

Ecological and Geographical Reasons for the Variation of Digestive Tract Length in Anurans

Chunlan MAI^{1#}, Jianping YU^{1#} and Wenbo LIAO^{1,2,3*}

¹ Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China

² Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, Sichuan, China

³ Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong 637009, Sichuan, China

Abstract Changes of environmental conditions can shape organs size evolution in animal kingdoms. In particular, environmental changes lead to difference in food resources between different habitats, thereby affecting individual's energy intake and allocation. The digestive theory states that animals consuming food with low contents of digestible materials should result in increasing gut length. In this study, to test the hypothesis of digestive theory, we studied ecological and geographical reasons for variation in digestive tract length among 35 species of anurans distributing in different altitude and latitude. The results showed that ecological type significantly affected digestive tract length among species, with aquatic and terrestrial species having longer digestive tract than arboreal ones. Latitude was positively correlated with digestive tract length. However, altitude, as well as monthly mean temperature and precipitation, did not correlate with digestive tract length among species. Our findings suggest that aquatic and terrestrial species might forage less digestible materials than arboreal species, thereby displaying relatively longer digestive tract than arboreal species.

Keywords Anurans, digestive tract length, environmental change, ecological type

1. Introduction

Evolution in size of organ in organisms has caused concerns for evolutionary biologists and ecologists for decades (Piersma and Lilliendahl, 1999; Hammond *et al.*, 1999; Liao *et al.*, 2016a; Chen *et al.*, 2016; Mai *et al.*, 2017a,b; Tanner *et al.*, 2017; Alton *et al.*, 2017; Kotrschal *et al.*, 2017; Liao *et al.*, 2018; Yang *et al.*, 2018; Güneş and Danacioglu, 2018; Medini *et al.*, 2018; Liu *et al.*, 2018; Samuk *et al.*, 2018; Cai *et al.*, 2019; Zhao *et al.*, 2019). In particular, energy store is an important factor affecting variation in the organ size of ectotherms in different environments (Lüpold *et al.*, 2017; Signor *et al.*, 2017; Hammond *et al.*, 2000; Jin *et al.*, 2016a,b;

Luo *et al.*, 2017; Gu *et al.*, 2017; Iwai, 2018; Joseph *et al.*, 2018; Huang *et al.*, 2018; Tang *et al.*, 2018; Mai and Liao, 2019). For instance, to improve local adaptation, individuals living in more biotic conditions require more accumulated energy by increasing liver and muscle mass than individuals living in less biotic environments in anurans (Hesse, 1924; Müller *et al.*, 2014; Zhong *et al.*, 2017; Yang *et al.*, 2017).

The digestive tract length varies with changing environments to meet variations in food availability (Sibly, 1981). Actually, the digestive tract is linked to species adaptations in the process of evolution at different external environments in most vertebrates (Naya and Bozinovic, 2004; Naya *et al.*, 2007; Naya *et al.*, 2008; Naya *et al.*, 2009; Lou *et al.*, 2013; Ma *et al.*, 2016; Wang *et al.*, 2017). Consequently, adaptive radiation of the digestive tract to functional demands could provide for an important energy-saving mechanism.

Both authors contributed equally to this paper.

* Corresponding author: Prof. Wenbo LIAO, from China West Normal University, Nanchong, Sichuan, China, with his research focusing on evolutionary ecology in anurans.

E-mail: Liaobo_0_0@126.com

Received: 7 July 2019 Accepted: 29 September 2019

The digestive theory states that animals consume food with low contents of digestible materials, which results in an increase in gut dimensions (Penry and Jumars, 1987). The prediction of this theory has been successfully examined across a broad range of vertebrate taxa (Hansson, 1985; Secor, 2001; Hansson and Jaarola, 1989; Naya *et al.*, 2009; Lou *et al.*, 2013; Ma *et al.*, 2016).

Ecological factors, such as ecological type, has been identified affecting local adaptation of animals (Gonda *et al.*, 2009; Liao *et al.*, 2015; Shine, 1989; Liao *et al.*, 2013; Zeng *et al.*, 2014; Liao *et al.*, 2014; Liao *et al.*, 2016b; Huang *et al.*, 2019). For instance, digestive tract variation is confirmed to be correlated with habitat differences of species experienced (Nuñez *et al.*, 1982). Anurans live in broad range of different habitats (Fei *et al.*, 2010; Liao *et al.*, 2018) and the patterns of digestive tract variation associated with ecological type have been less studied than that of other animal groups (Hansson, 1985; Hansson and Jaarola, 1989; Sassi *et al.*, 2007; Naya *et al.*, 2008). Only recently studies on the intra-specific variation in digestive tract length in anurans have elucidated the influence of seasonality and geographical location (Naya *et al.*, 2009; Lou *et al.*, 2013; Ma *et al.*, 2016; Wang *et al.*, 2017). However, studies on the inter-specific variation in digestive tract length associated with ecological and geographical reasons among anurans are lacking. Here, we investigated the effects of ecological type on variation in digestive tract length across 35 species of anurans. We also investigated the effects of geographical location (e.g., altitude, latitude, temperature and rainfall) on digestive tract length.

