

Predictive Modeling in College Basketball

By: Sarvesh Gopalakrishnan

MAIN GOALS

Predict Win Percentages

Which predictors are most useful in predicting win percentage?

Predict T25 Teams for the Next Decade

How can the predicted win percentages from 2013-2024 be applied to a ranking system?

Cross Validate Models

Which predictive model is most effective in predicting win percentage?

Predict the T25 Teams for the 2025 Season

How can we utilize the performance of teams in 2024 to predict the top teams in 2025?

DATASET INFORMATION

CBB Information

- Historical data for all CBB teams from 2013-2024
- Postseason, seeding, GP, and win data included

Outside Data

 Imported strength of schedule ratings (SOS_Ratings) from TeamRankings.com

Predictors:

ADJOE/ADJDE → **Adjusted Off/Def Efficiency**

EFG_O/EFG_D → **Effective Off/Def Field Goal Percentage**

TOR/TORD → **Off/Def Turnover Rate**

ORB/DRB → **Off/Def Rebound Rate**

FTR/FTRD → Off/Def Free Throw Rate

TWOPT/DTWOPT → **Off/Def 2PT Percentage**

OFFTH/DEFTH → **Off/Def 3PT Percentage**

BARTHAG/WAB → **Power Rating/Wins Above Bubble**

SOS_RATING → **Strength of Schedule Rating**

MODELS TESTED

CORRELATIONS

```
> storeCor
                                                  TOR
                                                            TORD
     ADJOE
               ADJDE
                         EFG_O
                                     EFG_D
                      0.6195404 -0.5787832 -0.4279623
 0.6879788 -0.6226684
      ORB
                 DRB
                            FTR
                                      FTRD
                                                TWOPT
                                                          DTWOPT
 0.2686537 - 0.3821165 0.1157755 - 0.2676139 0.5885508 - 0.4923840
               DEFTH SOS_RATING BARTHAG
                                                  WAB
    OFFTH
0.4215599 -0.4736091 0.4500161 0.7498545 0.8561277
> storeRSad
                                     EFG_D
     ADJOE
               ADJDE
                          EFG_O
                                                  TOR
                                                            TORD
0.47331481 0.38771598 0.38383027 0.33499004 0.18315171 0.02269402
                            FTR
      ORB
                 DRB
                                      FTRD
                                                TWOPT
                                                          DTWOPT
0.07217479 0.14601300 0.01340397 0.07161719 0.34639205 0.24244201
     OFFTH
               DEFTH SOS_RATING
                                   BARTHAG
                                                  WAB
0.17771274 0.22430556 0.20251446 0.56228178 0.73295464
>
```



```
# MODEL 1 (PREDICTOR(S): WAB)
  Reason: WAB is selected due to its strong correlation with WINPER (0.8561277).
    WAB also has the highest R^2 value (0.73295464)
lmCheck1 <- lm(WINPER ~ WAB, data = cbb_data)</pre>
summary(lmCheck1)$coefficients
# p-value for WAB = 0 < 0.05 (statistically significant model)</pre>
storecalcMSE1 <- c()
for (i in 1:10000)
  n1 <- sample(1:nrow(cbb_data), floor(0.8 * nrow(cbb_data)))</pre>
  train data1 <- cbb data[n1. ]
  test_data1 <- cbb_data[-n1, ]
  lm1 <- lm(WINPER ~ WAB, data = train_data1)</pre>
  storePred <- c(predict(lm1, test_data1[ , ]))</pre>
  indcalcMSE1 <- mean((test_data1[ , "WINPER"] - predict(lm1, test_data1[ , ]))^2)</pre>
  storecalcMSE1 <- c(storecalcMSE1, indcalcMSE1)</pre>
```



```
> summary(lmCheck2)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.15009831 0.0255021764 5.885706 4.312891e-09

WAB 0.01992210 0.0002469267 80.680206 0.000000e+00

TWOPT 0.01055814 0.0004964495 21.267302 7.822854e-95

> mean(storecalcMSE2)

[1] 0.00781668
```

```
# MODEL 2 (PREDICTOR(S): WAB & TWOPT)
# WAB is highly correlated with WINPER and has a high R^2 value
# TWOPT is moderately correlated with WINPER
# WAB and TWOPT are only moderately correlated to one another
# Let's see the results
lmCheck2 <- lm(winper ~ wab + twopt, data = cbb_data)</pre>
summary(1mCheck2)$coefficients
# p-value for WAB = 0 < 0.05 (statistically significant)
# p-value for TWOPT = 7.8e^-95 (statistically significant)
storecalcMSE2 <- c()
for (i in 1:10000)
  n2 <- sample(1:nrow(cbb_data), floor(0.80 * nrow(cbb_data)))</pre>
  train_data2 <- cbb_data[n2, ]
  test_data2 <- cbb_data[-n2, ]
  1m2 <- lm(WINPER ~ WAB + TWOPT, data = train_data2)</pre>
  storePred <- c(predict(lm2, test_data2[ , ]))</pre>
  indcalcMSE2 <- mean((test_data2[ , "WINPER"] - predict(lm2, test_data2[ , ]))^2)</pre>
  storecalcMSE2 <- c(storecalcMSE2, indcalcMSE2)
```



```
> summary(lmCheck3)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.165737734 0.0278829802 -5.944047 3.035827e-09

BARTHAG 0.483798150 0.0080673041 59.970238 0.000000e+00

OFFTH 0.011422466 0.0007557374 15.114332 3.864904e-50

FTR 0.001571448 0.0003484754 4.509494 6.698028e-06

> mean(storecalcMSE3)
```

