

Nguyễn Công Phương

Lý thuyết trường điện từ

Năng lượng & điện thế

Nội dung

- I. Giới thiệu
- II. Giải tích véctơ
- III. Luật Coulomb & cường độ điện trường
- IV. Dịch chuyển điện, luật Gauss & đive
- V. Năng lượng & điện thế
- VI. Dòng điện & vật dẫn
- VII. Điện môi & điện dung
- VIII. Các phương trình Poisson & Laplace
- IX. Từ trường dùng
- X. Lực từ & điện cảm
- XI. Trường biến thiên & hệ phương trình Maxwell
- XII. Sóng phẳng
- XIII. Phản xạ & tán xạ sóng phẳng
- XIV. Dẫn sóng & bức xạ

Năng lượng & điện thế

- 1. Dịch chuyển điện tích điểm trong điện trường
- 2. Tích phân đường
- 3. Hiệu điện thế & điện thế
- 4. Trường thế của điện tích điểm
- 5. Trường thế của một hệ điện tích
- 6. Gradient thế
- 7. Lưỡng cực
- 8. Mật độ năng lượng trong trường tĩnh điện

Dịch chuyển điện tích điểm trong điện trường (1)

• Dịch chuyển điện tích Q trên một đoạn dL trong điện trường E, lực do điện trường tác động lên điện tích:

$$\mathbf{F}_E = Q\mathbf{E}$$

• Thành phần lực theo hướng của $d\mathbf{L}$:

$$F_{EL} = \mathbf{F}.\mathbf{a}_L = Q\mathbf{E}.\mathbf{a}_L$$

- \mathbf{a}_L là vécto đơn vị theo hướng của $d\mathbf{L}$
- Vậy lực cần tác dụng để dịch chuyển điện tích:

$$F_{\rm td} = -Q\mathbf{E}.\mathbf{a}_L$$

• Công cần thực hiện để dịch chuyển Q trong điện trường:

$$dW = -Q\mathbf{E}.\mathbf{a}_L dL = -Q\mathbf{E}.d\mathbf{L}$$

Dịch chuyển điện tích điểm trong điện trường (2)

- Công cần thực hiện để dịch chuyển Q trong điện trường: $dW = -Q\mathbf{E}.d\mathbf{L}$
- dW = 0 nếu:
 - -Q = 0, E = 0, dL = 0, hoặc
 - E vuông góc với dL
- Công dịch chuyển điện tích trên một quãng đường hữu hạn:

$$W = -Q \int_{\text{dau}}^{\text{cuối}} \mathbf{E} \cdot d\mathbf{L}$$

Dịch chuyển điện tích điểm trong điện trường (3) Ví dụ 1

Cho $\mathbf{E} = (8xyz\mathbf{a}_x + 4x^2z\mathbf{a}_y - 4x^2y\mathbf{a}_z)/z^2$ V/m. Tính vi phân công cần thực hiện để dịch chuyển một điện tích 5 nC trên một quãng đường 3 μ m, bắt đầu từ P(2, -2, 3)theo hướng $\mathbf{h}_L = -6\mathbf{a}_x + 3\mathbf{a}_y + 2\mathbf{a}_z$.

$$dW = -Q\mathbf{E}.d\mathbf{L}$$

$$\begin{split} \mathbf{E}_{P} &= \frac{8.2(-2)3\mathbf{a}_{x} + 4.2^{2}.3\mathbf{a}_{y} - 4.2^{2}(-2)\mathbf{a}_{z}}{3^{2}} = -10,67\mathbf{a}_{x} + 5,33\mathbf{a}_{y} + 3,56\mathbf{a}_{z} \text{ V/m} \\ d\mathbf{L} &= dL\mathbf{a}_{L} = 3.10^{-6} \frac{-6\mathbf{a}_{x} + 3\mathbf{a}_{y} + 2\mathbf{a}_{z}}{\sqrt{6^{2} + 3^{2} + 2^{2}}} = (-2,57\mathbf{a}_{x} + 1,29\mathbf{a}_{y} + 0,86\mathbf{a}_{z})10^{-6} \text{ m} \\ dW &= -Q\mathbf{E}_{p}.d\mathbf{L} \\ &= -5.10^{-9}(-10,67\mathbf{a}_{x} + 5,33\mathbf{a}_{y} + 3,56\mathbf{a}_{z}).(-2,57\mathbf{a}_{x} + 1,29\mathbf{a}_{y} + 0,86\mathbf{a}_{z})10^{-6} \\ &= -5.10^{-15}(-10,67(-2,57) + 5,33.1,29 + 3,56.0,86) \\ &= -0,187.10^{-12} \text{ J}_{\text{Năng lượng & điện thế - sites.google.com/site/ncpdhbkhn} \end{split}$$

Năng lượng & điện thế

- 1. Dịch chuyển điện tích điểm trong điện trường
- 2. Tích phân đường
- 3. Hiệu điện thế & điện thế
- 4. Trường thế của điện tích điểm
- 5. Trường thế của một hệ điện tích
- 6. Gradient thế
- 7. Lưỡng cực
- 8. Mật độ năng lượng trong trường tĩnh điện

