Proteinstruktur und Protein(bio)synthese

Vorstellung

- Studium: Biochemie, Biologie, Bioinformatik
- Forschung: Pflanzengenomik, Bioinformatik, Pigmentbiosynthesen, spezialisierter Metabolismus
- Lehre: Python, Angewandte Bioinformatik & Molekularbiologie
- iGEM Team Bielefeld-CeBiTec (2014-2019)

Organisation

Materialien zum Download:

Gerne während der Vorlesung Fragen stellen!

https://bit.ly/2W1gV9p

https://github.com/bpucker/teaching/blob/master/Proteinstruktur_und_Proteinsynthese.pdf

Boas Pucker

3

Diversität der Proteine

Insulin (5,8 kDa)

Protein = Polypeptide in ihrer finalen Form

Polypeptid = Verkettung vieler (>10) Aminosäuren Hämoglobin (4 x 16 kDa)

Actin (13 x 42 kDa)

Was wird zur Proteinsynthese benötigt?

1) Bausteine (Aminosäuren)

2) Bauplan (mRNA / genetischer Code)

3) Maschine (tRNAs + Ribosom)

Generelle Struktur der Aminosäuren

Generelle Struktur der Aminosäuren

Wie viele Aminosäuren gibt es?

Generelle Struktur der Aminosäuren (AS)

- Proteinogene α-L-Amionsäuren: 20+X
 - X = Selenocystein, Pyrrolysin, …
- Insgesamt: bisher 400 biologisch relevante AS bekannt
- Zusätzlich synthetische/theoretisch mögliche AS

Bausteine der Proteine: 20 kanonische AS

$$H_3C \longrightarrow OH$$

Alanin (A)

Cystein (C)

Histidin (H)

Methionin (M)

Threonin (T)

Arginin (R)

Glutaminsäure (E)

Isoleucin (I)

Phenylalanin (F)

$$\bigcap_{\mathsf{NH}} \mathsf{OH}$$

Tryptophan (W)

Asparagin (N)

Glutamin (Q)

Leucin (L)

Prolin (P)

Tyrosin (Y)

Asparaginsäure (D)

$$H_2N$$
 OH

Glycin (G)

$$H_2N$$
 OH OH

Lysin (K)

$$\mathsf{HO} \overset{\bigcirc}{\underset{\mathsf{NH}_2}{\bigvee}} \mathsf{OH}$$

Serin (S)

$$\mathsf{H_{3}C} \overset{\mathsf{CH_{3}}}{ \underset{\mathsf{NH_{2}}}{\bigvee}} \mathsf{OH}$$

Valin (V)

Einbuchstabennomenklatur der AS

Bauplan der Proteine: mRNA & genetischer Code

mRNA (CDS):

GCA-GCU-UGU-CAC-GAG-AAC A A C H E N

Eigenschaften des genetischen Codes

- Degeneriert: mehrere Codons führen zur gleichen Aminosäure Beispiel: GUA, GUC, GUG, GUU = Valin
- Eindeutig: jedes Codon bestimmt genau eine Aminosäure
- Nicht überlappend & kommafrei: Codons folgen direkt aufeinander
- Universell: alle Lebewesen verwenden den gleichen Code (wenige Ausnahmen)

Übersetzung von mRNA zu AS: tRNAs

- Übersetzung von Codons der mRNA in Aminosäuren eines Peptids durch tRNAs
- Anticodon der tRNA bindet Codon der mRNA
- 64 Codons, aber weniger tRNAs
- Wobble Base: dritte Base im Codon ist flexibel

Polypeptidsynthese am Ribosom

A (aminoacyl) = Erkennungsort
P (peptidyl) = Bindungsort
E (exit)= Verlassen des Ribosoms
RF = release factor

Komponenten des Ribosoms

Prokaryoten (70S)		Eukaryoten (80S)	
50S Untereinheit	23S rRNA; 5S rRNA	60S Untereinheit	28S rRNA; 5,8S rRNA; 5S rRNA
	31 Proteine		49 Proteine
30S Untereinheit	16S rRNA	40S Untereinheit	18S rRNA
	21 Proteine		33 Proteine

Pflanzenzellen haben Chloroplasten und Mitochondrien (jeweils mit prokaryotischen Ribosomen)

Primär- und Sekundärstruktur

- Primärstruktur = Abfolge von Aminosäuren
- Sekundärstruktur = räumliche, lokale Struktur

Tertiärstruktur

Coiled coil (gewundene α -Helices)

Quartärstruktur

Hämoglobin: $2x\alpha$ und $2x\beta$ Untereinheit mit je einem Häm

Hierarchie der Proteinstruktur

- Primärstruktur = Abfolge von Aminosäuren
- Sekundärstruktur = räumliche, lokale Struktur
- Tertiärstruktur = räumliche Struktur einer Untereinheit
- Quartärstruktur = räumliche Struktur eines Proteinkomplexes

Posttranslationale Modifikation

- Phosphorylierung (häufig zur Aktivierung)
- Glykosylierungen
- Acetylierungen
- Methylierung
- Hydroxylierung (Prolin, Lysin)
- Ubiquitinylierung (Lysin)
- ...
- Anfügen von Lipidankern
- Veränderung von Aminosäuren (z.B. Carboxylierung, Oxidation)

Beispiel für Proteinfehlfaltung: Prionen

- <u>Pr</u>otein infect<u>ion</u>
- Fehlgefaltetes Protein ist extrem stabil und verursacht Fehlfaltung weiterer Proteine
- Beispiel: "Rinderwahn"
 - Bovine spongiforme Enzephalopathie (BSE) Rindern
 - Übertragung von Prionen vermutlich über Tiermehl
- Nobelpreis (1997) an Stanley Prusiner für 'Prionhypothese'

Protein Data Bank

https://www.rcsb.org/

Chimera

Aktuelle Forschung

- Funktionell wichtige Aminosäuren sind konserviert
- Homologe Sequenzen in verschiedenen Spezies zeigen die gleichen Aminosäuren an kritischen Positionen (z.B. im aktiven Zentrum)
- Starke Konservierung (schwarzer Hintergrund) kann auf Funktion hindeuten

iGEM Beispiel

Zusammenfassung

Aminosäuren (Bausteine der Proteine)

mRNA / genetischer Code (Bauplan der Proteine)

tRNA / Ribosom (Machine der Proteinbiosynthese)

- Primär-, Sekundär-, Tertiär- und Quartärstruktur
- Posttranslationale Modifikationen

Fragen?

Fragen zur Wiederholung / Klausurfragen

- Wie viele Aminosäuren gibt es (mit Erklärung)?
- Welche Aminosäuren stecken in 'RWTH AACHEN'?
- Woraus besteht ein Ribosom?
- Welche Ribosomenuntereinheiten kommen in einer grünen Pflanzenzelle vor?
- Welche Komponenten sind für die Proteinbiosynthese wichtig?

Zusätzliche Informationen

Referenzen

- Schilbert et al., 2018; https://doi.org/10.1101/423475
- Pucker et al., 2020;
 https://doi.org/10.1101/2020.06.27.175067
- iGEM Bielefeld-CeBiTec 2017: http://2017.igem.org/Team:Bielefeld-CeBiTec
- Verschiedene Grafiken von https://de.wikipedia.org/
- Proteinstrukturen von https://www.rcsb.org/