Computer ystems 8 gramming

Lecture #23 – More Cache Memories

KOÇ UNIVERSITY

Aykut Erdem // Koç University // Fall 2021

Recap

- Cache basics
- Principle of locality
- Cache memory organization and operation

Recap: Cache Parameters

- Block size (B): basic unit of transfer between memory and the cache, given in bytes (e.g. 64 B).
- Cache size (C): Total amount of data that can be stored in the cache, given in bytes (e.g. 32 KiB).
 - Must be multiple of block size
 - Number of blocks in cache is calculated by C/K
- Associativity (E): Number of ways blocks can be stored in a cache set, or how many blocks in each set
- Number of sets (S): Number of unique sets that blocks can be placed into in a cache (calculated as C/K/E).

Recap: TIO address breakdown

TIO address breakdown:

- Index (s) field tells you where to look in cache
 - Number of bits is determined by number of sets (log₂(C/B/E))
 - Need enough bits to reference every set in the cache
- Tag (t) field lets you check that data is the block you want
 - Rest of the bits not used for index and offset (m s b)
- Offset (b) field selects specified start byte within block
 - Number of bits is determined by block size (log₂(B))
 - Need enough bits to reference every byte in a block

Plan for Today

- Cache memory organization and operation
- Writing cache-friendly code

Disclaimer: Slides for this lecture were borrowed from

- —Randal E. Bryant and David R. O'Hallaroni's CMU 15-213 class
- —Porter Jones' UW CSE 351 class

Lecture Plan

- Cache memory organization and operation
- Performance impact of caches

Direct-Mapped Cache Problem

Associativity

- What if we could store data in any place in the cache?
 - More complicated hardware = more power consumed, slower
- So we *combine* the two ideas:
 - Each address maps to exactly one set
 - Each set can store block in more than one way

Cache Organization

- Associativity (E): # of ways for each set
 - Such a cache is called an "E-way set associative cache"
 - We now index into cache sets, of which there are S = C/B/E
 - Use lowest $log_2(C/B/E) = s$ bits of block address
 - <u>Direct-mapped</u>: E = 1, so $s = log_2(C/K)$ as we saw previously
 - Fully associative: E = C/K, so s = 0 bits

Example Placement

block size: 16 bytes capacity: 8 blocks address: 16 bits

- Where would data from address 0x1833 be placed?
 - Binary: **0b 0001 1000 0011 0011**

s = ?

Example Placement

block size: 16 bytes capacity: 8 blocks address: 16 bits

- Where would data from address 0x1833 be placed?
 - Binary: **0b 0001 1000 0011 0011**

 $s = log_2(8/2) = 2 bits$

 $s = log_2(8) = 3 bits$

4-way set associative					
Set Tag		Data			
0					
1		\ \ \ \			

 $s = log_2(8/4) = 1 bit$

Block Placement

- Any empty block in the correct set may be used to store block
- If there are no empty blocks, which one should we replace?
 - No choice for direct-mapped caches
 - Caches typically use something close to least recently used (LRU)
 (hardware usually implements "not most recently used")

Question

 We have a cache of size 2 KiB with block size of 128 bytes. If our cache has 2 sets, what is its associativity?

- A. 2
- B. 4
- C. 8
- D. 16
- E. We're lost...
- If addresses are 16 bits wide, how wide is the Tag field?

Question

$$(C = 2*2^{10} \text{ bytes})$$
 $(B = 2^7 \text{ bytes})$

 We have a cache of size 2 KiB with block size of 128 bytes. If our cache has 2 sets, what is its associativity?

$$(S=2)$$

B. 4

C. 8

D. 16

E. We're lost...

num blocks = C / K =
$$2^{11}/2^7 = 2^4 = 16$$
 blocks

blocks =
$$E = 16/2 = 8$$
 per set

If addresses are 16 bits wide, how wide is the Tag field?

