LEAD SCORING ASSIGNMENT

1. Importing and Understanding Data

We import the necessary library and look at the information of data set

- Size: 9240 entries x 37 columns
- There are 4 numeric variables
- The variables with high rate of null values: 'Receive More Updates About Our Courses', 'Update me on Supply Chain Content', 'Get updates on DM Content', 'I agree to pay the amount through cheque', 'Prospect ID', 'Lead Number', 'Tags', 'Lead Quality', 'Lead Profile', 'Asymmetrique Activity Index', 'Asymmetrique Profile Index', 'Asymmetrique Activity Score', 'Asymmetrique Profile Score', 'Magazine'.

#	Column	Non-Null Count	Dtype
0	Prospect ID	9240 non-null	object
1	Lead Number	9240 non-null	int64
2	Lead Origin	9240 non-null	object
3	Lead Source	9204 non-null	object
4	Do Not Email	9240 non-null	object
5	Do Not Call	9240 non-null	object
6	Converted	9240 non-null	int64
7	Totalvisits	9103 non-null	float64
8	Total Time Spent on Website	9240 non-null	int64
9	Page Views Per Visit	9103 non-null	float64
10	Last Activity	9137 non-null	object
11	Country	6779 non-null	object
12	Specialization	7802 non-null	object
13	How did you hear about X Education	7033 non-null	object
14	What is your current occupation	6550 non-null	object
15	What matters most to you in choosing a course	6531 non-null	object
16	Search	9240 non-null	object
17	Magazine	9240 non-null	object
18	Newspaper Article	9240 non-null	object
19	X Education Forums	9240 non-null	object
20	Newspaper	9240 non-null	object
21	Digital Advertisement	9240 non-null	object
22	Through Recommendations	9240 non-null	object
23	Receive More Updates About Our Courses	9240 non-null	object
24	Tags	5887 non-null	object
25	Lead Quality	4473 non-null	object
26	Update me on Supply Chain Content	9240 non-null	object
27	Get updates on DM Content	9240 non-null	object
28	Lead Profile	6531 non-null	object
29	City	7820 non-null	object
30	Asymmetrique Activity Index	5022 non-null	object
31	Asymmetrique Profile Index	5022 non-null	object
32	Asymmetrique Activity Score	5022 non-null	float64
33	Asymmetrique Profile Score	5022 non-null	float64
34		9240 non-null	object
35	A free copy of Mastering The Interview	9240 non-null	
36	Last Notable Activity	9240 non-null	object
	es: float64(4), int64(3), object(30)		
2.5			

Combine variables into 3 groups for processing:

*We drop the variable that has a high rate of null values.

get_dummies_vars = ['What is your current occupation','What matters most to you in choosing a course','Country','Lead
 Origin','Lead Source','Last Activity','Specialization','How did you hear about X Education','City','Last Notable
 Activity']

binary_vars = ['Do Not Email','Do Not Call','Search','Newspaper Article','X Education Forums','Newspaper','Digital Advertisement','Through Recommendations','A free copy of Mastering The Interview']

num_vars = ['TotalVisits','Total Time Spent on Website','Page Views Per Visit']

We handle the categorical variables 'What is your current occupation','What matters most to you in choosing a course','Country','Lead Origin','Lead Source','Last Activity','Specialization','How did you hear about X Education','City','Last Notable Activity' using dummy variables.

Finally, we add the dummy variable tables

<code>lead_origin_dummies,lead_source_dummies,last_activity_dummies,last_notable
_activity_dummies,specialization_dummies,city_dummies to the Leads dataset
after drop the imbalanced variables</code>

Splitting the Data into Training and Testing Sets

df_train, df_test = train_test_split(Leads, train_size = 0.7, test_size = 0.3, random_state = 100)

Rescaling the Features using MinMaxScaler

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df_train[num_vars] = scaler.fit_transform(df_train[num_vars])

