

Licenciatura em Engenharia Informática e de Computadores

Redes de Computadores

Relatório da 4ª Fase Junho 2023

Trabalho realizado por:

A43842 André Monteiro A50562 Umera Aktar A50452 Sara Pereira

Turma: LEIC24D

Docente: Professor Luís Mata

Objetivos

O objetivo desta fase do trabalho é a atribuição de endereços ip e o acesso de links através de servidores.

Desenvolvimento do trabalho

1. Limpeza dos ips atribuídos aos pcs

Para começar esta fase, primeiro temos de limpar os endereços ip atribuídos diretamente aos pcs de modo a serem atribuídos agora pelo DHCP server. Para este efeito foi usado o comando 'clear ip' em cada pc, que se pode ver na Figura 1.

```
VPCS> clear ip
IPv4 address/mask, gateway, DNS, and DHCP cleared
```

Figura 1- Limpeza dos ips dos pcs

2. DHCP

A configuração do servidor DHCP está dividida em 3 partes:

a. Pools

Declaração dos nomes, range de endereços de cada "pool" referenciando os endereços que são possíveis atribuir aos elementos da LAN A e LAN B.

```
[admin@MikroTik] > ip pool add name=LAN_A ranges=192.168.17.129-1
92.168.17.189
[admin@MikroTik] > ip pool add name=LAN_B ranges=192.168.17.193-1
92.168.17.221
```

Figura 2- Criação das pools da LAN A e B

Figura 3- Print das pools configuradas

b. Configuração da interface do servidor DHCP

Estabelecimento do caminho de relay da LAN A e B, pela interface ether 1 do servidor.

```
[admin@MikroTik] /ip dhcp-server> add interface=ether1 relay=192.
168.17.190 \ address-pool=LAN_A name=DHCP_LAN_A disabled=no
[admin@MikroTik] /ip dhcp-server> add interface=ether1 relay=192.
168.17.222 \ address-pool=LAN_B name=DHCP_LAN_B disabled=no
[admin@MikroTik] /ip dhcp-server> print
Flags: D - dynamic, X - disabled, I - invalid
# NAME IN.. RELAY ADDRESS-POOL LEASE-TIME ADD
0 DHC... et.. 192.168.17.190 LAN_A 10m
1 DHC... et.. 192.168.17.222 LAN_B 10m
```

Figura 4- Configuração da interface ether1 do DHCP server

c. Networks

Estabelecimento das gamas de endereçamento que podem executar DCHP request bem sucedidos ao servidor DHCP, da gateway por onde vêm e associando o endereço ip atribuído ao servidor DNS.

Figura 5- Estabelecimento dos caminhos

3. Relay agents

Configuração do router R2_Cisco para agir como um DHCP Relay Agent, de modo a transmitir o pedido DHCP request dos pcs da LAN A e B para o servidor DHCP.

```
Router>enable
Router#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#interface ether1/0
Router(config-if)#interface e1/0
Router(config-if)#ip helper-address 192.168.17.125
Router(config-if)#exit
Router(config)#exit
```

Figura 6- Configuração da interface e1/0 do router R2

```
Router#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#interface el/l
Router(config-if)#ip helper-address 192.168.17.125
Router(config-if)#exit
Router(config)#exit
```

Figura 7- Configuração da interface e1/1 do router R2

4. DNS

a. Server

Criação de um servidor no endereço do servidor DNS, que consiga aceitar pedidos remotos, isto é, de fora na sua rede local.

