GEOSPACE TECHNOLOGIES

2.4 GHZ ZIGBEE RADIO DEVICE

Model: GCX

Apr 22nd, 2013

Report No.: SL13022701-GEO-001_FCC,IC

(This report supersedes NONE)

Modifications made to the product: None

This Test Report is Issued Under the Authority of:							
Ravid Zhany	Charle.						
David Zhang	Choon Sian Ooi						
Compliance Engineer	Engineering Reviewer						

This test report may be reproduced in full only. All Test Data Presented in this report is only applicable to presented Test sample.

| Serial# | SL13022701-GEO-001_FCC,IC |
| Issue Date | Apr 22nd, 2013 |
| Page | 2 of 69 | www.siemic.com

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and international compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

7 to 5 to a								
Country/Region	Accreditation Body	Scope						
USA	FCC, A2LA	EMC , RF/Wireless , Telecom						
Canada	IC, A2LA, NIST	EMC, RF/Wireless , Telecom						
Taiwan	BSMI, NCC, NIST	EMC, RF, Telecom , Safety						
Hong Kong	OFTA , NIST	RF/Wireless ,Telecom						
Australia	NATA, NIST	EMC, RF, Telecom , Safety						
Korea	KCC/RRA, NIST	EMI, EMS, RF , Telecom, Safety						
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom						
Mexico	NOM, COFETEL, Caniety	Safety, EMC , RF/Wireless, Telecom						
Europe	A2LA, NIST	EMC, RF, Telecom , Safety						

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC , RF , Telecom
Canada	IC FCB , NIST	EMC , RF , Telecom
Singapore	iDA, NIST	EMC , RF , Telecom
EU	NB	EMC & R&TTE Directive
Japan	MIC, (RCB 208)	RF , Telecom
HongKong	OFTA (US002)	RF , Telecom

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	3 of 69
www.siemic.com	

This page has been left blank intentionally.

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	4 of 69
www.siemic.com	

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	6
	TECHNICAL DETAILS	
	MODIFICATION	
	TEST SUMMARY	
	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	
	EX A. TEST INSTRUMENT & METHOD	
	EX B EUT PHOTOGRAPHS	
	EX C. TEST SETUP AND SUPPORTING EQUIPMENT	
	EX D. USER MANUAL, BLOCK & CIRCUIT DIAGRAM	
	EX E SIEMIC ACCREDITATION	
~111	L/, F AIFILIA VAAI/FRI VII AII	•••

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	5 of 69
www.siemic.com	

This page has been left blank intentionally.

| Serial# | SL13022701-GEO-001_FCC,IC |
| Issue Date | Apr 22nd, 2013 |
| Page | 6 of 69 | www.siemic.com

1 Executive Summary & EUT information

The purpose of this test programmed was to demonstrate compliance of the Geospace Technologies Model: GCX against the current Stipulated Standards. The 2.4 GHz ZigBee radio device have demonstrated compliance with the FCC 15.247: 2012, RSS 210 Issue8: 2010.

The test has demonstrated that this unit complies with stipulated standards.

EUT Information

EUT : 2.4 GHz ZigBee radio device – GCX1

Description

Model No : GCX
Serial No : 00000003
Antenna Type : PCB Antenna

Antenna Gain : 3.3dBi

Input Power Input : 3.3VDC

Classification

Per Stipulated : Spread Spectrum System / Device

Test Standard

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	7 of 69
www.siemic.com	

2 TECHNICAL DETAILS

_	TECHNICAL DETAILS
Purpose	Compliance testing of 2.4 GHz ZigBee radio device model GCX with stipulated standard
Applicant / Client	Geospace Technologies 7007 Pinemont Drive Houston, Texas 77040 USA
Manufacturer	Geospace Technologies 7007 Pinemont Drive Houston, Texas 77040 USA
Laboratory performing the tests	SIEMIC Laboratories 775 Montague Expressway, Milpitas, CA 95035
Test report reference number	SL13022701-GEO-001_FCC,IC
Date EUT received	Apr 2nd, 2013
Standard applied	See Page 9
Dates of test (from – to)	Apr 12th, 2013 - Apr 22nd, 2013
No of Units:	1
Equipment Category:	DTS
Trade Name:	Geospace Technologies
Model Name:	GCX
RF Operating Frequency (ies)	2405MHz – 2480MHz;
RF Channel number	16
Modulation:	DSSS/O-QPSK;
Rated Input Power:	Input : 3.3VDC
Port / Connectors:	N/A
FCC ID	WAOGCX
IC ID	7733A-GCX

3 MODIFICATION

NONE

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 9 of 69 | www.siemic.com

4 TEST SUMMARY

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

Spread Spectrum System / Device Test Results Summary

Test Standard FCC 15.247: 2012	Test Standard RSS 210 Issue8: 2010	Description	Pass / Fail
15.203		Antenna Requirement	Pass
15.205	RSS210(A8.5)	Restricted Band of Operation	Pass
15.207(a)	RSS210(A8.1)	AC Conducted Emissions Voltage	N/A
15.247(a) (1)	RSS210(A8.1)	Channel Separation	N/A
15.247(a)(1)	RSS210 (A8.2)	6 dB & 99% Bandwidth	Pass
15.247(a) (2)	RSS210(A8.1)	20 dB Bandwidth	N/A
15.247(a) (1) (i)	RSS210(A8.1)	Number of Hopping Channels	N/A
15.247(a) (1) (i)	RSS210(A8.4)	Time of Occupancy	N/A
15.247(b) (2)	RSS210(A8.4)	Output Power	Pass
15.247(c)	RSS210(A8.5)	Antenna Gain > 6 dBi	N/A
15.209; 15.247(d)	RSS210(A8.5)	Band Edge and Radiated Spurious Emissions	Pass
15.247(e)	RSS210(A8.3)	Power Spectral Density	Pass
15.247(f)	RSS210(A8.3)	Hybrid System Requirement	N/A
15.247(i) §2.1091& §2.1093		Hopping Capability	N/A
15.247 (d)		Hopping Coordination Requirement	N/A

ANSI C63.4: 2009/ RSS-Gen Issue 3: 2010

PS: All measurement uncertainties are not taken into consideration for all presented test result.

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 10 of 69 | www.siemic.com

5 MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

5.1 Antenna Requirement

Requirement(s): § 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.

Results: Pass

Note: EUT uses integral PCB trace antenna which is permanently attached to the device, so it meets above antenna requirement.

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	11 of 69
www.siemic.com	

5.2 Conducted Emission Test Result

Note:

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz - 30MHz (Average & Quasi-peak) is $\pm 3.86dB$.

4. Environmental Conditions Temperature N/A

Relative Humidity N/A

Atmospheric Pressure N/A

Test date: N/A Tested by: N/A

Requirement(s): § 15.207, RSS210(A8.1)

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits set in § 15.207, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

Test Result: N/A

Note: EUT is powered by battery only which is embedded into a host system, not designed to be connected to public AC network.

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	12 of 69
www.siemic.com	

5.3 Channel Separation

Conducted Measurement

1. EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Environmental Conditions Temperature N/A

Relative Humidity N/A
Atmospheric Pressure N/A

Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 40GHz is ±1.5dB.

4 Test Date : N/A Tested By : N/A

Requirement(s): §15.247(a) (1), RSS210(A8.1)

≥25 kHz or the 20 dB bandwidth of the hopping channel (for FHSS in 2400-2483.5MHz with output power >125mW) ≥25 kHz or 2/3 of the 20 dB bandwidth of the hopping channel)

Spectrum analyser setting:

Frequency: Test Frequency (Low, Mid, High channel)

Span: Wide enough to capture the spectrum of two adjacent channels

RBW: ≥1% of SPAN
VBW: ≥RBW

Sweep Time: Auto

Detector mode: Positive peak
Indication mode: Max hold

Procedures:

- 1) Allow the trace to stabilize.
- 2) Use the marker-delta function to determine the separation between the peaks of current channel and the adjacent channels. The limit is specified in one of the subparagraphs of this Section.
- 3) Capture the plot.
- 4) Repeat step 1) 3) for different test channel and other modulation type.

Test Result: N/A

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	13 of 69
www.siemic.com	

5.4 6dB & 99% Occupied Bandwidth

1. <u>Conducted Measurement</u>

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Environmental Conditions Temperature 23°C

Relative Humidity 50% Atmospheric Pressure 1019mbar

3 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

Test Date: 04/14/2013
Tested By: David Zhang

Requirement(s): §15.247(a) (2), RSS210(A8.1)/RSSGEN(4.6.1)

6dB BW≥500KHz;

99% BW: For FCC reference only; required by IC.

Spectrum analyser setting:

6dB (DTS) bandwidth measurement setting

Frequency: Test Frequency (Low, Mid, High channel)
Span: Wide enough to capture the signal spectrum

RBW: 100KHz
VBW: 3 x RBW
Sweep Time: Auto
Detector mode: Peak dete

Detector mode: Peak detector Indication mode: Max hold BW: 6dB

99% bandwidth measurement setting

Frequency: Test Frequency (Low, Mid, High channel)
Span: Wide enough to capture the signal spectrum

RBW: close to 1% of SPAN

VBW: 3 x RBW
Sweep Time: Auto
Detector mode: Peak detector
Indication mode: Max hold
OBW: 99%

Procedures:

6dB (DTS) bandwidth measurement procedure

- 1) Allow the trace to stabilize.
- 2) Use the spectrum analyzer built-in measurement function to determine the 6dB BW.
- 3) Capture the plot.
- 4) Repeat step 1) 3) for different test channel and other modulation type.

99% bandwidth measurement procedure

- 1) Allow the trace to stabilize.
- 2) Use the spectrum analyzer built-in measurement function to determine the 99% BW.
- 3) Capture the plot.
- 4) Repeat step 1) 3) for different test channel and other modulation type.

