

Seasonal functional autoregressive models

Rob J Hyndman, Maryam Hashemi, Hossein Haghbin & Atefeh Zamani 8 November 2018

Outline

- 1 Motivation
- 2 SFAR(1)_S processes
- 3 Estimation
- 4 Forecasting
- 5 Application: pedestrian counts
- 6 SFAR(P)_S processes

Outline

- 1 Motivation
- 2 SFAR(1)_S processes
- 3 Estimation
- 4 Forecasting
- 5 Application: pedestrian counts
- 6 SFAR(P)_S processes

Flu/respiratory mortality (US)

Flu/respiratory mortality (US)

Flu/respiratory mortality (US)

Examples

Notation

 $X_t(u)$ where t = 1, ..., T indexes regularly spaced time and u is a continuous variable in \mathbb{R} or \mathbb{R}^2

- $X_t(u)$ = mortality rate for people aged u in month t.
- $X_t(u)$ = vegetation index at location u in month t, measured by average satellite observations.

Sometimes *u* may denote a second time variable.

 $X_t(u)$ = pedestrian count observed every hour. u denotes time-of-day, t denotes day.

Seasonality

Notation

 $X_t(u)$ where t = 1, ..., T indexes regularly spaced time and u is a continuous variable in \mathbb{R} or \mathbb{R}^2

Seasonality occurs when $X_t(u)$ is influenced by seasonal factors (e.g., the quarter of the year, the month, the day of the week, etc.).

8

Functional autoregression

FAR(p) processes - introduced by Bosq (2000)

$$X_t = \phi_1(X_{t-1}) + \cdots + \phi_p(X_{t-p}) + \varepsilon_t,$$

- ullet $\{\varepsilon_t\}$ is a functional *H*-white noise process
- lacktriangledown ϕ_j are Hilbert-Schmidt integral operators in $\mathcal{L}(H)$
- $\phi_p \neq 0$
- Some stationarity conditions on ϕ_1, \ldots, ϕ_p .
 - H = separable real Hilbert space of square integrable functions.
- $\mathcal{L}(H)$ = space of continuous linear operators from H to H.

Seasonal univariate autoregression

AR(p) processes

$$\mathsf{Y}_t = \phi_1 \mathsf{Y}_{t-1} + \phi_2 \mathsf{Y}_{t-2} + \dots + \phi_p \mathsf{Y}_{t-p} + \varepsilon_t.$$

- $[\varepsilon_t]$ is a real white noise process.
- $\phi_p \neq 0$
- Some stationarity conditions on ϕ_1, \ldots, ϕ_p

Seasonal univariate autoregression

AR(p) processes

$$\mathsf{Y}_t = \phi_1 \mathsf{Y}_{t-1} + \phi_2 \mathsf{Y}_{t-2} + \dots + \phi_p \mathsf{Y}_{t-p} + \varepsilon_t.$$

- lacksquare $\{\varepsilon_t\}$ is a real white noise process.
- $\phi_p \neq 0$
- Some stationarity conditions on ϕ_1, \ldots, ϕ_p

$SAR(P)_S$ processes

$$Y_t = \Phi_1 Y_{t-S} + \Phi_2 Y_{t-2S} + \cdots + \Phi_P Y_{t-PS} + \varepsilon_t.$$

- \blacksquare $\{\varepsilon_t\}$ is a real white noise process.
- \blacksquare $\Phi_P \neq 0$
- Some stationarity conditions on Φ_1, \ldots, Φ_P

Outline

- 1 Motivation
- 2 SFAR(1)_S processes
- 3 Estimation
- 4 Forecasting
- 5 Application: pedestrian counts
- 6 SFAR(P)_S processes

SFAR(1)_S processes

$$X_t = \Phi(X_{t-S}) + \varepsilon_t,$$

- lacktriangledown Φ is Hilbert-Schmidt integral operator in $\mathcal{L}(H)$
- Φ ≠ 0

SFAR(1)_S processes

$$X_t = \Phi(X_{t-S}) + \varepsilon_t,$$

- \blacksquare Φ is Hilbert-Schmidt integral operator in $\mathcal{L}(H)$
- Φ ≠ 0

Stationarity of a SFAR(1)_S process

If there exists an integer $M \ge 1$ such that $\|\Phi^M\|_{\mathcal{L}} < 1$, then $X_t = \Phi(X_{t-S}) + \varepsilon_t$,

has a unique stationary solution given by

$$X_t = \sum_{i=0}^{\infty} \Phi^{i}(\varepsilon_{t-jS}),$$

where the series converges in L_H^2 with probability 1.

