Chapter 6: Network Layer

Introduction to Networks v5.1

Chapter Outline

- 1. Introduction
- 2. Network Layer Protocols

Cisco Public

- 3. Routing
- 4. Summary

Topic 6.1.2: Characteristics of the IP Protocol

Network Layer Protocols

Responsible for:

Routing:

- Determine the path to reach relevant destination networks
- Dynamic and Static methods

Forwarding (Layer 3)

- Move an incoming Packet to the next hop Router interface based on the Destination IP Address.
 - Internet Protocol version 4 (IPv4)
 - Internet Protocol version 6 (IPv6)

Encapsulating IP (cont.)

Network Layer PDU = IP Packet

The network layer adds a header so packets can be routed through complex networks and reach their destination. In TCP/IP based networks, the network layer PDU is the IP Packet.

Characteristics of IP

IP - Connectionless

Connection Management is done at the Transport Layer

The sender doesn't know:

- If the receiver is present
- If the packet arrived
- If the receiver can read the packet

The receiver doesn't know:

- When it is coming
- If the packets have arrived out of sequence

Cisco Public

IP – Media Independent

IP packets can travel over different media.

Topic 6.1.3: IPv4 Packet

IPv4 Packet Header

- Version = 0100 (binary)
- DS = Packet Priority
- TTL = Limits life of Packet
- Protocol = Upper layer protocol: TCP=6 or UDP=17
- Source IP Address = source of packet
- Destination IP Address = destination of packet

Time-to-Live TTL

- TTL value ranges from 0 255.
- TTL value is set by device (i.e. Microsoft 10 sets TTL = 64)
- TTL value is decremented at each Router.
- Packet is dropped if TTL =0 before it reaches its destination.
- ICMP message is returned to the source device if TTL=0.
- Prevents packets from getting "stuck" in infinite forwarding loop

Topic 6.1.4: IPv6 Packet

Introducing IPv6

- Increased address space to <u>128 bits</u>
- Improved packet handling
- Eliminates the need for NAT (Network Address Translation)

4 billion IPv4 addresses

4,000,000,000

VS.

340 undecillion IPv6 addresses

Encapsulating IPv6

IPv4 Header

Version	IHL	Type of Service	Total Length		
Identification			Flags	Fragment Offset	
Time-to-Live		Protocol	Header Checksum		
Source Address					
Destination Address					
	Options Padding				

IPv6 has a simplified header

- Field names kept from IPv4 to IPv6
- Name and position changed in IPv6
- Fields not kept in IPv6

Encapsulating IPv6 (cont.)

IPv6 Header

IPv6 has a simplified header

Legend

Field names kept from IPv4 to IPv6

Name and position changed in IPv6

New field in IPv6

IPv6 Packet Header

Section 6.2: Routing

Upon completion of this section, you should be able to:

- Explain how a host device uses routing tables to direct packets to itself, a local destination, or a default gateway.
- Compare a host routing table to a routing table in a router.

Topic 6.2.1: How a Host (i.e. End Device) Routes

Default Gateway

Default Gateway = Router1 Interface IP Addr (for Network Segment 1)

Network Segment 1

IP Network Address:

192.168.**1**.0

255.255.255.0

Network Segment 2

IP Network Address:

192.168.**2**.0

255.255.255.0

If <u>Source IP Network Address</u> EQUAL <u>Destination IP Network Address</u> then:

- Destination end device is on same network segment
- Switch frame to destination device

If <u>Source IP Network Address</u> NOT EQUAL <u>Destination IP Network</u> Address then:

- Destination end device is on a different network segment
- Switch frame to Default Router
 Default Router will forward
 packet to Destination Network

Cisco Public

Host Routing Tables

From a PC Command Prompt Enter: route print OR

netstat -r

Default Gateway Indicated by Destination = 0.0.0.0

Topic 6.2.2: Router Routing Tables

IP Packet Forwarding

Routing Table

Dest Network Next Hop

192.168.2.0/24 IP Addr of Rtr2

Network Segment 3 -

Network Segment 1

IP Network Address:

192.168.**1**.0

255.255.255.0

Network Segment 2

IP Network Address: - 192.168.**2**.0

255.255.255.0

- Ethernet Switches forward frames between end devices that are on the same network segment using MAC addresses.
 - Routers forward packets to remote networks and network segments using IP Addresses.
- Router interfaces define a network segment.
- Each end device will have an IP
 Address whose Network
 Address is the same as the
 Network segment.
 - End devices with the same network address are on the same network segment.

Router Ports

Lab Router

Equivalent Schematic

IPv4 Router Routing Table - 1

Consider the above network which includes several network seaments.

IPv4 Router Routing Table - 2

Forwarding to a Remote Network

The Default Route

Thank you.

cisco Clsco Networking Academy
Mind Wide Open