

# 2021 Synopsys ARC 盃 AloT 設計應用競賽 決賽作品

基於邊緣運算架構結合手勢辨識的智慧電梯

Smart elevator based on edge computing architecture combined with gesture recognition

隊員:陳冠瑋、袁鈺彬、羅翊瑄、邱序之

隊名:威鵝·史密斯 / WE-I Goose·Smith (2015)



2021.07.25



# **Agenda**

- 作品概述
- 難點與創新
- 設計與實現
- 作品進度
- ■測試結果
- 總結展望





# 作品概述

Introduction

### Introduction

- Zero-contact technology
  - Market consumption
  - Medical care
  - School education
  - Restaurant service
  - Public transportation
- ▶ The virus spread in elevator quickly and easily
  - 2003 SARS
  - 2019 COVID-19





### Introduction

- Gesture recognition
- Always On system
- Ultra Low Consumption
- Embedded Al Acceleration
- Edge Computing











Himax WE-I Plus



# Introduction

|              | Himax<br>WE-I Plus   | ESP8266                   | Raspberry Pi 4B           | NVIDIA<br>Jetson Nano |
|--------------|----------------------|---------------------------|---------------------------|-----------------------|
| Price (NT\$) | 1,800                | 240                       | 2,500                     | 3,400                 |
| GPIO         | 4                    | 16                        | 40                        | 40                    |
| Flexibility  | Low                  | Medium                    | High                      | High                  |
| OS           | X                    | X                         | V                         | V                     |
| Size         | 47 x 16<br>(mm x mm) | 48.26 x 25.4<br>(mm x mm) | 85.6 x 53.98<br>(mm x mm) | 100 x 80<br>(mm x mm) |
| Clock Rate   | 400 MHz              | 160 MHz                   | 1.5 GHz                   | 1.5 GHz               |
| Power        | < 2.5 mW             | 250 mW                    | 3.4W / 7.6 W              | 5W / 10W              |
| ML           | V                    | V                         | V                         | V                     |



### 創新與難點

**Innovation & Difficulties** 





### Innovation & Difficulties

#### Difficulties

- Privacy
- Multi-gesture recognition
- Scenes variation
- Different skin color
- Different type of gestures
- Handicapped unfriendly
- 10<sup>+</sup> flows control & cancelling control
- Recognition speed leads to errors





### Innovation & Difficulties

#### Innovation

- Control the elevator with gesture recognition
- Always-on system
- Use ultra-low power AI ASIC (Himax WE-I Plus) as the trigger unit
- Low latency, real-time hand detection and gesture recognition
- Support continuous floors input
- Simulate elevator flow control through JavaScript
- Use gesture recognition to remotely control server
- Combination of high OPS unit and low power edge sensor



### 設計與實現

**Design & Implementation** 





# Design – System Architecture & System Flow





# Design – Physical Design









#### **Gesture Detection**

- Himax WE-I Plus
- TensorFlow Lite
- Keras

### **Gesture Recognition**

- NVIDIA Jetson Nano
- OpenCV
- MediaPipe API

#### **Control Simulation**

- Elevator animation
- Flask
- jQuery
- Express.js



### Implementation – Hand Detection

### Always-on detector

- Real time hand & object detection
- Always on & wake up system
- Edge computing architecture
- Trigger high OPS units
- Reduce power comsuption



# Bring Smart Everything to Life





# Implementation – Hand Detection

### MobileNet

Total params: 137,090

Trainable params: 134,146

Non-trainable params: 2,944







# Implementation – Gesture Recognition

### MediaPipe Hand

- Hand pose estimation & tracking
- Hand gesture recognition
- Robust real-time hand perception



# MediaPipe



- 0. WRIST
- 1. THUMB\_CMC
- 2. THUMB\_MCP
- 3. THUMB\_IP
- 4. THUMB\_TIP
- 5. INDEX\_FINGER\_MCP
- 6. INDEX\_FINGER\_PIP
- 7. INDEX\_FINGER\_DIP
- 8. INDEX\_FINGER\_TIP
- 9. MIDDLE\_FINGER\_MCP
- 10. MIDDLE\_FINGER\_PIP

