Candidate's name:		
	Random No.	Personal
		No.
Signature: Stream		

535/1 PHYSICS Paper 1 JULY 2022

 $2\frac{1}{4}$ hours

(MEPSA) RESOURCEFUL ASSESSMENT 2022

Uganda certificate of education MOCK EXAMINATIONS

PHYSICS

Paper 1 2 hours 15 minutes

INSTRUCTIONS TO CANDIDATES:

Section A contains 40 objective type questions. You are required to write the correct answer A, B, C or D against each question in the box on the right hand side.

Section B contains 10 structured questions. Answers are to be written in the spaces provided on the question paper.

Mathematical tables and silent non-programmable calculators may be used. Acceleration due to gravity, $g=10\,\mathrm{ms}^{-2}$

Specific heat capacity of water = 4200 Jkg⁻¹K⁻¹

For Examiners' Use only

Q. 41	Q.42	Q.43	Q.44	Q.45	Q.46	Q.47	Q.48	Q.49	Q.50	MCQ	Total

SECTION A : (40 MARKS) SECTION A

			Answer all a	questions from th	is sec	tion	
1.	The	quanti	ity whose unit is a jou	le is			
	A.	-	rrent		C.	Force	
	B.	Wo	ork		D.	Voltage	
2.	Merc	cury is	s not used to measure	very low tempera	itures	because it	
	A.	_	oands regularly		C.	does not wet glass	
	B.	has	s a high boiling point?		D.	has a high freezing point	
3.	A wa	ater fa	ll can be used to prod	uce electricity be	cause	it has	
	A.	ele	ctrical energy	-	C.	mechanical energy	
	B.	lig	ht energy		D.	sound energy	
4.	The	diame	eter of a wire is best m	easured by		l	
••	A.		neter rule	cusured by	C.	a tape measure	
	В.		nire calipers		D.	a micrometer screw gauge	
5.	The	diagra	nm shows a ray of ligh	_		lass.	
					mal		
				ray of	Î		
				light \			
				2	-		
			air	/ \		·	
			gla	SS	3		
					4		
	Whi	ch nui	mbered angles are the			d of refraction?	
			Angle of incidence	Angle of refrac	поп		
		A	1	3			

6	The mote of	f diffusion	of molecule	a in ana a a a	rrrith in ana	
n	The rate of	i antinision	or morecine	s increases	. wiin increa	180 111

4

3

4

- A. molecular weight of molecules
- B. size of the diffusing molecules
- C. density of the substance
- D. temperature

В

C

D

1

2

2

7.	A person pushes a toy cart along a level road and lets it to go. Which one of the following presents the correct order of energy changes which occur when the cart slows down to rest?	
	A. Heat energy — Kinetic energy + Sound energy B. Kinetic energy — Heat energy + Sound energy	
	C. Kinetic energy Potential energy + Sound energy	
	D. Potential energy	
8.	Which one of the following effects will take place when two equal and opposite	
	forces act on a moving object? It	
	A. accelerates uniformly B. is brought to rest	
	C. changes direction D. moves with the same speed	
9.	An object is placed between a convex lens and its principal focus. Which one of the	
	following statements about the image formed is true?	
	A. real, magnified and erect	
	B. virtual, magnified and erect	
	C. virtual, diminished and inverted	
	D. real, diminished and inverted.	
10.	Air conditioners are placed near the ceilings other than the floor because they	
	A. create path for radiation to be emitted to every corner of the room	
	B. make conduction of heat more efficient for the whole room	
	C. keep the whole room warm because hot air rises and cold air sinks	
	D. keep the whole room cool because hot air rises and cold air sinks	
11.	The following readings were obtained in an experiment to determine the density of a liquid Mass of an empty beaker = 20g Mass of beaker + liquid = 70g Volume of the liquid used = 60 cm ³ Using the above data, find the density of the liquid in g cm ⁻³	
	A. $\left(\frac{70+20}{60}\right)$ B. $\left(\frac{70-20}{60}\right)$	
	(60)	
	C. $\left(\frac{60}{70-20}\right)$ D. $\left(\frac{70}{60-20}\right)$	
12.	Which one of the following determines whether a body will float in a liquid? A. Weight of the body C. Surface area of the body	
	B. Volume of the body D. Average density of the body	
13.	Find the power expended when a pump lifts 200kg of water through a vertical height of 0.6m in 1s	
	A. 33.3 W C. 333.3 W	
	B. 120.0 W D. 1200.0W	\neg
14.	Which one of the following atoms are isotopes?	
	A. ¹⁶ ₈ Xand ¹⁶ ₈ Y C. ¹⁹ ₉ Xand ⁴⁰ ₁₉ Y	
	B. $^{30}_{16}X$ and $^{32}_{16}Y$ D. $^{28}_{14}X$ and $^{30}_{16}Y$	
15.	Objects viewed through a blue-tinted glass appear blue the	

