The Geometry of Equidistribution

Frank Thorne

University of South Carolina

The Geometry of Arithmetic Statistics, Schloss Elmau

Theorem (Pólya-Vinogradov inequality, special case)

Let χ be a primitive Dirichlet character (mod q). Then we have

$$\left|\sum_{n=M+1}^{M+N} \chi(n)\right| < q^{\frac{1}{2}} \log q.$$

Theorem (Pólya-Vinogradov inequality, special case)

Let χ be a primitive Dirichlet character (mod q). Then we have

$$\left|\sum_{n=M+1}^{M+N} \chi(n)\right| < q^{\frac{1}{2}} \log q.$$

Proof. By Fourier inversion, we have

$$\chi(n) = \frac{1}{\tau(\overline{\chi})} \sum_{a=1}^{q} \overline{\chi}(a) e^{2\pi i a n/q},$$

with $| au(\overline{\chi})| = q^{1/2}$,

Theorem (Pólya-Vinogradov inequality, special case)

Let χ be a primitive Dirichlet character (mod q). Then we have

$$\left|\sum_{n=M+1}^{M+N} \chi(n)\right| < q^{\frac{1}{2}} \log q.$$

Proof. By Fourier inversion, we have

$$\chi(n) = \frac{1}{\tau(\overline{\chi})} \sum_{a=1}^{q} \overline{\chi}(a) e^{2\pi i a n/q},$$

with $|\tau(\overline{\chi})| = q^{1/2}$, so that

$$\sum_{n=M+1}^{M+N} \chi(n) = \frac{1}{\tau(\overline{\chi})} \sum_{a=1}^{q} \overline{\chi}(a) \sum_{n=M+1}^{M+N} e^{2\pi i a n/q},$$

and the innermost sum is a geometric series.

Example: Cubic fields by squarefree part

Define

$$\textit{N}(\textit{Y},\textit{Z}) := \big\{\textit{K} \text{ cubic field } : \ |\textit{D}(\textit{K})| < \textit{Y}, \ \textit{F}(\textit{K}) < \textit{Z}\big\}.$$

Example: Cubic fields by squarefree part

Define

$$N(Y,Z) := \{K \text{ cubic field } : |D(K)| < Y, F(K) < Z\}.$$

Proposition

For any positive real numbers Y and Z, we have

$$N(Y,Z) = \left(\sum_{f < Z} C_1(f)\right) \cdot Y + O_{\epsilon}(Y^{5/6}Z^{2/3} + Y^{2/3+\epsilon}Z^{4/3});$$

$$N(Y,Z) = \left(\sum_{\substack{|d| < Y \text{fund.disc.}}} \text{Res}_{s=1} \Phi_d(s)\right) \cdot Z + O_{\epsilon}\left(Y^{7/6}Z^{2/3+\epsilon}\right).$$

We are given:

► A vector space *V* with an integral structure (e.g. binary cubic forms);

- A vector space V with an integral structure (e.g. binary cubic forms);
- ▶ An algebraic group G acting on V, again with an integral structure (e.g. GL(2));

- A vector space V with an integral structure (e.g. binary cubic forms);
- ► An algebraic group G acting on V, again with an integral structure (e.g. GL(2));
- ▶ A $G(\mathbb{Z})$ -invariant 'discriminant' defined on V;

- A vector space V with an integral structure (e.g. binary cubic forms);
- ► An algebraic group G acting on V, again with an integral structure (e.g. GL(2));
- ▶ A $G(\mathbb{Z})$ -invariant 'discriminant' defined on V;
- ▶ N(X) := number of $G(\mathbb{Z})$ -orbits $v \in V(\mathbb{Z})$ with $0 < |\operatorname{Disc}(v)| < X$;

- A vector space V with an integral structure (e.g. binary cubic forms);
- An algebraic group G acting on V, again with an integral structure (e.g. GL(2));
- ▶ A $G(\mathbb{Z})$ -invariant 'discriminant' defined on V;
- ▶ N(X) := number of $G(\mathbb{Z})$ -orbits $v \in V(\mathbb{Z})$ with $0 < |\operatorname{Disc}(v)| < X$;
- ▶ N(X, q) := above, with congruence conditions (mod q).

A three-step proof template in arithmetic statistics:

A three-step proof template in arithmetic statistics:

3. Apply sieves, etc. to obtain arithmetic consequences.

A three-step proof template in arithmetic statistics:

2. Prove results of the shape

$$N(X,q) = \omega(q)X^{a} + O(X^{\alpha}q^{\beta}),$$

where $\alpha < a$ and $\beta \in \mathbb{R}$ are as small as possible.

