Data analysis spatio-temporal data and hierarchical models

Bayesian Inference (Part two, Ch3)

Djemel Ziou

Plan

- Probability of things
- Generative learning
- Discriminative learning
- Bayesian inference
- Point estimation methods
- Approximations
- Feature selection
- References

Approximations

Why approximation?

- The central task of Bayesian inference is to specify the posterior $p(\Theta \mid X)$ and the expectations with regards to this distribution.
- It can be done by using exact algorithms.
- However, in many cases the time and space complexity of exact Bayesian inference algorithms are inacceptable
 - high dimensional space, intractable integral, exponential increasing of hidden state (discrete distribution).
- In these cases, approximations are required
 - Laplace approximation
 - variational approximation
 - Monte Carlo
 - search-based algorithms

Laplace approximation

- The idea is to approximate a given distribution of continuous variables with a Gaussian around a given value of parameters.
- Example
 - let us consider the case of the posterior $p(\Theta \mid D) = p(D \mid \Theta)p(\Theta) / \int_{\Omega} p(D \mid \Theta)p(\Theta)d\Theta$. We would like to approximate $p(D \mid \Theta)$. Let us assume that Θ * is the maximum likelihood.
 - by using 2^{st} order Taylor expansion of $\ln p(D \mid \Theta)$ around Θ^* , then $\ln p(D \mid \Theta) \approx \ln p(D \mid \Theta^*) + (\Theta \Theta^*)^t \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} \ln p(D \mid \Theta) |_{\Theta = \Theta^*} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} + (\Theta \Theta^*)^t \nabla_{\Theta} \nabla_{\Theta} + (\Theta -$
 - because $\nabla_{\Theta} \ln p(D \mid \Theta^*) = 0$, we can rewrite $p(D \mid \Theta) \approx p(D \mid \Theta^*) \exp(-(\Theta \Theta^*)^t(-\nabla_{\Theta} \nabla_{\Theta} p(D \mid \Theta))) \mid_{\Theta = \Theta^*} (\Theta \Theta^*)$.

Laplace approximation

- Example
 - we would like to estimate p(D) $p(D) = \int_{O} p(D \mid \Theta) p(\Theta) d\Theta$
 - let us set $f(\Theta) = p(D | \Theta)p(\Theta)$. According to the previous development $p(D) \approx \int_{\Omega} f(\Theta^*)G(\Theta, \Theta^*) d\Theta = f(\Theta^*)\int_{\Omega} G(\Theta, \Theta^*) d\Theta = f(\Theta^*)$ (2 π)^{d/2}/|H|^{1/2}, where H is the Hessian and G() the Gaussian form.
 - it follows that $\ln p(D) \approx \ln p(D \mid \Theta^*) + \ln p(\Theta^*) + d \ln (2\pi)/2 \ln |H|/2$
 - this is the Laplace Empirical Criterion (LEC) used for the model selection (see Model Selection).

Laplace approximation

- Laplace approximation is easy.
- It can be used only for continuous variables.
- It fails if there are several maxima.

- The idea of variational calculus is to specify a functional and to study it by varying the functions
 - example : $\min_{p(x)} \int_{\Omega} p(x) \log_2 p(x) dx + \lambda (1 \int_{\Omega} p(x)) dx$
- Variational calculus is used to find optimal distributions, functions, lines, curves, surfaces... Even if it is not intended to approximations, we can approximate the distributions or deal with bounds.

- The variational approximation of the posterior can be summarized by
 - Let X be the incomplete data and z a latent random vector, the likelihood:

$$\ln p(\mathbf{X} \mid \Theta) = \underbrace{\int q(z) \ln(\frac{p(\mathbf{X}, z \mid \Theta)}{q(z)}) dz}_{F(q, \Theta)} - \underbrace{\int q(z) \ln(\frac{p(z \mid \mathbf{X}, \Theta)}{q(z)}) dz}_{KL(q \mid p)}$$

where q(z) is some chosen distribution of the latent vector z.

• since $KL() \ge 0$, it follows that $\ln p(X|\Theta) \ge F(q,\Theta)$, then we can just maximize $F(q,\Theta)$ with regards to both q and Θ

- Example of EM algorithm
 - E step: $q_{ML}^t = \arg\max_q F(q, \Theta^t)$, it happens when KL()=0 it follows that $q_{ML}^t(z) = p(z \mid X, \Theta^t)$
 - M Step: $\Theta_{M}^{t+1} = \arg \max_{\theta} F(q_{ML}^t, \Theta)$
 - drawback: at convergence $p(z|X,\Theta_{ML}^{t+1}) \neq q_{ML}^{t}(z)$

- EM revisited
 - replacing $q^{t}(z) = p(z | X, \Theta^{t})$ in F() gives

$$F(q^{t}, \Theta) = \underbrace{\int p(z \mid \mathbf{X}, \Theta^{t}) \ln(p(\mathbf{X}, z \mid \Theta)) dz + cte}_{Q(\Theta, \Theta^{t}) = E_{p(z \mid \mathbf{X}, \Theta^{t})}(\ln(p(\mathbf{X}, z \mid \Theta)))}$$

- E step: compute $p(z|X,\Theta^t)$
- M Step: $\Theta^{t+1} = \arg \max_{\theta} Q(\Theta, \Theta^t)$
- drawback: $p(z|X,\Theta)$ can be unknown.