2. Materials and Methods

2.1. Data collection A total of 328 adult males from 35 species were collected by hand at night using a flashlight during the breeding season between 2007 and 2018 from Hengduan Mountains in China (Table S1). All individuals then were taken back to lab and kept singly in wire-netting rectangular containers (20 cm × 10 cm × 15 cm; L × W × H) placed in a tank (90 cm × 40 cm × 40 cm; L × W × H) with a depth of 10 cm of fresh water. All individuals were killed by single- or double-pithing (Yu *et al.*, 2018) and preserved in 4% phosphate buffered formalin for tissue fixation. After two to eight weeks of preservation, body size (snout-vent length: SVL) was measured to the nearest 0.01 mm with a caliper, and body mass was weighed to the nearest 0.1 mg with an electronic balance (Wu *et al.*, 2016; Zeng *et al.*, 2016). Once the connecting mesenteries were cut, the entire

digestive tract was aligned along a caliper with stretching it (Lou *et al.*, 2013). We measured digestive tract length to the nearest 0.01 mm with a caliper.

We classified ecological type for each species on a four-point scale: 1 = arboreal – occur mostly on trees, forage in trees and rarely come down to the ground; 2 = terrestrial – occur and forage mostly on ground; 3 = aquatic – semiaquatic – not entirely aquatic, uses both aquatic and terrestrial habitats; and 4 = aquatic – occur and forage mostly in water.

2.2. Phylogeny We constructed the new molecular phylogeny based on a matrix of three nuclear and three mitochondrial genes with good coverage across our 35 species (≥ 13 species for each gene). The mitochondrial gene consisted of the large and small subunits of the mitochondrial ribosome genes (12S/16S) and the cytochrome b (CYTB). The nuclear genes consisted of the recombination-activating gene 1 (RAG1), the tyrosinase (TYR) and the rhodopsin (RHOD). We provided genbank accession numbers for the gene sequences used to generate the phylogeny (Table S2). The sequences were aligned using the MUSCLE function in MEGA v.6.0.6 (Tamura *et al.*, 2013) and each gene of the best nucleotide substitution model was determined using the Akaike Information Criterion in jModelTest v.2.1.2 (Darriba *et al.*, 2012). The best substitution model was GTR+G for 12S and TYR, HKY+G for RAG1 and RHOD, and GTR+I+G for CYTB and 16S, respectively.

Using these models, we constructed the phylogenies based on BEAUTi and BEAST v.1.8.3 (Drummond *et al.*, 2012), with unlinked substitution models, no calibration points, a relaxed uncorrelated lognormal clock and a Yule speciation process due to a lack of fossil dates. We allowed the Markov Chain Monte Carlo (MCMC) simulation to run for 50 million generations, and then sampled a tree every 2000th generation. The effective sample size (ESS) values for each of the tree statistics showed the satisfying convergence of the Bayesian chain and adequate model mixing in the program Tracer v.1.6.0 (Rambaut, 2014). We then used TreeAnnotator v.1.8.3 (Drummond *et al.*, 2012) to generate a maximum clade credibility tree with mean node heights and a 20% burn-in before ending the analysis.

2.3. Statistical analyses We performed all analyses in the statistical software R v. 3.3.1 (R Development Core Team, 2016). We used phylogenetic generalized least-squared (PGLS) regressions (Freckleton, 2002) to account for statistical non-independence of data points because of shared ancestry of species in the R package based on

the molecular phylogeny. To evaluate the phylogenetic relationship of the covariance in the residuals, we estimated the phylogenetic scaling parameter Pagel's λ of these regressions using maximum-likelihood methods. We used likelihood ratio tests to establish whether the models with the maximum-likelihood value of λ differed from models with values of $\lambda = 0$ or $\lambda = 1$, respectively. λ close to 0 indicated phylogenetic independence and λ close to 1 indicated a strong phylogenetic association of the traits. Since digestive tract was subject to a wide range of selective pressures that acted simultaneously, we assessed the relationships between digestive tract and ecological type based on Markov Chain Monte Carlo GLMMs, implemented in the MCMCglmm R package v2.20 (Hadfield, 2010) with body size added as a covariate to account for allometric effects. In all cases, we used inverse-Wishart priors ($V = 1$, $v = 0.002$). Each model was run for 5 100 000 iterations with a 100 000 burn-in and a thinning interval of 5000. After running the models, we examined the autocorrelation of samples to make sure that it was < 0.1 . We presented parameter estimates from models as the posterior mode and the 95% lower and upper credible intervals (CIs) of the posterior samples. Significance values (pMCMC) were the proportion of samples from all the iterations that are greater or less than 0. We used PGLS treating digestive tract length as the response variable, altitude and latitude as the predicted variables, and body size and sample size as covariates to test the effects of altitude and latitude on digestive tract length. In the mean time, we tested the effects of temperature and precipitation on digestive tract length.

