

Universidad Tecnológica del Perú

Investigación Operativa

S12 - Evaluación

Torres Vara, Mateo Nicolas - U24308542 Sección 36373

30 de octubre de 2025

Docente: Alberto Andre Reyna Alcantara

Ejercicio 1

Se tienen 2 plantas que envían producto a 2 centros de distribución, los cuales a su vez abastecen a 3 ciudades. Siendo los datos los siguientes:

	CD1	CD2	CD3	CD4	CD5
Planta A	3	4.5	2000	15	
Planta B	2.8	6	3000	18	

	Ciudad F	Ciudad G	Ciudad H	Capacidad
CD1	3.5	2.5	3	2800
CD2	2	4.2	3.8	1700
Demanda Max	1500	2000	2400	
Precio Venta	45	50	57	

A. Elabore el modelo correspondiente para maximizar los resultados.

Modelo

```
itingo Model - modelot

!i: 1,2 (plantas)
    j: 1,2 (CD)
    k: 1,2,3 (tiendas)
;

SETS:

planta/1..2/: capacidad_planta, costprod;
cd/1..2/: capacidad_cd;
tienda/1..3/: demanda, preciov;
FC(planta, cd): costrans_1, x;
CT(cd, tienda): costrans_2, y;
ENDSETS

DATA:
capacidad_planta, costprod, capacidad_cd, demanda, preciov, costrans_1, costrans_2 = @OLE(ejerciciol.xlsx);

@OLE(ejerciciol.xlsx) = x,y;
ENDDATA

MAX = @SUM(CT(j,k):preciov(k)*y(j,k) - costrans_2(j,k)*y(j,k)) - @SUM(FC(i,j):costrans_1(i,j)*x(i,j)+costprod(i)*x(i,j));

@FOR(planta(i):[FLI]@SUM(cd(j):x(i,j)) <= capacidad_cd(i));

@FOR(tienda(k):[TDA]@SUM(cd(j):y(j,k)) <= demanda(k));

@FOR(cd(j):[ALM]@SUM(planta(i):x(i,j)) = @SUM(tienda(k):y(j,k)));

END</pre>
```

Modelo Resuelto

X(1,	1)	1100.000	0.000000
X(1,	2)	1700.000	0.000000
X(2,	1)	1700.000	0.000000
X(2,	2)	0.000000	1.700000
COSTRANS 2 (1,	1)	3.500000	0.000000
COSTRANS 2(1,	2)	2.500000	0.000000
COSTRANS 2 (1,	3)	3.000000	0.000000
COSTRANS 2 (2,	1)	2.000000	0.000000
COSTRANS 2 (2,	2)	4.200000	0.000000
COSTRANS 2 (2,	3)	3.800000	0.000000
Y(1,	1)	0.000000	2.300000
Y(1,	2)	2000.000	0.000000
Y(1,	3)	800.0000	0.000000
Y(2,	1)	100.0000	0.000000
Y(2,	2)	0.000000	0.9000000
Y(2,	3)	1600.000	0.000000

Tablas de Excel

	CD 1	CD 2	Cap Prod	Cost Prod			
Planta A	3	4.5	2000	15			
Planta B	2.8	6	3000	18			
	Cludad F	Qudad G	Qudad H	Capacidad			
CD1	3.5	25	3	2800			
CD2	2	4.2	3.8	1700			
Demanda Max	1500	2000	2400				
Precio Venta	45	50	57				
	CD 1	CD 2		Tienda 1	Tienda 2	Tienda 3	
Planta A	1100	1700		0	2000	800	
Planta B	1700	0		100	0	1600	

Ejercicio 2

La siguiente matriz contiene los costos (en dólares) correspondientes a la asignación de los trabajos A, B, C, D y E a las máquinas 1, 2, 3, 4 y 5. Asigne los puestos a las máquinas de modo que los costos se reduzcan al mínimo.

