Анализ изображений и видео

Лекция 2: Основы пространственной и частотной обработки изображений

Наталья Васильева nvassilieva@hp.com HP Labs Russia

Обработка изображений

- На входе и выходе изображения
- Результат обработки «лучше» оригинала с точки зрения конкретного применения
 - Лучше с эстетической точки зрения
 - Лучше для последующего анализа

Примеры

Примеры

План лекции

- Пространственная область
- Частотная область, преобразование Фурье
- Обработка в пространственной области
- Обработка в частотной области

Представление цифровых изображений (recap)

Цветное растровое изображение:

$$f(x, y) = \begin{pmatrix} r_{0,0}, g_{0,0}, b_{0,0} & r_{0,1}, g_{0,1}, b_{0,1} & r_{0,M-1}, g_{0,N-1}, b_{0,N-1} \\ r_{1,0}, g_{1,0}, b_{1,0} & r_{1,1}, g_{1,1}, b_{1,1} & r_{1,M-1}, g_{1,N-1}, b_{1,N-1} \\ r_{M-1,0}, g_{M-1,0}, b_{M-1,0} & r_{M-1,1}, g_{M-1,1}, b_{M-1,1} & r_{M-1,N-1}, g_{M-1,N-1}, b_{M-1,N-1} \end{pmatrix}$$

Пространственная область

f(x,y)

Представим «одномерную картинку»

1-D изображение

Частотное представление – основная идея

Преобразование Фурье для изображений – основная идея

- Любое изображение может быть представлено, как сумма синусов и косинусов различной амплитуды и частоты
- Частоты слагаемых характеризуют изображение:
 - Яркость «сильно скачет» на небольших участках изображения будут преобладать слагаемые с высокими частотами
 - Яркость плавно изменяется будут преобладать низкие частоты

Преобразование Фурье

- *Преобразование* исходного представления изображения, как функции f(x), в *частотное* представление набор F_i
- Преобразование обратимо

Преобразование Фурье

Прямое преобразование Фурье непрерывной фукнции одной переменной f(x):

$$F(u) = \int_{-\infty}^{+\infty} f(x)e^{-i2\pi ux}dx$$

Обратное преобразование Фурье:

$$f(x) = \int_{-\infty}^{+\infty} F(u)e^{i2\pi ux}du$$

Двумерный случай

Базисные функции: g(x, y, u, v)

Прямое преобразование

$$F(u,v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y)e^{-i2\pi(ux+vy)}dxdy$$

Обратное преобразование:

$$f(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(u,v)e^{i2\pi(ux+vy)}dudv$$

Визуализация Фурье-спектра

- Фурье-спектр: набор всех | F(u,v) |
- Визуализация спектра чем выше значение F(u,v), тем «светлее» точка с координатами (u,v)
- Светлый центр спектра исходное изображение содержит в основном однородные области, без перепадов яркости
- Светлая периферия спектра изображение содержит много локальных перепадов яркости

Визуализация Фурье-спектра

F(u,v)

Примеры

Еще примеры

Обработка в пространственной области

- Обработка в пространственной области манипулирование пикселями изображения
 - Например, инвертирование

Гистограммы

Гистограммы

Гистограммы - коррекция

- Линейное преобразование линейное «растяжение» гистограммы, устойчивое растяжение
- Нелинейное преобразование
 - Эквализация (линеаризция) гистограммы

$$p_x(x_k) = \frac{n_k}{n}, \quad k = 0, 1, ..., L-1$$

$$y_k = f(x_k) = \sum_{i=0}^k p_x(x_i) = \sum_{i=0}^k \frac{n_i}{n}$$

Результат эквализации гистограммы

Результат эквализации гистограммы

Пороговая бинаризация

a b

(a) Gray-level histograms that can be partitioned by (a) a single threshold, and (b) multiple thresholds.

Глобальная – порог единый для всех точек изображения

Локальная или Динамическая – когда порог зависит от координат точки (x,y)

Адаптивная – когда порог зависит от значения яркости в точке I(x,y)

Глобальная бинаризация

- Выбор порога вручную
- Выбор порога автоматически
 - 1. Случайно выбрать начальное значение порога T_0
 - 2. Сегментировать изображение по порогу T_0 : регионы G1 и G2 из пикселей со значениями $>T_0$ и $\leq T_0$
 - 3. Вычислить средние значения $\mu 1$ and $\mu 2$ для регионов G1 and G2
 - 4. $T_1 = 0.5 (\mu 1 + \mu 2)$
 - 5. Повторять пока $|T_i T_{i+1}| < T_{th}$

Примеры бинаризации

a b c d

FIGURE 10.30

(a) Original image. (b) Result of global thresholding. (c) Image subdivided into individual subimages. (d) Result of adaptive thresholding.

