6. Functions and correspondences

Mwaso Mnensa 08-15-2022

Relations

- Two entities, x and y can be related in many ways.
- We can use the notation xRy, where R is the relation
- R could be:
 - =
 - >
 - <
 - "better than"
 - "further than"
 - "as good as"

Relations are:

- Reflexice if : xRx for all x
- Symetric if : $xRy \Rightarrow yRx$
- Transitive if : xRy and $yRz \Rightarrow xRz$

• If R is reflexive, symmetric and transitive, then it is an equivalence relation

Examples

- If the underlying set is X=R, "=" is an equivalent relation
- Others can be:
 - "is the same age as"
 - "comes from the same country as"
 - "is the same altitude as"

Examples

• Given a utility function $U: R_2^+ \to R$, an equivalence class is given by $U^c = \{x \in R_2^+ : U(x) = c\}$. The indifference relation, usually denoted "x \sim y," is read "x gives the same level of utility as y," or "the consumer is indifferent between bundles x and y."

The weak preference operator " \succcurlyeq " (we say that $x \succcurlyeq y$ if the consumer prefers x to y) is complete, reflexive, and transitive. The indiffrence operator \sim is reflexive, symmetric, and transitive. The strict preference operator \succ (we say that $x \succ y$ if the consumer strictly prefers x to y) is irreflexive, asymmetric, and transitive (and total). Sometimes, given an underlying preference ordering \succcurlyeq , people call \sim the *symmetric part* and \succ the *asymmetric part* of \succcurlyeq .

Other properties of relations

- 1. Completeness: for all $x, y \in X$, xRy or yRx.
- 2. Irreflexivity: For all $x \in X$, $\neg xRx$.
- 3. Totality: For all $x, y \in X$ with $x \neq y$, xRy or yRx.
- 4. Asymmetry: For all $x, y \in X$, $[xRy] \Longrightarrow \neg [yRx]$.

Correspondences and Functions

- A correspondence is a relation that associates each element of one set (domain) with a set of elements of another set (range)
- A function is a relation that associates each element of the domain with a single, unique element of the range.

$$f: D \rightarrow R$$

- every element in the range is mapped into by some point in the domain: onto
- every element in the range is assigned to at most a single point in the domain: one-to-one

Quasiconcavity and Quasiconvexity

 $f: D \to R$ is **quasiconcave** iff, for all \mathbf{x}^1 and \mathbf{x}^2 in D,

$$f(t\mathbf{x}^1 + (1-t)\mathbf{x}^2) \ge min[f(\mathbf{x}^1), f(\mathbf{x}^2)] \quad \forall t \in [0, 1]$$

 $f: D \to R$ is quasiconvex iff, for all \mathbf{x}^1 and \mathbf{x}^2 in D,

$$f(t\mathbf{x}^1 + (1-t)\mathbf{x}^2) \le max[f(\mathbf{x}^1), f(\mathbf{x}^2)] \quad \forall t \in [0, 1]$$

The quansiconcavity and quasiconvexity are strict when the inequality holds for all $\mathbf{x}^1 \neq \mathbf{x}^2$.

Quasiconcave and quasiconvex

Quasiconcave but not quasiconvex

Concavity and convexity

A real-valued function f defined on a convex subset $D \subset \mathbb{R}^n$ is **concave** if for all $\mathbf{x^1}, \mathbf{x^2} \in D$ and for all $t \in [0, 1]$,

$$f(t\mathbf{x^1} + (1-t)\mathbf{x^2}) \ge tf(\mathbf{x^1}) + (1-t)f(\mathbf{x^2})$$

It is convex if

$$f(t\mathbf{x^1} + (1-t)\mathbf{x^2}) \le tf(\mathbf{x^1}) + (1-t)f(\mathbf{x^2})$$

The concavity and convexity are **strict** when the inequality holds.

Concave function (single variable)

Concave but not strictly concave

Convex function (single variable)

Exercise

- What is the relationship between convex function and convex set?
- What is the relationship between concave function and concave set?
- What is a concave set?

Exercise

• Prove that if *f* is concave, it is quasiconcave

Continuity

Definition A.27. For $A \subset \mathbb{R}^n$, the function $f: A \longrightarrow \mathbb{R}^m$ is **continuous at** $x^0 \in A$ if for all $\epsilon > 0$, there exists $\delta > 0$ such that for all $x \in A$, $[||x - x^0|| < \delta] \Longrightarrow [||f(x) - f(x^0)|| < \epsilon]$.

Continuity for correspondences

Given $\mathbf{A} \subset \mathbb{R}^n$ and the closed set $\mathbf{Y} \subset \mathbb{R}^n$, the correspondence $f: \mathbf{A} \to \mathbf{Y}$ is **upper hemicontinuous(uhc)** if it has a closed graph and the images of compact sets are bounded, that is for every compact set $\mathbf{B} \subset \mathbf{A}$ the set $f(\mathbf{B}) = \{\mathbf{y} \in \mathbf{Y} : \mathbf{y} \in f(\mathbf{x}) \text{ for some } \mathbf{x} \in \mathbf{B}\}$ is bounded.

Given $\mathbf{A} \subset \mathbb{R}^n$ and a compact set $\mathbf{Y} \subset \mathbb{R}^n$, the correspondence $f: \mathbf{A} \to \mathbf{Y}$ is **lower hemicontinuous(lhc)** if for every sequence $\mathbf{x}^m \to \mathbf{x} \in \mathbf{A}$ with $\mathbf{x}^m \in \mathbf{A}$ for all m, and every $\mathbf{y} \in f(\mathbf{x})$, we can find a sequence $\mathbf{y}^m \to \mathbf{y}$ and an integer M such that $\mathbf{y}^m \in f(\mathbf{x}^m)$ for m > M.

A correspondence is **continuous** if it is both uhc and lhc.

Brouwer's foxed point theorem

Suppose $D \subset \mathbb{R}^m$ is a nonempty, compact, convex set, and that $f: D \to D$ is a continuous function from D to itself. Then $f(\cdot)$ has a fixed point; that is, there is an $\mathbf{x} \in D$ such that $\mathbf{x} = f(\mathbf{x})$.

Kakutani's fixed point theorem

Suppose $D \subset \mathbb{R}^m$ is a nonempty, compact, convex set, and that $f: D \to D$ is a continuous **upper hemicontinuous correspondence** from D to itself with the property that the set $f(\mathbf{x}) \subset D$ is non-empty and convex for every $\mathbf{x} \in D$. Then $f(\cdot)$ has a fixed point; that is, there is an $\mathbf{x} \in D$ such that $\mathbf{x} = f(\mathbf{x})$.

Exercise

Consider the following utility functions:

a.
$$U(x, y) = ln(x) + ln(y)$$

b.
$$U(x,y) = min(x,y)$$

c.
$$U(x,y) = x^2 + y^2$$

For each function, plot the set of indifference curves and find and plot the demand functions for the commodity x and y as a function of p. Are the preferences represented by these utility functions convex? Strictly convex? Monotone? Strictly monotone? Continuous?