과목명: 일반물리학1(반:교통물류, 컴퓨터1, 로봇) 2016 학년도 1학기 과제1(2-8장)(귀띔) (교재:일반물리학(개정 10판), Halliday, Resnick, and Walker)

[연습2-29] 주어진 문제에서 승강기의 운동을 세 부분으로 나누어 생각한다. 승강기가 가속되는 구간: (가속도 $a_1=1.22\,\mathrm{m/s}^2$ 과 시간 t_1)과 감속되는 구간: (감속도 $a_2=-1.22\,\mathrm{m/s}^2$ 과 시간 t_2)과 승강기가 최고 속력으로 등속 운동 구간:(이동거리 Δy_3 , 등속시간 t_3)으로 구분하여 생각하고 최고 속력 $(v=305\,\mathrm{m/min})$ 을 SI 단위로 환산하여 계산한다.

- (a) 정지상태 $v_0=0$ 에서 가속하여 최고 속력으로 움직인 높이: Δy 등가속도 운동방정식(2-16식): $v^2=v_0^2+2a_1\Delta y$ -----(1) 에서 $v_0=0$ m/s, v(환산된 최고속력)를 (1)식에 대입하여 높이 Δy 를 구한다.
- (b) 등가속도 공식(2-11)을 이용하여 가속되는 시간 $t_1=\frac{v-v_0}{a_1}$ 과 감속되는 시간 t_2 를 합하면 $t=t_1+t_2$ -----(2) 를 계산하고 $t(\mathbf{\hat{z}})$ 동안 이동한 거리($2\Delta y$)를 190m에서 빼주면 최고 속력으로 등속도 운동한 거리: $\Delta y_3=190-2\Delta y$ 와 시간 t_3 $t_3=\frac{\Delta y_3}{v}$ -----(3) 를 계산한다. 그러므로 190m를 이동하는 전체시간은 전체시간=승강기의 (가속시간+ 감속시간+ 등속시간)을 합한 시간으로 ($T=t+t_3$)를 계산하면 된다.

[연습2-41] 수송기 내의 $\,$ 군용기가 초속도 $v_0=64\,\mathrm{m/s}$ 로 날아와서 $t=3\,\mathrm{s}$ 동안 등가속도로 착육할 때

- (a) 등가속도 운동방정식: $v = v_0 + at$ -----(1) 에서 v = 0을 대입하여 가속도 a를 구한다.
- (b) 앞에서 구한 가속도 a를 사용하여 등가속도 공식 $x-x_i=v_0t+\frac{1}{2}at^2$ 에서 군용기의 착육로의 이동거리 x를 계산한다.
- [연습2-49] 올라가는 열기구(hot-air balloon)에서 물건을 떨어뜨렸을 때 물건은 수직 상향 자유 낙하 운동을 한다. 떨어진 물건은 열기구의 속도 $v_{0y}=12\,\mathrm{m/s}$ 와 열기구의 수직 높이 $y_0=80\,\mathrm{m}$ 에서 수직 상향 낙하운동을 한다.
 - (a) 물건이 지면에 도달할 때의 y=0으로 놓고 공식 (2-15) 방정식 $y-y_0=v_{0y}t-\frac{1}{2}gt^2\ -----(2-15)$

를 사용하여 t(s) 를 게산하면 된다

(b) 물건이 지면에 도달할 때의 속력은 공식 (2-16)

$$v_y^2 = v_{0y}^2 - 2g(y - y_0)$$
-----(2-16)

에서 하향속도 $v_y = -\sqrt{v_{0y}^2 - 2g(y-y_0)}$ 를 구한다.

[연습3-9] (a)와 (b) 주어진 벡터 \vec{a} 와 \vec{b} 의 각각의 성분 별로 계산하면 된다.

(c) $\overrightarrow{a-b}+\overrightarrow{c}=0$ 에서 $\overrightarrow{c}=\overrightarrow{b}-\overrightarrow{a}=-(\overrightarrow{a}-\overrightarrow{b})$ 각각의 성분 별로 계산하면 된다.

