Class 13: Reflection and Refraction

Understanding Light

Light is a form of electromagnetic radiation that is visible to the human eye. It falls within a specific range of wavelengths in the electromagnetic spectrum.

Characteristics of Light

- **Visible Light:** This is the range of electromagnetic radiation that humans can see. It comprises the colors seen in a rainbow, from red to violet.
 - o **Human Perception**: Humans can only perceive this narrow band of wavelengths.
 - o **Animal Perception**: Some animals see different wavelengths:
 - **Dogs**: Can see primarily in shades of gray.
 - Insects: Can see ultraviolet light, which is invisible to humans.
- Speed of Light:
 - o In a vacuum, light travels at a constant speed of 299,792,458 meters per second (approximately 300,000 km/s).

Medium of Propagation of Light

Light can travel through different types of media, which influence its speed and behavior.

- Optical Medium: Any substance that allows light to travel through it is called an optical medium.
 - o **Homogeneous Medium**: A medium in which light travels at the same speed in all directions. Examples include pure air and clear glass.
 - o Transparent Medium: Light can pass through easily without being scattered. Examples include clear glass and clean water.
 - o **Opaque Medium**: Light cannot pass through, so it is either absorbed or reflected. Examples include wood and metals.
 - o **Translucent Medium**: Light passes through partially and is scattered, making objects on the other side blurry. Examples include frosted glass and thin paper.

Reflection, Refraction & Dispersion of Light

1. Reflection of Light

Reflection occurs when a light ray strikes a smooth, polished surface and bounces back. This fundamental behavior of light is crucial in everyday phenomena and optical devices like mirrors.

Key Concepts:

- Light Travels in Straight Lines: Light moves in straight lines unless it encounters a different medium or surface.
- **Incident Ray**: The incoming light ray that strikes a surface.
- Reflected Ray: The light ray that bounces back from the surface after hitting it.
- **Normal**: An imaginary line perpendicular to the surface at the point where the incident ray strikes.

Angles in Reflection:

• **Angle of Incidence**: The angle between the incident ray and the normal.

• **Angle of Reflection**: The angle between the reflected ray and the normal.

Laws of Reflection:

- 1. First Law: The angle of incidence is equal to the angle of reflection.
- 2. Second Law: The incident ray, reflected ray, and the normal all lie in the same plane.

Types of Reflection:

- Regular Reflection: Occurs on smooth surfaces like mirrors, where parallel incident rays reflect as parallel rays, producing a clear image.
- Irregular Reflection: Happens on rough surfaces, causing reflected rays to scatter in various directions. This type of reflection does not produce a clear image and is also known as diffused reflection.

Types of Images Formed:

- Real Image:
 - o Formed when light rays converge at a point after reflection.
 - o Can be projected onto a screen.
- Virtual Image:
 - o Formed when light rays appear to diverge from a point behind the reflecting surface.
 - Cannot be projected onto a screen.
 - The image produced by a plane mirror is virtual, upright, and the same size as the object, appearing at the same distance behind the mirror as the object is in front.

2. Refraction of Light

Refraction is the bending of light as it passes from one transparent medium to another with a different density. This phenomenon explains why objects appear distorted when viewed through water or glass.

Key Concepts:

- Light Bending: Light changes speed and direction when it enters a different medium at an angle.
- **Refractive Index**: A measure of how much a medium bends light. Higher refractive indices indicate more significant bending.

Laws of Refraction:

- 1. **Snell's Law**: The ratio of the sine of the angle of incidence to the sine of the angle of refraction is a constant, depending on the media. This constant is the refractive index.
- 2. Path of Least Time: Light travels along the path that takes the least time when moving from one point to another across different media.

Effects of Refraction:

- Towards the Normal: Light bends towards the normal when it slows down entering a denser medium.
- Away from the Normal: Light bends away from the normal when it speeds up entering a less dense medium.

3. Dispersion of Light

Dispersion is the splitting of white light into its constituent colors when passing through a prism or other transparent medium.

Key Concepts:

- Spectrum: The range of colors (red, orange, yellow, green, blue, indigo, violet) that make up white light.
- **Prism**: A transparent optical element with flat, polished surfaces that refract light. It can separate white light into its component colors due to varying degrees of bending for different wavelengths.

How Dispersion Works:

- **Different Wavelengths**: Different colors of light have different wavelengths, causing them to refract by varying amounts. For example, violet light bends more than red light in a prism, leading to the separation of colors.
- Natural Examples: Rainbows are created when raindrops act like prisms, dispersing sunlight into a spectrum of colors.

