Linear Algebra: Introduction to Matrices

Arjun Vardhan

†

Created: 16th June 2022 Last updated: 16th June 2022

1 Introduction

- An $m \times n$ matrix has m rows and n columns. a_{ij} represents the entry at the ith row and jth column. If $A = [a_{ij}]$ is an $m \times n$ matrix with entries from field \mathbb{F} , we say $A \in \mathbb{M}_{m,n}(\mathbb{F})$.
- A is called a square matrix if m = n.
- A is called a zero matrix if $a_{ij} = 0$ for all i and j.
- Let $A \in \mathbb{M}_n(\mathbb{F})$. Then the entries $a_{11}, a_{22}, ..., a_{nn}$ are called the diagonal entries of A. These constitute the principal diagonal of A.
- Let $A \in \mathbb{M}_n(\mathbb{F})$. If all non-diagonal entries are 0, then A is said to be a diagonal matrix. It is denoted diag $(a_{11}, a_{22}, ..., a_{nn})$.
- If A = diag(1, 1, ..., 1), then A is the identity matrix, denoted I_n or I.

2 Matrix Operations

- Let $A = [a_{ij}] \in \mathbb{M}_{m,n}(\mathbb{C})$. Then the transpose of A, denoted A^T , is an $n \times m$ matrix with $(A^T)_{ij} = a_{ji}$ for all i, j.
- Let $A = [a_{ij}] \in \mathbb{M}_{m,n}(\mathbb{C})$. Then the conjugate transpose of A, denoted A^* , is an $n \times m$ matrix with $(A^*)_{ij} = \overline{a_{ji}}$ for all i, j. Here, $\overline{a_{ji}}$ is the complex conjugate of a_{ji} .
- For any matrix, $(A^*)^* = A$ and $(A^T)^T = A$.
- Let $A = [a_{ij}] \in \mathbb{M}_{m,n}(\mathbb{C})$ and Let $B = [b_{ij}] \in \mathbb{M}_{n,r}(\mathbb{C})$. The product of A and B, denoted AB, is the matrix $C = [c_{ij}] \in \mathbb{M}_{m,r}(\mathbb{C})$ such that for $1 \le i \le m$, $1 \le j \le r$, $c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$. That is, c_{ij} is the dot product of the ith row of A with the jth column of B.
- AB is only defined if the number of columns in A is equal to the number of rows in B.
- Two square matrices A and B are said to commute if AB = BA.
- Let $A \in \mathbb{M}_n(\mathbb{C})$. Then $B \in \mathbb{M}_n(\mathbb{C})$ is said to be the left inverse of A if $BA = I_n$. $C \in \mathbb{M}_n(\mathbb{C})$ is said to be the right inverse of A if $AC = I_n$.
- A is said to be invertible if there exists $B \in \mathbb{M}_n(\mathbb{C})$ such that $AB = BA = I_n$.
- Let $A \in \mathbb{M}_n(\mathbb{C})$. If A has a right and left inverse, then they are equal. Proof: Let B be the left and C be the right inverse of A. Then $B = BI_n = B(AC) = (BA)C = I_nC = C$.
- The inverse matrix of A is unique and denoted A^{-1} .
- \bullet Let A and B be invertible. Then,
 - 1. $(A^{-1})^{-1} = A$. Proof:
 - 2. $(AB)^{-1} = B^{-1}A^{-1}$. Proof:
 - 3. $(A^*)^{-1} = (A^{-1})^*$. Proof:

3 Special Matrices

- If $A = \alpha I$ for some $\alpha \in \mathbb{F}$, then A is called a scalar matrix.
- Let $A \in \mathbb{M}_n(\mathbb{F})$. If $a_{ij} = 0$ for i > j, then A is said to be an upper triangular matrix. If $a_{ij} = 0$ for i < j, then A is said to be an lower triangular matrix. A is said to be a triangular matrix if it is either of the two.
- Let $A \in \mathbb{M}_n(\mathbb{R})$. Then,
 - 1. A is called symmetric if $A^T = A$.
 - 2. A is called skew-symmetric if $A^T = -A$.
 - 3. A is called orthogonal if $A^{-1} = A^{T}$.
 - 4. A is said to be a permutation matrix if it has exactly one non-zero entry, namely 1, in each row and column.
- Let $A \in \mathbb{M}_n(\mathbb{C})$. Then,
 - 1. A is called normal if $A^*A = AA^*$.
 - 2. A is called Hermitian if $A^* = A$.
 - 3. A is called skew-Hermitian if $A^* = -A$.
 - 4. A is called unitary if $A^{-1} = A^*$.
- A matrix A is called idempotent if $A^2 = A$.

•

4 Submatrices