SIMULAZIONE SCRITTO II MODULO

QUIZ: ogni risposta corretta vale 1 punto, sbagliata -1/2, non data 0.

1. Una matrice quadrata con determinante uguale a zero ha sempre rango uguale a zero. |V|F

 $\mathbf{V} | \mathbf{F}$

2. In \mathbb{R}^n, n vettori linearmente indipendenti generano tutto lo spazio.

 $\overline{\mathbf{v}|\mathbf{F}}$

3. Il sottospazio $W=\{(2h,2h,2h):h\in\mathbb{R}\}$ di \mathbb{R}^3 ha dimensione 2.

4. Se una trasformazione lineare $T:\mathbb{R}^4\to\mathbb{R}^5$ ha rango 4 allora è iniettiva.

 $\overline{\mathbf{V}|\mathbf{F}}$

5. I vettori $v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ e $v_2 = \begin{bmatrix} 2 \\ -1 \\ 2 \\ -1 \end{bmatrix}$ di \mathbb{R}^4 sono ortogonali.

 $\mathbf{V} \mid \mathbf{F}$

6. I vettori $v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ sono indipendenti in \mathbb{R}^3 .

 $\mathbf{V} \mid \mathbf{F}$

7. Il numero complesso (1+i)/2 è l'inverso moltiplicativo del numero complesso 1-i.

 $\mathbf{V} \mathbf{F}$

8. La matrice

$$\begin{bmatrix} 1 & 2 & -100 & 73 \\ 0 & 20 & 34 & -27 \\ 0 & 0 & 4 & -7/3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

è invertibile.

 $\mathbf{V} | \mathbf{F}$

- 9. Sia T una trasformazione lineare $T: \mathbb{R}^n \to \mathbb{R}^m$; vale sempre che:
 - (a) se T è suriettiva allora $m \leq n$
 - (b) se T è iniettiva allora m = n;
 - (c) se $Ker(T) = {\vec{0}}$ allora T è biunivoca;
 - (d) se m = n allora T è biunivoca.
- 10. Se $B = [v_1, \dots, v_k]$ è una base per il sottospazio $W \leq \mathbb{R}^n$ allora:
 - (a) anche $B' = [v_2, \dots, v_k]$ è una base di W;
 - (b) i vettori v_2, \ldots, v_k sono indipendenti;
 - (c) il vettore v_1 è combinazione lineare degli altri vettori della base;
 - (d) se $v \in W \setminus B$, i vettori v, v_1, \ldots, v_k sono indipendenti.

ESERCIZI

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ la trasformazione lineare definita da T(x,y,z) = (-2x+2y,-2y+2z,0).
 - (a) Determinare Ker(T), Im(T) e le loro dimensioni, stabilendo se T è iniettiva, suriettiva o biunivoca. Se possibile, trovare un vettore non nullo che appartiene a Ker(T) ed un vettore non nullo che appartiene a Im(T).
 - (b) Stabilire se il vettore $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ è un autovettore di T e se si, per quale autovalore.
 - (c) Trovare gli autovalori di T ed i relativi autospazi.
 - (d) Determinare se T è diagonalizzabile.
- 2. (a) Dare la definizione di base di \mathbb{R}^n .
 - (b) Considerare i seguenti vettori di \mathbb{R}^3 :

$$v_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

- i. Dimostrare che $B = [v_1, v_2, v_3]$ è una base di \mathbb{R}^3 .
- ii. Determinare le matrici di cambiamento di base, dalla base canonica alla base B e viceversa.
- iii. Determinare le coordinate del vettore $v = \begin{bmatrix} -1/2 \\ -2 \\ 1 \end{bmatrix}$ in base B.
- 3. (a) Dare la definizione di sottospazio vettoriale di \mathbb{R}^n .
 - (b) Considerare il seguente sottospazio di \mathbb{R}^3 :

$$W = \{(x, y, z) \in \mathbb{R}^3 : 2x - y = 0 \text{ e } y + 2z = 0 \text{ e } x + z = 0\}$$

- i. Determinare le equazioni parametriche di W, stabilendo se si tratta di un piano, una retta o un punto.
- ii. Trovare una base di W.
- iii. Determinare la matrice di proiezione ortogonale su W e la proiezione ortogonale del vettore

2

$$v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \text{ su } W.$$

Answer Key for Exam A

QUIZ: ogni risposta corretta vale 1 punto, sbagliata -1/2, non data 0.

- 1. Una matrice quadrata con determinante uguale a zero ha sempre rango uguale a zero. $\begin{bmatrix} \mathbf{V} & \mathbf{F} \end{bmatrix}$ Falso: ad esempio, la matrice $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ha determinante zero e rango 1
- 2. In \mathbb{R}^n , n vettori linearmente indipendenti generano tutto lo spazio.

