED							
15	14	13	12	11	10	9	8	
	OUTEN							
7	6	5	4	3	2	1	0	
	OUTEN							

Bits	Descriptio	Descriptions					
[16:0]	OUTEN	GPIO PortG Output Enable Control Each GPIO pin can be enabled individually by setting the corresponding control bit. 0 = Input Mode					
		1 = Output Mode Bit11 ~ bit4 are no action.					

Publication Release Date: Jun. 18, 2010

GPIO PortG Data Output Register (GPIOG_DATAOUT)

Register	Address	R/W	Description	Reset Value
GPIOG_DATAOUT	0xB800_3048	R/W	GPIO portG data output register	0x0000_0000

31	30	29 28		27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	RESERVED								
15	14	13	12	11	10	9	8		
	DATAOUT								
7	6	5	4	3	2	1	0		
	DATAOUT								

Bits	Description	Descriptions					
[16:0]	DATAOUT	GPIO PortG Data Output Value Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective. Bit11 ~ bit4 are no action.					

Publication Release Date: Jun. 18, 2010

GPIO PortG Data Input Register (GPIOG_DATAIN)

Register	Address	R/W	Description	Reset Value
GPIOG_DATAIN	0xB800_304C	R	GPIO portG data input register	N/A

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
RESERVED									
15	14	13	12	11	10	9	8		
	DATAIN								
7	6	5	4	3	2	1	0		
	DATAIN								

Bits	Descriptio	ns
[16:0]	DATAIN	GPIO PortG Data Input Value The DATAIN indicates the status of each GPIO portG pin regardless of its operation mode. The reserved bits will be read as "0". Bit11-bit4 are reserved

Publication Release Date: Jun. 18, 2010

GPIO PortH De-bounce Enable Control Register (GPIOH_DBNCE)

Register	Address	R/W	Description	Reset Value
GPIOH_DBNCE	0xB800_3050	R/W	GPIO PortH de-bounce control register	N/A

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	RESERVED								
15	14	13	12	11	10	9	8		
	RESERVED					DBCLKSEL			
7	6	5	4	3	2	1	0		
	RESERVED				DBEN2	DBEN1	DBENO		

Bits	Descriptions	
[10:8]	DBCLKSEL	De-bounce Clock Selection These 3 bits are used to select the clock rate for de-bouncer circuit. The relationship between the system clock HCLK and the de-bounce clock TCLK_BUN is as follows: TCLK_BUN = HCLK / 2 ^{DBCLKSEL}
[2]	DBEN2	De-bounce Circuit Enable for GPIOH2 (nIRQ2) Input 1 = Enable De-bounce 0 = Disable De-bounce
[1]	DBEN1	De-bounce Circuit Enable for GPIOH1 (nIRQ1) Input 1 = Enable De-bounce 0 = Disable De-bounce
[0]	DBENO	De-bounce Circuit Enable for GPIOHO (nIRQ0) Input 1 = Enable De-bounce 0 = Disable De-bounce

Publication Release Date: Jun. 18, 2010

GPIO PortH Direction Control Register (GPIOH_DIR)

Register	Address	R/W	Description	Reset Value
GPIOH_DIR	0xB800_3054	R/W	GPIO portH in/out direction control register	0x0000_0000

31	30	29	28	27	26	25	24	
	RESERVED							
23	22	21	20	19	18	17	16	
	RESERVED							
15	14	13	12	11	10	9	8	
	RESERVED							
7	6	5	4	3	2	1	0	
	RESERVED					OUTEN		

Bits	Descriptions					
		GPIO PortH Output Enable Control Each GPIO pin can be enabled individually by setting the corresponding control bit.				
[2:0]	[2:0] OUTEN	0 = Input Mode 1 = Output Mode				

Publication Release Date: Jun. 18, 2010

GPIO PortH Data Output Register (GPIOH_DATAOUT)

Register	Address	R/W	Description	Reset Value
GPIOH_DATAOUT	0xB800_3058	R/W	GPIO portH data output register	0x0000_0000

31	30	29	28	27	26	25	24	
	RESERVED							
23	22	21	20	19	18	17	16	
	RESERVED							
15	14	13	12	11	10	9	8	
	RESERVED							
7	6	5	4	3	2	1	0	
RESERVED					DATAOUT			

Bits	Description	Descriptions					
[2:0]	DATAOUT	GPIO PortH Data Output Value Writing data to this register will reflect the data value on the corresponding pin when it is configured as general output pin. And writing data to reserved bits is not effective.					

Publication Release Date: Jun. 18, 2010

GPIO PortH Data Input Register (GPIOH_DATAIN)

Register	Address	R/W	Description	Reset Value
GPIOH_DATAIN	0xB800_305C	R	GPIO portH data input register	N/A

31	30	29	28	27	26	25	24	
	RESERVED							
23	22	21	20	19	18	17	16	
			RESI	ERVED				
15	14	13	12	11	10	9	8	
			RESI	ERVED				
7	6	5	4	3	2	1	0	
	RESERVED					DATAIN		

Bits	Descriptio	Descriptions					
[2:0]	DATAIN	GPIO PortH Data Input Value The DATAIN indicates the status of each GPIO portH pin regardless of its operation mode. The reserved bits will be read as "0".					

7.17 I2C Synchronous Serial Interface Controller

 I^2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange between devices. The I^2C standard is a true multi-master bus including collision detection and arbitration that prevents data corruption if two or more masters attempt to control the bus simultaneously.

Serial, 8-bit oriented bi-directional data transfers can be up to 100 Kb/s in Standard-mode, 400 Kb/s in the Fast-mode, or 3.4 Mb/s in the High-speed mode. Only 100kbps and 400kbps modes are supported directly in this chip.

Data transfer is synchronized to SCL signal between a Master and a Slave with **byte-by-byte** basis. Each data byte is 8 bits long. There is one SCL clock pulse for each data bit with the **MSB being transmitted first**. An acknowledge bit follows each transferred byte. Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must be held stable during the high period of SCL. A transition on the SDA line while SCL is high is interpreted as a command (START or STOP).

Publication Release Date: Jun. 18, 2010

The I²C Master Core includes the following features:

Provide multi-byte transmit operation, up to 4 bytes can be transmitted in a single transfer

Software programmable acknowledge bit.

Arbitration lost interrupt, with automatic transfer cancellation.

Start/Stop/Repeated Start/Acknowledge generation.

Start/Stop/Repeated Start detection.

Bus busy detection.

Supports 7 bit addressing mode.

Software mode I²C.

7.17.1 I2C Serial Interface Control Registers Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W/C	Description Reset Value				
I2C Port0 : I2	I2C Port0 : I2C_BA = 0xB800_6000						
I2C Port1 : I2	I2C Port1 : I2C_BA = 0xB800_6100						
CSR	0xB800_6x00	R/W	Control and Status Register	0x0000_0000			
DIVIDER	0XB800_6x04	R/W	Clock Pre-scale Register	0x0000_0000			
CMDR	0XB800_6x08	R/W	Command Register	0x0000_0000			
SWR	0XB800_6x0C	R/W	Software Mode Control Register	0x0000_003F			
RxR	0XB800_6x10	R	Data Receive Register	0x0000_0000			
TxR	0XB800_6x14	R/W	Data Transmit Register	0x0000_0000			

NOTE: The reset value of SWR is 0x3F only when SCR, SDR and SER are connected to pull high resistor.

Publication Release Date: Jun. 18, 2010

Control and Status Register (CSR)

Register	Offset	R/W/C	Description	Reset Value
CSR	0XB800_6x00	R/W	Control and Status Register	0x0000_0000

31	30	29	28	27	26	25	24
			R	eserved			
23	22	21	20	19	18	17	16
			R	eserved			
15	14	13	12	11	10	9	8
	Rese	rved		I2C_RxACK	I2C_BUSY	I2C_AL	I2C_TIP
7	6	5	4	3	2	1	0
Reserved Tx_NUM			Reserved	IF	IE	I2C_EN	

Bits	Descriptions	
[11]	I 2C_RxACK	Received Acknowledge From Slave (Read only) This flag represents acknowledge from the addressed slave. • 0 = Acknowledge received (ACK). • 1 = Not acknowledge received (NACK).
[10]	12C_BUSY	 I²C Bus Busy (Read only) 0 = After STOP signal detected. 1 = After START signal detected.
[9]	I2C_AL	 Arbitration Lost (Read only) This bit is set when the I²C core lost arbitration. Arbitration is lost when: A STOP signal is detected, but no requested. The master drives SDA high, but SDA is low.

