Apêndice II - As Interrupções do PC

INT 10H - VIDEO 00H - SET VIDEO MODE Define modo de vídeo

AH = 00h

AL = modo (00h - 1Fh)

	iE – mode (con 111)		
modo	resolução	número de	tipo
	(linha/pixel)	cores	(gráfico/texto)
00	40x25 (s/fundo)	16	texto
01	40x25 (c/fundo)	16	texto
02	80x25 (s/fundo)	16	texto
03	80x25 (c/fundo)	16	texto
04	320x200	4	gráfico
05	320x200	4 (cinza)	gráfico
06	640x200	2	gráfico
07	80x25	2	texto
0D	320x200	16	gráfico
0E	640x200	16	gráfico
0F	640x350	2 (p/b)	gráfico
10	640x350	16	gráfico

INT 10H - VIDEO 01H - SET CURSOR SIZE Define o formato do cursor (somente em

modo texto)

AH = 01h

CH = (linha superior do cursor) bits 0-4 CL = (linha inferior do cursor) bits 0-4 (valores usuais: CH = 6 e CL = 7)

INT 10H - VIDEO 02H - SET CURSOR POSITION

Define a posição do cursor

DH = linha (coordenada y) DL = coluna (coordenada x)

INT 10H - VIDEO 03h -READ CURSOR

POSITION

Obtém posição do cursor

AH = 03h

BH = página apontada

Retorna:

CH = (linha superior do cursor) CL = (linha inferior do cursor)

DH = linha (coordenada y)

DL = coluna (coordenada x)

INT 10H - VIDEO 04H - READ LIGHT-PEN POSITION

Obtém posição da caneta ótica

AH = 04h

Retorna:

AH = 00 (caneta ativada) ou 01 (caneta desativada)

BX = coordenada gráfica x

CH = coordenada gráfica y

DH = coordenada de texto y DL = coordenada de texto x

INT 10H - VIDEO 05H - SET ATIVE DISPLAY

PAGE

Define página de vídeo ativa

AH = 05h

AL = página (0-7) para modos 00h e 01h

(0-3) para modos 02h e 03h

INT 10H - VIDEO 06H - SCROLL WINDOWS UP

Inicializa ou move uma janela para cima

AH = 06h

AL = número de linhas a serem deslocadas

BH = atributo para novas linhas

CH, CL = (x,y)canto superior esquerdo

DH, DL = (x, y)canto inferior direito INT 10H - VIDEO 07H - SCROLL WINDOWS

Inicializa ou move uma janela para baixo

AH = 07h

AL = número de linhas a serem deslocadas

BH = atributo para novas linhas

CH, CL = (x,y)canto superior esquerdo DH, DL = (x,y)canto inferior direito

INT 10H - VIDEO 08H - READ CHARACTER AND ATTRIBUTE

Lê caracter e atributo da posição do cursor

AH = 08hBH = página Retorna:

AH = atributo AL = caracter

INT 10H - VIDEO 09H - WRITE CHARACTER AND ATTRIBUTE

Escreve caracter e atributo na posição do

AH = 09h

AL = caracter

BH = página

BL = atributo (modo texto) ou cor (modo gráfico) CX = número de vezes que o caracter será escrito

INT 10H - VIDEO 0AH - WRITE CHARACTER Escreve caracter na posição do cursor

AH = 0Ah

AL = caracter

BH = página CX = número de vezes que o caracter será escrito

INT 10H - VIDEO 0BH - SET 4-COLOR **PALETTE**

Define palete de cores

AH = 0Bh

BH = 00h define cor (fundo e borda) no modo texto

BL = cor gráfico ou cor da borda no modo texto BH =

BL =

INT 10H - VIDEO 0CH - WRITE PIXEL

INT 10H - VIDEO 0DH - READ PIXEL

INT 10H - VIDEO 0EH - WRITE CHARACTER

IN TELETYPE MODE

INT 10H - VIDEO 0FH - GET CURRENT VIDEO MODE

AH = 0Fh

INT 10H - VIDEO 10H - EGA/VGA COLOR

PALETE INTERFACE

AH = 10h

INT 10H - VIDEO 11H - EGA/VGA CHARACTER GENERATOR INTERFACE

AH = 11h

INT 10H - VIDEO 12H - EGA/VGA

"ALTERNATE SELECT"

AH = 12h

INT 10H - VIDEO 13H - WRITE CHARACTER

STRING

AH = 13h

INT 10H - VIDEO 1CH - SAVE/RESTORE VIDEO STATE

AH = 1Ch

INT 13H - DISK 00H - RESET DISK SYSTEM

Inicializa o controlador de disco,

preparando operação de I/O AH = 00h

DL = drive (00h..7Fh) disco flexível (80h..FFh) disco rígido

retorna: sucesso: CF = 0 e AH = 0

erro: CF = 1 e AH = status

INT 13H - DISK 01H - GET DISK STATUS

Obtém o status do disco AH = 01h

DL = drive (00h..7Fh) disco flexível

(80h..FFh) disco rígido

AH = 0AL = status

00h - nenhum erro

01h - comando inválido

02h - marca de endereço não encontrada

03h - disco (flexível) protegido contra escrita

04h - setor não encontrado

05h - falha na inicialização (disco rígido) 06h - disco flexível ausente

07h - erro na tabela de parâmetros(disco rígido)

08h - decurso do DMA (disco flexível)

09h - DMA atravessou limite de 64K

0Ah - flag de setor defeituoso (disco rígido)

0Bh - flag de cilindro defeituoso (disco rígido) 0Ch - média não encontrada

0Dh - número inválido de setores no formato

0Eh - marca do endereço de controle de dados

0Fh - nível apontado pelo DMA fora da faixa

10h - erro de avaliação de redundância cíclica 11h - checagem de erro com erro de dados

20h - falha no controlador

40h - falha no processo de busca

80h - estouro no tempo, falha na resposta

AAh - drive não está pronto (disco rígido)

BBh - erro indefinido (disco rígido)

CCh - erro na escrita (disco rígido) E0h - erro no registrador de status (disco rígido)

FFh - falha na operação (disco rígido)

INT 13H - DISK 02H - READ DISK SECTORS

Lê setores do disco AH = 02h

AL = número de setores CH = cilindroCL = setor

DH = cabeçaES:BX = buffer

retorna:

sucesso: CF = 0 AH = 00 $AL = n^{\circ}$ de set. CF = 1 e AH = status

DL = drive

INT 13H - DISK 03H - WRITE DISK SECTORS Escreve setores no disco

AH = 03hAL = número de setores

CH = cilindroCL = setor

DH = cabecaDL = drive

ES:BX = buffer

retorna: sucesso: CF = 0 AH = 00 $AL = n^{\circ}$ de set. erro: CF = 1 e AH = status

