ΛΥΣΗ

α) Ο μεγάλος άξονας της έλλειψης είναι 2α, οπότε 2α =10, άρα α = 5.

Η εκκεντρότητα της έλλειψης είναι ϵ = $\frac{\gamma}{\alpha}$, οπότε $\frac{\gamma}{\alpha}$ = 0,6 ή $\frac{\gamma}{5}$ = 0,6 ή γ = 3.

Όμως $β^2 = α^2 - γ^2 = 5^2 - 3^2 = 25 - 9 = 16$.

Η εξίσωση της έλλειψης δίνεται από τον τύπο $\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1$, άρα $\frac{x^2}{25} + \frac{y^2}{16} = 1$

β)

- i. Η εφαπτομένη της έλλειψης σε σημείο $\left(x_1,y_1\right)$ δίνεται από τον τύπο $\frac{xx_1}{\alpha^2}+\frac{yy_1}{\beta^2}=1$. Εφόσον το σημείο επαφής είναι το Γ $\left(3,\frac{16}{5}\right)$ η εξίσωση της εφαπτομένης θα γίνει
 - $\frac{x^3}{25} + \frac{y\frac{16}{5}}{16} = 1$ ή $\frac{3x}{25} + \frac{y}{5} = 1$. Για να διέρχεται από το σημείο Δ(0,5) θα πρέπει οι συντεταγμένες του σημείου να την επαληθεύουν. Πράγματι $\frac{3\cdot 0}{25} + \frac{5}{5} = 1$ ή 1 = 1 που σημαίνει ότι η εφαπτομένη διέρχεται από το σημείο Δ.
- ii. Σημεία συνάντησης των τροχιών είναι οι λύσεις του συστήματος των εξισώσεών τους εφόσον υπάρχουν. Οι εξισώσεις είναι $\frac{x^2}{25} + \frac{y^2}{16} = 1$ και $\frac{x^2}{25} \frac{y^2}{16} = 1$. Προσθέτοντας κατά μέλη $2\frac{x^2}{25} = 2$ ή $x^2 = 25$ ή x = 5 επειδή x > 0. Η $\frac{x^2}{25} + \frac{y^2}{16} = 1$ για x = 5 μας δίνει $\frac{5^2}{25} + \frac{y^2}{16} = 1$ ή $1 + \frac{y^2}{16} = 1$ ή $\frac{y^2}{16} = 0$

ή y = 0. Σημείο συνάντησης είναι το (5,0).