Luria - Delbrück distribution 1943

Bacteria can mulate from virus sensitive to virus resistent.

MUTATION bactenium could mulate from vinus-s to

MO: there is a finite probability "p" of a backnium to survive the attack of

They srew many (M=20) identical cultures to i) compare Mont - Himming ory estimate the rate of mutation from data.

The fluctuation test

experiment #	16	21 a
# cultures	20	19
culture		*
ı	1	•
	0	0
2 3	3	0
¥ 5	3	•
5	5	1 0 1
•	3	•
\$ \$	5	1
4	0	0
	6	15
lo	107	0
u u	0	0
12		19
. 13	0	14
Į u	0	•
13	1	•
16	0	17
13	0	, n
ાં જે	64	
19	0	0
20	35	
MEAN	11.35	3.8
VARIANCE	694	40.8

we reject the 'adquired immunity' hypothesis

Estimation of mulation matality

they used 2 methods.

One based on the average # of resistant baction sets it pretty wrong

a= 2.45.10

because the distribution has a very heavy tail and large variances
(wither sizes = 108)

Think bayesian

data:

M experiments

 $\frac{n_i}{N}$ mutatrol bacteria for $p_i = 1,..., M$ $(n = \sum_{i=1}^{M} n_i)$

posseters: a probability of a mulation
unknown: r # of mulated backia... cr> = a N

$$= \sum_{r=1}^{N} P(n|r) P(r|a)$$

a poissm

(mo = sterp without resistant factura)

+ Posterior dehilution for a

$$\frac{\left(\frac{-aN}{e}\right)^{m_0}\left(1-\frac{-aN}{e}\right)^{M-m_0}}{M=20}$$

$$\frac{M=20}{m_0=11}$$

$$N=5.6*10^8$$

Conficure Interval to wer 95% of dishlim
$$a = (0.56.10^{9}, 2.07.10^{9})$$

* Model comparism:
$$P(dala|H_{mvt}) = \int_{0}^{1} da \left(\frac{-a_{N}}{e^{-a_{N}}}\right)^{m_{0}} \left(1-\frac{-a_{N}}{e^{-a_{N}}}\right)^{m_{0}-m_{0}}$$

$$P(dala|H_{inmunh}) = \int_{0}^{1} dp \left(\frac{-p_{N}}{e^{-p_{N}}}\right)^{m_{1}} \frac{(p_{N})^{\sum_{i} n_{i}}}{n_{1}! \dots n_{M}!}$$

$$P(dala|H_{inmunh}) = e^{3+2.0}$$

$$P(dala|H_{inmunh})$$

Luria-Delbruck distribution

Sum up

Bayesian inference good for

- i) model compaison
- ii) estimation of parameters
- o) stating the assuptions of the inference
- DIRECT chance to asses the ralidity of
 the model to describe your observations
 by sampling