

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-350489 (P2000 - 350489A)

(43)公開日 平成12年12月15日(2000.12.15)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

H02P 6/16

6/06

H02P 6/02

341N

341H

審査請求 有 請求項の数43 OL (全52頁)

(21)出願番号

特願2000-17639(P2000-17639)

(22)出願日

平成12年1月26日(2000, 1, 26)

(31)優先権主張番号 特願平11-18362

(32)優先日

平成11年1月27日(1999.1.27)

(33)優先権主張国

日本 (JP)

(31)優先権主張番号 特願平11-83304 (32)優先日

平成11年3月26日(1999.3,26)

(33)優先権主張国

日本 (JP)

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 飯島 友邦

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 楢崎 和成

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 100062926

弁理士 東島 隆治

最終頁に続く

(54) 【発明の名称】 位置センサレスモータ制御装置

(57) 【要約】

【課題】 高分解能で高精度な角度の推定を実現し、相 電圧が飽和しても角度の推定を実現し、かつ、誘起電圧 定数が変化しても高精度な角度の推定を実現する位置セ ンサレスモータ制御装置を提供すること。

【解決手段】 ロータの推定角度を作成する角度推定手 段が、前記推定角度の作成に使用するステータ巻線の相 を示す推定相を選択する推定相選択手段と、前記推定角 度と相電圧値とに基づき前記推定相の相電圧方程式で表 されるモデルからの偏差を作成する偏差作成手段と、前 記偏差が零に収斂するように前記推定角度を補正する角 度補正手段と、前記相電圧方程式の係数の推定値である 係数推定値を補正する係数推定値補正手段とから構成さ れる。

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】 モータのステータ巻線の目標電流と、前 記ステータ巻線の実測電流と、前記モータのロータの推 定角度と、を変数とする関数により、導出される電圧 を、モータの各ステータ巻線に印加する、

ことを特徴とする位置センサレスモータ制御装置。

【請求項2】 前記ステータ巻線の目標電流が、前記ロ ータの目標角速度と、前記ロータの推定角速度と、を変 数とする関数により、導出される、

ことを特徴とする請求項1に記載の位置センサレスモー 10 夕制御装置。

【請求項3】 モータのロータの推定角度を推定する角 度推定手段を有し、

前記角度推定手段が、前記モータのステータ巻線の、相 電圧、又は相電流、又は誘起電圧、のいずれかと同一の 波形の第1の信号、又は前記第1の信号の角度情報を有 する、

ことを特徴とする位置センサレスモータ制御装置。

【請求項4】 前記ステータ巻線の電流が正弦波信号で あるとして取り扱う、ことを特徴とする請求項3に記載 20 の位置センサレスモータ制御装置。

【請求項5】 モータのロータの推定角度を推定する、 角度推定手段を、有し、

前記角度推定手段が、

前記推定角度と、前記モータのステータ巻線の相電流を 含む情報より導出される角度と、の角度誤差又は角度誤 差と対応関係を有する振幅誤差を算出し、かつ前記角度 誤差又は角度誤差と対応関係を有する振幅誤差が小さく なるように、前記推定角度を補正する、

ことを特徴とする位置センサレスモータ制御装置。

【請求項6】 モータのロータの推定角度を含む推定信 号を生成する、角度推定手段を、有し、

前記角度推定手段が、

前記推定信号の前記推定角度と、前記モータのステータ 巻線の相電流を含む情報より導出される角度と、の角度 誤差又は角度誤差と対応関係を有する振幅誤差を算出 し、かつ前記角度誤差又は角度誤差と対応関係を有する 振幅誤差が小さくなるように、前記推定信号を補正し、 前記推定信号の振幅と、前記モータのステータ巻線の相 電流を含む情報より導出される振幅と、の振幅誤差を算 40 出し、かつ前記振幅誤差が小さくなるように、前記推定 信号を補正する、

ことを特徴とする、位置センサレスモータ制御装置。

【請求項7】 モータのロータの推定角度を推定し、か つ少なくとも前記推定角度を変数とする関数を有する、 角度推定手段を有し、

前記角度推定手段は、前記モータのステータ巻線の相電 流を含む情報に基づいて導出された値に基づいて、前記 関数の係数の中の少なくとも1つの係数の値を、補正す る、

ことを特徴とする位置センサレスモータ制御装置。

【請求項8】 モータのロータの角度を推定する角度推 定手段を有し、

前記角度推定手段の出力から、前記角度推定手段のフィ ードバック入力に至る信号経路の伝達特性が、

誘起電圧、ロータの鎖交磁束、及び発電定数を含まな

ことを特徴とする位置センサレスモータ制御装置。

【請求項9】 モータのロータの推定角度を推定する、 角度推定手段を、有し、

前記角度推定手段が、

前記モータのステータ巻線の相を選択し、選択された前 記相の相電圧又は相電流又は誘起電圧に基づいて、前記 推定角度を補正する、

ことを特徴とする位置センサレスモータ制御装置。

【請求項10】 モータのロータの角度の情報を含む推 定信号を有する角度推定手段を有し、

前記モータのステータ巻線の電流を含む情報より導出さ れた値と、前記推定信号から導出された値と、の誤差が 定められた範囲を超える場合は、前記モータが、正常に 制御にされていないと判断する、ことを特徴とする位置 センサレスモータ制御装置。

【請求項11】 前記誤差が定められた範囲を超える場 合は、前記モータを減速又は停止させる、

ことを特徴とする請求項10に記載の位置センサレスモ ータ制御装置。

【請求項12】 モータのロータの角度及び角速度の情 報を含む推定信号を有する角度推定手段を有し、 前記角度推定手段は、

30 前記モータのステータ巻線の電流を含む情報より導出さ れた値と、前記推定信号から導出された値と、の誤差で ある誤差信号を生成し、かつ、

前記誤差信号に、前記角速度と対応関係を有するゲイン を掛けた値を用いて、前記推定信号を補正する、

ことを特徴とする位置センサレスモータ制御装置。

【請求項13】 前記角速度が速くなるに応じて、前記 ゲインの絶対値は、大きくなる場合があり、かつ、小さ くなることがない、

ことを特徴とする請求項12に記載の位置センサレスモ ータ制御装置。

【請求項14】 モータのロータの角度及び角速度の情 報を含む推定信号を有する角度推定手段を有し、

前記角度推定手段は、

前記モータのステータ巻線の電流を含む情報より導出さ れた値と、前記推定信号から導出された値と、の誤差で ある誤差信号を生成し、かつ、

前記誤差信号より導出された補正量を用いて、前記推定 信号を補正し、かつ、

前記補正量が、前記角速度と対応関係を有する上限値又 50 は下限値の少なくともいずれか1つを、超えないように

する、

ことを特徴とする位置センサレスモータ制御装置。

【請求項15】 前記角速度が速くなるに応じて、前記 上限値又は下限値の絶対値は、大きくなる場合があり、 かつ、小さくなることがない、

ことを特徴とする請求項14に記載の位置センサレスモ ータ制御装置。

【請求項16】 モータのロータの推定角度と推定角速 度とを推定する角度推定手段を有し、

前記角度推定手段が、

前記推定角度と、前記推定角速度と、ステータ巻線の計 測又は演算された電流と、の中の少なくとも1つをパラ メータとする補償量のテーブルを有し、かつ、

前記パラメータに対応する補償量を用いて、前記推定角 度を補償する、

ことを特徴とする位置センサレスモータ制御装置。

【請求項17】 モータのステータ巻線の電流の値であ る相電流値を検知する電流センサと、

前記モータのロータの推定角度に基づき前記ステータ巻 線に印加する電圧の指令値を示す相電圧指令値を作成す 20 る電圧指令値作成手段と、

前記相電圧指令値に基づき前記ステータ巻線に電圧を印 加する駆動手段と、

前記推定角度を生成する角度推定手段と、

前記ロータの回転する方向の指令を示す回転方向指令を 出力する回転方向指令手段と、

を具備する位置センサレスモータ制御装置において、 前記回転方向指令が逆転方向を示す場合は、少なくとも 2つの相の前記相電流値を相互に交換し、かつ、少なく とも2つの相の前記相電圧指令値を相互に交換する、 ことを特徴とする位置センサレスモータ制御装置。

【請求項18】 モータのロータの推定角度を推定する 角度推定手段を有し、

前記角度推定手段が、ステータ巻線の計測又は演算され た相電圧から、誘起電圧以外の成分を差し引くことによ り導出される誘起電圧と、同一の波形である第2の信 号、又は前記第2の信号から導出され得る第3の信号、 又は前記第2の信号若しくは前記第3の信号の角度情報 を有する、

ことを特徴とする位置センサレスモータ制御装置。

【請求項19】 前記第2の信号又は前記第3の信号又 は前記角度情報が、

前記モータのステータ巻線の計測又は演算された相電圧 と、前記ステータ巻線の計測された相電流と、前記モー タのロータの推定角度と、を変数とする関数により、導 出される、ことを特徴とする請求項18に記載の位置セ ンサレスモータ制御装置。

【請求項20】 前記角度推定手段は、さらに、 前記第2の信号又は前記第3の信号又は前記角度情報か された相電圧から誘起電圧以外の成分を差し引くことに より導出される誘起電圧と、の角度誤差又は角度誤差と 対応関係を有する振幅誤差を算出し、

かつ前記角度誤差又は角度誤差と対応関係を有する振幅 誤差が小さくなるように、前記第2の信号、又は前記第 3の信号、又は前記角度情報、の推定角度を補正する. ことを特徴とする、請求項18に記載の位置センサレス モータ制御装置。

【請求項21】 前記角度推定手段は、さらに、

10 前記第2の信号又は前記第3の信号の振幅と、前記ステ ータ巻線の計測又は演算された相電圧から誘起電圧以外 の成分を差し引くことにより導出される誘起電圧の振幅 と、の振幅誤差を算出し、

かつ前記振幅誤差が小さくなるように、前記第2の信 号、又は前記第3の信号の振幅を補正する、

ことを特徴とする、請求項20に記載の位置センサレス モータ制御装置。

【請求項22】 モータのロータの角度の情報を含む誘 起電圧の推定信号を有する角度推定手段を有し、

前記角度推定手段は、前記モータのステータ巻線の各相 の電流を含む情報に基づいて導出された前記各相の誘起 電圧と、前記誘起電圧の推定信号と、の誤差の中で、最 も大きな誤差を選択し、前記最も大きな誤差が小さくな るように、前記推定信号を補正する、

ことを特徴とする位置センサレスモータ制御装置。

【請求項23】 モータのロータの角度の情報を含む誘 起電圧の推定信号を有する角度推定手段を有し、 前記角度推定手段は、

前記モータのステータ巻線の各相の電流を含む情報に基 30 づいて導出された前記各相の誘起電圧の中で、最も小さ な誘起電圧の相を選択し、かつ、

前記選択された相の誘起電圧と、前記誘起電圧の推定信 号と、の誤差が小さくなるように、前記推定信号を補正

ことを特徴とする位置センサレスモータ制御装置。

【請求項24】 前記第2の信号又は前記第3の信号の 振幅が定められた範囲を超える場合は、前記モータを減 速又は停止させる、

ことを特徴とする、請求項21に記載の位置センサレス 40 モータ制御装置。

【請求項25】 前記角度推定手段は、さらに、

前記角度誤差又は角度誤差と対応関係を有する振幅誤差 に、前記モータのロータの推定角速度と対応関係を有す るゲインを掛けた値である補正量を用いて、前記第2の 信号、又は前記第3の信号、又は前記角度情報、の推定 角度を補正する、

ことを特徴とする請求項20に記載の位置センサレスモ ータ制御装置。

【請求項26】 前記角速度が速くなるに応じて、前記 ら導出された信号と、前記ステータ巻線の計測又は演算 50 ゲインの絶対値は、大きくなる場合があり、かつ、小さ

くなることがない、

ことを特徴とする請求項25に記載の位置センサレスモ ータ制御装置。

【請求項27】 前記角度推定手段は、さらに、

前記第2の信号、又は前記第3の信号、又は前記角度情 報を補正する値である補正量が、前記モータの角速度と 対応関係を有する上限値又は下限値の少なくともいずれ か1つを、超えないようにする、

ことを特徴とする請求項20に記載の位置センサレスモ ータ制御装置。

【請求項28】 前記角速度が速くなるに応じて、前記 上限値又は下限値の絶対値は、大きくなる場合があり、 かつ、小さくなることがない、

ことを特徴とする請求項27に記載の位置センサレスモ ータ制御装置。

【請求項29】 前記角度推定手段は、さらに、

前記推定角度と、前記モータの推定角速度と、前記ステ 一夕巻線の計測又は演算された電流と、の中の少なくと も1つをパラメータとする補償量のテーブルを有し、か

前記テーブルの前記パラメータに対応する補償量を用い て、前記第2の信号、又は前記第3の信号、又は前記角 度情報、の推定角度を補償する、

ことを特徴とする請求項20に記載の位置センサレスモ ータ制御装置。

【請求項30】 正弦波信号であると仮定した前記モー タのステータ巻線の計測又は演算された電流を用いて、 前記誘起電圧以外の成分を導出する、

ことを特徴とする請求項18に記載の位置センサレスモ ータ制御装置。

【請求項31】 モータのロータの角度を推定する角度 推定手段を有し、

前記角度推定手段が、ステータ巻線の電流と同一の波形 の第4の信号、又は前記第4の信号から導出され得る第 5の信号、又は前記第4の信号若しくは前記第5の信号 の角度情報を有する、

ことを特徴とする位置センサレスモータ制御装置。

【請求項32】 前記角度推定手段は、さらに、 前記第4の信号又は前記第5の信号又は前記角度情報 と、ステータ巻線の電流から導出された信号と、の角度 40 ータ制御装置。 誤差又は角度誤差と対応関係を有する振幅誤差を算出

かつ前記角度誤差又は角度誤差と対応関係を有する振幅 誤差が小さくなるように、前記第4の信号、又は前記第 5の信号、又は前記角度情報、の推定角度を補正する、 ことを特徴とする、請求項31に記載の位置センサレス モータ制御装置。

【請求項33】 前記角度推定手段は、さらに、 前記角度推定手段が有する前記第4の信号又は前記第5 の信号の振幅と、ステータ巻線の電流から導出された信 50 かつ、小さくなることがない、

号と、の振幅誤差を算出し、

かつ前記振幅誤差が小さくなるように、前記第4の信 号、又は前記第5の信号、の振幅を補正する、

ことを特徴とする、請求項32に記載の位置センサレス モータ制御装置。

【請求項34】 モータのロータの角度の情報を含むス テータ巻線の電流の推定信号を有する角度推定手段を有

前記角度推定手段は、測定された前記モータのステータ 巻線の各相の電流と、前記電流の推定信号と、の誤差の 中で、最も大きな誤差を選択し、前記最も大きな誤差が 小さくなるように、前記推定信号を補正する、

ことを特徴とする位置センサレスモータ制御装置。

【請求項35】 モータのロータの角度の情報を含むス テータ巻線の電流の推定信号を有する角度推定手段を有

前記角度推定手段は、測定された前記モータのステータ 巻線の各相の電流の中で、最も小さな電流の相を選択 し、前記選択された相の電流と、前記電流の推定信号 と、の誤差が小さくなるように、前記推定信号を補正す る、

ことを特徴とする位置センサレスモータ制御装置。

20

【請求項36】 前記角度誤差又は角度誤差と対応関係 を有する振幅誤差が定められた範囲を超える場合は、前 記モータを減速又は停止させる。

ことを特徴とする、請求項32に記載の位置センサレス モータ制御装置。

【請求項37】 前記角度推定手段は、さらに、

前記角度誤差又は角度誤差と対応関係を有する振幅誤差 30 に、前記モータのロータの推定角速度と対応関係を有す るゲインを掛けた値である補正量を用いて、前記第4の 信号、又は前記第5の信号、又は前記角度情報、の推定 角度を補正する、

ことを特徴とする請求項32に記載の位置センサレスモ ータ制御装置。

【請求項38】 前記角速度が速くなるに応じて、前記 ゲインの絶対値は、大きくなる場合があり、かつ、小さ くなることがない、

ことを特徴とする請求項37に記載の位置センサレスモ

【請求項39】 前記角度推定手段は、さらに、 前記第4の信号、又は前記第5の信号、又は前記角度情 報を補正する値である補正量が、前記モータの角速度と 対応関係を有する上限値又は下限値の少なくともいずれ

ことを特徴とする請求項32に記載の位置センサレスモ ータ制御装置。

か1つを、超えないようにする、

【請求項40】 前記角速度が速くなるに応じて、前記 上限値又は下限値の絶対値は、大きくなる場合があり、

5

ことを特徴とする請求項39に記載の位置センサレスモ ータ制御装置。

【請求項41】 前記角度推定手段は、さらに、 前記推定角度と、前記ロータの推定角速度と、前記ステ ータ巻線の計測又は演算された電流と、の中の少なくと も1つをパラメータとする補償量のテーブルを有し、か つ、

前記テーブルの前記パラメータに対応する補償量を用い て、前記第4の信号、又は前記第5の信号、又は前記角 度情報の推定角度を補償する、

ことを特徴とする請求項32に記載の位置センサレスモ ータ制御装置。

【請求項42】 前記モータのステータ巻線の計測又は 演算された電流が、正弦波信号であるとして取り扱う、 ことを特徴とする請求項31に記載の位置センサレスモ ータ制御装置。

【請求項43】 モータのロータの推定角度を推定する 角度推定手段を有し、

前記角度推定手段が、ステータ巻線の計測又は演算され た相電圧と、同一の波形である第6の信号、又は前記第 20 6の信号から導出され得る第7の信号、又は前記第6の 信号若しくは前記第7の信号の角度情報を有する、

ことを特徴とする位置センサレスモータ制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、位置センサを用い ずに、ロータの角度を推定し、モータを回転駆動する位 置センサレスモータ制御装置に関する。特に、高分解能 で高精度な角度の推定を実現し、相電圧が飽和しても角 度の推定を実現し、かつ、誘起電圧定数が変化しても高 30 精度な角度の推定を実現する位置センサレスモータ制御 装置に関する。

[0002]

【従来の技術】機械的な転流機構を持たないブラシレス*

*モータはロータの角度に基づき電気的に転流する必要が

8

【0003】従来のモータ制御装置は、ブラシレスモー 夕に取り付けられたホール素子、レゾルバ、あるいは光 エンコーダなどの位置センサを用いてロータの角度の情 報を得ていた。そのため、位置センサの分だけコストが 上昇し、ブラシレスモータの体格も大きくなっていた。

【0004】この位置センサを省略することで、低コス トと小型化を実現する従来の位置センサレスモータ制御 装置として、特開昭64-43095号公報に開示され たもの(以下、「従来例1」と言う。)と電気学会論文 集D117巻1号平成9年98~104頁に記載された もの(以下、「従来例2」と言う。)とが知られてい る。以下、この従来の位置センサレスモータ制御装置に ついて説明する。なお、実施の形態との整合性をとるた め、これらの文献で使用される値の名称の一部を変更し ている。

【0005】これら従来の位置センサレスモータ制御装 置はY結線された3相のブラシレスモータを制御する。

【0006】従来例1の位置センサレスモータ制御装置 のブロック図を図27に、タイミングチャートを図28 に示す。なお、図28において、本発明と比較をする上 での便宜を考慮して、信号の名称を一部変更している。 図27において、従来例の位置センサレスモータ制御装 置は、まず、各相のステータ巻線に流れる相電流(i u、iv、iw)、各相のステータ巻線に印加される相 電圧(vu、vv、vw)、中性点の電圧(vn)を検 知する。次に、下記式(1)(2)(3)の演算を行っ て、各相のステータ巻線に誘起される誘起電圧値 e u、 ev、ewを求める。ここで、Rは抵抗、Lはインダク タンスである。また、d (iu) /dt、d (iv) / dt、d(iw)/dtはそれぞれiu、iv、iwの 時間微分である。

[0007]

 $vu - vn - R \cdot iu - L \cdot d (iu) / dt$ \cdots (1) $-R \cdot i v - L \cdot d (i v) / d t$ \cdots (2) $vw - vn - R \cdot iw - L \cdot d (iw) / dt$ $\cdot \cdot \cdot (3)$

10

【0008】そして、誘起電圧値eu、ev、ewは、 比較回路35(図27)に入力される。比較回路35 は、これらの誘起電圧値eu、ev、ewと、各誘起電 圧に一定の定数k(0≤k)を掛けたk・eu、k・e v、k・ewと、の大小比較を行い、当該比較結果であ 3 (b) C1, (c) C2, (d) C3, (e) C4, (f) C5、(g) C6の各信号を得る(図28)。前 記各信号は論理回路36(図27)に入力される。当該 論理回路36は、ステータ巻線の出力手段16(図2

DSU-, (j) DSV+, (k) DSV-, (l) DSW+、(m) DSW-を出力する(図27及び図2 8)。前記駆動信号により、ステータ巻線に流れる電流 が制御され、ロータが所定の向きに回転する。

【0009】従来例1は、誘起電圧に基づいて、大小比 較を行い、各相の導通期間を決定しているが、モータの ロータの角度を推定する角度推定手段を有しない。図2 8の(b) C1のタイミングチャートは、C1がHig hの期間を示すが、C1がHighの期間の中の細分化 7) を駆動するための駆動信号(h) DSU+、(i) 50 した情報は、ない。例えば、今が、C1がHighの期

間の中の、初めの期間なのか、真中なのか、終わりの期 間なのかは、分からない。又、モータの角速度は検知し ていないため、C1がHighの期間がどれくらい続く のかも、分からない。単に、今、C1~C6のどの信号 がHighなのかが、分かるだけである。従って、モー 夕を滑らかに駆動させるため、モータを正弦波等に波形 で駆動することが出来ない。実施例1においては、導通 期間中、モータの各相に印加される電圧は、一定であ る。本発明の目的の1つは、モータの角度を推定するこ とにより、モータを正弦波の波形で駆動し、モータを滑 10 らかに駆動することである。

【0010】従来例2の位置センサレスモータ制御装置 のブロック図を図29に、モータと駆動回路の解析モデ ル図を図30に示す。図29において、従来例2は、ま ず、目標の角速度 (d θ / d t) と、推定モデルが出力 する推定角速度 (dθmb/dt) の誤差信号Δω= $(d\theta/dt)-(d\theta mb/dt)$ を求め、誤差信号 Δωを速度制御ブロック(PI制御回路)に入力する。 速度制御ブロックは、目標の角速度に達するために必要 なトルクを発生させる目標電流を出力する。当該目標電 20 れらの相電流値を座標変換しγ軸電流値ίγとδ軸電流 流から実際の電流iを差し引く。その差分Δiが、電流 制御ブロック(PI制御)に入力される。電流制御ブロ ックは、目標電流を流すために必要な電圧を、 $\gamma - \delta$ 軸 上で表される電圧として、出力する。当該必要な電圧 と、推定モデルが出力する誘起電圧 (em) と、が加算*

*される。当該加算された $y - \delta$ 軸上で表される電圧が、 各ステータ巻線に印加される電圧を表すu, v, w軸上 の電圧に変換された後、当該 u, v, w軸上の電圧が、 実際にモータの各ステータ巻線に印加される。

10

【0011】上述のように、u軸, v軸, w軸は、ステ 一タ巻線の各相に対応する静止した軸をいう。 γ 軸と δ 軸は、位置センサレスモータ制御装置が推定するブラシ レスモータのモデルのロータの磁気双極子の中心を原点 とし、推定のロータの磁気双極子と同一の方向のγ軸 (S極とN極とを結ぶ軸)と、y軸より、90度正方向 に(反時計方向に)進んだδ軸とからなる、推定のロー タと共に回転する座標をいう。同様に、d 軸と q 軸は、 モータの実際のロータの磁気双極子の中心を原点とし、 実際のロータの磁気双極子と同一の方向の d 軸 (S 極と N極とを結ぶ軸)と、d軸より、90度正方向に(反時 計方向に)進んだ q 軸とからなる、実際のロータと共に 回転する座標をいう。

【0012】図29のフィードバックループにおいて は、各相のステータ巻線に流れる相電流が検知され、こ 値 i δ とを作成する。 i γ 及び i δ 等と、電圧 v γ 及び v δ との関係は、下記の (79) 式及び (80) 式で表 せる(iγ及びiδは、γ軸電流成分及びδ軸電流成 分)。 θ mは、ロータの推定角度である。

$$v \gamma = \{R + L \gamma \delta (d \theta m/d t) + L \gamma (d/d t) \} i \gamma$$

$$+ \{-L \delta (d \theta m/d t) - L \gamma \delta (d/d t) \} i \delta$$

$$+ e (-s i n \Delta \theta)$$

$$v \delta = \{L \gamma (d \theta m/d t) - L \gamma \delta (d/d t) \} i \gamma$$

$$+ \{R - L \gamma \delta (d \theta m/d t) + L \delta (d/d t) \} i \delta$$

$$+ e (c o s \Delta \theta)$$

$$(80)$$

[0013] $L\gamma\delta = 0$, $L\gamma = Ld$, $L\delta = Lq$, Δ $\theta = \theta - \theta m$ (θ はロータの実際の角度を表し、 θm は ロータの推定角度を表す。)とおくと、iγ及びiδ ※

※ (γ-δ軸で表した実際のステータ巻線の電流)は、下 記のようになる。

$$\begin{array}{l} i \; \gamma \; \; (n) \; = \; (1 - R \cdot T / L \, d) \; \cdot \; i \; \gamma \; \; (n - 1) \\ & \; + \; (d \; \theta \; m / d \; t) \; \cdot L \; q \cdot T / L \; d \cdot \; i \; \delta \; \; (n - 1) \\ & \; + \; (T / L \, d) \; \cdot \; v \; \gamma \; \; (n - 1) \\ & \; + \; (T \cdot e / L \, d) \; \cdot \; (s \; i \; n \; \Delta \; \theta) \\ i \; \delta \; (n) \; = \; \{ - \; (d \; \theta \; m / d \; t) \; \cdot \; (L \, d \cdot T / L \, q) \; \cdot \; i \; \gamma \; \; (n - 1) \\ & \; + \; (1 - R \cdot T / L \, q) \; \cdot \; i \; \delta \; \; (n - 1) \\ & \; + \; (T / L \, q) \; \cdot v \; \delta \; \; (n - 1) \\ & \; + \; (T / L \, q) \; \cdot \; (-c \; o \; s \; \Delta \; \theta) \end{array}$$

