Nome:	
Assinatura:	RG:

Prova de Matemática

1. Pode-se afirmar que o gráfico da função $y=2+\frac{1}{x-1}$ é o gráfico da função	$y = \frac{1}{x}$
--	-------------------

- (a) transladado uma unidade para a direita e duas unidades para cima;
- (b) transladado uma unidade para a direita e duas unidades para baixo;
- (c) transladado uma unidade para a esquerda e duas unidades para cima;
- (d) transladado uma unidade para a esquerda e duas unidades para baixo;
- (e) nenhuma das anteriores.
- 2. A derivada da função $f(x) = x^x$ é igual a
 - (a) xx^{x-1}
 - (b) x^x
 - (c) $x^x ln(x)$
 - (d) $x^x(ln(x) + 1)$
 - (e) $x^x(ln(x) + x)$
- 3. Seja n um número inteiro positivo. Considere a função f definida recursivamente por

$$f(n) = \begin{cases} 0 & \text{se } n = 1\\ f(\lfloor \frac{n}{2} \rfloor) + 1 & \text{se } n > 1 \end{cases}$$

onde $\lfloor k \rfloor$ é o maior inteiro menor ou igual a k. O valor de f(25) é igual a

- (a) 5
- (b) 4
- (c) 6
- (d) 3
- (e) 2
- 4. Para cada $n \in \mathbb{N}$ seja $D_n = (0, 1/n)$, onde (0, 1/n) representa o intervalo aberto de extremos 0 e 1/n. O conjunto diferença $D_3 D_{20}$ é igual a:
 - (a) D_3
 - (b) D_{20}
 - (c) (1/20, 1/3)
 - (d) [1/20, 1/3)
 - (e) $D_{20} \cup D_3$

- 5. Todos os convidados presentes num jantar tomam chá ou café. Treze convidados bebem café, dez bebem chá e 4 bebem chá e café. Quantas pessoas tem nesse jantar.
 - (a) 19
- (b) 27
- (c) 23
- (d) 15
- (e) 10

6. A sequência x_n é definida recursivamente por

$$\begin{cases} x_0 = a/2 \\ x_{n+1} = (x_n + a/x_n)/2 & \text{para } n \ge 0 \end{cases}$$

onde a é um número real maior do que 1. Se $\lim_{n\to\infty} x_n = L$ podemos afirmar que

- (a) L = 1
- (b) L = 1/a
- (c) L = a
- (d) L = 1/2a
- (e) $L = \sqrt{a}$
- 7. Seja $f: \mathbb{R} \to \mathbb{R}$ derivável. Se existem $a, b \in \mathbb{R}$ tal que f(a)f(b) < 0 e $f'(x) \neq 0$ para todo $x \in (a, b)$, podemos afirmar que no intervalo (a, b) a equação f(x) = 0 tem
 - (a) duas raízes reais
 - (b) nenhuma raíz real
 - (c) uma única raiz real
 - (d) uma raiz imaginária
 - (e) somente raízes imaginárias
- 8. Seja $g: \mathbb{R} \to \mathbb{R}$ contínua e f(x) = g(x) x. Definimos a seqüência (x_n) da seguinte maneira

$$\begin{cases} x_0 = 1 \\ x_n = g(x_{n-1}) \text{ para } n \ge 1 \end{cases}$$

Se $\lim_{n\to\infty} x_n = L$ podemos afirmar que

- (a) L é uma raíz de f(x) = 0
- (b) L é uma raíz de g(x) = 0
- (c) g(L) = 1
- (d) f(L) = L
- (e) nenhuma das anteriores

