の 高京朝也大学 Nanjing University of Post & Telecom

物理实验数学中心

QUALITATIVE STUDY OF ATOMIC SPECTRA

Li Bin NJUPT 2024 Autumn

I. Diffraction grating

diffraction equation:

$$d*\sin\theta = k*\lambda, k=0,\pm 1, \pm 2...$$

d: diffraction factor

θ: diffraction angle

k: order

λ: wavelength

II. The adjustment of spectrometer

- >Final vision: see right
- >Methods:
 - ❖Three adjusting screw button under the loading platform
 - ❖ The telescope elevation adjusting screw
- ➤Steps:
 - Coarse adjustment
 - ❖Fine ajustment

collimator

Measurement of the first-order diffraction angles

Read the angle

233°13′

IV. Experiment contents

1. Measure the first-order diffraction angle of helium, determine the diffraction factor $\frac{d}{d}$ according to the known helium spectral wavelength. Note that $\frac{d}{d} = k \cdot \lambda (k=1)$

Color	Wavelength (nm)	Color	Wavelength (nm)	Color	Wavelength (nm)
Red(da rk)	706.52	Green(lig ht)	504.77	Blue	471.31
Red	667.82	Green	501.57	Purple	447.15
Yellow	587.56	Cyan	492.19	Purple (dark)	438.79

2. Measure the first-order diffraction angle of mercury lamp, find out the corresponding wavelength(λ) of mercury according to the diffraction formula $d \cdot \sin \varphi = k \cdot \lambda(k=1)$.

Spectrum of helium

Spectrum of mercury

V. Original data

Table 1. Helium lamp data

 $d^{\bullet}\sin\varphi = k^{\bullet}\lambda, (k=1)$

Color	$\lambda(nm)$	θ_{M}	θ_N	θ'_{M}	θ'_N	$\varphi = \frac{1}{4} (\theta'_M - \theta_M + \theta'_N - \theta_N)$	sin φ
Red	667.82	264º42'	84º46'	241º34'	61º39'		
Yellow	587.56	263°24'	83º28'	243°4'	63º8'		
Green	501.57	261º49'	81º53'	244°34'	64º38'		
Cyan	492.19	261º41'	81º45'	244º44'	64º48'		
Blue	471.31	261º21'	81º25'	24507'	65º10'		
Purple	447.15	260°56'	80°59'	245º31'	65º35'		

Plot $\sin \varphi - \lambda$ curve for Helium.

The slope of the curve is d, $d = (\lambda_{Red} - \lambda_{Purple})/(\sin \varphi_{Red} - \sin \varphi_{Purple})$

Table 2. Mercury lamp data

Color	$ heta_{\!\scriptscriptstyle M} $	$ heta_{\!\scriptscriptstyle N} $	$ heta_{\!\scriptscriptstyle M}' $	$ heta_N'$	$arphi = rac{1}{4} \left(\left heta_{\scriptscriptstyle M}' - heta_{\scriptscriptstyle M} ight + \left heta_{\scriptscriptstyle N}' - heta_{\scriptscriptstyle N} ight ight)$	sin φ	$\lambda(nm)$
Orange	272°35°	92º33°	252°37°	72°34°			
Yellow	272°33°	92º31'	252°38'	72º36'			
Green	272°3°	92°2'	253º11'	73º9°			
Purple	270°6°	90°4°	255%	75°4°			

Using $d \cdot \sin \varphi = k \cdot \lambda$, (k=1) to calculate $\frac{\lambda}{l}$ for each color. Note that $\frac{d}{l}$ is obtained from page 11.

Homework

- Please complete the report to describe this experiment, plot sinφ-λ curve for Helium, complete the tables.
- DL: September 26, 2024.

- Useful link(s):
- 1. https://github.com/bliseu/phylab

END