

Importing Dataset

Estimated time needed: 15 minutes

Objectives

After completing this lab you will be able to:

- Acquire data in various ways
- Obtain insights from data with Pandas library

Table of Contents

- 1. Data Acquisition
- 2. Basic Insights from the Data set

Data Acquisition

A data set is typically a file containing data stored in one of several formats. Common file formats containing data sets include: .csv, .json, .xlsx etc. The data set can be stored in different places, on your local machine, on a server or a websiite, cloud storage and so on.

To analyse data in a Python notebook, we need to bring the data set into the notebook. In this section, you will learn how to load a data set into our Jupyter Notebook.

In our case, the Automobile Data set is an online source, and it is in a CSV (comma separated value) format. Let's use this data set as an example to practice reading data.

- Data source: https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data
- Data type: csv

The Pandas Library is a very popular and very useful tool that enables us to read various datasets into a data frame; our Jupyter notebook platforms have a built-in **Pandas Library** so that all we need to do is import Pandas without installing.

Read Data

We utilize the pandas.read_csv() function for reading CSV files. However, in this version of the lab, which operates on JupyterLite, the dataset needs to be downloaded to the interface using the provided code below.

The functions below will download the dataset into your browser:

```
In [2]: from pyodide.http import pyfetch
    async def download(url, filename):
        response = await pyfetch(url)
        if response.status == 200:
        with open(filename, "wb") as f:
            f.write(await response.bytes())
```

In [3]: file_path='https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DA0101EN-SkillsNetwork/labs/Data%20files/au

To obtain the dataset, utilize the download() function as defined above:

```
In [4]: await download(file_path, "auto.csv")
    file_name="auto.csv"
```

```
In [5]: df = pd.read_csv(file_name)
```

Note: This version of the lab is working on JupyterLite, which requires the dataset to be downloaded to the interface. While working on the downloaded version of this notebook on their local machines (Jupyter Anaconda), the learners can simply **skip the steps above**, and simply use the URL directly in the pandas.read csv() function. You can uncomment and run the statements in the cell below.

In []: #filepath = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DA0101EN-SkillsNetwork/Labs/Data%20files/d #df = pd.read_csv(filepath, header=None)

After reading the data set, we can use the data_frame.head(n) method to check the top n rows of the data frame, where n is an integer. Contrary to data_frame.head(n), data_frame.tail(n) will show you the bottom n rows of the data frame.

```
In [6]: # show the first 5 rows using dataframe.head() method
    print("The first 5 rows of the dataframe")
    df.head(5)
```

The first 5 rows of the dataframe

Out[6]:		3	?	alfa-romero	gas	std	two	convertible	rwd	front	88.6	 130	mpfi	3.47	2.68	9.0	111	5000	21	27	13495
	0	3	?	alfa-romero	gas	std	two	convertible	rwd	front	88.6	 130	mpfi	3.47	2.68	9.0	111	5000	21	27	16500
	1	1	?	alfa-romero	gas	std	two	hatchback	rwd	front	94.5	 152	mpfi	2.68	3.47	9.0	154	5000	19	26	16500
	2	2	164	audi	gas	std	four	sedan	fwd	front	99.8	 109	mpfi	3.19	3.40	10.0	102	5500	24	30	13950
	3	2	164	audi	gas	std	four	sedan	4wd	front	99.4	 136	mpfi	3.19	3.40	8.0	115	5500	18	22	17450
	4	2	?	audi	gas	std	two	sedan	fwd	front	99.8	 136	mpfi	3.19	3.40	8.5	110	5500	19	25	15250

5 rows × 26 columns

0

Question #1:

Check the bottom 10 rows of data frame "df".

