Problem Set 6

Due: Monday, October 13

Reading Assignment: Sections 7.1-7.9

Problem 1. [20 points] The adjacency matrix A of a graph G with n vertices as defined in lecture is an $n \times n$ matrix in which $A_{i,j}$ is 1 if there is an edge from i to j and 0 if there is not. In lecture we saw how the smallest k where $A_{i,j}^k \neq 0$ describes the length of the shortest path from i to j. Given a combinatorial interpretation of the following statements about the adjacency matrix in terms of connectivity properties of G. For example, the smallest k such that $A_{i,j}^k$ is non-zero means that the distance from i to j is at most k.

- (a) [5 pts] The smallest k such that for every pair (i, j) at least one of $A_{i,j}, A_{i,j}^2, \ldots, A_{i,j}^k$ is non-zero.
- **(b)** [5 pts] $\forall k. A_{i,j}^k = 0$
- (c) [5 pts] $\forall i \forall k. A_{i,i}^k = 0$
- (d) [5 pts] $\forall k$, we can write A^k as $\begin{bmatrix} X & 0 \\ 0 & Y \end{bmatrix}$

Problem 2. [15 points] A set of PageRank values is stationary if the amount of PageRank going into each vertex is the same as the amount leaving the vertex on every update. Prove that a strongly connected graph has at most one set of PageRank values that are stationary. There always is a set of PageRank values that are stationary, but we are not asking you prove this.

- (a) [7 pts] For two sets of values of PageRank, d_1 and d_2 , let γ be defined as $\gamma \equiv \max_{x \in V} \frac{d_1(x)}{d_2(x)}$, the maximum ratio of a value in d_1 over the corresponding value in d_2 . Show that there exists a directed edge from y to z such that $d_1(y)/d_2(y) < \gamma$ and $d_1(z)/d_2(z) = \gamma$.
- (b) [8 pts] Prove that a strongly connected graph has at most one set of PageRank values that are stationary by deriving a contradiction using the edge found in part a.

Problem 3. [15 points]

Figure 1: A graph of web pages and links.

- (a) [5 pts] For the graph in Figure 1, compute the first two iterations of PageRank, starting from uniform PageRank values across all vertices.
- (b) [10 pts] A strongly connected component of a directed graph is a subgraph which has the property that for every pair of vertices u and v, there exists a path from u to v and one from v to u. Also, every vertex which can be reached by a path starting in the strongly connected component is also in the strongly connected component. Suppose that a graph G consists of exactly two strongly connected components C_1 and C_2 , and that there exist edges from C_1 to C_2 (but not from C_2 to C_1). There is always a stationary set of values which is non-negative. Prove that the stationary PageRank values of this graph are entirely concentrated in C_2 , i.e. that the PageRank values are all zero on C_1 .

Problem 4. [20 points] For each of the following, either prove that it is an equivalence relation and state its equivalence classes, or give an example of why it is not an equivalence relation.

- (a) [5 pts] $R_n := \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \text{ s.t. } x \equiv y \pmod{n}\}$
- (b) [5 pts] $R := \{(x, y) \in P \times P \text{ s.t. } x \text{ is taller than } y\}$ where P is the set of all people in the world today.
- (c) [5 pts] $R := \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \text{ s.t. } gcd(x, y) = 1\}$
- (d) [5 pts] $R_G :=$ the set of $(x, y) \in V \times V$ such that V is the set of vertices of a graph G, and there is a path x, v_1, \ldots, v_k, y from x to y along the edges of G.

Problem 5. [10 points] Let R_1 and R_2 be two equivalence relations on a set, A. Prove or give a counterexample to the claims that the following are also equivalence relations:

(a) [5 pts] $R_1 \cap R_2$.

Problem Set 6

(b) $[5 \text{ pts}] R_1 \cup R_2$.

Problem 6. [15 points] In this problem we study partial orders (posets). Recall that a weak partial order \leq on a set X is reflexive $(x \leq x)$, anti-symmetric $(x \leq y \land y \leq x \rightarrow x = y)$, and transitive $(x \leq y \land y \leq z \rightarrow x \leq z)$. Note that it may be the case that neither $x \leq y$ nor $y \leq x$. A chain is a list of *distinct* elements x_1, \ldots, x_i in X for which $x_1 \leq x_2 \leq \cdots \leq x_i$. An antichain is a subset S of X such that for all distinct $x, y \in S$, neither $x \leq y$ nor $y \leq x$.

The aim of this problem is to show that any sequence of (n-1)(m-1)+1 integers either contains a non-decreasing subsequence of length n or a decreasing subsequence of length m. Note that the given sequence may be out of order, so, for instance, it may have the form 1, 5, 3, 2, 4 if n = m = 3. In this case the longest non-decreasing and longest decreasing subsequences have length 3 (for instance, consider 1, 2, 4 and 5, 3, 2).

(a) [5 pts] Label the given sequence of (n-1)(m-1)+1 integers $a_1, a_2, \ldots, a_{(n-1)(m-1)+1}$. Show the following relation \leq on $\{1, 2, 3, \ldots, (n-1)(m-1)+1\}$ is a weak poset: $i \leq j$ if and only if $i \leq j$ and $a_i \leq a_j$ (as integers).

For the next part, we will need to use Dilworth's theorem. Recall that Dilworth's theorem states that if (X, \leq) is any poset whose longest chain has length n, then X can be partitioned into n disjoint antichains.

- (b) [5 pts] Show that in any sequence of (n-1)(m-1)+1 integers, either there is a non-decreasing subsequence of length n or a decreasing subsequence of length m.
- (c) [5 pts] Construct a sequence of (n-1)(m-1) integers, for arbitrary n and m, that has no non-decreasing subsequence of length n and no decreasing subsequence of length m. Thus in general, the result you obtained in the previous part is best-possible.

Problem 7. [10 points] Let the transitive closure of a graph G be the digraph $G^+ = (V, E^+)$, where:

 $E^+ = \{u \to v \mid \text{there is a directed path of positive length from } u \text{ to } v \text{ in } G\}.$

Prove that if the graph G is a directed acyclic graph, then the transitive closure of G is a strong partial order.