

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3 «Обработка разреженных матриц»

Студент Егорова Полина Александровна

Группа ИУ7 – 34Б

Преподаватель Барышникова Марина Юрьевна

Цель работы

Цель работы - реализовать алгоритмы обработки разреженных матриц, сравнить эффективность использования этих алгоритмов (по времени выполнения и по требуемой памяти) со стандартными алгоритмами обработки матриц при различном процентном заполнении матриц ненулевыми значениями и при различных размерах матриц.

Задание

Разреженная (содержащая много нулей) матрица хранится в форме 3-х объектов:

- вектор А содержит значения ненулевых элементов;
- вектор IA содержит номера строк для элементов вектора A;
- связный список JA, в элементе Nk которого находится номер компонент в A и IA, с которых начинается описание столбца Nk матрицы A.
- 1. Смоделировать операцию умножения вектора-строки и матрицы, хранящихся в этой форме, с получением результата в той же форме.
- 2. Произвести операцию умножения, применяя стандартный алгоритм работы с матрицами.
- 3. Сравнить время выполнения операций и объем памяти при использовании этих 2-х алгоритмов при различном проценте заполнения матриц.

Входные данные

Для генерации матрицы и вектора необходимо ввести количество строк и столбцов матрицы и процент заполненности ее и вектора ненулевыми элементами. При вводе матрицы и вектора вручную необходимо ввести количество строк и столбцов матрицы и количество ненулевых элементов матрицы и вектора.

Выходные данные

При выборе соответствующего пункта меню, будут выведены матрица или

вектор либо в стандартной форме (п. 6 и 7), либо в разреженной (п. 2 и 3). При выборе пунктов 4 или 5 будет посчитано произведение вектора-строки на матрицу классическим или разреженным способом соответственно.

Способ обращения к программе

Программа может быть вызвана через консоль. ./app.exe

Аварийные ситуации

В случае аварийной ситуации выводится сообщение о той или иной ошибке.

Могут быть выведены такие ошибки, как:

- Некорректный ввод параметров матрицы или вектора
- Количество элементов, запрашиваемых на ввод, превышает возможное (исходя из размерностей) или меньше либо равно нулю
- Работа с пустой матрицей или вектором
- Некорректный ввод элемента, номера столбца или строки (буква)
- Попытка вставить элемент на несуществующею позицию матрицы (несоответствие размерностям)

Структуры данных

Для хранения матрицы в стандартном виде использовался динамическая матрица (способ реализации: как одномерный, для доступа к элементу используется адресная арифметика):

```
int *matr = malloc(r * c * sizeof(int)); // r, c - количество строк и столбцов
```

Для хранения вектора в стандартном виде использовался динамический массив:

```
int *vector = malloc(c * sizeof(int));
```

Для хранения каждого из трех объектов (когда матрица представлена в разреженном виде) – JA, IA, A - используется односвязный список, представленный в виде структуры:

```
typedef struct list
{
   int data;
   struct list *next;
} list;
```

Описание алгоритма

Данная программа предназначена для работы с разреженными и стандартными матрицами и представляет собой консольное приложение со следующими возможными операциями, представленными в меню:

```
Choose the command:

1 - Generate matrix and vector

2 - Input matrix and vector manually

3 - Display matrix

4 - Display vector

5 - Classical multiplication

6 - Special multiplication

0 - EXIT
```

- 1 генерация матрицы и вектора
- 2 ввод матрицы и вектора вручную
- 3 вывод матрицы (возможность выбора типа: стандартная или разреженная)
- 4 вывод вектора (возможность выбора типа: стандартная или разреженная)
- 5 классическое умножение
- 6 специальное умножение
- 0 выход

Реализация умножения

Умножение вектора-строки и матрицы реализовано двумя способами: для объектов, представленных стандартным и разреженным способом. Умножение разреженных матриц осуществляется при помощи односвязного списка.

Для умножения должны быть введены матрица и вектор. Иначе будет выведено сообщение о том, что данные математические объекты пусты.

Анализ эффективности разрежённого способа хранения

Процент разреженности – процент нулевых элементов в матрице.

Память (стандартная матрица) — объем памяти в байтах, занимаемый векторомответом, представленным в стандартном виде.

Память (разреженная матрица) — объем памяти в байтах, занимаемый вектором-ответов в разреженной форме.

Время – время затраченное на выполнение умножения вектора-строки на матрицу (в тактах процессора).