Dividing into X and Y sets for the model building

y_train = df_train.pop('converted')
X_train = df_train

Looking at Correlations

- We remove some highly correlated variables
- Those are 'Lead Add Form', 'Lead Import', 'Specialization_Null', 'Specialization_Select', 'Last_Activity_E mail Opened', 'Last_Activity_SMS Sent', 'Last_Activity_Unsubscribed

RFE

Importing RFE and LogisticRegression

from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import RFE

Running RFE with the output number of the variable equal to 20

logreg = LogisticRegression()
rfe = RFE(logreg,n_features_to_select=20)
rfe = rfe.fit(X_train, y_train)

RFE

Columns that we keep after using RFE:

Building model using statsmodel, for the detailed statistics

- Creating X_test dataframe with RFE selected variables
- Adding a constant variable
- Running the linear model using GLM method

We drop the variables that have high P-value

The summary of our Logistic model =>

6351	No. Observations:	Converted	Dep. Variable:
6332	Df Residuals:	GLM	Model:
18	Df Model:	Binomial	Model Family:
1.0000	Scale:	Logit	Link Function:
-2726.3	Log-Likelihood:	IRLS	Method:
5452.6	Devlance:	Frl, 25 Aug 2023	Date:
6.56e+03	Pearson chi2:	00:12:49	Time:
0.3778	Pseudo R-squ. (CS):	7	No. Iterations:
		nonrobust	Covariance Type:

	coef	atd err	Z	P> z	[0.025	0.975]	
conet	0.9374	0.106	8.876	0.000	0.730	1.144	
Do Not Email	-1.5709	0.194	-8.079	0.000	-1.952	-1.190	
TotalVisits	8.9850	2.479	3.624	0.000	4.125	13.845	
Total Time Spent on Website	4.6250	0.161	28.638	0.000	4.309	4.942	
Page Views Per Visit	-1.6100	0.555	-2.902	0.004	-2.697	-0.522	
Lead_Source_Direct Traffic	-1.7354	0.130	-13.343	0.000	-1.990	-1.480	
Lead_Source_Google	-1.2557	0.126	-9.963	0.000	-1.503	-1.009	
Lead_Source_Organic Search	-1.4324	0.156	-9.195	0.000	-1.738	-1.127	
Lead_Source_Reference	2.7040	0.232	11,655	0.000	2.249	3.159	
Lead_Source_Referral Sites	-1.3825	0.337	-4.108	0.000	-2.042	-0.723	
Lead_Source_Wellingak Website	4.2724	0.731	5.846	0.000	2.840	5.705	
Last_Activity_Email Bounced	-1.2687	0.420	-3.021	0.003	-2.092	-0.446	
Last_Activity_Olark Chat Conversation	-1.0904	0.189	-5.775	0.000	-1.460	-0.720	
Last_Notable_Activity_Email Link Clicked	-1.7867	0.253	-7.055	0.000	-2.283	-1.290	
Last_Notable_Activity_Email Opened	-1.4017	0.086	-16.233	0.000	-1.571	-1.232	
Last_Notable_Activity_Modified	-1.8725	0.095	-19.675	0.000	-2.059	-1.686	
Last_Notable_Activity_Olark Chat Conversation	-1.6597	0.376	-4.417	0.000	-2.396	-0.923	
Last_Notable_Activity_Page Visited on Website	-1.8764	0.207	-9.081	0.000	-2.281	-1.471	
City_Null	-1.3210	0.127	-10.380	0.000	-1.570	-1.072	

Checking and dealing with multicollinearity

- All variables have a good value of VIF. So no need to drop any variables and we can proceed with making predictions using this model only

VIE	Features	
4.56	Page Views Per Visit	3
3.39	Lead_Source_Google	5
3.00	Lead_Source_Direct Traffic	4
2.43	Last_Notable_Activity_Modified	14
2.32	Lead_Source_Organic Search	6
2.29	Total Time Spent on Website	2
2.01	TotalVisits	1
1.85	Do Not Email	0
1.84	Last_Activity_Olark Chat Conversation	11
1.77	Last_Notable_Activity_Email Opened	13
1.77	Last_Activity_Email Bounced	10
1.41	City_Null	17
1.35	Last_Notable_Activity_Olark Chat Conversation	15
1.18	Last_Notable_Activity_Page Visited on Website	16
1.15	Lead_Source_Referral Sites	8
1.07	Lead_Source_Reference	7
1.05	Last_Notable_Activity_Email Link Clicked	12
1.02	Lead_Source_Wellingak Website	9

Plotting the ROC Curve

Finding Optimal Cutoff Point

From the curve, 0.37 is the optimum point to take it as a cutoff probability.