3. Results

MCMCglmm revealed that ecological type significantly affected variation in the digestive tract length across 35 species of anurans (Table 1). Digestive tract length was positively correlated with body size (Table 1). Aquatic and terrestrial species had relatively larger digestive tract than arboreal species after controlling body size effect (Figure 1). When ecological type could be split into simply 'terrestrial' (for terrestrial and arboreal) and 'aquatic' (for aquatic and semi-aquatic), we found that terrestrial species tended to have relatively longer digestive tract than aquatic species (Post. mean = 0.064, CI 95% = -0.050–0.175, $P = 0.253$).

PGLS revealed that interspecific variation in digestive tract length was positively correlated with latitude, but not altitude (Table 2). Meanwhile, average

Figure 1 The difference in digestive tract length among ecological types among 35 species of anurans. Relative digestive tract size was estimated using the residuals from observed digestive tract length minus predicted digestive tract length based on the regression of digestive tract length on body size when controlling body size effect.

monthly temperature and precipitation was not correlated with variation in relative digestive tract length (Table 2).

4. Discussion

Our study demonstrates a marked effect of ecological type on relative digestive tract size across 35 species of anurans. The digestive tract length is positively correlated with latitude, but not altitude, average monthly temperature and precipitation. Below we discuss what may underlie the ecological and geographical reasons for the variation of digestive tract length in anurans.

Differences in environmental conditions was related to variations in organ morphology in organisms (Hammond *et al.*, 1999; Zhong *et al.*, 2017; Liao *et al.*, 2011; Liao *et al.*, 2013; Pascoal *et al.*, 2017; Martinez *et al.*, 2018; Møller *et al.*, 2018; Samuk *et al.*, 2018). In particular, variation in digestive tract length associated with food changes can adapt different environmental types (Hammond *et al.*, 1999). A comparison for digestive tract between individuals from different ecological types is important for understanding how physiological traits are affected by environmental conditions, and consequently, how they evolve (Chown and Nicolson, 2004). Actually, environmental difference often determines food availability; in frogs mostly via affecting the abundance of digestible foods (Wen and Zhang, 2010; Shi *et al.*, 2011). In this study, we found that ecological types significantly affected the digestive tract length, with arboreal species exhibiting shorter digestive tract than aquatic species.

Table 1 The effect of ecological type on digestive tract length when controlling body size among 35 species of anurans using MCMCglmm.

Predictors	Digestive tract length			
	Post. mean	I-95% CI	u-95% CI	P
Ecological type	0.06	0.01	0.112	0.022
Body size	1.012	0.704	1.323	<0.001
Sampling size	-0.011	-0.018	-0.005	<0.001

Table 2 The relationships between digestive tract length and altitude and latitude, as well as temperature and precipitation when controlling body size among 35 species of anurans using PGLS. Phylogenetic scaling parameters (superscripts following λ denote P-values of likelihood ratio tests against models with $\lambda = 0$ and $\lambda = 1$, respectively).

Predictors	Digestive tract length			
	λ	β	t	P
Latitude	<0.01 ^{1, <0.01}	<0.001	2.27	0.031
Altitude		<0.001	-0.144	0.887
Body size		1.022	6.887	<0.001
Sampling size		<0.001	-3.214	<0.001
Temperature	0.40 ^{0.644, <0.01}	<0.001	0.352	0.727
Precipitation		<0.001	-0.5	0.623
Body size		1.102	6.745	<0.001
Sampling size		<0.001	-3.158	<0.001

Often individuals foraging more indigestible materials result in increasing area and length of digestive tract to digest and absorb more nutrients (Penry and Jumars, 1987; Sassi *et al.*, 2007). For anurans, there are evidences that individuals consuming higher proportion of indigestible materials (e.g., high-fiber food) have larger intestines than individuals consuming arthropods (Naya *et al.*, 2009). Hence, we inferred that arboreal species probably consumed more digestible materials than aquatic species, which can explain consequently the effect of ecological type on variation in relatively digestive tract length among species.

A positive correlation between digestive tract length and body size has been reported in most anurans species (Naya *et al.*, 2009; Lou *et al.*, 2013; Ma *et al.*, 2016; Wang *et al.*, 2017). Energy requirements can lead to the variation in digestive tract per unit body mass (Pulliainen, 1976). Hence, larger species should need more energy than smaller species, and thus possessing longer digestive tracts (Lou *et al.*, 2013). We found that there was positive relationship between digestive tract length and body size, suggesting that longer digestive tract evolution for larger species was possible to correlate with energy requirements.

Previous studies have shown that individuals living in lower altitude/latitude with higher temperature and less precipitation possess relatively shorter guts than those living in higher altitude/latitude with lower temperature due to more digestible materials (Naya *et al.*, 2009; Lou *et al.*, 2013; Ma *et al.*, 2016; Wang *et al.*, 2017). In particular, increased composition of the digestible foods

(e.g., animal-based foods) and the decreased indigestible foods (e.g., low-quality, high-fiber food) in low altitude may result in decreasing digestive tract length among populations in frogs (Naya *et al.*, 2009; Ma *et al.*, 2016). Here, we did not find an increase in digestive tract length with increased altitude. In the contrast, our findings of the latitudinal increase in digestive tract length are consistent with the three frog species examined for altitudinal variation in the digestive tract (Naya *et al.*, 2009; Lou *et al.*, 2013; Wang *et al.*, 2017). Hence, more digestible materials in low latitude can promote short digestive tract length in anurans. Moreover, we found that variation in digestive tract length was not correlated with both temperature and precipitation across 35 species. Future study need collect more species to address these relationships.

