UYARLAMALI KONTROL SİSTEMLERİ

ÖDEV 3

MUSTAFA CANER SEZER
504191123

1. Soru

Transfer fonksiyonu

$$G(s) = \frac{b}{s+a} \tag{1}$$

Olan bir sistem için

$$u(t) = (\theta_1 u_c(t) - \theta_2 y(t)) \tag{2}$$

Kontrol işaretiyle

$$G_m(s) = \frac{3}{s+3} \tag{3}$$

Referans modelindeki gibi bir davranış izlemesi istenmektedir.

Stability teorisi yardımıyla birinci dereceden sistem için güncelleme kuralını bulmaya çalışırsak,

$$\frac{dy_m}{dt} = -a_m y_m + b_m u_c \tag{4}$$

$$\frac{dy}{dt} = -ay + bu \tag{5}$$

Buradan hata ifadesini bulursak,

$$\frac{de}{dt} = -a_m e - (b\theta_2 + a - a_m)y + (b\theta_1 - b_m)u_c \tag{6}$$

Buradan lyapunov fonksiyonu önerirsek,

$$V(e,\theta_1,\theta_2) = \frac{1}{2} \left(e^2 + \frac{1}{b\nu} (b\theta_2 + a - a_m)^2 + \frac{1}{b\nu} (b\theta_1 - b_m)^2 \right)$$
 (7)

Lyapunov fonksiyonunun türevinin negatif olması gerektiğinden bu fonksiyonun türevine bakarız,

$$\frac{dV}{dt} = e\frac{de}{dt} + \frac{1}{\gamma}(b\theta_2 + a - a_m)\frac{d\theta_2}{dt} + \frac{1}{\gamma}(b\theta_1 - b_m)\frac{d\theta_1}{dt}$$
(8)

$$=-a_m e^2 + \frac{1}{\gamma} (b\theta_2 + a - a_m) \left(\frac{d\theta_2}{dt} - \gamma ye \right) + \frac{1}{\gamma} (b\theta_1 - b_m) \left(\frac{d\theta_1}{dt} + yu_c e \right)$$
 (9)

Buradan parametre güncelleme kurallarını aşağıdaki gibi seçersek sadece e^2 'li ifade kalmış olur, bu da negatif tanımlı olduğundan lyapunov fonksiyonumuz sağlanmış olur.

$$\frac{d\theta_1}{dt} = -yu_c e \tag{10}$$

$$\frac{d\theta_2}{dt} = \gamma ye \tag{11}$$

Buna dayanarak aşağıdaki yapı oluşturularak simulink modeline aktarılmıştır. MIT kuralı ile karşılaştırılması da aşağıda görülebilir.

Lyapunov Rule

MIT Rule

Simülasyonlar a=2, b=1 için yapılmıştır.

Şekil 1 gama2=2 gama1=1

Şekil 2 gama2=3 gama1=1

Şekil 3 gama2=3 gama1=0.5

Görüldüğü gibi gama değerleriyle oynayarak daha yumuşak cevaplar elde etmek mümkündür. Fakat sistem her üç farklı gama için de model cevabını takip etmiş ve beklendiği üzere kararlılığı garantilemiştir.

2. Soru

Verilen diferansiyel denklemlerde v yerine $\frac{dy}{dt}$ yazıldıktan sonra elde edilen transfer fonksiyonu,

$$G(s) = \frac{b}{s(s+a)} \tag{12}$$

Olarak bulunur. Durum uzayı yöntemiyle tasarım yapılacağından model ve sistemi matrisler şeklinde yazarsak,

$$A_m = \begin{bmatrix} 0 & 1 \\ -5 & -5 \end{bmatrix} \tag{13}$$

$$B_m = \begin{bmatrix} 0 \\ 5 \end{bmatrix} \tag{14}$$

$$A = \begin{bmatrix} 0 & 1 \\ 0 & -a \end{bmatrix} \tag{15}$$

$$B = \begin{bmatrix} 0 \\ h \end{bmatrix} \tag{16}$$

Olur.

$$A - BL = A_c(\theta) = \begin{bmatrix} 0 & 1 \\ -b\theta_1 & -a - b\theta_2 \end{bmatrix}$$
 (17)

$$BM = B_c(\theta) = \begin{bmatrix} 0 \\ b\theta_1 \end{bmatrix}$$
 (18)

Hata ifadesi aşağıdaki gibi yazılabilir,

$$\frac{de}{dt} = A_m e + (A_c(\theta) - A_m)x + (B_c(\theta) - B_m)u_c$$
(19)

$$=A_{m}e+\left(\begin{bmatrix}0&1\\-b\theta_{1}&-a-b\theta_{2}\end{bmatrix}-\begin{bmatrix}0&1\\-b\theta_{1}^{0}&-a-b\theta_{2}^{0}\end{bmatrix}\right)\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix}+\left(\begin{bmatrix}0\\b\theta_{1}\end{bmatrix}-\begin{bmatrix}0\\b\theta_{1}^{0}\end{bmatrix}\right)u_{c} \qquad (20)$$

$$=A_m e + \begin{bmatrix} 0 & 0 \\ b(\theta_1 - \theta_1^0) & b(\theta_2 - \theta_2^0) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ b(\theta_1 - \theta_1^0) \end{bmatrix} u_c$$
 (21)

Burada Ψ ifadesini oluşturmamız gerekir. X ve uc'li terimleri bir araya toplayıp eşitliği düzenlersek,

$$\Psi = b \begin{bmatrix} 0 & 0 \\ u_c - x_1 & -x_2 \end{bmatrix} \tag{22}$$

$$\theta - \theta^0 = \begin{bmatrix} \theta_1 - \theta_1^0 \\ \theta_2 - \theta_2^0 \end{bmatrix} \tag{23}$$

Burada

$$x_1 = y, x_2 = \dot{y} \tag{24}$$

Lyapunov eşitliğinde işlem kolaylığı açısından P'yi birim matris yapacak şekilde bir Q seçildiğini varsayalım. Güncelleme kuralı formülü de

$$\frac{d\theta}{dt} = -\gamma \Psi^{T}(x, u_c) Pe \tag{25}$$

Olduğundan güncelleme kuralları şöyle bulunabilir,

$$\frac{d\theta}{dt} = -\gamma b \begin{bmatrix} 0 & u_c - y \\ 0 & -\dot{y} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} e \tag{26}$$

$$\dot{\theta}_1 = -b\gamma_1(u_c - y)e\tag{27}$$

$$\dot{\theta_2} = -b\gamma_2 \dot{y}e \tag{28}$$

Bu güncelleme kuralına göre yapı simulink yardımıyla oluşturulmuştur.

a=5 b=5 için simülasyon,

Şekil 4 gama1=4 gama2=0.2

a=5, b=10 için simülasyon,

Şekil 5 gama1=4 gama2=0.2

a=5, b=1 için simülasyon,

Şekil 6 gama1=4 gama2=0.2

Görüldüğü üzere parametre güncelleme kuralında sistem kazancı olan b parametresi yer alsa da sistemin uzun vadede kararlılığını etkilememektedir.