Formal Methods (形式化方法) Lecture 11. Bag (包)

智能与计算学部 章衡

2021年上学期

Definition and Representation

2 Bag Operators

Outline

Definition and Representation

Bag Operators

• The multiple occurrences of elements are unable to be expressed in a set.

• The multiple occurrences of elements are unable to be expressed in a set.

$$\{Alice, Bob, Jone\} = \{Alice, Bob, Jone, Bob\}$$

• The multiple occurrences of elements are unable to be expressed in a set.

$${Alice, Bob, Jone} = {Alice, Bob, Jone, Bob}$$

 The multiple occurrences of elements can be expressed in a sequence, but accompanied with an order among the elements

• The multiple occurrences of elements are unable to be expressed in a set.

$${Alice, Bob, Jone} = {Alice, Bob, Jone, Bob}$$

 The multiple occurrences of elements can be expressed in a sequence, but accompanied with an order among the elements

• The multiple occurrences of elements are unable to be expressed in a set.

$${Alice, Bob, Jone} = {Alice, Bob, Jone, Bob}$$

 The multiple occurrences of elements can be expressed in a sequence, but accompanied with an order among the elements

• In many applications, however, we need a structure to record the multiple occurrences without an order among the elements; such a structure is called a bag(包), a.k.a. multiset

$\llbracket \cdot rbracket$ -representation of a bag

Definition ($[\cdot]$ -representation)

Given a set X, a bag on X can be represented by an expression of the following form:

$$[\![\alpha_1,\alpha_2,\ldots,\alpha_n]\!]$$

where $a_1, a_2, \dots, a_n \in X$.

$\llbracket \, \cdot \, rbracket$ -representation of a bag

Definition ($[\cdot]$ -representation)

Given a set X, a bag on X can be represented by an expression of the following form:

$$[\![\alpha_1,\alpha_2,\ldots,\alpha_n]\!]$$

where $\alpha_1,\alpha_2,\dots,\alpha_n\in X.$ In particular, we call it an empty bag (denoted [[]]) if n=0.

$\llbracket \cdot rbracket$ -representation of a bag

Definition ($[\cdot]$ -representation)

Given a set X, a bag on X can be represented by an expression of the following form:

$$[\![\alpha_1,\alpha_2,\ldots,\alpha_n]\!]$$

where $a_1, a_2, \ldots, a_n \in X$. In particular, we call it an empty bag (denoted [[]]) if n = 0.

• Elements in a bag must be of the same type

Definition ($[\cdot]$ -representation)

Given a set X, a bag on X can be represented by an expression of the following form:

$$[\![\alpha_1,\alpha_2,\ldots,\alpha_n]\!]$$

where $a_1, a_2, \ldots, a_n \in X$. In particular, we call it an empty bag (denoted [[]]) if n = 0.

- Elements in a bag must be of the same type
- The order among elements plays no role in the representation

Definition ($[\cdot]$ -representation)

Given a set X, a bag on X can be represented by an expression of the following form:

$$[\![\alpha_1,\alpha_2,\ldots,\alpha_n]\!]$$

where $a_1, a_2, \ldots, a_n \in X$. In particular, we call it an empty bag (denoted [[]]) if n = 0.

- Elements in a bag must be of the same type
- The order among elements plays no role in the representation

Definition ($[\cdot]$ -representation)

Given a set X, a bag on X can be represented by an expression of the following form:

$$[\![\alpha_1,\alpha_2,\ldots,\alpha_n]\!]$$

where $a_1, a_2, \ldots, a_n \in X$. In particular, we call it an empty bag (denoted [[]]) if n = 0.

- Elements in a bag must be of the same type
- The order among elements plays no role in the representation

Example

[[Alice, Bob, Jone, Bob]]

Definition ($[\cdot]$ -representation)

Given a set X, a bag on X can be represented by an expression of the following form:

$$[\![\alpha_1,\alpha_2,\ldots,\alpha_n]\!]$$

where $a_1, a_2, \ldots, a_n \in X$. In particular, we call it an empty bag (denoted [[]]) if n = 0.

