

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
12. September 2003 (12.09.2003)

PCT

(10) Internationale Veröffentlichungsnummer
WO 03/075423 A1

(51) Internationale Patentklassifikation⁷: **H01S 5/068.**
5/42, H05B 33/08

Berzeliusstrasse 83, 22093 Hamburg (DE). **FRAUNHOFER-GESELLSCHAFT** [DE/DE]; Leonrodstrasse 54, 80636 München (DE).

(21) Internationales Aktenzeichen: PCT/EP03/02016

(72) Erfinder; und

(22) Internationales Anmeldedatum:
27. Februar 2003 (27.02.2003)

(75) **Erfinder/Anmelder** (nur für US): **DINGER, Reinhold** [DE/DE]; Theodor-Storm-Weg 5, 21509 Glinde (DE). **HOFFMANN, Dieter** [DE/DE]; Am Hammerwerk 20, 52152 Simmerath (DE). **HAAS, Claus, Rüdiger** [DE/DE]; Oppenhoffallee 88, 52066 Aachen (DE).

(25) Einreichungssprache: Deutsch

(74) Anwalt: **MÖRTEL & HÖFNER**; Blumenstrasse 1, 90402 Nürnberg (DE).

(30) Angaben zur Priorität:
102 09 374.1 2. März 2002 (02.03.2002) DE

(81) Bestimmungsstaaten (national): JP, US.

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): **ROFIN-SINAR LASER GMBH** [DE/DE];

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR).

[Fortsetzung auf der nächsten Seite]

(54) Title: DIODE LASER ARRAY COMPRISING A PLURALITY OF ELECTRICALLY SERIES- CONNECTED DIODE LASERS

(54) Bezeichnung: DIODENLASERANORDNUNG MIT EINER MEHRZAHL VON ELEKTRISCH IN REIHE GESCHALTETEN DIODENLASERN

(57) Abstract: A diode laser array containing a plurality of electrically series-connected diode lasers (2) to which a bypass device (4) is respectively electrically and parallel connected. Said device is high-ohmic in normal operation and bypasses the respective diode laser (2) in the case of a diode laser diode defect leading to high-ohmic interruption of the electric circuit.

[Fortsetzung auf der nächsten Seite]

WO 03/075423 A1

Veröffentlicht:

— mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) Zusammenfassung: Eine Diodenlaseranordnung enthält eine Mehrzahl von elektrisch in Reihe geschalteten Diodenlasern (2), denen jeweils eine Bypassanordnung (4) elektrisch parallel geschaltet ist, die im Normalbetrieb hochohmig ist und den jeweiligen Diodenlaser (2) im Falle eines Diodenlaserdefektes, der zur hochohmigen Unter-Brechung des Stromkreises führt, niederohmig überbrückt.

Beschreibung

Diodenlaseranordnung mit einer Mehrzahl von elektrisch in Reihe geschalteten Diodenlasern

Die Erfindung bezieht sich auf eine Diodenlaseranordnung mit einer Mehrzahl von elektrisch in Reihe geschalteten Diodenlasern.

10

Hochleistungsdiodenlaser weisen eine Vielzahl möglicher Anwendungsbiete auf, zu denen unter anderem das Pumpen von Festkörperlasern oder die Materialbearbeitung gehören. Ein Hochleistungsdiodenlaser enthält als laseraktives Element eine quaderförmige Halbleiterstruktur, den sogenannten Diodenlaserbarren, die aus mehreren, nebeneinander angeordneten, elektrisch parallel geschalteten Einzelementen besteht. Ein solcher Diodenlaserbarren ist typischerweise etwa 10 mm lang, 0,3-2,0 mm breit und 0,1-0,15 mm hoch. Das in den pn-Übergängen erzeugte Laserlicht tritt an der Längsseite des Diodenlaserbarrens aus. Der Diodenlaserbarren ist zwischen einer Grund- und Deckplatte angeordnet, die sowohl zur elektrischen Kontaktierung als auch zur Kühlung dienen. Das Bauelement bestehend aus Diodenlaserbarren, elektrischen Kontakten und Kühlung wird als Diodenlaser bezeichnet. Die typischen optischen Ausgangsleistungen eines solchen Diodenlasers reichen, abhängig von Ausführung und Betriebsart, von ca. 1 W bis zu mehreren 100 W.

30 Zur weiteren Erhöhung der Ausgangsleistung werden mehrere Diodenlaser geometrisch nebeneinander (=horizontaler Stapel bzw. horizontaler Stack) und/oder übereinander (=vertikaler Stapel bzw. vertikaler Stack) angeordnet.

In einem solchen Stapel werden typischerweise etwa 2 bis zu einigen 100 Diodenlasern elektrisch in Reihe geschaltet. Beim Betrieb des Stapels kann es zum Ausfall einer oder mehrerer 5 der im Stapel angeordneten Diodenlaser, beispielsweise durch spontane Zerstörung des Diodenlaserbarrens bzw. durch Versagen der elektrischen Kontaktierung des Diodenlaserbarrens, kommen. Durch einen solchen hochohmigen Defekt eines einzelnen Diodenlasers wird nun der durch die Reihenschaltung im Stapel fließende Strom unterbrochen, so dass der gesamte Stapel ausfällt. 10 Es muss demzufolge wegen des Ausfalls eines einzigen Diodenlasers der gesamte Stapel ausgetauscht werden. Dies kann zu einem Betriebsausfall der gesamten Laseranlage führen, der mit einem erheblichen wirtschaftlichen Schaden verbunden sein kann. 15 Ein solcher Betriebsausfall könnte prinzipiell durch redundante Anordnungen mit parallelgeschalteten Diodenlaserstapeln vermieden werden. Dies würde jedoch zu erheblich höheren Kosten der Laserquelle führen.

20 Der Erfindung liegt nun die Aufgabe zu Grunde, eine Diodenlaseranordnung mit einer Mehrzahl von elektrisch in Reihe geschalteten Diodenlasern anzugeben, die auch bei Ausfall eines einzelnen Diodenlasers weiter betrieben werden kann.

25 Die genannte Aufgabe wird gemäß der Erfindung gelöst mit einer Diodenlaseranordnung mit den Merkmalen des Patentanspruches 1. Da jedem der elektrisch in Reihe geschalteten Diodenlaser zumindest eine Bypassanordnung elektrisch parallel geschaltet ist, die im Normalbetrieb hochohmig ist und den jeweiligen Diodenlaser im Falle eines hochohmigen Defektes niederohmig überbrückt, ist trotz des Ausfalls eines Diodenlasers sichergestellt, dass der Stromfluss durch die übrigen, zu dem ausgefallenen Diodenlaser in Reihe geschalteten Diodenlaser nicht 30

unterbrochen ist. Der gesamte Stapel kann mit nur vernachlässigbarer Leistungsverringerung weiter betrieben werden, so dass gegebenenfalls erforderliche Austausch- oder Reparaturarbeiten auf geplante Stillstandszeiten der mit dieser Diodenlaseranordnung bestückten Laseranlage verschoben werden können.

Optional kann der Diodenlaserstapel mit redundanten Diodenlasern bestückt werden oder eine Leistungsreserve vorgehalten werden, so dass die geplante Nennleistung des Diodenlaserstapels bei Ausfall einzelner Diodenlaser nicht unterschritten wird.

Die Begriffe „niederohmig“ und „hochohmig“ sind dabei folgendermaßen zu verstehen: Der Widerstand der Bypassanordnung ist im Normalbetrieb so groß, dass die Verlustleistung der Bypassanordnung kleiner ist als die Leistungsaufnahme des Diodenlasers. Vorzugsweise ist die Verlustleistung kleiner als 1/10 der Leistungsaufnahme. Im Überbrückungsfall sinkt der Widerstand der Bypassanordnung auf einen Wert, der die Größenordnung des Widerstandes des Diodenlasers im Normalbetrieb nicht wesentlich überschreitet, vorzugsweise deutlich niedriger als dieser ist. Dabei ist zu beachten, dass der Stromfluß sowohl im Diodenlaser als auch in der Bypassanordnung durch den ohmschen Widerstand und durch eine charakteristische Spannungsschwelle, die durch die Diffusionsspannung (im Fall einer Diodencharakteristik) oder die Zünd- oder Schwellwertspannung (im Fall von Thyristoren oder Transistoren) beeinflusst wird.

