

Александр Калиниченко

ИНТЕЛЛЕКТУАЛЬНЫЕ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В МЕДИЦИНЕ

Модуль 2. Методы искусственного интеллекта

Лекция 11. Процесс разработки ИНС

СТРУКТУРА ПРОЦЕССА ОБУЧЕНИЯ СЕТИ

- *Слои*, параметризуемые весами и объединяемые в сеть (модель)
- *Исходные данные* и соответствующие им *цели*
- *Функция потерь*, которая определяет сигнал обратной связи, используемый для обучения
- *Оптимизатор,* определяющий, как происходит обучение

выборки данных

Доступные данные				
Обучающая выборка		Тестовая выборка		
Обучающая выборка		дационная ыборка	Тестовая выборка	

ПОЧЕМУ ТРЕБУЮТСЯ ТРИ НАБОРА ДАННЫХ

- Процесс конструирования модели связан с настройкой ее гиперпараметров (тип и количество слоев, их размерности). Для настройки в качестве сигнала обратной связи используются проверочные (валидационные) данные. Фактически настройка сама является разновидностью обучения: поиск более удачной конфигурации в некотором пространстве параметров. Как результат, настройка конфигурации модели по качеству прогнозирования на проверочных данных может привести к переобучению на этих данных, хоть модель напрямую и не обучается на них
- Главной причиной этого является так называемая утечка информации. Каждый раз, настраивая гиперпараметры модели и опираясь на качество прогноза по проверочным данным, мы допускаем просачивание в модель некоторой информации из этих данных. Если повторить настройку много раз, в модель будет просачиваться все больший объем информации о проверочном наборе данных
- В результате получится модель, искусственно настроенная на достижение высокого качества прогнозирования по проверочным данным, потому что именно на этих данных она была оптимизирована
- Для корректного тестирования модель не должна иметь доступа ни к какой информации из контрольного набора, даже косвенно

ДЕЛЕНИЕ ДАННЫХ НА ТРЕНИРОВОЧНЫЙ И ПРОВЕРОЧНЫЙ НАБОРЫ

- Простое расщепление выборки
- Перекрестная проверка по К блокам
- Итерационная перекрестная проверка по К блокам с перемешиванием (данные случайным образом перемешиваются перед каждым расщеплением)

Использование перекрестной проверки с перемешиванием позволяет снизить требования к объему обучающих данных. Однако эта процедура приводит к существенному росту вычислительных затрат

ПРЕДВАРИТЕЛЬНАЯ ОБРАБОТКА ДАННЫХ

• Векторизация

Представление входных данных в виде матриц специального формата (тензоров)

• Нормализация значений

Приведение данных к одному масштабу (обычно в диапазоне от 0 до 1, либо нормализованные по СКО и с нулевым средним)

• Обработка недостающих значений

Замена отсутствующих значений признаков нулями (при этом в обучающей выборке обязательно должны содержаться экземпляры с ненулевыми значениями соответствующих признаков)

КОНСТРУИРОВАНИЕ ПРИЗНАКОВ

Варианты конструирования признаков для определения времени по циферблату часов

При удачном выборе признаков:

- Задача решается моделью меньшей емкости (с меньшим числом нейронов)
- Требуется значительно меньший объем обучающей выборки

Исходные данные: сетка с пикселами		
Более удачные признаки: координаты стрелок	{x1: 0.7, y1: 0.7} {x2: 0.5, y2: 0.0}	{x1: 0.0, y2: 1.0} {x2: -0.38, 2: 0.32}
Еще более удачные	theta1: 45 theta2: 0	theta1: 90 theta2: 140

признаки: углы

отклонения стрелок

ПЕРЕОБУЧЕНИЕ И НЕДООБУЧЕНИЕ

Противоречие между оптимизацией и общностью:

- Оптимизация процесс настройки модели для получения максимального качества на тренировочных данных
- Общность качество обученной модели на данных, которые она прежде не видела

Недообучение – на первых итерациях обучения, чем ниже потери (ошибки) на тренировочных данных, тем они ниже на контрольных данных

Переобучение - после некоторого числа итераций на тренировочных данных общность перестает улучшаться, проверочные метрики начинают ухудшаться

БОРЬБА С ПЕРЕОБУЧЕНИЕМ И НЕДООБУЧЕНИЕМ

Лучший способ предотвращения переобучения – увеличение объема тренировочных данных

