

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		A1	(11) International Publication Number: WO 00/06753
C12N 15/82, 15/29, C07K 14/415, C12N 5/10, C07K 16/16, C12Q 1/68, G01N 33/563, A01H 5/00			(43) International Publication Date: 10 February 2000 (10.02.00)
<p>(21) International Application Number: PCT/NL98/00445</p> <p>(22) International Filing Date: 31 July 1998 (31.07.98)</p> <p>(71) Applicants (for all designated States except US): CENTRUM VOOR PLANTENVEREDELINGS-EN REPRODUCTIE-ONDERZOEK (CPRO-DLO) [NL/NL]; P.O. Box 16, NL-6700 AA Wageningen (NL). LANDBOUWUNIVERSITEIT WAGENINGEN [NL/NL]; P. O. Box 8123, NL-6700 ES Wageningen (NL).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (for US only): VAN DER VOSSEN, Edwin, Andries, Gerard [NL/NL]; Bouwstraat 1, NL-3572 SN Utrecht (NL). VAN DER VOORT, Jeroen, Nicolaas, Albert, Maria, Rouppe [NL/NL]; Omval 91, NL-1096 AA Amsterdam (NL). LANKHORST, Rene, Marcel, Klein [NL/NL]; Nijburgsestraat 43, NL-6668 AZ Randwijk (NL). BAKKER, Jaap [NL/NL]; Geertjesweg 122, NL-6704 PD Wageningen (NL). STIEKEMA, Wilhelmus, Johannes [NL/NL]; Leonard Roggeveenstraat 21, NL-6708 SL Wageningen (NL).</p> <p>(74) Agent: DE BRUIJN, Leendert, C.; Nederlandsch Octrooibureau, Scheveningseweg 82, P.O. Box 29720, NL-2502 LS The Hague (NL).</p>			<p>(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIGO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published With international search report.</p>
<p>(54) Title: ENGINEERING NEMATODE RESISTANCE IN SOLANACEAE</p> <p>(57) Abstract</p> <p>The present invention relates to the <i>Gpa2</i> resistance gene from potato conferring resistance to phytopathogenic nematodes of the genus <i>Globodera</i>. It further relates to methods and materials employing the gene and processes for identifying related genes. Finally the invention relates to polypeptides encoded by said resistance genes and the use of said polypeptides.</p> <p>A</p> <p>centromere of chromosome 12</p> <p>B</p> <p>C</p> <p>D</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

ENGINEERING NEMATODE RESISTANCE IN SOLANACEAE**FIELD OF THE INVENTION**

5 The present invention relates to the *Gpa2* resistance gene from potato conferring resistance to phytopathogenic nematodes of the genus *Globodera*. It further relates to methods and materials employing the gene and processes for identifying related genes. Finally the invention relates to polypeptides encoded by said resistance genes and the use of said polypeptides.

10

BACKGROUND OF THE INVENTION**Plant defense**

Most plants are susceptible to infection by pathogens such as nematodes and develop various undesirable disease symptoms upon infection which cause retarded growth, reduced yield and consequently economical loss to farmers. The plants respond to infection with several defense mechanisms including production of phytoalexins, deposition of lignin-like material, accumulation of cell wall hydroxyproline-rich glycoproteins, expression of pathogenesis related proteins (PR-proteins) and an increase in the activity of several lytic enzymes. Some of these responses can be induced not only directly by infection but also in some cases by exposure to exogenous chemicals such as ethylene. The full capacity of the defense mechanism of the plant is, however, normally delayed in relation to the onset of infection, and thus, the plant may be severely injured before its defense mechanism reaches its maximum capacity. Also, the defense mechanism of the plant may not in itself be sufficiently strong to effectively combat the infectious organism. This is in particular true for cultivated plants which have often been cultivated with the aim of increasing the yield, decreasing the climate susceptibility, decreasing the nutrient demand etc. Therefore, a normal and necessary procedure is to treat infected plants or plants susceptible to infection with a chemical either as a prophylactic treatment or shortly after infection. The use of a chemical treatment is neither desirable from an ecological nor from an economic point of view. Another procedure to combat the infectious organism is crop rotation. However, this is not able to fully overcome the problem. It would therefore be desirable to be able to enhance the

defense of the host plant itself by introducing new and/or improved genes by genetic engineering. The advantageous effect of the latter strategy would be the immediate inhibition of a phytopathogenic attack, leading to a retarded epidemic establishment of the infecting organisms in genetically engineered plant crops and thus an overall reduction in the effect of the infection.

One of the phytopathogenic organisms which are most wide spread and which are pathogenic to potato are the potato cyst nematodes (PCN) *Globodera pallida* and *G. rostochiensis*. These nematodes cause considerable losses to potato crop growing, up to 10% of the annual yield world wide. Because cysts are very persistent to chemical treatment and can survive for several years in the soil, the use of nematicides and crop rotation are only moderately effective. The present invention circumvents these drawbacks in the control of PCN.

Durability of PCN resistance

The durability of the resistance is determined by the extent of variation at (a)virulence loci which occur among the pathogen biotypes and the ability of the pathogen to generate novel specificities at (a)virulence loci. For PCN, the variation at (a)virulence loci is for the majority determined by the original founders which have been introduced into Europe. PCN are endemic in the Andes region of South-America where they coevolved with their Solanaceous hosts. They are thought to have been introduced into Europe relatively recently, after 1850, together with collections of potato species which were imported for breeding purposes. Only a limited part of the genetic variation present in their centre of origin has been introduced into Europe (Folkertsma 1997). From the moment of their introduction onwards, the genetic variation in virulence within and between European nematode populations has been determined predominantly by 1) the genetic structure of the primary founders, 2) random genetic drift and 3) gene flow. Mutation and selection can be excluded as a driving force for the observed variation; the species produce only one generation in a growing season, their multiplication rate is low, the time between generations is 2 to 4 years in normal crop rotation and the active spread of the nematode is limited to several centimeters in the soil. It seems therefore highly unlikely that PCN populations have acquired other virulence characteristics than those already present at the moment of their introduction into Europe. Strategies to obtain broad spectrum resistance against PCN are therefore based on combining a

minimal number of genes with complementary or partially overlapping resistance spectra (Bakker *et al.*, 1993).

Plant disease resistance genes

The majority of plant resistance (R-) genes are located in chromosomal bins containing other disease or insect resistance factors (reviewed in Crute and Pink, 1996). These resistance genes are dominantly inherited, are often involved in resistance processes which are characterized by a hypersensitive response (HR) and are members of multigene families hypothesized to have evolved from common ancestral genes. Most R-loci are characterized by the presence of DNA sequences encoding putative gene products that contain (1) a nucleotide binding site (NBS) and (2) a leucine rich repeat structure (LRR). These structural motifs are known to occur in a large number of resistance gene products; nearly 30 resistance genes from various species have now been cloned and with the exception of two (*Hm1* and *mlo*; Johal and Briggs, 1992; Büschges et al. 1997), these genes are thought to be components of signal transduction pathways (Baker *et al.* 1997). On the basis of the structural similarity within the motifs of these genes, it is hypothesized that resistance genes are evolutionarily related components of a recognition system (Staskawicz *et al.* 1995). However, outside these structural motifs, the nucleotide sequences of disease resistance genes are unrelated and several subclasses can be distinguished (Leister *et al.* 1998). Genes associated with resistance to nematodes in potato are likely to constitute a separate subclass of R-genes. However, the basic architecture hereof has not yet been uncovered. The isolation, characterization and functional analysis of these nematode R-genes remains to be done.

Clustering of R-loci in potato has been reported. One of the large R-loci clusters is on the short arm of potato chromosome 5. This cluster comprises at least five R-loci: *R1* associated with resistance to *Phytophthora infestans* (Leonards-Schippers *et al.* 1992), *Nb* associated with HR type resistance to potato virus X (de Jong *et al.* 1997), *Rx2* associated with an extreme type of resistance to PVX, and *Gpa* and *Grp1* associated with resistance to the PCN (Kreike *et al.* 1994; Rouppe van der Voort *et al.* 1998). The recently identified PCN R-locus *Gpa5* is also located within the *Grp1* region (Rouppe van der Voort and Van der Vossen; unpublished data). Additionally, *Gpa6* has been mapped to a region on chromosome 9 on which the homologous region in tomato, *Sw5*, conferring resistance to tomato spotted wilt virus, resides (Rouppe van der Voort and

Van der Vossen; unpublished data).

The *Gpa2* locus

The *Gpa2* locus in potato has been found to be associated with resistance to *G. pallida* populations D383 and D372 (Arntzen et al. 1994). The presence of a single locus in potato which acts specifically to this small cluster of populations indicates that a gene-for-gene relationship underlies this plant-pathogen interaction (Rouppé van der Voort et al. 1997; Bakker et al. 1993). Although, the *Gpa2* locus has previously been mapped on the short arm of chromosome 12 of potato (Rouppé van der Voort et al. 1997a), thusfar no sequence data or precise location were known. The gene was never isolated and no indication as to whether this single sequence would suffice to provide resistance or reduce susceptibility to nematode infection was available.

SUMMARY OF THE INVENTION

The present invention relates to a nucleic acid sequence providing resistance to infection by a phytopathogenic nematode of the *Globodera* species when introduced into a host plant, said host plant prior to introduction being susceptible to infection by the phytopathogenic nematode, said introduction occurring in such a way that said nucleic acid sequence is expressed in the host plant. Furthermore the invention relates to sequences which are homologous to the aforementioned sequence and which, when present in a plant, are able to render said plant resistant to infection by *Globodera* species. More specifically, a sequence according to the invention is preferably that of SEQ ID NO.1 or a homologue thereof. The PCN resistance locus *Gpa2*, when present in a plant such as *Solanum* spp., is capable of conferring to the plant anti-phytopathogenic activity in the form of resistance to *Globodera* species which are known to invade and damage the roots of Solanaceae. The invention relates to the *Gpa2* resistance gene of which the DNA sequence is disclosed herein.

The invention also relates to a product encoded by a nucleic acid sequence according to the invention, said product providing nematode resistance activity. Furthermore, the invention relates to genetic constructs, vectors, host cells such as bacterial strains, yeast cells and plant cells comprising a nucleic acid sequence according to the invention. In another aspect, the present invention relates to a genetically transformed plant, preferably of the family Solanaceae, especially a genetically

transformed potato plant. Suitably, in a host cell according to the invention, the expression product of the nucleic acid sequence according to the invention, said expression product providing the anti-nematode activity, is produced in an increased amount as compared to the untransformed host cell so as to result in an increased 5 resistance to *Globodera* species. A process for producing a genetically transformed or transfected nematode resistant plant is additionally provided as is a process for isolating or detecting nucleic acid sequences according to the invention, providing nematode resistance of the aforementioned type. A process for diagnosing whether a plant is 10 resistant to *Globodera* species and a process for providing resistance to *Globodera* species to plant material are also disclosed in the present invention. The invention also encompasses a process for producing a polypeptide providing the resistance and a nematocide composition providing said resistance. Antibodies to the polypeptide are also envisaged as embodiments of the invention as is the application thereof in a diagnostic 15 kit for assessing whether a plant is resistant to the aforementioned nematodes. A diagnostic kit according to the invention may also comprise probes and/or primers specific for detection of a nucleic acid sequence providing the resistance.

The present invention relates to oligonucleotides corresponding to a part of a sequence according to the invention or being complementary thereto, with which homologous resistance genes can be identified that confer resistance to *Globodera* 20 species.

DETAILED DESCRIPTION OF THE INVENTION

Definitions

25 The following definitions are provided for terms used in the description and examples that follow.

- *Nucleic acid*: a double or single stranded DNA or RNA molecule.
- *Oligonucleotide*: a short single-stranded nucleic acid molecule.
- *Primer*: the term primer refers to an oligonucleotide which can prime the synthesis of 30 nucleic acid.
- *Homologous sequence*: a sequence which has at least 70%, preferably 75%, more preferably 80%, most preferably 85% or even 90% sequence identity with the nucleic acid of the invention, whereby the length of the sequences to be compared for nucleic

acids is at least 100 nucleotides, preferably 200 nucleotides and more preferably 300 nucleotides and for polypeptides at least 50 amino acid residues, preferably 75 amino acid residues and more preferably 100 amino acid residues. Homology between the sequences may be as defined and determined by the TBLASTN computer programme for 5 nucleic acids or the TBLASTP computer programme for polypeptides, of Altschul *et al.* (1990), which is in standard use in the art, or, and this may be preferred, the standard program BestFit, which is part of the Wisconsin Package, Version 8, September 1994, (Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA, Wisconsin 53711). Alternatively, a homologous sequence refers to a nucleic acid which can 10 hybridize under stringent conditions to the nucleic acid of the invention. Nucleic acid hybridization is a method for detecting related sequences by hybridization of single-stranded nucleic acid probes with denatured complementary target DNA on supports such as nylon membrane or nitrocellulose filters. Nucleic acid molecules that have complementary base sequences will reform the double-stranded structure if mixed in 15 solutions under the proper conditions, even if the target nucleic acid is immobilized on a support. Stringent conditions refer to hybridization conditions which allow a nucleic acid sequence of at least 50 nucleotides and preferably about 200 or more nucleotides to hybridize to a particular sequence at about 65°C in a solution comprising approximately 1 M salt, preferably 6 x SSC or any other solution having a comparable ionic strength, 20 and washing at 65°C in a solution comprising about 0.1 M salt, or less, preferably 0.2 x SSC or any other solution having a comparable ionic strength. These conditions allow the detection of sequences having about 90% or more sequence identity. The person skilled in the art will be able to modify hybridization conditions in order to identify 25 sequences varying in identity between 50% and 90% or more. Binding of the single-stranded nucleic acid probe to a corresponding target nucleic acid may be measured using any of a variety of techniques at the disposal of those skilled in the art.

- *Promoter*: the term "promoter" is intended to mean a short DNA sequence to which RNA polymerase and/or other transcription initiation factors bind prior to transcription of the DNA to which the promoter is functionally connected, allowing transcription to take 30 place. The promoter is usually situated upstream (5') of the coding sequence. In its broader scope, the term "promoter" includes the RNA polymerase binding site as well as regulatory sequence elements located within several hundreds of base pairs, occasionally even further away, from the transcription start site. Such regulatory sequences are, e.g.,

sequences which are involved in the binding of protein factors which control the effectiveness of transcription initiation in response to physiological conditions. The promoter region should be functional in the host cell and preferably corresponds to the natural promoter region of the *Gpa2* resistance gene. However, any heterologous promoter region can be used as long as it is functional in the host cell where expression is desired. The heterologous promoter can be either constitutive or regulatable. A constitutive promoter such as the CaMV 35S promoter or T-DNA promoters, all well known to those skilled in the art, is a promoter which is subjected to substantially no regulation such as induction or repression, but which allows for a steady and substantially unchanged transcription of the DNA sequence to which it is functionally bound in all active cells of the organism provided that other requirements for the transcription to take place is fulfilled. A regulatable promoter is a promoter of which the function is regulated by one or more factors. These factors may either be such which by their presence ensure expression of the relevant DNA sequence or may, alternatively, be such which suppress the expression of the DNA sequence so that their absence causes the DNA sequence to be expressed. Thus, the promoter and optionally its associated regulatory sequence may be activated by the presence or absence of one or more factors to affect transcription of the DNA sequences of the genetic construct of the invention. Suitable promoter sequences and means for obtaining an increased transcription and expression are known to those skilled in the art.

- *Terminator*: the transcription terminator serves to terminate the transcription of the DNA into RNA and is preferably selected from the group consisting of plant transcription terminator sequences, bacterial transcription terminator sequences and plant virus terminator sequences known to those skilled in the art.
- *Nematode*: plant parasitic roundworms of the genus *Globodera*, i.e. *Globodera pallida* and *G. rostochiensis*.
- *Nematode resistance*: to understand the nature of the activity of the *Gpa2* locus in connection with nematode resistance, a brief description of the histopathology of *Solanum* spp. infected with *Globodera* species is hereby given. The infective second-stage larvae hatch and emerge from the cysts and then migrate to and enter roots of susceptible (nonresistant) and resistant potato plants. Before feeding and developing in the root tissue, the nematode induces the formation of multinucleated syncytium. In susceptible potato plants, cessation of feeding by the mature nematode is followed by the

development of cysts breaking out of the root tissue but still clinging to the potato roots. The larvae may survive for a long period in the cysts. In the case of a nematode resistant plant, the number of cysts formed by the adult female nematodes is reduced whereby retardation of the growth of the potato plant is prevented. In accordance herewith, the term "nematode resistance" denotes the characteristic activity in a plant ascribable to a resistance gene, i.e. the capability of the gene products to reduce or prevent the formation of cysts on the roots of plants in particular of Solanaceae like e.g. *Solanum* spp.

- *Gene*: the term "gene" is used to indicate a DNA sequence which is involved in producing a polypeptide chain and which includes regions preceding and following the coding region (5'-upstream and 3'-downstream sequences) as well as intervening sequences, the so-called introns, which are placed between individual coding segments (so-called exons) or in the 5'-upstream or 3'-downstream region. The 5'-upstream region comprises a regulatory sequence which controls the expression of the gene, typically a promoter. The 3'-downstream region comprises sequences which are involved in termination of transcription of the gene and optionally sequences responsible for polyadenylation of the transcript and the 3' untranslated region. The term "resistance gene" is a nucleic acid comprising a sequence as depicted in Fig. 3 (SEQ ID NO.3), or part thereof, or any homologous sequence.

- *Resistance gene product*: a polypeptide having an amino acid sequence as depicted in Fig. 3 (SEQ ID NO.1) or part thereof, or any homologous sequence exhibiting the characteristic of providing nematode resistance when incorporated and expressed in a plant.

Scope of the invention

The present invention relates to a nucleic acid sequence providing resistance to infection by a phytopathogenic nematode of the genus *Globodera* when introduced into a host plant, said host plant prior to introduction being susceptible to infection with the phytopathogenic nematode, said introduction occurring in such a way that said nucleic acid sequence is expressed in the host plant. Furthermore the invention relates to resistance sequences which are homologous to the aforementioned sequence and which, when present in a plant, are able to confer to said plant resistance to infection by *Globodera* species. More specifically, a sequence according to the invention is suitably that of SEQ ID NO.1 or a homologue thereof. The PCN resistance locus *Gpa2*, when

present in a plant such as *Solanum* spp., is capable of conferring, to the plant, anti-phytopathogenic activity in the form of resistance to *Globodera* species which are known to invade and damage the roots of Solanaceae. The invention relates to the *Gpa2* resistance gene of which the DNA sequence is disclosed herein.

5 Homologues of the nucleic acid sequence of the abovementioned embodiment of the invention which also provide resistance to *Globodera* species, said homologues being nucleic acid sequences encoding the amino acid sequence of SEQ ID NO.1, are also within the scope of the invention. A homologue of the nucleic acid sequence according to the invention can suitably also provide the resistance when said homologue is a
10 nucleic acid sequence exhibiting more than 70% homology at nucleic acid level with SEQ ID NO. 1. Alternatively the homologue is a nucleic acid sequence exhibiting more than 75% homology at nucleic acid level with SEQ ID NO. 1, preferably exhibiting more than 80% homology at nucleic acid level with SEQ ID NO. 1, more preferably exhibiting more than 85% homology at nucleic acid level with SEQ ID NO. 1. A
15 homologue of the nucleic acid sequence according to the invention, said homologue providing the resistance, can also be a nucleic acid sequence exhibiting more than 90% homology at nucleic acid level with SEQ ID NO.1 and can even be a nucleic acid sequence exhibiting more than 95% homology at nucleic acid level with SEQ ID NO.1. A homologue also providing the resistance can be a nucleic acid sequence capable of
20 hybridising under normal to stringent conditions to the nucleic acid sequence of SEQ ID NO. 1. Naturally another suitable embodiment of a homologue of the sequence according to the invention, also providing the resistance, can be a nucleic acid sequence encoding a deletion, insertion or substitution mutant of the amino acid sequence of SEQ ID NO.1. Such a homologue, also providing the resistance, can be a nucleic acid sequence
25 encoding a deletion, insertion or substitution variant, preferably as occurs in nature, of the amino acid sequence of SEQ ID NO.1. A nucleic acid sequence according to the invention may in addition to any of the embodiments described above or any combinations thereof further comprise at least one intron. Suitable examples of introns and locations thereof are provided in SEQ ID NO.2. A suitable embodiment of the
30 nucleic acid sequence according to the invention is the genomic insert of pBINRGH2 as disclosed in the examples. A nucleic acid sequence according to the invention is suitably identical to that present in the genetic material of a species of the Solanaceae family, preferably a species of the genus *Solanum*. More specifically, such sequences can be

found on and are preferably identical to those present in the genome of potato on chromosomes 4, 5, 7, 9, 11 or 12. More specifically, the nucleic acid sequence is identical to that present in the genome of potato at the *Gpa2* locus. Obviously, a fragment of any of the above mentioned embodiments exhibiting the characteristic of providing the resistance falls within the scope of the invention.

According to the present invention, a DNA region comprising the PCN R-locus *Gpa2* has been isolated from a potato plant harbouring a wild *Solanum* genomic introgression segment possessing resistance against nematode infection. This resistance, which appears to be very effective in PCN control, is not present in most cultivated potato cultivars. Therefore, one object of the present invention is to provide plants, specifically *Solanum* spp., which have the features of cultivated plants, with anti-phytopathogenic activity in the form of resistance to *Globodera* species. Thus the present invention relates to a DNA segment comprising the *Gpa2* locus of about 200 kb comprising one or several genes, the gene product or gene products thereof being capable of conferring to the plant resistance to nematodes of the *Globodera* species.

Another aspect of the present invention is a nucleic acid comprising the *Gpa2* resistance gene, the nucleic acid having the sequence of all or part of the sequence depicted in Fig. 3 (SEQ ID NO.3) or any homologous sequence, including (where appropriate) both coding and/or noncoding regions and providing nematode resistance upon expression thereof in a plant. In a preferred embodiment the *Gpa2* gene comprises the deduced coding sequence provided in Fig. 3 (SEQ ID NO.1) or any homologous sequence, preceded by a promoter region and followed by a terminator sequence.

As described in the invention, the nucleic acid sequence according to the invention possesses very valuable features with respect to anti-nematode activity. Thus, the DNA region comprising the nucleic acid sequence according to the invention encoding a polypeptide conferring/evoking the anti-nematode activity as defined above, can be used for the construction of genetically modified hosts having an increased resistance to nematodes as compared to untransformed hosts. The nucleic acid region according to the invention is thus capable of being inserted into the genome of a host plant, which in itself is susceptible to infection by a nematode, in such a way that the nucleic acid sequence is expressed, thereby conferring to the host plant resistance to infection by a phytopathogenic nematode. Thus, another aspect of the present invention relates to a genetic construct consisting of the nucleic acid sequence according to the

invention which genetic construct can then be used to genetically transform a host, e.g. a plant such as a cultivated plant, in such a way that it becomes resistant to nematodes.

A genetic construct comprising a nucleic acid sequence according to any of the embodiments described above, said sequence being operably linked to a regulatory region for expression, falls within the scope of the invention. Accordingly, the present invention relates to a genetic construct comprising

- 5 1) a promoter functionally connected to
- 2) a nucleic acid region as defined according to the present invention
- 3) a transcription terminator functionally connected to the nucleic acid sequence.

10 Preferably, the regulatory region of a genetic construct according to the invention is a *Gpa2* regulatory region. Such a regulatory region can by way of example correspond to that present in the sequence of nucleotides 1-4874 of SEQ ID NO.3. The regulatory region can suitably even correspond to that of nucleotides 1-4874 of SEQ ID NO.3. The regulatory region preferably comprises a promoter functionally connected to the nucleic acid sequence as defined in any of the embodiments above or in the examples, said promoter being able to control the transcription of said nucleic acid sequence in a host cell, preferably in a plant cell.

15 The genetic construct may be used in the construction of a genetically modified host in order to produce a host showing an increased anti-nematode activity and thus an increased resistance towards nematodes. It will be understood that a large number of different genetic constructs as defined above may be designed and prepared. Without being an exhaustive list, elements of the genetic constructs which may be varied are the number of copies of each of the nucleic acid sequences of the genetic construct, the specific nucleotide sequence of each of the nucleic acid sequences, the type of promoter and terminator connected to each nucleic acid sequence, and the type of any other associated sequences. Thus, genetic constructs of the present invention may vary within wide limits.

20 The invention also relates to DNA constructs comprising the regulatory sequences, and more preferably the promoter region of the *Gpa2* resistance gene in conjunction with a structural gene sequence heterologous to said regulatory sequences.

25 A vector which carries a nucleic acid according to any of the embodiments disclosed above or in the examples or a genetic construct according to any of the embodiments disclosed above or in the examples also falls within the scope of the

invention. Preferably such a vector is capable of replicating in a host organism. The vector may either be one which is capable of autonomous replication, such as a plasmid, or one which is replicated with the host chromosome such as a bacteriophage or integrated into a plant genome. For production purposes, the vector is an expression 5 vector capable of expressing the nucleic acid sequence according to the invention in the organism chosen for the production. Suitable cloning vectors, transformation vectors, expression vectors, etc..., are well known to those skilled in the art. A vector according to the invention is constructed to function in a host organism selected from the group consisting of a micro-organism, plant cell, plant, seed, seedling, plant part and protoplast. 10 A host cell capable of resulting in a plant is preferred and suitably the host organism is selected from the group consisting of a plant, plant cell, plant part, seed, seedling and protoplast.

In a still further aspect, the present invention relates to a host organism which carries and which is capable of replicating or expressing an inserted nucleic acid region 15 of the invention. Such a host organism is preferably selected from the group consisting of a micro-organism, plant cell, plant, seed, seedling, plant part and protoplast, harbouring a vector and/or a genetic construct as defined above. The term "inserted" indicates that the nucleic acid region has been inserted into the organism or an ancestor thereof by means of genetic manipulation, in other words, the organism may be one 20 which did not naturally or inherently contain such a nucleic acid region in its genome, or it may be one which naturally or inherently contains such a nucleic acid region, but in a lower number so that the organism with the inserted nucleic acid region has a higher number of such regions than its naturally occurring counterparts. The nucleic acid region carried by the organism may be part of the genome of the organism, or may be carried 25 on a genetic construct or vector as defined above which is harboured in the organism. The nucleic acid region may be present in the genome or expression vector as defined above in frame with one or more second nucleic acid regions encoding a second gene product or part thereof so as to encode a fusion gene product. The organism may be a higher organism such as a plant, or a lower organism such as a micro-organism. A lower 30 organism such as a bacterium, e.g. a gram-negative bacterium such as a bacterium of the genus *Escherichia*, e.g. *E. coli*, or a yeast such as of the genus *Saccharomyces*, is useful for producing a recombinant polypeptide as defined above. The recombinant production may be performed by use of conventional techniques, e.g. as described by Sambrook et

al. (1990). Also, the organism may be a cell line, e.g. a plant cell line. Most preferably, the organism is a plant, i.e. a genetically modified plant such as will be discussed in further detail below. As mentioned above, the genetic construct is preferably to be used in modifying a plant. Accordingly, the present invention also relates to a genetically transformed plant comprising in its genome a genetic construct as defined above. The genetically transformed plant has an increased anti-nematode activity compared to a plant which does not harbour a genetic construct of the invention, e.g. an untransformed or natural plant or a plant which has been genetically transformed, but not with a genetic construct of the invention. Normally a constitutive expression of the gene products encoded by the genetic construct is desirable, but in certain cases it may be preferable to have the expression of the gene products encoded by the genetic construct regulated by various factors, for example by factors such as temperature, pathogens, and biological factors. The genetically transformed plant is obtained by introducing the nucleic acid sequence according to the invention within the genome of said plant having a susceptible genotype to nematodes, using standard transformation techniques. It will be apparent from the above disclosure, that the genetically transformed plant according to the invention has an increased resistance to nematodes as compared to plants which have not been genetically transformed according to the invention or as compared to plants which do not harbour the genetic construct as defined above. In a further aspect, the present invention relates to seeds, seedlings or plant parts obtained by growing the genetically transformed plant as described above or by genetically transforming a plant cell and generating said part. It will be understood that any plant part or cell derivable from a genetically transformed host of the invention is to be considered within the scope of the present invention.

