

Manas Sharma

PHD (PHYSICS)

™ manas.sharma@uni-jena.de	į	#February 2nd, 1995	1	manas.bragitoff.com	Ç	github.com/manassharma07 [r
linkedin.com/in/manassharma07		1 0000-0002-5346-62	280	0 💆 @manassharma07	,	🗷 Manas-Sharma-5 🞓 Google
Sc	ho	olar • @PhysWhiz	I	🗇 phys.whiz 🔗 bragit	tof	f.com

Research Interests

My passion lies in **developing codes and methods** for modeling various phenonmena and processes in materials science such as **light-matter interactions**, adsorbate-substrate interactions, and **thin film deposition**. During my Ph.D., I focused on improving and accelerating **quantum embedding techniques** for molecular and periodic systems. I implemented **density functional theory (DFT)-based embedding** methods and coupled them with **real-time time-dependent DFT** (RT-TDDFT) and **wavefunction theory** (WFT) methods. Notably, I calculated excitation energies of solvated molecules and adsorption energies of molecule-periodic systems using WFT-in-DFT, achieving high accuracy at a fraction of the computational cost. My work also extended to **molecule-in-periodic embedding** and **high harmonic generation** via RT-TDDFT.

In my postdoctoral research, I have diversified into machine-learned interatomic potentials (MLIPs), particularly graph neural network (GNN)-based potentials, to study chemical vapor deposition (CVD) or physical vapor deposition (PVD) of thin films on substrates. To explore deposition processes at the atomic scale, I use DFT calculations and nudged elastic band (NEB) methods to study reaction pathways and energy barriers, as well as ab initio molecular dynamics (AIMD) to study dynamic evolution. Using the data from these simulations, I develop MLIPs trained on high-fidelity data and also leverage foundation models to extend their applicability.

Beyond simulations, I have a keen interest in **developing computational tools** for researchers. I have built a performant DFT code as well as a neural network library from scratch, optimized for parallelization and GPU acceleration. Additionally, I have experience creating GUIs for materials modeling, visualization, and input file generation.

Outside research, I enjoy creating YouTube tutorials, web & Android apps, and computer software/libraries for researchers and students.

About me

I am a postdoctoral researcher in the Chemical Engineering department at the Indian Institute of Science (IISc), jointly advised by Prof. Ananth Govind Rajan and Prof. Sudeep Punnathanam.

Previously, I obtained my PhD (in Physics) from Friedrich Schiller University Jena (FSU) in Germany, with the highest distinction of summa cum laude. I was supervised by Prof. Dr. Marek Sierka during my PhD.

I possess strong verbal, presentation, and written communication skills as demonstrated by extensive **participation in >17 conferences** (**7 talks**; **10 posters**) as well as publishing **>9 scientific articles**.

Prior to joining FSU, I obtained a Master's in Physics from the University of Delhi (India), where I worked with <u>Dr. Debabrata Mishra</u> and published three papers. I obtained my Bachelor's in Physics (Hons) from the University of Delhi as well.

I am originally from a small, but beautiful town Haldwani, a few minutes from Nainital in India.

Awards and Achievements

	Top Viewed Article , Paper investigating high harmonic generation in molecular thin films was one of the			
2025	most viewed article among the works published in Advanced Optical Materials between January 1 to	-		
	December 31 2023			
2024	Summa Cum Laude, Grade awarded for PhD Thesis	Germany		
2024	Travel and Accommodation Bursary, Awarded for presenting my work at Turbomole 2024 Conference	UK		
2024	3.5 Million Views and 19.9k Subscribers , on YouTube channel, where I share my knowledge on			
	computational materials science, physics and scientific computing	Online		
2022	Travel Bursary, Awarded for presenting a talk at ETSF 2022 Conference	Germany		
2021	Best Oral Presentation, Awarded for my talk at EMRS Fall 2021 Meeting	Germany		
2019	Highly Downloaded Paper , My paper on CrysX was among the top 10 percent of most downloaded papers			
	published in Journal of Applied Crystallography between January 2018 and December 2019	India		
2017	Rank #3, Ranked at the 3rd position in the Physics department of my college during M.Sc. Physics	India		
2016	DC Arora Scholarship, Awarded for being a meritorious student during B.Sc. Physics	India		
2016	Rank #2, Ranked at the 2nd position in the Physics department of my college during B.Sc. Physics	India		

