Question 1 finished LBFGS run 0/16 after 29 iters 0.1 sec loss 0.347 converged finished LBFGS run 1/16 after 0.1 sec 29 iters converged loss 0.477 finished LBFGS run 2/16 after 0.1 sec 21 iters converged loss 0.347 finished LBFGS run 3/16 after 0.1 sec 35 iters converged loss 0.347 finished LBFGS run 4/16 after 0.1 sec 29 iters converged loss 0.347 finished LBFGS run 5/16 after 29 iters loss 0.000 0.1 sec converged finished LBFGS run 6/16 after 0.2 sec 23 iters loss 0.000 converged finished LBFGS run 7/16 after 0.2 sec 37 iters converged loss 0.347 finished LBFGS run 8/16 after 0.2 sec 15 iters converged loss 0.347 finished LBFGS run 9/16 after 0.2 sec loss 0.000 26 iters converged finished LBFGS run 10/16 after 0.2 sec loss 0.347 36 iters converged finished LBFGS run 11/16 after 0.3 sec 28 iters converged loss 0.477 finished LBFGS run 12/16 after 0.3 sec 39 iters converged loss 0.000 finished LBFGS run 13/16 after loss 0.347 29 iters 0.3 sec converged finished LBFGS run 14/16 after 0.4 sec 25 iters converged loss 0.347 finished LBFGS run 15/16 after 0.4 sec 30 iters | converged loss 0.347 log loss 0.347 err_rate 0.250 log loss 0.477 err_rate 0.250 log loss 0.347 err_rate 0.250 log loss 0.347 err_rate 0.250 log loss 0.000 err_rate 0.000 log loss 0.000 err_rate 0.000 log loss 0.347 err_rate 0.250 log loss 0.347 err rate 0.250 log loss 0.477 err_rate 0.250 log loss 0.347 err_rate 0.250 log loss 0.000 err_rate 0.000 log loss 0.347 err_rate 0.250 -1 0 1 log loss 0.347 err_rate 0.250 log loss 0.347 err_rate 0.250 log loss 0.000 err_rate 0.000 log loss 0.347 err_rate 0.250

B

Answer: There is 1/4 reach the 0 training error. The remainings' error rate is all 0.25. All of them in the 16 iterations are converged and they are averaged converged in 0.025 seconds. Overall, it converged really fast.

I think the reason may be for the gradient, there are some local minimum and absolute minimum. Therefore, the error rate may vary, and when the gradient reaches the 0, this is the absolute minimum.

Question 2

finished LBFGS run	0/16 after	0.0 sec	58 iters	converged	loss 0.000
finished LBFGS run	1/16 after	0.1 sec	126 iters	converged	loss 0.347
finished LBFGS run	2/16 after	0.1 sec	45 iters	converged	loss 0.347
finished LBFGS run	3/16 after	0.2 sec	80 iters	converged	loss 0.000
finished LBFGS run	4/16 after	0.2 sec	40 iters	converged	loss 0.477
finished LBFGS run	5/16 after	0.2 sec	42 iters	converged	loss 0.000
finished LBFGS run	6/16 after	0.3 sec	50 iters	converged	loss 0.000
finished LBFGS run	7/16 after	0.5 sec	42 iters	converged	loss 0.477
finished LBFGS run	8/16 after	0.5 sec	68 iters	converged	loss 0.347
finished LBFGS run	9/16 after	0.6 sec	114 iters	NOT converged	1oss 0.001
finished LBFGS run	10/16 after	0.6 sec	68 iters	converged	loss 0.347
finished LBFGS run	11/16 after	0.7 sec	109 iters	converged	loss 0.347
finished LBFGS run	12/16 after	0.7 sec	65 iters	converged	loss 0.347
finished LBFGS run	13/16 after	0.8 sec	33 iters	converged	loss 0.478
finished LBFGS run	14/16 after	0.8 sec	53 iters	converged	loss 0.000
finished LBFGS run	15/16 after	0.8 sec	61 iters	converged	loss 0.000

В

Answer: 7/16's runs reach 0 training error. Others are around 0.25 to 0.361. All of them in the 16 iterations are converged and they are averaged converged in 0.05 seconds. Overall, it converged really fast.

I think the reason may be for the gradient, there are some local minimum and absolute minimum. Therefore, the error rate may vary, and when the gradient reaches the 0, this is the absolute minimum.