- 9. Assinale a proposição verdadeira
 - (a) Se x é um número real tal que $x^2 \le 4$ então $x \le 2$ e $x \le -2$
 - (b) Se x e y são números reais tais que x < y então $x^2 < y^2$
 - (c) Se x + y é um número racional então x e y são números racionais
 - (d) Se x < -4 ou x > 1 então $\frac{2x+3}{x-1} > 1$
 - (e) nenhuma das anteriores
- 10. Assinale o argumento válido, onde S_1 , S_2 indicam premissas e S a conclusão:
 - (a) S_1 : Se o cavalo estiver cansado então ele perderá a corrida
 - S_2 : O cavalo estava descansado
 - S: O cavalo ganhou a corrida
 - (b) S_1 : Se o cavalo estiver cansado então ele perderá a corrida
 - S_2 : O cavalo ganhou a corrida
 - S: O cavalo estava descansado
 - (c) S_1 : Se o cavalo estiver cansado então ele perderá a corrida
 - S_2 : O cavalo perdeu a corrida
 - S: O cavalo estava cansado
 - (d) S_1 : Se o cavalo estiver cansado então ele perderá a corrida
 - S_2 : O cavalo estava descansado
 - S: O cavalo perdeu a corrida
 - (e) nenhuma das anteriores
- 11. Uma prova de vestibular foi elaborada com 25 questões de múltipla escolha com 5 alternativas. O número de candidatos presentes à prova foi 63127. Considere a afirmação: Pelo menos 2 candidatos responderam de modo idêntico as k primeiras questões da prova. Qual é o maior valor de k para o qual podemos garantir que a afirmação é verdadeira.
 - (a) 10
 - (b) 9
 - (c) 8
 - (d) 7
 - (e) 6

- 12. Dado um vetor $u \in \mathbb{R}^2$, u = (-3,4), vamos denotar por v o vetor de \mathbb{R}^2 que tem tamanho 1 e é ortogonal à u. Então v pode ser dado por
 - (a) (-4/5, 3/5)
 - (b) (3/5, 4/5)
 - (c) (-4/5, -3/5)
 - (d) (-4/5, 1/5)
 - (e) (-4/5, 2/5)

13.

Se O=(0,0,0) ; A=(2,4,1) ; B=(3,1,1) e C=(1,3,5) então o volume do sólido acima é

- (a) 30
- (b) 35
- (c) 35/2
- (d) 44
- (e) 21
- 14. A velocidade de um ponto em movimento é dada pela equação

$$v(t) = te^{-0.01t} m/s$$

O espaço percorrido desde o instante que o ponto começou a se mover até a sua parada total é

- (a) $10^4 m$
- (b) $10^3 e^{-0.01} m$
- (c) $10^2 e^{-1} m$
- (d) $(e^{-100} 1)m$
- (e) $10^2 m$

- 15. Se $\lim_{n \to \infty} (\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2}) = L$ então
 - (a) L = 1
 - (b) L = 0
 - (c) L = 1/2
 - (d) $L = \infty$
 - (e) L = 2
- 16. O número de $strings\ binárias$ de comprimento 7 e contendo um par de zeros consecutivos é
 - (a) 91
 - (b) 92
 - (c) 94
 - (d) 95
 - (e) 90
- 17. A média aritmética de uma lista de 50 números é 50. Se dois desses números, 51 e 97, forem suprimidos dessa lista a média dos restantes será
 - (a) 50
 - (b) 49
 - (c) 51
 - (d) 47
 - (e) 40
- 18. O determinante da matriz dada abaixo é

$$\left(\begin{array}{cccccc}
2 & 7 & 9 & -1 & 1 \\
2 & 8 & 3 & 1 & 0 \\
-1 & 0 & 4 & 3 & 0 \\
2 & 0 & 0 & -1 & 0 \\
3 & 0 & 0 & 0 & 0
\end{array}\right)$$

- (a) 96
- (b) -96
- (c) 86
- (d) -86
- (e) 46

- 19. Numa prova de múltipla escolha com 10 questões e 4 alternativas qual a chance (probabilidade) de um aluno apenas "chutando as respostas" conseguir "gabaritar" a provar (acertar todas as questões).
 - (a) $1/10^4$
 - (b) $1/4^{20}$
 - (c) $1/2^{20}$
 - (d) $1/10^8$
 - (e) $1/4^{15}$
- 20. Três atletas A, B e C competiram, ao pares, numa corrida de d metros. Considerando que cada atleta teve o mesmo desempenho (ou seja, a mesma velocidade) ao competir com adversários distintos, e sabendo-se que
 - ullet A venceu B chegando 20 metros à frente
 - \bullet BvenceuCchegando 10 metros à frente
 - A venceu C chegando 28 metros à frente,

podemos afirmar que a corrida tem

- (a) 50 metros
- (b) 200 metros
- (c) 100 metros
- (d) 150 metros
- (e) 110 metros