A Handbook of Statistical Analyses Using ${\sf R}$

Brian S. Everitt and Torsten Hothorn

CHAPTER 10

Analysing Longitudinal Data I: Computerised Delivery of Cognitive Behavioural Therapy—Beat the Blues

- 10.1 Introduction
- 10.2 Analysing Longitudinal Data
- 10.3 Analysis Using R

We shall fit both random intercept and random intercept and slope models to the data including the baseline BDI values (pre.bdi), treatment group, drug and length as fixed effect covariates. Linear mixed effects models are fitted in R by using the lmer function contained in the lme4 package (Bates and Sarkar, 2006, Pinheiro and Bates, 2000, Bates, 2005), but an essential first step is to rearrange the data from the 'wide form' in which they appear in the BtheB data frame into the 'long form' in which each separate repeated measurement and associated covariate values appear as a separate row in a data.frame. This rearrangement can be made using the following code:

```
R> data("BtheB", package = "HSAUR")
R> BtheB$subject <- factor(rownames(BtheB))</pre>
R> nobs <- nrow(BtheB)
R> BtheB_long <- reshape(BtheB, idvar = "subject",</pre>
        varying = c("bdi.2m", "bdi.4m", "bdi.6m", "bdi.8m"),
        direction = "long")
R> BtheB_long$time <- rep(c(2, 4, 6, 8), rep(nobs, 4))
such that the data are now in the form (here shown for the first three subjects)
R> subset(BtheB_long, subject %in% c("1", "2", "3"))
    drug length treatment bdi.pre subject time bdi
1.2m
                    TAU
                             32
2.2m
           >6m
                   BtheB
                                            16
     Yes
```

3.2m 20 Yes <6m 1.4m >6m 2.4m 3.4m Yes <6m TAU 1.6m No >6m TAII 2.6m 32 Yes >6m Bt.heB 3.6m TAUYes <6m 1.8m No >6m TAU2.8m Yes

The resulting data.frame BtheB_long contains a number of missing values

```
R> data("BtheB", package = "HSAUR")
R> layout(matrix(1:2, nrow = 1))
R> ylim <- range(BtheB[,grep("bdi", names(BtheB))],</pre>
                  na.rm = TRUE)
R> tau <- subset(BtheB, treatment == "TAU")[,</pre>
       grep("bdi", names(BtheB))]
  boxplot(tau, main = "Treated as usual", ylab = "BDI",
           xlab = "Time (in months)", names = c(0, 2, 4, 6, 8),
           ylim = ylim)
+
R> btheb <- subset(BtheB, treatment == "BtheB")[,</pre>
+
       grep("bdi", names(BtheB))]
R> boxplot(btheb, main = "Beat the Blues", ylab = "BDI",
           xlab = "Time (in months)", names = c(0, 2, 4, 6, 8),
+
           ylim = ylim)
```

Treated as usual

Beat the Blues

Figure 10.1 Boxplots for the repeated measures by treatment group for the BtheB data.

and in applying the lmer function these will be dropped. But notice it is only the missing values that are removed, not participants that have at least one missing value. All the available data is used in the model fitting process. The lmer function is used in a similar way to the lm function met in Chapter ?? with the addition of a random term to identify the source of the repeated measurements, here subject. We can fit the two models (??) and (??) and test which is most appropriate using

```
R> library("lme4")
```

```
R> BtheB_lmer1 <- lmer(bdi ~ bdi.pre + time + treatment + drug +</pre>
          length + (1 | subject), data = BtheB_long,
          REML = FALSE, na.action = na.omit)
R> BtheB_lmer2 <- lmer(bdi ~ bdi.pre + time + treatment + drug +</pre>
          length + (time | subject), data = BtheB_long,
          REML = FALSE, na.action = na.omit)
R> anova(BtheB_lmer1, BtheB_lmer2)
Data: BtheB_long
Models:
{\tt BtheB\_lmer1: bdi \sim bdi.pre + time + treatment + drug + length + (1 \mid subject)}
BtheB_lmer1: Bd1 ~ Bd1.pre + time + treatment + drug + length + (1 | Subject)

BtheB_lmer2: bdi ~ bdi.pre + time + treatment + drug + length + (time | subject)

Df AIC BIC logLik deviance Chisq Chi Df

BtheB_lmer1 8 1886.6 1915.7 -935.31 1870.6
BtheB_lmer2 10 1889.8 1926.2 -934.90 1869.8 0.8161
             Pr(>Chisq)
BtheB_lmer1
BtheB_lmer2
                   0.665
R> summary(BtheB_lmer1)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
bdi ~ bdi.pre + time + treatment + drug + length + (1 | subject)
   Data: BtheB long
            BIC logLik deviance df.resid
1915.7 -935.3 1870.6 272
     AIC
  1886.6 1915.7
Scaled residuals:
Min 1Q Median 3Q Max
-2.7608 -0.4809 -0.0957 0.4022 3.7431
Random effects:
 Groups Name Variand
subject (Intercept) 48.30
Residual 25.13
                        Variance Std.Dev.
                                6.950
                                   5.013
Number of obs: 280, groups: subject, 97
                Estimate Std. Error t value
                            2.24922
                                         2.643
(Intercept)
                  5.94366
                  0.63819
                               0.07759
bdi.pre
                                          8.225
                               0.14606 -4.909
                 -0.71702
time
treatmentBtheB -2.37308
                              1.66375
                                        -1.426
drugYes
                 -2.79784
                              1.72000
length>6m
                  0.25635
                             1.63219
                                         0.157
Correlation of Fixed Effects:
             (Intr) bdi.pr time trtmBB drugYs
bdi.pre
              -0.678
              -0.264 0.023
tretmntBthB -0.389 0.121 0.022
drugYes -0.071 -0.237 -0.025 -0.323
length>6m -0.238 -0.242 -0.043 0.002 0.158
drugYes
length>6m
```

Figure 10.2 R output of the linear mixed-effects model fit for the BtheB data.

Bibliography

Bates, D. (2005), "Fitting linear mixed models in R," R News, 5, 27–30, URL http://CRAN.R-project.org/doc/Rnews/.

Bates, D. and Sarkar, D. (2006), *lme4: Linear Mixed-Effects Models Using S4 Classes*, URL http://CRAN.R-project.org, R package version 0.99875-8.

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, New York, USA: Springer.