

Online machine learning

Chris | Dong | Edvards | Hasan | Yang

Introduction

What is online machine learning?

- Data becomes available in sequential order
- New data is used to incrementally update our model rather than batch learning
- Useful when
 - o training over the entire dataset is intractable
 - o new patterns dynamically emerge
 - data is generated over time

Basic concept

- The framework is game-theoretic and adversarial
- Regret is the difference between the total incurred cost and the cost of the best decision in hindsight

regret =
$$\sum_{t=1}^{T} f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x})$$

For each iteration

- 1. The decider makes a choice $\mathbf{x}_t \in \mathcal{K}$
- 2. A convex cost function is revealed

$$f_t \in \mathcal{F} : \mathcal{K} \mapsto \mathbb{R}$$

- 3. The decider incurs a cost $f_t(\mathbf{x}_t)$
- 4. The decider make a new choice to minimise regret

Convex optimisation

- We seek to minimise a continuous convex function over a convex subset of Euclidean space
- Gradient descent (GD) is the simplest and oldest optimisation method
- GD lays the foundation for more efficient and forthcoming algorithms

Example applications

- Prediction from expert advice
 - Decider tries to perform as well as experts in hindsight
- Online spam filtering
 - Learning a binary classifier
- Online shortest paths in graph
 - Decider chooses the path
 - Adversary chooses the cost
- Portfolio allocation
 - Decider chooses distribution of wealth over assets
 - Adversary chooses market returns
 - Decider learns to rebalance portfolio

Example of applications in use

- Twitter
 - Automatic identification of breaking news from the twitter stream
- Delays in overlay networks
 - Peep-to-peer applications change unpredictably as the load in the underlay network fluctuates
- Supervised learning on large
 - Considering one data point at a time reduces complexity per iteration but might increase the number of iterations
- Financial data analysis
 - Invest and maximize expected utility

First and second order methods

First order

Online gradient descent

- Step in the direction of the gradient of the previous cost
- If the new point is extraneous to the underlying convex set, project it back within
- The regret is sublinear
- But projection is burdensome

- 1: Input: convex set K, T, $\mathbf{x}_1 \in K$, step sizes $\{\eta_t\}$
- 2: for t = 1 to T do
- 3: Play \mathbf{x}_t and observe cost $f_t(\mathbf{x}_t)$.
- 4: Update and project:

$$\mathbf{y}_{t+1} = \mathbf{x}_t - \eta_t \nabla f_t(\mathbf{x}_t)$$
$$\mathbf{x}_{t+1} = \prod_{\kappa} (\mathbf{y}_{t+1})$$

5: end for

Second order

Online Newton step

- Approximates second derivative
- Requires less iterations
- But each step is costly

- 1: Input: convex set K, T, $\mathbf{x}_1 \in K \subseteq \mathbb{R}^n$, parameters $\gamma, \varepsilon > 0$, $A_0 = \varepsilon \mathbf{I}_n$
- 2: for t = 1 to T do
- B: Play \mathbf{x}_t and observe cost $f_t(\mathbf{x}_t)$.
- 4: Rank-1 update: $A_t = A_{t-1} + \nabla_t \nabla_t^{\top}$
- 5: Newton step and projection:

$$\mathbf{y}_{t+1} = \mathbf{x}_t - \frac{1}{\gamma} A_t^{-1} \nabla_t$$

$$\mathbf{x}_{t+1} = \prod_{\mathcal{K}}^{A_t} (\mathbf{y}_{t+1})$$

6: end for

Pros and cons...