In einer weiteren bevorzugten Ausgestaltung ist eine selbstschaltende Bypassanordnung vorgesehen, wobei der Begriff selbstschaltend in dem Sinn zu verstehen ist, dass die Bypassanordnung ohne externe Steuerung zwangsläufig niederohmig

wird, wenn die Spannung über dem Diodenlaser einen Schwellwert überschreitet.

Als selbstschaltende Bypassanordnung ist vorzugsweise eine Diode oder eine aus einer Mehrzahl von Dioden aufgebaute Schaltung vorgesehen, die bei einer Spannung im Betriebsbereich des Diodenlasers hochohmig ist.

In einer vorteilhaften Ausgestaltung der Erfindung ist eine selbstschaltende Bypassanordnung vorgesehen, die als steuerbares Schaltelement einen Thyristor, oder eine aus mehreren Thyristoren aufgebaute Schaltung enthält. Der Thyristor ist ein steuerbarer Schalter mit 3 Anschlüssen: Anode und Kathode werden ähnlich einer Diode angeschlossen. Der Thyristor wird leitend, wenn der dritte Anschluß, der zur Steuerung dient, mit einer elektrischen Spannung beaufschlagt wird, die größer ist als eine bauteilspezifische Schwellspannung. Diese Spannung wird vorteilhaft infolge des Spannungsanstiegs bei einem hochohmigen Diodenlaserdefekt an der Anode des Thyristors abgegriffen. Vorteilhaft an dieser Anordnung gegenüber einer einfachen Diode als Bypassanordnung ist deren erheblich niedrigere Verlustleistung. Da eine aus Dioden aufgebaute Bypassanordnung stets eine höhere Verlustleistung als der überbrückte Diodenlaser im Nennbetrieb aufweist, steigt die Leistungsaufnahme des Diodenlaserstapels nach einem Defekt gegenüber dem Nennbetrieb an. Der Thyristorbypass weist dagegen eine niedrigere Verlustleistung als der überbrückte Diodenlaser auf, da die Betriebsspannung des Thyristors deutlich unter die Zündspannung sinken darf, ohne dass er wieder hochohmig wird. Dies führt zu einer erhöhten Lebensdauer des Bypasses, niedrigerem Kühlauflwand und niedrigerer Energieaufnahme.

Besonders günstig ist es, wenn der Thyristor zuverlässig möglichst nahe oberhalb der maximalen Betriebsspannung des Diodenlasers zündet. Das hierzu erforderliche Schwellwertverhalten des Thyristors kann entweder durch geeignete Auslegung des Thyristors oder durch zusätzliche Elemente mit definiertem Schwellverhalten, z.B. durch eine Zenerdiode, erreicht werden.

Anstelle einer selbstschaltenden Bypassanordnung mit einem steuerbaren Schaltelement kann grundsätzlich das zum Schalten des steuerbaren Schaltelements erforderliche Steuersignal, im Falle eines Thyristors die Zündspannung, auch extern zugeführt werden.

Die Verwendung einer extern steuerbaren Bypassanordnung, ermöglicht den Aufbau einer Diodenlaseranordnung, die zusätzliche Diodenlaserbarren oder Diodenlaser enthält, die im Normalbetrieb ungenutzt, d. h. von der Bypassanordnung kurzgeschlossen sind. Im Falle eines Ausfalls eines Diodenlasers kann dieser überbrückt werden und der ungenutzte Diodenlaser durch Öffnen des diesem zugeordneten Schaltelementes zugeschaltet werden, so dass die Diodenlaseranordnung mit gleichen Betriebsparametern und gleicher Ausgangsleistung weiterbetrieben werden kann.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist die Bypassanordnung zwischen den Kontakt- und Kühlplatten des Diodenlasers angeordnet, dies ermöglicht eine einfache Integration der Bypassanordnung in den Stapel.
Die Kühlung des Bypass-Elementes erfolgt vorteilhaft auf gleichem Wege wie die Kühlung des zu überbrückenden Diodenlasers.

6

In einer weiteren vorteilhaften Ausführungsform sind die Bypassanordnung und der Diodenlaser auf einem Chip integriert.

Auf diese Weise ist der Fertigungsaufwand bei der Herstellung eines Diodenlaserstapels verringert.

5

Zur weiteren Erläuterung der Erfindung wird auf die Ausführungsbeispiele der Zeichnung verwiesen. Es zeigen:

Fig. 1 eine Diodenlaseranordnung gemäß der Erfindung in einem
10 elektrischen Prinzipschaltbild,

Fig. 2 ein Ausführungsbeispiel für eine Bypassanordnung,

Fig. 3 ein Diagramm, in dem die Strom-Spannungscharakteristik
15 für einen Diodenlaser und für die Bypassanordnung gemäß Fig. 2
dargestellt ist,

Fig. 4 ein weiteres vorteilhaftes Ausführungsbeispiel für eine
selbstschaltende Bypassanordnung,

20

Fig. 5 den Aufbau einer Diodenlaseranordnung mit einer Mehrzahl von aufeinander in einem Stapel angeordneten und elektrisch in Reihe geschalteten Diodenlasern in einer Prinzipdarstellung.

25

Gemäß Fig 1 sind in einer Diodenlaseranordnung gemäß der Erfindung eine Mehrzahl von Diodenlasern 2 elektrisch in Reihe an eine Spannungsquelle U angeschlossen. Durch den auf diese Weise gebildeten Stapel, der bis zu mehrere hundert Diodenlaser 2 enthalten kann, fließt ein hoher elektrischer Strom I, der typischerweise zwischen 50 und 100 A beträgt. Im Normalbetrieb fällt dabei an jedem Diodenlaser 2 eine Spannung U_D ab, die je nach Betriebsstrom und Diodenlaserausführung (z.B. Wel-

lenlänge) bei etwa 2 V liegt. Jedem Diodenlaser 2 ist eine Bypassanordnung 4 parallel geschaltet, die im Normalbetrieb (= nicht geschaltet, symbolisch veranschaulicht durch einen geöffneten Schalter) hochohmig ist, das heißt einen ohmschen Widerstand aufweist, der deutlich größer ist als der ohmsche Widerstand des Diodenlasers 2 bei dessen Normalbetrieb. Die Verlustleistungsaufnahme der nicht geschalteten Bypassanordnung ist somit kleiner als die Nenn-Leistungsaufnahme des Diodenlasers und beträgt vorzugsweise weniger als 1/10 der Leistungsaufnahme des Diodenlasers 2.

Der hochohmige Ausfall eines einzelnen Diodenlasers 2 führt zu einer Unterbrechung des Diodenlaser-Stromkreises, so dass ohne Bypassanordnung 4 die gesamte Betriebsspannung U über dem ausgefallenen Diodenlaser 2 anstehen würde. In einem solchen Fall wird der betroffene Diodenlaser 2 durch die ihm zugeordnete Bypassanordnung 4 niederohmig überbrückt (die Bypassanordnung wird zugeschaltet), so dass der Stromfluss durch die übrigen Diodenlaser 2 in nahezu unveränderter Höhe aufrecht erhalten wird. Unter dem Begriff „niederohmig“ ist dabei ein Widerstandswert zu verstehen, der den Widerstand, den der Diodenlaser 2 im Normalbetrieb aufweisen würde, nicht wesentlich überschreitet. Besonders vorteilhaft sind Bypassanordnungen 4, deren Widerstand bei Ausfall des Diodenlasers 2 deutlich niedriger als der Widerstand des Diodenlasers im Normalbetrieb ist.

