Package 'rCausalMGM'

September 20, 2022

2 adjMat2Graph

Index		20
	steps	18
	skeletonSHD	
	SHD	17
	saveGraph	
	printGraph	16
	print.graph	16
	pcStable	15
	pcMax	14
	pc50	13
	orientationSHD	12
	mgmPath	12

adjMat2Graph

Convert an adjacency matrix into a graph

Description

Convert an adjacency matrix into a graph

Usage

```
adjMat2Graph(adj, nodes, directed = FALSE)
```

Arguments

adj The adjacency matrix, NxN

nodes The names of the nodes, length N

directed TRUE if the graph should be directed, default FALSE

Value

The graph representation of the adjacency list

```
\label{eq:matrix} $$ \max <- \max(sample(c(0,1), 16, replace=TRUE), nrow=4) $$ nodes <- c("X1", "X2", "X3", "X4") $$ g <- rCausalMGM::adjMat2Graph(mat, nodes, directed=TRUE) $$ $$
```

bootstrap 3

bootstrap	Runs bootstrapping for a selected causal discovery algorithm on the
bootsti ap	Kuns bootstrapping for a selected causal discovery digorithm on the
	dataset.

Description

Runs bootstrapping for a selected causal discovery algorithm on the dataset.

Usage

```
bootstrap(
    df,
    algorithm = as.character(c("mgm-pc50", "mgm", "pc", "cpc", "pcm", "pc50", "fci",
        "cfci", "fcim", "mgm-pc", "mgm-cpc", "mgm-pcm", "mgm-fci", "mgm-cfci", "mgm-fcim",
        "mgm-fci50")),
    ensemble = as.character(c("highest", "majority")),
    lambda = as.numeric(c(0.2, 0.2, 0.2)),
    alpha = 0.05,
    numBoots = 20L,
    threads = -1L,
    rank = FALSE,
    verbose = FALSE
)
```

Arguments

df	The dataframe
algorithm	string indicating the name of the causal discovery algorithm to bootstrap. Causal discovery algorithms can be run alone or with mgm to learn an initial graph. Options include "mgm", "pc", "cpc", "pcm", "pc50", "fci", "cfci", "fcim", "mgm-pc", "mgm-cpc", "mgm-pcm", "mgm-pc50", "mgm-fci", "mgm-cfci", "mgm-fcim", "mgm-fci50." The default value is set to "mgm-pc50."
ensemble	Method for constructing an ensemble graph from bootstrapped graphs. Options include "highest", which orients edges according to the orientation with the highest bootstrap probability, or "majority", which only orients edges if they have an orientation with a bootstrap probability > 0.5. Otherwise, the adjacency is included but the edge is left unoreineted. The default value is "highest."
lambda	A vector of three lambda values - the first for continuous-continuous interaction, the second for continuous-discrete, and the third for discrete-discrete. Defaults to $c(0.2, 0.2, 0.2)$. If a single value is provided, all three values in the vector will be set to that value.
alpha	The p value below which results are considered significant. Defaults to 0.05.
numBoots	The number of bootstrap samples to run. Defaults to 20.
threads	The number of consumer threads to create during multi-threaded steps. If -1, defaults to number of available processors.

4 cfci

rank Whether or not to use rank-based associations as opposed to linear verbose Whether or not to output additional information. Defaults to FALSE.

Value

The calculated search graph with a table of edge stabilities

Examples

```
data("data.n100.p25")
g.boot <- rCausalMGM::bootstrap(data.n100.p25)</pre>
```

cfci

Runs the causal algorithm CFCI-Stable on a dataset

Description

Runs the causal algorithm CFCI-Stable on a dataset

Usage

```
cfci(
  df,
  initialGraph = NULL,
  alpha = 0.05,
  threads = -1L,
  fdr = FALSE,
  rank = FALSE,
  verbose = FALSE
)
```

Arguments

df	The dataframe
initialGraph	An initial undirected graph to use as a starting point. If NULL, a full graph will be used. Defaults to NULL.
alpha	The p value below which results are considered significant. Defaults to 0.05.
threads	The number of consumer threads to create during multi-threaded steps. If -1, defaults to number of available processors.
fdr	Whether or not to run with FDR correction for the adjacencies.
rank	Whether or not to use rank-based associations as opposed to linear
verbose	Whether or not to output additional information. Defaults to FALSE.