Taken together, differences in environmental conditions shape variation in digestive tract length to meet differential selective forces or constraints. We observe significant effect of ecological type on digestive tract length, terrestrial species tending to have relatively longer digestive tract than aquatic species among 35 species of anurans. Although digestive tract length is positively correlated with latitude, it is not correlated with altitude, temperature and precipitation.

Acknowledgements We thank Long Jin, Shangling Lou, Maojun Zhong, Li Zhao and Cheng Chen to help the data collected in fieldwork. The publication of this article was funded by the National Natural Sciences Foundation of China (31772451; 31970393), the Science and

Technology Youth Innovation Team of Sichuan Province (19CXTD0022), the Key Cultivation Foundation of China West Normal University (17A006) and Talent Project of China West Normal University (17YC335). The field studies do not involve endangered or protected species. All the methods used in this study related to capture and handling of the animals was approved by the Institutional Animal Care and Use Committee (IACUC) at China West Normal University.

References

Alton L. A., Condon C., White C. R., Angilletta, M. J. Jr. 2017. Colder environments did not select for a faster metabolism during experimental evolution of *Drosophila melanogaster*. *Evolution*, 71(1): 145–152

Cai Y. L., Mai, C. L., Yu, X., Liao, W. B. 2019. Effect of population density on relationship between pre- and postcopulatory sexual traits. *Anim Biol*, 69(3): 289–292

Chen C., Huang Y. Y., Liao W. B. 2016. A comparison of testes size and sperm length in *Polypedates megacephalus* between two populations at different altitudes. *Herpetol J*, 26(3): 249–252

Chown S., Nicolson S. 2004. Insect physiological ecology. New York: Oxford University Press

Darriba D., Taboada G. L., Doallo R., Posada D. 2012. jModelTest 2: More models, new heuristics and parallel computing. *Nat Methods*, 9(8): 772

Drummond A. J., Suchard M. A., Xie D., Rambaut A. 2012. Bayesian phylogenetics with BEAUTi and the BEAST 1.7. *Mol Biol Evol*, 29(8): 1969–1973

Fei L., Ye C. Y., Jiang J. P. 2010. Colored atlas of Chinese amphibians. Chengdu: Sichuan Publishing House of Science and Technology.

Freckleton R. P. 2002. On the misuse of residuals in ecology: Regression of residuals vs. multiple regression. *J Anim Ecol*, 71(4): 542–545

Gonda A., Herczeg G., Merilä J. 2009. Adaptive brain size divergence in nine-spined sticklebacks (*Pungitius pungitius*)? *J Evol Biol*, 22(8): 1721–1726

Gu J., Li D. Y., Luo Y., Ying S. B., Zhang L. Y., Shi Q. M., Chen J., Zhang S. P., Zhou Z. M., Liao W. B. 2017. Brain size in *Hylarana guentheri* seems unaffected by variation in temperature and growth season. *Anim Biol*, 67(3–4): 209–225

Güneş E., Danacioğlu D. A. 2018. The effect of olive (*Olea europaea L.*) phenolics and sugar on *Drosophila melanogaster*'s development. *Anim Biol*, 68(4): 367–385

Hadfield J. D. 2010. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. *J Stat Softw*, 33(i02): 1–22

Hammond K. A., Roth J., Janes D. N., Dohm M. R. 1999. Morphological and physiological responses to altitude in deer mice *Peromyscus maniculatus*. *Physiol Biochem Zool*, 72(5): 613–622

Hammond K. A., Szewczak J., Król E. 2001. Effects of altitude and temperature on organ phenotypic plasticity along an altitudinal gradient. *J Exp Biol*, 204(11): 1991–2000

Hansson L., Jaarola M. 1989. Body size related to cyclicity in microtines: Dominance behaviour or digestive efficiency? *Oikos*, 55(3): 356–364

Hansson L. 1985. Geographic differences in bank voles *Clethrionomys glareolus* in relation to ecogeographical rules and possible demographic and nutritive strategies. *Ann Zool Fenn*, 22(3): 319–328

Hesse R. 1924. Tiergeographie auf ökologischer Grundlage. Germany: Gustav Fischer, Jena

Huang C. H., Yu X., Liao W. B. 2018. The expensive-tissue hypothesis in vertebrates: Gut microbiota effect, a review. *Int J Mol Sci*, 19(6): 1792

Huang C. H., Zhong M. J., Liao W. B., Kotrschal A. 2019. Investigating the role of body size, ecology, and behavior in anuran eye size evolution. *Evol Ecol*, 33(4): 585–598

Iwai N. 2018. Relationship between chorusing activity and number of oviposition events in the Otton frog. *Anim Biol*, 68(1): 105–111

Jiang A., Zhong M. J., Xie M., Lou S. L., Jin L., Jehle R., Liao W. B. 2015. Seasonality and age is positively related to brain size in Andrew's toad (*Bufo andrewsi*). *Evol Biol*, 42(3): 339–348

