Math 1820A Spring 2024 - Homework 7

Instructions: This assignment is worth twenty points. Please complete the following problems assigned below. Submissions with insufficient explanation may lose points due to a lack of reasoning or clarity. If you are handwriting your work, please ensure it is readable and well-formatted for the grader.

Be sure when uploading your work to assign problems to pages. Problems with pages not assigned to them may not be graded.

Textbook Problems:

Additional Problems: For these problems let \mathbb{H} denote the algebra of Hamiltonians and \mathbb{H}^{\times} denote all the non-zero elements as a *group* under multiplication. For the context of this homework, assume a 'rotation' is orientation preserving, and a 'reflection' is preserves a codimension 1 subspace.

Problem 1

Construct a faithful representation of \mathbb{H}^{\times} into $GL(4,\mathbb{R})$. (Hint: The set $\beta = \{1, i, j, k\} \subset \mathbb{H}$ forms a real-basis for \mathbb{H} as a vector-space. Find a matrix representation for L_q where L_q denotes left-multiplication by the quaternion $q \in \mathbb{H}^{\times}$).

Let q = a + bi + cj + dk and p = x + yi + zj + wk be elements in \mathbb{H}^{\times} . We want a representation of q as a matrix L_q acting on p such that

$$L_{q} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = pq = \begin{pmatrix} ax - by - cz - dw \\ ay + bx + cw - dz \\ az - bw + cx + dy \\ aw + bz - cy + dx \end{pmatrix}$$

(note that pq here means the quaternion product of p and q represented as a vector in \mathbb{R}^4). Clearly, then,

$$L_{q} = \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix}$$

To show that this is, in fact, a faithful representation, it suffices to show that the map

$$\phi: \quad \begin{array}{c} \mathbb{H}^{\times} \to \mathrm{GL}(4,\mathbb{R}) \\ q \mapsto L_q \end{array}$$

is an injective homomorphism.

Consider $q = a_1 + b_1 i + c_1 j + d_1 k$ and $p = a_2 + b_2 i + c_2 j + d_2 k$. Then

$$\phi(qp) = \phi((a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2) + (a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2)i + (a_1c_2 - b_1d_2 + c_1a_2 + d_1b_2)j + (a_1d_2 + b_1c_2 - c_1b_2 + d_1a_2)$$

$$= \begin{pmatrix} a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2 & -a_1b_2 - b_1a_2 - c_1d_2 + d_1c_2 & -a_1c_2 + b_1d_2 - c_1a_2 - d_1b_2 & -a_1d_2 - b_1c_2 + c_1b_2 - d_1a_2 \\ a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2 & a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2 & -a_1d_2 - b_1c_2 + c_1b_2 - d_1a_2 & a_1c_2 - b_1d_2 + c_1a_2 + d_1b_2 \\ a_1c_2 - b_1d_2 + c_1a_2 + d_1b_2 & a_1d_2 + b_1c_2 - c_1b_2 + d_1a_2 & a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2 & -a_1b_2 - b_1a_2 - c_1d_2 + d_1c_2 \\ a_1d_2 + b_1c_2 - c_1b_2 + d_1a_2 & -a_1c_2 + b_1d_2 - c_1a_2 - d_1b_2 & a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2 & a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2 \end{pmatrix}$$

$$\phi(q)\phi(p) = \begin{pmatrix} a_1 & -b_1 & -c_1 & -d_1 \\ b_1 & a_1 & -d_1 & c_1 \\ c_1 & d_1 & a_1 & -b_1 \\ d_1 & -c_1 & b_1 & a_1 \end{pmatrix} \begin{pmatrix} a_2 & -b_2 & -c_2 & -d_2 \\ b_2 & a_2 & -d_2 & c_2 \\ c_2 & d_2 & a_2 & -b_2 \\ d_2 & -c_2 & b_2 & a_2 \end{pmatrix}$$

$$= \begin{pmatrix} a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2 & -a_1b_2 - b_1a_2 - c_1d_2 + d_1c_2 & -a_1c_2 + b_1d_2 - c_1a_2 - d_1b_2 & -a_1d_2 - b_1c_2 + c_1b_2 - d_1a_2 \\ a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2 & a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2 & -a_1b_2 - b_1a_2 - c_1d_2 + d_1c_2 \\ a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2 & a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2 & -a_1b_2 - b_1a_2 - c_1d_2 + d_1c_2 \\ a_1d_2 + b_1c_2 - c_1b_2 + d_1a_2 & -a_1c_2 + b_1d_2 - c_1a_2 - d_1b_2 & -a_1b_2 - b_1a_2 - c_1d_2 + d_1c_2 \\ a_1d_2 + b_1c_2 - c_1b_2 + d_1a_2 & -a_1c_2 + b_1d_2 - c_1a_2 - d_1b_2 & a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2 & a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2 \end{pmatrix}$$

