Frame Transformation: Vehicle to Earth

K. E. Hammar

April 2, 2020

Some of the terminology used in this document may be used incorrectly as the author is not 100% certain of what she is doing, quite yet.

1 Introduction

The following information is meant to illustrate the process of computing the reference frame transformation, from vehicle (V) frame to earth (E) frame, of a two-wheel ground vehicle moving on the ground plane (D = 0). This is done through a series of equations to be enumerated in Section 3.

2 Variables

Symbol	Units	Description
e_L	pulse	pulses of left wheel encoder
e_R	pulse	pulses of right wheel encoder
T	s	time step size
E_L	$\frac{pulse}{s}$	pulses of left wheel encoder over the time step
E_R	$\frac{pulse}{s}$	pulses of right wheel encoder over the time step
ω_L	$\frac{rad}{s}$	rate of rotation of left wheel
ω_R	$\frac{rad}{s}$	rate of rotation of right wheel
v_L	$\frac{m}{s}$	velocity of left wheel
v_R	$\frac{m}{s}$	velocity of right wheel
u_v	$\frac{m}{s}$	velocity of vehicle
ω_v	$\begin{array}{c} \frac{s}{rad} \\ \frac{m}{s} \\ \frac{m}{s} \\ \frac{m}{s} \\ \frac{m}{s} \\ \frac{rad}{s} \end{array}$	rate of rotation of vehicle
R_L	m	radius of left wheel
R_R	m	radius of right wheel
L	m	length of vehicle axle
ψ_v	rad	yaw angle of vehicle
$\dot{\psi}_v \ \dot{\psi}_v$	$\frac{rad}{s}$	rate of rotation of vehicle
T_{EV}	m	position vector from origin of E-frame to origin of V-frame
\dot{T}_{EV}	$\frac{m}{s}$	velocity vector of vehicle in E-frame

3 Equations

$$\omega_L = \frac{2\pi}{N} E_L \tag{1}$$

$$\omega_R = \frac{2\pi}{N} E_R \tag{2}$$

$$v_L = R_L \cdot \omega_L \tag{3}$$

$$v_R = R_R \cdot \omega_R \tag{4}$$

$$u_v = \frac{v_L + v_R}{2} \tag{5}$$

$$\omega_v = \frac{1}{L}(v_L - v_R) \tag{6}$$

$$\dot{\psi}_v = \omega_v \tag{7}$$

$$\dot{T}_{EV} = \begin{bmatrix} \cos \psi_k \\ \sin \psi_k \\ 0 \end{bmatrix} u_v \tag{8}$$

$$E_L = \frac{e_L}{T} \tag{9}$$

$$E_R = \frac{e_R}{T} \tag{10}$$

Using the equations above as a foundation, we can progress to the first step of the transformation process. We need to find ψ_k and T_{EV} , we will do this using Euler's Method.

$$\psi_{k} = \psi_{k-1} + \omega_{v} \cdot T
= \psi_{k-1} + \frac{1}{L} (v_{L} - v_{R}) \cdot T
= \psi_{k-1} + \frac{1}{L} (R_{L} \cdot \omega_{L} - R_{R} \cdot \omega_{R}) \cdot T
= \psi_{k-1} + \frac{1}{L} \left(R_{L} \left(\frac{2\pi}{N} E_{L} \right) - R_{R} \left(\frac{2\pi}{N} E_{R} \right) \right) \cdot T
= \psi_{k-1} + \frac{1}{L} \left(R_{L} \left(\frac{2\pi}{N} \cdot \frac{e_{L}}{Z} \right) - R_{R} \left(\frac{2\pi}{N} \cdot \frac{e_{R}}{Z} \right) \right) \cdot Z$$

$$= \psi_{k-1} + \frac{1}{L} \left(R_{L} \left(\frac{2\pi \cdot e_{L}}{N} \right) - R_{R} \left(\frac{2\pi \cdot e_{R}}{N} \right) \right)$$

$$= \psi_{k-1} + \frac{2\pi}{N \cdot L} (R_{L} \cdot e_{L} - R_{R} \cdot e_{R})$$

$$(11)$$

We have now found ψ_k in terms of only estimable and known values: a previous yaw angle (ψ_{k-1}) , the pulse value of both encoders $(e_{L,R})$, the radius of both wheels $(R_{L,R})$ and the length of the axle (L). Using (1)-(5) and (8)-(10) we will complete the same process for $T_{EV}(k)$, the position vector.

$$T_{EV}(k) = T_{EV}(k-1) + \begin{bmatrix} \cos \psi_k \\ \sin \psi_k \\ 0 \end{bmatrix} u_v \cdot T$$

$$= T_{EV}(k-1) + \begin{bmatrix} \cos \psi_k \\ \sin \psi_k \\ 0 \end{bmatrix} \left(\frac{v_L + v_R}{2} \right) \cdot T$$

$$= T_{EV}(k-1) + \begin{bmatrix} \cos \psi_k \\ \sin \psi_k \\ 0 \end{bmatrix} \frac{1}{2} (R_L \cdot \omega_L + R_R \cdot \omega_R) \cdot T$$

As seen in the derivation of ψ_k this can be simplified to:

$$= T_{EV}(k-1) + \begin{bmatrix} \cos \psi_k \\ \sin \psi_k \\ 0 \end{bmatrix} \frac{1}{2} \left(R_L \left(\frac{2\pi \cdot e_L}{N} \right) + R_R \left(\frac{2\pi \cdot e_R}{N} \right) \right)$$

$$= T_{EV}(k-1) + \begin{bmatrix} \cos \psi_k \\ \sin \psi_k \\ 0 \end{bmatrix} \frac{\pi}{N} (R_L \cdot e_L + R_R \cdot e_R)$$
(12)