General Cache Organization (S, E, B)

Cache Read

Locate set

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set

Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set

Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set

Assume: cache block size 8 bytes

If tag doesn't match: old line is evicted and replaced

Direct-Mapped Cache Simulation

t=1	s=2	b=1
X	XX	X

M=16 bytes (4-bit addresses), B=2 bytes/block, S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0	[0 <u>00</u> 0 ₂],	miss
1	[0 <u>00</u> 1 ₂],	hit
7	[0 <u>11</u> 1 ₂],	miss
8	[1 <u>00</u> 0 ₂],	miss
0	[0 <u>00</u> 0 ₂]	miss

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set Assume: cache block size 8 bytes

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set Assume: cache block size 8 bytes

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes

No match:

- One line in set is selected for eviction and replacement
- Replacement policies: random, least recently used (LRU), ...

2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block, S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

	V	Tag	Block
Set 0	1	00	M[0-1]
	1	10	M[8-9]
Set 1	1	01	M[6-7]
OCCI	0		

0	[00 <u>0</u> 0 ₂],	miss
1	[00 <u>0</u> 1 ₂],	hit
7	[01 <u>1</u> 1 ₂],	miss
8	[10 <u>0</u> 0 ₂],	miss
0	[00 <u>0</u> 0 ₂]	hit

What about writes?

- Multiple copies of data exist:
 - L1, L2, L3, Main Memory, Disk
- What to do on a write-hit?
 - Write-through (write immediately to memory)
 - Write-back (defer write to memory until replacement of line)
 - Need a dirty bit (line different from memory or not)
- What to do on a write-miss?
 - Write-allocate (load into cache, update line in cache)
 - Good if more writes to the location follow
 - No-write-allocate (writes straight to memory, does not load into cache)
- Typical
 - Write-through + No-write-allocate
 - Write-back + Write-allocate

Tag

Note: While unrealistic, this example assumes that all requests have offset 0 and are for a block's worth of data.

Block Contents

Valid Dirty

Not valid x86, just using block num instead of full byte address to keep the example simple

Write Miss!

Cache:

Step 1: Bring F into cache

(1) mov \$0xFACE, (F)

Write Miss

Memory:

Step 1: Bring F into cache

Step 2: Write 0xFACE to cache only and set the dirty bit

(1) mov \$0xFACE, (F)

Write Miss

Step 1: Bring F into cache

Memory:

Step 2: Write 0xFACE to cache only and set the dirty bit

(1) mov \$0xFACE, (F)
Write Miss

(2) mov \$0xFEED, (F)
Write Hit!

Step: Write 0xFEED to cache only (and set the dirty bit)


```
(1) mov $0xFACE, (F) (2) mov $0xFEED, (F)
  Write Miss
```

Write Hit!

- (1) mov \$0xFACE, (F) Write Miss
- $(2) \text{ mov } \$0 \times \text{FEED}, (F) \qquad (3) \text{ mov } (G), \% a \times (2) \text{ mov } (G) \times (G)$ Write Hit!
 - Read Miss!

Step 1: Write F back to memory since it is dirty

- (1) mov \$0xFACE, (F) Write Miss
- (2) mov \$0xFEED, (F) (3) mov (G), %ax Write Hit!
 - Read Miss!

Memory:

Step 1: Write F back to memory since it is dirty

Step 2: Bring G into the cache so that we can copy it into %ax

Cache Simulator

https://courses.cs.washington.edu/courses/cse351/cachesim

Polling Question

- Which of the following cache statements is FALSE?
 - A. We can reduce compulsory misses by decreasing our block size
 - B. We can reduce conflict misses by increasing associativity
 - C. A write-back cache will save time for code with good temporal locality on writes
 - D. A write-through cache will always match data with the memory hierarchy level below it
 - E. We're lost...

Polling Question

- Which of the following cache statements is FALSE?
 - A. We can reduce compulsory misses by decreasing our smaller block size pulls fewer bytes into cache on a miss
 - B. We can reduce conflict misses by increasing associativity more options to place blocks before
 - C. A write-back cache will save time for code with good temporal locality on writes

 yes, its main goal is data consistency
 - D. A write-through cache will always match data with the memory hierarchy level below it

E. We're lost...

frequently-used blocks rarely get evicted, so fewer write-backs

Intel Core i7 Cache Hierarchy

Processor package

L1 i-cache and d-cache:

32 KB, 8-way,

Access: 4 cycles

L2 unified cache:

256 KB, 8-way,

Access: 10 cycles

L3 unified cache:

8 MB, 16-way,

Access: 40-75 cycles

Block size: 64 bytes for all caches.