September 7, 2025

Friedrich Schiller University Jena

Jena, Germany

December 2019 - March 2024 (4 years 4

PhD in Physics (**summa cum laude** - highest distinction)

- Thesis topic: "Density Functional Theory Based Embedding for Molecular and Periodic Systems" (link)
- Under the supervision of <u>Prof. Dr. Marek Sierka</u>, I developed and implemented efficient methods within the <u>TURBOMOLE</u> program for the study of hybrid systems.
- During my research I became an expert on the implementations and inner workings of quantum chemistry methods like DFT, RT-TDDFT and DFT based embedding techniques coupled with wave function methods.
- Furthermore, I developed a number of practical skills like web app development, graphical designing, video editing, data visualization, data analysis, teaching, automation, etc.
- I also studied deep learning as my supplementary course and designed a very efficient and parallelizable Neural Network library with GPU acceleration

University of Delhi (Sri Venkateswara College)

New Delhi, India

Master of Science (MSc) Physics

July 2016 - July 2018 (2 years)

- Completed a project on density functional theory and material modeling that resulted in two publications in 2019
- Specialized in Nanoscience
- Ranked 3rd in the Physics department of my college

University of Delhi (Acharya Narendra Dev College)

New Delhi, India

B.Sc (Honours) Physics

July 2013 - July 2016 (3 years)

- Aggregate percentage: 87.08
- Ranked second in the Physics department of my college (Acharya Narendra Dev College)
- Earned the D.C. Arora meritorious Scholarship, Acharya Narendra Dev College (Apr 2016)
- Was an active member of the Physics society there and held various posts

Work Experience

Indian Institute of Science Bengaluru, India

Postdoctoral Researcher

1st August 2024 - present

- I develop graph neural network-based machine learning interatomic potentials (MLIPs) for investigating thin film deposition and for materials design.
- Perform extensive first-principles (DFT, AIMD and NEB) calculations for reaction pathways and transition state barriers.
- Perform molecular dynamics simulations powered by foundation MLIPs for various properties such as radial distribution functions, density, and
- Served as a teaching assistant for a number of courses:
 - Quantum-Mechanical Modeling of Nanomaterials (CH 253): Conducted tutorials on Quantum ESPRESSO and graded assignments and student exams
 - AICTE Faculty Development Program (FDP) titled "Application of Machine Learning for Solving Challenging Engineering Problems": Conducted hands-on tutorials on training ML models.
 - Currently serving as a teaching assistant for an NPTEL course on "Machine Learning for Core Engineering Disciplines" where I contribute by creating question papers, assignments, tutorials and reviewing course materials and lectures.

Friedrich Schiller University Jena

Jena, Germany

Wissenschaftlicher Mitarbeiter (Scientific Employee)

3rd June 2019 - 4th April 2024 (4 yrs 10

mos)

- I developed computationally efficient ab-initio methods and codes to study the properties of hybrid systems. I mainly programmed in Fortran and Python for this role
- Furthermore, I served as a teaching assistant for a number of courses:
 - Modelling and Simulation (Curriculum included basics of quantum mechanics, overview of standard algorithms utilized in quantum chemistry codes such as geometry optimization, and so on.)
 - Basics of Stochastics and Experimental Design
 - Algorithms for Scientific Computing (Curriculum included: Python programming, introduction to machine learning, theory and applications of classical ML models such as SVM, decision trees, and so on.)

As a teaching assistant, I created exercise sheets and examination papers, conducted weekly tutorials, and graded answer sheets. Additionally, I also deveoped course materials for the course on machine learning and Python.