Tは、演算のインターバル、即ち、iy(n)と、iy (n-1) の時間差である。

【0014】同様に、ブラシレスモータのモデルを示す y 軸とδ軸の電圧方程式にモータ定数をあてはめること★

★により、γ軸電流モデル値 i γm (推定のγ軸電流成 分) と δ 軸電流モデル値 i δ m (推定の δ 軸電流成分) は、(83) 式及び(84) 式のように、表せる。

$$i \gamma m (n) = (1 - R \cdot T / L d) \cdot i \gamma (n - 1)$$

+ $\{ (d \theta m / d t) \cdot L q \cdot T / L d \cdot i \delta (n - 1)$
+ $(T / L d) \cdot v \gamma (n - 1)$
+ $(T \cdot e m / L d) \cdot 0$ (83)

特(7)2000-350489 (P2000-350489A)

11

$$i \delta m (n) = \{ -(d \theta m/d t) \cdot (L d \cdot T/L q) \cdot i \gamma (n-1) + (1-R \cdot T/L q) \cdot i \delta (n-1) + (T/L q) \cdot v \delta (n-1) + (T \cdot e m/L q) \cdot 1 \}$$
(84)

 $(\Delta \theta = 0$ とおいた場合の、i γ (n) 及び i δ (n) の式と同じになる。)

【0015】実際のγ軸電流値 i γ及びδ軸電流値 i δ と、推定のγ軸電流モデル値 i γm及びδ軸電流モデル* *値iδmと、の誤差であるγ軸電流誤差値Δiγ(n) $= i \gamma$ (n) $- i \gamma m$ (n) と δ 軸電流誤差値 $\Delta i \delta$ $(n) = i \delta (n) - i \delta m (n) は、(81) 式から$ (84) 式より、下記のようになる。

※度変化をする実測の(81)式及び(82)式から、温

度変化をしない推定の(83)式及び(84)式を差し

引いた結果である、(85)式及び(86)式において

は、温度に対する変化量の異なる、e及びΔeと、Δi

$$\Delta i \gamma (n) = (T/L d) \cdot e (s i n \Delta \theta)$$

$$= (T/L d) \cdot e (\Delta \theta)$$

$$\Delta i \delta (n) = (T/L q) \cdot (em - e \cdot c o s \Delta \theta)$$

$$= (T/L q) \cdot \Delta e$$
(86)

上記の式のように、速度起電力推定誤差ΔeはΔiδ

- (n) に比例しており、位置推定誤差 $\Delta \theta$ は $\Delta i \gamma$
- (n) に比例している。結局、従来例2は、後述のよう に、(86)式に基づいて誘起電圧(起電力)を推定し ており、(85)式に基づいてロータの角度を推定して いる。

【0016】実際のモータは、誘起電圧が温度に依存し て変化するため、誘起電圧 e と電圧 v γ と電圧 v δ が温 20 度に応じて変化する。一方、温度変化を考慮しない推定 モデルでは、誘起電圧 e mと電圧 v γ mと電圧 v δ m が 温度に応じて変化しない。実際には、誘起電圧emが温 度に応じて変化し、その結果 $v\gamma$ (n-1)及び $v\delta$

(n-1) が温度に応じて変化するにもかかわらず、温※

て、推定誘起電圧 e m (n) 及び推定角度 θ m (n) を

芯じて変化するにもかかわらず、温
$$\otimes$$
 em (n) = em (n-1) - K p Δ i δ (n) (87)

 $\theta m (n) = \theta m (n-1) + (T/Kv) \cdot em (n)$

$$+Kp \cdot sgn \{\theta m (n-1)\} \cdot \Delta i \gamma (n)$$
 (88)

求めている。・

 $sgn \{\theta m (n-1)\} = 1 : \theta m (n-1) \ge 0$

$$-1: \theta m (n-1) < 0$$

図29において、推定モデル (速度起電力・位置・速度 推定)は、実測したίγ及びίδをフィードバックし、 推定モデルが有する、推定のiγm及びiδmとの誤差 信号を計算し、その結果得られる Δ i y (n)及び Δ i δ (n) を、(87) 式及び(88) 式に代入すること★

★により、速度起電力(誘起電圧)em(n)と、推定角 度(位置) θ m (n) とを求める。

【0018】(87)式及び(88)式より、推定角速 度 $(d \theta m/d t)$ は、下記の式により求める。

$$d \theta m/d t = (1/T) {\theta m (n) - \theta m (n-1)}$$

= {e m (n) /K v}
+ (K p/T) · s g n {θ m (n-1)} · Δ i γ (n) (89)

従来例2においては、推定角速度($d\theta m/dt$)は、 ノイズの影響を取り除くため、更にLPF(低周波フィ 40 従来例2の文献は、 $\gamma-\delta$ 軸上で表される電圧を用い ルタ) を通された後、出力される。

【0019】上述のように、従来例2は、(87)式及 び(88)式により、速度起電力(誘起電圧) e m (n) と、推定角度 θ m (n) とを求めており、(8 9) 式により推定角速度 ($d \theta m / d t$) を求めてい る。しかし、実際には、(87)式及び(88)式にお いて一定の定数の係数として使用されている速度起電力 定数Kvは、温度依存性を有する。そのため、夏冬の環 境の温度変化や、モータの運転開始時から連続運転時に

推定角度の誤差が大きくなるという欠点がある。また、 て、モータのロータの角度を推定している。そのため、 γーδ軸上で表される電圧をα軸、ν軸、及びw軸で表 されるステータ巻線の相電圧に変換したり、逆に、u 軸、v軸、及びw軸で表されるステータ巻線の相電圧等

[0020]

【発明が解決しようとする課題】従来例1の位置センサ レスモータ制御装置は、相電圧飽和時においても角度を 検出することはできる。しかし、求められた誘起電圧値 至るまでの機器の内部温度上昇等により、推定モデルの 50 е и、е v、 e wに基づき比較結果を作成し、この比較

結果の論理に基づき通電する相を決定するだけであるた め、ロータの角度についての情報は、相電圧を切り換え る点の情報のみであった。従って、従来例1の実施例に 記載された150度通電方式の場合は、全ての情報を合 わせても、電気角で30°の分解能(どの相に電流を流 すべきかという情報)を持つのみであった。

【0021】また、従来例1は、角度を検出しているだ けで、角度の推定を行っておらず、モータのステータ巻 線に矩形波電圧を印加している。そのため、矩形波状の 電流をステータ巻線に流すため、トルクリップルが発生 10 した。ステータ巻線に正弦波の電流を流そうとすれば、 角度の推定を行う必要がある。

【0022】また、速度は分解能の低い角度に基づき作 成されるため、速度制御性が悪かった。

【0023】従来例2の位置センサレスモータ制御装置 は、高分解能で角度を推定することはできる。しかし、 従来例2は、γ-δ軸上で表される電圧 (回転座標系) を用いて、モータのロータの角度を推定している。従っ て、γ軸とδ軸で表される電圧を、各相への印加電圧を 示すu、v、w軸に座標変換したり、逆に、u、v、w 軸で表される信号を γ 軸と δ 軸で表される信号に座標変 換する必要がある。モータを正弦波駆動する場合には、 $\gamma - \delta$ 軸上で表される電圧をu軸、v軸、及びw軸で表 されるステータ巻線の相電圧に変換したり、逆に、u 軸、ν軸、及びw軸で表されるステータ巻線の相電圧等 $\delta \gamma - \delta$ 軸上の信号に変換することは、容易である。し かし、モータを正弦波以外の波形(例えば台形波や、矩 形波等)により駆動しようとする場合、例えば、モータ のステータ巻線に印加される台形波や矩形波を、y軸及 びδ軸上の波形に変換することは極めて困難である、と 30 度を推定する位置センサレスモータ制御装置が得られ いう問題があった。

【0024】又、従来例2において、(81)式、(8 2) 式、(83) 式、及び(84) 式は、信号波形が正 弦波であるとの、仮定を導入している。従って、従来例 2の方式を、正弦波以外の波形信号に適用すると、推定 角度の誤差が生じる、という問題があった。

【0025】そのため、例えば、モータの角速度や出力 トルクが増大し必要な相電圧が大きくなると、相電圧が 飽和して、特に、各相の電圧波形が正弦波でなくなるた め、正しく角度を推定できず、高い角速度や大きな出力 40 トルクを実現できなかった。

【0026】また、従来例2の位置センサレスモータ制 御装置は、(87)式及び(88)式に基づいて、角度 の推定を行う。従って、上述のように、速度起電力定数 Kvは温度により変動するため、環境温度の変化、又は 機器の内部温度の上昇等により、角度の推定誤差が増大 するという、問題がある。なお、相抵抗値Rも温度に応 じて変化するが、相電圧方程式上で、相抵抗値の項その ものの大きさが小さいため、推定角度に与える影響は小 さい。

【0027】本明細書において、「相電圧方程式」の語 は、モータのステータ巻線の相についての方程式の意味 である。相電圧方程式は、例えば(26)式等のように 厳密な方程式も、(50)式のように簡略化された方程 式も、含む。又、モータのステータ巻線の相についての 方程式に該当すれば、本明細書に記載した以外の式も含 む概念である。又、本明細書及び特許請求の範囲の記載 において、「方程式」の語と「関数」の語は、同じ意味 で用いられる。

【0028】更に、従来例2では、目標の角速度 (d θ /dt)を入力してからモータの各相に電圧を印加する までの経路において、推定誘起電圧 e mを加算してい る。しかし、誘起電圧eは温度に応じて変化する値であ るから、温度変化を考慮しない推定誘起電圧emの加算 により、温度が変化したときに、推定角度の残留誤差が 増大する欠点があった。

【0029】本発明は、上記の問題点を解決するもので あり、高分解能で高精度な角度の推定を実現し、相電圧 が飽和しても高精度の角度の推定を実現し、かつ、誘起 電圧定数が変化しても高精度な角度の推定を実現する位 置センサレスモータ制御装置を提供することを目的とす る。

[0030]

50

【課題を解決するための手段】本発明の請求項1の位置 センサレスモータ制御装置は、モータのステータ巻線の 目標電流と、前記ステータ巻線の実測電流と、前記モー タのロータの推定角度と、を変数とする関数により、導 出される電圧を、モータの各ステータ巻線に印加する。 本発明により、広い温度範囲にわたって、高い精度で角

【0031】本発明の請求項3の位置センサレスモータ 制御装置は、モータのステータ巻線のパラメータから導 出された信号により、角度を推定する。本発明により、 相電圧等が飽和する領域に至るまで、広い電圧範囲又は 電流範囲に渡って、高い精度で角度を推定する位置セン サレスモータ制御装置が得られる。

【0032】本発明の請求項5の位置センサレスモータ 制御装置は、推定信号(推定モデル)と、測定データに 基づく信号との角度誤差を算出し、当該角度誤差が小さ くなるように推定信号を補正する。本発明により、例え ば、正弦波の推定信号を有する角度推定手段により、相 電圧等が飽和する領域に至るまで、広い電圧範囲又は電 流範囲に渡って、高い精度で角度を推定する位置センサ レスモータ制御装置が得られる。

【0033】本明細書及び特許請求の範囲の記載におい ては、「推定信号」の語と、「推定モデル」の語とは、 同じ意味で用いられる。いずれの語も、少なくとも推定 の角度である推定角度を含む信号又はデータの意味であ り、広義に解釈されるべきである。

【0034】本発明の請求項6の位置センサレスモータ 制御装置は、推定信号と、測定データに基づく信号と の、角度誤差及び振幅誤差を算出し、当該角度誤差及び 振幅誤差が小さくなるように推定信号を補正する。本発 明により、負荷の変化や角速度の変化が生じた場合に も、正しい角速度の推定が出来る位置センサレスモータ 制御装置が、得られる。

【0035】本発明の請求項7の位置センサレスモータ 制御装置は、実測データに基づいて、推定信号(推定モ デル)を構成する関数の係数の中の少なくとも1つの係 10 数の値を、補正する。本発明により、角度の推定精度の 高い位置センサレスモータ制御装置が、得られる。

【0036】本発明の請求項8の位置センサレスモータ 制御装置は、誘起電圧、及び誘起電圧と実質的に等価で ある要素を含まない、角度推定の制御系を構成する。本 発明により、広い温度範囲にわたって、高い精度で角度 を推定する位置センサレスモータ制御装置が、得られ

【0037】本発明の請求項9の位置センサレスモータ 制御装置は、モータのステータ巻線の複数の相の中か ら、ひとつの相を選択し、当該相のデータに基づいて、 推定信号を補正する。本発明により、いかなるロータの 角度においても、高い精度で、角度を推定する位置セン サレスモータ制御装置が、得られる。

【0038】本発明の請求項10の位置センサレスモー 夕制御装置は、誤差信号の大きさが、ある範囲を超えた 場合は、モータが、正常に制御にされていないと判断す る。本発明により、角度推定制御系がプルインレンジ又 はホールドレンジを外れた場合には、モータを減速等す ることにより、速やかに異常状態を脱出できる位置セン 30 サレスモータ制御装置が、得られる。

【0.039】本発明の請求項12の位置センサレスモー 夕制御装置は、誤差信号に、角速度と対応関係を有する ゲインを掛けた値を用いて、推定信号を補正する。本発 明により、広い速度範囲にわたって、高い精度で角度を 推定する位置センサレスモータ制御装置が、得られる。

【0040】本発明の請求項14の位置センサレスモー 夕制御装置は、推定信号の補正量のリミットを設ける。 本発明により、ノイズにより変動を受けにくい位置セン サレスモータ制御装置が、得られる。

【0041】本発明の請求項17の位置センサレスモー 夕制御装置は、回転方向指令が正転方向から逆転方向に 変化した場合は、ステータ巻線の少なくとも2つの相の 電流センサにより検出した前記相電流値を相互に交換 し、かつ、ステータ巻線の少なくとも2つの相の電圧指 令値を相互に交換する。本発明により、わずかな切り換 えにより、正転と逆転とに対応し、かつ、正転時と逆転 時とで、回路ブロック又はプログラムブロックのほとん どの部分を共用できる位置センサレスモータ制御装置が 得られる。

【0042】本発明の請求項18の位置センサレスモー 夕制御装置は、ステータ巻線の計測又は演算された電圧 から、誘起電圧以外の成分を差し引くことにより導出さ れる誘起電圧を推定信号とする。本発明により、広い温 度範囲にわたって、高い精度で角度を推定する位置セン サレスモータ制御装置が、得られる。請求項18に記載 において、「ステータ巻線の演算された電圧」は、ステ ータ巻線の目標電圧を含む意味である。

【0043】本発明の請求項31の位置センサレスモー タ制御装置は、ステータ巻線の電流と同一の波形の推定 信号を有する。本発明により、広い温度範囲にわたっ て、高い精度で角度を推定する位置センサレスモータ制 御装置が、得られる。

【0044】本発明の請求項43に記載の発明は、相電 圧と同一の波形の推定信号を有する。 本発明により、 演算時間が少なく、安価で小型のマイクロプロセッサ等 により角度推定を行う位置センサレスモータ制御装置 が、得られる。

【0045】本発明の請求項1に記載の発明は、モータ 20 のステータ巻線の目標電流と、前記ステータ巻線の実測 電流と、前記モータのロータの推定角度と、を変数とす る関数により、導出される電圧を、モータの各ステータ 巻線に印加する、ことを特徴とする位置センサレスモー 夕制御装置である。

【0046】本発明による制御装置の状態方程式は、誘 起電圧(起電力)、又は磁束の要素を含まない。従っ て、温度に依存する要素がないため、モータのロータの 角度の推定精度が、温度により悪化しないという作用を

【0047】本明細書及び特許請求の範囲の記載におい て、「推定角度」とは、推定された角度の意味であり、 「推定角速度」とは、推定された角速度の意味である。 本明細書及び特許請求の範囲の記載においては、「ロー タの角度」の語と、「ロータの位相」の語と、「ロータ の位置」の語は、同じ意味で用いられる。また、本明細 書及び請求の範囲の記載において、「目標角速度」の語 は、目標角速度に比例する目標回転数を含む概念であ る。同様に、「推定角速度」の語は、推定角速度に比例 する推定回転数を含む概念である。角速度と回転数は、 40 実質的には、同一の要素だからである。

【0048】本発明の請求項2に記載の発明は、さら に、前記ステータ巻線の目標電流が、前記ロータの目標 角速度と、前記ロータの推定角速度と、を変数とする関 数により、導出される、ことを特徴とする請求項1に記 載の位置センサレスモータ制御装置である。

【0049】本発明による制御装置の状態方程式は、誘 起電圧(起電力)、又は磁束の要素を含まない。従っ て、温度に依存する要素がないため、モータのロータの 角度の推定精度が、温度により悪化しないという作用を 50 有する。

テータ巻線の電流が正弦波信号であるとして取り扱う、 ことを特徴とする請求項3に記載の位置センサレスモー 夕制御装置である。

18

【0050】本発明の請求項3に記載の発明は、モータのロータの推定角度を推定する角度推定手段を有し、前記角度推定手段が、前記モータのステータ巻線の、相電圧、又は相電流、又は誘起電圧、のいずれかと同一の波形の第1の信号、又は前記第1の信号の角度情報を有する、ことを特徴とする位置センサレスモータ制御装置である。

【0051】本発明による位置センサレスモータ制御装置の角度推定手段は、例えば3相モータの駆動装置の場合、u,v,w軸上の信号である第1の信号を有する。従って、モータのステータ巻線の、相電圧、又は相電流等と、推定信号と、の間の演算をする上で、座標回転をする必要がなく、u,v,w軸だけで、演算することが出来るという作用を有する。

【0052】従来例2のように、角度推定手段が、γ軸、δ軸又はd軸、q軸の推定モデル(推定信号)を有する場合には、モータのステータ巻線の、相電圧、又は相電流等との間の演算をする上で、座標回転をする必要がある。モータのステータ巻線の、相電圧、又は相電流等が正弦波である時には、座標回転は容易であるが、当該相電圧等が正弦波でない場合には、座標回転は困難である。又、このような場合に、当該相電圧等が正弦波であった場合と同じ計算式を用いて、簡略的に座標回転を行えば、ロータの角度の推定誤差が増大するという問題がある。

20

【0053】例えば、モータの角速度や出力トルクが増大し必要な相電圧が大きくなると、ステータ巻線の各相の相電圧が飽和して、各相の電圧波形が正弦波でなくなる(台形波又は矩形波になる。)。このような場合、従来例2のように、 γ 軸、 δ 軸又は d 軸、q 軸の推定モデ 30 ル(推定信号)を有する装置においては、正しく角度を推定できず、高い角速度や大きな出力トルクを実現できなかった。

【0054】これに対して、本発明による位置センサレ スモータ制御装置においては、座標回転が必要ないた め、正弦波でない推定モデル(推定信号)の生成が容易 に実現できる。これにより、モータの角速度や出力トル クが増大し必要な相電圧が大きくなり、ステータ巻線の 各相の相電圧が飽和して、各相の電圧波形が正弦波でな くなっても、正しく角度を推定することが出来、高い角 40 速度や大きな出力トルクを実現することが出来るという 作用を有する。又、従来例2の(81)式等は、ロータ の永久磁石の着磁が正弦波であるとの前提に立っている が、本発明による位置センサレスモータ制御装置におい ては、ロータの永久磁石の着磁波形は任意である。従っ て、本発明は、ロータの永久磁石の着磁波形が正弦波以 外の波形であって、誘起電圧が正弦波以外の波形を有す る、モータについても、高い精度でロータの角度を推定 することが出来るという作用を有する。

【0055】本発明の請求項4に記載の発明は、前記ス 50

【0056】本発明の位置センサレスモータ制御装置においては、ステータ巻線の電流が正弦波信号であるとして取り扱うため、角度を推定するための計算が簡略化されるという作用を有する。そのため、小型で、安価なマイクロプロセッサにより、短い演算時間で、角度推定を行うことが可能になるという作用を有する。又、ステータ巻線は大きなインダクタンス成分を有するため、ステータ巻線の電流の波形は飽和しにくく、ステータ巻線の相電圧の波形が飽和した時にも、ステータ巻線の相電圧の波形が飽和した時にも、ステータ巻線の電流の波形を正弦波近似したことによる角度誤差は、小さいという作用を有する。

【0057】本発明の請求項5に記載の発明は、モータのロータの推定角度を推定する、角度推定手段を、有し、前記角度推定手段が、前記推定角度と、前記モータのステータ巻線の相電流を含む情報より導出される角度と、の角度誤差又は角度誤差と対応関係を有する振幅誤差が小さくなるように、前記推定角度を補正する、ことを特徴とする位置センサレスモータ制御装置である。

【0058】従来例は、測定情報等に基づいて導出され た信号と、推定モデルの波形自体との誤差が少なくなる ように、推定モデルの波形を補正していたが、本発明の 位置センサレスモータ制御装置の角度推定手段は、角度 誤差という特定のパラメータを算出し、当該角度誤差が 小さくなるように、推定角度を補正している。例えば、 実際のモータ駆動波形が矩形波(又は台形波)である場 合には、従来例では、角度推定手段は矩形波(又は台形 波)の推定モデルを有する必要があった。これに対し て、本発明の位置センサレスモータ制御装置において は、上記の場合、角度推定手段は正弦波の推定モデルを 有し、当該矩形波(又は台形波)の角度と、当該正弦波 の角度と、の角度誤差を算出し、角度誤差を小さくする ように正弦波の推定モデルを補正することが出来るとい う作用を有する。これにより、推定モデルの生成が容易 になるという作用を有する。

【0059】本発明による位置センサレスモータ制御装置においては、モータの角速度や出力トルクが増大し必要な相電圧が大きくなり、ステータ巻線の各相の相電圧が飽和して、各相の電圧波形が正弦波でなくなっても、正しく角度を推定することが出来、高い角速度や大きな出力トルクを実現することが出来るという作用を有する。又、本発明による位置センサレスモータ制御装置においては、ロータの永久磁石の着磁波形は任意である。従って、本発明は、ロータの永久磁石の着磁波形が正弦波以外の波形であって、誘起電圧が正弦波以外の波形を

有する、モータについても、高い精度でロータの角度を 推定することが出来るという作用を有する。

【0060】本発明の請求項6に記載の発明は、モータのロータの推定角度を含む推定信号を生成する、角度推定手段を、有し、前記角度推定手段が、前記推定信号の前記推定角度と、前記モータのステータ巻線の相電流を含む情報より導出される角度と、の角度誤差又は角度誤差と対応関係を有する振幅誤差を算出し、かつ前記角度誤差又は角度誤差と対応関係を有する振幅誤差が小さくなるように、前記推定信号を補正し、前記推定信号の振り導出される振幅と、の振幅誤差を算出し、かつ前記振幅誤差が小さくなるように、前記推定信号を補正する、ことを特徴とする、位置センサレスモータ制御装置である。

【0061】本発明の位置センサレスモータ制御装置の 角度推定手段は、角度誤差及び振幅誤差という特定のパ ラメータを算出し、当該角度誤差が小さくなるように、 推定角度を補正している。これにより、本発明の位置セ ンサレスモータ制御装置においては、実際のモータの信 20 号波形が矩形波(又は台形波)である場合、角度推定手 段は正弦波の推定モデルを有し、当該矩形波(又は台形 波)の角度と、当該正弦波の角度と、の角度誤差を算出 し、角度誤差を小さくするように正弦波の推定モデルを 補正することが出来るという作用を有する。これによ り、推定モデルの生成が容易になるという作用を有す る。

【0062】また、推定モデルの振幅と、実際のモータの信号波形の振幅と、が振幅誤差を有すると、当該振幅誤差が角度誤差に影響を与え、推定角度の精度が悪化す 30 るという問題がある。本発明により、振幅誤差を小さくするフィードバックループが設けられ、正しい角度誤差を算出することができるという作用を有する。これにより、高い精度で、角度を推定できるという作用を有する。

【0063】例えば、推定モデルと計測結果に基づく信号との角度差(角速度×時間差)を、当該時間よりも十分に早い矩形波信号をクロックを入力とするカウンタを具備し、推定モデルのゼロクロスポイントにより当該カウンタのカウントアップを開始し、計測結果に基づく信40号のゼロクロスポイントで、当該カウンタのカウント値をカウンタと同じ段数を有するDフリップフロップにラッチすることにより、直接計測又は算出することが出来る。しかし、一般的には、このように直接角度誤差を計測又は算出する方法は、困難であり、精度も悪い。そこで、通常は、後述する実施例のように、特定の時点における、2つの信号のレベル差を計測又は算出し、当該レベル差を角度誤差に変換する方法が、採用される。この方法の方が、誤差の検出が容易であり、検出精度も高いからである。しかし、レベル誤差を角度誤差に変換する50

方法は、信号の振幅の誤差の影響を受けやすい。本発明 は、特に、かかる方法により角度誤差を検出する装置に おいて、特に、有効である。

【0064】また、計測結果の信号のレベルは、負荷の変化や、角速度の変化等により変化する場合が多い。本発明により、振幅誤差を小さくするフィードバックループが設けられ、負荷の変化や角速度の変化が生じた場合にも、正しい角速度の推定が出来るという、作用を有する。従って、広い範囲の角速度にわたって、高い精度でロータの角度を推定する位置センサレスモータ制御装置が得られるという、作用を有する。

【0065】本発明の請求項7に記載の発明は、モータのロータの推定角度を推定し、かつ少なくとも前記推定角度を変数とする関数を有する、角度推定手段を有し、前記角度推定手段は、前記モータのステータ巻線の相電流を含む情報に基づいて導出された値に基づいて、前記関数の係数の中の少なくとも1つの係数の値を、補正する、ことを特徴とする位置センサレスモータ制御装置である。

【0066】位置センサレスモータを、正弦波駆動するためには、モータのロータの角度を推定する角度推定手段を必要とする。角度推定手段は、角度推定手段が有する推定モデル(推定信号)の角度と、計測結果に基づく角度との角度誤差が小さくなるように制御することにより、正しい角度を推定する。推定モデルが推定角度を変数とする関数を有する場合には、当該関数の変数(角度)以外の係数(例えば、信号の振幅)が正しくない場合にも、正しい角度推定をすることが出来ない。本発明の位置センサレスモータ制御装置の角度推定手段は、変数のみならず、関数の係数についても補正を行うことにより、関数そのものが実際のモータと同じになるようにし、これにより、変数である角度の推定精度を高めることが出来るという作用を有する。