Als Bypassanordnung 4 ist grundsätzlich jede elektrische Schaltung geeignet, die die Funktion eines steuerbaren Schalters erfüllt, d. h. ein steuerbares Schaltelement, beispielsweise einen Transistor oder einen Thyristor, enthält. Das zur Steuerung erforderliche Steuersignal S kann dabei extern durch eine Steuer- und Auswerteeinrichtung 6 generiert werden, die

den an den Diodenlaser 2 jeweils anstehenden Spannungsabfall U_D überwacht und den ausgefallenen Diodenlaser 2 oder die ausgefallenen Diodenlaser 2 identifiziert. Grundsätzlich ist es jedoch auch möglich, die Überwachung des korrekten Betriebs des 5 jeweiligen Diodenlasers 2 auch innerhalb der Bypassanordnung 4 durchzuführen, d. h. das zum Steuern des steuerbaren Schaltelementes erforderliche Steuersignal S wird nicht extern sondern intern in der Bypassanordnung 4 generiert. Die Bypassanordnung 4 ist in diesem Fall selbstschaltend.

10

Mit einer extern steuerbaren Bypassanordnung 4 ist es möglich, gezielt einige der Diodenlaser 2 kurzzuschließen, um bei Ausfall eines oder mehrerer Diodenlaser 2 eine entsprechende Anzahl dieser kurzgeschlossenen Diodenlaser 2 durch Öffnen der 15 Bypassanordnung 4 zuzuschalten.

Gemäß Fig. 2 ist als Bypassanordnung 4 eine aus mehreren Dioden 8 aufgebaute Schaltung vorgesehen. Hierbei handelt es sich um eine aus passiven (nicht steuerbaren) Bauelementen aufgebaute selbstschaltende Bypassanordnung 4, die ohne aktive Bereitstellung eines externen oder internen Steuersignals im Fall eines Hochohmigwerdens des Diodenlasers selbst niederohmig wird. Mit der in der Figur dargestellten Reihenschaltung der Dioden 8 kann auf geeignete Weise eine Strom-Spannungs-25 Charakteristik erzeugt werden, wie sie in Fig. 3 dargestellt ist. In diesem Diagramm ist der Strom I, der durch das aus Diodenlaser 2 und der dazu parallel geschalteten Bypassanordnung 4 gebildete Bauteil fließt, gegen die Spannung U_D aufgetragen. Kurve a zeigt die Strom-Spannungs-Charakteristik eines intakten Diodenlasers. Kurve b gibt die Strom-Spannungs-30 Charakteristik der aus einer Reihenschaltung von Dioden bestehenden Bypassanordnung 4 an. Die Bypassanordnung 4 muss dabei so dimensioniert sein, dass ihre Schwellspannung U_S größer ist

als die maximale Betriebsspannung U_{max} des Diodenlasers. Mit anderen Worten: Die Bypassanordnung 4 ist im Betriebsbereich des Diodenlasers 2 hochohmig und wird bei Spannungen, die diesen Betriebsbereich überschreiten niederohmig. Dadurch entsteht im Betriebsbereich des Diodenlasers 2 in der Bypassanordnung 4 ein nur vernachlässigbarer ohmscher Verlust. Im Ausführungsbeispiel ist der differentielle Widerstand der Bypassanordnung 4 bei Ausfall des Diodenlasers 2 etwa gleich groß. Zur Aufrechterhaltung eines konstanten Stromflusses I_0 durch den Stapel muss die Spannung U_D über dem aus defektem Diodenlaser 2 und Bypassanordnung 4 bestehenden Bauteil des Stapels etwas ansteigen. Entsprechend der höheren Potentialdifferenz $U_{D,1} > U_{D,0}$ über dem Bauteil wird somit bei gleichem Strom I_0 im Bauteil eine etwas höhere Leistung umgesetzt: Im Falle einer Regelung der Laserausgangsleistung des Diodenlaseranordnung wird der durch diese fließende Strom I zusätzlich etwas erhöht.

Im Ausführungsbeispiel gemäß Fig. 4 enthält die Bypassanordnung 4 einen der Laserdiode 2 elektrisch parallel geschalteten Thyristor 10 (p-Typ), dessen Gate (Steuerelektrode) über eine Zenerdiode 12 an die Anode des Diodenlasers 2 angeschlossen ist. Die Zenerdiode 12 verhindert ein Zünden des Thyristors 12 im Normalbetrieb. Steigt die Spannung an der Anode des Diodenlasers 2 infolge eines hochohmigen Defektes an und überschreitet die Zenerspannung der Zenerdiode 12, fließt ein Steuerstrom zum Gate des Thyristors 10, der dann zündet und die Laserdiode 2 überbrückt. In diesem Aufbau ist die Bypassanordnung 4 selbstschaltend und die Steuerelektrode des Thyristors wird direkt (Schaltungsaufbau ohne Zenerdiode) oder indirekt über die an der Laserdiode 2 anliegende Anodenspannung beeinflusst. Grundsätzlich kann jedoch das Gate des als steuerbaren

10

Schalter dienenden Thyristors auch über eine externe Steuer-
spannung geschaltet werden.

Gemäß Fig. 5 sind eine Mehrzahl von elektrisch in Reihe ge-
schalteten Diodenlasern 2 in einem Stapel angeordnet. Im Aus-
führungsbeispiel bilden die übereinander angeordneten Dioden-
laser 2 ein vertikales Stack. Jeder Diodenlaser 2 umfasst ei-
nen Diodenlaserbarren 20, der sich zwischen metallischen, vor-
zugsweise aus Kupfer bestehenden Kontaktplatten 22 befindet,
die zugleich als Wärmesenken dienen und insbesondere im Hoch-
leistungsbereich zusätzlich Mikrokanäle aufweisen und durch
ein Kühlfluid gekühlt werden. Der Diodenlaserbarren 20 ist
zwischen die Kontaktplatten 22 gelötet. Neben dem Diodenlaser-
barren 20 ist in den Aufbau die Bypassanordnung 4 zwischen die
als p- bzw. n-Kontakt dienenden Kontaktplatten 10 eingelötet.
15

Bezugszeichenliste

2	Diodenlaser
5	Bypassanordnung
8	Dioden
10	Thyristor
12	Zenerdiode
20	Diodenlaserbarren
10	Kontaktplatten

U_S	Schwellspannung
U_D	Spannung
15	U_{max} maximale Betriebsspannung
U	Spannungsquelle
I	Strom

Ansprüche

5 1. Diodenlaseranordnung mit einer Mehrzahl von elektrisch in Reihe geschalteten Diodenlasern (2), denen jeweils eine Bypassanordnung (4) elektrisch parallel geschaltet ist, die im Normalbetrieb hochohmig ist und den jeweiligen Diodenlaser (2) im Falle eines hochohmigen Defektes niederohmig überbrückt.

10 2. Diodenlaseranordnung nach Anspruch 1, bei der die Bypassanordnung (4) selbstschaltend ist.

15 3. Diodenlaseranordnung nach Anspruch 2, bei der die Bypassanordnung (4) eine Diode oder eine Kombination mehrerer Dioden enthält, die bei einer Spannung im Betriebsbereich des Diodenlasers (2) hochohmig ist.

20 4. Diodenlaseranordnung nach Anspruch 2, bei der die Bypassanordnung (4) einen Thyristor (10) oder eine Kombination von Thyristoren enthält, deren Steuerelektrode direkt oder indirekt über die an der Anode des Diodenlasers (2) anliegende Anodenspannung beeinflusst wird.

25 5. Diodenlaseranordnung nach Anspruch 1, dessen Bypassanordnung (4) ein extern steuerbares Schaltelement (5) enthält.

30 6. Diodenlaseranordnung nach einem der vorhergehenden Ansprüche, bei der die Bypassanordnung (4) zwischen den Kontaktplatten des Diodenlasers (2) angeordnet ist.

che, bei der die Bypassanordnung (4) und der Diodenlaser (2) auf einem Chip integriert sind.