So the mapping is a genuine representation. To show that it is injective, it suffices to show that the only quaternion which maps to the identity matrix is the identity quaternion. Clearly,

$$\phi(1+0i+0j+0k) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

and by definition of L_q , $1 \in \mathbb{H}^{\times}$ is the only quaternion which maps to the identity matrix. Therefore, the representation is faithful.

Using your result from Problem 1, let \mathfrak{h} denote the Lie-algebra of \mathbb{H}^{\times} inside $GL(4,\mathbb{R})$. Write out a basis for the Lie-algebra and the corresponding brackets.

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

$$D = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Provides a natural basis. Using Matlab, we can calculate the bracket [X, Y] = XY - YX:

$$[A, B] = 0$$

 $[A, C] = 0$
 $[A, D] = 0$
 $[B, C] = 2D$
 $[B, D] = -2C$
 $[C, D] = 2B$

Define $\mathfrak{q} = \mathfrak{h}/\mathfrak{z}(\mathfrak{h})$ where $\mathfrak{z}(\mathfrak{h})$ denotes the center of \mathfrak{h} . Determine if \mathfrak{q} is solvable. Is it simple? We can create the short exact sequence

$$\mathfrak{z}(\mathfrak{h}) \hookrightarrow \mathfrak{h} \twoheadrightarrow \mathfrak{q}$$

 \mathfrak{q} is thus solvable iff \mathfrak{h} is solvable.

From Problem 2, we have

$$\mathfrak{h}^1 = [\mathfrak{h}, \mathfrak{h}] = \langle 2D, -2C, 2B \rangle$$

SO

$$\mathfrak{h}^2 = [\mathfrak{h}^1, \mathfrak{h}^1] = [\langle 2D, -2C, 2B \rangle, \langle 2D, -2C, 2B \rangle] = 4 \langle B, C, D \rangle$$

Since this is just a scalar multiple of \mathfrak{h}^1 , the derived series will not terminate. Therefore, \mathfrak{h} is not solvable so \mathfrak{q} is not solvable.

Further, \mathfrak{q} is not simple since $\langle B, C, D \rangle \subseteq \mathfrak{q}$ and

$$[\langle B, C, D \rangle, \langle B, C, D \rangle] = \langle B, C, D \rangle$$
$$[\langle B, C, D \rangle, A] = 0 \subseteq \langle B, C, D \rangle$$

so q has a non-trivial ideal.

Consider the natural group action of $SO(3,\mathbb{R})$ on \mathbb{R}^3 , namely you pair a matrix $A \in SO(3,\mathbb{R})$ with a vector $v \in \mathbb{R}^3$ and get $Av \in \mathbb{R}^3$. Prove that for any $A \in SO(3,\mathbb{R})$, there exists a line $L_A \subset \mathbb{R}^3$ through the origin, such that A fixes all points along L_A . Is the same result true for $SO(4,\mathbb{R})$?

It suffices to show that for all $A \in SO(3, \mathbb{R})$, there exists a vector $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ such that

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

i.e. there exists an eigenvector with eigenvalue 1 for all $A \in SO(3, \mathbb{R})$.

Since the characteristic polynomial of A will be cubic, it will have at least one real root so there exists at least one real eigenvalue λ of A.

Therefore, $Av = \lambda v$ for some vector v. Without loss of generality, we can assume that v is a unit vector, i.e. $||v|| = v^T v = 1$. Further, since $A \in SO(3, \mathbb{R})$, we have that $A^T A = I$. Thus

$$1 = v^T v = v^T (A^T A) v = (Av)^T (Av) = (\lambda v)^T (\lambda v) = \lambda^2 v^T v = \lambda^2 \implies \lambda = \pm 1$$

Because $A \in SO(3, \mathbb{R})$, det $A = \lambda_1 \lambda_2 \lambda_3 = 1$. If all the eigenvalues are real, there must be 0 negative eigenvalues or two eigenvalues – therefore one eigenvalue must be 1. Similarly, if the eigenvalues are complex, then they must be conjugate pairs with positive product, so the final eigenvalue must be 1.

