INF367A: Probabilistic machine learning

Lecture 5: Bayesian modeling I

Pekka Parviainen

University of Bergen

4.2.2020

Outline

Probability interpretations

Bayesian inference

Example: Bernoulli model

What to do with the posterior?

Bayesians vs. frequentists

Probability theory is nothing but common sense reduced to calculation. - Pierre Laplace, 1814

Probability interpretations

Does it make sense to say P(A) = 0.7 or 0.2 for the following A?

- ► *A* = { A patient recovers from cancer }
- $ightharpoonup A = \{ \text{ It will rain tomorrow } \}$
- ▶ A = { It rained this day last year }
- $ightharpoonup A = \{ A \text{ coin comes up heads } \}$
- $ightharpoonup A = \{$ There is life beyond earth $\}$
- $ightharpoonup A = \{$ Finland will win European football championship in 2020 $\}$
- $ightharpoonup A = \{ Alesund has more inhabitants than Molde \}$

Uncertainty

- Aleatory uncertainty
 - Due to randomness
 - We are not able to obtain observations which can reduce this uncertainty
- Epistemic uncertainty
 - Due to lack of knowledge
 - We are able to obtain observations which can reduce this uncertainty
 - ► Two observers may have different epistemic uncertainty

Probability interpretations

Two commonly used interpretations:

- Frequentist, objective
 - Frequencies from repetitions of experiments (realizable or hypothetical)
 - Handles aleatory uncertainty
- Bayesian, subjective, degree of belief
 - ▶ Here A are propositions and P(A) is a degree of belief in A being true.
 - ▶ We may say "I believe to the extent of P(A) that A is true".
 - Contrast with the frequentist interpretation: there P(A) is the proportion of times that A occurs to be true.
 - Handles both aleatory and epistemic uncertainty

In the earlier slide, which interpretation might be applied to P(A)?

Bayesian inference

- Interpret probability as a degree of belief
- ► Basic idea:
 - Start with your initial beliefs
 - Observe evidence
 - Update your beliefs based on evidence
- Uncertainty is represented by probability distributions

Bayes' theorem revisited

We want the distribution of the parameters given the observed data:

$$P(model \mid data)$$

We can use the Bayes theorem:

$$P(\mathsf{model} \mid \mathsf{data}) = \frac{P(\mathsf{data} \mid \mathsf{model})P(\mathsf{model})}{P(\mathsf{data})}$$

- ► P(model | data): Posterior probability of parameters after observing data
- ► P(data | model): Likelihood
- P(model): Prior probability of parameters before observing data
- P(data): Normalizing constant

Prior distribution

- $ightharpoonup P(\theta)$: Your belief about plausibility of θ before observing data
 - But contains all of your prior knowledge
- Subjective: Your prior may differ from mine
 - **▶** Different priors ⇒ different posterior
 - The more data you have, the smaller the effect of the prior will be
- Why does it make sense to have a prior?
 - Incorporate prior knowledge
 - Regularization

Different types of priors

- ► Cromwell's rule: If $P(\theta) = 0$, then the posterior $P(\theta \mid D)$ is always zero (similarly, if $P(\theta) = 1$, then posterior is always 1)
- Uninformative/objective/reference prior
 - Uniform, as "wide" as possible.
 - Principle of indifference: all possibilities have an equal probability.
- ► Informative prior
 - Not uniform
 - Assumes that we have some prior knowledge
- Conjugate prior
 - Prior and posterior have the same type of distributions (given that likelihood is of certain type)
 - Simplifies the computations
 - ► More later . . .

Likelihood

- ▶ $P(D|\theta)$ is the probability that the model generates the observed data D when using parameter θ
 - $ightharpoonup L(\theta) \equiv P(D | \theta)$, with D held fixed, is called the *likelihood*
 - $f(y) \equiv P(D|\theta)$, with θ held fixed, is called the *observation model* or the *sampling distribution*

Maximum likelihood estimation

- "Standard" machine learning approach
- Commonly used
 - For example, linear regression, neural networks
- ightharpoonup A point estimate, does not quantify our uncertainty about heta

Normalizing constant P(D)

- ► Also called evidence or marginal likelihood
- ▶ Discrete parameters: $P(D) = \sum_{\theta} P(D, \theta)$
- Continuous parameters: $P(D) = \int_{\theta} P(D, \theta) d\theta$
- ► Challenge: Typically too complex to be computed

Posterior distribution

$$P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)}$$

- ▶ Posterior is the result of Bayesian inference
- ▶ Tells of the uncertainty related to the value of θ after observing D

