Lecture 12 Inference for One Mean

These slides are the property of Dr. Wendy Rummerfield ©

agenda

Revisions	Discuss the process for submitting midterm 1 revisions
lecture part 1	the t-distribution and the sampling distribution of the sample mean (ht_one_mean.Rmd)
R activity	simulating the t-distribution
lecture part 2	inference for one mean
R activity	hypothesis testing for one mean (ht_one_mean.Rmd)

Review: parameters vs. statistics

sample proportion

 \hat{p} = 10/50 10 students out of 50 own a cat

sample mean

 \bar{x} = \$117.25 avg vet visit cost of 159 cat owners

sample standard deviation

s = \$23.71
std dev of vet visit cost of
159 cat owners

population proportion

p = ? true proportion of students who own cats

population mean

 μ = ? true average vet visit cost for cat owners

population standard deviation

 σ = ? true std dev vet visit cost for cat owners

The t-distribution

Figure 7.1: Comparison of a t-distribution and a normal distribution.

Properties of the t-distribution

Parameter

df = degrees of
freedom, the number
 of independent
 observations

Shape

like a standard normal but with fatter tails

Why we use it: it is more *conservative* than the standard normal distribution

The t-distribution

Let
$$X_1, X_2, \cdots, X_n \overset{iid}{\sim} N(\mu, \sigma)$$
. Define $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$.

CLT review:

 $X_1, X_2, \ldots, X_n \sim f()$, $E(X_i] = M = M_X$
 $SD(X_i] = \sigma = \sigma_X$

If X_i 's are inappendent

 $n \geq 30$ or $n < 30$, data not strangly skewed

then $X \sim N(M_X = M_1, \sigma_X = \frac{\sigma}{\sqrt{n}})$

$$t = \frac{\overline{x} - \mu}{s/\sqrt{n}} \sim t df = n-1$$

As
$$df \rightarrow \infty$$
, $t \stackrel{4}{\rightarrow} Z$

Let's simulate it in R!

Please download and open ht_one_mean.Rmd in the Week 8 module

Hypothesis Testing

Purpose: to test a claim about the population using information collected from a sample

How: finding sufficient evidence against the null

Hypothesis testing for one mean

- 1) Hypotheses $H_0: \mu = \mu_0$ $H_A: \mu </\neq/>>\mu_0$
- 2) Test conditions:
 - o Independence
 - Normality
- 3) Calculate test statistic

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \sim t_{n-1}$$

4) Compute p-value

<: pt(<u>t</u>, df)

>: pt(t, df, lower.tail = FALSE)

≠: 2*pt(-abs(t), df)

5) Decision and conclusion in context

older

Is the average guess of Wendy's age different from her true age?

What is the parameter of interest? Define in symbols and interpret the parameter in context.

Hypotheses

$$H_0: \mu = \mu_0$$

alternative

 $H_A: \mu \neq \mu_0$

M. >

Check conditions

Independence

observational units are randomly selected

Normality

- n ≥ 30 and no outliers
 OR
- n < 30 and data are approximately normal

$$t = \frac{\text{statistic - null value}}{\text{standard error of statistic}}$$

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

$$= \frac{29.85 - 29}{2.63/\sqrt{3}}$$

Calculate test statistic

Compute p-value

Conclusion in context

Decision: p-val=0.04 < d = 0.05

Reject the null: We have enough evidence that the true mean ____ is less than/different from/ more than μ_0 .

Fail to reject the null: We do not have enough evidence that the true mean ____ is less than/different from/ more than μ_0 .

Conclusion in context

We have enough evidence that the avg guess of wendy's age is older than 29.

Confidence intervals

$$\bar{x}\pm t^*\frac{s}{\sqrt{n}}$$

Statistic \pm crit, value x se
CI: (28.89, 30.82)
Ho: $\mu=29$
Ha: $\mu\neq 29$

Decision: Fail to reject the

Confidence intervals

gt(1-2,n-1)

to R!

back to ht_one_mean.Rmd