Name:	
MATH 108	"I was so unpopular in high school, the
Spring 2024	crossing guard used to lure me into traffic."
HW 19. Due 04/22	- Annie Edison, Community

Problem 1. (10pts) Consider the function $z=-65x_1+5x_2$ on the region $\mathcal R$ shown below. Does z have a maximum or minimum value on $\mathcal R$? Explain. If the function has a maximum or minimum value on $\mathcal R$, find the maximum and minimum value.

Problem 2. (10pts) Consider the function $z = 6x_1 + 11x_2$ on the region \mathcal{R} shown below. Does z have a maximum or minimum value on \mathcal{R} ? Explain. If the function has a maximum or minimum value on \mathcal{R} , find the maximum and minimum value.

Problem 3. (10pts) Consider the function $z = x_1 + 7x_2$ on the region \mathcal{R} shown below. Does z have a maximum or minimum value on \mathcal{R} ? Explain. If the function has a maximum or minimum value on \mathcal{R} , find the maximum and minimum value.

Problem 4. (10pts) Find the dual problem for the minimization problem shown below.

$$\min w = y_1 - y_2 + y_3$$

$$\begin{cases} 2y_1 - y_2 + y_3 \le 9 \\ y_1 + 5y_2 - y_3 \ge 5 \\ 3y_1 + 4y_2 + 6y_3 \ge 10 \\ -y_1 + y_2 + 8y_3 \le 5 \\ y_1, y_2, y_3 \ge 0 \end{cases}$$