# A számítástudomány alapjai

KIDOLGOZOTT SZÓBELI TÉTELSOR

Készítette: Illyés Dávid

A jegyzetben a "A számítástudomány alapjai" nevű tárgy 2023/24/1 félévében kiadott szóbeli tételsor van (többé-kevésbé) kidolgozva. (Jelenleg inkább csak össze gyűjtögetve, de finomítva még nincs.)

# Tartalomjegyzék

|    |          | Oldal |
|----|----------|-------|
| 1  | 1 Tétel  | 4     |
| 2  | 2 Tétel  | 6     |
| 3  | 3 Tétel  | 7     |
| 4  | 4 Tétel  | 9     |
| 5  | 5 Tétel  | 11    |
| 6  | 6 Tétel  | 14    |
| 7  | 7 Tétel  | 16    |
| 8  | 8 Tétel  | 18    |
| 9  | 9 Tétel  | 22    |
| 10 | 10 Tétel | 24    |
| 11 | 11 Tétel | 27    |

# Tételek:

A **félkövéren** szedett dolgokat tudni kell ismertetni, kimondani, ill. definiálni. Az <u>aláhúzottakat</u> bizonyítottuk, a *dőlten* szedetteket nem. A vizsgán az anyag értő ismeretét kérjük számon, elégségesért nem kell bizonyítást tudni.

- 1. Gráfelméleti alapfogalmak: csúcs, él, diagram, fokszám. Egyszerű gráf, irányított gráf, véges gráf, komplementer gráf, reguláris gráf, él/csúcstörlés, élhozzáadás, (feszítő/feszített) részgráf, izomorfia, élsorozat, séta, út, kör,összefüggő gráf, komponens. kézfogás-lemma.
- 2. <u>Élhozzáadási lemma</u> erdő, **fa**, fák egyszerűbb tulajdonságai: <u>két levél, erdők élszáma</u>. **Feszítőfa** <u>létezése, feszítőfához tartozó alapkörök és alap vágások.</u>
- 3. **Minimális költségű feszítőfa**, mkffák struktúrája, **Kruskal-algoritmus** <u>helyessége</u>, villamos hálózathoz tartozó normál fa keresése.
- 4. Általános gráfbejárás: a csúcsok állapotváltozása, a bejárás általános lépései, a bejáráshoz tartozó sorrend ill. az élek osztályozása bejárás után. A BFS és tulajdonságai, legrövidebb utak fájának létezése.
- 5. Gráfút hossza, gráfcsúcsok távolsága, nemnegatív és konzervatív hosszfüggvény, triviális és pontos (r, l)-felső becslés, <u>élmenti javítás</u>. Dijkstra-algoritmus működése, Ford-algoritmus <u>helyessége</u> és lépésszáma. Legrövidebb utak fájának létezése.
- 6. **Mélységi keresés** és alkalmazásai (<u>fellépő éltípusok,</u> mélységi- és befejezési számozásból az éltípus meghatározása, irányított kör létezésének eldöntése DFS-sel).
- 7. **DAG**, <u>jellemzése</u>, **topologikus sorrend** <u>keresése</u>. Leghosszabb utak keresése, **PERT-módszer**, kritikus utak és tevékenységek.
- 8. Euler-séta és körséta létezésének szükséges és elégséges feltétele. Hamilton-kör és út létezésére szükséges, ill. elégséges feltételek: komponensszám ponttörlés után (Petersen-gráf) Dirac, Ore tételei, gazdag párok, hízlalási lemma, Chavátal-lezárt.
- 9. Gráfok síkba ill. gömbre rajzolhatósága, tartomány, sztereografikus projekció, következményei. Az Euler-féle poliédertétel, duális kézfogáslemma és következményei: felső korlátok az élszámra és a minimális fokszáma egyszerű, síkbarajzolható gráfokon.
- 10. Kuratowski gráfok síkbarajzolhatósága, soros bővítés, Kuratowski-tétel könnyű iránya. Síkbarajzolt gráf duálisa, a duális paraméterei. Vágás, elvágó él, soros élek. Kör-vágás dualitása, különféle élek duálisai. Whitney két tétele, Whitney operációk.
- 11. Lineáris egyenletrendszer, kibővített együtthatómátrix, elemi sorekvivalens kapcsolata a megoldásokkal. vezéregyes, átalakítás LAés RLAmátrix, mátrix Tilos megoldás leolvasása RLAesetén. sor, kötött változó, szabad ezek jelentése a megoldás/megoldhatóság szempontjából. Gauss-elimináció, paraméter, összefüggés az egyértelmű megoldhatóság, az egynletek és ismeretlenek száma között.
- 12. Az  $\mathbb{R}^n$  tér, vektorműveletek azonosságai, (generált) altér (példák), (triviális) lineáris kombináció, alterek metszete, generátorrendszer, lineáris függetlenség (kétféle definíció). Lin.ftn rendszer hízlalása, generátor-rendszer ritkítása, kicserélési lemma, FG-egyenlőtlenség és következménye.
- 13. ESÁ hatása a sor- és oszlopvektorokra, **oszlopvektorok lin.ftn-ségének eldöntése**. **Bázis** fogalm, **altér bázisának előállítása generátorrendszerből** ill. homogén lineáris egyenletrendszerrel megadott altér esetén
- 14. Generátorrendszerből homogén lin.egyenletredszer előállítása. Altér dimenziójának jóldefiniáltsága,  $\mathbb{R}^n$  standard bázisa, bázishoz tartozó koordinátavektor kiszámítása.
- 15. n elem permutációja, a permutáció **inverziószáma**. **Bástyaelhelyezés**, inverzióban álló bástyapárok, **determináns**, **felső háromszögmátrix determinánsa**.
- 16. Mátrix transzponáltja, transzponált determinánsa, ESÁ hatása a determinánsra, előjeles aldetermináns, kifejtési téte.
- 17. Vektorok skaláris szorzásának tulajdonságai. **Mátrixok összeadása és szorzásai**, e műveletek tulajdonságai. **A szorzatmátrix sorainak és oszlopainak különös tulajdonsága**, ESÁ és mátrixszorzás kapcsolata.

- 18. Lineáris leképezések és mátrixszorzások kapcsolata. Lineáris leképezés mátrixának meghatározása. Leképezések egymásutánjának mátrixa, mátrixszorzás asszociativitása.
- 19. **Mátrix jobb- és balinverze**, ezek viszonya. <u>Balinverz kiszámítása ESÁ-okkal</u> és előjeles aldeterminánsokkal, **reguláris mátrixok** jellemzése determinánssal, sorokkal, oszlopokkal ill. RLA mátrix segítségével.
- 20. Sor- oszlop- és determinánsrang, ezek viszonya és kiszámítása. Összeg és szorzat rangja. Lineáris egyenletrendszer mátrixegyenletes alakja, a megoldhatóság és az oszlopok alterének kapcsolata. Az egyértelmű megoldhatóság feltétele  $n \times n$  együtthatómátrix esetén.

Gráfelméleti alapfogalmak: **csúcs, él, diagram, fokszám**. Egyszerű gráf, irányított gráf, véges gráf, komplementer gráf, reguláris gráf, él/csúcstörlés, élhozzáadás, (feszítő/feszített) részgráf, izomorfia, élsorozat, séta, út, kör,**összefüggő gráf**, komponens. **kézfogás-lemma**.

Gráfelméleti alapfogalmak:

- csúcs, élek:
  - V a G csúcsainak ((szög) pontjainak) halmaza.
  - -E pedig G éleinek halmaza.
  - G=(V,E) egyszerű irányítatlan gráf ha  $V \neq \emptyset$  és  $E \leq \binom{V}{2}$  , ahol  $\binom{V}{2} = \{\{u,v\}: u,v \in V, u \neq v\}$
- **Diagram:** A G = (V, E) gráf diagramja egy olyan lerajzolása, melyben a csúcsoknak (síkbeli) pontok felelnek meg, éleknek pedig a két végpontot összekötő, önmagukat nem metsző görbék.
- Fokszám:
  - $-v \in V(G)$  esetén a v-re illeszkedő élek száma a v fokszáma.
  - A G gráf csúcsának d (v) foka a vé végpontú élek száma (hurokél kétszer számít).
- Egyszerű gráf: ha egy gráf nem egyszerű, akkor lehetnek párhuzamos élei, hurokélei.
- Irányított gráf: Az irányított gráf olyan gráf, aminek minden éle irányított.
- Véges gráf: G = (V, E) véges gráf, ha V és E is véges halmazok.
- Komplementer gráf:
  - A G egyszerű gráf komplementere  $\overline{G} = (V, (G), \binom{v}{2} \setminus E(G))$ .
  - Két csúcs pontosan akkor szomszédos G-ben, ha a fokszámai megegyeznek vagy, ha minden csúcsának foka ugyan annyi.
- $\bullet$ Reguláris gráf: k-reguláris, ha minden csúcsának pontosan ka fokszáma.
- Él/Csúcstörlés:

Feszítő részgráf (éltöréssel kapható gráf), G = (V, E) gráf  $e \in E$  és  $v \in V$  akkor  $G - e = (V, E \setminus \{e\})$  az éltörés eredménye.

Feszített részgráf: (csúcstörlésekkel kapható gráf), csúcstörléssel keletkező G-v gráfhoz V-ből töröljük v-t, E-ből pedig a v-re illeszkedő éleket.

Részgráf: él- és csúcstörlésekkel kapható gráf.

- Izomorfia: A G és G' gráfok akkor izomorfak, ha mindkét gráf csúcsai úgy számozhatók meg az 1-től n-ig terjedő egész számokkal (alkalmas n esetén), hogy G bármely két u, v csúcsa között pontosan annyi él fut G-ben, mint az u-nak és v-nek megfelelő sorszámú csúcsok között G'-ben. Jelölése:  $G \cong G'$ .
- Élsorozat:  $(v_1, e_1, v_2, e_2, \dots, v_k, e_k, v_{k+1})$ , ahol  $e_i = v_i v_{i+1} \forall i$ . (Tulajdonképp egyik csúcsból eljutunk egy másik csúcsba mindig élek mentén haladva.)
- Séta: olyan élsorozat, amelyikben nincs ismétlődő él.
- Út: olyan élsorozat, amelyikben nincs ismétlődő csúcs.
- Kör: u = v, ha a kezdő (és vég)pontot nem akarjuk megnevezni, akkor zárt élsorozatról, körsétáról ill. körről beszélünk.

#### • Összefüggő gráf:

- A G irányítatlan gráf összefüggő, ha  $u \sim v$ ,  $\forall u, v \in V(G)$  (ha bármely két pontja között vezet séta), ha bármely két csúcsa között vezet út G-ben (ha egy komponense van).
- A G irányított gráfot akkor mondjuk **erősen összefüggő**nek, ha G bármely  $u, v \in V(G)$  esetén van **irányított** uv-út G-ben.
- gyengén összefügő, ha a G-nek megfelelő irányítatlan gráf, összefüggő.

