Conicas		
· Pleno Carlesiano - F	12 = 12 x 1R = 1 (x, y) : x & 12 x y	e 12 f
· Pan ormando (e,b)		
· De t.		
· a = c y b = d.		
· Producto de dos cons	untos.	
· lugar genotico: con o	in los minerios out	pluno que salisface un a equ
(x,-x,)2+(yz-y1)2		
· Punto medio:		
T(= ×1+x2 , Y1+x	2	
· Reclas:		
· hor, zondal · Verlical		
· Pendienle de una ce cl		
• m = Δ_y = $\frac{4}{2}$	- 71	
· Punto Pendiente Cecunic		
· y = m(x-x,),		
· Écuación Principal de la		
· 2: y = mx + b		
· 5: pand	ine so	
• 5; " "	(0)	
Esemplo 5: a) ȳ=	5x + 2 , m > 5	
0 2	5×12	
	z V	

			Sene ral	1 1							
	لاصمر	y on C	sene ral	on la v	ecter.						
	•	Ax + By	+ C = 0								
•	Reclas	Paralelas	. L. 11.	<u> </u>							
						1.		+			
		Dos Keck	us son za	te le lus	s: las	pen dien les	Son i	ا ر دما ماز	m, = m2		
	Recla	S Per pend	wheres 2,	1),							
	<u> </u>	Dos Rec	lus son	per pen di	wlures si	las pendi	enles mu	li plicas	ו- בפ	m4·m2	=-1
	t Jemp!	lo tua	was row	usul di	Invectu						
		La Rec	de								
		Ejemplo									

Guiab																												
Eyerci		. 0.	۱۵.		·	2.0			,	. 1	,		<u></u>	.														
								que		. 1	LΣ			ru ·	Πz	1												
ි :	<u> </u>	2:	2 x	+ 6	γ `	9 =	0																					
	y)	Pend Pend	di e	n be	<u>dı</u>	۲,	:	기노기			}_	- <u>Z</u>		<u>-2</u>	=	1 2	r	5	- 1	ر	K	‡O	/	3t				
	۷)	ren	dı 0	N 76	બ	٨ı		3				Ì																
															=	4	Ξ	- 3	3K									
															:	<u>-प</u> 3	12	, c										
																3												
Eje	ıci	C ; O	5	Į,																								
			Y	ټ.	3		٨	=	×																			
)																									
			٨.	เฉ	_	אל	+ 4	=	-2																			
			9	Pen	die	n le	de	J	۸					2	Q (end	i en	ıdı	bl)	1 :							
					y	_	۱ :	_ X		1.	١.					- 3	メ	·У	=	⁻ 5								
					3																							
					7/3	=	メナ	1	_/	3									2		- 5							
					Y	٥	3(· 3)	y +1)								2)	m:	_ ,	3								
					Y	٦,	5 _X	1+2																				
				•)	m	٠	3																					
					G	ωM	0	m	V	m	2	5	DИ		zu	الم	es ·	_•)	: l),							
															0													

E	jeickei																			
		Deleim						para	lelw	r ent	re 6	í								
		•	Į,	: 4 _y : 2 _y	-1 = +4 =	2v 5														
			9	Pendi	ente c	de di					Per	ndie	n le	9	.					
						y =	2× +1					Y	= <u>5</u>	_	4 <u>x</u>					
),,	y = 1 ×	+ 4								+ <u>&</u>				
						w	1: 1						. د ر			2				
		G	iaf	ice																

La: 4x+2y-1-0 - p(8)	
m,-,-2	9-91=m(x-x0
	4-2 = 614 21
$m_2 = -\frac{A}{-2} = \frac{A}{Z} = \frac{-A}{B}$	J 2 - 2 1 x - 31
	9-2-2x-2
2 - x + 2y + 1 2	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$
) 4x +2y -4 =
	\\ \(\tau_1 + 2y - 1 = \\ \(\tau_2 + 2y - 1 = 0 \\ \(\tau_1 + 2y - 1 = 0 \\ \(\tau_2 + 2y - 1 = 0 \\ \(\tau_1 + 2y - 1 = 0 \\ \(\tau_2 + 2y - 1 = 0 \\ \(\tau_1 + 2y - 1 = 0 \\ \(\tau_2 + 2y - 1 = 0 \\ \(\tau_1 + 2y - 1 = 0 \\ \(\tau_2 + 2y - 1 = 0 \\ \(\tau_1 + 2y - 1 = 0 \\ \(\tau_2 + 2y - 1 = 0 \\ \(\tau_1 + 2y - 1 = 0 \\ \(\tau_2 + 2y - 1 = 0 \\ \(\tau_1 + 2y - 1 = 0 \\ \(\tau_2 + 2y - 1 = 0 \\ \(\tau_1 + 2y - 1 = 0 \\ \(\tau_1 + 2y - 1 = 0 \\ \)
	3.2.2
	3 + 2 . 2
	-3 + U = 2

3) Le expación v2 y2+2x+2=0 es circulterenca?	
$(x + 1)^{1} + (y - 0)^{2} = -2 + 1$	
$(x \cdot 1)^2 + (y - 0)^2 = -1$ we represent	
Recta tangante de una O	
recourt in function of the second	
c P	
Evanplo dos	
C Journ Cos	

2) Li: 2x+y- Lz= 2x+y+ P: (2,1)	5 2 0	$C = (h, k)$ $d(P,C) = \frac{a_{x_1} + b_{y_1} + b_{y_2}}{\sqrt{a^2 + b^2}}$ $r^2 = (x - h)^2 + (y - k)^2$	С
d(1, P) =	$\frac{1(2\cdot2)+(1\cdot1)}{\sqrt{2^2+4^2}}$	+ 15 = 120 = 4	15
		-5 - 101 - 0	
	V 27+42 '	15'	
	7 7 - 45T		
	- (y - 1) ² = (u 1 ⁻		
x2 - 4x +4	$+ y^{2} - 2y + 1 =$ $y^{2} - 2y + 5 = 80$ $\cdot 4x + y^{2} - 2y = 75$	80	
, x ² .	·4x +y ¹ -2y = 75		
			+ 42

Suponga qu	u dos lorre		

Suponga que dos torres de un Puente están separados por 100 metros, y ambos sostienen un cable de forma parabolica, y que por las bases de las torres hay una carretera que representa la directriz. La parte mas baje del cable esta a 20 metros de la carretera.

- A) REalice el grafico
- B) Exprese una ecuación adecuada utilizando los datos que representa tal situación
- C) Cuál es la altura de las torres.
- D) Si la altura de un punto del cable es de 30 metros ¿ Cual es la distancia qué hay entre la parte mas baja del cavle a la altura?

$$(x-h)^{2} = 4p(y-k)$$

$$x^{2} = 80(y-20)$$

$$x^{2} = 800(30-20)$$

$$x^{2} = 800$$

$$x^{2} = 800$$

$$x^{2} = 800$$

$$x^{3} = 800$$

$$x^{4} = 800$$

$$x^{2} = 800$$

$$x^{2} = 800$$

$$x^{3} = 800$$

$$x^{4} = 800$$

$$x^{2} = 800$$

$$x^{3} = 800$$

$$x^{4} = 800$$

$$x^{5} =$$

31.25

x = 41.2. (120 - x1)² + (y2 - y1)² (28, 28)² + (10)² 800 + 100

30

1(0,20)

P(13,13,30)