[연습3-37] 주어진 벡터 \overrightarrow{a} =(3.0, 3.0, -2.0), \overrightarrow{b} =(-1.0, -4.0, -2.0) 와

 $\stackrel{
ightarrow}{c}=(2.0,\ 2.0,\ 1.0)$ 으로 주어질 때

- (a) $\vec{b} \times \vec{c} = \hat{\mathbf{i}} (b_y c_z b_z c_y) + \hat{\mathbf{j}} ((b_z c_x b_x c_z) + \hat{\mathbf{k}} (b_x c_y b_y c_x)$ 를 먼저 계산하고 $\vec{a} \cdot \vec{b} \times \vec{a} = a_x (b_y c_z b_z c_y) + a_y (b_z c_x b_x c_z) + a_z (b_x c_y b_y c_x)$ 를 계산한다.
- (b) $\vec{b} + \vec{c} = \hat{\mathbf{i}} (b_x + c_x) + \hat{\mathbf{j}} (b_y + c_y) + \hat{\mathbf{k}} (b_z + c_z)$ 를 먼저 계산하고 $\vec{a} \cdot (\vec{b} + \vec{c}) = a_x (b_x + c_x) + a_y (b_y + c_y) + a_z (b_z + c_z)$ 를 계산한다.
- (c) $\vec{b} + \vec{c} = \hat{\mathbf{i}} (b_x + c_x) + \hat{\mathbf{j}} (b_y + c_y) + \hat{\mathbf{k}} (b_z + c_z)$ 를 먼저 계산하고 $\vec{a} \times (\vec{b} + \vec{c}) = \hat{\mathbf{i}} [a_y (b_z + c_z) a_z (b_y + c_y)] + \hat{\mathbf{j}} [a_z (b_x + c_x) a_x (b_z + c_z) + \hat{\mathbf{k}} [a_x (b_y + c_y) a_y (b_x + c_x)]$

를 계산한다.

[연습3-41] 주어진 벡터 \vec{a} = $(4.0, \ 4.0, \ -4.0)$ 와 \vec{b} = $(3.0, \ 2.0, \ -4.0)$ 의 사이의 각은 먼저 벡터 \vec{a} 와 \vec{b} 의 크기를 계산하고 스칼라곱의 정의에 의하여 $\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$ 를 구한다. 두 벡터 \vec{a} 와 \vec{b} 의 사이 각은

$$\theta = \cos^{-1}\left(\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}\right)$$
 로 주어진다.

[연습4-33] (a) 오른쪽 그림과 같이

y-축과 $\phi_0=52.0\,^\circ$ 의 각도로 전투기에서 투하하는 포탄의 각도는 $\theta_0=-38.0\,^\circ$ 이다. 주어진 높이 $y_0=720\,\mathrm{m}$ 에서 $t=6.00\,\mathrm{s}$ 동안에 지면에 도달하므로 y=0으로 놓고 공식(4-22):

$$y - y_0 = v_0 \sin \theta_0 t - \frac{1}{2} g t^2$$
 ----(4-22)

에서 주어진 값을 대입하여 v_0 를 구한다.

(b) 수평 비행거리는(R)

 $R = v_x t = v_0 \cos \theta_0 t$ 에서 R를 구한다.

- (c) 포탄의 투하 직전의 수평 속도는(v_x) $v_x = v_0 \cos \theta_0$ 에서 v_x 를 구한다.
- (d) 포탄의 투하 직전의 수직 속도는 (v_u) $v_u = v_0 \sin \theta_0 gt$ 에서 v_u 를 구한다.

[연습4-37] 수면 위 높이 $y_0 = 12 \text{m}$ 인 다이빙대 위에서 다이버 선수의 운동은

$$x = x_0 + v_{0x}t - - - - - (1)$$

$$y - y_0 = v_{0y}t - \frac{1}{2}gt^2 = -\frac{1}{2}gt^2 - - - - (2)$$

로 주어진다. 주어진 문제에서 다이빙대의 $x_0 = 0$, $v_{0x} = v_0 = +2.50 \,\mathrm{m/s}$ 으로 주어졌으므로

(a) $t = 0.90 \,\mathrm{s}$ 를 (1)식에 대입하여 x를 구한다.