In	[7]:	# Write	your	code	below	and	press	Shift+Enter	to	execute
		df.tail	(10)							

Out[7]:		3	?	alfa-romero	gas	std	two	convertible	rwd	front	88.6	 130	mpfi	3.47	2.68	9.0	111	5000	21	27	13495
	194	-1	74	volvo	gas	std	four	wagon	rwd	front	104.3	 141	mpfi	3.78	3.15	9.5	114	5400	23	28	13415
	195	-2	103	volvo	gas	std	four	sedan	rwd	front	104.3	 141	mpfi	3.78	3.15	9.5	114	5400	24	28	15985
	196	-1	74	volvo	gas	std	four	wagon	rwd	front	104.3	 141	mpfi	3.78	3.15	9.5	114	5400	24	28	16515
	197	-2	103	volvo	gas	turbo	four	sedan	rwd	front	104.3	 130	mpfi	3.62	3.15	7.5	162	5100	17	22	18420
	198	-1	74	volvo	gas	turbo	four	wagon	rwd	front	104.3	 130	mpfi	3.62	3.15	7.5	162	5100	17	22	18950
	199	-1	95	volvo	gas	std	four	sedan	rwd	front	109.1	 141	mpfi	3.78	3.15	9.5	114	5400	23	28	16845
	200	-1	95	volvo	gas	turbo	four	sedan	rwd	front	109.1	 141	mpfi	3.78	3.15	8.7	160	5300	19	25	19045
	201	-1	95	volvo	gas	std	four	sedan	rwd	front	109.1	 173	mpfi	3.58	2.87	8.8	134	5500	18	23	21485
	202	-1	95	volvo	diesel	turbo	four	sedan	rwd	front	109.1	 145	idi	3.01	3.40	23.0	106	4800	26	27	22470
	203	-1	95	volvo	gas	turbo	four	sedan	rwd	front	109.1	 141	mpfi	3.78	3.15	9.5	114	5400	19	25	22625

10 rows × 26 columns

 \blacktriangleright Click here for the solution

Add Headers

Take a look at the data set. Pandas automatically set the header with an integer starting from 0.

To better describe the data, you can introduce a header. This information is available at: https://archive.ics.uci.edu/ml/datasets/Automobile.

Thus, you have to add headers manually.

First, create a list "headers" that include all column names in order. Then, use dataframe.columns = headers to replace the headers with the list you created.

```
In [8]: # create headers list
    "peak-rpm", "city-mpg", "highway-mpg", "price"]
    print("headers\n", headers)
```

headers

['symboling', 'normalized-losses', 'make', 'fuel-type', 'aspiration', 'num-of-doors', 'body-style', 'drive-wheels', 'engine-location', 'wheel-base', 'length', 'width', 'height', 'curb-weight', 'engine-type', 'num-of-cylinders', 'engine-size', 'fuel-system', 'bore', 'stroke', 'compression-ratio', 'horsepower', 'peak-rpm', 'city-mpg', 'highway-mpg', 'price']

Replace headers and recheck our data frame:

```
In [9]: df.columns = headers
        df.columns
```

```
Out[9]: Index(['symboling', 'normalized-losses', 'make', 'fuel-type', 'aspiration',
                                      symboling, normalized-losses, make, ruel-type, aspiration, 
'num-of-doors', 'body-style', 'drive-wheels', 'engine-location', 
'wheel-base', 'length', 'width', 'height', 'curb-weight', 'engine-type', 
'num-of-cylinders', 'engine-size', 'fuel-system', 'bore', 'stroke', 
'compression-ratio', 'horsepower', 'peak-rpm', 'city-mpg',
                                   'highway-mpg', 'price'],
dtype='object')
```

You can also see the first 10 entries of the updated data frame and note that the headers are updated.

In [10]: df.head(10)

Out[10]:

:	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	 engine- size	fuel- system	bore	stroke	compression- ratio	horsepower
0	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6	 130	mpfi	3.47	2.68	9.0	111
1	1	?	alfa- romero	gas	std	two	hatchback	rwd	front	94.5	 152	mpfi	2.68	3.47	9.0	154
2	2	164	audi	gas	std	four	sedan	fwd	front	99.8	 109	mpfi	3.19	3.40	10.0	102
3	2	164	audi	gas	std	four	sedan	4wd	front	99.4	 136	mpfi	3.19	3.40	8.0	115
4	2	?	audi	gas	std	two	sedan	fwd	front	99.8	 136	mpfi	3.19	3.40	8.5	110
5	1	158	audi	gas	std	four	sedan	fwd	front	105.8	 136	mpfi	3.19	3.40	8.5	110
6	1	?	audi	gas	std	four	wagon	fwd	front	105.8	 136	mpfi	3.19	3.40	8.5	110
7	1	158	audi	gas	turbo	four	sedan	fwd	front	105.8	 131	mpfi	3.13	3.40	8.3	140
8	0	?	audi	gas	turbo	two	hatchback	4wd	front	99.5	 131	mpfi	3.13	3.40	7.0	160
9	2	192	bmw	gas	std	two	sedan	rwd	front	101.2	 108	mpfi	3.50	2.80	8.8	101

