- 1. (20pt) Assume X_1 and X_2 are i.i.d. normal random variables with mean μ variance σ^2 . Let $Y_1 = X_1 + X_2$ and $Y_2 = X_1 X_2$. Show that Y_1 and Y_2 are independent and find their distributions.
- 2. (20pt) X_1, X_2, \dots, X_n is an i.i.d sample from $N(\mu, \sigma^2)$. Let S^2 denote the sample variance. Find $E(S^2)$ and $Var(S^2)$.
- 3. (40pt) Let Y_1, Y_2, \dots, Y_5 be a random sample of size 5 from a normal population with mean 0 and variance 1 and let $\bar{Y} = (1/5) \sum_{i=1}^5 Y_i$. Let Y_6 be another independent observation from the same population. Find the distribution of the following and explain.

(a)
$$W = \sum_{i=1}^{5} Y_i^2$$

(b) $U = \sum_{i=1}^{5} (Y_i - \bar{Y})^2$
(c) $U + Y_6^2$
(d) $2(5\bar{Y}^2 + Y_6^2)/U$

- 4. (20pt) Suppose that $X \sim \chi^2(m)$, $S = X + Y \sim \chi^2(m+n)$, and X and Y are independent. Use MGF to show that $S X \sim \chi^2(n)$.
- 5. (Mandatory for Graduate Student. Extra credit for undergrad. 10pt) Suppose that independent samples (of sizes n_i) are taken from each of k populations and that population i is normally distributed with mean μ_i and variance σ^2 , $i=1,2,\cdots,k$. That is, all populations are normally distributed with the same variance but with (possibly) different means. Let \bar{X}_i and S_i^2 , $i=1,2,\cdots,k$ be the respective sample means and variances. Let $\theta=c_1\mu_1+c_2\mu_2+\cdots+c_k\mu_k$, where c_1,c_2,\cdots,c_k are given constants.
- (a) Give the distribution of $\hat{\theta} = c_1 \bar{X}_1 + c_2 \bar{X}_2 + \dots + c_k \bar{X}_k$.
- (b) Give the distribution of

$$\frac{SSE}{\sigma^2}$$
, where $SSE = \sum_{i=1}^k (n_i - 1)S_i^2$.