

Life after a fiery death: fire and browning effects on dissolved organic matter composition in experimental freshwater ponds

Journal:	Global Change Biology
Manuscript ID	GCB-23-0474
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	02-Mar-2023
Complete List of Authors:	Spiegel, Cody; University of California San Diego, Ecology, Behavior, Evolution Mladenov, Natalie; San Diego State University, Civil Construction & Environmental Engineering Wall, Christopher; University of California San Diego, Ecology, Behavior, Evolution Hollman, Kelly; San Diego State University, Civil Construction & Environmental Engineering Tran, Cindy; University of California San Diego, Ecology, Behavior, Evolution Symons, Celia; University of California Irvine, Ecology and Evolutionary Biology Shurin, Jonathan; University of California San Diego, Ecology, Behavior, Evolution
Keywords:	dissolved organic matter, decomposition, wildfire, fluorescence spectroscopy, mesocosm, brownification, pyrogenic carbon
Abstract:	Drier and hotter conditions linked with anthropogenic climate change increase wildfire frequency and intensity, influencing terrestrial and aquatic carbon cycles at broad spatial and temporal scales. Wildfire destabilizes riparian watersheds surrounding aquatic systems like lakes and ponds that lead to enhanced deposition of terrestrial subsidies, resulting in increased leaching of dissolved organic matter (DOM) from plants, a phenomenon known as "browning." We tested the effects of browning (quantity of plant biomass) and its interaction with fire (burned vs. unburned plant material) on DOM composition, concentration, and degradation (biological vs. photochemical) in freshwater ponds using a gradient experimental design. Dissolved organic carbon (DOC) concentration increased nonlinearly exceeding 56 mg/L at the highest plant biomass levels in both fire treatments. Fluorescence and ultraviolet-visible light absorbance spectroscopic indices showed nonlinear relationships with DOM chemical composition and plant biomass such as greater humification and specific ultraviolet absorbance at 254 nm (a proxy for aromatic DOM) in the highest biomass levels. The burned plant material showed reduced humification over time compared to unburned demonstrating how fire impacts DOM processing in aquatic ecosystems. DOC decomposition was dependent on the loading of

detritus as evidenced by the greater loss in DOC due to biodegradation than photodegradation occurring at intermediate biomass levels. Our results reveal that fire and browning elicit nonlinear and interactive responses in the dynamics and composition of DOM in aquatic systems. Our study illuminates how the quantity of plant detritus and its chemical transformation by fire jointly impact its processing and role in aquatic environments.

SCHOLARONE™ Manuscripts

1	Life after a fiery death: fire and browning effects on dissolved organic matter composition in
2	experimental freshwater ponds
3	
4	Cody J. Spiegel ^{1*} , Natalie Mladenov ² , Christopher B. Wall ¹ , Kelly Hollman ² , Cindy H. Tran ¹ ,
5	Celia C. Symons ³ , Jonathan B. Shurin ¹
6	
7	¹ Ecology, Behavior and Evolution Section, Department of Biological Sciences, University of
8	California, San Diego, CA, USA
9	² Department of Civil Construction & Environmental Engineering, San Diego State University,
10	CA, USA
11	³ Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
12	
13	*corresponding author: cjspiege@ucsd.edu
14	
15	Keywords: dissolved organic matter, decomposition, wildfire, fluorescence spectroscopy,
16	mesocosm, brownification, pyrogenic carbon
17	
18	Author contacts: cbwall@ucsd.edu ; khollman2052@sdsu.edu ; cht010@ucsd.edu ;
19	nmladenov@sdsu.edu; csymons@uci.edu; jshurin@ucsd.edu
20	
21	
22	
23	

Fire and browning effects on DOM

Abstract

Introduction

Wildfires play a major role in global carbon (C) cycles, and are on the rise as climate change
makes vegetation more flammable (Halofsky et al. 2020; Harvey and Enright 2022). Geography,
antecedent weather conditions, and plant community composition shape regional fire regimes
(Bond 2013). The relative significance of these factors for driving trends in fire activity differ
greatly across global ecoregions (McKenzie et al. 2004; Bowman et al. 2009). Nonetheless, it is
clear that drier and hotter conditions linked with anthropogenic climate change increase wildfire
frequency and intensity that influence terrestrial C cycles at broad spatial and temporal scales
(Abatzoglou and Williams 2016; Lasslop et al. 2019).
As large-scale ecological disturbances, wildfires can catalyze many forms of ecosystem
change. First, fires can trigger landscape shifts such as the replacement of woody vegetation or
shrublands with more flammable grasslands (Zedler et al. 1983; D'Antonio and Vitousek 1992;
Stevens-Rumann and Morgan 2016). Second, burning can cause rapid C release through
combustion which depletes stored C in plant biomass and watersheds (Pellegrini et al. 2015;
Cornelissen et al. 2017; Granath et al. 2021), and transforms the chemical properties of organic
matter via pyrolysis (limited oxygen) or thermal oxidation (Wang et al. 2015; Ward et al. 2017).
Fire can affect plant material by either reducing its availability as a substrate for microbial
decomposition, or altering its chemical structure (e.g., by pyrolysis or thermal oxidation) which
influences its decomposability (Bowring et al. 2022). Lastly, soil destabilization and
hydrophobicity from high severity wildfires leads to accelerated runoff and erosion that can be
deposited into streams, rivers, and lakes (Larsen et al. 2009; Lewis et al. 2019). Burned C
particulates can persist and bioaccumulate within aquatic ecosystems (Campos and Abrantes

2021; Burton et al. 2022). The ecological effects of wildfire may therefore cross the aquatic-

69

Fire and browning effects on DOM

70 terrestrial boundary. 71 Despite covering a small fraction of the Earth's surface, biogeochemical activity within lakes 72 is a critical component of the global C cycle (Mulholland and Elwood 1982; Cole et al. 2007). 73 Lake metabolism is regulated by the processing of organic and inorganic material from both 74 internal (autochthonous) production as well as terrestrial (allochthonous) inputs that directly 75 influence trophic dynamics and nutrient cycling. Wildfire destabilizes riparian watersheds 76 surrounding aquatic systems like lakes and ponds that lead to enhanced deposition of terrestrial 77 subsidies, resulting in increased leaching of dissolved organic matter (DOM) from plants, a phenomenon known as "browning" (Kritzberg et al. 2020). Dissolved organic carbon (DOC) 78 79 from terrestrial sources can lead to net heterotrophy where lake community respiration exceeds 80 internal primary productivity (Hanson et al. 2003), suggesting that allochthonous inputs 81 significantly regulate lake ecosystem function (e.g., Wetzel 1984; Berggren et al. 2022; Fonseca 82 et al. 2022). Allochthonous organic C is either transported to the ocean via hydrological 83 networks, emitted as respired CO₂, or stored in sediments. The amount of C buried annually in 84 lake sediments is comparable to that stored in the ocean via the C pump (Ward et al. 2017). 85 Large disturbances like wildfire may catalyze further browning, and thus rising DOC concentrations, which subsequently affect greenhouse gas emissions, burial in lake sediments or 86 87 export to the ocean. 88 As downstream recipients, lakes are especially vulnerable to post-fire erosion and sedimentation, and the deposition of organic subsidies following a fire has the potential to impact 89 90 DOM processing and storage (Cooper et al. 2015; McCullough et al. 2019). Previous work 91 shows that annual streamflow increases as much as 30% the first year following a fire (Lavabre

Page 6 of 48

et al. 1993). Sampling in response to fire shows increases in post-fire lake DOC in addition to
reduced water quality (McEachern et al. 2000; Earl and Blinn 2003; Wagner et al. 2018). By
surveying water chemistry in two-year post-fire lakes on Alberta's Boreal Plain, Allen et al.
(2003) found that mean DOC concentrations in lake water from burned watersheds was 1.4-fold
higher compared to reference watersheds. Yet, variation in the chemical composition of DOM
due to the heterogeneity in the vegetation of burned watersheds may determine the fate of
allochthonous inputs and their impact on lake productivity and respiration. For instance, other
studies observed that post-fire increases in DOC were attributed to autochthonous DOM
production (Moody and Martin 2001). The effects of fire on DOM chemistry in aquatic systems
remains unclear due to the complex chemical transformations that can occur. Therefore,
identifying changes in post-fire DOM chemistry is of great importance as it will provide insight
into DOM persistence, fate, and reactivity.

Changes in DOM chemistry can affect reactivity and susceptibility to photochemical and microbial degradation, the two dominant controls on biogeochemical lake C cycling (Wetzel 1984; Morris and Hargreaves 1997; Obernosterer and Benner 2004). Mixtures of burned organic materials (collectively, pyrogenic carbon (PyC)) can significantly influence decomposition rates through alterations to its quality and quantity as well as changes to the aquatic environment that affect light penetration and microbial activity (Pereira et al. 2011; Wang et al. 2015; Santos et al. 2019). For example, aromatic PyC subsidies strongly influence the structure of microbial communities in aquatic environments (Bostick et al. 2021; Chen et al. 2022). Moreover, light absorbing chromophoric DOM compounds also contribute to variation in photo- and biodegradation rates between lakes with different allochthonous inputs from watersheds (Cory et

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

Fire and browning effects on DOM

al. 2007; Laurion and Mladenov 2013; Helms et al. 2013). Thus, fire-induced chemical changes and browning may impact DOM processing in lakes.

In this study, we address the effects of fire and browning on the concentration, composition, and decomposition of DOM in experimental freshwater ponds. Using an array of 30 (400 L) mesocosms with a gradient design of increasing plant biomass, we ask the following: (1) How does fire (burned or unburned plant material) and browning (quantity of plant biomass) affect DOC concentration? (2) How does burning plant material affect DOM chemical composition? and (3) How do microbial activity and photodegradation contribute to DOM decomposition between burned and unburned sources? We predict an increase in DOC concentrations from initial C leaching, but reduced DOC concentrations in the burned ponds due to C depletion from combustion (Pellegrini et al. 2015). We also hypothesize that fire and browning should weaken the photodegradation and microbial decomposition of DOM from the combined effects of increased light attenuation due to shading, reduced dissolved oxygen concentrations at high detrital loading, and greater aromaticity (and therefore reduced lability) from burning. Our study aims to advance knowledge of aquatic DOM dynamics by using a gradient experimental design to detect critical ecosystem thresholds in response to browning and fire.