Results: Pass

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	14 of 69
www.siemic.com	

6dB Bandwidth measurement result

Туре	Freq (MHz)	Test mode Result (MHz) Limit (MHz)		Limit (MHz)	Test Date	Result	
6dB BW	2405	Low CH	1.4910	≥500KHz	04/14/2013	Pass	
6dB BW	2440	Mid CH	1.5451	≥500KHz	04/14/2013	Pass	
6dB BW	2480	High CH	1.6353	≥500KHz	04/14/2013	Pass	

99% Bandwidth measurement result

Туре	Freq (MHz)	Freq (MHz) Test mode Result (MHz) Limit (MHz)		Test Date	Result	
99% OBW	2405	Low	2.5792	-	04/14/2013	-
99% OBW	2440	Mid	2.6814	-	04/14/2013	-
99% OBW	2480	High	2.7596	-	04/14/2013	-

Refer to the attached plots.

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	15 of 69
www.siemic.com	

6 dB Bandwidth - Low CH

6 dB Bandwidth - Mid CH

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	16 of 69
www.siemic.com	

6 dB Bandwidth - High CH

99% Bandwidth - Low CH

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	17 of 69
www.siemic.com	

99% Bandwidth - Mid CH

99% Bandwidth - High Channel

SL13022701-GEO-001 FCC.IC Serial# www.siemic.com

N/A

20dB Occupied Bandwidth

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 **Environmental Conditions** Temperature

> Relative Humidity N/A

N/A Atmospheric Pressure

3 Conducted Emissions Measurement Uncertainty

> All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

4 Test Date: N/A Tested Bv :N/A

Requirement(s): §15.247(a) (2), RSS210 (A8.1)

FHSS in 902-928MHz: 20dB BW≤500KHz FHSS in 5725-5850MHz: 20dB BW≤1MHz

Spectrum analyser setting:

Frequency: Test Frequency (Low, Mid, High channel)

Span: 2-3 times of 20dB BW RBW: ≥1% of 20dB BW

VBW: ≥RBW Sweep Time: Auto

Detector mode: Positive peak Indication mode: Max hold BW: 20dB

Procedures:

- 1) Allow the trace to stabilize.
- 2) Use the spectrum analyzer built-in measurement function to determine the 20dB BW.
- 3) Capture the plot.
- 4) Repeat step 1) 3) for different test channel and other modulation type.

Test Result: N/A

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 19 of 69 | www.siemic.com

5.6 Number of Hopping Channel

Conducted Measurement

1. EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 40GHz is ±1.5dB.

3 Environmental Conditions Temperature

Temperature N/A
Relative Humidity N/A
Atmospheric Pressure N/A

4 Test Date : N/A
Tested By :N/A

Standard Requirement: § 15.247(a) (1) (i), RSS210(A8.1)

FH in 902-928MHz with 20dB BW<250KHz: ≥50 channels FH in 902-928MHz with 20dB BW≥250KHz: ≥25 channels

FH in 2400-2483.5MHz: ≥15 channels FH in 5725-5850MHz: ≥75 channels

Spectrum analyser setting:

Frequency: Test Frequency (Low, Mid, High channel)

Span: Wide enough to cover spectrum of all channel (or split into2 plots)

RBW: ≥1% of SPAN
VBW: ≥RBW
Sweep Time: Auto

Detector mode: Positive peak Indication mode: Max hold

Procedures:

- 1) Allow the trace to stabilize until all channel spectrums is shown on plot.
- 2) Capture the plot.

Test Result: N/A

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	20 of 69
www.siemic.com	

5.7 Time of Occupancy

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the

range 30MHz - 40GHz is $\pm 1.5dB$.

Environmental Conditions

Temperature N/A
Relative Humidity N/A
Atmospheric Pressure N/A

4 Test Date : N/A Tested By :N/A

3

Standard Requirement: § 15.247(a) (1) (i), RSS210 (A8.4)

FH in 902-928MHz with 20dB BW<250KHz: ≤0.4 Sec in 20 Sec FH in 902-928MHz with 20dB BW≥250KHz: ≤0.4 Sec in 10 Sec FH in 2400-2483.5MHz: ≤0.4 Sec in (0.4 sec x hopping ch number)

FH in 5725-5850MHz: ≤0.4 Sec in 30 Sec

FH in hybrid sys with DS turned off: ≤0.4 Sec in (0.4 sec x hopping ch number)

Spectrum analyser setting:

Frequency: Test Frequency

Span: 0Hz RBW: 1MHz VBW: ≥RBW

Sweep Time: As necessary to capture the entire dwell time per hopping channel

Trigger: Video Trigger

Procedures: The Time of Occupancy measurement was taken conducted using a spectrum analyzer.

Test Result: N/A

SL13022701-GEO-001 FCC.IC Issue Date Apr 22nd, 2013
Page 21 of 69 www.siemic.com

5.8 Peak Spectral Density

Conducted Measurement 1.

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Conducted Emissions Measurement Uncertainty

> All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the

range 30MHz - 40GHz is $\pm 1.5dB$.

3 **Environmental Conditions**

23°C Temperature Relative Humidity 50% Atmospheric Pressure 1019mbar

4 Test Date: 04/14/2013 Tested By : David Zhang

Standard Requirement: § 15.247(e), RSS210 (A8.3)

DSSS: ≤8dBm/3KHz

DSSS in hybrid sys with FH turned off: ≤8dBm/3KHz

Spectrum analyser setting - Method PKPSD (peak PSD)

Frequency: **Test Frequency** Span: 1.5 x 6dB DTS BW

RBW: ≥ 3KHz but ≤ 100 kHz

VBW: ≥ 3 x RBW Sweep Time: Auto

Detector mode: Positive peak Indication mode: Max hold

Procedures - Method PKPSD (peak PSD)

1) Allow trace to fully stabilize.

- 2) Use the peak marker function to determine the maximum amplitude level within the RBW.
- 3) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Result: Pass

Туре	СН	Freq (MHz)	Test mode	Conducted PSD (dBm/MHz)	Limit (dBm/MHz)	Test Date
2.4GHz	Low	2405	TX	-7.28	8	04/14/2014
2.4GHz	Mid	2440	TX	-4.86	8	04/14/2014
2.4GHz	High	2480	TX	-8.07	8	04/14/2014

Refer to the attached plots.

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 22 of 69 | www.siemic.com

PSD Low Channel

PSD Mid Channel

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 23 of 69 | www.siemic.com

PSD High Channel

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	24 of 69
www.siemic.com	

5.9 Peak Output Power

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the

range 30MHz - 40GHz is $\pm 1.5dB$.

3 Environmental Conditions

Temperature 23°C
Relative Humidity 50%
Atmospheric Pressure 1019mbar

4 Test Date: 04/14/2013 Tested By: David Zhang

Standard Requirement: § 15.247(b) (2) ,RSS210 (A8.4)

FHSS in 2400-2483.5MHz with ≥ 75 channels: ≤1 Watt

FHSS in 5725-5850MHz: ≤1 Watt

For all other FHSS in the 2400-2483.5MHz band: ≤0.125 Watt.

FHSS in 902-928MHz with ≥ 50 channels: ≤1 Watt

FHSS in 902-928MHz with ≥ 25 & <50 channels: ≤0.25 Watt

DSSS in 902-928MHz, 2400-2483.5MHz, 5725-5850MHz: ≤1 Watt

Spectrum analyser setting - Maximum Peak Conducted Output Power (RBW ≥ 6dB DTS BW)

Frequency: Test Frequency
Span: ≥ 3 x RBW
RBW: ≥ DTS BW
VBW: ≥ 3 x RBW
Sweep Time: Auto
Detector mode: Positive peak

Detector mode: Positive peak Indication mode: Max hold

Procedures - Maximum Peak Conducted Output Power (RBW ≥ 6dB DTS BW)

1) Allow trace to fully stabilize.

2) Use the peak marker function to determine the peak amplitude level.

Test Result: Pass

Туре	СН	Freq (MHz)	Test mode	Conducted Output (dBm)	Limit (dBm)	Test Date	
2.4GHz	Low	2405	TX	-3.63	30	04/14/2014	
2.4GHz	Mid	2440	TX	-1.08	30	04/14/2014	
2.4GHz	High	2480	TX	-3.93	30	04/14/2014	

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	25 of 69
www.siemic.com	

Output Power Low Channel

Output Power Middle Channel

Serial#	SL13022701-GEO-001_FCC,IC	
Issue Date	Apr 22nd, 2013	
Page	26 of 69	www.siemic.com

Output Power High Channel

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 27 of 69 | www.siemic.com

5.10 Radiated Spurious Emission < 1GHz

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 1GHz (QP only @ 3m & 10m) is +6.0dB (for EUTs < 0.5m X 0.5m X 0.5m).

4 Environmental Conditions

Temperature 23°C
Relative Humidity 50%
Atmospheric Pressure 1019mbar

Test Date: 04/13/2013 Tested By: David Zhang

Standard Requirement: 15.209; 15.247(d), RSS210(A8.5)

For non-restricted band, In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB or 30dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, determined by the measurement method on output power to be used. Attenuation below the general limits specified in § 15.209(a) is not required

For restricted band, emission must also comply with the radiated emission limits specified in § 15.209(a)

Procedures: ANSI C63.4-2009

For below 1GHz measurement: based on measurements employing a CISPR quasi-peak detector. For above 1GHz measurement: based on measurements employing an average detector. (VBW set to 10Hz)

Radiated emissions were measured according to ANSI C63.4-2009.

The EUT was set to transmit at the highest output power. The EUT was set to transmit at mid channel. Note that setting the channel other than middle, the spurious emissions are the same.

The limit is converted from microvolts/meter to decibel microvolts/meter.

Sample Calculation: Corrected Amplitude = Raw Amplitude ($dB\mu V/m$) + ACF (dB) + Cable Loss (dB)

Test Result: Pass

Note: General emission limit in 15.209 is more stringent. EUT was tested and found to meet the general emission limit in 15.209. Additional measurement to demonstrate EUT comply with restricted band emission requirement in 15.247 (d) is not required.