INT 13H - DISK 04H - VERIFY DISK SECTORS

Verifica setores

AH = 04h

AL = número de setores CH = cilindro CL = setor

DH = cabeça ES:BX = buffer

retorna: sucesso: CF = 0 AH = 00 $AL = n^{\circ}$ de set. erro: CF = 1 e AH = status

DL = drive

INT 13H - DISK 05H - FORMAT DISK TRACK Formata uma trilha

INT 13H - DISK 06H - FORMAT DISK TRACK AND SET BAD SECTOR FLAG

FROM BUFFER READY AH = 06hAL = setorCH = trilhaDH = cabeça Obtém status do drive (disco rígido) Aguarda a digitação de uma tecla, caso o buffer de teclado esteja vazio. Senão, obtém o DL = drive (00h..7Fh) disco flexível AH = 10h(80h..FFh) disco rígido DL = drive (80h..FFh) disco rígido código da tecla pressionada. retorna: sucesso: CF = 0 AH = 00 $AL = n^{\circ}$ de set. retorna: sucesso: CF = 0 e AH = 0erro: CF = 1 e AH = statuserro: CF = 1 e AH = statusAH = 00hRetorna: INT 13H - DISK 07H - FORMAT DRIVE INT 13H - DISK 11H - RECALIBRATE DRIVE AH = scan codeSTARTING AT SPECIFIED CYLINDER Recalibrar drive AL = código do caracter INT 16H - KEYBOARD 01H - CHECK BUFFER Formatar drive AH = 11hAH = 07hVerifica o status do teclado e informa se DL = driveretorna: sucesso: CF = 0 AH = 00 $AL = n^{\circ}$ de set. CH = cilindroalguma tecla está pressionada no instante da AL = setorDL = drive (00h..7Fh) disco flexível erro: CF = 1 e AH = statusverificação. (80h..FFh) disco rígido retorna: sucesso: CF = 0 e AH = 0INT 13H - DISK 14H - CONTROLLER AH = 01herro: CF = 1 e AH = statusDIAGNOSTICS Disgnóstico do controlador interno ZF = 0 há um caracter no buffer INT 13H - DISK 08H - GET CURRENT DRIVE AH = 14hAH = scan codePARAMETERS DL = driveAL = código do caracter retorna: sucesso: CF = 0 AH = 00 $AL = n^{\circ}$ de set. Obtém parâmetros do drive (XT) erro: CF = 1 e AH = statusINT 16H - KEYBOARD 02H - GET SHIFT AH = 08hDL = drive (00h..7Fh) disco flexível STATUS (80h..FFh) disco rígido INT 13H - DISK 15H - GET DISK TYPE Retorna o status do teclado. retorna: sucesso: CF = 0Obtém tipo de disco BL = tipo de drive AH = 15hAH = 02hDL = drive (flexível ou rígido) 01h = 360Kb, 40 trilhas, 5.25" Retorna: 02h = 1.2Mb, 80 trilhas, 5.25" retorna: sucesso: CF = 0 e AH = cód drive AL = status03h = 720Kb, 80 trilhas, 3.5" 01 - nenhum drive foi detectado 0 = tecla shift direita pressionada 04h = 1.44Kb, 80 trilhas, 3.5" 02 - disco flexível (nenhuma troca 1 = tecla shift esquerda pressionada erro: CF = 1 e AH = status2 = tecla CTRL pressionada 03 - disco flexível (troca detectada) 3 = tecla ALT pressionada INT 13H - DISK 09H - INITIALIZE FIXED-4 = SCROLL LOCK ativo 04 - disco rígido DISK PARAMETER TABLES erro: CF = 1 e AH = status5 = NUM LOCK ativo 6 = CAPS LOCK ativo Inicializa característica do disco rígido INT 13H - DISK 16H - CHANGE OF DISKETTE AH = 09h7 = INSERT ativo DL = drive (80h ... FFh - disco rígido) STATUS ES:BX = bufferINT 16H - KEYBOARD 03H - REPEAT Permite controlar e definir a taxa de retorna: sucesso: $CF = 0 AH = 00 AL = n^{\circ} de set.$ repetição e o tempo de espera entre duas CF = 1 e AH = statusINT 13H - DISK 17H - SET DISKETTE TYPE erro: repetições. TO FORMAT INT 13H - DISK 0AH - READ LONG AH = 03hLer setor longo (disco rígido) AH = 17hAL = 500H - 250ms AH = 0AhBH = atraso nas repetições INT 13H - DISK 18H - SET MEDIA TYPE FOR 01H - 500ms AL = número de setores DISKETTE FORMAT 02H - 750ms CL = setorCH = cilindro03H - 1s DH = cabecaDL = driveBL = taxa de repetição (em caracteres por AH = 18hES:BX = bufferretorna: sucesso: CF = 0 AH = 00 $AL = n^{\circ}$ de set. segundo) INT 13H - DISK 1AH - FORMAT ESDI UNIT erro: CF = 1 e AH = status18 - 3.7 00 - 30.0 08 - 15.0 10 - 7.5 01 - 26.7 09 - 13.3 11 - 6.7 19 - 3.3 INT 13H - DISK 0BH - WRITE LONG AH = 1Ah02 - 24.0 0A - 12.0 12 - 6.0 1A - 3.0 Escrever setor longo (disco rígido) 03 - 21.8 0B - 10.9 13 - 5.5 1B - 2.7 INT 14H - SERIAL PORT 00H - INITIALIZE 0C - 10.0 14 - 5.0 AH = 0Bh04 - 20.0 1C - 2.5 SERIAL PORT AL = número de setores 05 - 18.5 0D - 9.2 15 - 4.6 1D - 2.3 CH = cilindro CL = setorInicializa a porta serial 06 - 17.1 0E - 8.6 16 - 4.3 1E - 2.1 DH = cabeça DL = driveAH = 00h07 - 16.0 OF - 8.0 17 - 4.0 1F - 2.0 ES:BX = bufferAL = parâmetrosretorna: sucesso: CF = 0 AH = 00 $AL = n^{\circ}$ de set. DX = endereço da porta INT 16H - KEYBOARD 04H - KEY CLICK retorna: AH = status da porta erro: CF = 1 e AH = statusLiga/desliga o som produzido quando se AL = status do modem pressiona uma tecla. INT 13H - DISK 0CH - SEEK TO CYLINDER INT 14H - SERIAL PORT 01H - SEND OUT Busca de cilindro AH = 04hAH = 0ChONE CHARACTER AL = 0 desliga o click CH = 8 bits inferiores do cilindro escreve na porta serial = 1 liga o click CL = 2 bits superiores do cilindro nos bits 6 e 7 AH = 01hDH = cabeça DL = driveAL = dado a ser enviado INT 17H - PRINTER 00H - OUTPUT retorna: sucesso: CF = 0 AH = 00 AL = n° de set. CHARACTER DX = endereço da porta Envia um caracter para a porta da erro: CF = 1 e AH = statusretorna: AH = status da porta impressora e retorna o status da operação. INT 14H - SERIAL PORT 02H - RECEIVE ONE INT 13H - DISK 0DH - ALTERNATE DISK RESET CHARACTER AH = 00hAL = código do caracter Inicializa disco rígido do sistema leitura da porta serial AH = 0DhAH = 02hDX = porta da impressora (0 a 3) DL = drive (80h..FFh) disco rígido DX = endereço da porta Retorna: retorna: sucesso: CF = 0 AH = 00 AL = n° de set. retorna: AH = status da porta AH = statuserro: CF = 1 e AH = status0 = impressão suspensa AL = caracter recebido1 = não é usado INT 14H - SERIAL PORT 03H - GET SERIAL 2 = não é usado STATUS PORT 3 = erro de I/OObtém o status da porta serial 4 = impressora selecionada AH = 03h5 = falta de papelDX = porta serial6 = reconhecimentoretorna: AH = status da porta 7 = impressora não está pronta (busy) AL = status do modem