573

Publication Release Date: Jun. 18, 2010

		Transfer In Progress (Read only)
		• 0 = Transfer complete.
[8]	I2C_TIP	• 1 = Transferring data.
		NOTE : When a transfer is in progress, you will not allow writing to any register of the I^2C master core except SWR.

		Transmit Byte Counts
		These two bits represent how many bytes are remained to transmit. When a byte has been transmitted, the Tx_NUM will decrease 1 until all bytes are transmitted ($Tx_NUM = 0x0$) or NACK received from slave. Then the interrupt signal will assert if IE was set.
[5:4]	Tx_NUM	0x0 = Only one byte is left for transmission.
		0x1 = Two bytes are left to for transmission.
		0x2 = Three bytes are left for transmission.
		0x3 = Four bytes are left for transmission.
		Interrupt Flag
		The Interrupt Flag is set when:
		Transfer has been completed.
[2]	IF	 Transfer has not been completed, but slave responded NACK (in multi- byte transmit mode).
		Arbitration is lost.
		NOTE: This bit is read only, but can be cleared by writing 1 to this bit.
		Interrupt Enable
[1]	IE	• $0 = $ Disable I^2C Interrupt.
		• 1 = Enable I ² C Interrupt.
		I ² C Core Enable
[0]	I2C_EN	• $0 = $ Disable I^2C core, serial bus outputs are controlled by SDW/SCW.
		• 1 = Enable I ² C core, serial bus outputs are controlled by I ² C core.

Publication Release Date: Jun. 18, 2010

Pre-scale Register (DIVIDER)

Register	Offset	R/W/C	Description	Reset Value
DIVIDER	0XB800_6x04	R/W	Clock Pre-scale Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	rved			
15	14	13	12	11	10	9	8
			DIVIDE	R[15:8]			
7	6	5	4	3	2	1	0
	DIVIDER[7:0]						

Bits	Descriptions	
[15:0]	DIVIDER	Clock Pre-scale Register It is used to pre-scale the SCL clock line. Due to the structure of the I^2C interface, the core uses a 5*SCL clock internally. The pre-scale register must be programmed to this 5*SCL frequency (minus 1). Change the value of the pre-scale register only when the "I2C_EN" bit is cleared. Example: pclk = 32MHz, desired SCL = 100KHz $prescale = \frac{32\ MHz}{5*100\ KHz} - 1 = 63\ (dec\) = 3\ F\ (hex\)$

Command Register (CMDR)

Register	Offset	R/W/C	Description	Reset Value
CMDR	0XB800_6x08	R/W	Command Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
Reserved							
7	6	5	4	3	2	1	0
Reserved			START	STOP	READ	WRITE	ACK

NOTE: Software can write this register only when I2C_EN = 1.

Bits	Descriptions		
[4]	START	Generate Start Condition Generate (repeated) start condition on I ² C bus.	
[3]	STOP	Generate Stop Condition Generate stop condition on I ² C bus.	
[2]	READ	Read Data From Slave Retrieve data from slave.	
[1]	WRITE	Write Data To Slave Transmit data to slave.	
[0]	ACK	Send Acknowledge To Slave When I^2C behaves as a receiver, sent ACK (ACK = `0') or NACK (ACK = `1') to slave.	

NOTE: The START, STOP, READ and WRITE bits are cleared automatically while transfer finished. READ and WRITE cannot be set concurrently.

Publication Release Date: Jun. 18, 2010

Software Mode Register (SWR)

Register	Offset	R/W/C	Description	Reset Value
SWR	0XB800_6x0C	R/W	Software Mode Control Register	0x0000_003F

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
Rese	rved	SER	SDR	SCR	SEW	SDW	scw	

NOTE: This register is used as software mode of I^2C . Software can read/write this register no matter I2C_EN is 0 or 1. But SCL and SDA are controlled by software only when I2C_EN = 0.

Bits	Descriptions	
[5]	SER	Serial Interface SDO Status (Read only) 0 = SDO is Low. 1 = SDO is High.
[4]	SDR	Serial Interface SDA Status (Read only) $0 = SDA \text{ is Low.}$ $1 = SDA \text{ is High.}$
[3]	SCR	Serial Interface SCK Status (Read only) $0 = SCL \text{ is Low.}$ $1 = SCL \text{ is High.}$
[2]	SEW	Serial Interface SDO Output Control 0 = SDO pin is driven Low. 1 = SDO pin is tri-state.
[1]	SDW	Serial Interface SDA Output Control 0 = SDA pin is driven Low. 1 = SDA pin is tri-state.

Publication Release Date: Jun. 18, 2010 Revision: A4

Bits	Descriptions	
[0]	scw	Serial Interface SCK Output Control 0 = SCL pin is driven Low. 1 = SCL pin is tri-state.

Data Receive Register (RxR)

Register	Offset	R/W/C	Description	Reset Value
RxR	0XB800_6x10	R	Data Receive Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	Rx[7:0]								

Bits	Descriptions	
[7:0]	Rx	$\begin{tabular}{lll} \textbf{Data Receive Register} \\ \hline \textbf{The last byte received via I^2C bus will put on this register. The I^2C core only used 8-bit receive buffer.} \\ \end{tabular}$

579

Data Transmit Register (TxR)

Register	Offset	R/W/C	Description	Reset Value
TxR	0XB800_6x14	R/W	Data Transmit Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Tx[31:24]								
23	22	21	20	19	18	17	16		
	Tx[23:16]								
15	14	13	12	11	10	9	8		
Tx[15:8]									
7	6	5	4	3	2	1	0		
	Tx[7:0]								

Bits	Descriptions	
		Data Transmit Register
	_	The I^2C core used 32-bit transmit buffer and provide multi-byte transmit function. Set CSR [Tx_NUM] to a value that you want to transmit. I^2C core will always issue a transfer from the highest byte first. For example, if CSR [Tx_NUM] = 0x3, Tx [31:24] will be transmitted first, then Tx [23:16], and so on.
[31:0]	Tx	In case of a data transfer, all bits will be treated as data.
		In case of a slave address transfer, the first 7 bits will be treated as 7-bit address and the LSB represent the R/W bit. In this case,
		LSB = 1, reading from slave
		LSB = 0, writing to slave

7.18Universal Serial Interface Controller (USI)

The USI is a synchronous serial interface performs a serial-to-parallel conversion on data characters received from the peripheral, and a parallel-to-serial conversion on data characters received from CPU. This interface generates an interrupt signal when data transfer is finished and can be cleared by writing 1 to the interrupt flag. The active level of device/slave select signal can be chosen to low active or high active, which depends on the peripheral it's connected. Writing a divisor into DIVIDER register can program the frequency of serial clock output. This master core contains four 32-bit transmit/receive

Publication Release Date: Jun. 18, 2010

buffers, and can provide burst mode operation. The maximum bits can be transmitted/received is 32 bits, and can transmit/receive data up to four times successive.

The USI (MICROWIRE/SPI) Master Core includes the following features:

Support MICROWIRE/SPI master mode

Full duplex synchronous serial data transfer

Variable length of transfer word up to 32 bits

Provide burst mode operation, transmit/receive can be executed up to four times in one transfer

MSB or LSB first data transfer

Rx and Tx on rising or falling edge of serial clock independently

7.18.1 USI Control Registers Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
USI_BA = 0xI	B800_6200			
CNTRL	0xB800_6200	R/W	Control and Status Register	0x0000_0004
DIVIDER	0xB800_6204	R/W	Clock Divider Register	0x0000_0000
SSR	0xB800_6208	R/W	Slave Select Register	0x0000_0000
Rx0	0xB800_6210	R	Data Receive Register 0	0x0000_0000
Rx1	0xB800_6214	R	Data Receive Register 1	0x0000_0000
Rx2	0xB800_6218	R	Data Receive Register 2	0x0000_0000
Rx3	0xB800_621C	R	Data Receive Register 3	0x0000_0000
Tx0	0xB800_6210	W	Data Transmit Register 0	0x0000_0000
Tx1	0xB800_6214	W	Data Transmit Register 1	0x0000_0000
Tx2	0xB800_6218	W	Data Transmit Register 2	0x0000_0000
Tx3	0xB800_621C	W	Data Transmit Register 3	0x0000_0000

NOTE 1: When software programs CNTRL, the GO_BUSY bit should be written last.