【0067】本発明の請求項8に記載の発明は、モータのロータの角度を推定する角度推定手段を有し、前記角度推定手段の出力から、前記角度推定手段のフィードバック入力に至る信号経路の伝達特性が、誘起電圧、ロータの鎖交磁束、及び発電定数を含まない、ことを特徴とする位置センサレスモータ制御装置である。

【0068】上述のように、誘起電圧、ロータの鎖交磁 東、及び発電定数は、温度により変化する。本発明の位 置センサレスモータ制御装置は、角度推定手段の出力か ら角度推定手段のフィードバック入力に至る信号経路の 伝達特性が、上記の温度依存性を有する要素を含まな い。従って、本発明は、角度推定手段の角度の推定精度 が温度変化により悪化しないという、作用を有する。

【0069】本明細書及び特許請求の範囲の記載において、「誘起電圧」の語は、「発電電圧」の語と同じ意味である。「発電定数」の語は、「誘起電圧定数」及び「起電力定数」の語と、同じ意味である。

【0070】本発明の請求項9に記載の発明は、モータ のロータの推定角度を推定する、角度推定手段を、有 し、前記角度推定手段が、前記モータのステータ巻線の 相を選択し、選択された前記相の相電圧又は相電流又は 誘起電圧に基づいて、前記推定角度を補正する、ことを 特徴とする位置センサレスモータ制御装置である。

【0071】角度推定手段は、内蔵する推定モデルを、 計測結果に基づく信号又は値に基づいて補正することに より、正しい角度を推定する。しかし、常に単一の信号 (例えば、特定の相(u軸)の相電圧)に基づいて補正 10 を行うと、角度の誤差の検出精度が高くなる角度と低く なる角度が存在する。そのため、角度推定の精度が、角 度に依存して高くなったり低くなったりするという問題 がある。本発明の位置センサレスモータ制御装置は、複 数のステータ巻線の相の中で、最も大きな角度誤差を検 出できる相を選択し、選択された前記相の相電圧等に基 づいて、前記推定角度を補正することにより、いかなる ロータの角度においても、常に高い精度で、角度を推定 することが出来る、という作用を有する。

【0072】本発明の請求項10に記載の発明は、モー 20 タのロータの角度の情報を含む推定信号を有する角度推 定手段を有し、前記モータのステータ巻線の電流を含む 情報より導出された値と、前記推定信号から導出された 値と、の誤差が定められた範囲を超える場合は、前記モ ータが、正常に制御にされていないと判断する、ことを 特徴とする位置センサレスモータ制御装置である。

【0073】位置センサレスモータ制御装置は、計測デ ータ等に基づいてモータのロータの角度を推定するが、 何らかの原因により、角度の推定誤差が一定の範囲を超 えた場合(その結果、例えば、推定角速度が実際の角速 30 度とまったく異なる値になった場合)、その後、計測デ ータ等に基づいて推定角度を補正しても、補正が正しく されず、いつまでも、正しい角度を推定できない (角度 推定制御が収束しない)。本発明の位置センサレスモー 夕制御装置は、角度の推定誤差が一定の範囲を超えたこ とを検知することが出来るという作用を有する。これに より、通常のフィードバックループによっては角度推定 制御がいつまでも収束しないような場合には、モータを 停止する等の他の手段を取ることにより、制御から外れ た状態(脱調)から、速やかに脱出することが出来る。

【0074】本発明の請求項11に記載の発明は、前記 誤差が定められた範囲を超える場合は、前記モータを減 速又は停止させる、ことを特徴とする請求項10に記載 の位置センサレスモータ制御装置である。

40

【0075】本発明の位置センサレスモータ制御装置 は、角度の推定誤差が一定の範囲を超えたことを検知し た場合には、モータを減速又は停止させるという作用を 有する。特に、モータを停止させる場合には、確実に、 角度推定制御を正常な状態に戻すことが可能である。 又、モータを減速させることによっても、角度推定制御 50

を正常な状態に戻すことが出来る可能性が高いという、 作用を有する。例えば、高速回転時の角度推定手段と、 低速回転時の角度推定手段と、を有する位置センサレス モータ制御装置において、高速回転時に、高速回転時の 角度推定手段が脱調した場合、モータを減速し、低速回 転時の角度推定手段により角度推定を行い、正しい推定 角度が得られた時点で、再び、モータを加速し、高速回 転時の角度推定手段による角度推定を再開する。

【0076】本発明の請求項12に記載の発明は、モー タのロータの角度及び角速度の情報を含む推定信号を有 する角度推定手段を有し、前記角度推定手段は、前記モ ータのステータ巻線の電流を含む情報より導出された値 と、前記推定信号から導出された値と、の誤差である誤 差信号を生成し、かつ、前記誤差信号に、前記角速度と 対応関係を有するゲインを掛けた値を用いて、前記推定 信号を補正する、ことを特徴とする位置センサレスモー 夕制御装置である。

【0077】誤差信号に一定のゲインを掛けた補正量に より推定信号を補正する場合は、モータの角速度が遅い 場合には補正量が大きすぎ、モータの角速度が速い場合 には補正量が小さすぎるという問題がある。本発明の位 置センサレスモータ制御装置の角度推定手段は、誤差信 号に、前記角速度と対応関係を有するゲインを掛けた値 である補正量を用いて、推定モデルを補正することによ り、遅い角速度から速い角速度に至るまで、適切な補正 量を得ることが出来、広い速度範囲で高い精度の角度推 定を行うことが出来るという作用を有する。

【0078】本発明の請求項13に記載の発明は、前記 角速度が速くなるに応じて、前記ゲインの絶対値は、大 きくなる場合があり、かつ、小さくなることがない、こ とを特徴とする請求項12に記載の位置センサレスモー 夕制御装置である。

【0079】本発明の位置センサレスモータ制御装置の 角度推定手段は、角速度が遅い場合には誤差信号に小さ なゲインを掛けた補正量を用いて、又、角速度が速い場 合には誤差信号に大きなゲインを掛けた補正量を用い て、推定モデルを補正する。これにより、遅い角速度か ら速い角速度に至るまで、適切な補正量を得ることが出 来、広い速度範囲で高い精度の角度推定を行うことが出 来るという作用を有する。

【0080】本発明の請求項14に記載の発明は、モー タのロータの角度及び角速度の情報を含む推定信号を有 する角度推定手段を有し、前記角度推定手段は、前記モ ータのステータ巻線の電流を含む情報より導出された値 と、前記推定信号から導出された値と、の誤差である誤 差信号を生成し、かつ、前記誤差信号より導出された補 正量を用いて、前記推定信号を補正し、かつ、前記補正 量が、前記角速度と対応関係を有する上限値又は下限値 の少なくともいずれか1つを、超えないようにする、こ とを特徴とする位置センサレスモータ制御装置である。

【0081】本発明の位置センサレスモータ制御装置 は、過大な補正量を用いて推定信号を補正することを防 止するという作用を有する。例えば、単発的なノイズに より誤った誤差信号が得られた場合にも、推定信号が大 幅に変化して、角度推定手段のプルインレンジ又はホー ルドレンジを外れるという問題を防ぐことが出来る。

【0082】本発明の請求項15に記載の発明は、前記 角速度が速くなるに応じて、前記上限値又は下限値の絶 対値は、大きくなる場合があり、かつ、小さくなること サレスモータ制御装置である。

【0083】本発明の位置センサレスモータ制御装置 は、過大な補正量を用いて推定信号を補正することを防 止するが、補正量が過大であるか否かの判断レベルは、 モータの角速度に依存する。そこで、補正量の上限値又 は下限値を角速度に応じて変化させることにより、遅い 角速度から速い角速度に至るまで、適切な上限値又は下 限値を設定でき、広い速度範囲でノイズに強い角度の推 定を行うことが出来るという作用を有する。

【0084】本発明の請求項16に記載の発明は、前記 20 角度推定手段は、さらに、前記推定角度と、前記モータ の推定角速度と、前記ステータ巻線の計測又は演算され た電流と、の中の少なくとも1つをパラメータとする補 償量のテーブルを有し、かつ、前記パラメータに対応す る補償量を用いて、前記推定角度を補償する、ことを特 徴とする位置センサレスモータ制御装置である。

【0085】本発明の角度推定手段は、上記のパラメー タに対応する補償量のテーブルを有することにより、演 算のみにより角度を推定する装置よりも、精度の高い精 度で角度を推定することが出来るという作用を有する。

【0086】本発明の請求項17に記載の発明は、モー タのステータ巻線の電流の値である相電流値を検知する 電流センサと、前記モータのロータの推定角度に基づき 前記ステータ巻線に印加する電圧の指令値を示す相電圧 指令値を作成する電圧指令値作成手段と、前記相電圧指 令値に基づき前記ステータ巻線に電圧を印加する駆動手 段と、前記推定角度を生成する角度推定手段と、前記ロ ータの回転する方向の指令を示す回転方向指令を出力す る回転方向指令手段と、を具備する位置センサレスモー タ制御装置において、前記回転方向指令が逆転方向を示 40 す場合は、少なくとも2つの相の前記相電流値を相互に 交換し、かつ、少なくとも2つの相の前記電圧指令値を 相互に交換する、ことを特徴とする位置センサレスモー 夕制御装置である。

【0087】本発明は、非常にわずかな切り換えによ り、正転と逆転とに対応し、かつ、正転時と逆転時と で、回路ブロック又はプログラムブロックのほとんどの 部分を共用できる位置センサレスモータ制御装置が実現 できるという作用を有する。

【0088】本発明の請求項18に記載の発明は、モー 50 第2の信号又は前記第3の信号又は前記角度情報が、前

タのロータの推定角度を推定する角度推定手段を有し、 前記角度推定手段が、ステータ巻線の計測又は演算され た相電圧から、誘起電圧以外の成分を差し引くことによ り導出される誘起電圧と、同一の波形である第2の信 号、又は前記第2の信号から導出され得る第3の信号、 又は前記第2の信号若しくは前記第3の信号の角度情報 を有する、ことを特徴とする位置センサレスモータ制御 装置である。

【0089】本発明は、ステータ巻線の計測又は演算さ がない、ことを特徴とする請求項14に記載の位置セン 10 れた電圧から、誘起電圧以外の成分を差し引くことによ り、誘起電圧を導出する。

> 【0090】従来例のように、誘起電圧を用いて、推定 信号を生成する場合には、温度変化による誘起電圧の変 化が、角度の推定精度を悪化させる。例えば従来例2の ように、(87) 式及び(88) 式より誘起電圧を求め る方法は、導出される推定角度 θ mは、温度依存性を有

> 【0091】本発明の、ステータ巻線の計測又は演算さ れた電圧から、誘起電圧以外の成分を差し引くことによ り、誘起電圧を導出する位置センサレスモータ制御装置 は、正しい誘起電圧を得ることが出来る。当該誘起電圧 の大きさは温度依存性を有するが、u軸の誘起電圧と、 v軸の誘起電圧と、w軸の誘起電圧と、の相対的な大き さは温度に依存しないため、角度を推定する上で、何の 悪影響も及ぼさない。このため、本発明は、広い温度範 囲で高い推定精度を有する角度推定手段を実現できると いう、作用を有する。

【0092】本発明の角度推定手段は、基本的には、 u, v, w (3相モータの場合) のいずれかの相の誘起 電圧と同一の波形である第2の信号を、推定信号とし て、有する。しかし、これに限定されるものではなく、 前記第2の信号から導出され得る第3の信号、例えば、 γ軸及びδ軸(又はd軸及びq軸)で表示された誘起電 圧を、角度推定手段が有してもよい。両者は、互換性が あり、上記の問題については、同一の効果を有するから である。

30

【0093】又、角度推定手段は、例えば正弦波である 上記第2の信号の波形をそのまま有してもよく、又は、 角度情報のみを、数字情報として有しても良い。

【0094】又、例えば、モータのステータ巻線に印加 する相電圧の波形が矩形波や台形波であって、推定モデ ルが、ステータ巻線に印加する相電圧の波形と同一の角 度を有する正弦波である場合も含む。当該正弦波は、矩 形波や台形波の相電圧の角度情報を有するからである。

【0095】上述のように、角度推定手段がu, v, w (3相モータの場合) のいずれかの相の誘起電圧を推定 信号として有する方が、正弦波以外の推定モデルの生成 が容易であるという点で、より好ましい。

【0096】本発明の請求項19に記載の発明は、前記

集(14):000-350489 (P2000-350489A)

26

記モータのステータ巻線の計測又は演算された相電圧 と、前記ステータ巻線の計測された相電流と、前記モー タのロータの推定角度と、を変数とする関数により、導 出される、ことを特徴とする請求項18に記載の位置セ ンサレスモータ制御装置である。

【0097】本発明は、温度依存性のない、ステータ巻 線の計測又された相電圧と、前記ステータ巻線の計測さ れた相電流等に基づいて、誘起電圧を導出するか、又 は、ステータ巻線の計測された相電圧等に基づいて、誘 起電圧を導出する。これらの要素に基づいて導出された 10 誘起電圧により推定される角度は、上述のように温度変 化の影響を受けない。本発明は、広い温度範囲で高い精 度で角度を推定できる角度推定手段を提供するという作 用を有する。

【0098】本発明の請求項20に記載の発明は、前記 角度推定手段は、さらに、前記第2の信号又は前記第3 の信号又は前記角度情報から導出された信号と、前記ス テータ巻線の計測又は演算された相電圧から誘起電圧以 外の成分を差し引くことにより導出される誘起電圧と、 の角度誤差又は角度誤差と対応関係を有する振幅誤差を 20 算出し、かつ前記角度誤差又は角度誤差と対応関係を有 する振幅誤差が小さくなるように、前記第2の信号、又 は前記第3の信号、又は前記角度情報、の推定角度を補 正する、ことを特徴とする、請求項18に記載の位置セ ンサレスモータ制御装置である。

【0099】本発明の位置センサレスモータ制御装置の 角度推定手段は、実際のモータの誘起電圧の波形が矩形 波(又は台形波)である場合も、正弦波の推定モデルを 有し、当該矩形波(又は台形波)の角度と、当該正弦波 の角度と、の角度誤差を算出し、角度誤差を小さくする 30 ように正弦波の推定モデルを補正することが出来るとい う作用を有する。これにより、矩形波(又は台形波)の 推定モデルを生成する必要がなく、推定モデルの生成が 容易になるという作用を有する。

【0100】従って、本発明による位置センサレスモー 夕制御装置においては、モータの角速度や出力トルクが 増大し必要な相電圧が大きくなり、ステータ巻線の各相 の相電圧が飽和して、各相の電圧波形が正弦波でなくな っても、正しく角度を推定することが出来、高い角速度 や大きな出力トルクを実現することが出来るという作用 を有する。又、本発明による位置センサレスモータ制御 装置においては、ロータの永久磁石の着磁波形は任意で ある。従って、本発明は、ロータの永久磁石の着磁波形 が正弦波以外の波形であって、誘起電圧が正弦波以外の 波形を有する、モータについても、高い精度でロータの 角度を推定することが出来るという作用を有する。

40

【0101】本発明の請求項21に記載の発明は、前記 角度推定手段は、さらに、前記第2の信号又は前記第3 の信号の振幅と、前記ステータ巻線の計測又は演算され た相電圧から誘起電圧以外の成分を差し引くことにより 50 る。例えば、誘起電圧の推定信号が、 u v w軸上で一定

導出される誘起電圧の振幅と、の振幅誤差を算出し、か つ前記振幅誤差が小さくなるように、前記第2の信号、 又は前記第3の信号の振幅を補正する、ことを特徴とす る、請求項20に記載の位置センサレスモータ制御装置 である。

【0102】本発明の位置センサレスモータ制御装置 は、推定モデルの振幅と実際のモータの信号波形の振幅 との振幅誤差が角度の推定に悪影響を及ぼす場合に、当 該振幅誤差を小さくするフィードバックループが設ける ことにより、正しい角度誤差を算出することができると いう作用を有する。これにより、高い精度で、角度を推 定できるという作用を有する。

【0103】特に、特定の時点における、2つの信号の レベル差を計測又は算出し、当該レベル差を角度誤差に 変換することにより、角度誤差を検出する装置におい て、有効である。

【0104】また、負荷の変化や角速度の変化により信 号の振幅が変化した場合にも、正しい角速度の推定が出 来るという、作用を有する。従って、広い範囲の角速度 にわたって、高い精度でロータの角度を推定する位置セ ンサレスモータ制御装置が得られるという、作用を有す る。

【0105】本発明の請求項22に記載の発明は、モー タのロータの角度の情報を含む誘起電圧の推定信号を有 する角度推定手段を有し、前記角度推定手段は、前記モ ータのステータ巻線の各相の電流を含む情報に基づいて 導出された前記各相の誘起電圧と、前記誘起電圧の推定 信号と、の誤差の中で、最も大きな誤差を選択し、前記 最も大きな誤差が小さくなるように、前記推定信号を補 正する、ことを特徴とする位置センサレスモータ制御装 置である。

【0106】角度推定手段は、内蔵する推定モデルを、 計測結果に基づく信号又は値に基づいて補正することに より、正しい角度を推定する。しかし、常に、特定の相 (u 軸) の誘起電圧に基づいて補正を行うと、角度の誤 差の検出精度が高くなる角度と低くなる角度が存在す る。そのため、角度推定の精度が、角度に依存して高く なったり低くなったりするという問題がある。本発明の 位置センサレスモータ制御装置は、複数のステータ巻線 の相の中で、最も大きな角度誤差を検出できる相を選択 し、選択された前記相の誘起電圧に基づいて、前記推定 角度を補正することにより、いかなるロータの角度にお いても、常に高い精度で、角度を推定することが出来 る、という作用を有する。

【0107】「各相の誘起電圧と、前記誘起電圧の推定 信号と、の誤差」の算出とは、各相の角度の変位 (3相 モータであれば、相互に120度ずつずれている。) を 考慮して、誤差を算出する意味である。請求項22の 他、請求項23、34、及び35について、同様であ

角度推定手段は、誤差信号に、前記角速度と対応関係を 有するゲインを掛けた値を用いて、推定モデルを補正す ることにより、遅い角速度から速い角速度に至るまで、 適切な補正量を得ることが出来、広い速度範囲で高い角 度の推定を行うことが出来るという作用を有する。

28

【0114】本発明の請求項26に記載の発明は、前記 角速度が速くなるに応じて、前記ゲインの絶対値は、大 きくなる場合があり、かつ、小さくなることがない、こ とを特徴とする請求項25に記載の位置センサレスモー 夕制御装置である。

【0115】本発明の位置センサレスモータ制御装置の 角度推定手段は、角速度が遅い場合には誤差信号に小さ なゲインを掛けた補正量を用いて、又、角速度が速い場 合には誤差信号に大きなゲインを掛けた補正量を用い て、推定モデルを補正する。これにより、遅い角速度か ら速い角速度に至るまで、適切な補正量を得ることが出 来、広い速度範囲で高い角度の推定を行うことが出来る という作用を有する。

【0116】本発明の請求項27に記載の発明は、前記 角度推定手段は、さらに、前記補正量が、前記角速度と 対応関係を有する上限値又は下限値の少なくともいずれ か1つを、超えないようにする、ことを特徴とする請求 項20に記載の位置センサレスモータ制御装置である。

【0117】本発明の位置センサレスモータ制御装置は、過大な補正量を用いて推定信号を補正することを防止するという作用を有する。例えば、単発的なノイズにより誤った誤差信号が得られた場合にも、推定信号が大幅に変化して、角度推定手段のプルインレンジ又はホールドレンジを外れるという問題を防ぐことが出来る。

【0118】本発明の請求項28に記載の発明は、前記 角速度が速くなるに応じて、前記上限値又は下限値の絶 対値は、大きくなる場合があり、かつ、小さくなること がない、ことを特徴とする請求項27に記載の位置セン サレスモータ制御装置である。

【0119】本発明の位置センサレスモータ制御装置は、過大な補正量を用いて推定信号を補正することを防止するが、補正量が過大であるか否かの判断レベルは、モータの角速度に依存する。そこで、補正量の上限値又は下限値を角速度に応じて変化させることにより、遅い角速度から速い角速度に至るまで、適切な上限値又は下限値を設定でき、広い速度範囲でノイズに強い角度の推定を行うことが出来るという作用を有する。

【0120】本発明の請求項29に記載の発明は、前記角度推定手段は、さらに、前記推定角度と、前記モータの推定角速度と、前記ステータ巻線の計測又は演算された電流と、の中の少なくとも1つをパラメータとする補償量のテーブルを有し、かつ、前記角度誤差又は角度誤差と対応関係を有する振幅誤差から導出された補正量と、前記パラメータに対応するテーブルの補償量と、を用いて、前記第2の信号、又は前記第3の信号、又は前記第3の信号、又は前記

の角度を有すると、する。ひとつの実施例においては、各相の誘起電圧を、推定信号の角度と同じ角度になるように、それぞれ座標変換し、当該座標変換後の誘起電圧と、推定信号と、の誤差を算出する。他の実施例においては、推定信号を、それぞれの相の角度と同じ角度になるように、座標変換し、当該座標変換後の推定信号と、各相の誘起電圧と、の誤差を算出する。

【0108】本発明の請求項23に記載の発明は、モータのロータの角度の情報を含む誘起電圧の推定信号を有する角度推定手段を有し、前記角度推定手段は、前記モ 10ータのステータ巻線の各相の電流を含む情報に基づいて導出された前記各相の誘起電圧の中で、最も小さな誘起電圧の相を選択し、かつ、前記選択された相の誘起電圧と、前記誘起電圧の推定信号と、の誤差が小さくなるように、前記推定信号を補正する、ことを特徴とする位置センサレスモータ制御装置である。

【0109】本発明の位置センサレスモータ制御装置は、複数のステータ巻線の相の中で、最も大きな角度誤差を検出できる相を選択し、選択された前記相の誘起電圧に基づいて、前記推定角度を補正することにより、いかなるロータの角度においても、常に高い精度で、角度を推定することが出来る、という作用を有する。又、請求項23の発明においては、全ての相について誤差を算出する必要がなく、各相の誘起電圧を比較して、最も小さな誘起電圧の相を選択するという簡単な方法により、正常な状態において誤差が最大になる相を選択し、当該選択された相についてのみ、誤差を演算するため、演算時間が少なくて済むという、作用を有する。

【0110】本発明の請求項24に記載の発明は、前記第2の信号又は前記第3の信号の振幅が定められた範囲 30を超える場合は、前記モータを減速又は停止させる、ことを特徴とする、請求項21に記載の位置センサレスモータ制御装置である。

【0111】本発明の位置センサレスモータ制御装置は、推定信号である第2の信号又は第3の信号の振幅が一定の範囲を超えたことを検知することが出来るという作用を有する。これにより、通常のフィードバックループによっては角度推定制御がいつまでも収束しないような場合には、モータを停止する等の他の手段を取ることにより、制御から外れた状態(脱調)から、脱出するこ40とが出来る。

【0112】本発明の請求項25に記載の発明は、前記角度推定手段は、さらに、前記角度誤差又は角度誤差と対応関係を有する振幅誤差に、前記モータのロータの推定角速度と対応関係を有するゲインを掛けた値である補正量を用いて、前記第2の信号、又は前記第3の信号、又は前記角度情報、の推定角度を補正する、ことを特徴とする請求項20に記載の位置センサレスモータ制御装置である。

【0113】本発明の位置センサレスモータ制御装置の 50 用いて、前記第2の信号、又は前記第3の信号、又は前

記角度情報、の推定角度を補正し、かつ補償する、こと を特徴とする請求項20に記載の位置センサレスモータ 制御装置である。

【0121】本発明の角度推定手段は、上記のパラメー タに対応する補償量のテーブルを有することにより、演 算のみにより角度を推定する装置よりも、精度の高い精 度で角度を推定することが出来るという作用を有する。

【0122】本発明の請求項30に記載の発明は、正弦 波信号であると仮定した前記モータのステータ巻線の計 測又は演算された電流を用いて、前記誘起電圧以外の成 10 分を導出する、ことを特徴とする請求項18に記載の位 置センサレスモータ制御装置である。

【0123】本発明の位置センサレスモータ制御装置に おいては、ステータ巻線の電流が正弦波信号であるとし て取り扱うため、角度を推定するための計算が簡略化さ れるという作用を有する。そのため、小型で、安価なマ イクロプロセッサにより、短い演算時間で、角度推定を 行うことが可能になるという作用を有する。又、ステー タ巻線は大きなインダクタンス成分を有するため、ステ ータ巻線の電流の波形は飽和しにくく、ステータ巻線の 20 相電圧の波形が飽和した時にも正弦波に近いため、ステ ータ巻線の相電圧の波形が飽和した時にも、ステータ巻 線の電流の波形を正弦波近似したことによる角度誤差 は、小さいという作用を有する。

【0124】本発明の請求項31に記載の発明は、モー タのロータの角度を推定する角度推定手段を有し、前記 角度推定手段が、ステータ巻線の電流と同一の波形の第 4の信号、又は前記第4の信号から導出され得る第5の 信号、又は前記第4の信号若しくは前記第5の信号の角 度情報を有する、ことを特徴とする位置センサレスモー 30 夕制御装置である。

【0125】本発明の位置センサレスモータ制御装置 は、ステータ巻線の電流信号を基準に、角度を推定す る。(72)式で表されるように、誘起電圧から導出さ れた推定角度の角度誤差と、ステータ巻線の電流から導 出された推定角度の角度誤差は等価である。従って、電 流から導出された推定角度は、温度に対して安定であ る。又、一般に、ステータ巻線の電流の値は、温度に対 して安定である。従って、本発明は、広い温度範囲で高 い推定精度を有する角度推定手段を実現できるという、 作用を有する。

【0126】本発明の角度推定手段は、基本的には、 u, v, w (3相モータの場合) のいずれかの相の相電 流と同一の波形である第4の信号を、推定信号として、 有する。しかし、これに限定されるものではなく、前記 第4の信号から導出され得る第5の信号、例えば、y軸 及び δ 軸(又はd軸及びq軸)で表示されたステータ巻 線の電流信号を、角度推定手段が有してもよい。両者 は、互換性があり、上記の問題については、同一の効果 を有するからである。