Если такой возможности нет, то следующим лучшим способом является повышение качества информации или добавление ограничений на информацию, которую модели будет позволено сохранить. Такие процедуры называются регуляризацией:

- Уменьшение размера сети
- Регуляризация весов
- Прореживание признаков

УМЕНЬШЕНИЕ РАЗМЕРА СЕТИ

- Количество изучаемых параметров в модели называют емкостью модели. Емкость определяется количеством слоев и количеством нейронов (размерностью) в каждом слое
- Чем больше емкость модели, тем больше образцов она способна просто "запомнить", что может привести к **переобучению** (к подгонке модели под данные)
- Самый простой способ предотвратить переобучение **уменьшить размер модели**. При этом повышается способность к обобщению. Но при слишком низком размере модели она теряет способность к запоминанию существенных свойств объектов

В общем случае процесс поиска подходящего размера модели должен начинаться с относительно небольшого количества слоев и параметров, а затем размеры слоев и их количество должны постепенно увеличиваться, пока не произойдет увеличение потерь на проверочных данных

РЕГУЛЯРИЗАЦИЯ ВЕСОВ

Более простые модели менее склонны к переобучению, чем сложные

Простая модель — это модель, в которой распределение значений параметров имеет меньшую энтропию (или модель с меньшим числом параметров)

Упрощение модели может быть достигнуто путем ограничения значений ее весовых коэффициентов, что делает их распределение более равномерным. Этот прием называется регуляризацией весов, он реализуется добавлением в функцию потерь сети штрафа за увеличение весов и имеет две разновидности:

- **L1-регуляризация** штраф прямо пропорционален абсолютным значениям весовых коэффициентов (L1-норма весов)
- L2-регуляризация— штраф пропорционален квадратам значений весовых коэффициентов (L2-норма весов) В контексте нейронных сетей L2-регуляризация также называется сокращением весов

ПРОРЕЖИВАНИЕ ПРИЗНАКОВ

- Прореживание (dropout) один из наиболее эффективных и распространенных приемов регуляризации для нейронных сетей, разработанный Джеффом Хинтоном в Университете Торонто
- Прореживание, которое применяется к слою, заключается в присваивании нуля случайно выбираемым признакам на этапе обучения (это равносильно удалению этих признаков)
- Коэффициент прореживания это доля обнуляемых признаков. Обычно он выбирается в диапазоне от 0,2 до 0,5
- На этапе тестирования прореживание не выполняется. Вместо этого выходные значения уровня уменьшаются на коэффициент, равный коэффициенту прореживания, чтобы компенсировать разницу в активности признаков на этапах тестирования и обучения
- Основная идея прореживания заключается в том, что введение шума в выходные значения нейронов может разбить случайно складывающиеся шаблоны, не имеющие большого значения, которые модель может запоминать в отсутствие шума (что ведет к переобучению)

ПРОРЕЖИВАНИЕ (DROPOUT)

Исходная нейронная сеть

Результат прореживания

ОБОБЩЕННЫЙ ПРОЦЕСС РЕШЕНИЯ ЗАДАЧ МАШИННОГО ОБУЧЕНИЯ

Далее представлена универсальная схема, которая может быть использована для решения любых задач машинного обучения. Эта схема связывает воедино основные идеи:

- определение задачи
- оценка качества решения задачи
- конструирование признаков
- ослабление проблемы переобучения

ОПРЕДЕЛЕНИЕ ЗАДАЧИ

Прежде всего, необходимо определить задачу:

- Какой вид будут иметь входные данные?
- Что требуется предсказать?

Гипотезы, выдвигаемые на этой стадии:

- Гипотеза о том, что выходные данные можно предсказать по входным данным
- Гипотеза о том, что доступные данные достаточно информативны для изучения отношений между входными и выходными данными

На данном этапе ограничивающим фактором является **доступность данных** для обучения

ОПРЕДЕЛЕНИЕ ТИПА ЗАДАЧИ

К какому типу относится поставленная задача:

- Бинарная классификация?
- Многоклассовая классификация?
- Скалярная регрессия?
- Векторная регрессия?
- Многозначная (нечеткая) классификация?
- Что-то иное?

Идентификация типа задачи определит выбор архитектуры модели, функции потерь и т. д.