A process for producing a genetically transformed host organism having increased resistance to *Globodera* species as compared to the host organism prior to the transformation, said process comprising transferring a genetic construct and/or a vector according to any of the embodiments disclosed above and in the examples into the host organism so that it's genetic material comprises the genetic construct and/or vector and subsequently regenerating the host organism into a genetically transformed plant part is also a part of the invention. The host organism may be selected from the group consisting of a plant cell, plant, seed, seedling, plant part and protoplast of the plant type to be rendered resistant and may subsequently be regenerated to a plant. Preferably, the

nematodes against which resistance is provided are selected from the group consisting of *Globodera* species, more specifically *Globodera rostochiensis* and *Globodera pallida*.
The host organism which is to be transformed is selected from a plant type of the family
Solanaceae, preferably a *Solanum* spp. Plants of the species *Solanum tuberosum*,
comprising commercial potato cultivars, are preferred as this is a particular problem area
for the commercial growers of such plants.

In accordance with well-known plant breeding techniques it will be understood
that the production of a genetically transformed plant may be performed by a double
transformation event (introducing the genetic construct in two transformation cycles) or
may be associated with use of conventional breeding techniques. Thus, two genetically
modified plants according to the present invention may be the subject of cross breeding
in order to obtain a plant which contains the genetic construct of each of its parent
plants.

Additionaly, the present invention also relates to the resistance gene product
which is encoded by the nucleic acid sequence according to the invention and which has
the deduced amino acid sequence provided in Fig. 3 (SEQ ID NO.1). Thus a polypeptide
having an amino acid sequence provided in SEQ ID NO.1 and also a homologue of said
amino acid sequence, said homologue being a substitution, insertion or deletion mutant
conferring nematode resistance against *Globodera* species, form embodiments of the
invention. A polypeptide according to the invention is encoded by a sequence according
to any of the embodiments described above or in the examples. A process for producing
such polypeptides having an amino acid sequence provided in SEQ ID NO.1, or a
homologue of said amino acid sequence, said homologue being a substitution, insertion
or deletion mutant possessing resistance to *Globodera* species, said process comprising
the expression of the nucleic acid sequence or genetic construct according to any of the
embodiments according to the invention and optionally isolating said polypeptide, said
expression occurring in a host organism according to the invention, is also covered by
the invention. A process comprising an isolation step of the polypeptide in a manner
known *per se* for polypeptide isolation from cell culture or from the host organism itself
is also covered.

A nematicide composition comprising as active component a polypeptide
according to the above or produced according to the process described or a host
organism expressing such a polypeptide in a formulation suitable for application as

nematicide to a plant and optionally comprising other ingredients required for rendering the polypeptide suitable for application as a nematicide, also falls within the scope of the invention. Preferably such a nematicide composition comprises the polypeptide in a slow release dosage form. It is quite efficient if such a nematicide composition is formulated and packaged comprising instructions for application as nematicide.

Antibodies may be raised against any purified resistance gene product according to the invention by any method known to those skilled in the art (for an overview see "Immunology - 5th Edition" by Roitt, Male: Pub 1998-Mosby Press, London). Such antibodies can be used for the detection of the gene product.

Another aspect of the invention relates to nucleic acid sequences comprising at least 16 contiguous nucleotides corresponding to or complementary to the *Gpa2* sequence, with the proviso that when such a nucleic acid comprises part or all of the NBS encoding sequence, the nucleic acid also comprises at least one codon of a 5' and/or 3' overhanging portion corresponding to the respective 5' and/or 3' adjacent amino acids of parts of the NBS sequence of the *Gpa2*, with the following sequence, GIGKTT or GGLPLA (see Table 4). Preferably, the *Gpa2* sequence is comprised within the sequence of SEQ ID NO.1, 2 or 3. The sequence length is preferably at least 50 nucleotides, preferably more than 100 nucleotides rendering it suitable for use as a probe in a nucleic acid hybridization assay. Oligonucleotides complementary to one strand of the *Gpa2* sequence or part thereof, can be used as labeled hybridization probes in a Southern hybridization procedure or as primers in an amplification reaction such as the polymerase chain reaction (PCR), for the screening of genomic DNA or cDNA, or constructed libraries thereof, for the identification and isolation of homologous genes. Homologous genes that are identified in this way and which encode a gene product that is involved in conferring reduced susceptibility or resistance to a plant against pathogens, such as nematodes of the genus *Globodera*, are comprised within the scope of the invention. Suitable embodiments can be selected from any of the sequences SEQ. ID. No.4, 5, 6 and/or 7.

A diagnostic kit for assessing the presence of nematode resistance in a plant to infection by a phytopathogenic nematode of the genus *Globodera*, said kit comprising at least one nucleic acid defined above as a probe or primer, for screening of nucleic acid from a plant or plant part to be tested and/or comprising an antibody as defined above, is also comprised within the scope of the invention.

The invention also covers a process for isolating or detecting a nucleic acid sequence according to the invention providing nematode resistance as described above and in the examples, said process comprising the screening of genomic nucleic acid of a plant with said nucleic acids or a fragment thereof as probe or primer, said probe or primer being at least 16 nucleotides in length, the identification of positive clones which hybridize to said probe or primer and the isolation of said positive clones and the isolation of the nucleic acid sequence therefrom. Such a process comprises screening genomic nucleic acid of a plant, preferably such a process comprises the screening of a genomic library of a plant with a nucleic acid sequence according to SEQ ID NO 3 or a fragment thereof as probe or primer, said probe being at least 16 nucleotides in length. Alternatively such a process comprises the screening of a cDNA library of a plant with the coding portion of a nucleic acid sequence according to the invention providing the nematode resistance, or a fragment thereof as probe or primer, said probe or primer being at least 16 nucleotides in length. Preferably, for the screening of a cDNA library of a plant, the coding portion of a nucleic acid according to SEQ ID NO.1 or a fragment thereof is used as probe or primer. The probe or primer can be comprised within the sequence of SEQ ID NO 1, SEQ ID NO 2 or SEQ ID NO 3. The above processes can use a nucleic acid amplification reaction such as PCR in conjunction with at least one primer corresponding to or being complementary to the nucleic acid sequence according to the invention providing the nematode resistance, or a fragment thereof, said primer being at least 16 nucleotides in length. The primer can be complementary to the nucleic acid sequence of SEQ ID NO.1, SEQ ID NO.2 or SEQ ID NO.3 or a fragment thereof, said primer being at least 16 nucleotides in length. A probe or primer in such a process comprises a nucleic acid sequence encoding the amino acid sequence of a part or all of the NBS sequence of *Gpa2*. Suitable examples of primers comprising a nucleic acid sequence encoding the amino acid sequence of a specific part or all of the NBS sequence of *Gpa2* are given below (see Table 4). For reasons of specificity, the process can comprise application of a primer comprising at least part of the NBS sequence of *Gpa2* and at least one codon of a 5' and/or 3' overhanging portion corresponding to the respective 5' and/or 3' adjacent amino acids of the previously specified NBS sequence of *Gpa2*. An example of such a primer comprises the specified part of the NBS sequence of *Gpa2* and at least one codon of a 5' and/or 3' overhanging portion corresponding to the respective 5' and/or 3' adjacent amino acids of the NBS sequence of *Gpa2* of SEQ ID

NO.1. Preferably, said primers correspond to a sequence selected from SEQ ID NO.4, SEQ ID NO.5, SEQ ID NO.6 and/or SEQ ID NO.7.

A process for diagnosing whether a plant is resistant to a phytopathogenic *Globodera* species, said process comprising the detection of the presence of a nucleic acid sequence providing nematode resistance as defined in any of the embodiments according to the invention, the presence of a genetic construct according to any of the embodiments according to the invention, the presence of a vector according to any of the embodiments according to the invention or the presence of a polypeptide as defined according to the invention, in the genetic material of plant material of a plant to be tested falls within the scope of the invention. Combinations of detection of the various elements are also covered. The nucleic acid sequence and the polypeptide being detected can be naturally present in the plant to be tested or can have been introduced via genetic engineering. A process for diagnosis according to the invention can comprise any of the nucleic acid sequence detection processes already described above as embodiments of the invention. More specifically the process can comprise applications of the diagnostic kit described according to the invention in an analogous manner to application of other nucleic acid assay kits comprising probes or primers or antibody known in the art. Suitably such a kit according to the invention will be provided with the appropriate instructions for application thereof. Amplification reactions of nucleic acid , use of probes in Southern analysis and use of antibodies in immunoassays are suitable examples of applications known in the art.

Another process within the scope of the invention is a process for providing resistance to a phytopathogenic *Globodera* species to plant material, said process comprising the introduction into the plant genome of a nucleic acid sequence providing nematode resistance as defined in any of the embodiments according to the invention, a genetic construct according to any of the embodiments according to the invention, a vector according to any of the embodiments according to the invention in the genetic material of plant material of a plant to be tested and thereby producing a transformed plant cell, plant propagating material, plant part or plant. Such introduction of genetic material should result in a transformed host with the introduced genetic material stably present in the host such that replication of said host is possible with said genetic material. Such a process may further comprise regenerating the resulting transformed or transfected plant cell, plant propagating material or plant part. The process of

introduction of the genetic material can occur as commonly described in the art for introduction of genetic material into the appropriate host type.

The nucleic acid sequence comprising the resistance as provided by the present invention has numerous applications of which some are described herein but which are not limiting to the scope of the invention.

The present invention is further described in detail below, whereby the map-based cloning strategy used to isolate the *Gpa2* resistance gene of the invention is explained. The strategy to isolate the *Gpa2* gene was as follows:

- 1) genetic fine mapping of the *Gpa2* locus;
- 2) construction of a BAC contig spanning the *Gpa2* locus;
- 3) identification of candidate resistance gene homologues (RGH);
- 4) complementation analysis.

The *Gpa2* locus was initially mapped on chromosome 12 using information on the genomic positions of 733 known AFLP markers (Rouppé van der Voort *et al.*, 1997a and 1997b). By use of RFLP probes, *Gpa2* was mapped more precisely between markers GP34 and CT79 on the distal end of chromosome 12 (Rouppé van der Voort *et al.*, 1997a), a 6 cM genetic interval that was previously shown to harbour the potato virus X (PVX) resistance gene *Rx1* (Fig. 1; Bendahmane *et al.*, 1997). Cosegregation of *Gpa2* and *Rx1* in the tetraploid *Rx1* mapping population (S1-Cara) and a diploid *Gpa2* mapping population (F1SHxRH) confirmed the assumed linkage between the two genes. The S1-Cara recombinants initially chosen to confirm this linkage delimited the *Gpa2* interval between markers IPM3 and IPM5 (Fig. 2; Bendahmane *et al.* 1997).

Fine mapping of the *Gpa2* locus was subsequently carried out using cleaved amplified polymorphic sequence (CAPS; Konieczny and Ausubel, 1993) markers derived from the IPM3-IPM5 interval, all of which were initially developed for the cloning of *Rx1* (Fig. 1). 2,788 S1-Cara genotypes were assayed for recombination events in the IPM3-IPM5 region. In addition, 598 F1SHxRH genotypes were subjected to a GP34/IPM5 marker screening as marker IPM3 was not informative in population F1SHxRH. Plants with recombination events between these markers were subsequently tested for all markers available in the IPM3-IPM5 region as well as for *Gpa2* resistance. This analysis showed that *Gpa2* is located between markers IPM4c and 111R (Fig. 2). Among the 2,788 S1-Cara genotypes and 598 F1SHxRH genotypes tested, only one genotype, S1-761, was identified in which a recombination event had occurred between

Gpa2 and marker IPM4c (Fig. 2B). On the other side of *Gpa2*, genotype S1-B811 could be used to identify marker 111R as a flanking marker for the *Gpa2* interval (Fig. 2B).

Four BAC clones, BAC77, BAC45, BAC221 and BAC111, which map to the 0.06 cM IPM4c-111R genetic interval harbouring the *Gpa2* locus, were isolated from a BAC library prepared from a progeny of a selfed cv. Cara (Fig. 1C). However these four BAC clones did not completely cover the *Gpa2* interval. Screening of the Cara BAC library with CAPS markers 77R and 45L (Fig. 1B) did not lead to the identification of Cara BAC clones that spanned the region between markers 77R and 45L. A second BAC library was constructed from the diploid potato genotype SH83-92-488 (SH83). Screening of the SH83 potato BAC library with CAPS markers 77R and 45L did result in the identification of such a BAC clone (SHBAC43). In this way a contiguous physical map of the IPM4c-111R *Gpa2* interval was constructed comprising SHBAC43, BAC45, BAC221a and BAC111 (see Fig. 2C). Restriction analysis of this BAC contig delimited the physical size of the *Gpa2* locus of approximately 200 kb.

As the size of the *Gpa2* locus was still too large for direct localization of the *Gpa2* resistance gene by complementation analysis, BAC clones SHBAC43, BAC45, BAC221a and BAC111 were analysed for the presence of R-gene homologous sequences. Despite the general lack in DNA sequence conservation between R-genes, there are a few conserved protein motifs in the NBS region present in many of these genes. Leister *et al* (1996) has shown that it is possible to amplify resistance gene like sequences from potato using degenerate primers based on these homologous regions. Using degenerate primers RG1 and RG2 (Aarts *et al.*, 1998), whose sequences are based on the conserved P-loop and domain 5 region of the NBS in the N, L6 and RPS2 R-genes (Whitham *et al.*, 1994; Lawrence *et al.*, 1995; Bent *et al.*, 1994 and Mindrinos *et al.*, 1994) a DNA fragment of the expected size (approximately 530 bp) was amplified from BAC221a. Southern analysis of *Eco*RI restricted DNA of SHBAC43, BAC45, BAC221a and BAC111 using the amplified PCR fragment from BAC221a as a probe, identified two copies of this R-gene like sequence on SHBAC43, one single copy on BAC221a and one copy on BAC111 (Fig. 2D). Subsequent sequence analysis of the complete inserts of these BAC clones showed that the previously identified R-gene like sequences on the BAC clones belonged to putative resistance gene homologues (RGHs). Three of these RGH sequences were designated to be candidates for the *Gpa2* gene and selected for complementation analysis; RGH1 on BAC221a, RGH2 on BAC111 and

RGH3 on SHBAC43. A fourth RGH identified on SHBAC43 contained marker IPM4c and therefore lies outside of the *Gpa2* interval (see Fig. 2C and 2D).

Genomic fragments of approximately 11 kb, 10.3 kb and 5.5 harbouring RGH1, RGH2 and RGH3, respectively, were subcloned from the BAC inserts into the plant transformation vector pBINPLUS (Van Engelen *et al.*, 1995) and transferred to a susceptible potato genotype using standard transformation methods. Roots of *in vitro* grown primary transformants were tested for PCN resistance as described in Example 1. This *in vitro* resistance assay revealed that the 10.3 kb genomic insert harbouring RGH2 was able to complement the susceptible phenotype. RGH2 was therefore designated the *Gpa2* gene, the DNA sequence which is provided in Fig. 3.

The following examples provide a further illustration of the present invention which is nevertheless not limited to these examples.

EXAMPLES

15

EXAMPLE 1: ASSESSING NEMATODE RESISTANCE

A. *In vivo* resistance assay

Eggs and second stage juveniles (J_2) are obtained by crushing cysts which have been 20 soaked in tap water for one week. The egg/ J_2 suspension is poured through a 100 μm sieve to remove debris and cystwalls. Before inoculation, three to four week old potato stem cuttings are transferred from a peat mixture to 900 gram pots containing a mixture of silversand and a sandy loam fertilized with Osmocote (N-P-K granulates). Subsequently, plants are inoculated with nematodes to a final density of 5 egg/ J_2 per 25 gram soil. Of each plant genotype, three replicates per nematode source are inoculated. Six replicates of the parental clones as well as resistant and susceptible standards are included for resistance tests with each nematode source. Resistant standards are *Solanum tuberosum* cv. Multa (resistant to *G. pallida* D383), *S. vernei* hybrid 58.1642/4 (resistant to *G. rostochiensis* line Ro₁-19) and *S. vernei* hybrid 62-33-3 (resistant to both D383 and 30 Ro₁-19). The susceptible standard is *S. tuberosum* cv. Eigenheimer. Plants are arranged in a randomized block design and grown in a greenhouse with 15°C and 25°C as minimum and maximum temperature, respectively.

After three months, cysts are recovered from the soil with a Fenwick can

(Fenwick 1940) and the size of the root systems is judged on a scale of 0 to 3. Resistance data of a genotype are only recorded when at least two well-rooted plants of this genotype are available. The mean cyst numbers developed per genotype are standardized using a $\log_{10}(x + 1)$ transformation and then subjected to SAS Ward's minimum variance cluster analysis (SAS Institute Inc., Cary NC, USA). On the basis of 5 this analysis the plants are devided into a resistant, an unassigned or a susceptible class.

B. *In vitro* resistance assay

Alternatively, the resistance assay is carried out on sterile tissue culture plants in agar. 10 Two or three nodia from each *in vitro* grown (transgenic) potato plant are grown on solidified B5 medium (Gamborg *et al.* 1968) with 0.5% PhytagelTM (Sigma) and 2% sucrose for one week (25°C and 16 hr light regime). Each new root tip (on average 2 per nodium) is then inoculated with 15 sterilized second stage juveniles. Preparation of inoculum 15 is essentially as described by Heungens *et al.* (1995) with slight modifications. Cysts are collected in a modified 20 ml syringe with a 22 µm nylon mesh and surface sterilized in 90% ethanol for 15 sec followed by an 8 min wash in 1.3% (w/v) commercial bleach. To remove excess bleach, the cysts are washed three times in sterile tap water for 5 min and incubated in sterile tap water for 3 days at 20°C in the dark. Cysts are then 20 transferred to filter sterile potato root differentiate (PRD) and left to hatch for 5 days at 20°C in the dark. Second stage juveniles are subsequently transferred to a 5 µm sieve-syringe and incubated first in 0.5% (w/v) streptomycine-penicilline G solution for 20 min, then in 0.1% (w/v) ampicillin-gentamycin solution for 20 min and finally in 0.1% chlorhexidin solution for 3 min. After three 5 min wash steps in sterile tap water the 25 second stage juveniles are suspended in the required volume (sterile tap water) for inoculation. The petridishes with the inoculated root tips are incubated in the dark at 20°C. After 5-6 weeks the level of infection is determined by counting the number of female nematodes formed on the roots.

30 **EXAMPLE 2: COSEGREGATION OF *Gpa2* NEMATODE RESISTANCE AND *Rx1* VIRUS RESISTANCE.**

The *Gpa2* locus was initially mapped to chromosome 12 using information on the

genomic positions of 733 known AFLP markers (Rouppé van der Voort *et al.*, 1997a and 1997b). By use of RFLP probes, *Gpa2* was mapped more precisely between markers GP34 and CT79 on the distal end of chromosome 12 (Fig. 2A; Rouppé van der Voort *et al.*, 1997a), a 6 cM genetic interval that was previously shown to harbour the potato virus X (PVX) resistance gene *Rx1* (Bendahmane *et al.*, 1997).

To confirm the assumed linkage between *Gpa2* and *Rx1* (Rouppé van der Voort *et al.* 1997), a pilot experiment was carried out in which the segregation of both genes was followed in two different mapping populations; a tetraploid ($2n = 4x = 48$) mapping population derived from a selfing of potato cv. Cara (S1-Cara), initially constructed for fine mapping of *Rx1* (Bendahmane *et al.* 1997), and the diploid ($2n = 2x = 24$) *Gpa2* mapping population derived from a cross between the diploid potato clones SH83-92-488 and RH89-039-16 (F1SHxRH; Rouppé van der Voort *et al.*, 1997a and 1997b). Potato genotypes Cara and SH have the wild accession *Solanum tuberosum* spp. *andigena* CPC 1673 in common.

The tests for *Gpa2* and *Rx1* resistance were performed on the parental genotypes Cara, SH83 and RH89, four S1 genotypes which were recombined in a 1.21 cM interval between markers GP34 and IPM5 (Fig. 1B; Bendahmane *et al.* 1997) and two F1SHxRH genotypes which harboured cross-over events in a 6 cM interval between markers GP34 and CT79 (Rouppé van der Voort *et al.* 1997). The PVX resistance assay was carried out using a cDNA of the PVX_{CP4} isolate (Goulden *et al.* 1993). Potato plants were graft-inoculated with scions of *Lycopersicon esculentum* cvs. Ailsa Craig or Money Maker systemically infected with PVX_{CP4}. Northern blots were prepared from total RNA isolated from newly formed potato shoots 3-4 weeks post-inoculation (Bendahmane *et al.* 1997). Extreme PVX resistance or susceptibility was determined by the presence or absence of a hybridization signal on Northern blots probed with ³²P-labelled cDNA of PVX_{CP4} (Chapman *et al.* 1992). Three replicates per genotype were assayed. For the *Gpa2* assay *G. pallida* population D383 was used (Rouppé van der Voort *et al.* 1997a). The nematode resistance assay was performed as described in Example 1A. Nematode population Rookmaker with different virulence characteristics as population D383 (Bakker *et al.* 1992) was used to confirm the specificity of *Gpa2* resistance in tested plants.

The resistance tests showed a clear reduction in the number of cysts of *G. pallida* population D383 on genotypes which were resistant to PVX_{CP4}. The number of cysts

developed on the resistant S1-Cara genotypes appeared to be slightly higher than the number of cysts found on the resistant genotypes of population F1SHxRH. However, a considerable reduction in size of these cysts was observed as compared to the cysts developed on a susceptible genotype. This observation was corroborated after comparing 5 the number of eggs per cyst developed on resistant and susceptible genotypes. Average cyst contents were determined from at least 30 cysts (if possible) and subjected to a *t*-test. A significant difference (at $P < 0.05$) was found between the average number of eggs per cyst developed on Cara, SH83 and cv. Multa (resistant control), and average egg contents per cysts recovered from genotype S1-350, RH89 and cv. Eigenheimer 10 (susceptible control). Resistance tests using *G. pallida* population Rookmaker show that cv. Cara is susceptible to this nematode population, indicating a specificity for the *G. pallida* resistance in population S1-Cara.

Although limited numbers of S1-Cara and F1SHxRH genotypes were tested for 15 resistance to *G. pallida* population D383 and PVX respectively, based on the position of the crossover events in the tested plants it could be concluded that *Gpa2* and *Rx1* cosegregate in both mapping populations (with a maximum probability of $P = 1/64$ that the observed linkage could be explained by chance). The tested S1-Cara recombinants were previously used to delimit the *Rx1* interval between markers IPM3 and IPM5 20 (Bendahmane *et al.* 1997). Cosegregation of *Gpa2* with *Rx1* indicates therefore that *Gpa2* also resides in this region (Fig. 2A).

EXAMPLE 3: ISOLATION OF CARA BAC CLONES AND PRODUCTION OF CAPS MARKERS DERIVED FROM THE *Rx1/Gpa2* LOCUS (according to the unpublished article in preparation of Kanyuka, K., Bendahmane, A., Rouppe van 25 der Voort, J.N.A.M., van der Vossen, E.A.G. and Baulcombe, D.C. Mapping of intra-locus duplications and introgressed DNA: aids to map-based cloning of genes from complex genomes illustrated by analysis of the Rx locus in tetraploid potato).

Construction of a Cara BAC library

In order to clone the *Rx1* locus, a BAC library of 160,000 clones was prepared from 30 plant SC-781 which is a progeny of selfed cv Cara carrying *Rx1* in the duplex condition (*Rx,Rx,rX,rX*). High molecular weight DNA was prepared in agarose plugs from potato protoplasts essentially as described in Bendahmane *et al.* (1997). The agarose plugs

were dialysed three times for 30 min against TE buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA), once at room temperature and twice at 4°C. The plugs were then equilibrated in *Hind*III buffer (10 mM Tris-HCl, 10 mM MgCl₂, 50 mM NaCl, 1 mM DTT, pH 7.9) twice on ice for 1 h. Half of each plug (~5 µg of DNA) was transferred to a test tube 5 containing 360 µl of *Hind*III buffer and 10-15 units of *Hind*III restriction enzyme. The enzyme was allowed to diffuse into a plug at 4°C for 1 h and the digestion was carried out at 37°C for 30 min. The reaction was stopped by adding 1 ml of 0.5 M EDTA and plugs were immediately loaded into a 1% low melting point agarose gel and subjected to contour-clamped homogeneous electric fields (CHEF; Chu, 1989) electrophoresis in a 10 CHEF DR II system (Bio-Rad Laboratories, USA) in 0.5 X TBE buffer (45 mM Tris-borate pH 8.0, 1 mM EDTA) at 150 volts for 10 h at 4°C and constant pulse time of 5 sec or 8 sec. Compression zones containing the DNA fragments of 100 kb or 150 kb were excised from the gel and dialysed against 30 ml TE in a 15 cm Petri dish for 2 h at 4°C. Dialysed agarose slices were then transferred to a 1.5 ml test tube, melted at 70°C 15 for 10 min and digested with 1 unit of GELASE (Epicentre Technologies, USA) per 100 mg of agarose gel for 1 h at 45°C.

The size selected potato DNA (25-50 ng) was ligated to 25-50 ng of *Hind*III-digested 20 and dephosphorylated pBeloBAC11 (Shizuya *et al.*, 1992) using 400 to 800 units of T4 DNA LIGASE (New England BioLabs, USA) at 16°C for 24 hours in a total volume of 50 µl. The ligation products were dialysed against 1 X TE using 0.025 µm MF-MILLIPORE MEMBRANE FILTER (Millipore, UK) at 4°C for 2 h and 30 min at room 25 temperature using the “drop dialysis” method of Maruzyk and Sergeant (1980).

