Predicting Investment in Renewable Energy for 2020

- **O1.** Data Cleaning and Processing
- **O2.** Data Exploration
- 03. Dimension Reduction
- 04. Clustering
- 05. Regression
- 06. Results and Accuracy

Table of Contents

Renewable Energy Investments of each US State for 2020

Chevron is looking for renewable energy businesses, initiative, and start-ups to potentially invest in. The greater the investment in the state, the more likely Chevron is to find collaborators and companies of interest. Finding collaborators becomes trickier every year as the national investment for clean energy has greatly increased in the United States.

Objective

Data Cleaning and Processing

Deleting NA Values

2797	2795	BDFDB	US		2016	202797	United Sta	ites		
2798	2796	BDPRP	US		2016	37327	United Sta	ites		
2799	2797	BFFDB	US		2016	2295111	United Sta	ites		
2800	2798	BFPRP	US		2016	404308	United Sta	ites		
2801	2799	CLPRB	US		2016	14538027	United Sta	tes		
2802	2800	CLPRK	US		2016	19.96	United Sta	ites		
2803	2801	CLPRP	US		2016	728364	United Sta	tes		
2804	2802	COPRK	US	4550	2016 4548	NGMPK	United Sta	toc	2017	
2805	2803	EMFDB	US -				X3		2017	
2806	2804	ENPRP	US	4551	4549	NGMPP	Х3		2017	10
2000	2004	LINFINF	03	4552	4550	PAPRB	X3		2017	3.5

	2010 /2	20304 United State	25		
	2016	5 722 United State	00		
4550	4548 NG	GMPK X3	2017	1.15	Federal Offshore - Gulf of Mexico
4551	4549 NO	GMPP X3	2017	1060453	Federal Offshore - Gulf of Mexico
4552	2 4550 PA	APRB X3	2017	3511644	Federal Offshore - Gulf of Mexico
4553	4551 PA	APRP X3	2017	613602	Federal Offshore - Gulf of Mexico
4554	4 4552 TE	EPRB X3	2017	4731270	Federal Offshore - Gulf of Mexico
4555	4 553 CC	OPRK X5	2017	5.723	Federal Offshore - Pacific
4556	6 4554 PA	APRB X5	2017	32701	Federal Offshore - Pacific
4555	5 4553 CC	OPRK X5	2017	5.723	Federal Offshore - Pacific

Adjusting Layout

	A	В	С	D	E	F	G	Н	1	J	К
1		State	Year	BDFDB	BDPRP	BFFDB	BFPRP	CLPRB	CLPRK	CLPRP	COPRK
2	1	Alabama	2015	1933	356	1933	356	331420	25.122	13193	5.717
3	2	Alabama	2016	1906	351	1906	351	247632	25.68	9643	5.722
4	3	Alabama	2017	1585	292	1585	292	326748	25.407	12861	5.723
5	4	Alabama	2018	1652	304	1652	304	370533	25.065	14783	5.706
6	5	Alabama	2019	1494	275	1494	275	350506	24.816	14124	5.698
7	6	Alaska	2015	21	4	21	4	17747	15.073	1177	5.717
8	7	Alaska	2016	27	5	27	5	13942	14.957	932	5.722
9	8	Alaska	2017	29	5	29	5	14365	14.978	959	5.723
10	9	Alaska	2018	15	3	15	3	13752	15.253	902	5.706
11	10	Alaska	2019	0	0	0	0	14867	15.252	975	5.698
12	11	Arizona	2015	12	2	6602	1157	146450	21.522	6805	5.717
13	12	Arizona	2016	57	10	6204	1089	116678	21.516	5423	5.722
14	13	Arizona	2017	0	0	6584	1155	134024	21.543	6221	5.723
15	14	Arizona	2018	0	0	6758	1184	140759	21.489	6550	5.706
16	15	Arizona	2019	0	0	3026	531	82222	21.398	3843	5.698

Repeating Columns ____

MSN	Description	Unit	
BDFDB	Biomass inputs (feedstock) to the production of biodiesel	Billion Btu	
BDPRP	Biodiesel production	Thousand barrels	
BFFDB	Biomass inputs (feedstock) to the production of biofuels	Billion Btu	
BFPRP	Biofuels production	Thousand barrels	
CLPRB	Coal production	Billion Btu	
CLPRK	Factor for converting coal production from physical units to Btu	Million Btu per short ton	
CLPRP	Coal production	Thousand short tons	
COPRK	Factor for converting crude oil production from physical units to Btu	Million Btu per barrel	
EMFDB	Biomass inputs (feedstock) to the production of fuel ethanol	Billion Btu	

External Sources -

Reasons for Adding dataset

- 1. Limited dataset in original data, poor prediction power
- 2. Other factors can influence federal investment on renewable energy (energy disbursement, energy price, population, GDP)

US Choropleth Map for Total Assistance

Assistance Per State For Each Year

Dimension Reduction

Principal Component Analysis

Clustering

K-means Clustering

Silhouette Score

Simple Linear Regression

Random Forest

Random Forest

Partial Least Squares

- PLS regression technique used for few observations but many variables
- Only used data provided

Limitations

- Assumes independence within each cluster
- Cannot be used for single-state clusters (two)
- Prediction included negative values
- Large RMSE

Results and Accuracy

Root Mean Square Error

Cluster	Model	RMSE
Cluster 2	SLR; full model	3.297159
Cluster 2	SLR; no Net Summer Capacity and Generation, GDP, Pop	10.68734
Cluster 2	SLR; no Total Retail Sales, Net Summer Capacity and Generation, GDP, Pop	0.4187101
Cluster 2	SLR; no Net Summer Capacity and Generation, Disbursement, GDP, Pop	379.8185
Cluster 2	SLR; no Net Summer Capacity and Generation, Total Retail Sales	0.4464448
Cluster 2	Random Forest Classifier	14986823

Results

2020 Predictions

- Regression Models
 - More accurate with states that had lower historical investment

Significant Variables

- Disbursement
 - During cross validation, showed up consistently in SLR models with smallest RMSE

Where to Invest?

- South Dakota
- Texas
- Colorado
- West Virginia
- Tennessee
- New Hampshire