Learning Machine Learning with Kaggle Challenges

(3) Deep Learning

Qiyang Hu IDRE

Interest over time from Google Trends

A logistic-regression classifier ~ one artificial neuron

(Deep) Neural Networks ~ piling/stacking logistic-regression classifiers

How deep a deep learning network can be?

<u>LeNet-5</u> (1998)

Year	CNN	Developed by	Place	Top-5 error rate	No. of parameters
1998	LeNet(8)	Yann LeCun et al			60 thousand
2012	AlexNet(7)	Alex Krizhevsky, Geoffrey Hinton, Ilya Sutskever	1st	15.3%	60 million
2013	ZFNet()	Matthew Zeiler and Rob Fergus	1st	14.8%	
2014	GoogLeNet(1 9)	Google	1st	6.67%	4 million
2014	VGG Net(16)	Simonyan, Zisserman	2nd	7.3%	138 million
2015	ResNet(152)	Kaiming He	1st	3.6%	

Why deep?

- Shallow network can fit any function
 - Has less number of hidden layers
 - Has to be really "fat"

- Deep network is more efficient.
 - It can extract/build better features
 - Exponentially fewer parameters (<u>2017</u>)

Workflow for a **deep** learning project

Types of Neural Network Architectures

- Feed forward neural networks (No cycle in node connections)
 - Perceptron
 - Fully connected network
 - Convolutional networks

- Fully recurrent NN
- Recursive NN
- Long short-term memory (LSTM)
- Symmetrically connected networks
 - Hopfield network (w/o hidden nodes)
 - Deep Bolzmann Machine (w/ hidden nodes)

Activation Function

• Sigmoid function:

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

Rectified linear unit (ReLU)

$$f(x) = x^+ = \max(0,x)$$

- Softplus
- Leaky ReLU
- Exponential LU (ELUs)

Softmax function:

$$y_i = rac{e^{z^{(i)}}}{\sum_{j=0}^K e^{z^{(j)}}}$$

- Maxout Network:
 - Learnable activation function

How to train a deep neural network?

$$abla L(heta) = \sum_{n=1}^{N} egin{array}{c} \dfrac{\partial w_1}{\partial w_1} \ \dfrac{\partial C^{\langle n
angle}(heta)}{\partial w_2} \ dots \ \dfrac{\partial C^{\langle n
angle}(heta)}{\partial b_1} \ dots \ dots \ \end{array}$$

$$egin{aligned} heta_0 &
ightarrow
abla L(heta_0)
ightarrow heta_1
ightarrow
abla L(heta_1)
ightarrow heta_2
ightarrow \cdots \ heta_1 &= heta_0 - \eta
abla L(heta_0) \ heta_2 &= heta_1 - \eta
abla L(heta_1) \ dots &dots &$$

Backpropagation: a game of chain rule

(1) Forward Pass

$$\dfrac{\partial z_1}{\partial w_1} = x_1$$
 $\dfrac{\partial z_2}{\partial w_2} = a_1$ $\dfrac{\partial z_{L-1}}{\partial w_{L-1}} = a_{L-2}$ $\dfrac{\partial z_L}{\partial w_L} = a_{L-1}$

2 Backward Pass

$$rac{\partial C}{\partial z_1} = \sigma_1' \left[w_2 rac{\partial C}{\partial z_2}
ight] ext{ } ext{ } ext{ } ext{ } ext{ } rac{\partial C}{\partial z_{L-1}} = \sigma_{L-1}' \left[w_L rac{\partial C}{\partial z_L}
ight] ext{ } ext{ } ext{ } rac{\partial C}{\partial z_L} = \sigma_L' rac{\partial C}{\partial y} ext{ } ext{ } ext{ } rac{\partial C}{\partial y} ext{ } ext{ }$$

Deep learning frameworks

Mainstream Players

Tensorflow v2.0 just out on Sep. 30, 2019

BIG Changes from v1.x

- Keras as a core API
- Eager execution by default
- tf.function decorator to speed up
- tf.data to build complex input pipelines
- Model deployment to various platforms

Cautions

- Poor compatibility with v1.x
- Lots of confusions from API names
- Importing tf2.0 in standalone python
 - o import tensorflow.compat.v2 as tf
 tf.enable_v2_behavior()

- Importing tf2.0 in Colab
 - o %tensorflow_version 2.x

Using tf.keras (an 1-neuron 1-layer example)

Convolutional Neural Networks (CNNs)

- A special network architecture to reduce parameters
- 3 processes in CNNs:
 - Convolutions to extract as tiles

- Logic behind CNNs
 - Sparse connectivity (characteristic features in smaller local regions)
 - Parameter equivariance & sharing (features appear in different locations)
 - Translation invariance (some sampling will not lose main information)

One Channel, One Filter

Image Matrix

$$0*0+0*-1+0*0$$

+0*-1+105*5+102*-1
+0*0+103*-1+99*0 = 320

Output Matrix

Convolution with horizontal and vertical strides = 1, with 'same' padding

Multiple Channels

Figure Source

Multiple Filters

Figures from Aurélien Géron's 1st Ed. Book

Figure Source

A Convolutional layer

A Convolution Layer

Figure Source

Pooling Layer

Figure Source

 Assuming downsampling will not lose the major information.

Figures from Aurélien Géron's 1st Ed. Book

Architecture of Convolutional Neural Networks

Dogs vs. Cats Kaggle Challenge

- Redux: Kernels Edition
 - Submission scored by the probability of dogs using log loss

$$L = -rac{1}{n} \sum_{i=1}^n \Bigl[y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i) \Bigr]$$

- Dataset
 - Training set: 25,000 dogs and cats images
 - Testing set: 12,500 images
- Two concerns:
 - Images with different sizes
 - Neural network needs fixed sized input.
 - We will resize images to 150x150 pixels
 - Images are colored
 - Represented by Red-Green-Blue channels
 - One image \Rightarrow 150x150x3 matrices

Import image data using tf.keras

tf.keras.preprocessing.image.ImageDataGenerator.flow_from_directory

Construct CNN architecture using tf.keras

Convolution layer:

tf.keras.layers.Conv2D(filters, kernel_size, activation, ...)

- o Filters (feature maps): 32 or 64 or 128 ...
- o Kernel size: (3,3)
- Activation function: 'relu'
- Input_shape: (150, 150, 3)
- MaxPooling layer:

tf.keras.layers.MaxPooling2D(pool_size, strides, ...)

- o Pool size: 2
- Strides: 2
- Flattened layer

tf.keras.layers.Flatten()

Dense layer

tf.keras.layers.Dense(units, activation, ...)

- Units: 512 and 2
- Activation: 'relu' and 'softmax'

4 Conv blocks with maxpool in each

```
model = tf.keras.models.Sequential([ (148,148,32)
    tf.keras.layers.Conv2D(32, (3,3), activation='relu',
                          input shape=(150, 150, 3)),
    tf.keras.layers.MaxPooling2D(2, 2), (74,74,32)
    tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
                                              (72.72.64)
    tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2) (7,7,128)
    tf.keras.layers.Flatten(), 6272
    tf.keras.layers.Dense(512, activation='relu'),
   tf.keras.layers.Dense(2, activation='softmax')
])
```

Don't forget to

- Sign in your info to the class
 - To get the email notifications
- Contact me for questions or discussions
 - huqy@idre.ucla.edu
 - o Office: Math Sci #3330
 - o Phone: 310-825-2011

- Fill out the survey for comments:
 - https://forms.gle/t3f8CztFQpeFFksy6