- Let us consider the complete data
- d-dimensional observations D=(X,Z),

$$\mathbf{X} = \begin{bmatrix} x_{11} & \dots & x_{1d} \\ \vdots & \ddots & \vdots \\ x_{N1} & \dots & x_{Nd} \end{bmatrix}$$

• we consider discreet the labels $Z = \{z_1, z_2, ... z_N\}$

$$Z = \begin{bmatrix} z_{11} & \dots & z_{1d} \\ \vdots & \ddots & \vdots \\ z_{N1} & \dots & z_{Nd} \end{bmatrix}$$

only one element of the raw is non zero (=1).

complete likelihood

$$p(D, Z \mid \theta) = \prod_{n=1}^{N} \prod_{k=1}^{M} (\alpha_k f(x_n \mid \theta_k))^{z_{nk}}$$

$$\ln(p(Z|D, \theta)) \propto \sum_{n=1}^{N} \sum_{k=1}^{M} z_{nk} \left(\ln(\alpha_k) + \ln(f(x_n|\theta_k)) \right)$$

- But z is unknown,
 - we need to use the posterior. Let us consider the nth raw

$$p(z_{nk}=1 | x_n, \theta) = p(x_n, z_{nk}=1 | \theta) p(z_{nk}=1) / \sum_{k=1}^{M} p(x_n, z_{nk}=1 | \theta)$$

$$= \alpha_k f(x_n | \theta_k) / \sum_{j=1}^{M} \alpha_j f(x_n | \theta_j)$$

• then

$$q_{ML}^{t}(z_{nk}=1) = p(z_{nk}=1|x_n, \Theta^t) = \alpha_k f(x_n|\theta_k^t) / \sum_{j=1}^{M} \alpha_j f(x_n|\theta_j^t)$$

$$F(q_{ML}^t, \Theta) = \sum_{n=1}^{N} E_z(\ln(p(x_n, z|\Theta))) = \sum_n \sum_k p(z_{nk} = 1|x_n, \Theta^t)(\ln \alpha_k + \ln f(x_n|\theta_k))$$

Example

$$\frac{\partial F}{\partial \mu_k} = \sum_{n} p(z_{nk} = 1 | x_n, \Theta^t) \frac{\frac{\partial f(x_n | \theta_k)}{\partial \mu_k}}{f(x_n | \theta_k)} = 0$$

if $f(x_n|\theta_k)$ is a Gaussian

$$\sum p(z_{nk}=1|x_n,\Theta^t)(x_n-\mu_k)=0$$

- K-means implement a clustering of data Two-phase process:
 - (1) Label identification: building a model that describes a predetermined set of classes of data.
 - (2) Classification: Use the model to assign a class to a new object.

• Label identification: Partition the set of samples into K separate clusters, each of which is represented by a center, the number K is chosen in advance.

The best partition is obtained by minimizing the dispersion within clusters defined by the following function:

$$J_{KM} = \sum_{i=1}^{N} \sum_{k=1}^{K} u_{ik} d(x_i, m_k)$$

where

- *N* number of samples
- *K* number de clusters
- x_i i^{th} sample
- m_k centre of the k^{th} cluster
- u_{ik} membership of x_i to the kth cluster (0 or 1)
- d() a similarity measure (e.g. distance).

Algorithm

Input: Data set X, number of clusters K

Output: A data partition (K clusters)

- 1. Randomly choose a center for each of the K clusters
- 2. Assign each sample to the cluster with the nearest center (using Euclidean distance)
- 3. Move each center to the average of the samples of the cluster
- 4. Repeat 2 to 3 until convergence (i.e. until all centers remain unchanged)

randomly choose 3 cluster centers

sample to the cluster where the center is the closest

> Y118

 m_1 **Y**2 Move each m_2 center toward the mean of the cluster m_2 m_3

Y1

The new centers

Move centers and re-assign samples Y2

No change, then convergence

Y1

23

• Classification: Assign each sample to the closest cluster by using the rule

 x_i belong the the k^{th} cluster if $k=\min d(x_i, m_k)$

• Hierarchical mixture and hierarchical EM

• Hierarchical mixture and hierarchical EM

• Hierarchical mixture and hierarchical EM

Hierarchical EM

- D= $\{X_1, ..., X_N\}$ and M the number of superclass
- Superclasses $p(X | \Theta) = \sum_{k=1}^{M} \alpha_k f(X | \theta_k)$ and $\sum_{k=1}^{M} \alpha_k = 1$
- Classes $f(X | \theta_k) = \sum_{j=1}^{M_k} \beta_{kj} f(X | \varphi_{kj})$ and $\sum_{k=1}^{M} \sum_{j=1}^{k_j} \beta_{kj} = 1$
- The parameters $\Theta = (\theta_1, ..., \theta_M, \alpha_1, ..., \alpha_{M-1})$, where

$$\theta_k = (\varphi_{k1}, ..., \varphi_{kM_k} \ \beta_{k1}, ..., \beta_{kM_k-1}) \text{ for all } k \in \{1, M\}$$

How many parameters to estimate?

- Likelihood $\prod_{n=1}^{N} \sum_{k=1}^{M} \alpha_k \sum_{j=1}^{M_k} \beta_{kj} f(X_N | \varphi_{kj})$
- EM
 - E-Step $p(k, j | X_n, \theta_k) = \alpha_k \beta_{kj} p(X_n | \Theta) / p(X_n | \Theta)$ and $p(k) = \sum_{j=1}^{M_j} p(k, j | X_n, \theta_k)$
 - M-Step: compute α_k , β_{kj} , φ_{kj} for all j and all k

Variational approximation - methods

- Approximation of q(z)
 - ullet accurate approximation of q(z) must leads to a an accurate approximation of the posterior.
 - two strategies for the choice of q(z) are used
 - a variational parameter w is added to q(z) yielding q(z,w) and the optimization is carried out with regards to w.
 - when z is a d-dimensional vector q(z) is factorized; $q(z) = \prod_{i=1}^{d} q_i(z_i)$, which make possible the approximation.

