Allgemeines

Binomische Formeln

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$
$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$
$$a^{2} - b^{2} = (a+b) \cdot (a-b)$$

Potenzgesetze

$$\begin{array}{ll} a^m \cdot a^n = a^{m+n} & \frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n \\ a^n \cdot b^n = (ab)^n & (a^n)^m = a^{mn} \\ \frac{a^n}{a^m} = a^{n-m} & a^{-n} = \frac{1}{a^n} \\ log_b(1) = 0 \end{array}$$

1.3 Logarithmus-Gesetze

$$\begin{aligned} x &= log_a(y) \Leftrightarrow y = a^x \\ log(x) + log(y) &= log(xy) \\ log(x) - log(y) &= log(\frac{x}{y}) \\ log_a(x) &= \frac{log_b(x)}{log_b(a)} \\ log(u^r) &= r \cdot ln(u) \end{aligned}$$

$$ln(1) = 0$$
 $ln(e^x) = x$
 $ln(e) = 1$ $e^{ln(x)} = x$

1.4 Komplexe Zahlen

$$(a+bi)\pm(c+di) = (a\pm c)+(c\pm d)i$$

 $(a+bi)\cdot(c+di) = (ac-bd)+(ad+bc)i$

$$\frac{a+bi}{c+di} = \frac{ac+bd}{c^2+d^2} + \frac{cb-ad}{c^2+d^2}i$$

Integralrechnung

eFoo u.ä. muss vorher substituiert wer-

Funktion	Aufleitun
С	$c \cdot x$
x^a , $a \neq -1$	$\frac{x^{a+1}}{a+1}$
x^{-1} , $x \neq 0$	ln(x)
e^{x}	e^{x}
a^{\times}	$\frac{a^{\times}}{ln(a)}$
sin(x)	-cos(x)
cos(x)	sin(x)

2.1 Partielle Integration

Wenn u und v zwei differenzierbare Funktionen sind, dann gilt: $\int u' \cdot v = (u \cdot v) - \int u \cdot v'$

2.2 Substitutionsregel

$$\int f(g(x)) \cdot g'(x) dx = \int f(y) dy$$

$$\int \frac{1}{5x - 7} dx = ?$$

$$z = 5x - 7$$

$$\frac{dz}{dx} = 5$$

$$\frac{dz}{5} = dx$$

$$\int \frac{1 \cdot dz}{z \cdot 5} = \frac{1}{5} \int \frac{1}{z} dz$$

$$= \frac{1}{5} ln(z)$$

$$= \frac{1}{5} ln(5x - 7)$$

Ableitung

typische Ableitungen

$$(x)' = 1 (ax)' = a (ax^2)' = 2ax (\frac{1}{x})' = -\frac{1}{x^2} (\sqrt{x})' = \frac{1}{x^2} (\sqrt{x})' = \frac{1}{x^2} (\sqrt{x})' = \frac{1}{2\sqrt{x}} (ax^b)' = abx(b - 1) (e^x)' = e^x (ax)' = a^x * log(a) (\sqrt{x})' = \frac{1}{x} (\sqrt{x}) = \frac{1}{x} (\sqrt{x}) = -\sqrt{x} (\tan x) = \frac{1}{(\sqrt{x})^2} (\tan x) = \frac{1}{(\sqrt{x})^2}$$

Verknüpfungsfunktionen

Summenregel:

$$(f(x)+g(x))'=f(x)'+g(x)'$$

Produktregel:

$$(f(x)g(x))' = f(x)'g(x) + g(x)'f(x)w : \mathbb{R} \to \mathbb{R}$$
 ist eine integrierbare, nicht

Quotientenregel: $\left(\frac{f(x)}{g(x)}\right)' = \frac{f(x)'g(x) - g(x)'f(x)}{g(x)^2}$

$$(f(g(x)))' = f(g(x))'g(x)'$$

Stochastik

 $\Omega = \{...\}$ beschreibt den Ereignisraum und somit die Menge aller möglichen Ausgänge des Zufallsexperiments.

