Теория кодирования

<u>МФТИ</u>, осень 2013

Александр Дайняк

www.dainiak.com

Линейные коды: определение

Пусть q — степень простого числа и символы кодовых слов — элементы конечного поля \mathbb{F}_q .

 $(n,M,d)_q$ -код C называется *линейным*, если он является линейным подпространством пространства \mathbb{F}_q^n , то есть линейная комбинация кодовых слов также является кодовым словом.

Если $\dim C=k$, то говорят, что задан линейный $[n,k,d]_q$ -код

Линейные коды: пример кода

Пример линейного двоичного кода — код с проверкой чётности:

$$C \coloneqq \{(a_1, \dots, a_n) \in \mathbb{F}_2^n \mid \sum a_i = 0\}$$

Один из базисов этого кода:

```
(1,0,0,...,0,1)

(0,1,0,...,0,1)

(0,0,1,...,0,1)

\vdots

(0,0,0,...,1,1)
```

Линейные коды: порождающая матрица

Если выписать базис линейного $[n,k,d]_q$ -кода построчно в виде матрицы размера k imes n, получим порождающую матрицу кода.

Для задания $[n,k,d]_q$ -кода достаточно указать его порождающую матрицу $G \in \mathbb{F}_q^{k imes n}$.

Число линейных комбинаций k базисных векторов с коэффициентами из \mathbb{F}_q равно q^k , поэтому каждый $[n,k,d]_q$ -код является $\left(n,q^k,d\right)_q$ -кодом

Линейные коды: кодирование

Если линейный $[n,k,d]_q$ -кода задан порождающей матрицей G, а исходное сообщение представлено как вектор $\mathbf{x} \in \mathbb{F}_q^k$, то закодировать его можно быстро и просто:

$$x \xrightarrow{\text{кодирование}} x^T G \in \mathbb{F}_q^n$$

Обратно, если закодированное сообщение $a \in \mathbb{F}_q^n$ было принято *без ошибок*, декодируем его, решая, например, методом Гаусса, систему:

$$\mathbf{x}^T G = \mathbf{a}$$

Правда, коды нам как раз были нужны, чтобы уметь декодировать сообщения сошибками...

Линейные коды: канонический вид

Порождающую матрицу $G \in \mathbb{F}_q^{k imes n}$ линейными преобразованиями и перестановками строк и столбцов можно привести к

каноническому виду:

$$\left(egin{array}{ccc|c} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & 1 \end{array}
ight)$$

где $\tilde{G} \in \mathbb{F}_q^{k \times (n-k)}$.

Тогда кодирование будет систематическим:

$$(x_1, \dots, x_k) \xrightarrow{\text{кодирование}} (x_1, \dots, x_k \mid x\tilde{G})$$

Линейные коды: канонический вид

Если порождающая матрица кода задана в каноническом виде, то кодирование будет систематическим и слово (x_1,\dots,x_k) переходит в

$$(x_1, \dots, x_k \mid \boldsymbol{x}\tilde{G}) = (x_1, \dots, x_k, \tilde{x}_1, \dots, \tilde{x}_{n-k})$$

- Разряды $x_1, ..., x_k$ информационные
- Разряды \tilde{x}_1 , ..., \tilde{x}_{n-k} проверочные

Линейные коды: эквивалентные коды

Если матрица G исходно задана не в каноническом виде, а мы приводим её к каноническому виду, то получается в общем случае не тот же код, а эквивалентный ему.

Коды C_1 и C_2 эквивалентны, если существует перестановка π и константы $r_1, \dots, r_n \in \mathbb{F}_q \setminus \{0\}$, такие, что

$$(a_1, \dots, a_n) \in C_1 \Leftrightarrow (r_1 a_{\pi(1)}, \dots, r_n a_{\pi(n)}) \in C_2$$

Для эквивалентных кодов $d(C_1) = d(C_2)$.

Кодовое расстояние линейного кода

Для слова ${\pmb a} \in {\mathbb F}_q^n$ будем через $\|{\pmb a}\|$ обозначать *вес слова,* т.е. величину

$$\#\{i \mid a_i \neq 0\}$$

Утверждение.

