Final exam M01 - Linear algebra and probability Master AI - Idiap and Unidistance

Instructors: Dr. Theophile Gentilhomme - Dr. Ina Kodrasi

Read all instructions and WAIT for the signal before starting the exam.

For ALL the questions, choose ALL the correct statements. Indicate your answer by shading the appropriate box with your pencil.

Selecting a correct statement gives you points proportionally to the number of correct statements.

Selecting an incorrect statement cancels all the points for the question. Select your answers carefully! However, the minimum number of points you can get for a question is 0.

Do not stay to long on one question. Move to the next and try it later!

There is a total of 200 points: 125 for Linear Algebra and 75 for Probability

You can report (on the sheets) a LA/Proba related error if you think you saw one.

You have 2 hours to complete the test.

Do not forget to write your full name below! Good luck!

Your full name:		

Linear Algebra (25 questions - 125 pts out of 200)

1. (5 points) Let $u = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $v = \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$, and $w = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$. Which of the following statements are TRUE? We

consider here the geometrical description of all the linear combinations of u, v, w.

- \bigcirc Their linear combinations fill a line in \mathbb{R}^3
- \bigcirc Their linear combinations fill a plane in \mathbb{R}^3
- \bigcirc Their linear combinations fill all \mathbb{R}^3
- \bigcirc Their linear combinations fill all \mathbb{R}^2
- \bigcirc Their linear combinations fill a plane in \mathbb{R}^2
- 2. (5 points) Let $A = \begin{bmatrix} 5 & 0 & 5 \\ 0 & 5 & 0 \\ -5 & 0 & -5 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$ Which of the following statements are

CORRECT?
$$\bigcirc ABC = \begin{bmatrix} 10 & 0 \\ 0 & 5 \\ -10 & 0 \end{bmatrix}$$

$$\bigcirc \ (BC)^{-1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\bigcirc A^{-1} = \frac{1}{100} \begin{bmatrix} 5 & 0 & 5 \\ 0 & 20 & 0 \\ -5 & 0 & -5 \end{bmatrix}$$

$$\bigcirc BCA^T = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

- All the above statements are incorrect
- 3. (5 points) Let A, B, C be square matrices. If AB = CA and $det(A) \neq 0$, does this ALWAYS imply that $\bigcirc B = C$

$$\bigcirc BA^{-1} = A^{-1}C$$

$$\bigcirc ABA^{-1}$$
 is non-singular

$$\bigcirc A = C^{-1}AB$$

- 4. (5 points) If u is perpendicular (orthogonal) to v and w, which of the following statements are TRUE knowing that u, v, and w are unit vectors?
 - \bigcirc **v** is parallel to **w**
 - \bigcirc **u** is always perpendicular to any linear combination of **v** and **w**
 - \bigcirc u is perpendicular to any linear combination of v and w only if v and w are independent.
 - \bigcirc The length of $\boldsymbol{u}-\boldsymbol{v}$ is $\sqrt{2}$
 - \bigcirc The length of $\boldsymbol{w}-\boldsymbol{v}$ is $\sqrt{2}$
 - \bigcirc The length of $\boldsymbol{w} \boldsymbol{u}$ is $\sqrt{2}$

5. (5 points) For which of the following values of α , the elimination will fail to produce three pivots for the

$$\text{matrix } A = \begin{bmatrix} \alpha & 2 & 3 \\ \alpha & \alpha & 4 \\ \alpha & \alpha & \alpha \end{bmatrix}$$
$$\bigcirc \alpha = -1$$

- $\alpha = 0$
- $\alpha = 1$
- $\alpha = 2$
- $\alpha = 3$
- $\alpha = 4$
- 6. (5 points) Suppose A is a 3×3 matrix such that $A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Which of the following statements are TRUE?
 - \subseteq ?