- q(z) is replaced by q(z, w) where w is a variational parameter.
- q(z, w) can be chosen depending on the tackled problem (e.g., a Gaussian with unknown parameter w) or obtained by the approximation of q(z).
- Example, EM revisited
 - let us rewrite

$$p(D \mid \theta) = \underbrace{\int q(z, w) \ln(\frac{p(D, z \mid \Theta)}{q(z, w)}) dz}_{F(w, \Theta)} - \underbrace{\int q(z, w) \ln(\frac{p(z \mid D, \Theta)}{q(z, w)}) dz}_{KL(q \mid p)}$$

- in this case, the E-step is $\max_{w} F(w, \Theta)$ and the M-step is $\max_{\Theta} F(w, \Theta)$
- note that $p(D, z | \Theta)$ is the complete likelihood

- In the case of approximations, convex and concave functions properties are often used.
- Convex functions
 - Jensen inequality: $f(\sum_{n=1}^{N} a_i x_i) \leq \sum_{n=1}^{N} a_i f(x_i)$
 - first order condition: $f(x) \ge L(x, w) = f(w) + (x w)f'(w)$, where the lower bound L(x, w) is the tangent line at x = w
 - second order condition $\forall x \in \Omega$ f"(x) ≥ 0
 - x^2 , |x|, and e^x are convex functions.
- Concave functions
 - change \leq by \geq and \geq by \leq in the above equations
 - x^{-2} , sine and ln are concave.

- Example logistic function,
 - the posterior that an event is affected (z=1) by a variable x is $q(z) = p(z=1 \mid x, a, b) = 1/(1+e^{-(ax+b)})$

a and b are unknowns

- to approximate q(z), we just need to approximate $\ln f(x) = -\ln (1+e^{-x}) = x/2 \ln(e^{-x/2} + e^{x/2})$
- the function $\ln(e^{-x/2} + e^{x/2})$ is a convex function in x^2
- then

$$f(x) = -\ln(e^{-x/2} + e^{x/2}) \ge L(x, w) = -0.5w - \ln(1 + e^{-w}) + \frac{(x^2 - w^2)}{4w} \tanh(0.5w)$$

- Example of Bayesian logistic regression (BLR, discriminative learning) $p(W \mid c_0 = 0, c_1 = 1) \propto p(c_0 = 0, c_1 = 1 \mid W) \pi(W)$
 - the posterior
 - straightforward manipulations leads to

$$p(W \mid c_0 = 0, c_1 = 1) \propto \pi(W) \sum_{x_o \in \Omega_0, x_1 \in \Omega_1} \prod_{i=0} p(c_i = i \mid x_i, W) q_i(x_i)$$

$$\pi(W) = N(\mu, \Sigma)$$

$$p(c_i = i \mid x_i, W) = \frac{e^{(2i-1)x_i^T W}}{1 + e^{(2i-1)x_i^T W}}$$

• the computation of the posterior is intractable.

• first approximation (finding a lower bound by the approximation of logistic function)

$$p(c_{i} = i \mid x_{i}, W) = \frac{e^{(2i-1)x_{i}^{T}W}}{1 + e^{(2i-1)x_{i}^{T}W}} \ge F(\varepsilon_{i})e^{0.5(H_{i} - \varepsilon_{i})\varphi(\varepsilon_{i})(H_{i}^{2} - \varepsilon_{i}^{2})} = p(c_{i} = i \mid x_{i}, W, \varepsilon_{i})$$

$$\varepsilon_i > 0$$
, $\varphi(\varepsilon_i) = \frac{\tanh(0.5\varepsilon_i)}{4\varepsilon_i}$, $F(\varepsilon_i) = \frac{e^{\varepsilon_i}}{1 + e^{\varepsilon_i}}$, H_i the Hessian

$$p(W \mid c_0 = 0, c_1 = 1) \ge \pi(W) \sum_{x_o \in \Omega_0, x_1 \in \Omega_1} \prod_{i=0}^{1} F(\varepsilon_i) e^{0.5(H_i - \varepsilon_i) \varphi(\varepsilon_i)(H_i^2 - \varepsilon_i^2)} q_i(x_i)$$

second approximation of exp(x) (Jensen inequality)

$$p(W \mid c_0 = 0, c_1 = 1) \ge \pi(W) \prod_{i=0}^{1} F(\varepsilon_i) e^{\sum_{i=0}^{1} 0.5(E_{q_i}(H_i) - \varepsilon_i) - \varphi(\varepsilon_i)(E_{q_i}(H_i^2) - \varepsilon_i^2)}$$

• because $\pi(W)$ is a Gaussian, it has been proven that the posterior is a Gaussian with

$$\mu^{post} = \sum_{post} (\sum^{-1} \mu + \sum_{i=0}^{1} (i - 0.5) E_{q_i}(x_i)) \qquad \sum_{post}^{-1} = \sum^{-1} + 2 \sum_{i=0}^{1} \varphi(\varepsilon_i) E_{q_i}(x_i x_i^t)$$

• the optimal variational parameter is obtained by using EM algorithm

$$\varepsilon_i^2 = E_{q_i}(x_i^t \sum_{post} x_i) + \mu_{post}^t E_{q_i}(x_i x_i^t) \mu_{post}$$

• the hyperplan is given by

$$W \approx \mu^{post}$$

Algorithm

Do

• compute Σ_{post} and μ_{post}

$$\sum_{post}^{-1} = \sum^{-1} + 2\sum_{i=0}^{1} \varphi(\varepsilon_i) E_{q_i}(x_i x_i^t) \qquad \mu_{post} = \sum_{post} (\sum^{-1} \mu + \sum_{i=0}^{1} (i - 0.5) E_{q_i}(x_i))$$
For i=0, 1 do
$$\varepsilon_i^2 = E_{q_i}(x_i^t \sum_{post} x_i) + \mu_{post}^t E_{q_i}(x_i x_i^t) \mu_{post}$$