[1] 0.013486

>

```
# MODEL 3 (PREDICTOR(S): FTR, OFFTHREE, BARTHAG)
# OFFTH is moderately correlated to WINPER
# FTR is weakly correlated to WINPER (let's discover what happens)
# BARTHAG is strongly correlated to WINPER
lmCheck3 <- lm(WINPER ~ BARTHAG + OFFTH + FTR, data = cbb_data)</pre>
summary(1mCheck3)$coefficients
# p-value for BARTHAG = 0 < 0.05 (statistically significant)</pre>
# p-value for TWOPT = 3.86e-50 (statistically significant)
# p-value for FTR = 6.69e-06 (statistically significant)
storecalcMSE3 <- c()
for (i in 1:10000)
  n3 <- sample(1:nrow(cbb_data), floor(0.80 * nrow(cbb_data)))
  train_data3 <- cbb_data[n3, ]
  test_data3 <- cbb_data[-n3, ]
  1m3 <- lm(WINPER ~ FTR + OFFTH + BARTHAG, data = train_data3)</pre>
  storePred <- c(predict(lm3, test_data3[ , ]))</pre>
  indcalcMSE3 <- mean((test_data3[ , "WINPER"] - predict(lm3, test_data3[ , ]))^2)</pre>
  storecalcMSE3 <- c(storecalcMSE3, indcalcMSE3)
```



```
MSE
> summary(1mCheck4)$coefficients
               Estimate
                          Std. Error
                                       t value
                                                     Pr(>|t|)
(Intercept) 1.064072166 0.0465381887
                                       22.86449 2.144926e-108
SOS_RATING
            -0.010266308 0.0004976079 -20.63132
                                                1.215777e-89
ADJDE
            -0.019102891 0.0004728144 -40.40252 2.299400e-296
EFG O
            0.034577429 0.0005709929 60.55667
                                                0.000000e+00
DEETH
            -0.008784501 0.0008475953 -10.36403 7.828413e-25
> mean(storecalcMSE4)
```