# • Komponens:

- (1)  $K \subseteq V(G)$  pontosan akkor komponense G-nek, ha K-ból nem lép ki éle G-nek, de  $\forall v, v' \in K$  esetén  $v \sim v'$ . (A komponensen belül el lehet jutni minden csúcsból minden csúcsba.)
- (2) Minden G irányítatlan gráf csúcshalmaza egyértelműen bomlik fel G komponenseinek diszjunkt uniójára.
  - A Gkomponense alatt sokszor nem csupán a Gcsúcsainak egy Krészhalmazát, hanem a Káltal feszített részgráfot értjük.
  - $-K \leq V(G)$  a G gráf komponense, ha bármely  $u,v \in K$  között létezik G séta, de nem létezik uv-séta, ha  $u \in K, v \in V(G) \setminus K$ . (Minden gráf egyértelműen bontható komponensekre.)
- Kézfogás-lemma: Ha G=(V,E) véges, nem feltétlenül egyszerű gráf, akkor  $\sum_{v\in V} d(v)=2|E|$ , azaz a csúcsok fokszámösszege az élszám kétszerese.
  - **A KFL bizonyítása:** Készítsükel a G' digráfot úgy, hogy G minden élét egy oda-vissza irányított élpárral helyettesítjük. Ekkor  $\sum_{v \in V} d_G(V) = \sum_{v \in V} \delta_{G'}(v) = |E(G')| = 2|E(G)|$
  - **Megj:** Úgy is bizonyíthattuk volna a kézfogás-lemmát, hogy egyenként húzzuk be G-be az éleket. Üresgráfokra a lemma triviális, és minden egyes él behúzása pontosan 2-vel növeli a kétszeres élszámot és a csúcsok fokszámösszeget is.
- Általánosított kézfogás-lemma: Tetsz. G = (V, E) véges irányított gráfra  $\sum_{v \in V} \delta(v) = \sum_{v \in V} \rho(V) = |E|$ , azaz a csúcsok ki- és befokainak összege is az élszámot adja meg. **Megj:** Úgy is bizonyíthattuk volna az általánosított kéfogás-lemmát, hogy egyenként húzzuk be G-be az éleket. 0-elű (üres)gráfokra a lemma triviális, és minden egyes él behúzása pontosan 1-gyel növeli az élszámot is és a ki/befokok összegét is.

<u>Élhozzáadási lemma</u> erdő, **fa**, fák egyszerűbb tulajdonságai: <u>két levél</u>, <u>erdők élszáma</u>. **Feszítőfa** létezése, feszítőfához tartozó alapkörök és alap vágások.

- Élhozzáadási lemma (ÉHL): Legyen G irányítatlan gráf és G' = G + e. Ekkor az alábbi két esetből pontosan egy valósul meg.
  - (1) G és G' komponensei megegyeznek, de G'-nek eggyel több köre van, mint G-nek.
  - (2) G és G' körei megegyeznek, de G'-nek eggyel kevesebb komponense van, mint G-nek.
- Erdő: A körmentes irányítatlan gráfot erdőnek nevezzük.
- Fa: Az összefüggő, körmentes irányítatlan gráf neve fa.
  - -G erdő  $\iff$  G minden komponense fa.
  - -G n-csúcsú, k-komponensű erdő  $\Rightarrow |E(G)| = n k$ .
  - **Biz:** Építsük fel G-t a  $\overline{K_n}$  üresgráfból az élek egyenkénti behúzásával. G körmentes, ezért az ÉHL miatt minden él zöld: behúzásakor 1-gyel csökken a komponensek száma. A  $\overline{K_n}$  üresgráfnak n komponense van, G-nek pedig k. Ezért pontosan n-k zöld élt kellett behúzni G felépítéséhez.
- Két levél: Legyen F egy tetszőleges fa n csúcson. Ekkor ha  $n \ge 2$ , akkor F-nek legalább két levele van.
  - **Biz:** (Algebrai út) A KFL miatt  $\sum_{v \in V(G)} (d(v) 2) = \sum_{v \in V(G)} d(v) 2n = 2(n-1) 2n = -2$ . F minden v csúcsára  $d(v) \ge 1$  teljesül, ezért  $d(v) 2 \ge -1$ . A fenti összeg csak úgy lehet −2, ha F-nek legalább 2 levele van.
  - **Biz:** (Kombinatorikus út) Induljunk el F egy tetszőleges v csúcsából egy sétán, és haladjunk, amíg tununk. Ha sosem akadunk el, akkor előbb-utóbb ismétlődik egy csúcs, és kört találunk. Ezért elakadunk, és az csakis egy v-től különböző u levélben történhet. Ha d(v) = 1, akkor v egy u-tól különböző levél. Ha  $d(v) \ge 2$ , akkor sétát indíthatunk v-ből egy másik él mentén. Ekkor egy u-tól különböző levélben akadunk el.
- Feszítőfa F a G gráf feszítőfája (ffa), ha F egy G-ből éltörésekkel kapható fa. Ha G-nek van feszítőfája  $\Leftrightarrow$  (akkor) összefüggő.
- Alapvágás, alapkör:

A G gráf F feszítőfájának f éléhez tartozó alap vágást G azon élei alkotják, amik az F - f által létrehozott két komponens között futnak.

Az  $e \in E(G) \setminus E(F)$  éléhez tarozó alapkör pedig az F + e köre.

**Megf:** Tfh  $f \in F$  és  $e \in E(G) \setminus E(F)$ . Ekkor  $(F - f + e \text{ ffa}) \iff (f \text{ benne van } e \text{ alapkörében}) \iff (e \text{ benne van } f \text{ alap vágásában}).$ 

Minimális költségű feszítőfa, mkffák struktúrája, Kruskal-algoritmus helyessége, villamos hálózathoz tartozó normál fa keresése.

- Minimális költségű feszítőfa: Adott a G=(V,E) irányítatlan gráf élein a  $k:E\to\mathbb{R}^+$  költségfüggvény. Az  $F\subseteq E$  élhalmaz költsége az F-beli élek összköltsége:  $k(F)=\sum_{f\in F}k(F)$ . Az  $F\subseteq E$  élhalmaz G-ben minimális költségű feszítőfa (mkffa), ha
  - (1) (V, F) a G feszítőfája, és
  - (2)  $k(F) \leq k(F')$  teljesül a G bármely (V, F') feszítőfájára.

$$F_i := \begin{cases} F_{i-1} \cup \{e_i\} & \text{ha } F_{i-1} \cup \{e_i\} \text{ k\"ormentes.} \\ F_{i-1} & \text{ha } F_{i-1} \cup \{e_i\} \text{ tartalmaz k\"ort.} \end{cases} \quad F := F_m$$

- Minimális költségű feszítőfa: olyan  $F \in E$  élhalmaz, amire (V, F) fa, és k(F) minimális.
- Mkkfák struktúrája: G=(V,E) gráf és  $k:E\to\mathbb{R}^+$  költségfüggvény esetén legyen  $G_c$  a legfeljebb c költségű élek alkotta feszítő részgráfja G-nak:  $G_c=(V,E_c)$ , ahol  $E_c:=\{e\in E:k(e)\leq c\}$ .

**Megf:** A G gráfon futtotott Kruskal-algoritmus outputja tartalmazza  $G_c$  egy feszítő erdejét minden  $c \geq 0$  esetén

**Lemma:** Tfh  $F = \{f_1, f_2, \dots, f_l\}, k(f_1) \leq k(f_2) \leq \dots \leq k(f_l)$  és  $F \cap E_c$  a  $G_c$  egy feszítő erdeje  $\forall c \geq 0$ -ra. Tfh  $F' = \{f'_1, f'_2, \dots, f'_l\}$  a G egy feszítő erdejének élei, és  $k(f'_1) \leq k(f'_2) \leq \dots \leq k(f'_l)$ . Ekkor  $k(f_i) \leq k(f'_i)$  teljesül  $\forall 1 \leq i \leq l$  esetén, így  $k(F) \leq k(F')$ .

Köv: (1) A Kruskal-algoritmus outputja a G gráf egy minimális költségű feszítő erdeje.

**Köv:** (2) Az F' élhalmaz pontosan akkor minimális költségű feszítő erdeje G-nek, ha  $F' \cap E_c$  a  $G_c$  egy feszítő erdeje minden  $c \leq 0$ -ra.

Biz: A Lemma bizonyítja az elégségességet.

# • Kruskal algoritmus:

- Input: G = (V, E) gráf, és  $k : E \to \mathbb{R}^+$  költségfüggvény.
- Output: minimális költségű feszítőfa.
- <u>Működés:</u> minden lépésben megépítjuk a legolcsóbb élt, ami nem hoz létre kört. Mohó algoritmus, mert csak azzal törődik, ami éppen a legalacsonyabb költségű. Az így keletkezett fa a G gráf egy minimális költségű (súlyú) feszítőfája.
- Helyességének bizonyítása: tegyük fel, hogy az algoritmus helytelen, ekkor létezik egy fél, amit ehelyére bevéve olcsóbb feszítőfát kapunk. Ekkor azonban f költsége kisebb, mint e költsége, így f-et az algoritmussal korábban már ellenőriztük, tehát ellentmondásra jutottunk, azaz a feszítőfa minimális költségű.
- Villamos hálózatohoz tartozó normál fa keresése:



- Tegyük fel, hogy egy áramkör a fenti kétpólusú áramköri elemekből áll. Az áramkör tulajdonképpen egy gráf, aminek minden éle egy-egy áramköri elemnek felel meg. Az, hogy mi történik (mik lesznek az élek mentén az áramerősségek, és a gráfcsúcsok között a potenciálkülönbségek), a Kirchoff- ill. Ohm-törvényekkel írható le.
- Csomóponti törvény: a gráf egy ponthalmazából kilépő éleken az áramerősségek előjeles összege 0.
- Huroktörvény: a gráf tetszőleges köre mentén a potenciálkülönbségek összege 0.

- Mikor "értelmes" egy ilyen hálózat? Akkor, ha a fenti törvényekkel felírt egyenletrendszer egyértelműen megoldható. Bizonyítható, hogy ha a fenti esetek egyike sem áll fenn, akkor a megoldás egyértelmű, a hálózat "értelmes". Ennek a a bizonyítéka a normál fa: G olyan feszítőfája, ami minden feszültségforrást tartalmaz, de egyetelen árramforrást sem (és mindemellett a legtöbb kapacitást és a lehető legkevesebb induktivitás tartalmazza).
- Normál fa keresése: fesz.forrás (1), kapacitás (2), ellenállás (3), induktivitás (4), áramforrás (5) élköltségekhez keressünk mkffát! Ha ez tartalmaz áramforrást, vagy nem tartalmaz minden feszültségforrást, akkor nincs normál fa, egyébként a mkffa egy normál fa és egyértelmű a megoldás "értelmes" a hálózat.

Általános gráfbejárás: a csúcsok állapotváltozása, a bejárás általános lépései, a bejáráshoz tartozó sorrend ill. az élek osztályozása bejárás után. A BFS és tulajdonságai, legrövidebb utak fájának létezése.

- Általános gárfbejárás & BFS: A gráfbejárási algoritmus az inputgráf csúcsait és éleit fedezi fel. Minden csúcs az eléretlen → elért → befejezett állapotokat veszi fel. A bejárás akkor ér véget, amint minden csúcs befejezetté vált.
  - 1. Van elért csúcs. Választunk egyet, mondjuk u-t.
    - (1a) Ha van olyan uv él, amire v eléretlen, akkor v elérté válik.
    - (1b) Ha nincs ilyen uv él, akkor u befejezetté válik.
  - 2. Nincs elért csúcs.
    - (2a) Ha van eléretlen u csúcs, akkor u-t elértté tesszük.
    - (2b) Ha nincs eléretlen csúcs (azaz minden csúcs fejezett), akkor END.

# Szélességi bejárás (BFS) szabálya:

Az 1. esetben mindig a legkorábban elért u-t választjuk.

**Input:** G = (V, E) (ir/ir.tatlan) gráf,  $(v \in V \text{ gyökérpont}^1)$ .

# **Output:**

- (1) A csúcsok elérési és befejezési sorrendje.
- (2) Az élek osztályozása:

faél: Olyan él, ami mentén egy csúcs elértté vált.

uv előreél: nem faél, de u-ból v-be faélekből irányított út vezet.

uv visszaél: v-ből u-ba faélekből irányított út vezet.

**keresztél:** minden más él (u és v közt nincs leszármazott viszony).

(3) A **bejárás fája:** a faélek alkotta részgráf. (A bejárás fája valójában egy gyökereiből kifelé irányított erdő.)

Megf: Irányítatlan esetben az előreél és a visszaél ugyanazt jelenti.