Jin L., Mi Z. P., Liao W. B. 2016a. Altitudinal variation in male reproductive investments in a polyandrous frog species (*Hyla gongshanensis jingdongensis*). *Anim Biol*, 66(3–4): 289–303

Jin L., Yang S. N., Liao W. B., Lüpold S. 2016b. Altitude underlies variation in the mating system, somatic condition and investment in reproductive traits in male Asian grass frogs (*Fejervarya limnocharis*). *Behav Ecol Sociobiol* 70(8): 1197–1208

Joseph P. N., Emberts Z., Sasson D. A., Miller C. W. 2018. Males that drop a sexually selected weapon grow larger testes. *Evolution*, 72(1): 113–122

Kotrschal A., Deacon A. E., Magurran E. A., Kolm N. 2017. Predation pressure shapes brain anatomy in the wild. *Ecol Evol*, 31(5): 619–633

Liao W. B., Huang Y., Zeng Y., Zhong M. J., Luo Y., Lüpold S. 2018. Ejaculate evolution in external fertilizers: Influenced by sperm competition or sperm limitation? *Evolution*, 72(1): 4–17

Liao W. B., Lou S. L., Zeng Y., Kotrschal A. 2016a. Large brains, small guts: The expensive tissue hypothesis supported in anurans. *Am Nat*, 188(6): 693–699

Liao W. B., Lou S. L., Zeng Y., Merilä J. 2015. Evolution of anuran brains: Disentangling ecological and phylogenetic sources of variation. *J Evol Biol*, 28(11): 1986–1996

Liao W. B., Lu X., Jehle R. 2014. Altitudinal variation in maternal investment and trade-off between egg size and clutch size in the Andrew's Toad (*Bufo andrewsi*). *J Zool*, 293(2): 84–91

Liao W. B., Lu X., Shen Y. W., Hu J. C. 2011. Age structure and body size of two populations of the rice frog *Rana limnocharis* from different altitudes. *Ital J Zool*, 78(2): 215–221

Liao W. B., Luo Y., Lou S. L., Jehle R. 2016b. Geographic variation in life-history traits: growth season affects age structure, egg size and clutch size in Andrew's toad (*Bufo andrewsi*). *Front Zool*, 13: 6

Liao W. B., Zeng Y., Zhou C. Q., Jehle R. 2013. Sexual size dimorphism in anurans fails to obey Rensch's rule. *Front Zool*, 10: 10

Liu Y. T., Luo Y., Gu J., Jiang S., Li D. Y., Liao W. B. 2018.

The relationship between brain size and digestive tract do not support expensive-tissue hypothesis in *Hylarana guentheri*. *Acta Herpetol*, 13(2): 141–146

Lou S. L., Li Y. H., Jin L., Mi Z. P., Liu W. C., Liao W. B. 2013. Altitudinal variation in digestive tract length in Yunnan pond frog (*Pelophylax pleuraden*). *Asian Herpetol Res*, 4(4): 263–267

Luo Y., Zhong M. J., Huang Y., Li F., Liao W. B., Kotrschal A. 2017. Seasonality and brain size are negatively associated in frogs: Evidence for the expensive brain framework. *Sci Rep*, 7: 16629

Lüpold S., Jin L., Liao W. B. 2017. Population density and structure drive differential investment in pre- and postmating sexual traits in frogs. *Evolution*, 71(6): 1686–1699

Ma X. H., Zhong M. J., Long J., Mi Z. P., Liao W. B. 2016. Evolution in digestive tract in *Bufo andrewsi* associated with temperature and precipitation. *Anim Biol*, 66(3–4): 279–288

Martinez C.M., McGee M. D., Borstein S. R., Wainwright P.C. 2018. Feeding ecology underlies the evolution of cichlid jaw mobility. *Evolution*, 72(8): 1645–1655

Mai C. L., Liao J., Zhao L., Liu S. M., Liao W. B. 2017a. Brain size evolution in the frog *Fejervarya limnocharis* does neither support the cognitive buffer nor the expensive brain framework hypothesis. *J Zool*, 302(1): 63–72

Mai C. L., Liao W. B. 2019. Brain size evolution in anurans: a review. *Anim Biol*, 69(3): 265–279

Mai C. L., Liu Y. H., Jin L., Mi Z. P., Liao W. B. 2017b. Altitudinal variation in somatic condition and investment in reproductive traits in male Yunnan pond frog (*Dianrana pleuraden*). *Zool Anz*, 266(1): 189–195

Medini R., Bhagya M., Samson S. 2018. Seasonal changes in the protein profile and enzyme activity of the epididymal luminal fluid in the lizard, *Eutropis carinata* (Schneider, 1801). *Anim Biol*, 68(4): 387–404

Møller A. P., Erritzøe J., van Dongen S. 2018. Body size, developmental instability, and climate change. *Evolution*, 72(10): 2049–2056

Müller J., Bässler C., Essbauer S., Schex S., Müller D. W. H., Opgenoorth L., Brandl R. 2014. Relative heart size in two rodent species increases with elevation: Reviving Hesse's rule. *J Biogeogr*, 41(2): 2211–2220