Until converge

$$W \approx \mu_{post}$$

- the computational complexity of this algorithm is dominated by the inversion of the Σ_{post} , which requires around $O(d^3)$ operations at each iteration.
- Initialization
 - compute the parameters of the distributions q0 and q1
 - initialize Σ_{post} to the identity matrix and the mean μ_{post} to a vector with components equal to 1
 - initialize the variational parameters as follows For each i=0,1do $\varepsilon_i^2 = E_{q_i}(x_i^t \sum_{post} x_i) + \mu_{post}^t E_{q_i}(x_i x_i^t) \mu_{post}$

Factorization

- Let us recall
 - We have $\ln p(D \mid \Theta) = \underbrace{\int q(z) \ln(\frac{p(D, z \mid \Theta)}{q(z)}) dz}_{F(q,\Theta)} \underbrace{\int q(z) \ln(\frac{p(z \mid D, \Theta)}{q(z)}) dz}_{KL(q \mid p)}$
 - we need to maximize $F(q,\Theta)$ with regards to both q and Θ
- Factorization of q(z); $q(z) = \prod_{i=1}^{d} q_i(z_i)$, which make possible the approximation of F(). Indeed, denoting $q_i(z_i)$ by q_i

$$F(q,\Theta) = \int_{\Omega} \prod_{i=1}^{d} q_i (\ln(p(D, z \mid \Theta)) - \sum_{l=1}^{d} \ln(q_l)) dz$$

$$F(q,\Theta) = \int_{\Omega} q_j \left(\int_{\Omega} \ln(p(D,z \mid \Theta)) \prod_{i \neq j}^d q_i dz_i \right) dz_j - \int_{\Omega} \sum_{l=1}^d \ln(q_l) \prod_{i \neq j}^d q_i dz_i \right) dz_j$$

$$F(q,\Theta) = \int_{\Omega} q_j \int_{\Omega} \ln(p(D,z|\Theta)) \prod_{i\neq j}^d q_i dz_i dz_j - \int_{\Omega} q_j \ln(q_j) dz_j + cste$$

Factorization

$$\ln \widetilde{p}(D, z_j \mid \Theta) = E_{\prod_{i \neq j} q_i} (\ln(p(D, z \mid \Theta))) = \int_{\Omega} \ln(p(D, z \mid \Theta)) \prod_{i \neq j}^d q_i dz_i$$

$$F(q,\Theta) = \int_{\Omega} q_j \ln \frac{\widetilde{p}(D, z_j | \Theta)}{q_j} dz_j - \sum_{i \neq j} \int_{\Omega} q_i \ln(q_i) dz_i$$

• because the second term is non negative (entropy) then

$$F(q,\Theta) = \underbrace{-KL(q_j \parallel \widetilde{p}(D,z_j \mid \Theta))}_{\leq 0} + entropy$$

• For which value of q, F() is maximal?

Factorization

- EM revisited (variational EM)
 - let assume $q(z) = \prod_{i=1}^{d} q(z_i)$, then $F(q, \Theta) = \underbrace{-KL(q_j \mid\mid \widetilde{p}(D, z_j \mid \Theta))}_{\leq 0} \sum_{i \neq j} \int q_i \ln q_i dz$
 - $F(q, \Theta)$ is maximal when $q_i^*(z_i) = \tilde{p}(D, z_i | \Theta)$
 - after normalization

$$q_{j}^{*}(z_{j}) = \frac{\widetilde{p}(D, z_{j} | \Theta)}{\int \widetilde{p}(D, z_{j} | \Theta) dz_{j}}$$

- E-step: compute $\forall j \ q_i^*(z_i)$
- M-step: $\Theta^{t+1} = \operatorname{arg\,max}_{\Theta} F(q, \Theta)$

Factorization - Example

- Example of 2D Gaussian factorization
 - the pdf $p(X) = e^{-\frac{1}{2}(X-\mu)^t A^{-1}(X-\mu)} / \sqrt{|2\pi A|}$ where $X=(x_1, x_2), \mu=(\mu_1, \mu_2)$, and $A^{-1} = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$
 - $\ln q(x_1) = E_{x_2}(\ln(p(X)) + \text{cst} = -E_{x_2}(0.5a_{11}(x_1 \mu_1)^2 + a_{12}(x_1 \mu_1)(x_2 \mu_2) + \text{cst} = 0.5a_{11}(x_1 \mu_1)^2 + a_{12}(x_1 \mu_1) E_{x_2}(x_2 \mu_2) + \text{cst}$
 - $q(x_1) = G(x_1 | m_1, a_{11}^{-1})$, where $m_1 = \mu_1 a_{11}^{-1} a_{12} (E_{x_2}(x_2) \mu_2)$
 - Idem $q(x_2) = G(x_2 \mid m_2, a_{22}^{-1})$, where $m_2 = \mu_2 a_{22}^{-1} a_{12} (E_{x_1}(x_1) \mu_1)$
 - because m_1 (resp. m_2) depends on $q(x_2)$ (used in $E_{x_2}(x_2)$) (resp. $q(x_1)$, so the estimation of $q(x_1)$ and $q(x_2)$ is done by using an iterative algorithm.
 - Note that, if $E_{x_2}(x_2) = \mu_2$ and $E_{x_1}(x_1) = \mu_1$, the solution is non iterative.
 - The factorization of three Gaussians