- Elements in a bag must be of the same type
- The order among elements plays no role in the representation

Example

$$[\![\mathsf{Alice},\mathsf{Bob},\mathsf{Jone},\mathsf{Bob}]\!] \quad = \quad [\![\mathsf{Alice},\mathsf{Bob},\mathsf{Bob},\mathsf{Jone}]\!]$$

Definition ($[\cdot]$ -representation)

Given a set X, a bag on X can be represented by an expression of the following form:

$$[\![\alpha_1,\alpha_2,\ldots,\alpha_n]\!]$$

where $a_1, a_2, \ldots, a_n \in X$. In particular, we call it an empty bag (denoted [[]]) if n = 0.

- Elements in a bag must be of the same type
- The order among elements plays no role in the representation

Example

$$[\![\mathsf{Alice},\mathsf{Bob},\mathsf{Jone},\mathsf{Bob}]\!] \quad = \quad [\![\mathsf{Alice},\mathsf{Bob},\mathsf{Bob},\mathsf{Jone}]\!]$$

$\llbracket \, \cdot \, rbracket$ -representation of a bag

Definition ($[\cdot]$ -representation)

Given a set X, a bag on X can be represented by an expression of the following form:

$$[\![\alpha_1,\alpha_2,\ldots,\alpha_n]\!]$$

where $a_1, a_2, \ldots, a_n \in X$. In particular, we call it an empty bag (denoted [[]]) if n = 0.

- Elements in a bag must be of the same type
- The order among elements plays no role in the representation

Example

$$[Alice, Bob, Jone, Bob]$$
 = $[Alice, Bob, Bob, Jone]$
 \neq $[Alice, Bob, Jone]$

Limitation of $[\cdot]$ -representation

A bag might have an infinite number of elements (noting that a set is also a bag), however, the
 || • || -representation is not able to express an infinite bag.

Example

In order to evaluate the quality of online courses, we not only care about which students participate in the learning activities, but also how often a student participates in the learning activities:

Alice: 1, Bob: 2, Jone: 0, Mike: 3

Example

In order to evaluate the quality of online courses, we not only care about which students participate in the learning activities, but also how often a student participates in the learning activities:

Such information can be expressed by the function

$$\{Alice \mapsto 1, Bob \mapsto 2, Mike \mapsto 3\}$$

Example

In order to evaluate the quality of online courses, we not only care about which students participate in the learning activities, but also how often a student participates in the learning activities:

Such information can be expressed by the function

$$\{ \text{Alice} \mapsto 1, \text{Bob} \mapsto 2, \text{Mike} \mapsto 3 \}$$

Definition

Given a set X, let

$$\mathbf{bag}\,\mathbf{X} == \mathbf{X} \nrightarrow \mathbb{N}_1,$$

and call each function in bag X a bag on X.

Moreover, we use b: bag X to declare that b is a bag on X.

Example

In order to evaluate the quality of online courses, we not only care about which students participate in the learning activities, but also how often a student participates in the learning activities:

Such information can be expressed by the function

$$\{ \text{Alice} \mapsto 1, \text{Bob} \mapsto 2, \text{Mike} \mapsto 3 \}$$

Definition

Given a set X, let

$$\mathbf{bag}\,\mathbf{X} == \mathbf{X} \nrightarrow \mathbb{N}_1,$$

and call each function in bag X a bag on X.

Moreover, we use b: bag X to declare that b is a bag on X.

Example

studyRecord: bag Student

Outline

Definition and Representation

2 Bag Operators

Definition

Suppose B : bag X. For all $a \in X$, let

$$count B a == \begin{cases} n & \text{if } a \mapsto n \in B \\ 0 & \text{otherwise} \end{cases}$$

Definition

Suppose B : bag X. For all $a \in X$, let

$$count B a == \begin{cases} n & \text{if } a \mapsto n \in B \\ 0 & \text{otherwise} \end{cases}$$

Example

L = [Alice, Alice, Jone, Bob, Bob, Bob].

