CSE 575: Statistical Machine Learning: Mid-Term 1

Instructor: Prof. Hanghang Tong

February 19th, 2016

First Name:						
Last Name:						
Email:						
ASU ID:						
Q	Topic	Max Score	Score			
1	MLE	20				
2	Decision Boundary of 1NN	20				
3	Distance Metric and 1NN	20				
4	Naive Bayes	25				
5	Logistic Regression	15				
Total:		100				

- This exam book has 10 pages, including this cover page.
- You have 150 minutes in total.
- Good luck!

1 Maximum Likelihood Estimation (20 points)

[5 points.] Suppose we flip a coin, and observe either a head or a tail. The probability of observing a head in each trial is p ($0 \le p \le 1$). If we flip the coins five times, and observe (head, head, head, head, head), what is the maximum likelihood estimation of p? Justify your answer.

Solution: likelihood is p^5 , and p=1 maximizes the likelihood.

[5 points.] Suppose we flip a coin, and observe either a head or a tail. The probability of observing a head in each trial is p ($0 \le p \le 1$). If we flip the coins five times, and observe (head, head, head, tail, head), what is the maximum likelihood estimation of p? Justify your answer.

Solution: likelihood is $p^4(1-p)$. take the logorithm, and calculate its derivative, and set it as zero, we have

$$4/p - 1/(1-p) = 0$$

which gives p = 0.8.

[5 points.] Suppose we flip a coin, and observe either a head or a tail. The probability of observing a head in the i^{th} trial is i * p (i = 1, 2, ..., 5). If we flip the coins five times, and observe (head, head, head, head, head), what is the maximum likelihood estimation of p? Justify your answer.

Solution: likelihood is p*2p*3p*4p*5p. In the meanwhile, we have $0 \le 5p \le 1$. p=0.2 gives the maximum likelihood

[5 points.] Suppose we flip a coin, and observe either a head or a tail. The probability of observing a head in the i^{th} trial is $i * p \ (i = 1, 2, ..., 5)$. If we flip the coins five times, and observe (head, head, head, tail, head), what is the maximum likelihood estimation of p? Justify your answer.

Solution: likelihood is p * 2p * 3p * (1 - 4p) * 5p. take the logorithm, and calculate its derivative, and set it as zero, we have

$$4/p - 4/(1 - 4p) = 0$$

which gives p = 0.2.

2 The Decision Boundary for 1NN (i.e., 1-Nearest Neighbors Classifier) (20 points)

For each of the following figures, we are given a few data points in the 2-d space, each of which is labeled as either '+' or '-'. Draw the decision boundary for 1NN, assuming we use L_2 distance. (5 points for each case).

Figure 1: Decision Boundary for 1NN Classifiers (the lines and the transition points must be on the right locations in order to get the points)

3 1NN Classifier and Distance Metric (20 points)

[6 points]. Given two training data points: (1) a positive example at (a, 0) and (2) a negative example at (-a, 0), where a > 0, what is the decision boundary of 1NN classifier if we use L_2 distance? Justify your answer.

Solution: the y-axis.

[6 points]. Given two training data points: (1) a positive example at (a, 0) and (2) a negative example at (-a, 0), what is the decision boundary of 1NN classifier if we use L_2 distance when a = 0? Justify your answer.

Solution: the entire space.

[6 points]. Given two training data points: (1) a positive example at (1,0) and (2) a negative example at (-1,0), what is the decision boundary of 1NN classifier if we use L_{∞} distance? Recall that the L_{∞} distance between two d dimensional data points $X=(x_1,x_2,...,x_d)$ and $Y=(y_1,y_2,...,y_d)$ is defined as $\|X-Y\|_{\infty}=\max_{i \ (i=1,2,...d)}|x_i-y_i|$.

Solutions: shown in the following figure.

Figure 2: Decision Boundary of 1NN Classifiers with L_{∞} Distance.

