# บทที่ 2-1

กำหนดการเชิงเส้น (LINEAR PROGRAMMING)

### วัตถุประสงค์ของบทเรียน

> เข้าใจสมมติฐานเบื้องต้นและคุณสมบัติพื้นฐานของกำหนดการเชิงเส้น หรือ Linear

#### Programming (LP)

- > สร้างตัวแบบกำหนดการเชิงเส้นแทนปัญหาได้
- 녿 เข้าใจการใช้โปรแกรมตารางคำนวณหรือสเปรดชีท เพื่อแทนปัญหา และใช้

Function Solver ในโปรแกรม MS Excel ในการแก้ปัญหาได้

# เนื้อหาบทเรียน

- > นิยาม
- > สมมติฐานของกำหนดการเชิงเส้น
- > ส่วนประกอบ
- > ตัวอย่างกำหนดการเชิงเส้น
- > วิธีทำการแก้ปัญหาสมการเชิงเส้น
- > วิธีแก้ปัญหาสมการเชิงเส้นด้วยโปรแกรม Spreadsheet

#### นิยาม "กำหนดการเชิงเส้น"

- หมายถึง การวางแผนการดำเนินการที่ดีที่สุด โดยอาศัยการสร้างสมการคณิตศาสตร์เพื่อการ วิเคราะห์หาค่าที่เหมาะสม โดยสมการดังกล่าวจะเป็นสมการเส้นตรงเท่านั้น
- 🗡 สมการที่ได้เป็นเพียงตัวแทนของปัญหา ยังไม่ใช่คำตอบ ต้องมีการนำสมการดังกล่าวไปหา คำตอบ โดยการคำนวณหาค่าตัวแปรตามหลักทางคณิตศาสตร์ การหาคำตอบด้วยวิธีกราฟ หรือ การหาคำตอบด้วยวิธีซิมเพล็กซ์
- วิธีการนี้สามารถนำไปประยุกต์ได้หลากหลายปัญหา เช่น
   การหาส่วนผสมของสารเคมีต่างๆ ที่ทำให้ได้น้ำมันที่มีประสิทธิภาพที่ดีที่สุด
   การเลือกเส้นทางในการขนส่งวัตถุดิบที่ทำให้ต้นทุนในการผลิตต่ำที่สุด

#### การใช้งานในองค์การ

- > ในการตัดสินใจของผู้บริหารในหน่วยงานและองค์การต่างๆ เป็นการตัดสินใจที่เกี่ยวกับ
  - การใช้ทรัพยากรที่มีอยู่อย่างจำกัด ทรัพยากรเหล่านั้น ได้แก่ เครื่องจักร, คนงาน, เงิน, เวลา, พื้นที่
     ว่างในคลังสินค้า และวัตถุดิบ เพื่อให้มีการใช้ประโยชน์อย่างเต็มที่และได้รับผลตอบแทนสูงสุด
  - การผลิตสินค้า เช่น คอมพิวเตอร์, เครื่องยนต์, หรือเสื้อผ้า
  - การให้บริการ เช่น การจัดส่งสินค้า, การให้บริการด้านสุขภาพ หรือการตัดสินใจด้านการลงทุน

#### ลักษณะของ Linear programming (LP)

- > กำหนดการเชิงเส้น Linear programming (LP) เป็นวิธีการเชิงคณิตศาสตร์ที่ได้รับความนิยม ในการแก้ปัญหาที่เกิดขึ้นในธุรกิจ โดยมีสมมติฐานเบื้องต้นในการสร้างตัวแบบว่าต้องทราบค่าข้อมูลเข้า และ ค่าตัวแปรที่เกี่ยวข้องต่างๆ แน่นอน (Deterministic Models)
- กำหนดการเชิงเส้นสามารถนำไปประยุกต์ใช้ได้กับปัญหาต่างๆ ทั้งในด้านการแพทย์, การขนส่ง, การเงิน
   การตลาด, การจัดการทรัพยากรมนุษย์ และด้านการเกษตร เป็นต้น
- 🗡 โดยในปัจจุบันคอมพิวเตอร์ถูกน้ำมาใช้เป็นเครื่องมือในการหาค่าผลลัพธ์ของตัวแบบกำหนดการเชิงเส้น

