微积分作业 AII

吉林大学公共数学教学与研究中心 2022 年 2 月

第一次作业

学院______ 班级______ 姓名______ 学号______

一、单项选择题

1. 曲线 $y = \frac{1}{x}, y = x$ 及 x = 2 所围成的图形面积为 S, 则 S = ().

(A)
$$\int_{1}^{2} \left(2 - \frac{1}{x}\right) dx$$
; (B) $\int_{1}^{2} \left(x - \frac{1}{x}\right) dx$; (C) $\int_{\frac{1}{2}}^{2} (2 - y) dy$; (D) $\int_{\frac{1}{2}}^{2} \left(2 - \frac{1}{y}\right) dy$.

- 2. 设点 $A(x, \sin x)$ 是曲线 $y = \sin x (0 \le x \le \pi)$ 上一点,记 S(x) 是直线 OA(O) 原点)与曲线 $y = \sin x$ 所围成图形的面积,则当 $x \to 0^+$ 时, S(x) 与().
 - (A) x 为同阶无穷小; (B) x^2 为同阶无穷小;
 - (C) x^3 为同阶无穷小; (D) x^4 为同阶无穷小.
- 3. 设 0 < g(x) < f(x) < m(常数), 则由 y = f(x), y = g(x)x = a, x = b 所围成图形绕直线 y = m 旋转所形成的立体的体积等于().

(A)
$$\int_{a}^{b} \pi [2m - f(x) + g(x)][f(x) - g(x)]dx;$$

(B)
$$\int_{a}^{b} \pi [2m - f(x) - g(x)][f(x) - g(x)]dx;$$

(C)
$$\int_{a}^{b} \pi [m - f(x) + g(x)][f(x) - g(x)]dx;$$

(D)
$$\int_{a}^{b} \pi [m - f(x) - g(x)][f(x) - g(x)]dx$$
.

4. 下列反常积分发散的是().

(A)
$$\int_0^{+\infty} \frac{x}{1+x^2} dx$$
; (B) $\int_0^{+\infty} \frac{\arctan x}{1+x^2} dx$; (C) $\int_0^{+\infty} x e^{-x} dx$; (D) $\int_0^{+\infty} x e^{-x^2} dx$.

5. 设函数
$$f(x) = \begin{cases} \frac{1}{(x-1)^{\alpha-1}}, & 1 < x < e, \\ \frac{1}{x \ln^{\alpha+1} x}, & x \ge e, \end{cases}$$
 若反常积分 $\int_{1}^{+\infty} f(x) dx$ 收敛, 则

().

(A)
$$\alpha < -2$$
; (B) $\alpha > 2$; (C) $0 < \alpha < 2$; (D) $-2 < \alpha < 0$.

二、填空题

- 1. $f(x) = \frac{1}{1+x^2}$ 在 $[1,\sqrt{3}]$ 上的平均值为______.
- 2. 抛物线 $y^2 = ax(a > 0)$ 与 x = 1 所围图形面积为 $\frac{4}{3}$, 则 $a = ______$.
- 3. 曲线 $y = x^2, x = y^2$ 围成图形绕 x 轴旋转一周所形成的旋转体体积为_____
- 4. 已知反常积分 $\int_0^{+\infty} x e^{ax^2} dx$ 收敛, 且值为 1 ,则 a =______.
- 5. $\int_0^{+\infty} \frac{\ln(1+x)}{(1+x)^2} dx = \underline{\qquad}.$

三、计算题

1. 计算由 x 轴,曲线 $y = \sqrt{x-1}$ 及其经过原点的切线围成的平面图形面积及该图形绕 x 轴旋转一周所得立体体积.

2. 设 A > 0, D 是由曲线段 $y = A \sin x \left(0 \le x \le \frac{\pi}{2} \right)$ 及直线 y = 0, $x = \frac{\pi}{2}$ 所围成的平面区域. V_1, V_2 分别表示 D 绕 x 轴与 y 轴旋转而成旋转体的体积, 若 $V_1 = V_2$, 求 A 的值.

3. 求曲线 $r^2 = \cos 2\theta$ 所围成图形的面积.