ВЫБОР МЕРЫ УСПЕХА

Сначала необходимо определить, что понимается под успехом

Показатель успеха будет определять выбор функции потерь — что именно должна оптимизировать модель

Наиболее типичные варианты меры успеха:

- Для задач симметричной классификации, когда каждый класс одинаково вероятен, используется площадь под ROC-кривой (AUC)
- Для задач несимметричной классификации используются точность и полнота
- Для задач регрессии используется среднеквадратическая ошибка
- Для задач ранжирования или многозначной классификации используется среднее математическое ожидание

Иногда необходимо определять специальную меру успеха

ВЫБОР ПРОТОКОЛА ОЦЕНКИ

Три наиболее распространенных протокола оценки:

- Выделение из общей выборки отдельного проверочного набора данных этот способ хорошо подходит при наличии большого объема данных
- Перекрестная проверка по К блокам правильный выбор при небольшом количестве исходных образцов, из которых нельзя выделить представительную выборку для проверки
- Итерационная проверка по К блокам с перемешиванием позволяет с высокой точностью оценить модель, когда имеется ограниченный объем данных

ПРЕДВАРИТЕЛЬНАЯ ПОДГОТОВКА ДАННЫХ

Преобразование исходных данных в формат, в котором их можно передать в модель машинного обучения — в данном случае в глубокую нейронную сеть:

- Данные должны быть помещены в тензоры
- Значения, помещаемые в тензоры, обычно требуют масштабирования и приведения к меньшим величинам: например, в диапазоне [-1, 1] или [0, 1]
- Если значения разных признаков находятся в разных диапазонах (разнородные данные), их следует нормализовать
- Возможно, также понадобится выполнить конструирование признаков, особенно при небольшом объеме исходных данных

РАЗРАБОТКА МОДЕЛИ, БОЛЕЕ СОВЕРШЕННОЙ, ЧЕМ БАЗОВЫЙ СЛУЧАЙ

Базовый случай - простой случайный выбор

Цель на этом этапе — достичь **статистической мощности**, то есть разработать небольшую модель, способную выдать более качественный результат по сравнению с базовым случаем

Три ключевых выбора:

- Функция активации для последнего уровня устанавливает эффективные ограничения на результат сети
- Функция потерь должна соответствовать типу решаемой задачи
- Алгоритм оптимизации

ФУНКЦИЯ АКТИВАЦИИ И ФУНКЦИЯ ПОТЕРЬ

Функция активации для последнего уровня и функция потерь выбираются в зависимости от решаемой задачи

Тип задачи	Функция активации для последнего уровня	Функция потерь
Бинарная классификация	Сигмоид	Бинарная кросс-энтропия
Многоклассовая, однозначная классификация	Многомерная логистическая функция	Категориальная кросс-энтропия
Многоклассовая, многозначная классификация	Сигмоид	Бинарная кросс-энтропия
Регрессия по произвольным значениям	Нет	Среднеквадратическая ошибка
Регрессия по значениям между 0 и 1	Сигмоид	Среднеквадратическая ошибка или бинарная кросс-энтропия

РАЗРАБОТКА МОДЕЛИ С ПЕРЕОБУЧЕНИЕМ

Первоначально конструируется избыточная модель:

- Добавление слоев
- Большое число параметров в слоях
- Обучение на большом количестве эпох

Ухудшение качества на проверочных (валидационных) данных сигнализирует о достижения переобучения

Дальнейшие усилия будут направлены на оптимизацию полученной модели

РЕГУЛЯРИЗАЦИЯ И НАСТРОЙКА ГИПЕРПАРАМЕТРОВ

Возможные пути улучшения модели:

- Прореживание (dropout)
- Разные варианты архитектуры: добавление и удаление слоев
- L1- и/или L2-регуляризация
- Подбор гиперпараметров (число нейронов на слой или шаг обучения оптимизатора)
- Дополнительный цикл конструирования признаков: добавление новых или удаление тех, которые оказываются неинформативными

При изменении гиперпараметров необходимо помнить об опасности просачивания информации из проверочной (валидационной) выборки (не должно быть слишком много циклов коррекции гиперпараметров)

ОКОНЧАТЕЛЬНОЕ ОБУЧЕНИЕ И ПРОВЕРКА

- Получив удовлетворительную конфигурацию, можно обучить окончательный вариант модели на всех доступных данных (тренировочных и проверочных) и оценить ее качество на контрольном наборе
- Если качество модели на контрольных данных окажется значительно хуже, чем на проверочных, это может означать, что процедура проверки была ненадежной или в процессе настройки параметров модели проявился эффект переобучения на проверочных данных
- В этом случае можно попробовать переключиться на использование другого, более надежного протокола оценки (такого, как итерационная проверка по К блокам с перемешиванием)