Publication Release Date: Jun. 18, 2010

Control and Status Register (CNTRL)

Register	Offset	R/W	Description	Reset Value
CNTRL	0xB800_6200	R/W	Control and Status Register	0x0000_0004

31	30	29	28	27	26	25	24
CLK_POL		Reserved					
23	22	21	20	19	18	17	16
		Rese	rved			IE	IF
15	14	13	12	11	10	9	8
	SLE	EP		Reserved	LSB	Tx_	NUM
7 6 5 4 3					2	1	0
	Tx_BIT_LEN					Rx_NEG	GO_BUSY

Bits	Descriptions	
		Clock Polarity
[31]	CLK_POL	• 0 = Normal polarity.
		• 1 = Reverse polarity.
		Interrupt Enable
[17]	IE	• 0 = Disable USI Interrupt.
		• 1 = Enable USI Interrupt.
		Interrupt Flag
		0 = It indicates that the transfer dose not finish yet.
[16]	IF	 1 = It indicates that the transfer is done. The interrupt flag is set if it was enable.
		NOTE: This bit is read only, but can be cleared by writing 1 to this bit.

582

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Suspend Interval
		These four bits provide the configuration of suspend interval between two successive transmit/receive in a transfer. The default value is 0x0. When CNTRL [Tx_NUM] = 00, setting this field has no effect on transfer. The desired interval is obtained according to the following equation (from the last falling edge of current SCLK to the first rising edge of next SCLK):
[15:12]	SLEEP	(CNTRL[SLEEP] + 2)*period of SCLK
[=0:==]	S===.	SLEEP = 0x0 2 SCLK clock cycle
		SLEEP = 0x1 3 SCLK clock cycle
		SLEEP = 0xe 16 SCLK clock cycle
		SLEEP = 0xf 17 SCLK clock cycle
		Send LSB First
[10]	LSB	0 = The MSB is transmitted/received first (which bit in TxX/RxX register that is depends on the Tx_BIT_LEN field in the CNTRL register).
[10]		1 = The LSB is sent first on the line (bit TxX [0]), and the first bit received from the line will be put in the LSB position in the Rx register (bit RxX [0]).
		Transmit/Receive Numbers
		This field specifies how many transmit/receive numbers should be executed in one transfer.
[9:8]	Tx_NUM	00 = Only one transmit/receive will be executed in one transfer.
	_	01 = Two successive transmit/receive will be executed in one transfer.
		10 = Three successive transmit/receive will be executed in one transfer.
		11 = Four successive transmit/receive will be executed in one transfer.

Bits	Descriptions	
		Transmit Bit Length
		This field specifies how many bits are transmitted in one transmit/receive. Up to 32 bits can be transmitted.
		Tx_BIT_LEN = 0x01 1 bit
[7:3]	Tx_BIT_LEN	Tx_BIT_LEN = 0x02 2 bits
		$Tx_BIT_LEN = 0x1f31 bits$
		Tx_BIT_LEN = 0x00 32 bits
		Transmit On Negative Edge
[2]	Tx_NEG	0 = The SSPTXD signal is changed on the rising edge of SCLK .
		1 = The SSPTXD signal is changed on the falling edge of SCLK .
		Receive On Negative Edge
[1]	Rx_NEG	0 = The SSPRXD signal is latched on the rising edge of SCLK .
		1 = The SSPRXD signal is latched on the falling edge of SCLK .
		Go and Busy Status
		0 = Writing 0 to this bit has no effect.
[0]	GO_BUSY	1= Writing 1 to this bit starts the transfer. This bit remains set during the transfer and is automatically cleared after transfer finished.
		NOTE : All registers should be set before writing 1 to the GO_BUSY bit in the CNTRL register. When a transfer is in progress, writing to any register of the USI master core has no effect.

Divider Register (DIVIDER)

Register	Offset	R/W	Description	Reset Value
DIVIDER	0xB800_6204	R/W	Clock Divider Register	0x0000_0000

31	30	29	28	27	26	25	24	
			Rese	erved				
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
	DIVIDER[15:8]							
7	7 6 5 4 3 2 1 0							
	DIVIDER[7:0]							

Bits	Descriptions	
[15:0]	DIVIDER	Clock Divider Register The value in this field is the frequency divider of the system clock pclk to generate the serial clock on the output SCLK. The desired frequency is obtained according to the following equation: $f_{sclk} = \frac{f_{pclk}}{(DIVIDER+1)*2}$ NOTE: Suggest DIVIDER should be at least 1.

Slave Select Register (SSR)

Register	Offset	R/W	Description	Reset Value
SSR	0xB800_6208	R/W	Slave Select Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	7 6 5 4 3 2 1 0						
	Reserved				SS_LVL	SSR[[1:0]

Bits	Descriptions	
	ASS	Automatic Slave Select
		0 = If this bit is cleared, slave select signals are asserted and de-asserted by setting and clearing related bits in SSR register.
[3]		1 = If this bit is set, SSPTXD signals are generated automatically. It means that device/slave select signal, which is set in SSR register is asserted by the USI controller when transmit/receive is started by setting CNTRL [GO_BUSY], and is de-asserted after every transmit/receive is finished.
		Slave Select Active Level
[2]	SS_LVL	It defines the active level of device/slave select signal (SSPTXD).
[2]		• 0 = The SSPTXD slave select signal is active Low .
		• 1 = The SSPTXD slave select signal is active High .

Bits	Descriptions	
[1:0]	SSR	If SSR [ASS] bit is cleared, writing 1 to any bit location of this field sets the proper SSPTXD line to an active state and writing 0 sets the line back to inactive state. If SSR[ASS] bit is set, writing 1 to any bit location of this field will select appropriate mw_ss_o line to be automatically driven to active state for the duration of the transmit/receive, and will be driven to inactive state for the rest of the time. (The active level of SSPTXD is specified in SSR [SS_LVL]). NOTE: This interface can only drive one device/slave at a given time. Therefore, the slave select of the selected device must be set to its active level before starting any read or write transfer.

Data Receive Register 0 (Rx0)

Data Receive Register 1 (Rx1)

Data Receive Register 2 (Rx2)

Data Receive Register 3 (Rx3)

Register	Offset	R/W	Description	Reset Value
Rx0	0xB800_6210	R	Data Receive Register 0	0x0000_0000
Rx1	0xB800_6214	R	Data Receive Register 1	0x0000_0000
Rx2	0xB800_6218	R	Data Receive Register 2	0x0000_0000
Rx3	0xB800_621C	R	Data Receive Register 3	0x0000_0000

31	30	29	28	27	26	25	24			
	Rx[31:24]									
23	22	21	20	19	18	17	16			
	Rx[23:16]									
15	14	13	12	11	10	9	8			
	Rx[15:8]									
7	6	5	4	3	2	1	0			
	Rx[7:0]									

Bits	Descriptions	
		Data Receive Register
[31:0]	Rx	The Data Receive Registers hold the value of received data of the last executed transfer. Valid bits depend on the transmit bit length field in the CNTRL register. For example, if CNTRL [Tx_BIT_LEN] is set to 0x08 and CNTRL [Tx_NUM] is set to 0x0, bit Rx0 [7:0] holds the received data.
		NOTE : The Data Receive Registers are read only registers. A Write to these registers will actually modify the Data Transmit Registers because those registers share the same FFs.

