Краткий курс геометрии если все совсем плохо

Иван Попов

9 апреля 2022 г.

Содержание

L	Век	торная	я алгебра	2
	1.1	Дейст	вия над векторами и их свойства(Аксиомпатика Вейля)	2
		1.1.1	Сложение векторов	2
		1.1.2	Свойства сложения векторов	3
		1.1.3	Умножение вектора на число	3
		1.1.4	Свойства умножения вектора на число	3
		1.1.5	Скалярное произведение двух векторов	4
		1.1.6	Свойства скалярного произведения двух векторов	4
		1.1.7	Векторое произведение двух векторов для пространства размерности 3	4
		1.1.8	Свойства векторного произведения двух векторов	4
		1.1.9	Псевдоскалярное произведение двух векторов	4
		1.1.10	Свойства псевдоскалярного произведение двух векторов	5
		1.1.11	Смешаное произведение трех векторов	5
		1.1.12	Свойства смешаного произведения трех векторов	5
	1.2	Взаим	ное расположение векторов, линейная зависимость и базис	5
		1.2.1	Взаимное расположение векторов	5
		1.2.2	Линейная зависимость	5
		1.2.3	Базис	6
		1.2.4	Взаимосвязь между базисами	6

1 Векторная алгебра

Направленный отрезок - отрезок с указаным направлением. Направление задается при помощи точки начала и точки конца.

 $\overline{AB} \in \overrightarrow{d}$ - направленный отрезок является представителем вектора \overrightarrow{d}

Рис. 1: Направленный отрезок \overline{AB}

Внимание Направленный отрезок равен только себе

Совокупность напраленых отрезков является вектором.

1.1 Действия над векторами и их свойства (Аксиомпатика Вейля)

1.1.1 Сложение векторов

Правило треугольника

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

Правило параллелограма

$$\overrightarrow{AX} = \overrightarrow{AB} + \overrightarrow{AC}$$

Правило замкнутой ломаной многоугольника

$$\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EF}$$

1.1.2 Свойства сложения векторов

$$\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$$

$$\overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c}) = (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c}$$

$$\overrightarrow{a} + \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{a}$$

$$\overrightarrow{\alpha} (\overrightarrow{a} + \overrightarrow{b}) = \alpha * \overrightarrow{a} + \alpha * \overrightarrow{b}$$

1.1.3 Умножение вектора на число

$$k*\overrightarrow{a}=\overrightarrow{b}$$
 $k>0=>\overrightarrow{a}\uparrow\uparrow\overrightarrow{b}$
 $k<0>>\overrightarrow{a}\uparrow\downarrow\overrightarrow{b}$
 $|k|>1=>|\overrightarrow{a}|<|\overrightarrow{b}|$
 $0<|k|<1=>|\overrightarrow{a}|>|\overrightarrow{b}|$
 $k=0=>|k\overrightarrow{a}|=\overrightarrow{0}$ - нуль вектор
 $k=1=>|\overrightarrow{a}|=|\overrightarrow{b}|$

1.1.4 Свойства умножения вектора на число

$$\begin{array}{l} \mathbf{k}(\mathbf{m}^*\overrightarrow{a}) \!=\! \overrightarrow{a}^*(\mathbf{k}^*\mathbf{m}) \!=\! \mathbf{m}(\mathbf{k}^*\overrightarrow{a}) \\ (\mathbf{k} \!+\! \mathbf{m})^*\overrightarrow{a} \!=\! \mathbf{k} \, \overrightarrow{a} \!+\! \mathbf{m} \, \overrightarrow{a} \end{array}$$

1.1.5 Скалярное произведение двух векторов

Результат: скаляр

угол между двумя векторами

$$\overrightarrow{a} * \overrightarrow{b} = (\overrightarrow{a}, \overrightarrow{b})$$

$$\overrightarrow{a} * \overrightarrow{b} = k$$

$$k > 0 => \overrightarrow{a} \uparrow \uparrow \overrightarrow{b} \angle \overrightarrow{a} \overrightarrow{b} \in [0^{\circ}..90^{\circ})$$

$$k < 0 => \overrightarrow{a} \uparrow \downarrow \overrightarrow{b} \angle \overrightarrow{a} \overrightarrow{b} \in (90^{\circ}..180^{\circ}]$$