10 rows × 26 columns

Now, we need to replace the "?" symbol with NaN so the dropna() can remove the missing values:

In [11]: df1=df.replace('?',np.NaN)

You can drop missing values along the column "price" as follows:

```
In [12]: df=df1.dropna(subset=["price"], axis=0)
         df.head(20)
```

: 	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	 engine- size	fuel- system	bore	stroke	compression- ratio	horsepov
0	3	NaN	alfa- romero	gas	std	two	convertible	rwd	front	88.6	 130	mpfi	3.47	2.68	9.00	1
1	1	NaN	alfa- romero	gas	std	two	hatchback	rwd	front	94.5	 152	mpfi	2.68	3.47	9.00	1
2	2	164	audi	gas	std	four	sedan	fwd	front	99.8	 109	mpfi	3.19	3.40	10.00	1
3	2	164	audi	gas	std	four	sedan	4wd	front	99.4	 136	mpfi	3.19	3.40	8.00	1
4	2	NaN	audi	gas	std	two	sedan	fwd	front	99.8	 136	mpfi	3.19	3.40	8.50	1
5	1	158	audi	gas	std	four	sedan	fwd	front	105.8	 136	mpfi	3.19	3.40	8.50	1
6	1	NaN	audi	gas	std	four	wagon	fwd	front	105.8	 136	mpfi	3.19	3.40	8.50	1
7	1	158	audi	gas	turbo	four	sedan	fwd	front	105.8	 131	mpfi	3.13	3.40	8.30	1
9	2	192	bmw	gas	std	two	sedan	rwd	front	101.2	 108	mpfi	3.50	2.80	8.80	1
10	0	192	bmw	gas	std	four	sedan	rwd	front	101.2	 108	mpfi	3.50	2.80	8.80	1
11	0	188	bmw	gas	std	two	sedan	rwd	front	101.2	 164	mpfi	3.31	3.19	9.00	1
12	0	188	bmw	gas	std	four	sedan	rwd	front	101.2	 164	mpfi	3.31	3.19	9.00	1
13	1	NaN	bmw	gas	std	four	sedan	rwd	front	103.5	 164	mpfi	3.31	3.19	9.00	1
14	0	NaN	bmw	gas	std	four	sedan	rwd	front	103.5	 209	mpfi	3.62	3.39	8.00	1
15	0	NaN	bmw	gas	std	two	sedan	rwd	front	103.5	 209	mpfi	3.62	3.39	8.00	1
16	0	NaN	bmw	gas	std	four	sedan	rwd	front	110.0	 209	mpfi	3.62	3.39	8.00	1
17	2	121	chevrolet	gas	std	two	hatchback	fwd	front	88.4	 61	2bbl	2.91	3.03	9.50	
18	1	98	chevrolet	gas	std	two	hatchback	fwd	front	94.5	 90	2bbl	3.03	3.11	9.60	
19	0	81	chevrolet	gas	std	four	sedan	fwd	front	94.5	 90	2bbl	3.03	3.11	9.60	
20	1	118	dodge	gas	std	two	hatchback	fwd	front	93.7	 90	2bbl	2.97	3.23	9.41	

20 rows × 26 columns

Here, axis=0 means that the contents along the entire row will be dropped wherever the entity 'price' is found to be NaN

Now, you have successfully read the raw data set and added the correct headers into the data frame.

Question #2:

Find the name of the columns of the dataframe.