Transformation of *E. coli* DH10B cells was carried out by electroporation using a BRL CEMI-PORATOR SYSTEM (Life Technologies Ltd, UK). To 20 µl of electro-competent cells, 0.5-3 µl of ligation mixture was added. After electroporation, *E. coli* 30 cells were mixed with 1 ml SOC medium (0.5% yeast extract, 2% tryptone, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl₂, 10 mM MgSO₄, 20 mM glucose) and incubated at 37°C for 1 h with gentle shaking (80 rpm). The cells were spread on Luria broth (LB) agar plates containing chloramphenicol (12.5 µg/ml), 5-bromo-4-chloro-3-indolyl-β-D-galactoside (Xgal) (40 µg/ml) and isopropyl-1-thio-β-D-galactoside (IPTG) (0.12 mg/ml). Plates were incubated at 37°C for 24 hours. DNA from the compression zones of 100 and 150 kb led to clones with an average insert size of 100 kb and a transformation efficiency of approximately 1000 and 150 white colonies per 1 l ligation mixture,

respectively. Approximately 92000 white colonies from these ligations were picked individually into 384 well microtiter plates (Genetix, UK) containing LB freezing buffer (36 mM K₂HPO₄, 13.2 mM KH₂PO₄, 1.7 mM citrate, 0.4 mM MgSO₄, 6.8 mM (NH₄)₂SO₄, 4.4 % V/V glycerol, 12.5 µg/ml chloramphenicol in LB medium), grown 5 overnight at 37°C and stored at -80°C. Another 100 bacterial pools containing ~500-1000 white colonies each (these pools also contained approximately 500-1500 blue bacterial colonies with an empty pBeloBAC11) were prepared by scraping the colonies from agar plates into the LB medium containing 18% glycerol and 12.5 µg/ml chloramphenicol using a sterile glass spreader. These pools were also stored at -80°C.

10

Screening of the Cara BAC library with markers IPM3, IPM4 and IPM5 and isolation of BAC clones derived from the Rx1/Gpa2 locus

The Cara BAC library was initially screened with CAPS markers IPM3, IPM4 and IPM5 corresponding to the AFLP markers PM3, PM4 and PM5 flanking the *Rx1* locus (Bendahmane *et al.*, 1997). This was carried out as follows. For the first part of 15 the library of 92,160 clones stored in 384 well microtiter plates the plasmid DNA was isolated using the standard alkaline lysis protocol (Heilig *et al.*, 1997) from pooled bacteria of each plate to produce 240 plate pools. Aliquots of these plate pools were combined to prepare 26 'superpools' containing DNA from 9 plate pools, and one 20 superpool containing DNA from 6 plate pools. To identify individual BAC clones carrying the CAPS markers the superpools and then the corresponding plate pools were screened. Once an individual plate had been identified the clones corresponding to each 25 of the 24 columns of the positive plate were grown for 3-4 h at 37°C in LB medium and PCR was carried out on 3 µl of bacteria. After identification of a positive column a colony PCR on each of the corresponding 16 colonies of this column was carried out leading to identification of a single positive BAC clone.

For the second part of the library, which is stored as one hundred pools of 30 approximately 1000 clones, plasmid DNA was isolated from each pool of clones using the standard alkaline lysis protocol and PCR was carried out to identify positive pools. Bacteria corresponding to positive pools were diluted, plated on LB agar plates and subsequently colony hybridisation was carried out as described in Sambrook *et al.* (1989) using ³²P-labelled DNA probes corresponding to the CAPS markers. PCR with the corresponding CAPS primers was used to distinguish between hybridising colonies

carrying the markers previously mapped to homologues located elsewhere in the genome and those derived from the *Rx1* locus.

Positive BAC clones were analysed by isolating plasmid DNA from 5 ml overnight cultures (LB medium supplemented with 12.5 mg/ml chloramphenicol) using the standard alkaline lysis miniprep protocol (Engebrecht *et al.*, 1997) and resuspended in 50 µl TE. Plasmid DNA (10 µl) was digested with *NotI* for 3 h at 37°C to free the genomic DNA from the pBeloBAC11 vector. The digested DNA was separated by CHEF electrophoresis in a 1% agarose gel in 0.5 X TBE at 4°C using a BIO-RAD CHEF DR II system (Bio-Rad Laboratories, USA) at 150 volts with a constant pulse time of 14 sec for 16 h.

Screening of the Cara BAC library with marker IPM3 identified three BAC clones: BAC167, BAC191 and BAC117, with potato DNA inserts ranging from 100 to 120 kb (Fig. 1C). *DdeI* digestion of the IPM3 DNA in these BAC clones and other potato DNA samples revealed that BAC117 carried the IPM3 allele that was linked in *cis* to *Rx1*. The other two BAC clones, BAC167 and BAC191, contained alleles from a corresponding region of the *rx* chromosomes. To identify the relative genome positions of these BAC clones, pairs of PCR primers were designed based on the sequence of the right and left ends of the insert. Inverse polymerase chain reaction (IPCR; Ochman *et al.*, 1990) was used to isolate the right and left end sequences of insert DNAs. BAC DNA was isolated and digested separately with *NlaIII*, *HpaII*, *MseI*, *HinP1I*, *PvuII*, *HaeIII* (for isolation of a left end sequence) or with *RsaI*, *SacI*, *EcoRI*, *HaeIII*, *MaeII*, *MseI*, *PvuII*, *HinP1I* (for isolation of a right end sequence) for 4 h at 37°C and recircularised by self ligation for 2 h at 20°C. Ligations were carried out using 5-50 ng of digested DNA and 5-10 units of T4 DNA LIGASE (Boehringer Mannheim, Germany) in a total volume of 100 µl. PCR amplification of the recircularised DNA was carried out using 3 µl of self-ligated DNA as the template. AB1 (5'-C C T A A A T A G C T T G G C G T A A T C A T G - 3') and AB2 (5' -TGACACTATAGAATACTCAAGCTT-3') primers were used for PCR amplification of the left end sequence of insert DNA. AB3 (5'-CGACCTGCAGGCATGCAAGCTT-3') and AB4 (5'-ACTCTAGAGGATCCCCGGGTAC-3') primers were used for PCR amplification of the right end sequence of insert DNA. PCR conditions were as follows: 94°C for 15 sec, 60°C for 15 sec, 72°C for 90 sec - for 35 cycles. PCR products were digested simultaneously with *HindIII* and the restriction enzyme used in the preparation

of IPCR DNA template. The released insert ends were gel purified and cloned into pGEM-3Z(f+) (Promega, USA). Sequences of the clones containing ~1-2 kb inserts were determined using a 377 or 373 DNA SEQUENCING SYSTEM (Applied Biosystems, UK). PCR tests using the BAC DNAs as templates showed that the BAC clones identified with marker IPM3 overlapped in the order BAC167, BAC117, BAC191, Rx1 (Fig. 1C). The 191L marker was separated from Rx1 by only a single chromosomal recombination event (in plant S1-1146; Fig. 1B) in a mapping population of 1720 plants. In the same population, 117L and IPM3 markers were separated from Rx1 by two and three recombination events respectively whereas the GP34 marker, present in BAC167, was separated from Rx1 by thirteen recombinations (Fig. 1B). The BAC library did not contain additional BACs extending further towards Rx1 from the 191L marker.

Screening of the Cara BAC library with IPM4, which mapped at 0.06 cM from Rx1 on the side away from IPM3 (Bendahmane *et al.*, 1997), identified two clones: BAC73 and BAC111, with inserts of ~70 kb each (Fig. 1C). *TaqI* digestion of the IPM4 CAPS marker in these clones suggested that BAC111 was linked in *cis* to the Rx1 locus but that BAC73 carries DNA insert from the *rx* chromosome. To determine the relative genome position of BAC111 and BAC73 PCR tests were performed using end sequence primers of these BAC clones (Table 1). These tests suggested that BAC73 overlaps with BAC111 and that 73L and 111L represent opposite ends of this set of overlapping BACs. Both 73L and 111L co-segregated with IPM4. In the initial mapping population of 1720 individuals, these markers were separated from Rx1 by one recombination event (in individual S1-761; Fig. 1B) and it was not possible to determine directly which of these markers was physically closer to Rx1. Hence, to orientate these BACs relative to Rx1, the Cara BAC library was screened with CAPS markers 111L and 73L. The BAC library was also screened with the IPM5 CAPS marker which is on the same side of Rx1 as IPM4, but further from Rx1 (Bendahmane *et al.*, 1997). It was anticipated that BACs containing IPM5 would orientate the 111L and 73L markers relative to Rx1. These analyses identified BAC218, carrying an allele of IPM5 identified by *PstI* digestion, as being linked in *cis* to Rx1 (Fig. 1C). The end sequences of BAC218 insert DNA were converted into the CAPS markers, 218L and 218R, and mapped genetically to the recombination events between GP34 and IPM5. Marker 218L was positioned 0.48 cM (recombination fraction:8/1720) from Rx1, between IPM5 and CT129. The 218R marker was positioned between IPM4 and IPM5, 0.30 cM (recombination fraction: 5/1720) from

Rx1. A single BAC pool #29 was also identified which contains three markers: 218R, 73L and 111R. CAPS analysis revealed that each of these markers in the BAC pool #29 is represented by the allele linked in *cis* to Rx1. Hence, it was concluded that BAC pool #29 contains a single BAC clone, BAC29, with DNA insert linked in *cis* to Rx1.

5 Therefore, BAC29 provided a link between BAC218 and the IPM4 BAC contig and orientated the markers from the IPM4 contig in the following order: Rx1, 111L, IPM4, 73L (Fig. 1B).

By screening the BAC library with 111L allele-specific primers BAC221 was identified which carries an insert DNA of 40 kb and is linked in *cis* to Rx1. The left end sequence of BAC221 is located inside of BAC111 whereas the right end sequence of BAC221 extends further towards Rx1 (Fig. 1C). However the marker 221R co-segregated with IPM4 in the S1-Cara mapping population and was separated from Rx1 by the recombination event in plant S1-761 (Fig. 1B).

To extend the IPM4 contig further towards Rx1 the Cara BAC library was screened with 221R allele-specific primers which identified BAC45 which has an insert DNA of 40 kb and is linked in *cis* to Rx1. The right end sequence of BAC45 is located inside of BAC221, whereas the left end sequence of BAC45, 45L, extends further towards Rx1 (Fig. 1C). However, BAC45 does not contain Rx1 as the CAPS marker 45L is genetically separated from Rx1 by the recombination event in plant S1-761 (Fig. 1B).

20 Additional PCR screening of the BAC library with the 45L marker failed to identify any new BAC clones therefore leaving a gap between the IPM3 and IPM4 BAC contigs (Fig. 1C).

Taking into account that disease resistance loci in plants are often highly complex with small families of resistance genes clustered within several dozen kilobases (Ellis *et al.*, 1995; Hulbert and Bennetzen, 1991; Jones *et al.*, 1994; Martin *et al.*, 1993; Witham *et al.*, 1994), a low stringency PCR screening assay was developed for the identification of duplicated sequences related to CAPS markers from the vicinity of Rx1 (IPM3-IPM5 interval). Pools of DNA from 20 resistant plants (R pool) and 20 susceptible plants (S pool) and the individual BAC clones from the IPM4 contig were used as templates for PCR amplifications. Primer annealing temperatures in PCR reactions was 5 to 10°C lower than in conditions originally developed for each CAPS primer pair (Table 1) so that amplification of related sequences, in addition to the original marker, could take place. The PCR products obtained with a number of tested

CAPS primer pairs were the same size as the products produced under high stringency conditions. However, digestion of these low stringency PCR products with either *TaqI*, *AluI* or *DdeI* restriction enzymes revealed several new DNA fragments that were not identified previously. These included fragments that were nonpolymorphic as well as 5 fragments polymorphic between the R and S pools. Digestion of the low stringency IPM4 products from the R pool with *TaqI* identified the original IPM4 locus (designated IPM4a) in BAC111. There were also new IPM4 restriction fragments that had not been detected previously. One of these fragments (IPM4b) was nonpolymorphic in the R and S pools. This fragment originated from BAC221 as the *TaqI* restriction fragment of 10 similar size was also detectable after digestion of the IPM4b allele derived from this BAC (Fig. 1B). A second new DNA fragment was polymorphic between R and S pools and was not detected after digestion of either IPM4a or IPM4b alleles derived from BAC111 and BAC221, respectively. This fragment cosegregated with *Rx1* in all the 15 plants of the S1-Cara mapping population, including plant S1-761 and others with recombination events between GP34 and IPM5. This new IPM4 marker allele was designated IPM4c (see Fig. 1B).

Screening of the Cara BAC library with IPM4 primers using conditions for the detection of the IPM4c allele identified a new BAC clone, BAC77, with a DNA insert of approximately 50 kb (Fig. 1C). The end fragments of BAC77 DNA insert were 20 cloned, sequenced and converted into the CAPS markers 77L and 77R. Marker 77L cosegregated with both IPM4-c and *Rx1* whereas 77R was separated from *Rx1* by one recombination event in the recombinant individual S1-761 (Fig. 1B; based on analysis of 1720 segregants).

TABLE 1: Primer sequences and thermal cycling conditions for CAPS markers in the *Gpa2-Rx* interval.

5

Marker	Primers	PCR conditions	Restriction enzyme
GP34	5'-CGTTGCTAGGTAAGCATGAAGAAG 5'-GTTATCGTGATTCTCGTCCG	94°C 15s 62°C 15s 72°C 1 min 35 cycles	<i>TaqI</i>
IPM3	5'-AGTAGTTTCAGGCTAGTG 5'-CAACATCACTTGATCAGAC	94°C 15s 54°C 15s 72°C 1 min 35 cycles	<i>DdeI</i>
117L	5'-CCTAGCGTAGAGCGGTATCCA 5'-GTAGACATTTAATAATTCTCG	94°C 15s 57°C 20s 72°C 2 min 35 cycles	<i>RsaI</i>
191L	5'-ACAAATTGTATAATTATAGTGATACG 5'-CAAGACATTAATTAACCAAACAATGG	94°C 15s 50°C 15s 72°C 2 min 35 cycles	<i>EcoRI</i>
10 77L	5'-GCTTCTAAACTCTAAATTCAAGATTG 5'-CATGTGCGGACTCGTTCTTTGTAG	94°C 15s 64°C 15s 72°C 1 min 35 cycles	<i>AluI</i>

Marker	primers	PCR conditions	Restriction enzyme
IPM4	5'-GTACTGGAGAGCTAGTAGTGATCA 5'-GAACACCTTAACACACGCTGCAGG	94°C 15s 62°C 15s 72°C 2 min 35 cycles	<i>TaqI</i>
77R	5'-CTCGAGGGATTGAATCCAAATTAT 5'-GGAAGCAGAATACTCCTGACTACT	94°C 15s 66°C 15s 72°C 1 min 35 cycles	<i>HaeIII</i>
45L	5'-GGAGTCAATGCAGGGTCTATGGA 5'-CTCATTGACACTTCTCGAACACA	94°C 15s 62°C 15s 72°C 1 min 35 cycles	allele specific
221R	5'-GCTTACATTGCTCGAAGAACCCAC 5'-CCTTAATAATCAATAGATTCAACTCG	94°C 15s 60°C 15s 72°C 1 min 35 cycles	allele specific
111R	5'-CCACTGTGTAAGGGTCAACTATAGTC 5'-GAGATGAAGATTTCTTGTCTGATGG	94°C 15s 65°C 15s 72°C 1 min 30s 35 cycles	allele specific
73L	5'-CATTCCTGAATTGCTTCCGACTTC 5'-CCATGAAAATTGTTATCACTGAGGTC	94°C 15s 60°C 15s 72°C 1 min 35 cycles	<i>AluI</i>
218R	5'-GATTACAGTTGTGAATTAGTCGGTA 5'-GCAACAGATATATTCCACTTACCATTC	94°C 15s 62°C 15s 72°C 1 min 30s 35 cycles	<i>AluI</i>

EXAMPLE 4: FINE MAPPING OF THE *Gpa2* LOCUS

Cosegregation of *Gpa2* and *Rx1* resistance in both the mapping populations initially used to map the two loci, F1SHxRH and S1-Cara, respectively, delimited the *Gpa2* locus to the IPM3-IPM5 interval (see Example 2). For fine-mapping of the *Gpa2* locus, a total of 2,788 S1-Cara genotypes were assayed for recombination events in the IPM3-IPM5 interval. In addition 598 F1SHxRH genotypes were subjected to a GP34/IPM5 marker screening as marker IPM3 is not informative in population F1SHxRH. The GP34 CAPS marker is derived from a sequenced insert of RFLP clone GP34. The CAPS marker screening provided a total of 20 recombinants in the S1-Cara population and 9 recombinants in the F1SHxRH population. These recombinants were subsequently tested for the presence of markers 77L, IPM4c, 77R, 45L, 221R, IPM4a, 111R, 73L and 218R, all of which are derived from the PM3-IPM5 interval (see Fig. 2B), as well as for *Gpa2* resistance. The *Gpa2* resistance test was carried out using *G. pallida* population D383 (Rouppé van der Voort *et al.* 1997a). The nematode resistance assays were performed on plants derived from *in vitro* stocks, stem cuttings or tubers. *In vitro* plants were transferred from MS medium containing 3% saccharose to a mixture of silversand and sandy loam under a moist chamber for one week. Two to four weeks after planting, plants showing vigorous growth were inoculated with nematodes. Assays were further performed as described for stem cuttings and tubers as described in Example 1 and in Rouppé van der Voort *et al.* (1997a). *G. pallida* Rookmaker with different virulence characteristics as *G. pallida* D383 (Bakker *et al.* 1992) was used to confirm the specificity of *Gpa2* resistance in tested plants.

This analysis showed that *Gpa2* is located between markers IPM4c and 111R (Fig. 2B). Among the 2,788 S1-Cara genotypes and 598 F1SHxRH genotypes tested, only one genotype, S1-761, was identified in which a recombination event had occurred between *Gpa2* and marker 77R. On the other side of *Gpa2*, genotype S1-B811 identified marker 111R as a flanking marker for the *Gpa2* interval.

Marker orders deduced from the analysis of F1SHxRH corresponded to those found in population S1-Cara. Estimates of recombination frequencies and their standard errors were calculated with the aid of the program Linkage-1 (Suiter *et al.* 1983) by choosing the appropriate genetic model for each cross. Data for the non-recombinant class of genotypes were set for either a 3:1 segregation ratio for population S1-Cara or a

1:1 segregation ratio for population F1SH×RH since only strongly skewed segregation ratios will influence estimates of recombination frequencies notably (Säll and Nilsson 1994; Manly 1994). A chi-square test was used to test for differences in recombination frequencies between the marker intervals. The chi-square test criterion was determined 5 from the recombinant and non-recombinant classes for each marker interval. Differences (rejection of the null hypothesis) were significant when the test criterion was greater than the $X^2_{[0.05]}$ value. Estimates of recombination frequencies deduced from both populations were merged to obtain an estimate of the average recombination value for each marker interval. The graphical genotypes (Young and Tanksley, 1992) shown in Fig. 1 display 10 the boundaries of the *Gpa2* interval.

EXAMPLE 5: CONSTRUCTION OF A CONTIGUOUS BAC CONTIG SPANNING THE *Gpa2* LOCUS

15 Example 3 describes the preparation of a Cara BAC library from a progeny of a selfed cv. Cara and the identification and isolation of BAC clones BAC77, BAC45, BAC221 and BAC111, which map to the 0.06 cM IPM4c-111R genetic interval harbouring the *Gpa2* locus (Fig. 1C). Additional PCR screening of the Cara BAC library with markers 20 45L and 77R failed to identify any BAC clones that spanned the region between BAC77 and BAC45.

To bridge this gap between BAC77 and the IPM4 BAC contig (see Fig. 2C), a second BAC library was constructed from the diploid potato genotype SH83-92-488. High molecular weight potato DNA was prepared in agarose plugs from potato nuclei as described in Liu *et al.* (1994) with the following modifications. Plant nuclei were 25 isolated by grinding leaf tissue (10 g) in liquid nitrogen, suspending the powder in 100 ml nuclei isolation buffer (10 mM Tris-HCl pH 9.5, 10 mM EDTA, 100 mM KCl, 0.5 M sucrose, 4 mM spermidine 1.0 mM spermine, 0.1% mercaptoethanol) and sequential filtering through one layer each of 280, 88, 55 and 20 µm nylon mesh. One-twentieth volume of isolation buffer supplemented with 10% Triton X-100 was added to the 30 filtrate and left on ice for 15 min. The nuclei were pelleted at 4°C (in 50 ml screwcap tubes) at 2200 rpm for 10 min and resuspended with isolation buffer to a final volume of 1 ml. The nuclei were heated at 42°C for 1-2 min, mixed gently with an equal volume of 1.4% low-melting point inCert agarose (FMC) prepared in 10 mM Tris-HCl pH 9.5

and 10 mM EDTA and immediately poured into molds to form plugs (V=100 µl/plug). The agarose plugs were treated with lysis buffer (1% sarkosyl, 0.4 M EDTA pH 8.5, 0.2 mg/ml proteinase K and 3.8 mg/ml sodiumdisulfite) at 50 °C for 2 days with one change of lysis buffer. Proteinase K activity was inhibited by incubating the agarose plugs 5 hours at 50°C in T₁₀E₁₀ buffer (10 mM Tris-HCl pH 8.0, 10 mM EDTA) supplemented with 40 µg/ml PMSF.

Restriction enzym digestion of the agarose plugs and subsequent size selection was carried out essentially as described in Example 3, with the following modifications. Half of each plug (~10 µg DNA) was digested with 10 U of *HindIII* restriction enzym for 1 h. Size selection was carried out in two steps. Partially digested *S. tuberosum* DNA was initially subjected to CHEF electrophoresis at 4°C in 0.5 X TBE using a linear increasing pulse time of 60-90 sec and a field strength of 6 V/cm for 18 hr. After electrophoresis, the lanes containing the lambda DNA ladder were removed and stained with ethidium bromide to locate the region of the gel containing potato DNA fragments ranging from 100 to 150 kb in size. This region was excised from the gel 10 using a glass coverslip and subjected to a second size selection step in a 1% SeaPlaque (low-melting point) agarose gel (FMC). CHEF electrophoresis was carried out for 10 hr 15 at 4°C using a field strength of 4 V/cm and a constant pulse time of 5 sec. The compression zone containing DNA fragments of 100 kb was excised from the gel as described above and dialysed against 50 ml TE for 2 hr at 4°C. Dialysed agarose slices 20 were then transferred to a 1.5 ml Eppendorf tube, melted at 70°C for 5 min and digested with 1 unit of GELASE (Epicentre Technologies, USA) per 100 mg of agarose gel for 1 hr at 45°C.

Ligation of the size selected DNA to *HindIII*-digested and dephosphorylated 25 pBeloBAC11 and subsequent transformation of ElectroMAX *E. coli* DH10B competent cells (Life Technologies, UK) with the ligated DNA was carried as described in Example 3, using the BioRad Gene Pulser for electroporation. Settings on the BioRad Gene Pulser were as recommended for *E. coli* by the manufacturer. Approximately 60.000 white 30 colonies were picked individually into 384 well microtiter plates containing LB freezing buffer, grown at 37°C for 24 hr and stored at -80°C.

By screening the SH BAC library, as described in Example 3, with CAPS markers 77R and 45L BAC clone SHBAC43 was identified (see Fig. 2C). For further analysis of SHBAC43, plasmid DNA was isolated from 5 ml overnight cultures (LB

medium supplemented with 12.5 mg/ml chloramphenicol) using the standard alkaline lysis miniprep protocol (Engebrecht *et al.*, 1997) and resuspended in 50 µl TE. Plasmid DNA (10 µl) was digested with *NotI* for 3 h at 37°C to release the insert DNA from the pBeloBAC11 vector, and subsequently analysed by CHEF electrophoresis. Comparison 5 of the electrophoretic mobility of the SHBAC43 insert with that of the lambda concatemer ladder (BioRad) lead to the conclusion that SHBAC43 contains a BAC insert of approximately 110 kb.

EXAMPLE 6: IDENTIFICATION OF CANDIDATE RESISTANCE GENE
10 HOMOLOGUES (RGH) WITHIN THE *Gpa2* LOCUS

Identification of candidate RGHs

Screening of BAC clones SHBAC43, BAC45, BAC221a and BAC111 with degenerate primers RG1 and RG2 based on conserved motifs within the NBS of the cloned 15 resistance genes RPS2, N and L6 (see ; Aarts *et al*, 1998) resulted in the weak amplification of a 530 bp fragment from BAC221a. The use of this fragment as a probe to screen a Southern blot containing *EcoRI* digested DNA of SHBAC43, BAC45, BAC221a and BAC111 showed that SHBAC43 contained 2 copies of this sequence and that BAC clones BAC221a and BAC111 each contained one copy of this sequence.

20

Sequence analysis

The DNA sequence of BAC clones SHBAC43, BAC221a and BAC111 was determined by shotgun sequence analysis. For each BAC clone a set of random subclones with an average insert size of 2 kb was generated. 10 µg of CsCl purified DNA was sheared for 25 6 seconds on ice at 6 amplitude microns in 200 µl TE using a MSE soniprep 150 sonicator. After ethanol precipitation and resuspension in 20 µl TE the ends of the DNA fragments were repaired by T4 DNA polymerase digestion at 11°C for 25 minutes in a 50 µl reaction mixture comprising 1x T4 DNA polymerase buffer (New England BioLabs, USA), 1mM DTT, 100 µm of all 4 dNTP's and 25 U T4 DNA polymerase 30 (New England Biolabs, USA), followed by incubation at 65°C for 15 minutes. The sheared DNA was subsequently separated by electrophoresis on 1% SeaPlaque LMP agarose gel (FMC). The fraction with a size of 1.5-2.5 kb was excised from the gel and dialysed against 50 ml TE for 2 hr at 4°C. Dialysed agarose slices were then transferred

to a 1.5 ml Eppendorf tube, melted at 70°C for 5 min, digested with 1 unit of GELASE (Epicentre Technologies, USA) per 100 mg of agarose gel for 1 hr at 45°C, and the DNA was subsequently precipitated. The 1.5-2.5 kb fragments were ligated at 16°C in a *EcoRV* restricted and dephosphorylated pBluescript SK⁺ vector (Stratagene Inc.). The 5 ligation mixture was subsequently used to transform ElectroMAX *E. coli* DH10B competent cells (Life Technologies, UK) by electroporation using the BioRad Gene Pulser. Settings on the BioRad Gene Pulser were as recommended for *E. coli* by the manufacturer. The cells were spread on Luria broth (LB) agar plates containing ampicillin (100 µg/ml), 5-bromo-4-chloro-3-indolyl-β-D-galactoside (Xgal) (64 µg/ml) 10 and isopropyl-1-thio-β-D-galactoside (IPTG) (32 µg/ml). Plates were incubated at 37°C for 24 hours. Individual white colonies were grown in 96-well flat-bottom blocks (1.5 ml Terrific Broth medium containing 100 µg/ml ampicillin).

15 Plasmid DNA was isolated using the QIAprep 96 Turbo Miniprep system in conjunction with the BioRobot™ 9600 (QIAGEN) according to the manufacturers instructions. The ABI PRISM dye terminator cycle sequencing ready kit was used to perform sequencing reactions in a PTC-200 Peltier Thermal Cycler (MJ Research). The DNA sequences of the clones were determined using standard M13 forward and reverse primers. Sequence assembly was done using the 1994 version of the STADEN sequence analysis programme (Dear and Staden, 1991).

20 Analysis of the contiguous sequence of each BAC clone using the computer programme GENSCAN (Burge and Karlin, 1997) and BLASTX (Altschul *et al.*, 1990) identified a total of four NBS/LRR containing genes, two on SHBAC43, one on BAC221a and one on BAC111 (Fig. 2D). Three of these sequences were designated candidates for the *Gpa2* gene and selected for complementation analysis; RGH1 on 25 BAC221a, RGH2 on BAC111 and RGH3 on SHBAC43 (Fig. 2D). The second NBS/LRR gene identified on SHBAC43 contained marker IPM4c and is therefore outside of the *Gpa2* interval (Fig. 2D).

