4	Ø	
)	1	0/
	2	

5

6

7

1

2

3

1

2

3

4

5

6

7

8

9

1

2

3

4

1. A tamper resistant processor system, comprising:

a multi-component chip module (MCM) including:

a CPU

one or more memory chips; and

one or more chip means containing at least one each of a de-encryption key and algorithm therein; and

an obscurant covering the contents of said multi-component chip module.

- 2. A tamper resistant processor system according to claim 1, further comprising said multi-component chip module in a bus configuration with other multi-component chip modules and said one or more memory chips.
 - 3. A tamper resistant processor system, comprising: processor boards;
 - an encrypted computer program;

a non-volatile memory, operatively connected to said processor boards, for storing said encrypted computer program and sending said encrypted computer programs to address destinations on said processor boards;

multi-component chip modules for receiving and de-encrypting said encrypted computer program and sending said de-encrypted computer programs to memory components on said multi-component chip modules.

- 4. A method for protecting a processor system from tampering, said method comprising the steps of:
- a) mounting IC components on a single substrate as a multi-component module or as the contents of a multi-component module;
- b) converting an encrypted computer program, received over a bus from a nonvolatile memory, into its original un-encrypted form;

/	c) sending the de-encrypted computer program to appropriate locations in
8	memory located in the multi-component module; and
9	d) protecting the multi-component module using one or a combination of an
10	obscurant, deceptive patterns, and tamper detection/destruction mechanisms.
1	5. A tamper resistant processor system, comprising:
2	processor boards;
3	encrypted code;
4	a non-volatile memory, operatively connected to said processor boards, for storing
5	said encrypted code and sending said encrypted code to address destinations on said
6	processor boards; and
7	multi-component chip modules for receiving and de-encrypting said encrypted
8	code and sending said de-encrypted code to memory components on said multi-chip
9	modules.
1	6. A method for protecting a processor system from tampering, said method
2	comprising the steps of:
3	a) mounting IC components on a single substrate a s a multi-component module
4	or as the contents of a multi-component module;
5	b) converting encrypted code, received over a bus from a non-volatile memory,
6	into its original un-encrypted form;
7	c) sending the de-encrypted code to appropriate locations in memory located in
8	the multi-component module; and
9	d) protecting the multi-component module using one or a combination of an
10	obscurant, deceptive patterns, and tamper detection/destruction mechanism.
1	7. A tamper resistant processor system, comprising:
2	processor boards;
3	encrypted data;
4	a non-volatile memory or network data source, operatively connected to said
5	processor boards, for storing said encrypted data and sending said encrypted data to

6	address destinations on said processor boards and for receiving and storing encrypted
7	data resulting from the processing of the input data; and
8	multi-component chip modules for receiving and de-encrypting said encrypted
9	data, sending said de-encrypted data to memory components on said multi-chip modules,
10	for storing the results of processing the de-encrypted data, and for encrypting the results
11	before sending to storage or network external to the multi-component chip modules.
1	8. A method for protecting a processor system from tampering, said method
2	comprising the steps of:
3	a) mounting IC components on a single substrate as a multi-component module or
4	as the contents of a multi-component module;
5	b) converting encrypted data, received over a bus from a non-volatile memory,
6	into its original unencrypted form;
7	c) sending the de-encrypted data to appropriate locations in memory located in the
8	multi-component module;
9	d) encrypting processing result data that is being sent to storage or networks
10	external to the multi-component module; and
11	e) protecting the multi-component module using one or a combination of an
12	obscurant, deceptive patterns, and tamper detection/destruction mechanisms.
1	9. A tamper resistant processor system, comprising:
2	a multi-component chip module including:
3	a CPU; and
4	an in-line real time de-encryption chip;
5	one or more memory chips, operatively connected to said in-line real time de-
6	encryption chip, said multi-component chip module encrypting out put to said one or
7	more memory chips; and
8	a memory controller selecting between secured and un-secured memory over a
9	processor buss.