【0127】又、角度推定手段は、例えば正弦波である 上記第4の信号又は第5の信号の波形をそのまま有して もよく、又は、角度情報のみを、数字情報として有して も良い。

【0128】又、例えば、モータのステータ巻線に印加 する相電流の波形が矩形波であって、推定モデルが、ス テータ巻線に印加する相電流の波形と同一の角度を有す る正弦波である場合も含む。当該正弦波は、矩形波の相 電流の角度情報を有するからである。

【0129】上述のように、角度推定手段がu.v.w (3相モータの場合) のいずれかの相の相電流を推定信 号として有する方が、正弦波以外の推定モデルの生成が 容易である (座標回転が不要であるため) という点で、 より好ましい。

【0130】本発明の請求項32に記載の発明は、前記 角度推定手段は、さらに、前記第4の信号又は前記第5 の信号又は前記角度情報と、ステータ巻線の電流から導 出された信号と、の角度誤差又は角度誤差と対応関係を 有する振幅誤差を算出し、かつ前記角度誤差又は角度誤 差と対応関係を有する振幅誤差が小さくなるように、前 記第4の信号、又は前記第5の信号、又は前記角度情 報、の推定角度を補正する、ことを特徴とする、請求項 31に記載の位置センサレスモータ制御装置である。

【0131】本発明の位置センサレスモータ制御装置の 角度推定手段は、実際のモータの電流の波形が矩形波で ある場合も、正弦波の推定モデルを有し、当該矩形波の 角度と、当該正弦波の角度と、の角度誤差を算出し、角 度誤差を小さくするように正弦波の推定モデルを補正す ることが出来るという作用を有する。これにより、矩形 波の推定モデルを生成する必要がなく、推定モデルの生 成が容易になるという作用を有する。

【0132】従って、本発明による位置センサレスモー 夕制御装置においては、モータの角速度や出力トルクが 増大し必要な相電圧が大きくなり、ステータ巻線の各相 の相電圧が飽和して、各相の電圧波形が正弦波でなくな っても、正しく角度を推定することが出来、高い角速度 や大きな出力トルクを実現することが出来るという作用 を有する。又、本発明による位置センサレスモータ制御 装置においては、ロータの永久磁石の着磁波形は任意で ある。従って、本発明は、ロータの永久磁石の着磁波形 が正弦波以外の波形であって、誘起電圧が正弦波以外の 波形を有する、モータについても、高い精度でロータの 角度を推定することが出来るという作用を有する。

40

【0133】本発明の請求項33に記載の発明は、前記 角度推定手段は、さらに、前記角度推定手段が有する前 記第4の信号又は前記第5の信号の振幅と、ステータ巻 線の電流から導出された信号と、の振幅誤差を算出し、 かつ前記振幅誤差が小さくなるように、前記第4の信 号、又は前記第5の信号、の振幅を補正する、ことを特 50 徴とする、請求項32に記載の位置センサレスモータ制

御装置である。

【0134】本発明の位置センサレスモータ制御装置 は、推定モデルの振幅と実際のモータの信号波形の振幅 との振幅誤差が角度の推定に悪影響を及ぼす場合に、当 該振幅誤差を小さくするフィードバックループが設ける ことにより、正しい角度誤差を算出することができると いう作用を有する。これにより、高い精度で、角度を推 定できるという作用を有する。

【0135】特に、特定の時点における、2つの信号の レベル差を計測又は算出し、当該レベル差を角度誤差に 10 変換することにより、角度誤差を検出する装置におい て、有効である。

【0136】また、負荷の変化や角速度の変化により信 号野振幅が変化した場合にも、正しい角速度の推定が出 来るという、作用を有する。従って、広い範囲の角速度 にわたって、高い精度でロータの角度を推定する位置セ ンサレスモータ制御装置が得られるという、作用を有す

【0137】本発明の請求項34に記載の発明は、モー タのロータの角度の情報を含むステータ巻線の電流の推 20 定信号を有する角度推定手段を有し、前記角度推定手段 は、測定された前記モータのステータ巻線の各相の電流 と、前記電流の推定信号と、の誤差の中で、最も大きな 誤差を選択し、前記最も大きな誤差が小さくなるよう に、前記推定信号を補正する、ことを特徴とする位置セ ンサレスモータ制御装置である。

【0138】角度推定手段は、内蔵する推定モデルを、 計測結果に基づく信号又は値に基づいて補正することに より、正しい角度を推定する。しかし、常に、特定の相 (u軸)の相電流に基づいて補正を行うと、角度の誤差 30 の検出精度が高くなる角度と低くなる角度が存在する。 そのため、角度推定の精度が、角度に依存して高くなっ たり低くなったりするという問題がある。本発明の位置 センサレスモータ制御装置は、複数のステータ巻線の相 の中で、最も大きな角度誤差を検出できる相を選択し、 選択された前記相の相電流に基づいて、前記推定角度を 補正することにより、いかなるロータの角度において も、常に高い精度で、角度を推定することが出来る、と いう作用を有する。

【0139】本発明の請求項35に記載の発明は、モー 40 タのロータの角度の情報を含むステータ巻線の電流の推 定信号を有する角度推定手段を有し、前記角度推定手段 は、測定された前記モータのステータ巻線の各相の電流 の中で、最も小さな電流の相を選択し、前記選択された 相の電流と、前記電流の推定信号と、の誤差が小さくな るように、前記推定信号を補正する、ことを特徴とする 位置センサレスモータ制御装置である。

【0140】本発明の位置センサレスモータ制御装置 は、複数のステータ巻線の相の中で、最も大きな角度誤 差を検出できる相を選択し、選択された前記相の相電流 50 角度推定手段は、さらに、前記補正量が、前記角速度と

に基づいて、前記推定角度を補正することにより、いか なるロータの角度においても、常に高い精度で、角度を 推定することが出来る、という作用を有する。又、請求 項35の発明においては、全ての相について誤差を算出 する必要がなく、各相の誘起電圧を比較して、最も小さ な誘起電圧の相を選択するという簡単な方法により、正 常な状態において誤差が最大になる相を選択し、当該選 択された相についてのみ、誤差を演算するため、演算時 間が少なくて済むという、作用を有する。

32

【0141】本発明の請求項36に記載の発明は、前記 角度誤差又は角度誤差と対応関係を有する振幅誤差が定 められた範囲を超える場合は、前記モータを減速又は停 止させる、ことを特徴とする、請求項32に記載の位置 センサレスモータ制御装置である。

【0142】本発明の位置センサレスモータ制御装置 は、角度の推定誤差が一定の範囲を超えたことを検知す ることが出来るという作用を有する。これにより、通常 のフィードバックループによっては角度推定制御がいつ までも収束しないような場合には、モータを停止する等 の他の手段を取ることにより、制御から外れた状態 (脱 調)から、脱出することが出来る。

【0143】本発明の請求項37に記載の発明は、前記 角度推定手段は、さらに、前記角度誤差又は角度誤差と 対応関係を有する振幅誤差に、前記モータのロータの推 定角速度と対応関係を有するゲインを掛けた値である補 正量を用いて、前記第4の信号、又は前記第5の信号、 又は前記角度情報、の推定角度を補正する、ことを特徴 とする請求項32に記載の位置センサレスモータ制御装

【0144】本発明の位置センサレスモータ制御装置の 角度推定手段は、誤差信号に、前記角速度と対応関係を 有するゲインを掛けた値を用いて、推定モデルを補正す ることにより、遅い角速度から速い角速度に至るまで、 適切な補正量を得ることが出来、広い速度範囲で高い角 度の推定を行うことが出来るという作用を有する。

【0145】本発明の請求項38に記載の発明は、前記 角速度が速くなるに応じて、前記ゲインの絶対値は、大 きくなる場合があり、かつ、小さくなることがない、こ とを特徴とする請求項37に記載の位置センサレスモー 夕制御装置である。

【0146】本発明の位置センサレスモータ制御装置の 角度推定手段は、角速度が遅い場合には誤差信号に小さ なゲインを掛けた補正量を用いて、又、角速度が速い場 合には誤差信号に大きなゲインを掛けた補正量を用い て、推定モデルを補正する。これにより、遅い角速度か ら速い角速度に至るまで、適切な補正量を得ることが出 来、広い速度範囲で高い角度の推定を行うことが出来る という作用を有する。

【0147】本発明の請求項39に記載の発明は、前記

.

対応関係を有する上限値又は下限値の少なくともいずれ か1つを、超えないようにする、ことを特徴とする請求 項32に記載の位置センサレスモータ制御装置である。

【0148】本発明の位置センサレスモータ制御装置は、過大な補正量を用いて推定信号を補正することを防止するという作用を有する。例えば、単発的なノイズにより誤った誤差信号が得られた場合にも、推定信号が大幅に変化して、角度推定手段のプルインレンジ又はホールドレンジを外れるという問題を防ぐことが出来る。

【0149】本発明の請求項40に記載の発明は、前記 10 角速度が速くなるに応じて、前記上限値又は下限値の絶 対値は、大きくなる場合があり、かつ、小さくなること がない、ことを特徴とする請求項39に記載の位置セン サレスモータ制御装置である。

【0150】本発明の位置センサレスモータ制御装置は、過大な補正量を用いて推定信号を補正することを防止するが、補正量が過大であるか否かの判断レベルは、モータの角速度に依存する。そこで、補正量の上限値又は下限値を角速度に応じて変化させることにより、遅い角速度から速い角速度に至るまで、適切な上限値又は下限値を設定でき、広い速度範囲でノイズに強い角度の推定を行うことが出来るという作用を有する。

【0151】本発明の請求項41に記載の発明は、前記角度推定手段は、さらに、前記推定角度と、前記ロータの推定角速度と、前記ステータ巻線の計測又は演算された電流と、の中の少なくとも1つをパラメータとする補償量のテーブルを有し、かつ、前記パラメータに対応するテーブルの補償量を用いて、前記第4の信号、又は前記第5の信号、又は前記角度情報、の推定角度を補償する、ことを特徴とする請求項32に記載の位置センサレ 30スモータ制御装置である。

【0152】本発明の角度推定手段は、上記のパラメータに対応する補償量のテーブルを有することにより、演算のみにより角度を推定する装置よりも、精度の高い精度で角度を推定することが出来るという作用を有する。

【0153】本発明の請求項42に記載の発明は、前記 モータのステータ巻線の計測又は演算された電流が、正 弦波信号であるとして取り扱う、ことを特徴とする請求 項31に記載の位置センサレスモータ制御装置である。

【0154】本発明の位置センサレスモータ制御装置に 40 おいては、ステータ巻線の電流が正弦波信号であるとして取り扱うため、角度を推定するための計算が簡略化されるという作用を有する。そのため、小型で、安価なマイクロプロセッサにより、短い演算時間で、角度推定を行うことが可能になるという作用を有する。又、ステータ巻線は大きなインダクタンス成分を有するため、ステータ巻線の電流の波形は飽和しにくく、ステータ巻線の電流の波形は飽和した時にも、ステータ巻線の相電圧の波形が飽和した時にも、ステータ巻線の電流の波形を正弦波近似したことによる角度誤差 50

は、小さいという作用を有する。

【0155】本発明の請求項43に記載の発明は、モータのロータの推定角度を推定する角度推定手段を有し、前記角度推定手段が、ステータ巻線の計測又は演算された相電圧と、同一の波形である第6の信号、又は前記第6の信号から導出され得る第7の信号、又は前記第6の信号若しくは前記第7の信号の角度情報を有する、ことを特徴とする位置センサレスモータ制御装置である。

【0156】本発明の位置センサレスモータ制御装置においては、ステータ巻線の計測又は演算された相電圧と同一の波形の信号等を推定モデルにすることにより、演算時間が少なく、安価で小型のマイクロプロセッサ等により角度推定を行うことが可能になるという作用を有する。

[0157]

【発明の実施の形態】以下、本発明の位置センサレスモータ制御装置の一実施の形態である具体的な実施例について添付の図面を参照して説明する。

【0158】《実施例1》以下、実施例1における位置センサレスモータ制御装置を説明する。実施例1の位置センサレスモータ制御装置は、ステータ巻線の各相の相電圧方程式から誘起電圧値を求め、この誘起電圧値と誘起電圧基準値との偏差を求め、この偏差が0に収斂するように推定角度のmを補正する。そして、高分解能で高精度な角度の推定を実現し、相電圧が飽和しても角度の推定を実現し、かつ、誘起電圧定数などのモータ定数が変化しても高精度な角度の推定を実現する。本明細書及び請求項の記載において、「誤差」の語と、「偏差」の語は、同じ意味で用いられる。

【0159】まず、実施例1の位置センサレスモータ制御装置の構成を説明する。

【0160】 [図1の説明] 図1は、実施例1における位置センサレスモータ制御装置の構成を示すブロック図である。IPMSM (Interior Permanent Magnet Synchronous Motor:埋込磁石型同期モータ) 10は、相電流が流れるステータ巻線11 u、11 v、11 wが巻回されたステータ (図示せず) と、このステータ (図示せず) に対向し近接して配置されたロータ12とが設けられている。ここで、ステータ巻線11 u、11 v、11 wはY結線(各ステータ巻線11 u、11 v、11 wの片端が1点で接続される結線)されている。このブラシレスモータ10は、ロータ12の内部に永久磁石13が配置され、相電流により生成される磁束とこの永久磁石13による磁束との相互作用によりロータ12が回転する。

【0161】実施例1の位置センサレスモータの制御装置は、アナログ u 相電流値 i u a を出力する電流センサ21 u と、アナログ v 相電流値 i v a を出力する電流センサ21 v と、アナログ u 相電流値 i u a とアナログ v 相電流値 i v a とアナログ φ 指電流値 i v a とアナログ速度指令値ω*a と回転方向

指令ωdir*とを入力しスイッチング指令信号guh、gul、gvh、gvl、gwh、gwlとサーボオン信号sv*とを出力するマイコン(「マイクロ・コンピュータ」又は「マイクロプロセッサ」の意味である。)22と、スイッチング指令信号guh、gul、gvh、gvl、gwh、gwlとサーボオン信号sv*とを入力しステータ巻線11u、11v、11wに印加する電圧を制御する駆動部30とから構成される。

【0162】 [図2の説明] 図2は、実施例1における 駆動部30の構成を示す回路図である。駆動部30は、 電源31と、コレクタが電源31の正極に接続されエミ ッタが相巻線11 u、11 v、11 wにそれぞれ接続さ れた上側IGBT(Insulated Gate B ipolar Transistor:絶縁ゲート・バ イポーラ・トランジスタ) 32 u、32 v、32 wと、 上側IGBT32u、32v、32wにそれぞれ逆並列 接続された上側フライホイールダイオード33 u 、33 v、33wと、コレクタがステータ巻線11u、11 v、11wにそれぞれ接続されエミッタが電源31の負 極に接続された下側 I G B T 3 4 u 、 3 4 v 、 3 4 w と、下側IGBT34u、34v、34wにそれぞれ逆 並列接続された下側フライホイールダイオード35 u、 35 v、35 wと、スイッチング指令信号guh、gu l、gvh、gvl、gwh、gwlとサーボオン信号 sv*とに基づきそれぞれ上側IGBT32u、32 v、32wのゲート電圧と下側IGBT34u、34 v、34wのゲート電圧とを制御するプリドライブ器3 6とから構成される。

20

【 0 1 6 3 】マイコン2 2 は、ハード的に、CPU、R OM、RAM、タイマ、ポート、およびこれらをつなぐ 30 バスなどから構成される。

【0164】マイコン22は、機能的に、アナログ速度 指令値ω*aと推定速度ωmとを入力しγ軸電流指令値 i γ * と δ 軸電流指令値 i δ * とを出力する速度制御部 40と、アナログu相電流値iuaとアナログv相電流 値i v a と回転方向指令ωdir*とγ軸電流指令値i γ * と δ 軸電流指令値 i δ * と推定角度 θ m とを入力し u相電流値iuとv相電流値ivとu相電圧指令値vu *と v 相電圧指令値 v v *と w 相電圧指令値 v w *とス イッチング指令信号guh、gul、gvh、gvl、 gwh、gwlとを出力する電流制御部50と、γ軸電 流指令値 i γ * と δ 軸電流指令値 i δ * と推定角度 θ m と推定速度ωmとを入力し補償量αを作成する補償量作 成部60と、u相電流値iuとv相電流値ivとu相電 圧指令値vu*とv相電圧指令値vv*とw相電圧指令 値vw*と補償量αとを入力し推定角度θmと推定速度 ωmと誘起電圧振幅推定値emとを出力する角度推定部 70と、推定速度ωmと誘起電圧振幅推定値emとを入 カレサーボオン信号 s v *を出力する脱調検出部90と から構成される。本明細書及び特許請求の範囲の記載に 50 おいて、「推定速度」の語と「推定角速度」の語とは、 いずれも、角速度の意味で用いている。

36

【0165】 [図3の説明] 図3は、実施例1における速度制御部40の構成を示すブロック図である。速度制御部40は、アナログ速度指令値 ω *aを入力し速度指令値 ω *を出力するADC(アナログ・ディジタル・コンバータ:Analog Digtal Converter)41と、速度指令値 ω *と推定速度 ω mとを入力しトルク指令値T*を出力するトルク指令値作成部42と、トルク指令値T*を入力しγ軸電流指令値i α *とを出力する電流指令値作成部43とから構成される。

【0166】 [図4の説明] 図4は、実施例1における 電流制御部50の構成を示すブロック図である。電流制 御部50は、アナログu相電流値iuaを入力し交換前 u相電流値iu1を出力するADC51uと、アナログ v相電流値ivaを入力し交換前v相電流値iv1を出 力するADC51vと、交換前u相電流値iu1と交換 前ν相電流値iv1と回転方向指令ωdir*とを入力 しu相電流値iuとv相電流値ivとを出力する相電流 値交換部52と、γ軸電流指令値iγ*とδ軸電流指令 値iδ*と推定角度θmとを入力しu相電流指令値iu *とv相電流指令値iv*とw相電流指令値iw*とを 出力する相電流指令値作成部53と、u相電流値iuと v相電流値ivとu相電流指令値iu*とv相電流指令 値iv*とw相電流指令値iw*とを入力しu相電圧指 令値vu*とv相電圧指令値vv*とw相電圧指令値v w*とを出力する相電圧指令値作成部54と、u相電圧 指令値vu*とv相電圧指令値vv*とw相電圧指令値 vw*と回転方向指令ωdir*を入力し交換後u相電 圧指令値 v u * 1 と交換後 v 相電圧指令値 v v * 1 と交 換後 w 相電圧指令値 v w * 1 とを出力する相電圧指令値 交換部56と、交換後 u 相電圧指令値 v u * 1 と交換後 v 相電圧指令値 v v * 1 と交換後 w 相電圧指令値 v w * 1とを入力しスイッチング指令信号guh、gul、g vh、gvl、gwh、gwlを出力するPWM制御器 57とから構成される。

【0167】 [図5の説明] 図5は、実施例1における角度推定部70の構成を示すブロック図である。角度推定部70は、 u 相電圧指令値 v u *と v 相電圧指令値 v u *と w 相電圧指令値 v w *とを入力し u 相電圧値 v u と v 相電圧値 v v とを出力する相電圧値作成部71と、 u 相電圧値 v v と w 相電圧値 v v と w 相電圧値 v v と w 相電圧値 e u と v 相 は 定 度 ω m と を 入力し u 相誘起電圧値 e u と v 相誘起電圧値 e v と w 相誘起電圧値 e u と v 相誘起電圧値 e y と w 相誘起電圧値 e u と v 相誘起電圧値 e v と w 相誘起電圧値 e v と w 相誘起電圧値 e v と v 相誘起電圧値 e s v と w 相誘起電圧値 e w と を 入力し誘起電圧 値 e v と w 相誘起電圧値 e w と を 入力し誘起電圧 値 e s

以下の説明では、角度 θ と推定角度 θ mと角度誤差 Δ θ とを電気角で表す。以下、特に明記しないとき、角度に関する値は電気角で表わす。ここで、機械角はロータ12そのものの角度を表し、(電気角)=(p/2)・

38

(機械角)である。なお、pは磁極数である。

【0172】実施例1の位置センサレスモータ制御装置の外部にある速度指令値作成部(図示せず)は、アナログ速度指令値ω*aを作成する。

【0173】実施例1の位置センサレスモータ制御装置の外部にある回転方向指令作成部(図示せず)は、回転方向指令 ω d i r *を作成する。【PMSM10を正転させるとき、回転方向指令 ω d i r *=F (Forward)とする。また、【PMSM10を逆転させるとき、回転方向指令 ω d i r *=R (Reverse)とする

【0174】次に、本発明の実施例1の位置センサレス モータ制御装置の動作を説明する。

【0175】電流センサ21u、21vは、それぞれステータ巻線11u、11vに流れる電流を検知し、アナログu相電流値iua、アナログv相電流値ivaを作成する。

【0176】 [図2の説明] 次に、駆動部30の動作を説明する。駆動部30は、サーボオン信号sv*がHigh(「H」と言う。)のとき、ステータ巻線11u、11v、11wに印加する電圧を制御する。また、サーボオン信号sv*がLow(「L」と言う。)のとき、通電を停止する。

【0177】電源31は、駆動部30に電力を供給する

30 【0178】そして、サーボオン信号 s v * が H の とき、プリドライブ器 3 6 は、スイッチング信号 g u h が H のとき上側 I G B T 3 2 u が 通電し、スイッチング信号 g u h が L のとき上側 I G B T 3 2 u が 非 通電であるように、上側 I G B T 3 2 u のゲート電圧を制御する。一方、スイッチング信号 g u l が L のとき下側 I G B T 3 4 u が 通電し、スイッチング信号 g u l が L のとき下側 I G B T 3 4 u が 非 通電であるように、下側 I G B T 3 4 u のゲート電圧を制御する。また、 v 相、および w 相についても同様に、スイッチング信号 g v h、 g v 1、 g w h、 g w l に 基づき上側 I G B T 3 2 v、 3 2 w、下側 I G B T 3 4 v、 3 4 w のゲート電圧を制御する。

【0179】一方、サーボオン信号sv*がLのとき、プリドライブ器36は、全てのIGBTが非通電であるように、上側IGBT32u、32v、32w、および下側IGBT34u、34v、34wのゲート電圧を制御する。

【0180】次に、マイコン22の動作を説明する。

【0181】[図3の説明]まず、速度制御部40の動 50 作を説明する。速度制御部40は、ある設定された時間

を出力する誘起電圧選択値選択部 7 4 と、推定相指標 η と推定角度 θ m と補償量 α と誘起電圧振幅推定値 e m と を入力し誘起電圧基準値 e s m を出力する誘起電圧基準値作成部 7 5 と、誘起電圧選択値 e s と誘起電圧基準値 e s m とを入力し偏差 ϵ を出力する偏差作成部 7 6 と、推定速度 ω m を入力し比例ゲイン κ p と積分ゲイン κ i と比例リミット ζ p と積分リミット ζ i とを出力するゲインリミット作成部 7 7 と、推定相指標 η と偏差 ϵ と比例ゲイン κ p と積分ゲイン κ i と比例リミット ζ p と積分 ψ がイン ψ p と積分 ψ がイン ψ p と積分 ψ がイン ψ p と積分 ψ が ψ に 地 で ψ か ψ に ψ を 出 が ψ を ψ を 出 が ψ を ψ を ψ を ψ と ψ を ψ か ψ を ψ

【0168】誘起電圧振幅推定値補正部80は、u相誘起電圧値euとv相誘起電圧値evとw相誘起電圧値ewとを入力し誘起電圧振幅演算値ecを出力する誘起電圧振幅演算値f成部81と、誘起電圧振幅演算値ecを入力し誘起電圧振幅推定値emを出力する誘起電圧振幅推定値変更部82とから構成される。

【0169】 [図6の説明] 図6は、実施例1における脱調検出部90の構成を示すブロック図である。脱調検出部90は、推定速度ωmを入力し誘起電圧振幅脱調判断上限値eouthと誘起電圧脱調判断値作成部91と、誘起電圧振幅脱調判断上限値eouthと誘起電圧振幅脱調判断下限値eouthと誘起電圧振幅脱調判断下限値eoutlと誘起電圧振幅脱調判断下限値eoutlと誘起電圧振幅を入力しサーボオン信号sv*を出力する脱調判断部92とから構成される。

【0170】 [図7の説明] 次に、座標系を説明する。 図7は、実施例1における座標系の説明図である。図7 において、説明を簡単にするために、磁極数が2のIP MSMが示されている。d軸とq軸は、実際のロータ1 2の角度 θ による軸である。d軸をロータ12に配置さ れた永久磁石13による磁束と同じ向きとし、q軸をd 軸に対して90°進んだ向きとする。そして、ステータ 巻線11 u と d 軸のなす角度を角度 θ とする。ここで、 図7において、反時計回りの向きを正転とする。正転の 向きに回転するとき角度θは進む。この正転の向きは、 ステータ巻線11 u、11 v、11 wに流れる電流が、 u相、v相、w相の順に変化する向きである。また、γ 軸と δ 軸は推定角度 θ mにより定められる軸である。ス テータ巻線11 u から推定角度 θ mだけ回転した軸を γ 軸とし、 δ 軸を γ 軸に対して9.0°進んだ向きとする。 さらに、角度 θ と推定角度 θ mの差を角度誤差 Δ θ (= $\theta - \theta m$) とする。

【0171】ここで、図7では、正の角度誤差 $\Delta\theta$ があるときを示しているが、角度推定に誤差がなく角度誤差 $\Delta\theta$ が0のとき、推定角度 θ mと角度 θ とが一致し、d軸とy軸とが一致し、q軸と δ 軸とが一致する。なお、

\$(21)? 0 0 0 − 3 5 0 4 8 9 (P 2 0 0 0 − 3 5 0 4 8 9 A)

ごとに起動され、ADC41、トルク指令値作成部4 2、電流指令値作成部43の順に下記の動作をさせ、外 部から入力されるアナログ速度指令値ω×αとおりの速 度でロータ12が回転するようにγ軸電流指令値 i γ* とδ軸電流指令値 i δ * とを制御するものである。

【0182】ADC41は、アナログ値であるアナログ 速度指令値ω*aをディジタル値である速度指令値ω* にアナログ/ディジタル変換する。

*【0183】トルク指令値作成部42は、推定速度ωm が速度指令値ω*とおりになるように比例積分制御 (P I制御)を用いてトルク指令値T*を制御する。下記式 (4)のように、速度指令値ω*と推定速度ωmとの差 を比例ゲインKPW、および積分ゲインKIWで比例積 分制御した結果をトルク指令値T*とする。

