

# Coins

Abschlusspräsentation Bildbasierte Computergrafik David Alexander Kring

### **Projekt: Coins**

- Münzen durch Bildverarbeitung auf einem Bild erkennen
- Abfolge von verschiedenen Algorithmen



Abbildung: Beispiel Input

# Verarbeitungspipeline

- Zwei Bereiche:
  - Extrahieren der Münzen
  - Zuordnen der Münzen



Abbildung: Verarbeitungspipeline

#### Extrahieren der Münzen



Abbildung: Die einzelnen Schritte zur Extraktion der Münzen

# Zuordnung

- Umrechnung der gefundenen Münzen in Polarkoordinaten
- Skalieren für gleiche Größe
- Normalisierte Kreuzkorrelation durchführen
- Ground Truth verschieben
  - Rotation der Münze testen



Abbildung: Ground Truth für 2 Euro Vorder-seite (links) und erkannte extrahierte Münze aus einem Bild (rechts)

#### **Datensatz**

- Tif- Dateiformat
- Deutsche Euromünzen in verschiedenen Konfigurationen
  - Vorder-/Rückseiten
  - Heller/ Dunkler Hintergrund

#### **Datensatz**

- 2 Datensätze erstellt
  - Manueller Datensatz
    - GoPro Hero 3+
    - 5500K Tageslichtlampe
  - Künstlicher Datensatz
    - Münzbilder aus Drittquellen
      - Bundesbank & Europäische Zentralbank
    - Erstellen eines Datensatz in einem Bildverarbeitungsprogramm





Abbildung: Beispiel manueller Datensatz (links) und künstlicher Datensatz (rechts)

#### **Datensatz**

- Künstlicher Datensatz greift Problemen vor
  - Keine Objektivverzerrung
  - Keine Schatten

#### Datensatz: Referenzen

- Referenz von jeder Münze
  - Dient als Ground Truth zum Zuordnen
- Münze freistellen & in Polarkoordinaten umrechnen



#### **Evaluation**

- Erkennung von verschiedenen Münz-Konfigurationen
- Ground Truth in jeder Iteration um
  5 Pixel verschoben
- Schwellwert für Binärbild 150
  - Ausgenommen Vorder- und Rückseiten mit hellem Hintergrund

| Teil des Datensatzes   | Hintergrund | Erkannte Münzen |
|------------------------|-------------|-----------------|
| Vorderseiten           | Hell        | 71,83%          |
|                        | Dunkel      | 71,59%          |
|                        | Beide       | 71,71%          |
| Vorder- und Rückseiten | Hell        | 65,59%          |
|                        | Dunkel      | 53,00%          |
|                        | Beide       | 59,42%          |
| Alle Daten             |             | 65,57%          |

Abbildung: Tabelle mit allgemeinen Testergebnissen

#### **Evaluation**

- Vorderseiten werden besser erkannt
  - Rückseiten Designs teilweise Identisch
- Rückseiten mit mehr Pixelinformationen werden häufiger erkannt (2€, 0,50€, 0,05€)
  - Die jeweils größten Münzen in ihrer Kategorie
- ➤ Genaue Evaluationsergebnisse im Github

# **Implementation**

- C# .NETFramework
- Windows Forms
- EmguCV v4.5.1.4349
- MetadataExtractor (Drew Noakes)



Abbildung: Benutzeroberfläche des Programms

#### **Fehler**

- Hintergrund kann nicht immer Sauber getrennt werden
  - Kleine Pixelgruppen können als Münzen erkannt werden



Abbildung: Erkannter Schatten der in starken Verzerrungen resultiert.



Abbildung: Falsch erkannte Münzen in einer frühen Version des Programms

### Limitierungen

- Münzen müssen sehr ähnlich zu Ground Truth sein
- Nur Euromünzen können erkannt werden
- Rückseiten einiger Euromünzen haben identisches Design
- Münzen werden nicht voneinander getrennt
  - Berührende oder Überlappende Münzen werden nicht erkannt

Lösungsansätze für diese Limitierungen werden in der Dokumentation präsentiert

### Zukunft und weitere Planung

- Erweiterung der Algorithmus-Pipeline
  - Einbindung des Watershed Algorithmus
  - Einbeziehung des Durchmessers für relative Münzgrößen
  - Feature Detection/Matching

Der Programmcode, Dokumentation und Testergebnisse sind unter <a href="https://github.com/dakring/bcg-coins">https://github.com/dakring/bcg-coins</a> erreichbar.

Quellen sind in der Dokumentation aufgelistet.