Value

The calculated search graph

cpcStable 5

Examples

```
data("data.n100.p25")
ig <- rCausalMGM::mgm(data.n100.p25)
g <- rCausalMGM::cfci(data.n100.p25, initialGraph = ig)</pre>
```

cpcStable

Runs the causal algorithm CPC-Stable on a dataset

Description

Runs the causal algorithm CPC-Stable on a dataset

Usage

```
cpcStable(
  df,
  initialGraph = NULL,
  alpha = 0.05,
  threads = -1L,
  fdr = FALSE,
  rank = FALSE,
  verbose = FALSE
)
```

Arguments

df	The dataframe
initialGraph	An initial undirected graph to use as a starting point. If NULL, a full graph will be used. Defaults to NULL.
alpha	The p value below which results are considered significant. Defaults to 0.05.
threads	The number of consumer threads to create during multi-threaded steps. If -1, defaults to number of available processors.
fdr	Whether or not to run with FDR correction for the adjacencies.
rank	Whether or not to use rank-based associations as opposed to linear
verbose	Whether or not to output additional information. Defaults to FALSE.

Value

The calculated search graph

```
data("data.n100.p25")
ig <- rCausalMGM::mgm(data.n100.p25)
g <- rCausalMGM::cpcStable(data.n100.p25, initialGraph = ig)</pre>
```

6 createMoral

createCPDAG

Create the completed partially directed acyclic graph (CPDAG) for the input directed acyclic graph (DAG). The CPDAG represents the Markov equivalence class of the true cauasl DAG. The PC algorithms are only identifiable up to the Markov equivalence class, so assessments of causal structure recovery should be compared to the CPDAG rather than the causal DAG.

Description

Create the completed partially directed acyclic graph (CPDAG) for the input directed acyclic graph (DAG). The CPDAG represents the Markov equivalence class of the true cauasl DAG. The PC algorithms are only identifiable up to the Markov equivalence class, so assessments of causal structure recovery should be compared to the CPDAG rather than the causal DAG.

Usage

```
createCPDAG(graph)
```

Arguments

graph

The graph object used to generate the CPDAG. Should be the ground-truth causal DAG

Value

The CPDAG corresponding to the input DAG

Examples

```
data(dag_n10000_p10)
cpdag <- rCausalMGM::createCPDAG(dag_n10000_p10)</pre>
```

createMoral

Create the moral graph for the input directed acyclic graph (DAG). The moral graph is the equivalent undirected representation corresponding to the input DAG. The MGM algorithm learns the undirected moral graph for a corresponding causal DAG, so assessments of structure recovery should be compared to the moral graph rather than the causal DAG.

Description

Create the moral graph for the input directed acyclic graph (DAG). The moral graph is the equivalent undirected representation corresponding to the input DAG. The MGM algorithm learns the undirected moral graph for a corresponding causal DAG, so assessments of structure recovery should be compared to the moral graph rather than the causal DAG.

data.n100.p25

Usage

```
createMoral(graph)
```

Arguments

graph

The graph object used to generate the moral graph. Should be the ground-truth causal DAG

Value

The moral graph corresponding to the input DAG

Examples

```
data(dag_n10000_p10)
moral <- rCausalMGM::createMoral(dag_n10000_p10)</pre>
```

data.n100.p25

A small simulated dataset with 25 variables (13 discrete, 12 continuous) and 100 samples. Generated using the true graph graph.n100.p25.txt

Description

A small simulated dataset with 25 variables (13 discrete, 12 continuous) and 100 samples. Generated using the true graph graph.n100.p25.txt

Author(s)

Tyler Lovelace <tyl15@pitt.edu>

data.n1000.p100

A large simulated dataset with 100 variables (50 discrete, 50 continuous) and 1000 samples. Generated using the true graph graph.n1000.p100.txt

Description

A large simulated dataset with 100 variables (50 discrete, 50 continuous) and 1000 samples. Generated using the true graph graph.n1000.p100.txt

Author(s)

Tyler Lovelace <tyl15@pitt.edu>

8 fci50

fci50

Runs the causal algorithm FCI50 Stable on a dataset

Description

Runs the causal algorithm FCI50 Stable on a dataset

Usage

```
fci50(
   df,
   initialGraph = NULL,
   alpha = 0.05,
   threads = -1L,
   fdr = FALSE,
   rank = FALSE,
   verbose = FALSE
)
```

Arguments

df	The dataframe
initialGraph	An initial undirected graph to use as a starting point. If NULL, a full graph will be used. Defaults to NULL.
alpha	The p value below which results are considered significant. Defaults to 0.05.
threads	The number of consumer threads to create during multi-threaded steps. If -1, defaults to number of available processors.
fdr	Whether or not to run with FDR correction for the adjacencies.
rank	Whether or not to use rank-based associations as opposed to linear
verbose	Whether or not to output additional information. Defaults to FALSE.

