

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2018/2019

Beweistheorie: Motivierendes Beispiel

► Eine der Wurzeln der modernen Logik ist das Interesse an einer systematischen Analyse des menschlichen Denkens.

- ► Eine der Wurzeln der modernen Logik ist das Interesse an einer systematischen Analyse des menschlichen Denkens.
- ► Wir fokusieren in dieser Vorlesung auf den Teil des menschlichen Denkens, den man mit *logischem Schließen* enger eingrenzen kann.

- ► Eine der Wurzeln der modernen Logik ist das Interesse an einer systematischen Analyse des menschlichen Denkens.
- ► Wir fokusieren in dieser Vorlesung auf den Teil des menschlichen Denkens, den man mit *logischem Schließen* enger eingrenzen kann.
- Wir beginnen mit einem Beispiel aus der Alltagslogik.

Frage

Kann mein Bruder mein Schwager sein?

Frage

Kann mein Bruder mein Schwager sein?

Frage

Kann mein Bruder mein Schwager sein?

Frage

Kann mein Bruder mein Schwager sein?

Antwort

1. Nehmen wir mal an, mein Bruder wäre mein Schwager.

Frage

Kann mein Bruder mein Schwager sein?

- 1. Nehmen wir mal an, mein Bruder wäre mein Schwager.
- 2. Nach allgemeinem Sprachgebrauch ist ein Schwager der Bruder meiner Frau (die andere Schwager-Variante Mann der Schwester lassen wir außen vor).

Frage

Kann mein Bruder mein Schwager sein?

- 1. Nehmen wir mal an, mein Bruder wäre mein Schwager.
- 2. Nach allgemeinem Sprachgebrauch ist ein Schwager der Bruder meiner Frau (die andere Schwager-Variante Mann der Schwester lassen wir außen vor).
- 3. Wenn aber mein Bruder auch der Bruder meiner Frau ist, dann ist meine Frau meine Schwester.

Frage

Kann mein Bruder mein Schwager sein?

- 1. Nehmen wir mal an, mein Bruder wäre mein Schwager.
- 2. Nach allgemeinem Sprachgebrauch ist ein Schwager der Bruder meiner Frau (die andere Schwager-Variante Mann der Schwester lassen wir außen vor).
- 3. Wenn aber mein Bruder auch der Bruder meiner Frau ist, dann ist meine Frau meine Schwester.
- 4. Nach deutschem Eherecht darf niemand mit seiner Schwester verheiratet sein.

Frage

Kann mein Bruder mein Schwager sein?

- 1. Nehmen wir mal an, mein Bruder wäre mein Schwager.
- 2. Nach allgemeinem Sprachgebrauch ist ein Schwager der Bruder meiner Frau (die andere Schwager-Variante Mann der Schwester lassen wir außen vor).
- 3. Wenn aber mein Bruder auch der Bruder meiner Frau ist, dann ist meine Frau meine Schwester.
- 4. Nach deutschem Eherecht darf niemand mit seiner Schwester verheiratet sein.
- 5. Also kann mein Bruder nicht mein Schwager sein.

Konstanten: *Bruno* und *i* (ich)

1. Bruno ist mein Bruder.

bruder(Bruno, i)

Konstanten: *Bruno* und *i* (ich)

- 1. Bruno ist mein Bruder.
- 2. Bruno ist mein Schwager.

bruder(Bruno, i)

schwager(Bruno, i)

Konstanten: *Bruno* und *i* (ich)

- 1. Bruno ist mein Bruder. bruder(Bruno, i)
- 2. Bruno ist mein Schwager. schwager(Bruno, i)
- Wenn jemand mein Schwager ist, dann ist er ein Bruder meiner Frau.

```
\forall x (schwager(x, i) \rightarrow bruder(x, fr(i)))
```


Konstanten: *Bruno* und *i* (ich)

