```
Functionality \mathcal{F}_{\mathrm{PayNet}} – interface
  from \mathcal{E}:
   • (REGISTER, delay, relayDelay)
   • (TOPPEDUP)
   • (OPENCHANNEL, Alice, Bob, x, tid)
   • (CHECKFORNEW, Alice, Bob, tid)
   • (PAY, Bob, x, \overrightarrow{path}, receipt)
     (CLOSECHANNEL, receipt, pchid)
     (FORCECLOSECHANNEL, receipt, pchid)
   • (POLL) - obsolete
   • (PUSHFULFILL, pchid) - obsolete
   • (PUSHADD, pchid) - obsolete
     (COMMIT, pchid) - obsolete
   • (FULFILLONCHAIN) - obsolete
   • (GETNEWS)
   • (REGISTER, Alice, delay(Alice), relayDelay(Alice), pubKey)
   • (REGISTERED)
   • (NEWS, newChannels, closedChannels, updatesToReport)
- from S:
   • (REGISTERDONE, Alice, pubKey)
     (CHANNELANNOUNCED, Alice, p_{Alice,F}, p_{Bob,F}, fchid, pchid, tid)
     (UPDATE, receipt, Alice) - obsolete
   • (CLOSEDCHANNEL, channel, Alice)
   • (RESOLVEPAYS, payid, charged) - obsolete
– to S:
   • (REGISTER, Alice, delay, relayDelay)
     (OPENCHANNEL, Alice, Bob, x, fchid, tid)
   • (CHANNELOPENED, Alice, fchid)
   • (PAY, Alice, Bob, x, path, receipt, payid) - obsolete
   • (CONTINUE) - obsolete
     (CLOSECHANNEL, fchid, Alice)
     (FORCECLOSECHANNEL, fchid, Alice)
   • (POLL, \Sigma_{Alice}, Alice) - obsolete
     (PUSHFULFILL, pchid, Alice) - obsolete
     (PUSHADD, pchid, Alice) - obsolete
     (COMMIT, pchid, Alice) - obsolete
   • (FULFILLONCHAIN, t, Alice) - obsolete
```

Fig. 1.

```
Functionality \mathcal{F}_{\mathrm{PayNet}} – registration and corruption
 1: Initialisation:
 2:
        channels, pendingPay, pendingOpen, corrupted, \Sigma \leftarrow \emptyset
 3: Upon receiving (REGISTER, delay, relayDelay) from Alice:
        delay(Alice) \leftarrow delay // Must check chain at least once every
    delay(Alice) blocks
        relayDelay(Alice) \leftarrow relayDelay
 6:
        updatesToReport (Alice), newChannels (Alice) \leftarrow \emptyset
        polls(Alice) \leftarrow \emptyset
 7:
 8:
        focs(Alice) \leftarrow \emptyset
        send (READ) to \mathcal{G}_{Ledger} as Alice, store reply to \Sigma_{Alice}, add \Sigma_{Alice} to \Sigma and
    add largest block number to polls(Alice)
10:
        \mathtt{checkClosed}(\varSigma_{Alice})
11:
        send (REGISTER, Alice, delay, relayDelay) to S
12: Upon receiving (REGISTERDONE, Alice, pubKey) from S:
13:
        pubKey(Alice) \leftarrow pubKey
14:
        send (REGISTER, Alice, delay(Alice), relayDelay(Alice), pubKey) to Alice
15: Upon receiving (TOPPEDUP) from Alice:
16:
        send (READ) to \mathcal{G}_{Ledger} as Alice and store reply to \Sigma_{Alice}
        \mathtt{checkClosed}(\varSigma_{Alice})
17:
        assign the sum of all output values that are exclusively spendable by Alice
18:
    {
m to} on Chain Balance
19:
        send (REGISTERED) to Alice
20: Upon receiving any message (M) except for (REGISTER) or (TOPPEDUP) from
        if if haven't received (REGISTER) and (TOPPEDUP) from Alice (in this
21:
    order) then
22:
            send (INVALID, M) to Alice and ignore message
23:
        end if
```