A.	glass	is	trans	paren

C.

glass reflects only blue

glass transmits only blue

D. objects reflect the blue color

A body weighs 520 N on earth. If the acceleration due to gravity is 9.8 ms⁻², find the 16. mass of the body in grammes.

A.
$$\left(\frac{520 \times 1000}{9.8}\right)$$

C.
$$\left(\frac{520 \times 9.8}{1000}\right)$$

B.
$$\left(\frac{9.8 \times 1000}{520}\right)$$

D. (520×9.8×1000)

- Gamma rays, X-rays, ultra-violet, visible light, infra-red and radio waves A.
- Radio waves, infra-red, visible light, ultra-violet, X-rays and gamma rays B.
- C. X-rays, gamma rays, visible light, ultra-violet, infra-red and radio waves.
- Gamma rays, X-rays, infra-red, visible light, ultraviolet and radio waves D.

Figure 2 shows a semi-circular glass block in which light incident at angle of 48° with 18. the glass-air interface is refracted along the interface.

Fig. 2

Find the refractive index of the glass

$$A. \qquad \frac{\sin 42^0}{\sin 90^0}$$

C.
$$\frac{\sin 48^{\circ}}{\sin 90^{\circ}}$$

B.
$$\frac{\sin 90^{\circ}}{\sin 42^{\circ}}$$

D.
$$\frac{\sin 90^{\circ}}{\sin 48^{\circ}}$$

- area of contact with the load is big and pain is lower A.
- B. area of contact with the load is small and pain is lower
- C. force exerted by the load is lower and the pain is lower
- force exerted by the load is higher and the pain is lower D.

A gun of mass 10kg fires a bullet of mass 0.05kg with a velocity of 400ms⁻¹. Find the 20. recoil velocity of the gun.

A.
$$\left(\frac{0.05 \times 400}{10}\right) \textit{ms}^{-1}$$

C.
$$\left(\frac{0.05 \times 10}{400}\right) m s^{-1}$$

D. $\left(0.05 \times 10 \times 400\right) m s^{-1}$

B.
$$\left(\frac{10 \times 400}{0.05}\right) ms^{-1}$$

D.
$$(0.05 \times 10 \times 400) \text{ ms}^{-1}$$

21.	The distance between two successive points on a wave is 4cm. If the frequency of the
	wave is 50Hz, find its velocity in ms ⁻¹ .

A.
$$\left(\frac{4\times100}{50}\right)$$

C.
$$\left(\frac{4\times50}{100}\right)$$

B.
$$\left(\frac{50}{50 \times 100}\right)$$

D.
$$\left(\frac{100}{4 \times 50}\right)$$

22. Figure 3 shows a bar magnet which has picked up an iron nail

Fig. 3

If the plotting compasses P and R are placed in the positions shown, in which direction will R point?

A.

B.

C.

D.

