# Chapter 4: Applications of Differentiation





- 4.1 Maximum and Minimum Values
- 4.2 The Mean Value Theorem
- 4.3 Derivatives and the Shapes of Graphs
- 4.4 Curve Sketching
- 4.5 Optimization Problems
- 4.6 Newtons Method
- 4.7 Antiderivatives

#### The pictures are taken from the books:

[1) James Stewart, Essential Calculus, Early Transcendentals, Cengage Learning, 2nd Edition, 2012, ISBN-13: 978-1133112280]
2) G. Strang and E. J. Herman, Calculus 1, https://openstax.org/details/books/calculus-volume-1

#### 4.1 Minimum and Maximum Values

Definition Let c be a number in the domain D of a function f. Then f(c) is the

- **absolute maximum** value of f on D if  $f(c) \ge f(x)$  for all  $x \in D$ .
- **absolute minimum** value of f on D if  $f(c) \leq f(x)$  for all  $x \in D$ .



#### 4.1 Minimum and Maximum Values

Definition Let c be a number in the domain D of a function f. Then f(c) is the

- **local maximum** value of f on D if  $f(c) \ge f(x)$  when x is near c.
- **local minimum** value of f on D if  $f(c) \leq f(x)$  when x is near c.



# 4.1 Examples







# 4.1 Examples







$$f(x) = \begin{cases} 2 - x^2, & 0 \le x < 2 \\ x - 3, & 2 \le x \le 4 \end{cases}$$

### 4.1 The Extreme Value Theorem

• If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers c and d in [a, b].



### 4.1 Fermat's Theorem

• If f has a local maximum or minimum at  $x_0$ , and if  $f'(x_0)$  exists, then  $f'(x_0) = 0$ .



### 4.1 Fermat's Theorem

• If f has a local maximum or minimum at  $x_0$ , and if  $f'(x_0)$  exists, then  $f'(x_0) = 0$ .

Caution The converse of Fermat's Theorem is false in general



### 4.1 Critical Points

• A **critical point** of a function f is a number  $x_0$  in the domain of f such that either  $f'(x_0) = 0$  or  $f'(x_0)$  does not exist.

If f has a local maximum or minimum at  $x_0$ , then  $x_0$  is a critical point of f.

### 4.1 Critical Points



# 4.1 Examples

• Find all critical points for the function  $f(x) = (x^2 - 1)^3$ . Use a graphing utility to determine whether the function has a local extremum at each of the critical points.



### 4.1 Examples

• Find all critical points for the function  $f(x) = \frac{4x}{1+x^2}$ . Use a graphing utility to determine whether the function has a local extremum at each of the critical points.



### Locating Extrema: The Big Picture



# 4.1 Methodology: Locating Absolute Extrema in [a, b]

- Consider a continuous function f defined over the closed interval [a, b].
- 1. Find the critical point of f in (a,b): f'(x)=0.
- 2. Evaluate f at the end points of the interval, x = a and x = b.
- 3. The largest of the values from Steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

### 4.1 Example

• Find the absolute maximum and minimum values of the function

$$f(x) = x^3 - 3x^2 + 1$$
,  $-\frac{1}{2} \le x \le 4$ 



### 4.2 Rolle's Theorem

- Let f be a function that satisfies the following three hypotheses:
  - 1. f is continuous on the closed interval [a, b].
  - 2. f is differentiable on the open interval (a, b).
  - 3. f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

### 4.2 Rolle's Theorem

 $f:[a,b]\to R$ 

- Continuous
- Differentiable
- $\bullet \ f(a) = f(b)$



#### 4.2 The Mean Value Theorem

- Let f be a function that satisfies the following hypotheses:
  - 1. f is continuous on the closed interval [a, b].
  - 2. f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

### 4.2 The Mean Value Theorem

 $f:[a,b]\to R$ 

- Continuous
- Differentiable





# 4.3 Derivatives and the Shape of Graphs

• What does f' say about f?



# 4.3 Derivatives and the Shape of Graphs

• What does f' say about f?

- Let f be continuous over the closed interval [a, b] and differentiable over the open interval (a, b).
  - i. If f'(x) > 0 for all  $x \in (a, b)$ , then f is an increasing function over [a, b].
  - ii. If f'(x) < 0 for all  $x \in (a, b)$ , then f is a decreasing function over [a, b].

