Obliczenia Naukowe Sprawozdanie Lista 3

Mateusz Gancarz

27 listopada 2022

1 Zadanie 1, 2 i 3.

1.1 Opis zadania

Zadania polegały na zaimplementowaniu trzech metod szukania miejsc zerowych funkcji:

- bisekcji
- stycznych
- siecznych

1.2 Metoda bisekcji

Metoda polega na rozwiązywaniu równania f(x)=0, dla zmiennej x, gdzie f jest funkcją ciągłą zdefiniowaną na przedziałe [a,b] i f(a) oraz f(b) mają przeciwne znaki. W każdym kroku metoda dzieli przedział na dwie połówki, obliczając punkt środkowy m=(a+b)/2 i wartość przedziału f(m) w tym punkcie. Jeśli m jest pierwiastkiem, to funkcja się zatrzymuje i zwraca m jako wynik. W przeciwnym razie są dwie możliwości: albo f(a) i f(m) mają przeciwne znaki i pierwiastek między nimi w przedziałe, albo f(m) i f(b). Metoda na tej podstawie wybiera następny przedział i powtarza z nim omówione kroki, aż nie znajdzie dobrego przybliżenia miejsca zerowego funkcji.

1.3 Metoda stycznych

Rozwiązywanie metodą stycznych zaczynamy od wstępnego przypuszczenia miejsca zerowego x_0 oraz podania pochodnej funkcji, następnie przybliżamy funkcję za pomocą stycznej w tym x_0 , a potem obliczamy punkt przecięcia tej stycznej z osią x. Ten punkt będzie zazwyczaj lepszym przybliżeniem miejsca zerowego funkcji i uzyskamy bliższe wyniki powtarzając tę metodę.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Iterację metody zakończymy, gdy uzyskamy wystarczające przybliżenie $x_{x+1}-x_n<\delta$ lub $f(x_{n+1})<\epsilon$.

1.4 Metoda siecznych

Ta metoda opiera się na wyznaczaniu miejsc przecięcia siecznych wykresu funkcji z osią x, a następnie wykorzystaniu tych miejsc do wyznaczania kolejnych siecznych. Pierwsza sieczna przechodzi przez funkcję w punkcie $(x_0, f(x_0))$ i w $(x_1, f(x_1))$, kolejna sieczna przecina ją w punkcie $(x_1, f(x_1))$ i $(x_2, f(x_2))$, itd... W iteracjach wykorzystujemy wzór

$$x_{n+1} = x_n - f(x_n) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Iterację metody zakończymy, gdy uzyskamy wystarczające przybliżenie $x_{x+1}-x_n<\delta$ lub $f(x_n)<\epsilon$.

2 Zadanie 4.

2.1 Opis zadania

W tym zadaniu musieliśmy wyznaczyć miejsce zerowe funkcji $f(x)=\sin x-\left(\frac{1}{2}x\right)^2$ za pomocą omówionych wcześniej metod.

2.2 Rozwiązanie

Aby wykonać zadanie, potrzebne są początkowe wartości do rozpoczęcia metod:

- dla metody bisekcji przedział [1.5, 2.0]
- \bullet dla metody stycznych przybliżenie początkowe $x_0=1.5$
- dla metody siecznych przybliżenia początkowe $x_0 = 1.0$ oraz $x_1 = 2.0$

Dla każdej z metod mamy dokładność obliczeń: $\delta=10^{-5}$ oraz $\epsilon=10^{-5}$.

2.3 Wyniki

Tabela przedstawia wyniki zwrócone przez metody dla podanych wartości początkowych.

metoda	X	f(x)	liczba iteracji
bisekcja	1.9337539672851562	$-2.7027680138402843 \cdot 10^{-7}$	16
styczne	1.933753779789742	$-2.2423316314856834 \cdot 10^{-8}$	4
sieczne	1.933753644474301	$1.564525129449379 \cdot 10^{-7}$	4

2.4 Wnioski

Aby otrzymać poprawne wyniki, musimy podać dobrze dobrane parametry. Również zauważyliśmy, że metoda stycznych i metoda siecznych wypadły lepiej od bisekcji.