- These are reliable algorithms
- But, both algorithms require projection back into the convex set if they step out
- Projection is "expensive"

Green: gradient descent

Red: Newton descent

Regularisation

Follow the leader (FTL)

- At any point in time, use the optimal decision in retrospect
- Simple strategy
- Regret is linear in iterations
- Very unstable, changing decision too often
- Considered a greedy algorithm

Updates with the rule:

$$\mathbf{x}_{t+1} = \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{K}} \sum_{\tau=1}^{t} f_{\tau}(\mathbf{x})$$

FTL example

Consider

$$\mathcal{K} = [-1, 1].$$

Let

$$f_1(x) = \frac{1}{2}x,$$

And let

$$f_{\tau}$$
 for $\tau = 2, \ldots, T$

Alternate between -x and x

Thus

$$\sum_{\tau=1}^{t} f_{\tau}(x) = \begin{cases} \frac{1}{2}x, & t \text{ is odd} \\ -\frac{1}{2}x, & \text{otherwise} \end{cases}$$

This strategy will keep shifting between

$$x_t = -1$$
 and $x_t = 1$

This will always give the wrong choice because it is unstable.

Regularised follow the leader (RFTL)

- Adds a regularisation function
- Stabilises the prediction
- Gives asymptotically optimal regret bounds
- The regulariser is strongly convex, smooth, and twice differentiable

Algorithm 10 Regularized Follow The Leader

- Input: η > 0, regularization function R, and a convex compact set K.
- 2: Let $\mathbf{x}_1 = \arg\min_{\mathbf{x} \in \mathcal{K}} \{R(\mathbf{x})\}.$
- 3: for t = 1 to T do
- Predict x_t.
- 5: Observe the payoff function f_t and let $\nabla_t = \nabla f_t(\mathbf{x}_t)$.
- 6: Update

$$\mathbf{x}_{t+1} = \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{K}} \left\{ \eta \sum_{s=1}^{t} \nabla_{s}^{\top} \mathbf{x} + R(\mathbf{x}) \right\}$$

7: end for

Optimal regularisation

- We assume the regulariser is a strongly convex function, but which one?
 - It should depend on the decision set and cost function
- Adaptive subgradient method (AdaGrad)
 - Learns the optimal regulariser in hindsight online!

Algorithm 16 AdaGrad

- 1: Input: parameters $\eta, \mathbf{x}_1 \in \mathcal{K}$.
- 2: Initialize: $S_0 = G_0 = \mathbf{0}$,
- 3: for t = 1 to T do
- 4: Predict \mathbf{x}_t , suffer loss $f_t(\mathbf{x}_t)$.
- 5: Update:

$$S_t = S_{t-1} + \nabla_t \nabla_t^{\mathsf{T}}, \ G_t = S_t^{1/2}$$
$$\mathbf{y}_{t+1} = \mathbf{x}_t - \eta G_t^{-1} \nabla_t$$
$$\mathbf{x}_{t+1} = \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{K}} \|\mathbf{y}_{t+1} - \mathbf{x}\|_{G_t}^2$$

6: end for

 A^{-1} refers to the Moore-Penrose pseudoinverse of the matrix

Comparing regrets

RFTL

Theorem 5.1. The RFTL Algorithm 10 attains for every $\mathbf{u} \in \mathcal{K}$ the following bound on the regret:

$$\operatorname{regret}_{T} \leq 2\eta \sum_{t=1}^{T} \|\nabla_{t}\|_{t}^{*2} + \frac{R(\mathbf{u}) - R(\mathbf{x}_{1})}{\eta}.$$

AdaGrad considers the set of all strongly convex regularisers with a fixed and bound Hessian in

$$\forall \mathbf{x} \in \mathcal{K} : \nabla^2 R(\mathbf{x}) = \nabla^2 \in \mathcal{H} \triangleq \{ X \in \mathbb{R}^{n \times n} \; ; \; \mathbf{Tr}(X) \le 1 \; , \; X \succcurlyeq 0 \}$$

Theorem 5.9. Let $\{\mathbf{x}_t\}$ be defined by Algorithm 16 with parameters $\eta = D$, where

$$D = \max_{\mathbf{u} \in \mathcal{K}} \|\mathbf{u} - \mathbf{x}_1\|_2.$$

Then for any $\mathbf{x}^* \in \mathcal{K}$,

$$\operatorname{regret}_{T}(\operatorname{AdaGrad}) \leq 2D \sqrt{\min_{H \in \mathcal{H}} \sum_{t} \|\nabla_{t}\|_{H}^{*2}}.$$
 (5.6)

The regret bound is as good as the regret of RFTL for the class of regularization functions

Online Decision-Making

Online Decision Making: Multi-Armed Bandits and Reinforcement learning

General Settings:

- At each time step t=1,2,...T, the decision maker observes a state s_t , choose an action a_t and receive a reward r_t .
- The action is chosen based on a policy, i.e., a mapping from history to an action.