Value

The calculated search graph

```
data("data.n100.p25")
ig <- rCausalMGM::mgm(data.n100.p25)
g <- rCausalMGM::fci50(data.n100.p25, initialGraph = ig)</pre>
```

fciMax 9

_		
† C	1	Max

Runs the causal algorithm FCI-Max on a dataset

Description

Runs the causal algorithm FCI-Max on a dataset

Usage

```
fciMax(
   df,
   initialGraph = NULL,
   alpha = 0.05,
   threads = -1L,
   fdr = FALSE,
   rank = FALSE,
   verbose = FALSE
)
```

Arguments

df	The dataframe
initialGraph	An initial undirected graph to use as a starting point. If NULL, a full graph will be used. Defaults to NULL.
alpha	The p value below which results are considered significant. Defaults to 0.05.
threads	The number of consumer threads to create during multi-threaded steps. If -1, defaults to number of available processors.
fdr	Whether or not to run with FDR correction for the adjacencies.
rank	Whether or not to use rank-based associations as opposed to linear
verbose	Whether or not to output additional information. Defaults to FALSE.

Value

The calculated search graph

```
data("data.n100.p25")
ig <- rCausalMGM::mgm(data.n100.p25)
g <- rCausalMGM::fciMax(data.n100.p25, initialGraph = ig)</pre>
```

10 fciStable

_					
£.	_ :	~	ta	L 1	_
т (71	_	ΤЭ	n	

Runs the causal algorithm FCI-Stable on a dataset

Description

Runs the causal algorithm FCI-Stable on a dataset

Usage

```
fciStable(
   df,
   initialGraph = NULL,
   alpha = 0.05,
   threads = -1L,
   fdr = FALSE,
   rank = FALSE,
   verbose = FALSE
)
```

Arguments

df	The dataframe
initialGraph	An initial undirected graph to use as a starting point. If NULL, a full graph will be used. Defaults to NULL.
alpha	The p value below which results are considered significant. Defaults to 0.05.
threads	The number of consumer threads to create during multi-threaded steps. If -1, defaults to number of available processors.
fdr	Whether or not to run with FDR correction for the adjacencies.
rank	Whether or not to use rank-based associations as opposed to linear
verbose	Whether or not to output additional information. Defaults to FALSE.

Value

The calculated search graph

```
data("data.n100.p25")
ig <- rCausalMGM::mgm(data.n100.p25)
g <- rCausalMGM::fciStable(data.n100.p25, initialGraph = ig)</pre>
```

loadGraph 11

loadGraph

Load a graph from a file

Description

Load a graph from a file

Usage

loadGraph(filename)

Arguments

filename

The graph file

Value

The graph as a List object, which can be passed into search functions

mgm

Calculate the MGM graph on a dataset

Description

Calculate the MGM graph on a dataset

Usage

```
mgm(df, lambda = as.numeric(c(0.2, 0.2, 0.2)), rank = FALSE, verbose = FALSE)
```

Arguments

df The dataframe

lambda A vector of three lambda values - the first for continuous-continuous interaction,

the second for continuous-discrete, and the third for discrete-discrete. Defaults to c(0.2, 0.2, 0.2). If a single value is provided, all three values in the vector will

be set to that value.

rank Whether or not to use rank-based associations as opposed to linear verbose Whether or not to output additional information. Defaults to FALSE.

Value

The calculated MGM graph

```
data("data.n100.p25")
g <- rCausalMGM::mgm(data.n100.p25)</pre>
```

12 orientationSHD

mgmPath	Calculate the solution path for an MGM graph on a dataset	

Description

Calculate the solution path for an MGM graph on a dataset

Usage

```
mgmPath(df, lambdas = NULL, nLambda = 30L, rank = FALSE, verbose = FALSE)
```

Arguments

df	The dataframe
lambdas	A range of lambda values used to calculate a solution path for MGM. If NULL, lambdas is set to nLambda logarithmically spaced values from $10*sqrt(log10(p)/n)$ to $sqrt(log10(p)/n)$. Defaults to NULL.
nLambda	The number of lambda values to fit an MGM for when lambdas is NULL
rank	Whether or not to use rank-based associations as opposed to linear

Whether or not to output additional information. Defaults to FALSE.