Tích phân đường (1)

$$W = dW_1 + dW_2 + \dots + dW_6$$

$$= -QE_{L1} \cdot \Delta L_1 - QE_{L2} \cdot \Delta L_2 - \dots - QE_{L6} \cdot \Delta L_6$$

$$= -QE_1 \cdot \Delta L_1 - QE_2 \cdot \Delta L_2 - \dots - QE_6 \cdot \Delta L_6$$

$$\mathbf{E}_1 = \mathbf{E}_2 = \dots = \mathbf{E}_6 = \mathbf{E}$$

Năng lượng & điện thế - sites.google.com/site/ncpdhbkhn

Tích phân đường (2)

$$W = -Q \int_{\text{dâu}}^{\text{cuối}} E_L dL = -Q \mathbf{E} \cdot \mathbf{L}_{BA} \qquad (\mathbf{E} \, \text{đều})$$

$$W = -Q \int_{\text{dâu}}^{\text{cuối}} \mathbf{E} . d\mathbf{L}$$

$$\mathbf{E} \, \hat{\text{dêu}}$$

$$\rightarrow W = -Q\mathbf{E} \cdot \int_{R}^{A} d\mathbf{L} = -Q\mathbf{E} \cdot \mathbf{L}_{BA}$$

- Công để dịch chuyển điện tích (trong điện trường đều) chỉ phụ thuộc Q, \mathbf{E} & vécto \mathbf{L}_{AB}
- (sẽ thấy rằng) Điện trường (tĩnh) không đều cũng cho kết quả tương tự

Ví dụ 1

Tích phân đường (3)

Cho $\mathbf{E} = y\mathbf{a}_x + x\mathbf{a}_y + 2\mathbf{a}_z$ V/m. Tính công cần thực hiện để dịch chuyển một điện tích 2 C từ B(1; 0; 1) đến A(0,8; 0,6; 1) theo:

a) đường tròn $x^2 + y^2 = 1$, z = 1

b) đường thẳng nối B với A

$$\begin{split} W &= -Q \int_{B}^{A} \mathbf{E} . d \mathbf{L} \\ d \mathbf{L} &= d x \mathbf{a}_{x} + d y \mathbf{a}_{y} + d z \mathbf{a}_{z} \\ \to W &= -2 \int_{B}^{A} (y \mathbf{a}_{x} + x \mathbf{a}_{y} + 2 \mathbf{a}_{z}) . (d x \mathbf{a}_{x} + d y \mathbf{a}_{y} + d z \mathbf{a}_{z}) \\ &= -2 \int_{x=1}^{x=0,8} y d x - 2 \int_{y=0}^{y=0,6} x d y - 4 \int_{1}^{1} d z \\ &= -2 \int_{x=1}^{x=0,8} \sqrt{1 - x^{2}} d x - 2 \int_{y=0}^{y=0,6} \sqrt{1 - y^{2}} d y - 0 \\ &= - \left[x \sqrt{1 - x^{2}} + \sin^{-1} x \right]_{1}^{0,8} - \left[y \sqrt{1 - y^{2}} + \sin^{-1} y \right]_{0}^{0,6} = -0.96 \text{ J} \\ &\text{Năng lương & điện thể - sites.google.com/site/ncpdhbkhn} \end{split}$$

Ví dụ 1

Tích phân đường (4)

Cho $\mathbf{E} = y\mathbf{a}_x + x\mathbf{a}_y + 2\mathbf{a}_z$ V/m. Tính công cần thực hiện để dịch chuyển một điện tích 2 C từ B(1; 0; 1) đến A(0,8; 0,6; 1) theo:

a) đường tròn $x^2 + y^2 = 1$, z = 1

b) đường thẳng nối B với A

$$W = -Q \int_{B}^{A} \mathbf{E} . d\mathbf{L}$$

$$d\mathbf{L} = dx \mathbf{a}_{x} + dy \mathbf{a}_{y} + dz \mathbf{a}_{z}$$

$$\rightarrow W = -2 \int_{B}^{A} (y \mathbf{a}_{x} + x \mathbf{a}_{y} + 2 \mathbf{a}_{z}) . (dx \mathbf{a}_{x} + dy \mathbf{a}_{y} + dz \mathbf{a}_{z})$$

$$= -2 \int_{x=1}^{x=0.8} y dx - 2 \int_{y=0}^{y=0.6} x dy - 4 \int_{1}^{1} dz$$

$$y - y_{B} = \frac{y_{A} - y_{B}}{x_{A} - x_{B}} (x - x_{B}) \rightarrow y = -3(x - 1)$$

$$\rightarrow W = 6 \int_{x=1}^{x=0.8} (x - 1) dx - 2 \int_{y=0}^{y=0.6} \left(1 - \frac{y}{3} \right) dy - 0 \quad \boxed{= -0.96 \text{ J}}$$

Tích phân đường (5)

$$d\mathbf{L} = dx\mathbf{a}_x + dy\mathbf{a}_y + dz\mathbf{a}_z$$
 (Descartes)

$$d\mathbf{L} = d\rho \mathbf{a}_{\rho} + \rho d\phi \mathbf{a}_{\varphi} + dz \mathbf{a}_{z}$$
 (Trụ tròn)

$$d\mathbf{L} = dr\mathbf{a}_r + rd\theta\mathbf{a}_\theta + r\sin\theta d\phi\mathbf{a}_\phi \quad (C\hat{a}u)$$

Ví dụ 2

Tích phân đường (6)

Tính công cần thực hiện khi di chuyển một điện tích Q 360^{0} quanh trục z trên một đường tròn nằm trên mặt phẳng vuông góc với trục z, trục z đi qua tâm của đường tròn.

