Correction DS Thermo 2013-10		
$dP = \Delta_{fus}\overline{H}$		0.5
1.1 La pente est égale à $\frac{dP}{dT} = \frac{\Delta_{fus}H}{T(\overline{V}_I - \overline{V}_s)}$ avec $\Delta_{fus}\overline{H} > 0$ et		
$\overline{V}_l - \overline{V}_s = M(1/\rho_l - 1/\rho_s) > 0 \text{ car } \rho_l < \rho_s$		
1.2 Les trois pentes sont :		1
$\left \left(\frac{dP}{dT} \right)_{\text{sub}} = \frac{\Delta_{\text{sub}} H}{T(\overline{V}_{\text{d}} - \overline{V}_{\text{s}})} \approx \frac{\Delta_{\text{sub}} H}{T\overline{V}_{\text{d}}}$		
$T(V_g - V_s)$ $T(V_g - V_s)$		
$\left \left(\frac{dP}{dT} \right)_{\text{vap}} = \frac{\Delta_{\text{vap}} \overline{H}}{T(\overline{V}_{\alpha} - \overline{V}_{i})} \approx \frac{\Delta_{\text{vap}} \overline{H}}{T\overline{V}_{\alpha}}$		
$\int dT^{\prime}_{vap} T(\overline{V}_g - \overline{V}_I) = T\overline{V}_g$		
$\left \left(\frac{dP}{dT} \right)_{tire} = \frac{\Delta_{fus} \overline{H}}{T(\overline{V}_i - \overline{V}_i)} \text{et } \left(\overline{V}_i - \overline{V}_s \right) << \overline{V}_g \text{donc} \left(\frac{dP}{dT} \right)_{fire} >> \left(\frac{dP}{dT} \right)_{tire} >> \left($	dP	
$\left \frac{\overline{dT}}{dT} \right _{\text{fus}} = \frac{\overline{T}(\overline{V}_l - \overline{V}_s)}{T(\overline{V}_l - \overline{V}_s)} \text{ et } \left(\overline{V}_l - \overline{V}_s \right) \ll \overline{V}_g \text{ donc} \left(\overline{dT} \right)_{\text{fus}} = \frac{\overline{dT}}{\overline{dT}} \left(\overline{dT} \right)_{\text{vap}} = \frac{\overline{dT}}{\overline{dT}} \left(\overline{dT} \right)_{\text{fus}} = \frac{\overline{dT}}{\overline{dT}} \left(\overline{dT} \right)_{\text{vap}} = \frac{\overline{dT}}{\overline{dT}} \left(\overline{dT} \right)_{\text{fus}} = \frac{\overline{dT}}{\overline{dT}} \left(\overline{dT} \right$	\overline{dT} _{sub}	
De plus au voisinage du point triple on peut écrire : $\Delta_{\text{SUB}}\overline{H} = \Delta_{\text{fUS}}\overline{H} + \Delta_{\text{Vap}}\overline{H}$, quantités toutes positives, donc	
classement: $\left(\frac{dP}{dT}\right) >> \left(\frac{dP}{dT}\right) >> \left(\frac{dP}{dT}\right)$	0.5 ci contament decen	
classement: $(\overline{dT})_{fus} > (\overline{dT})_{sub} > (\overline{dT})_{vap}$	0.5 si seulement deux classés	
1.3		1
On considère une transformation réversible de a vers b, au point d'équilibre on a :		
$G_a = G_b$ On se déplace le long de la courbe, le nouvel équilibre devient donc :		
$\overline{G}_a + d\overline{G}_a = \overline{G}_b + d\overline{G}_b$, donc $d\overline{G}_a = d\overline{G}_b$		
Pour chaque phase, la variation de l'enthalpie libre est : $d\overline{G}_a = \overline{V}_a dP - \overline{S}_a dT + \overline{S}_a dT$	$-\overline{G}_{a}dn_{a}$ et	
$d\overline{G}_b = \overline{V}_b dP - \overline{S}_b dT + \overline{G}_b dn_b, \text{ avec } dn_a = -dn_b$	u u	
	$\Delta_{ab}\overline{H}$	
Donc $\overline{V}_a dP - \overline{S}_a dT = \overline{V}_b dP - \overline{S}_b dT \Leftrightarrow \frac{dP}{dT} = \frac{S_a - S_b}{\overline{V}_a - \overline{V}_b}$ avec $\overline{S}_a - \overline{S}_b = \frac{-D}{D}$	T	
D'où l'équation de Clapeyron : $\frac{dP}{dT} = \frac{\Delta_{ab}\overline{H}}{T\overline{V}_{c} - \overline{V}}$ 0.5 s	si démonstration incomplète	
$dT = T\overline{V}_b - \overline{V}_a$	si demonstration incomplete	
2.1		1
dP $\Delta_{vap}ar{H}$ $\Delta_{vap}ar{H}$ $P\Delta_{vap}ar{H}$		
$\frac{dP}{dT} = \frac{\Delta_{\text{vap}} H}{T(\overline{V}_g - \overline{V}_s)} \approx \frac{\Delta_{\text{vap}} H}{T \overline{V}_g} \approx \frac{P \Delta_{\text{vap}} H}{R T^2}$		
$\Delta_{\text{ven}}H_{-1}$		
en intégrant : $\ln P = -\frac{\Delta_{vap}\overline{H}}{R} \cdot \frac{1}{T} + cte$	Pas divisible	
Λ <i>Π</i>		
2.2 on détermine la constante avec le point (T_1, P_1) cte= $\ln P_1 - \frac{\Delta_{vap}H}{RT_1}$		2
d'où l'équation : $\ln P = -\frac{\Delta_{vap}H}{R} \cdot \frac{1}{T} + \left(\ln P_1 + \frac{\Delta_{vap}H}{RT}\right)$		
AN: $P = \exp(-1983 / T + 22.30)$		
AN: $P = \exp(-1983 / I + 22.30)$ Valeurs de 4 points répartis.	1 pt si seulement 2 points mais bien placés	
T (K) 210 240 270 305	points mais oten piaces	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.