[0184]

$$T * = KPW \cdot (\omega * - \omega m) + KIW \cdot \Sigma (\omega * - \omega m) \cdot \cdot \cdot (4)$$

の出力トルクがトルク指令値T*になるように、γ軸電 流指令値ίγ*とδ軸電流指令値ίδ*とを作成する。 下記式(5)のように、トルク指令値T*をある設定さ れた値KTで除算した結果を電流指令値振幅 i a とす る。また、下記式(6)のように、電流指令値振幅 i a k-s in (β T) を乗じた結果を γ 軸電流指令値 i γ *とする。一方、下記式(7)のように、電流指令値振※

$$ia = T*/KT$$

 $i\gamma* = -ia \cdot sin(\beta T)$
 $i\delta* = ia \cdot cos(\beta T)$

【0187】 [図4の説明] 次に、電流制御部50の動 作を説明する。電流制御部50は、ある設定された時間 (電流制御周期)ごとに起動され、ADC51u、51 v、相電流値交換部52、相電流指令値作成部53、相 電圧指令値作成部54、相電圧指令値交換部56、PW M制御器57の順に下記の動作をし、γ軸電流指令値 i γ*、およびδ軸電流指令値 ίδ*とおりにステータ巻 線11u、11v、11wに電流が流れるようにスイッ チング信号guh、gul、gvh、gvl、gwh、 gwlを制御する。

【0188】ADC51u、ADC51vは、それぞれ アナログ値であるアナログu相電流値iua、アナログ v 相電流値 i v a をディジタル値である交換前 u 相電流★

【0185】電流指令値作成部43は、IPMSM10 10※幅iaにcos (βT) を乗じた結果をδ軸電流指令値 $i \delta * とする。ここで、<math>\beta T$ は電流指令値振幅 i a が与 えられたときに最大出力トルクまたは最大効率を実現す る電流位相であり、0°から45°の間のある設定され た角度である。以後、この位相を電流指令位相BTと呼

[0186]

★値iu1、交換前v相電流値iv1にアナログ/ディジ タル変換する。

【0189】相電流値交換部52は、正転指令時には、 交換前の相電流値をそのまま相電流値とする。一方、逆 転指令時には、交換前の相電流値を入れ替える。回転方 向指令 ω d i r *= F のとき、下記式(8) のように、 交換前 u 相電流値 i u 1 を u 相電流値 i u とし、交換前 v相電流値iv1をv相電流値ivとする。また、回転 方向指令 ω dir*=Rのとき、下記式(9)のよう 30 に、交換前 u 相電流値 i u 1、および交換前 v 相電流値 i v 1 をそれぞれ v 相電流値 i v、および u 相電流値 i uとする。

[0190]

$$iu=iu1$$
、 $iv=iv1$ ($\omega dir*=Fのとき$) ・・・(8)
 $iu=iv1$ 、 $iv=iu1$ ($\omega dir*=Rのとき$) ・・・(9)

【0191】相電流指令値作成部53は、推定角度 θ m による回転座標系である y δ 軸上の y 軸電流指令値 i y *とδ軸電流指令値 i δ*とを静止座標系に変換する。 そして、各相に流す電流の指令値であって正弦波状で互 いに電気角で120° ずれたu相電流指令値iu*とv☆40

☆相電流指令値iv*とw相電流指令値iw*とを作成す る。具体的には、下記式(10)(11)(12)のよ うにする。

[0192]

$$\begin{array}{rcl} i\; u\; *\; &=& \{ \sqrt{\ (2/3)} \ \}\; \cdot\; \{\; i\; \gamma\; *\; \cdot\; c\; o\; s\; \theta\; m-i\; \delta\; *\; \cdot\; s\; i\; n\; \theta\; m \} \\ &\; \cdot\; \cdot\; \cdot\; (1\; 0) \\ i\; v\; *\; &=& \{ \sqrt{\ (2/3)} \ \}\; \cdot\; \{\; i\; \gamma\; *\; \cdot\; c\; o\; s\; (\theta\; m-1\; 2\; 0^\circ\;)\; \} \\ &\; \cdot\; \cdot\; \cdot\; (1\; 1) \\ i\; w\; *\; &=& \{ \sqrt{\ (2/3)} \ \}\; \cdot\; \{\; i\; \gamma\; *\; \cdot\; c\; o\; s\; (\theta\; m+1\; 2\; 0^\circ\;)\; \} \\ &\; \cdot\; \cdot\; \cdot\; (1\; 2) \\ \end{array}$$

【0193】相電圧指令値作成部54は、まず、w相電 uとv相電流値ivの和の符号を逆転したものをw相電。 流値を求める。下記式(13)のように、u相電流値i 50 流値iwとする。

集(22)? 000-350489 (P2000-350489A)

41

[0194]

iw = - (iu + iv)

【0195】次に、u相電流値iuがu相電流指令値と おりになるように比例積分制御(PI制御)を用いてu 相電圧指令値 v u *を制御する。下記式(14)のよう に、u相電流指令値iu*とu相電流値iuとの差を比 例ゲインKPK、および積分ゲインKIKで比例積分制 御をした結果をu相電圧指令値vu*とする。ただし、 駆動部30が電源31の電圧よりも大きな電圧をステー

 \cdots (13)

*いため、下記式 (15) のようなリミットを設ける。こ こで、Eは電源31の電圧値である。

【0196】また、v相とw相とについても同様に、そ れぞれ下記式(16)(17)(18)(19)のよう に、v相電圧指令値vv*とw相電圧指令値vw*とを 作成する。

[0197]

夕巻線11u、11v、11wに印加することができな*10 $vu* = KPK \cdot (iu*-iu) + KIK \cdot \Sigma (iu*-iu)$

【0198】相電圧指令値交換部56は、正転指令時に 20%v*1とする。また、回転方向指令ωdir*=Rのと は、各相の相電圧値をそのままとする。一方、逆転指令 時には、u相とv相の電圧指令値を入れ替える。回転方 向指令 ω d i r *= F のとき、下記式 (20) のよう に、 u 相電圧指令値 v u *を交換後 u 相電流値 v u * 1 とし、 v 相電圧指令値 v v *を交換後 v 相電圧指令値 v ※

き、下記式(21)のように、u相電圧指令値vu*、 および v 相電圧指令値 v v *をそれぞれ交換後 v 相電圧 指令値 v v * 1、および交換後 u 相電圧指令値 v u * 1 とする。

[0199] $v u * 1 = v u *, \quad v v 1 * = v v *$

(ωdir*=Fのとき)

• • • (20)

 $v u * 1 = v v *, \quad v v 1 * = v u *$ (ω d i r *= R のとき)

 $\cdot \cdot \cdot (21)$

【0200】PWM制御器57は、交換後u相電圧指令 30★wlを作成する。 値vu*1と交換後v相電圧指令値vv*1と交換後w 相電圧指令値vw*1とをパルス幅変調(PWM:Pu lse Width Modulation) する。具 体的には、ある設定された周波数とE/2の振幅とを持 つ三角波を発生し、この三角波と交換後u相電圧指令値 vu*1とを比較し、交換後u相電圧指令値vu*1の ほうが大きいとき、スイッチング信号guhをH、gu | TをLにする。一方、交換後 u 相電圧指令値 v u * 1 の ほうが小さいとき、スイッチング信号guhをし、gu の状態が遷移するとき、スイッチング信号guh、gu 1を双方ともしにする短い時間を設ける(この短い時間 はデッド・タイムと呼ばれる)。また、v相、およびw 相とについても同様に、それぞれ交換後 v 相電圧指令値 v v * 1、および交換後w相電圧指令値 v w * 1に基づ きスイッチング信号gvh、gvl、およびgwh、g★

【0201】 [図1の説明] 次に、実施例1の特徴の1 つである補償量作成部60の動作を説明する。補償量作 成部60は、電流制御部50の動作が終了するごとに動 作する。この補償量作成部60は、角度推定部70にお いて角度推定 θ mを補償する量を示す補償量 α を作成す る。角度推定部70は、精度のよい推定角度θmを作成 するが、多少誤差が含まれる。そこで、この誤差をあら かじめ実験などで求めテーブル化する。具体的には、下 記式(22)のように、推定角度を60°で除算した剰 lをHにする。なお、スイッチング信号guh、gul 40 余 (θm%60)、推定速度ωm、γ軸電流指令値iγ *、およびδ軸電流指令値 i δ *に対する補償量αのテ ーブルαtableを用いる。ここで、推定角度 θ m を 60で除算した剰余 (θm%60) を使用するのは、周 期が電気角の60°で変化する誤差が発生するからであ る。

【0203】 [図5の説明] 次に、実施例1の特徴の1 つである角度推定部70の動作を説明する。

【0204】はじめに、角度推定部70の動作の原理を 50 る。すなわち、角度推定部70は、まず、誘起電圧の基

[0202]

 $\alpha = \alpha \text{ table } (\theta \text{ m\%60}^{\circ}, \omega \text{m}, i \gamma *, i \delta *) \cdot \cdot \cdot (22)$

説明する。角度推定部70は、推定角度 θ m と誘起電圧 振幅推定値emとを補正することで角度推定を実現す

準値(誘起電圧基準値esm)を作成する。そして、こ の誘起電圧基準値 e s mの角度(位相)とステータ巻線: 11 u、11 v、11 wにおける相電圧方程式から求め た誘起電圧値(u相誘起電圧値eu、v相誘起電圧値e v、w相誘起電圧値ew)の位相とが一致するように、 推定角度 θ mを補正する。また、誘起電圧基準値 e s m の振幅 (誘起電圧振幅推定値 e m) と誘起電圧値 (u 相 誘起電圧値eu、v相誘起電圧値ev、w相誘起電圧値 ew)の振幅とが一致するように、誘起電圧振幅推定値 e mを補正する。

【0205】まず、誘起電圧値の位相と誘起電圧基準値 の位相とを一致させる方法を説明する。

[図8の説明] 図8は、実施例1におけるu相の誘起電 圧値と誘起電圧基準値と偏差とを示す波形図である。図 8において、誘起電圧値は、誘起電圧基準値より電気角 で20°遅れている。また、誘起電圧値の振幅は、誘起 電圧基準値の振幅 (誘起電圧振幅推定値 e m) の90%

【0206】 u 相の誘起電圧値(u 相誘起電圧値e u) と u 相の誘起電圧基準値 (u 相誘起電圧基準値 e u m) の位相が一致しないとき、これらの差である偏差(u相 偏差 ϵ u) は0ではない。そのため、この u相偏差 ϵ u が O に収斂するように、推定角度 θ m を補正すること で、位相を一致させる。

【0207】ここで、推定を行う相を推定角度 θ mによ って選択する。u相、v相、w相はそれぞれ電気角で1 20° ずれる。そのため、常に位相差の影響が偏差に一 番影響を及ぼす相を用いて角度推定することで、推定精 度を向上する。つまり、推定角度 θ mが、電気角で 0° 0°では、μ相偏差εμの大きさがほぼ最大となるた め、u相で推定を行う。推定角度 θ mがこれ以外の範囲 ,のとき、v相あるいはw相で推定を行う。

【0208】図8において、推定角度 θ m=0° 付近の とき、u相偏差 ε uは正である。そのため、推定角度 θ mがこの区間にあるとき、偏差 ε が正であれば推定角度 θ mが進んでいると判断し、推定角度 θ mを遅らすよう に補正する。反対に、偏差 ε が負であれば推定角度 θ m が遅れていると判断し、推定角度 θ mを進めるように補 正する。

【0209】また、図8において、推定角度θm=18 0°付近のとき、μ相偏差εμは負である。そのため、 推定角度 θ mがこの区間にあるとき、偏差 ϵ が負であれ ば推定角度 θ mが進んでいると判断し、推定角度 θ mを 遅らすように補正する。反対に、偏差 ε が正であれば推 定角度 θ mが遅れていると判断し、推定角度 θ mを進め るように補正する。

【0210】次に、誘起電圧値の振幅と誘起電圧基準値*

= vu* v u

*の振幅(誘起電圧振幅推定値em)とを一致させる方法 を説明する。すべての相の誘起電圧値(u相誘起電圧値 e u 、 v 相誘起電圧値 e v 、およびw 相誘起電圧値 e w)を求め、振幅を演算し、それを誘起電圧振幅推定値 e mとする。

【0211】以上のように動作させることにより、推定 角度 θ m と誘起電圧振幅推定値 e m とを補正し、誘起電 圧値と誘起電圧基準値とを一致させることで、角度を推 定する。

10 【0212】さらに、実施例1において、偏差を用いて 推定角度 θ mを補正するときのゲインとリミットとを推 定速度ωmにより変化させることで、制御を安定化させ る。また、実施例1において、補償量αだけ誘起電圧基 準値esmの位相を変化させることにより、角度推定の 精度をさらに向上させる。

【0213】では、角度推定部70の動作の詳細を説明 する。角度推定部70は、ある設定された周期(角度推 定周期: ΔT) ごとに起動され、相電圧値作成部71、 誘起電圧値演算部72、推定相選択部73、誘起電圧選 択值選択部74、誘起電圧基準値作成部75、偏差作成 部76、ゲインリミット作成部77、角度速度補正部7 8、誘起電圧振幅演算值作成部81、誘起電圧振幅推定 値変更部82の順に下記の動作をさせ、推定角度 θ m と 推定速度ωmとを作成する。また、電流制御部50、補 償量作成部60、角度推定部70の順に動作させ、角度 推定周期ATと電流制御周期とを同一とする。

【0214】角度推定周期△Tは、モータの構造に依存 せず、マイコンの処理能力に依存する。本実施例におい ては、角度推定周期 Δ T は 6 7 μ 秒である。モータのロ ~30°、150°~210°、および330°~36 30 ータの磁極数が4極である本実施例の角度推定周期AT を電気角 Δ θ で表すと、モータ回転数 1 8 0 0 r p m (角速度 60π /秒)において、下記の式より、 $\Delta\theta$ は 1. 45度になる。

> $\Delta \theta = 360 \text{ g} \times (4 \text{ W}/2) \times 67 \mu \text{ s} \times (1800)$ rpm/60s) = 1.45度

上記のように∆Tは非常に小さな値であり、リアルタイ ムに近い角度推定が行われている。従って、従来例のよ うに、離散サンプリング(電気角60度ごとに角度推定 を行っている。)に基づく応答の遅延(サンプリング周 40 期の半分の期間の遅延が発生する。)が起きない。この リアルタイムに近い応答性は、モータの急加速又は急減 速等において、従来例よりも高い追随性を実現する。こ のように、非常に短い角度推定周期により角度を推定で きることは、他の全ての実施例において、同様である。

【0215】相電圧値作成部71は、下記式(23)

(24) (25) のように、相電圧指令値 v u *、 v v *、 v w * を相電圧値 v u 、 v v 、 v w とする。

[0216]

20

 $\cdots (23)$

...(24)

特(24)? 000-350489 (P2000-350489A)

45

vw = vw*

【0217】誘起電圧値演算部72は、各相の誘起電圧 值(u相誘起電圧值eu、v相誘起電圧值ev、w相誘 起電圧値ew)を作成する。各相の相電圧方程式を誘起 電圧値について解く。具体的には、下記式(26)(2 7) (28) のようにする。ここで、d/d t は時間微 分を表し、三角関数に関する微分の演算に現れる d θ / d tには推定速度ωmを電気角速度に変換したものを用 いる。また、d (i u) / d t、d (i v) / d t、d

46 $\cdots (25)$

* w相電流値 i wは式(13)のように、u 相電流値 i u とv相電流値ivとの和の符号を変えたものとする。こ こで、Rはステータ巻線一相あたりの抵抗、1aはステ ータ巻線一相あたりの漏れインダクタンス、Laはステ ータ巻線一相あたりの有効インダクタンスの平均値、お よびしasはステータ巻線一相あたりの有効インダクタ ンスの振幅である。

[0218]

(iw) / d t は、1次オイラー近似で求める。なお、*10

eu = vu- R·iu (la+La) ·d (iu) /d t - Las·cos (2 θ m) · d (i u) / d t - Las·iu·d (cos (2θm))/dt + 0. $5 \cdot La \cdot d(iv) / dt$ Las·cos (2θm-120°) · d (i v) / d t - Las·iv·d (cos (2θm-120°))/dt + 0. $5 \cdot La \cdot d (iw) / dt$ Las·cos (2θm+120°) · d (iw) / d t - Las·iw·d $\{cos(2\theta m+120^\circ)\}/dt$...(26)e v = v v $-R \cdot i v$ — (la+La) · d (i v) / d t - Las·cos $(2\theta m+120^{\circ})$ ·d (iv) /d t - Las·i v·d {cos (2θm+120°)}/dt + 0. $5 \cdot La \cdot d (iw) / dt$ Las·cos (2 θm) ·d (iw) /d t - Las·iw·d (cos (2θm))/dt + 0. $5 \cdot La \cdot d (iu) / dt$ – Las·cos (2θm–120°) ·d (iu)/dt - Las·iu·d {cos (2θm-120°)}/dt ...(27)e w = v w $-R \cdot iw$ — (la+La) · d (iw) / d t Las·cos $(2 \theta m-1 2 0^{\circ})$ · d (iw) / d t - Las·iw·d (cos (2θm?120°))/dt + 0.5 · La · d (i u) / d t - Las·cos $(2\theta m+120^{\circ})$ ·d (iu)/d t - Las·iu·d $\{cos(2\theta m+120^\circ)\}/dt$ + 0.5 · La · d (i v) / d t - Las·cos $(2 \theta m) \cdot d (i v) / d t$ - Las·iv·d {cos (2θm)} / dt ...(28)

【0219】推定相選択部73は、偏差の大きさが最も 大きい相を推定に使用する相(推定相)にする。なお、 補償量αも考慮する。下記式(29)のように、(推定 角度 θ m+補償量 α)が 0 ° 以上 3 0 ° 未満のとき、推 50 3 3 0 ° 未満のとき、推定相指標 η を 5 にする。そし

定相指標 η を 0 にする。(推定角度 θ m+補償量 α)が 30°以上90°未満のとき、推定相指標 η を1にす る。……。(推定角度 θ m + 補償量 α) が 2 7 0°以上

集(25): 000-350489 (P2000-350489A)

47

48

て、(推定角度 θ m + 補償量 α) が 3 3 0°以上 3 6 0 °未満のとき、推定相指標 η を 0 にする。ここで、推定

相指標 $\eta = 0$ 、3のとき推定相は u 相であり、推定相指*

*標 $\eta = 1$ 、4のとき推定相はw相であり、推定相指標 η = 2、5のとき推定相はv相である。

[0220]

 $\eta = 0$ 推定相 = u 相 ($0^{\circ} \leq \theta \, m + \alpha < 30^{\circ} \, \mathcal{O} \geq \delta$ η=1 推定相=w相 $(30^{\circ} \leq \theta \, \text{m} + \alpha < 90^{\circ} \, \text{obs})$ n = 2 推定相 = v 相 ($90^{\circ} \leq \theta \, \text{m} + \alpha < 150^{\circ} \, \text{のとき}$) $\eta = 3$ 推定相=u相 $(150^{\circ} \leq \theta \, \text{m} + \alpha < 210^{\circ} \, \text{obs})$ $\eta = 4$ 推定相=w相 $(210° \le \theta m + \alpha < 270° のとき)$

 $\eta = 5$ 推定相 = v相 $(270° \le \theta m + \alpha < 330° のとき)$

 $\eta = 0$ 推定相 = u 相 (330° $\leq \theta$ m + α < 360° のとき)

...(29)

【0221】誘起電圧選択値選択部74は、推定相の誘 起電圧値を誘起電圧選択値 e s にする。下記式 (30) のように、推定相指標 $\eta = 0$ 、および3のとき、u相誘 起電圧値euを誘起電圧選択値esにする。また、推定 相指標 $\eta = 2$ 、および5のとき、v相誘起電圧値 e v e e e

es = eu (
$$\eta = 0$$
、3のとき)
es = ev ($\eta = 2$ 、5のとき)
es = ew ($\eta = 1$ 、4のとき)

※誘起電圧選択値esにする。さらに、推定相指標 n = 1、および4のとき、w相誘起電圧値ewを誘起電圧選 択値esにする。

[0222]

誘起電圧値の基準値である誘起電圧基準値 e s mを作成 する。下記式(31)のように、推定相 $\eta=0$ 、3のと き、 u 相の誘起電圧基準値(u 相誘起電圧基準値 e u m)を誘起電圧基準値esmにする。また、推定相n= 2、5のとき、v相の誘起電圧基準値(v相誘起電圧基★

...(30)

【0223】誘起電圧基準値値作成部75は、推定相の 20★準値evm)を誘起電圧基準値esmにする。推定相ヵ =1、4のとき、w相の誘起電圧基準値(w相誘起電圧 基準値ewm)を誘起電圧基準値esmにする。ロータ の永久磁石に正弦波着磁がなされているとして、各相の 誘起電圧基準値esmは、正弦波とする。

[0224]

```
esm = eum
                 (n = 0, 3 のとき)
esm = evm (\eta = 2, 5のとき)
esm = ewm
                 (n=1, 4 のとき)
eum = -em \cdot sin (\theta m + \alpha)
e v m = -e m \cdot s i n (\theta m + \alpha - 1 2 0^{\circ})
ewm = -em \cdot s i n (\theta m + \alpha - 240^{\circ})
                                                     ...(31)
```

【0225】偏差作成部76は、誘起電圧選択値esと 誘起電圧基準値esmとの偏差εを作成する。下記式 (32) のように、誘起電圧選択値 e s から誘起電圧基☆

【0227】 [図9の説明] ゲインリミット作成部77

[0226]

 $\varepsilon = es - esm$

は、推定速度ωmが大きくなると大きくなる比例ゲイン κρと積分ゲインκiと比例リミットζρと積分リミッ ト ζ i とを作成する。図9(a)のように、推定速度 ω p をある設定された値 κ p 1 にする。また、推定速度 ωmがある設定された値ω2より大きいとき比例ゲインκ

pをある設定された値κp2にする。さらに、推定速度 ω が ω 1から ω 2の範囲にあるときは、(ω 1, κ p 1) と $(\omega 2, \kappa p 2)$ とで補間した値を比例ゲイン κ pにする。また、同様に、図9(b)(c)(d)のよ◆

$$\sigma = -1 \quad (\eta = 0, 2, 4)$$

 $\sigma = +1 \quad (\eta = 1, 3, 5)$

【0230】次に、角度推定周期毎に推定角度 θ mをど

...(32)

◆うに、積分ゲインκi、比例リミットζp、および積分 リミットζiを作成する。

☆準値esmを減算したものを偏差εにする。

【0228】角度速度補正部78は、偏差εを0に収斂 させるように推定角度 θ m を補正する。また、推定速度 mがある設定された値 ω 1より小さいとき比例ゲイン κ 40 ω mを作成する。まず、補正する向きを示す補正符号 σ を作成する。下記式(33)のように、推定相指標 η = 0、2、4のとき、補正符号 σ を-1にする。また、推 定相指標 $\eta = 1$ 、3、5のとき、補正符号 σ を 1 にす る。

[0229]

...(33)

(34)のように、偏差εに補正符号σを乗じ比例ゲイ れだけ進めるかを示す進み量 θ mpを作成する。下記式 50 ν kp乗じ、その乗算結果の絶対値が比例リミット ζ p

特(26): 000-350489 (P2000-350489A)

49

を越えないように制限した値を進み量比例項 θ m p p と する。また、下記式 (35) のように、偏差εに補正符 号σを乗じ積分ゲインki乗じ、その乗算結果の絶対値 が積分リミットくpを越えないように制限した値を進み*

$$\theta m p p = \kappa p \cdot \sigma \cdot \epsilon, -\zeta p$$

$$\theta m p i = \kappa i \cdot \sigma \cdot \epsilon, -\zeta i$$

$$\theta m p = \theta m p p + \Sigma \theta m p i$$

【0232】次に、推定角度 θ m を進み量 θ m p だけ進 める。下記式(37)のように、進み量 θ m p を積分し※ $\theta m = \Sigma \theta m p$

【
$$0234$$
】そして、進み量 θ m p に 1 次ディジタルローパスフィルタ(LPF)を作用したものを推定速度 ω m とする。具体的には、下記式(38)のようにする。ここで、 ω m (n) は今回の推定速度であり、 ω m (n -1) は前回の推定速度である。また、KTPWは進み \star

 $= KLW \cdot (KTPW \cdot \theta m p)$

【0236】誘起電圧振幅演算値作成部81は、各相の 誘起電圧値の絶対値を加算した結果に基づき誘起電圧演 起電圧値euの絶対値とv相誘起電圧値evの絶対値と w相誘起電圧値ewの絶対値との加算結果にある設定さ れた係数KECを乗じたものを誘起電圧演算値 e c とす☆ *量積分項 θ m p i とする。そして、進み量積分項 θ m p iを積分した結果と進み量比例項θmppとの加算結果 を進み量 θ m p とする。

[0231]

$$\leq \theta \operatorname{mpp} \leq \zeta \operatorname{p} \cdots (34)$$

$$\leq \theta \operatorname{mpi} \leq \zeta \operatorname{i} \cdots (35)$$

$$\cdots (36)$$

※たものを推定角度 θ mとする。

[0233]

★量を速度の単位に変化する係数である。さらに、KLW はローパスフィルタの係数であり、0から1までの値を とり、小さくなるほどローパスフィルタの効果が大きく なる。

[0235]
$$\omega$$
 m (n)
+ (1-KLW) $\cdot \omega$ m (n-1)
 $\cdot \cdot \cdot$ (38)

☆る。ここで、係数KECは下記式 (40) のように与え られ、各相が正弦波であるとして、各相の絶対値の和を 算値 e c を作成する。下記式(39)のように、u 相誘 20 振幅に変換するために乗算される。なお、 θ m%60は 推定角度 θ mを 60で除算したときの剰余である。

[0237]

e c = KEC · (|eu|+|ev|+|ew|) · · · (39)
KEC = 0.
$$5/s$$
 in { $(\theta \text{ m}\%60) + 60^{\circ}$ } · · · (40)