#### ขั้นตอนของการสร้างกำหนดการเชิงเส้น (Three Steps of Developing LP Problem)

#### การสร้างตัวแบบกำหนดการเชิงเส้น (Formulation)

เป็นกระบวนการแปลโจทย์ปัญหาให้อยู่ในรูปตัวแบบกำหนดการเชิงเส้นแบบง่าย และแสดงความสัมพันธ์เชิง
 คณิตศาสตร์ระหว่างตัวแปรต่างๆ

#### การแก้ปัญหากำหนดการเชิงเส้น (Solution)

- ความสัมพันธ์เชิงคณิตศาสตร์ ที่ได้จากขั้นตอนการสร้างตัวแบบ จะถูกนำมาหาผลลัพธ์ เพื่อให้ได้ผลลัพธ์ที่เหมาะสม ที่สุด

#### >การวิเคราะห์ผลลัพธ์ (Interpretation)

- ในขั้นตอนนี้ผู้แก้ปัญหาหรือนักวิเคราะห์ จะทำงานร่วมกับผู้บริหารเพื่อ
- แปลความหมายของผลที่ได้จากขั้นตอนแก้ปัญหา
- ลองเปลี่ยนค่าตัวแปรต่างๆในตัวแบบ และสังเกตผลลัพธ์หรือผลที่เกิดขึ้น

#### คุณสมบัติของกำหนดการเชิงเส้น (Properties of a LP Model)

- 1. ทุกปัญหามีวัตถุประสงค์หลักเพียงวัตถุประสงค์เดียว คือพยายามค้นหาปริมาณสูงสุดหรือต่ำที่สุด เช่น หากำไรสูงสุด หรือต้นทุนต่ำที่สุด เรียกว่าฟังก์ชันวัตถุประสงค์ (Objective function)
- 2. ตัวแบบกำหนดการเชิงเส้น ประกอบด้วย ข้อจำกัด (Restrictions) หรือ เงื่อนไขบังคับ (Constraints) ซึ่งเป็นกรอบหรือข้อจำกัดที่มีผลโดยตรงต่อค่าของวัตถุประสงค์
- 3. ต้องมีทางเลือกในการปฏิบัติได้หลายทาง
- 4. วัตถุประสงค์และเงื่อนไขจำกัดในปัญหากำหนดการเชิงเส้น ต้องสามารถเขียนอยู่ในรูปของสมการ หรืออสมการเชิงเส้น

#### ข้อสังเกต Linear Equations and Inequalities

ตัวอย่างสมการเชิงเส้น:

$$2A + 5B = 10$$

สมการต่อไปน<u>ี้ไม่</u>เป็นสมการเชิงเส้น:

$$2A^2 + 5B^3 + 3AB = 10$$

ในตัวแบบกำหนดการเชิงเส้น อาจมีการใช้อสมการในรูปแบบ:

$$A + B \le C$$
 หรือ  $A + B \ge C$ 

#### การกำหนดปัญหากำหนดการเชิงเส้น (Formulating a LP Problem)

#### การใช้กำหนดการเชิงเส้นที่พบได้บ่อยๆ

- ปัญหาการกำหนดสัดส่วนการผลิต ได้แก่ ปัญหาเกี่ยวกับการผลิตสินค้า 2 ชนิดหรือมากกว่า ภายใต้ข้อจำกัดด้าน ทรัพยากร เช่น ด้านจำนวนคน, เครื่องจักร, วัตถุดิบ ฯลฯ
- 🗲 ปัญหาการหากำไรสูงสุดที่บริษัทต้องการ ขึ้นอยู่กับกำไรต่อหน่วยของสินค้าแต่ละชิ้น และจำนวนผลิตของสินค้าแต่ละชนิด
- > สิ่งที่บริษัทต้องการทราบ ได้แก่ -
  - ควรผลิตสินค้าแต่ละชนิดอย่างละเท่าใด
  - โดยได้รับผลกำไรสูงสุด ภายใต้ข้อจำกัดด้านทรัพยากรที่มี

