Law of double negation: $\neg \neg P$ LEQV P

De Morgan's laws: $\neg (P \land Q) \quad \texttt{LEQV} \quad \neg P \lor \neg Q$

 $\neg (P \lor Q)$ LEQV $\neg P \land \neg Q$

Commutative laws: $P \wedge Q$ LEQV $Q \wedge P$

 $P \lor Q$ LEQV $Q \lor P$

Associative laws: $P \wedge (Q \wedge R)$ LEQV $(P \wedge Q) \wedge R$

 $P \lor (Q \lor R)$ Lequ $(P \lor Q) \lor R$

Distributive laws: $P \wedge (Q \vee R)$ LEQV $(P \wedge Q) \vee (P \wedge R)$

 $P \lor (Q \land R)$ LEQV $(P \lor Q) \land (P \lor R)$

Identity laws: $P \wedge (Q \vee \neg Q)$ LEQV P

 $P \lor (Q \land \neg Q)$ LEQV P

Idempotency laws: $P \wedge P$ Lequer P

 $P \lor P$ LEQV P

ightarrow law: P
ightarrow Q Lequ $\neg P \lor Q$

 \leftrightarrow law: $P \leftrightarrow Q$ LEQV $P \land Q \lor \neg P \land \neg Q$

Duality of quantifiers:

I. $\neg \mathbf{Q} x \ F \text{ leqv } \overline{\mathbf{Q}} x \ \neg F$

Factoring quantifiers:

IIa. $E \wedge \mathbf{Q}x$ F LEQV $\mathbf{Q}x$ $(E \wedge F)$, if x is not free in E

IIb. $E \vee \mathbf{Q}x$ F LEQV $\mathbf{Q}x$ $(E \vee F)$, if x is not free in E

IIc. $\mathbf{Q}x \ E \wedge F$ LEQV $\mathbf{Q}x \ (E \wedge F)$, if x is not free in F

IId. $\mathbf{Q}x \ E \lor F \ \text{LEQV} \ \mathbf{Q}x \ (E \lor F)$, if x is not free in F

He. $\mathbf{Q}x \ E \to F$ Lequer $\overline{\mathbf{Q}}x \ (E \to F)$, if x is not free in F

IIf. $E \to \mathbf{Q}x$ F LEQV $\mathbf{Q}x$ $(E \to F)$, if x is not free in E

Renaming of quantified variables:

III. $\mathbf{Q}x \ F \ \text{LEQV} \ \mathbf{Q}y \ F_y^x$, if y does not occur in F