> Composite Functions Example and Toverse Functions

Composite Functions

ESSENTIALS

Composition of Functions

The composite function $f \circ g$, the composition of f and g, is defined as

$$(f \circ g)(x) = f(g(x)). \qquad \text{for } g(x) = f(g(x)).$$

- Given f(x) = 5x and $g(x) = 2 + x^2$, $-3 \Rightarrow$ a) find $(f \circ g)(-3)$; b) find $(g \circ f)(x)$.
 - a) To find $(f \circ g)(-3)$, find g(-3) and use that as the input for f.

$$(f \circ g)(-3) = f(g(-3)) = f(2+(-3)^2)$$
 Using $g(x) = 2+x^2$
= $f(2+9)$
= $f(11)$
= $5 \cdot 11$ Using $f(x) = 5x$
= 55

b) To find $(g \circ f)(x)$ substitute f(x) for x in the equation for g(x).

$$(g \circ f)(x) = g(f(x)) = g(5x)$$
 Using $f(x) = 5x$
 $= 2 + (5x)^2$ Using $g(x) = 2 + x^2$
 $= 2 + 25x^2$

$$f(x) = 5x$$

$$(f_0 f)(x) = f(f(x))$$
$$= f(5x) = 25x$$

$$\Rightarrow g(x) = x^{3}$$

$$\Rightarrow (g \circ g)(x) = g(g(x)) = g(x^{3}) = (x^{3})^{3} = x^{9}$$

Given
$$f(x) = 3x + 2$$
 and $g(x) = x^2 - 4$,
Find $(f \circ g)(2)$

$$(f \circ g)(a) = f(g(a))$$

 $g(a) = a^{2} - 4 = 4 - 4 = 0$
 $(f \circ g)(a) = f(g(a)) = f(o)$
 $= 3 \times 0 + 2 = 0 + 2 = 2$
 $(f \circ g)(a) = 2$

Given f(x) = -2x + 1 and $g(x) = x^3$, Find $(f \circ g)(-1)$

$$f(-1) = f(g(-1))$$

$$g(-1) = (-1)^{3} = -1$$

$$f(-1) = f(g(-1)) = f(-1)$$

$$= -2(-1) + 1 = 2 + 1$$

$$f(-1) = 3$$

Given
$$f(x) = \sqrt{x}$$
 and $g(x) = x^2 + 1$,
Find $(f \circ g)(x)$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + 1)$$

= $\sqrt{x^2 + 1}$

$$\sqrt{(x+1)^2} = x+1$$

$$\sqrt{x^2+1+2x}$$

Given $f(x) = \sqrt{x+4}$ and $g(x) = \frac{5}{x}$ Find $(f \circ g)(x)$

$$(f \circ g)(x) = f(g(x))$$

= $f(\frac{5}{2})$
= $\sqrt{\frac{5}{2}} + 4 = \sqrt{\frac{5}{2}} + 4x$
= $\sqrt{\frac{5}{2}} + 4x$

$$= (1x)g + 1 = x + 1$$

$$= (1x)g + 1 = x + 1$$

$$(g \circ f)(x) = g(f(x))$$

$$= g(\sqrt{x+4}) = \frac{5}{\sqrt{x+4}}$$

ESSENTIALS

One-to-One Function

A function f is one-to-one if different inputs have different outputs. For every one-to-one function, an inverse function exists.

If it is impossible to draw a horizontal line that intersects a function's graph more than once, then the function is one-to-one

Example

Determine if the function at right is one-to-one. The function is not one-to-one because there is a horizontal line that crosses the graph more than once, as shown below

When the inverse of a function f is also a function, it is denoted f^{-1} (read "f-inverse").

To find a formula for f^{-1} , first make sure that f is one-to-one. Then,

Determine whether the function is one-to-one.

Determine whether the function is one-to-one.

Yes

NO

Determine whether the function

$$f(x) = -x^2 + 2$$
 is one-to-one.
We graph the function.