4. 求摆线
$$\begin{cases} y = 1 - \cos t, \\ x = t - \sin t \end{cases} (0 \leqslant t \leqslant \pi) 的弧长.$$

5. 某水坝中有一个三角形的闸门,这闸门笔直竖立在水中,它的底边与水平面相齐,已知三角形底边长为10米,高8米,求闸门所受的水压力.

四、判断下列反常积分的收敛性

$$(1) \int_{1}^{+\infty} \frac{\sin x}{\sqrt{x^3}} \mathrm{d}x;$$

(1)
$$\int_{1}^{+\infty} \frac{\sin x}{\sqrt{x^3}} dx;$$
 (2) $\int_{0}^{+\infty} x^{p-1} e^{-x} dx.$

第二次作业

	学院	_ 班级	_ 姓名	学号	
	一、单项选择题				
	1. 设向量 x 与向量	$\mathbf{a} = 2\mathbf{i} - \mathbf{j} + \mathbf{k} \not \perp$	\mathbf{x} 线,且满足 $\mathbf{a} \cdot \mathbf{x} = \mathbf{x}$	-18 ,则 $\boldsymbol{x} = ($).
	(A) $(6, -3, 3)$;	(B) $(-6,3,-3)$;	(C) $(6,3,-3)$;	(D) $(-6,3,3)$.	
z -	2. 设有直线 $L: \{ 2 = 0, $ 则直线 $L($		0, 2x - y - 10z + 3	$=0$ 及平面 $\pi:4x$	-2y +
	(A) 平行于 π;	(B) 在 π 上;	(C) 垂直于 π ; (D) 与 π 斜交.	
是().			在 Oxy 平面上的投	影曲线
		(B) 双曲线; (C			D
程为	4. 过两曲面 $x^2 + y$ $y($).	$y^2 + 4z^2 = 1 - 5 x^2 - $	$y^2 - z^2 = 0$ 的交线	,母线平行于 z 轴的	柱面万
	(A) $5x^2 - 3y^2 =$	$= 1;$ (B) $5x^2 + 3y^2 =$	$= 1;$ (C) $3x^2 - 5y^2$	$= 1;$ (D) $3x^2 + 5y$	$y^2 = 1.$
	5. 方程 $\frac{x^2}{2} - \frac{y^2}{4} =$	· z 所表示的曲面为	().		
	(A) 椭球面;	(B) 柱面; (C) 5	双曲抛物面; (D)	旋转抛物面.	
	二、填空题				
	1. 若 $ a = 3, b =$	$=\sqrt{2}$,且 $oldsymbol{a}$, b 间夹角	」为 $\theta = \frac{3}{4}\pi$,则 \boldsymbol{a} +	$ oldsymbol{b} = \underline{\hspace{1cm}}$	
a >	< b =		-		
	2. 过点 (1,1,-1),	(-2, -2, 2) 和 $(1, -$	1,2) 三点的平面方	呈为	_·
	3. 与向量 $a = (2, 4)$	$(4,-1)$ $\boldsymbol{b} = (0,-2,2)$	同时垂直的单位向	量为	_·
	4. 点 (2,1,3) 到直	线 $\frac{x+1}{3} = \frac{y-1}{2} =$	=		

5. 曲线 $\begin{cases} z = 6 - x^2 - y^2, \\ 2y + z - 3 = 0 \end{cases}$ 在 Oxy 面上的投影曲线方程为______.

三、计算题

- 1. 设直线 L_1 的方程为 $\frac{x-1}{1} = \frac{y-1}{-1} = \frac{z}{2}$, 直线 L_2 的方程为 $\frac{x-2}{2} = \frac{y}{1} = \frac{z-1}{1}$.
- (1)证明 L_1 与 L_2 为异面直线; (2) 计算 L_1 与 L_2 的距离.

2. 求过直线 $L_1: \frac{x-2}{1} = \frac{y-1}{0} = \frac{z+2}{-2}$, 且平行于直线 $L_2: \frac{x+2}{2} = \frac{y-1}{-1} = \frac{z}{-2}$ 的平面 π 的方程.

3. 求过点 (0,1,2) 且与直线 $\frac{x-1}{1} = \frac{y-1}{-1} = \frac{z}{2}$ 垂直相交的直线方程.

