Lecture 15: Dimensionality Reduction – Kernel PCA – extra slides

Textbook: Chapter 5

Dr. Huiping Cao

Procedure

• PCA analysis: calculate covariance matrix

$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}^{(i)}) (\mathbf{x}^{(i)})^{T}$$

• In the $\mathcal Z$ space

$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} \phi(\mathbf{x}^{(i)}) \phi(\mathbf{x}^{(i)})^{T}$$

• Then, we need to obtain the eigen vector of Σ .

Procedure

 \bullet The eigenvectors of Σ can be expressed as linear combination of features

$$v = \sum_{i=1}^{n} \alpha_i \phi(x^{(i)})$$

Procedure discussions

- λ and \mathbf{v} are the eigenvalues and eigenvectors of the covariance matrix Σ respectively.
- α_i is a scalar.

$$\alpha_i = \frac{1}{n\lambda} \phi(\mathbf{x}^{(i)})^T \mathbf{v}$$

• α_i is obtained by extracting the eigenvectors of the kernel (similarity) matrix **K**.

$$\mathbf{K}\alpha = n\lambda\alpha$$

- This is computationally very expensive.
- This is where we use the **kernel trick**. Using the kernel trick, we can compute the similarity between two high-dimension feature vectors in the original feature space.

Projecting new data points

- Training and testing data: when we apply PCA on the training data, we used the learned matrix **W** to transform the testing data.
- For Kernel PCA: eigenvector α are the samples that are already projected onto the PC components \mathbf{v} .
- For new \mathbf{x}' , we need to project it to the PC, $\phi(\mathbf{x}')^T \mathbf{v}$.

Projecting new data points

- However, we do not know ϕ explicitly, how can we do this calculation? We can use the kernel trick.
- Because $\mathbf{v}^j = \sum_{i=1}^n \alpha_i^{(j)} \phi(\mathbf{x}^{(i)})$ where $\lambda_j \alpha^{(j)} = \mathbf{K} \alpha^{(j)}$. I.e., λ_j and $\alpha^{(j)} = (\alpha_1^{(j)}, \alpha_2^{(j)}, \dots, \alpha_n^{(j)})$ are the eigenvalues and eigenvectors of \mathbf{K} .

$$\phi(\mathbf{x}')^T \mathbf{v}^j = \sum_{i=1}^n \alpha_i^{(j)} \phi(\mathbf{x}')^T \phi(\mathbf{x}^{(i)}) = \sum_{i=1}^n \alpha_i^{(j)} \cdot \kappa(\mathbf{x}', \mathbf{x}^{(i)})$$