ESO204A-Fluid Mechanics and rate processes

Tutorial 1

Date: 02/08/18

Note: Tutorial problems are from 7th edition of the textbook.

1. P1.56

An approximation for the boundary-layer shape in Figs. 1.6b and P1.51 is the formula

$$u(y) \approx U \sin\left(\frac{\pi y}{2\delta}\right), \quad 0 \le y \le \delta$$

where U is the stream velocity far from the wall and δ is the boundary layer thickness, as in Fig. P.151. If the fluid is helium at 20°C and 1 atm, and if U=10.8 m/s and $\delta=3$ cm, use the formula to (a) estimate the wall shear stress τ_w in Pa, and (b) find the position in the boundary layer where τ is one-half of τ_w .

2. P1.57

The belt in Fig. P1.52 moves at a steady velocity V and skims the top of a tank of oil of viscosity μ , as shown.

Assuming a linear velocity profile in the oil, develop a simple formula for the required belt-drive power P as a function of (h, L, V, b, μ) . What belt-drive power P, in watts, is required if the belt moves at 2.5 m/s over SAE 30W oil at 20°C, with L=2 m, b=60 cm, and h=3 cm?

3. P1.58

A solid cone of angle 2θ , base r_0 , and density ρ_c is rotating with initial angular velocity ω_0 inside a conical seat, as shown in Fig. P1.53. The clearance h is filled with oil of viscosity μ . Neglecting air drag, derive an analytical expression for the cone's angular velocity $\omega(t)$ if there is no applied torque.

4. P1.59

A disk of radius R rotates at an angular velocity Ω inside a disk-shaped container filled with oil of viscosity μ , as shown in Fig. P1.54. Assuming a linear velocity profile and neglecting shear stress on the outer disk edges, derive a formula for the viscous torque on the disk.

5. P1.61

The device in Fig. P1.56 is called a *cone-plate viscometer* [29]. The angle of the cone is very small, so that $\sin \theta \approx \theta$, and the gap is filled with the test liquid. The torque M to rotate the cone at a rate Ω is measured. Assuming a linear velocity profile in the fluid film, derive an expression for fluid viscosity μ as a function of (M, R, Ω, θ) .

6. P1.62

Extend the steady flow between a fixed lower plate and a moving upper plate, from Fig. 1.8, to the case of two immiscible liquids between the plates, as in Fig. P1.57.

(a) Sketch the expected no-slip velocity distribution u(y) between the plates. (b) Find an analytic expression for the velocity U at the interface between the two liquid layers. (c) What is the result of (b) if the viscosities and layer thicknesses are equal?