Value

verbose

The calculated MGM graph

Examples

```
data("data.n100.p25")
g <- rCausalMGM::mgmPath(data.n100.p25)</pre>
```

orientationSHD

Calculate the orientation Structural Hamming Distance (SHD) between two graphs. This only counts the incorrect edge endpoints for edges present in both graphs, and does not consider differences in the graph skeleton. Each different endpoint adds 0.5 to the orientation SHD (i.e. A o-> B vs. A -> B). Thus, a completely misoriented edge adds 1 to the orientation SHD (i.e. A o-o B vs. A -> B).

Description

Calculate the orientation Structural Hamming Distance (SHD) between two graphs. This only counts the incorrect edge endpoints for edges present in both graphs, and does not consider differences in the graph skeleton. Each different endpoint adds 0.5 to the orientation SHD (i.e. A o-> B vs. A -> B). Thus, a completely misoriented edge adds 1 to the orientation SHD (i.e. A o-o B vs. A < B).

pc50

Usage

```
orientationSHD(graph1, graph2)
```

Arguments

graph1 A graph object graph2 A graph object

Value

The skeleton SHD btween the two graph objects

Examples

```
data("data.n100.p25")
g <- rCausalMGM::mgm(data.n100.p25)
rCausalMGM::printGraph(g)</pre>
```

pc50

Runs the causal algorithm PC50 on a dataset

Description

Runs the causal algorithm PC50 on a dataset

The dataframe

Usage

```
pc50(
   df,
   initialGraph = NULL,
   alpha = 0.05,
   threads = -1L,
   fdr = FALSE,
   rank = FALSE,
   verbose = FALSE
)
```

Arguments df

initialGraph	An initial undirected graph to use as a starting point. If NULL, a full graph will be used. Defaults to NULL.
alpha	The p value below which results are considered significant. Defaults to 0.05.

threads
The number of consumer threads to create during multi-threaded steps. If -1,

defaults to number of available processors.

fdr Whether or not to run with FDR correction for the adjacencies.

rank Whether or not to use rank-based associations as opposed to linear verbose Whether or not to output additional information. Defaults to FALSE.

pcMax

Value

The calculated search graph

Examples

```
data("data.n100.p25")
ig <- rCausalMGM::mgm(data.n100.p25)
g <- rCausalMGM::pc50(data.n100.p25, initialGraph = ig)</pre>
```

рсМах

Runs the causal algorithm PC-Max on a dataset

Description

Runs the causal algorithm PC-Max on a dataset

Usage

```
pcMax(
   df,
   initialGraph = NULL,
   alpha = 0.05,
   threads = -1L,
   fdr = FALSE,
   rank = FALSE,
   verbose = FALSE
)
```

Arguments

df	The dataframe
initialGraph	An initial undirected graph to use as a starting point. If NULL, a full graph will be used. Defaults to NULL.
alpha	The p value below which results are considered significant. Defaults to 0.05.
threads	The number of consumer threads to create during multi-threaded steps. If -1, defaults to number of available processors.
fdr	Whether or not to run with FDR correction for the adjacencies.
rank	Whether or not to use rank-based associations as opposed to linear
verbose	Whether or not to output additional information. Defaults to FALSE.

Value

The calculated search graph

pcStable 15

Examples

```
data("data.n100.p25")
ig <- rCausalMGM::mgm(data.n100.p25)
g <- rCausalMGM::pcMax(data.n100.p25, initialGraph = ig)</pre>
```

pcStable

Runs the causal algorithm PC-Stable on a dataset

Description

Runs the causal algorithm PC-Stable on a dataset

Usage

```
pcStable(
   df,
   initialGraph = NULL,
   alpha = 0.05,
   threads = -1L,
   fdr = FALSE,
   rank = FALSE,
   verbose = FALSE
)
```

Arguments

df	The dataframe
initialGraph	An initial undirected graph to use as a starting point. If NULL, a full graph will be used. Defaults to NULL.
alpha	The p value below which results are considered significant. Defaults to 0.05.
threads	The number of consumer threads to create during multi-threaded steps. If -1, defaults to number of available processors.
fdr	Whether or not to run with FDR correction for the adjacencies.
rank	Whether or not to use rank-based associations as opposed to linear
verbose	Whether or not to output additional information. Defaults to FALSE.