Limit Theorems for SFAR(1)_S processes

Theorem: Law of large numbers for X

If **X** is a standard SFAR(1)_S then, as $T \to \infty$,

$$\frac{T^{0.25}}{(\log T)^{\beta}} \frac{(X_1 + X_2 + \dots + X_T)}{T} \to 0, \qquad \text{for } \beta > 0.5.$$

Central Limit Theorem

Let **X** be a standard SFAR(1)_S associated with a strong white noise ε and such that $I - \Phi$ is invertible. Then

$$\frac{(X_1+X_2+\cdots+X_T)}{\sqrt{T}}\to \mathcal{N}(0,\Gamma),$$

where
$$\Gamma = (I - \Phi)^{-1}C_{\varepsilon}(I - \Phi^*)^{-1}$$
.

Outline

- 1 Motivation
- 2 SFAR(1)_S processes
- 3 Estimation
- 4 Forecasting
- 5 Application: pedestrian counts
- 6 SFAR(P)_S processes

Method of Moments

Covariance operator

$$C_k^X = \mathsf{E}(X_t \otimes X_{t-k})$$

$$\hat{C}_k^X = \frac{1}{T} \sum_{t=k+1}^T X_j \otimes X_{j-k}$$

Eigendecomposition

For any $x \in H$,

$$\Phi(X) = \sum_{j=1}^{\infty} \langle x, \nu_j \rangle \Phi(\nu_j) = \sum_{j=1}^{\infty} \frac{C_S^X(\nu_j)}{\lambda_j} \langle x, \nu_j \rangle$$

- Estimate λ_j and ν_j from \hat{C}_0^X .

Unconditional Least Squares

Let $X_{tk} = \langle X_t, \nu_k \rangle$ be projection of the tth observation onto the kth largest FPC.

$$X_{tk} = \sum_{j=1}^{p} \Phi_{kj} X_{t-S,j} + \delta_{tk}, \quad k = 1, ..., p$$

where $\Phi_{kj} = \langle \Phi(\nu_j), \nu_k \rangle$. Note that the δ_{tk} are not iid.

Replace ν_k by $\hat{\nu}_k$ to get \hat{X}_{tk}

Unconditional Least Squares

$$\begin{aligned} &\text{Set } \boldsymbol{X}_{t} = (\hat{\boldsymbol{X}}_{t1}, \ldots, \hat{\boldsymbol{X}}_{tp})', \, \boldsymbol{\delta}_{t} = (\boldsymbol{\delta}_{t1}, \ldots, \boldsymbol{\delta}_{tp})', \\ &\boldsymbol{\Phi} = (\boldsymbol{\Phi}_{11}, \ldots, \boldsymbol{\Phi}_{1p}, \boldsymbol{\Phi}_{21}, \ldots, \boldsymbol{\Phi}_{2p}, \ldots, \boldsymbol{\Phi}_{p1}, \ldots, \boldsymbol{\Phi}_{pp})'. \\ &\boldsymbol{Z}_{t} = \begin{bmatrix} \boldsymbol{X}_{t}' & \boldsymbol{0}_{p}' & \ldots & \boldsymbol{0}_{p}' \\ \boldsymbol{0}_{p}' & \boldsymbol{X}_{t}' & \ldots & \boldsymbol{0}_{p}' \\ \vdots & \vdots & \ldots & \vdots \\ \boldsymbol{0}_{p}' & \boldsymbol{0}_{p}' & \ldots & \boldsymbol{X}_{t}' \end{bmatrix}, \, \boldsymbol{X} = \begin{bmatrix} \boldsymbol{X}_{1} \\ \boldsymbol{X}_{2} \\ \vdots \\ \boldsymbol{X}_{N} \end{bmatrix}, \, \boldsymbol{\delta} = \begin{bmatrix} \boldsymbol{\delta}_{1} \\ \boldsymbol{\delta}_{2} \\ \vdots \\ \boldsymbol{\delta}_{N} \end{bmatrix}, \, \boldsymbol{Z} = \begin{bmatrix} \boldsymbol{Z}_{1-S} \\ \boldsymbol{Z}_{2-S} \\ \vdots \\ \boldsymbol{Z}_{N-S} \end{bmatrix}, \end{aligned}$$

$$\hat{\Phi} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X}$$

The Kargin-Onatski Method

Find A, approximating Φ , minimizing $E||X_t - A(X_{t-S})||^2$.

