# Frequency Calibration for SDRs - Without GPS

Ray, WA1CYB

## Why Do I need Frequency Calibration?

- Software Defined Radios usually have a single crystal oscillator
  - The crystal determines its frequency and frequency step size accuracy
  - While some SDRs have accurate oscillators with low temperature drift, not all do
- RTL-SDRs typically have large frequency errors
  - +/- 18 parts per million (ppm) is not uncommon to see
  - At 432 MHz this gives a 7776 Hz error (18\*10^-6 \* 432\*10^6= 7776 Hz)
- When using SDRs to receive satellite signals, this uncertainty of frequency could slow down the acquisition of our favorite satellite
  - This is on top of the Doppler uncertainty
- As we go higher in operating frequency, where you Tx/Rx becomes more important
  - 18 ppm at 10 GHz is 180 kHz
- For 10 GHz, even with a accurate downconverter there is a lot of uncertainty
  - On top of Doppler, setting your frequency could be a challenge

#### What's a HAM to do?

- WWV is good, but not available at VHF or higher frequencies
- You could buy/borrow test equipment each time you wanted to measure the error!
- You could open up the SDR and detect the crystal frequency
  - Using your general coverage receiver or Test equipment
    - Calibrate your receiver, then use it to measure the frequency error compared with it's markings
- Have a friend with accurate system transmit on a known frequency while you use your SDR to measure the frequency
  - The difference in frequency divided by the frequency is the % frequency error
  - Don't forget to do this over your typical operating temperature range (warm vs cold room)
- Use someone else's signal to calibrate that is always available ATSC Television!
  - Depending on where you live of course

## ATSC (HDTV)

- ATSC (Advanced Television Systems Committee) sets the specifications for HDTV
- To exchange signals (Network to local etc.) the timing has to be standardized
- ATSC uses a series of tones to send it's signal in OFDM format
  - OFDM (Orthogonal Frequency Division Multiplexing)
  - One of the tones is a pilot tone
- The pilot tone frequency is every 6 MHz starting at the lowest channel, channel 14 at 470,309440.55944056 Hz
  - "... the pilot frequencies of all transmitters in a network shall be maintained within ±1/2 Hz of nominal frequency
- The exact pilot tone frequency is now apparently only a recommendation since the FCC changed it's rules (no NTSC interference issues)
  - Most TV stations already used an Atomic source as a reference or at least a GPS system

#### What You Could Do And What I Did

- You could tune your SDR to channels starting at 470.30944055944056 MHz
  - The FCC channel assignment does not line up with what your TV station call sign broadcasts
  - Look at all 40 possible frequencies to find the strong ones near you
- Using GNU Radio Companion, I wrote a program that scans all the channels
  - It lets you pick the top 6 channels and compares the results
  - You can change the ppm setting (assuming a RTL-SDR) and see the effect
  - To get even closer, a RIT function lets you line them up better

https://github.com/WA1CYB/satellite\_ground\_emulator/tree/master/Ascent/Frequency%20Calibration

- I recommend downloading the program from the link in the paper
  - If you don't have GNU Radio, I recommend you 1st download it. Try it, you'll like it
  - GNU Radio is available for LINUX or Windows users (works best under LINUX)
  - There is a packaged version also that does not require a GNU Radio install (LINUX only)



# **Frequency Calibration Receiver Block Diagram**





## ETTUS N-210 (un-calibrated) in 6 Selected Frequency Mode



### **Demonstration**