- 23. When constructing large halls, some reverberation is left to occur because
 - A. it enables production of a loud sound
 - B. the audience absorbs some sound and without reverberation left, sound is not heard clearly
 - C. the speakers in the hall need to hear the echo so as to hear what they are saying
 - D. all the sound will move outside the hall and the people inside will not hear
- 24. A spanner length 20 cm is used to tighten a nut. If a force of 50N is applied at right angles to the end of the spanner, find the moment of the applied force

$$\left(\frac{20\times50}{100}\right)$$
Nm

B.
$$\left(\frac{100 \times 50}{20}\right)$$
Nm

C.
$$\left(\frac{100 \times 20}{50}\right)$$
Nm

25.		happens to spe			_	of a wa	ive as i	t travels fro	om	
	Silanic	w end to the de				on oth				
	A.	Speed Increases	Frequency Remains the		Wavel Remain	_				
	A. B.		Remains the				same			
		Decreases			Decrea					
	C.	Increases	Remains the	e same	Increas					
	D.	Decreases	Increases		Increas	ses				
26.	In an	oil film experii	ment, the thic	kness of tl	he oil fil	m is ta	ken to	be the size	of the oil	
	molec	cule because the								
	A.	oil film is cyl	lindrical							
	B.	oil drop sprea	ads until it is o	one molec	cule thicl	K				
	C.	lycopodium p	powder makes	s the oil fi	lm visib	le				
	D.	volume of the	e oil is equal t	to the volu	ume of tl	he oil f	ïlm			
27.	Refle	cting prisms are	e preferred to	plane mir	ror in or	otical ii	nstrum	ents becaus	se	
	(i)	O I	lost to refracti	-	-	-				
	(ii)	Clear images								
	(iii)	they are easie								
	A.	(i) and (ii) on				B.	(ii) aı	nd (iii) only	I	
	C.	(i) and (iii) or	•			D.		i) and (iii)		
	Ċ.	(i) und (iii) o	···· <i>)</i>			2.	(1), (1	i) und (m)		
28.	A car 6s.	starts from res	t and accelera	tes unifor	mly at 2	ms ⁻² . F	Find the	e distance it	t covers in	
	A. 12	m	В. 3	6m		C. 721	m	D. 108m		
29.	Whic	h of the follow	ing statements	s is <u>false</u> v	with resp	ect to	convex	mirrors?		
	A. Im	ages are virtua	l for all real o	bject posi	tions					
		ages are dimini		<i>J</i>						
		image is alway	•			oint				
	D the	y are used as re	ear-view mirro	ors in vehi	icles					
30.		Forces of 6N an ant force on the		n object F	as shov	vn in th	ne figui	re3 below.	The	
			P							
		8 N →	P	>6N						
			Fig. 3							
				~ 10						
	A. 1.3	33 N	B. 2 N	C. 10	N		D. 14	N		
31.		ly starting from ds. Calculate th		•			-	f 40 m/s in	5	
	A. 8n	B. 10	0 m	C. 200) m	D. 320	0 m			
32.		h one of the fol ngs depend?	llowing is not	a factor o	on which	the fre	equency	y of waves	produced	
		igth of the strin	•				vhich tl	ne string is	made	
	C. Te	nsion in the str	ing D. v	vavelengtl	h of the	wave				