Let
$$\hat{C}_{\alpha} = \hat{C}_0 + \alpha I$$
, $\alpha > 0$

Let $\{v_{\alpha,i}\}$ be eigenfunctions of $\hat{\mathbf{C}}_{\alpha}^{-1/2}\hat{\mathbf{C}}_{\mathbf{S}}'\hat{\mathbf{C}}_{\mathbf{S}}\hat{\mathbf{C}}_{\alpha}^{-1/2}$, corresponding to eigenvalues $\{\hat{\mathbf{u}}_{\alpha,i}\}, \quad \hat{\mathbf{u}}_{\alpha,j} > \hat{\mathbf{u}}_{\alpha,j+1}$.

$$\hat{\Phi}_{\alpha,\mathbf{k}_{\mathsf{T}}} = \sum_{i=1}^{\mathbf{k}_{\mathsf{T}}} \hat{\mathbf{C}}_{\alpha}^{-1/2} \upsilon_{\alpha,\mathbf{i}} \otimes \hat{\mathbf{C}}_{\mathsf{S}} \hat{\mathbf{C}}_{\alpha}^{-1/2} \upsilon_{\alpha,\mathbf{i}}.$$

 $\hat{\Phi}_{\alpha,k_T}$ is a consistent estimator of Φ if $\{k_T\}$ is sequence of positive integers such that $KT^{-1/4} \leq k_T \leq T$, for some K > 0 and $\alpha \sim T^{-1/6}$.

Simulations

Let $\{X_t\}$ follow a SFAR(1)_S model,

$$X_t(u) = \Phi X_{t-S}(u) + \varepsilon_t(u), \quad t = 1, \dots, T,$$

where $\boldsymbol{\Phi}$ is an integral operator with parabolic kernel

$$k_{\Phi}(u, v) = \gamma_0 (2 - (2u - 1)^2 - (2v - 1)^2),$$

and γ_0 is such that $\|\Phi\|_{\mathcal{S}}^2 = \int_{0.0}^{1} \int_{0}^{1} |k_{\Phi}(u, v)|^2 du dv = 0.9$.

- White noise terms $\varepsilon_t(u)$ are independent standard BM on [0, 1] with variance 0.05.
- B = 1000 trajectories simulated
- Φ estimated using MME, ULSE and KOE.

$$\blacksquare \text{ RMSE} = \sqrt{\frac{1}{B} \sum_{i=1}^{B} \|\hat{\Phi}_i - \Phi\|_{\mathcal{S}}^2}$$

Simulations

Simulations

T = 200, $\|\Phi\|_{\mathcal{S}} = 0.9$ and $k_T = 1, 2, 3$. MME only

Simulations: RMSE

		$\ \Phi\ _{\mathcal{S}} = 0.1$			$\ \Phi\ _{\mathcal{S}} = 0.5$			$\ \Phi\ _{\mathcal{S}} = 0.9$		
Т	kτ	MME	ULSE	KOE	MME	ULSE	KOE	MME	ULSE	KOE
50	1	0.1750	0.1645	0.0951	0.2403	0.2838	0.3716	0.1986	0.2323	0.5096
	2	0.5484	0.5189	0.0959	0.4931	0.7000	0.3720	0.4387	1.0381	0.5099
	3	1.0239	0.9657	0.0961	0.9988	1.1478	0.3721	1.0435	1.7282	0.5099
	4	1.5573	1.4934	0.0962	1.5340	1.6513	0.3721	1.6382	2.4725	0.5099
100	1	0.1222	0.1183	0.0861	0.2050	0.2579	0.3539	0.1387	0.1709	0.4134
	2	0.3662	0.3598	0.0866	0.3325	0.6087	0.3541	0.2743	0.9728	0.4136
	3	0.6830	0.6798	0.0868	0.6661	0.8723	0.3541	0.6694	1.3925	0.4136
	4	1.0645	1.0243	0.0868	1.0245	1.1973	0.3542	1.0193	1.9377	0.4136
150	1	0.1033	0.1027	0.0825	0.1946	0.2505	0.3460	0.1205	0.1517	0.3735
	2	0.2903	0.2900	0.0830	0.2666	0.5704	0.3462	0.2149	0.9478	0.3737
	3	0.5533	0.5449	0.0831	0.5387	0.7601	0.3462	0.5272	1.2493	0.3736
	4	0.8560	0.8237	0.0831	0.8256	1.0040	0.3462	0.8106	1.6683	0.3736
200	1	0.0917	0.0935	0.0798	0.1879	0.2457	0.3393	0.1114	0.1419	0.3496
	2	0.2490	0.2610	0.0803	0.2285	0.5568	0.3394	0.1818	0.9411	0.3497
	3	0.4790	0.4745	0.0804	0.4684	0.7047	0.3394	0.4542	1.1896	0.3497
	4	0.7438	0.7127	0.0804	0.7199	0.9042	0.3394	0.7040	1.5134	0.3497