INT 13H - DISK 10H - TEST FOR DRIVE

Formata uma trilha defeituosa (XT)

INT 16H - KEYBOARD 00H - READ CHAR

INT 17H - PRINTER 01H - INITIALIZE Inicializa a porta de impressão.

DX = porta da impressora (0 a 3)

Retorna:

AH = status

- 0 = impressão suspensa
- 1 = não é usado
- 2 = não é usado
- 3 = erro de I/O
- 4 = impressora selecionada
- 5 = falta de papel
- 6 = reconhecimento
- 7 = impressora não está pronta (busy)

INT 17H - PRINTER 02H - GET STATUS

Obtém o status corrente da impressora especificada.

AH = 02h

DX = porta da impressora (0 a 3) Retorna:

AH = status

- 0 = impressão suspensa
- 1 = não é usado 2 = não é usado
- 3 = erro de I/O
- 4 = impressora selecionada 5 = falta de papel
- 6 = reconhecimento
- 7 = impressora não está pronta (busy)

INT 18H - TRANSFER TO ROM BASIC

Esta interrupção transfere o funcionamento do sistema para o BASIC presente na ROM do microcomputador. Não há retorno e nem necessidade de parâmetros de chamada.

INT 19H - DISK BOOT

Provoca a execução da sequência de boot a partir de uma unidade de disco (fixo ou floppy).

INT 1AH - CLOCK 00H - GET TIME OF DAY

Obtém os valores do controlador do relógio do sistema.

AH = 00h

Retorna:

 $CX \cdot DX = contador$

AL = 0 se ainda não se passaram 24h da última

INT 1AH - CLOCK 01H - SET TIME OF DAY Ajusta o contador do relógio.

AH = 01h

CX:DX = contador

Nota: O contador do relógio é incrementado a uma taxa de 18.2 vezes por segundo.

INT 1AH - CLOCK 02H - READ REAL TIME CLOCK

Lê a hora atual no chip CMOS.

AH = 02h

Retorna:

CH = hora (em formato BCD)

CL = minutos (em formato BCD)

DH = segundos (em formato BCD) DL = 0 se horário padrão e 1 se DST (Daylight

CF = 0 = relógio funcionando e 1 = relógio parado

INT 1AH - CLOCK 03H - SET REAL TIME

CLOCK

Atualiza a hora no chip CMOS.

AH = 03h

CH = hora (em formato BCD)

CL = minutos (em formato BCD)

DH = segundos (em formato BCD)

DL = 0 se horário padrão e 1 se DST (Daylight Saving Time)

INT 1AH - CLOCK 04H - READ DATE FROM REAL TIME CLOCK

Lê a data atual no chip CMOS.

AH = 04h

Retorna:

DL = dia (em formato BCD)

 $DH = m\hat{e}s$ (em formato BCD)

CL = ano (em formato BCD) CH = século (19h ou 20h)

CF = 0 = relógio funcionando e 1 = relógio parado

INT 1AH - CLOCK 05H - SET DATE IN REAL TIME CLOCK

Atualiza a data no chip CMOS.

AH = 05h

DL = dia (em formato BCD)

 $DH = m\hat{e}s$ (em formato BCD) CL = ano (em formato BCD)

CH = século (19h ou 20h)

INT 1AH - CLOCK 06H - SET ALARM

Ajusta a hora para disparar o despertador baseado no relógio CMOS.

AH = 06h

CH = hora (em formato BCD)

CL = minutos (em formato BCD)

DH = segundos (em formato BCD)

Retorna:

CF = 1 se o alarme já estiver ajustado ou o relógio fora de operação

A INT 24 será chamada na hora ajustada, a cada 24h até que o alarme seja desligado.

INT 1AH - CLOCK 07H - RESET ALARM Desliga o alarme.

AH = 07h

INT 1AH - CLOCK 0AH - READ SYSTEM-TIMER DAY COUNTER

Lê o contador de dias do relógio CMOS.

AH = 0Ah

Retorna:

CF = flag de erro

CX = contagem de dias desde 01/01/80

INT 1AH - CLOCK 0BH - SET SYSTEM-TIMER DAY COUNTER

Ajusta o contador de dias do relógio CMOS.

AH = 0Bh

CX = contagem de dias desde 01/01/80

INT 1BH - CTRL-BREAK KEY

Esta interrupção é chamada quando as rotinas de scanning do teclado detectam o pressionamento das teclas CTRL e BREAK. Normalmente ela seta o flag de Control-C e salta para INT 23h.

INT 1CH - CLOCK TICK

Esta interrupção é chamada no final de cada atualização do relógio efetuada (ciclo). Normalmente ela aponta para uma situação IRET.

INT 1DH - 6845 VIDEO INIT TABLES

Vetor que aponta para a tabela de parâmetros do vídeo.

INT 1EH - DISKETTE PARAMS (BASE Parâmetro default para o sistema de

disquetes. Normalmente aponta para o endereço F000:EFC7.

INT 1FH - GRAPHICS SET 2

Aponta para a matriz de caracteres cujo código ASCII está acima do valor 128.

INT 20H - PROGRAM TERMINATION

Encerra a execução do programa e devolve controle ao sistema (COMMAND.COM) restaura os valores originais dos handles e erro crítico, Control-C e término de programa. Não requer nenhum parâmetro para ser chamada.

INT 21H - DOS 00H - PROGRAM TERMINATION

Encerra o programa e retorna ao DOS. Esta interrupção funciona de forma semelhante ao INT 20h. porém ela não fecha os arquivos que estejam abertos. O programa do usuário deve executar essas tarefas antes do encerramento. Os programas mais modernos usam 4Ch para encerrar a operação.