Для любого линейного кода C имеем

$$d(C) = \min_{\substack{a \in C \\ a \neq 0}} ||a||$$

Кодовое расстояние линейного кода

Доказательство:

Поскольку $\mathbf{0} \in \mathcal{C}$, то

$$d(C) \stackrel{\text{def}}{=} \min_{\substack{\boldsymbol{a},\boldsymbol{b}\in C\\\boldsymbol{a}\neq\boldsymbol{b}}} d(\boldsymbol{a},\boldsymbol{b}) \leq \min_{\substack{\boldsymbol{a}\in C\\\boldsymbol{a}\neq\boldsymbol{0}}} d(\boldsymbol{a},\boldsymbol{0}) = \min_{\substack{\boldsymbol{a}\in C\\\boldsymbol{a}\neq\boldsymbol{0}}} \|\boldsymbol{a}\|$$

В обратную сторону. Пусть кодовое расстояние достигается на паре слов \boldsymbol{a}^* , \boldsymbol{b}^* .

Тогда так как
$$({m a}^*-{m b}^*)\in {\mathcal C}$$
, получаем $d({\mathcal C})=d({m a}^*,{m b}^*)=\|{m a}^*-{m b}^*\|\geq \min_{{m a}\in {\mathcal C}}\|{m a}\|$

Проверочная матрица

Проверочная матрица H линейного кода — это матрица однородной системы линейных уравнений, которым удовлетворяет код.

Для любого кодового слова a, по определению матрицы H, выполнено равенство $Ha^T = 0$.

Для
$$[n,k,d]_q$$
-кода $H \in \mathbb{F}_q^{(n-k) \times n}$.

Пример: для кода с проверкой чётности

$$H = (11 \dots 1)$$

Проверочная матрица

Утверждение.

Если G и H — порождающая и проверочная матрицы линейного $[n,k,d]_a$ -кода, то

$$HG^T = \mathbf{0}^{(n-k)\times k}$$

Доказательство:

Достаточно заметить, что каждая строка матрицы G — это кодовое слово, а значит, она удовлетворяет системе, задаваемой H.

Двойственные коды

Если коды C_1 и C_2 таковы, что проверочная матрица C_1 является порождающей матрицей для C_2 , то эти коды называют двойственными.

Коды C_1 и C_2 двойственны т. и т.т., когда $\langle a_1, a_2 \rangle = 0$ для любых слов $a_1 \in C_1$, $a_2 \in C_2$.

Поэтому двойственные коды называются также ортогональными.

Проверочная матрица и кодовое расстояние

Утверждение. (О связи кодового расстояния и проверочной матрицы)

Линейный код, определяемый проверочной матрицей H, имеет расстояние d т. и т.т., когда

- любые (d-1) столбцов H линейно независимы,
- найдутся d линейно зависимых столбцов в H.

Проверочная матрица и кодовое расстояние

Доказательство:

Пусть $\mathbf{a} = (a_1, ..., a_n) \neq \mathbf{0}$ — произвольное кодовое слово кода с проверочной матрицей H.

Пусть
$$H_1, \dots, H_n$$
 — столбцы H . Имеем $H {\pmb a}^T = a_1 \cdot H_1 + \dots + a_n \cdot H_n$

Если i_1,\dots,i_t — все ненулевые координаты \pmb{a} , то $a_1H_1+\dots+a_nH_n=a_{i_1}H_{i_1}+\dots+a_{i_t}H_{i_t}$

Так как ${m a}$ — кодовое слово, то $H{m a}^T={m 0}$, то есть $a_{i_1}H_{i_1}+\dots+a_{i_t}H_{i_t}={m 0}$

Проверочная матрица и кодовое расстояние

Продолжение доказательства:

Мы получили, что в коде есть слово веса не более t т. и т.т., когда некоторые t столбцов матрицы H линейно зависимы.

Осталось воспользоваться формулой, справедливой для любых линейных кодов:

$$d(C) = \min_{\substack{a \in C \\ a \neq 0}} ||a||$$

Декодирование по синдрому

Пусть H — проверочная матрица кода C, и пусть $a \in C$.