[2 points]. Given two training data points: (1) a positive example at (a,0) and (2) a negative example at (-a,0), what is the decision boundary of 1NN classifier if we use L_{∞} distance when a goes to infinite?

Solution: the entire space. for any test example (x, y), where x and y are finite numbers, $d_1 = max(|x - a|, |y|) = |x - a| = \infty = d_2 = max(|x + a|, |y|) = |x + a|$.

4 Naive Bayes Classifier (25 points)

Given the training data set in Figure 3, we want to train a binary classifier. In the figure, (1) the last column is the binary class label; (2) each of the first four columns is a binary feature, and (3) each row is a training example.

Input	t Feature X	, x ₄) (Class Label Y	
x ₁	X ₂	х ₃	X ₄	Y
1	1	0	0	1
0	1	1	0	1
0	0	1	1	0
1	1	0	0	1
1	0	0	1	0

Figure 3: Training Data Set

[5 points.] If we want to train a **Bayes Classifier**, how many *independent* parameters are there in your classifier? Justifiy your answer.

Solutions: P(y=1), for each class label, we have $2^4 - 1 = 15$ independent parameters. Total $2*(2^4 - 1) + 1 = 31$ independent parameters.

[5 points.] If we want to train a Naive Bayes Classifier, how many *independent* parameters are there in your classifier? Justifiy your answer.

Solutions: (1) P(y=1), (2) for each class lable and each dimension of the feature, one independent parameter $P(x_i=1|y=i)$ (i=1,0). Total 2*4+1=9 independent parameters.

[4 points.] Using the standard MLE (maximum likelihood estimation) to train a Naive Bayes Classifier, what is your estimation for P(Y = 0)?

Solutions: P(Y = 0) = 0.4.

[3 points.] Using the standard MLE (maximum likelihood estimation) to train a Naive Bayes Classifier, what is your estimation for $P(x_3 = 1|Y = 0)$?

Solutions: $P(x_3 = 1|Y = 0) = 0.5.$

[3 points.] Using the standard MLE (maximum likelihood estimation) to train a Naive Bayes Classifier, what is your estimation for $P(x_2 = 1|Y = 1)$?

Solutions: $P(x_2 = 0|Y = 1) = 0$.

[5 points.] Suppose we use the standard MLE (maximum likelihood estimation) to train a **Naive Bayes Classifier**. Now given a test example X = (1,0,1,1), what is the class label your classifier will predict? Justify your answer.

Solutions: $P(Y=1|X) \propto P(Y=1)P(x_1=1|Y=1)P(x_2=0|Y=1)P(x_3=1|Y=1)P(x_4=1|Y=1)=0$ (due to the above answer). Therefore, the classifier will predict as negative example (i.e., Y=0).

5 Logistic Regression (15 points)

Suppose we have two positive examples $x_1 = (1,1)$ and $x_2 = (1,-1)$; and two negative examples $x_3 = (-1,1)$ and $x_4 = (-1,-1)$. We use the standard gradient ascent method (without any additional regularization terms) to train a logistic regression classifier.

[4 points.] In your logistic regression classifier, how many *independent* parameters are there?

Solutions: 3. (get two points if the answer is 2)

[4 points.] Assume that the weight vector starts at the origin, i.e., $w_0 = (0,0,0)'$. What is $\prod_{i=1}^4 P(y_i|x_i,w_0)$, where $y_i(i=1,2,3,4)$ is the corresponding class label?

Solutions: 1/16. $P(y_i = 1 | x_i, w_0) = P(y_i = 0 | x_i, w_0) = 1/2$

[4 points.] Assume we use the standard gradient ascent method (without any additional regularization terms) to train a logistic regression classifier, what is the final weight vector w?

Solutions: The final weight vector $w = (0, \infty, 0)'$. (simply saying that w goes to infinite is also fine).

[3 points.] [True or False]. Now, suppose we add more training examples whose class labels are either positive or negative. We might end up with a non-linear binary logistic regression classifer, depending on how these new training examples are distributed in the 2-d space.

Solutions: F (binary LR is always linear).