Kalman filter

Gellért Peresztegi-Nagy

April 16, 2017

Question 1.

The following graph shows the graphical model of the Kalman filter, visualizing the dependencies between the variables:

Figure 1: The graphical model of the Kalman filter

Question 2.

If we have $v_{t-1} = \mathcal{N}(v, \sigma_{v_{prior}}^2)$ and $x_{t-1} = \mathcal{N}(x, \sigma_{x_{prior}}^2)$, $v_t = v_{t-1} + \epsilon$ where $\epsilon = \mathcal{N}(0, \sigma_v^2)$.

As the sum of two normal distributions is a normal distribution as well:

$$v_t = \mathcal{N}(v, \sigma_{v_{prior}}^2) + \mathcal{N}(0, \sigma_v^2) = \mathcal{N}(v, \sigma_{v_{prior}}^2 + \sigma_v^2)$$

Question 3.

Similarly:

$$x_t = x_{t-1} + v_{t-1} = \mathcal{N}(x, \sigma_{x_{prior}}^2) + \mathcal{N}(v, \sigma_{v_{prior}}^2) = \mathcal{N}(x + v, \sigma_{x_{prior}}^2 + \sigma_{v_{prior}}^2)$$

Question 4.

We can assume that $P(x_{t-1}|z_{t-1}, z_{t-2}, \dots, z_1) = \mathcal{N}(\mu_x, \sigma_x^2)$ and that $P(v_{t-2}|z_{t-1}, z_{t-2}, \dots, z_1) = \mathcal{N}(\mu_v, \sigma_v^2)$. We would like to get the posterior of x_t having seen z_t as well. Using Bayes' rule, we know that:

$$P(x_t|z_t, z_{t-1}, z_{t-2}, \dots, z_1) \propto P(z_t|x_t, z_{t-1}, z_{t-2}, \dots, z_1) P(x_t|z_{t-1}, z_{t-2}, \dots, z_1)$$

From the graphical model (Figure 1), we can see that $P(z_t|x_t, z_{t-1}, z_{t-2}, ..., z_1) = P(z_t|x_t)$ as there is only one edge going to z_t which is from x_t , hence knowing x_t makes the route blocked (d-separation). Therefore, knowing x_t makes z_t conditionally independent of $z_{t-1}, ..., z_1$. Hence:

$$P(x_t|z_t, z_{t-1}, z_{t-2}, \dots, z_1) \propto P(z_t|x_t)P(x_t|z_{t-1}, z_{t-2}, \dots, z_1)$$

 z_t is a normal distribution around x_t with standard deviation σ_z . However, because of the properties of the normal distribution $((\mu - x)^2 = (x - \mu)^2)$, (knowing z_t) we can think of x_t as a normal distribution around z_t with σ_z standard deviation. (This is indeed logical as knowing z_t suggests that x_t must be around z_t). Hence: $P(x_t|z_t) = \mathcal{N}(z_t, \sigma_z^2)$.

As
$$x_t = x_{t-1} + v_{t-1} = x_{t-1} + v_{t-2} + \epsilon$$
 where $\epsilon = \mathcal{N}(0, \sigma_{v_0}^2)$, $P(x_t | z_{t-1}, z_{t-2}, \dots, z_1) \propto \mathcal{N}(\mu_{x_{t-1}} + \mu_{v_{t-2}}, \sigma_x^2 + \sigma_v^2 + \sigma_{v_0}^2)$.

$$P(x_t|z_t, z_{t-1}, z_{t-2}, \dots, z_1) \propto \mathcal{N}(\mu_{x_{t-1}} + \mu_{v_{t-2}}, \sigma_{x_{t-1}}^2 + \sigma_{v_{t-2}}^2 + \sigma_{v_0}^2) \cdot \mathcal{N}(\mu_{x_{t-1}}, \sigma_{x_t}^2)$$

By ignoring the factors not depending on x_t and rearranging the normal distributions, we get that:

$$P(x_t|z_t, z_{t-1}, z_{t-2}, \dots, z_1) \sim \mathcal{N}(\mu_{x_t}, \sigma_{x_t}^2)$$

Where
$$\mu_{x_t} = \frac{\frac{z_t}{\sigma_z^2} + \frac{\mu_{x_{t-1}} + \mu_{v_{t-2}}}{\sigma_z^2 + (\sigma_{x_{t-1}}^2 + \sigma_{v_{t-2}}^2 + \sigma_{v_0}^2)^{-1}}}{\sigma_z^{-2} + (\sigma_{x_{t-1}}^2 + \sigma_{v_{t-2}}^2 + \sigma_{v_0}^2)^{-1}}$$
 and $\sigma_{x_t}^{-2} = \sigma_z^{-2} + (\sigma_{x_{t-1}}^2 + \sigma_{v_{t-2}}^2 + \sigma_{v_0}^2)^{-1}$

Question 5.

Having the same assumptions about x_t and v_{t-1} as in Question 4 and writing $v_{t-1} = x_t - x_{t-1}$ we can obtain an expression for the posterior distribution $P(v_{t-1}|z_t, z_{t-1}, \dots, z_1)$

From Question 4 we know that $P(v_{t-1}|z_t, z_{t-1}, z_{t-2}, \dots, z_1) \sim \mathcal{N}(\mu_{x_t}, \sigma_{x_t}^2) - \mathcal{N}(\mu_{x_{t-1}}, \sigma_{x_{t-1}}^2)$. Hence, $P(v_{t-1}|z_t, z_{t-1}, z_{t-2}, \dots, z_1) \sim \mathcal{N}(\mu_{v_{t-1}}, \sigma_{v_{t-1}}^2)$ where $\mu_{v_{t-1}} = \mu_{x_t} - \mu_{x_{t-1}}$ and $\sigma_{v_{t-1}}^2 = \sigma_{x_t}^2 + \sigma_{x_{t-1}}^2$.