Problem

 $C = \{ww^{\mathcal{R}} | w \in \{0,1\}^*\}.$ Prove that C is not a DCFL. (Hint: Suppose that when some DPDA P is started in state q with symbol x on the top of its stack, P never pops its stack below x, no matter what input string P reads from that point on. In that case, the contents of P's stack at that point cannot affect its subsequent behavior, so P's subsequent behavior can depend only on q and x.)

Step-by-step solution

Step 1 of 2

A deterministic context-free language (DCFL) is defined as a language for which there is a DPDA that accepts the same language. Consider the language which is given below:

$$L_{0}=\left\{ ww^{R}\mid w\in\left\{ 0,1\right\} ^{\ast}\right\}$$
 Language

The language L_0 which is given above is not deterministic context free language because any pushed down automata (PDA), the use of non-determinism is essential to "guess" the midpoint.

Comment

Step 2 of 2

Consider the table which is given below:

Current State	Input	Stack top	String pushed	Current State	Description
q0	0	z0	0z0	q1	
q0	1	z0	1z0	q1	0. Have to push on this one
q1	0	0	00	q1	or this one
q1	0	1	01	q1	1a: Suppose not at midpoint have to push on this one.
q1	0	0	∈	q1	1b: Suppose at the midpoint
q1	1	1	11	q1	2a: Suppose not at midpoint have to push on this one.
q1	1	0	10	q1	2b:Assume at the midpoint
q1	1	1	∈	q1	3. Matched around midpoint
q1	€	z0	z0	q2	

The above table explained the ∂ function of **pushed down automata (PDA), which is designed to recognize** L_0 .

• The given PDA is described by the structure:

$$P_{L_0} = \left(\left\{ q_0 \right\}, \left\{ 0, 1 \right\}, \left\{ 0, 1, z_0 \right\}, \partial, q_0, z_0, \left\{ q_0, q_2 \right\} \right)$$

The given PDA starts by stacking 0 or 1, depending on which one comes first. The comment 1a and 1b explain the non-deterministic selection of assuming not being at a midpoint, and being a midpoint, respectively. For 2a and 2b similar logic is followed as well.

• Therefore, from the above explanation it can be said that the language L_0 , which is given by $L_0 = \left\{ \mathbf{w}\mathbf{w}^R \mid \mathbf{w} \in \left\{0,1\right\}^* \right\}$, is not a Deterministic Context Free Language (DCFL).

Comment