 \blacktriangleright Click here for the solution

Save Dataset

Correspondingly, Pandas enables you to save the data set to CSV. By using the dataframe.to_csv() method, you can add the file path and name along with quotation marks in the brackets.

For example, if you save the data frame **df** as **automobile.csv** to your local machine, you may use the syntax below, where index = False means the row names will not be written

 $df.to_csv("automobile.csv", index=False)$

You can also read and save other file formats. You can use similar functions like pd.read_csv() and df.to_csv() for other data formats. The functions are listed in the following table:

Read/Save Other Data Formats

Data Formate Read Save

Data Formate	Read	Save
CSV	pd.read_csv()	df.to_csv()
json	pd.read_json()	df.to_json()
excel	pd.read_excel()	df.to_excel()
hdf	pd.read_hdf()	df.to_hdf()
sql	pd.read_sql()	df.to_sql()
	•••	

Basic Insights from the Data set

After reading data into Pandas dataframe, it is time for you to explore the data set.

There are several ways to obtain essential insights of the data to help you better understand it.

Data Types

Data has a variety of types.

The main types stored in Pandas data frames are **object**, **float**, **int**, **bool** and **datetime64**. In order to better learn about each attribute, you should always know the data type of each column. In Pandas:

In [15]: df	.dtypes	
Out[15]: sy	mboling	int64
no	rmalized-losses	object
ma	ke	object
fu	el-type	object
as	piration	object
nu	m-of-doors	object
bo	dy-style	object
	ive-wheels	object
en	gine-location	object
	eel-base	float64
le	ngth	float64
wi	dth	float64
he	ight	float64
cu	rb-weight	int64
	gine-type	object
nu	m-of-cylinders	object
en	gine-size	int64
	el-system	object
bo		object
st	roke	object
со	mpression-ratio	float64
ho	rsepower	object
pe	ak-rpm	object
ci	ty-mpg	int64
hi	ghway-mpg	int64
pr	ice	object
dt	ype: object	-

Returns a series with the data type of each column.

As shown above, you can clearly to see that the data type of "symboling" and "curb-weight" are int64, "normalized-losses" is object, and "wheel-base" is float64, etc.

These data types can be changed; you will learn how to accomplish this in a later module.

Describe

If we would like to get a statistical summary of each column such as count, column mean value, column standard deviation, etc., use the describe method: dataframe.describe()

This method will provide various summary statistics, excluding NaN (Not a Number) values.

```
In [17]: df.describe()
```

:	symboling	wheel-base	length	width	height	curb-weight	engine-size	compression-ratio	city-mpg	highway-mpg
count	200.000000	200.000000	200.000000	200.000000	200.000000	200.000000	200.000000	200.000000	200.000000	200.000000
mean	0.830000	98.848000	174.228000	65.898000	53.791500	2555.705000	126.860000	10.170100	25.200000	30.705000
sto	1.248557	6.038261	12.347132	2.102904	2.428449	518.594552	41.650501	4.014163	6.432487	6.827227
mir	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.000000	61.000000	7.000000	13.000000	16.000000
25%	0.000000	94.500000	166.675000	64.175000	52.000000	2163.000000	97.750000	8.575000	19.000000	25.000000
50%	1.000000	97.000000	173.200000	65.500000	54.100000	2414.000000	119.500000	9.000000	24.000000	30.000000
75%	2.000000	102.400000	183.500000	66.675000	55.525000	2928.250000	142.000000	9.400000	30.000000	34.000000
max	3.000000	120.900000	208.100000	72.000000	59.800000	4066.000000	326.000000	23.000000	49.000000	54.000000

This shows the statistical summary of all numeric-typed (int, float) columns.

For example, the attribute "symboling" has 205 counts, the mean value of this column is 0.83, the standard deviation is 1.25, the minimum value is -2, 25th percentile is 0, 50th percentile is 1, 75th percentile is 2, and the maximum value is 3.

However, what if you would also like to check all the columns including those that are of type object?

You can add an argument include = "all" inside the bracket. Try it again.