V F Vero

3. Il sottospazio $W = \{(2h, 2h, 2h) : h \in \mathbb{R}\}$ di \mathbb{R}^3 ha dimensione 2.

V F Falso: ha dimensione 1

- 4. Se una trasformazione lineare $T: \mathbb{R}^4 \to \mathbb{R}^5$ ha rango 4 allora è iniettiva. $\boxed{\mathbf{V} \mid \mathbf{F}}$ Vero: poiché dim(Ker(T)) + rg(T) = 4 se T ha rango 4 si ha $Ker(T) = \{\vec{0}\}$, quindi T è iniettiva.
- 5. I vettori $v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ e $v_2 = \begin{bmatrix} 2 \\ -1 \\ 2 \\ -1 \end{bmatrix}$ di \mathbb{R}^4 sono ortogonali. $\boxed{\mathbf{V} \mid \mathbf{F}}$ Falso: il loro prodotto scalare non è nullo
- 6. I vettori $v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ sono indipendenti in \mathbb{R}^3 . $\boxed{\mathbf{V} \mid \mathbf{F}}$ Falso: il determinante della matrice che ha per colonne i vettori è nullo.
- 7. Il numero complesso (1+i)/2 è l'inverso moltiplicativo del numero complesso 1-i. $\boxed{\mathbf{V} \mid \mathbf{F}}$ Vero
- 8. La matrice

$$\begin{bmatrix} 1 & 2 & -100 & 73 \\ 0 & 20 & 34 & -27 \\ 0 & 0 & 4 & -7/3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

è invertibile. **V F** V: il suo determinante è il prodotto degli elementi sulla diagonale ed è diverso da zero.

- 9. Sia T una trasformazione lineare $T:\mathbb{R}^n\to\mathbb{R}^m$; vale sempre che:
 - (a) se T è suriettiva allora $m \leq n$
 - (b) se T è iniettiva allora m = n;
 - (c) se $Ker(T) = {\vec{0}}$ allora T è biunivoca;
 - (d) se m = n allora T è biunivoca.
- 10. Se $B = [v_1, \dots, v_k]$ è una base per il sottospazio $W \leq \mathbb{R}^n$ allora:
 - (a) anche $B' = [v_2, \dots, v_k]$ è una base di W;
 - (b) i vettori v_2, \ldots, v_k sono indipendenti;
 - $\overline{\text{(c)}}$ il vettore v_1 è combinazione lineare degli altri vettori della base;
 - (d) se $v \in W \setminus B$, i vettori v, v_1, \dots, v_k sono indipendenti.

ESERCIZI

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ la trasformazione lineare definita da T(x,y,z) = (-2x+2y,-2y+2z,0).
 - (a) Determinare Ker(T), Im(T) e le loro dimensioni, stabilendo se T è iniettiva, suriettiva o biunivoca. Se possibile, trovare un vettore non nullo che appartiene a Ker(T) ed un vettore non nullo che appartiene a Im(T). **SOL**

$$Ker(T) = \{(x,y,z) \in \mathbb{R}^3 : T(x,y,z) = (0,0,0)\} = \{(x,y,z) \in \mathbb{R}^3 : \begin{cases} -2x + 2y = 0 \\ -2y + 2z = 0 \end{cases} \}$$

Risolvendo il sistema, otteniamo

$$Ker(T) = \{(h, h, h) : h \in \mathbb{R}\}$$

Quindi Ker(T) ha dimensione 1 ed il vettore $\begin{bmatrix} 1\\1\\1 \end{bmatrix} \in Ker(T)$. T non è iniettiva perché la dimensione del nucleo è diversa da 0. In particolare, \overline{T} non è biunivoca.

$$Im(T) = \{(-2x + 2y, -2y + 2z, 0) : x, y, z \in \mathbb{R}\}.$$

Da dim(Ker(T)) + dim(Im(T)) = 3 segue che dim(Im(T)) = 2. T non è suriettiva perché l'immagine è un sottospazio proprio del codominio. Un vettore non nullo del Ker(T) è 1mentre un vettore che non appartiene all'immagine è, ad esempio, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

(b) Stabilire se il vettore $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ è un autovettore di T e se si, per quale autovalore. $\mathbf{SOL}\ T(1,1,1) = (0,0,0),\ \mathbf{quindi}\ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \ \text{è un autovettore di } T \ \mathbf{per}\ \mathbf{l'autovalore}\ \mathbf{0}.$