### สมมติฐานของกำหนดการเชิงเส้น

$$Y = aX + bX + ... + nX$$

# สมมติฐานที่หนึ่ง (Proportional)

ลักษณะเพิ่มขึ้นหรือลดลง อย่างเป็นสัดส่วน (Proportional) เช่น ถ้าทาสีเก้าอี้หนึ่งตัวใช้เวลา 2 ชั่วโมง ดังนั้นเก้าอี้ 4 ตัวต้อง ใช้เวลา 8 ชั่วโมง

## สมมติฐานที่สอง (Addibility)

ลักษณะบวกเข้าหรือเพิ่มเข้าไป (Addibility)

เช่น จำนวนชั่วโมงในการทาสีสินค้า A รวมกับจำนวนชั่วโมงในการ ทาสีสินค้า B ได้เป็นจำนวนชั่วโมงทาสีทั้งหมดที่บริษัทต้องใช้

## สมมติฐานที่สาม (Divisibility)

ลักษณะแบ่งแยกได้ (Divisibility) กล่าวคือ ค่าที่กำหนดเป็น เทอมและผลลัพธ์ที่ได้ (Solutions) ไม่จำเป็นต้องเป็นเลข จำนวนเต็ม

# สมมติฐานที่สี่ (Certainty)

ลักษณะแสดงความแน่นอน (Certainty) หรือ กำหนดค่า ขีดจำกัด ไม่แปรเปลี่ยนระหว่างการวิเคราะห์ เช่น

- จำนวนชั่วโมงแรงงานทั้งหมดที่บริษัทมี
- อัตราดอกเบี้ยที่ต้องชำระ

# สมมติฐานที่ห้า (Non-negativity)

ลักษณะค่าตัวแปรต้องไม่ติดลบ (Non-negativity)

#### ส่วนประกอบ

กำหนดการเชิงเส้น

แบบโมเดลทางธุรกิจ

Price = Cost + Profit Margin

แบบโมเดลทางคณิตศาตร์

$$P = X_1 + X_2$$

### ส่วนประกอบที่หนึ่ง

ตัวแปรใช้ในการตัดสินใจ (Decision Variables)

เช่น กำหนดให้

X1 = จำนวนสินค้าชนิดที่ 1 (ชิ้น)

X2 = จำนวนสินค้าชนิดที่ 2 (ชิ้น)

Z = กำไรรวมหรือต้นทุนรวม (บาท)

### ส่วนประกอบที่สอง

ฟังก์ชั่นวัตถุประสงค์ (Objective Function)

แบ่งได้เป็นสองประเภท ได้แก่

- การแก้ปัญหาค่าสูงสุด และ
- การแก้ปัญหาค่าต่ำสุด

### ส่วนประกอบที่สอง (2)

ตัวอย่างฟังก์ชั่นวัตถุประสงค์ (Objective Function)

- > หากำไรที่สูงสุด
- > หาต้นทุนหรือค่าใช้จ่ายต่ำสุด
- > หายอดขายสูงสุด
- > หาเวลาในการดำเนินโครงการที่น้อยที่สุด
- > หาอัตราผลตอบแทนจากการลงทุนที่สูงสุด

### ส่วนประกอบที่สอง (3)

ฟังก์ชั้นวัตถุประสงค์แก้ปัญหาค่าสูงสุด

เช่น 
$$Maximize: Z = c_1X_1 + c_2X_2 + ... + c_nX_n$$

- **c** คือ ค่าคงที่สัมประสิทธิ์หน้าตัวแปร
- · X คือ ตัวแปรใช้ตัดสินใจ
- $oldsymbol{c_1X_1}$  คือ ตัวอย่างเทอมของตัวแปร

### ส่วนประกอบที่สอง (4)

ฟังก์ชั่นวัตถุประสงค์แก้ปัญหาค่าต่ำสุด

เช่น Miniimize: 
$$Z = c_1X_1 + c_2X_2 + ... + c_nX_n$$

- C คือ ค่าคงที่สัมประสิทธิ์หน้าตัวแปร
- X คือ ตัวแปรใช้ตัดสินใจ
- $c_1X_1$  คือ ตัวอย่างเทอมของตัวแปร

### ส่วนประกอบที่สาม

#### ฟังก์ชั่นเงื่อนไขบังคับ (Constraint Function)

เช่น 
$$c_1X_1 + c_2X_2 + c_3X_3 + ... + c_nX_n > b_1$$
 ...  $< b_2$  ...  $>= b_3$   $c_1X_1 + c_2X_2 + c_3X_3 + ... + c_nX_n <= b_4$  ...  $= b_5$ 