Если при передаче \boldsymbol{a} по каналу произошло t ошибок, на выходе из канала имеем слово \boldsymbol{b} .

Вектор $e \coloneqq b - a$ называется вектором ошибок. Очевидно, $\|e\| = t$.

$$H\boldsymbol{b}^T = H\boldsymbol{a}^T + H\boldsymbol{e}^T = H\boldsymbol{e}^T$$

Декодирование по синдрому

Получаем задачу: найти вектор e, такой, что

$$\begin{cases} \|\boldsymbol{e}\| < \frac{d(C)}{2} \\ H\boldsymbol{e}^T = H\boldsymbol{b}^T \end{cases}$$

Утверждение.

Если решение этой системы существует, то оно единственное.

Доказательство.

Пусть нашлись разные решения $\boldsymbol{e}_1 \neq \boldsymbol{e}_2$.

Тогда
$$\|\boldsymbol{e}_1 - \boldsymbol{e}_2\| \le \|\boldsymbol{e}_1\| + \|\boldsymbol{e}_2\| < d(C)$$
 и $H(\boldsymbol{e}_1 - \boldsymbol{e}_2)^T = \mathbf{0}$ — противоречие.

Декодирование по синдрому

Можно составить таблицу решений системы

$$\begin{cases} \|\boldsymbol{e}\| < \frac{d(C)}{2} \\ H\boldsymbol{e}^T = \boldsymbol{s} \end{cases}$$

для всевозможных **s**.

При получении из канала слова \boldsymbol{b} мы вычисляем $\boldsymbol{s}\coloneqq H\boldsymbol{b}^T$ (синдром слова \boldsymbol{b}), и для этого \boldsymbol{s} смотрим в таблице соответствующий вектор \boldsymbol{e} .

Декодированное сообщение — решение системы $x^T G = (b - e)$

Teopema. (P.P. Варшамов, E.N. Gilbert)

Пусть числа $n,k,d'\in\mathbb{N}$ таковы, что

$$\sum_{j=0}^{d'-1} \binom{n-1}{j} < 2^{n-k}$$

Тогда существует [n, k, d]-код, где d > d'.

Доказательство:

Покажем, что в условиях теоремы можно построить матрицу $H \in \mathbb{F}_2^{(n-k) \times n}$, у которой любые d' столбцов линейно независимы.

Будем строить матрицу по столбцам.

Пусть уже выбраны m столбцов (где m < n) и требуется выбрать (m+1)-й столбец.

Этот новый столбец не должен образовывать нулевую линейную комбинацию с (d'-1) или менее из уже выбранных столбцов.

Выбираемый столбец не должен образовывать нулевую линейную комбинацию с (d'-1) или менее из уже выбранных столбцов.

Так как у нас \mathbb{F}_2 , то это равносильно тому, что выбираемый столбец не равен сумме (d'-1) или менее уже выбранных столбцов.

Количество таких сумм равно
$$\sum_{j=0}^{d'-1} \binom{m}{j} \leq \sum_{j=0}^{d'-1} \binom{n-1}{j} < 2^{n-k}$$

Итак, запрещённых для выбора столбцов у нас оказывается строго меньше 2^{n-k} , а всего векторов длины (n-k) ровно 2^{n-k} . Значит, найдётся вектор из \mathbb{F}_2^{n-k} , который можно добавить в качестве очередного столбца.

Двоичный код Хемминга (R.W. Hamming)

Двоичный код с проверкой чётности

$$\{(a_1, \dots, a_n) \in \mathbb{F}_2^n \mid \sum a_i = 0\}$$

может обнаруживать одну ошибку, т.к. если один разряд a_i заменить на противоположный, соотношение $\sum a_i = 0$ нарушится. Но исправить ошибку не удастся.

Хочется построить двоичный код, исправляющий хотя бы одну ошибку.

Для этого вместо «глобального» контроля чётности применим несколько «дихотомических» проверок на чётность...

Пример для n=7. Рассмотрим код, удовлетворяющий соотношениям

$$a_4 + a_5 + a_6 + a_7 = 0$$
 $a_2 + a_3 + a_5 + a_6 + a_7 = 0$
 $a_1 + a_3 + a_5 + a_7 = 0$

Проверочная матрица этого кода:

ца этого кода:
$$\begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Проверочная матрица:

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Столбцы матрицы — всевозможные ненулевые вектора высоты 3. j-й столбец суть двоичная запись числа j.

