Внутритекстовая когерентность как мера интерпретируемости тематических моделей текстовых коллекций

Василий Алексеев

Предзащита бакалаврской работы

13 июня 2018

Тема, Интерпретируемость, Когерентность

Тема характеризуется набором слов, которые часто совместно встречаются в тексте. *Топ-слова* темы — её самые частые слова.

Интерпретируемость означает, может ли человек по словам темы объяснить, о чём она, дать ей подходящее название.

Хорошо интерпретируемая тема (самые частые слова)

актёр, пьеса, музыкальный, премьера, партер, зритель, продюсер, аудитория, занавес, оркестр

Плохо интерпретируемая тема (самые частые слова)

экспресс, эпиграф, туманный, результат, образ, право, заём, иероглиф, лак, футбол

Когерентность — это автоматический способ оценки интерпретируемости, когда оценивается, как часто топ-слова темы встречаются недалеко друг от друга в тексте.

Проблема подхода к оценке интерпретируемости через совстречаемости топ-слов темы

Десять топовых слов покрывают малую часть всего текста. Совстречаемостей этих слов (то есть позиций топ-слов, когда рядом с ними есть другие топ-слова) ещё меньше.

Цель исследования

Проблема

Когерентности по топ-словам опираются на заданное количество самых частых слов темы.

Этот список слов несёт информацию лишь о части тематической модели.

Решение

Смотреть, как тема распределена по всем словам текста. Считать когерентность темы как среднюю схожесть слов, близко расположенных в тексте.

Содержание

- Внутритекстовые когерентности
- Полуавтоматическая оценка качества функций когерентности
 - Полусинтетический датасет
 - Качество сегментации
- Эксперименть

SemantiC (Semantic Closeness): l₂

Значение

Близость векторов близко расположенных в тексте слов темы t

SemantiC (Semantic Closeness): Var

Значение

Разброс темы t по близко расположенным словам

FoCon (Focus Consistency)

Значение

Как сильно изменяется тема t среди смежных слов

Метод не привязан к теме, он сразу даёт значение когерентности для *тематической модели* как целого.

TopLen (Topic Length)

<u>Зн</u>ачение

Средняя длина темы внутри текста

Считает слова темы t, штрафуя, когда встречается слово другой темы.

Пример для темы t =«Чёрные дыры»

Группе астрономов удалось обнаружить звезду, обращающуюся

$$l_1=2$$
 $l_2=2$

вокруг чёрной дыры на рекордно близком расстоянии.

$$l_3 = 4$$

Содержание

- Внутритекстовые когерентности
- Полуавтоматическая оценка качества функций когерентности
 - Полусинтетический датасет
 - Качество сегментации
- 3 Эксперименть

Полусинтетический датасет

Гипотеза

Все тексты сегментированы. Но позиции сегментов не известны

2000 *монотематических* статей «ПостНауки»¹ разрезаются на сегменты одинаковой длины и сшиваются в новые документы.

Документ из двух сегментов: про «социологию» и «медицину»

¹https://postnauka.ru

Полусинтетический датасет

Чем лучше функция когерентности, тем лучше она должна описывать способность тематической модели угадывать сегментную структуру текста

Для каждого слова в полусинтетическом датасете известно, к какой теме оно относится

Качество сегментации: Soft

Сумма $p(t \mid d, w)$ по всем словам в сегментах темы t

Качество сегментации: Hard

Количество совпадений темы, предсказываемой моделью $\arg\max_{\tau} p(\tau \mid d, w)$, и темы t на словах сегментов темы t

Содержание

- Внутритекстовые когерентности
- Полуавтоматическая оценка качества функций когерентности
 - Полусинтетический датасет
 - Качество сегментации
- Эксперименты

Недостаток подхода с помощью топ-слов

Когерентности по топ-словам могут игнорировать более 98% слов текста коллекции документов

Min	0.016
Median	0.048
Mean	0.062
Max	0.28
Total	1.2

Часть корпуса (%), которая занята совстречаемостями десяти топовых слов для тем «ПостНауки»

Спирмановские корреляции между когерентностями и качестами сегментации

Ряд моделей: $\Phi(\alpha) = \alpha \cdot \Phi_{bad} + (1-\alpha) \cdot \Phi_{good} \mid \alpha \in [0,1)$ от модели коллекции «ПостНаука» Φ_{good} до случайной Φ_{bad}

Coh	Corr
Newman	0.80
Mimno	0.94
SemantiC l_2	0.70
${\sf SemantiCVar}$	1.00
TopLen	1.00
FoCon	1.00

Корреляции при размере сегмента 200 слов и при 5 темах в каждом документе

Когерентности и качества сегментации как функции качества тематической модели

Результаты

- Проиллюстрирован недостаток когерентностей по топ-словам: покрытие лишь малой части текстовой коллекции.
- Предложен полуавтоматический метод оценки качества функций когерентности: по корреляции с качеством сегментации полусинтетического текста тематическими моделями.
- Представлены методы внутритекстовой когерентности.
 По предложенной функции качества некоторые внутритекстовые методы лучше, чем когерентности по топ-словам.