

מבוא למערכות לומדות (236756)

סמסטר אביב תשפ"ג – 29 בדצמבר 2023

מרצה: ד"ר ניר רוזנפלד

<u>מבחן מסכם מועד ב'</u>

הנחיות הבחינה:

- **משך הבחינה:** שלוש שעות. •
- **חומר עזר:** המבחן בחומר סגור (ללא ספרים, מחברות, דפי נוסחאות).
 - מחשבון: מותר.
 - כלי כתיבה: עט <u>בלבד</u>.
 - יש לכתוב את התשובות **על גבי שאלון זה**.
 - מותר לענות בעברית או באנגלית.
 - הוכחות והפרכות צריכות להיות פורמליות.
 - :קריאוּת
 - o תשובה בכתב יד לא קריא **לא תיבדק**.
- ס בשאלות רב-ברירה הקיפו את התשובות בבירור. סימונים לא ברורים יביאו לפסילת התשובה.
 - לא יתקבלו ערעורים בנושא. 🏻 o
- במבחן 15 עמודים ממוספרים סה"כ, כולל עמוד שער זה שמספרו 1 ושלושה עמודי טיוטה בסוף הגיליון.
 - נא לכתוב רק את המבוקש ולצרף הסברים קצרים עפ"י ההנחיות.
 - בתום המבחן יש להגיש את שאלון זה בלבד.

בהצלחה!

['עאלה 1: Nearest neighbors (נק'] Nearest neighbors (בק']

היו יותר מדי תשובות אפשריות לשאלה,

ולכן לדעתנו היא אינה דוגמה טובה ללמוד ממנה ולא צירפנו אותה לכאן.

שאלה 2: AdaBoost ,VC-dimension, פונקציות מיפוי [30 נק']

חד-ממדיים. (intervals) אל מקטעים ${\mathcal H}$ חד-ממדיים.

	ת האינדיקטור			1 + +1		+ -	$a,b \in \mathbb{R} \text{ s. t. } b > a$
	$\dim(\mathcal{H}) = $ $\exists h \forall h \in \mathcal{H}$			(# (# _ h	?Н	של VC-c	(7 נק'] מהו ה-dimension הוכיחו את תשובתכם.
_	+ 1 1	+ +	4 5 6	+ -	t t	+ + + + + + + + + + + + + + + + + + + +	הוכחה: ک≤ (۲)ساک)√:
_		X, <x, <="" td="" x<=""><td>is sind pre</td><td>(,, X k', C</td><td>(₂, Y₃</td><td>1,71</td><td>:Vcdm(4) <3</td></x,>	is sind pre	(,, X k', C	(₂ , Y ₃	1,71	:Vcdm(4) <3
_	-W'7 4,1	12, y3 (11)	10 f 201	80, NIL 23	NN H	') (a	o <u>J</u>
_			h(x)=4,; h(x2)=y2 h(1)=y3 C)	~> h∈	Н	
<u>~</u>	۷x, ۷ الم ۲ د الم	p ^t r	11 Q2X, 2X32	P 128 8=	g =+1	y2=-1 ~	۶۲٦
_	10 3 km	20 for 1	our genil 18	nos hond vi)-1+-1	7(~16S
_		1261	~32N	N/k H	د کې	<u>תיו</u> א	9
_				_	VCd	pm (H)=	
_							
_							

1

2

מריצים אלגוריתם AdaBoost על הדאטה הנתון, עם המחלקה $\mathcal H$ שהגדרנו בתור מחלקת בסיס (מסווגים חלשים). בכל איטרציה לומדים מסווג חלש עם ERM על ההתפלגות הנוכחית. המסווג <u>החזק</u> הוא ה-ensemble הממושקל שמתקבל.

בשני הסעיפים הבאים מופיעים תרשימים של כללי החלטה על הישר \mathbb{R} . הכללים חוזים $\hat{y}=1$ רק במקטעים המקווקווים. בכל סעיף, הקיפו בבירור את האות <u>היחידה</u> שמתאימה לתשובה הנכונה.

ב. [7 נק'] מבין הבאים – מה המסווג <u>החזק</u> (הממושקל) שמחזיר AdaBoost אחרי האיטרציה הראשונה? אין צורך בהסבר.

ג. [7 נק'] מבין הבאים – מה המסווג <u>החזק</u> (הממושקל) שמחזיר AdaBoost אחרי שתי איטרציות? <u>הסבירו</u> בקצרה.

הסבר קצר:

:(מוצג שוב לנוחיותכם) אלא רק לדאטה הנתון (מוצג שוב לנוחיותכם) AdaBoost הסעיף הבא לא קשור ל-

ד. [9 נק'] אילו מבין פונקציות המיפוי הבאות הופכות את הדאטה הנתון לפריד <u>ליניארית</u> (לאו דווקא הומוגנית)? סמנו את <u>כֹל</u> התשובות המתאימות <u>בבירור</u>. סימון לא ברור יוביל לפסילת התשובה.