- 11. MIDDLE\_FINGER\_DIP
- 12. MIDDLE\_FINGER\_TIP
- 13. RING\_FINGER\_MCP
- 14. RING\_FINGER\_PIP
- 15. RING\_FINGER\_DIP
- 16. RING\_FINGER\_TIP
- 17. PINKY\_MCP
- 18. PINKY\_PIP
- 19. PINKY\_DIP
- 20. PINKY\_TIP











### Implementation – Elevator Animation

### Simulate Animation

- Express.js
- jQuery
- Flask (for testing)
- requests (python)
- Talend API Tester





### Implementation – Power Analysis







| NVIDIA Jetson Nano                | Standby | Idle   | Triggered |
|-----------------------------------|---------|--------|-----------|
| Total power consumption (mW)      | 2408    | 3413   | 6064      |
| Always-on thermal zone temp. (AO) | 38.50C  | 52.50C | 62.50C    |
| CPU clock rate (GHz)              | 0.204   | 1.5    | 1.5       |
| GPU clock rare (MHz)              | 230     | 153    | 921       |



### Implementation – Power Analysis

#### Dynamic power:

$$P_{avg} = \alpha \cdot f \cdot 1/2 \cdot c \cdot V_{dd}^{2}$$

| NVIDIA Jetson Nano                | Standby | ldle   | Triggered |
|-----------------------------------|---------|--------|-----------|
| Total power consumption (mW)      | 2408    | 3413   | 6064      |
| Always-on thermal zone temp. (AO) | 38.50C  | 52.50C | 62.50C    |
| CPU clock rate (GHz)              | 0.204   | 1.5    | 1.5       |
| GPU clock rare (MHz)              | 230     | 153    | 921       |

#### Power saving:

$$P_{Trig} - P_{Idle} \approx 6000-3500 = 2500 \text{ mW}$$

With the help of Himax WE-I (Ultra Low Power AI ASIC)

Assume 90% idle state & 10% triggered state.

Estimate the wasted power & energy consumption over a year for one device.

$$\begin{split} \left[ P_{Trig} - \left( P_{Idle} \times 0.9 + P_{Trig} \times 0.1 \right) \right] \cdot 60 \cdot 60 \div 10^6 &\approx 8.1 \, kWh \\ \left[ P_{Trig} - \left( P_{Idle} \times 0.9 + P_{Trig} \times 0.1 \right) \right] \cdot 60 \cdot 60 \cdot 24 \cdot 365 \div 1000 \approx 71 \, MJ \end{split}$$



# 作品進度

**Work Progress** 





### Work Progress

#### Himax WE-I

- Real time hand detect
- Edge computing architecture
- Trigger high OPS units
- Reduce power comsuption

#### NVDIA Jetson Nano

- Real time gesture recognition
- High accuracy & Quick response

#### Elevator Simulation

■ Create elevator animation through webpage (1~9 Floors)



# 測試結果

**Results & Demo** 





### Result & Demo – Hand Detection





### Result & Demo – Hand Detection



#### **Hand NOT detected**

- Simple background
- Pure background









#### **IDIE STATE (No Hand)**

- HC-SR04: object detection
  - ✓ Ultrasonic distance measurement
- Himax WE-I Plus: hand detection
  - ✓ TinyML predict situation

### TRIG STATE

(With Object or Hand)

- Open camera (640,480,3)
- Start gesture recognition
- Elevator flow control
- Upload to server







#### **Back to IDIE STATE**

- Over the idle time
- Recognition finish

#### **Successfully identified**

- "ok" gesture as input trigger signal
- "1" ~ "9" gesture as select floors signal
- " desture as close door signal
- " 💹 " gesture as open door signal
- Other gesture as unknown (x)











# 總結展望

**Prospect** 





### Prospect

#### Smart Elevator

- Himax WE-I Plus vs. traditional sensors → get more accurate detection results
- Gesture control vs. touch screen interface → AR, VR applications
- Combine face recognition to predict users' floor
- With the help of face recognition, we can build the visitor-management system effectively









# Bring Smart Everything to Life





# Thank You



# SYNOPSYS®

Silicon to Software™