Pairwise TS events

The schematic displays a pairwise TS event intuitively, C1 and C2 represent two different conditions, respectively. The y-axis (**Ratio**) in Figure S1 represents relative abundance of a transcript in the specific condition (e.g. the expression of transcript A divided by the sum of all transcript expression in a gene).

To help users to select TS events with specific patterns, deepTS provided five parameters which are described as below:

 $\label{eq:meanRa} \mbox{ represents the average } \mbox{ $Ratio$ of a transcript across N_C biological replicates} \\ \mbox{ under condition C,}$

$$meanRa = \frac{sum(Ratio_{tran}|C)}{N_c}$$

Where $\textbf{Ratio}_{tran}\textbf{C}$ represents Ratios of N biological replicates under condition C, N_C is the number of biological replicates under condition C.

meanExp is similar to **meanRa**, which represents the average expression abundance of a transcript across N_C biological replicates under condition C, the formula is as follows:

$$meanExp = \frac{sum(Exp_{tran}|C)}{N_C}$$

Here, $\mathbf{Exp_{tran}}|\mathbf{C}$ is the expression abundance of the transcript "tran" in N_C biological replicates under condition C. TS events can be further filtered using the following four parameters.

Filtered parameters

1) **switchPoint:** a logic value indicating whether there is a cross point between the paired ratio curves in a TS event (default: TRUE).

$$sign (meanRatio_{tran1} | C1 - meanRatio_{tran2} | C1)$$

$$\neq sign (meanRatio_{tran1} | C2 - meanRatio_{tran2} | C2)$$

2) **max_Exp:** a numerical vector describing the maximum **meanExp** of two transcripts in a TS events (default: (1, 1)).

$$\{ max \; (\; meanExp_{\text{tran1}} | C1, meanExp_{\text{tran1}} | C2), max \; (\; meanExp_{\text{tran2}} | C1, meanExp_{\text{tran2}} | C2) \}$$

3) max_FC: a numerical parameter presenting the log2 of maximum fold change of transcripts under two conditions (default: 2).

$$max \; (\log_2 \frac{meanExp_{\mathsf{tran1}} | C2}{meanExp_{\mathsf{tran1}} | C1}, \log_2 \frac{meanExp_{\mathsf{tran2}} | C2}{meanExp_{\mathsf{tran2}} | C1})$$

4) min_Ratiodiff: a numerical parameter specifying the minimum **Ratio** difference of two transcripts under two conditions (default: 0.15).

$$\begin{aligned} \min(|meanRa_{\text{tran}1}|C1 - meanRatio_{\text{tran}2}|C1|, |meanRa_{\text{tran}1}|C2| \\ - meanRa_{\text{tran}2}|C2|) \end{aligned}$$

Time-series TS events

The schematic shows a time-series TS event between transcript "trans1" and "trans2", where **Ratio** represents relative abundance for a transcript at a time point. The time series with eight time points are divided into four intervals by the intersection points of average expression. For each switch point, a series of scores are calculated and used to construct filtered metrics. For example, I_1 and I_2 are before and after time interval of a switch point, each contains three consecutive time points.

meanExp is similar to **meanRa**, which represents the average Ratio of a transcript at time interval I,

$$meanRa = \frac{sum(Ratio_m_{tran}|I)}{N_I}$$

Where $Ratio_m_{tran}|I$ represents the average Ratio of biological replicates at each time point in interval I, N_I is the number of time points at time interval I. Similarly,

meanExp represents the average expression abundance of a transcript at time interval I,

$$meanExp = \frac{sum(Exp_m_{tran}|I)}{N_I}$$

Where $\mathbf{Exp_m_{tran}}|\mathbf{I}$ represents the average expression abundance of biological replicates at each time point in interval I TS events can be further filtered using the following eight parameters:

Filtered parameters

1) num: a numerical vector describes the least number of consecutive time points in interval I_1 and I_2 (default: (1,1));

$$(N_{I1}, N_{I2})$$

2) cor: the Pearson's correlation coefficient between the expression values of the paired transcripts across time courses in interval I_1 and I_2 (default: -0.2);

$$correlation(Ratio_m_{tran1}|(I1+I2),Ratio_m_{tran2}|(I1+I2))$$

3) *freq*: a numerical value in the range of 0–1, reflecting that the frequencies of samples of one transcript is greater than that of the other in interval I_1 and is less in interval I_2 (default: 0.5);

$$\begin{split} |P(Ratio_m_{tran1} > Ratio_m_{tran2}|I1) + P(Ratio_M_{tran1} \\ < Ratio_m_{tran2}|I2) - 1| \end{split}$$

4) $diff_ra$: a numerical vector describes the mean difference between two transcripts in terms of relative abundance in intervals I_1 and I_2 (default: (0.3, 0.3));

$$((meanRa_{tran1} - meanRa_{tran2})|I1, (meanRa_{tran1} - meanRa_{tran2})|I2))$$

5) $diff_pvalue$: a numerical vector describes the significance level of the difference between the relative abundances of two transcripts in intervals I_1 and I_2 (default: (0.05, 0.05));

 $(t. test (Ratio_m_{tran1} | I1, Ratio_m_{tran2} | I1), t. test_(Ratio_m_{tran1} | I2, Ratio_m_{tran2} | I2))$

- 6) $change_ra$: a numerical vector describes the difference in relative abundance of each transcript between interval I_1 and I_2 (default: (0.2,0.2)); $((meanRa_{tran1}|I1 meanRa_{tran1}|I2), (meanRa_{tran2}|I1 meanRa_{tran2}|I2))$
- 7) $diff_exp$: a numerical vector describes the mean difference between two transcripts in terms of expression values in intervals I_1 and I_2 (default: (3, 3)); $((meanExp_{tran1} meanExp_{tran2})|I1, (meanExp_{tran1} meanExp_{tran2})|I2)$
- 8) *change_exp*: a numerical vector describes the difference in average expression value of each transcript between interval I_1 and I_2 (default: (3,3)).

$$((meanExp_{tran1}|I1 - meanEXP_{tran1}|I2), (meanExp_{tran2}|I1 - meanExp_{tran2}|I2))$$

Population TS events

The schematic shows a sQTL associated TS event, **Ratio** represents the relative abundance of a transcript in a genotype, G1 and G2 are two different genotypes. Several parameters are defined to filter population transcriptome derived TS events. **meanRa** represents the average **Ratio** of transcript "tran with genotype G,

$$meanRa = \frac{sum(Ratio_{tran}|G)}{N_G} \qquad G: \{G1, G2\}$$

Where $Ratio_{tran}|G$ is the Ratio of transcript "tran" in population samples with genotype G; N_G is the number of population samples with genotype G. TS events can be further filtered using parameter $diff_Ratio$, which is the relative difference of two transcripts between two genotypes.

$$(meanRa_{tran1} - meanRa_{tran2})|G1 - (meanRa_{tran1} - meanRa_{tran2})|G2$$