EECS105 Spring 2011 Midterm 2 Open book, open notes, no silicon. Name	Wrong sign ~ 1 一丁井, 十年 ~ 2 サガナで、・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
SID	

Prob.	Score
1	/20
2	/20
3	/15
4	/20
5	/25
Total	/100

1) In the circuit below with R_E =10k, R_C =100k and C_{load} =1pF, calculate the frequency ω_p of the output pole, and the magnitude and phase of the transfer function from v_{in} to v_{out} at the output pole frequency, accurate to 10%. Sketch the output waveform

in response to an input $V_{in}=1mV \sin(\omega_p t)$. I've drawn the input waveform and labeled the axes. Draw the output waveform and **label the right axis**. Assume the bias point for V_E is 0.5V, $V_{CC}=10V$, $V_A=100V$, and the input pole is at very low frequency.

ωp= 107 red	+10	-2
$ H(j\omega_p) = +7$	+0.7	- 2
Angle(H(j ω_p))= $5\pi 3\pi -225$	positiv	-3
4, 4, +135	-7	-1
	-07	- 3

amplitude 2 } no labels -2 if ab "0.7" offset 1 } no labels -2 if ab "0.7"

phase 2

2) For the source follower circuit below,

- 2A) Draw the small signal model for this circuit. Label every node.
- 2B) Simplify the circuit assuming that you want to calculate G_M . State the assumption that allows the simplification.
- 2C) Write down KCL at the output node.
- 2D) Solve for the transconductance, G_M . (no credit on this one without showing your work).

$$\frac{2D) G_{M}}{R_{D}} = \frac{g_{m}}{R_{D}} = \frac{-g_{m}r_{c}}{R_{D}}$$

3) For the common emitter amplifiers below, given the bias points as shown, calculate the gain for each amplifier, accurate to 10%. The transistor is a 2n3904 like you've used in lab. You should be able to get a numerical answer.

4) You have a single-pole amplifier with a low frequency gain of 200, and a gain of 2 at 100kHz. What is the gain at the frequencies below?

Frequency	Gain
10 Hz	200
10kHz	20
200kHz	
2MHz	0.1

o minus sign -1'
o 5' for each.

 0.2^{hd} |Av| = 100 -3'

o 5' for each.

5A) For the circuit below, calculate the transconductance, output resistance. Write your answer in terms of g_{m1} , g_{m2} , r_{o1} , etc. Assume that $g_m r_o >> 1$ for all combinations of g_m and r_o , and simplify your answers. Then calculate the voltage gain with the additional assumption that all transconductances are equal to g_m and all output resistances are equal to r_o , and simplify.

- 5B) If you increase the boron (acceptor) doping level in the P-type substrate of an NMOS transistor, the
- (3 for each) i) Surface potential with V_{GS}=0 will go increase or decrease?
 - ii) Electric field in the oxide with V_{GS}=0 will increase or decrease?
 - iii) Threshold voltage will increase or decrease?