• • • • • •

인공지능수학

(확률과 통계4)

학습내용

- 1. 마르코프와 체비세프 부등식
- 2. 가중최소제곱 과 칼만필터
- 3. 마르코프 행렬 과 마르코프 연쇄

■ 확률변수 X 에 대한 확률

- ⇒ 확률과 기대값의 관계를 설명
- ⇒ 확률은 X 가 a보다 크거나 같을 확률이며, a가 커지면 확률은 작아진 다
- ⇒ 마르코프는 음이 아닌 임의의 확률변수 X에 대해 $X \ge a$ 를 만족하는 확률상의 단순한 한계를 찾았다.

마르코프 부등식

마르코프 부등식은 $X \ge 0$ 을 가정하면 음인 표본은 없다. $X(s) \ge a$ 의 확률은 $\frac{E(X)}{a} = \frac{X^{\bigcirc 1} \overline{\ominus} \overline{\partial}}{a} = \frac{\overline{X}}{a}$ 보다 작거나 같다.

■ 체비세프 부등식

- ⇒ 평균과 분산만 알려진 경우 확률분포가 평균에서 벗어난 정도
- ⇒ 부등식은 음이 아닌 함수만이 아니라 임의의 변수 X(s) 에 적용
- ⇒ 평균 X 로 부터 먼 사건의 확률에 대한 추정치를 제공
- ⇒ 확률분포의 꼬리를 찾는다.
- ② 꼬리가 무거운 분포는 일반 확률분포보다 더 높은 대편차 $|X(s) \overline{X}|$ 를 가진다. $|X \overline{X}| \ge a$ 일 확률은 a 가 커지면 낮아진다.
- $Y = \left| X(s) \overline{X} \right|^2 \ge a^2,$
- $\mathfrak{D}(S) \geq a^2$, $\mathrm{E}(Y) = E((X(S) \overline{X})^2) = \sigma^2$ 에 마르코프 부등식 적용

체비세프 부등식

임의의 확률분포 X(s) 에 대한 체비세프부등식은 $|X(s) - \overline{X}| \ge a$ 일 확률은 $\frac{\sigma^2}{a^2}$ 보다 작거나 같다.

모멘트와 중심 모멘트

■ 모멘트

- lacktriangle : 임의의 n에 대해 $m_n = E[x^n]$ 을 모멘트라함
- 0번째 모멘트 = 1 \cdots $\sum p_i = 1$ 또는 $\int p(x)dx = 1$
- 1번째 모멘트 = 평균 = E(x) $\cdots \sum ip_i = m$ 또는 $\int xp(x)dx = m$
- 2번째 모멘트 (0근방) $\cdots \sum i^2 p_i$ 또는 $\int x^2 p(x) dx = \sigma^2 + m^2 = E(x^2)$
- ⇒ 2번째 중심모멘트(m근방) ···
 - $\sum (i-m)^2 p_i = \sigma^2$ 또는 $\int (x-m)^2 p(x) dx = \sigma^2$

```
n 번째 모멘트 ---- m_n = \sum i^n p_i 또는 \int x^n p(x) dx
```

중심모멘트(m근방) ---- $\mu_n = \sum (i-m)^n p_i$ 또는 $\int (x-m)^n p(x) dx$

n 번째 정규화된 중심모멘트 $----=\mu_n/\sigma^n$

- ⇒ 3번째 중심모메트 는 분포의 비틀림(왜도, 비대칭도)
- ⇒ 네번째 정규모멘트는 뽀족한 정도(첨도, 평균주위에 몰리 정도)
- ⇒ P(x)가 평균을 중심으로 대칭이면 홀수 중심모멘트는 0이 될 것이다.
- ⇒ 일반적으로 모멘트는 중심에서 멀리 있을수록 커진다.

생성함수 for 이산분포

- 생성함수와 누적생성함수 : 확률등을 계수로 하는 거듭제곱수의 합
- lacksquare 이산확률변수 X,에 대해 X=n 일 확률이 p_n
 - \Rightarrow 확률생성함수 $G(z) = \sum_{n=0}^{\infty} p_n z^n :$ x가 음이아닌정수
 - lacktriangle 특성함수 $\emptyset(t)=\sum_0^\infty p_n e^{itn}$: 각각의 학률함수와 일대일 대응하며 기대값과 분산을 알수있음. 함수이항분포의 특성함수 (1-p+peit)n

