贪心算法回顾

- □得不到最优解的处理办法
 - 找零钱
- □最优前缀码
 - 哈夫曼算法
- □文件归并
- □最小生成树
 - Prim算法
 - Kruskal算法
- □单源最短路径
 - Dijkstra算法
- □贪心法小结

回溯(backtrack)

- □回溯算法的基本思想和适用条件
- □回溯算法的设计步骤
- □估计回溯算法的效率
- □改进回溯算法的途径
- □分支估界
- □应用实例

基本思想和适用条件

- □实例
- □基本思想
 - ■搜索问题
 - ■搜索空间
 - ■搜索策略
 - ■判定条件
 - 结点状态
 - 存储结构
- □必要条件

实例1: 四后问题

解表示成一个4维向量, $\langle x_1, x_2, x_3, x_4 \rangle$ (放置列号) 搜索空间: 4叉树

实例2: 0-1背包问题

 $V=\{12,11,9,8\}, W=\{8,6,4,3\}, B=13$

结点:向量 $\langle x_1, x_2, x_3, ..., x_k \rangle$ (子集的部分特征向量)

搜索空间:子集树,2ⁿ片树叶

<0,1,1,1> 可行解: $x_1=0,x_2=1,x_3=1,x_4=1$. 重量: 13, 价值: 28

<1,0,1,0>可行解: $x_1=1,x_2=0,x_3=1,x_4=0$. 重量: 12,价值: 2,1

实例3: 货郎担问题

 $< i_1, i_2, ..., i_n >$ 为巡回路线

搜索空间:排列树,(n-1)!片树叶

<1,2,4,3> 对应于巡回路线: 1→2 →4 →3 →1

长度: 5+2+7+9=23

基本思想

- □ 适用问题: 求解搜索问题
- □ 搜索空间: 树,结点对应部分解向量,树叶对应可行解
- □ 搜索过程:采用系统的方法隐含遍历搜索树
- □ 搜索策略: 深度优先, 宽度优先, 函数优先, 宽深结合等
- □ 结点分支判定条件:
 - 满足约束条件---分支扩张解向量
 - 不满足约束条件,回溯到该结点的父结点
- □ 结点状态: 动态生成
 - 白结点(尚未访问);
 - 灰结点(正在访问该结点为根的子树);
 - 黑结点(该结点为根的子树遍历完成)
- □ 存储: 当前路径

必要条件: 多米诺性质

设 $P(x_1, x_2, ..., x_i)$ 为真表示向量 $\langle x_1, x_2, ..., x_i \rangle$ 中i 个皇后放置在彼此不能攻击的位置

$$P(x_1, x_2, ..., x_{k+1}) \rightarrow P(x_1, x_2, ..., x_k)$$
 $0 < k < n$

例4 求不等式的整数解

$$5x_1+4x_2-x_3 \le 10$$
, $1 \le x_i \le 3$, $i=1,2,3$

 $P(x_1, ..., x_k)$: 意味将 $x_1, x_2, ..., x_k$ 代入原不等式的相应部分使得左边小于等于10

不满足多米诺性质

$$5x_1+4x_2+x_3' \le 13$$
, $1 \le x_1, x_2 \le 3, 0 \le x_3' \le 2$

回溯算法的设计要素

- □ 定义搜索问题的解向量和每个分量的取值范围
 - 解向量为 $\langle x_1, x_2, ..., x_n \rangle$
 - 确定 x_i 的可能取值的集合为 X_i , i = 1, 2, ..., n.
- □ 当 $x_1, x_2, \ldots, x_{k-1}$ 确定以后计算 x_k 取值集合 $S_k, S_k \subseteq X_k$
- □ 确定结点儿子的排列规则
- □ 判断是否满足多米诺性质
- □ 搜索策略----深度优先、宽度优先等
- □ 确定每个结点分支约束条件
- □ 确定存储搜索路径的数据结构

递归实现

算法 ReBack(k)

- 1. if k > n then $< x_1, x_2, ..., x_n > 是解$
- 2. else while $S_k \neq \emptyset$ do
- 3. $x_k \leftarrow S_k$ 中最小值
- $4. S_k \leftarrow S_k \{x_k\}$
- 1 计算 S_{k+1}
- 6. ReBack(k+1)

算法 ReBacktrack(n)

- 1. for $k \leftarrow 1$ to n 计算 X_k
- **2. ReBack**(**1**)

迭代实现

迭代算法 Backtrack

- 1. 对于i = 1, 2, ..., n 确定 X_i
- 2. $k\leftarrow 1$
- 3. 计算 S_k
- 4. while $S_k \neq \emptyset$ do
- 5. $x_k \leftarrow S_k$ 中最小值; $S_k \leftarrow S_k \{x_k\}$
- 6. if k < n then
- 7. $k \leftarrow k+1$; 计算 S_k
- 8. else $\langle x_1, x_2, ..., x_n \rangle$ 是解
- 9. if k>1 then $k\leftarrow k-1$; goto 4

估计搜索树的结点数

计数搜索树中遍历的结点,Monte Carlo方法

Monte Carlo方法

- 1. 从根开始,随机选择一条路径,直到不能分支为止,即从 $x_1,x_2,...$,依次对 x_i 赋值,每个 x_i 的值是从当时的 S_i 中随机选取,直到向量不能扩张为止.
- 2. 假定搜索树的其他 $|S_i|$ –1 个分支与以上随机选出的路径一样,计数搜索树的点数.
- 3. 重复步骤 1 和 2,将结点数进行概率平均.