Factorization - Example

- Example of 1D posterior Gaussian factorization
 - the pdf $p(x) = e^{-\frac{1}{2\sigma^2}(x-\mu)^2} / \sqrt{2\pi}\sigma$, $p(\mu | \sigma^2) = G(\mu | \mu_0, \sigma^2 / \lambda_0)$ $p(\sigma^2) = gamma(1/\sigma^2 | a_0, b_0)$
 - the unique used assumption $q(\mu, \sigma) = q(\mu)q(\sigma)$
 - $\ln q(\mu) = E_{\sigma}(\ln(p(D \mid \mu, \sigma)) + \ln(p(\mu \mid \sigma)) + cst = -E_{\sigma}(\sigma)(\lambda(\mu \mu_0)^2 + \sum_{n=1}^{N} (x_n \mu)^2 + cst = G(\mu \mid \mu_N, \lambda_N^{-1}).$
 - $\ln q(\sigma) = E_{\mu}(\ln(p(D \mid \mu, \sigma)) + \ln(p(\mu \mid \sigma) + \ln(p(\sigma)) + cst = Gamma(\sigma \mid a_N, b_N))$
 - find a_N , b_N
 - Algorithm
 - initialize $E_{u}(\sigma)$
 - estimate iteratively $q(\mu)$, $E_{\sigma}(\mu)$, $E_{\sigma}(\mu^2)$, $q(\sigma)$, and $E_{\sigma}(\mu)$ until convergence
 - The lower band F() should not decrease and it can be used as convergence criteria

Factorization - Example

10.1.3 The univariate Gaussian (IV)

10л Variational Inference

31

Illustration of variational inference for the mean μ and precision τ of a univariate Gaussian distribution. Contours of the true posterior distribution $p(\mu, \tau \mid D)$ are shown in green. (a) Contours of the initial factorized approximation $q_{\nu}(\mu)q_{\tau}(\tau)$ are shown in blue. (b) After re-estimating the factor $q_{\nu}(\mu)$. (c) After re-estimating the factor $q_{\tau}(\tau)$. (d) Contours of the optimal factorized approximation, to which the iterative scheme converges, are shown in red.

• Le consider the data from the Italian clothing company Benetton	Year	Sales (Million	Advertising
elothing company benetton	Teal	Euro)	(Million Euro)
 The company would like to understand the 	1	651	23
1 ,	2	762	26
effects of advertising on sales	3	856	30
 Answer: Sales = 168 + 23 Advertising. 	4	1,063	34
if advertising expenditure is increased by	5	1,190	43
one Euro, then sales will be expected to	6	1,298	48
increase by 23 million Euro	7	1,421	52
	8	1,440	57
How they find that?	9	1,518	58
linear regression			

- Let us consider a random vector x (input) and a random variable y (output)
- Given one input observation of x, we want to predict the value of y
- Often,
 - we assume that $y=w_0 x_0+w_1 x_1+...+w_d x_d+\varepsilon$, where $\varepsilon \sim N(\varepsilon|0,\sigma)$ and $x_0=1$

$$y=w_0+w_1x_1+\varepsilon$$

• we can do better by using basis functions

$$y=w_0 \varphi_0(x)+w_1 \varphi_1(x)+...+w_d$$

$$\varphi_d(x)+\varepsilon$$

• examples of $\varphi_k(x) = e^{-\frac{(x-\mu_k)^2}{s^2}}$, $\varphi_k(x) = \frac{1}{1+e^{-\frac{(x-\mu_k)}{s}}}, \dots$

- To find the posterior pdf p(w | y, σ , ...), we need
 - the prior p(w | ...)
 - the conditional pdf p(y|x)
 - the conditional pdf p(y)
- Priors
 - $p(\mathbf{w} \mid \alpha) = \prod_{m=1}^{d} N(w_m \mid 0, \alpha)$
 - β a constant Tapez une équation ici.
- Conditional pdf
 - rewrite $y = \varphi^t w + \varepsilon$, where $\varphi = (\varphi_0(x), ..., \varphi_d(x))$ and $w = (w_0, ..., w_d)$
 - $p(y|w,\beta) = N(y|\varphi^t w,\beta)$

- The marginal pdf $p(y|\beta,\alpha) = \int p(w|\beta)p(y|w,\beta)dw = N(y|0,\beta^{-1}I + \alpha^{-1}\varphi\varphi^t)$
- Posterior pdf
 - Let us consider the data D=X \times Y={ $(x_1,y_1), ..., (x_N, y_N)$ }

$$p(w|D,\alpha,\beta) = \frac{p(w|\alpha) \prod_{n=1}^{N} p(y_n|w,\beta)}{\int p(w|\alpha) \prod_{n=1}^{N} p(y_n|w,\beta) dw} = N(w|\mu,\Sigma)$$
where $\mu = \beta \Sigma \phi^t Y$ and $\Sigma = (\beta \phi^t \phi + \alpha I)^{-1}$

$$\phi = (\varphi_1, ..., \varphi_d) \text{ and } \varphi_k = (\varphi_k(x_1), ..., \varphi_k(x_N))$$

- The posterior mean μ is an estimator of w.
- Because ϕ and Y are known, then knowing α and β , we can estimate μ and Σ

• To estimate μ and Σ , we need to find (w is replaced by μ) $Q(\alpha,\beta,\alpha^{(t)},\beta^{(t)})=E_{p(w|\alpha^{(t)},\beta^{(t)})}(\ln(p(w,D|\alpha,\beta))=$

$$\frac{N}{2}\ln(\beta) - \frac{\beta}{2}(||\mathbf{Y} - \phi\mu^{(t)}||^2 + \text{tr}(\phi^t \Sigma^{(t)}\phi)) + \frac{d}{2}\ln(\alpha) - \frac{\alpha}{2}(||\mu^{(t)}||^2 + \text{tr}(\Sigma^{(t)})) + cte$$

- EM algorithm
 - E-step Compute $\mu^{(t)}$, $\Sigma^{(t)}$, and $Q(\alpha, \beta, \alpha^{(t)}, \beta^{(t)})$
 - M-step $(\alpha^{(t+1)}, \beta^{(t+1)}) = argmax_{\alpha.\beta} \alpha^{(t)}, \beta^{(t)}$
- In E-step, the expected value of the logarithm of the complete likelihood is used instead of the posterior, why?
- What is the computational complexity of this algorithm?