 At least one column of A is $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ but we do not know which one
 - \bigcirc The first column of A is $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
 - \bigcirc The first row of A is $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$
- 7. (5 points) Which of the following statements are TRUE?
 - $\bigcirc \text{ The set of all vectors } \begin{bmatrix} a \\ 0 \\ a \\ a+1 \end{bmatrix} \text{ is a subspace of } \mathbb{R}^4$
 - \bigcirc The set of all vectors $\begin{bmatrix} a \\ 1 \end{bmatrix}$ is a subspace of \mathbb{R}^2
 - \bigcirc Any set of k column vectors of the inverse of the $(n \times n)$ identity matrix is a subspace of \mathbb{R}^n $(k \le n)$
 - \bigcirc The set of all vectors $\begin{bmatrix} a \\ 0 \\ b \end{bmatrix}$ is a subspace of \mathbb{R}^4
- 8. (5 points) Let A be an $M \times N$ -dimensional matrix with M < N. Consider the system of equations Ax = b, with **b** being an $M \times 1$ -dimensional non-zero vector. Which of the following statements are always TRUE?
 - The system of equations has no solution
 - The system of equations has a unique solution
 - The system of equations has at least one solution
 - The system of equations has a solution if and only if it has infinitely many solutions

9.	(5 points) Consider the equation $Ax = b$, with A a $(M \times N)$ -dimensional matrix. When does this equation always have a unique exact solution? One The dimension of the nullspace of A is 0 and $M = N$				
	\bigcirc The rank of A is zero				
	\bigcirc b is in the row space of A				
	\bigcirc The dimension of the left-null space of A is 0				
	\bigcirc The rank of A is N				
10.	5 points) Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be linearly independent vectors. Which of the following statements are alway FRUE?				
	$\bigcap \alpha_1 \mathbf{u} + \alpha_2 \mathbf{v} + \alpha_3 \mathbf{w} = 0$ for some non-zero scalars α_1 , α_2 , and α_3				
	\bigcirc The rank of the matrix created by stacking $\mathbf{u}, \mathbf{v},$ and \mathbf{w} as its rows is exactly 3				
	\bigcirc The vectors \mathbf{u} , \mathbf{v} , and $\mathbf{u} + \mathbf{v}$ are also linearly independent				
	\bigcirc The rank of the matrix created by stacking ${f u},{f v},$ and ${f w}$ as its columns is at most 3				
	\bigcirc $oldsymbol{u}, oldsymbol{v}, oldsymbol{w}$ are in the same hyperplane				
	\bigcirc The determinant of the matrix created by stacking ${f u},{f v},$ and ${f w}$ as its columns is exactly 3				
	\bigcirc The determinant of the matrix created by stacking ${f u},{f v},$ and ${f w}$ as its columns is at most 3				
11.	5 points) Which of the following statements are TRUE regarding the equation $Ax = b$? Any vector in the nullspace of A is orthogonal to the columns of A				
	\bigcirc Any vector in the nullspace of A is orthogonal to the rows of A				
	\bigcirc Any vector in the left null space of A is orthogonal to the columns of A				
	○ Any vector in the left nullspace of A is orthogonal to the rows of A.				
	\bigcirc If the solution x_s of the equation has a null space component, this solution is unique				
	\bigcirc You can always find the exact solution $\boldsymbol{x} = A^{-1}\boldsymbol{b}$ using the least squares method.				
12.	5 points) Consider the following two statements: S_1) If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ are orthonormal vectors, then the projection of \mathbf{v}_3 onto the span of \mathbf{v}_1 and \mathbf{v}_2 is the zeroector.				
	(S_2) The Gram-Schmidt process applied to the orthonormal vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ produces a different set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$. Which of the following statements are TRUE? Observed Both statements (S_1) and (S_2) are correct				
	\bigcirc Neither statement (S_1) nor statement (S_2) is correct				
	\bigcirc Only statement (S_1) is correct				
	\bigcirc Only statement (S_2) is correct				

