7.1.2

- (a) Easily, $\mathbf{v}_2 = \frac{1}{2}\mathbf{v}_1$.
- (b) Easily, $\mathbf{v}_3 = 5\mathbf{v}_1 5\mathbf{v}_2$.
- (c) Easily, $\mathbf{v}_4 = 5\mathbf{v}_1 + 4\mathbf{v}_2 + 8\mathbf{v}_3$.

7.1.6

(a) Following sets of vectors are bases for the given line

$$\{(1,3)\},\{(2,6)\},\{(-1,-3)\}$$

Those vectors are found by insert 1, 2, -1 for t.

(b) Following sets of vectors are bases for the given plane

$$\{(1,1,3),(1,-1,2)\},\{(1,1,3),(2,0,5)\},\{(1,-1,2),(2,0,5)\}$$

Those vectors are found by insert (1,0),(0,1),(1,1) for (t_1,t_2) .

7.1.10

The reduced row echelon form of the matrix

$$\begin{bmatrix} 1 & 2 & -2 & 1 & 3 \\ 0 & 1 & 3 & -1 & -1 \\ 2 & 3 & -7 & 3 & 7 \\ 0 & 1 & 0 & -1 & 1 \end{bmatrix}$$

is given by

$$\begin{bmatrix} 1 & 0 & 0 & 3 & -\frac{1}{3} \\ 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 & -\frac{2}{3} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Hence, the canonical basis for the solution space is $\{(-3,1,0,1,0),(\frac{1}{3},-1,\frac{2}{3},0,1)\}$ and the dimension of the space is 2.

7.1.D4

The solution space of $A\mathbf{x} = \mathbf{0}$ is nontrivial, in other words, have positive dimension, if and only if $\det(A) = 0$. Now, $\det(A) = 2 \cdot (1-1) - 4 \cdot (-t-3) + t \cdot (t+3) = (t+3)(t+4)$. Hence, the solution space of $A\mathbf{x} = \mathbf{0}$ have positive dimension if and only if t = -3 or t = -4. For the case t = -3, a basis for the solution space is $\{(1,7,10)\}$, so it has dimension 1. For the case t = -4, a basis for the solution space is $\{(0,1,1)\}$, so it has dimension 1.

7.1.P1

- (a) If S or S' has the zero vector, then it is trivial. Hence, we may assume S, S' has only nonzero vectors. Thus, $|S| \geq 2$. Then, by Theorem 7.1.2, since S is linearly dependent, there exists $\mathbf{v}_i \in S$ such that \mathbf{v}_i is a linear combination of its predecessors, $\mathbf{v}_1, \dots, \mathbf{v}_{i-1}$. Now, the predecessors does not changes for S', so it is still true for S', which proves S' is again linearly dependent. Actually, $c_1\mathbf{v}_1 + \dots + c_k\mathbf{v}_k = c_1\mathbf{v}_1 + \dots + c_k\mathbf{v}_k + 0\mathbf{w}_1 + \dots + 0\mathbf{w}_r$ also proves this statement.
- (b) Suppose a set of vectors S has a nonempty subset S^* such that linealy dependent. If $\mathbf{0} \in S^*$, then $\mathbf{0} \in S$ which implies S is linearly dependent. Now, if not, then since S^* is linearly dependent, $|S^*| \geq 2$. Then, by Theorem 7.1.2, there is a vector in S^* such that it is a linear combination of its predecessors in S^* . But the set of predecessor vectors in S^* is a subset of predecessor vectors in S, so such vector is also a linear combination of its predecessors in S. Thus, S is linearly dependent.

7.2.6

- (a) Consider the matrix $A = \begin{bmatrix} 5 & 3 & 8 \\ 1 & 0 & 1 \\ -8 & 5 & -3 \end{bmatrix}$ such that columns are $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$. This matrix has the determinant 5(0-5) 3(-3+8) + 8(5-0) = 0, so given vectors do not form a basis.
- (b) Consider the matrix $A = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ such that columns are $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$. This matrix has the determinant (-1)(1-1)-1(-1-1)+1(1+1)=4, so given vectors form a basis.

