

Nom: Prénom: Groupe: Question

Durée: 15'

DOCUMENTS, CALCULETTES, TÉLÉPHONES ET ORDINATEURS INTERDITS

Auto-évaluation			
\mathbf{M}	\mathbf{V}	${f R}$	
Méthode(s)	Vérification(s)	Résultat(s)	
3 2 1 0	3 2 1 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Polygones réguliers

Questions : En utilisant les instructions de la tortue LOGO (module turtle), écrire un algorithme qui dessine un motif géométrique composé de $(n \times m)$ polygones réguliers alignés sur une grille ou disposés en quinconce sur la grille.

- 1. décagones (10 côtés) alignés
- 2. décagones (10 côtés) en quinconce
- 3. heptadécagones (17 côtés) alignés
- 4. heptadécagones (17 côtés) en quinconce
- 5. heptagones (7 côtés) alignés
- 6. heptagones (7 côtés) en quinconce
- 7. pentagones (5 côtés) alignés
- 8. pentagones (5 côtés) en quinconce
- 9. hendécagones (11 côtés) alignés
- 10. hendécagones (11 côtés) en quinconce
- 11. octogones (8 côtés) alignés
- 12. octogones (8 côtés) en quinconce

- 13. dodécagones (12 côtés) alignés
- 14. dodécagones (12 côtés) en quinconce
- 15. hexagones (6 côtés) alignés
- 16. hexagones (6 côtés) en quinconce
- 17. hexadécagones (16 côtés) alignés
- 18. hexadécagones (16 côtés) en quinconce
- 19. pentadécagones (15 côtés) alignés
- 20. pentadécagones (15 côtés) en quinconce
- 21. tridécagones (13 côtés) alignés
- 22. tridécagones (13 côtés) en quinconce
- 23. ennéagones (9 côtés) alignés
- 24. ennéagones (9 côtés) en quinconce

Du triangle équilatéral (3 côtés) à l'octadécagone régulier (18 côtés)

Réponse :		