 $e^{ix} = \cos x + i \sin x$

$$Arr$$
 모멘트생성함수 $M(t) = \sum_{0}^{\infty} m_n \frac{t^n}{n!}$: $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + ... = \sum_{k=n}^{\infty} \frac{x^k}{k!}$

$$\Rightarrow$$
 누적생성함수 $K(t) = \sum_{0}^{\infty} k_n \frac{t^n}{n!}$

■ 생성함수와 기대값

$$\Im G(z) = E[Z^X], \ \emptyset(t) = E[e^{itX}], \ M(t) = E[e^{tX}], \ K(t) = \log E[e^{tX}]$$

■ 베르누이 분포 (p0=1-p, p1 = p)

$$P = E[x] = E[x^2] = E[x^3] = ...$$

$$M(t) = (1-p) + pe^{t}$$

생성함수 for 연속분포

■ 연속분포에서의 생성함수는 덧셈대신 적분을 형태를 사용

■ 정규분포에 대한 생성함수

모멘트생성함수 : $M(t) = e^{\mu t} e^{\sigma^2 t^2/2}$

 \Rightarrow 누적생성함수 : $K(t) = \mu t + \sigma^2 t^2/2$

⇒ 정규분포일때 $k_1 = \frac{dK}{dt} = \mu$, $k_2 = \sigma^2$, $k_3 = k_4 = k_5 = \cdots = 0$

중심극한 정리

■ 평균이 m 이고 분산이 σ^2 인 n개의 독립표본 $X_1, ... X_n$ 에 대해

- $\mathfrak{S}_n=(x_1+x_2+++x_n)/n$ 의 분포는 기대값 μ , 표준편차 σ/\sqrt{N}
- $oldsymbol{\Box}$ 표준화된 평균 $Z_n = \sum (X_k m)/\sigma \sqrt{N}$ 을 활용

■ 중심극한정리

 $N o \infty$ 일때 Z_n 의 분포는 평균이 0 이고 분산이 1인 표준정규분포에 가까워 진다.

■ 증명

- $Y = \frac{X-m}{\sigma}$ 특성함수를 사용
- $\supset Z_n = (Y_1 + Y_2 + \dots + Y_n)/\sqrt{N}$
- $N \to \infty$, $(E[e^{\frac{itY}{\sqrt{N}}}])^N = [1 \frac{1}{2}(\frac{t}{\sqrt{N}})^2 + O(\frac{t}{\sqrt{N}})^3]^N \to e^{-t^2/2}$
- \Rightarrow 극한 $e^{-t^2/2}$ 는 표준정규분포 $N(1,\sigma)$ 의 특성함수 이다.

합에 대한 체르노프 부등식

- 합 $X=X_1+X_2+\cdots+X_n$ 의 평균은 $\overline{X}=\overline{X_1}+\overline{X_2}+\cdots+\overline{X_n}$
- 확률변수가 독립이면 $\sigma^2 = \sigma_1^2 + \sigma_2^2 + \cdots + \sigma_n^2$
- 체비세프 $Prob(|X \overline{X}| \ge a) \le \frac{\sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2}{a^2}$
- \blacksquare 체르노프 : X_i 의 결합독립일때, 각 쌍의 독립이상
 - \Rightarrow 확률곱 $p(x_1, ... x_n) = p_1(x_1) ... p_n(x_n)$
 - lacktriangle 평균 \overline{X} 에서 멀리 떨어진 X의 확률은 급격히 0에 가까워진다.
- 예) n개의 동전중 앞면이 나오는 개수
 - lacktriangle 앞면이 나올 확률이 $\overline{X_i}=p_i$ -> $X=X_1+\cdots+X_n$ 의 평균은 $\overline{X}=p_1+\cdots+p_n$
- 체르노프 상하한
 - 상한: $Prob(X \ge (1+\delta)\overline{X}) \le e^{-\overline{X}\delta^2/(2+\delta)}$
 - 하한: $Prob(X \leq (1-\delta)\overline{X}) \leq e^{-\overline{X}\delta^2/2}$

■ 평균이 0이 되도록 맞추자

- $\supset \overline{X} = 0$ 이 되게 X를 중심에 맞춘다
- \bigcirc 일반적인 체비세프 : $Prob(|X| \ge a) = Prob(X^2 \ge a^2) \le E[X^2]/a^2$
- 체르노프 상한 : $Prob(|X| \ge a) = Prob(e^{sX} \ge e^{sa}) \le E[e^{sX}]/e^{sa}$
- 체르노프 하한 : $Prob(|X| \le a) = Prob(e^{-sX} \ge e^{-sa}) \le E[e^{-sX}]/e^{-sa}$
- 모멘트생성함수 : $M(s) = E[e^{sX}], M(-s) = E[e^{-sX}]$
 - ◆ S를 조절하여 체비세프를 이끌수 있다.