- $d=v_{0x}t=(v_0\cos 60\degree)t$ ---(1) 에서 v_0 를 구한다. v_0 의 수직방향의 속도성분 $v_{0y}=v_0\sin 60\,^\circ$ 를 계산하여 수직방향의 건물 높이 $y=h,\ y_0=0$ 를 $y-y_0=v_{0y}t-rac{1}{2}gt^2$ -----(2) 에 대입하여 h구한다.
 - (b) 건물의 지붕 모서리에서 던진 공의 속도를 $\stackrel{
 ightarrow}{v}$ 라 하면(운동을 거꾸로 생각) v_0 (공이 지표면에 닿을 때의 속도)에서 초속도 $v = \sqrt{v_x^2 + v_y^2} \ (v_x = v_{0x}, \ v_y = v_{0y} - gt)$ 를 구한다.
 - (c) $\theta = \tan^{-1} \left(\frac{v_y}{v} \right)$ 를 구한다.
 - (d) 아래 방향으로
- $oxed{f [G_{G_4-76]}}$ 경비행기의 위치 좌표를 $oxed{+y}$ -축을 북쪽으로 정하면 $oxed{+x}$ -축은 동쪽 방향이 된다. 비행기가 목적지(destination)까지의 거리 $D=(900 \, \mathrm{km})$ \hat{i} 를 시간 $t=2.00 \, \mathrm{h}$ 동안에 도착하기 위해서는 $\stackrel{
 ightarrow}{D}=\stackrel{
 ightarrow}{v_{pq}}t$ -----(1)에서 먼저 지표면에 대한 경비행기의 상대 속도 \overrightarrow{v}_{pq} 를 계산한다.

비행기가 북동 $20.0\,^\circ$ 의 빙향으로 시속 $500\,\mathrm{km/h}$ 으로 날고 있으므로 비행기의 바람(공기)에 대한 상대 속도 $\stackrel{ ightarrow}{v_{nv}}$ 는

 $\vec{v}_{mv} = (500 \,\mathrm{km/h}) \cos 70.0 \,\hat{i} + (500 \,\mathrm{km/h}) \sin 70.0 \,\hat{j}$ **星 된다.**

(a) 비행기의 지표면에 대한 상대속도 $\stackrel{
ightarrow}{v_{pg}}$ 는 바람에 대한 비행기의 상대 속도 $\stackrel{
ightarrow}{v_{pw}}$ 의 합으로 주어지므로

(b) 지표면에 대한 바람의 상대 속도: $\overrightarrow{v}_{wg}=(v_{wgx},\ v_{wgy})$ 인 풍속의 방향은 $\theta= an^{-1}igg(rac{v_{wgy}}{v_{wgx}}igg)$ 를 계산하면 된다.

[연습5-17] 아래 그림과 같이 벽돌의 가속도가

0 이므로 Newton의 제2법칙에서

$$T - mg \sin \theta = 0$$
 -----(1)
 $F_N - mg \cos \theta = 0$ ----(2)

을 사용하여

- (a) 주어진 $\theta = 30$ $^{\circ}$ 을 (1)식에 대입하여 줄의 장력 $T = mg \sin \theta$ 를 구한다.
- (b) (2)식에서 수직 항력 $F_N = mg \cos \theta$ 에서 F_N 를 구한다.
- (c) 줄이 끊어지면 벽돌에 줄의 장력 T=0이므로 벽돌은 빗면을 따라 가속된다. $F=ma=-ma\sin\theta$ 에서 가속도 a 를 구한다.

[연습5-51] 주어진 문제에서 토막 $m_1=1.3\,\mathrm{kg}$ 과 $m_2=2.8\,\mathrm{kg}$ 이 마찰이 없는 도르래 줄에 매달려 있다. 각각의 토막에 작용하는 힘에 대한 그림이 아래와 같이 자유물체 [그림]으로 표시할 수 있다. 토막 m_1 에 작용하는 힘은

$$T - m_1 g = m_1 a - - - - - - - (1)$$

로 표시되고, 토막 m_2 에 작용하는 힘은

$$m_2g - T = m_2a - - - - - - - (2)$$

으로 표시된다.

