E.M.B

Chapter 6: THE GROUP CONCEPT

Mphako-Banda

LEARNING OUTCOMES FOR THE LECTURE

By the end of this lecture, students will be able to:

- (i)prove the cancellation law in a group G
- 4 (ii) define a subgroup H of a group G.
- 👫 (iii)show that a given subset H of a group G is a group.
- (iv)prove Theorem 6.3.6
- . (v)define order of an element g in G.
 - (vi)present small finite groups in multiplication tables.
 - (vii)determine unity, inverses of elements in a given multiplication table. (viii)determine whether a given a multiplication table of a set M represent a group or not.

Proposition (6.3.3 Cancellation laws)

Let $g, h, f \in G$ then

- (i) If gh = gf, then h = f.
 - **PROOF:** $g, h, f \in G$ so $g^{-1} \in G$ as G is a group.

if hg = fg then h = f. (Proof same as above with right multiplication.)

note that we would not cancel out g if we had <mark>gh=fg.</mark> we would cancel out if and only G is abelian hence fg=gf and gh=fg⇒gh=gf⇒h=f.

Proposition (6.3.4)

Let $g, h, f \in G$ then

for any g in G, the inverse of g is unique in G

(i) the equation gx = h has a unique solution $x = g^{-1}h$ in G.

PROOF: $g, h \in G$ so $g^{-1} \in G$ as G is a group and $g^{-1}g = gg^{-1} = e$ multiply both sides by the inverse of g $gx = h \Rightarrow g^{-1}(gx) = g^{-1}h \Rightarrow (g^{-1}g)x = g^{-1}h \Rightarrow ex = g^{-1}h \Rightarrow x = g^{-1}h$.

the equation xg = h has a unique solution $x = hg^{-1}$. (Proof is similar with Right multiplication.)

Subgroup of a group G

Definition (6.3.5)

H is a subgroup of G under \star if $H \neq \emptyset$, $H \subseteq G$ and (H, \star) is a group.

We write $H \leq G$.

 $\{e\}=H\leq G$; called trivial group. $\{e\}$ is the trivial subgroup of G $G\leq G$ improper subgroup.

if $H \subset G$ and $\langle H, \star \rangle$ is a group, then H is a

 $\begin{array}{ll} \textbf{proper subgroup of } \textit{G}. & \textbf{H is a non trivial proper subset} \\ \textbf{of G that is a group under the} \end{array}$

as to satisfy three conditions: (i) H is non empty. (ii) H is subset of G. (iii) H is a group.

operation as in C

For H to be a subgroup of G, H has to satisfy three conditions: (i)H is non empty, (ii)H is subset of G, (iii)H is a group under the same binary operation as on G.

Below we give some examples of subgroups of a group G

Part 3

Example

$$Let \ H = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a,b \in \mathbb{R}, \frac{a \neq 0}{a} \right\}. \ \text{a different from zero so that det(A)} \ \text{a matrix in H is not equal to zero and hence A an invertible matrix (A has an inverse)}$$

G is a group under multiplication of matrices, with $G = GL(2,\mathbb{R})$

(i)
$$\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \begin{pmatrix} c & d \\ 0 & c \end{pmatrix} = \begin{pmatrix} ac & ad+bc \\ 0 & ac \end{pmatrix} \in G$$
 matrix entries from the set os real numbers and the entries of the product matrix are real numbers (ac, ad+bc real) since ac , $ad+bc \in \mathbb{R}$, $ac \neq 0$, since $a \neq 0$ and $c \neq 0$.

note that the identity matrix is of the form of matrices from H since the entries are real and

 $(a \quad b) \quad \text{has an inverse since } det \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} = a^2 \neq 0.$

Multiplication of matrices is associative.

 \therefore H is a group and $H \leq GL(n,\mathbb{R})$, the general linear group.

