DSC5211C Workshop 4

A0122250B LIN DU

(a) Dicky-Fuller Tests

(i) no, it is not stationary, there is a big spike towards the end of the plot

(ii) null hypothesis is H_0 : $\frac{\gamma}{2} = 0$.

Yes, it should be rejected for the exchange rate series, because from the t-statistics shown below, the p-value is 0.3988>0.05, so we should accept the null hypothesis.

And the series is Not stationary.

(iii) with p-value for the t-statistics 0.0683 > 0.05, H_0 : $\frac{7}{}$ =0 should be accepted at level 0.05. So it is still non-stationary when test at level 0.05. But since 0.0683<0.01, we can consider the model to be stationary if we test at level 0.1.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
COPPER(-1)	-0.020058	0.006092	-3.292650	0.0010
D(COPPER(-1))	0.343349	0.035445	9.686863	0.0000
С	-2.992700	17.33630	-0.172626	0.8630
@TREND("1960M01")	0.181759	0.067408	2.696395	0.0072
R-squared	0.124816	Mean deper	ndent var	7.573839
Adjusted R-squared	0.121076	S.D. depend	S.D. dependent var	
S.E. of regression	228.7512	Akaike info	criterion	13.70880
Sum squared resid	36733624	Schwarz crif	terion	13.73463
Log likelihood	-4835.205	Hannan-Qu	inn criter.	13.71878
F-statistic	33.37245	Durbin-Wats	son stat	1.971804
Prob(F-statistic)	0.000000			

(iv) From the augmented Dickey-Fuller test, the series doesn't look stationary. Because neither Autocorrelation nor Partial Correlation doesn't goes to 0 fast.

Date: 02/12/19 Time: 23:16 Sample: 1960M 01 2018M 12 Included observations: 706

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
ili.	1 1	1 0.014	0.014	0.1372	0.71
ıţı	di	2 -0.030	-0.031	0.7918	0.673
ų (t	1 10	3 -0.021	-0.020	1.0975	0.77
ι¶ι	'¶'	4 -0.028	-0.028	1.6539	0.79
ı Di	'D	5 0.070	0.070	5.1854	0.39
Ψ·	(1)		-0.056	7.0883	0.31
1 1	1 1	7 0.002		7.0918	0.41
-			-0.173	27.567	0.00
' l l'	1	i	-0.022	28.218	0.00
' <u>L</u>	1 12	1	-0.006	28.349	0.00
'₽	'ᡛ	11 0.180		51.674	0.00
<u>'</u> ll'	<u>'</u>	12 0.071		55.268	0.00
9'	"	13 -0.104		63.049	0.00
'1'	' '	14 -0.003		63.054	0.00
' '.	'	i	0.017	63.169	0.00
<u>'</u> ["!!		-0.047	63.185	0.00
<u>. I</u> I	1 22	17 0.052		65.147	0.00
<u>'</u> '	1 11:	18 -0.021		65.470	0.00
.d₁		19 -0.054		67.624	0.00
:11	1 11	20 -0.003		67.632	0.00
::	1 :1".	21 0.078		72.074 74.594	0.00
:K		23 0.054		76.734	0.00
. II.	i#:	24 -0.050		78.556	0.00
31.	1 11	25 -0.009		78.621	0.00
: 1 :	1 7.	26 -0.003		79.653	0.00
31.	1 76	27 -0.024		80.064	0.00
ili	1 7	28 -0.029		80.699	0.00
ili.	1 3	29 -0.041		81.912	0.00
1	1 1	30 0.036		82.863	0.00
ď.	1 6	i	-0.062	87.749	0.00
٦,	1 1	1	-0.031	87.946	0.00
1 1	1 1	33 0.020		88.244	0.00
ılı.	di		-0.048	88.404	0.00
,] j,	1	35 0.045		89.927	0.00
ı İ ı		36 0.061		92.721	0.00

(v) the unit root tests give me probability close to 0 for t-statistics. And the correlogram of the D(copper) plot is random and close to 0 for ACF and PACF, therefore it is stationary

(b) Arima Modelling

(i) Based on the correlagram ACF and PACF graph, the series is non-stationary because ACF graph stay close to 1 and there is big spike at lag 1 for Partial Correlation

The log returns of the series looks stationary. The autocorrelation function of Dlog(gold) are not persistent which

suggests stationary

We carried out the Dickey-Fuller test, it also confirms stationary with zero probability

Restructure the graph from Year 1985 and Taking DLOG(GOLD) graph below

(ii) Identification

Plot correlogram of DLOG(gold)

