# DaVinci: A Scalable Architecture for Neural Network Computing

Heng Liao, Jiajin Tu, Jing Xia, Xiping Zhou

2019-07





### Key element to enable intelligence in physical devices



#### **Ubiquitous AI computation**



**Applications across** ~10<sup>6</sup> performance range

### **Ubiquitous AI computation**



#### Rich Variety of Computing architectures in Huawei Portfolio



Wide range of performance & efficiency

CPU: General purpose

• GPU: Graphics

NPU: DNN

ISP: Camera sensor pipeline

DSP: Camera post processing, AR

VPU: Vision Processing Unit

NP: Network Processor

Each category represents a different PPA curve

## **Target: Search for Optimal PPA in Design Space**



## Architecture Overview of DaVinci

### **Building Blocks and their Computation Intensity**

#### 1D Scalar Unit

#### + 2D Vector Unit

3D Matrix Unit

Full flexibility



High intensity



Rich & efficient operations

|   | N  | N <sup>2</sup> | N <sup>3</sup> |
|---|----|----------------|----------------|
| • | 1  | 1              | 1              |
| 2 | 2  | 4              | 8              |
| 4 | 4  | 16             | 128            |
| 8 | 3  | 64             | 512            |
| • | 16 | 256            | 4096           |
| ( | 32 | 1024           | 32768          |
| ( | 64 | 4096           | 262144         |

|                                  | GPU +<br>Tensor core | Al core +<br>SRAM |
|----------------------------------|----------------------|-------------------|
| Area<br>(normalized<br>to 12 nm) | 5.2mm^2              | 13.2mm^2          |
| Compute power                    | 1.7Tops<br>fp16      | 8Tops<br>fp16     |

#### **DaVinci Core**



- Cube: 4096(16^3) FP16 MACs + 8192 INT8 MACs
- Vector: 2048bit INT8/FP16/FP32 vector with special functions (activation functions, NMS- Non Minimum Suppression, ROI, SORT)
- Explicit memory hierarchy design, managed by MTE

## **Micro Architecture Configurations**

| Core<br>Version | Cube<br>Ops/cycle            | Vector<br>Ops/Cycle   | L0<br>Bus width             | L1<br>Bus Width            | L2<br>Bandwidth                                    |
|-----------------|------------------------------|-----------------------|-----------------------------|----------------------------|----------------------------------------------------|
| Davinci<br>Max  | 8192                         | 256                   | Match<br>Execution<br>Units | A:8192<br>B:2048           | 910: 3TB/s ÷32<br>610: 2TB/s ÷8<br>310: 192GB/s÷2  |
| Davinci<br>Lite | 4096                         | 128                   |                             | A:8192<br>B:2048           | 38.4GB/s                                           |
| Davinci<br>Tiny | 512                          | 32                    |                             | A:2048<br>B:512            | None                                               |
|                 | Set the performance baseline | Minimize vector bound | bottleneck                  | Ensure this is not a bound | Scarce, limited by NoC, avoid bound where possible |

### **Resource Matching ---- Vector**



- Balance Computation Power between CUBE vs Vector by overlapping its computation time with Vector
- Carefully allocated the number of MACs in CUBE and Vectors
- Support multiple matrices multiply vector operations in CUBE.
- Expand the width of data bus between L1 feature map buffer and CUBE

#### **Resource Matching** ---- Memory Hierarchy



Davinci carefully balance the memory hierarchy design to avoid bandwidth become bottleneck at key locations.

#### **Examples:**

- Reduce the DDR bandwidth requirement by reusing data within L1, L0A, L0B.
- Asymmetric bandwidth provided according to the nature of computation
  - L1 -> L0A bandwidth >> L1->L0B bandwidth, because W\*H could be much bigger than output channel number

# More Challenges of DaVinci

## **Overview of the DSA Developer Stack**

| Level 3 Library (written by novice programmer)                        |                   | TBE LIB |
|-----------------------------------------------------------------------|-------------------|---------|
| Level 3 Compiler (mathematical programming model)                     | TVM/XLA           | ТВЕ     |
| Level 2 Library (written by skilled programmer)                       | CudaNN/<br>CuBLAS | TIK LIB |
| Level 2 Compiler (parallel/kernel programming model)                  | Cuda/OpenCL       | ТІК     |
| Level 1 Library (written by expert)                                   |                   | CCE Lib |
| Low Level 1 Compiler (Intrinsic C) (Architecture defined programming) |                   | CCE C   |
| Instruction Set Architecture                                          | GPU               | NPU     |

#### **Challenge 1:** How to Enable Parallelism with Single Thread



- Programmer is comfortable with the sequential code
- Davinc's C like programming interface (CCE) let programmer to control the parallelism explicitly.

#### **Solution with Multi-thread?**

How about support hardware multi-thread feature?

- The code in each thread is sequential
- CUBE is a share resource between threads
- It has hardware cost



#### How does it work - TIK

- Typical sequential
   Davinci code is a combination of nested FOR loops
- Software multi-thread can be added to any FOR loop body (iterator kernel).

```
1 #preload
 2 mov_out_to_ub(deq_scale)
 3 mov_out_to_ub(l0c_offset)
 4 duplicate(loc offset)
 5 load2d(weight_matrix)
 6 #burst leavel
   for(burst level)
       brc()
       #pipe level
       for(pipe level)
           mov_out_to_ll([ti_fmi, out_fmi)
12
           load3d(l0a us, l1 fmi, weight matrix)
13
           mmad(l0c s32, )
       mov_l0c32_to_ub(ub_tp16, l0c_s32)
14
15
       vconv(ub u8, ub fp16)
       mov ub to out(out fmo, ub u8)
16
```