Goal:

• Find the optimal policies $\{\delta_t: \mathcal{S} \to \mathcal{A}\}_{t \in \mathbb{Z}_+}$ to optimize an objective in terms r_t rewards .

Regret in context of Online Decision-Making: $Regret_{\pi,T} := \mathbb{E}^{\pi^*} \{ \sum_{t=1}^{T} r_t \} - \mathbb{E}^{\pi} \{ \sum_{t=1}^{T} r_t \}$

Alternatively, the goal of a decision maker can be minimizing the regret.

Multi Armed Bandit problem

- The exploration vs exploitation dilemma
 - o Problem: Where to eat?
 - Dilemma comes from the incomplete information.
 - Exploitation: We take advantage of the best option we know.
 - Exploration: We take some risk to collect information about the unknown options.
- Best long-term strategy may involve some sacrifices.

- Which machine to pick next?
- What is the best strategy to achieve highest long-term rewards?
 - o K machines with reward prob. $\{p_{\eta} ... p_{\nu}\}$
 - Each step, we take an action α and receive reward r.
 - The goal is to maximize $\sum r_t$ or to minimize the total regret.

Reinforcement learning in MDPs

Markov decision process:

• Considering the average reward MDP here, i.e., the overall objective in terms of reward function is given by: T

 $g^{\pi}(s_1) := \liminf_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=1}^{T} r(s_t, \pi(s_t)) \right]$

• The goal is finding a policy π to maximize the gain $g^{\pi}(s_1)$, the maximal gain independent with initial state for communicating MDPS

Basic elements for MDP:

- State:s
- Action : a
- State transition probability: $\mathbb{P}(s_{t+1} = s' | s_t = s, a_t = a)$
- Random reward independently draw from a distribution, i.e., $r(s,a) \sim \nu(s,a)$ with mean $\mu(s,a)$

Reinforcement learning in MDPs: Optimal Solution

Bellman's Optimality Equation:

$$g^* + b^*(s) = \max_{a \in \mathcal{A}} \left(\mu(s, a) + p(\cdot | s, a)^\top b^* \right), \quad \forall s$$

• Where g* is the optimal gain and b* is the bias, i.e., the asymptotic difference in total reward that results from starting the process in different states

Gap for sub-optimal state-action pair:

$$\varphi(s, a) := (\mu(s, \pi^{\star}(s)) - \mu(s, a)) + (p(\cdot|s, \pi^{\star}(s)) - p(\cdot|s, a))^{\top}b^{\star}$$

Reinforcement learning in MDPs: Regret

Define the regret of a learning algorithm \mathbb{A} after T steps as:

Regret_{A,T}
$$(s_1) := Tg^*(s_1) - \sum_{t=1}^{T} r(s_t, a_t)$$

Where,

$$a_t = \mathbb{A}(s_t, (s_{t'}, a_{t'}, r_{t'})_{t' < t})$$

Definition (Diameter (Jaksch et al., 2010))

Let $T_{\pi}(s'|s)$ denote the first hitting time of state s' when following stationary policy π from initial state s. The diameter D of an MDP M is defined as

$$D := \max_{s \neq s'} \min_{\pi} \mathbb{E}[T_{\pi}(s'|s)].$$

Any communicating MDP has a finite diameter.