Date: 02/13/19 Time: 20:05 Sample: 1985M01 2018M12 Included observations: 407

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
·þ	· =	1	0.138	0.138	7.8014	0.006
q,	י ויין ויין	2		-0.106	10.580	0.005
111	'I'	3	-0.000	0.028	10.580	0.014
'Pi	' '	4	0.047	0.035	11.506	0.021
'11'	'['	5	0.018	0.009	11.647	0.040
'['	ן יוַי	6	0.005	0.009	11.657	0.070
:P	יוי ן	7	0.072	0.074	13.829	0.054
22	' '	8	0.024	0.001	14.060	0.080
'\'	'['	9	-0.013	-0.004	14.130	0.118
<u>'L'</u>	l <u>'L</u>	10	0.009	0.013	14.163	0.166
'E	! '	11	0.154	0.148	24.152	0.012
	'\'	12	0.030	-0.017	24.534	0.017
:1:	l :!!:	13	-0.001	0.027	24.534	0.027
:1:	'!'	14	0.035	0.027	25.056	0.034
: [:	l :1;	15	0.045	0.027	25.923	0.039
: ":	1 36	16	0.042	0.034	26.664	
16	1 36	17	0.019	0.015	26.820 28.209	0.061
: ":	l ili	18 19	0.057	0.002	28.390	0.059
16	l 16	20	0.021	0.002	31.181	0.070
15	l if	21	0.027		31.496	0.003
30	1 36	22	0.027	0.020	32.080	0.000
ili	l äi	23	0.037	0.025	32.656	0.087
ili	l äi	24	0.047	0.023	33.608	0.092
iľi	1 35	25	0.009	-0.016	33.647	0.116
, h i	l da	26	0.062	0.064	35.321	0.105
4	1 1	27	-0.010	-0.056	35.367	0.130
ılı	1 դի	28	0.001	0.013	35,368	0.159
- 1	i do	29	-0.001	-0.030	35,368	0.193
of the	1 11	30	-0.024		35.615	0.221
ւի	լ դի	31	0.052	0.025	38.817	0.218
ı[ı	1 16	32		-0.033	36.829	0.255
ığı.	di	33	-0.043	-0.052	37.634	0.265
ığı	10	34	-0.047	-0.056	38.641	0.268
ı þi	- d)r	35	0.051	0.038	39.790	0.265
ų (t	(t)	36	-0.032	-0.073	40.258	0.287

Verification of the four proposed models will be carried out in (iv) later.

(iii) Model MA(1)

(iv) The residual plot looks random.

Furthermore, none of the Q-Statistic is over 5%, therefore none of the lag term is significant. We have a stationary residual

We will now compare the following four models with MA(1), and see which gives the smallest RSS, SBC, AIC, and HQ

- 1. ARMA(2, 0): DLOG(gold) c AR(1) AR(2)
- 2. ARMA(0, 2): DLOG(gold) c MA(1) MA(2)
- 3. ARMA(1, 0): DLOG(gold) c AR(1)
- 4. ARMA(1, 1): DLOG(gold) c AR(1) MA(1)

From the table comparison below, MA(1) is very good model with smallest SBC, smallest HQ, and due to principal of parsimony, it's a very simple model and is really preferred.

Besides MA(1), ARMA(2,0) is the best out of the four models listed. It gives the smallest AIC, biggest Adjusted R-Square, no Q-Stats significance and have constant coefficient non-significant, and both AR(1), AR(2) coefficient significant.

	RSS	SBC	AIC	HQ	Adjusted R- square	Any Q-Stats significance at 5%?	Coefficient significance at 5%
MA(1)	0.486726	-3.846630	-3.876179	-3.864485	0.018120	None	MA(1) significant C not significant
ARMA(2,0)	0.483406	-3.838679	-3.878078	-3.862486	0.022398	None	AR(1) significant AR(2) significant C not significant
ARMA(0,2)	0.483500	-3.838487	-3.877886	-3.862294	0.022207	None	MA(1) significant MA(2) not significant C not significant
ARMA(1,0)	0.488914	-3.842168	-3.871717	-3.860024	0.013706	Yes, Q-stat significant at lag 2	AR(1) significant C not significant
ARMA(1,1)	0.484304	-3.836833	-3.876232	-3.860640	0.020581	None	AR(1) not significant C not significant MA(1) significant