AH = 00h

INT 21H - DOS 01H - KEYBOARD INPUT

Espera a digitação de um caracter, devolvendo seu código ASCII no registrador AL. Caso AL seja igual a zero, trata-se de uma tecla especial. Neste caso , a função deve ser novamente chamada, para que se obtenha o código ASCII da tecla. O caracter recebido em AL é apresentado também na tela.

AH = 01h

Retorna:

AL = código ASCII da tecla

Nota: Control Break é verificada e se estiver pressionada a INT 23h é executada.

INT 21H - DOS 02H - DISPLAY OUTPUT

Envia para a tela o caracter cujo código ASCII esteja carregado no registrador DL.

AH = 02h

DL = caracter

INT 21H - DOS 03H - AUX INPUT

Recebe um caracter da porta de comunicação (geralmente COM1).

AH = 03h

Retorna:

AL caracter recebido

INT 21H - DOS 04H - AUX OUTPUT

Envia um caracter pela porta de comunicação (geralmente COM1).

AH = 04h

DL = caracter a enviar

INT 21H - DOS 05H - PRINTER OUTPUT

Envia um caracter pela porta paralela (geralmente LPT1).

AH = 05hDL = caracter a imprimir

INT 21H - DOS 06H - DIRECT CONSOLE I/O

Lê o teclado e sinaliza (Zero Flag = 0) se há uma tecla pressionada. Caso exista, seu código estará no registrador AL. Se o registrador DL for diferente de 0FFh, irá ecoas o caracter na tela.

AH = 06h

DL = FFh

Retorna:

AL = código da tecla

ZF = 1

Não há tecla pressionada

INT 21H - DOS 07H - DIRECT INPUT Semelhante à função 06h, porém não ecoa o

AH = 07h

Retorna: AL = caracter

caracter na tela.

INT 21H - DOS 08H - KEYBOARD INPUT Semelhante à função 07h, porém checa se

Control Break foi pressionado. AH = 08h

Retorna:

AL = caracter

INT 21H - DOS 09H - PRINT STRING

Imprime a mensagem apontada por DS:DX e terminada pelo caracter "\$".

AH = 09hDS:DX = string

INT 21H - DOS 0AH - BUFFERED KEYBOARD

Recebe um conjunto de caracteres digitados pelo teclado e coloca-os em um buffer apontado por DS:DX. O primeiro byte deste buffer deve conter a quantidade máxima de caracteres que serão recebidos. Ao retornar, o segundo byte conterá a quantidade efetiva de caracteres recebidos, que estarão do terceiro byte em diante e serão finalizados pelo código 0Dh. Este código não entra na contagem de caracteres.

AH = 0AhDS:DX = buffer

INT 21H - DOS 0BH - CHECK STANDARD INPUT STATUS

Verifica se existe um caracter no buffer de teclado pronto para ser lido.

AH = 0Bh

Retorna:

AL = FFh existe caracter no buffer

= 00h não há caracter

INT 21H - DOS 0CH - CLEAR KEYBOARD BUFFER

Limpa o buffer de teclado e executa a função especificada no registrador AL.

AH = 0Ch

AL = função (1,6,7,8, ou 0Ah)

Nota: Esta função previne erros cometidos por usuários apressados que mantém a tecla ENTER pressionada demasiadamente ou que a pressionam diversas vezes

INT 21H - DOS 0DH - DISK RESET

Descarrega todos os buffers de gravação que ainda contenham dados. O programa deve fechar os arquivos antes dessa função. Reseta o disco, ou seja, ajusta o acionador para a trilha 0. Deve ser usada sempre que o programa solicita a troca de disquetes.

AH = 0Dh

INT 21H - DOS 0EH - SELECT DISK

Seleciona a unidade de disco usada como default.

DL = número do drive (0=A, 1=B, etc)

Retorna:

AL = número de unidades lógicas disponíveis

INT 21H - DOS 0FH - OPEN DISK FILE

Abre um arquivo. AH = 0Fh

DS:DX = FCB

Retorna:

AL = 00h encontrou o arquivo

= FFh não encontrou o arquivo

INT 21H - DOS 10H - CLOSE DISK FILE Fecha um arquivo.

AH = 10hDS:DX = FCB

Retorna: AL = 00h Operação com sucesso

= FFh não encontrou o arquivo

INT 21H - DOS 11H - SEARCH FIRST USING

Procura pela primeira ocorrência de um determinado nome de arquivo.

AH = 11hDS:DX = FCB

Retorna:

AL = 00h encontrou o arquivo

= FFh não encontrou o arquivo

INT 21H - DOS 12H - SEARCH NEXT USING FCB

Continua a procura pelo nome de arquivo.

AH = 12hDS:DX = FCB

Retorna:

AL = 00h encontrou o arquivo = FFh não encontrou o arquivo

INT 21H - DOS 13H - DELETE FILE via FCB Apaga um determinado programa do

AH = 13h

DS:DX = FCB

Retorna:

AL = 00h encontrou o arquivo = FFh não encontrou o arquivo

INT 21H - DOS 14H - SEQUENTIAL DISK FILE **READ**

Lê um registro do arquivo aberto.

AH = 14h

DS:DX = FCB

Retorna:

= 0 leitura com sucesso

= 1 final do arquivo

= 2 área de transferência muito pequena

= 3 encontrou marca EOF

INT 21H - DOS 15H - SEQUENTIAL DISK RECORD WRITE

Grava um registro no arquivo aberto.

AH = 15hDS:DX = FCB

Retorna:

AL = 0 escrita com sucesso

= 1 disco cheio

= 2 área de transferência muito pequena

INT 21H - DOS 16H - CREATE A DISK FILE Cria um arquivo no disco.

AH = 16h

DS:DX = FCB

Retorna:

= 00h sucesso

= FF diretório cheio

Nota: Se o arquivo já existir ele terá seu tamanho reduzido a zero.

INT 21H - DOS 17H - RENAME FILE via FCB

Renomeia um arquivo.

AH = 17h

DS:DX = FCB

Retorna:

AL = 00h sucesso

= FF não achou o arquivo

Nota: O FCB contém o novo nome para o arquivo a partir do byte 17h.

INT 21H - DOS 18H - UNUSED (DOS internal)

AH = 18hRetorna: AL = 00h

INT 21H - DOS 19H - GET DEFAULT DISK NUMBER

Obtém o código do drive default.

AH = 19h

Retorna:

AL = número do drive (0=A, 1=B, etc)

INT 21H - DOS 1AH - SET DISK TRANSFER

AREA ADDRESS

Permite mudar o endereço do DTA para um determinado arquivo.

