M.C. Thrun, A. Ultsch

Effects of the pay-out system of income taxes to municipalities in Germany

Feel free to contact me through www.deepbionics.org

Main Problem

- Distribution analysis has the goal to estimate the distribution of a variable:
 - □ Comparison to standard distributions
 - Estimation of probability density function (pdf)
- Many approaches are used in Distribution Analysis
 - Every approach has a assumptions behind it, e.g.
 - Descriptions of distributions using a single distribution, like Lognormal or Gamma are often quite weak in describing the tails of the distribution [Dagum, 1977]
 - -> Often separate models for the upper vs. lower parts of distributions [Richmond, Hutzler, Coelho, & Repetowicz, 2006, p. 140]
 - Sometimes better: Gaussian mixture models [Thrun & Ultsch, 2015]
- Knowledge Discovery using low-level methods possible, e.g.
 - □ Income tax system of German municipalities

Motivation

- Applications of Distribution Analysis
 - □ Detect meaningful structures
 - Carefully preprocess variables for cluster analysis or supervised machine learning, e.g.
 - Choice of an appropriate transformation for each variable
 - Descriptive statistics, e.g. estimation of variance
 - Selection of correct statistical test
 - Check conditions
- Solution
 - Combine different approaches

Most conventional approaches

- Histogram
 - □ Kernel density estimation with fixed radius
 - The choice of the width and number of bins is critical for the right fit of the probability density function
 - □ Use Optimal bin width under the assumption that the variable is Gaussian distributed [Keating & Scott, 1999]
- The Box-Whisker diagram (box plot)
 - □ Visualizes the number of values in a specific range
 - End of the two whiskers are proportional to the interquartile range (often 1.5*IQR), [Tukey, 1977]
 - The box marks 25 and 75% percentile
 - Does not indicate multimodality or if median is valid
 - We propose to use PDE optimized violin plots for multimodal distributions

Introduction → Methods → Results → Conclusion

Distribution Analysis: QQ plot

- Another good way to explore the distribution of a feature is a comparison with a known distribution
- QQ plot [Michael 1983]
 - Compares two distributions by using n quantiles
 - Empirical distribution vs known distribution
 - If straight line: distributions equal
 - The Gaussian distribution is an ideal starting point for such a comparison
- In principle every common distribution should be checked

Distribution Analysis: PDE plot

- Pdf estimation called "Pareto Density Estimation (PDE)
- Kernel density estimation with variable radius
 - Representing the relative likelihood of a given variable taking on specific values
 - Slivered in kernels with a specific width
 - this width, and therefore the number of kernels, depends on the data
 - Particularly suitable for the discovery of structures in continuous data
 - Allows the discovery of mixtures of Gaussians (Ultsch, 2005a)

-> PDE is designed in particular to identify groups in data [Ultsch 2005]

Example: German Tax System

- Several layers of administration and legislation are involved
 - □ Hinders an easy comprehension of the system
- Spatial Unit: municipality:
 - □ National legislation demands of the system that
 - Output should be a fixed proportion of input
 - Input: total income tax yield of each municipality
 - Output: share of income tax revenues
 - the funding a municipality receives from the state

Features: MTY and ITS in 2010

- Dataset of [Ultsch & Behnisch, 2017] for the year 2010
 - □ 11,669 municipalities
 - 228 so-called "unincorporated areas" generally forested areas, lakes and larger rivers
- The number of taxpayers per municipality was given
- Municipality Income Tax Yield (MTY) Input
 - Data not directly available
 - -> Estimate MTY
 - Taxes per payer of 2007 and 2010 of the Regional Database Germany [Destatis, 2015] was used
- The income tax share (ITS) of a municipality Output
 - Sum of the income tax revenues paid by the state to a municipality was obtained from Regional Database Germany [Destatis, 2015]
 - Tax share divided by the number of taxpayers

Prior Model Assumption

Expected funding of the state defined by ratio R

R = ITS/MTY*100

- The ratio has a mean of 13% ± 3%
 - Expected amount of collected tax
- Gaussian Distributed
 - Implies that there should be only unintentional deviations from this general percentage.

Municipality Tax Yield (MTY)

- All approaches agree
 - Unimodal distributed
- Not Gaussian distributed
 - -> QQ-plot
 - Left-Skewed
 - Right tailed
- Outliers in box plot

https://cran.rproject.org/web/packages/DataVis ualizations/index.html

Income Tax Share (ITS)

- Multimodal distributed
 - □ Two modes
 - One major outlier
- The first maximum of ITS lies at 300 EUR and the second at 640 EUR
- The deviations from the mean in ITS should unintentional
- => the distribution of ITS should be unimodal

Relations between two Variables

- Correlation values are often misleading
 - □ Use Scatteplots:
 - Two features are plotted against each other as points
 - Do not show mixtures due to overlapping of points
- Even Better: Two-Dimensional Density visualization
 - Use scatter density plot the densities
 - Estimation by PDE

60

Variable 1

80

100

20

40

Pearson: 0.96 - Spearman: 0.74 with p values < 0.001

120

Scatter Density plots using PDE

- MTY estimated through a scatter density plot between tax per payer in 2007 and Tax2010 (Left)
 - Shows a clear correlation with one mode
- Scatter density plot between the input MTY and the output (ITS) (Right)
 - Two modes are visualized.