4. 求直线 $L: \frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$ 在平面 $\pi: x-y+2z-1=0$ 上的投影直线 L_0 的方程, 并求 L_0 绕 y 轴旋转一周所生成的旋转曲面的方程.

第三次作业

_______ 班级______ 姓名______ 学号____

一、单项选择题

1.
$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{1+xy}-1}{x+y} = ($$
)

- (A) 1; (B) 0; (C) $\frac{1}{2}$; (D) 不存在.
- 2. 二元函数 $f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0, \end{cases}$ 在点 (0,0) 处().
 - (A) 不连续, 偏导数存在;
- (B) 不连续, 偏导数不存在;
- (C) 连续, 偏导数存在;
- (D) 连续, 偏导数不存在.
- 3. 曲线 $\begin{cases} z=\frac{1}{4}(x^2+y^2), \\ y=4 \end{cases}$ 在点 (2,4,5) 处的切线与直线 $\frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{0}$ 之间的夹角为().
 - (A) $\frac{\pi}{6}$; (B) $\frac{\pi}{4}$; (C) $\frac{\pi}{2}$; (D) $\frac{\pi}{2}$.
 - 4. 己知函数 $f(x,y) = \frac{e^x}{x-y}$, 则().
 - (A) $f'_x f'_y = 0$; (B) $f'_x + f'_y = 0$; (C) $f'_x f'_y = f$; (D) $f'_x + f'_y = f$.
- 5. 二元函数 f(x,y) 在点 (0,0) 处可微的一个充分条件是().
 - (A) $\lim_{(x,y)\to(0,0)} [f(x,y)-f(0,0)]=0;$
 - (B) $\lim_{x\to 0} \frac{f(x,0) f(0,0)}{x} = 0$, $\lim_{y\to 0} \frac{f(0,y) f(0,0)}{y} = 0$;
 - (C) $\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}} = 0, ;$
 - (D) $\lim_{x\to 0} [f'_x(x,0) f'_x(0,0)] = 0$, $\mathbb{H} \lim_{y\to 0} [f'_y(0,y) f'_y(0,0)] = 0$.

二、填空题

1. 函数 $f(x,y) = \ln(x^2 + y^2 - 1)$ 连续区域是______

2.
$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{x^2y^2+1}-1}{x^2+y^2} = \underline{\hspace{1cm}}.$$

3. 设函数
$$z = \sqrt{x^4 + y^4}$$
, 则 $z'_x(0,0) =$ ______.

4. 设函数
$$z = e^{-x} \sin \frac{x}{y}$$
, 则 $\left. \frac{\partial^2 u}{\partial x \partial y} \right|_{(2,\frac{1}{\pi})} = \underline{\qquad}$

5. 设
$$z = e^{\sin(xy)}$$
, 则 d $z = \underline{\hspace{1cm}}$.

三、计算题

1. 设
$$f(x,y) = \frac{x^2 + xy}{x^2 + y^2}$$
, 证明:当 $(x,y) \to (0,0)$ 时, $f(x,y)$ 的极限不存在.

2. 设
$$z = \arctan \frac{y}{x}$$
, 求 $\frac{\partial^2 z}{\partial x^2}$ 及 $\frac{\partial^2 z}{\partial x \partial y}$.

3. 设
$$z = \ln\left(\tan\frac{y}{x}\right)$$
, 求 dz.

4. 设
$$r = \sqrt{x^2 + y^2 + z^2}$$
, 证明:当 $r \neq 0$ 时,有 $\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} + \frac{\partial^2 r}{\partial z^2} = \frac{2}{r}$.

- 5. 设 $f(x,y)=|x-y|\varphi(x,y),$ 其中 $\varphi(x,y)$ 在 (0,0) 的邻域内连续, 问:
- (1) $\varphi(x,y)$ 满足什么条件时, 才能使偏导数 $f_x(0,0), f_y(0,0)$ 存在?
- (2) 在 $\varphi(x,y)$ 满足上述条件时, f(x,y) 在 (0,0) 处是否可微?

