统计理论 All of statistics学习笔记

Contents

前言	1
第一部分:概率论	2
1.概率论	2
2.随机变量	3
2.随机变量	3
3.期望	3
4.不等式	3
5.随机变量的收敛	3
第二部分:统计推断	3
6. 模型 , 统计推断和学习	3
参数模型和非参数模型	3
统计推断的基本概念	4
8. Bootstrap	4
10. 假设检验和p值	4
第三部分:统计模型和方法	4

前言

第一部分概率论:不确定性,统计推断的基础

给一个数据生成的过程,结果的属性是什么?

第二部分统计推断和他的近亲,数据挖掘和机器学习

给出数据的结果,我们能说数据生成的过程是怎么样的?

预测,分类,聚类,估计是统计推断。数据分析,机器学习和数据挖掘是统计推断的应用

Inference and Data Mining

统计、数据挖掘对应含义字典

统计	计算机科学	含义
估计	学习	使用数据去估计未知的属性
分类	监督学习	通过X预测离散的Y
聚类	非监督学习	把数据分组
数据	训练样本	$(X_1, X_1),, (X_n, Y_n)$
协变量	特征	$X_i's$
分类器	假设	协变量到结果的映射
假设	_	参数空间 Θ 的子集
置信空间	_	空间包含未知属性
有向非循环图	贝叶斯网络	多维分布给定条件独立关系
贝叶斯推断	贝叶斯推断	统计方法通过数据更新信念
频率推断	_	通过保障频率方法的统计方法
large deviation bounds	PAC学习	uniform bounds on probability of errors

第一部分:概率论

1.概率论

概率是用于量化不确定性的数学语言

术语小结		
Ω		
ω	结果(点或元素)	
A	事件(样本空间的子集)	
A^c	A的补充(非A)	
$A \cup B$	并(A或者B)	
$A \cap BorAB$	交 (A旦B)	
A - B	差 (ω 属于A但不属于B)	
$A \subset B$	A属于B	

术语小结	
$egin{pmatrix} \emptyset \ \Omega \end{bmatrix}$	假事件(永远为假) 真事件(永远为真)

概率

定义:函数 P 用一个实数 P(A) 去代表每个事件 A 的概率分布或者概率测量,如果满足一下三个公理

 $\mathbf{1}:P(A)\geq 0$,对于每个事件A

 $2: P(\Omega) = 1$

3: 如果 A_1, A_2, \dots 是非连续的,那么有

 $P\left(\bigcup_{i=1}^{\infty}\right) = \sum_{i=1}^{\infty} P\left(A_i\right)$

有两种方式解释频率P(A),一种是频率,另一种是可信度。分别对应频率派和贝叶斯派。

2.随机变量

- 2.随机变量
- 3.期望
- 4.不等式
- 5.随机变量的收敛

第二部分:统计推断

6. 模型,统计推断和学习

统计推断,在计算机中称为"学习",一个典型的统计推断的问题是

• 给定样板 $X_1,...,X_n$ F ,我们如何推断 F ?

在一些情况下我们只推断 F 的特征比如平均值

参数模型和非参数模型

参数模型:通过有限个参数可以确定的模型,比如正态分布

非参数模型:无法通过有限个参数确定的模型,比如CDF

统计推断的基本概念

8. Bootstrap

10. 假设检验和p值

假设检验更多是告诉我们去拒绝某个结论,除非这个结论是唯一的,不然我们无法假定 H_0 就是正确的。

10.8 拟合检验

用卡方拟合检验的严重限制:

如果拒绝 H_0 那么我们可以根据我们不接受这个模型。如果我们不拒绝 H_0 ,我们也不能说这个模型是正确的。因为这个检验没有足够的

第三部分:统计模型和方法