TEMA. POLITICAS DE GESTION DE DISCO - PARTE 1

SISTEMAS OPERATIVOS

Estructura Física de un Disco Duro

- El disco es una pila de discos, llamados platos, que almacenan información magnéticamente.
- Cada uno de los platos tiene dos superficies magnéticas: la superior y la inferior.
- Estas superficies magnéticas están formadas por millones de pequeños elementos capaces de ser magnetizados positiva o negativamente. De esta manera, se representan los dos posibles valores que forman un bit de información (un cero o un uno). Ocho bits contiguos constituyen un byte (un carácter).

Estructura Física de un Disco Duro

 Un disco duro consta de una serie de partes importantes en su estructura física las cuales son: cabezas, cilindro y sectores

Estructura Física de un Disco Duro

- Cada una de las dos superficies magnéticas de cada plato se denomina cara. El número total de caras de un disco duro coincide con su número de cabezas.
- Cada una de estas caras se divide en anillos concéntricos llamados pistas. En los discos duros se suele utilizar el término cilindro para referirse a la misma pista de todos los discos de la pila.
- Finalmente, cada pista se divide en sectores.
- Los sectores son las unidades mínimas de información que puede leer o escribir un disco duro.
 Generalmente, cada sector almacena 512 bytes de información.

Discos de Cabezas Móviles

- Superficies magnéticas + cabezas de L/E.
 - Las superficies se dividen en pistas y sectores.
 - Las cabezas se mueven al unísono, delimitando cilindros.
- Las operaciones de L/E indican número de pista o cilindro, superficie y sector.

Discos de Cabezas Móviles

- ► El tiempo que tarda en atenderse una solicitud de L/E se desglosa en:
 - Tiempo de búsqueda, para situar las cabezas en el cilindro al que se desea acceder.
 - Arranque, desplazamiento y detención.
 - Tiempo de latencia, esperando a que el sector deseado pase por debajo de la cabeza.
 - Valor promedio: medio giro.
 - Tiempo de transferencia, determinado por la tasa de datos del disco.
 - Tiempo de espera en la cola de E/S.

Planificación

- Los tiempos de búsqueda y latencia dependen de la última solicitud servida.
 - La planificación busca un orden de servicio para reducir esos tiempos, sin perder de vista el de espera en cola.
 - Los algoritmos más habituales (para discos de cabezas móviles) se centran en los tiempos de búsqueda.
- Ejemplo:
 - Disco de 200 cilindros (200 pistas/superficie).
 - Cola de solicitudes a los cilindros 98, 183, 37, 122, 14, 124, 65 y 67.
 - Cabezas inicialmente posicionadas en el cilindro 53.

Algoritmo FCFS

- FCFS (First Come, First Served): se atienden las solicitudes en orden de llegada.
 - Fácil de programar, y equitativo en los tiempos de espera en cola.
 - Al no tener en cuenta la geometría del disco, se pueden registrar grandes desplazamientos de las cabezas.
 - ▶ Tiempos de espera elevados.

Ejemplo con FCFS

Pistas Recorridas: 45, 85, 146, 85, 108, 110, 59, 2

Promedio de Búsqueda: 80 pistas

Ejemplo 2 con FCFS

La cabeza esta situada en el cilindro 53, las solicitudes E/S a los bloques del disco situados en los cilindros 98, 183, 37, 122, 14, 124, 65, 67.

Desplazamiento 595 cilindros

Ejercicio

- Un disco posee 200 pistas (numeradas de 0 a 199), actualmente la cabeza se ubica en la pista 100, se tiene la siguiente cola de peticiones de acceso:
 - 81, 142, 86, 172, 89, 145, 97, 170, 125

• ¿Cuál es la longitud media de búsqueda para satisfacer estas solicitudes con el Algoritmo de Planificación FCFS?

Solución

	ALGORITMO FCFS									
INICIO	COLA DE PETICIONES									
100	81	142	86	172	89	145	97	170	125	
	DESPLAZAMIENTO									
	19	61	56	86	83	56	48	73	45	
	DESPLAZAMIENTO TOTAL						MEDIO			
	527						58.6			

Solución

Algoritmo SSTF

- SSTF (Shortest Seek Time First): se atiende la solicitud con el menor tiempo de búsqueda desde la posición actual de las cabezas.
 - Las peticiones de L/E en zonas alejadas pueden sufrir inanición.

Ejemplo con SSTF

Ejemplo:

- Disco de 200 cilindros (200 pistas/superficie).
- Cola de solicitudes a los cilindros 98, 183, 37, 122, 14, 124, 65 y 67.
- Cabezas inicialmente posicionadas en el cilindro 53.

Desplazamiento 12+2+30+23+84+24+2+59

Desplazamiento Total 236 cilindros

Ordenados con SSTF 53, 65, 67, 37, 14, 98, 122, 124, 183

Ejemplo con SSTF

Ejemplo:

- Disco de 200 cilindros (200 pistas/superficie).
- Cola de solicitudes a los cilindros 98, 183, 37, 122, 14, 124, 65 y 67.
- Cabezas inicialmente posicionadas en el cilindro 53.