第四次作业

学院	班级	姓名	学号	_		
一、单项选择	圣题					
1. 设隐函数 $F_2' \neq 0, \text{则} x \frac{\partial z}{\partial x} = 0$			所确定,其中 F 为可微	!函数, 且		
(A) x ;	(B) $-x$;	(C) z ; (1)	-z.			
2. 设函数 f	(u,v) 满足 $f(x+y)$	$\frac{y}{x}\bigg) = x^2 - y^2, \ \mathbb{M}$	$ \frac{\partial f}{\partial u} \bigg \begin{array}{cc} u = 1 \\ v = 1 \end{array} \stackrel{\textstyle \smile}{\longrightarrow} \frac{\partial f}{\partial v} \bigg \begin{array}{c} u \\ v = 1 \end{array} $	依次 = 1 = 1		
是().						
2	(B) $0, \frac{1}{2};$ (C)	2	4			
3. 设函数 u($f(x,y) = \varphi(x+y) + \varphi(x+y)$	$\psi(x-y) + \int_{x-y}^{x+y} \psi(x-y) dy$	$(t)\mathrm{d}t$, 其中函数 $arphi$ 具有	二阶导数,		
ψ 具有一阶导数.	则必有().					
$(A) \frac{\partial^2 u}{\partial x^2} =$	$=-\frac{\partial^2 u}{\partial y^2};$ (B) $\frac{\partial^2 u}{\partial x^2}$	$= \frac{\partial^2 u}{\partial y^2}; \qquad (C) \frac{\partial^2 u}{\partial x^2}$	$\frac{\partial^2 u}{\partial y} = \frac{\partial^2 u}{\partial y^2}; \qquad (D) \frac{\partial^2 u}{\partial x \partial y}$	$\frac{\iota}{\partial y} = \frac{\partial^2 u}{\partial x^2}.$		
4. 函数 $u=$.	$f(x,y)$ 在点 (x_0,y_0) δ	处沿任一方向的方[句导数都存在是它在点((x_0,y_0) 处		
的两个偏导数都存在的()条件.						
(A) 充分业	必要; (B) 必要非充定	分; (C) 充分非必	要; (D) 既非充分又非	必要.		
5. 函数 $f(x,$	$y) = \arctan \frac{x}{y} \notin (0,$	1) 处的梯度等于().			
(A) \boldsymbol{i} ;	(B) \boldsymbol{j} ; (C) $-\boldsymbol{j}$;	(D) $-i$.				
二、填空题						
1. 己知 $f(1,2) = 4$, $\mathrm{d}f(1,2) = 16\mathrm{d}x + 4\mathrm{d}y$, $\mathrm{d}f(1,4) = 64\mathrm{d}x + 8\mathrm{d}y$, 则 $z = f(x,f(x,y))$ 在						
点 (1,2) 处对 x	的偏导数为	·				
2. 设隐函数 $z = z(x,y)$ 由方程 $xy - yz + xz = e^z$ 确定, 则 $dz _{(1,1)} =$						
3. 设 $z=yf$	$(x^2 - y^2), $ 其中 $f(u)$	可微,则 $\frac{1}{x}\frac{\partial z}{\partial x} + \frac{\partial z}{\partial x}$	$\frac{1}{y}\frac{\partial z}{\partial y} = \underline{\qquad}.$			

4. 函数 $z = \sqrt{x^2 + y^2}$ 在点 (0,0) 处沿 x 轴正向的方向导数为______.

5. 函数 $u=xy^2+z^3-xyz$ 在点 M(1,1,1) 处沿 ${\pmb b}=$ _________的方向导数最大,最大值为______.

三、计算题

1. 设 z = f(x - y, xy), 其中 f 具有二阶连续偏导数, 求 dz 与 $\frac{\partial^2 z}{\partial x \partial y}$.

2. 设函数 z=z(x,y) 是由方程 $x^2+y^2+z^2=xf\left(\frac{y}{x}\right)$ 所确定, 且 f 可微, 求 dz.

3. 设 z=z(x,y) 是由方程 f(y-x,yz)=0 所确定的隐函数, 其中函数 f 对各个变量具有连续的二阶偏导数, 求 $\frac{\partial^2 z}{\partial x^2}$.

