

Assignment 3

Hypothesis Testing

Statistical analysis for engineers

By

Vimal Jaswal

B00122875

Master of Engineering in Internet of Things Technologies.

Damian Cox

School of Informatics & Engineering, Department of Engineering TU Dublin – Blanchardstown Campus

Blanchardstown, Dublin 15

Declaration

I declare that all the questions of the assignment have been solved by me using Microsoft excel. I will be available for
explaining anything written in the assignment which seems unclear.

SignatureVimal Jaswal Date02/09/2019	
--------------------------------------	--

In Simple linear Regression (SST) = Total Sum of Squares = \(\(\frac{7}{7} \)^2 Regression Sum of Squares SSR = SST - SSE Coefficient of Multiple Ingression determination: $R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$ nultiple correlation Coefficient good fitness. R is the measure of association between predictors (X's) and Response variable (Y) Multiple Regression Model in Matrix Notation, For [Y= X+ B1X1+B2X2+B3X3+B4X4] Metrix X is design metrix containing observed data for independent explanatory variables. Set of equations for Co-efficient can be written as that fits as y = XB+E B- Column matrix of parameters and E-error matrix. (residuals) Pseudo inverse Solution (Ordinary least squares for coefficients. b= (xx) xy

Hypothesis Tests for By for level of Significance
Nucle Ho: Rj = 0
Alternate Ha: B; \$0
Test Statistic is To = Bi -0 ~ Tn + KM
STV.
we reject to (Null hypothesis) at & if and
enly if $ t_0 \ge t_{\alpha/2}$, $n(k+1)$
Another test based on p value.
Ho: $\beta j = 0$ for all $0 \le j \le k$ Ha: $\beta j \ne 0$ for at least one $0 \le j \le k$
MSR P
(when Ho) Test Statistic Fo = MSR NEW ofk, n-(k+1)
At level of significance &, we reject the if and only if $\rho < \infty$
only if p <x< td=""></x<>
By solving dataset in form of Matrix we observe.
$\hat{a} = (x^{T}x)^{-1}X^{T}y$
Gettiments Gettiments Gettiments For T-Stat P-Volume Ontercept, \alpha = 1.678 6.13 0.273 0.785
Sutercept, $\alpha = 1.678$ 6.13 0.273 0.785 0.67 0
$\beta_2 = -1.07$ 0.605 -1.776 0.084 $\beta_3 = 4.045$ 0.700 5.778 1.85
$\beta_4 = -2.377 \left[0.628 \right] -3.78 \left[0.0006 \right]$
Regression Statistics R Square = 0.62 It should be close to 1 for good fitness.
R Square = 0.62 It should be fitness.
includes unwanted variables
includes with
whole $Y = 1.678 + 1.751X$, $= 1.07X_2 + 4.045 X_3 - 2.377X_4$
7 7

Now look at pralues from below table. Significance For (Pvalue) MS 55 de 1431.85 13.51 1.268-06 5727.41 Regression 105.95 33 3496.56 Gror Total 9223.98 which is greater than 37 ~-0.05 means model is not useful as P. value = 1.26E-06 whole. Now look at individual terms p- value for B, and Bo 6-efficients is less than 0.05 level of lignificance and must be included in Model. Ho: \$ \$3 and By is required to explain Y Ma: B3 and By is not required. As per the probability value it is clear that By is orequired to explain Y as probability value is PCD or PC0.05 From the Observed Statistics we can conclude that all four variables are Not required to explain Ho: All variables required for Y Ha: All variables not required. artical values from f. distribution for 0.05 x 18 The Evalue obtained is 13.51 which exceeds this value So, Null Hypothesis rejected. All variables are not required to explain Y. So, Synificant vasiables equetion is ->

Y=d+B,X,+B2X2

Y= 1.67+ 1.75 -1.07 x2

(Reduced Model)