- Let now use variational approximation
- Priors $p(w|\alpha) = \prod_{m=1}^{d} N(w_m|0,\alpha)$ $p(\alpha|a,b) = \prod_{m=1}^{d} Gamma(\alpha_m|a,b)$ $p(\beta|c,h) = Gamma(\beta|c,h)$
- Posterior $p(w, \alpha, \beta | D, a, b, c, d) = \frac{p(w|\alpha)p(\alpha)p(\beta)\prod_{n=1}^{N} p(y_n|w, \beta)}{\int p(w|\alpha)p(\alpha)p(\beta)\prod_{n=1}^{N} p(y_n|w, \beta)d\alpha d\beta}$
- Factorization p(w, α , β | D, a, b, c, h) \simeq q(w) q(α) q(β)
- Straightforward manipulations

$$q(w) = N(w|\mu, \Sigma), q(\alpha) = \prod_{m=1}^{d} Gamma(\alpha_{m} | a+0.5, b+0.5 E(w_{m}^{2})),$$

 $q(\beta) = Gamma(\beta, c + 0.5N, h + 0.5 | |Y - \phi w||^{2})$
 $\mu = E(\beta) \Sigma \phi^{t} Y$ and $\Sigma = (E(\beta) \phi^{t} \phi + E(A))^{-1}$ and $A = diag(\alpha_{1}, ..., \alpha_{d})$

- EM
 - E-step: estimate $q^{(t)}(w)$, $q^{(t)}(\alpha)$, $q^{(t)}(\beta)$
 - M-step: $(\alpha^{(t+1)}, \beta^{(t+1)}) = argmax_{(\alpha,\beta)}F(q^{(t)}, \alpha, \beta)$

 $\varphi(x)$ is a Gaussian kernel N=50 a=b=0

Illustration of sequential Bayesian learning for a simple linear model of the form $y(x, \mathbf{w}) = w_0 + w_1 x$. A detailed description of this figure is given in the text.

High dimensional data

High-dimensional data

- Image colors: 256³ features
- Faces: 128×128 pixels= 16384 features/face
- Text: number of terms in a corpus ~10 000

•

Visages

High-dimensional data

- Consequences
 - accuracy: noisy features reduces the performance of models
 - more data
 - computation: floating point overflow, matrices inversion, ...
- Solutions
 - dimension reduction
 - feature selection
 - •

Dimension reduction

- Data projection on a subspace
- Principal Component Analysis (PCA) is a well-known method for analyzing data in statistics and experimental sciences.
- Consists of looking for the directions of space that best represent the correlations between samples.
- It is used for:
 - A reduction of the dimension of the characteristics to a reduced dimension.
 - A selection of features
 - An interpretation and analysis of correlations between the data.
 - Visualization of data in a 2 or 3 dimensional space.

Data

Station	Var1	Var2
1	6	2
2	0	0
3	5	8
4	7	6
5	11	6
6	10	10
7	15	8
8	18	14
9	14	14

Solution 1: elimination of a variable (e.g., Var 2)

Bad solution: loss of information; 7 and 9 too close, 9 should be closer to 8 than to 7....

Solution 2: elimination of Var1 leads to loss of information

Dimension reduction

- Example
 - D={(85,80), (40,80), ..., (95,80)}
 - $-D=\{(1,1),(2,2),...,(N,N)\}$
- Nuisance variables increase the computational times and leads to the increase of errors (classification, recognition, estimation...)

- Data $D^{-} = \{x_1, \dots, x_N\}$ where $X_i \in \mathbf{R}^d$
- Arithmetic mean $\mu = \sum_{n=1}^{N} x_n / N$
- Covariance $C = \sum_{n=1}^{N} (x_n \mu)(x_n \mu)^t / N$
- Variance $v = trace(C) = \sum_{n=1}^{N} \sum_{i=1}^{d} (x_{ni} \mu_i)^2$
- The projection of x_n on the unitary vector u is
- The variance of the data project on u is $y_n = u^t x_n$

$$v_u = \sum_{n=1}^{N} \sum_{i=1}^{d} (u^t x_{ni} - u^t \mu_i)^2 = u^t C u$$

• Let consider a subspace spanned by $B^r = \{u_1, \dots, u_r\}$ $r \le d$

The variance of the data projected on R³

$$v_B = \sum_{j=1}^r u_j^t C u_j$$

- How to find B^r ?
 - Yielding the highest variance under the constraints

$$\max_{u_1, \dots, u_r} v_B = \sum_{j=1}^r u_j^t C u_j \qquad u_j^t u_j = 1, \quad \forall j \in \{1, r\}$$

Lagrange formulation

$$\max_{u_1,\dots,u_d} \varphi = \sum_{j=1}^d u_j^t C u_j - 2 \sum_{j=1}^d \lambda_j (u_j^t u_j - 1)$$

First order condition leads to

$$\varphi_{u_k} = Cu_k - \lambda_k u_k = 0$$

• The vector u_k is a eigenvector of C. Which one?