[1] 0.009768698

>

```
# MODEL 4 (PREDICTOR(S): SOS_RATING, ADJDE, EFG_O, DEFTH)
lmCheck4 <- lm(WINPER ~ SOS_RATING + ADJDE + EFG_0 + DEFTH, data = cbb_data)</pre>
summary(1mCheck4)$coefficients
# p-value for SOS_RATING = 2.14e-108 < 0.05 (statistically significant)</pre>
# p-value for ADJDE = 2.3e-296 (statistically significant)
# p-value for EFG_0 = 0 (statistically significant)
# p-value for DEFTH = 7.82e-25 (statistically significant)
storecalcMSE4 <- c()
for (i in 1:10000)
 n4 <- sample(1:nrow(cbb_data), floor(0.80 * nrow(cbb_data)))</pre>
 train_data4 <- cbb_data[n4, ]
 test_data4 <- cbb_data[-n4, ]
  1m4 <- lm(WINPER ~ SOS_RATING + ADJDE + EFG_O + DEFTH, data = train_data4)</pre>
  storePred <- c(predict(lm4, test_data4[ , ]))</pre>
  indcalcMSE4 <- mean((test_data4[ , "WINPER"] - predict(lm4, test_data4[ , ]))^2)</pre>
  storecalcMSE4 <- c(storecalcMSE4, indcalcMSE4)</pre>
```



```
> summary(1mCheck5)$coefficients
                          Std. Error
(Intercept) 0.634429203 0.0296612758 21.389141
                                                 7.930374e-96
WAB
             0.021565887 0.0003405105
TWOPT
            0.008077463 0.0003291990
                                      24.536719 2.322944e-123
OFFTH
            0.005431809 0.0003646511 14.895908
DEFTH
            -0.006231346 0.0003991681 -15.610832
DTWOPT
            -0.004758334 0.0003409663 -13.955437
TOR
            -0.011023288 0.0004877425 -22.600628
TORD
            0.009587046 0.0004512487 21.245595
            0.132626764 0.0143968060
                                       9.212235
ORB
            0.004298570 0.0002418355 17.774768
DRB
            -0.006709478 0.0002886789 -23.242010 1.077060e-111
            -0.001652265 0.0001512980 -10.920598 2.378593e-27
SOS RATING -0.019674288 0.0004007806 -49.089923 0.000000e+00
> mean(storecalcMSE5)
[1] 0.002227097
```

```
# MODEL 5 (PREDICTOR(S): ALL except FTR AND ADJOE/ADJDE
# FTR and ADJOE/ADJDE are not significant to the model
lmCheck5 <- lm(winper ~ WAB + TWOPT + OFFTH + DEFTH + DTWOPT + TOR + TORD + BARTHAG</pre>
                 + ORB + DRB + FTRD + SOS_RATING, data = cbb_data)
summary(1mCheck5)$coefficients
storecalcMSE5 <- c()
for (i in 1:10000)
  n5 <- sample(1:nrow(cbb_data), floor(0.80 * nrow(cbb_data)))</pre>
 train_data5 <- cbb_data[n5, ]</pre>
 test_data5 <- cbb_data[-n5, ]</pre>
  1m5 <- 1m(WINPER ~ WAB + TWOPT + DEFTH + DTWOPT + TOR + TORD + BARTHAG +
              ORB + DRB + FTRD + SOS_RATING, data = train_data5)
  storePred <- c(predict(1m5, test_data5[, ]))
  indcalcMSE5 <- mean((test_data5[ , "WINPER"] - predict(lm5, test_data5[ , ]))^2)</pre>
  storecalcMSE5 <- c(storecalcMSE5, indcalcMSE5)</pre>
```

CROSS VALIDATING MODELS

MODEL 1	MODEL 2	MODEL 3	MODEL 4	MODEL 5	BEST
PRED: WAB	PRED: WAB + TWOPT	PRED: FTR + OFFTH + BARTHAG	PRED: SOS_RATING + ADJDE + EFG_O + DEFTH	PRED: ALL EXCEPT ADJOE + ADJDE + FTR	MODEL 5
AVG MSE: 0.0087	AVG MSE: 0.0078	AVG MSE: 0.013	AVG MSE: 0.0098	AVG MSE: 0.0022	LOWEST AVG MSE

PREDICTING T25 TEAMS FOR THE NEXT DECADE

COMPONENT 1: AVG PRED WINPER

WEIGHT: 0.25

COMPONENT 2: AVG MM SCORE

WEIGHT: 0.50

COMPONENT 3: AVG SOS_RATING

WEIGHT: 0.25

DETAILS ON PREDICTION/RANKING

AVG PRED WINPER

The model which was the most effective in predicting win percentage was Model 5 which had the lowest MSE.

The win percentages for every team from 2013-2024 is averaged to create an average predicted win percentage.