Phys Whiz (Self-Employed)

Content Creator and Founder

January 2016 - present

- Founded Phys Whiz to create content like tutorials and lectures on physics, computational material science, and scientific computing
- Currently at ~ 18 k subscribers on <code>YouTube</code> and ~ 22 k followers on <code>Instagram</code>
- Acquired various practical skills through this endeavour like image and video editing, graphic designing, animations, basic social media marketing and management skills

- The YouTube channel has garnered $3.2\,\mathrm{Million}$ views (approximately)

September 7, 2025 2

BragitOff.com (Self-Employed)

Blogger and Founder

June 2014 - present

- Owner and author of bragitoff.com, an educational blog, especially for physics students with a focus on computational material science, numerical techniques, and scientific computing
- ullet The blog gets decent traffic with >30k monthly views
- Searching 'bragitoff.com' on Google Scholar gives 28 unique results that have cited various blog posts of mine

Publications

Here is a link to my Google Scholar (Citations: >301, h-index: 6 at the time of creating the CV)

- Density Functional Theory for Molecular and Periodic Systems in TURBOMOLE: Theory, Implementation, and Applications
 M. Sharma, Y. J. Franzke, C. Holzer, F. Pauly, and M. Sierka
 J. Phys. Chem. A XX, XX, XXXX-XXXX (2025)
- Tailored Vapor Deposition Unlocks Large-Grain, Wafer-Scale Epitaxial Growth of 2D Magnetic CrCl3
 V. Kumar, A. Jangid[†], M. Sharma[†], M. Verma, J. Pasyanthi, K. S. Kumar, P. Sharma, E. O. Chiglintsev, M. I. Panin, S. N. Punnathanam, A. I. Chernov, A. G. Rajan, A. Singh
 Submitted to Advanced Materials, (preprint available on arxiv) (2025)
- Optical Gaps of Ionic Materials from GW/BSE-in-DFT and CC2-in-DFT

M. Sharma, and M. Sierka

J. Chem. Theo. Comput. 20, 21, 9592-9605 (2024)

• TURBOMOLE: Today and Tomorrow

Y. J. Franzke, C. Holzer, J. H. Andersen, T. Begušić, F. Bruder, S. Coriani, F. Della Sala, E. Fabiano, D. A. Fedotov, S. Fürst, S. Gillhuber, R. Grotjahn, M. Kaupp, M. Kehry, M. Krstić, F. Mack, S. Majumdar, B. D. Nguyen, S. M. Parker, F. Pauly, A. Pausch, E. Perlt, G. S. Phun, A. Rajabi, D. Rappoport, B. Samal, T. Schrader, **M. Sharma**, E. Tapavicza, R. S. Treß, V. Voora, A. Wodyński, J. M. Yu, B. Zerulla, F. Furche, C. Hättig, M. Sierka, D. P. Tew, and F. Weigend

J. Chem. Theo. Comput. 19, 20, 6859-6890 (2023) [HIGHLY CITED] &

Note: The author list for the above publication was determined using alphabetical order, with the exception of the first two authors and the last five corresponding authors.

• Resonance Effect in Brunel Harmonic Generation in Thin Film Organic Semiconductors

W. Li, A. Saleh, **M. Sharma**, C. Huenecke, M. Sierka, M. Neuhaus, L. Hedewig, B. Bergues, M. Alharbi, H. ALQahtani, A. M. Azeer, S. Graefe, M. F. Kling, A. F. Alharbi, and Z. Wang

Adv. Optical Mater. 2203070 (2023) [ON COVER and TOP VIEWED ARTICLE]

• Efficient Implementation of Density Functional Theory based Embedding for Molecular and Periodic Systems using Gaussian Basis Functions M. Sharma, and M. Sierka

J. Chem. Theo. Comput. 18, 11, 6892-6904 (2022) [ON SUPPLEMENTARY COVER and ONE OF THE MOST VIEWED ARTICLES IN 30 DAYS OF PUBLICATION]

· Real-time time-dependent density functional theory using density fitting and the continuous fast multipole method

C. Mueller, **M. Sharma**, and M. Sierka

J. Comput. Chem. 41, 2573-2582 (2020) &

• CrysX: crystallographic tools for the Android platform

M. Sharma, and D. Mishra

J. Appl. Cryst. **52**, 1449-1454 (**2019**) [ON COVER, TOP DOWNLOADED ARTICLE]

First-principles study of the structural and electronic properties of bulk ZnS and small ZnnSn nanoclusters in the framework of the DFT+U
method