Fig. 2.

```
Functionality \mathcal{F}_{\mathrm{PayNet}} – open
 1: Upon receiving (OPENCHANNEL, Alice, Bob, x, tid) from Alice:
 2:
        ensure tid hasn't been used by Alice for opening another channel before
 3:
        choose unique channel ID fchid
 4:
        pendingOpen (fchid) \leftarrow (Alice, Bob, x, tid)
 5:
        send (OPENCHANNEL, Alice, Bob, x, fchid, tid) to S
 6: Upon receiving (CHANNELANNOUNCED, Alice, p<sub>Alice,F</sub>, p<sub>Bob,F</sub>, fchid, pchid, tid)
    from S:
        ensure that there is a pendingOpen(fchid) entry with temporary id tid
        add p_{Alice,F}, p_{Bob,F}, pchid and mark "Alice announced" to
    pendingOpen(fchid)
9: Upon receiving (CHECKFORNEW, Alice, Bob, tid) from Alice:
10:
        ensure there is a matching channel in pendingOpen(fchid), marked with
    "Alice announced"
11:
        (funder, fundee, x, p_{Alice,F}, p_{Bob,F}) \leftarrow pendingOpen(fchid)
12:
        send (READ) to \mathcal{G}_{\text{Ledger}} as Alice and store reply to \Sigma_{Alice}
13:
        \mathtt{checkClosed}(\varSigma_{Alice})
        ensure that there is a TX F \in \Sigma_{Alice} with a (x, (p_{\text{funder},F} \land p_{\text{fundee},F}))
14:
    output
15:
        mark channel with "waiting for FUNDINGLOCKED"
        send (FUNDINGLOCKED, Alice, \Sigma_{Alice}, fchid) to S
16:
17: Upon receiving (FundingLocked, fchid) from S:
        ensure a channel is in pendingOpen(fchid), marked with "waiting for
    FUNDINGLOCKED" and replace mark with "waiting for CHANNELOPENED"
19:
        send (READ) to \mathcal{G}_{Ledger} as Bob and store reply to \Sigma_{Bob}
20:
        \mathtt{checkClosed}(\varSigma_{Bob})
        ensure that there is a TX F \in \Sigma_{Bob} with a (x, (p_{\text{funder},F} \land p_{\text{fundee},F}))
21:
    output
22:
        add receipt(channel) to newChannels(Bob)
23:
        send (FUNDINGLOCKED, Bob, \Sigma_{Bob}, fchid) to S
24: Upon receiving (Channel Opened, fchid) from S:
        ensure a channel is in pendingOpen(fchid), marked with "waiting for
25:
    CHANNELOPENED" and remove mark
26:
        offChainBalance (funder) \leftarrow offChainBalance (funder) + x
27:
        onChainBalance (funder) \leftarrow onChainBalance (funder) -x
28:
        \texttt{channel} \leftarrow (\texttt{funder}, \texttt{fundee}, x, 0, 0, \textit{fchid}, \textit{pchid})
29:
        add channel to channels
30:
        add receipt(channel) to newChannels(Alice)
31:
        clear pendingOpen(fchid) entry
```

Fig. 3.

Functionality \mathcal{F}_{PayNet} – pay (updated)

- 1: Upon receiving $(PAY, Bob, x, \overrightarrow{path})$ from Alice:
- 2: ensure that $\overrightarrow{\mathtt{path}}$ consists of open channels that form a path of capacity at least x (in the right direction) from Alice to Bob
- 3: starting on $|\overrightarrow{\mathtt{path}}|$ clock ticks after receiving this message, on every clock tick, channel \in $\overrightarrow{\mathtt{path}}$, reduce balance of party closer to payer by x and increase balance of party closer to payee by x in the next channel on the $\overrightarrow{\mathtt{path}}$ and add receipt of new balance to both parties' updatesToReport, starting from the unique channel in which the payee is participating

Fig. 4.

Functionality $\mathcal{F}_{\mathrm{PayNet}}$ – close

- 1: Upon receiving (CLOSECHANNEL, receipt, pchid) from Alice
- 2: ensure that there is a channel \in channels : receipt (channel) = receipt with ID pchid
- 3: retrieve fchid from channel
- 4: add $(fchid, receipt(channel), \infty)$ to pendingClose(Alice)
- do not serve any other (PAY, CLOSECHANNEL) message from Alice for this channel
- 6: send (CLOSECHANNEL, receipt, pchid, Alice) to S
- 7: Upon receiving (FORCECLOSECHANNEL, receipt, pchid) from Alice
- 8: retrieve fchid from channel
- 9: add $(fchid, receipt(channel), \bot)$ to pendingClose(Alice)
- 10: do not serve any other (PAY, CLOSECHANNEL, FORCECLOSECHANNEL) message from *Alice* for this channel
- 11: send (FORCECLOSECHANNEL, receipt, pchid, Alice) to S
- 12: Upon receiving (CLOSEDCHANNEL, channel, Alice) from S:
- 13: remove any (fchid of channel, receipt(channel), ∞) from pendingClose(Alice)
- 14: add (fchid of channel, receipt(channel), \bot) to closedChannels(Alice) // trust S here, check on checkClosed()
- 15: send (CONTINUE) to S