โดยที่  $b_n$  = ค่าขีดจำกัดที่เป็นค่าบวกหรือศูนย์เท่านั้น

### ส่วนประกอบที่สื่

### ข้อจำกัดตัวแปร (Restriction)

เช่น 
$$X_1, X_2, X_3, ..., X_n >= 0$$

### ตัวอย่างกำหนดการเชิงเส้นแบบที่หนึ่ง

Maximize : 
$$Z = 300X_1 + 250X_2 + 100X_3$$

Subject To: 
$$25 X_1 + 12 X_2 \le 4,000$$

$$20X_1 + 9X_2 + 8X_3 \le 6,000$$

$$X_{3} \ge 1,000$$

$$X_1, X_2, X_3 \geq 0$$

### ตัวอย่างกำหนดการเชิงเส้นแบบที่สอง

Minimize : 
$$Z = 100X_1 + 20X_2$$

$$20 X_1 + 9 X_2$$

$$X_2$$

$$X_1, X_2$$

### ข้นตอนสร้างกำหนดการเชิงเส้น

- กำหนดตัวแปร (Define Variable)
- > สร้างฟังก์ชั่นวัตถุประสงค์ (Set Objective Function)
- สร้างฟังก์ชั่นเงื่อนไขบังคับ (Set Constraint Function)
- > ระบุข้อกำหนดหรือข้อจำกัดตัวแปร (Identify Variable Restriction)

#### ตัวอย่างที่ 1 โรงงานแห่งหนึ่งผลิตสินค้าสองชนิด

มีรายละเอียดดังนี้

- 1. สินค้าชนิดที่ 1 มีกำไรหน่วยละ 10 บาท
- 2. สินค้าชนิดที่ 2 มีกำไรหน่วยละ 20 บาท
- 3. สินค้าชนิดที่ 1 ใช้เวลาผลิตชิ้นละ 5 นาที่ ณ แผนกที่ 1
- 4. สินค้าชนิดที่ 1 ใช้เวลาผลิตชิ้นละ 6 นาที ณ แผนกที่ 2

#### <u>ตัวอย่างที่ 1</u> โรงงานแห่งหนึ่งผลิตสินค้าสองชนิด

- 5. สินค้าชนิดที่ 2 ใช้เวลาผลิตชิ้นละ 3 นาที ณ แผนกที่ 1
- 6. สินค้าชนิดที่ 2 ใช้เวลาผลิตชิ้นละ 4 นาที ณ แผนกที่ 2
- 7. แผนกที่ 1 มีกำลังผลิต 8 ชั่วโมงต่อวัน
- 8. แผนกที่ 2 มีกำลังผลิต 9 ชั่วโมงต่อวัน

จงสร้างกำหนดการเชิงเส้นจากข้อมูลที่กำหนดเพื่อหาจำนวนของสินค้า แต่ละชนิดที่ควรผลิตเพื่อให้ได้กำไรสูงสุด

### วิธีทำตัวอย่างที่

1. กำหนดตัวแปรให้ 
$$X_{_{1}}$$
 = จำนวนสินค้าชนิดที่ 1 ( ชิ้น )  $X_{_{2}}$  = จำนวนสินค้าชนิดที่ 2 ( ชิ้น )  $Z$  = กำไรรวม (บาท)

2. สร้างฟังก์ชั่นวัตถุประสงค์

Maximize: 
$$Z = 10X_1 + 20X_2$$

โดยที่  $10X_1$  หรือ  $20X_2$  เป็นเทอมตัวแปร

## วิธีทำตัวอย่างที่ 1 (ต่อ)

#### 3. สร้างฟังก์ชั่นเงื่อนไขบังคับ

แผนกที่ 1 : 
$$5X_1 + 3X_2 \le (8 \times 60)$$
 (นาที)

แผนกที่ 2 : 
$$6X_1 + 4X_2 \le (9 \times 60)$$
 (นาที)