Data Transmit Register 0 (Tx0)

Data Transmit Register 1 (Tx1)

Data Transmit Register 2 (Tx2)

Data Transmit Register 3 (Tx3)

Register	Offset	R/W	Description	Reset Value
Tx0	0xB800_6210	W	Data Transmit Register 0	0x0000_0000
Tx1	0xB800_6214	W	Data Transmit Register 1	0x0000_0000
Tx2	0xB800_6218	W	Data Transmit Register 2	0x0000_0000
Tx3	0xB800_621C	W	Data Transmit Register 3	0x0000_0000

31	30	29	28	27	26	25	24		
Tx[31:24]									
23	22	21	20	19	18	17	16		
	Tx[23:16]								
15	14	13	12	11	10	9	8		
	Tx[15:8]								
7	6	5	4	3	2	1	0		
	Tx[7:0]								

Bits	Descriptions	
Bits [31:0]	Descriptions Tx	Data Transmit Register The Data Transmit Registers hold the data to be transmitted in the next transfer. Valid bits depend on the transmit bit length field in the CNTRL register. For example, if CNTRL [Tx_BIT_LEN] is set to 0x08 and the CNTRL [Tx_NUM] is set to 0x0, the bit Tx0 [7:0] will be transmitted in next transfer. If CNTRL [Tx_BIT_LEN] is set to 0x00 and CNTRL [Tx_NUM] is set to 0x3, the core will perform four 32-bit transmit/receive successive using the same setting (the order is Tx0 [31:0], Tx1 [31:0], Tx2 [31:0], Tx3 [31:0]). NOTE: The RxX and TxX registers share the same flip-flops. Which means
		that what is received from the input data line in one transfer will be transmitted on the output data line in the next transfer if no write access to the TxX register is executed between the transfers.

Publication Release Date: Jun. 18, 2010

Pulse Width Modulation (PWM)

This Controller includes 4 channels PWM Timers. They can be divided into two groups. Each group has 1 Prescalar, 1 clock divider, 2 clock selectors, 2 16-bit counters, 2 16-bit comparators, 1 Dead-Zone generator. They are all driven by APB system clock (PCLK) in chip. Each channel can be used as a timer and issue interrupt independently.

Two channels PWM Timers in one group share the same pre-scalar. Clock divider provides each channel with 5 clock sources (1, 1/2, 1/4, 1/8, 1/16). Each channel receives its own clock signal from clock divider which receives clock from 8-bit pre-scalar. The 16-bit counter in each channel receive clock signal from clock selector and can be used to handle one PWM period. The 16-bit comparator compares number in counter with threshold number in register loaded previously to generate PWM duty cycle. The clock signal from clock divider is called PWM clock. Dead-Zone generator utilize PWM clock as clock source. Once Dead-Zone generator is enabled, output of two PWM timers in one group is blocked. Two output pins are all used as Dead-Zone generator output signal to control off-chip power device.

To prevent PWM driving output pin with unsteady waveform, 16-bit counter and 16-bit comparator are implemented with double buffering feature. User can feel free to write data to counter buffer register and comparator buffer register without generating glitch. When 16-bit down counter reaches zero, the interrupt request is generated to inform CPU that time is up. When counter reaches zero, if counter is set as toggle mode, it is reloaded automatically and start to generate next cycle. User can set counter as one-shot mode instead of toggle mode. If counter is set as one-shot mode, counter will stop and generate one interrupt request when it reaches zero. The value of comparator is used for pulse width modulation. The counter control logic changes the output level when down-counter value matches the value of compare register.

7.18.2 Basic Timer Operation

7.18.3 PWM Double Buffering and Reload Automatically

Publication Release Date: Jun. 18, 2010 Revision: A4

The PWM Timers have a double buffering function, enabling the reload value changed for next timer operation without stopping current timer operation. Although new timer value is set, current timer operation still operate successfully.

The counter value can be written into PWM_CNR0, PWM_CNR1, PWM_CNR2, PWM_CNR3 and current counter value can be read from PWM_PDR0, PWM_PDR1, PWM_PDR2, PWM_PDR3.

The auto-reload operation copies from PWM_CNR0, PWM_CNR1, PWM_CNR2, PWM_CNR3 to down-counter when down-counter reaches zero. If PWM_CNR0~3 are set as zero, counter will be halt when counter count to zero. If auto-reload bit is set as zero, counter will be stopped immediately.

PWM double buffering

7.18.4 Modulate Duty Ratio

The double buffering function allows PWM_CMR written at any point in current cycle. The loaded value will take effect from next cycle.

Publication Release Date: Jun. 18, 2010

Modulate PWM controller ouput duty ratio(PWM_CNR = 150)

7.18.5 Dead Zone Generator

The PWM Controller is implemented with Dead Zone generator. They are built for power device protection. This function enables generation of a programmable time gap at the rising of PWM output waveform. User can program PWM_PPR [31:24] and PWM_PPR [23:16] to determine the Dead Zone interval.

Dead zone generator operation

7.18.6 PWM Register Map

Register	Address	R/W	Description	Reset value
PPR	0xB800_7000	R/W	PWM Pre-scale Register 0	0000_0000
CSR	0xB800_7004	R/W	PWM Clock Select Register	0000_0000
PCR	0xB800_7008	R/W	PWM Control Register	0000_0000

592

Publication Release Date: Jun. 18, 2010

Register	Address	R/W	Description	Reset value
CNRO	0xB800_700C	R/W	PWM Counter Register 0	0000_0000
CMRO	0xB800_7010	R/W	PWM Comparator Register 0	0000_0000
PDR0	0xB800_7014	R	PWM Data Register 0	0000_0000
CNR1	0xB800_7018	R/W	PWM Counter Register 1	0000_0000
CMR1	0xB800_701C	R/W	PWM Comparator Register 1	0000_0000
PDR1	0xB800_7020	R	PWM Data Register 1	0000_0000
CNR2	0xB800_7024	R/W	PWM Counter Register 2	0000_0000
CMR2	0xB800_7028	R/W	PWM Comparator Register 2	0000_0000
PDR2	0xB800_702C	R	PWM Data Register 2	0000_0000
CNR3	0xB800_7030	R/W	PWM Counter Register 3	0000_0000
CMR3	0xB800_7034	R/W	PWM Comparator Register 3	0000_0000
PDR3	0xB800_7038	R	PWM Data Register 3	0000_0000
PIER	0xB800_703C	R/W	PWM Timer Interrupt Enable Register	0000_0000
PIIR	0xB800_7040	R/C	PWM Timer Interrupt Identification Register	0000_0000

PWM Pre-Scale Register (PPR)

Register	Offset	R/W	Description	Reset Value
PPR	0xB800_7000	R/W	PWM Pre-scale Register	0x0000_0000

31	30	29	28	27	26	25	24			
	DZL1									
23	22	21	20	19	18	17	16			
	DZLO									
15	14	13	12	11	10	9	8			
	Pre-Scale23									
7	6	5	4	3	2	1	0			
	Pre-Scale01									

Bits	Descriptions	
[31:24]	DZL1	Dead Zone Length Register 1. Inserted data range: 255~0. (Unit : One PWM clock cycle) If DZL1=0, then Dead zone length = 0
[23:16]	DZLO	Dead Zone Length Register O. Inserted data range: 255~0. (Unit : One PWM clock cycle) If DZL0=0, then Dead zone length = 0
[15:8]	Pre-Scale23	Pre-scale register for Channel 2 & 3. Pre-scale output clock frequency = PCLK / (pre-scale23 + 1) If PPR=0, then the pre-scale output clock will be stopped.
[7:0]	Pre-Scale01	Pre-scale register for Channel 0 & 1. Pre-scale output clock frequency = PCLK / (pre-scale01 + 1) If PPR=0, then the pre-scale output clock will be stopped.