$$W = -Q \int_{\text{dâu}}^{\text{cuối}} \mathbf{E} . d\mathbf{L}$$

$$\mathbf{E} = \frac{\rho_L}{2\pi\varepsilon_0 \rho} \mathbf{a}_{\rho}$$

$$d\mathbf{L} = d\rho \mathbf{a}_{\rho} + \rho d\varphi \mathbf{a}_{\varphi} + dz \mathbf{a}_{z}$$

$$d\rho = 0$$

$$dz = 0$$

$$\Rightarrow W = -Q \int_{\text{dâu}}^{\text{cuối}} \frac{\rho_L}{2\pi\varepsilon_0 \rho} \mathbf{a}_{\rho} . \rho d\varphi \mathbf{a}_{\varphi}$$

$$= -Q \int_{0}^{2\pi} \frac{\rho_L}{2\pi\varepsilon_0} d\varphi \mathbf{a}_{\rho} . \mathbf{a}_{\varphi}$$

$$\mathbf{a}_{\rho} . \mathbf{a}_{\varphi} = 1.1.\cos 90^{\circ}$$

$$\to W = -Q \frac{\rho_L}{2\pi\varepsilon_0} \int_0^{2\pi} \cos 90^\circ d\varphi = 0$$

Ví dụ 3

Tích phân đường (7)

Tính công cần thực hiện khi di chuyển một điện tích Q $t \hat{\mathbf{u}} \rho = a \, \hat{\mathbf{d}} \hat{\mathbf{e}} \mathbf{n} \, \rho = b.$

$$W = -Q \int_{\text{dâu}}^{\text{cuối}} \mathbf{E} . d\mathbf{L}$$

$$\mathbf{E} = \frac{\rho_L}{2\pi\epsilon_0 \rho} \mathbf{a}_{\rho}$$

$$d\mathbf{L} = d\rho \mathbf{a}_{\rho} + \rho d\phi \mathbf{a}_{\phi} + dz \mathbf{a}_{z}$$

$$d\phi = 0$$

$$dz = 0$$

$$= -Q \int_{a}^{\text{cuối}} \frac{\rho_L}{2\pi\epsilon_0 \rho} \mathbf{a}_{\rho} . d\rho \mathbf{a}_{\rho}$$

$$= -Q \int_{a}^{b} \frac{\rho_L}{2\pi\epsilon_0 \rho} \frac{d\rho}{\rho}$$

$$\rightarrow W = -Q \int_{\text{dâu}}^{\text{cuối}} \frac{\rho_L}{2\pi\varepsilon_0 \rho} \mathbf{a}_{\rho} . d\rho \mathbf{a}_{\rho}$$

$$= -Q \int_a^b \frac{\rho_L}{2\pi\varepsilon_0} \frac{d\rho}{\rho}$$

$$= -\frac{Q\rho_L}{2\pi\varepsilon_0} \ln \frac{b}{a}$$

Năng lượng & điện thế

- 1. Dịch chuyển điện tích điểm trong điện trường
- 2. Tích phân đường
- 3. Hiệu điện thế & điện thế
- 4. Trường thế của điện tích điểm
- 5. Trường thế của một hệ điện tích
- 6. Gradient thế
- 7. Lưỡng cực
- 8. Mật độ năng lượng trong trường tĩnh điện

Hiệu điện thế (1)

$$W = -Q \int_{\text{dau}}^{\text{cu\'oi}} \mathbf{E} . d\mathbf{L}$$

• Hiệu điện thế *V*: công cần thực hiện để dịch chuyển một điện tích dương 1 C từ điểm này tới điểm khác trong điện trường:

Hiệu điện thế =
$$V = -\int_{\text{dâu}}^{\text{cuối}} \mathbf{E} \cdot d\mathbf{L}$$

• Hiệu điện thế giữa điểm A & điểm B:

$$V_{AB} = -\int_{B}^{A} \mathbf{E} . d\mathbf{L}$$

• Đơn vị: volt (V, J/C)

Ví du

Hiệu điện thế (2)

Tính hiệu điện thế giữa $\rho=a$ đến $\rho=b$.

Công cần thực hiện khi di chuyển một điện tích Q từ a đến b:

$$W = -\frac{Q\rho_L}{2\pi\varepsilon_0} \ln \frac{b}{a}$$

$$W = \frac{Q\rho_L}{2\pi\varepsilon_0} \ln\frac{b}{a}$$

$$V_{ab} = \frac{W}{Q}$$

$$\rightarrow V_{ab} = \frac{\rho_L}{2\pi\varepsilon_0} \ln\frac{b}{a}$$

Điện thế

- Hiệu điện thế giữa điểm A & điểm B
- Nếu không có điểm *B*?
- \rightarrow Điện thế (điện thế tuyệt đối) tại điểm A
- → Vẫn cần 1 điểm tham chiếu:
 - "Đất"
 - Vỏ của thiết bị điện
 - Ở vô cùng
- Nếu điện thế tại A là V_A & tại B là V_B thì hiệu điện thế giữa A & B:

$$V_{AB} = V_A - V_B$$

• (với điều kiện $V_A \& V_B$ chung 1 điểm tham chiếu)

TRƯ**ởng Đại Học** BÁCH KHOA HÀ NỘI

Năng lượng & điện thế

- 1. Dịch chuyển điện tích điểm trong điện trường
- 2. Tích phân đường
- 3. Hiệu điện thế & điện thế
- 4. Trường thế của điện tích điểm
- 5. Trường thế của một hệ điện tích
- 6. Gradient thế
- 7. Lưỡng cực
- 8. Mật độ năng lượng trong trường tĩnh điện

Trường thế của điện tích điểm (1)

(Trường thế của điện tích điểm)

Trường thế của điện tích điểm (2)

$$V = \frac{Q}{4\pi\varepsilon_0 r}$$

- Điện thế của một điểm cách điện tích Q một khoảng r
- Điện thế của một điểm ở xa vô cùng được dùng làm điểm tham chiếu
- Ý nghĩa vật lý: cần phải tốn một công là $Q/4\pi\varepsilon_0 r$ (J) để dịch chuyển một điện tích 1 C từ vô cùng về một điểm cách Q một khoảng r.