Correction DS 1	ncimo 2015-10					
$3.1 - \frac{\Delta_{\text{sub}}\overline{H}}{R} =$	$A \Leftrightarrow \Delta_{Sub} \overline{H} =$	- A· R= 25.22	kJ.mol ⁻¹	Р	as divisible	1
3.2 ln $P = \frac{-30}{T}$ triple point: intersection des d $-\frac{1983}{T_t} + 22.30$	leux courbes :	$7.18 \Leftrightarrow T_t = \frac{30}{27}.$	$\frac{35 - 1983}{18 - 22.30} = 213$	jusqu'	leur ure retracée à Pt, 0 si au delà	1
4.1 Au niveau du	point triple					1
$\Delta_{\text{sub}}\overline{H} = \Delta_{\text{fus}}\overline{H}$	$\overline{H} + \Delta_{vap} \overline{H} \Leftrightarrow$	$\Delta_{fus}\overline{H} = \Delta_{sub}\overline{H}$	$-\Delta_{\mathit{vap}}ar{\mathcal{H}} \Leftrightarrow \Delta_{\mathit{fu}}$	$_{\rm S}\bar{H} = 25.22 - 16.4$	$18 = 8.740 \text{ kJ} \cdot \text{mol}^{-1}$ divisible	
$4.2 \frac{dP}{dT} = {TM(}$ En intégrant :	$\frac{\Delta_{fus}\overline{H}}{1/\rho_{I}-1/\rho_{s}}$	$\Leftrightarrow dP = \frac{\Delta}{M(1/\rho)}$	$\frac{1}{\rho_l - 1/\rho_s} \cdot \frac{dT}{T}$			1.5
$P = \frac{\Delta_{fus}}{M(1/\rho_I)}$	$\frac{\overline{H}}{-1/\rho_{\rm s}} \cdot \ln T +$	cte		No	on divisible	
4.3 Constante tro	ouvée gràce au p	oint triple :				2
$cte = P_t - \frac{1}{M(1)}$	$rac{\Delta_{fus}\overline{H}}{1/ ho_{I}-1/ ho_{s}}$.	$\ln T_t$			si seulement 2 ts mais bien placés	
En remplaçant or	obtient:					
$P = 7.41 \times 10^8$		0^{9}				
Tfus	216	224	232	240	7	
Pfus	1.54 ^E +06	2.85 ^E +07	5.45 ^E +07	7.96 ^E +07	1	
Total:		1	1			12

II. CLIMATISATION, MACHINE FRIGORIFIQUE TRITHERME	8 points
Étude de la machine frigorifique à absorption	
 1. A partir des principes de la thermodynamique, établir le sens des échanges de chaleur entre le réfrigérateur et les deux autres sources sur le schéma précédent. Selon le premier principe et le second principe : Q₁ + Q₂ + Q₃ = 0 et Q₁/T₂ + Q₂/T₂ + Q₃/T₂ ≤ 0 	1,5 point (Démonstrat
$\begin{vmatrix} Q_1 + Q_2 + Q_3 & \text{oth } T_1 + T_2 + T_3 & \text{oth } T_1 + T_2 & \text{oth } T_2 + T_3 & \text{oth } T_1 + T_2 & \text{oth } T_2 & \text{oth } T_1 + T_2 & \text{oth } T_2 & \text{oth } T_1 & \text{oth } T_2 & \text{oth } T_2 & \text{oth } T_1 & \text{oth } T_2 & \text{oth } T_1 & \text{oth } T_2 & \text{oth } T_2 & \text{oth } T_2 & \text{oth } T_2 & \text{oth } T_1 & \text{oth } T_2 & \text{oth } $	ion 1points+ Schéma 0,5)
$\begin{vmatrix} Q_1\left(\frac{1}{T_1} - \frac{1}{T_2}\right) + Q_3\left(\frac{1}{T_3} - \frac{1}{T_2}\right) \le 0 \Rightarrow Q_3\left(\frac{1}{T_3} - \frac{1}{T_2}\right) \le Q_1\left(\frac{1}{T_2} - \frac{1}{T_1}\right) \text{ et comme } T_1 > T_2 > T_3$ $\begin{vmatrix} \operatorname{donc}\left(\frac{1}{T_2} - \frac{1}{T_3}\right) \operatorname{et}\left(\frac{1}{T_3} - \frac{1}{T_1}\right) \operatorname{sont positifs et comme } Q_3 \operatorname{correspond à l'échange de chaleur} \end{vmatrix}$, ,
permettant de réfrigérer la source froide le transfert se fait dans le sens source froide vers	
machine frigo à absorption donc il est positif. Ceci nous amènes finalement au fait que Q_1 est positif. Sachant que $Q_2 = -Q_3 - Q_1$ et $0 \le Q_3 \le Q_1$ donc $Q_2 \le 0$	
Source chaude (T_1) Source froide (T_3)	
Q ₁ >0 Machine Frigo à absorption Q ₃ >0	
$\begin{array}{c} V Q_2 < 0 \\ \hline \text{Milieu ambiant} \\ (T_2) \end{array}$	
2. Montrer que le COP maximal de cette machine frigorifique à absorption peut être défini par $COP_{abs} = \frac{Q_3}{Q_1}$ où Q_3 et Q_1 sont les quantités de chaleur fournies respectivement par	1 point
les sources de chaleur de températures T_1 et T_3 . Le COP d'une machine ou son efficacité étant défini comme le rapport de l'énergie utile par l'énergie fournie au système, c'est-à-dire l'énergie présentant un coût pour le système. Dans notre système le milieu ambiant étant « gratuit » la seule dépense est donc Q_1 . Le système refroidissant la source froide, l'énergie nécessaire à cette opération est donc l'énergie utile. Ceci nous donne :	
$COP_{abs} = \frac{Q_3}{Q_1}$	
3. Quelle est, en fonction de T_1 , T_2 et T_3 , la valeur maximale du COP_{abs} ? Selon la question 1. nous avons :	1 point