Therefore, $\exists v \in \mathbb{R}^3$ which is an eigenvector with eigenvalue 1 for any $A \in SO(3, \mathbb{R})$. Take $L_A = \operatorname{Span}_{\mathbb{R}}\{v\}$ and we have a line through the origin which is invariant under A.

Elements of $SO(4, \mathbb{R})$ may not have a real eigenvalue so the result does not hold.

Prove that every rotation in \mathbb{R}^2 can be expressed as the composition of two reflections in \mathbb{R}^2 . Prove that every rotation in \mathbb{R}^3 can be expressed as the composition of two reflections in \mathbb{R}^3 .

In \mathbb{R}^2 , rotations can be represented by matrices in $SO(2,\mathbb{R})$ of the form

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Similarly, reflections can be written

$$F_{\theta} = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$$

Consider the composition of two reflections F_{ϕ} , F_{ψ} :

$$F_{\phi}F_{\psi} = \begin{pmatrix} \cos 2\phi & \sin 2\phi \\ \sin 2\phi & -\cos 2\phi \end{pmatrix} \begin{pmatrix} \cos 2\psi & \sin 2\psi \\ \sin 2\psi & -\cos 2\psi \end{pmatrix}$$

$$= \begin{pmatrix} \cos 2\phi \cos 2\psi + \sin 2\phi \sin 2\psi & \cos 2\phi \sin 2\psi - \sin 2\phi \cos 2\psi \\ \sin 2\phi \cos 2\psi - \cos 2\phi \sin 2\psi & \sin 2\phi \sin 2\psi + \cos 2\phi \cos 2\psi \end{pmatrix}$$

$$= \begin{pmatrix} \cos(2(\phi - \psi)) & -\sin(2(\phi - \psi)) \\ \sin(2(\phi - \psi)) & \cos(2(\phi - \psi)) \end{pmatrix}$$

$$= R_{2(\phi - \psi)}$$

Therefore, for any rotation R_{θ} , we can write it as the composition of two reflections $F_{\frac{\theta}{4}}, F_{-\frac{\theta}{4}}$.

Let A and be B be lines in \mathbb{R}^3 with L_A and L_B their respective line symmetries.

In the trivial case A = B, we have $L_B \circ L_A = L_A^2 = 1$.

Now suppose $A \neq B$. Clearly, there is a non-zero angle between the two.

We can consider a rotated reference frame such that L_A and L_B both lie within the xz-plane. Since these are elements in $SO(3,\mathbb{R})$, we claim that a vector parallel to $A \times B$ is fixed by $L_B \circ L_A$:

$$(L_B \circ L_A)(A \times B) = L_B(L_A(A \times B)) = L_B(-A \times B) = A \times B$$

(since $A \times B$ is perpendicular to both A and B)

Therefore, it suffices to analyze the action of $L_B \circ L_A$ on the orthogonal complement of $A \times B$. From the 2-d case, we know that two reflection in this plane will generate a rotation – and indeed, we know that this relation is precisely twice the angle from A to B. Therefore, given any rotation in $SO(3,\mathbb{R})$ (say specified by its fixed axis and its angle of rotation θ), we may represent it as the composition of two line symmetries $\theta/2$ degrees apart which are orthogonal to the fixed axis.

Prove that $\exp: \mathbf{so}(3,\mathbb{R}) \longrightarrow SO(3,\mathbb{R})$ is surjective. (Hint: You can do a tedious calculation, but there's a slicker way using Problem 4)

Since every rotation in $SO(3,\mathbb{R})$ fixes one axis, we may represent any element of $SO(3,\mathbb{R})$ by

$$R = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

relative to some basis.

Since

$$\exp\begin{pmatrix} 0 & -\theta & 0\\ \theta & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

and

$$\begin{pmatrix} 0 & -\theta & 0 \\ \theta & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \mathbf{so}(3, \mathbb{R})$$

every element of $SO(3,\mathbb{R})$ is in the image of exp. Therefore, exp is surjective.

