TF-IDF
$$m_{d,t} = \left[1 + \log\left[tf_{d,t}\right]\right] \cdot \left[\log\left[\frac{N}{\mathrm{df}_t}\right]\right]$$

Cosine similarity
$$\frac{\sum_{j=1}^{|\mathcal{V}|} m_{q,j} \cdot m_{i,j}}{\sqrt{\sum_{i=1}^{|\mathcal{V}|} m_{i,i}^2}}$$

Okapi BM25
$$\mathcal{B}_{i,j} = \frac{(k_l + 1) \cdot \operatorname{tf}_{i,j}}{k_l \cdot \left[(1 - b) + b \cdot \frac{\operatorname{len}(d)}{\operatorname{avg_doch}} \right]}$$

$$\mathcal{B}_{i,j} = \frac{(\mathcal{K}_1 + 1) \cdot \operatorname{tf}_{i,j}}{\mathcal{K}_1 \cdot \left[(1 - b) + b \cdot \frac{\operatorname{len}(d_i)}{\operatorname{avg.doclen}} \right] + \operatorname{tf}_{i,j}}$$

$$\operatorname{sim}_{\mathrm{BM25}}(d_i, q) \sim \sum_{w_j \in q \land w_j \in d_i} \mathcal{B}_{i,j} \cdot \log \left[\frac{N - n_j + 0.5}{n_j + 0.5} \right]$$

k=1, b = 0.75, $n_{j=} docs with w_{j}$

Jelinek-Mercer Smoothing

$$P(t|d) = \lambda \cdot P(t|M_d) + (1 - \lambda) \cdot P(t|M_c)$$

 $P(t|d) = \frac{\operatorname{tf}_{d,t} + \mu \cdot P(t|M_c)}{|d| + \mu}$

Model:	What:	Advantages:	Disadvantages:
Boolean	Boolean matching by	- Easy/simple	- Term-Document Matrix is sparse
	term		- No ranking
			- Only exact matches
Vector	Unit vectors compared	- Allows partial matching	- Terms assumed mutually
Space	by cosine similarity	- Ranking by similarity (q and D)	independent
		- Term weighting	- May get many non-relevant docs
		- Length normalization	
Probabilistic	Estimates probability	- Ranking on probability of	- Guess initial separation of relevant
	that doc is relevant to	being relevant	and non-relevant docs
	q. Improves with	- Partial matches	- Terms assumed independent
	feedback		- No TF or length normalization
Okapi BM25	Built on all principles.	- No need for relevance info	- Bag-of-words
	TF, length		- Not precise estimation
	normalization, IDF		
Language	Based on probability.	- Ranking based on probability	- Phrase and Boolean-search is hard
	Find P of D generating q	- No assuming of term	- URF is difficult
		independence	- Similarity between q and D is
			unrealistic

Precision: relevant/retrieved Recall: retrieved/relevant F-measure: (2*P*R)/(P+R) Accuracy: (TP + TN)/N

$$MAP_i = \frac{1}{|R_i|} \cdot \sum_{k=1}^{|R_i|} P(R_i[k])$$

R-Precision: r/R
$$\text{MRR} = \frac{1}{Q} \sum_{i=1}^{Q} \frac{1}{\text{rank}_i}$$

Query Expansion

Explicit relevance feedback:

Rocchio: Get closer to neighborhood of relevant docs and away from non-relevant docs Rocchio-formler: Standard Rocchio, Ide Regular, Ide Dec hi

Implicit relevance feedback:

Local analysis: extract information from the local set of documents retrieved to expand the query

Global analysis: expand the query using information from the whole set of documents. Uses either similarity or a statistical thesaurus