- 5 8. Diodenlaseranordnung nach einem der vorhergehenden Ansprüche, bei der die Bypassanordnung (4) und der Diodenlaser (2) als einzelne Bauelemente auf einem gemeinsamen Kühl- und Kontaktelement angeordnet sind.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 03/02016

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 H01S5/068 H01S5/42 H05B33/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 H01S H01L H05B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, IBM-TDB, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ^a	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 878 880 A (CONTRAVES AG) 18 November 1998 (1998-11-18) column 8, line 25 -column 9, line 23; figures 6,7 ---	1,5
X	GB 2 278 717 A (FUJITSU LTD) 7 December 1994 (1994-12-07) page 3, line 26 -page 6, line 12 page 7, line 13 -page 11, line 21; figures 1,7 ---	1,5
X	US 6 259 714 B1 (KINBARA YOSHIHIDE) 10 July 2001 (2001-07-10) column 4, line 60 -column 6, line 41; figures 1,5,8 ---	1-3

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

^a Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

6 June 2003

20/06/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Gnugesser, H

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 03/02016

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	PATENT ABSTRACTS OF JAPAN vol. 2002, no. 05, 3 May 2002 (2002-05-03) -& JP 2002 025784 A (ISHIZAWA TAKASHI), 25 January 2002 (2002-01-25) abstract ----	1-3,5,8
Y	DE 100 36 283 A (BOSCH GMBH ROBERT) 7 February 2002 (2002-02-07) column 1, line 19 -column 2, line 1 column 2, line 42 -column 3, line 6; claim 7; figures 3,4 ----	1,5,8
Y	PATENT ABSTRACTS OF JAPAN vol. 008, no. 221 (E-271), 9 October 1984 (1984-10-09) -& JP 59 103565 A (HITACHI SEISAKUSHO KK), 15 June 1984 (1984-06-15) abstract ----	1-3
A	DE 198 41 490 A (SIEMENS AG) 23 March 2000 (2000-03-23) column 4, line 20 -column 7, line 66; figure 2 ----	1-3
A	EP 0 967 590 A (HEWLETT PACKARD CO) 29 December 1999 (1999-12-29) column 5, line 16-57; figure 2 ----	1,5
A	EP 0 129 498 A (SIEMENS AG) 27 December 1984 (1984-12-27) page 2, line 1-5 page 3, line 1 -page 4, column 2; figure 1 -----	1

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 03/02016

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP 0878880	A	18-11-1998	CA	2234854 A1	25-12-1998	
			DE	59800382 D1	18-01-2001	
			EP	0878880 A1	18-11-1998	
			JP	11026852 A	29-01-1999	
			US	6018602 A	25-01-2000	
GB 2278717	A	07-12-1994	JP	2991893 B2	20-12-1999	
			JP	6338647 A	06-12-1994	
			US	5459328 A	17-10-1995	
US 6259714	B1	10-07-2001	JP	11087817 A	30-03-1999	
			CN	1211093 A	17-03-1999	
			DE	19840514 A1	18-03-1999	
			TW	412890 B	21-11-2000	
			US	6135552 A	24-10-2000	
JP 2002025784	A	25-01-2002		NONE		
DE 10036283	A	07-02-2002	DE	10036283 A1	07-02-2002	
			EP	1182757 A2	27-02-2002	
JP 59103565 4	A			NONE		
DE 19841490	A	23-03-2000	DE	19841490 A1	23-03-2000	
EP 0967590	A	29-12-1999	EP	0967590 A1	29-12-1999	
			JP	2000029400 A	28-01-2000	
			US	6239716 B1	29-05-2001	
EP 0129498	A	27-12-1984	DE	3319779 A1	29-11-1984	
			AT	24789 T	15-01-1987	
			DE	3461959 D1	12-02-1987	
			EP	0129498 A1	27-12-1984	

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 03/02016

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 H01S5/068 H01S5/42 H05B33/08

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprässtoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 H01S H01L H05B

Recherchierte aber nicht zum Mindestprässtoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, IBM-TDB, INSPEC, COMPENDEX

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 878 880 A (CONTRAVES AG) 18. November 1998 (1998-11-18) Spalte 8, Zeile 25 -Spalte 9, Zeile 23; Abbildungen 6,7 ---	1,5
X	GB 2 278 717 A (FUJITSU LTD) 7. Dezember 1994 (1994-12-07) Seite 3, Zeile 26 -Seite 6, Zeile 12 Seite 7, Zeile 13 -Seite 11, Zeile 21; Abbildungen 1,7 ---	1,5
X	US 6 259 714 B1 (KINBARA YOSHIHIDE) 10. Juli 2001 (2001-07-10) Spalte 4, Zeile 60 -Spalte 6, Zeile 41; Abbildungen 1,5,8 ---	1-3 -/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

^a Besondere Kategorien von angegebenen Veröffentlichungen :

A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldeatum veröffentlicht worden ist

L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benützung, eine Ausstellung oder andere Maßnahmen bezieht

P Veröffentlichung, die vor dem internationalen Anmeldeatum, aber nach dem beanspruchten Prioritätsatum veröffentlicht worden ist

T Spätere Veröffentlichung, die nach dem internationalen Anmeldeatum oder dem Prioritätsatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfunderischer Tätigkeit beruhend betrachtet werden

Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfunderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

6. Juni 2003

20/06/2003

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Gnugesser, H

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 03/02016

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Beitr. Anspruch Nr.
Y	PATENT ABSTRACTS OF JAPAN vol. 2002, no. 05, 3. Mai 2002 (2002-05-03) -& JP 2002 025784 A (ISHIZAWA TAKASHI), 25. Januar 2002 (2002-01-25) Zusammenfassung ----	1-3,5,8
Y	DE 100 36 283 A (BOSCH GMBH ROBERT) 7. Februar 2002 (2002-02-07) Spalte 1, Zeile 19 -Spalte 2, Zeile 1 Spalte 2, Zeile 42 -Spalte 3, Zeile 6; Anspruch 7; Abbildungen 3,4 ----	1,5,8
Y	PATENT ABSTRACTS OF JAPAN vol. 008, no. 221 (E-271), 9. Oktober 1984 (1984-10-09) -& JP 59 103565 A (HITACHI SEISAKUSHO KK), 15. Juni 1984 (1984-06-15) Zusammenfassung ----	1-3
A	DE 198 41 490 A (SIEMENS AG) 23. März 2000 (2000-03-23) Spalte 4, Zeile 20 -Spalte 7, Zeile 66; Abbildung 2 ----	1-3
A	EP 0 967 590 A (HEWLETT PACKARD CO) 29. Dezember 1999 (1999-12-29) Spalte 5, Zeile 16-57; Abbildung 2 ----	1,5
A	EP 0 129 498 A (SIEMENS AG) 27. Dezember 1984 (1984-12-27) Seite 2, Zeile 1-5 Seite 3, Zeile 1 -Seite 4, Spalte 2; Abbildung 1 -----	1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 03/02016

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 0878880	A	18-11-1998	CA	2234854 A1		25-12-1998
			DE	59800382 D1		18-01-2001
			EP	0878880 A1		18-11-1998
			JP	11026852 A		29-01-1999
			US	6018602 A		25-01-2000
GB 2278717	A	07-12-1994	JP	2991893 B2		20-12-1999
			JP	6338647 A		06-12-1994
			US	5459328 A		17-10-1995
US 6259714	B1	10-07-2001	JP	11087817 A		30-03-1999
			CN	1211093 A		17-03-1999
			DE	19840514 A1		18-03-1999
			TW	412890 B		21-11-2000
			US	6135552 A		24-10-2000
JP 2002025784	A	25-01-2002		KEINE		
DE 10036283	A	07-02-2002	DE	10036283 A1		07-02-2002
			EP	1182757 A2		27-02-2002
JP 59103565 4	A			KEINE		
DE 19841490	A	23-03-2000	DE	19841490 A1		23-03-2000
EP 0967590	A	29-12-1999	EP	0967590 A1		29-12-1999
			JP	2000029400 A		28-01-2000
			US	6239716 B1		29-05-2001
EP 0129498	A	27-12-1984	DE	3319779 A1		29-11-1984
			AT	24789 T		15-01-1987
			DE	3461959 D1		12-02-1987
			EP	0129498 A1		27-12-1984

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

BERICHTIGTE FASSUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
12. September 2003 (12.09.2003)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2003/075423 A1

(51) Internationale Patentklassifikation⁷: **H01S 5/068**,
5/42, H05B 33/08

Berzeliusstrasse 83, 22093 Hamburg (DE). **FRAUNHOFER-GESELLSCHAFT** [DE/DE]; Leonrodstrasse 54, 80636 München (DE).