AH = 1Ah

DS:DX = endereço do novo buffer

INT 21H - DOS 1BH - ALLOCATION TABLE INFORMATION

Obtém informações sobre o disco.

AH = 1Bh

Retorna:

DS:BX = aponta para a marca FAT ID do drive

default

DX = quantidade de clusters do disco AL = quantidade de setores por cluster

CX = quantidade de bytes por setor

INT 21H - DOS 1CH - ATI FOR SPECIFIC DEVICE

Obtém informações sobre um determinado drive.

AH = 1Ch

DL = número do drive (0=A, 1=B, etc)

Retorna:

DS:BX = aponta para a marca FAT ID do drive

DX = quantidade de clusters do disco

AL = quantidade de setores por cluster CX = quantidade de bytes por setor

INT 21H - DOS 1DH - UNUSED (DOS internal)

AH = 1DhRetorna:

AL = 00h

INT 21H - DOS 1EH - UNUSED (DOS internal)

AH = 1EhRetorna:

AL = 00h

INT 21H - DOS 1FH - UNUSED (DOS internal)

AH = 1Fh

Retorna: AL = 00h

INT 21H - DOS 20H - UNUSED (DOS internal)

AL = 00h

AH = 20hRetorna:

INT 21H - DOS 21H - RANDOM DISK

RECORD READ Leitura aleatória de registro, em um arquivo

aberto.

AH = 21h

DS:DX = FCBRetorna:

= 0 leitura com sucesso = 1 final do arquivo

= 2 área de transferência muito pequena

= 3 encontrou marca EOF

INT 21H - DOS 22H - RANDOM DISK Obtém a data atual. RECORD WRITE AH = 32hLeitura aleatória de registro, em um arquivo AH = 2AhDL = número do drive (0 = default, 1=A, etc) aberto. Retorna: Retorna: DL = dia (1 a 31)AL = FF se o número do drive for inválido AH = 22h $DH = m\hat{e}s (1 \ a \ 12)$ DS:BX = endereço do bloco de parâmetros CX = ano (1980 a 2099) DS:DX = FCB00H - número do drive (0-A, etc) Retorna: AL = dia da semana (0 = domingo) 01H - número da unidade lógica AL = 0 leitura com sucesso 02H - bytes por setor INT 21H - DOS 2BH - SET CURRENT DATE = 1 final do arquivo = 2 área de transferência muito pequena 04H - número do último setor do cluster Ajusta o calendário. 05H - tamanho do cluster = 3 encontrou marca EOF AH = 2Bh06H - setores reservados para o boot INT 21H - DOS 23H - GET FILE SIZE DL = dia (1 a 31)08H - quantidade de cópias da FAT Obtém o tamanho do arquivo. $DH = m\hat{e}s (1 \ a \ 12)$ 09H - quantidade de entradas de diretório CX = ano (1980 a 2099) 0BH - primeiro setor de dados do disco AH = 23hRETORNA; 0DH - número do maior cluster do disco DS:DX = FCBAL = 00h sucesso 0FH - número de setores numa cópia da FAT = FFh um dos valores está incorreto 11H - primeiro setor da área de diretórios Retorna: 13H - endereço da unidade AL = 00h sucessoNota: As versões acima do DOS 3.3 também = FF não achou o arquivo 17H - byte descritor da mídia atualizam o relógio CMOS. Nota: Ao chamar esta INT, o FCB deve ser INT 21H - DOS 33H - CONTROL-BREAK inicializado, com seus respectivos campos zerados. INT 21H - DOS 2CH - GET CURRENT TIME CHECKING Ao retornar, esses mesmos campos conterão a Obtém a hora atual. Ativa/desativa o uso da tecla Control Break. quantidade de registros do arquivo. Cada registro AH = 2ChAH = 33hneste sistema, possui 128 bytes. AL = subfunção Retorna: INT 21H - DOS 24H - SET RANDOM RECORD CH = horas00h obtém o estado da tecla CL = minutos01h ajusta o funcionamento Determina um campo qualquer do arquivo DH = segundosDL = 0 desliga como bloco atual. DL = centésimos de segundos = 1 liga Retorna: Nota: a hora é atualizada pelo sistema DL = estado atual da tecla AH = 24h= 0 CTRL BREAK desligado DS:DX = FCBaproximadamente a cada 0,05 segundos. = 1 CTRL BREAK ligado Nota: O arquivo já deve ter sido aberto. INT 21H - DOS 2DH - SET CURRENT TIME AL = FFh ocorreu erro Ajusta o relógio. INT 21H - DOS 25H - SET INTERRUPT INT 21H - DOS 3305- GET BOOT DRIVE AH = 2DhVECTOR funciona nas versões do DOS acima da 4.0. CH = horas Altera o endereço de desvio de um determinado vetor de interrupção. CL = minutosDH = segundosAH = 3305hAH = 25hDL = centésimos de segundos Retorna: AL = número da interrupção DL = boot drive (1=A, etc) RETORNA; DS:DX = endereço da nova rotina AL = 00h sucesso= FFh um dos valores está incorreto INT 21H - DOS 26H - CREATE PSP Nota: As versões acima do DOS 3.3 também Permite a criação de segmentos para AH = 34hprocessar overlays. atualizam o relógio CMOS. VECTOR INT 21H - DOS 2EH - SET VERIFY FLAG DX = número do segmento Ativa o modo de verificação de gravação interrupção. após cada escrita no disco. AH = 35hNota: esta int está obsoleta, sendo substituída pela AH = 2EhAL = número da intDL = 00hRetorna: INT 21H - DOS 27H - RANDOM BLOCK READ = 1 VERIFY ligado ES:BX = endereço do vetor Leitura aleatória de bloco de arquivo. = 0 VERIFY desligado INT 21H - DOS 36H - GET DISK SPACE INT 21H - DOS 2FH - GET DTA ADDRESS Obtém informações sobre o espaço livre em AH = 27hDS:DX = FCBObtém o endereço da DTA (área de transferência do disco). CX = quantidade de registros AH = 36h

Retorna: AL = 0 leitura com sucesso = 1 final do arquivo

= 2 área de transferência muito pequena

= 3 encontrou marca EOF

INT 21H - DOS 28H - RANDOM BLOCK WRITE

Escrita aleatória de bloco de arquivo.

DS:DX = FCBCX = quantidade de registros Retorna: AL = 0 leitura com sucesso

= 1 final do arquivo

= 2 área de transferência muito pequena

= 3 encontrou marca EOF

INT 21H - DOS 29H - PARSE FILENAME

AH = 29hDS:SI = string ES:DI = buffer de FCB AL = máscara de controle INT 21H - DOS 2AH - GET CURRENT DATE ES:BX = endereço da DTA INT 21H - DOS 30H - GET DOS VERSION Obtém a versão atual do DOS instalado no

AH = 2Fh

Retorna:

sistema.

