Università degli Studi di Roma "La Sapienza" Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Corsi di laurea in Ingegneria Informatica e Automatica

Esame scritto di Fisica

Roma, 24.06.2014

Risolvete, prima analiticamente poi numericamente, gli esercizi seguenti.

- 1. Un'automobile sta percorrendo in pianura una strada rettilinea con velocità costante, di modulo V=65km/h. Si determinino rispetto a un sistema di riferimento solidale con la strada direzioni, versi e moduli delle velocità e delle accelerazioni dei punti sulla circonferenza esterna delle ruote, di raggio R=25cm, nelle posizioni di massima (v_A e a_A) e di minima (v_B e a_B) quota.
- 2. Un'asta omogenea di massa m=2kg è vincolata a ruotare senza attrito attorno a un suo estremo A su un piano verticale. Si chiede qual è la reazione sul vincolo dell'asta quando questa, rilasciata con velocità angolare nulla dalla posizione orizzontale passa per la posizione verticale.
- 3. Una sfera conduttrice di raggio R_1 =35cm viene caricata con una carica Q=2nC e successivamente collegata mediante un filo metallico sottile a una seconda sfera conduttrice scarica di raggio R_2 =55cm, sufficientemente lontana dalla prima da potere considerare nulli gli effetti di induzione elettrostatica tra le sfere. Si chiede quali sono i valori delle cariche Q_1 e Q_2 sulle due sfere dopo il collegamento.

Rispondete, con essenzialità e correttezza, alle seguenti domande.

- 1. Mostrate come nel moto circolare uniforme l'accelerazione sia unicamente centripeta e ricavatene il valore in termini della velocità e del raggio di curvatura.
- 2. Illustrate l'esperienza di Joule, con la quale si prova che l'energia interna di un gas perfetto è unicamente funzione della temperatura.
- 3. Mostrate con un esempio come l'introduzione della corrente di spostamento completi la legge di Ampère nei casi in cui ci sia una variazione temporale della corrente di conduzione.

SOLUZIONI

Fisica 24.06.2014

Corso di laurea in Ingegneria informatica e Automatica, data: 24.06.2014

Esercizio n.1

Le grandezze cinematiche nei due sistemi di riferimento della strada (assoluto) e dell'automobile (relativo) sono legate dalle espressioni dei moti relativi secondo:

$$\mathbf{v}_{ass} = \mathbf{v}_{rel} + \mathbf{v}_{trasc}$$
 e $\mathbf{a}_{ass} = \mathbf{a}_{rel} + \mathbf{a}_{trasc} + \mathbf{a}_{compl}$

Nel caso specifico, la \mathbf{v}_{trasc} è la velocità orizzontale \mathbf{V} dell'automobile e la \mathbf{v}_{rel} , di modulo pari a \mathbf{V} (per es. il punto di contatto della ruota con la strada ha velocità $-\mathbf{V}$ rispetto all'asse, solidale con l'automobile) nelle due posizioni richieste è anch'essa orizzontale, di verso concorde con quello di \mathbf{V} nel punto di massima quota e opposto in quello di minima, per cui

$$(v_A)_{ass} = V + V = 2V = 36,1 \text{m/s}$$
 e $(v_B)_{ass} = V - V = 0$

Riguardo alle accelerazioni, si nota che è \mathbf{a}_{trasc} =0 e quindi anche \mathbf{a}_{compl} =0; pertanto nei due sistemi le accelerazioni di ogni punto delle ruote sono le medesime. In particolare, quindi, i punti richiesti saranno sottoposti alla sola accelerazione centripeta, che nelle posizioni richieste sarà di modulo

 $a_{ass} = a_{rel} = \frac{v_{rel}^2}{R} = \frac{V^2}{R} = 1304 \text{m/s}^2$ e diretta verso il basso nella posizione A, verso l'alto nella posizione B.

Esercizio n.2

Nel passaggio per la posizione verticale l'energia potenziale si sarà trasformata in energia cinetica secondo la relazione

$$mg\frac{L}{2} = \frac{1}{2}I_A\omega^2$$

con L la lunghezza dell'asta e $I_A = \frac{1}{3}mL^2$ il suo momento d'inerzia rispetto all'estremo A. Si ricava,

quindi $\omega^2 = \frac{3g}{L}$. Nella posizione verticale dell'asta l'accelerazione \mathbf{a}_{CM} del centro di massa sarà tutta centripeta verticale, per la simmetria del moto rispetto a questa posizione, e di modulo pari a $a_{\text{CM}} = \omega^2 \frac{L}{2} = \frac{3g}{2}$. La forza totale agente in quell'istante sull'asta sarà pari alla forza peso più la reazione del vincolo, $\mathbf{F} = \mathbf{P} + \mathbf{R}$, dirette entrambe secondo la verticale, ma in versi opposti. Il modulo della reazione sarà quindi

$$R = ma_{CM} + mg = mg\left(\frac{3}{2} + 1\right) = 2,5mg = 49 \text{ N}$$

Esercizio n.3

Dopo il collegamento delle sfere mediante il filo conduttore, la carica Q inizialmente presente sulla prima sfera si sarà ripartita in Q_1 e Q_2 in modo da rendere eguali i potenziali; nello specifico

$$V_1 = \frac{Q_1}{4\pi\varepsilon_o R_1} = V_2 = \frac{Q_2}{4\pi\varepsilon_o R_2}$$

da cui, ponendo, per la conservazione della carica, $Q=Q_1+Q_2$, si ha:

$$\frac{Q_1}{R_1} = \frac{Q - Q_1}{R_2}$$

e successivamente

$$Q_1 = Q \frac{R_1}{R_1 + R_2} = 0,777 \text{nC}$$
 e $Q_2 = Q \frac{R_2}{R_1 + R_2} = 1,222 \text{nC}$