Lógica Digital - segunda parte Organización del Computador I

David Alejandro González Márquez

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

06.02.2018

Agenda

■ Algunos ejercicios ...

Armar un circuito con dos entradas, una entrada de control y dos salidas, tal que dependiendo del valor de la entrada de control se intercambien los valores en las salidas.

Armar un circuito con dos entradas, una entrada de control y dos salidas, tal que dependiendo del valor de la entrada de control se intercambien los valores en las salidas.

С	e_1	<i>e</i> ₀	<i>s</i> ₁	<i>s</i> ₀	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	1	0	
0	1	1	1	1	
1	0	0	0	0	
1	0	1	1	0	
1	1	0	0	1	
1	1	1	1	1	

Armar un circuito con dos entradas, una entrada de control y dos salidas, tal que dependiendo del valor de la entrada de control se intercambien los valores en las salidas.

С	e_1	<i>e</i> ₀	<i>s</i> ₁	<i>s</i> ₀
0	0	0	0	0
0	0	1	0	1
0	1	0 1		0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	0
1	1	0	0	1
1	1	1	1	1

С	e_1	<i>e</i> ₀	<i>s</i> ₁	<i>s</i> ₀
0	e_1	<i>e</i> ₀	e_1	<i>e</i> ₀
1	e_1	<i>e</i> ₀	<i>e</i> ₀	e_1

 Usando un decodificador apropiado y el circuito armado anteriormente, construir un multiplexor de 4 entradas, dos entradas de control y una salida. Si es necesario usar una compuerta OR de 4 entradas.

Usando un decodificador apropiado y el circuito armado anteriormente, construir un multiplexor de 4 entradas, dos entradas de control y una salida. Si es necesario usar una compuerta OR de 4 entradas.

Realizar un circuito multiplicador que tome dos números en complemento a dos de 2 bits y obtenga la multiplicación en notación complemento a dos de 4 bits. A su vez el circuito debe tener una salida adicional que indique el signo del resultado.

Entradas: A_1 , A_0 , B_1 y B_0 . Salidas: Sig, M_3 , M_2 , M_1 , M_0 .

Donde, A_1 - A_0 operando, B_1 - B_0 operando, Sig signo del resultado, M_3 - M_2 - M_1 - M_0 resultado.

Realizar un circuito multiplicador que tome dos números en complemento a dos de 2 bits y obtenga la multiplicación en notación complemento a dos de 4 bits. A su vez el circuito debe tener una salida adicional que indique el signo del resultado.

Entradas: A_1 , A_0 , B_1 y B_0 . Salidas: Sig, M_3 , M_2 , M_1 , M_0 .

Donde, A_1 - A_0 operando, B_1 - B_0 operando, Sig signo del resultado, M_3 - M_2 - M_1 - M_0 resultado.

		Num
1	0	-2
1	1	-1
0	0	0
0	1	+1

A_1	A_0		B_1	B_0		Sig	M ₃	M_2	M_1	M_0	
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	0	0	0	0
0	0	0	1	0	-2	0	0	0	0	0	0
0	0	0	1	1	-1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	0
0	1	1	0	1	1	0	0	0	0	1	1
0	1	1	1	0	-2	1	1	1	1	0	-2
0	1	1	1	1	-1	1	1	1	1	1	-1
1	0	-2	0	0	0	0	0	0	0	0	0
1	0	-2	0	1	1	1	1	1	1	0	-2
1	0	-2	1	0	-2	0	0	1	0	0	4
1	0	-2	1	1	-1	0	0	0	1	0	2
1	1	-1	0	0	0	0	0	0	0	0	0
1	1	-1	0	1	1	1	1	1	1	1	-1
1	1	-1	1	0	-2	0	0	0	1	0	2
1	1	-1	1	1	-1	0	0	0	0	1	1

Construir un circuito shifter de 4 entradas de datos, 2 entradas de control y 4 salidas. El mismo refleja en la salida, los valores de entrada corridos a izquierda la cantidad de bits que el control indique.

```
Ejemplo:

shifterL(00,0101) = 0101

shifterL(01,0101) = 1010

shifterL(10,0101) = 0100

shifterL(11,0101) = 1000
```

Construir un circuito shifter de 4 entradas de datos, 2 entradas de control y 4 salidas. El mismo refleja en la salida, los valores de entrada corridos a izquierda la cantidad de bits que el control indique.

Ejemplo:

```
shifterL(00,0101) = 0101

shifterL(01,0101) = 1010

shifterL(10,0101) = 0100

shifterL(11,0101) = 1000
```


Construir un circuito shifter de 4 entradas de datos, 2 entradas de control y 4 salidas. El mismo refleja en la salida, los valores de entrada corridos a izquierda la cantidad de bits que el control indique.
 e₃ e₂ e₁ e₀

Ejemplo: shifterL(00,0101) = 0101 shifterL(01,0101) = 1010 shifterL(10,0101) = 0100shifterL(11,0101) = 1000

Tabla de verdad del circuito:

<i>e</i> ₃	e_2	e_1		c_1	<i>c</i> ₀	s ₃	s ₂	s_1	<i>s</i> ₀
<i>e</i> ₃	e_2	e_1	e_0	0	0	e ₃ e ₂ e ₁	e_2	e_1	e_0
<i>e</i> ₃	e_2	e_1	e_0	0	1	e_2	e_1	e_0	0
<i>e</i> ₃	e_2	e_1	e_0	1	0	e_1	e_0	0	0
<i>e</i> ₃	e_2	e_1	e_0	1	1	e_0	0	0	0

¿Preguntas?

