2. For Graham's scan finding convex hull of the point set given below:

- Give the sorted sequence of points for Graham scan

- Show the content of the stack after each change

- Give the convex hull of this point set _____

- 3. Below given a point set in the **rectilinear** metric (the height/width of any cell=1) where the closest pair of points should be found using divide and conquer. Show
- the first partition of the point set (draw a line)
- -the closest pair in the left part (connect solid), δ_{left} = _____, and the right part (connect solid), δ_{right} = _____,
- the middle strip (shade)
- pairs in the middle strip for which distances should be computed (connect dashed)
- closest pair in the middle strip (connect solid)

- 4. Below given a point set in the **Euclidean** metric. Draw
- Voronoi regions (dashed edges)
- Voronoi graph / Delanau triangulation (solid edges)
- minimum spanning tree (double edges)

• • •

- 6. In the following graph find
- Maximum Independent Set_____
- Minimum Vertex Cover____
- Maximum Clique

7. For the 3-CNF

$$f = (x'+y+z)& (x+y'+z')& (x+y+z')& (x'+y'+z)& (x'+y+z')& (x+y+z)$$

- give 0-1 assignment to variables such that f=1 _____
- give 0-1 assignment to variables such that f=0 _____
- -Draw the corresponding graph and mark the maximum independent set

8. Prove, that the Steiner Tree problem, (finding shortest tree connecting n points in the plane) is in class NP	
a)	Optimization formulation
o)	Decision formulation
c)	Polynomial-size certificate
d)	Polynomial time verification algorithm