Publication Release Date: Jun. 18, 2010

PWM Clock Selector Register (CSR)

Register	Offset	R/W	Description	Reset Value
CSR	0xB800_7004	R/W	PWM Clock Selector Register (CSR)	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
Reserved		CH3		Reserved	CH2					
7	6	5	4	3	2	1	0			
Reserved	eserved CH1			Reserved	сно					

Bits	Descriptions						
		Channel 3 Clock Source Selection Select PWM clock source for PWM timer channel 3					
		CH3[14:12]	Pre-scale Output Divide by				
54 4 4 9 3		100	1				
[14:12]	CH3	011	16				
		010	8				
		001	4				
		000	2				
[10:8]	CH2	Channel 2 Clock Source Selection Select PWM clock source for PWM timer channel 2 (Table is the same as CH3)					
[6:4]	CH1	Channel 1 Clock Source Selection Select PWM clock source for PWM timer channel 1 (Table is the same as CH3)					

Bits	Descriptions	
[2:0]	сно	Channel O Clock Source Selection Select PWM clock source for PWM timer channel 0 (Table is the same as CH3)

PWM Control Register (PCR)

Register	Offset	R/W	Description	Reset Value
PCR	0xB800_7008	R/W	PWM Control Register (PCR)	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved			CH3MOD	CH31NV	Reserved	CH3EN
15	14	13	12	11	10	9	8
CH2MOD	CH2INV	Reserved	CH2EN	CH1MOD	CH11NV	Reserved	CH1EN
7	6	5	4	3	2	1	0
Rese	erved	DZ1EN	DZOEN	СНОМОД	CHOINV	Reserved	CHOEN

Bits	Descriptions	
[19]	СНЗМОД	Channel 3 Toggle/One-Shot Mode 1: Toggle Mode
		0: One-Shot Mode
[18]	CH3INV	Channel 3 Inverter ON/OFF 1: Inverter ON
		0: Inverter OFF
[16]	CH3EN	Channel 3 Enable/Disable 1: Enable 0: Disable
[15]	CH2MOD	Channel 2 Toggle/One-Shot Mode 1: Toggle Mode 0: One-Shot Mode
[14]	CH2INV	Channel 2 Inverter ON/OFF 1: Inverter ON 0: Inverter OFF

597

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[42]	QUOEN	Channel 2 Enable/Disable
[12]	CH2EN	1: Enable 0: Disable
		Channel 1 Toggle/One-Shot Mode
[11]	CH1MOD	1: Toggle Mode 0: One-Shot Mode
		Channel 1 Inverter ON/OFF
[10]	CH1INV	1: Inverter ON
		0: Inverter OFF
		Channel 1 Enable/Disable
[8]	CH1EN	1: Enable 0: Disable
		Dead-Zone 1 Generator Enable/Disable
[5]	DZ1EN	1: Enable
		0: Disable
		Dead-Zone 0 Generator Enable/Disable
[4]	DZOEN	1: Enable
		0: Disable
[3]	CHOMOD	Channel O Toggle/One-Shot Mode 1: Toggle Mode
[5]	CHOWOD	0: One-Shot Mode
		Channel 0 Inverter ON/OFF
[2]	CHOINV	1: Inverter ON
		0: Inverter OFF
		Channel 0 Enable/Disable
[0]	CHOEN	1: Enable
		0: Disable

PWM Counter Register 3-0 (CNR3-0)

Register	Offset	R/W	Description	Reset Value
CNRO	0xB800_700C	R/W	PWM Counter Register 0	0x0000_0000
CNR1	0xB800_7018	R/W	PWM Counter Register 1	0x0000_0000
CNR2	0xB800_7024	R/W	PWM Counter Register 2	0x0000_0000
CNR3	0xB800_7030	R/W	PWM Counter Register 3	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			CI	VR			
7	6	5	4	3	2	1	0
	CNR						

Bits	Descriptions	
		PWM Counter/Timer Loaded Value
		Inserted data range : 65535~0
		(Unit: 1 PWM clock cycle)
[15:0]	CNR	Note 1: One PWM cycle width = CNR + 1.
		If CNR equal zero, PWM counter/timer will be stopped.
		Note 2: Programmer can feel free to write a data to CNR at any time, and it will take effect in next cycle.

PWM Comparator Register 3-0 (CMR3-0)

Register	Offset	R/W	Description	Reset Value
CMRO	0xB800_7010	R/W	PWM Comparator Register 0	0x0000_0000
CMR1	0xB800_701C	R/W	PWM Comparator Register 1	0x0000_0000
CMR2	0xB800_7028	R/W	PWM Comparator Register 2	0x0000_0000
CMR3	0xB800_7034	R/W	PWM Comparator Register 3	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			CI	ЛR			
7	6	5	4	3	2	1	0
	CMR						

Descriptions	
CMR	PWM Comparator Register Inserted data range: 65535~0 (Unit: 1 PWM clock cycle) Assumption: PWM output initial: high CMR >= CNR: PWM output is always high CMR < CNR: PWM output high => (CMR + 1) unit CMR = 0: PWM output high => 1 unit
	·

600

PWM Data Register 3-0 (PDR 3-0)

Register	Offset	R/W	Description	Reset Value
PDR0	0xB800_7014	R	PWM Data Register 0	0x0000_0000
PDR1	0xB800_7020	R	PWM Data Register 1	0x0000_0000
PDR2	0xB800_702C	R	PWM Data Register 2	0x0000_0000
PDR3	0xB800_7038	R	PWM Data Register 3	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	PDR								
7	6	5	4	3	2	1	0		
	PDR								

Bits	Descriptions	
[15:0]	PDR	PWM Data Register PDR means the PWM counter number.

601

PWM Interrupt Enable Register (PIER)

Register	Offset	R/W	Description	Reset Value
PIER	0xB800_703C	R/W	PWM Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved			PIER3	PIER2	PIER1	PIERO			

Bits	Descriptions	
[3]	PIER3	PWM Timer Channel 3 Interrupt Enable 1: Enable
[-]		0: Disable
		PWM Timer Channel 2 Interrupt Enable
[2] PIER2	PIER2	1: Enable 0: Disable
		PWM Timer Channel 1 Interrupt Enable
[1]	PIER1	1: Enable 0: Disable
		PWM Timer Channel 0 Interrupt Enable
[0]	PIERO	1: Enable
		0: Disable

602

Publication Release Date: Jun. 18, 2010

PWM Interrupt Indication Register (PIIR)

Register	Offset	R/W	Description	Reset Value	
PIIR	0xB800_7040	R/W	PWM Interrupt Indication Register	0x0000_0000	

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved			PIIR3	PIIR2	PIIR1	PIIRO			

Bits	Descriptions					
		PWM Timer Channel 3 Interrupt Flag				
[3]	PIIR3	1: Interrupt Flag ON				
		0: Interrupt Flag OFF				
		PWM Timer Channel 2 Interrupt Flag				
[2]	[2] PIIR2	1: Interrupt Flag ON				
		0: Interrupt Flag OFF				
		PWM Timer Channel 1 Interrupt Flag				
[1]	PHR1	1: Interrupt Flag ON				
		0: Interrupt Flag OFF				
		PWM Timer Channel 0 Interrupt Flag				
[0]	PHRO	1: Interrupt Flag ON				
		0: Interrupt Flag OFF				
Note: Us	Note: User can clear each interrupt flag by writing a zero to corresponding bit in PHR					

Note: User can clear each interrupt flag by writing a zero to corresponding bit in PITR

Publication Release Date: Jun. 18, 2010

7.19 Keypad Interface (KPI)

The Keypad Interface (**KPI**) is an APB slave with 4-row scan output and 8-column scan input. KPI scans an array up to 16x8 with an external 4 to 16 decoder. It can also be programmed to scan 8x8 or 4x8 key array. If the 4x8 array is selected then external decoder is not necessary because the scan signals are driven by chip itself. Any 1 or 2 keys in the array that pressed are de-bounced and encoded. If more than 2 keys are pressed, only the keys or apparent keys in the array with the lowest address will be decoded.

The KPI supports 2-keys scan interrupt and specified 3-keys interrupt or chip reset. If the 3 pressed keys matches with the 3 keys defined in **KPI3KCONF**, it will generate an interrupt or chip reset to nWDOG reset output depend on the **ENRST** setting. The interrupt is generated whenever the scanner detects a key is pressed and then after the key is released. The interrupt conditions are 1 key, or 2 keys and no keys.

This chip provides one keypad connecting interface, which is allocated in GPIOC interface and shared with NAND Flash Interface.