Let $X \in \mathbf{so}(3,\mathbb{R})$ such that $||X|| = \sqrt{2}$ where $||\cdot||$ denotes the sum of squares norm. Let $t \in \mathbb{R}$ and prove that

$$\exp(tX) = I_3 + \sin(t)X + (1 - \cos(t))X^2$$

Since $X \in \mathbf{so}(3, \mathbb{R})$, we can write

$$X = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix}$$

Notice that for all $X \in \mathbf{so}(3, \mathbb{R})$ we have

$$\left(\frac{X}{\sqrt{a^2 + b^2 + c^2}}\right)^3 = -\frac{X}{||X||}, \quad \left(\frac{X}{||X||}\right)^4 = -\left(\frac{X}{||X||}\right)^2, \quad \left(\frac{X}{||X||}\right)^5 = \frac{X}{||X||}, \quad \dots$$

Define

$$||X|| = \sqrt{a^2 + b^2 + c^2 + (-a)^2 + (-b)^2 + (-c)^2}$$

$$= \sqrt{2a^2 + 2b^2 + 2c^2} = \sqrt{2}$$

$$\implies 2a^2 + 2b^2 + 2c^2 = 2$$

$$\implies a^2 + b^2 + c^2 = 1$$

$$\implies \sqrt{a^2 + b^2 + c^2} = 1$$

so we can say

$$\exp(tX) = \exp(t\frac{X}{\sqrt{a^2 + b^2 + c^2}})$$

$$= I_3 + t\frac{X}{\sqrt{a^2 + b^2 + c^2}} + \frac{t^2}{2} \left(\frac{X}{\sqrt{a^2 + b^2 + c^2}}\right)^2 + \frac{t^3}{3!} \left(\frac{X}{\sqrt{a^2 + b^2 + c^2}}\right)^3 + \dots$$

$$= I_3 + t\frac{X}{\sqrt{a^2 + b^2 + c^2}} + \frac{t^2}{2} \left(\frac{X}{\sqrt{a^2 + b^2 + c^2}}\right)^2 - \frac{t^3}{3!} \left(\frac{X}{\sqrt{a^2 + b^2 + c^2}}\right) - \frac{t^4}{4!} \left(\frac{X}{\sqrt{a^2 + b^2 + c^2}}\right)^2 + \dots$$

$$= I_3 + \left(t - \frac{t^3}{3!} + \frac{t^5}{5!} + \dots\right) \frac{X}{\sqrt{a^2 + b^2 + c^2}} + \left(\frac{t^2}{2} - \frac{t^4}{4!} + \frac{t^6}{6!} + \dots\right) \frac{X^2}{(\sqrt{a^2 + b^2 + c^2})^2}$$

$$= I_3 + \sin(t) \frac{X}{\sqrt{a^2 + b^2 + c^2}} + (1 - \cos(t)) \frac{X^2}{a^2 + b^2 + c^2}$$

$$= I_3 + \sin(t)X + (1 - \cos(t))X^2 \quad \blacksquare$$

Let R_A denote the rotation about the line generated by the vector $(1,1,1) \in \mathbb{R}^3$ by an angle of $\pi/2$ according to the right-hand rule. Let R_B denote the rotation about the line generated by $(1,0,-1) \in \mathbb{R}^3$ by an angle of $\pi/3$. Determine the rotation axis and angle of $R_A \circ R_B$.

In general, we may represent a rotation about a line v by an angle θ as a quaternion of the form

$$q = \cos\frac{\theta}{2} + \sin\frac{\theta}{2} \frac{v}{||v||}$$

In our case,

$$R_A \sim q_A = \cos\frac{\pi}{4} + \sin\frac{\pi}{4}(\frac{1}{\sqrt{3}}i + \frac{1}{\sqrt{3}}j + \frac{1}{\sqrt{3}}k) = \frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{6}i + \frac{\sqrt{6}}{6}j + \frac{\sqrt{6}}{6}k$$

and

$$R_B \sim q_B = \cos\frac{\pi}{6} + \sin\frac{\pi}{6}(\frac{1}{\sqrt{2}}i - \frac{1}{\sqrt{2}}k) = \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{4}i - \frac{\sqrt{2}}{4}k$$