【0238】誘起電圧振幅推定値変更部82は、誘起電 圧振幅演算値 e c に 1 次ディジタルローパスフィルタ (LPF) を作用したものを誘起電圧振幅推定値 e m と する。具体的には、下記式(41)のようにする。ここ で、em(n)は今回の誘起電圧振幅推定値であり、e 30 m (n-1) は前回の誘起電圧振幅推定値である。ま た、KLEMはローパスフィルタの係数であり、Oから 1までの値をとり、小さくなるほどローパスフィルタの 効果が大きくなる。なお、ローパスフィルタは、誘起電◆

$$em(n) = KLEM \cdot ec +$$

【0240】 [図6の説明] 次に、実施例1の特徴の1 つである脱調検出部90の動作を説明する。まず、脱調 検出部90の動作の原理を説明する。 IPMSM10 は、永久磁石13が配置されるため、ロータ12が回転 40 すると誘起電圧が発生する。この誘起電圧の振幅は、ロ ータ12が回転する速度に比例して大きくなる。ここ で、角度推定部70は、この誘起電圧の振幅を誘起電圧 振幅推定値emとして推定している。例えば、ユーザー がパラメータを設定するとき、角度推定部70で使用す るインダクタンスとして誤った値を入力し、まれに脱調 することがある。そして、脱調が発生したとき、角度推 定部70が推定する誘起電圧振幅推定値 e m と推定速度 ωmとの間に矛盾が生じる。

◆圧振幅演算値ecと前回の誘起電圧振幅推定値em(n -1)との誤差(振幅誤差)を求め、これに係数KLE Mを乗じた結果を前回の誘起電圧振幅推定値em (n-1) に加えたものを今回の誘起電圧振幅推定値 e m (n)とする。このように、ローパスフィルタを用いる ことで、振幅誤差を算出し、この振幅誤差が小さくなる ように、誘起電圧振幅推定値em(n)を補正する。 [0239]

$$(1-KLEM) \cdot em (n-1)$$
 $\cdot \cdot \cdot (41)$

ーボオン信号sv*をLにして、駆動部30における通 電を禁止する。また、実施例1の位置センサレスモータ 制御装置の外部にもサーボオン信号 s v *を出力し、上 位CPUやユーザーに知らせる。そして、上位CPUが 再起動などの処理をしたり、ユーザーがパラメータを変 更するなどをし、脱調からの復旧を図る。

【0242】 [図10の説明] では、脱調検出部90の 動作の詳細を説明する。誘起電圧振幅脱調判断値作成部 91は、ロータ12が推定速度ωmで回転するときに発 生すると予測される誘起電圧にある幅を持たせた範囲の 上限値と下限値とを作成する。図10は、実施例1にお ける推定速度ωmに対する誘起電圧振幅上限値eout hと誘起電圧振幅下限値eoutlの関係図である。図 【0241】脱調検出部90は、この矛盾を検出し、サ 50 10のように、誘起電圧振幅脱調判断上限値eouth

特(27): 0 0 0 - 3 5 0 4 8 9 (P 2 0 0 0 - 3 5 0 4 8 9 A)

51

52

を、切片がEOUTH0であり傾きがEOUTH1である推定角度 ω mに関する1次関数とする。また、誘起電圧振幅脱調判断下限値 e o u t l を、 ω m軸との交点がEOUTL0であり傾きがEOUTL1である推定角度 ω mに関する1次関数とする。

【0243】脱調判断部92は、誘起電圧振幅推定値emが誘起電圧振幅脱調判断上限値eouthと誘起電圧振幅脱調判断下限値eoutlとで表される範囲外のとき、脱調と判断する。下記式(42)のように、誘起電*

*圧振幅推定値 e mが、誘起電圧振幅脱調判断下限値 e o u t·l よりも小さいとき、脱調と判断し、サーボオン信号 s v *をしにする。また、誘起電圧振幅推定値 e m が、誘起電圧振幅脱調判断上限値 e o u t h よりも大きいとき、脱調と判断し、サーボオン信号 s v *をしにする。これら以外のとき、脱調していないと判断し、サーボオン信号 s v *をHにする。

[0244]

 $sv* = L \quad (em < eoutl)$

sv* = H (eoutl $\leq em \leq eouth$)

40

sv* = L (em > eouth)

【0245】以上のように動作させることにより、実施例1の位置センサレスモータ制御装置は、高分解能で高精度に角度を推定することができる。また、実施例1の位置センサレスモータ制御装置は、相電圧が飽和しても角度を推定することができる。さらに、実施例1の位置センサレスモータ制御装置は、誘起電圧定数が変化しても高精度に角度を推定することができる。

【0246】他の実施例においては、脱調検出部90は、偏差 ε が定められた値より大きい場合に、脱調と判断し、サーボオン信号sv*をLにする。また、偏差 ε が定められた値より小さい場合に、脱調していないと判断し、サーボオン信号sv*をHにする。この実施例においては、単発的なノイズにより脱調検出部90が誤動作することを防止するため、偏差 ε が定められた値より大きい状態が、定められた時間以上連続する場合、又は定められた回数以上連続する場合、脱調と判断し、サーボオン信号sv*をLにすることが、より好ましい。

【 0 2 4 7 】以下、実施例 1 の位置センサレスモータ制 30 御装置の効果を説明する。

【0248】従来例1の位置センサレスモータ制御装置は、3相の誘起電圧値を作成し、これらの誘起電圧値に 基づき比較結果を作成し、この比較結果の論理に基づき 矩形波駆動をしていた。そのため、通電相の切り替わり 時に、電流が歪み、トルクリップルが発生していた。

【0249】実施例1の位置センサレスモータ制御装置は、誘起電圧基準値を作成し、誘起電圧値との差である偏差 ϵ を用いて推定角度 θ mを補正する。そして、補正された推定角度 θ mに基づき正弦波状の相電流指令値iu*、iv*、iw*を作成し制御することで、正弦波状の相電流を流す。

【0250】このように、実施例1の位置センサレスモータ制御装置は、誘起電圧値と誘起電圧基準値との偏差 ε を用いて推定角度 θ mを作成し、正弦波状の相電流を流すことで、トルクリップルが低減された位置センサレスモータ制御装置を実現する。

【0251】従来例1の位置センサレスモータ制御装置は、各相の誘起電圧値を演算し、それらの0クロスにおいて、角度を特定する。すると、角度を検知できるの

は、電気角1回転当たり6回であり、分解能は電気角で60°である。そのため、この角度を補間し使用すると、速度が急変したときに応答できない。また、この角度に基づき速度を作成し速度制御すると、速度制御の応答性が低い。

 $\cdots (42)$

【0252】実施例1の位置センサレスモータ制御装置は、誘起電圧基準値を作成し、誘起電圧値との差である偏差 ϵ を用いて推定角度 θ mを補正する。この推定角度 θ mの補正は、角度推定周期 Δ Tごとに行われるため、求められた推定角度 θ mは分解能が高く精度が高い。また、この推定角度 θ mに基づき作成された推定速度 ω m も精度が高い。

【0253】このように、実施例1は、角度推定周期 Δ Tごとに偏差 ϵ を求め推定角度 θ mを補正することで、 常に高分解能で高精度な推定角度 θ mを作成する位置セ ンサレスモータ制御装置を実現する。

【0254】推定相をある特定の1相に固定したときを考えると、ある特定の角度付近において角度を推定できるのみである。例えば、推定相がu相のとき、角度 θ が 0°と180°付近でのみ角度の推定を実現する。そのため、他の角度では角度を推定できないため、推定角度 θ mの精度が悪くなる。

【0255】実施例1の位置センサレスモータ制御装置は、推定角度 θ mにより、推定に用いる相(推定相)を切り替える。ここで、この推定相の誘起電圧基準値e s mを作成し、この推定相の誘起電圧値である誘起電圧選択値e s を作成する。そして、誘起電圧基準値e s m と誘起電圧選択値e s との差である偏差e を用いて推定角度e m を補正する。こうすることで、常に、推定角度e m の推定誤差の影響が最も現れる相の偏差e を用いて推定角度e m を補正する。

【0256】このように、実施例1は、推定角度 θ mにより、推定に用いる相を切り替えることで、常に高精度な推定角度 θ mの推定を行う位置センサレスモータ制御装置を実現する。

【0257】従来例2の位置センサレスモータ制御装置は、ステータ巻線に流れる相電流とステータ巻線間に印50 加される電圧とが正弦波状であることを前提とし、d軸

とq軸とで表される回転座標系で制御を行う。したがっ て、ロータの速度や出力トルクが増大し必要な相電圧が 大きくなると、相電圧が飽和するため、正しく角度を推 定できず、高い角速度や大きな出力トルクを実現できな かった。

【0258】実施例1の位置センサレスモータ制御装置 は、ステータ巻線の各相の相電圧方程式に基づき、誘起 電圧基準値esmを作成し、誘起電圧値との差である偏 差 ε を用いて推定角度 θ m を補正する。ステータ巻線の 相電圧方程式は、相電流と相電圧とが正弦波状でなくて 10 も成り立つため、相電圧が飽和しても推定角度 θ mを推 定する。

【0259】このように、実施例1は、ステータ巻線の 各相の相電圧方程式に基づき推定角度 θ mを補正するこ とで、相電圧が飽和しても推定角度 θ m を作成し高速や 大きな出力トルクでモータを駆動する位置センサレスモ ータ制御装置を実現する。

【0260】従来例2の位置センサレスモータ制御装置 は、モータ定数である抵抗値、d軸インダクタンス、q 軸インダクタンス、および誘起電圧定数を電圧方程式に 20 あてはめ角度の推定を行う。したがって、モータが駆動 されモータの温度が変化すると、永久磁石の磁束量が変 化し、誘起電圧定数が変化するため、正しく角度を推定 できなかった。

【0261】実施例1の位置センサレスモータ制御装置 は、各相の誘起電圧値から誘起電圧振幅推定値 e mを補 正し、この誘起電圧振幅推定値emを用いて誘起電圧基 準値 e s mを作成し、角度誤差 Δ θ に応じ変化する偏差 εを求め推定角度θを作成する。ここで、速度と誘起電 圧定数とから誘起電圧値を求めずに、各相の相電圧か ら、誘起電圧以外の成分を差し引くことにより誘起電圧 振幅推定値emを求めるため、誘起電圧定数の変化の影 響を受けない。

【0262】このように、実施例1は、誘起電圧振幅推 定値emを補正することで、誘電圧定数が変化しても高 精度な推定角度 θ mを作成する位置センサレスモータ制 御装置を実現する。

【0263】脱調を検出しないときを考えると、脱調時 には、位置センサレスモータ制御装置に速度指令を与え ても、この速度指令とおりにロータ12が回転しない。 【0264】実施例1の位置センサレスモータ制御装置 は、ロータ12が推定速度ωmで回転するときに発生す ると予測される誘起電圧の振幅にある幅を持たせた範囲 の上限値eouthと下限値eoutlとを作成する。 そして、誘起電圧推定値emがこの上限値eouthと 下限値eoutlの範囲外のとき、脱調と判断し、サー ボオン信号sv*をLにする。すると、駆動部30にお ける通電が禁止される。また、実施例1の位置センサレ スモータ制御装置の外部にもサーボオン信号 s v *を出 カし、上位CPUによる再起動やユーザーによるパラメ 50 ータの再設定を求めるなどをする。

【0265】このように、実施例1は、推定速度ωmと 誘起電圧振幅推定値emとの矛盾を検知することで、脱 調を検知する位置センサレスモータ制御装置を実現す る。

【0266】角度推定のゲインが一定であるときを考え ると、ロータの回転する速度により実効的なゲインが変 化する。偏差 ϵ の大きさが同一であれば、進み量 θ p を 変化させる量は同一である。ここで、高速時と比較し て、低速時において、角度推定周期ATごとに進む角度 (進み量θp) が小さい。そのため、低速時において、 進み量 θ pに対して進み量 θ pを変化させる割合が大き くなる。すると、低速時において最適なゲインに設定す ると、高速時でのゲインは小さなものとなり、高速時に おいて最適なゲインに設定すると、低速時でのゲインは 大きなものとなる。したがって、低速から高速まで最適 なゲインとならず、角度推定が不安定となることがあ

【0267】実施例1の位置センサレスモータ制御装置 は、推定速度ωmが大きくなると比例ゲインκρと積分 ゲインκiとを大きくする。そして、低速から高速まで 最適なゲインを保つ。

【0268】このように、実施例1は、速度により角度 推定のゲインを変化させることで、低速から高速まで安 定に角度推定する位置センサレスモータ制御装置を実現

【0269】また、角度推定のリミットに関しても同様 である。実施例1は、速度により角度推定のリミットを 変化させることで、低速から高速まで安定に角度推定す る位置センサレスモータ制御装置を実現する。

30

40

【0270】補償量αを使用しないときを考える。補償 推定角度 θ mを作成するが、多少誤差が含まれる。

【0271】実施例1の位置センサレスモータ制御装置 は、この誤差をあらかじめ実験などで求めテーブル化 し、角度推定 θ mを補償する量を示す補償量 α を作成す る。そして、この補償量 α を推定角度 θ mに加算した角 度に基づき誘起電圧基準値esmを作成することで角度 推定の誤差を補償する。

【0272】このように、実施例1は、補償量αにより 角度推定の誤差を補償し、さらに精度のよく角度を推定 する位置センサレスモータ制御装置を実現する。

【0273】実施例1の位置センサレスモータ制御装置 は、逆転指令時のとき、u相電流値iuとv相電流値i vとを交換し、u 相電圧指令値 v u *と v 相電圧指令値 v v *とを交換する。こうすることで、u 相のステータ 巻線11uとv相のステータ巻線11vとの接続を変更 したことと同様の作用があるため、簡単なソフトの変更 のみで逆転を実現する。

【0274】このように、実施例1は、逆転指令時に相

電流値同士を交換し相電圧指令値同士を交換すること で、簡単なソフトの変更のみで容易にロータを逆転させ る位置センサレスモータ制御装置を実現する。

【0275】《実施例2》次に、本発明の実施例2にお ける位置センサレスモータ制御装置を説明する。実施例 1の位置センサレスモータ制御装置は、電流制御部50 で作成される相電圧指令値vu*、vv*、vw*から 相電圧値vu、vv、vwを作成した。実施例2の位置 センサレスモータ制御装置は、電圧センサを付加し相電 圧を直接検知するものである。そして、高分解能で高精 10 度な角度の推定を実現し、相電圧が飽和しても角度の推 定を実現し、かつ、誘起電圧定数が変化しても高精度な 角度の推定を実現する。

【0276】まず、実施例2の位置センサレスモータ制 御装置の構成を説明する。図11は、実施例2における 位置センサレスモータ制御装置の構成を示すブロック図 である。また、図12は、実施例2における角度推定部 の構成を示すブロック図である。

[図11の説明] 実施例2の位置センサレスモータ制御 装置は、実施例1の位置センサモータ制御装置と比較し 20 て、ステータ巻線11u、11v、11wの端子電圧を それぞれ検知しアナログu相電圧値vua、アナログv 相電圧値vva、アナログw相電圧値vwaを出力する 電圧センサ223 u、223 v、223 wが付加され る。また、マイコン222の構成が実施例1と異なる。 また、このマイコン222の中の電流制御部250と角 度推定部270とが実施例1と異なる。また、この角度 推定部270の中の相電圧値作成部271が実施例1と 異なる。入出力に関して実施例1と異なることは、電流 制御部250が相電圧指令値vu*、vv*、vw*を 30 出力しないことと、角度推定部270が相電圧指令値 v u*、vv*、vw*の代わりにアナログ相電圧値vu a、vva、vwaを入力することである。

【0277】その他の構成は、実施例1と同様であり、 同一の符号を付け説明を省略する。

【0278】次に、実施例2の位置センサレスモータ制 御装置の動作を説明する。

【0279】電圧センサ223u、223v、223w は、それぞれステータ巻線11 u、11 v、11 wに印 加される電圧を検知し、アナログu相電圧値vua、ア 40 ナログv相電圧値vva、アナログw相電圧値vwaを 作成する。これらのアナログ相電圧値には、適当なロー パスフィルタが作用される。

【0280】 [図12の説明] 相電圧値作成部271 は、アナログ・ディジタル・コンバータから構成され、 それぞれアナログ値であるアナログu相電圧値vua、 アナログv相電圧値vva、アナログw相電圧値vwa をデジタル値であるu相電圧値vu、v相電圧値vv、 w相電流値vwにアナログ/ディジタル変換する。

は、相電圧指令値vu*、vv*、vw*から相電圧値 vu、vv、vwを作成した。実施例2の位置センサレ スモータ制御装置のように、電圧センサを付加し相電圧 を直接検知しても、実施例1と同様の作用を得られるた め、実施例1と同様の効果を得る。

【0282】また、実施例2は、電圧センサ223 u、 223 v、223 wを付加しステータ巻線11 u、11 v、11wの電圧を直接検知するすることで、相電圧値 vu、vv、vωの精度を上げ、推定角度θmの推定精 度がさらに高い位置センサレスモータ制御装置を実現す る。

【0283】《実施例3》

[図13の説明] 次に、本発明の実施例3における位置 センサレスモータ制御装置について説明する。実施例1 の位置センサレスモータ制御装置は、3相の相電流指令 値iu*、iv*、iw*を作成し、この相電流指令値 iu*、iv*、iw*とおりにステータ巻線11u、 11 v、11 wに電流が流れるように電流制御した。実 施例3の位置センサレスモータ制御装置は、相電流を推 定角度 θ mによる回転座標系である γ δ 軸上の γ 軸電流 値 $i \gamma$ 、 δ 軸電流値 $i \delta$ に変換し、これらがそれぞれ γ 軸電流指令値iγ*、δ軸電流指令値iδ*とおりにな るように電流制御する。そして、ステータ巻線に流れる 電流とステータ巻線に印加される電圧とに基づき、高分 解能で高精度な角度の推定を実現し、かつ、相電圧が飽 和しても角度の推定を実現する。

【0284】まず、実施例3の位置センサレスモータ制 御装置の構成を説明する。図13は、実施例3の位置セ ンサレスモータ制御装置の構成を示すブロック図であ る。マイコン322のみが実施例1と異なる。また、こ のマイコン322の中の電流制御部350が実施例1と 異なる。その他の構成は実施例1と同様であり、実施例 1と同様の構成には同一の符号を付け説明を省略する。 【0285】 [図14の説明] 電流制御部350は、ア ナログu相電流値iuaとアナログv相電流値ivaと 回転方向指令ωdir*とγ軸電流指令値iγ*とδ軸 電流指令値 ίδ * と推定角度 θ m と推定速度ω m とを入 力しu相電流値iuとv相電流値ivとu相電圧指令値 v u *と v 相電圧指令値 v v *と w 相電圧指令値 v w * とスイッチング指令信号guh、gul、gvh、gv l、gwh、gwlとを出力する。

【0286】電流制御部350は、アナログu相電流値 i u a を入力し交換前 u 相電流値 i u 1 を出力するAD C51 uと、アナログv相電流値ivaを入力し交換前 v相電流値iv1を出力するADC51vと、交換前u 相電流値 i u 1 と交換前 v 相電流値 i v 1 と回転方向指 令ωdir*を入力しu相電流値iuとv相電流値iv とを出力する相電流値交換部52と、 u 相電流値 i u と v相電流値 i vと推定角度 θ mとを入力しγ軸電流値 i 【0281】実施例1の位置センサレスモータ制御装置 50 γとδ軸電流値 i δとを出力する三相二相変換部353

と、γ軸電流値iγとδ軸電流値iδとγ軸電流指令値 i γ * と δ 軸電流指令値 i δ * と推定速度 ω m とを入力 しγ軸電圧指令値 ν γ * と δ 軸電圧指令値 ν δ * とを出 力する電圧指令値作成部354と、γ軸電圧指令値 v γ *とδ軸電圧指令値 v δ *と推定角度 θ m とを入力し u 相電圧指令値vu*とv相電圧指令値vv*とw相電圧 指令値 v w * とを出力する二相三相変換部 3 5 5 と、 u 相電圧指令値vu*とv相電圧指令値vv*とw相電圧 指令値 v w * と回転方向指令ω d i r * を入力し交換後 u 相電圧指令値 v u * 1 と交換後 v 相電圧指令値 v v * 10 1と交換後w相電圧指令値vw*1とを出力する相電圧 指令値交換部56と、交換後 u 相電圧指令値 v u * 1 と 交換後 v 相電圧指令値 v v * 1 と交換後 w 相電圧指令値 vw*1とを入力しスイッチング指令信号guh、gu l、gvh、gvl、gwh、gwlを出力するPWM 制御器57とから構成される。

【0287】次に、実施例3の位置センサレスモータ制 御装置の動作を説明する。電流制御部350の動作のみ が実施例1と異なる。その他の構成の動作は実施例1と 同様であり、説明を省略する。

【0288】電流制御部350は、ある設定された時間*

 $i \gamma = \{ \sqrt{(2)} \} \cdot \{ i u \cdot s i n (\theta m + 6 0^\circ) + i v \cdot s i n \theta m \}$ • • • (43) $i \delta = \{ \int (2) \} \cdot \{ i u \cdot c \circ s (\theta m + 6 0^{\circ}) + i v \cdot c \circ s \theta m \}$ $\cdot \cdot \cdot (44)$

[0291]

【0292】電圧指令値作成部354は、γ軸電流値 i yが y 軸電流指令値 i y *とおりになるように比例積分 制御(PI制御)と非干渉制御とを用いてγ軸電圧指令 値vγ*を制御する。また、δ軸電流値iδがδ軸電流 指令値 i δ * とおりになるように比例積分制御 (P I 制 30 御)と非干渉制御とを用いてδ軸電圧指令値νδ*を制 御する。

【0293】下記式 (45) のように、y軸電流指令値※

$$v \gamma * = KPD \cdot (i \gamma * - i \gamma) + KID \cdot \Sigma (i \gamma * - i \gamma)$$

+ $R \cdot i \gamma * - \omega e \cdot Lq \cdot i \delta *$ $\cdot \cdot \cdot (45)$

【0295】また、下記式 (46) のように、δ軸電流 指令値 i δ *と δ 軸電流値 i δ の差を比例ゲイン K P Q、および積分ゲインKIQで比例積分制御した結果 に、相抵抗Rに δ 軸電流指令値i δ *を乗じた結果を加 算し、角速度ωeにd軸インダクタンスLdを乗じさら★40 【0296】

★にγ軸電流指令値iγ*を乗じた結果を加算し、角速度 ωeに永久磁石13によるdq軸巻線鎖交磁束実効値φ を乗じた結果を加算したものを δ 軸電圧指令値 ν δ * と する。

[0294]

 $v \delta * = KPQ \cdot (i \delta * - i \delta) + KIQ \cdot \Sigma (i \delta * - i \delta)$ $+R \cdot i \delta * + \omega e \cdot Ld \cdot i \gamma * + \omega e \cdot \phi$...(46)

【0297】二相三相変換部355は、推定角度 θ mに よる回転座標系である γ δ 軸上の γ 軸電圧指令値 ν γ * とδ軸電圧指令値 ν δ * とを静止座標系に変換し、ステ 一夕巻線11u、11v、11wに印加するu相電圧指 令値 v u * と v 相電圧指令値 v v * と w 相電圧指令値 v w*とを作成する。具体的には、下記式 (47)、(4☆ ☆8)、(49)のようにする。ただし、駆動部30が電 源31の電圧よりも大きな電圧をステータ巻線11 u、 11 v、11 wに印加することができないため、式 (1 5) (17) (19) のようなリミットを設ける。 [0298]

$$vu* = \{\sqrt{(2/3)}\} \cdot \{v\gamma*\cdot cos\theta m - v\delta*\cdot sin\theta m\}$$

* (電流制御周期)ごとに起動され、ADC51 u、51 v、相電流値交換部52、三相二相変換部353、電圧 指令値作成部354、二相三相変換部355、相電圧指 令値交換部56、PWM制御器57の順に下記の動作を し、γ軸電流指令値 i γ *、およびδ軸電流指令値 i δ *とおりにステータ巻線11u、11v、11wに電流 が流れるようにスイッチング信号guh、gul、gv h、gvl、gwh、gwlを制御する。

【0289】ADC51u、51vは、および、相電流 値交換部52は、実施例1と同様であり説明を省略す る。

【0290】三相二相変換部353は、ステータ巻線1 1 u、11v、11wに流れる電流を示す電流値を推定 角度 θ mによる回転座標系である γ δ 軸上の γ 軸電流値 iγとδ軸電流値iδに変換する。また、後述の二相三 相変換部355は、ステータ巻線11u、11v、11 wに印加する電圧について三相二相変換部353で行わ れる変換の逆変換を行う。具体的には、三相二相変換部 353は、下記式(43)、(44)のようにγ軸電流 20 値 i γ と δ 軸電流値 i δ とを作成する。

※i y *と y 軸電流値 i y の差を比例ゲインKPD、およ び積分ゲインKIDで比例積分制御した結果に、ステー 夕巻線一相あたりの抵抗Rにγ軸電流指令値 i γ * を乗 じた結果を加算し、角速度ωeにq軸インダクタンスL qを乗じさらにδ軸電流指令値iδ*を乗じた結果を減 算したものをγ軸電圧指令値νγ*とする。ここで、角 速度 ω e は推定速度 ω mから計算される。

59 $v \, v \, * = \{ \{ \sqrt{(2/3)} \} \cdot \{ v \, \gamma \, * \cdot c \, o \, s \, (\theta \, m - 1 \, 2 \, 0^{\circ}) \} \\ - v \, \delta \, * \cdot s \, i \, n \, (\theta \, m - 1 \, 2 \, 0^{\circ}) \} \\ v \, w \, * = \{ \{ \sqrt{(2/3)} \} \cdot \{ v \, \gamma \, * \cdot c \, o \, s \, (\theta \, m + 1 \, 2 \, 0^{\circ}) \} \\ - v \, \delta \, * \cdot s \, i \, n \, (\theta \, m + 1 \, 2 \, 0^{\circ}) \} \\ \cdot \cdot \cdot \cdot (4 \, 9)$

【0299】相電圧指令値交換部56、およびPWM制 御器57は、実施例1と同様の動作をするため、その動 作の説明を省略する。

【0300】その他の構成の動作は実施例1と同様であり説明を省略する。

【0301】実施例1の位置センサレスモータ制御装置は、3相の相電流指令値iu*、iv*、iw*を作成し、電流制御した。実施例3の位置センサレスモータ制御装置のように、推定角度 θ mによる回転座標系である γ δ 軸上で電流制御しても、実施例1 と同様の作用をするため、実施例1 と同様な効果を持つ。

