Amendments to the Claims

Claim 1 (Previously presented): Seed of maize inbred line designated PHOR8, representative seed of said line having been deposited under ATCC Accession No. PTA-4344.

Claims 2-58 (Canceled)

Claim 59 (Previously presented):

A maize plant, or a part thereof, produced by growing the

seed of claim 1.

Claim 60 (Previously presented):

The maize plant of claim 59 wherein said plant has been

detasseled.

Claim 61 (Previously presented):

A tissue culture of regenerable cells produced from the

plant of claim 59.

Claim 62 (Previously presented):

Protoplasts produced from the tissue culture of claim 61.

Claim 63 (Previously presented): The tissue culture of claim 61, wherein cells of the tissue culture are from a tissue selected from the group consisting of leaf, pollen, embryo, root, root tip, anther, silk, flower, kernel, ear, cob, husk and stalk.

Claim 64 (Previously presented): A maize plant regenerated from the tissue culture of claim 60, said plant having all the morphological and physiological characteristics of inbred line PHOR8, representative seed of said line having been deposited under ATCC Accession No. PTA-4344.

Claim 65 (Previously presented): A method for producing an F1 hybrid maize seed, comprising crossing the plant of claim 59 with a different maize plant and harvesting the resultant F1 hybrid maize seed.

Claim 66 (Previously presented): A method of producing a male sterile maize plant comprising transforming the maize plant of claim 59 with a nucleic acid molecule that confers male sterility.

Claim 67 (Previously presented): A male sterile maize plant produced by the method of claim 66.

Claim 68 (Previously presented): A method of producing an herbicide resistant maize plant comprising transforming the maize plant of claim 59 with a transgene that confers herbicide resistance.

Claim 69 (Previously presented): An herbicide resistant maize plant produced by the method of claim 68.

Claim 70 (Previously presented): The maize plant of claim 69, wherein the transgene confers resistance to an herbicide selected from the group consisting of: imidazolinone, sulfonylurea, glyphosate, glufosinate, L-phosphinothricin, triazine and benzonitrile.

Claim 71 (Previously presented): A method of producing an insect resistant maize plant comprising transforming the maize plant of claim 59 with a transgene that confers insect resistance.

Claim 72 (Previously presented): An insect resistant maize plant produced by the method of claim 71.

Claim 73 (Currently amended): The maize plant of claim 72, wherein the transgene encodes comprises a transgene encoding a Bacillus thuringiensis endotoxin.

Claim 74 (Previously presented): A method of producing a disease resistant maize plant comprising transforming the maize plant of claim 59 with a transgene that confers disease resistance.

Claim 75 (Previously presented): A disease resistant maize plant produced by the method of claim 74.

Claim 76 (Previously presented): A method of producing a maize plant with decreased phytate content comprising transforming the maize plant of claim 59 with a transgene encoding phytase.

Claim 77 (Previously presented): A maize plant with decreased phytate content produced by the method of claim 76.

Claim 78 (Previously presented): A method of producing a maize plant with modified fatty acid metabolism or modified carbohydrate metabolism comprising transforming the maize plant of claim 59 with a transgene encoding a protein selected from the group consisting of stearyl-ACP desaturase, fructosyltransferase, levansucrase, alpha-amylase, invertase and starch branching enzyme.

Claim 79 (Previously presented): A maize plant produced by the method of claim 78.

Claim 80 (Previously presented): The maize plant of claim 79 wherein the transgene confers a trait selected from the group consisting of waxy starch and increased amylose starch.

Claim 81 (Previously presented): A maize plant, or part thereof, having all the physiological and morphological characteristics of the inbred line PH0R8, representative seed of said line having been deposited under ATCC Accession No. PTA-4344.

Claim 82 (Currently amended): A method of introducing a desired trait into maize inbred line PH0R8 comprising:

(a) crossing PH0R8 plants grown from PH0R8 seed, representative seed of which has been deposited under ATCC Accession No. PTA-4344, with plants of another maize line that comprise a desired trait to produce F1 progeny plants, wherein the desired trait is selected from

the group consisting of male sterility, herbicide resistance, insect resistance, disease resistance and waxy starch;

- (b) selecting F1 progeny plants that have the desired trait to produce selected F1 progeny plants;
- (c) crossing the selected progeny plants with the PHOR8 plants to produce backcross progeny plants;
- (d) selecting for backcross progeny plants that have the desired trait and physiological and morphological characteristics of maize inbred line PHOR8 listed in Table 1 to produce selected backcross progeny plants; and
- (e) repeating steps (c) and (d) three or more times in succession to produce selected fourth or higher backcross progeny plants that comprise the desired trait and all of the physiological and morphological characteristics of maize inbred line PH0R8 listed in Table 1 as determined at athe 5% significance level when grown in the same environmental conditions.

Claim 83 (Currently amended): A plant produced by the method of claim 82, wherein the plant has the desired trait and all of the physiological and morphological characteristics of maize inbred line PHOR8 listed in Table 1 as determined at athe 5% significance level when grown in the same environmental conditions.

Claim 84 (Previously presented): The plant of claim 83 wherein the desired trait is herbicide resistance and the resistance is conferred to an herbicide selected from the group consisting of: imidazolinone, sulfonylurea, glyphosate, glufosinate, L-phosphinothricia, triazine and benzonitrile.

Claim 85 (Previously presented): The plant of claim 83 wherein the desired trait is insect resistance and the insect resistance is conferred by a transgene encoding a *Bacillus thuringiensis* endotoxin.

Claim 86 (Previously presented): The plant of claim 83 wherein the desired trait is male sterility and the trait is conferred by a cytoplasmic nucleic acid molecule that confers male sterility.

Claim 87 (Currently amended): A method of <u>modifying introducing imodified</u> fatty acid metabolism, <u>modified</u> phytic acid metabolism or <u>modified</u> carbohydrate metabolism <u>intoin</u> maize inbred line PH0R8 comprising.

- (a) crossing PH0R8 plants grown from PH0R8 seed, representative seed of which has been deposited under ATCC Accession No. PTA-4344, with plants of another maize line that comprise a nucleic acid molecule encoding an enzyme selected from the group consisting of phytase, stearyl-ACP desaturase, fructosyltransferase, levansucrase, alpha-amylase, invertase and starch branching enzyme;
- (b) selecting F1 progeny plants that have said nucleic acid molecule to produce selected F1 progeny plants;
- (c) crossing the selected progeny plants with the PH0R8 plants to produce backcross progeny plants;
- (d) selecting for backcross progeny plants that have said nucleic acid molecule and physiological and morphological characteristics of maize inbrediline PH0R8 listed in Table 1 to produce selected backcross progeny plants; and
- (e) repeating steps (c) and (d) three or more times in succession to produce selected fourth or higher backcross progeny plants that comprise said nucleic acid molecule and have all of the physiological and morphological characteristics of maize inbred line PH0R8 listed in Table 1 as determined at athe 5% significance level when grown in the same environmental conditions.

Claim 88 (Currently amended): A plant produced by the method of claim 87, wherein the plant comprises the nucleic acid molecule and has all of the physiological and morphological characteristics of maize inbred line PH0R8 listed in Table 1 as determined at athe 5% significance level when grown in the same environmental conditions.