Любая пара столбцов л.н.з., значит $d(C) \ge 3$, значит, этот код исправляет одну ошибку и обнаруживает две.

Если ошибка случается в a_j , то можно вычислить левые части проверочных соотношений, и они дадут двоичную запись j, например:

$$a_4 + \overline{a_5} + a_6 + a_7 = 1$$
 $a_2 + a_3 + \overline{a_5} + \overline{a_6} + a_7 = 0$
 $a_1 + a_3 + \overline{a_5} + \overline{a_7} = 1$

Общий случай: $n \coloneqq 2^m - 1$ для некоторого m.

Код Хемминга длины n определяется проверочной матрицей $H \in \mathbb{F}_2^{m \times n}$, столбцы которой — всевозможные двоичные вектора высоты m:

$$\begin{pmatrix} 1 & 0 & 1 & \cdots & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

Код Хемминга имеет параметры

$$[2^m-1, 2^m-m-1, 3]$$

Граница Хемминга:

Для любого $(n,M,d)_q$ -кода имеем

$$M \le \frac{q^n}{\left|S_{\lfloor (d-1)/2\rfloor}(\mathbf{0})\right|}$$

В двоичном случае

$$M \le \frac{2^n}{\sum_{k=0}^{\lfloor (d-1)/2 \rfloor} \binom{n}{k}}$$

Коды, достигающие эту границу, называются *совершенными* или *плотно упакованными*.

Граница Хемминга:

Для любого (n, M, d)-кода имеем

$$M \le \frac{2^n}{\sum_{k=0}^{\lfloor (d-1)/2 \rfloor} \binom{n}{k}}$$

Утверждение.

Код Хемминга является совершенным.

Доказательство:

Для кода Хемминга имеем $n=2^m-1$, $M=2^{2^m-m-1}$ и d=3.

Отсюда
$$\sum_{k=0}^{\lfloor (d-1)/2 \rfloor} {n \choose k} = n+1 = 2^m = 2^n/M.$$

Граница Синглтона для линейных кодов

Утверждение.

Для любого $[n,k,d]_q$ -кода имеем $k \leq n-d+1$

Доказательство:

По теореме Синглтона, для любого $(n,M,d)_q$ -кода выполнено $M \le q^{n-d+1}$.

С другой стороны, для линейного кода $M=q^k$.

Теорема. (G. Solomon, J.J. Stiffler)

Если существует $[n,k,d]_q$ -код, то существует и $[n-d,k-1,d']_q$ -код, где $d' \geq d/q$.

Доказательство:

Пусть G — порождающая матрица некоторого $[n,k,d]_q$ -кода C.

Б.о.о. будем считать, что первая строка G содержит ровно d ненулевых элементов и имеет вид $(r_1 \dots r_d \ 0 \dots 0)$.

Порождающая матрица кода \mathcal{C} :

$$G = \begin{pmatrix} r_1 \dots r_d & 0 \dots 0 \\ \dots & G' \end{pmatrix}$$

Имеем $G' \in \mathbb{F}_q^{(k-1)\times(n-d)}$.

Покажем, что $\operatorname{rk} G' = k - 1$. Допустим противное: некоторая нетривиальная линейная комбинация строк G' равняется $\mathbf{0}$.

Тогда линейная комбинация соответствующих строк G равна $(t_1 \dots t_d 0 \dots 0)$, где $\forall i \ (t_i \neq 0)$.

$$G = \begin{pmatrix} r_1 \dots r_d & 0 \dots 0 \\ \dots & G' \end{pmatrix}$$

Линейная комбинация U некоторых строк G равна $(t_1 \dots t_d 0 \dots 0)$, где $\forall i \ (t_i \neq 0)$.

