Exercícios de Geometria Riemanniana

Índice

1	Exe	Exercícios de do Carmo																				
	1.1	Capítulo 0																 		 		1
	1.2	Capítulo 1																 		 		2

1 Exercícios de do Carmo

1.1 Capítulo 0

Exercise 2 Prove que o fibrado tangente de uma variedade diferenciável M é orientável (mesmo que M não seja).

Solution. Es porque la diferencial de los cambios de coordenadas está dada por la identidad y una matriz lineal. Sí, porque por definición las trivializaciones locales de TM preservan la primera coordenada y son isomorfismos lineales en la parte del espacio vectorial. Entonces queda que

$$d(\phi_U \circ \phi_V^{-1}) = \left(\frac{Id \mid 0}{0 \mid \xi \in \mathsf{GL}(n)}\right)$$

pero no estoy seguro de por qué ξ preservaría orientación, i.e. que tenga determinante positivo... a menos de que...

Exercise 5 (Mergulho de $P^2(\mathbb{R})$ em \mathbb{R}^4) Seja $F: \mathbb{R}^3 \to \mathbb{R}^4$ dada por

$$F(x, y, z) = (x^2 - y^2, xy, xz, yz),$$
 $(x, y, z) = p \in \mathbb{R}^3.$

Seja $S^2\subset\mathbb{R}^3$ a esfera unitária com centro na origem $0\in\mathbb{R}^3$. Oberve que a restrição $\phi:=\mathsf{F}|_{S^2}$ é tal que $\phi(\mathfrak{p})=\phi(-\mathfrak{p})$, e considere a aplicação $\tilde{\phi}:\mathbb{R}\mathsf{P}^2\to\mathbb{R}^4$ dada por

$$\tilde{\phi}([p]) = \phi(p)$$
, $[p]$ =clase de equivalência de $p = \{p, -p\}$

Prove que

- (a) φ̃ é uma imersão.
- (b) $\tilde{\phi}$ é biunívoca; junto com (a) e a compacidade de $\mathbb{R}P^2$, isto implica que $\tilde{\phi}$ é um mergulho.

Solution.

(a) Considere a carta $\{z = 1\}$. A representação coordenada de $\tilde{\varphi}$ vira

$$(x,y) \longmapsto (x^2 - y^2, xy, x, y)$$

cuja derivada como mapa $\mathbb{R}^2 \to \mathbb{R}^4$ é

$$\begin{pmatrix} 2x & -2y \\ y & x \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

que é injetiva. Agora pegue a carta $\{x=1\}$. Então a representão coordenada de $\tilde{\phi}$ vira

$$(y,z) \longmapsto (1-y^2,y,z,yz)$$

e tem derivada

$$\begin{pmatrix} -2y & 0 \\ 1 & 0 \\ 0 & 1 \\ z & y \end{pmatrix}$$

que também é injetiva. Seguramente algo análogo acontece na carta $\{y = 1\}$.

(b) $\tilde{\varphi}$ é injetiva. Pegue dois pontos $p_1 := [x_1 : y_1 : z_1]$ e $p_2 := [x_2 : y_2 : z_2]$ e suponha que $\tilde{\varphi}(p_1) = \tilde{\varphi}(p_2)$. I.e.,

$$x_1^2 - y_1^2 = x_2^2 - y_2^2$$
, $x_1y_1 = x_2y_2$, $x_1z_1 = x_2z_2$, $y_1z_1 = y_2z_2$

Suponha primeiro que $z_1 \neq 0$. Segue que

$$x_1 = \frac{z_2}{z_1} x_2, \qquad y_1 = \frac{z_2}{z_1} y_2$$

logo

$$x_2^2 - y_2^2 = x_1^2 - y_1^2 = \left(\frac{z_2}{z_1}\right)^2 (x_2^2 - y_2^2) \implies z_2 = z_1 \implies x_1 = x_2, \qquad y_1 = y_2$$

Em fim, uma imersão injetiva com domínio compacto é um mergulho porque é fechada: pegue um fechado no domínio, vira compacto, imagem é compacta, que é fechado. Pronto. .

1.2 Capítulo 1

Exercise 1 Prove que a aplicação antípoda $A: S^n \to S^n$ dada por A(p) = -p é uma isometria de S^n . Use este fato para introduzir uma métrica Riemanniana no espaço projetivo real $\mathbb{R}P^n$ tal que a projeção natural $\pi: S^n \to \mathbb{R}P^n$ seja uma isometria local.

Solution. Lembre que a métrica de S^n é a induzida pela métrica euclidiana, onde pensamos que $T_pS^n \hookrightarrow T_p\mathbb{R}^{n+1}$. É claro que A é uma isometría de \mathbb{R}^n , pois ela é a sua derivada (pois ela é linear), de forma que $\langle \nu, w \rangle_p = \langle -\nu, -w \rangle_{A(p)} = \langle \nu, w \rangle_{-p}$.

É um fato geral que se as transformações de coberta preservam a métrica, obtemos uma métrica no quociente de maneira natural, i.e. para dois vetores $v,w\in T_p\mathbb{R}P^n$ definimos $\langle v,w\rangle_p^{\mathbb{R}P^n}:=\langle \tilde{v},\tilde{w}\rangle_{\tilde{p}\in\pi^{-1}(p)}.$

Para ver que a projeção natural é uma isometria local basta ver que a diferencial de A é um isomorfismo em cada ponto. Mas como ela é -A, isso é claro. \Box