The keypad interface has the following features:

- maximum 16x8 array with an external 4 to 16 decoder
- programmable de-bounce time
- low-power wakeup mode for 4x8 array
- programmable three-key reset

Publication Release Date: Jun. 18, 2010

Keypad Interface

7.19.1 Keypad Interface Register Map

Register	Address	R/W	Description	Reset Value		
KPI_BA = 0xB800_8000						
KPICONF	0xB800_8000	R/W	Keypad controller configuration Register	0x0000_0000		
KPI 3KCONF	0xB800_8004	R/W	Keypad controller 3-keys configuration register	0x0000_0000		
KPILPCONF	0xB800_8008	R/W	Keypad controller low power configuration register	0x0000_0000		
KPISTATUS	0xB800_800C	R	Keypad controller status register	0x0000_0000		

Keypad Controller Configuration Register (KPI_CONF)

Register Address		R/W	Description	Reset Value	
KPICONF	0xB800_8000	R/W	Keypad configuration register	0x0000_0000	

31	30	29	28	27	26	25	24		
	RESERVED								
23	22	21	20	19	18	17	16		
	RESERVE	D		KPSEL	ENKP	KSIZE			
15	14	13	12	11	10	9	8		
			DBT	C					
7	6	5	4	3	2	1	0		
	PRESCALE								

Bits	Descriptions					
[19]	KPSEL	Reypad Select This bit has to write 0 to select GPIOC interface to be the keypad interface.				
[18]	ENKP	Keypad Scan Enable Setting this bit high enable the key scan function. 1 = Enable keypad scan 0 = Disable keypad scan				
[17:16]	KSIZE	Key Array Size KSIZE Key array size 00 4x8, 3x8, 2x8, 1x8 01 8x8, 7x8, 6x8, 5x8 1x 16x8, 15x8, 14x8, 13x8, 12x8, 11x8, 10x8, 9x8				
[15:8]	DBTC	De-bounce Terminal Count De-bounce counter counts the number of consecutive scans that decoded the same keys. When de-bounce counter is equal to terminal counter, it will generate a key scan interrupt.				

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
		Row Scan Cycle Pre-scale Value
		This value is used to pre-scale row scan cycle. The pre-scale counter is clocked by 0.9375MHz clock.
		Key array scan time = 1.067us x PRESCALE x16 ROWS
[7:0]	PRESCALE	Example scan time for PRESCALE = 0xFA
		Scan time = 1.067 us x 250 x 16 = 4.268 ms
		If de-bounce terminal count = $0x05$, key detection interrupt is fired in approximately 21.34ms.
		The array scan time can range from 17.07us to 1.118 sec.

Keypad Controller 3-keys configuration Register (KPI3KCONF)

Register	Address	R/W	Description	Reset Value
KPI3KCONF	0xB800_8004	W/R	Three-key configuration register	0x0000_0000

31	30	29	28	27	26	25	24	
						EN3KY	ENRST	
23	22	21	20	19	18	17	16	
RESERVED		K32R				K32C		
15	14	13	12	11	10	9	8	
RESERVED		K31	R			K31C		
7	6	5	4	3	2	1	0	
RESERVED	K30R					K30C		

Bits	Descriptions					
[25]	EN3KY		Enable Three-keys Detection Setting this bit enables hardware to detect 3 keys specified by software			
50.41		Enable Th Setting this	s bit enable	hardware reset when three-key is dete	ected	
[24]	ENRST		ENRST	Function Three key function is disable		
		0	X	Three-key function is disable	-	
		1	0	Generate three-key interrupt		
		1	1	Hardware reset by three-key-reset]	
[22:19]	K32R	The #3 Ke	The #3 Key Row Address			
[18:16]	K32C	The #3 Ke	y Column	Address		
[14:11]	K31R	The #2 Ke	The #2 Key Row Address			
[10:8]	K31C	The #2 Key Column Address				
[6:3]	K30R	The #1 Key Row Address				
[2:0]	K30C	The #1 Ke	y Column	Address		

608

Publication Release Date: Jun. 18, 2010

Keypad Interface Low Power Mode Configuration Register (KPILPCONF)

Register	Address	R/W	Description	Reset Value
KPILPCOF	0xB800_8008	W/R	Low power configuration register	0x0000_0000

31	30	29	28	27	26	25	24	
	RESERVED							
23	22	21	20	19	18	17	16	
			RESERVED				WAKE	
15	14	13	12	11	10	9	8	
			LPW	CEN				
7	6	5	4	3	2	1	0	
RESERVED				LPWI	R			

Bits	Descriptions	
[16]	WAKE	Lower Power Wakeup Enable Setting this bit enables low power wakeup 1 = Wakeup enable 0 = Not enable
[15:8]	LPWCEN Low Power Wakeup Column Enable Enable column[7:0] low power wakeup	
[3:0]	LPWR	Low Power Wakeup Row Address Define the row address keys used to wakeup

Publication Release Date: Jun. 18, 2010

Key Pad Interface Status Register (KPISTATUS)

Register	Address	R/W	Description	Reset Value
KPISTATUS	0xB800_800C	R/O	key pad status register	0x0000_0000

31	30	29	28	27	26	25	24
			RESER\	/ED			
23	22	21	20	19	18	17	16
		INT	3 K R S T	PDWAKE	3KEY	2KEY	1KEY
15	14	13	12	11	10	9	8
RESERVED		KEY1	R			KEY1C	
7	6	5	4	3	2	1	0
RESERVED	D KEYOR					KEYOC	

Bits	Descriptions	
[21]	INT	Key Interrupt This bit indicates the key scan interrupt is active and that one or two keys have changed status.
[20]	3KRST	3-Keys Reset Flag This bit will be set after 3-keys reset occur. 1 = 3 keys reset 0 = Not reset
[19]	PDWAKE	Power Down Wakeup Flag This flag indicates the chip is wakeup from power down by keypad $1 = \text{Wakeup up by keypad}$ $0 = \text{Not wakeup}$
[17]	2KEY	Double-key Press This bit indicates that 2 keys have been detected.
[16]	1KEY	Single-key Press This bit indicates that 1 key has been detected.
[14:11]	KEY1R	KEY1 Row Address This value indicates key1 row address

Publication Release Date: Jun. 18, 2010

Bits	Descriptions	
[10:8]	KEY1C	KEY1 Column Address This value indicates key1 column address
[6:3]	KEYOR	KEYO Row Address This value indicates key0 row address
[2:0]	KEYOC	KEYO Column Address This value indicates key0 column address.

8. ELECTRICAL SPECIFICATIONS

8.1 Absolute Maximum Ratings

Ambient temperature	-20 °C ~ 70 °C
Storage temperature	-50 °C ~ 125°C
Voltage on any pin	-0.5V ~ 6V
Power supply voltage (Core logic)	-0.5V ~ 2.5V
Power supply voltage (IO Buffer)	-0.5V ~ 4.6V
Injection current (latch-up testing)	100mA
Crystal Frequency	4MHz ~ 30MHz

8.2 DC Specifications

8.2.1 Digital DC Characteristics

(Normal test conditions: VDD33 = 3.3V+/-10%, VDD18/PLLVDD18 = 1.8V+/-10%, USBVDDC0/USBVDDT0/USBVDDT1= 3.3V+/-5%, TA = -20 °C ~ 70 °C unless otherwise specified)

Symbol	Parameter	Condition	Min	TYP	Max	Unit
VDD33	Power Supply		2.97	-	3.63	V
VDD18/ PLLVDD18	Power Supply		1.62	-	1.98	V
USBVDDC0/ USBVDDC1/ USBVDDT0/ USBVDDT1	Power Supply		3.13	-	3.46	V
V _{IL}	Input Low Voltage		-0.3	-	0.8	V
v_IH	Input High Voltage		2.0	-	5.5	V
VT+	Schmitt Trigger positive-going threshold		1.5	-	1.62	V
VT-	Schmitt trigger negative-going threshold		1.14	-	1.27	V
V _{OL}	Output Low Voltage	Depend on driving	-	-	0.4	V
V _{OH}	Output High Voltage	Depend on driving	2.4	-	-	V
I _{IH}	Input High Current	$V_{IN} = 2.4 \text{ V}$	-1	-	1	uA

612

Publication Release Date: Jun. 18, 2010

I_{IL}	Input Low Current	$V_{IN} = 0.4 V$	-1	-	1	uA
I_{OH}	Output High Current	EBI, GPIOC, GPIOD	ı	35	ı	mA
I_{OL}	Output Low Current	EBI, GPIOC, GPIOD	ı	26	ı	mA
I_{OH}	Output High Current	The other port	ı	25	ı	mA
I_{OL}	Output Low Current	The other port	-	17	ı	mA
I_{OC}	Operation Current	Note 1		340	ı	mA
${ m I}_{ m SC}$	Standby Current	Note 2	-	100	-	uA

Note1:

This operation current is measured on VDD18 @ 1.8V, and all of IP clocks are enable with CPU clock/system clock @ 200MHz / 100MHz.