#### 4. ข้อจำกัดตัวแปร

$$X_1, X_2 \geq 0$$

#### <u>ตัวอย่างที่ 2</u> โรงงานแห่งหนึ่งผลิตสินค้าสองชนิด

#### รายละเอียดดังนี้

- 1. สินค้าชนิดที่ 1 มีต้นทุนหน่วยละ 1 บาท
- 2. สินค้าชนิดที่ 2 มีต้นทุนหน่วยละ 2 บาท
- 3. สินค้าชนิดที่ 1 มีรำข้าวเป็นส่วนผสม จำนวน 2 กรัม ต่อสินค้า 1 หน่วย
- 4. สินค้าชนิดที่ 2 มีรำข้าวเป็นส่วนผสม จำนวน 3 กรัม ต่อสินค้า 1 หน่วย

#### <u>ตัวอย่างที่ 2</u> โรงงานแห่งหนึ่งผลิตสินค้าสองชนิด

- 5. สินค้าชนิดที่ 1 มีปลาปันเป็นส่วนผสม จำนวน 5 กรัม ต่อสินค้า 1 หน่วย
- 6. สินค้าชนิดที่ 2 มีปลาปนเป็นส่วนผสม จำนวน 9 กรัมต่อสินค้า 1 หน่วย
- 7. โรงงานมีพื้นที่เก็บวัตถุดิบปลาปนมากที่สุด จำนวน 200 กิโลกรัม
- 8. โรงงานมีพื้นที่เก็บวัตถุดิบรำข้าวมากที่สุด จำนวน 500 กิโลกรัม

จงสร้างกำหนดการเชิงเส้นจากข้อมูลที่กำหนดเพื่อหาจำนวนสินค้าแต่ละ ชนิดที่จะทำให้โรงงานมีต้นทุนต่ำที่สุด

### วิธีทำตัวอย่างที่ 2

- 1. กำหนดให้  $X_{_{1}}$  = จำนวนสินค้าชนิดที่ 1 (ชิ้น)  $X_{_{2}}$  = จำนวนสินค้าชนิดที่ 2 (ชิ้น) Z = ต้นทุนรวม (บาท)
- 2. สร้างฟังก์ชั่นวัตถุประสงค์

Minimize: 
$$Z = 1X_1 + 2X_2$$

โดยที่  $1X_{1}$  หรือ  $2X_{2}$  เป็น เทอมตัวแปร

### วิธีทำตัวอย่างที่ 2 (ต่อ)

#### 3. สร้างฟังก์ชั่นเงื่อนไขบังคับ

ส่วนผสมที่ 1 : 
$$2X_1 + 3X_2 \le (500 \times 1,000)$$
 (กรัม)

ส่วนผสมที่ 2 : 
$$5X_1 + 9X_2 \le (200 \times 1,000) ( กรัม )$$

4. ข้อจำกัดตัวแปร 
$$X_{_{1}}$$
 ,  $X_{_{2}} \geq 0$ 

### ตัวอย่างการแก้ปัญหา Linear Programming

บริษัท Flair Furniture เป็นโรงงานผลิตเฟอร์นิเจอร์แห่งหนึ่ง บริษัทต้องการวางแผนการผลิตว่า ควรจะผลิต โต๊ะและเก้าอี้ในสัดส่วนเท่าใด ที่จะทำให้บริษัทมีกำไรจากการขายสูงสุด ทั้งนี้บริษัทมีทรัพยากรที่ใช้ได้ดังนี้ คือ มีจำนวนชั่วโมงในการทำงานไม้ได้ไม่เกิน **240** สม. มีจำนวนชั่วโมงใน การตกแต่งด้วยการทาสีไม่เกิน 100 ชม. และทราบผลจากการสำรวจตลาด ว่ามีความต้องการเก้าอี้ไม่เกิน 60 ตัว โดยที่ในการขายสินค้าทั้งสองชนิดนี้ บริษัทจะได้กำไรจากการขายเก้าอี้ตัวละ \$5 และจากการขายโต๊ะตัวละ \$7

# การใช้ฟังก์ชั่น Solver ของ Excel เพื่อแก้ปัญหา LP: Example 1

#### การใช้ solver เพื่อหาผลเฉลยปัญหา Flair Furniture

จากโจทย์ตัวแปรตัดสินใจคือ T (Tables) และ C (Chairs):

Maximize profit = 7T + 5C

Subject to constraints

 $4T + 3C \le 240$  (carpentry constraint)