• Đặt
$$\frac{Q}{4\pi\varepsilon_0 r_B} = C_1 \rightarrow V = \frac{Q}{4\pi\varepsilon_0 r} + C_1$$

Hiệu điện thế không phụ thuộc C₁

Trường thế của điện tích điểm (3)

$$V = \frac{Q}{4\pi\varepsilon_0 r}$$

- Trường điện thế của một điện tích điểm
- Đó là một trường vô hướng, & không có véctơ đơn vị
- Mặt đẳng thể: tập hợp của tất cả các điểm có cùng điện thể
- Khi dịch chuyển một điện tích trên một mặt đẳng thế, không cần phải tiêu tốn công
- Mặt đẳng thế của một điện tích điểm là một mặt cầu có tâm nằm ở điện tích điểm đó

Năng lượng & điện thế

- 1. Dịch chuyển điện tích điểm trong điện trường
- 2. Tích phân đường
- 3. Hiệu điện thế & điện thế
- 4. Trường thế của điện tích điểm
- 5. Trường thế của một hệ điện tích
- 6. Gradient thế
- 7. Lưỡng cực
- 8. Mật độ năng lượng trong trường tĩnh điện

TRUÖNG BALHOC

BÁCH KHOA HÀ NỘI

Trường thế của một hệ điện tích (1)

$$V(\mathbf{r}) = \frac{Q_1}{4\pi\varepsilon_0 \left| \mathbf{r} - \mathbf{r}_1 \right|}$$

$$V(\mathbf{r}) = \frac{Q_1}{4\pi\varepsilon_0 \left| \mathbf{r} - \mathbf{r}_1 \right|} + \frac{Q_2}{4\pi\varepsilon_0 \left| \mathbf{r} - \mathbf{r}_2 \right|}$$

$$V(\mathbf{r}) = \frac{Q_1}{4\pi\varepsilon_0 |\mathbf{r} - \mathbf{r}_1|} + \frac{Q_2}{4\pi\varepsilon_0 |\mathbf{r} - \mathbf{r}_2|} + \dots + \frac{Q_n}{4\pi\varepsilon_0 |\mathbf{r} - \mathbf{r}_n|} = \sum_{m=1}^n \frac{Q_m}{4\pi\varepsilon_0 |\mathbf{r} - \mathbf{r}_m|}$$

$$Q_m = \rho_v \Delta v_m$$

$$\rightarrow V(\mathbf{r}) = \frac{\rho_{v}(\mathbf{r}_{1})\Delta v_{1}}{4\pi\varepsilon_{0}|\mathbf{r}-\mathbf{r}_{1}|} + \frac{\rho_{v}(\mathbf{r}_{2})\Delta v_{2}}{4\pi\varepsilon_{0}|\mathbf{r}-\mathbf{r}_{2}|} + \dots + \frac{\rho_{v}(\mathbf{r}_{n})\Delta v_{n}}{4\pi\varepsilon_{0}|\mathbf{r}-\mathbf{r}_{n}|}$$

Trường thế của một hệ điện tích (2)

$$V(\mathbf{r}) = \frac{\rho_{v}(\mathbf{r}_{1})\Delta v_{1}}{4\pi\varepsilon_{0}|\mathbf{r} - \mathbf{r}_{1}|} + \frac{\rho_{v}(\mathbf{r}_{2})\Delta v_{2}}{4\pi\varepsilon_{0}|\mathbf{r} - \mathbf{r}_{2}|} + \dots + \frac{\rho_{v}(\mathbf{r}_{n})\Delta v_{n}}{4\pi\varepsilon_{0}|\mathbf{r} - \mathbf{r}_{n}|}$$

$$\rightarrow V(\mathbf{r}) = \int_{V} \frac{\rho_{v}(\mathbf{r}')dv'}{4\pi\varepsilon_{0} |\mathbf{r} - \mathbf{r}'|}$$

$$V(\mathbf{r}) = \int \frac{\rho_L(\mathbf{r}')dL'}{4\pi\varepsilon_0 |\mathbf{r} - \mathbf{r}'|}$$

$$V(\mathbf{r}) = \int_{S} \frac{\rho_{S}(\mathbf{r}')dS'}{4\pi\varepsilon_{0} |\mathbf{r} - \mathbf{r}'|}$$

Trường thế của một hệ điện tích (3)

Ví dụ

Tính điện thế trên trục z.

$$V(\mathbf{r}) = \int \frac{\rho_L(\mathbf{r}')dL'}{4\pi\varepsilon_0 |\mathbf{r} - \mathbf{r}'|}$$

$$dL' = ad\phi'$$

$$\mathbf{r} = z\mathbf{a}_z$$

$$\mathbf{r}' = a\mathbf{a}_\rho$$

$$|\mathbf{r} - \mathbf{r}'| = \sqrt{a^2 + z^2}$$

$$\rightarrow V(\mathbf{r}) = \int_0^{2\pi} \frac{\rho_L a d\, \varphi'}{4\pi\varepsilon_0 \sqrt{a^2 + z^2}} = \frac{\rho_L a}{2\varepsilon_0 \sqrt{a^2 + z^2}}$$

Trường thế của một hệ điện tích (4)

Nếu điểm tham chiếu ở vô cùng thì:

- Điện thế do một điện tích điểm gây ra là công cần thực hiện để đưa 1 đơn vị điện tích dương từ vô cùng về điểm mà chúng ta xét, công này không phụ thuộc vào (dạng của) quãng đường giữa hai điểm đó
- Trường thế của một hệ điện tích gây ra là tổng của các trường thế do từng điện tích trong hệ gây ra

