Package 'GFisher'

January 22, 2021

Type Package				
Title Generalized Fisher's Combination Tests Under Dependence				
Version 0.1.0				
Author Hong Zhang				
Maintainer Hong Zhang <hzhang@wpi.edu></hzhang@wpi.edu>				
Description Accurate and computationally efficient p-value calculation methods for a general family of Fisher type statistics (GFisher). The GFisher covers Fisher's combination, Good's statistic, Lancaster's statistic, weighted Z-score combination, etc. It allows a flexible weighting scheme, as well as an omnibus procedure that automatically adapts proper weights and degrees of freedom to a given data. The new p-value calculation methods are based on novel ideas of moment-ratio matching and joint-distribution approximation. The technical details can be found in Hong Zhang and Zheyang Wu (2020) <arxiv:2003.01286>.</arxiv:2003.01286>				
License GPL-2				
Imports stats, Matrix, mvtnorm				
Encoding UTF-8				
LazyData true				
RoxygenNote 6.1.0				
NeedsCompilation no				
Repository CRAN				
Date/Publication 2021-01-22 10:40:12 UTC				
R topics documented:				
p.GFisher2p.oGFisher3stat.GFisher4				
Index				

p.GFisher

p.GFisher Survival function of the generalized Fisher's p-value combin statistic.

Description

Survival function of the generalized Fisher's p-value combination statistic.

Usage

```
p.GFisher(q, df, w, M, p.type = "two", method = "HYB", nsim = NULL,
  seed = NULL)
```

Arguments

q	- observed GFisher statistic.
df	- vector of degrees of freedom for inverse chi-square transformation for each p-value. If all df's are equal, it can be defined by the constant.
W	- vector of weights.
М	- correlation matrix of the input statistics.
p.type	- "two" = two-sided p-values, "one" = one-sided p-values.
method	- "MR" = simulation-assisted moment ratio matching, "HYB" = moment ratio matching by quadratic approximation, "GB" = Brown's method with calculated variance. See details in the reference.
nsim	- number of simulation used in the "MR" method, default = $5e4$.
seed	- random seed used in the "MR" method

Value

p-value of the observed GFisher statistic.

References

Hong Zhang and Zheyang Wu. "Accurate p-Value Calculation for Generalized Fisher's Combination Tests Under Dependence", <arXiv:2003.01286>.

Examples

```
set.seed(123)
n = 10
M = matrix(0.3, n, n) + diag(0.7, n, n)
zscore = matrix(rnorm(n),nrow=1)%*%chol(M)
pval = 2*(1-pnorm(abs(zscore)))
gf1 = stat.GFisher(pval, df=2, w=1)
gf2 = stat.GFisher(pval, df=1:n, w=1:n)
p.GFisher(gf1, df=2, w=1, M=M, method="HYB")
```

p.oGFisher 3

```
p.GFisher(gf1, df=2, w=1, M=M, method="MR", nsim=5e4) p.GFisher(gf2, df=1:n, w=1:n, M=M, method="HYB") p.GFisher(gf2, df=1:n, w=1:n, M=M, method="MR", nsim=5e4)
```

p.oGFisher

P-value of the omnibus generalized Fisher's p-value combination test.

Description

P-value of the omnibus generalized Fisher's p-value combination test.

Usage

```
p.oGFisher(p, DF, W, M, p.type = "two", method = "HYB",
  combine = "cct", nsim = NULL, seed = NULL)
```

Arguments

p	- vector of input p-values.
DF	- matrix of degrees of freedom for inverse chi-square transformation for each p-value. Each row represents a GFisher test.
W	- matrix of weights. Each row represents a GFisher test.
М	- correlation matrix of the input statistics.
p.type	- "two" = two-sided p-values, "one" = one-sided p-values.
method	- "MR" = simulation-assisted moment ratio matching, "HYB" = moment ratio matching by quadratic approximation, "GB" = Brown's method with calculated variance. See details in the reference.
combine	- "cct" = oGFisher using the Cauchy combination method, "mvn" = oGFisher using multivariate normal distribution.
nsim	- number of simulation used in the "MR" method, default = 5e4.
seed	- random seed used in the "MR" method

Value

1. p-value of the oGFisher test. 2. individual p-value of each GFisher test.

References

Hong Zhang and Zheyang Wu. "Accurate p-Value Calculation for Generalized Fisher's Combination Tests Under Dependence", <arXiv:2003.01286>.

4 stat.GFisher

Examples

```
set.seed(123)
n = 10
M = matrix(0.3, n, n) + diag(0.7, n, n)
zscore = matrix(rnorm(n),nrow=1)%*%chol(M)
pval = 2*(1-pnorm(abs(zscore)))
DF = rbind(rep(1,n),rep(2,n))
W = rbind(rep(1,n), 1:10)
p.oGFisher(pval, DF, W, M, p.type="two", method="HYB", combine="cct")
```

stat.GFisher

Generalized Fisher's p-value combination statistic.

Description

Generalized Fisher's p-value combination statistic.

Usage

```
stat.GFisher(p, df = 2, w = 1)
```

Arguments

p - vector of input p-values.

df - vector of degrees of freedom for inverse chi-square transformation for each

p-value. If all df's are equal, it can be defined by the constant.

w - vector of weights.

Value

```
GFisher statistic sum_i w_i*qchisq(1 - p_i, df_i).
```

References

Hong Zhang and Zheyang Wu. "Accurate p-Value Calculation for Generalized Fisher's Combination Tests Under Dependence", <arXiv:2003.01286>.

Examples

```
n = 10
pval = runif(n)
stat.GFisher(pval, df=2, w=1)
stat.GFisher(pval, df=rep(2,n), w=rep(1,n))
stat.GFisher(pval, df=1:n, w=1:n)
```

Index

```
p.GFisher, 2
p.oGFisher, 3
stat.GFisher, 4
```