Сравнение памяти

1) 0% разреженности

Количество элементов	Стандартная матрица (Б)	Разреженная матрица (Б)
50*50	200	200
100*100	400	400
1000*1000	4000	4000

2) 25% разреженности

Количество элементов	Стандартная матрица (Б)	Разреженная матрица (Б)
50*50	200	200
100*100	400	400
1000*1000	4000	4000

3) 50% разреженности

Количество элементов	Стандартная матрица (Б)	Разреженная матрица (Б)
50*50	200	200
100*100	400	400
1000*1000	4000	4000

4) 75% разреженности

Количество элементов	Стандартная матрица (Б)	Разреженная матрица (Б)
----------------------	-------------------------	-------------------------

50*50	200	188
100*100	400	400
1000*1000	4000	4000

5) 98% разреженности

Количество элементов	Стандартная матрица (Б)	Разреженная матрица (Б)
50*50	200	8
100*100	400	16
1000*1000	4000	1388

Сравнение времени

1) 0% разреженности

Количество элементов	Стандартная матрица (Т)	Разреженная матрица (Т)
50*50	12	15
100*100	54	70
1000*1000	4462	4034

2) 25% разреженности

Количество элементов	Стандартная матрица (Т)	Разреженная матрица (Т)
50*50	12	12
100*100	44	60
1000*1000	4560	4031

3) 50% разреженности

Количество элементов	Стандартная матрица (Т)	Разреженная матрица (Т)
50*50	10	8
100*100	48	29
1000*1000	4899	2121

4) 75% разреженности

Количество элементов	Стандартная матрица (Т)	Разреженная матрица (Т)
----------------------	-------------------------	-------------------------

50*50	12	6
100*100	48	20
1000*1000	4657	1027

5) 98% разреженности

Количество элементов	Стандартная матрица (Т)	Разреженная матрица (Т)
50*50	12	4
100*100	38	7
1000*1000	6360	110

Затраты по памяти уменьшаются при использовании алгоритма умножения разреженных матриц с процентом разреженности не менее 75. Менее 75% количество используемых байт уравнивается.

Использование разреженной матрицы для выигрыша по времени оправдано при работы с матрицами с процентом разреженности не менее 50%.

Контрольные вопросы

1. Что такое разреженная матрица, какие схемы хранения таких матриц Вы знаете?

Разреженная матрица — матрица с преимущественно нулевыми элементами. Число ненулевых элементов в матрице порядка п может выражаться как $n^{(1+g)}$, где g < 1. Значения g лежат в интервале $0.2 \dots 0.5$, т.е. матрица разрежена.

Существуют различные методы хранения элементов матрицы в памяти. Например, линейный связный список, т.е. последовательность ячеек, связанных в определенном порядке. Каждая ячейка списка содержит элемент списка и указатель на положение следующей ячейки.

Можно хранить матрицу, используя кольцевой связный список, двунаправленные стеки и очереди.

Существует диагональная схема хранения симметричных матриц, а также связные схемы разреженного хранения.

Связная схема хранения матриц, предложенная Кнутом, предлагает хранить в массиве (например, в AN) в произвольном порядке сами элементы, индексы строк и столбцов соответствующих элементов (например, в массивах I и J), номер (из массива AN) следующего ненулевого элемента, расположенного в матрице по строке (NR) и по столбцу (NC), а также номера элементов, с которых начинается строка (указатели для входа в строку – JR) и номера элементов, с которых начинается столбец (указатели для входа в столбец - JC).

2. Каким образом и сколько памяти выделяется под хранение разреженной и обычной матрицы?

Для хранения обычной матрицы: N * M * sizeof(elem). Память под разреженную матрицу выделяется в зависимости от схемы хранения. Кроме того, память зависит от количества ненулевых элементов.

3. Каков принцип обработки разреженной матрицы?

Обработка разреженной матрицы предполагает работу только с ненулевыми элементами (таким образом, количество операций пропорционально количеству ненулевых элементов).

4. В каком случае для матриц эффективнее применять стандартные алгоритмы обработки матриц? От чего это зависит?

Разреженность матрицы следует учитывать только в том случае, если из этого можно извлечь выгоду за счёт игнорирования нулевых элементов.

При достижении определенного процента наполнения ненулевыми элементами происходит значительное падение эффективности по времени.

Вывод

Использование разреженной матрицы оправдано при большом количестве нулевых элементов (разреженность > 30%). При таких размерностям с увеличением количества элементов возрастает выигрыш в большей мере по времени работы, нежели по памяти.

Время выполнения стандартного алгоритма зависит от размерности матрицы. Этот алгоритм эффективен при высоком заполнении матрицы. Однако при заполнении матрицы менее 75% разреженный алгоритм позволяет добиться более высокой скорости работы при использовании меньшего количества памяти.