$$Q_{1}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) + Q_{3}\left(\frac{1}{T_{3}} - \frac{1}{T_{2}}\right) = 0 \Rightarrow COP_{abs} = \frac{Q_{3}}{Q_{1}} = \frac{\left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)}{\left(\frac{1}{T_{3}} - \frac{1}{T_{2}}\right)} = \frac{\frac{1}{T_{2}}\left(\frac{T_{1} - T_{2}}{T_{1}}\right)}{\frac{1}{T_{2}}\left(\frac{T_{2} - T_{3}}{T_{3}}\right)} \Rightarrow COP_{abs} = \frac{T_{3}(T_{1} - T_{2})}{T_{1}(T_{2} - T_{3})}$$

Étude de la machine frigorifique ditherme classique

4. Dans le cas d'une machine frigorifique ditherme **classique** en fonctionnement réversible et en vous aidant du schéma précédent (cf. schéma 1.b), démontrer que le COP_{class} peut se mettre sous la forme : $COP_{class} = \frac{T_3}{T_1 - T_3}$ avec T_1 température de la source chaude et T_3 température de la source froide.

Selon le premier principe et le second principe :

$$Q_1 + W + Q_3 = 0$$
 et $\frac{Q_1}{T_1} + \frac{Q_3}{T_3} \le 0$

Donc
$$Q_1 = -Q_3 - W \text{ d'où } \frac{-Q_3 - W}{T_1} + \frac{Q_3}{T_3} \le 0 \Rightarrow -\frac{W}{T_1} + Q_3 \left(\frac{1}{T_3} - \frac{1}{T_1}\right) \le 0 \Rightarrow Q_3 \left(\frac{1}{T_3} - \frac{1}{T_1}\right) \le 0$$

 $\frac{W}{T_1}$

et comme $T_1 > T_3$ donc $\left(\frac{1}{T_3} - \frac{1}{T_1}\right)$ est positif et comme Q_3 correspond à l'échange de chaleur permettant de réfrigérer la source froide le transfert se fait dans le sens source froide vers machine frigo donc il est positif. Ceci nous amènes finalement au fait que le travail W est positif, ce qui montre que la machine frigorifique ditherme doit recevoir effectivement du travail

Sachant que $Q_2 = -Q_3 - Q_1$ et $0 \le Q_3 \le Q_1$ donc $Q_2 \le 0$

Le COP_{class} d'un réfrigérateur étant le rapport de l'énergie **utile** par l'énergie **fournie** au système, nous pouvons donc le définir de la façon suivante :

$$COP_{class} = \frac{Q_3}{W}$$

Comme
$$-\frac{W}{T_1} + Q_3 \left(\frac{1}{T_3} - \frac{1}{T_1} \right) = 0 \Rightarrow \frac{W}{T_1} = Q_3 \left(\frac{1}{T_3} - \frac{1}{T_1} \right) \Rightarrow \frac{Q_3}{W} = \frac{\left(\frac{1}{T_3} - \frac{1}{T_1} \right)^{-1}}{T_1} \Rightarrow \frac{Q_3}{W} = \frac{$$