Stay Resident)

AH = 30hRetorna: AL = número inteiro da versão (0 se DOS 1.x) AH = número decimal da versão BH = OEM - 00h IBM, 16h DEC

INT 21H - DOS 31H - TSR Encerra a operação do programa, porém permanece residente na memória (Terminate and

AH = 31hAL = código de retorno DX = tamanho do programa em blocos de 16 bytes

INT 21H - DOS 32H - GET DRIVE PARAMETER BLOCK

Informa qual é o drive usado como boot. Só INT 21H - DOS 34H - UNUSED (DOS internal) INT 21H - DOS 35H - GET INTERRUPT Obtém o endereço atual de uma determinada

DL = drive (0=default, 1=A, etc) Retorna: AX = número de setores por cluster BX = número de clusters disponíveis CX = bytes por setorDX = número total de clusters Nota: AX*CX*BX = bytes livres no disco, AX*CX*DX = área total do disco

INT 21H - DOS 37H - UNUSED (DOS internal)

AH = 37hRetorna:

INT 21H - DOS 38H - UNUSED (DOS internal) AH = 38h

Retorna:

AH = 39hAH = 4Aharquivo aberto. DS:DX = nome do diretório ES = segmento do bloco reservado AH = 42hBX = novo tamanho, em blocos de 16 bytes Retorna: CF = 1 se ocorreu erro AL = 0 : a partir do início do arquivo Retorna: = 1 : a partir da posição atual CF = 1 erroINT 21H - DOS 3AH - REMOVE A = 2 : a partir do final do arquivo AX = código do erro BX = tamanho máximo a ser alocado DIRECTORY ENTRY (RMDIR) BX = handle do arquivo CX:DX = deslocamento a partir da posição de AL INT 21H - DOS 4BH - LOAD OR EXECUTE AH = 3AhRetorna: DS:DX = nome do diretório CF = 0 sucesso Permite carregar e/ou executar arquivos DX:AX = posição atual do ponteiro Retorna: overlays ou .EXE na memória reservada. CF = 1 se ocorreu erro INT 21H - DOS 43H - FILE ATTRIBUTES AH = 4BhINT 21H - DOS 3BH - CHANGE THE AL = 0 carrega e executa CURRENT DIRECTORY (CHDIR) Obtém/ajusta os atributos de um arquivo. = 1 apenas carrega = carrega overlay (não cria PSP) DS:DX = nome do arquivo AH = 43hAH = 3BhDS:DX = nome do diretório ES:BX = bloco de parâmetros AL = 0 : obtém os atributos do arquivo = 1 : ajusta os atributos do arquivo Retorna: CF = 1 se ocorreu erro CX = atributosINT 21H - DOS 4CH - QUIT WITH EXIT CODE DS:DX = nome de arquivo Encerra o programa em andamento, fecha INT 21H - DOS 3CH - CREATE A FILE todos os arquivos abertos e retorna ao DOS, ou ao Retorna: programa chamador, com um código de retorno. CF = 0 sucesso AH = 3ChCX = atributos do arquivo AH = 4ChCX = atributosINT 21H - DOS 44H - IOCTL - GET DEVICE bit 0 = read onlyAL = código de retorno 1 = hiddenINFOEMATION Funções e subfunções específicas. INT 21H - DOS 4DH - GET EXIT CODE OF 2 = systemSUBPROGRAM 3 = volume label4 = subdiretório AH = 44h5 = arquivo AH = 4DhDS:DX = nomeINT 21H - DOS 45H - CREATE DUPLICATE Retorna: AL = código de retorno (função 31h ou 4Ch) Retorna: HANDLE CF = 0 sucesso Devolve um novo número (handle) que se AH = 0 fim normal do programa = 1 control C AX =handle do arquivo refere ao mesmo arquivo. = 2 o DOS encerrou devido a erro Nota: se o arquivo já existir ele terá seu tamanho AH = 45h= 3 TSRBX = handle do arquivo reduzido a zero. INT 21H - DOS 4EH - FIND FIRST ASCIZ Retorna: INT 21H - DOS 3DH - OPEN FILE CF = 0 sucesso Procura a primeira ocorrência do arquivo. AX = novo handle do arquivo AH = 3DhAH = 4EhINT 21H - DOS 46H - FORCE DUPLICATE CX = atributosAL = código de acesso DS:DX = nome do arquivo 0 = só leitura HANDLE 1 = só escrita Força dois handles já existentes se referirem Retorna: CF = 0 sucesso 2 = escrita/leitura ao mesmo arquivo. DS:DX = nome do arquivo DTA aponta para o bloco de parâmetros: AH = 46hRetorna: bytes 0 a 20 - área usada pelo DOS BX = handle do arquivo CF = 0 sucesso byte 21 - atributo de arquivo bytes 22 e 23 - hora da criação do arquivo AX = handle do arquivo AX = novo handle do arquivo bytes 24 e 25 - data da criação Retorna: bytes 26 a 29 - tamanho do arquivo (em bytes) INT 21H - DOS 3EH - CLOSE FILE CF = 0 sucesso bytes 30 a 42 - nome do arquivo.extensão AH = 3EhINT 21H - DOS 47H - GET CURRENT BX = handle do arquivoDIRECTORY INT 21H - DOS 4FH - FIND NEXT ASCIZ Continua a procura pelo nome de arquivo. Retorna: CF = 0 sucesso AH = 47hDL = drive (0=default, 1=A, etc) INT 21H - DOS 3FH - READ FILE DS:SI = aponta para um buffer de 64 bytes DTA aponta para o bloco de parâmetros: Retorna: AH = 3FhINT 21H - DOS 50h a 53H - UNUSED (DOS CF = 0 sucesso BX = handle do arquivo CX = quantidade de bytes INT 21H - DOS 48H - ALLOCATE MEMORY As informações sobre estas ints variam entre as versões do DOS. DS:DX = buffer de leitura Reserva uma área para carregar overlays. Retorna: INT 21H - DOS 54H - GET VERIFY FLAG AH = 48hCF = 0 sucesso AX = número de bytes lidos BX = quantidade de blocos de 16 bytes Retorna: AH = 54hINT 21H - DOS 40H - WRITE FILE CF = 1 erroAX = código do erro AL = 0 flag de verificação está desligado AH = 40hBX = tamanho máximo a ser alocado AL = 1 flag de verificação está ligado BX = handle do arquivo CX = quantidade de bytes INT 21H - DOS 49H - FREE MEMORY INT 21H - DOS 55H - UNUSED (DOS internal) DS:DX = buffer de escritaLibera para uso o bloco de memória INT 21H - DOS 56H - RENAME A FILE Retorna: reservada pela função 48h. CF = 0 sucesso AX = número de bytes escritos AH = 49hAH = 56hES = segmento da área a ser liberado DS:DX = nome do arquivo INT 21H - DOS 41H - DELETE FILE Retorna: ES:DI = novo nome para o arquivo CF = 1 erro Retorna: AH = 41hCF = 1 erroDS:DX = nome do arquivo Retorna: CF = 0 sucesso