행렬에 대한 마르코프 부등식

■ 기본

- 양의 준정부호 : $x^TAx \ge 0$
- \Rightarrow A-X 가 양의 준정부호 라면 $X \leq A$, 모든 고유값은 0보다 크거나 같다.

■ 마르코프 부등식

- lacktriangleright $X \geq 0$ 가 평균이 $E[X] = \overline{X}$ 인 준정부호 혹은 정부호 랜덤행렬 일때
- ⇒ A가 양의 정부호 행렬이면

(마르코프부등식)

 $prob\{X \le A\} = prob\{A - X 는 양의 준정부호가 아니다\} \le \overline{X}A^{-1}$ 의 대각합

⇒ 증명

- \bullet $A^{\frac{1}{2}}$ 이 A의 양의 정부호 제곱근이면
- X ≤ A 이면 A^{-1/2}XA^{1/2} 의 대각합 > 1 이다
- ullet A-X 가 양의 준정부호가 아니면 음의 에너지 $v^T(A-X)v<0$ 를 만족하는 v 가 존재
- $w^T w < w^T A^{-1/2} X A^{1/2} w$ 를 만족하도록 $w = A^{1/2} v$ 라 하면
- $A^{-1/2}XA^{1/2}$ 의 최대 고유값은 $\lambda_{max} > 1$
- $\lambda_{max} = max \frac{y^T A^{-1/2} X A^{1/2} y}{y^T y} > 1$
- \bullet $A^{-1/2}XA^{1/2}$ 은 음의 고유값이 없으므로 대각합은 1보다 커진다.
- $prob\{X \le A\} \le E\left[trace\left(A^{-\frac{1}{2}}XA^{\frac{1}{2}}\right)\right] = trace\left(A^{-\frac{1}{2}}XA^{\frac{1}{2}}\right) = trace\left(\overline{X}A^{-1}\right)$

행렬에 대한 체비세프 부등식

■ 체비세프 부등식

- ⇒ 평균이 0인 랜덤행렬 X 의 체비세프 부등식
- ⇒ A 가 양의 정부호 행렬이면
- $\Rightarrow A |X|$ 가 양의 준정부호 행렬이면 $A^2 X^2$ 은 양의 정부호 행렬이 아니다.
- $Prob\{|X| \le A\} \le Prob\{X^2 \le A^2\} < trace(E[X^2]A^{-2})$ 이다

행렬에 대한 체르노프부등식

- $n \times n$ 크기의 양의 준정부호 행렬 또는 정부호행렬인 확률변수 X_k 의 합 Y에 대한 체르노프 부등식
 - lacktriangleright 가 평균에서 멀어지려면 평균에서 멀리 있는 X_k 가 많이 필요함
 - ⇒ 일반적이지 않은 확률은 급격히 0에 가까워진다.
 - ⇒ 평균에서 멀리 떨어진 꼬리확률에 대해 매우 작은 한계를 얻음
- 체르노프 부등식
 - $> Y = \sum X_k$ 에 속하는 각 행렬 X_k 가 $0 \le \lambda \le c$ 인 고유값을 갖는다고 가정
 - lacktriangleright μ_{min} 과 μ_{max} 를 평균합 $Y=\sum X_k$ 의 최소 고유값과 최대 고유값이라하자
 - ⇒ 그러면
 - $E[\lambda_{min}(Y)] \ge \left(1 \frac{1}{e}\right)\mu_{min} C\log n$
 - $E[\lambda_{max}(Y)] \le (e-1)\mu_{max} + C \log n$
 - ⇒ 고유값이 평균으로 부터 멀리 있을 확률은 급격히 0에 가까워짐
 - $Pro\{\lambda_{min}(Y) \le t\mu_{min}\} \le ne^{-(1-t)\mu_{min}/2C}$
 - $Pro\{\lambda_{max}(Y) \ge t\mu_{max}\} \le n(\frac{e}{t})^{t\mu_{max}/C}$ (\text{\text{\$\text{\$!}}}, \ t \ge e)

공분산 행렬과 결합확률

- 선형대수학
 - ⇒ 한번에 M개의 서로다른 실험을 할 때 사용하는 계산
- 공분산
 - ⇒ 서로다른 실험의 연관(연결)성을 측정하는 방법
 - **의** 예)

$$\sigma_{ah} = E[(\mathsf{LYO} - \mathsf{B} \overline{\omega} \mathsf{LYO})(\mathsf{I} - \mathsf{B} \overline{\omega} \mathsf{I})]$$

