15.3 Double Integrals over General Regions

1. Evaulate the iterated and double integrals

(a)
$$\int_0^1 \int_{x^3}^x (x+2y) \, dy \, dx$$

(b)
$$\int_0^1 \int_0^{s^2} \cos(s^3) \ dt \ ds$$

(c)
$$\iint_D y^2 dA$$
 with $D = \{(x, y) \mid -1 \le y \le 1, -y - 2 \le x \le y\}$

2. Evaulate $\iint_D xy \ dA$, where D is the region enclosed by $y=x^2, y=3x$

3. Evaluate $\iint_D y^2 \ dA$ where D is the triangular region with vertices (0,1),(1,2),(4,1).

4. Find the volume of the solid under the plane x - 2y + z = 1 and above the region bounded by x + y = 1 and $x^2 + y = 1$.

5. Sketch the region of integration and rewrite the integral with the order of integration switched (a) $\int_0^1 \int_0^y f(x,y) dx dy$

(b) $\int_{1}^{2} \int_{0}^{\ln(x)} f(x,y) dy dx$

6. Evaluate each integral by changing the order of integration

(a)
$$\int_0^4 \int_{\sqrt{x}}^2 \frac{1}{y^3 + 1} dy dx$$

(b)
$$\int_0^1 \int_{3y}^3 e^{x^2} dx dy$$

7. Find the average value of $f(x,y) = x\sin(y)$ over the region bounded by the curves y = 0, $y = x^2$, and x = 1.