

Apresentação da Disciplina

ERICK GALANI MAZIERO erick.maziero@ufla.br

Departamento de Ciências da Computação Universidade Federal da Lavras

Plano de Curso

Sempre verifiquem o plano de curso disponível no SIG

Plano semanal

Avaliações

Serão 5 Atividades Avaliativas

Vejam pesos no SIG

Recuperação

- Atividade Avaliativa Adicional
- Terão direito apenas os alunos que não atingirem nota 60 na média final

Nota Recuperada = (Nota Final + PA) / 2

Verificação de Presença

Durante Estudo Remoto Emergencial (ERE) não haverá aferição de presença

Em possíveis aulas presenciais, será utilizada lista de chamada

Metodologia de Ensino

- Aulas expositivas (videoaulas durante o ERE)
- Utilizem o fórum de dúvidas do Campus Virtual
- Façam as listas de exercício, não apenas as atividades avaliativas...

Objetivos

Conhecer bem os principais PARADIGMAS de LINGUAGENS de PROGRAMAÇÃO

Saber escolher qual a melhor para determinado problema

Quem são vocês

Alguma experiência em programação?

Alguma experiência profissional?

Outros cursos de computação já feitos?

- Bacharelado, Mestrado e Doutorado na Universidade de São Paulo (USP)
 - Início em 2005
- Doutorado sanduíche na Universidade de Toronto
 - Canadá
 - Aprendizado semissupervisionado sem fim em Processamento da Linguagem Natural (PLN)

Linhas de Pesquisa

- Processamento da Linguagem Natural
 - Análise discursiva
 - Tagging e parsing em geral
- Inteligência Artificial
 - Aprendizado semissupervisionado
 - Sem fim
 - Incremental
 - Adaptativo

Processamento da Linguagem Natural (PLN)

Inteligência Artificial

Materiais da Disciplina

Todo e qualquer material disponibilizado via Campus Virtual da UFLA

Bibliografia

Consultar plano de Curso
Outras fontes serão indicadas de acordo
com o assunto abordado

Conceitos Iniciais

O que é um algoritmo

 Sequência finita de instruções (operações básicas) que levam à solução de um problema.

O que é uma linguagem de programação

 Conjunto de regras léxicas, sintáticas e semânticas que definem uma linguagem de geração de código-fonte, que, quando compilado ou interpretado, é transformado em um programa de computador

Linguagem	Gramática	Reconhecedor
[0] Linguagens Recursivamente Enumeráveis	Gramáticas Irrestritas	Máquina de Turing
[1] Linguagens Sensíveis ao Contexto	Gramáticas Sensíveis ao Contexto	Máquina de Turing com Fita Limitada
[2] Linguagens Livres de Contexto	Gramáticas Livres de Contexto	Autômato com Pilha
[3] Linguagens Regulares	Gramáticas Regulares	Autômato Finito

- Modelo, padrão ou estilo de programação suportado por linguagens que agrupam certas características comuns.
- A classificação de linguagens em paradigmas é influenciada por decisões de projeto - modelagem da solução proposta para um problema real.

Resumo dos principais paradigmas

- Primeiro paradigma a ser definido e conceituado.
- ♦ Segue o conceito de estado e ações que manipulam esse estado.
 - Sequência de instruções que manipulam valores de variáveis.
- Inclui subrotinas (procedures) para estruturação.
- ♦ Baseado na arquitetura de Von Neumann.
 - Comandos e dados armazenados em memória (a mesma).
 - Instruções, dados e resultados transferidos entre CPU e memória.

- ♦ Subdividido em Estruturado e Não-estruturado
 - Linguagens n\u00e3o estruturadas, em geral, fazem uso de GOTO e JUMP.
 - Linguagens estruturadas não utilizam GOTO e agrupam instruções em blocos.
 - Condicionais.
 - Repetições.
 - Módulos.

Imperativo

- ♦ Vantagens
 - Eficiência.
 - Bem estabelecido.
 - Modelagem de aplicações reais de modo "natural".
- Desvantagens
 - Difícil legibilidade e difícil manutenção.
 - Foco no "COMO" e não "O QUÊ".
 - Tratamento de dados e comportamento misturados.

- Lógica mais próxima do mundo real, onde tudo são objetos.
 - Classes.
 - Objetos.
 - Métodos.
 - Atributos.
- Esconde o que "não é importante".
- Bastante difundido.

Vantagens

- Maior flexibilidade
 - Herança
 - Sobrecarga
 - Polimorfismo
- Maior reuso.
- ♦ Alta manutenibilidade.
- > Utilização comercial difundida.

- Baseado em funções matemáticas.
 - Estrutura básica => funções.
 - Qual função deve ser aplicada para transformar uma entrada qualquer na saída desejada.
- Não são passos sucessivos, e sim funções compostas
 => aplicações sucessivas de funções.

- Como calcular a distância entre dois pontos?
 - Distância euclidiana

```
euclides(x1, y1, x2, y2)
= sqrt(((x2 - x1)^2) + ((y2 - y1)^2))
```


- Vantagens
 - Simplifica a resolução de alguns tipos de problemas.
 - Concorrência natural.
- Desvantagens
 - Implementações ineficientes.
 - Dificuldade de modelagem de problemas reais.
 - Entrada/Saída e formatação primitivos.

- Baseado em lógica formal Lógica de Predicados de Primeira Ordem.
- Problema descrito de maneira similar ao raciocínio humano.
- Declarativo, com características imperativas.
- ♦ Elementos essenciais:
 - Proposições.
 - Regras de inferência.
 - Busca.

Lógico

```
pai (Joao, Maria).
pai (Joao, Luis).
pai (Luis, Carlos).
mae (Joana, Luis).
mae (Suzana, Carlos).
progenitor (X,Y):- mae (X,Y); pai (X,Y).
pais(X,Y,Z) := (pai(X,Z), mae(Y,Z)); (pai(Y,Z),
mae(X,Z)).
```


Lógico

- Aplicações em IA sistemas especialistas, sistemas de apoio à decisão, etc.
- Programas descrevem conjunto de regras que disparam ações quando premissas são satisfeitas.

- Vantagens
 - Concepção da aplicação em alto nível de abstração.
 - Mais próximo do raciocínio humano.
- Oesvantagens
 - Implementações ineficientes.
 - Dificuldade de modelagem de problemas complexos.
 - Entrada/Saída e formatação primitivos.
 - Complexidade exponencial.

- ♦ São imperativas
- Mas são de interpretação parcial ou total
- Vantagens
 - São dinâmicas
 - Servem para resolver problemas rápidos (scripts)
- Desvantagens
 - Não têm muita performance
 - Podem ocorrer muitos erros em tempo de execução

- ♦ Não são linguagens de programação
- Especificam como informações serão dispostas, por exemplo, em documentos Web.
- Há as linguagens de programação híbridas
 - JSP, por exemplo

Bibliografia

Sebesta, R. W. (2011). *Conceitos de Linguagens de Programação*. 9 ed. Bookman.