【0302】《実施例4》次に、本発明の実施例4における位置センサレスモータ制御装置について説明する。 実施例1の位置センサレスモータ制御装置は、厳密な相電圧方程式を用いて誘起電圧値を求めた。実施例4の位置センサレスモータ制御装置は、簡略化した相電圧方程式を用いて誘起電圧値を求めるものであり、角度推定の演算時間の短縮を実現する。

【0303】 [図15の説明] まず、実施例4の位置センサレスモータ制御装置の構成を説明する。図15は、実施例4における位置センサレスモータ制御装置の構成を示すブロック図であり、図16は、実施例4における角度推定部の構成を示すブロック図である。マイコン43022のみが実施例1と異なる。また、このマイコン422の中の速度制御部440と電流制御部450と角度推定部470とが実施例1と異なる。また、この角度推定部470の中の誘起電圧値演算部472が実施例1と異なる。その他の構成は実施例1に示したものと同様であり、実施例1と同様の構成には同一の符号を付け説明を省略する。

【0304】速度制御部440は、アナログ速度指令値*

* ω *aと推定速度 ω mとを入力し γ 軸電流指令値i γ *と δ 軸電流指令値i δ *と電流指令振幅iaと電流指令 10 位相 β Tとを出力する。電流制御部450は、アナログ u 相電流値i u aとアナログ v 相電流値i v a と回転方向指令 ω d i r *と γ 軸電流指令値i γ *と δ 軸電流指令値i δ *と推定角度 θ mとを入力しu 相電圧指令値 v u *と v 相電圧指令値 v v *と w 相電圧指令値 v w *と スイッチング指令信号guh、gul、gvh、gvl、gwh、gwlとを出力する。角度推定部470は、電流指令振幅iaと電流指令位相 β Tと u 相電圧指令値 v u *と v 相電圧指令値 v v *と w 相電圧指令値 v w *と補償量 α とを入力し推定角度 θ mと推定速度 ω m 20 と誘起電圧振幅推定値emとを出力する。

【0305】次に、実施例4の位置センサレスモータ制御装置の動作を説明する。速度制御部440、および電流制御部450は、それぞれ、実施例1の速度制御部40、および電流制御部50と比較して出力が異なるのみであり、動作は同様である。また、誘起電圧値演算部472以外の構成は、実施例3と同様である。そのため、この誘起電圧演算部472以外の構成の説明を省略する。

【0306】 [図16の説明] 誘起電圧値演算部472 は、各相の誘起電圧値(u 相誘起電圧値 e u、v 相誘起電圧値 e v 、v 相誘起電圧値 e v 、v 相誘起電圧値 e v 、v 相談起電圧値 e v 、v も の は電圧方程式を誘起電圧値について解き、これを簡略化する。具体的には、相電流値 i u 、i v 、i v が正弦波であると仮定し、電流指令振幅 i i i v とから相電流 i i v 、i v を作成し、これを式(26)(27)(28)に代入し、簡略化し、下記式(50)(51)(52)を得る。

[0307]

```
e u = vu

+ R · i a · s i n (\theta m + \beta T)

+ 1. 5 · (l a + L a) · c o s (\theta m + \beta T)

- 1. 5 · L a s · c o s (\theta m - \beta T) · · · (50)

e v = vv

+ R · i a · s i n (\theta m + \beta T - 120^{\circ})

+ 1. 5 · (l a + L a) · c o s (\theta m + \beta T - 120^{\circ})

- 1. 5 · L a s · c o s (\theta m - \beta T - 120^{\circ}) · · · · (51)

e w = vw

+ R · i a · s i n (\theta m + \beta T - 240^{\circ})

+ 1. 5 · (l a + L a) · c o s (\theta m + \beta T - 240^{\circ})

- 1. 5 · L a s · c o s (\theta m - \beta T - 240^{\circ}) · · · · (52)
```


【0308】実施例1の位置センサレスモータ制御装置 は、厳密な相電圧方程式を用いて誘起電圧値を求めた。 実施例4の位置センサレスモータ制御装置のように、簡 略化した相電圧方程式を用いて誘起電圧値を求めても、 実施例1と同様の作用を得られるため、実施例1と同様 の効果を得る。

【0309】また、実施例4は、実施例1と比較して各 相の相電圧値を簡略化することで、誘起電圧値(u相誘 起電圧値vu、v相誘起電圧値vv、w相誘起電圧値v w) を演算する時間を短縮する位置センサレスモータ制 10 御装置を実現する。

【0310】また、実施例4は、相電流波形が正弦波状 であると仮定した相電流値を使用することで、電流セン サ21u、21vが検知するアナログ相電流値iua、 ivaにノイズが混入しても、このノイズの影響なく角 度を推定する位置センサレスモータ制御装置を実現す る。《実施例5》次に、本発明の実施例5における位置 センサレスモータ制御装置について説明する。実施例1 の位置センサレスモータ制御装置は、推定角度 θ mによ り推定相を切り替えた。実施例5の位置センサレスモー 20 夕制御装置は、各相の内で誘起電圧値の大きさが一番小 さい相を推定相とするものである。

【0311】 [図17及び図18の説明] まず、実施例*

 $\eta = 0$ 推定相= u相 (| e u | が最小、e v > 0、e w < 0 のとき) $\eta = 1$ 推定相=w相 (| ew | が最小、ev > 0、eu < 0のとき) $\eta = 2$ 推定相 = v相 (|ev|が最小、ew>0、eu<0のとき) $\eta = 3$ 推定相= u相 (| eu | が最小、ew > 0、ev < 0のとき) (|ew|が最小、eu>0、ev<0のとき) $\eta = 4$ 推定相=w相 $\eta = 5$ 推定相 = v 相 (|ev|が最小、eu>0、ew<0のとき) · · · (53)

【0314】実施例1の位置センサレスモータ制御装置 は、推定角度 θ mにより推定相を切り替えた。実施例 5 の位置センサレスモータ制御装置のように、各相の内で 誘起電圧値の大きさが一番小さい相を推定相としても、 実施例1と同様の作用を得られるため、実施例1と同様 の効果を得る。

【0315】《実施例6》次に、本発明の実施例6にお ける位置センサレスモータ制御装置について説明する。 実施例1の位置センサレスモータ制御装置は、誘起電圧 値と誘起電圧基準値 e s m とのとの偏差に基づき推定角 40 度 θ mを補正した。実施例 6 の位置センサレスモータ制 御装置は、相電圧方程式を大幅に簡略化し、相電圧基準 値を作成し、相電圧値と相電圧基準値との偏差を求め、 この偏差が 0 に収斂するように推定角度 θ mを補正す る。また、実施例1の位置センサレスモータ制御装置 は、ステータ巻線の各相の相電圧方程式の係数のうち誘 起電圧振幅を補正した。実施例6の位置センサレスモー 夕制御装置は、相電圧振幅を補正する。

【0316】そして、高分解能で高精度な角度の推定を 実現し、相電圧が飽和しても角度の推定を実現し、か

*5の位置センサレスモータ制御装置の構成を説明する。 図17は、実施例5における位置センサレスモータ制御 装置の構成図を示すブロック図であり、図18は、実施 例5における角度推定部570の構成を示すブロック図 である。マイコン522のみが実施例1と異なる。ま た、このマイコン522の中の角度推定部570が実施 例1と異なる。また、この角度推定部570の中の推定 相選択部573が実施例1と異なる。その他の構成は実 施例1に示したものと同様であり、実施例1と同様の構 成には同一の符号を付け説明を省略する。

【0312】 [図19の説明] 次に、実施例5の位置セ ンサレスモータ制御装置の動作を説明する。推定相選択 部573は、各相の内で誘起電圧値の大きさが一番小さ い相を推定相とする。図19は、実施例5における各相 の誘起電圧値と推定相指標の関係を示す波形図である。 下記式(53)と図19のように、各相の内で誘起電圧 値の大きさが一番小さい相がu相であり、v相誘起電圧 値が正であり、かつw相誘起電圧値が負であるとき、推 定相指標をOとし、推定相をu相とする。他の場合につ いても、下記式(53)と図19より推定相指標ηと推 定相を求める。

[0313]

つ、モータ定数が変化しても高精度に角度を推定する位 置センサレスモータ制御装置を実現する。

【0317】 [図20の説明] まず、実施例6の位置セ ンサレスモータ制御装置の構成を説明する。図20は、 実施例6における位置センサレスモータ制御装置の構成 を示すブロック図である。実施例6の位置センサレスモ ータ制御装置は、マイコン622が実施例1と異なる。 このマイコン622の中の補償量作成部660と角度推 定部670と脱調検出部690とが実施例1と異なる。 その他の構成は、実施例1と同様であり、同一の符号を 付け説明を省略する。

【0318】実施例1において、角度推定部70は、誘 起電圧振幅推定値emを出力し、脱調検出部90は、こ の誘起電圧振幅推定値emを入力した。実施例6におい て、この誘起電圧振幅推定値 e mの代わりに相電圧振幅 推定値vmを入出力する。すなわち、実施例6におい て、角度推定部670は、相電圧振幅推定値vmを出力 し、脱調検出部690は、相電圧振幅推定値vmを入力 する。

【0319】 [図21の説明] 図21は、実施例6にお 50

ける角度推定部670の構成を示すブロック図である。 角度推定部670は、u相電圧指令値vu*とv相電圧 指令値ママ*とw相電圧指令値マw*とを入力しu相電 圧値vuとv相電圧値vvとw相電圧値vwとを出力す る相電圧値作成部71と、推定角度θ mと補償量αとを 入力し推定相指標 η を出力する推定相選択部 7 3 と、推 定相指標ηとu相電圧値vuとv相電圧値vvとw相電 圧値 v w とを入力し相電圧選択値 v s を出力する相電圧 選択値選択部674と、推定相指標 ηと推定角度 θ m と 補償量αと相電圧振幅推定値 v m とを入力し相電圧基準 10 値vsmを出力する相電圧基準値作成部675と、相電 圧選択値 v s と相電圧基準値 v s m とを入力し偏差 ε を 出力する偏差作成部676と、推定速度ωmを入力し比 例ゲインκpと積分ゲインκiと比例リミットζpと積 分リミット६iとを出力するゲインリミット作成部77 と、推定相指標 η と偏差 ε と比例ゲイン κ ρ と積分ゲイ ンκiと比例リミットζpと積分リミットζiとを入力 し推定角度 θ mと推定速度 ω m とを出力する角度速度補 正部78と、u相電圧値vuとv相電圧値vvとw相電 圧値 v w とを入力し相電圧振幅推定値 v mを出力する相 20 電圧振幅推定値補正部680とから構成される。

【0320】相電圧振幅推定値値補正部680は、u相 電圧値vuとv相電圧値vvとw相電圧値vwとを入力 し相電圧振幅演算値 v c を出力する相電圧振幅演算値作 成部681と、相電圧振幅演算値 v c を入力し相電圧振* *幅推定値vmを出力する相電圧振幅推定値変更部682 とから構成される。

64

【0321】 [図22の説明] 図22は、実施例6にお ける脱調検出部690の構成を示すブロック図である。 脱調検出部690は、推定速度ωmを入力し相電圧振幅 脱調判断上限値vouthと相電圧振幅脱調判断下限値 voutlとを出力する相電圧脱調判断値作成部691 と、相電圧振幅脱調判断上限値vouthと相電圧振幅 脱調判断下限値voutlと相電圧基準値vmとを入力 しサーボオン信号 s v *を出力する脱調判断部692と から構成される。

【0322】次に、本発明の実施例6の位置センサレス モータ制御装置の動作を説明する。補償量作成部66 0、角度推定部670、および脱調検出部690以外の 構成の動作は実施例1の構成の動作と同様であり説明は 省略する。

【0323】まず、実施例6の位置センサレスモータ制 御装置の角度推定の原理を説明する。dq軸上におい て、電圧方程式は下記式 (54) のように表される。 d 軸電流値id、q軸電流値iqを制御したとき、d軸電 圧値vd、q軸電圧値vqは一意に決まるため、その電 圧位相 β v も一意に決まり、下記式 (55) のようにな

[0324]

$$\begin{array}{rcll} v \, d & = & R \cdot i \, d & - & \omega \, e \cdot L \, q \cdot i \, q \\ v \, q & = & R \cdot i \, q & + & \omega \, e \, (\phi + & L \, d \cdot i \, d) & & \cdot \cdot \cdot & (5 \, 4) \\ \beta \, v & = - \, a \, t \, a \, n \, \left[\, \left\{ R \cdot i \, d - \omega \, e \cdot L \, q \cdot i \, q \right\} \, \middle/ \\ & & \left\{ R \cdot i \, q + \omega \, e \cdot \, \left(\phi + L \, d \cdot i \, d \right) \, \right\} \, \right] \end{array}$$

【0325】ここで、この電圧位相を持つ相電圧基準値 v s mを作成し、この相電圧基準値 v s mに相電圧が一 致するように、推定角度 θ mと相電圧基準値の振幅であ る相電圧振幅推定値vmとを補正する。こうして、角度 推定を実現する。さて、両者を一致させる方法は、実施 例1と同様の原理を用いる。また、電圧位相を求めると き、d軸電流値idとq軸電流値iqとを用いる代わり に、それらの推定軸 γ δ 軸上の指令値である γ 軸電流指 令値 $i y * e \delta$ 軸電流指令値 $i \delta * e \delta$ 用いる。なお、 この電圧位相は補償量αに含める。

【0326】また、脱調を検出する方法を変更する。ロ ータ12が回転する速度が大きくなると、誘起電圧が大 きくなるため、大きな相電圧を印加する必要がある。そ のため、電流制御部50により作成される相電圧指令の 振幅が大きくなる。実施例1において、誘起電圧の振幅 が速度に比例することを用いて脱調を検出した。相電圧 指令値の振幅についても、速度とともに大きくなる傾向 があるので、実施例6のおいて、相電圧指令値の振幅を※ ※用いて実施例1と同様の方法で脱調を検出する。

【0327】では、実施例6の位置センサレスモータ制 御装置の動作の詳細を説明する。まず、補償量作成部6 60の動作を説明する。補償量作成部660は、電流制 御部50の動作が終了するごとに動作する。この補償量 作成部660は、角度推定部670において角度推定θ mを補償する量を示す補償量αを作成する。この補償量 αは、電圧位相と角度推定の誤差とを足し合わせたたも のである。

...(55)

40 【0328】まず、電圧位相分 (α1) を作成する。こ れは、式(55)をγ軸電流指令値 1γ*とδ軸電流指 令値 i δ * とを用いて書き換え、下記式 (5 6) のよう に、表される。次に、角度推定の誤差分 (α2) を作成 する。これは、実施例1と同様に、下記式(57)のよ うにする。そして、下記式(58)のように、両者の和 を補償量αとする。

[0329]

$$\alpha 1 = -a t a n \left[\left\{ R \cdot i \gamma * - \omega e \cdot L q \cdot i \delta * \right\} \right]$$

$$\left\{ R \cdot i \delta * + \omega e \cdot (\phi + L d \cdot i \gamma *) \right\} \right] \cdot \cdot \cdot (56)$$

66 $\alpha 2 = \alpha t a b l e (\theta m\% 60^{\circ}, \omega m, i y*, i \delta*)$

...(57)

...(58)

... (59)

※き、v相の相電圧基準値(v相電圧基準値vvm)を相

電圧基準値 $v s m に する。推定相 <math>\eta = 1$ 、4のとき、w

相の相電圧基準値(w相電圧基準値vwm)を相電圧基

* v u を相電圧選択値 v s にする。また、推定相指標 n =

sにする。さらに、推定相指標 $\eta = 1$ 、および4のと

き、w相電圧値vwを相電圧選択値vsにする。

2、および5のとき、v相電圧値evを相電圧選択値v

 $\alpha = \alpha 1 + \alpha 2$

【0330】次に、角度推定部670の動作を説明す る。相電圧作成部71、および推定相選択部73は、実 施例1と同様であり、その説明を省略する。

【0331】相電圧選択値選択部674は、推定相の相 電圧値を相電圧選択値 v s にする。下記式 (59) のよ うに、推定相指標 $\eta = 0$ 、および3のとき、 u 相電圧値*

【0333】相電圧基準値値作成部675は、推定相の 相電圧値の基準値である相電圧基準値 v s mを作成す る。下記式 (60) のように、推定相₁=0、3のと き、u相の相電圧基準値(u相電圧基準値vum)を相

電圧基準値vsmにする。また、推定相ヵ=2、5のと※

$$v s m = v u m \quad (\eta = 0, 3 \mathcal{O} とき)$$

 $v s m = v v m \quad (\eta = 2, 5 \mathcal{O} とき)$
 $v s m = v w m \quad (\eta = 1, 4 \mathcal{O} とき)$
 $v u m = -v m \cdot s i n \quad (\theta m + \alpha)$
 $v v m = -v m \cdot s i n \quad (\theta m + \alpha - 120^{\circ})$
 $v w m = -v m \cdot s i n \quad (\theta m + \alpha - 240^{\circ})$ (60)

【0335】偏差作成部76は、相電圧選択値vsと相 電圧基準値 v s m との偏差 ε を作成する。下記式 (6) 1) のように、相電圧選択値 v s から相電圧基準値 v s ★

 $\varepsilon = v_s - v_s m$

【0337】ゲインリミット作成部77、および角度補 正部78は、実施例1と同様であり、説明を省略する。 相電圧値の絶対値を加算した結果に基づき相電圧演算値 v c を作成する。下記式 (62) のように、u 相電圧値 vuの絶対値とv相電圧値vvの絶対値とw相電圧値v☆

【0340】誘起電圧振幅推定値変更部682は、相電 圧振幅演算値vcに1次ディジタルローパスフィルタ (LPF)を作用したものを相電圧振幅推定値 vmとす る。具体的には、下記式(63)のようにする。ここ で、vm(n)は今回の相電圧振幅推定値であり、vm LEMはローパスフィルタの係数であり、0から1まで の値をとり、KLEMが小さくなるほどローパスフィル

タの効果が大きくなる。なお、ローパスフィルタは、相◆

$$vm(n) = KLEM \cdot vc +$$

【0342】 [図23の説明] 次に、脱調検出部690 の動作の詳細を説明する。相電圧振幅脱調判断値作成部 691は、ロータ12が推定速度wmで回転するときに 発生すると予測される相電圧の振幅にある幅を持たせた

★mを減算したものを偏差 ε にする。

[0336]

[0332]

準値vsmにする。

[0334]

 $\cdot \cdot \cdot (61)$

☆wの絶対値との加算結果にある設定された係数KECを 乗じたものを相電圧演算値vcとする。ここで、係数K 【0338】相電圧振幅演算値作成部681は、各相の 30 ECは式(40)のように与えられ、各相が正弦波であ るとして、各相の絶対値の和を振幅に変換するために乗 算される。

[0339]

 $vc = KEC \cdot (|vu| + |vv| + |vw|)$...(62)

◆電圧振幅演算値 v c と前回の相電圧振幅推定値 v m (n 1)との誤差(振幅誤差)を求め、これに係数KLE Mを乗じた結果を前回の相電圧振幅推定値 v m (n-1) に加えたものを今回の相電圧振幅推定値 v m (n) とする。このように、ローパスフィルタを用いること (n-1) は前回の相電圧振幅推定値である。また、K-40-で、振幅誤差を算出し、この振幅誤差が小さくなるよう に、相電圧振幅推定値 v m (n)を補正する。

[0341]

$$(1-KLEM) \cdot vm (n-1)$$

 $\cdots (63)$

6における推定速度ωmに対する相電圧振幅上限値 v o uthと相電圧振幅下限値voutlの関係図である。 図23のように、相電圧振幅脱調判断上限値 vouth を、切片がVOUTHOであり傾きがVOUTH1であ 範囲の上限値と下限値とを作成する。図23は、実施例 50 る推定角度ωmに関する1次関数とする。また、相電圧

振幅脱調判断下限値voutlを、ωm軸との交点がV OUTL0であり傾きがVOUTL1である推定角度ω mに関する1次関数とする。

【0343】脱調判断部692は、相電圧振幅推定値v mが相電圧振幅脱調判断上限値 v o u t h と相電圧振幅 脱調判断下限値voutlとの範囲外のとき、脱調と判 断する。下記式(64)のように、相電圧振幅推定値 v mが、相電圧振幅脱調判断下限値voutlよりも小さ* *いとき、脱調と判断し、サーボオン信号 s v *をLにす る。また、相電圧振幅推定値vmが、相電圧振幅脱調判 断上限値vouthよりも大きいとき、脱調と判断し、 サーボオン信号sv*をLにする。これら以外のとき、 脱調していないと判断し、サーボオン信号sv*をHに する。

[0344]

s v * = L(vm > vouth)...(64)

【0345】実施例1の位置センサレスモータ制御装置 は、誘起電圧値と誘起電圧基準値esmとの偏差を0に 収斂するように動作させることにより推定角度 θ mを作 成した。実施例6の位置センサレスモータ制御装置のよ うに、相電圧値と相電圧基準値vsmとの偏差をOに収 斂するように動作させても、実施例1と同様の作用をす る。そのため、実施例6は、実施例1と同様の効果を有 する。

【0346】また、実施例1の位置センサレスモータ制 御装置は、誘起電圧基準値に誘起電圧値を一致させるよ うに推定角度 θ m と誘起電圧振幅推定値 e m とを補正し た。よって、各相の誘起電圧値(u相誘起電圧値eu、 v相誘起電圧値ev、w相誘起電圧値ew)を演算する ための演算時間が必要であった。

【0347】実施例6の位置センサレスモータ制御装置 は、相電圧基準値vsmに相電圧値を一致させるように 推定角度 θ mと相電圧振幅推定値 v mとを補正する。こ こで、各相の相電圧値(u相電圧値vu、v相電圧値v v、w相電圧値vw)は、電流制御部50により作成さ 30 れるため、角度推定部70において、演算時間を必要と しない。

【0348】このように、実施例6は、相電圧基準値v s mに相電圧値を一致させるようにすることにより、演 算時間少なく角度推定を実現する位置センサレスモータ 制御装置を実現する。

【0349】《実施例7》次に、本発明の実施例7にお ける位置センサレスモータ制御装置について説明する。 実施例1の位置センサレスモータ制御装置は、誘起電圧 値と誘起電圧基準値との偏差に基づき推定角度 θ mを補 40 正した。また、実施例6の位置センサレスモータ制御装 置は、相電圧方程式を大幅に簡略化し、相電圧基準値を 作成し、相電圧値と相電圧基準値との偏差を求め、この 偏差が 0 に収斂するように推定角度 θ mを補正する。本 発明は各相のステータ巻線の相電圧方程式に着目するこ とが主旨であり、前者は誘起電圧に、後者は相電圧に着 目したものである。このように、本発明は様々な変形が 可能である。実施例7は、その一例を示すものであり、 相電流に着目する。実施例7の位置センサレスモータ制 御装置は、相電流基準値を作成し、この相電流基準値と 50 流値iuとv相電流値ivとを入力しu相誘起電圧値e

相電流の偏差を求め、この偏差が誘起電圧の偏差と等価 であることを利用し、この偏差が0に収斂するように推 定角度 θ mを補正するものである。

【0350】また、実施例1から実施例6の位置センサ レスモータ制御装置は、IPMSM(埋込磁石型同期モ ータ)を制御した。実施例7の位置センサレスモータ制 御装置は、SPMSM(表面磁石型同期モータ)を制御 する。

【0351】 [図24の説明] 図24は、実施例7にお ける位置センサレスモータ制御装置の構成を示すブロッ ク図である。SPMSM (Surface Perma nent Magnet Synchronous M otor:表面磁石型同期モータ) 710は、相電流が 流れるステータ巻線11u、11v、11wが巻回され たステータ (図示せず) と、このステータ (図示せず) に対向し近接して配置されたロータ712とが設けられ ている。ここで、ステータ巻線11 u、11 v、11 w はY結線されている。このブラシレスモータ710は、 ロータ712の表面に永久磁石713が配置され、相電 流により生成される磁束とこの永久磁石713による磁 束との相互作用によりロータ712が回転する。

【0352】実施例7の位置センサレスモータ制御装置 は、マイコン722が実施例1と異なる。このマイコン 722の中の速度制御部740と角度推定部770とが 実施例1と異なる。その他の構成は、実施例1と同様で あり、同一の符号を付け説明を省略する。

【0353】 [図25の説明] 図25は、実施例7にお ける速度制御部の構成を示すブロック図である。速度制 御部740の中の電流指令値作成部743が実施例1と 異なる。速度制御部740の中の他の構成は、実施例1 と同様であり、説明を省略する。

【0354】 [図26の説明] 図26は、実施例7にお ける角度推定部の構成を示すブロック図である。角度推 定部 770は、 u 相電圧指令値 v u * と v 相電圧指令値 v v *とw相電圧指令値 v w *とを入力しu 相電圧値 v uとv相電圧値vvとw相電圧値vwとを出力する相電 圧値作成部71と、u相電圧値vuとv相電圧値vvと w相電圧値 v w と推定角度 θ m と推定速度 ω m と u 相電

*【0355】次に、本発明の実施例7の位置センサレス モータ制御装置の動作を説明する。実施例7において、 速度制御部740、および角度推定部770以外の構成 は実施例1と同様であり説明を省略する。 【0356】まず、速度制御部740の動作を説明す

70

る。速度制御部740は、ある設定された時間ごとに起 動され、ADC41、トルク指令値作成部42、電流指 令値作成部743の順に下記の動作をさせ、外部から入 力されるアナログ速度指令値ω*aとおりの速度でロー 10 タ712が回転するようにγ軸電流指令値ίγ*とδ軸 電流指令値 i δ * とを制御するものである。

【0357】ADC21、およびトルク指令値作成部4 2の動作は、実施例1と同様であり説明を省略する。

【0358】電流指令値作成部743は、SPMSM7 10の出力トルクがトルク指令値T*とおりになるよう に、γ軸電流指令値 ίγ*とδ軸電流指令値 ίδ*とを 作成する。式(5)のように、トルク指令値T*をある 設定された値KTで除算した結果を電流指令値振幅 i a とする。また、下記式 (65) のように、γ軸電流指令 値iy*を0とする。一方、下記式(66)のように、 δ軸電流指令値iδ*を電流指令値振幅iaとする。