EXAMPLE 7: TRANSFORMATION

30

For complementation analysis a 5.5 kb *SstI-XbaI* genomic fragment containing RGH3 from SHBAC43 and two *XbaI-XbaI* genomic fragments of approximately 11 kb and 10.3 kb containing RGH1 or RGH2 from BAC221a and BAC111, respectively, were

subcloned into the plant transformation vector pBINPLUS (Van Engelen *et al.*, 1995). These binary plasmids, designated pBINRGH1-3 were transferred to *Agrobacterium tumefaciens* strain AGL0 (Lazo *et al.*, 1991) by electroporation using the BioRad Gene Pulser. Settings on the BioRad Gene Pulser were as recommended for *A. tumefaciens* by the manufacturer. The cells were spread on Luria broth (LB) agar plates containing kanamycin (100 mg/L) and rifampicin (50 mg/L). Plates were incubated at 28°C for 48 hours. Small-scale cultures from selected colonies were grown in LB medium containing kanamycin (100 mg/l) and rifampicin (50 mg/l). Plasmid DNA was isolated as described previously and the integrity of the plasmids was verified by restriction analysis upon reisolation from *A. tumefaciens* and subsequent transformation to *E. coli*. *A. tumefaciens* cultures harbouring a plasmid with the correct DNA pattern were used to transform a susceptible potato genotype.

Transformation of the susceptible potato genotype, clone V, was essentially performed as described by Visser (1991) and is described briefly below. Stem explants (1 cm long internodes) were prepared from 5 week old tissue culture plants and precultured for 24 hours (25°C, 16 hour light regime) in Petri dishes containing 2 sterile filter papers saturated with PACM (feeding layers: MS30 medium supplemented with 2 g/l caseinehydrolysate, 1 mg/l 2,4 D and 0.5 mg/l kinetine, pH 5.8) which were placed on R3B medium (MS30 medium supplemented with 2 mg/l NAA and 1 mg/l BAP, pH 5.8). The explants were then infected for 10 minutes with an overnight culture of *A. tumefaciens* strain AGL0 containing either pBINRGH1, pBINRGH2, pBINRGH3 or the pBINPLUS vector, blotted dry on sterile filter paper and cocultured for 48 hours on the original feeder layer plates. Culture conditions were as described above. Overnight *A. tumefaciens* cultures were pelleted and resuspended in liquid MS20 medium prior to infection. Following cocultivation, the explants were transferred to MS20 medium (pH 5.8) supplemented with 1 mg/l zeatin, 200 mg/l cefotaxime, 200 mg/l vancomycin and 100 mg/l kanamycin and cultured under the culture conditions described above. The explants were transferred to fresh medium every 3 weeks. Emerging shoots were isolated and transferred to glass jars with selective medium lacking zeatin for root induction. Only transgenic shoots were able to root on the kanamycin containing medium.

EXAMPLE 8: COMPLEMENTATION ANALYSIS

In vitro grown transgenic (R_0) plants were initially subjected to the *in vitro* resistance assay as described in Example 1B whereby sterilized second stage juveniles of *G. pallida* 5 population D383 were used as inoculum. Three nodes from four independent primary transformants of the 4 different transformations were assayed; $R_0(RGH1)$, $R_0(RGH2)$ and $R_0(RGH3)$ transgenic plants contain the candidate genes RGH1, RGH2 and RGH3, respectively, and $R_0(BINPLUS)$ transgenic plants are without insert DNA and function as control plants. In addition, three nodes from 12 *in vitro* grown resistant and 12 *in vitro* 10 grown susceptible progeny plants derived from the F1SHxRH mapping population (see Example 2) were included in the assay. The results are shown in Table 2. The development of nematode females on the roots of $R_0(RGH1)$, $R_0(RGH3)$ and $R_0(BINPLUS)$ plants was similar to that observed on the roots of the susceptible control 15 plants. In contrast, the $R_0(RGH2)$ plants showed the same incompatible interaction with *G. pallida* population D383 as the resistant control plants. Three lines of evidence indicate that the 10.3 kb DNA fragment, which is integrated in the genome of $R_0(RGH2)$ plants, harbours the *Gpa2* gene. First, the number of females able to develop on the roots of $R_0(RGH2)$ plants was equivalent to the number of females able to develop on 20 the roots of resistant control plants. Second, 90% of all the females that developed on these plants remained small and were translucent. This stagnation of female development was also observed on the roots of the resistant control plants. And third, the change in sex ratio (male/female=0.9) which is characteristic for the *Gpa2* phenotype was also observed for the $R_0(RGH2)$ plants.

TABLE 2 . Results of the complementation assay for *Gpa2* resistance.

Genotype	Average no. cysts/3 plants (# genotypes)¹⁾	Cyst. phenotype
Susceptible F1SHxRH (<i>gpa2</i>)	42 (12)	White
Resistant F1SHxRH (<i>Gpa2</i>)	5 (12)	Transluscent
R ₀ (BINPLUS)	33 (4)	White
R ₀ (RGH1)	39 (4)	White
R ₀ (RGH2)	2 (4)	Transluscent
R ₀ (RGH3)	40 (4)	White

5

10

¹⁾ The numbers between brackets indicate the numbers of genotypes tested

Molecular and computer analysis of the genomic insert conferring resistance

15

To confirm the presence of the RGH2 insert in the R₀(RGH2) with the resistant phenotype, a marker analysis with CAPS marker IPM4 was performed. The presence of the RGH2 linked CAPS marker IPM4a in all the R₀(RGH2) plants transformed with pBINRGH2 indicates that the RGH2 gene is present in all these transgenic plants. Correct integration of the genomic fragment was also confirmed by Southern analysis 20 using RGH2 and NPTII specific probes.

20

25

The sequence of the 10.3 kb *Xba*I-*Xba*I insert of pBINRGH2 is provided in Fig. 3 (SEQ ID NO.3). When this sequence was analysed for the presence of putative genes, the computer programme GENSCAN predicted the presence of one single gene harbouring two introns in the 3'-end of the gene. Comparison of the genomic sequence of RGH2 with the sequence of isolated RGH2 cDNAs confirms the position of these two introns. The *Gpa2* encoding nucleic acid sequence (RGH2), provided in Fig. 3 (SEQ ID NO.1), codes for a putative polypeptide sequence of 939 amino acids, the sequence of which is also provided in Fig. 3 (SEQ ID NO.1).

30

EXAMPLE 9: IDENTIFICATION AND MAPPING OF HOMOLOGOUS GENES.

Screening of the SH83 BAC library as described in Example 4 using primers described in Leister *et al.* (1996) based on conserved motifs within the nucleotide binding site (NBS) of the cloned resistance gene RPS2 (GGVGKTT in case of primer S1 and GGLPLAL in case of primer AS1; see Tables 3 and 4) resulted in the amplification of DNA fragments of the expected sizes from all 156 BAC pools. This indicates that sequences homologous to the resistance gene motifs used to design primers S1 and AS1 are abundantly present in the potato genome.

Based on the nucleotide sequence of the resistance gene homologues RGH1-4, primers were designed for specific amplification of nucleic acid sequences cognate to the NBS of RGH1-4 (primers RG3 and RG4; see Tables 3 and 4). The position of primer RG3 corresponds to nucleotides 514-533 of SEQ ID NO.1 (Fig. 3). Primer RG4 is complementary to nucleotides 985-1002 of SEQ ID NO.1 (Fig. 3). These primers differ from RG1 and RG2 and those designed by Leister *et al.* (1996) in that the 3' terminal nucleotides are designed on the basis of amino acid residues that exceed the conserved residues used for the design of the former primers (see Table 4). PCR using primers RG3 and RG4 on template DNA of the BAC clones SHBAC43, BAC45, BAC221a and BAC111 resulted in amplification products of the expected size from SHBAC43, BAC221a and BAC111.

Screening of the SH83 BAC library as described in Example 4 using primers RG3 and RG4 identified 19 individual BAC clones that showed amplification of DNA fragments of the expected size. This indicates that these primers discriminate between RGH1-4 homologues and sequences containing common resistance gene motifs.

Primer sequences RG5 and RG6 (see Table 3) were designed on the basis of sequences outside of the NBS of RGH1-4. The position of primer RG5 corresponds to nucleotides 199-221 of SEQ ID NO.2 (Fig. 3). Primer RG6 is complementary to nucleotides 2681-2701 of SEQ ID NO.2 (Fig. 3). Screening the SH83 BAC library as described in Example 4 resulted in the isolation of 5 BAC clones which already were identified with primers RG3 and RG4. These BAC clones showed overlap with clones SHBAC43, BAC221a and BAC111. The primers RG5 and RG6 therefore discriminate between RGH sequences derived from the *Gpa2* locus and homologous variants elsewhere on the potato genome. Primers RG3, 4, 5, 6 are SEQ ID NO. 4, 5, 6 and 7

respectively.

Mapping of the *Gpa2* homologues identified with primers RG3 and RG4 is carried out by developing CAPS markers designed on the end sequences of each BAC insert. These CAPS markers are used to screen 136 genotypes of population F1SHxRH.
5 The data on marker segregation are scored and the respective loci are mapped on the SH83 genome by use of the computer package JoinMap2.0 (Stam, 1993). It is likely that one or more of these homologues map to regions of the potato genome harbouring mono- or polygenic resistance loci that confer resistance to other *G. pallida* or *G. rostochiensis* populations; such as *H1* (Pineda *et al.* 1993; Gebhardt *et al.* 1993), *Gpa* (Kreike *et al.* 1994), *Gpa5* (Rouppé van der Voort and van der Vossen; unpublished data) and *Grp1* (Rouppé van der Voort *et al.* 1998) on chromosome 5; *Gro1* on chromosome 7 (Barone *et al.*, 1990; Ballvora *et al.*, 1995); *Gpa6* on chromosome 9 (Rouppé van der Voort and van der Vossen; unpublished data) and *Gpa3* on chromosome 11 (P. Wolters, unpublished data).

10

Table 3: Primer sequences and thermal cycling conditions for identification of *Gpa2* homologues

Primer	Primer sequence ¹⁾	PCR conditions	Expected product size
s1 as1	5'-GGTGGGGTTGGGAAGACAACG 5'-TGCTAGAGGTAATCCTCC	94°C 30s 51°C 30s 72°C 2 min 35 cycles	500 bp
RG1 RG2	5'-GGIATGGGIGGGTIGGIAARACNACN 5'-ICCIAGIACYTTIARIGCIARIGGIARWCC	94°C 30s 50°C 30s 72°C 2 min 30 cycles	530 bp
RG3 RG4	5'-GGAGGCATCGGGAAAACAAC 5'-TGCTAGAGGTAACCCTCC	94°C 30s 55°C 30s 72°C 2 min 30 cycles	488 bp
RG5 RG6	5'-GATATGGTTGACTCGGAATCAAG 5'-GAGTATGGACCTCGATAGAGC	94°C 30s 60°C 30s 72°C 3 min 30 cycles	2500 bp

¹⁾ R=A or G; Y=T or C; W=A or T

TABLE 4. Oligonucleotides based on conserved peptide motifs within the NBS of PPS2 and RGHs

Motif / primer	Primer designation	Sequence ²⁾
P-loop (RPS2/N/L6) s1	sense	G G V G K T T ggt ggg gtt ggg aag aca acg
P-loop (RGH1-4) RG3	sense	G G I G K T T gga ggc <u>atc</u> ggg aaa aca ac
GLPLAL (RPS2/N/L6) as1	antisense ¹⁾	G L P L A L caa cgc tag tgg caa tcc
GGLPLA (RGH1-4) RG4	antisense ¹⁾	G G L P L A tgc tag agg <u>taa</u> <u>ccc</u> <u>tcc</u>

¹⁾ Antisense primers are written in opposite orientation to the peptide sequence

²⁾ Differences between primers s1/as1 and primers RG3/RG4 are underlined

EXAMPLE 10: A MARKER ASSISTED SELECTION ASSAY FOR *Gpa2*

The *Gpa2* locus is hypothesized to be introgressed from *S. tuberosum* spp. *andigena* CPC1673 into European cultivars. Flanking markers tightly linked to *Gpa2* are likely to be diagnostic for the presence of *Gpa2* in these cultivars. Therefore, *Gpa2* linked CAPS markers were used to screen two clones (abbreviated as CPC1673-a and CPC1673-b) of the wild species *Solanum tuberosum* spp. *andigena* CPC 1673 (hereafter referred to as CPC1673) as well as nine potato cultivars harbouring introgressions from CPC1673. The CAPS marker profiles were highly similar for the selfed CPC1673 genotypes and the analyzed potato cultivars harboring introgressions from CPC1673. The CAPS marker alleles linked to *Gpa2* were only identified in regions which appeared to be of CPC1673 origin. Among the seven CPC1673 cultivars tested, five differences in the size of an

introgressed region of 0.9 cM were observed. All *Gpa2* containing cultivars harbored the *Gpa2* flanking markers 77R and 111R thereby demonstrating that these markers are indicative for the presence *Gpa2* (see Table 5).

TABLE 5: Potato clones having *S. tuberosum* spp. *andigena* CPC1673 in their pedigree (with the exception of clone RH89) tested on the presence of chromosome 12 specific CAPS alleles. Resistance or susceptibility to *G. pallida* population Pa2-D383 is indicated by "R" or "S" respectively. Presence or absence of a CAPS marker band that cosegregates with resistance in populations S1-Cara and F1SHxRH is indicated by either a "+" or a "-". The order of the presented CAPS markers corresponds to the marker order on chromosome 12.

5

Clone	Gpa2	IPM3	191L	77L	IPM4c	77R	IPM4	111R	73L	218R	IPM5
CPC1673-a	n.d.	+	+	+	+	+	+	+	+	+	+
CPC1673-b	n.d.	+	+	+	+	+	+	+	+	+	+
Cara	R ^a	+	+	+	+	+	+	+	+	+	+
Alcmaria	R ^b	-	+	+	+	+	+	+	+	+	+
Multa	R ^a	-	-	+	+	+	+	+	+	+	+
SH83	R ^a	-	-	-	+	+	+	+	+	+	+
Amaryl	R ^b	-	-	-	+	+	+	+	+	+	+
Marijke	R ^b	-	-	-	+	+	+	+	+	+	-
Saturna	S ^a	-	-	-	-	-	-	-	-	-	-
RH89	S ^a	-	-	-	-	-	-	-	-	-	-

a) As determined by cyst counts on at least three replicates

b) Data from Arntzen et al. (1994)

10
15

FIGURES

Fig. 1. High resolution map of the *Rx* locus (not drawn to scale). **A.** Simplified genetic map of potato chromosome XII (denoted by a horizontal line) in which the area left of the arrow is reversed between the potato and tomato genetic maps (Tanksley *et al.*, 1992). Vertical lines indicate positions of previously mapped RFLP markers (Bendahmane *et al.*, 1997; Tanksley *et al.*, 1992). The filled rectangle denotes a genetic interval between markers GP34 and 218L, which is magnified in panels B and C. **B.** Genetic map of the GP34-218L interval (denoted by a horizontal line). Positions of the RFLP marker GP34 and the AFLP markers IPM3, IPM4a and IPM5 are indicated by vertical lines. The positions of BAC end-derived markers and low-stringency PCR markers (enclosed in square brackets) are indicated by vertical arrows. The symbols L and R denote the BAC ends that were mapped relative to Rx1. The numbers in brackets below the bar indicate the numbers of S1-Cara individuals containing recombination events in each marker interval, identified in the initial S1-Cara mapping population of 1720 individuals. The predicted position of *Rx1*, delimited by the cross-over events in plants S1-1146 and S1-761, is indicated by the horizontal arrow. **C.** Positions of Cara BAC clones in the GP34-218L interval. Each open rectangle represents one BAC insert DNA. Inside of each rectangle is the name of the BAC clone, the estimated insert size in kb (except for the BAC29).

Fig. 2. High resolution genetic and physical map of the *Gpa2* locus. **A.** Relative position of the *Gpa2* locus on chromosome 12 of potato. Vertical lines indicate positions of previously mapped RFLP markers. The filled rectangle denotes the *Gpa2* locus between markers IPM3 and IPM5 which is magnified in panel B. **B.** High resolution genetic map and graphical genotypes of the IPM3-IPM5 interval, indicating differences in the size of *Solanum tuberosum* spp. *andigena* CPC1673 derived segments in different potato genotypes. The relative positions of CAPS markers used to fine-map *Gpa2* are indicated by vertical bars. The presented genotypes border the *Gpa2* interval. Introgression segments are indicated by thick bars. Size of marker intervals are not drawn to scale. The symbols R (for resistant) and S (for susceptible) indicate the *Gpa2* phenotype of the tested genotypes. **C.** High resolution physical map

of the *Gpa2* locus. The relative positions of CAPS markers are indicated by vertical bars. The open rectangles represent BAC clones isolated from the Cara BAC library. The shaded rectangle represents a BAC clone isolated from the SH83 BAC library. The name of each BAC clone is depicted within the rectangle and the estimated insert size is given in kb. The predicted position of *Gpa2* is indicated by the horizontal arrow. Recombinant S1-Cara genotypes S1-761 and S1-B811 delimit the *Gpa2* genetic interval. **D.** Relative positions of four resistance gene homologues (RGH1-4) identified within the IPM4c-111R *Gpa2* interval.

Fig. 3. Nucleic and amino acid sequence of the *Gpa2* gene. **A.** Coding nucleic acid and deduced amino acid sequence of the *Gpa2* gene. **B.** Coding sequence of the *Gpa2* gene including introns. The positions of the introns (intron 1 position 2691-2947; intron 2 position 3067-3178) are indicated by boxes. **C.** Sequence of the 10.3 kb *Xba*I-*Xba*I genomic DNA fragment inserted in pBINRGH2, harbouring the *Gpa2* gene. The initiation codon (ATG position 4875-4877) and the termination codon (TAG position 8058-8060) are underlined. The positions of the introns (intron 1 position 7566-7822; intron 2 position 7942-8053) are indicated by boxes.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT:

- (A) NAME: CPRO-DLO
- (B) STREET: Droevedaalsesteeg 1
- (C) CITY: Wageningen
- (D) STATE: Gelderland
- (E) COUNTRY: The Netherlands
- (F) POSTAL CODE (ZIP): Postbus 16 6700 AA

- (A) NAME: Landbouw Universiteit Wageningen
- (B) STREET: Dreyenlaan 2
- (C) CITY: Wageningen
- (D) STATE: Gelderland
- (E) COUNTRY: Netherlands
- (F) POSTAL CODE (ZIP): Postbus 9101 6700 HB

(ii) TITLE OF INVENTION: Engineering nematode resistance in Solanaceae

(iii) NUMBER OF SEQUENCES: 7

(iv) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2817 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Gpa2* encoding sequence of *S. tuberosum*

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..2818

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ATG GCT TAT GCT GCT GTT ACT TCC CTT ATG AGA ACC ATA CAT CAA TCA	48
Met Ala Tyr Ala Ala Val Thr Ser Leu Met Arg Thr Ile His Gln Ser	
1 5 10 15	

ATG GAA CTT ACT GGA TGT GAT TTG CAA CCG TTT TAT GAA AAG CTC AAA	96
Met Glu Leu Thr Gly Cys Asp Leu Gln Pro Phe Tyr Glu Lys Leu Lys	
20 25 30	

TCT TTG AGA GCT ATT CTG GAG AAA TCC TGC AAT ATA ATG GGC GAT CAT	144
Ser Leu Arg Ala Ile Leu Glu Lys Ser Cys Asn Ile Met Gly Asp His	
35 40 45	

GAG GGG TTA ACA ATC TTG GAA GTT GAA ATC ATA GAG GTA GCA TAC ACA Glu Gly Leu Thr Ile Leu Glu Val Glu Ile Ile Glu Val Ala Tyr Thr 50 55 60	192
ACA GAA GAT ATG GTT GAC TCG GAA TCA AGA AAT GTT TTT TTA GCA CGG Thr Glu Asp Met Val Asp Ser Glu Ser Arg Asn Val Phe Leu Ala Arg 65 70 75 80	240
AAT GTG GGG AAA AGA AGC AGG GCT ATG TGG GGG ATT TTT TTC GTC TTG Asn Val Gly Lys Arg Ser Arg Ala Met Trp Gly Ile Phe Phe Val Leu 85 90 95	288
GAA CAA GCA CTA GAA TGC ATT GAT TCC ACC GTG AAA CAG TGG ATG GCA Glu Gln Ala Leu Glu Cys Ile Asp Ser Thr Val Lys Gln Trp Met Ala 100 105 110	336
ACA TCG GAC AGC ATG AAA GAT CTA AAA CCA CAA ACT AGC TCA CTT GTC Thr Ser Asp Ser Met Lys Asp Leu Lys Pro Gln Thr Ser Ser Leu Val 115 120 125	384
AGT TTA CCT GAA CAT GAT GTT GAG CAG CCC GAG AAT ATA ATG GTT GGC Ser Leu Pro Glu His Asp Val Glu Gln Pro Glu Asn Ile Met Val Gly 130 135 140	432
CGT GAA AAT GAA TTT GAG ATG ATG CTG GAT CAA CTT GCT AGA GGA GGA Arg Glu Asn Glu Phe Glu Met Met Leu Asp Gln Leu Ala Arg Gly Gly 145 150 155 160	480
AGG GAA CTA GAA GTT GTC TCA ATC GTA GGG ATG GGA GGC ATC GGG AAA Arg Glu Leu Glu Val Val Ser Ile Val Gly Met Gly Gly Ile Gly Lys 165 170 175	528
ACA ACT TTG GCT GCA AAA CTC TAT AGT GAT CCT TAC ATT ATG TCT CGA Thr Thr Leu Ala Lys Leu Tyr Ser Asp Pro Tyr Ile Met Ser Arg 180 185 190	576
TTT GAT ATT CGT GCA AAA GCA ACT GTT TCA CAA GAG TAT TGT GTG AGA Phe Asp Ile Arg Ala Lys Ala Thr Val Ser Gln Glu Tyr Cys Val Arg 195 200 205	624
AAT GTA CTC CTA GGC CTT CTT TCT TTG ACA AGT GAT GAA CCT GAT TAT Asn Val Leu Leu Gly Leu Leu Ser Leu Thr Ser Asp Glu Pro Asp Tyr 210 215 220	672
CAG CTA GCG GAC CAA CTG CAA AAG CAT CTG AAA GGC AGG AGA TAC TTG Gln Leu Ala Asp Gln Leu Gln Lys His Leu Lys Gly Arg Arg Tyr Leu 225 230 235 240	720
GTA GTC ATT GAT GAC ATA TGG ACT ACA GAA GCT TGG GAT GAT ATA AAA Val Val Ile Asp Asp Ile Trp Thr Thr Glu Ala Trp Asp Asp Ile Lys 245 250 255	768
CTA TGT TTC CCA GAC TGC GAT AAT GGA AGC AGA ATA CTC CTG ACT ACT Leu Cys Phe Pro Asp Cys Asp Asn Gly Ser Arg Ile Leu Leu Thr Thr 260 265 270	816
CGG AAT GTG GAA GTG GCT GAA TAT GCT AGC TCA GGT AAG CCT CCT CAT Arg Asn Val Glu Val Ala Glu Tyr Ala Ser Ser Gly Lys Pro Pro His 275 280 285	864
CAC ATG CGC CTC ATG AAT TTT GAC GAA AGT TGG AAT TTA CTA CAC AAA His Met Arg Leu Met Asn Phe Asp Glu Ser Trp Asn Leu Leu His Lys 290 295 300	912
AAG ATC TTT GAA AAA GAA GGT TCT TAT TCT CCT GAA TTT GAA AAT ATT Lys Ile Phe Glu Lys Glu Gly Ser Tyr Ser Pro Glu Phe Glu Asn Ile 305 310 315 320	960

GGG AAA CAA ATT GCA TTA AAA TGT GGA GGG TTA CCT CTA GCA ATT ACT Gly Lys Gln Ile Ala Leu Lys Cys Gly Gly Leu Pro Leu Ala Ile Thr 325 330 335	1008
TTG ATT GCT GGA CTT CTC TCC AAA ATC AGT AAA ACA TTG GAT GAG TGG Leu Ile Ala Gly Leu Leu Ser Lys Ile Ser Lys Thr Leu Asp Glu Trp 340 345 350	1056
CAA AAT GTT GCG GAG AAT GTA CGT TCG GTG GTA AGC ACA GAT CTT GAA Gln Asn Val Ala Glu Asn Val Arg Ser Val Val Ser Thr Asp Leu Glu 355 360 365	1104
GCA AAA TGC ATG AGA GTG TTG GCT TTG AGT TAC CAT CAC TTG CCT TCT Ala Lys Cys Met Arg Val Leu Ala Leu Ser Tyr His His Leu Pro Ser 370 375 380	1152
CAC CTA AAA CCG TGT TTT CTG TAT TTT GCA ATT TTC GCA GAG GAT GAA His Leu Lys Pro Cys Phe Leu Tyr Phe Ala Ile Phe Ala Glu Asp Glu 385 390 395 400	1200
CGG ATT TAT GTA AAT AAA CTT GTT GAG TTA TGG GCC GTA GAG GGG TTT Arg Ile Tyr Val Asn Lys Leu Val Glu Leu Trp Ala Val Glu Gly Phe 405 410 415	1248
TTG AAT GAA GAA GAG GGA AAA AGC ATA GAA GAG GTG GCA GAA ACA TGT Leu Asn Glu Glu Gly Lys Ser Ile Glu Glu Val Ala Glu Thr Cys 420 425 430	1296
ATA AAC GAA CTT GTA GAT AGA AGT CTA ATT TCT ATC CAC AAT GTG AGT Ile Asn Glu Leu Val Asp Arg Ser Leu Ile Ser Ile His Asn Val Ser 435 440 445	1344
TTT GAT GGG GAA ACA CAG AGA TGT GGA ATG CAT GAT GTG ACC CGT GAA Phe Asp Gly Glu Thr Gln Arg Cys Gly Met His Asp Val Thr Arg Glu 450 455 460	1392
CTC TGT TTG AGG GAA GCT CGA AAC ATG AAT TTT GTG AAT GTT ATC AGA Leu Cys Leu Arg Glu Ala Arg Asn Met Asn Phe Val Asn Val Ile Arg 465 470 475 480	1440
GGA AAG AGT GAT CAA AAT TCA TGT GCA CAA TCC ATG CAG TGT TCC TTT Gly Lys Ser Asp Gln Asn Ser Cys Ala Gln Ser Met Gln Cys Ser Phe 485 490 495	1488
AAG AGT CGA AGT CGG ATC AGT ATC CAT AAT GAG GAA GAA TTG GTT TGG Lys Ser Arg Ser Arg Ile Ser Ile His Asn Glu Glu Leu Val Trp 500 505 510	1536
TGT CGT AAC AGC GAG GCT CAT TCT ATC ATC ACG TTG TGT ATA TTC AAA Cys Arg Asn Ser Glu Ala His Ser Ile Ile Thr Leu Cys Ile Phe Lys 515 520 525	1584
TGC GTC ACA CTG GAA TTG TCT TTC AAG CTA GTA AGA GTA CTA GAT CTT Cys Val Thr Leu Glu Leu Ser Phe Lys Leu Val Arg Val Leu Asp Leu 530 535 540	1632
GGT TTG ACT ACA TGC CCA ATT TTT CCC AGT GGA GTA CTT TCT CTA ATT Gly Leu Thr Thr Cys Pro Ile Phe Pro Ser Gly Val Leu Ser Leu Ile 545 550 555 560	1680
CAT TTG AGA TAC CTA TCT TTG CGT TTT AAT CCT CGC TTA CAG CAG TAT His Leu Arg Tyr Leu Ser Leu Arg Phe Asn Pro Arg Leu Gln Gln Tyr 565 570 575	1728
CGA GGA TCG AAA GAA GCT GTT CCC TCA TCA ATA ATA GAC ATT CCT CTA Arg Gly Ser Lys Glu Ala Val Pro Ser Ser Ile Ile Asp Ile Pro Leu 580 585 590	1776

