HMMT February 2015

Saturday 21 February 2015

Algebra

1. Let Q be a polynomial

$$Q(x) = a_0 + a_1 x + \dots + a_n x^n,$$

where a_0, \ldots, a_n are nonnegative integers. Given that Q(1) = 4 and Q(5) = 152, find Q(6).

2. The fraction $\frac{1}{2015}$ has a unique "(restricted) partial fraction decomposition" of the form

$$\frac{1}{2015} = \frac{a}{5} + \frac{b}{13} + \frac{c}{31},$$

where a, b, c are integers with $0 \le a < 5$ and $0 \le b < 13$. Find a + b.

3. Let p be a real number and $c \neq 0$ an integer such that

$$c - 0.1 < x^p \left(\frac{1 - (1+x)^{10}}{1 + (1+x)^{10}} \right) < c + 0.1$$

for all (positive) real numbers x with $0 < x < 10^{-100}$. (The exact value 10^{-100} is not important. You could replace it with any "sufficiently small number".)

Find the ordered pair (p, c).

4. Compute the number of sequences of integers (a_1, \ldots, a_{200}) such that the following conditions hold.

- $0 \le a_1 < a_2 < \dots < a_{200} \le 202$.
- There exists a positive integer N with the following property: for every index $i \in \{1, ..., 200\}$ there exists an index $j \in \{1, ..., 200\}$ such that $a_i + a_j N$ is divisible by 203.
- 5. Let a, b, c be positive real numbers such that a+b+c=10 and ab+bc+ca=25. Let $m=\min\{ab,bc,ca\}$. Find the largest possible value of m.
- 6. Let a, b, c, d, e be nonnegative integers such that $625a + 250b + 100c + 40d + 16e = 15^3$. What is the maximum possible value of a + b + c + d + e?
- 7. Suppose (a_1, a_2, a_3, a_4) is a 4-term sequence of real numbers satisfying the following two conditions:
 - $a_3 = a_2 + a_1$ and $a_4 = a_3 + a_2$;
 - there exist real numbers a, b, c such that

$$an^2 + bn + c = \cos(a_n)$$

for all $n \in \{1, 2, 3, 4\}$.

Compute the maximum possible value of

$$\cos(a_1) - \cos(a_4)$$

over all such sequences (a_1, a_2, a_3, a_4) .

- 8. Find the number of ordered pairs of integers $(a, b) \in \{1, 2, ..., 35\}^2$ (not necessarily distinct) such that ax + b is a "quadratic residue modulo $x^2 + 1$ and 35", i.e. there exists a polynomial f(x) with integer coefficients such that either of the following **equivalent** conditions holds:
 - there exist polynomials P, Q with integer coefficients such that $f(x)^2 (ax + b) = (x^2 + 1)P(x) + 35Q(x)$;

- or more conceptually, the remainder when (the polynomial) $f(x)^2 (ax + b)$ is divided by (the polynomial) $x^2 + 1$ is a polynomial with (integer) coefficients all divisible by 35.
- 9. Let $N=30^{2015}$. Find the number of ordered 4-tuples of integers $(A,B,C,D) \in \{1,2,\ldots,N\}^4$ (not necessarily distinct) such that for every integer n, $An^3+Bn^2+2Cn+D$ is divisible by N.
- 10. Find all ordered 4-tuples of integers (a, b, c, d) (not necessarily distinct) satisfying the following system of equations:

$$a^{2} - b^{2} - c^{2} - d^{2} = c - b - 2$$
$$2ab = a - d - 32$$
$$2ac = 28 - a - d$$
$$2ad = b + c + 31.$$