Compito scritto AA 2014/2015 corso di Fisica Nucleare e Subnucleare 1

Soluzione

08/09/2015

Esercizio 1

Soluzione

$$R = \frac{p}{0.3B} = 5.85 \text{ m}.$$

I pioni di impulso 1 GeV hanno $\beta_{\pi}=0.990$ e $\beta_{\pi}\gamma_{\pi}=7.16$, mentre i muoni $\beta_{\mu}=0.994$ e $\beta_{\mu}\gamma_{\mu}=9.47$; la loro perdita di energia nel primo scintillatore calcolata con la Bethe-Block vale $-(\frac{dE}{dX})_{\pi}=5.52$ MeV/cm $-(\frac{dE}{dX})_{\mu}=5.76$ MeV/cm

Quindi abbiamo una perdita di energia 27.6 MeV per i pioni e di 28.8 MeV per i muoni. Il loro impulso dopo il primo scintillatore sara' pari a:

 $p_{\pi} = \sqrt{(E_i - \Delta E)^2 - m_{\pi}^2} = \sqrt{(\sqrt{p_i^2 + m_{\pi}^2} - \Delta E)^2 - m_{\pi}^2} = 0.972 \text{ GeV}, \text{ e di } 0.971 \text{ GeV per i muoni},$ e avranno $\beta_{\pi} = 0.990 \text{ e } \beta_{\mu} = 0.994$.

Il tempo di volo tra gli scintillatori sara' pari a

$$TOF_{\pi} = D_{scint}/\beta_{\pi}c = 500cm/(0.990*30cm/ns) = 16.8 \text{ ns}, \text{ e } TOF_{\mu} = 16.8 \text{ ns}.$$

Lo scattering multiplo sara' mediamente di un angolo pari a $\theta_{scattering} >= 21 MeV \frac{z}{\beta p} \sqrt{\frac{x}{X_0}}$, pari a 29.5 mrad sia per i pioni che per i muoni, portando a una deviazione media all'altezza del secondo scintillatore pari a $\theta_{scattering} = 14.7$ cm.

Infine, con l'assorbitore il fascio di pioni si riduce di un fattore $\Phi/\Phi_0=e^{-x/\lambda_{int}}=0.5$, da cui $x=-\lambda_{int}ln(\Phi/\Phi_0)=13.9$ cm

Esercizio 3

Reazioni:

a. no, B,
$$\Delta S > 1$$

b. no, Q,
$$\Delta S > 1$$

d. no,
$$L_e$$
, B

- e. Si, forte
- f. no, Q, $\Delta S > 1$

Decadimenti:

- a. Si, forte
- b. No, massa invariante, Q
- c. Si, EM
- d. No, massa invariante
- e. No, L. $\Delta S = 1$
- f. Si, EM