TCG ATA TCA AGC CTA TGC TAT CTG CAA ACT TTT AAA CTT TAC CAT CCA Ser Ile Ser Ser Leu Cys Tyr Leu Gln Thr Phe Lys Leu Tyr His Pro 595 600 605	1824
TTT CCC AAT TGT TAT CCT TTC ATA TTA CCA TCG GAA ATT TTG ACA ATG Phe Pro Asn Cys Tyr Pro Phe Ile Leu Pro Ser Glu Ile Leu Thr Met 610 615 620	1872
CCA CAA TTG AGG AAG CTG TGT ATG GGC TGG AAT TAC TTG CGG AGT CAT Pro Gln Leu Arg Lys Leu Cys Met Gly Trp Asn Tyr Leu Arg Ser His 625 630 635 640	1920
GAG CCT ACA GAG AAC AGA TTG GTT TTG AAA AGT TTG CAA TGC CTC AAT Glu Pro Thr Glu Asn Arg Leu Val Leu Lys Ser Leu Gln Cys Leu Asn 645 650 655	1968
GAA TTG AAT CCT CGG TAT TGT ACA GGG TCT TTT TTA AGA CTA TTT CCC Glu Leu Asn Pro Arg Tyr Cys Thr Gly Ser Phe Leu Arg Leu Phe Pro 660 665 670	2016
AAT TTA AAG AAG TTG GAA GTA TTT GGC GTC AAA GAG GAC TTT CGC AAT Asn Leu Lys Lys Leu Glu Val Phe Gly Val Lys Glu Asp Phe Arg Asn 675 680 685	2064
CAC AAG GAC CTG TAT GAT TTT CGC TAC TTA TAT CAG CTC GAG AAA TTG His Lys Asp Leu Tyr Asp Phe Arg Tyr Leu Tyr Gln Leu Glu Lys Leu 690 695 700	2112
GCA TTT AGT ACT TAT TAT TCA TCT TCT GCT TGC TTT CTA AAA AAC ACT Ala Phe Ser Thr Tyr Tyr Ser Ser Ala Cys Phe Leu Lys Asn Thr 705 710 715 720	2160
GCA CCT TTA GGT TCT ACT CCG CAA GAT CCT CTG AGG TTT CAG ATG GAA Ala Pro Leu Gly Ser Thr Pro Gln Asp Pro Leu Arg Phe Gln Met Glu 725 730 735	2208
ACA TTG CAC TTA GAG ACT CAT TCC AGG GCA ACT GCA CCT CCA ACT GAT Thr Leu His Leu Glu Thr His Ser Arg Ala Thr Ala Pro Pro Thr Asp 740 745 750	2256
GTT CCA ACT TTC CTC TTA CCT CCT CCG GAT TGT TTT CCA CAA AAC CTT Val Pro Thr Phe Leu Leu Pro Pro Asp Cys Phe Pro Gln Asn Leu 755 760 765	2304
AAG AGT TTA ACT TTT ACC GGA GAT TTC TTT TTG GCA TGG AAG GAT TTG Lys Ser Leu Thr Phe Ser Gly Asp Phe Phe Leu Ala Trp Lys Asp Leu 770 775 780	2352
AGC ATT GTT GGT AAA TTA CCC AAA CTC GAG GTC CTT CAA CTA TCA CAC Ser Ile Val Gly Lys Leu Pro Lys Leu Glu Val Leu Gln Leu Ser His 785 790 795 800	2400
AAT GCC TTC AAA GGC GAG GAG TGG GAA GTA GTT GAG GAA GGG TTT CCT Asn Ala Phe Lys Gly Glu Glu Trp Glu Val Val Glu Glu Gly Phe Pro 805 810 815	2448
CAC TTG AAG TTC TTG TTT CTG GAT AGC ATA TAC ATT CGG TAC TGG AGA His Leu Lys Phe Leu Phe Leu Asp Ser Ile Tyr Ile Arg Tyr Trp Arg 820 825 830	2496
GCT AGT AGT GAT CAC TTT CCA TAC CTT GAA CGA CTT TTT CTT AGC GAT Ala Ser Ser Asp His Phe Pro Tyr Leu Glu Arg Leu Phe Leu Ser Asp 835 840 845	2544
TGC TTT TAT TTG GAT TCA ATC CCT CGA GAT TTT GCA GAT ATA ACC ACA Cys Phe Tyr Leu Asp Ser Ile Pro Arg Asp Phe Ala Asp Ile Thr Thr 850 855 860	2592

CTA GCT CTT ATT GAT ATA TTT CGC TGC CAA CAA TCT GTT GGG AAT TCC Leu Ala Leu Ile Asp Ile Phe Arg Cys Gln Gln Ser Val Gly Asn Ser 865 870 875 880	2640
GCC AAG CAA ATT CAA CAG GAC ATT CAA GAC AAC TAT GGA AGC TCT ATC Ala Lys Gln Ile Gln Asp Ile Gln Asp Asn Tyr Gly Ser Ser Ile 885 890 895	2688
GAG TCG AAA TGG AGC ATT TTT GGT AGT GTG ACA ACA GAT GAA GAT GAT Glu Ser Lys Trp Ser Ile Phe Gly Ser Val Thr Thr Asp Glu Asp Asp 900 905 910	2736
GAT GAT AGT GTG ACA ACA GAT GAA GAT GAA GAT GAA GAC TTT GAG AAA Asp Asp Ser Val Thr Thr Asp Glu Asp Glu Asp Glu Asp Phe Glu Lys 915 920 925	2784
GAA GTT GCT TCT TGC GGC AAT AAT GTC GTG TAG Glu Val Ala Ser Cys Gly Asn Asn Val Val *	2817
	930 935

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3186 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Gpa2* coding and non coding sequence of *S. tuberosum*
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

ATGGCTTATG CTGCTGTTAC TTCCCTTATG AGAACCATAC ATCAATCAAT GGAACCTTACT	60
GGATGTGATT TGCAACCGTT TTATGAAAAG CTCAAATCTT TGAGAGCTAT TCTGGAGAAA	120
TCCTGCAATA TAATGGCGA TCATGAGGGG TTAACAATCT TGGAAGTTGA AATCATAGAG	180
GTAGCATAACA CAACAGAAGA TATGGTTGAC TCGGAATCAA GAAATTTTT TTTAGCACGG	240
AATGTGGGGA AAAGAACGAG GGCTATGTGG GGGATTTTT TCGTCTTGGAA ACAAGCACTA	300
GAATGCATTG ATTCCACCGT GAAACAGTGG ATGGCAACAT CGGACAGCAT GAAAGATCTA	360
AAACCACAAA CTAGCTCACT TGTCAGTTA CCTGAACATG ATGTTGAGCA GCCCGAGAAT	420
ATAATGGTTG GCCGTAAAAA TGAATTGAG ATGATGCTGG ATCAACTTGC TAGAGGAGGA	480
AGGGAACTAG AAGTTGTCTC AATCGTAGGG ATGGGAGGCA TCGGGAAAAC AACCTTGGCT	540
GCAAAACTCT ATAGTGATCC TTACATTATG TCTCGATTG ATATTCGTGC AAAAGCAACT	600
GTTCACAAG AGTATTGTGT GAGAAATGTA CTCCTAGGCC TTCTTCTTT GACAAGTGAT	660
GAACCTGATT ATCAGCTAGC GGACCAACTG CAAAAGCATC TGAAAGGCAG GAGATACTTG	720
GTAGTCATTG ATGACATATG GACTACAGAA GCTTGGGATG ATATAAAACT ATGTTTCCCA	780
GAATGCGATA ATGGAAGCAG AATACTCCTG ACTACTCGGA ATGTGGAAGT GGCTGAATAT	840

GCTAGCTAG	GTAAGCCTCC	TCATCACATG	CGCCTCATGA	ATTTGACGA	AAGTTGGAAT	900
TTACTACACA	AAAAGATCTT	TGAAAAAGAA	GGTTCTTATT	CTCCTGAATT	TGAAAATATT	960
GGGAAACAAA	TTGCATTAAA	ATGTGGAGGG	TTACCTCTAG	CAATTACTTT	GATTGCTGGA	1020
CTTCTCTCCA	AAATCAGTAA	AACATTGGAT	GAGTGGCAA	ATGTTGCGGA	GAATGTACGT	1080
TCGGTGGTAA	GCACAGATCT	TGAAGCAAAA	TGCATGAGAG	TGTTGGCTTT	GAGTTACCAT	1140
CACTTGCCTT	CTCACCTAAA	ACCGTGTTTT	CTGTATTTG	CAATTTCGC	AGAGGATGAA	1200
CGGATTTATG	TAAATAAACT	TGTTGAGTTA	TGGGCCGTAG	AGGGGTTTTT	GAATGAAGAA	1260
GAGGGAAAAAA	GCATAGAAGA	GGTGGCAGAA	ACATGTATAA	ACGAACTTGT	AGATAGAAGT	1320
CTAATTCTA	TCCACAATGT	GAGTTTGAT	GGGGAAACAC	AGAGATGTGG	AATGCATGAT	1380
GTGACCCGTG	AACTCTGTT	GAGGGAAAGCT	CGAAACATGA	ATTTGTGAA	TGTTATCAGA	1440
GGAAAGAGTG	ATCAAAATTC	ATGTGCACAA	TCCATGCAGT	GTTCCTTAA	GAGTCGAAGT	1500
CGGATCAGTA	TCCATAATGA	GGAAGAATTG	GTTGGTGTG	GTAACAGCGA	GGCTCATTCT	1560
ATCATCACGT	TGTGTATATT	CAAATGCGTC	ACACTGGAAT	TGTCTTCAA	GCTAGTAAGA	1620
GTACTAGATC	TTGGTTGAC	TACATGCCCA	ATTTTCCCA	GTGGAGTACT	TTCTCTAATT	1680
CATTTGAGAT	ACCTATCTT	CGCTTTAAC	CCTCGCTTAC	AGCAGTATCG	AGGATCGAAA	1740
GAAGCTGTT	CCTCATCAAT	AATAGACATT	CCTCTATCGA	TATCAAGCCT	ATGCTATCTG	1800
CAAACTTTA	AACTTACCA	TCCATTTCCC	AATTGTTATC	CTTTCATATT	ACCATCGGAA	1860
ATTTTGACAA	TGCCACAATT	GAGGAAGCTG	TGTATGGCT	GGAATTACTT	GCGGAGTCAT	1920
GAGCCTACAG	AGAACAGATT	GGTTTGAAA	AGTTTGCAAT	GCCTCAATGA	ATTGAATCCT	1980
CGGTATTGTA	CAGGGCTTT	TTTAAGACTA	TTTCCCAATT	TAAAGAAGTT	GGAAGTATT	2040
GGCGTCAAAG	AGGACTTCG	CAATCACAAG	GACCTGTATG	ATTTCGCTA	CTTATATCAG	2100
CTCGAGAAAT	TGGCATTAG	TACTTATTAT	TCATCTCTG	CTTGCTTCT	AAAAAACACT	2160
GCACCTTAG	GTTCTACTCC	GCAAGATCCT	CTGAGGTTTC	AGATGGAAAC	ATTGCACTTA	2220
GAGACTCATT	CCAGGGCAAC	TGCACCTCCA	ACTGATGTT	CAAACCTCCT	CTTACCTCCT	2280
CCGGATTGTT	TTCCACAAAA	CCTTAAGAGT	TTAACTTTA	GCGGAGATT	CTTTTGGCA	2340
TGGAAGGATT	TGAGCATTGT	TGGTAAATTA	CCCAAACCTG	AGGTCCCTCA	ACTATCACAC	2400
AATGCCTCA	AAGGCGAGGA	GTGGGAAGTA	GTTGAGGAAG	GGTTCCCTCA	CTTGAAGTTC	2460
TTGTTCTGG	ATAGCATATA	CATTGGTAC	TGGAGAGCTA	GTAGTGATCA	CTTCCATAC	2520
CTTGAACGAC	TTTTCTTAG	CGATTGCTT	TATTTGGATT	CAATCCCTCG	AGATTTGCA	2580
GATATAACCA	CACTAGCTCT	TATTGATATA	TTTCGCTGCC	AAACAATCTGT	TGGGAATTCC	2640
GCCAAGCAA	TTCAACAGGA	CATTCAAGAC	AACTATGGAA	GCTCTATCGA	GGTCCATACT	2700
CGTTATCTT	AGTAAGACAT	CTTCTTCCTT	GATTTACAAC	AATATTTAAC	TCATCATCAT	2760
AGTAAACTCG	ATAATAATCT	GGATAATAGC	TTTAGTAAGT	CAAATTGCAC	CAATTCAACA	2820
AAAGTTCTG	ATGCTGTCAT	TGTGATTGAT	TCGAATCCTT	CCAATATTGT	GTAACCTGTT	2880
ATACTTGCAT	GTTCAATTCTT	GATTTGGGA	AGTGTAAACAT	TTCCATT	CATCTTGATT	2940

TTGGGAAGTC GAAATGGAGC ATTTTGTTA GTGTGACAAC AGATGAAGAT GATGATGATA	3000
GTGTGACAAC AGATGAAGAT GAAGATGAAG ACTTTGAGAA AGAAGTTGCT TCTTGCAGCA	3060
ATAATGTGTA AGTTCTTATA CCTGCATGCT CATTCTGCT ATAATGTTCT CTTGTTCCCTT	3120
AATTATGGGA CATCTAACAT ATTATTTCC ATTTTTGCA TCTTTTTTTT TTCCCTGCAGC	3180
GTGTAG	3186

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10329 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *XbaI-XbaI pBINRGH2* fragment containing *Gpa2*
promoter, coding and non coding sequence of *S. tuberosum*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

CTAGAGATTG GAATGGAGTG ATTCTTAGGG GTTTCTTTTT GAATTAATAT GAGGGTTAGT	60
ATTCAATCTT CAATTGACA TTTTCTCATA ATTTCTTTAT CTGTTTATTT TTCTTATTG	120
TAAATCTCTT GGGAAAATT GGGGTTTAT CGATTGGAAC TCCTTTTGA TGAAAAGGT	180
ATATTTACGA TCTTTATGTT ATGGGTAAAC TGATTTAAC ATAAAATTAT TGATTCATCG	240
ATTATTTTTA TCATATTAAC CGCGTACAAT TTGGACTTTC CCGGTAAAGT TAAAGTATGA	300
TAAATTGAGA ATTTCAAGGT CGATCTTAGC TCCATTTTG ATGAAATTTC ATATTTGAAC	360
TTATCTAACG ATGGGTAAGA TGTTTTCAA GAAATATTTC ATTTTCGAGT CGGGGTTTG	420
GATTCGAATA TTTAGGCTT CTTCAAGAAT GTAGATTTT GTTTAAATTG AGTTTGTGAA	480
TTGATTTCAT CTCCATTTTC AAATTGGTT TCACCATTAG CTTCCAATA CTTAAGGAT	540
CATTTTACAT CAAAAAAATTC CAGATTTGGG TATCGTTTTC CGGTATGAGA CTTTTGGACC	600
GTTTTGCCCC TTTCCCTAA ATTTCTTGAT TTTGGTGTCA TTGGACTCGA ATTGTGATTG	660
TGAATAATTG TTTGAATAGA TTATCGTGAT CCAGATTATA CTTGGAAAGG AAAGGCTCAA	720
GTCAAGTAAC TTTGGAGTT CGTTTAAGG CAAGTGGCTT CCAAACTTG TAAAACCTTT	780
AGACTACGCA TGACTACTTT CCTAATTATG TTGGGGAGTA ATGGGGGATT GAGGATGGGT	840
TTTATTTGTT GATTGAAATT GTTGTAAATG AAAGATGGGG AATAAAACGA GCTAAATGTG	900
TTATGTGTGA CTTGAATTG TTTGAATAAG TCATGTGATA ACTGATATTG AGGGATAGAA	960
GAGCATGAGC AGGCTATGAT TGATACAGAC ATTGATGTTG AGGCAGATGA TGTGTAATAC	1020
TATGATGTGG TCGTGATATG GTTGTGATTG AGACATGTGA TGTGTAATAC TATGATGTGG	1080
TCGTGATATG GTTGTGATTG AGACAGGTGA TGTGTAATAC TATGATGTGG TCGTGATATG	1140

GTTGTGATTG AGACAGGTGA TGTGTAATAC TATGATGTGG TCGTGATATG GTTGTGACTG	1200
AGACAGGTGA TGTGTAATAC TATGATGTGG TCGTGATATG GTTGTGATTG AGACAGATGA	1260
TGTGTAATAC GATGATGTGA TCGTGATATG ATTGTGATTG ATTACATGTG CATATTCAATT	1320
ATTCATCCCA TGTGTGAACT ATCTGTTGCA TGAGTTCTGA GACACTGATA TGAGGATGGA	1380
TGGATATGAG ACACAGTTGA GACTAGCTCC GGCTAGAGAT GTATGAGATG GACTAGCTCC	1440
GGCTAGCGAT TTGGATGCCG ATGGGATCTG GTTCCGGCGG TGATACATGG TCCATGTGTG	1500
GCCCCCATGG GTTCTGATTG GAGTATTCAA CGCGGACTGA TTACGTCAAC AGATGTGTAT	1560
CGTAGGACAG ACATGTATCA CGACTACATG ACATCATTAT TGCATTTGC ATCGCATTG	1620
CCTTATCTTT GTCTGTGATG TGTGGATTGT ATCGGTTAC CCTTTTATG TGGAATTG	1680
TCTACTTGCT CTTATTTGTT GATCTGAGGT TGATGAGGAT ATACTGTTGG TTCTGGCTGT	1740
TGAATATGAT CTGTTAGTA TAGGTTGGTT GGTTGCTGC TAGATTGAAG TTTCGGTGGT	1800
TCGGTTGGGA TTGAAAGGAG TTGTTGTAG CTGCTAGTT TGCTTAGTT AGAGTTACTT	1860
GCGAGTACCT GTGGTTTCG GTACTCACCC TTGCTTCTAC ACAATTGTGT AGGTTGACAG	1920
CTCTCTCTCA GATATTTCT TTAGCAGATT GAGCTTGAG ACATACTCGA GAGGTAGCGG	1980
TTCATTCCAG ACGTGCCCTT GAGTTATCTT TACTTCAGT TTTGTTCTAT TCGAGAACTA	2040
TACTCTGAGA CTTGTATATT TTTATTCAA TTCTGTATTT AGAGGTTGT ACATGTGACA	2100
ACCAAATTCT GGGTAGTGT AAGTCTTAAT TAAAGTTTC TGCTTATTTA TTATCTTTA	2160
TTCTCGTATT TCTACTTCTC TATCGTTGTG GTGGGTTAG GCTGACGTGT CTGGTGGGAA	2220
ACGGACATGT GCCATCACAT CCGGATTTGG GGTGTGACAA ATATTTGTT AGTTATATAC	2280
AAAATTGTAT GTAGTATATG TATATTTCT GCTTCATCA CAATTGTATA TAGATATTTG	2340
TATATTTGT TAGTTATATA CAAAATTGCT TGAAGTATAT GTATATTTTC TGCTTAAATC	2400
ATAATTGTAT ATATATATAT ATATATATAT ATTTCTATAT TTTGTAAGTT ATATACAATA	2460
GTATGAATTA AACAAATATAC AAACCTTACA TTATTATATA TACAGTTAGG TTACACCAAA	2520
AATTATCAA TTAAAGCACA ACTTTTTAT CGAACATCAT ACAATTCTATA TATATAATTG	2580
ACTTAGTAAT TTTATACAAC TACTTACACT TCTACATGGT ATAAGAATT TGACAAATTA	2640
CTTACATATA TACAATATTA TCAATTAAAC AATATACAAA TCGTATAACT TATATATACA	2700
GTAAAATTAC AACAAACAACA ACAAAAATTAA TCAAATTAAA GCACACCGTT GTTGTGAAAT	2760
CATATACACT CCATATATAC AAATTGTGTC ATTCAATTGGT TCGAACAAAA AATTAGAATT	2820
GAATTGTTAA TATAAAATTGTT ATCTAATATT GTATAAACAA AATTAAATTAA TTGCAAACCA	2880
TTAGAATGAA AAAAACAAAA ATAAACCGTT TTCCAAAATT TCAATTATAT ACTATACAAA	2940
TCAATTGTAT ACTTTCTTGC CGTTCAAAAC ATGAAGTTTC CTTGAAAGAA ACGCTTACCT	3000
AGCGTTGAAT ATACAAGAAT ATTGATTAAT CGTATGCTTC AGTCGTTGA GGAACCCAGT	3060
TGTTATTGTG TTTCTATTGC TATAGAACTC CTTTTGGAA AAATATTGAA TTTTGGACGA	3120
TTAGCTTGAA TCATGGGATT ATATAAAATT TTTATTACCG TATTTAGCAC TCATGTATCC	3180
ATTTATTAAA AAAAACATTGT ATAAATTATA TTTTAAAAG AAAATATACA AAATTAATGC	3240

TTCATAGCAA ACTAAACTAT ACCCATTGAA TGTAATTACT AAACTATACC TATAGAGCGT	3300
TATTCATTA AATACGTTA TCATATATGA AGTTTCCCT CAAGAGATCC TACACCTTAT	3360
ATATAGCTTC TCAAATGTGG AAATTCAATC TCACACCCAA CAATCTTCC CTCAGACTAA	3420
GTTCATGGC CCAATATCAC AATGATCCAC GAGTCATTG ATGAGATTCA CTATGTGTGT	3480
CACCCACATC GTCTAAGTAT TTTATGGCAA TCAAGCCCTA CAACTTGCTT CTTCTTTATA	3540
TATATATATA TATATATATA TATATATATA TATATATGTG TGTGTGTGTG TGTGTGTGTG	3600
CGCATCTCTA ATTAATCTCG TAAAGGGATT AAGGGGCCAA TTTCAAAGAA TTAGGCATT	3660
TTCTTAGTTT TTCGTGTGTG TTAACCCATA GGTATTTGG TGATATGGTT TTCGGATGAT	3720
TTATTTGTG CAACTTATAT GGAACCCCTTC GTAGGGAGTT AGTCTCACAC TTTTTAGAGT	3780
CCATTTGGG CATTAGGGG CTAATTATA GGAAATAGGT GATCTCTCA GTTGTCTGT	3840
ATTAGCCCATT GAATATTTG GTGATATGTC TTCCGAATAA TTTCTTGTA AAATCTTAC	3900
GGGACCCCTCC ATAGGGAGTT AGTGGAGCAG TACGTATAGT CTCACAATTT TAGAGTTCAT	3960
TTGGGCATT TAGGGCCAA TTTACAGGAT TTAGGCGACT TTCTCAGTGT TTTGTGTGTG	4020
TTAGCCCATT AATAGTTGGT GATATGACTT TCAGACGATT TCTTGCTAC ACATTTACGG	4080
AACCCCTCTGT AGGAAGTCGG GGGAGCAATA CGTACAATCT CACAATTATA GAGTCCATT	4140
TAGGCATTAA GGGGCCAATT TAAAGAAATT GGACAATTAA CTCAGTTTT CGTGTCTGTT	4200
AGCCATTAAT ATATTGGTGA ATATGACCTA CAGATGATT CTAATCGAAA TCTTTACGAA	4260
ACCCCTCAGTA GGGAGTTGGG GGAGCAATAC GTACCGTCTG ACAATTATA GAGTCCATT	4320
TGGGCATTAA AGGGCCAATT TACAGGAATT AGACGATT CTTAGTATT TTTCATGTGT	4380
TAGCCCATAA ATATTGGTT GATTTGACTT TTAGAGTCTA AACTTCTCAT GTATATTAAG	4440
AGATATTAT GCTTGGTTAA TTGAATCGAA CTAGGAATAG AGAAATTCCCT ACTTGGATCT	4500
TAATATTCT CTCTCTTGA TTTGGAAAT TCTAGGAAGT TGCTTCAAT GGAATTAAAA	4560
TCATCAATCT CTTGTATGTA AGAACATAC TTATATTCTAT GAATAGATAT GTTTAGGGTC	4620
TAATAATGAA TTATCACAAT TTTTCTACT TTTCTGTC AGAGCCTGC CTTTTCTTT	4680
TTCTTTTTA ACTTTGGTCT CTGCTTTGT CTACATGATG ATAAGGGTGG TGGACCTAGC	4740
TGGAAATGTG ATGGAAATAG CTAGAAAAAG AAAGAACTTT GCATTTCTG TTTTCTTAAA	4800
AACTGATAAA TTACATAACT TGTGGCAATT TGTCCATTAA CATACTGAGA GATATTCTA	4860
TTTTTTGG ATATATGGCT TATGCTGCTG TTACTCCCT TATGAGAACCC ATACATCAAT	4920
CAATGGAACCT TACTGGATGT GATTTGCAAC CGTTTATGA AAAGCTAAA TCTTGAGAG	4980
CTATTCTGGA GAAATCCTGC AATATAATGG GCGATCATGA GGGGTTAACCA ATCTTGGAAAG	5040
TTGAAATCAT AGAGGTAGCA TACACAACAG AAGATATGGT TGACTCGGAA TCAAGAAATG	5100
TTTTTTAGC ACGGAATGTG GGGAAAAGAA GCAGGGCTAT GTGGGGGATT TTTTCGTCT	5160
TGGAACAAAGC ACTAGAAATGC ATTGATTCCA CCGTGAAACA GTGGATGGCA ACATCGGACA	5220
GCATGAAAGA TCTAAAACCA CAAACTAGCT CACTTGTCAAG TTTACCTGAA CATGATGTTG	5280
AGCAGCCCCGA GAATATAATG GTTGGCCGTG AAAATGAATT TGAGATGATG CTGGATCAAC	5340

