

Bearing B - Axle shaft

Bearing in position B mounted in the axle shaft

Emanuele Mariniello

July 14, 2020

1. Abstract

Angular contact ball bearing

errors

! The minimum load requirement is not met. Other calculations may not be available. More info

warnings

! Results are based on default operating conditions. Please, review and adjust operating conditions where needed

! High viscosity ratio k, no asperity contact. k>4 will no further increase bearing rating life but result in higher viscous frictional losses. Operating temperature must be given more attention <u>More info</u>

2. Input

2.1. Bearing data

Designation	Bearing type	Principal dimensions		Basic load	ratings	Fatigue load limit	
					Dynamic	Static	
		d	D	В	С	C_0	P _u
		mm			kN		
➤ 7220 BECBM	Angular contact ball bearing	100	180	34	143	134	4.75
Designation	Speed rating	gs					
	Reference	Lin	niting				
	n _{ref}	n _{lir}	n				
	r/min						
► 7220 BECBM	4300	56	00				

2.2. Loads, Speed and Temperature

	Forces		Speed Temperatur			Case weight
	Radial (F _r)	Axial (F _a)		Inner ring	Outer ring	
	kN		r/min	°C		
			1	1		
LC1	0.936	0.253	4026.62	70	65	1

⁻ Maximum temperature is used for calculating the actual viscosity, kappa, \mathbf{a}_{SKF} and SKF rating life.

2.3. Lubrication

Designation	Lubricant Type	Method	Name	Effective EP additives
➤ <u>7220 BECBM</u>	Grease	SKF grease	LGMT 2: all purpose industrial and automotive	False
Designation	Contamination Method			
► <u>7220 BECBM</u>	Detailed guidelines			

⁻ Mean temperature is used for calculating bearing friction and power loss.

3. Results

3.1. Bearing minimum load

Designation	Reaction	forces	Minimum load	
	Radial	Axial		n
	F _r	F_a	Fam	
	kN			
	·			
► <u>7220 BECBM</u>	0.936	0.253	3.87	no

arrors

! The minimum load requirement is not met. Other calculations may not be available. More info

3.2. Lubrication conditions

Designation	Operating v	riscosity		Viscosity ratio
	Actual	Rated	Rated @ 40 °C	
	ν	v_1	v_{ref}	K
	mm²/s			
				•
► <u>7220 BECBM</u>	28.0	5.33	13.0	5.24

warnings

! High viscosity ratio k, no asperity contact. k>4 will no further increase bearing rating life but result in higher viscous frictional losses. Operating temperature must be given more attention <u>More info</u>