WEEK8 KKAZAN

16 Aralık 2019 Pazartesi 16:25

QUESTION 1:

Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value respect to a benchmark case of double layer with air and no coating (keep the gap thickness to be 13

	BENCHMARK	1	2	3
gap	12,7 mm	13 mm	13 mm	13 mm
N ⁰ PANE	2	3	2	2
GAS	Air	AİR	ARGON	Air
U FACTOR	1,92 W/ m ²	1,84 W/ m ²	1,67W/ m ²	2,76 W/ m ²
%	70 %	66%	60%	100%

QUESTION 2:

Part I:

heat absorbing, double layers, wooden frame;

• East side surface area :14.4 m², fixed window

West side surface area :14.4 m², fixed window

• North side surface area :3,6 m², fixed window

• South side surface area :3,6 m², fixed window

East Heating

Winter U: 0,438 W/m²
Summer U: 0,435 W/m²

 $U_{\text{window east}} = 2.84 \text{ W/M}^2\text{k}$

 $HF_{windoweast} = U_{windoweast} \times \Delta T_{heating} = 2.84 * 24.8 = 70.4 \text{W/m}^2$

Q_{windoweast} = HF_{windoweast} X A_{windoweast} = 70,4 * 14,4 = 1014,2 W

East Cooling

$$CF_{fen} = U (\Delta T - 0.46 DR) + PXI * SHGC * IAC * FF_3$$

$$PXI_{windoweast} = E_D + E_d = 559 + 188 = 747$$

SHGC= 0,54 ;

NO internal shading so IAC =1

From the table for easten window of a detached hourse FFs = 0,31

CF_{windoweast Irradiation Part} = PXI * SHGC * IAC * FF_S = 747*0,54*1*0,31=125,1

 $CF_{windoweast heat TransferPart} = U_{window east} (\Delta T - 0.46 DR) = 2.84 (7.9-0.46 *11.9) = 6.9 W/m^2$

CF_{windoweast} = CF_{windoweastheatTransferPart} + CF_{windoweast Irradiation Part} = 6,9 +125,1 = 132 W/m²

Qwindoweast = CF windoweast x Awindoweast = 132* 14,4 = 1.900,8 W

West Heating

 $U_{window west} = 2.84 \text{ W/M}^2\text{k}$

 $HF_{window west} = U_{window east} X \Delta T_{heating} = 2,84 * 24,8 = 70,4 W/m^2$

Qwindow west = HFwindow west X Awindow west = 70,4 * 14,4 = 1014,2 W

West Cooling

 $CF_{fen} = U (\Delta T - 0.46 DR) + PXI * SHGC * IAC * FF_3$

 $PXI_{window west} = E_D + E_d = 559 + 188 = 747$

SHGC= 0,54

NO internal shading so IAC =1

From the table for western window of a detached hourse FFs = 0,56

 $CF_{window\ west\ Irradiation\ Part}$ = PXI * SHGC * IAC * FF_S = 747*0,54*1*0,56=225,9

 $CF_{window\ west\ heat\ TransferPart} = U_{window\ west} (\Delta T - 0.46\ DR) = 2.84 (7.9-0.46\ *11.9) = 6.9\ W/m^2$

CF_{window west} = CF_{window west heat TransferPart} + CF_{window west Irradiation Part} = 6,9 +225,9 = 232,8 W/m²

Q_{window west} = CF _{window west} x A_{window west} = 232,8*14,4= 3.352,32 W

North Heating

 $U_{\text{window north}} = 2.84 \text{ W/M}^2\text{k}$

 $HF_{window north} = U_{window north} X \Delta T_{heating} = 2.84 * 24.8 = 70.4 W/m^2$