(21) Internationales Aktenzeichen: PCT/EP2003/002016

(72) Erfinder; und

(22) Internationales Anmeldedatum:
27. Februar 2003 (27.02.2003)

(75) Erfinder/Anmelder (nur für US): **DINGER, Reinhold** [DE/DE]; Theodor-Storm-Weg 5, 21509 Glinde (DE). **HOFFMANN, Dieter** [DE/DE]; Am Hammerwerk 20, 52152 Simmerath (DE). **HAAS, Claus, Rüdiger** [DE/DE]; Oppenhoffallee 88, 52066 Aachen (DE).

(25) Einreichungssprache: Deutsch

(74) Anwalt: **MÖRTEL & HÖFNER**; Blumenstrasse 1, 90402 Nürnberg (DE).

(26) Veröffentlichungssprache: Deutsch

(81) Bestimmungsstaaten (national): JP, US.

(30) Angaben zur Priorität:
102 09 374.1 2. März 2002 (02.03.2002) DE

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, BG, CII, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR).

[Fortsetzung auf der nächsten Seite]

(54) Title: DIODE LASER ARRAY COMPRISING A PLURALITY OF ELECTRICALLY SERIES- CONNECTED DIODE LASERS

(54) Bezeichnung: DIODENLASERANORDNUNG MIT EINER MEHRZAHL VON ELEKTRISCH IN REIHE GESCHALTEN DIODENLASERN

(57) Abstract: A diode laser array containing a plurality of electrically series-connected diode lasers (2) to which a bypass device (4) is respectively electrically and parallel connected. Said device is high-ohmic in normal operation and bypasses the respective diode laser (2) in the case of a diode laser diode defect leading to high-ohmic interruption of the electric circuit.

[Fortsetzung auf der nächsten Seite]

WO 2003/075423 A1

Veröffentlicht:

— mit internationalem Recherchenbericht

(48) Datum der Veröffentlichung dieser berichtigten Fassung:

2. September 2004

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(15) Informationen zur Berichtigung:

siehe PCT Gazette Nr. 36/2004 vom 2. September 2004,
Section II

(57) Zusammenfassung: Eine Diodenlaseranordnung enthält eine Mehrzahl von elektrisch in Reihe geschalteten Diodenlasern (2), denen jeweils eine Bypassanordnung (4) elektrisch parallel geschaltet ist, die im Normalbetrieb hochohmig ist und den jeweiligen Diodenlaser (2) im Falle eines Diodenlaserdefektes, der zur hochohmigen Unter-Brechung des Stromkreises führt, niederohmig überbrückt.

Beschreibung

Diodenlaseranordnung mit einer Mehrzahl von elektrisch in Rei-

5 he geschalteten Diodenlasern

Die Erfindung bezieht sich auf eine Diodenlaseranordnung mit einer Mehrzahl von elektrisch in Reihe geschalteten Diodenlasern.

10

Hochleistungsdiodenlaser weisen eine Vielzahl möglicher Anwendungsgebiete auf, zu denen unter anderem das Pumpen von Festkörperlasern oder die Materialbearbeitung gehören. Ein Hochleistungsdiodenlaser enthält als laseraktives Element eine quaderförmige Halbleiterstruktur, den sogenannten Diodenlaserbarren, die aus mehreren, nebeneinander angeordneten, elektrisch parallel geschalteten Einzelemittern besteht. Ein solcher Diodenlaserbarren ist typischerweise etwa 10 mm lang, 0,3-2,0 mm breit und 0,1-0,15 mm hoch. Das in den pn-Übergängen erzeugte Laserlicht tritt an der Längsseite des Diodenlaserbarrens aus. Der Diodenlaserbarren ist zwischen einer Grund- und Deckplatte angeordnet, die sowohl zur elektrischen Kontaktierung als auch zur Kühlung dienen. Das Bauelement bestehend aus Diodenlaserbarren, elektrischen Kontakten und Kühlung wird als Diodenlaser bezeichnet. Die typischen optischen Ausgangsleistungen eines solchen Diodenlasers reichen, abhängig von Ausführung und Betriebsart, von ca. 1 W bis zu mehreren 100 W.

30 Zur weiteren Erhöhung der Ausgangsleistung werden mehrere Diodenlaser geometrisch nebeneinander (=horizontaler Stapel bzw. horizontaler Stack) und/oder übereinander (=vertikaler Stapel bzw. vertikaler Stack) angeordnet.

In einem solchen Stapel werden typischerweise etwa 2 bis zu einigen 100 Diodenlasern elektrisch in Reihe geschaltet. Beim Betrieb des Stapels kann es zum Ausfall einer oder mehrerer 5 der im Stapel angeordneten Diodenlaser, beispielsweise durch spontane Zerstörung des Diodenlaserbarrens bzw. durch Versagen der elektrischen Kontaktierung des Diodenlaserbarrens, kommen. Durch einen solchen hochohmigen Defekt eines einzelnen Diodenlasers wird nun der durch die Reihenschaltung im Stapel fließende Strom unterbrochen, so dass der gesamte Stapel ausfällt. Es muss demzufolge wegen des Ausfalls eines einzigen Diodenlasers der gesamte Stapel ausgetauscht werden. Dies kann zu einem 10 Betriebsausfall der gesamten Laseranlage führen, der mit einem erheblichen wirtschaftlichen Schaden verbunden sein kann. Ein solcher Betriebsausfall könnte prinzipiell durch redundante Anordnungen mit parallelgeschalteten Diodenlaserstapeln vermieden werden. Dies würde jedoch zu erheblich höheren 15 Kosten der Laserquelle führen.

Der Erfindung liegt nun die Aufgabe zu Grunde, eine Diodenlaseranordnung mit einer Mehrzahl von elektrisch in Reihe geschalteten Diodenlasern anzugeben, die auch bei Ausfall eines einzelnen Diodenlasers weiter betrieben werden kann.

Die genannte Aufgabe wird gemäß der Erfindung gelöst mit einer Diodenlaseranordnung mit den Merkmalen des Patentanspruches 1. Da jedem der elektrisch in Reihe geschalteten Diodenlaser zu mindest eine Bypassanordnung elektrisch parallel geschaltet ist, die im Normalbetrieb hochohmig ist und den jeweiligen Diodenlaser im Falle eines hochohmigen Defektes niederohmig überbrückt, ist trotz des Ausfalls eines Diodenlasers sichergestellt, dass der Stromfluss durch die übrigen, zu dem ausgefallenen Diodenlaser in Reihe geschalteten Diodenlaser nicht 20 25 30

unterbrochen ist. Der gesamte Stapel kann mit nur vernachlässigbarer Leistungsverringerung weiter betrieben werden, so dass gegebenenfalls erforderliche Austausch- oder Reparaturarbeiten auf geplante Stillstandszeiten der mit dieser Diodenlaserausordnung bestückten Laseranlage verschoben werden können.

Optional kann der Diodenlaserstapel mit redundanten Diodenlasern bestückt werden oder eine Leistungsreserve vorgehalten werden, so dass die geplante Nennleistung des Diodenlaserstapels bei Ausfall einzelner Diodenlaser nicht unterschritten wird.

Die Begriffe „niederohmig“ und „hochohmig“ sind dabei folgendermaßen zu verstehen: Der Widerstand der Bypassausordnung ist im Normalbetrieb so groß, dass die Verlustleistung der Bypassausordnung kleiner ist als die Leistungsaufnahme des Diodenlasers. Vorzugsweise ist die Verlustleistung kleiner als 1/10 der Leistungsaufnahme. Im Überbrückungsfall sinkt der Widerstand der Bypassausordnung auf einen Wert, der die Größenordnung des Widerstandes des Diodenlasers im Normalbetrieb nicht wesentlich überschreitet, vorzugsweise deutlich niedriger als dieser ist. Dabei ist zu beachten, dass der Stromfluß sowohl im Diodenlaser als auch in der Bypassausordnung durch den ohmschen Widerstand und durch eine charakteristische Spannungsschwelle, die durch die Diffusionsspannung (im Fall einer Diodencharakteristik) oder die Zünd- oder Schwellwertspannung (im Fall von Thyristoren oder Transistoren) beeinflusst wird.

