Week 12: Scientific Viz & Infographics

Broadcasting

go.ischool.illinois.edu/meet2

Warm-Up Activity

- 1. What is the visualization trying to show?
- 2. What are its methods?
- 3. What are the strengths / weaknesses?
- 4. (Bonus) How was the data collected?

Impact on Typical Graduate Student of Taxing Tuition Waivers

Example: A single (unmarried) graduate student at the University of Washington, who is a research or teaching assistant for 12 months out of the year, at a monthly 'salary' of \$2,650 for an annual income of \$31,800, and receives tuition waivers for three quarters, equal in value to \$15,500.

Scientific Viz

- Spatial organization
- Dimensionality reduction
- Multiple quantities

Data Representations

Discrete Points: Data

- Associated field values
- May have extent
- Values:
 - Locally defined
 - Integral over neighbors

Discrete Points: Techniques

- Projecting onto a plane
 - Gaussian "Splat"
 - Points / circles / patches
- Density estimates
 - Local estimates
 - Adaptive estimates
- Non-Spatial visualization

Discrete Points: Density Estimates

Discrete Points: Regular

Regular

kD-tree

Discrete Points: Quad Tree

Discrete Points: Quad Tree

- Simultaneous cuts in x, y
- Not necessarily bisection

Discrete Points: kD-Tree

- Bisection
- Cycle through dimensions
- Median or mean

Volume Filling: Data

- One or several "values"
- Predictable intervals
- May have multiple in the same domain
- Values:
 - Locally defined
 - Stencil definition (gradient, etc)

Volume Filling: Techniques

Mesh: Data

- Components
 - Vertices (can be shared)
 - Faces
 - o Edges
- Regular structures
 - Hexahedra
 - Tetrahedra
 - Wedges
- Irregular structures
 - Voronoi tesselations
 - Isosurfaces
 - Point cloud reconstructions

sketchfab.com/jnaiman
sketchfab.com/matthewturk

Mesh: Techniques

Project: Component 3

- Interactive UFO database explorer
 - State-by-state map, colored by aggregate fields
 - Aggregated sightings by year, state, shape, etc.
 - Show over-time sightings
 - Select time period
- Involve a second dataset of your own identification for normalization.
 - Cite the dataset (do not check it into your repository)
 - Include all code for reading and cleaning the data

Infographics

- Easy to gather information
- Presented simply
- Hack the brain

Infographics

- Infographics are a *design* task
- Start with quantitative representation, supplement as qualitative

Evaluating Infographics

- What information is this telling me?
- What information is it hiding from me?
- How do the shapes, colors, and text convey the story?
- What is the progression of the information?
 - Is there a connection, explicit or implicit between the charts?
 - o Is that connection logical or natural?
- Is the narrative text necessary, supplemental, or irrelevant?

See online slides for example infographics.

Online Creators

- infogr.am
- venngage.com
- canva.com
- piktochart.com

Project: Part 3

- You should write a function
- This function will receive a pandas dataframe object and a filename
 - names
 - dates
 - latitude
 - o longitude
 - o categorical
 - o quant1
 - o quant2
 - o quant3
- Save a PNG file to the supplied filename. The dates column will be in seconds since the epoch.

Project: Component 4

- "Infographic" based on component one or component three.
- Tell a story about the data
- You will be graded on:
 - Aesthetics
 - Representation of information
 - Overall presentation
 - Breakdown of information
- Examples:
 - http://www.numfocus.org/annual-reports.html
 - https://www.nytimes.com/interactive/2016/12/28/us/year-in-interactive-graphics.html
- Submission in PDF or website