导数与微分

导数与微分概念

导数概念

定义 1:

$$f'(x_0) = \lim_{\Delta x o 0} rac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \ f'(x_0) = \lim_{x o x_0} rac{f(x) - f(x_0)}{x - x_0}$$

定义 2(左极限):

$$\int f'(x_0) = \lim_{\Delta x o 0^-} rac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

定义 3(右极限):

$$f'(x_0) = \lim_{\Delta x o 0^+} rac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

定理: f(x) 在 x_0 处可导 $\iff f(x)$ 在 x_0 处左右导数存在且相等。

微分概念

定义: 如果 $\Delta y=f(x_0+\Delta x)-f(x_0)$ 可以表示为 $\Delta y=A\Delta x+o(\Delta x)$ $(\Delta x\to 0)$,则称函数 f(x)在点 x_0 处可微,记为 $dy=A\Delta x$

导数几何意义

切线的斜率,切线方程: $y-y_0=f'(x_0)(x-x_0)$

微分几何意义

曲线y = f(x)的切线上的增量

$$\Delta y = f(x_0 + \Delta x) - f(x_0) \, \Delta y pprox dy$$

连续,可导,可微之间的关系

4. 连续,可导,可微之间的关系

导数公式及求导法则

1. 导数公式

(二)导数公式及求导法则

1. 基本初等函数的导数公式

1)
$$(C)' = 0$$

$$(x^{\alpha})' = \alpha x^{\alpha-1}$$

3)
$$(a^x)' = a^x \ln a$$
 4) $(e^x)' = e^x$

4)
$$(e^x)' = e^x$$

5)
$$(\log_a x)' = \frac{1}{x \ln a}$$
 6) $(\ln |x|)' = \frac{1}{x}$

$$6) \quad (\ln|x|)' = \frac{1}{x}$$

$$7) (\sin x)' = \cos x$$

8)
$$(\cos x)' = -\sin x$$

9)
$$(\tan x)' = \sec^2 x$$

9)
$$(\tan x)' = \sec^2 x$$
 10) $(\cot x)' = -\csc^2 x$

11)
$$(\sec x)' = \sec x \tan x$$

11)
$$(\sec x)' = \sec x \tan x$$
 12) $(\csc x)' = -\csc x \cot x$

13)
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

13)
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
 14) $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$

15)
$$(\arctan x)' = \frac{1}{1+x^2}$$

15)
$$(\arctan x)' = \frac{1}{1+x^2}$$
 16) $(\operatorname{arc} \cot x)' = -\frac{1}{1+x^2}$

2. 有理运算法则

1)
$$(u \pm v)' = u' \pm v'$$

 $u + u'v - uv'$
2) $(uv)' = u'v + uv'$

$$2) \quad (uv)' = u'v + uv'$$

3)
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} \quad (v \neq 0)$$

3. 复合函数求导

设
$$u = \varphi(x)$$
, $y = f(u)$ 可导, 则 $y = f[\varphi(x)]$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = f'(u)\varphi'(x)$$

常考题型

导数定义

- 1. 利用题给条件,转化为导数定义形式,再带入题目中计算
- 2. 判断函数是否可导,基本采用定义思路

复合函数

设
$$u = \varphi(x)$$
, $y = f(u)$ 可导,则 $y = f[\varphi(x)]$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = f'(u)\varphi'(x)$$

反函数导数

若 y=f(x)可导,且 $f'(x_0)
eq 0$,则其反函数x = arphi(y)在点 $y_0 = f(x_0)$ 处可导,且 $arphi'(y_0) = rac{1}{f'(x_0)}$

隐函数

$$F(x,y)=0$$

$$\frac{y = y(x)}{dy} = -\frac{F_x}{F_y}$$

【例9】(1993年3)函数 y = y(x) 由方程

$$\left[\frac{y^2 - e^x - 2x\cos(x^2 + y^2)}{2y\cos(x^2 + y^2) - 2xy}\right]$$

$$\sin(x^2 + y^2) + e^x - xy^2 = 0$$
 所确定,则 $\frac{dy}{dx} =$ ______

参数方程求导

(5) 参数方程求导法:

设
$$y = y(x)$$
 是由 $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$, $(\alpha < t < \beta)$ 确定的函数,则