TTGCTAGAGG AGGAAGGGAA CTAGAAGTTG TCTCAATCGT AGGGATGGGA GGCATCGGGA	5400
AAACAACTTT GGCTGCAAAA CTCTATAGTG ATCCTTACAT TATGTCTCGA TTTGATATTG	5460
GTGCAAAAGC AACTGTTCA CAAGAGTATT GTGTGAGAAA TGTACTCCTA GGCCTCTTT	5520
CTTGACAAG TGATGAACCT GATTATCAGC TAGCGGACCA ACTGCAAAAG CATCTGAAAG	5580
GCAGGAGATA CTTGGTAGTC ATTGATGACA TATGGACTAC AGAAGCTTGG GATGATATAA	5640
AACTATGTT CCCAGACTGC GATAATGGAA GCAGAATACT CCTGACTACT CGGAATGTGG	5700
AAGTGGCTGA ATATGCTAGC TCAGGTAAGC CTCCTCATCA CATGCGCCTC ATGAATTTG	5760
ACGAAAGTTG GAATTTACTA CACAAAAAGA TCTTGAAAA AGAAGGTTCT TATTCTCCTG	5820
AATTTGAAAA TATTGGAAA CAAATTGCAT TAAAATGTGG AGGGTTACCT CTAGCAATT	5880
CTTGATTGC TGGACTTCTC TCCAAAATCA GTAAAACATT GGATGAGTGG CAAAATGTTG	5940
CGGAGAATGT ACGTTCGGTG GTAAGCACAG ATCTTGAAGC AAAATGCATG AGAGTGTGG	6000
CTTGAGTTA CCATCACTTG CCTTCTCACC TAAAACCGTG TTTTCTGTAT TTTGCAATT	6060
TCGCAGAGGA TGAACGGATT TATGTAATAA AACTTGTGA GTTATGGGCC GTAGAGGGT	6120
TTTGAAATGA AGAAGAGGGAA AAAAGCATAG AAGAGGTGGC AGAAACATGT ATAAACGAAC	6180
TTGTAGATAG AAGTCTAATT TCTATCCACA ATGTGAGTT TGATGGGAA ACACAGAGAT	6240
GTGGAATGCA TGATGTGACC CGTGAACCTCT GTTGAGGGAA AGCTCGAAC ATGAATTTG	6300
TGAATGTTAT CAGAGGAAAG AGTGATCAA ATTCACTGTGC ACAATCCATG CAGTGTCC	6360
TTAAGAGTCG AAGTCGGATC AGTATCCATA ATGAGGAAGA ATTGGTTTGG TGCGTAACA	6420
GCGAGGCTCA TTCTATCATC ACGTTGTGA TATTCAAATG CGTCACACTG GAATTGTCTT	6480
TCAAGCTAGT AAGAGTACTA GATCTTGGTT TGACTACATG CCCAATTTT CCCAGTGGAG	6540
TACTTCTCT AATTCAATTG AGATAACCTAT CTTTGCCTTT TAATCCTCGC TTACAGCAGT	6600
ATCGAGGATC GAAAGAAGCT GTTCCCTCAT CAATAATAGA CATTCCCTA TCGATATCAA	6660
GCCTATGCTA TCTGCAAAC TTTAAACTTT ACCATCCATT TCCAATTGT TATCCTTTCA	6720
TATTACCATC GGAAATTTG ACAATGCCAC AATTGAGGAA GCTGTGTATG GGCTGGAATT	6780
ACTTGCGGAG TCATGAGCCT ACAGAGAAC AATTGGTTT GAAAAGTTG CAATGCCTCA	6840
ATGAATTGAA TCCTCGGTAT TGTACAGGGT CTTTTTAAG ACTATTCCC AATTAAAGA	6900
AGTTGGAAGT ATTTGGCGTC AAAGAGGACT TTCGCAATCA CAAGGACCTG TATGATTTTC	6960
GCTACTTATA TCAGCTCGAG AAATTGGCAT TTAGTACTTA TTATTCACT TCTGCTTGCT	7020
TTCTAAAAAA CACTGCACCT TTAGGTTCTA CTCCGCAAGA TCCTCTGAGG TTTCAGATGG	7080
AAACATTGCA CTTAGAGACT CATTCCAGGG CAACTGCACC TCCAAGTGAT GTTCCAACCT	7140
TCCTCTTACC TCCTCCGGAT TGTTTCCAC AAAACCTAA GAGTTAACT TTAGCGGAG	7200
ATTTCTTTT GGCATGGAAG GATTGAGCA TTGTTGGTAA ATTACCCAAA CTCGAGGTCC	7260
TTCAACTATC ACACAATGCC TTCAAAGGCG AGGAGTGGGA AGTAGTTGAG GAAGGGTTTC	7320
CTCACTTGAA GTTCTTGTGTT CTGGATAGCA TATACATTG GTACTGGAGA GCTAGTAGTG	7380
ATCACTTCC ATACCTTGAA CGACTTTTC TTAGCGATTG CTTTTATTG GATTCAATCC	7440

CTCGAGATTT	TGCAGATATA	ACCACACTAG	CTCTTATTGA	TATATTCGC	TGCCAACAAAT	7500
CTGTTGGGAA	TTCCGCCAAG	CAAATTCAAC	AGGACATTCA	AGACAACATAT	GGAAGCTCTA	7560
TCGAGGTCCA	TACTCGTTAT	CTTAGTAAG	ACATCTTCTT	CCTTGATTTA	CAACAATATT	7620
TAACTCATCA	TCATAGTAAA	CTCGATAATA	ATCTGGATAA	TAGCTTAGT	AAGTCAAATT	7680
GCACCAATT	AACAAAAGTT	CTTGATGCTG	TCATTGTGAT	TGATTGAAAT	CCTTCCAATA	7740
TTGTGTA	ACT TGTTACTT	GCATGTTCAT	TCTTGATTTT	GGGAAGTGT	ACATTTCCAT	7800
TTTCATCTT	GATTTGGGA	AGTCGAAATG	GAGCATT	GGTAGTGTGA	CAACAGATGA	7860
AGATGATGAT	GATAGTGTGA	CAACAGATGA	AGATGAAAGAT	GAAGACTTTG	AGAAAAGAAGT	7920
TGCTTCTTGC	GGCAATAATG	TGTAAGTTCT	TATACCTGCA	TGCTCATTCT	TGCTATAATG	7980
TTCTCTTGT	TCTTAATTAT	GGGACATCTA	ACATATTATT	TTCCATT	TGCATCTTT	8040
TTTTTCCTG	CAGCGTGTAG	TTAAGGTGTT	CTGAGGACTA	GCCAGTTCTC	TGAAATAAAT	8100
GTCAAATCAG	AAGCCAAATG	TGTGAGTGT	TGTTTGTTC	GTTTCATTT	TTTCTGCATA	8160
AGGTGGCAGG	ATGATTGCAA	ATGGCTTGT	ATTTAATTGT	ATATGATATT	TCGTATAGCC	8220
ATTTGCCAGT	GGTTTTTAG	ATACTCCAAA	TTTTATGTAC	ATACATAATG	GTATAGGCCA	8280
GAACAGGCTC	CATATATAAC	GTGTGTTCC	TTCTTGGGA	GTCCTCAATC	TACCTCGCAA	8340
AGGAAGACAG	ACGGCTAAAT	CAAGAAAGAA	ATTTTTGA	AAATCATGTG	GCTAGTTGTT	8400
CAACTTTATA	CAAGTTTATG	TGCATACTTG	TGCATACCCA	AAGTTGAATA	ACATAAACAT	8460
AAAATGAAGT	CAAGTTAAAT	GGCACATT	TGTATTATGC	CTTTGAATT	TCATTAATAG	8520
TGAAAATCCT	GAATCATATT	CAGATTCCAT	CACTAATCGT	TGAACCATGT	TAATTTACTA	8580
TGTATTATCT	AATGGATT	TTGCTATCT	TATTTATAAT	TGTTCAAAGT	TTTGTAAATT	8640
ATCTTAGCA	TAATATCTGA	TTATATTATT	TTGATATACT	TTCTCTATCC	CTAATTACTT	8700
GTCCATT	GAATTGGCAC	ACCTATTAAG	AAAATAATTA	TTGAAATAGT	GAGTTACCA	8760
TTTACCCAT	ATTAATTATG	AAGTGGATGA	ATAAAAAACT	CAAGATTTC	AAAAAGTTCT	8820
ATTTTTTCA	AAGTAATAAA	CTGACGGT	AATAGGTAAA	AAAATTATT	CTTCTTGAT	8880
TTGTCAA	AAACAAATAA	TTAGGAATAA	TTAAAAAAAT	GGATAAATAA	TTAAAACGG	8940
AGGGAGCAAT	ATGTTATCTT	TAGCCTAATA	ATATCTGATT	AATGCCACC	CTAATTGATT	9000
GGATAGGAGA	GGATAGACTT	GCTCCAAGT	AACCCAAAT	ATAAAAAGTT	GACAAAAGGG	9060
TGCTAAATTC	GAGACACATG	TAGTACTTAT	ATAATTCATG	TGCGGACTCG	TTCTTTGT	9120
GTACTCCCTC	CGTTCTATT	TATACGT	AC ATTACTT	TATACTTTA	TTAAGAAATG	9180
ATGTAGTTT	ATCTTCTAT	TCTTATTAA	TGTTTCTTA	AGTCAATT	TTAATAAAATA	9240
ATGAATATAT	TTCAAGATT	AATTAAC	TCTATCAAGG	GTATAATAGG	TTAAATATGA	9300
TAATTATAC	ATAAAATT	TAAAATGACA	AGTATTGTGG	TCCAAC	TATAGAAAGA	9360
AATGATATAT	AAAATGGAC	GGAGGGCGTT	ATAAAGTGA	CTTAAGAAA	CATTAAATAA	9420
GGGTAGAAGG	GTAAAATTAC	ATTATTCTT	AATGTAAATG	TAAAGTAAA	AGGTAACATA	9480
TAAAATGGAA	AGGAGGGAGT	AGTATTCT	TGTTTATT	TACGTGGCAC	TCTATTCTCA	9540

TAATCCGTCT TTAAAAATGT CATTATTG TAATTGAAAA TAATTTAAGT TAAAATTCTC	9600
CATCTACCCCT TAATTAATGA AATGATTAC AATTATATAA ATATATAAAA ATTGTTTAG	9660
CCTATAATT TCTAAAATCT TTTTTTTCT CTTATACATC GTATTAAGTC AAACATAAAAT	9720
GGAATGGACG GAGTATTCT TTTATTTTT TGTCACACCG CCCATATGTT TTCTCCCATC	9780
CCCCAGACCC CCACTATGTA TATTCACTCC TTAGTTGGAT CTGAATTTAG AGTTAGAAG	9840
CTTCTATAAT AATTTAGAT TAATATATAA TAATAATAAT ATAATTGAA CTTACAGTAT	9900
TAAATTATG TGAATCTATA TATATTGTAT TGTAATTTTT TTAATTATAA TTTAACCAA	9960
ATCAATAAAG CTATTCAAGAT GTAAAAGTAT ATATTATGAT TTAACAACAA ATTTCTATAC	10020
GTCTTCCTAA GTTTGATGC ATAATTCCT AAAACTCATA AATTTCCAAG TGACTACTTC	10080
CAGTATTACA ATGAGAACTT ATGTTTCGTT ATGGATTTTC TTAGTGAATT AGTTAATAA	10140
AATCAAAATG AAAAAAAATC ATGTTTATA ACATAAAATT TTCATTGATT CATGCGAAAA	10200
AAAAACATCT AGTTCTTATA GTGTGAAAC TATTGAACTT ATGGGATGTA GCTGTATGGA	10260
AGTTCATCAA GTGGTAGCTC CTTGTACGCA ACTAGTGCTA CTTTTATTG ACTAAAAGTT	10320
ATTTCTAG	10329

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA oligonucleotide RG3

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Gpa2* encoding sequence of *S. tuberosum*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

GGAGGCATCG GGAAAACAAC 20

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA oligonucleotide RG4

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Gpa2* encoding sequence of *S. tuberosum*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

TGCTAGAGGT AAYCCTCC

18

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA oligonucleotide RG5

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Gpa2* encoding sequence of *S. tuberosum*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

GATATGGTTG ACTCGGAATC AAG

23

(2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA oligonucleotide RG6

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Gpa2* encoding sequence of *S. tuberosum*

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GAGTATGGAC CTCGATAGAG C

21

REFERENCES

- 5 **Aarts, M.G.M., te Lintel Hekkert, B., Holub, E.B., Beynon, J.L., Stiekema, W.J. and Pereira, A.** (1998). Identification of R-gene homologous DNA fragments genetically linked to disease loci in *Arabidopsis thaliana*. *Mol Plant-Microbe Interact.* **11:** 251-258.
- 10 **Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J.** (1990). Basic local alignment search tool. *J. Mol. Biol.* **215:** 403-410.
- 15 **Arntzen, F.K., Visser, J.H.M. and Hoogendoorn, J.** (1994). Inheritance, level and origin of resistance to *Globodera pallida* in the potato cultivar 'Multa', derived from *S. tuberosum* spp. *andigena* CPC1673. *Fundam. Appl. Nemat.* **16:** 155-162.
- 20 **Baker, B., Zambryski, P., Staskawicz, B., and Dinesh-Kumar, S. P.** (1997). Signaling in plant-microbe interactions. *Science* **276:** 726-733.
- 25 **Bakker J., Bouwman-Smits L., and Gommers, F. J.** (1992). Genetic relationships between *Globodera pallida* pathotypes in Europe assessed by using two dimensional gel electrophoresis of proteins. *Fundam Appl Nematol* **15:** 481-490.
- 30 **Bakker, J., Folkertsma, R.T., Rouppe van der Voort, J.N.A.M., de Boer, J.M. and Gommers, F.** (1993). Changing concepts and molecular approaches in the management of virulence genes in potato cyst nematodes. *Annu. Rev. Phytopathol.* **31:** 169-190.
- 35 **Ballvora, A., Hesselbach, J., Niewohner, J., leister, D., Salamini, F and gebhardt, C.** (1995). Marker enrichment and high-resolution map of the segment of potato chromosome VII harbouring the nematode resistance gene *Gro1*. *Mol. Gen. Genet.* **249:** 82-90.
- 40 **Barone, A., Ritter, E., Schachtschabel, U., Debener, T, Salamini, F. and Gebhardt, C.** (1990). Localization by restriction length polymorphism mapping in potato of a major dominant gene conferring resistance to the potato cyst nematode *Globodera rostochiensis*. *Mol Gen. genet.* **224:** 177-182.
- 45 **Bendahmane, A., Kanyuka, K., and Baulcombe, D. C.** (1997). High-resolution genetical and physical mapping of the *Rx* gene for extreme resistance to potato virus X in tetraploid potato. *Theor. Appl. Genet.* **95:** 153-162.
- 50 **Bent, A. F. Kunkel, B. N., Dahlbeck, D., Brown, K. L., Schmidt, R., Giraudat, J., Leung, J., and Staskawicz, B. J.** (1994). *RPS2* of *Arabidopsis thaliana*: A

- leucine-rich repeat class of plant disease resistance genes. *Science* **265**: 1856-1860.
- Burge, C. and Karlin, S. (1997).** Prediction of complete gene structure in human genomic DNA. *J. Mol. Biol.* **268**: 78-94.
- Büschgess, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Groenendijk, J., Topsch, S., Vos, P., Salamini, F. and Schultze-Lefert, P. (1997).** The barley *Mlo* gene: a novel control element of plant pathogen resistance. *Cell* **88**: 695-705.
- Chapman, S., Kavanagh, T. and Baulcombe, D. (1992).** Potato virus X as a vector for gene expression in plants. *Plant J.* **2**: 549-557.
- Chu, G. (1989).** Pulsed field electrophoresis in contour-clamped homogeneous electric fields for the resolution of DNA by size or topology. *Electrophoresis* **10**: 290-295.
- Crute, I. R., and Pink, D. A. C. (1996).** Genetics and utilization of pathogen resistance in plants. *Plant Cell* **8**:1747-1755.
- Dear, S. and Staden, R. (1991).** A sequence assembly and editing program for efficient management of large projects. *Nucleic Acids Res.* **14**: 3907-3911.
- De Jong, W., Forsyth, A., Leister, D., Gebhardt, C., and Baulcombe, D. C. (1997).** A potato hypersensitive resistance gene against potato virus X maps to a resistance gene cluster on chromosome 5. *Theor. Appl. Genet.* **95**: 246-252.
- Engebrecht, J., Brent, R. and Kaderbhai, M.A. (1997).** Large-scale preparation of plasmid DNA. In: Current Protocols in Molecular Biology, Vol. 1 (Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K., eds). John Wiley & Sons, Inc. pp. 1.6.1-1.6.2.
- Fenwick, D.W. (1940).** Methods for recovery and counting of cysts of *Heterodera schachtii* from soil. *J Helminth* **18**:155-172
- Folkertsma, R.T. (1997).** genetic diversity of the potato cyst nematode in the Netherlands. PhD thesis. Agricultural Univ. Wageningen, The Netherlands.
- Gebhardt, C., Mugniery, D., Ritter, E., Salamini, F. and Bonnel. (1993).** Identification of RFLP markers closely linked to the *H1* gene conferring resistance to *Globodera rostochiensis* in potato. *Theor. Appl. Genet.* **85**: 541-544.
- Goulden, M.G., Köhm, B.A., Santa Cruz, S., kavanagh, T.A. and baulcombe, D. (1993).** A feature of the coat protein of potato virus X affects both induced virus resistance in potato and viral fitness. *Virology* **197**: 293-302.

- Heilig, J.S., Lech, K and Brent, R. (1997).** Large-scale preparation of plasmid DNA. In: Current Protocols in Molecular Biology, Vol. 1 (Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K., eds). John Wiley & Sons, Inc. pp. 1.7.1-1.7.3.
- 5 Heungens, K., Mugniery, D., van Montagu, M., Gheysen, G. and Niebel, A.** (1996). A method to obtain disinfected *Globodera* infective juveniles directly from cysts. *Fundam. appl. Nemat.*, **19**, 91-93.
- Johal, G.S. and Briggs, S.P. (1992).** Reductase activity encoded by the Hm1 disease resistance gene in maize. *Science* **258**: 985-987.
- 10 Konieczny, A. and Ausubel, F.M. (1993).** A procedure for mapping *Arabidopsis* mutations using co-dominant ecotype-specific PCR-based markers. *Plant J.* **4**: 403-410.
- Kreike, C. M., De Koning, J. R. A., Vinke, J. H., Van Ooijen, J. W., and Stiekema, W. J. (1994).** Quantitatively inherited resistance to *Globodera pallida* is dominated by one major locus in *Solanum spegazzinii*. *Theor. Appl. Genet.* **88**: 764-769.
- 15 Lawrence, G. J., Finnegan, E. J., Ayliffe, M. A., and Ellis, J. G. (1995).** The *L6* gene for flax rust resistance is related to the *Arabidopsis* bacterial resistance gene *RPS2* and the tobacco viral resistance gene *N*. *Plant Cell* **7**:1195-1206.
- 20 Lazo, G.R., Stein, P.A., and Ludwig, R.A. (1991).** A DNA transformation-competent *Arabidopsis* genomic library in *Agrobacterium*. *Bio/Technology* **9**: 963-967.
- Leister, D., Ballvora, A., Salamini F., and Gebhardt, C. (1996).** A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. *Nature Genetics* **14**: 421-429.
- 25 Leonards-Schippers, C., Gieffers, W., Salamini, F., and Gebhardt, C. (1992).** The *R1* gene conferring race-specific resistance to *Phytophthora infestans* in potato is located on potato chromosome V. *Mol. Gen. Genet.* **233**: 378-383.
- Liu, Y-G and Whittier. (1994).** Rapid prparation of megabase plant DNA from nuclei in agarose plugs and microbeads. *Nucl. Acids Res.* **22**: 2168-2169.
- 30 Manly, K. F. (1994).** Establishing genetic linkage using recombinant inbred lines with an abnormal segregation ratio. *Genetics* **136**:1434.
- Maruzyk, R. and Sergeant, A. (1980).** A simple method for dialysis of small

- volume samples. *Anal. Biochem.* **105**: 403-404.
- Mindrinos, M., Katagiri, F., Yu, G. L., and Ausubel, F. M. (1994).** The *A. thaliana* disease resistance gene *RPS2* encodes a protein a nucleotide-binding site and leucine-rich repeats. *Cell* **78**, 1089-1099.
- 5 Ochman, H., Mehdora, M.M., Garza, D. and Hartl, D.L. (1990).** Amplification of flanking sequences by inverse PCR. In *PCR Protocols* (Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J., eds). San Diego: Academic Press, pp.219-227.
- Pineda, O., Bonierbale, M.W. and Plaisted, R.L. (1993).** Identification of RFLP markers linked to the *H1* gene conferring resistance to the potato cyst nematode *Globodera rostochiensis*. *Genome* **36**: 153-156.
- 10 Rouppe van der Voort, J., Wolters, P., Folkertsma, R., Hutten, R., van Zandvoort, P., Vinke, H., Kanyuka, K., Bendahmane, A., Jacobsen, E., Janssen, R., and Bakker, J. (1997a).** Mapping of the cyst nematode resistance locus *Gpa2* in potato using a strategy based on comigrating AFLP markers. *Theor. Appl. Genet.* **95**: 874-880.
- 15 Rouppe van der Voort J.N.A.M., Van Zandvoort P., Eck H.J. van, Folkertsma, F.T., Hutten, R.C.B., Draaijstra J., Gommers F.J., Jacobsen E., Helder J. and Bakker J. (1997b).** Allele specificity of comigrating AFLP markers used to align genetic maps from different potato genotypes. *Mol Gen Genet* **255**: 438-447.
- 20 Rouppe van der Voort, J., Lindeman, W., Folkertsma, R., Hutten, R., Overmars, H., van der Vossen, E., Jacobsen, E., and Bakker, J. (1998).** A QTL for broad-spectrum resistance to cyst nematode species (genus *Globodera*) maps to a resistance gene cluster in potato. *Theor. Appl. Genet.* **96**: 654-661.
- 25 Sambrook J., Fritsch E.F. and Maniatis T. (1989).** Molecular cloning: A Laboratory Manual (second edition). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Säll, T. and Nilsson, N. O. (1994).** The robustness of recombination frequency estimates in intercrosses with dominant markers. *Genetics* **137**:589-596.
- 30 Stam, P. (1993).** Construction of integrated genetic linkage maps by means of a new computer package JoinMap. *P. Journal* **3**: 739-744.
- Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G. and Jones, J. D. G. (1995).** Molecular genetics of plant-disease resistance. *Science* **268**:661-667.
- Suiter, K.A., Wendel, J. F., and Chase, J. S. (1983).** LINKAGE-1: a Pascal

computer program for the detection and analysis of genetic linkage. *J. Hered.* **74**:203-204.

- 5 **Tanksley, S.D., Ganal, M.W., Prince, J.P., de Vicente, M.C., Bonierbale, M.W., Broun, P., Fulton, T.M., Giovannoni, J.J., Grandillo, S., Martin, G.B., Messeguer, R., Miller, J.C., Miller, L., Paterson, A.H., Pineda, O., Röder, M.S., Wing, R.A., Wu, W. and Young, N.D. (1992).** High density molecular linkage maps of the tomato and potato genomes. *Genetics* **132**: 1141-1160.
- 10 **Van Engelen, F.A., Molthoff, J.W., Conner, A.J., Nap, J-P., Pereira, A. and Stiekema, W.J. (1995).** pBIBPLUS: an improved plant transformation vector based on pBIN19. *Transgenic Research* **4**: 288-290.
- Visser, R.G.F. (1991). Regeneration and transformation of potato by *Agrobacterium tumefaciens*. In: Plant tissue culture manual. Kluwer Academic Publishers, Dordrecht Boston London, B5:1-9.
- 15 **Whitham, S. Dinesh-Kumar, S.P., Choi, D., Hehl, R., Corr, C. and Baker, B. (1994).** The product of the tobacco mosaic virus resistance gene N - similarity to Toll and the interleukin-1 receptor. *Cell* **78**: 1101-1115.
- Young, N., and Tanksley, S. D. (1992).** Restriction fragment length polymorphism maps and the concept of graphical genotypes. *Theor. Appl. Genet.* **77**:95-101.

CLAIMS

1. A recombinant nucleic acid sequence providing resistance to infection by a phytopathogenic nematode of the genus *Globodera* when introduced into a host plant, said host plant prior to introduction being susceptible to infection with the phytopathogenic nematode, said introduction occurring in such a way that said nucleic acid sequence is expressed in the host plant, the nucleic acid sequence being that of SEQ ID NO.1.
- 10 2. A recombinant nucleic acid sequence being a homologue of the nucleic acid sequence according to claim 1, said homologue also providing the resistance, said homologue being a nucleic acid sequence encoding the amino acid sequence of SEQ ID NO.1.
- 15 3. A recombinant nucleic acid sequence being a homologue of the nucleic acid sequence according to claim 1, said homologue also providing the resistance, said homologue being a nucleic acid sequence exhibiting more than 70% homology at nucleic acid level with SEQ ID NO. 1.
- 20 4. A recombinant nucleic acid sequence being a homologue of the nucleic acid sequence according to claim 1, said homologue also providing the resistance, said homologue being a nucleic acid sequence exhibiting more than 75% homology at nucleic acid level with SEQ ID NO. 1.
- 25 5. A recombinant nucleic acid sequence being a homologue of the nucleic acid sequence according to claim 1, said homologue also providing the resistance, said homologue being a nucleic acid sequence exhibiting more than 80% homology at nucleic acid level with SEQ ID NO. 1.
- 30 6. A recombinant nucleic acid sequence being a homologue of the nucleic acid sequence according to claim 1, said homologue also providing the resistance, said homologue being a nucleic acid sequence exhibiting more than 85% homology at nucleic acid level with SEQ ID NO. 1.

7. A recombinant nucleic acid sequence being a homologue of the nucleic acid sequence according to claim 1, said homologue also providing the resistance, said homologue being a nucleic acid sequence exhibiting more than 90% homology at nucleic acid level with SEQ ID NO. 1.

5

8. A recombinant nucleic acid sequence being a homologue of the nucleic acid sequence according to claim 1, said homologue also providing the resistance, said homologue being a nucleic acid sequence exhibiting more than 95% homology at nucleic acid level with SEQ ID NO. 1.

10

9. A recombinant nucleic acid sequence being a homologue of the nucleic acid sequence according to claim 1 or being a homologue according to any of the claims 2-8, said homologue also providing the resistance, said homologue being a nucleic acid sequence capable of hybridising under normal to stringent conditions to the nucleic acid sequence of SEQ ID NO. 1.

15

10. A recombinant nucleic acid sequence being a homologue of the nucleic acid sequence according to claim 1 or being a homologue according to any of claims 2-9, said homologue also providing the resistance, said homologue being a nucleic acid sequence encoding a deletion, insertion or substitution mutant of the amino acid sequence of SEQ ID NO. 1.

20

11. A recombinant nucleic acid sequence being a homologue of the nucleic acid sequence according to claim 1 or being a homologue according to any of claims 2-10, said homologue also providing the resistance, said homologue being a nucleic acid sequence encoding a deletion, insertion or substitution variant as occurs in nature of the amino acid sequence of SEQ ID NO. 1.

25

12. A recombinant nucleic acid sequence according to any of the preceding claims, said nucleic acid sequence further comprising at least one intron.