Example

$$\langle \mathbb{R} \backslash \{0\}, \bullet \rangle \leq \langle \mathbb{C} \backslash \{0\}, \bullet \rangle \text{ the set of real numbers excluding zero under multiplication is a subgroup of the set complex numbers excluding zero under multiplication is a subgroup of the set complex numbers excluding zero under multiplication is a subgroup of the set complex numbers excluding zero under multiplication is a subgroup of the set complex numbers excluding zero under multiplication is a subgroup of the set complex numbers excluding zero under multiplication is a subgroup of the set complex numbers excluding zero under multiplication is a subgroup of the set complex numbers excluding zero under multiplication is a subgroup of the set complex numbers excluding zero under multiplication is a subgroup of the set complex numbers excluding zero under multiplication is a subgroup of the set complex numbers excluding zero under multiplication is a subgroup of the set complex numbers excluding zero under multiplication is a subgroup of the set complex numbers excluding zero under multiplication is a subgroup of the set complex numbers excluding zero under multiplication is a subgroup of the set complex numbers excluding zero under multiplication is a subgroup of the set complex numbers excluding zero under multiplication is a subgroup of the set complex numbers are not a subgroup of the set complex numbers are not a subgroup of the set complex numbers are not a subgroup of the set complex numbers are not a subgroup of the set complex numbers are not a subgroup of the set complex numbers are not a subgroup of the set complex numbers are not a subgroup of the set complex numbers are not a subgroup of the set complex numbers are not a subgroup of the set complex numbers are not a subgroup of the set complex numbers are not a subgroup of the set complex numbers are not a subgroup of the set complex numbers are not a subgroup of the set complex numbers are not a subgroup of the set complex numbers are not a subgroup of the set complex numbers are not a subgroup of the set complex numbers are not a s$$

EXERCISE

Let G be an abelian group. Consider $H = \{g \in G | g^2 = e\}$. Show that H < G. elements g of H are all elements g in G that

H subset of G

satisfy the condition that $q^2 = e$

(i)
$$H \subseteq G$$

(ii)
$$H \neq \emptyset$$
, $gh^{-1} \in H \quad \forall g, h \in H \text{ since } g = g^{-1} \text{ and } h = h^{-1}$. (ii) Show that H is a group

Theorem (6.3.6)

Let H be a non empty subset of G. Then $H \leq G$ iff $ab^{-1} \in H \quad \forall a, b \in H.$

The above theorem (Theorem 6.3.6) enables us to prove that a subset H of a group G is a subgroup without having to check all group axioms

(i) \Rightarrow show that, given that H is a non-empty subset of G, for any a, b in H we have that $ab^{-1}\varepsilon H$

PROOF (ii) = show that if H is a non-empty subset of G with the condition that for any a, b ∈ H we have that ab 1 ∈ H then H is a group (in red is the assumption for the reverse implic.)

⇒: $H \le G$ then $\langle H, \star \rangle$ is a group. If $a, b \in H$ then $a, b^{-1} \in H$ and so $ab^{-1} \in H$. H is closed under the binary operation

 \Leftarrow : Assume $ab^{-1} \in H$ $\forall a, b \in H$ and H is non empty

subset. So we have at least one element $a \in H$. By assumption $aa^{-1} \in H$. But $aa^{-1} = e$ in G. So $e \in H$.

If $a \in H$ and $e \in H$ then by assumption $ea^{-1} \in H$.

That is $a^{-1} \in H$ for each $a \in H$

If $\underline{a}, \underline{b} \in \underline{H}$ then by above $\underline{a}, \underline{b}^{-1} \in \underline{H}$ so

 $(a)(b^{-1})^{-1} = ab \in H$ by Proposition 6.3.1 $[(b^{-1})^{-1} = b]$ and assumption.

Finally, \star on G is associative thus \star on H must be associative too. [We say a property is inherited by H] Therefore H is a group.