Radiated Emissions (below 1GHz) Test Result

Radiated Emission Plot @ 10m

Limit

30MHz ~1000MHz @ 10 m @Class B

Frequency (MHz)	Quasi Peak (dBuV/m)	Azimute (deg)	Polarity	Height (cm)	Limit (dBµV/m)	Margin (dB)
362.96	33.85	77.00	V	392.00	36.00	-2.15
527.26	31.63	0.00	V	283.00	36.00	-4.37
356.70	33.97	128.00	V	400.00	36.00	-2.03
349.06	33.59	114.00	V	100.00	36.00	-2.41
396.82	31.39	80.00	V	382.00	36.00	-4.61
521.57	30.83	242.00	V	338.00	36.00	-5.17

//Note: Both horizontal and vertical polarization had been verified. The vertical test result is worst case.

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 29 of 69 | www.siemic.com

5.11 Radiated Spurious Emissions > 1GHz & Band Edge

 All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.

2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.

3. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 1GHz – 40GH is +6.0dB (for EUTs < 0.5m X 0.5m X 0.5m).

4. Environmental Conditions

Temperature 23°C
Relative Humidity 50%
Atmospheric Pressure 1019mbar

Test Date: 04/14/2013 Tested By: David Zhang

Standard Requirement: 15.209; 15.247(d), RSS210(A8.5)

For non-restricted band, In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB or 30dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, determined by the measurement method on output power to be used. Attenuation below the general limits specified in § 15.209(a) is not required

For restricted band, emission must also comply with the radiated emission limits specified in § 15.209(a)

Procedures: ANSI C63.4-2009

For below 1GHz measurement: based on measurements employing a CISPR quasi-peak detector For above 1GHz measurement: based on measurements employing both peak and average detector. (Average method: VBW set to 10Hz)

Radiated emissions were measured according to ANSI C63.4-2009.

The EUT was set to transmit at the highest output power. The EUT was set to transmit at mid channel. Note that setting the channel other than middle, the spurious emissions are the same.

The limit is converted from microvolts/meter to decibel microvolts/meter.

Sample Calculation: Corrected Amplitude = Raw Amplitude (dBµV/m) + ACF (dB) + Cable Loss (dB)

Test Result: Pass

Note: General emission limit in 15.209 is more stringent. EUT was tested and found to meet the general emission limit in 15.209. Additional measurement to demonstrate EUT comply with restricted band emission requirement in 15.247 (d) is not required.

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	30 of 69
www.siemic.com	

Test Result

Low Channel @ 2405MHz @ 3 Meter

Frequency (MHz)	Reading (dBuV/m)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Loss (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBuV/m)	15.247/15.209 Limit @ 3m (dBuV/m)	Margin (dBuV/m)	Detector (pk/avg)
4810	42.17	184	1.1	V	32.2	4.13	32.49	46.01	74	-27.99	PK
4810	34.04	184	1.1	V	32.2	4.13	32.49	37.88	54	-16.12	AV
2400	60.45	65	1.0	V	28.55	5	32.07	51.93	74	-22.07	PK
2400	49.44	65	1.0	V	28.55	5	32.07	40.92	54	-13.08	PK

Note: Emission was scanned up to 25GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit. Both horizontal and vertical polarization had been verified. The vertical test result is worst case.

Mid Channel @ 2440MHz @ 3 Meter

Frequency (GHz)	Reading (dBuV/m)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Loss (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBuV/m)	15.247/15.209 Limit @ 3m (dBuV/m)	Margin (dBuV/m)	Detector (pk/avg)
4880	48.60	176	1.20	V	32.20	4.13	32.49	52.44	74	-21.56	PK
4880	38.37	176	1.20	V	32.20	4.13	32.49	42.21	54	-11.79	AV

Note: Emission was scanned up to 25GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit. Both horizontal and vertical polarization had been verified. The vertical test result is worst case.

High Channel @ 2480MHz @ 3 Meter

Frequency (GHz)	Reading (dBuV/m)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Loss (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBuV/m)	15.247/15.209 Limit @ 3m (dBuV/m)	Margin (dBuV/m)	Detector (pk/avg)
4960	45.18	191	1.2	V	32.2	4.13	32.49	49.02	74	-24.98	PK
4960	34.26	191	1.2	V	32.2	4.13	32.49	38.10	54	-15.90	AV
2483.5	63.29	128	1.0	V	28.77	5.12	32.08	55.10	74	-18.90	PK
2483.5	49.73	128	1.0	V	28.77	5.12	32.08	41.54	54	-12.46	AV

Note: Emission was scanned up to 25GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit. Both horizontal and vertical polarization had been verified. The vertical test result is worst case.

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	31 of 69
www.siemic.com	

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Model	Serial #	Calibration Date	Calibration Due	Calibrate Cycle			
Conducted Emissions								
R & S Receiver	ESIB 40	100179	4/20/2012	4/20/2013	1year			
R&S LISN	ESH2-Z5	861741/013	05/18/2012	05/18/2013	1year			
CHASE LISN	MN2050B	1018	05/18/2012	05/18/2013	1year			
Sekonic Hygro Hermograph	ST-50	HE01- 000092	05/25/2012	05/25/2013	1year			
		Radiated Em	nissions					
R & S Receiver	ESIB 40	100179	4/20/2012	4/20/2013	1year			
Sunol Sciences, Inc. antenna (30MHz~2GHz)	JB1	A030702	2/9/2013	2/9/2014	1year			
Sekonic Hygro Hermograph	ST-50	HE01- 000092	05/25/2012	05/25/2013	1year			
Spectrum Analyzer	8564E	3738A00962	05/19/2012	05/19/2013	1year			
Antenna(1 ~18GHz)	3115	10SL0059	4/26/2012	4/26/2013	1year			
Pre-Amplifier(1 ~ 26GHz)	8449	3008A00715	5/17/2012	5/17/2013	1year			
Horn Antenna (18~40GHz)	AH-840	101013	4/23/2012	4/23/2013	1year			
Microwave Preamplifier; 18-40 GHz	PA-840	181251	N/A	N/A	Every 2000hours			
Signal Analyzer	FSIQ7	825555/013	5/10/2012	5/10/2013	1year			
10m Semi-Anechoic Chamber	10M	10SL0164	6/5/2012	6/5/2013	1 year			
CBT Bluetooth Tester	CBT	1153.9000.35	11/27/2012	11/27/2013	1 year			
RF Conducted Measurement								
R & S Receiver	ESIB 40	100179	4/20/2012	4/20/2013	1year			
Signal Analyzer	FSIQ7	825555/013	5/10/2012	5/10/2013	1year			

Note: Functional Verification

Serial#	SL13022701-GEO-001_FCC,IC	
Issue Date	Apr 22nd, 2013	
Page	32 of 69	www.siemic.com

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in Annex B.
- The power supply for the EUT was fed through a 50Ω/50μH EUT LISN, connected to filtered mains.
- The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an FMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Description of Conducted Emission Program

This EMC Measurement software run LabView automation software and offers a common user interface for electromagnetic interference (EMI) measurements. This software is a modern and powerful tool for controlling and monitoring EMI test receivers and EMC test systems. It guarantees reliable collection, evaluation, and documentation of measurement results. Basically, this program will run a pre-scan measurement before it proceeds with the final measurement. The pre-scan routine will run the common scan range from 15 kHz to 30 MHz; the program will first start a peak and average scan on selectable measurement time and step size. After the program complete the pre-scan, this program will perform the Quasi Peak and Average measurement, based on the pre-scan peak data reduction result.

Sample Calculation Example

At 20 MHz

limit = 250 μ V = 47.96 dB μ V

Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB

Q-P reading obtained directly from EMI Receiver = 40.00 dBμV

(Calibrated for system losses)

Therefore, Q-P margin = 47.96 - 40.00 = 7.96

i.e. 7.96 dB below limit

Annex A. iii RADIATED EMISSIONS TEST DESCRIPTION

EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 10th Harmonic, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

Serial#	SL13022701-GEO-001_FCC,IC	
Issue Date	Apr 22nd, 2013	
Page	34 of 69	www.siemic.com

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

- 1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

- 1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.
- 2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from $0 \circ to 360 \circ with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.$
- 5. Repeat step 4 until all frequencies need to be measured were complete.
- 6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth		
30 to 1000	Peak	100 kHz	100 kHz		
Above 1000	Peak	1 MHz	1 MHz		
Above 1000	Average	1 MHz	10 Hz		

Description of Radiated Emission Program

This EMC Measurement software run LabView automation software and offers a common user interface for electromagnetic interference (EMI) measurements. This software is a modern and powerful tool for controlling and monitoring EMI test receivers and EMC test systems. It guarantees reliable collection, evaluation, and documentation of measurement results. Basically, this program will run a pre-scan measurement before it proceeds with the final measurement. The pre-scan routine will run the scan on four different antenna heights, 2 antenna polarity, and 360 degrees table rotation. For example, the program was set to run 30 MHz to 1 GHz scan; the program will first start from a meter antenna height and divide the 30 MHz to 1 GHz into 10 separate parts of maximum hold sweeps. Each parts of maximum hold sweep, the program will collect the data from 0 degree to 360 degrees table rotation. After the program complete the 1m scan, the antenna continues to rise to 2m and continue the scan. The step will repeated for all specified antenna height and polarity. This program will perform the Quasi Peak measurement after the signal maximization process and pre-scan routine. The final measurement will be base on the pre-scan data reduction result.

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	35 of 69
www.siemic.com	

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any)

And the average value is

Average = Peak Value + Duty Factor or Set RBW = 1MHz, VBW = 10Hz.