Thus the rotation $R_A \circ R_B$ corresponds to quaternion rotation $q_A q_B$ which can be computed:

$$\begin{split} q_A q_B &= \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{6}i + \frac{\sqrt{6}}{6}j + \frac{\sqrt{6}}{6}k\right) \left(\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{4}i - \frac{\sqrt{2}}{4}k\right) \\ &= \frac{\sqrt{6}}{4} + \frac{2}{8}i - \frac{2}{8}k \\ &\quad + \frac{\sqrt{18}}{12}i + \frac{\sqrt{12}}{24}i^2 - \frac{\sqrt{12}}{24}ik \\ &\quad + \frac{\sqrt{18}}{12}j + \frac{\sqrt{12}}{24}ji - \frac{\sqrt{12}}{24}jk \\ &\quad + \frac{\sqrt{18}}{12}k + \frac{\sqrt{12}}{24}ki - \frac{\sqrt{12}}{24}k^2 \\ &= \frac{\sqrt{6}}{4} + \frac{1}{4}i - \frac{1}{4}k + \frac{\sqrt{2}}{4}i - \frac{\sqrt{3}}{12} + \frac{\sqrt{3}}{12}j + \frac{\sqrt{2}}{4}j - \frac{\sqrt{3}}{12}k - \frac{\sqrt{3}}{12}i + \frac{\sqrt{2}}{4}k + \frac{\sqrt{3}}{12}j + \frac{\sqrt{3}}{12} \\ &= \left(\frac{\sqrt{6}}{4} - \frac{\sqrt{3}}{12} + \frac{\sqrt{3}}{12}\right) + \left(\frac{1}{4} + \frac{\sqrt{2}}{4} - \frac{\sqrt{3}}{12}\right)i + \left(\frac{\sqrt{3}}{12} + \frac{\sqrt{2}}{4} + \frac{\sqrt{3}}{12}\right)j + \left(-\frac{1}{4} - \frac{\sqrt{3}}{12} + \frac{\sqrt{2}}{4}\right)k \\ &= \frac{\sqrt{6}}{4} + \frac{3 + 3\sqrt{2} - \sqrt{3}}{12}i + \frac{3\sqrt{2} + 2\sqrt{3}}{12}j + \frac{-3 + 3\sqrt{2} - \sqrt{3}}{12}k \end{split}$$

Notice that

$$||q_A q_B|| = \sqrt{\frac{6}{16} + \frac{30 + 18\sqrt{2} - 6\sqrt{3} - 6\sqrt{6}}{144} + \frac{30 + 12\sqrt{6}}{144} + \frac{30 - 18\sqrt{2} + 6\sqrt{3} - 6\sqrt{6}}{144}} = \sqrt{\frac{6}{16} + \frac{90}{144}} = 1$$

SO

$$q = \cos\frac{\theta}{2} + \sin\frac{\theta}{2}u$$

with u pure and unit. If we normalize

$$\frac{3+3\sqrt{2}-\sqrt{3}}{12}i+\frac{3\sqrt{2}+2\sqrt{3}}{12}j+\frac{-3+3\sqrt{2}-\sqrt{3}}{12}k$$

we have

$$u = \frac{144}{90} \left(\frac{3 + 3\sqrt{2} - \sqrt{3}}{12} i + \frac{3\sqrt{2} + 2\sqrt{3}}{12} j + \frac{-3 + 3\sqrt{2} - \sqrt{3}}{12} k \right)$$
$$= \frac{6 + 6\sqrt{2} - 2\sqrt{3}}{15} i + \frac{6\sqrt{2} + 4\sqrt{3}}{15} j + \frac{-6 + 6\sqrt{2} - 2\sqrt{3}}{15} k$$

and $\theta = 2\cos^{-1}\left(\frac{\sqrt{6}}{4}\right)$ so the composite rotation axis is

$$u = \begin{pmatrix} \frac{6+6\sqrt{2}-2\sqrt{3}}{15} \\ \frac{6\sqrt{2}+4\sqrt{3}}{15} \\ \frac{-6+6\sqrt{2}-2\sqrt{3}}{15} \end{pmatrix} \approx \begin{pmatrix} 0.735 \\ 1.028 \\ -0.065 \end{pmatrix}$$

through an angle of $\theta = 2\cos^{-1}\left(\frac{\sqrt{6}}{4}\right) \approx 104.45^{\circ}$

Bonus: [3 pts] Prove that every element of $SO(n, \mathbb{R})$ is the product of at most (n+2)/2 reflections.