In einer weiteren bevorzugten Ausgestaltung ist eine selbstschaltende Bypassausordnung vorgesehen, wobei der Begriff selbstschaltend in dem Sinn zu verstehen ist, dass die Bypassausordnung ohne externe Steuerung zwangsläufig niederohmig

wird, wenn die Spannung über dem Diodenlaser einen Schwellwert überschreitet.

Als selbstschaltende Bypassanordnung ist vorzugsweise eine Diode oder eine aus einer Mehrzahl von Dioden aufgebaute Schaltung vorgesehen, die bei einer Spannung im Betriebsbereich des Diodenlasers hochohmig ist.

In einer vorteilhaften Ausgestaltung der Erfindung ist eine selbstschaltende Bypassanordnung vorgesehen, die als steuerbares Schaltelement einen Thyristor, oder eine aus mehreren Thyristoren aufgebaute Schaltung enthält. Der Thyristor ist ein steuerbarer Schalter mit 3 Anschlüssen: Anode und Kathode werden ähnlich einer Diode angeschlossen. Der Thyristor wird leitend, wenn der dritte Anschluß, der zur Steuerung dient, mit einer elektrischen Spannung beaufschlagt wird, die größer ist als eine bauteilspezifische Schwellspannung. Diese Spannung wird vorteilhaft infolge des Spannungsanstiegs bei einem hochohmigen Diodenlaserdefekt an der Anode des Thyristors abgegriffen. Vorteilhaft an dieser Anordnung gegenüber einer einfachen Diode als Bypassanordnung ist deren erheblich niedrigere Verlustleistung. Da eine aus Dioden aufgebaute Bypassanordnung stets eine höhere Verlustleistung als der überbrückte Diodenlaser im Nennbetrieb aufweist, steigt die Leistungsaufnahme des Diodenlaserstapels nach einem Defekt gegenüber dem Nennbetrieb an. Der Thyristorbypass weist dagegen eine niedrigere Verlustleistung als der überbrückte Diodenlaser auf, da die Betriebsspannung des Thyristors deutlich unter die Zündspannung sinken darf, ohne dass er wieder hochohmig wird. Dies führt zu einer erhöhten Lebensdauer des Bypasses, niedrigerem Kühlauflwand und niedrigerer Energieaufnahme.

Besonders günstig ist es, wenn der Thyristor zuverlässig möglichst nahe oberhalb der maximalen Betriebsspannung des Diodenlasers zündet. Das hierzu erforderliche Schwellwertverhalten des Thyristors kann entweder durch geeignete Auslegung des 5 Thyristors oder durch zusätzliche Elemente mit definiertem Schwellverhalten, z.B. durch eine Zenerdiode, erreicht werden.

Anstelle einer selbstschaltenden Bypassanordnung mit einem steuerbaren Schaltelement kann grundsätzlich das zum Schalten 10 des steuerbaren Schaltelements erforderliche Steuersignal, im Falle eines Thyristors die Zündspannung, auch extern zugeführt werden.

Die Verwendung einer extern steuerbaren Bypassanordnung, ermöglicht den Aufbau einer Diodenlaseranordnung, die zusätzliche Diodenlaserbarren oder Diodenlaser enthält, die im Normalbetrieb ungenutzt, d. h. von der Bypassanordnung kurzgeschlossen sind. Im Falle eines Ausfalls eines Diodenlasers kann dieser überbrückt werden und der ungenutzte Diodenlaser durch 20 Öffnen des diesem zugeordneten Schaltelementes zugeschaltet werden, so dass die Diodenlaseranordnung mit gleichen Betriebsparametern und gleicher Ausgangsleistung weiterbetrieben werden kann.

25 In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist die Bypassanordnung zwischen den Kontakt- und Kühlplatten des Diodenlasers angeordnet, dies ermöglicht eine einfache Integration der Bypassanordnung in den Stapel.

30 Die Kühlung des Bypass-Elementes erfolgt vorteilhaft auf gleichem Wege wie die Kühlung des zu überbrückenden Diodenlasers.

In einer weiteren vorteilhaften Ausführungsform sind die Bypassanordnung und der Diodenlaser auf einem Chip integriert. Auf diese Weise ist der Fertigungsaufwand bei der Herstellung eines Diodenlaserstapels verringert.

5

Zur weiteren Erläuterung der Erfindung wird auf die Ausführungsbeispiele der Zeichnung verwiesen. Es zeigen:

Fig. 1 eine Diodenlaseranordnung gemäß der Erfindung in einem
10 elektrischen Prinzipschaltbild,

Fig. 2 ein Ausführungsbeispiel für eine Bypassanordnung,

Fig. 3 ein Diagramm, in dem die Strom-Spannungscharakteristik
15 für einen Diodenlaser und für die Bypassanordnung gemäß Fig. 2
dargestellt ist,

Fig. 4 ein weiteres vorteilhaftes Ausführungsbeispiel für eine
selbstschaltende Bypassanordnung,

20

Fig. 5 den Aufbau einer Diodenlaseranordnung mit einer Mehrzahl von aufeinander in einem Stapel angeordneten und elektrisch in Reihe geschalteten Diodenlasern in einer Prinzipdarstellung.

25

Gemäß Fig 1 sind in einer Diodenlaseranordnung gemäß der Erfindung eine Mehrzahl von Diodenlasern 2 elektrisch in Reihe an eine Spannungsquelle U angeschlossen. Durch den auf diese Weise gebildeten Stapel, der bis zu mehrere hundert Diodenlaser 2 enthalten kann, fließt ein hoher elektrischer Strom I, der typischerweise zwischen 50 und 100 A beträgt. Im Normalbetrieb fällt dabei an jedem Diodenlaser 2 eine Spannung U_D ab, die je nach Betriebsstrom und Diodenlaserausführung (z.B. Wel-

lenlänge) bei etwa 2 V liegt. Jedem Diodenlaser 2 ist eine Bypassanordnung 4 parallel geschaltet, die im Normalbetrieb (= nicht geschaltet, symbolisch veranschaulicht durch einen geöffneten Schalter) hochohmig ist, das heißt einen ohmschen Widerstand aufweist, der deutlich größer ist als der ohmsche Widerstand des Diodenlasers 2 bei dessen Normalbetrieb. Die Verlustleistungsaufnahme der nicht geschalteten Bypassanordnung ist somit kleiner als die Nenn-Leistungsaufnahme des Diodenlasers und beträgt vorzugsweise weniger als 1/10 der Leistungsaufnahme des Diodenlasers 2.

Der hochohmige Ausfall eines einzelnen Diodenlasers 2 führt zu einer Unterbrechung des Diodenlaser-Stromkreises, so dass ohne Bypassanordnung 4 die gesamte Betriebsspannung U über dem ausgefallenen Diodenlaser 2 anstehen würde. In einem solchen Fall wird der betroffene Diodenlaser 2 durch die ihm zugeordnete Bypassanordnung 4 niederohmig überbrückt (die Bypassanordnung wird zugeschaltet), so dass der Stromfluss durch die übrigen Diodenlaser 2 in nahezu unveränderter Höhe aufrecht erhalten wird. Unter dem Begriff „niederohmig“ ist dabei ein Widerstandswert zu verstehen, der den Widerstand, den der Diodenlaser 2 im Normalbetrieb aufweisen würde, nicht wesentlich überschreitet. Besonders vorteilhaft sind Bypassanordnungen 4, deren Widerstand bei Ausfall des Diodenlasers 2 deutlich niedriger als der Widerstand des Diodenlasers im Normalbetrieb ist.

