Monday, June 22, 2020 11:58 PM

Probability

having possible worlds (w)

And the possibility of some possible world is p(w)

$0 \le p(w) \le 1$

Unconditional probability:

Degree of belief in a proposition in the absence of any other evidence

Conditional probability:

Degree of belief in a proposition given some evidence that has already been revealed

P(a | b) --> probability of a given b

$$P(a \mid b) = \frac{p(a \wedge b)}{p(b)}$$

 $P(a \land b) = P(b)p(a | b) = p(a)p(b | a)$

Random variable:

 \bigcirc

A variable in probability theory with a domain of possible values it can take on

Probability distribution:

Takes a random variable and give the probability for each value in its domain $P(\ Var) = < -, -, -, ->$

Independence:

The knowledge that one event occurs does not affect the probability of the other Event

 $P(a \land b) = p(b)p(a \mid b)$ $P(a \mid b) = p(a)$

So:

 $p(a \land b) = p(a)p(b)$

Bayes` Rule:

P(a)p(b | a) = p(b)p(a | b) So: P(b | a) = $\frac{p(b)p(a | b)}{a}$

Usage: Express conditional probability given the reverse of it

Knowing:

P(visible effect | unknown cause)

We can calculate :

P(unknown cause | visible effect)

Joint probability:

Considering the likelihood of several deferent events at the same time $P(var1 \land var2) = P(var1, var2) = <-, -, ->$

Given joint probability table :

We Can draw information about conditional probability

 $P(Var \mid something) = \frac{p(var, somthing)}{p(something)}$

P(something) is a constant so : $P(Var \mid something) = \alpha p(Var \land something)$

 α : normalization factor

Probability Rules:

 $P(\neg a) = 1 - p(a)$

Inclusion-Exclusion :

P(a V b) = p(a) + p(b) - P(a ^ b)

Marginalization:

 $P(a) = p(a \land b) + p(a \land \neg b)$

 $P(X = x_i) = \sum_j p(X = Xi, Y = yj)$

Conditioning:

 $P(a) = p(a \mid b)p(b) + p(a \mid \neg b)p(\neg b)$

 $P(X = x_i) = \sum_{i} p(X = Xi \mid Y = yj)p(Y_i)$

Bayesian network:

Data structure that represent the dependencies among random variable

Design of Bayesian network:

- Directed graph
- Each node represent a random variable
- Arrow from X to Y means X is a parent of Y
- Each node X has probability distribution P(X | parents(X))

Approximate inference :

Do not know the exact probability but I have a general sense for the probability and can get better with time

Example : sampling

Takes sample by taking a value of every node

(rejection sampling) ·

- Arrow from X to Y means X is a parent of Y - Each node X has probability distribution P(X | parents(X)) Inference in probabilistic sitting:

- Query(x): variable for which to compute distribution
- Evidence variables E : observed variables for event e
- Hidden Variables Y: non-evidence, non-query variable
- Goal : p(X | e)

EX : Inference By Enumeration :

$P(X \mid e) = \alpha p(X, e) = \alpha \sum_{y} p(X, e, y)$

y : ranges of values of hidden variables

 $\boldsymbol{\alpha}$: Normalizing the result

Uncertainty over time:

X $_{\mbox{\scriptsize t}}$: the variable X at time t

Markov assumption:

The assumption that the current state depend on only A finite fixed number of previous states

Markov chain:

A sequence of random variables where the distribution of each variable follow the Markov assumption

How we transition from one state to next state

Sensor Models:

Translate the hidden state to an observation

Hidden Markov Model:

A Markov model for a system with hidden states That generate some observed event

--- We need another model between state and event --> sensor model(called: emission probability)

Sensor Markov assumption:

The assumption that the evidence variable depend only on the corresponding state

Task	Definition
Filtering	Given an observations from start Until now, calculate distribution for current state
Prediction	Given an observations from start Until now, calculate distribution for future state
smoothing	For past state
Most likely Explanation	Given an observations from start Until now, calculate most likely sequence of states

LAGITIPIE . SGITTPIITIE

From the samples: reject the samples that does not Match the evidence

Takes sample by taking a value of every node

- a. Start by fixing the value for the evidence variables(and sample them)
- b. Sample the non-evidence variables using conditional probability in the Bayesian network
- c. Weight each sample by its likelihood (The probability of all of the evidence)