Fig. 5.

```
Functionality \mathcal{F}_{\text{PayNet}} - checkClosed()
 1: function checkClosed(\Sigma_{Alice}) // Called after every (READ), ensures requested
    closes eventually happen
 2:
       if there is any closing/commitment transaction in \Sigma_{Alice} with no
    corresponding entry in pendingClose(Alice) \cup closedChannels(Alice) then
 3:
           add (fchid, receipt, \bot) to closedChannels(Alice), where fchid is the ID
    of the corresponding channel, receipt comes from the latest channel state
       end if
 4:
       for all entries
 5:
    (fchid, \mathtt{receipt}, h) \in \mathtt{pendingClose}(Alice) \cup \mathtt{closedChannels}(Alice) \ \mathbf{do}
           if there is a closing/commitment transaction in \Sigma_{Alice} for open channel
    with ID fchid with a balance that corresponds to receipt then
 7:
               let x, y Alice's and channel counterparty Bob's balances respectively
               offChainBalance (Alice) \leftarrow offChainBalance (Alice) -x
 8:
9:
               onChainBalance (Alice) \leftarrow onChainBalance (Alice) + x
10:
               offChainBalance (Bob) \leftarrow offChainBalance (Bob) - y
11:
               onChainBalance (Bob) \leftarrow onChainBalance (Bob) + y
12:
               remove channel from channels & entry from pendingClose(Alice)
13:
               if there is an (fchid, _, _) entry in pendingClose(Bob) then
14:
                   remove it from pendingClose(Bob)
15:
               end if
16:
           else if there is a tx in \Sigma_{Alice} that is not a closing/commitment tx and
    spends the funding tx of the channel with ID fchid then
17:
               halt // DS forgery
           else if there is a commitment transaction in block of height h in \Sigma_{Alice}
18:
    for open channel with ID fchid with a balance that does not correspond to the
    receipt and the delayed output has been spent by the counterparty then
19:
               if polls(Alice) contains an entry in [h, h + delay(Alice) - 1] then
20:
                   halt
21:
               else
22:
                   negligent(Alice) \leftarrow true
               end if
23:
24:
           else if there is no such closing/commitment transaction \wedge h = \bot then
25:
               assign largest block number of \Sigma_{Alice} to h of entry
26:
           else if there is no such closing/commitment transaction \land h \neq \bot \land
    (largest block number of \Sigma_{Alice}) \geq h + (2+r) windowSize then
27:
               halt
28:
           end if
29:
        end for
30:
        if Alice has no open channels in \Sigma_{Alice} AND negligent(Alice) = false then
           if offChainBalance(Alice) \neq 0 OR onChainBalance(Alice) is not equal
31:
    to the total funds exclusively spendable by Alice in \Sigma_{Alice} then
32:
               halt
33:
           end if
        end if
34:
35: end function
```

Fig. 6.

Functionality \mathcal{F}_{PayNet} – get news (updated)

- 1: Upon receiving (GETNEWS) from Alice:
- 2: clear newChannels(Alice), closedChannels(Alice), updatesToReport(Alice) and send them to Alice with message name NEWS, stripping fchid and h from closedChannels(Alice)

Fig. 7.

- The functionality above provides unobservability of off-chain payments and can be realised by a protocol in which all players communicate with every other player on every round sending garbage to the ones with which they don't have to interact. Such a protocol has n^2 communication cost. Indistinguishability holds only in case of a global passive adversary (no corruptions).
- We can also assert unobservability for paths that consist of honest parties only in the case where there is a system-wide maximum path length l and corruptions activate only after 2l clock ticks. Both the functionality and the protocol would be the same.
- In case of a normal corruption model, the functionality has to leak the previous and next player on the path, along with the payment value, to a corrupted player that is to receive its message on this clock tick. Also, the functionality has to wait for confirmation from the corrupted player before sending the message to the next player (but this isn't strictly about privacy).