Алгоритмическая теория обучения

Глеб Пособин

9 ноября 2016 г.

Базовые определения

X — пространство примеров, обычно $\{0,1\}^n$ или \mathbb{R}^n .

Концепт — подмножество X. Обычно концепты удобно рассматривать как отображения $X \to \{0,1\}.$

Класс концептов \mathcal{C} — множество концептов.

Пример для концепта $h \in 2^X$ — пара $(x, h(x)) \in X \times \{0, 1\}$.

На X задано распределение \mathcal{D} . Тогда возникает естественное расстояние между концептами: $dist(a,b) := \mathbf{Pr}_{x \in \mathcal{D}}[a(x) \neq b(x)]$.

Некоторый выделенный концепт c называют целевым. Расстояние между c и произвольным концептом h называют ошибкой: error(h):=dist(c,h)

Оракул $EX(c,\mathcal{D})$ за единичное время генерирует объект x из \mathcal{D} и возвращает пару (x,c(x)).

РАС модель

Класс концептов $\mathcal{C}\subset 2^X$ называют РАС-обучаемым, если есть алгоритм L, принимающий на вход числа ε,δ и имеющий доступ к оракулу $EX(c,\mathcal{D})$, который для всех чисел $0<\varepsilon,\delta<1/2$, всех распределений \mathcal{D} на X и всех $c\in\mathcal{C}$ с вероятностью по крайней мере $1-\delta$ возвращает концепт $h\in\mathcal{C}$ с $error(h)<\varepsilon$.

Если L работает за время, полиномиальное от размерности X, $1/\varepsilon$ и $1/\delta$, то $\mathcal C$ называют эффективно PAC-обучаемым.

Пример

Разрешающий список L длины k над n булевыми переменными x_1,\dots,x_n — список из k пар $(\ell_1,b_1),\dots,(\ell_k,b_k)$ и бит b_{k+1} , где ℓ_i — литералы, а $b_i\in\{0,1\}$.

3начение L на входе x:

if ℓ_1 then b_1 else if ℓ_2 then $b_2 \dots$ else if ℓ_k then b_k else b_{k+1}

Пример

- 1. Создать пустой разрешающий список L.
- 2. Запросить m примеров и запомнить их в S.
- 3. Если все примеры в S имеют одинаковый ответ, то останавливаемся.
- 4. Иначе, находим литерал ℓ такой, что все примеры в S, для которых $\ell=1$, имеют одинаковый ответ b. Добавляем пару (ℓ,b) к L, удаляем из S все примеры с $\ell=1$, переходим к шагу 3.

Надо подобрать m и проверить, что алгоритм работает корректно.

Бритва Оккама

Лемма

Дан концепт $c \in \mathcal{C}$ и выборка S для c размера m, сгенерированная из распределения \mathcal{D} . Тогда вероятность, что существует концепт h с $error(h) \geqslant \varepsilon$, не больше $|C|(1-\varepsilon)^m$.

Если $m\geqslant 1/\varepsilon(\ln|C|+\ln 1/\delta)$, то:

$$\delta \geqslant |C|(1-\varepsilon)^m \geqslant \mathbf{Pr}[error(h) \geqslant \varepsilon]$$

Размерность Вапника-Червоненкиса

Для класса концептов $\mathcal C$ над X и $S\subseteq X$ определим:

$$\Pi_{\mathcal{C}}(S) := \{ c \cap S : c \in \mathcal{C} \}$$

Если $|\Pi_{\mathcal{C}}(S)| = 2^{|S|}$, говорят, что \mathcal{C} разбивает S.

 $VCD(\mathcal{C})$ — мощность наибольшего конечного множества S, которое разбивается классом $\mathcal{C}.$

Примеры

Отрезки на прямой.

Полуплоскости.

Прямоугольники со сторонами, параллельными осям, на плоскости.

Замечательное свойство $\Pi_{\mathcal{C}}(m)$

Для натурального m определим:

$$\Pi_{\mathcal{C}}(m) := \max\{|\Pi_{\mathcal{C}}(S)| : |S| = m\}$$

Теорема

Либо всегда $\Pi_{\mathcal{C}}(m)=2^m$, либо $\Pi_{\mathcal{C}}(m)=\mathcal{O}(m^d)$, где $d=\mathit{VCD}(\mathcal{C}).$

VCD u PAC

Теорема

Пусть \mathcal{C} — класс концептов, $VCD(\mathcal{C})=d.$ L — алгоритм, который принимает выборку S из m объектов, соответствующую какому-то концепту в \mathcal{C} , и возвращает концепт $h\in\mathcal{C}$, который согласован с выборкой S. Тогда L — РАС алгоритм для \mathcal{C} , если ему дана выборка из m объектов из $EX(c,\mathcal{D})$, и m удовлетворяет неравенству:

$$m \geqslant \frac{c_0}{\varepsilon} \left(\log \frac{1}{\delta} + d \log \frac{1}{\varepsilon} \right)$$

для какой-то константы $c_0 > 0$.

В бритве Оккама:

$$m\geqslant \frac{1}{\varepsilon}\left(\ln\frac{1}{\delta}+\ln|\mathcal{C}|\right).$$

Модель с ограниченным числом ошибок

Пусть алгоритм $\mathcal A$ на каждом шаге принимает вектор $x\in X$, выдаёт α^* — догадку, а потом получает $\alpha=c(x)$. Тогда, если число ошибок, которое допускает $\mathcal A$, ограничено полиномом от n и size(c) для всех возможных последовательностей векторов x и всех $c\in \mathcal C$, говорят, что $\mathcal A$ изучает $\mathcal C$ в модели с ограниченным числом ошибок.

Разрешающие списки

Алгоритм поддерживает список h из n непересекающихся множеств, в каждом лежат пары (ℓ,b) , и, возможно, терминальные биты.

- 1. Инициализировать h, положив в первое множество все возможные пары (ℓ,b) и два возможных терминальных бита всего 4n+2 элемента.
- 2. Получив пример x, найти первое множество с правилом, которое выполняется, предсказать бит, указанный в правиле.
- 3. Если ошиблись, перемещаем все правила, которые ошиблись, в следующее множество в списке.
- 4. Возвращаемся к шагу 2.

Алгоритм допускает не более $\mathcal{O}(nk)$ ошибок.

Ограниченное число ошибок и РАС

Теорема

Если алгоритм ${\mathcal A}$ изучает класс ${\mathcal C}$ в модели с ограниченным числом ошибок, то ${\mathcal C}$ РАС-обучаем.

Если $\mathcal A$ допускает не более M ошибок, то для $\mathcal C$ есть алгоритм, требующий всего $\frac{M}{\varepsilon}\ln(\frac{M}{\delta})$ примеров.

Можно улучшить до $\mathcal{O}(\frac{1}{\varepsilon}(\ln(\frac{1}{\delta})+M))$ примеров.