Als Bypassanordnung 4 ist grundsätzlich jede elektrische Schaltung geeignet, die die Funktion eines steuerbaren Schalters erfüllt, d. h. ein steuerbares Schaltelement, beispielsweise einen Transistor oder einen Thyristor, enthält. Das zur Steuerung erforderliche Steuersignal S kann dabei extern durch eine Steuer- und Auswerteeinrichtung 6 generiert werden, die

den an den Diodenlaser 2 jeweils anstehenden Spannungsabfall U_D überwacht und den ausgefallenen Diodenlaser 2 oder die ausgefallenen Diodenlaser 2 identifiziert. Grundsätzlich ist es jedoch auch möglich, die Überwachung des korrekten Betriebs des 5 jeweiligen Diodenlasers 2 auch innerhalb der Bypassanordnung 4 durchzuführen, d. h. das zum Steuern des steuerbaren Schaltelementes erforderliche Steuersignal S wird nicht extern sondern intern in der Bypassanordnung 4 generiert. Die Bypassanordnung 4 ist in diesem Fall selbstschaltend.

10

Mit einer extern steuerbaren Bypassanordnung 4 ist es möglich, gezielt einige der Diodenlaser 2 kurzzuschließen, um bei Ausfall eines oder mehrerer Diodenlaser 2 eine entsprechende Anzahl dieser kurzgeschlossenen Diodenlaser 2 durch Öffnen der 15 Bypassanordnung 4 zuzuschalten.

Gemäß Fig. 2 ist als Bypassanordnung 4 eine aus mehreren Dioden 8 aufgebaute Schaltung vorgesehen. Hierbei handelt es sich um eine aus passiven (nicht steuerbaren) Bauelementen aufgebaute selbstschaltende Bypassanordnung 4, die ohne aktive Bereitstellung eines externen oder internen Steuersignals im Fall eines Hochhmigwerdens des Diodenlasers selbst niederohmig wird. Mit der in der Figur dargestellten Reihenschaltung der Dioden 8 kann auf geeignete Weise eine Strom-Spannungs-25 Charakteristik erzeugt werden, wie sie in Fig. 3 dargestellt ist. In diesem Diagramm ist der Strom I, der durch das aus Diodenlaser 2 und der dazu parallel geschalteten Bypassanordnung 4 gebildete Bauteil fließt, gegen die Spannung U_B aufgetragen. Kurve a zeigt die Strom-Spannungs-Charakteristik eines intakten Diodenlasers. Kurve b gibt die Strom-Spannungs-30 Charakteristik der aus einer Reihenschaltung von Dioden bestehenden Bypassanordnung 4 an. Die Bypassanordnung 4 muss dabei so dimensioniert sein, dass ihre Schwellspannung U_S größer ist

als die maximale Betriebsspannung U_{\max} des Diodenlasers. Mit anderen Worten: Die Bypassanordnung 4 ist im Betriebsbereich des Diodenlasers 2 hochohmig und wird bei Spannungen, die diesen Betriebsbereich überschreiten niederohmig. Dadurch ent-
5 steht im Betriebsbereich des Diodenlasers 2 in der Bypassanordnung 4 ein nur vernachlässigbarer ohmscher Verlust. Im Ausführungsbeispiel ist der differentielle Widerstand der Bypassanordnung 4 bei Ausfall des Diodenlasers 2 etwa gleich groß.
Zur Aufrechterhaltung eines konstanten Stromflusses I_0 durch
10 den Stapel muss die Spannung U_D über dem aus defektem Diodenla-
ser 2 und Bypassanordnung 4 bestehenden Bauteil des Stapels
etwas ansteigen. Entsprechend der höheren Potentialdifferenz
 $U_{D,1} > U_{D,0}$ über dem Bauteil wird somit bei gleichem Strom I_0 im
Bauteil eine etwas höhere Leistung umgesetzt. Im Falle einer
15 Regelung der Laserausgangsleistung des Diodenlaseranordnung
wird der durch diese fließende Strom I zusätzlich etwas er-
höht.

Im Ausführungsbeispiel gemäß Fig. 4 enthält die Bypassanord-
20 nung 4 einen der Laserdiode 2 elektrisch parallel geschalteten
Thyristor 10 (p-Typ), dessen Gate (Steuerelektrode) über eine
Zenerdiode 12 an die Anode des Diodenlasers 2 angeschlossen
ist. Die Zenerdiode 12 verhindert ein Zünden des Thyristors 12
im Normalbetrieb. Steigt die Spannung an der Anode des Dioden-
25 lasers 2 infolge eines hochohmigen Defektes an und überschrei-
tet die Zenerspannung der Zenerdiode 12, fließt ein Steuer-
strom zum Gate des Thyristors 10, der dann zündet und die La-
serdiode 2 überbrückt. In diesem Aufbau ist die Bypassanord-
nung 4 selbstschaltend und die Steuerelektrode des Thyristors
30 wird direkt (Schaltungsaufbau ohne Zenerdiode) oder indirekt
über die an der Laserdiode 2 anliegende Anodenspannung beein-
flusst. Grundsätzlich kann jedoch das Gate des als steuerbaren

Schalter dienenden Thyristors auch über eine externe Steuerspannung geschaltet werden.

Gemäß Fig. 5 sind eine Mehrzahl von elektrisch in Reihe geschalteten Diodenlasern 2 in einem Stapel angeordnet. Im Ausführungsbeispiel bilden die übereinander angeordneten Diodenlaser 2 ein vertikales Stack. Jeder Diodenlaser 2 umfasst einen Diodenlaserbarren 20, der sich zwischen metallischen, vorzugsweise aus Kupfer bestehenden Kontaktplatten 22 befindet, die zugleich als Wärmesenken dienen und insbesondere im Hochleistungsbereich zusätzlich Mikrokanäle aufweisen und durch ein Kühlfluid gekühlt werden. Der Diodenlaserbarren 20 ist zwischen die Kontaktplatten 22 gelötet. Neben dem Diodenlaserbarren 20 ist in den Aufbau die Bypassanordnung 4 zwischen die als p- bzw. n-Kontakt dienenden Kontaktplatten 10 eingelötet.

Bezugszeichenliste

2 Diodenlaser
5 4 Bypassanordnung
 8 Dioden
 10 Thyristor
 12 Zenerdiode
 20 Diodenlaserbarren
10 22 Kontaktplatten

U_S Schwellspannung
 U_D Spannung
15 U_{max} maximale Betriebsspannung
 U Spannungsquelle
 I Strom

Ansprüche

5 1. Diodenlaseranordnung mit einer Mehrzahl von elektrisch in Reihe geschalteten Diodenlasern (2), denen jeweils eine Bypassanordnung (4) elektrisch parallel geschaltet ist, die im Normalbetrieb hochohmig ist und den jeweiligen Diodenlaser (2) im Falle eines hochohmigen Defektes niederohmig überbrückt.

10 2. Diodenlaseranordnung nach Anspruch 1, bei der die Bypassanordnung (4) selbstschaltend ist.

15 3. Diodenlaseranordnung nach Anspruch 2, bei der die Bypassanordnung (4) eine Diode oder eine Kombination mehrerer Dioden enthält, die bei einer Spannung im Betriebsbereich des Diodenlasers (2) hochohmig ist.

20 4. Diodenlaseranordnung nach Anspruch 2, bei der die Bypassanordnung (4) einen Thyristor (10) oder eine Kombination von Thyristoren enthält, deren Steuerelektrode direkt oder indirekt über die an der Anode des Diodenlasers (2) anliegende Anodenspannung beeinflusst wird.

25 5. Diodenlaseranordnung nach Anspruch 1, dessen Bypassanordnung (4) ein extern steuerbares Schaltelement (5) enthält.

30 6. Diodenlaseranordnung nach einem der vorhergehenden Ansprüche, bei der die Bypassanordnung (4) zwischen den Kontaktplatten des Diodenlasers (2) angeordnet ist.

