Задачи к семинарам 03.02.2025

1 Пусть $\xi_n \xrightarrow{d} \xi$ — случайные векторы размерности m, а $h(x_1, \dots, x_m)$ — функция m переменных, дифференцируемая в точке $a \in \mathbb{R}^m$. Найдите предел сходимости по распределению для выражения

$$\frac{h(a+b_n\xi_n)-h(a)}{b_n},$$

где $b_n \to 0$ — произвольная последовательность положительных чисел.

2 а) Пусть $\{X_n, n \in \mathbb{N}\}$ — независимые одинаково распределенные случайные величины с распределением $\mathrm{Exp}(\lambda), \ \lambda > 0$. Рассмотрим $Y_n = \frac{1}{n} \sum_{i=1}^n X_i$. Найдите такие $a(\lambda)$ и $\sigma^2(\lambda) > 0$, что выполнено

$$\sqrt{n}(Y\sin Y - a(\lambda)) \xrightarrow{d} \mathcal{N}(0, \sigma^2(\lambda))$$
 при $n \to \infty$.

б) Пусть $\{X_n, n \in \mathbb{N}\}$ — независимые одинаково распределенные случайные величины с распределением $\mathcal{N}(0, \sigma^2)$. Рассмотрим $Y_n = \frac{1}{n} \sum_{i=1}^n |X_i|$, $Z_n = \frac{1}{n} \sum_{i=1}^n X_i^2$ и $T_n = \sqrt{\frac{2}{\pi}} Z_n / Y_n$. Найдите предел сходимости по распределению выражения

$$\sqrt{n}\left(T_n-\sigma\right)$$
.

- **3** Пусть $\{\xi_n, n \in \mathbb{N}\}$ и $\{\eta_n, n \in \mathbb{N}\}$ две последовательности случайных величин, причем для каждого $n \geq 1$ величины ξ_n и η_n независимы. Пусть $\xi_n \stackrel{\mathsf{P}}{\longrightarrow} \xi, \, \eta_n \stackrel{\mathsf{P}}{\longrightarrow} \eta$. Докажите, что ξ и η тоже независимы.
- 4 Пусть $\{\xi_n, n \in \mathbb{N}\}$ независимые одинаково распределенные невырожденные случайные величины с конечным вторым моментом. Пусть $\mathsf{E}\xi_i = a, \, S_n = \xi_1 + \ldots + \xi_n$. Докажите, что у выражения

$$\sqrt{n}\left(\frac{S_n}{n}-a\right)$$

не существует предела сходимости по вероятности.