1) 若 $\varphi(t)$ 和 $\psi(t)$ 都可导, 且 $\varphi'(t) \neq 0$

$$\frac{dy}{dx} = \frac{\psi'(t)}{\varphi'(t)}$$
2) 若 $\varphi(t)$ 和 $\psi(t)$ 二阶可导,且 $\varphi'(t) \neq 0$,则
$$\frac{d^2y}{dx^2} = \frac{d}{dt} (\frac{\psi'(t)}{\varphi'(t)}) \cdot \frac{1}{\varphi'(t)} = \frac{\psi''(t)\varphi'(t) - \varphi''(t)\psi'(t)}{\varphi'^3(t)}$$

极坐标与直角坐标的转换

对于极坐标方程r=f(heta),可以转换为直角坐标方程 $x=r\cos heta,y=r\sin heta$,然后再求导。

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \Rightarrow \begin{cases} \frac{dx}{d\theta} = \frac{dr}{d\theta} \cos \theta - r \sin \theta \\ \frac{dy}{d\theta} = \frac{dr}{d\theta} \sin \theta + r \cos \theta \end{cases}$$

对数求导法

常用于指数函数求导,左右两边**同时取对数**,用于将复杂的指数函数转化为简单的对数函数的加减乘除,简化运算。

高阶导数

定义:

$$f^{(n)}(x) = (f^{(n-1)}(x))' = \lim_{\Delta x o 0} rac{f^{(n-1)}(x + \Delta x) - f^{(n-1)}(x)}{\Delta x} = \lim_{x o x_0} rac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{x - x_0}$$

注:如果函数 f(x)在点 x_0 处 n 阶可导,则在点 x_0 的某邻域内 f(x)必定具有一切**低于 n 阶**的导数。

1)
$$(\sin x)^{(n)} = \sin(x + \underline{n} \cdot \frac{\pi}{2});$$
 2) $(\cos x)^{(n)} = \cos(x + \underline{n} \cdot \frac{\pi}{2});$
3) $(u \pm v)^{(n)} = u^{(n)} \pm v^{(n)}$ 4) $(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)} v^{(n-k)}.$

求高阶导数的方法:

- 1. 公式法
- 2. 逐阶求导, 总结规律
- 3. 泰勒公式(求具体点常用)

$$f(x)=f(x_0)+rac{f'(x_0)}{1!}(x-x_0)+rac{f''(x_0)}{2!}(x-x_0)^2+\cdots+rac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x)$$
 $f^n(x)$ 为在那一点的泰勒展开项乘以阶乘,注意观察公式,你会发现

微分中值定理及导数应用

- 1. 定理 1 (费马引理) 如果函数 f(x)在 x_0 处**可导**,且在 x_0 处取得**极值**,则 $f'(x_0)=0$
- 2. 定理 2 (罗尔定理)
 - 。条件
 - 1. f(x)在[a,b]上连续
 - 2. f(x)在(a,b)内可导
 - 3. f(a) = f(b)
 - 。 结论: 存在 $\xi \in (a,b)$,使得 $f'(\xi) = 0$
- 3. 定理 3 (拉格朗日中值定理)
 - 。条件
 - 1. f(x)在[a,b]上连续
 - 2. f(x)在(a,b)内可导
 - 。 结论: 存在 $\xi\in(a,b)$,使得 $f'(\xi)=rac{f(b)-f(a)}{b-a}$
- 4. 定理 4 (柯西中值定理)
 - 。条件
 - 1. f(x)和g(x)在[a,b]上连续
 - 2. f(x)和g(x)在(a,b)内可导,且 $g'(x) \neq 0$
 - 。 结论: 存在 $\xi \in (a,b)$,使得 $\frac{f'(\xi)}{g'(\xi)} = \frac{f(b)-f(a)}{g(b)-g(a)}$
- 5. 定理 5 (皮亚诺型余项泰勒公式)

多用于研究局部,不精确。长存在于极限、极值计算中。

设函数
$$f(x)$$
在 x_0 处 n 阶可导,那么 $f(x)=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x)$ 其中 $R_n(x)=o(x-x_0)^n,(x\to x_0)$ 若 $x_0=0$,则得麦克劳林公式 $f(x)=f(0)+\frac{f'(0)}{1!}x+\frac{f''(0)}{2!}x^2+\cdots+\frac{f^{(n)}(0)}{n!}x^n+o(x^n),(x\to 0)$