Definition

Suppose B : bag X. For all $a \in X$, let

Example

$$L = [[Alice, Alice, Jone, Bob, Bob, Bob]].$$

{Alice $\mapsto 2$, Jone $\mapsto 1$, Bob $\mapsto 3$ }.

Definition

Suppose B : bag X. For all $a \in X$, let

$$count B a == \begin{cases} n & \text{if } a \mapsto n \in B \\ 0 & \text{otherwise} \end{cases}$$

Example

$$L = [Alice, Alice, Jone, Bob, Bob, Bob]].$$

{ $Alice \mapsto 2, Jone \mapsto 1, Bob \mapsto 3$ }.
 $count L Alice = 2, count L Bob = 3,$
 $count L Jone = 1, count L Mike = 0.$

Operators: Bag scaling (包扩大)

Definition

Suppose B : bag X. For all $k \in \mathbb{N}$, let

$$\mathbf{k} \otimes \mathbf{B} == \{ \alpha : \mathbf{X}; \mathbf{n} : \mathbb{N}_1 \mid \alpha \mapsto \mathbf{n} \in \mathbf{B} \wedge \mathbf{k} > 0 \bullet \alpha \mapsto \mathbf{k} * \mathbf{n} \},$$

and call it the bag scaled from B by k.

Operators: Bag scaling (包扩大)

Definition

Suppose B : bag X. For all $k \in \mathbb{N}$, let

$$\mathbf{k} \otimes \mathbf{B} == \{ \mathbf{a} : \mathbf{X}; \mathbf{n} : \mathbb{N}_1 \mid \mathbf{a} \mapsto \mathbf{n} \in \mathbf{B} \land \mathbf{k} > 0 \bullet \mathbf{a} \mapsto \mathbf{k} * \mathbf{n} \},$$

and call it the bag scaled from B by k.

Example

$$L = [Alice, Alice, Jone, Bob, Bob, Bob]].$$

{Alice $\mapsto 2$, Jone $\mapsto 1$, Bob $\mapsto 3$ }.

Operators: Bag scaling (包扩大)

Definition

Suppose B : bag X. For all $k \in \mathbb{N}$, let

$$\mathbf{k} \otimes \mathbf{B} == \{ \mathbf{a} : \mathbf{X}; \mathbf{n} : \mathbb{N}_1 \mid \mathbf{a} \mapsto \mathbf{n} \in \mathbf{B} \land \mathbf{k} > 0 \bullet \mathbf{a} \mapsto \mathbf{k} * \mathbf{n} \},$$

and call it the bag scaled from B by k.

Example

$$\begin{split} L &= [\![Alice, Alice, Jone, Bob, Bob, Bob]\!]. \\ & \{Alice \mapsto 2, Jone \mapsto 1, Bob \mapsto 3\}. \\ &2 \otimes L = \{Alice \mapsto 4, Jone \mapsto 2, Bob \mapsto 6\}. \end{split}$$

count and ⊗: Generic definitions

count: Bag count

 \otimes : Bag scaling

count and ⊗: Generic definitions

count: Bag count ⊗: Bag scaling

Definition

=[X]

 $count : bag X \rightarrowtail (X \to \mathbb{N})$ $_ \otimes _ : \mathbb{N} \times bag X \to bag X$

 $\forall B: \operatorname{bag} X \bullet$

 $count B = (\lambda x : X \bullet 0) \oplus B$

 $\forall\, n: \mathbb{N}; B: \mathrm{bag}\, X; x: X \bullet$

 $count \, (n \otimes B) \, x = n * count \, B \, x$

Recall that $f \oplus g == ((\text{dom } g) \triangleleft f) \cup g$.

Properties of bags and ⊗

Let B : bag X and a_1, \ldots, a_n : X. Then we have

$$\bullet \ \operatorname{dom} \ [\![\alpha_1,\ldots,\alpha_n]\!] = \{\alpha_1,\ldots,\alpha_n\}$$

Definition

Suppose B: bag X. For all $c \in X$, we say that c is a member of B, denoted c in B, if $c \in \operatorname{dom} B$.