Т.к. \mathbb{F}_q поле, то $\exists s \in \mathbb{F}_q$, такой, что $st_d = -r_d$. Тогда $s \cdot U + (r_1 \dots r_d \ 0 \dots 0)$

— линейная комбинация строк G, равная

$$((st_1 + r_1) \dots (st_{d-1} + r_{d-1}) 00 \dots 0)$$

Это противоречит условию d(C) = d.

$$G = \begin{pmatrix} r_1 \dots r_d & 0 \dots 0 \\ \dots & G' \end{pmatrix}$$

Итак, $G' \in \mathbb{F}_q^{(k-1)\times (n-d)}$ и $\operatorname{rk} G' = k-1.$

Значит G' является порождающей матрицей некоторого $[n-d,k-1,d']_q$ -кода C' (этот код называется *остаточным* для исходного кода C).

Рассмотрим любой ненулевой вектор кода C' $\pmb{a}'\coloneqq(a_1',\dots,a_{n-d}')\neq \pmb{0}$ такой, что $\|\pmb{a}'\|=d'.$

В коде C есть вектор вида

$$(a_1, ..., a_d, a_1', ..., a_{n-d}')$$

$$G = \begin{pmatrix} r_1 \dots r_d & 0 \dots 0 \\ \dots & G' \end{pmatrix}$$

В коде C есть вектор вида

$$(a_1, ..., a_d, a'_1, ..., a'_{n-d})$$

Пусть f_1 , ..., f_q — все элементы поля \mathbb{F}_q .

Коду C принадлежат все вектора вида

$$((a_1 - f_i r_1), ..., (a_d - f_i r_d), a'_1, ..., a'_{n-d})$$

Запишем эти q векторов построчно в виде матрицы и оценим количество ненулевых элементов в ней.

Рассмотрим матрицу:

рим матрицу:
$$\begin{pmatrix} (a_1-f_1r_1) & ... & (a_d-f_1r_d) & a_1' & ... & a_{n-d}' \\ (a_1-f_2r_1) & ... & (a_d-f_2r_d) & a_1' & ... & a_{n-d}' \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (a_1-f_qr_1) & ... & (a_d-f_qr_d) & a_1' & ... & a_{n-d}' \end{pmatrix}$$

В каждом из этих столбцов ровно (q-1) ненулевых элементов

В этой подматрице ровно qd' ненулевых элементов

Итого в матрице d(q-1) + qd' ненулевых элементов.

В рассмотренной матрице d(q-1)+qd' ненулевых элементов.

Каждая строка матрицы — ненулевой вектор кода ${\cal C}$, значит в матрице не менее чем qd ненулевых элементов.

Отсюда

и следовательно

$$d(q-1) + qd' \ge qd$$
$$d' \ge d/q$$

Граница Грайсмера — Соломона — Штиффлера

Теорема. (J.H. Griesmer, G. Solomon, J.J. Stiffler)

Для любого $[n,k,d]_q$ -кода имеем

$$n \ge \sum_{i=0}^{k-1} \left[\frac{d}{q^i} \right]$$

Доказательство: индукция по k.

Утверждение очевидно при k=1. Предположим, что оно выполнено для кодов с размерностью $\leq k-1$ и докажем его для $[n,k,d]_a$ -кодов.

Граница Грайсмера — Соломона — Штиффлера

Обозначим через N(k,d) минимальную длину слов у кода с размерностью k и расстоянием d.

Пусть C — какой-нибудь $[N(k,d),k,d]_q$ -код.

Остаточный для ${\mathcal C}$ код имеет параметры

$$[N(k,d) - d, k - 1, d']_q$$

и по предположению индукции, для него справедливо неравенство

$$N(k,d) - d \ge \sum_{i=0}^{k-2} \left[\frac{d'}{q^i} \right]$$

Граница Грайсмера — Соломона — Штиффлера

Из неравенства

$$N(k,d) - d \ge \sum_{i=0}^{k-2} \left[\frac{d'}{q^i} \right]$$

с учётом того, что
$$d' \geq d/q$$
, получаем $N(k,d) \geq d + \sum_{i=0}^{k-2} \left[\frac{d'}{q^i} \right] \geq d + \sum_{i=0}^{k-2} \left[\frac{d}{q^{i+1}} \right] = \sum_{i=0}^{k-1} \left[\frac{d}{q^i} \right]$