- \bigcirc 위 계산하려면 (나이와 키)쌍에 대한 결합확률 P_{ij} 을 알아야 함
 - + 공분산은 $(x-m_1)(y-m_2)$ 의 기대값,

-> 공분산
$$\sigma_{12} = \sum \sum_{i,j} P_{ij} (x_i - m_1) (y_j - m_2)$$

- lacktriangle 두개의 실험이 독립이라면 결합확률 $p_{ij}=p_i imes p_j$, 공분산 $\sigma_{ij}=0$
- ⇒ 각실험이 종속이 아니라면 공분산행렬 1/는 양의 정부호이다.
- $\Rightarrow z = x + y$ $\supseteq \mathbf{W}$
 - $\bullet \ E(z) = E(x) + E(y)$
 - $\sigma_z^2 = \sigma_x^2 + \sigma_y^2 + 2\sigma_{xy}$

- $\blacksquare Z = AX$ 의 공분산 행렬
 - $\Rightarrow z = x + y$ 일 경우를 보면

•
$$\sigma_z^2 = \begin{bmatrix} 1 \ 1 \end{bmatrix} \begin{bmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 -> $\sigma_z^2 = AVA^T$ $(\sigma_z^2 = \sigma_x^2 + \sigma_y^2 + 2\sigma_{xy})$ $\Delta \Sigma$

- ⇒ 길이가 K인 벡터일때
 - \bullet Z = AX 의 공분산 행렬은 $V_Z = AV_XA^T$
 - 91) $Z = x1+x2+x3 -> [1,1,1]A[1,1,1]^T$

■ 상관계수

- ⇒ 공분산과 상관계수는 독립과 종속을 측정한다.
- \Rightarrow 확률변수 x,y 에 대한 제척도구성(rescaling) 이다
- 분산이 $\sigma_x^2 = \sigma_y^2 = 1$ 이면 $X = \frac{x}{\sigma_x}, Y = \frac{y}{\sigma_y}$
- ⇒ x와 y의 상관관계는 X 와 Y 의 공분산이다.
- ⇒ 상관관계

$$\bullet$$
 $\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y} = \frac{x}{\sigma_x}$ 와 $\frac{y}{\sigma_y}$ 의 공분산 (단, $-1 \le \rho \le 1$)

- lacktriangle 독립인 확률변수일때는 $ho_{xy}=0$
- $(\rho_{xy})^2 \le \sigma_x^2 \sigma_y^2$, 공분산행렬 V는 최소한 양의 준정부호행렬이다.
- → 상관계수 행렬 R
 - \bullet 대각행렬 $D=diag\left[\frac{1}{\sigma_1},...,\frac{1}{\sigma_M}\right]$ 에 대해여 R=DVD이고 $R_{ii}=1$ (모든 i)
 - ullet 만약 공분산 행렬 V가 양의 정부호이면 상관관계 R=DVD또한 양의 정부호이다

다변량 정규분포와 가중최소제곱

■ 다변량 정규분포

- lacktriangle 확률밀도함수 즉 가우스 함수는 p(x) 는 평균 m 과 분산 σ^2 에 의존
 - $p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-m)^2/2\sigma^2}$
- ⇒ p(x)의 그래프는 평균 x=m 이 중심인 종모양의 곡선이고 연속변수 x는 $-\infty$ 에서 $+\infty$ 사이의 값을 가질때, 변수 x가 $m-\sigma$ 에서 $m+\sigma$ 사이에 있을 확률은 대략 2/3이다.
 - $X = (x m)/\sigma$
 - $\int_{-\infty}^{\infty} p(x) dx = 1$ $\int_{m-\sigma}^{m+\sigma} p(x) dx = \frac{1}{\sqrt{2}} \int_{-1}^{1} e^{-X^2/2} dX \approx \frac{2}{3}$
- \Rightarrow 표준정규분포 N(1,0) 은 $p(x) = \frac{1}{2\pi} e^{-x^2/2}$ 을 만족
 - $F(a) = \int_{-\infty}^{a} p(x) dx$, $F(0) = \frac{1}{2}$