Bayes' theorem as an update rule

- Exchangeability: A sequence of random variables
 X₁, X₂, X₃, ... is exchangeable if their joint distribution does not change when the positions in the sequence are changed
 For example, independent and identically distributed variables
- For exchangeable variables it holds that

$$P(\theta \mid D_{1}, D_{2}) = \frac{P(D_{1}, D_{2} \mid \theta)P(\theta)}{P(D_{1}, D_{2})}$$

$$= \frac{P(D_{1} \mid D_{2}, \theta)P(D_{2} \mid \theta)P(\theta)}{P(D_{1} \mid D_{2})P(D_{2})}$$

$$= \frac{P(D_{2} \mid D_{1}, \theta)P(D_{1} \mid \theta)P(\theta)}{P(D_{2} \mid D_{1})P(D_{1})}$$

$$= \frac{P(D_{2} \mid D_{1}, \theta)}{P(D_{2} \mid D_{1})} \cdot \frac{P(D_{1} \mid \theta)P(\theta)}{P(D_{1})}$$

$$= \frac{P(D_{2} \mid D_{1}, \theta)}{P(D_{2} \mid D_{1})} \cdot P(\theta \mid D_{1})$$

$$= \frac{P_{1}(D_{2} \mid \theta)P_{1}(\theta)}{P_{1}(D_{2})}$$

Sequential Bayesian updating

- Several equivalent ways to compute the posterior $P(\theta \mid D_1, D_2)$
 - Use prior $P(\theta)$, observe $D = \{D_1, D_2\}$, and compute $P(\theta \mid D)$
 - Use prior $P(\theta)$, observe D_1 and compute $P(\theta \mid D_1)$. Then use prior $P(\theta \mid D_1)$, observe D_2 , and compute $P(\theta \mid D_1, D_2)$
 - Use prior $P(\theta)$, observe D_2 and compute $P(\theta \mid D_2)$. Then use prior $P(\theta \mid D_2)$, observe D_1 , and compute $P(\theta \mid D_1, D_2)$
- "Today's posterior is tomorrow's prior"
- Advantage: you can learn online and do not need to store data

Effect of the prior

- When we have little data, the choice of the prior has large effect
- The more data we have, the smaller the effect of the prior
 - ► The stronger the prior, the more data you need overdrive the
 - prior

Example: Bernoulli model

► Jupyter notebook: Bernoulli_model.ipynb

Predictive distribution

- Prediction in standard machine learning:
 - Find a model θ given data D
 - ightharpoonup Make predictions with heta
- Bayesian prediction:

$$P(d_{new} \mid D) = \int_{\theta \in \Theta} P(\theta, d \mid D) d\theta$$

$$= \int_{\theta \in \Theta} P(d_{new} \mid \theta, D) P(\theta \mid D) d\theta$$

$$= \int_{\theta \in \Theta} P(d_{new} \mid \theta) P(\theta \mid D) d\theta$$

▶ Bayesian prediction uses predictions $P(d_{new} \mid \theta)$ from all the models θ , and weighs them by the posterior probability $P(\theta \mid D)$ of the models

Predictive distribution

- Often we cannot compute the predictive distribution analytically
- ► Solution: Monte Carlo approximation
 - 1. For s = 1, ... S:
 - 1.1 Sample parameter values from the posterior: $heta_s \sim P(heta \mid D)$
 - 1.2 Sample a data point given the parameter from the sampling distribution (likelihood): $x_{new} \sim P(x \mid \theta_s)$
- ▶ The predictive distribution is represented by the samples

Summarising the posterior

- Sometimes it is not convenient to present the results as a full posterior.
 - For example, if we have lots of parameters.
- We may be interested in only a handful of parameters or we will use the results for a particular task.
- ▶ Thus, it may be more convenient to summarize the posterior.

Point estimates

- Sometimes we want to collapse the posterior into a single point.
- Maximum a posteriori (MAP) estimate (the most likely value)

$$\theta_{MAP} = \arg\max_{\theta} P(D \mid \theta) P(\theta)$$

- MAP estimate with a uniform prior is equal to the ML estimate
- Downsides:
 - ► No uncertainty measure
 - May overfit
 - ► Mode may be an untypical point

Confidence intervals

- ▶ 95 % Bayesian confidence interval (or credible interval) is an interval where there is a 95% probability that the parameter is within the interval
 - ► Contrast to the frequentist approach where a confidence interval is a range where the statistic is 95% of the samples (assuming ML-estimate is correct)
- ► Not unique: may be centered with the median or the mean as a center point

Why the Bayesian way makes more sense than the frequentist way (my subjective view)

- Suppose we have a null hypothesis H_0 and an alternative hypothesis H_1 . We want to know which one is true
- Frequentist way:
 - ► Compute *p* value: the probability of obtaining test results at least as extreme as the results actually observed during the test, assuming that the null hypothesis is correct.
- Bayesian way:
 - Compute posterior probability $P(H_0 | D)$: the probability that H_0 is true given the observed data
- Typically, Bayesians answer the questions that you would like to ask

Further readings

▶ Bishop 1.2.3, 2.1

► Hall: Bayesian inference