**Terminológia:** Ha a bejárás fájában u-ból v-be irányított út vezet, akkor u a v őse és v az u leszármazottja. A faél és az előreél tehát ősből leszármazottba, a visszaél leszármazottból ősbe vezet.

A bejárás során kialakul a csúcsok egy elérési ill. egy befejezési sorrendje, továbbá minden csúcshoz feljegyezzük azt is, hogy melyik él mentén értük el (ha van ilyen él). Ez utóbbi élek (faélek) alkotják a bejárás fáját (ami egyrészt irányított, másrészt pedig erdő). A G gráf további uv éle előreél  $\Rightarrow$ , ha u a bejárás fájában a v őse, ha u a v leszármazottja, akkor visszaél. Minden más pedig keresztél. (Irányítatlan gráf bejárásakor minden élt oda-vissza irányított élnek tekintünk.)

#### • A BFS tulajdonságai

Nézzük meg egy irányított gráf BFS bejárását is.

Állítás: Tfh G = (V, E) BFS bejárása után a csúcsok elérési sorrendje  $v_1, v_2, \dots, v_n$ . Ekkor az alábbiak teljesülnek.

(1) Ha i < j, akkor  $v_i$ -t hamarabb fejezük be, mint  $v_j$ -t, továbbá  $v_i$  gyerekei megelőzik  $v_j$  gyerekeit az elérési sorrendben.

**Biz:** A  $v_i$ -t befejezésének pillanatában  $v_i$  minden gyereke elért, de  $v_j$ -nek még egy gyereke sem az. Ezért  $v_i$  gyerekeit a  $v_i$  csúcs befejezése után érjük el, majd ezt követően fejezzük be  $v_i$ -t.

(2) Az elérési és befejezési sorrend (BFS esetén) megegyezik.

Biz: Ha  $v_i$ -t korábban érjük el, mint  $v_j$ -t, akkor (1) miatt  $v_i$ -t korábban is fejezzük be  $v_j$ -nél. Ezért bármely két csúcs sorrendje ugyanaz az elérési sorrendben mint befejezési sorrendben. Tehát az elérési sorrendnek meg kell egyeznie a befejezési sorrenddel.

(3) Gráfél nem ugorhat át faélt: ha  $k < i < j \le l$  és  $v_i v_j$  faél, akkor  $v_k v_l$  nem lehet gráfél.

Biz: Ha  $v_k v_l \in E(G)$ , akkor  $v_l$  szülője  $v_k$  vagy egy  $v_k$ -t megelőző csúcs. (1) miatt  $v_j$  szülője sem következhet  $v_k$  után, vagyis  $v_i$  nem lehet  $v_j$  szülője.

<sup>&</sup>lt;sup>1</sup>A gyökérben kezdetben elért állapotú, ezért kivétel az általános szabály alól.

(4) Nincs előreél. (Irányítatlan eset: csak faél és keresztél van.)

**Biz:** Indirekt: ha  $v_iv_j$  előreél lenne, akkor  $v_i$ -ből  $v_j$ -be irányított út vezetne a BFS-fában, és  $v_iv_j$  ennek a faélekből álló útnak az utolsó élét átugraná.

(5) Ha a BFS-fában k-élű irányított út vezet u-ból v-be, akkor G-ben nincs k-nál kevesebb élű uv-út.

Biz: Ha lenne a BFS fa-beli útnál kevesebb élű út G-ben, akkor lenne olyan gráfél, ami faélt ugrik át.

(6) A BFS-fa egy legrövidebb utak fája: a BFS-fa  $v_1$  gyökeréből bármely  $v_i$  csúcsba vezető faút a G egy legkevesebb élű  $v_1v_i$ -útja.

# • Legrövidebb utak

**Def:** Adott G (ir) gráf és  $l: E(G) \to \mathbb{R}$  hosszfüggvény esetén egy P út hossza a P éleinek összhossza:  $l(P) = \sum_{e \in E(P)} l(e)$ .

Az u és v csúcsok távolsága a legrövidebb uv-út hossza:  $dist_l(u,v) := \min\{l(P) : P \ uv$ -út} ( $\nexists uv$ -út $\Rightarrow dist_l(u,v) = \infty$ .) Az l hosszfüggvénye nemnegatív, ha  $l(e) \geq 0$  teljesül minden e élre. Az l hosszüggvény konzervatív, ha G-ben  $\nexists$  negatív összhosszú ir. kör.

Cél: Legrövidebb út keresése irányított/irányítatlan gráfban.

Megf: Ha l(e) = 1 a G minden e élére, akkor l(P) a P élszáma. Ezért a BFS-fa minden gyökérből elérhető csúcsba tartalmaz egy legrövidebb utat a gyökérből, azaz a szélességi bejárás tekinthető egy legrövidebb utat kereső algoritmusnak is.

**Def:** Adott G (ir) gráf,  $l: E(G) \to \mathbb{R}$  hosszfüggvény és  $r \in V(G)$ . (r, l)-felső becslés olyan  $f: V(G) \to \mathbb{R}$  függvény, ami felülről becsli minden csúcs r-től mért távolságát:  $dist_l(r, v) \ge f(v) \forall v \in V(G)$ .

Triviális (r, l)-felső becslés:  $f(v) = \begin{cases} 0 & v = r \\ \infty & v \neq r \end{cases}$ 

Pontos (r, l)-felső becslés:  $f(v) = dist_l(r, l) \ \forall v \in V(G)$ .

Gráfút hossza, gráfcsúcsok távolsága, nemnegatív és konzervatív hosszfüggvény, triviális és pontos (r,l)-felső becslés, <u>élmenti javítás</u>. Dijkstra-algoritmus működése, Ford-algoritmus <u>helyessége</u> és lépésszáma. Legrövidebb utak fájának létezése.

• Def: Adott G (ir) gráf és  $l: E(G) \to \mathbb{R}$  hosszfüggvény esetén egy P út hossza a P éleinek összhossza:  $l(P) = \sum_{e \in E(P)} l(e)$ .

Az u és v csúcsok távolsága a legrövidebb uv-út hossza:  $dist_l(u,v) := \min\{l(P) : P \ uv$ -út} ( $\nexists uv$ -út $\Rightarrow dist_l(u,v) = \infty$ .) Az l hosszfüggvénye nemnegatív, ha  $l(e) \geq 0$  teljesül minden e élre. Az l hosszvüggvénye konzervatív, ha G-ben  $\nexists$  negatív összhosszú ir. kör.

Cél: Legrövidebb út keresése irányított/irányítatlan gráfban.

Megf: Ha l(e) = 1 a G minden e élére, akkor l(P) a P élszáma. Ezért a BFS-fa minden gyökérből elérhető csúcsba tartalmaz egy legrövidebb utat a gyökérből elérhető csúcsba tartalmaz egy legrövidebb utat a gyökérből, azaz a szélességi bejárás tekinthető egy legrövidebb utat kereső algoritmusnak is.

**Def:** Adott G (ir) gráf,  $l: E(G) \to \mathbb{R}$  hosszfüggvény és  $r \in V(G)$ . (r, l)-felső becslés olyan  $f: V(G) \to \mathbb{R}$  függvény, ami felülről becsli minden csúcs r-től mért távolságát:  $dist_l(r, v) \ge f(v) \forall v \in V(G)$ .

Triviális 
$$(r,l)$$
-felső becslés:  $f(v) = \begin{cases} 0 & v = r \\ \infty & v \neq r \end{cases}$ 

Pontos (r, l)-felső becslés:  $f(v) = dist_l(r, l) \ \forall v \in V(G)$ .

• Adott G = (V, E) irányított gráf és egy  $l : E \to \mathbb{R}$  élhosszfv. Egy G-beli irányított út hossza az út éleinek összhossza,  $dist_l(n, v)$  pedig az irányított uv-utak közül a legrövidebb hosszát jelöli.

Az l hosszfv konzervatív ha nincs G-ben negatív összhosszúságú irányított kör.

Adott G = (V, E) irányított gráf  $r \in v$  és egy  $l : E \to \mathbb{R}$  élhosszfv. Az  $f : v \to \mathbb{R}$  függvényt (r, l)-felső becslésnek nevezzük, ha f(r) = 0 és  $f(v) \le dist_l(r, v)$  teljesül G minden v csúcsára. Az e = uv élmenti javítás esetén a f(v) értéket a  $min\{f(v), f(u) + l(uv)\}$  értékkel helyettesíthetjük.

- (1) Ha l konzervatív akkor tetsz. (r, l)-fb. élmenti javítása (r, l)-fb-t ad.
- (2) Ha az f(r, l) felső becsléshez nincs érdemi élmenti javítás, akkor  $f(v) = dist_l(r, v) \ \forall v \in V$ .
- Az élmenti javítás

```
Def: Tfh f egy (r, l)-felső becslés és uv \in E(G). Az f uv-elméleti javítása az az f', amire f'(z) = \begin{cases} f(z) & z \neq v \\ min\{f(v), f(u) + l(uv)\} & z = v \end{cases}
```

**Megf:** Tfh az  $l: E(G) \to \mathbb{R}$  hosszfüggvény konzervatív és f(r) = 0.

Ekkor (1) Az f(r, l)-felső becslés élmenti javítása mindig (r, l)-felső becslést ad.

Biz: Azt kell megmutatni, hogy van olyan rv-út, aminek a hossza legfeljebb f(u) + l(uv). Ha egy legrövidebb ru-utat kiegészítünk az uv éllel, akkor olyan rv-élsorozatot kapunk, aminek az összhossza  $dist_l(r,u) + l(uv) \le f(u) + l(uv)$ . "Könnyen" látható, hogy az élhosszfüggvény konzervativitása miatt ha van x összhosszúságú rv-élsorozat, akkor van legfeljebb x összhosszúságú xv-út is. Ezek szerint van legfeljebb f(u) + l(u,v) hosszúságú xv-út is, azaz az érdemi élmenti javítás után szintén (r,l)-felső becslést kapunk.

(2) f(r,l)-felső becslés (pontosan)  $\iff$  (f-en  $\nexists$  érdemi élmenti javítás).

Biz:  $\Rightarrow$ : Ha f pontos, akkor biztosan nincs rajta érdemi élmenti javítás: ha volna, akkor egy felső becslés a pontos érték alá csökkenne, így az élmenti javítás nem (r,l)-felső becslést eredményezne.  $\Leftarrow$ : Legyen  $v \in V(G)$  tetsz, és legyen P egy legrövidebbb rv-út. A P egyik éle mentén sincs érdemi élmenti javítás, ezért P minden u csúcsára pontos a felső becslés:  $f(u) = dist_l(r,u)$ . Ez igaz az út utolsó csúcsára, a tetszőlegesen választott v-re is.

- Dijkstra algoritmus működése:
  - Input: G = (V, E) irányított gráf,  $l: E \to \mathbb{R}^+$  nemnegatív hosszfüggvény,  $r \in V$  gyökér
  - **Output**:  $dist_l(r, v)$  minden  $v \in V$ -re.
  - **Működés**: Kezdetben  $U_0 = \emptyset$ , f(r) = 0 és  $f(v) = \infty$ , ha  $v \neq r$ . Az algoritmus *i*-dik fázisában (i = 1, 2, ..., |v|) a következő történik.

- 1. Legyen  $u_i$  a v csúcs a  $v \setminus u_{i-1}$  halmazból, amelyre f(r) minimális és legyen  $u_{i-1} \cup u_i$ .
- 2. Végezzünk élmenti javításokat minden  $u_i$ -ből kivezető  $u_i x$  élen.