4. 设 y=y(x), z=z(x) 是由方程 z=xf(x+y) 和 F(x,y,z)=0 所确定的函数,其中 f 和 F 分别具有一阶连续导数和一阶连续偏导数, 求 $\frac{\mathrm{d}z}{\mathrm{d}x}$.

5. 求函数 $z=\ln(x+y)$ 在点 (1,2) 处沿着抛物线 $y^2=4x$ 在该点切线方向的方向导数.

第五次作业

	学院	班级	姓名	学号	
	一、单项选技	圣 题			
	1. 设 $f(1,1)$	=-1 为函数 $f(x, y)$	$y) = ax^3 + by^3 + cx$	y 的极值, 则 a,b,c f	分别等于
().				
	(A) $1, 1, -$	-3; (B) $1, 1, 3;$	(C) $1, 1, -1;$	(D) $-1, -1, 3$.	
的(2. $z'_x(x_0, y_0)$).	$=0 \ni z_y'(x_0,y_0) \boxed{\Box}$	引时存在是函数 $z =$	$z(x,y)$ 在点 (x_0,y_0)	处取得极值
	(A) 必要多	条件但非充分条件;	(B) 充分条件但	非必要条件;	
	(C) 充分重	必要条件;	(D) 既非必要也	非充分条件.	
	3. 设函数 z	= f(x,y) 的全微分	为 $\mathrm{d}z = x\mathrm{d}x + y\mathrm{d}y,$	则点 (0,0) ().	
	(A) 不是	f(x,y) 的连续点;	(B) 不是 f(x	(x,y) 的极值点;	
	(C) 是 f(:	(x,y) 的极小值点;	(D) 是 $f(x,y)$	y) 的极大值点.	
	4. 曲面 $z =$	x + f(y - z) 的任-	一点处的切平面()	
	(A) 垂直音	于一定直线;	(B) 平行于一定平	面;	
	(C) 与一贯	定坐标面成定角;	(D) 平行于一定直	线.	
束翁		与 $\varphi(x,y)$ 均为可能 0 下的一个极值点		$\neq 0$. 已知 (x_0, y_0) 是 是 ().	f(x,y) 在约
	(A) 若 f'_x ($(x_0, y_0) \neq 0, \emptyset f_y'(x_0)$	$(B) \stackrel{\text{def}}{=} 3$	$f'_x(x_0, y_0) \neq 0, \emptyset f_x$	$y'_y(x_0, y_0) \neq 0;$
	(C) 若 f'_x ($f(x_0, y_0) = 0, \text{M} f'_y(x_0)$	$(y_0, y_0) = 0;$ (D) Ξ	$f'_x(x_0, y_0) = 0, \emptyset f_x$	$y'(x_0, y_0) \neq 0.$
	二、填空题				
4, 贝	1. 如果曲线 则切点 <i>M</i> 的经		t ³ 在点 <i>M(x,y,z)</i>	上的切线平行于平面	x + 3y + 3z =

- 2. 曲面 $\ln z + \mathrm{e}^{z-1} = xy$ 在点 $\left(2, \frac{1}{2}, 1\right)$ 处的切平面方程为______.
- 3. 函数 $u = \sqrt{x^2 + y^2 + z^2}$ 在点 M(1,1,1) 处沿曲面 $2z = x^2 + y^2$ 在该点的外法线方向的方向导数为______.
- - 5. 函数 $f(x,y) = e^{xy}$ 在点 (0,1) 处具有Peano余项的二阶Taylor公式为

三、计算题

1. 求曲线
$$\left\{ \begin{array}{l} \frac{x^2}{4} + \frac{y^2}{4} + \frac{z^2}{2} = 1 \\ x - 2y + z = 0 \end{array} \right.$$
 在点 $M(1,1,1)$ 处的切线方程和法平面方程.

2. 过直线
$$\begin{cases} 10x + 2y - 2z = 27, \\ x + y - z = 0 \end{cases}$$
 作曲面 $3x^2 + y^2 - z^2 = 27$ 的切平面, 求其方程.

3. 求函数 u = x + y + z 在 $x^2 + y^2 \le z \le 1$ 上的最大值和最小值.

4. 求由方程 $2x^2 + 2y^2 + z^2 + 8xz - z + 8 = 0$ 所确定的函数 z = f(x, y) 的极值.