• Biểu thức điện thế:
$$V_A = -\int_{\infty}^A \mathbf{E} \cdot d\mathbf{L}$$

• Hiệu điện thế:
$$V_{AB} = V_A - V_B = -\int_B^A \mathbf{E} \cdot d\mathbf{L}$$

• Đối với điện trường tĩnh:
$$\oint \mathbf{E} \cdot d\mathbf{L} = 0$$

Năng lượng & điện thế

- 1. Dịch chuyển điện tích điểm trong điện trường
- 2. Tích phân đường
- 3. Hiệu điện thế & điện thế
- 4. Trường thế của điện tích điểm
- 5. Trường thế của một hệ điện tích

6. Gradient thế

- 7. Lưỡng cực
- 8. Mật độ năng lượng trong trường tĩnh điện

Gradient thế (1)

- Đã có 2 phương pháp để tính điện thế: bằng cường độ điện trường & bằng phân bố điện tích
- Nhưng thường thì không biết cả ${\bf E}$ lẫn ρ
- → Bài toán: tính cường độ điện trường từ điện thế
- Phương pháp: gradient thế

Gradient thế (2)

$$V = -\int \mathbf{E} \cdot d\mathbf{L}$$

$$\Delta V \doteq -\mathbf{E} \cdot \Delta \mathbf{L}$$

$$\Delta V \doteq -E\Delta L \cos \theta$$

$$\frac{dV}{dL} = -E\cos\theta$$

$$E = \frac{dV}{dL}\bigg|_{\text{max}} \quad (\cos \theta = -1)$$

Gradient thế (3)

$$E = \frac{dV}{dL}\Big|_{\text{max}}$$

- Độ lớn của cường độ điện trường bằng giá trị cực đại của tốc độ biến thiên của điện thế theo khoảng cách
- Giá trị cực đại này đạt được nếu hướng của vi phân khoảng cách ngược với hướng của E, nói cách khác hướng của E ngược với hướng mà điện thế tăng nhanh nhất

$$\mathbf{E} = -\left(\frac{dV}{dL}\bigg|_{\text{max}}\right) \mathbf{a}_{N}$$

TRƯỜNG ĐẠI HỌC

BÁCH KHOA HÀ NỘI

Gradient thế (4)

$$\mathbf{E} = -\left(\frac{dV}{dL}\bigg|_{\text{max}}\right) \mathbf{a}_{\Lambda}$$

$$\frac{dV}{dL}\Big|_{\text{max}} = \frac{dV}{dN} \rightarrow \mathbf{E} = -\frac{dV}{dN} \mathbf{a}_N$$

Gradient của
$$T = \text{grad } T = \frac{dT}{dN} \mathbf{a}_N$$

$$\mathbf{E} = -\operatorname{grad} V$$

TRUÖNG ĐẠI HỌC

BÁCH KHOA HÀ NỘI

Gradient thế (5)

$$\mathbf{E} = -\operatorname{grad} V$$

$$V = V(x, y, z) \rightarrow dV = \frac{\partial V}{\partial x} dx + \frac{\partial V}{\partial y} dy + \frac{\partial V}{\partial z} dz$$

$$dV = -\mathbf{E} \cdot d\mathbf{L} = -E_x dx - E_y dy - E_z dz$$

$$E_x = -\frac{\partial V}{\partial x}$$

$$E_y = -\frac{\partial V}{\partial y}$$

$$E_z = -\frac{\partial V}{\partial z}$$

$$\rightarrow \mathbf{E} = -\left(\frac{\partial V}{\partial x}\mathbf{a}_x + \frac{\partial V}{\partial y}\mathbf{a}_y + \frac{\partial V}{\partial z}\mathbf{a}_z\right)$$

$$\Rightarrow \left[\text{grad } V = \frac{\partial V}{\partial x} \mathbf{a}_x + \frac{\partial V}{\partial y} \mathbf{a}_y + \frac{\partial V}{\partial z} \mathbf{a}_z \right]$$

Gradient thế (6)

$$\operatorname{grad} V = \frac{\partial V}{\partial x} \mathbf{a}_{x} + \frac{\partial V}{\partial y} \mathbf{a}_{y} + \frac{\partial V}{\partial z} \mathbf{a}_{z}$$

$$\nabla = \frac{\partial}{\partial x} \mathbf{a}_{x} + \frac{\partial}{\partial y} \mathbf{a}_{y} + \frac{\partial}{\partial z} \mathbf{a}_{z} \longrightarrow \nabla T = \frac{\partial T}{\partial x} \mathbf{a}_{x} + \frac{\partial T}{\partial y} \mathbf{a}_{y} + \frac{\partial T}{\partial z} \mathbf{a}_{z}$$

$$\rightarrow \nabla T = \operatorname{grad} T$$

$$\mathbf{E} = -\operatorname{grad} V$$

$$\rightarrow \boxed{\mathbf{E} = -\nabla V}$$

Gradient thế (7)

$$\nabla V = \frac{\partial V}{\partial x} \mathbf{a}_x + \frac{\partial V}{\partial y} \mathbf{a}_y + \frac{\partial V}{\partial z} \mathbf{a}_z \quad \text{(Descartes)}$$

$$\nabla V = \frac{\partial V}{\partial \rho} \mathbf{a}_{\rho} + \frac{1}{\rho} \frac{\partial V}{\partial \varphi} \mathbf{a}_{\varphi} + \frac{\partial V}{\partial z} \mathbf{a}_{z} \quad \text{(Trụ tròn)}$$

$$\nabla V = \frac{\partial V}{\partial r} \mathbf{a}_r + \frac{1}{r} \frac{\partial V}{\partial \theta} \mathbf{a}_\theta + \frac{1}{r \sin \theta} \frac{\partial V}{\partial \varphi} \mathbf{a}_\varphi \quad (C\hat{\mathbf{a}}\mathbf{u})$$