131

132

133

134

135

136

Materials

Plant material

We selected two California native plant species *Salvia leucophylla* (hereafter, sage) and *Salix lasiolepis* (hereafter, willow) to simulate the effects of terrestrial loading. Sage was chosen due to its wide distribution, growing on arid, sandy, and rocky soils, and common throughout

western North America at elevations from 762 to 3000 m (Keeley and Fotheringham 2001). Willow is a deciduous species found in riparian zones. Both sage and willow occur in fire-prone scrub and woodland ecosystems in California making them appropriate species for this study. Twenty-three sage plants were purchased from a nursery on 9 June, 2021 and transplanted into pots with a sand-vermiculite mixture and grown for 60 days. Willow was harvested from the University of California Dawson Los Monos Reserve in San Diego, CA. Cut stems (~ 1 cm diameter) and leaves from sage and willow branches were placed inside a greenhouse to air dry (24 h). The plant material was then placed in a drying oven at a constant temperature (24 h at 45°C) until dry before being introduced into the mesocosms.

To simulate the effects of fire, a portion of sage and willow was burned in a 75 L aluminum container using a blow torch. To ensure the plant material was not completely combusted, the container's lid was used to regulate oxygen flow and smother the plant material as needed (similar to the "thermal oxidation" and "pyrolysis" conditions defined by Wang et al. 2015). We used visual assessment to divide the plant material into two burn severity groups: low severity (likely pyrolyzed with intact green leaves showing noticeable black burns on the stems and sticks) and high severity (likely thermally oxidized with grey leaves, sticks, and stems including ash) (Figure S1). The two burn severity groups were then combined. All leaves, sticks, and stems were gathered and pooled according to fire treatment. All burned and unburned plant material was packed into separate 25 x 15 cm nylon bags of 250 µm mesh size. Leaf litter bags aided in sinking and containment once added to the mesocosms while also allowing for water flow and grazing of microorganisms and other small invertebrates. In total, each tank received a 1:1 mass ratio of sage and willow to reach the cumulative target mass. After weighing, the nylon bags with plant material were set in a drying oven (24 h at 45°C) before being placed in their

assigned tanks. We recovered the litter bags at the end of the experiment for final mass measurements. All litter bags were removed and oven-dried (7 d at 45°C) and re-weighed. The initial and final masses of sage and willow were used to measure leaf litter decomposition over the course of the experiment.

Mesocosm experimental design

Thirty mesocosms (400 L plastic cattle tanks) filled with freshwater were assembled at the University of California, San Diego Biological Field Station in October of 2021. A plankton mixture collected from Lake Murray and Lake Miramar in San Diego, CA using a vertical tow (64 µm mesh net; 7.6 m depth) was used in equal aliquots (~ 433 mL) to stock mesocosms with resident plankton communities. Tanks were regularly filled with fresh water to replace losses to evaporation. The experimental design was a gradient of plant biomass crossed with a burning treatment, resulting in two 15-tank gradients of plant material that was either burned or unburned. In the gradient design each tank received incremental increases of plant material ranging from 0 g to 400 g with a total of fifteen tanks per plant treatment type (burned vs. unburned). The gradient design allowed us to test for thresholds and nonlinearities in the response of pond ecosystems to terrestrial subsidies. Tanks were filled on 27 December 2021, plankton mixture was added on 1 November 2021, the plant material was added on 5 November, 2021, and the experiment ended on 16 March, 2021.

In situ incubations

To test the roles of photo- and biodegradation on DOC decomposition, we conducted three incubation experiments (Day 10, 30, and 60). The last two experiments on Days 30 and 60

Page 10 of 48

Fire and browning effects on DOM

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

were excluded because positive net changes in DOC were observed in some replicates which indicated potential contamination or methodological issues. The first experiment (initiated on Day 10) is presented and includes the period showing the greatest changes in DOC during the experiment.

Each tank received four 100 mL sealed bags subjected to one of four treatments manipulating the presence of microbes and UV light. A combination of clear and opaque Sterile Whirl-Pak® bags were used to construct UV treatments that transmitted the entire solar spectrum or completely excluded light exposure. 100 mL of water from each tank was collected and filtered (F) through pre-combusted (2 h at 550°C) glass-fiber filters (0.7 µm GF/F; Whatman, Maidstone, UK) to limit but not fully exclude microbial activity; other bags were filled with 100 mL of unfiltered water (UF) that included microbes resident in the tanks. This resulted in four treatment conditions in a 2 x 2 factorial design: UV transmissible-unfiltered [UV-UF]; UV transmissible-filtered [UV-F]; Non-UV transmissible-unfiltered [NoUV-UF]; and Non-UV transmissible-filtered [NoUV-F]. All bags (four per tank x 30 tanks, n = 120) were then secured to 8.8 x 25.4 x 7.6 cm plastic trays and suspended ca. 15 cm below the surface. At the end of the incubation period (7 d; see Dempsey et al. 2020), all bags were removed, filtered through precombusted 0.7 µm GF/Fs into muffled (5 h at 550°C) borosilicate amber vials (60 mL), and transported on ice to the Water Innovative and Reuse Lab (WIRLab) at San Diego State University (SDSU).

Filtration is essential for measuring microbial degradation of DOC with studies recommending a 0.45 or 0.2 µm pore size to remove microbiota from samples (Bertilsson and Tranvik 2000; Magyan and Dempsey 2021). Many 0.45 and 0.2 µm filters, however, are composed of organic material such as cellulose acetate, which can induce contamination

Fire and browning effects on DOM

problems, leading some researchers to recommend 0.7 µm GF/F filters (Khan and Subramania-Pillai 2006; Denis et al. 2017). The efficiency of filtration to remove microbes and regrowth over the course of the experiment or during storage was not verified during this study.

The UV and filtration treatments were used to distinguish between effects of photodegradation vs. microbial decomposition on DOC loss. The percent change in DOC concentration between the four Whirl-Pak bag treatments and ambient tank conditions yielded effects for individual degradation pathways: 1) photodegradation, 2) microbial degradation, and 3) the combined effect of both photo- and microbial degradation. That is, the percent change in DOC concentration over the seven-day incubation was calculated for each bag in each tank. The photodegradation (or UV-only) effect was indicated by the difference in DOC percent change between the UV-F and NoUV-F, the microbe effect (or micobes-only) was the difference in DOC percent change between the NoUV-UF and NoUV-F, and the combined microbial and photochemical effect (or UV and microbes) was the difference between the UV-UF and NoUV-F.

221 DOC concentration analysis

DOC concentration was measured at four times: 10, 30, 60, and 120 days after plant addition using an integrated water column sampler (47.6 cm depth). To prepare for concentration analysis, samples were filtered through pre-combusted 0.7 µm GF/Fs into muffled borosilicate amber vials, and then acidified with 37% HCl to a pH of 3. DOC concentration analysis was conducted using a high temperature combustion method (Shimadzu TOC-L Total Organic Carbon Analyzer) in the WIRLab at SDSU. Samples were calibrated with potassium hydrogen phthalate standards (ranging from 1 to 50 mg C/L) and analyzed according to WIRLab standard

protocols with ~ 10% of samples in duplicate. For all duplicated samples, standard deviations were within 10% of mean values; sample results falling outside of this range were either reanalyzed or excluded.

EEM spectral analysis

We used fluorescence EEM data to characterize the chemistry of the compounds that contributed to DOM in the ponds. Water was collected for EEMs analysis and individually filtered from every tank (n = 30) through a 64 μ m mesh into 100 mL acid-washed (10% HCl) polypropylene containers. The filter mesh was rinsed with ddH₂O between collections to prevent cross-tank contamination. Samples were filtered into muffled borosilicate amber vials using 0.7 μ m GF/Fs, refrigerated (< 24 h) and then transported on ice to the WIRLab for analysis. EEMs measure the excitation and emission wavelengths at which fluorescence occurs to characterize specific molecular structures (Coble 1996). A fraction of chromophores in DOM are fluorescent compounds (Stedmon and Nelson 2015), and certain regions present in the EEMs were used to characterize aspects of the chemical composition in the ponds.

Optical properties, ultraviolet-visible light (UV-vis) absorbance and fluorescence were acquired simultaneously (at room temperature of 21-23 °C) using a Horiba Scientific Aqualog Fluorometer on filtered water samples in a quartz cuvette with a path length of 1 cm. EEMs fluorescence was inner-filter corrected, blank-subtracted and Raman-normalized, and first and second order Rayleigh scatter bands were excised (see Laurion and Mladenov 2013).

Representative tanks of low (5 g), intermediate (125 g), and high biomass (225 g) levels were used to illustrate the compositional shifts in DOM chemistry over the course of the experiment (see Figures S4-S6). The heights of major peaks in the EEMs corresponding to different

molecular structures were identified using the wavelength ranges identified by (Coble 1996, 2007): Peak A (humic-like, λ ex=~250 nm; λ em=380-460 nm), Peak C (humic-like, λ ex=~405 nm; λ em= 490-510 nm), Peak M (marine/microbial humic-like peak, λ ex=~312 nm; λ em=380-420 nm), and Peak B (amino acid-like, λ ex=~275 nm; λ em=~310-320 nm).

Indices generated by UV-vis absorbance and fluorescence spectroscopy.

To classify the DOM chemical characteristics, we calculated three fluorescence indices (Table 1): the humification index (HIX = ratio of areas under the emission curve at 435–480 nm and 300–345 nm plus 435–480 nm at an excitation wavelength 245 nm) that described the degree of humification (high HIX = more terrestrial humic-like material) (Zsolnay et al. 1999), the fluorescence index (FI = emission intensity at 470 nm divided with that of 520 nm at 370 nm excitation) which indicated source material (microbial-precursor FI value \approx 1.8 or terrestrial-precursor FI \approx 1.3) (McKnight et al. 2001), and the freshness index (BIX), representing the degree of processed DOM, was calculated as the ratio of emission intensity at 380 nm to the maximum emission intensity between 420 and 435 nm at excitation wavelength 310 nm (Parlanti 2000).