6. 定理 6 (拉格朗日型余项泰勒公式)

多用与研究整体,可以给出精确值及误差大小。常用与计算极值和研究不等式

设
$$f(x)$$
在含有 x_0 的某邻域内 n 阶可导,那么 $f(x)=f(x_0)+rac{f'(x_0)}{1!}(x-x_0)+rac{f''(x_0)}{2!}(x-x_0)^2+\cdots+rac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x)$ 其中 $R_n(x)=rac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}, (\xi\in(x_0,x))$

费马引理 \Rightarrow 罗尔定理 \Rightarrow 拉格朗日中值定理 \Rightarrow 柯西中值定理 后项使用前项**推导**,前项为后项目的**特例**。

导数应用

函数单调性

设f(x)在[a,b]上连续,在(a,b)内可导,那么

- 1. 若f'(x) > 0,则f(x)在[a,b]上单调增加
- 2. 若f'(x) < 0,则f(x)在[a,b]上单调减少

函数的极值

极值的定义

若存在 $\delta > 0$,使得

 $orall x \in U_0(x_0,\delta)$ 时,有 $f(x) \leq f(x_0)$,则称 $f(x_0)$ 为f(x)的极大值, x_0 为极大值点。 $orall x \in U_0(x_0,\delta)$ 时,有 $f(x) \geq f(x_0)$,则称 $f(x_0)$ 为f(x)的极小值, x_0 为极小值点。

极值的判定

驻点: $f'(x_0) = 0$ 的点

2. 第一充分条件(**使用一阶导数**) 若f(x)在 x_0 处连续,且 $f'(x_0)=0$,则f(x)在 x_0 处取得极值

。 若 $x < x_0$ 时, $f'(x) \ge 0$, $x > x_0$ 时, $f'(x) \le 0$,则f(x)在 x_0 处取得极大值

- 。 若 $x < x_0$ 时, $f'(x) \le 0$, $x > x_0$ 时, $f'(x) \ge 0$,则f(x)在 x_0 处取得极小值
- 。 若f'(x)在 x_0 两侧都不同号,则f(x)在 x_0 处不取极值
- 3. 第二充分条件(使用二阶导数)

设f(x)在 x_0 处连续,且 $f'(x_0)=0$, $f''(x_0)$ 存在且不为 0,则

- 。 当 $f''(x_0) > 0$ 时,f(x)在 x_0 处取得极小值
- 。 当 $f''(x_0) < 0$ 时,f(x)在 x_0 处取得极大值

函数的凹凸性

凹凸性的定义

凹
$$f(\frac{x_1+x_2}{2}) \leq \frac{f(x_1)+f(x_2)}{2}$$

凸 $f(\frac{x_1+x_2}{2}) \geq \frac{f(x_1)+f(x_2)}{2}$

凹凸性的判定

若在区间 I 上,f''(x) > 0 (< 0),则 f(x) 在 I 上凹(凸)。

曲线的渐近线

水平渐近线

 $\lim_{x o\infty}f(x)=A$,则 y = A 为 f(x) 的水平渐近线

垂直渐近线

$$\lim_{x o x_0^+}f(x)=\infty$$
 或 $\lim_{x o x_0^-}f(x)=\infty$,则 x = x_0 为 f(x) 的垂直渐近线

斜渐近线

$$\lim_{x o\infty}rac{f(x)}{x}=A \ \lim_{x o\infty}[f(x)-Ax]=B$$
,则 y = Ax + B 为 f(x) 的斜渐近线

曲线的弧微分与曲率

弧微分

曲率

曲率
$$\kappa=\frac{|y''|}{(1+y'^2)^{\frac{3}{2}}}$$

曲率半径 $\rho=\frac{1}{\kappa}$

常见题型

- 1. 求函数的极值和最值,确定曲线的凹向和拐点
- 2. 求渐进线

分为水平渐近线、垂直渐近线、斜渐近线 在 0 的单侧,有且仅有一个水平渐近线或斜渐近线

3. 方程的根

将方程写为 f(x)=0 的形式,多用单调性,零点定理,罗尔定理等证明

4. 不等式证明

将等式写到方程一侧,多使用单调性证明

5. 中值不等式证明

多使用构造法,构造的方式包括但不限于将等式积分,再使用罗尔定理