

Overview

- Classification
- Model complexity = complexity of the decision boundary
- Support Vector Machines / Kernel Machines
- Kernels
- Orange

Two Classes (blue & red)

Separation by a simple model (- =decision boundary)

Separation by a complex model (- =decision boundary)

In classification...

The complexity of a model is the flexibility of the decision boundary

How to determine model complexity?

 Depends on complexity of the separation between the classes

 Start with the simplest model (large k in kNN), and increase complexity (smaller k)

Increasing model complexity

In kNN, the model (decision boundary) is defined by all instances in the training set. That is quite expensive. Can't we represent the boundary by a few instances only?

Support Vector Machines a.k.a. Kernel Machines

Simplest SVM

- Linear SVM
- Places a straight line between the classes (simplest model)

Linearly separable

The instances of the two classes can be separated by a straight decision boundary (OR problem)

Linearly inseparable

The instances of the two classes can **not** be separated by a straight decision boundary (XOR problem)

Why "Support Vector Machine"?

SVMs can make more complex decision boundaries by using kernels

Kernel

 A kernel performs a mathematical operation on instances in two classes that are **not** linearly separable, so that they do become linearly separable

Kernel = Similarity Measure

- A kernel takes pairs of instances and determines their similarity\
- There are many kernels
- The proper choice of a kernel depends on the domain
- The "linear kernel" (actually no kernel) is the simplest version
- The linear kernel should be used especially when you have many features (recall the previous lecture)

Kernels

- Linear
- Polynomial
- Radial Basis Function
- Sigmoid

SVM with a polynomial Kernel visualization

> Created by: Udi Aharoni

Kernels

- Linear
- Polynomial
- Radial Basis Function
- Sigmoid

Orange

Cost of misclassification

Number of support vectors

C = Cost parameter (misclassification cost)

https://www.quora.com/What-are-C-and-gamma-with-regards-to-a-support-vector-machine

XOR dataset (create using Paint Data)

Experimenting with SVMs (XOR dataset)

Spirals dataset

Experimenting with SVMs (spirals dataset)

Comparative Evaluation on any dataset

Data

Learner Test & Score Please note: Use 5 or 10 fold CV when comparing with Majority Nearest Neighbors classifier! NOT leaving one out CV Classification Tree Random Forest

SVM