 $A, B, C, ... \subseteq \Omega$ beschrieben ein Ereignisse des Zufallsexperimentes.

 $P:\Omega\to\mathbb{R}$ ist eine Abbildung, welche jedem Ereignis eine Wahrscheinlichkeit

Eine Wahrscheinlichkeitsverteilung listet alle möglichen Ausgänge des Zufallsexperiments und ihre Wahrscheinlichkeiten auf.

4.1 Gesetze/Axiome/...

$$P(A) > 0 \text{ für alle } A \subset \Omega$$

$$P(\Omega) = 1$$

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2), A_1 \cap A_2 = \emptyset$$

$$P(A_1 \cup A_2) = P(A_1) + P(A_2), A_1 \cap A_2 = \emptyset$$

$$P(\Omega \setminus A) = 1 - P(A)$$

$$P(\emptyset) = 0$$

$$A \subseteq B \iff P(A) \le P(B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$= \frac{P(B|A) \cdot P(A)}{P(B)}$$

$$P(A \cap B) = P(B) \cdot P(A|B)$$

$$= P(A) \cdot P(B|A)$$

$$P_B(A) = P(A|B)$$

Dichtefunktion

negative Funktion.

Es gilt:
$$\int_{-\infty}^{x} w(t)dt = F(x) = P(X \le x)$$

4.3 Verteilungsfunktion

 $F: \mathbb{R} \to [0,1]$ heißt Verteilungsfunktion. Verteilungsfunktion ist Aufleitung der Dichtefunktion.

F ist rechtsseitig stetig und es gilt:

$$\lim_{x \to -\infty} F(x) = 0$$

$$\lim_{x \to \infty} F(x) = 1$$

$$P(X \ge x) = 1 - P(X \le x)$$

$$= \int_{x}^{\infty} w(t)dt$$

$$P(a \le X \le b) = P(X \le b) - P(X \le a)$$

$$= F(b) - F(a)$$

$$= \int_{a}^{b} w(t)dt$$

4.4 Formeln

E = Erwartungswert, V = Varianz

$$E(X) = \sum_{x \in X(\Omega)} x \cdot P(X = x)$$

$$E(X) = \int_{-\infty}^{\infty} x \cdot w(x) dx$$

$$V(X) = \sum_{x \in X(\Omega)} (x - E(X))^2 \cdot P(X = x)$$

$$= \left(\sum_{x \in X(\Omega)} x^2 \cdot P(X = x)\right) - F(X)$$

$$V(X) = \int_{-\infty}^{\infty} (x - E(X))^2 \cdot w(x) dx$$

$$= \left(\int_{-\infty}^{\infty} x^2 w(x) dx\right) - E(X)^2$$

p-Quantile:

Sortieren, $n \cdot p$, Einsetzen & Index suchen. Formel anwenden:

$$\widetilde{X}_p = \begin{cases} \frac{1}{2}(x_{np} + x_{np+1}) & \text{falls } n \text{ ganzz.} & \text{se} \\ x_{\lceil np \rceil} & \text{falls } n \text{ nicht ganzz.} \end{cases}$$

Verschiedene Verteilungen

4.5.1 Gleichverteilung

Die Gleichverteilung ist die einfachste Verteilung. Jede Möglichkeit hat die gleiche Wahrscheinlichkeit. Ein Würfel ist gleichverteilt mit $P(x_i) = \frac{1}{6}$.

$$P(X=x_i)=\frac{1}{N}$$

Dabei ist $N = |\Omega|$ und X eine Zufallsvariable, welche gleichverteilt ist.

4.5.2 Binominialverteilung

Ein Bernoulli-Experiment ist ein Experiment, welches nur zwei mögliche Ausgänge A und B hat. Eine Binominialverteilung ist eine Aneinanderreihung von Bernoulli-Experimenten. Dabei muss der Ereignisraum unabhängig sein. Ein Experiment kann beliebig oft, n-Mal. wiederholt werden.

$$X = B(n, p)$$

$$\Omega = \{A, B\}^{n}$$

$$P(A) = p$$

$$P(B) = 1 - p = q$$

Es ist ein LaPlace-Experiment, wenn p = q gilt.