- 1. Bruno ist mein Bruder. bruder(Bruno, i)
- 2. Bruno ist mein Schwager. schwager(Bruno, i)
- Wenn jemand mein Schwager ist, dann ist er ein Bruder meiner Frau.

```
\forall x (schwager(x, i) \rightarrow bruder(x, fr(i)))
```

Nach deutschem Eherecht darf niemand mit seiner Schwester verheiratet sein.

```
\forall x (\neg schwester(fr(x), x))
```


Konstanten: *Bruno* und *i* (ich)

- 1. Bruno ist mein Bruder. bruder(Bruno, i)
- 2. Bruno ist mein Schwager. schwager(Bruno, i)
- Wenn jemand mein Schwager ist, dann ist er ein Bruder meiner Frau.
 - $\forall x(schwager(x,i) \rightarrow bruder(x,fr(i)))$
- Nach deutschem Eherecht darf niemand mit seiner Schwester verheiratet sein.
 - $\forall x(\neg schwester(fr(x), x))$
- 5. *Bruno* ist ein Bruder meiner Frau. *bruder*(*Bruno*, *fr*(*i*))

Konstanten: *Bruno* und *i* (ich)

- 1. Bruno ist mein Bruder. bruder(Bruno, i)
- 2. Bruno ist mein Schwager. schwager(Bruno, i)
- Wenn jemand mein Schwager ist, dann ist er ein Bruder meiner Frau.
 - $\forall x(schwager(x,i) \rightarrow bruder(x,fr(i)))$
- 4. Nach deutschem Eherecht darf niemand mit seiner Schwester verheiratet sein.
 - $\forall x(\neg schwester(fr(x), x))$
- 5. *Bruno* ist ein Bruder meiner Frau. *bruder*(*Bruno*, *fr*(*i*))
- Meine Frau ist meine Schwester schwester(fr(i), i)

Konstanten: *Bruno* und *i* (ich)

- 1. Bruno ist mein Bruder. bruder(Bruno, i)
- 2. Bruno ist mein Schwager. schwager(Bruno, i)
- Wenn jemand mein Schwager ist, dann ist er ein Bruder meiner Frau.

```
\forall x(schwager(x,i) \rightarrow bruder(x,fr(i)))
```

 Nach deutschem Eherecht darf niemand mit seiner Schwester verheiratet sein.

```
\forall x(\neg schwester(fr(x), x))
```

- 5. *Bruno* ist ein Bruder meiner Frau. *bruder*(*Bruno*, *fr*(*i*))
- Meine Frau ist meine Schwester schwester(fr(i), i)
- 7. Widerspruch

- bruder(Bruno, i)
- 2. schwager(Bruno, i)
- 3. $\forall x(schwager(x, i) \rightarrow bruder(x, fr(i)))$
- 4. $\forall x (\neg schwester(fr(x), x))$
- 5. bruder(Bruno, fr(i))
- 6. schwester(fr(i), i)
- 7. Widerspruch

- bruder(Bruno, i)
- 2. schwager(Bruno, i)
- 3. $\forall x(schwager(x, i) \rightarrow bruder(x, fr(i)))$
- 4. $\forall x (\neg schwester(fr(x), x))$
- 5. bruder(Bruno, fr(i))
- 6. schwester(fr(i), i)
- 7. Widerspruch

1. ist ein Faktum, das im vorliegenden Kontext gilt.

- bruder(Bruno, i)
- 2. schwager(Bruno, i)
- 3. $\forall x(schwager(x, i) \rightarrow bruder(x, fr(i)))$
- 4. $\forall x (\neg schwester(fr(x), x))$
- 5. bruder(Bruno, fr(i))
- 6. schwester(fr(i), i)
- 7. Widerspruch

2. ist eine Annahme für die augenblickliche Argumentation.

- bruder(Bruno, i)
- 2. schwager(Bruno, i)
- 3. $\forall x(schwager(x, i) \rightarrow bruder(x, fr(i)))$
- 4. $\forall x (\neg schwester(fr(x), x))$
- 5. bruder(Bruno, fr(i))
- 6. schwester(fr(i), i)
- 7. Widerspruch

3. und 4. sind Fakten, die auch außerhalb des vorliegenden Kontexts gelten.