3. Apply sieves, etc. to obtain arithmetic consequences.

A three-step proof template in arithmetic statistics:

- 1. Bound or evaluate some Fourier transforms.
- 2. Prove results of the shape

$$N(X,q) = \omega(q)X^a + O(X^\alpha q^\beta),$$

where $\alpha < a$ and $\beta \in \mathbb{R}$ are as small as possible.

3. Apply sieves, etc. to obtain arithmetic consequences.

A three-step proof template in arithmetic statistics:

- 1. Bound or evaluate some Fourier transforms.
- 2. Prove results of the shape

$$N(X,q) = \omega(q)X^a + O(X^\alpha q^\beta),$$

where $\alpha < a$ and $\beta \in \mathbb{R}$ are as small as possible.

3. Apply sieves, etc. to obtain arithmetic consequences.

Today: Investigate Step 1 further.

The Fourier Transform

Let $\Phi_p: V(\mathbb{Z}/q\mathbb{Z}) \to \mathbb{C}$ be the characteristic function of our congruence conditions,

The Fourier Transform

Let $\Phi_p:V(\mathbb{Z}/q\mathbb{Z})\to\mathbb{C}$ be the characteristic function of our congruence conditions,

... or any other $G(\mathbb{Z}/q\mathbb{Z})$ -invariant function.

The Fourier Transform

Let $\Phi_p: V(\mathbb{Z}/q\mathbb{Z}) \to \mathbb{C}$ be the characteristic function of our congruence conditions,

... or any other $G(\mathbb{Z}/q\mathbb{Z})$ -invariant function.

Define

$$\widehat{\Phi_q}(y) := q^{-\dim V} \sum_{x \in V(\mathbb{Z}/q\mathbb{Z})} \Phi(x) e^{-2\pi i [x,y]/q}.$$

The Million Pound Poisson Hammer

Theorem (Poisson summation)

For a finite dimensional lattice $V(\mathbb{Z})$, we have

$$\sum_{v \in V(\mathbb{Z})} \phi(v) = \sum_{w \in \widehat{V(\mathbb{Z})}} \widehat{\phi}(w).$$

The Million Pound Poisson Hammer

Theorem (Poisson summation)

For a finite dimensional lattice $V(\mathbb{Z})$, we have

$$\sum_{v \in V(\mathbb{Z})} \phi(v) = \sum_{w \in \widehat{V(\mathbb{Z})}} \widehat{\phi}(w).$$

(Subject to pesky convergence issues.)

The Million Pound Poisson Hammer

Theorem (Poisson summation)

For a finite dimensional lattice $V(\mathbb{Z})$, we have

$$\sum_{v \in V(\mathbb{Z})} \phi(v) = \sum_{w \in \widehat{V(\mathbb{Z})}} \widehat{\phi}(w).$$

(Subject to pesky convergence issues.)

Theorem (Poisson summation with local conditions)

For
$$\Phi_q:V(\mathbb{Z}/q\mathbb{Z})\to\mathbb{C}$$
, we have

$$\sum_{v \in V(\mathbb{Z})} \Phi_q(v) \phi(v) = \sum_{w \in \widehat{V(\mathbb{Z})}} \widehat{\Phi_q}(w) \widehat{\phi}(w/q).$$

The Fouvry-Katz Theorem

Let Y be a (locally closed) subscheme of $\mathbb{A}^n_{\mathbb{Z}}$, of dimension d. Take $V = \mathbb{A}^n$, p prime, and Φ_p the the characteristic function of $Y(\mathbb{F}_p)$.

Theorem (Fouvry-Katz, 2001)

There exists a filtration of subschemes

$$\mathbb{A}^n_{\mathbb{Z}} \supseteq X_1 \supseteq \cdots \supseteq X_j \supseteq \cdots \supseteq X_n$$

with X_j of codimension j, so that

$$|\widehat{\Phi_p}(y)| \le Cp^{-n + \frac{d}{2} + \frac{j-1}{2}}$$

away from $X_j(\mathbb{F}_p)$.

Example: Fouvry-Katz

Corollary (Fouvry-Katz, 2001)
 There exist
$$\gg \frac{X}{\log X}$$
 primes $p \leq X$ with
$$\#\text{Cl}(\mathbb{Q}(\sqrt{p+4}))[3] = 1.$$

Example: Fouvry-Katz

There exist $\gg \frac{X}{\log X}$ primes $p \leq X$ with

$$\#\mathsf{Cl}(\mathbb{Q}(\sqrt{p+4}))[3] = 1.$$

(Here $p + 4 \equiv 1 \pmod{4}$ and squarefree.)

