

Eighth Semester B.E. Degree Examination, Dec. 2013/Jan. 2014 System Modeling and Simulation

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting atleast TWO questions from each part. 2. Normal distribution table is permitted.

PART - A

I a. Briefly explain the advantages and disadvantages of simulation. (10 Marks)

b. What is simulation? Explain with flow-chart, the steps involved in simulation study.

(10 Marks)

2 a. A grocery store has one checkout counter. Customer arrive at this checkout counter at random from 1 to 8 minutes apart and each interval time has the same probability of occurrences. The service time vary from 1 to 6 minutes with probabilities as given below:

1	Service time	al.	2	3	4	5	6
	Probability	0.10	0.20	0.30	0.25	0.10	0.05

Simulate the arrival of 10 customer and calculate:

- i) Average waiting time for a customer
- ii) Probability that a customer has to wait
- iii) Probability of a server being idle
- iv) Average service time
- v) Average time between arrivals.

RD's for	913	727	015	948	309	922	753	235	302		
RD's for service time :	84	10	74	53	17	79	91	67	89	38]

Assume that first customer arrives at time 0, Depict the simulation in tabular form.

(14 Marks)

- Explain event scheduling algorithm by generating system snapshots at clock = t and clock = t₁.
 (06 Marks)
- a. What is list processing? Explain the basic operations of list processing. (08 Marks)
 - b. What is poison process? List out the assumptions which are needed to fulfill the counting process, {N(t), t ≥ 0}, is said to be Poisson process with mean rate λ. (06 Marks)
 - c. With example explain the properties of Poisson process. (06 Marks)
- 4 a. Explain the characteristics of a queuing system. List different queuing notations. (12 Marks)
 - b. Explain the various steady state parameters of M/G/1 queue. (08 Marks)

PART - B

- a. Use linear congruential method to generate a sequence of 5 random members, with x₀ = 27, c = 43, a = 17, m = 100.
 (04 Marks)
 - b. Use the K S table with α = 0.05 for the following set of random members. Determine if the hypothesis that the number are uniformly distributed in the interval (0, 1). Random members are: 0.54, .73, 0.98, 0.11, 0.68.
 - c. Test whether the 2nd, 9th, 16th, - - etc /so on numbers in the following sequence are auto-correlated by taking α = 0.05.

0.38	0.48	0.36	0.01	0.54	0.34	0.96	0.06	0.61	0.85
0.48	0.86	0.14	0.86	0.89	0.37	0.49	0.60	0.04	0.83
0.42	0.83	0.37	0.21	0.90	0.89	0.91	0.79	0.77	0.99
0.95	0.27	0.41	0.81	0.96	0.31	0.09	0.06	0.23	0.77
0.73	0.47	0.13	0.55	0.11	0.75	0.36	0.25	0.23	0.72
0.60	0.84	0.70	0.30	0.26	0.38	0.05	0.19	0.73	0.44

(08 Marks)

- 6 a. Explain acceptance rejection technique for Poisson distribution. Generate 5 Poisson variates with mean α = 0.25. Random numbers are = 0.073, 0.693, 0.945, 0.739, 0.014, 0.342.
 - b. Test whether the following data follows Poisson distribution using the chi-square test of goodness of fit. With mean α = 0.05

Arrivals/ period	0	1	2	3	4	5	6	7	8	9	10	1.1
Frequency	12	10	19	17	10	8	7	5	5	3	3	T

(10 Marks)

- 7 a. The following data are available on the processing time at a m/e (in minutes). Develop an input model for the processing time: 0.64, 0.59, 1.1, 3.3, 0.54, 0.04, 0.45, 0.25, 4.4, 2.7, 2.4, 1.1, 3.6, 0.61, 0.20, 1.0, 0.27, 1.7, 0.04, 0.34.
 (08 Marks)
 - Explain types of simulations with respect to output anlaysis. Briefly explain the confidence interval estimation method. (12 Marks)
- Explain the components of verification and validation process. Explain with neat diagram, model building, verification and validation process.

 (12 Marks)
 - b. With neat diagram, explain the iterative process of calibrating a model. (08 Marks)

.