Gradient thế (8)

Gradient:
$$\nabla V = \frac{\partial V}{\partial x} \mathbf{a}_x + \frac{\partial V}{\partial y} \mathbf{a}_y + \frac{\partial V}{\partial z} \mathbf{a}_z$$

Dive:
$$\nabla \cdot \mathbf{D} = \frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z}$$

Ví dụ 1

Gradient thế (9)

Tính gradient của các hàm sau:

$$a)f = 2a^2y - 5y^3z$$

$$b)g = 6\rho\sin\varphi + 4\rho z\cos3\varphi$$

$$c)h = \frac{1}{r} + 2r\sin\theta\cos\varphi$$

Ví dụ 2

Gradient thế (10)

Cho trường thế $V = 2x^2y - 5z$ (V) & điểm P(-4, 3, 6). Tính các thông số tại P: điện thế V_P , cường độ điện trường \mathbf{E}_P , hướng của \mathbf{E}_P , dịch chuyển điện \mathbf{D}_P , & mật độ điện tích khối ρ_v .

$$V_P = 2(-4)^2(3) - 5(6) = 66 \text{ V}$$

$$\mathbf{E} = -\nabla V = -\left(\frac{\partial V}{\partial x}\mathbf{a}_x + \frac{\partial V}{\partial y}\mathbf{a}_y + \frac{\partial V}{\partial z}\mathbf{a}_z\right) = -4xy\mathbf{a}_x - 2x^2\mathbf{a}_y + 5\mathbf{a}_z \text{ V/m}$$

$$\rightarrow \mathbf{E}_p = 48\mathbf{a}_x - 32\mathbf{a}_y + 5\mathbf{a}_z \text{ V/m}$$

$$\mathbf{a}_{E,P} = \frac{\mathbf{E}_p}{\left|\mathbf{E}_p\right|} = \frac{48\mathbf{a}_x - 32\mathbf{a}_y + 5\mathbf{a}_z}{\sqrt{48^2 + (-32)^2 + 5^2}} = 0,83\mathbf{a}_x - 0,55\mathbf{a}_y + 0,086\mathbf{a}_z$$

TRUONG BẠI HỌC BÁCH KHOA HÀ NỘI

Ví dụ 2

Gradient thế (11)

Cho trường thế $V = 2x^2y - 5z$ (V) & điểm P(-4, 3, 6). Tính các thông số tại P: điện thế V_P , cường độ điện trường \mathbf{E}_P , hướng của \mathbf{E}_P , dịch chuyển điện \mathbf{D}_P , & mật độ điện tích khối ρ_v .

$$\mathbf{D} = \boldsymbol{\varepsilon}_{0} \mathbf{E} = 8,854.10^{-12} \left(-4xy\mathbf{a}_{x} - 2x^{2}\mathbf{a}_{y} + 5\mathbf{a}_{z} \right)$$

$$= -35,40xy\mathbf{a}_{x} - 17,71x^{2}\mathbf{a}_{y} + 44,30\mathbf{a}_{z} \text{ pC/m}^{2}$$

$$\boldsymbol{\rho}_{v} = \nabla \cdot \mathbf{D}$$

$$= \left(\frac{\partial}{\partial x} \mathbf{a}_{x} + \frac{\partial}{\partial y} \mathbf{a}_{y} + \frac{\partial}{\partial z} \mathbf{a}_{z} \right) \cdot \left(-35,40xy\mathbf{a}_{x} - 17,71x^{2}\mathbf{a}_{y} + 44,30\mathbf{a}_{z} \right)$$

$$= \frac{\partial(-35,40xy)}{\partial x} + \frac{\partial(-17,71x^{2})}{\partial y} + \frac{\partial(44,30)}{\partial z} = -35,4y \text{ pC/m}^{3}$$

Năng lượng & điện thế

- 1. Dịch chuyển điện tích điểm trong điện trường
- 2. Tích phân đường
- 3. Hiệu điện thế & điện thế
- 4. Trường thế của điện tích điểm
- 5. Trường thế của một hệ điện tích
- 6. Gradient thế
- 7. Lưỡng cực
- 8. Mật độ năng lượng trong trường tĩnh điện

Lưỡng cực (1)

- Đóng vai trò quan trọng trong việc khảo sát chất điện môi trong điện trường
- Lưỡng cực (lưỡng cực điện): 2 điện tích điểm có độ lớn bằng nhau & ngược dấu, khoảng cách giữa chúng rất nhỏ so với khoảng cách tới điểm P cần xét

TRƯỜNG ĐẠI HỌC

BÁCH KHOA HÀ NỘI

Lưỡng cực (2)

$$V = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = \frac{Q}{4\pi\varepsilon_0} \frac{R_2 - R_1}{R_1 R_2}$$

$$R_1 \doteq R_2$$

$$R_2 - R_1 \doteq d\cos\theta$$

$$\to V = \frac{Qd\cos\theta}{4\pi\varepsilon_0 r^2}$$

$$\mathbf{E} = -\nabla V$$

$$= -\left(\frac{\partial V}{\partial r}\mathbf{a}_r + \frac{1}{r}\frac{\partial V}{\partial \theta}\mathbf{a}_\theta + \frac{1}{r\sin\theta}\frac{\partial V}{\partial \varphi}\mathbf{a}_\varphi\right)$$

$$\mathbf{E} = \frac{Qd}{4\pi\varepsilon_0 r^3} (2\cos\theta \mathbf{a}_r + \sin\theta \mathbf{a}_\theta)$$