Naya D. E., Bozinovic F., Karasov W. H. 2008. Latitudinal trends in digestive flexibility: Testing the climatic variability hypothesis with data on the intestinal length of rodents. *Am Nat*, 172(4): 122–134

Naya D. E., Bozinovic F. 2004. Digestive phenotypic flexibility in post-metamorphic amphibians: studies on a model organism. *Biol Res*, 37(3): 365–370

Naya D. E., Karasov W. H., Bozinovic F. 2007. Phenotypic plasticity in laboratory mice and rats: a meta-analysis of current ideas on gut size flexibility. *Evol Ecol Res*, 9(8): 1363–1374

Naya D. E., Veloso C., Bozinovic F. 2009. Gut size variation among *Bufo spinulosus* populations along an altitudinal (and dietary) gradient. *Ann Zool Fenn*, 46(1): 16–20

Pascoal S., Mendrok M., Wilson A. J., Hunt J., Bailey N. W. 2017. Sexual selection and population divergence II. Divergence in different sexual traits and signal modalities in field crickets (*Teleogryllus oceanicus*). *Evolution*, 71(6): 1614–1626

Penry D. L., Jumars P. A. 1987. Modeling animal guts as chemical reactors. *Am Nat*, 129(1): 69–96

Piersma T., Lilliendahl K. 1999. Rapid changes in the size of different functional organ and muscle groups during refueling in a long-distance migrating shorebird. *Physiol Biochem Zool*, 72(4): 405–415

Pulliainen E. 1976. Small intestine and caeca lengths in Willow Grouse (*Lagopus lagopus*) in Finnish Lapland. *Ann Zool Fenn*, 13(4): 195–199

R Development Core Team. 2016. R: A Language and Environment for Statistical Computing. Austria: Vienna

Rambaut A., Drummond A. 2014. Tracer v1.6. <http://tree.bio.ed.ac.uk/software/tracer/>.

Samuk, K., Xue, J., Rennision, D. J. 2018. Exposure to predators does not lead to the evolution of larger brains in experimental populations of threespine stickleback. *Evolution*, 72(4): 916–929

Sassi P. L., Borghi C. E., Bozinovic F. 2007. Spatial and seasonal plasticity in digestive morphology of cavies (*Microcavia australis*) inhabiting habitats with different plant qualities. *J Mammal*, 88(1): 165–172

Secor S. M. 2001. Regulation of digestive performance: a proposed adaptive response. *Comp Biochem Phys A*, 128(3): 565–577

Shi P. J., Ikemoto T., Ge F. 2011. Development and application of models for describing the effects of temperature on insects' growth and development. *Chin J Appl Entom*, 48(5): 1149–1160

Shine R. 1989. Ecological causes for the evolution of sexual size dimorphism: A review of the evidence. *Q Rev Biol*, 64(4): 419–461

Sibly R. M. 1981. Strategies of digestion and defecation. In Townsend C. R., Calow P. (Eds.), *Physiological ecology: An evolutionary approach to resource use*. Oxford: Blackwell Scientific, 109–139 pp

Signor S. A., Abbasi M., Marjoram P., Nuzhdin S. V. 2017. Social effects for locomotion varies between environments in *Drosophila melanogaster* females. *Evolution*, 71(7): 1765–1775

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. *Mol Biol Evol*, 30(12): 2725–2729

Tang T., Luo Y., Huang C. H., Liao W. B., Huang W. C. 2018. Variation in somatic condition and testis mass in *Feirana quadratus* along an altitudinal gradient. *Anim Biol*, 68(3): 277–288

Tanner J. C., Ward J. L., Shaw R. G., Bee M. A. 2017. Multivariate phenotypic selection on a complex sexual signal. *Evolution*, 71(7): 1742–1754

Wang W. Y., Zhang R., Yin Q. X., Zhang S. P., Li W. Q., Li D. Y., Mi Z. P. 2017. Digestive tract length is positively correlated with altitude across *Fejervarya limnocharis* populations. *Anim Biol*, 67(3): 227–237

Wen W. Z., Zhang Y. J. 2010. Modelling of the relationship between the frequency of large-scale outbreak of the beet armyworm, *Spodoptera exigua* (Lepidoptera: Noctuidae) and the wide-area temperature and rainfall trends in China. *Act Ent Sin*, 53(12): 1367–1381

Wu Q. G., Lou S. L., Zeng Y., Liao W. B. 2016. Spawning location promotes evolution of bulbous olfactorius size in anurans. *Herpetol J*, 26(1): 247–250

Yang S. N., Feng H., Jin L., Zhou Z. M., Liao W. B. 2018. No evidence for the expensive-tissue hypothesis in *Fejervarya*

limnocharis. Anim Biol, 68(3): 265–276

Yang S. N., Huang X. F., Zhong M. J., Liao W. B. 2017. Geographical variation in limb muscle mass of the Andrew's toad (*Bufo andrewsi*). Anim Biol, 67(1): 17–28

Yu X., Zhong M. J., Li D. Y., Jin L., Liao W. B., Kotrschal A. 2018. Large-brained frogs mature later and live longer. Evolution, 72(5): 1174–1183