7. Diodenlaseranordnung nach einem der vorhergehenden Ansprüche, bei der die Bypassanordnung (4) und der Diodenlaser (2) auf einem Chip integriert sind.
- 5 8. Diodenlaseranordnung nach einem der vorhergehenden Ansprüche, bei der die Bypassanordnung (4) und der Diodenlaser (2) als einzelne Bauelemente auf einem gemeinsamen Kühl- und Kontaktelement angeordnet sind.

1/2

Fig. 1

Fig. 2

Fig. 3

2/2

Fig. 5

⋮

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 03/02016

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H01S5/068 H01S5/42 H05B33/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 H01S H01L H05B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, IBM-TDB, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 878 880 A (CONTRAVES AG) 18 November 1998 (1998-11-18) column 8, line 25 -column 9, line 23; figures 6,7 ---	1,5
X	GB 2 278 717 A (FUJITSU LTD) 7 December 1994 (1994-12-07) page 3, line 26 -page 6, line 12 page 7, line 13 -page 11, line 21; figures 1,7 ---	1,5
X	US 6 259 714 B1 (KINBARA YOSHIHIDE) 10 July 2001 (2001-07-10) column 4, line 60 -column 6, line 41; figures 1,5,8 ---	1-3 --/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search 6 June 2003	Date of mailing of the international search report 20/06/2003
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Gnugesser, H

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 03/02016

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	PATENT ABSTRACTS OF JAPAN vol. 2002, no. 05, 3 May 2002 (2002-05-03) -& JP 2002 025784 A (ISHIZAWA TAKASHI), 25 January 2002 (2002-01-25) abstract ---	1-3, 5, 8
Y	DE 100 36 283 A (BOSCH GMBH ROBERT) 7 February 2002 (2002-02-07) column 1, line 19 -column 2, line 1 column 2, line 42 -column 3, line 6; claim 7; figures 3,4 ---	1, 5, 8
Y	PATENT ABSTRACTS OF JAPAN vol. 008, no. 221 (E-271), 9 October 1984 (1984-10-09) -& JP 59 103565 A (HITACHI SEISAKUSHO KK), 15 June 1984 (1984-06-15) abstract ---	1-3
A	DE 198 41 490 A (SIEMENS AG) 23 March 2000 (2000-03-23) column 4, line 20 -column 7, line 66; figure 2 ---	1-3
A	EP 0 967 590 A (HEWLETT PACKARD CO) 29 December 1999 (1999-12-29) column 5, line 16-57; figure 2 ---	1, 5
A	EP 0 129 498 A (SIEMENS AG) 27 December 1984 (1984-12-27) page 2, line 1-5 page 3, line 1 -page 4, column 2; figure 1 ---	1

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 03/02016

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
EP 0878880	A	18-11-1998	CA	2234854 A1	25-12-1998
			DE	59800382 D1	18-01-2001
			EP	0878880 A1	18-11-1998
			JP	11026852 A	29-01-1999
			US	6018602 A	25-01-2000
GB 2278717	A	07-12-1994	JP	2991893 B2	20-12-1999
			JP	6338647 A	06-12-1994
			US	5459328 A	17-10-1995
US 6259714	B1	10-07-2001	JP	11087817 A	30-03-1999
			CN	1211093 A	17-03-1999
			DE	19840514 A1	18-03-1999
			TW	412890 B	21-11-2000
			US	6135552 A	24-10-2000
JP 2002025784	A	25-01-2002	NONE		
DE 10036283	A	07-02-2002	DE	10036283 A1	07-02-2002
			EP	1182757 A2	27-02-2002
JP 59103565 4	A		NONE		
DE 19841490	A	23-03-2000	DE	19841490 A1	23-03-2000
EP 0967590	A	29-12-1999	EP	0967590 A1	29-12-1999
			JP	2000029400 A	28-01-2000
			US	6239716 B1	29-05-2001
EP 0129498	A	27-12-1984	DE	3319779 A1	29-11-1984
			AT	24789 T	15-01-1987
			DE	3461959 D1	12-02-1987
			EP	0129498 A1	27-12-1984

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 03/02016

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 H01S5/068 H01S5/42 H05B33/08

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 H01S H01L H05B

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, IBM-TDB, INSPEC, COMPENDEX

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 878 880 A (CONTRAVES AG) 18. November 1998 (1998-11-18) Spalte 8, Zeile 25 -Spalte 9, Zeile 23; Abbildungen 6,7 ---	1,5
X	GB 2 278 717 A (FUJITSU LTD) 7. Dezember 1994 (1994-12-07) Seite 3, Zeile 26 -Seite 6, Zeile 12 Seite 7, Zeile 13 -Seite 11, Zeile 21; Abbildungen 1,7 ---	1,5
X	US 6 259 714 B1 (KINBARA YOSHIHIDE) 10. Juli 2001 (2001-07-10) Spalte 4, Zeile 60 -Spalte 6, Zeile 41; Abbildungen 1,5,8 ---	1-3 -/--

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

E älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmelde datum veröffentlicht worden ist

L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

P Veröffentlichung, die vor dem Internationalen Anmelde datum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

T Spätere Veröffentlichung, die nach dem internationalen Anmelde datum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

6. Juni 2003

20/06/2003

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Gnugesser, H

INTERNATIONALER RECHERCHENBERICHT

Internationaler Aktenzeichen
PCT/EP 03/02016

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	PATENT ABSTRACTS OF JAPAN vol. 2002, no. 05, 3. Mai 2002 (2002-05-03) -& JP 2002 025784 A (ISHIZAWA TAKASHI), 25. Januar 2002 (2002-01-25) Zusammenfassung ---	1-3, 5, 8
Y	DE 100 36 283 A (BOSCH GMBH ROBERT) 7. Februar 2002 (2002-02-07) Spalte 1, Zeile 19 -Spalte 2, Zeile 1 Spalte 2, Zeile 42 -Spalte 3, Zeile 6; Anspruch 7; Abbildungen 3,4 ---	1, 5, 8
Y	PATENT ABSTRACTS OF JAPAN vol. 008, no. 221 (E-271), 9. Oktober 1984 (1984-10-09) -& JP 59 103565 A (HITACHI SEISAKUSHO KK), 15. Juni 1984 (1984-06-15) Zusammenfassung ---	1-3
A	DE 198 41 490 A (SIEMENS AG) 23. März 2000 (2000-03-23) Spalte 4, Zeile 20 -Spalte 7, Zeile 66; Abbildung 2 ---	1-3
A	EP 0 967 590 A (HEWLETT PACKARD CO) 29. Dezember 1999 (1999-12-29) Spalte 5, Zeile 16-57; Abbildung 2 ---	1, 5
A	EP 0 129 498 A (SIEMENS AG) 27. Dezember 1984 (1984-12-27) Seite 2, Zeile 1-5 Seite 3, Zeile 1 -Seite 4, Spalte 2; Abbildung 1 -----	1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 03/02016

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 0878880	A	18-11-1998	CA DE EP JP US	2234854 A1 59800382 D1 0878880 A1 11026852 A 6018602 A		25-12-1998 18-01-2001 18-11-1998 29-01-1999 25-01-2000
GB 2278717	A	07-12-1994	JP JP US	2991893 B2 6338647 A 5459328 A		20-12-1999 06-12-1994 17-10-1995
US 6259714	B1	10-07-2001	JP CN DE TW US	11087817 A 1211093 A 19840514 A1 412890 B 6135552 A		30-03-1999 17-03-1999 18-03-1999 21-11-2000 24-10-2000
JP 2002025784	A	25-01-2002		KEINE		
DE 10036283	A	07-02-2002	DE EP	10036283 A1 1182757 A2		07-02-2002 27-02-2002
JP 59103565 4	A			KEINE		
DE 19841490	A	23-03-2000	DE	19841490 A1		23-03-2000
EP 0967590	A	29-12-1999	EP JP US	0967590 A1 2000029400 A 6239716 B1		29-12-1999 28-01-2000 29-05-2001
EP 0129498	A	27-12-1984	DE AT DE EP	3319779 A1 24789 T 3461959 D1 0129498 A1		29-11-1984 15-01-1987 12-02-1987 27-12-1984