

Tests de paramétrage des classifieurs à base de réseaux de neurones sur les différentes distributions de données

Visualisation de la distribution

Observation

Les deux classes sont séparées de façon linéaire.

Visualisation de la distribution

Observation

Les deux classes sont séparées de façon linéaire.

Les variables les plus susceptibles de permettre au réseau de neurones de converger sont donc X_1 , X_2 .

Choix des variables

Variables : X₁ et X₂

Variables : X_1 , X_2 et X_1X_2

Choix de la fonction d'activation

Activation: ReLU

Activation: Tanh

Activation: Sigmoïd

Activation: Linear

Choix du learning rate

Learning Rate: 0.001

Learning Rate: 0.1

Choix du nombre de neurones

Nombre de neurones : 1

Nombre de neurones : 2

Nombre de neurones: 4

Nombre de neurones : 8

Conclusions

Dans le cadre d'une classification binaire de données linéairement séparables, nous savons que le perceptron est adapté. C'est donc sans trop de surprise que l'on constate qu'un seul neurone suffit pour venir à bout de la classification de cette distribution de points.

Le meilleur choix de variables est X_1 et X_2 .

La fonction d'activation la plus adaptée est la fonction Linear.

La diminution du learning rate permet de faire converger le modèle plus rapidement.

Visualisation de la distribution

Observation

Chaque classe est répartie dans deux cadrans. La séparation n'est pas linéaire.

Visualisation de la distribution

Observation

Chaque classe est répartie dans deux cadrans. La séparation est de forme hyperbolique.

Les variables les plus susceptibles de permettre au réseau de neurones de converger sont donc X_1X_2 .

Choix des variables

Variables: X₁X₂

Variables : X_1 , X_2 et X_1X_2

Variables : $sin(X_1)$, $sin(X_2)$ et X_1X_2

Choix de la fonction d'activation

Activation: ReLu

Activation: Tanh

Activation: Sigmoïd

Activation: Linear

Choix du learning rate

Learning Rate: 0.001

Learning Rate: 0.1

Accélération de la convergence et amélioration de la loss.

Choix du nombre de neurones

Nombre de neurones: 1

Accélération de la convergence et amélioration de la loss.

Conclusions

Le meilleur choix de variables est X_1X_2 .

La fonction d'activation les plus adaptées sont les fonctions Tanh et Linear qui donnent des résultats équivalents.

Le nombre de neurones optimal est 4.

La diminution du learning rate permet de faire converger le modèle plus rapidement.

Visualisation de la distribution

Observation

Les classes sont séparables par un cercle.

Visualisation de la distribution

Observation

Les classes sont séparables par un cercle.

Les variables les plus adaptées sont probablement X_1^2 et X_2^2 .

Choix des variables

Variables : X₁² et X₂²

Variables : X_1^2 , X_2^2 et X_1X_2

Choix de la fonction d'activation

Activation: ReLu

Activation: Tanh

Activation: Sigmoïd

Activation: Linear

Choix du learning rate

Learning Rate: 0.001

Learning Rate: 0.1

Accélération de la convergence et amélioration de la loss.

Choix du nombre de neurones

Conclusions

Le meilleur choix de variables est X_1^2 et X_2^2 .

La fonction d'activation la plus adaptées est Tanh.

Le nombre de neurones optimal est 2.

La diminution du learning rate permet de faire converger le modèle plus rapidement.

Visualisation de la distribution

Observation

Les classes sont séparables par une spirale.

Visualisation de la distribution

Observation

Les classes sont séparables par une spirale.

On va essayer directement avec un couche de 8 neurones.

Les variables les plus adaptées sont probablement X_1^2 et X_2^2 .

Choix des variables

Variables : X₁²et X₂²

Variables : X₁ et X₂

Variables : X_1 , X_2 , X_1^2 et X_2^2

Variables : X_1 , X_2 , $sin(X_1)$ et $sin(X_2)$

Learning Rate: 0.01

Activation: Tanh

Nombre de couches: 2

Nombre de couches: 3

Learning Rate: 0.1

Conclusions

Le meilleur choix de variables est X_1 , X_2 , $sin(X_1)$ et $sin(X_2)$.

La fonction d'activation la plus adaptées est Tanh.

Le nombre de couches de neurones optimal est 3.

La diminution du learning rate permet de faire converger le modèle plus rapidement mais il ne faut pas que sa valeur soit trop élevée.