Review: Ψ_{nlm} = Orbitals

- For n=1, l=0, m=0, the electron is called to be in 100 state and the wave function corresponding to this electron is ψ_{100}
- The other wave functions possible for n=2 are ψ_{200} , ψ_{210} , ψ_{211} and ψ_{21-1}
- All these four states have the same energy i.e. $-R_H/4$
- The other way of representing the wave function is a orbital...the orbital is actually the wave-function
- If l=0, s; l=1, p; l=2, d
- So all ψ_{210} , ψ_{211} and ψ_{21-1} would be called 2p.

What does Ψ_{nlm} mean? $\Psi_{nlm}(r,\theta,\emptyset) = R_{nl}(r) \Psi_{nlm}(\theta,\phi)$

TABLE 2.1 Hydrogenlike Wavefunctions* (Atomic Orbitals), $\psi = RY$					
(a) Radial wavefunctions			(b) Angular wavefunctions		
n	l	$R_{nl}(r)$	I	" m_l "†	$Y_{lm_l}(heta, oldsymbol{\phi})$
1	0	$2\left(\frac{Z}{a_0}\right)^{3/2} \mathrm{e}^{-Zr/a_0}$	0	0	$\left(\frac{1}{4\pi}\right)^{1/2}$
2	0	$\frac{1}{2\sqrt{2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$	1	x	$\left(\frac{3}{4\pi}\right)^{1/2}\sin\theta\cos\phi$
2	1	$\frac{1}{2\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) e^{-Zr/2a_0}$	1	у	$\left(\frac{3}{4\pi}\right)^{1/2}\sin\theta\sin\phi$
3	0	$\frac{2}{9\sqrt{3}} \left(\frac{Z}{a_0}\right)^{3/2} \left(3 - \frac{2Zr}{a_0} + \frac{2Z^2r^2}{9a_0^2}\right) e^{-Zr/3a_0}$	1	z	$\left(\frac{3}{4\pi}\right)^{1/2}\cos\theta$
3	1	$\frac{2}{9\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{3a_0}\right) e^{-Zr/3a_0}$	2	xy	$\left(\frac{15}{16\pi}\right)^{1/2}\sin^2\theta\sin 2\phi$
3	2	$\frac{4}{81\sqrt{30}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right)^2 e^{-Zr/3a_0}$	2	yz	$\left(\frac{15}{4\pi}\right)^{1/2}\cos\theta\sin\theta\sin\phi$
			2	zx	$\left(\frac{15}{4\pi}\right)^{1/2}\!\cos\theta\sin\theta\cos\phi$
			2	$x^2 - y^2$	$\left(\frac{15}{16\pi}\right)^{1/2} \sin^2\theta \cos 2\phi$
			2	z^2	$\left(\frac{5}{16\pi}\right)^{1/2} (3\cos^2\theta - 1)$

^{*}Note: In each case, $a_0 = \varepsilon_0 h^2 / \pi m_e e^2$, or close to 52.9 pm; for hydrogen itself, Z = 1.

[†]In all cases except $m_l = 0$, the orbitals are sums and differences of orbitals with specific values of m_l .

$$\Psi^2_{nlm}(r,\theta,\phi)$$

- What does the wave function actually mean and how does it actually represent the electron?
- Wave function is just a mathematical function

Max Born: If I take the wave function and I square it, if I interpret that as a probability density then I can interpret all the predictions made in the Schrodinger equation

 $\Psi^{2}_{nlm}(r,\theta,\phi)$ = probability density or probability/unit volume

H-Atom Complete $\Psi(r,\theta,\phi)$ for n=1,2 s n=1 l=0 m=0 $\psi_{100}=\cdot$ $e^{-\sigma}=\psi_{1s}$

$$l = 1$$
 $l = 0$

1s
$$n=1$$
 $l=0$ $m=0$ $\psi_{100}=$

$$(e^{-\sigma}) = \psi_{ls}$$

2s
$$n =$$

$$l = 0$$

2s
$$n=2$$
 $l=0$ $m=0$ $\psi_{200}=$

$$\psi_{200} =$$

$$(2-\sigma)e^{-\sigma/2} \neq \psi_{2s}$$
 F(r) only

$$l = 1$$

$$l = 1$$
 $m = 0$ $\psi_{210} =$

$$\sigma e^{-\sigma/2}\cos\theta = \psi_{2p_z} \quad \mathbf{F(r,\theta)}$$

$$l = 1$$

$$l = 1$$
 $m = \pm 1$ $\psi_{21\pm 1} =$

$$\sigma e^{-\sigma/(\sin\theta)} = \mathbf{F}(\mathbf{r}, \theta, \phi)$$

or the alternate linear combinations

Linear combination $\psi_{2p_n} =$ Of two solutions is also a solution (Real wavefunctions) ψ_{2p_y} =

S-Orbitals (I=0,m_I=0)" R_{nI} and R_{nI}^2 $\frac{1}{2\sqrt{2}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$ $\frac{1}{2\sqrt{2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$

$$2\left(\frac{Z}{a_0}\right)^{3/2} \underbrace{e^{-Zr/a_0}}^{1}$$

$$\frac{1}{2\sqrt{2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$$

Change of the Contract of the

S-Orbitals ($l=0,m_l=0$)" R_{nl} and R_{nl}^2

Surface plot of 4 for 5

Surface plot of Ψ^2 for S

Maximum probability of finding the electron?