Note:

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	36 of 69
www.siemic.com	

Annex B EUT PHOTOGRAPHS

Annex B. i Photograph 1: EUT External Photo

See application attachment

Annex B.ii. Photograph 3: Internal Photo

See application attachment

Annex B.iii. Photograph 3: Test Setup Photo

Radiated Emission

Radiated Emission Test Setup (below 1GHz) - Front View

Radiated Emission Test Setup (below 1GHz) - Rear View

Radiated Emission Test Setup (above 1GHz) - Front View

Radiated Emission Test Setup (above 1GHz) - Rear View

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	39 of 69
www.siemic.com	

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
N/A	N/A	N/A

Block Configuration Diagram for Radiated Emission

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	41 of 69
www.siemic.com	

Block Configuration Diagram for Conducted Emission

<u>N/A</u>

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	42 of 69
www.siemic.com	

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation
Emissions Testing	The EUT was set to TX continuously using manufacturer's program.
Others Testing	TX mode is normal mode with full power.

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	43 of 69
www.siemic.com	

Annex D USER MANUAL, BLOCK & CIRCUIT DIAGRAM

Please see attachment

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	44 of 69
www.siemic.com	

Annex E SIEMIC ACCREDITATION

SIEMIC ACCREDITATION DETAILS: A2LA 17025 & ISO Guide 65: 2742.01, 2742.2

Accredited Laboratory

A2LA has accredited

SIEMIC, INC.

Milpitas, CA for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 19th day of September 2012.

ASSTALL AND ASSTAL

President & CEO
For the Accreditation Council
Certificate Number 2742.01
Valid to September 30, 2014

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	45 of 69
www.siemic.com	

American Association for Laboratory Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

SIEMIC, INC. dba SIEMIC LABORATORIES 775 Montague Expressway Milpitas, CA 95035

Mr. Leslie Bai Phone: 408 526 1188 Email: leslie.bai@siemic.com Mr. Snell Leong Phone: 408 526 1188 Email: snell.leong@siemic.com www.siemic.com

ELECTRICAL

Valid to: September 30, 2014 Certificate Number: 2742.01

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following EMC, Product Safety, Radio and Telecommunication tests:

Test Technology:	Test Method(s):
EN & IEC – Emissions & Immunity	IEC/CISPR 11; EN 55011; IEC/CISPR 20; EN 55020; IEC/CISPR 22, EN 55022; IEC/CISPR 24, EN 55024; EN 61000-6-1; EN 61000-6-2; EN 61000-6-3; EN 61000-6-4; EN 61204-3; EN 61326-1; EN 61326-2-1; EN 61326-2-2; EN 61326-2-3; EN 61326-2-4; EN 61326-2-5; EN 61000-3-2; EN 61000-3-3; EN 50081-1, EN 50081-2; EN 50082-1; IEC 61000-4-2; EN 61000-4-2; IEC 61000-4-3 (limited up to 2.7 GHz and 3V m); EN 61000-4-3 (limited up to 2.7 GHz and 3V m); IEC 61000-4-4; EN 61000-4-4; IEC 61000-4-5; EN 61000-4-5; IEC 61000-4-6; EN 61000-4-6; IEC 61000-4-1; EN 61000-4-11; EN 50412-2-1; EN 50083-2; EN 50090-2-2; EN 50091-2; EN 50491-5-1; EN 50491-5-2; EN 50491-5-3; EN 6130-4; EN 50130-4 + A12; EN 12184; EN 55015; EN 61547; IEC 60601-1-2; CISPR 16-2-3

(A2LA Cert. No. 2742.01) 09/19/2012

Page 1 of 8

5301 Buckeystown Pike, Suite 350 | Frederick, Maryland 21704-8373 | Phone: 301 644 3248 | Fax: 301 662 2974 | www.A2LA.org

| Serial# | SL13022701-GEO-001_FCC,IC |
| Issue Date | Apr 22nd, 2013 |
| Page | 46 of 69 | www.siemic.com

Test Technology:	Test Method(s):
Korea – Emissions & Immunity	RRA Public Notification 2011-24; RRA Announce 2011-30; Annex 2 (KN 11); Annex 3 (KN 13); Annex 4 (KN 14-1); Annex 5 (KN 22); Annex 6 (KN 41); Annex 7 (KN 50); Annex 9 (KN 15); Annex 10 (KN 19); Annex 11 (KN 60); Annex 1-1 (KN 16-1-1); Annex 1-2 (KN 16-1-2); Annex 1-3 (KN 16-1-3); Annex 1-4 (KN 16-1-4); Annex 1-5 (KN 16-1-5); Annex 1-6 (KN 16-2-1); Annex 1-7 (KN 16-2-2); Annex 1-8 (KN 16-2-3); Annex 1-9 (KN 16-2-4); Annex 8-5 (KN 301-489-06); Annex 8-6 (KN 301-489-03); Annex 8-7 (KN 301-489-05); Annex 8-8 (KN 301-489-03); Annex 8-9 (KN 301-489-09); Annex 8-10 (KN 301-489-26); Annex 8-11 (KN 301-489-18); Annex 8-12 (KN 301-489-15); Annex 8-13 (KN 301-489-02); Annex 8-14 (KN 301-489-27); Annex 8-15 (KN 301-489-32); Annex 8-16 (KN 301-489-20); Annex 8-17 (KN 60945) RRA Public Notification 2011-25; RRA Announce 2011-31; Annex 1-1 (KN 61000-4-2); Annex 1-2 (KN 61000-4-3); Annex 1-3 (KN 61000-4-4); Annex 1-4 (KN 61000-4-5); Annex 1-7 (KN 61000-4-11); Annex 2 (KN 60601-1-2); Annex 3 (KN 20); Annex 4 (KN 14-2); Annex 5 (KN 24); Annex 6 (KN 41); Annex 7 (KN 51); Annex 8-1 (KN 301-489-01); Annex 8-2(KN 301-489-07); Annex 8-3 (KN 301-489-17); Annex 8-4(KN 301-489-07); Annex 8-3 (KN 301-489-17); Annex 8-4(KN 301-489-24);
US / FCC - Emissions	FCC Method 47 CFR Part 18, FCC Report and Order ET Docket 98-153 (FCC 02-48); FCC Method 47 CFR Parts15, including Subpart G, using FCC Order 04-425; ANSI C63.4 (2003); ANSI C63.4 (2009); ANSI C63.10 (2009); ANSI C63.4 (2003) with FCC Method 47 CFR Part 11; ANSI C63.4 (2003) with FCC Method 47 CFR Part 15, Subpart E; ANSI C63.4 (2003) with FCC Method 47 CFR Part 15, Subpart C; ANSI C63.4 (2003) and DA 02-2138; ANSI C63.4 (2003) with FCC Method 47 CFR Part 15, Subpart B
Canada – Emissions	ICES-001; ICES-002; ICES-003; ICES-005; ICES-006
Vietnam – Emission & Immunity	TCN 68-193:2003; TCN 68-196:2001; TCVN 7189:2002; TCVN 7189:2009 (CISPR 22:2006)
Australia / New Zealand – Emissions and Immunity	AS/NZS 1044; AS/NZS 2279.3; AS/NZS 3548; AS/NZS 4251.1; AS/NZS 4251.2; AS/NZS CISPR 11; AS/NZS CISPR 14.1; AS/NZS CISPR 22; AS/NZS CISPR 24; AS/NZS 61000.3.2; AS/NZS 61000.3.3; AS/NZS 61000.6.3; AS/NZS 61000.6.4
Japan – Emissions	JEITA IT-3001; VCCI-V-3 (up to 6 GHz)

(A2LA Cert. No. 2742.01) 09/19/2012

Peter Mbye Page 2 of 8

Test Technology:	Test Method(s):
Taiwan – Emissions	CNS 13438 (up to 6 GHz); CNS 13783-1; CNS 13803; CNS 13439
Singapore – Emissions & Immunity	IDA TS EMC; CISPR 22; IEC 61000-4-2; IEC 61000-4-3; IEC 61000-4-4; IEC 61000-4-5; IEC 61000-4-6
FCC – Unlicensed Radio A1 to A4	A1: 47 CFR Parts 11 (Emergency Alert System (EAS)), 15 (Radio Frequency Devices) and 18 (Industrial, Scientific, and Medical Equipment); FCC OST/MP-5(1986); ANSI C63.4(2003); ANSI C63.4(2009); ANSI C63.10(2009)
	A2: 47 CFR Part 15 (Radio Frequency Devices); ANSI C63.4(2003); ANSI C63.4(2009); ANSI C63.10(2009)
	A3: 47 CFR Part 15 (Radio Frequency Devices); ANSI C63.17:2006; ANSI C63.10(2009); IEEE Std 1528:2003 + A1; Std IEEE 528A:2005
	A4: 47 CFR Part 15 (Radio Frequency Devices); ANSI C63.10(2009); IEEE Std 1528:2003 + A1; Std IEEE 1528A:2005
FCC – Licensed Radio B1 to B4	B1: 47 CFR Parts 2 (Frequency Allocations and Radio Treaty Matters; General Rules and Regulations), 22 (Public Mobile Services), 24 (Personal Communications Services), 25 (Satellite Communications), and 27 (Miscellaneous Wireless Communications Services); ANSI/TIA-603-C (2004), ANSI/TIA-603-D(2010), Land Mobile FM or PM Communications Equipment Measurement and Performance Standard; IEEE Std 1528:2003 + Ad1; Std IEEE 1528A:2005 B2: 47 CFR Parts 2 (Frequency Allocations and Radio Treaty Matters; General Rules and Regulations), 22 (Public Mobile Services), 74 (Experimental Radio Auxiliary, Special Broadcast and Other Program Distributional Services), 90 (Private Land Mobile Radio Services), 95 (Personal Radio Services), and 97 (Amateur Radio Services); ANSI/TIA-603-C (2004), ANSI/TIA-603-D(2010), Land Mobile FM or PM Communications Equipment Measurement and Performance Standard
	B3: 47 CFR Parts 2 (Frequency Allocations and Radio Treaty Matters; General Rules and Regulations); 80 (Stations in the Maritime Services), 87 (Aviation Services); ANSI/TIA-603-C (2004), ANSI/TIA-603- D(2010), Land Mobile FM or PM Communications Equipment Measurement and Performance Standard
	B4: 47 CFR Parts 2 (Frequency Allocations and Radio Treaty Matters; General Rules and Regulations); 27 (Broadband Radio Services (BRS) and Educational Broadband Services (EBS)), 74 (Experimental Radio Auxiliary, Special Broadcast and Other Program Distributional Services), and 101 (Fixed Microwave Services); ANSI/TIA-603-C (2004), ANSI/TIA-603-D(2010), Land Mobile FM or PM Communications Equipment Measurement and Performance Standard