1,5 point

Correction DS Thermo 2015-16	
$\left(\frac{T_1-T_3}{T_3T_1},T_1\right)^{-1}\Rightarrow \frac{Q_3}{W}=\frac{T_3}{T_1-T_3}$ ceci pour un fonctionnement réversible	
Que peut-on dire du COP_{class} de cette machine, s'il fonctionne de façon irréversible?	0,5 points
$\frac{Q_3}{W} < \frac{T_3}{T_1 - T_2}$ ceci pour un fonctionnement irréversible	o,s points
$\begin{bmatrix} \mathbf{W} & \mathbf{T_1} - \mathbf{T_3} \end{bmatrix}$	
Synthèse	
5. Dans le cas du réfrigérateur :	
5.1 Montrer que le COP_{abs} obtenue dans la question 3 peut se mettre sous la forme du produit d'un COP_{moteur} d'un moteur ditherme, par le COP_{class} d'un réfrigérateur ditherme classique.	1,5 point
Le COP_{moteur} d'un moteur ditherme fonctionnant entre une source chaude à T_1 et une source froide à T_2 correspondant ici au milieu ambiant est de la forme :	
$COP_{moteur} = \frac{-W}{O} = \frac{T_1 - T_2}{T_1}$	
Pour le déterminer il faut comme dans les questions précédentes utiliser les relations du système utilisant le premier et le second principe :	
$Q_1 + W + Q_2 = 0$ et $\frac{Q_1}{T_1} + \frac{Q_2}{T_2} \le 0$ donc $Q_2 = -Q_1 - W$ et $Q_1 = -\frac{T_1 \cdot Q_2}{T_2}$. Ce qui donne :	
$Q_1 = \frac{T_1(Q_1 + W)}{T_2} \Rightarrow Q_1 \left(1 - \frac{T_1}{T_2} \right) = \frac{T_1}{T_2} W \Rightarrow \frac{W}{Q_1} = \frac{T_2}{T_1} \left(1 - \frac{T_1}{T_2} \right) \Rightarrow \frac{W}{Q_1} = \left(\frac{T_2}{T_1} - 1 \right)$	
et aussi que $COP_{moteur} = \frac{-W}{Q_1} donc \frac{COP_{moteur}}{T_1} = \left(\frac{T_1 - T_2}{T_1}\right)$	
La machine frigorifique ditherme fonctionnant entre la source chaude à T_2 et la source froide à T_2 à comme COP: $\frac{Q_3}{Q_1} = \frac{Q_3}{Q_2} = \frac{Q_3}{Q_1} = \frac{Q_3}{Q_2} = \frac{Q_3}{Q$	
froide à T_3 à comme COP: $\frac{\text{COP}_{\text{class}} = \frac{Q_3}{W} = \left(\frac{T_3}{T_2 - T_3}\right)}{\text{Sachant que }}$ Sachant que $\frac{\text{COP}_{\text{abs}} = \frac{T_3(T_1 - T_2)}{T_1(T_2 - T_3)}}{T_1(T_2 - T_3)} \text{ et nous avons } \frac{\text{COP}_{\text{moteur}} \cdot \text{COP}_{\text{class}} = \left(\frac{T_1 - T_2}{T_1}\right) \cdot \left(\frac{T_3}{T_2 - T_3}\right) = \frac{T_3}{T_1}$	
$\frac{T_3(T_1-T_2)}{T_1(T_2-T_3)} = COP_{abs}$	
Source chaude (T_1) Milieu ambiant (T_2) Source froide (T_3)	
Moteur Machine Frigo	
classique	
5.2 Définir les températures des sources de ces deux machines ?	0,5 point
la machine ditherme fonctionne entre les sources 2 et 3 à température T2 et T3 et le moteur ditherme fonctionne entre les sources 1 et 2 à T1 et T2 respectivement.	_
5.3 Que peut-on dire des travaux qu'elles reçoivent ? Le travail produit par le moteur est intégralement utilisé par le réfrigérateur ditherme	0,5 point
III COMBUSTION DE L'OCTANE C8H18	7,25 points
1. Écrire la réaction de combustion d'une mole d'octane gazeux avec le dioxygène de l'air	1 point
	5/0

