

TRABALHO DE ELETRÔNICA 01			
CURSO	Técnico em Informática		
DISCIPLINA Eletricidade e Eletrônica			
PROFESSOR Adonias Caetano de Oliveira			
Atividade em Equipe	NO MÁXIMO 05 PESSOAS		

INSTRUÇÕES:

- I. O não cumprimento sobre a quantidade máxima de alunos por equipe resulta em -2 pontos na atividade;
- II. O trabalho deve ser respondido usando algum editor de texto como Microsoft Word ou LibreOffice ou Google Documentos ou WPS Office;
- III. Os circuitos lógicos podem ser desenhados de forma manuscrita e depois digitalizado ou fotografado, porém prefiro que usem algum software como LogicCircuit ou Logisim ou SIMULIDE.
- IV. A equipe que utilizar um dos softwares de construção de circuitos lógicos vai ser beneficiada com 0,5 pontos extras por questão;
- V. Respostas sem demonstrações de cálculos no caso de simplificações usando Álgebra de Boole ou sem uso de Mapa de Karnaugh onde é solicitado ou explicações de como foram obtidas serão ignoradas;
- VI. A entrega deve ser realizada pelo classroom
- VII. Será atribuída a mesma nota para cada membro de uma mesma equipe. Caso o líder da equipe discorde disto deve executar as seguintes ações:
 - Enviar um e-mail com cópias para todos os membros da equipe;
 - No corpo do e-mail deve atribuir valores de 0% até 100% como nível de contribuição que cada membro deu no trabalho;
 - Descrever a metodologia de divisão das tarefas
 - Relatar os problemas que teve com outro membro que prejudicou o trabalho;
- VIII. Após a correção desta atividade, em caso de discordância da nota E negativa do professor em atender suas solicitações, é preciso seguir as orientações do artigo 96 do ROD do IFCE.

RESUMO DA ÁLGEBRA DE BOOLE

Álgebra de Boole RESUMO

POSTULADOS

Complemento (NOT)	Adição (OR)	Multiplicação (AND)
	0 + 0 = 0	0.0 = 0
$A=0 \rightarrow \bar{A}=1$	0 + 1 = 1	0.1 = 0
$A=1 \rightarrow \bar{A}=0$	1 + 0 = 1	1.0 = 0
	1 + 1 = 1	1.1 = 1

IDENTIDADES

Complemento	Adição	Multiplicação
	A + 0 = A	A.0 = 0
Ŧ .	A + 1 = 1	A.1 = A
A = A	A + A = A	$A \cdot A = A$
	$A + \bar{A} = 1$	$A.\bar{A}=0$

PROPRIEDADES

Comutativa	Associativa	Distributiva		
$A + B = B + A$ $A \cdot B = B \cdot A$	A + (B + C) = A + B + C A.(B.C) = A.B.C	A.(B+C)=A.B+A.C		

Teorema de Morgan	Identidades Auxiliares
$\frac{(\overline{A} \cdot \overline{B})}{(\overline{A} + \overline{B})} = \overline{A} \cdot \overline{B}$	A + (A.B) = A $A + \bar{A}.B = A + B$ (A + B).(A + C) = A + B.C

QUESTÕES

1) Obter a expressão booleana dos seguintes circuitos lógicos

2) No circuito abaixo, determinar a expressão booleana e completar a tabela-verdade:

3) Dada a tabela-verdade abaixo, determine a expressão lógica e o seu respectivo circuito lógico:

Α	В	С	S	
0	0	0	0	
0	0	1	1	ABZ
0	1	0	0	
0	1	1	1	ABZ ABZ
1	0	0	1	五日乙
1	0	1	0	
1	1	0	1	AGC
1	1	1	0	

4) Desenhe o circuito a partir da expressão e levante sua tabela da verdade:

$$S = \overline{\left[\overline{(\overline{B} + \overline{C} + \overline{D})} \cdot \overline{(\overline{A} + B + C)} + C \right]} + A\overline{B}C + \overline{B}\overline{(A + C)}$$

5) Verifique os resultados das seguintes expressões usando Álgebra de Boole:

a)
$$(A + \overline{B} + AB)(A + \overline{B})\overline{A}B$$

b)
$$\overline{A}B(\overline{D} + D\overline{C}) + (A + D\overline{A}C)B$$

c)
$$\overline{\left[\left(\overline{B}+C\right)A\right]+\overline{CD}}$$

d)
$$S = A \cdot \overline{\left[\overline{B} \cdot \overline{(C+D)} \cdot \overline{A} \cdot \overline{(B+C)}\right]} + C\overline{D} + A\overline{B}C + AB$$

6) Determine a expressão simplificada correspondente pelo Mapa de Karnaugh, dada a seguinte tabela-verdade:

ΑB	S_1	S ₂
0.0	1	1
01	0	1
10	1	0
11	1	0

7) Determine a expressão simplificada e o circuito lógico correspondente pelo Mapa de Karnaugh, dadas as seguintes tabelas-verdade:

a)

А	В	С	S	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

b)

	A	В	C	D	S_1	S_2	Sı	S ₄
	0	0	0	0	1	1	0	0
	0	0	0	1	1	0	0	0
	0	0	1	0	1	1	1	0
1	0	0	1	1	1	0	0	1
	0	1	0	0	1	1	1	1
	0	1	0	1	0	1	1	1
	0	1	1	0	0	1	1	0
	0	1	1	1	1	1	0	1
	1	0	0	0	1	1	0	0
	1	0	0	1	1	1	0	1
1	1	0	1	0	1	0	1	0
	1	0	1	1	1	0	0	0
	1	1	0	0	1	0	0	0
	1	1.	0	1	0	1	1	1
	1	1	1	0	0	0	0	1
	1	1	1	1	1	_1	0	1