Q_{window north} = HF_{window north} X A_{window north} = 70,4 * 3,6 = 253,44 W

North Cooling

 $CF_{fen} = U (\Delta T - 0.46 DR) + PXI * SHGC * IAC * FF_3$

 $PXI_{window north} = E_D + E_d = 85 + 76 = 161$

SHGC= 0,54

NO internal shading so IAC =1

From the table for northern window of a detached hourse FFs = 0,44

CF_{window north Irradiation Part} = PXI * SHGC * IAC * FF_S = 161*0,54*1*0,44=38,25

 $Cf_{window\ north\ heat\ TransferPart} = U_{window\ north} (\Delta T - 0.46\ DR) = 2.84 (7.9-0.46\ *11.9) = 6.9\ W/m^2$

Cf_{window north} = Cf_{window north} heat TransferPart + Cf_{window north} Irradiation Part = 6,9 +38,25=45,15 W/m²

 $Q_{window north} = CF_{window north} \times A_{window north} = 45,15*3,6=\frac{162,54}{100}$

South Heating

 $U_{window south} = 2,87 \text{ W/M}^2\text{K}$

HF_{window south} = U_{window south} X $\Delta T_{\text{heating}}$ = 2,87* 24,8=71,2 W/m²

Qwindow south = HFwindow south X Awindow south = 71,2 * 3,6=256,32 W

South Cooling

$$CF_{fen} = U (\Delta T - 0.46 DR) + PXI * SHGC * IAC * FF_3$$

 $PXI_{window south} = E_D + E_d = 348 + 209 = 557$

SHGC= 0,46

NO internal shading so IAC =1

From the table for southern window of a detached hourse $FF_s = 0.47$

 $CF_{window north Irradiation Part} = PXI * SHGC * IAC * FF_S = 557*0,46*1*0,47=\frac{120,5}{120,5}$

 $Cf_{window north heat TransferPart} = U_{window north} (\Delta T - 0.46 DR) = 2.84 (7.9-0.46 *11.9) = 6.9 W/m^2$

Cf_{window north} = Cf_{window north heat TransferPart} + Cf_{window north Irradiation Part} = 6,9 +120,5=127,4 W/m²

 $Q_{window north} = CF_{window north} \times A_{window north} = 127,4*3,6=458,64$ W

- Winter U: 0,438 W/m²
- Summer U: 0,435 W/m²
- Total q window cooling = 458,64 +162,54 +3352,32 +1900,8 = 5874,3 W
- > Total q window heating =256,32 +253,44 +1014,2+1014,2 $\frac{2}{2}$

Part I:

- heat absorbing, double layers, aliminum frame(U and SHGC VALUES CHANGES);
- East side surface area:14.4 m², fixed window
- West side surface area :14.4 m², fixed window
- North side surface area :3,6 m², fixed window
- > South side surface area :3,6 m², operable window

East Heating

 $U_{window east} = 3,61 \text{ W/M}^2\text{K}$

 $HF_{windoweast} = U_{window east} X \Delta T_{heating} = 3,61 * 24,8=89,5 W/m^2$

Q_{windoweast} = HF_{windoweast} X A_{windoweast} = 89,5 * 14,4=1288,8 W

East Cooling

 $CF_{fen} = U (\Delta T - 0.46 DR) + PXI * SHGC * IAC * FF_3$

 $PXI_{windoweast} = E_D + E_d = 559 + 188 = 747$

SHGC= 0,56

NO internal shading so IAC =1

From the table for easten window of a detached hourse FFs = 0,31

CF_{windoweast Irradiation Part} = PXI * SHGC * IAC * FF_S = 747*0,56*1*0,31=129,6

CFwindoweast heat TransferPart = $U_{window east}$ ($\Delta T - 0.46 DR$) = $3.61*(7.9-(0.46*11.9))=8.7 W/m^2$

CF_{windoweast} = CF_{windoweastheatTransferPart} + CF_{windoweast Irradiation Part} = 8,7+129,6= 138,3 W/m²