- The objective function can be rewritten $v_B = \lambda_k + \sum_{i \neq k}^{u} u_i^t C u_j$
- Repeating the reasoning for each vector $v_B = \lambda_1 + \cdots + \lambda_k + \lambda_d$
- Ranking $\lambda_{(1)} \ge \cdots \ge \lambda_{(d)}$ and choose the r highest eigenvalues. $\lambda_{(1)} \ge \cdots \ge \lambda_{(r)}$
- The percentage of the variance of projected data $(\lambda_{(1)} + \cdots + \lambda_{(r)}) / v_B$
- The vector u_k is the eigenvector of C having the k^{th} highest eigenvalue.

- Algorithm
 - Input: Data D and the dimension r of the subspace
 - Output : Projected data
 - Estimated the covariance of D
 - Compute the highest r eigenvalues and the corresponding eigenvectors
 - Project the data $(y_{nj} = u_j^t x_n, \forall j \in \{1, \dots, r\})$
- Computational complexity of the algorithm O(Nd²)

• The variables y_i are not correlated.

$$y_{jn}^{t} y_{in}^{t} = [0...u_{j}^{t} x_{n}^{t} 0...][0..u_{i}^{t} x_{n}^{t} 0...]^{t} = 0, \quad \forall i \neq j$$

- PCA consists in transforming the correlated initial variables x_j into new uncorrelated variables y_j of maximum variance, called the principal components.
- y_j a linear combinations of x_i
- x can be reconstructed from y_j

$$x = \sum_{j=1}^{r} y_j u_j^t$$

- Data table containing 57 brands of Bottles of water described by 11 variables (G. Govaert, Data Analysis)
- Data provided on the labels of bottles.
- Pays=Country
- M=mineral, S=source
- P=Still water,S=sparkling water

		Dave	Туре	DC.	CA	MG	NA	K	SUL	NO3	HCO3	CL
4	Evian	Fays	M	P	78	24	1 NA 5	1	10	3,8		
		-		-				1		_		4,5
	Montagne des pynénées	F	S	Р	48	11	34		16	4	183	
	Cristaline	F	S	P	71	5,5	11,2	3,2	5	1	250	20
	Fiée des lois	F	S	P	89	31	17	2	47	0	360	
	Volcania	F	S	Р	4,1	1,7	2,7	0,9	1,1	0,8	25,8	
	Saint Diéry	F	M	G	85	80	385	65	25	1,9		285
	Luchon	F	M	Р	26,5	1	0,8	0,2	8,2	1,8	78,1	2,3
8	Volvic	F	M	Р	9,9	6,1	9,4	5,7	6,9	6,3	65,3	8,4
9	Alpes	F	S	Р	63	10,2	1,4	0,4	51,3	2	173,2	1
10	Orée du bois	F	M	Р	234	70	43	9	635	1	292	62
11	Arvie	F	M	G	170	90	650	130	31	0	2195	387
12	Roche des Ecrins	F	S	Р	63	10,2	1,4	4	51,3	2	173,2	10
13	Ondine	F	S	Р	46,1	4,3	6,3	3,5	9	0	163,5	3,5
14	Thonton	F	M	Р	108	14	3	1	13	12	350	9
15	Aix des bains	F	M	Р	84	23	2	1	27	0,2	341	3
16	Contrex	F	M	Р	486	84	9,1	3,2	1187	2,7	403	
17	La bondoire	F	S	Р	86	3	17	1	7	19	256	21
18	Dax	F	М	Р	125	30,1	126	19,4	365	0	164,7	156
19	Quézac	F	М	G	241	95	255	49.7	143	1	1685,4	38
20	Salvetat	F	М	G	253	11	7	3	25	1	820	4
21	Stamna	GRC	М	Р	48,1	9,2	12,6	0,4	9,6	0	173,3	21,3
22	lolh	GR	М	Р	54.1	31,5		0,8	15	6,2		
23	Avra	GR	М	Р	110,8	9,9	8,4	0,7	39,7	35,6		
	Rouvas	GRC	M	Р	25,7	10,7	8	0,4	9,6	_		
25		IT	M	P	12,3	2,6		0,6	10,1	2,5		
26		IT	M	P	46	28	6,8	1	5,8		287	2,4
												,
57	Montclar	F	S	Р	41	3	2	0	2	3	134	3

Studied variables and correlation between them

	CA	MG	NA	K	SUL	NO3	HCO3	CL
CA	1	0.7041	0.1179	0.1246	0.9131	-0.0634	0.1349	0.2761
MG	0.7041	1	0.6058	0.6561	0.6076	-0.2123	0.6179	0.4793
NA	0.1179	0.6058	1	0.8361	0.0643	-0.1162	0.8562	0.5872
K	0.1246	0.6561	0.8361	1	-0.0259	-0.1668	0.8813	0.3997
SUL	0.9131	0.6076	0.0643	-0.0259	1	-0.1565	-0.0691	0.3176
NO3	-0.0634	-0.2123	-0.1162	-0.1668	-0.1565	1	-0.0604	-0.1205
HCO3	0.1349	0.6179	0.8562	0.8813	-0.0691	-0.0604	1	0.1902
CL	0.2761	0.4793	0.5872	0.3997	0.3176	-0.1205	0.1902	1

Eigenvalues

Numéro	Valeur propore	%	% cumulé		
lambda_1	3.8126	47.6577	47.6577		
lambda_2	2.0701	25.8765	73.5342		
lambda_3	0.9729	12.1614	85.6957		
lambda_4	0.7969	9.9615	95.6572		
lambda_5	0.1781	2.2257	97.8829		
lambda_6	0.095	1.1872	99.0701		
lambda_7	0.074	0.9255	100.00		
lambda_8	0.0003	0.0044	100.00		