Example 2: Davenport-Heilbronn

Let
$$V = \operatorname{Sym}^3(\mathbb{Z}/p^2\mathbb{Z})^2$$
, with:

Example 2: Davenport-Heilbronn

Let
$$V = \operatorname{Sym}^3(\mathbb{Z}/p^2\mathbb{Z})^2$$
, with:

 $\Phi_{p^2}(v) = \text{char. fn. of } v \text{ with a } \mathrm{GL}_2(\mathbb{Z}/p^2\mathbb{Z}) \text{-translate}$

$$ax^3 + bx^2y + cxy^2 + dy^3$$

with $p^2 \mid a$ and $p \mid b$.

Example 2: Davenport-Heilbronn

Let
$$V = \operatorname{Sym}^3(\mathbb{Z}/p^2\mathbb{Z})^2$$
, with:

 $\Phi_{p^2}(v) = \text{char. fn. of } v \text{ with a } \mathrm{GL}_2(\mathbb{Z}/p^2\mathbb{Z}) \text{-translate}$

$$ax^3 + bx^2y + cxy^2 + dy^3$$

with $p^2 \mid a$ and $p \mid b$.

This is the Davenport-Heilbronn condition for nonmaximality at p.

An explicit evaluation

Theorem (Taniguchi-T., 2011) We have

$$\widehat{\Phi_{p^2}}(v) = \begin{cases} p^{-2} + p^{-3} - p^{-5} & v/p : of type (0), \\ p^{-3} - p^{-5} & v/p : of type (1^3), (1^21), \\ -p^{-5} & v/p : of type (111), (21), (3). \\ p^{-3} - p^{-5} & v : of type (1^3_{**}), \\ -p^{-5} & v : of type (1^3_*), (1^3_{\max}), \\ 0 & otherwise. \end{cases}$$

An explicit evaluation

Theorem (Taniguchi-T., 2011)

We have

$$\widehat{\Phi_{p^2}}(v) = \begin{cases} p^{-2} + p^{-3} - p^{-5} & v/p : of type (0), \\ p^{-3} - p^{-5} & v/p : of type (1^3), (1^21), \\ -p^{-5} & v/p : of type (111), (21), (3). \\ p^{-3} - p^{-5} & v : of type (1^3_{**}), \\ -p^{-5} & v : of type (1^3_*), (1^3_{\max}), \\ 0 & otherwise. \end{cases}$$

So:

$$\frac{1}{p^8} \sum_{v \in V(\mathbb{Z}/p^2\mathbb{Z})} |\widehat{\Phi_{p^2}}(v)| \ll p^{-7}.$$

Consequence - Improved Davenport-Heilbronn

Theorem (Bhargava-Taniguchi-T.)

We have

$$N_3(X) = CX + C'X^{\frac{5}{6}} + O(X^{\frac{3}{5}+\epsilon}) + O(X^{1-\frac{1}{8-7+2}+\epsilon}).$$

Proposition

"Typical cases" enjoy a symmetric bilinear form [-,-] satisfying identically

$$[gv, g^{-T}w] = [v, w].$$

Proposition

"Typical cases" enjoy a symmetric bilinear form [-,-] satisfying identically

$$[gv, g^{-T}w] = [v, w].$$

Example: For forms

$$v = ax^3 + bx^2y + cxy^2 + dy^3, \quad w = a'x^3 + b'x^2y + c'xy^2 + d'y^3,$$

we have

$$[v, w] = aa' + \frac{bb'}{3} + \frac{cc'}{3} + dd'.$$

Proposition

"Typical cases" enjoy a symmetric bilinear form [-,-] satisfying identically

$$[gv,g^{-T}w]=[v,w].$$

Example: For forms

$$v = ax^3 + bx^2y + cxy^2 + dy^3$$
, $w = a'x^3 + b'x^2y + c'xy^2 + d'y^3$,

we have

$$[v, w] = aa' + \frac{bb'}{3} + \frac{cc'}{3} + dd'.$$

(Assume that $p \neq 3$, or otherwise as needed.)

Proposition

"Typical cases" enjoy a symmetric bilinear form [-,-] satisfying identically

$$[gv, g^{-T}w] = [v, w].$$

Example: For forms

$$v = ax^3 + bx^2y + cxy^2 + dy^3$$
, $w = a'x^3 + b'x^2y + c'xy^2 + d'y^3$,

we have

$$[v, w] = aa' + \frac{bb'}{3} + \frac{cc'}{3} + dd'.$$

(Assume that $p \neq 3$, or otherwise as needed.)