$$k > 0 => \overrightarrow{a} \uparrow \uparrow \overrightarrow{b}$$

$$k = 0 => \overrightarrow{a} || \overrightarrow{b} \in \overrightarrow{a}$$

$$\overrightarrow{a} * \overrightarrow{b} = |\overrightarrow{a}| * |\overrightarrow{b}| * \cos \angle (\overrightarrow{a} \overrightarrow{b})$$

$$\cos \angle (\overrightarrow{a} \overrightarrow{b}) = \frac{\overrightarrow{a}}{|a|} * \frac{\overrightarrow{b}}{|b|}$$

$$h > 0 \implies \overrightarrow{h} \xrightarrow{b} \overrightarrow{h}$$

$$k=0 \Longrightarrow \overrightarrow{a} || \overrightarrow{b} \in \overrightarrow{\alpha}$$

$$\overrightarrow{a} * \overrightarrow{b} = |\overrightarrow{a}| * |\overrightarrow{b}| * \cos \angle (\overrightarrow{a} \overrightarrow{b})$$

$$\cos \angle (\overrightarrow{a} \overrightarrow{b}) = \frac{\overrightarrow{a}}{|a|} * \frac{\overrightarrow{b}}{|b|}$$

1.1.6 Свойства скалярного произведения двух векторов

1.1.7 Векторое произведение двух векторов для пространства размерности 3

модуль результата (\overrightarrow{c}) равен площади параллелограма натянутого на векторы \overrightarrow{a} и \overrightarrow{b}

$$\overrightarrow{a} \times \overrightarrow{b} = [\overrightarrow{a} * \overrightarrow{b}]$$

$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \overrightarrow{c} \perp \overrightarrow{a}, \overrightarrow{b}$$

1.1.8 Свойства векторного произведения двух векторов

1.1.9 Псевдоскалярное произведение двух векторов

Результат: скаляр

характеризует ориентацию угла между векторами при помощи знака

характеризует ориентацию угла между ве
$$\overrightarrow{a} \vee \overrightarrow{b} = m$$
 $\overrightarrow{a} \vee \overrightarrow{b} = |\overrightarrow{a}| * |\overrightarrow{b}| * \sin \angle (\overrightarrow{a} \overrightarrow{b})$
 $\sin \angle (\overrightarrow{a} \overrightarrow{b}) = \frac{\overrightarrow{a} * \overrightarrow{b}}{|\overrightarrow{a}| * |\overrightarrow{b}|}$
 $m = 0 \Longrightarrow \angle (\overrightarrow{a}, \overrightarrow{b}) = (0^{\circ}||180^{\circ}) \Longrightarrow \overrightarrow{a}||\overrightarrow{b}|$

$$m = 0 \Rightarrow \angle(\overrightarrow{a}, \overrightarrow{b}) = (0^{\circ}||180^{\circ}) \Rightarrow \overrightarrow{a}||\overrightarrow{b}|$$

1.1.10 Свойства псевдоскалярного произведение двух векторов

$$\overrightarrow{a} \vee \overrightarrow{b} = -\overrightarrow{b} \vee \overrightarrow{a} (\overrightarrow{a} + \overrightarrow{b}) \vee \overrightarrow{c} = \overrightarrow{a} \vee \overrightarrow{c} + \overrightarrow{a} \vee \overrightarrow{b} \\ (k * \overrightarrow{a}) \vee \overrightarrow{b} = k * (\overrightarrow{a} \vee \overrightarrow{b})$$

1.1.11 Смешаное произведение трех векторов

Результат: скаляр

результат смешаного произведения представляет собой объем паралелепипеда натянутого на данные векторы

$$(\overrightarrow{a} * \overrightarrow{b} * \overrightarrow{c}) = \overrightarrow{a} * (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \times \overrightarrow{b}) * \overrightarrow{c}$$

Порядок операций: Сначала выполняется векторное умножение (×), а только затем скалярное (*)

$$n = 0 \Rightarrow \overrightarrow{a} = \overrightarrow{0} || \overrightarrow{b} = \overrightarrow{0} || \overrightarrow{c} = \overrightarrow{0}$$

n>0=>Ориентация векторов такая же как в базисе $\overrightarrow{i}\overrightarrow{j}\overrightarrow{k}$ n<0=>Ориентация векторов не такая как в базисе $\overrightarrow{i}\overrightarrow{j}\overrightarrow{k}$

