Traitement des Images Numériques

Modèle d'image 2019-2020

Avantages du traitement d'images

- Objectivité
- Non fatigue dans les traitements répétitifs
- Vision dans des longueurs d'ondes non visibles

Inconvénients

- Ne sait pas ce qui est cherché
- Ne dispose pas d'apprentissage
- Ne dispose pas de l'information de contexte
- Ne dispose pas de la connaissance
- Présence de bruit
- Ne perçoit pas les contours subjectifs

Images ambiguës

images - 2019/2020

Perception

11

Connaissance a priori

ABCDEF

11 12 13 14 15

Contenu sémantique

Même contenu

Même apparence

gap sémantique

Les principes de l'analyse d'image

- Acquérir une expertise
 - Choisir des traitements
- Extraire des paramètres
- Apprentissage
- Décider
- Evaluer

- Avantages
- Inconvénients
- Toujours améliorer au moment de l'acquisition

Vision humaine

Distance entre cônes : 2 à 3 μm

Acuité visuelle : 1,5 mm à 10 m Pouvoir séparateur : environ 1' d'angle

De la vision humaine à l'acquisition

The Camera The Human Eye

http://www.pasadenaeye.com/faq/faq15/faq15_text.html

Formation de l'image numérique

Une image

- Image analogique
 - Continu
- Image numérique
 - Un ensemble de pixels (transmission en morse-1920)
 - Une quantification des couleurs
 - Une fréquence temporelle pour des séquences

Le modèle

Une fonction

$$I:[0,l]\times[0,c]\to[0,n]$$
$$(i,j)\mapsto I(i,j)=n_{i,j}$$

- Une représentation
 - Une matrice à (l+1) lignes et (c+1)
 colonnes qui précisent la taille de l'image
 - Des valeurs entre 0 et n indiquent le niveau de gris

Représentations

Modes de représentation

Une image

- •Taille 4x4
- •4 niveaux de gris : [0,3]
 - •0 blanc
 - •3 noir
- \bullet I[1,3] = 2

Problèmes : Taille de l'image et résolution

Nombre de niveaux de gris

images - 2019/2020

Résolution

- Elle s'exprime en points par millimètre ppm. (dot per inch : dpi)
- Critère de choix
 - Les détails visibles
 - Le volume à stocker
- N'a pas de lien avec la taille de l'affichage

Échantillonnage

 Discrétisation de l'espace 2D N = 4

N = 32

 Problème : une résolution trop faible conduit à des problèmes d'aliasing

N = 64

N = 128

images - 2015/2020

N = 16

N = 8

Quantification

- Discrétisation de l'espace des couleurs ou niveaux de gris
- Problème : Une quantification trop faible peut causer de faux contours

bits=4

bits=8 30

bits=3