Lưỡng cực (3)

$$\mathbf{E} = \frac{Qd}{4\pi\varepsilon_0 r^3} (2\cos\theta \mathbf{a}_r + \sin\theta \mathbf{a}_\theta)$$

$$V = \frac{Qd\cos\theta}{4\pi\varepsilon_0 r^2}$$

Lưỡng cực (4)

$$\rightarrow V = \frac{\mathbf{p.a}_r}{4\pi\varepsilon_0 r^2} = \frac{1}{4\pi\varepsilon_0 |\mathbf{r} - \mathbf{r}|^2} \mathbf{p.} \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}$$

 \mathbf{r} : vécto định vị P

r': vécto định vị tâm lưỡng cực

Năng lượng & điện thế

- 1. Dịch chuyển điện tích điểm trong điện trường
- 2. Tích phân đường
- 3. Hiệu điện thế & điện thế
- 4. Trường thế của điện tích điểm
- 5. Trường thế của một hệ điện tích
- 6. Gradient thế
- 7. Lưỡng cực
- 8. Mật độ năng lượng trong trường tĩnh điện

Mật độ năng lượng (1)

- Khi dịch chuyển một điện tích dương (1) ở vô cùng vào một điện trường của một điện tích dương khác (2), ta phải thực hiện một công
- Nếu điện tích 1 được giữ nguyên trong điện trường, nó có một thế năng
- Nếu thả điện tích 1 ra, nó sẽ lùi ra xa điện tích 2, & tích luỹ động năng trong quá trình chuyển động
- Bài toán: tìm thế năng của một hệ điện tích

Mật độ năng lượng (2)

- (Công dịch chuyển Q_2) = $Q_2V_{2,1}$
- $V_{2,1}$: điện thế tại vị trí của Q_2 do Q_1 gây ra
- Nếu thêm Q_3 vào hệ thì
- (Công dịch chuyển Q_3) = $Q_3V_{3,1} + Q_3V_{3,2}$
- (Công dịch chuyến Q_4) = $Q_4V_{4,1} + Q_4V_{4,2} + Q_4V_{4,3}$
- Tổng công dịch chuyển = thế năng của điện trường = $= W_E = Q_2 V_{2, 1} + Q_3 V_{3, 1} + Q_3 V_{3, 2} + Q_4 V_{4, 1} + Q_4 V_{4, 2} + Q_4 V_{4, 3} + \dots$

Mật độ năng lượng (3)

$$W_E = Q_2 V_{2, 1} + Q_3 V_{3, 1} + Q_3 V_{3, 2} + Q_4 V_{4, 1} + Q_4 V_{4, 2} + Q_4 V_{4, 3} + \dots$$

$$Q_{3}V_{3,1} = Q_{3} \frac{Q_{1}}{4\pi\varepsilon_{0}R_{13}} \\
R_{13} = R_{31}$$

$$\rightarrow Q_{3}V_{3,1} = Q_{1} \frac{Q_{3}}{4\pi\varepsilon_{0}R_{31}} = Q_{1}V_{1,3}$$

$$W_E = Q_1 V_{1,2} + Q_1 V_{1,3} + Q_2 V_{2,3} + Q_1 V_{1,4} + Q_2 V_{2,4} + Q_3 V_{3,4} + \dots$$

$$+W_E = Q_2V_{2,1} + Q_3V_{3,1} + Q_3V_{3,2} + Q_4V_{4,1} + Q_4V_{4,2} + Q_4V_{4,3} + \dots$$

$$2W_E = Q_1(V_{1,2} + V_{1,3} + V_{1,4} + \dots) + Q_2(V_{2,1} + V_{2,3} + V_{2,4} + \dots) + Q_3(V_{3,1} + V_{3,2} + V_{3,4} + \dots) + Q_3(V_{3,1} + V_{3,2} + V_$$

+...

Mật độ năng lượng (4)

$$2W_{E} = Q_{1}(V_{1,2} + V_{1,3} + V_{1,4} + \dots) + Q_{2}(V_{2,1} + V_{2,3} + V_{2,4} + \dots) + \dots$$

$$+ Q_{2}(V_{3,1} + V_{3,2} + V_{3,4} + \dots) + \dots$$

$$V_{1,2} + V_{1,3} + V_{1,4} + \dots = V_{1}$$

$$V_{2,1} + V_{2,3} + V_{2,4} + \dots = V_{2}$$

$$V_{3,1} + V_{3,2} + V_{3,4} + \dots = V_{3}$$

$$\rightarrow W_E = \frac{1}{2} (Q_1 V_1 + Q_2 V_2 + Q_3 V_3 + ...) = \frac{1}{2} \sum_{k=1}^{k=N} Q_k V_k$$

$$Q_k = \rho_v dv$$

$$\rightarrow W_E = \frac{1}{2} \int_V \rho_v V dv$$

Mật độ năng lượng (5)

$$W_E = \frac{1}{2} \int_V \rho_v V dv$$

- Tổng thế năng của một hệ điện tích
- Ngoài phương trình đối với điện tích khối, còn có thể xây dựng phương trình đối với điện tích điểm, điện tích đường, điện tích mặt

