Du 8 au 1é janvier

Programme n°13

ELECTROCINETIQUE

Cours et exercices

EL4 Les oscillateurs amortis

Cours et exercices

EL5 Les dipôles linéaires en régime sinusoïdal forcé, impédances complexes (Cours uniquement)

- Régime sinusoïdal permanent
- Représentation d'une grandeur sinusoïdale
- Dipôles idéaux R, L et C
- ◆ Utilisation des impédances complexes- Associations de deux impédances → Association série
 - → Association parallèle
 - Modèle générateur
- → Générateur de tension
- → Générateur de courant
- → Passage d'un modèle à l'autre
- Les diviseurs en régime sinusoïdal \rightarrow Diviseur de tension
 - → Diviseur de courant
 - → Exemples

EL6 La résonance(Cours uniquement)

- Définition
- Résonance en courant dans un circuit RLC série
- Etude de la valeur efficace
- La bande passante
- Etude de la phase

<u></u>	<u></u>
Régime sinusoïdal forcé, impédances complexes.	Établir et connaître l'impédance d'une résistance, d'un condensateur, d'une bobine en régime
	harmonique.
Association de deux impédances.	Remplacer une association série ou parallèle de deux impédances par une impédance équivalente.
Oscillateur électrique ou mécanique soumis à une excitation sinusoïdale. Résonance.	Mettre en œuvre un dispositif expérimental autour du phénomène de résonance.
	Utiliser la construction de Fresnel et la méthode des complexes pour étudier le régime forcé en intensité ou en vitesse.
	Déterminer la pulsation propre et le facteur de qualité à partir de graphes expérimentaux d'amplitude et de phase dans le cas de la résonance en intensité ou en vitesse.
	À l'aide d'un outil de résolution numérique, mettre en évidence le rôle du facteur de qualité pour l'étude de la résonance en élongation.
	Relier l'acuité d'une résonance forte au facteur de qualité.

ATOMISTIQUE

AT1 Atomes et éléments (Cours et exercices)

- Historique (Ne pas connaitre)
- Elément chimique Définition
 - Isotopes isobares
 - Caractéristiques des composants de l'atome → L'électron
 - → Les nucléons
 - \rightarrow Dimensions

- Interaction rayonnement matière
- Présentation
- Spectres atomiques → Spectre d'émission, spectre d'absorption
 - → Energie d'un atome ; interprétation des spectres

- Exemple le spectre de l'atome d'hydrogène → Résultats, description

→ Niveaux d'énergie de l'atome d'hydrogène

 \rightarrow Diagramme

AT2 Structure électronique de l'atome (Cours et exercices)

• Notion de fonction d'onde associée à l'électron

• Les nombres quantiques - Définition

- L'état d'un atome

• Diagramme énergétique

- Cas de l'atome d'hydrogène

- Cas des autres atomes (Klechkovski)

• Configuration électronique d'un atome dans son état fondamental

- Edification du cortège électronique : trois règles

- Irrégularités à ces règles

- Electrons de cœur, électrons de valence

AT3 Classification périodique (Cours et exercices)

• La classification périodique - Historique (à ne pas connaitre)

- Le tableau de Mendeleïev

- Métaux et non-métaux, métalloïdes

• Structure en bloc

• Evolution des propriétés atomiques - Energie d'ionisation

- Affinité électronique

- Electronégativité

1	
Atomes et éléments	
Isotopes, abondance isotopique, stabilité. Ordres de grandeur de la taille d'un atome, des masses et des charges de l'électron et du noyau.	Utiliser un vocabulaire précis : élément, atome, corps simple, espèce chimique, entité chimique.
Nombres quantiques n, l, m _l et m _{s.}	Déterminer la longueur d'onde d'une radiation émise ou absorbée à partir de la valeur de la transition énergétique mise en jeu, et inversement.
Configuration électronique d'un atome et d'un ion monoatomique. Électrons de cœur et de valence.	Établir un diagramme qualitatif des niveaux d'énergie électroniques d'un atome donné. Établir la configuration électronique d'un atome dans son état fondamental (la connaissance des exceptions à la règle de Klechkowski n'est pas exigible). Déterminer le nombre d'électrons non appariés d'un atome dans son état fondamental. Prévoir la formule des ions monoatomiques d'un élément.
Classification périodique des éléments	
Architecture et lecture du tableau périodique.	Relier la position d'un élément dans le tableau périodique à la configuration électronique et au nombre d'électrons de valence de l'atome correspondant. Positionner dans le tableau périodique et reconnaître les métaux et non métaux. Situer dans le tableau les familles suivantes : métaux alcalins, halogènes et gaz nobles. Citer les éléments des périodes 1 à 2 de la classification et de la colonne des halogènes (nom, symbole, numéro atomique).

TP

Circuit RLC série

Etude d'une cinétique du second ordre, suivi par conductimétrie