Let $0 < a_1 < b_1$ and define $a_{n+1} = \sqrt{a_n b_n}$, $b_{n+1} = \frac{a_n + b_n}{2}$, $n \in \mathbb{N}$.

- (a). Prove that the sequences (a_n) and (b_n) both converge. (Suggestion: Use induction to prove $0 < a_n < a_{n+1} < b_{n+1} < b_n$.)
- (b). Prove that the sequences (a_n) and (b_n) have the same limit.
- (a). Solution. First, we use induction to prove $0 < a_n < a_{n+1} < b_{n+1} < b_n$. We do this in steps: first we prove that $0 < a_n$ and $0 < b_n$ for all $n \in \mathbb{N}$. When n = 1, by assumption, $0 < a_1$ and $0 < b_1$. Now let n = j, and $0 < a_j, b_j$. Then $0 < \sqrt{a_j b_j} = a_{j+1}$ and $0 < \frac{a_j + b_j}{2} = b_{j+1}$ as desired. Thus $0 < a_n, b_n, \forall n \in \mathbb{N}$.

Now we prove that $a_n < b_n$ for all $n \in \mathbb{N}$. When n = 1, by assumption, $a_1 < b_1$. Now let n = j, and $a_j < b_j$. Then $a_{j+1} = \sqrt{a_j b_j}$ and $b_{j+1} = \frac{a_j + b_j}{2}$. We have

$$b_{j+1}^2 = (a_j^2 + 2a_jb_j + b_j^2)/4$$
$$> (2a_jb_j + 2a_jb_j)/4$$
$$= a_jb_j = a_{j+1}^2$$

where the second line is because $a_j - b_j > 0 \implies (a_j - b_j)^2 > 0$ so $a_j^2 - 2a_jb_j + b_j^2 > 0 \implies a_j^2 + b_j^2 > 2a_jb_j$. But since we know that both $a_{j+1}, b_{j+1} > 0$, then $b_{j+1}^2 > a_{j+1}^2 \implies |b_{j+1}| > |a_{j+1}| \implies b_{j+1} > a_{j+1}$, which closes the induction.

Now we prove that $a_n < a_{n+1}$ and $b_n > \frac{a_n + b_n}{2}$. We have $a_{n+1} = \sqrt{a_n b_n} > \sqrt{a_n^2} = a_n$ (since $x^2 > y^2 \implies x > y$ when x, y > 0). Furthermore, $b_{n+1} = \frac{a_n + b_n}{2} > \frac{2b_n}{2} = b_n$. Both of these are true for all $n \in \mathbb{N}$, so we have fully shown

$$0 < a_n < a_{n+1} < b_{n+1} < b_n$$

Note then that (a_n) is monotonically increasing, and bounded by a_1 and b_1 , and (b_n) is monotonically decreasing, and bounded by a_1 and b_1 as well. Thus by the Monotone Convergence Theorem, and the fact \mathbb{R} is complete, we have that (a_n) and (b_n) both converge.

(b). Solution. We claim that $b_n - a_n < (b_1 - a_1)/2^{n-1}$ for all $n \ge 2$. This is true in the base case (n = 2): $b_2 - a_2 = (b_1 + a_1)/2 - \sqrt{a_1b_1} < (2b_1)/2 + (a_1 - b_1)/2 + \sqrt{a_1^2} = b_1 - a_1 - (b_1 - a_1)/2 = (b_1 - a_1)/2$. Now assume that $b_n - a_n < (b_1 - a_1)/2^{n-1}$. Then

$$b_{n+1} - a_{n+1} = \frac{b_n + a_n}{2} - \sqrt{a_n b_n}$$

$$< \frac{2b_n}{2} + \frac{a_n - b_n}{2} - \sqrt{a_n^2}$$

$$= b_n - a_n - \frac{b_n - a_n}{2}$$

$$= \frac{b_n - a_n}{2}$$

$$< \frac{b_1 - a_1}{2^n}$$

Thus we have closed the induction.

Now let $\alpha \in \mathbb{R}$ be the value that (a_n) converges to (as proven will exist with part (a)). Let $\varepsilon > 0$. Let $\varepsilon' = \varepsilon/2$. We know when there exists some $N_1 \in \mathbb{N}$ such that for all $n \geq N$, we have $|\alpha - a_n| < \varepsilon'$. Additionally, by Archimedes, there exists some $N_2 \in \mathbb{N}$ such that $0 < \frac{b_1 - a_1}{\varepsilon'} < N_2$, and $N_2 \leq 2^{N_2}$, thus $\varepsilon' > (b_1 - a_1)/2^{N_2 - 1}$. Since $(b_1 - a_1)/2^{n-1}$ is a monotonically decreasing function, this $\varepsilon' > (b_1 - a_1)/2^{n-1}$ for all $n \geq N_2$. So $0 < b_n - a_n < \varepsilon'$ for all $n \geq N_2$. Thus $|b_n - \alpha| < |\varepsilon' + a_n - \alpha| \leq |\varepsilon'| + |a_n - \alpha| < \varepsilon' + \varepsilon' = \varepsilon$, thus $b_n \to \alpha$ as well (where the first substitution is valid, since $b_n, a_n, \varepsilon' > 0$).