7.2.8 (a) For any vector $(x, y, z) \in \mathbb{R}^3$, we have a linear combination

$$(x, y, z) = z \cdot (1, 1, 1) + (y - z) \cdot (1, 1, 0) + (x - y) \cdot (1, 0, 0) = z \mathbf{v}_1 + (y - z) \mathbf{v}_2 + (x - y) \mathbf{v}_3$$

Hence, $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ span \mathbb{R}^3 , so is $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$. But from above observation, we have $\mathbf{v}_4 = 2\mathbf{v}_2 + \mathbf{v}_3$ which gives nontrivial linear combination $2\mathbf{v}_2 + \mathbf{v}_3 - \mathbf{v}_4 = 0$, so $\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ is linearly dependent, and so is $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$.

(b) Following expression are the answers.

$$(1,2,3) = 3(1,1,1) + (-1)(1,1,0) + (-1)(1,0,0) = 3\mathbf{v}_1 - \mathbf{v}_2 - \mathbf{v}_3$$

$$(1,2,3) = 3(1,1,1) + 1(1,1,0) + (-1)(3,2,0) = 3\mathbf{v}_1 + \mathbf{v}_2 - \mathbf{v}_4$$

$$(1,2,3) = 3(1,1,1) + \left(-\frac{1}{2}\right)(1,0,0) + \left(-\frac{1}{2}\right)(3,2,0) = 3\mathbf{v}_1 - \frac{1}{2}\mathbf{v}_3 - \frac{1}{2}\mathbf{v}_4$$

Generally, if we solve by reduced row echelon form, we have

$$(1,2,3) = 3\mathbf{v}_1 - (1+2t)\mathbf{v}_2 - (1+t)\mathbf{v}_3 + t\mathbf{v}_4$$

is answer for any t.

7.2.16

- (a) It is enough to check **u** and **n** are orthogonal because if **u** is in W if and only if V is contained in W. Since $(1,1,3) \bullet (2,1,-1) = 2+1-3=0$, V is a subspace of W.
- (b) For any $t \neq 0$, we have $3x + 2y + z = 3t + 4t 5t = 2t \neq 0$, so V is not a subspace of W.

7.2.18

(a) Note that
$$T(4,3,0) = T((1,0,0) + 3(1,1,0)) = (5,-2,1,0) + 3(2,1,3,-1) = (11,1,10,-3)$$

(b) Note that

$$T(a,b,c) = T(c(1,1,1) + (b-c)(1,1,0) + (a-b)(1,0,0))$$

$$= c(3,2,0,1) + (b-c)(2,1,3,-1) + (a-b)(5,-2,1,0)$$

$$= (5a-3b+c,-2a+3b+c,a+2b-3c,-b+2c).$$

(c) From above observation, we get

$$[T] = \begin{bmatrix} 5 & -3 & 1 \\ -2 & 3 & 1 \\ 1 & 2 & -3 \\ 0 & -1 & 2 \end{bmatrix}$$

7.2.D1

- (a) (T). By Theorem 7.2.6.(d)
- (b) (T). By Theorem 7.2.6.(c)
- (c) (T). Since every vector in \mathbb{R}^n can be expressed as a linear combination of the vectors in S, so S spans \mathbb{R}^n . Also, the way is unique, so S is linearly independent. Hence, k = n.
- (d) (T). By Theorem 7.2.7 (d) and (p).
- (e) (T). By Theorem 7.2.4 (b), if V is a subspace of W, then V=W which contradicts to that V and W are distinct. By same reason, W is not a subspace of V.

7.2.P5

Since B is a basis, for any $\mathbf{v} \in \mathbb{R}^n$ there is unique c_1, \dots, c_n such that $\mathbf{v} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$. Then, define

$$T(\mathbf{v}) = c_1 \mathbf{w}_1 + \dots + c_n \mathbf{w}_n$$

This map is linear since

$$T\left(\sum_{i=1}^{n} c_{i} \mathbf{v}_{i} + \sum_{i=1}^{n} d_{i} \mathbf{v}_{i}\right) = T\left(\sum_{i=1}^{n} (c_{i} + d_{i}) \mathbf{v}_{i}\right)$$

$$= \sum_{i=1}^{n} (c_{i} + d_{i}) \mathbf{w}_{i}$$

$$= \sum_{i=1}^{n} c_{i} \mathbf{w}_{i} + \sum_{i=1}^{n} d_{i} \mathbf{w}_{i}$$

$$= T\left(\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}\right) + T\left(\sum_{i=1}^{n} d_{i} \mathbf{v}_{i}\right)$$

$$T\left(c\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}\right) = T\left(\sum_{i=1}^{n} cc_{i} \mathbf{v}_{i}\right)$$

