

Sensores y Laboratorio 2019-I

Ing. Juan Ricardo Clavijo Mendoza MSc.

$$Z_L = jwL(x) = SL(x)$$

Se denomina (B) a la intensidad del campo magnético es decir el número de líneas de fuerza por unidad de superficie.

Se denomina flujo magnético Ø al número total de líneas que atraviesa una superficie A:

$$\mathbf{O} = \mathbf{B} \cdot \mathbf{A}$$

$$L = N \frac{dO}{dI}$$
$$B l = \mu I N$$

B : densidad de flujo magnético

I: intensidad de corriente

 $\mu: \mu_r \mu_\theta$: permeabilidad magnética

1 : longitud de la bobina

Dado que $B = \emptyset / A$, a partir de $B = \mu I N$ se tiene:

$$\frac{\phi l}{A} = N\mu I$$

Φ: flujo magnético
A: área

a partir de la cual, teniendo en cuenta que $l,\,\mu,\,A\,$ y $N\,$ son constantes, se obtiene la expresión:

$$L = N \frac{d\phi}{dI} = \mu \frac{N^2 A}{I}$$

Diamagnéticos	Permeabilidad relativa (μ _r)
Bismuto	0,99983
Plata	0,9998
Plomo	0,99983
Cobre	0,99991
Agua	0,999991
Paramagnéticas	Permeabilidad relativa (μ _r)
Aire Aluminio	1,0000004
Plata	1,00002
Ferromagnéticas	Permeabilidad relativa (μ _r)
Polvo de Permalloy (2-81), 2 Mo-8l	130
Ni de composición porcentual y el	
resto Fe e impurezas	
Cobalto	250
Níquel	600
Ferroxcube 3 (.Perrito Mn-Zn)	1.500
Acero dulce (0,2 C)	2.000
Hierro con Impurezas (O,2 C)	5000
Hierro silicio utilizados e n	7.000 o menor
transformadores (4 Si)	
Permalloy 78 (78,5 Ni)	100.000
Hierro purificado	200.000
Superpermalloy (5 Mo-79 Ni)	1.000.000

$$\mu_0 = 4\pi \ 10^{-7} \ \left(\frac{N}{A^2}\right)$$

Inductancia mutua

Sensores de núcleo móvil

Sensor de entrehierro variable

SENSORES DIFERENCIALES

Zona lineal de trabajo

$$I_1 = I_p \cos \omega t$$

$$E_2 = j\omega I_n M_{12} \cos \alpha \cos \omega t$$

La salida tiene la misma frecuencia que la entrada y su amplitud varía de forma no lineal en función del ángulo α

Ejemplo: Potenciómetro de inducción

Dos devanados concéntricos: uno fijo (estator) y otro móvil (rotor)

en la que P es el paso

SENSORES DE CORRIENTES DE FOUCAULT

a) Sensor de proximidad

Efecto Wiegang