Lecture Plan

- Cache memory organization and operation
- Performance impact of caches

Lecture Plan

- Cache basics
- Principle of locality
- Cache memory organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Writing Cache Friendly Code

- Make the common case go fast
 - Focus on the inner loops of the core functions
- Minimize the misses in the inner loops
 - Repeated references to variables are good (temporal locality)
 - Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories

The Memory Mountain

- Read throughput (read bandwidth)
 - Number of bytes read from memory per second (MB/s)

- **Memory mountain:** Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.

Memory Mountain Test Function

```
long data[MAXELEMS]; /* Global array to traverse */
/* test - Iterate over first "elems" elements of
          array "data" with stride of "stride", using
*
          using 4x4 loop unrolling.
int test(int elems, int stride) {
    long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
    long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
    long length = elems, limit = length - sx4;
    /* Combine 4 elements at a time */
    for (i = 0; i < limit; i += sx4) {
        acc0 = acc0 + data[i]:
        acc1 = acc1 + data[i+stride];
        acc2 = acc2 + data[i+sx2]:
       acc3 = acc3 + data[i+sx3];
    /* Finish any remaining elements */
    for (; i < length; i++) {</pre>
       acc0 = acc0 + data[i]:
    return ((acc0 + acc1) + (acc2 + acc3));
```

Call test() with many combinations of elems and stride.

For each elems and stride:

- 1. Call test() once to warm up the caches.
- 2. Call test() again and
 measure the read
 throughput(MB/s)

mountain/mountain.c

The Memory Mountain

Core i7 Haswell 2.1 GHz 32 KB L1 d-cache 256 KB L2 cache 8 MB L3 cache 64 B block size

Lecture Plan

- Cache basics
- Principle of locality
- Cache memory organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Matrix Multiplication Example

Matrix Multiplication Example

• Description:

- Multiply N x N matrices
- Matrix elements are doubles (8 bytes)
- O(N³) total operations
- N reads per source element
- N values summed per destination
 - but may be able to hold in register

```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}</pre>
```

matmult/mm.c

Miss Rate Analysis for Matrix Multiply

Assume

- Block size = 32B (big enough for four doubles)
- Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
- Cache is not even big enough to hold multiple rows

Analysis Method:

Look at access pattern of inner loop

Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
 - each row in contiguous memory locations
- Stepping through columns in one row:

```
for (i = 0; i < N; i++)
sum += a[0][i];
```

- -accesses successive elements
- -if block size (B) > sizeof(aij) bytes, exploit spatial locality miss rate = sizeof(aij) / B

Stepping through rows in one column:

```
for (i = 0; i < n; i++)
sum += a[i][0];
```

- -accesses distant elements
- no spatial locality!
 miss rate = 1 (i.e. 100%)

Matrix Multiplication (ijk)

```
/* ijk */
                                            Inner loop:
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
                                                 (i,*)
                                                      В
    for (k=0; k<n; k++)
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;
                                           Row-wise Column-
                                                             Fixed
                                                   wise
                                 matmult/mm.c
```

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.25 1.0 0.0

Matrix Multiplication (jik)

```
/* jik */
                                            Inner loop:
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
                                                             (i,j)
    sum = 0.0;
    for (k=0; k<n; k++)
      sum += a[i][k] * b[k][j];
    c[i][j] = sum
                                            Row-wise Column-
                                                             Fixed
                                                     wise
                                 matmult/mm.c
```

Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
0.25	1.0	0.0

Matrix Multiplication (kij)

0.25

0.0

0.25

```
/* kij */
                                               Inner loop:
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
                                                           (k,*)
                                              (i,k)
                                                                    (i,*)
    r = a[i][k];
    for (j=0; j<n; j++)
       c[i][j] += r * b[k][j];
                                                     Row-wise Row-wise
                                              Fixed
                                   matmult/mm.c
Misses per inner loop iteration:
```

Matrix Multiplication (ikj)