Zeng Y., Lou S. L., Liao W. B., Jehle R., Kotrschal A. 2016. Sexual selection impacts brain anatomy in frogs and toads. Ecol Evol, 6(49): 7070–7079

Zeng Y., Lou S. L., Liao W. B., Jehle R. 2014. Evolution of sperm morphology in anurans: insights into the roles of mating system and spawning location. BMC Evol Biol, 14(1): 104

Zhao C. L., Luo Y., Zhong M. J., Xie F., Jiang J. P., Li D. Y., Liao W. B. 2018. The size of cerebellum is positively correlated with geographic distribution range in anurans. Anim Biol, 68(3): 309–320

Zhao L., Mai C. L., Liu G. H., Liao W. B. 2019. Altitudinal implications in organ size in the Andrew's toad (*Bufo andrewsi*). Anim Biol, 67(3): 365–376

Zhong M. J., Wang X. Y., Huang Y. Y., Liao W. B. 2017. Altitudinal variation in organ size in *Polypedates megacephalus*. Herpetol J, 27(2): 235–238

Appendix

Table S1 Species, latitude (°), altitude (m), temperature (°C), precipitation (mm), sample size, body size (mm), digestive tract length (mm) and ecological type.

Species	Latitude	Altitude	Temperature	Precipitation	Samplings	Body size	Digestive tract length	Ecological type
<i>Amolops lifanensis</i>	30.88	2650	8.04	932	4	51.44	124.75	Aquatic
<i>Amolops loloensis</i>	32.05	1745	10.71	563	3	56.15	148.55	Terrestrial
<i>Amolops mantzorum</i>	30.55	1700	11.63	1080	15	51.32	87.25	Aquatic
<i>Bombina maxima</i>	27.7	2685	10.33	861	10	58	77.92	Semiaquatic
<i>Bufo andrewsi</i>	30.55	1700	11.63	1080	18	75.92	103.78	Terrestrial
<i>Bufo gargarizans</i>	30.8	290	19.21	1296	7	106.07	262.67	Terrestrial
<i>Bufo melanostictus</i>	27.38	780	14.92	1123	10	84.6	110.2	Terrestrial
<i>Bufo minshanicus</i>	32.05	1745	10.71	563	3	67.49	140.39	Terrestrial
<i>Bufo tibetanus</i>	30.52	3500	0.1	616	3	57.86	159.53	Terrestrial
<i>Feirana quadranus</i>	106.55	1674	11.63	1160	10	69	201.28	Aquatic
<i>Fejervarya multistriata</i>	28.62	265	19.33	582	20	38.54	56.44	Semiaquatic
<i>Hyla annectans</i>	27.53	2028	6.67	1071	17	33.59	36.06	Arboreal
<i>jingdongensis</i>								
<i>Hyla tsinlingensis</i>	29.1	1749	9.96	1510	3	32.1	64.3	Arboreal
<i>Hylarana daunchina</i>	27.98	640	14.92	943	3	43.7	87.68	Semiaquatic
<i>Hylarana guentheri</i>	30.83	338	18.75	551	13	64.28	102.95	Semiaquatic
<i>Kaloula rugifera</i>	32.3	1400	11.63	1166	3	36.65	76.55	Terrestrial
<i>Kaloula verrucosa</i>	26.88	1834	14.75	1016	14	38.5	54.95	Terrestrial
<i>Microhyla fissipes</i>	30.08	280	19.25	686	13	18.57	46.26	Semiaquatic
<i>Nanorana ventripunctata</i>	27.55	2028	6.67	1071	3	35.49	49.36	Semiaquatic
<i>Odorrana grahami</i>	27.27	1860	12.38	885	17	66.23	87.28	Aquatic
<i>Odorrana hejiangensis</i>	28.62	747	16.13	1185	4	46.87	76.53	Aquatic
<i>Odorrana margaretae</i>	32.67	1046	14.25	1424	3	70.26	97.39	Aquatic
<i>Odorrana schmackeri</i>	32.13	966	16	1235	23	44.42	66.52	Aquatic
<i>Paa boulengeri</i>	30.88	2650	6.29	932	3	70.38	169.96	Aquatic
<i>Paa yunnanensis</i>	28.65	1350	14.04	1281	5	61.92	187.94	Aquatic
<i>Pelophylax hubeiensis</i>	30.22	250	10.72	980	12	36.72	45.93	Semiaquatic
<i>Pelophylax nigromaculata</i>	30.83	338	18.54	551	4	53.88	143.5	Semiaquatic
<i>Pelophylax pleuraden</i>	27.18	1413	16.83	885	12	47.31	69.59	Semiaquatic
<i>Polypedates megacephalus</i>	29.83	688	16.79	708	16	42.74	46.77	Arboreal
<i>Rana chaochiaoensis</i>	27.17	1935	11.5	885	10	46.67	63.33	Semiaquatic
<i>Rana kukunoris</i>	31.5	3543	-2.08	1088	4	49.7	72.88	Terrestrial
<i>Rana omeimontis</i>	28.78	281	19.13	378	8	50.25	52.4	Terrestrial
<i>Rhacophorus chenfui</i>	28.3	380	19.08	1203	3	38.58	53.68	Arboreal
<i>Rhacophorus dugritei</i>	28.92	2548	9.5	1524	12	41.72	53.04	Arboreal
<i>Rhacophorus omeimontis</i>	30.55	1700	11.63	1080	11	59.22	61.74	Arboreal

Table S2 Genbank accession numbers for the gene sequences used to generate the phylogeny.