Correction DS Thermo 2015-16	
pour former $CO_2(g)$ et $H_2O(g)$.	
$C_8H_{18}(g) + 12.5 O_2(g) \rightarrow 9 H_2O(g) + 8 CO_2(g)$	
2. Calculer l'enthalpie standard de cette réaction à 298K.	1,25 points
$\Delta_{\rm r} H_{298}^0 = 9 \Delta_{\rm f} H_{\rm H_2O(g)}^0 + 8 \Delta_{\rm f} H_{\rm CO_2(g)}^0 - \Delta_{\rm f} H_{\rm C_8H_{18}(g)}^0 - 12,5 \Delta_{\rm f} H_{\rm O_2(g)}^0$	(expression :
$\Delta_{\rm r} H_{298}^0 = -9 \times 242 + (-8 \times 394) + 208,7 = -5121,3 \text{ kJ. mol}^{-1}$	0,75 pts
	+AN :0,5
	pts)
2. Exprimer puis calculer l'enthalpie standard de cette réaction à T_2 .	1,5 points
$\Delta_{\rm r} H_{673}^0$	(expression :
$C_8H_{18}(g) + 12.5 O_2(g) \rightarrow 9 H_2O(g) + 8 CO_2(g)$	· -
$\left[C_p^0(C_8H_{18}(g)) + 12,5 \times C_p^0(O_2(g))\right] \times (298 - 673)$ $\left[9 \times C_p^0(H_2O(g)) + 8 \times C_p^0(CO_2(g))\right] \times (673 - 298)$	1 pts
↓	1121, 00,0
$C_8H_{18}(g) + 12,5 O_2(g) \xrightarrow{\Delta_r H_{200}^0} 9 H_2O(g) + 8 CO_2(g)$	pts)
$\Delta_{ m r}$ H $_{ m 298}$	
$\Delta_{\rm r} {\rm H}^0_{673} = \Delta_{\rm r} {\rm H}^0_{298}$	
$ \begin{array}{l} \Delta_{\rm r} \Pi_{673} - \Delta_{\rm r} \Pi_{298} \\ + \left[9 \times {\rm C_p^0}({\rm H_2O(g)}) + 8 \times {\rm C_p^0}({\rm CO_2(g)}) - {\rm C_p^0}({\rm C_8H_{18}(g)}) \right. \end{array} $	
- 1	
$-12.5 \times C_{p}^{0}(O_{2}(g))] \times (T_{f} - T_{i}) = -5121.3 \text{ kJ. mol}^{-1}$	
$\Delta_{\rm r} H_{673}^0 = -5121.3 \times 10^3 + [9 \times 33.6 + 8 \times 37.1 - 192.4 - 12.5 \times 29.4]$	
$\times (673 - 298) = \frac{5106,6 \text{kJ. mol}^{-1}}{4. \text{ Faire le bilan des espèces présentes en début et en fin de combustion.}}$	1,5 points (-
4. Tane le bhan des espèces présentes en debut et en fin de combustion.	· -
Selon l'énoncé nous avons initialement 25×10^{-4} mol d'air et de 2×10^{-4} mol d'octa	ne 0,25 pts par
$(C_8H_{18}).$	ciicui
L'air étant un mélange à 20% de O ₂ et 80% de N ₂ il y'a donc	jusqu'à 0)
$n_{O_2} = 0.2 \times 25 \times 10^{-4} = 5 \times 10^{-4} \text{ mole et } n_{N_2} = 0.8 \times 25 \times 10^{-4} = 20 \times 10^{-4} \text{mol}$	
Nous savons que selon l'équation à la stoechiométrie :	
$n_{O_2} = 12.5 \times n_{C_8H_{18}}$ il faudrait donc $n_{O_2} = 12.5 \times 2 \times 10^{-4} = 25 \times 10^{-4}$ mole de C	
N'ayant intialement que 5×10^{-4} mole l'octane est donc en excès et se retrouvera dans l	es
produits.	
$n_{C_8H_{18}\text{consomm\'e}} = \frac{n_{O_2}}{12.5} = \frac{5 \times 10^{-4}}{12.5} = 0.4 \times 10^{-4} \text{mol donc } n_{C_8H_{18}\text{final}} = (2 - 0.4) \times 10^{-4}$	=
1.6×10^{-4} mol	
$n_{\text{CO}_2} = \frac{8.n_{\text{O}_2}}{12,5} = \frac{8 \times 5 \times 10^{-4}}{12,5} = 3.2 \times 10^{-4} \text{mol et } n_{\text{CO}_2} = \frac{9.n_{\text{O}_2}}{12,5} = \frac{9 \times 5 \times 10^{-4}}{12,5} = 3.6 \times 10^{-4} \text{mol}$	
	$\neg $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_
Final $0 20 \times 10^{-4} 1,6 \times 10^{-4} 3,2 \times 10^{-4} 3,6 \times 10^{-4}$	\dashv
5. En déduire la température T_3 en fin de réaction.	2 points
1. $\Delta H_{\text{tot}}^0 = \Delta H_{\text{réaction}}^0 + \Delta H_{\text{produit}}^0 = Q_P = 0 \text{ kJ. mol}^{-1}$	(expression :
Donc $\Delta_r H_{673}^0 + \int_{T_i}^{T_f} C_p^0(sys) dT = 0$ donc	1,5 pts
÷1	+AN :0,5
$\Delta T = \frac{0.4 \times \Delta_r H_{673}^0}{3.2 \times C_p^0(CO_2(g)) + 3.6 \times C_p^0(H_2O(g)) + 20 \times C_p^0(N_2(g)) + 1.6 \times C_p^0(C_8H_{18}(g))}$	pts)
ANI AT 0,4×5106,6.10 ³ 1000 4 17.1 The CTO 1.4000 4	pts)
AN. $\Delta T = \frac{0.4 \times 5106,6.10^3}{3.2 \times 37,1 + 3.6 \times 33,6 + 20 \times 29,1 + 1.6 \times 192,4} = 1808,4 \text{ K donc } T = 673 + 1808,4 = 1808,4 \text{ K donc } T = 673 + 1808,4 = 1808,4 \text{ K donc } T = 673 + 1808,4 = 1808,4 \text{ K donc } T = 673 + 1808,4 = 1808,4 \text{ K donc } T = 673 + 1808,4 = 1808,4 \text{ K donc } T = 673 + 1808,4 = 1808,4 \text{ K donc } T = 673 + 1808,4 = 1808,4 \text{ K donc } T = 673 + 1808,4 = 1808,4 \text{ K donc } T = 673 + 1808,4 = 1808,4 \text{ K donc } T = 673 + 1808,4 = 1808,4 \text{ K donc } T = 673 + 1808,4 = 1808,4 \text{ K donc } T = 673 + 1808,4 = 1808,4 \text{ K donc } T = 673 + 1808,4 = 1808,4 \text{ K donc } T = 673 + 1808,4 = 1808,4 \text{ K donc } T = 673 + 1808,4 = 1808,4 \text{ K donc } T = 673 + 1808,4 = 1808,4 \text{ K donc } T = 673 + 1808,4 = 1808,4 \text{ Conc } T = 673 + 1808,4 = 1808,4 \text{ Conc } T = 673 + 1808,4 = 1808,4 \text{ Conc } T = 673 + 1808,4 = 1808,4 \text{ Conc } T = 673 + 1808,4 \text{ Conc } T$	
2481,4 K	
IN MODELID A ECCENICE . CVOLE DE DEALI DE DOCUMO (10 4
IV. MOTEUR A ESSENCE : CYCLE DE BEAU DE ROCHAS (~points)	13 points