Regression quetion

X-			X matri	ix	- 8	22	92				
Υ		X1	X2	ХЗ	X4 XT	*ү	503.38			Ь	
7.1	1	4.58	2.48	8.13	8.67		3472.3158	i	ntercept	1.678839684	
12.12	1	9.87	5.18	4.04	3.02		2197.616		195.367	1.751065665	
9.95	1	6.42	8.59	3.87	2.55		3325.4285			-1.075237798	
2.86	1	5.17	2.12	2.49	9.03		2363.5835			4.045148412	
16.74	1	7.71	8.74	4.55	7.51	×-	- 50			-2.377164146	
31.29	1	6.07	5.82	6.72	7.48				4 -		
15.09	1	7.65	4.17	4.63	7.34						
-9.75	1	5.74	6.65	4.84	8.72						
49.12	1	5.15	0.3	8.07	7.15						
19.54	1	9.72	9.9	1.81	2.75						
32.4	1	9.9	8.85	8.41	2.65						
-11.33	1	1.76	3.56	2.66	3.77						
10.25	1	5.6	8.38	4.4	5.35						
4.92	1	2.57	6.5	4.1	4.21						
8.78	1	1.08	0.01	7.43	9.79						
24.31	1	4.97	4.05	2.65	0.06						
24.98	1	9.95	6.09	6.46	1.4		MMULT				
1.74	1	3.17	2	0.48	4.61						
-5.88	1	4.33	6.25	0.59	6.75 XT	*×	38	211.66	165.94	188.97	217.5
3.65	1	3.66	1.88	5.42	7.19		211.66	1459.801	1022.0045	1078.9326	1137.8177
4.26	1	3.99	0.12	3.36	6.21		165.94	1022.0045	1049.5094	846.6158	911.4987
3.8	1	8.28	3.42	3.22	2.62		188.97	1078.9326	846.6158	1185.9157	1164.4107
33.98	1	6.16	5.41	5.26	1.78		217.5	1137.8177	911.4987	1164.4107	1566.612
-6.74	1	0.83	3.65	6.54	8.87	45					
2.64	1	3.46	4.36	5	3.54		M inverse				
-5.99	1	1.7	8.91	2.87	6.02 IN	VERESE(XT*X)	0.354875313	-0.021359952	-0.00884909	-0.010026674	-0.02115428
-7.12	1	5.01	2.92	4.21	8.83		-0.021359952	0.004287524	-0.001121498	-0.000708304	0.001030484
19.81	1	9.4	4.01	8.13	9.72		-0.00884909	-0.001121498	0.003458206	-0.000254805	0.000220402
43.04	1	6.31	3.52	6.85	2.35		-0.010026674	-0.000708304	-0.000254805	0.004625139	-0.001382975
10.95	1	1.24	7.73	9.32	9.68	X	-0.02115428	0.001030484	0.000220402	-0.001382975	0.003726518
19.78	1	5.68	1.16	3.02	7.83						
33.21	1	8.52	2.11	6.63	1.79	Γ	1	-1.38778E-16	7.63278E-17	0	2.22045E-16
25.95	1	0.98	0.99	5.33	3.45		-1.77636E-14	1	5.55112E-16	4.44089E-16	8.88178E-16
36.83	1	8.55	6.83	8.96	8.49	I	0	-1.11022E-15	1	-4.44089E-16	0
-10.89	1	5.79	0.77	1.13	9.49		-1.06581E-14	-4.44089E-16	1.11022E-16	1	8.88178E-16
31.67	1	4.65	0.3	9.05	6.25		0	-2.22045E-16	-5.55112E-17	0	1
7.19	1	6.78	0.4	0.13	1.54	8.5					*
13.13	1	9.26	7.81	8.21	9.04						

SUMMARY OUTPUT

Regression	Statistics
Multiple R	0.787989008
R Square	0.620926676
Adjusted R Sqi	0.574978395
Standard Error	10.29352022
Observations	38

ANOVA

	df	SS	MS	F	3ignificance F
Regression	4	5727.41799	1431.854497	13.51359951	1.26E-06
Residual	33	3496.566431	105.9565585		
Total	27	0222 004421			

	Coefficients	Standard Error	t Stat	P-value
Intercept	1.678839684	6.131995346	0.273783587	0.785957354
X1	1.751065665	0.674011352	2.597976518	0.013905846
X2	-1.075237798	0.605325993	-1.776295434	0.084905749
хз	4.045148412	0.700045612	5.778406922	1.85E-06
XΔ	-2 377164146	0.628370098	-3 793063764	0.000620043

RESIDUAL OUTPUT

servation	Predicted Y	Residuals	andard Residua
1		-12.2091741	
2		-10.4354899	
3		-3.32734435	-0.342277001
4		5.801027654	0.596739665
5		10.40509986	1.070351009
6		15.8378662	1.629208397
7	11.8714	3.218597283	0.331090417
8	3.429272	-13.1792722	-1.355724355
9	26.02188	23.09811944	2.376055567
10		10.70113903	1.100803943
11	37.21875	-4.81874841	-0.495694639
12	2.731055	-14.0610546	-1.446431482
13	7.555139	2.694860511	0.277214703
14	5.76728	-0.84728019	-0.087157953
15	10.34225	-1.56225393	-0.160705817
16	16.60394	7.706063602	0.792706755
17	35.35737	-10.3773738	-1.067498886
18	-3.937813	5.67781323	0.584064853
19	-11.1185	5.238502648	0.538873886
20	10.89919	-7.24918714	-0.745708823
21	7.366072	-3.10607247	-0.319515223
22	19.29756	-15.4975579	-1.594201594
23	23.6945	10.28550384	1.058048415
24	4.577431	-11.3174309	-1.164200604
25	14.86007	-12.2200711	-1.257053327
26	-7.62567	1.635669685	0.168257943
27	3.3517	-10.4716997	-1.077201996
28	23.60817	-3.79817445	-0.390710316
29	31.06616	11.97384214	1.231724269
30	10.22841	0.721592808	0.074228753
31	3.98077	15.79923025	1.625233997
32	36.89338	-3.68337754	-0.378901397
33	15.68982	10.26017665	1.05544306
34	25.36898	11.46101687	1.178970999
35	-6.998693	-3.89130674	-0.400290641
36	31.25004	0.4199591	0.04320032
37	9.986006	-2.79600628	-0.287619358
38	21,21721	-8.08720512	-0.831913991

PROBABILITY OUTPUT

Percentile	Y
1.3157895	-11.33
3.9473684	-10.89
6.5789474	-9.75
9.2105263	-7.12
11.842105	-6.74
14.473684	-5.99
17.105263	-5.88
19.736842	1.74
22.368421	2.64
25	2.86
27.631579	3.65
30.263158	3.8
32.894737	4.26
35.526316	4.92
38.157895	7.1
40.789474	7.19
43.421053	8.78
46.052632	9.95
48.684211	10.25
51.315789	10.95
53.947368	12.12
56.578947	13.13
59.210526	15.09
61.842105	16.74
64.473684	19.54
67.105263	19.78
69.736842	19.81
72.368421	24.31
75	24.98
77.631579	25.95
80.263158	31.29
82.894737	31.67
85.526316	32.4
88.157895	33.21
90.789474	33.98
93.421053	36.83
96.052632	43.04
98.684211	49.12