■ 2차원 정규분포

M = 2 일때 정규확률변수 x,y 가 서로 독립이라면

- 확률밀도함수 $p(x,y) = p(x) \times p(y) = \frac{1}{2\pi\sigma_1\sigma_2}e^{-(x-m_1)^2/2\sigma_1^2}e^{-(y-m_2)^2/2\sigma_2^2}$
- \bullet 공분산 $\sigma_{12}=0$, 공분산행렬 V은 대각행렬이다.
- p(x,y) 은 x-지수 와 y-지수 의 합이고, 두 지수는
- $\frac{1}{2}(x-m)^TV^{-1}(x-m)$ 으로 결합할수 있는 장점

$$-\frac{(x-m_1)^2}{2\sigma_1^2} - \frac{(y-m_2)^2}{2\sigma_2^2} = -\frac{1}{2} \begin{bmatrix} x - m_1 & y - m_2 \end{bmatrix} \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}^{-1} \begin{bmatrix} x - m_1 \\ y - m_2 \end{bmatrix}$$

➡ 독립이 아닌 두 변수 x, y

- ullet M개의 변수 $x=x_1,\ldots,x_M$ 사이의 종속성은 $M\times M$ 공분산행렬 V로 설명
- ullet 공분산 역행렬은 p(x) 를 표현하는식의 일부이다.
- 다변량 정규확률분포 $p(x) = \frac{1}{(\sqrt{2\pi})^M \sqrt{\det V}} e^{-(x-m)^T V^{-1} (x-m)/2}$
- $V = Q\Lambda Q^T$
- X = x m, $(x m)^T V^{-1}(x m) = X^T Q \Lambda^{-1} Q^T X = Y^T \Lambda^{-1} Y$
- \bullet Y = $Q^TX = Q^T(x m)$ 은 확률적으로 독립
- ◆ X 가 되도록 m을 빼서 변수 $x = (x_1, ..., x_M)$ 를 중심에 맞추고나서 변수 $Y = Q^T X$ 가 되도록 회전하였을때 p(x) 의 적분은 바뀌지 않는다. Λ 는 대각행렬이 된다.
- ◆ p(x) 의 평균과 분산도 M차원 중적분이다.
- 평균의 벡터 m $\int ... \int xp(x)dx = (m_1, m_2, ...) = m$
- \bullet 공분산 행렬 V $\int ... \int (x-m)p(x)(x-m)^T dx = V$

■ 가중최소 제곱

- $\Rightarrow Ax = b$ 가 비가해 선형방정식이라 하자. 즉 해가 없지만 근사해를 구해보자
- \bigcirc 오차 $E = ||b Ax||^2$ 를 최소화 하는 근사해 \hat{x} 를 선택
 - ◆ N(1,0)을 따르는 정규분포인 독립확률변수 -> 최소화하는 측정방법이다.
 - ◆ 오차가 독립적이지 않거나 분산이 같지 않다면 최소화 측정법이 아니다. 이때는 가중최소제곱을 사용해야 한다.
 - ◆ $E = (b Ax)^T V^{-1}(b Ax)$ 가 좋은 오차 측정 방법이다.
- ⇒ 분산이 1 (공분산은 0) 이 되도록 b 의 오차에 가중치를 준다.
 - ullet 가중 최소제곱(b의 독립인오차) -> $E = \sum_{i=1}^m \frac{(b-Ax)_i^2}{\sigma_i^2}$ 을 최소화
 - \bullet b_i/σ_i 에 대해 분산이 1이 되도록 방정식을 σ_i 로 나눈다
 - Ax = b $V^{-1/2}Ax = V^{-1/2}b$, $V^{-1/2} = diag(1/\sigma_1, ..., 1/\sigma_m)$
 - ◆ 일반적인 최소제곱이 된다.
 - $\left(V^{-\frac{1}{2}}A\right)^{T}\left(V^{-\frac{1}{2}}A\right)x = \left(V^{-\frac{1}{2}}A\right)^{T}V^{-\frac{1}{2}}b$ -> $A^{T}V^{-1}A\hat{x} = A^{T}V^{-1}b$

■ 추정된 🕅 의 분산

- lacktriangle b 의 분산 V 의 \hat{x} 의 분산 W 의 연결하는 공식
- \hat{x} 에 대한 분산-공분산 행렬 $W = E[(\hat{x} x)(\hat{x} x)^T] = (A^T V^{-1} A)^{-1}$
- $\hat{x} = Lb$ 는 공분산행렬 LVL^T 이고, $\hat{x} = Lb$ 는 가중치 방정식 $A^TV^{-1}A\hat{x} = A^TV^{-1}b$ 를 풀므로

$$L = (A^T V^{-1} A)^{-1} A^T V^{-1}$$
 $\circ | \mathbf{I} \ LV L^T = (A^T V^{-1} A)^{-1}^T$