1. Exprimer littéralement les températures T_2 , T_3 , T_4 et les pressions P_2 , P_3 , P_4 en fonction	3 points (0,5
de T_1 , P_1 , ϵ , γ et λ .	pts par
• Transformation $1 \to 2$ adiabatique réversible donc $TV^{\gamma-1} = cst$	réponse)
$T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{\gamma - 1}$ et comme $\epsilon = \frac{V_1}{V_2}$ donc $T_2 = T_1 \epsilon^{\gamma - 1}$	
• Transformation 2 \rightarrow 3 isochore donc comme V=cst, $\frac{T}{P}$ = cst	
$T_3 = T_2 \left(\frac{P_3}{P_2}\right) = T_1 \epsilon^{\gamma - 1} \left(\frac{P_3}{P_2}\right) \text{ et comme } \lambda = \frac{P_3}{P_2} \text{ nous obtenons } \frac{T_3 = T_1 \epsilon^{\gamma - 1} \lambda}{T_1 \epsilon^{\gamma - 1}}$ • Transformation $3 \to 4$ détente adiabatique réversible donc $TV^{\gamma - 1} = cst$	
$T_4 = T_3 \left(\frac{V_3}{V_4}\right)^{\gamma - 1} \text{ comme } V_3 = V_2 \text{ et } V_4 = V_1 \text{ donc } T_4 = T_3 \left(\frac{V_2}{V_1}\right)^{\gamma - 1} \text{ et comme } \epsilon = \frac{V_1}{V_2} \text{ donc}$ $T_4 = T_3 \epsilon^{1 - \gamma} \text{ ce qui donne } T_4 = T_1 \epsilon^{\gamma - 1} \lambda \epsilon^{1 - \gamma} \text{ donc } T_4 = T_1 \lambda$ • Transformation $1 \to 2$ adiabatique réversible donc $PV^{\gamma} = \text{cst}$	
$P_2 = P_1 \left(\frac{V_1}{V_2}\right)^{\gamma}$ et comme $\epsilon = \frac{V_1}{V_2}$ donc $P_2 = P_1 \epsilon^{\gamma}$	
• Transformation 2 \rightarrow 3 isochore donc comme V=cst, $\frac{1}{P}$ = cst	
$P_3 = P_2\left(\frac{T_3}{T_2}\right) = P_1 \epsilon^{\gamma} \left(\frac{T_1 \epsilon^{\gamma - 1} \lambda}{T_1 \epsilon^{\gamma - 1}}\right) \operatorname{donc} P_3 = P_1 \epsilon^{\gamma} \lambda$	
• Transformation $3 \rightarrow 4$ détente adiabatique réversible donc $PV^{\gamma} = cst$	
$\begin{vmatrix} P_4 = P_3 \left(\frac{V_3}{V_4}\right)^{\gamma} \text{ comme } V_3 = V_2 \text{ et } V_4 = V_1 \text{ donc } P_4 = P_1 \epsilon^{\gamma} \lambda \left(\frac{V_2}{V_1}\right)^{\gamma} \text{ et comme } \epsilon = \frac{V_1}{V_2} \text{ donc } P_4 = P_1 \epsilon^{\gamma} \lambda \epsilon^{-\gamma} \text{ donc } P_4 = P_1 \lambda$	
 2. Donner l'expression littérale des travaux molaires (W₁₋₂, W₂₋₃ et W₃₋₄) et des quantités de chaleur molaire (Q₁₋₂, Q₂₋₃ et Q₃₋₄) échangés lors de ces trois évolutions. Ces quantités seront exprimées en fonction de T₁, C̄_v, ε, γ et λ. Transformation 1 → 2 adiabatique réversible donc Q₁₋₂ = 0 J ΔU₁₋₂ = W₁₋₂ = n. C̄_v (T₂ - T₁) = n. C̄_v (T₁ε^{γ-1} - T₁) = T₁. n. C̄_v. (ε^{γ-1} - 1) W₁₋₂ = T₁. n. C̄_v. (ε^{γ-1} - 1) 	3 points (0,5 pts par réponse)
 2. Donner l'expression littérale des travaux molaires (W₁₋₂, W₂₋₃ et W₃₋₄) et des quantités de chaleur molaire (Q₁₋₂, Q₂₋₃ et Q₃₋₄) échangés lors de ces trois évolutions. Ces quantités seront exprimées en fonction de T₁, C̄_v, ε, γ et λ. Transformation 1 → 2 adiabatique réversible donc Q₁₋₂ = 0 J ΔU₁₋₂ = W₁₋₂ = n. C̄_v (T₂ - T₁) = n. C̄_v (T₁ε^{γ-1} - T₁) = T₁. n. C̄_v. (ε^{γ-1} - 1) 	pts par
