PDE 数值解法上机作业

1. 考虑矩形区域 G=(0,1)*(0,1)上如下 Poisson 方程第一边值问题

$$\left\{ \begin{array}{ll} -\Delta u = \left[2 + \pi^2 x (1-x)\right] \sin \pi y, & (x,y) \in G, \\ u = 0, & (x,y) \in \Gamma = \partial G. \end{array} \right.$$

采用三角剖分, 剖分形状如下

先应用一次 Lagrange 元求解, 网络尺寸为 h (h=0.1, 0.05, 0.01)

h=0.1时, 计算结果如下:

	X1	Х2	Х3	X4	Х5	Х6	Х7	Х8	Х9
Y1	0.0272	0.0519	0.0716	0.0843	0.0887	0.0845	0.0720	0.0524	0.0276
Y2	0.0485	0.0925	0. 1274	0.1500	0. 1578	0.1502	0. 1279	0.0931	0.0490
У 3	0.0639	0. 1216	0. 1674	0. 1970	0. 2072	0. 1972	0. 1679	0.1220	0.0642
Y4	0.0731	0.1391	0. 1915	0. 2252	0. 2369	0. 2253	0. 1918	0.1394	0.0733
Y5	0.0763	0.1450	0. 1996	0. 2347	0. 2468	0. 2347	0. 1996	0.1450	0.0763
Y6	0.0733	0.1394	0. 1918	0. 2253	0. 2369	0. 2252	0. 1915	0.1391	0.0731
Y7	0.0642	0.1220	0. 1679	0. 1972	0. 2072	0. 1970	0. 1674	0. 1216	0.0639
Y8	0.0490	0.0931	0. 1279	0.1502	0. 1578	0.1500	0. 1274	0.0925	0.0485
Υ9	0.0276	0.0524	0.0720	0.0845	0.0887	0.0843	0.0716	0.0519	0.0272

而精确结果如下:

	X1	X2	Х3	X4	Х5	Х6	Х7	Х8	Х9
Y1	0.0278	0.0529	0.0728	0.0856	0.0900	0.0856	0.0728	0.0529	0.0278
Y2	0.0494	0.0940	0. 1294	0. 1522	0.1600	0. 1522	0. 1294	0.0940	0.0494
У 3	0.0649	0. 1234	0. 1699	0. 1997	0. 2100	0. 1997	0. 1699	0. 1234	0.0649
Y4	0.0742	0. 1411	0. 1942	0. 2283	0. 2400	0. 2283	0. 1942	0.1411	0.0742
Y5	0.0773	0.1469	0. 2023	0. 2378	0.2500	0. 2378	0. 2023	0.1469	0.0773
Y6	0.0742	0.1411	0. 1942	0. 2283	0. 2400	0. 2283	0. 1942	0.1411	0.0742
Y7	0.0649	0. 1234	0. 1699	0. 1997	0. 2100	0. 1997	0. 1699	0. 1234	0.0649
Y8	0.0494	0.0940	0.1294	0. 1522	0.1600	0. 1522	0. 1294	0.0940	0.0494
Υ9	0.0278	0.0529	0.0728	0.0856	0.0900	0.0856	0.0728	0.0529	0.0278

可以看到计算结果与精确结果相比,大致误差为3%左右。因为我采用数值方法来计算其中的二维积分,若采用直接积分的方法则误差可以更小。

使用不同的网格尺寸 h(h=0.1, 0.05, 0.01)的计算时间如下:

网格尺寸 h	0. 1	0.05	0.01
计算时间	1.396s	6.057s	163.697s

可以看到,时间大致与网格尺寸 h 的平方呈反比。

最后,计算误差:

网格尺寸 h	$ u-u_h _0$	$\ \nabla(u-u_h)\ _0$	H ₁ 范数	<i>L</i> ₂ 范数
0.1	5. 4069*10^-3	1.4058*10^-2	1.5063*10^-2	5. 4069*10^-3
0.05	1.9183*10^-3	5. 5804*10^-3	5.9009*10^-3	1.9183*10^-3
0.01	1.7171*10^-4	5. 3794*10^-4	5.6469*10^-4	1.7171*10^-4

则线性元的计算收敛阶与理论收敛阶(误差随 h 变化)对比:

	计算收敛阶	理论收敛阶
H_1 范数	1.3520	1
L_2 范数	1.7324	2

可以看到, 计算收敛阶大致可以通过四舍五入验证理论收敛阶, 但差异也不小, 我个人认为还是其中采用数值方法来近似二维积分这一过程的影响。

2. 采用差分法求解边值问题:

$$-\Delta u = \cos 3x \sin \pi y , \quad (x, y) \in (0, \pi) \times (0, 1)$$
$$u(x, 0) = u(x, 1) = 0 , \quad 0 \le x \le 1$$
$$u_x(0, y) = u_x(\pi, y) = 0 , \quad 0 \le y \le 1$$

这里我采用五点差分格式,令 N=4, 8, 16, 32, 用消元法求解,并就 $(x_i, y_j) = (\frac{i\pi}{4}, \frac{j}{4})$ i, j=1, 2, 3 处列出差分解和精确解。

h	(x_1,y_1)	(x_2,y_1)	(x_3,y_1)	(x_1, y_2)	(x_2,y_2)	误差阶
1/4	-0.045481	-6*10^-18	0. 045481	-0.064319	-9*10^-18	10^-1
1/8	-0. 031658	-6*10^-18	0. 031658	-0. 044771	-9*10^-18	10^-2
1/16	-0.028146	-3*10^-17	0. 028146	-0. 039805	-3*10^-17	10^-2
1/32	-0.027121	-4*10^-17	0. 027121	-0. 038356	-6*10^-17	10^-3
精确解	-0. 026498	0	0. 026498	-0. 037473	0	
h	(x_3,y_2)	(x_1,y_3)	(x_2,y_3)	(x_3,y_3)		误差阶
1/4	0.064319	-0.045481	-7*10^-18	0. 045481		10^-1
1/8	0. 044771	-0.031658	-6*10^-18	0. 031658		10^-2
1/16	0. 039805	-0.028146	-6*10^-18	0. 028146		10^-2
1/32	0. 038356	-0.027121	-5*10^-17	0. 027121		10^-3
精确解	0. 037473	-0.026498	0	0. 026498		

3. 用 ADI 算法求解 2

要求:使用单参数和 p 个参数两种方法,在相同精度条件下比较计算时间 这里我选取初值为各元素全为 1 的向量,并对不同剖分 (h2) 与各个方法的 迭代次数进行了比较:

h2	Jacobi	G-S	SOR	ADI (单参)	ADI (P 参)
1/4	43	24	21	18	18
1/8	172	92	29	36	26
1/16	625	333	132	69	33
1/32	2196	1178	485	131	72

可以看到,各个方法的迭代次数随着剖分步长 h2(x轴)的减小而增多,且这几种方法的性能大致为 ADI(P参)>ADI(单参)>SOR>G-S>Jacobi。其中在 h2=1/4 时, ADI(单参)与 ADI(P参)的迭代次数相同,因为此时 P=1。

4. 利用向前差分格式,向后差分格式和Crank-Nicolson格式数值求解下面一维 热传导方程初边值问题:

$$\begin{cases} u_t = u_{xx} + \sin t, & 0 < x < 1, \ t > 0, \\ u_x(0, t) = u_x(1, t) = 0, & t \ge 0, \\ u(x, 0) = \cos \pi x, & 0 \le x \le 1. \end{cases}$$

其解析解为: $u(x,t) = e^{-\pi^2 t} \cos \pi x + (1-\cos t)$.

结果如下:

格式	1/h r	(0, 1)	(1/4, 1)	(1/2, 1)	(3/4, 1)	(1, 1)	误差阶
4	40 1/2	0. 459617	0. 459602	0. 459566	0. 459530	0. 459515	10^-3
向前	80 1/2	0. 459716	0. 459701	0. 459665	0. 459628	0. 459613	10^-4
白白	40 1	0.460014	0. 459999	0. 459961	0. 459923	0. 459907	10^-3
向后	80 2	0. 459882	0. 459866	0. 459829	0. 459792	0. 459777	10^-3
对称	40 1	0. 459750	0. 459734	0. 459698	0. 459661	0. 459646	10^-6
\(\frac{1}{2}\)	80 2	0. 459749	0. 459734	0. 459698	0. 459661	0. 459646	10^-7
精确		0. 459749	0. 459734	0. 459698	0. 459661	0. 459646	