1. Model ARMA(2,0)

2. Model ARMA(0,2)

Equation: LINITITI	ED Workfile: SESSIC	י ז ואר	\M\∩PK'	SHOD		- X
Equation: UNTITLED Workfile: SESSION 4 WORKSHOP View Proc Object Print Name Freeze Estimate Forecast Stats Resids						
Correlogram of Residuals						
D-1 00/45/40 Ti-		71 1100	Jiddun	.		
Date: 02/15/19 Tin Sample: 1985M01 2	ne: 00:25					
Included observatio						
Q-statistic probabili	ties adjusted for 2 Al	RMA	terms			
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	- artial correlation					
1 1	1]1		0.001	0.001		
111	1 1			-0.004		
111				-0.004		0.898
				0.045		0.654
				0.018		0.806
					0.9850	0.912
' ' ' ' '				0.074		
				0.010	3.2502 3.2594	0.777
				-0.011		0.860 0.913
1 1			0.156			
	i F			0.006	13.525	
l ili	l ili		0.010	0.000		
			0.003		14.023	
			0.036			
			0.044		15.380	
, , , , , , , , , , , , , , , , , , ,	l ili		0.007		15.402	
i n	i li			0.045	17.242	
	l ili			-0.005		
i h				0.085		
i li			0.012	0.011	20.557	0.362
1 1	111			0.014		0.379
i li	i li					0.424
1 1					22.808	
ı[ι	1 1				22.834	0.471
1 1				0.066		0.406
ı[i	10				25.193	
1 1	1 1			-0.001		
1 1	1 1				25.222	0.562
1[1	101			-0.042		0.590
ı j ı	l ili	31	0.057	0.023	27.155	0.563
1[1	1 1	32 -	0.016	-0.025	27.276	0.609
1[1	101	33 -	0.024	-0.046	27.531	0.645
10 1	10 1	34 -	0.056	-0.070	28.937	0.622
JI		35	0.058	0.036	30.460	0.594
1[1	101	36 -	-0.038	-0.053	31.108	0.610

4. ARMA(1,1)

Equation: UNTITLED				
iew Proc Object Print I	Name Freeze E	stimate Forecas	t Stats Resid	S
Dependent Variable: [Method: ARMA Maxim Date: 02/15/19 Time: Sample: 1985M02 201 Included observations Convergence achieved Coefficient covariance	um Likelihood 00:29 8M12 : 407 d after 14 itera	tions		ents
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.003484	0.002013	1.731338	0.0842
AR(1)	-0.330921	0.215195	-1.537772	0.1249
MA(1)	0.490279	0.203645	2.407521	0.0165
SIGMASQ	0.001190	6.33E-05	18.80114	0.0000
R-squared	0.027818	Mean deper	ident var	0.003484
Adjusted R-squared	0.020581	S.D. depend	dent var	0.035029
S.E. of regression	0.034666	Akaike info	criterion	-3.876232
Sum squared resid	0.484304	Schwarz crif		-3.836833
Log likelihood	792.8132	Hannan-Qu		-3.860640
F-statistic	3.843834	Durbin-Wats	son stat	2.011501
Prob(F-statistic)	0.009822			
nverted AR Roots	33			
Inverted MA Roots	49			

(v) Forecast

The model gives the following result

Static dlog(gold) c ma(1)

Dynamic dlog(gold) c ma(1)

Produce Static forecasts for Gold and then plot these forecasts, goldF, and gold on the same graph by selecting Quick Graph.

Look at the blue and the green line, the forecast is fitting the actual really well and the root mean square error(RMSE) is around 29.6

Produce Static forecasts for DLOG(gold) by specifying this at the top left of the forecast dialog box. Plot the forecasts and DLOG(gold) on the same graph.

For Dlog(gold), the forecast smooths, the actual is more fluctuating.

Use 2018M12 forecast as the next 12 months' monthly forecast.

I will expect the price to go up in 12 months, as the dlog(gold) shows rate of change at positive level indicating positive monthly gain of exp(0.003417)-1= 0.3%

2018M01	0.000588
2018M02	0.012160
2018M03	0.001486
2018M04	0.002584
2018M05	0.004444
2018M06	-0.001134
2018M07	0.000948
2018M08	-0.002409
2018M09	-0.000954
2018M10	0.003297
2018M11	0.005415
2018M12	0.003417

The risk of the model 0.02313 indicated by root mean squared error of the forecast.

95% Prediction Interval of DLOG(gold) for next month will be $E(y_p) \pm t_{0.975} S_{E(y_p)} = [0.003318 - 0.023130 * 2.16, 0.003318 + 0.023130 * 2.16] = [-0.0466428, 0.0532788]$

Now forecast for 2019 full year based on all data we have till 2018 December. We have to use Dynamic forecasting here because we don't have 2019 data, dynamic method makes more sense because if produces a 1-step-ahead forecast, a 2-step-ahead forecast, a 3-step-ahead forecast,, and a 12-step-ahead forecast.

The dynamic forecast also suggests the gold price will go up. The predicted gold price in next 12 months is 1308. Here the Prediction Interval with 2SE is [978, 1734] from the figure above.