INT 21H - DOS 42H - MOVE READ/WRITE

Move o ponteiro de leitura/escrita do

POINTER

INT 21H - DOS 39H - CREATE A

SUBDIRECTORY (MKDIR)

INT 21H - DOS 4AH - ADJUST MEMORY

BLOCK SIZE

INT 21H - DOS 57H - GET/SET FILE'S DATE/TIME

AH = 57h

AL = 00 - obtém a hora

01 - altera segundo CX e DX

BX = handle do arquivo

Retorna:

CF = 0 sucesso

CX = b15-b11: hora

b10-b5: minutos

b4-b0: segundos/2

DX = b15-b11: ano b10-b5: mês

b4-b0: dia

INT 21H - DOS 58H - GET/SET MEMORY ALLOCATION STRATEGY

Obtém ou altera o modo de alocação de blocos de memória.

AH = 58h

AL = 0: obtém modo

1: define modo

BL = modo

0 first fit - a partir da posição mais baixa da memória

1 best fit - procura o menor bloco que satisfaça 2 last fit - a partir da posição mais alta

Retorna: CF = 1 erro

INT 21H - DOS 59H - GET EXTENDED ERROR

AH = 59h

BX = 0000h

Retorna:

AX = código do erro

BH = classe do erro

BL = ação recomendada

CH = lugar onde ocorreu o erro

CL, DX, SI, DI, BP, DS, e ES são alterados

INT 21H - DOS 5AH - CREATE UNIQUE FILE

Cria um arquivo temporário. O programa não precisa fornecer o nome.

AH = 5Ah

DS:DX = buffer contendo o nome do

drive/diretório

CX = atributo de arquivo Retorna:

CF = 1 error

Nota: O arquivo não é apagado ao terminar o programa.

INT 21H - DOS 5BH - CREATE NEW FILE

Substitui a função 3Ch. Se o arquivo já existir ele não é apagado e a função retorna um erro ao operador.

AH = 5Bh

DS:DX = nome do arquivo

CX = atributo do arquivo

Retorna:

CF = 1 erro

INT 21H - DOS 5CH - LOCK/UNLOCK FILE ACCESS

Bloqueia ou libera uma área do arquivo. Esta função é para ser usada com redes ou em ambientes multiusuário.

AH = 5Ch

AL = 00h bloqueia

01h desbloqueia BX = handle do arquivo

CX:DX = início da área a ser bloqueada

SI:DI = tamanho

Retorna: CF = 1 erro INT 33H - MOUSE 00H - RESET DRIVER AND READ STATUS

Reseta as coordenadas e parâmetros do mouse. Se o cursor estiver visível ele será oculto e o contador de apresentação é ajustado para -1. São desativadas as interrupções de eventos (menos aquelas que foram instaladas pela função 18h).

AX = 0000h

Retorna:

AX = 0 - hardware/driver não instalado

1 - hardware/driver instalado

BX = quantidade de botões 0 - diferente de dois

1 - dois botões

3 - Mouse Systems mouse

INT 33H - MOUSE 01H - SHOW MOUSE CURSOR

Incrementa o contador de apresentação e mostra o cursor do mouse na sua posição atual, caso o contador seja 0.

INT 33H - MOUSE 02H - HIDE MOUSE **CURSOR**

Decrementa o contador de apresentação e esconde o cursor do mouse. Chamadas múltiplas à esta função exigem uma quantidade igual de chamadas à função 01h.

AX = 0002h

INT 33H - MOUSE 03H - POSITION AND **BUTTON STATUS**

Devolve a posição e a situação dos botões

AX = 0003h

Retorna:

BX - bit 0 = 1 - botão esquerdo pressionado

bit 1 = 1 - botão direito pressionado

bit 2 = 1 - botão do meio pressionado

CX = colunaDX = linha

INT 33H - MOUSE 04H - POSITION MOUSE **CURSOR**

Coloca o mouse na posição desejada.

AX = 0004h

CX = coluna

DX = linha

Nota: As coordenadas estarão sempre dentro da área delimitada pelas funções 7 e 8.

INT 33H - MOUSE 05H - RETURN BUTTON PRESS DATA

Verifica a situação dos botões do mouse.

AX = 0005h

BX - bit 0 = 1 - botão esquerdo

bit 1 = 1 - botão direito

bit 2 = 1 - botão do meio

Retorna: AX - bit 0 = 1 - botão esquerdo pressionado

bit 1 = 1 - botão direito pressionado

bit 2 = 1 - botão do meio pressionado

BX = quantas vezes o botão especificado foi

pressionado desde a última verificação. CX = coluna da posição quando o botão foi

pressionado da última vez. DX = linha da posição quando o botão foi pressionado da última vez.

INT 33H - MOUSE 06H - RETURN BUTTON RELEASE DATA

Verifica a situação dos botões do mouse.

AX = 0006h

BX - bit 0 = 1 - botão esquerdo

bit 1 = 1 - botão direito

bit 2 = 1 - botão do meio

Retorna:

AX - bit 0 = 1 - botão esquerdo pressionado

bit 1 = 1 - botão direito pressionado

bit 2 = 1 - botão do meio pressionado

BX = quantas vezes o botão especificado foi liberado desde a última verificação.

CX = coluna da posição quando o botão foi liberado da última vez.

DX = linha da posição quando o botão foi liberado da última vez.

INT 33H - MOUSE 07H - DEFINE HORIZONTAL CURSOR RANGE

Estabelece os limites horizontais da área de atuação do mouse.

AX = 0007h

CX = coluna mínima

DX = coluna máxima

INT 33H - MOUSE 08H - DEFINE VERTICAL CURSOR RANGE

Estabelece os limites verticais da área de atuação do mouse.

AX = 0008h

CX = linha mínima

DX = linha máxima

INT 33H - MOUSE 09H - DEFINE GRAPHICS CURSOR

Define a forma e o centro do cursor.

AX = 0009h

BX = coluna do apontador

CX = linha do apontador

ES:DX = bitmap da máscara do cursor

Nota: o cursor gráfico é formado por um bloco de 16x16 pixels (32 bytes). As coordenadas do apontador indicam o ponto principal do cursor.

INT 33H - MOUSE 0AH - DEFINE TEXT CURSOR

Define o cursor para os modos texto e seleciona entre o cursor do drive e o cursor da controladora de vídeo.