2. Donner l'expression littérale des travaux molaires $(W_{1-2}, W_{2-3} \text{ et } W_{3-4})$ et des quantités de chaleur molaire $(Q_{1-2}, Q_{2-3} \text{ et } Q_{3-4})$ échangés lors de ces trois évolutions. Ces quantités seront exprimées en fonction de T_1, \bar{C}_v , ϵ, γ et λ . • Transformation $1 \to 2$ adiabatique réversible donc $Q_{1-2} = 0$ J $\Delta U_{1-2} = W_{1-2} = n. \overline{C_v} (T_2 - T_1) = n. \overline{C_v} (T_1 \epsilon^{\gamma-1} - T_1) = T_1. n. \overline{C_v}. (\epsilon^{\gamma-1} - 1)$ $W_{1-2} = T_1. n. \overline{C_v}. (\epsilon^{\gamma-1} - 1)$ • Transformation $2 \to 3$ isochore donc V =cst $W_{2-3} = 0$ J donc $\Delta U_{2-3} = Q_{2-3} = n. \overline{C_v} (T_3 - T_2) = n. \overline{C_v} (T_1 \epsilon^{\gamma-1} \lambda - T_1 \epsilon^{\gamma-1}) = n. \overline{C_v}. T_1 \epsilon^{\gamma-1} (\lambda - 1)$ donc $Q_{2-3} = n. \overline{C_v}. T_1 \epsilon^{\gamma-1} (\lambda - 1)$ • Transformation $3 \to 4$ détente adiabatique réversible donc $Q_{3-4} = 0$ J $\Delta U_{3-4} = W_{3-4} = n. \overline{C_v} (T_4 - T_3) = n. \overline{C_v} (T_1 \lambda - T_1 \epsilon^{\gamma-1} \lambda) = T_1. n. \overline{C_v}. \lambda (1 - \epsilon^{\gamma-1})$ donc $W_{3-4} = T_1. n. \overline{C_v}. \lambda (1 - \epsilon^{\gamma-1})$	pts par réponse)
2. Donner l'expression littérale des travaux molaires $(W_{1-2}, W_{2-3} \text{ et } W_{3-4})$ et des quantités de chaleur molaire $(Q_{1-2}, Q_{2-3} \text{ et } Q_{3-4})$ échangés lors de ces trois évolutions. Ces quantités seront exprimées en fonction de T_1, \bar{C}_v , ϵ, γ et λ . • Transformation $1 \to 2$ adiabatique réversible donc $Q_{1-2} = 0$ J $\Delta U_{1-2} = W_{1-2} = n. \ \overline{C_v}(T_2 - T_1) = n. \ \overline{C_v}(T_1 \epsilon^{\gamma-1} - T_1) = T_1. \ n. \ \overline{C_v}. (\epsilon^{\gamma-1} - 1)$ • Transformation $2 \to 3$ isochore donc V =cst $W_{2-3} = 0 \text{ J} \qquad \Delta U_{2-3} = Q_{2-3} = n. \ \overline{C_v}(T_3 - T_2) = n. \ \overline{C_v}(T_1 \epsilon^{\gamma-1} \lambda - T_1 \epsilon^{\gamma-1}) = n. \ \overline{C_v}. \ T_1 \epsilon^{\gamma-1} (\lambda - 1) \text{ donc } Q_{2-3} = n. \ \overline{C_v}. \ T_1 \epsilon^{\gamma-1} (\lambda - 1)$ • Transformation $3 \to 4$ détente adiabatique réversible donc $Q_{3-4} = 0$ J $\Delta U_{3-4} = W_{3-4} = n. \ \overline{C_v}(T_4 - T_3) = n. \ \overline{C_v}(T_1 \lambda - T_1 \epsilon^{\gamma-1} \lambda) = T_1. \ n. \ \overline{C_v}. \ \lambda (1 - \epsilon^{\gamma-1}) \qquad \text{donc}$	pts par
 2. Donner l'expression littérale des travaux molaires (W₁₋₂, W₂₋₃ et W₃₋₄) et des quantités de chaleur molaire (Q₁₋₂, Q₂₋₃ et Q₃₋₄) échangés lors de ces trois évolutions. Ces quantités seront exprimées en fonction de T₁, C̄_v, ε, γ et λ. • Transformation 1 → 2 adiabatique réversible donc Q₁₋₂ = 0 J ΔU₁₋₂ = W₁₋₂ = n. C̄_v (T₂ - T₁) = n. C̄̄_v (T₁ε^{γ-1} - T₁) = T₁. n. C̄̄_v. (ε^{γ-1} - 1) • Transformation 2 → 3 isochore donc V=cst W₂₋₃ = 0 J donc ΔU₂₋₃ = Q₂₋₃ = n. C̄̄_v (T₃ - T₂) = n. C̄̄_v (T₁ε^{γ-1}λ - T₁ε^{γ-1}) = n. C̄̄_v. T₁ε^{γ-1}(λ - 1) donc Q₂₋₃ = n. C̄̄_v. T₁ε^{γ-1}(λ - 1) • Transformation 3 → 4 détente adiabatique réversible donc Q₃₋₄ = 0 J ΔU₃₋₄ = W₃₋₄ = n. C̄̄_v (T₄ - T₃) = n. C̄̄_v (T₁λ - T₁ε^{γ-1}λ) = T₁. n. C̄̄_v. λ(1 - ε^{γ-1}) donc W₃₋₄ == T₁. n. C̄̄_v. λ(1 - ε^{γ-1}) 3. A partir des données numériques calculer T₂, T₃, T₄ P₂, P₃ et P₄. Application numérique : T₁ = 293 K, P₅ = 1 bar (donc P₁ = 0,5 bar) ; ε = 8, γ = 1,4; λ = 6,4 	pts par réponse) 1,5 points (0,25 pts par