AVG MM SCORE

Every team from 2013-2024 is given an individual score based on their March Madness Performance. This score is then averaged for every team.

CHAMPION \rightarrow 2ND \rightarrow F4 \rightarrow E8 \rightarrow S16 \rightarrow R32 \rightarrow R64 \rightarrow

AVG SOS_RATING

Strength of schedule ratings taken from TeamRankings.com.

Teams that face more difficult teams in the regular season have higher SOS_Ratings.

Teams that face less difficult teams have lower SOS_Ratings.

IMPLEMENTATION IN R

```
# Store Pred Win Percentages
storeBestPred <- predict(lm5, cbb_data[, ])
# Assign Pred Win Percentages to cbb_data
for (i in 1:nrow(cbb_data))
  cbb data$PREDWINPER[i] <- storeBestPred[i]</pre>
# Store every team uniquely from 2013-2024
uniqueTeams <- unique(c(cbb_data$TEAM))
# New data frame to store scores
pred_data <- data.frame(uniqueTeams)</pre>
# Calculate averages for win percentages
for (i in 1:nrow(pred_data))
  storePredWinPer <- c()
  teamIndex <- which(cbb_data$TEAM == uniqueTeams[i])</pre>
  storePredWinPer <- c(cbb_data[teamIndex, "PREDWINPER"])
  avgPredWinPer <- mean(storePredWinPer)
  pred_data$AVGWINPER[i] <- avgPredWinPer</pre>
 # Add MM scores
for (i in 1:nrow(pred_data))
  storeMMSuc <- c()
  teamIndex <- which(cbb_data$TEAM == uniqueTeams[i])</pre>
  storeMMSuc <- c(cbb_data[teamIndex, "POSTSEASON_SCORE"])</pre>
  avgMMScore <- mean(storeMMSuc)</pre>
  pred_data$MMSCORE[i] <- avgMMScore</pre>
```

```
ADD SOS RATING
for (i in 1:nrow(pred data))
 storeSOS_RATING <- c()
 teamIndex <- which(cbb_data$TEAM == uniqueTeams[i])</pre>
 storeSOS_RATING <- c(cbb_data[teamIndex, "SOS_RATING"])</pre>
 avgSOS RATING <- mean(storeSOS RATING)
 pred_data$AVGSOSRATING[i] <- avgSOS_RATING</pre>
names(pred data) <- c("TEAM", "AVG PRED WINPER", "MM SCORE", "AVG SOS RTG")
pred_data$NORM_PRED_WINPER <- scale(pred_data$AVG_PRED_WINPER.</pre>
                                     center = min(pred_data$AVG_PRED_WINPER),
                                     scale = max(pred_data$AVG_PRED_WINPER) - min(pred_data$AVG_PRED_WINPER))
pred_data$NORM_MM_SCORE <- scale(pred_data$MM_SCORE.</pre>
                                  center = min(pred_data$MM_SCORE),
                                  scale = max(pred_data$MM_SCORE) - min(pred_data$MM_SCORE))
pred_data$NORM_SOS_RTG <- scale(pred_data$AVG_SOS_RTG.</pre>
                                    center = min(pred_data$AVG_SOS_RTG),
                                    scale = max(pred_data$AVG_SOS_RTG) - min(pred_data$AVG_SOS_RTG))
pred_data$WEIGHTED_SCORE <- (pred_data$NORM_PRED_WINPER * 0.25) + (pred_data$NORM_MM_SCORE * 0.5) +
 (pred_data$NORM_SOS_RTG * 0.25)
pred_data$WEIGHTED_SCORE <- pred_data$WEIGHTED_SCORE * 100</pre>
pred_data <- pred_data[order(pred_data$WEIGHTED_SCORE, decreasing = TRUE), ]</pre>
print(pred_data[1:25, ])
```

AVG MM SCORE VS AVG PRED WIN PER FOR T25 TEAMS FROM 2013-2024

Average MM Score vs Average Predicted Win Percentage Among T25 Teams from 2013-2024 March Madness Score 0.8 Average Predicted Win Percentage