לרשותכם דפי טיוטה בסוף הגיליון.

$$\mathbb{R}^2 \ni \phi(x) = \begin{bmatrix} x \\ 1.5 \end{bmatrix} \qquad \mathbb{R} \ni \phi(x) = x - 1.5 \qquad \mathbb{R}$$

$$\mathbb{R}^2 \ni \phi(x) = \begin{bmatrix} x^2 \\ 1.5 \end{bmatrix} \quad \text{in}$$

$$\mathbb{R} \ni \phi(x) = x^2 - 1.5 \quad \text{in}$$

$$\mathbb{R}^{2} \ni \phi(x) = \begin{bmatrix} x \\ x^{2} \end{bmatrix} \text{ .vi}$$

$$\mathbb{R} \ni \phi(x) = (x - 1.5)^{2} \text{ .iii}$$

$$2.25 \text{ C.25 C.25 C.25}$$

$$+ - - + +$$

שאלה 3: רגרסיה ורגולריזציה [20 נק']

: עבור $x: \mathbb{R}^d \to \mathbb{R}$ פונקציה עם רגולריזציה. $x: \mathbb{R}^d \to \mathbb{R}$ וסקלר $x: \mathbb{R}^d \to \mathbb{R}$, פונקציה פונקציה א פונקציה מוסקלר אוריזציה:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \left(\frac{1}{2m} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2 + R(\mathbf{w}; \lambda) \right)$$

. רגילה Least squares מקבלים בעיית $R_{\mathrm{LS}}(\mathbf{w};\lambda) \triangleq 0$ רגילה בפונקציה

.LASSO - מקבלים את בעיית משרמשים $R_{\ell 1}(\mathbf{w}; \lambda) \triangleq \lambda \|\mathbf{w}\|_1$ באשר משתמשים בפונקציה

2 x (x w-y)

$$f(w;\lambda) \triangleq egin{cases} \lambda|w| - rac{w^2}{4}, & |w| \leq 2\lambda \\ \lambda^2, & |w| > 2\lambda \end{cases}$$
 עבור פונק' חדשה $R_{\mathrm{CP}}(\mathbf{w};\lambda) \triangleq \sum_{j=1}^d fig(w_j;\lambdaig)$ עבור

 $f(w;\lambda)$ א. [5 נק'] עבור $\lambda=1$ את האות המתאימה לתרשים שמתאר את $\lambda=1$

ב. [3 נק'] מה ניתן לומר על הקמירות של הפונק' $f(w;\lambda)$ כאשר $\lambda>0$? הקיפו את התשובה <u>בבירור.</u>

קעורה ולא קעורה ເii. תלוי בערך של \dot{i} א קמורה ולא קעורה. \dot{i}

תחת פיתרון ה-Least squares וב- $\widehat{\mathbf{w}}_{\mathrm{CP}}$ את פיתרון ה-רגרסיה תחת ב-ב-גרסיה תחת את פיתרון ה-גרסיה תחת רגולריזציה של הפונק' R_{CP} שהגדרנו.

 $\mathbf{X}^\mathsf{T}\mathbf{X} = m\mathbf{I}_{d imes d}$ מעתה נניח שהעמודות של \mathbf{X} אורתוגונליות כך שמתקיים

$$.(\widehat{\mathbf{w}}_{\ell 1})_i = \begin{cases} \operatorname{sign}((\widehat{\mathbf{w}}_{\mathrm{LS}})_i) \cdot (|(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| - \lambda), & |(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| > \lambda \\ 0, & |(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| \leq \lambda \end{cases}$$

<u>נתונה טענה 1:</u> תחת ההנחה, מתקיים

$$.(\widehat{\mathbf{w}}_{\mathrm{CP}})_i = \begin{cases} (\widehat{\mathbf{w}}_{\mathrm{LS}})_i, & |(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| \geq 2\lambda \\ 2 \cdot \mathrm{sign}((\widehat{\mathbf{w}}_{\mathrm{LS}})_i) \cdot (|(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| - \lambda), & \text{if } < |(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| < 2\lambda \\ 0, & |(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| \leq \frac{\lambda}{2} \end{cases}$$

<u>נתונה טענה 2:</u> תחת ההנחה, מתקיים

ג. $[4 ext{ tg'}]$ עבור כניסה i שרירותית וערך i השתמשו בטענות וציירו באופן ברור על גבי התרשימים הבאים את העקומות [-3,3] של $\widehat{\mathbf{w}}_{LS}$), כפונקציה של $\widehat{\mathbf{w}}_{LS}$) בכל התחום $\widehat{\mathbf{w}}_{CP}$.