1.1.12 Свойства смешаного произведения трех векторов

Взаимное расположение векторов, линейная зависимость и ба-

1.2.1 Взаимное расположение векторов

Коллениарность - расположение двух векторов когда они параллельны: $\overrightarrow{a}||\overrightarrow{b}$ а также $\overrightarrow{a} = k * \overrightarrow{b}$

Ортогональность - расположение двух векторов когда они перпендикулярны: $\overrightarrow{a} \perp \overrightarrow{b}$ Компланарность - расположение двух и более векторов когда они коллениарны (паралельны) одной плоскости или лежат в ней: $\overrightarrow{c} = k * \overrightarrow{a} + m * \overrightarrow{b}$

1.2.2Линейная зависимость

Линейная комбинация — выражение, построенное на множестве элементов путём умножения каждого элемента на коэффициенты с последующим сложением результатов $\alpha_1 \overrightarrow{a_1} + \alpha_2 \overrightarrow{a_2} + \alpha_3 \overrightarrow{a_3} + \dots + \alpha_n \overrightarrow{a_n} = \overrightarrow{0}$

Линейная комбинация(Система) является линейно зависимой если хотябы 1 $lpha \neq 0$ и/или если имеется хотябы один 0.

Если система имеет линейно зависимую подсистему, то она линейно зависима.

Если мы не имеется ни одного 0, то система линейно не зависима и мы имеем размер векторного пространства n = div(M)

5

1.2.3 Базис

Базис - это упорядоченная СЛНВ (система линейно независимых векторов) в векторном пространстве.

Виды базисов:

- Ортогональный
- Ортонормированый например $(\overrightarrow{i} \overrightarrow{j} \overrightarrow{k})$
- Произвольный (Афинный)

Базис позволяет определить координаты вектора

1.2.4 Взаимосвязь между базисами

Пусть дан базис $\beta = \overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}'$ и базис $\beta' = \{\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}\}$, где $n = \dim(V)$ Тогда координаты векторов базиса β в базисе β' будут представлять собой линейную ком-

 $\overrightarrow{e_1} = a_1^1 * \overrightarrow{e_1} + a_1^2 * \overrightarrow{e_2} + ... a_1^n * \overrightarrow{e_n}$ из чего мы получим: $\overrightarrow{e_1} \{a_1^1, a_1^2, ..., a_1^n\}_{\beta}$ где a_i^j - координаты

Формула перехода: $\overrightarrow{e_j'} = a_j^i * \overrightarrow{e_i} = \sum_{j=1}^n a_1^j * \overrightarrow{e'} \ j = \overline{1,n}$

Пример: $\overrightarrow{x} \in V^n$

Пример: $x \in V$ $\overrightarrow{x}\{x_1, x_2, ..., x_n\}_{\beta} \text{ и } \{y_1, y_2, ..., y_n\}_{\beta'}$ $\overrightarrow{x} = y^1 \overrightarrow{e_1'} + y^2 \overrightarrow{e_2'} + ... + y^n \overrightarrow{e_n'} = y^j \overrightarrow{e_i'} = y^1 (a_1^i \overrightarrow{e_j}) + y^2 (a_2^i \overrightarrow{e_j}) + ... + y^n (a_n^i \overrightarrow{e_j} = (y^1 a_1^1 + y^2 a_2^1 + ... + y^n a_n^1) \overrightarrow{e_1} + (y^1 a_1^2 + y^2 a_2^2 + ... + y^n a_n^2) \overrightarrow{e_2} + ... + (y^1 a_1^n + y^2 a_2^n + ... + y^n a_n^n) \overrightarrow{e_n}$ Из этого можно сделать вывод: $\overrightarrow{x} = x^1 \overrightarrow{e_1} + x^2 \overrightarrow{e_2} + ... + x^n \overrightarrow{e_n}$, где $x^n = y^1 a_1^n + y^2 a_2^n + ... + y^n a_n^n$

 $x^i = y^j a^i_j$ - формула перехода