5 Point Estimation

Exercise 5.1

Assume that x_1, \ldots, x_n are n samples generated by a normal distribution with the unknown mean m and the known variance σ^2 . The normal probability density function (pdf) with mean m and variance σ^2 is

 $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}}, \forall x \in \mathbb{R}.$

- 1. Calculate the maximum likelihood estimate \hat{m} of the parameter m.
- 2. Calculate the bias and the variance of \hat{m} .
- 3. Calculate the Cramer-Rao bound for any estimator of m.
- 4. Is \hat{m} an efficient estimator?

Exercise 5.2

This work must be done with R.

- 1. Simulate M=1000 sequences of n=4 random samples from an exponential distribution with parameter $\mu=3$.
- 2. Computes M times the maximum likelihood estimate $\hat{\mu}$ (one estimate $\hat{\mu}_i$ per sequence).
- 3. Plot the empirical probability density function $\hat{f}(\hat{\mu})$ of $\hat{\mu}$.
- 4. Study the behavior (shape, location, spreading) of $\hat{f}(\hat{\mu})$ when n is increasing from n=4 to n=1000. What can you conclude on the quality of $\hat{\mu}$?
- 5. Plot the bias of $\hat{\mu}$ as a function of n for n=4 to n=1000. Plot also in an other figure the empirical variance of $\hat{\mu}$, together with the Cramer-Rao bound, as a function of n.

Exercise 5.3

Assume that k_1, \ldots, k_n are n samples generated by a Poisson distribution with the unknown mean λ . The Poisson probability mass function (pmf) with mean λ is

$$\Pr(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \forall k \in \{0, 1, 2, 3, \ldots\}.$$

- 1. Calculate the maximum likelihood estimate $\hat{\lambda}$ of the parameter λ .
- 2. Calculate the bias and the variance of $\hat{\lambda}$.

Exercise 5.4

Assume that x_1, \ldots, x_n are n samples generated by a normal distribution with zero mean and the unknown variance σ^2 .

- 1. Calculate the maximum likelihood estimate $\widehat{\sigma}^2$ of the parameter σ^2 .
- 2. Calculate the bias of $\widehat{\sigma}^2$.