Definition

Suppose B: bag X. For all $c \in X$, we say that c is a member of B, denoted c in B, if $c \in \text{dom}\,B$.

Definition

Suppose A, B: bag X. We say that B is a sub-bag of A, denoted $B \sqsubseteq A$, if for all $c \in X$, we have count $B c \leq \text{count } A c$.

Definition

Suppose B: bag X. For all $c \in X$, we say that c is a member of B, denoted c in B, if $c \in \text{dom } B$.

Definition

Suppose A, B: bag X. We say that B is a sub-bag of A, denoted $B \sqsubseteq A$, if for all $c \in X$, we have count $B \subset A$ count $A \subset A$.

Example

L = [Alice, Alice, Jone, Bob, Bob, Bob].

 $T = [\![Alice, Alice, Alice, Jone, Bob, Bob, Bob, Mike]\!].$

Definition

Suppose B: bag X. For all $c \in X$, we say that c is a member of B, denoted c in B, if $c \in \text{dom } B$.

Definition

Suppose A, B: bag X. We say that B is a sub-bag of A, denoted $B \sqsubseteq A$, if for all $c \in X$, we have count $B c \leq \text{count } A c$.

Example

$$\begin{split} L &= [\![\text{Alice}, \text{Alice}, \text{Jone}, \text{Bob}, \text{Bob}, \text{Bob}]\!]. \\ T &= [\![\text{Alice}, \text{Alice}, \text{Alice}, \text{Jone}, \text{Bob}, \text{Bob}, \text{Bob}, \text{Mike}]\!]. \\ \text{Alice in L, Bob in L, } \neg (\text{Mike in L}), \text{Mike in T.} \end{split}$$

Operators: Bag membership and sub-bag relation

Definition

Suppose B: bag X. For all $c \in X$, we say that c is a member of B, denoted c in B, if $c \in \text{dom } B$.

Definition

Suppose A, B: bag X. We say that B is a sub-bag of A, denoted $B \sqsubseteq A$, if for all $c \in X$, we have count $B c \leq \text{count } A c$.

Example

$$\begin{split} L &= [\![\text{Alice}, \text{Alice}, \text{Jone}, \text{Bob}, \text{Bob}, \text{Bob}]\!]. \\ T &= [\![\text{Alice}, \text{Alice}, \text{Alice}, \text{Jone}, \text{Bob}, \text{Bob}, \text{Bob}, \text{Mike}]\!]. \\ \text{Alice in L, Bob in L, } \neg (\text{Mike in L}), \text{Mike in T.} \\ L &\sqsubset T, T \not\sqsubset L. \end{split}$$

in and □: Generic definitions

in: Bag member □: Sub-bag relation

in and □: Generic definitions

in: Bag member ☐: Sub-bag relation

Definition

```
[X] = [X]
- \operatorname{in}_{-} : X \leftrightarrow \operatorname{bag} X
- \sqsubseteq_{-} : \operatorname{bag} X \leftrightarrow \operatorname{bag} X
\forall x : X; B : \operatorname{bag} X \bullet
(x \operatorname{in} B \Leftrightarrow x \in \operatorname{dom} B)
\forall A, B : \operatorname{bag} X \bullet
B \sqsubseteq A \Leftrightarrow (\forall x : X \bullet \operatorname{count} B x \leq \operatorname{count} A x)
```

Properties of in and ⊑

Suppose B, C, D: bag X. Then we have

- **⑤** [] □ B
- B
 □ B
- $\bullet B \sqsubseteq C \wedge C \sqsubseteq D \Rightarrow B \sqsubseteq D$