Az output a |v|-dik fázik utáni f függvény. Szokás megjelölni a végső f(v) értékeket beállító éleket. Ha az output az f(r, l)-felső becslés, akkor

- (1)  $f(u_i) \le f(u_{i+1}) \ \forall 1 \le u$ -re.
- $(2) f(u_i) \le f(u_2) \le \dots \le (u_n)$
- (3) élmentijavítás nem változhat f-n.
- A Dijkstra-algoritmus helyesen működik, azaz  $dist_l(r,v) = f(v) \forall v \in V$  teljesül. Az algoritmus során megjelölt élek egy legrövidebb utak fáját alkotják G-ben: az r gyökérből minden r-ből elérhető csúcshoz vezet olyan legrövidebb út is, ami csak megjelölt éleket tartalmaz.
- A Dijkstra-algoritmus lépésszáma legfeljebb.  $konst \cdot (n^2 + m)$ , ahol  $n = |v| \ m = |E|$ .
- Dijkstra-algoritmus: Input:  $G=(V,E), l: E \to \mathbb{R}_+, r \in V$ . Output:  $dist_l(r,v) \forall v \in V$  Működés:  $U_0:=\emptyset, f_0$  a triviális.  $(r,\overline{l})$ -felső becslés.

Az i-dik fázis:

- 1. Legyen  $U_i := U_{i-1} \cup \{u_i\}$ , ahol  $u_i$  olyan csúcs a  $V \setminus U_{i-1}$  halmazból, amelyre  $f_{i-1}(v)$  minimális.
- 2.  $f_i: f_{i-1}$  élmenti javítása minden  $U_i$ -ből kivezető  $u_i x$  élen. Output:  $f_{|V|}$ . Megjelöljük a végső  $f_{|V|}(V)$  értékeket beállító éleket.

Megf: Ha a v-be vezet megjelölt él, akkor vezet r-ből v-be megjelölt éleken út, és ennek hozza megegyezik  $f_{|V|}(v)$ -vel.

Biz:  $f_{|V|}(r) = 0$ , és a megjelölt élek mentén haladva az  $f_{|V|}$  érték az élhosszal növekszik.

# • Dijkstra helyessége

Megf: Tfh  $u_1, u_2, \dots, u_n$  a G csúcsainak sorrendje a Dijkstra-algoritmus végrehajtása után.

(1) Ekkor  $f_{|V|}(u_i) \leq f_{|V|}(u_{i+1})$  teljesül  $\forall 1 \leq i \leq n$ .

Biz: Az *i*-dik fázisban  $f_i(u_i) \leq f_i(u_{i+1})$  teljesült az  $u_i$  választása miatt. Ezek után  $f_i(u_i)$  már nem változott:  $f_{|V|}(u_i) = f_i(u_i)$ . Ugyan  $f_i(u_{i+1})$  még csökkenhetett, de csak az  $u_iu_{i+1}$  él mentén történt javítás miatt, hiszen az (i+1)-dik fázisban  $u_{i+1}$  bekerült az  $U_i$  halmazba, és a hozzá tartozó (r,l)-fb már nem csökken tovább. Ekkor  $f_{i+1}(u_{i+1}) = min\{f_i(u_{i+1}), f_i(u_i) + l(u_iu_{i+1})\} \geq f_i(u_i)$ , mivel  $l(u_iu_{i+1}) > 0$ . Ezért  $f_{|V|}(u_i) = f_i(u_i) \leq f_{i+1}(u_{i+1}) = f_{|V|}(u_{i+1})$ 

- (2)  $f_{|V|}(u_1) \le f_{|V|}(u_2) \le \dots \le f_{|V|}(u_n)$
- (3) A Dijsktra-algoritmus outputjaként kaptt  $f_{|V|}$ -n élmenti javítás nem tud változtatni.

Biz: Tegyük fel, hogy  $u_i u_j \in E(G)$  a G egy tetszőleges éle. Ha i > j, akkor (2) miatt  $f_{|V|}(u_i) \ge f_{|V|}(u_j)$ , ezért az  $u_i u_j$  mentén történő javítás nem tudja  $f_{|V|}(u_j)$ -t csökkenteni, hisz  $l(u_i u_j)$  pozitív. Ha pedig i < j, akkor az i-dik fázisban megtörtént az  $u_i u_j$  mentén történő javítás, és ezt követően  $f(u_i)$  nem változott, azaz  $f_{|V|}(u_i) = f_i(u_i)$ . A másik (r, l)-felső becslés pedig csak tovább csökkenhetett a későbbi émj-ok során  $f_{|V|}(u_j) \le f_i(u_j)$ . Ezért az  $u_i u_j$  él mentén sem az i-dik fázisban, sem később nincs érdemi javítás.

**Tétel:** A Dijsktra-algoritmus helyesen működik, azaz G minden csúcsára igaz, hogy  $dist(r, v) = f_{|V|}(v)$ .

Biz: A Dijsktra-algoritmus az  $f_0$  triviális (r,l)-felső becslésből indul ki, és élmenti javításokat alkalmaz. Így minden  $f_i$  (speciálisan  $f_{|V|}$  is) (r,l)-felső becslés lesz. A fenti (3)-as megfigyelés miatt  $f_{|V|}$ -n nem végezhető érdemi élmenti javítás. Ezért egy korábbi (2)-es megfigyelés miatt  $f_{|V|}$  pontos (r,l)-felső becslés, azaz  $f_{|V|}(v) = dist_l(r,v) \forall v \in V(G)$ .

- Könnyű olyan példát találni, ahol a Dijkstra-algoritmus konzervatív hosszfüggvény esetén hibás eredményt ad. Azonban konzervatív hosszüffvény esetén is igaz, hogy
  - -(r, l)-fb élmenti javítása (r, l)-fb-t eredményez, ill.
  - ha egy (r, l)-fb-ben nem végezhető erdemi élmenti javítás, akkor pontos.

konzervatív hosszfüggvény esetén is hasonló startégiát követünk: Élmenti javításokat végzünk a triviális (r, l)-fb-en, míg van érdemi javítás.

# Ford-algoritmus:

Input: G = (V, E) irányított,  $l: E \to \mathbb{R}$  konzervatív hosszfüggvény,  $r \in V$  gyökérpont.

Output:  $dist_l(r, l)$  minden  $v \in V$ 

 $\overline{\text{Működés:}}$  Legyen  $E = \{e_1, e_2, \dots, e_m\}$ . Kezdetben legy f(r) = 0 és  $v \neq r$  esetén  $f(v) = \infty$ , Az *i*-dik fázis

 $i=1,2,\ldots,n-1$  esetén abból áll, hogy elvégezzük az  $e_1,e_2,\ldots,e_m$  élek menti javításokat. A végén az OUTPUT:  $dist_l(r,v)=f(v)$  minden v-re.  $(dist_l(r,v)=f_{n-1}(v)\forall v\in V)$ 

**Állítás:** Ha *l* konzervatív, akkor  $dist_l(v)$   $v \in V$ -re.

Biz:  $f_1(v) = dist_l(r, v)$  ha  $\exists \le 1$ -élű legrövidebb rv-út.  $f_2(v) = dist_l(r, v)$  ha  $\exists \le 2$ -élű legrövidebb rv-út. ...  $f_{n-1}(v) = dist_l(r, v)$  ha  $\exists \le (n-1)$ -élű legrövidebb rv-út. Tehát  $f_{n-1}(v) = dist_l(r, v) \forall v \in V$ .

Megf: Ha  $f_i = f_{i-1}$ , akkor a Ford-algoritmust az *i*-dik fázis után be lehet fejezni, hisz nincs érdemi élmenti javítás, így  $f_{n-1} = f_i$ .

**Megj:** Az  $f_{n-1}(v)$ -t beállító élek legrövidebb utak fáját alkozják.

**Biz:** A Dijkstra esethez hasonló. Tetszőleges v csúcsból visszafelé követve a végső értékeket beállító éleket  $f_{n-1}(v)$  hosszúságú rv-utat találunk.

"Lépésszámanalízis": Ha a |V(G)|=n és |E(G)|=m, akkor minden fázisban  $\leq m$  élmenti javítás, ami  $konst \cdot m$  lépés. Ez összesen  $\leq konst \cdot (n-1) \cdot m \leq konst \cdot n^3$  lépés, az algoritmus hatékony.

**Mélységi keresés** és alkalmazásai (<u>fellépő éltípusok</u>, mélységi- és befejezési számozásból az éltípus meghatározása, irányított kör létezésének eldöntése DFS-sel).

# • Depth First Search (DFS)

(A mélységi bejárás avagy DFS alatt olyan gráfbejárást értünk, amikor mindig a legutolsónak elért csúcsból kerül elérésre a soron következőnek elért csúcs. Az elérési illetve befejezési sorrendből adódik minden v csúcshoz egy m(v) mélységi ill. b(v) befejezési szám.)

"Mélységi bejárás (DFS): A bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

**Megj:** A BFS konkrét megvalósításában szükség van arra, hogy az elért csúcsokat úgy tároljuk, hogy könnyű legyen kiválasztani az elért csúcsok közül a legkorábban elértet. Erre egy célszerű adatstruktúra a sor (avagy FIFO lista (First In First Out)). Ha a BFS megvalósításában ezt az adatstruktúrát veremre (más néven LIFO listára (Last In First Out)) cseréljük, akkor a DFS egy megvalósítása adódik.

 $\mathbf{Megf:}$  Tegyük fel, hogy a G gráf éleit DFS után osztályoztuk.

(1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).

Biz: v-t u-ból értük el, ezért m(u) < m(v). A v elérésekor u és v elért állapotúak. A DFS szerint v-t u előtt fejezzük be.

(2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).

Biz: u-ból v-be faéleken keresztül vezet irányított út. (1) miatt az út mentén a mélységi szám növekszik, befejezési csökken.

(3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).

Biz: v-ből u-ba faéleken keresztül vezet irányított út. (1) miatt az út mentén a mélységi szám növekszik, a befejezési csökken.

(4) Ha uv keresztél, akkor m(u) > m(v) és b(u) > b(v).

Biz: m(u) < m(v) esetén a DFS miatt v az u leszármazottja lenne. Ezért m(u) > m(u). Ha u-t a v befejezése előtt érnénk el, akkor u a v leszármazottja lenne. Ezért az alábbi sorrendben történik u és v evolúciója: v elérése, v befejezése, v befejezése, v befejezése, v befejezése.

(5) Irányítatlan gráf DFS bejárása után nincs keresztél.

**Biz:** Indirekt. Ha uv keresztél, akkor (4) miatt m(u) > m(v), továbbá vu is keresztél, ezért m(v) > m(u). Ellentmondás.

(6) Ha DFS után van visszaél, akkor G tartalmaz irányított kört.

Biz: A DFS fa visszaélhez tartozó alapköre a G egy irányított köre.

(7) Ha DFS után nincs visszaél, akkor G-ben nincs irányított kör.

Biz: Bármely irányított körnek van olyan uv éle, amire b(u) < b(v). Ez az él csak visszaél lehet.

A mélységi bejárás lépésszáma lineáris, azaz van olyan c konstans, hogy tetszőleges u csúcsú, m élű gráf DFS-éhez legfeljebb c(n+m) lépés szükséges.

#### • Directed Acyclic Graphs

**Def:** A G = (V, E) irányított gráf aciklikus (más néven **DAG**), ha G nem tartalmaz irányított kört.

**Példa:** DAG-ot úgy kaphatunk, hogy egy G irányítatlan gráf csúcsait csupa különböző számmal megszámozzuk, és minden élt a kisebb számot viselő csúcsból a nagyobba irányítunk.

Ha ugyanis lenne az így megirányított gráfban irányított kör, akkor az élei mentén a számok végig növekednének, ami lehetetlen. Azt fogjuk igazolni, hogy a fenti példa minden DAG-ot leír.