Eigenvectors

Variables	1	2	3	4	5	6	7	8
CA	0.2819	0.5392	-0.1729	-0.1984	0.0098	-0.3169	0.5818	0.3486
MG	0.4657	0.1784	-0.0381	-0.1668	-0.4603	0.6801	-0.166	0.1418
NA	0.4378	-0.2887	-0.0339	0.1729	0.6219	0.0874	-0.1703	0.5201
K	0.4271	-0.3199	0.0056	-0.1189	-0.4522	-0.6297	-0.3128	0.047
SUL	0.2309	0.6026	-0.0316	-0.0324	0.3339	-0.1471	-0.5361	-0.4012
NO3	-0.12	-0.062	-0.9714	0.1483	-0.0632	0.0126	-0.1095	-0.0085
HCO3	0.4013	-0.3473	-0.1328	-0.3486	0.2403	0.1052	0.3834	-0.6028
CL	0.3175	0.0653	0.0725	0.8627	-0.1532	-0.0109	0.2463	-0.2474

```
Which subspace?

Total of eigenvalues =7.9999
% of the variance for 1st variable: 3.8126/7.9999= 0.48 (48%)
% of the variance for 2nd variable: (3.8126+2.0701)/7.9999= 0.74 (74%)
% of the variance for 3rd variable: 0.86 (86%)
% of the variance for 4rd variable: 0.96 (96%)
% of the variance for 5th variable: 0.98 (98%)
....
```

Feature selection

- Useful even for low-dimensional data
- Reduction of the contribution of irrelevant features
- Relevance is not binary
- Related work
 - many approaches for supervised learning, but strong assumptions such that independent features and Gaussian features
 - few approaches for unsupervised generative learning

Feature selection

- Let us consider the mixture $p(Y_i | \Theta) = \sum_{j=1}^{M} p_j \prod_{l=1}^{d} p(Y_{il} | \Theta_{jl})$
- For complete data $p(Y_i, Z_i | \Theta) = \prod_{j=1}^{M} (\prod_{l=1}^{d} p(Y_{il} | \theta_{il}))^{Z_{ij}}$
- Relevance criteria: independence of *Y* from class labels *Z*

$$\forall n, m, j \in \{1, ..., M\} \ KL(p(Y_{il} | \theta_{nl}), p(Y_{il} | \theta_{ml})) \approx 0 \Rightarrow \theta_{il} = \xi_{l}$$

 $KL(p(Y_{ii}|\theta_{1x}), p(Y_{ii}|\theta_{2x}))\neq 0$

Feature selection

- LabelY with hidden Bernoulli variable $\phi_y : \phi_y = 0$ if $Y \sim \xi_y$ and one if $Y \sim \Theta_y$ $p(Y_{il} \mid \theta_{nl}, \phi_{il}) = p(Y_{il} \mid \theta_{nl})^{\phi_{il}} p(Y_{il} \mid \xi_l)^{1-\phi_{il}}$
- Instead of uniform pdf, let us consider that ξ_y is a model for a mixture of K pdfs with hidden multinomial variables $W = (W_{v1}, W_{v2}, ..., W_{vK})$
- It follows that

$$p(\vec{X}_i|\vec{Z}_i,\Theta^*) \simeq p(\vec{X}_i|\vec{Z}_i,\vec{\phi}_i,\vec{W}_i) = \prod_{j=1}^{M} \left[\prod_{l=1}^{d} p(X_{il}|\theta_{jl})^{\phi_{il}} \left(\prod_{k=1}^{K} p(X_{il}|\xi_{kl})^{W_{ilk}} \right)^{1-\phi_{il}} \right]^{Z_{ij}}$$

• New mixture including the feature selection is obtained by marginalization over Z, ϕ , and W.

$$p(\vec{X}_i|\Theta) = \sum_{i=1}^{M} p_i \prod_{l=1}^{\mathbf{d}} \left(\epsilon_{l_1} p(X_{il}|\theta_{jl}) + \epsilon_{l_2} \sum_{k=1}^{K} \eta_{kl} p(X_{il}|\xi_{kl}) \right)$$

References

- Finite and Infinite mixture
 - G. McLachlan and D. Peel. Finite Mixture Models. Wiley, 2000
 - C.M. Bishop. Pattern Recognition and Machine Learning. Springer 2006.
 - W. Fan, N. Bouguila, D. Ziou. Variational Learning for Finite Dirichlet Mixture Models and Applications, IEEE TNN, 2012.
 - M. Cordunneanu and C.M. Bishop. Variational Bayesian Model Selection for Mixture Distribution. Proc. Int. Conf. on Artificial Intelligence and Statistics, 2001.
- Feature selection
 - S. Boutemedjet, N. Bouguila, D. Ziou: A Hybrid Feature Extraction Selection Approach for High-Dimensional Non-Gaussian Data Clustering. IEEE TPAMI, 31(8): 1429-1443, 2009.
- Discriminative learning
 - R. Ksantini, D. Ziou, B. Colin, F. Dubeau: Weighted Pseudometric Discriminatory Power Improvement Using a Bayesian Logistic Regression Model Based on a Variational Method. IEEE TPAMI, 30(2): 253-266, 2008.
- Graphical models
- M.J. Jordan et al. An Introduction to Variational Methods for Graphical Models. Machine Learning 37, 183–233,1999

References

- Model selection
 - N. Bouguila and D. Ziou. High-Dimensional Unsupervised Selection and Estimation of a Finite Generalized Dirichlet Mixture Model Based on Minimum Message Length. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, pp. 1716 1731 2007.

Maximum likelihood

• In Jae Myung, Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology 47, pp. 90–100, 2003.

Hierarchical mixture

• T. Bdiri, N. Bouguila, and D. Ziou. Object clustering and recognition using multi-finite mixtures for semantic classes and hierarchy modeling. Expert Systems with Applications 41, pp.1218–1235, 2014.

Merci!