Example

Suppose B, C : \mathbb{P} X, and

$$B = \{a \mapsto 2, b \mapsto 3\}$$

$$C=\{\alpha\mapsto 1, c\mapsto 2\}$$

Example

Suppose B, C : \mathbb{P} X, and

$$B = \{\alpha \mapsto 2, b \mapsto 3\}$$
$$C = \{\alpha \mapsto 1, c \mapsto 2\}$$

$$\operatorname{count} B a = 2$$
, $\operatorname{count} B b = 3$,

$$count Ca = 1$$
, $count Cb = 0$,

$$count B c = 0$$
$$count C c = 2$$

Example

Suppose $B, C : \mathbb{P} X$, and

$$\mathsf{B} = \{ \mathsf{a} \mapsto 2, \mathsf{b} \mapsto 3 \} \qquad \qquad \mathsf{count} \, \mathsf{B} \, \mathsf{a} = 2, \qquad \mathsf{count} \, \mathsf{B} \, \mathsf{b} = 3, \qquad \mathsf{count} \, \mathsf{B} \, \mathsf{c} = 0$$

$$\mathsf{C} = \{ \mathsf{a} \mapsto 1, \mathsf{c} \mapsto 2 \} \qquad \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{a} = 1, \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{b} = 0, \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{c} = 2$$

How to define the bag union of B and C?

Example

Suppose B, C : \mathbb{P} X, and

$$B = \{a \mapsto 2, b \mapsto 3\}$$
 coun

$$\operatorname{count} B\, \mathfrak{a} = 2, \quad \operatorname{count} B\, \mathfrak{b} = 3, \quad \operatorname{count} B\, \mathfrak{c} = 0$$

$$\mathsf{C} = \{ \mathsf{a} \mapsto 1, \mathsf{c} \mapsto 2 \} \qquad \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{a} = 1, \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{b} = 0, \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{c} = 2$$

How to define the bag union of B and C?

$$B \uplus C = \{a \mapsto 3, b \mapsto 3, c \mapsto 2\}$$

Example

Suppose B, C : \mathbb{P} X, and

$$B = \{ a \mapsto 2, b \mapsto 3 \} \qquad \qquad \text{count } B \, a = 2, \qquad \text{count } B \, b = 3, \qquad \text{count } B \, c = 0$$

$$\mathsf{C} = \{ \mathsf{a} \mapsto \mathsf{1}, \mathsf{c} \mapsto \mathsf{2} \} \qquad \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{a} = \mathsf{1}, \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{b} = \mathsf{0}, \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{c} = \mathsf{2}$$

How to define the bag union of B and C?

$$B \uplus C = \{a \mapsto 3, b \mapsto 3, c \mapsto 2\}$$

How to define the bag difference of B and C?

Example

Suppose B, C : \mathbb{P} X, and

$$B = \{ a \mapsto 2, b \mapsto 3 \}$$
 count $B a = 2$, count $B b = 3$, count $B c = 0$

$$\mathsf{C} = \{ \mathsf{a} \mapsto 1, \mathsf{c} \mapsto 2 \} \qquad \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{a} = 1, \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{b} = 0, \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{c} = 2$$

How to define the bag union of B and C?

$$B \uplus C = \{a \mapsto 3, b \mapsto 3, c \mapsto 2\}$$

How to define the bag difference of B and C?

$$B \cup C = \{\alpha \mapsto 1, b \mapsto 3\}$$

Example

Suppose B, C : \mathbb{P} X, and

$$B = \{ \mathfrak{a} \mapsto 2, \mathfrak{b} \mapsto 3 \} \qquad \qquad \mathsf{count} \, B \, \mathfrak{a} = 2, \qquad \mathsf{count} \, B \, \mathfrak{b} = 3, \qquad \mathsf{count} \, B \, \mathfrak{c} = 0$$

$$\mathsf{C} = \{ \mathsf{a} \mapsto 1, \mathsf{c} \mapsto 2 \} \qquad \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{a} = 1, \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{b} = 0, \qquad \mathsf{count} \, \mathsf{C} \, \mathsf{c} = 2$$

How to define the bag union of B and C?

$$B \uplus C = \{a \mapsto 3, b \mapsto 3, c \mapsto 2\}$$

How to define the bag difference of B and C?