 $2T + 1C \le 100$  (painting constraint)

 $C \leq 60$  (chairs limit constraint)

 $T, C \ge 0$  (non-negativity)

# A Simplified Model



ตัวแปรที่ไม่สามารถควบคุมได้หรือ ค่าด้านขวามือ (RHS)

# Solver Spreadsheet Setup

Changing Cells เพื่อความชัดเจน จากรูปจึงใส่พื้นหลังสีเหลืองให้กับเซลล์ที่เก็บค่าตัวแปรตัดสินใจ



# LP Excel and Solver Parts <u>Target Cell</u>

Objective function จะถูกอ้างอิงลงในส่วน target cell ของ solver

ในแผ่นงานให้กำหนดสูตร = SUMPRODUCT(B6:C6,\$B\$5:\$C\$5)

ซึ่งมีความหมายเช่นเคียวกับการใส่สูตร =B6\*B5+C6\*C5



## LP Excel and Solver Parts

## Constraints ในแต่ละเงื่อนไข้อจำกัด(constraint) จะแบ่งเป็น 3 ส่วน คือ -

- 1. ส่วนด้านซ้ายมือ(LHS) ประกอบด้วยทุกๆค่าที่อยู่ด้านซ้ายมือของเครื่องหมายสมการ(=) หรือเครื่องหมายอสมการ( $\leq$  ,  $\geq$  )
- 2. ส่วนด้านขวามือ(RHS) ประกอบด้วยทุกๆค่าที่อยู่ด้านขวามือของเครื่องหมายสมการ(=) หรือเครื่องหมายอสมการ( $\leq$  ,  $\geq$ )
- 3. ส่วนเครื่องหมายสมการ(=) หรือเครื่องหมายอสมการ(≤, ≥)

|    | А               | В      | С      |               | D                |          | Е           | F   |
|----|-----------------|--------|--------|---------------|------------------|----------|-------------|-----|
| 1  | Flair Furniture |        |        | 1             |                  |          |             |     |
| 2  |                 |        |        |               |                  | (3       |             | (2) |
| 3  |                 | T      | С      | $\mathcal{I}$ |                  |          |             |     |
| 4  |                 | Tables | Chairs |               |                  |          | \           |     |
| 5  | Number Of Units |        |        |               |                  |          |             |     |
| 6  | Profit          | 7      | 5      | =SUMPRODUC    | T(\$B\$5:\$C\$5, | B6:C6)   | <-Objective |     |
| 7  | Constraints:    |        |        |               | +                |          |             |     |
| 8  | Carpentry Hours | 4      | 3      | =SUMPRODUC    | T(\$B\$5:\$C\$5, | B8:68)   | <=          | 240 |
| 9  | Painting Hours  | 2      | 1 /    | =SUMPRODUC    | T(\$B\$5:\$C\$5, | B9:C9)   | <=          | 100 |
| 10 | Chairs Limit    |        | 1      | =SUMPRODUC    | T(\$B\$5:\$C\$5, | B10:C10) | <=          | 60  |
| 11 |                 |        |        |               | LHS              |          | ≸ign        | RHS |
| 40 |                 |        |        |               |                  |          |             |     |

# Entering Information in Solver

เรียกใช้งาน Solver โดยคลิ๊กเมนู Tools -> Solver

ระบุ Target Cell (D6)

ระบุ Changing Cells (B5:C5)



## Constraints

## Specifying Constraints การระบุเงื่อนใบหรือข้อจำกัด

คลิ๊กปุ่ม "Add" เพื่อเพิ่มเงื่อนไขข้อจำกัดที่อ้างอิงถึงส่วน LHS และ RHS

โดยอาจเพิ่มเงื่อนไขข้อจำกัดครั้งละหนึ่งเงื่อนไข หรืออาจเพิ่มเงื่อนไขข้อจำกัดทั้งชุดในครั้งเดียวกันได้ หากทั้งชุดเงื่อนไขนั้นมีเครื่องหมาย (<=, >=, หรือ =) เดียวกัน

จากโจทย์ปัญหานี้ เงื่อนไขข้อจำกัดทั้งหมดมีเครื่องหมาย <= เหมือนกัน ดังนั้นจึงกำหนดให้ส่วน

