Notes on Pure Mathematics

Harry Han

February 1, 2023

Contents

1	Notation	1
2	Analysis	2
3	Algebra	4

Abstract

This is my notes when taking the class *Fundamentals of Pure Mathematics* at the University of Edinburgh. These notes do not follow the course lecture notes; instead, they are my thoughts and works inspired by the class.

Chapter 1

Notation

- The \mathbf{M} fonts are used to denote sets. (S, Y, etc.)
- $\mathbb{A} \succ \mathbb{B}$ denotes there exits a surjective function $f: A \to B$. \prec, \approx denotes injective, bijective, respectively.

Chapter 2

Analysis

Axiom 2.0.1 (The "Smallest" Infinite Set). A set \mathbb{S} is infinite iff $\mathbb{S} \succ \mathbb{N}$.

Remark 2.0.1. Although FPM is a pure mathematic class with emphasis on rigor, no rigorous definition for the infinite set has been proposed. This definition/axiom is of my own conception.

Definition 2.0.1 (Countable Set). A set \mathbb{S} is countable iff $\mathbb{N} \times \mathbb{S}$ (there exists a bijection $f : \mathbb{N} \to \mathbb{S}$).

Corollary 2.0.1 (At Most Countable). Let \mathbb{A} be an infinite set. $(\mathbb{A} \prec \mathbb{N})$ iff $(\mathbb{A} \asymp \mathbb{N})$.

Proof. We want to prove $\mathbb{A} \prec \mathbb{N}$ is equivalent to $\mathbb{A} \simeq \mathbb{N}$. $\mathbb{A} \simeq \mathbb{N} \to \mathbb{A} \prec \mathbb{N}$ is by definition. We only need to prove the other direction; i.e., provided $\mathbb{A} \prec \mathbb{N}$, find a bijective function $h : \mathbb{A} \to \mathbb{N}$.

Let $f: \mathbb{A} \to \mathbb{N}$ be an injective mapping. If f is bijective, we are done. If f is injective but not bijective, let \mathbb{N}^- be the range of f. As \mathbb{A} is infinite, \mathbb{N}^- is also infinite. Let $f': \mathbb{A} \to \mathbb{N}^-$ such that f(a) = f'(a). f' is an bijective mapping.

Thus we only need to show there exists a mapping $g: \mathbb{N}^- \to \mathbb{N}$ that is bijective.

g can be constructed by such: sort \mathbb{N}^- and \mathbb{N} in ascending order. Let the first element in the sorted \mathbb{N}^- maps to the first in the sorted \mathbb{N} , the secound to secound, etc. As \mathbb{N}^- is infinite, g must be bijective.

Indeed $h = f' \circ g : \mathbb{A} \to \mathbb{N}$ is the bijective mapping we seek. QED.

Theorem 2.0.1 (List of Countable and Uncountable Sets). Any of the following sets are countable.

1. \mathbb{Z} and any of its infinite subsets.

- 2. \mathbb{R} and any of its infinite subsets.
- 3. If \mathbb{S} is countable, $\{\mathbb{S} \times \mathbb{S}\}, \{\mathbb{S} \times \mathbb{S} \times \cdots \times \mathbb{S}\}$ are also countable.

Chapter 3

Algebra

Definition 3.0.1 (Group). Group is a set \mathbb{S} with an operation \odot that fulfills the following four properties:

- 1. Closure
- 2. Associtivity: $(a \odot b) \odot c = a \odot (b \odot c)$;
- 3. Identity
- 4. Inverse

Theorem 3.0.1 (Consequence of the Definition). There are many unobvious properties that directly follows the definition.

1. General Associtivity: Parenthesis does not matter, as long as the order is the same: $a \odot b \odot c \odot d \odot e \odot f \odot g \cdots = (a \odot ((b \odot c) \odot e (\odot f \odot g) \cdots) = \cdots$