(A2LA Cert. No. 2742.01) 09/19/2012

Peter Mhyer Page 3 of 8

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 48 of 69 www.siemic.com

Test Technology:	Test Method(s):
Canada – Radio	RSS 102; RSS 111; RSS 112; RSS 117; RSS 118; RSS 119; RSS 123;
Canada Radio	RSS 125; RSS 127; RSS 129; RSS 131; RSS 132; RSS 133; RSS 134;
	RSS 135; RSS 136; RSS 137; RSS 138; RSS 139; RSS 141; RSS 142;
	RSS 170; RSS 181; RSS 182; RSS 191; RSS 192; RSS 194; RSS 195;
	RSS 196; RSS 197; RSS 199; RSS 210; RSS 220; RSS 213; RSS 215;
	RSS 243; RSS 287; RSS 288; RSS 310; RSS Gen
CE – Radio	EN 301 502; EN 301 511; EN 301 526; EN 301 681; EN 301 721;
	EN 301 751; EN 301 753; EN 301 783-2; EN 301 796; EN 301 797;
	EN 301 840-2; EN 301 843-1; EN 301 843-4; EN 301 843-5;
	EN 301 893; EN 301 908-01; EN 301 908-02; EN 301 908-03;
	EN 301 908-04; EN 301 908-05; EN 301 908-06; EN 301 908-07;
	EN 301 908-08; EN 301 908-09; EN 301 908-10; EN 301 908-11;
	EN 301 929-2; EN 301 997-2; EN 302 018-2; EN 302 054-2;
	EN 302 064-2; EN 302 066-2; EN 302 077-2; EN 302 186;
	EN 302 195-2; EN 302 217-3; EN 302 245-2; EN 302 288-2;
	EN 302 291-2; EN 302 296; EN 302 297; EN 302 326-2;
	EN 302 326-3; EN 302 340; EN 302 372-2; EN 302 426;
	EN 302 454-2; EN 302 480; EN 302 502; EN 302 510-2;
	EN 302 217-4-2; EN 300 224-1; EN 300 279; EN 300 339;
	EN 300 385; EN 301 839-2; EN 301 843-6; EN 302 017-2;
	EN 302 208-2; EN 302 217-2-2; ETS 300 329; ETS 300 445;
	ETS 300 446; ETS 300 683; ETS 300 826; ETS EN 300 328;
	ETSI EN 300 086-2; EN 302 217-1; EN 302 217-2-1; EN 302 217-4-1;
	EN 302 288-1; EN 302 908-12; EN 302 326-1; EN 301 929-1;
	EN 301 997-1; EN 300 224-2; EN 301 839-1; EN 301 843-1;
	EN 301 843-2; EN 301 843-3; EN 301 843-4; EN 301 843-5;
	EN 302 017-1; EN 302 208-1; EN 300 086-1; EN 300 113-1;
	EN 300 224-1; EN 300 341-1; EN 302 291-1; EN 302 500-1;
	EN 302 500-2; ETSI EN 300 113-2; ETSI EN 300 197;
	ETSI EN 300 198; ETSI EN 300 219-1; ETSI EN 300 219-2;
	ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 220-3;
	ETSI EN 300 224-2; ETSI EN 300 296-1; ETSI EN 300 296-2;
	ETSI EN 300 328-1; ETSI EN 300 328-2;
	ETSI EN 300 330; ETSI EN 300 330-1; ETSI EN 300 330-2;
	ETSI EN 300 341-2; ETSI EN 300 373-1; ETSI EN 300 373-2;
	ETSI EN 300 373-3; ETSI EN 300 390-1; ETSI EN 300 390-2;
	ETSI EN 300 422-1; ETSI EN 300 422-2; ETSI EN 300 431;
	ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 454-1;
	ETSI EN 300 454-2; ETSI EN 300 718-2; ETSI EN 301 021;
	ETSI EN 301 166-1; ETSI EN 301 166-2; ETSI EN 301 178-2;
	ETSI EN 301 213-1; ETSI EN 301 213-2; ETSI EN 301 213-3;
	ETSI EN 301 213-4; ETSI EN 301 213-5; ETSI EN 301 357-1;
	ETSI EN 301 357-2; ETSI EN 301 390; ETSI EN 301 459;
	ETSI EN 301 489-01 (excluding section 9.6);
	ETSI EN 301 489-02; ETSI EN 301 489-03; ETSI EN 301 489-04;
	ETSI EN 301 489-05; ETSI EN 301 489-06; ETSI EN 301 489-07;
	ETSI EN 301 489-08; ETSI EN 301 489-09; ETSI EN 301 489-10;
	ETSI EN 301 489-11; ETSI EN 301 489-12; ETSI EN 301 489-13;
	ETSI EN 301 489-14; ETSI EN 301 489-15; ETSI EN 301 489-16;
	ETSI EN 301 489-17; ETSI EN 301 489-18; ETSI EN 301 489-19;
	ETSI EN 301 489-20; ETSI EN 301 489-22; ETSI EN 301 489-23;
	ETSI EN 301 489-24; ETSI EN 301 489-25; ETSI EN 301 489-26;

(A2LA Cert. No. 2742.01) 09/19/2012

Peter Mbye Page 4 of 8

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	49 of 69
www.siemic.com	

Test Technology:	Test Method(s):	
CE – Radio (continued)	ETSI EN 301 489-27; ETSI EN 301 489-28; ETSI EN 301 489-31; ETSI EN 301 489-32; IEC 60945; EN 302 480	
IDA – Radio	IDA TS AR; IDA TS CT-CTS; IDA TS GMPCS; IDA TS LMR; IDA TS RPG; IDA TS SRD; IDA TS UWB; IDA TS WBA; IDA TS CMT; IDA TS CBS	
Vietnam – Radio	QCVN 54:2011/BTTTT; TCN 68-242:2006; QCVN 11:2010/BTTTT QCVN 17:2010/BTTTT	
Korea – Radio	KCC Public Notification 2012-12; RRA Announce 2011-32; RRA Public Notification 2010-46	
Taiwan – Radio	LP0002; PLMN07; PLMN01; PLMN08	
Australia - New Zealand – Radio	AS 2772.2; AS/NZS 4281; AS/NZS 4268; AS/NZS 4280.1; AS/NZS 4583; AS/NZS 4280.2; AS/NZS 4281; AS/NZS 4295; AS/NZS 4582; AS/NZS 4769.1; AS/NZS 4769.2; AS/NZS 4770; AS/NZS 4771	
Hong Kong – Radio	HKCA 1002; HKCA 1007; HKCA 1008; HKCA 1010; HKCA 1015; HKCA 1016; HKCA 1020; HKCA 1022; HKCA 1026; HKCA 1027; HKCA 1029; HKCA 1030; HKCA 1031; HKCA 1032; HKCA 1033; HKCA 1034; HKCA 1035; HKCA 1036; HKCA 1037; HKCA 1039; HKCA 1041; HKCA 1042; HKCA 1043; HKCA 1044; HKCA 1046; HKCA 1047; HKCA 1048; HKCA 1049; HKCA 1051; HKCA1052; HKCA1053; HKCA 1054; HKCA 1055; HKCA 1056; HKCA 1057; HKCA 1061	
FCC Telephone Terminal Equipment Scope C1	TIA-968-B; FCC Rule Part 68; 47 CFR Part 68.316; 47 CFR Part 68.317; ANSI/TIA/EIA-464-C; TIA-810-B; T1.TRQ6 (2002); TCB-31-B (1998); TIA-470.110-C; TIA-920	
Canada — Telecom	CS-03 Part I Issue 9:2010, Amendment 4; CS-03 Part II Issue 9:2004; CS-03 Part V Issue 9:2009 Amendment 1; CS-03 Part VI Issue 9:2004; CS-03 Part VII Issue 9:2006 Amendment 3; CS-03 Part VIII Issue 9:2009 Amendment 4	
Europe – Telecom	TBR 2: 01-1997; TBR 004 Ed.1.95 + A1 (97); TBR 1; TBR 3; TBR 12:A1 01-1996; TBR 013 ed.1; TBR 024 ed.1; TBR 25; TBR 38 ed.1; TBR 021; ETSI ES 203 021-05; ETSI ES 203 021-2; ETSI ES 021-3; ETSI EG 201 121; ETSI EN 301 437; ETSI TS 101 270-1; ITU-T Recommendation Q.920; ITU-T Recommendation Q.920 – Amendment 1; ITU-T Recommendation Q.921; ITU-T Recommendation Q.921 – Amendment 1; ITU-T Recommendation Q.931; ITU-T Recommendation Q.931; ITU-T Recommendation Q.931 – Amendment 1; Erratum 1 (02/2003) ITU-T Recommendation Q.931 (05/1998);	