ซ้ายมือ(LHS) เป็น D8:D10 และส่วนขวามือ(RHS) ของเครื่องหมาย <= เป็น F8:F10

## Constraints

#### **Specifying Constraints**





# Solver Options



# Solving Model

เมื่อกดปุ่ม Solve, Solver จะรันตัวแบบ (Model) และแสดงผลลัพธ์ที่ได้ โดยจะ พบว่าผลเฉลยที่เหมาะสม (Optimal solution) คือต้องผลิตโต๊ะ 30 ตัว และ ผลิตเก้าอี้ 40 ตัว ซึ่งจะทำให้ได้กำไรมาก ที่สุดคือ \$410

- หน้าต่าง Solver Results จะแสดงรายงานได้สามแบบ คือ
  - Answer
  - Sensitivity
  - Limits



# Possible Messages in Results Window

| MESSAGE                                                                          | MEANING                                           | POSSIBLE CAUSE                                                                                                                                                                                                                    |  |  |
|----------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Solver found a solution. All constraints and optimality conditions are satisfied | Ideal message!                                    | Note: This does not mean the formulation and/or solution is correct. It just means there are no syntax errors in the Excel formulas and Solver entries.  Incorrect entries in LHS formulas, signs, and RHS values of constraints. |  |  |
| Solver could not find a feasible solution.                                       | There is no feasible region.                      |                                                                                                                                                                                                                                   |  |  |
| The Set Cell Values do not converge.                                             | Unbounded solution.                               | Incorrect entries in LHS formulas, signs, and RHS values of constraints.                                                                                                                                                          |  |  |
| Solver encountered an error value in a target or constraint cell.                | Formula error in target cell or constraint cells. | Most common cause is division<br>by 0 in some cell.                                                                                                                                                                               |  |  |
| The linearity conditions                                                         | The "Assume Linear                                | Multiplication or division                                                                                                                                                                                                        |  |  |
| Solver Results  Solver found a solution. All c conditions are satisfied.         | Rej<br>An<br>Sei<br>Lim                           | more variables e: Solver sometimes essage even when linear. This occurs ooth the LHS and int have formulas. manipulating the aically to make the                                                                                  |  |  |

## Flair Furniture Solver Answer Report



# Using Solver to Solve Holiday Meal Turkey Ranch Problem

### กำหนดการเชิงเส้นของปัญหา คือ:

Minimize cost (in cents) Z = 2A + 3B

#### subject to constraints:

$$5A + 10B \ge 90$$
 (protein constraint)

$$4A + 3B \ge 48$$
 (vitamin constraint)

$$0.5A \ge 1.5$$
 (iron constraint)

$$A, B \ge 0$$
 (nonnegativity)

## Holiday Meal Turkey Ranch Problem Spreadsheet

Input data and decision variable names shown here are recommended but not required.

|    | Α                         | В       | С       | D                                  | E       | F   |
|----|---------------------------|---------|---------|------------------------------------|---------|-----|
| 1  | Holiday Meal Turkey Ranch |         |         |                                    |         |     |
| 2  |                           |         |         |                                    |         |     |
| 3  |                           | Α       | В       |                                    |         |     |
|    |                           | Brand A | Brand B |                                    |         |     |
| 4  |                           | Feed    | Feed    |                                    |         |     |
| 5  | Number of Pounds          |         |         |                                    |         |     |
| 6  | Cost                      | 0.02    | 0.03    | =SUMPRODUCT(B6:C6,\$B\$5:\$C\$5)   | <- Cost |     |
| 7  | Constraints:              |         |         |                                    |         |     |
| 8  | Protein Required          | 5       | 10      | =SUMPRODUCT(B8:C8,\$B\$5:\$C\$5)   | >=      | 90  |
| 9  | Vitamin Required          | 4       | 3       | =SUMPRODUCT(B9:C9,\$B\$5:\$C\$5)   | >=      | 48  |
| 10 | Iron Required             | 0.5     |         | =SUMPRODUCT(B10:C10,\$B\$5:\$C\$5) | >=      | 1.5 |
| 11 |                           |         |         | LHS                                | Sign    | RHS |

SUMPRODUCT function is used to calculate objective function value and constraint LHS values.

Signs are shown here for information purposes only.

## Excel Layout and Solver Entries

