基礎 徹底 演習 問題プリント

微分法・積分法①

[45]

曲線 $C: y = x^3 - 4x + 3$ 上の点 $(t, t^3 - 4t + 3)$ における接線の方程式は

$$y = ($$
 ア $t^2 -$ イ $)x -$ ウ $t^3 +$ エ

である。これが点 A(2, a) を通るとき

オカ
$$t^3 +$$
 キ $t^2 -$ **ク** = a

が成り立つ。したがって、点 A から曲線 C に 3 本の接線が引けるとき

である。また、a= $\boxed{}$ のとき、接線は2本あり、その方程式は

$$y =$$
 \searrow $x +$ Z $, y =$ t $x -$ YS

である。

ア	イ	ウ	エ	オ	カ	キ	ク	ケ	コ	サ	シ	ス	セ	ソ	タ

年 組 番 名前

[46]

a, b は定数とする。3 次関数 $f(x) = x^3 + ax^2 + bx + 4$ は x = -1 で極大値 9 をとるとき

$$a = \boxed{$$
アイ $}$, $b = \boxed{$ ウエ $}$

であり、このとき、f(x) は

をとる。さらに、f(x) = 9 を満たすxの値は

$$x=-1$$
, τ

であるから、 $-2 \le x \le k$ (k は定数) における f(x) の最大値が 9,最小値が $\boxed{\texttt{カキク}}$ となる k の値の範囲は

$$\exists$$
 $\leq k \leq$ \forall

である。