Figura 8- Servidor DNS

b. Link

Configuração do link www.company.com para o endereço do servidor Web.

```
[admin@MikroTik] /ip dns static> add name=www.company.com address
=192.168.17.124
```

Figura 9- Estabelecimento do endereço ip ao qual o link se refere

```
[admin@MikroTik] /ip dns static> print
Flags: D - dynamic, X - disabled
# NAME REG.. ADDRESS
0 www.... 192.168.17.124
```

Figura 10- print da configuração na Figura 9

5. DHCP request

Execução do pedido DHCP de um pc para o DHCP server, para obter um endereço ip associado à LAN à qual o pc pertence.

a. PcA

```
VPCS> ip dhcp -d
VPCS> ip dhcp -d
Opcode: 1 (REQUEST)
Client IP Address: 0.0.0.0
Your IP Address: 0.0.0.0
Server IP Address: 0.0.0.0
Gateway IP Address: 0.0.0.0
Client MAC Address: 00:50:79:66:68:05
Option 53: Message Type = Discover
Option 12: Host Name = VPCS1
Option 61: Client Identifier = Hardware Type=Ethernet MAC Address
= 00:50:79:66:68:05
Opcode: 2 (REPLY)
Client IP Address: 0.0.0.0
Your IP Address: 192.168.17.221
Server IP Address: 192.168.17.125
Gateway IP Address: 192.168.17.222
Client MAC Address: 00:50:79:66:68:05
Option 53: Message Type = Offer
Option 54: DHCP Server = 192.168.17.125
Option 51: Lease Time = 600
Opcode: 1 (REQUEST)
Client IP Address: 192.168.17.221
Your IP Address: 0.0.0.0
Server IP Address: 0.0.0.0
Gateway IP Address: 0.0.0.0
Client MAC Address: 00:50:79:66:68:05
Option 53: Message Type = Request
Option 54: DHCP Server = 192.168.17.125
Option 50: Requested IP Address = 192.168.17.221
Option 61: Client Identifier = Hardware Type=Ethernet MAC Address
= 00:50:79:66:68:05
Option 12: Host Name = VPCS1
Opcode: 2 (REPLY)
Client IP Address: 192.168.17.221
Your IP Address: 192.168.17.221
Server IP Address: 192.168.17.125
Gateway IP Address: 192.168.17.222
Client MAC Address: 00:50:79:66:68:05
Option 53: Message Type = Ack
Option 54: DHCP Server = 192.168.17.125
Option 51: Lease Time = 600
Option 1: Subnet Mask = 255.255.255.224
Option 3: Router = 192.168.17.222
Option 6: DNS Server = 192.168.17.123
                         Figura 11- DHCP request do PcA
```

6. Pings para www.company.com

Para terminar esta fase, foi feito um pedido de ping dos pcs com ips atribuídos pelo DHCP server ao link <u>www.company.com</u>, usando todas as configurações efetuados durante este trabalho.

a. PcA

```
VPCS> ping www.company.com
www.company.com resolved to 192.168.17.124

84 bytes from 192.168.17.124 icmp_seq=1 tt1=62 time=19.674 ms
84 bytes from 192.168.17.124 icmp_seq=2 tt1=62 time=14.409 ms
84 bytes from 192.168.17.124 icmp_seq=3 tt1=62 time=14.669 ms
84 bytes from 192.168.17.124 icmp_seq=4 tt1=62 time=17.907 ms
84 bytes from 192.168.17.124 icmp_seq=5 tt1=62 time=11.781 ms
```

Figura 13- Ping do PcA para o link

b. PcC

```
VPCS> ping www.company.com
www.company.com resolved to 192.168.17.124

84 bytes from 192.168.17.124 icmp_seq=1 ttl=62 time=19.261 ms
84 bytes from 192.168.17.124 icmp_seq=2 ttl=62 time=13.211 ms
84 bytes from 192.168.17.124 icmp_seq=3 ttl=62 time=21.593 ms
84 bytes from 192.168.17.124 icmp_seq=4 ttl=62 time=12.295 ms
84 bytes from 192.168.17.124 icmp_seq=5 ttl=62 time=12.036 ms
```

Figura 14- Ping do PcC para o link

Conclusão

Após a execução deste trabalho, foi possível entender melhor o processo de atribuição de endereços ip a pcs através de um servidor DHCP e também do acesso a link através de servidores DNS.