

Contrôle bloqué MISE en ŒUVRE et PROCEDES

Calculatrices non autorisées

Ce contrôle comporte un QCM et 6 exercices indépendants.

Répondre aux questions directement sur le document dans les emplacements réservés.

Utiliser un stylo à bille ou un stylo plume (pas de crayon papier!)

Soigner la présentation.

1 point

0 point -1 point

1 - Lors d'une opération de perçage sur un tour conventionnel, le mouvement de coupe est donné à :

la pièce

☐ l'outil

☐ la pièce et l'outil

☐ la machine

2 – Quel est le matériau de la partie active de l'outil ci-dessous :

☐ acier rapide

■ carbures métalliques

 \Box titane

3 - Pour les différentes opérations schématisées ci-après, préciser si les surfaces sont obtenues en travail d'enveloppe ou en travail de forme (*mettre une croix dans la case correspondante*).

Figure 1

opérations		Travail de forme	Travail d'enveloppe
surfaçage	surface 1		
réalisation d'un	surface 2		
épaulement	surface 3		

4 - Lors d'une opération de fraisage :

Le mouvement d'avance est donné à :

■ la pièce

□ l'outil

☐ la machine

5 - Indiquer le nom des différentes parties désignées par une flèche sur l'outil ci-dessous :

6 – Sachant que la vis a un pas de 0.5 mm, quelle est la dimension indiquée par l'instrument sur la photo ci-dessous préciser l'unité :

7 - Lors de l'opération de fraisage schématisée ci-dessous :

On dit qu'il s'agit d'un travail :

 \square en concordance \blacksquare en opposition \square en l'air

8.1 - Le schéma ci-dessus	représente un pied à	coulisse:
□ au 1/10 ^{ème}	■ au 1/20 ^{ème}	□ au 1/50 ^{ème}

8.2 - Sachant que les graduations de la règle principale sont des millimètres, quelle dimension lisez-vous sur le pied à coulisse (préciser l'unité):

- 9 En fraisage conventionnel, il est primordial de travailler :
 - \blacksquare en opposition \Box en concordance
- 10 Qu'est-ce qu'une phase d'usinage?
 - ☐ le document qui permet de fabriquer la pièce intégralement
 - ☐ la génération d'une ou plusieurs surfaces sur la pièce due à un déplacement de l'outil
 - l'ensemble des opérations réalisable avec une même position de la pièce sur la machine
- 11 En métrologie, la rugosité correspond aux défauts :

υ, υ	1		
☐ d'ordre 1	\Box d'ordre 2	d'ordres 3 et 4	☐ d'ordres supérieurs

Exercice 1 : Dans une phase de fraisage, on souhaite usiner les surfaces marquées en gras

a- Explicitez cette spécification + faire un shéma

La surface considérée doit être comprise entre 2 plans parallèles distants de 0.02 mm.

Ces 2 plans sont disposés symétriquement par rapport à un plan parallèle à A et placé à 20 mm de A.

 15 ± 0.5

b- Choisir la mise en position isostatique adéquate et la représenter sur le dessin. (Attention : représenter cette mise en position <u>dans les 3 vues</u> et utiliser la symbolisation <u>normalisée NF E 04-013</u>)

Exercice 2: Extraits des normes

~	s not mes				
	λ_{c}	$\lambda_{ m s}$	$\lambda_{c/}$	r_{tip}	Intervalle
ı	(mm)	(mm)	λ_{s}	max	maximal
				(µm)	d'échantillonnage
					(µm)
	0,08	0,0025	30	2	0,5
ı	0,25	0,0025	100	2	0,5
ı	0,8	0,0025	300	2	0,5
ı	2,5	0,008	300	5	1,5
ı	8	0,025	300	10	5

Pour des profils périodiques :

Tour des projus periodiques.		
RSm	longueur de base de	
(en µm)	rugosité lr (en mm)	
$0.013 < \text{RSm} \le 0.04$	0,08	
$0.04 < RSm \le 0.13$	0,25	
$0.13 < RSm \le 0.4$	0,8	
$0.4 < RSm \le 1.3$	2,5	
$1,3 < RSm \le 4$	8	

La figure suivante représente le relevé de profil déjà filtré de rugosité d'une pièce tournée.

a -Pour mesurer la rugosité, quel type de filtre faut-il utiliser pour filtrer ce profil total ?

b - Donner une estimation du paramètre RSm (préciser les unités)

RSm =
$$.0.29 < < 0.32$$
.

c - Quelle longueur d'onde de coupure faut-il choisir pour mesurer la rugosité sur <u>ce profi</u>l ? (préciser les unités)

$$\lambda_c = .~0.8~mm$$

d - Dans <u>ces conditions</u>, représenter sur la figure 3 :

la longueur de base la longueur d'évaluation

0.8 mm	
4 mm	

e - A partir du profil filtré donné sur la figure ci-dessus, déterminer le critère de rugosité Rt de ce profil (préciser les unités)

$$Rt = . 71 \ \mu m \ . \ . \ . \ .$$

Exercice 3:

a – définition du plan enveloppe (PE)

Plan tangent coté libre (ou extérieur) à la matière qui minimise l'écart de forme

b- définition du plan optimisé (PO)

Plan passant « au mieux » parmi le nuage de points

c – définition du plan optimisé normé (PON)

Plan parallèle au PO passant par le point palpé le plus extérieur

d – Tracer sur la figure ci-dessus les 3 plans précédents

Exercice 4:

Dans la phase d'usinage considérée, les surfaces usinées sont marquées en gras. Indiquez clairement :

- la mise en position adéquate de manière littérale en précisant le type de liaison et la surface
- la mise en position de manière graphique sur chacune des vues (Représenter cette mise en position sur le dessin dans les 2 vues en utilisant la symbolisation normalisée NF E 04-013)

Exercice 5

Dans la phase d'usinage considérée (tournage), la ou les surfaces usinées sont marquées en gras. Indiquez clairement :

• La mise en position qui est utilisée

Liaisons:
PGsur3
Psur4
sur

Suite à la mise en position choisie et à la méthode d'usinage, indiquer 2 spécifications géométriques qui seront respectées pour chacune des surfaces 1 et 2 :

• La spécification qu'implique cette mise en position pour le cylindre 1

• La spécification qu'implique cette mise en position pour le plan 2

Exercice 6

Dans cet exercice nous travaillerons en 2D.

Ci-dessous les 2 profils A et B sont tracés.

Déterminer, sur le dessin, le défaut de parallélisme de A par rapport à B.

Faire apparaitre toute les constructions