(a) 토막 m_1 과 m_2 에 작용하는 가속도 a의 크기는 a의 장력 a를 (1)과 (2)식에서 소거하여

계산하면 된다.

(b) (a)에서 구한 가속도 a를 (1)식에 대입하여 줄의 장력 T를 계산하면 된다.

[연습5-55] 아래 [그림1]에서 \overrightarrow{F} :토막1에 작용하는 힘, \overrightarrow{F}_{21} :토막1이 토막2에 작용하는 힘, \overrightarrow{F}_{12} :토막2가 토막1에 작용하는 힘이라 하면 Newton의 제3법칙에 의하여

 $\overrightarrow{F}_{12} = -\overrightarrow{F}_{21}$ ----(1)의 관계가 성립한다.

(a) 토막1에 대한 Newton의 제2법칙은 $F-F_{12}=m_1a-----$ (2)과 토막2에 대한 Newton의 제2법칙은 $F_{21}=m_2a----$ (3) 로 된다.

(1)식에 의하여 (2)와(3)식을 더하면 가속도 a:

$$a=rac{F}{m_1+m_2}-----(4)$$
를 얻느다. (4)식을 (3)식에 대입하여
$$F_{12}=F_{21}=m_2a$$
를 계산하면 된다.

(b) 같은 크기의 힘 F가 작은 물체 m_2 에 반대방향으로 작용하면 [그림2]에서

[그림2]

접촉력:
$$F_{21}' = F_{12}' = m_1 a = \frac{m_1}{m_1 + m_2} F - - - - - (5)$$

를 계산하면 된다.

(c) 토막의 가속도는 두 경우에 모두 같다. 접촉력 $F_{12}=F_{21}=m_2a$ 과 $F_{21}{}'=F_{12}{}'=m_1a$ 사이의 차이는 질량의 크기가 결정한다.

[연습6-17]

[그림6-23]

[그림6-23]에서 경사면을 x-축으로 하고 경사면에 수직인 축을 y-축으로 하면 $\sum_y F_y = 0 \text{ Olluk } y-\text{ Ib},$ 하의 수직 항력은 $F_N = mg\cos\theta = (45\,\mathrm{N})\cos15\,^\circ = 43.5\,\mathrm{N}$ 가 된다. 주어진 문제에서 $\mu_s = 0.5$, $mg = 45\,\mathrm{N}$ 과 $\theta = 15\,^\circ$ 를 사용하여 최대 정지 마찰력

 $f_{s,\max} = \mu_s F_N = \mu_s mg \cos 15$ $^\circ = (0.5)(43.5\,\mathrm{N}) = 21.7\,\mathrm{N}$ 으로 주어진다.

(a) $P = (-5.0 \,\mathrm{N})$ î 일 떄

토막에 작용하는 힘을 x-방향에 따른 Newton의 제2법칙을 사용하면 $f-|\overrightarrow{P}|-mg\sin\theta=ma-----(1)$

으로 된다. $f=f_s$ 이면 (f_s :정지 마찰력) 가속도 a=0이므로 (1)식은 $f_s=|\overrightarrow{P}|+mg\sin\theta$ 를 계산하여 $f_s\leq f_{s,\max}$ 으면 단위 벡터 표시로 $\overrightarrow{f_s}=f_s(\mathbf{N})$ $\hat{\mathbf{i}}$ 으로 계산하면 된다.

- (b) \vec{P} = $(-8.0 \,\mathrm{N})\hat{i}$ 일 떄
- (a)와 같은 방법으로 계산하여 $f_s \leq f_{s,\max}$ 으면 단위 벡터 표시로 $\overrightarrow{f_s} = f_s({\bf N})$ î 으로 계산하면 된다.
- (c) $\overrightarrow{P} = (-15.0 \,\mathrm{N}) \hat{i}$ 일 때
 - (a)와 같은 방법으로 계산하면 $f_s \ge f_{s,\max}$ 으로 되므로 이 경우에는 정지 마찰력 대신 운동 마찰력을 사용해야 된다. 주어진 문제에서 $\mu_k=0.34$ 를 사용하여 $\overrightarrow{f_k}=\mu_kF_N\widehat{\mathbf{i}}=\mu_kmg\cos15\,\hat{\mathbf{i}}$ 를 계산하면 된다.