Выделение компонент связности

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	2	2	0	0	3	3	0	0	4	4	0
0	1	1	1	1	1	1	1	1	0	0	3	3	3	3	0	0
0	0	0	1	1	1	1	0	0	0	3	3	3	3	0	0	0
0	0	1	1	1	1	0	0	0	3	3	3	0	0	3	3	0
0	1	1	1	0	0	1	1	0	0	0	3	3	3	0	0	0
0	0	1	1	0	0	0	0	0	5	3	0	0	0	3	3	0
0	0	0	0	0	0	6	6	5	3	0	0	7	3	3	3	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Компоненты связности

Фильтрация (свертка изображения с фильтром)

Операция свертки:

f – изображение w – ядро, фильтр g – результат свертки f*w

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Свойства:

• коммутативность:

$$f^*w = w^*f$$

• ассоциативность:

$$f*(w1*w2)=(f*w1)*w2$$

• дистрибутивность по сложению:

$$f^*(w1+w2=f^*w1 + f^*w2$$

•
$$kf^*w = f^*kw = k(f^*w)$$

Теорема о свертке

$$g = f * h$$

$$g = f h$$

implies

$$G = F H$$

$$G = F * H$$

Теорема о свертке

Сглаживание

• Линейные усредняющие фильтры – удаление «случайного шума»

	1	2	1
$\frac{1}{16} \times$	2	4	2
	1	2	1

- Фильтры, основанные на порядковых статистиках
 - Медианный фильтр (подавление шума «соль и перец»)

Сглаживание фильтром Гаусса

Свертка с ядром Гаусса

$$G(x,y) = rac{1}{2\pi\sigma^2} e^{-rac{x^2+y^2}{2\sigma^2}}$$

Сглаживание фильтром Гаусса: пример

Sigma = 2.8 Size = 10

Выделение деталей

A point has been detected if $|g| \ge T$,

• T is a nonnegative threshold

-1	-1	-1
-1	8	-1
-1	-1	-1

Обнаружение линий

-1	-1	-1	-1	-1	2	-1	2	-1	2	-1	-1
2	2	2	-1	2	-1	-1	2	-1	-1	2	-1
-1	-1	-1	2	-1	-1	-1	2	-1	-1	-1	2
Horizontal				+45°		1	Vertica	ıl		-45°	

- If $|g_i| > |g_j|$ for all $j \neq i$ the point is within line i.
- Use one mask to detect lines of a given direction

Выделение границ: примеры

Обнаружение границ

Model of an ideal digital edge

Gray-level profile of a horizontal line through the image Model of a ramp digital edge

Градиент изображения

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Градиент направлен в сторону наибольшего изменения интенсивности

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

Направление градиента:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

Величина градиента:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Вычисление градиента изображения

Дискретный случай:

$$\frac{\partial f}{\partial x}[x,y] \approx f[x+1,y] - f[x,y]$$

Roberts:

$$G_x = (z_9 - z_5)$$

$$G_y = (z_8 - z_6)$$

Prewitt:

$$G_{x} = (z_{7} + z_{8} + z_{9}) - (z_{1} + z_{2} + z_{3})$$

$$G_y = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)$$

-1	-1	-1	-1	0	1
0	0	0	-1	0	1
l	1	1	-1	0	1

Sobel:

$$G_x = (z_7 + z_8 + z_9) - (z_1 + z_2 + z_3)$$
 $G_x = (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)$

$$G_v = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)$$
 $G_v = (z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)$

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
ı	2	1	-1	0	1

Пример

a b c d

FIGURE 10.10(a) Original image. (b) $|G_x|$, component of the gradient in the *x*-direction. (c) $|G_y|$, component in the *y*-direction. (d) Gradient image, $|G_x| + |G_y|$.

Обнаружение контуров: вычисление производных

Вычисление второй производной: Лапласиан

$$\nabla^2 f = \frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2}$$

• Маски Лапласиана:

0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

$$\nabla^2 f = 4z_5 - (z_2 + z_4 + z_6 + z_8)$$

$$\nabla^2 f = 8z_5 - (z_1 + z_2 + z_3 + z_4 + z_6 + z_7 + z_8 + z_9)$$

Повышение резкости

Что теряется при сглаживании?

Добавим дополнительно высокие частоты:

Slide by S. Lazebnik

Фильтр Unsharp

Mexican hat

a b c d

FIGURE 10.14

Laplacian of a Gaussian (LoG).

- (a) 3-D plot.
- (b) Image (black is negative, gray is the zero plane, and white is positive).
- (c) Cross section showing zero crossings.
- (d) 5×5 mask approximation to the shape of (a).

0

0

0

0

Заключение

- Пространственная область
- Частотная область, преобразование Фурье, теорема о свертке
- Обработка в пространственной и частотной областях
 - Гистограммы, бинаризация, выделение связных компонент, сглаживание, повышение резкости, выделение контуров