Additionally, we further classified the DOM chemical characteristics by calculating two UV-vis absorbance indices (Table 1): the ratio of the slope (S_R) parameters (S₂₇₅₋₂₉₅:S₃₅₀₋₄₀₀) which is used as a proxy for molecular weight (MW) (Helms et al. 2008) and the specific ultraviolet absorbance at 254 nm (SUVA₂₅₄) to indicate aromaticity (Weishaar et al. 2003).

Table 1. Descriptions of fluorescence and UV-vis absorbance indices for dissolved organic matter used in this study.

Parameter	Abbreviation	Description	Literature
Specific ultraviolet	SUVA ₂₅₄	Higher absorbance at 254 nm	Weishaar et al. (2003)
absorbance at 254		divided by DOC	
nm		concentration indicates	
		greater aromaticity	
Spectral slope ratio	\mathbf{S}_R	Inversely related to the	Helms et al. (2008)
		molecular weight	
Humification index	HIX	Increases with DOM	Zsolnay et al. (1999)
		humification	
Freshness index	BIX	Increases with freshly	Parlanti (2000)
		produced DOM	
		produced BoW	
Fluorescence index	FI	Higher values indicate the	McKnight et al. (2001)
		relative contribution of	
		autochthonous vs.	
		allochthonous DOM	

272

273

274

275

276

Statistical analyses

Fire treatment effects were modeled using general additive models (GAMs) implemented in R's mgcv package (Wood 2017). Flexible smoothers in a GAM framework are well suited to

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

Fire and browning effects on DOM

model the nonlinear responses in our gradient experimental design. Models for each parameter were individually analyzed at the four discrete sampling points since results for a single full model introduced extreme concurvity (> 0.9).

We estimated the effects of fire and browning using separate GAMs with a gaussian error distribution for all response variables. Final models were selected with the lowest generalized cross-validation (GCV) and Akaike Information Criterion scores (see Tables S1-S4), and greatest deviance explained (DE) using backward stepwise selection. Lower GCV scores typically correspond with higher DE indicating that a model minimizes the smoothed predictors while maximizing explanatory power (Wood 2017). In our fitted GAMs, the significance of the smooth plant biomass term is a test of deviation from a flat or null function that is constant at 0 over all observed values of the predictor variable (Wood 2017); deviation from this indicates the presence of a nonlinear pattern. For all fitted models, Wald tests of the significance of each parametric and smooth term were performed. Here, the figures presented show either two smooths that indicate a significant nonlinear smooth for each fire treatment, or one global smooth (in black) that represents an estimated mean across the covariate plant biomass for both fire treatments (see Results). We used this model selection procedure for all analyses to identify whether browning affected the different response variables, and whether the relationships differed between the fire treatments.

295

296

297

298

299

Results

Mesocosm DOC concentration

DOC concentration showed a rapid nonlinear increase with plant biomass 10 days after plant addition that gradually declined in both fire treatments over time (Figure 1). DOC values

ranged from 5.0 to 56.5 mg/L along the plant biomass gradient. Intermediate plant biomass amounts for the burned treatment at 10 days showed about 20% less DOC compared to the unburned treatment as evidenced by the differences between the fitted smooth functions (difference in trends; solid lines) shown in red with approximate 95% confidence intervals (p = 0.005, Figure S2). Averaged across all plant biomass amounts, the burned treatment had an average 8 mg/L less DOC than the unburned treatment. By Day 120, DOC concentrations significantly declined with no significant difference between fire treatments.

Figure 1. Dissolved organic carbon (DOC) concentrations across plant biomass addition at four discrete sampling points for the burned (red) and unburned (green) treatments. Plots with a single global smooth indicates that a model with one fit line for the burned and unburned treatments best describes the data, while separate smooths for each fire treatment indicate that a model with different fits for the two burning treatments showed best agreement.

Fluorescence and UV-vis absorbance indices

Effects of browning and DOM chemical alterations by fire were observed in the fluorescence (HIX, BIX, and FI) and UV-vis absorbance (SUVA₂₅₄ and S_R) indices, and varied strongly over time. SUVA₂₅₄, an indicator of aromaticity, showed a nonlinear relationship with

Fire and browning effects on DOM

plant material at Day 10 with greater aromaticity at intermediate plant biomass amounts for both fire treatments (Figure 2a). The increase in SUVA₂₅₄ persisted over time and was most apparent at Day 60 with a significant difference between fire treatment (p = 0.001). The lower SUVA₂₅₄ values in the burned treatment compared to the unburned treatment at 60 days can be seen by the differences between the fitted smooth functions (difference in trends; solid lines) in red with approximate 95% confidence intervals (Figure S3a). Average across all plant biomass amounts for both fire treatments, SUVA₂₅₄ increased by an average 12.4% by Day 120 relative to Day 10.

Figure 2. Changes in **a:** SUVA₂₅₄, **b:** spectral slope ratio, **c:** humification index, **d:** freshness index, and **e:** fluorescence index with increasing plant biomass for the burned (red) and unburned (green) treatments. Plots with a single global smooth indicates that a model with one fit line for the burned and unburned

treatments best describes the data, while separate smooths for each fire treatment indicate that a model with different fits for the two burning treatments showed best agreement.

S_R, which has been employed in other studies as a proxy for DOC MW (Helms et al. 2008), showed a negative relationship across the plant biomass gradient at Day 10, which remained consistent over time with no significant differences between the fire treatments (Figure 2b). After Day 30, S_R remained around an average value of 1.0 at intermediate/higher biomass levels, indicating that high MW compounds increased over time.

HIX showed a negative relationship with plant biomass at Day 10 and 30 indicating less humified DOM (Figure 2c). By Day 60, HIX positively increased with a significant effect of fire treatment (p = 0.0006) and greater humification in the unburned treatment. By Day 120, the difference between fire treatment remained as evidenced by the differences between the fitted smooth functions (difference in trends; solid lines) shown in red with approximate 95% confidence intervals (p < 0.0001, Figure S3c).

There was a significant effect of fire treatment and browning on the BIX index with more recently produced DOM in the unburned treatment at Day 10 (p = 0.01, Figure 2d). The trends in freshness stabilized by Day 30 and remained over time with no significant difference between the fire treatments.

The FI index showed a positive, nonlinear trend along the plant biomass gradient, indicating greater microbial sources (average FI value ~ 2.0) at intermediate plant biomass amounts for Day 30 (Figure 2e). This trend declined by Day 60 indicating a mixture of both terrestrial and microbial sources of DOM in the ponds with no significant differences between the fire treatments.

Fire and browning effects on DOM

DOC degradation via in situ incubation

Proportional DOC loss was more strongly linked with plant biomass than fire 10 days after plant addition (Figure 3). Proportional loss of DOC due to photodegradation was consistent across all levels of browning. Despite the nonlinear trend observed in the highest plant biomass amounts in the burned treatment, UV-only had little effect on DOC decomposition with no significant difference between fire treatments.

Microbial decomposition of DOC occurred more at intermediate plant biomass amounts with > 9 % reduction in DOC and no significant difference between fire treatments. In contrast, there was only about a 1% reduction in DOC at low and high plant biomass levels. The microbial effect on DOC degradation therefore showed a unimodal relationship with the amount of browning.

The combined effect of UV and microbes showed the greatest loss of DOC (> 13%) at intermediate biomass amounts with browning significantly impacting the rate of DOC decomposition, while fire treatment had no detectable effect.

Figure 3. Dissolved organic carbon (DOC) loss as percent change for burned (red) and unburned (green) treatments across plant biomass (g). Plots with a single global smooth indicates that a model with one fit

line for the burned and unburned treatments best describes the data, while separate smooths for each fire treatment indicate that a model with different fits for the two burning treatments showed best agreement.

Dry mass decomposition of sage and willow

We calculated percent mass loss for sage and willow in relation to plant biomass and fire treatment. Sage decomposed fastest at the lowest levels of plant addition, and the relationship differed significantly between the fire treatments (p = 0.03, Figure 4a). Unburned sage exhibited a linear decrease in mass loss with increasing plant biomass whereas burned sage showed a significant nonlinear trend with the greatest mass loss at the lowest plant biomass amounts. Willow decomposition also differed significantly between the fire treatments (p = 0.02) with the most loss occurring in the unburned treatment that remained constant across plant biomass. Sage decomposed faster than willow, with the greatest difference between species in the burned treatment (p < 0.0001, Figure 4b).

385

386

387

388

Fire and browning effects on DOM

Figure 4. Percent mass loss of sage and willow across plant biomass. **a**: Mass loss for sage and willow between fire treatment. **b**: Mass loss between sage and willow within fire treatment. Plots with a single global smooth indicates that a model with one fit line for the burned and unburned treatments best describes the data, while separate smooths for each fire treatment indicate that a model with different fits for the two burning treatments showed best agreement.

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

Discussion

We demonstrate that loading of terrestrial plant detritus elicits nonlinear responses in the dynamics of DOM, and that DOM chemical composition is altered by fire in ways that further impact its processing and role in aquatic environments. First, we found strong nonlinear effects of plant biomass on DOC concentration, with the highest DOC concentrations early on after plant addition. DOC concentrations also differed between fire treatment which indicates that combustion from burning released stored C in the plant tissues of both willow and sage impacting the quantity of C leached as DOC into the mesocosms, especially at intermediate loading levels. The elemental chemistry of sage and willow leaves and stems in our experiment showed different responses to fire with lower C:N in severely burned tissues (C.B. Wall unpubl.). This parallels similar responses of other plant species to fire (Pellegrini et al. 2015; Wang et al. 2015; Ward et al. 2017). Based on the findings by Wang et al. (2015), and other studies cited therein, the type of burning (pyrolysis vs. thermal oxidation) and the intensity (low vs. high) are two important factors controlling C:N ratios in plant tissues that impact DOM and C cycling in aquatic systems. Furthermore, previous work has found that fire severity and DOC concentration are inversely related with lower DOC concentrations associated with high-severity fires (Santos et al. 2019). The fire severity at which the plant material was

burned in our study could explain the nonlinear patterns in DOC concentration given that the burned plant material experienced only one regime (likely high severity pyrolysis).

