### Neyman-Pearson Lemma

Let  $X_1, ..., X_n$  be i.i.d. with likelihood function  $L(x_1, ..., x_n | \theta)$ 

Consider simple hypotheses

$$H_0$$
:  $\theta = \theta_0$  and  $H_1$ :  $\theta = \theta_1$ 

Let T be the test for  $H_0$  against  $H_1$  with rejection region

$$R = \{(x_1, ..., x_n) \in \mathbb{R}^n : \Lambda(x_1, ..., x_n) \le t\}$$

where t is a constant

Then there is no test for  $H_0$  against  $H_1$  of the same size which has larger power than T

# Preparations for Proof

Recall that if f is the joint PDF of  $X_1, ..., X_n$  then for  $R \subseteq \mathbb{R}^n$ 

$$P((X_1, ..., X_n) \in R) = \int_R f(x_1, ..., x_n) dx_1 ... dx_n$$

If  $X_1, ..., X_n$  are i.i.d. then their likelihood function  $L(x_1, ..., x_n | \theta)$  is equal to their joint PDF

$$P((X_1, ..., X_n) \in R) = \int_R L(x_1, ..., x_n | \theta) dx_1 ... dx_n$$

## Preparations for Proof

Some notations,

Let

$$x = (x_1, \dots, x_n)$$

Write  $\int_R L(x,\theta)$  for  $\int_R L(x_1,...,x_n|\theta) dx_1 ... dx_n$ 

For  $R \subseteq \mathbb{R}^n$ , let  $\overline{R} = \mathbb{R}^n \backslash R$ , the compliment set of R

## Proof of Neyman-Pearson Lemma

Recall that for the test *T*:

The rejection region is,

$$R = \{x \in \mathbb{R}^n : \Lambda(x) \le t\} = \left\{ x \in \mathbb{R}^n : \frac{L(x, \theta_0)}{L(x, \theta_1)} \le t \right\}$$

And its size is,

$$\alpha = P((X_1, ..., X_n) \in R | H_0) = \int_R L(x, \theta_0)$$

With power,

$$P((X_1, ..., X_n) \in R | H_1) = \int_R L(x, \theta_1)$$

Let  $T_1$  be another test for  $H_0$  against  $H_1$  with rejection region  $R_1$  and the same size,

$$\alpha = P((X_1, ..., X_n) \in R_1 | H_0) = \int_{R_1} L(x, \theta_0)$$

We need to that  $T_1$  does NOT have higher power than T:

The idea is to break up the LHS  $\int_{R_1} L(x, \theta_1)$  into several parts and us the fact that:

$$\frac{L(x,\theta_0)}{L(x,\theta_1)} \le t \text{ for } x \in R, \text{ and } \frac{L(x,\theta_0)}{L(x,\theta_1)} > t \text{ for } x \in \overline{R} ---(**)$$

$$LHS = \int_{R_1} L(x, \theta_1) = \int_{R_1 \cap R} L(x, \theta_1) + \int_{R_1 \cap \bar{R}} L(x, \theta_1)$$

$$= \int_{R} L(x, \theta_{1}) - \int_{\overline{R}_{1} \cap R} L(x, \theta_{1}) + \int_{R_{1} \cap \overline{R}} L(x, \theta_{1})$$



$$R_1 = R \setminus (R \cap \overline{R}_1) \cup (R_1 \cap \overline{R})$$

Inside R: 
$$\frac{L(x,\theta_0)}{L(x,\theta_1)} \le t$$
  $\Leftrightarrow L(x,\theta_1) < \frac{1}{t}L(x,\theta_0)$   $\Leftrightarrow L(x,\theta_1) \ge \frac{1}{t}L(x,\theta_0)$   $\Rightarrow -\int_{\bar{R}_1\cap R} L(x,\theta_1) \le -\frac{1}{t}\int_{\bar{R}_1\cap R} L(x,\theta_0)$ 

$$LHS = \int_{R_1} L(x, \theta_1) = \int_{R_1 \cap R} L(x, \theta_1) + \int_{R_1 \cap \bar{R}} L(x, \theta_1)$$

$$= \int_{R} L(x, \theta_{1}) - \int_{\overline{R}_{1} \cap R} L(x, \theta_{1}) + \int_{R_{1} \cap \overline{R}} L(x, \theta_{1})$$

$$\leq \int_{R} L(x, \theta_{1}) - \frac{1}{t} \int_{\bar{R}_{1} \cap R} L(x, \theta_{0}) + \frac{1}{t} \int_{R_{1} \cap \bar{R}} L(x, \theta_{0})$$

To see that the last two integrals sum up to zero, we add and minus the integration over the intersection,  $\int_{R_1 \cap R} L(x, \theta_0)$ 

$$LHS = \int_{R_1} L(x,\theta_1) \leq \int_{R} L(x,\theta_1) - \frac{1}{t} \int_{\bar{R}_1 \cap R} L(x,\theta_0) + \frac{1}{t} \int_{R_1 \cap \bar{R}} L(x,\theta_0)$$

$$= \int_{R} L(x, \theta_{1}) - \frac{1}{t} \int_{\bar{R}_{1} \cap R} L(x, \theta_{0}) + \frac{1}{t} \int_{R_{1} \cap \bar{R}} L(x, \theta_{0})$$

$$-\frac{1}{t} \int_{R_1 \cap R} L(x, \theta_0) + \frac{1}{t} \int_{R_1 \cap R} L(x, \theta_0)$$

$$= \int_{R} L(x, \theta_{1}) - \frac{1}{t} \int_{R} L(x, \theta_{0}) + \frac{1}{t} \int_{R_{1}} L(x, \theta_{0})$$

$$LHS = \int_{R_1} L(x, \theta_1) \le \int_{R} L(x, \theta_1) - \frac{1}{t} \int_{R} L(x, \theta_0) + \frac{1}{t} \int_{R_1} L(x, \theta_0)$$

$$= \int_{R} L(x, \theta_1) - \frac{\alpha}{t} + \frac{\alpha}{t} = \int_{R} L(x, \theta_1) = RHS$$

This completes the proof of the Neyman-Pearson Lemma.