CECS 228 HOMEWORK 7 RIFA SAFEER SHAH

PAGE 351: 17, 33

17

Prove that $\sum_{j=1}^{n} j^4 = n(n+1)(2n+1)(3n^2+3n-1)/30$ whenever *n* is a positive integer.

Solution:

Let P(n) be the statement that $1^4+2^4+3^4+\cdots+n^4=n(n+1)(2n+1)(3n^2+3n-1)/30$. P(1) is true because $1 \cdot 2 \cdot 3 \cdot 5/30=1$. Assume that P(k) is true. Then $(1^4+2^4+3^4+\cdots+k^4)+(k+1)^4$

- $= k(k+1)(2k+1)(3k2+3k-1)/30+(k+1)^4$
- = [(k+1)/30][k(2k+1)(3k2+3k-1)+30(k+1)3]
- = [(k+1)/30](6k4+39k3+91k2+89k+30)
- = [(k+1)/30](k+2)(2k+3)[3(k+1)/2+3(k+1)-1].

This demonstrates that P(k+1) is true.

33

Prove that 5 divides $n^5 - n$ whenever n is a nonnegative integer.

Solution

Let P(n) be " $n^5 - n$ is divisible by 5." Basis step: P(0) is true because $0^5 - 0 = 0$ is divisible by 5. Inductive step: Assume that P(k) is true, that is, $k^5 - 5$ is divisible by 5.

Then $(k+1)^5-(k+1)$

$$= (k^5 + 5k^4 + 10k^3 + 10k^2 + 5k + 1) - (k+1)$$

$$= (k^5 - k) + 5(k^4 + 2k^3 + 2k^2 + k)$$

is also divisible by 5, because both terms in this sum are divisible by 5.

PAGE 378: 5, 25, 53

5

Determine whether each of these proposed definitions is a valid recursive definition of a function f from the set of nonnegative integers to the set of integers. If f is well defined, find a formula for f(n) when n is a nonnegative integer and prove that your formula is valid.

a.
$$f(0) = 0$$
, $f(n) = 2f(n-2)$ for $n \ge 1$

b.
$$f(0) = 1$$
, $f(n) = f(n-1) - 1$ for $n \ge 1$

c.
$$f(0) = 2$$
, $f(1) = 3$, $f(n) = f(n-1) - 1$ for $n \ge 2$

d. f(0) = 1, f(1) = 2, f(n) = 2f(n-2) for $n \ge 2$

e. f(0) = 1, f(n) = 3f(n-1) if n is odd and $n \ge 1$ and f(n) = 9f(n-2) if n is even and $n \ge 2$

Solution:

a. Not valid

b. f(n) = 1 - n.

Basis step: f(0) = 1 = 1 - 0. Inductive step: if f(k) = 1 - k, then f(k+1) = f(k) - 1 = 1 - k - 1 = 1 - (k+1).

c. f(n) = 4 - n if n > 0, and f(0) = 2.

Basis step: f(0) = 2 and f(1) = 3 = 4 - 1. Inductive step: f(k + 1) = f(k) - 1 = (4 - k) - 1 = 4 - (k + 1).

d. $f(n) = 2^{floor((n+1)/2)}$

Basis step: $f(0) = 1 = 2^{floor((0+1)/2)}$ and $f(1) = 2 = 2^{floor((1+1)/2)}$

Inductive step: $f(k+1) = 2f(k-1) = 2 \cdot 2^{floor(k/2)} = 2^{floor(k/2)+1} = 2^{floor(((k+1)+1)/2)}$

e. f(n) = 3n.

Inductive step: For odd n, $f(n) = 3f(n-1) = 3 \cdot 3^{n-1} = 3^n$; and for even n > 1, $f(n) = 9f(n-2) = 9 \cdot 3^{n-2} = 3^n$.

25

Give a recursive definition of

a. the set of even integers.

b. the set of positive integer congruent to 2 modulo 3.

c. the set of positive integers not divisible by 5.

Solution:

a. $0 \in S$, and if $x \in S$, then $x+2 \in S$ and $x-2 \in S$.

b. $2 \in S$, and if $x \in S$, then $x+3 \in S$.

c. $1 \in S$, $2 \in S$, $3 \in S$, $4 \in S$, and if $x \in S$, then $x + 5 \in S$.

53

Find these values of Ackermann's function.

a. A(2,3)

b. A(3,3)

Solution:

a. 16

b. 65536

35

Give iterative and recursive algorithms for finding the *n*th term of the sequence defined by $a_0 = 1$, $a_1 = 3$, $a_2 = 5$, and $a_n = a_{n-1} \cdot a_{n-2}^2 \cdot a_{n-3}^3$. Which is more efficient?

Solution:

We first give a recursive procedure and then an iterative procedure.

if
$$n < 3$$
 then return $2n + 1$
else return $r(n - 1) \cdot (r(n - 2))^2 \cdot (r(n - 3))^3$

if
$$n = 0$$
 then $z := 1$
else if $n = 1$ then $z := 3$
else
 $x := 1$
 $y := 3$
 $z := 5$
for $i := 1$ to $n - 2$
 $w := z \cdot y^2 \cdot x^3$
 $x := y$
 $y := z$
 $z := w$
return $z \{z \text{ is the nth term of the sequence}\}$

The iterative version is more efficient.

PAGE 399: 13

13

- a. Describe the merge sort algorithm.
- b. Use the merge sort algorithm to put the list 4, 10, 1, 5, 3, 8, 7, 2, 6, 9 in increasing order.
- c. Give a big-O estimate for the number of comparisons used by the merge sort.

Solution:

- **a.** A sorting algorithm sorts a list by splitting it into two sorting, each of two resulting lists and merging the results into a sorted list.
- b.

First list	Second list	Merged list
4, 10, 1, 5, 3	8,7,2,6,9	
4, 10, 5 ,3	8, 7,2 ,6 9	1
4, 10, 5,3	8,7,6,9	1, 2
10, 5	8, 7, 6, 9	1,2, 3
10	8, 7,6,9	1, 2,3,4
10	8, 7,9	1,2,3,4,5
10	8,9	1,2,3,4,5,6,
10	9	1,2,3,4,5,6,7
10		1,2,3,4,5,6,7,8
10		1,2,3,4,5,6,7,8,9
		1,2,3,4,5,6,7,8,9,10

c. $O(n \log n) \rightarrow O(10 \log 10) = 10$

PAGE 401: 45 b & e

45 b & e

By successively using the defining rule for M(n), find

- a. M(102)
- b. M(101)
- c. M(99)
- d. M(97)
- e. M(87)
- f. M(76)

Solution:

- a.
- b. 91
- c.
- d.
- e. 91
- f.