The differences in DOC concentration between fire treatments became less over time, and more linear across the biomass gradient. The role of residence time as it relates to DOC from burned or unburned detritus could be another major factor controlling DOM cycling in aquatic systems insofar that detrital loading exceeds the rate of DOM turnover (Stedmon and Nelson 2015); future studies using a similar experimental design should not only measure DOM change over longer periods to better understand the potential physio-chemical effects of fire and residence time on the DOM pool but also incorporate other factors like total lake area or temperature that contribute to DOC concentration variability (e.g., Hanson et al. 2011). Our gradient design demonstrates a general nonlinear pattern associated with increasing plant detritus which may be typical for the fate of DOM in aquatic ecosystems that experience loading from severely burned watersheds.

Second, the different shapes of the functions relating DOC concentration to terrestrial loading rather than changes to DOM chemistry from fire explain the patterns observed among the in situ incubations. DOC decomposition was more strongly linked to the rate of browning than fire as evidenced by the unimodal shape of the proportional rate of decomposition as a function of plant biomass (Figure 3). For instance, there was greater DOC loss by biodegradation compared to photodegradation at intermediate loading levels. Previous studies using first-order decay models of microbial decomposition of DOC (Wilske et al. 2020; Chen et al. 2022) found that the rate of loss is proportional to initial concentrations, a likely explanation for why we saw less change in DOC at the lowest plant biomass amounts; while at the highest biomass amounts,

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

Fire and browning effects on DOM

hypoxia caused by biological demand (Figure S8), inhibited microbial respiration and caused DOC to persist in the water rather than be degraded.

The compositional shifts indicated by the fluorescence and UV-vis absorbance indices further suggest that the effects of microbes in response to browning on DOC decomposition is stronger than photodegradation. For example, the higher FI values and the greater intensities of B and M peaks (Figure S4) seen early on after plant addition have been found to be associated with bacterial biomass and represent products of bacterial metabolism also found in lakes (Determann et al. 1998; Cammack et al. 2004). Moreover, previous work has shown that aromatic, humic compounds can moderate bacterial activity through photochemical transformations that yield labile compounds (i.e., a primary bacterial substrate) (Moran and Hodson 1990; Cory and Kling 2018). While our primary focus was on whether photo- or biodegradation contributed more to DOC loss along a gradient of increasing plant biomass, a successive photochemical-microbial degradation pathway (i.e., UV and microbes) contributed to the greatest DOC loss at these intermediate biomass levels. Further study should focus on the rate of degradation and molecular change over a continuous temporal scale to disentangle the interactive effects of photo- and microbial processes. The patterns in the concentrations of biologically and photochemically degradable DOC reported here show the importance of identifying DOM compounds and environmental factors linked to fire-affected aquatic systems.

It is important to note that this study differs from previous work on microbial decomposition of DOM since our filtering likely reduced the abundance of microbes in the incubation experiment but did not completely exclude them. The GF/F pore size used (0.7 μ m) allowed the passage of some microorganisms. While the disinfecting quality of exposure to UV radiation may have reduced bacterial abundance in the photodegradation experiment (Yang et al.

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

2020; Uzun et al. 2020), filtering reduced DOC decomposition across most plant biomass	
amounts, suggesting that removing microorganisms, even if incomplete, impedes decomposition	on

Third, fire altered some of the chemical properties of DOM and influenced the rate of particulate organic matter processing. The spectroscopic (UV-vis absorbance and fluorescence) indices show reduced humification in the burned treatment, but greater aromaticity in both fire treatments with time. Chemical fractionation driven by high severity pyrolysis (see Wang et al. 2015) likely explains the compositional differences between the burned and unburned treatments for HIX, specifically. The differences in chemical fractionation of humified DOM indicates that burning produces hydrophobic DOM rather than hydrophilic DOM, resulting in lower solubility of high MW, aromatic structures that are less susceptible to processing (Wang et al. 2015). This reduced processing manifested as lower HIX values in the burned treatment over time, a finding also supported in the EEMs with lower terrestrial humic-like DOM (regions A and C in Figure S4-S7). DOM from burned and unburned sources is processed but at varying rates leading to the differences in humification over time; the processing of DOM in the mesocosms can be further supported by the trends in SUVA₂₅₄ which indicate that labile compounds were degraded early on after plant addition leading to the accumulation of recalcitrant DOM over time. The interaction between browning and fire alters the rate at which DOM is processed with distinct differences in the humification between burned and unburned detrital sources and the overall accumulation of aromatic compounds in the system, demonstrating how wildfire can be an important controlling factor on C cycling in freshwater systems.

Finally, we found clear influences of fire treatment and browning on the decomposition of willow and sage suggesting that fire impacts the processing of particulate organic detritus in aquatic systems. Previous studies have shown that woody structures decompose more slowly

Fire and browning effects on DOM

than leaves (Cornelissen et al. 2017). The detritus in our experiment included woody and leafy parts of both plant species. However, fire can affect plant material by either reducing its availability as a substrate for microbial decomposition, or altering its chemical structure (e.g., by charring or limited oxygen availability) which decreases its decomposability (Bostick et al. 2021). The fact that willow decomposed less than sage in our study suggests an effect of its specific physiology such as its lignin-rich tissues or woody structure. Therefore, the traits of different plant species may greatly influence their rates of decomposition. Plant community composition is important for fire regimes because the functional traits of different species impose strong effects on litter quality (Cornwell et al. 2009). As browning and wildfire are projected to increase (Bowman et al. 2009; Kritzberg et al. 2020) future work should consider the heterogeneity of the surrounding vegetation near a watershed with a framework that includes a greater variety of plant species. Our experiment reveals that the loading of terrestrially derived detritus alters the shape of the nonlinear functions relating to DOM chemistry and fire treatment, and that both fire and browning jointly impact the fate of DOM in the aquatic mesocosms.

Conclusions and Implications

Browning and transformations due to fire affect the chemistry of DOM in surface waters and therefore its rate of degradation due to microbial respiration. The concentration and chemical composition of DOM along a gradient of increasing plant detrital loading provided evidence for greater microbial degradation as seen in the compositional shifts in the EEMs, trends in the fluorescence and UV-vis absorbance indices, and the incubation experiment. These results are important because many studies have shown that the ability of microorganisms to uptake and respire DOM depends on its initial chemistry (Cory et al. 2007; Cory and Kling 2018; Berggren

et al. 2022). Therefore, our results imply that the browning of lakes may increase microbial
mineralization of DOC at low to intermediate concentrations but impede it at higher levels when
biological demand depletes dissolved oxygen concentrations. These changes in the conditions
that affect microbial activity can in turn affect carbon processing (e.g., storage in sediments vs.
mineralization as CO ₂) and export to the ocean. Nonlinear changes to the structure and function
of aquatic ecosystems affects their capacity to store and process DOC, and their role in the global
C cycle.

522	References
523	Abatzoglou, J. T., and A. P. Williams. 2016. Impact of anthropogenic climate change on wildfire
524	across western US forests. 6.
525	Allen, E. W., E. E. Prepas, S. Gabos, W. Strachan, and W. Chen. 2003. Surface water chemistry
526	of burned and undisturbed watersheds on the Boreal Plain: an ecoregion approach. 2: 14.
527	Berggren, M., F. Guillemette, M. Bieroza, and others. 2022. Unified understanding of intrinsic
528	and extrinsic controls of dissolved organic carbon reactivity in aquatic ecosystems. 41.
529	Bertilsson, S., and L. J. Tranvik. 2000. Photochemical transformation of dissolved organic matter
530	in lakes. Limnol. Oceanogr. 45 : 753–762. doi:10.4319/lo.2000.45.4.0753
531	Bond, W. 2013. Fires, Ecological Effects of. Encycl. Biodivers. 3: 435–442. doi:10.1016/B978-
532	0-12-384719-5.00053-8
533	Bostick, K. W., A. R. Zimmerman, A. I. Goranov, S. Mitra, P. G. Hatcher, and A. S. Wozniak.
534	2021. Biolability of Fresh and Photodegraded Pyrogenic Dissolved Organic Matter From
535	Laboratory-Prepared Chars. J. Geophys. Res. Biogeosciences 126.
536	doi:10.1029/2020JG005981
537	Bowman, D. M. J. S., J. K. Balch, P. Artaxo, and others. 2009. Fire in the Earth System. Science
538	324 : 481–484. doi:10.1126/science.1163886
539	Bowring, S. P. K., M. W. Jones, P. Ciais, B. Guenet, and S. Abiven. 2022. Pyrogenic carbon
540	decomposition critical to resolving fire's role in the Earth system. Nat. Geosci. 15 : 135–
541	142. doi:10.1038/s41561-021-00892-0
542	Burton, C., D. I. Kelley, C. D. Jones, R. A. Betts, M. Cardoso, and L. Anderson. 2022. South
543	American fires and their impacts on ecosystems increase with continued emissions. Clim.
544	Resil. Sustain. 1. doi:10.1002/cli2.8

545	Cammack, W. K. L., J. Kalff, Y. T. Prairie, and E. M. Smith. 2004. Fluorescent dissolved
546	organic matter in lakes: Relationships with heterotrophicmetabolism. Limnol. Oceanogr.
547	49 : 2034–2045. doi:10.4319/lo.2004.49.6.2034
548	Campos, I., and N. Abrantes. 2021. Forest fires as drivers of contamination of polycyclic
549	aromatic hydrocarbons to the terrestrial and aquatic ecosystems. Curr. Opin. Environ. Sci.
550	Health 24: 100293. doi:10.1016/j.coesh.2021.100293
551	Chen, Y., K. Sun, H. Sun, Y. Yang, Y. Li, B. Gao, and B. Xing. 2022. Photodegradation of
552	pyrogenic dissolved organic matter increases bioavailability: Novel insight into
553	bioalteration, microbial community succession, and C and N dynamics. Chem. Geol. 605:
554	1–14. doi:10.1016/j.chemgeo.2022.120964
555	Coble, P. G. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-
556	emission matrix spectroscopy. Mar. Chem. 51: 325-346. doi:10.1016/0304-
557	4203(95)00062-3
558	Coble, P. G. 2007. Marine Optical Biogeochemistry: The Chemistry of Ocean Color. Chem. Rev.
559	107 : 402–418. doi:10.1021/cr050350+
560	Cole, J. J., Y. T. Prairie, N. F. Caraco, and others. 2007. Plumbing the Global Carbon Cycle:
561	Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems 10: 172–185.
562	doi:10.1007/s10021-006-9013-8
563	Cooper, S. D., H. M. Page, S. W. Wiseman, and others. 2015. Physicochemical and biological
564	responses of streams to wildfire severity in riparian zones. Freshw. Biol. 60: 2600–2619.
565	doi:10.1111/fwb.12523