Metric scoring by Optimal Cutoff Point

```
metrics.accuracy_score(y_train_pred_final.Churn, y_train_pred_final.predicted)

8.8009762242166588

metrics.precision_score(y_train_pred_final.Churn, y_train_pred_final.predicted)

8.7075140449438202

metrics.recall_score(y_train_pred_final.Churn, y_train_pred_final.predicted)

8.8237939493049877

metrics.fi_score(y_train_pred_final.Churn, y_train_pred_final.predicted)

9.7612391386475255
```

Precision

TP / TP + FP

confusion[1,1]/(confusion[0,1]+confusion[1,1])

0.7075140449438202

Recall

TP/TP+FN

confusion[1,1]/(confusion[1,0]+confusion[1,1])

0.8237939493049877

Precision and recall tradeoff

Making predictions on the test set

```
y_pred_final['final_predicted'] = y_pred_final.Churn_Prob.map(lambda x: 1 if x > 0.43 else 0)

# Let's check the overall occuracy,
metrics.accuracy_score(y_pred_final.Converted, y_pred_final.final_predicted)

8.7848616966580977

# Let's see the sensitivity of our Logistic regression model
TP / float(TP+FN)

8.7836198179979778

# Let us calculate specificity
TN / float(TN+FP)

8.7843137254901961
```

Summary

After data preparation, model building and evaluation, we get a logistic regression model of variables that affect the the ability to convert for potential customers including:

- Variables that have the positive effect:
 - + TotalVisits: Customers with more total visits are more likely to convert.
 - + Total Time Spent on Website: waCustomers with more total time on the website are more likely to convert.
 - + Lead_Source's dummy: Lead_Source_Reference, Lead_Source_Welingak Website: Customers with Lead Source as Reference and Welingak Website are more likely to convert.
- Variables that have the opposite effect:
 - + Do Not Email: Customers requesting no email are less likely to convert
 - + Page Views Per Visit: Customers with high Page Views Per Visit are less likely to convert.
 - + Lead_Source's dummy: Lead_Source_Direct Traffic, Lead_Source_Google, Lead_Source_Organic Search, Lead_Source_Referral Sites: Customers with Lead Source as Direct Traffic, Google, Organic Search and Referral Sites are less likely to convert.
 - + Last_Activity's dummy: Last_Activity_Email Bounced, Last_Activity_Olark Chat Conversation: Customers with last activity as Email Bounced, Olark Chat Conversation are less likely to convert.
 - + Last_Notable_Activity's dummy: Last_Notable_Activity_Email Link Clicked, Last_Notable_Activity_Email Opened, Last_Notable_Activity_Modified, Last_Notable_Activity_Olark Chat Conversation, Last_Notable_Activity_Page Visited on Website: Customers with last notable activity as Email Link Clicked, Email Opened, Modified, Olark Chat Conversation, Page Visited on Website are less likely to convert.
 - + City_Null: Customers without city information are less likely to convert

Summary

• Top three variables in your model which contribute most towards the probability of a lead getting converted with their coefficients:

0	TotalVisits	8.985
0	Total Time Spent on Website	4.625
0	Lead Source Welingak Website	4.272

• Top 3 categorical/dummy variables in the model which should be focused the most on in order to increase the probability of lead conversion with their coefficients:

0	Lead_Source_Welingak Website	4.272
0	Lead_Source_Reference	2.704
0	Last Notable Activity Page Visited on Website	-1.876