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}$$
$$\binom{n}{k} = \frac{n!}{k!(n - k)!}$$

4.5.3 Hypergeometrische Ver-

 $= \left(\sum_{X \in Y(\Omega)} x^2 \cdot P(X = x)\right) - E(X)^2 \text{ N} = \text{Grundmenge, n} = \text{Stichprobe, k}$ = gewünscht. M = gewünschte Eigenschaft

$$P(X = k) = \frac{\binom{M}{k} \cdot \binom{N-M}{n-k}}{\binom{N}{n}}$$

4.5.4 Poisson-Verteilung

Die Poisson-Verteilung eignet sich für seltene Ereignisse in einem fest definierten Zeitraum

$$X = P(\lambda)$$

$$\Omega = \{x \in \mathbb{R} | x \ge 0\}$$

$$P(X = k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!}$$

Die Poisson-Verteilung kann, wenn n >50 und p < 0.1, eine Binominialverteilung annähren.

$$X = B(n, p)$$
$$\lambda = n \cdot p$$

$$P(X=k) \sim \frac{\lambda^k \cdot e^{-\lambda}}{k!}$$

4.6 Normalverteilung

 $N(\mu, \sigma^2)$ ist eine Normalverteilung. Für $\mu=1$ und $\sigma=1$ ist es eine Standard- ${\bf 5.1}$ normalverteilung.

$$w(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$
$$P(a \le x \le b) = \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})$$

Für Φ siehe Standardnormalverteilungstabelle.

$$\Phi(-x) = 1 - \Phi(x)$$

Wenn gilt, dass $X = N(\mu, \sigma^2)$ und Z =N(0,1), dann folgt $\frac{X-\mu}{\sigma}$. X_B ist binominal verteilt. Wenn np(1 $p) \geq 9$, dann $F_B(x) \sim \Phi\left(\frac{x+0.5-np}{\sqrt{np(1-p)}}\right)$. X_P ist possionverteilt. Wenn $\lambda \geq 9$, dann $F_P(x) \sim \Phi\left(\frac{x+0.5-\lambda}{\sqrt{\lambda}}\right)$.

4.7 Tabelle Erwartungswert/Varianz

	E(x)	$V(x)$ Δ
B(n,p)	n·p	$n \cdot p(1-p)$
H(n, M, N)	$n \cdot \frac{M}{N}$	$n \cdot \frac{M}{N} (1 - \frac{M}{N}) \frac{N-n}{N-1}$
$P(\lambda)$	λ	λ
N(x)	μ	σ^2

4.8 Konfidenzintervall

 $Vertrauensgrad = 1 - \alpha$

4.8.1 Normalverteilung

$$\left[\frac{k}{n} - z_{\left(1-\frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}}; \frac{k}{n} + z_{\left(1-\frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}}\right]$$

z Werte in Normalverteilungstabelle nachschlagen.

4.8.2 T-Verteilung

Keine Varianz gegeben. Stichprobe muss vorhanden sein.

$$\bar{x} = \text{arethmetisches Mittel} = \frac{\sum x}{n}$$

$$\begin{split} \sigma &= \sqrt{\frac{\sum (x-\bar{x})^2}{n-1}} \\ &[\bar{x} - t_{(1-\frac{\alpha}{2};n-1)} \frac{\sigma}{\sqrt{n}}; \bar{x} + t_{(1-\frac{\alpha}{2};n-1)} \frac{\sigma}{\sqrt{n}}] \end{split}$$

T Werte in T-Verteilungstabelle nachschlagen.