$$= \sum_{i=1}^{n} cc_{i} \mathbf{w}_{i}$$

$$= c\sum_{i=1}^{n} c_{i} \mathbf{w}_{i}$$

$$= cT\left(\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}\right)$$

Hence T is a linear operator on \mathbb{R}^n such that $T(\mathbf{v}_i) = \mathbf{w}_i$ for any $1 \leq i \leq n$. Now, suppose T' is a linear operator such that $T'(\mathbf{v}_i) = \mathbf{w}_i$. Then, for any $\mathbf{v} \in \mathbb{R}^n$, we can write $\mathbf{v} = \sum_{i=1}^n c_i \mathbf{v}_i$, and then, $T(\mathbf{v}) = T(\sum_{i=1}^n c_i \mathbf{v}_i) = \sum_{i=1}^n c_i \mathbf{w}_i = \sum_{i=1}^n c_i T'(\mathbf{v}_i) = T'(\sum_{i=1}^n c_i \mathbf{v}_i) = T'(\mathbf{v})$. Thus, T = T' and so T is the unique linear operator with given property.

Also, let \mathbf{e}_i be a vector in \mathbb{R}^n such that ith component is 1 and others are all 0. Then, define $n \times n$ matrix $W = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \cdots & \mathbf{w}_n \end{bmatrix}$ and $V = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix}$. Then, $W \mathbf{e}_i = \mathbf{w}_i$ and $V \mathbf{e}_i = \mathbf{v}_i$. Since \mathbf{B} is a basis, by Theorem 7.2.7, V is an invertible matrix. Moreover, $\mathbf{e}_i = V^{-1}\mathbf{v}_i$. Hence, if we define a linear operator T such that $[T] = WV^{-1}$, then we have $T(\mathbf{v}_i) = WV^{-1}\mathbf{v}_i = W\mathbf{e}_i = \mathbf{w}_i$. Uniqueness is proved as above.

7.2.P8

Let $\dim(V)=k=\dim(W)$ and $\mathbf{v}_1,\cdots,\mathbf{v}_k$ be vectors which form a basis of V. Since it is a basis, given vectors are linearly independent. Also, $V\subseteq W$, so these vectors are linearly independent k vectors in W which is a k-dimensional subspace. Thus, by Theorem 7.2.6.(a), the set $S=\{\mathbf{v}_1,\cdots,\mathbf{v}_k\}$ is a basis for W, which proves $W=\mathrm{span}\,(S)=V$.

Note that W is a solution space of x+y+z=0, x-y+z=0 which is a line satisfying $x=-t,\,y=0$ and z=t. Hence, W^{\perp} is a plane orthogonal to this line, which is equivalent to that orthogonal to the direction (-1,0,1). Hence W^{\perp} is a set of vectors satisfying -x+z=0, which can be parametrized as (s,r,s) with parameter r,s.

The reduced row echelon form of the matrix

$$\begin{bmatrix} \mathbf{v}_1^T \\ \mathbf{v}_2^T \\ \mathbf{v}_3^T \\ \mathbf{v}_4^T \\ \mathbf{v}_5^T \end{bmatrix} = \begin{bmatrix} 1 & 4 & -2 & 3 & 5 \\ 0 & 1 & 6 & -7 & 1 \\ 0 & 0 & 1 & 2 & -3 \\ 0 & 0 & 0 & 1 & 2 \\ 1 & 5 & 5 & -1 & 5 \end{bmatrix}$$

is

$$\begin{bmatrix} 1 & 0 & 0 & 0 & -243 \\ 0 & 1 & 0 & 0 & 57 \\ 0 & 0 & 1 & 0 & -7 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

which proves W has a basis $\{(1,0,0,0,-243),(0,1,0,0,57),(0,0,1,0,-7),(0,0,0,1,2)\}$ and W^{\perp} has a basis (243,-57,7,-2,1). This is possible since row operations do not change the row space and the null space.

