Astrofísica Extragaláctica Lista 3 – Núcleos Ativos de Galáxias

Henrique Sarti Pires Universidade Tecnológica Federal do Paraná (UTFPR)

Curitiba - 2022

Parte A

1. **Espectros.** No contexto do modelo unificado de núcleos ativos, explique o que são regiões de linhas largas e de linhas estreitas.

Linhas Largas	Linhas estreitas
Movimentos internos rápidos.	Apenas linhas estreitas são observadas
Linhas permitidas	Linhas proibidas
Produzidas em gás de alta densidade	Produzidas em um gás de baixa densidade
Dispersões de velocidades de ~ 104 km s−1.	Grandes velocidades de 102 – 104 km s–1.

2. **Espectros** Explique o que é a floresta de Lyman:

R: Designa todas as estruturas observadas nos espectros de galáxias e quasares distantes, é à absorção entre diferentes estados excitados do hidrogênio neutro a partir de seu estado fundamental pelo meio intergaláctico de parte da luz emitida por esses objetos.

Na prática, é sobretudo a transição para o primeiro estado excitado que se observa, que corresponde à linha de Lyman- α . Além disso, as estruturas observadas nos espectros revelam uma abundância muito elevada dessas linhas de absorção, correspondendo a absorvedores distribuídos em diferentes distâncias na linha de visão, daí o termo "floresta".

Parte B

- 3. Luminosidade de Eddington. Partindo da massa do buraco negro supermassivo na galáxia M87:
 - (a) Determine sua luminosidade de Eddington Pegando a seguinte condição:

$$F_r ad < F_{grav}$$

$$\frac{\sigma + L}{4\pi r^2 c} < \frac{G.M.m_p}{r^2}$$

Reorganizando, chegamos há

$$\begin{split} L &= \frac{4.\pi.G.c.m_p}{\sigma_r}.M_{\odot} \approx L_{edd} \approx 1,26x10^3 8 \frac{M_{\bullet}}{M_{\odot}}.\\ L &= 1,26x10^3 8.6,5x10^9\\ L_{edd} &= 8,19x10^4 7 \frac{erg}{s}\\ L_{edd} &= 2x10^1 4 L_{\odot} \end{split}$$

(b) calcule a taxa de acreção (em $M_{\odot}yr^{-1}$) necessária para manter tal luminosidade, supondo eficiência de 10%

$$\begin{split} \epsilon &= 10\% \\ \epsilon &= \frac{L}{\dot{m}.c^2} \\ \dot{m} &= \frac{L}{\epsilon.c^2} \approx 0, 18.\frac{1}{\epsilon}.(\frac{L}{10^{46}})\frac{M_{\odot}}{yr} \\ \dot{m} &= 0, 18.\frac{1}{0,1}.\frac{8,19x10^{47}}{10^{46}}\frac{M_{\odot}}{yr} \\ \dot{m} &= 147\frac{M_{\odot}}{yr} \end{split}$$

4. Luminosidade de Eddington. Considere um buraco negro acretando massa e emitindo a luminosidade de Eddington com eficiência de 10%. Qual o tempo para que a massa do buraco negro aumente por um fator e?

$$t_e vo = \frac{M_{BH}}{\dot{m}}$$

 $6.5 \cdot 10^9 \cdot \frac{1}{143}$
 $t_e vo == 45454545.45yr$

Então o tempo para o buraco negro aumentar a massa em um fator e é de 45.4 Myr

- 5. Movimentos superluminais.
 - (a) Mostre que, para uma dada velocidade v, a máxima velocidade aparente ocorre para o ângulo $sin = \frac{1}{\gamma}$ (ou equivalentemente $cos\theta = \beta$) e que esta velocidade vale $v_{ma_x}^{ap} = \lambda v$:

$$v_{ap} = \frac{v\Delta t sin\Theta}{\Delta t_{obs}}$$
$$\frac{v sin\theta}{1 - (\frac{v}{c}) cos\theta}$$
$$v_{ap} = \frac{v sin\Theta}{1 - (\frac{v cos\theta}{c})}$$

 v_{app} é máxima para $\frac{v}{c} = cos\theta$

$$\begin{split} sin\theta &= (1-cos^2\theta)^{\frac{1}{2}} \\ v_{app} &= \frac{v(1-(\frac{v^2}{c^2})^{\frac{1}{2}}}{1-\frac{v^2}{c^2}} \\ v_{app} &= v(1-\frac{v^2}{c^2})^{-\frac{1}{2}} \end{split}$$

Lembrando que $\gamma=\frac{1}{\sqrt{1\frac{v^2}{c^2}}},$ assim reajustando temos que a velocidade máxima aparente é:

$$v_{app}^{\ max} = v.\gamma$$

(b) Mostre que, para um dado ângulo θ , a condição para se ter velocidades aparentemente superluminais é $v \geq 0.7c$

$$v_{ap} > c$$
, então, $v_{ap} = \frac{v \sin \theta}{1 - (\frac{v \cdot c \cos \theta}{c})}$

Supondo $\beta > c$:

$$\beta_{ap} = \frac{\beta \cdot \sin\theta}{1 - \beta \cdot \cos\theta}$$
$$\beta > \frac{1}{\sin\theta + \cos\theta}$$

lembrando que $sin\theta + cos\theta$, podemos reecrever ela usando $\sqrt{1 + sen2\Theta} \cong \sqrt{2}$, então:

$$\beta > \frac{1}{\sqrt{2}} = \frac{1}{1,42}$$

 $\beta > 0,70$

Ou seja, $v \ge 0, 7c$

6. Região de linhas largas. Problema 5.5 do Schneider

Aqui então partimos que cada nuev
m cobre $\frac{\pi r_c^2}{r^2},$ fazendo a divisão por 4π

$$f_{cov} = (\frac{N_c}{4\pi}).(\frac{r_c}{r})^3$$

Usando então que $f_v=10^-6 \rightarrow \frac{r_c}{r}=10^-2N_c^-\frac{1}{3}$ Assim para $f_{cov}=0,1\rightarrow N_c=0,4.(\frac{r_c}{r})^-2$ Juntando $f_{cov}ef_v$ obtemos que $N_c=6,4x^10$ e que $r_c=2,5x10^-6r$, ou , $r_c=2,5x10^10$

Agora partindo para encontrar M_c , então:

$$\begin{split} M_c &= n_e V_c.mp \rightarrow V_c = N_e.(\frac{4\pi}{3})r^3 \approx 4x10^{42}cm^3 \\ M_c &= 4x10^{42}.1,67x10^{-}2^4g \\ M_c &\approx 6,67x10^28g \\ M_c &\approx 3,4x10^{-}5M_\odot \end{split}$$

Parte C

8. . Espectro em rádio. A tabela a seguir dá os fluxos monocromáticos da radiogaláxia Cygnus A em diferentes comprimentos de onda. (a) Faça um gráfico e determine o índice espectral da lei de potência $F \propto^- \alpha$. (b) Calcule o fluxo total integrando numericamente o espectro e estime a luminosidade em rádio de Cygnus A (expresse a luminosidade em erg s-1).

1 (II-)	last E (Iss)
$\log \nu$ (Hz)	$\log F_{\nu}$ (Jy)
7.0	4.12
7.3	4.45
7.7	4.33
8.0	4.14
8.3	3.91
8.7	3.62
9.0	3.37
9.3	3.04
9.7	2.57
10.0	2.21

Neste exercício computacional os resultados serão enviado no arquivo com os códigos com passo a passo, encaminhado em conjunto a este arquivo