Ch4 Network Layer

Overview

- Def
 - host to host
 - network layer protocol 在host, router都存在
 - Two key network-core functions
 - forwarding: local 从router的input link找到合适output link
 - data plane
 - routing: global 确定src-dst path
 - routing algorithm
 - control plane
- data plane
 - local, per-router function, hardware
 - input port -> output port
 - forwarding function
- control plane
 - network-wide logic, software
 - source host -> dst host
 - apporaches:
 - traditional routing algorithms: implemented in routers
 - software-defined networking (SDN): implemented in (remote) servers, 由 remote controller与每个路由器交互(control agents CAs)
- Network service model
 - individual datagrams
 - 保证送达
 - 保证时间

- a flow of datagrams
 - 保证按顺序
 - 保证最小bandwidth
- router

input port

- line termination: 接收bits
- decentralized switching
 - 查看header, using forwarding table 看output port
 - Longest prefix matching(题)
- switch fabrics
 - switching rate: 数据包从输入到输出的速率
 - Switch via memory: 不能两个一起, interrupt
 - Switch via bus: Broadcast; label, 一次只能传一个
 - Crossbar: Multiple packets in parallel, Non-blocking
- output port

- buffering
- scheduling discipline: Priority scheduling
- queue
 - input port queue

- if $R_{
 m switch} > NR_{
 m line}$, input port queue 可忽略
- output port queue
 - queuing (delay) and loss due to output port buffer overflow!
 - buffer $= \frac{RTT \cdot C}{\sqrt{(N)}}$ with N flow
 - C capacity(bps)
- scheduling: choose next packet to send on link
 - FIFO--discard policy
 - tail drop: drop arriving packet
 - priority: drop/remove on priority basis
 - random: drop/remove randomly
 - priority
 - priority queuing: high priority queue & low priority queue
 - Round Robin (RR) scheduling: 多类别,循环扫描队列,从每个类循环发送完整数据包
 - Weighted Fair Queuing (WFQ):每个循环都给每个类加权

• IP: Internet Protocol

datagram format: 20 bytes header

- fragmentation
 - max transmission unit (MTU) 超过就要分片
 - 到dst时候组合
 - eg 4000 B, MTU=1500B <mark>题</mark>
 - len=1500(1480+20 header) ID=x fragflag=1 offset=0
 - len=1500(1480+20 header) ID=x fragflag=1 offset=185<mark>(1480/8) 185个bytes</mark>
 - len=1040 ID=x fragflag=0 offset=370
- IPv4 addressing
 - IP: 32-bit identifier for interface of hosts and routers
 - routers 多个int

- host 1 or 2 (wired Ethernet, wireless 802.11)
- subnet: 可以在没有router介入的情况下reach each other
- <mark>寻址 CIDR</mark>
 - Classless Inter Domain Routing
 - ISP block --- ICANN: Internet Corporation for Assigned Names and Numbers

Block of addresses: 166.4.20.128/25. Subnet 1: at least 62 interfaces; Subnet

2: at least 30 interfaces; Subnet 3: at least 28 interfaces

This block of IP addresses can be written as 10100110 00000100 00010100 100000000

Subnet 1: since $2^6 = 64 > 62$, we can assign the following block $\frac{10100110\ 00000100\ 00010100\ 10}{\text{be represented as } 166.4.20.128/26.}$

which can be represented as 166.4.20.192/27.

Subnet 3: since $2^b = 32 > 38$, we can assign the following block $\frac{10100110\ 00000100\ 00010100\ 111}{00000}$ which can be represented as 166.4.20.224/27.

- route aggregation
- How does a host get an IP?---DHCP: Dynamic Host Configuration Protocol
 - 自动分配IP地址及其他网络配置信息
 - DHCP Discover: client首次接入网络,广播dhcp discover,请求ip
 - DHCP Offer:分配ip,并广播dhcp offer(不知道给谁)
 - DHCP Request: client选择一个,并向选定的dhcp server 发送request表示接收
 - DHCP Acknowledgment: server->client

network address translation NAT

- 为LAN保留IP地址块,对外隐藏地址
- 离开router的datagram都有一样的IP不同的port——可以在不更改本地addr时候更改ISP
- 实现
 - 输出datagram: 替换src IP&port为NAT IP&port
 - remember: NAT translation table src-NAT <IP&port>
- IPv6: 128-bit

ver	pri	flow label		
payload len			next hdr	hop limit -
source address (128 bits)				
destination address (128 bits)				
data				
4 32 bits →				

decremented by one by each router that forwards the Datagram; if reaches zero, the datagram is discarded.

- header 40Bytes
- 没有checksum--UDP/TCP中有,没必要,耗时
- Tunneling解决IPv4与IPv6共存问题,在6外面套一层4,如果有router只能4
- Generalized Forward and SDN
 - intro: 每个router都包含一个flow table(control plane),定义了router的match+action
 - OpenFlow

- 防火墙 action=drop match=IP+TCP/UDP port
- router: action=forward, match=IP(LDP)
- switch: action=forward, match=dst.MAC
- NAT: action=rewrite, match=IP+port