https://cran.r-project.org/web/packages/DataVisualizations/index.html

Two-Dimensional Bayesian classification

- Two-dimensional GMM is modeled
- Bayesian
 classification
 based on GMM
 calculated
- Points are colored by classification
- Scatter plot does not show the two modes

Knowledge Discovery

- Input of the system (MTY) was related to the output of the system (ITS)
 - ☐ Clear separation into two distinct distributions
 - Paying income tax per taxpayer of approx. 2,500 to 4,500 EUR to the state
 - the refund of a municipality can be either low or high
- Two-Dimensional GMM models the two states of the pay-out system of income taxes
 - Main classes low quota vs. high quota
 - Outliers
 - Promoted class
 - municipalities receiving a substantially larger share of income taxes (30% and more)
 - Sponsors class
 - municipalities receiving a substantially smaller share of income taxes (8% and less)

Geographical Distribution

- In Germany every municipality has an Community Identification Number – "Amtlicher Gemeindeschlüssel" (AGS)
- Shapefile of postal codes was available for Germany
- AGS were aggregated to postal codes (Mapping in package)
 - Colored by classification-
- -> Political map is presented on the right
- For Poland with the right shapefile possible with our package

https://cran.rproject.org/web/packages/ DataVisualizations/index.htm

Non Classified

Geographical Distribution

- Choropleth map
 - thematic map with areas colored in proportion to the measurement
- Instead of statistical variable here colored by a classification
- Geographical distribution of the low quota vs. high quota municipalities reveals an evident east-west disparity

https://cran.rproject.org/web/packages/ DataVisualizations/index.html

Non Classified Low Quota High Quota Sponsors

Discussion of Results

- Input and output of tax system should be proportional
 - Income tax share per taxpayer (ITS) should be proportional to the municipal income tax yield (MTY).
 - municipality should expect a certain fixed percentage of the taxes it delivers
- Detailed analysis of the distributions revealed
 - That observed probability distribution of ITS consisted of two distinct distributions.
 - => Pay-out system of income taxes to municipalities operates in two distinct modes
 - □ Low quota vs high quota.

Summary

- Distribution Analysis itself allows to discover new knowledge
 - □ Methods were applied to Germany's complex system of allocating tax revenues
- Correct estimation of density is crucial for estimating the pdf and improves a scatterplot significantly
- Geographical distribution of the low quota vs. high quota municipalities revealed an evident east-west disparity
 - Percentage of income tax revenues a municipality received per taxpayer depended on the geographical location
 - □ If located in western Germany, the municipality could expect about 15-30%.
 - □ If located towards the eastern Germany, its share was more likely to be only 10% or less.

Thank you for listening. Any questions?

Example: One-dim. Gaussian Mixture Model (GMM)

Blue: Components $N(m_i, SD_i)$

Red: GMM(
$$x$$
) =
$$\sum_{i=1}^{4} w_i * N(m_i, SD_i)$$

$$\sum_{i=1}^{4} w_i = 1 \qquad \int GMM(x) = 1$$

- Using Bayes-Theorem the EMalgorithm [Press 2007] estimates a log Gaussian mixture of four density states
- □ Through the likelihood to generate data in a component of the mixture p(x|c_i) we calculate the posterior p(c_i|x)

GMM=Red, Posteriors=Green, Components=Blue

Boundaries by using Bayes Theorem

conditional

Probability: Likelihood to

generate data in this class

Probability to choose a class

$$p(c_i|x) = \frac{p(x|c_i)p(c_i)}{\sum_{i=1}^{L} p(x|c_i)p(c_i)}$$

$$\sum_{i=1}^{n} p(x \mid c_i) p(c_i)$$

posterior

$$\sum_{i=1}^{L} p(c_i) = 1$$

$$\sum_{i=1}^{L} p(c_i \mid x) = 1$$

Normalization

Application of Bayes Theorem

Blue: Components

Red: GMM(x)

Through the likelihood to generate data in a component of the mixture $p(x|c_i)$ we calculate the posterior $p(c_i|x)$

 Example: Lets look at the red window with component 1 and component 2

GMM=Red, Components=Blue

Thrun, M. C., & Ultsch, A.: Models of Income Distributions for Knowledge Discovery, Proc. European Conference on Data Analysis (ECDA), DOI: 10.13140/RG.2.1.4 Colchester, 2015.

First Boundary in GMM

$$GMM(x) = \sum_{i=1}^{4} w_i * N(m_i, SD_i)$$
$$= \sum_{i=1}^{4} p(c_i) * p(x|c_i)$$

(Details, see Bayes theorem)

Orange: Mixture Component i=2

Green:
$$N(m_1, SD_1)$$
 (i=1)

Thrun, M. C., & Ultsch, A.: Models of Income Distributions for Knowledge Discovery, Proc. European Conference on Data Analysis (ECDA), DØI: 10.13140/RG.2.1.4463.0244, pp. 136-137, Colchester, 2015.

4,0

Exact Boundaries

GMM=Red, Posteriors=Green, Components=Blue