4.1 Exprimer littéralement les travaux molaires W_{0-1} et W_{5-6} en fonction de T_1 , \bar{C}_v , ϵ , γ et	1 points (0,5
β	
\bullet W_{0-1}	pts par
$W_{0-1} = -\int_{V_2}^{V_1} P. dV = P_1. (V_2 - V_1) = \frac{nRT_1}{V_2}. (V_2 - V_1) = nRT_1. \left(\frac{V_2}{V_1} - \frac{V_1}{V_2}\right) = nRT_1. \left(\frac{1}{\epsilon} - 1\right)$	réponse)
comme $\gamma = \frac{\overline{C_P}}{\overline{C_V}}$ et $R = \overline{C_P} - \overline{C_V}$ donc $R = \frac{\overline{C_V}}{\overline{C_V}}(\gamma - 1)$ donc $W_{0-1} = n\overline{C_V}(\gamma - 1)T_1.\left(\frac{1}{\epsilon} - 1\right)$	
• W ₅₋₆	
$W_{5-6} = -\int_{V_5}^{V_6} P. dV = P_5. (V_5 - V_6) = \frac{nRT_5}{V_5}. (V_5 - V_6) = nRT_5. \left(\frac{V_5}{V_5} - \frac{V_6}{V_5}\right) = nRT_5. \left(1 - \frac{V_5}{V_5} - \frac{V_6}{V_5}\right) = nRT_5. \left(1 - \frac{V_6}{V_5} - V$	
$\left \frac{V_2}{V_1} \right = nRT_5. \left(1 - \frac{1}{\epsilon} \right) \text{ comme } T_5 = T_1. \frac{P_5}{P_1} = T_1. \beta \text{ et } \gamma = \frac{\overline{C_P}}{\overline{C_V}} \text{ et } R = \overline{C_P} - \overline{C_V} \text{ donc } R = \overline{C_P} = \overline{C_P} + \overline{C_V} \text{ donc } R = \overline{C_P} = \overline{C_V}$	
$\overline{C_v}(\gamma - 1) \text{ donc } W_{5-6} = \text{n.} \overline{C_v}(\gamma - 1)T_1.\beta.\left(1 - \frac{1}{\epsilon}\right)$	
4.2 Préciser la valeur numérique des travaux lors des évolutions $4 \rightarrow 5$ et $6 \rightarrow 0$.	1 points
Les transformations $4 \rightarrow 5$ et $6 \rightarrow 0$ étant isochore donc $W_{4-5} = W_{6-0} = 0$	(0,25 pts par
	réponse)
Étude globale du cycle	
5. On montre que le travail vaut : $W = \bar{C}_v T_1 [(\epsilon^{\gamma-1} - 1)(1 - \lambda) + (\gamma - 1)(1 - \beta)(\epsilon^{-1} - 1)]$	
1)] 5.1En utilisant la question précédente en déduire l'expression littérale du COP noté	1,25 point
COP_{th} en fonction de ϵ , ν , λ et β .	1,25 point
$-W -\bar{C}_{v}T_{1}[(\epsilon^{\gamma-1}-1)(1-\lambda)+(\gamma-1)(1-\beta)(\epsilon^{-1}-1)]$	
$COP_{th} = \frac{-W}{Q_{2-3}} = \frac{-\overline{C}_v T_1 [(\epsilon^{\gamma-1} - 1)(1 - \lambda) + (\gamma - 1)(1 - \beta)(\epsilon^{-1} - 1)]}{\overline{C}_v . T_1 \epsilon^{\gamma-1} (\lambda - 1)}$	
$-[(\epsilon^{\gamma-1}-1)(1-\lambda)+(\gamma-1)(1-\beta)(\epsilon^{-1}-1)]$	
$= \frac{-[(\epsilon^{\gamma-1} - 1)(1 - \lambda) + (\gamma - 1)(1 - \beta)(\epsilon^{-1} - 1)]}{\epsilon^{\gamma-1}(\lambda - 1)}$	
$=\frac{-[\epsilon^{\gamma-1}(1-\lambda)-(1-\lambda)+(\gamma-1)(1-\beta)(\epsilon^{-1}-1)]}{\epsilon^{\gamma-1}(\lambda-1)}$	
$COP_{th} = 1 + \frac{[(1 - \lambda) - (\gamma - 1)(1 - \beta)(\epsilon^{-1} - 1)]}{\epsilon^{\gamma - 1}(\lambda - 1)}$	
5.2 Application numérique : $\beta = 2$, $\epsilon = 8$, $\gamma = 1.4$ et $\lambda = 6.4$	0,5 point
	, •
$COP_{th} = 1 + \frac{[(1 - 6.4) - (1.4 - 1)(1 - 2)(8^{-1} - 1)]}{8^{1.4 - 1}(6.4 - 1)} = 0.536$	
Étude du cas particulier du cycle atmosphérique Beau de Rochas.	
Ce cycle est obtenu lorsque la pression d'admission est égale à la pression d'échappement :	
c'est-à-dire pour $\beta = 1$.	
6.1 Donner l'expression littérale du COP noté $COP_{th,BdR}$ en fonction de ϵ et γ .	1,25 point
$[(1-\lambda)-(\gamma-1)(1-\beta)(\epsilon^{-1}-1)]$	_
$COP_{th,BdR} = 1 + \frac{[(1-\lambda) - (\gamma - 1)(1-\beta)(\epsilon^{-1} - 1)]}{\epsilon^{\gamma - 1}(\lambda - 1)} = 1 - \frac{1}{\epsilon^{\gamma - 1}}$	
6.2 Application numérique : $\epsilon = 8$, $\gamma = 1,4$. $COP_{th} == 1 - \frac{1}{8^{1,4-1}} = 0,564$	0,5 point
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	, F =
$COP_{th} = 1 - \frac{1}{8^{1,4-1}} = 0.564$	