3 Zadanie 5.

3.1 Opis zadania

Zadanie polegało na znalezienu wartości x, dla której przecinają się wykresy funkcji y=3x i $y=e^x$ za pomocą metody bisekcji.

3.2 Opis rozwiązania

Aby otrzymać dobrze dobrany przedział początkowy, można było spojrzeć na wykres funkcji $y=e^x-3x$ i wynikało z tego, że wykresy przetną się w dwóch miejscach oraz potrzebne nam przedziały będą równe [-3.0,1.0] i [1.0,3.0]. Wymagana dokładność obliczeń to $\delta=10^{-4}$ oraz $\epsilon=10^{-4}$.

3.3 Wyniki

Dla przedziału [-3.0, 1.0] pojawia się miejsce zerowe dla x=0.619140625, a dla przedziału [1.0, 3.0] wynosi x=1.5120849609375. Wyniki otrzymaliśmy odpowiednio po 11 i 14 iteracjach.

3.4 Wnioski

Jeśli podamy dobrze dobrany przedział początkowy, to metoda bisekcji poda nam dobrze przybliżony wynik.

4 Zadanie 6.

4.1 Opis zadania

Zadanie polegało na znalezieniu miejsc zerowych funkcji $f_1(x) = e^{1-x} - 1$ oraz $f_2(x) = xe^{-x}$ za pomocą przedstawionych metod na tej liście zadań. Również trzeba było sprawdzić co się stanie, gdy w metodzie stycznych dla f_1 wybierzemy $x_0 \in (1, \infty]$, a dla f_2 wybierzemy $x_0 > 1$ i czy możemy wybrać $x_0 = 1$ dla f_2 ?

4.2 Rozwiązanie

Do rozwiązania użyliśmy metod napisanych w poprzednich zadaniach. Do wybrania początkowych wartości można było przeanalizować wykresy tych funkcji. Do wartości początkowych dalszych metod posłużyłem się wynikami z metody bisekcji. Wymagana dokładność obliczeń to $\delta=10^{-5}$ oraz $\epsilon=10^{-5}$.

4.3 Wyniki

Tabela przedstawia wyniki zwrócone przez metody

metoda	X	f(x)	liczba iteracji
bisekcja	0.9999938964843751	$6.103534251344911 \cdot 10^{-6}$	14
styczne	0.9999999848053367	$1.5194663527395846 \cdot ^{-8}$	3
sieczne	1.0000000213489022	$-2.1348901979578727 \cdot 10^{-8}$	4

Tabela 1: Tabela dla $f_1(x) = e^{1-x} - 1$

metoda	X	f(x)	liczba iteracji
bisekcja	$-3.0517578125951618 \cdot ^{-6}$	$-3.0517671258351192 \cdot ^{-6}$	16
styczne	$-5.65546883836681 \cdot 10^{-6}$	$-5.655500822785036 \cdot 10^{-6}$	3
sieczne	$5.38073548562323 \cdot 10^{-6}$	$5.380706533386756 \cdot 10^{-6}$	6

Tabela 2: Tabela dla $f_2(x) = xe^{-x}$

Dodatkowe testy, dla których mieliśmy sprawdzić zachowania metod przy wyborze określonych wartości początkowych pokazały nam, że dla metody stycznych w poszukiwaniu miejsca zerowego dla f_1 z parametrem $x_0=10.0$ dostaliśmy błąd, a dla f_2 z parametrem $x_0>1$ metoda zwraca nam złe wyniki. Jest to wynik tego, że granice do nieskończoności pochodnych tych funkcji zbiegają do 0. Gdy dla f_2 podamy $x_0=1$ dostaniemy błąd "pochodna bliska zeru", wtedy styczna będzie równoległa do osi x i nie będziemy mogli wyznaczyć kolejego x_{n+1} w iteracji.

4.4 Wnioski

Możemy zauważyć że podane wartości początkowe mogą mieć wielkie znaczenie w dalszych obliczeniach wyników. Zanim podejdziemy do obliczeń, warto prze-analizować funkcję, z którą pracujemy. Jak zrobiliśmy to w rozwiązaniu, można w tym kierunku preferować się wynikami metody bisekcji jako wartościami początkowymi.