

Cálculo II — Exame Final 14 de junho de 2012

Duração: 2h30m

- Justifique todas as respostas e indique os cálculos efetuados -

1. Determine o integral geral das seguintes equações diferenciais:

[30pts]

(a)
$$y'' - 4y' + 3y = 3e^{2x}$$
;

[20pts]

(b)
$$2(1+x^2)dy - \sqrt{y} dx = 0$$
.

[10pts]

- 2. Seja $\varphi(x)=\sum_{n=0}^\infty \frac{2^n}{n!}\,x^n\,,\quad x\in\mathbb{R}.$ Usando as propriedades das séries de potências, mostre que a função φ é uma solução particular da equação diferencial $\ y''-4y=0.$
- [30pts] 3. Resolva o seguinte problema de valores iniciais usando transformadas de Laplace:

$$\begin{cases} y'' + 3y = 2t \\ y(0) = 0 \\ y'(0) = 0. \end{cases}$$

[15nts

4. Sejam $\sum_{n=1}^{\infty} a_n$ uma série numérica de termos positivos e $\ell = \lim_{n \to +\infty} (na_n)$.

Mostre que se $\ell \in \mathbb{R}^+$, então a série $\sum_{n=1}^\infty a_n$ é divergente.

[25pts]

5. Estude a natureza da série numérica $\sum_{n=1}^{\infty} \frac{4^n n!}{(2n)!}$.

[20pts]

- 6. Determine o domínio de convergência da série de potências $\sum_{n=1}^{\infty} \frac{(x-1)^n}{3^n \sqrt{n}}$, indicando os pontos onde a convergência é simples ou absoluta.
- 7. Considere a função f dada por $f(x) = \sqrt[3]{1+x}$.

[10pts]

(a) Escreva a fórmula de MacLaurin de ordem 1 da função f (com resto de Lagrange).

[10pts]

- (b) Usando a fórmula obtida na alínea anterior, calcule uma aproximação de $\sqrt[3]{1,3}$ e mostre que o erro cometido nessa aproximação é inferior a 10^{-2} .
- 8. Considere a série de Fourier

$$\frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2nx)}{(2n)^2 - 1}$$

associada à função f, periódica de período 2π , definida em $[-\pi,\pi]$ por $f(x)=|\sin x|$.

[10pts]

(a) Mostre que a série é uniformemente convergente em \mathbb{R} .

[15pts]

(b) Indique, justificando, a função soma da série dada.

[5pts]

(c) Usando a representação de f em série de Fourier, mostre que $\sum_{i=1}^{\infty} \frac{1}{(2n)^2-1} = \frac{1}{2}$.

Cálculo II — Exame Final - FORMULÁRIO –

(Em geral nada é referido sobre as hipóteses que validam as fórmulas indicadas).

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace(s) = \int_0^{+\infty} e^{-st} f(t) dt, \quad s > s_f.$$

Tabela de transformadas de Laplace $(a \in \mathbb{R})$.

f(t)	F(s)
t^n	$\frac{n!}{s^{n+1}}, \ s > 0, \ n \in \mathbb{N}_0 \ (0! = 1)$
e^{at}	$\frac{1}{s-a} , \ s > a$
sen(at)	$\frac{a}{s^2+a^2}, \ s>0$

f(t)	F(s)
$\cos(at)$	$\frac{s}{s^2 + a^2}, \ s > 0$
senh(at)	$\frac{a}{s^2 - a^2}, \ s > a $
$\cosh(at)$	$\frac{s}{s^2 - a^2} , \ s > a $

- $\mathcal{L}\{e^{\lambda t}f(t)\} = F(s-\lambda), \ s > s_f + \lambda, \ \lambda \in \mathbb{R}.$
- $\mathcal{L}\{t^n f(t)\} = (-1)^n F^{(n)}(s), \ s > s_f, \ n \in \mathbb{N}.$
- $\bullet \ \mathcal{L}\{f(t-a)\} = \mathrm{e}^{-as}F(s) \,, \ s>s_f \,, \ a>0 \quad \ (f \ \mathrm{nula} \ \mathrm{em} \ \mathbb{R}^-).$
- $\mathcal{L}{f(at)}$ = $\frac{1}{a} F\left(\frac{s}{a}\right)$, $s > a s_f$, a > 0.
- $\mathcal{L}{f^{(n)}(t)} = s^n F(s) s^{n-1} f(0) s^{n-2} f'(0) s^{n-3} f''(0) \dots s f^{(n-2)}(0) f^{(n-1)}(0),$ $s > \max\{s_f, s_{f'}, s_{f''}, \dots, s_{f^{(n-1)}}\}, \quad n \in \mathbb{N}.$

14 de junho de 2012 Página 2/2