

Обзор задач синтаксического анализа графов В рамках проекта лаборатории JetBrains

Автор: Рустам Шухратуллович Азимов, 546 группа **Научный руководитель:** к.ф.-м.н., ст.пр. С.В. Григорьев

Санкт-Петербургский государственный университет Кафедра системного программирования

27 декабря 2016г.

Синтаксический анализ графов

- Граф коллекция генеалогических деревьев
- Вершины графа люди
- Ребра представляют отношение между родителями и детьми (parentOf или childOf)
- ullet Формальный KC-язык $L = \{parentOf^n \text{childOf}^n | n > 0\}$
- Пути, соответствующие языку L, соединяют потомков общего предка из одного поколения

Проблемы

- Существует множество вариаций задач синтаксического анализа графов
- Работы в данной области по-разному формулируют задачи и используют различную терминологию
- Сложность использования существующих результатов данной области (например, обобщение этих результатов с использованием других классов формальных языков)

Постановка задачи

Цель: обзор существующих результатов для различных задач синтаксического анализа графов

- Изучить литературу, посвящённую решению задач синтаксического анализа графов
- Выявить основные классы задач синтаксического анализа графов и их ключевые характеристики
- Составить общую таблицу, отражающую связь классов задач и характеристик

Работы в области синтаксического анализа графов

- Barrett C., Jacob R., Marathe M. Formal language constrained path problems
- Hellings J. Conjunctive context-free path queries
- Sevon P., Eronen L. Subgraph queries by context-free grammars
- Hellings J. Path results for context-free grammar queries on graphs
- Yannahzkis M. Graph-theoretic methods in database theory

Классы задач синтаксического анализа графов

• Семантика запроса

- ▶ кратчайший путь из вершины s в вершину d
- ▶ простой путь из вершины s в вершину d
- выделение подграфа связей

• Тип графа

- без циклов
- планарный
- без ограничений

• Класс формального языка

- регулярный
- контекстно-свободный
- конъюнктивный

Общая таблица

Query semantic	Type of graph G = (V, E)	Regular Grammar R	CFG C = (Σ, N, P, S)	Conjuctive grammar	CSG
shortest path	general graph	O(R G log(R G))	FP		undecidable
simple path	directed chain	O(V)	O(V ³)		PSPACE-complete
	treewidth bounded	FP	NP-complete		PSPACE-complete
	planar/grid graph	NP-complete	NP-complete		PSPACE-complete
relational	general graph		$O(N E + (N V)^3)$	undecidable	
subgraph	acyclic graph		$O(V ^3m^3)$		
single-path	general graph		O(f)		
all-path	general graph		$O(N E + (N V)^3)$		

Здесь m означает максимальную длину пути в графе, а $f=|N||V|^2((|N||V|^2)\log(|N||V|^2)+|P||V|^3+\min(|N|,|P|)|E|)+2^{|N||V|^2-1}$