*GX*____

Ollscoil na hÉireann, Gaillimh National University of Ireland, Galway Autumn Examinations 2018

Exam Code(s) 4BCT

Exam(s) B.Sc. in Computer Science & Information Technology

Module Code(s) CT404

Module(s) Graphics & Image Processing

Paper No. 1 Repeat Paper Yes

External Examiner(s)

Dr. Jacob Howe

Internal Examiner(s)

*Dr. Sam Redfern

Prof. Michael Madden

Instructions: Answer any 3 questions.

All questions carry equal marks.

Duration 2 hours **No. of Pages** 5

Department(s)Information TechnologyCourse Co-ordinator(s)Dr. Des Chambers

Requirements:

MCQ Handout Statistical Tables Graph Paper Log Graph Paper Other Material

Q.1. (Graphics)

- (i) Explain the concept <u>Nested Coordinate System</u> as it applies to computer graphics. Why are nested coordinate systems useful? [6]
- (ii) Provide short sections of code illustrating the use of nested coordinate systems in both Canvas/Javascript, and in X3D. [8]
- (iii) <u>Antialiasing</u> is an approach in 2D raster graphics, which uses colour (depth) as a means to simulate an increase in resolution. With reference to the 'G' figures illustrated below, discuss the antialiasing technique, and in particular the concept of <u>sub-pixel accuracy</u>. [6]

Q.2. (Graphics)

- (i) Describe the use of <u>extrusion</u> in X3D, referring to each of the seven fields used by the Extrusion node. Note that extrusion and other useful nodes from the X3D language are summarised on the final page of this exam paper. [5]
- (ii) Write X3D code to make a model of a coffee table (example illustrated on the right).[15]
- The model should be as geometrically accurate as possible (please provide sketches)
- The model should use a woodgrain texture as the material for its shapes. You can assume that a file called "wood.jpg" is available for this purpose.

Q.3. (Graphics)

- (i) Many of the techniques used in real-time 3D graphics programming attempt to maximise the realism of the rendered scene while processing a minimal number of polygons. With specific reference to the so-called 'polygon budget', and using diagrams where appropriate, discuss each of the following five techniques [15]
 - a) Frustum Culling
 - b) Bump Mapping
 - c) Binary Space Partitioning
 - d) Billboards
 - e) Levels-of-Detail (LODs)
- (ii) Discuss the Lambert, Gourard and Phong Shading algorithms, illustrating your answer with diagrams [5]

Q.4. (Image Processing)

- (i) Describe the morphological image processing techniques of <u>erosion</u> and <u>dilation</u>. Compare the three operations (a) opening, (b) closing, (c) thinning. In what circumstances might each of these three operations be used? [10]
- (ii) Consider the image of a bubble, shown below. The image contains substantial amounts of noise, and there exists a large section of bright 'shine' pixels across the centre of the bubble. Propose and justify a series of image processing steps that would be suitable to accurately measure the number of pixels inside the bubble. [10]

Q.5. (Image Processing)

- (i) <u>Camera decalibration</u> is a technique for geometric correction of images which is often employed when sources of geometric error are poorly understood. With regard to camera decalibration:
 - Outline the use of reference images such as grids of dots to construct and apply geometric corrections to images captured with a wide-angle lens (e.g. the image below). Explain the terms 'control points', 'pixel filling', and 'bilinear interpolation' in your answer.

[7]

• Explain why would you expect a reference image to be constructed with black markings on a white background (or white markings on a black background).

[3]

(ii) Pictured below is a binary image which contains nuts and bolts as well as noise pixels. Outline and discuss an image processing algorithm for automatic isolation and counting of nuts and bolts in images such as this.

Some useful X3D nodes:

Node	Important Fields and Nested Nodes	
Shape	Nested Nodes: Appearance, Geometry Nodes (Box,	
	Sphere, Cone, Cylinder, Text, Extrusion, etc.)	
Appearance	Nested Nodes: Material, ImageTexture	
Material	Fields: diffuseColor, specularColor, emissiveColor,	
	ambientIntensity, transparency, shininess	
ImageTexture	Fields: url	
Transform	<u>Fields</u> : translation, rotation, scale, center.	
	Nested Nodes: Other Transforms, Shapes, Sensors	
TimeSensor	<u>Fields</u> : enabled, startTime, stopTime, cycleInterval,	
	loop	
PositionInterpolator	<u>Fields</u> : key, keyValue	
OrientationInterpolator	<u>Fields</u> : key, keyValue	
Extrusion	<u>Fields</u> : crossSection, spine, scale, orientation,	
	beginCap, endCap, creaseAngle	
Box	<u>Fields</u> : size	
Sphere	<u>Fields</u> : radius	
Cylinder	<u>Fields</u> : radius, height, side, top, bottom	
Cone	Fields: height, bottomRadius, side, bottom	
PointLight	Fields: on, location, radius, intensity,	
	ambientIntensity, color, attenuation	
ROUTE	Fields: fromNode, fromField, toNode, toField	

Some useful methods/properties of the Canvas 2D Context object:

Method/Property	Arguments/Values	Notes
fillRect	(Left, Top, Width, Height)	Draw a filled rectangle
beginPath	None	Start a stroked path
moveTo	(X, Y)	Move the graphics cursor
lineTo	(X, Y)	Draw a line from graphics
		cursor
stroke	None	End a stroked path
fillStyle	="rgb(R,G,B)"	Set fill colour
strokeStyle	="rgb(R,G,B)"	Set line colour
save	None	Save the current coordinate
		system
restore	None	Restore the last saved coord
		system
translate	(X, Y)	Translate the coordinate system
rotate	(angle)	Rotate the coordinate system
		clockwise, with angle in
		radians
scale	(X, Y)	Scale the coordinate system
		independently on the X and Y
		axes