(c) Trovare gli autovalori di T ed i relativi autospazi. **SOL** Per trovare gli autovalori di T dobbiamo trovare le radici del polinomio caratteristico

$$p(\lambda) = det(A - \lambda I) = det \begin{bmatrix} -2 - \lambda & 2 & 0 \\ 0 & -2 - \lambda & 2 \\ 0 & 0 & -\lambda \end{bmatrix} = (-2 - \lambda)^2 (-\lambda)$$

Le radici di $p(\lambda)$ sono $\lambda = 0$ e $\lambda = -2$, quindi questi sono gli unici autovalori. Gli autospazi corrispondenti sono $Aut_0 = Ker(F)$, già determinato in precedenza e e Aut_{-2} che si ottiene risolvendo il sistema:

$$(A - (-2)I) \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

La matrice A - (-2)I è:

$$\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

2

e quindi il sistema che dobbiamo risolvere è

$$\begin{cases} 2y = 0 \\ 2z = 0 \end{cases}$$

Questo sistema ha come soluzione l'insieme dei vettori $Aut_{-2} = \{(h, 0, 0) : h \in \mathbb{R}\}.$

- (d) Determinare se T è diagonalizzabile. **SOL** T non è diagonalizzabile perché $dim(Aut_0)+dim(Aut_{-2})=2<3$ e quindi non è possibile trovare una base di \mathbb{R}^3 formata da autovettori di T.
- 2. (a) Dare la definizione di base di \mathbb{R}^n . **SOL** Vedere slides.
 - (b) Considerare i seguenti vettori di \mathbb{R}^3 :

$$v_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

i. Dimostrare che $B=[v_1,v_2,v_3]$ è una base di \mathbb{R}^3 . **SOL** Consideriamo la matrice che ha per colonne i vettori v_1,v_2,v_3 e calcoliamone il determinante (sviluppando secondo l'ultima colonna):

$$\det \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix} = 1((-1) \cdot (-1)) = 1$$

Poiché il determinante è non nullo, $B = [v_1, v_2, v_3]$ è una base di \mathbb{R}^3 .

ii. Determinare le matrici di cambiamento di base, dalla base canonica alla base B e viceversa. **SOL** La matrice di cambiamento di base, dalla base B alla base canonica, è la matrice (indicata ancora con B) che ha come colonne i vettori della base. Per questa matrice avremo, $v = B||v||^B$, per ogni vettore v, mentre il cambiamento dalla base canonica alla base B è dato dalla matrice inversa B^{-1} . Possiamo calcolare l'inversa con il metodo delle due colonne:

$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 0 & -1 & -1 \\ 1 & 2 & 1 \end{bmatrix}$$

Abbiamo quindi che la matrice di cambiamento di base, dalla base canonica alla base B, è:

$$B^{-1} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & -1 & -1 \\ 1 & 2 & 1 \end{bmatrix}$$

iii. Determinare le coordinate del vettore $v = \begin{bmatrix} -1/2 \\ -2 \\ 1 \end{bmatrix}$ in base B.

$$||v||^B = B^{-1} \begin{bmatrix} -1/2 \\ -2 \\ 1 \end{bmatrix} = -1/2 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - 2 \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -7/2 \end{bmatrix}$$

- 3. (a) Dare la definizione di sottospazio vettoriale di \mathbb{R}^n . **SOL** Vedere slides.
 - (b) Considerare il seguente sottospazio di \mathbb{R}^3 :

$$W = \{(x, y, z) \in \mathbb{R}^3 : 2x - y = 0 \text{ e } y + 2z = 0 \text{ e } x + z = 0\}$$

i. Determinare le equazioni parametriche di W, stabilendo se si tratta di un piano, una retta o un punto.

SOL Risolvendo il sistema che definisce W, ovvero $\begin{cases} 2x - y = 0 \\ y + 2z = 0 \\ x + z = 0 \end{cases}$

troviamo che il sottospazio W è una retta di equazione parametrica:

$$\begin{cases} x = -h \\ y = -2h \\ z = h \end{cases}, h \in \mathbb{R}$$

- ii. Trovare una base di W. **SOL** Una base di W è data, per esempio, da B=[v], dove $v=\begin{bmatrix}1\\2\\-1\end{bmatrix}$.
- iii. Determinare la matrice di proiezione ortogonale su W e la proiezione ortogonale del vettore $v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ su W. **SOL** Considerando il vettore $v = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$ di W, la matrice di proiezione può essere definita da:

$$P = vv^{T}/v^{T}v = 6^{-1} \begin{bmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ -1 & -2 & 1 \end{bmatrix}$$

e la proiezione del vettore $v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ su W è

$$Pv = 6^{-1} \begin{bmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ -1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 6^{-1} \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \\ -1/3 \end{bmatrix}$$

4