The Memory Hierarchy: *Performance impact of caches*

Performance impact of caches

- The memory mountain
- Rearranging loops to improve spatial locality
- Using blocking to improve temporal locality

- Read throughput (read bandwidth)
 - Number of bytes read from memory per second (MB/s)
- Memory mountain: Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.

Memory Mountain Test Function

```
long data[MAXELEMS]; /* Global array to traverse */
/* test - Iterate over first "size" elements of
          array "data" with stride of "stride", using
         using 4x4 loop unrolling.
 */
int test(int size, int stride) {
    long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
    long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
    long limit = size - sx4;
    /* Combine 4 elements at a time */
    for (i = 0; i < limit; i += sx4) {</pre>
        acc0 = acc0 + data[i];
        acc1 = acc1 + data[i+stride];
        acc2 = acc2 + data[i+sx2];
        acc3 = acc3 + data[i+sx3];
    /* Finish any remaining elements */
    for (; i < size; i++) {</pre>
        acc0 = acc0 + data[i];
    return ((acc0 + acc1) + (acc2 + acc3));
                               mountain/mountain.c
```

Call test() with many combinations of size and stride.

For each size and stride:

- 1. Call test() once to warm up the caches.
- 2. Call test() again and measure the read throughput(MB/s)

The Memory Mountain

Core i7 Haswell 2.1 GHz 32 KB L1 d-cache 256 KB L2 cache 8 MB L3 cache 64 B block size

Core i7 Haswell

32 KB L1 d-cache

2.1 GHz

Core i7 Haswell

32 KB L1 d-cache

2.1 GHz

Core i7 Haswell

2.1 GHz

Performance impact of caches

- The memory mountain
- Rearranging loops to improve spatial locality
- Using blocking to improve temporal locality

Matrix Multiplication Example

Description:

- Multiply N x N matrices
- Matrix elements are doubles (8 bytes)
- O(N³) total operations
- N reads per source element
- N values summed per destination
 - but may be able to hold in register

```
/* ijk */
for (i=0; i<n; i++)
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}

matmult/mm.c</pre>
```

Miss Rate Analysis for Matrix Multiply

Assume:

- Block size = 32B (big enough for four doubles)
- Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
- Cache is not even big enough to hold multiple rows

Analysis Method:

Look at access pattern of inner loop

Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
 - each row in contiguous memory locations
- Stepping through columns in one row:

```
for (i = 0; i < N; i++)
sum += a[0][i];</pre>
```

- accesses successive elements
- if block size (B) > sizeof(a_{ii}) bytes, exploit spatial locality
 - miss rate = sizeof(a_{ii}) / B

Stepping through rows in one column:

```
for (i = 0; i < n; i++)
sum += a[i][0];</pre>
```

- accesses distant elements
- no spatial locality!
 - miss rate = 1 (i.e. 100%)

Matrix Multiplication (ijk)

```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
       sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}

matmult/mm.c</pre>
```

```
Inner loop:

(*,j)

(i,*)

B

C

T

Row-wise Column-
wise
```

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.25 1.0 0.0

Matrix Multiplication (jik)

```
/* jik */
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum
  }
}
    matmult/mm.c</pre>
```

Inner loop:

Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
0.25	1.0	0.0

Matrix Multiplication (kij)

```
/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
  }
}
matmult/mm.c</pre>
```

Inner loop: (i,k) A B C The second of t

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25 0.25

Matrix Multiplication (ikj)

```
/* ikj */
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
  }
}
matmult/mm.c</pre>
```

Inner loop: (i,k) A B C T Fixed Row-wise Row-wise Row-wise

Misses per inner loop iteration:

<u>A</u> 0.0 <u>B</u> 0.25

0.25

Matrix Multiplication (jki)

```
/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
  for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
  }
}
matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 1.0 0.0 1.0

Matrix Multiplication (kji)

```
/* kji */
for (k=0; k<n; k++) {
  for (j=0; j<n; j++) {
    r = b[k][j];
  for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
  }
}
matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 1.0 0.0 1.0