[연습6-21]

위의 그림과 같이 모래 상자(sand Box)에 수직으로 작용하는 힘은

$$mq - T = ma - - - - - - - - (1)$$
 과

수평으로 썰매(sled)에 작용하는 힘은

$$T - f_k = Ma - - - - - (2)$$

로 주어진다. 주어진 문제에서 썰매의 질량 $M\!=\!15\,\mathrm{kg}$ 과 모래 상자의 질량 $m\!=\!2.0\,\mathrm{kg}$, 썰매와 책상 바닥 상이의 운동 마찰계수 $\mu_k\!=\!0.040$ 으로 주어지므로

- (a) (1)식과 (2)식에서 썰매의 가속도 a 를 주어진 데이터를 사용하여 계산한다.
- (b) (1)식에서 가속도 a 를 대입하여 줄의 장력 T 를 계산한다.

[연습6-26] 주어진 문제에서 계의 전체 질량은

 $M = m_1 + m_2 + m_3 = (30.0 + 10.0 + 20.0) \text{kg} = 60.0 \text{kg}$ 으로 주어진다.

[그림6-32]

이 계에서수직 항력 : $F_N=Mg$, 운동 마찰력의 크기 : $f_k=\mu_kF_N=\mu_kMg$ 로 주어지므로 이 계에 작용하는 알짜 힘은

$$F - f_k = Ma \implies F - \mu_k Mg = Ma - - - - (1)$$

로 주어진다. (1)에 수평력 $F=425\,\mathrm{N}$ 과 $\mu_k=0.70$ 을 대입하여 가속도 a 를 계산한다.

- (a) 상자 m_2 가 m_3 에 작용하는 힘 $F_{32}-f_{k3}=m_3a------(2)$ 이므로 m_3 에 대한 마찰력 $f_{k3}=\mu_k m_3 g-----(3)$
 - (3)식을 (2)에 대입하여 F_{32} 를 계산한다.
- (b) F_{32} 는 상자 m_2 가 m_3 에 작용하는 상호 작용하는 힘이므로 마찰력의 운동마찰계수 와는 독립적임으로 (a)에서 구한 값과 비교해 보 \neg 면 알 수 있다.
- [연습7-5] 아버지의 몸무게를 m, 초기 속도를 v_i , 초기 운동에너지를 K_i , 아들의 운동에너지를 K_s 라면, 주아진 문제에서 $K_i=\frac{1}{2}mv_i^2=K_s$ -----(1)로 주어진다.
 - (a) 주어진 문제에서 아버지의 최종속도 $v_f=v_i+1.0 {
 m m/s}$ 와 아버지의 최종 운동에너지가 아들의 운동에너지와 같으므로 $K_f=K_s=rac{1}{2}K_i$ -----(2) 로 주어진다.

(2)식에서
$$K_i = \frac{1}{2} m v_i^2 = \frac{1}{2} \left\{ \frac{1}{2} m (v_i + 1.0)^2 \right\}$$
 -----(3)

에서 아버지의 초기속도 v_i 를 계산하면 된다.

- (b) 아들의 운동에너지 $K_s=\frac{1}{2}m_sv_s^2$ 라고 하면 주어진 문제에서 $m_s=\frac{1}{2}m$ 로 주어졌으므로 $K_i=\frac{1}{2}mv_i^2=\frac{1}{2}\Big\{\frac{1}{2}m_sv_s^2\Big\}=\frac{1}{2}\Big\{\frac{1}{2}\Big(\frac{m}{2}\Big)v_s^2\Big\}$ -----(4) 에서 아들의 초기속도 v_s 를 구하면 된다.
- [연습7-17] 군용 헬리콥터가 물에 빠진 생존자를 구하기 위하여 줄의 윗 방향으로 힘 \overrightarrow{F} 로 잡아 당기고 있고 생존자는 중력 mg로 아랫 방향으로 작용하고 있다. 헬리콥터의 줄이 윗 방향으로 가속도 $a=\frac{g}{10}$ 로 작용한다면

F-mg=ma------(1) 로 주어진다.

