Computación Cuántica: Internet Cuántico y Comunicación Superdensa

Notas de Clase

1. Internet Cuántico

Comunicar información por medio del entrelazamiento cuántico.

1.1. Estados de Bell

Los estados de Bell son:

$$\{\phi^+, \phi^-, \psi^+, \psi^-\}$$

Si cada subsistema se mide en su propia base, el resultado parece aleatorio y con probabilidad $\frac{1}{2}$. Solo si existe correlación clásica, Alice y Bob pueden mostrar que hay correlación entre sus componentes.

Definiciones:

$$|\phi^{+}\rangle = \frac{|0\rangle_{A} |0\rangle_{B} + |1\rangle_{A} |1\rangle_{B}}{\sqrt{2}}$$
$$|\psi^{\pm}\rangle = \frac{|0,1\rangle \pm |1,0\rangle}{\sqrt{2}}$$

Los estados de Bell pueden clasificarse mediante etiquetas binarias.

1.2. Canales Cuánticos

Codificación superdensa (envía dos bits clásicos)

1.3. Compuerta de Hall (Hadamard)

La compuerta Hadamard se define mediante:

$$\hat{H} = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \langle 0| + \frac{|0\rangle - |1\rangle}{\sqrt{2}} \langle 1|$$

Su forma matricial es:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

1.4. CNOT

La acción de la puerta CNOT se ilustra por:

$$\hat{U}_{NOT}\frac{\left|0,0\right\rangle+\left|0,1\right\rangle}{\sqrt{2}}=\frac{\hat{U}_{NOT}\left|0,0\right\rangle+\hat{U}_{NOT}\left|0,1\right\rangle}{\sqrt{2}}=\frac{\left|0,0\right\rangle+\left|1,1\right\rangle}{\sqrt{2}}$$

Se usan circuitos para preparar estados de Bell.

1.5. Registro de Estados de Bell

$$|\phi^{\pm}\rangle = \frac{|0,0\rangle \pm |1,1\rangle}{\sqrt{2}}$$

$$|\psi^{\pm}\rangle = \frac{|0,1\rangle \pm |1,0\rangle}{\sqrt{2}}$$

Asimismo, podemos formar estados de Bell utilizando Hadamard y CNOT:

$$|B_{yx}\rangle = \frac{|0,y\rangle + (-1)^x |1,\bar{y}\rangle}{\sqrt{2}}$$

1.6. Tabla de Estados de Bell

2. Comunicación Superdensa

Protocolo:

- 1. Alice y Bob comparten un par de qubits entrelazados.
- 2. Alice mide su qubit y envía el resultado a Bob.
- 3. Bob decodifica el mensaje utilizando la información recibida de Alice.

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \rightarrow \text{Alice mide 0 o 1}$$

Si Alice mide 0, Bob tiene $|00\rangle$ y si mide 1, Bob tiene $|11\rangle$

3. Ejemplo de Comunicación Superdensa

3.1. Ejemplo de Comunicación Superdensa

Consideremos el siguiente ejemplo práctico:

1. Alice y Bob comparten inicialmente el estado de Bell

$$|\phi^+\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}.$$

2. Para enviar el mensaje "10", Alice aplica las siguientes operaciones en su qubit:

2

- Aplica la compuerta X si el primer bit es 1.
- Aplica la compuerta Z si el segundo bit es 1.

En este caso, como el mensaje es "10", aplica la compuerta X, transformando el estado a:

$$(X \otimes I) |\phi^{+}\rangle = |\psi^{+}\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}.$$

3. Bob, al recibir su qubit, realiza una medición en la base de Bell. La medición le permite identificar el estado $|\psi^{+}\rangle$ y, por lo tanto, recuperar el mensaje "10".

Así se demuestra cómo, mediante la manipulación de un solo qubit, se pueden transmitir dos bits clásicos utilizando la comunicación superdensa.

4. Teleportación

Alice quiere enviar a Bob un bit unico, usando un canal provisto por charlie. Para ello, Alice y Bob comparten un par de qubits entrelazados. Alice mide su qubit con una CNOT y una Hadamard, y envía el resultado a Bob. Bob aplica una compuerta CNOT y una Hadamard en su qubit, obteniendo el estado original de Alice.

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$\left|\psi\right\rangle = \alpha\left|0\right\rangle + \beta\left|1\right\rangle \rightarrow \text{Alice mide 0 o 1}$$

Si Alice mide 0, Bob tiene $|00\rangle$ y si mide 1, Bob tiene $|11\rangle$