5. 拋物面 $z=x^2+y^2$ 被平面 x+y+z=1 截成一个椭圆, 求原点到该椭圆的最长 距离和最短距离

6. 将长为 l 的细铁丝剪成三段,分别用来围成圆、正方形和正三角形,问怎样剪法才能使它们围成的面积之和为最小,并求出最小值.

第六次作业

_____ 姓名_____ 学号____ 班级

一、单项选择题

1. 设 $D \in xOy$ 平面上以 (1,1), (-1,1) 和 (-1,-1) 为顶点的三角形区域, D_1 是 D 的 第一象限部分,则 $\iint (xy + \cos x \sin y) d\sigma$ 等于().

(A)
$$2 \iint_{D_1} \cos x \sin y d\sigma;$$
 (B) $2 \iint_{D_2} xy d\sigma;$

(B)
$$2\iint xyd\sigma$$
;

(C)
$$4 \iint_{D_r} (xy + \cos x \sin y) d\sigma;$$
 (D) 0.

2. 设区域 $D = \{(x,y)|x^2 + y^2 \le 4, x \ge 0, y \ge 0\}, f(x)$ 为 D 上的正值连续函数, a,b 为常数, 则 $\iint \frac{a\sqrt{f(x)} + b\sqrt{f(y)}}{\sqrt{f(x)} + \sqrt{f(y)}} d\sigma = ($).

(A)
$$ab\pi$$
;

(B)
$$\frac{ab\pi}{2}$$

(C)
$$(a+b)\pi$$
;

(A)
$$ab\pi$$
; (B) $\frac{ab\pi}{2}$; (C) $(a+b)\pi$; (D) $\frac{(a+b)\pi}{2}$.

3. 设平面区域 $D = \{(x,y)|x^2+y^2 \leqslant 1\}, M = \iint (x+y)^3 d\sigma, N = \iint \cos x^2 \sin y^2 d\sigma,$

$$P = \iint_D [e^{-(x^2+y^2)} - 1] d\sigma, 则有().$$

(A)
$$M > N > P$$
; (B) $N > M > P$; (C) $M > P > N$; (D) $N > P > M$.

4. 设 f(x,y) 为连续函数,则 $\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\cos\theta} f(r\cos\theta, r\sin\theta) r dr$ 可以写成().

(A)
$$\int_0^1 dy \int_0^{\sqrt{y-y^2}} f(x,y) dx;$$
 (B) $\int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x,y) dx;$

(B)
$$\int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x,y) dx;$$

(C)
$$\int_0^1 dx \int_0^1 f(x, y) dy;$$

(C)
$$\int_0^1 dx \int_0^1 f(x, y) dy$$
; (D) $\int_0^1 dx \int_0^{\sqrt{x - x^2}} f(x, y) dy$.

5. 设 f(x,y) 为连续函数, 则 $\int_{0}^{2} dy \int_{0}^{\sqrt{2y-y^2}} f(x^2+y^2) dx$ 化为极坐标形式的累次积 分为().

(A)
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{2\sin\theta} f(r^2) dr;$$
 (B) $\int_0^{\frac{\pi}{2}} d\theta \int_0^2 f(r^2) r dr;$

(B)
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^2 f(r^2) r dr$$

(C)
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{2\sin\theta} f(r^2)rdr; \qquad (D) \int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} f(r^2)rdr;$$

二、填空题

1.
$$\int_{-1}^{0} dx \int_{-x}^{2-x^2} (1-xy)dy + \int_{0}^{1} dx \int_{x}^{2-x^2} (1-xy)dy = \underline{\qquad}.$$

2. 积分
$$\int_0^8 dx \int_{\sqrt[3]{x}}^2 \frac{1}{1+y^4} dy = \underline{\qquad}$$
.

3. 设平面区域
$$D = \{(x,y) | 1 \leqslant x^2 + y^2 \leqslant 4, x \geqslant 0, y \geqslant 0 \}$$
, 则 $\iint_D \sin(\pi \sqrt{x^2 + y^2}) d\sigma = 0$

4. 设
$$f(x)$$
 为连续函数, $F(t) = \int_1^t dy \int_y^t f(x) dx$, 则 $F'(2) =$ ________.