Summary of Matrix Multiplication

```
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
  for (k=0; k<n; k++)
    sum += a[i][k] * b[k][j];
  c[i][j] = sum;
}
}</pre>
```

```
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
  for (j=0; j<n; j++)
    c[i][j] += r * b[k][j];
}</pre>
```

```
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
  for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
}</pre>
```

ijk (& jik):

- 2 loads, 0 stores
- misses/iter = **1.25**

kij (& ikj):

- 2 loads, 1 store
- misses/iter = **0.5**

jki (& kji):

- 2 loads, 1 store
- misses/iter = **2.0**

Core i7 Matrix Multiply Performance

Performance impact of caches

- The memory mountain
- Rearranging loops to improve spatial locality
- Using blocking to improve temporal locality

Example: Matrix Multiplication

Cache Miss Analysis

- Assume:
 - Matrix elements are doubles
 - Cache block = 8 doubles
 - Cache size C << n (much smaller than n)

First iteration:

Cache Miss Analysis

Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)

First iteration:

• n/8 + n = 9n/8 misses

Cache Miss Analysis

Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)

First iteration:

• n/8 + n = 9n/8 misses

Afterwards in cache: (schematic)

Cache Miss Analysis

Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)

Second iteration:

Cache Miss Analysis

Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)

Second iteration:

• Again: n/8 + n = 9n/8 misses

Cache Miss Analysis

Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)

Second iteration:

Again:n/8 + n = 9n/8 misses

Total misses:

- 9n/8 * n² = (9/8) * n³

Blocked Matrix Multiplication

```
c = (double *) calloc(sizeof(double), n*n);
/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i+=B)
       for (j = 0; j < n; j+=B)
             for (k = 0; k < n; k+=B)
                /* B x B mini matrix multiplications */
                  for (i1 = i; i1 < i+B; i++)
                      for (j1 = j; j1 < j+B; j++)
                          for (k1 = k; k1 < k+B; k++)
                              c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
                                                         matmult/bmm.c
```


n/B blocks

Cache Miss Analysis

- Assume:
 - Cache block = 8 doubles
 - Cache size C << n (much smaller than n)
 - Three blocks fit into cache: 3B² < C</p>

First (block) iteration:

Cache Miss Analysis

Assume:

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)
- Three blocks fit into cache: 3B² < C</p>

First (block) iteration:

- B²/8 misses for each block
- 2n/B * B²/8 = nB/4 (omitting matrix c)

n/B blocks

Cache Miss Analysis

Assume:

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)
- Three blocks \blacksquare fit into cache: $3B^2 < C$

First (block) iteration:

- B²/8 misses for each block
- 2n/B * B²/8 = nB/4 (omitting matrix c)

n/B blocks

Cache Miss Analysis

- Assume:
 - Cache block = 8 doubles
 - Cache size C << n (much smaller than n)
 - Three blocks fit into cache: 3B² < C</p>

Second (block) iteration:

Cache Miss Analysis

Assume:

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)
- Three blocks fit into cache: 3B² < C</p>

Second (block) iteration:

- Same as first iteration
- 2n/B * B²/8 = nB/4

n/B blocks

Cache Miss Analysis

Assume:

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)
- Three blocks fit into cache: 3B² < C</p>

Second (block) iteration:

- Same as first iteration
- $-2n/B * B^2/8 = nB/4$

Total misses:

 $B/4 * (n/B)^2 = n^3/(4B)$

Blocking Summary

- No blocking: (9/8) * n³
- Blocking: 1/(4B) * n³

Blocking Summary

- No blocking: (9/8) * n³
- Blocking: 1/(4B) * n³
- Suggest largest possible block size B, but limit 3B² < C!

Blocking Summary

- No blocking: (9/8) * n³
- Blocking: 1/(4B) * n³
- Suggest largest possible block size B, but limit 3B² < C!
- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: 3n², computation 2n³
 - Every array elements used O(n) times!
 - But program has to be written properly