实例

例5 估计四后问题的效率

case1. <1,4,2>: 1+4+4×2+4×2=21

case2. <2,4,1,3>: 4×4+1=17

case3. $<1,3>: 1+4\times1+4\times2=13$

Case2: <2,4,1,3>

Case1: <1,4,2>

Case3: <1,3>

估计结点数

假设 4 次抽样测试:

case1:1次, case2:1次, case3:2次,

平均结点数=(21×1+17×1+13×2)/4=16

搜索空间访问的结点数为17

搜索空间

算法实现

Monte Carlo

- 1. $sum \leftarrow 0$ //sum为 t 次结点平均数
- 2. for $i \leftarrow 1$ to t do //取样次数 t
- 3. $m \leftarrow \text{Estimate}(n)$ //m为本次结点总数
- 4. $sum \leftarrow sum + m$
- 5. $sum \leftarrow sum / t$

结点数计算

m为输出——本次取样结点总数,k 为层数, r_1 为本层分支数, r_2 为上层分支数,n为树的层数

算法Estimate(n)

- 1. $m \leftarrow 1$; $r_2 \leftarrow 1$; $k \leftarrow 1$ //m为结点总数
- 2. While $k \le n$ do
- 3. if $S_k = \emptyset$ then return m
- 4. $r_1 \leftarrow |S_k|^* r_2$ // r_1 为扩张后结点总数
- 5. $m \leftarrow m + r_1$ // r_2 为扩张前结点总数
- 6. $x_k \leftarrow$ 随机选择 S_k 的元素
- 7. $r_2 \leftarrow r_1$
- 8. $k \leftarrow k+1$

影响算法效率的因素

最坏情况下的时间W(n)=(p(n)f(n))其中p(n)为每个结点时间,f(n)为结点个数 影响回溯算法效率的因素 搜索树的结构 分支情况: 分支均匀否 树的深度 对称程度:对称适合裁减 解的分布 在不同子树中分布多少是否均匀 分布深度 约束条件的判断: 计算简单

改进途径

- 根据树分支设计优先策略:结点少的分支优先,解多的分支优先
- □ 利用搜索树的对称性剪裁子树
- □ 分解为子问题: 求解时间 $f(n)=c2^n$,组合时间 T=O(f(n)) 如果分解为 k 个子问题,每个子问题大小为 n/k 求解时间为

$$kc2^{\frac{n}{k}}+T$$

组合优化问题

- □ 相关概念
 - 目标函数(极大化或极小化)
 - 约束条件
 - 搜索空间中满足约束条件的解称为可行解
 - 使得目标函数达到极大(或极小)的解称为最优解
- □ 实例:背包问题

$$\max x_1 + 3x_2 + 5x_3 + 9x_4$$

$$2x_1 + 3x_2 + 4x_3 + 7x_4 \le 10$$

$$x_i \in N, i = 1, 2, 3, 4$$

分支估界技术(极大化)

- □ 设立代价函数
 - 函数值以该结点为根的搜索树中的所有可行解的目标 函数值的上界
 - 父结点的代价不小于子结点的代价
- □ 设立界
 - 代表当时已经得到的可行解的目标函数的最大值
 - 界的设定初值可以设为0
 - 可行解的目标函数值大于当时的界,进行更新
- □ 搜索中停止分支的依据
 - 不满足约束条件或者其代价函数小于当时的界

实例:背包问题

背包问题的实例:

$$\max x_1 + 3x_2 + 5x_3 + 9x_4$$
$$2x_1 + 3x_2 + 4x_3 + 7x_4 \le 10$$
$$x_i \in \mathbb{N}, i = 1, 2, 3, 4$$

对变元重新排序使得

$$\frac{v_i}{w_i} \ge \frac{v_{i+1}}{w_{i+1}}$$

排序后实例

$$\max 9x_1 + 5x_2 + 3x_3 + x_4$$

$$7x_1 + 4x_2 + 3x_3 + 2x_4 \le 10$$

$$x_i \in \mathbb{N}, i = 1, 2, 3, 4$$

代价函数与分支策略确定

结点 $\langle x_1, x_2, ..., x_k \rangle$ 的代价函数

$$\sum_{i=1}^{k} v_{i} x_{i} + (b - \sum_{i=1}^{k} w_{i} x_{i}) \frac{v_{k+1}}{w_{k+1}}$$
 若对某个 $j > k$ 有 $b - \sum_{i=1}^{k} w_{i} x_{i} \ge w_{j}$

$$\sum_{i=1}^{k} v_i x_i$$
 否则

分支策略----深度优先

$$\max 9x_1 + 5x_2 + 3x_3 + x_4$$

$$7x_1 + 4x_2 + 3x_3 + 2x_4 \le 10, \ x_i \in \mathbb{N}, i = 1, 2, 3, 4$$