마르코프 연쇄

■ 마르코프 연쇄

- 시간에 따른 계의 상태 변화를 나타냄. 미래상태의 조건부 확률이 과거가 아닌 현재 상태에 의해서만 결정됨.
- ⇒ 예) 렌터카
 - ◆ 시카고에 있는 차의 80%는 시카고에 머문다.
 - ◆ 덴버에 있는 차의 30%는 시카고로 이동한다.
 - ◆ 시카고에 있는 차의 20%는 덴버로 이동한다.
 - ◆ 덴버에 있는 차의 70%는 덴버에 머문다.
- \bigcirc n 번째 달에서 n+1 번째달까지 차의 이동은 $y_{n+1}=Py_n$

◆ n 개월 후의 차량의 분포는 $y_n = P^n y_0$

•
$$y_0 = \begin{bmatrix} 100 \\ 0 \end{bmatrix}$$
 2 4 $y_1 = \begin{bmatrix} 80 \\ 20 \end{bmatrix}$, $y_2 = \begin{bmatrix} 70 \\ 30 \end{bmatrix}$, $y_3 = \begin{bmatrix} 65 \\ 35 \end{bmatrix}$, \cdots $y_\infty = \begin{bmatrix} 60 \\ 40 \end{bmatrix}$

•
$$y_0 = \begin{bmatrix} 0 \\ 100 \end{bmatrix}$$
 2 4 $y_1 = \begin{bmatrix} 30 \\ 70 \end{bmatrix}$, $y_2 = \begin{bmatrix} 45 \\ 55 \end{bmatrix}$, $y_3 = \begin{bmatrix} 52.5 \\ 47.5 \end{bmatrix}$, $y_\infty = \begin{bmatrix} 60 \\ 40 \end{bmatrix}$

◆ 모두 같은 극한 분포를 갖는다.

■ 행렬 P 의 고유값과 고유벡터

- 그 고유값 $det \begin{bmatrix} 0.8 \lambda & 0.3 \\ 0.2 & 0.7 \lambda \end{bmatrix} = \lambda^2 1.5\lambda + 0.5 = (\lambda 1)(\lambda 0.5) = 0$
- $\lambda = 1$ $\lambda = 0.5$
- 그유벡터 $\begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix} \begin{bmatrix} 0.6 \\ 0.4 \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.4 \end{bmatrix}$, $\begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
- lacktriangle 안전상태 $igl[0.6 \\ 0.4 igr]$ 는 극한분포 이며 $\lambda_1=1, \ \lambda_2=\frac{1}{2}$ 은 매달 안정상태까지의 거리가 $\frac{1}{2}$ 씩 좁혀짐을 의미한다.

$$P_n = (X\Lambda X^{-1}) \dots (X\Lambda X^{-1}) = X\Lambda^n X^{-1} = \begin{bmatrix} 0.6 & 0.6 \\ 0.4 & 0.4 \end{bmatrix} + \left(\frac{1}{2}\right)^n \begin{bmatrix} 0.4 & -0.6 \\ -0.4 & 0.6 \end{bmatrix}$$

- 이때의 P 가 마르코프 행렬이다.
- ⇒ 양의 마르코프 행렬이 되기 위한 조건
 - ullet 모든 성분은 $p_{ij}>0$ 이고, P의 각 열을 더하면 1이다
 - ullet 그러면 $P^T 1 = 1$ 이다. 행렬 P의 고유값은 $\lambda_1 = 1$ 이고 양수인 고유벡터 $x_1 > 0$

■ 전이확률

- lacktriangleright n 시점의 상태 j 에서 n+1 시점에서의 상태 i 가 될 확률 p_{ij}
- 전이확률 $p_{ij} = \{ x(n) = j \ \$ 일때 $x(n+1) = i \ \$ 가 될 확률 $\}$
 - ullet 확률 p_{ij} 는 n에 의존하지 않는다. 시점에 관계없이 똑같이 적용
 - \bullet 새로운 상태 x(n+1) 의 확률 y_{n+1} 은 현재 상태 x(n) 에만 의존, 과거의 기록은 무시된다.
- ⇒ 마르코프 연쇄
 - ◆ 유한마르코프연쇄 : 각 상태 *x*(*n*) 은 1,2,...,*N*중 하나이다.
 - ◆ 무한마르코프연쇄 : 각 상태 *x*(*n*) 은 1,2,...이다.
 - ◆ 연속마르코프연쇄 : 각 상태 x(n) 은 실수이다.
- ⇒ 유한마르코프연쇄
 - ullet 각 상태의 확률은 $p_{1j}, p_{2j}, \dots, p_{Nj}$ 로 나타냄
 - 행렬 P의 j열 p_{1j} + p_{2j} + \cdots p_{Nj} = 1
 - ullet 확률 p_{ij} 는 P=N imes N으로 전이확률, 전이 행렬이라 함