**Def:** A G = (V, E) irányított gráf csúcsainak topologikus sorrendje alatt a csúcsok olyan sorrendjét értjük, amire igaz, hogy minden irányított él a sorban előbb álló csúcsból vezet a sorban későbbi csúcsba.  $(V = \{v_1, v_2, \dots, v_n\}, v_i v_j \in E \Rightarrow i < j)$ 

**Tétel:** (G irányított gráf DAG)  $\Leftrightarrow$  (V(G)-nek  $\exists$  topologikus sorrendje).

Biz: Tegyük fel, hogy  $\exists$  toplogikus sorrend. Láttuk, hogy G ekkor DAG.  $\checkmark$ 

**Biz:** Most tegyük fel, hogy G DAG, és futtassunk rajra egy DFS-t. Láttuk, hogy a DFS után nem lesz visszaél, ezért minden uv irányított élre b(u) > b(v) teljesül. Ezért a csúcsok befejezési sorrendjének megfordítása a G csúcsainak egy topologikus sorrendje.

Köv: Irányított gráf aciklikussága DFS-sel gyorsan eldönthető: ha van visszaél, akkor a visszaél DFS-fabeli alapköre G egy irányított köre, így G nem DAG. Ha pedig nincs visszaél, akkor a fordított befejezési sorrend a G egy topologikus sorrendje, G tehát DAG.

Megj: DAG-ban topologikus sorrendet forráskeresések és forrástörlések alkalmazásával is találhatunk.

**DAG**, <u>jellemzése</u>, **topologikus sorrend** <u>keresése</u>. Leghosszabb utak keresése, **PERT-módszer**, kritikus utak és <u>tevékenysége</u>k.

# • Direct Acyclic Graphs

**Def:** A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

**Példa:** DAG-ot úgy kaphatunk, hogy egy G irányítatlan gráf csúcsait csupa különbözőszámmal megszámozzuk, és minden élt a kisebb számot viselő csúcsból a nagyobba irányítunk.

Ha ugyanis lenne az így megirányított gráfban irányított kör, akkor az élei mentén a számok végig növekednének, ami lehetetlen. Azt fogjuk igazolni, hogy a fenti példa minden DAG-ot leír.

**Def:** A G = (V, E) irányított gráf csúcsainak topologikus sorrendje alatt a csúcsok olyan sorrendjét értjük, amire igaz, hogy minden irányított él a sorban előbb álló csúcsból vezet a sorban későbbi csúcsba.  $(V = \{v_1, v_2, \ldots, v_n\}, v_i v_j \in E \Rightarrow i < j)$ 

**Tétel:** (G irányított gráf DAG)  $\Leftrightarrow$  (V(G)-nek  $\exists$  topologikus sorrendje).

Biz: Tegyük fel, hogy  $\exists$  toplogikus sorrend. Láttuk, hogy G ekkor DAG.  $\checkmark$ 

Biz: Most tegyük fel, hogy G DAG, és futtassunk rajra egy DFS-t. Láttuk, hogy a DFS után nem lesz visszaél, ezért minden uv irányított élre b(u) > b(v) teljesül. Ezért a csúcsok befejezési sorrendjének megfordítása a G csúcsainak egy topologikus sorrendje.  $\square$ 

Köv: Irányított gráf aciklikussága DFS-sel gyorsan eldönthető: ha van visszaél, akkor a visszaél DFS-fabeli alapköre G egy irányított köre, így G nem DAG. Ha pedig nincs visszaél, akkor a fordított befejezési sorrend a G egy topologikus sorrendje, G tehát DAG.

Megj: DAG-ban topologikus sorrendet forráskeresések és forrástörlések alkalmazásával is találhatunk.

#### • Leghosszabb út keresése

Ötlet: Az l'(uv) = -l(uv) élhosszokkal a leghosszabb utak legrövidebbekké válnak. Olyanokat pedig tudunk keresni.

Gond: A módszerünk csak konzervatív élhosszokra működik. Irányítatlan gráfon ez nemnegatív élhosszokat jelent, ezért ez az ötlet itt nem segít. Irányított esetben nem baj a negatív élhossz, feltéve, hogy G DAG. Ekkor Ford, Floyd bármelyike használható.

Jó hír: Van egy még gyorsabb módszer: a dinamikus programozás. Ennek segítségével tetszőleges G DAG minden v csúcsához ki tudjuk számítani a v-be vezető leghosszabb utat. (Sőt! ...)

#### Leghosszabb út DAG-ban:

Input:  $G = (V, E)DAG, l : E \to \mathbb{R}$ .

Output:  $max\{l(P) : Pv$ -be vezető út} minden  $v \in V$  csúcsra.

<u>Működés:</u>

 $1 V = \{v_1, v_2, \dots, v_n\}$  topologikus sorrend meghatározása.

$$\boxed{2} \ i = 1, 2, \dots, n : f(v_i) = \max\{\max\{f(v_j) + l(v_j v_i) : v_j v_i \in E\}, 0\}$$

Output:  $f(v) \forall v \in V$ 

Helyesség: Ha a  $v_i$ -be vezető leghosszabb út utolsó előtti csúcsa  $v_j$ , akkor  $f(v_i) = f(f_j) + l(v_j v_i)$ .

**Megj:** Ha a fenti algoritmusban minden csúcsra megjelöljük az f(v) értéket beállító élt (éleket), akkor a megjelölt élek minden v csúcsba megadnak egy leghosszabb utat. Sőt: minden v-be vezető leghosszabb megkapható így.

# • A PERT probléma

Egy  $a, b, \ldots$  tevékenységekből álló projektet kell végrehajtanunk.

**Precedeniafeltételek:** bizonyos (u, v) párok esetén előírás, hogy az u tevékenységet a v előtt kell elvégezni, ezért v az u kezdetét követően c(uv) időkorlát elteltével kezdhető.

**Cél:** minden v tevékenységhez olyan  $k(v) \ge 0$  kezdési időpont meghatározása, ami nem sérti a precerenciafeltételeket, és a projekt végrehajtási ideje (a legnagyobb k(v) érték) minimális.

G irányított gráf csúcsai a tevékenységek, élei pedig a precedenciafeltételek, az uv él hossza c(uv).

Megf:

- (1) Ha G nem DAG, akkor a projekt nem hajtható végre.
- (2) HaGDAG, akkor minden vtevékenység legkorábbi kezdési időpontja a v-bevezető leghosszabb út hossza.

 $extsf{K\"ov:}$  A PERT probléma megoldása nem más, mint a G DAG minden csúcsára az oda vezető leghosszabb út meghatározása.

Terminológia: G leghosszabb útja kritikus út, amiből több is lehet. Kritikus út csúcsai a kritikus tevékenységek.

Megf: Ha egy kritikus tevékenység nem kezdődik el a lehető legkorábbi időpontban, akkor az egész projekt végrehajtása csúszik.

Euler-séta és körséta létezésének szükséges és elégséges feltétele. Hamilton-kör és út létezésére szükséges, ill. elégséges feltételek: komponensszám ponttörlés után (Petersen-gráf) Dirac, Ore tételei, gazdag párok, hízlalási lemma, Chavátal-lezárt.

#### • Euler-séták

Def: A G gráf Euler-(kör)sétája a G egy olyan (kör)sétája, ami G minden élét tartalmazza.





# Megj:

- (1) A fenti definíció  $2 \times 2$  fogalmat definiál: az Euler-sétát és az Euler-körsétát irányítatlan és irányított gráfra is.
- (2) Szokás a definíciót abban a formában kimondani, hogy az Euler-(kör)séta G minden élét **pontosan** egyszer tartalmazza. Tekintettel arra, hogy egy séta nem mehet át kétszer ugyanazon az élen, ez redundáns kivánalom, hiszen következménye az általunk használt definíciónak. Használatos ezen kívül az Euler-kör ill. Euler-út megnevezés is a fenti fogalmakra.
- (3) Irányítatlan Euler-séta: "G egy vonallal lerajzolható".

Cél: Gyors módszer az Euler-(kör)séta megtalálására, létezésének ellenőrzésére.

Megf: (1) Ha a G irányított gráfnak van Euler-körsétája, akkor

- (a) G izolált pontoktól eltekintve gyengén összefüggő, és
- (b) minden v csúcsára  $\rho(v) = \delta(v)$  teljesül.

**Biz:** (a) Ha G két különböző gyenge komponense is tartalmaz élt, akkor G-nek nem lehet Euler-körsétája, hisz egyetlen séta sem tartalmazhat élt két különböző gyenge komponensből.  $\checkmark$ 

(b) Ha végighaladunk az Euler-körsétán, akkor a v csúcsba pontosan annyiszor lépünk be, mint ahányszor kilépünk onnan. A körséta G minden élét pontosan egyszer érinti:  $\rho(v) = \delta(v)$ 

Megf: (2) Ha a G irányítatlan gráfnak van Euler-körsétája, akkor

- (a) G izolált pontoktól eltekintve összefüggő, és
- (b) G-ben minden fokszám páros.

**Biz:** Az irányított esethez hasonló. (a) Egy (kör)séta nem tartalmazhatja két különböző komponensnek is 1-1 élét, és (b) az Euler-körsétát követve tetszőleges v csúcsba ugyanyannyiszor lépünk be, mint ahányszor kilépünk belőle. Ezért d(v) páros.

Megf: (3) Ha a G irányítatlan gráfnak van Euler-sétája, akkor

- (a) G izolált pontoktól eltekintve összefüggő, és
- (b) G-nek 0 vagy 2 páratlan fokú csúcsa van.

Biz: (a)  $\checkmark$ . (b): Tegyük fel, hogy G Euler-sétája egy uv-séta. Ekkor minden  $w \neq u, v$  csúcsra d(w) kétszer annyi, mint ahányszor az Euler-séta w-n áthalad, vagyis d(w) páros. Ha u = v, akkor az Euler-séta körséta, így d(u) is páros (2b) miatt. Ha pedig  $u \neq v$ , akkor u-ból 1-gyel többször lépünk ki, mint be, v-be 1-gyel többször lépünk be, mint ki, vagyis d(u) és d(v) páratlanok.

**Megj:** A fenti megfigyelés segítségével bizonyos esetekben azonnal látszik, hogy G-nek nincs Euler-sétája ill. -körsétája.

G irányítatlan Euler-gráf, ha G minden v csúcsra d(v) páros.

Lemma: HaG Euler-gráf, akkor G élei kiszínezhetők úgy, hogy az egyszínű élek (irányított) kört alkossanak minden színre.



Biz: Induljunk el G egy éle mentén, és haladjunk tovább az (irányított) élek mentén. Mivel G Euler, ezért sosem akadunk el: előbb-utóbb ismétlődik egy csúcs, így találunk egy  $C_1$  kört.  $C_1$  éleit törölve  $G-C_1$  Euler-gráf marad. Ismételjük meg ezt a  $G-C_1$  gráfon. Így G minden éle előbb-utóbb sorra kerül és megkapja a  $C_2, C_3, \ldots$  köröket. Ezért  $E(G) = C_1 \cup C_2 \cup \ldots$  diszjunkt körök uniójára bomlik fel. Színezzük ki a  $C_1$  kör éleit az i-dik színnel.

**Tétel:** (1) (G irányított gráfnak van Euler-körsétája)  $\iff$  (G Euler-gráf és G izolált pontoktól eltekintve gyengén összefüggő)

(2) (G irányítatlan gráfnak van Euler-körsétája)  $\iff$  (G Euler-gráf és G izolált pontoktól eltekintve összefüggő)

Biz:  $\Rightarrow$ : Láttuk.  $\checkmark \Leftarrow$ : A Lemma miatt E(G) felbontható körökre, tehát körsétákra is. Ha a körséták száma legalább 2, akkor választunk két körsétát, aminek van közös csúcsa és e csúcs mentén "összevarjuk" azokat. Mindezt addig végezzük, amíg egyetlen körséta marad.



**Tétel:** (3) (G irányítatlan gráfnak van Euler-sétája)  $\iff$  (G izolált pontoktól eltekintve összefüggő és 0 vagy 2 páratlan fokú csúcsa van.)