(1)식에서 $F = F = m(g+a) = \frac{11}{10}mg - ----(2)$

로 주어진다. 중력의 크기는 $F_g = mg$ 이고 방향은 변위에 반대 방향이다.

- (a) 줄에 작용하는 힘 \vec{F} 와 변위 \vec{d} 는 같은 방향이므로 줄의 힘 \vec{F} 가 한 일의 양은 줄이 물체에 한일 $W_F = \vec{F} \cdot \vec{d} = \frac{11 mgd}{10}$ 를 계산하면 된다.
- (b)중력이 한 일은 중력이 변위에 반대 방향이므로 $\overrightarrow{F_g} = \overrightarrow{mg}$ 이고 $W_q = \overrightarrow{F_g} \cdot \overrightarrow{d} = -mgd$ 를 계산하면 된다.
- (c)생존자에게 알짜힘이 작용하여 한 일은 $W_{net}=W_F+W_g$ 로 주어지고 처음에 정지상태에서 출발하였으므로 이 일이 운동에너지가 된다. $K=W_F+W_g$
- (d) 운동에너지 $K=rac{1}{2}mv^2$ 에서 속도 $v=\sqrt{rac{2K}{m}}$ 를 계산하면 된다.
- [연습7-25] (a)승강기의 질량: $M=900 \mathrm{kg}$, 치즈의 질량: $m=0.250 \mathrm{kg}$, 케이블이 당기는 힘:F 라면 승강기에 작용하는 알짜 힘은 $F+F_N-(m+M)g=(m+M)a-----(1)$ 로 주어진다. 치즈에만 작용하는 힘은 $F_N-mg=ma$ -----(2)에서 가속도 a 를 구하여 (1)식에서 케이블이 당기는 힘 F를 계산한다. 이 힘이 한 일은 W=F d_1 를 구하면 된다.
 - (b) W=92.61kJ이고 $d_2=10.5$ m 라면 수직 힘: F_N 은 $F_N=(m+M)g-\frac{W}{d_2}$ 에서 F_N 를 구한다.
- [연습7-33] 토막이 용수철 상수 $k=50\,\mathrm{N/m}$ 인 용수철에 연결되어 평형 위치에서 힘 $F=3.0\,\mathrm{N}$ 이 작용하여 x 만큼 늘어남으로
 - (a) $Fx = \frac{1}{2}kx^2$ 에서 늘어난 길이 x 를 구한다.
 - (b) 늘어난 길이 x를 대입하여 작용한 힘이 토막에 한 일 $W_a = Fx$ 를 계산한다.
 - (c) 용수철이 토막에 한 일은 식(7-28)을 사용하여 $W_s = W_a$ 를 계산한다.

(d) 운동에너지가 (7-27)식에서 $K = Fx - \frac{1}{2}kx^2 - \cdots - (1)$

로 주어지므로 운동에너지의 최대값은 K를 x에 대한 도함수로 계산해서 0으로 놓고 x를 구하면 된다. 즉

 $\frac{dK}{dx}$ $\!=\!0\,\mathrm{MM}$ 구한 $x=x_m$ 가 운동에너지가 최대가 되는 위치이다.