[0359]

※値、iuはu相電流値、Lはインダクタンス、d/dt は時間微分を表す。ここで、u相誘起電圧値euは、後 述の相電圧方程式から演算された相誘起電圧値euその ものを示さない。

[0362]

69

uとv相誘起電圧値evとw相誘起電圧値ewとを出力 する誘起電圧値演算部72と、推定角度θ mと補償量α とを入力し推定相指標 η を出力する推定相選択部 7 3 と、推定相指標ηとu相電流値iuとv相電流値ivと を入力し相電流選択値 i s を出力する相電流選択値選択 部774と、推定相指標 ηと推定角度 θ mと補償量 α と 誘起電圧振幅推定値emとu相電流値iuとv相電流値 ivとu相電圧値vuとv相電圧値vvとw相電圧値v wとを入力し相電流基準値 i s mを出力する相電流基準 値作成部 7 7 5 と、相電流選択値 i s と相電流基準値 i smとを入力し偏差 εを出力する偏差作成部 776と、 推定速度 ω mを入力し比例ゲイン κ pと積分ゲイン κ i と比例リミットζpと積分リミットζiとを出力するゲ インリミット作成部 7 7 と、推定相指標 η と偏差 ε と比 例ゲインκpと積分ゲインκiと比例リミットCpと積 分リミットζ i とを入力し推定角度 θ mと推定速度ωm とを出力する角度速度補正部778と、u相誘起電圧値 euとv相誘起電圧値evとw相誘起電圧値ewとを入 カレ誘起電圧振幅推定値emを出力する誘起電圧振幅推 定値補正部80とから構成される。誘起電圧振幅推定値 20 補正部80は、実施例1と同様であり、説明を省略す る。

$$i \gamma * = 0$$

 $i \delta * = i a$

【0360】次に、角度推定部770の動作を説明す る。まず、相電流基準値と相電流値との偏差の意味を説 明する。

【0361】SPMSM710において、u相の相電圧 方程式は下記式(67)のように表される。ここで、v uはu相電圧値、euはu相誘起電圧値、Rは相抵抗 ※30

$$vu = eu + R \cdot iu + L \cdot d (iu) / dt$$

【0363】式(67)を1次オイラー近似により離散 化し、u相電流値iuについて解いたものが、下記式 (68) である。iu(n)は今回に角度推定部770 が起動されたときのu相電流値iuである。また、iu (n-1), vu(n-1), eu(n-1) d, +2n

$$i u (n) = i u (n-1) + \Delta T / L \cdot \{v u (n-1) - e u (n-1) - e u \}$$

★ぞれ前回に角度推定部770が起動されたときのu相電 流値iи、u相電圧値vи、u相誘起電圧値euであ る。である。なお、ΔTは角度推定周期であり、角度推 定部770が起動される周期を表す。

...(67)

[0364]

+
$$\Delta T/L \cdot \{vu (n-1) - eu (n-1) - R \cdot iu (n-1)\}$$
 · · · (68)

【0365】また、誘起電圧値eu(n-1)は下記式 40☆たときの角度hetaである。なお、誘起電圧の波形が正弦波 (69) のように表される。ここで、e は誘起電圧振 幅、θ(n-1)は前回に角度推定部770が起動され☆

状であると仮定する。

[0366]

$$eu (n-1) = -e \cdot s in \{\theta (n-1)\}$$

【0367】一方、モデル化したモータにおいて、離散

化した方程式は、下記式 (70) で表される。ここで、 iumはu相電流基準値、eumはu相誘起電圧基準値 である。また、u相誘起電圧基準値eum (n-1) は◆ ◆下記式 (71) のように表される。ここで、emは誘起 電圧振幅推定値、 θ m (n-1) は前回に角度推定部 7 7 0 が起動されたときの推定角度 θ m である。

...(69)

[0368]

$$ium(n) = iu(n-1) + \Delta T/L \cdot \{vu(n-1) - eum(n-1) - R \cdot iu(n-1)\}$$

... (70)

71

 $eum (n-1) = -em \cdot sin \{\theta m (n-1)\} \cdot \cdot \cdot (71)$

【0369】ここで、u相において、下記式(72)の ように、u相電流値iuと相電流基準値iumとの偏差 (u相偏差 ε u) をとる。そして、相電圧方程式におけ る抵抗値RとインダクタンスLとが正しければ、u相偏*

*差εuはu相の誘起電圧値と誘起電圧基準値の偏差に比。 例する。ただし、実施例1と比較して、その符号は異な る。

72

[0370]

$$\varepsilon u = i u (n) - i u m (n)$$

= $- \Delta T / L \cdot \{e u (n-1) - e u m (n-1)\}$

...(72)

【0371】したがって、実施例1と同様の考えが適応 せるように動作させることで、角度推定を実現する。た だし、偏差の符号が異なるため、推定角度 θ mを補正す る向きを逆にする。

【0372】では、角度推定部770の動作の詳細を説 明する。角度推定部770は、ある設定された周期(角 度推定周期: ΔT) ごとに起動され、相電圧値作成部7 1、誘起電圧値演算部72、推定相選択部73、相電流 選択值選択部774、相電流基準値作成部775、偏差 作成部776、ゲインリミット作成部77、角度速度補 正部 7.7.8、誘起電圧振幅演算値作成部 8.1、誘起電圧 20.8にする。さらに、推定相指標 $\eta = 1$ 、および 4.0と 振幅推定値変更部82の順に下記の動作をさせ、推定角

度 θ mと推定速度ωmとを作成する。また、電流制御部※

is = iu (
$$\eta = 0$$
, 3のとき)
is = iv ($\eta = 2$, 5のとき)
is = iw ($\eta = 1$, 4のとき)

【0376】相電流基準値作成部775は、推定相の相 電流基準値を相電流基準値 i s m とする。下記式 (7 4) のように、推定相指標 $\eta = 0$ 、および3のとき、u相電流基準値iumを相電流基準値ismにする。ま た、推定相指標 $\eta = 2$ 、および5のとき、v相電流基準 30 る。

※750、補償量作成部60、角度推定部770の順に動 でき、u相電流値iuと相電流基準値iumとを一致さ 10 作させ、角度推定周期ATと電流制御周期とを同一とす る。

> 【0373】相電圧値作成部71、誘起電圧値演算部7 2、および推定相選択部73は実施例1と同様であり説 明を省略する。

> 【0374】相電流選択値選択部774は、推定相の相 電流値を相電流選択値 i s にする。下記式 (73) のよ うに、推定相指標 $\eta = 0$ 、および3のとき、u 相電流値 iuを相電流選択値isにする。また、推定相指標 n = 2、および5のとき、v相電流値ivを相電流選択値i き、w相電流値iwを相電流選択値isにする。

[0375]

★指標 η = 1 、および 4 のとき、w相電流基準値 i w m を 相電流基準値ismにする。なお、u相電流基準値iu mは、式(70)で表され、v相電流基準値ivm、お よびw相電流基準値iwmは、下記式(75)で表され

値ivmを相電流選択値ismにする。さらに、推定相★ [0377]

i s m = i u m (
$$\eta = 0$$
、3のとき)
i s m = i v m ($\eta = 2$ 、5のとき)
i s m = i w m ($\eta = 1$ 、4のとき) ・・・ (74)

[0378]

$$i \ vm \ (n) = i \ v \ (n-1) + \Delta T / L \cdot \{v \ v \ (n-1) - e \ vm \ (n-1) - R \cdot i \ v \ (n-1) \}$$
 $i \ wm \ (n) = i \ w \ (n-1) + \Delta T / L \cdot \{v \ w \ (n-1) - e \ wm \ (n-1) - R \cdot i \ w \ (n-1) \}$
 $\cdot \cdot \cdot \cdot (75)$

【0379】偏差作成部776は、偏差を作成する。 下記式 (76) のように、相電流選択値 i s と相電流基☆

$$\varepsilon = i s - i s m$$

【0381】ゲインリミット作成部77は、実施例1と 同様であり説明を省略する。

【0382】角度速度補正部778は、偏差εを0に収 斂させるように推定角度 θ mを補正する。また、推定角 度ωmを作成する。まず、補正する向きを示す補正符号 σを作成する。下記式 (77) のように、推定相指標 η◆

$$\sigma = +1 \quad (\eta = 0, 2, 4)$$

☆準値 i s mの偏差を偏差 ε にする。

[0380]

◆=0、2、4のとき、補正符号σを1にする。また、推 定相指標 $\eta = 1$ 、3、5のとき、補正符号 σ を-1にす る。推定角度 θ mの補正の方法は、実施例 1 と同様であ り、説明を省略する。

[0383]

73

 $\sigma = -1 \quad (\eta = 1, 3, 5)$

【0384】誘起電圧振幅演算値作成部81、および誘起電圧振幅推定値変更部82の動作は、実施例1と同様であり説明を省略する。

【0385】実施例1の位置センサレスモータ制御装置は、誘起電圧値と誘起電圧基準値esmとの偏差を0に収斂するように動作させることにより推定角度 θ mを作成した。実施例7の位置センサレスモータ制御装置のように、相電流値と相電流基準値ismとの偏差を0に収斂するように動作させても、実施例1と同様の作用をす10る。そのため、実施例7は、実施例1と同様の効果を有する。

【0386】なお、実施例3から実施例7において、相電圧指令値vu*、vv*、vw*から相電圧値vu、vv、vwを作成したが、実施例2のように、電圧センサで直接検知した電圧に基づき相電圧値vu、vv、vwを作成してもよい。

【0387】また、実施例2、および実施例4から実施例7において、相電流指令値iu*、iv*、iw*を作成し電流を制御したが、実施例3のように、推定角度 20 θ mによる回転座標系である γ δ 軸上で電流制御してもよい。

【0388】実施例1から実施例7において、u相とv相の相電流値と相電圧指令値とを交換したが、3相のモータにおいては、3相のうちのいずれか2つの相の相電流値と相電圧指令値とを交換すればよい。

【0389】また、電流制御部により電流を制御するため、電流センサで検知した電流を用いても電流指令を用いても同様の効果が得られる。すなわち、実施例1から実施例3、および実施例5から実施例7において、相電 30圧方程式に電流センサで検知した電流をあてはめたが、電流指令をあてはめてもよい。反対に、実施例4において、相電圧方程式に電流指令をあてはめたが、電流センサで検知した電流をあてはめてもよい。

【0390】実施例1から実施例7において、補償量 α は推定角度 θ mにより変化させたが、補償量 α は推定角度 θ mに対する変化させなくてもよい。この場合は、電気周期程度の周期を持つ細かな推定誤差の補償はできないが、平均的な推定誤差に対応できる。

【0391】実施例6において、補償量 α の電圧位相分 40 ($\alpha1$)を式 (56)のように逆正接関数を用いて求めたが、補償量 α の電圧位相分 ($\alpha1$)を角度推定の誤差分 ($\alpha2$)に入れ込み、補償量 α のテーブルを作成し、このテーブルから直接補償量 α を求めてもよい。

【0392】実施例6において、脱調を相電圧振幅推定値 v m から判断したが、 d 軸電圧指令値 v d * と q 軸電圧指令値 v q * とに関する2次元の範囲を作成し、この範囲外のとき脱調と判断してもよい。

【0393】実施例1から実施例7において、比例ゲインκpと積分ゲインκiと比例リミットζpと積分リミ 50

74

...(77)

ット ζ i とを推定速度 ω mに対して相似形としたが、推定速度 ω mに対して別々に設定してもよい。

【0394】実施例1から実施例5、および実施例7において、誘起電圧振幅演算値作成部は、誘起電圧値の絶対値の和から誘起電圧振幅演算値ecを作成したが、誘起電圧値を二乗した結果を加算し、さらに、二乗根をとったものを誘起電圧振幅演算値ecとしてもよい。同様に、実施例6において、相電圧振幅演算値vcを作成したが、相電圧値を二乗した結果を加算し、さらに、二乗根をとったものを相電圧振幅演算値vcとしてもよい。

【0395】また、実施例1から実施例5、および実施例7において、3相の誘起電圧値から誘起電圧振幅演算値ecを作成したが、1つの相の誘起電圧値から誘起電圧振幅演算値ecを求めてもよい。この場合、3相のうちで大きさが一番大きい誘起電圧値にある係数を乗じたものを誘起電圧振幅演算値ecとする。同様に、実施例6において、3相の相電圧値から相電圧振幅演算値vcを作成したが、1つの相の誘起電圧値から相電圧振幅演算値vcを求めてもよい。この場合、3相のうちで大きさが一番大きい相電圧値にある係数を乗じたものを相電圧振幅演算値vcとする。

【0396】実施例1から実施例7において、誘起電圧が正弦波状であると仮定したが、台形波状などであって正弦波状でなくても本発明に含まれる。例えば、台形波状であるときは、誘起電圧基準値を正弦波状から台形波状のものに置き換えればよい。

【0397】また、実施例1から実施例7において、電流制御部と補償量作成部と角度推定部とを同期させたが、同期させなくてもよい。ただし、同期させないときには、適切な設計変更をし、角度速度補正部で行った推定角度 θ mを進める動作を電流制御部で行う必要がある。

【0398】実施例1から実施例7において、交換後の電圧指令値vu*1、vv*1、vw*1にデッドタイム補償をしてもよい。また、実施例1、および実施例3から実施例7において、相電圧指令値vu*、vv*、vw*を相電圧値vu、vv、vwとしたが、相電圧指令値vu*、vv*、vw*にデッドタイムの影響をなくような補償をしたものを相電圧値vu、vv、vwとしてもよい。こうすることで、さらに精度のよい角度の推定を実現する。この場合には、相電圧値vu、vv、vwから中性点電位を減算したものを推定に用いる。

【0399】実施例1から実施例7において、比例積分結果をそのまま相電圧指令値としたが、3倍高調波の重畳、2相変調をしてもよい。この場合には、相電圧値 v u、v v、v wから中性点電位を減算したものを推定に用いる。

【0400】実施例1から実施例6において、IPMS

76

Mを制御したが、SPMSMを制御してもよい。反対 に、実施例7において、SPMSMを制御したが、相電 流モデル値ismの演算にインダクタンス変化を考慮し IPMSMを制御してもよい。

【0401】また、シンクロナスリラクタンスモータを 制御してもよい。このシンクロナスリラクタンスモータ*

 $\alpha 1 = -a t a n [\{R \cdot i \gamma * -\omega e \cdot Lq \cdot i \delta *\} /$

 $\{R \cdot i \gamma * + \omega e \cdot Ld \cdot i \delta * \}$

[0403]

【発明の効果】以上のように、本発明によれば、非常に 10 短い期間である角度推定周期ごとに偏差を求め推定角度 を補正することで、常に高分解能で高精度な推定角度を 作成する位置センサレスモータ制御装置を実現できると いう、有利な効果が得られる。また、非常に短い期間で ある角度推定周期ごとに偏差を求め推定角度を補正する ことで、角速度の急激な変化に追随できる、速度変化へ の応答性の良い、位置センサレスモータ制御装置を実現 できるという、有利な効果が得られる。

【0404】請求項1等の本発明によれば、温度変化に より推定角度が影響を受けないため、広い温度範囲にわ 20 たって、高い精度でロータの角度を推定する位置センサ レスモータ制御装置を実現できるという、有利な効果が 得られる。

【0405】請求項3等の本発明によれば、推定信号と 計測データ等との間で演算をする上で、座標回転を行う 必要がないため、モータのステータ巻線の相電圧が飽和 して、相電圧等が、台形波や矩形波等になった場合に も、正しいロータの角度推定をすることが出来る、高速 や大きな出力トルクでモータを駆動する位置センサレス モータ制御装置を実現できるという、有利な効果が得ら 30 れる。

【0406】請求項4等の本発明によれば、ステータ巻 線の電流が正弦波信号であるとして取り扱うため、角度 を推定するための計算が簡略化される。これにより、小 型で、安価なマイクロプロセッサ等により、短い演算時 間で、角度推定を行う位置センサレスモータ制御装置を 実現できるという、有利な効果が得られる。又、ステー タ巻線は大きなインダクタンス成分を有するため、ステ ータ巻線の相電流の波形は飽和しにくく、ステータ巻線 の相電圧の波形が飽和した時にも、相電流の波形は正弦 40 波に近いため、ステータ巻線の相電圧の波形が飽和した 時にも、ロータの角度の推定精度の高い、高速や大きな 出力トルクでモータを駆動する位置センサレスモータ制 御装置を実現できるという、有利な効果が得られる。

【0407】請求項5等の本発明によれば、角度誤差と いう特定のパラメータを算出し、当該角度誤差が小さく なるように、推定角度を補正する。これにより、例え ば、実際のモータ駆動波形が矩形波(又は台形波)であ る場合にも、角度推定手段は正弦波の推定モデルを有 し、当該矩形波(又は台形波)の角度と、当該正弦波の 50

(56) において、永久磁石によるdq軸巻線鎖交磁束 実効値φを0とし、下記式(78)のように、補償量α の電圧位相分α1を作成すればよい。

*は永久磁石がないため、永久磁石による誘起電圧を 0 に

して制御すればよい。例えば、実施例6において、式

[0402]

...(78)

角度と、の角度誤差を算出し、角度誤差を小さくするよ うに正弦波の推定モデルを補正することが出来るという 有利な効果が得られる。本発明により、推定モデルの生 成が容易になるという有利な効果が得られる。

【0408】本発明により、モータの角速度や出力トル クが増大し必要な相電圧が大きくなり、ステータ巻線の 各相の相電圧が飽和して、各相の電圧波形が正弦波でな くなっても、正しく角度を推定することが出来、高い角 速度や大きな出力トルクを実現することが出来るという 有利な効果が得られる。又、本発明による位置センサレ スモータ制御装置においては、ロータの永久磁石の着磁 波形は任意である。従って、ロータの永久磁石の着磁波 形が正弦波以外の波形であって、誘起電圧が正弦波以外 の波形を有する、モータについても、本発明により、高 い精度でロータの角度を推定することが出来るという有 利な効果が得られる。

【0409】請求項6等の本発明によれば、角度誤差及 び振幅誤差という特定のパラメータを算出し、当該角度 誤差が小さくなるように、推定角度を補正している。こ れにより、さらに、負荷の変化や角速度の変化が生じた 場合にも、正しい角速度の推定が出来る位置センサレス モータ制御装置を実現できるという、有利な効果が得ら れる。

【0410】請求項7等の本発明によれば、推定モデル が有する、推定角度を変数とする関数の係数について も、補正を行う。これにより、精度の高い推定モデルを 得られ、高い精度の角度推定を行う位置センサレスモー 夕制御装置を実現できるという、有利な効果が得られ

【0411】請求項8の本発明によれば、角度推定手段 の出力から角度推定手段のフィードバック入力に至る信 号経路の伝達特性が、温度依存性を有する要素を含まな い。これにより、広い温度範囲にわたって、高い精度で ロータの角度を推定する位置センサレスモータ制御装置 を実現できるという、有利な効果が得られる。

【0412】請求項9等の本発明によれば、角度誤差の 検出精度の高い相を選択して、角度誤差を補正する。こ れにより、いかなるロータの角度においても、常に高い 精度で、角度を推定することが出来る、位置センサレス モータ制御装置を実現できるという、有利な効果が得ら れる。

【0413】請求項10等の本発明によれば、モータの

ロータの角度推定誤差が一定の範囲を超えたことを検知 して(その結果、例えば、推定角速度が実際の角速度と まったく異なる値になった場合)、例えば、モータを停 止させる。これにより、モータの制御が外れた状態(脱 調)から、容易に脱出することが出来る位置センサレス モータ制御装置を実現できるという、有利な効果が得ら れる。

【0414】請求項12等の本発明によれば、誤差信号 に、ロータの角速度と対応関係を有するゲインを掛けた 値を用いて、推定モデルを補正する。これにより、遅い 10 角速度から速い角速度に至るまで、適切な補正量を得る ことが出来、広い速度範囲で高い角度の推定を行う位置 センサレスモータ制御装置を実現できるという、有利な 効果が得られる。

【0415】請求項14等の本発明によれば、過大な補 正量を用いて推定信号を補正することを防止する。これ により、ノイズの影響を受けにくい、安定な位置センサ レスモータ制御装置を実現できるという、有利な効果が 得られる。

【0416】請求項15等の本発明によれば、さらに、 補正量の上限値又は下限値を角速度に応じて変化させ る。これにより、広い速度範囲でノイズの影響を受けに くい、安定な位置センサレスモータ制御装置を実現でき るという、有利な効果が得られる。

【0417】請求項16等の本発明によれば、パラメー タに対応する補償量のテーブルを有することにより、演 算のみにより角度を推定する装置よりも、精度の高い精 度で角度を推定する位置センサレスモータ制御装置を実 現できるという、有利な効果が得られる。

【0418】請求項17等の本発明によれば、非常にわ 30 ずかな切り換えにより、正転と逆転とに対応し、かつ、 正転時と逆転時とで、回路ブロック又はプログラムブロ ックのほとんどの部分を共用できる位置センサレスモー 夕制御装置が実現できるという、有利な効果が得られ る。

【0419】請求項18等の本発明によれば、ステータ 巻線の計測又は演算された電圧から、誘起電圧以外の成 分を差し引くことにより、誘起電圧を導出する。これに より、広い温度範囲にわたって、高い精度でロータの角 度を推定する位置センサレスモータ制御装置を実現でき 40 るという、有利な効果が得られる。

【0420】請求項23等の本発明によれば、全ての相 について誤差を算出する必要がなく、各相の誘起電圧を 比較して、最も小さな誘起電圧の相を選択するという簡 単な方法により、正常な状態において誤差が最大になる 相を選択し、当該選択された相についてのみ、誤差を演 算するため、演算時間が少なくて済むという、有利な効

【0421】請求項31等の本発明によれば、ステータ 巻線の電流信号を基準に、角度を推定する。これによ 50 【図22】実施例6における脱調検出部の構成を示すブ

り、推定角度が温度変化の影響を受けないため、広い温 度範囲にわたって、高い精度でロータの角度を推定する 位置センサレスモータ制御装置を実現できるという、有 利な効果が得られる。

78

【0422】また、請求項43の本発明によれば、相電 圧基準値に相電圧値を一致させるようにすることによ り、演算時間少なく角度推定を実現する位置センサレス

【図面の簡単な説明】

モータ制御装置を実現する。

- 【図1】実施例1における位置センサレスモータ制御装 置の構成を示すブロック図。
 - 【図2】実施例1における駆動部の回路図。
 - 【図3】実施例1における速度制御部の構成を示すブロ ック図。
 - 【図4】 実施例1における電流制御部の構成を示すブロ ック図。
 - 【図5】実施例1における角度推定部の構成を示すブロ
 - 【図6】実施例1における脱調検出部の構成を示すブロ ック図。
- 【図7】実施例1における座標系の説明図。
 - 【図8】実施例1におけるu相の誘起電圧値と誘起電圧 基準値と偏差とを示す波形図。
 - 【図9】実施例1における推定速度に対するゲインとリ ミットの関係図。
 - 【図10】実施例1における推定速度に対する誘起電圧 振幅上限値と誘起電圧振幅下限値の関係図。
 - 【図11】実施例2における位置センサレスモータ制御 装置の構成を示すブロック図。
- 【図12】実施例2における角度推定部の構成を示すブ ロック図。
 - 【図13】実施例3における位置センサレスモータ制御 装置の構成を示すブロック図。
 - 【図14】実施例3における電流制御部の構成を示すブ ロック図。
 - 【図15】実施例4における位置センサレスモータ制御 装置の構成を示すブロック図。
 - 【図16】実施例4における角度推定部の構成を示すブ ロック図。
- 【図17】実施例5における位置センサレスモータ制御 装置の構成を示すブロック図。
 - 【図18】実施例5における角度推定部の構成を示すブ ロック図。
 - 【図19】実施例5における各相の誘起電圧値と推定相 指標の関係を示す波形図。
 - 【図20】実施例6における位置センサレスモータ制御 装置の構成を示すブロック図。
 - 【図21】実施例6における角度推定部の構成を示すブ ロック図。

誘起電圧振幅推定値補正部

	1.(11)		000403
79			
ロック図。		2 2	マイコン
【図23】実施例6における推定速度に対する相電圧振	ŧ	222	マイコン
幅上限値と相電圧振幅下限値の関係図。		3 2 2	マイコン
【図24】実施例7における位置センサレスモータ制御	p	4 2 2	マイコン
装置の構成を示すブロック図。		5 2 2	マイコン
【図25】実施例7における速度制御部の構成を示すフ	۶	622	マイコン
ロック図。		7 2 2	マイコン
【図26】実施例7における角度推定部の構成を示すプ	*	3 0	駆動部
ロック図。		4 0	速度制御部
【図27】従来例1の位置センサレスモータ制御装置の	10	440	速度制御部
構成を示すブロック図。		740	速度制御部
【図28】従来例1の位置センサレスモータ制御装置の)	5 0	電流制御部
タイミングチャート。		250	電流制御部
【図29】従来例2の位置センサレスモータ制御装置の	1	3 5 0	電流制御部
構成を示すブロック図。		450	電流制御部
【図30】従来例2の位置センサレスモータ制御装置の	ı	6 0	補償量作成部
解析モデル。		660	補償量作成部
【符号の説明】		7 0	角度推定部
10 I PMSM		270	角度推定部
1.1 フニー 万米伯	90	470	A de He de de

 11 u ステータ巻線
 20 470 角度推定部

 11 v ステータ巻線
 570 角度推定部

 11 w ステータ巻線
 670 角度推定部

12ロータ770 角度推定部712ロータ80 誘起電圧振幅13永久磁石90 脱調検出部

21 v 電流センサ

13永久磁石90脱調検出部713永久磁石690脱調検出部21u電流センサ710SPMSM

【図1】

【図2】

【図3】

【図4】

【図5】

【図7】

【図8】

【図19】

【図9】

【図14】

【図11】

【図12】

【図13】

【図15】

【図16】

【図17】

【図22】

【図18】

【図20】

【図21】

【図23】

【図25】

【図24】

【図26】

【図27】

【図28】

【図29】

【図30】

フロントページの続き

(72)発明者 田澤 徹

大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 丸山 幸紀

大阪府門真市大字門真1006番地 松下電器 産業株式会社内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.