

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA MECÂNICA Engenharia Mecatrônica Dr. Carlos Alberto Gallo

6º Laboratório de Eletrônica Básica para Mecatrônica

Título: Transistor funcionando como Chave

Teoria:

Um transistor operando na região de saturação e de corte funciona como uma chave, ou seja, como um elemento de controle liga-desliga, conduzindo corrente ou não.

O circuito de polarização utilizado nesta aplicação é o de corrente de base constante com duas fontes de alimentação, sendo que a fonte de polarização da base é, na realidade, o sinal de entrada que controla o transistor, cortando-o (chave aberta) ou saturando-o (chave fechada).

Para que o transistor opere na região de corte, é necessário que a tensão de entrada Vê seja menor que Vbe de condução.Nesta situação, não circula corrente pelo coletor e a tensão de saída é máxima.

Para que o transistor opere na região de saturação é necessário que a tensão de entrada Ve seja maior que Vbe de condução.Nesta situação, a corrente de coletor é máxima, dentro de um limite imposto pela polarização, e a tensão de saída mínima."

Veja o gráfico de um transistor funcionando como chave:

Figura 1: Razão cíclica

d=tempo que diodo funciona como chave aberta /tempo total

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA MECÂNICA Engenharia Mecatrônica Dr. Carlos Alberto Gallo

Experiência: Transistor de junção Bipolar funcionando como Chave

1. Objetivos:

- -Verificar as propriedades básicas e o funcionamento do transistor como chave
- -Conhecer a aplicação real de um transistor

2. Material:

- 1 Resistor de $3K3\Omega$ R1
- 1Resistor 1K Ω R2
- 1 Transistor NPN BC 547- 548
- 1 Multímetro
- 1 Amperímetro

3.Montagem:

Montar no protoboard o circuito abaixo que mostra o chaveamento de um nível TTL para um nível CMOS

Figura 2: Chaveamento

4. Medições:

a) Meça a tensão VCE e a corrente IC,

5. Conclusões:

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA MECÂNICA Engenharia Mecatrônica Dr. Carlos Alberto Gallo

Experiência 2: Tempos de Comutação e perdas na comutação

1. Objetivos:

-Verificar os tempos de comutação e as perdas do transistor neste momento.

2. Material:

- -1 Resistor de 10 K Ω , 22 K Ω , 47 K Ω e 100 K Ω (R2)
- -1 Resistor de $47K\Omega$ (R3)
- -1 Transistor NPN
- -1 Fonte de +-15V

3. Montagem:

Monte o circuito mostrado na Figura 3, substituindo a fonte Vs por um gerador de funções, aplicando uma forma de onda quadrada com uma freqüência de $50_K Hz$, com tensão de 5V, com alimentação de coletor de 15V e razão cíclica de 25% de condução.

Figura 3: Chaveamento em alta frequência

4. Medições:

- a)Meça simultaneamente as tensões VCE e a tensão Vs utilizando os dois canais do osciloscópio. Meça os tempos de comutação do transistor.
- b) Faça uma tabela com os valores de tempo que transistor está em corte e saturado.

5. Conclusões:

Tire conclusões sobre as formas de ondas encontradas no circuito de comutação do transistor.