M. Sharma, D. Mishra, and J. Kumar Phys. Rev. B 100, 045151 (2019)

• DFT+U study of small ZnO nanoclusters

M. Sharma, and D. Mishra

AIP Conference Proceedings 2142, 110025 (**2019**)

Review Activities

Served as a peer reviewer for the following journals published by the American Chemical Society:

- The Journal of Physical Chemistry A
- ACS Omega

Code Development

Contributions

September 7, 2025 3

Independently Developed Libraries and Android/PC/Web Applications

PyFock	An efficient density functional theory package based on Gaussian	₽ GitHub link
CrysX-NN	basis functions and supports multi core and GPU acceleration An efficient neural network library, developed from scratch that supports parallelization and GPUs	₽ GitHub link
CrysX-3D Viewer	A molecule and crystal viewer that renders high quality visualizations using complex shaders developed using Unity gaming en-	₱ Project Home page
CrysX-AR	gine. Avaliable on Android, Windows, Mac and Linux An Android app for augmented reality visualization of molecules and crystals	₿ Google Play Store link
CrysX-Crystallographic Tools	A set of crystallographic tools (XRD pattern simulation, CIF creator/parser, equation of state fitting, etc.) available as an Android	₱ Google Play Store link
CrysX-Demo DFT based Embedding	app Online demo of frozen density embedding and projection based embedding	₽Web App link
RIPER-Tools	An online set of tools that allows to create input files for the RIPER module of TURBOMOLE from MaterialsProject or PubChem database	₽ Web App link
VASP-GUI	An online GUI for VASP input preparation and parsing/visualizing output files	₽ Web App link
CrysX-CompChem File Converter	Web app that allows inter-conversion between various chemical file formats in current use	₽Web App link
Basis Set Converter	Web app to inter-convert between various basis set formats, powered by Basis Set Exchange	₽Web App link
The Math App	A suite of mathematical tools that has the potential to act as a substitute for Computer softwares like Matlab/Scilab on Android devices	₽Google Play Store link
ML: Microstructure Classification Demo	A web demo app of a neural network (crysx_nn) model trained to classify microstutures	₽ Web App link
ML: MNIST_Plus Digit Classification Demo	A web app that classifies user given handwritten digits using a convolutional network model (PyTorch) trained on a modified MNIST dataset	₽Web App link