:דוגמה: לו היה מתקיים $(\widehat{\mathbf{w}}_{\ell 1})_i = (\widehat{\mathbf{w}}_{\mathrm{LS}})_i$, היה עליכם לצייר

([-3,3] ביירו על גבי התרשימים בכל התחום

 $X^{\mathsf{T}}X = m\mathbf{I}_{4 imes 4}$ מעת, פותרים בעיית רגרסיה בארבעה ממדים ($X \in \mathbb{R}^{m imes 4}$) המקיימת את הנחת האורתוגונליות, משמע בארבעה ממדים (ציר אנכי) שמתקבלים עבור ערכי λ שונים (אופקי) תחת פונק' רגולריזציה שונות.

(נק'<u>] 30</u> Support Vector Regression שאלה 4

.Least squares- מאשר ל-SVM מאשר אותה נפתור בשלבים, בדרך שדומה יותר ל- \mathbb{R}^d מאשר ל- \mathbb{R}^d , אותה נפתור בשלבים, בדרך שדומה יותר ל-SVM שאלה זו עוסקת ברגרסיה לינארית מ $(\mathbf{x}_i \in \mathbb{R}^d, y_i \in \mathbb{R})$ והיפר-פרמטר שבור m דוגמאות בעיה והבינו אותה היטב.

. בקצרה (בקצרה Hard-SVR-, עבור אילו סוגי דאטה קיים פיתרון לבעיית סוגי אילו סוגי אילו סוגי $\epsilon \to 0$

E-0=> WTX;+b=y;/.y;	תשובה והסבר קצר:
9, (w1 x; +b) = 1	hwdsvm ~~1d)
	בלימי וכן אבור אווא שיעורו

 $\epsilon>0$ והיפר-פרמטר ($\mathbf{x}_i\in\mathbb{R}^d,y_i\in\mathbb{R}$) עבור דוגמאות Soft-SVR כדי להבטיח שלכל איים יהיה פיתרון, נגדיר בעיית

$$\underset{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}}{\operatorname{argmin}} \|\mathbf{w}\|_{2}^{2} + \sum_{i=1}^{m} (\xi_{i} + \xi_{i}^{*})$$

$$\forall i \in [m]: \xi_{i}, \xi_{i}^{*} \ge 0$$
s.t.
$$\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b \le y_{i} + \epsilon + \xi_{i}, \ \forall i \in [m]$$

$$\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b \ge y_{i} - \epsilon - \xi_{i}^{*}, \ \forall i \in [m]$$

. וקווי רגרסיה שונים ($x_i,y_i\in\mathbb{R}$) בסעיפים הבאים תרשימים של דאטה של דאטה בסעיפים

בכל סעיף כתוב ערך של ההיפר-פרמטר ϵ . הקיפו בבירור את האות שמתאימה לקו הרגרסיה שנלמד על ידי Soft-SVR.

$\epsilon ightarrow \infty$ ב. [6 נק'] מהו קו הרגרסיה שנלמד כאשר

$\epsilon \to 0$ נק'] מהו קו הרגרסיה שנלמד כאשר (6 נק') מהו

. ד. Soft-SVM, עברנו מבעיית אילוצים לבעיה ללא אילוצים. ד. $\ell_{\mathrm{hinge}}(\mathbf{w},b;\mathbf{x}_i,y_i) = \max\{0,1-y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i+b)\}$ ופיתרון הבעיה הבאה:

$$\underset{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}}{\operatorname{argmin}} \left(\|\mathbf{w}\|_{2}^{2} + \sum_{i=1}^{m} \ell_{\operatorname{hinge}}(\mathbf{w}, b; \mathbf{x}_{i}, y_{i}) \right)$$

. לא אילוצים Soft-SVR בדומה, הציעו פונקציית לי $\ell(\pmb{w},b;\pmb{x}_i,y_i)$ רציפה וקמורה שמתאימה לפיתרון בעיות אילוצים. הסבירו בקצרה.

ידוע שהבעיה הדואלית לבעיית ה-Soft-SVR שהגדרנו היא הבעיה הקעורה הבאה:

$$\underset{\substack{\sum_{i=1}^{m}(\alpha_i-\alpha_i^*)=0\\\forall i\in[m]:\;\alpha_i,\alpha_i^*\in[0,C]}}{\operatorname{argmax}} \left(\sum_{i=1}^{m} y_i(\alpha_i-\alpha_i^*) - \epsilon \sum_{i=1}^{m} (\alpha_i+\alpha_i^*) - \frac{1}{2} \sum_{i,j=1}^{m} (\alpha_i-\alpha_i^*) (\alpha_j-\alpha_j^*) \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j \right)$$

ה. [6 נק'] האם הבעיה הדואלית לעיל מתאימה להפעלת טריק הקרנל, בדומה למה שעשינו ב-SVM? אם כן – הסבירו בקצרה באיזה אופן. אם לא – הסבירו בקצרה מדוע. <u>הבהרה</u>: השאלה אינה עוסקת בקמירות/קעירות.

ברניר ארול (גיען	CI, MICOLL CG	תשובה והסבר קצר:
\(\(\(\chi_{\chi}\)\)	> 1211 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2	1/1)/\

מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):

 פת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):			נוספת (

מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):