Outline

- 1 Motivation
- 2 SFAR(1)_S processes
- 3 Estimation
- 4 Forecasting
- 5 Application: pedestrian counts
- 6 SFAR(P)_S processes

Let
$$\mathbf{X}_T = (X_1, X_2, \dots, X_T)'$$
.
Let G be closure of $\{\ell_0 \mathbf{X}_T; \ \ell_0 \in \mathcal{L}(H^T, H)\}$.

Best linear *h*-step predictor of X_{T+h} is projection of X_{T+h} on G, i.e., $\hat{X}_{T+h} = P_G X_{T+h}$.

Let
$$\mathbf{X}_T = (X_1, X_2, \dots, X_T)'$$
.
Let G be closure of $\{\ell_0 \mathbf{X}_T; \ \ell_0 \in \mathcal{L}(H^T, H)\}$.

Best linear *h*-step predictor of X_{T+h} is projection of X_{T+h} on G, i.e., $\hat{X}_{T+h} = P_G X_{T+h}$.

Proposition (based on Bosq 2014)

For $h \in \mathbb{N}$ the following statements are equivalent:

- There exists $\ell_0 \in \mathcal{L}\left(H^T, H\right)$ such that $C_{\mathbf{X}_T, \mathbf{X}_{T+h}} = \ell_0 C_{\mathbf{X}_T}$.
- P_GX_{T+h} = ℓ_0 X_T for some $\ell_0 \in \mathcal{L}(H^T, H)$.

Let $X_T = (X_1, X_2, \dots, X_T)'$. Let G be closure of $\{\ell_0 X_T; \ \ell_0 \in \mathcal{L}(H^T, H)\}$.

Best linear h-step predictor of X_{T+h} is projection of X_{T+h} on G, i.e., $\hat{X}_{T+h} = P_G X_{T+h}$.

Proposition (based on Bosq 2014)

For $h \in \mathbb{N}$ the following statements are equivalent:

- There exists $\ell_0 \in \mathcal{L}\left(H^T, H\right)$ such that $C_{\mathbf{X}_{\tau}, X_{\tau+h}} = \ell_0 C_{\mathbf{X}_{\tau}}$.
- P_GX_{T+h} = ℓ_0 X_T for some $\ell_0 \in \mathcal{L}\left(H^T, H\right)$.

How to find $\ell_0 \in \mathcal{L}(H^T, H)$ such that $C_{X_T, X_{T+h}} = \ell_0 C_{X_T}$?

Forecast horizon h = aS + c, $a \ge 0$ and $0 \le c < S$.

$$C_{\boldsymbol{X}_{T},\boldsymbol{X}_{T+h}}\left(\boldsymbol{x}\right)=\mathsf{E}\left(\left\langle\boldsymbol{X}_{T},\boldsymbol{x}\right\rangle_{H^{T}}\boldsymbol{X}_{T+h}\right)=\Phi_{T-S+c}^{a+1}C_{\boldsymbol{X}_{T}}\left(\boldsymbol{x}\right),$$

where Φ_i^i is an T-vector of zeros with Φ^i in jth position.