13.	(5 points) Consider the $(M \times N)$ -dimensional matrix A with $M > N$ and $\operatorname{rank}(A) = N$. Which of the following statements are TRUE? \bigcirc The matrix AA^T is singular				
	\bigcirc The matrix AA^T is non-singular				
	\bigcirc The matrix A^TA is singular				
	\bigcirc The matrix AA^T cannot be defined because the dimensions do not fit for the matrix multiplication				
	\bigcirc The matrix A^TA is non-singular				
14.	(5 points) Complete the following sentence by using one or several of the answers below. Note that we are not considering the generalized least squares method here. "If $Ax = b$ has no solution, then the least squares method gives an approximation of x by solving $Ax = p$ where p is"				
	\bigcirc the projection of b on $C(A)$				
	\bigcirc the projection of b on $C(A^T)$				
	\bigcirc the projection of b on $N(A^T)$				
	\bigcirc the projection of b on $N(A)$				
	\bigcirc the pseudo-inverse of A				
15.	(5 points) Suppose the equation $Ax = b$ has no solution. The standard (not generalized) least squares method associated to the projection matrix $A(A^TA)^{-1}A^T$ can be used to find an approximate solution is and only if: $\bigcirc b$ has a component in the left-nullspace of A				
	$\bigcirc A^T A$ is invertible				
	○ The left-nullspace of A contains only the zero vector				
	○ The nullspace of A contains only the zero vector				
16.	(5 points) Which of the following statements are TRUE about the determinant of the square matrix A ? $\bigcirc det(A) = \text{sum of the eigenvalues of } A$				
	$\bigcirc det(A) = $ product of the eigenvalues of A				
	$\bigcirc det(A) = \text{sum of the pivots of } A$				
	$\bigcirc det(A) = product of the pivots of A$				
	\bigcirc A is invertible if and only if $det(A) > 0$				

17.	(5 points)	Which	of the	following	statements	are	TRUE?
-----	------------	-------	--------	-----------	------------	-----	-------

$$\bigcirc$$
 If A is a (3×3) matrix and $\det(A) = 3$, A is diagonalizable using the eigendecomposition

18. (5 points) Consider the 3×3 -dimensional matrix A with $|A - \lambda I| = \lambda(1 - \lambda)(\lambda - 1)$. Which of the following statements are TRUE?

$$\bigcap \operatorname{Tr}(A) = 0$$

$$\bigcirc$$
 One cannot compute the eigenvalues of A using only the provided information

$$\bigcirc$$
 The eigenvalues of A are 0, 1, and 0

$$\bigcap |A| = 0$$

19. (5 points) Let
$$A = X\Lambda X^{-1}$$
 be the eigendecomposition of A with Λ the diagonal matrix containing the positive eigenvalues with no repetition and X the corresponding invertible matrix containing the eigenvectors of A as its columns. Which of the following statements are TRUE?

$$\bigcirc$$
 The matrix of eigenvectors of A^k is X^k

$$\bigcirc$$
 The matrix of eigenvalues of A^k is Λ^k

$$\bigcirc$$
 The matrix of eigenvalues of A^{-1} is Λ^{-1}

$$\bigcirc$$
 We cannot say what the matrix of eigenvalues of A^{-1} is

$$\bigcirc$$
 We cannot say what the matrix of eigenvectors of A^k is

$$\bigcirc$$
 We cannot say what the matrix of eigenvalues of A^k is

20. (5 points) Let
$$A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} = X\Lambda X^{-1}$$
. Which of the following statements are TRUE?

$$\bigcirc$$
 The eigenvalues of \vec{A} are 5, 2, and 3

$$\bigcirc$$
 The eigenvectors of A are the columns of the identity matrix

$$\bigcirc X$$
 is invertible

$$\bigcirc XX^T = I$$
, where I is the identity matrix

$$\bigcirc$$
 We cannot say if A is diagonalizable, but we can say that it is invertible

- 21. (5 points) You do not know the (3×3) -dimensional symmetric matrix A but you know that its eigenvalues are $\lambda_1 = 2$, $\lambda_2 = 2$, and $\lambda_3 = 0$. Furthermore, you know the eigenvectors corresponding to λ_1 and λ_2 , but you do not know the eigenvector corresponding to λ_3 . Which of the following statements are TRUE?