		Má	áqui	nas	
Trabajo	1	2	3	4	5
A	7	10	12	5	11
В	6	11	4	5	9
\mathbf{C}	7	14	13	8	10
D	4	10	11	18	13
E	10	5	14	16	12

Se pide, dándonos soporte con LINGO:

- A. Indique la asignación de cada trabajo a cada máquina.
- B. Indicar cuál es el costo óptimo de dicha asignación.

Modelo

```
Lingo Model - modelo2
 !i: maquinas: (1,2,3,4,5)
  j: trabajos: (1,2,3,4,5);
SETS:
maquina/1..5/:;
trabajo/1..5/:;
MT (maquina, trabajo):costo, x;
ENDSETS
DATA:
 costo = @OLE(datos ejercicio2.xlsx);
 @OLE(datos ejercicio2.xlsx) = x;
ENDDATA
 !Función objetivo;
MIN = @SUM(MT(i,j):costo(i,j)*x(i,j));
 !Restricciones;
 @FOR(maquina(i)|i#EQ#1:@SUM(trabajo(j):x(i,j)) = 1);
 @FOR(maquina(i)|i#EQ#2:@SUM(trabajo(j):x(i,j)) = 1);
@FOR(maguina(i)|i#EQ#3:@SUM(trabajo(j):x(i,j)) = 1);
 @FOR(maquina(i)|i#EQ#4:@SUM(trabajo(j):x(i,j)) = 1);
 @FOR(maquina(i)|i#EQ#5:@SUM(trabajo(j):x(i,j)) = 1);
@FOR(trabajo(j)|j#EQ#1:@SUM(maquina(i):x(i,j)) = 1);
@FOR(trabajo(j)|j#EQ#2:@SUM(maquina(i):x(i,j)) = 1);
@FOR(trabajo(j)|j#EQ#3:@SUM(maquina(i):x(i,j)) = 1);
@FOR(trabajo(j)|j#EQ#4:@SUM(maquina(i):x(i,j)) = 1);
 @FOR(trabajo(j)|j#EQ#5:@SUM(maquina(i):x(i,j)) = 1);
END
```

Modelo Resuelto

X(1, 1)	0.000000	2.000000
X(1, 2)	0.000000	5.000000
X(1, 3)	0.000000	7.000000
X(1, 4)	1.000000	0.000000
X(1, 5)	0.000000	3.000000
X(2, 1)	0.000000	2.000000
X(2, 2)	0.000000	7.000000
X(2, 3)	1.000000	0.000000
X(2, 4)	0.000000	1.000000
X(2, 5)	0.000000	2.000000
X(3, 1)	0.000000	0.000000
X(3, 2)	0.000000	7.000000
X(3, 3)	0.000000	6.000000
X(3, 4)	0.000000	1.000000
X(3, 5)	1.000000	0.000000
X(4, 1)	1.000000	0.000000
X(4, 2)	0.000000	6.000000
X(4,3)	0.000000	7.000000
X(4, 4)	0.000000	14.00000
X(4, 5)	0.000000	6.000000
X(5,1)	0.000000	5.000000
X(5,2)	1.000000	0.000000
X(5, 3)	0.000000	9.000000
X(5, 4)	0.000000	11.00000
X(5, 5)	0.000000	4.000000
Row	Slack or Surplus	Dual Price
1	28.00000	-1.000000

Tablas de Excel

	1	2	3	4	5	
А	7	10	12	5	11	
В	6	11	4	5	9	
С	7	14	13	8	10	
D	4	10	11	18	13	
E	10	5	14	16	12	
	1	2	3	4	5	
А	0	0	0	1	0	
В	0	0	1	0	0	
С	0	0	0	0	1	
D	1	0	0	0	0	
Е	0	1	0	0	0	

Conclusiones

- A. La asignación de trabajos a cada maquina se puede observar en la segunda tabla de excel.
- B. El costo óptimo de dicha asignación es de 28 dólares.

Recursos y créditos

■ Código fuente: Repositorio GitHub - Investigación Operativa

■ Carátula por: 1nfinit0 en GitHub