Numerik

Lagrange'sches Interpolationspolynom

$$n=$$
 Anzahl der Stützstellen $p(x)=\sum_{i=0}^n y_i\cdot L_i(x)$ $L_i(x)=\prod_{i=0}^n \frac{x-x_j}{x_i-x_j}$

Newton'sches Interpolationspolynom

$$n = \text{Anzahl der Stützstellen}$$

 $p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_n(x - x_0)(x - x_1) \cdot ... \cdot (x - x_n)$

Auflösen nach *a* für die einzelnen Fakoren:

$$y_0 = a_0$$

 $y_1 = a_0 + a_1(x_1 - x_0)$
 $y_2 = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$ LU-Zerlegung

5.2.1 Newton-Verfahren Nullstellen

Voraussetzung: Muss stetig sein (hinschreiben!)

stetig = an jeder Stelle definiert Allgemeine Formel: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Newton-Cotes-Formeln

a = untere Grenze b = obere Grenze $\alpha_{i,n}$ Tabelle:

$$h = \frac{b - a}{n}$$

$$x_i = a + i \cdot h$$

$$(x) = h \cdot \sum_{i=1}^{n} \alpha_{i} \dots$$

$$p_n(x) = h \cdot \sum_{i=0}^n \alpha_{i,n} \cdot f(x_i)$$

5.4 QR-Zerlegung

Seien $A \in \mathbb{R}^{m \times n}$ mit m > n und rg(A) =

Gram-Schmidt orthogonalisierten Vek-

$$u_{1} = \frac{1}{|a_{1}|} a_{1}$$

$$u'_{i} = a_{i} - \sum_{j=1}^{i-1} \langle u_{j}, a_{i} \rangle \cdot u_{j}$$

$$u_{i} = \frac{u'_{i}}{|u'_{i}|}$$

$$Q = (u_1, u_2, ..., u_n)$$
$$Q^{-1} \cdot A = R$$

L Matrizen sind Einheitsmatrizen plus: Step 1: L1 Matrix aufbauen:

$$x \in \{1,2\}$$

$$L_{x,1} = -\frac{A(x,1)}{A(1,1)}$$

Step 2: $\tilde{A} = L1 \cdot A$

Step 3: L2 Matrix aufbauen:

$$L_{3,2} = -\frac{\tilde{A}(3,2)}{\tilde{A}(2,2)}$$

Step 4: $U = L2 \cdot \tilde{A}$

Step 5: $L = L_1^{-1} \cdot L_2^{-1}$ (=Vorzeichen au-Berhalb Diagonale ändern.)

5.5.1 Lösung von PLUx = b

Wir berechnen zunächst ein y, welches ein Zwischenergebnis ist. Die Schritte sind sehr einfach, da L und U Dreiecksmatrizen sind.

$$P = Einheitsmatrix$$

Lineares Gleichungssystem:
 $Ly = P^T b \text{ mit } P^T = P^{-1}$
 $Ux = v$

5.6 Cholesky-Zerlegung

Voraussetzung: symmetrische Matrix & Determinante jeder Teilmatrix > 0 $A = GG^T$