Note2:

The standby current is measured on VDD18 @1.8V, and all of IP clocks are disabled with power-down mode, all of GPIO pins are set to output and clock pins keep at 0V.

8.2.2 USB Low-/Full-Speed DC Electrical Specifications

Symbol	Parameter	Conditions	Min	Nom	Max
$oldsymbol{V}_{ ext{IH}}$	Pad input high voltage		2.0V		
$V_{_{ m IL}}$	Pad input low voltage				0.8V
$V_{\scriptscriptstyle m DI}$	Differential input sensitivity	PADP-PADM	0.2V		
V_{CM}	Common mode voltage range	include V _{DI} range	0.8V		2.5V
V _{SE}	Single-ended receiver threshold		0.8V		2.0V
V _{OL}	Pad output low voltage		0V		0.3V
$oldsymbol{V}_{ ext{OH}}$	Pad output high voltage		2.8V		3.6V
V _{CRS}	Differential output signal cross-point voltage		1.3V		2.0V
$R_{\scriptscriptstyle extsf{PU}}$	Internal pull-up resistor	Bus idle	900Ω		1575Ω
		Receiving	1425Ω		3090Ω
$R_{\scriptscriptstyle{ extsf{PD}}}$	Internal pull-down resistor		14.25ΚΩ		24.80ΚΩ
Z _{DRV}	Driver output resistance	Steady state drive		10Ω	
$\mathcal{C}_{_{\mathrm{IN}}}$	Transceiver pad capacitance	Pad to ground			20pF

8.2.3 USB High-Speed DC Electrical Specifications

Symbol	Parameter	Conditions	Min	Тур	Max
V _{HSDI}	High-speed differential input signal level	PADP-PADM	150mV		
V _{HSSQ}	High-speed SQ detection threshold	PADP-PADM	100mV		150mV
V _{HSCM}	High-speed common mode voltage range		-50mV		500mV

613

Publication Release Date: Jun. 18, 2010

V _{HSOH}	High-speed data signaling high		360mV	440mV
V_{HSOL}	High-speed data signaling low		-10mV	10mV
V _{CHIRPJ}	Chirp J level		700mV	1100mV
V _{CHIRPK}	Chirp K level		-900mV	-500mV
Z _{HSDRV}	High-speed driver output resistance	45Ω±10%	40.5Ω	49.5Ω

8.3 AC Specifications

8.3.1 RESET AC Characteristics

Symbol	Parameter	Min.	Max.	Unit
T _{RST}	Reset Pulse Width after Power stable	1.0	-	ms

8.3.2 Clock Input Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{EXTAL15M}	Clock Input Frequency	-	15.0	-	MHz
EXTAL15M _{DUTY}	Clock Input Duty Cycle	45	50	55	%

614

V _{IL} (EXTAL15M)	EXTAL15M Input Low Voltage	0	-	0.8	V
V _{IH} (EXTAL15M)	EXTAL15M Input High Voltage	2.0	-	VDD33+0.3	V

8.3.3 EBI/SDRAM Interface AC Characteristics

Symbol	Parameter	Min.	Max.	Unit
F _{MCLK}	SDRAM Clock Output Frequency	-	100	MHz
T _{DSU}	MD[31:0]] Input Setup Time	2	-	ns
T _{DH}	MD[31:0] Input Hold Time	2	-	ns
T _{osu}	SDRAM Output Signal Valid Delay Time	2*	7*	ns

^{*} The above T_{OSU} is based on the EBI CKSKEW register default setting on 0x48 and F_{MCLK} at 100MHz

8.3.4 EBI / (ROM/SRAM/External I/O) AC Characteristics

Symbol	Parameter	Min.	Max.	Unit
T _{ADDO}	Address Output Delay Time	2*	7*	ns
T _{NCSO}	ROM/SRAM/Flash or External I/O Chip Select Delay Time	2*	7*	ns
T _{NOEO}	ROM/SRAM or External I/O Bank Output Enable Delay	2*	7*	ns
T _{NWBO}	ROM/SRAM or External I/O Bank Write Byte Enable Delay	2*	7*	ns
T _{DH}	Read Data Hold Time	5		ns
T _{DSU}	Read Data Setup Time	1		ns
T _{DO}	Write Data Output Delay Time (SRAM or External I/O)	2*	7*	ns
T _{NWASU}	External Wait Setup Time	3		ns
T _{NWAH}	External Wait Hold Time	1		ns

The above data are based on the EBI CKSKEW register default setting on 0x48 and F_{MCLK} at 100MHz

8.3.5 LCD Interface: MPU Type AC Characteristics

Symbol	Parameter	Conditions	Min.	Max.	Unit
T _{LCSS}	Chip Select Set-up Time	-	1/2	-	*PCLK
T _{LCSH}	Chip Select Hold Time	-	1/2	-	*PCLK
T _{LAS}	Address Set-up Time	-	1	-	*PCLK
T _{LAH}	Address Hold Time	-	1	-	*PCLK
T _{LDOD}	Write Data Active Delay	-	0	1/2	*PCLK
T _{LDOH}	Write Data Hold Time	-	1/2	-	*PCLK
T _{LWR}	WR Pulse Width	80 Mode	1	-	*PCLK
T _{LE}	LE Pulse Width	68 Mode	1/2	-	*PCLK

^{*}PCLK is the engine clock of the LCD Controller

8.3.6 SD Host Interface AC Characteristics

Symbol	Parameter	Conditions	Min.	Max.	Unit
F _{SD}	SD Clock Frequency	Identification Mode	100	400	KHz
F _{SD}	SD Clock Frequency	Data Transfer Mode	-	50	MHz
T _{CLKH}	SD Clock High Time	-	10	-	ns
T _{CLKL}	SD Clock Low Time	-	10	-	ns
T _{ISU}	SD CMD & Data Input Setup Time	-	5	-	ns
Тін	SD CMD & Data Input Hold Time	-	5	-	ns
T _{OAD}	SD Output Active Delay (Falling Edge)	-	-	14	ns
Тон	SD Output Hold Time	-	0	-	ns

618

8.3.7 NAND Flash Memory Interface AC Characteristics

Symbol	Parameter	Min.	Max.	Unit
T _{CACS}	SM_CS0n, SM_ALE, SM_CLE Setup Time before SM_WEn, SM_REn Low	20	-	ns
T _{CACH}	SM_CS0n, SM_ALE, SM_CLE Hold Time after SM_WEn, SM_REn High	40	-	ns
T _{WP}	Write Pulse Width	40	-	ns
T _{WH}	SM_WEn High Time	20	-	ns
T _{wc}	Write Cycle Time	80	-	ns
T _{WDS}	Write Data Output Setup Time	30	-	ns
T _{WDH}	Write Data Output Hold Time	20	-	ns
T _{RP}	Read Pulse Width	60	-	ns
T _{RH}	SM_REn High Time	20	-	ns

619

Publication Release Date: Jun. 18, 2010

T _{RC}	Read Cycle Time	80	-	ns
T _{RDS}	Read Data Input Setup Time	6	-	ns
T _{RDH}	Read Data Input Hold Time	20	-	ns