Value

The calculated search graph

```
data("data.n100.p25")
ig <- rCausalMGM::mgm(data.n100.p25)
g <- rCausalMGM::pcStable(data.n100.p25, initialGraph = ig)</pre>
```

printGraph

print.graph

A print override function for the graph

Description

A print override function for the graph

Usage

```
## S3 method for class 'graph'
print(x, ...)
```

Arguments

Χ

The graph object

printGraph

Display a graph object as text

Description

Display a graph object as text

Usage

```
printGraph(graph)
```

Arguments

graph

The graph object

```
data("data.n100.p25")
g <- rCausalMGM::mgm(data.n100.p25)
rCausalMGM::printGraph(g)</pre>
```

saveGraph 17

saveGraph

Save a graph to a file

Description

Save a graph to a file

Usage

```
saveGraph(list, filename)
```

Arguments

list The graph object filename The graph file

Examples

```
data("data.n100.p25")
g <- rCausalMGM::mgm(data.n100.p25)
rCausalMGM::saveGraph(g, "graphs/mgm_graph.txt")</pre>
```

SHD

Calculate the Structural Hamming Distance (SHD) between two graphs. This is the sum of the skeleton SHD and the orientation SHD.

Description

Calculate the Structural Hamming Distance (SHD) between two graphs. This is the sum of the skeleton SHD and the orientation SHD.

Usage

```
SHD(graph1, graph2)
```

Arguments

graph1 A graph object graph2 A graph object

Value

The SHD btween the two graph objects

18 steps

Examples

```
data("data.n100.p25")
g <- rCausalMGM::mgm(data.n100.p25)
rCausalMGM::printGraph(g)</pre>
```

skeletonSHD

Calculate the skeleton Structural Hamming Distance (SHD) between two graphs. This only counts the missing and added edges, and does not consider edge orientation

Description

Calculate the skeleton Structural Hamming Distance (SHD) between two graphs. This only counts the missing and added edges, and does not consider edge orientation

Usage

```
skeletonSHD(graph1, graph2)
```

Arguments

graph1 A graph object graph2 A graph object

Value

The skeleton SHD btween the two graph objects

Examples

```
data("data.n100.p25")
g <- rCausalMGM::mgm(data.n100.p25)
rCausalMGM::printGraph(g)</pre>
```

steps

Calculates the optimal lambda values for the MGM algorithm using StEPS and run the algorithm using those values. Optimal values are printed

Description

Calculates the optimal lambda values for the MGM algorithm using StEPS and run the algorithm using those values. Optimal values are printed

steps 19

Usage

```
steps(
  df,
  lambdas = NULL,
  nLambda = 20L,
  g = 0.05,
  numSub = 20L,
  subSize = -1L,
  leaveOneOut = FALSE,
  computeStabs = FALSE,
  threads = -1L,
  rank = FALSE,
  verbose = FALSE
)
```

Arguments

df	The dataframe	
----	---------------	--

lambdas A range of lambda values assessed for stability by the StEPS algorithm. If

NULL, lambdas is set to nLambda logarithmically spaced values from 10*sqrt(log10(p)/n)

to sqrt(log10(p)/n). Defaults to NULL.

nLambda The number of lambda values to fit an MGM for when lambdas is NULL

g The gamma parameter for STEPS. Defaults to 0.05

numSub The number of subsets to split the data into. Defaults to 20

subSize The size of the subsamples used for STEPS. If the value is -1, the size of the

subsamples is set to floor(10*sqrt(n)). If the value is in the range (0,1), the size of the subsamples is set to floor(subSize * n). Otherwise, if subSize is in the

range [1,n), the size of the subsamples is set to subSize. Defaults to -1.

leaveOneOut If TRUE, performs leave-one-out subsampling. Defaults to FALSE.

threads The number of consumer threads to create during multi-threaded steps. If -1,

defaults to number of available processors.

rank Whether or not to use rank-based associations as opposed to linear verbose Whether or not to output additional information. Defaults to FALSE.

Value

The calculated MGM graph

```
data("data.n100.p25")
g <- rCausalMGM::steps(data.n100.p25)</pre>
```

Index

```
* data
     data.n100.p25, 7
     data.n1000.p100,7
{\it adjMat2Graph, \color{red} 2}
bootstrap, 3
cfci, 4
cpcStable, 5
createCPDAG, 6
createMoral, 6
data.n100.p25, 7
data.n1000.p100,7
fci50,8
fciMax, 9
\texttt{fciStable}, \textcolor{red}{10}
loadGraph, 11
mgm, 11
{\tt mgmPath},\, {\color{red} 12}
orientationSHD, 12
pc50, 13
pcMax, 14
pcStable, 15
\verb|print.graph|, 16
printGraph, 16
saveGraph, 17
SHD, 17
{\it skeletonSHD},\, {\color{red}18}
steps, 18
```