$$\hat{X}_{T+h} = P_G X_{T+h} = \Phi_{T-S+c}^{a+1} X_T = \Phi^{a+1} X_{T-S+c}$$

Based on KOE, 1-step ahead predictor of X_{T+1} is:

$$\hat{X}_{T+1} = \sum_{i=1}^{k_T} \langle X_{T-S+1}, \hat{z}_{\alpha,i} \rangle \hat{C}_S(\hat{z}_{\alpha,i}),$$

where
$$\hat{\mathbf{z}}_{\alpha,i} = \sum_{i=1}^{q} \hat{\mathbf{u}}_{j}^{-1/2} \langle v_{\alpha,i}, \hat{\nu}_{j} \rangle \hat{\nu}_{j} + \alpha v_{\alpha,i}.$$

Select q by cumulative variance method and set $k_T = q$.

Outline

- 1 Motivation
- 2 SFAR(1)_S processes
- 3 Estimation
- 4 Forecasting
- 5 Application: pedestrian counts
- 6 SFAR(P)_S processes

Application: pedestrian counts

Application: pedestrian counts

The estimated kernel of the autocorrelation operator using MME and ULSE methods.

Application: pedestrian counts

1-step predictors for the last 7 days of the dataset

	MAE			RMSE		
k_T	MME	ULSE		MME	ULSE	
1	198.7	197.9		201.7	201.0	
2	202.8	99.1		205.6	99.7	
3	315.3	199.8		319.7	207.0	
4	418.4	155.8		423.4	157.5	
5	508.0	267.5		515.0	301.6	
6	645.6	168.0		655.2	169.5	

Outline

- 1 Motivation
- 2 SFAR(1)_S processes
- 3 Estimation
- 4 Forecasting
- 5 Application: pedestrian counts
- 6 SFAR(P)_S processes

SFAR(*P*)_S processes

Definition

A sequence $\{X_t; t \in \mathbb{Z}\}$ of functional random variables is said to be a seasonal functional autoregressive process of order P with seasonality S if

$$X_t - \mu = \Phi_1 (X_{t-S} - \mu) + \dots + \Phi_P (X_{t-PS} - \mu) + \varepsilon_t,$$

where $\{\varepsilon_t, t \in \mathbb{Z}\}$ is H-white noise, $\mu \in H$, and

 $\Phi_1,\ldots,\Phi_P\in\mathcal{L}(H)$, with $\Phi_P\neq 0$.

$\overline{SFAR}(P)_S$ processes

Let $Y_t = (X_t, X_{t-S}, \dots, X_{t-PS+S})'$, $\varepsilon_t' = (\varepsilon_t, 0, \dots, 0)'$, and

$$\Phi = \begin{bmatrix} \Phi_1 & \Phi_2 & \dots & \Phi_P \\ I & 0 & \dots & 0 \\ 0 & I & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix},$$

where I and 0 denote identity and zero operator on H.

Lemma

If X is a SFAR(P)_S associated with associated with $(\varepsilon, \phi_1, \dots, \phi_P)$, then Y is a SFAR(1)_S with values in the product Hilbert space H^P associated with (ε', ϕ) .

SFAR(*P*)_S processes

Theorem

Let X_n be a SFAR(P)_S zero-mean process associated with $(\varepsilon, \phi_1, \phi_2, \dots, \phi_P)$. Suppose that there exist $\nu \in H$ and $\alpha_1, \dots, \alpha_P \in \mathbb{R}$, $\alpha_P \neq 0$, such that $\phi_j(\nu) = \alpha_j \nu_j$, $j = 1, \dots, P$ and $E \langle \varepsilon_0, \nu \rangle^2 > 0$. Then, $(\langle X_t, \nu \rangle, t \in \mathbb{Z})$ is a SAR(P) process, i.e., $\langle X_t, \nu \rangle = \sum_{j=1}^P \alpha_j \langle X_{t-jS}, \nu \rangle + \langle \varepsilon_t, \nu \rangle, \qquad t \in \mathbb{Z}.$

SFAR(P)_S processes

Theorem

If X is a standard SFAR(P)_S process, then

$$C_{h} = \sum_{j=1}^{P} \phi_{j} C_{h-jS}, \qquad h = 1, 2, \dots,$$

$$C_{0} = \sum_{j=1}^{P} \phi_{j} C_{jS} + C_{\varepsilon},$$

where C_{ε} is the covariance operator of the innovation process ε .