

Nombres complexes

I. Notion de nombre complexe :

1. Théorème:

Théorème:

Il existe un ensemble noté $\mathbb C$, appelé ensemble des nombres complexes qui possède les propriétés suivantes :

- 1. Ccontient l'ensemble des nombres réels;
- 2. L'addition et la multiplication des nombres réels se prolongent aux nombres complexes et les règles de calcul restent les mêmes.
- 3. Il existe un nombre complexe noté i tel que $i^2 = -1$;
- 4. Tout nombre complexe z s'écrit de manière unique z=x+iy avec x et y réels.

EXEMPLE:

z = 3 + 5i; z = -3.7i; z = -7i sont des nombres complexes.

UN PEU D'HISTOIRE:

En 1777, Euler introduit la lettre i, Gauss en généralisera l'emploi à partir de 1830.

2. Définition:

Définition :

L'écriture z = x+iy avec x et y réels est appelée forme algébrique du nombre complexe z.

x est la partie réelle de z, notée Re(z).

y est la partie imaginaire de z, notée Im(z).

EXEMPLE:

z = -3 + 5i alors Re(z) = -3 et Im(z) = 5

REMARQUE:

- 1. Les parties réelles et imaginaires sont des nombres réels.
- 2. Lorsque y=0, z est un réel et lorsque x=0, z=iy (y réel) est appelé imaginaire pur.

3. Propriété 1:

Propriété:

Deux nombres complexes sont égaux si et seulement si, ils ont même partie réelle et même partie imaginaire.

REMARQUE:

- 1. Cette propriété découle de l'unicité de l'écriture d'un nombre complexe sous forme algébrique.
- 2. En particulier, x et y étant des réels, x + iy = 0 si et seulement si x = 0 et y = 0.

II. Représentation géométrique des nombres complexes.

Soit (O, \vec{OU}, \vec{OV}) un repère orthonormé du plan .

1. Définition.

Définition :

A tout nombre complexe z=x+iy avec x et y réels, on associe le point M de coordonnées (x;y).

On dit que

- M est le point image de z
- OM est le vecteur image de z.
- z est l'affixe du point M on note M(z)

Le plan est alors appelé plan complexe, noté P.

REMARQUE ET VOCABULAIRE :

- 1. Les nombres réels sont les affixes des points de l'axe des abscisses appelé axe des réels .
- 2. Les imaginaires purs sont les affixes des points de l'axe des ordonnées appelé aussi axe des imaginaires purs.

$$(\vec{OU},\vec{OV}) = \frac{\pi}{2}$$
 [2pi], on dit que (O,\vec{OU},\vec{OV}) est un repère direct .

III. Opérations sur les nombres complexes :

1. Addition et multiplication dans C:

1.1. Règles de calculs :

Règles:

L'addition et la multiplication des nombres réels se prolonge aux nombres complexes et les règles de calcul restent les mêmes.

EXEMPLE:

$$(1+3i) + (-3+2i) = (1-3) + (3i+2i) = -2+5i$$

$$(4+i)(-5+3i) = -20+12i-5i+3i^2 = -20+7i-3 = -23+7i$$
(car i² = -1) .

REMARQUE:

- 1. Les identités remarquables abordées en classe de 3° restent valables dans \mathbb{C} .
- 2. Soit z et z' éléments de C, zz'=0 équivaut à z=0 ou z'=0.

1.2. Représentations géométrique de la somme.

Propriété:

Deux nombres complexes z et z^\prime ont pour images respectives M et M' dans le plan complexe .

 $z+z^\prime$ a pour image le point S quatrième sommet du parallélogramme OMSM' .

2. Inverse et quotient :

2.1. Propriété 2:

Propriété:

Tout nombre complexe non nul z admet un inverse noté $\frac{1}{z}$.

Pour obtenir la forme algébrique de :

$$\frac{1}{x+iy}$$
 ((x,y) différent du couple (0;0)).

On multiplie numériquement le numérateur et le dénominateur par x-iy car $(x+iy)(x-iy)=x^2+y^2$ est un nombre réel.

L'avantage est de faire disparaître le i au dénominateur.

EXEMPLES:

Ecrire sous forme algébrique $\frac{1}{2+3i}$ et $\frac{1-5i}{2+i}$.

3. Affixe d'un vecteur, d'un barycentre :

3.1. Propriété 3:

Propriété:

Deux points A et B du plan complexe ont pour affixes respectives z_A et z_B .

L'affixe du vecteur \vec{AB} est $z_B - Z_A$.

REMARQUES:

1. Deux vecteurs sont égaux si et seulement si leurs affixes sont égales.

2. Si k est un réel, l'affixe du vecteur $k\vec{u}$ est kz où z est l'affixe de \vec{u} .

3.2. Propriété 4:

Propriété:

Deux points A et B du plan complexe ont pour affixes respectives z_A et z_B .

L'affixe du barycentre G des points pondérés (A,k) et (B,k^\prime) (avec $k+k^\prime$ non nul) est :

$$\frac{kz_A + k'z_B}{k + k'}.$$

REMARQUE:

Ce résultat se généralise à plus de deux points.

G Bar (A;a) (B;b) (C;c)
$$\Leftrightarrow$$
 $Z_G = \frac{aZ_A + bZ_B + cZ_c}{a + b + c}$