Consider the augmented matrix

$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -1 & 3 & 3 & -2 & 3 \\ 1 & 1 & 0 & -2 & -1 & 0 & 2 \\ 0 & 3 & 2 & 1 & 7 & -1 & 6 \\ 2 & 1 & 1 & 0 & 2 & 2 & 4 \\ 0 & -1 & 1 & 1 & 1 & 2 & 1 \end{bmatrix}$$

If we make reduced row echelon form for $\mathbf{v}_1, \dots, \mathbf{v}_4$ then it becomes

$$\begin{bmatrix} 1 & 0 & 0 & 0 & | & -\frac{1}{5} & | & 1 & | & 0 \\ 0 & 1 & 0 & 0 & | & \frac{6}{5} & | & -1 & | & 0 \\ 0 & 0 & 1 & 0 & | & \frac{6}{5} & | & 1 & | & 0 \\ 0 & 0 & 0 & 1 & | & 1 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 1 \end{bmatrix}$$

Hence, $\mathbf{b}_1, \mathbf{b}_2$ lie in the space spanned by the \mathbf{v} 's but \mathbf{b}_3 is not.

The reduced row echelon form of A is

$$\begin{bmatrix} 1 & 0 & 0 & \frac{1}{4} & -\frac{7}{5} \\ 0 & 1 & 0 & \frac{1}{2} & \frac{6}{5} \\ 0 & 0 & 1 & \frac{1}{4} & \frac{3}{5} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

which gives a basis of row(A) as $\{(20,0,0,5,-28),(0,10,0,5,12),(0,0,20,5,12)\}$ and a basis of null(A) as $\{(-1,-2,-1,4,0),(7,-6,-3,0,5)\}$. To check two space are orthogonal complement, it is enough to check bases for two spaces are orthogonal. Then

$$\begin{bmatrix} 20 & 0 & 0 & 5 & -28 \\ 0 & 10 & 0 & 5 & 12 \\ 0 & 0 & 20 & 5 & 12 \end{bmatrix} \begin{bmatrix} -1 & 7 \\ -2 & -6 \\ -1 & -3 \\ 4 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

proves that null(A) and row(A) are subset of orthogonal complement to each other respectively. But from the fact that those 5 vectors, from the basis of row(A) and null(A), form a basis of \mathbb{R}^5 , you may prove row(A) and null(A) are really orthogonal complement to each other easily.

- (a) The column space of A is spanned by (1,0,0), and (0,1,0) which is xy-plane and the null space of A is spanned by (0,0,1) which is z-axis.
- (b) Any matrix of type

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & B \\ 0 & B \end{bmatrix}$$

with invertible B has x-axis as the null space and yz-plane as the column space.

7.3.D2

- (a) (T). By Theorem 7.2.7, row vectors and column vectors form bases respectively, so both row space and column space are \mathbb{R}^n .
- (b) (F). If W is a subspace of V, then for any vector in V^{\perp} is orthogonal to every vectors in V, so is orthogonal to every vectors in W. Hence, V^{\perp} is a subspace of W^{\perp} . But W^{\perp} may not be a subspace of V^{\perp} . For example if W is the x-axis and V is the xy-plane, then W^{\perp} is the yz-plane and V^{\perp} is the z-axis.
- (c) (F). If $A = \begin{bmatrix} 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 \end{bmatrix}$, then each row of a matrix A is a linear combination of the rows of a matrix B, but A has the null space \mathbb{R} which is not same as the null space of B, which is $\{0\}$. Generally, $\operatorname{row}(A) \subseteq \operatorname{row}(B)$ implies $\operatorname{null}(A) = \operatorname{row}(A)^{\perp} \supseteq \operatorname{row}(B)^{\perp} = \operatorname{null}(B)$ by Theorem 7.3.5 and (b).
- (d) (F). If $A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, then A and B have the same row space but different column spaces.
- (e) (T). For elementary matrix E, EA is nothing but apply an elementary row operation. Hence, by Theorem 7.3.7.(a), A and EA have the same row space. Also, note that for any matrix A, B, $row(BA) \subseteq row(A)$ since row vectors of row(BA) are all linear combination of row vectors of A. Hence, if B is invertible, then $row(A) = row(B^{-1}BA) \subseteq row(BA) \subseteq row(A)$, so row(A) = row(BA).

7.3.P3

Since P is invertible, $PA\mathbf{v} = \mathbf{0}$ if and only if $A\mathbf{v} = P^{-1}\mathbf{0} = \mathbf{0}$. Hence null(A) = null(PA). Thus, A and PA have same nullity. Now, by Theorem 7.3.8, A and PA have the same row space, so they have same rank, which is the dimension of the row space.

7.3.P4

By Theorem 7.3.4.(b) and (c), $(S^{\perp})^{\perp} = (\operatorname{span}(S)^{\perp})^{\perp} = \operatorname{span}(S)$. The first equality is from (b) and the second one is from (c).