Additions and Corrections

2005, Volume 24

Anthony F. Hill,* Derek A. Tocher, Andrew J. P. White, David J. Williams, and James D. E. T. Wilton-Ely*: Thiocarbamoyl Complexes of Ruthenium(II), Rhodium(III), and Iridium(III)

Pages 5342–5355. In this paper we reported a rare example of an iridium formyl complex but neglected to draw readers' attention to two earlier examples of isolable iridium formyl complexes reported by Bergman, [IrX(CHO)(PMe₃)(η -C₅Me₅)] (X = H, 1 C₆H₄Me-4 2) (Scheme 1). For convenience, comparative IR and NMR data for iridium formyls are presented in Table 1.

Scheme 1. Synthesis of Iridium Formyls $(Cp^* = \eta^5 - C_5Me_5)^{1,2}$

$$\begin{bmatrix} Cp^* & OTf & Cp^* \\ Me_3P & CO \end{bmatrix} \xrightarrow{LiEt_3BH} & Me_3P & C=O \\ \hline & & & & & & \\ Me_3P & & \\ Me_3P & & & \\ Me_3P & & \\ M$$

Table 1. Spectroscopic Data^a for Iridium Formyls

complex	IR		NMR	
	ν_{CO}	$ u_{\mathrm{CH}}$	$\delta(\mathrm{C}_{\mathrm{HCO}}) [^2 J_{\mathrm{PH}}] (^1 J_{\mathrm{HC}})$	$\delta(\mathrm{H_{HCO}}) [^3 J_{\mathrm{PH}}]$
[Ir(CHO)H(PMe ₃) ₄] ⁺³	1600	2622	225.4 [10, 5.4] (150)	14.0 [6.5, 4.0] ^b
[Ir(CHO)HCl(PMe ₃) ₃] ³	1600	2585		15.0 [8.0]
[Ir(CHO)HI(PMe ₃) ₃] ⁴	1620, 1600	2580		14.9 [6.8, 4.1]
$[Ir(CHO)H(PMe_3)(C_5Me_5)]^1$	1591	2713, 2694	219.2 [11.6]	15.25 [4]
$[Ir(CHO)(C_6H_4Me)(PMe_3)(C_5Me_5)]^2$	1600	2732	231.6 [br]	13.8 [1.7]
[Ir(CHO)(SCNMe ₂)Cl(CO)(PPh ₃) ₂] ⁵	1618	2720, 2592	215.2 [5.4] (164.2)	14.67 [6.6]

^a IR data are given in cm⁻¹; NMR chemical shifts (δ) are given in ppm and coupling constants (J) in Hz. ^b For phosphorus cis to formyl.

OM060182R

10.1021/om050182r

Published on Web 03/14/2006

⁽¹⁾ Peterson, T. H.; Golden, J. T.; Bergman, R. G. Organometallics 1999, 18, 2005.

⁽²⁾ Alaimo, P. J.; Arndtsen, B. A.; Bergman, R. G. *Organometallics* **2000**, *19*, 2130.

⁽³⁾ Thorn, D. L. Organometallics 1982, 1, 197.

⁽⁴⁾ Thorn, D. L.; Tulip, T. H. Organometallics **1982**, 1, 1580.

⁽⁵⁾ This work.