566	Cornelissen, J. H. C., S. Grootemaat, L. M. Verheijen, W. K. Cornwell, P. M. Bodegom, R. Wal,
567	and R. Aerts. 2017. Are litter decomposition and fire linked through plant species traits?
568	New Phytol. 216 : 653–669. doi:10.1111/nph.14766
569	Cornwell, W. K., J. H. C. Cornelissen, S. D. Allison, and others. 2009. Plant traits and wood
570	fates across the globe: rotted, burned, or consumed? Glob. Change Biol. 15: 2431–2449.
571	doi:10.1111/j.1365-2486.2009.01916.x
572	Cory, R. M., and G. W. Kling. 2018. Interactions between sunlight and microorganisms
573	influence dissolved organic matter degradation along the aquatic continuum. Limnol.
574	Oceanogr. Lett. 3: 102–116. doi:10.1002/lol2.10060
575	Cory, R. M., D. M. McKnight, YP. Chin, P. Miller, and C. L. Jaros. 2007. Chemical
576	characteristics of fulvic acids from Arctic surface waters: Microbial contributions and
577	photochemical transformations: CHARACTERISTICS OF ARCTIC FULVIC ACIDS. J.
578	Geophys. Res. Biogeosciences 112: n/a-n/a. doi:10.1029/2006JG000343
579	D'Antonio, C. M., and P. M. Vitousek. 1992. Biological Invasions by Exotic Grasses, the
580	Grass/Fire Cycle, and Global Change. Annu. Rev. Ecol. Evol. Syst. 23-63.
581	Dempsey, C. M., J. A. Brentrup, S. Magyan, and others. 2020. The relative importance of
582	photodegradation and biodegradation of terrestrially derived dissolved organic carbon
583	across four lakes of differing trophic status. Biogeosciences 17: 6327–6340.
584	doi:10.5194/bg-17-6327-2020
585	Denis, M., L. Jeanneau, AC. Pierson-Wickman, G. Humbert, P. Petitjean, A. Jaffrézic, and G.
586	Gruau. 2017. A comparative study on the pore-size and filter type effect on the molecular
587	composition of soil and stream dissolved organic matter. Org. Geochem. 110: 36–44.
588	doi:10.1016/j.orggeochem.2017.05.002

589	Determann, S., J. M. Lobbes, R. Reuter, and J. Rullkotter. 1998. Ultraviolet fluorescence
590	excitation and emission spectroscopy of marine algae and bacteria. Mar. Chem. 62: 137–
591	156. doi:10.1016/S0304-4203(98)00026-7
592	Earl, S. R., and D. W. Blinn. 2003. Effects of wildfire ash on water chemistry and biota in South-
593	Western U.S.A. streams. Freshw. Biol. 16.
594	Fonseca, B. M., E. E. Levi, L. W. Jensen, D. Graeber, M. Søndergaard, T. L. Lauridsen, E.
595	Jeppesen, and T. A. Davidson. 2022. Effects of DOC addition from different sources on
596	phytoplankton community in a temperate eutrophic lake: An experimental study
597	exploring lake compartments. Sci. Total Environ. 803: 150049.
598	doi:10.1016/j.scitotenv.2021.150049
599	Granath, G., C. D. Evans, J. Strengbom, J. Fölster, A. Grelle, J. Strömqvist, and S. J. Köhler.
600	2021. The impact of wildfire on biogeochemical fluxes and water quality in boreal
601	catchments. Biogeosciences 18: 3243-3261. doi:10.5194/bg-18-3243-2021
602	Halofsky, J. E., D. L. Peterson, and B. J. Harvey. 2020. Changing wildfire, changing forests: the
603	effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA.
604	Fire Ecol. 16 : 4. doi:10.1186/s42408-019-0062-8
605	Hanson, P. C., D. L. Bade, S. R. Carpenter, and T. K. Kratz. 2003. Lake metabolism:
606	Relationships with dissolved organic carbon and phosphorus. Limnol. Oceanogr. 48:
607	1112–1119. doi:10.4319/lo.2003.48.3.1112
608	Hanson, P. C., D. P. Hamilton, E. H. Stanley, N. Preston, O. C. Langman, and E. L. Kara. 2011.
609	Fate of Allochthonous Dissolved Organic Carbon in Lakes: A Quantitative Approach T.
610	Evens [ed.]. PLoS ONE 6: e21884. doi:10.1371/journal.pone.0021884

611	Harvey, B. J., and N. J. Enright. 2022. Climate change and altered fire regimes: impacts on plant
612	populations, species, and ecosystems in both hemispheres. Plant Ecol. s11258-022-
613	01248-3. doi:10.1007/s11258-022-01248-3
614	Helms, J. R., A. Stubbins, E. M. Perdue, N. W. Green, H. Chen, and K. Mopper. 2013.
615	Photochemical bleaching of oceanic dissolved organic matter and its effect on absorption
616	spectral slope and fluorescence. Mar. Chem. 155 : 81–91.
617	doi:10.1016/j.marchem.2013.05.015
618	Helms, J. R., A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper. 2008.
619	Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and
620	photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 53: 955–
621	969. doi:10.4319/lo.2008.53.3.0955
622	Keeley, J. E., and C. J. Fotheringham. 2001. Historic Fire Regime in Southern California
623	Shrublands. Conserv. Biol. 15 : 1536–1548. doi:10.1046/j.1523-1739.2001.00097.x
624	Khan, E., and S. Subramania-Pillai. 2006. Effect of Leaching from Filters on Laboratory
625	Analyses of Collective Organic Constituents. Proc. Water Environ. Fed. 2006: 901–918.
626	doi:10.2175/193864706783749747
627	Kritzberg, E. S., E. M. Hasselquist, M. Škerlep, and others. 2020. Browning of freshwaters:
628	Consequences to ecosystem services, underlying drivers, and potential mitigation
629	measures. Ambio 49 : 375–390. doi:10.1007/s13280-019-01227-5
630	Larsen, I. J., L. H. MacDonald, E. Brown, and others. 2009. Causes of Post-Fire Runoff and
631	Erosion: Water Repellency, Cover, or Soil Sealing? Soil Sci. Soc. Am. J. 73: 1393–1407.
632	doi:10.2136/sssaj2007.0432

633	Lasslop, G., A. I. Coppola, A. Voulgarakis, C. Yue, and S. Veraverbeke. 2019. Influence of Fire
634	on the Carbon Cycle and Climate. Curr. Clim. Change Rep. 5: 112–123.
635	doi:10.1007/s40641-019-00128-9
636	Laurion, I., and N. Mladenov. 2013. Dissolved organic matter photolysis in Canadian arctic thaw
637	ponds. Env. Res Lett 13.
638	Lavabre, J., D. S. Torres, and F. Cernesson. 1993. Changes in the hydrological response of a
639	small Mediterranean basin a year after a wildfire. J. Hydrol. 142: 273–299.
640	doi:10.1016/0022-1694(93)90014-Z
641	Lewis, J., J. J. Rhodes, and C. Bradley. 2019. Turbidity Responses from Timber Harvesting,
642	Wildfire, and Post-Fire Logging in the Battle Creek Watershed, Northern California.
643	Environ. Manage. 63: 416–432. doi:10.1007/s00267-018-1036-3
644	Magyan, S., and C. M. Dempsey. 2021. The role of time and mixing in the degradation of
645	terrestrial derived dissolved organic carbon in lakes of varying trophic status. J.
646	Photochem. Photobiol. 8: 1–7. doi:10.1016/j.jpap.2021.100065
647	McCullough, I. M., K. S. Cheruvelil, J. Lapierre, N. R. Lottig, M. A. Moritz, J. Stachelek, and P.
648	A. Soranno. 2019. Do lakes feel the burn? Ecological consequences of increasing
649	exposure of lakes to fire in the continental United States. Glob. Change Biol. 25: 2841–
650	2854. doi:10.1111/gcb.14732
651	McEachern, P., E. E. Prepas, J. J. Gibson, and W. P. Dinsmore. 2000. Forest fire induced
652	impacts on phosphorus, nitrogen, and chlorophyll a concentrations in boreal subarctic
653	lakes of northern Alberta. 57: 9.
654	McKenzie, D., Z. Gedalof, D. L. Peterson, and P. Mote. 2004. Climatic Change, Wildfire, and
655	Conservation. Conserv. Biol. 18 : 890–902. doi:10.1111/j.1523-1739.2004.00492.x

656	McKnight, D. M., E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe, and D. T. Andersen.
657	2001. Spectrofluorometric characterization of dissolved organic matter for indication of
658	precursor organic material and aromaticity. Limnol. Oceanogr. 46: 38-48.
659	doi:10.4319/lo.2001.46.1.0038
660	Moody, J. A., and D. A. Martin. 2001. Initial hydrologic and geomorphic response following a
661	wildfire in the Colorado Front Range. Earth Surf. Process. Landf. 26: 1049–1070.
662	doi:10.1002/esp.253
663	Moran, M. A., and R. E. Hodson. 1990. Bacterial production on humic and nonhumic
664	components of dissolved organic carbon. Limnol. Oceanogr. 35: 1744–1756.
665	doi:10.4319/lo.1990.35.8.1744
666	Morris, D. P., and B. R. Hargreaves. 1997. The role of photochemical degradation of dissolved
667	organic carbon in regulating the UV transparency of three lakes on the Pocono Plateau.
668	Limnol. Oceanogr. 42: 239–249. doi:10.4319/lo.1997.42.2.0239
669	Mulholland, P. J., and J. W. Elwood. 1982. The role of lake and reservoir sediments as sinks in
670	the perturbed global carbon cycle. Tellus 34: 490–499. doi:10.1111/j.2153-
671	3490.1982.tb01837.x
672	Obernosterer, I., and R. Benner. 2004. Competition between biological and photochemical
673	processes in the mineralization of dissolved organic carbon. Limnol. Oceanogr. 49: 117-
674	124. doi:10.4319/lo.2004.49.1.0117
675	Parlanti, E. 2000. Dissolved organic matter uorescence spectroscopy as a tool to estimate
676	biological activity in a coastal zone submitted to anthropogenic inputs. Org. Geochem.
677	31.