#### Programmer view of multi-thread

Kernel2 – Two threads, original M iteration is divided by 2



#### **Advanced Compiler Techniques**

- Architecture independent DSL→ C → Binary lowering process
- Traversal order determines data reuse factor
- Millions of legitimate mappings
- Find optimal mapping to
  - bridge the 2,000x memory bandwidth gap





## **Putting All This Together**



- User program AI model using familiar frameworks
- Extends operator library when necessary
- The tasks are executed in a single node, or over a network cluster

## Davinci Al Core in SoCs

#### **Mobile AP SoC**



#### **Automotive SoC**



#### Al Inference SoC



### **AI Training SoC**



#### **Wireless SoC**



# Alleviate Memory Wall and Slow down of Moore's Law

## Memory Wall & I/O Wall

| Bandwidth @                | Bandwidth      | Bandwidth<br>Ratio | Challenges                                                                  |
|----------------------------|----------------|--------------------|-----------------------------------------------------------------------------|
| Execution Engine (512TOPS) | 2048T Byte/Sec | 1                  | Can build faster EU, but no way to feed data                                |
| L0 Memory                  | 2048T Byte/Sec | 1/1                | Very wide datapath, hard to do scatter-gather Inner-loop data reuse         |
| L1 Memory                  | 200T Byte/Sec  | 1/10               | Intra-kernel data reuse                                                     |
| L2 Memory                  | 20T Byte/sec   | 1/100              | Inter-kernel data reuse                                                     |
| HBM Memory                 | 1T Byte/sec    | 1/2000             | HBM size limits memory footprint                                            |
| Intra Node<br>bandwidth    | 50G Byte/sec   | 1/40000            | Scale-up node increase memory footprint, but severely bandwidth constrained |
| Inter Node<br>bandwidth    | 10G Byte/sec   | 1/200000           | Model parallelism across nodes, severely bandwidth constrained              |

#### Technology challenges — Why do we need 3DIC



- 3DIC can help alleviating memory wall, IO wall and logic wall.
- The search for new transistor to help power and thermal all.
- Architecture innovation to reach new grounds despite of all challenges

#### Al Training SoC: Logic + 3DSRAM + 12 HBM





- Customized HBM2E with two Stacks to increase HBM bandwidth
- Large 3D-SRAM as Al core cache

#### Mobile AP: LoL + MoL



#### Step 1

- One logic die + 3D DRAM
- 3DM+POP LPDDR



#### Step 3:

- Multi-layer 3D DRAM (remove POP LPDDR)
- Multi-layer Logic die

#### Step 2

- Two logic die + 3D DRAM
- POP LPDDR

# Physical Design of Davinci Al Chips

#### **Ascend Architecture**



Ascend-Mini

Architecture: DaVinci

FP16: 8 TeraFLOPS

INT8: 16 TeraOPS

16 Channel Video Decode - H.264/265

1 Channel Video Encode – H.264/265

Power: 8W

Process: 12nm



Ascend-Max

Architecture: DaVinci

FP16: 256 TeraFLOPS

INT8: 512 TeraOPS

128 Channel Video Decode -

H.264/265

Power: 350W

Process: 7+ nm EUV

### **Comparison of Computing Density**



#### **Ascend 910 AI Server**



| Features               | Al Server SPEC.                                         |  |
|------------------------|---------------------------------------------------------|--|
| Specification          | 8 * Davinci<br>2 * Xeon CPU + 24 DIMM                   |  |
| Performance            | 2PFops/Chassis ,256T/Al Module                          |  |
| Memory                 | 24DIMM, Up to 1.5TB                                     |  |
| Storage                | 6 * 2.5inch, NVME; 24TB<br>2 * 2.5inch, SAS/SATA, Raid1 |  |
| Interface              | 8*100G Fiber<br>4 * PCle IO                             |  |
| Power                  | 6000W                                                   |  |
| Ambient<br>Temperature | 5~35°C                                                  |  |

#### **Ascend 910 Cluster**

• 2048 Node x 256TFlops = 512 Peta Flops



#### **Ascend910 Die Shot**

- Total 8 Dies integrated
  - Two dummy dies are added to ensure mechanical uniformity
- Total size:
   456+168+96x4+110x2=1228mm<sup>2</sup>





#### Ascend910 Floorplan



- Mesh NoC connects 32 Davinci Cores in the Ascend 910 Compute Die
- NoC provides Read Bandwidth of 128GBps + Write Bandwidth of 128GBps per core
- Inter-chip connections
  - 3x 240Gbps HCCS ports for NUMA connections
  - 2x100Gbps RoCE interfaces for networking

#### Ascend910 NoC





#### 1024bits 2GHz NoC Mesh

- Topology: 6 Rows x 4 Columns
- Access Bandwidth to on-chip L2 Cache: 4 TByte/s
- Access Bandwidth to offchip HBM: 1.2 TByte/s
- NoC bandwidth fairly shared among the Davinci Cores

#### **Ascend310 Die Shot**



## **Kunpeng Vs Ascend**

Ascend310



Kunpeng920

Ascend910

## **Future: Davinci 3DSRAM Floorplan**



## More Challenges...

- Generalized Auto ML
- Efficiency for Re-enforcement Learning, GNN?
- Generalized method for Data/Model/Pipeline parallelism
- How to unify data precision?
- Finding the sweet spot architecture
  - ✓ Big chip vs Small chip
  - ✓ Dense vs Sparse
  - ✓ Out of memory, near memory, in memory

# Thank you.

把数字世界带入每个人、每个家庭、每个组织,构建万物互联的智能世界。

Bring digital to every person, home and organization for a fully connected, intelligent world.

Copyright©2018 Huawei Technologies Co., Ltd. All Rights Reserved.

The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.

Huawei Confidential