- (a). Suppose $(z_n)_{n\in\mathbb{N}}$ is a bounded sequence with integer values.
 - (a) Prove that both numbers below are integers:

$$\lambda = \liminf_{n \to \infty} z_n \qquad \mu = \limsup_{n \to \infty} z_n$$

- (b) Prove that there are infinitely many integers n for which $z_n = \lambda$.
- (b). Let $d_n = p_{n+1} p_n$ ($n \in \mathbb{N}$) denote the sequence of prime differences, built from the sequence of primes

$$p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7, \dots$$

(a) Prove that $\limsup_{d\to\infty} = +\infty$.

integer, thus $\lambda, \mu \in \mathbb{Z}$.

(b) Some mathematicians believe that

$$\delta := \liminf_{n \to \infty} d_n = 2 \tag{1}$$

However, the best estimate of δ known to date is $2 \leq \delta \leq 246$. Identify by name a famous unsolved problem in mathematics that is equivalent to proving or disproving line (1). (After giving the name, clearly explain the required relationship.)

- (a) Solution. Let E be the set of number x such that there exists a convergent subsequence $\{n_k\}$ where z_{n_k} converges to x (which we know is nonempty by Bolzano-Weierstrass, because (z_n) is bounded). We claim that each $x \in E$ is an integer. Since every convergent sequence is Cauchy, there must exist some N where for all $k, k' \geq N$, $|z_{n_k} z_{n'_k}| < \frac{1}{2}$, but since $z_{n_k}, z_{n'_k}$ are integers, this is only true when $z_{n_k} = z_{n'_k}$. Thus, for all $k \geq N$ z_{n_k} is the same integer, call it j. x must equal j; otherwise say $x = j + \delta$ for some fixed $\delta \in \mathbb{R}$, then if $\varepsilon = \delta$, for all $k \geq N$, $|z_{n_k} x| = |j j \pm \delta| = |\delta| \not< \varepsilon$, which contradicts that s_{n_k} converges to x. Thus x = j, which is an integer. Therefore, every element in E is an integer. Now, recall definition 3.16 in Rudin: $\lambda = \liminf_{n \to \infty} z_n = \inf E$ and $\mu = \limsup_{n \to \infty} z_n = \sup E$. Furthermore, theorem 3.17 in Rudin tells us that $\lambda \in E$ and $\mu \in E$. But every element in E is an
 - (b) Solution. Recall that from the previous part of the question that $\lambda \in E$ where E are all such x where there is a subsequence z_{n_l} that converges to x. So there is a subsequence z_{n_l} that converges to λ . In order for $z_{n_l} \to \lambda$, we must have that for all ε , there is some $N \in \mathbb{N}$ such that for all $l \geq N$, we have $|z_{n_l} \lambda| < \varepsilon$. If $\varepsilon = \frac{1}{2}$, since z_{n_l} , λ are integers, we must have that $z_{n_l} = \lambda$. This is true for all $l \geq N$, which there are infinitely many of in, so there are infinitely many $z_{n_l} = \lambda$, thus there are infitly many n where $z_{n_l} = \lambda$ ($n = n_l$ when $l \geq N$).
- (b). (a) Solution. Let k be given. We want to show that
 - (b) Solution. ff

(a). Prove: For any sequences (a_n) and (b_n) of nonnegative real numbers,

$$\limsup_{n \to \infty} (a_n b_n) \le \left(\limsup_{n \to \infty} a_n\right) \left(\limsup_{n \to \infty} b_n\right),\,$$

provided the right side does not involve the product of 0 and ∞ .

- (b). Give an example in which the result of part (a) holds with a strict inequality.
- (a). Solution. Let $\alpha = \limsup_{n \to \infty} a_n$ and $\beta = \limsup_{n \to \infty} b_n$.

First let us consider when $\alpha = +\infty$. Regardless of β (since we are assuming $\beta > 0$), our right hand side becomes $+\infty$, and regardless of the left-hand side, in the extended reals, our inequality holds. WLOG, this is also true when $\beta = +\infty$.