678 Pellegrini, A. F. A., L. O. Hedin, A. C. Staver, and N. Govender. 2015. Fire Alters Ecosystem 679 Carbon and Nutrients but not Plant Nutrient Stoichiometry. Bull. Ecol. Soc. Am. 96: 680 340–343. doi:10.1890/0012-9623-96.2.340 681 Pereira, P., X. Úbeda, D. Martin, J. Mataix-Solera, and C. Guerrero. 2011. Effects of a low 682 severity prescribed fire on water-soluble elements in ash from a cork oak (Ouercus suber) 683 forest located in the northeast of the Iberian Peninsula. Environ. Res. 111: 237–247. 684 doi:10.1016/j.envres.2010.09.002 Santos, F., A. S. Wymore, B. K. Jackson, S. M. P. Sullivan, W. H. McDowell, and A. A. Berhe. 685 686 2019. Fire severity, time since fire, and site-level characteristics influence streamwater chemistry at baseflow conditions in catchments of the Sierra Nevada, California, USA. 687 688 Fire Ecol. **15**: 3. doi:10.1186/s42408-018-0022-8 689 Stedmon, C. A., and N. B. Nelson. 2015. The Optical Properties of DOM in the Ocean, p. 481– 690 508. *In Biogeochemistry of Marine Dissolved Organic Matter. Elsevier.* 691 Stevens-Rumann, C., and P. Morgan. 2016. Repeated wildfires alter forest recovery of mixed-692 conifer ecosystems. Ecol. Appl. 26: 1842–1853. doi:10.1890/15-1521.1 693 Uzun, H., R. A. Dahlgren, C. Olivares, C. U. Erdem, T. Karanfil, and A. T. Chow. 2020. Two 694 years of post-wildfire impacts on dissolved organic matter, nitrogen, and precursors of 695 disinfection by-products in California stream waters. Water Res. 181: 115891. 696 doi:10.1016/j.watres.2020.115891 697 Wagner, S., R. Jaffé, and A. Stubbins. 2018. Dissolved black carbon in aquatic ecosystems. 698 Limnol. Oceanogr. Lett. 3: 168–185. doi:10.1002/lol2.10076 699 Wang, J.-J., R. A. Dahlgren, and A. T. Chow. 2015. Controlled Burning of Forest Detritus 700 Altering Spectroscopic Characteristics and Chlorine Reactivity of Dissolved Organic

/01	Matter: Effects of Temperature and Oxygen Availability. Environ. Sci. Technol. 49:
702	14019–14027. doi:10.1021/acs.est.5b03961
703	Ward, N. D., T. S. Bianchi, P. M. Medeiros, M. Seidel, J. E. Richey, R. G. Keil, and H. O.
704	Sawakuchi. 2017. Where Carbon Goes When Water Flows: Carbon Cycling across the
705	Aquatic Continuum. Front. Mar. Sci. 4. doi:10.3389/fmars.2017.00007
706	Weishaar, J. L., G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii, and K. Mopper. 2003.
707	Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical
708	Composition and Reactivity of Dissolved Organic Carbon. Environ. Sci. Technol. 37:
709	4702–4708. doi:10.1021/es030360x
710	Wetzel, R. G. 1984. Detrital Dissolved and Particulate Organic Carbon Functions in Aquatic
711	Ecosystems. Bull. Mar. Sci. 35 : 503–509.
712	Wilske, C., P. Herzsprung, O. J. Lechtenfeld, N. Kamjunke, and W. von Tümpling. 2020a.
713	Photochemically Induced Changes of Dissolved Organic Matter in a Humic-Rich and
714	Forested Stream. Water 12: 331. doi:10.3390/w12020331
715	Wilske, C., P. Herzsprung, O. J. Lechtenfeld, N. Kamjunke, and W. von Tümpling. 2020b.
716	Photochemically Induced Changes of Dissolved Organic Matter in a Humic-Rich and
717	Forested Stream. Water 12: 331. doi:10.3390/w12020331
718	Wood, S. N. 2017. Generalized Additive Models: An Introduction with R, Second Edition, 2nd
719	Edition. Chapman and Hall/CRC.
720	Yang, C., W. Sun, and X. Ao. 2020. Bacterial inactivation, DNA damage, and faster ATP
721	degradation induced by ultraviolet disinfection. Front. Environ. Sci. Eng. 14: 13.
722	doi:10.1007/s11783-019-1192-6

723	Zedler, P. H., C. R. Gautier, and G. S. McMaster. 1983. Vegetation Change in Response to
724	Extreme Events: The Effect of a Short Interval between Fires in California Chaparral and
725	Coastal Scrub. Ecology 64 : 809–818. doi:10.2307/1937204
726	Zsolnay, A., E. Baigar, M. Jimenez, B. Steinweg, and F. Saccomandi. 1999. Differentiating with
727	fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to
728	drying. Chemosphere 38 : 45–50. doi:10.1016/S0045-6535(98)00166-0
729	
730	Acknowledgements:
731	We thank Keyshawn Ford, Bautista Tobias, Kirby Inocente, Tristie Le, and Ariana Brisco-
732	Schoefield for their assistance, and Dr. Eric Schmelz for logistical support. This project was
733	funded by support from NSF DEB 2018058.
734	
735	Data accessibility
736	All data and scripts are available at Github (http://www.github.com/cjspiegs/Pyromania) and are
737	archived at Zenodo (xxx – will update following peer review).
738	
139	
740	
41	
42	
743	
744	
45	

Fire and browning effects on DOM

Supplemental Tables

Table S1. Model selection for dissolved organic carbon (DOC) concentration candidate GAM models* assessed with Akaike Information Criterion (AIC) at Days-10, 31, 59, and 89.

Variable Model		AIC
Day 10: Treatment with by-factor smooth	10.859	147
Day 10: Treatment with global smooth	6.597	158
Day 10: global smooth	5.480	162
Day 31: Treatment with by-factor smooth	12.461	118
Day 31: Treatment with global smooth	6.269	160
Day 31: global smooth	5.333	158
Day 59: Treatment with by-factor smooth	8.245	64
Day 59: Treatment with global smooth	4.000	70
Day 59: global smooth	3.000	76
Day 89: Treatment with by-factor smooth	6.324	111
Day 89: Treatment with global smooth	5.389	109
Day 89: global smooth	4.384	108
	Day 10: Treatment with by–factor smooth Day 10: Treatment with global smooth Day 10: global smooth Day 31: Treatment with by–factor smooth Day 31: Treatment with global smooth Day 31: global smooth Day 59: Treatment with by–factor smooth Day 59: Treatment with global smooth Day 59: global smooth Day 89: Treatment with by–factor smooth Day 89: Treatment with global smooth	Day 10: Treatment with by–factor smooth Day 10: Treatment with global smooth Day 10: global smooth Day 31: Treatment with by–factor smooth Day 31: Treatment with global smooth Day 31: global smooth Day 31: global smooth Day 59: Treatment with by–factor smooth Day 59: Treatment with global smooth Day 59: global smooth Day 59: global smooth Day 89: Treatment with by–factor smooth Day 89: Treatment with global smooth Day 89: Treatment with global smooth Day 89: Treatment with global smooth Day 89: Treatment with global smooth 5.389

*Treatment with by-factor smooth has parametric terms (Treatment) and separate smooths for each fire treatment;

Treatment with global smooth uses an estimated mean allowing for off-set intercepts according to fire treatment. The

global smooth fits one estimated mean as a global smooth to all data. Bolded lowest AIC values represent the

selected models.

763

764

Table S2. Model selection for fluorescence and UV-vis absorbance indices with candidate GAM models* assessed with Akaike Information Criterion (AIC) at Days-10, 31, 59, and 89.