Misses per inner loop iteration:

0.0

<u>B</u>

0.25

0.25

```
/* ikj */
                                              Inner loop:
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
                                                          (k,*)
                                             (i,k)
                                                                  (i,*)
    r = a[i][k];
    for (j=0; j<n; j++)
      c[i][j] += r * b[k][j];
                                                    Row-wise Row-wise
                                            Fixed
                                  matmult/mm.c
```

Matrix Multiplication (jki)

```
/* jki */
                                              Inner loop:
for (j=0; j<n; j++) {
                                               (*,k)
                                                              (*,j)
  for (k=0; k<n; k++) {
                                                      (k,j)
    r = b[k][j];
    for (i=0; i<n; i++)
       c[i][j] += a[i][k] * r;
                                            Column-
                                                      Fixed
                                                             Column-
                                              wise
                                                              wise
                                  matmult/mm.c
```

Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
1.0	0.0	1.0

Matrix Multiplication (kji)

```
/* kji */
                                             Inner loop:
for (k=0; k<n; k++) {
                                                (*,k)
  for (j=0; j<n; j++) {
                                                       (k,j)
    r = b[k][j];
    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;
                                                       Fixed
                                                              Column-
                                             Column-
                                              wise
                                                                wise
                                 matmult/mm.c
```

Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
1.0	0.0	1.0

Summary of Matrix Multiplication

```
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
  for (k=0; k<n; k++)
    sum += a[i][k] * b[k][j];
  c[i][j] = sum;
}</pre>
```

```
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
  for (j=0; j<n; j++)
    c[i][j] += r * b[k][j];
}</pre>
```

```
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;
  }
}</pre>
```

ijk (& jik):

- 2 loads, 0 stores
- misses/iter = 1.25

```
kij (& ikj):
```

- 2 loads, 1 store
- misses/iter = 0.5

```
jki (& kji):
```

- 2 loads, 1 store
- misses/iter = 2.0

Core i7 Matrix Multiply Performance

Lecture Plan

- Cache basics
- Principle of locality
- Cache memory organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Example: Matrix Multiplication

```
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
   int i, j, k;
   for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
        for (k = 0; k < n; k++)
        c[i*n + j] += a[i*n + k] * b[k*n + j];
}</pre>
```


Cache Miss Analysis

Assume

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)</p>

First iteration:

- n/8 + n = 9n/8 misses

Afterwards in cache: (schematic)

Cache Miss Analysis

Assume

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)</p>

Second iteration:

- Again: n/8 + n = 9n/8 misses

Total misses:

$$-9n/8 * n^2 = (9/8) * n^3$$

Blocked Matrix Multiplication

matmult/bmm.c

Cache Miss Analysis

Assume

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)
- Three blocks fit into cache: 3B² < C

First (block) iteration:

- B²/8 misses for each block
- -2n/B * B²/8 = nB/4 (omitting matrix c)
- Afterwards in cache (schematic)

Cache Miss Analysis

- Assume:
 - Cache block = 8 doubles
 - Cache size C << n (much smaller than n)
 - Three blocks fit into cache: 3B² < C

- Second (block) iteration:
 - Same as first iteration
 - -2n/B * B²/8 = nB/4

- Total misses:
 - $nB/4 * (n/B)^2 = n^3/(4B)$

Blocking Summary

- **No blocking:** (9/8) * n³
- **Blocking:** 1/(4B) * n³

Suggest largest possible block size B, but limit 3B² < C!

- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: 3n², computation 2n³
 - Every array elements used O(n) times!
 - But program has to be written properly

Naïve vs. Blocked Matrix Multiplication

Naïve Multiplication

Blocked Multiplication

Cache misses: 388

Cache misses: 388

 \approx 1,020,000 cache misses

≈ 90,000 cache misses

Recap

- Cache memories can have significant performance impact
- You can write your programs to exploit this!
 - Focus on the inner loops, where bulk of computations and memory accesses occur.
 - Try to maximize spatial locality by reading data objects with sequentially with stride 1.
 - Try to maximize temporal locality by using a data object as often as possible once it's read from memory.

Next time: Debugging and Design