Biz: ⇒: Láttuk.  $\checkmark$  <=: Ha G Euler-gráf, akkor (2) miatt van Euler-körsétája, ami Euler-séta is egyúttal. Ha G nem Euler-gráf, akkor legyenek u és v a G páratlan fokú csúcsai. Ekkor G+uv Euler-gráf, és (2) miatt van Euler-körsétája. Feltehető, hogy e körséta utolsó éle uv. Ezt az uv élt elhagyva a körsétából, G Euler-sétáját kapjuk.

Euler-körséta keresése Euler-gráfban: E(G)-t felbontjuk körsétákra, amiket összevarrunk. Körsétát a felbontáshoz pl. úgy is kereshetünk, hogy addig követünk egy sétát, amíg tudunk. Előbb-utóbb elakadunk, de ez csakis a séta kiindulási pontjában történhet meg. Ezért a bejárt séta egy körséta, amit a felbontásban felhasználunk.

# • Hamilton-körök és -utak

Def: A G gráf Hamilton-köre (Hamilton-útja) a G olyan köre (útja), ami G minden csúcsát tartalmazza.

Megj: A célunk hasonló, mint az Euler-(kör)séta esetén, azaz gyors módszer, amivel el lehet dönteni egy gráfról, hogy van-e Hamilton-köre ill. -útja. Sajnos jól használható szükséges és elégséges feltételt nem tudunk adni erre a problémára, és jó oka van annak, hogy nem is számítunk ilyen feltétel létezésére. Tudunk viszont jól használható szükséges, és jól használható elégséges feltételt adni, de ezek csak bizonyos gráfok esetén hasznosak.

# Szükséges feltétel Hamilton-kör és -út létezésére

(1) Ha a G gráfnak van Hamilton-köre, akkor  $\forall U \subseteq V(G)$  esetén G-U komponenseinek száma legfeljebb |U|.

(2) Ha a G gráfnak van Hamilton-útja, akkor  $\forall U \subseteq V(G)$  esetén G-U komponenseinek száma legfeljebb |U|+1.

**Megj:** A fenti feltétel, miszerint k csúcs törlésétől a gráf legfeljebb k (ill. k+1) komponensre eshet szét feltétlenül **szükséges** ahhoz, hogy G-nek legyen Hamilton-köre ill. -útja. Abból azonban, hogy G teljesíti a fenti feltételt, nem következik, hogy G-nek csakugyan van Hamilton-köre vagy útja. A szükséges feltételt úgy tudjuk alkalmazni, hogy a segítségével igazoljuk egy konkrét gráfról, hogy nincs Hamilton-köre (vagy -útja). Ha pl. azt látjuk, hogy G-ből 42 csúcsot elhagyva 43 komponens keletkezik, akkor G-nek nincs Hamilton-köre. Ha a komponensszám legalább 44, akkor G-nek Hamilton-útja sincs.

Biz: (1,2) G-t tekinthetjük úgy, mint egy kör (ill. út), amihez még további éleket adunk hozzá. Könnyű látni, hogy egy kör (ill. út) k pont elhagyásától legfeljebb k (k+1) komponensre eshet szét. A további élek

(amit a körhöz ill. úthoz hozzá kell adni, hogy G-t kapjuk) csak csökkenteni tudják a komponensszámot, növelni nem. Ezért G-ből k csúcsot törölve legfeljebb k (k+1) komponens keletkezhet.





Megj: Az ábrán látható Petersen-gráfnak (sok más mellett) két érdekes tulajdonsága van.

- 1. Teljesíti a fenti szükséges feltételt.
  - (a) Tegyük fel, hogy külső körből  $k_1$ , a belsőből  $k_2$  csúcsot hagytunk el. Ha  $k_1=0$  vagy  $k_2=0$ , akkor a gráf összefüggő marad. Különben a kölső kör legfeljebb  $k_1$ , a belső pedig legfeljebb  $k_2$  részre esik szét, vagyis összesen legfeljebb  $k_1+k_2$  komponens létezik.



- 2. Nincs Hamilton-köre.
  - (a) Ha lenne Hamilton-köre, akkor a Hamilton-kör éleit felváltva pirosra és zöldre tudnánk színezni. Ha a körön kívüli élek sárgák, akkor a 3-regularitás miatt minden csúcsból pontosan egy piros, sárga ill. zöld él indulna. Ha megpróbáljuk az éleket így kiszínezni, kiderül, hogy nem lehet.



A továbbiakban elégséges feltételeket fogunk látni Hamilton-kör létezésére. Ezek segítségével (szerencsés esetben) gyorsan és kétséget kizáróan tudjuk bizonyítani, hogy egy adott gráfnak van Hamilton-köre. Az elégséges feltétel vizsgálata azonban nem alkalmas arra, hogy egy gráf a Hamilton-körének hiányát igazoljuk.

**Def:** Legyen G n-csúcsú, egyszerű gráf.

Az  $u, v \in V(G)$  csúcspár gazdag, ha  $d(u) + d(v) \ge n$ . A G gráfra teljesül a Dirac-feltétel, ha  $d(v) \ge \frac{n}{2} \forall v \in V(G)$ -re. G-re igaz az Ore-feltétel, ha G bármely két nem szomszédos csúcsa gazdag párt alkot.

Dirac tétele: Gre igaz a Dirac-feltétel  $\Rightarrow$  G-nek van H-köre.

Ore tétele: G-re igaz az Ore-feltétel  $\Rightarrow$  G-nek van H-köre.

Megj: A Dirac-feltétel erősebb (többet kíván), mint az Ore. Ezért az Ore-tétel erősebb, mint a Dirac: gyengébb feltételből igazolja ugyanazt. Ezért az Ore-tétel bizonyítása a Dirac-tételt is igazolja.

# • A Chvátal-lezárt



**Hízlalási lemma:** Tegyük fel, hogy G egyszerű gráf, és (u, v) gazdag pár. (G-nek van Hamilton-köre)  $\iff (G + uv$ -nek van Hamilton köre).

**Megj:** A hízlalási lemma jelentőségge az, hogy segít eldönteni azt, hogy van-eG-ben Hamilton-kör. Azt mondja ki ugyanis, hogy a gazdag párok közé G-be "ingyen" behúzhatunk éleket, u.i. ez nem változtat azon a tényen, hogy van vagy nincs Hamilton-kör a vizsgált gráfban. Megtehetjük tehát, hogy a lemma

segítségével addig húzunk be éleket a gráfba, amíg lehet. Ha az így adódó $\overline{G}$  Chvátal-lezártban találunk Hamilton-kört, akkor G-nek is bizonyosan van Hamilton-köre. Ha pedig  $\overline{G}$  nem tartalmaz Hamilton-kört, akkor persze G-nek nincs Hamilton-köre.

Biz:  $\Rightarrow$ : Láttuk.  $\checkmark$   $\Leftarrow$ : Legyen C a G+uv Hamilton-köre. Ha $uv \notin C$ , akkor C a G-nek is Hamilton-köre, kész vagyunk. Ha viszont  $uv \in C$ , akkor C-uv a G egy Hamilton-útja. Legyen ez a Hamilton-út  $u=v_1,v_2,\ldots,v_n=v$ . Legyen  $A:=N(v)=\{v_i:vv_i\in E(G)\}$  a v szomszédainak halmaza, és legyen  $B:=\{v_{i-1}:uv_i\in E(G)\}$  az u szomszédait a Hamilton-úton megelőző csúcsok halmaza.

Világos, hogy  $v \notin A$  és  $v \notin B$ , így  $|A \cup B| \le n-1$ . Mivel (u,v) gazdag pár, ezért  $|A| + |B| = d(u) + d(v) \ge n$ . Ezek szerint  $A \cap V \ne \emptyset$ , legyen pl.  $v_i \in A \cap B$ . Ekkor  $v_1, v_2, \ldots, v_i, v_n, v_{n-1}, \ldots, v_{i+1}, v_1$  a G egy Hamilton-köre.

Ore tétele: HaG bármely két nemszomszédos csúcsa gazdag párt alkot, akkor G-nek van Hamilton-köre.

**Biz:** A hízlalási lemma alapján G bármely két nemszomszédos csúcsát "ingyen" összeköthetjük. Így G Chátal-lezártja a  $\overline{G} = K_n$  teljes gráf. Mivel  $K_n$ -nek van H-köre, ezért G-nek is van.

Dirac-tétele: Ha  $\delta(G) \geq \frac{|V(G)|}{2}$ , akkor G-nek van Hamilton-köre.

Biz: G bármely két csúcsa gazdag párt alkot, ezért G-re teljesül az Ore-feltétel. Az Ore-tétel miatt G-nek van Hamilton-köre.

Gráfok síkba ill. gömbre rajzolhatósága, tartomány, sztereografikus projekció, következményei. Az Euler-féle poliédertétel, duális kézfogáslemma és következményei: felső korlátok az élszámra és a minimális fokszáma egyszerű, síkbarajzolható gráfokon.

# • Síkbarajzolhatóság

Def: Síkbarajzolt (síkbarajzolt) gráf alatt olyan gráfdiagramot értünk, amiven az élek nem keresztezik egymást.

A G gráf síkbarajzolható (síkbarajzolható), ha van síkbarajzolt diagramja.

Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

# Megj:

- (1) A fentieket nem csak egyszerű gráfokra definiáltuk.
- (2) A síkbarajzolt gráf nem csupán egy gráf, hanem egy konkrét diagram.
- (3) Ugyanannak a síkbarajzolható gráfnak nagyon sok lényegesen különböző síkbarajzolt diagramja (lerajzolása) lehet.
- (4) A görbe (tóruszra) rajzolhatóság hasonlóan definiálható.

**Állítás:** (A G gráf síkbarajzolható)  $\iff$  (G gömbre rajzolható)

Biz: A sztereografikus projekcióban az északi-sarkból történő vetítés kölcsönösen egyértelmű megfeleltetés a sík pontjai és a síkot a déli-sarkon érintő gömbfelszín pontjai (mínusz északi-sark) között. A síkbarajzolt diagram vetülete gömbre rajzolt lesz  $(\Rightarrow \checkmark)$ , és az É-t nem tartalmazó gömbre rajzolt diagram pedig síkbarajzolttá válik. A  $\Leftarrow$  irány igazolásához csupán annyi kell, hogy úgy rajzoljuk G-t a gömbre, hogy az É-n ne menjen át él.

Köv: síkbarajzolt gráf külső tartománynak nincs kitüntetett szerepe.

Biz: Bármely lerajzolás "kifordítható": a diagram átrajzolható úgy, hogy a kiválasztott tartomány legyen a külső tartomány.

- 1. Vetítsük fel a diagramot a gömbre.
- 2. Állítsuk az  $\acute{E}$ -t a kiválasztott tartománynak megfelelő gömbi tartomány belsejébe.
- 3. Vetítsük vissza a gömbre rajzolt gráfot a síkra.

Köv: Bármely konvex poliéder élhálója síkbarajzolható gráf.

Biz: A kx poliéder belső pontjából az élháló kivetíthető egy, a poliédert tartalmazó gömbre. Így az élhálóból gömbre rajzolt gráf lesz. Láttuk, hogy minden gömbre rajzolható gráf síkbarajzolható.

Megj: A kx poliéder élgráfjának tartományai a poliéder lapjainak felelnek meg.

**Terminológia:** síkbarajzolt G gráf esetén n, e, t ill. k jelöli rendre a G csúcsai, élei, tartományai és komponensei számát.

Duális kézfogáslemma (DKFL): Ha G síkbarajzolt gráf, akkor  $\sum_{i=1}^{t} l_i = 2e$  ahol  $l_i$  az i-dik lapot határoló élek számát jelöli.

Biz: Minden él vagy két különböző lapot határol, vagy ugyanazt a lapot 2-szer. Így minden él 2-vel járul a BO-hoz és a JO-hoz is.