(A2LA Cert. No. 2742.01) 09/19/2012

Peter Mbye Page 5 of 8

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	50 of 69
www.siemic.com	

Test Technology:	Test Method(s):	
Europe – Telecom (cont'd)	ISDN User Network Interface Layer 3 Specification for Basic Call Control; ITU-T Recommendation P.300	
As/CA S002 As/ACIF S00 As/CA S042 As/CA S003 As/CA S003 As/CA S004 As/CA S003 As/CA S004 As/ACIF S00	AS/CA S003.1:2010; AS/CA S002:2011; AS/ACIF S004:2008; AS/CA S042.1:2011; AS/CA S003.2:2010; AS/CA S003.3:2010; AS/CA S004:2010; AS/ACIF S006:2008; AS/ACIF S041.1:2009 AS/ACIF S041.2:2009; AS/ACIF S041.3:2009; AS/ACIF S042.1:2008; AS/ACIF S043.2:2008; AS/ACIF S043.2:2008; AS/ACIF S043.3:2008; AS/ACIF S003:06; AS/ACIF S004:08; AS/ACIF S004:01; AS/ACIF S016:01; AS/ACIF S016:01; AS/ACIF S031:01; AS/ACIF S040:01; AS/ACIF S040:01; AS/ACIF S040:01; AS/ACIF S041:05; AS/ACIF S041.2:06	
New Zealand – Telecom	PTC200:2006; PTC200 Issue No.2:97 + AI(980); PTC220; PTC273:2007; TNA 115; TNA 117	
Singapore – Telecom	IDA TS ADSL; IDA TS DLCN; IDA TS ISDN BA; IDA TS ISDN PRA; IDA TS BISDN; IDA TS-PSTN; IDA TS ACLIP; IDA TS CM	
Hong Kong – Telecom	HKCA 2011; HKCA 2012; HKCA 2013; HKCA 2014; HKCA 2015; HKCA 2017; HKCA 2018; HKCA 2019; HKCA 2022; HKCA 2023; HKCA 2024; HKCA 2026; HKCA 2027; HKCA 2028; HKCA 2029; HKCA 2030; HKCA 2031; HKCA 2032; HKCA 2033	
Vietnam – Telecom	QCVN 10:2010/BTTTT; QCVN 19:2010/BTTTT; TCN 68-189:2000; QCVN 18:2010/BTTTT; TCVN 7317:2003 (CISPR 24:1997); QCVN 12:2010/BTTTT; QCVN 13:2010/BTTTT; QCVN 55:2011/BTTTT; QCVN 15:2010/BTTTT	
Korea – Telecom	Presidential Decree 21098; RRA Public Notification 2010-36; RRA Public Notification 2009-38; RRA Announce 2011-2; Annex 1 (RRA Announce 2011-2); Annex 3 (RRA Announce 2011-2); Annex 5 (RRA Announce 2011-2); Annex 6 (RRA Announce 2011-2)	

(A2LA Cert. No. 2742.01) 09/19/2012

Peter Mbye Page 6 of 8

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	51 of 69
www.siemic.com	

Test Technology:	Test Method(s):	
China – Telecom	YD/T 514-1:98; YD/T 1277.1-2003; GB/T 17904.1-1999; GB/T 17904.2-1999; GB/T 17154.1-1997; GB/T 17154.2-1997; YD/T1091-2000; YD/T1006-1999; GB/T 17789-1999	
Taiwan – Telecom	PSTN01:2007; ADSL01:08; ID0002:2007; IS6100: 93	
Japan – Telecom	JATE Blue Book, Green Book; Ministerial Ordinance of the Ministry of Posts and Telecommunications No. 31 of April 1, 1985 (last amended on March 22 2004); Ordinance Concerning Technical Conditions Compliance Approval etc. of Terminal Equipment (amended by the Ministerial Ordinance of the MIC No.92 of October 25, 2010) and Ordinance Concerning Terminal Facilities etc. (amended by the Ministerial Ordinance of the MIC No. 91 of October 25, 2010)	
South Africa – Telecom	DPT-TE-001; TE-002; TE-003; TE-004; TE-005; TE-006; TE-007; TE-008; TE-009; TE-010; TE-012 (telephone interface); TE-013 (telephone interface); TE-014; TE-015; TE-018; SWS-001; SWS-002; SWS-003; SWS-004; SWS-005; SWS-006; SWS-007; SWS-008; SWS-009; SWS-010	
Israel – Telecom	Israel MoC Spc. 23/96	
Mexico – Telecom	NOM-151-SCT1-1999; NOM-152-SCT1-1999	
Argentina – Telecom	CNC-ST2-44-01	
Brazil – Telecom	Resolution 392-2005	
International Telecom Union	ITU-T-G.703:01; ITU-T-G.823:93; ITU-T G.824; ITU-T G.825; ITU-T-G.991.2; ITU-T-G.992.1; ITU-T-G.992.3; ITU-T-G.992.5; ITU-T-G.993.1	
Product Safety	IEC 60950-1; EN 60950-1; UL 60950-1; IEC 60601-1-1; CAN/CSA 22.2 NO. 60950-1-03; SS-EN 60950-1; AS/NZ 60950-1, (voltage surge testing up to 6kV, excluding Annex A, H, and Y); CNS 14336, CNS 14408; GB4943; President Notice 20664; RRA Public Notification 2011-14; RRA Announce 2011-3; Annex 1(RRA Announce 2011-3); QCVN 22:2010/BTTTT; SABS IEC 60950; IEC/EN 61558; IEC/EN 61558-2-7; EN 62115; IEC 60215; EN 60958; EN 60598; IEC 215 (1987) + A1 (1992) + A2 (1994)	
Japan - Radio	ARIB STD-T81; ARIB STD-T66; RCR STD-1; RCR STD-29; ARIB STD-T94 Fascicle 1; ARIB STD-T90; ARIB STD-T89; RCR STD-33	
SAR & HAC	IEEE P1528:2003 + Ad1; IEEE 1528A:2005; FCC OET Bulletin 65 Supplement C; FCC OET Bulletin 65; ANSI C95 ANSI C63.19; FCC 47 CFR 20.19; H46-2/99-273E; EN 50360; EN 50361; IEC62209-1; IEC 62209-2; EN 50371; EN 50383; EN 50357; EN 50364;	

(A2LA Cert. No. 2742.01) 09/19/2012

Peter Mbye Page 7 of 8

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 52 of 69 www.siemic.com

Test Technology:	Test Method(s): KCC Public Notification 2009-27; RRA Public Notification 2010-45; KCC Public Notification 2012-2;CNS 14958-1; CNS 14959; NZS 2772.1; Resolution N 533; AS/NZS 2772.2:2011	
SAR & HAC (cont'd)		
Japan – Notification No. 88 of MIC 2004		
Table No 13	CB Radio	
Table No 21	Cordless Telephone	
Table Nos 22-1 thru 22-17	Low Power Radio Equipment	
Table No 36	Low Power Security System	
Table No 43	Low Power Data Communication in the 2.4 GHz Band	
Table No 44	Low Power Data Communication in the 2.4 GHz Band	
Table No 45	Low Power Data Communication in the 5.2, 5.3, 5.6 GHz Bands	
Table No 46	Low Power Data Communication in the 25 and 27 GHz Bands	
Table No 47	Base Station for 5 GHz Band Wireless Access System	
Table No 47	Base Station for 5 GHz Band Wireless Access System (low spurious type)	
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System (limited for use in special zones)	
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System (limited for use in special zones, low spurious type)	
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System	
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System (low spurious type)	
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System (low power type)	
Table No 50	Digital Cordless Telephone	
Table No 50	PHS Base Station	
Table No 50	PHS Land Mobile Station	
Table No 50	PHS Relay Station	
Table No 50	PHS Test Station	
Table No 64	Mobile Station for Dedicated Short Range Communication Systems	
Table No 64	Base Station for Dedicated Short Range Communication Systems	
Table No 64	Test Station for Dedicated Short Range Communication Systems	
Table No 70	UWB (Ultra Wide Band) Radio System	

^{*}Limitations for listed standards are indicated by italics and Scope excludes protocol sections of applicable standards.

(A2LA Cert. No. 2742.01) 09/19/2012

Peter Mbye Page 8 of 8

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	53 of 69
www.siemic.com	

American Association for Laboratory Accreditation

Accredited Product Certification Body A2LA has accredited

SIEMIC, INC.

Milpitas, CA for technical competence as a

Product Certification Body

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC Guide 65:1996

General requirements for bodies operating product certification systems. This accreditation demonstrates technical competence for a defined scope and the operation of a quality management system.

Presented this 19th day of September 2012.

President & CEO For the Accreditation Council Certificate Number 2742.02 Valid to September 30, 2014

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 54 of 69 | www.siemic.com

American Association for Laboratory Accreditation

Certificate Number: 2742.02

SCOPE OF ACCREDITATION TO ISO/IEC GUIDE 65:1996

SIEMIC, INC.
775 Montague Expressway
Milpitas, CA 95035
Mr. Snell Leong (Authorized Representative) Phone: 408 526 1188
www.siemic.com

PRODUCT CERTIFICATION CONFORMITY ASSESSMENT BODY (CAB)

Valid to: September 30, 2014

In recognition of the successful completion of the A2LA Certification Body Accreditation Program evaluation, including the US Federal Communications Commission (FCC), Industry Canada (IC), Singapore (IDA), Hong Kong (OFCA) and Japan (MIC) requirements for the indicated types of product certifications, accreditation is granted to this organization to certify products in accordance with the following product certification schemes:

Economy: Scope:

Federal Communication Commission - (FCC)

Unlicensed Radio Frequency Devices A1, A2, A3, A4
Licensed Radio Frequency Devices B1, B2, B3, B4
Telephone Terminal Equipment C

*Please refer to FCC TCB Program Roles and Responsibilities, released January 6, 2011, detailing scopes, roles and responsibilities. <u>TCB Program Roles and Responsibilities</u>

Industry Canada - (IC)

Radio Scope 1-Licence-Exempt Radio Frequency Devices;

Scope 2-Licensed Personal Mobile Radio Services; Scope 3-Licensed General Mobile & Fixed Radio

Services:

Scope 4-Licensed Maritime & Aviation Radio

Services;

Scope 5-Licensed Fixed Microwave Radio Services;

*Please refer to Industry Canada (IC) website at: http://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/sf09888.html

(A2LA Cert. No. 2742.02) 09/19/2012

Page 1 of 2

Peter Alnye

5301 Buckeystown Pike, Suite 350 | Frederick, Maryland 21704-8373 | Phone: 301 644 3248 | Fax: 301 662 2974 | www.A2LA.org