30

13. A recombinant nucleic acid sequence according to claim 12 comprising at least one intron of SEQ ID NO. 2.

14. A recombinant nucleic acid according to any of the preceding claims being the genomic insert of pBINRGH2.
15. A recombinant nucleic acid sequence according to any of the preceding claims, said
5 nucleic acid sequence being identical to that present in the genetic material of a species
of the family Solanaceae, preferably a species of the genus *Solanum*.
16. A recombinant nucleic acid sequence according to any of the preceding claims, said
nucleic acid sequence being identical to that present in the genetic material of a potato,
10 preferably on chromosome 4, 5, 6, 7, 9, 11 or 12.
17. A recombinant nucleic acid sequence according to any of the preceding claims, said
nucleic acid sequence being identical to that present in the genetic material of potato
locus *Gpa2*.
- 15
18. A recombinant nucleic acid sequence being a homologue of the nucleic acid
sequence according to claim 1, said homologue also providing the resistance, said
homologue being a fragment of the nucleic acid sequence according to any of claims 14-
17.
- 20
19. A genetic construct comprising a nucleic acid sequence according to any of the
preceding claims said sequence being operably linked to a regulatory region for
expression.
- 25
20. A genetic construct according to claim 19 wherein the regulatory region is a *Gpa2*
regulatory region.
21. A genetic construct according to any of claims 19 or 20 wherein the regulatory
region corresponds to that present in the sequence of nucleotides 1-4874 of SEQ ID NO.
30 3.
22. A genetic construct according to any of claims 19-21, wherein the regulatory region
corresponds to that of nucleotides 1-4874 of SEQ ID NO.3.

23. A genetic construct according to any of the preceding claims 19-22, wherein the regulatory region comprises a promoter functionally connected to a nucleic acid sequence as defined in any of the claims 1-18, said promoter being able to control the transcription of said nucleic acid sequence in a plant cell.

5

24. A vector which carries a nucleic acid according to any of the claims 1-18, or a genetic construct according to any of the claims 19-23.

25. A vector according to claim 24 capable of replicating in a host organism.

10

26. A vector capable of expressing the nucleic acid according to any of the claims 1-19, or a genetic construct according to any of the claims 19-23.

15

27. A vector according to any of claims 24-26 constructed to function in a host organism selected from the group consisting of a micro-organism, plant cell, plant, seed, seedling, plant part and protoplast.

20

28. A vector according to any of claims 24-27 constructed to function in a host organism selected from the group consisting of a micro-organism, plant cell, seed, seedling, plant part and protoplast.

25

29. A vector according to any of claims 24-28 constructed to function in a host organism selected from the group consisting of a micro-organism, plant cell, plant part and protoplast.

25

30. A vector according to any of claims 24-29 constructed to function in a host organism selected from the group consisting of a plant, plant cell, plant part, seed, seedling and protoplast.

30

31. A host organism selected from the group consisting of a micro-organism, plant cell, plant, seed, seedling, plant part and protoplast, harbouring a vector as defined in any of claims 24-30 and/or a genetic construct according to any of the claims 19-23.

32. A host organism selected from the group consisting of a micro-organism, plant cell, seed, seedling, plant part and protoplast, harbouring a vector as defined in any of claims 24-30 and/or a genetic construct according to any of the claims 19-23.

5 33. A host organism selected from the group consisting of a micro-organism, plant cell, plant part and protoplast, harbouring a vector as defined in any of claims 24-30 and/or a genetic construct according to any of the claims 19-23.

10 34. A host organism selected from the group consisting of a plant cell, plant, seed, seedling, plant part and protoplast, harbouring a vector as defined in any of claims 24-30 and/or a genetic construct according to any of the claims 19-23.

15 35. A host organism according to any preceding claim 31-34 which is capable of replicating or expressing the nucleic acid sequence or the genetic construct of the vector and/or a genetic construct according to any of the claims 19-23.

20 36. A process for producing a genetically transformed or transfected host organism having increased resistance to phytopathogenic nematodes of the genus *Globodera* as compared to the host organism prior to the transformation, said process comprising transferring a genetic construct according to any of the claims 19-23 and/or a vector according to any of claims 24-30 into the host organism so that it's genetic material comprises the genetic construct and subsequently regenerating the host organism into a genetically transformed plant part.

25 37. A process according to claim 36 for producing a genetically transformed plant having increased resistance to phytopathogenic nematodes of the genus *Globodera* as compared to a corresponding plant prior to the transformation, said process comprising transferring a genetic construct according to any of the claims 19-23 and/or a vector according to any of claims 24-30 into the host organism so that it's genetic material comprises the genetic construct and/or a vector according to any of claims 19-23 and subsequently regenerating the host organism into a genetically transformed plant, said host organism being selected from the group consisting of a plant cell, plant, seed, seedling, plant part and protoplast of the plant type to be rendered resistant.

38. A process according to claim 36 or 37 wherein said nematodes are selected from the group consisting of *Globodera pallida* and *Globodera rostochiensis*.

5 39. A process according to any of claims 36-38, wherein said host organism to be transformed is selected from a plant type of the family Solanaceae.

40. A process according to any of claims 36-39, wherein said host organism to be transformed is selected from a plant type of the genus *Solanum*.

10

41. A process according to any of claims 36-40, wherein said host organism to be transformed is selected from a plant type of the species *Solanum tuberosum*.

15 42. A process for isolating or detecting a nucleic acid sequence according to any of claims 1-18, comprising the screening of genomic nucleic acid of a plant with a nucleic acid sequence according to any of claims 1-18 or a fragment thereof as probe or primer, said probe or primer being at least 16 nucleotides in length, the identification of positive clones which hybridize to said probe and the isolation of said positive clones and the isolation of the nucleic acid sequence therefrom.

20

43. A process for isolating or detecting a nucleic acid sequence according to claims 1-18, comprising the screening of a genomic library of a plant with a nucleic sequence according to seq id no 3 or a fragment thereof as probe, said probe or primer being at least 16 nucleotides in length, the identification of positive clones which hybridize to said probe or primer and the isolation of said positive clones and the isolation of the nucleic acid sequence therefrom.

30 44. A process for isolating or detecting a nucleic acid sequence according to claims 1-18, comprising the screening of a cDNA library of a plant with the encoding portion of a nucleic acid sequence according to any of claims 1-18 or a fragment thereof as probe or primer, said probe or primer being at least 16 nucleotides in length, the identification of positive clones which hybridize to said probe or primer and the isolation of said positive clones and the isolation of the nucleic acid sequence therefrom.

45. A process for isolating or detecting a nucleic acid sequence according to claims 1-18, comprising the screening of a cDNA library of a plant with the encoding portion of a nucleic acid sequence according to SEQ ID NO. 1 or a fragment thereof as probe or primer, said probe or primer being at least 16 nucleotides in length, the identification of 5 positive clones which hybridize to said probe and the isolation of said positive clones and the isolation of the nucleic acid sequence therefrom.

46. A process according to any of claims 42-45, wherein the probe is comprised within the sequence of SEQ ID NO.1, SEQ ID NO.2 or SEQ ID NO.3.

10

47. A process for isolating or detecting a nucleic acid sequence according to any of claims 1-18, using a nucleic acid amplification reaction such as the Polymerase Chain Reaction and at least one primer corresponding to or being complementary to the nucleic acid sequence according to any of claims 1-18 or a fragment thereof as primer, said 15 primer being at least 16 nucleotides in length.

48. A process for isolating or detecting a nucleic acid sequence according to any of claims 1-18, using a nucleic acid amplification reaction such as the Polymerase Chain Reaction and at least one primer corresponding to or being complementary to the nucleic 20 acid sequence of SEQ ID NO.1, SEQ ID NO.2 or SEQ ID NO.3 or a fragment thereof as primer, said primer being at least 16 nucleotides in length.

49. A process according to any of claims 42-48 wherein said probe or primer comprises a nucleic acid sequence encoding at least part of the amino acid sequence of the NBS 25 sequence of *Gpa2*.

50. A process according to any of claims 42-49, wherein said probe or primer comprises a nucleic acid sequence encoding at least part of the amino acid sequence of the NBS sequence of *Gpa2*, at least part having the following sequence GGIGKTT or GGLPLA.

30

51. A process according to any of claims 42-50, wherein said probe or primer comprises parts of the NBS sequence of *Gpa2* and at least one codon of a 5' and/or 3' overhanging portion corresponding to the respective 5' and/or 3' adjacent amino acids of the specified

NBS sequence of *Gpa2*.

52. A process according to any of claims 42-51, wherein said probe or primer comprises parts of the NBS sequence of *Gpa2* and at least one codon of a 5' and/or 3' overhanging portion corresponding to the respective 5' and/or 3' adjacent amino acids of the specified NBS sequence of *Gpa2* of SEQ ID NO.1.

53. A process according to any of claims 42-52, wherein said probe or primer corresponds to a sequence selected from SEQ ID NO.4, SEQ ID NO.5, SEQ ID NO.6 10 and/or SEQ ID NO.7.

54. A polypeptide having an amino acid sequence provided in SEQ ID NO.1 or being a homologue of said amino acid sequence, said homologue being a substitution, insertion or deletion mutant possessing nematode resistance against a nematode of the genus 15 *Globodera*.

55. A polypeptide encoded by a sequence according to any of the claims 1-18.

56. A process for producing a polypeptide having an amino acid sequence provided in 20 SEQ ID NO.1 or a homologue of said amino acid sequence, said homologue being a substitution, insertion or deletion mutant possessing nematode resistance against a nematode of the genus *Globodera*, said process comprising expressing a recombinant nucleic acid sequence according to any of the claims 1-18 or genetic construct according to any of claims 19-23 and optionally isolating said polypeptide, said expression 25 occurring in a host organism according to any of claims 31-35.

57. A process for producing a polypeptide having an amino acid sequence provided in SEQ ID NO.1 or a homologue of said amino acid sequence, said homologue being a substitution, insertion or deletion mutant possessing nematode resistance against a 30 nematode of the genus *Globodera*, said process comprising the expression of a recombinant nucleic acid sequence according to any of the claims 1-18 or genetic construct according to any of claims 19-23 and isolating said polypeptide, said expression occurring in a host organism according to any of claims 31-35.

58. A nematicide composition comprising as active ingredient a polypeptide according to claim 54 or 55 or produced according to claim 56 or 57 or a host organism expressing such a polypeptide, such a host organism being defined in any of claims 31-35 in a formulation suitable for application as nematicide to a plant and optionally comprising 5 other ingredients required for rendering the polypeptide suitable for application as a nematicide.

59. A nematicide composition according to claim 58 comprising the polypeptide in a slow release dosage form.

10

60. A nematicide composition according to 58 or 59 comprising instructions for application as nematicide.

15 61. A nucleic acid sequence comprising at least 16 contiguous nucleotides corresponding to or complementary to the *Gpa2* sequence, with the *proviso* that when such an oligonucleotide comprises part or all of the NBS encoding sequence, the oligonucleotide also comprises at least one codon of a 5' and/or 3' overhanging portion corresponding to the respective 5' and/or 3' adjacent amino acids of the specified NBS sequence of *Gpa2*.

20 62. A nucleic acid sequence according to claim 61, wherein the *Gpa2* sequence is comprised within the sequence of SEQ ID NO.1, 2 or 3.

25 63. A nucleic acid sequence according to claim 61 or 62, wherein sequence length is at least 50 nucleotides, suitably more than 100 nucleotides and is suitable for use as probe or primer in a nucleic acid assay.

64. A nucleic acid sequence according to any of claims 61-63, being selected from any of the sequences SEQ ID NOs. 4, 5, 6 and/or 7.

30 65. A combination of at least 2 primers according to any of claims 61-64.

66. Antibody raised against a polypeptide of claim 55 or a polypeptide produced by a process according to claim 56 or 57.

67. A diagnostic kit for assessing the presence of nematode resistance of a plant to infection by a phytopathogenic nematode of the genus *Globodera*, said kit comprising at least one nucleic acid sequence according to any of claims 61-64 as a probe or primer for screening of nucleic acid from a plant or plant part to be tested and/or a combination
5 of primers according to claim 65 and/or an antibody according to claim 66.
68. A process for diagnosing whether a plant is resistant to a phytopathogenic nematode of the genus *Globodera*, said process comprising detecting the presence of a nucleic acid sequence according to any of claims 1-18, genetic construct according to any of claims
10 19-23, vector according to any of 24-30 or a polypeptide according to claim 55 in plant material of a plant to be tested.
69. A process for diagnosing whether a plant is resistant to a phytopathogenic nematode of the genus *Globodera*, said process comprising carrying out a process according to any
15 of claims 42-53 and/or applying a diagnostic kit according to claim 67.
70. A process for protecting plants said process comprising the introduction of the nucleic acid sequence according to any of claims 1-18, the genetic construct according to any of claims 19-23, the vector according to any of 24-30 in plant material of a plant to
20 be protected.

1/15

Fig - 1

2/15

fig - 2

fig - 3a (1) 3/15

1 ATGGCTTATG CTGCTGTTAC TTCCCTTATG AGAACCATAC ATCAAATCAAT
51 GGAACTTACT GGATGTGATT TGCAACCGTT TTATGAAAAG CTCAAATCTT
101 TGAGAGCTAT TCTGGAGAAA TCCTGCAATA TAATGGCGA TCATGAGGGG
151 TTAACAATCT TGGAAGTTGA AATCATAGAG GTAGCATAACA CAACAGAAGA
201 TATGGTTGAC TCGGAATCAA GAAATGTTTT TTTAGCACGG AATGTGGGG
251 AAAGAACGAG GGCTATGTGG GGGATTTTT TCGTCTTGGA ACAAGCACTA
301 GAATGCATTG ATTCCACCGT GAAACAGTGG ATGGCAACAT CGGACAGCAT
351 GAAAGATCTA AAACCACAAA CTAGCTCACT TGTCAAGTTA CCTGAACATG
401 ATGTTGAGCA GCCCGAGAAT ATAATGGTTG GCCGTGAAAA TGAATTTGAG
451 ATGATGCTGG ATCAACTTGC TAGAGGAGGA AGGGAACTAG AAGTTGTCTC
501 AATCGTAGGG ATGGGAGGCA TCGGGAAAAC AACTTGGCT GCAAAACTCT
551 ATAGTGATCC TTACATTATG TCTCGATTTG ATATTGTCG AAAAGCAACT
601 GTTTCACAAG AGTATTGTGT GAGAAATGTA CTCCTAGGCC TTCTTCTTT
651 GACAAGTGAT GAACCTGATT ATCAGCTAGC GGACCAAATG CAAAAGCATC
701 TGAAAGGCAG GAGATACTTG GTAGTCATTG ATGACATATG GACTACAGAA
751 GCTTGGGATG ATATAAAACT ATGTTTCCCA GACTGCGATA ATGGAAGCAG
801 AATACTCCTG ACTACTCGGA ATGTGGAAGT GGCTGAATAT GCTAGCTCAG
851 GTAAGCCTCC TCATCACATG CGCCTCATGA ATTTTGACGA AAGTTGGAAT
901 TTACTACACA AAAAGATCTT TGAAAAAGAA GGTTCTTATT CTCCTGAATT
951 TGAAAATATT GGGAAACAAA TTGCATTAAA ATGTGGAGGG TTACCTCTAG
1001 CAATTACTTT GATTGCTGGA CTTCTCTCCA AAATCAGTAA AACATTGGAT
1051 GAGTGGCAAA ATGTTGCGGA GAATGTACGT TCGGTGGTAA GCACAGATCT
1101 TGAAGCAAAA TGCATGAGAG TGTTGGCTTT GAGTTACCAT CACTTGCCTT
1151 CTCACCTAAA ACCGTGTTTT CTGTATTTTG CAATTTCGC AGAGGATGAA
1201 CGGATTTATG TAAATAAACT TGTTGAGTTA TGGGCCGTAG AGGGGTTTTT
1251 GAATGAAGAA GAGGGAAAAA GCATAGAAGA GGTGGCAGAA ACATGTATAA
1301 ACGAACCTGT AGATAGAAGT CTAATTCTA TCCACAATGT GAGTTTGAT
1351 GGGGAAACAC AGAGATGTGG AATGCATGAT GTGACCCGTG AACTCTGTTT

fig - 3 2 (2) 4/15

1401 GAGGGAAGCT CGAAACATGA ATTTTGTGAA TGTTATCAGA GGAAAGAGTG
 1451 ATCAAAATTC ATGTGCACAA TCCATGCAGT GTTCCTTAA GAGTCGAAGT
 1501 CGGATCAGTA TCCATAATGA GGAAGAATTG CTTGGTGTC GTAACAGCGA
 1551 GGCTCATCT ATCATCACGT TGTGTATATT CAAATGCGTC ACACTGGAAT
 1601 TGTCTTCAA GCTAGTAAGA GTACTAGATC TTGGTTGAC TACATGCCA
 1651 ATTTTCCCA GTGGAGTACT TTCTCTAATT CATTGAGAT ACCTATCTT
 1701 GCGTTTAAT CCTCGCTTAC AGCAGTATCG AGGATCGAAA GAAGCTGTT
 1751 CCTCATCAAT AATAGACATT CCTCTATCGA TATCAAGCCT ATGCTATCTG
 1801 CAAACTTTA AACTTTACCA TCCATTCCC AATTGTTATC CTTCATATT
 1851 ACCATCGGAA ATTTGACAA TGCCACAATT GAGGAAGCTG TGTATGGGCT
 1901 GGAATTACTT GCGGAGTCAT GAGCCTACAG AGAACAGATT GGTTTGAAA
 1951 AGTTTGCAAT GCCTCAATGA ATTGAATCCT CGGTATTGTA CAGGGTCTT
 2001 TTTAAGACTA TTTCCAATT TAAAGAAGTT GGAAGTATTT GGCCTCAAAG
 2051 AGGACTTTCG CAATCACAAG GACCTGTATG ATTTGCTA CTTATATCAG
 2101 CTCGAGAAAT TGGCATTAG TACTTATTAT TCATCTCTG CTTGCTTTCT
 2151 AAAAAACACT GCACCTTAG GTCTACTCC GCAAGATCCT CTGAGGTTTC
 2201 AGATGGAAAC ATTGCACTTA GAGACTCATT CCAGGGCAAC TGCACCTCCA
 2251 ACTGATGTTCA AACTTTCTT CTTACCTCCT CCGGATTGTT TTCCACAAAA
 2301 CCTTAAGAGT TTAACTTTA CGGGAGATT CTTTTGGCA TGGAAGGATT
 2351 TGAGCATTGT TGGTAAATTA CCCAAACTCG AGGTCTTCA ACTATCACAC
 2401 AATGCTTCA AAGGCGAGGA GTGGGAAGTA GTTGAGGAAG GGTTTCTCA
 2451 CTTGAAGTTC TTGTTCTGG ATAGCATATA CATTGGTAC TGGAGAGCTA
 2501 GTAGTGATCA CTTTCCATAC CTTGAACGAC TTTTCTTAG CGATTGCTTT
 2551 TATTGGATT CAATCCCTCG AGATTTGCA GATATAACCA CACTAGCTCT
 2601 TATTGATATA TTTGCTGCC AACAACTGT TGGAATTCC GCCAAGCAAA
 2651 TTCAACAGGA CATTCAAGAC AACTATGGAA GCTCTATCGA GTCGAAATGG
 2701 AGCATTGAG GTAGTGTGAC AACAGATGAA GATGATGATG ATAGTGTGAC
 2751 AACAGATGAA GATGAAGATG AAGACTTTGA GAAAGAAGTT GCTTCTTGCG
 2801 GCAATAATGT CGTGTAG

5/15

fig - 3b (1)

1 ATGGCTTATG CTGCTGTTAC TTCCCTTATG AGAACCATAC ATCAATCAAT
51 GGAACCTTACT GGATGTGATT TGCAACCGTT TTATGAAAAG CTCAAATCTT
101 TGAGAGCTAT TCTGGAGAAA TCCTGCAATA TAATGGCGA TCATGAGGGG
151 TTAACAATCT TGGAAAGTTGA AATCATAGAG GTAGCATAACA CAACAGAAGA
201 TATGGTTGAC TCGGAATCAA GAAATGTTTT TTTAGCACGG AATGTGGGG
251 AAAGAAGCAG GGCTATGTGG GGGATTTTT TCGTCTTGGA ACAAGCACTA
301 GAATGCATTG ATTCCACCCTG GAAACAGTGG ATGGCAACAT CGGACAGCAT
351 GAAAGATCTA AAACCACAAA CTAGCTCACT TGTCAGTTTA CCTGAACATG
401 ATGTTGAGCA GCCCGAGAAT ATAATGGTTG GCCGTGAAAA TGAATTTGAG
451 ATGATGCTGG ATCAACTTGC TAGAGGAGGA AGGGAACTAG AAGTTGTCTC
501 AATCGTAGGG ATGGGAGGCA TCGGGAAAAC AACTTTGGCT GCAAAACTCT
551 ATAGTGATCC TTACATTATG TCTCGATTTG ATATTCGTGC AAAAGCAACT
601 GTTTCACAAAG AGTATTGTGT GAGAAATGTA CTCCTAGGCC TTCTTTCTT
651 GACAAGTGAT GAACCTGATT ATCAGCTAGC GGACCAACTG CAAAAGCATC
701 TGAAAGGCAG GAGATACTTG GTAGTCATTG ATGACATATG GACTACAGAA
751 GCTTGGGATG ATATAAAACT ATGTTCCCA GACTGCGATA ATGGAAGCAG
801 AATACTCTG ACTACTCGGA ATGTGGAAGT GGCTGAATAT GCTAGCTCAG
851 GTAAGCCTCC TCATCACATG CGCCTCATGA ATTTTGACGA AAGTTGGAAT
901 TTACTACACA AAAAGATCTT TGAAAAAGAA GGTTCTTATT CTCCCTGAATT
951 TGAAAATATT GGGAAACAAA TTGCATTAAA ATGTGGAGGG TTACCTCTAG
1001 CAATTACTTT GATTGCTGGA CTTCTCTCCA AAATCAGTAA AACATTGGAT
1051 GAGTGGCAAATGTTGCGGA GAATGTACGT TCGGTGGTAA GCACAGATCT
1101 TGAAGCAAAA TGCATGAGAG TGTGGCTTT GAGTTACCAT CACTTGCCTT
1151 CTCACCTAAA ACCGTGTTT CTGTATTTG CAATTTCGC AGAGGATGAA
1201 CGGATTTATG TAAATAAACT TGTGAGTTA TGGGCCGTAG AGGGGTTTTT
1251 GAATGAAGAA GAGGGAAAAA GCATAGAAGA CGTGGCAGAA ACATGTATAA
1301 ACGAACTTGT AGATAGAAGT CTAATTCTA TCCACAAATGT GAGTTTGAT

fig - 3b (2) 6/15

1351 GGGGAAACAC AGAGATGTGG AATGCATGAT GTGACCCGTG AACTCTGTTT
 1401 GAGGGAAGCT CGAACATGA ATTTGTGAA TGTATCAGA GGAAAGAGTG
 1451 ATCAAAATTC ATGTGCACAA TCCATGCAGT GTTCCTTAA GAGTCGAAGT
 1501 CGGATCAGTA TCCATAATGA GGAAGAATTG GTTGGTGTG GTAACAGCGA
 1551 GGCTCATTCT ATCATCACGT TGTGTATATT CAAATGCGTC ACACGTGAAT
 1601 TGTCTTCAA GCTAGTAAGA GTACTAGATC TTGGTTGAC TACATGCCA
 1651 ATTTTCCC GTGGAGTACT TTCTCTAATT CATTGAGAT ACCTATCTT
 1701 GCGTTTAAT CCTCGCTTAC AGCAGTATCG AGGATCGAAA GAAGCTGTT
 1751 CCTCATCAAT AATAGACATT CCTCTATCGA TATCAAGCCT ATGCTATCTG
 1801 CAAACTTTA AACTTACCA TCCATTCCC AATTGTTATC CTTTCATATT
 1851 ACCATCGGAA ATTTTGACAA TGCCACAATT GAGGAAGCTG TGTATGGGCT
 1901 GGAATTACTT GCGGAGTCAT GAGCCTACAG AGAACAGATT GGTTTGAAA
 1951 AGTTTGCAAT GCCTCAATGA ATTGAATCCT CGGTATTGTA CAGGGTCTTT
 2001 TTTAAGACTA TTTCCCAATT TAAAGAAGTT GGAAGTATTT GGCGTCAAAG
 2051 AGGACTTTCG CAATCACAAG GACCTGTATG ATTTCGCTA CTTATATCAG
 2101 CTCGAGAAAT TGGCATTAG TACTTATTAT TCATCTTCTG CTTGCTTCT
 2151 AAAAAACACT GCACCTTAG GTTCTACTCC GCAAGATCCT CTGAGGTTTC
 2201 AGATGGAAAC ATTGCACTTA GAGACTCATT CCAGGGCAAC TGCACCTCCA
 2251 ACTGATGTTG CAACTTCCCT CTTACCTCCT CCGGATTGTT TTCCACAAAA
 2301 CCTTAAGAGT TTAACTTTA GCGGAGATT CTTTTGGCA TGGAAGGATT
 2351 TGAGCATTGT TGGTAAATT CCCAAACTCG AGGTCTTCA ACTATCACAC
 2401 AATGCCTTCA AAGGCGAGGA GTGGGAAGTA GTTGAGGAAG GGTTCCCTCA
 2451 CTTGAAGITC TTGTTCTGG ATAGCATATA CATTCGGTAC TGGAGAGCTA
 2501 GTAGTGATCA CTTCCATAC CTTGAACGAC TTTTCTTAG CGATTGCTTT
 2551 TATTGGATT CAATCCCTCG AGATTTGCA GATATAACCA CACTAGCTCT
 2601 TATTGATATA TTTCGCTGCC AACAACTGT TGGAATTCC GCCAAGCAAA
 2651 TTCAACAGGA CATTCAAGAC AACTATGGAA GCTCTATCGA **GGTCCATACT**
 2701 **CGTTATCTT AGTAAGACAT CTTCTTCCCT GATTTACAAC AATATTAAC**
 2751 **TCATCATCAT AGTAAACTCG ATAATAATCT GGATAATAGC TTTAGTAAGT**
 2801 **CAAATTGCAC CAATTCAACA AAAGTTCTTG ATGCTGTCAT TGTGATTGAT**

Fig - 3b(3) 7/15

2851 TCGAATCCTT CCAATATTGT GTAACTTGTT ATACTTGCAT GTTCATTCTT
2901 GATTTGGGA AGTGTAACAT TTCCATTGTT CATCTTGATT TTGGGAAGTC
2951 GAAATGGAGC ATTTTGGA GTGTGACAAC AGATGAAGAT GATGATGATA
3001 GTGTGACAAC AGATGAAGAT GAAGATGAAG ACTTTGAGAA AGAAGTTGCT
3051 TCTTGGCGCA ATAATGTTGTA AGTTCTTATA CCTGCATGCT CATTCTTGCT
3101 ATAATGTTCT CTTGTTCCCTT AATTATGGGA CATCTAACAT ATTATTTCC
3151 ATTTTTGCA TCTTTTTTTT TTCCTGCAGC GTGTAG