SUVA Day 10: Treatment with by-factor smooth Day 10: Treatment with global smooth Control Contro	Variable	Model	df	AIC	
Day 10: Treatment with global smooth	SUVA	Day 10: Treatment with by-factor smooth	11.829	16	
Day 10: global smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with global smooth Day 31: global smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 59: global smooth Day 59: global smooth Day 69: Treatment with global smooth Day 89: Treatment with global smooth Day 89: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 89: global smooth Day 10: global smooth Day 10: global smooth Day 11: Treatment with global smooth Day 31: Treatment with global smooth Day 31: Treatment with global smooth Day 59: global smooth Day 59: global smooth Day 59: global smooth Day 59: global smooth Day 69: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 10: global smooth Day 10: global smooth Day 11: Treatment with by-factor smooth Day 12: Treatment with by-factor smooth Day 13: Treatment with by-factor smooth Day 31: global smooth Day 59: Treatment with by-factor smooth Day 59: Treatment with by-factor smooth Day 59: global smooth Day 59: Treatment with by-factor smooth Day 59: Treat			7.758	18	
Day 31: Treatment with by-factor smooth Day 31: Treatment with global smooth Day 31: Treatment with global smooth Day 59: Treatment with by-factor smooth Day 59: Treatment with by-factor smooth Day 59: Global smooth Day 10: Treatment with global smooth Day 10: Global smooth Day 59: Treatment with global smooth Day 59:	- 1		WESTER BUCK	1,100,000	
Day 31: Treatment with global smooth			6.560	166	
Day 31: global smooth Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 69: Treatment with by-factor smooth Day 69: Treatment with by-factor smooth Day 69: Global smooth Day 69: Global smooth Day 10: Treatment with by-factor smooth Day 10: Treatment with by-factor smooth Day 10: Global smooth Day 69: Global smooth Day 71: Treatment with by-factor smooth Day 72: Treatment with by-factor smooth Day 73: Treat	- 1		5.095	168	
Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 59: global smooth Day 69: global smooth Day 69: global smooth Day 70: global smooth Day 59: global smooth Day 59: global smooth Day 59: global smooth Day 60: global smooth Day 70: global smooth Day 80: global smoo		· · · · · · · · · · · · · · · · · · ·	4.087	167	
Day 59: Treatment with global smooth			10.018	23	
Day 89: Treatment with by-factor smooth			7.067	28	
Day 89: Treatment with by-factor smooth	- 1		5.518	36	
Day 89: global smooth			6.949	33	
Day 89: global smooth	- 1		1010010000000	38	
Day 10: Treatment with global smooth			4.576	36	
Day 10: Treatment with global smooth	HIX			62	-
Day 31: Treatment with by-factor smooth 5,000 30 28 31: Treatment with global smooth 28 3,000 28 3,000 28 3,000 28 3,000 28 3,000 28 3,000 28 3,000 28 3,000 28 3,000 28 3,000 28 3,000 28 3,000 28 3,000 28 3,000 28 3,000 28 3,000 28 3,000 3,000 28 3,000 3,000 28 3,000 3,000 3,000 3,000 28 3,000 3			4.000	60	
Day 31: Treatment with by-factor smooth Day 31: Treatment with global smooth Day 31: Jobal smooth Day 31: Jobal smooth Day 31: Jobal smooth Day 31: Treatment with by-factor smooth Day 59: Treatment with by-factor smooth Day 59: Treatment with by-factor smooth Day 89: global smooth Day 89: global smooth Day 89: global smooth Day 89: global smooth Day 10: Treatment with global smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with by-factor smooth Day 31: global smooth Day 31: global smooth Day 59: global smooth Day 59: global smooth Day 59: global smooth Day 59: global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 89: global smooth Day 89: global smooth Day 89: global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 10: Treatment with global smooth Day 10: global smooth Day 31: Treatment with by-factor smooth Day 31: global smooth Day 89: Treatment with by-factor smoo			3.000	59	
Day 31: Treatment with global smooth Day 31: global smooth Day 59: Treatment with by-factor smooth Day 59: global smooth Day 59: global smooth Day 59: global smooth Day 59: global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 89: Global smooth Day 89: Global smooth Day 89: Global smooth Day 10: Treatment with global smooth Day 10: Treatment with global smooth Day 31: Treatment with by-factor smooth Day 31: global smooth Day 59: global smooth Day 59: global smooth Day 59: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 89: global smooth Day 89: Treatment with global smooth Day 89: global smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with by-factor smooth Day 31: global smooth Day 89: global smooth Day 89: global smooth Day 89: global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 89: global smooth Day 89: globa				30	
Day 31: global smooth 3.000 28					
Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 59: Global smooth Day 59: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: Treatment with global smooth Day 89: Global smooth Day 89: Global smooth Day 89: Global smooth Day 89: Treatment with global smooth Day 89: Treatment with global smooth Day 31: Treatment with global smooth Day 31: Treatment with global smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Bay 89: Treatment with global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 89: Global smooth Day 89: Global smooth Day 10: Treatment with global smooth Day 10: Treatment with by-factor smooth Day 10: Treatment with global smooth Day 31: Treatment with global smooth Day 31: Treatment with by-factor smooth Day 39: Treatment with by-factor smooth Day 39: Treatment with by-factor smooth Day 39: Treatment with global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: Treatment with global smooth Day 89: Treatment with by-factor smooth Day 10: Treatment with global smooth Day 10: Treatment with by-factor smooth Day 10: Treatment with by-factor smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with by-factor smooth Day 31: Treatment			500000000		
Day 59: Treatment with global smooth			11900000000000	J. J. Service	
Day 59: global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth A.841 52					
Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 10: Treatment with y-factor smooth Day 10: Treatment with global smooth Day 10: Treatment with global smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with global smooth Day 31: Treatment with global smooth Day 31: Treatment with by-factor smooth Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 10: Treatment with global smooth Day 10: Treatment with global smooth Day 10: global smooth Day 31: Treatment with global smooth Day 31: Treatment with y-factor smooth Day 31: Treatment with global smooth Day 31: global smooth Day 31: global smooth Day 31: global smooth Day 31: global smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 59: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 10: T			ADDRESS OF THE PARTY OF THE PAR		
Day 89: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 10: Treatment with by-factor smooth Day 10: Treatment with global smooth Day 31: Treatment with global smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with global smooth Day 31: Treatment with global smooth Day 31: Treatment with global smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 89: global smooth Day 10: Treatment with global smooth Day 10: Treatment with global smooth Day 10: global smooth Day 31: Treatment with global smooth Day 39: Treatment with global smooth Day 59: Treatment with global smooth Day 89: Treatment with global smooth Day 10: Treatment with globa					
Day 89: global smooth			W. 2000 W. 1000	A Section	
Slope ratio Day 10: Treatment with by-factor smooth Day 10: Treatment with global smooth Day 10: Ireatment with global smooth S.172 12 12 13 14 15 14 15 15 15 15 16 16 16 16				1200	
Day 10: Treatment with global smooth	Slope ratio				
Day 10: global smooth 11.537 -13 -	Jope Halle				
Day 31: Treatment with by-factor smooth Day 31: global smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 59: global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 89: global smooth Day 10: Treatment with by-factor smooth Day 10: global smooth Day 31: Treatment with global smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 89: Treatment with global smooth Day 10: Treatment with global smooth					
Day 31: Treatment with global smooth Day 31: global smooth Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 59: global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 10: Treatment with by-factor smooth Day 10: Treatment with global smooth Day 10: global smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with global smooth Day 39: global smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 89: Global smooth Day 89: Global smooth Day 10: Treatment with global smooth			20010000000	0.10	
Day 31: global smooth 6.712 -22			INTERNATION .	les avoid	
Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 59: global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 10: Treatment with by-factor smooth Day 10: Treatment with global smooth Day 10: global smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with global smooth Day 31: Treatment with global smooth Day 31: global smooth Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 89: Treatment with global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 89: global smooth Day 89: Treatment with global smooth Day 89: global smooth Day 89: Treatment with global smooth Day 10: Treatment with global smooth Day 10: Treatment with global smooth Day 11: Treatment with global smooth Day 12: Treatment with global smooth Day 13: Treatment with global smooth			7000 MINOR		
Day 59: Treatment with global smooth			0.0000000000000000000000000000000000000		
Day 59: global smooth 5.747 -6					
Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: global smooth Day 10: Treatment with by-factor smooth Day 10: Treatment with global smooth Day 10: global smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with by-factor smooth Day 31: global smooth Day 31: global smooth Day 31: global smooth Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 89: Treatment with global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 10: Treatment with by-factor smooth Day 10: Treatment with global smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with by-factor smooth			100000000000000000000000000000000000000		
Day 89: Treatment with global smooth Day 89: global smooth 6.396 -44 FR Day 10: Treatment with by-factor smooth Day 10: global smooth Day 10: global smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with by-factor smooth Day 31: Treatment with global smooth Day 31: global smooth Day 31: global smooth Day 31: global smooth Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 10: Treatment with by-factor smooth Day 10: Treatment with global smooth Day 10: global smooth Day 10: global smooth Day 31: Treatment with by-factor smooth			100000000000000000000000000000000000000		-
Day 31: Treatment with by-factor smooth Day 31: Treatment with global smooth Day 31: global smooth Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 59: global smooth Day 59: global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 89: global smooth Day 10: Treatment with global smooth Day 10: global smooth Day 31: Treatment with by-factor smooth				-42	
Day 31: Treatment with by-factor smooth Day 31: Treatment with global smooth Day 31: global smooth Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 59: global smooth Day 59: global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 89: global smooth Day 10: Treatment with global smooth Day 10: global smooth Day 31: Treatment with by-factor smooth			6.396	-44	
Day 31: Treatment with by-factor smooth Day 31: Treatment with global smooth Day 31: global smooth Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 59: global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 10: Treatment with by-factor smooth Day 10: Treatment with global smooth Day 10: global smooth Day 10: Treatment with global smooth Day 10: global smooth Day 31: Treatment with by-factor smooth	FR		6.194	-5	7/
Day 31: Treatment with by-factor smooth Day 31: Treatment with global smooth Day 31: global smooth Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 59: global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 10: Treatment with by-factor smooth Day 10: Treatment with global smooth Day 10: global smooth Day 10: Treatment with global smooth Day 10: global smooth Day 31: Treatment with by-factor smooth			100000000000000000000000000000000000000		
Day 31: Treatment with by-factor smooth Day 31: Treatment with global smooth Day 31: global smooth Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 59: Treatment with global smooth Day 59: global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 10: Treatment with by-factor smooth Day 10: Treatment with global smooth Day 10: global smooth Day 10: Treatment with global smooth Day 10: global smooth Day 31: Treatment with by-factor smooth			3.000	2	
Day 31: Treatment with global smooth Day 31: global smooth Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 59: global smooth Day 59: global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 10: Treatment with global smooth Day 10: Treatment with global smooth Day 10: Treatment with global smooth Day 10: global smooth Day 31: Treatment with by-factor smooth		Day 31: Treatment with by-factor smooth	6.756	-102	
Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 59: global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 10: Treatment with by-factor smooth Day 10: Treatment with global smooth Day 10: global smooth Day 10: global smooth Day 10: global smooth Day 31: Treatment with by-factor smooth				-101	
Day 59: Treatment with by-factor smooth Day 59: Treatment with global smooth Day 59: global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 10: Treatment with by-factor smooth Day 10: Treatment with global smooth Day 10: global smooth Day 31: Treatment with by-factor smooth	- 1				
Day 59: Treatment with global smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 10: Treatment with by-factor smooth Day 10: Treatment with global smooth Day 10: Treatment with global smooth Day 10: global smooth Day 31: Treatment with by-factor smooth			A44.048.00		_
Day 59: global smooth Day 89: Treatment with by–factor smooth Day 89: Treatment with global smooth Day 89: global smooth Day 89: global smooth Day 10: Treatment with by–factor smooth Day 10: Treatment with global smooth Day 10: global smooth Day 10: global smooth Day 31: Treatment with by–factor smooth			123000000		
Day 89: Treatment with by-factor smooth Day 89: Treatment with global smooth Day 89: global smooth Day 10: Treatment with by-factor smooth Day 10: Treatment with global smooth Day 10: global smooth Day 10: global smooth Day 31: Treatment with by-factor smooth					
Day 89: Treatment with global smooth Day 89: global smooth 3.470 Pi Day 10: Treatment with by–factor smooth Day 10: Treatment with global smooth Day 10: global smooth Day 10: global smooth Day 31: Treatment with by–factor smooth Day 31: Treatment with by–factor smooth Day 31: Treatment with by–factor smooth				Total Control	_
Day 89: global smooth 3.470 -93 FI Day 10: Treatment with by-factor smooth 6.893 40 Day 10: Treatment with global smooth 5.277 43 Day 10: global smooth 4.300 42 Day 31: Treatment with by-factor smooth 10.411 -55				1000	
FI Day 10: Treatment with by–factor smooth	- 1		Line and the second	2000	
Day 10: Treatment with global smooth Day 10: global smooth 4.300 Day 31: Treatment with by–factor smooth Day 31: Treatment with by–factor smooth	FI				+
Day 10: global smooth 4.300 42 Day 31: Treatment with by–factor smooth 10.411 –55	10.00				
Day 31: Treatment with by–factor smooth 10.411 –55				1 22 22 22 2	
Day 31: Treatment with global smooth 5.358 –45		Day 31: Treatment with global smooth	Albert State of the State of th		
Day 31: global smooth 4.351 –46			200000000000000000000000000000000000000		
Day 59: Treatment with by–factor smooth 7.129 –46	- 1	, ,			
Day 59: Treatment with global smooth 5.565 –48			10001000000	10.000	
Day 59: global smooth 4.546 –49					
Day 89: Treatment with by–factor smooth 6.425 –21				10.20	_
Day 89: Treatment with global smooth 4.000 –23			5-10000000000		
Day 89: global smooth 3.000 –24	- 1				