Out[18]:

Out[17]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	 engine- size	fuel- system	bore	stroke	compression- ratio	hors
count	200.000000	164	200	200	200	198	200	200	200	200.000000	 200.000000	200	196	196	200.000000	
unique	NaN	51	22	2	2	2	5	3	2	NaN	 NaN	8	38	36	NaN	
top	NaN	161	toyota	gas	std	four	sedan	fwd	front	NaN	 NaN	mpfi	3.62	3.40	NaN	
freq	NaN	11	32	180	164	113	94	118	197	NaN	 NaN	91	23	19	NaN	
mean	0.830000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	98.848000	 126.860000	NaN	NaN	NaN	10.170100	
std	1.248557	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	6.038261	 41.650501	NaN	NaN	NaN	4.014163	
min	-2.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	86.600000	 61.000000	NaN	NaN	NaN	7.000000	
25%	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	94.500000	 97.750000	NaN	NaN	NaN	8.575000	
50%	1.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	97.000000	 119.500000	NaN	NaN	NaN	9.000000	
75%	2.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	102.400000	 142.000000	NaN	NaN	NaN	9.400000	
max	3.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	120.900000	 326.000000	NaN	NaN	NaN	23.000000	

11 rows × 26 columns

Now it provides the statistical summary of all the columns, including object-typed attributes.

YOu can now see how many unique values there, which one is the top value, and the frequency of the top value in the object-typed columns.

Some values in the table above show "NaN". Those numbers are not available regarding a particular column type.

Question #3:

You can select the columns of a dataframe by indicating the name of each column. For example, you can select the three columns as follows:

dataframe[[' column 1 ',column 2', 'column 3']]

Where "column" is the name of the column, you can apply the method ".describe()" to get the statistics of those columns as follows:

dataframe[[' column 1 ',column 2', 'column 3']].describe()

Apply the method to ".describe()" to the columns 'length' and 'compression-ratio'.

:		length	compression-ratio
	count	200.000000	200.000000
	mean	174.228000	10.170100
	std	12.347132	4.014163
	min	141.100000	7.000000
	25%	166.675000	8.575000
	50%	173.200000	9.000000
	75%	183.500000	9.400000
	max	208.100000	23.000000

► Click here for the solution

Info

You can also use another method to check your data set:

dataframe.info()

Out[19]

It provides a concise summary of your data frame.

This method prints information about a data frame including the index dtype and columns, non-null values and memory usage.

```
In [20]: # Look at the info of "df"
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Index: 200 entries, 0 to 203
Data columns (total 26 columns):
 # Column
                    Non-Null Count Dtype
                      200 non-null
0 symboling
                                      int64
    normalized-losses 164 non-null
                                      object
                      200 non-null
    make
                                      object
    fuel-type
                      200 non-null
                                      object
                      200 non-null
                                      object
object
 4 aspiration
 5 num-of-doors 198 non-null
7 drive-wheels 200 non-null 200 non-null 200 non-null
                                      object
    drive-wheels 200 non-null engine-location 200 non-null
                                      object
                                      object
    wheel-base
                      200 non-null
                                      float64
 10 length
                      200 non-null
                      200 non-null
                                      float64
 11 width
 12 height
                      200 non-null
                                      float64
 13 curb-weight 200 non-null
 14 engine-type
                      200 non-null
                                      object
 15 num-of-cylinders 200 non-null
 16 engine-size
                      200 non-null
                                      int64
 17 fuel-system
                      200 non-null
                                      object
 18 bore
                      196 non-null
                                      object
 19 stroke
                      196 non-null
                                      object
 20 compression-ratio 200 non-null
                                      float64
 21 horsepower
                      198 non-null
                                      object
                      198 non-null
                                      object
 22 peak-rpm
                      200 non-null
                                      int64
 23 city-mpg
 24 highway-mpg
                      200 non-null
                                      int64
 25 price
                      200 non-null
                                      object
dtypes: float64(5), int64(5), object(16)
memory usage: 29.7+ KB
```

Excellent! You have just completed the Introduction Notebook.

Thank you for completing this lab.

Author

Joseph Santarcangelo

Other Contributors

Mahdi Noorian PhD

Bahare Talayian

Eric Xiao

Steven Dong

Parizad