RESULTS

> print(pred_data[1:25,])								
-	TEAM	AVG_PRED_WINPER	MM_SCORE	AVG_SOS_RTG	NORM_PRED_WINPER	NORM_MM_SCORE	NORM_SOS_RTG	WEIGHTED_SCORE
5	Gonzaga	0.8973164	4.909091	8.127273	1.0000000	1.0000000	0.8400057	96.00014
7	Duke	0.7837894	4.545455	10.827273	0.8392937	0.9259259	0.9660489	91.42986
15	Kansas	0.7854383	4.090909	11.554545	0.8416277	0.8333333	1.0000000	87.70736
1	North Carolina	0.7381881	4.090909	10.827273	0.7747413	0.8333333	0.9660489	85.18642
9	Villanova	0.7713590	3.636364	9.781818	0.8216973	0.7407407	0.9172443	80.51058
3	Michigan	0.6694208	3.727273	10.345455	0.6773959	0.7592593	0.9435564	78.48677
6	Kentucky	0.7378095	3.363636	10.163636	0.7742054	0.6851852	0.9350686	76.99111
21	Michigan St.	0.7056640	3.363636	10.718182	0.7287009	0.6851852	0.9609563	76.50069
18	Arizona	0.7978932	2.818182	8.627273	0.8592586	0.5740741	0.8633470	71.76884
14	Purdue	0.7291724	2.727273	9.845455	0.7619789	0.555556	0.9202150	69.83263
2	Wisconsin	0.6926384	2.727273	10.645455	0.7102621	0.555556	0.9575612	69.47336
2	Virginia	0.8000007	2.454545	9.463636	0.8622420	0.5000000	0.9023907	69.11582
10	Connecticut	0.6424587	3.090909	7.800000	0.6392288	0.6296296	0.8247277	68.08039
92	Baylor	0.6970983	2.545455	10.372727	0.7165754	0.5185185	0.9448295	67.46105
19	Oregon	0.6939245	2.818182	7.581818	0.7120828	0.5740741	0.8145424	66.86933
258	UCLA	0.6699897	2.545455	8.118182	0.6782011	0.5185185	0.8395813	63.87048
20	Florida	0.6618851	2.363636	9.627273	0.6667284	0.4814815	0.9100297	63.49303
62	Houston	0.7508535	2.454545	5.181818	0.7926702	0.5000000	0.7025039	62.37935
93	Iowa St.	0.6532115	2.090909	10.036364	0.6544503	0.4259259	0.9291272	60.88573
293	Tennessee	0.6618837	2.090909	9.081818	0.6667265	0.4259259	0.8845664	60.07862
95	Creighton	0.6854761	2.000000	8.554545	0.7001234	0.4074074	0.8599519	59.37225
25	Syracuse	0.6137034	2.272727	8.190909	0.5985235	0.4629630	0.8429764	59.18564
226	San Diego St.	0.7247838	2.090909	5.163636	0.7557665	0.4259259	0.7016551	57.73184
11	Louisville	0.6022213	2.090909	8.800000	0.5822695	0.4259259	0.8714104	57.63829
47	Miami FL	0.6291418	2.090909	7.981818	0.6203777	0.4259259	0.8332154	57.63613
>								

WAY-TOO-EARLY TOP 25 FOR 2025 (INSPIRATION: ESPN)

2024-25 men's NCAA basketball rankings: Way-Too-Early Top 25


```
# WAY TOO EARLY TOP 25 FOR 2025 (INSPIRATION: ESPN)
cbb_24 <- subset(cbb_data, YEAR == "2024")
cbb 24
predTop25 <- data.frame(cbb_24$TEAM, cbb_24$PREDWINPER, cbb_24$POSTSEASON_SCORE,
                         cbb_24$SOS_RATING)
names(predTop25) <- c("TEAM", "PRED_WINPER", "MM_SCORE", "SOS_RATING")</pre>
predTop25$NORM_PRED_WINPER <- scale(predTop25$PRED_WINPER,</pre>
                                     center = min(predTop25$PRED_WINPER),
                                     scale = max(predTop25$PRED_WINPER) - min(predTop25$PRED_WINPER))
predTop25$NORM_MM_SCORE <- scale(predTop25$MM_SCORE,</pre>
                                  center = min(predTop25$MM_SCORE),
                                  scale = max(predTop25$MM_SCORE) - min(predTop25$MM_SCORE))
predTop25$NORM_SOS_RATING <- scale(predTop25$SOS_RATING,</pre>
                                 center = min(predTop25$SOS_RATING).
                                 scale = max(predTop25$SOS RATING) - min(predTop25$SOS RATING))
predTop25$WEIGHTED SCORE <- (predTop25$NORM PRED WINPER * 0.25) + (predTop25$NORM MM SCORE * 0.5) +
  (predTop25$NORM_SOS_RATING * 0.25)
predTop25$WEIGHTED_SCORE <- predTop25$WEIGHTED_SCORE * 100</pre>
predTop25 <- predTop25[order(predTop25$WEIGHTED_SCORE, decreasing = TRUE), ]</pre>
print(predTop25[1:25, ])
```