766	*Treatment with by-factor smooth has parametric terms (Treatment) and separate smooths for each fire treatment;
767	Treatment with global smooth uses an estimated mean allowing for off-set intercepts according to fire treatment. The
768	global smooth fits one estimated mean as a global smooth to all data. Bolded lowest AIC values represent the
769	selected models.
770	
771	
772	
773	
774	
775	
776	
777	
778	
779	
780	
781	
782	
783	
784	
785	
786	
787	
788	
789	

Table S3. Model selection for percent DOC change with candidate GAM models* assessed in each incubation condition (UV-only, Microbes-only, UV and microbes) with Akaike Information Criterion (AIC) at Days-10, 31, 59, and 89.

Variable	Model	df	AIC
Plant mass	UV-only: Treatment with by-factor smooth	3.000	198
	UV-only: Treatment with global smooth	3.000	198
	UV-only: global smooth	2.000	197
	Microbes-only: Treatment with by-factor smooth	9.594	186
	Microbes-only: Treatment with global smooth	6.703	182
	Microbes-only: global smooth	5.692	181
	UV and microbes: Treatment with by-factor smooth	9.659	186
	UV and microbes: Treatment with global smooth	6.971	181
	UV and microbes: global smooth	6.013	179
SUVA	UV-only: Treatment with by-factor smooth	3.000	198
	UV-only: Treatment with global smooth	3.000	198
	UV-only: global smooth	2.000	197
	Microbes-only: Treatment with by-factor smooth	7.608	193
	Microbes-only: Treatment with global smooth	5.845	192
	Microbes-only: global smooth	4.862	191
	UV and microbes: Treatment with by-factor smooth	7.608	193
	UV and microbes: Treatment with global smooth	5.741	190
	UV and microbes: global smooth	4.792	188
HIX	UV-only: Treatment with by-factor smooth	6.958	183
	UV-only: Treatment with global smooth	7.343	182
	UV-only: global smooth	5.743	190
	Microbes-only: Treatment with by-factor smooth	5.200	208
	Microbes-only: Treatment with global smooth	8.010	198
	Microbes-only: global smooth	7.085	197
	UV and microbes: Treatment with by-factor smooth	5.142	211
	UV and microbes: Treatment with global smooth	8.532	200
	UV and microbes: global smooth	7.661	198

⁷⁹³

794

795

796

790

791

792

selected models.

^{*}Treatment with by-factor smooth has parametric terms (Treatment) and separate smooths for each fire treatment;

Treatment with global smooth uses an estimated mean allowing for off-set intercepts according to fire treatment. The global smooth fits one estimated mean as a global smooth to all data. Bolded lowest AIC values represent the

Fire and browning effects on DOM

Table S4. Model selection for percent mass loss with candidate GAM models* assessed with Akaike Information Criterion (AIC) at Days-10, 31, 59, and 89 for each plant type (sage and willow) by fire treatment.

Variable	Model	df	AIC
Plant mass	Sage: Treatment with by-factor smooth	9.047	167
	Sage: Treatment with global smooth	6.518	181
	Sage: global smooth	5.350	183
	Willow: Treatment with by-factor smooth	5.781	217
	Willow: Treatment with global smooth	3.000	251
	Willow: global smooth	4.399	223
	Burned: plant type with by-factor smooth	10.253	206
	Burned: plant type with global smooth	9.239	200
	Burned: global smooth	5.112	226
	Unburned: plant type with by-factor smooth	11.762	155
	Unburned: plant type with global smooth	8.544	181
	Unburned: global smooth	7.007	185

*Treatment with by-factor smooth has parametric terms (Treatment) and separate smooths for each fire treatment;

Treatment with global smooth uses an estimated mean allowing for off-set intercepts according to fire treatment. The global smooth fits one estimated mean as a global smooth to all data. Bolded lowest AIC values represent the

selected models.

Supplemental Figures

Figure S1. Pictures of the two severity groups taken after burning **a:** low severity and **b:** high severity.

Figure S2. Differences in dissolved organic carbon (DOC) concentration for fitted smooth functions between fire treatments (burned vs. unburned) across plant biomass. Difference in trends shown in red with approximate 95% confidence intervals.

848

849

850

Figure S3. Differences between fitted smooth functions between the fire treatments (difference in trends; solid lines) for fluorescence and UV-vis absorbance indices shown in red with approximate 95% confidence intervals.

852

854

855

856

857

858

859

Figure S4. Six Excitation-Emission Matrices (EEMs) showing fluorescence of dissolved organic carbon (DOC) at Day 10: Panel A = 5g, unburned; Panel B = 5g, burned; Panel C = 125g, unburned; Panel D = 125g, burned; Panel E = 225g, unburned; Panel F = 225g, burned. Note, the presence or absence of fluorescence peaks, intensity of fluorescence response, and shifts in peak maxima have all been shown to provide information about DOC chemistry and origin: Peak A (humic-like, λ ex= \sim 250 nm; λ em=380-460 nm), Peak C (humic-like, λ ex= \sim 405 nm; λ em=490-510 nm), Peak M (protein-like, $\lambda ex = \sim 312$ nm; $\lambda em = 380-420$ nm), and Peak B (protein-like, $\lambda ex = 275 \text{ nm}; \lambda em = 310-320 \text{ nm}.$

Figure S5. Six Excitation-Emission Matrices (EEMs) showing fluorescence of dissolved organic carbon (DOC) at Day 31: Panel A = 5g, unburned; Panel B = 5g, burned; Panel C = 125g, unburned; Panel D = 125g, burned; Panel E = 225g, unburned; Panel F = 225g, burned. Note, the presence or absence of fluorescence peaks, intensity of fluorescence response, and shifts in peak maxima have all been shown to provide information about DOC character and origin. Peak A (λ ex=~250 nm; λ em=380-460 nm), Peak C (λ ex=~405 nm; λ em=490-510 nm), Peak M (λ ex=~312 nm; λ em=380-420 nm), and Peak B (λ ex=~275 nm; λ em=~310-320 nm).

Figure S6. Six Excitation-Emission Matrices (EEMs) showing fluorescence of dissolved organic carbon (DOC) at Day 59: Panel A = 5g, unburned; Panel B = 5g, burned; Panel C = 125g, unburned; Panel D = 125g, burned; Panel E = 225g, unburned; Panel F = 225g, burned. Note, the presence or absence of fluorescence peaks, intensity of fluorescence response, and shifts in peak maxima have all been shown to provide information about DOC character and origin. Peak A (λ ex=~250 nm; λ em=380-460 nm), Peak C (λ ex=~405 nm; λ em=490-510 nm), Peak M (λ ex=~312 nm; λ em=380-420 nm), and Peak B (λ ex=~275 nm; λ em=~310-320 nm).

Figure S7. Six Excitation-Emission Matrices (EEMs) showing fluorescence of dissolved organic carbon (DOC) at Day 89: Panel A = 5g, unburned; Panel B = 5g, burned; Panel C = 125g, unburned; Panel D = 125g, burned; Panel E = 225g, unburned; Panel F = 225g, burned. Note, the presence or absence of fluorescence peaks, intensity of fluorescence response, and shifts in peak maxima have all been shown to provide information about DOC character and origin. Peak A (humic-like, λ ex= \sim 250 nm; λ em=380-460 nm), Peak C (humic-like, λ ex= \sim 405 nm; λ em=490-510 nm), Peak M (protein-like, λ ex= \sim 312 nm; λ em=380-420 nm), and Peak B (protein-like, λ ex= \sim 275 nm; λ em= \sim 310-320 nm).

Figure S8. (a) Net ecosystem productivity (NPP) and (b) respiration (R) in treatments receiving burned and unburned plant material across four sampling periods. Plots with a single global smooth indicates that a model with one fit line for the burned and unburned treatments best describes the data, while separate smooths for each fire treatment indicate that a model with different fits for the two burning treatments showed best agreement.