Obtain a G-equivariant isomorphism $\widehat{V}(\mathbb{F}_p) o V(\mathbb{F}_p)$.

G-invariance

Proposition

If $\Phi:V(\mathbb{F}_p) \to \mathbb{C}$ is *G*-invariant, then so is $\widehat{\Phi}$.

G-invariance

Proposition

If $\Phi: V(\mathbb{F}_p) \to \mathbb{C}$ is *G*-invariant, then so is $\widehat{\Phi}$.

$$\widehat{\Phi}(gw) = \sum_{v \in V(\mathbb{F}_p)} \Phi(v) \langle [v, gw] \rangle$$

\overline{G} -invariance

Proposition

If $\Phi: V(\mathbb{F}_p) \to \mathbb{C}$ is *G*-invariant, then so is $\widehat{\Phi}$.

$$\widehat{\Phi}(gw) = \sum_{v \in V(\mathbb{F}_p)} \Phi(v) \langle [v, gw] \rangle$$
$$= \sum_{v \in V(\mathbb{F}_p)} \Phi(v) \langle [g^T v, w] \rangle$$

G-invariance

Proposition

If $\Phi:V(\mathbb{F}_p)\to\mathbb{C}$ is *G*-invariant, then so is $\widehat{\Phi}$.

$$\widehat{\Phi}(gw) = \sum_{v \in V(\mathbb{F}_p)} \Phi(v) \langle [v, gw] \rangle$$

$$= \sum_{v \in V(\mathbb{F}_p)} \Phi(v) \langle [g^T v, w] \rangle$$

$$= \sum_{v \in V(\mathbb{F}_p)} \Phi(g^T v) \langle [g^T v, w] \rangle$$

G-invariance

Proposition

If $\Phi:V(\mathbb{F}_p)\to\mathbb{C}$ is *G*-invariant, then so is $\widehat{\Phi}$.

$$\widehat{\Phi}(gw) = \sum_{v \in V(\mathbb{F}_p)} \Phi(v) \langle [v, gw] \rangle$$

$$= \sum_{v \in V(\mathbb{F}_p)} \Phi(v) \langle [g^T v, w] \rangle$$

$$= \sum_{v \in V(\mathbb{F}_p)} \Phi(g^T v) \langle [g^T v, w] \rangle$$

$$= \sum_{v \in V(\mathbb{F}_p)} \Phi(v) \langle [v, w] \rangle.$$

► The group decomposition method (Mori, Taniguchi-T., Hough);

- ► The group decomposition method (Mori, Taniguchi-T., Hough);
- ► The subspace method (Taniguchi-T.; Ishimoto);

- ► The group decomposition method (Mori, Taniguchi-T., Hough);
- ► The subspace method (Taniguchi-T.; Ishimoto);
- ► The morphism method (Ishitsuka, Ito, Taniguchi, T., Xiao).

Group decomposition (Hough, 2018)

Theorem 2. The Fourier transform of the maximal set is supported on the mod p orbits $\mathscr{O}_0, \mathscr{O}_{D1^2}, \mathscr{O}_{D11}$ and \mathscr{O}_{D2} . It is given explicitly in the following tables.

(1)	Case	\mathcal{O}_0 ,	ξ	=	$p\xi_0$.
(6.1)					