Determine whether the function

1=1+0=(0)} f(-1)=-1+1=c

1. Replace f(x) with y. 2. Interchange x and y.

3. Solve for *y*.

ESSENTIALS

4. Replace y with $f^{-1}(x)$.

No

YEς

Determine whether the function

$$f(x) = \frac{1}{2}x + 3$$
 is one to one and if so, find

a formula for $f^{-1}(x)$

21

$$y = \frac{1}{2}x + 3$$

$$x = \frac{1}{2}y + 3$$

$$y = \frac{1}{2}$$

Determine whether the function

$$f(x) = (x-1)^3 \text{ is one to one and if so,}$$
 find a formula for $f^{-1}(x)$

Determine whether the function $f(x) = (x-1)^3$ is one to one and if so,

find a formula for f 1(x)

$$y = (x-1)^3$$
 Interchange
 $x = (y-1)^3$ Interc

$$\chi^{1/3} = (y-1)^3 / 3$$

$$2/x = y-1$$

$$\Rightarrow$$
 $y = 3/x + 1$

$$= 34 = 3x - 6$$

$$Ves_q f$$
 is one-one $f(x) = a(x-h)^5 + K$

is also one-one

any odd number.

Graphing Functions and Their Inverses

ESSENTIALS

Visualizing Inverses

The graph of f^{-1} is a reflection of the graph of f across the line y = x.

Example

• Graph the function $f(x) = \frac{1}{2}x + 4$ and its inverse on the same set of axes First, find the inverse function.

- 1. Replace f(x) with y: $y = \frac{1}{2}x + \frac{1}{2}x +$
- 2. Interchange x and y: $x = \frac{1}{2}y + \frac{1$
- Solve for y: x-4 = 2(x-4) = 2

4. Replace y with $f^{-1}(x)$: $f^{-1}(x) = 2x - 8$

Notice that the graph of $f^{-1}(x)$ is the reflection of the graph of f(x) across the line y = x.

Inverse Functions and Composition

ESSENTIALS

Composition and Inverses

If a function f is one-to-one, then f^{-1} is the unique function for which

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$$
 and

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = x.$$

Given f(x) show that that stated $f^{-1}(x)$ is the inverse of the function.

Graph the following functions and their inverses

$$f(x) = \frac{1}{4}x^3$$

$$f^{-1}(x) = 3 \sqrt{4\chi}$$

$$y = \frac{1}{4} \chi^3 \Rightarrow \chi = \frac{1}{4} y^3$$

$$\Rightarrow f^{-1}(x) = 3\sqrt{4}x$$

$$f(x) = -3x + 4$$

$$f^{-1}(x) = \frac{-1}{3}\chi + \frac{4}{3}$$

$$x = -3444$$

$$\frac{\chi-4}{-3}=y$$

$$=$$
 $y = -\frac{1}{3}x + \frac{y}{3}$

$$f(x) = \sqrt[3]{x+2}, f^{-1}(x) = x^3 - 2$$

$$(f^{-1}\circ f)(x) = f^{-1}(f(x)) = f^{-1}(\sqrt[3]{x+2})$$

$$= (\sqrt[3]{x+2})^3 - 2$$

$$= x+2-2 = x$$

$$= (x^3)^{\frac{1}{3}} = x^{\frac{1}{3}} = x$$

$$= (x^3)^{\frac{1}{3}} = x^{\frac{1}{3}} = x$$

$$= (x^3)^{\frac{1}{3}} = x^{\frac{1}{3}} = x$$

Hence, it is the correct inverse

$$f(x) = x^3 + 5, f^{-1}(x) = \sqrt[3]{x - 3}$$

$$= f^{-1}(x^3+5) = \sqrt[3]{x^3+5-3}$$
$$= \sqrt[3]{x^3+2} + x$$

Hence, it is not correct inverse

$$f \circ f^{-1}(x) = f(f^{+1}(x)) = f(3\sqrt{x-3})$$

$$= (3\sqrt{x-3})^{3} + 5 = x - 3 + 5$$

$$= (3\sqrt{x-3})^{3} + 5 = x - 3 + 5$$