# 4.3 Example

• Find where the function  $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$  is increasing and where it is decreasing.



# 4.3 Observation on f' sign



#### 4.3 The First Derivative Test

- Suppose that c is a critical number of a continuous function f.
  - (a) If f' changes from **positive to negative** at c, then f has a **local maximum** at c.
  - (b) If f' changes from **negative to positive** at c, then f has a **local minimum** at c.
  - (c) If f' does not change sign at c, then f has no local extremum at c.

# Locating Extrema: The Big Picture



# 4.3 Derivatives and the Shape of Graphs

• What does f'' say about f?



# 4.3 Derivatives and the Shape of Graphs

Definition If the graph of f lies above all of its tangents on an interval I, then it is called **concave upward** on I. If the graph of f lies below all of its tangents on I, it is called **concave downward** on I.

Definition A point P on a curve y = f(x) is called an **inflection point** if f is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.

#### Concavity test

- (a) If f''(x) > 0 for all  $x \in I$ , then the graph of f is **concave upward** on I.
- (b) If f''(x) < 0 for all  $x \in I$ , then the graph of f is **concave downward** on I.

# Locating Extrema: The Big Picture



# 4.3 Examples

• Discuss the curve  $y = x^4 - 4x^3$  with respect to concavity, points of inflection, and local maxima and minima. Use this information to sketch the curve.



# 4.4 Curve Sketching

- A. Domain
- **B.** Intercepts
- C. Symmetry
- **D.** Asymptotes
- E. Intervals of Increase or Decrease
- F. Local Minima and Maxima
- G. Concavity and Points of Inflection
- **H.** Sketch the Curve

# 4.4 Example

• Use the guidelines to sketch the curve

1. 
$$f(x) = \frac{2x^2}{x^2 - 1}$$
,

y = 2

$$f(x) = \frac{2x^2}{x^2 - 1}$$



1. 
$$f(x) = \frac{2x^2}{x^2 - 1}$$
, 2.  $g(x) = x e^x$ , 3.  $h(x) = \frac{\cos(x)}{2 + \sin(x)}$ ,



# 4.5 Optimization Problems

Minimizing Travel Time The visitor is planning to go from the cabin to the island. Suppose the visitor runs at a rate of 8mph and swims at a rate of 3mph. How far should the visitor run before swimming to minimize the time it takes to reach the island?



# 4.5 Optimization Problems

Minimizing Surface Area A rectangular box with a square base, an open top, and a volume of 216in.<sup>3</sup> is to be constructed. What should the dimensions of the box be to minimize the surface area of the box? What is the minimum surface area?



# 4.6 Newton's Approximation Method



x

 $x_0$ 

 $x_2$ 

 $x_1$ 

# 4.6 Example

• Use Newton's method to approximate a root of  $f(x) = x^3 - 3x + 1$  in the interval [1, 2]. Let  $x_0 = 2$  and find  $x_1, x_2, x_3, x_4$ , and  $x_5$ .



$$x_0 = 2$$
 $x_1 \approx 1.666666667$ 
 $x_2 \approx 1.548611111$ 
 $x_3 \approx 1.532390162$ 
 $x_4 \approx 1.532088989$ 
 $x_5 \approx 1.532088886$ 
 $x_6 \approx 1.532088886$ 

### 4.6 Failures of Newton's Method

$$(1) f'(x_0) = 0$$



(3) Approximations alternate back and forth



### 4.7 Antiderivatives

Definition A function F is called an antiderivative of f on an interval I if F'(x) = f(x) for all  $x \in I$ .

Theorem If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$F(x) + C$$
,

where C is an arbitrary constant.

### 4.7 Antiderivatives

Theorem Given a function f, the **indefinite integral** of f, denoted

$$\int f(x)\mathrm{d}x\,,$$

is the most general antiderivative of f. If F is an antiderivative of f, then

$$\int f(x)\mathrm{d}x = F(x) + C.$$

The expression f(x) is called the *integrand* and the variable x is the variable of integration.

# 4.7 Example

• Find the family of antiderivatives of 2x.

$$\int 2x \mathrm{d}x = x^2 + C$$