(0.1)		
Orbit	$p^{-12}\widehat{1_{\max}}(p\xi_0)$	Orbit size
\mathscr{O}_0	$(p-1)^4p(p+1)^2(p^5+2p^4+4p^3+4p^2+3p+1)$	1
\mathscr{O}_{D1^2}	$-(p-1)^3p(p+1)^4$	$(p-1)(p+1)(p^2+p+1)$
\mathscr{O}_{D11}	$-(p-1)^3p(2p^3+6p^2+4p+1)$	$(p-1)p(p+1)^2(p^2+p+1)/2$
\mathscr{O}_{D2}	$(p-1)^2p(2p^2+3p+1)$	$(p-1)^2p(p+1)(p^2+p+1)/2$
\mathscr{O}_{Dns}	$(p-1)^2p(2p^2+3p+1)$	$(p-1)^2p^2(p+1)(p^2+p+1)$
\mathscr{O}_{Cs}	$-p^7 + 5p^5 - 3p^4 - 3p^3 + p^2 + p$	$(p-1)^2p(p+1)^2(p^2+p+1)$
\mathscr{O}_{Cns}	$(p-1)^2p(2p^2+3p+1)$	$(p-1)^2p^3(p+1)(p^2+p+1)$
\mathscr{O}_{B11}	$(p-1)^2p(2p^2+3p+1)$	$(p-1)^2p^2(p+1)^2(p^2+p+1)/2$
\mathscr{O}_{B2}	$(p-1)^2p(2p^2+3p+1)$	$(p-1)^3p^2(p+1)(p^2+p+1)/2$
\mathscr{O}_{1^4}	$p(p^3 - 3p^2 + p + 1)$	$(p-1)^3p^2(p+1)^2(p^2+p+1)$
$O_{1^{3}1}$	$p(p^3 - 3p^2 + p + 1)$	$(p-1)^3p^3(p+1)^2(p^2+p+1)$
$\mathscr{O}_{1^{2}1^{2}}$	$(p-1)^2p(3p+1)$	$(p-1)^2p^4(p+1)^2(p^2+p+1)/2$
\mathscr{O}_{2^2}	$-(p-1)p(p+1)^2$	$(p-1)^3p^4(p+1)(p^2+p+1)/2$
$\mathscr{O}_{1^{2}11}$	$p(p^3 - 3p^2 + p + 1)$	$(p-1)^3p^4(p+1)^2(p^2+p+1)/2$
\mathscr{O}_{1^22}	$p(p^3 - 3p^2 + p + 1)$	$(p-1)^3p^4(p+1)^2(p^2+p+1)/2$
O_{1111}	$-p^3 + p^2 + p$	$(p-1)^4p^4(p+1)^2(p^2+p+1)/24$
\mathscr{O}_{112}	$-p^3 + p^2 + p$	$(p-1)^4p^4(p+1)^2(p^2+p+1)/4$
\mathscr{O}_{22}	$-p^{3}+p^{2}+p$	$(p-1)^4p^4(p+1)^2(p^2+p+1)/8$
\mathcal{O}_{13}	$-p^3 + p^2 + p$	$(p-1)^4p^4(p+1)^2(p^2+p+1)/3$
\mathcal{O}_4	$-p^3 + p^2 + p$	$(p-1)^4p^4(p+1)^2(p^2+p+1)/4$

Binary cubic forms - singularity

On $V = \operatorname{Sym}^3(\mathbb{F}^2)$, let Φ_p be the characteristic function of the singular locus:

$$\Phi_p(v) := egin{cases} 1 & ext{if } \operatorname{Disc}(v) = 0 \ , \ 0 & ext{otherwise} \ . \end{cases}$$

The Fourier transform

Theorem (Mori 2010)

We have

$$\widehat{\Phi_p}(v) = \begin{cases} p^{-1} + p^{-2} - p^{-3} & (v = 0), \\ p^{-2} - p^{-3} & (v \text{ has splitting type } (1^3) \text{ or } (1^21)), \\ -p^{-3} & (\text{otherwise}). \end{cases}$$

[The above corrects a mistake pointed out in the talk.]

Binary cubic forms

Recall that PGL(2) acts triply transitively on \mathbb{P}^1 .

Binary cubic forms

Recall that PGL(2) acts triply transitively on \mathbb{P}^1 .

Therefore, the action of $\mathrm{GL}(2)$ on $\mathrm{Sym}^3(\mathbb{F}^2)$ has six orbits:

Binary cubic forms

Recall that PGL(2) acts triply transitively on \mathbb{P}^1 .

Therefore, the action of $\mathrm{GL}(2)$ on $\mathrm{Sym}^3(\mathbb{F}^2)$ has six orbits:

$$(0), (1^3), (1^21), (111), (12), (3)$$

Proposition

A form $v \in \operatorname{Sym}^3(\mathbb{F}^2)$ is:

Proposition

A form $v \in \operatorname{Sym}^3(\mathbb{F}^2)$ is:

► $(1^21), (1^3)$, or (0) if it is *G*-equivalent to some (0, 0, *, *);

Proposition

A form $\nu \in \operatorname{Sym}^3(\mathbb{F}^2)$ is:

- ► $(1^21), (1^3)$, or (0) if it is *G*-equivalent to some (0, 0, *, *);
- ▶ (1^3) , or (0) if it is *G*-equivalent to some (0,0,0,*);

Proposition

A form $v \in \operatorname{Sym}^3(\mathbb{F}^2)$ is:

- $ightharpoonup (1^21), (1^3), \text{ or } (0) \text{ if it is } G\text{-equivalent to some } (0, 0, *, *);$
- ▶ (1^3) , or (0) if it is *G*-equivalent to some (0,0,0,*);
- (0) if it is G-equivalent to (0,0,0,0).