Mật độ năng lượng (6)

$$W_E = \frac{1}{2} \int_V \rho_v V dv$$

 $W_E = \frac{1}{2} \int_V \rho_v V dv$ Phương trình Maxwell 1: $\nabla .\mathbf{D} = \rho_v$

$$\rightarrow W_E = \frac{1}{2} \int_V (\nabla . \mathbf{D}) V dv$$

$$\nabla . (V\mathbf{D}) \equiv V(\nabla . \mathbf{D}) + \mathbf{D}.(\nabla V)$$

$$\to W_E = \frac{1}{2} \int_V \left[\nabla . (V \mathbf{D}) - \mathbf{D} . (\nabla V) \right] dV$$

Mật độ năng lượng (7)

$$\rightarrow W_E = \frac{1}{2} \oint_S (V\mathbf{D}).d\mathbf{S} - \frac{1}{2} \int_V \mathbf{D}.(\nabla V) dV$$

Mật độ năng lượng (8)

$$W_E = \frac{1}{2} \oint_{S} (V\mathbf{D}).d\mathbf{S} - \frac{1}{2} \int_{V} \mathbf{D}.(\nabla V) dv$$

$$V = \frac{Q}{4\pi\varepsilon_0 r} : \text{suy giảm với tốc độ } 1/r$$

$$\mathbf{D} = \frac{Q}{4\pi r^2} \mathbf{a}_r : \text{suy giảm với tốc độ } 1/r^2$$

$$\Rightarrow \frac{1}{2} \oint_S (V\mathbf{D}) . d\mathbf{S} = 0$$

$$\mathbf{D} = \frac{Q}{4\pi r^2} \mathbf{a}_r$$
: suy giảm với tốc độ $1/r^2$

 $d\mathbf{S}$: tăng với tốc độ r^2

$$\Rightarrow \frac{1}{2} \oint_{S} (V\mathbf{D}).d\mathbf{S} = 0.$$

$$W_E = \frac{1}{2} \int_V \mathbf{D} \cdot \mathbf{E} dv = \frac{1}{2} \int_V \varepsilon_0 E^2 dv$$

TRƯỚNG ĐẠI HỌC

BÁCH KHOA HÀ NỘI

Ví dụ

Mật độ năng lượng (9)

Tính thế năng của một đoạn cáp đồng trục, mặt ngoài của trụ trong có mật độ điện tích mặt ρ_S .

$$\frac{\text{Cách 1:}}{D_{\rho}} = \frac{1}{2} \int_{V} \mathcal{E}_{0} E^{2} dv$$

$$D_{\rho} = \frac{a\rho_{S}}{\rho} (a < \rho < b) \rightarrow E = \frac{a\rho_{S}}{\mathcal{E}_{0} \rho}$$

$$\rightarrow W_E = \frac{1}{2} \int_{z=0}^{z=L} \int_{\varphi=0}^{\varphi=2\pi} \int_{\rho=a}^{\rho=b} \mathcal{E}_0 \left(\frac{a\rho_S}{\mathcal{E}_0 \rho} \right)^2 dv$$

$$dv = \rho d\rho d\varphi dz$$

$$\rightarrow W_E = \frac{1}{2} \int_{z=0}^{z=L} \int_{\varphi=0}^{\varphi=2\pi} \int_{\rho=a}^{\rho=b} \varepsilon_0 \frac{a^2 \rho_S^2}{\varepsilon_0^2 \rho^2} \rho d\rho d\varphi dz = \frac{\pi L a^2 \rho_S^2}{\varepsilon_0} \ln \frac{b}{a}$$

Ví du

Mật độ năng lượng (10)

Tính thế năng của một đoạn cáp đồng trục, mặt ngoài của trụ trong có mật độ điện tích mặt ρ_S .

$$\underline{\text{Cách 2:}} \qquad W_E = \frac{1}{2} \int_V \rho_v V dv$$

$$V_{AB} = -\int_{d\hat{a}u}^{cu\delta i} \mathbf{E} \cdot d\mathbf{L}$$

$$V_{b} = 0$$

$$V_{a} = -\int_{b}^{a} E_{\rho} d\rho$$

$$E_{\rho} = \frac{a\rho_{S}}{\varepsilon_{0}\rho}$$

$$\rho = a$$
 $\rho = b$

 $\rho = a$

Ví du

Mật độ năng lượng (11)

Tính thế năng của một đoạn cáp đồng trục, mặt ngoài của trụ trong có mật độ điện tích mặt ρ_S .

$$\frac{\cosh 2:}{W_E} = \frac{1}{2} \int_{V} \rho_{V} V dV$$

$$= \frac{1}{2} \int_{V} \rho_{V} \frac{a \rho_{S}}{\varepsilon_{0}} \ln \frac{b}{a} dV$$

$$\rho_{V} = \frac{\rho_{S}}{t}, \quad a - \frac{t}{2} \le \rho \le a + \frac{t}{2}, \quad t \ll a$$

$$\Rightarrow W_E = \frac{1}{2} \int_{z=0}^{z=L} \int_{\varphi=0}^{\varphi=2\pi} \int_{\rho=a-t/2}^{\rho=a+t/2} \frac{\rho_{S}}{t} a \frac{\rho_{S}}{\varepsilon_{0}} \ln \frac{b}{a} \rho d\rho d\varphi dz$$

$$= \left[\frac{\pi L a^{2} \rho_{S}^{2}}{\varepsilon_{0}} \ln \frac{b}{a} \right]$$

$$Q \longrightarrow \mathbf{F} = \frac{Q_1 Q_2}{4\pi \varepsilon R^2} \mathbf{a}_R \longrightarrow \mathbf{E} = \frac{Q}{4\pi \varepsilon R^2} \mathbf{a}_R \longrightarrow \mathbf{D} = \varepsilon \mathbf{E}$$

$$V = -Q \int \mathbf{E} . d\mathbf{L} \longrightarrow V = -\int \mathbf{E} . d\mathbf{L}$$