- (e) 최대 운동에너지는 $K_{\mathrm{max}}=rac{1}{2}kx_{m}^{2}$ 를 계산하면 된다.
- [연습8-3] (a) 공식(7-12)를 사용하여 $W_q = mgdcos\phi \ (\phi = 0^\circ)$ 를 계산한다.
 - (b) $\Delta U = mg(y_f y_i)$ (U = mgy)를 계산한다.(윗 방향은 +방향임)
 - (c) $U_i = mgy_i$ 를 계산한다.
 - (d) $U_f = mgy_f$ 를 계산한다.
 - (e) $W_g = U_i U_f$ 를 계산한다.
 - (f)공식(8-1)를 사용하여 $\Delta U = -W_a$ 를 계산한다.
 - (g) $U_i = mgy_i + U_0$ (U_0 는 y = 0인 곳의 위치에너지)를 구한다.
 - (h) $U_f = mgy_f + U_0$ 를 구한다.
- [연습8-7] (a) $W_g = mgL(1-\cos\theta)$ 에서 W_g 를 구한다.
 - (b) 공식(8-1)를 사용하여 $\Delta U = -W_a$ 를 계산한다.
 - (c) 공식(8-9)를 사용하여y = h인 곳의 위치에너지 U = mgh 를 계산한다.
 - (d) 각이 증가하므로 높이 h도 증가한다.
- [연습8-13] 질량 $m=5.0\,\mathrm{g}=5.0 imes10^{-3}\,\mathrm{kg}$ 의 구슬을 용수철 총으로 수직 방향으로 $h=20\,\mathrm{m}$ 높이의 표적물을 맞추려면 중력 위치에너지 $U_g=mgh$ 와 용수철의 압축 위치에너지 $U_s=\frac{1}{2}kx^2$ 를 사용하여야 한다.
 - (a) 주어진 문제에서 중력 위치에너지 변화는 $\Delta U_g = mgh$ 를 계산하면 된다. (처음 구슬의 위치를 기준점으로 선택한다)
 - (b) 처음 위치에서 운동에너지가 0 이므로 역학적 에너지 보존법칙을 사용하여 $\Delta U_a + \Delta U_s = 0$ 에서 $\Delta U_s = -\Delta U_a$ 를 계산하면 된다.
 - (c) 주어진 용수철 압축 길이 $x=8.0\,\mathrm{cm}=8.0\times10^{-2}\mathrm{m}$ 를 사용하여 용수철 상수는 $U_s=\frac{1}{2}kx^2$ 에서 k 를 계산하면 된다.
- [연습8-21] [그림8-23]과 같이 길이 $L=1.25\,\mathrm{m}$ 이고 줄이 수직 방향과 $\theta_0=40.0\,^\circ$ 를 이루는 진자가 있다. 높이 $h=L(1-\cos\theta)$ 와 중력 퍼텐셜에너지 U 가

[그림8-23]

- (a) $U=mgh=mgL(1-\cos\theta_0)$ 로 주어진다. 역학적 에너지 보존: $K_0+U_0=K_f+U_f$ 로 주어지므로 $\frac{1}{2}mv_0^2+mgL(1-\cos\theta_0)=\frac{1}{2}mv^2+0$ -----(1) 에서 초속도 $v_0=8.00\,\mathrm{m/s}$ 를 대입하여 속도 $v_0=7$
- (b) 수평 위치에서는 $v_h=0$ 이고 $\theta=90.0\,^\circ$ (또는 $\theta=-90.0\,^\circ$)에서 역학적 에너지가 보존디므로 $K_0+U_0=K_h+U_h$ 를 사용하여

$$\frac{1}{2} m v_0^2 + m g L (1 - \cos \theta_0) = 0 + m g L - - - - - (2) \ \, \textbf{에서} \label{eq:mass}$$

초속도 v_0 를 구한다.

(c) 줄이 팽팽한 상태에서는 구심력과 중력의 크기가 같으므로 r=L인 꼭대기(top)의 구심력= 중력 :

$$\frac{mv_t^2}{r} = mg \quad \text{oll} \quad mv_t^2 = mgL - - - - - (3)$$

으로 주어진다. 꼭대기($\theta_0=180\,^\circ$)에서도 역학적 에너지가 보존되므로 $K_0+U_0=K_t+U_t$ 가 성립한다. 그래서

$$\frac{1}{2}mv_0^2 + mgL(1-\cos\theta_0) = \frac{1}{2}mv_t^2 + mgL(1-\cos180^\circ) - -----(4)$$

로 계산된다. (3)식을 (4)에 대입하여 초속도 v_0 를 구한다

(d) 초기 각 θ_0 증가하면 높이 h가 증가하므로 초기 중력위치에너지가 증가한다. 역학적 에너지가 보존되어야 하므로 (b)와 (c)인 경우에 적용하여 생각하면 그때에 초기 속도 v_0 의 값의 변화를 쉬게 알 수 있다.