Fig - 3c(1) 8/15

1 CTTAGAGATTG GAATGGAGTG ATTCTTAGGG GTTTCCTTTT GAATTAATAT
51 GAGGGTTAGT ATTCAATCTT CAATTGACA TTTTCTCATA ATTTCTTTAT
101 CTGTTTATTT TTCTTATTCG TAAATCTCTT GGGAAAATT GGGGTTTTAT
151 CGATTTGGAC TCCTTTTGA TGAAAAAGGT ATATTTACGA TCTTTATGTT
201 ATGGGTAAAC TGATTTAAC ATAAAATTAT TGATTCATCG ATTATTTTTA
251 TCATATTAAC CGCGTACAAT TTGGACTTTC CCGGTAAACT TAAAGTATGA
301 TAAATTGAGA ATTTCAAGGT CGATCTTAGC TCCATTTTG ATGAAATTTC
351 ATATTTGAAC TTATCTAAC ATGGGTAAGA TGTTTTCAA GAAATATTTC
401 ATTTTCGAGT CGGGGTITTG GATTCGAATA TTTAGGCTT CTTCAAGAAT
451 GTAGATTTT GTTTAAATTG AGTTTGTGAA TTGATTTCAA CTCCATTTTC
501 AAATTGGTTT TCACCATTAG CTTCCAAATA CTTTAAGGAT CATTTACAT
551 CAAAAAAATTC CAGATTTGGG TATCGTTTTC CGGTATGAGA CTTTTGGACC
601 GTTTTGCCCC TTTCCCTAA ATTTCTTGAT TTTGGTGTCA TTGGACTCGA
651 ATTGTGATTG TGAATAATTG TTTGAATAGA TTATCGTGAT CCAGATTATA
701 CTTGGAAAGG AAAGGCTCAA GTCAAGTAAC TTTGGAGTT CGTTTTAAGG
751 CAAGTGGCTT CCAAACTTG TAAAACCTTT AGACTACGCA TGACTACTTT
801 CCTAATTATG TTGGGGAGTA ATGGGGGATT GAGGATGGGT TTTATTTGTT
851 GATTGAAATT GTTGTAAATG AAAGATGGGG AATAAAACGA GCTAAATGTG
901 TTATGTGTGA CTTGAATTG TTTGAATAAG TCATGTGATA ACTGATATTG
951 AGGGATAGAA GAGCATGAGC AGGCTATGAT TGATACAGAC ATTGATGTTG
1001 AGGCAGATGA TGTGTAAATAC TATGATGTGG TCGTGATATG GTTGTGATTG
1051 AGACATGTGA TGTGTAAATAC TATGATGTGG TCGTGATATG GTTGTGATTG
1101 AGACAGGTGA TGTGTAAATAC TATGATGTGG TCGTGATATG GTTGTGATTG
1151 AGACAGGTGA TGTGTAAATAC TATGATGTGG TCGTGATATG GTTGTGACTG
1201 AGACAGGTGA TGTGTAAATAC TATGATGTGG TCGTGATATG GTTGTGATTG
1251 AGACAGATGA TGTGTAAATAC GATGATGTGA TCGTGATATG ATTGTGATTG
1301 ATTACATGTG CATATTCAATT CATTCCTTCA TGTGTGAAC TCTGTGCA
1351 TGAGTTCTGA GACACTGATA TGAGGATGGA TGGATATGAG ACACAGTTGA

9/15

fig - 3 c (2)

1401 GACTAGCTCC GGCTAGAGAT GTATGAGATG GACTAGCTCC GGCTAGCGAT
 1451 TTGGATGCCG ATGGGATCTG GTTCCGGCGG TGATAACATGG TCCATGTGTG
 1501 GCCCCCCATGG GTTCTGATTG GAGTATTCAA CGCGGACTGA TTACGTCAAC
 1551 AGATGTGTAT CGTAGGACAG ACATGTATCA CGACTACATG ACATCATTAT
 1601 TGCATTTTGC ATCGCATTGT CCTTATCTTT GTCTGTGATG TGTGGATTGT
 1651 ATCGGTTTAC CCTTTTATG TGGAAATTGA TCTACTTGCT CTTATTTGTT
 1701 GATCTGAGGT TGATGAGGAT ATACTGTTGG TTCTGGCTGT TGAATATGAT
 1751 CTGTTTAGTA TAGGTTGGTT GGTTTGCTGC TAGATTGAAG TTTCGGTGGT
 1801 TCGGGTGGGA TTGAAAGGAG TTGTTGTAG CTGCTAGTT TGCTTAGTTT
 1851 AGAGTTACTT GCGAGTACCT GTGGTTTCG GTACTCACCC TTGCTTCTAC
 1901 ACAATTGTGT AGGTTGACAG CTCTCTCTCA GATATTTCTT TTAGCAGATT
 1951 GAGCTTGAG ACATACTCGA GAGGTAGCGG TTCATTCCAG ACGTGCCCTT
 2001 GAGTTATCTT TACTTCAGT TTTGTTCTAT TCGAGAACTA TACTCTGAGA
 2051 CTTGTATATT TTTATTGAA TTCTGTATTT AGAGGTTGT ACATGTGACA
 2101 ACCAAATTCT GGGTAGTGT AAGTCTTAAT TAAAGTTTC TGCTTATTTA
 2151 TTATCTTTA TTCTCGTATT TCTACTTCTC TATCGTTGTG GTGGGGTTAG
 2201 GCTGACGTGT CTGGTGGGAA ACGGACATGT GCCATCACAT CCGGATTTGG
 2251 GGTGTGACAA ATATTTGTT AGTTATATAC AAAATTGTAT GTAGTATATG
 2301 TATATTTCT GCTTCATCA CAATTGTATA TAGATATTTG TATATTTGT
 2351 TAGTTATATA CAAAATTGCT TGAAGTATAT GTATTTTC TGCTTAAATC
 2401 ATAATTGTAT ATATATATAT ATATATATAT ATTTCTATAT TTTGTAAGTT
 2451 ATATACAATA GTATGAATTA AACAAATATAC AAACCTTACA TTATTATATA
 2501 TACAGTTAGG TTACACCAAA AATTATCAA TTAAAGCACA ACTTTTTTAT
 2551 CGAACATAT ACAATTCTA TATATAATTG ACTTAGTAAT TTTATACAAAC
 2601 TACTTACACT TCTACATGGT ATAAGAATTG TGCACAATTA CTTACATATA
 2651 TACAATATTA TCAATTAAAC AATATACAAA TCGTATAACT TATATATACA
 2701 GTAAAATTAC AACAAACAACA ACAAAAATTA TCAAATTAAA GCACACCGTT
 2751 GTTGTGAAAT CATATACACT CCATATATAC AAATTGTGTC ATTCAATT
 2801 TCGAACAAAA AATTAGAATT GAATTGTAA TATAAAATT ATCTAATATT

fig - 3c (3) 10/15

2851 GTATAAACAA AATTAAATTA TTGCAAACCA TTAGAATGAA AAAAACAAAA
 2901 ATAAAACCGTT TTCCAAAATT TCAATTATAT ACTATACAAA TCAATTGTAT
 2951 ACTTTCTTGC CGTTCAAAAC ATGAAGTTTC CTTGAAAGAA ACGCTTACCT
 3001 AGCGTTGAAT ATACAAGAAT ATTGATTAAT CGTATGCTTC AGTCGTTGAA
 3051 GGAACCCAGT TGTTATTGTG TTTCTATTGC TATAGAACTC CTTTTGAA
 3101 AAATATTGAA TTTGGACGA TTAGCTTGA TCATGGGATT ATATAAAATT
 3151 TTTATTACCG TATTAGCAC TCATGTATCC ATTATTAATAA AAAAATTGT
 3201 ATAAAATTATA TTTTAAAAG AAAATATACA AAATTAATGC TTCATAGCAA
 3251 ACTAAACTAT ACCCATTGAA TGTAATTACT AACTATACC TATAGAGCGT
 3301 TATTCATTA AATACGTTA TCATATATGA AGTTTCCCT CAAGAGATCC
 3351 TACACCTTAT ATATAGCTTC TCAAATGTGG AAATTCAATC TCACACCCAA
 3401 CAATCTTCC CTCAGACTAA GTTTCATGGC CCAATATCAC AATGATCCAC
 3451 GAGTCATTG ATGAGATTCA CTATGTGTGT CACCCACATC GTCTAAGTAT
 3501 TTTATGGCAA TCAAGCCCTA CAACTTGCTT CTTCTTATA TATATATATA
 3551 TATATATATA TATATATATA TATATATGTG TGTGTGTGTG TGTGTGTGTG
 3601 CGCATCTCTA ATTAATCTCG TAAAGGGATT AAGGGGCCAA TTTCAAAGAA
 3651 TTAGGCGATT TTCTTAGTTT TTCTGTGTG TTAACCCATA GGTATTTGG
 3701 TGATATGGTT TCGGATGAT TTATTTGTG CAACTTATAT GGAACCCCTTC
 3751 GTAGGGAGTT AGTCTCACAC TTTTTAGAGT CCATTTGGG CATTAGGGGG
 3801 CTAATTATA GGAAATAGGT GATCTCTCA GTTGTCTGT ATTAGCCCCT
 3851 GAATATTTG GTGATATGTC TTCCGAATAA TTTCTTGTAA AAATCTTAC
 3901 GGGACCCCTCC ATAGGGAGTT AGTGGAGCAG TACGTATAGT CTCACAATT
 3951 TAGAGTCAT TTGGGCATT TAGGGGCCAA TTTACAGGAT TTAGGCGACT
 4001 TTCTCAGTGT TTTGTGTGTG TTAGCCCATT AATAGTTGGT GATATGACTT
 4051 TCAGACGATT TCTTGCTAC ACATTTACGG AACCCCTCTGT AGGAAGTCGG
 4101 GGGAGCAATA CGTACAATCT CACAATTAA GAGTCCATT TAGGCATTAA
 4151 GGGGCCAATT TAAAGAAATT GGACAATTCTT CTCAGTTTT CGTGTCTGTT
 4201 AGCCATTAAT ATATTGGTGA ATATGACCTA CAGATGATT CTAATCGAAA
 4251 TCTTACGAA ACCCTCAGTA GGGAGTTGGG GGAGCAATAC GTACCGTCTG
 4301 ACAATTATA GAGTCCATT TGGGCATTAA AGGGCCAATT TACAGGAATT

11/15

Fig - 3c (4)

4351 AGACGATTTC CTTAGTATTT TTTCATGTGT TAGCCCATAA ATATTTGTT
 4401 GATTTGACTT TTAGAGTCTA AACTTCAT GTATATTAAG AGATATTAT
 4451 GCTTGGTTAA TTGAATCGAA CTAGGAATAG AGAAATTCCCT ACTTGGATCT
 4501 TAATATTCTC CTCTCTTGA TTTGGAAAAT TCTAGGAAGT TGCTTCAAT
 4551 GGAATTAAAA TCATCAATCT CTTGTATGTA AGAAACATAC TTATATTCAAT
 4601 GAATAGATAT GTTTAGGGTC TAATAATGAA TTATCACAAAT TTTTCTACT
 4651 TTTTCTTGT AGAGTCCTGC CTTTTCTTT TTCTTTTTA ACTTTGGTCT
 4701 CTGCTTTGT CTACATGATG ATAAGGTTGG TGGACCTAGC TGGAAATGTG
 4751 ATGAAATAG CTAGTAAACG AAAGAACCTT GCATTTCTG TTTCTTAAA
 4801 AACTGATAAA TTACATAACT TGTGGCAATT TGTCCATTTC CATACTGAGA
 4851 GATATTTCTA TTTTTTTGG ATATATGGCT TATGCTGCTG TTACTTCCCT
 4901 TATGAGAACC ATACATCAAT CAATGGAAC TACTGGATGT GATTTGCAAC
 4951 CGTTTTATGA AAAGCTCAA TCTTTGAGAG CTATTCTGGA GAAATCCTGC
 5001 AATATAATGG GCGATCATGA GGGGTTAACCA ATCTTGGAAAG TTGAAATCAT
 5051 AGAGGTAGCA TACACAAACAG AAGATATGGT TGACTCGGAA TCAAGAAATG
 5101 TTTTTTTAGC ACGGAATGTG GGGAAAAGAA GCAGGGCTAT GTGGGGGATT
 5151 TTTTCTGCT TGGAACAAAGC ACTAGAATGC ATTGATTCCA CCGTGAAACA
 5201 GTGGATGGCA ACATCGGACA GCATGAAAGA TCTAAAACCA CAAACTAGCT
 5251 CACTTGTCAAG TTTACCTGAA CATGATGTTG AGCAGCCCCGA GAATATAATG
 5301 GTTGGCCGTG AAAATGAATT TGAGATGATG CTGGATCAAC TTGCTAGAGG
 5351 AGGAAGGGAA CTAGAAGTTG TCTCAATCGT AGGGATGGGA GGCATGGGA
 5401 AAACAACCTT GGCTGCAAAA CTCTATAGTG ATCCTTACAT TATGTCTCGA
 5451 TTTGATATTC GTGCAAAAGC AACTGTTCA CAAGAGTATT GTGTGAGAAA
 5501 TGTACTCCTA GGCCTTCTTT CTTTGACAAG TGATGAACCT GATTATCAGC
 5551 TAGCGGACCA ACTGCAAAAG CATCTGAAAG GCAGGAGATA CTTGGTAGTC
 5601 ATTGATGACA TATGGACTAC AGAAGCTTGG GATGATATAA AACTATGTTT
 5651 CCCAGACTGC GATAATGGAA GCAGAATACT CCTGACTACT CGGAATGTGG
 5701 AAGTGGCTGA ATATGCTAGC TCAGGTAAGC CTCCTCATCA CATGCGCCTC
 5751 ATGAATTTC ACAGAAAGTTG GAATTTACTA CACAAAAAGA TCTTGAAAAA

fig - 3c (5) 12/15

5801 AGAAGGTTCT TATTCTCCTG AATTGAAAAA TATTGGAAA CAAATTGCAT
 5851 TAAAATGTGG AGGGTTACCT CTAGCAATTA CTTTGATTGC TGGACTTCTC
 5901 TCCAAAATCA GTAAAACATT GGATGAGTGG CAAAATGTTG CGGAGAATGT
 5951 ACGTTCGGTG GTAAGCACAG ATCTTGAAGC AAAATGCATG AGAGTGTGG
 6001 CTTTGAGTTA CCATCACTTG CCTTCTCACC TAAAACCGTG TTTTCTGTAT
 6051 TTTGCAATT TCGCAGAGGA TGAACGGATT TATGTAATAA AACTTGTGA
 6101 GTTATGGGCC GTAGAGGGGT TTTTGAATGA AGAAGAGGGA AAAAGCATAG
 6151 AAGAGGTGGC AGAAACATGT ATAAACGAAC TTGTAGATAG AAGTCTAATT
 6201 TCTATCCACA ATGTGAGTT TGATGGGAA ACACAGAGAT GTGGAATGCA
 6251 TGATGTGACC CGTGAACCTCT GTTGAGGGGA AGCTCGAAC ATGAATTTG
 6301 TGAATGTTAT CAGAGGAAAG AGTGATCAA ATTCAATGTGC ACAATCCATG
 6351 CAGTGTTCCT TTAAGAGTCG AAGTCGGATC AGTATCCATA ATGAGGAAGA
 6401 ATTGGTTGG TGTCGTAACA GCGAGGCTCA TTCTATCATC ACGTTGTGTA
 6451 TATTCAAATG CGTCACACTG GAATTGTCTT TCAAGCTAGT AAGAGTACTA
 6501 GATCTTGGTT TGACTACATG CCCAATTGTTT CCCAGTGGAG TACTTTCTCT
 6551 AATTCAATTG AGATAACCTAT CTTTGCCTTT TAATCCTCGC TTACAGCAGT
 6601 ATCGAGGATC GAAAGAAGCT GTTCCCTCAT CAATAATAGA CATTCCCTTA
 6651 TCGATATCAA GCCTATGCTA TCTGCAAAC TTTAAACTTT ACCATCCATT
 6701 TCCCCAATTGT TATCCTTCA TATTACCATC GGAAATTGTTG ACAATGCCAC
 6751 AATTGAGGAA GCTGTGTATG GGCTGGAATT ACTTGCGGAG TCATGAGCCT
 6801 ACAGAGAAC AATTGGTTTT GAAAAGTTTG CAATGCCCTCA ATGAATTGAA
 6851 TCCTCGGTAT TGTACAGGGT CTTTTTAAG ACTATTCAC AATTAAAGA
 6901 AGTTGGAAGT ATTGGCGTC AAAGAGGACT TTCGCAATCA CAAGGACCTG
 6951 TATGATTTTC GCTACTTATA TCAGCTCGAG AAATTGGCAT TTAGTACTTA
 7001 TTATTCACT TCTGCTTGCT TTCTAAAAAA CACTGCACCT TTAGGTTCTA
 7051 CTCCGCAAGA TCCTCTGAGG TTTCAGATGG AAACATTGCA CTTAGAGACT
 7101 CATTCCAGGG CAACTGCACC TCCAACGTGAT GTTCCAACTT TCCTCTTACC
 7151 TCCTCCGGAT TGTTTCCAC AAAACCTTAA GAGTTAACT TTTAGCGGAG
 7201 ATTCTTTTGGCATGGAAG GATTGAGCA TTGTTGGTAA ATTACCCAAA
 7251 CTCGAGGTCC TTCAACTATC ACACAATGCC TTCAAAGGCG AGGAGTGGGA

13/15

fig - 3c(6)

7301 AGTAGTTGAG GAAGGGTTTC CTCAC TTGAA GTTCTTGTTT CTGGATAGCA
 7351 TATA CATT CG GTACTGGAGA GCTAGTAGTG ATCAC TTTCC ATAC CTTGAA
 7401 CGACTTTTTC TTAGCGATTG CTTTTATTG GATTCAATCC CTCGAGAATT
 7451 TGCAGATATA ACCACACTAG CTCTTATTGA TATATTCGC TGCCAACAAT
 7501 CTGTTGGGAA TTCCGCCAAG CAAATCAAC AGGACATTCA AGACAACTAT
 7551 GGAAGCTCTA TCGAGGTCCA TACTCGTTAT CTTTAGTAAG ACATCTTCTT
 7601 CCTTGATTTA CAACAATATT TAACTCATCA TCATAGTAAA CTCGATAATA
 7651 ATCTGGATAA TAGCTTGTAGT AAGTCAAATT GCACCAATTTC AACAAAAGTT
 7701 CTTGATGCTG TCATTGTGAT TGATTGAAAT CCTTCCAATA TTGTGTAACT
 7751 TGTTATACTT GCATGTCAT TCTTGATTTT GGGAAAGTGTAA ACATTTCCAT
 7801 TTTTCATCTT GATTTGGGA AGTCGAAATG GAGCATTTTT GGTAGTGTGA
 7851 CAACAGATGA AGATGATGAT GATAGTGTGA CAACAGATGA AGATGAAGAT
 7901 GAAGACTTTG AGAAAGAAGT TGCTTCTTGC GGCAATAATG TGTAAGTTCT
 7951 TATACTGCA TGCTCATTCT TGCTATAATG TTCTCTTGTGTT CCTTAATTAT
 8001 GGGACATCTA ACATATTATT TTCCATTTTT TGCATCTTTT TTTTTCTG
 8051 CAGCGTGTAG TTAAGGTGTT CTGAGGACTA GCCAGTTCTC TGAAATAAAAT
 8101 GTCAAATCAG AAGCCAAATG TGTGAGTGTGTT TGTTTTGTTC GTTTTCATT
 8151 TTTCTGCATA AGGTGGCAGG ATGATTGCAA ATGGCTTGTAA ATTAAATTGT
 8201 ATATGATATT TCGTATAGCC ATTTGCCAGT GGTTTTTTAG ATACTCCAAA
 8251 TTTTATGTAC ATACATAATG GTATAGGCCA GAACAGGCTC CATATATAAC
 8301 GTGTGTTTCC TTTCTTGGGA GTCCTCAATC TACCTCGCAA AGGAAGACAG
 8351 ACGGCTAAAT CAAGAAAGAA ATTTTTTGA AAATCATGTG GCTAGTTGTT
 8401 CAACTTTATA CAAGTTATG TGCACTACITG TGCATACCCA AAGTTGAATA
 8451 ACATAAACAT AAAATGAAGT CAAGTTAAAT GGCACATTAA TGTATTATGC
 8501 CTTTTGAATT TCATTAATAG TGAAAATCCT GAATCATATT CAGATTCCAT
 8551 CACTAATCGT TGAACCAGT TAATTTACTA TGTATTATCT AATGGATTTT
 8601 TTTGCTATCT TATTTATAAT TGTTCAAAGT TTTGTTAATT ATCTTTAGCA
 8651 TAATATCTGA TTATATTATT TTGATATACT TTCTCTATCC CTAATTACTT
 8701 GTCCATTTTT GAATTGGCAC ACCTATTAAG AAAATAATTA TTGAAATAGT

Fig - 3c (7) 14/15

```

8751 GAGTTTACCA TTTTACCCAT ATTAATTATG AAGTGGATGA ATTAAAAACT
8801 CAAGATTTTC AAAAAGTTCT ATTTTTTTCA AAGTAATAAA CTGACGGTAT
8851 AATAGGTAAA AAAAATTATT CTTTCTTGAT TTGTCAAAAT AAACAAATAA
8901 TTAGGAATAA TTAAAAAAAT GGATAAAATAA TTAAAAACGG AGGGAGCAAT
8951 ATGTTATCTT TAGCCTAATA ATATCTGATT AATGCCACC CTAATTGATT
9001 GGATAGGAGA GGATAGACTT GCTTCCAAGT AACCCAAAT ATAAAAAGTT
9051 GACAAAAGGG TGCTAAATTG GAGACACATG TAGTACTTAT ATAATTGATG
9101 TGCGGACTCG TTCTTTGTA GTACTCCCTC CGTTCTATTT TATACGTCAC
9151 ATTTTACTT TATACTTTA TTAAGAAATG ATGTAGTTT ATCTTTCTAT
9201 TCTTATTTAA TGTTTCTTA AGTCAATTAA ATAATAAATA ATGAATATAT
9251 TTTCAAGATT AATTAACCTAC TCTATCAAGG GTATAATAGG TAAAATATGA
9301 TAATTTATAC ATAAATTAA TAAAATGACA AGTATTGTGG TCCAACCTATT
9351 TATAGAAAGA AATGATATAT AAAATGGAC GGAGGGCGTT ATAAAGTTGA
9401 CTTAAGAAAA CATTAAATAA GGGTAGAAGG GTAAAATTAC ATTATTTCTT
9451 AATGTAAATG TAAAGTAAAA AGGTAACATA TAAAATGGAA AGGAGGGAGT
9501 AGTATTTCT TGTTTATTT TACGTGGCAC TCTATTCTCA TAATCCGTCT
9551 TTAAAAATGT CATTATTTG TAATTGAAAA TAATTTAATC TAAAATTCTC
9601 CATCTACCCCT TAATTAATGA AATGATTTAC AATTATATAA ATATATAAAA
9651 ATTGTTTTAG CCTATAATT TCTAAAATCT TTTTTTTCT CTTATACATC
9701 GTATTAAGTC AAACATAAAAT GGAATGGACG GAGTATTCTT TTTATTTTT
9751 TGTACACACCG CCCATATGTT TTCTCCCATC CCCCAGACCC CCACATATGTA
9801 TATTCACTCC TTAGTTGGAT CTGAATTTAG AGTTAGAAG CTTCTATAAT
9851 AATTTTAGAT TAATATATAA TAATAATAAT AATAATTGAA CTTACAGTAT
9901 TAAATTATG TGAATCTATA TATATTGTAT TGTAATTTT TTAATTATAA
9951 TTTTAACCAA ATCAATAAAAG CTATTCAAGAT GTAAAAGTAT ATATTATGAT
10001 TTAACAACAA ATTTCTATAC GTCTTCTAA GTTTGATGC ATAATTTCCT
10051 AAAACTCATA AATTTCACAG TGACTACTTC CAGTATTACA ATGAGAACCTT
10101 ATGTTTCGTT ATGGATTTC TTAGTGAATT AGTTAATAA AATCAAATG
10151 AAAAAAAATC ATGTTTATA ACATAAATT TTCATTGATT CATGCGAAAA
10201 AAAAACATCT AGTTCTTATA GTGTGAAAC TATTGAACCTT ATGGGATGTA

```

15 / 15

Fig - 3 c (8)

10251 GCTGTATGGA AGTTCATCAA GTGGTAGCTC CTTGTACGCA ACTAGTGCTA

10301 CTTTTTATTG ACTAAAAGTT ATTTTCTAG

INTERNATIONAL SEARCH REPORT

Internal Application No
PCT/NL 98/00445

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C12N15/82 C12N15/29 C07K14/415 C12N5/10 C07K16/16
C12Q1/68 G01N33/563 A01H5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C12N C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>ROUPPE VAN DER VOORT, J., ET AL. : "mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on comigrating AFLP markers" THEORETICAL AND APPLIED GENETICS, vol. 95, 1997, pages 874-880, XP002098292 cited in the application abstract, Fig. 2</p> <p>---</p> <p>-/-</p>	1-70

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

30 March 1999

13/04/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Holtorf, S

INTERNATIONAL SEARCH REPORT

Internat.	Application No
PCT/NL 98/00445	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>ARNTZEN, F.K., ET AL. : "inheritance, level and origin of resistance to <i>Globodera pallida</i> in the potato cultivar MULTA, derived from <i>Solanum tuberosum</i> ssp. <i>andigena</i> CPC 1673"</p> <p>FUNDAM. APPL. NEMATOL., vol. 16, no. 2, 1993, pages 155-162, XP002098293</p> <p>page 159, right column; page 161, left column</p> <p>---</p>	1-70
A	<p>WO 96 16173 A (UNIV LEEDS ;ATKINSON HOWARD JOHN (GB); MCPHERSON MICHAEL JOHN (GB))</p> <p>30 May 1996</p> <p>see the whole document</p> <p>---</p>	1-70
A	<p>WO 96 22372 A (RIJKSLANDBOUWHOGESCHOOL ;BAKKER JACOB (NL); SCHOTS ARJEN (NL); STI) 25 July 1996</p> <p>see the whole document</p> <p>---</p>	1-70
A	<p>BENDAHMANE, A., ET AL. : "high-resolution genetical and physical mapping of the Rx gene for extreme resistance to potato virus X in tetraploid potato"</p> <p>THEORETICAL AND APPLIED GENETICS, vol. 95, 1997, pages 153-162, XP002098294</p> <p>cited in the application abstract</p> <p>---</p>	1-70
A	<p>KREIKE, C.M., ET AL.: "quantitatively-inherited resistance to <i>Globodera pallida</i> is dominated by one major locus in <i>Solanum spegazzinii</i>"</p> <p>THEORETICAL AND APPLIED GENETICS, vol. 88, 1994, pages 764-769, XP002098295</p> <p>cited in the application</p> <p>see the whole document</p> <p>-----</p>	1-70

INTERNATIONAL SEARCH REPORT

International application No.

PCT/NL 98/ 00445

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
The search concerning claim 2 was limited in that respect that no amino acid sequence was filed.

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/NL 98/00445

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9616173	A 30-05-1996	AU 3877095	A	17-06-1996
		CA 2205356	A	30-05-1996
		EP 0793722	A	10-09-1997
		JP 10510146	T	06-10-1998
-----	-----	-----	-----	-----
WO 9622372	A 25-07-1996	EP 0871731	A	21-10-1998
-----	-----	-----	-----	-----