Question 3

finished SGD ru	n 0/16 af	fter 5.5	sec 267	epochs	converged	loss 0.347
finished SGD ru	n 1/16 af	fter 11.8	sec 307	epochs	converged	loss 0.478
finished SGD ru	n 2/16 af	fter 16.8	sec 239	epochs	converged	loss 0.347
finished SGD ru	n 3/16 af	fter 25.0	sec 400	epochs	NOT converged	loss 0.001
finished SGD ru	n 4/16 af	fter 30.7	sec 275	epochs	converged	loss 0.347
finished SGD ru	n 5/16 af	fter 38.2	sec 400	epochs	NOT converged	loss 0.001
finished SGD ru	n 6/16 af	fter 45.6	sec 400	epochs	NOT converged	loss 0.001
finished SGD ru	n 7/16 af	fter 50.5	sec 273	epochs	converged	loss 0.347
finished SGD ru	n 8/16 af	fter 54.4	sec 219	epochs	converged	loss 0.347
finished SGD ru	n 9/16 af	fter 61.6	sec 400	epochs	NOT converged	loss 0.001
finished SGD ru	n 10/16 af	fter 68.6	sec 394	epochs	converged	loss 0.478
finished SGD ru	n 11/16 af	fter 76.5	sec 400	epochs	NOT converged	loss 0.478
finished SGD ru	n 12/16 af	fter 84.3	sec 400	epochs	NOT converged	loss 0.002
finished SGD ru	n 13/16 af	fter 89.7	sec 304	epochs	converged	loss 0.347
finished SGD ru	n 14/16 af	fter 96.1	sec 331	epochs	converged	loss 0.347
finished SGD ru	n 15/16 af	fter 103.6	sec 400	epochs	NOT converged	loss 0.001

B

Answer: 3/8 of runs reach 0 training error, and others all have the same error rate, which is 0.25. In this time, only 9/16 of runs finally converged. For the converged one, the relatively fast converge is 4 seconds while the slow converge can be nearly 9 seconds. On the other hand, for the non-converged one, the speed is similar.'

 \mathbf{C}

Answer: The SGD solver takes much longer time to calculate, and just about

half of the runs successfully converge. I think this may because the SGD does not do the regularization to its input, which may cause it to be slow.

In addition, there is some local minimum, which makes the SGD think that it is already get the best solution. Therefore, the SGD cannot learn well.

Question 4

finished	${\tt SGD}$	run	0/16	after	3.2 sec	161 epochs	converged	1oss 0.693
finished	SGD	run	1/16	after	11.1 sec	400 epochs	NOT converged	1oss 0.005
finished	SGD	run	2/16	after	18.1 sec	400 epochs	NOT converged	1oss 0.005
finished	SGD	run	3/16	after	22.1 sec	215 epochs	converged	1oss 0.693
finished	SGD	run	4/16	after	29.9 sec	400 epochs	NOT converged	1oss 0.351
finished	SGD	run	5/16	after	37.9 sec	400 epochs	NOT converged	1oss 0.005
finished	SGD	run	6/16	after	45. 0 sec	400 epochs	NOT converged	1oss 0.005
finished	SGD	run	7/16	after	52.6 sec	400 epochs	NOT converged	1oss 0.351
finished	SGD	run	8/16	after	60.2 sec	400 epochs	NOT converged	1oss 0.351
finished	SGD	run	9/16	after	67.8 sec	400 epochs	NOT converged	1oss 0.351
finished	SGD	run	10/16	after	70.2 sec	124 epochs	converged	1oss 0.693
finished	SGD	run	11/16	after	77.8 sec	400 epochs	NOT converged	1oss 0.005
finished	SGD	run	12/16	after	85.4 sec	400 epochs	NOT converged	1oss 0.005
finished	SGD	run	13/16	after	92.8 sec	400 epochs	NOT converged	1oss 0.353
finished	SGD	run	14/16	after	100.6 sec	400 epochs	NOT converged	1oss 0.007
finished	${\tt SGD}$	run	15/16	after	108.8 sec	400 epochs	NOT converged	1oss 0.005

Answer: 1/2 of runs reach 0 training error, and the others are about 0.371 to 0.498. In this time, only 3/16 of runs finally converged. For the converged one, the relatively fast converge is 3 seconds while the slow converge can be nearly 6 seconds. On the other hand, for the non-converged one, the speed is similar.

C

Answer: The SGD solver takes much longer time to calculate, and just little runs successfully converge. I think this may because the SGD does not do the regularization to its input, which may cause it to be slow.

In addition, there is some local minimum, which makes the SGD think that it is already get the best solution. Therefore, the SGD cannot learn well.

B

Answer All ReLU seems easier to optimize, and all Logistic Sigmoid requires more iterations.

 \mathbf{C}

Answer: 1. compare two functions with other different classfications
2. compare two functions with other different solvers
3.compare two functions with other different hypeparameters
(All do the compare experiment for the same data)