RESULTS

> print(predTop25[1:25,])								
1			MM_SCORE	SOS_RATING	NORM_PRED_WINPER	NORM_MM_SCORE	NORM_SOS_RATING	WEIGHTED_SCORE
2	Connecticut	0.9322644	10	13.0	1.0000000	1.0	0.9872340	99.68085
3	Purdue	0.8727027	8	13.3	0.9347052	0.8	1.0000000	88.36763
15	Alabama	0.6626188	7	12.4	0.7043999	0.7	0.9617021	76.65255
7	Tennessee	0.7477474	6	12.2	0.7977225	0.6	0.9531915	73.77285
12	Illinois	0.7473148	6	11.3	0.7972482	0.6	0.9148936	72.80355
11		0.7606984	6	9.9	0.8119201	0.6	0.8553191	71.68098
63	North Carolina St.	0.5871070	7	8.8	0.6216197	0.7	0.8085106	70.75326
1	Houston	0.9124082	4	12.4	0.9782325	0.4	0.9617021	68.49837
35	Clemson	0.6349624	6	9.8	0.6740814	0.6	0.8510638	68.12863
4	Iowa St.	0.8242889	4	11.5	0.8816314	0.4	0.9234043	65.12589
6	Arizona	0.8093084	4	11.0	0.8652089	0.4	0.9021277	64.18341
8	Marquette	0.7702595	4	11.9	0.8224014	0.4	0.9404255	64.07067
9	North Carolina	0.7891647	4	10.9	0.8431263	0.4	0.8978723	63.52497
10	Creighton	0.7593138	4	11.0	0.8104021	0.4	0.9021277	62.81324
14	Gonzaga	0.8008701	4	8.5	0.8559584	0.4	0.7957447	61.29258
29	San Diego St.	0.7050612	4	8.2	0.7509276	0.4	0.7829787	58.34766
17	Baylor	0.7139027	2	11.5	0.7606200	0.2	0.9234043	52.10061
16	Kansas	0.6872280	2	11.3	0.7313778	0.2	0.9148936	51.15678
23	Michigan St.	0.6084540	2	11.2	0.6450214	0.2	0.9106383	48.89149
27	Colorado	0.7021486	2	8.7	0.7477345	0.2	0.8042553	48.79975
20	Texas	0.6266845	2	10.4	0.6650067	0.2	0.8765957	48.54006
39	Washington St.	0.7186023	2	7.7	0.7657721	0.2	0.7617021	48.18685
5	Auburn	0.8112916	1	9.9	0.8673830	0.1	0.8553191	48.06755
40	Dayton	0.7685362	2	6.1	0.8205122	0.2	0.6936170	47.85323
31	Northwestern	0.6420373	2	9.3	0.6818373	0.2	0.8297872	47.79061
>								

PREDICTED T25 RANKINGS FOR THE 2025 CBB SEASON BASED ON WEIGHTED SCORE

Predicted T25 Rankings for the 2024-2025 CBB Season Based on the Weighted Score

IMPROVEMENTS/FURTHER RESEARCH

CONSIDER RECRUITING CLASSES Which teams are disadvantaged due to incoming recruiting classes? **NCAA TRANSFER PORTAL** Which teams have significantly improved from the last season based on additions from the transfer portal? **INJURIES** Currently, the model does not take into account rare cases such as injuries. **COACHING CHANGES** How do coaching changes play a role in team performance?