$$\Rightarrow y_{n+1} = \begin{bmatrix} Prob\{x(n+1) = 1\} \\ \vdots \\ Prob\{x(n+1) = N\} \end{bmatrix} = \begin{bmatrix} P_{11} & \cdots & P_{1N} \\ \vdots & \ddots & \vdots \\ P_{N1} & \cdots & P_{NN} \end{bmatrix} \begin{bmatrix} Prob\{x(n) = 1\} \\ \vdots \\ Prob\{x(n) = N\} \end{bmatrix}$$

■ 머신러닝의 기본적인 흐름

- 머신러닝은 다음과 같은 동작들로 분류할 수 있다.
 - 1) Data collection
 - 2) Feature Engineering
 - 3) Modeling (또는 Learning)
 - 4) Inference

☐ Feature engineering

- Feature engineering은 다음의 두 가지를 위해 필요한 과정이다.
 - 1. Input 데이터셋에 가장 적합한 머신러닝 모형을 설계하기 위해 필요하다.
 - 2. 머신러닝 학습시 더욱 높은 정확도를 얻기 위해서 필요하다.

어떤 형태로 정리된 데이터를 사용하는게 더 좋은지는 머신러닝의 모형에 따라 달라질 수 있다.

그렇다면 Feature engineering을 위해 무엇이 필요할까?

■ 이슈 1: 데이터의 경향성

모든 유의미한 데이터들은 특정 값에 가까운 값들을 갖는 경향이 있다.

■ 이슈 1: 데이터의 경향성

- 예를들어 클러스터링을 수행하는 머신러닝의 경우 이러한 데이터의 경향성을 이용하여 수행한다.

SVM

- 하지만 이런 데이터는 잘 분류해내지 못한다.

■ 이슈 2: 차원의 저주(The Curse of Dimensionality)

- 고차원의 다변수 데이터를 이용하여 머신러닝을 제작하는 경우, 머신러닝의 성능이 크게 떨어지는 현상들을 통틀어 차원의 저주라고 한다.

1) Sparsity problems 데이터의 차원이 커지면, 정확한 클러스터링을 위해 필요한 데이터의 수가 기하급수적으로 커지는 현상

2) Computational problem 데이터의 차원이 커지면, 그만큼 계산에 걸리는 시간도 기하급수적으로 커지는 현상

■ Principal Component Analysis(PCA)

- PCA는 데이터의 경향성을 뚜렷하게 하면서 동시에 데이터의 차원을 낮추는 대표적인 Feature engineering 기법이다.

- PCA는 주어진 고차원의 데이터를, 데이터의 통계적 특성들(분산과 편차)을 유지한 채로 특정 방향의 저차원 축으로 사영시키는 방법
- 전체 데이터의 분포를 잘 표현할 수 있는 차원을 선정하는 알고리즘

□ Preliminaries for PCA

- 1) SVD (특이값분해)
- 2) 공분산행렬

- N: 데이터의 크기

 $-x_i$: 데이터 X의 i번째 값

- 데이터 X의 평균 : μ_X

SVD
$$A = U \Sigma V^T$$

Truncated SVD

$$A_t = U_t \; \Sigma_t \; V_t^T$$

평균
$$\mu = \sum_{i}^{N} x_{i}$$

분산
$$V[X] = \frac{\sum_{i}^{N}(x_i - \mu)^2}{N}$$

$$Cov[X,Y] = \frac{\sum_{i}^{N} (x_i - \mu_x) (y_i - \mu_y)}{N}$$

공분산행렬

$$C_{2} = \begin{pmatrix} V[X] & Cov[X,Y] \\ Cov[Y,X] & V[Y] \end{pmatrix}$$

$$C_{3} = \begin{pmatrix} V[X] & Cov[X,Y] & Cov[X,Z] \\ Cov[Y,X] & V[Y] & Cov[Y,Z] \\ Cov[Z,X] & Cov[Z,Y] & V[Z] \end{pmatrix}$$