Species	12S	16S	CYTB	RAG1	RHOD	TYR
<i>Amolops lisanensis</i>	DQ359981.1	DQ204482.1	KJ008458.1		DQ360034.1	DQ360065.1
<i>Amolops lolensis</i>	AB211455.1	AB211478.1	KJ008431.1		DQ360008.1	DQ360039.1
<i>Amolops mantzorum</i>	DQ359970.1		KJ008405.1	EF088240.1	DQ360023.1	DQ360054.1
<i>Bombina maxima</i>	DQ925758.1	DQ925780.1	EU531274.1			
<i>Bufo andrewsi</i>	AF160764.1	AF160782.1		DQ158353.1	DQ283905.1	
<i>Bufo gargarizans</i>	NC_008410.1	NC_008410.1	JN647482.1	KF666177.1		
<i>Bufo melanostictus</i>	AY458592.1	AB167927.1	AF249082.1	KT031693.1	AF249097.1	
<i>Bufo minshanicus</i>	KM587710.1	KM587710.1				
<i>Bufo tibetanus</i>	AF160766.1	AF160784.1	AF171193.1			
<i>Feirana quadranus</i>	GQ225906.1	GQ225932.1	KX021999.1	HM163591.1	EU979886.1	EU979981.1
<i>Fejervarya multistriata</i>		AF206466.1	AB296096.1	AB526660.1	DQ458271.1	EU980027.1
<i>Hyla annectans jingdongensis</i>	KP742564.1		AY843821.1		AY844574.1	AY844045.1
<i>Hyla tsinlingensis</i>	KP742646.1	KP212702.1	JX870448.1			
<i>Hylarana daunchina</i>	KU840524.1	KU840597.1	KF020631.1	KU840723.1		KU840782.1
<i>Hylarana guentheri</i>		KF185060.1	KR264131.1	KR264365.1	DQ284009.1	KR264440.1
<i>Kaloula rugifera</i>	JX678894.1	JX678911.1	KT878719.1			
<i>Kaloula verrucosa</i>	KC822507.1	KC822507.1				
<i>Microhyla fissipes</i>	AB201177.1	DQ512876.1	AB201223.1	AY364198.1	AY364383.1	KC180221.1
<i>Nanorana ventripunctata</i>	DQ118457.1	EU979839.1		HM163585.1	EU979866.1	EU979959.1
<i>Odorrana grahami</i>	EF453731.1	EU861555.1		EF088257.1	DQ360016.1	DQ360047.1
<i>Odorrana hejiangensis</i>	KU840531.1	DQ360006.1		KU840727.1	KU840683.1	KU840788.1
<i>Odorrana margaretae</i>	DQ359964.1	EU861566.1	KJ815050.1	EF088261.1	DQ360017.1	DQ360048.1
<i>Odorrana schmackeri</i>	KU840532.1	KU840590.1	KJ149452.1	KU840726.1	DQ360020.1	DQ360051.1
<i>Paa boulengeri</i>	EU979791.1	EU979851.1	JX676597.1	HM163604.1	EU979918.1	EU980033.1
<i>Paa yunnanensis</i>	GQ225869.1	GQ225873.1	KF199150.1	HM163593.1	DQ458263.1	EU979976.1
<i>Pelophylax hubeiensis</i>	AF205547.1	AF315137.1				
<i>Pelophylax nigromaculata</i>	DQ359961.1	JQ621942.1	DQ006266.1	AB360184.1	DQ283838.1	DQ360045.1
<i>Pelophylax pleuraden</i>	JN541324.1	JQ621943.1	KR264150.1	KR264384.1	DQ360011.1	DQ360042.1
<i>Polypedates megacephalus</i>	KU840483.1	AY880519.1	AB451722.1	EU924517.1	EU924545.1	KC180271.1
<i>Rana chaochiaoensis</i>	DQ359975.1	DQ289107.1		KX269557.1	DQ360028.1	DQ360059.1
<i>Rana kukunoris</i>	KX269185.1	KX269185.1	JX486345.1	GQ285780.1	GQ285798.1	GQ285816.1
<i>Rana omeimontis</i>	KX269193.1	DQ289108.1	AF274928.1	KX269558.1		KX269785.1
<i>Rhacophorus chenfui</i>	GQ204763.1	KU840563.1	EU924603.1	EU924519.1	EU924547.1	KU840751.1
<i>Rhacophorus dugritei</i>	EF564471.1	EF564541.1	EU924605.1	GQ285768.1	EU215571.1	EU215601.1
<i>Rhacophorus omeimontis</i>	KU840492.1	KU840564.1	EU924612.1	EU924528.1	EU215565.1	KU840753.1

Figure S1 The phylogenetic tree of the 35 species of anurans in the comparative analysis.