Reinforcement learning in MDPs: Fundamental Performance Limits

Problem-specific regret lower bound:

• For any admissible algorithm A and any ergodic MDP, the regret satisfies:

$$\liminf_{T \to \infty} \frac{\mathbb{E}[\operatorname{Regret}_{\mathbb{A},T}]}{\log(T)} \ge c_{\operatorname{bk}}(M) := \sum_{(s,a) \in \mathcal{C}_M} \frac{\varphi(s,a)}{\inf\{\operatorname{KL}(p(\cdot|s,a),q) : q \in \Lambda(s,a)\}}$$

- $\Lambda(s,a)$: set of distributions q over states such that replacing $p(\cdot|s,a)$ by q makes a the unique optimal action in s
- \mathcal{C}_M : the set of critical state-action pairs in M

Minimax regret lower bound:

Theorem (Minimax LB (Jaksch et al., 2010))

For any T there is an MDP with S states and A actions such that any learning algorithm suffers expected regret of

$$\Omega(\sqrt{DSAT})$$
,

after $T \geq DSA$ steps.

Online Bayes

Scenario of online continuous learning

- 1. Data (oriented for different tasks) does not synchronously arrive to learning algorithms
- 2. Data pattern or tasks themself shifting along time
- 3. Detection of algorithms may or may not be aware of the shifting/varying of underline distribution
- Catastrophic forgetting: vulnerability of deep neural network adapting to new data/task and forgetting past knowledge

Possible scenarios (with task information)

- Are the boundaries between tasks well defined
- 2. Is the task identity known during training
- 3. Is the task identity known during inference (testing)
- 4. Should predictor take the number of tasks into account?
- 5. ...

online learning under task transitions

Task boundaries under typical situations:

- The transition between different tasks themself occurs slowly over time
- The data itself changes continuously towards a new distribution

Online Bayes as a solution

Key role in Bayes prediction:

$$p(\boldsymbol{\theta}|D_n) = \frac{p(D_n|\boldsymbol{\theta}) p(\boldsymbol{\theta}|D_{n-1})}{p(D_n)}$$

Prevision estimation/posterior of model parameters serve as prior for new task/prediction.

Exact Bayesian inference is intractable (for most practical tasks):

- 1. Laplace approximation
- 2. Variational methods
- Monte Carlo methods,
- 4. Assumed density filtering/Expectation propagation
- 5.

Exemplified Online Variational Bayes

Variational method:

$$KL\left(q\left(\boldsymbol{\theta}|\phi\right)||p\left(\boldsymbol{\theta}|D\right)\right) = -\mathbb{E}_{\boldsymbol{\theta} \sim q\left(\boldsymbol{\theta}|\phi\right)} \left[\log \frac{p\left(\boldsymbol{\theta}|D\right)}{q\left(\boldsymbol{\theta}|\phi\right)}\right]$$

Advantages:

- 1. Last approximation can server for current approximation learning
- Log-likelihood can be accumulated by Bayes rule
- 3. Bayesian Gradient Descent put link between the learning rate and uncertainty (stand deviation)

$$\phi^* = \arg\min_{\phi} \int q_n (\boldsymbol{\theta}|\phi) \log \frac{q_n (\boldsymbol{\theta}|\phi)}{p(\boldsymbol{\theta}|D_n)} d\boldsymbol{\theta}$$

$$= \arg\min_{\phi} \int q_n (\boldsymbol{\theta}|\phi) \log \frac{q_n (\boldsymbol{\theta}|\phi)}{p(D_n|\boldsymbol{\theta}) q_{n-1} (\boldsymbol{\theta})} d\boldsymbol{\theta}$$

$$= \arg\min_{\phi} \mathbb{E}_{\boldsymbol{\theta} \sim q_n(\boldsymbol{\theta}|\phi)} \left[\log (q_n (\boldsymbol{\theta}|\phi)) - \log (q_{n-1} (\boldsymbol{\theta})) + L_n (\boldsymbol{\theta}) \right],$$

Conclusions

Conclusions

Online machine learning is useful in different applications where data becomes available over time.

Some examples relating to our research:

- Adaptive control (e.g., under changing dynamics)
- Training over large datasets (e.g., in imitation learning)
- Reinforcement learning over a network of agents

Thanks for listening!