5. 设
$$f(x,y)$$
 为连续函数, $D = \{(x,y)|x^2 + y^2 \leqslant t^2\}$. 则 $\lim_{t\to 0^+} \frac{1}{\pi t^2} \iint_D f(x,y) d\sigma = \int_D f(x,y) dx$

三、解答题

1. 设平面区域
$$D$$
 由直线 $x = 3y, y = 3x, x + y = 8$ 围成, 计算 $\iint_D x^2 d\sigma$.

2. 设平面区域
$$D=\{(x,y)|0\leqslant x\leqslant 2, 0\leqslant y\leqslant 2\}$$
, 计算 $\iint\limits_{D}\max\{xy,1\}\mathrm{d}\sigma$.

3. 计算
$$\iint_D (x^2 + y^2) d\sigma$$
, 其中 $D = \{(x, y) | 0 \le x \le 2, \sqrt{2x - x^2} \le y \le \sqrt{4 - x^2} \}$.

4. 设平面区域 D 由两条双曲线 xy=1, xy=2 和两条直线 y=x, y=4x 所围成的在第 I 象限内的闭区域, 计算 $\iint\limits_D x^2 y^2 \mathrm{d}\sigma$.

5. 设连续函数 f(x) 满足

$$f(x) = x^2 + x \int_0^{x^2} f(x^2 - t) dt + \iint_D f(xy) d\sigma,$$

其中区域 D 是以 (-1,-1),(1,-1),(1,1) 为顶点的三角形区域, 且 f(1)=0, 求 $\int_0^1 f(x) \mathrm{d}x$.

第七次作业

学院______ 班级______ 姓名______ 学号______

一、单项选择题

1. 设有空间区域 $\Omega_1 = \{(x,y,z)|x^2+y^2+z^2 \leqslant R^2,z\geqslant 0\}$ 及 $\Omega_2 = \{(x,y,z)|x^2+y^2+z^2\leqslant R^2,x\geqslant 0,y\geqslant 0,z\geqslant \}$, 则 ().

(A)
$$\iiint_{\Omega_1} x dV = 4 \iiint_{\Omega_2} z dV;$$
 (B) $\iiint_{\Omega_1} y dV = 4 \iiint_{\Omega_2} z dV;$

(C)
$$\iiint_{\Omega_1} z dV = 4 \iiint_{\Omega_2} z dV; \qquad (D) \iiint_{\Omega_1} xyz dV = 4 \iiint_{\Omega_2} xyz dV.$$

2. 设 Ω 由平面 x + y + z + 1 = 0, x + y + z + 2 = 0, x = 0, y = 0, z = 0 围成, $I_1 = \iiint_{\Omega} [\ln(x + y + z + 3)]^2 dV, I_2 = \iiint_{\Omega} (x + y + z)^2 dV, 则 ().$

(A)
$$I_1 < I_2$$
; (B) $I_1 > I_2$; (C) $I_1 \leqslant I_2$; (D) $I_1 \geqslant I_2$.

3. 曲面
$$z = \sqrt{x^2 + y^2}$$
 与 $z = 2 - x^2 - y^2$ 所围成的立体体积为().

(A)
$$\frac{\pi}{2}$$
; (B) $\frac{5\pi}{6}$; (C) $\frac{2\pi}{3}$; (D) π .

4. 设空间区域 $\Omega=\{(x,y,z)|\sqrt{x^2+y^2}\leqslant z\leqslant\sqrt{2-x^2-y^2}\},\ f(x,y,z)$ 为连续函数, 则三重积分 $\iiint \mathrm{d}V=($).

(A)
$$\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{\sqrt{2-x^2-y^2}}^{\sqrt{x^2+y^2}} f(x, y, z) dz;$$

(B)
$$4\int_0^1 dx \int_0^{\sqrt{1-x^2}} dy \int_{\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} f(x,y,z)dz;$$

(C)
$$\int_0^{2\pi} d\theta \int_0^1 dr \int_r^{2-r^2} f(r\cos\theta, r\sin\theta, z) dz;$$

(D)
$$\int_0^{2\pi} d\theta \int_0^{\frac{\pi}{4}} d\varphi \int_0^{\sqrt{2}} f(r\sin\varphi\cos\theta, r\sin\varphi\sin\theta, r\cos\varphi) r^2 \sin\varphi dr.$$

5. 设空间区域 $\Omega = \{(x,y,z) | 0 \le x \le 1, 0 \le y \le 1-x, 0 \le z \le x+y\}, f(x,y,z)$ 为连续函数, 则三重积分 $\iint_{\Omega} f(x,y,z) dV = ($).