☐ The process of PCA

1) Input

 $m \times n$ 행렬

$$A = \begin{bmatrix} x_1 & \cdots & z_1 \\ \vdots & \ddots & \vdots \\ x_m & \cdots & z_m \end{bmatrix}$$

2) 정규화

$$D = \begin{bmatrix} x_1 - \mu_x & \cdots & z_1 - \mu_z \\ \vdots & \ddots & \vdots \\ x_m - \mu_x & \cdots & z_m - \mu_z \end{bmatrix}$$

3) Truncated SVD

$$D = U \Sigma V^T$$
Select V_t

4) 기저변환 축의 새로운 base선정

 $new A' = AV_t^T$

5) Output

Return A'

□ PCA의 원리

- 공분산행렬의 특이행렬로 기저변환을 하면, 데이터의 분산을 유지한 채 낮은 차원의 데이터로 변환하는 것이 가능하다.

Input 행렬
$$A = \begin{bmatrix} x_1 & \cdots & z_1 \\ \vdots & \ddots & \vdots \\ x_m & \cdots & z_m \end{bmatrix}$$
, $D = \begin{bmatrix} x_1 - \mu_x & \cdots & z_1 - \mu_z \\ \vdots & \ddots & \vdots \\ x_m - \mu_x & \cdots & z_m - \mu_z \end{bmatrix}$ 에 대하여,

A의 공분산행렬은 다음과 같이 구할 수 있다.

$$C = \frac{1}{m}D^TD = \begin{bmatrix} \frac{\sum_i^m (x_i - \mu_x)^2}{m} & \cdots & \frac{\sum_i^m (x_i - \mu_x)(z_i - \mu_z)}{m} \\ \vdots & \ddots & \vdots \\ \frac{\sum_i^m (x_i - \mu_x)(z_i - \mu_z)}{m} & \cdots & \frac{\sum_i^m (z_i - \mu_z)^2}{m} \end{bmatrix} = \begin{bmatrix} V[X] & \cdots & Cov[X, Z] \\ \vdots & \ddots & \vdots \\ Cov[Z, X] & \cdots & V[Z] \end{bmatrix}$$

□ PCA의 원리

- 공분산행렬의 특이행렬로 기저변환을 하면, 데이터의 분산을 유지한 채 낮은 차원의 데이터로 변환하는 것이 가능하다.
- 그런데 공분산행렬의 우특이행렬은 D의 우특이행렬과 같다.

2) 정규화

$$D = \begin{bmatrix} x_1 - \mu_{\chi} & \cdots & z_1 - \mu_{z} \\ \vdots & \ddots & \vdots \\ x_m - \mu_{\chi} & \cdots & z_m - \mu_{z} \end{bmatrix}$$

3) Truncated SVD

$$D = U \Sigma V^{T}$$
Select V_t

어기서 필요한 것은 V뿐이다 따라서 D에 대한 SVD를 구하면 된다.

$$mC = D^TD = (V\sum U^T)(U\sum V^T) = V \Sigma^2 V^T$$
 여기서 V 는 동일하다

□ PCA의 원리

- 공분산행렬의 특이행렬로 기저변환을 하면, 데이터의 분산을 유지한 채 낮은 차원의 데이터로 변환하는 것이 가능하다.

4) 기저변환

$$new A' = AV_t^T$$

■ 기저변환

$$A = P \, \Sigma \, P^{-1}$$

D의 우특이행렬을 곱하는 것으로 다음 두 효과를 얻을 수 있다.

- 1) 데이터의 분산이 보존된다.
- 2) 서로 다른 경향의 데이터들 사이의 거리가 최대로 멀어진다.

□ PCA의 원리

- 공분산행렬의 특이행렬로 기저변환을 하면, 데이터의 분산을 유지한 채 낮은 차원의 데이터로 변환하는 것이 가능하다.

$$new A' = AV_t^T$$

차원을 줄이기 위해 V^T 대신 V_t^T 를 이용하여 기저변환을 한다!

 V^T V_{t}^T

□ PCA의 원리

- 공분산행렬의 특이행렬로 기저변환을 하면, 데이터의 분산을 유지한 채 낮은 차원의 데이터로 변환하는 것이 가능하다.

>> 여기서 "t"의 크기는 어떻게 구할까?

만약 고윳값들이 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$ 를 만족한다면,

약 90% 정도를 선택 \longrightarrow σ_1 , σ_2 , σ_3 (t=3)만큼 사용함

□ PCA와 클러스터링을 이용한 머신러닝 과정 예시