$$\begin{array}{lll} \textit{n.} \\ \textit{Es seien } \textit{a}_1, \textit{a}_2, ..., \textit{a}_n \in \mathbb{R}^m \text{ die Spalten-} \\ \textit{vektoren von } \textit{A.} \\ \textit{Die Vektoren } \textit{u}_1, \textit{u}_2, ..., \textit{u}_n \in \mathbb{R}^m \text{ sind die} \\ \textit{Gram-Schmidt orthogonalisierten Vek-} \end{array} \\ = \begin{pmatrix} \textit{s}_{11}^{21} & \textit{s}_{11} \textit{s}_{21} & \textit{s}_{11} \textit{s}_{21} \\ \textit{s}_{11} \textit{s}_{21} & \textit{s}_{21} \textit{s}_{22} & \textit{s}_{21} \textit{s}_{11} + \textit{s}_{22} \textit{s}_{32} \\ \textit{s}_{21} + \textit{s}_{22} \textit{s}_{22} & \textit{s}_{21} + \textit{s}_{22} \textit{s}_{22} \\ \textit{s}_{31} + \textit{s}_{22} \textit{s}_{22} & \textit{s}_{31} + \textit{s}_{22} \textit{s}_{32} \\ \textit{s}_{31} & \textit{s}_{32} & \textit{s}_{33} \end{pmatrix} \\ \textit{G}^{\mathsf{T}} = \begin{pmatrix} \textit{s}_{11} & \textit{s}_{11} & \textit{s}_{21} & \textit{s}_{31} \\ \textit{s}_{21} & \textit{s}_{22} & \textit{s}_{32} \\ \textit{s}_{31} & \textit{s}_{22} & \textit{s}_{33} \end{pmatrix} \\ \textit{G}^{\mathsf{T}} = \begin{pmatrix} \textit{s}_{11} & \textit{s}_{21} & \textit{s}_{31} \\ \textit{s}_{21} & \textit{s}_{22} & \textit{s}_{32} \\ \textit{s}_{33} & \textit{s}_{33} & \textit{s}_{33} \end{pmatrix}$$

Matrixnormen 5.7

$$\begin{vmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sqrt{x_1^2 + \dots + x_n^2}$$

$$\begin{vmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \Big|_1 = \sum_{i=1}^n x_i$$

$$\begin{vmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \Big|_{\infty} = \max_{1 \le i \le n} x_i$$

$$A \in R^{n \times n}$$

$$|A|_1 = \max_{1 \le j \le n} \sum_{i=1}^n a_{ij} \text{ Spaltens.}$$

$$|A|_1 = \max_{1 \le i \le n} \sum_{i=1}^n a_{ij} \text{ Zeilens.}$$

Differentialgleichung

DGL 1. Ordnung

6.1.1 Variation der Konstanten

• Alle Ableitungen v' umformen: $y' = \frac{dy}{dx}$

• Umstellen durch Integration und $e^{ln(x)}$ -Trick nach v

6.2 Anfangswertproblem

Wir haben unsere aufgelöste DGL: v = $C_1 \cdot ...$ Beim AWP haben wir eine Zusatzbedingung, die ähnlich zu y(0) = 2ist. AWP löst sich, indem wir einsetzen und zur Konstante umformen.

6.3 DGL 2. Ordnung

Eine DGL kann eine Störfunktion enthalten. Störfunktionen sind für den inhomogenen Teil der Lösung verantwortlich. Jeder Teil, welcher nicht abhängig von $y^{(n)}$ ist, ist eine Störfunktion. $y(t) = y_h(t) + y_p(t)$

6.3.1 Charakteristisches Poly-

Umformen der Ableitungen: $y^{(n)} = \lambda^n$ Anschließend werden die Lösungen für λ bestimmt.

Einfache Nullstelle:

k-fache Nullstelle: $x^{k-1}e^{\lambda x}$

Komplexe Nullstelle:

 $(a \pm bi) \rightarrow e^{ax} \cdot sin(b), e^{ax} \cdot cos(b)$

Bsp.: $y_h(t) = C_1 \cdot e^{2x} + C_2 \cdot e^{4x}$

Bei inhomogenen DGL muss ein Ansatz gefunden werden, der zur Lösung führt. wenn man ihn samt Ableitungen in die ursprüngliche DGL einsetzt.

- 1. Aufstellen des Ansatzes für $v = \{Ansatz\}$
- 2. Ableiten und Einsetzen als homogenen Teil der DGL.
- 3. Parameter des Ansatzes ausrechnen und als y_p angeben.

7 Sin-Cos-Tan Tabelle

X	0	$\frac{1}{6}\pi$	$\frac{1}{4}\pi$	$\frac{1}{3}\pi$	$\frac{1}{2}\pi$	$\frac{2}{3}\pi$	$\frac{3}{4}\pi$	$\frac{5}{6}\pi$	π	$\frac{7}{6}\pi$
Grad	0	30	45	60	90	120	135	150	180	210
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	±∞	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$