- bruder(Bruno, i)
- 2. schwager(Bruno, i)
- 3. $\forall x(schwager(x, i) \rightarrow bruder(x, fr(i)))$
- 4. $\forall x (\neg schwester(fr(x), x))$
- 5. bruder(Bruno, fr(i))
- 6. schwester(fr(i), i)
- 7. Widerspruch

5. ist eine Folgerung aus 2 und 3. Genauer Analyse folgt gleich.

- bruder(Bruno, i)
- 2. schwager(Bruno, i)
- 3. $\forall x(schwager(x, i) \rightarrow bruder(x, fr(i)))$
- 4. $\forall x (\neg schwester(fr(x), x))$
- 5. bruder(Bruno, fr(i))
- 6. schwester(fr(i), i)
- 7. Widerspruch

6. ist wieder eine Folgerung aus den vorangegangenen Aussagen.

Das schauen wir uns danach genauer an.

- bruder(Bruno, i)
- 2. schwager(Bruno, i)
- 3. $\forall x(schwager(x, i) \rightarrow bruder(x, fr(i)))$
- 4. $\forall x (\neg schwester(fr(x), x))$
- 5. bruder(Bruno, fr(i))
- 6. schwester(fr(i), i)
- 7. Widerspruch

Zu 7. Aus 4. können wir schließen auf 4a. $\neg schwester(fr(i), i)$. Das ist ein Schluß vom Allgmeinen auf das Besondere. 4a. und 6. bilden jetzt einen elementaren Widerspruch.

- 2. schwager(Bruno, i)
- 3. $\forall x(schwager(x, i) \rightarrow bruder(x, fr(i)))$
- 5. bruder(Bruno, fr(i))

- 2. schwager(Bruno, i)
- 3. $\forall x(schwager(x, i) \rightarrow bruder(x, fr(i)))$
- 5. bruder(Bruno, fr(i))

vom Allgemeinen zum Besonderen	Modus Ponens

- 2. schwager(Bruno, i)
- 3. $\forall x(schwager(x, i) \rightarrow bruder(x, fr(i)))$
- 5. bruder(Bruno, fr(i))

vom Allgemeinen zum Besonderen	Modus Ponens
$\frac{\forall x (schw(x,i) \rightarrow br(x,fr(i)))}{schw(Bruno,i) \rightarrow br(Bruno,fr(i))}$	

- 2. schwager(Bruno, i)
- 3. $\forall x(schwager(x, i) \rightarrow bruder(x, fr(i)))$
- 5. bruder(Bruno, fr(i))

vom Allgemeinen zum Besonderen	Modus Ponens
$\frac{\forall x (schw(x, i) \rightarrow br(x, fr(i)))}{schw(Bruno, i) \rightarrow br(Bruno, fr(i))}$	
$\frac{\forall x(\phi(x))}{\phi(t)}$ für beliebigen Term t .	

- 2. schwager(Bruno, i)
- 3. $\forall x(schwager(x, i) \rightarrow bruder(x, fr(i)))$
- 5. bruder(Bruno, fr(i))

vom Allgemeinen zum Besonderen	Modus Ponens
$\frac{\forall x (schw(x, i) \rightarrow br(x, fr(i)))}{schw(Bruno, i) \rightarrow br(Bruno, fr(i))}$	$schw(Bruno, i) \rightarrow br(Bruno, fr(i))$ $schw(Bruno, i)$ $br(Bruno, fr(i))$
$\frac{\forall x(\phi(x))}{\phi(t)}$ für beliebigen Term t .	