Part 3

we show that H is a subgroup by showing (i)H non empty, (ii)for any A,B€H we should have that AB¹€ H

Example

$$H = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, b \in \mathbb{R} \right\}$$
 is a subgroup of G .

$$H \neq \emptyset \text{ since } \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in H$$

$$Let \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \in H$$

$$\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -b \\ 0 & 1 \end{pmatrix} \in H \quad (-b \in \mathbb{R})$$

$$\begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -b+c \\ 0 & 1 \end{pmatrix} \in H$$

$$(-b+c) \in \mathbb{R}. \text{ Thus } H \leq G.$$

$$AB^{-1}$$

Definition (6.3.7)

The order of a group G is the number of elements in G written |G|. Order of $g \in G$ is the smallest positive integer n such that $g^n = e$. We write |g| or o(g). Order might be finite or infinite. We say a finite group if $|G| < \infty$ and G is infinite group when G has infinitely many elements.

Z has infinite elements

Example: $\langle \mathbb{Z}, + \rangle$ group $|\mathbb{Z}| = \infty$ thus \mathbb{Z} is an infinite group. $\langle \mathbb{Z}_{n}, + \rangle$ is a finite group, $|\mathbb{Z}_{n}| = n$.

Order of g in G. If |g| = m then $g + g + \cdots + g = e$. Recall $g^0 = e$ $\forall g \in G$

Thus |g| = m, m smalles positive integer such that $g^m = e$.

example: $G=\mathbb{Z}_4$. G is a group under addition of residue classes modulo 4. The unity is the class of 0. We have that $3^4=3+3+3+3=0$ modulo 4. Thus |3|=4.

Question: What is the order of the classes 2, 1, and 0? That is find |2|, |1|, |0|

Note that order of an element is the smallest positive integer as you can see that 3^8 =0 modulo 4 but order of 3 modulo 4 is 4 since 4 is the smallest positive integer such that 3^4 =0 modulo 4

CAYLEY TABLES or MULTIPLICATION TABLES

Small finite groups can be displayed on multiplication table.

					. 6
M	е	а	b		þ
е	е	а	b	C	C N
a	a	а	b	e	
b	b	b	С	С	
С	С	е	С	е	

each cell of the table contains the product of an element in column containing M and the row containing M. eq.

(i) M not a group.

(ii) Binary operation not associative. Repetition of elements in rows and columns.

(ab)c = bc = c but a(bc) = ac = e [not associative]

if any one of the group axioms does not hold then the set M with the given binary operation * is not a group

М	е	a	b	С
е	е	а	b	С
a	а	e	С	b
b	b	С	е	а
С	С	b	а	е

 $a^*a=e$, thus $a^{-1}=a$ Question: confirm that $b^{-1}=b$ and $c^{-1}=c$

- (i) M is an abelian group. [Symmetric about main diagonal \Rightarrow commutative.]
- All elements appear in each row and column, all appear once.
- (iii Identity is e. All elements are invertible $a^{-1} = a$, $b^{-1} = b$ $c^{-1} = c$.

N	1	е	а	b	C	
е		е	а	b	С	
a)	а	b	С	e∢	a*c=e thus a ⁻¹ =c
b		b	С	е	а	
С		С	е	а	b	

- (i) *M* is an abelian group.
- (ii) Identity is e.
- All elements have inverses

$$a^{-1} = c$$
 $b^{-1} = b$ $c^{-1} = a$ $e^{-1} = e$.

Question: confirm that b-1=b, e-1=e

Associativity?
$$(ab)c = cc = b$$

 $a(bc) = aa = b$

E.M.B

NOTE:

- **Closure**: Table contains only listed in *M* and appearing exactly once in each row and each column.
- **Unity**: Exactly one row and exactly one column in the table are the same as the leading row and column.
- Inverse : Unity appear exactly once in each row and each column.
- **Abelian**: Symmetric about main diagonal.

Exercise: Construct the multiplication table of $M=\mathbb{Z}_4$ Consider the binary operation of addition of classes modulo 4.