Proposition

A form $v \in \operatorname{Sym}^3(\mathbb{F}^2)$ is:

- $(1^21), (1^3), \text{ or } (0) \text{ if it is } G\text{-equivalent to some } (0, 0, *, *);$
- \blacktriangleright (1³), or (0) if it is *G*-equivalent to some (0, 0, 0, *);
- \blacktriangleright (0) if it is *G*-equivalent to (0,0,0,0).

Moral:

G-orbits of subspaces distinguish the orbits.

Consider

$$f:=\sum_{\nu\in(0,0,*,*)}\sum_{g\in\operatorname{GL}_2(\mathbb{F}_p)}\mathbf{1}_{g\nu}.$$

Then

Consider

$$f:=\sum_{v\in(0,0,*,*)}\sum_{g\in\operatorname{GL}_2(\mathbb{F}_p)}\mathbf{1}_{gv}.$$

Then

$$f(v) = \begin{cases} (p^2-1)(p^2-p) & (v=0), \\ p^2-p & (v \text{ has splitting type } (1^3)), \\ p-1 & (v \text{ has splitting type } (1^21)), \\ 0 & \text{otherwise}, \end{cases}$$

Consider

$$f:=\sum_{v\in(0,0,*,*)}\sum_{g\in\operatorname{GL}_2(\mathbb{F}_p)}\mathbf{1}_{gv}.$$

Then

$$f(v) = \begin{cases} (p^2-1)(p^2-p) & (v=0), \\ p^2-p & (v \text{ has splitting type } (1^3)), \\ p-1 & (v \text{ has splitting type } (1^21)), \\ 0 & \text{otherwise}, \end{cases}$$

a weighted version of our counting formula.

$$p^{4}\widehat{f}(w) = \sum_{v \in (0,0,*,*)} \sum_{g \in G(\mathbb{F}_p)} \langle [gv,w] \rangle$$

$$p^{4}\widehat{f}(w) = \sum_{v \in (0,0,*,*)} \sum_{g \in G(\mathbb{F}_p)} \langle [gv, w] \rangle$$
$$= \sum_{v \in (0,0,*,*)} \sum_{g \in G(\mathbb{F}_p)} \langle [v, g^T w] \rangle$$

$$\begin{split} p^4 \widehat{f}(w) &= \sum_{v \in (0,0,*,*)} \sum_{g \in G(\mathbb{F}_p)} \langle [gv,w] \rangle \\ &= \sum_{v \in (0,0,*,*)} \sum_{g \in G(\mathbb{F}_p)} \langle [v,g^Tw] \rangle \\ &= p^2 \# \{ G(\mathbb{F}_p) - \text{translates of } w \text{ in } (*,*,0,0) \} \end{split}$$

$$\begin{split} p^4 \widehat{f}(w) &= \sum_{v \in (0,0,*,*)} \sum_{g \in G(\mathbb{F}_p)} \langle [gv,w] \rangle \\ &= \sum_{v \in (0,0,*,*)} \sum_{g \in G(\mathbb{F}_p)} \langle [v,g^Tw] \rangle \\ &= p^2 \# \{ G(\mathbb{F}_p) - \text{translates of } w \text{ in } (*,*,0,0) \} \\ &= p^2 \sum_{g \in G(\mathbb{F}_p)} \sum_{w \in (*,*,0,0)} \mathbf{1}_{gw}. \end{split}$$

$$V = \operatorname{Sym}^2(2), \ G = \operatorname{GL}_1 \times \operatorname{GL}_2.$$

•
$$V = \operatorname{Sym}^2(2)$$
, $G = \operatorname{GL}_1 \times \operatorname{GL}_2$.

$$V = \operatorname{Sym}^2(3), \ G = \operatorname{GL}_1 \times \operatorname{GL}_3.$$

- $V = \operatorname{Sym}^2(2), \ G = \operatorname{GL}_1 \times \operatorname{GL}_2.$
- $V = \operatorname{Sym}^2(3), \ G = \operatorname{GL}_1 \times \operatorname{GL}_3.$
- $V = 2 \otimes \operatorname{Sym}^2(2), \ G = \operatorname{GL}_2 \times \operatorname{GL}_2.$

Other prehomogeneous cases (Taniguchi-T.)