Megj: A DKFL akkor hasznos, ha a síkbarajzolt gráf lapjairól, a KFL pedig akkor, ha a fokszámokról van információnk.

Fáry-Wagner-tétel: HaG egyszerű síkbarajzolható gráf, akkor olyan síkbarajzolása is van, amiben minden él egyenes szakasz.

# • Az Euler-féle poliéderformula, síkgráfok karakterizációja



**Tétel:** Ha G síkbarajzolt gráf, akkor n + t = e + k + 1.

Biz: Rajzoljuk meg G-t az n csúcsból kiindulva, az élek egyenkénti behúzásával. Kezdetben t=1, e=0 és k=n, így a bizonyítandó összefüggés fennáll. Tegyük fel, hogy már néhány élt berajzoltunk, még mindig fennáll az összefüggés, és egy éppen az uv élt rajzolunk meg.

- 1. u és v különböző komponenshez tartoznak. Ekkor k értéke 1-gyel csökken, e-é pedig 1-gyel nő. Az ÉHL miatt nem keletkezik kör, tehát nem zárunk körül új tartományt, vagyis t nem változik. Az összefüggés fennmarad.
- 2. u és v ugyanahhoz a komponenshez tartoznak. Ekkor k nem változik, e viszont 1-gyel nő. Az ÉHL miatt keletkezik kör, tehát kettévágjuk az uv élt tartalmazó korábbi tartományt. Ezért t is 1-gyel nő, az összefüggés ismét fennmarad.

Köv: (1) Ha G síkbarajzolható, akkor t nem függ a síkbarajzolástól.

Biz: t = e + k + 1 - n, és a JO nem függ a síkbarajzolástól.

(2) (Euler-formula) Ha G összefüggő síkbarajzolt gráf, akkor n+t=e+2

Biz: Mivel G összefüggő, ezért a fenti Tételben k = 1.

(3) Ha G egyszerű, síkbarajzolható és  $n \geq 3$ , akkor  $e \leq 3n - 6$ .

**Biz:** Ilyenkor G minden lapját legalább 3 él határolja, így a DKFL miatt  $2e = \sum_{i=1}^{t} l_i \ge 3t$ . A Tétel alapján  $3n + 2e \ge 3n + 3t = 3e + 3k \ge 3e + 3 + 3 = 3e + 6$ , amit rendezve  $e \le 3n - 6$  adódik.

(4) G egyszerű, síkbarajzolható,  $C_3$ -mentes és  $n \geq 3 \Rightarrow e \leq 2n - 4$ .

**Biz:** Ilyenkor G minden lapját legalább 4 él határolja. A DKFL miatt  $2e = \sum_{i=1}^{t} l_i \ge 4t$ , így  $e \ge 2t$ . A Tétel miatt  $2n + e \ge 2n + 2t = 2e + 2k + 2 \ge 2e + 2 + 2 = 2e + 4$  Ezt rendezve  $e \le 2n - 4$  adódik.

(5) Ha G egyszerű, síkbarajzolható, akkor  $\delta(G) \leq 5$  (azaz  $\exists v : d(v) \leq 5$ ).

Biz: A KFL és (3) miatt  $\sum_{v \in V(G)} d(v) = 2e \le 6n - 12$ . Ezért van olyan csúcs, amire  $d(v) \le \frac{6n-12}{n} < 6$ .

(6) A  $K_5$  és  $K_{3,3}$  gráfok egyike sem síkbarajzolható.

Biz: A  $K_5$  gráf egyszerű, de nem teljesül (3), hiszen  $|E(K_5)| = {5 \choose 2} = 10 \nleq 9 = 3 \cdot 5 - 6$ . Ezért  $K_5$  nem síkbarajzolható. A  $K_{3,3}$  gráf egyszerű és  $C_3$ -mentes, de nem teljesül rá (4), u.i.  $|E(K_{3,3})| = 9 \nleq 8 = 2 \cdot 6 - 4$ . Ezért  $K_{3,3}$  nem síkbarajzolható.

**Megj:** Könnyen látható, hogy ha G síkbarajzolható, akkor G + e tóruszra rajzolható bármely e él behúzása esetén. Nem nehéz látni, hogy  $K_6$  is tóruszra rajzolható. Sőt: még  $K_7$  is az, de  $K_8$  már nem.

Def: Élfelosztás: az élre egy új, másodfokú csúcs ültetése. Élösszehúzás: az él törlése és két végpontjának azonosítása. Topologikus G (soros bővítés): G-ből élfelosztásokkal képzett gráf.

Megf: Az éltörlés, csúcstörlés, élfelosztás, élösszehúzás operációk mindegyike megőrzi a gráf síkbarajzolható tulajdonságát.

Köv: (1) Top.  $K_5$  top.  $K_{3,3}$  nem síkbarajzolható. (2) Ha G síkbarajzolható, akkor G-nek nincs se topologikus  $K_5$ , se topologikus  $K_{3,3}$  részgráfja.

Kuratowski tétele: (G síkbarajzolható)  $\iff$  (G-nek nincs se topologikus  $K_5$ , se topologikus  $K_{3,3}$  részgráfja)

Példa: Petersen-gráf

Kuratowski gráfok síkbarajzolhatósága, soros bővítés, Kuratowski-tétel könnyű iránya. Síkbarajzolt gráf duálisa, a duális paraméterei. Vágás, elvágó él, soros élek. Kör-vágás dualitása, különféle élek duálisai. Whitney két tétele, Whitney operációk.

#### • Síkbarajzolhatóság

Def: Síkbarajzolt (síkbarajzolt) gráf alatt olyan gráfdiagramot értünk, amiven az élek nem keresztezik egymást.

A G gráf síkbarajzolható (síkbarajzolható), ha van síkbarajzolt diagramja.

Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Megj: (1) A fentieket nem csak egyszerű gráfokra definiáltuk. (2) A síkbarajzolt gráf nem csupán egy gráf, hanem egy konkrét diagram. (3) Ugyanannak a síkbarajzolható gráfnak nagyon sok lényegesen különböző síkbarajzolt diagramja (lerajzolása) lehet. (4) A görbe (tóruszra) rajzolhatóság hasonlóan definiálható.

**Állítás:** (A G gráf síkbarajzolható)  $\iff$  (G gömbre rajzolható)

\*\*\*Biz: A sztereografikus projekcióban az északi-sarkból történő vetítés kölcsönösen egyértelmű megfeleltetés a sík pontjai és a síkot a déli-sarkon érintő gömbfelszín pontjai (mínusz északi-sark) között. A síkbarajzolt diagram vetülete gömbre rajzolt lesz ( $\Rightarrow \checkmark$ ), és az É-t nem tartalmazó gömbre rajzolt diagram pedig síkbarajzolttá válik. A  $\Leftarrow$  irány igazolásához csupán annyi kell, hogy úgy rajzoljuk G-t a gömbre, hogy az É-n ne menjen át él.  $\square$ 

Köv: síkbarajzolt gráf külső tartománynak nincs kitüntetett szerepe.

Biz: Bármely lerajzolás "kifordítható": a diagram átrajzolható úgy, hogy a kiválasztott tartomány legyen a külső tartomány.

- 1. Vetítsük fel a diagramot a gömbre.
- 2. Állítsuk az  $\acute{E}$ -t a kiválasztott tartománynak megfelelő gömbi tartomány belsejébe.
- 3. Vetítsük vissza a gömbre rajzolt gráfot a síkra.  $\Box$

Köv: Bármely konvex poliéder élhálója síkbarajzolható gráf.

Biz: A kx poliéder belső pontjából az élháló kivetíthető egy, a poliédert tartalmazó gömbre. Így az élhálóból göbmre rajzolt gráf lesz. Láttuk, hogy minden gömbre rajzolható gráf síkbarajzolható.

Megj: A kx poliéder élgráfjának tartományai a poliéder lapjainak felelnek meg.

Terminológia: síkbarajzolt G gráf esetén n, e, t ill. k jelöli rendre a G csúcsai, élei, tartományai és komponensei számát.

Duális kézfogáslemma (DKFL): Ha G síkbarajzolt gráf, akkor  $\sum_{i=1}^{t} l_i = 2e$  ahol  $l_i$  az i-dik lapot határoló élek számát jelöli.

Biz: Minden él vagy két különböző lapot határol, vagy ugyanazt a lapot 2-szer. Így minden él 2-vel járul a BO-hoz és a JO-hoz is. □

Megj: A DKFL akkor hasznos, ha a síkbarajzolt gráf lapjairól, a KFL pedig akkor, ha a fokszámokról van információnk.

**Fáry-Wagner-tétel:** Ha G egyerű síkbarajzolható gráf, akkor olyan síkbarajzolása is van, amiben minden él egyenes szakasz.

# • Az Euler-féle poliéderformula, síkgráfok karakterizációja



**Tétel:** Ha G síkbarajzolt gráf, akkor n + t = e + k + 1.

Biz: Rajzoljuk meg G-t az n csúcsból kiindulva, az élek egyenkénti behúzásával. Kezdetben t=1, e=0 és k=n, így a bizonyítandó összefüggés fennáll. Tegyük fel, hogy már néhány élt berajzoltunk, még mindig fennáll az összefüggés, és egy éppen az uv élt rajzolunk meg.

 $\boxed{1.}\ u$  és v különböző komponenshez tartoznak. Ekkor k értéke 1-gyel csökken, e-é pedig 1-gyel nő. Az ÉHL miatt nem keletkezik kör, tehát nem zárunk körül új tartományt, vagyis t nem változik. Az összefüggés fennmarad.

 $\fbox{2.}$  u és v ugyanahhoz a komponenshez tartoznak. Ekkor k nem változik, e viszont 1-gyel nő. Az ÉHL miatt keletkezik kör, tehát kettévágjuk az uv élt tartalmazó korábbi tartományt. Ezért t is 1-gyel nő, az összefüggés ismét fennmarad.  $\square$ 

Köv: (1) Ha G síkbarajzolható, akkor t nem függ a síkbarajzolástól.

Biz: t = e + k + 1 - n, és a JO nem függ a síkbarajzolástól.  $\square$ 

(2) (Euler-formula) Ha G összefüggő síkbarajzolt gráf, akkor n + t = e + 2

Biz: Mivel G összefüggő, ezért a fenti Tételben k=1.  $\square$ 

(3) Ha G egyszerű, síkbarajzolható és  $n \geq 3$ , akkor  $e \leq 3n - 6$ .

Biz: Ilyenkor G minden lapját legalább 3 él határolja, így a DKFL miatt  $2e = \sum_{i=1}^{t} l_i \geq 3t$ . A Tétel alapján  $3n + 2e \geq 3n + 3t = 3e + 3k \geq 3e + 3 + 3 = 3e + 6$ , amit rendezve  $e \leq 3n - 6$  adódik.  $\square$ 

(4) G egyszerű, síkbarajzolható,  $C_3$ -mentes és  $n \geq 3 \Rightarrow e \leq 2n - 4$ .

Biz: Ilyenkor G minden lapját legalább 4 él határolja. A DKFL miatt  $2e = \sum_{i=1}^t l_i \ge 4t$ , így  $e \ge 2t$ . A Tétel miatt  $2n + e \ge 2n + 2t = 2e + 2k + 2 \ge 2e + 2 + 2 = 2e + 4$  Ezt rendezve  $e \le 2n - 4$  adódik.  $\square$ 

(5) Ha G egyszerű, síkbarajzolható, akkor  $\delta(G) \leq 5$  (azaz  $\exists v : d(v) \leq 5$ ).

Biz: A KFL és (3) miatt  $\sum_{v \in V(G)} d(v) = 2e \le 6n - 12$ . Ezért van olyan csúcs, amire  $d(v) \le \frac{6n-12}{n} < 6$ .

(6) A  $K_5$  és  $K_{3,3}$  gráfok egyike sem síkbarajzolható.