33.		•	ws the variation	of efficiency	of a block and tackle	
	pulley system	with ioad. ency (%) ∧				
	Lyjven	100				
		100				
		50				
		0 💆	Fig. 5	Load (N)	
	U 1	ds towards 100%	•			
		l advantage is dire			ed force	
		l advantage is nev vasted in overcom	-	city ratio		
	•		•	ecomes neglig	ibly small as the load	
24	A contain EM	madia station and		100 - 106	H= Coloulote	
34.		radio station oper the radio waves.	rates at a frequen	icy 108 x 10°	Hz. Calculate	
			G 0.26	D 0055 1	05	
	A. 2.96 x 10	⁶ m B. 2.78 n	n C. 0.36m	D. 3.375×1	0 ³ m	
35.		laced 15 cm in from the lens is	ont of a convex le	ens of focal le	ngth <i>10cm</i> . The position	
	A. 6 cm	B. 30 cm	C. 2	25 cm	D. 20 cm	
36.	When a capill	ary tube is dipped	into mercury;			
	A. cohesion b	etween the mercu	ry molecules is g	reater than th	e adhesion of the	
		glass so the liquid			11 ' C.1	
		etween the mercur glass so there is c	•		e adhesion of the	
		orces between the			ce capillary rise	
	D. Adhesion f	forces between the	liquid and glass	is greater her	nce capillary depression.	
37.	Choose the od	ld statement with	respect to action	of the lightni	ng conductor.	
	A. A charged	cloud near a light	ning conductor i	nduces charge	es in the conductor	
	_	charge to the one	•			
	-	nd of the lightning	•			
	D. point action	n occurs at the sha	rp point owing t	o the high cha	arge density at the point	
38.	Which of the equilibrium?	following stateme	nts are condition	s for a body t	o stay in mechanical	
		ım of forces in one	e direction is equ	al to the sum	of forces in the	
		ite direction.		-1		
		ockwise forces are am of moments ab	_		5.	
		ody rotates in one	-			
		(iv) only	B. (ii) and			
39.		and(iii)only	D. (i) and	(111) only		
JJ.	A. mass	of matter per cubic B. volume	C. density	D. pressu	re	
				P. 6550		1

if spe A. 40		und in air is 340m B. 204m	c. 340m	en the cliff and Atabo is; D. 816m
			SECTION B	
(a)W	hat is fer	romagnetic mater	ial? (01mk)	
•••••	•••••			
(b)	Descri	ibe briefly how to	magnetize a steel bar	using an electrical method. (02mark
(c)		-	on-magnetic materials	s. (01mar
(a)(i)	What is	meant by capillar	y depression?	(01mar
(ii)				s capillary depression. (01mark
(b)	Briefly	y explain the caus	es of capillary depress	ion. (02mark

(b)	Explain why it is not easy to determine the density of a substant form.	ce in a powder (01mark)
(c)	A piece of rubber of density 1.45 gcm ⁻³ displaces 25 cm ³ of wat	ter when placed
	in a cylinder of water. Calculate the mass of the rubber.	(02marks)
(a) D	efine Mechanical Advantage of machine.	(01mark)
(b)	Figure 6 shows a load of 10N being raised by a simple frictionle system	
	Effort Load 10 N	
	Fig. 6	(01 1)
	(i) What is the velocity ratio of the system?	(01marl

•		
(a) What is an antinode as applied to a stationary wave?	(01mark
(b) The distance between two successive antinodes of a standing way	e on a string
	vibrating at 80Hz is 24cm. Find the speed of the waves.	(02marks
•		
	c) Why is sound clearer at night than during day?	(01mark
	a)(i) What is energy?	(01mark
•		
	 i) State in order of occurrence the energy changes that take place when a s switched on. 	a torch bulb (01mark
(b) Calculate the work done to move a load of 50N through a distance of	60.0cm. (02marks
•		(1mark)
	a)What are secondary colours ?	
. (a)What are secondary colours ?	
. (a)What are secondary colours ?	

		(2marks)	
•••			
 (a)What is a sound wave ?	(1mark	
(b)Write down three similarities between light waves and sound waves.	(3marks)	
• •			
••			
(a) Define the term uniform speed .	(1mark	
• •			
••			
• • •			
	(b)(i) There are 80km between Jinja and Kampala. A taxi takes 50minutes to move		
fre	om one town to another. Find its average speed in ms ⁻¹ .	(2marks)	
• • •			
• •			
(a	(i) What is meant by anomalous expansion of water ?	(1mark)	
•••	i) State one practical importance of the anomalous expansion of water.		

(b) In the space below, sketch a graph of density against temperature for water between 0°c to 20°c. (2marks)

END