- $V = \operatorname{Sym}^2(2)$, $G = \operatorname{GL}_1 \times \operatorname{GL}_2$.
- $V = \operatorname{Sym}^2(3), \ G = \operatorname{GL}_1 \times \operatorname{GL}_3.$
- $V = 2 \otimes \operatorname{Sym}^2(2)$, $G = \operatorname{GL}_2 \times \operatorname{GL}_2$.
- $V = 2 \otimes \operatorname{Sym}^2(3), G = \operatorname{GL}_2 \times \operatorname{GL}_3.$

Binary quartic forms

Let V be the space of binary quartic forms, where $\mathrm{GL}(1) \times \mathrm{GL}(2)$ acts by

$$\left(\alpha, \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) \cdot f(x, y) = \alpha f(ax + cy, bx + dy).$$

Binary quartic forms

Let V be the space of binary quartic forms, where $\mathrm{GL}(1) \times \mathrm{GL}(2)$ acts by

$$\left(\alpha, \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) \cdot f(x, y) = \alpha f(ax + cy, bx + dy).$$

Associate to $f = a_0x^4 + a_1x^3y + a_2x^2y^2 + a_3xy^3 + a_4y^4$:

$$I(f) = 12a_0a_4 - 3a_1a_3 + a_2^2,$$

$$J(f) = 72a_0a_2a_4 + 9a_1a_2a_3 - 27(a_0a_3^2 + a_1^2a_4) - 2a_2^3.$$

Binary quartic forms

Let V be the space of binary quartic forms, where $\mathrm{GL}(1) \times \mathrm{GL}(2)$ acts by

$$\left(\alpha, \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) \cdot f(x, y) = \alpha f(ax + cy, bx + dy).$$

Associate to $f = a_0x^4 + a_1x^3y + a_2x^2y^2 + a_3xy^3 + a_4y^4$:

$$I(f) = 12a_0a_4 - 3a_1a_3 + a_2^2,$$

$$J(f) = 72a_0a_2a_4 + 9a_1a_2a_3 - 27(a_0a_3^2 + a_1^2a_4) - 2a_2^3.$$

Let Φ_p be the characteristic function of the singular locus:

$$\Phi_{
ho}(v) := egin{cases} 1 & ext{if } \operatorname{Disc}(v) = 0 \ , \ 0 & ext{otherwise} \ . \end{cases}$$

Main Theorem for Quartic Forms

Theorem (Ishitsuka, Ito, Taniguchi, T., Xiao)

For a prime p > 3, we have

$$\widehat{\Phi_{p}}(v) = \begin{cases} p^{-1} + p^{-2} - p^{-3} & (v = 0), \\ p^{-2} - p^{-3} & (v \text{ has splitting type } (1^{4}) \text{ or } (1^{3}1)), \\ \chi_{12}(p)(p^{-4} - p^{-3}) & (v \text{ has splitting type } (1^{2}1^{2})), \\ \chi_{12}(p)(p^{-4} + p^{-3}) & (v \text{ has splitting type } (2^{2})), \\ \chi_{12}(p)p^{-4} & (v \text{ has splitting type } (1^{2}11) \text{ or } (1^{2}2)), \\ \chi_{3}(p)\left(\frac{I(v)}{p}\right) \cdot p^{-4} & (J(v) = 0, I(v) \neq 0), \\ a(E'_{v})p^{-4} & (J(v) \neq 0, \mathrm{Disc}(v) \neq 0). \end{cases}$$

Here E'_{ν} is the elliptic curve defined by

$$y^2 = x^3 - 3I(v)x^2 + J(v)^2$$

with $a(E_{\nu}'):=p+1-\#E_{\nu}'(\mathbb{F}_p).$

Proof of IITTX: Projectivization

If $w \neq 0$, we have

$$\sum_{\substack{w\in\overline{w}\\w\neq 0}}\langle[w,v]\rangle=\begin{cases} p-1 & ([w,v]=0)\\ -1 & ([w,v]\neq 0),\end{cases}$$

where \overline{w} is the line through w and 0. So,

$$egin{aligned} \widehat{\Phi_{
ho}}(v) &= 1 + (
ho - 1) \sum_{\overline{w} \in \mathbb{P}(V), [\overline{w}, v] = 0} \Phi_{
ho}(\overline{w}) - \sum_{\overline{w} \in \mathbb{P}(V), [\overline{w}, v]
eq 0} \Phi_{
ho}(\overline{w}) \\ &= 1 +
ho \# X_{v}(\mathbb{F}_{
ho}) - \# X(\mathbb{F}_{
ho}), \end{aligned}$$

where

$$\begin{split} X &:= \left\{ w \in \mathbb{P}(V) \mid \operatorname{Disc}(w) = 0 \right\}, \\ X_v &:= \left\{ w \in \mathbb{P}(V) \mid \operatorname{Disc}(w) = [w, v] = 0 \right\}. \end{split}$$