- 2. schwager(Bruno, i)
- 3. $\forall x(schwager(x, i) \rightarrow bruder(x, fr(i)))$
- 5. bruder(Bruno, fr(i))

vom Allgemeinen zum Besonderen	Modus Ponens
$\frac{\forall x (schw(x, i) \rightarrow br(x, fr(i)))}{schw(Bruno, i) \rightarrow br(Bruno, fr(i))}$	$schw(Bruno, i) \rightarrow br(Bruno, fr(i))$ $schw(Bruno, i)$ $br(Bruno, fr(i))$
$\frac{-rac{orall x(\phi(x))}{\phi(t)}}{\phi(t)}$ für beliebigen Term t .	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Wie kann man 6 aus 1 und 5 herleiten?

- 1. bruder(Bruno, i)
- 5. bruder(Bruno, fr(i))
- 6. schwester(fr(i), i)

Wie kann man 6 aus 1 und 5 herleiten?

- bruder(Bruno, i)
- 5. bruder(Bruno, fr(i))
- 6. schwester(fr(i), i)

Wir haben, offensichtlich, vergessen, ein Faktum in die Formalisierung mit aufzunehmen:

Wie kann man 6 aus 1 und 5 herleiten?

- 1. bruder(Bruno, i)
- 5. bruder(Bruno, fr(i))
- 6. schwester(fr(i), i)

Wir haben, offensichtlich, vergessen, ein Faktum in die Formalisierung mit aufzunehmen:

 Wenn jemand gleichzeitig mein Bruder und der Bruder einer Frau ist, dann ist diese Frau meine Schwester ∀x∀y∀z(bruder(x, y) ∧ bruder(x, z) ∧ w(z) → schwester(z, y))

Dabei ist w() ein einstellige Prädikat für weiblich.

Wie kann man 6 aus 1 und 5 herleiten?

- 1. bruder(Bruno, i)
- 5. bruder(Bruno, fr(i))
- 6. schwester(fr(i), i)

Wir haben, offensichtlich, vergessen, ein Faktum in die Formalisierung mit aufzunehmen:

 Wenn jemand gleichzeitig mein Bruder und der Bruder einer Frau ist, dann ist diese Frau meine Schwester
 ∀x∀y∀z(bruder(x,y) ∧ bruder(x,z) ∧ w(z) → schwester(z,y))

Dabei ist w() ein einstellige Prädikat für weiblich.

Außerdem:

8.
$$\forall x(w(fr(x)))$$

Wie kann man 6. aus 1., 5. und 7. herleiten?

- bruder(Bruno, i)
- 5. bruder(Bruno, fr(i))
- 7. $\forall x \forall y \forall z (bruder(x, y) \land bruder(x, z) \land w(z) \rightarrow schwester(z, y))$
- 8. $\forall x(w(fr(x)))$
- 6. schwester(fr(i), i)

Wie kann man 6. aus 1., 5. und 7. herleiten?

- bruder(Bruno, i)
- 5. bruder(Bruno, fr(i))
- 7. $\forall x \forall y \forall z (bruder(x, y) \land bruder(x, z) \land w(z) \rightarrow schwester(z, y))$
- 8. $\forall x(w(fr(x)))$
- 6. schwester(fr(i), i)

Schluß vom Allgemeinen zum Besonderen:

- 7a. $bruder(Bruno, i) \land bruder(Bruno, fr(i)) \land w(fr(i))$ $\rightarrow schwester(fr(i), i)$
- 8a. w(fr(i))

Wie kann man 6. aus 1., 5. und 7. herleiten?

- bruder(Bruno, i)
- 5. bruder(Bruno, fr(i))
- 7. $\forall x \forall y \forall z (bruder(x, y) \land bruder(x, z) \land w(z) \rightarrow schwester(z, y))$
- 8. $\forall x(w(fr(x)))$
- 6. schwester(fr(i), i)

Schluß vom Allgemeinen zum Besonderen:

```
7a. bruder(Bruno, i) \land bruder(Bruno, fr(i)) \land w(fr(i))
\rightarrow schwester(fr(i), i)
8a. w(fr(i))
```

Daraus folgt 6. mit modus ponens.

Genau genommen zuerst Zwischenschritt: Aus Einzelformeln 1, 5, 8a auf Formel $1 \land 5 \land 8a$ schließen