AX = 000Ah

BX = 0 cursor por software

CX = máscara de atributos de tela

DX = máscara de atributos do cursor BX = 1 cursor por hardware

DX = linha final do cursor

CX = linha inicial do cursor

INT 33H - MOUSE 0BH - READ MOTION COUNTERS

Lê os contadores de movimento do cursor, em unidades chamadas mickey. Um mickey é o menor deslocamento que o mouse pode detectar.

AX = 000Bh

Retorna:

CX = quantidade de mickeys horizontais desde a última chamada desta função

DX = quantidade de mickeys verticais desde a última chamada desta função

INT 33H - MOUSE 0CH - INTERRUPT SUBROUTINE PARAMETERS

Define as subrotinas de interrupção do mouse.

AX = 000Ch

CX = bit 0 = 1- chamar se o mouse mover

bit 1 = 1- chamar se botão esquerdo ressionado

bit 2 = 1- chamar se botão esquerdo liberado bit 3 = 1- chamar se botão direito pressionado

bit 6 = 1- chamar se botão do meio liberado ES:DX = endereço da subrotina

Nota: quando a subrotina é executada os seguintes parâmetros estão disponíveis:

AX = máscara de interrupção

 $BX = status \ dos \ botões$

CX = coluna do cursor

DX = linha do cursor

SI = contador horizontal de mickeys DI = contador vertical de mickeys

INT 33H - MOUSE 0DH - LIGHT PEN EMULATION ON

Liga o modo de emulação da caneta ótica, ou seja, as chamadas às interrupções da caneta serão interpretadas normalmente. Os botões do mouse (pressionados) indicam que a caneta está na tela.

AX = 000Dh

INT 33H - MOUSE 0EH - LIGHT PEN EMULATION OFF

Desliga o modo de emulação da caneta ótica.

AX = 000Eh

INT 33H - MOUSE 0FH - MICKEY/PIXEL

Define a relação mickey/pixel.

AX = 000Fh

CX = quantidade de mickeys por 8 pixels horizontais (default = 8)

DX = quantidade de mickeys por 8 pixels verticais (default = 16)

INT 33H - MOUSE 10H - DEFINE SCREEN REGION

Define uma área na tela que será restaurada. Se o mouse estiver dentro dela ele será oculto e deverá ser reapresentado pela função 1 novamente.

AX - 0010h

CX,DX = x,y do canto superior esquerdo SI,DI = x,y do canto inferior direito

INT 33H - MOUSE 14H - EXCHANGE SUBROUTINES

Troca os parâmetros de interrupções do

AX = 0014h

CX = máscara (veja função 000Ch) ES:DX = endereço da nova rotina

Retorna:

CX = máscara definida anteriormente ES:DX = endereço da rotina anterior INT 33H - MOUSE 18H - ALTERNATE MOUSE USER HANDLER

Define até três subrotinas de interrupção

AX = 0018h

CX = bit 0 = 1- chamar se ALT for pressionada

bit 1 = 1- chamar se CTRL for pressionada bit 2 = 1- chamar se SHIFT for pressionada bit 3 = 1- chamar se botão esquerdo for

pressionado bit 4 = 1- chamar se botão direito for

pressionado bit 5 = 1- chamar se botão esquerdo for

ES:DX = endereço da rotina

INT 33H - MOUSE 19H - USER ALTERNATE INTERRUPT VECTOR

Obtém o endereço da rotina de interrupção alternativa.

AY = 0.010b

CX = máscara de definição

Retorna:

BX:DX = endereço da rotina CX = máscara de definição

FCB - Standard DOS File Control Block

Offset	Size	Description
-7	byte	if FF this is an extended FCB *
-6	5 bytes	reserved *
-1	byte	file attribute if extended FCB *
00	byte	drive number (0 for default drive, 1=A:, 2=B:,)
01	8 bytes	filename, left justified with trailing blanks
09	3 bytes	filename extension, left justified w/blanks
0C	word	current block number relative to beginning of the file, starting with zero
0E	word	logical record size in bytes
10	dword	file size in bytes
14	word	date the file was created or last updated (Intel reverse order)
15		year (+1980) [7 bits], month (1-12) [4 bits] e day (1-31) [5 bits]
16	word	time of last write (Intel reverse order)
17		hours (0-23) [5 bits], minutes (0-59) [6 bits] e secs (in 2 second increments) [5 bits]
18	8 bytes	see below for version specific information *
1A	dword	address of device header if character device *
20	byte	current relative record number within current BLOCK
21	dword	relative record number relative to the beginning of the file, starting with zero; high bit
		omitted if record length is 64 bytes

DOS 2.x Values for reserved fields at offsets 18h-1Ah *

Offset	Size	Description
18	byte	bit $7 = 1 \Rightarrow$ logical device, bit $6 = 1 \Rightarrow$ open, bit 5 a bit $0 \Rightarrow$ unknown
19	word	starting cluster number

DOS 3.x Values for reserved fields at offsets 18h-19h *

Offset	Size	Description
18	byte	System File Table (SFT) entry for file *
19	byte	bit 7 e bit 6 => share status, bit 5 a bit 0 => unknown
		00 = SHARE not loaded block device
		01 = SHARE not loaded characted device
		10 = SHARE loaded, remote file
		11 = SHARE loaded local file

DOS 3.x with SHARE, local file reserved offsets 1Ah-1Eh *

Offset	Size	Description
1A	word	starting cluster number
1C	word	offset within SHARE of sharing record
1E	byte	file attribute

DOS 3.x with SHARE, remote file reserved offsets 1Ah-1Eh *

Offset	Size	Description
1A	word	sector number containing directory entry
1C	word	last cluster accessed relative to beginning of file
1E	byte	absolute cluster number of last cluster accessed

DOS 3.x without SHARE reserved offsets 1Ah-1Fh *

Offset	Size	Description
1A	byte	((device attribute word low byte) & 0Ch) (open mode)
1B	word	starting cluster number
1D	word	sector number containing directory entry
1F	byte	number of directory entry within sector

The following are FCB related DOS functions:

INT 21,0F	Open file using FCB
INT 21,10	Close file using FCB
INT 21,11	Search for first entry using FCB
INT 21,12	Search for next entry using FCB
INT 21,13	Delete file using FCB
INT 21,14	Sequential read using FCB
INT 21,15	Sequential write using FCB
INT 21,16	Create a file using FCB
INT 21,17	Rename file using FCB
INT 21,21	Random read using FCB
INT 21,22	Random write using FCB
INT 21,23	Get file size using FCB
INT 21,24	Set relative record field for FCB
INT 21,27	Random block read using FCB
INT 21,28	Random block write using FCB
INT 21,29	Parse filename for FCB

see: XFCB INT 21,52