$$B \cup C = \{a \mapsto 1, b \mapsto 3\}$$

• Bag union: count $B \uplus C a = count B a + count C a$

Example

Suppose B, C : \mathbb{P} X, and

$$B = \{a \mapsto 2, b \mapsto 3\}$$
 count $Ba = 2$, count $Bb = 3$,

$$\operatorname{unt} B a = 2, \quad \operatorname{count} B b = 3, \quad \operatorname{count} B c = 0$$

$$C = \{a \mapsto 1, c \mapsto 2\}$$

$$count Ca = 1$$
, $count Cb = 0$, $count Cc = 2$

$$\operatorname{count} \operatorname{C} \operatorname{b} = 0,$$

$$count C c =$$

How to define the bag union of B and C?

$$B \uplus C = \{a \mapsto 3, b \mapsto 3, c \mapsto 2\}$$

How to define the bag difference of B and C?

$$B \cup C = \{a \mapsto 1, b \mapsto 3\}$$

- Bag union: count $B \uplus Ca = count Ba + count Ca$
- Bag difference: count $B \cup C a = \max\{\text{count } B a \text{count } C a, 0\}$

⊎ and ⊍: Generic definitions

⊎: Bag union

⇒: Bag difference

⊎ and ⊍: Generic definitions

⊎: Bag union

Definition

$$= [X] =$$

$$- \uplus_{-,-} \uplus_{-} : \operatorname{bag} X \times \operatorname{bag} X \to \operatorname{bag} X$$

$$\forall B, C : \operatorname{bag} X; x : X \bullet$$

$$\operatorname{count} (B \uplus C) x = \operatorname{count} B x + \operatorname{count} C x \land$$

$$\operatorname{count} (B \uplus C) x = \max \{ \operatorname{count} B x - \operatorname{count} C x, 0 \}$$

Properties of bag union and difference

Suppose B, C, D : $bag X; m, n : \mathbb{N}$. Then we have

- $B \uplus C = C \uplus B$

- $(B \uplus C) \uplus C = B$

Operators: function items

Example

 $\langle \alpha, \alpha, b, b, b, c \rangle$

Operators: function items

Example

$$\langle \alpha, \alpha, b, b, b, c \rangle$$

$$[\![\mathfrak{a},\mathfrak{a},\mathfrak{b},\mathfrak{b},\mathfrak{b},\mathfrak{c}]\!]$$

Operators: function items

Example

$$\langle \alpha, \alpha, b, b, b, c \rangle$$

$$items\langle a, a, b, b, b, c \rangle = \{a \mapsto 2, b \mapsto 3, c \mapsto 1\}.$$

items: Generic definition

Definition

```
items: \operatorname{seq} X \to \operatorname{bag} X
```

$$\forall\,s:\operatorname{seq}X;x:X\,\bullet$$

$$count \, (items \, s) \, x = \#(s \rhd \{x\})$$

Properties of items

Suppose s, t : seq X. Then we have

- \bigcirc dom(items s) = ran s
- items(s t) = items s <math> items t
- items $s = items t \Leftrightarrow (\exists f : dom s) \rightarrow dom t \bullet s = f_{\frac{0}{2}}t)$

Exercies

Ex. 1

Let balls == [[blue, green, white, green, blue, red, blue]] $balls_1 == \{ white \mapsto 2, red \mapsto 1, blue \mapsto 2, green \mapsto 2 \}$ $balls_2 == \{ green \mapsto 2, blue \mapsto 2, white \mapsto 1 \}$

What are the bags represented by the following expressions?

- balls ⊎ balls₁;
- \bigcirc balls \uplus balls₂;
- balls

 balls₁;
- \bullet balls \cup balls₂.

Ex. 2

Let $S == \langle red, white, red, green, green, red, blue \rangle$. What is the bag represented by items S?

Ex. 3

Let s, t : seq X. Prove items(s $^{\smallfrown}$ t) = items s \uplus items t.