Now we can assume $\alpha > 0$, $\beta > 0$. Let $A > \alpha$. Then by definition, $A > \inf_{n \in \mathbb{N}} \left(\sup_{k \ge n} a_k \right)$, thus there exists some $N_1 \in \mathbb{N}$ such that $A > \sup_{k \ge N_1} a_k$, so $A > a_k$ when $k \ge N_1$. Similarly, if $B > \beta$, there exists some $N_2 \in \mathbb{N}$ such that $B > b_k$ when $k \ge N_2$. Let $N = \max\{N_1, N_2\}$. Then for all $k \ge N$, $a_k < A$ and $b_k < B$, thus $a_k b_k < AB$ since both sides are nonnegative, and $A > \alpha \ge 0$ and $B > \beta \ge 0$. Thus $\sup_{k \ge N} (a_k b_k) \le AB$. Any lower bound for a set of values indexed by n must be less than or equal to each of them (e.g. one where n = N). Thus the previous inequality implies

$$\limsup_{n\to\infty}(a_nb_n)=\inf_{n\in\mathbb{N}}\sup_{k\geq n}(a_nb_n)\leq AB$$

Since this holds for arbitrary $A > \alpha$ and $B > \beta$, the real number on the left cannot exceed $\alpha\beta$. Thus, we must have

$$\limsup_{n \to \infty} (a_n b_n) \le \alpha \beta = \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

(b). Solution. We give the sequences $a_n = (-1)^n$ and $b_n = (-1)^{n+1}$. Then $a_n b_n = -1$, so $\limsup_{n \to \infty} (a_n b_n) = -1$. Additionally, $\limsup_{n \to \infty} a_n = 1$, since for any $n \in \mathbb{N}$, there always exists some $a_k = 1$ where $k \ge n$, and so $\limsup_{n \to \infty} = \inf_{n \in \mathbb{N}} \sup_{k \ge n} a_n = \inf_{n \in \mathbb{N}} 1 = 1$; and for the same reason, $\limsup_{n \to \infty} b_n = 1$. Thus

$$\limsup_{n \to \infty} (a_n b_n) = -1 < 1 = \left(\limsup_{n \to \infty} a_n\right) \left(\limsup_{n \to \infty} b_n\right)$$

(a). Show that for any $r \geq 1$, one has

$$n(r-1) \le r^n - 1 \le nr^{n-1}(r-1) \quad \forall n \in \mathbb{N}$$

(b). Prove that for each real $a \ge 1$, the following sequences converges:

$$x_n = n\left(a^{1/n} - 1\right), \quad n \in \mathbb{N}$$

- (c). Prove that the sequence in (b) also converges for each real $a \in (0,1)$.
- (d). Let $L(x) = \lim_{n \to \infty} n(x^{1/n} 1)$ for x > 0. Prove that L(ab) = L(a) + L(b) for all a > 0, b > 0.

Note: Present solutions that use only methods discussed in MATH 320. No calculus, please!

(a). Solution. Recall the identity $b^n - a^n = (b-a)(b^{n-1} + b^{n-2}a + \cdots + a^{n-1})$ for any $n \in \mathbb{N}$. Since $r \ge 1$, applying the identity when b = r and a = 1, we get

$$r^{n} - 1 = (r - 1)(r^{n-1} + r^{n-2} + \dots + 1) \le (r - 1)nr^{n-1}$$

since each $r^{n-j} \leq r^{n-1}$ $(1 \leq j \leq n)$, and there are n many r^{n-j} in the factor.

To prove the second inequality, we use the identity again, however

$$r^{n} - 1 = (r - 1)(r^{n-1} + r^{n-2} + \dots + 1) \ge n(r - 1)$$

since each $r^{n-j} \ge 1$ $(1 \le j \le n)$, and there are n many r^{n-j} in the factor. Thus we have shown $n(r-1) \le r^n - 1 \le nr^{n-1}(r-1)$.

(b). Solution. We have that for all $n \in \mathbb{N}$, by part (a) of this problem, $x_n = n\left(a^{1/n} - 1\right) \leq a - 1$, thus x_n is bounded above. Additionally, $a \geq 1 = 1^n \implies a^{1/n} \geq 1$, thus $n(a^{1/n} - 1) \geq 0$, and so x_n is bounded below. Furthermore, we claim that (x_n) is monotonically decreasing: $x_{n+1} = (n+1)(a^{1/(n+1)} - 1) = n(a^{1/(n+1)} - 1) + a^{1/(n+1)} - 1$. That is $x_n - x_{n+1} \geq 0$. We see

$$x_n - x_{n+1} = n\left(a^{1/n} - 1\right) - (n+1)\left(a^{1/(n+1)} - 1\right)$$

$$\ge n^2\left(a^{1/n^2} - 1\right) - (n+1)\left(a^{1/(n+1)} - 1\right)$$

$$=$$

I can't figure this one out, but let's just assume it's monotonically decreasing. Since it is bounded and monotonically decreasing, it converges.

- (c). Solution. The sequence is bounded above by 0, since $0 < a < 1 = 1^n \implies a^{1/n} < 1$, thus $n(a^{1/n} 1) < 0$. Furthermore, it is bounded below, and monotonically decreasing (same as above). Thus the series converges.
- (d). Solution. We have

$$L(ab) = \lim_{n \to \infty} n((ab)^{1/n} - 1)$$

$$= \lim_{n \to \infty} n(a^{1/n}b^{1/n} - 1)$$

$$= \lim_{n \to \infty} n/2(-(a^{1/n} - b^{1/n})^2 - 2 + a^{2/n} + b^{2/n})$$

$$=$$

.