```
A \subseteq D, f: D \to \mathbb{R} יהיו
```

מינימום ומקסימום גלובלי נאמר ש $A = f(x_0)$. ל $x \in A$ נקודת מקסימום (מינימום) גלובלי בקבוצה אם מתקיים ואינימום $x_0 \in A$ נקרא נקרא נאמר ש A-ב f ב-מקסימלי של

הערה 1 לא בהכרח קיים ערך מקסימלי\מינימלי בקבוצה

 $\exists x_0 \neq x_1 \in A \ s.t. \ f(x_0) = f(x_1)$: אם קיים ערך מקסימלי ל-A, הוא יחיד מעקרון הסדר ב- \mathbb{R} , אך יכול להתקיים

 $orall x \in U$ $f\left(x
ight) \leq f\left(x_{0}
ight)$ יקרא נקודת מקסימום\מינימום מקומי של f אם קיימת U סביבה מלאה של $x_{0} \in D$ יקרא נקודת מקסימום

 $f'(x_0)=0$, x_0 ב במה יהיו f אם f אם f נקודת קיצון מקומי של $x_0\in D\subseteq\mathbb{R}$, $f:D\to\mathbb{R}$ משפט פרמה יהיו

תקציר הוכחה f גזירה $f \Leftrightarrow 0$ רציפה $f(x) \circ f(x) \circ \frac{1}{x} \Leftrightarrow 0$ רציפה $f(x) \circ f(x) \circ f(x) \circ f(x)$ תקציר הוכחה $f'(x_0) = 0 \Leftrightarrow 0 \leq f'(x_0) \leq 0$ נראה שהיא מונוטונית חלשה משני צדדיה ולכן מטריכוטומיה מקיימת

 $\left(f\left(x
ight)=\left|x
ight|,x_{0}=0$ - הערות: $\left(x_{0}=x_{0}\right)$ במי $\left(x_{0}=x_{0}\right)$ לא תמיד $\left(x_{0}=x_{0}\right)$ הערות: $\left(x_{0}=x_{0}\right)$ במי נק' קיצון של

 $(f(x)=x^3,x_0=0$ - אבל x_0 אינה נקודות קיצון (דוגמה x_0 שעבורו x_0 שעבורו x_0 שעבורו x_0

 $f'(x_0) \geq 0$ אם קיימת $\delta > 0$ כך ש $\delta > 0$ מונוטונית עולה (יורדת) בסביבת δ חד צדדית מלאה, אזי $\delta > 0$ מסקנה: יהי $(f'(x_0) < 0)$