8.3.8 Memory Stick Interface AC Characteristics

Symbol	Parameter	Conditions	Min.	Max.	Unit
F _{MCLK}	MS_CLK Clock Frequency	Serial Mode	5	20	MHz
F _{MCLK}	MS_CLK Clock Frequency	Parallel Mode	10	40	MHz
T _{MCLKH}	MS_CLK Clock High Time		5	-	ns
T _{MCLKL}	MS_CLK Clock Low Time		5	-	ns
T _{BS_OD}	MS_BS Output Delay (Falling Edge)		5	15	ns
T _{BS_H}	MS_BS Output Hold Time		1	-	ns
T _{D_SU}	Data Input Setup Time		8	-	ns
T _{D_H}	Data input Hold Time		1	-	ns
T _{D_OD}	Data Output Delay (Falling Edge)		8	15	ns
T _{D_OD}	Data Output Hold Time		1	-	ns

620

Publication Release Date: Jun. 18, 2010

8.3.9 Audio AC-Link Interface AC Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit
T _{ABCLKH}	Audio Bit Clock Input High Time	36.6	40.7	44.8	ns
T _{ABCLKH}	Audio Bit Clock Input Low Time	36.6	40.7	44.8	ns
T _{ABCLK}	Audio Bit Clock Input Cycle Time	-	81.4	-	ns
T _{AOS}	Audio Output Signal (AC97_SYNC, AC97_DATAO) Setup Time	15	-	-	ns
T _{AOH}	Audio Output Signal (AC97_SYNC, AC97_DATAO) Hold Time	5	-	-	ns
T _{AIS}	Audio Data Input Setup Time	15	-	-	ns
T _{AIH}	Audio Data Input Hold Time	5	-	-	ns
T _{SYNCH}	Sync Signal Output High Time	-	20.8	-	ns
T _{SYNCH}	Sync Signal Output Low Time	-	1.3	-	ns
T _{SYNC}	Sync Signal Output Cycle Time	-	19.5	_	ns

Publication Release Date: Jun. 18, 2010 Revision: A4

8.3.10 Audio I2S Interface AC Characteristics

Symbol	Parameter	Min.	Max.	Unit
T _{ABCLKH}	Audio Bit Clock Output High Time	18.3	-	ns
T _{ABCLKH}	Audio Bit Clock Output Low Time 18.3			
T _{ABCLK}	Audio Bit Clock Output Cycle Time 40.7		-	ns
T _{AOS}	Audio Data Output Setup Time 4.5		-	ns
Таон	Audio Data Output Hold Time 4.5		-	ns
T _{AIS}	Audio Data Input Setup Time 4.5		-	ns
T _{AIH}	Audio Data Input Hold Time	4.5	-	ns

8.3.11 USI (SPI/MW) Interface AC Characteristics

Symbol	Parameter	Min.	Max.	Unit
T _{CLKH}	Clock Output High Time	14.6	-	ns
T _{CLKL}	Clock Output Low Time		-	ns
T _{CLK}	Clock Cycle Time		-	ns
T _{UOS}	SFRM, SSPTXD Output Setup Time		-	ns
Тион	SFRM, SSPTXD Output Hold Time		-	ns
T _{UIS}	SSPRXD Input Setup Time		-	ns
T _{UIH}	SSPRXD Input Hold Time		-	ns

8.3.12 USB Transceiver AC Characteristics

USB Transceiver: Low-Speed AC Electrical Specifications

Symbol	Parameter	Conditions	Min	Тур	Max
T _{LR}	Low-speed driver rise time	C _L =50pF	75ns		300ns
\mathcal{T}_{LF}	Low-speed driver fall time	C _L =50pF	75ns		300ns
T _{LRFM}	Low-speed rise/fall time matching	$T_{LRFM} = T_{LR} / T_{LF}$	80%		125%

USB Transceiver: Full-Speed AC Electrical Specifications

Symbol	Parameter	Conditions	Min	Тур	Max
T _{FR}	Full-speed driver rise time	C _L =50pF	4ns		20ns
\mathcal{T}_{FF}	Full-speed driver fall time	C _L =50pF 75ns			20ns
T _{FRFM}	Full-speed rise/fall time matching	$T_{FRFM} = T_{FR} / T_{FF}$	90%		111.11 %

USB Transceiver: High-Speed AC Electrical Specifications

Symbol	Parameter	Conditions	Min	Тур	Max
$ au_{HSR}$	High-speed driver rise time	$Z_{HSDRV} = 45\Omega$	500ps		900ps
T _{HSF}	High-speed driver fall time	$Z_{HSDRV} = 45\Omega$	500ps		900ps
	High-speed driver waveform requirement		Eye diagra	am of tem	plate 1
	High-speed receiver waveform requirement		Eye diagram of template 4		plate 4 ^{††}
	High anad fitter requirement	Data source end	Eye diagra	am of tem	plate 1
	High-speed jitter requirement	Receiver end	Eye diagra	am of tem	plate 4

624

^{**} Check "Universal Serial Bus Specification Revision 2.0" in page 133.

⁺⁺ Check "Universal Serial Bus Specification Revision 2.0" in page 136.

8.3.13 EMC RMII AC Characteristics

The signal timing characteristics conforms to the guidelines specified in IEEE Std. 802.3.

Transmit Signal Timing Relationships at RMII

Receive Signal Timing Relationships at RMII

Symbol	Parameter	Min	Max	Unit
T _{TxO}	Transmit Output Delay Time	7	14	ns
T _{RxSU}	Receive Setup Time	4		ns
T _{RxH}	Receive Hold Time	2		ns

PHY_MDIO Read from PHY Timing

PHY_MDIO Write to PHY Timing

Symbol	Parameter	Min	Max	Unit
T _{MDO}	PHY_MDIO Output Delay Time	0	15	ns
T _{MDSU}	PHY_MDIO Setup Time	5		ns
T _{MDH}	PHY_MDIO Hold Time	5		ns

9. PACKAGE SPECIFICATIONS

NUC950ADN LQFP216L (24X24X1.4 mm, footprint 2.0mm)

Symbol	Dime	nsion ir	n mm	Dimer	sion in	inch	
Syllibol	Min	Nom	Max	Min	Nom	Max	
Α	_		1.60	_	_	0.063	
Αı	0.05	_	0.15	0.002	_	0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
b	0.13	0.18	0.23	0.005	0.007	0.009	
b₁	0.13	0.16	0.19	0.005	0.006	0.007	
С	0.09	0.14	0.20	0.004	0.006	0.008	
C 1	0.09	0.12	0.16	0.004	0.005	0.006	
D	25.85	26.00	26.15	1.018	1.024	1.030	
D١	23.90	24.00	24.10	0.941	0.945	0.949	
Е	25.85	26.00	26.15	1.018	1.024	1.030	
E ₁	23.90	24.00	24.10	0.941	0.945	0.949	
е	0.	40 BS	С	0.016 BSC			
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1	1	1.00 REF			039 RE	F	
R₁	0.08		_	0.003	_		
R₂	0.08		_	0.003	_		
S	0.20			0.008	_		
θ	0*	3.5°	7*	0,	3.5°	7*	
θ1	0*		_	0°	_		
θ ₂	1 1°	12°	13°	11°	12°	13*	
Өз	11°	12°	13°	11°	12°	13°	
ccc		0.08			0.003		

Exposed Pad Size					
L/F	Dimension in mm	Dimension in inch			
D2/E2	6.50 REF	0.256 REF			

10. REVISION HISTORY

REVISION	DATE	COMMENTS
А	2008/07/09	First Release
A1	2008/07/18	1. Update Chapter 7.10
		Display size: Maximum size 1024x768
A2	2008/10/07	1. Update Chapter 2
		Add text "Pb free"
		2. Update Chapter 4
		Correct typo: KPI_ROW[0], KPI_ROW[1], KPI_ROW[2], KPI_ROW[3]
		3. Correct Typo: Spelling and grammar check
		4. Update Chapter 9
		Package Specifications
АЗ	2009/04/13	1. Update Chapter 7.10.1.4
		Display Pin Assignment Table
		2. Rename nWE to nSWE
		3. Change Part Number from W90P950CDG to NUC950ADN
		4. Update Chapter 7.10
		Display size: Maximum size 1024x600
		5. Update Chapter 8.3.5
		LCD Interface: MPU Type AC Characteristics
A4	2010/06/18	1. Add GPIOI[16]
		2. Add IOH, IOL current value

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.

Publication Release Date: Jun. 18, 2010