Biz: A  $K_5$  gráf egyszerű, de nem teljesül (3), hiszen  $|E(K_5)| = {5 \choose 2} = 10 \nleq 9 = 3 \cdot 5 - 6$ . Ezért  $K_5$  nem síkbarajzolható. A  $K_{3,3}$  gráf egyszerű és  $C_3$ -mentes, de nem teljesül rá (4), u.i.  $|E(K_{3,3})| = 9 \nleq 8 = 2 \cdot 6 - 4$ . Ezrét  $K_{3,3}$  nem síkbarajzolható.  $\square$ 

**Megj:** Könnyen látható, hogy ha G síkbarajzolható, akkor G + e tóruszra rajzolható bármely e él behúzása esetén. Nem nehéz látni, hogy  $K_6$  is tóruszra rajzolható. Sőt: még  $K_7$  is az, de  $K_8$  már nem.

\*\*\*Def: Élfelosztás: az élre egy új, másodfokú csúcs ültetése. Élüsszehúzás: az él törlése és két végpontjának azonosítása. Topologikus G (soros bővítés): G-ből élfelosztásokkal képzett gráf.

Megf: Az éltörlés, csúcstörlés, élfelosztás, élösszehúzás operációk mindegyike megőrzi a gráf síkbarajzolható tulajdonságát.

Köv: (1) Top.  $K_5$  top.  $K_{3,3}$  nem síkbarajzolható. (2) Ha G síkbarajzolható, akkor G-nek nincs se topologikus  $K_5$ , se topologikus  $K_{3,3}$  részgráfja.

\*\*\* $\mathbf{Kuratowski}$  tétele: (G síkbarajzolható)  $\iff$  (G-nek nincs se topologikus  $K_5$ , se topologikus  $K_{3,3}$  részgráfja) Példa: Petersen-gráf

# • Síkgráfok duálisa

**Def:** A G síkba rajzolt gráf duálisa a  $G^*$  gráf, ha  $G^*$  csúcsai G tartományainak,  $G^*$  élei G éleinek felelnek meg. Az  $uv \in E(G)$  élnek megfelelő duális él az uv él által határolt két tartománynak megfelelő duális csúcsokat köti össze.

Megf: (1) A síkbarajzolt G gráf  $G^*$  duálisa síkbarajzolható.  $(n^*, e^*, t^*, k^*)$  (2)  $n^* = t, e^* = e, k^* = 1$ . (3) Ha v az i-dik laphoz tartozó duális csőcs, akkor  $d_{G^*}(v) = l_i$ .

Köv: KFL a duálisra  $\sum_{i=1}^t l_i = \sum_{v \in V(G^*)} d_{G^*}(v) = 2e^* = 2e$ .

**Def:** A  $Q \subseteq E(G)$  élhalmaz a G gráf vágása, ha G-Q szétesik (több komponense van, mint G-nek), de  $Q' \subseteq Q$  esetén G-Q' nem esik szét. Elvágó él: egyélű vágás. Soros élek: kétélű vágás.

Kör-vágás dualitása: Tegyük fel, hogy  $G^*$  a G síkbarajzolt gráf duálisa. Ekkor (C a G köre)  $\iff$  ( $C^*$  a  $G^*$  vágása) ill. (Q a G vágása)  $\iff$  ( $Q^*$  a  $G^*$  köre).

Köv: Hurokél duálisa elvágó él, soros élpáré párhuzamos élpár.

# • Whitney

Whitney tétele: Tegyük fel, hogy  $G^*$  a G síkbarajzolt gráf duálisa. Ekkor H pontosan akkor duálisa a G egy alkalmas síkbarajzolásának, ha H előáll  $G^*$ -ból a fenti Whitney-operációk alkalmas egymásutánjával.

**Def:** A  $\varphi: E(G) \to E(H)$  kölcsönös egyenértékű leképezés kör-vágás dualitás G és H között, ha C pontosan akkor G köre, ha  $\varphi(C)H$  vágása.

Whitney másik tétele: Tegyük fel, hogy G és H között kör-vágás dualitás van. Ekkor G síkbarajzolható, és H a G egy alkalmas síkbarajzolásának duálisa.

 ${f Megj:}$  Egy G gráf által leírt villamos hálózat viselkedését az Ohm-él Kirchhoff-törvények írják le. Ezek a G gráf éleire, köreire és vágásaira vonatkoznak. Ha G és H közt kör-vágás dualitás van, akkor H-n elkészíthető az előző hálózat duálisa. Az eredeti hálózat megoldásában ha az I és U értékeket felcsréljük, az utóbbi hálózat megoldását kapjuk. Whitney másik tétele miatt ez a különös szimmetria csak síkbarajzolható gráfok által leírt hálózatokon lehetséges.

együtthatómátrix. Lineáris kibővített egyenletrendszer, elemi sorekvivalens átalakítás kapcsolata a megoldásokkal. LAés RLA mátrix, vezéregyes, mátrix Tilos megoldás leolvasása RLAesetén. sor, kötött változó, szabad ezek jelentése a megoldás/megoldhatóság szempontjából. Gauss-elimináció, paraméter, összefüggés az egyértelmű megoldhatóság, az egynletek és ismeretlenek száma között.

# • Lineáris egyenletrendszer

Def: Lineáris egyenlet: Ismeretlenek konstansszorosainak összege konstans. Lineáris egyenletrendszer: Véges sok lineáris egyenlet. Megoldás: Olyan érték adás, ami minden egyenletet igazzá tesz.

#### • Kibővített együtthatómátrix

Def: Lineáris egyenletrendszer kibővített együtthatómátrixa: a sorok az egyenletek, az oszlopok az ismeretleneknek ill. az egyenletek jobb oldalainak felelnek meg, az egyes mezőkben pedig a megfelelő együttható ill. jobb oldali konstans áll.

#### • Elemi sorekvivalens átalakítás

Megoldás módszere Ekvivalens átalakításokat végzünk. Ezek során a megoldások halmaza nem változik. Konkrétan: egyenleteket felcserélünk, egyenletet nemnullával vigigszorzunk ill. az i-dik egyenletet kicseréljük az i-dik és j-dik egyenletek összegére.

**Def:** A kibővített együtthatómátrix elemi sorekvivalens átalakítása (ESÁ): (1) sorcsere, (2) sor nemnulla konstanssal végigszorzása, (3) az i-dik sor helyettesítése az i-dik és j-dik sorok (koordiántánkénti) összegével (az i-dik sor helyettesítése az i-dik sor konstansszorosának összegével, csupa 0 sor hozzáadása/elhagyása).

# • Elemi sorekvivalens átalakítás és kapcsolata a megoldásokkal

Biz: Minden ESÁ előtti megoldás megoldás marad az ESÁ után is. Minen ESÁ fordítottja megkapható ESÁ-ok egymásutánjaként is. Ezért minden ESÁ utáni megoldás megoldja az ESÁ előtti előtti rendszert is. Megj: A kibővített együtthatómátrix a lineáris egyenletrendszer felírásának egy tömör módja: elkerüljük vele a műveleti- és egyenlőségjelekkel piszmogást, mégis telejesen áttekinthető módon tartalmaz minden

# lényeges információt. • LA és RLA mátrix

Def: Az M mártix lépcsős alakú (LA), ha

- (1) minden sor első nemnulla eleme 1-es (ú.n. vezér 1-es, avagy v1)
- (2) minden v1 feletti sorban van ettől a v1-től balra eső másik v1.

Az M mátrix redukált lépcsős alakú (RLA), ha

(3) M LA és (2) M-ben minden v1 felett csak nullák állnak.

# • Megoldás leolvasása RLA mátrix esetén

#### • Tilos sor

**Def:** Kibővített együtthatómátrix tilos sora:  $0 \dots 0 | x$  alakú sor, ha  $x \neq 0$ .

#### • Kötött változó és szabad változó

**Def:** A RLA kibővített együtthatómátrix v1-hez tartozó változója kötöttm a többi változó (amihez nem tartozik v1) szabad (vagy szabad paraméter).

Megf: Ha kibővített együtthatómátrix RLA, akkor (1) minden sor vagy a v1-hez tartozó változó értékadása, vagy tilos sor, vagy csupa 0 sor.

- (2) Ha van tilos sor, akkor nincs megoldás.
- (3) Ha nincs tilos sor, a szabad paraméterek tetszőleges, értékadásához egyértelmű megoldás tartozik.

Megf: A lineáris egyenletrendszer megoldása tekinthető úgy, hogy a lineáris egyenletrendszeregy RLA kibővített együtthatómátrixal van megadva.

Cél: Olyan eljárás, ami ESÁ-okkal tetszőleges mátrixot RLA-vá alakít.

#### • Gauss elimináció

# Gauss-elimináció:

Input:  $M \in \mathbb{R}^{n \times k}$  mátrix.

Output: Egy M-ből ESÁ-okkal kapható  $M' \in \mathbb{R}^{n \times k}$  LA mátrix.

 $\underline{\text{Működés:}}$  Az algoritmus fázisokból áll. Az i-dik fázisban keresünk egy nemnulla elemet az (i-1)-dik sor alatt a lehet legkisebb sorszámú oszlopban. Ha nincsilyen elem, az algoritmus véget ér. Sorcserével ezt a nemnulla elemet az i-dik sorban visszük. Az i-dik sor konstanssal szorzásával ezt az elemet v1-sé alakítjuk. Az i-dik sor alatti sorokhoz az i-dik sor konstansszorosát hozzáadva kinullázuk a kapott v1 alatti elemeket.

# összefüggés az egyértelmű megoldhatóság, az egynletek és ismeretlenek száma között

Megj: (1) A Gauss-elimináció outputja LA. Az RLA-hoz további lépésekre van szükség: minden v1 felett kinullázhatók az elemek, ha a v1 sorának konstansszorosait a v1 feletti sorokhoz adjuk.

- (2) Ha csupán LA (vagy RLA) a cél, eltérhetünk a Gauss-eliminációtól, feltéve, hogy ESÁ-okkal dolgozunk.
- (3) A Gauss-elimináció megvalósítható rekurzív algoritmusként is.

A GE(M) (az M mátrixot lépcsős alakra hozó eljárás):

- 1. Ha M első oszlopa csupa 0, akkor M' az első oszlop törlésével keletkező mátrix. Output: GE(M') elé írunk egy csupa 0 oszlopot.
- 2. Ha M első oszlopa tartalmaz nemnulla elemet, sorcserével és az első sor konstanssal szorzásával az első sor első elemét v1-sé tesszük, majd a v1 alatti elemeket ESÁ-okkal kinullázzuk. Legyen M' az első sor és első oszlop törlésével keletkező mátrix. Output: GE(M') elé írunk egy csupa 0 oszlopot és az így kapott mátrix fölé a korábban törölt első sort.
  - 1. Lineáris egyenletrendszer kibővített együtthatómátrixként is magadható.
  - 2. ESÁ nem változtat a megoldásokon.
  - 3. ESÁ-okkal elérhető a RLA.
  - 4. A RLA-ból azonnal adódik a megoldás
    - Ha az utolsó oszlopban van v1, akkor nincs megoldás.
    - Ha az utolsó kivételével minden oszlopban van v1, akkor egyetlen megoldás van.
    - Ha az utolsón kívül más oszlopban nincs v1, akkor van szabad paraméter, így végtelen sok különböző megoldás van.

Köv: Ha a lineáris egyenletrendszernek pontosan egy megoldása van, akkor legalább annyi egyenlet van, mint ahány ismeretlen.

Biz: Az RLA-ra hozás után nincs szabad paraméter, tehát minden változóhoz tartozik v1. Ezért a kibővített együtthatómátrixnak legalább annyi sora van, mint a változók száma.

Megj: A fenti következmény fordított irányban nem igaz, és lényegében nincs más összefüggés az egyértelmű megoldhatóság, az ismeretlenek és egyneletek száma között.