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 55 of 69 | www.siemic.com

IDA - Singapore

Line Terminal Equipment All Technical Specifications for Line Terminal

Equipment - Table 1 of IDA MRA Recognition

Scheme: 2011, Annex 2

Radio-Communication Equipment All Technical Specifications for Radio-Communication

Equipment - Table 2 of IDA MRA Recognition

Scheme: 2011, Annex 2

*Please refer to Info-Communication Development Authority (tDA) Singapore website at: http://www.ida.gov.sg/doc/Policies%20and%20Regulation/Policies/and/Regulation_Level2/20060609145118/ MRARecScheme.pdf

OFCA - Hong Kong

Radio Equipment HKCA 1001, 1002, 1003, 1004, 1005, 1006, 1007,

1008, 1010, 1015, 1016, 1019, 1020, 1022, 1026, 1027, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1052,

1053, 1054, 1056, 1057, 1061

Fixed Network Equipment HKCA 2001, 2005, 2011, 2012, 2013, 2014, 2015,

2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033, 2034, 2035, 2036, 2037, 2040, 2041, 2102, 2103, 2104, 2108,

2201, 2202, 2203, 2204

MIC - Japan

Telecommunications Business Law

Scope A1 - Terminal Equipment for the Purpose of

Calls

Radio Law (Radio Equipment)

(Terminal Equipment)

Scope B1 - Specified Radio Equipment specified in, Article 38-2-2, paragraph 1, item 1 of the Radio Law

(A2LA Cert. No. 2742.02) 09/19/2012

Peter Mlnye

^{*}Please refer to the Office of the Communications Authority's website at: Radio Equipment Specifications (HKCA 10XX)

^{*}Please refer to the Office of the Communications Authority's website at: Fixed Network Equipment Specifications (HKCA 2XXX)

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 56 of 69 | www.siemic.com

SIEMIC ACCREDITATION DETAILS: FCC Test Site Registration No. 881796

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

August 03, 2012

Registration Number: 881796

SIEMIC Labs 775 Montague Expressway,

Milpitas, CA 95035

Attention: Leslie BAI

Re: Measurement facility located at 775 Montague Expressway, Milpitas, CA 95035

Anechoic chamber (10 meters)
Date of Listing: August 03, 2012

Dear Sir or Madam:

Your request for registration of the subject measurement facility has been reviewed and found to be in compliance with the requirements of Section 2.948 of the FCC rules. The information has, therefore, been placed on file and the name of your organization added to the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Katie Hawkins Electronics Engineer

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	57 of 69
www.siemic.com	

SIEMIC ACCREDITATION DETAILS: Industry of Canada CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

March 4, 2009

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by Industry Canada (IC), under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name: SIEMIC, Inc.

Physical Location: 2206 Ringwood Avenue, San Jose, CA 95131 USA

Identification No.: US0160

Recognized Scope: CS-03 Part I, II, V, VI, VII and VIII

You may submit test data to IC to verify that the equipment to be imported into Canada satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. Please contact Ms. Ramona Saar at (301) 975-5521 or ramona.saar@nist.gov if you have any questions.

Sincerely,

David F. Alderman

Group Leader, Standards Coordination and Conformity Group

Standards Services Division

Paris In Alda

Enclosure

cc: CAB Program Manager

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 58 of 69 | www.siemic.com

SIEMIC ACCREDITATION DETAILS: Industry of Canada Test Site Registration No. 4842-1

Industry

Industrie Canada

July 03, 2012

OUR FILE: 46405-4842 Submission No: 157820

Siemic Inc. 775 Montague Expressway Milpitas, CA, 95035 United States

Attention:

Dear Sir/Madame: Snell Leong

The Bureau has received your application for the renewal of 3/10m alternative test site. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (Site# 4842D-2). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please keep for your records the following information;

- The company address code associated to the site(s) located at the above address is: 4842D

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 or later shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 metre OATS or 3 metre chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed three years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL;

http://strategis.ic.gc.ca/epic/internet/inceb-bhst.nsf/en/h_tt00052e.html.

If you have any questions, you may contact the Bureau by e-mail at <u>certification.bureau@ic.gc.ca</u> Please reference our file and submission number above for all correspondence.

Yours sincerely,

Dalwurder Gill

Fer: Wireless Laboratory Manager Certification and Engineering Bureau 3701 Carting Ave., Building 94 P.O. Box 11490, Station "R" Oftwa, Ortana KZE 832 Ernal: dalwinder.gili@ingo.ca Tel. Mo. (613) 998-8363

Fax No. (613) 990-4752

SIEMIC ACCREDITATION DETAILS: FCC DOC CAB Recognition: US1109

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

August 28, 2008

Siemic Laboratories 2206 Ringwood Ave., San Jose, CA 95131

Attention:

Leslie Bai

Re:

Accreditation of Siemic Laboratories

Designation Number: US1109 Test Firm Registration #: 540430

Dear Sir or Madam:

We have been notified by American Association for Laboratory Accreditation that Siemic Laboratories has been accredited as a Conformity Assessment Body (CAB).

At this time Siemic Laboratories is hereby designated to perform compliance testing on equipment subject to Declaration Of Conformity (DOC) and Certification under Parts 15 and 18 of the Commission's Rules.

This designation will expire upon expiration of the accreditation or notification of withdrawal of designation.

Sincerely.

George Tannahill
Electronics Engineer

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 60 of 69 | www.siemic.com

SIEMIC ACCREDITATION DETAILS: Australia CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

November 20, 2008

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Australian Communications and Media Authority (ACMA) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name: Siemic, Inc.

Physical Location: 2206 Ringwood Avenue, San Jose, CA 95131

Identification No.: US0160

Recognized Scope: EMC: AS/NZS 4251.1 (until 5/31/2009), AS/NZS 4251.2 (until 5/31/2009),

AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR 22, AS/NZS

61000.6.3, AS/NZS 61000.6.4

Radiocommunications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS

4769.2, AS/NZS 4770, AS/NZS 4771

<u>Telecommunications</u>: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06, AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/NZS 60950.1

You may submit test data to ACMA to verify that the equipment to be imported into Australia satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. Please contact Ms. Ramona Saar, at (301) 975-5521 or ramona.saar@nist.gov if you have questions.

Sincerely,

David F. Alderman

Group Leader, Standards Coordination and Conformity Group

Standards Services Division

David T. alder

Enclosure

cc: Snell Leong, Siemic, Inc.; Ramona Saar, NIST

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	61 of 69
www.siemic.com	

SIEMIC ACCREDITATION DETAILS: Korea CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

December 6, 2011

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory's recognition by the Radio Research Agency (RRA) Korea Communications Commission (KCC) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA) has been updated. The pertinent information about your laboratory's designation is as follows:

CAB Name: SIEMIC, Inc.

Physical Location: 2206 Ringwood Avenue, San Jose, CA 95131

Identification No.: US0160

Current Scope: EMI: KCC Notice 2008-39; RRA Public Notification 2011-5; KN22

EMS: KCC Notice 2008-38; RRA Public Notification 2011-6, KN24

Updated Scope: EMI: RRA Public Notification 2011-18; RRA Announce 2010-5; KN 11; KN 13;

KN 14-1; KN 22; KN 41; KN50; KN15; KN19; KN60; KN16-1-1; KN16-1-2; KN16-1-3; KN16-1-4; KN16-1-5; KN16-2-1; KN16-2-2; KN 16-2-3; KN 16-2-4; EMS: RRA Public Notification 2011-17; RRA Announce 2010-6; KN24; KN 61000-4-2.

-4-3, -4-4, -4-5, -4-6, -4-8, -4-11; KN60101-1-2, KN20; KN41, KN51; RF: KCC Public Notification 2011-31; KCC Public Notification 2011-10;

RRA Public Notification 2010-46; KN301-489-1; KN301-489-07; KN301-489-17; KN

301-489-24

SAR: KCC Public Notification 2009-27; RRA Public Notification 2010-45; KCC

Public Notification 2011-10

TELECOM: RRA Public Notification 2010-36; RRA Public Notification 2009-38

You may submit test data to RRA/KCC to verify that the equipment to be imported into Korea satisfies the applicable requirements. The designation of your organization will remain in force as long as the accreditation for the designated scope remains valid and complies with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. If you have any questions please, contact me at (301) 975-5521 or via email at ramona.saar@nist.gov.

Sincerely,

Ramona Saar

hamona Jaan

Standards Services Group

Enclosure

NIST

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	62 of 69
www.siemic.com	

SIEMIC ACCREDITATION DETAILS: Taiwan BSMI Accreditation No. SL2-IN-E-1130R

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gethersburg, Maryland 20899-

May 3, 2006

Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

I am pleased to inform you that your laboratory has been recognized by the Chinese Taipei's Bureau of Standards, Metrology, and Inspection (BSMI) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. You may submit test data to BSMI to verify that the equipment to be imported into Chinese Taipei satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. The pertinent designation information is as follows:

BSMI number: SL2-IN-E-1130R (Must be applied to the test reports)

- U.S Identification No: US0160
- Scope of Designation: CNS 13438
- Authorized signatory: Mr. Leslie Bai

The names of all recognized CABs will be posted on the NIST website at http://ts.nist.gov/mra. If you have any questions, please contact Mr. Dhillon at 301-975-5521. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

David F. Alderman

Group Leader, Standards Coordination and Conformity Group

ce: Jogindar Dhillon

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 63 of 69 | www.siemic.com

SIEMIC ACCREDITATION DETAILS: Taiwan NCC CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

April 25, 2011

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwwod Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the National Communications Commission (NCC) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. The pertinent information about the laboratory's designation is as follows:

CAB Name: SIEMIC, Inc.