Conferences, Workshops and Seminars

Talk	APS Global Physics Summit 2025 (<u>link</u>)	18 Mar 2025
Attended	IISc-Fujitsu Workshop on Quantum Computing, IISc Bengaluru India (<u>link</u>)	23-24 Jan 2025
Attended	AI/ML Workshop 2025, IISc Bengaluru India (<u>link</u>)	07-08 Jan 2025
Talk	TURBOMOLE Users Meet Developers Conference, Oxford, UK (<u>link</u>)	19 Sep 2024
Lecture+Tutorials	Mastering DFT: A Hands-on Training Workshop, Janardan Singh Foundation (ONLINE)	27 Jul 2024
Poster &	17th International Congress of Quantum Chemistry 2023 in Bratislava, Slovakia (<u>link</u>)	25 Jun-01 Jul 2023
Talk	VISTA Seminars 2022 (VIRTUAL (<u>link</u>)	30 Nov 2022
Poster &	BIOVIA Conference 2022 (VIRTUAL (<u>link</u>)	11-13 Oct 2022
Poster &	ICQNN 2022 Conference in Jena, Germany (<u>link</u>)	05-09 Sep 2022
Poster &	Psi-K 2022 Conference at EPFL in Lasuanne, Switzerland (link)	22-25 Aug 2022
Talk 🖋	25th ETSF Workshop on Electronic Excitations 2022 in Leuven, Belgium (link)	13-17 Jun 2022
Talk 🖋	Turbomole Developers Seminar Series 2021-2022	21 Feb 2022
Talk	NOA Spring Meeting 2022 (ONLINE) (<u>link</u>)	21-23 Feb 2022
Talk	Computational Methods in Materials Science (CMMS 2021) (ONLINE) (link)	24-25 Sep 2021
Poster	57th Symposium on Theoretical Chemistry (STC 2021) (ONLINE) (link)	20-24 Sep 2021
Talk 🖋	EMRS Fall 2021 meeting (Online) ₹BEST ORAL PRESENTATION AWARD (link)	20-23 Sep 2021
Talk 🖋	The Materials and Molecular Modelling Hub++ Annual Conference 2021 (ONLINE) (link)	14-15 Sep 2021
Talk 🖋	DokDok Lite 2021 in Jena, Germany (link)	01-03 Sep 2021
Poster	International Workshop on Recent Developments in Electronic Structure (ES21) (ONLINE) (link)	12-15 Jul 2021
Poster	eSSENCE-eMMC eMeeting MMMM 2021 (Online) (link)	07-08 Jun 2021
Attended	International Workshop on Computer-Aided Materials Discovery (Weekly Online ZOOM Webinars) (link)	27 May-24 Jun 2021
Talk	NOA CRC 1375 Spring Meeting (ONLINE) (link)	15-17 Feb 2021
Attended	Intel® Software Development Tools for HPC (Webinar) (link)	11-20 Nov 2020
Attended	Intel® Software Development Tools for Artificial Intelligence (Webinar) (<u>link</u>)	17 Nov 2020
Attended	NOA Fall PhD School (ONLINE) (link)	26-28 Oct 2020
Poster+Presentation	NOA Spring School and PI Workshop in Jena, Germany (<u>link</u>)	02-06 Mar 2020
Attended	NOA seminar by Dr. Heiko Appel (MPI Hamburg) in Jena, Germany (<u>link</u>)	21 Jan 2020
Attended	24th ETSF Workshop on Electronic Excitations in Jena, Germany (link)	16-20 Sep 2019
Poster	ICABS 2019 in Bhiwani, India (link)	07-09 Feb 2019
Poster	6th ISIF 2017 in New Delhi, India (link)	13 Dec 2017
	, <u> </u>	

SEPTEMBER 7, 2025

Skills

Programming languages C, C++, C#, Python, FORTRAN, Java, shell scripting

DFT methods development PySCF, TURBOMOLE

Quantum Chemistry packages Quantum ESPRESSO, PySCF, TURBOMOLE, NWChem, Serenity, ORCA, VASP

Molecular Dynamics packages LAMMPS, ASE

Modeling and visualization VESTA, Avogadro, Jmol, VMD, CrysX-3D Viewer, BURAI, Py3Dmol, ASE

Machine/Deep Learning scikit-learn, TensorFlow, PyTorch, Nequip, CrysX-NN

App development Web development Wordpress, HTML

Data processing/wrangling pandas, numpy

Data visualization matplotlib, seaborn

Outreach YouTube videos, Blog posts, Instagram posts

Debugging and profiling ARM forge for FORTRAN, VS code for python

Miscellaneous Video editing, Molecular animations, Graphic designing, Photo editing, Git, MS Excel

Documentation Markdown, LaTeX/Overleaf, Jupyter notebooks, MS Word, MS Powerpoint

Soft Skills Time Management, Teamwork, Problem-solving, Documentation, Engaging Presentation

Social Media

LinkedIn https://www.linkedin.com/in/manassharma07

Blog https://bragitoff.com/

YouTube https://www.youtube.com/@PhysWhiz
Twitter https://twitter.com/manassharma07
GitHub https://github.com/manassharma07/

https://www.instagram.com/phys.whiz

Instagram • https://www.instagram.com/ducktape07/

• https://www.instagram.com/crysx_3d/

• https://www.facebook.com/ducktape07

Facebook • https://www.facebook.com/bragitoff/

https://www.facebook.com/physwhizforum/

Google Scholar https://scholar.google.com/citations?user=WYOEL94AAAAJ&hl=en

ORCID https://orcid.org/0000-0002-5346-6280

Researchgate https://www.researchgate.net/profile/Manas-Sharma-5

Languages

English Bilingual proficiency
Hindi Native proficiency
German Elementary proficiency