Three morphisms

Consider projective morphisms

$$\psi_{1} \colon \mathbb{P}(\mathbb{F}_{p}^{2}) \times \mathbb{P}(\operatorname{Sym}^{2}\mathbb{F}_{p}^{2}) \to \mathbb{P}(\operatorname{Sym}^{4}\mathbb{F}_{p}^{2}) = \mathbb{P}(V)$$

$$(s_{0}x + s_{1}y, t_{0}x^{2} + t_{1}xy + t_{2}y^{2}) \mapsto (s_{0}x + s_{1}y)^{2}(t_{0}x^{2} + t_{1}xy + t_{2}y^{2}).$$

$$\psi_{2} \colon \mathbb{P}(\operatorname{Sym}^{2}\mathbb{F}_{p}^{2}) \to \mathbb{P}(\operatorname{Sym}^{4}\mathbb{F}_{p}^{2}) = \mathbb{P}(V)$$

$$t_{0}x^{2} + t_{1}xy + t_{2}y^{2} \mapsto (t_{0}x^{2} + t_{1}xy + t_{2}y^{2})^{2}$$

$$\psi_{3} \colon \mathbb{P}(\mathbb{F}_{p}^{2}) \times \mathbb{P}(\mathbb{F}_{p}^{2}) \to \mathbb{P}(\operatorname{Sym}^{4}\mathbb{F}_{p}^{2}) = \mathbb{P}(V)$$

$$(s_{0}x + s_{1}y, t_{0}x + t_{1}y) \mapsto (s_{0}x + s_{1}y)^{2}(t_{0}x + t_{1}y)^{2}.$$

Three morphisms – inverse images

Then, the cardinalities of each $\psi_i(v)$ are:

Spitting type	$\#\psi_1^{-1}$	$\#\psi_2^{-1}$	$\#\psi_3^{-1}$
non-degenerate	0	0	0
(1 ⁴)	1	1	1
(1^31)	1	0	0
(1^21^2)	2	1	2
(2^2)	0	1	0
(1^211)	1	0	0
(1^22)	1	0	0

Three morphisms – inverse images

Then, the cardinalities of each $\psi_i(v)$ are:

Spitting type	$\#\psi_1^{-1}$	$\#\psi_2^{-1}$	$\#\psi_3^{-1}$
non-degenerate	0	0	0
(1 ⁴)	1	1	1
(1^31)	1	0	0
(1^21^2)	2	1	2
(2 ²)	0	1	0
(1^211)	1	0	0
(1^22)	1	0	0

So,
$$\Phi_{\rho}(\overline{w})=\#\psi_1^{-1}(\overline{w})+\#\psi_2^{-1}(\overline{w})-\#\psi_3^{-1}(\overline{w}).$$

The elliptic curve

We have

$$\sum_{\overline{w}\in\mathbb{P}(V), [\overline{w},v]=0} \#\psi_3^{-1}(\overline{w}) = \#C_3(v),$$

where

$$C_3(v) = \{(I_1, I_2) \in \mathbb{P}(\mathbb{F}_p^2) \times \mathbb{P}(\mathbb{F}_p^2) \mid [I_1^2 I_2^2, v] = 0\}.$$

The elliptic curve

We have

$$\sum_{\overline{w}\in\mathbb{P}(V), [\overline{w}, \nu]=0} \#\psi_3^{-1}(\overline{w}) = \#C_3(\nu),$$

where

$$C_3(v) = \left\{ (\mathit{I}_1, \mathit{I}_2) \in \mathbb{P}(\mathbb{F}_p^2) \times \mathbb{P}(\mathbb{F}_p^2) \mid [\mathit{I}_1^2\mathit{I}_2^2, v] = 0 \right\}.$$

Proposition (Bhargava-Ho)

If $\operatorname{Disc}(v) \neq 0$ and $J(v) \neq 0$, then $C_3(v)$ is of genus one, isomorphic to

$$E'_{v}$$
: $y^{2} = x^{3} - 3I(v)x^{2} + J(v)^{2}$.

▶ Can we do $\mathbb{F}^4 \otimes \wedge^2(\mathbb{F}^5)$ (the "quintic case")?

- ▶ Can we do $\mathbb{F}^4 \otimes \wedge^2(\mathbb{F}^5)$ (the "quintic case")?
- ► Can one explain the regularity of these results?

- ▶ Can we do $\mathbb{F}^4 \otimes \wedge^2(\mathbb{F}^5)$ (the "quintic case")?
- ► Can one explain the regularity of these results?
- ▶ What else are these formulas related to?

- ▶ Can we do $\mathbb{F}^4 \otimes \wedge^2(\mathbb{F}^5)$ (the "quintic case")?
- Can one explain the regularity of these results?
- ▶ What else are these formulas related to?
- Can one exploit the oscillation in sign?