Physical Location: 2206 Ringwood Avenue, San Jose, CA 95131

Identification No.: US0160

Previous Scope: LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS 14336, PLMN07

Current Scope: LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS 14336, PLMN07, PLMN01

and PLMN08

You may submit test data to NCC to verify that the equipment to be imported into Chinese Taipei satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. If you have any questions please contact Ramona Saar at (301) 975-5521 or ramona.saar@nist.gov.

Sincerely,

David F. Alderman Standards Services Group

David Tr. alderna

Enclosure

cc: Ramona Saar

NIST

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 64 of 69 | www.siemic.com

SIEMIC ACCREDITATION DETAILS: Vietnam CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

July 11, 2012

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory continues to be recognized by Vietnam's Ministry of Information and Communication (MIC) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). MIC has updated your scope of recognition. The pertinent information about the continued recognition is as follows:

CAB Name:

SIEMIC, Inc.

Physical Location:

2206 Ringwood Avenue, San Jose, CA 95131

Identification No.:

US0160

Current Scope:

TCN68-188, TCN68-190, TCN68-193, TCN68-196, TCN68-143, TCN68-192,

TCN68-189, TCN68-221, TCN68-222, TCN68-223, TCN68-245, TCN68-242,

TCN68-243, TCN68-246, TCVN 7189

Updated Scope:

QCVN 19:2010/BTTTT, QCVN 22:2010/BTTTT, TCVN 7189:2009, TCVN

7317:2003, QCVN 10:2010/BTTTT, QCVN 12:2010/BTTTT, QCVN 3:2010/BTTTT

QCVN 15:2010/BTTTT, QCVN 11:2010/BTTTT, QCVN 54:2011/BTTTT, QCVN 55:2011/BTTTT, QCVN 18:2010/BTTTT, QCVN 17:2010/BTTTT

You may submit test data to MIC to verify that the equipment to be imported into Vietnam satisfies the applicable requirements. Please note that your recognition from Vietnam will expire on September 30, 2012. To continue the recognition beyond this date, it will be necessary to submit to NIST the updated ISO/IEC 17025 Scope and Certification of Accreditation as soon as it is reissued during your next accreditation renewal period. NIST will then submit the updated information to MIC so that the recognition can be extended.

Recognized CABs are listed on the NIST website at http://gsi.nist.gov/global/index.cfm/L1-4/L2-16/L3-90/A-380. If you have any questions please contact Ramona Saar via email at ramona.saar@nist.gov or phone at (301) 975-5521.

Sincerely,

David F. Alderman Standards Services Group

David T. alderna

Enclosure

cc: Ramona Saar

NIST

Serial#	SL13022701-GEO-001_FCC,IC	
Issue Date	Apr 22nd, 2013	
Page	65 of 69	www.siemic.com

SIEMIC ACCREDITATION DETAILS: Mexico NOM Recognition

CANAHA NACIONAL DE LA INDUSTRIA ELECTROMICA, DE TELECOMUNICACIONES E INFORMATICA

Laboratorio Valentín V. Rivero

México D.F. a 16 de octubre de 2006.

LESLIE BAI DIRECTOR OF CERTIFICATION SIEMIC LABORATORIES, INC. ACCESSING GLOBAL MARKETS PRESENTE

En contestación a su escrito de fecha 5 de septiembre del año en curso, le comento que estamos muy interesados en su intención de firmar un Acuerdo de Reconocimiento Mutuo, para la cual adjunto a este escrito encontrara el Acuerdo en idioma inglés y español pretienado de los cuales le pido ser revisado y en su caso corregido, para que si esta de acuerdo poder firmarlo para mandarto con las autoridades Mexicanas para su visto bueno y así poder ejercer dicho ecuerdo.

Aprovecho este escrito para mencionarle que nuestro intermediario gestor será la empresa Isatel de México, S. A. de C. V., empresa que ha colaborado durante mucho tiempo con nosotros en lo relacionado a la evaluación de la conformidad y que cuenta con amplia experiencia en la gestoria de la certificación de cumplimiento con Normas Oficiales Mexicanas de producto en México.

Ma despido de ustad enviándole un cordial saludo y esperando sus comentarios al Acuerdo que nos ocupa

Atentamente:

Ing. Faustino Bornez González Gerente Harrico del Laboratorio de Garrieri

Culturièn ?1 Pépdérens Condess Gé100 Maveou. D.F. Tur. 5264-0308 con 12 lineas Fair 5064-0498 www.conlett.olg

Serial#	SL13022701-GEO-001_FCC,IC	
Issue Date	Apr 22nd, 2013	
Page	66 of 69	www.siemic.com

SIEMIC ACCREDITATION DETAILS: Hong Kong OFTA CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

December 8, 2008

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Office of the Telecommunications Authority (OFTA) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name: SIEMIC, Inc.

Physical Location: 2206 Ringwood Avenue, San Jose, California 95131 USA

Identification No.: US0160

Recognized Scope: Radio: HKTA 1002, 1007, 1008, 1010, 1015, 1016, 1020, 1022, 1026,

1027, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1039, 1041,

1042, 1043, 1044, 1046, 1047, 1048, 1049, 1051

Telecom: HKTA 2011, 2012, 2013, 2014, 2017, 2018, 2022, 2024, 2026,

2027, 2028, 2029, 2030, 2031, 2032, 2033

You may submit test data to OFTA to verify that the equipment to be imported into Hong Kong satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. If you have any questions please contact Ramona Saar at (301) 975-5521 or ramona.saar@nist.gov.

Sincerely,

David F. Alderman

Group Leader, Standards Coordination and Conformity Group

Standards Services Division

David I aldem

Enclosure

cc: Ramona Saar

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 67 of 69 | www.siemic.com

SIEMIC ACCREDITATION DETAILS: Australia ACMA CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

November 20, 2008

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Australian Communications and Media Authority (ACMA) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name: Siemic, Inc.

Physical Location: 2206 Ringwood Avenue, San Jose, CA 95131

Identification No.: US0160

Recognized Scope: <u>EMC</u>: AS/NZS 4251.1 (until 5/31/2009), AS/NZS 4251.2 (until 5/31/2009),

AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR 22, AS/NZS

61000.6.3, AS/NZS 61000.6.4

Radiocommunications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS

4769.2, AS/NZS 4770, AS/NZS 4771

<u>Telecommunications</u>: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06, AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/NZS 60950.1

You may submit test data to ACMA to verify that the equipment to be imported into Australia satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. Please contact Ms. Ramona Saar, at (301) 975-5521 or ramona.saar@nist.gov if you have questions.

Sincerely,

David F. Alderman

Group Leader, Standards Coordination and Conformity Group

Standards Services Division

David T. alder

Enclosure

cc: Snell Leong, Siemic, Inc.; Ramona Saar, NIST

NIST

| Serial# | SL13022701-GEO-001_FCC,IC | Issue Date | Apr 22nd, 2013 | Page | 68 of 69 | www.siemic.com

SIEMIC ACCREDITATION DETAILS: Australia NATA Recognition

Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

November 4, 2008

Under Australian government legislation, the Australian Communications and Media Authority (ACMA) has determined the National Association of Testing Authorities, Australia (NATA) as an accreditation body as per Section 409(1) of the Telecommunications Act 1997 (Cth). Pursuant to Section 409(2) of the Telecommunications Act 1997 (Cth), I am pleased to advise that your laboratory has been determined as a Recognised Testing Authority (RTA).

This determination has been made on the basis of your accreditation by A2LA accreditation no. 2742.01 and the Mutual Recognition Agreement between NATA and A2LA. It is effective from 11 July 2008. RTA status applies only to the following standards and is contingent upon their continued inclusion in your laboratory's scope of accreditation.

AS/ACIF S002, AS/ACIF S003, AS/ACIF S004, AS/ACIF S006, AS/ACIF S016, AS/ACIF S031, AS/ACIF S038, AS/ACIF S041 and AS/ACIF S043.2

As an RTA, your laboratory has the following obligations:

- 1. the laboratory shall continue to meet all of the accreditation criteria of A2LA;
- the authorised representative of the laboratory shall notify NATA of changes to the staff or operations of the laboratory which would affect the performance of the tests for which the laboratory has been determined;
- 3. compliance of equipment shall be reported on test reports bearing the A2LA logo/endorsement.

Current information on the Australian Communications and Media Authority and regulatory requirements for telecommunications products within Australia can be obtained from the ACMA's web-site at "http://www.acma.gov.au". Further information about NATA may be gained by visiting "http://www.nata.asn.au".

Please note that AS/ACIF S040 and New Zealand standards do not form part of the RTA scheme.

Your RTA listing will appear on the NATA website shortly.

Kind Regards

Chris Norton,
Senior Scientific Officer
Measurement Science and Technology
National Association of Testing Authorities (NATA)
71-73 Flemington Road
North Melbourne Vic 3051
Australia

Ph: +61 3 9329 1633 Fx: +61 3 9326 5148 E-Mail: <u>Christopher:Norton@nata.asn.au</u>

Internet: www.nata.asn.au

Serial#	SL13022701-GEO-001_FCC,IC
Issue Date	Apr 22nd, 2013
Page	69 of 69
www.siemic.com	

SIEMIC ACCREDITATION DETAILS: VCCI Radiated Test Site Registration No. A-0133

Certificate of VCCI Laboratory registration

Company name (VCCI Membership No.)	SIEMIC Laboratories (3081)	
	Laboratory Name	SIEMIC Labs (Milpitas location)
	VCCI Laboratory registration No.	A-0133
	VCCI Laboratory registration date	09/21/2012 (mm/dd/yyyy)
	Registration expiration date	09/30/2014 (mm/dd/yyyy)
	Country of Laboratory	USA
1.1 Laboratory	ISO 17025 Accreditation body name	AZLA
Info.	Accreditation No.	2742.01
	Accreditation valid to mm/dd/yyyy	09/30/2014 (mm/dd/yyyy)
	Edition (year) of the VCCI rule indicated in the scope of accreditation (example: V-3 20xx.04)	Not described in Scope
	Zip code	95035
	Address	775 Montague Expressway, Milpitas , CA 95035 USA