Q_{windoweast} = CF_{windoweast} x A_{windoweast} = 138,3*14,4=1.991,52 W

West Heating

 $U_{window west} = 3,61 \text{ W/M}^2 \text{k}$

HF_{window west} = $U_{\text{window east}} \times \Delta T_{\text{heating}} = 3,61 \times 24,8 = 89,5 \text{W/m}^2$

Q_{window west} = HF_{window west} X A_{window west} =89,5 * 14,4 = 1288,8 W

West Cooling

 $CF_{fen} = U (\Delta T - 0.46 DR) + PXI * SHGC * IAC * FF_3$

 $PXI_{window west} = E_D + E_d = 559 + 188 = 747$ SHGC= 0,56 NO internal shading so IAC =1

From the table for western window of a detached hourse FFs = 0,56

CF_{window west Irradiation Part} = PXI * SHGC * IAC * FF_S = 747*0,56*1*0,56=234,3

 $CF_{window\ west\ heat\ TransferPart} = U_{window\ west} (\Delta T - 0.46\ DR) = 3.61* (7.9-(0.46\ *11.9)) = 8.7\ W/m^2$

CF_{window west} = CF_{window west heat TransferPart} + CF_{window west Irradiation Part} = 8,7 +234,3=243 W/m²

Qwindow west = CF window west x Awindow west = 243*14,4=3.499,2 W

North Heating

 $U_{window north} = 3,61 \text{ W/M}^2\text{k}$

HF_{window north} = U_{window north} X $\Delta T_{\text{heating}}$ = 3,61 * 24,8=89,5 W/m²

Q_{window north}= HF_{window north} X A_{window north} = 89,5 * 3,6= 322,2 W

North Cooling

CF_{fen} = U (ΔT - 0,46 DR) +PXI * SHGC * IAC * FF₃

 $PXI_{window north} = E_D + E_d = 85 + 76 = 161$

SHGC= 0,56

NO internal shading so IAC =1

From the table for northern window of a detached hourse FFs = 0,44

CF_{window north Irradiation Part} = PXI * SHGC * IAC * FF_S = 161*0,56*1*0,44=39,7

 $Cf_{window\ north\ heat\ TransferPart} = U_{window\ north} (\Delta T - 0.46\ DR) = 3.61* (7.9-(0.46\ *11.9)) = 8.7\ W/m^2$

Cf_{window north} = Cf_{window north heat TransferPart} + Cf_{window north Irradiation Part} = 8,7+39,7=48,4 W/m²

Qwindow north = CF window north x Awindow north = 48,4*3,6=174,24 W

South Heating

 $U_{window south} = 4,62W/M^2K$

HF_{window south} = U_{window south} X ΔT _{heating} = 4,62* 24,8=114,5 W/m²

Q_{window south} = HF_{window south} X A_{window south} = 114,5*3,6=412,2 W

South Cooling

CF_{fen} = U (
$$\Delta T$$
 - 0,46 DR) +PXI * SHGC * IAC * FF₃

 $PXI_{window south} = E_D + E_d = 348 + 209 = 557$

SHGC= 0,55

NO internal shading so IAC =1

From the table for southern window of a detached hourse $FF_s = 0.47$

CF_{window north Irradiation Part} = PXI * SHGC * IAC * FF_S = 557*0,55*1*0,47=144

 $Cf_{window\ north\ heat\ TransferPart} = U_{window\ north} (\Delta T - 0.46\ DR) = 4.62* (7.9-(0.46*11.9)) = 11\ W/m^2$

Cf_{window north} = Cf_{window north} heat TransferPart + Cf_{window north} Irradiation Part = 11 + 144 = 155 W/m²

 $Q_{window north} = CF_{window north} \times A_{window north} = 155*3,6=\frac{558}{}$

- Total q window cooling = 558+174,24+3499,2+1991,52=6222,96 W
- Total q window heating = 1288,8+1288,8+322,2+256,32=3156,12 W

CONCULUTION:

According to result we can say that wood is better material than aluminium. It has better resistance in cooling and aspects.