(A)
$$\int_0^1 dy \int_0^y dz \int_0^{1-y} f(x, y, z) dx + \int_0^1 dy \int_y^1 dz \int_{z-y}^{1-y} f(x, y, z) dx;$$

(B)
$$\int_0^1 dz \int_0^{\frac{\pi}{2}} d\theta \int_{\frac{1}{\cos\theta + \sin\theta}}^{\frac{z}{\cos\theta + \sin\theta}} f(r\cos\theta, r\sin\theta, z) r dr;$$

(C)
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{\sin\theta + \cos\theta} dr \int_0^{r(\sin\theta + \cos\theta)} f(r\cos\theta, r\sin\theta, z) rdz;$$

(D)
$$\int_0^{\frac{\pi}{2}} d\theta \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\varphi \int_0^{\frac{1}{\sin\varphi\cos\theta + \sin\varphi\sin\theta}} f(r\sin\varphi\cos\theta, r\sin\varphi\sin\theta, r\cos\varphi) r^2 \sin\varphi dr.$$

二、填空题

1. 设
$$\Omega$$
 为 $x^2 + y^2 + z^2 \leq R^2, z \geq 0$, 则 $\iiint_{\Omega} (x + y + z) dV = _____.$

2. 设 Ω 是由曲面 $z=\sqrt{2-x^2-y^2}$ 及 $z=x^2+y^2$ 所围成的空间闭区域, 则三重积分 $\iiint_{\Omega} f(x,y,z) \mathrm{d}V$ 化为柱面坐标下的先 z 再 r 后 θ 顺序的三次积分为_______.

3. 设
$$\Omega$$
 为 $x^2+y^2+z\leqslant 1, z\geqslant 0$, 则 $\iiint_{\Omega}(x+1)(y+z)(z+1)\mathrm{d}V=$ ______.

4. 设
$$F(t) = \iiint_{\Omega_t} f(x^2 + y^2 + z^2) dV$$
, 其中 $\Omega_t = \{(x, y, z) | x^2 + y^2 + z^2 \leq t^2\}$, f 为连续函数, 则 $F'(t) =$ ______.

5.
$$\ \ \varphi(y) = \int_0^y \frac{\ln(1+xy)}{x} dx \ (y \neq 0), \ \ \ \ \ \ \ \varphi'(1) = \underline{\qquad}.$$

三、计算题

1. 设 Ω 是由 x+y=1,y=x,y=0,z=0 和 $z=\pi$ 所围成的空间闭区域, 计算 $\iiint (x+y)\sin z \mathrm{d}V.$

2. 设 Ω 为 $x^2+y^2+(z-1)^2\leqslant 1$ 所确定的空间闭区域, 计算 $\iint\limits_{\Omega}\sqrt{x^2+y^2+z^2}\mathrm{d}V$.

3. 设 Ω 由旋转抛物面 $x^2+y^2=2z$ 与平面 z=1,z=2 所围成的空间闭区域, 计算 $\iint\limits_{\Omega}(x^2+y^2)\mathrm{d}V$.

4. 计算
$$\iiint_{\Omega} |z - x^2 - y^2| dV$$
, 其中 $\Omega : 0 \le z \le 1, x^2 + y^2 \le 1$.

5. 计算
$$\iiint_{\Omega} \left(x + \frac{y}{2} + \frac{z}{3}\right)^2 dV$$
, 其中 $\Omega = \left\{ (x, y, z) \left| \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \leqslant 1, \ a > 0, b > 0, c > 0 \right\}.$

6. 利用 Γ 函数, \mathbf{B} 函数计算积分 $\int_0^1 \frac{\mathrm{d}x}{\sqrt{1-x^{\frac{1}{4}}}}$.