IST 718 : Big Data Analytics

Group 7

Severity Analysis of US Accidents

Under Prof. Williamson

> Harshita Asnani Manan Meghani Rajvee Shah Yaksh Shobhawat

Problem Statement

- Despite exercising safety rules, the number of deaths caused due to road accidents is pretty high.
- With this project, we are trying to find the states with the highest accident rates and hottest spots for accidents in those states.
- We plan on analyzing the conditions that make these spots more accident prone as compared to others
- We will also be building classification models to predict the severity of accidents

Project description

- Countrywide car accident dataset, which covers 49 states of the United States of America
- Consists of around 3 million accident occurrences and 49 variables
- Data is collected from February 2016 to December 2019, using several data providers, including two APIs that provide streaming traffic incident data.
- US-Accidents can be used for numerous applications and we have implemented casualty analysis and have tried to study the impact of environmental stimuli on accident occurrence

Project Overview

- About the data, data preprocessing
- Data visualization
- Model building
- Results/Summary

Visualizations

- Three API sources reported the accidents
- Most of the accidents (around 1,700,000) were reported by MapQuest, followed by Bing.

Countplot of accidents w.r.t State

Countplot of accidents w.r.t Weather_Condition

'Mostly Cloudy' and 'Overcast' conditions mostly responsible for accidents

Countplot of accidents w.r.t County

Correlation Matrix

Data Preparation

Feature	Number of null values
TMC	728071
Description	1
Number	1917605
City	83
Zipcode	880
Timezone	3163
Airport_Code	5691
Weather_Timestamp	36705
Wind_Direction	45101
Weather_Condition	65932
Sunrise_sunset	93
Civil_Twilight	93
Nautical_Twilight	93
Astonomical_Twilight	93

- Dataset is huge
- Removed Null values and NAs
- Filtered the variables
- Converted certain categorical variable features to numerical variables for analysis

Decision Trees

Parameters	Accuracy	Runtime
maxDepth=3	67.76%	39.98 mins
maxDepth=5, maxBins=32	65.70%	51.13 mins
maxDepth=6, maxBins=32	65.59%	58.79 mins
maxDepth=7, maxBins=50	63.97%	1 hr 9 mins

Naive Bayes

Parameters	Accuracy	Runtime
smoothing=1.0	82.8%	4.61 mins
smoothing=0.5	83.21%	4.62 mins
smoothing=0.4	83.35%	4.51 mins
smoothing=0.2	83.7%	4.79 mins
smoothing=0.1	84%	4.67 mins

Logistic Regression

Parameter	Accuracy
maxIter = 100, elasticNetPram= 0.0, netParam = 0.0	90.08%
maxIter = 100, elasticNetPram= 0.3, netParam = 0.2	73.84%
maxIter = 100, elasticNetPram= 0.1, netParam = 0.3	78.07%

Random Forest

Parameters	Accuracy
Default Parameters	79.35%
numTrees = 100, maxDepth = 5, impurity = entropy	81.18%
numTrees = 100, maxDepth = 5, impurity = gini	81.22%
numTrees = 200, maxDepth = 6, impurity = gini	81.86%

feature	importance
Crossing_indexed	0.049128
Wind_Direction	0.047204
Visibility(mi)	0.040703
Bump_indexed	0.039750
Wind_Speed(mph)	0.033133
Start_Lng	0.032682
Precipitation(in)	0.032478
Side	0.029579
Start_Lat	0.029257
Street	0.020860
Weather_Timestamp	0.010663
No_Exit_indexed	0.010418
Weather_Condition	0.010381
Severity	0.008760

Gradient Boosting

Parameters - Default

Accuracy - 82.41

	feature	importance
45	Bump_indexed	0.094865
5	Start_Lng	0.068120
46	Crossing_indexed	0.046466
24	Wind_Speed(mph)	0.045533
4	Start_Lat	0.039764
23	Wind_Direction	0.029821
48	Junction_indexed	0.025638
51	Roundabout_indexed	0.013714
54	Traffic_Calming_indexed	0.013138
52	Station_indexed	0.012999
9	Side	0.009120
79	Traffic_Signal_indexed_encoded	0.002459
17	Weather_Timestamp	0.002430
22	Visibility(mi)	0.001504
0	ТМС	0.001057
18	Temperature(F)	0.000437
1	Severity	0.000347
25	Precipitation(in)	0.000241
31	Junction	0.000123
21	Pressure(in)	0.000042
36	Stop	0.000038
13	Zipcode	0.000024
60	State_indexed	0.000019
33	Railway	0.000011
27	Amenity	0.000006
24	Poundahout	0.000005

Models Used

Naïve Bayes

Decision Trees

Random Forest

Gradient Boosting

Logistic Regression

	PARAMETERS	ACCURACY	RUNTIME	DRAWBACKS
Decision Trees	maxdepth=3	67.76 %	30 mins	A small change in the data can cause a large change in the structure of the decision tree causing instability sometimes calculation can go far more complex compared to other algorithms often involves higher time to train the model training is relatively expensive as complexity and time taken is more
	maxdepth=5, maxbins=32	67.76 %	52 mins	Tompromy and third union is more
Random Forest	numTrees = 100, maxDepth =5, impurity = Gini	81.22 %	30 min	more complex and time consuming than decision trees require more computational resources less intuitive
	numTrees = 100, maxDepth = 5, impurity = entropy	81.19 %		
Gradient Boosting	Default	82.41%		training generally takes longer because of the fact that trees are built sequentially
Naïve Bayes	featuresCol="features", labelCol="label", smoothing=1.0	82.80 %		makes a very strong assumption that any two features are independent given the output class
	featuresCol="features", labelCol="label", smoothing=0.5	83.21 %		
	featuresCol="features", labelCol="label", smoothing=0.2	83.7 %		
	featuresCol="features", labelCol="label", smoothing=0.1	84 %		
Logistic Regression	labelCol = "Severity"	90.08 %	15 min	

Results Summary

	Algorithm	Decision Tree	Random Forest	Gradient Boosting	Naïve Bayes	Logistic Regression
	Parameter	maxDepth = 3	numTrees=100 maxDepth = 5 impurity = gini	Default parameters	Smoothing= 0.1	Default
$\left(\right) $	Accuracy	67.76%	81.22%	82.41%	84%	90.02%
	Runtime	40 mins	39.98 mins	2 hrs	5 mins	15mins

Problems encountered

- Size of the data
- Proper representation of the main data
- Handling Outliers
- High Volume of NaN Values.
- Algorithm Execution

Credits

Data Preprocessing	Rajvee, Yaksh
Data Visualization	Rajvee, Yaksh
Logistic Regression	Yaksh, Harshita
Naive Bayes, Decision Tree	Manan
Random Forest, Gradient Boosting	Harshita

