Facial Expression Recognition

By Rita Samir and Sohayla Mohammed

Overview

Problem

- Facial expression
 recognition software is a
 sentiment analysis tool
 and is able to
 automatically detect the
 six basic or universal
 expressions: happiness,
 sadness, anger, surprise,
 fear, and disgust.
- Evaluation Metric :
 Accuracy derived from confusion matrix

Datasets used

Ck

- o 48x48 resolution.
- Unique
- Posed
- o 6 BEs & 1 Neutral.

• FER2013

- o 48x48 resolution.
- Wild
- Posed and spontaneous.
- o 6 BEs & 1 Neutral.

Dexpression model

Proposed Model: Ensemble

Proposed Model: Observations

- Overfitting to data in some models.
 - ResNet model achieved training ~99%.
 - Tried implementing it from scratch.
- Simple DCNN models showed great performance, so we wanted to exploit that.

Histogram of Oriented Gradients: HoG

- Conventional Feature Descriptors.
- HOG descriptor is computed by calculating image gradients that capture contour and silhouette information of grayscale images
 FER2013 are gray scale images.
- Showed great individual performance.

Merging of HoG with DCNN

Simple DCNN

Final Model Architecture

- After ensembling different models together, we found two models that achieve great performance together:
 - DCNN with HoG
 - Simple Built DCNN
- Ensemble using: Voting, Average, Weighted Average.

Results

DCNN_HOG

total wrong validation predictions: 1239

Simple Built DCNN

Ensemble

```
[135] from sklearn.metrics import accuracy score
     test accuracy score = accuracy score(rounded labels, labels w average)
     print(test accuracy score)
    0.8499437570303712
[136] from sklearn.metrics import accuracy score
     test accuracy score = accuracy score(rounded labels, labels average)
     print(test accuracy score)
    0.8434195725534308
[137] from sklearn.metrics import accuracy score
     test accuracy score = accuracy score(rounded labels, labels)
     print(test accuracy score)
    0.8137232845894263
```

Results Summary

Model	DCNN_Hog	Cnn_2	Ensemble
Accuracy	73%	72%	85%

Demo

Demo

Link of the demo

Future Work

Future Work

- Consider pose Invariant image by creating a model, which jointly learns face frontalization and discriminative representation end-to-end that mutually boost each other to achieve pose-invariant face recognition.
- Consider other problems that may face facial expression recognition like illumination, pose, aging, and occlusion.

Team Contribution

	Sohayla	Rita
Research	yes	yes
Deployment of original model	yes	
Deployment of proposed model	yes	yes
Deployment of final model		yes
Documentations	yes	yes

This Link shows our work from scratch till we reach to the current results

Thank you ^ ^.