 O The singular vectors of the SVD of A are the same as the eigenvectors of A
 - \bigcirc Using the known eigenvalues and eigenvectors, one can perfectly reconstruct the matrix A
 - \bigcirc The matrix A cannot be perfectly reconstructed unless one knows also the third eigenvector cor-
 - \bigcirc The singular values of A^TA are given by $\sigma_1 = \sqrt{\lambda_1}$, $\sigma_2 = \sqrt{\lambda_2}$, and $\sigma_3 = \sqrt{\lambda_3}$
 - \bigcirc The singular values of A^TA are given by $\sigma_1 = \lambda_1^2$, $\sigma_2 = \lambda_2^2$, and $\sigma_3 = \lambda_3^2$
- 22. (5 points) The eigenvalues of the (4×4) -dimensional matrix A^TA are $\lambda_1 = 4$, $\lambda_2 = 2$, $\lambda_3 = 9$, $\lambda_4 = 0$. Which of the following statements are TRUE?
 - \bigcirc The rank of the matrix A^TA is 3 whereas the rank of the matrix A is 4
 - \bigcirc The singular values of A cannot be computed without knowing the matrix A
 - \bigcirc The singular values of A are $\sigma_1 = 4^2$, $\sigma_2 = 2^2$, $\sigma_3 = 9^2$, and $\sigma_4 = 0^2$
 - \bigcirc The singular values of A are $\sigma_1 = -\sqrt{4}$, $\sigma_2 = -\sqrt{2}$, $\sigma_3 = -\sqrt{9}$, and $\sigma_4 = 0$
 - \bigcirc The rank of the matrix A^TA is 3 and the rank of the matrix AA^T is 3
- 23. (5 points) Which of the following statements are always TRUE about the equation Ax = b?
 - \bigcirc If **b** is not in the column space of A, then A^+b gives an exact solution of the equation
 - \bigcirc A^+b is the unique solution to the equation
 - $\bigcirc\ A^+ \pmb{b}$ is always in the row space of A
 - $\bigcirc\ AA^+\pmb{b}$ is always in the column space of A
 - $\bigcirc \ AA^+ \pmb{b}$ is always equal to \pmb{b}

responding to $\lambda_3 = 0$

24. (5 points) Let $[\mathbf{u}]_E = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ be the coordinates of \mathbf{u} in the standard basis (i.e. basis vectors = columns of the identity matrix). Let B be a basis defined by the set of vectors $B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\}$. What are the coordinates

of $[\mathbf{u}]_B$?

- $\bigcirc \ [\mathbf{u}]_B = \begin{bmatrix} 2\\3 \end{bmatrix}$
- $\bigcirc \ [\mathbf{u}]_B = \begin{bmatrix} 2\\-1 \end{bmatrix}$
- $\bigcirc \ [\mathbf{u}]_B = \begin{bmatrix} 2\\1 \end{bmatrix}$
- \bigcirc There is an infinite number of possible coordinates in the B basis
- $\bigcirc \ [\mathbf{u}]_B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

- 25. (5 points) Consider the (100×30) -dimensional matrix A and the 100-dimensional vector \mathbf{b} . We are interested in finding a solution to $A\mathbf{x} = \mathbf{b}$. However, we are told that the data in the last 20 rows of A is unreliable. Which of the following statements are TRUE?
 - O Both weighted least squares and regularized least squares can help in such scenarios
 - \bigcirc To put less weight on the least reliable data, we could use weighted least squares with $\mathbf{W} = \operatorname{diag}\{\mathbf{w}\}$ and \mathbf{w} being a 100-dimensional vector where the first 20 entries are $\frac{1}{2}$ and the remaining entries are 1, i.e.,

$$\mathbf{w} = \left[\underbrace{\frac{1}{2} \, \frac{1}{2} \, \dots \, \frac{1}{2}}_{\text{20 elements}} \, 1 \, 1 \, \dots \, 1\right]^T$$

- \bigcirc To put less weight on the least reliable data, we could use weighted least squares with $W = \text{diag}\{\mathbf{w}\}$ and \mathbf{w} being a 20-dimensional vector
- O To put less weight on the least reliable data, we could use weighted least squares with $\mathbf{W} = \text{diag}\{\mathbf{w}\}$ and \mathbf{w} being a 100-dimensional vector where the first 80 entries are 1 and the remaining entries are $\frac{1}{2}$, i.e.,

$$\mathbf{w} = \begin{bmatrix} \underbrace{1 \ 1 \ \dots \ 1}_{80 \ \text{elements}} \ \frac{1}{2} \ \frac{1}{2} \ \dots \ \frac{1}{2} \end{bmatrix}^T$$